summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib')
-rw-r--r--contrib/llvm/tools/clang/lib/ARCMigrate/ARCMT.cpp609
-rw-r--r--contrib/llvm/tools/clang/lib/ARCMigrate/ARCMTActions.cpp60
-rw-r--r--contrib/llvm/tools/clang/lib/ARCMigrate/FileRemapper.cpp257
-rw-r--r--contrib/llvm/tools/clang/lib/ARCMigrate/Internals.h181
-rw-r--r--contrib/llvm/tools/clang/lib/ARCMigrate/ObjCMT.cpp2290
-rw-r--r--contrib/llvm/tools/clang/lib/ARCMigrate/PlistReporter.cpp126
-rw-r--r--contrib/llvm/tools/clang/lib/ARCMigrate/TransAPIUses.cpp108
-rw-r--r--contrib/llvm/tools/clang/lib/ARCMigrate/TransARCAssign.cpp78
-rw-r--r--contrib/llvm/tools/clang/lib/ARCMigrate/TransAutoreleasePool.cpp435
-rw-r--r--contrib/llvm/tools/clang/lib/ARCMigrate/TransBlockObjCVariable.cpp147
-rw-r--r--contrib/llvm/tools/clang/lib/ARCMigrate/TransEmptyStatementsAndDealloc.cpp253
-rw-r--r--contrib/llvm/tools/clang/lib/ARCMigrate/TransGCAttrs.cpp357
-rw-r--r--contrib/llvm/tools/clang/lib/ARCMigrate/TransGCCalls.cpp77
-rw-r--r--contrib/llvm/tools/clang/lib/ARCMigrate/TransProperties.cpp397
-rw-r--r--contrib/llvm/tools/clang/lib/ARCMigrate/TransProtectedScope.cpp202
-rw-r--r--contrib/llvm/tools/clang/lib/ARCMigrate/TransRetainReleaseDealloc.cpp465
-rw-r--r--contrib/llvm/tools/clang/lib/ARCMigrate/TransUnbridgedCasts.cpp469
-rw-r--r--contrib/llvm/tools/clang/lib/ARCMigrate/TransUnusedInitDelegate.cpp78
-rw-r--r--contrib/llvm/tools/clang/lib/ARCMigrate/TransZeroOutPropsInDealloc.cpp227
-rw-r--r--contrib/llvm/tools/clang/lib/ARCMigrate/TransformActions.cpp695
-rw-r--r--contrib/llvm/tools/clang/lib/ARCMigrate/Transforms.cpp601
-rw-r--r--contrib/llvm/tools/clang/lib/ARCMigrate/Transforms.h225
-rw-r--r--contrib/llvm/tools/clang/lib/AST/APValue.cpp651
-rw-r--r--contrib/llvm/tools/clang/lib/AST/ASTConsumer.cpp31
-rw-r--r--contrib/llvm/tools/clang/lib/AST/ASTContext.cpp8470
-rw-r--r--contrib/llvm/tools/clang/lib/AST/ASTDiagnostic.cpp1873
-rw-r--r--contrib/llvm/tools/clang/lib/AST/ASTDumper.cpp2338
-rw-r--r--contrib/llvm/tools/clang/lib/AST/ASTImporter.cpp5849
-rw-r--r--contrib/llvm/tools/clang/lib/AST/ASTTypeTraits.cpp158
-rw-r--r--contrib/llvm/tools/clang/lib/AST/AttrImpl.cpp21
-rw-r--r--contrib/llvm/tools/clang/lib/AST/CXXABI.h67
-rw-r--r--contrib/llvm/tools/clang/lib/AST/CXXInheritance.cpp689
-rw-r--r--contrib/llvm/tools/clang/lib/AST/Comment.cpp347
-rw-r--r--contrib/llvm/tools/clang/lib/AST/CommentBriefParser.cpp155
-rw-r--r--contrib/llvm/tools/clang/lib/AST/CommentCommandTraits.cpp139
-rw-r--r--contrib/llvm/tools/clang/lib/AST/CommentLexer.cpp851
-rw-r--r--contrib/llvm/tools/clang/lib/AST/CommentParser.cpp776
-rw-r--r--contrib/llvm/tools/clang/lib/AST/CommentSema.cpp1098
-rw-r--r--contrib/llvm/tools/clang/lib/AST/Decl.cpp4093
-rw-r--r--contrib/llvm/tools/clang/lib/AST/DeclBase.cpp1686
-rw-r--r--contrib/llvm/tools/clang/lib/AST/DeclCXX.cpp2218
-rw-r--r--contrib/llvm/tools/clang/lib/AST/DeclFriend.cpp66
-rw-r--r--contrib/llvm/tools/clang/lib/AST/DeclGroup.cpp34
-rw-r--r--contrib/llvm/tools/clang/lib/AST/DeclObjC.cpp1906
-rw-r--r--contrib/llvm/tools/clang/lib/AST/DeclOpenMP.cpp54
-rw-r--r--contrib/llvm/tools/clang/lib/AST/DeclPrinter.cpp1221
-rw-r--r--contrib/llvm/tools/clang/lib/AST/DeclTemplate.cpp1173
-rw-r--r--contrib/llvm/tools/clang/lib/AST/DeclarationName.cpp590
-rw-r--r--contrib/llvm/tools/clang/lib/AST/Expr.cpp4310
-rw-r--r--contrib/llvm/tools/clang/lib/AST/ExprCXX.cpp1540
-rw-r--r--contrib/llvm/tools/clang/lib/AST/ExprClassification.cpp680
-rw-r--r--contrib/llvm/tools/clang/lib/AST/ExprConstant.cpp9188
-rw-r--r--contrib/llvm/tools/clang/lib/AST/ExternalASTSource.cpp113
-rw-r--r--contrib/llvm/tools/clang/lib/AST/InheritViz.cpp160
-rw-r--r--contrib/llvm/tools/clang/lib/AST/ItaniumCXXABI.cpp160
-rw-r--r--contrib/llvm/tools/clang/lib/AST/ItaniumMangle.cpp4085
-rw-r--r--contrib/llvm/tools/clang/lib/AST/Mangle.cpp276
-rw-r--r--contrib/llvm/tools/clang/lib/AST/MicrosoftCXXABI.cpp248
-rw-r--r--contrib/llvm/tools/clang/lib/AST/MicrosoftMangle.cpp2764
-rw-r--r--contrib/llvm/tools/clang/lib/AST/NSAPI.cpp560
-rw-r--r--contrib/llvm/tools/clang/lib/AST/NestedNameSpecifier.cpp677
-rw-r--r--contrib/llvm/tools/clang/lib/AST/ParentMap.cpp198
-rw-r--r--contrib/llvm/tools/clang/lib/AST/RawCommentList.cpp265
-rw-r--r--contrib/llvm/tools/clang/lib/AST/RecordLayout.cpp102
-rw-r--r--contrib/llvm/tools/clang/lib/AST/RecordLayoutBuilder.cpp3215
-rw-r--r--contrib/llvm/tools/clang/lib/AST/SelectorLocationsKind.cpp128
-rw-r--r--contrib/llvm/tools/clang/lib/AST/Stmt.cpp2168
-rw-r--r--contrib/llvm/tools/clang/lib/AST/StmtIterator.cpp114
-rw-r--r--contrib/llvm/tools/clang/lib/AST/StmtPrinter.cpp2241
-rw-r--r--contrib/llvm/tools/clang/lib/AST/StmtProfile.cpp1513
-rw-r--r--contrib/llvm/tools/clang/lib/AST/StmtViz.cpp62
-rw-r--r--contrib/llvm/tools/clang/lib/AST/TemplateBase.cpp615
-rw-r--r--contrib/llvm/tools/clang/lib/AST/TemplateName.cpp182
-rw-r--r--contrib/llvm/tools/clang/lib/AST/Type.cpp2464
-rw-r--r--contrib/llvm/tools/clang/lib/AST/TypeLoc.cpp407
-rw-r--r--contrib/llvm/tools/clang/lib/AST/TypePrinter.cpp1569
-rw-r--r--contrib/llvm/tools/clang/lib/AST/VTTBuilder.cpp209
-rw-r--r--contrib/llvm/tools/clang/lib/AST/VTableBuilder.cpp3816
-rw-r--r--contrib/llvm/tools/clang/lib/ASTMatchers/ASTMatchFinder.cpp1000
-rw-r--r--contrib/llvm/tools/clang/lib/ASTMatchers/ASTMatchersInternal.cpp344
-rw-r--r--contrib/llvm/tools/clang/lib/ASTMatchers/Dynamic/Diagnostics.cpp222
-rw-r--r--contrib/llvm/tools/clang/lib/ASTMatchers/Dynamic/Marshallers.h716
-rw-r--r--contrib/llvm/tools/clang/lib/ASTMatchers/Dynamic/Parser.cpp613
-rw-r--r--contrib/llvm/tools/clang/lib/ASTMatchers/Dynamic/Registry.cpp529
-rw-r--r--contrib/llvm/tools/clang/lib/ASTMatchers/Dynamic/VariantValue.cpp392
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/AnalysisDeclContext.cpp587
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/BodyFarm.cpp472
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/BodyFarm.h51
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/CFG.cpp4571
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/CFGReachabilityAnalysis.cpp76
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/CFGStmtMap.cpp91
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/CallGraph.cpp228
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/CocoaConventions.cpp140
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/CodeInjector.cpp15
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/Consumed.cpp1470
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/Dominators.cpp14
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/FormatString.cpp907
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/FormatStringParsing.h74
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/LiveVariables.cpp612
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/ObjCNoReturn.cpp67
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/PostOrderCFGView.cpp49
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/PrintfFormatString.cpp872
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/ProgramPoint.cpp52
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/PseudoConstantAnalysis.cpp227
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/ReachableCode.cpp679
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/ScanfFormatString.cpp553
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/ThreadSafety.cpp2401
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/ThreadSafetyCommon.cpp977
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/ThreadSafetyLogical.cpp112
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/ThreadSafetyTIL.cpp336
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/UninitializedValues.cpp925
-rw-r--r--contrib/llvm/tools/clang/lib/Basic/Attributes.cpp17
-rw-r--r--contrib/llvm/tools/clang/lib/Basic/Builtins.cpp131
-rw-r--r--contrib/llvm/tools/clang/lib/Basic/CharInfo.cpp81
-rw-r--r--contrib/llvm/tools/clang/lib/Basic/Diagnostic.cpp1004
-rw-r--r--contrib/llvm/tools/clang/lib/Basic/DiagnosticIDs.cpp721
-rw-r--r--contrib/llvm/tools/clang/lib/Basic/FileManager.cpp587
-rw-r--r--contrib/llvm/tools/clang/lib/Basic/FileSystemStatCache.cpp137
-rw-r--r--contrib/llvm/tools/clang/lib/Basic/IdentifierTable.cpp645
-rw-r--r--contrib/llvm/tools/clang/lib/Basic/LangOptions.cpp38
-rw-r--r--contrib/llvm/tools/clang/lib/Basic/Module.cpp521
-rw-r--r--contrib/llvm/tools/clang/lib/Basic/ObjCRuntime.cpp90
-rw-r--r--contrib/llvm/tools/clang/lib/Basic/OpenMPKinds.cpp379
-rw-r--r--contrib/llvm/tools/clang/lib/Basic/OperatorPrecedence.cpp76
-rw-r--r--contrib/llvm/tools/clang/lib/Basic/SanitizerBlacklist.cpp46
-rw-r--r--contrib/llvm/tools/clang/lib/Basic/Sanitizers.cpp58
-rw-r--r--contrib/llvm/tools/clang/lib/Basic/SourceLocation.cpp142
-rw-r--r--contrib/llvm/tools/clang/lib/Basic/SourceManager.cpp2169
-rw-r--r--contrib/llvm/tools/clang/lib/Basic/TargetInfo.cpp665
-rw-r--r--contrib/llvm/tools/clang/lib/Basic/Targets.cpp7251
-rw-r--r--contrib/llvm/tools/clang/lib/Basic/TokenKinds.cpp48
-rw-r--r--contrib/llvm/tools/clang/lib/Basic/Version.cpp153
-rw-r--r--contrib/llvm/tools/clang/lib/Basic/VersionTuple.cpp100
-rw-r--r--contrib/llvm/tools/clang/lib/Basic/VirtualFileSystem.cpp1193
-rw-r--r--contrib/llvm/tools/clang/lib/Basic/Warnings.cpp230
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/ABIInfo.h98
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/BackendUtil.cpp667
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGAtomic.cpp1787
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGBlocks.cpp2320
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGBlocks.h256
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGBuilder.h55
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGBuiltin.cpp6725
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGCUDANV.cpp317
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGCUDARuntime.cpp55
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGCUDARuntime.h65
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGCXX.cpp315
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGCXXABI.cpp311
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGCXXABI.h547
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGCall.cpp3537
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGCall.h174
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGClass.cpp2420
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGCleanup.cpp1170
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGCleanup.h557
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGDebugInfo.cpp3395
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGDebugInfo.h504
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGDecl.cpp1806
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGDeclCXX.cpp596
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGException.cpp1706
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGExpr.cpp3564
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGExprAgg.cpp1535
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGExprCXX.cpp1841
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGExprComplex.cpp1100
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGExprConstant.cpp1429
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGExprScalar.cpp3558
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGLoopInfo.cpp110
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGLoopInfo.h136
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGObjC.cpp3062
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGObjCGNU.cpp2852
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGObjCMac.cpp7054
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGObjCRuntime.cpp383
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGObjCRuntime.h300
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGOpenCLRuntime.cpp67
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGOpenCLRuntime.h52
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp2462
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGOpenMPRuntime.h644
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGRecordLayout.h220
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGRecordLayoutBuilder.cpp860
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGStmt.cpp2217
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGStmtOpenMP.cpp2017
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGVTT.cpp179
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGVTables.cpp906
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGVTables.h123
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGValue.h505
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CodeGenABITypes.cpp72
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CodeGenAction.cpp767
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CodeGenFunction.cpp1772
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CodeGenFunction.h3036
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CodeGenModule.cpp3669
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CodeGenModule.h1233
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CodeGenPGO.cpp881
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CodeGenPGO.h121
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CodeGenTBAA.cpp321
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CodeGenTBAA.h160
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CodeGenTypes.cpp745
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CodeGenTypes.h326
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CoverageMappingGen.cpp1053
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CoverageMappingGen.h114
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/EHScopeStack.h409
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/ItaniumCXXABI.cpp3639
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/MicrosoftCXXABI.cpp3870
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/ModuleBuilder.cpp245
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/SanitizerMetadata.cpp92
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/SanitizerMetadata.h53
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/TargetInfo.cpp7193
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/TargetInfo.h231
-rw-r--r--contrib/llvm/tools/clang/lib/Driver/Action.cpp152
-rw-r--r--contrib/llvm/tools/clang/lib/Driver/Compilation.cpp241
-rw-r--r--contrib/llvm/tools/clang/lib/Driver/CrossWindowsToolChain.cpp117
-rw-r--r--contrib/llvm/tools/clang/lib/Driver/Driver.cpp2190
-rw-r--r--contrib/llvm/tools/clang/lib/Driver/DriverOptions.cpp44
-rw-r--r--contrib/llvm/tools/clang/lib/Driver/InputInfo.h89
-rw-r--r--contrib/llvm/tools/clang/lib/Driver/Job.cpp306
-rw-r--r--contrib/llvm/tools/clang/lib/Driver/MSVCToolChain.cpp497
-rw-r--r--contrib/llvm/tools/clang/lib/Driver/Multilib.cpp295
-rw-r--r--contrib/llvm/tools/clang/lib/Driver/Phases.cpp27
-rw-r--r--contrib/llvm/tools/clang/lib/Driver/SanitizerArgs.cpp613
-rw-r--r--contrib/llvm/tools/clang/lib/Driver/Tool.cpp23
-rw-r--r--contrib/llvm/tools/clang/lib/Driver/ToolChain.cpp483
-rw-r--r--contrib/llvm/tools/clang/lib/Driver/ToolChains.cpp3721
-rw-r--r--contrib/llvm/tools/clang/lib/Driver/ToolChains.h876
-rw-r--r--contrib/llvm/tools/clang/lib/Driver/Tools.cpp9029
-rw-r--r--contrib/llvm/tools/clang/lib/Driver/Tools.h733
-rw-r--r--contrib/llvm/tools/clang/lib/Driver/Types.cpp234
-rw-r--r--contrib/llvm/tools/clang/lib/Edit/Commit.cpp346
-rw-r--r--contrib/llvm/tools/clang/lib/Edit/EditedSource.cpp406
-rw-r--r--contrib/llvm/tools/clang/lib/Edit/RewriteObjCFoundationAPI.cpp1170
-rw-r--r--contrib/llvm/tools/clang/lib/Format/BreakableToken.cpp460
-rw-r--r--contrib/llvm/tools/clang/lib/Format/BreakableToken.h245
-rw-r--r--contrib/llvm/tools/clang/lib/Format/ContinuationIndenter.cpp1154
-rw-r--r--contrib/llvm/tools/clang/lib/Format/ContinuationIndenter.h383
-rw-r--r--contrib/llvm/tools/clang/lib/Format/Encoding.h146
-rw-r--r--contrib/llvm/tools/clang/lib/Format/Format.cpp1654
-rw-r--r--contrib/llvm/tools/clang/lib/Format/FormatToken.cpp272
-rw-r--r--contrib/llvm/tools/clang/lib/Format/FormatToken.h605
-rw-r--r--contrib/llvm/tools/clang/lib/Format/TokenAnnotator.cpp2247
-rw-r--r--contrib/llvm/tools/clang/lib/Format/TokenAnnotator.h153
-rw-r--r--contrib/llvm/tools/clang/lib/Format/UnwrappedLineFormatter.cpp949
-rw-r--r--contrib/llvm/tools/clang/lib/Format/UnwrappedLineFormatter.h72
-rw-r--r--contrib/llvm/tools/clang/lib/Format/UnwrappedLineParser.cpp1884
-rw-r--r--contrib/llvm/tools/clang/lib/Format/UnwrappedLineParser.h225
-rw-r--r--contrib/llvm/tools/clang/lib/Format/WhitespaceManager.cpp448
-rw-r--r--contrib/llvm/tools/clang/lib/Format/WhitespaceManager.h210
-rw-r--r--contrib/llvm/tools/clang/lib/Frontend/ASTConsumers.cpp489
-rw-r--r--contrib/llvm/tools/clang/lib/Frontend/ASTMerge.cpp113
-rw-r--r--contrib/llvm/tools/clang/lib/Frontend/ASTUnit.cpp2836
-rw-r--r--contrib/llvm/tools/clang/lib/Frontend/CacheTokens.cpp693
-rw-r--r--contrib/llvm/tools/clang/lib/Frontend/ChainedDiagnosticConsumer.cpp14
-rw-r--r--contrib/llvm/tools/clang/lib/Frontend/ChainedIncludesSource.cpp292
-rw-r--r--contrib/llvm/tools/clang/lib/Frontend/CodeGenOptions.cpp24
-rw-r--r--contrib/llvm/tools/clang/lib/Frontend/CompilerInstance.cpp1712
-rw-r--r--contrib/llvm/tools/clang/lib/Frontend/CompilerInvocation.cpp2121
-rw-r--r--contrib/llvm/tools/clang/lib/Frontend/CreateInvocationFromCommandLine.cpp89
-rw-r--r--contrib/llvm/tools/clang/lib/Frontend/DependencyFile.cpp453
-rw-r--r--contrib/llvm/tools/clang/lib/Frontend/DependencyGraph.cpp138
-rw-r--r--contrib/llvm/tools/clang/lib/Frontend/DiagnosticRenderer.cpp514
-rw-r--r--contrib/llvm/tools/clang/lib/Frontend/FrontendAction.cpp590
-rw-r--r--contrib/llvm/tools/clang/lib/Frontend/FrontendActions.cpp695
-rw-r--r--contrib/llvm/tools/clang/lib/Frontend/FrontendOptions.cpp32
-rw-r--r--contrib/llvm/tools/clang/lib/Frontend/HeaderIncludeGen.cpp138
-rw-r--r--contrib/llvm/tools/clang/lib/Frontend/InitHeaderSearch.cpp724
-rw-r--r--contrib/llvm/tools/clang/lib/Frontend/InitPreprocessor.cpp975
-rw-r--r--contrib/llvm/tools/clang/lib/Frontend/LangStandards.cpp43
-rw-r--r--contrib/llvm/tools/clang/lib/Frontend/LayoutOverrideSource.cpp208
-rw-r--r--contrib/llvm/tools/clang/lib/Frontend/LogDiagnosticPrinter.cpp165
-rw-r--r--contrib/llvm/tools/clang/lib/Frontend/ModuleDependencyCollector.cpp93
-rw-r--r--contrib/llvm/tools/clang/lib/Frontend/MultiplexConsumer.cpp337
-rw-r--r--contrib/llvm/tools/clang/lib/Frontend/PrintPreprocessedOutput.cpp752
-rw-r--r--contrib/llvm/tools/clang/lib/Frontend/Rewrite/FixItRewriter.cpp196
-rw-r--r--contrib/llvm/tools/clang/lib/Frontend/Rewrite/FrontendActions.cpp196
-rw-r--r--contrib/llvm/tools/clang/lib/Frontend/Rewrite/HTMLPrint.cpp95
-rw-r--r--contrib/llvm/tools/clang/lib/Frontend/Rewrite/InclusionRewriter.cpp588
-rw-r--r--contrib/llvm/tools/clang/lib/Frontend/Rewrite/RewriteMacros.cpp217
-rw-r--r--contrib/llvm/tools/clang/lib/Frontend/Rewrite/RewriteModernObjC.cpp7731
-rw-r--r--contrib/llvm/tools/clang/lib/Frontend/Rewrite/RewriteObjC.cpp5928
-rw-r--r--contrib/llvm/tools/clang/lib/Frontend/Rewrite/RewriteTest.cpp39
-rw-r--r--contrib/llvm/tools/clang/lib/Frontend/SerializedDiagnosticPrinter.cpp918
-rw-r--r--contrib/llvm/tools/clang/lib/Frontend/SerializedDiagnosticReader.cpp295
-rw-r--r--contrib/llvm/tools/clang/lib/Frontend/TextDiagnostic.cpp1261
-rw-r--r--contrib/llvm/tools/clang/lib/Frontend/TextDiagnosticBuffer.cpp63
-rw-r--r--contrib/llvm/tools/clang/lib/Frontend/TextDiagnosticPrinter.cpp161
-rw-r--r--contrib/llvm/tools/clang/lib/Frontend/VerifyDiagnosticConsumer.cpp906
-rw-r--r--contrib/llvm/tools/clang/lib/FrontendTool/ExecuteCompilerInvocation.cpp226
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/Intrin.h965
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/__stddef_max_align_t.h43
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/__wmmintrin_aes.h67
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/__wmmintrin_pclmul.h34
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/adxintrin.h83
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/altivec.h13982
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/ammintrin.h68
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/arm_acle.h296
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/avx2intrin.h1251
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/avx512bwintrin.h496
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/avx512dqintrin.h237
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/avx512erintrin.h286
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/avx512fintrin.h1747
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/avx512vlbwintrin.h857
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/avx512vldqintrin.h349
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/avx512vlintrin.h1319
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/avxintrin.h1303
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/bmi2intrin.h94
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/bmiintrin.h148
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/cpuid.h209
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/cuda_builtin_vars.h110
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/emmintrin.h1475
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/f16cintrin.h58
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/float.h124
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/fma4intrin.h231
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/fmaintrin.h229
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/htmintrin.h226
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/htmxlintrin.h363
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/ia32intrin.h101
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/immintrin.h202
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/iso646.h43
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/limits.h118
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/lzcntintrin.h67
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/mm3dnow.h162
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/mm_malloc.h75
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/mmintrin.h503
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/module.modulemap189
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/nmmintrin.h35
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/pmmintrin.h117
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/popcntintrin.h45
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/prfchwintrin.h39
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/rdseedintrin.h52
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/rtmintrin.h54
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/s390intrin.h35
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/shaintrin.h74
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/smmintrin.h482
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/stdalign.h35
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/stdarg.h52
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/stdatomic.h190
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/stdbool.h44
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/stddef.h137
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/stdint.h707
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/stdnoreturn.h30
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/tbmintrin.h158
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/tgmath.h1374
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/tmmintrin.h225
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/unwind.h282
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/vadefs.h65
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/varargs.h26
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/wmmintrin.h42
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/x86intrin.h81
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/xmmintrin.h1003
-rw-r--r--contrib/llvm/tools/clang/lib/Headers/xopintrin.h804
-rw-r--r--contrib/llvm/tools/clang/lib/Index/CommentToXML.cpp1166
-rw-r--r--contrib/llvm/tools/clang/lib/Index/SimpleFormatContext.h75
-rw-r--r--contrib/llvm/tools/clang/lib/Index/USRGeneration.cpp871
-rw-r--r--contrib/llvm/tools/clang/lib/Lex/HeaderMap.cpp237
-rw-r--r--contrib/llvm/tools/clang/lib/Lex/HeaderSearch.cpp1372
-rw-r--r--contrib/llvm/tools/clang/lib/Lex/Lexer.cpp3643
-rw-r--r--contrib/llvm/tools/clang/lib/Lex/LiteralSupport.cpp1676
-rw-r--r--contrib/llvm/tools/clang/lib/Lex/MacroArgs.cpp313
-rw-r--r--contrib/llvm/tools/clang/lib/Lex/MacroInfo.cpp241
-rw-r--r--contrib/llvm/tools/clang/lib/Lex/ModuleMap.cpp2362
-rw-r--r--contrib/llvm/tools/clang/lib/Lex/PPCaching.cpp118
-rw-r--r--contrib/llvm/tools/clang/lib/Lex/PPCallbacks.cpp14
-rw-r--r--contrib/llvm/tools/clang/lib/Lex/PPConditionalDirectiveRecord.cpp122
-rw-r--r--contrib/llvm/tools/clang/lib/Lex/PPDirectives.cpp2516
-rw-r--r--contrib/llvm/tools/clang/lib/Lex/PPExpressions.cpp798
-rw-r--r--contrib/llvm/tools/clang/lib/Lex/PPLexerChange.cpp733
-rw-r--r--contrib/llvm/tools/clang/lib/Lex/PPMacroExpansion.cpp1778
-rw-r--r--contrib/llvm/tools/clang/lib/Lex/PTHLexer.cpp729
-rw-r--r--contrib/llvm/tools/clang/lib/Lex/Pragma.cpp1431
-rw-r--r--contrib/llvm/tools/clang/lib/Lex/PreprocessingRecord.cpp488
-rw-r--r--contrib/llvm/tools/clang/lib/Lex/Preprocessor.cpp904
-rw-r--r--contrib/llvm/tools/clang/lib/Lex/PreprocessorLexer.cpp58
-rw-r--r--contrib/llvm/tools/clang/lib/Lex/ScratchBuffer.cpp76
-rw-r--r--contrib/llvm/tools/clang/lib/Lex/TokenConcatenation.cpp287
-rw-r--r--contrib/llvm/tools/clang/lib/Lex/TokenLexer.cpp850
-rw-r--r--contrib/llvm/tools/clang/lib/Lex/UnicodeCharSets.h408
-rw-r--r--contrib/llvm/tools/clang/lib/Parse/ParseAST.cpp162
-rw-r--r--contrib/llvm/tools/clang/lib/Parse/ParseCXXInlineMethods.cpp1218
-rw-r--r--contrib/llvm/tools/clang/lib/Parse/ParseDecl.cpp6205
-rw-r--r--contrib/llvm/tools/clang/lib/Parse/ParseDeclCXX.cpp3862
-rw-r--r--contrib/llvm/tools/clang/lib/Parse/ParseExpr.cpp2776
-rw-r--r--contrib/llvm/tools/clang/lib/Parse/ParseExprCXX.cpp3144
-rw-r--r--contrib/llvm/tools/clang/lib/Parse/ParseInit.cpp530
-rw-r--r--contrib/llvm/tools/clang/lib/Parse/ParseObjc.cpp2930
-rw-r--r--contrib/llvm/tools/clang/lib/Parse/ParseOpenMP.cpp762
-rw-r--r--contrib/llvm/tools/clang/lib/Parse/ParsePragma.cpp2117
-rw-r--r--contrib/llvm/tools/clang/lib/Parse/ParseStmt.cpp2150
-rw-r--r--contrib/llvm/tools/clang/lib/Parse/ParseStmtAsm.cpp798
-rw-r--r--contrib/llvm/tools/clang/lib/Parse/ParseTemplate.cpp1399
-rw-r--r--contrib/llvm/tools/clang/lib/Parse/ParseTentative.cpp1828
-rw-r--r--contrib/llvm/tools/clang/lib/Parse/Parser.cpp1987
-rw-r--r--contrib/llvm/tools/clang/lib/Parse/RAIIObjectsForParser.h447
-rw-r--r--contrib/llvm/tools/clang/lib/Rewrite/DeltaTree.cpp464
-rw-r--r--contrib/llvm/tools/clang/lib/Rewrite/HTMLRewrite.cpp582
-rw-r--r--contrib/llvm/tools/clang/lib/Rewrite/RewriteRope.cpp802
-rw-r--r--contrib/llvm/tools/clang/lib/Rewrite/Rewriter.cpp464
-rw-r--r--contrib/llvm/tools/clang/lib/Rewrite/TokenRewriter.cpp99
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/AnalysisBasedWarnings.cpp2105
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/AttributeList.cpp216
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/CodeCompleteConsumer.cpp636
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/DeclSpec.cpp1253
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/DelayedDiagnostic.cpp72
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/IdentifierResolver.cpp422
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/JumpDiagnostics.cpp853
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/MultiplexExternalSemaSource.cpp315
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/Scope.cpp224
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/ScopeInfo.cpp238
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/Sema.cpp1489
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaAccess.cpp1908
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaAttr.cpp619
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaCUDA.cpp280
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaCXXScopeSpec.cpp1058
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaCast.cpp2479
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaChecking.cpp9375
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaCodeComplete.cpp7423
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaConsumer.cpp14
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaDecl.cpp14273
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaDeclAttr.cpp5385
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaDeclCXX.cpp13780
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaDeclObjC.cpp3630
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaExceptionSpec.cpp1163
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaExpr.cpp14246
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaExprCXX.cpp6767
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaExprMember.cpp1746
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaExprObjC.cpp4053
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaFixItUtils.cpp222
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaInit.cpp7508
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaLambda.cpp1716
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaLookup.cpp4700
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaObjCProperty.cpp2291
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaOpenMP.cpp6262
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaOverload.cpp12511
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaPseudoObject.cpp1637
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaStmt.cpp3892
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaStmtAsm.cpp644
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaStmtAttr.cpp228
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaTemplate.cpp8371
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaTemplateDeduction.cpp4989
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaTemplateInstantiate.cpp2889
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp4713
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaTemplateVariadic.cpp1037
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaType.cpp5660
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/TreeTransform.h10834
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/TypeLocBuilder.cpp136
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/TypeLocBuilder.h151
-rw-r--r--contrib/llvm/tools/clang/lib/Serialization/ASTCommon.cpp253
-rw-r--r--contrib/llvm/tools/clang/lib/Serialization/ASTCommon.h113
-rw-r--r--contrib/llvm/tools/clang/lib/Serialization/ASTReader.cpp8452
-rw-r--r--contrib/llvm/tools/clang/lib/Serialization/ASTReaderDecl.cpp3875
-rw-r--r--contrib/llvm/tools/clang/lib/Serialization/ASTReaderInternals.h249
-rw-r--r--contrib/llvm/tools/clang/lib/Serialization/ASTReaderStmt.cpp3058
-rw-r--r--contrib/llvm/tools/clang/lib/Serialization/ASTWriter.cpp5770
-rw-r--r--contrib/llvm/tools/clang/lib/Serialization/ASTWriterDecl.cpp2100
-rw-r--r--contrib/llvm/tools/clang/lib/Serialization/ASTWriterStmt.cpp2203
-rw-r--r--contrib/llvm/tools/clang/lib/Serialization/GeneratePCH.cpp73
-rw-r--r--contrib/llvm/tools/clang/lib/Serialization/GlobalModuleIndex.cpp886
-rw-r--r--contrib/llvm/tools/clang/lib/Serialization/Module.cpp123
-rw-r--r--contrib/llvm/tools/clang/lib/Serialization/ModuleManager.cpp540
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/AllocationDiagnostics.cpp24
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/AllocationDiagnostics.h31
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/AnalyzerStatsChecker.cpp140
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ArrayBoundChecker.cpp94
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ArrayBoundCheckerV2.cpp305
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/BasicObjCFoundationChecks.cpp1307
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/BoolAssignmentChecker.cpp157
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/BuiltinFunctionChecker.cpp101
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp2086
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CStringSyntaxChecker.cpp192
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CallAndMessageChecker.cpp598
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CastSizeChecker.cpp147
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CastToStructChecker.cpp75
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CheckObjCDealloc.cpp248
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CheckObjCInstMethSignature.cpp140
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CheckSecuritySyntaxOnly.cpp779
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CheckSizeofPointer.cpp93
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CheckerDocumentation.cpp312
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/Checkers.td549
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ChrootChecker.cpp158
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ClangCheckers.cpp32
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ClangSACheckers.h37
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/DeadStoresChecker.cpp452
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/DebugCheckers.cpp211
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/DereferenceChecker.cpp281
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/DirectIvarAssignment.cpp228
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/DivZeroChecker.cpp92
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/DynamicTypePropagation.cpp281
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ExprInspectionChecker.cpp143
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/FixedAddressChecker.cpp68
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/GenericTaintChecker.cpp740
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/IdenticalExprChecker.cpp495
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/InterCheckerAPI.h24
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/IvarInvalidationChecker.cpp753
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/LLVMConventionsChecker.cpp319
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/MacOSKeychainAPIChecker.cpp633
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/MacOSXAPIChecker.cpp128
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/MallocChecker.cpp2723
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/MallocOverflowSecurityChecker.cpp269
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/MallocSizeofChecker.cpp253
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/NSAutoreleasePoolChecker.cpp80
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/NSErrorChecker.cpp325
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/NoReturnFunctionChecker.cpp144
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/NonNullParamChecker.cpp214
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ObjCAtSyncChecker.cpp94
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ObjCContainersASTChecker.cpp175
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ObjCContainersChecker.cpp151
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ObjCMissingSuperCallChecker.cpp265
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ObjCSelfInitChecker.cpp443
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ObjCUnusedIVarsChecker.cpp188
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/PointerArithChecker.cpp70
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/PointerSubChecker.cpp77
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/PthreadLockChecker.cpp339
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/RetainCountChecker.cpp3971
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ReturnPointerRangeChecker.cpp93
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ReturnUndefChecker.cpp123
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/SelectorExtras.h68
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/SimpleStreamChecker.cpp285
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/StackAddrEscapeChecker.cpp244
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/StreamChecker.cpp427
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/TaintTesterChecker.cpp62
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/TestAfterDivZeroChecker.cpp265
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/TraversalChecker.cpp107
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/UndefBranchChecker.cpp112
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/UndefCapturedBlockVarChecker.cpp107
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/UndefResultChecker.cpp101
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/UndefinedArraySubscriptChecker.cpp64
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/UndefinedAssignmentChecker.cpp96
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/UnixAPIChecker.cpp382
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/UnreachableCodeChecker.cpp255
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/VLASizeChecker.cpp185
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/VirtualCallChecker.cpp246
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/APSIntType.cpp49
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/AnalysisManager.cpp58
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/AnalyzerOptions.cpp327
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/BasicValueFactory.cpp288
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/BlockCounter.cpp85
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/BugReporter.cpp3556
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/BugReporterVisitors.cpp1634
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp980
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/Checker.cpp38
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/CheckerContext.cpp98
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/CheckerHelpers.cpp80
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/CheckerManager.cpp713
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/CheckerRegistry.cpp152
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/CommonBugCategories.cpp20
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/ConstraintManager.cpp39
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/CoreEngine.cpp730
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/Environment.cpp216
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/ExplodedGraph.cpp443
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/ExprEngine.cpp2697
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/ExprEngineC.cpp978
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/ExprEngineCXX.cpp515
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/ExprEngineCallAndReturn.cpp1005
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/ExprEngineObjC.cpp215
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/FunctionSummary.cpp32
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/HTMLDiagnostics.cpp616
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/MemRegion.cpp1492
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/PathDiagnostic.cpp1185
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/PlistDiagnostics.cpp490
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/PrettyStackTraceLocationContext.h45
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/ProgramState.cpp787
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/RangeConstraintManager.cpp589
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/RegionStore.cpp2359
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/SValBuilder.cpp528
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/SVals.cpp322
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/SimpleConstraintManager.cpp267
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/SimpleConstraintManager.h100
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/SimpleSValBuilder.cpp944
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/Store.cpp510
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/SubEngine.cpp14
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/SymbolManager.cpp550
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Frontend/AnalysisConsumer.cpp805
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Frontend/CheckerRegistration.cpp136
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Frontend/FrontendActions.cpp28
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Frontend/ModelConsumer.cpp42
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Frontend/ModelInjector.cpp117
-rw-r--r--contrib/llvm/tools/clang/lib/StaticAnalyzer/Frontend/ModelInjector.h74
-rw-r--r--contrib/llvm/tools/clang/lib/Tooling/ArgumentsAdjusters.cpp88
-rw-r--r--contrib/llvm/tools/clang/lib/Tooling/CommonOptionsParser.cpp143
-rw-r--r--contrib/llvm/tools/clang/lib/Tooling/CompilationDatabase.cpp335
-rw-r--r--contrib/llvm/tools/clang/lib/Tooling/Core/Replacement.cpp289
-rw-r--r--contrib/llvm/tools/clang/lib/Tooling/FileMatchTrie.cpp189
-rw-r--r--contrib/llvm/tools/clang/lib/Tooling/JSONCompilationDatabase.cpp322
-rw-r--r--contrib/llvm/tools/clang/lib/Tooling/Refactoring.cpp64
-rw-r--r--contrib/llvm/tools/clang/lib/Tooling/RefactoringCallbacks.cpp81
-rw-r--r--contrib/llvm/tools/clang/lib/Tooling/Tooling.cpp437
580 files changed, 638846 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/ARCMigrate/ARCMT.cpp b/contrib/llvm/tools/clang/lib/ARCMigrate/ARCMT.cpp
new file mode 100644
index 0000000..f266eaf
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/ARCMigrate/ARCMT.cpp
@@ -0,0 +1,609 @@
+//===--- ARCMT.cpp - Migration to ARC mode --------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Internals.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/Basic/DiagnosticCategories.h"
+#include "clang/Frontend/ASTUnit.h"
+#include "clang/Frontend/CompilerInstance.h"
+#include "clang/Frontend/FrontendAction.h"
+#include "clang/Frontend/TextDiagnosticPrinter.h"
+#include "clang/Frontend/Utils.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Rewrite/Core/Rewriter.h"
+#include "clang/Sema/SemaDiagnostic.h"
+#include "clang/Serialization/ASTReader.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/Support/MemoryBuffer.h"
+using namespace clang;
+using namespace arcmt;
+
+bool CapturedDiagList::clearDiagnostic(ArrayRef<unsigned> IDs,
+ SourceRange range) {
+ if (range.isInvalid())
+ return false;
+
+ bool cleared = false;
+ ListTy::iterator I = List.begin();
+ while (I != List.end()) {
+ FullSourceLoc diagLoc = I->getLocation();
+ if ((IDs.empty() || // empty means clear all diagnostics in the range.
+ std::find(IDs.begin(), IDs.end(), I->getID()) != IDs.end()) &&
+ !diagLoc.isBeforeInTranslationUnitThan(range.getBegin()) &&
+ (diagLoc == range.getEnd() ||
+ diagLoc.isBeforeInTranslationUnitThan(range.getEnd()))) {
+ cleared = true;
+ ListTy::iterator eraseS = I++;
+ if (eraseS->getLevel() != DiagnosticsEngine::Note)
+ while (I != List.end() && I->getLevel() == DiagnosticsEngine::Note)
+ ++I;
+ // Clear the diagnostic and any notes following it.
+ I = List.erase(eraseS, I);
+ continue;
+ }
+
+ ++I;
+ }
+
+ return cleared;
+}
+
+bool CapturedDiagList::hasDiagnostic(ArrayRef<unsigned> IDs,
+ SourceRange range) const {
+ if (range.isInvalid())
+ return false;
+
+ ListTy::const_iterator I = List.begin();
+ while (I != List.end()) {
+ FullSourceLoc diagLoc = I->getLocation();
+ if ((IDs.empty() || // empty means any diagnostic in the range.
+ std::find(IDs.begin(), IDs.end(), I->getID()) != IDs.end()) &&
+ !diagLoc.isBeforeInTranslationUnitThan(range.getBegin()) &&
+ (diagLoc == range.getEnd() ||
+ diagLoc.isBeforeInTranslationUnitThan(range.getEnd()))) {
+ return true;
+ }
+
+ ++I;
+ }
+
+ return false;
+}
+
+void CapturedDiagList::reportDiagnostics(DiagnosticsEngine &Diags) const {
+ for (ListTy::const_iterator I = List.begin(), E = List.end(); I != E; ++I)
+ Diags.Report(*I);
+}
+
+bool CapturedDiagList::hasErrors() const {
+ for (ListTy::const_iterator I = List.begin(), E = List.end(); I != E; ++I)
+ if (I->getLevel() >= DiagnosticsEngine::Error)
+ return true;
+
+ return false;
+}
+
+namespace {
+
+class CaptureDiagnosticConsumer : public DiagnosticConsumer {
+ DiagnosticsEngine &Diags;
+ DiagnosticConsumer &DiagClient;
+ CapturedDiagList &CapturedDiags;
+ bool HasBegunSourceFile;
+public:
+ CaptureDiagnosticConsumer(DiagnosticsEngine &diags,
+ DiagnosticConsumer &client,
+ CapturedDiagList &capturedDiags)
+ : Diags(diags), DiagClient(client), CapturedDiags(capturedDiags),
+ HasBegunSourceFile(false) { }
+
+ void BeginSourceFile(const LangOptions &Opts,
+ const Preprocessor *PP) override {
+ // Pass BeginSourceFile message onto DiagClient on first call.
+ // The corresponding EndSourceFile call will be made from an
+ // explicit call to FinishCapture.
+ if (!HasBegunSourceFile) {
+ DiagClient.BeginSourceFile(Opts, PP);
+ HasBegunSourceFile = true;
+ }
+ }
+
+ void FinishCapture() {
+ // Call EndSourceFile on DiagClient on completion of capture to
+ // enable VerifyDiagnosticConsumer to check diagnostics *after*
+ // it has received the diagnostic list.
+ if (HasBegunSourceFile) {
+ DiagClient.EndSourceFile();
+ HasBegunSourceFile = false;
+ }
+ }
+
+ ~CaptureDiagnosticConsumer() override {
+ assert(!HasBegunSourceFile && "FinishCapture not called!");
+ }
+
+ void HandleDiagnostic(DiagnosticsEngine::Level level,
+ const Diagnostic &Info) override {
+ if (DiagnosticIDs::isARCDiagnostic(Info.getID()) ||
+ level >= DiagnosticsEngine::Error || level == DiagnosticsEngine::Note) {
+ if (Info.getLocation().isValid())
+ CapturedDiags.push_back(StoredDiagnostic(level, Info));
+ return;
+ }
+
+ // Non-ARC warnings are ignored.
+ Diags.setLastDiagnosticIgnored();
+ }
+};
+
+} // end anonymous namespace
+
+static bool HasARCRuntime(CompilerInvocation &origCI) {
+ // This duplicates some functionality from Darwin::AddDeploymentTarget
+ // but this function is well defined, so keep it decoupled from the driver
+ // and avoid unrelated complications.
+ llvm::Triple triple(origCI.getTargetOpts().Triple);
+
+ if (triple.isiOS())
+ return triple.getOSMajorVersion() >= 5;
+
+ if (triple.getOS() == llvm::Triple::Darwin)
+ return triple.getOSMajorVersion() >= 11;
+
+ if (triple.getOS() == llvm::Triple::MacOSX) {
+ unsigned Major, Minor, Micro;
+ triple.getOSVersion(Major, Minor, Micro);
+ return Major > 10 || (Major == 10 && Minor >= 7);
+ }
+
+ return false;
+}
+
+static CompilerInvocation *
+createInvocationForMigration(CompilerInvocation &origCI) {
+ std::unique_ptr<CompilerInvocation> CInvok;
+ CInvok.reset(new CompilerInvocation(origCI));
+ PreprocessorOptions &PPOpts = CInvok->getPreprocessorOpts();
+ if (!PPOpts.ImplicitPCHInclude.empty()) {
+ // We can't use a PCH because it was likely built in non-ARC mode and we
+ // want to parse in ARC. Include the original header.
+ FileManager FileMgr(origCI.getFileSystemOpts());
+ IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs());
+ IntrusiveRefCntPtr<DiagnosticsEngine> Diags(
+ new DiagnosticsEngine(DiagID, &origCI.getDiagnosticOpts(),
+ new IgnoringDiagConsumer()));
+ std::string OriginalFile =
+ ASTReader::getOriginalSourceFile(PPOpts.ImplicitPCHInclude,
+ FileMgr, *Diags);
+ if (!OriginalFile.empty())
+ PPOpts.Includes.insert(PPOpts.Includes.begin(), OriginalFile);
+ PPOpts.ImplicitPCHInclude.clear();
+ }
+ // FIXME: Get the original header of a PTH as well.
+ CInvok->getPreprocessorOpts().ImplicitPTHInclude.clear();
+ std::string define = getARCMTMacroName();
+ define += '=';
+ CInvok->getPreprocessorOpts().addMacroDef(define);
+ CInvok->getLangOpts()->ObjCAutoRefCount = true;
+ CInvok->getLangOpts()->setGC(LangOptions::NonGC);
+ CInvok->getDiagnosticOpts().ErrorLimit = 0;
+ CInvok->getDiagnosticOpts().PedanticErrors = 0;
+
+ // Ignore -Werror flags when migrating.
+ std::vector<std::string> WarnOpts;
+ for (std::vector<std::string>::iterator
+ I = CInvok->getDiagnosticOpts().Warnings.begin(),
+ E = CInvok->getDiagnosticOpts().Warnings.end(); I != E; ++I) {
+ if (!StringRef(*I).startswith("error"))
+ WarnOpts.push_back(*I);
+ }
+ WarnOpts.push_back("error=arc-unsafe-retained-assign");
+ CInvok->getDiagnosticOpts().Warnings = std::move(WarnOpts);
+
+ CInvok->getLangOpts()->ObjCARCWeak = HasARCRuntime(origCI);
+
+ return CInvok.release();
+}
+
+static void emitPremigrationErrors(const CapturedDiagList &arcDiags,
+ DiagnosticOptions *diagOpts,
+ Preprocessor &PP) {
+ TextDiagnosticPrinter printer(llvm::errs(), diagOpts);
+ IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs());
+ IntrusiveRefCntPtr<DiagnosticsEngine> Diags(
+ new DiagnosticsEngine(DiagID, diagOpts, &printer,
+ /*ShouldOwnClient=*/false));
+ Diags->setSourceManager(&PP.getSourceManager());
+
+ printer.BeginSourceFile(PP.getLangOpts(), &PP);
+ arcDiags.reportDiagnostics(*Diags);
+ printer.EndSourceFile();
+}
+
+//===----------------------------------------------------------------------===//
+// checkForManualIssues.
+//===----------------------------------------------------------------------===//
+
+bool arcmt::checkForManualIssues(CompilerInvocation &origCI,
+ const FrontendInputFile &Input,
+ DiagnosticConsumer *DiagClient,
+ bool emitPremigrationARCErrors,
+ StringRef plistOut) {
+ if (!origCI.getLangOpts()->ObjC1)
+ return false;
+
+ LangOptions::GCMode OrigGCMode = origCI.getLangOpts()->getGC();
+ bool NoNSAllocReallocError = origCI.getMigratorOpts().NoNSAllocReallocError;
+ bool NoFinalizeRemoval = origCI.getMigratorOpts().NoFinalizeRemoval;
+
+ std::vector<TransformFn> transforms = arcmt::getAllTransformations(OrigGCMode,
+ NoFinalizeRemoval);
+ assert(!transforms.empty());
+
+ std::unique_ptr<CompilerInvocation> CInvok;
+ CInvok.reset(createInvocationForMigration(origCI));
+ CInvok->getFrontendOpts().Inputs.clear();
+ CInvok->getFrontendOpts().Inputs.push_back(Input);
+
+ CapturedDiagList capturedDiags;
+
+ assert(DiagClient);
+ IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs());
+ IntrusiveRefCntPtr<DiagnosticsEngine> Diags(
+ new DiagnosticsEngine(DiagID, &origCI.getDiagnosticOpts(),
+ DiagClient, /*ShouldOwnClient=*/false));
+
+ // Filter of all diagnostics.
+ CaptureDiagnosticConsumer errRec(*Diags, *DiagClient, capturedDiags);
+ Diags->setClient(&errRec, /*ShouldOwnClient=*/false);
+
+ std::unique_ptr<ASTUnit> Unit(
+ ASTUnit::LoadFromCompilerInvocationAction(CInvok.release(), Diags));
+ if (!Unit) {
+ errRec.FinishCapture();
+ return true;
+ }
+
+ // Don't filter diagnostics anymore.
+ Diags->setClient(DiagClient, /*ShouldOwnClient=*/false);
+
+ ASTContext &Ctx = Unit->getASTContext();
+
+ if (Diags->hasFatalErrorOccurred()) {
+ Diags->Reset();
+ DiagClient->BeginSourceFile(Ctx.getLangOpts(), &Unit->getPreprocessor());
+ capturedDiags.reportDiagnostics(*Diags);
+ DiagClient->EndSourceFile();
+ errRec.FinishCapture();
+ return true;
+ }
+
+ if (emitPremigrationARCErrors)
+ emitPremigrationErrors(capturedDiags, &origCI.getDiagnosticOpts(),
+ Unit->getPreprocessor());
+ if (!plistOut.empty()) {
+ SmallVector<StoredDiagnostic, 8> arcDiags;
+ for (CapturedDiagList::iterator
+ I = capturedDiags.begin(), E = capturedDiags.end(); I != E; ++I)
+ arcDiags.push_back(*I);
+ writeARCDiagsToPlist(plistOut, arcDiags,
+ Ctx.getSourceManager(), Ctx.getLangOpts());
+ }
+
+ // After parsing of source files ended, we want to reuse the
+ // diagnostics objects to emit further diagnostics.
+ // We call BeginSourceFile because DiagnosticConsumer requires that
+ // diagnostics with source range information are emitted only in between
+ // BeginSourceFile() and EndSourceFile().
+ DiagClient->BeginSourceFile(Ctx.getLangOpts(), &Unit->getPreprocessor());
+
+ // No macros will be added since we are just checking and we won't modify
+ // source code.
+ std::vector<SourceLocation> ARCMTMacroLocs;
+
+ TransformActions testAct(*Diags, capturedDiags, Ctx, Unit->getPreprocessor());
+ MigrationPass pass(Ctx, OrigGCMode, Unit->getSema(), testAct, capturedDiags,
+ ARCMTMacroLocs);
+ pass.setNoFinalizeRemoval(NoFinalizeRemoval);
+ if (!NoNSAllocReallocError)
+ Diags->setSeverity(diag::warn_arcmt_nsalloc_realloc, diag::Severity::Error,
+ SourceLocation());
+
+ for (unsigned i=0, e = transforms.size(); i != e; ++i)
+ transforms[i](pass);
+
+ capturedDiags.reportDiagnostics(*Diags);
+
+ DiagClient->EndSourceFile();
+ errRec.FinishCapture();
+
+ return capturedDiags.hasErrors() || testAct.hasReportedErrors();
+}
+
+//===----------------------------------------------------------------------===//
+// applyTransformations.
+//===----------------------------------------------------------------------===//
+
+static bool applyTransforms(CompilerInvocation &origCI,
+ const FrontendInputFile &Input,
+ DiagnosticConsumer *DiagClient,
+ StringRef outputDir,
+ bool emitPremigrationARCErrors,
+ StringRef plistOut) {
+ if (!origCI.getLangOpts()->ObjC1)
+ return false;
+
+ LangOptions::GCMode OrigGCMode = origCI.getLangOpts()->getGC();
+
+ // Make sure checking is successful first.
+ CompilerInvocation CInvokForCheck(origCI);
+ if (arcmt::checkForManualIssues(CInvokForCheck, Input, DiagClient,
+ emitPremigrationARCErrors, plistOut))
+ return true;
+
+ CompilerInvocation CInvok(origCI);
+ CInvok.getFrontendOpts().Inputs.clear();
+ CInvok.getFrontendOpts().Inputs.push_back(Input);
+
+ MigrationProcess migration(CInvok, DiagClient, outputDir);
+ bool NoFinalizeRemoval = origCI.getMigratorOpts().NoFinalizeRemoval;
+
+ std::vector<TransformFn> transforms = arcmt::getAllTransformations(OrigGCMode,
+ NoFinalizeRemoval);
+ assert(!transforms.empty());
+
+ for (unsigned i=0, e = transforms.size(); i != e; ++i) {
+ bool err = migration.applyTransform(transforms[i]);
+ if (err) return true;
+ }
+
+ IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs());
+ IntrusiveRefCntPtr<DiagnosticsEngine> Diags(
+ new DiagnosticsEngine(DiagID, &origCI.getDiagnosticOpts(),
+ DiagClient, /*ShouldOwnClient=*/false));
+
+ if (outputDir.empty()) {
+ origCI.getLangOpts()->ObjCAutoRefCount = true;
+ return migration.getRemapper().overwriteOriginal(*Diags);
+ } else {
+ return migration.getRemapper().flushToDisk(outputDir, *Diags);
+ }
+}
+
+bool arcmt::applyTransformations(CompilerInvocation &origCI,
+ const FrontendInputFile &Input,
+ DiagnosticConsumer *DiagClient) {
+ return applyTransforms(origCI, Input, DiagClient,
+ StringRef(), false, StringRef());
+}
+
+bool arcmt::migrateWithTemporaryFiles(CompilerInvocation &origCI,
+ const FrontendInputFile &Input,
+ DiagnosticConsumer *DiagClient,
+ StringRef outputDir,
+ bool emitPremigrationARCErrors,
+ StringRef plistOut) {
+ assert(!outputDir.empty() && "Expected output directory path");
+ return applyTransforms(origCI, Input, DiagClient,
+ outputDir, emitPremigrationARCErrors, plistOut);
+}
+
+bool arcmt::getFileRemappings(std::vector<std::pair<std::string,std::string> > &
+ remap,
+ StringRef outputDir,
+ DiagnosticConsumer *DiagClient) {
+ assert(!outputDir.empty());
+
+ IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs());
+ IntrusiveRefCntPtr<DiagnosticsEngine> Diags(
+ new DiagnosticsEngine(DiagID, new DiagnosticOptions,
+ DiagClient, /*ShouldOwnClient=*/false));
+
+ FileRemapper remapper;
+ bool err = remapper.initFromDisk(outputDir, *Diags,
+ /*ignoreIfFilesChanged=*/true);
+ if (err)
+ return true;
+
+ PreprocessorOptions PPOpts;
+ remapper.applyMappings(PPOpts);
+ remap = PPOpts.RemappedFiles;
+
+ return false;
+}
+
+
+//===----------------------------------------------------------------------===//
+// CollectTransformActions.
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class ARCMTMacroTrackerPPCallbacks : public PPCallbacks {
+ std::vector<SourceLocation> &ARCMTMacroLocs;
+
+public:
+ ARCMTMacroTrackerPPCallbacks(std::vector<SourceLocation> &ARCMTMacroLocs)
+ : ARCMTMacroLocs(ARCMTMacroLocs) { }
+
+ void MacroExpands(const Token &MacroNameTok, const MacroDefinition &MD,
+ SourceRange Range, const MacroArgs *Args) override {
+ if (MacroNameTok.getIdentifierInfo()->getName() == getARCMTMacroName())
+ ARCMTMacroLocs.push_back(MacroNameTok.getLocation());
+ }
+};
+
+class ARCMTMacroTrackerAction : public ASTFrontendAction {
+ std::vector<SourceLocation> &ARCMTMacroLocs;
+
+public:
+ ARCMTMacroTrackerAction(std::vector<SourceLocation> &ARCMTMacroLocs)
+ : ARCMTMacroLocs(ARCMTMacroLocs) { }
+
+ std::unique_ptr<ASTConsumer> CreateASTConsumer(CompilerInstance &CI,
+ StringRef InFile) override {
+ CI.getPreprocessor().addPPCallbacks(
+ llvm::make_unique<ARCMTMacroTrackerPPCallbacks>(ARCMTMacroLocs));
+ return llvm::make_unique<ASTConsumer>();
+ }
+};
+
+class RewritesApplicator : public TransformActions::RewriteReceiver {
+ Rewriter &rewriter;
+ MigrationProcess::RewriteListener *Listener;
+
+public:
+ RewritesApplicator(Rewriter &rewriter, ASTContext &ctx,
+ MigrationProcess::RewriteListener *listener)
+ : rewriter(rewriter), Listener(listener) {
+ if (Listener)
+ Listener->start(ctx);
+ }
+ ~RewritesApplicator() override {
+ if (Listener)
+ Listener->finish();
+ }
+
+ void insert(SourceLocation loc, StringRef text) override {
+ bool err = rewriter.InsertText(loc, text, /*InsertAfter=*/true,
+ /*indentNewLines=*/true);
+ if (!err && Listener)
+ Listener->insert(loc, text);
+ }
+
+ void remove(CharSourceRange range) override {
+ Rewriter::RewriteOptions removeOpts;
+ removeOpts.IncludeInsertsAtBeginOfRange = false;
+ removeOpts.IncludeInsertsAtEndOfRange = false;
+ removeOpts.RemoveLineIfEmpty = true;
+
+ bool err = rewriter.RemoveText(range, removeOpts);
+ if (!err && Listener)
+ Listener->remove(range);
+ }
+
+ void increaseIndentation(CharSourceRange range,
+ SourceLocation parentIndent) override {
+ rewriter.IncreaseIndentation(range, parentIndent);
+ }
+};
+
+} // end anonymous namespace.
+
+/// \brief Anchor for VTable.
+MigrationProcess::RewriteListener::~RewriteListener() { }
+
+MigrationProcess::MigrationProcess(const CompilerInvocation &CI,
+ DiagnosticConsumer *diagClient,
+ StringRef outputDir)
+ : OrigCI(CI), DiagClient(diagClient), HadARCErrors(false) {
+ if (!outputDir.empty()) {
+ IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs());
+ IntrusiveRefCntPtr<DiagnosticsEngine> Diags(
+ new DiagnosticsEngine(DiagID, &CI.getDiagnosticOpts(),
+ DiagClient, /*ShouldOwnClient=*/false));
+ Remapper.initFromDisk(outputDir, *Diags, /*ignoreIfFilesChanges=*/true);
+ }
+}
+
+bool MigrationProcess::applyTransform(TransformFn trans,
+ RewriteListener *listener) {
+ std::unique_ptr<CompilerInvocation> CInvok;
+ CInvok.reset(createInvocationForMigration(OrigCI));
+ CInvok->getDiagnosticOpts().IgnoreWarnings = true;
+
+ Remapper.applyMappings(CInvok->getPreprocessorOpts());
+
+ CapturedDiagList capturedDiags;
+ std::vector<SourceLocation> ARCMTMacroLocs;
+
+ assert(DiagClient);
+ IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs());
+ IntrusiveRefCntPtr<DiagnosticsEngine> Diags(
+ new DiagnosticsEngine(DiagID, new DiagnosticOptions,
+ DiagClient, /*ShouldOwnClient=*/false));
+
+ // Filter of all diagnostics.
+ CaptureDiagnosticConsumer errRec(*Diags, *DiagClient, capturedDiags);
+ Diags->setClient(&errRec, /*ShouldOwnClient=*/false);
+
+ std::unique_ptr<ARCMTMacroTrackerAction> ASTAction;
+ ASTAction.reset(new ARCMTMacroTrackerAction(ARCMTMacroLocs));
+
+ std::unique_ptr<ASTUnit> Unit(ASTUnit::LoadFromCompilerInvocationAction(
+ CInvok.release(), Diags, ASTAction.get()));
+ if (!Unit) {
+ errRec.FinishCapture();
+ return true;
+ }
+ Unit->setOwnsRemappedFileBuffers(false); // FileRemapper manages that.
+
+ HadARCErrors = HadARCErrors || capturedDiags.hasErrors();
+
+ // Don't filter diagnostics anymore.
+ Diags->setClient(DiagClient, /*ShouldOwnClient=*/false);
+
+ ASTContext &Ctx = Unit->getASTContext();
+
+ if (Diags->hasFatalErrorOccurred()) {
+ Diags->Reset();
+ DiagClient->BeginSourceFile(Ctx.getLangOpts(), &Unit->getPreprocessor());
+ capturedDiags.reportDiagnostics(*Diags);
+ DiagClient->EndSourceFile();
+ errRec.FinishCapture();
+ return true;
+ }
+
+ // After parsing of source files ended, we want to reuse the
+ // diagnostics objects to emit further diagnostics.
+ // We call BeginSourceFile because DiagnosticConsumer requires that
+ // diagnostics with source range information are emitted only in between
+ // BeginSourceFile() and EndSourceFile().
+ DiagClient->BeginSourceFile(Ctx.getLangOpts(), &Unit->getPreprocessor());
+
+ Rewriter rewriter(Ctx.getSourceManager(), Ctx.getLangOpts());
+ TransformActions TA(*Diags, capturedDiags, Ctx, Unit->getPreprocessor());
+ MigrationPass pass(Ctx, OrigCI.getLangOpts()->getGC(),
+ Unit->getSema(), TA, capturedDiags, ARCMTMacroLocs);
+
+ trans(pass);
+
+ {
+ RewritesApplicator applicator(rewriter, Ctx, listener);
+ TA.applyRewrites(applicator);
+ }
+
+ DiagClient->EndSourceFile();
+ errRec.FinishCapture();
+
+ if (DiagClient->getNumErrors())
+ return true;
+
+ for (Rewriter::buffer_iterator
+ I = rewriter.buffer_begin(), E = rewriter.buffer_end(); I != E; ++I) {
+ FileID FID = I->first;
+ RewriteBuffer &buf = I->second;
+ const FileEntry *file = Ctx.getSourceManager().getFileEntryForID(FID);
+ assert(file);
+ std::string newFname = file->getName();
+ newFname += "-trans";
+ SmallString<512> newText;
+ llvm::raw_svector_ostream vecOS(newText);
+ buf.write(vecOS);
+ vecOS.flush();
+ std::unique_ptr<llvm::MemoryBuffer> memBuf(
+ llvm::MemoryBuffer::getMemBufferCopy(
+ StringRef(newText.data(), newText.size()), newFname));
+ SmallString<64> filePath(file->getName());
+ Unit->getFileManager().FixupRelativePath(filePath);
+ Remapper.remap(filePath.str(), std::move(memBuf));
+ }
+
+ return false;
+}
diff --git a/contrib/llvm/tools/clang/lib/ARCMigrate/ARCMTActions.cpp b/contrib/llvm/tools/clang/lib/ARCMigrate/ARCMTActions.cpp
new file mode 100644
index 0000000..0ed36dd
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/ARCMigrate/ARCMTActions.cpp
@@ -0,0 +1,60 @@
+//===--- ARCMTActions.cpp - ARC Migrate Tool Frontend Actions ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/ARCMigrate/ARCMTActions.h"
+#include "clang/ARCMigrate/ARCMT.h"
+#include "clang/Frontend/CompilerInstance.h"
+
+using namespace clang;
+using namespace arcmt;
+
+bool CheckAction::BeginInvocation(CompilerInstance &CI) {
+ if (arcmt::checkForManualIssues(CI.getInvocation(), getCurrentInput(),
+ CI.getDiagnostics().getClient()))
+ return false; // errors, stop the action.
+
+ // We only want to see warnings reported from arcmt::checkForManualIssues.
+ CI.getDiagnostics().setIgnoreAllWarnings(true);
+ return true;
+}
+
+CheckAction::CheckAction(FrontendAction *WrappedAction)
+ : WrapperFrontendAction(WrappedAction) {}
+
+bool ModifyAction::BeginInvocation(CompilerInstance &CI) {
+ return !arcmt::applyTransformations(CI.getInvocation(), getCurrentInput(),
+ CI.getDiagnostics().getClient());
+}
+
+ModifyAction::ModifyAction(FrontendAction *WrappedAction)
+ : WrapperFrontendAction(WrappedAction) {}
+
+bool MigrateAction::BeginInvocation(CompilerInstance &CI) {
+ if (arcmt::migrateWithTemporaryFiles(CI.getInvocation(),
+ getCurrentInput(),
+ CI.getDiagnostics().getClient(),
+ MigrateDir,
+ EmitPremigrationARCErros,
+ PlistOut))
+ return false; // errors, stop the action.
+
+ // We only want to see diagnostics emitted by migrateWithTemporaryFiles.
+ CI.getDiagnostics().setIgnoreAllWarnings(true);
+ return true;
+}
+
+MigrateAction::MigrateAction(FrontendAction *WrappedAction,
+ StringRef migrateDir,
+ StringRef plistOut,
+ bool emitPremigrationARCErrors)
+ : WrapperFrontendAction(WrappedAction), MigrateDir(migrateDir),
+ PlistOut(plistOut), EmitPremigrationARCErros(emitPremigrationARCErrors) {
+ if (MigrateDir.empty())
+ MigrateDir = "."; // user current directory if none is given.
+}
diff --git a/contrib/llvm/tools/clang/lib/ARCMigrate/FileRemapper.cpp b/contrib/llvm/tools/clang/lib/ARCMigrate/FileRemapper.cpp
new file mode 100644
index 0000000..72a55da
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/ARCMigrate/FileRemapper.cpp
@@ -0,0 +1,257 @@
+//===--- FileRemapper.cpp - File Remapping Helper -------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/ARCMigrate/FileRemapper.h"
+#include "clang/Basic/Diagnostic.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Lex/PreprocessorOptions.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/raw_ostream.h"
+#include <fstream>
+
+using namespace clang;
+using namespace arcmt;
+
+FileRemapper::FileRemapper() {
+ FileMgr.reset(new FileManager(FileSystemOptions()));
+}
+
+FileRemapper::~FileRemapper() {
+ clear();
+}
+
+void FileRemapper::clear(StringRef outputDir) {
+ for (MappingsTy::iterator
+ I = FromToMappings.begin(), E = FromToMappings.end(); I != E; ++I)
+ resetTarget(I->second);
+ FromToMappings.clear();
+ assert(ToFromMappings.empty());
+ if (!outputDir.empty()) {
+ std::string infoFile = getRemapInfoFile(outputDir);
+ llvm::sys::fs::remove(infoFile);
+ }
+}
+
+std::string FileRemapper::getRemapInfoFile(StringRef outputDir) {
+ assert(!outputDir.empty());
+ SmallString<128> InfoFile = outputDir;
+ llvm::sys::path::append(InfoFile, "remap");
+ return InfoFile.str();
+}
+
+bool FileRemapper::initFromDisk(StringRef outputDir, DiagnosticsEngine &Diag,
+ bool ignoreIfFilesChanged) {
+ std::string infoFile = getRemapInfoFile(outputDir);
+ return initFromFile(infoFile, Diag, ignoreIfFilesChanged);
+}
+
+bool FileRemapper::initFromFile(StringRef filePath, DiagnosticsEngine &Diag,
+ bool ignoreIfFilesChanged) {
+ assert(FromToMappings.empty() &&
+ "initFromDisk should be called before any remap calls");
+ std::string infoFile = filePath;
+ if (!llvm::sys::fs::exists(infoFile))
+ return false;
+
+ std::vector<std::pair<const FileEntry *, const FileEntry *> > pairs;
+
+ llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> fileBuf =
+ llvm::MemoryBuffer::getFile(infoFile.c_str());
+ if (!fileBuf)
+ return report("Error opening file: " + infoFile, Diag);
+
+ SmallVector<StringRef, 64> lines;
+ fileBuf.get()->getBuffer().split(lines, "\n");
+
+ for (unsigned idx = 0; idx+3 <= lines.size(); idx += 3) {
+ StringRef fromFilename = lines[idx];
+ unsigned long long timeModified;
+ if (lines[idx+1].getAsInteger(10, timeModified))
+ return report("Invalid file data: '" + lines[idx+1] + "' not a number",
+ Diag);
+ StringRef toFilename = lines[idx+2];
+
+ const FileEntry *origFE = FileMgr->getFile(fromFilename);
+ if (!origFE) {
+ if (ignoreIfFilesChanged)
+ continue;
+ return report("File does not exist: " + fromFilename, Diag);
+ }
+ const FileEntry *newFE = FileMgr->getFile(toFilename);
+ if (!newFE) {
+ if (ignoreIfFilesChanged)
+ continue;
+ return report("File does not exist: " + toFilename, Diag);
+ }
+
+ if ((uint64_t)origFE->getModificationTime() != timeModified) {
+ if (ignoreIfFilesChanged)
+ continue;
+ return report("File was modified: " + fromFilename, Diag);
+ }
+
+ pairs.push_back(std::make_pair(origFE, newFE));
+ }
+
+ for (unsigned i = 0, e = pairs.size(); i != e; ++i)
+ remap(pairs[i].first, pairs[i].second);
+
+ return false;
+}
+
+bool FileRemapper::flushToDisk(StringRef outputDir, DiagnosticsEngine &Diag) {
+ using namespace llvm::sys;
+
+ if (fs::create_directory(outputDir))
+ return report("Could not create directory: " + outputDir, Diag);
+
+ std::string infoFile = getRemapInfoFile(outputDir);
+ return flushToFile(infoFile, Diag);
+}
+
+bool FileRemapper::flushToFile(StringRef outputPath, DiagnosticsEngine &Diag) {
+ using namespace llvm::sys;
+
+ std::error_code EC;
+ std::string infoFile = outputPath;
+ llvm::raw_fd_ostream infoOut(infoFile, EC, llvm::sys::fs::F_None);
+ if (EC)
+ return report(EC.message(), Diag);
+
+ for (MappingsTy::iterator
+ I = FromToMappings.begin(), E = FromToMappings.end(); I != E; ++I) {
+
+ const FileEntry *origFE = I->first;
+ SmallString<200> origPath = StringRef(origFE->getName());
+ fs::make_absolute(origPath);
+ infoOut << origPath << '\n';
+ infoOut << (uint64_t)origFE->getModificationTime() << '\n';
+
+ if (const FileEntry *FE = I->second.dyn_cast<const FileEntry *>()) {
+ SmallString<200> newPath = StringRef(FE->getName());
+ fs::make_absolute(newPath);
+ infoOut << newPath << '\n';
+ } else {
+
+ SmallString<64> tempPath;
+ int fd;
+ if (fs::createTemporaryFile(path::filename(origFE->getName()),
+ path::extension(origFE->getName()), fd,
+ tempPath))
+ return report("Could not create file: " + tempPath.str(), Diag);
+
+ llvm::raw_fd_ostream newOut(fd, /*shouldClose=*/true);
+ llvm::MemoryBuffer *mem = I->second.get<llvm::MemoryBuffer *>();
+ newOut.write(mem->getBufferStart(), mem->getBufferSize());
+ newOut.close();
+
+ const FileEntry *newE = FileMgr->getFile(tempPath);
+ remap(origFE, newE);
+ infoOut << newE->getName() << '\n';
+ }
+ }
+
+ infoOut.close();
+ return false;
+}
+
+bool FileRemapper::overwriteOriginal(DiagnosticsEngine &Diag,
+ StringRef outputDir) {
+ using namespace llvm::sys;
+
+ for (MappingsTy::iterator
+ I = FromToMappings.begin(), E = FromToMappings.end(); I != E; ++I) {
+ const FileEntry *origFE = I->first;
+ assert(I->second.is<llvm::MemoryBuffer *>());
+ if (!fs::exists(origFE->getName()))
+ return report(StringRef("File does not exist: ") + origFE->getName(),
+ Diag);
+
+ std::error_code EC;
+ llvm::raw_fd_ostream Out(origFE->getName(), EC, llvm::sys::fs::F_None);
+ if (EC)
+ return report(EC.message(), Diag);
+
+ llvm::MemoryBuffer *mem = I->second.get<llvm::MemoryBuffer *>();
+ Out.write(mem->getBufferStart(), mem->getBufferSize());
+ Out.close();
+ }
+
+ clear(outputDir);
+ return false;
+}
+
+void FileRemapper::applyMappings(PreprocessorOptions &PPOpts) const {
+ for (MappingsTy::const_iterator
+ I = FromToMappings.begin(), E = FromToMappings.end(); I != E; ++I) {
+ if (const FileEntry *FE = I->second.dyn_cast<const FileEntry *>()) {
+ PPOpts.addRemappedFile(I->first->getName(), FE->getName());
+ } else {
+ llvm::MemoryBuffer *mem = I->second.get<llvm::MemoryBuffer *>();
+ PPOpts.addRemappedFile(I->first->getName(), mem);
+ }
+ }
+
+ PPOpts.RetainRemappedFileBuffers = true;
+}
+
+void FileRemapper::remap(StringRef filePath,
+ std::unique_ptr<llvm::MemoryBuffer> memBuf) {
+ remap(getOriginalFile(filePath), std::move(memBuf));
+}
+
+void FileRemapper::remap(const FileEntry *file,
+ std::unique_ptr<llvm::MemoryBuffer> memBuf) {
+ assert(file);
+ Target &targ = FromToMappings[file];
+ resetTarget(targ);
+ targ = memBuf.release();
+}
+
+void FileRemapper::remap(const FileEntry *file, const FileEntry *newfile) {
+ assert(file && newfile);
+ Target &targ = FromToMappings[file];
+ resetTarget(targ);
+ targ = newfile;
+ ToFromMappings[newfile] = file;
+}
+
+const FileEntry *FileRemapper::getOriginalFile(StringRef filePath) {
+ const FileEntry *file = FileMgr->getFile(filePath);
+ // If we are updating a file that overriden an original file,
+ // actually update the original file.
+ llvm::DenseMap<const FileEntry *, const FileEntry *>::iterator
+ I = ToFromMappings.find(file);
+ if (I != ToFromMappings.end()) {
+ file = I->second;
+ assert(FromToMappings.find(file) != FromToMappings.end() &&
+ "Original file not in mappings!");
+ }
+ return file;
+}
+
+void FileRemapper::resetTarget(Target &targ) {
+ if (!targ)
+ return;
+
+ if (llvm::MemoryBuffer *oldmem = targ.dyn_cast<llvm::MemoryBuffer *>()) {
+ delete oldmem;
+ } else {
+ const FileEntry *toFE = targ.get<const FileEntry *>();
+ ToFromMappings.erase(toFE);
+ }
+}
+
+bool FileRemapper::report(const Twine &err, DiagnosticsEngine &Diag) {
+ Diag.Report(Diag.getCustomDiagID(DiagnosticsEngine::Error, "%0"))
+ << err.str();
+ return true;
+}
diff --git a/contrib/llvm/tools/clang/lib/ARCMigrate/Internals.h b/contrib/llvm/tools/clang/lib/ARCMigrate/Internals.h
new file mode 100644
index 0000000..4f153b1
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/ARCMigrate/Internals.h
@@ -0,0 +1,181 @@
+//===-- Internals.h - Implementation Details---------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_ARCMIGRATE_INTERNALS_H
+#define LLVM_CLANG_LIB_ARCMIGRATE_INTERNALS_H
+
+#include "clang/ARCMigrate/ARCMT.h"
+#include "clang/Basic/Diagnostic.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/Optional.h"
+#include <list>
+
+namespace clang {
+ class Sema;
+ class Stmt;
+
+namespace arcmt {
+
+class CapturedDiagList {
+ typedef std::list<StoredDiagnostic> ListTy;
+ ListTy List;
+
+public:
+ void push_back(const StoredDiagnostic &diag) { List.push_back(diag); }
+
+ bool clearDiagnostic(ArrayRef<unsigned> IDs, SourceRange range);
+ bool hasDiagnostic(ArrayRef<unsigned> IDs, SourceRange range) const;
+
+ void reportDiagnostics(DiagnosticsEngine &diags) const;
+
+ bool hasErrors() const;
+
+ typedef ListTy::const_iterator iterator;
+ iterator begin() const { return List.begin(); }
+ iterator end() const { return List.end(); }
+};
+
+void writeARCDiagsToPlist(const std::string &outPath,
+ ArrayRef<StoredDiagnostic> diags,
+ SourceManager &SM, const LangOptions &LangOpts);
+
+class TransformActions {
+ DiagnosticsEngine &Diags;
+ CapturedDiagList &CapturedDiags;
+ void *Impl; // TransformActionsImpl.
+
+public:
+ TransformActions(DiagnosticsEngine &diag, CapturedDiagList &capturedDiags,
+ ASTContext &ctx, Preprocessor &PP);
+ ~TransformActions();
+
+ void startTransaction();
+ bool commitTransaction();
+ void abortTransaction();
+
+ void insert(SourceLocation loc, StringRef text);
+ void insertAfterToken(SourceLocation loc, StringRef text);
+ void remove(SourceRange range);
+ void removeStmt(Stmt *S);
+ void replace(SourceRange range, StringRef text);
+ void replace(SourceRange range, SourceRange replacementRange);
+ void replaceStmt(Stmt *S, StringRef text);
+ void replaceText(SourceLocation loc, StringRef text,
+ StringRef replacementText);
+ void increaseIndentation(SourceRange range,
+ SourceLocation parentIndent);
+
+ bool clearDiagnostic(ArrayRef<unsigned> IDs, SourceRange range);
+ bool clearAllDiagnostics(SourceRange range) {
+ return clearDiagnostic(None, range);
+ }
+ bool clearDiagnostic(unsigned ID1, unsigned ID2, SourceRange range) {
+ unsigned IDs[] = { ID1, ID2 };
+ return clearDiagnostic(IDs, range);
+ }
+ bool clearDiagnostic(unsigned ID1, unsigned ID2, unsigned ID3,
+ SourceRange range) {
+ unsigned IDs[] = { ID1, ID2, ID3 };
+ return clearDiagnostic(IDs, range);
+ }
+
+ bool hasDiagnostic(unsigned ID, SourceRange range) {
+ return CapturedDiags.hasDiagnostic(ID, range);
+ }
+
+ bool hasDiagnostic(unsigned ID1, unsigned ID2, SourceRange range) {
+ unsigned IDs[] = { ID1, ID2 };
+ return CapturedDiags.hasDiagnostic(IDs, range);
+ }
+
+ DiagnosticBuilder report(SourceLocation loc, unsigned diagId,
+ SourceRange range = SourceRange());
+ void reportError(StringRef error, SourceLocation loc,
+ SourceRange range = SourceRange());
+ void reportWarning(StringRef warning, SourceLocation loc,
+ SourceRange range = SourceRange());
+ void reportNote(StringRef note, SourceLocation loc,
+ SourceRange range = SourceRange());
+
+ bool hasReportedErrors() const {
+ return Diags.hasUnrecoverableErrorOccurred();
+ }
+
+ class RewriteReceiver {
+ public:
+ virtual ~RewriteReceiver();
+
+ virtual void insert(SourceLocation loc, StringRef text) = 0;
+ virtual void remove(CharSourceRange range) = 0;
+ virtual void increaseIndentation(CharSourceRange range,
+ SourceLocation parentIndent) = 0;
+ };
+
+ void applyRewrites(RewriteReceiver &receiver);
+};
+
+class Transaction {
+ TransformActions &TA;
+ bool Aborted;
+
+public:
+ Transaction(TransformActions &TA) : TA(TA), Aborted(false) {
+ TA.startTransaction();
+ }
+
+ ~Transaction() {
+ if (!isAborted())
+ TA.commitTransaction();
+ }
+
+ void abort() {
+ TA.abortTransaction();
+ Aborted = true;
+ }
+
+ bool isAborted() const { return Aborted; }
+};
+
+class MigrationPass {
+public:
+ ASTContext &Ctx;
+ LangOptions::GCMode OrigGCMode;
+ MigratorOptions MigOptions;
+ Sema &SemaRef;
+ TransformActions &TA;
+ const CapturedDiagList &CapturedDiags;
+ std::vector<SourceLocation> &ARCMTMacroLocs;
+ Optional<bool> EnableCFBridgeFns;
+
+ MigrationPass(ASTContext &Ctx, LangOptions::GCMode OrigGCMode,
+ Sema &sema, TransformActions &TA,
+ const CapturedDiagList &capturedDiags,
+ std::vector<SourceLocation> &ARCMTMacroLocs)
+ : Ctx(Ctx), OrigGCMode(OrigGCMode), MigOptions(),
+ SemaRef(sema), TA(TA), CapturedDiags(capturedDiags),
+ ARCMTMacroLocs(ARCMTMacroLocs) { }
+
+ const CapturedDiagList &getDiags() const { return CapturedDiags; }
+
+ bool isGCMigration() const { return OrigGCMode != LangOptions::NonGC; }
+ bool noFinalizeRemoval() const { return MigOptions.NoFinalizeRemoval; }
+ void setNoFinalizeRemoval(bool val) {MigOptions.NoFinalizeRemoval = val; }
+
+ bool CFBridgingFunctionsDefined();
+};
+
+static inline StringRef getARCMTMacroName() {
+ return "__IMPL_ARCMT_REMOVED_EXPR__";
+}
+
+} // end namespace arcmt
+
+} // end namespace clang
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/ARCMigrate/ObjCMT.cpp b/contrib/llvm/tools/clang/lib/ARCMigrate/ObjCMT.cpp
new file mode 100644
index 0000000..a43879c
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/ARCMigrate/ObjCMT.cpp
@@ -0,0 +1,2290 @@
+//===--- ObjCMT.cpp - ObjC Migrate Tool -----------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Transforms.h"
+#include "clang/ARCMigrate/ARCMT.h"
+#include "clang/ARCMigrate/ARCMTActions.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/NSAPI.h"
+#include "clang/AST/ParentMap.h"
+#include "clang/AST/RecursiveASTVisitor.h"
+#include "clang/Analysis/DomainSpecific/CocoaConventions.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Edit/Commit.h"
+#include "clang/Edit/EditedSource.h"
+#include "clang/Edit/EditsReceiver.h"
+#include "clang/Edit/Rewriters.h"
+#include "clang/Frontend/CompilerInstance.h"
+#include "clang/Frontend/MultiplexConsumer.h"
+#include "clang/Lex/PPConditionalDirectiveRecord.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Rewrite/Core/Rewriter.h"
+#include "clang/StaticAnalyzer/Checkers/ObjCRetainCount.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringSet.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/SourceMgr.h"
+#include "llvm/Support/YAMLParser.h"
+
+using namespace clang;
+using namespace arcmt;
+using namespace ento::objc_retain;
+
+namespace {
+
+class ObjCMigrateASTConsumer : public ASTConsumer {
+ enum CF_BRIDGING_KIND {
+ CF_BRIDGING_NONE,
+ CF_BRIDGING_ENABLE,
+ CF_BRIDGING_MAY_INCLUDE
+ };
+
+ void migrateDecl(Decl *D);
+ void migrateObjCContainerDecl(ASTContext &Ctx, ObjCContainerDecl *D);
+ void migrateProtocolConformance(ASTContext &Ctx,
+ const ObjCImplementationDecl *ImpDecl);
+ void CacheObjCNSIntegerTypedefed(const TypedefDecl *TypedefDcl);
+ bool migrateNSEnumDecl(ASTContext &Ctx, const EnumDecl *EnumDcl,
+ const TypedefDecl *TypedefDcl);
+ void migrateAllMethodInstaceType(ASTContext &Ctx, ObjCContainerDecl *CDecl);
+ void migrateMethodInstanceType(ASTContext &Ctx, ObjCContainerDecl *CDecl,
+ ObjCMethodDecl *OM);
+ bool migrateProperty(ASTContext &Ctx, ObjCContainerDecl *D, ObjCMethodDecl *OM);
+ void migrateNsReturnsInnerPointer(ASTContext &Ctx, ObjCMethodDecl *OM);
+ void migratePropertyNsReturnsInnerPointer(ASTContext &Ctx, ObjCPropertyDecl *P);
+ void migrateFactoryMethod(ASTContext &Ctx, ObjCContainerDecl *CDecl,
+ ObjCMethodDecl *OM,
+ ObjCInstanceTypeFamily OIT_Family = OIT_None);
+
+ void migrateCFAnnotation(ASTContext &Ctx, const Decl *Decl);
+ void AddCFAnnotations(ASTContext &Ctx, const CallEffects &CE,
+ const FunctionDecl *FuncDecl, bool ResultAnnotated);
+ void AddCFAnnotations(ASTContext &Ctx, const CallEffects &CE,
+ const ObjCMethodDecl *MethodDecl, bool ResultAnnotated);
+
+ void AnnotateImplicitBridging(ASTContext &Ctx);
+
+ CF_BRIDGING_KIND migrateAddFunctionAnnotation(ASTContext &Ctx,
+ const FunctionDecl *FuncDecl);
+
+ void migrateARCSafeAnnotation(ASTContext &Ctx, ObjCContainerDecl *CDecl);
+
+ void migrateAddMethodAnnotation(ASTContext &Ctx,
+ const ObjCMethodDecl *MethodDecl);
+
+ void inferDesignatedInitializers(ASTContext &Ctx,
+ const ObjCImplementationDecl *ImplD);
+
+ bool InsertFoundation(ASTContext &Ctx, SourceLocation Loc);
+
+public:
+ std::string MigrateDir;
+ unsigned ASTMigrateActions;
+ FileID FileId;
+ const TypedefDecl *NSIntegerTypedefed;
+ const TypedefDecl *NSUIntegerTypedefed;
+ std::unique_ptr<NSAPI> NSAPIObj;
+ std::unique_ptr<edit::EditedSource> Editor;
+ FileRemapper &Remapper;
+ FileManager &FileMgr;
+ const PPConditionalDirectiveRecord *PPRec;
+ Preprocessor &PP;
+ bool IsOutputFile;
+ bool FoundationIncluded;
+ llvm::SmallPtrSet<ObjCProtocolDecl *, 32> ObjCProtocolDecls;
+ llvm::SmallVector<const Decl *, 8> CFFunctionIBCandidates;
+ llvm::StringSet<> WhiteListFilenames;
+
+ ObjCMigrateASTConsumer(StringRef migrateDir,
+ unsigned astMigrateActions,
+ FileRemapper &remapper,
+ FileManager &fileMgr,
+ const PPConditionalDirectiveRecord *PPRec,
+ Preprocessor &PP,
+ bool isOutputFile,
+ ArrayRef<std::string> WhiteList)
+ : MigrateDir(migrateDir),
+ ASTMigrateActions(astMigrateActions),
+ NSIntegerTypedefed(nullptr), NSUIntegerTypedefed(nullptr),
+ Remapper(remapper), FileMgr(fileMgr), PPRec(PPRec), PP(PP),
+ IsOutputFile(isOutputFile),
+ FoundationIncluded(false){
+
+ // FIXME: StringSet should have insert(iter, iter) to use here.
+ for (const std::string &Val : WhiteList)
+ WhiteListFilenames.insert(Val);
+ }
+
+protected:
+ void Initialize(ASTContext &Context) override {
+ NSAPIObj.reset(new NSAPI(Context));
+ Editor.reset(new edit::EditedSource(Context.getSourceManager(),
+ Context.getLangOpts(),
+ PPRec));
+ }
+
+ bool HandleTopLevelDecl(DeclGroupRef DG) override {
+ for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
+ migrateDecl(*I);
+ return true;
+ }
+ void HandleInterestingDecl(DeclGroupRef DG) override {
+ // Ignore decls from the PCH.
+ }
+ void HandleTopLevelDeclInObjCContainer(DeclGroupRef DG) override {
+ ObjCMigrateASTConsumer::HandleTopLevelDecl(DG);
+ }
+
+ void HandleTranslationUnit(ASTContext &Ctx) override;
+
+ bool canModifyFile(StringRef Path) {
+ if (WhiteListFilenames.empty())
+ return true;
+ return WhiteListFilenames.find(llvm::sys::path::filename(Path))
+ != WhiteListFilenames.end();
+ }
+ bool canModifyFile(const FileEntry *FE) {
+ if (!FE)
+ return false;
+ return canModifyFile(FE->getName());
+ }
+ bool canModifyFile(FileID FID) {
+ if (FID.isInvalid())
+ return false;
+ return canModifyFile(PP.getSourceManager().getFileEntryForID(FID));
+ }
+
+ bool canModify(const Decl *D) {
+ if (!D)
+ return false;
+ if (const ObjCCategoryImplDecl *CatImpl = dyn_cast<ObjCCategoryImplDecl>(D))
+ return canModify(CatImpl->getCategoryDecl());
+ if (const ObjCImplementationDecl *Impl = dyn_cast<ObjCImplementationDecl>(D))
+ return canModify(Impl->getClassInterface());
+ if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
+ return canModify(cast<Decl>(MD->getDeclContext()));
+
+ FileID FID = PP.getSourceManager().getFileID(D->getLocation());
+ return canModifyFile(FID);
+ }
+};
+
+}
+
+ObjCMigrateAction::ObjCMigrateAction(FrontendAction *WrappedAction,
+ StringRef migrateDir,
+ unsigned migrateAction)
+ : WrapperFrontendAction(WrappedAction), MigrateDir(migrateDir),
+ ObjCMigAction(migrateAction),
+ CompInst(nullptr) {
+ if (MigrateDir.empty())
+ MigrateDir = "."; // user current directory if none is given.
+}
+
+std::unique_ptr<ASTConsumer>
+ObjCMigrateAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) {
+ PPConditionalDirectiveRecord *
+ PPRec = new PPConditionalDirectiveRecord(CompInst->getSourceManager());
+ CI.getPreprocessor().addPPCallbacks(std::unique_ptr<PPCallbacks>(PPRec));
+ std::vector<std::unique_ptr<ASTConsumer>> Consumers;
+ Consumers.push_back(WrapperFrontendAction::CreateASTConsumer(CI, InFile));
+ Consumers.push_back(llvm::make_unique<ObjCMigrateASTConsumer>(
+ MigrateDir, ObjCMigAction, Remapper, CompInst->getFileManager(), PPRec,
+ CompInst->getPreprocessor(), false, None));
+ return llvm::make_unique<MultiplexConsumer>(std::move(Consumers));
+}
+
+bool ObjCMigrateAction::BeginInvocation(CompilerInstance &CI) {
+ Remapper.initFromDisk(MigrateDir, CI.getDiagnostics(),
+ /*ignoreIfFilesChanges=*/true);
+ CompInst = &CI;
+ CI.getDiagnostics().setIgnoreAllWarnings(true);
+ return true;
+}
+
+namespace {
+ // FIXME. This duplicates one in RewriteObjCFoundationAPI.cpp
+ bool subscriptOperatorNeedsParens(const Expr *FullExpr) {
+ const Expr* Expr = FullExpr->IgnoreImpCasts();
+ if (isa<ArraySubscriptExpr>(Expr) ||
+ isa<CallExpr>(Expr) ||
+ isa<DeclRefExpr>(Expr) ||
+ isa<CXXNamedCastExpr>(Expr) ||
+ isa<CXXConstructExpr>(Expr) ||
+ isa<CXXThisExpr>(Expr) ||
+ isa<CXXTypeidExpr>(Expr) ||
+ isa<CXXUnresolvedConstructExpr>(Expr) ||
+ isa<ObjCMessageExpr>(Expr) ||
+ isa<ObjCPropertyRefExpr>(Expr) ||
+ isa<ObjCProtocolExpr>(Expr) ||
+ isa<MemberExpr>(Expr) ||
+ isa<ObjCIvarRefExpr>(Expr) ||
+ isa<ParenExpr>(FullExpr) ||
+ isa<ParenListExpr>(Expr) ||
+ isa<SizeOfPackExpr>(Expr))
+ return false;
+
+ return true;
+ }
+
+ /// \brief - Rewrite message expression for Objective-C setter and getters into
+ /// property-dot syntax.
+ bool rewriteToPropertyDotSyntax(const ObjCMessageExpr *Msg,
+ Preprocessor &PP,
+ const NSAPI &NS, edit::Commit &commit,
+ const ParentMap *PMap) {
+ if (!Msg || Msg->isImplicit() ||
+ (Msg->getReceiverKind() != ObjCMessageExpr::Instance &&
+ Msg->getReceiverKind() != ObjCMessageExpr::SuperInstance))
+ return false;
+ if (const Expr *Receiver = Msg->getInstanceReceiver())
+ if (Receiver->getType()->isObjCBuiltinType())
+ return false;
+
+ const ObjCMethodDecl *Method = Msg->getMethodDecl();
+ if (!Method)
+ return false;
+ if (!Method->isPropertyAccessor())
+ return false;
+
+ const ObjCPropertyDecl *Prop = Method->findPropertyDecl();
+ if (!Prop)
+ return false;
+
+ SourceRange MsgRange = Msg->getSourceRange();
+ bool ReceiverIsSuper =
+ (Msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
+ // for 'super' receiver is nullptr.
+ const Expr *receiver = Msg->getInstanceReceiver();
+ bool NeedsParen =
+ ReceiverIsSuper ? false : subscriptOperatorNeedsParens(receiver);
+ bool IsGetter = (Msg->getNumArgs() == 0);
+ if (IsGetter) {
+ // Find space location range between receiver expression and getter method.
+ SourceLocation BegLoc =
+ ReceiverIsSuper ? Msg->getSuperLoc() : receiver->getLocEnd();
+ BegLoc = PP.getLocForEndOfToken(BegLoc);
+ SourceLocation EndLoc = Msg->getSelectorLoc(0);
+ SourceRange SpaceRange(BegLoc, EndLoc);
+ std::string PropertyDotString;
+ // rewrite getter method expression into: receiver.property or
+ // (receiver).property
+ if (NeedsParen) {
+ commit.insertBefore(receiver->getLocStart(), "(");
+ PropertyDotString = ").";
+ }
+ else
+ PropertyDotString = ".";
+ PropertyDotString += Prop->getName();
+ commit.replace(SpaceRange, PropertyDotString);
+
+ // remove '[' ']'
+ commit.replace(SourceRange(MsgRange.getBegin(), MsgRange.getBegin()), "");
+ commit.replace(SourceRange(MsgRange.getEnd(), MsgRange.getEnd()), "");
+ } else {
+ if (NeedsParen)
+ commit.insertWrap("(", receiver->getSourceRange(), ")");
+ std::string PropertyDotString = ".";
+ PropertyDotString += Prop->getName();
+ PropertyDotString += " =";
+ const Expr*const* Args = Msg->getArgs();
+ const Expr *RHS = Args[0];
+ if (!RHS)
+ return false;
+ SourceLocation BegLoc =
+ ReceiverIsSuper ? Msg->getSuperLoc() : receiver->getLocEnd();
+ BegLoc = PP.getLocForEndOfToken(BegLoc);
+ SourceLocation EndLoc = RHS->getLocStart();
+ EndLoc = EndLoc.getLocWithOffset(-1);
+ const char *colon = PP.getSourceManager().getCharacterData(EndLoc);
+ // Add a space after '=' if there is no space between RHS and '='
+ if (colon && colon[0] == ':')
+ PropertyDotString += " ";
+ SourceRange Range(BegLoc, EndLoc);
+ commit.replace(Range, PropertyDotString);
+ // remove '[' ']'
+ commit.replace(SourceRange(MsgRange.getBegin(), MsgRange.getBegin()), "");
+ commit.replace(SourceRange(MsgRange.getEnd(), MsgRange.getEnd()), "");
+ }
+ return true;
+ }
+
+
+class ObjCMigrator : public RecursiveASTVisitor<ObjCMigrator> {
+ ObjCMigrateASTConsumer &Consumer;
+ ParentMap &PMap;
+
+public:
+ ObjCMigrator(ObjCMigrateASTConsumer &consumer, ParentMap &PMap)
+ : Consumer(consumer), PMap(PMap) { }
+
+ bool shouldVisitTemplateInstantiations() const { return false; }
+ bool shouldWalkTypesOfTypeLocs() const { return false; }
+
+ bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
+ if (Consumer.ASTMigrateActions & FrontendOptions::ObjCMT_Literals) {
+ edit::Commit commit(*Consumer.Editor);
+ edit::rewriteToObjCLiteralSyntax(E, *Consumer.NSAPIObj, commit, &PMap);
+ Consumer.Editor->commit(commit);
+ }
+
+ if (Consumer.ASTMigrateActions & FrontendOptions::ObjCMT_Subscripting) {
+ edit::Commit commit(*Consumer.Editor);
+ edit::rewriteToObjCSubscriptSyntax(E, *Consumer.NSAPIObj, commit);
+ Consumer.Editor->commit(commit);
+ }
+
+ if (Consumer.ASTMigrateActions & FrontendOptions::ObjCMT_PropertyDotSyntax) {
+ edit::Commit commit(*Consumer.Editor);
+ rewriteToPropertyDotSyntax(E, Consumer.PP, *Consumer.NSAPIObj,
+ commit, &PMap);
+ Consumer.Editor->commit(commit);
+ }
+
+ return true;
+ }
+
+ bool TraverseObjCMessageExpr(ObjCMessageExpr *E) {
+ // Do depth first; we want to rewrite the subexpressions first so that if
+ // we have to move expressions we will move them already rewritten.
+ for (Stmt::child_range range = E->children(); range; ++range)
+ if (!TraverseStmt(*range))
+ return false;
+
+ return WalkUpFromObjCMessageExpr(E);
+ }
+};
+
+class BodyMigrator : public RecursiveASTVisitor<BodyMigrator> {
+ ObjCMigrateASTConsumer &Consumer;
+ std::unique_ptr<ParentMap> PMap;
+
+public:
+ BodyMigrator(ObjCMigrateASTConsumer &consumer) : Consumer(consumer) { }
+
+ bool shouldVisitTemplateInstantiations() const { return false; }
+ bool shouldWalkTypesOfTypeLocs() const { return false; }
+
+ bool TraverseStmt(Stmt *S) {
+ PMap.reset(new ParentMap(S));
+ ObjCMigrator(Consumer, *PMap).TraverseStmt(S);
+ return true;
+ }
+};
+}
+
+void ObjCMigrateASTConsumer::migrateDecl(Decl *D) {
+ if (!D)
+ return;
+ if (isa<ObjCMethodDecl>(D))
+ return; // Wait for the ObjC container declaration.
+
+ BodyMigrator(*this).TraverseDecl(D);
+}
+
+static void append_attr(std::string &PropertyString, const char *attr,
+ bool &LParenAdded) {
+ if (!LParenAdded) {
+ PropertyString += "(";
+ LParenAdded = true;
+ }
+ else
+ PropertyString += ", ";
+ PropertyString += attr;
+}
+
+static
+void MigrateBlockOrFunctionPointerTypeVariable(std::string & PropertyString,
+ const std::string& TypeString,
+ const char *name) {
+ const char *argPtr = TypeString.c_str();
+ int paren = 0;
+ while (*argPtr) {
+ switch (*argPtr) {
+ case '(':
+ PropertyString += *argPtr;
+ paren++;
+ break;
+ case ')':
+ PropertyString += *argPtr;
+ paren--;
+ break;
+ case '^':
+ case '*':
+ PropertyString += (*argPtr);
+ if (paren == 1) {
+ PropertyString += name;
+ name = "";
+ }
+ break;
+ default:
+ PropertyString += *argPtr;
+ break;
+ }
+ argPtr++;
+ }
+}
+
+static const char *PropertyMemoryAttribute(ASTContext &Context, QualType ArgType) {
+ Qualifiers::ObjCLifetime propertyLifetime = ArgType.getObjCLifetime();
+ bool RetainableObject = ArgType->isObjCRetainableType();
+ if (RetainableObject &&
+ (propertyLifetime == Qualifiers::OCL_Strong
+ || propertyLifetime == Qualifiers::OCL_None)) {
+ if (const ObjCObjectPointerType *ObjPtrTy =
+ ArgType->getAs<ObjCObjectPointerType>()) {
+ ObjCInterfaceDecl *IDecl = ObjPtrTy->getObjectType()->getInterface();
+ if (IDecl &&
+ IDecl->lookupNestedProtocol(&Context.Idents.get("NSCopying")))
+ return "copy";
+ else
+ return "strong";
+ }
+ else if (ArgType->isBlockPointerType())
+ return "copy";
+ } else if (propertyLifetime == Qualifiers::OCL_Weak)
+ // TODO. More precise determination of 'weak' attribute requires
+ // looking into setter's implementation for backing weak ivar.
+ return "weak";
+ else if (RetainableObject)
+ return ArgType->isBlockPointerType() ? "copy" : "strong";
+ return nullptr;
+}
+
+static void rewriteToObjCProperty(const ObjCMethodDecl *Getter,
+ const ObjCMethodDecl *Setter,
+ const NSAPI &NS, edit::Commit &commit,
+ unsigned LengthOfPrefix,
+ bool Atomic, bool UseNsIosOnlyMacro,
+ bool AvailabilityArgsMatch) {
+ ASTContext &Context = NS.getASTContext();
+ bool LParenAdded = false;
+ std::string PropertyString = "@property ";
+ if (UseNsIosOnlyMacro && NS.isMacroDefined("NS_NONATOMIC_IOSONLY")) {
+ PropertyString += "(NS_NONATOMIC_IOSONLY";
+ LParenAdded = true;
+ } else if (!Atomic) {
+ PropertyString += "(nonatomic";
+ LParenAdded = true;
+ }
+
+ std::string PropertyNameString = Getter->getNameAsString();
+ StringRef PropertyName(PropertyNameString);
+ if (LengthOfPrefix > 0) {
+ if (!LParenAdded) {
+ PropertyString += "(getter=";
+ LParenAdded = true;
+ }
+ else
+ PropertyString += ", getter=";
+ PropertyString += PropertyNameString;
+ }
+ // Property with no setter may be suggested as a 'readonly' property.
+ if (!Setter)
+ append_attr(PropertyString, "readonly", LParenAdded);
+
+
+ // Short circuit 'delegate' properties that contain the name "delegate" or
+ // "dataSource", or have exact name "target" to have 'assign' attribute.
+ if (PropertyName.equals("target") ||
+ (PropertyName.find("delegate") != StringRef::npos) ||
+ (PropertyName.find("dataSource") != StringRef::npos)) {
+ QualType QT = Getter->getReturnType();
+ if (!QT->isRealType())
+ append_attr(PropertyString, "assign", LParenAdded);
+ } else if (!Setter) {
+ QualType ResType = Context.getCanonicalType(Getter->getReturnType());
+ if (const char *MemoryManagementAttr = PropertyMemoryAttribute(Context, ResType))
+ append_attr(PropertyString, MemoryManagementAttr, LParenAdded);
+ } else {
+ const ParmVarDecl *argDecl = *Setter->param_begin();
+ QualType ArgType = Context.getCanonicalType(argDecl->getType());
+ if (const char *MemoryManagementAttr = PropertyMemoryAttribute(Context, ArgType))
+ append_attr(PropertyString, MemoryManagementAttr, LParenAdded);
+ }
+ if (LParenAdded)
+ PropertyString += ')';
+ QualType RT = Getter->getReturnType();
+ if (!isa<TypedefType>(RT)) {
+ // strip off any ARC lifetime qualifier.
+ QualType CanResultTy = Context.getCanonicalType(RT);
+ if (CanResultTy.getQualifiers().hasObjCLifetime()) {
+ Qualifiers Qs = CanResultTy.getQualifiers();
+ Qs.removeObjCLifetime();
+ RT = Context.getQualifiedType(CanResultTy.getUnqualifiedType(), Qs);
+ }
+ }
+ PropertyString += " ";
+ PrintingPolicy SubPolicy(Context.getPrintingPolicy());
+ SubPolicy.SuppressStrongLifetime = true;
+ SubPolicy.SuppressLifetimeQualifiers = true;
+ std::string TypeString = RT.getAsString(SubPolicy);
+ if (LengthOfPrefix > 0) {
+ // property name must strip off "is" and lower case the first character
+ // after that; e.g. isContinuous will become continuous.
+ StringRef PropertyNameStringRef(PropertyNameString);
+ PropertyNameStringRef = PropertyNameStringRef.drop_front(LengthOfPrefix);
+ PropertyNameString = PropertyNameStringRef;
+ bool NoLowering = (isUppercase(PropertyNameString[0]) &&
+ PropertyNameString.size() > 1 &&
+ isUppercase(PropertyNameString[1]));
+ if (!NoLowering)
+ PropertyNameString[0] = toLowercase(PropertyNameString[0]);
+ }
+ if (RT->isBlockPointerType() || RT->isFunctionPointerType())
+ MigrateBlockOrFunctionPointerTypeVariable(PropertyString,
+ TypeString,
+ PropertyNameString.c_str());
+ else {
+ char LastChar = TypeString[TypeString.size()-1];
+ PropertyString += TypeString;
+ if (LastChar != '*')
+ PropertyString += ' ';
+ PropertyString += PropertyNameString;
+ }
+ SourceLocation StartGetterSelectorLoc = Getter->getSelectorStartLoc();
+ Selector GetterSelector = Getter->getSelector();
+
+ SourceLocation EndGetterSelectorLoc =
+ StartGetterSelectorLoc.getLocWithOffset(GetterSelector.getNameForSlot(0).size());
+ commit.replace(CharSourceRange::getCharRange(Getter->getLocStart(),
+ EndGetterSelectorLoc),
+ PropertyString);
+ if (Setter && AvailabilityArgsMatch) {
+ SourceLocation EndLoc = Setter->getDeclaratorEndLoc();
+ // Get location past ';'
+ EndLoc = EndLoc.getLocWithOffset(1);
+ SourceLocation BeginOfSetterDclLoc = Setter->getLocStart();
+ // FIXME. This assumes that setter decl; is immediately preceded by eoln.
+ // It is trying to remove the setter method decl. line entirely.
+ BeginOfSetterDclLoc = BeginOfSetterDclLoc.getLocWithOffset(-1);
+ commit.remove(SourceRange(BeginOfSetterDclLoc, EndLoc));
+ }
+}
+
+static bool IsCategoryNameWithDeprecatedSuffix(ObjCContainerDecl *D) {
+ if (ObjCCategoryDecl *CatDecl = dyn_cast<ObjCCategoryDecl>(D)) {
+ StringRef Name = CatDecl->getName();
+ return Name.endswith("Deprecated");
+ }
+ return false;
+}
+
+void ObjCMigrateASTConsumer::migrateObjCContainerDecl(ASTContext &Ctx,
+ ObjCContainerDecl *D) {
+ if (D->isDeprecated() || IsCategoryNameWithDeprecatedSuffix(D))
+ return;
+
+ for (auto *Method : D->methods()) {
+ if (Method->isDeprecated())
+ continue;
+ bool PropertyInferred = migrateProperty(Ctx, D, Method);
+ // If a property is inferred, do not attempt to attach NS_RETURNS_INNER_POINTER to
+ // the getter method as it ends up on the property itself which we don't want
+ // to do unless -objcmt-returns-innerpointer-property option is on.
+ if (!PropertyInferred ||
+ (ASTMigrateActions & FrontendOptions::ObjCMT_ReturnsInnerPointerProperty))
+ if (ASTMigrateActions & FrontendOptions::ObjCMT_Annotation)
+ migrateNsReturnsInnerPointer(Ctx, Method);
+ }
+ if (!(ASTMigrateActions & FrontendOptions::ObjCMT_ReturnsInnerPointerProperty))
+ return;
+
+ for (auto *Prop : D->properties()) {
+ if ((ASTMigrateActions & FrontendOptions::ObjCMT_Annotation) &&
+ !Prop->isDeprecated())
+ migratePropertyNsReturnsInnerPointer(Ctx, Prop);
+ }
+}
+
+static bool
+ClassImplementsAllMethodsAndProperties(ASTContext &Ctx,
+ const ObjCImplementationDecl *ImpDecl,
+ const ObjCInterfaceDecl *IDecl,
+ ObjCProtocolDecl *Protocol) {
+ // In auto-synthesis, protocol properties are not synthesized. So,
+ // a conforming protocol must have its required properties declared
+ // in class interface.
+ bool HasAtleastOneRequiredProperty = false;
+ if (const ObjCProtocolDecl *PDecl = Protocol->getDefinition())
+ for (const auto *Property : PDecl->properties()) {
+ if (Property->getPropertyImplementation() == ObjCPropertyDecl::Optional)
+ continue;
+ HasAtleastOneRequiredProperty = true;
+ DeclContext::lookup_result R = IDecl->lookup(Property->getDeclName());
+ if (R.size() == 0) {
+ // Relax the rule and look into class's implementation for a synthesize
+ // or dynamic declaration. Class is implementing a property coming from
+ // another protocol. This still makes the target protocol as conforming.
+ if (!ImpDecl->FindPropertyImplDecl(
+ Property->getDeclName().getAsIdentifierInfo()))
+ return false;
+ }
+ else if (ObjCPropertyDecl *ClassProperty = dyn_cast<ObjCPropertyDecl>(R[0])) {
+ if ((ClassProperty->getPropertyAttributes()
+ != Property->getPropertyAttributes()) ||
+ !Ctx.hasSameType(ClassProperty->getType(), Property->getType()))
+ return false;
+ }
+ else
+ return false;
+ }
+
+ // At this point, all required properties in this protocol conform to those
+ // declared in the class.
+ // Check that class implements the required methods of the protocol too.
+ bool HasAtleastOneRequiredMethod = false;
+ if (const ObjCProtocolDecl *PDecl = Protocol->getDefinition()) {
+ if (PDecl->meth_begin() == PDecl->meth_end())
+ return HasAtleastOneRequiredProperty;
+ for (const auto *MD : PDecl->methods()) {
+ if (MD->isImplicit())
+ continue;
+ if (MD->getImplementationControl() == ObjCMethodDecl::Optional)
+ continue;
+ DeclContext::lookup_result R = ImpDecl->lookup(MD->getDeclName());
+ if (R.size() == 0)
+ return false;
+ bool match = false;
+ HasAtleastOneRequiredMethod = true;
+ for (unsigned I = 0, N = R.size(); I != N; ++I)
+ if (ObjCMethodDecl *ImpMD = dyn_cast<ObjCMethodDecl>(R[0]))
+ if (Ctx.ObjCMethodsAreEqual(MD, ImpMD)) {
+ match = true;
+ break;
+ }
+ if (!match)
+ return false;
+ }
+ }
+ if (HasAtleastOneRequiredProperty || HasAtleastOneRequiredMethod)
+ return true;
+ return false;
+}
+
+static bool rewriteToObjCInterfaceDecl(const ObjCInterfaceDecl *IDecl,
+ llvm::SmallVectorImpl<ObjCProtocolDecl*> &ConformingProtocols,
+ const NSAPI &NS, edit::Commit &commit) {
+ const ObjCList<ObjCProtocolDecl> &Protocols = IDecl->getReferencedProtocols();
+ std::string ClassString;
+ SourceLocation EndLoc =
+ IDecl->getSuperClass() ? IDecl->getSuperClassLoc() : IDecl->getLocation();
+
+ if (Protocols.empty()) {
+ ClassString = '<';
+ for (unsigned i = 0, e = ConformingProtocols.size(); i != e; i++) {
+ ClassString += ConformingProtocols[i]->getNameAsString();
+ if (i != (e-1))
+ ClassString += ", ";
+ }
+ ClassString += "> ";
+ }
+ else {
+ ClassString = ", ";
+ for (unsigned i = 0, e = ConformingProtocols.size(); i != e; i++) {
+ ClassString += ConformingProtocols[i]->getNameAsString();
+ if (i != (e-1))
+ ClassString += ", ";
+ }
+ ObjCInterfaceDecl::protocol_loc_iterator PL = IDecl->protocol_loc_end() - 1;
+ EndLoc = *PL;
+ }
+
+ commit.insertAfterToken(EndLoc, ClassString);
+ return true;
+}
+
+static StringRef GetUnsignedName(StringRef NSIntegerName) {
+ StringRef UnsignedName = llvm::StringSwitch<StringRef>(NSIntegerName)
+ .Case("int8_t", "uint8_t")
+ .Case("int16_t", "uint16_t")
+ .Case("int32_t", "uint32_t")
+ .Case("NSInteger", "NSUInteger")
+ .Case("int64_t", "uint64_t")
+ .Default(NSIntegerName);
+ return UnsignedName;
+}
+
+static bool rewriteToNSEnumDecl(const EnumDecl *EnumDcl,
+ const TypedefDecl *TypedefDcl,
+ const NSAPI &NS, edit::Commit &commit,
+ StringRef NSIntegerName,
+ bool NSOptions) {
+ std::string ClassString;
+ if (NSOptions) {
+ ClassString = "typedef NS_OPTIONS(";
+ ClassString += GetUnsignedName(NSIntegerName);
+ }
+ else {
+ ClassString = "typedef NS_ENUM(";
+ ClassString += NSIntegerName;
+ }
+ ClassString += ", ";
+
+ ClassString += TypedefDcl->getIdentifier()->getName();
+ ClassString += ')';
+ SourceRange R(EnumDcl->getLocStart(), EnumDcl->getLocStart());
+ commit.replace(R, ClassString);
+ SourceLocation EndOfEnumDclLoc = EnumDcl->getLocEnd();
+ EndOfEnumDclLoc = trans::findSemiAfterLocation(EndOfEnumDclLoc,
+ NS.getASTContext(), /*IsDecl*/true);
+ if (!EndOfEnumDclLoc.isInvalid()) {
+ SourceRange EnumDclRange(EnumDcl->getLocStart(), EndOfEnumDclLoc);
+ commit.insertFromRange(TypedefDcl->getLocStart(), EnumDclRange);
+ }
+ else
+ return false;
+
+ SourceLocation EndTypedefDclLoc = TypedefDcl->getLocEnd();
+ EndTypedefDclLoc = trans::findSemiAfterLocation(EndTypedefDclLoc,
+ NS.getASTContext(), /*IsDecl*/true);
+ if (!EndTypedefDclLoc.isInvalid()) {
+ SourceRange TDRange(TypedefDcl->getLocStart(), EndTypedefDclLoc);
+ commit.remove(TDRange);
+ }
+ else
+ return false;
+
+ EndOfEnumDclLoc = trans::findLocationAfterSemi(EnumDcl->getLocEnd(), NS.getASTContext(),
+ /*IsDecl*/true);
+ if (!EndOfEnumDclLoc.isInvalid()) {
+ SourceLocation BeginOfEnumDclLoc = EnumDcl->getLocStart();
+ // FIXME. This assumes that enum decl; is immediately preceded by eoln.
+ // It is trying to remove the enum decl. lines entirely.
+ BeginOfEnumDclLoc = BeginOfEnumDclLoc.getLocWithOffset(-1);
+ commit.remove(SourceRange(BeginOfEnumDclLoc, EndOfEnumDclLoc));
+ return true;
+ }
+ return false;
+}
+
+static void rewriteToNSMacroDecl(ASTContext &Ctx,
+ const EnumDecl *EnumDcl,
+ const TypedefDecl *TypedefDcl,
+ const NSAPI &NS, edit::Commit &commit,
+ bool IsNSIntegerType) {
+ QualType DesignatedEnumType = EnumDcl->getIntegerType();
+ assert(!DesignatedEnumType.isNull()
+ && "rewriteToNSMacroDecl - underlying enum type is null");
+
+ PrintingPolicy Policy(Ctx.getPrintingPolicy());
+ std::string TypeString = DesignatedEnumType.getAsString(Policy);
+ std::string ClassString = IsNSIntegerType ? "NS_ENUM(" : "NS_OPTIONS(";
+ ClassString += TypeString;
+ ClassString += ", ";
+
+ ClassString += TypedefDcl->getIdentifier()->getName();
+ ClassString += ')';
+ SourceLocation EndLoc;
+ if (EnumDcl->getIntegerTypeSourceInfo()) {
+ TypeSourceInfo *TSourceInfo = EnumDcl->getIntegerTypeSourceInfo();
+ TypeLoc TLoc = TSourceInfo->getTypeLoc();
+ EndLoc = TLoc.getLocEnd();
+ const char *lbrace = Ctx.getSourceManager().getCharacterData(EndLoc);
+ unsigned count = 0;
+ if (lbrace)
+ while (lbrace[count] != '{')
+ ++count;
+ if (count > 0)
+ EndLoc = EndLoc.getLocWithOffset(count-1);
+ }
+ else
+ EndLoc = EnumDcl->getLocStart();
+ SourceRange R(EnumDcl->getLocStart(), EndLoc);
+ commit.replace(R, ClassString);
+ // This is to remove spaces between '}' and typedef name.
+ SourceLocation StartTypedefLoc = EnumDcl->getLocEnd();
+ StartTypedefLoc = StartTypedefLoc.getLocWithOffset(+1);
+ SourceLocation EndTypedefLoc = TypedefDcl->getLocEnd();
+
+ commit.remove(SourceRange(StartTypedefLoc, EndTypedefLoc));
+}
+
+static bool UseNSOptionsMacro(Preprocessor &PP, ASTContext &Ctx,
+ const EnumDecl *EnumDcl) {
+ bool PowerOfTwo = true;
+ bool AllHexdecimalEnumerator = true;
+ uint64_t MaxPowerOfTwoVal = 0;
+ for (auto Enumerator : EnumDcl->enumerators()) {
+ const Expr *InitExpr = Enumerator->getInitExpr();
+ if (!InitExpr) {
+ PowerOfTwo = false;
+ AllHexdecimalEnumerator = false;
+ continue;
+ }
+ InitExpr = InitExpr->IgnoreParenCasts();
+ if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr))
+ if (BO->isShiftOp() || BO->isBitwiseOp())
+ return true;
+
+ uint64_t EnumVal = Enumerator->getInitVal().getZExtValue();
+ if (PowerOfTwo && EnumVal) {
+ if (!llvm::isPowerOf2_64(EnumVal))
+ PowerOfTwo = false;
+ else if (EnumVal > MaxPowerOfTwoVal)
+ MaxPowerOfTwoVal = EnumVal;
+ }
+ if (AllHexdecimalEnumerator && EnumVal) {
+ bool FoundHexdecimalEnumerator = false;
+ SourceLocation EndLoc = Enumerator->getLocEnd();
+ Token Tok;
+ if (!PP.getRawToken(EndLoc, Tok, /*IgnoreWhiteSpace=*/true))
+ if (Tok.isLiteral() && Tok.getLength() > 2) {
+ if (const char *StringLit = Tok.getLiteralData())
+ FoundHexdecimalEnumerator =
+ (StringLit[0] == '0' && (toLowercase(StringLit[1]) == 'x'));
+ }
+ if (!FoundHexdecimalEnumerator)
+ AllHexdecimalEnumerator = false;
+ }
+ }
+ return AllHexdecimalEnumerator || (PowerOfTwo && (MaxPowerOfTwoVal > 2));
+}
+
+void ObjCMigrateASTConsumer::migrateProtocolConformance(ASTContext &Ctx,
+ const ObjCImplementationDecl *ImpDecl) {
+ const ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface();
+ if (!IDecl || ObjCProtocolDecls.empty() || IDecl->isDeprecated())
+ return;
+ // Find all implicit conforming protocols for this class
+ // and make them explicit.
+ llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ExplicitProtocols;
+ Ctx.CollectInheritedProtocols(IDecl, ExplicitProtocols);
+ llvm::SmallVector<ObjCProtocolDecl *, 8> PotentialImplicitProtocols;
+
+ for (ObjCProtocolDecl *ProtDecl : ObjCProtocolDecls)
+ if (!ExplicitProtocols.count(ProtDecl))
+ PotentialImplicitProtocols.push_back(ProtDecl);
+
+ if (PotentialImplicitProtocols.empty())
+ return;
+
+ // go through list of non-optional methods and properties in each protocol
+ // in the PotentialImplicitProtocols list. If class implements every one of the
+ // methods and properties, then this class conforms to this protocol.
+ llvm::SmallVector<ObjCProtocolDecl*, 8> ConformingProtocols;
+ for (unsigned i = 0, e = PotentialImplicitProtocols.size(); i != e; i++)
+ if (ClassImplementsAllMethodsAndProperties(Ctx, ImpDecl, IDecl,
+ PotentialImplicitProtocols[i]))
+ ConformingProtocols.push_back(PotentialImplicitProtocols[i]);
+
+ if (ConformingProtocols.empty())
+ return;
+
+ // Further reduce number of conforming protocols. If protocol P1 is in the list
+ // protocol P2 (P2<P1>), No need to include P1.
+ llvm::SmallVector<ObjCProtocolDecl*, 8> MinimalConformingProtocols;
+ for (unsigned i = 0, e = ConformingProtocols.size(); i != e; i++) {
+ bool DropIt = false;
+ ObjCProtocolDecl *TargetPDecl = ConformingProtocols[i];
+ for (unsigned i1 = 0, e1 = ConformingProtocols.size(); i1 != e1; i1++) {
+ ObjCProtocolDecl *PDecl = ConformingProtocols[i1];
+ if (PDecl == TargetPDecl)
+ continue;
+ if (PDecl->lookupProtocolNamed(
+ TargetPDecl->getDeclName().getAsIdentifierInfo())) {
+ DropIt = true;
+ break;
+ }
+ }
+ if (!DropIt)
+ MinimalConformingProtocols.push_back(TargetPDecl);
+ }
+ if (MinimalConformingProtocols.empty())
+ return;
+ edit::Commit commit(*Editor);
+ rewriteToObjCInterfaceDecl(IDecl, MinimalConformingProtocols,
+ *NSAPIObj, commit);
+ Editor->commit(commit);
+}
+
+void ObjCMigrateASTConsumer::CacheObjCNSIntegerTypedefed(
+ const TypedefDecl *TypedefDcl) {
+
+ QualType qt = TypedefDcl->getTypeSourceInfo()->getType();
+ if (NSAPIObj->isObjCNSIntegerType(qt))
+ NSIntegerTypedefed = TypedefDcl;
+ else if (NSAPIObj->isObjCNSUIntegerType(qt))
+ NSUIntegerTypedefed = TypedefDcl;
+}
+
+bool ObjCMigrateASTConsumer::migrateNSEnumDecl(ASTContext &Ctx,
+ const EnumDecl *EnumDcl,
+ const TypedefDecl *TypedefDcl) {
+ if (!EnumDcl->isCompleteDefinition() || EnumDcl->getIdentifier() ||
+ EnumDcl->isDeprecated())
+ return false;
+ if (!TypedefDcl) {
+ if (NSIntegerTypedefed) {
+ TypedefDcl = NSIntegerTypedefed;
+ NSIntegerTypedefed = nullptr;
+ }
+ else if (NSUIntegerTypedefed) {
+ TypedefDcl = NSUIntegerTypedefed;
+ NSUIntegerTypedefed = nullptr;
+ }
+ else
+ return false;
+ FileID FileIdOfTypedefDcl =
+ PP.getSourceManager().getFileID(TypedefDcl->getLocation());
+ FileID FileIdOfEnumDcl =
+ PP.getSourceManager().getFileID(EnumDcl->getLocation());
+ if (FileIdOfTypedefDcl != FileIdOfEnumDcl)
+ return false;
+ }
+ if (TypedefDcl->isDeprecated())
+ return false;
+
+ QualType qt = TypedefDcl->getTypeSourceInfo()->getType();
+ StringRef NSIntegerName = NSAPIObj->GetNSIntegralKind(qt);
+
+ if (NSIntegerName.empty()) {
+ // Also check for typedef enum {...} TD;
+ if (const EnumType *EnumTy = qt->getAs<EnumType>()) {
+ if (EnumTy->getDecl() == EnumDcl) {
+ bool NSOptions = UseNSOptionsMacro(PP, Ctx, EnumDcl);
+ if (!InsertFoundation(Ctx, TypedefDcl->getLocStart()))
+ return false;
+ edit::Commit commit(*Editor);
+ rewriteToNSMacroDecl(Ctx, EnumDcl, TypedefDcl, *NSAPIObj, commit, !NSOptions);
+ Editor->commit(commit);
+ return true;
+ }
+ }
+ return false;
+ }
+
+ // We may still use NS_OPTIONS based on what we find in the enumertor list.
+ bool NSOptions = UseNSOptionsMacro(PP, Ctx, EnumDcl);
+ if (!InsertFoundation(Ctx, TypedefDcl->getLocStart()))
+ return false;
+ edit::Commit commit(*Editor);
+ bool Res = rewriteToNSEnumDecl(EnumDcl, TypedefDcl, *NSAPIObj,
+ commit, NSIntegerName, NSOptions);
+ Editor->commit(commit);
+ return Res;
+}
+
+static void ReplaceWithInstancetype(ASTContext &Ctx,
+ const ObjCMigrateASTConsumer &ASTC,
+ ObjCMethodDecl *OM) {
+ if (OM->getReturnType() == Ctx.getObjCInstanceType())
+ return; // already has instancetype.
+
+ SourceRange R;
+ std::string ClassString;
+ if (TypeSourceInfo *TSInfo = OM->getReturnTypeSourceInfo()) {
+ TypeLoc TL = TSInfo->getTypeLoc();
+ R = SourceRange(TL.getBeginLoc(), TL.getEndLoc());
+ ClassString = "instancetype";
+ }
+ else {
+ R = SourceRange(OM->getLocStart(), OM->getLocStart());
+ ClassString = OM->isInstanceMethod() ? '-' : '+';
+ ClassString += " (instancetype)";
+ }
+ edit::Commit commit(*ASTC.Editor);
+ commit.replace(R, ClassString);
+ ASTC.Editor->commit(commit);
+}
+
+static void ReplaceWithClasstype(const ObjCMigrateASTConsumer &ASTC,
+ ObjCMethodDecl *OM) {
+ ObjCInterfaceDecl *IDecl = OM->getClassInterface();
+ SourceRange R;
+ std::string ClassString;
+ if (TypeSourceInfo *TSInfo = OM->getReturnTypeSourceInfo()) {
+ TypeLoc TL = TSInfo->getTypeLoc();
+ R = SourceRange(TL.getBeginLoc(), TL.getEndLoc()); {
+ ClassString = IDecl->getName();
+ ClassString += "*";
+ }
+ }
+ else {
+ R = SourceRange(OM->getLocStart(), OM->getLocStart());
+ ClassString = "+ (";
+ ClassString += IDecl->getName(); ClassString += "*)";
+ }
+ edit::Commit commit(*ASTC.Editor);
+ commit.replace(R, ClassString);
+ ASTC.Editor->commit(commit);
+}
+
+void ObjCMigrateASTConsumer::migrateMethodInstanceType(ASTContext &Ctx,
+ ObjCContainerDecl *CDecl,
+ ObjCMethodDecl *OM) {
+ ObjCInstanceTypeFamily OIT_Family =
+ Selector::getInstTypeMethodFamily(OM->getSelector());
+
+ std::string ClassName;
+ switch (OIT_Family) {
+ case OIT_None:
+ migrateFactoryMethod(Ctx, CDecl, OM);
+ return;
+ case OIT_Array:
+ ClassName = "NSArray";
+ break;
+ case OIT_Dictionary:
+ ClassName = "NSDictionary";
+ break;
+ case OIT_Singleton:
+ migrateFactoryMethod(Ctx, CDecl, OM, OIT_Singleton);
+ return;
+ case OIT_Init:
+ if (OM->getReturnType()->isObjCIdType())
+ ReplaceWithInstancetype(Ctx, *this, OM);
+ return;
+ case OIT_ReturnsSelf:
+ migrateFactoryMethod(Ctx, CDecl, OM, OIT_ReturnsSelf);
+ return;
+ }
+ if (!OM->getReturnType()->isObjCIdType())
+ return;
+
+ ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl);
+ if (!IDecl) {
+ if (ObjCCategoryDecl *CatDecl = dyn_cast<ObjCCategoryDecl>(CDecl))
+ IDecl = CatDecl->getClassInterface();
+ else if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(CDecl))
+ IDecl = ImpDecl->getClassInterface();
+ }
+ if (!IDecl ||
+ !IDecl->lookupInheritedClass(&Ctx.Idents.get(ClassName))) {
+ migrateFactoryMethod(Ctx, CDecl, OM);
+ return;
+ }
+ ReplaceWithInstancetype(Ctx, *this, OM);
+}
+
+static bool TypeIsInnerPointer(QualType T) {
+ if (!T->isAnyPointerType())
+ return false;
+ if (T->isObjCObjectPointerType() || T->isObjCBuiltinType() ||
+ T->isBlockPointerType() || T->isFunctionPointerType() ||
+ ento::coreFoundation::isCFObjectRef(T))
+ return false;
+ // Also, typedef-of-pointer-to-incomplete-struct is something that we assume
+ // is not an innter pointer type.
+ QualType OrigT = T;
+ while (const TypedefType *TD = dyn_cast<TypedefType>(T.getTypePtr()))
+ T = TD->getDecl()->getUnderlyingType();
+ if (OrigT == T || !T->isPointerType())
+ return true;
+ const PointerType* PT = T->getAs<PointerType>();
+ QualType UPointeeT = PT->getPointeeType().getUnqualifiedType();
+ if (UPointeeT->isRecordType()) {
+ const RecordType *RecordTy = UPointeeT->getAs<RecordType>();
+ if (!RecordTy->getDecl()->isCompleteDefinition())
+ return false;
+ }
+ return true;
+}
+
+/// \brief Check whether the two versions match.
+static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y) {
+ return (X == Y);
+}
+
+/// AvailabilityAttrsMatch - This routine checks that if comparing two
+/// availability attributes, all their components match. It returns
+/// true, if not dealing with availability or when all components of
+/// availability attributes match. This routine is only called when
+/// the attributes are of the same kind.
+static bool AvailabilityAttrsMatch(Attr *At1, Attr *At2) {
+ const AvailabilityAttr *AA1 = dyn_cast<AvailabilityAttr>(At1);
+ if (!AA1)
+ return true;
+ const AvailabilityAttr *AA2 = dyn_cast<AvailabilityAttr>(At2);
+
+ VersionTuple Introduced1 = AA1->getIntroduced();
+ VersionTuple Deprecated1 = AA1->getDeprecated();
+ VersionTuple Obsoleted1 = AA1->getObsoleted();
+ bool IsUnavailable1 = AA1->getUnavailable();
+ VersionTuple Introduced2 = AA2->getIntroduced();
+ VersionTuple Deprecated2 = AA2->getDeprecated();
+ VersionTuple Obsoleted2 = AA2->getObsoleted();
+ bool IsUnavailable2 = AA2->getUnavailable();
+ return (versionsMatch(Introduced1, Introduced2) &&
+ versionsMatch(Deprecated1, Deprecated2) &&
+ versionsMatch(Obsoleted1, Obsoleted2) &&
+ IsUnavailable1 == IsUnavailable2);
+
+}
+
+static bool MatchTwoAttributeLists(const AttrVec &Attrs1, const AttrVec &Attrs2,
+ bool &AvailabilityArgsMatch) {
+ // This list is very small, so this need not be optimized.
+ for (unsigned i = 0, e = Attrs1.size(); i != e; i++) {
+ bool match = false;
+ for (unsigned j = 0, f = Attrs2.size(); j != f; j++) {
+ // Matching attribute kind only. Except for Availabilty attributes,
+ // we are not getting into details of the attributes. For all practical purposes
+ // this is sufficient.
+ if (Attrs1[i]->getKind() == Attrs2[j]->getKind()) {
+ if (AvailabilityArgsMatch)
+ AvailabilityArgsMatch = AvailabilityAttrsMatch(Attrs1[i], Attrs2[j]);
+ match = true;
+ break;
+ }
+ }
+ if (!match)
+ return false;
+ }
+ return true;
+}
+
+/// AttributesMatch - This routine checks list of attributes for two
+/// decls. It returns false, if there is a mismatch in kind of
+/// attributes seen in the decls. It returns true if the two decls
+/// have list of same kind of attributes. Furthermore, when there
+/// are availability attributes in the two decls, it sets the
+/// AvailabilityArgsMatch to false if availability attributes have
+/// different versions, etc.
+static bool AttributesMatch(const Decl *Decl1, const Decl *Decl2,
+ bool &AvailabilityArgsMatch) {
+ if (!Decl1->hasAttrs() || !Decl2->hasAttrs()) {
+ AvailabilityArgsMatch = (Decl1->hasAttrs() == Decl2->hasAttrs());
+ return true;
+ }
+ AvailabilityArgsMatch = true;
+ const AttrVec &Attrs1 = Decl1->getAttrs();
+ const AttrVec &Attrs2 = Decl2->getAttrs();
+ bool match = MatchTwoAttributeLists(Attrs1, Attrs2, AvailabilityArgsMatch);
+ if (match && (Attrs2.size() > Attrs1.size()))
+ return MatchTwoAttributeLists(Attrs2, Attrs1, AvailabilityArgsMatch);
+ return match;
+}
+
+static bool IsValidIdentifier(ASTContext &Ctx,
+ const char *Name) {
+ if (!isIdentifierHead(Name[0]))
+ return false;
+ std::string NameString = Name;
+ NameString[0] = toLowercase(NameString[0]);
+ IdentifierInfo *II = &Ctx.Idents.get(NameString);
+ return II->getTokenID() == tok::identifier;
+}
+
+bool ObjCMigrateASTConsumer::migrateProperty(ASTContext &Ctx,
+ ObjCContainerDecl *D,
+ ObjCMethodDecl *Method) {
+ if (Method->isPropertyAccessor() || !Method->isInstanceMethod() ||
+ Method->param_size() != 0)
+ return false;
+ // Is this method candidate to be a getter?
+ QualType GRT = Method->getReturnType();
+ if (GRT->isVoidType())
+ return false;
+
+ Selector GetterSelector = Method->getSelector();
+ ObjCInstanceTypeFamily OIT_Family =
+ Selector::getInstTypeMethodFamily(GetterSelector);
+
+ if (OIT_Family != OIT_None)
+ return false;
+
+ IdentifierInfo *getterName = GetterSelector.getIdentifierInfoForSlot(0);
+ Selector SetterSelector =
+ SelectorTable::constructSetterSelector(PP.getIdentifierTable(),
+ PP.getSelectorTable(),
+ getterName);
+ ObjCMethodDecl *SetterMethod = D->getInstanceMethod(SetterSelector);
+ unsigned LengthOfPrefix = 0;
+ if (!SetterMethod) {
+ // try a different naming convention for getter: isXxxxx
+ StringRef getterNameString = getterName->getName();
+ bool IsPrefix = getterNameString.startswith("is");
+ // Note that we don't want to change an isXXX method of retainable object
+ // type to property (readonly or otherwise).
+ if (IsPrefix && GRT->isObjCRetainableType())
+ return false;
+ if (IsPrefix || getterNameString.startswith("get")) {
+ LengthOfPrefix = (IsPrefix ? 2 : 3);
+ const char *CGetterName = getterNameString.data() + LengthOfPrefix;
+ // Make sure that first character after "is" or "get" prefix can
+ // start an identifier.
+ if (!IsValidIdentifier(Ctx, CGetterName))
+ return false;
+ if (CGetterName[0] && isUppercase(CGetterName[0])) {
+ getterName = &Ctx.Idents.get(CGetterName);
+ SetterSelector =
+ SelectorTable::constructSetterSelector(PP.getIdentifierTable(),
+ PP.getSelectorTable(),
+ getterName);
+ SetterMethod = D->getInstanceMethod(SetterSelector);
+ }
+ }
+ }
+
+ if (SetterMethod) {
+ if ((ASTMigrateActions & FrontendOptions::ObjCMT_ReadwriteProperty) == 0)
+ return false;
+ bool AvailabilityArgsMatch;
+ if (SetterMethod->isDeprecated() ||
+ !AttributesMatch(Method, SetterMethod, AvailabilityArgsMatch))
+ return false;
+
+ // Is this a valid setter, matching the target getter?
+ QualType SRT = SetterMethod->getReturnType();
+ if (!SRT->isVoidType())
+ return false;
+ const ParmVarDecl *argDecl = *SetterMethod->param_begin();
+ QualType ArgType = argDecl->getType();
+ if (!Ctx.hasSameUnqualifiedType(ArgType, GRT))
+ return false;
+ edit::Commit commit(*Editor);
+ rewriteToObjCProperty(Method, SetterMethod, *NSAPIObj, commit,
+ LengthOfPrefix,
+ (ASTMigrateActions &
+ FrontendOptions::ObjCMT_AtomicProperty) != 0,
+ (ASTMigrateActions &
+ FrontendOptions::ObjCMT_NsAtomicIOSOnlyProperty) != 0,
+ AvailabilityArgsMatch);
+ Editor->commit(commit);
+ return true;
+ }
+ else if (ASTMigrateActions & FrontendOptions::ObjCMT_ReadonlyProperty) {
+ // Try a non-void method with no argument (and no setter or property of same name
+ // as a 'readonly' property.
+ edit::Commit commit(*Editor);
+ rewriteToObjCProperty(Method, nullptr /*SetterMethod*/, *NSAPIObj, commit,
+ LengthOfPrefix,
+ (ASTMigrateActions &
+ FrontendOptions::ObjCMT_AtomicProperty) != 0,
+ (ASTMigrateActions &
+ FrontendOptions::ObjCMT_NsAtomicIOSOnlyProperty) != 0,
+ /*AvailabilityArgsMatch*/false);
+ Editor->commit(commit);
+ return true;
+ }
+ return false;
+}
+
+void ObjCMigrateASTConsumer::migrateNsReturnsInnerPointer(ASTContext &Ctx,
+ ObjCMethodDecl *OM) {
+ if (OM->isImplicit() ||
+ !OM->isInstanceMethod() ||
+ OM->hasAttr<ObjCReturnsInnerPointerAttr>())
+ return;
+
+ QualType RT = OM->getReturnType();
+ if (!TypeIsInnerPointer(RT) ||
+ !NSAPIObj->isMacroDefined("NS_RETURNS_INNER_POINTER"))
+ return;
+
+ edit::Commit commit(*Editor);
+ commit.insertBefore(OM->getLocEnd(), " NS_RETURNS_INNER_POINTER");
+ Editor->commit(commit);
+}
+
+void ObjCMigrateASTConsumer::migratePropertyNsReturnsInnerPointer(ASTContext &Ctx,
+ ObjCPropertyDecl *P) {
+ QualType T = P->getType();
+
+ if (!TypeIsInnerPointer(T) ||
+ !NSAPIObj->isMacroDefined("NS_RETURNS_INNER_POINTER"))
+ return;
+ edit::Commit commit(*Editor);
+ commit.insertBefore(P->getLocEnd(), " NS_RETURNS_INNER_POINTER ");
+ Editor->commit(commit);
+}
+
+void ObjCMigrateASTConsumer::migrateAllMethodInstaceType(ASTContext &Ctx,
+ ObjCContainerDecl *CDecl) {
+ if (CDecl->isDeprecated() || IsCategoryNameWithDeprecatedSuffix(CDecl))
+ return;
+
+ // migrate methods which can have instancetype as their result type.
+ for (auto *Method : CDecl->methods()) {
+ if (Method->isDeprecated())
+ continue;
+ migrateMethodInstanceType(Ctx, CDecl, Method);
+ }
+}
+
+void ObjCMigrateASTConsumer::migrateFactoryMethod(ASTContext &Ctx,
+ ObjCContainerDecl *CDecl,
+ ObjCMethodDecl *OM,
+ ObjCInstanceTypeFamily OIT_Family) {
+ if (OM->isInstanceMethod() ||
+ OM->getReturnType() == Ctx.getObjCInstanceType() ||
+ !OM->getReturnType()->isObjCIdType())
+ return;
+
+ // Candidate factory methods are + (id) NaMeXXX : ... which belong to a class
+ // NSYYYNamE with matching names be at least 3 characters long.
+ ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl);
+ if (!IDecl) {
+ if (ObjCCategoryDecl *CatDecl = dyn_cast<ObjCCategoryDecl>(CDecl))
+ IDecl = CatDecl->getClassInterface();
+ else if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(CDecl))
+ IDecl = ImpDecl->getClassInterface();
+ }
+ if (!IDecl)
+ return;
+
+ std::string StringClassName = IDecl->getName();
+ StringRef LoweredClassName(StringClassName);
+ std::string StringLoweredClassName = LoweredClassName.lower();
+ LoweredClassName = StringLoweredClassName;
+
+ IdentifierInfo *MethodIdName = OM->getSelector().getIdentifierInfoForSlot(0);
+ // Handle method with no name at its first selector slot; e.g. + (id):(int)x.
+ if (!MethodIdName)
+ return;
+
+ std::string MethodName = MethodIdName->getName();
+ if (OIT_Family == OIT_Singleton || OIT_Family == OIT_ReturnsSelf) {
+ StringRef STRefMethodName(MethodName);
+ size_t len = 0;
+ if (STRefMethodName.startswith("standard"))
+ len = strlen("standard");
+ else if (STRefMethodName.startswith("shared"))
+ len = strlen("shared");
+ else if (STRefMethodName.startswith("default"))
+ len = strlen("default");
+ else
+ return;
+ MethodName = STRefMethodName.substr(len);
+ }
+ std::string MethodNameSubStr = MethodName.substr(0, 3);
+ StringRef MethodNamePrefix(MethodNameSubStr);
+ std::string StringLoweredMethodNamePrefix = MethodNamePrefix.lower();
+ MethodNamePrefix = StringLoweredMethodNamePrefix;
+ size_t Ix = LoweredClassName.rfind(MethodNamePrefix);
+ if (Ix == StringRef::npos)
+ return;
+ std::string ClassNamePostfix = LoweredClassName.substr(Ix);
+ StringRef LoweredMethodName(MethodName);
+ std::string StringLoweredMethodName = LoweredMethodName.lower();
+ LoweredMethodName = StringLoweredMethodName;
+ if (!LoweredMethodName.startswith(ClassNamePostfix))
+ return;
+ if (OIT_Family == OIT_ReturnsSelf)
+ ReplaceWithClasstype(*this, OM);
+ else
+ ReplaceWithInstancetype(Ctx, *this, OM);
+}
+
+static bool IsVoidStarType(QualType Ty) {
+ if (!Ty->isPointerType())
+ return false;
+
+ while (const TypedefType *TD = dyn_cast<TypedefType>(Ty.getTypePtr()))
+ Ty = TD->getDecl()->getUnderlyingType();
+
+ // Is the type void*?
+ const PointerType* PT = Ty->getAs<PointerType>();
+ if (PT->getPointeeType().getUnqualifiedType()->isVoidType())
+ return true;
+ return IsVoidStarType(PT->getPointeeType());
+}
+
+/// AuditedType - This routine audits the type AT and returns false if it is one of known
+/// CF object types or of the "void *" variety. It returns true if we don't care about the type
+/// such as a non-pointer or pointers which have no ownership issues (such as "int *").
+static bool AuditedType (QualType AT) {
+ if (!AT->isAnyPointerType() && !AT->isBlockPointerType())
+ return true;
+ // FIXME. There isn't much we can say about CF pointer type; or is there?
+ if (ento::coreFoundation::isCFObjectRef(AT) ||
+ IsVoidStarType(AT) ||
+ // If an ObjC object is type, assuming that it is not a CF function and
+ // that it is an un-audited function.
+ AT->isObjCObjectPointerType() || AT->isObjCBuiltinType())
+ return false;
+ // All other pointers are assumed audited as harmless.
+ return true;
+}
+
+void ObjCMigrateASTConsumer::AnnotateImplicitBridging(ASTContext &Ctx) {
+ if (CFFunctionIBCandidates.empty())
+ return;
+ if (!NSAPIObj->isMacroDefined("CF_IMPLICIT_BRIDGING_ENABLED")) {
+ CFFunctionIBCandidates.clear();
+ FileId = FileID();
+ return;
+ }
+ // Insert CF_IMPLICIT_BRIDGING_ENABLE/CF_IMPLICIT_BRIDGING_DISABLED
+ const Decl *FirstFD = CFFunctionIBCandidates[0];
+ const Decl *LastFD =
+ CFFunctionIBCandidates[CFFunctionIBCandidates.size()-1];
+ const char *PragmaString = "\nCF_IMPLICIT_BRIDGING_ENABLED\n\n";
+ edit::Commit commit(*Editor);
+ commit.insertBefore(FirstFD->getLocStart(), PragmaString);
+ PragmaString = "\n\nCF_IMPLICIT_BRIDGING_DISABLED\n";
+ SourceLocation EndLoc = LastFD->getLocEnd();
+ // get location just past end of function location.
+ EndLoc = PP.getLocForEndOfToken(EndLoc);
+ if (isa<FunctionDecl>(LastFD)) {
+ // For Methods, EndLoc points to the ending semcolon. So,
+ // not of these extra work is needed.
+ Token Tok;
+ // get locaiton of token that comes after end of function.
+ bool Failed = PP.getRawToken(EndLoc, Tok, /*IgnoreWhiteSpace=*/true);
+ if (!Failed)
+ EndLoc = Tok.getLocation();
+ }
+ commit.insertAfterToken(EndLoc, PragmaString);
+ Editor->commit(commit);
+ FileId = FileID();
+ CFFunctionIBCandidates.clear();
+}
+
+void ObjCMigrateASTConsumer::migrateCFAnnotation(ASTContext &Ctx, const Decl *Decl) {
+ if (Decl->isDeprecated())
+ return;
+
+ if (Decl->hasAttr<CFAuditedTransferAttr>()) {
+ assert(CFFunctionIBCandidates.empty() &&
+ "Cannot have audited functions/methods inside user "
+ "provided CF_IMPLICIT_BRIDGING_ENABLE");
+ return;
+ }
+
+ // Finction must be annotated first.
+ if (const FunctionDecl *FuncDecl = dyn_cast<FunctionDecl>(Decl)) {
+ CF_BRIDGING_KIND AuditKind = migrateAddFunctionAnnotation(Ctx, FuncDecl);
+ if (AuditKind == CF_BRIDGING_ENABLE) {
+ CFFunctionIBCandidates.push_back(Decl);
+ if (FileId.isInvalid())
+ FileId = PP.getSourceManager().getFileID(Decl->getLocation());
+ }
+ else if (AuditKind == CF_BRIDGING_MAY_INCLUDE) {
+ if (!CFFunctionIBCandidates.empty()) {
+ CFFunctionIBCandidates.push_back(Decl);
+ if (FileId.isInvalid())
+ FileId = PP.getSourceManager().getFileID(Decl->getLocation());
+ }
+ }
+ else
+ AnnotateImplicitBridging(Ctx);
+ }
+ else {
+ migrateAddMethodAnnotation(Ctx, cast<ObjCMethodDecl>(Decl));
+ AnnotateImplicitBridging(Ctx);
+ }
+}
+
+void ObjCMigrateASTConsumer::AddCFAnnotations(ASTContext &Ctx,
+ const CallEffects &CE,
+ const FunctionDecl *FuncDecl,
+ bool ResultAnnotated) {
+ // Annotate function.
+ if (!ResultAnnotated) {
+ RetEffect Ret = CE.getReturnValue();
+ const char *AnnotationString = nullptr;
+ if (Ret.getObjKind() == RetEffect::CF) {
+ if (Ret.isOwned() && NSAPIObj->isMacroDefined("CF_RETURNS_RETAINED"))
+ AnnotationString = " CF_RETURNS_RETAINED";
+ else if (Ret.notOwned() &&
+ NSAPIObj->isMacroDefined("CF_RETURNS_NOT_RETAINED"))
+ AnnotationString = " CF_RETURNS_NOT_RETAINED";
+ }
+ else if (Ret.getObjKind() == RetEffect::ObjC) {
+ if (Ret.isOwned() && NSAPIObj->isMacroDefined("NS_RETURNS_RETAINED"))
+ AnnotationString = " NS_RETURNS_RETAINED";
+ }
+
+ if (AnnotationString) {
+ edit::Commit commit(*Editor);
+ commit.insertAfterToken(FuncDecl->getLocEnd(), AnnotationString);
+ Editor->commit(commit);
+ }
+ }
+ ArrayRef<ArgEffect> AEArgs = CE.getArgs();
+ unsigned i = 0;
+ for (FunctionDecl::param_const_iterator pi = FuncDecl->param_begin(),
+ pe = FuncDecl->param_end(); pi != pe; ++pi, ++i) {
+ const ParmVarDecl *pd = *pi;
+ ArgEffect AE = AEArgs[i];
+ if (AE == DecRef && !pd->hasAttr<CFConsumedAttr>() &&
+ NSAPIObj->isMacroDefined("CF_CONSUMED")) {
+ edit::Commit commit(*Editor);
+ commit.insertBefore(pd->getLocation(), "CF_CONSUMED ");
+ Editor->commit(commit);
+ }
+ else if (AE == DecRefMsg && !pd->hasAttr<NSConsumedAttr>() &&
+ NSAPIObj->isMacroDefined("NS_CONSUMED")) {
+ edit::Commit commit(*Editor);
+ commit.insertBefore(pd->getLocation(), "NS_CONSUMED ");
+ Editor->commit(commit);
+ }
+ }
+}
+
+
+ObjCMigrateASTConsumer::CF_BRIDGING_KIND
+ ObjCMigrateASTConsumer::migrateAddFunctionAnnotation(
+ ASTContext &Ctx,
+ const FunctionDecl *FuncDecl) {
+ if (FuncDecl->hasBody())
+ return CF_BRIDGING_NONE;
+
+ CallEffects CE = CallEffects::getEffect(FuncDecl);
+ bool FuncIsReturnAnnotated = (FuncDecl->hasAttr<CFReturnsRetainedAttr>() ||
+ FuncDecl->hasAttr<CFReturnsNotRetainedAttr>() ||
+ FuncDecl->hasAttr<NSReturnsRetainedAttr>() ||
+ FuncDecl->hasAttr<NSReturnsNotRetainedAttr>() ||
+ FuncDecl->hasAttr<NSReturnsAutoreleasedAttr>());
+
+ // Trivial case of when funciton is annotated and has no argument.
+ if (FuncIsReturnAnnotated && FuncDecl->getNumParams() == 0)
+ return CF_BRIDGING_NONE;
+
+ bool ReturnCFAudited = false;
+ if (!FuncIsReturnAnnotated) {
+ RetEffect Ret = CE.getReturnValue();
+ if (Ret.getObjKind() == RetEffect::CF &&
+ (Ret.isOwned() || Ret.notOwned()))
+ ReturnCFAudited = true;
+ else if (!AuditedType(FuncDecl->getReturnType()))
+ return CF_BRIDGING_NONE;
+ }
+
+ // At this point result type is audited for potential inclusion.
+ // Now, how about argument types.
+ ArrayRef<ArgEffect> AEArgs = CE.getArgs();
+ unsigned i = 0;
+ bool ArgCFAudited = false;
+ for (FunctionDecl::param_const_iterator pi = FuncDecl->param_begin(),
+ pe = FuncDecl->param_end(); pi != pe; ++pi, ++i) {
+ const ParmVarDecl *pd = *pi;
+ ArgEffect AE = AEArgs[i];
+ if (AE == DecRef /*CFConsumed annotated*/ || AE == IncRef) {
+ if (AE == DecRef && !pd->hasAttr<CFConsumedAttr>())
+ ArgCFAudited = true;
+ else if (AE == IncRef)
+ ArgCFAudited = true;
+ }
+ else {
+ QualType AT = pd->getType();
+ if (!AuditedType(AT)) {
+ AddCFAnnotations(Ctx, CE, FuncDecl, FuncIsReturnAnnotated);
+ return CF_BRIDGING_NONE;
+ }
+ }
+ }
+ if (ReturnCFAudited || ArgCFAudited)
+ return CF_BRIDGING_ENABLE;
+
+ return CF_BRIDGING_MAY_INCLUDE;
+}
+
+void ObjCMigrateASTConsumer::migrateARCSafeAnnotation(ASTContext &Ctx,
+ ObjCContainerDecl *CDecl) {
+ if (!isa<ObjCInterfaceDecl>(CDecl) || CDecl->isDeprecated())
+ return;
+
+ // migrate methods which can have instancetype as their result type.
+ for (const auto *Method : CDecl->methods())
+ migrateCFAnnotation(Ctx, Method);
+}
+
+void ObjCMigrateASTConsumer::AddCFAnnotations(ASTContext &Ctx,
+ const CallEffects &CE,
+ const ObjCMethodDecl *MethodDecl,
+ bool ResultAnnotated) {
+ // Annotate function.
+ if (!ResultAnnotated) {
+ RetEffect Ret = CE.getReturnValue();
+ const char *AnnotationString = nullptr;
+ if (Ret.getObjKind() == RetEffect::CF) {
+ if (Ret.isOwned() && NSAPIObj->isMacroDefined("CF_RETURNS_RETAINED"))
+ AnnotationString = " CF_RETURNS_RETAINED";
+ else if (Ret.notOwned() &&
+ NSAPIObj->isMacroDefined("CF_RETURNS_NOT_RETAINED"))
+ AnnotationString = " CF_RETURNS_NOT_RETAINED";
+ }
+ else if (Ret.getObjKind() == RetEffect::ObjC) {
+ ObjCMethodFamily OMF = MethodDecl->getMethodFamily();
+ switch (OMF) {
+ case clang::OMF_alloc:
+ case clang::OMF_new:
+ case clang::OMF_copy:
+ case clang::OMF_init:
+ case clang::OMF_mutableCopy:
+ break;
+
+ default:
+ if (Ret.isOwned() && NSAPIObj->isMacroDefined("NS_RETURNS_RETAINED"))
+ AnnotationString = " NS_RETURNS_RETAINED";
+ break;
+ }
+ }
+
+ if (AnnotationString) {
+ edit::Commit commit(*Editor);
+ commit.insertBefore(MethodDecl->getLocEnd(), AnnotationString);
+ Editor->commit(commit);
+ }
+ }
+ ArrayRef<ArgEffect> AEArgs = CE.getArgs();
+ unsigned i = 0;
+ for (ObjCMethodDecl::param_const_iterator pi = MethodDecl->param_begin(),
+ pe = MethodDecl->param_end(); pi != pe; ++pi, ++i) {
+ const ParmVarDecl *pd = *pi;
+ ArgEffect AE = AEArgs[i];
+ if (AE == DecRef && !pd->hasAttr<CFConsumedAttr>() &&
+ NSAPIObj->isMacroDefined("CF_CONSUMED")) {
+ edit::Commit commit(*Editor);
+ commit.insertBefore(pd->getLocation(), "CF_CONSUMED ");
+ Editor->commit(commit);
+ }
+ }
+}
+
+void ObjCMigrateASTConsumer::migrateAddMethodAnnotation(
+ ASTContext &Ctx,
+ const ObjCMethodDecl *MethodDecl) {
+ if (MethodDecl->hasBody() || MethodDecl->isImplicit())
+ return;
+
+ CallEffects CE = CallEffects::getEffect(MethodDecl);
+ bool MethodIsReturnAnnotated = (MethodDecl->hasAttr<CFReturnsRetainedAttr>() ||
+ MethodDecl->hasAttr<CFReturnsNotRetainedAttr>() ||
+ MethodDecl->hasAttr<NSReturnsRetainedAttr>() ||
+ MethodDecl->hasAttr<NSReturnsNotRetainedAttr>() ||
+ MethodDecl->hasAttr<NSReturnsAutoreleasedAttr>());
+
+ if (CE.getReceiver() == DecRefMsg &&
+ !MethodDecl->hasAttr<NSConsumesSelfAttr>() &&
+ MethodDecl->getMethodFamily() != OMF_init &&
+ MethodDecl->getMethodFamily() != OMF_release &&
+ NSAPIObj->isMacroDefined("NS_CONSUMES_SELF")) {
+ edit::Commit commit(*Editor);
+ commit.insertBefore(MethodDecl->getLocEnd(), " NS_CONSUMES_SELF");
+ Editor->commit(commit);
+ }
+
+ // Trivial case of when funciton is annotated and has no argument.
+ if (MethodIsReturnAnnotated &&
+ (MethodDecl->param_begin() == MethodDecl->param_end()))
+ return;
+
+ if (!MethodIsReturnAnnotated) {
+ RetEffect Ret = CE.getReturnValue();
+ if ((Ret.getObjKind() == RetEffect::CF ||
+ Ret.getObjKind() == RetEffect::ObjC) &&
+ (Ret.isOwned() || Ret.notOwned())) {
+ AddCFAnnotations(Ctx, CE, MethodDecl, false);
+ return;
+ } else if (!AuditedType(MethodDecl->getReturnType()))
+ return;
+ }
+
+ // At this point result type is either annotated or audited.
+ // Now, how about argument types.
+ ArrayRef<ArgEffect> AEArgs = CE.getArgs();
+ unsigned i = 0;
+ for (ObjCMethodDecl::param_const_iterator pi = MethodDecl->param_begin(),
+ pe = MethodDecl->param_end(); pi != pe; ++pi, ++i) {
+ const ParmVarDecl *pd = *pi;
+ ArgEffect AE = AEArgs[i];
+ if ((AE == DecRef && !pd->hasAttr<CFConsumedAttr>()) || AE == IncRef ||
+ !AuditedType(pd->getType())) {
+ AddCFAnnotations(Ctx, CE, MethodDecl, MethodIsReturnAnnotated);
+ return;
+ }
+ }
+ return;
+}
+
+namespace {
+class SuperInitChecker : public RecursiveASTVisitor<SuperInitChecker> {
+public:
+ bool shouldVisitTemplateInstantiations() const { return false; }
+ bool shouldWalkTypesOfTypeLocs() const { return false; }
+
+ bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
+ if (E->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
+ if (E->getMethodFamily() == OMF_init)
+ return false;
+ }
+ return true;
+ }
+};
+} // anonymous namespace
+
+static bool hasSuperInitCall(const ObjCMethodDecl *MD) {
+ return !SuperInitChecker().TraverseStmt(MD->getBody());
+}
+
+void ObjCMigrateASTConsumer::inferDesignatedInitializers(
+ ASTContext &Ctx,
+ const ObjCImplementationDecl *ImplD) {
+
+ const ObjCInterfaceDecl *IFace = ImplD->getClassInterface();
+ if (!IFace || IFace->hasDesignatedInitializers())
+ return;
+ if (!NSAPIObj->isMacroDefined("NS_DESIGNATED_INITIALIZER"))
+ return;
+
+ for (const auto *MD : ImplD->instance_methods()) {
+ if (MD->isDeprecated() ||
+ MD->getMethodFamily() != OMF_init ||
+ MD->isDesignatedInitializerForTheInterface())
+ continue;
+ const ObjCMethodDecl *IFaceM = IFace->getMethod(MD->getSelector(),
+ /*isInstance=*/true);
+ if (!IFaceM)
+ continue;
+ if (hasSuperInitCall(MD)) {
+ edit::Commit commit(*Editor);
+ commit.insert(IFaceM->getLocEnd(), " NS_DESIGNATED_INITIALIZER");
+ Editor->commit(commit);
+ }
+ }
+}
+
+bool ObjCMigrateASTConsumer::InsertFoundation(ASTContext &Ctx,
+ SourceLocation Loc) {
+ if (FoundationIncluded)
+ return true;
+ if (Loc.isInvalid())
+ return false;
+ edit::Commit commit(*Editor);
+ if (Ctx.getLangOpts().Modules)
+ commit.insert(Loc, "#ifndef NS_ENUM\n@import Foundation;\n#endif\n");
+ else
+ commit.insert(Loc, "#ifndef NS_ENUM\n#import <Foundation/Foundation.h>\n#endif\n");
+ Editor->commit(commit);
+ FoundationIncluded = true;
+ return true;
+}
+
+namespace {
+
+class RewritesReceiver : public edit::EditsReceiver {
+ Rewriter &Rewrite;
+
+public:
+ RewritesReceiver(Rewriter &Rewrite) : Rewrite(Rewrite) { }
+
+ void insert(SourceLocation loc, StringRef text) override {
+ Rewrite.InsertText(loc, text);
+ }
+ void replace(CharSourceRange range, StringRef text) override {
+ Rewrite.ReplaceText(range.getBegin(), Rewrite.getRangeSize(range), text);
+ }
+};
+
+class JSONEditWriter : public edit::EditsReceiver {
+ SourceManager &SourceMgr;
+ llvm::raw_ostream &OS;
+
+public:
+ JSONEditWriter(SourceManager &SM, llvm::raw_ostream &OS)
+ : SourceMgr(SM), OS(OS) {
+ OS << "[\n";
+ }
+ ~JSONEditWriter() override { OS << "]\n"; }
+
+private:
+ struct EntryWriter {
+ SourceManager &SourceMgr;
+ llvm::raw_ostream &OS;
+
+ EntryWriter(SourceManager &SM, llvm::raw_ostream &OS)
+ : SourceMgr(SM), OS(OS) {
+ OS << " {\n";
+ }
+ ~EntryWriter() {
+ OS << " },\n";
+ }
+
+ void writeLoc(SourceLocation Loc) {
+ FileID FID;
+ unsigned Offset;
+ std::tie(FID, Offset) = SourceMgr.getDecomposedLoc(Loc);
+ assert(!FID.isInvalid());
+ SmallString<200> Path =
+ StringRef(SourceMgr.getFileEntryForID(FID)->getName());
+ llvm::sys::fs::make_absolute(Path);
+ OS << " \"file\": \"";
+ OS.write_escaped(Path.str()) << "\",\n";
+ OS << " \"offset\": " << Offset << ",\n";
+ }
+
+ void writeRemove(CharSourceRange Range) {
+ assert(Range.isCharRange());
+ std::pair<FileID, unsigned> Begin =
+ SourceMgr.getDecomposedLoc(Range.getBegin());
+ std::pair<FileID, unsigned> End =
+ SourceMgr.getDecomposedLoc(Range.getEnd());
+ assert(Begin.first == End.first);
+ assert(Begin.second <= End.second);
+ unsigned Length = End.second - Begin.second;
+
+ OS << " \"remove\": " << Length << ",\n";
+ }
+
+ void writeText(StringRef Text) {
+ OS << " \"text\": \"";
+ OS.write_escaped(Text) << "\",\n";
+ }
+ };
+
+ void insert(SourceLocation Loc, StringRef Text) override {
+ EntryWriter Writer(SourceMgr, OS);
+ Writer.writeLoc(Loc);
+ Writer.writeText(Text);
+ }
+
+ void replace(CharSourceRange Range, StringRef Text) override {
+ EntryWriter Writer(SourceMgr, OS);
+ Writer.writeLoc(Range.getBegin());
+ Writer.writeRemove(Range);
+ Writer.writeText(Text);
+ }
+
+ void remove(CharSourceRange Range) override {
+ EntryWriter Writer(SourceMgr, OS);
+ Writer.writeLoc(Range.getBegin());
+ Writer.writeRemove(Range);
+ }
+};
+
+}
+
+void ObjCMigrateASTConsumer::HandleTranslationUnit(ASTContext &Ctx) {
+
+ TranslationUnitDecl *TU = Ctx.getTranslationUnitDecl();
+ if (ASTMigrateActions & FrontendOptions::ObjCMT_MigrateDecls) {
+ for (DeclContext::decl_iterator D = TU->decls_begin(), DEnd = TU->decls_end();
+ D != DEnd; ++D) {
+ FileID FID = PP.getSourceManager().getFileID((*D)->getLocation());
+ if (!FID.isInvalid())
+ if (!FileId.isInvalid() && FileId != FID) {
+ if (ASTMigrateActions & FrontendOptions::ObjCMT_Annotation)
+ AnnotateImplicitBridging(Ctx);
+ }
+
+ if (ObjCInterfaceDecl *CDecl = dyn_cast<ObjCInterfaceDecl>(*D))
+ if (canModify(CDecl))
+ migrateObjCContainerDecl(Ctx, CDecl);
+ if (ObjCCategoryDecl *CatDecl = dyn_cast<ObjCCategoryDecl>(*D)) {
+ if (canModify(CatDecl))
+ migrateObjCContainerDecl(Ctx, CatDecl);
+ }
+ else if (ObjCProtocolDecl *PDecl = dyn_cast<ObjCProtocolDecl>(*D)) {
+ ObjCProtocolDecls.insert(PDecl->getCanonicalDecl());
+ if (canModify(PDecl))
+ migrateObjCContainerDecl(Ctx, PDecl);
+ }
+ else if (const ObjCImplementationDecl *ImpDecl =
+ dyn_cast<ObjCImplementationDecl>(*D)) {
+ if ((ASTMigrateActions & FrontendOptions::ObjCMT_ProtocolConformance) &&
+ canModify(ImpDecl))
+ migrateProtocolConformance(Ctx, ImpDecl);
+ }
+ else if (const EnumDecl *ED = dyn_cast<EnumDecl>(*D)) {
+ if (!(ASTMigrateActions & FrontendOptions::ObjCMT_NsMacros))
+ continue;
+ if (!canModify(ED))
+ continue;
+ DeclContext::decl_iterator N = D;
+ if (++N != DEnd) {
+ const TypedefDecl *TD = dyn_cast<TypedefDecl>(*N);
+ if (migrateNSEnumDecl(Ctx, ED, TD) && TD)
+ D++;
+ }
+ else
+ migrateNSEnumDecl(Ctx, ED, /*TypedefDecl */nullptr);
+ }
+ else if (const TypedefDecl *TD = dyn_cast<TypedefDecl>(*D)) {
+ if (!(ASTMigrateActions & FrontendOptions::ObjCMT_NsMacros))
+ continue;
+ if (!canModify(TD))
+ continue;
+ DeclContext::decl_iterator N = D;
+ if (++N == DEnd)
+ continue;
+ if (const EnumDecl *ED = dyn_cast<EnumDecl>(*N)) {
+ if (++N != DEnd)
+ if (const TypedefDecl *TDF = dyn_cast<TypedefDecl>(*N)) {
+ // prefer typedef-follows-enum to enum-follows-typedef pattern.
+ if (migrateNSEnumDecl(Ctx, ED, TDF)) {
+ ++D; ++D;
+ CacheObjCNSIntegerTypedefed(TD);
+ continue;
+ }
+ }
+ if (migrateNSEnumDecl(Ctx, ED, TD)) {
+ ++D;
+ continue;
+ }
+ }
+ CacheObjCNSIntegerTypedefed(TD);
+ }
+ else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*D)) {
+ if ((ASTMigrateActions & FrontendOptions::ObjCMT_Annotation) &&
+ canModify(FD))
+ migrateCFAnnotation(Ctx, FD);
+ }
+
+ if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(*D)) {
+ bool CanModify = canModify(CDecl);
+ // migrate methods which can have instancetype as their result type.
+ if ((ASTMigrateActions & FrontendOptions::ObjCMT_Instancetype) &&
+ CanModify)
+ migrateAllMethodInstaceType(Ctx, CDecl);
+ // annotate methods with CF annotations.
+ if ((ASTMigrateActions & FrontendOptions::ObjCMT_Annotation) &&
+ CanModify)
+ migrateARCSafeAnnotation(Ctx, CDecl);
+ }
+
+ if (const ObjCImplementationDecl *
+ ImplD = dyn_cast<ObjCImplementationDecl>(*D)) {
+ if ((ASTMigrateActions & FrontendOptions::ObjCMT_DesignatedInitializer) &&
+ canModify(ImplD))
+ inferDesignatedInitializers(Ctx, ImplD);
+ }
+ }
+ if (ASTMigrateActions & FrontendOptions::ObjCMT_Annotation)
+ AnnotateImplicitBridging(Ctx);
+ }
+
+ if (IsOutputFile) {
+ std::error_code EC;
+ llvm::raw_fd_ostream OS(MigrateDir, EC, llvm::sys::fs::F_None);
+ if (EC) {
+ DiagnosticsEngine &Diags = Ctx.getDiagnostics();
+ Diags.Report(Diags.getCustomDiagID(DiagnosticsEngine::Error, "%0"))
+ << EC.message();
+ return;
+ }
+
+ JSONEditWriter Writer(Ctx.getSourceManager(), OS);
+ Editor->applyRewrites(Writer);
+ return;
+ }
+
+ Rewriter rewriter(Ctx.getSourceManager(), Ctx.getLangOpts());
+ RewritesReceiver Rec(rewriter);
+ Editor->applyRewrites(Rec);
+
+ for (Rewriter::buffer_iterator
+ I = rewriter.buffer_begin(), E = rewriter.buffer_end(); I != E; ++I) {
+ FileID FID = I->first;
+ RewriteBuffer &buf = I->second;
+ const FileEntry *file = Ctx.getSourceManager().getFileEntryForID(FID);
+ assert(file);
+ SmallString<512> newText;
+ llvm::raw_svector_ostream vecOS(newText);
+ buf.write(vecOS);
+ vecOS.flush();
+ std::unique_ptr<llvm::MemoryBuffer> memBuf(
+ llvm::MemoryBuffer::getMemBufferCopy(
+ StringRef(newText.data(), newText.size()), file->getName()));
+ SmallString<64> filePath(file->getName());
+ FileMgr.FixupRelativePath(filePath);
+ Remapper.remap(filePath.str(), std::move(memBuf));
+ }
+
+ if (IsOutputFile) {
+ Remapper.flushToFile(MigrateDir, Ctx.getDiagnostics());
+ } else {
+ Remapper.flushToDisk(MigrateDir, Ctx.getDiagnostics());
+ }
+}
+
+bool MigrateSourceAction::BeginInvocation(CompilerInstance &CI) {
+ CI.getDiagnostics().setIgnoreAllWarnings(true);
+ return true;
+}
+
+static std::vector<std::string> getWhiteListFilenames(StringRef DirPath) {
+ using namespace llvm::sys::fs;
+ using namespace llvm::sys::path;
+
+ std::vector<std::string> Filenames;
+ if (DirPath.empty() || !is_directory(DirPath))
+ return Filenames;
+
+ std::error_code EC;
+ directory_iterator DI = directory_iterator(DirPath, EC);
+ directory_iterator DE;
+ for (; !EC && DI != DE; DI = DI.increment(EC)) {
+ if (is_regular_file(DI->path()))
+ Filenames.push_back(filename(DI->path()));
+ }
+
+ return Filenames;
+}
+
+std::unique_ptr<ASTConsumer>
+MigrateSourceAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) {
+ PPConditionalDirectiveRecord *
+ PPRec = new PPConditionalDirectiveRecord(CI.getSourceManager());
+ unsigned ObjCMTAction = CI.getFrontendOpts().ObjCMTAction;
+ unsigned ObjCMTOpts = ObjCMTAction;
+ // These are companion flags, they do not enable transformations.
+ ObjCMTOpts &= ~(FrontendOptions::ObjCMT_AtomicProperty |
+ FrontendOptions::ObjCMT_NsAtomicIOSOnlyProperty);
+ if (ObjCMTOpts == FrontendOptions::ObjCMT_None) {
+ // If no specific option was given, enable literals+subscripting transforms
+ // by default.
+ ObjCMTAction |= FrontendOptions::ObjCMT_Literals |
+ FrontendOptions::ObjCMT_Subscripting;
+ }
+ CI.getPreprocessor().addPPCallbacks(std::unique_ptr<PPCallbacks>(PPRec));
+ std::vector<std::string> WhiteList =
+ getWhiteListFilenames(CI.getFrontendOpts().ObjCMTWhiteListPath);
+ return llvm::make_unique<ObjCMigrateASTConsumer>(
+ CI.getFrontendOpts().OutputFile, ObjCMTAction, Remapper,
+ CI.getFileManager(), PPRec, CI.getPreprocessor(),
+ /*isOutputFile=*/true, WhiteList);
+}
+
+namespace {
+struct EditEntry {
+ const FileEntry *File;
+ unsigned Offset;
+ unsigned RemoveLen;
+ std::string Text;
+
+ EditEntry() : File(), Offset(), RemoveLen() {}
+};
+}
+
+namespace llvm {
+template<> struct DenseMapInfo<EditEntry> {
+ static inline EditEntry getEmptyKey() {
+ EditEntry Entry;
+ Entry.Offset = unsigned(-1);
+ return Entry;
+ }
+ static inline EditEntry getTombstoneKey() {
+ EditEntry Entry;
+ Entry.Offset = unsigned(-2);
+ return Entry;
+ }
+ static unsigned getHashValue(const EditEntry& Val) {
+ llvm::FoldingSetNodeID ID;
+ ID.AddPointer(Val.File);
+ ID.AddInteger(Val.Offset);
+ ID.AddInteger(Val.RemoveLen);
+ ID.AddString(Val.Text);
+ return ID.ComputeHash();
+ }
+ static bool isEqual(const EditEntry &LHS, const EditEntry &RHS) {
+ return LHS.File == RHS.File &&
+ LHS.Offset == RHS.Offset &&
+ LHS.RemoveLen == RHS.RemoveLen &&
+ LHS.Text == RHS.Text;
+ }
+};
+}
+
+namespace {
+class RemapFileParser {
+ FileManager &FileMgr;
+
+public:
+ RemapFileParser(FileManager &FileMgr) : FileMgr(FileMgr) { }
+
+ bool parse(StringRef File, SmallVectorImpl<EditEntry> &Entries) {
+ using namespace llvm::yaml;
+
+ llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> FileBufOrErr =
+ llvm::MemoryBuffer::getFile(File);
+ if (!FileBufOrErr)
+ return true;
+
+ llvm::SourceMgr SM;
+ Stream YAMLStream(FileBufOrErr.get()->getMemBufferRef(), SM);
+ document_iterator I = YAMLStream.begin();
+ if (I == YAMLStream.end())
+ return true;
+ Node *Root = I->getRoot();
+ if (!Root)
+ return true;
+
+ SequenceNode *SeqNode = dyn_cast<SequenceNode>(Root);
+ if (!SeqNode)
+ return true;
+
+ for (SequenceNode::iterator
+ AI = SeqNode->begin(), AE = SeqNode->end(); AI != AE; ++AI) {
+ MappingNode *MapNode = dyn_cast<MappingNode>(&*AI);
+ if (!MapNode)
+ continue;
+ parseEdit(MapNode, Entries);
+ }
+
+ return false;
+ }
+
+private:
+ void parseEdit(llvm::yaml::MappingNode *Node,
+ SmallVectorImpl<EditEntry> &Entries) {
+ using namespace llvm::yaml;
+ EditEntry Entry;
+ bool Ignore = false;
+
+ for (MappingNode::iterator
+ KVI = Node->begin(), KVE = Node->end(); KVI != KVE; ++KVI) {
+ ScalarNode *KeyString = dyn_cast<ScalarNode>((*KVI).getKey());
+ if (!KeyString)
+ continue;
+ SmallString<10> KeyStorage;
+ StringRef Key = KeyString->getValue(KeyStorage);
+
+ ScalarNode *ValueString = dyn_cast<ScalarNode>((*KVI).getValue());
+ if (!ValueString)
+ continue;
+ SmallString<64> ValueStorage;
+ StringRef Val = ValueString->getValue(ValueStorage);
+
+ if (Key == "file") {
+ const FileEntry *FE = FileMgr.getFile(Val);
+ if (!FE)
+ Ignore = true;
+ Entry.File = FE;
+ } else if (Key == "offset") {
+ if (Val.getAsInteger(10, Entry.Offset))
+ Ignore = true;
+ } else if (Key == "remove") {
+ if (Val.getAsInteger(10, Entry.RemoveLen))
+ Ignore = true;
+ } else if (Key == "text") {
+ Entry.Text = Val;
+ }
+ }
+
+ if (!Ignore)
+ Entries.push_back(Entry);
+ }
+};
+}
+
+static bool reportDiag(const Twine &Err, DiagnosticsEngine &Diag) {
+ Diag.Report(Diag.getCustomDiagID(DiagnosticsEngine::Error, "%0"))
+ << Err.str();
+ return true;
+}
+
+static std::string applyEditsToTemp(const FileEntry *FE,
+ ArrayRef<EditEntry> Edits,
+ FileManager &FileMgr,
+ DiagnosticsEngine &Diag) {
+ using namespace llvm::sys;
+
+ SourceManager SM(Diag, FileMgr);
+ FileID FID = SM.createFileID(FE, SourceLocation(), SrcMgr::C_User);
+ LangOptions LangOpts;
+ edit::EditedSource Editor(SM, LangOpts);
+ for (ArrayRef<EditEntry>::iterator
+ I = Edits.begin(), E = Edits.end(); I != E; ++I) {
+ const EditEntry &Entry = *I;
+ assert(Entry.File == FE);
+ SourceLocation Loc =
+ SM.getLocForStartOfFile(FID).getLocWithOffset(Entry.Offset);
+ CharSourceRange Range;
+ if (Entry.RemoveLen != 0) {
+ Range = CharSourceRange::getCharRange(Loc,
+ Loc.getLocWithOffset(Entry.RemoveLen));
+ }
+
+ edit::Commit commit(Editor);
+ if (Range.isInvalid()) {
+ commit.insert(Loc, Entry.Text);
+ } else if (Entry.Text.empty()) {
+ commit.remove(Range);
+ } else {
+ commit.replace(Range, Entry.Text);
+ }
+ Editor.commit(commit);
+ }
+
+ Rewriter rewriter(SM, LangOpts);
+ RewritesReceiver Rec(rewriter);
+ Editor.applyRewrites(Rec);
+
+ const RewriteBuffer *Buf = rewriter.getRewriteBufferFor(FID);
+ SmallString<512> NewText;
+ llvm::raw_svector_ostream OS(NewText);
+ Buf->write(OS);
+ OS.flush();
+
+ SmallString<64> TempPath;
+ int FD;
+ if (fs::createTemporaryFile(path::filename(FE->getName()),
+ path::extension(FE->getName()), FD,
+ TempPath)) {
+ reportDiag("Could not create file: " + TempPath.str(), Diag);
+ return std::string();
+ }
+
+ llvm::raw_fd_ostream TmpOut(FD, /*shouldClose=*/true);
+ TmpOut.write(NewText.data(), NewText.size());
+ TmpOut.close();
+
+ return TempPath.str();
+}
+
+bool arcmt::getFileRemappingsFromFileList(
+ std::vector<std::pair<std::string,std::string> > &remap,
+ ArrayRef<StringRef> remapFiles,
+ DiagnosticConsumer *DiagClient) {
+ bool hasErrorOccurred = false;
+
+ FileSystemOptions FSOpts;
+ FileManager FileMgr(FSOpts);
+ RemapFileParser Parser(FileMgr);
+
+ IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs());
+ IntrusiveRefCntPtr<DiagnosticsEngine> Diags(
+ new DiagnosticsEngine(DiagID, new DiagnosticOptions,
+ DiagClient, /*ShouldOwnClient=*/false));
+
+ typedef llvm::DenseMap<const FileEntry *, std::vector<EditEntry> >
+ FileEditEntriesTy;
+ FileEditEntriesTy FileEditEntries;
+
+ llvm::DenseSet<EditEntry> EntriesSet;
+
+ for (ArrayRef<StringRef>::iterator
+ I = remapFiles.begin(), E = remapFiles.end(); I != E; ++I) {
+ SmallVector<EditEntry, 16> Entries;
+ if (Parser.parse(*I, Entries))
+ continue;
+
+ for (SmallVectorImpl<EditEntry>::iterator
+ EI = Entries.begin(), EE = Entries.end(); EI != EE; ++EI) {
+ EditEntry &Entry = *EI;
+ if (!Entry.File)
+ continue;
+ std::pair<llvm::DenseSet<EditEntry>::iterator, bool>
+ Insert = EntriesSet.insert(Entry);
+ if (!Insert.second)
+ continue;
+
+ FileEditEntries[Entry.File].push_back(Entry);
+ }
+ }
+
+ for (FileEditEntriesTy::iterator
+ I = FileEditEntries.begin(), E = FileEditEntries.end(); I != E; ++I) {
+ std::string TempFile = applyEditsToTemp(I->first, I->second,
+ FileMgr, *Diags);
+ if (TempFile.empty()) {
+ hasErrorOccurred = true;
+ continue;
+ }
+
+ remap.push_back(std::make_pair(I->first->getName(), TempFile));
+ }
+
+ return hasErrorOccurred;
+}
diff --git a/contrib/llvm/tools/clang/lib/ARCMigrate/PlistReporter.cpp b/contrib/llvm/tools/clang/lib/ARCMigrate/PlistReporter.cpp
new file mode 100644
index 0000000..9a51690
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/ARCMigrate/PlistReporter.cpp
@@ -0,0 +1,126 @@
+//===--- PlistReporter.cpp - ARC Migrate Tool Plist Reporter ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Internals.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/PlistSupport.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Lex/Lexer.h"
+using namespace clang;
+using namespace arcmt;
+using namespace markup;
+
+static StringRef getLevelName(DiagnosticsEngine::Level Level) {
+ switch (Level) {
+ case DiagnosticsEngine::Ignored:
+ llvm_unreachable("ignored");
+ case DiagnosticsEngine::Note:
+ return "note";
+ case DiagnosticsEngine::Remark:
+ case DiagnosticsEngine::Warning:
+ return "warning";
+ case DiagnosticsEngine::Fatal:
+ case DiagnosticsEngine::Error:
+ return "error";
+ }
+ llvm_unreachable("Invalid DiagnosticsEngine level!");
+}
+
+void arcmt::writeARCDiagsToPlist(const std::string &outPath,
+ ArrayRef<StoredDiagnostic> diags,
+ SourceManager &SM,
+ const LangOptions &LangOpts) {
+ DiagnosticIDs DiagIDs;
+
+ // Build up a set of FIDs that we use by scanning the locations and
+ // ranges of the diagnostics.
+ FIDMap FM;
+ SmallVector<FileID, 10> Fids;
+
+ for (ArrayRef<StoredDiagnostic>::iterator
+ I = diags.begin(), E = diags.end(); I != E; ++I) {
+ const StoredDiagnostic &D = *I;
+
+ AddFID(FM, Fids, SM, D.getLocation());
+
+ for (StoredDiagnostic::range_iterator
+ RI = D.range_begin(), RE = D.range_end(); RI != RE; ++RI) {
+ AddFID(FM, Fids, SM, RI->getBegin());
+ AddFID(FM, Fids, SM, RI->getEnd());
+ }
+ }
+
+ std::error_code EC;
+ llvm::raw_fd_ostream o(outPath, EC, llvm::sys::fs::F_Text);
+ if (EC) {
+ llvm::errs() << "error: could not create file: " << outPath << '\n';
+ return;
+ }
+
+ EmitPlistHeader(o);
+
+ // Write the root object: a <dict> containing...
+ // - "files", an <array> mapping from FIDs to file names
+ // - "diagnostics", an <array> containing the diagnostics
+ o << "<dict>\n"
+ " <key>files</key>\n"
+ " <array>\n";
+
+ for (FileID FID : Fids)
+ EmitString(o << " ", SM.getFileEntryForID(FID)->getName()) << '\n';
+
+ o << " </array>\n"
+ " <key>diagnostics</key>\n"
+ " <array>\n";
+
+ for (ArrayRef<StoredDiagnostic>::iterator
+ DI = diags.begin(), DE = diags.end(); DI != DE; ++DI) {
+
+ const StoredDiagnostic &D = *DI;
+
+ if (D.getLevel() == DiagnosticsEngine::Ignored)
+ continue;
+
+ o << " <dict>\n";
+
+ // Output the diagnostic.
+ o << " <key>description</key>";
+ EmitString(o, D.getMessage()) << '\n';
+ o << " <key>category</key>";
+ EmitString(o, DiagIDs.getCategoryNameFromID(
+ DiagIDs.getCategoryNumberForDiag(D.getID()))) << '\n';
+ o << " <key>type</key>";
+ EmitString(o, getLevelName(D.getLevel())) << '\n';
+
+ // Output the location of the bug.
+ o << " <key>location</key>\n";
+ EmitLocation(o, SM, D.getLocation(), FM, 2);
+
+ // Output the ranges (if any).
+ if (!D.getRanges().empty()) {
+ o << " <key>ranges</key>\n";
+ o << " <array>\n";
+ for (auto &R : D.getRanges()) {
+ CharSourceRange ExpansionRange(SM.getExpansionRange(R.getAsRange()),
+ R.isTokenRange());
+ EmitRange(o, SM, Lexer::getAsCharRange(ExpansionRange, SM, LangOpts),
+ FM, 4);
+ }
+ o << " </array>\n";
+ }
+
+ // Close up the entry.
+ o << " </dict>\n";
+ }
+
+ o << " </array>\n";
+
+ // Finish.
+ o << "</dict>\n</plist>";
+}
diff --git a/contrib/llvm/tools/clang/lib/ARCMigrate/TransAPIUses.cpp b/contrib/llvm/tools/clang/lib/ARCMigrate/TransAPIUses.cpp
new file mode 100644
index 0000000..40c8a07
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/ARCMigrate/TransAPIUses.cpp
@@ -0,0 +1,108 @@
+//===--- TransAPIUses.cpp - Transformations to ARC mode -------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// checkAPIUses:
+//
+// Emits error/fix with some API uses that are obsolete or not safe in ARC mode:
+//
+// - NSInvocation's [get/set]ReturnValue and [get/set]Argument are only safe
+// with __unsafe_unretained objects.
+// - Calling -zone gets replaced with 'nil'.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Transforms.h"
+#include "Internals.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/Sema/SemaDiagnostic.h"
+
+using namespace clang;
+using namespace arcmt;
+using namespace trans;
+
+namespace {
+
+class APIChecker : public RecursiveASTVisitor<APIChecker> {
+ MigrationPass &Pass;
+
+ Selector getReturnValueSel, setReturnValueSel;
+ Selector getArgumentSel, setArgumentSel;
+
+ Selector zoneSel;
+public:
+ APIChecker(MigrationPass &pass) : Pass(pass) {
+ SelectorTable &sels = Pass.Ctx.Selectors;
+ IdentifierTable &ids = Pass.Ctx.Idents;
+ getReturnValueSel = sels.getUnarySelector(&ids.get("getReturnValue"));
+ setReturnValueSel = sels.getUnarySelector(&ids.get("setReturnValue"));
+
+ IdentifierInfo *selIds[2];
+ selIds[0] = &ids.get("getArgument");
+ selIds[1] = &ids.get("atIndex");
+ getArgumentSel = sels.getSelector(2, selIds);
+ selIds[0] = &ids.get("setArgument");
+ setArgumentSel = sels.getSelector(2, selIds);
+
+ zoneSel = sels.getNullarySelector(&ids.get("zone"));
+ }
+
+ bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
+ // NSInvocation.
+ if (E->isInstanceMessage() &&
+ E->getReceiverInterface() &&
+ E->getReceiverInterface()->getName() == "NSInvocation") {
+ StringRef selName;
+ if (E->getSelector() == getReturnValueSel)
+ selName = "getReturnValue";
+ else if (E->getSelector() == setReturnValueSel)
+ selName = "setReturnValue";
+ else if (E->getSelector() == getArgumentSel)
+ selName = "getArgument";
+ else if (E->getSelector() == setArgumentSel)
+ selName = "setArgument";
+ else
+ return true;
+
+ Expr *parm = E->getArg(0)->IgnoreParenCasts();
+ QualType pointee = parm->getType()->getPointeeType();
+ if (pointee.isNull())
+ return true;
+
+ if (pointee.getObjCLifetime() > Qualifiers::OCL_ExplicitNone)
+ Pass.TA.report(parm->getLocStart(),
+ diag::err_arcmt_nsinvocation_ownership,
+ parm->getSourceRange())
+ << selName;
+
+ return true;
+ }
+
+ // -zone.
+ if (E->isInstanceMessage() &&
+ E->getInstanceReceiver() &&
+ E->getSelector() == zoneSel &&
+ Pass.TA.hasDiagnostic(diag::err_unavailable,
+ diag::err_unavailable_message,
+ E->getSelectorLoc(0))) {
+ // Calling -zone is meaningless in ARC, change it to nil.
+ Transaction Trans(Pass.TA);
+ Pass.TA.clearDiagnostic(diag::err_unavailable,
+ diag::err_unavailable_message,
+ E->getSelectorLoc(0));
+ Pass.TA.replace(E->getSourceRange(), getNilString(Pass));
+ }
+ return true;
+ }
+};
+
+} // anonymous namespace
+
+void trans::checkAPIUses(MigrationPass &pass) {
+ APIChecker(pass).TraverseDecl(pass.Ctx.getTranslationUnitDecl());
+}
diff --git a/contrib/llvm/tools/clang/lib/ARCMigrate/TransARCAssign.cpp b/contrib/llvm/tools/clang/lib/ARCMigrate/TransARCAssign.cpp
new file mode 100644
index 0000000..80bfd22
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/ARCMigrate/TransARCAssign.cpp
@@ -0,0 +1,78 @@
+//===--- TransARCAssign.cpp - Transformations to ARC mode -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// makeAssignARCSafe:
+//
+// Add '__strong' where appropriate.
+//
+// for (id x in collection) {
+// x = 0;
+// }
+// ---->
+// for (__strong id x in collection) {
+// x = 0;
+// }
+//
+//===----------------------------------------------------------------------===//
+
+#include "Transforms.h"
+#include "Internals.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/Sema/SemaDiagnostic.h"
+
+using namespace clang;
+using namespace arcmt;
+using namespace trans;
+
+namespace {
+
+class ARCAssignChecker : public RecursiveASTVisitor<ARCAssignChecker> {
+ MigrationPass &Pass;
+ llvm::DenseSet<VarDecl *> ModifiedVars;
+
+public:
+ ARCAssignChecker(MigrationPass &pass) : Pass(pass) { }
+
+ bool VisitBinaryOperator(BinaryOperator *Exp) {
+ if (Exp->getType()->isDependentType())
+ return true;
+
+ Expr *E = Exp->getLHS();
+ SourceLocation OrigLoc = E->getExprLoc();
+ SourceLocation Loc = OrigLoc;
+ DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
+ if (declRef && isa<VarDecl>(declRef->getDecl())) {
+ ASTContext &Ctx = Pass.Ctx;
+ Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(Ctx, &Loc);
+ if (IsLV != Expr::MLV_ConstQualified)
+ return true;
+ VarDecl *var = cast<VarDecl>(declRef->getDecl());
+ if (var->isARCPseudoStrong()) {
+ Transaction Trans(Pass.TA);
+ if (Pass.TA.clearDiagnostic(diag::err_typecheck_arr_assign_enumeration,
+ Exp->getOperatorLoc())) {
+ if (!ModifiedVars.count(var)) {
+ TypeLoc TLoc = var->getTypeSourceInfo()->getTypeLoc();
+ Pass.TA.insert(TLoc.getBeginLoc(), "__strong ");
+ ModifiedVars.insert(var);
+ }
+ }
+ }
+ }
+
+ return true;
+ }
+};
+
+} // anonymous namespace
+
+void trans::makeAssignARCSafe(MigrationPass &pass) {
+ ARCAssignChecker assignCheck(pass);
+ assignCheck.TraverseDecl(pass.Ctx.getTranslationUnitDecl());
+}
diff --git a/contrib/llvm/tools/clang/lib/ARCMigrate/TransAutoreleasePool.cpp b/contrib/llvm/tools/clang/lib/ARCMigrate/TransAutoreleasePool.cpp
new file mode 100644
index 0000000..a8a99fa
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/ARCMigrate/TransAutoreleasePool.cpp
@@ -0,0 +1,435 @@
+//===--- TransAutoreleasePool.cpp - Transformations to ARC mode -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// rewriteAutoreleasePool:
+//
+// Calls to NSAutoreleasePools will be rewritten as an @autorelease scope.
+//
+// NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
+// ...
+// [pool release];
+// ---->
+// @autorelease {
+// ...
+// }
+//
+// An NSAutoreleasePool will not be touched if:
+// - There is not a corresponding -release/-drain in the same scope
+// - Not all references of the NSAutoreleasePool variable can be removed
+// - There is a variable that is declared inside the intended @autorelease scope
+// which is also used outside it.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Transforms.h"
+#include "Internals.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Sema/SemaDiagnostic.h"
+#include <map>
+
+using namespace clang;
+using namespace arcmt;
+using namespace trans;
+
+namespace {
+
+class ReleaseCollector : public RecursiveASTVisitor<ReleaseCollector> {
+ Decl *Dcl;
+ SmallVectorImpl<ObjCMessageExpr *> &Releases;
+
+public:
+ ReleaseCollector(Decl *D, SmallVectorImpl<ObjCMessageExpr *> &releases)
+ : Dcl(D), Releases(releases) { }
+
+ bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
+ if (!E->isInstanceMessage())
+ return true;
+ if (E->getMethodFamily() != OMF_release)
+ return true;
+ Expr *instance = E->getInstanceReceiver()->IgnoreParenCasts();
+ if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(instance)) {
+ if (DE->getDecl() == Dcl)
+ Releases.push_back(E);
+ }
+ return true;
+ }
+};
+
+}
+
+namespace {
+
+class AutoreleasePoolRewriter
+ : public RecursiveASTVisitor<AutoreleasePoolRewriter> {
+public:
+ AutoreleasePoolRewriter(MigrationPass &pass)
+ : Body(nullptr), Pass(pass) {
+ PoolII = &pass.Ctx.Idents.get("NSAutoreleasePool");
+ DrainSel = pass.Ctx.Selectors.getNullarySelector(
+ &pass.Ctx.Idents.get("drain"));
+ }
+
+ void transformBody(Stmt *body, Decl *ParentD) {
+ Body = body;
+ TraverseStmt(body);
+ }
+
+ ~AutoreleasePoolRewriter() {
+ SmallVector<VarDecl *, 8> VarsToHandle;
+
+ for (std::map<VarDecl *, PoolVarInfo>::iterator
+ I = PoolVars.begin(), E = PoolVars.end(); I != E; ++I) {
+ VarDecl *var = I->first;
+ PoolVarInfo &info = I->second;
+
+ // Check that we can handle/rewrite all references of the pool.
+
+ clearRefsIn(info.Dcl, info.Refs);
+ for (SmallVectorImpl<PoolScope>::iterator
+ scpI = info.Scopes.begin(),
+ scpE = info.Scopes.end(); scpI != scpE; ++scpI) {
+ PoolScope &scope = *scpI;
+ clearRefsIn(*scope.Begin, info.Refs);
+ clearRefsIn(*scope.End, info.Refs);
+ clearRefsIn(scope.Releases.begin(), scope.Releases.end(), info.Refs);
+ }
+
+ // Even if one reference is not handled we will not do anything about that
+ // pool variable.
+ if (info.Refs.empty())
+ VarsToHandle.push_back(var);
+ }
+
+ for (unsigned i = 0, e = VarsToHandle.size(); i != e; ++i) {
+ PoolVarInfo &info = PoolVars[VarsToHandle[i]];
+
+ Transaction Trans(Pass.TA);
+
+ clearUnavailableDiags(info.Dcl);
+ Pass.TA.removeStmt(info.Dcl);
+
+ // Add "@autoreleasepool { }"
+ for (SmallVectorImpl<PoolScope>::iterator
+ scpI = info.Scopes.begin(),
+ scpE = info.Scopes.end(); scpI != scpE; ++scpI) {
+ PoolScope &scope = *scpI;
+ clearUnavailableDiags(*scope.Begin);
+ clearUnavailableDiags(*scope.End);
+ if (scope.IsFollowedBySimpleReturnStmt) {
+ // Include the return in the scope.
+ Pass.TA.replaceStmt(*scope.Begin, "@autoreleasepool {");
+ Pass.TA.removeStmt(*scope.End);
+ Stmt::child_iterator retI = scope.End;
+ ++retI;
+ SourceLocation afterSemi = findLocationAfterSemi((*retI)->getLocEnd(),
+ Pass.Ctx);
+ assert(afterSemi.isValid() &&
+ "Didn't we check before setting IsFollowedBySimpleReturnStmt "
+ "to true?");
+ Pass.TA.insertAfterToken(afterSemi, "\n}");
+ Pass.TA.increaseIndentation(
+ SourceRange(scope.getIndentedRange().getBegin(),
+ (*retI)->getLocEnd()),
+ scope.CompoundParent->getLocStart());
+ } else {
+ Pass.TA.replaceStmt(*scope.Begin, "@autoreleasepool {");
+ Pass.TA.replaceStmt(*scope.End, "}");
+ Pass.TA.increaseIndentation(scope.getIndentedRange(),
+ scope.CompoundParent->getLocStart());
+ }
+ }
+
+ // Remove rest of pool var references.
+ for (SmallVectorImpl<PoolScope>::iterator
+ scpI = info.Scopes.begin(),
+ scpE = info.Scopes.end(); scpI != scpE; ++scpI) {
+ PoolScope &scope = *scpI;
+ for (SmallVectorImpl<ObjCMessageExpr *>::iterator
+ relI = scope.Releases.begin(),
+ relE = scope.Releases.end(); relI != relE; ++relI) {
+ clearUnavailableDiags(*relI);
+ Pass.TA.removeStmt(*relI);
+ }
+ }
+ }
+ }
+
+ bool VisitCompoundStmt(CompoundStmt *S) {
+ SmallVector<PoolScope, 4> Scopes;
+
+ for (Stmt::child_iterator
+ I = S->body_begin(), E = S->body_end(); I != E; ++I) {
+ Stmt *child = getEssential(*I);
+ if (DeclStmt *DclS = dyn_cast<DeclStmt>(child)) {
+ if (DclS->isSingleDecl()) {
+ if (VarDecl *VD = dyn_cast<VarDecl>(DclS->getSingleDecl())) {
+ if (isNSAutoreleasePool(VD->getType())) {
+ PoolVarInfo &info = PoolVars[VD];
+ info.Dcl = DclS;
+ collectRefs(VD, S, info.Refs);
+ // Does this statement follow the pattern:
+ // NSAutoreleasePool * pool = [NSAutoreleasePool new];
+ if (isPoolCreation(VD->getInit())) {
+ Scopes.push_back(PoolScope());
+ Scopes.back().PoolVar = VD;
+ Scopes.back().CompoundParent = S;
+ Scopes.back().Begin = I;
+ }
+ }
+ }
+ }
+ } else if (BinaryOperator *bop = dyn_cast<BinaryOperator>(child)) {
+ if (DeclRefExpr *dref = dyn_cast<DeclRefExpr>(bop->getLHS())) {
+ if (VarDecl *VD = dyn_cast<VarDecl>(dref->getDecl())) {
+ // Does this statement follow the pattern:
+ // pool = [NSAutoreleasePool new];
+ if (isNSAutoreleasePool(VD->getType()) &&
+ isPoolCreation(bop->getRHS())) {
+ Scopes.push_back(PoolScope());
+ Scopes.back().PoolVar = VD;
+ Scopes.back().CompoundParent = S;
+ Scopes.back().Begin = I;
+ }
+ }
+ }
+ }
+
+ if (Scopes.empty())
+ continue;
+
+ if (isPoolDrain(Scopes.back().PoolVar, child)) {
+ PoolScope &scope = Scopes.back();
+ scope.End = I;
+ handlePoolScope(scope, S);
+ Scopes.pop_back();
+ }
+ }
+ return true;
+ }
+
+private:
+ void clearUnavailableDiags(Stmt *S) {
+ if (S)
+ Pass.TA.clearDiagnostic(diag::err_unavailable,
+ diag::err_unavailable_message,
+ S->getSourceRange());
+ }
+
+ struct PoolScope {
+ VarDecl *PoolVar;
+ CompoundStmt *CompoundParent;
+ Stmt::child_iterator Begin;
+ Stmt::child_iterator End;
+ bool IsFollowedBySimpleReturnStmt;
+ SmallVector<ObjCMessageExpr *, 4> Releases;
+
+ PoolScope() : PoolVar(nullptr), CompoundParent(nullptr), Begin(), End(),
+ IsFollowedBySimpleReturnStmt(false) { }
+
+ SourceRange getIndentedRange() const {
+ Stmt::child_iterator rangeS = Begin;
+ ++rangeS;
+ if (rangeS == End)
+ return SourceRange();
+ Stmt::child_iterator rangeE = Begin;
+ for (Stmt::child_iterator I = rangeS; I != End; ++I)
+ ++rangeE;
+ return SourceRange((*rangeS)->getLocStart(), (*rangeE)->getLocEnd());
+ }
+ };
+
+ class NameReferenceChecker : public RecursiveASTVisitor<NameReferenceChecker>{
+ ASTContext &Ctx;
+ SourceRange ScopeRange;
+ SourceLocation &referenceLoc, &declarationLoc;
+
+ public:
+ NameReferenceChecker(ASTContext &ctx, PoolScope &scope,
+ SourceLocation &referenceLoc,
+ SourceLocation &declarationLoc)
+ : Ctx(ctx), referenceLoc(referenceLoc),
+ declarationLoc(declarationLoc) {
+ ScopeRange = SourceRange((*scope.Begin)->getLocStart(),
+ (*scope.End)->getLocStart());
+ }
+
+ bool VisitDeclRefExpr(DeclRefExpr *E) {
+ return checkRef(E->getLocation(), E->getDecl()->getLocation());
+ }
+
+ bool VisitTypedefTypeLoc(TypedefTypeLoc TL) {
+ return checkRef(TL.getBeginLoc(), TL.getTypedefNameDecl()->getLocation());
+ }
+
+ bool VisitTagTypeLoc(TagTypeLoc TL) {
+ return checkRef(TL.getBeginLoc(), TL.getDecl()->getLocation());
+ }
+
+ private:
+ bool checkRef(SourceLocation refLoc, SourceLocation declLoc) {
+ if (isInScope(declLoc)) {
+ referenceLoc = refLoc;
+ declarationLoc = declLoc;
+ return false;
+ }
+ return true;
+ }
+
+ bool isInScope(SourceLocation loc) {
+ if (loc.isInvalid())
+ return false;
+
+ SourceManager &SM = Ctx.getSourceManager();
+ if (SM.isBeforeInTranslationUnit(loc, ScopeRange.getBegin()))
+ return false;
+ return SM.isBeforeInTranslationUnit(loc, ScopeRange.getEnd());
+ }
+ };
+
+ void handlePoolScope(PoolScope &scope, CompoundStmt *compoundS) {
+ // Check that all names declared inside the scope are not used
+ // outside the scope.
+ {
+ bool nameUsedOutsideScope = false;
+ SourceLocation referenceLoc, declarationLoc;
+ Stmt::child_iterator SI = scope.End, SE = compoundS->body_end();
+ ++SI;
+ // Check if the autoreleasepool scope is followed by a simple return
+ // statement, in which case we will include the return in the scope.
+ if (SI != SE)
+ if (ReturnStmt *retS = dyn_cast<ReturnStmt>(*SI))
+ if ((retS->getRetValue() == nullptr ||
+ isa<DeclRefExpr>(retS->getRetValue()->IgnoreParenCasts())) &&
+ findLocationAfterSemi(retS->getLocEnd(), Pass.Ctx).isValid()) {
+ scope.IsFollowedBySimpleReturnStmt = true;
+ ++SI; // the return will be included in scope, don't check it.
+ }
+
+ for (; SI != SE; ++SI) {
+ nameUsedOutsideScope = !NameReferenceChecker(Pass.Ctx, scope,
+ referenceLoc,
+ declarationLoc).TraverseStmt(*SI);
+ if (nameUsedOutsideScope)
+ break;
+ }
+
+ // If not all references were cleared it means some variables/typenames/etc
+ // declared inside the pool scope are used outside of it.
+ // We won't try to rewrite the pool.
+ if (nameUsedOutsideScope) {
+ Pass.TA.reportError("a name is referenced outside the "
+ "NSAutoreleasePool scope that it was declared in", referenceLoc);
+ Pass.TA.reportNote("name declared here", declarationLoc);
+ Pass.TA.reportNote("intended @autoreleasepool scope begins here",
+ (*scope.Begin)->getLocStart());
+ Pass.TA.reportNote("intended @autoreleasepool scope ends here",
+ (*scope.End)->getLocStart());
+ return;
+ }
+ }
+
+ // Collect all releases of the pool; they will be removed.
+ {
+ ReleaseCollector releaseColl(scope.PoolVar, scope.Releases);
+ Stmt::child_iterator I = scope.Begin;
+ ++I;
+ for (; I != scope.End; ++I)
+ releaseColl.TraverseStmt(*I);
+ }
+
+ PoolVars[scope.PoolVar].Scopes.push_back(scope);
+ }
+
+ bool isPoolCreation(Expr *E) {
+ if (!E) return false;
+ E = getEssential(E);
+ ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E);
+ if (!ME) return false;
+ if (ME->getMethodFamily() == OMF_new &&
+ ME->getReceiverKind() == ObjCMessageExpr::Class &&
+ isNSAutoreleasePool(ME->getReceiverInterface()))
+ return true;
+ if (ME->getReceiverKind() == ObjCMessageExpr::Instance &&
+ ME->getMethodFamily() == OMF_init) {
+ Expr *rec = getEssential(ME->getInstanceReceiver());
+ if (ObjCMessageExpr *recME = dyn_cast_or_null<ObjCMessageExpr>(rec)) {
+ if (recME->getMethodFamily() == OMF_alloc &&
+ recME->getReceiverKind() == ObjCMessageExpr::Class &&
+ isNSAutoreleasePool(recME->getReceiverInterface()))
+ return true;
+ }
+ }
+
+ return false;
+ }
+
+ bool isPoolDrain(VarDecl *poolVar, Stmt *S) {
+ if (!S) return false;
+ S = getEssential(S);
+ ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(S);
+ if (!ME) return false;
+ if (ME->getReceiverKind() == ObjCMessageExpr::Instance) {
+ Expr *rec = getEssential(ME->getInstanceReceiver());
+ if (DeclRefExpr *dref = dyn_cast<DeclRefExpr>(rec))
+ if (dref->getDecl() == poolVar)
+ return ME->getMethodFamily() == OMF_release ||
+ ME->getSelector() == DrainSel;
+ }
+
+ return false;
+ }
+
+ bool isNSAutoreleasePool(ObjCInterfaceDecl *IDecl) {
+ return IDecl && IDecl->getIdentifier() == PoolII;
+ }
+
+ bool isNSAutoreleasePool(QualType Ty) {
+ QualType pointee = Ty->getPointeeType();
+ if (pointee.isNull())
+ return false;
+ if (const ObjCInterfaceType *interT = pointee->getAs<ObjCInterfaceType>())
+ return isNSAutoreleasePool(interT->getDecl());
+ return false;
+ }
+
+ static Expr *getEssential(Expr *E) {
+ return cast<Expr>(getEssential((Stmt*)E));
+ }
+ static Stmt *getEssential(Stmt *S) {
+ if (ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(S))
+ S = EWC->getSubExpr();
+ if (Expr *E = dyn_cast<Expr>(S))
+ S = E->IgnoreParenCasts();
+ return S;
+ }
+
+ Stmt *Body;
+ MigrationPass &Pass;
+
+ IdentifierInfo *PoolII;
+ Selector DrainSel;
+
+ struct PoolVarInfo {
+ DeclStmt *Dcl;
+ ExprSet Refs;
+ SmallVector<PoolScope, 2> Scopes;
+
+ PoolVarInfo() : Dcl(nullptr) { }
+ };
+
+ std::map<VarDecl *, PoolVarInfo> PoolVars;
+};
+
+} // anonymous namespace
+
+void trans::rewriteAutoreleasePool(MigrationPass &pass) {
+ BodyTransform<AutoreleasePoolRewriter> trans(pass);
+ trans.TraverseDecl(pass.Ctx.getTranslationUnitDecl());
+}
diff --git a/contrib/llvm/tools/clang/lib/ARCMigrate/TransBlockObjCVariable.cpp b/contrib/llvm/tools/clang/lib/ARCMigrate/TransBlockObjCVariable.cpp
new file mode 100644
index 0000000..fac6a84
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/ARCMigrate/TransBlockObjCVariable.cpp
@@ -0,0 +1,147 @@
+//===--- TransBlockObjCVariable.cpp - Transformations to ARC mode ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// rewriteBlockObjCVariable:
+//
+// Adding __block to an obj-c variable could be either because the variable
+// is used for output storage or the user wanted to break a retain cycle.
+// This transformation checks whether a reference of the variable for the block
+// is actually needed (it is assigned to or its address is taken) or not.
+// If the reference is not needed it will assume __block was added to break a
+// cycle so it will remove '__block' and add __weak/__unsafe_unretained.
+// e.g
+//
+// __block Foo *x;
+// bar(^ { [x cake]; });
+// ---->
+// __weak Foo *x;
+// bar(^ { [x cake]; });
+//
+//===----------------------------------------------------------------------===//
+
+#include "Transforms.h"
+#include "Internals.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Attr.h"
+#include "clang/Basic/SourceManager.h"
+
+using namespace clang;
+using namespace arcmt;
+using namespace trans;
+
+namespace {
+
+class RootBlockObjCVarRewriter :
+ public RecursiveASTVisitor<RootBlockObjCVarRewriter> {
+ llvm::DenseSet<VarDecl *> &VarsToChange;
+
+ class BlockVarChecker : public RecursiveASTVisitor<BlockVarChecker> {
+ VarDecl *Var;
+
+ typedef RecursiveASTVisitor<BlockVarChecker> base;
+ public:
+ BlockVarChecker(VarDecl *var) : Var(var) { }
+
+ bool TraverseImplicitCastExpr(ImplicitCastExpr *castE) {
+ if (DeclRefExpr *
+ ref = dyn_cast<DeclRefExpr>(castE->getSubExpr())) {
+ if (ref->getDecl() == Var) {
+ if (castE->getCastKind() == CK_LValueToRValue)
+ return true; // Using the value of the variable.
+ if (castE->getCastKind() == CK_NoOp && castE->isLValue() &&
+ Var->getASTContext().getLangOpts().CPlusPlus)
+ return true; // Binding to const C++ reference.
+ }
+ }
+
+ return base::TraverseImplicitCastExpr(castE);
+ }
+
+ bool VisitDeclRefExpr(DeclRefExpr *E) {
+ if (E->getDecl() == Var)
+ return false; // The reference of the variable, and not just its value,
+ // is needed.
+ return true;
+ }
+ };
+
+public:
+ RootBlockObjCVarRewriter(llvm::DenseSet<VarDecl *> &VarsToChange)
+ : VarsToChange(VarsToChange) { }
+
+ bool VisitBlockDecl(BlockDecl *block) {
+ SmallVector<VarDecl *, 4> BlockVars;
+
+ for (const auto &I : block->captures()) {
+ VarDecl *var = I.getVariable();
+ if (I.isByRef() &&
+ var->getType()->isObjCObjectPointerType() &&
+ isImplicitStrong(var->getType())) {
+ BlockVars.push_back(var);
+ }
+ }
+
+ for (unsigned i = 0, e = BlockVars.size(); i != e; ++i) {
+ VarDecl *var = BlockVars[i];
+
+ BlockVarChecker checker(var);
+ bool onlyValueOfVarIsNeeded = checker.TraverseStmt(block->getBody());
+ if (onlyValueOfVarIsNeeded)
+ VarsToChange.insert(var);
+ else
+ VarsToChange.erase(var);
+ }
+
+ return true;
+ }
+
+private:
+ bool isImplicitStrong(QualType ty) {
+ if (isa<AttributedType>(ty.getTypePtr()))
+ return false;
+ return ty.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong;
+ }
+};
+
+class BlockObjCVarRewriter : public RecursiveASTVisitor<BlockObjCVarRewriter> {
+ llvm::DenseSet<VarDecl *> &VarsToChange;
+
+public:
+ BlockObjCVarRewriter(llvm::DenseSet<VarDecl *> &VarsToChange)
+ : VarsToChange(VarsToChange) { }
+
+ bool TraverseBlockDecl(BlockDecl *block) {
+ RootBlockObjCVarRewriter(VarsToChange).TraverseDecl(block);
+ return true;
+ }
+};
+
+} // anonymous namespace
+
+void BlockObjCVariableTraverser::traverseBody(BodyContext &BodyCtx) {
+ MigrationPass &Pass = BodyCtx.getMigrationContext().Pass;
+ llvm::DenseSet<VarDecl *> VarsToChange;
+
+ BlockObjCVarRewriter trans(VarsToChange);
+ trans.TraverseStmt(BodyCtx.getTopStmt());
+
+ for (llvm::DenseSet<VarDecl *>::iterator
+ I = VarsToChange.begin(), E = VarsToChange.end(); I != E; ++I) {
+ VarDecl *var = *I;
+ BlocksAttr *attr = var->getAttr<BlocksAttr>();
+ if(!attr)
+ continue;
+ bool useWeak = canApplyWeak(Pass.Ctx, var->getType());
+ SourceManager &SM = Pass.Ctx.getSourceManager();
+ Transaction Trans(Pass.TA);
+ Pass.TA.replaceText(SM.getExpansionLoc(attr->getLocation()),
+ "__block",
+ useWeak ? "__weak" : "__unsafe_unretained");
+ }
+}
diff --git a/contrib/llvm/tools/clang/lib/ARCMigrate/TransEmptyStatementsAndDealloc.cpp b/contrib/llvm/tools/clang/lib/ARCMigrate/TransEmptyStatementsAndDealloc.cpp
new file mode 100644
index 0000000..9689f40
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/ARCMigrate/TransEmptyStatementsAndDealloc.cpp
@@ -0,0 +1,253 @@
+//===--- TransEmptyStatements.cpp - Transformations to ARC mode -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// removeEmptyStatementsAndDealloc:
+//
+// Removes empty statements that are leftovers from previous transformations.
+// e.g for
+//
+// [x retain];
+//
+// removeRetainReleaseDealloc will leave an empty ";" that removeEmptyStatements
+// will remove.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Transforms.h"
+#include "Internals.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Basic/SourceManager.h"
+
+using namespace clang;
+using namespace arcmt;
+using namespace trans;
+
+static bool isEmptyARCMTMacroStatement(NullStmt *S,
+ std::vector<SourceLocation> &MacroLocs,
+ ASTContext &Ctx) {
+ if (!S->hasLeadingEmptyMacro())
+ return false;
+
+ SourceLocation SemiLoc = S->getSemiLoc();
+ if (SemiLoc.isInvalid() || SemiLoc.isMacroID())
+ return false;
+
+ if (MacroLocs.empty())
+ return false;
+
+ SourceManager &SM = Ctx.getSourceManager();
+ std::vector<SourceLocation>::iterator
+ I = std::upper_bound(MacroLocs.begin(), MacroLocs.end(), SemiLoc,
+ BeforeThanCompare<SourceLocation>(SM));
+ --I;
+ SourceLocation
+ AfterMacroLoc = I->getLocWithOffset(getARCMTMacroName().size());
+ assert(AfterMacroLoc.isFileID());
+
+ if (AfterMacroLoc == SemiLoc)
+ return true;
+
+ int RelOffs = 0;
+ if (!SM.isInSameSLocAddrSpace(AfterMacroLoc, SemiLoc, &RelOffs))
+ return false;
+ if (RelOffs < 0)
+ return false;
+
+ // We make the reasonable assumption that a semicolon after 100 characters
+ // means that it is not the next token after our macro. If this assumption
+ // fails it is not critical, we will just fail to clear out, e.g., an empty
+ // 'if'.
+ if (RelOffs - getARCMTMacroName().size() > 100)
+ return false;
+
+ SourceLocation AfterMacroSemiLoc = findSemiAfterLocation(AfterMacroLoc, Ctx);
+ return AfterMacroSemiLoc == SemiLoc;
+}
+
+namespace {
+
+/// \brief Returns true if the statement became empty due to previous
+/// transformations.
+class EmptyChecker : public StmtVisitor<EmptyChecker, bool> {
+ ASTContext &Ctx;
+ std::vector<SourceLocation> &MacroLocs;
+
+public:
+ EmptyChecker(ASTContext &ctx, std::vector<SourceLocation> &macroLocs)
+ : Ctx(ctx), MacroLocs(macroLocs) { }
+
+ bool VisitNullStmt(NullStmt *S) {
+ return isEmptyARCMTMacroStatement(S, MacroLocs, Ctx);
+ }
+ bool VisitCompoundStmt(CompoundStmt *S) {
+ if (S->body_empty())
+ return false; // was already empty, not because of transformations.
+ for (auto *I : S->body())
+ if (!Visit(I))
+ return false;
+ return true;
+ }
+ bool VisitIfStmt(IfStmt *S) {
+ if (S->getConditionVariable())
+ return false;
+ Expr *condE = S->getCond();
+ if (!condE)
+ return false;
+ if (hasSideEffects(condE, Ctx))
+ return false;
+ if (!S->getThen() || !Visit(S->getThen()))
+ return false;
+ if (S->getElse() && !Visit(S->getElse()))
+ return false;
+ return true;
+ }
+ bool VisitWhileStmt(WhileStmt *S) {
+ if (S->getConditionVariable())
+ return false;
+ Expr *condE = S->getCond();
+ if (!condE)
+ return false;
+ if (hasSideEffects(condE, Ctx))
+ return false;
+ if (!S->getBody())
+ return false;
+ return Visit(S->getBody());
+ }
+ bool VisitDoStmt(DoStmt *S) {
+ Expr *condE = S->getCond();
+ if (!condE)
+ return false;
+ if (hasSideEffects(condE, Ctx))
+ return false;
+ if (!S->getBody())
+ return false;
+ return Visit(S->getBody());
+ }
+ bool VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
+ Expr *Exp = S->getCollection();
+ if (!Exp)
+ return false;
+ if (hasSideEffects(Exp, Ctx))
+ return false;
+ if (!S->getBody())
+ return false;
+ return Visit(S->getBody());
+ }
+ bool VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) {
+ if (!S->getSubStmt())
+ return false;
+ return Visit(S->getSubStmt());
+ }
+};
+
+class EmptyStatementsRemover :
+ public RecursiveASTVisitor<EmptyStatementsRemover> {
+ MigrationPass &Pass;
+
+public:
+ EmptyStatementsRemover(MigrationPass &pass) : Pass(pass) { }
+
+ bool TraverseStmtExpr(StmtExpr *E) {
+ CompoundStmt *S = E->getSubStmt();
+ for (CompoundStmt::body_iterator
+ I = S->body_begin(), E = S->body_end(); I != E; ++I) {
+ if (I != E - 1)
+ check(*I);
+ TraverseStmt(*I);
+ }
+ return true;
+ }
+
+ bool VisitCompoundStmt(CompoundStmt *S) {
+ for (auto *I : S->body())
+ check(I);
+ return true;
+ }
+
+ ASTContext &getContext() { return Pass.Ctx; }
+
+private:
+ void check(Stmt *S) {
+ if (!S) return;
+ if (EmptyChecker(Pass.Ctx, Pass.ARCMTMacroLocs).Visit(S)) {
+ Transaction Trans(Pass.TA);
+ Pass.TA.removeStmt(S);
+ }
+ }
+};
+
+} // anonymous namespace
+
+static bool isBodyEmpty(CompoundStmt *body, ASTContext &Ctx,
+ std::vector<SourceLocation> &MacroLocs) {
+ for (auto *I : body->body())
+ if (!EmptyChecker(Ctx, MacroLocs).Visit(I))
+ return false;
+
+ return true;
+}
+
+static void cleanupDeallocOrFinalize(MigrationPass &pass) {
+ ASTContext &Ctx = pass.Ctx;
+ TransformActions &TA = pass.TA;
+ DeclContext *DC = Ctx.getTranslationUnitDecl();
+ Selector FinalizeSel =
+ Ctx.Selectors.getNullarySelector(&pass.Ctx.Idents.get("finalize"));
+
+ typedef DeclContext::specific_decl_iterator<ObjCImplementationDecl>
+ impl_iterator;
+ for (impl_iterator I = impl_iterator(DC->decls_begin()),
+ E = impl_iterator(DC->decls_end()); I != E; ++I) {
+ ObjCMethodDecl *DeallocM = nullptr;
+ ObjCMethodDecl *FinalizeM = nullptr;
+ for (auto *MD : I->instance_methods()) {
+ if (!MD->hasBody())
+ continue;
+
+ if (MD->getMethodFamily() == OMF_dealloc) {
+ DeallocM = MD;
+ } else if (MD->isInstanceMethod() && MD->getSelector() == FinalizeSel) {
+ FinalizeM = MD;
+ }
+ }
+
+ if (DeallocM) {
+ if (isBodyEmpty(DeallocM->getCompoundBody(), Ctx, pass.ARCMTMacroLocs)) {
+ Transaction Trans(TA);
+ TA.remove(DeallocM->getSourceRange());
+ }
+
+ if (FinalizeM) {
+ Transaction Trans(TA);
+ TA.remove(FinalizeM->getSourceRange());
+ }
+
+ } else if (FinalizeM) {
+ if (isBodyEmpty(FinalizeM->getCompoundBody(), Ctx, pass.ARCMTMacroLocs)) {
+ Transaction Trans(TA);
+ TA.remove(FinalizeM->getSourceRange());
+ } else {
+ Transaction Trans(TA);
+ TA.replaceText(FinalizeM->getSelectorStartLoc(), "finalize", "dealloc");
+ }
+ }
+ }
+}
+
+void trans::removeEmptyStatementsAndDeallocFinalize(MigrationPass &pass) {
+ EmptyStatementsRemover(pass).TraverseDecl(pass.Ctx.getTranslationUnitDecl());
+
+ cleanupDeallocOrFinalize(pass);
+
+ for (unsigned i = 0, e = pass.ARCMTMacroLocs.size(); i != e; ++i) {
+ Transaction Trans(pass.TA);
+ pass.TA.remove(pass.ARCMTMacroLocs[i]);
+ }
+}
diff --git a/contrib/llvm/tools/clang/lib/ARCMigrate/TransGCAttrs.cpp b/contrib/llvm/tools/clang/lib/ARCMigrate/TransGCAttrs.cpp
new file mode 100644
index 0000000..10fce19
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/ARCMigrate/TransGCAttrs.cpp
@@ -0,0 +1,357 @@
+//===--- TransGCAttrs.cpp - Transformations to ARC mode --------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Transforms.h"
+#include "Internals.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Lex/Lexer.h"
+#include "clang/Sema/SemaDiagnostic.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/TinyPtrVector.h"
+#include "llvm/Support/SaveAndRestore.h"
+
+using namespace clang;
+using namespace arcmt;
+using namespace trans;
+
+namespace {
+
+/// \brief Collects all the places where GC attributes __strong/__weak occur.
+class GCAttrsCollector : public RecursiveASTVisitor<GCAttrsCollector> {
+ MigrationContext &MigrateCtx;
+ bool FullyMigratable;
+ std::vector<ObjCPropertyDecl *> &AllProps;
+
+ typedef RecursiveASTVisitor<GCAttrsCollector> base;
+public:
+ GCAttrsCollector(MigrationContext &ctx,
+ std::vector<ObjCPropertyDecl *> &AllProps)
+ : MigrateCtx(ctx), FullyMigratable(false),
+ AllProps(AllProps) { }
+
+ bool shouldWalkTypesOfTypeLocs() const { return false; }
+
+ bool VisitAttributedTypeLoc(AttributedTypeLoc TL) {
+ handleAttr(TL);
+ return true;
+ }
+
+ bool TraverseDecl(Decl *D) {
+ if (!D || D->isImplicit())
+ return true;
+
+ SaveAndRestore<bool> Save(FullyMigratable, isMigratable(D));
+
+ if (ObjCPropertyDecl *PropD = dyn_cast<ObjCPropertyDecl>(D)) {
+ lookForAttribute(PropD, PropD->getTypeSourceInfo());
+ AllProps.push_back(PropD);
+ } else if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) {
+ lookForAttribute(DD, DD->getTypeSourceInfo());
+ }
+ return base::TraverseDecl(D);
+ }
+
+ void lookForAttribute(Decl *D, TypeSourceInfo *TInfo) {
+ if (!TInfo)
+ return;
+ TypeLoc TL = TInfo->getTypeLoc();
+ while (TL) {
+ if (QualifiedTypeLoc QL = TL.getAs<QualifiedTypeLoc>()) {
+ TL = QL.getUnqualifiedLoc();
+ } else if (AttributedTypeLoc Attr = TL.getAs<AttributedTypeLoc>()) {
+ if (handleAttr(Attr, D))
+ break;
+ TL = Attr.getModifiedLoc();
+ } else if (ArrayTypeLoc Arr = TL.getAs<ArrayTypeLoc>()) {
+ TL = Arr.getElementLoc();
+ } else if (PointerTypeLoc PT = TL.getAs<PointerTypeLoc>()) {
+ TL = PT.getPointeeLoc();
+ } else if (ReferenceTypeLoc RT = TL.getAs<ReferenceTypeLoc>())
+ TL = RT.getPointeeLoc();
+ else
+ break;
+ }
+ }
+
+ bool handleAttr(AttributedTypeLoc TL, Decl *D = nullptr) {
+ if (TL.getAttrKind() != AttributedType::attr_objc_ownership)
+ return false;
+
+ SourceLocation Loc = TL.getAttrNameLoc();
+ unsigned RawLoc = Loc.getRawEncoding();
+ if (MigrateCtx.AttrSet.count(RawLoc))
+ return true;
+
+ ASTContext &Ctx = MigrateCtx.Pass.Ctx;
+ SourceManager &SM = Ctx.getSourceManager();
+ if (Loc.isMacroID())
+ Loc = SM.getImmediateExpansionRange(Loc).first;
+ SmallString<32> Buf;
+ bool Invalid = false;
+ StringRef Spell = Lexer::getSpelling(
+ SM.getSpellingLoc(TL.getAttrEnumOperandLoc()),
+ Buf, SM, Ctx.getLangOpts(), &Invalid);
+ if (Invalid)
+ return false;
+ MigrationContext::GCAttrOccurrence::AttrKind Kind;
+ if (Spell == "strong")
+ Kind = MigrationContext::GCAttrOccurrence::Strong;
+ else if (Spell == "weak")
+ Kind = MigrationContext::GCAttrOccurrence::Weak;
+ else
+ return false;
+
+ MigrateCtx.AttrSet.insert(RawLoc);
+ MigrateCtx.GCAttrs.push_back(MigrationContext::GCAttrOccurrence());
+ MigrationContext::GCAttrOccurrence &Attr = MigrateCtx.GCAttrs.back();
+
+ Attr.Kind = Kind;
+ Attr.Loc = Loc;
+ Attr.ModifiedType = TL.getModifiedLoc().getType();
+ Attr.Dcl = D;
+ Attr.FullyMigratable = FullyMigratable;
+ return true;
+ }
+
+ bool isMigratable(Decl *D) {
+ if (isa<TranslationUnitDecl>(D))
+ return false;
+
+ if (isInMainFile(D))
+ return true;
+
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
+ return FD->hasBody();
+
+ if (ObjCContainerDecl *ContD = dyn_cast<ObjCContainerDecl>(D))
+ return hasObjCImpl(ContD);
+
+ if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
+ for (const auto *MI : RD->methods()) {
+ if (MI->isOutOfLine())
+ return true;
+ }
+ return false;
+ }
+
+ return isMigratable(cast<Decl>(D->getDeclContext()));
+ }
+
+ static bool hasObjCImpl(Decl *D) {
+ if (!D)
+ return false;
+ if (ObjCContainerDecl *ContD = dyn_cast<ObjCContainerDecl>(D)) {
+ if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ContD))
+ return ID->getImplementation() != nullptr;
+ if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContD))
+ return CD->getImplementation() != nullptr;
+ if (isa<ObjCImplDecl>(ContD))
+ return true;
+ return false;
+ }
+ return false;
+ }
+
+ bool isInMainFile(Decl *D) {
+ if (!D)
+ return false;
+
+ for (auto I : D->redecls())
+ if (!isInMainFile(I->getLocation()))
+ return false;
+
+ return true;
+ }
+
+ bool isInMainFile(SourceLocation Loc) {
+ if (Loc.isInvalid())
+ return false;
+
+ SourceManager &SM = MigrateCtx.Pass.Ctx.getSourceManager();
+ return SM.isInFileID(SM.getExpansionLoc(Loc), SM.getMainFileID());
+ }
+};
+
+} // anonymous namespace
+
+static void errorForGCAttrsOnNonObjC(MigrationContext &MigrateCtx) {
+ TransformActions &TA = MigrateCtx.Pass.TA;
+
+ for (unsigned i = 0, e = MigrateCtx.GCAttrs.size(); i != e; ++i) {
+ MigrationContext::GCAttrOccurrence &Attr = MigrateCtx.GCAttrs[i];
+ if (Attr.FullyMigratable && Attr.Dcl) {
+ if (Attr.ModifiedType.isNull())
+ continue;
+ if (!Attr.ModifiedType->isObjCRetainableType()) {
+ TA.reportError("GC managed memory will become unmanaged in ARC",
+ Attr.Loc);
+ }
+ }
+ }
+}
+
+static void checkWeakGCAttrs(MigrationContext &MigrateCtx) {
+ TransformActions &TA = MigrateCtx.Pass.TA;
+
+ for (unsigned i = 0, e = MigrateCtx.GCAttrs.size(); i != e; ++i) {
+ MigrationContext::GCAttrOccurrence &Attr = MigrateCtx.GCAttrs[i];
+ if (Attr.Kind == MigrationContext::GCAttrOccurrence::Weak) {
+ if (Attr.ModifiedType.isNull() ||
+ !Attr.ModifiedType->isObjCRetainableType())
+ continue;
+ if (!canApplyWeak(MigrateCtx.Pass.Ctx, Attr.ModifiedType,
+ /*AllowOnUnknownClass=*/true)) {
+ Transaction Trans(TA);
+ if (!MigrateCtx.RemovedAttrSet.count(Attr.Loc.getRawEncoding()))
+ TA.replaceText(Attr.Loc, "__weak", "__unsafe_unretained");
+ TA.clearDiagnostic(diag::err_arc_weak_no_runtime,
+ diag::err_arc_unsupported_weak_class,
+ Attr.Loc);
+ }
+ }
+ }
+}
+
+typedef llvm::TinyPtrVector<ObjCPropertyDecl *> IndivPropsTy;
+
+static void checkAllAtProps(MigrationContext &MigrateCtx,
+ SourceLocation AtLoc,
+ IndivPropsTy &IndProps) {
+ if (IndProps.empty())
+ return;
+
+ for (IndivPropsTy::iterator
+ PI = IndProps.begin(), PE = IndProps.end(); PI != PE; ++PI) {
+ QualType T = (*PI)->getType();
+ if (T.isNull() || !T->isObjCRetainableType())
+ return;
+ }
+
+ SmallVector<std::pair<AttributedTypeLoc, ObjCPropertyDecl *>, 4> ATLs;
+ bool hasWeak = false, hasStrong = false;
+ ObjCPropertyDecl::PropertyAttributeKind
+ Attrs = ObjCPropertyDecl::OBJC_PR_noattr;
+ for (IndivPropsTy::iterator
+ PI = IndProps.begin(), PE = IndProps.end(); PI != PE; ++PI) {
+ ObjCPropertyDecl *PD = *PI;
+ Attrs = PD->getPropertyAttributesAsWritten();
+ TypeSourceInfo *TInfo = PD->getTypeSourceInfo();
+ if (!TInfo)
+ return;
+ TypeLoc TL = TInfo->getTypeLoc();
+ if (AttributedTypeLoc ATL =
+ TL.getAs<AttributedTypeLoc>()) {
+ ATLs.push_back(std::make_pair(ATL, PD));
+ if (TInfo->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
+ hasWeak = true;
+ } else if (TInfo->getType().getObjCLifetime() == Qualifiers::OCL_Strong)
+ hasStrong = true;
+ else
+ return;
+ }
+ }
+ if (ATLs.empty())
+ return;
+ if (hasWeak && hasStrong)
+ return;
+
+ TransformActions &TA = MigrateCtx.Pass.TA;
+ Transaction Trans(TA);
+
+ if (GCAttrsCollector::hasObjCImpl(
+ cast<Decl>(IndProps.front()->getDeclContext()))) {
+ if (hasWeak)
+ MigrateCtx.AtPropsWeak.insert(AtLoc.getRawEncoding());
+
+ } else {
+ StringRef toAttr = "strong";
+ if (hasWeak) {
+ if (canApplyWeak(MigrateCtx.Pass.Ctx, IndProps.front()->getType(),
+ /*AllowOnUnkwownClass=*/true))
+ toAttr = "weak";
+ else
+ toAttr = "unsafe_unretained";
+ }
+ if (Attrs & ObjCPropertyDecl::OBJC_PR_assign)
+ MigrateCtx.rewritePropertyAttribute("assign", toAttr, AtLoc);
+ else
+ MigrateCtx.addPropertyAttribute(toAttr, AtLoc);
+ }
+
+ for (unsigned i = 0, e = ATLs.size(); i != e; ++i) {
+ SourceLocation Loc = ATLs[i].first.getAttrNameLoc();
+ if (Loc.isMacroID())
+ Loc = MigrateCtx.Pass.Ctx.getSourceManager()
+ .getImmediateExpansionRange(Loc).first;
+ TA.remove(Loc);
+ TA.clearDiagnostic(diag::err_objc_property_attr_mutually_exclusive, AtLoc);
+ TA.clearDiagnostic(diag::err_arc_inconsistent_property_ownership,
+ ATLs[i].second->getLocation());
+ MigrateCtx.RemovedAttrSet.insert(Loc.getRawEncoding());
+ }
+}
+
+static void checkAllProps(MigrationContext &MigrateCtx,
+ std::vector<ObjCPropertyDecl *> &AllProps) {
+ typedef llvm::TinyPtrVector<ObjCPropertyDecl *> IndivPropsTy;
+ llvm::DenseMap<unsigned, IndivPropsTy> AtProps;
+
+ for (unsigned i = 0, e = AllProps.size(); i != e; ++i) {
+ ObjCPropertyDecl *PD = AllProps[i];
+ if (PD->getPropertyAttributesAsWritten() &
+ (ObjCPropertyDecl::OBJC_PR_assign |
+ ObjCPropertyDecl::OBJC_PR_readonly)) {
+ SourceLocation AtLoc = PD->getAtLoc();
+ if (AtLoc.isInvalid())
+ continue;
+ unsigned RawAt = AtLoc.getRawEncoding();
+ AtProps[RawAt].push_back(PD);
+ }
+ }
+
+ for (llvm::DenseMap<unsigned, IndivPropsTy>::iterator
+ I = AtProps.begin(), E = AtProps.end(); I != E; ++I) {
+ SourceLocation AtLoc = SourceLocation::getFromRawEncoding(I->first);
+ IndivPropsTy &IndProps = I->second;
+ checkAllAtProps(MigrateCtx, AtLoc, IndProps);
+ }
+}
+
+void GCAttrsTraverser::traverseTU(MigrationContext &MigrateCtx) {
+ std::vector<ObjCPropertyDecl *> AllProps;
+ GCAttrsCollector(MigrateCtx, AllProps).TraverseDecl(
+ MigrateCtx.Pass.Ctx.getTranslationUnitDecl());
+
+ errorForGCAttrsOnNonObjC(MigrateCtx);
+ checkAllProps(MigrateCtx, AllProps);
+ checkWeakGCAttrs(MigrateCtx);
+}
+
+void MigrationContext::dumpGCAttrs() {
+ llvm::errs() << "\n################\n";
+ for (unsigned i = 0, e = GCAttrs.size(); i != e; ++i) {
+ GCAttrOccurrence &Attr = GCAttrs[i];
+ llvm::errs() << "KIND: "
+ << (Attr.Kind == GCAttrOccurrence::Strong ? "strong" : "weak");
+ llvm::errs() << "\nLOC: ";
+ Attr.Loc.dump(Pass.Ctx.getSourceManager());
+ llvm::errs() << "\nTYPE: ";
+ Attr.ModifiedType.dump();
+ if (Attr.Dcl) {
+ llvm::errs() << "DECL:\n";
+ Attr.Dcl->dump();
+ } else {
+ llvm::errs() << "DECL: NONE";
+ }
+ llvm::errs() << "\nMIGRATABLE: " << Attr.FullyMigratable;
+ llvm::errs() << "\n----------------\n";
+ }
+ llvm::errs() << "\n################\n";
+}
diff --git a/contrib/llvm/tools/clang/lib/ARCMigrate/TransGCCalls.cpp b/contrib/llvm/tools/clang/lib/ARCMigrate/TransGCCalls.cpp
new file mode 100644
index 0000000..3a236d3
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/ARCMigrate/TransGCCalls.cpp
@@ -0,0 +1,77 @@
+//===--- TransGCCalls.cpp - Transformations to ARC mode -------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Transforms.h"
+#include "Internals.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/Sema/SemaDiagnostic.h"
+
+using namespace clang;
+using namespace arcmt;
+using namespace trans;
+
+namespace {
+
+class GCCollectableCallsChecker :
+ public RecursiveASTVisitor<GCCollectableCallsChecker> {
+ MigrationContext &MigrateCtx;
+ IdentifierInfo *NSMakeCollectableII;
+ IdentifierInfo *CFMakeCollectableII;
+
+public:
+ GCCollectableCallsChecker(MigrationContext &ctx)
+ : MigrateCtx(ctx) {
+ IdentifierTable &Ids = MigrateCtx.Pass.Ctx.Idents;
+ NSMakeCollectableII = &Ids.get("NSMakeCollectable");
+ CFMakeCollectableII = &Ids.get("CFMakeCollectable");
+ }
+
+ bool shouldWalkTypesOfTypeLocs() const { return false; }
+
+ bool VisitCallExpr(CallExpr *E) {
+ TransformActions &TA = MigrateCtx.Pass.TA;
+
+ if (MigrateCtx.isGCOwnedNonObjC(E->getType())) {
+ TA.report(E->getLocStart(), diag::warn_arcmt_nsalloc_realloc,
+ E->getSourceRange());
+ return true;
+ }
+
+ Expr *CEE = E->getCallee()->IgnoreParenImpCasts();
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
+ if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(DRE->getDecl())) {
+ if (!FD->getDeclContext()->getRedeclContext()->isFileContext())
+ return true;
+
+ if (FD->getIdentifier() == NSMakeCollectableII) {
+ Transaction Trans(TA);
+ TA.clearDiagnostic(diag::err_unavailable,
+ diag::err_unavailable_message,
+ diag::err_ovl_deleted_call, // ObjC++
+ DRE->getSourceRange());
+ TA.replace(DRE->getSourceRange(), "CFBridgingRelease");
+
+ } else if (FD->getIdentifier() == CFMakeCollectableII) {
+ TA.reportError("CFMakeCollectable will leak the object that it "
+ "receives in ARC", DRE->getLocation(),
+ DRE->getSourceRange());
+ }
+ }
+ }
+
+ return true;
+ }
+};
+
+} // anonymous namespace
+
+void GCCollectableCallsTraverser::traverseBody(BodyContext &BodyCtx) {
+ GCCollectableCallsChecker(BodyCtx.getMigrationContext())
+ .TraverseStmt(BodyCtx.getTopStmt());
+}
diff --git a/contrib/llvm/tools/clang/lib/ARCMigrate/TransProperties.cpp b/contrib/llvm/tools/clang/lib/ARCMigrate/TransProperties.cpp
new file mode 100644
index 0000000..ab12884
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/ARCMigrate/TransProperties.cpp
@@ -0,0 +1,397 @@
+//===--- TransProperties.cpp - Transformations to ARC mode ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// rewriteProperties:
+//
+// - Adds strong/weak/unsafe_unretained ownership specifier to properties that
+// are missing one.
+// - Migrates properties from (retain) to (strong) and (assign) to
+// (unsafe_unretained/weak).
+// - If a property is synthesized, adds the ownership specifier in the ivar
+// backing the property.
+//
+// @interface Foo : NSObject {
+// NSObject *x;
+// }
+// @property (assign) id x;
+// @end
+// ---->
+// @interface Foo : NSObject {
+// NSObject *__weak x;
+// }
+// @property (weak) id x;
+// @end
+//
+//===----------------------------------------------------------------------===//
+
+#include "Transforms.h"
+#include "Internals.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Lex/Lexer.h"
+#include "clang/Sema/SemaDiagnostic.h"
+#include <map>
+
+using namespace clang;
+using namespace arcmt;
+using namespace trans;
+
+namespace {
+
+class PropertiesRewriter {
+ MigrationContext &MigrateCtx;
+ MigrationPass &Pass;
+ ObjCImplementationDecl *CurImplD;
+
+ enum PropActionKind {
+ PropAction_None,
+ PropAction_RetainReplacedWithStrong,
+ PropAction_AssignRemoved,
+ PropAction_AssignRewritten,
+ PropAction_MaybeAddWeakOrUnsafe
+ };
+
+ struct PropData {
+ ObjCPropertyDecl *PropD;
+ ObjCIvarDecl *IvarD;
+ ObjCPropertyImplDecl *ImplD;
+
+ PropData(ObjCPropertyDecl *propD)
+ : PropD(propD), IvarD(nullptr), ImplD(nullptr) {}
+ };
+
+ typedef SmallVector<PropData, 2> PropsTy;
+ typedef std::map<unsigned, PropsTy> AtPropDeclsTy;
+ AtPropDeclsTy AtProps;
+ llvm::DenseMap<IdentifierInfo *, PropActionKind> ActionOnProp;
+
+public:
+ explicit PropertiesRewriter(MigrationContext &MigrateCtx)
+ : MigrateCtx(MigrateCtx), Pass(MigrateCtx.Pass) { }
+
+ static void collectProperties(ObjCContainerDecl *D, AtPropDeclsTy &AtProps,
+ AtPropDeclsTy *PrevAtProps = nullptr) {
+ for (auto *Prop : D->properties()) {
+ if (Prop->getAtLoc().isInvalid())
+ continue;
+ unsigned RawLoc = Prop->getAtLoc().getRawEncoding();
+ if (PrevAtProps)
+ if (PrevAtProps->find(RawLoc) != PrevAtProps->end())
+ continue;
+ PropsTy &props = AtProps[RawLoc];
+ props.push_back(Prop);
+ }
+ }
+
+ void doTransform(ObjCImplementationDecl *D) {
+ CurImplD = D;
+ ObjCInterfaceDecl *iface = D->getClassInterface();
+ if (!iface)
+ return;
+
+ collectProperties(iface, AtProps);
+
+ typedef DeclContext::specific_decl_iterator<ObjCPropertyImplDecl>
+ prop_impl_iterator;
+ for (prop_impl_iterator
+ I = prop_impl_iterator(D->decls_begin()),
+ E = prop_impl_iterator(D->decls_end()); I != E; ++I) {
+ ObjCPropertyImplDecl *implD = *I;
+ if (implD->getPropertyImplementation() != ObjCPropertyImplDecl::Synthesize)
+ continue;
+ ObjCPropertyDecl *propD = implD->getPropertyDecl();
+ if (!propD || propD->isInvalidDecl())
+ continue;
+ ObjCIvarDecl *ivarD = implD->getPropertyIvarDecl();
+ if (!ivarD || ivarD->isInvalidDecl())
+ continue;
+ unsigned rawAtLoc = propD->getAtLoc().getRawEncoding();
+ AtPropDeclsTy::iterator findAtLoc = AtProps.find(rawAtLoc);
+ if (findAtLoc == AtProps.end())
+ continue;
+
+ PropsTy &props = findAtLoc->second;
+ for (PropsTy::iterator I = props.begin(), E = props.end(); I != E; ++I) {
+ if (I->PropD == propD) {
+ I->IvarD = ivarD;
+ I->ImplD = implD;
+ break;
+ }
+ }
+ }
+
+ for (AtPropDeclsTy::iterator
+ I = AtProps.begin(), E = AtProps.end(); I != E; ++I) {
+ SourceLocation atLoc = SourceLocation::getFromRawEncoding(I->first);
+ PropsTy &props = I->second;
+ if (!getPropertyType(props)->isObjCRetainableType())
+ continue;
+ if (hasIvarWithExplicitARCOwnership(props))
+ continue;
+
+ Transaction Trans(Pass.TA);
+ rewriteProperty(props, atLoc);
+ }
+
+ AtPropDeclsTy AtExtProps;
+ // Look through extensions.
+ for (auto *Ext : iface->visible_extensions())
+ collectProperties(Ext, AtExtProps, &AtProps);
+
+ for (AtPropDeclsTy::iterator
+ I = AtExtProps.begin(), E = AtExtProps.end(); I != E; ++I) {
+ SourceLocation atLoc = SourceLocation::getFromRawEncoding(I->first);
+ PropsTy &props = I->second;
+ Transaction Trans(Pass.TA);
+ doActionForExtensionProp(props, atLoc);
+ }
+ }
+
+private:
+ void doPropAction(PropActionKind kind,
+ PropsTy &props, SourceLocation atLoc,
+ bool markAction = true) {
+ if (markAction)
+ for (PropsTy::iterator I = props.begin(), E = props.end(); I != E; ++I)
+ ActionOnProp[I->PropD->getIdentifier()] = kind;
+
+ switch (kind) {
+ case PropAction_None:
+ return;
+ case PropAction_RetainReplacedWithStrong: {
+ StringRef toAttr = "strong";
+ MigrateCtx.rewritePropertyAttribute("retain", toAttr, atLoc);
+ return;
+ }
+ case PropAction_AssignRemoved:
+ return removeAssignForDefaultStrong(props, atLoc);
+ case PropAction_AssignRewritten:
+ return rewriteAssign(props, atLoc);
+ case PropAction_MaybeAddWeakOrUnsafe:
+ return maybeAddWeakOrUnsafeUnretainedAttr(props, atLoc);
+ }
+ }
+
+ void doActionForExtensionProp(PropsTy &props, SourceLocation atLoc) {
+ llvm::DenseMap<IdentifierInfo *, PropActionKind>::iterator I;
+ I = ActionOnProp.find(props[0].PropD->getIdentifier());
+ if (I == ActionOnProp.end())
+ return;
+
+ doPropAction(I->second, props, atLoc, false);
+ }
+
+ void rewriteProperty(PropsTy &props, SourceLocation atLoc) {
+ ObjCPropertyDecl::PropertyAttributeKind propAttrs = getPropertyAttrs(props);
+
+ if (propAttrs & (ObjCPropertyDecl::OBJC_PR_copy |
+ ObjCPropertyDecl::OBJC_PR_unsafe_unretained |
+ ObjCPropertyDecl::OBJC_PR_strong |
+ ObjCPropertyDecl::OBJC_PR_weak))
+ return;
+
+ if (propAttrs & ObjCPropertyDecl::OBJC_PR_retain) {
+ // strong is the default.
+ return doPropAction(PropAction_RetainReplacedWithStrong, props, atLoc);
+ }
+
+ bool HasIvarAssignedAPlusOneObject = hasIvarAssignedAPlusOneObject(props);
+
+ if (propAttrs & ObjCPropertyDecl::OBJC_PR_assign) {
+ if (HasIvarAssignedAPlusOneObject)
+ return doPropAction(PropAction_AssignRemoved, props, atLoc);
+ return doPropAction(PropAction_AssignRewritten, props, atLoc);
+ }
+
+ if (HasIvarAssignedAPlusOneObject ||
+ (Pass.isGCMigration() && !hasGCWeak(props, atLoc)))
+ return; // 'strong' by default.
+
+ return doPropAction(PropAction_MaybeAddWeakOrUnsafe, props, atLoc);
+ }
+
+ void removeAssignForDefaultStrong(PropsTy &props,
+ SourceLocation atLoc) const {
+ removeAttribute("retain", atLoc);
+ if (!removeAttribute("assign", atLoc))
+ return;
+
+ for (PropsTy::iterator I = props.begin(), E = props.end(); I != E; ++I) {
+ if (I->ImplD)
+ Pass.TA.clearDiagnostic(diag::err_arc_strong_property_ownership,
+ diag::err_arc_assign_property_ownership,
+ diag::err_arc_inconsistent_property_ownership,
+ I->IvarD->getLocation());
+ }
+ }
+
+ void rewriteAssign(PropsTy &props, SourceLocation atLoc) const {
+ bool canUseWeak = canApplyWeak(Pass.Ctx, getPropertyType(props),
+ /*AllowOnUnknownClass=*/Pass.isGCMigration());
+ const char *toWhich =
+ (Pass.isGCMigration() && !hasGCWeak(props, atLoc)) ? "strong" :
+ (canUseWeak ? "weak" : "unsafe_unretained");
+
+ bool rewroteAttr = rewriteAttribute("assign", toWhich, atLoc);
+ if (!rewroteAttr)
+ canUseWeak = false;
+
+ for (PropsTy::iterator I = props.begin(), E = props.end(); I != E; ++I) {
+ if (isUserDeclared(I->IvarD)) {
+ if (I->IvarD &&
+ I->IvarD->getType().getObjCLifetime() != Qualifiers::OCL_Weak) {
+ const char *toWhich =
+ (Pass.isGCMigration() && !hasGCWeak(props, atLoc)) ? "__strong " :
+ (canUseWeak ? "__weak " : "__unsafe_unretained ");
+ Pass.TA.insert(I->IvarD->getLocation(), toWhich);
+ }
+ }
+ if (I->ImplD)
+ Pass.TA.clearDiagnostic(diag::err_arc_strong_property_ownership,
+ diag::err_arc_assign_property_ownership,
+ diag::err_arc_inconsistent_property_ownership,
+ I->IvarD->getLocation());
+ }
+ }
+
+ void maybeAddWeakOrUnsafeUnretainedAttr(PropsTy &props,
+ SourceLocation atLoc) const {
+ bool canUseWeak = canApplyWeak(Pass.Ctx, getPropertyType(props),
+ /*AllowOnUnknownClass=*/Pass.isGCMigration());
+
+ bool addedAttr = addAttribute(canUseWeak ? "weak" : "unsafe_unretained",
+ atLoc);
+ if (!addedAttr)
+ canUseWeak = false;
+
+ for (PropsTy::iterator I = props.begin(), E = props.end(); I != E; ++I) {
+ if (isUserDeclared(I->IvarD)) {
+ if (I->IvarD &&
+ I->IvarD->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
+ Pass.TA.insert(I->IvarD->getLocation(),
+ canUseWeak ? "__weak " : "__unsafe_unretained ");
+ }
+ if (I->ImplD) {
+ Pass.TA.clearDiagnostic(diag::err_arc_strong_property_ownership,
+ diag::err_arc_assign_property_ownership,
+ diag::err_arc_inconsistent_property_ownership,
+ I->IvarD->getLocation());
+ Pass.TA.clearDiagnostic(
+ diag::err_arc_objc_property_default_assign_on_object,
+ I->ImplD->getLocation());
+ }
+ }
+ }
+
+ bool removeAttribute(StringRef fromAttr, SourceLocation atLoc) const {
+ return MigrateCtx.removePropertyAttribute(fromAttr, atLoc);
+ }
+
+ bool rewriteAttribute(StringRef fromAttr, StringRef toAttr,
+ SourceLocation atLoc) const {
+ return MigrateCtx.rewritePropertyAttribute(fromAttr, toAttr, atLoc);
+ }
+
+ bool addAttribute(StringRef attr, SourceLocation atLoc) const {
+ return MigrateCtx.addPropertyAttribute(attr, atLoc);
+ }
+
+ class PlusOneAssign : public RecursiveASTVisitor<PlusOneAssign> {
+ ObjCIvarDecl *Ivar;
+ public:
+ PlusOneAssign(ObjCIvarDecl *D) : Ivar(D) {}
+
+ bool VisitBinAssign(BinaryOperator *E) {
+ Expr *lhs = E->getLHS()->IgnoreParenImpCasts();
+ if (ObjCIvarRefExpr *RE = dyn_cast<ObjCIvarRefExpr>(lhs)) {
+ if (RE->getDecl() != Ivar)
+ return true;
+
+ if (isPlusOneAssign(E))
+ return false;
+ }
+
+ return true;
+ }
+ };
+
+ bool hasIvarAssignedAPlusOneObject(PropsTy &props) const {
+ for (PropsTy::iterator I = props.begin(), E = props.end(); I != E; ++I) {
+ PlusOneAssign oneAssign(I->IvarD);
+ bool notFound = oneAssign.TraverseDecl(CurImplD);
+ if (!notFound)
+ return true;
+ }
+
+ return false;
+ }
+
+ bool hasIvarWithExplicitARCOwnership(PropsTy &props) const {
+ if (Pass.isGCMigration())
+ return false;
+
+ for (PropsTy::iterator I = props.begin(), E = props.end(); I != E; ++I) {
+ if (isUserDeclared(I->IvarD)) {
+ if (isa<AttributedType>(I->IvarD->getType()))
+ return true;
+ if (I->IvarD->getType().getLocalQualifiers().getObjCLifetime()
+ != Qualifiers::OCL_Strong)
+ return true;
+ }
+ }
+
+ return false;
+ }
+
+ // \brief Returns true if all declarations in the @property have GC __weak.
+ bool hasGCWeak(PropsTy &props, SourceLocation atLoc) const {
+ if (!Pass.isGCMigration())
+ return false;
+ if (props.empty())
+ return false;
+ return MigrateCtx.AtPropsWeak.count(atLoc.getRawEncoding());
+ }
+
+ bool isUserDeclared(ObjCIvarDecl *ivarD) const {
+ return ivarD && !ivarD->getSynthesize();
+ }
+
+ QualType getPropertyType(PropsTy &props) const {
+ assert(!props.empty());
+ QualType ty = props[0].PropD->getType().getUnqualifiedType();
+
+#ifndef NDEBUG
+ for (PropsTy::iterator I = props.begin(), E = props.end(); I != E; ++I)
+ assert(ty == I->PropD->getType().getUnqualifiedType());
+#endif
+
+ return ty;
+ }
+
+ ObjCPropertyDecl::PropertyAttributeKind
+ getPropertyAttrs(PropsTy &props) const {
+ assert(!props.empty());
+ ObjCPropertyDecl::PropertyAttributeKind
+ attrs = props[0].PropD->getPropertyAttributesAsWritten();
+
+#ifndef NDEBUG
+ for (PropsTy::iterator I = props.begin(), E = props.end(); I != E; ++I)
+ assert(attrs == I->PropD->getPropertyAttributesAsWritten());
+#endif
+
+ return attrs;
+ }
+};
+
+} // anonymous namespace
+
+void PropertyRewriteTraverser::traverseObjCImplementation(
+ ObjCImplementationContext &ImplCtx) {
+ PropertiesRewriter(ImplCtx.getMigrationContext())
+ .doTransform(ImplCtx.getImplementationDecl());
+}
diff --git a/contrib/llvm/tools/clang/lib/ARCMigrate/TransProtectedScope.cpp b/contrib/llvm/tools/clang/lib/ARCMigrate/TransProtectedScope.cpp
new file mode 100644
index 0000000..0fcbcbe
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/ARCMigrate/TransProtectedScope.cpp
@@ -0,0 +1,202 @@
+//===--- TransProtectedScope.cpp - Transformations to ARC mode ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Adds brackets in case statements that "contain" initialization of retaining
+// variable, thus emitting the "switch case is in protected scope" error.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Transforms.h"
+#include "Internals.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/Sema/SemaDiagnostic.h"
+
+using namespace clang;
+using namespace arcmt;
+using namespace trans;
+
+namespace {
+
+class LocalRefsCollector : public RecursiveASTVisitor<LocalRefsCollector> {
+ SmallVectorImpl<DeclRefExpr *> &Refs;
+
+public:
+ LocalRefsCollector(SmallVectorImpl<DeclRefExpr *> &refs)
+ : Refs(refs) { }
+
+ bool VisitDeclRefExpr(DeclRefExpr *E) {
+ if (ValueDecl *D = E->getDecl())
+ if (D->getDeclContext()->getRedeclContext()->isFunctionOrMethod())
+ Refs.push_back(E);
+ return true;
+ }
+};
+
+struct CaseInfo {
+ SwitchCase *SC;
+ SourceRange Range;
+ enum {
+ St_Unchecked,
+ St_CannotFix,
+ St_Fixed
+ } State;
+
+ CaseInfo() : SC(nullptr), State(St_Unchecked) {}
+ CaseInfo(SwitchCase *S, SourceRange Range)
+ : SC(S), Range(Range), State(St_Unchecked) {}
+};
+
+class CaseCollector : public RecursiveASTVisitor<CaseCollector> {
+ ParentMap &PMap;
+ SmallVectorImpl<CaseInfo> &Cases;
+
+public:
+ CaseCollector(ParentMap &PMap, SmallVectorImpl<CaseInfo> &Cases)
+ : PMap(PMap), Cases(Cases) { }
+
+ bool VisitSwitchStmt(SwitchStmt *S) {
+ SwitchCase *Curr = S->getSwitchCaseList();
+ if (!Curr)
+ return true;
+ Stmt *Parent = getCaseParent(Curr);
+ Curr = Curr->getNextSwitchCase();
+ // Make sure all case statements are in the same scope.
+ while (Curr) {
+ if (getCaseParent(Curr) != Parent)
+ return true;
+ Curr = Curr->getNextSwitchCase();
+ }
+
+ SourceLocation NextLoc = S->getLocEnd();
+ Curr = S->getSwitchCaseList();
+ // We iterate over case statements in reverse source-order.
+ while (Curr) {
+ Cases.push_back(CaseInfo(Curr,SourceRange(Curr->getLocStart(), NextLoc)));
+ NextLoc = Curr->getLocStart();
+ Curr = Curr->getNextSwitchCase();
+ }
+ return true;
+ }
+
+ Stmt *getCaseParent(SwitchCase *S) {
+ Stmt *Parent = PMap.getParent(S);
+ while (Parent && (isa<SwitchCase>(Parent) || isa<LabelStmt>(Parent)))
+ Parent = PMap.getParent(Parent);
+ return Parent;
+ }
+};
+
+class ProtectedScopeFixer {
+ MigrationPass &Pass;
+ SourceManager &SM;
+ SmallVector<CaseInfo, 16> Cases;
+ SmallVector<DeclRefExpr *, 16> LocalRefs;
+
+public:
+ ProtectedScopeFixer(BodyContext &BodyCtx)
+ : Pass(BodyCtx.getMigrationContext().Pass),
+ SM(Pass.Ctx.getSourceManager()) {
+
+ CaseCollector(BodyCtx.getParentMap(), Cases)
+ .TraverseStmt(BodyCtx.getTopStmt());
+ LocalRefsCollector(LocalRefs).TraverseStmt(BodyCtx.getTopStmt());
+
+ SourceRange BodyRange = BodyCtx.getTopStmt()->getSourceRange();
+ const CapturedDiagList &DiagList = Pass.getDiags();
+ // Copy the diagnostics so we don't have to worry about invaliding iterators
+ // from the diagnostic list.
+ SmallVector<StoredDiagnostic, 16> StoredDiags;
+ StoredDiags.append(DiagList.begin(), DiagList.end());
+ SmallVectorImpl<StoredDiagnostic>::iterator
+ I = StoredDiags.begin(), E = StoredDiags.end();
+ while (I != E) {
+ if (I->getID() == diag::err_switch_into_protected_scope &&
+ isInRange(I->getLocation(), BodyRange)) {
+ handleProtectedScopeError(I, E);
+ continue;
+ }
+ ++I;
+ }
+ }
+
+ void handleProtectedScopeError(
+ SmallVectorImpl<StoredDiagnostic>::iterator &DiagI,
+ SmallVectorImpl<StoredDiagnostic>::iterator DiagE){
+ Transaction Trans(Pass.TA);
+ assert(DiagI->getID() == diag::err_switch_into_protected_scope);
+ SourceLocation ErrLoc = DiagI->getLocation();
+ bool handledAllNotes = true;
+ ++DiagI;
+ for (; DiagI != DiagE && DiagI->getLevel() == DiagnosticsEngine::Note;
+ ++DiagI) {
+ if (!handleProtectedNote(*DiagI))
+ handledAllNotes = false;
+ }
+
+ if (handledAllNotes)
+ Pass.TA.clearDiagnostic(diag::err_switch_into_protected_scope, ErrLoc);
+ }
+
+ bool handleProtectedNote(const StoredDiagnostic &Diag) {
+ assert(Diag.getLevel() == DiagnosticsEngine::Note);
+
+ for (unsigned i = 0; i != Cases.size(); i++) {
+ CaseInfo &info = Cases[i];
+ if (isInRange(Diag.getLocation(), info.Range)) {
+
+ if (info.State == CaseInfo::St_Unchecked)
+ tryFixing(info);
+ assert(info.State != CaseInfo::St_Unchecked);
+
+ if (info.State == CaseInfo::St_Fixed) {
+ Pass.TA.clearDiagnostic(Diag.getID(), Diag.getLocation());
+ return true;
+ }
+ return false;
+ }
+ }
+
+ return false;
+ }
+
+ void tryFixing(CaseInfo &info) {
+ assert(info.State == CaseInfo::St_Unchecked);
+ if (hasVarReferencedOutside(info)) {
+ info.State = CaseInfo::St_CannotFix;
+ return;
+ }
+
+ Pass.TA.insertAfterToken(info.SC->getColonLoc(), " {");
+ Pass.TA.insert(info.Range.getEnd(), "}\n");
+ info.State = CaseInfo::St_Fixed;
+ }
+
+ bool hasVarReferencedOutside(CaseInfo &info) {
+ for (unsigned i = 0, e = LocalRefs.size(); i != e; ++i) {
+ DeclRefExpr *DRE = LocalRefs[i];
+ if (isInRange(DRE->getDecl()->getLocation(), info.Range) &&
+ !isInRange(DRE->getLocation(), info.Range))
+ return true;
+ }
+ return false;
+ }
+
+ bool isInRange(SourceLocation Loc, SourceRange R) {
+ if (Loc.isInvalid())
+ return false;
+ return !SM.isBeforeInTranslationUnit(Loc, R.getBegin()) &&
+ SM.isBeforeInTranslationUnit(Loc, R.getEnd());
+ }
+};
+
+} // anonymous namespace
+
+void ProtectedScopeTraverser::traverseBody(BodyContext &BodyCtx) {
+ ProtectedScopeFixer Fix(BodyCtx);
+}
diff --git a/contrib/llvm/tools/clang/lib/ARCMigrate/TransRetainReleaseDealloc.cpp b/contrib/llvm/tools/clang/lib/ARCMigrate/TransRetainReleaseDealloc.cpp
new file mode 100644
index 0000000..7db1a1c
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/ARCMigrate/TransRetainReleaseDealloc.cpp
@@ -0,0 +1,465 @@
+//===--- TransRetainReleaseDealloc.cpp - Transformations to ARC mode ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// removeRetainReleaseDealloc:
+//
+// Removes retain/release/autorelease/dealloc messages.
+//
+// return [[foo retain] autorelease];
+// ---->
+// return foo;
+//
+//===----------------------------------------------------------------------===//
+
+#include "Transforms.h"
+#include "Internals.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ParentMap.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Lex/Lexer.h"
+#include "clang/Sema/SemaDiagnostic.h"
+#include "llvm/ADT/StringSwitch.h"
+
+using namespace clang;
+using namespace arcmt;
+using namespace trans;
+
+namespace {
+
+class RetainReleaseDeallocRemover :
+ public RecursiveASTVisitor<RetainReleaseDeallocRemover> {
+ Stmt *Body;
+ MigrationPass &Pass;
+
+ ExprSet Removables;
+ std::unique_ptr<ParentMap> StmtMap;
+
+ Selector DelegateSel, FinalizeSel;
+
+public:
+ RetainReleaseDeallocRemover(MigrationPass &pass)
+ : Body(nullptr), Pass(pass) {
+ DelegateSel =
+ Pass.Ctx.Selectors.getNullarySelector(&Pass.Ctx.Idents.get("delegate"));
+ FinalizeSel =
+ Pass.Ctx.Selectors.getNullarySelector(&Pass.Ctx.Idents.get("finalize"));
+ }
+
+ void transformBody(Stmt *body, Decl *ParentD) {
+ Body = body;
+ collectRemovables(body, Removables);
+ StmtMap.reset(new ParentMap(body));
+ TraverseStmt(body);
+ }
+
+ bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
+ switch (E->getMethodFamily()) {
+ default:
+ if (E->isInstanceMessage() && E->getSelector() == FinalizeSel)
+ break;
+ return true;
+ case OMF_autorelease:
+ if (isRemovable(E)) {
+ if (!isCommonUnusedAutorelease(E)) {
+ // An unused autorelease is badness. If we remove it the receiver
+ // will likely die immediately while previously it was kept alive
+ // by the autorelease pool. This is bad practice in general, leave it
+ // and emit an error to force the user to restructure their code.
+ Pass.TA.reportError("it is not safe to remove an unused 'autorelease' "
+ "message; its receiver may be destroyed immediately",
+ E->getLocStart(), E->getSourceRange());
+ return true;
+ }
+ }
+ // Pass through.
+ case OMF_retain:
+ case OMF_release:
+ if (E->getReceiverKind() == ObjCMessageExpr::Instance)
+ if (Expr *rec = E->getInstanceReceiver()) {
+ rec = rec->IgnoreParenImpCasts();
+ if (rec->getType().getObjCLifetime() == Qualifiers::OCL_ExplicitNone &&
+ (E->getMethodFamily() != OMF_retain || isRemovable(E))) {
+ std::string err = "it is not safe to remove '";
+ err += E->getSelector().getAsString() + "' message on "
+ "an __unsafe_unretained type";
+ Pass.TA.reportError(err, rec->getLocStart());
+ return true;
+ }
+
+ if (isGlobalVar(rec) &&
+ (E->getMethodFamily() != OMF_retain || isRemovable(E))) {
+ std::string err = "it is not safe to remove '";
+ err += E->getSelector().getAsString() + "' message on "
+ "a global variable";
+ Pass.TA.reportError(err, rec->getLocStart());
+ return true;
+ }
+
+ if (E->getMethodFamily() == OMF_release && isDelegateMessage(rec)) {
+ Pass.TA.reportError("it is not safe to remove 'retain' "
+ "message on the result of a 'delegate' message; "
+ "the object that was passed to 'setDelegate:' may not be "
+ "properly retained", rec->getLocStart());
+ return true;
+ }
+ }
+ case OMF_dealloc:
+ break;
+ }
+
+ switch (E->getReceiverKind()) {
+ default:
+ return true;
+ case ObjCMessageExpr::SuperInstance: {
+ Transaction Trans(Pass.TA);
+ clearDiagnostics(E->getSelectorLoc(0));
+ if (tryRemoving(E))
+ return true;
+ Pass.TA.replace(E->getSourceRange(), "self");
+ return true;
+ }
+ case ObjCMessageExpr::Instance:
+ break;
+ }
+
+ Expr *rec = E->getInstanceReceiver();
+ if (!rec) return true;
+
+ Transaction Trans(Pass.TA);
+ clearDiagnostics(E->getSelectorLoc(0));
+
+ ObjCMessageExpr *Msg = E;
+ Expr *RecContainer = Msg;
+ SourceRange RecRange = rec->getSourceRange();
+ checkForGCDOrXPC(Msg, RecContainer, rec, RecRange);
+
+ if (Msg->getMethodFamily() == OMF_release &&
+ isRemovable(RecContainer) && isInAtFinally(RecContainer)) {
+ // Change the -release to "receiver = nil" in a finally to avoid a leak
+ // when an exception is thrown.
+ Pass.TA.replace(RecContainer->getSourceRange(), RecRange);
+ std::string str = " = ";
+ str += getNilString(Pass);
+ Pass.TA.insertAfterToken(RecRange.getEnd(), str);
+ return true;
+ }
+
+ if (!hasSideEffects(rec, Pass.Ctx)) {
+ if (tryRemoving(RecContainer))
+ return true;
+ }
+ Pass.TA.replace(RecContainer->getSourceRange(), RecRange);
+
+ return true;
+ }
+
+private:
+ /// \brief Checks for idioms where an unused -autorelease is common.
+ ///
+ /// Returns true for this idiom which is common in property
+ /// setters:
+ ///
+ /// [backingValue autorelease];
+ /// backingValue = [newValue retain]; // in general a +1 assign
+ ///
+ /// For these as well:
+ ///
+ /// [[var retain] autorelease];
+ /// return var;
+ ///
+ bool isCommonUnusedAutorelease(ObjCMessageExpr *E) {
+ if (isPlusOneAssignBeforeOrAfterAutorelease(E))
+ return true;
+ if (isReturnedAfterAutorelease(E))
+ return true;
+ return false;
+ }
+
+ bool isReturnedAfterAutorelease(ObjCMessageExpr *E) {
+ Expr *Rec = E->getInstanceReceiver();
+ if (!Rec)
+ return false;
+
+ Decl *RefD = getReferencedDecl(Rec);
+ if (!RefD)
+ return false;
+
+ Stmt *nextStmt = getNextStmt(E);
+ if (!nextStmt)
+ return false;
+
+ // Check for "return <variable>;".
+
+ if (ReturnStmt *RetS = dyn_cast<ReturnStmt>(nextStmt))
+ return RefD == getReferencedDecl(RetS->getRetValue());
+
+ return false;
+ }
+
+ bool isPlusOneAssignBeforeOrAfterAutorelease(ObjCMessageExpr *E) {
+ Expr *Rec = E->getInstanceReceiver();
+ if (!Rec)
+ return false;
+
+ Decl *RefD = getReferencedDecl(Rec);
+ if (!RefD)
+ return false;
+
+ Stmt *prevStmt, *nextStmt;
+ std::tie(prevStmt, nextStmt) = getPreviousAndNextStmt(E);
+
+ return isPlusOneAssignToVar(prevStmt, RefD) ||
+ isPlusOneAssignToVar(nextStmt, RefD);
+ }
+
+ bool isPlusOneAssignToVar(Stmt *S, Decl *RefD) {
+ if (!S)
+ return false;
+
+ // Check for "RefD = [+1 retained object];".
+
+ if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(S)) {
+ if (RefD != getReferencedDecl(Bop->getLHS()))
+ return false;
+ if (isPlusOneAssign(Bop))
+ return true;
+ return false;
+ }
+
+ if (DeclStmt *DS = dyn_cast<DeclStmt>(S)) {
+ if (DS->isSingleDecl() && DS->getSingleDecl() == RefD) {
+ if (VarDecl *VD = dyn_cast<VarDecl>(RefD))
+ return isPlusOne(VD->getInit());
+ }
+ return false;
+ }
+
+ return false;
+ }
+
+ Stmt *getNextStmt(Expr *E) {
+ return getPreviousAndNextStmt(E).second;
+ }
+
+ std::pair<Stmt *, Stmt *> getPreviousAndNextStmt(Expr *E) {
+ Stmt *prevStmt = nullptr, *nextStmt = nullptr;
+ if (!E)
+ return std::make_pair(prevStmt, nextStmt);
+
+ Stmt *OuterS = E, *InnerS;
+ do {
+ InnerS = OuterS;
+ OuterS = StmtMap->getParent(InnerS);
+ }
+ while (OuterS && (isa<ParenExpr>(OuterS) ||
+ isa<CastExpr>(OuterS) ||
+ isa<ExprWithCleanups>(OuterS)));
+
+ if (!OuterS)
+ return std::make_pair(prevStmt, nextStmt);
+
+ Stmt::child_iterator currChildS = OuterS->child_begin();
+ Stmt::child_iterator childE = OuterS->child_end();
+ Stmt::child_iterator prevChildS = childE;
+ for (; currChildS != childE; ++currChildS) {
+ if (*currChildS == InnerS)
+ break;
+ prevChildS = currChildS;
+ }
+
+ if (prevChildS != childE) {
+ prevStmt = *prevChildS;
+ if (prevStmt)
+ prevStmt = prevStmt->IgnoreImplicit();
+ }
+
+ if (currChildS == childE)
+ return std::make_pair(prevStmt, nextStmt);
+ ++currChildS;
+ if (currChildS == childE)
+ return std::make_pair(prevStmt, nextStmt);
+
+ nextStmt = *currChildS;
+ if (nextStmt)
+ nextStmt = nextStmt->IgnoreImplicit();
+
+ return std::make_pair(prevStmt, nextStmt);
+ }
+
+ Decl *getReferencedDecl(Expr *E) {
+ if (!E)
+ return nullptr;
+
+ E = E->IgnoreParenCasts();
+ if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
+ switch (ME->getMethodFamily()) {
+ case OMF_copy:
+ case OMF_autorelease:
+ case OMF_release:
+ case OMF_retain:
+ return getReferencedDecl(ME->getInstanceReceiver());
+ default:
+ return nullptr;
+ }
+ }
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
+ return DRE->getDecl();
+ if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
+ return ME->getMemberDecl();
+ if (ObjCIvarRefExpr *IRE = dyn_cast<ObjCIvarRefExpr>(E))
+ return IRE->getDecl();
+
+ return nullptr;
+ }
+
+ /// \brief Check if the retain/release is due to a GCD/XPC macro that are
+ /// defined as:
+ ///
+ /// #define dispatch_retain(object) ({ dispatch_object_t _o = (object); _dispatch_object_validate(_o); (void)[_o retain]; })
+ /// #define dispatch_release(object) ({ dispatch_object_t _o = (object); _dispatch_object_validate(_o); [_o release]; })
+ /// #define xpc_retain(object) ({ xpc_object_t _o = (object); _xpc_object_validate(_o); [_o retain]; })
+ /// #define xpc_release(object) ({ xpc_object_t _o = (object); _xpc_object_validate(_o); [_o release]; })
+ ///
+ /// and return the top container which is the StmtExpr and the macro argument
+ /// expression.
+ void checkForGCDOrXPC(ObjCMessageExpr *Msg, Expr *&RecContainer,
+ Expr *&Rec, SourceRange &RecRange) {
+ SourceLocation Loc = Msg->getExprLoc();
+ if (!Loc.isMacroID())
+ return;
+ SourceManager &SM = Pass.Ctx.getSourceManager();
+ StringRef MacroName = Lexer::getImmediateMacroName(Loc, SM,
+ Pass.Ctx.getLangOpts());
+ bool isGCDOrXPC = llvm::StringSwitch<bool>(MacroName)
+ .Case("dispatch_retain", true)
+ .Case("dispatch_release", true)
+ .Case("xpc_retain", true)
+ .Case("xpc_release", true)
+ .Default(false);
+ if (!isGCDOrXPC)
+ return;
+
+ StmtExpr *StmtE = nullptr;
+ Stmt *S = Msg;
+ while (S) {
+ if (StmtExpr *SE = dyn_cast<StmtExpr>(S)) {
+ StmtE = SE;
+ break;
+ }
+ S = StmtMap->getParent(S);
+ }
+
+ if (!StmtE)
+ return;
+
+ Stmt::child_range StmtExprChild = StmtE->children();
+ if (!StmtExprChild)
+ return;
+ CompoundStmt *CompS = dyn_cast_or_null<CompoundStmt>(*StmtExprChild);
+ if (!CompS)
+ return;
+
+ Stmt::child_range CompStmtChild = CompS->children();
+ if (!CompStmtChild)
+ return;
+ DeclStmt *DeclS = dyn_cast_or_null<DeclStmt>(*CompStmtChild);
+ if (!DeclS)
+ return;
+ if (!DeclS->isSingleDecl())
+ return;
+ VarDecl *VD = dyn_cast_or_null<VarDecl>(DeclS->getSingleDecl());
+ if (!VD)
+ return;
+ Expr *Init = VD->getInit();
+ if (!Init)
+ return;
+
+ RecContainer = StmtE;
+ Rec = Init->IgnoreParenImpCasts();
+ if (ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Rec))
+ Rec = EWC->getSubExpr()->IgnoreParenImpCasts();
+ RecRange = Rec->getSourceRange();
+ if (SM.isMacroArgExpansion(RecRange.getBegin()))
+ RecRange.setBegin(SM.getImmediateSpellingLoc(RecRange.getBegin()));
+ if (SM.isMacroArgExpansion(RecRange.getEnd()))
+ RecRange.setEnd(SM.getImmediateSpellingLoc(RecRange.getEnd()));
+ }
+
+ void clearDiagnostics(SourceLocation loc) const {
+ Pass.TA.clearDiagnostic(diag::err_arc_illegal_explicit_message,
+ diag::err_unavailable,
+ diag::err_unavailable_message,
+ loc);
+ }
+
+ bool isDelegateMessage(Expr *E) const {
+ if (!E) return false;
+
+ E = E->IgnoreParenCasts();
+
+ // Also look through property-getter sugar.
+ if (PseudoObjectExpr *pseudoOp = dyn_cast<PseudoObjectExpr>(E))
+ E = pseudoOp->getResultExpr()->IgnoreImplicit();
+
+ if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E))
+ return (ME->isInstanceMessage() && ME->getSelector() == DelegateSel);
+
+ return false;
+ }
+
+ bool isInAtFinally(Expr *E) const {
+ assert(E);
+ Stmt *S = E;
+ while (S) {
+ if (isa<ObjCAtFinallyStmt>(S))
+ return true;
+ S = StmtMap->getParent(S);
+ }
+
+ return false;
+ }
+
+ bool isRemovable(Expr *E) const {
+ return Removables.count(E);
+ }
+
+ bool tryRemoving(Expr *E) const {
+ if (isRemovable(E)) {
+ Pass.TA.removeStmt(E);
+ return true;
+ }
+
+ Stmt *parent = StmtMap->getParent(E);
+
+ if (ImplicitCastExpr *castE = dyn_cast_or_null<ImplicitCastExpr>(parent))
+ return tryRemoving(castE);
+
+ if (ParenExpr *parenE = dyn_cast_or_null<ParenExpr>(parent))
+ return tryRemoving(parenE);
+
+ if (BinaryOperator *
+ bopE = dyn_cast_or_null<BinaryOperator>(parent)) {
+ if (bopE->getOpcode() == BO_Comma && bopE->getLHS() == E &&
+ isRemovable(bopE)) {
+ Pass.TA.replace(bopE->getSourceRange(), bopE->getRHS()->getSourceRange());
+ return true;
+ }
+ }
+
+ return false;
+ }
+
+};
+
+} // anonymous namespace
+
+void trans::removeRetainReleaseDeallocFinalize(MigrationPass &pass) {
+ BodyTransform<RetainReleaseDeallocRemover> trans(pass);
+ trans.TraverseDecl(pass.Ctx.getTranslationUnitDecl());
+}
diff --git a/contrib/llvm/tools/clang/lib/ARCMigrate/TransUnbridgedCasts.cpp b/contrib/llvm/tools/clang/lib/ARCMigrate/TransUnbridgedCasts.cpp
new file mode 100644
index 0000000..7ca4955
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/ARCMigrate/TransUnbridgedCasts.cpp
@@ -0,0 +1,469 @@
+//===--- TransUnbridgedCasts.cpp - Transformations to ARC mode ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// rewriteUnbridgedCasts:
+//
+// A cast of non-objc pointer to an objc one is checked. If the non-objc pointer
+// is from a file-level variable, __bridge cast is used to convert it.
+// For the result of a function call that we know is +1/+0,
+// __bridge/CFBridgingRelease is used.
+//
+// NSString *str = (NSString *)kUTTypePlainText;
+// str = b ? kUTTypeRTF : kUTTypePlainText;
+// NSString *_uuidString = (NSString *)CFUUIDCreateString(kCFAllocatorDefault,
+// _uuid);
+// ---->
+// NSString *str = (__bridge NSString *)kUTTypePlainText;
+// str = (__bridge NSString *)(b ? kUTTypeRTF : kUTTypePlainText);
+// NSString *_uuidString = (NSString *)
+// CFBridgingRelease(CFUUIDCreateString(kCFAllocatorDefault, _uuid));
+//
+// For a C pointer to ObjC, for casting 'self', __bridge is used.
+//
+// CFStringRef str = (CFStringRef)self;
+// ---->
+// CFStringRef str = (__bridge CFStringRef)self;
+//
+// Uses of Block_copy/Block_release macros are rewritten:
+//
+// c = Block_copy(b);
+// Block_release(c);
+// ---->
+// c = [b copy];
+// <removed>
+//
+//===----------------------------------------------------------------------===//
+
+#include "Transforms.h"
+#include "Internals.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/ParentMap.h"
+#include "clang/Analysis/DomainSpecific/CocoaConventions.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Lex/Lexer.h"
+#include "clang/Sema/SemaDiagnostic.h"
+#include "llvm/ADT/SmallString.h"
+
+using namespace clang;
+using namespace arcmt;
+using namespace trans;
+
+namespace {
+
+class UnbridgedCastRewriter : public RecursiveASTVisitor<UnbridgedCastRewriter>{
+ MigrationPass &Pass;
+ IdentifierInfo *SelfII;
+ std::unique_ptr<ParentMap> StmtMap;
+ Decl *ParentD;
+ Stmt *Body;
+ mutable std::unique_ptr<ExprSet> Removables;
+
+public:
+ UnbridgedCastRewriter(MigrationPass &pass)
+ : Pass(pass), ParentD(nullptr), Body(nullptr) {
+ SelfII = &Pass.Ctx.Idents.get("self");
+ }
+
+ void transformBody(Stmt *body, Decl *ParentD) {
+ this->ParentD = ParentD;
+ Body = body;
+ StmtMap.reset(new ParentMap(body));
+ TraverseStmt(body);
+ }
+
+ bool TraverseBlockDecl(BlockDecl *D) {
+ // ParentMap does not enter into a BlockDecl to record its stmts, so use a
+ // new UnbridgedCastRewriter to handle the block.
+ UnbridgedCastRewriter(Pass).transformBody(D->getBody(), D);
+ return true;
+ }
+
+ bool VisitCastExpr(CastExpr *E) {
+ if (E->getCastKind() != CK_CPointerToObjCPointerCast &&
+ E->getCastKind() != CK_BitCast &&
+ E->getCastKind() != CK_AnyPointerToBlockPointerCast)
+ return true;
+
+ QualType castType = E->getType();
+ Expr *castExpr = E->getSubExpr();
+ QualType castExprType = castExpr->getType();
+
+ if (castType->isObjCRetainableType() == castExprType->isObjCRetainableType())
+ return true;
+
+ bool exprRetainable = castExprType->isObjCIndirectLifetimeType();
+ bool castRetainable = castType->isObjCIndirectLifetimeType();
+ if (exprRetainable == castRetainable) return true;
+
+ if (castExpr->isNullPointerConstant(Pass.Ctx,
+ Expr::NPC_ValueDependentIsNull))
+ return true;
+
+ SourceLocation loc = castExpr->getExprLoc();
+ if (loc.isValid() && Pass.Ctx.getSourceManager().isInSystemHeader(loc))
+ return true;
+
+ if (castType->isObjCRetainableType())
+ transformNonObjCToObjCCast(E);
+ else
+ transformObjCToNonObjCCast(E);
+
+ return true;
+ }
+
+private:
+ void transformNonObjCToObjCCast(CastExpr *E) {
+ if (!E) return;
+
+ // Global vars are assumed that are cast as unretained.
+ if (isGlobalVar(E))
+ if (E->getSubExpr()->getType()->isPointerType()) {
+ castToObjCObject(E, /*retained=*/false);
+ return;
+ }
+
+ // If the cast is directly over the result of a Core Foundation function
+ // try to figure out whether it should be cast as retained or unretained.
+ Expr *inner = E->IgnoreParenCasts();
+ if (CallExpr *callE = dyn_cast<CallExpr>(inner)) {
+ if (FunctionDecl *FD = callE->getDirectCallee()) {
+ if (FD->hasAttr<CFReturnsRetainedAttr>()) {
+ castToObjCObject(E, /*retained=*/true);
+ return;
+ }
+ if (FD->hasAttr<CFReturnsNotRetainedAttr>()) {
+ castToObjCObject(E, /*retained=*/false);
+ return;
+ }
+ if (FD->isGlobal() &&
+ FD->getIdentifier() &&
+ ento::cocoa::isRefType(E->getSubExpr()->getType(), "CF",
+ FD->getIdentifier()->getName())) {
+ StringRef fname = FD->getIdentifier()->getName();
+ if (fname.endswith("Retain") ||
+ fname.find("Create") != StringRef::npos ||
+ fname.find("Copy") != StringRef::npos) {
+ // Do not migrate to couple of bridge transfer casts which
+ // cancel each other out. Leave it unchanged so error gets user
+ // attention instead.
+ if (FD->getName() == "CFRetain" &&
+ FD->getNumParams() == 1 &&
+ FD->getParent()->isTranslationUnit() &&
+ FD->isExternallyVisible()) {
+ Expr *Arg = callE->getArg(0);
+ if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
+ const Expr *sub = ICE->getSubExpr();
+ QualType T = sub->getType();
+ if (T->isObjCObjectPointerType())
+ return;
+ }
+ }
+ castToObjCObject(E, /*retained=*/true);
+ return;
+ }
+
+ if (fname.find("Get") != StringRef::npos) {
+ castToObjCObject(E, /*retained=*/false);
+ return;
+ }
+ }
+ }
+ }
+
+ // If returning an ivar or a member of an ivar from a +0 method, use
+ // a __bridge cast.
+ Expr *base = inner->IgnoreParenImpCasts();
+ while (isa<MemberExpr>(base))
+ base = cast<MemberExpr>(base)->getBase()->IgnoreParenImpCasts();
+ if (isa<ObjCIvarRefExpr>(base) &&
+ isa<ReturnStmt>(StmtMap->getParentIgnoreParenCasts(E))) {
+ if (ObjCMethodDecl *method = dyn_cast_or_null<ObjCMethodDecl>(ParentD)) {
+ if (!method->hasAttr<NSReturnsRetainedAttr>()) {
+ castToObjCObject(E, /*retained=*/false);
+ return;
+ }
+ }
+ }
+ }
+
+ void castToObjCObject(CastExpr *E, bool retained) {
+ rewriteToBridgedCast(E, retained ? OBC_BridgeTransfer : OBC_Bridge);
+ }
+
+ void rewriteToBridgedCast(CastExpr *E, ObjCBridgeCastKind Kind) {
+ Transaction Trans(Pass.TA);
+ rewriteToBridgedCast(E, Kind, Trans);
+ }
+
+ void rewriteToBridgedCast(CastExpr *E, ObjCBridgeCastKind Kind,
+ Transaction &Trans) {
+ TransformActions &TA = Pass.TA;
+
+ // We will remove the compiler diagnostic.
+ if (!TA.hasDiagnostic(diag::err_arc_mismatched_cast,
+ diag::err_arc_cast_requires_bridge,
+ E->getLocStart())) {
+ Trans.abort();
+ return;
+ }
+
+ StringRef bridge;
+ switch(Kind) {
+ case OBC_Bridge:
+ bridge = "__bridge "; break;
+ case OBC_BridgeTransfer:
+ bridge = "__bridge_transfer "; break;
+ case OBC_BridgeRetained:
+ bridge = "__bridge_retained "; break;
+ }
+
+ TA.clearDiagnostic(diag::err_arc_mismatched_cast,
+ diag::err_arc_cast_requires_bridge,
+ E->getLocStart());
+ if (Kind == OBC_Bridge || !Pass.CFBridgingFunctionsDefined()) {
+ if (CStyleCastExpr *CCE = dyn_cast<CStyleCastExpr>(E)) {
+ TA.insertAfterToken(CCE->getLParenLoc(), bridge);
+ } else {
+ SourceLocation insertLoc = E->getSubExpr()->getLocStart();
+ SmallString<128> newCast;
+ newCast += '(';
+ newCast += bridge;
+ newCast += E->getType().getAsString(Pass.Ctx.getPrintingPolicy());
+ newCast += ')';
+
+ if (isa<ParenExpr>(E->getSubExpr())) {
+ TA.insert(insertLoc, newCast.str());
+ } else {
+ newCast += '(';
+ TA.insert(insertLoc, newCast.str());
+ TA.insertAfterToken(E->getLocEnd(), ")");
+ }
+ }
+ } else {
+ assert(Kind == OBC_BridgeTransfer || Kind == OBC_BridgeRetained);
+ SmallString<32> BridgeCall;
+
+ Expr *WrapE = E->getSubExpr();
+ SourceLocation InsertLoc = WrapE->getLocStart();
+
+ SourceManager &SM = Pass.Ctx.getSourceManager();
+ char PrevChar = *SM.getCharacterData(InsertLoc.getLocWithOffset(-1));
+ if (Lexer::isIdentifierBodyChar(PrevChar, Pass.Ctx.getLangOpts()))
+ BridgeCall += ' ';
+
+ if (Kind == OBC_BridgeTransfer)
+ BridgeCall += "CFBridgingRelease";
+ else
+ BridgeCall += "CFBridgingRetain";
+
+ if (isa<ParenExpr>(WrapE)) {
+ TA.insert(InsertLoc, BridgeCall);
+ } else {
+ BridgeCall += '(';
+ TA.insert(InsertLoc, BridgeCall);
+ TA.insertAfterToken(WrapE->getLocEnd(), ")");
+ }
+ }
+ }
+
+ void rewriteCastForCFRetain(CastExpr *castE, CallExpr *callE) {
+ Transaction Trans(Pass.TA);
+ Pass.TA.replace(callE->getSourceRange(), callE->getArg(0)->getSourceRange());
+ rewriteToBridgedCast(castE, OBC_BridgeRetained, Trans);
+ }
+
+ void getBlockMacroRanges(CastExpr *E, SourceRange &Outer, SourceRange &Inner) {
+ SourceManager &SM = Pass.Ctx.getSourceManager();
+ SourceLocation Loc = E->getExprLoc();
+ assert(Loc.isMacroID());
+ SourceLocation MacroBegin, MacroEnd;
+ std::tie(MacroBegin, MacroEnd) = SM.getImmediateExpansionRange(Loc);
+ SourceRange SubRange = E->getSubExpr()->IgnoreParenImpCasts()->getSourceRange();
+ SourceLocation InnerBegin = SM.getImmediateMacroCallerLoc(SubRange.getBegin());
+ SourceLocation InnerEnd = SM.getImmediateMacroCallerLoc(SubRange.getEnd());
+
+ Outer = SourceRange(MacroBegin, MacroEnd);
+ Inner = SourceRange(InnerBegin, InnerEnd);
+ }
+
+ void rewriteBlockCopyMacro(CastExpr *E) {
+ SourceRange OuterRange, InnerRange;
+ getBlockMacroRanges(E, OuterRange, InnerRange);
+
+ Transaction Trans(Pass.TA);
+ Pass.TA.replace(OuterRange, InnerRange);
+ Pass.TA.insert(InnerRange.getBegin(), "[");
+ Pass.TA.insertAfterToken(InnerRange.getEnd(), " copy]");
+ Pass.TA.clearDiagnostic(diag::err_arc_mismatched_cast,
+ diag::err_arc_cast_requires_bridge,
+ OuterRange);
+ }
+
+ void removeBlockReleaseMacro(CastExpr *E) {
+ SourceRange OuterRange, InnerRange;
+ getBlockMacroRanges(E, OuterRange, InnerRange);
+
+ Transaction Trans(Pass.TA);
+ Pass.TA.clearDiagnostic(diag::err_arc_mismatched_cast,
+ diag::err_arc_cast_requires_bridge,
+ OuterRange);
+ if (!hasSideEffects(E, Pass.Ctx)) {
+ if (tryRemoving(cast<Expr>(StmtMap->getParentIgnoreParenCasts(E))))
+ return;
+ }
+ Pass.TA.replace(OuterRange, InnerRange);
+ }
+
+ bool tryRemoving(Expr *E) const {
+ if (!Removables) {
+ Removables.reset(new ExprSet);
+ collectRemovables(Body, *Removables);
+ }
+
+ if (Removables->count(E)) {
+ Pass.TA.removeStmt(E);
+ return true;
+ }
+
+ return false;
+ }
+
+ void transformObjCToNonObjCCast(CastExpr *E) {
+ SourceLocation CastLoc = E->getExprLoc();
+ if (CastLoc.isMacroID()) {
+ StringRef MacroName = Lexer::getImmediateMacroName(CastLoc,
+ Pass.Ctx.getSourceManager(),
+ Pass.Ctx.getLangOpts());
+ if (MacroName == "Block_copy") {
+ rewriteBlockCopyMacro(E);
+ return;
+ }
+ if (MacroName == "Block_release") {
+ removeBlockReleaseMacro(E);
+ return;
+ }
+ }
+
+ if (isSelf(E->getSubExpr()))
+ return rewriteToBridgedCast(E, OBC_Bridge);
+
+ CallExpr *callE;
+ if (isPassedToCFRetain(E, callE))
+ return rewriteCastForCFRetain(E, callE);
+
+ ObjCMethodFamily family = getFamilyOfMessage(E->getSubExpr());
+ if (family == OMF_retain)
+ return rewriteToBridgedCast(E, OBC_BridgeRetained);
+
+ if (family == OMF_autorelease || family == OMF_release) {
+ std::string err = "it is not safe to cast to '";
+ err += E->getType().getAsString(Pass.Ctx.getPrintingPolicy());
+ err += "' the result of '";
+ err += family == OMF_autorelease ? "autorelease" : "release";
+ err += "' message; a __bridge cast may result in a pointer to a "
+ "destroyed object and a __bridge_retained may leak the object";
+ Pass.TA.reportError(err, E->getLocStart(),
+ E->getSubExpr()->getSourceRange());
+ Stmt *parent = E;
+ do {
+ parent = StmtMap->getParentIgnoreParenImpCasts(parent);
+ } while (parent && isa<ExprWithCleanups>(parent));
+
+ if (ReturnStmt *retS = dyn_cast_or_null<ReturnStmt>(parent)) {
+ std::string note = "remove the cast and change return type of function "
+ "to '";
+ note += E->getSubExpr()->getType().getAsString(Pass.Ctx.getPrintingPolicy());
+ note += "' to have the object automatically autoreleased";
+ Pass.TA.reportNote(note, retS->getLocStart());
+ }
+ }
+
+ Expr *subExpr = E->getSubExpr();
+
+ // Look through pseudo-object expressions.
+ if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(subExpr)) {
+ subExpr = pseudo->getResultExpr();
+ assert(subExpr && "no result for pseudo-object of non-void type?");
+ }
+
+ if (ImplicitCastExpr *implCE = dyn_cast<ImplicitCastExpr>(subExpr)) {
+ if (implCE->getCastKind() == CK_ARCConsumeObject)
+ return rewriteToBridgedCast(E, OBC_BridgeRetained);
+ if (implCE->getCastKind() == CK_ARCReclaimReturnedObject)
+ return rewriteToBridgedCast(E, OBC_Bridge);
+ }
+
+ bool isConsumed = false;
+ if (isPassedToCParamWithKnownOwnership(E, isConsumed))
+ return rewriteToBridgedCast(E, isConsumed ? OBC_BridgeRetained
+ : OBC_Bridge);
+ }
+
+ static ObjCMethodFamily getFamilyOfMessage(Expr *E) {
+ E = E->IgnoreParenCasts();
+ if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E))
+ return ME->getMethodFamily();
+
+ return OMF_None;
+ }
+
+ bool isPassedToCFRetain(Expr *E, CallExpr *&callE) const {
+ if ((callE = dyn_cast_or_null<CallExpr>(
+ StmtMap->getParentIgnoreParenImpCasts(E))))
+ if (FunctionDecl *
+ FD = dyn_cast_or_null<FunctionDecl>(callE->getCalleeDecl()))
+ if (FD->getName() == "CFRetain" && FD->getNumParams() == 1 &&
+ FD->getParent()->isTranslationUnit() &&
+ FD->isExternallyVisible())
+ return true;
+
+ return false;
+ }
+
+ bool isPassedToCParamWithKnownOwnership(Expr *E, bool &isConsumed) const {
+ if (CallExpr *callE = dyn_cast_or_null<CallExpr>(
+ StmtMap->getParentIgnoreParenImpCasts(E)))
+ if (FunctionDecl *
+ FD = dyn_cast_or_null<FunctionDecl>(callE->getCalleeDecl())) {
+ unsigned i = 0;
+ for (unsigned e = callE->getNumArgs(); i != e; ++i) {
+ Expr *arg = callE->getArg(i);
+ if (arg == E || arg->IgnoreParenImpCasts() == E)
+ break;
+ }
+ if (i < callE->getNumArgs() && i < FD->getNumParams()) {
+ ParmVarDecl *PD = FD->getParamDecl(i);
+ if (PD->hasAttr<CFConsumedAttr>()) {
+ isConsumed = true;
+ return true;
+ }
+ }
+ }
+
+ return false;
+ }
+
+ bool isSelf(Expr *E) const {
+ E = E->IgnoreParenLValueCasts();
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
+ if (ImplicitParamDecl *IPD = dyn_cast<ImplicitParamDecl>(DRE->getDecl()))
+ if (IPD->getIdentifier() == SelfII)
+ return true;
+
+ return false;
+ }
+};
+
+} // end anonymous namespace
+
+void trans::rewriteUnbridgedCasts(MigrationPass &pass) {
+ BodyTransform<UnbridgedCastRewriter> trans(pass);
+ trans.TraverseDecl(pass.Ctx.getTranslationUnitDecl());
+}
diff --git a/contrib/llvm/tools/clang/lib/ARCMigrate/TransUnusedInitDelegate.cpp b/contrib/llvm/tools/clang/lib/ARCMigrate/TransUnusedInitDelegate.cpp
new file mode 100644
index 0000000..70370ec
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/ARCMigrate/TransUnusedInitDelegate.cpp
@@ -0,0 +1,78 @@
+//===--- TransUnusedInitDelegate.cpp - Transformations to ARC mode --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+// Transformations:
+//===----------------------------------------------------------------------===//
+//
+// rewriteUnusedInitDelegate:
+//
+// Rewrites an unused result of calling a delegate initialization, to assigning
+// the result to self.
+// e.g
+// [self init];
+// ---->
+// self = [self init];
+//
+//===----------------------------------------------------------------------===//
+
+#include "Transforms.h"
+#include "Internals.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/Sema/SemaDiagnostic.h"
+
+using namespace clang;
+using namespace arcmt;
+using namespace trans;
+
+namespace {
+
+class UnusedInitRewriter : public RecursiveASTVisitor<UnusedInitRewriter> {
+ Stmt *Body;
+ MigrationPass &Pass;
+
+ ExprSet Removables;
+
+public:
+ UnusedInitRewriter(MigrationPass &pass)
+ : Body(nullptr), Pass(pass) { }
+
+ void transformBody(Stmt *body, Decl *ParentD) {
+ Body = body;
+ collectRemovables(body, Removables);
+ TraverseStmt(body);
+ }
+
+ bool VisitObjCMessageExpr(ObjCMessageExpr *ME) {
+ if (ME->isDelegateInitCall() &&
+ isRemovable(ME) &&
+ Pass.TA.hasDiagnostic(diag::err_arc_unused_init_message,
+ ME->getExprLoc())) {
+ Transaction Trans(Pass.TA);
+ Pass.TA.clearDiagnostic(diag::err_arc_unused_init_message,
+ ME->getExprLoc());
+ SourceRange ExprRange = ME->getSourceRange();
+ Pass.TA.insert(ExprRange.getBegin(), "if (!(self = ");
+ std::string retStr = ")) return ";
+ retStr += getNilString(Pass);
+ Pass.TA.insertAfterToken(ExprRange.getEnd(), retStr);
+ }
+ return true;
+ }
+
+private:
+ bool isRemovable(Expr *E) const {
+ return Removables.count(E);
+ }
+};
+
+} // anonymous namespace
+
+void trans::rewriteUnusedInitDelegate(MigrationPass &pass) {
+ BodyTransform<UnusedInitRewriter> trans(pass);
+ trans.TraverseDecl(pass.Ctx.getTranslationUnitDecl());
+}
diff --git a/contrib/llvm/tools/clang/lib/ARCMigrate/TransZeroOutPropsInDealloc.cpp b/contrib/llvm/tools/clang/lib/ARCMigrate/TransZeroOutPropsInDealloc.cpp
new file mode 100644
index 0000000..76ce0ec
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/ARCMigrate/TransZeroOutPropsInDealloc.cpp
@@ -0,0 +1,227 @@
+//===--- TransZeroOutPropsInDealloc.cpp - Transformations to ARC mode -----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// removeZeroOutPropsInDealloc:
+//
+// Removes zero'ing out "strong" @synthesized properties in a -dealloc method.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Transforms.h"
+#include "Internals.h"
+#include "clang/AST/ASTContext.h"
+
+using namespace clang;
+using namespace arcmt;
+using namespace trans;
+
+namespace {
+
+class ZeroOutInDeallocRemover :
+ public RecursiveASTVisitor<ZeroOutInDeallocRemover> {
+ typedef RecursiveASTVisitor<ZeroOutInDeallocRemover> base;
+
+ MigrationPass &Pass;
+
+ llvm::DenseMap<ObjCPropertyDecl*, ObjCPropertyImplDecl*> SynthesizedProperties;
+ ImplicitParamDecl *SelfD;
+ ExprSet Removables;
+ Selector FinalizeSel;
+
+public:
+ ZeroOutInDeallocRemover(MigrationPass &pass) : Pass(pass), SelfD(nullptr) {
+ FinalizeSel =
+ Pass.Ctx.Selectors.getNullarySelector(&Pass.Ctx.Idents.get("finalize"));
+ }
+
+ bool VisitObjCMessageExpr(ObjCMessageExpr *ME) {
+ ASTContext &Ctx = Pass.Ctx;
+ TransformActions &TA = Pass.TA;
+
+ if (ME->getReceiverKind() != ObjCMessageExpr::Instance)
+ return true;
+ Expr *receiver = ME->getInstanceReceiver();
+ if (!receiver)
+ return true;
+
+ DeclRefExpr *refE = dyn_cast<DeclRefExpr>(receiver->IgnoreParenCasts());
+ if (!refE || refE->getDecl() != SelfD)
+ return true;
+
+ bool BackedBySynthesizeSetter = false;
+ for (llvm::DenseMap<ObjCPropertyDecl*, ObjCPropertyImplDecl*>::iterator
+ P = SynthesizedProperties.begin(),
+ E = SynthesizedProperties.end(); P != E; ++P) {
+ ObjCPropertyDecl *PropDecl = P->first;
+ if (PropDecl->getSetterName() == ME->getSelector()) {
+ BackedBySynthesizeSetter = true;
+ break;
+ }
+ }
+ if (!BackedBySynthesizeSetter)
+ return true;
+
+ // Remove the setter message if RHS is null
+ Transaction Trans(TA);
+ Expr *RHS = ME->getArg(0);
+ bool RHSIsNull =
+ RHS->isNullPointerConstant(Ctx,
+ Expr::NPC_ValueDependentIsNull);
+ if (RHSIsNull && isRemovable(ME))
+ TA.removeStmt(ME);
+
+ return true;
+ }
+
+ bool VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
+ if (isZeroingPropIvar(POE) && isRemovable(POE)) {
+ Transaction Trans(Pass.TA);
+ Pass.TA.removeStmt(POE);
+ }
+
+ return true;
+ }
+
+ bool VisitBinaryOperator(BinaryOperator *BOE) {
+ if (isZeroingPropIvar(BOE) && isRemovable(BOE)) {
+ Transaction Trans(Pass.TA);
+ Pass.TA.removeStmt(BOE);
+ }
+
+ return true;
+ }
+
+ bool TraverseObjCMethodDecl(ObjCMethodDecl *D) {
+ if (D->getMethodFamily() != OMF_dealloc &&
+ !(D->isInstanceMethod() && D->getSelector() == FinalizeSel))
+ return true;
+ if (!D->hasBody())
+ return true;
+
+ ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(D->getDeclContext());
+ if (!IMD)
+ return true;
+
+ SelfD = D->getSelfDecl();
+ collectRemovables(D->getBody(), Removables);
+
+ // For a 'dealloc' method use, find all property implementations in
+ // this class implementation.
+ for (auto *PID : IMD->property_impls()) {
+ if (PID->getPropertyImplementation() ==
+ ObjCPropertyImplDecl::Synthesize) {
+ ObjCPropertyDecl *PD = PID->getPropertyDecl();
+ ObjCMethodDecl *setterM = PD->getSetterMethodDecl();
+ if (!(setterM && setterM->isDefined())) {
+ ObjCPropertyDecl::PropertyAttributeKind AttrKind =
+ PD->getPropertyAttributes();
+ if (AttrKind &
+ (ObjCPropertyDecl::OBJC_PR_retain |
+ ObjCPropertyDecl::OBJC_PR_copy |
+ ObjCPropertyDecl::OBJC_PR_strong))
+ SynthesizedProperties[PD] = PID;
+ }
+ }
+ }
+
+ // Now, remove all zeroing of ivars etc.
+ base::TraverseObjCMethodDecl(D);
+
+ // clear out for next method.
+ SynthesizedProperties.clear();
+ SelfD = nullptr;
+ Removables.clear();
+ return true;
+ }
+
+ bool TraverseFunctionDecl(FunctionDecl *D) { return true; }
+ bool TraverseBlockDecl(BlockDecl *block) { return true; }
+ bool TraverseBlockExpr(BlockExpr *block) { return true; }
+
+private:
+ bool isRemovable(Expr *E) const {
+ return Removables.count(E);
+ }
+
+ bool isZeroingPropIvar(Expr *E) {
+ E = E->IgnoreParens();
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
+ return isZeroingPropIvar(BO);
+ if (PseudoObjectExpr *PO = dyn_cast<PseudoObjectExpr>(E))
+ return isZeroingPropIvar(PO);
+ return false;
+ }
+
+ bool isZeroingPropIvar(BinaryOperator *BOE) {
+ if (BOE->getOpcode() == BO_Comma)
+ return isZeroingPropIvar(BOE->getLHS()) &&
+ isZeroingPropIvar(BOE->getRHS());
+
+ if (BOE->getOpcode() != BO_Assign)
+ return false;
+
+ Expr *LHS = BOE->getLHS();
+ if (ObjCIvarRefExpr *IV = dyn_cast<ObjCIvarRefExpr>(LHS)) {
+ ObjCIvarDecl *IVDecl = IV->getDecl();
+ if (!IVDecl->getType()->isObjCObjectPointerType())
+ return false;
+ bool IvarBacksPropertySynthesis = false;
+ for (llvm::DenseMap<ObjCPropertyDecl*, ObjCPropertyImplDecl*>::iterator
+ P = SynthesizedProperties.begin(),
+ E = SynthesizedProperties.end(); P != E; ++P) {
+ ObjCPropertyImplDecl *PropImpDecl = P->second;
+ if (PropImpDecl && PropImpDecl->getPropertyIvarDecl() == IVDecl) {
+ IvarBacksPropertySynthesis = true;
+ break;
+ }
+ }
+ if (!IvarBacksPropertySynthesis)
+ return false;
+ }
+ else
+ return false;
+
+ return isZero(BOE->getRHS());
+ }
+
+ bool isZeroingPropIvar(PseudoObjectExpr *PO) {
+ BinaryOperator *BO = dyn_cast<BinaryOperator>(PO->getSyntacticForm());
+ if (!BO) return false;
+ if (BO->getOpcode() != BO_Assign) return false;
+
+ ObjCPropertyRefExpr *PropRefExp =
+ dyn_cast<ObjCPropertyRefExpr>(BO->getLHS()->IgnoreParens());
+ if (!PropRefExp) return false;
+
+ // TODO: Using implicit property decl.
+ if (PropRefExp->isImplicitProperty())
+ return false;
+
+ if (ObjCPropertyDecl *PDecl = PropRefExp->getExplicitProperty()) {
+ if (!SynthesizedProperties.count(PDecl))
+ return false;
+ }
+
+ return isZero(cast<OpaqueValueExpr>(BO->getRHS())->getSourceExpr());
+ }
+
+ bool isZero(Expr *E) {
+ if (E->isNullPointerConstant(Pass.Ctx, Expr::NPC_ValueDependentIsNull))
+ return true;
+
+ return isZeroingPropIvar(E);
+ }
+};
+
+} // anonymous namespace
+
+void trans::removeZeroOutPropsInDeallocFinalize(MigrationPass &pass) {
+ ZeroOutInDeallocRemover trans(pass);
+ trans.TraverseDecl(pass.Ctx.getTranslationUnitDecl());
+}
diff --git a/contrib/llvm/tools/clang/lib/ARCMigrate/TransformActions.cpp b/contrib/llvm/tools/clang/lib/ARCMigrate/TransformActions.cpp
new file mode 100644
index 0000000..9fb2f1d
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/ARCMigrate/TransformActions.cpp
@@ -0,0 +1,695 @@
+//===--- ARCMT.cpp - Migration to ARC mode --------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Internals.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Expr.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Lex/Preprocessor.h"
+#include "llvm/ADT/DenseSet.h"
+#include <map>
+using namespace clang;
+using namespace arcmt;
+
+namespace {
+
+/// \brief Collects transformations and merges them before applying them with
+/// with applyRewrites(). E.g. if the same source range
+/// is requested to be removed twice, only one rewriter remove will be invoked.
+/// Rewrites happen in "transactions"; if one rewrite in the transaction cannot
+/// be done (e.g. it resides in a macro) all rewrites in the transaction are
+/// aborted.
+/// FIXME: "Transactional" rewrites support should be baked in the Rewriter.
+class TransformActionsImpl {
+ CapturedDiagList &CapturedDiags;
+ ASTContext &Ctx;
+ Preprocessor &PP;
+
+ bool IsInTransaction;
+
+ enum ActionKind {
+ Act_Insert, Act_InsertAfterToken,
+ Act_Remove, Act_RemoveStmt,
+ Act_Replace, Act_ReplaceText,
+ Act_IncreaseIndentation,
+ Act_ClearDiagnostic
+ };
+
+ struct ActionData {
+ ActionKind Kind;
+ SourceLocation Loc;
+ SourceRange R1, R2;
+ StringRef Text1, Text2;
+ Stmt *S;
+ SmallVector<unsigned, 2> DiagIDs;
+ };
+
+ std::vector<ActionData> CachedActions;
+
+ enum RangeComparison {
+ Range_Before,
+ Range_After,
+ Range_Contains,
+ Range_Contained,
+ Range_ExtendsBegin,
+ Range_ExtendsEnd
+ };
+
+ /// \brief A range to remove. It is a character range.
+ struct CharRange {
+ FullSourceLoc Begin, End;
+
+ CharRange(CharSourceRange range, SourceManager &srcMgr, Preprocessor &PP) {
+ SourceLocation beginLoc = range.getBegin(), endLoc = range.getEnd();
+ assert(beginLoc.isValid() && endLoc.isValid());
+ if (range.isTokenRange()) {
+ Begin = FullSourceLoc(srcMgr.getExpansionLoc(beginLoc), srcMgr);
+ End = FullSourceLoc(getLocForEndOfToken(endLoc, srcMgr, PP), srcMgr);
+ } else {
+ Begin = FullSourceLoc(srcMgr.getExpansionLoc(beginLoc), srcMgr);
+ End = FullSourceLoc(srcMgr.getExpansionLoc(endLoc), srcMgr);
+ }
+ assert(Begin.isValid() && End.isValid());
+ }
+
+ RangeComparison compareWith(const CharRange &RHS) const {
+ if (End.isBeforeInTranslationUnitThan(RHS.Begin))
+ return Range_Before;
+ if (RHS.End.isBeforeInTranslationUnitThan(Begin))
+ return Range_After;
+ if (!Begin.isBeforeInTranslationUnitThan(RHS.Begin) &&
+ !RHS.End.isBeforeInTranslationUnitThan(End))
+ return Range_Contained;
+ if (Begin.isBeforeInTranslationUnitThan(RHS.Begin) &&
+ RHS.End.isBeforeInTranslationUnitThan(End))
+ return Range_Contains;
+ if (Begin.isBeforeInTranslationUnitThan(RHS.Begin))
+ return Range_ExtendsBegin;
+ else
+ return Range_ExtendsEnd;
+ }
+
+ static RangeComparison compare(SourceRange LHS, SourceRange RHS,
+ SourceManager &SrcMgr, Preprocessor &PP) {
+ return CharRange(CharSourceRange::getTokenRange(LHS), SrcMgr, PP)
+ .compareWith(CharRange(CharSourceRange::getTokenRange(RHS),
+ SrcMgr, PP));
+ }
+ };
+
+ typedef SmallVector<StringRef, 2> TextsVec;
+ typedef std::map<FullSourceLoc, TextsVec, FullSourceLoc::BeforeThanCompare>
+ InsertsMap;
+ InsertsMap Inserts;
+ /// \brief A list of ranges to remove. They are always sorted and they never
+ /// intersect with each other.
+ std::list<CharRange> Removals;
+
+ llvm::DenseSet<Stmt *> StmtRemovals;
+
+ std::vector<std::pair<CharRange, SourceLocation> > IndentationRanges;
+
+ /// \brief Keeps text passed to transformation methods.
+ llvm::StringMap<bool> UniqueText;
+
+public:
+ TransformActionsImpl(CapturedDiagList &capturedDiags,
+ ASTContext &ctx, Preprocessor &PP)
+ : CapturedDiags(capturedDiags), Ctx(ctx), PP(PP), IsInTransaction(false) { }
+
+ ASTContext &getASTContext() { return Ctx; }
+
+ void startTransaction();
+ bool commitTransaction();
+ void abortTransaction();
+
+ bool isInTransaction() const { return IsInTransaction; }
+
+ void insert(SourceLocation loc, StringRef text);
+ void insertAfterToken(SourceLocation loc, StringRef text);
+ void remove(SourceRange range);
+ void removeStmt(Stmt *S);
+ void replace(SourceRange range, StringRef text);
+ void replace(SourceRange range, SourceRange replacementRange);
+ void replaceStmt(Stmt *S, StringRef text);
+ void replaceText(SourceLocation loc, StringRef text,
+ StringRef replacementText);
+ void increaseIndentation(SourceRange range,
+ SourceLocation parentIndent);
+
+ bool clearDiagnostic(ArrayRef<unsigned> IDs, SourceRange range);
+
+ void applyRewrites(TransformActions::RewriteReceiver &receiver);
+
+private:
+ bool canInsert(SourceLocation loc);
+ bool canInsertAfterToken(SourceLocation loc);
+ bool canRemoveRange(SourceRange range);
+ bool canReplaceRange(SourceRange range, SourceRange replacementRange);
+ bool canReplaceText(SourceLocation loc, StringRef text);
+
+ void commitInsert(SourceLocation loc, StringRef text);
+ void commitInsertAfterToken(SourceLocation loc, StringRef text);
+ void commitRemove(SourceRange range);
+ void commitRemoveStmt(Stmt *S);
+ void commitReplace(SourceRange range, SourceRange replacementRange);
+ void commitReplaceText(SourceLocation loc, StringRef text,
+ StringRef replacementText);
+ void commitIncreaseIndentation(SourceRange range,SourceLocation parentIndent);
+ void commitClearDiagnostic(ArrayRef<unsigned> IDs, SourceRange range);
+
+ void addRemoval(CharSourceRange range);
+ void addInsertion(SourceLocation loc, StringRef text);
+
+ /// \brief Stores text passed to the transformation methods to keep the string
+ /// "alive". Since the vast majority of text will be the same, we also unique
+ /// the strings using a StringMap.
+ StringRef getUniqueText(StringRef text);
+
+ /// \brief Computes the source location just past the end of the token at
+ /// the given source location. If the location points at a macro, the whole
+ /// macro expansion is skipped.
+ static SourceLocation getLocForEndOfToken(SourceLocation loc,
+ SourceManager &SM,Preprocessor &PP);
+};
+
+} // anonymous namespace
+
+void TransformActionsImpl::startTransaction() {
+ assert(!IsInTransaction &&
+ "Cannot start a transaction in the middle of another one");
+ IsInTransaction = true;
+}
+
+bool TransformActionsImpl::commitTransaction() {
+ assert(IsInTransaction && "No transaction started");
+
+ if (CachedActions.empty()) {
+ IsInTransaction = false;
+ return false;
+ }
+
+ // Verify that all actions are possible otherwise abort the whole transaction.
+ bool AllActionsPossible = true;
+ for (unsigned i = 0, e = CachedActions.size(); i != e; ++i) {
+ ActionData &act = CachedActions[i];
+ switch (act.Kind) {
+ case Act_Insert:
+ if (!canInsert(act.Loc))
+ AllActionsPossible = false;
+ break;
+ case Act_InsertAfterToken:
+ if (!canInsertAfterToken(act.Loc))
+ AllActionsPossible = false;
+ break;
+ case Act_Remove:
+ if (!canRemoveRange(act.R1))
+ AllActionsPossible = false;
+ break;
+ case Act_RemoveStmt:
+ assert(act.S);
+ if (!canRemoveRange(act.S->getSourceRange()))
+ AllActionsPossible = false;
+ break;
+ case Act_Replace:
+ if (!canReplaceRange(act.R1, act.R2))
+ AllActionsPossible = false;
+ break;
+ case Act_ReplaceText:
+ if (!canReplaceText(act.Loc, act.Text1))
+ AllActionsPossible = false;
+ break;
+ case Act_IncreaseIndentation:
+ // This is not important, we don't care if it will fail.
+ break;
+ case Act_ClearDiagnostic:
+ // We are just checking source rewrites.
+ break;
+ }
+ if (!AllActionsPossible)
+ break;
+ }
+
+ if (!AllActionsPossible) {
+ abortTransaction();
+ return true;
+ }
+
+ for (unsigned i = 0, e = CachedActions.size(); i != e; ++i) {
+ ActionData &act = CachedActions[i];
+ switch (act.Kind) {
+ case Act_Insert:
+ commitInsert(act.Loc, act.Text1);
+ break;
+ case Act_InsertAfterToken:
+ commitInsertAfterToken(act.Loc, act.Text1);
+ break;
+ case Act_Remove:
+ commitRemove(act.R1);
+ break;
+ case Act_RemoveStmt:
+ commitRemoveStmt(act.S);
+ break;
+ case Act_Replace:
+ commitReplace(act.R1, act.R2);
+ break;
+ case Act_ReplaceText:
+ commitReplaceText(act.Loc, act.Text1, act.Text2);
+ break;
+ case Act_IncreaseIndentation:
+ commitIncreaseIndentation(act.R1, act.Loc);
+ break;
+ case Act_ClearDiagnostic:
+ commitClearDiagnostic(act.DiagIDs, act.R1);
+ break;
+ }
+ }
+
+ CachedActions.clear();
+ IsInTransaction = false;
+ return false;
+}
+
+void TransformActionsImpl::abortTransaction() {
+ assert(IsInTransaction && "No transaction started");
+ CachedActions.clear();
+ IsInTransaction = false;
+}
+
+void TransformActionsImpl::insert(SourceLocation loc, StringRef text) {
+ assert(IsInTransaction && "Actions only allowed during a transaction");
+ text = getUniqueText(text);
+ ActionData data;
+ data.Kind = Act_Insert;
+ data.Loc = loc;
+ data.Text1 = text;
+ CachedActions.push_back(data);
+}
+
+void TransformActionsImpl::insertAfterToken(SourceLocation loc, StringRef text) {
+ assert(IsInTransaction && "Actions only allowed during a transaction");
+ text = getUniqueText(text);
+ ActionData data;
+ data.Kind = Act_InsertAfterToken;
+ data.Loc = loc;
+ data.Text1 = text;
+ CachedActions.push_back(data);
+}
+
+void TransformActionsImpl::remove(SourceRange range) {
+ assert(IsInTransaction && "Actions only allowed during a transaction");
+ ActionData data;
+ data.Kind = Act_Remove;
+ data.R1 = range;
+ CachedActions.push_back(data);
+}
+
+void TransformActionsImpl::removeStmt(Stmt *S) {
+ assert(IsInTransaction && "Actions only allowed during a transaction");
+ ActionData data;
+ data.Kind = Act_RemoveStmt;
+ data.S = S->IgnoreImplicit(); // important for uniquing
+ CachedActions.push_back(data);
+}
+
+void TransformActionsImpl::replace(SourceRange range, StringRef text) {
+ assert(IsInTransaction && "Actions only allowed during a transaction");
+ text = getUniqueText(text);
+ remove(range);
+ insert(range.getBegin(), text);
+}
+
+void TransformActionsImpl::replace(SourceRange range,
+ SourceRange replacementRange) {
+ assert(IsInTransaction && "Actions only allowed during a transaction");
+ ActionData data;
+ data.Kind = Act_Replace;
+ data.R1 = range;
+ data.R2 = replacementRange;
+ CachedActions.push_back(data);
+}
+
+void TransformActionsImpl::replaceText(SourceLocation loc, StringRef text,
+ StringRef replacementText) {
+ text = getUniqueText(text);
+ replacementText = getUniqueText(replacementText);
+ ActionData data;
+ data.Kind = Act_ReplaceText;
+ data.Loc = loc;
+ data.Text1 = text;
+ data.Text2 = replacementText;
+ CachedActions.push_back(data);
+}
+
+void TransformActionsImpl::replaceStmt(Stmt *S, StringRef text) {
+ assert(IsInTransaction && "Actions only allowed during a transaction");
+ text = getUniqueText(text);
+ insert(S->getLocStart(), text);
+ removeStmt(S);
+}
+
+void TransformActionsImpl::increaseIndentation(SourceRange range,
+ SourceLocation parentIndent) {
+ if (range.isInvalid()) return;
+ assert(IsInTransaction && "Actions only allowed during a transaction");
+ ActionData data;
+ data.Kind = Act_IncreaseIndentation;
+ data.R1 = range;
+ data.Loc = parentIndent;
+ CachedActions.push_back(data);
+}
+
+bool TransformActionsImpl::clearDiagnostic(ArrayRef<unsigned> IDs,
+ SourceRange range) {
+ assert(IsInTransaction && "Actions only allowed during a transaction");
+ if (!CapturedDiags.hasDiagnostic(IDs, range))
+ return false;
+
+ ActionData data;
+ data.Kind = Act_ClearDiagnostic;
+ data.R1 = range;
+ data.DiagIDs.append(IDs.begin(), IDs.end());
+ CachedActions.push_back(data);
+ return true;
+}
+
+bool TransformActionsImpl::canInsert(SourceLocation loc) {
+ if (loc.isInvalid())
+ return false;
+
+ SourceManager &SM = Ctx.getSourceManager();
+ if (SM.isInSystemHeader(SM.getExpansionLoc(loc)))
+ return false;
+
+ if (loc.isFileID())
+ return true;
+ return PP.isAtStartOfMacroExpansion(loc);
+}
+
+bool TransformActionsImpl::canInsertAfterToken(SourceLocation loc) {
+ if (loc.isInvalid())
+ return false;
+
+ SourceManager &SM = Ctx.getSourceManager();
+ if (SM.isInSystemHeader(SM.getExpansionLoc(loc)))
+ return false;
+
+ if (loc.isFileID())
+ return true;
+ return PP.isAtEndOfMacroExpansion(loc);
+}
+
+bool TransformActionsImpl::canRemoveRange(SourceRange range) {
+ return canInsert(range.getBegin()) && canInsertAfterToken(range.getEnd());
+}
+
+bool TransformActionsImpl::canReplaceRange(SourceRange range,
+ SourceRange replacementRange) {
+ return canRemoveRange(range) && canRemoveRange(replacementRange);
+}
+
+bool TransformActionsImpl::canReplaceText(SourceLocation loc, StringRef text) {
+ if (!canInsert(loc))
+ return false;
+
+ SourceManager &SM = Ctx.getSourceManager();
+ loc = SM.getExpansionLoc(loc);
+
+ // Break down the source location.
+ std::pair<FileID, unsigned> locInfo = SM.getDecomposedLoc(loc);
+
+ // Try to load the file buffer.
+ bool invalidTemp = false;
+ StringRef file = SM.getBufferData(locInfo.first, &invalidTemp);
+ if (invalidTemp)
+ return false;
+
+ return file.substr(locInfo.second).startswith(text);
+}
+
+void TransformActionsImpl::commitInsert(SourceLocation loc, StringRef text) {
+ addInsertion(loc, text);
+}
+
+void TransformActionsImpl::commitInsertAfterToken(SourceLocation loc,
+ StringRef text) {
+ addInsertion(getLocForEndOfToken(loc, Ctx.getSourceManager(), PP), text);
+}
+
+void TransformActionsImpl::commitRemove(SourceRange range) {
+ addRemoval(CharSourceRange::getTokenRange(range));
+}
+
+void TransformActionsImpl::commitRemoveStmt(Stmt *S) {
+ assert(S);
+ if (StmtRemovals.count(S))
+ return; // already removed.
+
+ if (Expr *E = dyn_cast<Expr>(S)) {
+ commitRemove(E->getSourceRange());
+ commitInsert(E->getSourceRange().getBegin(), getARCMTMacroName());
+ } else
+ commitRemove(S->getSourceRange());
+
+ StmtRemovals.insert(S);
+}
+
+void TransformActionsImpl::commitReplace(SourceRange range,
+ SourceRange replacementRange) {
+ RangeComparison comp = CharRange::compare(replacementRange, range,
+ Ctx.getSourceManager(), PP);
+ assert(comp == Range_Contained);
+ if (comp != Range_Contained)
+ return; // Although we asserted, be extra safe for release build.
+ if (range.getBegin() != replacementRange.getBegin())
+ addRemoval(CharSourceRange::getCharRange(range.getBegin(),
+ replacementRange.getBegin()));
+ if (replacementRange.getEnd() != range.getEnd())
+ addRemoval(CharSourceRange::getTokenRange(
+ getLocForEndOfToken(replacementRange.getEnd(),
+ Ctx.getSourceManager(), PP),
+ range.getEnd()));
+}
+void TransformActionsImpl::commitReplaceText(SourceLocation loc,
+ StringRef text,
+ StringRef replacementText) {
+ SourceManager &SM = Ctx.getSourceManager();
+ loc = SM.getExpansionLoc(loc);
+ // canReplaceText already checked if loc points at text.
+ SourceLocation afterText = loc.getLocWithOffset(text.size());
+
+ addRemoval(CharSourceRange::getCharRange(loc, afterText));
+ commitInsert(loc, replacementText);
+}
+
+void TransformActionsImpl::commitIncreaseIndentation(SourceRange range,
+ SourceLocation parentIndent) {
+ SourceManager &SM = Ctx.getSourceManager();
+ IndentationRanges.push_back(
+ std::make_pair(CharRange(CharSourceRange::getTokenRange(range),
+ SM, PP),
+ SM.getExpansionLoc(parentIndent)));
+}
+
+void TransformActionsImpl::commitClearDiagnostic(ArrayRef<unsigned> IDs,
+ SourceRange range) {
+ CapturedDiags.clearDiagnostic(IDs, range);
+}
+
+void TransformActionsImpl::addInsertion(SourceLocation loc, StringRef text) {
+ SourceManager &SM = Ctx.getSourceManager();
+ loc = SM.getExpansionLoc(loc);
+ for (std::list<CharRange>::reverse_iterator
+ I = Removals.rbegin(), E = Removals.rend(); I != E; ++I) {
+ if (!SM.isBeforeInTranslationUnit(loc, I->End))
+ break;
+ if (I->Begin.isBeforeInTranslationUnitThan(loc))
+ return;
+ }
+
+ Inserts[FullSourceLoc(loc, SM)].push_back(text);
+}
+
+void TransformActionsImpl::addRemoval(CharSourceRange range) {
+ CharRange newRange(range, Ctx.getSourceManager(), PP);
+ if (newRange.Begin == newRange.End)
+ return;
+
+ Inserts.erase(Inserts.upper_bound(newRange.Begin),
+ Inserts.lower_bound(newRange.End));
+
+ std::list<CharRange>::iterator I = Removals.end();
+ while (I != Removals.begin()) {
+ std::list<CharRange>::iterator RI = I;
+ --RI;
+ RangeComparison comp = newRange.compareWith(*RI);
+ switch (comp) {
+ case Range_Before:
+ --I;
+ break;
+ case Range_After:
+ Removals.insert(I, newRange);
+ return;
+ case Range_Contained:
+ return;
+ case Range_Contains:
+ RI->End = newRange.End;
+ case Range_ExtendsBegin:
+ newRange.End = RI->End;
+ Removals.erase(RI);
+ break;
+ case Range_ExtendsEnd:
+ RI->End = newRange.End;
+ return;
+ }
+ }
+
+ Removals.insert(Removals.begin(), newRange);
+}
+
+void TransformActionsImpl::applyRewrites(
+ TransformActions::RewriteReceiver &receiver) {
+ for (InsertsMap::iterator I = Inserts.begin(), E = Inserts.end(); I!=E; ++I) {
+ SourceLocation loc = I->first;
+ for (TextsVec::iterator
+ TI = I->second.begin(), TE = I->second.end(); TI != TE; ++TI) {
+ receiver.insert(loc, *TI);
+ }
+ }
+
+ for (std::vector<std::pair<CharRange, SourceLocation> >::iterator
+ I = IndentationRanges.begin(), E = IndentationRanges.end(); I!=E; ++I) {
+ CharSourceRange range = CharSourceRange::getCharRange(I->first.Begin,
+ I->first.End);
+ receiver.increaseIndentation(range, I->second);
+ }
+
+ for (std::list<CharRange>::iterator
+ I = Removals.begin(), E = Removals.end(); I != E; ++I) {
+ CharSourceRange range = CharSourceRange::getCharRange(I->Begin, I->End);
+ receiver.remove(range);
+ }
+}
+
+/// \brief Stores text passed to the transformation methods to keep the string
+/// "alive". Since the vast majority of text will be the same, we also unique
+/// the strings using a StringMap.
+StringRef TransformActionsImpl::getUniqueText(StringRef text) {
+ return UniqueText.insert(std::make_pair(text, false)).first->first();
+}
+
+/// \brief Computes the source location just past the end of the token at
+/// the given source location. If the location points at a macro, the whole
+/// macro expansion is skipped.
+SourceLocation TransformActionsImpl::getLocForEndOfToken(SourceLocation loc,
+ SourceManager &SM,
+ Preprocessor &PP) {
+ if (loc.isMacroID())
+ loc = SM.getExpansionRange(loc).second;
+ return PP.getLocForEndOfToken(loc);
+}
+
+TransformActions::RewriteReceiver::~RewriteReceiver() { }
+
+TransformActions::TransformActions(DiagnosticsEngine &diag,
+ CapturedDiagList &capturedDiags,
+ ASTContext &ctx, Preprocessor &PP)
+ : Diags(diag), CapturedDiags(capturedDiags) {
+ Impl = new TransformActionsImpl(capturedDiags, ctx, PP);
+}
+
+TransformActions::~TransformActions() {
+ delete static_cast<TransformActionsImpl*>(Impl);
+}
+
+void TransformActions::startTransaction() {
+ static_cast<TransformActionsImpl*>(Impl)->startTransaction();
+}
+
+bool TransformActions::commitTransaction() {
+ return static_cast<TransformActionsImpl*>(Impl)->commitTransaction();
+}
+
+void TransformActions::abortTransaction() {
+ static_cast<TransformActionsImpl*>(Impl)->abortTransaction();
+}
+
+
+void TransformActions::insert(SourceLocation loc, StringRef text) {
+ static_cast<TransformActionsImpl*>(Impl)->insert(loc, text);
+}
+
+void TransformActions::insertAfterToken(SourceLocation loc,
+ StringRef text) {
+ static_cast<TransformActionsImpl*>(Impl)->insertAfterToken(loc, text);
+}
+
+void TransformActions::remove(SourceRange range) {
+ static_cast<TransformActionsImpl*>(Impl)->remove(range);
+}
+
+void TransformActions::removeStmt(Stmt *S) {
+ static_cast<TransformActionsImpl*>(Impl)->removeStmt(S);
+}
+
+void TransformActions::replace(SourceRange range, StringRef text) {
+ static_cast<TransformActionsImpl*>(Impl)->replace(range, text);
+}
+
+void TransformActions::replace(SourceRange range,
+ SourceRange replacementRange) {
+ static_cast<TransformActionsImpl*>(Impl)->replace(range, replacementRange);
+}
+
+void TransformActions::replaceStmt(Stmt *S, StringRef text) {
+ static_cast<TransformActionsImpl*>(Impl)->replaceStmt(S, text);
+}
+
+void TransformActions::replaceText(SourceLocation loc, StringRef text,
+ StringRef replacementText) {
+ static_cast<TransformActionsImpl*>(Impl)->replaceText(loc, text,
+ replacementText);
+}
+
+void TransformActions::increaseIndentation(SourceRange range,
+ SourceLocation parentIndent) {
+ static_cast<TransformActionsImpl*>(Impl)->increaseIndentation(range,
+ parentIndent);
+}
+
+bool TransformActions::clearDiagnostic(ArrayRef<unsigned> IDs,
+ SourceRange range) {
+ return static_cast<TransformActionsImpl*>(Impl)->clearDiagnostic(IDs, range);
+}
+
+void TransformActions::applyRewrites(RewriteReceiver &receiver) {
+ static_cast<TransformActionsImpl*>(Impl)->applyRewrites(receiver);
+}
+
+DiagnosticBuilder TransformActions::report(SourceLocation loc, unsigned diagId,
+ SourceRange range) {
+ assert(!static_cast<TransformActionsImpl *>(Impl)->isInTransaction() &&
+ "Errors should be emitted out of a transaction");
+ return Diags.Report(loc, diagId) << range;
+}
+
+void TransformActions::reportError(StringRef message, SourceLocation loc,
+ SourceRange range) {
+ report(loc, diag::err_mt_message, range) << message;
+}
+
+void TransformActions::reportWarning(StringRef message, SourceLocation loc,
+ SourceRange range) {
+ report(loc, diag::warn_mt_message, range) << message;
+}
+
+void TransformActions::reportNote(StringRef message, SourceLocation loc,
+ SourceRange range) {
+ report(loc, diag::note_mt_message, range) << message;
+}
diff --git a/contrib/llvm/tools/clang/lib/ARCMigrate/Transforms.cpp b/contrib/llvm/tools/clang/lib/ARCMigrate/Transforms.cpp
new file mode 100644
index 0000000..56d3af7
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/ARCMigrate/Transforms.cpp
@@ -0,0 +1,601 @@
+//===--- Transforms.cpp - Transformations to ARC mode ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Transforms.h"
+#include "Internals.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/RecursiveASTVisitor.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Analysis/DomainSpecific/CocoaConventions.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Lex/Lexer.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Sema/Sema.h"
+#include "clang/Sema/SemaDiagnostic.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/StringSwitch.h"
+#include <map>
+
+using namespace clang;
+using namespace arcmt;
+using namespace trans;
+
+ASTTraverser::~ASTTraverser() { }
+
+bool MigrationPass::CFBridgingFunctionsDefined() {
+ if (!EnableCFBridgeFns.hasValue())
+ EnableCFBridgeFns = SemaRef.isKnownName("CFBridgingRetain") &&
+ SemaRef.isKnownName("CFBridgingRelease");
+ return *EnableCFBridgeFns;
+}
+
+//===----------------------------------------------------------------------===//
+// Helpers.
+//===----------------------------------------------------------------------===//
+
+bool trans::canApplyWeak(ASTContext &Ctx, QualType type,
+ bool AllowOnUnknownClass) {
+ if (!Ctx.getLangOpts().ObjCARCWeak)
+ return false;
+
+ QualType T = type;
+ if (T.isNull())
+ return false;
+
+ // iOS is always safe to use 'weak'.
+ if (Ctx.getTargetInfo().getTriple().isiOS())
+ AllowOnUnknownClass = true;
+
+ while (const PointerType *ptr = T->getAs<PointerType>())
+ T = ptr->getPointeeType();
+ if (const ObjCObjectPointerType *ObjT = T->getAs<ObjCObjectPointerType>()) {
+ ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl();
+ if (!AllowOnUnknownClass && (!Class || Class->getName() == "NSObject"))
+ return false; // id/NSObject is not safe for weak.
+ if (!AllowOnUnknownClass && !Class->hasDefinition())
+ return false; // forward classes are not verifiable, therefore not safe.
+ if (Class && Class->isArcWeakrefUnavailable())
+ return false;
+ }
+
+ return true;
+}
+
+bool trans::isPlusOneAssign(const BinaryOperator *E) {
+ if (E->getOpcode() != BO_Assign)
+ return false;
+
+ return isPlusOne(E->getRHS());
+}
+
+bool trans::isPlusOne(const Expr *E) {
+ if (!E)
+ return false;
+ if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E))
+ E = EWC->getSubExpr();
+
+ if (const ObjCMessageExpr *
+ ME = dyn_cast<ObjCMessageExpr>(E->IgnoreParenCasts()))
+ if (ME->getMethodFamily() == OMF_retain)
+ return true;
+
+ if (const CallExpr *
+ callE = dyn_cast<CallExpr>(E->IgnoreParenCasts())) {
+ if (const FunctionDecl *FD = callE->getDirectCallee()) {
+ if (FD->hasAttr<CFReturnsRetainedAttr>())
+ return true;
+
+ if (FD->isGlobal() &&
+ FD->getIdentifier() &&
+ FD->getParent()->isTranslationUnit() &&
+ FD->isExternallyVisible() &&
+ ento::cocoa::isRefType(callE->getType(), "CF",
+ FD->getIdentifier()->getName())) {
+ StringRef fname = FD->getIdentifier()->getName();
+ if (fname.endswith("Retain") ||
+ fname.find("Create") != StringRef::npos ||
+ fname.find("Copy") != StringRef::npos) {
+ return true;
+ }
+ }
+ }
+ }
+
+ const ImplicitCastExpr *implCE = dyn_cast<ImplicitCastExpr>(E);
+ while (implCE && implCE->getCastKind() == CK_BitCast)
+ implCE = dyn_cast<ImplicitCastExpr>(implCE->getSubExpr());
+
+ if (implCE && implCE->getCastKind() == CK_ARCConsumeObject)
+ return true;
+
+ return false;
+}
+
+/// \brief 'Loc' is the end of a statement range. This returns the location
+/// immediately after the semicolon following the statement.
+/// If no semicolon is found or the location is inside a macro, the returned
+/// source location will be invalid.
+SourceLocation trans::findLocationAfterSemi(SourceLocation loc,
+ ASTContext &Ctx, bool IsDecl) {
+ SourceLocation SemiLoc = findSemiAfterLocation(loc, Ctx, IsDecl);
+ if (SemiLoc.isInvalid())
+ return SourceLocation();
+ return SemiLoc.getLocWithOffset(1);
+}
+
+/// \brief \arg Loc is the end of a statement range. This returns the location
+/// of the semicolon following the statement.
+/// If no semicolon is found or the location is inside a macro, the returned
+/// source location will be invalid.
+SourceLocation trans::findSemiAfterLocation(SourceLocation loc,
+ ASTContext &Ctx,
+ bool IsDecl) {
+ SourceManager &SM = Ctx.getSourceManager();
+ if (loc.isMacroID()) {
+ if (!Lexer::isAtEndOfMacroExpansion(loc, SM, Ctx.getLangOpts(), &loc))
+ return SourceLocation();
+ }
+ loc = Lexer::getLocForEndOfToken(loc, /*Offset=*/0, SM, Ctx.getLangOpts());
+
+ // Break down the source location.
+ std::pair<FileID, unsigned> locInfo = SM.getDecomposedLoc(loc);
+
+ // Try to load the file buffer.
+ bool invalidTemp = false;
+ StringRef file = SM.getBufferData(locInfo.first, &invalidTemp);
+ if (invalidTemp)
+ return SourceLocation();
+
+ const char *tokenBegin = file.data() + locInfo.second;
+
+ // Lex from the start of the given location.
+ Lexer lexer(SM.getLocForStartOfFile(locInfo.first),
+ Ctx.getLangOpts(),
+ file.begin(), tokenBegin, file.end());
+ Token tok;
+ lexer.LexFromRawLexer(tok);
+ if (tok.isNot(tok::semi)) {
+ if (!IsDecl)
+ return SourceLocation();
+ // Declaration may be followed with other tokens; such as an __attribute,
+ // before ending with a semicolon.
+ return findSemiAfterLocation(tok.getLocation(), Ctx, /*IsDecl*/true);
+ }
+
+ return tok.getLocation();
+}
+
+bool trans::hasSideEffects(Expr *E, ASTContext &Ctx) {
+ if (!E || !E->HasSideEffects(Ctx))
+ return false;
+
+ E = E->IgnoreParenCasts();
+ ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E);
+ if (!ME)
+ return true;
+ switch (ME->getMethodFamily()) {
+ case OMF_autorelease:
+ case OMF_dealloc:
+ case OMF_release:
+ case OMF_retain:
+ switch (ME->getReceiverKind()) {
+ case ObjCMessageExpr::SuperInstance:
+ return false;
+ case ObjCMessageExpr::Instance:
+ return hasSideEffects(ME->getInstanceReceiver(), Ctx);
+ default:
+ break;
+ }
+ break;
+ default:
+ break;
+ }
+
+ return true;
+}
+
+bool trans::isGlobalVar(Expr *E) {
+ E = E->IgnoreParenCasts();
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
+ return DRE->getDecl()->getDeclContext()->isFileContext() &&
+ DRE->getDecl()->isExternallyVisible();
+ if (ConditionalOperator *condOp = dyn_cast<ConditionalOperator>(E))
+ return isGlobalVar(condOp->getTrueExpr()) &&
+ isGlobalVar(condOp->getFalseExpr());
+
+ return false;
+}
+
+StringRef trans::getNilString(MigrationPass &Pass) {
+ return Pass.SemaRef.PP.isMacroDefined("nil") ? "nil" : "0";
+}
+
+namespace {
+
+class ReferenceClear : public RecursiveASTVisitor<ReferenceClear> {
+ ExprSet &Refs;
+public:
+ ReferenceClear(ExprSet &refs) : Refs(refs) { }
+ bool VisitDeclRefExpr(DeclRefExpr *E) { Refs.erase(E); return true; }
+};
+
+class ReferenceCollector : public RecursiveASTVisitor<ReferenceCollector> {
+ ValueDecl *Dcl;
+ ExprSet &Refs;
+
+public:
+ ReferenceCollector(ValueDecl *D, ExprSet &refs)
+ : Dcl(D), Refs(refs) { }
+
+ bool VisitDeclRefExpr(DeclRefExpr *E) {
+ if (E->getDecl() == Dcl)
+ Refs.insert(E);
+ return true;
+ }
+};
+
+class RemovablesCollector : public RecursiveASTVisitor<RemovablesCollector> {
+ ExprSet &Removables;
+
+public:
+ RemovablesCollector(ExprSet &removables)
+ : Removables(removables) { }
+
+ bool shouldWalkTypesOfTypeLocs() const { return false; }
+
+ bool TraverseStmtExpr(StmtExpr *E) {
+ CompoundStmt *S = E->getSubStmt();
+ for (CompoundStmt::body_iterator
+ I = S->body_begin(), E = S->body_end(); I != E; ++I) {
+ if (I != E - 1)
+ mark(*I);
+ TraverseStmt(*I);
+ }
+ return true;
+ }
+
+ bool VisitCompoundStmt(CompoundStmt *S) {
+ for (auto *I : S->body())
+ mark(I);
+ return true;
+ }
+
+ bool VisitIfStmt(IfStmt *S) {
+ mark(S->getThen());
+ mark(S->getElse());
+ return true;
+ }
+
+ bool VisitWhileStmt(WhileStmt *S) {
+ mark(S->getBody());
+ return true;
+ }
+
+ bool VisitDoStmt(DoStmt *S) {
+ mark(S->getBody());
+ return true;
+ }
+
+ bool VisitForStmt(ForStmt *S) {
+ mark(S->getInit());
+ mark(S->getInc());
+ mark(S->getBody());
+ return true;
+ }
+
+private:
+ void mark(Stmt *S) {
+ if (!S) return;
+
+ while (LabelStmt *Label = dyn_cast<LabelStmt>(S))
+ S = Label->getSubStmt();
+ S = S->IgnoreImplicit();
+ if (Expr *E = dyn_cast<Expr>(S))
+ Removables.insert(E);
+ }
+};
+
+} // end anonymous namespace
+
+void trans::clearRefsIn(Stmt *S, ExprSet &refs) {
+ ReferenceClear(refs).TraverseStmt(S);
+}
+
+void trans::collectRefs(ValueDecl *D, Stmt *S, ExprSet &refs) {
+ ReferenceCollector(D, refs).TraverseStmt(S);
+}
+
+void trans::collectRemovables(Stmt *S, ExprSet &exprs) {
+ RemovablesCollector(exprs).TraverseStmt(S);
+}
+
+//===----------------------------------------------------------------------===//
+// MigrationContext
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class ASTTransform : public RecursiveASTVisitor<ASTTransform> {
+ MigrationContext &MigrateCtx;
+ typedef RecursiveASTVisitor<ASTTransform> base;
+
+public:
+ ASTTransform(MigrationContext &MigrateCtx) : MigrateCtx(MigrateCtx) { }
+
+ bool shouldWalkTypesOfTypeLocs() const { return false; }
+
+ bool TraverseObjCImplementationDecl(ObjCImplementationDecl *D) {
+ ObjCImplementationContext ImplCtx(MigrateCtx, D);
+ for (MigrationContext::traverser_iterator
+ I = MigrateCtx.traversers_begin(),
+ E = MigrateCtx.traversers_end(); I != E; ++I)
+ (*I)->traverseObjCImplementation(ImplCtx);
+
+ return base::TraverseObjCImplementationDecl(D);
+ }
+
+ bool TraverseStmt(Stmt *rootS) {
+ if (!rootS)
+ return true;
+
+ BodyContext BodyCtx(MigrateCtx, rootS);
+ for (MigrationContext::traverser_iterator
+ I = MigrateCtx.traversers_begin(),
+ E = MigrateCtx.traversers_end(); I != E; ++I)
+ (*I)->traverseBody(BodyCtx);
+
+ return true;
+ }
+};
+
+}
+
+MigrationContext::~MigrationContext() {
+ for (traverser_iterator
+ I = traversers_begin(), E = traversers_end(); I != E; ++I)
+ delete *I;
+}
+
+bool MigrationContext::isGCOwnedNonObjC(QualType T) {
+ while (!T.isNull()) {
+ if (const AttributedType *AttrT = T->getAs<AttributedType>()) {
+ if (AttrT->getAttrKind() == AttributedType::attr_objc_ownership)
+ return !AttrT->getModifiedType()->isObjCRetainableType();
+ }
+
+ if (T->isArrayType())
+ T = Pass.Ctx.getBaseElementType(T);
+ else if (const PointerType *PT = T->getAs<PointerType>())
+ T = PT->getPointeeType();
+ else if (const ReferenceType *RT = T->getAs<ReferenceType>())
+ T = RT->getPointeeType();
+ else
+ break;
+ }
+
+ return false;
+}
+
+bool MigrationContext::rewritePropertyAttribute(StringRef fromAttr,
+ StringRef toAttr,
+ SourceLocation atLoc) {
+ if (atLoc.isMacroID())
+ return false;
+
+ SourceManager &SM = Pass.Ctx.getSourceManager();
+
+ // Break down the source location.
+ std::pair<FileID, unsigned> locInfo = SM.getDecomposedLoc(atLoc);
+
+ // Try to load the file buffer.
+ bool invalidTemp = false;
+ StringRef file = SM.getBufferData(locInfo.first, &invalidTemp);
+ if (invalidTemp)
+ return false;
+
+ const char *tokenBegin = file.data() + locInfo.second;
+
+ // Lex from the start of the given location.
+ Lexer lexer(SM.getLocForStartOfFile(locInfo.first),
+ Pass.Ctx.getLangOpts(),
+ file.begin(), tokenBegin, file.end());
+ Token tok;
+ lexer.LexFromRawLexer(tok);
+ if (tok.isNot(tok::at)) return false;
+ lexer.LexFromRawLexer(tok);
+ if (tok.isNot(tok::raw_identifier)) return false;
+ if (tok.getRawIdentifier() != "property")
+ return false;
+ lexer.LexFromRawLexer(tok);
+ if (tok.isNot(tok::l_paren)) return false;
+
+ Token BeforeTok = tok;
+ Token AfterTok;
+ AfterTok.startToken();
+ SourceLocation AttrLoc;
+
+ lexer.LexFromRawLexer(tok);
+ if (tok.is(tok::r_paren))
+ return false;
+
+ while (1) {
+ if (tok.isNot(tok::raw_identifier)) return false;
+ if (tok.getRawIdentifier() == fromAttr) {
+ if (!toAttr.empty()) {
+ Pass.TA.replaceText(tok.getLocation(), fromAttr, toAttr);
+ return true;
+ }
+ // We want to remove the attribute.
+ AttrLoc = tok.getLocation();
+ }
+
+ do {
+ lexer.LexFromRawLexer(tok);
+ if (AttrLoc.isValid() && AfterTok.is(tok::unknown))
+ AfterTok = tok;
+ } while (tok.isNot(tok::comma) && tok.isNot(tok::r_paren));
+ if (tok.is(tok::r_paren))
+ break;
+ if (AttrLoc.isInvalid())
+ BeforeTok = tok;
+ lexer.LexFromRawLexer(tok);
+ }
+
+ if (toAttr.empty() && AttrLoc.isValid() && AfterTok.isNot(tok::unknown)) {
+ // We want to remove the attribute.
+ if (BeforeTok.is(tok::l_paren) && AfterTok.is(tok::r_paren)) {
+ Pass.TA.remove(SourceRange(BeforeTok.getLocation(),
+ AfterTok.getLocation()));
+ } else if (BeforeTok.is(tok::l_paren) && AfterTok.is(tok::comma)) {
+ Pass.TA.remove(SourceRange(AttrLoc, AfterTok.getLocation()));
+ } else {
+ Pass.TA.remove(SourceRange(BeforeTok.getLocation(), AttrLoc));
+ }
+
+ return true;
+ }
+
+ return false;
+}
+
+bool MigrationContext::addPropertyAttribute(StringRef attr,
+ SourceLocation atLoc) {
+ if (atLoc.isMacroID())
+ return false;
+
+ SourceManager &SM = Pass.Ctx.getSourceManager();
+
+ // Break down the source location.
+ std::pair<FileID, unsigned> locInfo = SM.getDecomposedLoc(atLoc);
+
+ // Try to load the file buffer.
+ bool invalidTemp = false;
+ StringRef file = SM.getBufferData(locInfo.first, &invalidTemp);
+ if (invalidTemp)
+ return false;
+
+ const char *tokenBegin = file.data() + locInfo.second;
+
+ // Lex from the start of the given location.
+ Lexer lexer(SM.getLocForStartOfFile(locInfo.first),
+ Pass.Ctx.getLangOpts(),
+ file.begin(), tokenBegin, file.end());
+ Token tok;
+ lexer.LexFromRawLexer(tok);
+ if (tok.isNot(tok::at)) return false;
+ lexer.LexFromRawLexer(tok);
+ if (tok.isNot(tok::raw_identifier)) return false;
+ if (tok.getRawIdentifier() != "property")
+ return false;
+ lexer.LexFromRawLexer(tok);
+
+ if (tok.isNot(tok::l_paren)) {
+ Pass.TA.insert(tok.getLocation(), std::string("(") + attr.str() + ") ");
+ return true;
+ }
+
+ lexer.LexFromRawLexer(tok);
+ if (tok.is(tok::r_paren)) {
+ Pass.TA.insert(tok.getLocation(), attr);
+ return true;
+ }
+
+ if (tok.isNot(tok::raw_identifier)) return false;
+
+ Pass.TA.insert(tok.getLocation(), std::string(attr) + ", ");
+ return true;
+}
+
+void MigrationContext::traverse(TranslationUnitDecl *TU) {
+ for (traverser_iterator
+ I = traversers_begin(), E = traversers_end(); I != E; ++I)
+ (*I)->traverseTU(*this);
+
+ ASTTransform(*this).TraverseDecl(TU);
+}
+
+static void GCRewriteFinalize(MigrationPass &pass) {
+ ASTContext &Ctx = pass.Ctx;
+ TransformActions &TA = pass.TA;
+ DeclContext *DC = Ctx.getTranslationUnitDecl();
+ Selector FinalizeSel =
+ Ctx.Selectors.getNullarySelector(&pass.Ctx.Idents.get("finalize"));
+
+ typedef DeclContext::specific_decl_iterator<ObjCImplementationDecl>
+ impl_iterator;
+ for (impl_iterator I = impl_iterator(DC->decls_begin()),
+ E = impl_iterator(DC->decls_end()); I != E; ++I) {
+ for (const auto *MD : I->instance_methods()) {
+ if (!MD->hasBody())
+ continue;
+
+ if (MD->isInstanceMethod() && MD->getSelector() == FinalizeSel) {
+ const ObjCMethodDecl *FinalizeM = MD;
+ Transaction Trans(TA);
+ TA.insert(FinalizeM->getSourceRange().getBegin(),
+ "#if !__has_feature(objc_arc)\n");
+ CharSourceRange::getTokenRange(FinalizeM->getSourceRange());
+ const SourceManager &SM = pass.Ctx.getSourceManager();
+ const LangOptions &LangOpts = pass.Ctx.getLangOpts();
+ bool Invalid;
+ std::string str = "\n#endif\n";
+ str += Lexer::getSourceText(
+ CharSourceRange::getTokenRange(FinalizeM->getSourceRange()),
+ SM, LangOpts, &Invalid);
+ TA.insertAfterToken(FinalizeM->getSourceRange().getEnd(), str);
+
+ break;
+ }
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// getAllTransformations.
+//===----------------------------------------------------------------------===//
+
+static void traverseAST(MigrationPass &pass) {
+ MigrationContext MigrateCtx(pass);
+
+ if (pass.isGCMigration()) {
+ MigrateCtx.addTraverser(new GCCollectableCallsTraverser);
+ MigrateCtx.addTraverser(new GCAttrsTraverser());
+ }
+ MigrateCtx.addTraverser(new PropertyRewriteTraverser());
+ MigrateCtx.addTraverser(new BlockObjCVariableTraverser());
+ MigrateCtx.addTraverser(new ProtectedScopeTraverser());
+
+ MigrateCtx.traverse(pass.Ctx.getTranslationUnitDecl());
+}
+
+static void independentTransforms(MigrationPass &pass) {
+ rewriteAutoreleasePool(pass);
+ removeRetainReleaseDeallocFinalize(pass);
+ rewriteUnusedInitDelegate(pass);
+ removeZeroOutPropsInDeallocFinalize(pass);
+ makeAssignARCSafe(pass);
+ rewriteUnbridgedCasts(pass);
+ checkAPIUses(pass);
+ traverseAST(pass);
+}
+
+std::vector<TransformFn> arcmt::getAllTransformations(
+ LangOptions::GCMode OrigGCMode,
+ bool NoFinalizeRemoval) {
+ std::vector<TransformFn> transforms;
+
+ if (OrigGCMode == LangOptions::GCOnly && NoFinalizeRemoval)
+ transforms.push_back(GCRewriteFinalize);
+ transforms.push_back(independentTransforms);
+ // This depends on previous transformations removing various expressions.
+ transforms.push_back(removeEmptyStatementsAndDeallocFinalize);
+
+ return transforms;
+}
diff --git a/contrib/llvm/tools/clang/lib/ARCMigrate/Transforms.h b/contrib/llvm/tools/clang/lib/ARCMigrate/Transforms.h
new file mode 100644
index 0000000..7e3dd34
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/ARCMigrate/Transforms.h
@@ -0,0 +1,225 @@
+//===-- Transforms.h - Transformations to ARC mode --------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_ARCMIGRATE_TRANSFORMS_H
+#define LLVM_CLANG_LIB_ARCMIGRATE_TRANSFORMS_H
+
+#include "clang/AST/ParentMap.h"
+#include "clang/AST/RecursiveASTVisitor.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/Support/SaveAndRestore.h"
+
+namespace clang {
+ class Decl;
+ class Stmt;
+ class BlockDecl;
+ class ObjCMethodDecl;
+ class FunctionDecl;
+
+namespace arcmt {
+ class MigrationPass;
+
+namespace trans {
+
+ class MigrationContext;
+
+//===----------------------------------------------------------------------===//
+// Transformations.
+//===----------------------------------------------------------------------===//
+
+void rewriteAutoreleasePool(MigrationPass &pass);
+void rewriteUnbridgedCasts(MigrationPass &pass);
+void makeAssignARCSafe(MigrationPass &pass);
+void removeRetainReleaseDeallocFinalize(MigrationPass &pass);
+void removeZeroOutPropsInDeallocFinalize(MigrationPass &pass);
+void rewriteUnusedInitDelegate(MigrationPass &pass);
+void checkAPIUses(MigrationPass &pass);
+
+void removeEmptyStatementsAndDeallocFinalize(MigrationPass &pass);
+
+class BodyContext {
+ MigrationContext &MigrateCtx;
+ ParentMap PMap;
+ Stmt *TopStmt;
+
+public:
+ BodyContext(MigrationContext &MigrateCtx, Stmt *S)
+ : MigrateCtx(MigrateCtx), PMap(S), TopStmt(S) {}
+
+ MigrationContext &getMigrationContext() { return MigrateCtx; }
+ ParentMap &getParentMap() { return PMap; }
+ Stmt *getTopStmt() { return TopStmt; }
+};
+
+class ObjCImplementationContext {
+ MigrationContext &MigrateCtx;
+ ObjCImplementationDecl *ImpD;
+
+public:
+ ObjCImplementationContext(MigrationContext &MigrateCtx,
+ ObjCImplementationDecl *D)
+ : MigrateCtx(MigrateCtx), ImpD(D) {}
+
+ MigrationContext &getMigrationContext() { return MigrateCtx; }
+ ObjCImplementationDecl *getImplementationDecl() { return ImpD; }
+};
+
+class ASTTraverser {
+public:
+ virtual ~ASTTraverser();
+ virtual void traverseTU(MigrationContext &MigrateCtx) { }
+ virtual void traverseBody(BodyContext &BodyCtx) { }
+ virtual void traverseObjCImplementation(ObjCImplementationContext &ImplCtx) {}
+};
+
+class MigrationContext {
+ std::vector<ASTTraverser *> Traversers;
+
+public:
+ MigrationPass &Pass;
+
+ struct GCAttrOccurrence {
+ enum AttrKind { Weak, Strong } Kind;
+ SourceLocation Loc;
+ QualType ModifiedType;
+ Decl *Dcl;
+ /// \brief true if the attribute is owned, e.g. it is in a body and not just
+ /// in an interface.
+ bool FullyMigratable;
+ };
+ std::vector<GCAttrOccurrence> GCAttrs;
+ llvm::DenseSet<unsigned> AttrSet;
+ llvm::DenseSet<unsigned> RemovedAttrSet;
+
+ /// \brief Set of raw '@' locations for 'assign' properties group that contain
+ /// GC __weak.
+ llvm::DenseSet<unsigned> AtPropsWeak;
+
+ explicit MigrationContext(MigrationPass &pass) : Pass(pass) {}
+ ~MigrationContext();
+
+ typedef std::vector<ASTTraverser *>::iterator traverser_iterator;
+ traverser_iterator traversers_begin() { return Traversers.begin(); }
+ traverser_iterator traversers_end() { return Traversers.end(); }
+
+ void addTraverser(ASTTraverser *traverser) {
+ Traversers.push_back(traverser);
+ }
+
+ bool isGCOwnedNonObjC(QualType T);
+ bool removePropertyAttribute(StringRef fromAttr, SourceLocation atLoc) {
+ return rewritePropertyAttribute(fromAttr, StringRef(), atLoc);
+ }
+ bool rewritePropertyAttribute(StringRef fromAttr, StringRef toAttr,
+ SourceLocation atLoc);
+ bool addPropertyAttribute(StringRef attr, SourceLocation atLoc);
+
+ void traverse(TranslationUnitDecl *TU);
+
+ void dumpGCAttrs();
+};
+
+class PropertyRewriteTraverser : public ASTTraverser {
+public:
+ void traverseObjCImplementation(ObjCImplementationContext &ImplCtx) override;
+};
+
+class BlockObjCVariableTraverser : public ASTTraverser {
+public:
+ void traverseBody(BodyContext &BodyCtx) override;
+};
+
+class ProtectedScopeTraverser : public ASTTraverser {
+public:
+ void traverseBody(BodyContext &BodyCtx) override;
+};
+
+// GC transformations
+
+class GCAttrsTraverser : public ASTTraverser {
+public:
+ void traverseTU(MigrationContext &MigrateCtx) override;
+};
+
+class GCCollectableCallsTraverser : public ASTTraverser {
+public:
+ void traverseBody(BodyContext &BodyCtx) override;
+};
+
+//===----------------------------------------------------------------------===//
+// Helpers.
+//===----------------------------------------------------------------------===//
+
+/// \brief Determine whether we can add weak to the given type.
+bool canApplyWeak(ASTContext &Ctx, QualType type,
+ bool AllowOnUnknownClass = false);
+
+bool isPlusOneAssign(const BinaryOperator *E);
+bool isPlusOne(const Expr *E);
+
+/// \brief 'Loc' is the end of a statement range. This returns the location
+/// immediately after the semicolon following the statement.
+/// If no semicolon is found or the location is inside a macro, the returned
+/// source location will be invalid.
+SourceLocation findLocationAfterSemi(SourceLocation loc, ASTContext &Ctx,
+ bool IsDecl = false);
+
+/// \brief 'Loc' is the end of a statement range. This returns the location
+/// of the semicolon following the statement.
+/// If no semicolon is found or the location is inside a macro, the returned
+/// source location will be invalid.
+SourceLocation findSemiAfterLocation(SourceLocation loc, ASTContext &Ctx,
+ bool IsDecl = false);
+
+bool hasSideEffects(Expr *E, ASTContext &Ctx);
+bool isGlobalVar(Expr *E);
+/// \brief Returns "nil" or "0" if 'nil' macro is not actually defined.
+StringRef getNilString(MigrationPass &Pass);
+
+template <typename BODY_TRANS>
+class BodyTransform : public RecursiveASTVisitor<BodyTransform<BODY_TRANS> > {
+ MigrationPass &Pass;
+ Decl *ParentD;
+
+ typedef RecursiveASTVisitor<BodyTransform<BODY_TRANS> > base;
+public:
+ BodyTransform(MigrationPass &pass) : Pass(pass), ParentD(nullptr) { }
+
+ bool TraverseStmt(Stmt *rootS) {
+ if (rootS)
+ BODY_TRANS(Pass).transformBody(rootS, ParentD);
+ return true;
+ }
+
+ bool TraverseObjCMethodDecl(ObjCMethodDecl *D) {
+ SaveAndRestore<Decl *> SetParent(ParentD, D);
+ return base::TraverseObjCMethodDecl(D);
+ }
+};
+
+typedef llvm::DenseSet<Expr *> ExprSet;
+
+void clearRefsIn(Stmt *S, ExprSet &refs);
+template <typename iterator>
+void clearRefsIn(iterator begin, iterator end, ExprSet &refs) {
+ for (; begin != end; ++begin)
+ clearRefsIn(*begin, refs);
+}
+
+void collectRefs(ValueDecl *D, Stmt *S, ExprSet &refs);
+
+void collectRemovables(Stmt *S, ExprSet &exprs);
+
+} // end namespace trans
+
+} // end namespace arcmt
+
+} // end namespace clang
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/AST/APValue.cpp b/contrib/llvm/tools/clang/lib/AST/APValue.cpp
new file mode 100644
index 0000000..91f1e20
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/APValue.cpp
@@ -0,0 +1,651 @@
+//===--- APValue.cpp - Union class for APFloat/APSInt/Complex -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the APValue class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/APValue.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/CharUnits.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/Type.h"
+#include "clang/Basic/Diagnostic.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace clang;
+
+namespace {
+ struct LVBase {
+ llvm::PointerIntPair<APValue::LValueBase, 1, bool> BaseAndIsOnePastTheEnd;
+ CharUnits Offset;
+ unsigned PathLength;
+ unsigned CallIndex;
+ };
+}
+
+struct APValue::LV : LVBase {
+ static const unsigned InlinePathSpace =
+ (DataSize - sizeof(LVBase)) / sizeof(LValuePathEntry);
+
+ /// Path - The sequence of base classes, fields and array indices to follow to
+ /// walk from Base to the subobject. When performing GCC-style folding, there
+ /// may not be such a path.
+ union {
+ LValuePathEntry Path[InlinePathSpace];
+ LValuePathEntry *PathPtr;
+ };
+
+ LV() { PathLength = (unsigned)-1; }
+ ~LV() { resizePath(0); }
+
+ void resizePath(unsigned Length) {
+ if (Length == PathLength)
+ return;
+ if (hasPathPtr())
+ delete [] PathPtr;
+ PathLength = Length;
+ if (hasPathPtr())
+ PathPtr = new LValuePathEntry[Length];
+ }
+
+ bool hasPath() const { return PathLength != (unsigned)-1; }
+ bool hasPathPtr() const { return hasPath() && PathLength > InlinePathSpace; }
+
+ LValuePathEntry *getPath() { return hasPathPtr() ? PathPtr : Path; }
+ const LValuePathEntry *getPath() const {
+ return hasPathPtr() ? PathPtr : Path;
+ }
+};
+
+namespace {
+ struct MemberPointerBase {
+ llvm::PointerIntPair<const ValueDecl*, 1, bool> MemberAndIsDerivedMember;
+ unsigned PathLength;
+ };
+}
+
+struct APValue::MemberPointerData : MemberPointerBase {
+ static const unsigned InlinePathSpace =
+ (DataSize - sizeof(MemberPointerBase)) / sizeof(const CXXRecordDecl*);
+ typedef const CXXRecordDecl *PathElem;
+ union {
+ PathElem Path[InlinePathSpace];
+ PathElem *PathPtr;
+ };
+
+ MemberPointerData() { PathLength = 0; }
+ ~MemberPointerData() { resizePath(0); }
+
+ void resizePath(unsigned Length) {
+ if (Length == PathLength)
+ return;
+ if (hasPathPtr())
+ delete [] PathPtr;
+ PathLength = Length;
+ if (hasPathPtr())
+ PathPtr = new PathElem[Length];
+ }
+
+ bool hasPathPtr() const { return PathLength > InlinePathSpace; }
+
+ PathElem *getPath() { return hasPathPtr() ? PathPtr : Path; }
+ const PathElem *getPath() const {
+ return hasPathPtr() ? PathPtr : Path;
+ }
+};
+
+// FIXME: Reduce the malloc traffic here.
+
+APValue::Arr::Arr(unsigned NumElts, unsigned Size) :
+ Elts(new APValue[NumElts + (NumElts != Size ? 1 : 0)]),
+ NumElts(NumElts), ArrSize(Size) {}
+APValue::Arr::~Arr() { delete [] Elts; }
+
+APValue::StructData::StructData(unsigned NumBases, unsigned NumFields) :
+ Elts(new APValue[NumBases+NumFields]),
+ NumBases(NumBases), NumFields(NumFields) {}
+APValue::StructData::~StructData() {
+ delete [] Elts;
+}
+
+APValue::UnionData::UnionData() : Field(nullptr), Value(new APValue) {}
+APValue::UnionData::~UnionData () {
+ delete Value;
+}
+
+APValue::APValue(const APValue &RHS) : Kind(Uninitialized) {
+ switch (RHS.getKind()) {
+ case Uninitialized:
+ break;
+ case Int:
+ MakeInt();
+ setInt(RHS.getInt());
+ break;
+ case Float:
+ MakeFloat();
+ setFloat(RHS.getFloat());
+ break;
+ case Vector:
+ MakeVector();
+ setVector(((const Vec *)(const char *)RHS.Data.buffer)->Elts,
+ RHS.getVectorLength());
+ break;
+ case ComplexInt:
+ MakeComplexInt();
+ setComplexInt(RHS.getComplexIntReal(), RHS.getComplexIntImag());
+ break;
+ case ComplexFloat:
+ MakeComplexFloat();
+ setComplexFloat(RHS.getComplexFloatReal(), RHS.getComplexFloatImag());
+ break;
+ case LValue:
+ MakeLValue();
+ if (RHS.hasLValuePath())
+ setLValue(RHS.getLValueBase(), RHS.getLValueOffset(), RHS.getLValuePath(),
+ RHS.isLValueOnePastTheEnd(), RHS.getLValueCallIndex());
+ else
+ setLValue(RHS.getLValueBase(), RHS.getLValueOffset(), NoLValuePath(),
+ RHS.getLValueCallIndex());
+ break;
+ case Array:
+ MakeArray(RHS.getArrayInitializedElts(), RHS.getArraySize());
+ for (unsigned I = 0, N = RHS.getArrayInitializedElts(); I != N; ++I)
+ getArrayInitializedElt(I) = RHS.getArrayInitializedElt(I);
+ if (RHS.hasArrayFiller())
+ getArrayFiller() = RHS.getArrayFiller();
+ break;
+ case Struct:
+ MakeStruct(RHS.getStructNumBases(), RHS.getStructNumFields());
+ for (unsigned I = 0, N = RHS.getStructNumBases(); I != N; ++I)
+ getStructBase(I) = RHS.getStructBase(I);
+ for (unsigned I = 0, N = RHS.getStructNumFields(); I != N; ++I)
+ getStructField(I) = RHS.getStructField(I);
+ break;
+ case Union:
+ MakeUnion();
+ setUnion(RHS.getUnionField(), RHS.getUnionValue());
+ break;
+ case MemberPointer:
+ MakeMemberPointer(RHS.getMemberPointerDecl(),
+ RHS.isMemberPointerToDerivedMember(),
+ RHS.getMemberPointerPath());
+ break;
+ case AddrLabelDiff:
+ MakeAddrLabelDiff();
+ setAddrLabelDiff(RHS.getAddrLabelDiffLHS(), RHS.getAddrLabelDiffRHS());
+ break;
+ }
+}
+
+void APValue::DestroyDataAndMakeUninit() {
+ if (Kind == Int)
+ ((APSInt*)(char*)Data.buffer)->~APSInt();
+ else if (Kind == Float)
+ ((APFloat*)(char*)Data.buffer)->~APFloat();
+ else if (Kind == Vector)
+ ((Vec*)(char*)Data.buffer)->~Vec();
+ else if (Kind == ComplexInt)
+ ((ComplexAPSInt*)(char*)Data.buffer)->~ComplexAPSInt();
+ else if (Kind == ComplexFloat)
+ ((ComplexAPFloat*)(char*)Data.buffer)->~ComplexAPFloat();
+ else if (Kind == LValue)
+ ((LV*)(char*)Data.buffer)->~LV();
+ else if (Kind == Array)
+ ((Arr*)(char*)Data.buffer)->~Arr();
+ else if (Kind == Struct)
+ ((StructData*)(char*)Data.buffer)->~StructData();
+ else if (Kind == Union)
+ ((UnionData*)(char*)Data.buffer)->~UnionData();
+ else if (Kind == MemberPointer)
+ ((MemberPointerData*)(char*)Data.buffer)->~MemberPointerData();
+ else if (Kind == AddrLabelDiff)
+ ((AddrLabelDiffData*)(char*)Data.buffer)->~AddrLabelDiffData();
+ Kind = Uninitialized;
+}
+
+bool APValue::needsCleanup() const {
+ switch (getKind()) {
+ case Uninitialized:
+ case AddrLabelDiff:
+ return false;
+ case Struct:
+ case Union:
+ case Array:
+ case Vector:
+ return true;
+ case Int:
+ return getInt().needsCleanup();
+ case Float:
+ return getFloat().needsCleanup();
+ case ComplexFloat:
+ assert(getComplexFloatImag().needsCleanup() ==
+ getComplexFloatReal().needsCleanup() &&
+ "In _Complex float types, real and imaginary values always have the "
+ "same size.");
+ return getComplexFloatReal().needsCleanup();
+ case ComplexInt:
+ assert(getComplexIntImag().needsCleanup() ==
+ getComplexIntReal().needsCleanup() &&
+ "In _Complex int types, real and imaginary values must have the "
+ "same size.");
+ return getComplexIntReal().needsCleanup();
+ case LValue:
+ return reinterpret_cast<const LV *>(Data.buffer)->hasPathPtr();
+ case MemberPointer:
+ return reinterpret_cast<const MemberPointerData *>(Data.buffer)
+ ->hasPathPtr();
+ }
+ llvm_unreachable("Unknown APValue kind!");
+}
+
+void APValue::swap(APValue &RHS) {
+ std::swap(Kind, RHS.Kind);
+ char TmpData[DataSize];
+ memcpy(TmpData, Data.buffer, DataSize);
+ memcpy(Data.buffer, RHS.Data.buffer, DataSize);
+ memcpy(RHS.Data.buffer, TmpData, DataSize);
+}
+
+void APValue::dump() const {
+ dump(llvm::errs());
+ llvm::errs() << '\n';
+}
+
+static double GetApproxValue(const llvm::APFloat &F) {
+ llvm::APFloat V = F;
+ bool ignored;
+ V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
+ &ignored);
+ return V.convertToDouble();
+}
+
+void APValue::dump(raw_ostream &OS) const {
+ switch (getKind()) {
+ case Uninitialized:
+ OS << "Uninitialized";
+ return;
+ case Int:
+ OS << "Int: " << getInt();
+ return;
+ case Float:
+ OS << "Float: " << GetApproxValue(getFloat());
+ return;
+ case Vector:
+ OS << "Vector: ";
+ getVectorElt(0).dump(OS);
+ for (unsigned i = 1; i != getVectorLength(); ++i) {
+ OS << ", ";
+ getVectorElt(i).dump(OS);
+ }
+ return;
+ case ComplexInt:
+ OS << "ComplexInt: " << getComplexIntReal() << ", " << getComplexIntImag();
+ return;
+ case ComplexFloat:
+ OS << "ComplexFloat: " << GetApproxValue(getComplexFloatReal())
+ << ", " << GetApproxValue(getComplexFloatImag());
+ return;
+ case LValue:
+ OS << "LValue: <todo>";
+ return;
+ case Array:
+ OS << "Array: ";
+ for (unsigned I = 0, N = getArrayInitializedElts(); I != N; ++I) {
+ getArrayInitializedElt(I).dump(OS);
+ if (I != getArraySize() - 1) OS << ", ";
+ }
+ if (hasArrayFiller()) {
+ OS << getArraySize() - getArrayInitializedElts() << " x ";
+ getArrayFiller().dump(OS);
+ }
+ return;
+ case Struct:
+ OS << "Struct ";
+ if (unsigned N = getStructNumBases()) {
+ OS << " bases: ";
+ getStructBase(0).dump(OS);
+ for (unsigned I = 1; I != N; ++I) {
+ OS << ", ";
+ getStructBase(I).dump(OS);
+ }
+ }
+ if (unsigned N = getStructNumFields()) {
+ OS << " fields: ";
+ getStructField(0).dump(OS);
+ for (unsigned I = 1; I != N; ++I) {
+ OS << ", ";
+ getStructField(I).dump(OS);
+ }
+ }
+ return;
+ case Union:
+ OS << "Union: ";
+ getUnionValue().dump(OS);
+ return;
+ case MemberPointer:
+ OS << "MemberPointer: <todo>";
+ return;
+ case AddrLabelDiff:
+ OS << "AddrLabelDiff: <todo>";
+ return;
+ }
+ llvm_unreachable("Unknown APValue kind!");
+}
+
+void APValue::printPretty(raw_ostream &Out, ASTContext &Ctx, QualType Ty) const{
+ switch (getKind()) {
+ case APValue::Uninitialized:
+ Out << "<uninitialized>";
+ return;
+ case APValue::Int:
+ if (Ty->isBooleanType())
+ Out << (getInt().getBoolValue() ? "true" : "false");
+ else
+ Out << getInt();
+ return;
+ case APValue::Float:
+ Out << GetApproxValue(getFloat());
+ return;
+ case APValue::Vector: {
+ Out << '{';
+ QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
+ getVectorElt(0).printPretty(Out, Ctx, ElemTy);
+ for (unsigned i = 1; i != getVectorLength(); ++i) {
+ Out << ", ";
+ getVectorElt(i).printPretty(Out, Ctx, ElemTy);
+ }
+ Out << '}';
+ return;
+ }
+ case APValue::ComplexInt:
+ Out << getComplexIntReal() << "+" << getComplexIntImag() << "i";
+ return;
+ case APValue::ComplexFloat:
+ Out << GetApproxValue(getComplexFloatReal()) << "+"
+ << GetApproxValue(getComplexFloatImag()) << "i";
+ return;
+ case APValue::LValue: {
+ LValueBase Base = getLValueBase();
+ if (!Base) {
+ Out << "0";
+ return;
+ }
+
+ bool IsReference = Ty->isReferenceType();
+ QualType InnerTy
+ = IsReference ? Ty.getNonReferenceType() : Ty->getPointeeType();
+ if (InnerTy.isNull())
+ InnerTy = Ty;
+
+ if (!hasLValuePath()) {
+ // No lvalue path: just print the offset.
+ CharUnits O = getLValueOffset();
+ CharUnits S = Ctx.getTypeSizeInChars(InnerTy);
+ if (!O.isZero()) {
+ if (IsReference)
+ Out << "*(";
+ if (O % S) {
+ Out << "(char*)";
+ S = CharUnits::One();
+ }
+ Out << '&';
+ } else if (!IsReference)
+ Out << '&';
+
+ if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>())
+ Out << *VD;
+ else {
+ assert(Base.get<const Expr *>() != nullptr &&
+ "Expecting non-null Expr");
+ Base.get<const Expr*>()->printPretty(Out, nullptr,
+ Ctx.getPrintingPolicy());
+ }
+
+ if (!O.isZero()) {
+ Out << " + " << (O / S);
+ if (IsReference)
+ Out << ')';
+ }
+ return;
+ }
+
+ // We have an lvalue path. Print it out nicely.
+ if (!IsReference)
+ Out << '&';
+ else if (isLValueOnePastTheEnd())
+ Out << "*(&";
+
+ QualType ElemTy;
+ if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) {
+ Out << *VD;
+ ElemTy = VD->getType();
+ } else {
+ const Expr *E = Base.get<const Expr*>();
+ assert(E != nullptr && "Expecting non-null Expr");
+ E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
+ ElemTy = E->getType();
+ }
+
+ ArrayRef<LValuePathEntry> Path = getLValuePath();
+ const CXXRecordDecl *CastToBase = nullptr;
+ for (unsigned I = 0, N = Path.size(); I != N; ++I) {
+ if (ElemTy->getAs<RecordType>()) {
+ // The lvalue refers to a class type, so the next path entry is a base
+ // or member.
+ const Decl *BaseOrMember =
+ BaseOrMemberType::getFromOpaqueValue(Path[I].BaseOrMember).getPointer();
+ if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(BaseOrMember)) {
+ CastToBase = RD;
+ ElemTy = Ctx.getRecordType(RD);
+ } else {
+ const ValueDecl *VD = cast<ValueDecl>(BaseOrMember);
+ Out << ".";
+ if (CastToBase)
+ Out << *CastToBase << "::";
+ Out << *VD;
+ ElemTy = VD->getType();
+ }
+ } else {
+ // The lvalue must refer to an array.
+ Out << '[' << Path[I].ArrayIndex << ']';
+ ElemTy = Ctx.getAsArrayType(ElemTy)->getElementType();
+ }
+ }
+
+ // Handle formatting of one-past-the-end lvalues.
+ if (isLValueOnePastTheEnd()) {
+ // FIXME: If CastToBase is non-0, we should prefix the output with
+ // "(CastToBase*)".
+ Out << " + 1";
+ if (IsReference)
+ Out << ')';
+ }
+ return;
+ }
+ case APValue::Array: {
+ const ArrayType *AT = Ctx.getAsArrayType(Ty);
+ QualType ElemTy = AT->getElementType();
+ Out << '{';
+ if (unsigned N = getArrayInitializedElts()) {
+ getArrayInitializedElt(0).printPretty(Out, Ctx, ElemTy);
+ for (unsigned I = 1; I != N; ++I) {
+ Out << ", ";
+ if (I == 10) {
+ // Avoid printing out the entire contents of large arrays.
+ Out << "...";
+ break;
+ }
+ getArrayInitializedElt(I).printPretty(Out, Ctx, ElemTy);
+ }
+ }
+ Out << '}';
+ return;
+ }
+ case APValue::Struct: {
+ Out << '{';
+ const RecordDecl *RD = Ty->getAs<RecordType>()->getDecl();
+ bool First = true;
+ if (unsigned N = getStructNumBases()) {
+ const CXXRecordDecl *CD = cast<CXXRecordDecl>(RD);
+ CXXRecordDecl::base_class_const_iterator BI = CD->bases_begin();
+ for (unsigned I = 0; I != N; ++I, ++BI) {
+ assert(BI != CD->bases_end());
+ if (!First)
+ Out << ", ";
+ getStructBase(I).printPretty(Out, Ctx, BI->getType());
+ First = false;
+ }
+ }
+ for (const auto *FI : RD->fields()) {
+ if (!First)
+ Out << ", ";
+ if (FI->isUnnamedBitfield()) continue;
+ getStructField(FI->getFieldIndex()).
+ printPretty(Out, Ctx, FI->getType());
+ First = false;
+ }
+ Out << '}';
+ return;
+ }
+ case APValue::Union:
+ Out << '{';
+ if (const FieldDecl *FD = getUnionField()) {
+ Out << "." << *FD << " = ";
+ getUnionValue().printPretty(Out, Ctx, FD->getType());
+ }
+ Out << '}';
+ return;
+ case APValue::MemberPointer:
+ // FIXME: This is not enough to unambiguously identify the member in a
+ // multiple-inheritance scenario.
+ if (const ValueDecl *VD = getMemberPointerDecl()) {
+ Out << '&' << *cast<CXXRecordDecl>(VD->getDeclContext()) << "::" << *VD;
+ return;
+ }
+ Out << "0";
+ return;
+ case APValue::AddrLabelDiff:
+ Out << "&&" << getAddrLabelDiffLHS()->getLabel()->getName();
+ Out << " - ";
+ Out << "&&" << getAddrLabelDiffRHS()->getLabel()->getName();
+ return;
+ }
+ llvm_unreachable("Unknown APValue kind!");
+}
+
+std::string APValue::getAsString(ASTContext &Ctx, QualType Ty) const {
+ std::string Result;
+ llvm::raw_string_ostream Out(Result);
+ printPretty(Out, Ctx, Ty);
+ Out.flush();
+ return Result;
+}
+
+const APValue::LValueBase APValue::getLValueBase() const {
+ assert(isLValue() && "Invalid accessor");
+ return ((const LV*)(const void*)Data.buffer)->BaseAndIsOnePastTheEnd.getPointer();
+}
+
+bool APValue::isLValueOnePastTheEnd() const {
+ assert(isLValue() && "Invalid accessor");
+ return ((const LV*)(const void*)Data.buffer)->BaseAndIsOnePastTheEnd.getInt();
+}
+
+CharUnits &APValue::getLValueOffset() {
+ assert(isLValue() && "Invalid accessor");
+ return ((LV*)(void*)Data.buffer)->Offset;
+}
+
+bool APValue::hasLValuePath() const {
+ assert(isLValue() && "Invalid accessor");
+ return ((const LV*)(const char*)Data.buffer)->hasPath();
+}
+
+ArrayRef<APValue::LValuePathEntry> APValue::getLValuePath() const {
+ assert(isLValue() && hasLValuePath() && "Invalid accessor");
+ const LV &LVal = *((const LV*)(const char*)Data.buffer);
+ return llvm::makeArrayRef(LVal.getPath(), LVal.PathLength);
+}
+
+unsigned APValue::getLValueCallIndex() const {
+ assert(isLValue() && "Invalid accessor");
+ return ((const LV*)(const char*)Data.buffer)->CallIndex;
+}
+
+void APValue::setLValue(LValueBase B, const CharUnits &O, NoLValuePath,
+ unsigned CallIndex) {
+ assert(isLValue() && "Invalid accessor");
+ LV &LVal = *((LV*)(char*)Data.buffer);
+ LVal.BaseAndIsOnePastTheEnd.setPointer(B);
+ LVal.BaseAndIsOnePastTheEnd.setInt(false);
+ LVal.Offset = O;
+ LVal.CallIndex = CallIndex;
+ LVal.resizePath((unsigned)-1);
+}
+
+void APValue::setLValue(LValueBase B, const CharUnits &O,
+ ArrayRef<LValuePathEntry> Path, bool IsOnePastTheEnd,
+ unsigned CallIndex) {
+ assert(isLValue() && "Invalid accessor");
+ LV &LVal = *((LV*)(char*)Data.buffer);
+ LVal.BaseAndIsOnePastTheEnd.setPointer(B);
+ LVal.BaseAndIsOnePastTheEnd.setInt(IsOnePastTheEnd);
+ LVal.Offset = O;
+ LVal.CallIndex = CallIndex;
+ LVal.resizePath(Path.size());
+ memcpy(LVal.getPath(), Path.data(), Path.size() * sizeof(LValuePathEntry));
+}
+
+const ValueDecl *APValue::getMemberPointerDecl() const {
+ assert(isMemberPointer() && "Invalid accessor");
+ const MemberPointerData &MPD =
+ *((const MemberPointerData *)(const char *)Data.buffer);
+ return MPD.MemberAndIsDerivedMember.getPointer();
+}
+
+bool APValue::isMemberPointerToDerivedMember() const {
+ assert(isMemberPointer() && "Invalid accessor");
+ const MemberPointerData &MPD =
+ *((const MemberPointerData *)(const char *)Data.buffer);
+ return MPD.MemberAndIsDerivedMember.getInt();
+}
+
+ArrayRef<const CXXRecordDecl*> APValue::getMemberPointerPath() const {
+ assert(isMemberPointer() && "Invalid accessor");
+ const MemberPointerData &MPD =
+ *((const MemberPointerData *)(const char *)Data.buffer);
+ return llvm::makeArrayRef(MPD.getPath(), MPD.PathLength);
+}
+
+void APValue::MakeLValue() {
+ assert(isUninit() && "Bad state change");
+ static_assert(sizeof(LV) <= DataSize, "LV too big");
+ new ((void*)(char*)Data.buffer) LV();
+ Kind = LValue;
+}
+
+void APValue::MakeArray(unsigned InitElts, unsigned Size) {
+ assert(isUninit() && "Bad state change");
+ new ((void*)(char*)Data.buffer) Arr(InitElts, Size);
+ Kind = Array;
+}
+
+void APValue::MakeMemberPointer(const ValueDecl *Member, bool IsDerivedMember,
+ ArrayRef<const CXXRecordDecl*> Path) {
+ assert(isUninit() && "Bad state change");
+ MemberPointerData *MPD = new ((void*)(char*)Data.buffer) MemberPointerData;
+ Kind = MemberPointer;
+ MPD->MemberAndIsDerivedMember.setPointer(Member);
+ MPD->MemberAndIsDerivedMember.setInt(IsDerivedMember);
+ MPD->resizePath(Path.size());
+ memcpy(MPD->getPath(), Path.data(), Path.size()*sizeof(const CXXRecordDecl*));
+}
diff --git a/contrib/llvm/tools/clang/lib/AST/ASTConsumer.cpp b/contrib/llvm/tools/clang/lib/AST/ASTConsumer.cpp
new file mode 100644
index 0000000..55033b2
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/ASTConsumer.cpp
@@ -0,0 +1,31 @@
+//===--- ASTConsumer.cpp - Abstract interface for reading ASTs --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the ASTConsumer class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/ASTConsumer.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclGroup.h"
+using namespace clang;
+
+bool ASTConsumer::HandleTopLevelDecl(DeclGroupRef D) {
+ return true;
+}
+
+void ASTConsumer::HandleInterestingDecl(DeclGroupRef D) {
+ HandleTopLevelDecl(D);
+}
+
+void ASTConsumer::HandleTopLevelDeclInObjCContainer(DeclGroupRef D) {}
+
+void ASTConsumer::HandleImplicitImportDecl(ImportDecl *D) {
+ HandleTopLevelDecl(DeclGroupRef(D));
+}
diff --git a/contrib/llvm/tools/clang/lib/AST/ASTContext.cpp b/contrib/llvm/tools/clang/lib/AST/ASTContext.cpp
new file mode 100644
index 0000000..4a831d9
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/ASTContext.cpp
@@ -0,0 +1,8470 @@
+//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the ASTContext interface.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/ASTContext.h"
+#include "CXXABI.h"
+#include "clang/AST/ASTMutationListener.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/CharUnits.h"
+#include "clang/AST/Comment.h"
+#include "clang/AST/CommentCommandTraits.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExternalASTSource.h"
+#include "clang/AST/Mangle.h"
+#include "clang/AST/MangleNumberingContext.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/AST/RecursiveASTVisitor.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/AST/VTableBuilder.h"
+#include "clang/Basic/Builtins.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TargetInfo.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/Support/Capacity.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include <map>
+
+using namespace clang;
+
+unsigned ASTContext::NumImplicitDefaultConstructors;
+unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
+unsigned ASTContext::NumImplicitCopyConstructors;
+unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
+unsigned ASTContext::NumImplicitMoveConstructors;
+unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
+unsigned ASTContext::NumImplicitCopyAssignmentOperators;
+unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
+unsigned ASTContext::NumImplicitMoveAssignmentOperators;
+unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
+unsigned ASTContext::NumImplicitDestructors;
+unsigned ASTContext::NumImplicitDestructorsDeclared;
+
+enum FloatingRank {
+ HalfRank, FloatRank, DoubleRank, LongDoubleRank
+};
+
+RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
+ if (!CommentsLoaded && ExternalSource) {
+ ExternalSource->ReadComments();
+
+#ifndef NDEBUG
+ ArrayRef<RawComment *> RawComments = Comments.getComments();
+ assert(std::is_sorted(RawComments.begin(), RawComments.end(),
+ BeforeThanCompare<RawComment>(SourceMgr)));
+#endif
+
+ CommentsLoaded = true;
+ }
+
+ assert(D);
+
+ // User can not attach documentation to implicit declarations.
+ if (D->isImplicit())
+ return nullptr;
+
+ // User can not attach documentation to implicit instantiations.
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
+ return nullptr;
+ }
+
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
+ if (VD->isStaticDataMember() &&
+ VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
+ return nullptr;
+ }
+
+ if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
+ if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
+ return nullptr;
+ }
+
+ if (const ClassTemplateSpecializationDecl *CTSD =
+ dyn_cast<ClassTemplateSpecializationDecl>(D)) {
+ TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
+ if (TSK == TSK_ImplicitInstantiation ||
+ TSK == TSK_Undeclared)
+ return nullptr;
+ }
+
+ if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
+ if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
+ return nullptr;
+ }
+ if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
+ // When tag declaration (but not definition!) is part of the
+ // decl-specifier-seq of some other declaration, it doesn't get comment
+ if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
+ return nullptr;
+ }
+ // TODO: handle comments for function parameters properly.
+ if (isa<ParmVarDecl>(D))
+ return nullptr;
+
+ // TODO: we could look up template parameter documentation in the template
+ // documentation.
+ if (isa<TemplateTypeParmDecl>(D) ||
+ isa<NonTypeTemplateParmDecl>(D) ||
+ isa<TemplateTemplateParmDecl>(D))
+ return nullptr;
+
+ ArrayRef<RawComment *> RawComments = Comments.getComments();
+
+ // If there are no comments anywhere, we won't find anything.
+ if (RawComments.empty())
+ return nullptr;
+
+ // Find declaration location.
+ // For Objective-C declarations we generally don't expect to have multiple
+ // declarators, thus use declaration starting location as the "declaration
+ // location".
+ // For all other declarations multiple declarators are used quite frequently,
+ // so we use the location of the identifier as the "declaration location".
+ SourceLocation DeclLoc;
+ if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
+ isa<ObjCPropertyDecl>(D) ||
+ isa<RedeclarableTemplateDecl>(D) ||
+ isa<ClassTemplateSpecializationDecl>(D))
+ DeclLoc = D->getLocStart();
+ else {
+ DeclLoc = D->getLocation();
+ if (DeclLoc.isMacroID()) {
+ if (isa<TypedefDecl>(D)) {
+ // If location of the typedef name is in a macro, it is because being
+ // declared via a macro. Try using declaration's starting location as
+ // the "declaration location".
+ DeclLoc = D->getLocStart();
+ } else if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
+ // If location of the tag decl is inside a macro, but the spelling of
+ // the tag name comes from a macro argument, it looks like a special
+ // macro like NS_ENUM is being used to define the tag decl. In that
+ // case, adjust the source location to the expansion loc so that we can
+ // attach the comment to the tag decl.
+ if (SourceMgr.isMacroArgExpansion(DeclLoc) &&
+ TD->isCompleteDefinition())
+ DeclLoc = SourceMgr.getExpansionLoc(DeclLoc);
+ }
+ }
+ }
+
+ // If the declaration doesn't map directly to a location in a file, we
+ // can't find the comment.
+ if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
+ return nullptr;
+
+ // Find the comment that occurs just after this declaration.
+ ArrayRef<RawComment *>::iterator Comment;
+ {
+ // When searching for comments during parsing, the comment we are looking
+ // for is usually among the last two comments we parsed -- check them
+ // first.
+ RawComment CommentAtDeclLoc(
+ SourceMgr, SourceRange(DeclLoc), false,
+ LangOpts.CommentOpts.ParseAllComments);
+ BeforeThanCompare<RawComment> Compare(SourceMgr);
+ ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
+ bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
+ if (!Found && RawComments.size() >= 2) {
+ MaybeBeforeDecl--;
+ Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
+ }
+
+ if (Found) {
+ Comment = MaybeBeforeDecl + 1;
+ assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
+ &CommentAtDeclLoc, Compare));
+ } else {
+ // Slow path.
+ Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
+ &CommentAtDeclLoc, Compare);
+ }
+ }
+
+ // Decompose the location for the declaration and find the beginning of the
+ // file buffer.
+ std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
+
+ // First check whether we have a trailing comment.
+ if (Comment != RawComments.end() &&
+ (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
+ (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
+ isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
+ std::pair<FileID, unsigned> CommentBeginDecomp
+ = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
+ // Check that Doxygen trailing comment comes after the declaration, starts
+ // on the same line and in the same file as the declaration.
+ if (DeclLocDecomp.first == CommentBeginDecomp.first &&
+ SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
+ == SourceMgr.getLineNumber(CommentBeginDecomp.first,
+ CommentBeginDecomp.second)) {
+ return *Comment;
+ }
+ }
+
+ // The comment just after the declaration was not a trailing comment.
+ // Let's look at the previous comment.
+ if (Comment == RawComments.begin())
+ return nullptr;
+ --Comment;
+
+ // Check that we actually have a non-member Doxygen comment.
+ if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
+ return nullptr;
+
+ // Decompose the end of the comment.
+ std::pair<FileID, unsigned> CommentEndDecomp
+ = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
+
+ // If the comment and the declaration aren't in the same file, then they
+ // aren't related.
+ if (DeclLocDecomp.first != CommentEndDecomp.first)
+ return nullptr;
+
+ // Get the corresponding buffer.
+ bool Invalid = false;
+ const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
+ &Invalid).data();
+ if (Invalid)
+ return nullptr;
+
+ // Extract text between the comment and declaration.
+ StringRef Text(Buffer + CommentEndDecomp.second,
+ DeclLocDecomp.second - CommentEndDecomp.second);
+
+ // There should be no other declarations or preprocessor directives between
+ // comment and declaration.
+ if (Text.find_first_of(";{}#@") != StringRef::npos)
+ return nullptr;
+
+ return *Comment;
+}
+
+namespace {
+/// If we have a 'templated' declaration for a template, adjust 'D' to
+/// refer to the actual template.
+/// If we have an implicit instantiation, adjust 'D' to refer to template.
+const Decl *adjustDeclToTemplate(const Decl *D) {
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ // Is this function declaration part of a function template?
+ if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
+ return FTD;
+
+ // Nothing to do if function is not an implicit instantiation.
+ if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
+ return D;
+
+ // Function is an implicit instantiation of a function template?
+ if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
+ return FTD;
+
+ // Function is instantiated from a member definition of a class template?
+ if (const FunctionDecl *MemberDecl =
+ FD->getInstantiatedFromMemberFunction())
+ return MemberDecl;
+
+ return D;
+ }
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
+ // Static data member is instantiated from a member definition of a class
+ // template?
+ if (VD->isStaticDataMember())
+ if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
+ return MemberDecl;
+
+ return D;
+ }
+ if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
+ // Is this class declaration part of a class template?
+ if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
+ return CTD;
+
+ // Class is an implicit instantiation of a class template or partial
+ // specialization?
+ if (const ClassTemplateSpecializationDecl *CTSD =
+ dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
+ if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
+ return D;
+ llvm::PointerUnion<ClassTemplateDecl *,
+ ClassTemplatePartialSpecializationDecl *>
+ PU = CTSD->getSpecializedTemplateOrPartial();
+ return PU.is<ClassTemplateDecl*>() ?
+ static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
+ static_cast<const Decl*>(
+ PU.get<ClassTemplatePartialSpecializationDecl *>());
+ }
+
+ // Class is instantiated from a member definition of a class template?
+ if (const MemberSpecializationInfo *Info =
+ CRD->getMemberSpecializationInfo())
+ return Info->getInstantiatedFrom();
+
+ return D;
+ }
+ if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
+ // Enum is instantiated from a member definition of a class template?
+ if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
+ return MemberDecl;
+
+ return D;
+ }
+ // FIXME: Adjust alias templates?
+ return D;
+}
+} // unnamed namespace
+
+const RawComment *ASTContext::getRawCommentForAnyRedecl(
+ const Decl *D,
+ const Decl **OriginalDecl) const {
+ D = adjustDeclToTemplate(D);
+
+ // Check whether we have cached a comment for this declaration already.
+ {
+ llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
+ RedeclComments.find(D);
+ if (Pos != RedeclComments.end()) {
+ const RawCommentAndCacheFlags &Raw = Pos->second;
+ if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
+ if (OriginalDecl)
+ *OriginalDecl = Raw.getOriginalDecl();
+ return Raw.getRaw();
+ }
+ }
+ }
+
+ // Search for comments attached to declarations in the redeclaration chain.
+ const RawComment *RC = nullptr;
+ const Decl *OriginalDeclForRC = nullptr;
+ for (auto I : D->redecls()) {
+ llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
+ RedeclComments.find(I);
+ if (Pos != RedeclComments.end()) {
+ const RawCommentAndCacheFlags &Raw = Pos->second;
+ if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
+ RC = Raw.getRaw();
+ OriginalDeclForRC = Raw.getOriginalDecl();
+ break;
+ }
+ } else {
+ RC = getRawCommentForDeclNoCache(I);
+ OriginalDeclForRC = I;
+ RawCommentAndCacheFlags Raw;
+ if (RC) {
+ Raw.setRaw(RC);
+ Raw.setKind(RawCommentAndCacheFlags::FromDecl);
+ } else
+ Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
+ Raw.setOriginalDecl(I);
+ RedeclComments[I] = Raw;
+ if (RC)
+ break;
+ }
+ }
+
+ // If we found a comment, it should be a documentation comment.
+ assert(!RC || RC->isDocumentation());
+
+ if (OriginalDecl)
+ *OriginalDecl = OriginalDeclForRC;
+
+ // Update cache for every declaration in the redeclaration chain.
+ RawCommentAndCacheFlags Raw;
+ Raw.setRaw(RC);
+ Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
+ Raw.setOriginalDecl(OriginalDeclForRC);
+
+ for (auto I : D->redecls()) {
+ RawCommentAndCacheFlags &R = RedeclComments[I];
+ if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
+ R = Raw;
+ }
+
+ return RC;
+}
+
+static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
+ SmallVectorImpl<const NamedDecl *> &Redeclared) {
+ const DeclContext *DC = ObjCMethod->getDeclContext();
+ if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) {
+ const ObjCInterfaceDecl *ID = IMD->getClassInterface();
+ if (!ID)
+ return;
+ // Add redeclared method here.
+ for (const auto *Ext : ID->known_extensions()) {
+ if (ObjCMethodDecl *RedeclaredMethod =
+ Ext->getMethod(ObjCMethod->getSelector(),
+ ObjCMethod->isInstanceMethod()))
+ Redeclared.push_back(RedeclaredMethod);
+ }
+ }
+}
+
+comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
+ const Decl *D) const {
+ comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo;
+ ThisDeclInfo->CommentDecl = D;
+ ThisDeclInfo->IsFilled = false;
+ ThisDeclInfo->fill();
+ ThisDeclInfo->CommentDecl = FC->getDecl();
+ if (!ThisDeclInfo->TemplateParameters)
+ ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
+ comments::FullComment *CFC =
+ new (*this) comments::FullComment(FC->getBlocks(),
+ ThisDeclInfo);
+ return CFC;
+
+}
+
+comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
+ const RawComment *RC = getRawCommentForDeclNoCache(D);
+ return RC ? RC->parse(*this, nullptr, D) : nullptr;
+}
+
+comments::FullComment *ASTContext::getCommentForDecl(
+ const Decl *D,
+ const Preprocessor *PP) const {
+ if (D->isInvalidDecl())
+ return nullptr;
+ D = adjustDeclToTemplate(D);
+
+ const Decl *Canonical = D->getCanonicalDecl();
+ llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
+ ParsedComments.find(Canonical);
+
+ if (Pos != ParsedComments.end()) {
+ if (Canonical != D) {
+ comments::FullComment *FC = Pos->second;
+ comments::FullComment *CFC = cloneFullComment(FC, D);
+ return CFC;
+ }
+ return Pos->second;
+ }
+
+ const Decl *OriginalDecl;
+
+ const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
+ if (!RC) {
+ if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
+ SmallVector<const NamedDecl*, 8> Overridden;
+ const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D);
+ if (OMD && OMD->isPropertyAccessor())
+ if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
+ if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
+ return cloneFullComment(FC, D);
+ if (OMD)
+ addRedeclaredMethods(OMD, Overridden);
+ getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
+ for (unsigned i = 0, e = Overridden.size(); i < e; i++)
+ if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
+ return cloneFullComment(FC, D);
+ }
+ else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
+ // Attach any tag type's documentation to its typedef if latter
+ // does not have one of its own.
+ QualType QT = TD->getUnderlyingType();
+ if (const TagType *TT = QT->getAs<TagType>())
+ if (const Decl *TD = TT->getDecl())
+ if (comments::FullComment *FC = getCommentForDecl(TD, PP))
+ return cloneFullComment(FC, D);
+ }
+ else if (const ObjCInterfaceDecl *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
+ while (IC->getSuperClass()) {
+ IC = IC->getSuperClass();
+ if (comments::FullComment *FC = getCommentForDecl(IC, PP))
+ return cloneFullComment(FC, D);
+ }
+ }
+ else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(D)) {
+ if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
+ if (comments::FullComment *FC = getCommentForDecl(IC, PP))
+ return cloneFullComment(FC, D);
+ }
+ else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
+ if (!(RD = RD->getDefinition()))
+ return nullptr;
+ // Check non-virtual bases.
+ for (const auto &I : RD->bases()) {
+ if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
+ continue;
+ QualType Ty = I.getType();
+ if (Ty.isNull())
+ continue;
+ if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
+ if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
+ continue;
+
+ if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
+ return cloneFullComment(FC, D);
+ }
+ }
+ // Check virtual bases.
+ for (const auto &I : RD->vbases()) {
+ if (I.getAccessSpecifier() != AS_public)
+ continue;
+ QualType Ty = I.getType();
+ if (Ty.isNull())
+ continue;
+ if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
+ if (!(VirtualBase= VirtualBase->getDefinition()))
+ continue;
+ if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
+ return cloneFullComment(FC, D);
+ }
+ }
+ }
+ return nullptr;
+ }
+
+ // If the RawComment was attached to other redeclaration of this Decl, we
+ // should parse the comment in context of that other Decl. This is important
+ // because comments can contain references to parameter names which can be
+ // different across redeclarations.
+ if (D != OriginalDecl)
+ return getCommentForDecl(OriginalDecl, PP);
+
+ comments::FullComment *FC = RC->parse(*this, PP, D);
+ ParsedComments[Canonical] = FC;
+ return FC;
+}
+
+void
+ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
+ TemplateTemplateParmDecl *Parm) {
+ ID.AddInteger(Parm->getDepth());
+ ID.AddInteger(Parm->getPosition());
+ ID.AddBoolean(Parm->isParameterPack());
+
+ TemplateParameterList *Params = Parm->getTemplateParameters();
+ ID.AddInteger(Params->size());
+ for (TemplateParameterList::const_iterator P = Params->begin(),
+ PEnd = Params->end();
+ P != PEnd; ++P) {
+ if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
+ ID.AddInteger(0);
+ ID.AddBoolean(TTP->isParameterPack());
+ continue;
+ }
+
+ if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
+ ID.AddInteger(1);
+ ID.AddBoolean(NTTP->isParameterPack());
+ ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
+ if (NTTP->isExpandedParameterPack()) {
+ ID.AddBoolean(true);
+ ID.AddInteger(NTTP->getNumExpansionTypes());
+ for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
+ QualType T = NTTP->getExpansionType(I);
+ ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
+ }
+ } else
+ ID.AddBoolean(false);
+ continue;
+ }
+
+ TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
+ ID.AddInteger(2);
+ Profile(ID, TTP);
+ }
+}
+
+TemplateTemplateParmDecl *
+ASTContext::getCanonicalTemplateTemplateParmDecl(
+ TemplateTemplateParmDecl *TTP) const {
+ // Check if we already have a canonical template template parameter.
+ llvm::FoldingSetNodeID ID;
+ CanonicalTemplateTemplateParm::Profile(ID, TTP);
+ void *InsertPos = nullptr;
+ CanonicalTemplateTemplateParm *Canonical
+ = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
+ if (Canonical)
+ return Canonical->getParam();
+
+ // Build a canonical template parameter list.
+ TemplateParameterList *Params = TTP->getTemplateParameters();
+ SmallVector<NamedDecl *, 4> CanonParams;
+ CanonParams.reserve(Params->size());
+ for (TemplateParameterList::const_iterator P = Params->begin(),
+ PEnd = Params->end();
+ P != PEnd; ++P) {
+ if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
+ CanonParams.push_back(
+ TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
+ SourceLocation(),
+ SourceLocation(),
+ TTP->getDepth(),
+ TTP->getIndex(), nullptr, false,
+ TTP->isParameterPack()));
+ else if (NonTypeTemplateParmDecl *NTTP
+ = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
+ QualType T = getCanonicalType(NTTP->getType());
+ TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
+ NonTypeTemplateParmDecl *Param;
+ if (NTTP->isExpandedParameterPack()) {
+ SmallVector<QualType, 2> ExpandedTypes;
+ SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
+ for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
+ ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
+ ExpandedTInfos.push_back(
+ getTrivialTypeSourceInfo(ExpandedTypes.back()));
+ }
+
+ Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
+ SourceLocation(),
+ SourceLocation(),
+ NTTP->getDepth(),
+ NTTP->getPosition(), nullptr,
+ T,
+ TInfo,
+ ExpandedTypes.data(),
+ ExpandedTypes.size(),
+ ExpandedTInfos.data());
+ } else {
+ Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
+ SourceLocation(),
+ SourceLocation(),
+ NTTP->getDepth(),
+ NTTP->getPosition(), nullptr,
+ T,
+ NTTP->isParameterPack(),
+ TInfo);
+ }
+ CanonParams.push_back(Param);
+
+ } else
+ CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
+ cast<TemplateTemplateParmDecl>(*P)));
+ }
+
+ TemplateTemplateParmDecl *CanonTTP
+ = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
+ SourceLocation(), TTP->getDepth(),
+ TTP->getPosition(),
+ TTP->isParameterPack(),
+ nullptr,
+ TemplateParameterList::Create(*this, SourceLocation(),
+ SourceLocation(),
+ CanonParams.data(),
+ CanonParams.size(),
+ SourceLocation()));
+
+ // Get the new insert position for the node we care about.
+ Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!Canonical && "Shouldn't be in the map!");
+ (void)Canonical;
+
+ // Create the canonical template template parameter entry.
+ Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
+ CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
+ return CanonTTP;
+}
+
+CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
+ if (!LangOpts.CPlusPlus) return nullptr;
+
+ switch (T.getCXXABI().getKind()) {
+ case TargetCXXABI::GenericARM: // Same as Itanium at this level
+ case TargetCXXABI::iOS:
+ case TargetCXXABI::iOS64:
+ case TargetCXXABI::GenericAArch64:
+ case TargetCXXABI::GenericMIPS:
+ case TargetCXXABI::GenericItanium:
+ return CreateItaniumCXXABI(*this);
+ case TargetCXXABI::Microsoft:
+ return CreateMicrosoftCXXABI(*this);
+ }
+ llvm_unreachable("Invalid CXXABI type!");
+}
+
+static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
+ const LangOptions &LOpts) {
+ if (LOpts.FakeAddressSpaceMap) {
+ // The fake address space map must have a distinct entry for each
+ // language-specific address space.
+ static const unsigned FakeAddrSpaceMap[] = {
+ 1, // opencl_global
+ 2, // opencl_local
+ 3, // opencl_constant
+ 4, // opencl_generic
+ 5, // cuda_device
+ 6, // cuda_constant
+ 7 // cuda_shared
+ };
+ return &FakeAddrSpaceMap;
+ } else {
+ return &T.getAddressSpaceMap();
+ }
+}
+
+static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI,
+ const LangOptions &LangOpts) {
+ switch (LangOpts.getAddressSpaceMapMangling()) {
+ case LangOptions::ASMM_Target:
+ return TI.useAddressSpaceMapMangling();
+ case LangOptions::ASMM_On:
+ return true;
+ case LangOptions::ASMM_Off:
+ return false;
+ }
+ llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.");
+}
+
+ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM,
+ IdentifierTable &idents, SelectorTable &sels,
+ Builtin::Context &builtins)
+ : FunctionProtoTypes(this_()), TemplateSpecializationTypes(this_()),
+ DependentTemplateSpecializationTypes(this_()),
+ SubstTemplateTemplateParmPacks(this_()),
+ GlobalNestedNameSpecifier(nullptr), Int128Decl(nullptr),
+ UInt128Decl(nullptr), Float128StubDecl(nullptr),
+ BuiltinVaListDecl(nullptr), ObjCIdDecl(nullptr), ObjCSelDecl(nullptr),
+ ObjCClassDecl(nullptr), ObjCProtocolClassDecl(nullptr), BOOLDecl(nullptr),
+ CFConstantStringTypeDecl(nullptr), ObjCInstanceTypeDecl(nullptr),
+ FILEDecl(nullptr), jmp_bufDecl(nullptr), sigjmp_bufDecl(nullptr),
+ ucontext_tDecl(nullptr), BlockDescriptorType(nullptr),
+ BlockDescriptorExtendedType(nullptr), cudaConfigureCallDecl(nullptr),
+ FirstLocalImport(), LastLocalImport(), ExternCContext(nullptr),
+ SourceMgr(SM), LangOpts(LOpts),
+ SanitizerBL(new SanitizerBlacklist(LangOpts.SanitizerBlacklistFiles, SM)),
+ AddrSpaceMap(nullptr), Target(nullptr), PrintingPolicy(LOpts),
+ Idents(idents), Selectors(sels), BuiltinInfo(builtins),
+ DeclarationNames(*this), ExternalSource(nullptr), Listener(nullptr),
+ Comments(SM), CommentsLoaded(false),
+ CommentCommandTraits(BumpAlloc, LOpts.CommentOpts), LastSDM(nullptr, 0) {
+ TUDecl = TranslationUnitDecl::Create(*this);
+}
+
+ASTContext::~ASTContext() {
+ ReleaseParentMapEntries();
+
+ // Release the DenseMaps associated with DeclContext objects.
+ // FIXME: Is this the ideal solution?
+ ReleaseDeclContextMaps();
+
+ // Call all of the deallocation functions on all of their targets.
+ for (DeallocationMap::const_iterator I = Deallocations.begin(),
+ E = Deallocations.end(); I != E; ++I)
+ for (unsigned J = 0, N = I->second.size(); J != N; ++J)
+ (I->first)((I->second)[J]);
+
+ // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
+ // because they can contain DenseMaps.
+ for (llvm::DenseMap<const ObjCContainerDecl*,
+ const ASTRecordLayout*>::iterator
+ I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
+ // Increment in loop to prevent using deallocated memory.
+ if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
+ R->Destroy(*this);
+
+ for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
+ I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
+ // Increment in loop to prevent using deallocated memory.
+ if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
+ R->Destroy(*this);
+ }
+
+ for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
+ AEnd = DeclAttrs.end();
+ A != AEnd; ++A)
+ A->second->~AttrVec();
+
+ llvm::DeleteContainerSeconds(MangleNumberingContexts);
+}
+
+void ASTContext::ReleaseParentMapEntries() {
+ if (!AllParents) return;
+ for (const auto &Entry : *AllParents) {
+ if (Entry.second.is<ast_type_traits::DynTypedNode *>()) {
+ delete Entry.second.get<ast_type_traits::DynTypedNode *>();
+ } else {
+ assert(Entry.second.is<ParentVector *>());
+ delete Entry.second.get<ParentVector *>();
+ }
+ }
+}
+
+void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
+ Deallocations[Callback].push_back(Data);
+}
+
+void
+ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) {
+ ExternalSource = Source;
+}
+
+void ASTContext::PrintStats() const {
+ llvm::errs() << "\n*** AST Context Stats:\n";
+ llvm::errs() << " " << Types.size() << " types total.\n";
+
+ unsigned counts[] = {
+#define TYPE(Name, Parent) 0,
+#define ABSTRACT_TYPE(Name, Parent)
+#include "clang/AST/TypeNodes.def"
+ 0 // Extra
+ };
+
+ for (unsigned i = 0, e = Types.size(); i != e; ++i) {
+ Type *T = Types[i];
+ counts[(unsigned)T->getTypeClass()]++;
+ }
+
+ unsigned Idx = 0;
+ unsigned TotalBytes = 0;
+#define TYPE(Name, Parent) \
+ if (counts[Idx]) \
+ llvm::errs() << " " << counts[Idx] << " " << #Name \
+ << " types\n"; \
+ TotalBytes += counts[Idx] * sizeof(Name##Type); \
+ ++Idx;
+#define ABSTRACT_TYPE(Name, Parent)
+#include "clang/AST/TypeNodes.def"
+
+ llvm::errs() << "Total bytes = " << TotalBytes << "\n";
+
+ // Implicit special member functions.
+ llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
+ << NumImplicitDefaultConstructors
+ << " implicit default constructors created\n";
+ llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
+ << NumImplicitCopyConstructors
+ << " implicit copy constructors created\n";
+ if (getLangOpts().CPlusPlus)
+ llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
+ << NumImplicitMoveConstructors
+ << " implicit move constructors created\n";
+ llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
+ << NumImplicitCopyAssignmentOperators
+ << " implicit copy assignment operators created\n";
+ if (getLangOpts().CPlusPlus)
+ llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
+ << NumImplicitMoveAssignmentOperators
+ << " implicit move assignment operators created\n";
+ llvm::errs() << NumImplicitDestructorsDeclared << "/"
+ << NumImplicitDestructors
+ << " implicit destructors created\n";
+
+ if (ExternalSource) {
+ llvm::errs() << "\n";
+ ExternalSource->PrintStats();
+ }
+
+ BumpAlloc.PrintStats();
+}
+
+void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
+ bool NotifyListeners) {
+ if (NotifyListeners)
+ if (auto *Listener = getASTMutationListener())
+ Listener->RedefinedHiddenDefinition(ND, M);
+
+ if (getLangOpts().ModulesLocalVisibility)
+ MergedDefModules[ND].push_back(M);
+ else
+ ND->setHidden(false);
+}
+
+void ASTContext::deduplicateMergedDefinitonsFor(NamedDecl *ND) {
+ auto It = MergedDefModules.find(ND);
+ if (It == MergedDefModules.end())
+ return;
+
+ auto &Merged = It->second;
+ llvm::DenseSet<Module*> Found;
+ for (Module *&M : Merged)
+ if (!Found.insert(M).second)
+ M = nullptr;
+ Merged.erase(std::remove(Merged.begin(), Merged.end(), nullptr), Merged.end());
+}
+
+ExternCContextDecl *ASTContext::getExternCContextDecl() const {
+ if (!ExternCContext)
+ ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl());
+
+ return ExternCContext;
+}
+
+RecordDecl *ASTContext::buildImplicitRecord(StringRef Name,
+ RecordDecl::TagKind TK) const {
+ SourceLocation Loc;
+ RecordDecl *NewDecl;
+ if (getLangOpts().CPlusPlus)
+ NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
+ Loc, &Idents.get(Name));
+ else
+ NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
+ &Idents.get(Name));
+ NewDecl->setImplicit();
+ NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit(
+ const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default));
+ return NewDecl;
+}
+
+TypedefDecl *ASTContext::buildImplicitTypedef(QualType T,
+ StringRef Name) const {
+ TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
+ TypedefDecl *NewDecl = TypedefDecl::Create(
+ const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
+ SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
+ NewDecl->setImplicit();
+ return NewDecl;
+}
+
+TypedefDecl *ASTContext::getInt128Decl() const {
+ if (!Int128Decl)
+ Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
+ return Int128Decl;
+}
+
+TypedefDecl *ASTContext::getUInt128Decl() const {
+ if (!UInt128Decl)
+ UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
+ return UInt128Decl;
+}
+
+TypeDecl *ASTContext::getFloat128StubType() const {
+ assert(LangOpts.CPlusPlus && "should only be called for c++");
+ if (!Float128StubDecl)
+ Float128StubDecl = buildImplicitRecord("__float128");
+
+ return Float128StubDecl;
+}
+
+void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
+ BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
+ R = CanQualType::CreateUnsafe(QualType(Ty, 0));
+ Types.push_back(Ty);
+}
+
+void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
+ assert((!this->Target || this->Target == &Target) &&
+ "Incorrect target reinitialization");
+ assert(VoidTy.isNull() && "Context reinitialized?");
+
+ this->Target = &Target;
+
+ ABI.reset(createCXXABI(Target));
+ AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
+ AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);
+
+ // C99 6.2.5p19.
+ InitBuiltinType(VoidTy, BuiltinType::Void);
+
+ // C99 6.2.5p2.
+ InitBuiltinType(BoolTy, BuiltinType::Bool);
+ // C99 6.2.5p3.
+ if (LangOpts.CharIsSigned)
+ InitBuiltinType(CharTy, BuiltinType::Char_S);
+ else
+ InitBuiltinType(CharTy, BuiltinType::Char_U);
+ // C99 6.2.5p4.
+ InitBuiltinType(SignedCharTy, BuiltinType::SChar);
+ InitBuiltinType(ShortTy, BuiltinType::Short);
+ InitBuiltinType(IntTy, BuiltinType::Int);
+ InitBuiltinType(LongTy, BuiltinType::Long);
+ InitBuiltinType(LongLongTy, BuiltinType::LongLong);
+
+ // C99 6.2.5p6.
+ InitBuiltinType(UnsignedCharTy, BuiltinType::UChar);
+ InitBuiltinType(UnsignedShortTy, BuiltinType::UShort);
+ InitBuiltinType(UnsignedIntTy, BuiltinType::UInt);
+ InitBuiltinType(UnsignedLongTy, BuiltinType::ULong);
+ InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong);
+
+ // C99 6.2.5p10.
+ InitBuiltinType(FloatTy, BuiltinType::Float);
+ InitBuiltinType(DoubleTy, BuiltinType::Double);
+ InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble);
+
+ // GNU extension, 128-bit integers.
+ InitBuiltinType(Int128Ty, BuiltinType::Int128);
+ InitBuiltinType(UnsignedInt128Ty, BuiltinType::UInt128);
+
+ // C++ 3.9.1p5
+ if (TargetInfo::isTypeSigned(Target.getWCharType()))
+ InitBuiltinType(WCharTy, BuiltinType::WChar_S);
+ else // -fshort-wchar makes wchar_t be unsigned.
+ InitBuiltinType(WCharTy, BuiltinType::WChar_U);
+ if (LangOpts.CPlusPlus && LangOpts.WChar)
+ WideCharTy = WCharTy;
+ else {
+ // C99 (or C++ using -fno-wchar).
+ WideCharTy = getFromTargetType(Target.getWCharType());
+ }
+
+ WIntTy = getFromTargetType(Target.getWIntType());
+
+ if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
+ InitBuiltinType(Char16Ty, BuiltinType::Char16);
+ else // C99
+ Char16Ty = getFromTargetType(Target.getChar16Type());
+
+ if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
+ InitBuiltinType(Char32Ty, BuiltinType::Char32);
+ else // C99
+ Char32Ty = getFromTargetType(Target.getChar32Type());
+
+ // Placeholder type for type-dependent expressions whose type is
+ // completely unknown. No code should ever check a type against
+ // DependentTy and users should never see it; however, it is here to
+ // help diagnose failures to properly check for type-dependent
+ // expressions.
+ InitBuiltinType(DependentTy, BuiltinType::Dependent);
+
+ // Placeholder type for functions.
+ InitBuiltinType(OverloadTy, BuiltinType::Overload);
+
+ // Placeholder type for bound members.
+ InitBuiltinType(BoundMemberTy, BuiltinType::BoundMember);
+
+ // Placeholder type for pseudo-objects.
+ InitBuiltinType(PseudoObjectTy, BuiltinType::PseudoObject);
+
+ // "any" type; useful for debugger-like clients.
+ InitBuiltinType(UnknownAnyTy, BuiltinType::UnknownAny);
+
+ // Placeholder type for unbridged ARC casts.
+ InitBuiltinType(ARCUnbridgedCastTy, BuiltinType::ARCUnbridgedCast);
+
+ // Placeholder type for builtin functions.
+ InitBuiltinType(BuiltinFnTy, BuiltinType::BuiltinFn);
+
+ // C99 6.2.5p11.
+ FloatComplexTy = getComplexType(FloatTy);
+ DoubleComplexTy = getComplexType(DoubleTy);
+ LongDoubleComplexTy = getComplexType(LongDoubleTy);
+
+ // Builtin types for 'id', 'Class', and 'SEL'.
+ InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
+ InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
+ InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
+
+ if (LangOpts.OpenCL) {
+ InitBuiltinType(OCLImage1dTy, BuiltinType::OCLImage1d);
+ InitBuiltinType(OCLImage1dArrayTy, BuiltinType::OCLImage1dArray);
+ InitBuiltinType(OCLImage1dBufferTy, BuiltinType::OCLImage1dBuffer);
+ InitBuiltinType(OCLImage2dTy, BuiltinType::OCLImage2d);
+ InitBuiltinType(OCLImage2dArrayTy, BuiltinType::OCLImage2dArray);
+ InitBuiltinType(OCLImage3dTy, BuiltinType::OCLImage3d);
+
+ InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
+ InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
+ }
+
+ // Builtin type for __objc_yes and __objc_no
+ ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
+ SignedCharTy : BoolTy);
+
+ ObjCConstantStringType = QualType();
+
+ ObjCSuperType = QualType();
+
+ // void * type
+ VoidPtrTy = getPointerType(VoidTy);
+
+ // nullptr type (C++0x 2.14.7)
+ InitBuiltinType(NullPtrTy, BuiltinType::NullPtr);
+
+ // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
+ InitBuiltinType(HalfTy, BuiltinType::Half);
+
+ // Builtin type used to help define __builtin_va_list.
+ VaListTagTy = QualType();
+}
+
+DiagnosticsEngine &ASTContext::getDiagnostics() const {
+ return SourceMgr.getDiagnostics();
+}
+
+AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
+ AttrVec *&Result = DeclAttrs[D];
+ if (!Result) {
+ void *Mem = Allocate(sizeof(AttrVec));
+ Result = new (Mem) AttrVec;
+ }
+
+ return *Result;
+}
+
+/// \brief Erase the attributes corresponding to the given declaration.
+void ASTContext::eraseDeclAttrs(const Decl *D) {
+ llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
+ if (Pos != DeclAttrs.end()) {
+ Pos->second->~AttrVec();
+ DeclAttrs.erase(Pos);
+ }
+}
+
+// FIXME: Remove ?
+MemberSpecializationInfo *
+ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
+ assert(Var->isStaticDataMember() && "Not a static data member");
+ return getTemplateOrSpecializationInfo(Var)
+ .dyn_cast<MemberSpecializationInfo *>();
+}
+
+ASTContext::TemplateOrSpecializationInfo
+ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
+ llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
+ TemplateOrInstantiation.find(Var);
+ if (Pos == TemplateOrInstantiation.end())
+ return TemplateOrSpecializationInfo();
+
+ return Pos->second;
+}
+
+void
+ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
+ TemplateSpecializationKind TSK,
+ SourceLocation PointOfInstantiation) {
+ assert(Inst->isStaticDataMember() && "Not a static data member");
+ assert(Tmpl->isStaticDataMember() && "Not a static data member");
+ setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
+ Tmpl, TSK, PointOfInstantiation));
+}
+
+void
+ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
+ TemplateOrSpecializationInfo TSI) {
+ assert(!TemplateOrInstantiation[Inst] &&
+ "Already noted what the variable was instantiated from");
+ TemplateOrInstantiation[Inst] = TSI;
+}
+
+FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
+ const FunctionDecl *FD){
+ assert(FD && "Specialization is 0");
+ llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
+ = ClassScopeSpecializationPattern.find(FD);
+ if (Pos == ClassScopeSpecializationPattern.end())
+ return nullptr;
+
+ return Pos->second;
+}
+
+void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
+ FunctionDecl *Pattern) {
+ assert(FD && "Specialization is 0");
+ assert(Pattern && "Class scope specialization pattern is 0");
+ ClassScopeSpecializationPattern[FD] = Pattern;
+}
+
+NamedDecl *
+ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
+ llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
+ = InstantiatedFromUsingDecl.find(UUD);
+ if (Pos == InstantiatedFromUsingDecl.end())
+ return nullptr;
+
+ return Pos->second;
+}
+
+void
+ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
+ assert((isa<UsingDecl>(Pattern) ||
+ isa<UnresolvedUsingValueDecl>(Pattern) ||
+ isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
+ "pattern decl is not a using decl");
+ assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
+ InstantiatedFromUsingDecl[Inst] = Pattern;
+}
+
+UsingShadowDecl *
+ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
+ llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
+ = InstantiatedFromUsingShadowDecl.find(Inst);
+ if (Pos == InstantiatedFromUsingShadowDecl.end())
+ return nullptr;
+
+ return Pos->second;
+}
+
+void
+ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
+ UsingShadowDecl *Pattern) {
+ assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
+ InstantiatedFromUsingShadowDecl[Inst] = Pattern;
+}
+
+FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
+ llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
+ = InstantiatedFromUnnamedFieldDecl.find(Field);
+ if (Pos == InstantiatedFromUnnamedFieldDecl.end())
+ return nullptr;
+
+ return Pos->second;
+}
+
+void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
+ FieldDecl *Tmpl) {
+ assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
+ assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
+ assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
+ "Already noted what unnamed field was instantiated from");
+
+ InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
+}
+
+ASTContext::overridden_cxx_method_iterator
+ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
+ llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
+ = OverriddenMethods.find(Method->getCanonicalDecl());
+ if (Pos == OverriddenMethods.end())
+ return nullptr;
+
+ return Pos->second.begin();
+}
+
+ASTContext::overridden_cxx_method_iterator
+ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
+ llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
+ = OverriddenMethods.find(Method->getCanonicalDecl());
+ if (Pos == OverriddenMethods.end())
+ return nullptr;
+
+ return Pos->second.end();
+}
+
+unsigned
+ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
+ llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
+ = OverriddenMethods.find(Method->getCanonicalDecl());
+ if (Pos == OverriddenMethods.end())
+ return 0;
+
+ return Pos->second.size();
+}
+
+void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
+ const CXXMethodDecl *Overridden) {
+ assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
+ OverriddenMethods[Method].push_back(Overridden);
+}
+
+void ASTContext::getOverriddenMethods(
+ const NamedDecl *D,
+ SmallVectorImpl<const NamedDecl *> &Overridden) const {
+ assert(D);
+
+ if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
+ Overridden.append(overridden_methods_begin(CXXMethod),
+ overridden_methods_end(CXXMethod));
+ return;
+ }
+
+ const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D);
+ if (!Method)
+ return;
+
+ SmallVector<const ObjCMethodDecl *, 8> OverDecls;
+ Method->getOverriddenMethods(OverDecls);
+ Overridden.append(OverDecls.begin(), OverDecls.end());
+}
+
+void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
+ assert(!Import->NextLocalImport && "Import declaration already in the chain");
+ assert(!Import->isFromASTFile() && "Non-local import declaration");
+ if (!FirstLocalImport) {
+ FirstLocalImport = Import;
+ LastLocalImport = Import;
+ return;
+ }
+
+ LastLocalImport->NextLocalImport = Import;
+ LastLocalImport = Import;
+}
+
+//===----------------------------------------------------------------------===//
+// Type Sizing and Analysis
+//===----------------------------------------------------------------------===//
+
+/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
+/// scalar floating point type.
+const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
+ const BuiltinType *BT = T->getAs<BuiltinType>();
+ assert(BT && "Not a floating point type!");
+ switch (BT->getKind()) {
+ default: llvm_unreachable("Not a floating point type!");
+ case BuiltinType::Half: return Target->getHalfFormat();
+ case BuiltinType::Float: return Target->getFloatFormat();
+ case BuiltinType::Double: return Target->getDoubleFormat();
+ case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
+ }
+}
+
+CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
+ unsigned Align = Target->getCharWidth();
+
+ bool UseAlignAttrOnly = false;
+ if (unsigned AlignFromAttr = D->getMaxAlignment()) {
+ Align = AlignFromAttr;
+
+ // __attribute__((aligned)) can increase or decrease alignment
+ // *except* on a struct or struct member, where it only increases
+ // alignment unless 'packed' is also specified.
+ //
+ // It is an error for alignas to decrease alignment, so we can
+ // ignore that possibility; Sema should diagnose it.
+ if (isa<FieldDecl>(D)) {
+ UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
+ cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
+ } else {
+ UseAlignAttrOnly = true;
+ }
+ }
+ else if (isa<FieldDecl>(D))
+ UseAlignAttrOnly =
+ D->hasAttr<PackedAttr>() ||
+ cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
+
+ // If we're using the align attribute only, just ignore everything
+ // else about the declaration and its type.
+ if (UseAlignAttrOnly) {
+ // do nothing
+
+ } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
+ QualType T = VD->getType();
+ if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
+ if (ForAlignof)
+ T = RT->getPointeeType();
+ else
+ T = getPointerType(RT->getPointeeType());
+ }
+ QualType BaseT = getBaseElementType(T);
+ if (!BaseT->isIncompleteType() && !T->isFunctionType()) {
+ // Adjust alignments of declarations with array type by the
+ // large-array alignment on the target.
+ if (const ArrayType *arrayType = getAsArrayType(T)) {
+ unsigned MinWidth = Target->getLargeArrayMinWidth();
+ if (!ForAlignof && MinWidth) {
+ if (isa<VariableArrayType>(arrayType))
+ Align = std::max(Align, Target->getLargeArrayAlign());
+ else if (isa<ConstantArrayType>(arrayType) &&
+ MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
+ Align = std::max(Align, Target->getLargeArrayAlign());
+ }
+ }
+ Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
+ if (VD->hasGlobalStorage() && !ForAlignof)
+ Align = std::max(Align, getTargetInfo().getMinGlobalAlign());
+ }
+ }
+
+ // Fields can be subject to extra alignment constraints, like if
+ // the field is packed, the struct is packed, or the struct has a
+ // a max-field-alignment constraint (#pragma pack). So calculate
+ // the actual alignment of the field within the struct, and then
+ // (as we're expected to) constrain that by the alignment of the type.
+ if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
+ const RecordDecl *Parent = Field->getParent();
+ // We can only produce a sensible answer if the record is valid.
+ if (!Parent->isInvalidDecl()) {
+ const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
+
+ // Start with the record's overall alignment.
+ unsigned FieldAlign = toBits(Layout.getAlignment());
+
+ // Use the GCD of that and the offset within the record.
+ uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
+ if (Offset > 0) {
+ // Alignment is always a power of 2, so the GCD will be a power of 2,
+ // which means we get to do this crazy thing instead of Euclid's.
+ uint64_t LowBitOfOffset = Offset & (~Offset + 1);
+ if (LowBitOfOffset < FieldAlign)
+ FieldAlign = static_cast<unsigned>(LowBitOfOffset);
+ }
+
+ Align = std::min(Align, FieldAlign);
+ }
+ }
+ }
+
+ return toCharUnitsFromBits(Align);
+}
+
+// getTypeInfoDataSizeInChars - Return the size of a type, in
+// chars. If the type is a record, its data size is returned. This is
+// the size of the memcpy that's performed when assigning this type
+// using a trivial copy/move assignment operator.
+std::pair<CharUnits, CharUnits>
+ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
+ std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
+
+ // In C++, objects can sometimes be allocated into the tail padding
+ // of a base-class subobject. We decide whether that's possible
+ // during class layout, so here we can just trust the layout results.
+ if (getLangOpts().CPlusPlus) {
+ if (const RecordType *RT = T->getAs<RecordType>()) {
+ const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
+ sizeAndAlign.first = layout.getDataSize();
+ }
+ }
+
+ return sizeAndAlign;
+}
+
+/// getConstantArrayInfoInChars - Performing the computation in CharUnits
+/// instead of in bits prevents overflowing the uint64_t for some large arrays.
+std::pair<CharUnits, CharUnits>
+static getConstantArrayInfoInChars(const ASTContext &Context,
+ const ConstantArrayType *CAT) {
+ std::pair<CharUnits, CharUnits> EltInfo =
+ Context.getTypeInfoInChars(CAT->getElementType());
+ uint64_t Size = CAT->getSize().getZExtValue();
+ assert((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <=
+ (uint64_t)(-1)/Size) &&
+ "Overflow in array type char size evaluation");
+ uint64_t Width = EltInfo.first.getQuantity() * Size;
+ unsigned Align = EltInfo.second.getQuantity();
+ if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
+ Context.getTargetInfo().getPointerWidth(0) == 64)
+ Width = llvm::RoundUpToAlignment(Width, Align);
+ return std::make_pair(CharUnits::fromQuantity(Width),
+ CharUnits::fromQuantity(Align));
+}
+
+std::pair<CharUnits, CharUnits>
+ASTContext::getTypeInfoInChars(const Type *T) const {
+ if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T))
+ return getConstantArrayInfoInChars(*this, CAT);
+ TypeInfo Info = getTypeInfo(T);
+ return std::make_pair(toCharUnitsFromBits(Info.Width),
+ toCharUnitsFromBits(Info.Align));
+}
+
+std::pair<CharUnits, CharUnits>
+ASTContext::getTypeInfoInChars(QualType T) const {
+ return getTypeInfoInChars(T.getTypePtr());
+}
+
+bool ASTContext::isAlignmentRequired(const Type *T) const {
+ return getTypeInfo(T).AlignIsRequired;
+}
+
+bool ASTContext::isAlignmentRequired(QualType T) const {
+ return isAlignmentRequired(T.getTypePtr());
+}
+
+TypeInfo ASTContext::getTypeInfo(const Type *T) const {
+ TypeInfoMap::iterator I = MemoizedTypeInfo.find(T);
+ if (I != MemoizedTypeInfo.end())
+ return I->second;
+
+ // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup.
+ TypeInfo TI = getTypeInfoImpl(T);
+ MemoizedTypeInfo[T] = TI;
+ return TI;
+}
+
+/// getTypeInfoImpl - Return the size of the specified type, in bits. This
+/// method does not work on incomplete types.
+///
+/// FIXME: Pointers into different addr spaces could have different sizes and
+/// alignment requirements: getPointerInfo should take an AddrSpace, this
+/// should take a QualType, &c.
+TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const {
+ uint64_t Width = 0;
+ unsigned Align = 8;
+ bool AlignIsRequired = false;
+ switch (T->getTypeClass()) {
+#define TYPE(Class, Base)
+#define ABSTRACT_TYPE(Class, Base)
+#define NON_CANONICAL_TYPE(Class, Base)
+#define DEPENDENT_TYPE(Class, Base) case Type::Class:
+#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) \
+ case Type::Class: \
+ assert(!T->isDependentType() && "should not see dependent types here"); \
+ return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
+#include "clang/AST/TypeNodes.def"
+ llvm_unreachable("Should not see dependent types");
+
+ case Type::FunctionNoProto:
+ case Type::FunctionProto:
+ // GCC extension: alignof(function) = 32 bits
+ Width = 0;
+ Align = 32;
+ break;
+
+ case Type::IncompleteArray:
+ case Type::VariableArray:
+ Width = 0;
+ Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
+ break;
+
+ case Type::ConstantArray: {
+ const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
+
+ TypeInfo EltInfo = getTypeInfo(CAT->getElementType());
+ uint64_t Size = CAT->getSize().getZExtValue();
+ assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&
+ "Overflow in array type bit size evaluation");
+ Width = EltInfo.Width * Size;
+ Align = EltInfo.Align;
+ if (!getTargetInfo().getCXXABI().isMicrosoft() ||
+ getTargetInfo().getPointerWidth(0) == 64)
+ Width = llvm::RoundUpToAlignment(Width, Align);
+ break;
+ }
+ case Type::ExtVector:
+ case Type::Vector: {
+ const VectorType *VT = cast<VectorType>(T);
+ TypeInfo EltInfo = getTypeInfo(VT->getElementType());
+ Width = EltInfo.Width * VT->getNumElements();
+ Align = Width;
+ // If the alignment is not a power of 2, round up to the next power of 2.
+ // This happens for non-power-of-2 length vectors.
+ if (Align & (Align-1)) {
+ Align = llvm::NextPowerOf2(Align);
+ Width = llvm::RoundUpToAlignment(Width, Align);
+ }
+ // Adjust the alignment based on the target max.
+ uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
+ if (TargetVectorAlign && TargetVectorAlign < Align)
+ Align = TargetVectorAlign;
+ break;
+ }
+
+ case Type::Builtin:
+ switch (cast<BuiltinType>(T)->getKind()) {
+ default: llvm_unreachable("Unknown builtin type!");
+ case BuiltinType::Void:
+ // GCC extension: alignof(void) = 8 bits.
+ Width = 0;
+ Align = 8;
+ break;
+
+ case BuiltinType::Bool:
+ Width = Target->getBoolWidth();
+ Align = Target->getBoolAlign();
+ break;
+ case BuiltinType::Char_S:
+ case BuiltinType::Char_U:
+ case BuiltinType::UChar:
+ case BuiltinType::SChar:
+ Width = Target->getCharWidth();
+ Align = Target->getCharAlign();
+ break;
+ case BuiltinType::WChar_S:
+ case BuiltinType::WChar_U:
+ Width = Target->getWCharWidth();
+ Align = Target->getWCharAlign();
+ break;
+ case BuiltinType::Char16:
+ Width = Target->getChar16Width();
+ Align = Target->getChar16Align();
+ break;
+ case BuiltinType::Char32:
+ Width = Target->getChar32Width();
+ Align = Target->getChar32Align();
+ break;
+ case BuiltinType::UShort:
+ case BuiltinType::Short:
+ Width = Target->getShortWidth();
+ Align = Target->getShortAlign();
+ break;
+ case BuiltinType::UInt:
+ case BuiltinType::Int:
+ Width = Target->getIntWidth();
+ Align = Target->getIntAlign();
+ break;
+ case BuiltinType::ULong:
+ case BuiltinType::Long:
+ Width = Target->getLongWidth();
+ Align = Target->getLongAlign();
+ break;
+ case BuiltinType::ULongLong:
+ case BuiltinType::LongLong:
+ Width = Target->getLongLongWidth();
+ Align = Target->getLongLongAlign();
+ break;
+ case BuiltinType::Int128:
+ case BuiltinType::UInt128:
+ Width = 128;
+ Align = 128; // int128_t is 128-bit aligned on all targets.
+ break;
+ case BuiltinType::Half:
+ Width = Target->getHalfWidth();
+ Align = Target->getHalfAlign();
+ break;
+ case BuiltinType::Float:
+ Width = Target->getFloatWidth();
+ Align = Target->getFloatAlign();
+ break;
+ case BuiltinType::Double:
+ Width = Target->getDoubleWidth();
+ Align = Target->getDoubleAlign();
+ break;
+ case BuiltinType::LongDouble:
+ Width = Target->getLongDoubleWidth();
+ Align = Target->getLongDoubleAlign();
+ break;
+ case BuiltinType::NullPtr:
+ Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
+ Align = Target->getPointerAlign(0); // == sizeof(void*)
+ break;
+ case BuiltinType::ObjCId:
+ case BuiltinType::ObjCClass:
+ case BuiltinType::ObjCSel:
+ Width = Target->getPointerWidth(0);
+ Align = Target->getPointerAlign(0);
+ break;
+ case BuiltinType::OCLSampler:
+ // Samplers are modeled as integers.
+ Width = Target->getIntWidth();
+ Align = Target->getIntAlign();
+ break;
+ case BuiltinType::OCLEvent:
+ case BuiltinType::OCLImage1d:
+ case BuiltinType::OCLImage1dArray:
+ case BuiltinType::OCLImage1dBuffer:
+ case BuiltinType::OCLImage2d:
+ case BuiltinType::OCLImage2dArray:
+ case BuiltinType::OCLImage3d:
+ // Currently these types are pointers to opaque types.
+ Width = Target->getPointerWidth(0);
+ Align = Target->getPointerAlign(0);
+ break;
+ }
+ break;
+ case Type::ObjCObjectPointer:
+ Width = Target->getPointerWidth(0);
+ Align = Target->getPointerAlign(0);
+ break;
+ case Type::BlockPointer: {
+ unsigned AS = getTargetAddressSpace(
+ cast<BlockPointerType>(T)->getPointeeType());
+ Width = Target->getPointerWidth(AS);
+ Align = Target->getPointerAlign(AS);
+ break;
+ }
+ case Type::LValueReference:
+ case Type::RValueReference: {
+ // alignof and sizeof should never enter this code path here, so we go
+ // the pointer route.
+ unsigned AS = getTargetAddressSpace(
+ cast<ReferenceType>(T)->getPointeeType());
+ Width = Target->getPointerWidth(AS);
+ Align = Target->getPointerAlign(AS);
+ break;
+ }
+ case Type::Pointer: {
+ unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
+ Width = Target->getPointerWidth(AS);
+ Align = Target->getPointerAlign(AS);
+ break;
+ }
+ case Type::MemberPointer: {
+ const MemberPointerType *MPT = cast<MemberPointerType>(T);
+ std::tie(Width, Align) = ABI->getMemberPointerWidthAndAlign(MPT);
+ break;
+ }
+ case Type::Complex: {
+ // Complex types have the same alignment as their elements, but twice the
+ // size.
+ TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType());
+ Width = EltInfo.Width * 2;
+ Align = EltInfo.Align;
+ break;
+ }
+ case Type::ObjCObject:
+ return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
+ case Type::Adjusted:
+ case Type::Decayed:
+ return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
+ case Type::ObjCInterface: {
+ const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
+ const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
+ Width = toBits(Layout.getSize());
+ Align = toBits(Layout.getAlignment());
+ break;
+ }
+ case Type::Record:
+ case Type::Enum: {
+ const TagType *TT = cast<TagType>(T);
+
+ if (TT->getDecl()->isInvalidDecl()) {
+ Width = 8;
+ Align = 8;
+ break;
+ }
+
+ if (const EnumType *ET = dyn_cast<EnumType>(TT)) {
+ const EnumDecl *ED = ET->getDecl();
+ TypeInfo Info =
+ getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType());
+ if (unsigned AttrAlign = ED->getMaxAlignment()) {
+ Info.Align = AttrAlign;
+ Info.AlignIsRequired = true;
+ }
+ return Info;
+ }
+
+ const RecordType *RT = cast<RecordType>(TT);
+ const RecordDecl *RD = RT->getDecl();
+ const ASTRecordLayout &Layout = getASTRecordLayout(RD);
+ Width = toBits(Layout.getSize());
+ Align = toBits(Layout.getAlignment());
+ AlignIsRequired = RD->hasAttr<AlignedAttr>();
+ break;
+ }
+
+ case Type::SubstTemplateTypeParm:
+ return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
+ getReplacementType().getTypePtr());
+
+ case Type::Auto: {
+ const AutoType *A = cast<AutoType>(T);
+ assert(!A->getDeducedType().isNull() &&
+ "cannot request the size of an undeduced or dependent auto type");
+ return getTypeInfo(A->getDeducedType().getTypePtr());
+ }
+
+ case Type::Paren:
+ return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
+
+ case Type::Typedef: {
+ const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
+ TypeInfo Info = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
+ // If the typedef has an aligned attribute on it, it overrides any computed
+ // alignment we have. This violates the GCC documentation (which says that
+ // attribute(aligned) can only round up) but matches its implementation.
+ if (unsigned AttrAlign = Typedef->getMaxAlignment()) {
+ Align = AttrAlign;
+ AlignIsRequired = true;
+ } else {
+ Align = Info.Align;
+ AlignIsRequired = Info.AlignIsRequired;
+ }
+ Width = Info.Width;
+ break;
+ }
+
+ case Type::Elaborated:
+ return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
+
+ case Type::Attributed:
+ return getTypeInfo(
+ cast<AttributedType>(T)->getEquivalentType().getTypePtr());
+
+ case Type::Atomic: {
+ // Start with the base type information.
+ TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType());
+ Width = Info.Width;
+ Align = Info.Align;
+
+ // If the size of the type doesn't exceed the platform's max
+ // atomic promotion width, make the size and alignment more
+ // favorable to atomic operations:
+ if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth()) {
+ // Round the size up to a power of 2.
+ if (!llvm::isPowerOf2_64(Width))
+ Width = llvm::NextPowerOf2(Width);
+
+ // Set the alignment equal to the size.
+ Align = static_cast<unsigned>(Width);
+ }
+ }
+
+ }
+
+ assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
+ return TypeInfo(Width, Align, AlignIsRequired);
+}
+
+/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
+CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
+ return CharUnits::fromQuantity(BitSize / getCharWidth());
+}
+
+/// toBits - Convert a size in characters to a size in characters.
+int64_t ASTContext::toBits(CharUnits CharSize) const {
+ return CharSize.getQuantity() * getCharWidth();
+}
+
+/// getTypeSizeInChars - Return the size of the specified type, in characters.
+/// This method does not work on incomplete types.
+CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
+ return getTypeInfoInChars(T).first;
+}
+CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
+ return getTypeInfoInChars(T).first;
+}
+
+/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
+/// characters. This method does not work on incomplete types.
+CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
+ return toCharUnitsFromBits(getTypeAlign(T));
+}
+CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
+ return toCharUnitsFromBits(getTypeAlign(T));
+}
+
+/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
+/// type for the current target in bits. This can be different than the ABI
+/// alignment in cases where it is beneficial for performance to overalign
+/// a data type.
+unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
+ TypeInfo TI = getTypeInfo(T);
+ unsigned ABIAlign = TI.Align;
+
+ T = T->getBaseElementTypeUnsafe();
+
+ // The preferred alignment of member pointers is that of a pointer.
+ if (T->isMemberPointerType())
+ return getPreferredTypeAlign(getPointerDiffType().getTypePtr());
+
+ if (Target->getTriple().getArch() == llvm::Triple::xcore)
+ return ABIAlign; // Never overalign on XCore.
+
+ // Double and long long should be naturally aligned if possible.
+ if (const ComplexType *CT = T->getAs<ComplexType>())
+ T = CT->getElementType().getTypePtr();
+ if (const EnumType *ET = T->getAs<EnumType>())
+ T = ET->getDecl()->getIntegerType().getTypePtr();
+ if (T->isSpecificBuiltinType(BuiltinType::Double) ||
+ T->isSpecificBuiltinType(BuiltinType::LongLong) ||
+ T->isSpecificBuiltinType(BuiltinType::ULongLong))
+ // Don't increase the alignment if an alignment attribute was specified on a
+ // typedef declaration.
+ if (!TI.AlignIsRequired)
+ return std::max(ABIAlign, (unsigned)getTypeSize(T));
+
+ return ABIAlign;
+}
+
+/// getTargetDefaultAlignForAttributeAligned - Return the default alignment
+/// for __attribute__((aligned)) on this target, to be used if no alignment
+/// value is specified.
+unsigned ASTContext::getTargetDefaultAlignForAttributeAligned(void) const {
+ return getTargetInfo().getDefaultAlignForAttributeAligned();
+}
+
+/// getAlignOfGlobalVar - Return the alignment in bits that should be given
+/// to a global variable of the specified type.
+unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
+ return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign());
+}
+
+/// getAlignOfGlobalVarInChars - Return the alignment in characters that
+/// should be given to a global variable of the specified type.
+CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
+ return toCharUnitsFromBits(getAlignOfGlobalVar(T));
+}
+
+/// DeepCollectObjCIvars -
+/// This routine first collects all declared, but not synthesized, ivars in
+/// super class and then collects all ivars, including those synthesized for
+/// current class. This routine is used for implementation of current class
+/// when all ivars, declared and synthesized are known.
+///
+void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
+ bool leafClass,
+ SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
+ if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
+ DeepCollectObjCIvars(SuperClass, false, Ivars);
+ if (!leafClass) {
+ for (const auto *I : OI->ivars())
+ Ivars.push_back(I);
+ } else {
+ ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
+ for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
+ Iv= Iv->getNextIvar())
+ Ivars.push_back(Iv);
+ }
+}
+
+/// CollectInheritedProtocols - Collect all protocols in current class and
+/// those inherited by it.
+void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
+ llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
+ if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
+ // We can use protocol_iterator here instead of
+ // all_referenced_protocol_iterator since we are walking all categories.
+ for (auto *Proto : OI->all_referenced_protocols()) {
+ Protocols.insert(Proto->getCanonicalDecl());
+ for (auto *P : Proto->protocols()) {
+ Protocols.insert(P->getCanonicalDecl());
+ CollectInheritedProtocols(P, Protocols);
+ }
+ }
+
+ // Categories of this Interface.
+ for (const auto *Cat : OI->visible_categories())
+ CollectInheritedProtocols(Cat, Protocols);
+
+ if (ObjCInterfaceDecl *SD = OI->getSuperClass())
+ while (SD) {
+ CollectInheritedProtocols(SD, Protocols);
+ SD = SD->getSuperClass();
+ }
+ } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
+ for (auto *Proto : OC->protocols()) {
+ Protocols.insert(Proto->getCanonicalDecl());
+ for (const auto *P : Proto->protocols())
+ CollectInheritedProtocols(P, Protocols);
+ }
+ } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
+ for (auto *Proto : OP->protocols()) {
+ Protocols.insert(Proto->getCanonicalDecl());
+ for (const auto *P : Proto->protocols())
+ CollectInheritedProtocols(P, Protocols);
+ }
+ }
+}
+
+unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
+ unsigned count = 0;
+ // Count ivars declared in class extension.
+ for (const auto *Ext : OI->known_extensions())
+ count += Ext->ivar_size();
+
+ // Count ivar defined in this class's implementation. This
+ // includes synthesized ivars.
+ if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
+ count += ImplDecl->ivar_size();
+
+ return count;
+}
+
+bool ASTContext::isSentinelNullExpr(const Expr *E) {
+ if (!E)
+ return false;
+
+ // nullptr_t is always treated as null.
+ if (E->getType()->isNullPtrType()) return true;
+
+ if (E->getType()->isAnyPointerType() &&
+ E->IgnoreParenCasts()->isNullPointerConstant(*this,
+ Expr::NPC_ValueDependentIsNull))
+ return true;
+
+ // Unfortunately, __null has type 'int'.
+ if (isa<GNUNullExpr>(E)) return true;
+
+ return false;
+}
+
+/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
+ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
+ llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
+ I = ObjCImpls.find(D);
+ if (I != ObjCImpls.end())
+ return cast<ObjCImplementationDecl>(I->second);
+ return nullptr;
+}
+/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
+ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
+ llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
+ I = ObjCImpls.find(D);
+ if (I != ObjCImpls.end())
+ return cast<ObjCCategoryImplDecl>(I->second);
+ return nullptr;
+}
+
+/// \brief Set the implementation of ObjCInterfaceDecl.
+void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
+ ObjCImplementationDecl *ImplD) {
+ assert(IFaceD && ImplD && "Passed null params");
+ ObjCImpls[IFaceD] = ImplD;
+}
+/// \brief Set the implementation of ObjCCategoryDecl.
+void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
+ ObjCCategoryImplDecl *ImplD) {
+ assert(CatD && ImplD && "Passed null params");
+ ObjCImpls[CatD] = ImplD;
+}
+
+const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
+ const NamedDecl *ND) const {
+ if (const ObjCInterfaceDecl *ID =
+ dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
+ return ID;
+ if (const ObjCCategoryDecl *CD =
+ dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
+ return CD->getClassInterface();
+ if (const ObjCImplDecl *IMD =
+ dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
+ return IMD->getClassInterface();
+
+ return nullptr;
+}
+
+/// \brief Get the copy initialization expression of VarDecl,or NULL if
+/// none exists.
+Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
+ assert(VD && "Passed null params");
+ assert(VD->hasAttr<BlocksAttr>() &&
+ "getBlockVarCopyInits - not __block var");
+ llvm::DenseMap<const VarDecl*, Expr*>::iterator
+ I = BlockVarCopyInits.find(VD);
+ return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : nullptr;
+}
+
+/// \brief Set the copy inialization expression of a block var decl.
+void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
+ assert(VD && Init && "Passed null params");
+ assert(VD->hasAttr<BlocksAttr>() &&
+ "setBlockVarCopyInits - not __block var");
+ BlockVarCopyInits[VD] = Init;
+}
+
+TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
+ unsigned DataSize) const {
+ if (!DataSize)
+ DataSize = TypeLoc::getFullDataSizeForType(T);
+ else
+ assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
+ "incorrect data size provided to CreateTypeSourceInfo!");
+
+ TypeSourceInfo *TInfo =
+ (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
+ new (TInfo) TypeSourceInfo(T);
+ return TInfo;
+}
+
+TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
+ SourceLocation L) const {
+ TypeSourceInfo *DI = CreateTypeSourceInfo(T);
+ DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
+ return DI;
+}
+
+const ASTRecordLayout &
+ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
+ return getObjCLayout(D, nullptr);
+}
+
+const ASTRecordLayout &
+ASTContext::getASTObjCImplementationLayout(
+ const ObjCImplementationDecl *D) const {
+ return getObjCLayout(D->getClassInterface(), D);
+}
+
+//===----------------------------------------------------------------------===//
+// Type creation/memoization methods
+//===----------------------------------------------------------------------===//
+
+QualType
+ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
+ unsigned fastQuals = quals.getFastQualifiers();
+ quals.removeFastQualifiers();
+
+ // Check if we've already instantiated this type.
+ llvm::FoldingSetNodeID ID;
+ ExtQuals::Profile(ID, baseType, quals);
+ void *insertPos = nullptr;
+ if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
+ assert(eq->getQualifiers() == quals);
+ return QualType(eq, fastQuals);
+ }
+
+ // If the base type is not canonical, make the appropriate canonical type.
+ QualType canon;
+ if (!baseType->isCanonicalUnqualified()) {
+ SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
+ canonSplit.Quals.addConsistentQualifiers(quals);
+ canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
+
+ // Re-find the insert position.
+ (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
+ }
+
+ ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
+ ExtQualNodes.InsertNode(eq, insertPos);
+ return QualType(eq, fastQuals);
+}
+
+QualType
+ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
+ QualType CanT = getCanonicalType(T);
+ if (CanT.getAddressSpace() == AddressSpace)
+ return T;
+
+ // If we are composing extended qualifiers together, merge together
+ // into one ExtQuals node.
+ QualifierCollector Quals;
+ const Type *TypeNode = Quals.strip(T);
+
+ // If this type already has an address space specified, it cannot get
+ // another one.
+ assert(!Quals.hasAddressSpace() &&
+ "Type cannot be in multiple addr spaces!");
+ Quals.addAddressSpace(AddressSpace);
+
+ return getExtQualType(TypeNode, Quals);
+}
+
+QualType ASTContext::getObjCGCQualType(QualType T,
+ Qualifiers::GC GCAttr) const {
+ QualType CanT = getCanonicalType(T);
+ if (CanT.getObjCGCAttr() == GCAttr)
+ return T;
+
+ if (const PointerType *ptr = T->getAs<PointerType>()) {
+ QualType Pointee = ptr->getPointeeType();
+ if (Pointee->isAnyPointerType()) {
+ QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
+ return getPointerType(ResultType);
+ }
+ }
+
+ // If we are composing extended qualifiers together, merge together
+ // into one ExtQuals node.
+ QualifierCollector Quals;
+ const Type *TypeNode = Quals.strip(T);
+
+ // If this type already has an ObjCGC specified, it cannot get
+ // another one.
+ assert(!Quals.hasObjCGCAttr() &&
+ "Type cannot have multiple ObjCGCs!");
+ Quals.addObjCGCAttr(GCAttr);
+
+ return getExtQualType(TypeNode, Quals);
+}
+
+const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
+ FunctionType::ExtInfo Info) {
+ if (T->getExtInfo() == Info)
+ return T;
+
+ QualType Result;
+ if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
+ Result = getFunctionNoProtoType(FNPT->getReturnType(), Info);
+ } else {
+ const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
+ FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
+ EPI.ExtInfo = Info;
+ Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI);
+ }
+
+ return cast<FunctionType>(Result.getTypePtr());
+}
+
+void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
+ QualType ResultType) {
+ FD = FD->getMostRecentDecl();
+ while (true) {
+ const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
+ FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
+ FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI));
+ if (FunctionDecl *Next = FD->getPreviousDecl())
+ FD = Next;
+ else
+ break;
+ }
+ if (ASTMutationListener *L = getASTMutationListener())
+ L->DeducedReturnType(FD, ResultType);
+}
+
+/// Get a function type and produce the equivalent function type with the
+/// specified exception specification. Type sugar that can be present on a
+/// declaration of a function with an exception specification is permitted
+/// and preserved. Other type sugar (for instance, typedefs) is not.
+static QualType getFunctionTypeWithExceptionSpec(
+ ASTContext &Context, QualType Orig,
+ const FunctionProtoType::ExceptionSpecInfo &ESI) {
+ // Might have some parens.
+ if (auto *PT = dyn_cast<ParenType>(Orig))
+ return Context.getParenType(
+ getFunctionTypeWithExceptionSpec(Context, PT->getInnerType(), ESI));
+
+ // Might have a calling-convention attribute.
+ if (auto *AT = dyn_cast<AttributedType>(Orig))
+ return Context.getAttributedType(
+ AT->getAttrKind(),
+ getFunctionTypeWithExceptionSpec(Context, AT->getModifiedType(), ESI),
+ getFunctionTypeWithExceptionSpec(Context, AT->getEquivalentType(),
+ ESI));
+
+ // Anything else must be a function type. Rebuild it with the new exception
+ // specification.
+ const FunctionProtoType *Proto = cast<FunctionProtoType>(Orig);
+ return Context.getFunctionType(
+ Proto->getReturnType(), Proto->getParamTypes(),
+ Proto->getExtProtoInfo().withExceptionSpec(ESI));
+}
+
+void ASTContext::adjustExceptionSpec(
+ FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI,
+ bool AsWritten) {
+ // Update the type.
+ QualType Updated =
+ getFunctionTypeWithExceptionSpec(*this, FD->getType(), ESI);
+ FD->setType(Updated);
+
+ if (!AsWritten)
+ return;
+
+ // Update the type in the type source information too.
+ if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) {
+ // If the type and the type-as-written differ, we may need to update
+ // the type-as-written too.
+ if (TSInfo->getType() != FD->getType())
+ Updated = getFunctionTypeWithExceptionSpec(*this, TSInfo->getType(), ESI);
+
+ // FIXME: When we get proper type location information for exceptions,
+ // we'll also have to rebuild the TypeSourceInfo. For now, we just patch
+ // up the TypeSourceInfo;
+ assert(TypeLoc::getFullDataSizeForType(Updated) ==
+ TypeLoc::getFullDataSizeForType(TSInfo->getType()) &&
+ "TypeLoc size mismatch from updating exception specification");
+ TSInfo->overrideType(Updated);
+ }
+}
+
+/// getComplexType - Return the uniqued reference to the type for a complex
+/// number with the specified element type.
+QualType ASTContext::getComplexType(QualType T) const {
+ // Unique pointers, to guarantee there is only one pointer of a particular
+ // structure.
+ llvm::FoldingSetNodeID ID;
+ ComplexType::Profile(ID, T);
+
+ void *InsertPos = nullptr;
+ if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(CT, 0);
+
+ // If the pointee type isn't canonical, this won't be a canonical type either,
+ // so fill in the canonical type field.
+ QualType Canonical;
+ if (!T.isCanonical()) {
+ Canonical = getComplexType(getCanonicalType(T));
+
+ // Get the new insert position for the node we care about.
+ ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
+ }
+ ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
+ Types.push_back(New);
+ ComplexTypes.InsertNode(New, InsertPos);
+ return QualType(New, 0);
+}
+
+/// getPointerType - Return the uniqued reference to the type for a pointer to
+/// the specified type.
+QualType ASTContext::getPointerType(QualType T) const {
+ // Unique pointers, to guarantee there is only one pointer of a particular
+ // structure.
+ llvm::FoldingSetNodeID ID;
+ PointerType::Profile(ID, T);
+
+ void *InsertPos = nullptr;
+ if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(PT, 0);
+
+ // If the pointee type isn't canonical, this won't be a canonical type either,
+ // so fill in the canonical type field.
+ QualType Canonical;
+ if (!T.isCanonical()) {
+ Canonical = getPointerType(getCanonicalType(T));
+
+ // Get the new insert position for the node we care about.
+ PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
+ }
+ PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
+ Types.push_back(New);
+ PointerTypes.InsertNode(New, InsertPos);
+ return QualType(New, 0);
+}
+
+QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const {
+ llvm::FoldingSetNodeID ID;
+ AdjustedType::Profile(ID, Orig, New);
+ void *InsertPos = nullptr;
+ AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
+ if (AT)
+ return QualType(AT, 0);
+
+ QualType Canonical = getCanonicalType(New);
+
+ // Get the new insert position for the node we care about.
+ AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!AT && "Shouldn't be in the map!");
+
+ AT = new (*this, TypeAlignment)
+ AdjustedType(Type::Adjusted, Orig, New, Canonical);
+ Types.push_back(AT);
+ AdjustedTypes.InsertNode(AT, InsertPos);
+ return QualType(AT, 0);
+}
+
+QualType ASTContext::getDecayedType(QualType T) const {
+ assert((T->isArrayType() || T->isFunctionType()) && "T does not decay");
+
+ QualType Decayed;
+
+ // C99 6.7.5.3p7:
+ // A declaration of a parameter as "array of type" shall be
+ // adjusted to "qualified pointer to type", where the type
+ // qualifiers (if any) are those specified within the [ and ] of
+ // the array type derivation.
+ if (T->isArrayType())
+ Decayed = getArrayDecayedType(T);
+
+ // C99 6.7.5.3p8:
+ // A declaration of a parameter as "function returning type"
+ // shall be adjusted to "pointer to function returning type", as
+ // in 6.3.2.1.
+ if (T->isFunctionType())
+ Decayed = getPointerType(T);
+
+ llvm::FoldingSetNodeID ID;
+ AdjustedType::Profile(ID, T, Decayed);
+ void *InsertPos = nullptr;
+ AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
+ if (AT)
+ return QualType(AT, 0);
+
+ QualType Canonical = getCanonicalType(Decayed);
+
+ // Get the new insert position for the node we care about.
+ AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!AT && "Shouldn't be in the map!");
+
+ AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical);
+ Types.push_back(AT);
+ AdjustedTypes.InsertNode(AT, InsertPos);
+ return QualType(AT, 0);
+}
+
+/// getBlockPointerType - Return the uniqued reference to the type for
+/// a pointer to the specified block.
+QualType ASTContext::getBlockPointerType(QualType T) const {
+ assert(T->isFunctionType() && "block of function types only");
+ // Unique pointers, to guarantee there is only one block of a particular
+ // structure.
+ llvm::FoldingSetNodeID ID;
+ BlockPointerType::Profile(ID, T);
+
+ void *InsertPos = nullptr;
+ if (BlockPointerType *PT =
+ BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(PT, 0);
+
+ // If the block pointee type isn't canonical, this won't be a canonical
+ // type either so fill in the canonical type field.
+ QualType Canonical;
+ if (!T.isCanonical()) {
+ Canonical = getBlockPointerType(getCanonicalType(T));
+
+ // Get the new insert position for the node we care about.
+ BlockPointerType *NewIP =
+ BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
+ }
+ BlockPointerType *New
+ = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
+ Types.push_back(New);
+ BlockPointerTypes.InsertNode(New, InsertPos);
+ return QualType(New, 0);
+}
+
+/// getLValueReferenceType - Return the uniqued reference to the type for an
+/// lvalue reference to the specified type.
+QualType
+ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
+ assert(getCanonicalType(T) != OverloadTy &&
+ "Unresolved overloaded function type");
+
+ // Unique pointers, to guarantee there is only one pointer of a particular
+ // structure.
+ llvm::FoldingSetNodeID ID;
+ ReferenceType::Profile(ID, T, SpelledAsLValue);
+
+ void *InsertPos = nullptr;
+ if (LValueReferenceType *RT =
+ LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(RT, 0);
+
+ const ReferenceType *InnerRef = T->getAs<ReferenceType>();
+
+ // If the referencee type isn't canonical, this won't be a canonical type
+ // either, so fill in the canonical type field.
+ QualType Canonical;
+ if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
+ QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
+ Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
+
+ // Get the new insert position for the node we care about.
+ LValueReferenceType *NewIP =
+ LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
+ }
+
+ LValueReferenceType *New
+ = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
+ SpelledAsLValue);
+ Types.push_back(New);
+ LValueReferenceTypes.InsertNode(New, InsertPos);
+
+ return QualType(New, 0);
+}
+
+/// getRValueReferenceType - Return the uniqued reference to the type for an
+/// rvalue reference to the specified type.
+QualType ASTContext::getRValueReferenceType(QualType T) const {
+ // Unique pointers, to guarantee there is only one pointer of a particular
+ // structure.
+ llvm::FoldingSetNodeID ID;
+ ReferenceType::Profile(ID, T, false);
+
+ void *InsertPos = nullptr;
+ if (RValueReferenceType *RT =
+ RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(RT, 0);
+
+ const ReferenceType *InnerRef = T->getAs<ReferenceType>();
+
+ // If the referencee type isn't canonical, this won't be a canonical type
+ // either, so fill in the canonical type field.
+ QualType Canonical;
+ if (InnerRef || !T.isCanonical()) {
+ QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
+ Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
+
+ // Get the new insert position for the node we care about.
+ RValueReferenceType *NewIP =
+ RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
+ }
+
+ RValueReferenceType *New
+ = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
+ Types.push_back(New);
+ RValueReferenceTypes.InsertNode(New, InsertPos);
+ return QualType(New, 0);
+}
+
+/// getMemberPointerType - Return the uniqued reference to the type for a
+/// member pointer to the specified type, in the specified class.
+QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
+ // Unique pointers, to guarantee there is only one pointer of a particular
+ // structure.
+ llvm::FoldingSetNodeID ID;
+ MemberPointerType::Profile(ID, T, Cls);
+
+ void *InsertPos = nullptr;
+ if (MemberPointerType *PT =
+ MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(PT, 0);
+
+ // If the pointee or class type isn't canonical, this won't be a canonical
+ // type either, so fill in the canonical type field.
+ QualType Canonical;
+ if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
+ Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
+
+ // Get the new insert position for the node we care about.
+ MemberPointerType *NewIP =
+ MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
+ }
+ MemberPointerType *New
+ = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
+ Types.push_back(New);
+ MemberPointerTypes.InsertNode(New, InsertPos);
+ return QualType(New, 0);
+}
+
+/// getConstantArrayType - Return the unique reference to the type for an
+/// array of the specified element type.
+QualType ASTContext::getConstantArrayType(QualType EltTy,
+ const llvm::APInt &ArySizeIn,
+ ArrayType::ArraySizeModifier ASM,
+ unsigned IndexTypeQuals) const {
+ assert((EltTy->isDependentType() ||
+ EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
+ "Constant array of VLAs is illegal!");
+
+ // Convert the array size into a canonical width matching the pointer size for
+ // the target.
+ llvm::APInt ArySize(ArySizeIn);
+ ArySize =
+ ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
+
+ llvm::FoldingSetNodeID ID;
+ ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
+
+ void *InsertPos = nullptr;
+ if (ConstantArrayType *ATP =
+ ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(ATP, 0);
+
+ // If the element type isn't canonical or has qualifiers, this won't
+ // be a canonical type either, so fill in the canonical type field.
+ QualType Canon;
+ if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
+ SplitQualType canonSplit = getCanonicalType(EltTy).split();
+ Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
+ ASM, IndexTypeQuals);
+ Canon = getQualifiedType(Canon, canonSplit.Quals);
+
+ // Get the new insert position for the node we care about.
+ ConstantArrayType *NewIP =
+ ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
+ }
+
+ ConstantArrayType *New = new(*this,TypeAlignment)
+ ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
+ ConstantArrayTypes.InsertNode(New, InsertPos);
+ Types.push_back(New);
+ return QualType(New, 0);
+}
+
+/// getVariableArrayDecayedType - Turns the given type, which may be
+/// variably-modified, into the corresponding type with all the known
+/// sizes replaced with [*].
+QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
+ // Vastly most common case.
+ if (!type->isVariablyModifiedType()) return type;
+
+ QualType result;
+
+ SplitQualType split = type.getSplitDesugaredType();
+ const Type *ty = split.Ty;
+ switch (ty->getTypeClass()) {
+#define TYPE(Class, Base)
+#define ABSTRACT_TYPE(Class, Base)
+#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
+#include "clang/AST/TypeNodes.def"
+ llvm_unreachable("didn't desugar past all non-canonical types?");
+
+ // These types should never be variably-modified.
+ case Type::Builtin:
+ case Type::Complex:
+ case Type::Vector:
+ case Type::ExtVector:
+ case Type::DependentSizedExtVector:
+ case Type::ObjCObject:
+ case Type::ObjCInterface:
+ case Type::ObjCObjectPointer:
+ case Type::Record:
+ case Type::Enum:
+ case Type::UnresolvedUsing:
+ case Type::TypeOfExpr:
+ case Type::TypeOf:
+ case Type::Decltype:
+ case Type::UnaryTransform:
+ case Type::DependentName:
+ case Type::InjectedClassName:
+ case Type::TemplateSpecialization:
+ case Type::DependentTemplateSpecialization:
+ case Type::TemplateTypeParm:
+ case Type::SubstTemplateTypeParmPack:
+ case Type::Auto:
+ case Type::PackExpansion:
+ llvm_unreachable("type should never be variably-modified");
+
+ // These types can be variably-modified but should never need to
+ // further decay.
+ case Type::FunctionNoProto:
+ case Type::FunctionProto:
+ case Type::BlockPointer:
+ case Type::MemberPointer:
+ return type;
+
+ // These types can be variably-modified. All these modifications
+ // preserve structure except as noted by comments.
+ // TODO: if we ever care about optimizing VLAs, there are no-op
+ // optimizations available here.
+ case Type::Pointer:
+ result = getPointerType(getVariableArrayDecayedType(
+ cast<PointerType>(ty)->getPointeeType()));
+ break;
+
+ case Type::LValueReference: {
+ const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
+ result = getLValueReferenceType(
+ getVariableArrayDecayedType(lv->getPointeeType()),
+ lv->isSpelledAsLValue());
+ break;
+ }
+
+ case Type::RValueReference: {
+ const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
+ result = getRValueReferenceType(
+ getVariableArrayDecayedType(lv->getPointeeType()));
+ break;
+ }
+
+ case Type::Atomic: {
+ const AtomicType *at = cast<AtomicType>(ty);
+ result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
+ break;
+ }
+
+ case Type::ConstantArray: {
+ const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
+ result = getConstantArrayType(
+ getVariableArrayDecayedType(cat->getElementType()),
+ cat->getSize(),
+ cat->getSizeModifier(),
+ cat->getIndexTypeCVRQualifiers());
+ break;
+ }
+
+ case Type::DependentSizedArray: {
+ const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
+ result = getDependentSizedArrayType(
+ getVariableArrayDecayedType(dat->getElementType()),
+ dat->getSizeExpr(),
+ dat->getSizeModifier(),
+ dat->getIndexTypeCVRQualifiers(),
+ dat->getBracketsRange());
+ break;
+ }
+
+ // Turn incomplete types into [*] types.
+ case Type::IncompleteArray: {
+ const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
+ result = getVariableArrayType(
+ getVariableArrayDecayedType(iat->getElementType()),
+ /*size*/ nullptr,
+ ArrayType::Normal,
+ iat->getIndexTypeCVRQualifiers(),
+ SourceRange());
+ break;
+ }
+
+ // Turn VLA types into [*] types.
+ case Type::VariableArray: {
+ const VariableArrayType *vat = cast<VariableArrayType>(ty);
+ result = getVariableArrayType(
+ getVariableArrayDecayedType(vat->getElementType()),
+ /*size*/ nullptr,
+ ArrayType::Star,
+ vat->getIndexTypeCVRQualifiers(),
+ vat->getBracketsRange());
+ break;
+ }
+ }
+
+ // Apply the top-level qualifiers from the original.
+ return getQualifiedType(result, split.Quals);
+}
+
+/// getVariableArrayType - Returns a non-unique reference to the type for a
+/// variable array of the specified element type.
+QualType ASTContext::getVariableArrayType(QualType EltTy,
+ Expr *NumElts,
+ ArrayType::ArraySizeModifier ASM,
+ unsigned IndexTypeQuals,
+ SourceRange Brackets) const {
+ // Since we don't unique expressions, it isn't possible to unique VLA's
+ // that have an expression provided for their size.
+ QualType Canon;
+
+ // Be sure to pull qualifiers off the element type.
+ if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
+ SplitQualType canonSplit = getCanonicalType(EltTy).split();
+ Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
+ IndexTypeQuals, Brackets);
+ Canon = getQualifiedType(Canon, canonSplit.Quals);
+ }
+
+ VariableArrayType *New = new(*this, TypeAlignment)
+ VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
+
+ VariableArrayTypes.push_back(New);
+ Types.push_back(New);
+ return QualType(New, 0);
+}
+
+/// getDependentSizedArrayType - Returns a non-unique reference to
+/// the type for a dependently-sized array of the specified element
+/// type.
+QualType ASTContext::getDependentSizedArrayType(QualType elementType,
+ Expr *numElements,
+ ArrayType::ArraySizeModifier ASM,
+ unsigned elementTypeQuals,
+ SourceRange brackets) const {
+ assert((!numElements || numElements->isTypeDependent() ||
+ numElements->isValueDependent()) &&
+ "Size must be type- or value-dependent!");
+
+ // Dependently-sized array types that do not have a specified number
+ // of elements will have their sizes deduced from a dependent
+ // initializer. We do no canonicalization here at all, which is okay
+ // because they can't be used in most locations.
+ if (!numElements) {
+ DependentSizedArrayType *newType
+ = new (*this, TypeAlignment)
+ DependentSizedArrayType(*this, elementType, QualType(),
+ numElements, ASM, elementTypeQuals,
+ brackets);
+ Types.push_back(newType);
+ return QualType(newType, 0);
+ }
+
+ // Otherwise, we actually build a new type every time, but we
+ // also build a canonical type.
+
+ SplitQualType canonElementType = getCanonicalType(elementType).split();
+
+ void *insertPos = nullptr;
+ llvm::FoldingSetNodeID ID;
+ DependentSizedArrayType::Profile(ID, *this,
+ QualType(canonElementType.Ty, 0),
+ ASM, elementTypeQuals, numElements);
+
+ // Look for an existing type with these properties.
+ DependentSizedArrayType *canonTy =
+ DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
+
+ // If we don't have one, build one.
+ if (!canonTy) {
+ canonTy = new (*this, TypeAlignment)
+ DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
+ QualType(), numElements, ASM, elementTypeQuals,
+ brackets);
+ DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
+ Types.push_back(canonTy);
+ }
+
+ // Apply qualifiers from the element type to the array.
+ QualType canon = getQualifiedType(QualType(canonTy,0),
+ canonElementType.Quals);
+
+ // If we didn't need extra canonicalization for the element type,
+ // then just use that as our result.
+ if (QualType(canonElementType.Ty, 0) == elementType)
+ return canon;
+
+ // Otherwise, we need to build a type which follows the spelling
+ // of the element type.
+ DependentSizedArrayType *sugaredType
+ = new (*this, TypeAlignment)
+ DependentSizedArrayType(*this, elementType, canon, numElements,
+ ASM, elementTypeQuals, brackets);
+ Types.push_back(sugaredType);
+ return QualType(sugaredType, 0);
+}
+
+QualType ASTContext::getIncompleteArrayType(QualType elementType,
+ ArrayType::ArraySizeModifier ASM,
+ unsigned elementTypeQuals) const {
+ llvm::FoldingSetNodeID ID;
+ IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
+
+ void *insertPos = nullptr;
+ if (IncompleteArrayType *iat =
+ IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
+ return QualType(iat, 0);
+
+ // If the element type isn't canonical, this won't be a canonical type
+ // either, so fill in the canonical type field. We also have to pull
+ // qualifiers off the element type.
+ QualType canon;
+
+ if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
+ SplitQualType canonSplit = getCanonicalType(elementType).split();
+ canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
+ ASM, elementTypeQuals);
+ canon = getQualifiedType(canon, canonSplit.Quals);
+
+ // Get the new insert position for the node we care about.
+ IncompleteArrayType *existing =
+ IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
+ assert(!existing && "Shouldn't be in the map!"); (void) existing;
+ }
+
+ IncompleteArrayType *newType = new (*this, TypeAlignment)
+ IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
+
+ IncompleteArrayTypes.InsertNode(newType, insertPos);
+ Types.push_back(newType);
+ return QualType(newType, 0);
+}
+
+/// getVectorType - Return the unique reference to a vector type of
+/// the specified element type and size. VectorType must be a built-in type.
+QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
+ VectorType::VectorKind VecKind) const {
+ assert(vecType->isBuiltinType());
+
+ // Check if we've already instantiated a vector of this type.
+ llvm::FoldingSetNodeID ID;
+ VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
+
+ void *InsertPos = nullptr;
+ if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(VTP, 0);
+
+ // If the element type isn't canonical, this won't be a canonical type either,
+ // so fill in the canonical type field.
+ QualType Canonical;
+ if (!vecType.isCanonical()) {
+ Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
+
+ // Get the new insert position for the node we care about.
+ VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
+ }
+ VectorType *New = new (*this, TypeAlignment)
+ VectorType(vecType, NumElts, Canonical, VecKind);
+ VectorTypes.InsertNode(New, InsertPos);
+ Types.push_back(New);
+ return QualType(New, 0);
+}
+
+/// getExtVectorType - Return the unique reference to an extended vector type of
+/// the specified element type and size. VectorType must be a built-in type.
+QualType
+ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
+ assert(vecType->isBuiltinType() || vecType->isDependentType());
+
+ // Check if we've already instantiated a vector of this type.
+ llvm::FoldingSetNodeID ID;
+ VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
+ VectorType::GenericVector);
+ void *InsertPos = nullptr;
+ if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(VTP, 0);
+
+ // If the element type isn't canonical, this won't be a canonical type either,
+ // so fill in the canonical type field.
+ QualType Canonical;
+ if (!vecType.isCanonical()) {
+ Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
+
+ // Get the new insert position for the node we care about.
+ VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
+ }
+ ExtVectorType *New = new (*this, TypeAlignment)
+ ExtVectorType(vecType, NumElts, Canonical);
+ VectorTypes.InsertNode(New, InsertPos);
+ Types.push_back(New);
+ return QualType(New, 0);
+}
+
+QualType
+ASTContext::getDependentSizedExtVectorType(QualType vecType,
+ Expr *SizeExpr,
+ SourceLocation AttrLoc) const {
+ llvm::FoldingSetNodeID ID;
+ DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
+ SizeExpr);
+
+ void *InsertPos = nullptr;
+ DependentSizedExtVectorType *Canon
+ = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
+ DependentSizedExtVectorType *New;
+ if (Canon) {
+ // We already have a canonical version of this array type; use it as
+ // the canonical type for a newly-built type.
+ New = new (*this, TypeAlignment)
+ DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
+ SizeExpr, AttrLoc);
+ } else {
+ QualType CanonVecTy = getCanonicalType(vecType);
+ if (CanonVecTy == vecType) {
+ New = new (*this, TypeAlignment)
+ DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
+ AttrLoc);
+
+ DependentSizedExtVectorType *CanonCheck
+ = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
+ (void)CanonCheck;
+ DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
+ } else {
+ QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
+ SourceLocation());
+ New = new (*this, TypeAlignment)
+ DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
+ }
+ }
+
+ Types.push_back(New);
+ return QualType(New, 0);
+}
+
+/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
+///
+QualType
+ASTContext::getFunctionNoProtoType(QualType ResultTy,
+ const FunctionType::ExtInfo &Info) const {
+ const CallingConv CallConv = Info.getCC();
+
+ // Unique functions, to guarantee there is only one function of a particular
+ // structure.
+ llvm::FoldingSetNodeID ID;
+ FunctionNoProtoType::Profile(ID, ResultTy, Info);
+
+ void *InsertPos = nullptr;
+ if (FunctionNoProtoType *FT =
+ FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(FT, 0);
+
+ QualType Canonical;
+ if (!ResultTy.isCanonical()) {
+ Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), Info);
+
+ // Get the new insert position for the node we care about.
+ FunctionNoProtoType *NewIP =
+ FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
+ }
+
+ FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
+ FunctionNoProtoType *New = new (*this, TypeAlignment)
+ FunctionNoProtoType(ResultTy, Canonical, newInfo);
+ Types.push_back(New);
+ FunctionNoProtoTypes.InsertNode(New, InsertPos);
+ return QualType(New, 0);
+}
+
+/// \brief Determine whether \p T is canonical as the result type of a function.
+static bool isCanonicalResultType(QualType T) {
+ return T.isCanonical() &&
+ (T.getObjCLifetime() == Qualifiers::OCL_None ||
+ T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
+}
+
+QualType
+ASTContext::getFunctionType(QualType ResultTy, ArrayRef<QualType> ArgArray,
+ const FunctionProtoType::ExtProtoInfo &EPI) const {
+ size_t NumArgs = ArgArray.size();
+
+ // Unique functions, to guarantee there is only one function of a particular
+ // structure.
+ llvm::FoldingSetNodeID ID;
+ FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
+ *this);
+
+ void *InsertPos = nullptr;
+ if (FunctionProtoType *FTP =
+ FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(FTP, 0);
+
+ // Determine whether the type being created is already canonical or not.
+ bool isCanonical =
+ EPI.ExceptionSpec.Type == EST_None && isCanonicalResultType(ResultTy) &&
+ !EPI.HasTrailingReturn;
+ for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
+ if (!ArgArray[i].isCanonicalAsParam())
+ isCanonical = false;
+
+ // If this type isn't canonical, get the canonical version of it.
+ // The exception spec is not part of the canonical type.
+ QualType Canonical;
+ if (!isCanonical) {
+ SmallVector<QualType, 16> CanonicalArgs;
+ CanonicalArgs.reserve(NumArgs);
+ for (unsigned i = 0; i != NumArgs; ++i)
+ CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
+
+ FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
+ CanonicalEPI.HasTrailingReturn = false;
+ CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo();
+
+ // Result types do not have ARC lifetime qualifiers.
+ QualType CanResultTy = getCanonicalType(ResultTy);
+ if (ResultTy.getQualifiers().hasObjCLifetime()) {
+ Qualifiers Qs = CanResultTy.getQualifiers();
+ Qs.removeObjCLifetime();
+ CanResultTy = getQualifiedType(CanResultTy.getUnqualifiedType(), Qs);
+ }
+
+ Canonical = getFunctionType(CanResultTy, CanonicalArgs, CanonicalEPI);
+
+ // Get the new insert position for the node we care about.
+ FunctionProtoType *NewIP =
+ FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
+ }
+
+ // FunctionProtoType objects are allocated with extra bytes after
+ // them for three variable size arrays at the end:
+ // - parameter types
+ // - exception types
+ // - consumed-arguments flags
+ // Instead of the exception types, there could be a noexcept
+ // expression, or information used to resolve the exception
+ // specification.
+ size_t Size = sizeof(FunctionProtoType) +
+ NumArgs * sizeof(QualType);
+ if (EPI.ExceptionSpec.Type == EST_Dynamic) {
+ Size += EPI.ExceptionSpec.Exceptions.size() * sizeof(QualType);
+ } else if (EPI.ExceptionSpec.Type == EST_ComputedNoexcept) {
+ Size += sizeof(Expr*);
+ } else if (EPI.ExceptionSpec.Type == EST_Uninstantiated) {
+ Size += 2 * sizeof(FunctionDecl*);
+ } else if (EPI.ExceptionSpec.Type == EST_Unevaluated) {
+ Size += sizeof(FunctionDecl*);
+ }
+ if (EPI.ConsumedParameters)
+ Size += NumArgs * sizeof(bool);
+
+ FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
+ FunctionProtoType::ExtProtoInfo newEPI = EPI;
+ new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
+ Types.push_back(FTP);
+ FunctionProtoTypes.InsertNode(FTP, InsertPos);
+ return QualType(FTP, 0);
+}
+
+#ifndef NDEBUG
+static bool NeedsInjectedClassNameType(const RecordDecl *D) {
+ if (!isa<CXXRecordDecl>(D)) return false;
+ const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
+ if (isa<ClassTemplatePartialSpecializationDecl>(RD))
+ return true;
+ if (RD->getDescribedClassTemplate() &&
+ !isa<ClassTemplateSpecializationDecl>(RD))
+ return true;
+ return false;
+}
+#endif
+
+/// getInjectedClassNameType - Return the unique reference to the
+/// injected class name type for the specified templated declaration.
+QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
+ QualType TST) const {
+ assert(NeedsInjectedClassNameType(Decl));
+ if (Decl->TypeForDecl) {
+ assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
+ } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
+ assert(PrevDecl->TypeForDecl && "previous declaration has no type");
+ Decl->TypeForDecl = PrevDecl->TypeForDecl;
+ assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
+ } else {
+ Type *newType =
+ new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
+ Decl->TypeForDecl = newType;
+ Types.push_back(newType);
+ }
+ return QualType(Decl->TypeForDecl, 0);
+}
+
+/// getTypeDeclType - Return the unique reference to the type for the
+/// specified type declaration.
+QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
+ assert(Decl && "Passed null for Decl param");
+ assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
+
+ if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
+ return getTypedefType(Typedef);
+
+ assert(!isa<TemplateTypeParmDecl>(Decl) &&
+ "Template type parameter types are always available.");
+
+ if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
+ assert(Record->isFirstDecl() && "struct/union has previous declaration");
+ assert(!NeedsInjectedClassNameType(Record));
+ return getRecordType(Record);
+ } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
+ assert(Enum->isFirstDecl() && "enum has previous declaration");
+ return getEnumType(Enum);
+ } else if (const UnresolvedUsingTypenameDecl *Using =
+ dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
+ Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
+ Decl->TypeForDecl = newType;
+ Types.push_back(newType);
+ } else
+ llvm_unreachable("TypeDecl without a type?");
+
+ return QualType(Decl->TypeForDecl, 0);
+}
+
+/// getTypedefType - Return the unique reference to the type for the
+/// specified typedef name decl.
+QualType
+ASTContext::getTypedefType(const TypedefNameDecl *Decl,
+ QualType Canonical) const {
+ if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
+
+ if (Canonical.isNull())
+ Canonical = getCanonicalType(Decl->getUnderlyingType());
+ TypedefType *newType = new(*this, TypeAlignment)
+ TypedefType(Type::Typedef, Decl, Canonical);
+ Decl->TypeForDecl = newType;
+ Types.push_back(newType);
+ return QualType(newType, 0);
+}
+
+QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
+ if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
+
+ if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
+ if (PrevDecl->TypeForDecl)
+ return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
+
+ RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
+ Decl->TypeForDecl = newType;
+ Types.push_back(newType);
+ return QualType(newType, 0);
+}
+
+QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
+ if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
+
+ if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
+ if (PrevDecl->TypeForDecl)
+ return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
+
+ EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
+ Decl->TypeForDecl = newType;
+ Types.push_back(newType);
+ return QualType(newType, 0);
+}
+
+QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
+ QualType modifiedType,
+ QualType equivalentType) {
+ llvm::FoldingSetNodeID id;
+ AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
+
+ void *insertPos = nullptr;
+ AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
+ if (type) return QualType(type, 0);
+
+ QualType canon = getCanonicalType(equivalentType);
+ type = new (*this, TypeAlignment)
+ AttributedType(canon, attrKind, modifiedType, equivalentType);
+
+ Types.push_back(type);
+ AttributedTypes.InsertNode(type, insertPos);
+
+ return QualType(type, 0);
+}
+
+
+/// \brief Retrieve a substitution-result type.
+QualType
+ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
+ QualType Replacement) const {
+ assert(Replacement.isCanonical()
+ && "replacement types must always be canonical");
+
+ llvm::FoldingSetNodeID ID;
+ SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
+ void *InsertPos = nullptr;
+ SubstTemplateTypeParmType *SubstParm
+ = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
+
+ if (!SubstParm) {
+ SubstParm = new (*this, TypeAlignment)
+ SubstTemplateTypeParmType(Parm, Replacement);
+ Types.push_back(SubstParm);
+ SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
+ }
+
+ return QualType(SubstParm, 0);
+}
+
+/// \brief Retrieve a
+QualType ASTContext::getSubstTemplateTypeParmPackType(
+ const TemplateTypeParmType *Parm,
+ const TemplateArgument &ArgPack) {
+#ifndef NDEBUG
+ for (const auto &P : ArgPack.pack_elements()) {
+ assert(P.getKind() == TemplateArgument::Type &&"Pack contains a non-type");
+ assert(P.getAsType().isCanonical() && "Pack contains non-canonical type");
+ }
+#endif
+
+ llvm::FoldingSetNodeID ID;
+ SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
+ void *InsertPos = nullptr;
+ if (SubstTemplateTypeParmPackType *SubstParm
+ = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(SubstParm, 0);
+
+ QualType Canon;
+ if (!Parm->isCanonicalUnqualified()) {
+ Canon = getCanonicalType(QualType(Parm, 0));
+ Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
+ ArgPack);
+ SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
+ }
+
+ SubstTemplateTypeParmPackType *SubstParm
+ = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
+ ArgPack);
+ Types.push_back(SubstParm);
+ SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
+ return QualType(SubstParm, 0);
+}
+
+/// \brief Retrieve the template type parameter type for a template
+/// parameter or parameter pack with the given depth, index, and (optionally)
+/// name.
+QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
+ bool ParameterPack,
+ TemplateTypeParmDecl *TTPDecl) const {
+ llvm::FoldingSetNodeID ID;
+ TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
+ void *InsertPos = nullptr;
+ TemplateTypeParmType *TypeParm
+ = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
+
+ if (TypeParm)
+ return QualType(TypeParm, 0);
+
+ if (TTPDecl) {
+ QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
+ TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
+
+ TemplateTypeParmType *TypeCheck
+ = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!TypeCheck && "Template type parameter canonical type broken");
+ (void)TypeCheck;
+ } else
+ TypeParm = new (*this, TypeAlignment)
+ TemplateTypeParmType(Depth, Index, ParameterPack);
+
+ Types.push_back(TypeParm);
+ TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
+
+ return QualType(TypeParm, 0);
+}
+
+TypeSourceInfo *
+ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
+ SourceLocation NameLoc,
+ const TemplateArgumentListInfo &Args,
+ QualType Underlying) const {
+ assert(!Name.getAsDependentTemplateName() &&
+ "No dependent template names here!");
+ QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
+
+ TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
+ TemplateSpecializationTypeLoc TL =
+ DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
+ TL.setTemplateKeywordLoc(SourceLocation());
+ TL.setTemplateNameLoc(NameLoc);
+ TL.setLAngleLoc(Args.getLAngleLoc());
+ TL.setRAngleLoc(Args.getRAngleLoc());
+ for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
+ TL.setArgLocInfo(i, Args[i].getLocInfo());
+ return DI;
+}
+
+QualType
+ASTContext::getTemplateSpecializationType(TemplateName Template,
+ const TemplateArgumentListInfo &Args,
+ QualType Underlying) const {
+ assert(!Template.getAsDependentTemplateName() &&
+ "No dependent template names here!");
+
+ unsigned NumArgs = Args.size();
+
+ SmallVector<TemplateArgument, 4> ArgVec;
+ ArgVec.reserve(NumArgs);
+ for (unsigned i = 0; i != NumArgs; ++i)
+ ArgVec.push_back(Args[i].getArgument());
+
+ return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
+ Underlying);
+}
+
+#ifndef NDEBUG
+static bool hasAnyPackExpansions(const TemplateArgument *Args,
+ unsigned NumArgs) {
+ for (unsigned I = 0; I != NumArgs; ++I)
+ if (Args[I].isPackExpansion())
+ return true;
+
+ return true;
+}
+#endif
+
+QualType
+ASTContext::getTemplateSpecializationType(TemplateName Template,
+ const TemplateArgument *Args,
+ unsigned NumArgs,
+ QualType Underlying) const {
+ assert(!Template.getAsDependentTemplateName() &&
+ "No dependent template names here!");
+ // Look through qualified template names.
+ if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
+ Template = TemplateName(QTN->getTemplateDecl());
+
+ bool IsTypeAlias =
+ Template.getAsTemplateDecl() &&
+ isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
+ QualType CanonType;
+ if (!Underlying.isNull())
+ CanonType = getCanonicalType(Underlying);
+ else {
+ // We can get here with an alias template when the specialization contains
+ // a pack expansion that does not match up with a parameter pack.
+ assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
+ "Caller must compute aliased type");
+ IsTypeAlias = false;
+ CanonType = getCanonicalTemplateSpecializationType(Template, Args,
+ NumArgs);
+ }
+
+ // Allocate the (non-canonical) template specialization type, but don't
+ // try to unique it: these types typically have location information that
+ // we don't unique and don't want to lose.
+ void *Mem = Allocate(sizeof(TemplateSpecializationType) +
+ sizeof(TemplateArgument) * NumArgs +
+ (IsTypeAlias? sizeof(QualType) : 0),
+ TypeAlignment);
+ TemplateSpecializationType *Spec
+ = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
+ IsTypeAlias ? Underlying : QualType());
+
+ Types.push_back(Spec);
+ return QualType(Spec, 0);
+}
+
+QualType
+ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
+ const TemplateArgument *Args,
+ unsigned NumArgs) const {
+ assert(!Template.getAsDependentTemplateName() &&
+ "No dependent template names here!");
+
+ // Look through qualified template names.
+ if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
+ Template = TemplateName(QTN->getTemplateDecl());
+
+ // Build the canonical template specialization type.
+ TemplateName CanonTemplate = getCanonicalTemplateName(Template);
+ SmallVector<TemplateArgument, 4> CanonArgs;
+ CanonArgs.reserve(NumArgs);
+ for (unsigned I = 0; I != NumArgs; ++I)
+ CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
+
+ // Determine whether this canonical template specialization type already
+ // exists.
+ llvm::FoldingSetNodeID ID;
+ TemplateSpecializationType::Profile(ID, CanonTemplate,
+ CanonArgs.data(), NumArgs, *this);
+
+ void *InsertPos = nullptr;
+ TemplateSpecializationType *Spec
+ = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
+
+ if (!Spec) {
+ // Allocate a new canonical template specialization type.
+ void *Mem = Allocate((sizeof(TemplateSpecializationType) +
+ sizeof(TemplateArgument) * NumArgs),
+ TypeAlignment);
+ Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
+ CanonArgs.data(), NumArgs,
+ QualType(), QualType());
+ Types.push_back(Spec);
+ TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
+ }
+
+ assert(Spec->isDependentType() &&
+ "Non-dependent template-id type must have a canonical type");
+ return QualType(Spec, 0);
+}
+
+QualType
+ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
+ NestedNameSpecifier *NNS,
+ QualType NamedType) const {
+ llvm::FoldingSetNodeID ID;
+ ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
+
+ void *InsertPos = nullptr;
+ ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
+ if (T)
+ return QualType(T, 0);
+
+ QualType Canon = NamedType;
+ if (!Canon.isCanonical()) {
+ Canon = getCanonicalType(NamedType);
+ ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!CheckT && "Elaborated canonical type broken");
+ (void)CheckT;
+ }
+
+ T = new (*this, TypeAlignment) ElaboratedType(Keyword, NNS, NamedType, Canon);
+ Types.push_back(T);
+ ElaboratedTypes.InsertNode(T, InsertPos);
+ return QualType(T, 0);
+}
+
+QualType
+ASTContext::getParenType(QualType InnerType) const {
+ llvm::FoldingSetNodeID ID;
+ ParenType::Profile(ID, InnerType);
+
+ void *InsertPos = nullptr;
+ ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
+ if (T)
+ return QualType(T, 0);
+
+ QualType Canon = InnerType;
+ if (!Canon.isCanonical()) {
+ Canon = getCanonicalType(InnerType);
+ ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!CheckT && "Paren canonical type broken");
+ (void)CheckT;
+ }
+
+ T = new (*this, TypeAlignment) ParenType(InnerType, Canon);
+ Types.push_back(T);
+ ParenTypes.InsertNode(T, InsertPos);
+ return QualType(T, 0);
+}
+
+QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
+ NestedNameSpecifier *NNS,
+ const IdentifierInfo *Name,
+ QualType Canon) const {
+ if (Canon.isNull()) {
+ NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
+ ElaboratedTypeKeyword CanonKeyword = Keyword;
+ if (Keyword == ETK_None)
+ CanonKeyword = ETK_Typename;
+
+ if (CanonNNS != NNS || CanonKeyword != Keyword)
+ Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
+ }
+
+ llvm::FoldingSetNodeID ID;
+ DependentNameType::Profile(ID, Keyword, NNS, Name);
+
+ void *InsertPos = nullptr;
+ DependentNameType *T
+ = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
+ if (T)
+ return QualType(T, 0);
+
+ T = new (*this, TypeAlignment) DependentNameType(Keyword, NNS, Name, Canon);
+ Types.push_back(T);
+ DependentNameTypes.InsertNode(T, InsertPos);
+ return QualType(T, 0);
+}
+
+QualType
+ASTContext::getDependentTemplateSpecializationType(
+ ElaboratedTypeKeyword Keyword,
+ NestedNameSpecifier *NNS,
+ const IdentifierInfo *Name,
+ const TemplateArgumentListInfo &Args) const {
+ // TODO: avoid this copy
+ SmallVector<TemplateArgument, 16> ArgCopy;
+ for (unsigned I = 0, E = Args.size(); I != E; ++I)
+ ArgCopy.push_back(Args[I].getArgument());
+ return getDependentTemplateSpecializationType(Keyword, NNS, Name,
+ ArgCopy.size(),
+ ArgCopy.data());
+}
+
+QualType
+ASTContext::getDependentTemplateSpecializationType(
+ ElaboratedTypeKeyword Keyword,
+ NestedNameSpecifier *NNS,
+ const IdentifierInfo *Name,
+ unsigned NumArgs,
+ const TemplateArgument *Args) const {
+ assert((!NNS || NNS->isDependent()) &&
+ "nested-name-specifier must be dependent");
+
+ llvm::FoldingSetNodeID ID;
+ DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
+ Name, NumArgs, Args);
+
+ void *InsertPos = nullptr;
+ DependentTemplateSpecializationType *T
+ = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
+ if (T)
+ return QualType(T, 0);
+
+ NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
+
+ ElaboratedTypeKeyword CanonKeyword = Keyword;
+ if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
+
+ bool AnyNonCanonArgs = false;
+ SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
+ for (unsigned I = 0; I != NumArgs; ++I) {
+ CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
+ if (!CanonArgs[I].structurallyEquals(Args[I]))
+ AnyNonCanonArgs = true;
+ }
+
+ QualType Canon;
+ if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
+ Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
+ Name, NumArgs,
+ CanonArgs.data());
+
+ // Find the insert position again.
+ DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
+ }
+
+ void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
+ sizeof(TemplateArgument) * NumArgs),
+ TypeAlignment);
+ T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
+ Name, NumArgs, Args, Canon);
+ Types.push_back(T);
+ DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
+ return QualType(T, 0);
+}
+
+QualType ASTContext::getPackExpansionType(QualType Pattern,
+ Optional<unsigned> NumExpansions) {
+ llvm::FoldingSetNodeID ID;
+ PackExpansionType::Profile(ID, Pattern, NumExpansions);
+
+ assert(Pattern->containsUnexpandedParameterPack() &&
+ "Pack expansions must expand one or more parameter packs");
+ void *InsertPos = nullptr;
+ PackExpansionType *T
+ = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
+ if (T)
+ return QualType(T, 0);
+
+ QualType Canon;
+ if (!Pattern.isCanonical()) {
+ Canon = getCanonicalType(Pattern);
+ // The canonical type might not contain an unexpanded parameter pack, if it
+ // contains an alias template specialization which ignores one of its
+ // parameters.
+ if (Canon->containsUnexpandedParameterPack()) {
+ Canon = getPackExpansionType(Canon, NumExpansions);
+
+ // Find the insert position again, in case we inserted an element into
+ // PackExpansionTypes and invalidated our insert position.
+ PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
+ }
+ }
+
+ T = new (*this, TypeAlignment)
+ PackExpansionType(Pattern, Canon, NumExpansions);
+ Types.push_back(T);
+ PackExpansionTypes.InsertNode(T, InsertPos);
+ return QualType(T, 0);
+}
+
+/// CmpProtocolNames - Comparison predicate for sorting protocols
+/// alphabetically.
+static int CmpProtocolNames(ObjCProtocolDecl *const *LHS,
+ ObjCProtocolDecl *const *RHS) {
+ return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName());
+}
+
+static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
+ unsigned NumProtocols) {
+ if (NumProtocols == 0) return true;
+
+ if (Protocols[0]->getCanonicalDecl() != Protocols[0])
+ return false;
+
+ for (unsigned i = 1; i != NumProtocols; ++i)
+ if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 ||
+ Protocols[i]->getCanonicalDecl() != Protocols[i])
+ return false;
+ return true;
+}
+
+static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
+ unsigned &NumProtocols) {
+ ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
+
+ // Sort protocols, keyed by name.
+ llvm::array_pod_sort(Protocols, ProtocolsEnd, CmpProtocolNames);
+
+ // Canonicalize.
+ for (unsigned I = 0, N = NumProtocols; I != N; ++I)
+ Protocols[I] = Protocols[I]->getCanonicalDecl();
+
+ // Remove duplicates.
+ ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
+ NumProtocols = ProtocolsEnd-Protocols;
+}
+
+QualType ASTContext::getObjCObjectType(QualType BaseType,
+ ObjCProtocolDecl * const *Protocols,
+ unsigned NumProtocols) const {
+ // If the base type is an interface and there aren't any protocols
+ // to add, then the interface type will do just fine.
+ if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
+ return BaseType;
+
+ // Look in the folding set for an existing type.
+ llvm::FoldingSetNodeID ID;
+ ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
+ void *InsertPos = nullptr;
+ if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(QT, 0);
+
+ // Build the canonical type, which has the canonical base type and
+ // a sorted-and-uniqued list of protocols.
+ QualType Canonical;
+ bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
+ if (!ProtocolsSorted || !BaseType.isCanonical()) {
+ if (!ProtocolsSorted) {
+ SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
+ Protocols + NumProtocols);
+ unsigned UniqueCount = NumProtocols;
+
+ SortAndUniqueProtocols(&Sorted[0], UniqueCount);
+ Canonical = getObjCObjectType(getCanonicalType(BaseType),
+ &Sorted[0], UniqueCount);
+ } else {
+ Canonical = getObjCObjectType(getCanonicalType(BaseType),
+ Protocols, NumProtocols);
+ }
+
+ // Regenerate InsertPos.
+ ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
+ }
+
+ unsigned Size = sizeof(ObjCObjectTypeImpl);
+ Size += NumProtocols * sizeof(ObjCProtocolDecl *);
+ void *Mem = Allocate(Size, TypeAlignment);
+ ObjCObjectTypeImpl *T =
+ new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
+
+ Types.push_back(T);
+ ObjCObjectTypes.InsertNode(T, InsertPos);
+ return QualType(T, 0);
+}
+
+/// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's
+/// protocol list adopt all protocols in QT's qualified-id protocol
+/// list.
+bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT,
+ ObjCInterfaceDecl *IC) {
+ if (!QT->isObjCQualifiedIdType())
+ return false;
+
+ if (const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>()) {
+ // If both the right and left sides have qualifiers.
+ for (auto *Proto : OPT->quals()) {
+ if (!IC->ClassImplementsProtocol(Proto, false))
+ return false;
+ }
+ return true;
+ }
+ return false;
+}
+
+/// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
+/// QT's qualified-id protocol list adopt all protocols in IDecl's list
+/// of protocols.
+bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
+ ObjCInterfaceDecl *IDecl) {
+ if (!QT->isObjCQualifiedIdType())
+ return false;
+ const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>();
+ if (!OPT)
+ return false;
+ if (!IDecl->hasDefinition())
+ return false;
+ llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols;
+ CollectInheritedProtocols(IDecl, InheritedProtocols);
+ if (InheritedProtocols.empty())
+ return false;
+ // Check that if every protocol in list of id<plist> conforms to a protcol
+ // of IDecl's, then bridge casting is ok.
+ bool Conforms = false;
+ for (auto *Proto : OPT->quals()) {
+ Conforms = false;
+ for (auto *PI : InheritedProtocols) {
+ if (ProtocolCompatibleWithProtocol(Proto, PI)) {
+ Conforms = true;
+ break;
+ }
+ }
+ if (!Conforms)
+ break;
+ }
+ if (Conforms)
+ return true;
+
+ for (auto *PI : InheritedProtocols) {
+ // If both the right and left sides have qualifiers.
+ bool Adopts = false;
+ for (auto *Proto : OPT->quals()) {
+ // return 'true' if 'PI' is in the inheritance hierarchy of Proto
+ if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto)))
+ break;
+ }
+ if (!Adopts)
+ return false;
+ }
+ return true;
+}
+
+/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
+/// the given object type.
+QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
+ llvm::FoldingSetNodeID ID;
+ ObjCObjectPointerType::Profile(ID, ObjectT);
+
+ void *InsertPos = nullptr;
+ if (ObjCObjectPointerType *QT =
+ ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(QT, 0);
+
+ // Find the canonical object type.
+ QualType Canonical;
+ if (!ObjectT.isCanonical()) {
+ Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
+
+ // Regenerate InsertPos.
+ ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
+ }
+
+ // No match.
+ void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
+ ObjCObjectPointerType *QType =
+ new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
+
+ Types.push_back(QType);
+ ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
+ return QualType(QType, 0);
+}
+
+/// getObjCInterfaceType - Return the unique reference to the type for the
+/// specified ObjC interface decl. The list of protocols is optional.
+QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
+ ObjCInterfaceDecl *PrevDecl) const {
+ if (Decl->TypeForDecl)
+ return QualType(Decl->TypeForDecl, 0);
+
+ if (PrevDecl) {
+ assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
+ Decl->TypeForDecl = PrevDecl->TypeForDecl;
+ return QualType(PrevDecl->TypeForDecl, 0);
+ }
+
+ // Prefer the definition, if there is one.
+ if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
+ Decl = Def;
+
+ void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
+ ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
+ Decl->TypeForDecl = T;
+ Types.push_back(T);
+ return QualType(T, 0);
+}
+
+/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
+/// TypeOfExprType AST's (since expression's are never shared). For example,
+/// multiple declarations that refer to "typeof(x)" all contain different
+/// DeclRefExpr's. This doesn't effect the type checker, since it operates
+/// on canonical type's (which are always unique).
+QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
+ TypeOfExprType *toe;
+ if (tofExpr->isTypeDependent()) {
+ llvm::FoldingSetNodeID ID;
+ DependentTypeOfExprType::Profile(ID, *this, tofExpr);
+
+ void *InsertPos = nullptr;
+ DependentTypeOfExprType *Canon
+ = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
+ if (Canon) {
+ // We already have a "canonical" version of an identical, dependent
+ // typeof(expr) type. Use that as our canonical type.
+ toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
+ QualType((TypeOfExprType*)Canon, 0));
+ } else {
+ // Build a new, canonical typeof(expr) type.
+ Canon
+ = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
+ DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
+ toe = Canon;
+ }
+ } else {
+ QualType Canonical = getCanonicalType(tofExpr->getType());
+ toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
+ }
+ Types.push_back(toe);
+ return QualType(toe, 0);
+}
+
+/// getTypeOfType - Unlike many "get<Type>" functions, we don't unique
+/// TypeOfType nodes. The only motivation to unique these nodes would be
+/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
+/// an issue. This doesn't affect the type checker, since it operates
+/// on canonical types (which are always unique).
+QualType ASTContext::getTypeOfType(QualType tofType) const {
+ QualType Canonical = getCanonicalType(tofType);
+ TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
+ Types.push_back(tot);
+ return QualType(tot, 0);
+}
+
+
+/// \brief Unlike many "get<Type>" functions, we don't unique DecltypeType
+/// nodes. This would never be helpful, since each such type has its own
+/// expression, and would not give a significant memory saving, since there
+/// is an Expr tree under each such type.
+QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
+ DecltypeType *dt;
+
+ // C++11 [temp.type]p2:
+ // If an expression e involves a template parameter, decltype(e) denotes a
+ // unique dependent type. Two such decltype-specifiers refer to the same
+ // type only if their expressions are equivalent (14.5.6.1).
+ if (e->isInstantiationDependent()) {
+ llvm::FoldingSetNodeID ID;
+ DependentDecltypeType::Profile(ID, *this, e);
+
+ void *InsertPos = nullptr;
+ DependentDecltypeType *Canon
+ = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
+ if (!Canon) {
+ // Build a new, canonical typeof(expr) type.
+ Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
+ DependentDecltypeTypes.InsertNode(Canon, InsertPos);
+ }
+ dt = new (*this, TypeAlignment)
+ DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0));
+ } else {
+ dt = new (*this, TypeAlignment)
+ DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType));
+ }
+ Types.push_back(dt);
+ return QualType(dt, 0);
+}
+
+/// getUnaryTransformationType - We don't unique these, since the memory
+/// savings are minimal and these are rare.
+QualType ASTContext::getUnaryTransformType(QualType BaseType,
+ QualType UnderlyingType,
+ UnaryTransformType::UTTKind Kind)
+ const {
+ UnaryTransformType *Ty =
+ new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
+ Kind,
+ UnderlyingType->isDependentType() ?
+ QualType() : getCanonicalType(UnderlyingType));
+ Types.push_back(Ty);
+ return QualType(Ty, 0);
+}
+
+/// getAutoType - Return the uniqued reference to the 'auto' type which has been
+/// deduced to the given type, or to the canonical undeduced 'auto' type, or the
+/// canonical deduced-but-dependent 'auto' type.
+QualType ASTContext::getAutoType(QualType DeducedType, bool IsDecltypeAuto,
+ bool IsDependent) const {
+ if (DeducedType.isNull() && !IsDecltypeAuto && !IsDependent)
+ return getAutoDeductType();
+
+ // Look in the folding set for an existing type.
+ void *InsertPos = nullptr;
+ llvm::FoldingSetNodeID ID;
+ AutoType::Profile(ID, DeducedType, IsDecltypeAuto, IsDependent);
+ if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(AT, 0);
+
+ AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType,
+ IsDecltypeAuto,
+ IsDependent);
+ Types.push_back(AT);
+ if (InsertPos)
+ AutoTypes.InsertNode(AT, InsertPos);
+ return QualType(AT, 0);
+}
+
+/// getAtomicType - Return the uniqued reference to the atomic type for
+/// the given value type.
+QualType ASTContext::getAtomicType(QualType T) const {
+ // Unique pointers, to guarantee there is only one pointer of a particular
+ // structure.
+ llvm::FoldingSetNodeID ID;
+ AtomicType::Profile(ID, T);
+
+ void *InsertPos = nullptr;
+ if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(AT, 0);
+
+ // If the atomic value type isn't canonical, this won't be a canonical type
+ // either, so fill in the canonical type field.
+ QualType Canonical;
+ if (!T.isCanonical()) {
+ Canonical = getAtomicType(getCanonicalType(T));
+
+ // Get the new insert position for the node we care about.
+ AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
+ }
+ AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
+ Types.push_back(New);
+ AtomicTypes.InsertNode(New, InsertPos);
+ return QualType(New, 0);
+}
+
+/// getAutoDeductType - Get type pattern for deducing against 'auto'.
+QualType ASTContext::getAutoDeductType() const {
+ if (AutoDeductTy.isNull())
+ AutoDeductTy = QualType(
+ new (*this, TypeAlignment) AutoType(QualType(), /*decltype(auto)*/false,
+ /*dependent*/false),
+ 0);
+ return AutoDeductTy;
+}
+
+/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
+QualType ASTContext::getAutoRRefDeductType() const {
+ if (AutoRRefDeductTy.isNull())
+ AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
+ assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
+ return AutoRRefDeductTy;
+}
+
+/// getTagDeclType - Return the unique reference to the type for the
+/// specified TagDecl (struct/union/class/enum) decl.
+QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
+ assert (Decl);
+ // FIXME: What is the design on getTagDeclType when it requires casting
+ // away const? mutable?
+ return getTypeDeclType(const_cast<TagDecl*>(Decl));
+}
+
+/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
+/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
+/// needs to agree with the definition in <stddef.h>.
+CanQualType ASTContext::getSizeType() const {
+ return getFromTargetType(Target->getSizeType());
+}
+
+/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
+CanQualType ASTContext::getIntMaxType() const {
+ return getFromTargetType(Target->getIntMaxType());
+}
+
+/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
+CanQualType ASTContext::getUIntMaxType() const {
+ return getFromTargetType(Target->getUIntMaxType());
+}
+
+/// getSignedWCharType - Return the type of "signed wchar_t".
+/// Used when in C++, as a GCC extension.
+QualType ASTContext::getSignedWCharType() const {
+ // FIXME: derive from "Target" ?
+ return WCharTy;
+}
+
+/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
+/// Used when in C++, as a GCC extension.
+QualType ASTContext::getUnsignedWCharType() const {
+ // FIXME: derive from "Target" ?
+ return UnsignedIntTy;
+}
+
+QualType ASTContext::getIntPtrType() const {
+ return getFromTargetType(Target->getIntPtrType());
+}
+
+QualType ASTContext::getUIntPtrType() const {
+ return getCorrespondingUnsignedType(getIntPtrType());
+}
+
+/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
+/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
+QualType ASTContext::getPointerDiffType() const {
+ return getFromTargetType(Target->getPtrDiffType(0));
+}
+
+/// \brief Return the unique type for "pid_t" defined in
+/// <sys/types.h>. We need this to compute the correct type for vfork().
+QualType ASTContext::getProcessIDType() const {
+ return getFromTargetType(Target->getProcessIDType());
+}
+
+//===----------------------------------------------------------------------===//
+// Type Operators
+//===----------------------------------------------------------------------===//
+
+CanQualType ASTContext::getCanonicalParamType(QualType T) const {
+ // Push qualifiers into arrays, and then discard any remaining
+ // qualifiers.
+ T = getCanonicalType(T);
+ T = getVariableArrayDecayedType(T);
+ const Type *Ty = T.getTypePtr();
+ QualType Result;
+ if (isa<ArrayType>(Ty)) {
+ Result = getArrayDecayedType(QualType(Ty,0));
+ } else if (isa<FunctionType>(Ty)) {
+ Result = getPointerType(QualType(Ty, 0));
+ } else {
+ Result = QualType(Ty, 0);
+ }
+
+ return CanQualType::CreateUnsafe(Result);
+}
+
+QualType ASTContext::getUnqualifiedArrayType(QualType type,
+ Qualifiers &quals) {
+ SplitQualType splitType = type.getSplitUnqualifiedType();
+
+ // FIXME: getSplitUnqualifiedType() actually walks all the way to
+ // the unqualified desugared type and then drops it on the floor.
+ // We then have to strip that sugar back off with
+ // getUnqualifiedDesugaredType(), which is silly.
+ const ArrayType *AT =
+ dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
+
+ // If we don't have an array, just use the results in splitType.
+ if (!AT) {
+ quals = splitType.Quals;
+ return QualType(splitType.Ty, 0);
+ }
+
+ // Otherwise, recurse on the array's element type.
+ QualType elementType = AT->getElementType();
+ QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
+
+ // If that didn't change the element type, AT has no qualifiers, so we
+ // can just use the results in splitType.
+ if (elementType == unqualElementType) {
+ assert(quals.empty()); // from the recursive call
+ quals = splitType.Quals;
+ return QualType(splitType.Ty, 0);
+ }
+
+ // Otherwise, add in the qualifiers from the outermost type, then
+ // build the type back up.
+ quals.addConsistentQualifiers(splitType.Quals);
+
+ if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
+ return getConstantArrayType(unqualElementType, CAT->getSize(),
+ CAT->getSizeModifier(), 0);
+ }
+
+ if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
+ return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
+ }
+
+ if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
+ return getVariableArrayType(unqualElementType,
+ VAT->getSizeExpr(),
+ VAT->getSizeModifier(),
+ VAT->getIndexTypeCVRQualifiers(),
+ VAT->getBracketsRange());
+ }
+
+ const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
+ return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
+ DSAT->getSizeModifier(), 0,
+ SourceRange());
+}
+
+/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types that
+/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
+/// they point to and return true. If T1 and T2 aren't pointer types
+/// or pointer-to-member types, or if they are not similar at this
+/// level, returns false and leaves T1 and T2 unchanged. Top-level
+/// qualifiers on T1 and T2 are ignored. This function will typically
+/// be called in a loop that successively "unwraps" pointer and
+/// pointer-to-member types to compare them at each level.
+bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
+ const PointerType *T1PtrType = T1->getAs<PointerType>(),
+ *T2PtrType = T2->getAs<PointerType>();
+ if (T1PtrType && T2PtrType) {
+ T1 = T1PtrType->getPointeeType();
+ T2 = T2PtrType->getPointeeType();
+ return true;
+ }
+
+ const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
+ *T2MPType = T2->getAs<MemberPointerType>();
+ if (T1MPType && T2MPType &&
+ hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
+ QualType(T2MPType->getClass(), 0))) {
+ T1 = T1MPType->getPointeeType();
+ T2 = T2MPType->getPointeeType();
+ return true;
+ }
+
+ if (getLangOpts().ObjC1) {
+ const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
+ *T2OPType = T2->getAs<ObjCObjectPointerType>();
+ if (T1OPType && T2OPType) {
+ T1 = T1OPType->getPointeeType();
+ T2 = T2OPType->getPointeeType();
+ return true;
+ }
+ }
+
+ // FIXME: Block pointers, too?
+
+ return false;
+}
+
+DeclarationNameInfo
+ASTContext::getNameForTemplate(TemplateName Name,
+ SourceLocation NameLoc) const {
+ switch (Name.getKind()) {
+ case TemplateName::QualifiedTemplate:
+ case TemplateName::Template:
+ // DNInfo work in progress: CHECKME: what about DNLoc?
+ return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
+ NameLoc);
+
+ case TemplateName::OverloadedTemplate: {
+ OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
+ // DNInfo work in progress: CHECKME: what about DNLoc?
+ return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
+ }
+
+ case TemplateName::DependentTemplate: {
+ DependentTemplateName *DTN = Name.getAsDependentTemplateName();
+ DeclarationName DName;
+ if (DTN->isIdentifier()) {
+ DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
+ return DeclarationNameInfo(DName, NameLoc);
+ } else {
+ DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
+ // DNInfo work in progress: FIXME: source locations?
+ DeclarationNameLoc DNLoc;
+ DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
+ DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
+ return DeclarationNameInfo(DName, NameLoc, DNLoc);
+ }
+ }
+
+ case TemplateName::SubstTemplateTemplateParm: {
+ SubstTemplateTemplateParmStorage *subst
+ = Name.getAsSubstTemplateTemplateParm();
+ return DeclarationNameInfo(subst->getParameter()->getDeclName(),
+ NameLoc);
+ }
+
+ case TemplateName::SubstTemplateTemplateParmPack: {
+ SubstTemplateTemplateParmPackStorage *subst
+ = Name.getAsSubstTemplateTemplateParmPack();
+ return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
+ NameLoc);
+ }
+ }
+
+ llvm_unreachable("bad template name kind!");
+}
+
+TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
+ switch (Name.getKind()) {
+ case TemplateName::QualifiedTemplate:
+ case TemplateName::Template: {
+ TemplateDecl *Template = Name.getAsTemplateDecl();
+ if (TemplateTemplateParmDecl *TTP
+ = dyn_cast<TemplateTemplateParmDecl>(Template))
+ Template = getCanonicalTemplateTemplateParmDecl(TTP);
+
+ // The canonical template name is the canonical template declaration.
+ return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
+ }
+
+ case TemplateName::OverloadedTemplate:
+ llvm_unreachable("cannot canonicalize overloaded template");
+
+ case TemplateName::DependentTemplate: {
+ DependentTemplateName *DTN = Name.getAsDependentTemplateName();
+ assert(DTN && "Non-dependent template names must refer to template decls.");
+ return DTN->CanonicalTemplateName;
+ }
+
+ case TemplateName::SubstTemplateTemplateParm: {
+ SubstTemplateTemplateParmStorage *subst
+ = Name.getAsSubstTemplateTemplateParm();
+ return getCanonicalTemplateName(subst->getReplacement());
+ }
+
+ case TemplateName::SubstTemplateTemplateParmPack: {
+ SubstTemplateTemplateParmPackStorage *subst
+ = Name.getAsSubstTemplateTemplateParmPack();
+ TemplateTemplateParmDecl *canonParameter
+ = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
+ TemplateArgument canonArgPack
+ = getCanonicalTemplateArgument(subst->getArgumentPack());
+ return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
+ }
+ }
+
+ llvm_unreachable("bad template name!");
+}
+
+bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
+ X = getCanonicalTemplateName(X);
+ Y = getCanonicalTemplateName(Y);
+ return X.getAsVoidPointer() == Y.getAsVoidPointer();
+}
+
+TemplateArgument
+ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
+ switch (Arg.getKind()) {
+ case TemplateArgument::Null:
+ return Arg;
+
+ case TemplateArgument::Expression:
+ return Arg;
+
+ case TemplateArgument::Declaration: {
+ ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
+ return TemplateArgument(D, Arg.getParamTypeForDecl());
+ }
+
+ case TemplateArgument::NullPtr:
+ return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
+ /*isNullPtr*/true);
+
+ case TemplateArgument::Template:
+ return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
+
+ case TemplateArgument::TemplateExpansion:
+ return TemplateArgument(getCanonicalTemplateName(
+ Arg.getAsTemplateOrTemplatePattern()),
+ Arg.getNumTemplateExpansions());
+
+ case TemplateArgument::Integral:
+ return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
+
+ case TemplateArgument::Type:
+ return TemplateArgument(getCanonicalType(Arg.getAsType()));
+
+ case TemplateArgument::Pack: {
+ if (Arg.pack_size() == 0)
+ return Arg;
+
+ TemplateArgument *CanonArgs
+ = new (*this) TemplateArgument[Arg.pack_size()];
+ unsigned Idx = 0;
+ for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
+ AEnd = Arg.pack_end();
+ A != AEnd; (void)++A, ++Idx)
+ CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
+
+ return TemplateArgument(CanonArgs, Arg.pack_size());
+ }
+ }
+
+ // Silence GCC warning
+ llvm_unreachable("Unhandled template argument kind");
+}
+
+NestedNameSpecifier *
+ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
+ if (!NNS)
+ return nullptr;
+
+ switch (NNS->getKind()) {
+ case NestedNameSpecifier::Identifier:
+ // Canonicalize the prefix but keep the identifier the same.
+ return NestedNameSpecifier::Create(*this,
+ getCanonicalNestedNameSpecifier(NNS->getPrefix()),
+ NNS->getAsIdentifier());
+
+ case NestedNameSpecifier::Namespace:
+ // A namespace is canonical; build a nested-name-specifier with
+ // this namespace and no prefix.
+ return NestedNameSpecifier::Create(*this, nullptr,
+ NNS->getAsNamespace()->getOriginalNamespace());
+
+ case NestedNameSpecifier::NamespaceAlias:
+ // A namespace is canonical; build a nested-name-specifier with
+ // this namespace and no prefix.
+ return NestedNameSpecifier::Create(*this, nullptr,
+ NNS->getAsNamespaceAlias()->getNamespace()
+ ->getOriginalNamespace());
+
+ case NestedNameSpecifier::TypeSpec:
+ case NestedNameSpecifier::TypeSpecWithTemplate: {
+ QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
+
+ // If we have some kind of dependent-named type (e.g., "typename T::type"),
+ // break it apart into its prefix and identifier, then reconsititute those
+ // as the canonical nested-name-specifier. This is required to canonicalize
+ // a dependent nested-name-specifier involving typedefs of dependent-name
+ // types, e.g.,
+ // typedef typename T::type T1;
+ // typedef typename T1::type T2;
+ if (const DependentNameType *DNT = T->getAs<DependentNameType>())
+ return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
+ const_cast<IdentifierInfo *>(DNT->getIdentifier()));
+
+ // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
+ // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
+ // first place?
+ return NestedNameSpecifier::Create(*this, nullptr, false,
+ const_cast<Type *>(T.getTypePtr()));
+ }
+
+ case NestedNameSpecifier::Global:
+ case NestedNameSpecifier::Super:
+ // The global specifier and __super specifer are canonical and unique.
+ return NNS;
+ }
+
+ llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
+}
+
+
+const ArrayType *ASTContext::getAsArrayType(QualType T) const {
+ // Handle the non-qualified case efficiently.
+ if (!T.hasLocalQualifiers()) {
+ // Handle the common positive case fast.
+ if (const ArrayType *AT = dyn_cast<ArrayType>(T))
+ return AT;
+ }
+
+ // Handle the common negative case fast.
+ if (!isa<ArrayType>(T.getCanonicalType()))
+ return nullptr;
+
+ // Apply any qualifiers from the array type to the element type. This
+ // implements C99 6.7.3p8: "If the specification of an array type includes
+ // any type qualifiers, the element type is so qualified, not the array type."
+
+ // If we get here, we either have type qualifiers on the type, or we have
+ // sugar such as a typedef in the way. If we have type qualifiers on the type
+ // we must propagate them down into the element type.
+
+ SplitQualType split = T.getSplitDesugaredType();
+ Qualifiers qs = split.Quals;
+
+ // If we have a simple case, just return now.
+ const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
+ if (!ATy || qs.empty())
+ return ATy;
+
+ // Otherwise, we have an array and we have qualifiers on it. Push the
+ // qualifiers into the array element type and return a new array type.
+ QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
+
+ if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
+ return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
+ CAT->getSizeModifier(),
+ CAT->getIndexTypeCVRQualifiers()));
+ if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
+ return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
+ IAT->getSizeModifier(),
+ IAT->getIndexTypeCVRQualifiers()));
+
+ if (const DependentSizedArrayType *DSAT
+ = dyn_cast<DependentSizedArrayType>(ATy))
+ return cast<ArrayType>(
+ getDependentSizedArrayType(NewEltTy,
+ DSAT->getSizeExpr(),
+ DSAT->getSizeModifier(),
+ DSAT->getIndexTypeCVRQualifiers(),
+ DSAT->getBracketsRange()));
+
+ const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
+ return cast<ArrayType>(getVariableArrayType(NewEltTy,
+ VAT->getSizeExpr(),
+ VAT->getSizeModifier(),
+ VAT->getIndexTypeCVRQualifiers(),
+ VAT->getBracketsRange()));
+}
+
+QualType ASTContext::getAdjustedParameterType(QualType T) const {
+ if (T->isArrayType() || T->isFunctionType())
+ return getDecayedType(T);
+ return T;
+}
+
+QualType ASTContext::getSignatureParameterType(QualType T) const {
+ T = getVariableArrayDecayedType(T);
+ T = getAdjustedParameterType(T);
+ return T.getUnqualifiedType();
+}
+
+QualType ASTContext::getExceptionObjectType(QualType T) const {
+ // C++ [except.throw]p3:
+ // A throw-expression initializes a temporary object, called the exception
+ // object, the type of which is determined by removing any top-level
+ // cv-qualifiers from the static type of the operand of throw and adjusting
+ // the type from "array of T" or "function returning T" to "pointer to T"
+ // or "pointer to function returning T", [...]
+ T = getVariableArrayDecayedType(T);
+ if (T->isArrayType() || T->isFunctionType())
+ T = getDecayedType(T);
+ return T.getUnqualifiedType();
+}
+
+/// getArrayDecayedType - Return the properly qualified result of decaying the
+/// specified array type to a pointer. This operation is non-trivial when
+/// handling typedefs etc. The canonical type of "T" must be an array type,
+/// this returns a pointer to a properly qualified element of the array.
+///
+/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
+QualType ASTContext::getArrayDecayedType(QualType Ty) const {
+ // Get the element type with 'getAsArrayType' so that we don't lose any
+ // typedefs in the element type of the array. This also handles propagation
+ // of type qualifiers from the array type into the element type if present
+ // (C99 6.7.3p8).
+ const ArrayType *PrettyArrayType = getAsArrayType(Ty);
+ assert(PrettyArrayType && "Not an array type!");
+
+ QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
+
+ // int x[restrict 4] -> int *restrict
+ return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
+}
+
+QualType ASTContext::getBaseElementType(const ArrayType *array) const {
+ return getBaseElementType(array->getElementType());
+}
+
+QualType ASTContext::getBaseElementType(QualType type) const {
+ Qualifiers qs;
+ while (true) {
+ SplitQualType split = type.getSplitDesugaredType();
+ const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
+ if (!array) break;
+
+ type = array->getElementType();
+ qs.addConsistentQualifiers(split.Quals);
+ }
+
+ return getQualifiedType(type, qs);
+}
+
+/// getConstantArrayElementCount - Returns number of constant array elements.
+uint64_t
+ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA) const {
+ uint64_t ElementCount = 1;
+ do {
+ ElementCount *= CA->getSize().getZExtValue();
+ CA = dyn_cast_or_null<ConstantArrayType>(
+ CA->getElementType()->getAsArrayTypeUnsafe());
+ } while (CA);
+ return ElementCount;
+}
+
+/// getFloatingRank - Return a relative rank for floating point types.
+/// This routine will assert if passed a built-in type that isn't a float.
+static FloatingRank getFloatingRank(QualType T) {
+ if (const ComplexType *CT = T->getAs<ComplexType>())
+ return getFloatingRank(CT->getElementType());
+
+ assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
+ switch (T->getAs<BuiltinType>()->getKind()) {
+ default: llvm_unreachable("getFloatingRank(): not a floating type");
+ case BuiltinType::Half: return HalfRank;
+ case BuiltinType::Float: return FloatRank;
+ case BuiltinType::Double: return DoubleRank;
+ case BuiltinType::LongDouble: return LongDoubleRank;
+ }
+}
+
+/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
+/// point or a complex type (based on typeDomain/typeSize).
+/// 'typeDomain' is a real floating point or complex type.
+/// 'typeSize' is a real floating point or complex type.
+QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
+ QualType Domain) const {
+ FloatingRank EltRank = getFloatingRank(Size);
+ if (Domain->isComplexType()) {
+ switch (EltRank) {
+ case HalfRank: llvm_unreachable("Complex half is not supported");
+ case FloatRank: return FloatComplexTy;
+ case DoubleRank: return DoubleComplexTy;
+ case LongDoubleRank: return LongDoubleComplexTy;
+ }
+ }
+
+ assert(Domain->isRealFloatingType() && "Unknown domain!");
+ switch (EltRank) {
+ case HalfRank: return HalfTy;
+ case FloatRank: return FloatTy;
+ case DoubleRank: return DoubleTy;
+ case LongDoubleRank: return LongDoubleTy;
+ }
+ llvm_unreachable("getFloatingRank(): illegal value for rank");
+}
+
+/// getFloatingTypeOrder - Compare the rank of the two specified floating
+/// point types, ignoring the domain of the type (i.e. 'double' ==
+/// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If
+/// LHS < RHS, return -1.
+int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
+ FloatingRank LHSR = getFloatingRank(LHS);
+ FloatingRank RHSR = getFloatingRank(RHS);
+
+ if (LHSR == RHSR)
+ return 0;
+ if (LHSR > RHSR)
+ return 1;
+ return -1;
+}
+
+/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
+/// routine will assert if passed a built-in type that isn't an integer or enum,
+/// or if it is not canonicalized.
+unsigned ASTContext::getIntegerRank(const Type *T) const {
+ assert(T->isCanonicalUnqualified() && "T should be canonicalized");
+
+ switch (cast<BuiltinType>(T)->getKind()) {
+ default: llvm_unreachable("getIntegerRank(): not a built-in integer");
+ case BuiltinType::Bool:
+ return 1 + (getIntWidth(BoolTy) << 3);
+ case BuiltinType::Char_S:
+ case BuiltinType::Char_U:
+ case BuiltinType::SChar:
+ case BuiltinType::UChar:
+ return 2 + (getIntWidth(CharTy) << 3);
+ case BuiltinType::Short:
+ case BuiltinType::UShort:
+ return 3 + (getIntWidth(ShortTy) << 3);
+ case BuiltinType::Int:
+ case BuiltinType::UInt:
+ return 4 + (getIntWidth(IntTy) << 3);
+ case BuiltinType::Long:
+ case BuiltinType::ULong:
+ return 5 + (getIntWidth(LongTy) << 3);
+ case BuiltinType::LongLong:
+ case BuiltinType::ULongLong:
+ return 6 + (getIntWidth(LongLongTy) << 3);
+ case BuiltinType::Int128:
+ case BuiltinType::UInt128:
+ return 7 + (getIntWidth(Int128Ty) << 3);
+ }
+}
+
+/// \brief Whether this is a promotable bitfield reference according
+/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
+///
+/// \returns the type this bit-field will promote to, or NULL if no
+/// promotion occurs.
+QualType ASTContext::isPromotableBitField(Expr *E) const {
+ if (E->isTypeDependent() || E->isValueDependent())
+ return QualType();
+
+ // FIXME: We should not do this unless E->refersToBitField() is true. This
+ // matters in C where getSourceBitField() will find bit-fields for various
+ // cases where the source expression is not a bit-field designator.
+
+ FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
+ if (!Field)
+ return QualType();
+
+ QualType FT = Field->getType();
+
+ uint64_t BitWidth = Field->getBitWidthValue(*this);
+ uint64_t IntSize = getTypeSize(IntTy);
+ // C++ [conv.prom]p5:
+ // A prvalue for an integral bit-field can be converted to a prvalue of type
+ // int if int can represent all the values of the bit-field; otherwise, it
+ // can be converted to unsigned int if unsigned int can represent all the
+ // values of the bit-field. If the bit-field is larger yet, no integral
+ // promotion applies to it.
+ // C11 6.3.1.1/2:
+ // [For a bit-field of type _Bool, int, signed int, or unsigned int:]
+ // If an int can represent all values of the original type (as restricted by
+ // the width, for a bit-field), the value is converted to an int; otherwise,
+ // it is converted to an unsigned int.
+ //
+ // FIXME: C does not permit promotion of a 'long : 3' bitfield to int.
+ // We perform that promotion here to match GCC and C++.
+ if (BitWidth < IntSize)
+ return IntTy;
+
+ if (BitWidth == IntSize)
+ return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
+
+ // Types bigger than int are not subject to promotions, and therefore act
+ // like the base type. GCC has some weird bugs in this area that we
+ // deliberately do not follow (GCC follows a pre-standard resolution to
+ // C's DR315 which treats bit-width as being part of the type, and this leaks
+ // into their semantics in some cases).
+ return QualType();
+}
+
+/// getPromotedIntegerType - Returns the type that Promotable will
+/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
+/// integer type.
+QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
+ assert(!Promotable.isNull());
+ assert(Promotable->isPromotableIntegerType());
+ if (const EnumType *ET = Promotable->getAs<EnumType>())
+ return ET->getDecl()->getPromotionType();
+
+ if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
+ // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
+ // (3.9.1) can be converted to a prvalue of the first of the following
+ // types that can represent all the values of its underlying type:
+ // int, unsigned int, long int, unsigned long int, long long int, or
+ // unsigned long long int [...]
+ // FIXME: Is there some better way to compute this?
+ if (BT->getKind() == BuiltinType::WChar_S ||
+ BT->getKind() == BuiltinType::WChar_U ||
+ BT->getKind() == BuiltinType::Char16 ||
+ BT->getKind() == BuiltinType::Char32) {
+ bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
+ uint64_t FromSize = getTypeSize(BT);
+ QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
+ LongLongTy, UnsignedLongLongTy };
+ for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
+ uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
+ if (FromSize < ToSize ||
+ (FromSize == ToSize &&
+ FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
+ return PromoteTypes[Idx];
+ }
+ llvm_unreachable("char type should fit into long long");
+ }
+ }
+
+ // At this point, we should have a signed or unsigned integer type.
+ if (Promotable->isSignedIntegerType())
+ return IntTy;
+ uint64_t PromotableSize = getIntWidth(Promotable);
+ uint64_t IntSize = getIntWidth(IntTy);
+ assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
+ return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
+}
+
+/// \brief Recurses in pointer/array types until it finds an objc retainable
+/// type and returns its ownership.
+Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
+ while (!T.isNull()) {
+ if (T.getObjCLifetime() != Qualifiers::OCL_None)
+ return T.getObjCLifetime();
+ if (T->isArrayType())
+ T = getBaseElementType(T);
+ else if (const PointerType *PT = T->getAs<PointerType>())
+ T = PT->getPointeeType();
+ else if (const ReferenceType *RT = T->getAs<ReferenceType>())
+ T = RT->getPointeeType();
+ else
+ break;
+ }
+
+ return Qualifiers::OCL_None;
+}
+
+static const Type *getIntegerTypeForEnum(const EnumType *ET) {
+ // Incomplete enum types are not treated as integer types.
+ // FIXME: In C++, enum types are never integer types.
+ if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
+ return ET->getDecl()->getIntegerType().getTypePtr();
+ return nullptr;
+}
+
+/// getIntegerTypeOrder - Returns the highest ranked integer type:
+/// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If
+/// LHS < RHS, return -1.
+int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
+ const Type *LHSC = getCanonicalType(LHS).getTypePtr();
+ const Type *RHSC = getCanonicalType(RHS).getTypePtr();
+
+ // Unwrap enums to their underlying type.
+ if (const EnumType *ET = dyn_cast<EnumType>(LHSC))
+ LHSC = getIntegerTypeForEnum(ET);
+ if (const EnumType *ET = dyn_cast<EnumType>(RHSC))
+ RHSC = getIntegerTypeForEnum(ET);
+
+ if (LHSC == RHSC) return 0;
+
+ bool LHSUnsigned = LHSC->isUnsignedIntegerType();
+ bool RHSUnsigned = RHSC->isUnsignedIntegerType();
+
+ unsigned LHSRank = getIntegerRank(LHSC);
+ unsigned RHSRank = getIntegerRank(RHSC);
+
+ if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned.
+ if (LHSRank == RHSRank) return 0;
+ return LHSRank > RHSRank ? 1 : -1;
+ }
+
+ // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
+ if (LHSUnsigned) {
+ // If the unsigned [LHS] type is larger, return it.
+ if (LHSRank >= RHSRank)
+ return 1;
+
+ // If the signed type can represent all values of the unsigned type, it
+ // wins. Because we are dealing with 2's complement and types that are
+ // powers of two larger than each other, this is always safe.
+ return -1;
+ }
+
+ // If the unsigned [RHS] type is larger, return it.
+ if (RHSRank >= LHSRank)
+ return -1;
+
+ // If the signed type can represent all values of the unsigned type, it
+ // wins. Because we are dealing with 2's complement and types that are
+ // powers of two larger than each other, this is always safe.
+ return 1;
+}
+
+// getCFConstantStringType - Return the type used for constant CFStrings.
+QualType ASTContext::getCFConstantStringType() const {
+ if (!CFConstantStringTypeDecl) {
+ CFConstantStringTypeDecl = buildImplicitRecord("NSConstantString");
+ CFConstantStringTypeDecl->startDefinition();
+
+ QualType FieldTypes[4];
+
+ // const int *isa;
+ FieldTypes[0] = getPointerType(IntTy.withConst());
+ // int flags;
+ FieldTypes[1] = IntTy;
+ // const char *str;
+ FieldTypes[2] = getPointerType(CharTy.withConst());
+ // long length;
+ FieldTypes[3] = LongTy;
+
+ // Create fields
+ for (unsigned i = 0; i < 4; ++i) {
+ FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
+ SourceLocation(),
+ SourceLocation(), nullptr,
+ FieldTypes[i], /*TInfo=*/nullptr,
+ /*BitWidth=*/nullptr,
+ /*Mutable=*/false,
+ ICIS_NoInit);
+ Field->setAccess(AS_public);
+ CFConstantStringTypeDecl->addDecl(Field);
+ }
+
+ CFConstantStringTypeDecl->completeDefinition();
+ }
+
+ return getTagDeclType(CFConstantStringTypeDecl);
+}
+
+QualType ASTContext::getObjCSuperType() const {
+ if (ObjCSuperType.isNull()) {
+ RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super");
+ TUDecl->addDecl(ObjCSuperTypeDecl);
+ ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
+ }
+ return ObjCSuperType;
+}
+
+void ASTContext::setCFConstantStringType(QualType T) {
+ const RecordType *Rec = T->getAs<RecordType>();
+ assert(Rec && "Invalid CFConstantStringType");
+ CFConstantStringTypeDecl = Rec->getDecl();
+}
+
+QualType ASTContext::getBlockDescriptorType() const {
+ if (BlockDescriptorType)
+ return getTagDeclType(BlockDescriptorType);
+
+ RecordDecl *RD;
+ // FIXME: Needs the FlagAppleBlock bit.
+ RD = buildImplicitRecord("__block_descriptor");
+ RD->startDefinition();
+
+ QualType FieldTypes[] = {
+ UnsignedLongTy,
+ UnsignedLongTy,
+ };
+
+ static const char *const FieldNames[] = {
+ "reserved",
+ "Size"
+ };
+
+ for (size_t i = 0; i < 2; ++i) {
+ FieldDecl *Field = FieldDecl::Create(
+ *this, RD, SourceLocation(), SourceLocation(),
+ &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
+ /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
+ Field->setAccess(AS_public);
+ RD->addDecl(Field);
+ }
+
+ RD->completeDefinition();
+
+ BlockDescriptorType = RD;
+
+ return getTagDeclType(BlockDescriptorType);
+}
+
+QualType ASTContext::getBlockDescriptorExtendedType() const {
+ if (BlockDescriptorExtendedType)
+ return getTagDeclType(BlockDescriptorExtendedType);
+
+ RecordDecl *RD;
+ // FIXME: Needs the FlagAppleBlock bit.
+ RD = buildImplicitRecord("__block_descriptor_withcopydispose");
+ RD->startDefinition();
+
+ QualType FieldTypes[] = {
+ UnsignedLongTy,
+ UnsignedLongTy,
+ getPointerType(VoidPtrTy),
+ getPointerType(VoidPtrTy)
+ };
+
+ static const char *const FieldNames[] = {
+ "reserved",
+ "Size",
+ "CopyFuncPtr",
+ "DestroyFuncPtr"
+ };
+
+ for (size_t i = 0; i < 4; ++i) {
+ FieldDecl *Field = FieldDecl::Create(
+ *this, RD, SourceLocation(), SourceLocation(),
+ &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
+ /*BitWidth=*/nullptr,
+ /*Mutable=*/false, ICIS_NoInit);
+ Field->setAccess(AS_public);
+ RD->addDecl(Field);
+ }
+
+ RD->completeDefinition();
+
+ BlockDescriptorExtendedType = RD;
+ return getTagDeclType(BlockDescriptorExtendedType);
+}
+
+/// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
+/// requires copy/dispose. Note that this must match the logic
+/// in buildByrefHelpers.
+bool ASTContext::BlockRequiresCopying(QualType Ty,
+ const VarDecl *D) {
+ if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
+ const Expr *copyExpr = getBlockVarCopyInits(D);
+ if (!copyExpr && record->hasTrivialDestructor()) return false;
+
+ return true;
+ }
+
+ if (!Ty->isObjCRetainableType()) return false;
+
+ Qualifiers qs = Ty.getQualifiers();
+
+ // If we have lifetime, that dominates.
+ if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
+ assert(getLangOpts().ObjCAutoRefCount);
+
+ switch (lifetime) {
+ case Qualifiers::OCL_None: llvm_unreachable("impossible");
+
+ // These are just bits as far as the runtime is concerned.
+ case Qualifiers::OCL_ExplicitNone:
+ case Qualifiers::OCL_Autoreleasing:
+ return false;
+
+ // Tell the runtime that this is ARC __weak, called by the
+ // byref routines.
+ case Qualifiers::OCL_Weak:
+ // ARC __strong __block variables need to be retained.
+ case Qualifiers::OCL_Strong:
+ return true;
+ }
+ llvm_unreachable("fell out of lifetime switch!");
+ }
+ return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
+ Ty->isObjCObjectPointerType());
+}
+
+bool ASTContext::getByrefLifetime(QualType Ty,
+ Qualifiers::ObjCLifetime &LifeTime,
+ bool &HasByrefExtendedLayout) const {
+
+ if (!getLangOpts().ObjC1 ||
+ getLangOpts().getGC() != LangOptions::NonGC)
+ return false;
+
+ HasByrefExtendedLayout = false;
+ if (Ty->isRecordType()) {
+ HasByrefExtendedLayout = true;
+ LifeTime = Qualifiers::OCL_None;
+ }
+ else if (getLangOpts().ObjCAutoRefCount)
+ LifeTime = Ty.getObjCLifetime();
+ // MRR.
+ else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
+ LifeTime = Qualifiers::OCL_ExplicitNone;
+ else
+ LifeTime = Qualifiers::OCL_None;
+ return true;
+}
+
+TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
+ if (!ObjCInstanceTypeDecl)
+ ObjCInstanceTypeDecl =
+ buildImplicitTypedef(getObjCIdType(), "instancetype");
+ return ObjCInstanceTypeDecl;
+}
+
+// This returns true if a type has been typedefed to BOOL:
+// typedef <type> BOOL;
+static bool isTypeTypedefedAsBOOL(QualType T) {
+ if (const TypedefType *TT = dyn_cast<TypedefType>(T))
+ if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
+ return II->isStr("BOOL");
+
+ return false;
+}
+
+/// getObjCEncodingTypeSize returns size of type for objective-c encoding
+/// purpose.
+CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
+ if (!type->isIncompleteArrayType() && type->isIncompleteType())
+ return CharUnits::Zero();
+
+ CharUnits sz = getTypeSizeInChars(type);
+
+ // Make all integer and enum types at least as large as an int
+ if (sz.isPositive() && type->isIntegralOrEnumerationType())
+ sz = std::max(sz, getTypeSizeInChars(IntTy));
+ // Treat arrays as pointers, since that's how they're passed in.
+ else if (type->isArrayType())
+ sz = getTypeSizeInChars(VoidPtrTy);
+ return sz;
+}
+
+bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const {
+ return getLangOpts().MSVCCompat && VD->isStaticDataMember() &&
+ VD->getType()->isIntegralOrEnumerationType() &&
+ VD->isFirstDecl() && !VD->isOutOfLine() && VD->hasInit();
+}
+
+static inline
+std::string charUnitsToString(const CharUnits &CU) {
+ return llvm::itostr(CU.getQuantity());
+}
+
+/// getObjCEncodingForBlock - Return the encoded type for this block
+/// declaration.
+std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
+ std::string S;
+
+ const BlockDecl *Decl = Expr->getBlockDecl();
+ QualType BlockTy =
+ Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
+ // Encode result type.
+ if (getLangOpts().EncodeExtendedBlockSig)
+ getObjCEncodingForMethodParameter(
+ Decl::OBJC_TQ_None, BlockTy->getAs<FunctionType>()->getReturnType(), S,
+ true /*Extended*/);
+ else
+ getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getReturnType(), S);
+ // Compute size of all parameters.
+ // Start with computing size of a pointer in number of bytes.
+ // FIXME: There might(should) be a better way of doing this computation!
+ SourceLocation Loc;
+ CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
+ CharUnits ParmOffset = PtrSize;
+ for (auto PI : Decl->params()) {
+ QualType PType = PI->getType();
+ CharUnits sz = getObjCEncodingTypeSize(PType);
+ if (sz.isZero())
+ continue;
+ assert (sz.isPositive() && "BlockExpr - Incomplete param type");
+ ParmOffset += sz;
+ }
+ // Size of the argument frame
+ S += charUnitsToString(ParmOffset);
+ // Block pointer and offset.
+ S += "@?0";
+
+ // Argument types.
+ ParmOffset = PtrSize;
+ for (auto PVDecl : Decl->params()) {
+ QualType PType = PVDecl->getOriginalType();
+ if (const ArrayType *AT =
+ dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
+ // Use array's original type only if it has known number of
+ // elements.
+ if (!isa<ConstantArrayType>(AT))
+ PType = PVDecl->getType();
+ } else if (PType->isFunctionType())
+ PType = PVDecl->getType();
+ if (getLangOpts().EncodeExtendedBlockSig)
+ getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
+ S, true /*Extended*/);
+ else
+ getObjCEncodingForType(PType, S);
+ S += charUnitsToString(ParmOffset);
+ ParmOffset += getObjCEncodingTypeSize(PType);
+ }
+
+ return S;
+}
+
+bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
+ std::string& S) {
+ // Encode result type.
+ getObjCEncodingForType(Decl->getReturnType(), S);
+ CharUnits ParmOffset;
+ // Compute size of all parameters.
+ for (auto PI : Decl->params()) {
+ QualType PType = PI->getType();
+ CharUnits sz = getObjCEncodingTypeSize(PType);
+ if (sz.isZero())
+ continue;
+
+ assert (sz.isPositive() &&
+ "getObjCEncodingForFunctionDecl - Incomplete param type");
+ ParmOffset += sz;
+ }
+ S += charUnitsToString(ParmOffset);
+ ParmOffset = CharUnits::Zero();
+
+ // Argument types.
+ for (auto PVDecl : Decl->params()) {
+ QualType PType = PVDecl->getOriginalType();
+ if (const ArrayType *AT =
+ dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
+ // Use array's original type only if it has known number of
+ // elements.
+ if (!isa<ConstantArrayType>(AT))
+ PType = PVDecl->getType();
+ } else if (PType->isFunctionType())
+ PType = PVDecl->getType();
+ getObjCEncodingForType(PType, S);
+ S += charUnitsToString(ParmOffset);
+ ParmOffset += getObjCEncodingTypeSize(PType);
+ }
+
+ return false;
+}
+
+/// getObjCEncodingForMethodParameter - Return the encoded type for a single
+/// method parameter or return type. If Extended, include class names and
+/// block object types.
+void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
+ QualType T, std::string& S,
+ bool Extended) const {
+ // Encode type qualifer, 'in', 'inout', etc. for the parameter.
+ getObjCEncodingForTypeQualifier(QT, S);
+ // Encode parameter type.
+ getObjCEncodingForTypeImpl(T, S, true, true, nullptr,
+ true /*OutermostType*/,
+ false /*EncodingProperty*/,
+ false /*StructField*/,
+ Extended /*EncodeBlockParameters*/,
+ Extended /*EncodeClassNames*/);
+}
+
+/// getObjCEncodingForMethodDecl - Return the encoded type for this method
+/// declaration.
+bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
+ std::string& S,
+ bool Extended) const {
+ // FIXME: This is not very efficient.
+ // Encode return type.
+ getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
+ Decl->getReturnType(), S, Extended);
+ // Compute size of all parameters.
+ // Start with computing size of a pointer in number of bytes.
+ // FIXME: There might(should) be a better way of doing this computation!
+ SourceLocation Loc;
+ CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
+ // The first two arguments (self and _cmd) are pointers; account for
+ // their size.
+ CharUnits ParmOffset = 2 * PtrSize;
+ for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
+ E = Decl->sel_param_end(); PI != E; ++PI) {
+ QualType PType = (*PI)->getType();
+ CharUnits sz = getObjCEncodingTypeSize(PType);
+ if (sz.isZero())
+ continue;
+
+ assert (sz.isPositive() &&
+ "getObjCEncodingForMethodDecl - Incomplete param type");
+ ParmOffset += sz;
+ }
+ S += charUnitsToString(ParmOffset);
+ S += "@0:";
+ S += charUnitsToString(PtrSize);
+
+ // Argument types.
+ ParmOffset = 2 * PtrSize;
+ for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
+ E = Decl->sel_param_end(); PI != E; ++PI) {
+ const ParmVarDecl *PVDecl = *PI;
+ QualType PType = PVDecl->getOriginalType();
+ if (const ArrayType *AT =
+ dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
+ // Use array's original type only if it has known number of
+ // elements.
+ if (!isa<ConstantArrayType>(AT))
+ PType = PVDecl->getType();
+ } else if (PType->isFunctionType())
+ PType = PVDecl->getType();
+ getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
+ PType, S, Extended);
+ S += charUnitsToString(ParmOffset);
+ ParmOffset += getObjCEncodingTypeSize(PType);
+ }
+
+ return false;
+}
+
+ObjCPropertyImplDecl *
+ASTContext::getObjCPropertyImplDeclForPropertyDecl(
+ const ObjCPropertyDecl *PD,
+ const Decl *Container) const {
+ if (!Container)
+ return nullptr;
+ if (const ObjCCategoryImplDecl *CID =
+ dyn_cast<ObjCCategoryImplDecl>(Container)) {
+ for (auto *PID : CID->property_impls())
+ if (PID->getPropertyDecl() == PD)
+ return PID;
+ } else {
+ const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
+ for (auto *PID : OID->property_impls())
+ if (PID->getPropertyDecl() == PD)
+ return PID;
+ }
+ return nullptr;
+}
+
+/// getObjCEncodingForPropertyDecl - Return the encoded type for this
+/// property declaration. If non-NULL, Container must be either an
+/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
+/// NULL when getting encodings for protocol properties.
+/// Property attributes are stored as a comma-delimited C string. The simple
+/// attributes readonly and bycopy are encoded as single characters. The
+/// parametrized attributes, getter=name, setter=name, and ivar=name, are
+/// encoded as single characters, followed by an identifier. Property types
+/// are also encoded as a parametrized attribute. The characters used to encode
+/// these attributes are defined by the following enumeration:
+/// @code
+/// enum PropertyAttributes {
+/// kPropertyReadOnly = 'R', // property is read-only.
+/// kPropertyBycopy = 'C', // property is a copy of the value last assigned
+/// kPropertyByref = '&', // property is a reference to the value last assigned
+/// kPropertyDynamic = 'D', // property is dynamic
+/// kPropertyGetter = 'G', // followed by getter selector name
+/// kPropertySetter = 'S', // followed by setter selector name
+/// kPropertyInstanceVariable = 'V' // followed by instance variable name
+/// kPropertyType = 'T' // followed by old-style type encoding.
+/// kPropertyWeak = 'W' // 'weak' property
+/// kPropertyStrong = 'P' // property GC'able
+/// kPropertyNonAtomic = 'N' // property non-atomic
+/// };
+/// @endcode
+void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
+ const Decl *Container,
+ std::string& S) const {
+ // Collect information from the property implementation decl(s).
+ bool Dynamic = false;
+ ObjCPropertyImplDecl *SynthesizePID = nullptr;
+
+ if (ObjCPropertyImplDecl *PropertyImpDecl =
+ getObjCPropertyImplDeclForPropertyDecl(PD, Container)) {
+ if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
+ Dynamic = true;
+ else
+ SynthesizePID = PropertyImpDecl;
+ }
+
+ // FIXME: This is not very efficient.
+ S = "T";
+
+ // Encode result type.
+ // GCC has some special rules regarding encoding of properties which
+ // closely resembles encoding of ivars.
+ getObjCEncodingForPropertyType(PD->getType(), S);
+
+ if (PD->isReadOnly()) {
+ S += ",R";
+ if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_copy)
+ S += ",C";
+ if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_retain)
+ S += ",&";
+ if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak)
+ S += ",W";
+ } else {
+ switch (PD->getSetterKind()) {
+ case ObjCPropertyDecl::Assign: break;
+ case ObjCPropertyDecl::Copy: S += ",C"; break;
+ case ObjCPropertyDecl::Retain: S += ",&"; break;
+ case ObjCPropertyDecl::Weak: S += ",W"; break;
+ }
+ }
+
+ // It really isn't clear at all what this means, since properties
+ // are "dynamic by default".
+ if (Dynamic)
+ S += ",D";
+
+ if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
+ S += ",N";
+
+ if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
+ S += ",G";
+ S += PD->getGetterName().getAsString();
+ }
+
+ if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
+ S += ",S";
+ S += PD->getSetterName().getAsString();
+ }
+
+ if (SynthesizePID) {
+ const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
+ S += ",V";
+ S += OID->getNameAsString();
+ }
+
+ // FIXME: OBJCGC: weak & strong
+}
+
+/// getLegacyIntegralTypeEncoding -
+/// Another legacy compatibility encoding: 32-bit longs are encoded as
+/// 'l' or 'L' , but not always. For typedefs, we need to use
+/// 'i' or 'I' instead if encoding a struct field, or a pointer!
+///
+void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
+ if (isa<TypedefType>(PointeeTy.getTypePtr())) {
+ if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
+ if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
+ PointeeTy = UnsignedIntTy;
+ else
+ if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
+ PointeeTy = IntTy;
+ }
+ }
+}
+
+void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
+ const FieldDecl *Field,
+ QualType *NotEncodedT) const {
+ // We follow the behavior of gcc, expanding structures which are
+ // directly pointed to, and expanding embedded structures. Note that
+ // these rules are sufficient to prevent recursive encoding of the
+ // same type.
+ getObjCEncodingForTypeImpl(T, S, true, true, Field,
+ true /* outermost type */, false, false,
+ false, false, false, NotEncodedT);
+}
+
+void ASTContext::getObjCEncodingForPropertyType(QualType T,
+ std::string& S) const {
+ // Encode result type.
+ // GCC has some special rules regarding encoding of properties which
+ // closely resembles encoding of ivars.
+ getObjCEncodingForTypeImpl(T, S, true, true, nullptr,
+ true /* outermost type */,
+ true /* encoding property */);
+}
+
+static char getObjCEncodingForPrimitiveKind(const ASTContext *C,
+ BuiltinType::Kind kind) {
+ switch (kind) {
+ case BuiltinType::Void: return 'v';
+ case BuiltinType::Bool: return 'B';
+ case BuiltinType::Char_U:
+ case BuiltinType::UChar: return 'C';
+ case BuiltinType::Char16:
+ case BuiltinType::UShort: return 'S';
+ case BuiltinType::Char32:
+ case BuiltinType::UInt: return 'I';
+ case BuiltinType::ULong:
+ return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
+ case BuiltinType::UInt128: return 'T';
+ case BuiltinType::ULongLong: return 'Q';
+ case BuiltinType::Char_S:
+ case BuiltinType::SChar: return 'c';
+ case BuiltinType::Short: return 's';
+ case BuiltinType::WChar_S:
+ case BuiltinType::WChar_U:
+ case BuiltinType::Int: return 'i';
+ case BuiltinType::Long:
+ return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
+ case BuiltinType::LongLong: return 'q';
+ case BuiltinType::Int128: return 't';
+ case BuiltinType::Float: return 'f';
+ case BuiltinType::Double: return 'd';
+ case BuiltinType::LongDouble: return 'D';
+ case BuiltinType::NullPtr: return '*'; // like char*
+
+ case BuiltinType::Half:
+ // FIXME: potentially need @encodes for these!
+ return ' ';
+
+ case BuiltinType::ObjCId:
+ case BuiltinType::ObjCClass:
+ case BuiltinType::ObjCSel:
+ llvm_unreachable("@encoding ObjC primitive type");
+
+ // OpenCL and placeholder types don't need @encodings.
+ case BuiltinType::OCLImage1d:
+ case BuiltinType::OCLImage1dArray:
+ case BuiltinType::OCLImage1dBuffer:
+ case BuiltinType::OCLImage2d:
+ case BuiltinType::OCLImage2dArray:
+ case BuiltinType::OCLImage3d:
+ case BuiltinType::OCLEvent:
+ case BuiltinType::OCLSampler:
+ case BuiltinType::Dependent:
+#define BUILTIN_TYPE(KIND, ID)
+#define PLACEHOLDER_TYPE(KIND, ID) \
+ case BuiltinType::KIND:
+#include "clang/AST/BuiltinTypes.def"
+ llvm_unreachable("invalid builtin type for @encode");
+ }
+ llvm_unreachable("invalid BuiltinType::Kind value");
+}
+
+static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
+ EnumDecl *Enum = ET->getDecl();
+
+ // The encoding of an non-fixed enum type is always 'i', regardless of size.
+ if (!Enum->isFixed())
+ return 'i';
+
+ // The encoding of a fixed enum type matches its fixed underlying type.
+ const BuiltinType *BT = Enum->getIntegerType()->castAs<BuiltinType>();
+ return getObjCEncodingForPrimitiveKind(C, BT->getKind());
+}
+
+static void EncodeBitField(const ASTContext *Ctx, std::string& S,
+ QualType T, const FieldDecl *FD) {
+ assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
+ S += 'b';
+ // The NeXT runtime encodes bit fields as b followed by the number of bits.
+ // The GNU runtime requires more information; bitfields are encoded as b,
+ // then the offset (in bits) of the first element, then the type of the
+ // bitfield, then the size in bits. For example, in this structure:
+ //
+ // struct
+ // {
+ // int integer;
+ // int flags:2;
+ // };
+ // On a 32-bit system, the encoding for flags would be b2 for the NeXT
+ // runtime, but b32i2 for the GNU runtime. The reason for this extra
+ // information is not especially sensible, but we're stuck with it for
+ // compatibility with GCC, although providing it breaks anything that
+ // actually uses runtime introspection and wants to work on both runtimes...
+ if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
+ const RecordDecl *RD = FD->getParent();
+ const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
+ S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
+ if (const EnumType *ET = T->getAs<EnumType>())
+ S += ObjCEncodingForEnumType(Ctx, ET);
+ else {
+ const BuiltinType *BT = T->castAs<BuiltinType>();
+ S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind());
+ }
+ }
+ S += llvm::utostr(FD->getBitWidthValue(*Ctx));
+}
+
+// FIXME: Use SmallString for accumulating string.
+void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
+ bool ExpandPointedToStructures,
+ bool ExpandStructures,
+ const FieldDecl *FD,
+ bool OutermostType,
+ bool EncodingProperty,
+ bool StructField,
+ bool EncodeBlockParameters,
+ bool EncodeClassNames,
+ bool EncodePointerToObjCTypedef,
+ QualType *NotEncodedT) const {
+ CanQualType CT = getCanonicalType(T);
+ switch (CT->getTypeClass()) {
+ case Type::Builtin:
+ case Type::Enum:
+ if (FD && FD->isBitField())
+ return EncodeBitField(this, S, T, FD);
+ if (const BuiltinType *BT = dyn_cast<BuiltinType>(CT))
+ S += getObjCEncodingForPrimitiveKind(this, BT->getKind());
+ else
+ S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
+ return;
+
+ case Type::Complex: {
+ const ComplexType *CT = T->castAs<ComplexType>();
+ S += 'j';
+ getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, nullptr);
+ return;
+ }
+
+ case Type::Atomic: {
+ const AtomicType *AT = T->castAs<AtomicType>();
+ S += 'A';
+ getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, nullptr);
+ return;
+ }
+
+ // encoding for pointer or reference types.
+ case Type::Pointer:
+ case Type::LValueReference:
+ case Type::RValueReference: {
+ QualType PointeeTy;
+ if (isa<PointerType>(CT)) {
+ const PointerType *PT = T->castAs<PointerType>();
+ if (PT->isObjCSelType()) {
+ S += ':';
+ return;
+ }
+ PointeeTy = PT->getPointeeType();
+ } else {
+ PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
+ }
+
+ bool isReadOnly = false;
+ // For historical/compatibility reasons, the read-only qualifier of the
+ // pointee gets emitted _before_ the '^'. The read-only qualifier of
+ // the pointer itself gets ignored, _unless_ we are looking at a typedef!
+ // Also, do not emit the 'r' for anything but the outermost type!
+ if (isa<TypedefType>(T.getTypePtr())) {
+ if (OutermostType && T.isConstQualified()) {
+ isReadOnly = true;
+ S += 'r';
+ }
+ } else if (OutermostType) {
+ QualType P = PointeeTy;
+ while (P->getAs<PointerType>())
+ P = P->getAs<PointerType>()->getPointeeType();
+ if (P.isConstQualified()) {
+ isReadOnly = true;
+ S += 'r';
+ }
+ }
+ if (isReadOnly) {
+ // Another legacy compatibility encoding. Some ObjC qualifier and type
+ // combinations need to be rearranged.
+ // Rewrite "in const" from "nr" to "rn"
+ if (StringRef(S).endswith("nr"))
+ S.replace(S.end()-2, S.end(), "rn");
+ }
+
+ if (PointeeTy->isCharType()) {
+ // char pointer types should be encoded as '*' unless it is a
+ // type that has been typedef'd to 'BOOL'.
+ if (!isTypeTypedefedAsBOOL(PointeeTy)) {
+ S += '*';
+ return;
+ }
+ } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
+ // GCC binary compat: Need to convert "struct objc_class *" to "#".
+ if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
+ S += '#';
+ return;
+ }
+ // GCC binary compat: Need to convert "struct objc_object *" to "@".
+ if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
+ S += '@';
+ return;
+ }
+ // fall through...
+ }
+ S += '^';
+ getLegacyIntegralTypeEncoding(PointeeTy);
+
+ getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
+ nullptr, false, false, false, false, false, false,
+ NotEncodedT);
+ return;
+ }
+
+ case Type::ConstantArray:
+ case Type::IncompleteArray:
+ case Type::VariableArray: {
+ const ArrayType *AT = cast<ArrayType>(CT);
+
+ if (isa<IncompleteArrayType>(AT) && !StructField) {
+ // Incomplete arrays are encoded as a pointer to the array element.
+ S += '^';
+
+ getObjCEncodingForTypeImpl(AT->getElementType(), S,
+ false, ExpandStructures, FD);
+ } else {
+ S += '[';
+
+ if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
+ S += llvm::utostr(CAT->getSize().getZExtValue());
+ else {
+ //Variable length arrays are encoded as a regular array with 0 elements.
+ assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
+ "Unknown array type!");
+ S += '0';
+ }
+
+ getObjCEncodingForTypeImpl(AT->getElementType(), S,
+ false, ExpandStructures, FD,
+ false, false, false, false, false, false,
+ NotEncodedT);
+ S += ']';
+ }
+ return;
+ }
+
+ case Type::FunctionNoProto:
+ case Type::FunctionProto:
+ S += '?';
+ return;
+
+ case Type::Record: {
+ RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
+ S += RDecl->isUnion() ? '(' : '{';
+ // Anonymous structures print as '?'
+ if (const IdentifierInfo *II = RDecl->getIdentifier()) {
+ S += II->getName();
+ if (ClassTemplateSpecializationDecl *Spec
+ = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
+ const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
+ llvm::raw_string_ostream OS(S);
+ TemplateSpecializationType::PrintTemplateArgumentList(OS,
+ TemplateArgs.data(),
+ TemplateArgs.size(),
+ (*this).getPrintingPolicy());
+ }
+ } else {
+ S += '?';
+ }
+ if (ExpandStructures) {
+ S += '=';
+ if (!RDecl->isUnion()) {
+ getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT);
+ } else {
+ for (const auto *Field : RDecl->fields()) {
+ if (FD) {
+ S += '"';
+ S += Field->getNameAsString();
+ S += '"';
+ }
+
+ // Special case bit-fields.
+ if (Field->isBitField()) {
+ getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
+ Field);
+ } else {
+ QualType qt = Field->getType();
+ getLegacyIntegralTypeEncoding(qt);
+ getObjCEncodingForTypeImpl(qt, S, false, true,
+ FD, /*OutermostType*/false,
+ /*EncodingProperty*/false,
+ /*StructField*/true,
+ false, false, false, NotEncodedT);
+ }
+ }
+ }
+ }
+ S += RDecl->isUnion() ? ')' : '}';
+ return;
+ }
+
+ case Type::BlockPointer: {
+ const BlockPointerType *BT = T->castAs<BlockPointerType>();
+ S += "@?"; // Unlike a pointer-to-function, which is "^?".
+ if (EncodeBlockParameters) {
+ const FunctionType *FT = BT->getPointeeType()->castAs<FunctionType>();
+
+ S += '<';
+ // Block return type
+ getObjCEncodingForTypeImpl(
+ FT->getReturnType(), S, ExpandPointedToStructures, ExpandStructures,
+ FD, false /* OutermostType */, EncodingProperty,
+ false /* StructField */, EncodeBlockParameters, EncodeClassNames, false,
+ NotEncodedT);
+ // Block self
+ S += "@?";
+ // Block parameters
+ if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
+ for (const auto &I : FPT->param_types())
+ getObjCEncodingForTypeImpl(
+ I, S, ExpandPointedToStructures, ExpandStructures, FD,
+ false /* OutermostType */, EncodingProperty,
+ false /* StructField */, EncodeBlockParameters, EncodeClassNames,
+ false, NotEncodedT);
+ }
+ S += '>';
+ }
+ return;
+ }
+
+ case Type::ObjCObject: {
+ // hack to match legacy encoding of *id and *Class
+ QualType Ty = getObjCObjectPointerType(CT);
+ if (Ty->isObjCIdType()) {
+ S += "{objc_object=}";
+ return;
+ }
+ else if (Ty->isObjCClassType()) {
+ S += "{objc_class=}";
+ return;
+ }
+ }
+
+ case Type::ObjCInterface: {
+ // Ignore protocol qualifiers when mangling at this level.
+ T = T->castAs<ObjCObjectType>()->getBaseType();
+
+ // The assumption seems to be that this assert will succeed
+ // because nested levels will have filtered out 'id' and 'Class'.
+ const ObjCInterfaceType *OIT = T->castAs<ObjCInterfaceType>();
+ // @encode(class_name)
+ ObjCInterfaceDecl *OI = OIT->getDecl();
+ S += '{';
+ const IdentifierInfo *II = OI->getIdentifier();
+ S += II->getName();
+ S += '=';
+ SmallVector<const ObjCIvarDecl*, 32> Ivars;
+ DeepCollectObjCIvars(OI, true, Ivars);
+ for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
+ const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
+ if (Field->isBitField())
+ getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
+ else
+ getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD,
+ false, false, false, false, false,
+ EncodePointerToObjCTypedef,
+ NotEncodedT);
+ }
+ S += '}';
+ return;
+ }
+
+ case Type::ObjCObjectPointer: {
+ const ObjCObjectPointerType *OPT = T->castAs<ObjCObjectPointerType>();
+ if (OPT->isObjCIdType()) {
+ S += '@';
+ return;
+ }
+
+ if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
+ // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
+ // Since this is a binary compatibility issue, need to consult with runtime
+ // folks. Fortunately, this is a *very* obsure construct.
+ S += '#';
+ return;
+ }
+
+ if (OPT->isObjCQualifiedIdType()) {
+ getObjCEncodingForTypeImpl(getObjCIdType(), S,
+ ExpandPointedToStructures,
+ ExpandStructures, FD);
+ if (FD || EncodingProperty || EncodeClassNames) {
+ // Note that we do extended encoding of protocol qualifer list
+ // Only when doing ivar or property encoding.
+ S += '"';
+ for (const auto *I : OPT->quals()) {
+ S += '<';
+ S += I->getNameAsString();
+ S += '>';
+ }
+ S += '"';
+ }
+ return;
+ }
+
+ QualType PointeeTy = OPT->getPointeeType();
+ if (!EncodingProperty &&
+ isa<TypedefType>(PointeeTy.getTypePtr()) &&
+ !EncodePointerToObjCTypedef) {
+ // Another historical/compatibility reason.
+ // We encode the underlying type which comes out as
+ // {...};
+ S += '^';
+ if (FD && OPT->getInterfaceDecl()) {
+ // Prevent recursive encoding of fields in some rare cases.
+ ObjCInterfaceDecl *OI = OPT->getInterfaceDecl();
+ SmallVector<const ObjCIvarDecl*, 32> Ivars;
+ DeepCollectObjCIvars(OI, true, Ivars);
+ for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
+ if (cast<FieldDecl>(Ivars[i]) == FD) {
+ S += '{';
+ S += OI->getIdentifier()->getName();
+ S += '}';
+ return;
+ }
+ }
+ }
+ getObjCEncodingForTypeImpl(PointeeTy, S,
+ false, ExpandPointedToStructures,
+ nullptr,
+ false, false, false, false, false,
+ /*EncodePointerToObjCTypedef*/true);
+ return;
+ }
+
+ S += '@';
+ if (OPT->getInterfaceDecl() &&
+ (FD || EncodingProperty || EncodeClassNames)) {
+ S += '"';
+ S += OPT->getInterfaceDecl()->getIdentifier()->getName();
+ for (const auto *I : OPT->quals()) {
+ S += '<';
+ S += I->getNameAsString();
+ S += '>';
+ }
+ S += '"';
+ }
+ return;
+ }
+
+ // gcc just blithely ignores member pointers.
+ // FIXME: we shoul do better than that. 'M' is available.
+ case Type::MemberPointer:
+ // This matches gcc's encoding, even though technically it is insufficient.
+ //FIXME. We should do a better job than gcc.
+ case Type::Vector:
+ case Type::ExtVector:
+ // Until we have a coherent encoding of these three types, issue warning.
+ { if (NotEncodedT)
+ *NotEncodedT = T;
+ return;
+ }
+
+ // We could see an undeduced auto type here during error recovery.
+ // Just ignore it.
+ case Type::Auto:
+ return;
+
+
+#define ABSTRACT_TYPE(KIND, BASE)
+#define TYPE(KIND, BASE)
+#define DEPENDENT_TYPE(KIND, BASE) \
+ case Type::KIND:
+#define NON_CANONICAL_TYPE(KIND, BASE) \
+ case Type::KIND:
+#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
+ case Type::KIND:
+#include "clang/AST/TypeNodes.def"
+ llvm_unreachable("@encode for dependent type!");
+ }
+ llvm_unreachable("bad type kind!");
+}
+
+void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
+ std::string &S,
+ const FieldDecl *FD,
+ bool includeVBases,
+ QualType *NotEncodedT) const {
+ assert(RDecl && "Expected non-null RecordDecl");
+ assert(!RDecl->isUnion() && "Should not be called for unions");
+ if (!RDecl->getDefinition())
+ return;
+
+ CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
+ std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
+ const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
+
+ if (CXXRec) {
+ for (const auto &BI : CXXRec->bases()) {
+ if (!BI.isVirtual()) {
+ CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
+ if (base->isEmpty())
+ continue;
+ uint64_t offs = toBits(layout.getBaseClassOffset(base));
+ FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
+ std::make_pair(offs, base));
+ }
+ }
+ }
+
+ unsigned i = 0;
+ for (auto *Field : RDecl->fields()) {
+ uint64_t offs = layout.getFieldOffset(i);
+ FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
+ std::make_pair(offs, Field));
+ ++i;
+ }
+
+ if (CXXRec && includeVBases) {
+ for (const auto &BI : CXXRec->vbases()) {
+ CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
+ if (base->isEmpty())
+ continue;
+ uint64_t offs = toBits(layout.getVBaseClassOffset(base));
+ if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) &&
+ FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
+ FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
+ std::make_pair(offs, base));
+ }
+ }
+
+ CharUnits size;
+ if (CXXRec) {
+ size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
+ } else {
+ size = layout.getSize();
+ }
+
+#ifndef NDEBUG
+ uint64_t CurOffs = 0;
+#endif
+ std::multimap<uint64_t, NamedDecl *>::iterator
+ CurLayObj = FieldOrBaseOffsets.begin();
+
+ if (CXXRec && CXXRec->isDynamicClass() &&
+ (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
+ if (FD) {
+ S += "\"_vptr$";
+ std::string recname = CXXRec->getNameAsString();
+ if (recname.empty()) recname = "?";
+ S += recname;
+ S += '"';
+ }
+ S += "^^?";
+#ifndef NDEBUG
+ CurOffs += getTypeSize(VoidPtrTy);
+#endif
+ }
+
+ if (!RDecl->hasFlexibleArrayMember()) {
+ // Mark the end of the structure.
+ uint64_t offs = toBits(size);
+ FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
+ std::make_pair(offs, nullptr));
+ }
+
+ for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
+#ifndef NDEBUG
+ assert(CurOffs <= CurLayObj->first);
+ if (CurOffs < CurLayObj->first) {
+ uint64_t padding = CurLayObj->first - CurOffs;
+ // FIXME: There doesn't seem to be a way to indicate in the encoding that
+ // packing/alignment of members is different that normal, in which case
+ // the encoding will be out-of-sync with the real layout.
+ // If the runtime switches to just consider the size of types without
+ // taking into account alignment, we could make padding explicit in the
+ // encoding (e.g. using arrays of chars). The encoding strings would be
+ // longer then though.
+ CurOffs += padding;
+ }
+#endif
+
+ NamedDecl *dcl = CurLayObj->second;
+ if (!dcl)
+ break; // reached end of structure.
+
+ if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
+ // We expand the bases without their virtual bases since those are going
+ // in the initial structure. Note that this differs from gcc which
+ // expands virtual bases each time one is encountered in the hierarchy,
+ // making the encoding type bigger than it really is.
+ getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false,
+ NotEncodedT);
+ assert(!base->isEmpty());
+#ifndef NDEBUG
+ CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
+#endif
+ } else {
+ FieldDecl *field = cast<FieldDecl>(dcl);
+ if (FD) {
+ S += '"';
+ S += field->getNameAsString();
+ S += '"';
+ }
+
+ if (field->isBitField()) {
+ EncodeBitField(this, S, field->getType(), field);
+#ifndef NDEBUG
+ CurOffs += field->getBitWidthValue(*this);
+#endif
+ } else {
+ QualType qt = field->getType();
+ getLegacyIntegralTypeEncoding(qt);
+ getObjCEncodingForTypeImpl(qt, S, false, true, FD,
+ /*OutermostType*/false,
+ /*EncodingProperty*/false,
+ /*StructField*/true,
+ false, false, false, NotEncodedT);
+#ifndef NDEBUG
+ CurOffs += getTypeSize(field->getType());
+#endif
+ }
+ }
+ }
+}
+
+void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
+ std::string& S) const {
+ if (QT & Decl::OBJC_TQ_In)
+ S += 'n';
+ if (QT & Decl::OBJC_TQ_Inout)
+ S += 'N';
+ if (QT & Decl::OBJC_TQ_Out)
+ S += 'o';
+ if (QT & Decl::OBJC_TQ_Bycopy)
+ S += 'O';
+ if (QT & Decl::OBJC_TQ_Byref)
+ S += 'R';
+ if (QT & Decl::OBJC_TQ_Oneway)
+ S += 'V';
+}
+
+TypedefDecl *ASTContext::getObjCIdDecl() const {
+ if (!ObjCIdDecl) {
+ QualType T = getObjCObjectType(ObjCBuiltinIdTy, nullptr, 0);
+ T = getObjCObjectPointerType(T);
+ ObjCIdDecl = buildImplicitTypedef(T, "id");
+ }
+ return ObjCIdDecl;
+}
+
+TypedefDecl *ASTContext::getObjCSelDecl() const {
+ if (!ObjCSelDecl) {
+ QualType T = getPointerType(ObjCBuiltinSelTy);
+ ObjCSelDecl = buildImplicitTypedef(T, "SEL");
+ }
+ return ObjCSelDecl;
+}
+
+TypedefDecl *ASTContext::getObjCClassDecl() const {
+ if (!ObjCClassDecl) {
+ QualType T = getObjCObjectType(ObjCBuiltinClassTy, nullptr, 0);
+ T = getObjCObjectPointerType(T);
+ ObjCClassDecl = buildImplicitTypedef(T, "Class");
+ }
+ return ObjCClassDecl;
+}
+
+ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
+ if (!ObjCProtocolClassDecl) {
+ ObjCProtocolClassDecl
+ = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
+ SourceLocation(),
+ &Idents.get("Protocol"),
+ /*PrevDecl=*/nullptr,
+ SourceLocation(), true);
+ }
+
+ return ObjCProtocolClassDecl;
+}
+
+//===----------------------------------------------------------------------===//
+// __builtin_va_list Construction Functions
+//===----------------------------------------------------------------------===//
+
+static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
+ // typedef char* __builtin_va_list;
+ QualType T = Context->getPointerType(Context->CharTy);
+ return Context->buildImplicitTypedef(T, "__builtin_va_list");
+}
+
+static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
+ // typedef void* __builtin_va_list;
+ QualType T = Context->getPointerType(Context->VoidTy);
+ return Context->buildImplicitTypedef(T, "__builtin_va_list");
+}
+
+static TypedefDecl *
+CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
+ // struct __va_list
+ RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list");
+ if (Context->getLangOpts().CPlusPlus) {
+ // namespace std { struct __va_list {
+ NamespaceDecl *NS;
+ NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
+ Context->getTranslationUnitDecl(),
+ /*Inline*/ false, SourceLocation(),
+ SourceLocation(), &Context->Idents.get("std"),
+ /*PrevDecl*/ nullptr);
+ NS->setImplicit();
+ VaListTagDecl->setDeclContext(NS);
+ }
+
+ VaListTagDecl->startDefinition();
+
+ const size_t NumFields = 5;
+ QualType FieldTypes[NumFields];
+ const char *FieldNames[NumFields];
+
+ // void *__stack;
+ FieldTypes[0] = Context->getPointerType(Context->VoidTy);
+ FieldNames[0] = "__stack";
+
+ // void *__gr_top;
+ FieldTypes[1] = Context->getPointerType(Context->VoidTy);
+ FieldNames[1] = "__gr_top";
+
+ // void *__vr_top;
+ FieldTypes[2] = Context->getPointerType(Context->VoidTy);
+ FieldNames[2] = "__vr_top";
+
+ // int __gr_offs;
+ FieldTypes[3] = Context->IntTy;
+ FieldNames[3] = "__gr_offs";
+
+ // int __vr_offs;
+ FieldTypes[4] = Context->IntTy;
+ FieldNames[4] = "__vr_offs";
+
+ // Create fields
+ for (unsigned i = 0; i < NumFields; ++i) {
+ FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
+ VaListTagDecl,
+ SourceLocation(),
+ SourceLocation(),
+ &Context->Idents.get(FieldNames[i]),
+ FieldTypes[i], /*TInfo=*/nullptr,
+ /*BitWidth=*/nullptr,
+ /*Mutable=*/false,
+ ICIS_NoInit);
+ Field->setAccess(AS_public);
+ VaListTagDecl->addDecl(Field);
+ }
+ VaListTagDecl->completeDefinition();
+ QualType VaListTagType = Context->getRecordType(VaListTagDecl);
+ Context->VaListTagTy = VaListTagType;
+
+ // } __builtin_va_list;
+ return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list");
+}
+
+static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
+ // typedef struct __va_list_tag {
+ RecordDecl *VaListTagDecl;
+
+ VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
+ VaListTagDecl->startDefinition();
+
+ const size_t NumFields = 5;
+ QualType FieldTypes[NumFields];
+ const char *FieldNames[NumFields];
+
+ // unsigned char gpr;
+ FieldTypes[0] = Context->UnsignedCharTy;
+ FieldNames[0] = "gpr";
+
+ // unsigned char fpr;
+ FieldTypes[1] = Context->UnsignedCharTy;
+ FieldNames[1] = "fpr";
+
+ // unsigned short reserved;
+ FieldTypes[2] = Context->UnsignedShortTy;
+ FieldNames[2] = "reserved";
+
+ // void* overflow_arg_area;
+ FieldTypes[3] = Context->getPointerType(Context->VoidTy);
+ FieldNames[3] = "overflow_arg_area";
+
+ // void* reg_save_area;
+ FieldTypes[4] = Context->getPointerType(Context->VoidTy);
+ FieldNames[4] = "reg_save_area";
+
+ // Create fields
+ for (unsigned i = 0; i < NumFields; ++i) {
+ FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
+ SourceLocation(),
+ SourceLocation(),
+ &Context->Idents.get(FieldNames[i]),
+ FieldTypes[i], /*TInfo=*/nullptr,
+ /*BitWidth=*/nullptr,
+ /*Mutable=*/false,
+ ICIS_NoInit);
+ Field->setAccess(AS_public);
+ VaListTagDecl->addDecl(Field);
+ }
+ VaListTagDecl->completeDefinition();
+ QualType VaListTagType = Context->getRecordType(VaListTagDecl);
+ Context->VaListTagTy = VaListTagType;
+
+ // } __va_list_tag;
+ TypedefDecl *VaListTagTypedefDecl =
+ Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
+
+ QualType VaListTagTypedefType =
+ Context->getTypedefType(VaListTagTypedefDecl);
+
+ // typedef __va_list_tag __builtin_va_list[1];
+ llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
+ QualType VaListTagArrayType
+ = Context->getConstantArrayType(VaListTagTypedefType,
+ Size, ArrayType::Normal, 0);
+ return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
+}
+
+static TypedefDecl *
+CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
+ // typedef struct __va_list_tag {
+ RecordDecl *VaListTagDecl;
+ VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
+ VaListTagDecl->startDefinition();
+
+ const size_t NumFields = 4;
+ QualType FieldTypes[NumFields];
+ const char *FieldNames[NumFields];
+
+ // unsigned gp_offset;
+ FieldTypes[0] = Context->UnsignedIntTy;
+ FieldNames[0] = "gp_offset";
+
+ // unsigned fp_offset;
+ FieldTypes[1] = Context->UnsignedIntTy;
+ FieldNames[1] = "fp_offset";
+
+ // void* overflow_arg_area;
+ FieldTypes[2] = Context->getPointerType(Context->VoidTy);
+ FieldNames[2] = "overflow_arg_area";
+
+ // void* reg_save_area;
+ FieldTypes[3] = Context->getPointerType(Context->VoidTy);
+ FieldNames[3] = "reg_save_area";
+
+ // Create fields
+ for (unsigned i = 0; i < NumFields; ++i) {
+ FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
+ VaListTagDecl,
+ SourceLocation(),
+ SourceLocation(),
+ &Context->Idents.get(FieldNames[i]),
+ FieldTypes[i], /*TInfo=*/nullptr,
+ /*BitWidth=*/nullptr,
+ /*Mutable=*/false,
+ ICIS_NoInit);
+ Field->setAccess(AS_public);
+ VaListTagDecl->addDecl(Field);
+ }
+ VaListTagDecl->completeDefinition();
+ QualType VaListTagType = Context->getRecordType(VaListTagDecl);
+ Context->VaListTagTy = VaListTagType;
+
+ // } __va_list_tag;
+ TypedefDecl *VaListTagTypedefDecl =
+ Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
+
+ QualType VaListTagTypedefType =
+ Context->getTypedefType(VaListTagTypedefDecl);
+
+ // typedef __va_list_tag __builtin_va_list[1];
+ llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
+ QualType VaListTagArrayType
+ = Context->getConstantArrayType(VaListTagTypedefType,
+ Size, ArrayType::Normal,0);
+ return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
+}
+
+static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
+ // typedef int __builtin_va_list[4];
+ llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
+ QualType IntArrayType
+ = Context->getConstantArrayType(Context->IntTy,
+ Size, ArrayType::Normal, 0);
+ return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list");
+}
+
+static TypedefDecl *
+CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
+ // struct __va_list
+ RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list");
+ if (Context->getLangOpts().CPlusPlus) {
+ // namespace std { struct __va_list {
+ NamespaceDecl *NS;
+ NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
+ Context->getTranslationUnitDecl(),
+ /*Inline*/false, SourceLocation(),
+ SourceLocation(), &Context->Idents.get("std"),
+ /*PrevDecl*/ nullptr);
+ NS->setImplicit();
+ VaListDecl->setDeclContext(NS);
+ }
+
+ VaListDecl->startDefinition();
+
+ // void * __ap;
+ FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
+ VaListDecl,
+ SourceLocation(),
+ SourceLocation(),
+ &Context->Idents.get("__ap"),
+ Context->getPointerType(Context->VoidTy),
+ /*TInfo=*/nullptr,
+ /*BitWidth=*/nullptr,
+ /*Mutable=*/false,
+ ICIS_NoInit);
+ Field->setAccess(AS_public);
+ VaListDecl->addDecl(Field);
+
+ // };
+ VaListDecl->completeDefinition();
+
+ // typedef struct __va_list __builtin_va_list;
+ QualType T = Context->getRecordType(VaListDecl);
+ return Context->buildImplicitTypedef(T, "__builtin_va_list");
+}
+
+static TypedefDecl *
+CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
+ // typedef struct __va_list_tag {
+ RecordDecl *VaListTagDecl;
+ VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
+ VaListTagDecl->startDefinition();
+
+ const size_t NumFields = 4;
+ QualType FieldTypes[NumFields];
+ const char *FieldNames[NumFields];
+
+ // long __gpr;
+ FieldTypes[0] = Context->LongTy;
+ FieldNames[0] = "__gpr";
+
+ // long __fpr;
+ FieldTypes[1] = Context->LongTy;
+ FieldNames[1] = "__fpr";
+
+ // void *__overflow_arg_area;
+ FieldTypes[2] = Context->getPointerType(Context->VoidTy);
+ FieldNames[2] = "__overflow_arg_area";
+
+ // void *__reg_save_area;
+ FieldTypes[3] = Context->getPointerType(Context->VoidTy);
+ FieldNames[3] = "__reg_save_area";
+
+ // Create fields
+ for (unsigned i = 0; i < NumFields; ++i) {
+ FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
+ VaListTagDecl,
+ SourceLocation(),
+ SourceLocation(),
+ &Context->Idents.get(FieldNames[i]),
+ FieldTypes[i], /*TInfo=*/nullptr,
+ /*BitWidth=*/nullptr,
+ /*Mutable=*/false,
+ ICIS_NoInit);
+ Field->setAccess(AS_public);
+ VaListTagDecl->addDecl(Field);
+ }
+ VaListTagDecl->completeDefinition();
+ QualType VaListTagType = Context->getRecordType(VaListTagDecl);
+ Context->VaListTagTy = VaListTagType;
+
+ // } __va_list_tag;
+ TypedefDecl *VaListTagTypedefDecl =
+ Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
+ QualType VaListTagTypedefType =
+ Context->getTypedefType(VaListTagTypedefDecl);
+
+ // typedef __va_list_tag __builtin_va_list[1];
+ llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
+ QualType VaListTagArrayType
+ = Context->getConstantArrayType(VaListTagTypedefType,
+ Size, ArrayType::Normal,0);
+
+ return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
+}
+
+static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
+ TargetInfo::BuiltinVaListKind Kind) {
+ switch (Kind) {
+ case TargetInfo::CharPtrBuiltinVaList:
+ return CreateCharPtrBuiltinVaListDecl(Context);
+ case TargetInfo::VoidPtrBuiltinVaList:
+ return CreateVoidPtrBuiltinVaListDecl(Context);
+ case TargetInfo::AArch64ABIBuiltinVaList:
+ return CreateAArch64ABIBuiltinVaListDecl(Context);
+ case TargetInfo::PowerABIBuiltinVaList:
+ return CreatePowerABIBuiltinVaListDecl(Context);
+ case TargetInfo::X86_64ABIBuiltinVaList:
+ return CreateX86_64ABIBuiltinVaListDecl(Context);
+ case TargetInfo::PNaClABIBuiltinVaList:
+ return CreatePNaClABIBuiltinVaListDecl(Context);
+ case TargetInfo::AAPCSABIBuiltinVaList:
+ return CreateAAPCSABIBuiltinVaListDecl(Context);
+ case TargetInfo::SystemZBuiltinVaList:
+ return CreateSystemZBuiltinVaListDecl(Context);
+ }
+
+ llvm_unreachable("Unhandled __builtin_va_list type kind");
+}
+
+TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
+ if (!BuiltinVaListDecl) {
+ BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
+ assert(BuiltinVaListDecl->isImplicit());
+ }
+
+ return BuiltinVaListDecl;
+}
+
+QualType ASTContext::getVaListTagType() const {
+ // Force the creation of VaListTagTy by building the __builtin_va_list
+ // declaration.
+ if (VaListTagTy.isNull())
+ (void) getBuiltinVaListDecl();
+
+ return VaListTagTy;
+}
+
+void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
+ assert(ObjCConstantStringType.isNull() &&
+ "'NSConstantString' type already set!");
+
+ ObjCConstantStringType = getObjCInterfaceType(Decl);
+}
+
+/// \brief Retrieve the template name that corresponds to a non-empty
+/// lookup.
+TemplateName
+ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
+ UnresolvedSetIterator End) const {
+ unsigned size = End - Begin;
+ assert(size > 1 && "set is not overloaded!");
+
+ void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
+ size * sizeof(FunctionTemplateDecl*));
+ OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
+
+ NamedDecl **Storage = OT->getStorage();
+ for (UnresolvedSetIterator I = Begin; I != End; ++I) {
+ NamedDecl *D = *I;
+ assert(isa<FunctionTemplateDecl>(D) ||
+ (isa<UsingShadowDecl>(D) &&
+ isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
+ *Storage++ = D;
+ }
+
+ return TemplateName(OT);
+}
+
+/// \brief Retrieve the template name that represents a qualified
+/// template name such as \c std::vector.
+TemplateName
+ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
+ bool TemplateKeyword,
+ TemplateDecl *Template) const {
+ assert(NNS && "Missing nested-name-specifier in qualified template name");
+
+ // FIXME: Canonicalization?
+ llvm::FoldingSetNodeID ID;
+ QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
+
+ void *InsertPos = nullptr;
+ QualifiedTemplateName *QTN =
+ QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
+ if (!QTN) {
+ QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
+ QualifiedTemplateName(NNS, TemplateKeyword, Template);
+ QualifiedTemplateNames.InsertNode(QTN, InsertPos);
+ }
+
+ return TemplateName(QTN);
+}
+
+/// \brief Retrieve the template name that represents a dependent
+/// template name such as \c MetaFun::template apply.
+TemplateName
+ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
+ const IdentifierInfo *Name) const {
+ assert((!NNS || NNS->isDependent()) &&
+ "Nested name specifier must be dependent");
+
+ llvm::FoldingSetNodeID ID;
+ DependentTemplateName::Profile(ID, NNS, Name);
+
+ void *InsertPos = nullptr;
+ DependentTemplateName *QTN =
+ DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
+
+ if (QTN)
+ return TemplateName(QTN);
+
+ NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
+ if (CanonNNS == NNS) {
+ QTN = new (*this, llvm::alignOf<DependentTemplateName>())
+ DependentTemplateName(NNS, Name);
+ } else {
+ TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
+ QTN = new (*this, llvm::alignOf<DependentTemplateName>())
+ DependentTemplateName(NNS, Name, Canon);
+ DependentTemplateName *CheckQTN =
+ DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!CheckQTN && "Dependent type name canonicalization broken");
+ (void)CheckQTN;
+ }
+
+ DependentTemplateNames.InsertNode(QTN, InsertPos);
+ return TemplateName(QTN);
+}
+
+/// \brief Retrieve the template name that represents a dependent
+/// template name such as \c MetaFun::template operator+.
+TemplateName
+ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
+ OverloadedOperatorKind Operator) const {
+ assert((!NNS || NNS->isDependent()) &&
+ "Nested name specifier must be dependent");
+
+ llvm::FoldingSetNodeID ID;
+ DependentTemplateName::Profile(ID, NNS, Operator);
+
+ void *InsertPos = nullptr;
+ DependentTemplateName *QTN
+ = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
+
+ if (QTN)
+ return TemplateName(QTN);
+
+ NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
+ if (CanonNNS == NNS) {
+ QTN = new (*this, llvm::alignOf<DependentTemplateName>())
+ DependentTemplateName(NNS, Operator);
+ } else {
+ TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
+ QTN = new (*this, llvm::alignOf<DependentTemplateName>())
+ DependentTemplateName(NNS, Operator, Canon);
+
+ DependentTemplateName *CheckQTN
+ = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!CheckQTN && "Dependent template name canonicalization broken");
+ (void)CheckQTN;
+ }
+
+ DependentTemplateNames.InsertNode(QTN, InsertPos);
+ return TemplateName(QTN);
+}
+
+TemplateName
+ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
+ TemplateName replacement) const {
+ llvm::FoldingSetNodeID ID;
+ SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
+
+ void *insertPos = nullptr;
+ SubstTemplateTemplateParmStorage *subst
+ = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
+
+ if (!subst) {
+ subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
+ SubstTemplateTemplateParms.InsertNode(subst, insertPos);
+ }
+
+ return TemplateName(subst);
+}
+
+TemplateName
+ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
+ const TemplateArgument &ArgPack) const {
+ ASTContext &Self = const_cast<ASTContext &>(*this);
+ llvm::FoldingSetNodeID ID;
+ SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
+
+ void *InsertPos = nullptr;
+ SubstTemplateTemplateParmPackStorage *Subst
+ = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
+
+ if (!Subst) {
+ Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
+ ArgPack.pack_size(),
+ ArgPack.pack_begin());
+ SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
+ }
+
+ return TemplateName(Subst);
+}
+
+/// getFromTargetType - Given one of the integer types provided by
+/// TargetInfo, produce the corresponding type. The unsigned @p Type
+/// is actually a value of type @c TargetInfo::IntType.
+CanQualType ASTContext::getFromTargetType(unsigned Type) const {
+ switch (Type) {
+ case TargetInfo::NoInt: return CanQualType();
+ case TargetInfo::SignedChar: return SignedCharTy;
+ case TargetInfo::UnsignedChar: return UnsignedCharTy;
+ case TargetInfo::SignedShort: return ShortTy;
+ case TargetInfo::UnsignedShort: return UnsignedShortTy;
+ case TargetInfo::SignedInt: return IntTy;
+ case TargetInfo::UnsignedInt: return UnsignedIntTy;
+ case TargetInfo::SignedLong: return LongTy;
+ case TargetInfo::UnsignedLong: return UnsignedLongTy;
+ case TargetInfo::SignedLongLong: return LongLongTy;
+ case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
+ }
+
+ llvm_unreachable("Unhandled TargetInfo::IntType value");
+}
+
+//===----------------------------------------------------------------------===//
+// Type Predicates.
+//===----------------------------------------------------------------------===//
+
+/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
+/// garbage collection attribute.
+///
+Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
+ if (getLangOpts().getGC() == LangOptions::NonGC)
+ return Qualifiers::GCNone;
+
+ assert(getLangOpts().ObjC1);
+ Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
+
+ // Default behaviour under objective-C's gc is for ObjC pointers
+ // (or pointers to them) be treated as though they were declared
+ // as __strong.
+ if (GCAttrs == Qualifiers::GCNone) {
+ if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
+ return Qualifiers::Strong;
+ else if (Ty->isPointerType())
+ return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
+ } else {
+ // It's not valid to set GC attributes on anything that isn't a
+ // pointer.
+#ifndef NDEBUG
+ QualType CT = Ty->getCanonicalTypeInternal();
+ while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
+ CT = AT->getElementType();
+ assert(CT->isAnyPointerType() || CT->isBlockPointerType());
+#endif
+ }
+ return GCAttrs;
+}
+
+//===----------------------------------------------------------------------===//
+// Type Compatibility Testing
+//===----------------------------------------------------------------------===//
+
+/// areCompatVectorTypes - Return true if the two specified vector types are
+/// compatible.
+static bool areCompatVectorTypes(const VectorType *LHS,
+ const VectorType *RHS) {
+ assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
+ return LHS->getElementType() == RHS->getElementType() &&
+ LHS->getNumElements() == RHS->getNumElements();
+}
+
+bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
+ QualType SecondVec) {
+ assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
+ assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
+
+ if (hasSameUnqualifiedType(FirstVec, SecondVec))
+ return true;
+
+ // Treat Neon vector types and most AltiVec vector types as if they are the
+ // equivalent GCC vector types.
+ const VectorType *First = FirstVec->getAs<VectorType>();
+ const VectorType *Second = SecondVec->getAs<VectorType>();
+ if (First->getNumElements() == Second->getNumElements() &&
+ hasSameType(First->getElementType(), Second->getElementType()) &&
+ First->getVectorKind() != VectorType::AltiVecPixel &&
+ First->getVectorKind() != VectorType::AltiVecBool &&
+ Second->getVectorKind() != VectorType::AltiVecPixel &&
+ Second->getVectorKind() != VectorType::AltiVecBool)
+ return true;
+
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
+//===----------------------------------------------------------------------===//
+
+/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
+/// inheritance hierarchy of 'rProto'.
+bool
+ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
+ ObjCProtocolDecl *rProto) const {
+ if (declaresSameEntity(lProto, rProto))
+ return true;
+ for (auto *PI : rProto->protocols())
+ if (ProtocolCompatibleWithProtocol(lProto, PI))
+ return true;
+ return false;
+}
+
+/// ObjCQualifiedClassTypesAreCompatible - compare Class<pr,...> and
+/// Class<pr1, ...>.
+bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
+ QualType rhs) {
+ const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
+ const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
+ assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
+
+ for (auto *lhsProto : lhsQID->quals()) {
+ bool match = false;
+ for (auto *rhsProto : rhsOPT->quals()) {
+ if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
+ match = true;
+ break;
+ }
+ }
+ if (!match)
+ return false;
+ }
+ return true;
+}
+
+/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
+/// ObjCQualifiedIDType.
+bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
+ bool compare) {
+ // Allow id<P..> and an 'id' or void* type in all cases.
+ if (lhs->isVoidPointerType() ||
+ lhs->isObjCIdType() || lhs->isObjCClassType())
+ return true;
+ else if (rhs->isVoidPointerType() ||
+ rhs->isObjCIdType() || rhs->isObjCClassType())
+ return true;
+
+ if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
+ const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
+
+ if (!rhsOPT) return false;
+
+ if (rhsOPT->qual_empty()) {
+ // If the RHS is a unqualified interface pointer "NSString*",
+ // make sure we check the class hierarchy.
+ if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
+ for (auto *I : lhsQID->quals()) {
+ // when comparing an id<P> on lhs with a static type on rhs,
+ // see if static class implements all of id's protocols, directly or
+ // through its super class and categories.
+ if (!rhsID->ClassImplementsProtocol(I, true))
+ return false;
+ }
+ }
+ // If there are no qualifiers and no interface, we have an 'id'.
+ return true;
+ }
+ // Both the right and left sides have qualifiers.
+ for (auto *lhsProto : lhsQID->quals()) {
+ bool match = false;
+
+ // when comparing an id<P> on lhs with a static type on rhs,
+ // see if static class implements all of id's protocols, directly or
+ // through its super class and categories.
+ for (auto *rhsProto : rhsOPT->quals()) {
+ if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
+ (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
+ match = true;
+ break;
+ }
+ }
+ // If the RHS is a qualified interface pointer "NSString<P>*",
+ // make sure we check the class hierarchy.
+ if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
+ for (auto *I : lhsQID->quals()) {
+ // when comparing an id<P> on lhs with a static type on rhs,
+ // see if static class implements all of id's protocols, directly or
+ // through its super class and categories.
+ if (rhsID->ClassImplementsProtocol(I, true)) {
+ match = true;
+ break;
+ }
+ }
+ }
+ if (!match)
+ return false;
+ }
+
+ return true;
+ }
+
+ const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
+ assert(rhsQID && "One of the LHS/RHS should be id<x>");
+
+ if (const ObjCObjectPointerType *lhsOPT =
+ lhs->getAsObjCInterfacePointerType()) {
+ // If both the right and left sides have qualifiers.
+ for (auto *lhsProto : lhsOPT->quals()) {
+ bool match = false;
+
+ // when comparing an id<P> on rhs with a static type on lhs,
+ // see if static class implements all of id's protocols, directly or
+ // through its super class and categories.
+ // First, lhs protocols in the qualifier list must be found, direct
+ // or indirect in rhs's qualifier list or it is a mismatch.
+ for (auto *rhsProto : rhsQID->quals()) {
+ if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
+ (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
+ match = true;
+ break;
+ }
+ }
+ if (!match)
+ return false;
+ }
+
+ // Static class's protocols, or its super class or category protocols
+ // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
+ if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
+ llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
+ CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
+ // This is rather dubious but matches gcc's behavior. If lhs has
+ // no type qualifier and its class has no static protocol(s)
+ // assume that it is mismatch.
+ if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
+ return false;
+ for (auto *lhsProto : LHSInheritedProtocols) {
+ bool match = false;
+ for (auto *rhsProto : rhsQID->quals()) {
+ if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
+ (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
+ match = true;
+ break;
+ }
+ }
+ if (!match)
+ return false;
+ }
+ }
+ return true;
+ }
+ return false;
+}
+
+/// canAssignObjCInterfaces - Return true if the two interface types are
+/// compatible for assignment from RHS to LHS. This handles validation of any
+/// protocol qualifiers on the LHS or RHS.
+///
+bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
+ const ObjCObjectPointerType *RHSOPT) {
+ const ObjCObjectType* LHS = LHSOPT->getObjectType();
+ const ObjCObjectType* RHS = RHSOPT->getObjectType();
+
+ // If either type represents the built-in 'id' or 'Class' types, return true.
+ if (LHS->isObjCUnqualifiedIdOrClass() ||
+ RHS->isObjCUnqualifiedIdOrClass())
+ return true;
+
+ if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
+ return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
+ QualType(RHSOPT,0),
+ false);
+
+ if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
+ return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
+ QualType(RHSOPT,0));
+
+ // If we have 2 user-defined types, fall into that path.
+ if (LHS->getInterface() && RHS->getInterface())
+ return canAssignObjCInterfaces(LHS, RHS);
+
+ return false;
+}
+
+/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
+/// for providing type-safety for objective-c pointers used to pass/return
+/// arguments in block literals. When passed as arguments, passing 'A*' where
+/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
+/// not OK. For the return type, the opposite is not OK.
+bool ASTContext::canAssignObjCInterfacesInBlockPointer(
+ const ObjCObjectPointerType *LHSOPT,
+ const ObjCObjectPointerType *RHSOPT,
+ bool BlockReturnType) {
+ if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
+ return true;
+
+ if (LHSOPT->isObjCBuiltinType()) {
+ return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
+ }
+
+ if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
+ return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
+ QualType(RHSOPT,0),
+ false);
+
+ const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
+ const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
+ if (LHS && RHS) { // We have 2 user-defined types.
+ if (LHS != RHS) {
+ if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
+ return BlockReturnType;
+ if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
+ return !BlockReturnType;
+ }
+ else
+ return true;
+ }
+ return false;
+}
+
+/// getIntersectionOfProtocols - This routine finds the intersection of set
+/// of protocols inherited from two distinct objective-c pointer objects.
+/// It is used to build composite qualifier list of the composite type of
+/// the conditional expression involving two objective-c pointer objects.
+static
+void getIntersectionOfProtocols(ASTContext &Context,
+ const ObjCObjectPointerType *LHSOPT,
+ const ObjCObjectPointerType *RHSOPT,
+ SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
+
+ const ObjCObjectType* LHS = LHSOPT->getObjectType();
+ const ObjCObjectType* RHS = RHSOPT->getObjectType();
+ assert(LHS->getInterface() && "LHS must have an interface base");
+ assert(RHS->getInterface() && "RHS must have an interface base");
+
+ llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
+ unsigned LHSNumProtocols = LHS->getNumProtocols();
+ if (LHSNumProtocols > 0)
+ InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
+ else {
+ llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
+ Context.CollectInheritedProtocols(LHS->getInterface(),
+ LHSInheritedProtocols);
+ InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
+ LHSInheritedProtocols.end());
+ }
+
+ unsigned RHSNumProtocols = RHS->getNumProtocols();
+ if (RHSNumProtocols > 0) {
+ ObjCProtocolDecl **RHSProtocols =
+ const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
+ for (unsigned i = 0; i < RHSNumProtocols; ++i)
+ if (InheritedProtocolSet.count(RHSProtocols[i]))
+ IntersectionOfProtocols.push_back(RHSProtocols[i]);
+ } else {
+ llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
+ Context.CollectInheritedProtocols(RHS->getInterface(),
+ RHSInheritedProtocols);
+ for (ObjCProtocolDecl *ProtDecl : RHSInheritedProtocols)
+ if (InheritedProtocolSet.count(ProtDecl))
+ IntersectionOfProtocols.push_back(ProtDecl);
+ }
+}
+
+/// areCommonBaseCompatible - Returns common base class of the two classes if
+/// one found. Note that this is O'2 algorithm. But it will be called as the
+/// last type comparison in a ?-exp of ObjC pointer types before a
+/// warning is issued. So, its invokation is extremely rare.
+QualType ASTContext::areCommonBaseCompatible(
+ const ObjCObjectPointerType *Lptr,
+ const ObjCObjectPointerType *Rptr) {
+ const ObjCObjectType *LHS = Lptr->getObjectType();
+ const ObjCObjectType *RHS = Rptr->getObjectType();
+ const ObjCInterfaceDecl* LDecl = LHS->getInterface();
+ const ObjCInterfaceDecl* RDecl = RHS->getInterface();
+ if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
+ return QualType();
+
+ do {
+ LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
+ if (canAssignObjCInterfaces(LHS, RHS)) {
+ SmallVector<ObjCProtocolDecl *, 8> Protocols;
+ getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
+
+ QualType Result = QualType(LHS, 0);
+ if (!Protocols.empty())
+ Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
+ Result = getObjCObjectPointerType(Result);
+ return Result;
+ }
+ } while ((LDecl = LDecl->getSuperClass()));
+
+ return QualType();
+}
+
+bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
+ const ObjCObjectType *RHS) {
+ assert(LHS->getInterface() && "LHS is not an interface type");
+ assert(RHS->getInterface() && "RHS is not an interface type");
+
+ // Verify that the base decls are compatible: the RHS must be a subclass of
+ // the LHS.
+ if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
+ return false;
+
+ // RHS must have a superset of the protocols in the LHS. If the LHS is not
+ // protocol qualified at all, then we are good.
+ if (LHS->getNumProtocols() == 0)
+ return true;
+
+ // Okay, we know the LHS has protocol qualifiers. But RHS may or may not.
+ // More detailed analysis is required.
+ // OK, if LHS is same or a superclass of RHS *and*
+ // this LHS, or as RHS's super class is assignment compatible with LHS.
+ bool IsSuperClass =
+ LHS->getInterface()->isSuperClassOf(RHS->getInterface());
+ if (IsSuperClass) {
+ // OK if conversion of LHS to SuperClass results in narrowing of types
+ // ; i.e., SuperClass may implement at least one of the protocols
+ // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
+ // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
+ llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
+ CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
+ // Also, if RHS has explicit quelifiers, include them for comparing with LHS's
+ // qualifiers.
+ for (auto *RHSPI : RHS->quals())
+ SuperClassInheritedProtocols.insert(RHSPI->getCanonicalDecl());
+ // If there is no protocols associated with RHS, it is not a match.
+ if (SuperClassInheritedProtocols.empty())
+ return false;
+
+ for (const auto *LHSProto : LHS->quals()) {
+ bool SuperImplementsProtocol = false;
+ for (auto *SuperClassProto : SuperClassInheritedProtocols)
+ if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
+ SuperImplementsProtocol = true;
+ break;
+ }
+ if (!SuperImplementsProtocol)
+ return false;
+ }
+ return true;
+ }
+ return false;
+}
+
+bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
+ // get the "pointed to" types
+ const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
+ const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
+
+ if (!LHSOPT || !RHSOPT)
+ return false;
+
+ return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
+ canAssignObjCInterfaces(RHSOPT, LHSOPT);
+}
+
+bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
+ return canAssignObjCInterfaces(
+ getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
+ getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
+}
+
+/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
+/// both shall have the identically qualified version of a compatible type.
+/// C99 6.2.7p1: Two types have compatible types if their types are the
+/// same. See 6.7.[2,3,5] for additional rules.
+bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
+ bool CompareUnqualified) {
+ if (getLangOpts().CPlusPlus)
+ return hasSameType(LHS, RHS);
+
+ return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
+}
+
+bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
+ return typesAreCompatible(LHS, RHS);
+}
+
+bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
+ return !mergeTypes(LHS, RHS, true).isNull();
+}
+
+/// mergeTransparentUnionType - if T is a transparent union type and a member
+/// of T is compatible with SubType, return the merged type, else return
+/// QualType()
+QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
+ bool OfBlockPointer,
+ bool Unqualified) {
+ if (const RecordType *UT = T->getAsUnionType()) {
+ RecordDecl *UD = UT->getDecl();
+ if (UD->hasAttr<TransparentUnionAttr>()) {
+ for (const auto *I : UD->fields()) {
+ QualType ET = I->getType().getUnqualifiedType();
+ QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
+ if (!MT.isNull())
+ return MT;
+ }
+ }
+ }
+
+ return QualType();
+}
+
+/// mergeFunctionParameterTypes - merge two types which appear as function
+/// parameter types
+QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs,
+ bool OfBlockPointer,
+ bool Unqualified) {
+ // GNU extension: two types are compatible if they appear as a function
+ // argument, one of the types is a transparent union type and the other
+ // type is compatible with a union member
+ QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
+ Unqualified);
+ if (!lmerge.isNull())
+ return lmerge;
+
+ QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
+ Unqualified);
+ if (!rmerge.isNull())
+ return rmerge;
+
+ return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
+}
+
+QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
+ bool OfBlockPointer,
+ bool Unqualified) {
+ const FunctionType *lbase = lhs->getAs<FunctionType>();
+ const FunctionType *rbase = rhs->getAs<FunctionType>();
+ const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
+ const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
+ bool allLTypes = true;
+ bool allRTypes = true;
+
+ // Check return type
+ QualType retType;
+ if (OfBlockPointer) {
+ QualType RHS = rbase->getReturnType();
+ QualType LHS = lbase->getReturnType();
+ bool UnqualifiedResult = Unqualified;
+ if (!UnqualifiedResult)
+ UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
+ retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
+ }
+ else
+ retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false,
+ Unqualified);
+ if (retType.isNull()) return QualType();
+
+ if (Unqualified)
+ retType = retType.getUnqualifiedType();
+
+ CanQualType LRetType = getCanonicalType(lbase->getReturnType());
+ CanQualType RRetType = getCanonicalType(rbase->getReturnType());
+ if (Unqualified) {
+ LRetType = LRetType.getUnqualifiedType();
+ RRetType = RRetType.getUnqualifiedType();
+ }
+
+ if (getCanonicalType(retType) != LRetType)
+ allLTypes = false;
+ if (getCanonicalType(retType) != RRetType)
+ allRTypes = false;
+
+ // FIXME: double check this
+ // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
+ // rbase->getRegParmAttr() != 0 &&
+ // lbase->getRegParmAttr() != rbase->getRegParmAttr()?
+ FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
+ FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
+
+ // Compatible functions must have compatible calling conventions
+ if (lbaseInfo.getCC() != rbaseInfo.getCC())
+ return QualType();
+
+ // Regparm is part of the calling convention.
+ if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
+ return QualType();
+ if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
+ return QualType();
+
+ if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
+ return QualType();
+
+ // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
+ bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
+
+ if (lbaseInfo.getNoReturn() != NoReturn)
+ allLTypes = false;
+ if (rbaseInfo.getNoReturn() != NoReturn)
+ allRTypes = false;
+
+ FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
+
+ if (lproto && rproto) { // two C99 style function prototypes
+ assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
+ "C++ shouldn't be here");
+ // Compatible functions must have the same number of parameters
+ if (lproto->getNumParams() != rproto->getNumParams())
+ return QualType();
+
+ // Variadic and non-variadic functions aren't compatible
+ if (lproto->isVariadic() != rproto->isVariadic())
+ return QualType();
+
+ if (lproto->getTypeQuals() != rproto->getTypeQuals())
+ return QualType();
+
+ if (LangOpts.ObjCAutoRefCount &&
+ !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
+ return QualType();
+
+ // Check parameter type compatibility
+ SmallVector<QualType, 10> types;
+ for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) {
+ QualType lParamType = lproto->getParamType(i).getUnqualifiedType();
+ QualType rParamType = rproto->getParamType(i).getUnqualifiedType();
+ QualType paramType = mergeFunctionParameterTypes(
+ lParamType, rParamType, OfBlockPointer, Unqualified);
+ if (paramType.isNull())
+ return QualType();
+
+ if (Unqualified)
+ paramType = paramType.getUnqualifiedType();
+
+ types.push_back(paramType);
+ if (Unqualified) {
+ lParamType = lParamType.getUnqualifiedType();
+ rParamType = rParamType.getUnqualifiedType();
+ }
+
+ if (getCanonicalType(paramType) != getCanonicalType(lParamType))
+ allLTypes = false;
+ if (getCanonicalType(paramType) != getCanonicalType(rParamType))
+ allRTypes = false;
+ }
+
+ if (allLTypes) return lhs;
+ if (allRTypes) return rhs;
+
+ FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
+ EPI.ExtInfo = einfo;
+ return getFunctionType(retType, types, EPI);
+ }
+
+ if (lproto) allRTypes = false;
+ if (rproto) allLTypes = false;
+
+ const FunctionProtoType *proto = lproto ? lproto : rproto;
+ if (proto) {
+ assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
+ if (proto->isVariadic()) return QualType();
+ // Check that the types are compatible with the types that
+ // would result from default argument promotions (C99 6.7.5.3p15).
+ // The only types actually affected are promotable integer
+ // types and floats, which would be passed as a different
+ // type depending on whether the prototype is visible.
+ for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) {
+ QualType paramTy = proto->getParamType(i);
+
+ // Look at the converted type of enum types, since that is the type used
+ // to pass enum values.
+ if (const EnumType *Enum = paramTy->getAs<EnumType>()) {
+ paramTy = Enum->getDecl()->getIntegerType();
+ if (paramTy.isNull())
+ return QualType();
+ }
+
+ if (paramTy->isPromotableIntegerType() ||
+ getCanonicalType(paramTy).getUnqualifiedType() == FloatTy)
+ return QualType();
+ }
+
+ if (allLTypes) return lhs;
+ if (allRTypes) return rhs;
+
+ FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
+ EPI.ExtInfo = einfo;
+ return getFunctionType(retType, proto->getParamTypes(), EPI);
+ }
+
+ if (allLTypes) return lhs;
+ if (allRTypes) return rhs;
+ return getFunctionNoProtoType(retType, einfo);
+}
+
+/// Given that we have an enum type and a non-enum type, try to merge them.
+static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
+ QualType other, bool isBlockReturnType) {
+ // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
+ // a signed integer type, or an unsigned integer type.
+ // Compatibility is based on the underlying type, not the promotion
+ // type.
+ QualType underlyingType = ET->getDecl()->getIntegerType();
+ if (underlyingType.isNull()) return QualType();
+ if (Context.hasSameType(underlyingType, other))
+ return other;
+
+ // In block return types, we're more permissive and accept any
+ // integral type of the same size.
+ if (isBlockReturnType && other->isIntegerType() &&
+ Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
+ return other;
+
+ return QualType();
+}
+
+QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
+ bool OfBlockPointer,
+ bool Unqualified, bool BlockReturnType) {
+ // C++ [expr]: If an expression initially has the type "reference to T", the
+ // type is adjusted to "T" prior to any further analysis, the expression
+ // designates the object or function denoted by the reference, and the
+ // expression is an lvalue unless the reference is an rvalue reference and
+ // the expression is a function call (possibly inside parentheses).
+ assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
+ assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
+
+ if (Unqualified) {
+ LHS = LHS.getUnqualifiedType();
+ RHS = RHS.getUnqualifiedType();
+ }
+
+ QualType LHSCan = getCanonicalType(LHS),
+ RHSCan = getCanonicalType(RHS);
+
+ // If two types are identical, they are compatible.
+ if (LHSCan == RHSCan)
+ return LHS;
+
+ // If the qualifiers are different, the types aren't compatible... mostly.
+ Qualifiers LQuals = LHSCan.getLocalQualifiers();
+ Qualifiers RQuals = RHSCan.getLocalQualifiers();
+ if (LQuals != RQuals) {
+ // If any of these qualifiers are different, we have a type
+ // mismatch.
+ if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
+ LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
+ LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
+ return QualType();
+
+ // Exactly one GC qualifier difference is allowed: __strong is
+ // okay if the other type has no GC qualifier but is an Objective
+ // C object pointer (i.e. implicitly strong by default). We fix
+ // this by pretending that the unqualified type was actually
+ // qualified __strong.
+ Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
+ Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
+ assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
+
+ if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
+ return QualType();
+
+ if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
+ return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
+ }
+ if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
+ return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
+ }
+ return QualType();
+ }
+
+ // Okay, qualifiers are equal.
+
+ Type::TypeClass LHSClass = LHSCan->getTypeClass();
+ Type::TypeClass RHSClass = RHSCan->getTypeClass();
+
+ // We want to consider the two function types to be the same for these
+ // comparisons, just force one to the other.
+ if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
+ if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
+
+ // Same as above for arrays
+ if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
+ LHSClass = Type::ConstantArray;
+ if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
+ RHSClass = Type::ConstantArray;
+
+ // ObjCInterfaces are just specialized ObjCObjects.
+ if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
+ if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
+
+ // Canonicalize ExtVector -> Vector.
+ if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
+ if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
+
+ // If the canonical type classes don't match.
+ if (LHSClass != RHSClass) {
+ // Note that we only have special rules for turning block enum
+ // returns into block int returns, not vice-versa.
+ if (const EnumType* ETy = LHS->getAs<EnumType>()) {
+ return mergeEnumWithInteger(*this, ETy, RHS, false);
+ }
+ if (const EnumType* ETy = RHS->getAs<EnumType>()) {
+ return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
+ }
+ // allow block pointer type to match an 'id' type.
+ if (OfBlockPointer && !BlockReturnType) {
+ if (LHS->isObjCIdType() && RHS->isBlockPointerType())
+ return LHS;
+ if (RHS->isObjCIdType() && LHS->isBlockPointerType())
+ return RHS;
+ }
+
+ return QualType();
+ }
+
+ // The canonical type classes match.
+ switch (LHSClass) {
+#define TYPE(Class, Base)
+#define ABSTRACT_TYPE(Class, Base)
+#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
+#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
+#define DEPENDENT_TYPE(Class, Base) case Type::Class:
+#include "clang/AST/TypeNodes.def"
+ llvm_unreachable("Non-canonical and dependent types shouldn't get here");
+
+ case Type::Auto:
+ case Type::LValueReference:
+ case Type::RValueReference:
+ case Type::MemberPointer:
+ llvm_unreachable("C++ should never be in mergeTypes");
+
+ case Type::ObjCInterface:
+ case Type::IncompleteArray:
+ case Type::VariableArray:
+ case Type::FunctionProto:
+ case Type::ExtVector:
+ llvm_unreachable("Types are eliminated above");
+
+ case Type::Pointer:
+ {
+ // Merge two pointer types, while trying to preserve typedef info
+ QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
+ QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
+ if (Unqualified) {
+ LHSPointee = LHSPointee.getUnqualifiedType();
+ RHSPointee = RHSPointee.getUnqualifiedType();
+ }
+ QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
+ Unqualified);
+ if (ResultType.isNull()) return QualType();
+ if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
+ return LHS;
+ if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
+ return RHS;
+ return getPointerType(ResultType);
+ }
+ case Type::BlockPointer:
+ {
+ // Merge two block pointer types, while trying to preserve typedef info
+ QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
+ QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
+ if (Unqualified) {
+ LHSPointee = LHSPointee.getUnqualifiedType();
+ RHSPointee = RHSPointee.getUnqualifiedType();
+ }
+ QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
+ Unqualified);
+ if (ResultType.isNull()) return QualType();
+ if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
+ return LHS;
+ if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
+ return RHS;
+ return getBlockPointerType(ResultType);
+ }
+ case Type::Atomic:
+ {
+ // Merge two pointer types, while trying to preserve typedef info
+ QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
+ QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
+ if (Unqualified) {
+ LHSValue = LHSValue.getUnqualifiedType();
+ RHSValue = RHSValue.getUnqualifiedType();
+ }
+ QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
+ Unqualified);
+ if (ResultType.isNull()) return QualType();
+ if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
+ return LHS;
+ if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
+ return RHS;
+ return getAtomicType(ResultType);
+ }
+ case Type::ConstantArray:
+ {
+ const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
+ const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
+ if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
+ return QualType();
+
+ QualType LHSElem = getAsArrayType(LHS)->getElementType();
+ QualType RHSElem = getAsArrayType(RHS)->getElementType();
+ if (Unqualified) {
+ LHSElem = LHSElem.getUnqualifiedType();
+ RHSElem = RHSElem.getUnqualifiedType();
+ }
+
+ QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
+ if (ResultType.isNull()) return QualType();
+ if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
+ return LHS;
+ if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
+ return RHS;
+ if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
+ ArrayType::ArraySizeModifier(), 0);
+ if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
+ ArrayType::ArraySizeModifier(), 0);
+ const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
+ const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
+ if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
+ return LHS;
+ if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
+ return RHS;
+ if (LVAT) {
+ // FIXME: This isn't correct! But tricky to implement because
+ // the array's size has to be the size of LHS, but the type
+ // has to be different.
+ return LHS;
+ }
+ if (RVAT) {
+ // FIXME: This isn't correct! But tricky to implement because
+ // the array's size has to be the size of RHS, but the type
+ // has to be different.
+ return RHS;
+ }
+ if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
+ if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
+ return getIncompleteArrayType(ResultType,
+ ArrayType::ArraySizeModifier(), 0);
+ }
+ case Type::FunctionNoProto:
+ return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
+ case Type::Record:
+ case Type::Enum:
+ return QualType();
+ case Type::Builtin:
+ // Only exactly equal builtin types are compatible, which is tested above.
+ return QualType();
+ case Type::Complex:
+ // Distinct complex types are incompatible.
+ return QualType();
+ case Type::Vector:
+ // FIXME: The merged type should be an ExtVector!
+ if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
+ RHSCan->getAs<VectorType>()))
+ return LHS;
+ return QualType();
+ case Type::ObjCObject: {
+ // Check if the types are assignment compatible.
+ // FIXME: This should be type compatibility, e.g. whether
+ // "LHS x; RHS x;" at global scope is legal.
+ const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
+ const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
+ if (canAssignObjCInterfaces(LHSIface, RHSIface))
+ return LHS;
+
+ return QualType();
+ }
+ case Type::ObjCObjectPointer: {
+ if (OfBlockPointer) {
+ if (canAssignObjCInterfacesInBlockPointer(
+ LHS->getAs<ObjCObjectPointerType>(),
+ RHS->getAs<ObjCObjectPointerType>(),
+ BlockReturnType))
+ return LHS;
+ return QualType();
+ }
+ if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
+ RHS->getAs<ObjCObjectPointerType>()))
+ return LHS;
+
+ return QualType();
+ }
+ }
+
+ llvm_unreachable("Invalid Type::Class!");
+}
+
+bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
+ const FunctionProtoType *FromFunctionType,
+ const FunctionProtoType *ToFunctionType) {
+ if (FromFunctionType->hasAnyConsumedParams() !=
+ ToFunctionType->hasAnyConsumedParams())
+ return false;
+ FunctionProtoType::ExtProtoInfo FromEPI =
+ FromFunctionType->getExtProtoInfo();
+ FunctionProtoType::ExtProtoInfo ToEPI =
+ ToFunctionType->getExtProtoInfo();
+ if (FromEPI.ConsumedParameters && ToEPI.ConsumedParameters)
+ for (unsigned i = 0, n = FromFunctionType->getNumParams(); i != n; ++i) {
+ if (FromEPI.ConsumedParameters[i] != ToEPI.ConsumedParameters[i])
+ return false;
+ }
+ return true;
+}
+
+/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
+/// 'RHS' attributes and returns the merged version; including for function
+/// return types.
+QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
+ QualType LHSCan = getCanonicalType(LHS),
+ RHSCan = getCanonicalType(RHS);
+ // If two types are identical, they are compatible.
+ if (LHSCan == RHSCan)
+ return LHS;
+ if (RHSCan->isFunctionType()) {
+ if (!LHSCan->isFunctionType())
+ return QualType();
+ QualType OldReturnType =
+ cast<FunctionType>(RHSCan.getTypePtr())->getReturnType();
+ QualType NewReturnType =
+ cast<FunctionType>(LHSCan.getTypePtr())->getReturnType();
+ QualType ResReturnType =
+ mergeObjCGCQualifiers(NewReturnType, OldReturnType);
+ if (ResReturnType.isNull())
+ return QualType();
+ if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
+ // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
+ // In either case, use OldReturnType to build the new function type.
+ const FunctionType *F = LHS->getAs<FunctionType>();
+ if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
+ FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
+ EPI.ExtInfo = getFunctionExtInfo(LHS);
+ QualType ResultType =
+ getFunctionType(OldReturnType, FPT->getParamTypes(), EPI);
+ return ResultType;
+ }
+ }
+ return QualType();
+ }
+
+ // If the qualifiers are different, the types can still be merged.
+ Qualifiers LQuals = LHSCan.getLocalQualifiers();
+ Qualifiers RQuals = RHSCan.getLocalQualifiers();
+ if (LQuals != RQuals) {
+ // If any of these qualifiers are different, we have a type mismatch.
+ if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
+ LQuals.getAddressSpace() != RQuals.getAddressSpace())
+ return QualType();
+
+ // Exactly one GC qualifier difference is allowed: __strong is
+ // okay if the other type has no GC qualifier but is an Objective
+ // C object pointer (i.e. implicitly strong by default). We fix
+ // this by pretending that the unqualified type was actually
+ // qualified __strong.
+ Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
+ Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
+ assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
+
+ if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
+ return QualType();
+
+ if (GC_L == Qualifiers::Strong)
+ return LHS;
+ if (GC_R == Qualifiers::Strong)
+ return RHS;
+ return QualType();
+ }
+
+ if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
+ QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
+ QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
+ QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
+ if (ResQT == LHSBaseQT)
+ return LHS;
+ if (ResQT == RHSBaseQT)
+ return RHS;
+ }
+ return QualType();
+}
+
+//===----------------------------------------------------------------------===//
+// Integer Predicates
+//===----------------------------------------------------------------------===//
+
+unsigned ASTContext::getIntWidth(QualType T) const {
+ if (const EnumType *ET = T->getAs<EnumType>())
+ T = ET->getDecl()->getIntegerType();
+ if (T->isBooleanType())
+ return 1;
+ // For builtin types, just use the standard type sizing method
+ return (unsigned)getTypeSize(T);
+}
+
+QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
+ assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
+
+ // Turn <4 x signed int> -> <4 x unsigned int>
+ if (const VectorType *VTy = T->getAs<VectorType>())
+ return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
+ VTy->getNumElements(), VTy->getVectorKind());
+
+ // For enums, we return the unsigned version of the base type.
+ if (const EnumType *ETy = T->getAs<EnumType>())
+ T = ETy->getDecl()->getIntegerType();
+
+ const BuiltinType *BTy = T->getAs<BuiltinType>();
+ assert(BTy && "Unexpected signed integer type");
+ switch (BTy->getKind()) {
+ case BuiltinType::Char_S:
+ case BuiltinType::SChar:
+ return UnsignedCharTy;
+ case BuiltinType::Short:
+ return UnsignedShortTy;
+ case BuiltinType::Int:
+ return UnsignedIntTy;
+ case BuiltinType::Long:
+ return UnsignedLongTy;
+ case BuiltinType::LongLong:
+ return UnsignedLongLongTy;
+ case BuiltinType::Int128:
+ return UnsignedInt128Ty;
+ default:
+ llvm_unreachable("Unexpected signed integer type");
+ }
+}
+
+ASTMutationListener::~ASTMutationListener() { }
+
+void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
+ QualType ReturnType) {}
+
+//===----------------------------------------------------------------------===//
+// Builtin Type Computation
+//===----------------------------------------------------------------------===//
+
+/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
+/// pointer over the consumed characters. This returns the resultant type. If
+/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
+/// types. This allows "v2i*" to be parsed as a pointer to a v2i instead of
+/// a vector of "i*".
+///
+/// RequiresICE is filled in on return to indicate whether the value is required
+/// to be an Integer Constant Expression.
+static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
+ ASTContext::GetBuiltinTypeError &Error,
+ bool &RequiresICE,
+ bool AllowTypeModifiers) {
+ // Modifiers.
+ int HowLong = 0;
+ bool Signed = false, Unsigned = false;
+ RequiresICE = false;
+
+ // Read the prefixed modifiers first.
+ bool Done = false;
+ while (!Done) {
+ switch (*Str++) {
+ default: Done = true; --Str; break;
+ case 'I':
+ RequiresICE = true;
+ break;
+ case 'S':
+ assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
+ assert(!Signed && "Can't use 'S' modifier multiple times!");
+ Signed = true;
+ break;
+ case 'U':
+ assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
+ assert(!Unsigned && "Can't use 'U' modifier multiple times!");
+ Unsigned = true;
+ break;
+ case 'L':
+ assert(HowLong <= 2 && "Can't have LLLL modifier");
+ ++HowLong;
+ break;
+ case 'W':
+ // This modifier represents int64 type.
+ assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!");
+ switch (Context.getTargetInfo().getInt64Type()) {
+ default:
+ llvm_unreachable("Unexpected integer type");
+ case TargetInfo::SignedLong:
+ HowLong = 1;
+ break;
+ case TargetInfo::SignedLongLong:
+ HowLong = 2;
+ break;
+ }
+ }
+ }
+
+ QualType Type;
+
+ // Read the base type.
+ switch (*Str++) {
+ default: llvm_unreachable("Unknown builtin type letter!");
+ case 'v':
+ assert(HowLong == 0 && !Signed && !Unsigned &&
+ "Bad modifiers used with 'v'!");
+ Type = Context.VoidTy;
+ break;
+ case 'h':
+ assert(HowLong == 0 && !Signed && !Unsigned &&
+ "Bad modifiers used with 'h'!");
+ Type = Context.HalfTy;
+ break;
+ case 'f':
+ assert(HowLong == 0 && !Signed && !Unsigned &&
+ "Bad modifiers used with 'f'!");
+ Type = Context.FloatTy;
+ break;
+ case 'd':
+ assert(HowLong < 2 && !Signed && !Unsigned &&
+ "Bad modifiers used with 'd'!");
+ if (HowLong)
+ Type = Context.LongDoubleTy;
+ else
+ Type = Context.DoubleTy;
+ break;
+ case 's':
+ assert(HowLong == 0 && "Bad modifiers used with 's'!");
+ if (Unsigned)
+ Type = Context.UnsignedShortTy;
+ else
+ Type = Context.ShortTy;
+ break;
+ case 'i':
+ if (HowLong == 3)
+ Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
+ else if (HowLong == 2)
+ Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
+ else if (HowLong == 1)
+ Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
+ else
+ Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
+ break;
+ case 'c':
+ assert(HowLong == 0 && "Bad modifiers used with 'c'!");
+ if (Signed)
+ Type = Context.SignedCharTy;
+ else if (Unsigned)
+ Type = Context.UnsignedCharTy;
+ else
+ Type = Context.CharTy;
+ break;
+ case 'b': // boolean
+ assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
+ Type = Context.BoolTy;
+ break;
+ case 'z': // size_t.
+ assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
+ Type = Context.getSizeType();
+ break;
+ case 'F':
+ Type = Context.getCFConstantStringType();
+ break;
+ case 'G':
+ Type = Context.getObjCIdType();
+ break;
+ case 'H':
+ Type = Context.getObjCSelType();
+ break;
+ case 'M':
+ Type = Context.getObjCSuperType();
+ break;
+ case 'a':
+ Type = Context.getBuiltinVaListType();
+ assert(!Type.isNull() && "builtin va list type not initialized!");
+ break;
+ case 'A':
+ // This is a "reference" to a va_list; however, what exactly
+ // this means depends on how va_list is defined. There are two
+ // different kinds of va_list: ones passed by value, and ones
+ // passed by reference. An example of a by-value va_list is
+ // x86, where va_list is a char*. An example of by-ref va_list
+ // is x86-64, where va_list is a __va_list_tag[1]. For x86,
+ // we want this argument to be a char*&; for x86-64, we want
+ // it to be a __va_list_tag*.
+ Type = Context.getBuiltinVaListType();
+ assert(!Type.isNull() && "builtin va list type not initialized!");
+ if (Type->isArrayType())
+ Type = Context.getArrayDecayedType(Type);
+ else
+ Type = Context.getLValueReferenceType(Type);
+ break;
+ case 'V': {
+ char *End;
+ unsigned NumElements = strtoul(Str, &End, 10);
+ assert(End != Str && "Missing vector size");
+ Str = End;
+
+ QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
+ RequiresICE, false);
+ assert(!RequiresICE && "Can't require vector ICE");
+
+ // TODO: No way to make AltiVec vectors in builtins yet.
+ Type = Context.getVectorType(ElementType, NumElements,
+ VectorType::GenericVector);
+ break;
+ }
+ case 'E': {
+ char *End;
+
+ unsigned NumElements = strtoul(Str, &End, 10);
+ assert(End != Str && "Missing vector size");
+
+ Str = End;
+
+ QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
+ false);
+ Type = Context.getExtVectorType(ElementType, NumElements);
+ break;
+ }
+ case 'X': {
+ QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
+ false);
+ assert(!RequiresICE && "Can't require complex ICE");
+ Type = Context.getComplexType(ElementType);
+ break;
+ }
+ case 'Y' : {
+ Type = Context.getPointerDiffType();
+ break;
+ }
+ case 'P':
+ Type = Context.getFILEType();
+ if (Type.isNull()) {
+ Error = ASTContext::GE_Missing_stdio;
+ return QualType();
+ }
+ break;
+ case 'J':
+ if (Signed)
+ Type = Context.getsigjmp_bufType();
+ else
+ Type = Context.getjmp_bufType();
+
+ if (Type.isNull()) {
+ Error = ASTContext::GE_Missing_setjmp;
+ return QualType();
+ }
+ break;
+ case 'K':
+ assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
+ Type = Context.getucontext_tType();
+
+ if (Type.isNull()) {
+ Error = ASTContext::GE_Missing_ucontext;
+ return QualType();
+ }
+ break;
+ case 'p':
+ Type = Context.getProcessIDType();
+ break;
+ }
+
+ // If there are modifiers and if we're allowed to parse them, go for it.
+ Done = !AllowTypeModifiers;
+ while (!Done) {
+ switch (char c = *Str++) {
+ default: Done = true; --Str; break;
+ case '*':
+ case '&': {
+ // Both pointers and references can have their pointee types
+ // qualified with an address space.
+ char *End;
+ unsigned AddrSpace = strtoul(Str, &End, 10);
+ if (End != Str && AddrSpace != 0) {
+ Type = Context.getAddrSpaceQualType(Type, AddrSpace);
+ Str = End;
+ }
+ if (c == '*')
+ Type = Context.getPointerType(Type);
+ else
+ Type = Context.getLValueReferenceType(Type);
+ break;
+ }
+ // FIXME: There's no way to have a built-in with an rvalue ref arg.
+ case 'C':
+ Type = Type.withConst();
+ break;
+ case 'D':
+ Type = Context.getVolatileType(Type);
+ break;
+ case 'R':
+ Type = Type.withRestrict();
+ break;
+ }
+ }
+
+ assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
+ "Integer constant 'I' type must be an integer");
+
+ return Type;
+}
+
+/// GetBuiltinType - Return the type for the specified builtin.
+QualType ASTContext::GetBuiltinType(unsigned Id,
+ GetBuiltinTypeError &Error,
+ unsigned *IntegerConstantArgs) const {
+ const char *TypeStr = BuiltinInfo.GetTypeString(Id);
+
+ SmallVector<QualType, 8> ArgTypes;
+
+ bool RequiresICE = false;
+ Error = GE_None;
+ QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
+ RequiresICE, true);
+ if (Error != GE_None)
+ return QualType();
+
+ assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
+
+ while (TypeStr[0] && TypeStr[0] != '.') {
+ QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
+ if (Error != GE_None)
+ return QualType();
+
+ // If this argument is required to be an IntegerConstantExpression and the
+ // caller cares, fill in the bitmask we return.
+ if (RequiresICE && IntegerConstantArgs)
+ *IntegerConstantArgs |= 1 << ArgTypes.size();
+
+ // Do array -> pointer decay. The builtin should use the decayed type.
+ if (Ty->isArrayType())
+ Ty = getArrayDecayedType(Ty);
+
+ ArgTypes.push_back(Ty);
+ }
+
+ if (Id == Builtin::BI__GetExceptionInfo)
+ return QualType();
+
+ assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
+ "'.' should only occur at end of builtin type list!");
+
+ FunctionType::ExtInfo EI(CC_C);
+ if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
+
+ bool Variadic = (TypeStr[0] == '.');
+
+ // We really shouldn't be making a no-proto type here, especially in C++.
+ if (ArgTypes.empty() && Variadic)
+ return getFunctionNoProtoType(ResType, EI);
+
+ FunctionProtoType::ExtProtoInfo EPI;
+ EPI.ExtInfo = EI;
+ EPI.Variadic = Variadic;
+
+ return getFunctionType(ResType, ArgTypes, EPI);
+}
+
+static GVALinkage basicGVALinkageForFunction(const ASTContext &Context,
+ const FunctionDecl *FD) {
+ if (!FD->isExternallyVisible())
+ return GVA_Internal;
+
+ GVALinkage External = GVA_StrongExternal;
+ switch (FD->getTemplateSpecializationKind()) {
+ case TSK_Undeclared:
+ case TSK_ExplicitSpecialization:
+ External = GVA_StrongExternal;
+ break;
+
+ case TSK_ExplicitInstantiationDefinition:
+ return GVA_StrongODR;
+
+ // C++11 [temp.explicit]p10:
+ // [ Note: The intent is that an inline function that is the subject of
+ // an explicit instantiation declaration will still be implicitly
+ // instantiated when used so that the body can be considered for
+ // inlining, but that no out-of-line copy of the inline function would be
+ // generated in the translation unit. -- end note ]
+ case TSK_ExplicitInstantiationDeclaration:
+ return GVA_AvailableExternally;
+
+ case TSK_ImplicitInstantiation:
+ External = GVA_DiscardableODR;
+ break;
+ }
+
+ if (!FD->isInlined())
+ return External;
+
+ if ((!Context.getLangOpts().CPlusPlus && !Context.getLangOpts().MSVCCompat &&
+ !FD->hasAttr<DLLExportAttr>()) ||
+ FD->hasAttr<GNUInlineAttr>()) {
+ // FIXME: This doesn't match gcc's behavior for dllexport inline functions.
+
+ // GNU or C99 inline semantics. Determine whether this symbol should be
+ // externally visible.
+ if (FD->isInlineDefinitionExternallyVisible())
+ return External;
+
+ // C99 inline semantics, where the symbol is not externally visible.
+ return GVA_AvailableExternally;
+ }
+
+ // Functions specified with extern and inline in -fms-compatibility mode
+ // forcibly get emitted. While the body of the function cannot be later
+ // replaced, the function definition cannot be discarded.
+ if (FD->isMSExternInline())
+ return GVA_StrongODR;
+
+ return GVA_DiscardableODR;
+}
+
+static GVALinkage adjustGVALinkageForDLLAttribute(GVALinkage L, const Decl *D) {
+ // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx
+ // dllexport/dllimport on inline functions.
+ if (D->hasAttr<DLLImportAttr>()) {
+ if (L == GVA_DiscardableODR || L == GVA_StrongODR)
+ return GVA_AvailableExternally;
+ } else if (D->hasAttr<DLLExportAttr>()) {
+ if (L == GVA_DiscardableODR)
+ return GVA_StrongODR;
+ }
+ return L;
+}
+
+GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const {
+ return adjustGVALinkageForDLLAttribute(basicGVALinkageForFunction(*this, FD),
+ FD);
+}
+
+static GVALinkage basicGVALinkageForVariable(const ASTContext &Context,
+ const VarDecl *VD) {
+ if (!VD->isExternallyVisible())
+ return GVA_Internal;
+
+ if (VD->isStaticLocal()) {
+ GVALinkage StaticLocalLinkage = GVA_DiscardableODR;
+ const DeclContext *LexicalContext = VD->getParentFunctionOrMethod();
+ while (LexicalContext && !isa<FunctionDecl>(LexicalContext))
+ LexicalContext = LexicalContext->getLexicalParent();
+
+ // Let the static local variable inherit its linkage from the nearest
+ // enclosing function.
+ if (LexicalContext)
+ StaticLocalLinkage =
+ Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext));
+
+ // GVA_StrongODR function linkage is stronger than what we need,
+ // downgrade to GVA_DiscardableODR.
+ // This allows us to discard the variable if we never end up needing it.
+ return StaticLocalLinkage == GVA_StrongODR ? GVA_DiscardableODR
+ : StaticLocalLinkage;
+ }
+
+ // MSVC treats in-class initialized static data members as definitions.
+ // By giving them non-strong linkage, out-of-line definitions won't
+ // cause link errors.
+ if (Context.isMSStaticDataMemberInlineDefinition(VD))
+ return GVA_DiscardableODR;
+
+ switch (VD->getTemplateSpecializationKind()) {
+ case TSK_Undeclared:
+ case TSK_ExplicitSpecialization:
+ return GVA_StrongExternal;
+
+ case TSK_ExplicitInstantiationDefinition:
+ return GVA_StrongODR;
+
+ case TSK_ExplicitInstantiationDeclaration:
+ return GVA_AvailableExternally;
+
+ case TSK_ImplicitInstantiation:
+ return GVA_DiscardableODR;
+ }
+
+ llvm_unreachable("Invalid Linkage!");
+}
+
+GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
+ return adjustGVALinkageForDLLAttribute(basicGVALinkageForVariable(*this, VD),
+ VD);
+}
+
+bool ASTContext::DeclMustBeEmitted(const Decl *D) {
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
+ if (!VD->isFileVarDecl())
+ return false;
+ // Global named register variables (GNU extension) are never emitted.
+ if (VD->getStorageClass() == SC_Register)
+ return false;
+ } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ // We never need to emit an uninstantiated function template.
+ if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
+ return false;
+ } else if (isa<OMPThreadPrivateDecl>(D))
+ return true;
+ else
+ return false;
+
+ // If this is a member of a class template, we do not need to emit it.
+ if (D->getDeclContext()->isDependentContext())
+ return false;
+
+ // Weak references don't produce any output by themselves.
+ if (D->hasAttr<WeakRefAttr>())
+ return false;
+
+ // Aliases and used decls are required.
+ if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
+ return true;
+
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ // Forward declarations aren't required.
+ if (!FD->doesThisDeclarationHaveABody())
+ return FD->doesDeclarationForceExternallyVisibleDefinition();
+
+ // Constructors and destructors are required.
+ if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
+ return true;
+
+ // The key function for a class is required. This rule only comes
+ // into play when inline functions can be key functions, though.
+ if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
+ const CXXRecordDecl *RD = MD->getParent();
+ if (MD->isOutOfLine() && RD->isDynamicClass()) {
+ const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
+ if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
+ return true;
+ }
+ }
+ }
+
+ GVALinkage Linkage = GetGVALinkageForFunction(FD);
+
+ // static, static inline, always_inline, and extern inline functions can
+ // always be deferred. Normal inline functions can be deferred in C99/C++.
+ // Implicit template instantiations can also be deferred in C++.
+ if (Linkage == GVA_Internal || Linkage == GVA_AvailableExternally ||
+ Linkage == GVA_DiscardableODR)
+ return false;
+ return true;
+ }
+
+ const VarDecl *VD = cast<VarDecl>(D);
+ assert(VD->isFileVarDecl() && "Expected file scoped var");
+
+ if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly &&
+ !isMSStaticDataMemberInlineDefinition(VD))
+ return false;
+
+ // Variables that can be needed in other TUs are required.
+ GVALinkage L = GetGVALinkageForVariable(VD);
+ if (L != GVA_Internal && L != GVA_AvailableExternally &&
+ L != GVA_DiscardableODR)
+ return true;
+
+ // Variables that have destruction with side-effects are required.
+ if (VD->getType().isDestructedType())
+ return true;
+
+ // Variables that have initialization with side-effects are required.
+ if (VD->getInit() && VD->getInit()->HasSideEffects(*this))
+ return true;
+
+ return false;
+}
+
+CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic,
+ bool IsCXXMethod) const {
+ // Pass through to the C++ ABI object
+ if (IsCXXMethod)
+ return ABI->getDefaultMethodCallConv(IsVariadic);
+
+ if (LangOpts.MRTD && !IsVariadic) return CC_X86StdCall;
+
+ return Target->getDefaultCallingConv(TargetInfo::CCMT_Unknown);
+}
+
+bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
+ // Pass through to the C++ ABI object
+ return ABI->isNearlyEmpty(RD);
+}
+
+VTableContextBase *ASTContext::getVTableContext() {
+ if (!VTContext.get()) {
+ if (Target->getCXXABI().isMicrosoft())
+ VTContext.reset(new MicrosoftVTableContext(*this));
+ else
+ VTContext.reset(new ItaniumVTableContext(*this));
+ }
+ return VTContext.get();
+}
+
+MangleContext *ASTContext::createMangleContext() {
+ switch (Target->getCXXABI().getKind()) {
+ case TargetCXXABI::GenericAArch64:
+ case TargetCXXABI::GenericItanium:
+ case TargetCXXABI::GenericARM:
+ case TargetCXXABI::GenericMIPS:
+ case TargetCXXABI::iOS:
+ case TargetCXXABI::iOS64:
+ return ItaniumMangleContext::create(*this, getDiagnostics());
+ case TargetCXXABI::Microsoft:
+ return MicrosoftMangleContext::create(*this, getDiagnostics());
+ }
+ llvm_unreachable("Unsupported ABI");
+}
+
+CXXABI::~CXXABI() {}
+
+size_t ASTContext::getSideTableAllocatedMemory() const {
+ return ASTRecordLayouts.getMemorySize() +
+ llvm::capacity_in_bytes(ObjCLayouts) +
+ llvm::capacity_in_bytes(KeyFunctions) +
+ llvm::capacity_in_bytes(ObjCImpls) +
+ llvm::capacity_in_bytes(BlockVarCopyInits) +
+ llvm::capacity_in_bytes(DeclAttrs) +
+ llvm::capacity_in_bytes(TemplateOrInstantiation) +
+ llvm::capacity_in_bytes(InstantiatedFromUsingDecl) +
+ llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) +
+ llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) +
+ llvm::capacity_in_bytes(OverriddenMethods) +
+ llvm::capacity_in_bytes(Types) +
+ llvm::capacity_in_bytes(VariableArrayTypes) +
+ llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
+}
+
+/// getIntTypeForBitwidth -
+/// sets integer QualTy according to specified details:
+/// bitwidth, signed/unsigned.
+/// Returns empty type if there is no appropriate target types.
+QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth,
+ unsigned Signed) const {
+ TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed);
+ CanQualType QualTy = getFromTargetType(Ty);
+ if (!QualTy && DestWidth == 128)
+ return Signed ? Int128Ty : UnsignedInt128Ty;
+ return QualTy;
+}
+
+/// getRealTypeForBitwidth -
+/// sets floating point QualTy according to specified bitwidth.
+/// Returns empty type if there is no appropriate target types.
+QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth) const {
+ TargetInfo::RealType Ty = getTargetInfo().getRealTypeByWidth(DestWidth);
+ switch (Ty) {
+ case TargetInfo::Float:
+ return FloatTy;
+ case TargetInfo::Double:
+ return DoubleTy;
+ case TargetInfo::LongDouble:
+ return LongDoubleTy;
+ case TargetInfo::NoFloat:
+ return QualType();
+ }
+
+ llvm_unreachable("Unhandled TargetInfo::RealType value");
+}
+
+void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) {
+ if (Number > 1)
+ MangleNumbers[ND] = Number;
+}
+
+unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const {
+ llvm::DenseMap<const NamedDecl *, unsigned>::const_iterator I =
+ MangleNumbers.find(ND);
+ return I != MangleNumbers.end() ? I->second : 1;
+}
+
+void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) {
+ if (Number > 1)
+ StaticLocalNumbers[VD] = Number;
+}
+
+unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const {
+ llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I =
+ StaticLocalNumbers.find(VD);
+ return I != StaticLocalNumbers.end() ? I->second : 1;
+}
+
+MangleNumberingContext &
+ASTContext::getManglingNumberContext(const DeclContext *DC) {
+ assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C.
+ MangleNumberingContext *&MCtx = MangleNumberingContexts[DC];
+ if (!MCtx)
+ MCtx = createMangleNumberingContext();
+ return *MCtx;
+}
+
+MangleNumberingContext *ASTContext::createMangleNumberingContext() const {
+ return ABI->createMangleNumberingContext();
+}
+
+const CXXConstructorDecl *
+ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) {
+ return ABI->getCopyConstructorForExceptionObject(
+ cast<CXXRecordDecl>(RD->getFirstDecl()));
+}
+
+void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
+ CXXConstructorDecl *CD) {
+ return ABI->addCopyConstructorForExceptionObject(
+ cast<CXXRecordDecl>(RD->getFirstDecl()),
+ cast<CXXConstructorDecl>(CD->getFirstDecl()));
+}
+
+void ASTContext::addDefaultArgExprForConstructor(const CXXConstructorDecl *CD,
+ unsigned ParmIdx, Expr *DAE) {
+ ABI->addDefaultArgExprForConstructor(
+ cast<CXXConstructorDecl>(CD->getFirstDecl()), ParmIdx, DAE);
+}
+
+Expr *ASTContext::getDefaultArgExprForConstructor(const CXXConstructorDecl *CD,
+ unsigned ParmIdx) {
+ return ABI->getDefaultArgExprForConstructor(
+ cast<CXXConstructorDecl>(CD->getFirstDecl()), ParmIdx);
+}
+
+void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
+ ParamIndices[D] = index;
+}
+
+unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
+ ParameterIndexTable::const_iterator I = ParamIndices.find(D);
+ assert(I != ParamIndices.end() &&
+ "ParmIndices lacks entry set by ParmVarDecl");
+ return I->second;
+}
+
+APValue *
+ASTContext::getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E,
+ bool MayCreate) {
+ assert(E && E->getStorageDuration() == SD_Static &&
+ "don't need to cache the computed value for this temporary");
+ if (MayCreate)
+ return &MaterializedTemporaryValues[E];
+
+ llvm::DenseMap<const MaterializeTemporaryExpr *, APValue>::iterator I =
+ MaterializedTemporaryValues.find(E);
+ return I == MaterializedTemporaryValues.end() ? nullptr : &I->second;
+}
+
+bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const {
+ const llvm::Triple &T = getTargetInfo().getTriple();
+ if (!T.isOSDarwin())
+ return false;
+
+ if (!(T.isiOS() && T.isOSVersionLT(7)) &&
+ !(T.isMacOSX() && T.isOSVersionLT(10, 9)))
+ return false;
+
+ QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
+ CharUnits sizeChars = getTypeSizeInChars(AtomicTy);
+ uint64_t Size = sizeChars.getQuantity();
+ CharUnits alignChars = getTypeAlignInChars(AtomicTy);
+ unsigned Align = alignChars.getQuantity();
+ unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth();
+ return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits);
+}
+
+namespace {
+
+ /// \brief A \c RecursiveASTVisitor that builds a map from nodes to their
+ /// parents as defined by the \c RecursiveASTVisitor.
+ ///
+ /// Note that the relationship described here is purely in terms of AST
+ /// traversal - there are other relationships (for example declaration context)
+ /// in the AST that are better modeled by special matchers.
+ ///
+ /// FIXME: Currently only builds up the map using \c Stmt and \c Decl nodes.
+ class ParentMapASTVisitor : public RecursiveASTVisitor<ParentMapASTVisitor> {
+
+ public:
+ /// \brief Builds and returns the translation unit's parent map.
+ ///
+ /// The caller takes ownership of the returned \c ParentMap.
+ static ASTContext::ParentMap *buildMap(TranslationUnitDecl &TU) {
+ ParentMapASTVisitor Visitor(new ASTContext::ParentMap);
+ Visitor.TraverseDecl(&TU);
+ return Visitor.Parents;
+ }
+
+ private:
+ typedef RecursiveASTVisitor<ParentMapASTVisitor> VisitorBase;
+
+ ParentMapASTVisitor(ASTContext::ParentMap *Parents) : Parents(Parents) {
+ }
+
+ bool shouldVisitTemplateInstantiations() const {
+ return true;
+ }
+ bool shouldVisitImplicitCode() const {
+ return true;
+ }
+ // Disables data recursion. We intercept Traverse* methods in the RAV, which
+ // are not triggered during data recursion.
+ bool shouldUseDataRecursionFor(clang::Stmt *S) const {
+ return false;
+ }
+
+ template <typename T>
+ bool TraverseNode(T *Node, bool(VisitorBase:: *traverse) (T *)) {
+ if (!Node)
+ return true;
+ if (ParentStack.size() > 0) {
+ // FIXME: Currently we add the same parent multiple times, but only
+ // when no memoization data is available for the type.
+ // For example when we visit all subexpressions of template
+ // instantiations; this is suboptimal, but benign: the only way to
+ // visit those is with hasAncestor / hasParent, and those do not create
+ // new matches.
+ // The plan is to enable DynTypedNode to be storable in a map or hash
+ // map. The main problem there is to implement hash functions /
+ // comparison operators for all types that DynTypedNode supports that
+ // do not have pointer identity.
+ auto &NodeOrVector = (*Parents)[Node];
+ if (NodeOrVector.isNull()) {
+ NodeOrVector = new ast_type_traits::DynTypedNode(ParentStack.back());
+ } else {
+ if (NodeOrVector.template is<ast_type_traits::DynTypedNode *>()) {
+ auto *Node =
+ NodeOrVector.template get<ast_type_traits::DynTypedNode *>();
+ auto *Vector = new ASTContext::ParentVector(1, *Node);
+ NodeOrVector = Vector;
+ delete Node;
+ }
+ assert(NodeOrVector.template is<ASTContext::ParentVector *>());
+
+ auto *Vector =
+ NodeOrVector.template get<ASTContext::ParentVector *>();
+ // Skip duplicates for types that have memoization data.
+ // We must check that the type has memoization data before calling
+ // std::find() because DynTypedNode::operator== can't compare all
+ // types.
+ bool Found = ParentStack.back().getMemoizationData() &&
+ std::find(Vector->begin(), Vector->end(),
+ ParentStack.back()) != Vector->end();
+ if (!Found)
+ Vector->push_back(ParentStack.back());
+ }
+ }
+ ParentStack.push_back(ast_type_traits::DynTypedNode::create(*Node));
+ bool Result = (this ->* traverse) (Node);
+ ParentStack.pop_back();
+ return Result;
+ }
+
+ bool TraverseDecl(Decl *DeclNode) {
+ return TraverseNode(DeclNode, &VisitorBase::TraverseDecl);
+ }
+
+ bool TraverseStmt(Stmt *StmtNode) {
+ return TraverseNode(StmtNode, &VisitorBase::TraverseStmt);
+ }
+
+ ASTContext::ParentMap *Parents;
+ llvm::SmallVector<ast_type_traits::DynTypedNode, 16> ParentStack;
+
+ friend class RecursiveASTVisitor<ParentMapASTVisitor>;
+ };
+
+} // end namespace
+
+ArrayRef<ast_type_traits::DynTypedNode>
+ASTContext::getParents(const ast_type_traits::DynTypedNode &Node) {
+ assert(Node.getMemoizationData() &&
+ "Invariant broken: only nodes that support memoization may be "
+ "used in the parent map.");
+ if (!AllParents) {
+ // We always need to run over the whole translation unit, as
+ // hasAncestor can escape any subtree.
+ AllParents.reset(
+ ParentMapASTVisitor::buildMap(*getTranslationUnitDecl()));
+ }
+ ParentMap::const_iterator I = AllParents->find(Node.getMemoizationData());
+ if (I == AllParents->end()) {
+ return None;
+ }
+ if (auto *N = I->second.dyn_cast<ast_type_traits::DynTypedNode *>()) {
+ return llvm::makeArrayRef(N, 1);
+ }
+ return *I->second.get<ParentVector *>();
+}
+
+bool
+ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
+ const ObjCMethodDecl *MethodImpl) {
+ // No point trying to match an unavailable/deprecated mothod.
+ if (MethodDecl->hasAttr<UnavailableAttr>()
+ || MethodDecl->hasAttr<DeprecatedAttr>())
+ return false;
+ if (MethodDecl->getObjCDeclQualifier() !=
+ MethodImpl->getObjCDeclQualifier())
+ return false;
+ if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType()))
+ return false;
+
+ if (MethodDecl->param_size() != MethodImpl->param_size())
+ return false;
+
+ for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(),
+ IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(),
+ EF = MethodDecl->param_end();
+ IM != EM && IF != EF; ++IM, ++IF) {
+ const ParmVarDecl *DeclVar = (*IF);
+ const ParmVarDecl *ImplVar = (*IM);
+ if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier())
+ return false;
+ if (!hasSameType(DeclVar->getType(), ImplVar->getType()))
+ return false;
+ }
+ return (MethodDecl->isVariadic() == MethodImpl->isVariadic());
+
+}
+
+// Explicitly instantiate this in case a Redeclarable<T> is used from a TU that
+// doesn't include ASTContext.h
+template
+clang::LazyGenerationalUpdatePtr<
+ const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType
+clang::LazyGenerationalUpdatePtr<
+ const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue(
+ const clang::ASTContext &Ctx, Decl *Value);
diff --git a/contrib/llvm/tools/clang/lib/AST/ASTDiagnostic.cpp b/contrib/llvm/tools/clang/lib/AST/ASTDiagnostic.cpp
new file mode 100644
index 0000000..000588f
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/ASTDiagnostic.cpp
@@ -0,0 +1,1873 @@
+//===--- ASTDiagnostic.cpp - Diagnostic Printing Hooks for AST Nodes ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements a diagnostic formatting hook for AST elements.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/AST/ASTDiagnostic.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTLambda.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/TemplateBase.h"
+#include "clang/AST/Type.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+
+// Returns a desugared version of the QualType, and marks ShouldAKA as true
+// whenever we remove significant sugar from the type.
+static QualType Desugar(ASTContext &Context, QualType QT, bool &ShouldAKA) {
+ QualifierCollector QC;
+
+ while (true) {
+ const Type *Ty = QC.strip(QT);
+
+ // Don't aka just because we saw an elaborated type...
+ if (const ElaboratedType *ET = dyn_cast<ElaboratedType>(Ty)) {
+ QT = ET->desugar();
+ continue;
+ }
+ // ... or a paren type ...
+ if (const ParenType *PT = dyn_cast<ParenType>(Ty)) {
+ QT = PT->desugar();
+ continue;
+ }
+ // ...or a substituted template type parameter ...
+ if (const SubstTemplateTypeParmType *ST =
+ dyn_cast<SubstTemplateTypeParmType>(Ty)) {
+ QT = ST->desugar();
+ continue;
+ }
+ // ...or an attributed type...
+ if (const AttributedType *AT = dyn_cast<AttributedType>(Ty)) {
+ QT = AT->desugar();
+ continue;
+ }
+ // ...or an adjusted type...
+ if (const AdjustedType *AT = dyn_cast<AdjustedType>(Ty)) {
+ QT = AT->desugar();
+ continue;
+ }
+ // ... or an auto type.
+ if (const AutoType *AT = dyn_cast<AutoType>(Ty)) {
+ if (!AT->isSugared())
+ break;
+ QT = AT->desugar();
+ continue;
+ }
+
+ // Don't desugar template specializations, unless it's an alias template.
+ if (const TemplateSpecializationType *TST
+ = dyn_cast<TemplateSpecializationType>(Ty))
+ if (!TST->isTypeAlias())
+ break;
+
+ // Don't desugar magic Objective-C types.
+ if (QualType(Ty,0) == Context.getObjCIdType() ||
+ QualType(Ty,0) == Context.getObjCClassType() ||
+ QualType(Ty,0) == Context.getObjCSelType() ||
+ QualType(Ty,0) == Context.getObjCProtoType())
+ break;
+
+ // Don't desugar va_list.
+ if (QualType(Ty,0) == Context.getBuiltinVaListType())
+ break;
+
+ // Otherwise, do a single-step desugar.
+ QualType Underlying;
+ bool IsSugar = false;
+ switch (Ty->getTypeClass()) {
+#define ABSTRACT_TYPE(Class, Base)
+#define TYPE(Class, Base) \
+case Type::Class: { \
+const Class##Type *CTy = cast<Class##Type>(Ty); \
+if (CTy->isSugared()) { \
+IsSugar = true; \
+Underlying = CTy->desugar(); \
+} \
+break; \
+}
+#include "clang/AST/TypeNodes.def"
+ }
+
+ // If it wasn't sugared, we're done.
+ if (!IsSugar)
+ break;
+
+ // If the desugared type is a vector type, we don't want to expand
+ // it, it will turn into an attribute mess. People want their "vec4".
+ if (isa<VectorType>(Underlying))
+ break;
+
+ // Don't desugar through the primary typedef of an anonymous type.
+ if (const TagType *UTT = Underlying->getAs<TagType>())
+ if (const TypedefType *QTT = dyn_cast<TypedefType>(QT))
+ if (UTT->getDecl()->getTypedefNameForAnonDecl() == QTT->getDecl())
+ break;
+
+ // Record that we actually looked through an opaque type here.
+ ShouldAKA = true;
+ QT = Underlying;
+ }
+
+ // If we have a pointer-like type, desugar the pointee as well.
+ // FIXME: Handle other pointer-like types.
+ if (const PointerType *Ty = QT->getAs<PointerType>()) {
+ QT = Context.getPointerType(Desugar(Context, Ty->getPointeeType(),
+ ShouldAKA));
+ } else if (const LValueReferenceType *Ty = QT->getAs<LValueReferenceType>()) {
+ QT = Context.getLValueReferenceType(Desugar(Context, Ty->getPointeeType(),
+ ShouldAKA));
+ } else if (const RValueReferenceType *Ty = QT->getAs<RValueReferenceType>()) {
+ QT = Context.getRValueReferenceType(Desugar(Context, Ty->getPointeeType(),
+ ShouldAKA));
+ }
+
+ return QC.apply(Context, QT);
+}
+
+/// \brief Convert the given type to a string suitable for printing as part of
+/// a diagnostic.
+///
+/// There are four main criteria when determining whether we should have an
+/// a.k.a. clause when pretty-printing a type:
+///
+/// 1) Some types provide very minimal sugar that doesn't impede the
+/// user's understanding --- for example, elaborated type
+/// specifiers. If this is all the sugar we see, we don't want an
+/// a.k.a. clause.
+/// 2) Some types are technically sugared but are much more familiar
+/// when seen in their sugared form --- for example, va_list,
+/// vector types, and the magic Objective C types. We don't
+/// want to desugar these, even if we do produce an a.k.a. clause.
+/// 3) Some types may have already been desugared previously in this diagnostic.
+/// if this is the case, doing another "aka" would just be clutter.
+/// 4) Two different types within the same diagnostic have the same output
+/// string. In this case, force an a.k.a with the desugared type when
+/// doing so will provide additional information.
+///
+/// \param Context the context in which the type was allocated
+/// \param Ty the type to print
+/// \param QualTypeVals pointer values to QualTypes which are used in the
+/// diagnostic message
+static std::string
+ConvertTypeToDiagnosticString(ASTContext &Context, QualType Ty,
+ ArrayRef<DiagnosticsEngine::ArgumentValue> PrevArgs,
+ ArrayRef<intptr_t> QualTypeVals) {
+ // FIXME: Playing with std::string is really slow.
+ bool ForceAKA = false;
+ QualType CanTy = Ty.getCanonicalType();
+ std::string S = Ty.getAsString(Context.getPrintingPolicy());
+ std::string CanS = CanTy.getAsString(Context.getPrintingPolicy());
+
+ for (unsigned I = 0, E = QualTypeVals.size(); I != E; ++I) {
+ QualType CompareTy =
+ QualType::getFromOpaquePtr(reinterpret_cast<void*>(QualTypeVals[I]));
+ if (CompareTy.isNull())
+ continue;
+ if (CompareTy == Ty)
+ continue; // Same types
+ QualType CompareCanTy = CompareTy.getCanonicalType();
+ if (CompareCanTy == CanTy)
+ continue; // Same canonical types
+ std::string CompareS = CompareTy.getAsString(Context.getPrintingPolicy());
+ bool aka;
+ QualType CompareDesugar = Desugar(Context, CompareTy, aka);
+ std::string CompareDesugarStr =
+ CompareDesugar.getAsString(Context.getPrintingPolicy());
+ if (CompareS != S && CompareDesugarStr != S)
+ continue; // The type string is different than the comparison string
+ // and the desugared comparison string.
+ std::string CompareCanS =
+ CompareCanTy.getAsString(Context.getPrintingPolicy());
+
+ if (CompareCanS == CanS)
+ continue; // No new info from canonical type
+
+ ForceAKA = true;
+ break;
+ }
+
+ // Check to see if we already desugared this type in this
+ // diagnostic. If so, don't do it again.
+ bool Repeated = false;
+ for (unsigned i = 0, e = PrevArgs.size(); i != e; ++i) {
+ // TODO: Handle ak_declcontext case.
+ if (PrevArgs[i].first == DiagnosticsEngine::ak_qualtype) {
+ void *Ptr = (void*)PrevArgs[i].second;
+ QualType PrevTy(QualType::getFromOpaquePtr(Ptr));
+ if (PrevTy == Ty) {
+ Repeated = true;
+ break;
+ }
+ }
+ }
+
+ // Consider producing an a.k.a. clause if removing all the direct
+ // sugar gives us something "significantly different".
+ if (!Repeated) {
+ bool ShouldAKA = false;
+ QualType DesugaredTy = Desugar(Context, Ty, ShouldAKA);
+ if (ShouldAKA || ForceAKA) {
+ if (DesugaredTy == Ty) {
+ DesugaredTy = Ty.getCanonicalType();
+ }
+ std::string akaStr = DesugaredTy.getAsString(Context.getPrintingPolicy());
+ if (akaStr != S) {
+ S = "'" + S + "' (aka '" + akaStr + "')";
+ return S;
+ }
+ }
+
+ // Give some additional info on vector types. These are either not desugared
+ // or displaying complex __attribute__ expressions so add details of the
+ // type and element count.
+ if (Ty->isVectorType()) {
+ const VectorType *VTy = Ty->getAs<VectorType>();
+ std::string DecoratedString;
+ llvm::raw_string_ostream OS(DecoratedString);
+ const char *Values = VTy->getNumElements() > 1 ? "values" : "value";
+ OS << "'" << S << "' (vector of " << VTy->getNumElements() << " '"
+ << VTy->getElementType().getAsString(Context.getPrintingPolicy())
+ << "' " << Values << ")";
+ return OS.str();
+ }
+ }
+
+ S = "'" + S + "'";
+ return S;
+}
+
+static bool FormatTemplateTypeDiff(ASTContext &Context, QualType FromType,
+ QualType ToType, bool PrintTree,
+ bool PrintFromType, bool ElideType,
+ bool ShowColors, raw_ostream &OS);
+
+void clang::FormatASTNodeDiagnosticArgument(
+ DiagnosticsEngine::ArgumentKind Kind,
+ intptr_t Val,
+ StringRef Modifier,
+ StringRef Argument,
+ ArrayRef<DiagnosticsEngine::ArgumentValue> PrevArgs,
+ SmallVectorImpl<char> &Output,
+ void *Cookie,
+ ArrayRef<intptr_t> QualTypeVals) {
+ ASTContext &Context = *static_cast<ASTContext*>(Cookie);
+
+ size_t OldEnd = Output.size();
+ llvm::raw_svector_ostream OS(Output);
+ bool NeedQuotes = true;
+
+ switch (Kind) {
+ default: llvm_unreachable("unknown ArgumentKind");
+ case DiagnosticsEngine::ak_qualtype_pair: {
+ TemplateDiffTypes &TDT = *reinterpret_cast<TemplateDiffTypes*>(Val);
+ QualType FromType =
+ QualType::getFromOpaquePtr(reinterpret_cast<void*>(TDT.FromType));
+ QualType ToType =
+ QualType::getFromOpaquePtr(reinterpret_cast<void*>(TDT.ToType));
+
+ if (FormatTemplateTypeDiff(Context, FromType, ToType, TDT.PrintTree,
+ TDT.PrintFromType, TDT.ElideType,
+ TDT.ShowColors, OS)) {
+ NeedQuotes = !TDT.PrintTree;
+ TDT.TemplateDiffUsed = true;
+ break;
+ }
+
+ // Don't fall-back during tree printing. The caller will handle
+ // this case.
+ if (TDT.PrintTree)
+ return;
+
+ // Attempting to do a template diff on non-templates. Set the variables
+ // and continue with regular type printing of the appropriate type.
+ Val = TDT.PrintFromType ? TDT.FromType : TDT.ToType;
+ Modifier = StringRef();
+ Argument = StringRef();
+ // Fall through
+ }
+ case DiagnosticsEngine::ak_qualtype: {
+ assert(Modifier.empty() && Argument.empty() &&
+ "Invalid modifier for QualType argument");
+
+ QualType Ty(QualType::getFromOpaquePtr(reinterpret_cast<void*>(Val)));
+ OS << ConvertTypeToDiagnosticString(Context, Ty, PrevArgs, QualTypeVals);
+ NeedQuotes = false;
+ break;
+ }
+ case DiagnosticsEngine::ak_declarationname: {
+ if (Modifier == "objcclass" && Argument.empty())
+ OS << '+';
+ else if (Modifier == "objcinstance" && Argument.empty())
+ OS << '-';
+ else
+ assert(Modifier.empty() && Argument.empty() &&
+ "Invalid modifier for DeclarationName argument");
+
+ OS << DeclarationName::getFromOpaqueInteger(Val);
+ break;
+ }
+ case DiagnosticsEngine::ak_nameddecl: {
+ bool Qualified;
+ if (Modifier == "q" && Argument.empty())
+ Qualified = true;
+ else {
+ assert(Modifier.empty() && Argument.empty() &&
+ "Invalid modifier for NamedDecl* argument");
+ Qualified = false;
+ }
+ const NamedDecl *ND = reinterpret_cast<const NamedDecl*>(Val);
+ ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), Qualified);
+ break;
+ }
+ case DiagnosticsEngine::ak_nestednamespec: {
+ NestedNameSpecifier *NNS = reinterpret_cast<NestedNameSpecifier*>(Val);
+ NNS->print(OS, Context.getPrintingPolicy());
+ NeedQuotes = false;
+ break;
+ }
+ case DiagnosticsEngine::ak_declcontext: {
+ DeclContext *DC = reinterpret_cast<DeclContext *> (Val);
+ assert(DC && "Should never have a null declaration context");
+ NeedQuotes = false;
+
+ // FIXME: Get the strings for DeclContext from some localized place
+ if (DC->isTranslationUnit()) {
+ if (Context.getLangOpts().CPlusPlus)
+ OS << "the global namespace";
+ else
+ OS << "the global scope";
+ } else if (DC->isClosure()) {
+ OS << "block literal";
+ } else if (isLambdaCallOperator(DC)) {
+ OS << "lambda expression";
+ } else if (TypeDecl *Type = dyn_cast<TypeDecl>(DC)) {
+ OS << ConvertTypeToDiagnosticString(Context,
+ Context.getTypeDeclType(Type),
+ PrevArgs, QualTypeVals);
+ } else {
+ assert(isa<NamedDecl>(DC) && "Expected a NamedDecl");
+ NamedDecl *ND = cast<NamedDecl>(DC);
+ if (isa<NamespaceDecl>(ND))
+ OS << "namespace ";
+ else if (isa<ObjCMethodDecl>(ND))
+ OS << "method ";
+ else if (isa<FunctionDecl>(ND))
+ OS << "function ";
+
+ OS << '\'';
+ ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true);
+ OS << '\'';
+ }
+ break;
+ }
+ case DiagnosticsEngine::ak_attr: {
+ const Attr *At = reinterpret_cast<Attr *>(Val);
+ assert(At && "Received null Attr object!");
+ OS << '\'' << At->getSpelling() << '\'';
+ NeedQuotes = false;
+ break;
+ }
+
+ }
+
+ OS.flush();
+
+ if (NeedQuotes) {
+ Output.insert(Output.begin()+OldEnd, '\'');
+ Output.push_back('\'');
+ }
+}
+
+/// TemplateDiff - A class that constructs a pretty string for a pair of
+/// QualTypes. For the pair of types, a diff tree will be created containing
+/// all the information about the templates and template arguments. Afterwards,
+/// the tree is transformed to a string according to the options passed in.
+namespace {
+class TemplateDiff {
+ /// Context - The ASTContext which is used for comparing template arguments.
+ ASTContext &Context;
+
+ /// Policy - Used during expression printing.
+ PrintingPolicy Policy;
+
+ /// ElideType - Option to elide identical types.
+ bool ElideType;
+
+ /// PrintTree - Format output string as a tree.
+ bool PrintTree;
+
+ /// ShowColor - Diagnostics support color, so bolding will be used.
+ bool ShowColor;
+
+ /// FromType - When single type printing is selected, this is the type to be
+ /// be printed. When tree printing is selected, this type will show up first
+ /// in the tree.
+ QualType FromType;
+
+ /// ToType - The type that FromType is compared to. Only in tree printing
+ /// will this type be outputed.
+ QualType ToType;
+
+ /// OS - The stream used to construct the output strings.
+ raw_ostream &OS;
+
+ /// IsBold - Keeps track of the bold formatting for the output string.
+ bool IsBold;
+
+ /// DiffTree - A tree representation the differences between two types.
+ class DiffTree {
+ public:
+ /// DiffKind - The difference in a DiffNode and which fields are used.
+ enum DiffKind {
+ /// Incomplete or invalid node.
+ Invalid,
+ /// Another level of templates, uses TemplateDecl and Qualifiers
+ Template,
+ /// Type difference, uses QualType
+ Type,
+ /// Expression difference, uses Expr
+ Expression,
+ /// Template argument difference, uses TemplateDecl
+ TemplateTemplate,
+ /// Integer difference, uses APSInt and Expr
+ Integer,
+ /// Declaration difference, uses ValueDecl
+ Declaration
+ };
+ private:
+ /// DiffNode - The root node stores the original type. Each child node
+ /// stores template arguments of their parents. For templated types, the
+ /// template decl is also stored.
+ struct DiffNode {
+ DiffKind Kind;
+
+ /// NextNode - The index of the next sibling node or 0.
+ unsigned NextNode;
+
+ /// ChildNode - The index of the first child node or 0.
+ unsigned ChildNode;
+
+ /// ParentNode - The index of the parent node.
+ unsigned ParentNode;
+
+ /// FromType, ToType - The type arguments.
+ QualType FromType, ToType;
+
+ /// FromExpr, ToExpr - The expression arguments.
+ Expr *FromExpr, *ToExpr;
+
+ /// FromNullPtr, ToNullPtr - If the template argument is a nullptr
+ bool FromNullPtr, ToNullPtr;
+
+ /// FromTD, ToTD - The template decl for template template
+ /// arguments or the type arguments that are templates.
+ TemplateDecl *FromTD, *ToTD;
+
+ /// FromQual, ToQual - Qualifiers for template types.
+ Qualifiers FromQual, ToQual;
+
+ /// FromInt, ToInt - APSInt's for integral arguments.
+ llvm::APSInt FromInt, ToInt;
+
+ /// IsValidFromInt, IsValidToInt - Whether the APSInt's are valid.
+ bool IsValidFromInt, IsValidToInt;
+
+ /// FromValueDecl, ToValueDecl - Whether the argument is a decl.
+ ValueDecl *FromValueDecl, *ToValueDecl;
+
+ /// FromAddressOf, ToAddressOf - Whether the ValueDecl needs an address of
+ /// operator before it.
+ bool FromAddressOf, ToAddressOf;
+
+ /// FromDefault, ToDefault - Whether the argument is a default argument.
+ bool FromDefault, ToDefault;
+
+ /// Same - Whether the two arguments evaluate to the same value.
+ bool Same;
+
+ DiffNode(unsigned ParentNode = 0)
+ : Kind(Invalid), NextNode(0), ChildNode(0), ParentNode(ParentNode),
+ FromType(), ToType(), FromExpr(nullptr), ToExpr(nullptr),
+ FromNullPtr(false), ToNullPtr(false),
+ FromTD(nullptr), ToTD(nullptr), IsValidFromInt(false),
+ IsValidToInt(false), FromValueDecl(nullptr), ToValueDecl(nullptr),
+ FromAddressOf(false), ToAddressOf(false), FromDefault(false),
+ ToDefault(false), Same(false) {}
+ };
+
+ /// FlatTree - A flattened tree used to store the DiffNodes.
+ SmallVector<DiffNode, 16> FlatTree;
+
+ /// CurrentNode - The index of the current node being used.
+ unsigned CurrentNode;
+
+ /// NextFreeNode - The index of the next unused node. Used when creating
+ /// child nodes.
+ unsigned NextFreeNode;
+
+ /// ReadNode - The index of the current node being read.
+ unsigned ReadNode;
+
+ public:
+ DiffTree() :
+ CurrentNode(0), NextFreeNode(1) {
+ FlatTree.push_back(DiffNode());
+ }
+
+ // Node writing functions.
+ /// SetNode - Sets FromTD and ToTD of the current node.
+ void SetNode(TemplateDecl *FromTD, TemplateDecl *ToTD) {
+ FlatTree[CurrentNode].FromTD = FromTD;
+ FlatTree[CurrentNode].ToTD = ToTD;
+ }
+
+ /// SetNode - Sets FromType and ToType of the current node.
+ void SetNode(QualType FromType, QualType ToType) {
+ FlatTree[CurrentNode].FromType = FromType;
+ FlatTree[CurrentNode].ToType = ToType;
+ }
+
+ /// SetNode - Set FromExpr and ToExpr of the current node.
+ void SetNode(Expr *FromExpr, Expr *ToExpr) {
+ FlatTree[CurrentNode].FromExpr = FromExpr;
+ FlatTree[CurrentNode].ToExpr = ToExpr;
+ }
+
+ /// SetNode - Set FromInt and ToInt of the current node.
+ void SetNode(llvm::APSInt FromInt, llvm::APSInt ToInt,
+ bool IsValidFromInt, bool IsValidToInt) {
+ FlatTree[CurrentNode].FromInt = FromInt;
+ FlatTree[CurrentNode].ToInt = ToInt;
+ FlatTree[CurrentNode].IsValidFromInt = IsValidFromInt;
+ FlatTree[CurrentNode].IsValidToInt = IsValidToInt;
+ }
+
+ /// SetNode - Set FromQual and ToQual of the current node.
+ void SetNode(Qualifiers FromQual, Qualifiers ToQual) {
+ FlatTree[CurrentNode].FromQual = FromQual;
+ FlatTree[CurrentNode].ToQual = ToQual;
+ }
+
+ /// SetNode - Set FromValueDecl and ToValueDecl of the current node.
+ void SetNode(ValueDecl *FromValueDecl, ValueDecl *ToValueDecl,
+ bool FromAddressOf, bool ToAddressOf) {
+ FlatTree[CurrentNode].FromValueDecl = FromValueDecl;
+ FlatTree[CurrentNode].ToValueDecl = ToValueDecl;
+ FlatTree[CurrentNode].FromAddressOf = FromAddressOf;
+ FlatTree[CurrentNode].ToAddressOf = ToAddressOf;
+ }
+
+ /// SetSame - Sets the same flag of the current node.
+ void SetSame(bool Same) {
+ FlatTree[CurrentNode].Same = Same;
+ }
+
+ /// SetNullPtr - Sets the NullPtr flags of the current node.
+ void SetNullPtr(bool FromNullPtr, bool ToNullPtr) {
+ FlatTree[CurrentNode].FromNullPtr = FromNullPtr;
+ FlatTree[CurrentNode].ToNullPtr = ToNullPtr;
+ }
+
+ /// SetDefault - Sets FromDefault and ToDefault flags of the current node.
+ void SetDefault(bool FromDefault, bool ToDefault) {
+ FlatTree[CurrentNode].FromDefault = FromDefault;
+ FlatTree[CurrentNode].ToDefault = ToDefault;
+ }
+
+ /// SetKind - Sets the current node's type.
+ void SetKind(DiffKind Kind) {
+ FlatTree[CurrentNode].Kind = Kind;
+ }
+
+ /// Up - Changes the node to the parent of the current node.
+ void Up() {
+ CurrentNode = FlatTree[CurrentNode].ParentNode;
+ }
+
+ /// AddNode - Adds a child node to the current node, then sets that node
+ /// node as the current node.
+ void AddNode() {
+ FlatTree.push_back(DiffNode(CurrentNode));
+ DiffNode &Node = FlatTree[CurrentNode];
+ if (Node.ChildNode == 0) {
+ // If a child node doesn't exist, add one.
+ Node.ChildNode = NextFreeNode;
+ } else {
+ // If a child node exists, find the last child node and add a
+ // next node to it.
+ unsigned i;
+ for (i = Node.ChildNode; FlatTree[i].NextNode != 0;
+ i = FlatTree[i].NextNode) {
+ }
+ FlatTree[i].NextNode = NextFreeNode;
+ }
+ CurrentNode = NextFreeNode;
+ ++NextFreeNode;
+ }
+
+ // Node reading functions.
+ /// StartTraverse - Prepares the tree for recursive traversal.
+ void StartTraverse() {
+ ReadNode = 0;
+ CurrentNode = NextFreeNode;
+ NextFreeNode = 0;
+ }
+
+ /// Parent - Move the current read node to its parent.
+ void Parent() {
+ ReadNode = FlatTree[ReadNode].ParentNode;
+ }
+
+ /// GetNode - Gets the FromType and ToType.
+ void GetNode(QualType &FromType, QualType &ToType) {
+ FromType = FlatTree[ReadNode].FromType;
+ ToType = FlatTree[ReadNode].ToType;
+ }
+
+ /// GetNode - Gets the FromExpr and ToExpr.
+ void GetNode(Expr *&FromExpr, Expr *&ToExpr) {
+ FromExpr = FlatTree[ReadNode].FromExpr;
+ ToExpr = FlatTree[ReadNode].ToExpr;
+ }
+
+ /// GetNode - Gets the FromTD and ToTD.
+ void GetNode(TemplateDecl *&FromTD, TemplateDecl *&ToTD) {
+ FromTD = FlatTree[ReadNode].FromTD;
+ ToTD = FlatTree[ReadNode].ToTD;
+ }
+
+ /// GetNode - Gets the FromInt and ToInt.
+ void GetNode(llvm::APSInt &FromInt, llvm::APSInt &ToInt,
+ bool &IsValidFromInt, bool &IsValidToInt) {
+ FromInt = FlatTree[ReadNode].FromInt;
+ ToInt = FlatTree[ReadNode].ToInt;
+ IsValidFromInt = FlatTree[ReadNode].IsValidFromInt;
+ IsValidToInt = FlatTree[ReadNode].IsValidToInt;
+ }
+
+ /// GetNode - Gets the FromQual and ToQual.
+ void GetNode(Qualifiers &FromQual, Qualifiers &ToQual) {
+ FromQual = FlatTree[ReadNode].FromQual;
+ ToQual = FlatTree[ReadNode].ToQual;
+ }
+
+ /// GetNode - Gets the FromValueDecl and ToValueDecl.
+ void GetNode(ValueDecl *&FromValueDecl, ValueDecl *&ToValueDecl,
+ bool &FromAddressOf, bool &ToAddressOf) {
+ FromValueDecl = FlatTree[ReadNode].FromValueDecl;
+ ToValueDecl = FlatTree[ReadNode].ToValueDecl;
+ FromAddressOf = FlatTree[ReadNode].FromAddressOf;
+ ToAddressOf = FlatTree[ReadNode].ToAddressOf;
+ }
+
+ /// NodeIsSame - Returns true the arguments are the same.
+ bool NodeIsSame() {
+ return FlatTree[ReadNode].Same;
+ }
+
+ /// HasChildrend - Returns true if the node has children.
+ bool HasChildren() {
+ return FlatTree[ReadNode].ChildNode != 0;
+ }
+
+ /// MoveToChild - Moves from the current node to its child.
+ void MoveToChild() {
+ ReadNode = FlatTree[ReadNode].ChildNode;
+ }
+
+ /// AdvanceSibling - If there is a next sibling, advance to it and return
+ /// true. Otherwise, return false.
+ bool AdvanceSibling() {
+ if (FlatTree[ReadNode].NextNode == 0)
+ return false;
+
+ ReadNode = FlatTree[ReadNode].NextNode;
+ return true;
+ }
+
+ /// HasNextSibling - Return true if the node has a next sibling.
+ bool HasNextSibling() {
+ return FlatTree[ReadNode].NextNode != 0;
+ }
+
+ /// FromNullPtr - Returns true if the from argument is null.
+ bool FromNullPtr() {
+ return FlatTree[ReadNode].FromNullPtr;
+ }
+
+ /// ToNullPtr - Returns true if the to argument is null.
+ bool ToNullPtr() {
+ return FlatTree[ReadNode].ToNullPtr;
+ }
+
+ /// FromDefault - Return true if the from argument is the default.
+ bool FromDefault() {
+ return FlatTree[ReadNode].FromDefault;
+ }
+
+ /// ToDefault - Return true if the to argument is the default.
+ bool ToDefault() {
+ return FlatTree[ReadNode].ToDefault;
+ }
+
+ /// Empty - Returns true if the tree has no information.
+ bool Empty() {
+ return GetKind() == Invalid;
+ }
+
+ /// GetKind - Returns the current node's type.
+ DiffKind GetKind() {
+ return FlatTree[ReadNode].Kind;
+ }
+ };
+
+ DiffTree Tree;
+
+ /// TSTiterator - an iterator that is used to enter a
+ /// TemplateSpecializationType and read TemplateArguments inside template
+ /// parameter packs in order with the rest of the TemplateArguments.
+ struct TSTiterator {
+ typedef const TemplateArgument& reference;
+ typedef const TemplateArgument* pointer;
+
+ /// TST - the template specialization whose arguments this iterator
+ /// traverse over.
+ const TemplateSpecializationType *TST;
+
+ /// DesugarTST - desugared template specialization used to extract
+ /// default argument information
+ const TemplateSpecializationType *DesugarTST;
+
+ /// Index - the index of the template argument in TST.
+ unsigned Index;
+
+ /// CurrentTA - if CurrentTA is not the same as EndTA, then CurrentTA
+ /// points to a TemplateArgument within a parameter pack.
+ TemplateArgument::pack_iterator CurrentTA;
+
+ /// EndTA - the end iterator of a parameter pack
+ TemplateArgument::pack_iterator EndTA;
+
+ /// TSTiterator - Constructs an iterator and sets it to the first template
+ /// argument.
+ TSTiterator(ASTContext &Context, const TemplateSpecializationType *TST)
+ : TST(TST),
+ DesugarTST(GetTemplateSpecializationType(Context, TST->desugar())),
+ Index(0), CurrentTA(nullptr), EndTA(nullptr) {
+ if (isEnd()) return;
+
+ // Set to first template argument. If not a parameter pack, done.
+ TemplateArgument TA = TST->getArg(0);
+ if (TA.getKind() != TemplateArgument::Pack) return;
+
+ // Start looking into the parameter pack.
+ CurrentTA = TA.pack_begin();
+ EndTA = TA.pack_end();
+
+ // Found a valid template argument.
+ if (CurrentTA != EndTA) return;
+
+ // Parameter pack is empty, use the increment to get to a valid
+ // template argument.
+ ++(*this);
+ }
+
+ /// isEnd - Returns true if the iterator is one past the end.
+ bool isEnd() const {
+ return Index >= TST->getNumArgs();
+ }
+
+ /// &operator++ - Increment the iterator to the next template argument.
+ TSTiterator &operator++() {
+ // After the end, Index should be the default argument position in
+ // DesugarTST, if it exists.
+ if (isEnd()) {
+ ++Index;
+ return *this;
+ }
+
+ // If in a parameter pack, advance in the parameter pack.
+ if (CurrentTA != EndTA) {
+ ++CurrentTA;
+ if (CurrentTA != EndTA)
+ return *this;
+ }
+
+ // Loop until a template argument is found, or the end is reached.
+ while (true) {
+ // Advance to the next template argument. Break if reached the end.
+ if (++Index == TST->getNumArgs()) break;
+
+ // If the TemplateArgument is not a parameter pack, done.
+ TemplateArgument TA = TST->getArg(Index);
+ if (TA.getKind() != TemplateArgument::Pack) break;
+
+ // Handle parameter packs.
+ CurrentTA = TA.pack_begin();
+ EndTA = TA.pack_end();
+
+ // If the parameter pack is empty, try to advance again.
+ if (CurrentTA != EndTA) break;
+ }
+ return *this;
+ }
+
+ /// operator* - Returns the appropriate TemplateArgument.
+ reference operator*() const {
+ assert(!isEnd() && "Index exceeds number of arguments.");
+ if (CurrentTA == EndTA)
+ return TST->getArg(Index);
+ else
+ return *CurrentTA;
+ }
+
+ /// operator-> - Allow access to the underlying TemplateArgument.
+ pointer operator->() const {
+ return &operator*();
+ }
+
+ /// getDesugar - Returns the deduced template argument from DesguarTST
+ reference getDesugar() const {
+ return DesugarTST->getArg(Index);
+ }
+ };
+
+ // These functions build up the template diff tree, including functions to
+ // retrieve and compare template arguments.
+
+ static const TemplateSpecializationType * GetTemplateSpecializationType(
+ ASTContext &Context, QualType Ty) {
+ if (const TemplateSpecializationType *TST =
+ Ty->getAs<TemplateSpecializationType>())
+ return TST;
+
+ const RecordType *RT = Ty->getAs<RecordType>();
+
+ if (!RT)
+ return nullptr;
+
+ const ClassTemplateSpecializationDecl *CTSD =
+ dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
+
+ if (!CTSD)
+ return nullptr;
+
+ Ty = Context.getTemplateSpecializationType(
+ TemplateName(CTSD->getSpecializedTemplate()),
+ CTSD->getTemplateArgs().data(),
+ CTSD->getTemplateArgs().size(),
+ Ty.getLocalUnqualifiedType().getCanonicalType());
+
+ return Ty->getAs<TemplateSpecializationType>();
+ }
+
+ /// DiffTypes - Fills a DiffNode with information about a type difference.
+ void DiffTypes(const TSTiterator &FromIter, const TSTiterator &ToIter,
+ TemplateTypeParmDecl *FromDefaultTypeDecl,
+ TemplateTypeParmDecl *ToDefaultTypeDecl) {
+ QualType FromType = GetType(FromIter, FromDefaultTypeDecl);
+ QualType ToType = GetType(ToIter, ToDefaultTypeDecl);
+
+ Tree.SetNode(FromType, ToType);
+ Tree.SetDefault(FromIter.isEnd() && !FromType.isNull(),
+ ToIter.isEnd() && !ToType.isNull());
+ Tree.SetKind(DiffTree::Type);
+ if (FromType.isNull() || ToType.isNull())
+ return;
+
+ if (Context.hasSameType(FromType, ToType)) {
+ Tree.SetSame(true);
+ return;
+ }
+
+ const TemplateSpecializationType *FromArgTST =
+ GetTemplateSpecializationType(Context, FromType);
+ if (!FromArgTST)
+ return;
+
+ const TemplateSpecializationType *ToArgTST =
+ GetTemplateSpecializationType(Context, ToType);
+ if (!ToArgTST)
+ return;
+
+ if (!hasSameTemplate(FromArgTST, ToArgTST))
+ return;
+
+ Qualifiers FromQual = FromType.getQualifiers(),
+ ToQual = ToType.getQualifiers();
+ FromQual -= QualType(FromArgTST, 0).getQualifiers();
+ ToQual -= QualType(ToArgTST, 0).getQualifiers();
+ Tree.SetNode(FromArgTST->getTemplateName().getAsTemplateDecl(),
+ ToArgTST->getTemplateName().getAsTemplateDecl());
+ Tree.SetNode(FromQual, ToQual);
+ Tree.SetKind(DiffTree::Template);
+ DiffTemplate(FromArgTST, ToArgTST);
+ }
+
+ /// DiffTemplateTemplates - Fills a DiffNode with information about a
+ /// template template difference.
+ void DiffTemplateTemplates(const TSTiterator &FromIter,
+ const TSTiterator &ToIter,
+ TemplateTemplateParmDecl *FromDefaultTemplateDecl,
+ TemplateTemplateParmDecl *ToDefaultTemplateDecl) {
+ TemplateDecl *FromDecl = GetTemplateDecl(FromIter, FromDefaultTemplateDecl);
+ TemplateDecl *ToDecl = GetTemplateDecl(ToIter, ToDefaultTemplateDecl);
+ Tree.SetNode(FromDecl, ToDecl);
+ Tree.SetSame(FromDecl && ToDecl &&
+ FromDecl->getCanonicalDecl() == ToDecl->getCanonicalDecl());
+ Tree.SetDefault(FromIter.isEnd() && FromDecl, ToIter.isEnd() && ToDecl);
+ Tree.SetKind(DiffTree::TemplateTemplate);
+ }
+
+ /// InitializeNonTypeDiffVariables - Helper function for DiffNonTypes
+ static void InitializeNonTypeDiffVariables(
+ ASTContext &Context, const TSTiterator &Iter,
+ NonTypeTemplateParmDecl *Default, bool &HasInt, bool &HasValueDecl,
+ bool &IsNullPtr, Expr *&E, llvm::APSInt &Value, ValueDecl *&VD) {
+ HasInt = !Iter.isEnd() && Iter->getKind() == TemplateArgument::Integral;
+
+ HasValueDecl =
+ !Iter.isEnd() && Iter->getKind() == TemplateArgument::Declaration;
+
+ IsNullPtr = !Iter.isEnd() && Iter->getKind() == TemplateArgument::NullPtr;
+
+ if (HasInt)
+ Value = Iter->getAsIntegral();
+ else if (HasValueDecl)
+ VD = Iter->getAsDecl();
+ else if (!IsNullPtr)
+ E = GetExpr(Iter, Default);
+
+ if (E && Default->getType()->isPointerType())
+ IsNullPtr = CheckForNullPtr(Context, E);
+ }
+
+ /// NeedsAddressOf - Helper function for DiffNonTypes. Returns true if the
+ /// ValueDecl needs a '&' when printed.
+ static bool NeedsAddressOf(ValueDecl *VD, Expr *E,
+ NonTypeTemplateParmDecl *Default) {
+ if (!VD)
+ return false;
+
+ if (E) {
+ if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) {
+ if (UO->getOpcode() == UO_AddrOf) {
+ return true;
+ }
+ }
+ return false;
+ }
+
+ if (!Default->getType()->isReferenceType()) {
+ return true;
+ }
+
+ return false;
+ }
+
+ /// DiffNonTypes - Handles any template parameters not handled by DiffTypes
+ /// of DiffTemplatesTemplates, such as integer and declaration parameters.
+ void DiffNonTypes(const TSTiterator &FromIter, const TSTiterator &ToIter,
+ NonTypeTemplateParmDecl *FromDefaultNonTypeDecl,
+ NonTypeTemplateParmDecl *ToDefaultNonTypeDecl) {
+ Expr *FromExpr = nullptr, *ToExpr = nullptr;
+ llvm::APSInt FromInt, ToInt;
+ ValueDecl *FromValueDecl = nullptr, *ToValueDecl = nullptr;
+ bool HasFromInt = false, HasToInt = false, HasFromValueDecl = false,
+ HasToValueDecl = false, FromNullPtr = false, ToNullPtr = false;
+ InitializeNonTypeDiffVariables(Context, FromIter, FromDefaultNonTypeDecl,
+ HasFromInt, HasFromValueDecl, FromNullPtr,
+ FromExpr, FromInt, FromValueDecl);
+ InitializeNonTypeDiffVariables(Context, ToIter, ToDefaultNonTypeDecl,
+ HasToInt, HasToValueDecl, ToNullPtr,
+ ToExpr, ToInt, ToValueDecl);
+
+ assert(((!HasFromInt && !HasToInt) ||
+ (!HasFromValueDecl && !HasToValueDecl)) &&
+ "Template argument cannot be both integer and declaration");
+
+ if (!HasFromInt && !HasToInt && !HasFromValueDecl && !HasToValueDecl) {
+ Tree.SetNode(FromExpr, ToExpr);
+ Tree.SetDefault(FromIter.isEnd() && FromExpr, ToIter.isEnd() && ToExpr);
+ if (FromDefaultNonTypeDecl->getType()->isIntegralOrEnumerationType()) {
+ if (FromExpr)
+ HasFromInt = GetInt(Context, FromIter, FromExpr, FromInt,
+ FromDefaultNonTypeDecl->getType());
+ if (ToExpr)
+ HasToInt = GetInt(Context, ToIter, ToExpr, ToInt,
+ ToDefaultNonTypeDecl->getType());
+ }
+ if (HasFromInt && HasToInt) {
+ Tree.SetNode(FromInt, ToInt, HasFromInt, HasToInt);
+ Tree.SetSame(FromInt == ToInt);
+ Tree.SetKind(DiffTree::Integer);
+ } else if (HasFromInt || HasToInt) {
+ Tree.SetNode(FromInt, ToInt, HasFromInt, HasToInt);
+ Tree.SetSame(false);
+ Tree.SetKind(DiffTree::Integer);
+ } else {
+ Tree.SetSame(IsEqualExpr(Context, FromExpr, ToExpr) ||
+ (FromNullPtr && ToNullPtr));
+ Tree.SetNullPtr(FromNullPtr, ToNullPtr);
+ Tree.SetKind(DiffTree::Expression);
+ }
+ return;
+ }
+
+ if (HasFromInt || HasToInt) {
+ if (!HasFromInt && FromExpr)
+ HasFromInt = GetInt(Context, FromIter, FromExpr, FromInt,
+ FromDefaultNonTypeDecl->getType());
+ if (!HasToInt && ToExpr)
+ HasToInt = GetInt(Context, ToIter, ToExpr, ToInt,
+ ToDefaultNonTypeDecl->getType());
+ Tree.SetNode(FromInt, ToInt, HasFromInt, HasToInt);
+ if (HasFromInt && HasToInt) {
+ Tree.SetSame(FromInt == ToInt);
+ } else {
+ Tree.SetSame(false);
+ }
+ Tree.SetDefault(FromIter.isEnd() && HasFromInt,
+ ToIter.isEnd() && HasToInt);
+ Tree.SetKind(DiffTree::Integer);
+ return;
+ }
+
+ if (!HasFromValueDecl && FromExpr)
+ FromValueDecl = GetValueDecl(FromIter, FromExpr);
+ if (!HasToValueDecl && ToExpr)
+ ToValueDecl = GetValueDecl(ToIter, ToExpr);
+
+ bool FromAddressOf =
+ NeedsAddressOf(FromValueDecl, FromExpr, FromDefaultNonTypeDecl);
+ bool ToAddressOf =
+ NeedsAddressOf(ToValueDecl, ToExpr, ToDefaultNonTypeDecl);
+
+ Tree.SetNullPtr(FromNullPtr, ToNullPtr);
+ Tree.SetNode(FromValueDecl, ToValueDecl, FromAddressOf, ToAddressOf);
+ Tree.SetSame(FromValueDecl && ToValueDecl &&
+ FromValueDecl->getCanonicalDecl() ==
+ ToValueDecl->getCanonicalDecl());
+ Tree.SetDefault(FromIter.isEnd() && FromValueDecl,
+ ToIter.isEnd() && ToValueDecl);
+ Tree.SetKind(DiffTree::Declaration);
+ }
+
+ /// DiffTemplate - recursively visits template arguments and stores the
+ /// argument info into a tree.
+ void DiffTemplate(const TemplateSpecializationType *FromTST,
+ const TemplateSpecializationType *ToTST) {
+ // Begin descent into diffing template tree.
+ TemplateParameterList *ParamsFrom =
+ FromTST->getTemplateName().getAsTemplateDecl()->getTemplateParameters();
+ TemplateParameterList *ParamsTo =
+ ToTST->getTemplateName().getAsTemplateDecl()->getTemplateParameters();
+ unsigned TotalArgs = 0;
+ for (TSTiterator FromIter(Context, FromTST), ToIter(Context, ToTST);
+ !FromIter.isEnd() || !ToIter.isEnd(); ++TotalArgs) {
+ Tree.AddNode();
+
+ // Get the parameter at index TotalArgs. If index is larger
+ // than the total number of parameters, then there is an
+ // argument pack, so re-use the last parameter.
+ unsigned FromParamIndex = std::min(TotalArgs, ParamsFrom->size() - 1);
+ unsigned ToParamIndex = std::min(TotalArgs, ParamsTo->size() - 1);
+ NamedDecl *FromParamND = ParamsFrom->getParam(FromParamIndex);
+ NamedDecl *ToParamND = ParamsTo->getParam(ToParamIndex);
+
+ TemplateTypeParmDecl *FromDefaultTypeDecl =
+ dyn_cast<TemplateTypeParmDecl>(FromParamND);
+ TemplateTypeParmDecl *ToDefaultTypeDecl =
+ dyn_cast<TemplateTypeParmDecl>(ToParamND);
+ if (FromDefaultTypeDecl && ToDefaultTypeDecl)
+ DiffTypes(FromIter, ToIter, FromDefaultTypeDecl, ToDefaultTypeDecl);
+
+ TemplateTemplateParmDecl *FromDefaultTemplateDecl =
+ dyn_cast<TemplateTemplateParmDecl>(FromParamND);
+ TemplateTemplateParmDecl *ToDefaultTemplateDecl =
+ dyn_cast<TemplateTemplateParmDecl>(ToParamND);
+ if (FromDefaultTemplateDecl && ToDefaultTemplateDecl)
+ DiffTemplateTemplates(FromIter, ToIter, FromDefaultTemplateDecl,
+ ToDefaultTemplateDecl);
+
+ NonTypeTemplateParmDecl *FromDefaultNonTypeDecl =
+ dyn_cast<NonTypeTemplateParmDecl>(FromParamND);
+ NonTypeTemplateParmDecl *ToDefaultNonTypeDecl =
+ dyn_cast<NonTypeTemplateParmDecl>(ToParamND);
+ if (FromDefaultNonTypeDecl && ToDefaultNonTypeDecl)
+ DiffNonTypes(FromIter, ToIter, FromDefaultNonTypeDecl,
+ ToDefaultNonTypeDecl);
+
+ ++FromIter;
+ ++ToIter;
+ Tree.Up();
+ }
+ }
+
+ /// makeTemplateList - Dump every template alias into the vector.
+ static void makeTemplateList(
+ SmallVectorImpl<const TemplateSpecializationType *> &TemplateList,
+ const TemplateSpecializationType *TST) {
+ while (TST) {
+ TemplateList.push_back(TST);
+ if (!TST->isTypeAlias())
+ return;
+ TST = TST->getAliasedType()->getAs<TemplateSpecializationType>();
+ }
+ }
+
+ /// hasSameBaseTemplate - Returns true when the base templates are the same,
+ /// even if the template arguments are not.
+ static bool hasSameBaseTemplate(const TemplateSpecializationType *FromTST,
+ const TemplateSpecializationType *ToTST) {
+ return FromTST->getTemplateName().getAsTemplateDecl()->getCanonicalDecl() ==
+ ToTST->getTemplateName().getAsTemplateDecl()->getCanonicalDecl();
+ }
+
+ /// hasSameTemplate - Returns true if both types are specialized from the
+ /// same template declaration. If they come from different template aliases,
+ /// do a parallel ascension search to determine the highest template alias in
+ /// common and set the arguments to them.
+ static bool hasSameTemplate(const TemplateSpecializationType *&FromTST,
+ const TemplateSpecializationType *&ToTST) {
+ // Check the top templates if they are the same.
+ if (hasSameBaseTemplate(FromTST, ToTST))
+ return true;
+
+ // Create vectors of template aliases.
+ SmallVector<const TemplateSpecializationType*, 1> FromTemplateList,
+ ToTemplateList;
+
+ makeTemplateList(FromTemplateList, FromTST);
+ makeTemplateList(ToTemplateList, ToTST);
+
+ SmallVectorImpl<const TemplateSpecializationType *>::reverse_iterator
+ FromIter = FromTemplateList.rbegin(), FromEnd = FromTemplateList.rend(),
+ ToIter = ToTemplateList.rbegin(), ToEnd = ToTemplateList.rend();
+
+ // Check if the lowest template types are the same. If not, return.
+ if (!hasSameBaseTemplate(*FromIter, *ToIter))
+ return false;
+
+ // Begin searching up the template aliases. The bottom most template
+ // matches so move up until one pair does not match. Use the template
+ // right before that one.
+ for (; FromIter != FromEnd && ToIter != ToEnd; ++FromIter, ++ToIter) {
+ if (!hasSameBaseTemplate(*FromIter, *ToIter))
+ break;
+ }
+
+ FromTST = FromIter[-1];
+ ToTST = ToIter[-1];
+
+ return true;
+ }
+
+ /// GetType - Retrieves the template type arguments, including default
+ /// arguments.
+ static QualType GetType(const TSTiterator &Iter,
+ TemplateTypeParmDecl *DefaultTTPD) {
+ bool isVariadic = DefaultTTPD->isParameterPack();
+
+ if (!Iter.isEnd())
+ return Iter->getAsType();
+ if (isVariadic)
+ return QualType();
+
+ QualType ArgType = DefaultTTPD->getDefaultArgument();
+ if (ArgType->isDependentType())
+ return Iter.getDesugar().getAsType();
+
+ return ArgType;
+ }
+
+ /// GetExpr - Retrieves the template expression argument, including default
+ /// arguments.
+ static Expr *GetExpr(const TSTiterator &Iter,
+ NonTypeTemplateParmDecl *DefaultNTTPD) {
+ Expr *ArgExpr = nullptr;
+ bool isVariadic = DefaultNTTPD->isParameterPack();
+
+ if (!Iter.isEnd())
+ ArgExpr = Iter->getAsExpr();
+ else if (!isVariadic)
+ ArgExpr = DefaultNTTPD->getDefaultArgument();
+
+ if (ArgExpr)
+ while (SubstNonTypeTemplateParmExpr *SNTTPE =
+ dyn_cast<SubstNonTypeTemplateParmExpr>(ArgExpr))
+ ArgExpr = SNTTPE->getReplacement();
+
+ return ArgExpr;
+ }
+
+ /// GetInt - Retrieves the template integer argument, including evaluating
+ /// default arguments. If the value comes from an expression, extend the
+ /// APSInt to size of IntegerType to match the behavior in
+ /// Sema::CheckTemplateArgument
+ static bool GetInt(ASTContext &Context, const TSTiterator &Iter,
+ Expr *ArgExpr, llvm::APSInt &Int, QualType IntegerType) {
+ // Default, value-depenedent expressions require fetching
+ // from the desugared TemplateArgument, otherwise expression needs to
+ // be evaluatable.
+ if (Iter.isEnd() && ArgExpr->isValueDependent()) {
+ switch (Iter.getDesugar().getKind()) {
+ case TemplateArgument::Integral:
+ Int = Iter.getDesugar().getAsIntegral();
+ return true;
+ case TemplateArgument::Expression:
+ ArgExpr = Iter.getDesugar().getAsExpr();
+ Int = ArgExpr->EvaluateKnownConstInt(Context);
+ Int = Int.extOrTrunc(Context.getTypeSize(IntegerType));
+ return true;
+ default:
+ llvm_unreachable("Unexpected template argument kind");
+ }
+ } else if (ArgExpr->isEvaluatable(Context)) {
+ Int = ArgExpr->EvaluateKnownConstInt(Context);
+ Int = Int.extOrTrunc(Context.getTypeSize(IntegerType));
+ return true;
+ }
+
+ return false;
+ }
+
+ /// GetValueDecl - Retrieves the template Decl argument, including
+ /// default expression argument.
+ static ValueDecl *GetValueDecl(const TSTiterator &Iter, Expr *ArgExpr) {
+ // Default, value-depenedent expressions require fetching
+ // from the desugared TemplateArgument
+ if (Iter.isEnd() && ArgExpr->isValueDependent())
+ switch (Iter.getDesugar().getKind()) {
+ case TemplateArgument::Declaration:
+ return Iter.getDesugar().getAsDecl();
+ case TemplateArgument::Expression:
+ ArgExpr = Iter.getDesugar().getAsExpr();
+ return cast<DeclRefExpr>(ArgExpr)->getDecl();
+ default:
+ llvm_unreachable("Unexpected template argument kind");
+ }
+ DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr);
+ if (!DRE) {
+ UnaryOperator *UO = dyn_cast<UnaryOperator>(ArgExpr->IgnoreParens());
+ if (!UO)
+ return nullptr;
+ DRE = cast<DeclRefExpr>(UO->getSubExpr());
+ }
+
+ return DRE->getDecl();
+ }
+
+ /// CheckForNullPtr - returns true if the expression can be evaluated as
+ /// a null pointer
+ static bool CheckForNullPtr(ASTContext &Context, Expr *E) {
+ assert(E && "Expected expression");
+
+ E = E->IgnoreParenCasts();
+ if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
+ return true;
+
+ DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
+ if (!DRE)
+ return false;
+
+ VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
+ if (!VD || !VD->hasInit())
+ return false;
+
+ return VD->getInit()->IgnoreParenCasts()->isNullPointerConstant(
+ Context, Expr::NPC_ValueDependentIsNull);
+ }
+
+ /// GetTemplateDecl - Retrieves the template template arguments, including
+ /// default arguments.
+ static TemplateDecl *GetTemplateDecl(const TSTiterator &Iter,
+ TemplateTemplateParmDecl *DefaultTTPD) {
+ bool isVariadic = DefaultTTPD->isParameterPack();
+
+ TemplateArgument TA = DefaultTTPD->getDefaultArgument().getArgument();
+ TemplateDecl *DefaultTD = nullptr;
+ if (TA.getKind() != TemplateArgument::Null)
+ DefaultTD = TA.getAsTemplate().getAsTemplateDecl();
+
+ if (!Iter.isEnd())
+ return Iter->getAsTemplate().getAsTemplateDecl();
+ if (!isVariadic)
+ return DefaultTD;
+
+ return nullptr;
+ }
+
+ /// IsEqualExpr - Returns true if the expressions evaluate to the same value.
+ static bool IsEqualExpr(ASTContext &Context, Expr *FromExpr, Expr *ToExpr) {
+ if (FromExpr == ToExpr)
+ return true;
+
+ if (!FromExpr || !ToExpr)
+ return false;
+
+ DeclRefExpr *FromDRE = dyn_cast<DeclRefExpr>(FromExpr->IgnoreParens()),
+ *ToDRE = dyn_cast<DeclRefExpr>(ToExpr->IgnoreParens());
+
+ if (FromDRE || ToDRE) {
+ if (!FromDRE || !ToDRE)
+ return false;
+ return FromDRE->getDecl() == ToDRE->getDecl();
+ }
+
+ Expr::EvalResult FromResult, ToResult;
+ if (!FromExpr->EvaluateAsRValue(FromResult, Context) ||
+ !ToExpr->EvaluateAsRValue(ToResult, Context)) {
+ llvm::FoldingSetNodeID FromID, ToID;
+ FromExpr->Profile(FromID, Context, true);
+ ToExpr->Profile(ToID, Context, true);
+ return FromID == ToID;
+ }
+
+ APValue &FromVal = FromResult.Val;
+ APValue &ToVal = ToResult.Val;
+
+ if (FromVal.getKind() != ToVal.getKind()) return false;
+
+ switch (FromVal.getKind()) {
+ case APValue::Int:
+ return FromVal.getInt() == ToVal.getInt();
+ case APValue::LValue: {
+ APValue::LValueBase FromBase = FromVal.getLValueBase();
+ APValue::LValueBase ToBase = ToVal.getLValueBase();
+ if (FromBase.isNull() && ToBase.isNull())
+ return true;
+ if (FromBase.isNull() || ToBase.isNull())
+ return false;
+ return FromBase.get<const ValueDecl*>() ==
+ ToBase.get<const ValueDecl*>();
+ }
+ case APValue::MemberPointer:
+ return FromVal.getMemberPointerDecl() == ToVal.getMemberPointerDecl();
+ default:
+ llvm_unreachable("Unknown template argument expression.");
+ }
+ }
+
+ // These functions converts the tree representation of the template
+ // differences into the internal character vector.
+
+ /// TreeToString - Converts the Tree object into a character stream which
+ /// will later be turned into the output string.
+ void TreeToString(int Indent = 1) {
+ if (PrintTree) {
+ OS << '\n';
+ OS.indent(2 * Indent);
+ ++Indent;
+ }
+
+ // Handle cases where the difference is not templates with different
+ // arguments.
+ switch (Tree.GetKind()) {
+ case DiffTree::Invalid:
+ llvm_unreachable("Template diffing failed with bad DiffNode");
+ case DiffTree::Type: {
+ QualType FromType, ToType;
+ Tree.GetNode(FromType, ToType);
+ PrintTypeNames(FromType, ToType, Tree.FromDefault(), Tree.ToDefault(),
+ Tree.NodeIsSame());
+ return;
+ }
+ case DiffTree::Expression: {
+ Expr *FromExpr, *ToExpr;
+ Tree.GetNode(FromExpr, ToExpr);
+ PrintExpr(FromExpr, ToExpr, Tree.FromNullPtr(), Tree.ToNullPtr(),
+ Tree.FromDefault(), Tree.ToDefault(), Tree.NodeIsSame());
+ return;
+ }
+ case DiffTree::TemplateTemplate: {
+ TemplateDecl *FromTD, *ToTD;
+ Tree.GetNode(FromTD, ToTD);
+ PrintTemplateTemplate(FromTD, ToTD, Tree.FromDefault(),
+ Tree.ToDefault(), Tree.NodeIsSame());
+ return;
+ }
+ case DiffTree::Integer: {
+ llvm::APSInt FromInt, ToInt;
+ Expr *FromExpr, *ToExpr;
+ bool IsValidFromInt, IsValidToInt;
+ Tree.GetNode(FromExpr, ToExpr);
+ Tree.GetNode(FromInt, ToInt, IsValidFromInt, IsValidToInt);
+ PrintAPSInt(FromInt, ToInt, IsValidFromInt, IsValidToInt,
+ FromExpr, ToExpr, Tree.FromDefault(), Tree.ToDefault(),
+ Tree.NodeIsSame());
+ return;
+ }
+ case DiffTree::Declaration: {
+ ValueDecl *FromValueDecl, *ToValueDecl;
+ bool FromAddressOf, ToAddressOf;
+ Tree.GetNode(FromValueDecl, ToValueDecl, FromAddressOf, ToAddressOf);
+ PrintValueDecl(FromValueDecl, ToValueDecl, FromAddressOf, ToAddressOf,
+ Tree.FromNullPtr(), Tree.ToNullPtr(), Tree.FromDefault(),
+ Tree.ToDefault(), Tree.NodeIsSame());
+ return;
+ }
+ case DiffTree::Template: {
+ // Node is root of template. Recurse on children.
+ TemplateDecl *FromTD, *ToTD;
+ Tree.GetNode(FromTD, ToTD);
+
+ if (!Tree.HasChildren()) {
+ // If we're dealing with a template specialization with zero
+ // arguments, there are no children; special-case this.
+ OS << FromTD->getNameAsString() << "<>";
+ return;
+ }
+
+ Qualifiers FromQual, ToQual;
+ Tree.GetNode(FromQual, ToQual);
+ PrintQualifiers(FromQual, ToQual);
+
+ OS << FromTD->getNameAsString() << '<';
+ Tree.MoveToChild();
+ unsigned NumElideArgs = 0;
+ do {
+ if (ElideType) {
+ if (Tree.NodeIsSame()) {
+ ++NumElideArgs;
+ continue;
+ }
+ if (NumElideArgs > 0) {
+ PrintElideArgs(NumElideArgs, Indent);
+ NumElideArgs = 0;
+ OS << ", ";
+ }
+ }
+ TreeToString(Indent);
+ if (Tree.HasNextSibling())
+ OS << ", ";
+ } while (Tree.AdvanceSibling());
+ if (NumElideArgs > 0)
+ PrintElideArgs(NumElideArgs, Indent);
+
+ Tree.Parent();
+ OS << ">";
+ return;
+ }
+ }
+ }
+
+ // To signal to the text printer that a certain text needs to be bolded,
+ // a special character is injected into the character stream which the
+ // text printer will later strip out.
+
+ /// Bold - Start bolding text.
+ void Bold() {
+ assert(!IsBold && "Attempting to bold text that is already bold.");
+ IsBold = true;
+ if (ShowColor)
+ OS << ToggleHighlight;
+ }
+
+ /// Unbold - Stop bolding text.
+ void Unbold() {
+ assert(IsBold && "Attempting to remove bold from unbold text.");
+ IsBold = false;
+ if (ShowColor)
+ OS << ToggleHighlight;
+ }
+
+ // Functions to print out the arguments and highlighting the difference.
+
+ /// PrintTypeNames - prints the typenames, bolding differences. Will detect
+ /// typenames that are the same and attempt to disambiguate them by using
+ /// canonical typenames.
+ void PrintTypeNames(QualType FromType, QualType ToType,
+ bool FromDefault, bool ToDefault, bool Same) {
+ assert((!FromType.isNull() || !ToType.isNull()) &&
+ "Only one template argument may be missing.");
+
+ if (Same) {
+ OS << FromType.getAsString(Policy);
+ return;
+ }
+
+ if (!FromType.isNull() && !ToType.isNull() &&
+ FromType.getLocalUnqualifiedType() ==
+ ToType.getLocalUnqualifiedType()) {
+ Qualifiers FromQual = FromType.getLocalQualifiers(),
+ ToQual = ToType.getLocalQualifiers();
+ PrintQualifiers(FromQual, ToQual);
+ FromType.getLocalUnqualifiedType().print(OS, Policy);
+ return;
+ }
+
+ std::string FromTypeStr = FromType.isNull() ? "(no argument)"
+ : FromType.getAsString(Policy);
+ std::string ToTypeStr = ToType.isNull() ? "(no argument)"
+ : ToType.getAsString(Policy);
+ // Switch to canonical typename if it is better.
+ // TODO: merge this with other aka printing above.
+ if (FromTypeStr == ToTypeStr) {
+ std::string FromCanTypeStr =
+ FromType.getCanonicalType().getAsString(Policy);
+ std::string ToCanTypeStr = ToType.getCanonicalType().getAsString(Policy);
+ if (FromCanTypeStr != ToCanTypeStr) {
+ FromTypeStr = FromCanTypeStr;
+ ToTypeStr = ToCanTypeStr;
+ }
+ }
+
+ if (PrintTree) OS << '[';
+ OS << (FromDefault ? "(default) " : "");
+ Bold();
+ OS << FromTypeStr;
+ Unbold();
+ if (PrintTree) {
+ OS << " != " << (ToDefault ? "(default) " : "");
+ Bold();
+ OS << ToTypeStr;
+ Unbold();
+ OS << "]";
+ }
+ return;
+ }
+
+ /// PrintExpr - Prints out the expr template arguments, highlighting argument
+ /// differences.
+ void PrintExpr(const Expr *FromExpr, const Expr *ToExpr, bool FromNullPtr,
+ bool ToNullPtr, bool FromDefault, bool ToDefault, bool Same) {
+ assert((FromExpr || ToExpr) &&
+ "Only one template argument may be missing.");
+ if (Same) {
+ PrintExpr(FromExpr, FromNullPtr);
+ } else if (!PrintTree) {
+ OS << (FromDefault ? "(default) " : "");
+ Bold();
+ PrintExpr(FromExpr, FromNullPtr);
+ Unbold();
+ } else {
+ OS << (FromDefault ? "[(default) " : "[");
+ Bold();
+ PrintExpr(FromExpr, FromNullPtr);
+ Unbold();
+ OS << " != " << (ToDefault ? "(default) " : "");
+ Bold();
+ PrintExpr(ToExpr, ToNullPtr);
+ Unbold();
+ OS << ']';
+ }
+ }
+
+ /// PrintExpr - Actual formatting and printing of expressions.
+ void PrintExpr(const Expr *E, bool NullPtr = false) {
+ if (E) {
+ E->printPretty(OS, nullptr, Policy);
+ return;
+ }
+ if (NullPtr) {
+ OS << "nullptr";
+ return;
+ }
+ OS << "(no argument)";
+ }
+
+ /// PrintTemplateTemplate - Handles printing of template template arguments,
+ /// highlighting argument differences.
+ void PrintTemplateTemplate(TemplateDecl *FromTD, TemplateDecl *ToTD,
+ bool FromDefault, bool ToDefault, bool Same) {
+ assert((FromTD || ToTD) && "Only one template argument may be missing.");
+
+ std::string FromName = FromTD ? FromTD->getName() : "(no argument)";
+ std::string ToName = ToTD ? ToTD->getName() : "(no argument)";
+ if (FromTD && ToTD && FromName == ToName) {
+ FromName = FromTD->getQualifiedNameAsString();
+ ToName = ToTD->getQualifiedNameAsString();
+ }
+
+ if (Same) {
+ OS << "template " << FromTD->getNameAsString();
+ } else if (!PrintTree) {
+ OS << (FromDefault ? "(default) template " : "template ");
+ Bold();
+ OS << FromName;
+ Unbold();
+ } else {
+ OS << (FromDefault ? "[(default) template " : "[template ");
+ Bold();
+ OS << FromName;
+ Unbold();
+ OS << " != " << (ToDefault ? "(default) template " : "template ");
+ Bold();
+ OS << ToName;
+ Unbold();
+ OS << ']';
+ }
+ }
+
+ /// PrintAPSInt - Handles printing of integral arguments, highlighting
+ /// argument differences.
+ void PrintAPSInt(llvm::APSInt FromInt, llvm::APSInt ToInt,
+ bool IsValidFromInt, bool IsValidToInt, Expr *FromExpr,
+ Expr *ToExpr, bool FromDefault, bool ToDefault, bool Same) {
+ assert((IsValidFromInt || IsValidToInt) &&
+ "Only one integral argument may be missing.");
+
+ if (Same) {
+ OS << FromInt.toString(10);
+ } else if (!PrintTree) {
+ OS << (FromDefault ? "(default) " : "");
+ PrintAPSInt(FromInt, FromExpr, IsValidFromInt);
+ } else {
+ OS << (FromDefault ? "[(default) " : "[");
+ PrintAPSInt(FromInt, FromExpr, IsValidFromInt);
+ OS << " != " << (ToDefault ? "(default) " : "");
+ PrintAPSInt(ToInt, ToExpr, IsValidToInt);
+ OS << ']';
+ }
+ }
+
+ /// PrintAPSInt - If valid, print the APSInt. If the expression is
+ /// gives more information, print it too.
+ void PrintAPSInt(llvm::APSInt Val, Expr *E, bool Valid) {
+ Bold();
+ if (Valid) {
+ if (HasExtraInfo(E)) {
+ PrintExpr(E);
+ Unbold();
+ OS << " aka ";
+ Bold();
+ }
+ OS << Val.toString(10);
+ } else if (E) {
+ PrintExpr(E);
+ } else {
+ OS << "(no argument)";
+ }
+ Unbold();
+ }
+
+ /// HasExtraInfo - Returns true if E is not an integer literal or the
+ /// negation of an integer literal
+ bool HasExtraInfo(Expr *E) {
+ if (!E) return false;
+
+ E = E->IgnoreImpCasts();
+
+ if (isa<IntegerLiteral>(E)) return false;
+
+ if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
+ if (UO->getOpcode() == UO_Minus)
+ if (isa<IntegerLiteral>(UO->getSubExpr()))
+ return false;
+
+ return true;
+ }
+
+ void PrintValueDecl(ValueDecl *VD, bool AddressOf, bool NullPtr) {
+ if (VD) {
+ if (AddressOf)
+ OS << "&";
+ OS << VD->getName();
+ return;
+ }
+
+ if (NullPtr) {
+ OS << "nullptr";
+ return;
+ }
+
+ OS << "(no argument)";
+ }
+
+ /// PrintDecl - Handles printing of Decl arguments, highlighting
+ /// argument differences.
+ void PrintValueDecl(ValueDecl *FromValueDecl, ValueDecl *ToValueDecl,
+ bool FromAddressOf, bool ToAddressOf, bool FromNullPtr,
+ bool ToNullPtr, bool FromDefault, bool ToDefault,
+ bool Same) {
+ assert((FromValueDecl || FromNullPtr || ToValueDecl || ToNullPtr) &&
+ "Only one Decl argument may be NULL");
+
+ if (Same) {
+ PrintValueDecl(FromValueDecl, FromAddressOf, FromNullPtr);
+ } else if (!PrintTree) {
+ OS << (FromDefault ? "(default) " : "");
+ Bold();
+ PrintValueDecl(FromValueDecl, FromAddressOf, FromNullPtr);
+ Unbold();
+ } else {
+ OS << (FromDefault ? "[(default) " : "[");
+ Bold();
+ PrintValueDecl(FromValueDecl, FromAddressOf, FromNullPtr);
+ Unbold();
+ OS << " != " << (ToDefault ? "(default) " : "");
+ Bold();
+ PrintValueDecl(ToValueDecl, ToAddressOf, ToNullPtr);
+ Unbold();
+ OS << ']';
+ }
+
+ }
+
+ // Prints the appropriate placeholder for elided template arguments.
+ void PrintElideArgs(unsigned NumElideArgs, unsigned Indent) {
+ if (PrintTree) {
+ OS << '\n';
+ for (unsigned i = 0; i < Indent; ++i)
+ OS << " ";
+ }
+ if (NumElideArgs == 0) return;
+ if (NumElideArgs == 1)
+ OS << "[...]";
+ else
+ OS << "[" << NumElideArgs << " * ...]";
+ }
+
+ // Prints and highlights differences in Qualifiers.
+ void PrintQualifiers(Qualifiers FromQual, Qualifiers ToQual) {
+ // Both types have no qualifiers
+ if (FromQual.empty() && ToQual.empty())
+ return;
+
+ // Both types have same qualifiers
+ if (FromQual == ToQual) {
+ PrintQualifier(FromQual, /*ApplyBold*/false);
+ return;
+ }
+
+ // Find common qualifiers and strip them from FromQual and ToQual.
+ Qualifiers CommonQual = Qualifiers::removeCommonQualifiers(FromQual,
+ ToQual);
+
+ // The qualifiers are printed before the template name.
+ // Inline printing:
+ // The common qualifiers are printed. Then, qualifiers only in this type
+ // are printed and highlighted. Finally, qualifiers only in the other
+ // type are printed and highlighted inside parentheses after "missing".
+ // Tree printing:
+ // Qualifiers are printed next to each other, inside brackets, and
+ // separated by "!=". The printing order is:
+ // common qualifiers, highlighted from qualifiers, "!=",
+ // common qualifiers, highlighted to qualifiers
+ if (PrintTree) {
+ OS << "[";
+ if (CommonQual.empty() && FromQual.empty()) {
+ Bold();
+ OS << "(no qualifiers) ";
+ Unbold();
+ } else {
+ PrintQualifier(CommonQual, /*ApplyBold*/false);
+ PrintQualifier(FromQual, /*ApplyBold*/true);
+ }
+ OS << "!= ";
+ if (CommonQual.empty() && ToQual.empty()) {
+ Bold();
+ OS << "(no qualifiers)";
+ Unbold();
+ } else {
+ PrintQualifier(CommonQual, /*ApplyBold*/false,
+ /*appendSpaceIfNonEmpty*/!ToQual.empty());
+ PrintQualifier(ToQual, /*ApplyBold*/true,
+ /*appendSpaceIfNonEmpty*/false);
+ }
+ OS << "] ";
+ } else {
+ PrintQualifier(CommonQual, /*ApplyBold*/false);
+ PrintQualifier(FromQual, /*ApplyBold*/true);
+ }
+ }
+
+ void PrintQualifier(Qualifiers Q, bool ApplyBold,
+ bool AppendSpaceIfNonEmpty = true) {
+ if (Q.empty()) return;
+ if (ApplyBold) Bold();
+ Q.print(OS, Policy, AppendSpaceIfNonEmpty);
+ if (ApplyBold) Unbold();
+ }
+
+public:
+
+ TemplateDiff(raw_ostream &OS, ASTContext &Context, QualType FromType,
+ QualType ToType, bool PrintTree, bool PrintFromType,
+ bool ElideType, bool ShowColor)
+ : Context(Context),
+ Policy(Context.getLangOpts()),
+ ElideType(ElideType),
+ PrintTree(PrintTree),
+ ShowColor(ShowColor),
+ // When printing a single type, the FromType is the one printed.
+ FromType(PrintFromType ? FromType : ToType),
+ ToType(PrintFromType ? ToType : FromType),
+ OS(OS),
+ IsBold(false) {
+ }
+
+ /// DiffTemplate - Start the template type diffing.
+ void DiffTemplate() {
+ Qualifiers FromQual = FromType.getQualifiers(),
+ ToQual = ToType.getQualifiers();
+
+ const TemplateSpecializationType *FromOrigTST =
+ GetTemplateSpecializationType(Context, FromType);
+ const TemplateSpecializationType *ToOrigTST =
+ GetTemplateSpecializationType(Context, ToType);
+
+ // Only checking templates.
+ if (!FromOrigTST || !ToOrigTST)
+ return;
+
+ // Different base templates.
+ if (!hasSameTemplate(FromOrigTST, ToOrigTST)) {
+ return;
+ }
+
+ FromQual -= QualType(FromOrigTST, 0).getQualifiers();
+ ToQual -= QualType(ToOrigTST, 0).getQualifiers();
+ Tree.SetNode(FromType, ToType);
+ Tree.SetNode(FromQual, ToQual);
+ Tree.SetKind(DiffTree::Template);
+
+ // Same base template, but different arguments.
+ Tree.SetNode(FromOrigTST->getTemplateName().getAsTemplateDecl(),
+ ToOrigTST->getTemplateName().getAsTemplateDecl());
+
+ DiffTemplate(FromOrigTST, ToOrigTST);
+ }
+
+ /// Emit - When the two types given are templated types with the same
+ /// base template, a string representation of the type difference will be
+ /// emitted to the stream and return true. Otherwise, return false.
+ bool Emit() {
+ Tree.StartTraverse();
+ if (Tree.Empty())
+ return false;
+
+ TreeToString();
+ assert(!IsBold && "Bold is applied to end of string.");
+ return true;
+ }
+}; // end class TemplateDiff
+} // end namespace
+
+/// FormatTemplateTypeDiff - A helper static function to start the template
+/// diff and return the properly formatted string. Returns true if the diff
+/// is successful.
+static bool FormatTemplateTypeDiff(ASTContext &Context, QualType FromType,
+ QualType ToType, bool PrintTree,
+ bool PrintFromType, bool ElideType,
+ bool ShowColors, raw_ostream &OS) {
+ if (PrintTree)
+ PrintFromType = true;
+ TemplateDiff TD(OS, Context, FromType, ToType, PrintTree, PrintFromType,
+ ElideType, ShowColors);
+ TD.DiffTemplate();
+ return TD.Emit();
+}
diff --git a/contrib/llvm/tools/clang/lib/AST/ASTDumper.cpp b/contrib/llvm/tools/clang/lib/AST/ASTDumper.cpp
new file mode 100644
index 0000000..60cbb06
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/ASTDumper.cpp
@@ -0,0 +1,2338 @@
+//===--- ASTDumper.cpp - Dumping implementation for ASTs ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the AST dump methods, which dump out the
+// AST in a form that exposes type details and other fields.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/CommentVisitor.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclLookups.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclVisitor.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/AST/TypeVisitor.h"
+#include "clang/Basic/Module.h"
+#include "clang/Basic/SourceManager.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace clang;
+using namespace clang::comments;
+
+//===----------------------------------------------------------------------===//
+// ASTDumper Visitor
+//===----------------------------------------------------------------------===//
+
+namespace {
+ // Colors used for various parts of the AST dump
+ // Do not use bold yellow for any text. It is hard to read on white screens.
+
+ struct TerminalColor {
+ raw_ostream::Colors Color;
+ bool Bold;
+ };
+
+ // Red - CastColor
+ // Green - TypeColor
+ // Bold Green - DeclKindNameColor, UndeserializedColor
+ // Yellow - AddressColor, LocationColor
+ // Blue - CommentColor, NullColor, IndentColor
+ // Bold Blue - AttrColor
+ // Bold Magenta - StmtColor
+ // Cyan - ValueKindColor, ObjectKindColor
+ // Bold Cyan - ValueColor, DeclNameColor
+
+ // Decl kind names (VarDecl, FunctionDecl, etc)
+ static const TerminalColor DeclKindNameColor = { raw_ostream::GREEN, true };
+ // Attr names (CleanupAttr, GuardedByAttr, etc)
+ static const TerminalColor AttrColor = { raw_ostream::BLUE, true };
+ // Statement names (DeclStmt, ImplicitCastExpr, etc)
+ static const TerminalColor StmtColor = { raw_ostream::MAGENTA, true };
+ // Comment names (FullComment, ParagraphComment, TextComment, etc)
+ static const TerminalColor CommentColor = { raw_ostream::BLUE, false };
+
+ // Type names (int, float, etc, plus user defined types)
+ static const TerminalColor TypeColor = { raw_ostream::GREEN, false };
+
+ // Pointer address
+ static const TerminalColor AddressColor = { raw_ostream::YELLOW, false };
+ // Source locations
+ static const TerminalColor LocationColor = { raw_ostream::YELLOW, false };
+
+ // lvalue/xvalue
+ static const TerminalColor ValueKindColor = { raw_ostream::CYAN, false };
+ // bitfield/objcproperty/objcsubscript/vectorcomponent
+ static const TerminalColor ObjectKindColor = { raw_ostream::CYAN, false };
+
+ // Null statements
+ static const TerminalColor NullColor = { raw_ostream::BLUE, false };
+
+ // Undeserialized entities
+ static const TerminalColor UndeserializedColor = { raw_ostream::GREEN, true };
+
+ // CastKind from CastExpr's
+ static const TerminalColor CastColor = { raw_ostream::RED, false };
+
+ // Value of the statement
+ static const TerminalColor ValueColor = { raw_ostream::CYAN, true };
+ // Decl names
+ static const TerminalColor DeclNameColor = { raw_ostream::CYAN, true };
+
+ // Indents ( `, -. | )
+ static const TerminalColor IndentColor = { raw_ostream::BLUE, false };
+
+ class ASTDumper
+ : public ConstDeclVisitor<ASTDumper>, public ConstStmtVisitor<ASTDumper>,
+ public ConstCommentVisitor<ASTDumper>, public TypeVisitor<ASTDumper> {
+ raw_ostream &OS;
+ const CommandTraits *Traits;
+ const SourceManager *SM;
+
+ /// Pending[i] is an action to dump an entity at level i.
+ llvm::SmallVector<std::function<void(bool isLastChild)>, 32> Pending;
+
+ /// Indicates whether we're at the top level.
+ bool TopLevel;
+
+ /// Indicates if we're handling the first child after entering a new depth.
+ bool FirstChild;
+
+ /// Prefix for currently-being-dumped entity.
+ std::string Prefix;
+
+ /// Keep track of the last location we print out so that we can
+ /// print out deltas from then on out.
+ const char *LastLocFilename;
+ unsigned LastLocLine;
+
+ /// The \c FullComment parent of the comment being dumped.
+ const FullComment *FC;
+
+ bool ShowColors;
+
+ /// Dump a child of the current node.
+ template<typename Fn> void dumpChild(Fn doDumpChild) {
+ // If we're at the top level, there's nothing interesting to do; just
+ // run the dumper.
+ if (TopLevel) {
+ TopLevel = false;
+ doDumpChild();
+ while (!Pending.empty()) {
+ Pending.back()(true);
+ Pending.pop_back();
+ }
+ Prefix.clear();
+ OS << "\n";
+ TopLevel = true;
+ return;
+ }
+
+ const FullComment *OrigFC = FC;
+ auto dumpWithIndent = [this, doDumpChild, OrigFC](bool isLastChild) {
+ // Print out the appropriate tree structure and work out the prefix for
+ // children of this node. For instance:
+ //
+ // A Prefix = ""
+ // |-B Prefix = "| "
+ // | `-C Prefix = "| "
+ // `-D Prefix = " "
+ // |-E Prefix = " | "
+ // `-F Prefix = " "
+ // G Prefix = ""
+ //
+ // Note that the first level gets no prefix.
+ {
+ OS << '\n';
+ ColorScope Color(*this, IndentColor);
+ OS << Prefix << (isLastChild ? '`' : '|') << '-';
+ this->Prefix.push_back(isLastChild ? ' ' : '|');
+ this->Prefix.push_back(' ');
+ }
+
+ FirstChild = true;
+ unsigned Depth = Pending.size();
+
+ FC = OrigFC;
+ doDumpChild();
+
+ // If any children are left, they're the last at their nesting level.
+ // Dump those ones out now.
+ while (Depth < Pending.size()) {
+ Pending.back()(true);
+ this->Pending.pop_back();
+ }
+
+ // Restore the old prefix.
+ this->Prefix.resize(Prefix.size() - 2);
+ };
+
+ if (FirstChild) {
+ Pending.push_back(std::move(dumpWithIndent));
+ } else {
+ Pending.back()(false);
+ Pending.back() = std::move(dumpWithIndent);
+ }
+ FirstChild = false;
+ }
+
+ class ColorScope {
+ ASTDumper &Dumper;
+ public:
+ ColorScope(ASTDumper &Dumper, TerminalColor Color)
+ : Dumper(Dumper) {
+ if (Dumper.ShowColors)
+ Dumper.OS.changeColor(Color.Color, Color.Bold);
+ }
+ ~ColorScope() {
+ if (Dumper.ShowColors)
+ Dumper.OS.resetColor();
+ }
+ };
+
+ public:
+ ASTDumper(raw_ostream &OS, const CommandTraits *Traits,
+ const SourceManager *SM)
+ : OS(OS), Traits(Traits), SM(SM), TopLevel(true), FirstChild(true),
+ LastLocFilename(""), LastLocLine(~0U), FC(nullptr),
+ ShowColors(SM && SM->getDiagnostics().getShowColors()) { }
+
+ ASTDumper(raw_ostream &OS, const CommandTraits *Traits,
+ const SourceManager *SM, bool ShowColors)
+ : OS(OS), Traits(Traits), SM(SM), TopLevel(true), FirstChild(true),
+ LastLocFilename(""), LastLocLine(~0U),
+ ShowColors(ShowColors) { }
+
+ void dumpDecl(const Decl *D);
+ void dumpStmt(const Stmt *S);
+ void dumpFullComment(const FullComment *C);
+
+ // Utilities
+ void dumpPointer(const void *Ptr);
+ void dumpSourceRange(SourceRange R);
+ void dumpLocation(SourceLocation Loc);
+ void dumpBareType(QualType T, bool Desugar = true);
+ void dumpType(QualType T);
+ void dumpTypeAsChild(QualType T);
+ void dumpTypeAsChild(const Type *T);
+ void dumpBareDeclRef(const Decl *Node);
+ void dumpDeclRef(const Decl *Node, const char *Label = nullptr);
+ void dumpName(const NamedDecl *D);
+ bool hasNodes(const DeclContext *DC);
+ void dumpDeclContext(const DeclContext *DC);
+ void dumpLookups(const DeclContext *DC, bool DumpDecls);
+ void dumpAttr(const Attr *A);
+
+ // C++ Utilities
+ void dumpAccessSpecifier(AccessSpecifier AS);
+ void dumpCXXCtorInitializer(const CXXCtorInitializer *Init);
+ void dumpTemplateParameters(const TemplateParameterList *TPL);
+ void dumpTemplateArgumentListInfo(const TemplateArgumentListInfo &TALI);
+ void dumpTemplateArgumentLoc(const TemplateArgumentLoc &A);
+ void dumpTemplateArgumentList(const TemplateArgumentList &TAL);
+ void dumpTemplateArgument(const TemplateArgument &A,
+ SourceRange R = SourceRange());
+
+ // Types
+ void VisitComplexType(const ComplexType *T) {
+ dumpTypeAsChild(T->getElementType());
+ }
+ void VisitPointerType(const PointerType *T) {
+ dumpTypeAsChild(T->getPointeeType());
+ }
+ void VisitBlockPointerType(const BlockPointerType *T) {
+ dumpTypeAsChild(T->getPointeeType());
+ }
+ void VisitReferenceType(const ReferenceType *T) {
+ dumpTypeAsChild(T->getPointeeType());
+ }
+ void VisitRValueReferenceType(const ReferenceType *T) {
+ if (T->isSpelledAsLValue())
+ OS << " written as lvalue reference";
+ VisitReferenceType(T);
+ }
+ void VisitMemberPointerType(const MemberPointerType *T) {
+ dumpTypeAsChild(T->getClass());
+ dumpTypeAsChild(T->getPointeeType());
+ }
+ void VisitArrayType(const ArrayType *T) {
+ switch (T->getSizeModifier()) {
+ case ArrayType::Normal: break;
+ case ArrayType::Static: OS << " static"; break;
+ case ArrayType::Star: OS << " *"; break;
+ }
+ OS << " " << T->getIndexTypeQualifiers().getAsString();
+ dumpTypeAsChild(T->getElementType());
+ }
+ void VisitConstantArrayType(const ConstantArrayType *T) {
+ OS << " " << T->getSize();
+ VisitArrayType(T);
+ }
+ void VisitVariableArrayType(const VariableArrayType *T) {
+ OS << " ";
+ dumpSourceRange(T->getBracketsRange());
+ VisitArrayType(T);
+ dumpStmt(T->getSizeExpr());
+ }
+ void VisitDependentSizedArrayType(const DependentSizedArrayType *T) {
+ VisitArrayType(T);
+ OS << " ";
+ dumpSourceRange(T->getBracketsRange());
+ dumpStmt(T->getSizeExpr());
+ }
+ void VisitDependentSizedExtVectorType(
+ const DependentSizedExtVectorType *T) {
+ OS << " ";
+ dumpLocation(T->getAttributeLoc());
+ dumpTypeAsChild(T->getElementType());
+ dumpStmt(T->getSizeExpr());
+ }
+ void VisitVectorType(const VectorType *T) {
+ switch (T->getVectorKind()) {
+ case VectorType::GenericVector: break;
+ case VectorType::AltiVecVector: OS << " altivec"; break;
+ case VectorType::AltiVecPixel: OS << " altivec pixel"; break;
+ case VectorType::AltiVecBool: OS << " altivec bool"; break;
+ case VectorType::NeonVector: OS << " neon"; break;
+ case VectorType::NeonPolyVector: OS << " neon poly"; break;
+ }
+ OS << " " << T->getNumElements();
+ dumpTypeAsChild(T->getElementType());
+ }
+ void VisitFunctionType(const FunctionType *T) {
+ auto EI = T->getExtInfo();
+ if (EI.getNoReturn()) OS << " noreturn";
+ if (EI.getProducesResult()) OS << " produces_result";
+ if (EI.getHasRegParm()) OS << " regparm " << EI.getRegParm();
+ OS << " " << FunctionType::getNameForCallConv(EI.getCC());
+ dumpTypeAsChild(T->getReturnType());
+ }
+ void VisitFunctionProtoType(const FunctionProtoType *T) {
+ auto EPI = T->getExtProtoInfo();
+ if (EPI.HasTrailingReturn) OS << " trailing_return";
+ if (T->isConst()) OS << " const";
+ if (T->isVolatile()) OS << " volatile";
+ if (T->isRestrict()) OS << " restrict";
+ switch (EPI.RefQualifier) {
+ case RQ_None: break;
+ case RQ_LValue: OS << " &"; break;
+ case RQ_RValue: OS << " &&"; break;
+ }
+ // FIXME: Exception specification.
+ // FIXME: Consumed parameters.
+ VisitFunctionType(T);
+ for (QualType PT : T->getParamTypes())
+ dumpTypeAsChild(PT);
+ if (EPI.Variadic)
+ dumpChild([=] { OS << "..."; });
+ }
+ void VisitUnresolvedUsingType(const UnresolvedUsingType *T) {
+ dumpDeclRef(T->getDecl());
+ }
+ void VisitTypedefType(const TypedefType *T) {
+ dumpDeclRef(T->getDecl());
+ }
+ void VisitTypeOfExprType(const TypeOfExprType *T) {
+ dumpStmt(T->getUnderlyingExpr());
+ }
+ void VisitDecltypeType(const DecltypeType *T) {
+ dumpStmt(T->getUnderlyingExpr());
+ }
+ void VisitUnaryTransformType(const UnaryTransformType *T) {
+ switch (T->getUTTKind()) {
+ case UnaryTransformType::EnumUnderlyingType:
+ OS << " underlying_type";
+ break;
+ }
+ dumpTypeAsChild(T->getBaseType());
+ }
+ void VisitTagType(const TagType *T) {
+ dumpDeclRef(T->getDecl());
+ }
+ void VisitAttributedType(const AttributedType *T) {
+ // FIXME: AttrKind
+ dumpTypeAsChild(T->getModifiedType());
+ }
+ void VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
+ OS << " depth " << T->getDepth() << " index " << T->getIndex();
+ if (T->isParameterPack()) OS << " pack";
+ dumpDeclRef(T->getDecl());
+ }
+ void VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
+ dumpTypeAsChild(T->getReplacedParameter());
+ }
+ void VisitSubstTemplateTypeParmPackType(
+ const SubstTemplateTypeParmPackType *T) {
+ dumpTypeAsChild(T->getReplacedParameter());
+ dumpTemplateArgument(T->getArgumentPack());
+ }
+ void VisitAutoType(const AutoType *T) {
+ if (T->isDecltypeAuto()) OS << " decltype(auto)";
+ if (!T->isDeduced())
+ OS << " undeduced";
+ }
+ void VisitTemplateSpecializationType(const TemplateSpecializationType *T) {
+ if (T->isTypeAlias()) OS << " alias";
+ OS << " "; T->getTemplateName().dump(OS);
+ for (auto &Arg : *T)
+ dumpTemplateArgument(Arg);
+ if (T->isTypeAlias())
+ dumpTypeAsChild(T->getAliasedType());
+ }
+ void VisitInjectedClassNameType(const InjectedClassNameType *T) {
+ dumpDeclRef(T->getDecl());
+ }
+ void VisitObjCInterfaceType(const ObjCInterfaceType *T) {
+ dumpDeclRef(T->getDecl());
+ }
+ void VisitObjCObjectPointerType(const ObjCObjectPointerType *T) {
+ dumpTypeAsChild(T->getPointeeType());
+ }
+ void VisitAtomicType(const AtomicType *T) {
+ dumpTypeAsChild(T->getValueType());
+ }
+ void VisitAdjustedType(const AdjustedType *T) {
+ dumpTypeAsChild(T->getOriginalType());
+ }
+ void VisitPackExpansionType(const PackExpansionType *T) {
+ if (auto N = T->getNumExpansions()) OS << " expansions " << *N;
+ if (!T->isSugared())
+ dumpTypeAsChild(T->getPattern());
+ }
+ // FIXME: ElaboratedType, DependentNameType,
+ // DependentTemplateSpecializationType, ObjCObjectType
+
+ // Decls
+ void VisitLabelDecl(const LabelDecl *D);
+ void VisitTypedefDecl(const TypedefDecl *D);
+ void VisitEnumDecl(const EnumDecl *D);
+ void VisitRecordDecl(const RecordDecl *D);
+ void VisitEnumConstantDecl(const EnumConstantDecl *D);
+ void VisitIndirectFieldDecl(const IndirectFieldDecl *D);
+ void VisitFunctionDecl(const FunctionDecl *D);
+ void VisitFieldDecl(const FieldDecl *D);
+ void VisitVarDecl(const VarDecl *D);
+ void VisitFileScopeAsmDecl(const FileScopeAsmDecl *D);
+ void VisitImportDecl(const ImportDecl *D);
+
+ // C++ Decls
+ void VisitNamespaceDecl(const NamespaceDecl *D);
+ void VisitUsingDirectiveDecl(const UsingDirectiveDecl *D);
+ void VisitNamespaceAliasDecl(const NamespaceAliasDecl *D);
+ void VisitTypeAliasDecl(const TypeAliasDecl *D);
+ void VisitTypeAliasTemplateDecl(const TypeAliasTemplateDecl *D);
+ void VisitCXXRecordDecl(const CXXRecordDecl *D);
+ void VisitStaticAssertDecl(const StaticAssertDecl *D);
+ template<typename SpecializationDecl>
+ void VisitTemplateDeclSpecialization(const SpecializationDecl *D,
+ bool DumpExplicitInst,
+ bool DumpRefOnly);
+ template<typename TemplateDecl>
+ void VisitTemplateDecl(const TemplateDecl *D, bool DumpExplicitInst);
+ void VisitFunctionTemplateDecl(const FunctionTemplateDecl *D);
+ void VisitClassTemplateDecl(const ClassTemplateDecl *D);
+ void VisitClassTemplateSpecializationDecl(
+ const ClassTemplateSpecializationDecl *D);
+ void VisitClassTemplatePartialSpecializationDecl(
+ const ClassTemplatePartialSpecializationDecl *D);
+ void VisitClassScopeFunctionSpecializationDecl(
+ const ClassScopeFunctionSpecializationDecl *D);
+ void VisitVarTemplateDecl(const VarTemplateDecl *D);
+ void VisitVarTemplateSpecializationDecl(
+ const VarTemplateSpecializationDecl *D);
+ void VisitVarTemplatePartialSpecializationDecl(
+ const VarTemplatePartialSpecializationDecl *D);
+ void VisitTemplateTypeParmDecl(const TemplateTypeParmDecl *D);
+ void VisitNonTypeTemplateParmDecl(const NonTypeTemplateParmDecl *D);
+ void VisitTemplateTemplateParmDecl(const TemplateTemplateParmDecl *D);
+ void VisitUsingDecl(const UsingDecl *D);
+ void VisitUnresolvedUsingTypenameDecl(const UnresolvedUsingTypenameDecl *D);
+ void VisitUnresolvedUsingValueDecl(const UnresolvedUsingValueDecl *D);
+ void VisitUsingShadowDecl(const UsingShadowDecl *D);
+ void VisitLinkageSpecDecl(const LinkageSpecDecl *D);
+ void VisitAccessSpecDecl(const AccessSpecDecl *D);
+ void VisitFriendDecl(const FriendDecl *D);
+
+ // ObjC Decls
+ void VisitObjCIvarDecl(const ObjCIvarDecl *D);
+ void VisitObjCMethodDecl(const ObjCMethodDecl *D);
+ void VisitObjCCategoryDecl(const ObjCCategoryDecl *D);
+ void VisitObjCCategoryImplDecl(const ObjCCategoryImplDecl *D);
+ void VisitObjCProtocolDecl(const ObjCProtocolDecl *D);
+ void VisitObjCInterfaceDecl(const ObjCInterfaceDecl *D);
+ void VisitObjCImplementationDecl(const ObjCImplementationDecl *D);
+ void VisitObjCCompatibleAliasDecl(const ObjCCompatibleAliasDecl *D);
+ void VisitObjCPropertyDecl(const ObjCPropertyDecl *D);
+ void VisitObjCPropertyImplDecl(const ObjCPropertyImplDecl *D);
+ void VisitBlockDecl(const BlockDecl *D);
+
+ // Stmts.
+ void VisitStmt(const Stmt *Node);
+ void VisitDeclStmt(const DeclStmt *Node);
+ void VisitAttributedStmt(const AttributedStmt *Node);
+ void VisitLabelStmt(const LabelStmt *Node);
+ void VisitGotoStmt(const GotoStmt *Node);
+ void VisitCXXCatchStmt(const CXXCatchStmt *Node);
+
+ // Exprs
+ void VisitExpr(const Expr *Node);
+ void VisitCastExpr(const CastExpr *Node);
+ void VisitDeclRefExpr(const DeclRefExpr *Node);
+ void VisitPredefinedExpr(const PredefinedExpr *Node);
+ void VisitCharacterLiteral(const CharacterLiteral *Node);
+ void VisitIntegerLiteral(const IntegerLiteral *Node);
+ void VisitFloatingLiteral(const FloatingLiteral *Node);
+ void VisitStringLiteral(const StringLiteral *Str);
+ void VisitInitListExpr(const InitListExpr *ILE);
+ void VisitUnaryOperator(const UnaryOperator *Node);
+ void VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Node);
+ void VisitMemberExpr(const MemberExpr *Node);
+ void VisitExtVectorElementExpr(const ExtVectorElementExpr *Node);
+ void VisitBinaryOperator(const BinaryOperator *Node);
+ void VisitCompoundAssignOperator(const CompoundAssignOperator *Node);
+ void VisitAddrLabelExpr(const AddrLabelExpr *Node);
+ void VisitBlockExpr(const BlockExpr *Node);
+ void VisitOpaqueValueExpr(const OpaqueValueExpr *Node);
+
+ // C++
+ void VisitCXXNamedCastExpr(const CXXNamedCastExpr *Node);
+ void VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *Node);
+ void VisitCXXThisExpr(const CXXThisExpr *Node);
+ void VisitCXXFunctionalCastExpr(const CXXFunctionalCastExpr *Node);
+ void VisitCXXConstructExpr(const CXXConstructExpr *Node);
+ void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *Node);
+ void VisitCXXNewExpr(const CXXNewExpr *Node);
+ void VisitCXXDeleteExpr(const CXXDeleteExpr *Node);
+ void VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *Node);
+ void VisitExprWithCleanups(const ExprWithCleanups *Node);
+ void VisitUnresolvedLookupExpr(const UnresolvedLookupExpr *Node);
+ void dumpCXXTemporary(const CXXTemporary *Temporary);
+ void VisitLambdaExpr(const LambdaExpr *Node) {
+ VisitExpr(Node);
+ dumpDecl(Node->getLambdaClass());
+ }
+ void VisitSizeOfPackExpr(const SizeOfPackExpr *Node);
+
+ // ObjC
+ void VisitObjCAtCatchStmt(const ObjCAtCatchStmt *Node);
+ void VisitObjCEncodeExpr(const ObjCEncodeExpr *Node);
+ void VisitObjCMessageExpr(const ObjCMessageExpr *Node);
+ void VisitObjCBoxedExpr(const ObjCBoxedExpr *Node);
+ void VisitObjCSelectorExpr(const ObjCSelectorExpr *Node);
+ void VisitObjCProtocolExpr(const ObjCProtocolExpr *Node);
+ void VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *Node);
+ void VisitObjCSubscriptRefExpr(const ObjCSubscriptRefExpr *Node);
+ void VisitObjCIvarRefExpr(const ObjCIvarRefExpr *Node);
+ void VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *Node);
+
+ // Comments.
+ const char *getCommandName(unsigned CommandID);
+ void dumpComment(const Comment *C);
+
+ // Inline comments.
+ void visitTextComment(const TextComment *C);
+ void visitInlineCommandComment(const InlineCommandComment *C);
+ void visitHTMLStartTagComment(const HTMLStartTagComment *C);
+ void visitHTMLEndTagComment(const HTMLEndTagComment *C);
+
+ // Block comments.
+ void visitBlockCommandComment(const BlockCommandComment *C);
+ void visitParamCommandComment(const ParamCommandComment *C);
+ void visitTParamCommandComment(const TParamCommandComment *C);
+ void visitVerbatimBlockComment(const VerbatimBlockComment *C);
+ void visitVerbatimBlockLineComment(const VerbatimBlockLineComment *C);
+ void visitVerbatimLineComment(const VerbatimLineComment *C);
+ };
+}
+
+//===----------------------------------------------------------------------===//
+// Utilities
+//===----------------------------------------------------------------------===//
+
+void ASTDumper::dumpPointer(const void *Ptr) {
+ ColorScope Color(*this, AddressColor);
+ OS << ' ' << Ptr;
+}
+
+void ASTDumper::dumpLocation(SourceLocation Loc) {
+ if (!SM)
+ return;
+
+ ColorScope Color(*this, LocationColor);
+ SourceLocation SpellingLoc = SM->getSpellingLoc(Loc);
+
+ // The general format we print out is filename:line:col, but we drop pieces
+ // that haven't changed since the last loc printed.
+ PresumedLoc PLoc = SM->getPresumedLoc(SpellingLoc);
+
+ if (PLoc.isInvalid()) {
+ OS << "<invalid sloc>";
+ return;
+ }
+
+ if (strcmp(PLoc.getFilename(), LastLocFilename) != 0) {
+ OS << PLoc.getFilename() << ':' << PLoc.getLine()
+ << ':' << PLoc.getColumn();
+ LastLocFilename = PLoc.getFilename();
+ LastLocLine = PLoc.getLine();
+ } else if (PLoc.getLine() != LastLocLine) {
+ OS << "line" << ':' << PLoc.getLine()
+ << ':' << PLoc.getColumn();
+ LastLocLine = PLoc.getLine();
+ } else {
+ OS << "col" << ':' << PLoc.getColumn();
+ }
+}
+
+void ASTDumper::dumpSourceRange(SourceRange R) {
+ // Can't translate locations if a SourceManager isn't available.
+ if (!SM)
+ return;
+
+ OS << " <";
+ dumpLocation(R.getBegin());
+ if (R.getBegin() != R.getEnd()) {
+ OS << ", ";
+ dumpLocation(R.getEnd());
+ }
+ OS << ">";
+
+ // <t2.c:123:421[blah], t2.c:412:321>
+
+}
+
+void ASTDumper::dumpBareType(QualType T, bool Desugar) {
+ ColorScope Color(*this, TypeColor);
+
+ SplitQualType T_split = T.split();
+ OS << "'" << QualType::getAsString(T_split) << "'";
+
+ if (Desugar && !T.isNull()) {
+ // If the type is sugared, also dump a (shallow) desugared type.
+ SplitQualType D_split = T.getSplitDesugaredType();
+ if (T_split != D_split)
+ OS << ":'" << QualType::getAsString(D_split) << "'";
+ }
+}
+
+void ASTDumper::dumpType(QualType T) {
+ OS << ' ';
+ dumpBareType(T);
+}
+
+void ASTDumper::dumpTypeAsChild(QualType T) {
+ SplitQualType SQT = T.split();
+ if (!SQT.Quals.hasQualifiers())
+ return dumpTypeAsChild(SQT.Ty);
+
+ dumpChild([=] {
+ OS << "QualType";
+ dumpPointer(T.getAsOpaquePtr());
+ OS << " ";
+ dumpBareType(T, false);
+ OS << " " << T.split().Quals.getAsString();
+ dumpTypeAsChild(T.split().Ty);
+ });
+}
+
+void ASTDumper::dumpTypeAsChild(const Type *T) {
+ dumpChild([=] {
+ if (!T) {
+ ColorScope Color(*this, NullColor);
+ OS << "<<<NULL>>>";
+ return;
+ }
+
+ {
+ ColorScope Color(*this, TypeColor);
+ OS << T->getTypeClassName() << "Type";
+ }
+ dumpPointer(T);
+ OS << " ";
+ dumpBareType(QualType(T, 0), false);
+
+ QualType SingleStepDesugar =
+ T->getLocallyUnqualifiedSingleStepDesugaredType();
+ if (SingleStepDesugar != QualType(T, 0))
+ OS << " sugar";
+ if (T->isDependentType())
+ OS << " dependent";
+ else if (T->isInstantiationDependentType())
+ OS << " instantiation_dependent";
+ if (T->isVariablyModifiedType())
+ OS << " variably_modified";
+ if (T->containsUnexpandedParameterPack())
+ OS << " contains_unexpanded_pack";
+ if (T->isFromAST())
+ OS << " imported";
+
+ TypeVisitor<ASTDumper>::Visit(T);
+
+ if (SingleStepDesugar != QualType(T, 0))
+ dumpTypeAsChild(SingleStepDesugar);
+ });
+}
+
+void ASTDumper::dumpBareDeclRef(const Decl *D) {
+ {
+ ColorScope Color(*this, DeclKindNameColor);
+ OS << D->getDeclKindName();
+ }
+ dumpPointer(D);
+
+ if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) {
+ ColorScope Color(*this, DeclNameColor);
+ OS << " '" << ND->getDeclName() << '\'';
+ }
+
+ if (const ValueDecl *VD = dyn_cast<ValueDecl>(D))
+ dumpType(VD->getType());
+}
+
+void ASTDumper::dumpDeclRef(const Decl *D, const char *Label) {
+ if (!D)
+ return;
+
+ dumpChild([=]{
+ if (Label)
+ OS << Label << ' ';
+ dumpBareDeclRef(D);
+ });
+}
+
+void ASTDumper::dumpName(const NamedDecl *ND) {
+ if (ND->getDeclName()) {
+ ColorScope Color(*this, DeclNameColor);
+ OS << ' ' << ND->getNameAsString();
+ }
+}
+
+bool ASTDumper::hasNodes(const DeclContext *DC) {
+ if (!DC)
+ return false;
+
+ return DC->hasExternalLexicalStorage() ||
+ DC->noload_decls_begin() != DC->noload_decls_end();
+}
+
+void ASTDumper::dumpDeclContext(const DeclContext *DC) {
+ if (!DC)
+ return;
+
+ for (auto *D : DC->noload_decls())
+ dumpDecl(D);
+
+ if (DC->hasExternalLexicalStorage()) {
+ dumpChild([=]{
+ ColorScope Color(*this, UndeserializedColor);
+ OS << "<undeserialized declarations>";
+ });
+ }
+}
+
+void ASTDumper::dumpLookups(const DeclContext *DC, bool DumpDecls) {
+ dumpChild([=] {
+ OS << "StoredDeclsMap ";
+ dumpBareDeclRef(cast<Decl>(DC));
+
+ const DeclContext *Primary = DC->getPrimaryContext();
+ if (Primary != DC) {
+ OS << " primary";
+ dumpPointer(cast<Decl>(Primary));
+ }
+
+ bool HasUndeserializedLookups = Primary->hasExternalVisibleStorage();
+
+ DeclContext::all_lookups_iterator I = Primary->noload_lookups_begin(),
+ E = Primary->noload_lookups_end();
+ while (I != E) {
+ DeclarationName Name = I.getLookupName();
+ DeclContextLookupResult R = *I++;
+
+ dumpChild([=] {
+ OS << "DeclarationName ";
+ {
+ ColorScope Color(*this, DeclNameColor);
+ OS << '\'' << Name << '\'';
+ }
+
+ for (DeclContextLookupResult::iterator RI = R.begin(), RE = R.end();
+ RI != RE; ++RI) {
+ dumpChild([=] {
+ dumpBareDeclRef(*RI);
+
+ if ((*RI)->isHidden())
+ OS << " hidden";
+
+ // If requested, dump the redecl chain for this lookup.
+ if (DumpDecls) {
+ // Dump earliest decl first.
+ std::function<void(Decl *)> DumpWithPrev = [&](Decl *D) {
+ if (Decl *Prev = D->getPreviousDecl())
+ DumpWithPrev(Prev);
+ dumpDecl(D);
+ };
+ DumpWithPrev(*RI);
+ }
+ });
+ }
+ });
+ }
+
+ if (HasUndeserializedLookups) {
+ dumpChild([=] {
+ ColorScope Color(*this, UndeserializedColor);
+ OS << "<undeserialized lookups>";
+ });
+ }
+ });
+}
+
+void ASTDumper::dumpAttr(const Attr *A) {
+ dumpChild([=] {
+ {
+ ColorScope Color(*this, AttrColor);
+
+ switch (A->getKind()) {
+#define ATTR(X) case attr::X: OS << #X; break;
+#include "clang/Basic/AttrList.inc"
+ default:
+ llvm_unreachable("unexpected attribute kind");
+ }
+ OS << "Attr";
+ }
+ dumpPointer(A);
+ dumpSourceRange(A->getRange());
+ if (A->isInherited())
+ OS << " Inherited";
+ if (A->isImplicit())
+ OS << " Implicit";
+#include "clang/AST/AttrDump.inc"
+ });
+}
+
+static void dumpPreviousDeclImpl(raw_ostream &OS, ...) {}
+
+template<typename T>
+static void dumpPreviousDeclImpl(raw_ostream &OS, const Mergeable<T> *D) {
+ const T *First = D->getFirstDecl();
+ if (First != D)
+ OS << " first " << First;
+}
+
+template<typename T>
+static void dumpPreviousDeclImpl(raw_ostream &OS, const Redeclarable<T> *D) {
+ const T *Prev = D->getPreviousDecl();
+ if (Prev)
+ OS << " prev " << Prev;
+}
+
+/// Dump the previous declaration in the redeclaration chain for a declaration,
+/// if any.
+static void dumpPreviousDecl(raw_ostream &OS, const Decl *D) {
+ switch (D->getKind()) {
+#define DECL(DERIVED, BASE) \
+ case Decl::DERIVED: \
+ return dumpPreviousDeclImpl(OS, cast<DERIVED##Decl>(D));
+#define ABSTRACT_DECL(DECL)
+#include "clang/AST/DeclNodes.inc"
+ }
+ llvm_unreachable("Decl that isn't part of DeclNodes.inc!");
+}
+
+//===----------------------------------------------------------------------===//
+// C++ Utilities
+//===----------------------------------------------------------------------===//
+
+void ASTDumper::dumpAccessSpecifier(AccessSpecifier AS) {
+ switch (AS) {
+ case AS_none:
+ break;
+ case AS_public:
+ OS << "public";
+ break;
+ case AS_protected:
+ OS << "protected";
+ break;
+ case AS_private:
+ OS << "private";
+ break;
+ }
+}
+
+void ASTDumper::dumpCXXCtorInitializer(const CXXCtorInitializer *Init) {
+ dumpChild([=] {
+ OS << "CXXCtorInitializer";
+ if (Init->isAnyMemberInitializer()) {
+ OS << ' ';
+ dumpBareDeclRef(Init->getAnyMember());
+ } else if (Init->isBaseInitializer()) {
+ dumpType(QualType(Init->getBaseClass(), 0));
+ } else if (Init->isDelegatingInitializer()) {
+ dumpType(Init->getTypeSourceInfo()->getType());
+ } else {
+ llvm_unreachable("Unknown initializer type");
+ }
+ dumpStmt(Init->getInit());
+ });
+}
+
+void ASTDumper::dumpTemplateParameters(const TemplateParameterList *TPL) {
+ if (!TPL)
+ return;
+
+ for (TemplateParameterList::const_iterator I = TPL->begin(), E = TPL->end();
+ I != E; ++I)
+ dumpDecl(*I);
+}
+
+void ASTDumper::dumpTemplateArgumentListInfo(
+ const TemplateArgumentListInfo &TALI) {
+ for (unsigned i = 0, e = TALI.size(); i < e; ++i)
+ dumpTemplateArgumentLoc(TALI[i]);
+}
+
+void ASTDumper::dumpTemplateArgumentLoc(const TemplateArgumentLoc &A) {
+ dumpTemplateArgument(A.getArgument(), A.getSourceRange());
+}
+
+void ASTDumper::dumpTemplateArgumentList(const TemplateArgumentList &TAL) {
+ for (unsigned i = 0, e = TAL.size(); i < e; ++i)
+ dumpTemplateArgument(TAL[i]);
+}
+
+void ASTDumper::dumpTemplateArgument(const TemplateArgument &A, SourceRange R) {
+ dumpChild([=] {
+ OS << "TemplateArgument";
+ if (R.isValid())
+ dumpSourceRange(R);
+
+ switch (A.getKind()) {
+ case TemplateArgument::Null:
+ OS << " null";
+ break;
+ case TemplateArgument::Type:
+ OS << " type";
+ dumpType(A.getAsType());
+ break;
+ case TemplateArgument::Declaration:
+ OS << " decl";
+ dumpDeclRef(A.getAsDecl());
+ break;
+ case TemplateArgument::NullPtr:
+ OS << " nullptr";
+ break;
+ case TemplateArgument::Integral:
+ OS << " integral " << A.getAsIntegral();
+ break;
+ case TemplateArgument::Template:
+ OS << " template ";
+ A.getAsTemplate().dump(OS);
+ break;
+ case TemplateArgument::TemplateExpansion:
+ OS << " template expansion";
+ A.getAsTemplateOrTemplatePattern().dump(OS);
+ break;
+ case TemplateArgument::Expression:
+ OS << " expr";
+ dumpStmt(A.getAsExpr());
+ break;
+ case TemplateArgument::Pack:
+ OS << " pack";
+ for (TemplateArgument::pack_iterator I = A.pack_begin(), E = A.pack_end();
+ I != E; ++I)
+ dumpTemplateArgument(*I);
+ break;
+ }
+ });
+}
+
+//===----------------------------------------------------------------------===//
+// Decl dumping methods.
+//===----------------------------------------------------------------------===//
+
+void ASTDumper::dumpDecl(const Decl *D) {
+ dumpChild([=] {
+ if (!D) {
+ ColorScope Color(*this, NullColor);
+ OS << "<<<NULL>>>";
+ return;
+ }
+
+ {
+ ColorScope Color(*this, DeclKindNameColor);
+ OS << D->getDeclKindName() << "Decl";
+ }
+ dumpPointer(D);
+ if (D->getLexicalDeclContext() != D->getDeclContext())
+ OS << " parent " << cast<Decl>(D->getDeclContext());
+ dumpPreviousDecl(OS, D);
+ dumpSourceRange(D->getSourceRange());
+ OS << ' ';
+ dumpLocation(D->getLocation());
+ if (Module *M = D->getImportedOwningModule())
+ OS << " in " << M->getFullModuleName();
+ else if (Module *M = D->getLocalOwningModule())
+ OS << " in (local) " << M->getFullModuleName();
+ if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
+ if (ND->isHidden())
+ OS << " hidden";
+ if (D->isImplicit())
+ OS << " implicit";
+ if (D->isUsed())
+ OS << " used";
+ else if (D->isThisDeclarationReferenced())
+ OS << " referenced";
+ if (D->isInvalidDecl())
+ OS << " invalid";
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
+ if (FD->isConstexpr())
+ OS << " constexpr";
+
+
+ ConstDeclVisitor<ASTDumper>::Visit(D);
+
+ for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end(); I != E;
+ ++I)
+ dumpAttr(*I);
+
+ if (const FullComment *Comment =
+ D->getASTContext().getLocalCommentForDeclUncached(D))
+ dumpFullComment(Comment);
+
+ // Decls within functions are visited by the body.
+ if (!isa<FunctionDecl>(*D) && !isa<ObjCMethodDecl>(*D) &&
+ hasNodes(dyn_cast<DeclContext>(D)))
+ dumpDeclContext(cast<DeclContext>(D));
+ });
+}
+
+void ASTDumper::VisitLabelDecl(const LabelDecl *D) {
+ dumpName(D);
+}
+
+void ASTDumper::VisitTypedefDecl(const TypedefDecl *D) {
+ dumpName(D);
+ dumpType(D->getUnderlyingType());
+ if (D->isModulePrivate())
+ OS << " __module_private__";
+}
+
+void ASTDumper::VisitEnumDecl(const EnumDecl *D) {
+ if (D->isScoped()) {
+ if (D->isScopedUsingClassTag())
+ OS << " class";
+ else
+ OS << " struct";
+ }
+ dumpName(D);
+ if (D->isModulePrivate())
+ OS << " __module_private__";
+ if (D->isFixed())
+ dumpType(D->getIntegerType());
+}
+
+void ASTDumper::VisitRecordDecl(const RecordDecl *D) {
+ OS << ' ' << D->getKindName();
+ dumpName(D);
+ if (D->isModulePrivate())
+ OS << " __module_private__";
+ if (D->isCompleteDefinition())
+ OS << " definition";
+}
+
+void ASTDumper::VisitEnumConstantDecl(const EnumConstantDecl *D) {
+ dumpName(D);
+ dumpType(D->getType());
+ if (const Expr *Init = D->getInitExpr())
+ dumpStmt(Init);
+}
+
+void ASTDumper::VisitIndirectFieldDecl(const IndirectFieldDecl *D) {
+ dumpName(D);
+ dumpType(D->getType());
+
+ for (auto *Child : D->chain())
+ dumpDeclRef(Child);
+}
+
+void ASTDumper::VisitFunctionDecl(const FunctionDecl *D) {
+ dumpName(D);
+ dumpType(D->getType());
+
+ StorageClass SC = D->getStorageClass();
+ if (SC != SC_None)
+ OS << ' ' << VarDecl::getStorageClassSpecifierString(SC);
+ if (D->isInlineSpecified())
+ OS << " inline";
+ if (D->isVirtualAsWritten())
+ OS << " virtual";
+ if (D->isModulePrivate())
+ OS << " __module_private__";
+
+ if (D->isPure())
+ OS << " pure";
+ else if (D->isDeletedAsWritten())
+ OS << " delete";
+
+ if (const FunctionProtoType *FPT = D->getType()->getAs<FunctionProtoType>()) {
+ FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
+ switch (EPI.ExceptionSpec.Type) {
+ default: break;
+ case EST_Unevaluated:
+ OS << " noexcept-unevaluated " << EPI.ExceptionSpec.SourceDecl;
+ break;
+ case EST_Uninstantiated:
+ OS << " noexcept-uninstantiated " << EPI.ExceptionSpec.SourceTemplate;
+ break;
+ }
+ }
+
+ if (const FunctionTemplateSpecializationInfo *FTSI =
+ D->getTemplateSpecializationInfo())
+ dumpTemplateArgumentList(*FTSI->TemplateArguments);
+
+ for (ArrayRef<NamedDecl *>::iterator
+ I = D->getDeclsInPrototypeScope().begin(),
+ E = D->getDeclsInPrototypeScope().end(); I != E; ++I)
+ dumpDecl(*I);
+
+ if (!D->param_begin() && D->getNumParams())
+ dumpChild([=] { OS << "<<NULL params x " << D->getNumParams() << ">>"; });
+ else
+ for (FunctionDecl::param_const_iterator I = D->param_begin(),
+ E = D->param_end();
+ I != E; ++I)
+ dumpDecl(*I);
+
+ if (const CXXConstructorDecl *C = dyn_cast<CXXConstructorDecl>(D))
+ for (CXXConstructorDecl::init_const_iterator I = C->init_begin(),
+ E = C->init_end();
+ I != E; ++I)
+ dumpCXXCtorInitializer(*I);
+
+ if (D->doesThisDeclarationHaveABody())
+ dumpStmt(D->getBody());
+}
+
+void ASTDumper::VisitFieldDecl(const FieldDecl *D) {
+ dumpName(D);
+ dumpType(D->getType());
+ if (D->isMutable())
+ OS << " mutable";
+ if (D->isModulePrivate())
+ OS << " __module_private__";
+
+ if (D->isBitField())
+ dumpStmt(D->getBitWidth());
+ if (Expr *Init = D->getInClassInitializer())
+ dumpStmt(Init);
+}
+
+void ASTDumper::VisitVarDecl(const VarDecl *D) {
+ dumpName(D);
+ dumpType(D->getType());
+ StorageClass SC = D->getStorageClass();
+ if (SC != SC_None)
+ OS << ' ' << VarDecl::getStorageClassSpecifierString(SC);
+ switch (D->getTLSKind()) {
+ case VarDecl::TLS_None: break;
+ case VarDecl::TLS_Static: OS << " tls"; break;
+ case VarDecl::TLS_Dynamic: OS << " tls_dynamic"; break;
+ }
+ if (D->isModulePrivate())
+ OS << " __module_private__";
+ if (D->isNRVOVariable())
+ OS << " nrvo";
+ if (D->hasInit()) {
+ switch (D->getInitStyle()) {
+ case VarDecl::CInit: OS << " cinit"; break;
+ case VarDecl::CallInit: OS << " callinit"; break;
+ case VarDecl::ListInit: OS << " listinit"; break;
+ }
+ dumpStmt(D->getInit());
+ }
+}
+
+void ASTDumper::VisitFileScopeAsmDecl(const FileScopeAsmDecl *D) {
+ dumpStmt(D->getAsmString());
+}
+
+void ASTDumper::VisitImportDecl(const ImportDecl *D) {
+ OS << ' ' << D->getImportedModule()->getFullModuleName();
+}
+
+//===----------------------------------------------------------------------===//
+// C++ Declarations
+//===----------------------------------------------------------------------===//
+
+void ASTDumper::VisitNamespaceDecl(const NamespaceDecl *D) {
+ dumpName(D);
+ if (D->isInline())
+ OS << " inline";
+ if (!D->isOriginalNamespace())
+ dumpDeclRef(D->getOriginalNamespace(), "original");
+}
+
+void ASTDumper::VisitUsingDirectiveDecl(const UsingDirectiveDecl *D) {
+ OS << ' ';
+ dumpBareDeclRef(D->getNominatedNamespace());
+}
+
+void ASTDumper::VisitNamespaceAliasDecl(const NamespaceAliasDecl *D) {
+ dumpName(D);
+ dumpDeclRef(D->getAliasedNamespace());
+}
+
+void ASTDumper::VisitTypeAliasDecl(const TypeAliasDecl *D) {
+ dumpName(D);
+ dumpType(D->getUnderlyingType());
+}
+
+void ASTDumper::VisitTypeAliasTemplateDecl(const TypeAliasTemplateDecl *D) {
+ dumpName(D);
+ dumpTemplateParameters(D->getTemplateParameters());
+ dumpDecl(D->getTemplatedDecl());
+}
+
+void ASTDumper::VisitCXXRecordDecl(const CXXRecordDecl *D) {
+ VisitRecordDecl(D);
+ if (!D->isCompleteDefinition())
+ return;
+
+ for (const auto &I : D->bases()) {
+ dumpChild([=] {
+ if (I.isVirtual())
+ OS << "virtual ";
+ dumpAccessSpecifier(I.getAccessSpecifier());
+ dumpType(I.getType());
+ if (I.isPackExpansion())
+ OS << "...";
+ });
+ }
+}
+
+void ASTDumper::VisitStaticAssertDecl(const StaticAssertDecl *D) {
+ dumpStmt(D->getAssertExpr());
+ dumpStmt(D->getMessage());
+}
+
+template<typename SpecializationDecl>
+void ASTDumper::VisitTemplateDeclSpecialization(const SpecializationDecl *D,
+ bool DumpExplicitInst,
+ bool DumpRefOnly) {
+ bool DumpedAny = false;
+ for (auto *RedeclWithBadType : D->redecls()) {
+ // FIXME: The redecls() range sometimes has elements of a less-specific
+ // type. (In particular, ClassTemplateSpecializationDecl::redecls() gives
+ // us TagDecls, and should give CXXRecordDecls).
+ auto *Redecl = dyn_cast<SpecializationDecl>(RedeclWithBadType);
+ if (!Redecl) {
+ // Found the injected-class-name for a class template. This will be dumped
+ // as part of its surrounding class so we don't need to dump it here.
+ assert(isa<CXXRecordDecl>(RedeclWithBadType) &&
+ "expected an injected-class-name");
+ continue;
+ }
+
+ switch (Redecl->getTemplateSpecializationKind()) {
+ case TSK_ExplicitInstantiationDeclaration:
+ case TSK_ExplicitInstantiationDefinition:
+ if (!DumpExplicitInst)
+ break;
+ // Fall through.
+ case TSK_Undeclared:
+ case TSK_ImplicitInstantiation:
+ if (DumpRefOnly)
+ dumpDeclRef(Redecl);
+ else
+ dumpDecl(Redecl);
+ DumpedAny = true;
+ break;
+ case TSK_ExplicitSpecialization:
+ break;
+ }
+ }
+
+ // Ensure we dump at least one decl for each specialization.
+ if (!DumpedAny)
+ dumpDeclRef(D);
+}
+
+template<typename TemplateDecl>
+void ASTDumper::VisitTemplateDecl(const TemplateDecl *D,
+ bool DumpExplicitInst) {
+ dumpName(D);
+ dumpTemplateParameters(D->getTemplateParameters());
+
+ dumpDecl(D->getTemplatedDecl());
+
+ for (auto *Child : D->specializations())
+ VisitTemplateDeclSpecialization(Child, DumpExplicitInst,
+ !D->isCanonicalDecl());
+}
+
+void ASTDumper::VisitFunctionTemplateDecl(const FunctionTemplateDecl *D) {
+ // FIXME: We don't add a declaration of a function template specialization
+ // to its context when it's explicitly instantiated, so dump explicit
+ // instantiations when we dump the template itself.
+ VisitTemplateDecl(D, true);
+}
+
+void ASTDumper::VisitClassTemplateDecl(const ClassTemplateDecl *D) {
+ VisitTemplateDecl(D, false);
+}
+
+void ASTDumper::VisitClassTemplateSpecializationDecl(
+ const ClassTemplateSpecializationDecl *D) {
+ VisitCXXRecordDecl(D);
+ dumpTemplateArgumentList(D->getTemplateArgs());
+}
+
+void ASTDumper::VisitClassTemplatePartialSpecializationDecl(
+ const ClassTemplatePartialSpecializationDecl *D) {
+ VisitClassTemplateSpecializationDecl(D);
+ dumpTemplateParameters(D->getTemplateParameters());
+}
+
+void ASTDumper::VisitClassScopeFunctionSpecializationDecl(
+ const ClassScopeFunctionSpecializationDecl *D) {
+ dumpDeclRef(D->getSpecialization());
+ if (D->hasExplicitTemplateArgs())
+ dumpTemplateArgumentListInfo(D->templateArgs());
+}
+
+void ASTDumper::VisitVarTemplateDecl(const VarTemplateDecl *D) {
+ VisitTemplateDecl(D, false);
+}
+
+void ASTDumper::VisitVarTemplateSpecializationDecl(
+ const VarTemplateSpecializationDecl *D) {
+ dumpTemplateArgumentList(D->getTemplateArgs());
+ VisitVarDecl(D);
+}
+
+void ASTDumper::VisitVarTemplatePartialSpecializationDecl(
+ const VarTemplatePartialSpecializationDecl *D) {
+ dumpTemplateParameters(D->getTemplateParameters());
+ VisitVarTemplateSpecializationDecl(D);
+}
+
+void ASTDumper::VisitTemplateTypeParmDecl(const TemplateTypeParmDecl *D) {
+ if (D->wasDeclaredWithTypename())
+ OS << " typename";
+ else
+ OS << " class";
+ if (D->isParameterPack())
+ OS << " ...";
+ dumpName(D);
+ if (D->hasDefaultArgument())
+ dumpTemplateArgument(D->getDefaultArgument());
+}
+
+void ASTDumper::VisitNonTypeTemplateParmDecl(const NonTypeTemplateParmDecl *D) {
+ dumpType(D->getType());
+ if (D->isParameterPack())
+ OS << " ...";
+ dumpName(D);
+ if (D->hasDefaultArgument())
+ dumpTemplateArgument(D->getDefaultArgument());
+}
+
+void ASTDumper::VisitTemplateTemplateParmDecl(
+ const TemplateTemplateParmDecl *D) {
+ if (D->isParameterPack())
+ OS << " ...";
+ dumpName(D);
+ dumpTemplateParameters(D->getTemplateParameters());
+ if (D->hasDefaultArgument())
+ dumpTemplateArgumentLoc(D->getDefaultArgument());
+}
+
+void ASTDumper::VisitUsingDecl(const UsingDecl *D) {
+ OS << ' ';
+ D->getQualifier()->print(OS, D->getASTContext().getPrintingPolicy());
+ OS << D->getNameAsString();
+}
+
+void ASTDumper::VisitUnresolvedUsingTypenameDecl(
+ const UnresolvedUsingTypenameDecl *D) {
+ OS << ' ';
+ D->getQualifier()->print(OS, D->getASTContext().getPrintingPolicy());
+ OS << D->getNameAsString();
+}
+
+void ASTDumper::VisitUnresolvedUsingValueDecl(const UnresolvedUsingValueDecl *D) {
+ OS << ' ';
+ D->getQualifier()->print(OS, D->getASTContext().getPrintingPolicy());
+ OS << D->getNameAsString();
+ dumpType(D->getType());
+}
+
+void ASTDumper::VisitUsingShadowDecl(const UsingShadowDecl *D) {
+ OS << ' ';
+ dumpBareDeclRef(D->getTargetDecl());
+}
+
+void ASTDumper::VisitLinkageSpecDecl(const LinkageSpecDecl *D) {
+ switch (D->getLanguage()) {
+ case LinkageSpecDecl::lang_c: OS << " C"; break;
+ case LinkageSpecDecl::lang_cxx: OS << " C++"; break;
+ }
+}
+
+void ASTDumper::VisitAccessSpecDecl(const AccessSpecDecl *D) {
+ OS << ' ';
+ dumpAccessSpecifier(D->getAccess());
+}
+
+void ASTDumper::VisitFriendDecl(const FriendDecl *D) {
+ if (TypeSourceInfo *T = D->getFriendType())
+ dumpType(T->getType());
+ else
+ dumpDecl(D->getFriendDecl());
+}
+
+//===----------------------------------------------------------------------===//
+// Obj-C Declarations
+//===----------------------------------------------------------------------===//
+
+void ASTDumper::VisitObjCIvarDecl(const ObjCIvarDecl *D) {
+ dumpName(D);
+ dumpType(D->getType());
+ if (D->getSynthesize())
+ OS << " synthesize";
+
+ switch (D->getAccessControl()) {
+ case ObjCIvarDecl::None:
+ OS << " none";
+ break;
+ case ObjCIvarDecl::Private:
+ OS << " private";
+ break;
+ case ObjCIvarDecl::Protected:
+ OS << " protected";
+ break;
+ case ObjCIvarDecl::Public:
+ OS << " public";
+ break;
+ case ObjCIvarDecl::Package:
+ OS << " package";
+ break;
+ }
+}
+
+void ASTDumper::VisitObjCMethodDecl(const ObjCMethodDecl *D) {
+ if (D->isInstanceMethod())
+ OS << " -";
+ else
+ OS << " +";
+ dumpName(D);
+ dumpType(D->getReturnType());
+
+ if (D->isThisDeclarationADefinition()) {
+ dumpDeclContext(D);
+ } else {
+ for (ObjCMethodDecl::param_const_iterator I = D->param_begin(),
+ E = D->param_end();
+ I != E; ++I)
+ dumpDecl(*I);
+ }
+
+ if (D->isVariadic())
+ dumpChild([=] { OS << "..."; });
+
+ if (D->hasBody())
+ dumpStmt(D->getBody());
+}
+
+void ASTDumper::VisitObjCCategoryDecl(const ObjCCategoryDecl *D) {
+ dumpName(D);
+ dumpDeclRef(D->getClassInterface());
+ dumpDeclRef(D->getImplementation());
+ for (ObjCCategoryDecl::protocol_iterator I = D->protocol_begin(),
+ E = D->protocol_end();
+ I != E; ++I)
+ dumpDeclRef(*I);
+}
+
+void ASTDumper::VisitObjCCategoryImplDecl(const ObjCCategoryImplDecl *D) {
+ dumpName(D);
+ dumpDeclRef(D->getClassInterface());
+ dumpDeclRef(D->getCategoryDecl());
+}
+
+void ASTDumper::VisitObjCProtocolDecl(const ObjCProtocolDecl *D) {
+ dumpName(D);
+
+ for (auto *Child : D->protocols())
+ dumpDeclRef(Child);
+}
+
+void ASTDumper::VisitObjCInterfaceDecl(const ObjCInterfaceDecl *D) {
+ dumpName(D);
+ dumpDeclRef(D->getSuperClass(), "super");
+
+ dumpDeclRef(D->getImplementation());
+ for (auto *Child : D->protocols())
+ dumpDeclRef(Child);
+}
+
+void ASTDumper::VisitObjCImplementationDecl(const ObjCImplementationDecl *D) {
+ dumpName(D);
+ dumpDeclRef(D->getSuperClass(), "super");
+ dumpDeclRef(D->getClassInterface());
+ for (ObjCImplementationDecl::init_const_iterator I = D->init_begin(),
+ E = D->init_end();
+ I != E; ++I)
+ dumpCXXCtorInitializer(*I);
+}
+
+void ASTDumper::VisitObjCCompatibleAliasDecl(const ObjCCompatibleAliasDecl *D) {
+ dumpName(D);
+ dumpDeclRef(D->getClassInterface());
+}
+
+void ASTDumper::VisitObjCPropertyDecl(const ObjCPropertyDecl *D) {
+ dumpName(D);
+ dumpType(D->getType());
+
+ if (D->getPropertyImplementation() == ObjCPropertyDecl::Required)
+ OS << " required";
+ else if (D->getPropertyImplementation() == ObjCPropertyDecl::Optional)
+ OS << " optional";
+
+ ObjCPropertyDecl::PropertyAttributeKind Attrs = D->getPropertyAttributes();
+ if (Attrs != ObjCPropertyDecl::OBJC_PR_noattr) {
+ if (Attrs & ObjCPropertyDecl::OBJC_PR_readonly)
+ OS << " readonly";
+ if (Attrs & ObjCPropertyDecl::OBJC_PR_assign)
+ OS << " assign";
+ if (Attrs & ObjCPropertyDecl::OBJC_PR_readwrite)
+ OS << " readwrite";
+ if (Attrs & ObjCPropertyDecl::OBJC_PR_retain)
+ OS << " retain";
+ if (Attrs & ObjCPropertyDecl::OBJC_PR_copy)
+ OS << " copy";
+ if (Attrs & ObjCPropertyDecl::OBJC_PR_nonatomic)
+ OS << " nonatomic";
+ if (Attrs & ObjCPropertyDecl::OBJC_PR_atomic)
+ OS << " atomic";
+ if (Attrs & ObjCPropertyDecl::OBJC_PR_weak)
+ OS << " weak";
+ if (Attrs & ObjCPropertyDecl::OBJC_PR_strong)
+ OS << " strong";
+ if (Attrs & ObjCPropertyDecl::OBJC_PR_unsafe_unretained)
+ OS << " unsafe_unretained";
+ if (Attrs & ObjCPropertyDecl::OBJC_PR_getter)
+ dumpDeclRef(D->getGetterMethodDecl(), "getter");
+ if (Attrs & ObjCPropertyDecl::OBJC_PR_setter)
+ dumpDeclRef(D->getSetterMethodDecl(), "setter");
+ }
+}
+
+void ASTDumper::VisitObjCPropertyImplDecl(const ObjCPropertyImplDecl *D) {
+ dumpName(D->getPropertyDecl());
+ if (D->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize)
+ OS << " synthesize";
+ else
+ OS << " dynamic";
+ dumpDeclRef(D->getPropertyDecl());
+ dumpDeclRef(D->getPropertyIvarDecl());
+}
+
+void ASTDumper::VisitBlockDecl(const BlockDecl *D) {
+ for (auto I : D->params())
+ dumpDecl(I);
+
+ if (D->isVariadic())
+ dumpChild([=]{ OS << "..."; });
+
+ if (D->capturesCXXThis())
+ dumpChild([=]{ OS << "capture this"; });
+
+ for (const auto &I : D->captures()) {
+ dumpChild([=] {
+ OS << "capture";
+ if (I.isByRef())
+ OS << " byref";
+ if (I.isNested())
+ OS << " nested";
+ if (I.getVariable()) {
+ OS << ' ';
+ dumpBareDeclRef(I.getVariable());
+ }
+ if (I.hasCopyExpr())
+ dumpStmt(I.getCopyExpr());
+ });
+ }
+ dumpStmt(D->getBody());
+}
+
+//===----------------------------------------------------------------------===//
+// Stmt dumping methods.
+//===----------------------------------------------------------------------===//
+
+void ASTDumper::dumpStmt(const Stmt *S) {
+ dumpChild([=] {
+ if (!S) {
+ ColorScope Color(*this, NullColor);
+ OS << "<<<NULL>>>";
+ return;
+ }
+
+ if (const DeclStmt *DS = dyn_cast<DeclStmt>(S)) {
+ VisitDeclStmt(DS);
+ return;
+ }
+
+ ConstStmtVisitor<ASTDumper>::Visit(S);
+
+ for (Stmt::const_child_range CI = S->children(); CI; ++CI)
+ dumpStmt(*CI);
+ });
+}
+
+void ASTDumper::VisitStmt(const Stmt *Node) {
+ {
+ ColorScope Color(*this, StmtColor);
+ OS << Node->getStmtClassName();
+ }
+ dumpPointer(Node);
+ dumpSourceRange(Node->getSourceRange());
+}
+
+void ASTDumper::VisitDeclStmt(const DeclStmt *Node) {
+ VisitStmt(Node);
+ for (DeclStmt::const_decl_iterator I = Node->decl_begin(),
+ E = Node->decl_end();
+ I != E; ++I)
+ dumpDecl(*I);
+}
+
+void ASTDumper::VisitAttributedStmt(const AttributedStmt *Node) {
+ VisitStmt(Node);
+ for (ArrayRef<const Attr *>::iterator I = Node->getAttrs().begin(),
+ E = Node->getAttrs().end();
+ I != E; ++I)
+ dumpAttr(*I);
+}
+
+void ASTDumper::VisitLabelStmt(const LabelStmt *Node) {
+ VisitStmt(Node);
+ OS << " '" << Node->getName() << "'";
+}
+
+void ASTDumper::VisitGotoStmt(const GotoStmt *Node) {
+ VisitStmt(Node);
+ OS << " '" << Node->getLabel()->getName() << "'";
+ dumpPointer(Node->getLabel());
+}
+
+void ASTDumper::VisitCXXCatchStmt(const CXXCatchStmt *Node) {
+ VisitStmt(Node);
+ dumpDecl(Node->getExceptionDecl());
+}
+
+//===----------------------------------------------------------------------===//
+// Expr dumping methods.
+//===----------------------------------------------------------------------===//
+
+void ASTDumper::VisitExpr(const Expr *Node) {
+ VisitStmt(Node);
+ dumpType(Node->getType());
+
+ {
+ ColorScope Color(*this, ValueKindColor);
+ switch (Node->getValueKind()) {
+ case VK_RValue:
+ break;
+ case VK_LValue:
+ OS << " lvalue";
+ break;
+ case VK_XValue:
+ OS << " xvalue";
+ break;
+ }
+ }
+
+ {
+ ColorScope Color(*this, ObjectKindColor);
+ switch (Node->getObjectKind()) {
+ case OK_Ordinary:
+ break;
+ case OK_BitField:
+ OS << " bitfield";
+ break;
+ case OK_ObjCProperty:
+ OS << " objcproperty";
+ break;
+ case OK_ObjCSubscript:
+ OS << " objcsubscript";
+ break;
+ case OK_VectorComponent:
+ OS << " vectorcomponent";
+ break;
+ }
+ }
+}
+
+static void dumpBasePath(raw_ostream &OS, const CastExpr *Node) {
+ if (Node->path_empty())
+ return;
+
+ OS << " (";
+ bool First = true;
+ for (CastExpr::path_const_iterator I = Node->path_begin(),
+ E = Node->path_end();
+ I != E; ++I) {
+ const CXXBaseSpecifier *Base = *I;
+ if (!First)
+ OS << " -> ";
+
+ const CXXRecordDecl *RD =
+ cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
+
+ if (Base->isVirtual())
+ OS << "virtual ";
+ OS << RD->getName();
+ First = false;
+ }
+
+ OS << ')';
+}
+
+void ASTDumper::VisitCastExpr(const CastExpr *Node) {
+ VisitExpr(Node);
+ OS << " <";
+ {
+ ColorScope Color(*this, CastColor);
+ OS << Node->getCastKindName();
+ }
+ dumpBasePath(OS, Node);
+ OS << ">";
+}
+
+void ASTDumper::VisitDeclRefExpr(const DeclRefExpr *Node) {
+ VisitExpr(Node);
+
+ OS << " ";
+ dumpBareDeclRef(Node->getDecl());
+ if (Node->getDecl() != Node->getFoundDecl()) {
+ OS << " (";
+ dumpBareDeclRef(Node->getFoundDecl());
+ OS << ")";
+ }
+}
+
+void ASTDumper::VisitUnresolvedLookupExpr(const UnresolvedLookupExpr *Node) {
+ VisitExpr(Node);
+ OS << " (";
+ if (!Node->requiresADL())
+ OS << "no ";
+ OS << "ADL) = '" << Node->getName() << '\'';
+
+ UnresolvedLookupExpr::decls_iterator
+ I = Node->decls_begin(), E = Node->decls_end();
+ if (I == E)
+ OS << " empty";
+ for (; I != E; ++I)
+ dumpPointer(*I);
+}
+
+void ASTDumper::VisitObjCIvarRefExpr(const ObjCIvarRefExpr *Node) {
+ VisitExpr(Node);
+
+ {
+ ColorScope Color(*this, DeclKindNameColor);
+ OS << " " << Node->getDecl()->getDeclKindName() << "Decl";
+ }
+ OS << "='" << *Node->getDecl() << "'";
+ dumpPointer(Node->getDecl());
+ if (Node->isFreeIvar())
+ OS << " isFreeIvar";
+}
+
+void ASTDumper::VisitPredefinedExpr(const PredefinedExpr *Node) {
+ VisitExpr(Node);
+ OS << " " << PredefinedExpr::getIdentTypeName(Node->getIdentType());
+}
+
+void ASTDumper::VisitCharacterLiteral(const CharacterLiteral *Node) {
+ VisitExpr(Node);
+ ColorScope Color(*this, ValueColor);
+ OS << " " << Node->getValue();
+}
+
+void ASTDumper::VisitIntegerLiteral(const IntegerLiteral *Node) {
+ VisitExpr(Node);
+
+ bool isSigned = Node->getType()->isSignedIntegerType();
+ ColorScope Color(*this, ValueColor);
+ OS << " " << Node->getValue().toString(10, isSigned);
+}
+
+void ASTDumper::VisitFloatingLiteral(const FloatingLiteral *Node) {
+ VisitExpr(Node);
+ ColorScope Color(*this, ValueColor);
+ OS << " " << Node->getValueAsApproximateDouble();
+}
+
+void ASTDumper::VisitStringLiteral(const StringLiteral *Str) {
+ VisitExpr(Str);
+ ColorScope Color(*this, ValueColor);
+ OS << " ";
+ Str->outputString(OS);
+}
+
+void ASTDumper::VisitInitListExpr(const InitListExpr *ILE) {
+ VisitExpr(ILE);
+ if (auto *Filler = ILE->getArrayFiller()) {
+ dumpChild([=] {
+ OS << "array filler";
+ dumpStmt(Filler);
+ });
+ }
+ if (auto *Field = ILE->getInitializedFieldInUnion()) {
+ OS << " field ";
+ dumpBareDeclRef(Field);
+ }
+}
+
+void ASTDumper::VisitUnaryOperator(const UnaryOperator *Node) {
+ VisitExpr(Node);
+ OS << " " << (Node->isPostfix() ? "postfix" : "prefix")
+ << " '" << UnaryOperator::getOpcodeStr(Node->getOpcode()) << "'";
+}
+
+void ASTDumper::VisitUnaryExprOrTypeTraitExpr(
+ const UnaryExprOrTypeTraitExpr *Node) {
+ VisitExpr(Node);
+ switch(Node->getKind()) {
+ case UETT_SizeOf:
+ OS << " sizeof";
+ break;
+ case UETT_AlignOf:
+ OS << " alignof";
+ break;
+ case UETT_VecStep:
+ OS << " vec_step";
+ break;
+ }
+ if (Node->isArgumentType())
+ dumpType(Node->getArgumentType());
+}
+
+void ASTDumper::VisitMemberExpr(const MemberExpr *Node) {
+ VisitExpr(Node);
+ OS << " " << (Node->isArrow() ? "->" : ".") << *Node->getMemberDecl();
+ dumpPointer(Node->getMemberDecl());
+}
+
+void ASTDumper::VisitExtVectorElementExpr(const ExtVectorElementExpr *Node) {
+ VisitExpr(Node);
+ OS << " " << Node->getAccessor().getNameStart();
+}
+
+void ASTDumper::VisitBinaryOperator(const BinaryOperator *Node) {
+ VisitExpr(Node);
+ OS << " '" << BinaryOperator::getOpcodeStr(Node->getOpcode()) << "'";
+}
+
+void ASTDumper::VisitCompoundAssignOperator(
+ const CompoundAssignOperator *Node) {
+ VisitExpr(Node);
+ OS << " '" << BinaryOperator::getOpcodeStr(Node->getOpcode())
+ << "' ComputeLHSTy=";
+ dumpBareType(Node->getComputationLHSType());
+ OS << " ComputeResultTy=";
+ dumpBareType(Node->getComputationResultType());
+}
+
+void ASTDumper::VisitBlockExpr(const BlockExpr *Node) {
+ VisitExpr(Node);
+ dumpDecl(Node->getBlockDecl());
+}
+
+void ASTDumper::VisitOpaqueValueExpr(const OpaqueValueExpr *Node) {
+ VisitExpr(Node);
+
+ if (Expr *Source = Node->getSourceExpr())
+ dumpStmt(Source);
+}
+
+// GNU extensions.
+
+void ASTDumper::VisitAddrLabelExpr(const AddrLabelExpr *Node) {
+ VisitExpr(Node);
+ OS << " " << Node->getLabel()->getName();
+ dumpPointer(Node->getLabel());
+}
+
+//===----------------------------------------------------------------------===//
+// C++ Expressions
+//===----------------------------------------------------------------------===//
+
+void ASTDumper::VisitCXXNamedCastExpr(const CXXNamedCastExpr *Node) {
+ VisitExpr(Node);
+ OS << " " << Node->getCastName()
+ << "<" << Node->getTypeAsWritten().getAsString() << ">"
+ << " <" << Node->getCastKindName();
+ dumpBasePath(OS, Node);
+ OS << ">";
+}
+
+void ASTDumper::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *Node) {
+ VisitExpr(Node);
+ OS << " " << (Node->getValue() ? "true" : "false");
+}
+
+void ASTDumper::VisitCXXThisExpr(const CXXThisExpr *Node) {
+ VisitExpr(Node);
+ OS << " this";
+}
+
+void ASTDumper::VisitCXXFunctionalCastExpr(const CXXFunctionalCastExpr *Node) {
+ VisitExpr(Node);
+ OS << " functional cast to " << Node->getTypeAsWritten().getAsString()
+ << " <" << Node->getCastKindName() << ">";
+}
+
+void ASTDumper::VisitCXXConstructExpr(const CXXConstructExpr *Node) {
+ VisitExpr(Node);
+ CXXConstructorDecl *Ctor = Node->getConstructor();
+ dumpType(Ctor->getType());
+ if (Node->isElidable())
+ OS << " elidable";
+ if (Node->requiresZeroInitialization())
+ OS << " zeroing";
+}
+
+void ASTDumper::VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *Node) {
+ VisitExpr(Node);
+ OS << " ";
+ dumpCXXTemporary(Node->getTemporary());
+}
+
+void ASTDumper::VisitCXXNewExpr(const CXXNewExpr *Node) {
+ VisitExpr(Node);
+ if (Node->isGlobalNew())
+ OS << " global";
+ if (Node->isArray())
+ OS << " array";
+ if (Node->getOperatorNew()) {
+ OS << ' ';
+ dumpBareDeclRef(Node->getOperatorNew());
+ }
+ // We could dump the deallocation function used in case of error, but it's
+ // usually not that interesting.
+}
+
+void ASTDumper::VisitCXXDeleteExpr(const CXXDeleteExpr *Node) {
+ VisitExpr(Node);
+ if (Node->isGlobalDelete())
+ OS << " global";
+ if (Node->isArrayForm())
+ OS << " array";
+ if (Node->getOperatorDelete()) {
+ OS << ' ';
+ dumpBareDeclRef(Node->getOperatorDelete());
+ }
+}
+
+void
+ASTDumper::VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *Node) {
+ VisitExpr(Node);
+ if (const ValueDecl *VD = Node->getExtendingDecl()) {
+ OS << " extended by ";
+ dumpBareDeclRef(VD);
+ }
+}
+
+void ASTDumper::VisitExprWithCleanups(const ExprWithCleanups *Node) {
+ VisitExpr(Node);
+ for (unsigned i = 0, e = Node->getNumObjects(); i != e; ++i)
+ dumpDeclRef(Node->getObject(i), "cleanup");
+}
+
+void ASTDumper::dumpCXXTemporary(const CXXTemporary *Temporary) {
+ OS << "(CXXTemporary";
+ dumpPointer(Temporary);
+ OS << ")";
+}
+
+void ASTDumper::VisitSizeOfPackExpr(const SizeOfPackExpr *Node) {
+ VisitExpr(Node);
+ dumpPointer(Node->getPack());
+ dumpName(Node->getPack());
+}
+
+
+//===----------------------------------------------------------------------===//
+// Obj-C Expressions
+//===----------------------------------------------------------------------===//
+
+void ASTDumper::VisitObjCMessageExpr(const ObjCMessageExpr *Node) {
+ VisitExpr(Node);
+ OS << " selector=";
+ Node->getSelector().print(OS);
+ switch (Node->getReceiverKind()) {
+ case ObjCMessageExpr::Instance:
+ break;
+
+ case ObjCMessageExpr::Class:
+ OS << " class=";
+ dumpBareType(Node->getClassReceiver());
+ break;
+
+ case ObjCMessageExpr::SuperInstance:
+ OS << " super (instance)";
+ break;
+
+ case ObjCMessageExpr::SuperClass:
+ OS << " super (class)";
+ break;
+ }
+}
+
+void ASTDumper::VisitObjCBoxedExpr(const ObjCBoxedExpr *Node) {
+ VisitExpr(Node);
+ OS << " selector=";
+ Node->getBoxingMethod()->getSelector().print(OS);
+}
+
+void ASTDumper::VisitObjCAtCatchStmt(const ObjCAtCatchStmt *Node) {
+ VisitStmt(Node);
+ if (const VarDecl *CatchParam = Node->getCatchParamDecl())
+ dumpDecl(CatchParam);
+ else
+ OS << " catch all";
+}
+
+void ASTDumper::VisitObjCEncodeExpr(const ObjCEncodeExpr *Node) {
+ VisitExpr(Node);
+ dumpType(Node->getEncodedType());
+}
+
+void ASTDumper::VisitObjCSelectorExpr(const ObjCSelectorExpr *Node) {
+ VisitExpr(Node);
+
+ OS << " ";
+ Node->getSelector().print(OS);
+}
+
+void ASTDumper::VisitObjCProtocolExpr(const ObjCProtocolExpr *Node) {
+ VisitExpr(Node);
+
+ OS << ' ' << *Node->getProtocol();
+}
+
+void ASTDumper::VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *Node) {
+ VisitExpr(Node);
+ if (Node->isImplicitProperty()) {
+ OS << " Kind=MethodRef Getter=\"";
+ if (Node->getImplicitPropertyGetter())
+ Node->getImplicitPropertyGetter()->getSelector().print(OS);
+ else
+ OS << "(null)";
+
+ OS << "\" Setter=\"";
+ if (ObjCMethodDecl *Setter = Node->getImplicitPropertySetter())
+ Setter->getSelector().print(OS);
+ else
+ OS << "(null)";
+ OS << "\"";
+ } else {
+ OS << " Kind=PropertyRef Property=\"" << *Node->getExplicitProperty() <<'"';
+ }
+
+ if (Node->isSuperReceiver())
+ OS << " super";
+
+ OS << " Messaging=";
+ if (Node->isMessagingGetter() && Node->isMessagingSetter())
+ OS << "Getter&Setter";
+ else if (Node->isMessagingGetter())
+ OS << "Getter";
+ else if (Node->isMessagingSetter())
+ OS << "Setter";
+}
+
+void ASTDumper::VisitObjCSubscriptRefExpr(const ObjCSubscriptRefExpr *Node) {
+ VisitExpr(Node);
+ if (Node->isArraySubscriptRefExpr())
+ OS << " Kind=ArraySubscript GetterForArray=\"";
+ else
+ OS << " Kind=DictionarySubscript GetterForDictionary=\"";
+ if (Node->getAtIndexMethodDecl())
+ Node->getAtIndexMethodDecl()->getSelector().print(OS);
+ else
+ OS << "(null)";
+
+ if (Node->isArraySubscriptRefExpr())
+ OS << "\" SetterForArray=\"";
+ else
+ OS << "\" SetterForDictionary=\"";
+ if (Node->setAtIndexMethodDecl())
+ Node->setAtIndexMethodDecl()->getSelector().print(OS);
+ else
+ OS << "(null)";
+}
+
+void ASTDumper::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *Node) {
+ VisitExpr(Node);
+ OS << " " << (Node->getValue() ? "__objc_yes" : "__objc_no");
+}
+
+//===----------------------------------------------------------------------===//
+// Comments
+//===----------------------------------------------------------------------===//
+
+const char *ASTDumper::getCommandName(unsigned CommandID) {
+ if (Traits)
+ return Traits->getCommandInfo(CommandID)->Name;
+ const CommandInfo *Info = CommandTraits::getBuiltinCommandInfo(CommandID);
+ if (Info)
+ return Info->Name;
+ return "<not a builtin command>";
+}
+
+void ASTDumper::dumpFullComment(const FullComment *C) {
+ if (!C)
+ return;
+
+ FC = C;
+ dumpComment(C);
+ FC = nullptr;
+}
+
+void ASTDumper::dumpComment(const Comment *C) {
+ dumpChild([=] {
+ if (!C) {
+ ColorScope Color(*this, NullColor);
+ OS << "<<<NULL>>>";
+ return;
+ }
+
+ {
+ ColorScope Color(*this, CommentColor);
+ OS << C->getCommentKindName();
+ }
+ dumpPointer(C);
+ dumpSourceRange(C->getSourceRange());
+ ConstCommentVisitor<ASTDumper>::visit(C);
+ for (Comment::child_iterator I = C->child_begin(), E = C->child_end();
+ I != E; ++I)
+ dumpComment(*I);
+ });
+}
+
+void ASTDumper::visitTextComment(const TextComment *C) {
+ OS << " Text=\"" << C->getText() << "\"";
+}
+
+void ASTDumper::visitInlineCommandComment(const InlineCommandComment *C) {
+ OS << " Name=\"" << getCommandName(C->getCommandID()) << "\"";
+ switch (C->getRenderKind()) {
+ case InlineCommandComment::RenderNormal:
+ OS << " RenderNormal";
+ break;
+ case InlineCommandComment::RenderBold:
+ OS << " RenderBold";
+ break;
+ case InlineCommandComment::RenderMonospaced:
+ OS << " RenderMonospaced";
+ break;
+ case InlineCommandComment::RenderEmphasized:
+ OS << " RenderEmphasized";
+ break;
+ }
+
+ for (unsigned i = 0, e = C->getNumArgs(); i != e; ++i)
+ OS << " Arg[" << i << "]=\"" << C->getArgText(i) << "\"";
+}
+
+void ASTDumper::visitHTMLStartTagComment(const HTMLStartTagComment *C) {
+ OS << " Name=\"" << C->getTagName() << "\"";
+ if (C->getNumAttrs() != 0) {
+ OS << " Attrs: ";
+ for (unsigned i = 0, e = C->getNumAttrs(); i != e; ++i) {
+ const HTMLStartTagComment::Attribute &Attr = C->getAttr(i);
+ OS << " \"" << Attr.Name << "=\"" << Attr.Value << "\"";
+ }
+ }
+ if (C->isSelfClosing())
+ OS << " SelfClosing";
+}
+
+void ASTDumper::visitHTMLEndTagComment(const HTMLEndTagComment *C) {
+ OS << " Name=\"" << C->getTagName() << "\"";
+}
+
+void ASTDumper::visitBlockCommandComment(const BlockCommandComment *C) {
+ OS << " Name=\"" << getCommandName(C->getCommandID()) << "\"";
+ for (unsigned i = 0, e = C->getNumArgs(); i != e; ++i)
+ OS << " Arg[" << i << "]=\"" << C->getArgText(i) << "\"";
+}
+
+void ASTDumper::visitParamCommandComment(const ParamCommandComment *C) {
+ OS << " " << ParamCommandComment::getDirectionAsString(C->getDirection());
+
+ if (C->isDirectionExplicit())
+ OS << " explicitly";
+ else
+ OS << " implicitly";
+
+ if (C->hasParamName()) {
+ if (C->isParamIndexValid())
+ OS << " Param=\"" << C->getParamName(FC) << "\"";
+ else
+ OS << " Param=\"" << C->getParamNameAsWritten() << "\"";
+ }
+
+ if (C->isParamIndexValid() && !C->isVarArgParam())
+ OS << " ParamIndex=" << C->getParamIndex();
+}
+
+void ASTDumper::visitTParamCommandComment(const TParamCommandComment *C) {
+ if (C->hasParamName()) {
+ if (C->isPositionValid())
+ OS << " Param=\"" << C->getParamName(FC) << "\"";
+ else
+ OS << " Param=\"" << C->getParamNameAsWritten() << "\"";
+ }
+
+ if (C->isPositionValid()) {
+ OS << " Position=<";
+ for (unsigned i = 0, e = C->getDepth(); i != e; ++i) {
+ OS << C->getIndex(i);
+ if (i != e - 1)
+ OS << ", ";
+ }
+ OS << ">";
+ }
+}
+
+void ASTDumper::visitVerbatimBlockComment(const VerbatimBlockComment *C) {
+ OS << " Name=\"" << getCommandName(C->getCommandID()) << "\""
+ " CloseName=\"" << C->getCloseName() << "\"";
+}
+
+void ASTDumper::visitVerbatimBlockLineComment(
+ const VerbatimBlockLineComment *C) {
+ OS << " Text=\"" << C->getText() << "\"";
+}
+
+void ASTDumper::visitVerbatimLineComment(const VerbatimLineComment *C) {
+ OS << " Text=\"" << C->getText() << "\"";
+}
+
+//===----------------------------------------------------------------------===//
+// Type method implementations
+//===----------------------------------------------------------------------===//
+
+void QualType::dump(const char *msg) const {
+ if (msg)
+ llvm::errs() << msg << ": ";
+ dump();
+}
+
+LLVM_DUMP_METHOD void QualType::dump() const {
+ ASTDumper Dumper(llvm::errs(), nullptr, nullptr);
+ Dumper.dumpTypeAsChild(*this);
+}
+
+LLVM_DUMP_METHOD void Type::dump() const { QualType(this, 0).dump(); }
+
+//===----------------------------------------------------------------------===//
+// Decl method implementations
+//===----------------------------------------------------------------------===//
+
+LLVM_DUMP_METHOD void Decl::dump() const { dump(llvm::errs()); }
+
+LLVM_DUMP_METHOD void Decl::dump(raw_ostream &OS) const {
+ ASTDumper P(OS, &getASTContext().getCommentCommandTraits(),
+ &getASTContext().getSourceManager());
+ P.dumpDecl(this);
+}
+
+LLVM_DUMP_METHOD void Decl::dumpColor() const {
+ ASTDumper P(llvm::errs(), &getASTContext().getCommentCommandTraits(),
+ &getASTContext().getSourceManager(), /*ShowColors*/true);
+ P.dumpDecl(this);
+}
+
+LLVM_DUMP_METHOD void DeclContext::dumpLookups() const {
+ dumpLookups(llvm::errs());
+}
+
+LLVM_DUMP_METHOD void DeclContext::dumpLookups(raw_ostream &OS,
+ bool DumpDecls) const {
+ const DeclContext *DC = this;
+ while (!DC->isTranslationUnit())
+ DC = DC->getParent();
+ ASTContext &Ctx = cast<TranslationUnitDecl>(DC)->getASTContext();
+ ASTDumper P(OS, &Ctx.getCommentCommandTraits(), &Ctx.getSourceManager());
+ P.dumpLookups(this, DumpDecls);
+}
+
+//===----------------------------------------------------------------------===//
+// Stmt method implementations
+//===----------------------------------------------------------------------===//
+
+LLVM_DUMP_METHOD void Stmt::dump(SourceManager &SM) const {
+ dump(llvm::errs(), SM);
+}
+
+LLVM_DUMP_METHOD void Stmt::dump(raw_ostream &OS, SourceManager &SM) const {
+ ASTDumper P(OS, nullptr, &SM);
+ P.dumpStmt(this);
+}
+
+LLVM_DUMP_METHOD void Stmt::dump(raw_ostream &OS) const {
+ ASTDumper P(OS, nullptr, nullptr);
+ P.dumpStmt(this);
+}
+
+LLVM_DUMP_METHOD void Stmt::dump() const {
+ ASTDumper P(llvm::errs(), nullptr, nullptr);
+ P.dumpStmt(this);
+}
+
+LLVM_DUMP_METHOD void Stmt::dumpColor() const {
+ ASTDumper P(llvm::errs(), nullptr, nullptr, /*ShowColors*/true);
+ P.dumpStmt(this);
+}
+
+//===----------------------------------------------------------------------===//
+// Comment method implementations
+//===----------------------------------------------------------------------===//
+
+LLVM_DUMP_METHOD void Comment::dump() const {
+ dump(llvm::errs(), nullptr, nullptr);
+}
+
+LLVM_DUMP_METHOD void Comment::dump(const ASTContext &Context) const {
+ dump(llvm::errs(), &Context.getCommentCommandTraits(),
+ &Context.getSourceManager());
+}
+
+void Comment::dump(raw_ostream &OS, const CommandTraits *Traits,
+ const SourceManager *SM) const {
+ const FullComment *FC = dyn_cast<FullComment>(this);
+ ASTDumper D(OS, Traits, SM);
+ D.dumpFullComment(FC);
+}
+
+LLVM_DUMP_METHOD void Comment::dumpColor() const {
+ const FullComment *FC = dyn_cast<FullComment>(this);
+ ASTDumper D(llvm::errs(), nullptr, nullptr, /*ShowColors*/true);
+ D.dumpFullComment(FC);
+}
diff --git a/contrib/llvm/tools/clang/lib/AST/ASTImporter.cpp b/contrib/llvm/tools/clang/lib/AST/ASTImporter.cpp
new file mode 100644
index 0000000..911f168
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/ASTImporter.cpp
@@ -0,0 +1,5849 @@
+//===--- ASTImporter.cpp - Importing ASTs from other Contexts ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the ASTImporter class which imports AST nodes from one
+// context into another context.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/AST/ASTImporter.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTDiagnostic.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclVisitor.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/AST/TypeVisitor.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/SourceManager.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include <deque>
+
+namespace clang {
+ class ASTNodeImporter : public TypeVisitor<ASTNodeImporter, QualType>,
+ public DeclVisitor<ASTNodeImporter, Decl *>,
+ public StmtVisitor<ASTNodeImporter, Stmt *> {
+ ASTImporter &Importer;
+
+ public:
+ explicit ASTNodeImporter(ASTImporter &Importer) : Importer(Importer) { }
+
+ using TypeVisitor<ASTNodeImporter, QualType>::Visit;
+ using DeclVisitor<ASTNodeImporter, Decl *>::Visit;
+ using StmtVisitor<ASTNodeImporter, Stmt *>::Visit;
+
+ // Importing types
+ QualType VisitType(const Type *T);
+ QualType VisitBuiltinType(const BuiltinType *T);
+ QualType VisitComplexType(const ComplexType *T);
+ QualType VisitPointerType(const PointerType *T);
+ QualType VisitBlockPointerType(const BlockPointerType *T);
+ QualType VisitLValueReferenceType(const LValueReferenceType *T);
+ QualType VisitRValueReferenceType(const RValueReferenceType *T);
+ QualType VisitMemberPointerType(const MemberPointerType *T);
+ QualType VisitConstantArrayType(const ConstantArrayType *T);
+ QualType VisitIncompleteArrayType(const IncompleteArrayType *T);
+ QualType VisitVariableArrayType(const VariableArrayType *T);
+ // FIXME: DependentSizedArrayType
+ // FIXME: DependentSizedExtVectorType
+ QualType VisitVectorType(const VectorType *T);
+ QualType VisitExtVectorType(const ExtVectorType *T);
+ QualType VisitFunctionNoProtoType(const FunctionNoProtoType *T);
+ QualType VisitFunctionProtoType(const FunctionProtoType *T);
+ // FIXME: UnresolvedUsingType
+ QualType VisitParenType(const ParenType *T);
+ QualType VisitTypedefType(const TypedefType *T);
+ QualType VisitTypeOfExprType(const TypeOfExprType *T);
+ // FIXME: DependentTypeOfExprType
+ QualType VisitTypeOfType(const TypeOfType *T);
+ QualType VisitDecltypeType(const DecltypeType *T);
+ QualType VisitUnaryTransformType(const UnaryTransformType *T);
+ QualType VisitAutoType(const AutoType *T);
+ // FIXME: DependentDecltypeType
+ QualType VisitRecordType(const RecordType *T);
+ QualType VisitEnumType(const EnumType *T);
+ QualType VisitAttributedType(const AttributedType *T);
+ // FIXME: TemplateTypeParmType
+ // FIXME: SubstTemplateTypeParmType
+ QualType VisitTemplateSpecializationType(const TemplateSpecializationType *T);
+ QualType VisitElaboratedType(const ElaboratedType *T);
+ // FIXME: DependentNameType
+ // FIXME: DependentTemplateSpecializationType
+ QualType VisitObjCInterfaceType(const ObjCInterfaceType *T);
+ QualType VisitObjCObjectType(const ObjCObjectType *T);
+ QualType VisitObjCObjectPointerType(const ObjCObjectPointerType *T);
+
+ // Importing declarations
+ bool ImportDeclParts(NamedDecl *D, DeclContext *&DC,
+ DeclContext *&LexicalDC, DeclarationName &Name,
+ NamedDecl *&ToD, SourceLocation &Loc);
+ void ImportDefinitionIfNeeded(Decl *FromD, Decl *ToD = nullptr);
+ void ImportDeclarationNameLoc(const DeclarationNameInfo &From,
+ DeclarationNameInfo& To);
+ void ImportDeclContext(DeclContext *FromDC, bool ForceImport = false);
+
+ /// \brief What we should import from the definition.
+ enum ImportDefinitionKind {
+ /// \brief Import the default subset of the definition, which might be
+ /// nothing (if minimal import is set) or might be everything (if minimal
+ /// import is not set).
+ IDK_Default,
+ /// \brief Import everything.
+ IDK_Everything,
+ /// \brief Import only the bare bones needed to establish a valid
+ /// DeclContext.
+ IDK_Basic
+ };
+
+ bool shouldForceImportDeclContext(ImportDefinitionKind IDK) {
+ return IDK == IDK_Everything ||
+ (IDK == IDK_Default && !Importer.isMinimalImport());
+ }
+
+ bool ImportDefinition(RecordDecl *From, RecordDecl *To,
+ ImportDefinitionKind Kind = IDK_Default);
+ bool ImportDefinition(VarDecl *From, VarDecl *To,
+ ImportDefinitionKind Kind = IDK_Default);
+ bool ImportDefinition(EnumDecl *From, EnumDecl *To,
+ ImportDefinitionKind Kind = IDK_Default);
+ bool ImportDefinition(ObjCInterfaceDecl *From, ObjCInterfaceDecl *To,
+ ImportDefinitionKind Kind = IDK_Default);
+ bool ImportDefinition(ObjCProtocolDecl *From, ObjCProtocolDecl *To,
+ ImportDefinitionKind Kind = IDK_Default);
+ TemplateParameterList *ImportTemplateParameterList(
+ TemplateParameterList *Params);
+ TemplateArgument ImportTemplateArgument(const TemplateArgument &From);
+ bool ImportTemplateArguments(const TemplateArgument *FromArgs,
+ unsigned NumFromArgs,
+ SmallVectorImpl<TemplateArgument> &ToArgs);
+ bool IsStructuralMatch(RecordDecl *FromRecord, RecordDecl *ToRecord,
+ bool Complain = true);
+ bool IsStructuralMatch(VarDecl *FromVar, VarDecl *ToVar,
+ bool Complain = true);
+ bool IsStructuralMatch(EnumDecl *FromEnum, EnumDecl *ToRecord);
+ bool IsStructuralMatch(EnumConstantDecl *FromEC, EnumConstantDecl *ToEC);
+ bool IsStructuralMatch(ClassTemplateDecl *From, ClassTemplateDecl *To);
+ bool IsStructuralMatch(VarTemplateDecl *From, VarTemplateDecl *To);
+ Decl *VisitDecl(Decl *D);
+ Decl *VisitTranslationUnitDecl(TranslationUnitDecl *D);
+ Decl *VisitNamespaceDecl(NamespaceDecl *D);
+ Decl *VisitTypedefNameDecl(TypedefNameDecl *D, bool IsAlias);
+ Decl *VisitTypedefDecl(TypedefDecl *D);
+ Decl *VisitTypeAliasDecl(TypeAliasDecl *D);
+ Decl *VisitEnumDecl(EnumDecl *D);
+ Decl *VisitRecordDecl(RecordDecl *D);
+ Decl *VisitEnumConstantDecl(EnumConstantDecl *D);
+ Decl *VisitFunctionDecl(FunctionDecl *D);
+ Decl *VisitCXXMethodDecl(CXXMethodDecl *D);
+ Decl *VisitCXXConstructorDecl(CXXConstructorDecl *D);
+ Decl *VisitCXXDestructorDecl(CXXDestructorDecl *D);
+ Decl *VisitCXXConversionDecl(CXXConversionDecl *D);
+ Decl *VisitFieldDecl(FieldDecl *D);
+ Decl *VisitIndirectFieldDecl(IndirectFieldDecl *D);
+ Decl *VisitObjCIvarDecl(ObjCIvarDecl *D);
+ Decl *VisitVarDecl(VarDecl *D);
+ Decl *VisitImplicitParamDecl(ImplicitParamDecl *D);
+ Decl *VisitParmVarDecl(ParmVarDecl *D);
+ Decl *VisitObjCMethodDecl(ObjCMethodDecl *D);
+ Decl *VisitObjCCategoryDecl(ObjCCategoryDecl *D);
+ Decl *VisitObjCProtocolDecl(ObjCProtocolDecl *D);
+ Decl *VisitLinkageSpecDecl(LinkageSpecDecl *D);
+ Decl *VisitObjCInterfaceDecl(ObjCInterfaceDecl *D);
+ Decl *VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D);
+ Decl *VisitObjCImplementationDecl(ObjCImplementationDecl *D);
+ Decl *VisitObjCPropertyDecl(ObjCPropertyDecl *D);
+ Decl *VisitObjCPropertyImplDecl(ObjCPropertyImplDecl *D);
+ Decl *VisitTemplateTypeParmDecl(TemplateTypeParmDecl *D);
+ Decl *VisitNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D);
+ Decl *VisitTemplateTemplateParmDecl(TemplateTemplateParmDecl *D);
+ Decl *VisitClassTemplateDecl(ClassTemplateDecl *D);
+ Decl *VisitClassTemplateSpecializationDecl(
+ ClassTemplateSpecializationDecl *D);
+ Decl *VisitVarTemplateDecl(VarTemplateDecl *D);
+ Decl *VisitVarTemplateSpecializationDecl(VarTemplateSpecializationDecl *D);
+
+ // Importing statements
+ DeclGroupRef ImportDeclGroup(DeclGroupRef DG);
+
+ Stmt *VisitStmt(Stmt *S);
+ Stmt *VisitDeclStmt(DeclStmt *S);
+ Stmt *VisitNullStmt(NullStmt *S);
+ Stmt *VisitCompoundStmt(CompoundStmt *S);
+ Stmt *VisitCaseStmt(CaseStmt *S);
+ Stmt *VisitDefaultStmt(DefaultStmt *S);
+ Stmt *VisitLabelStmt(LabelStmt *S);
+ Stmt *VisitAttributedStmt(AttributedStmt *S);
+ Stmt *VisitIfStmt(IfStmt *S);
+ Stmt *VisitSwitchStmt(SwitchStmt *S);
+ Stmt *VisitWhileStmt(WhileStmt *S);
+ Stmt *VisitDoStmt(DoStmt *S);
+ Stmt *VisitForStmt(ForStmt *S);
+ Stmt *VisitGotoStmt(GotoStmt *S);
+ Stmt *VisitIndirectGotoStmt(IndirectGotoStmt *S);
+ Stmt *VisitContinueStmt(ContinueStmt *S);
+ Stmt *VisitBreakStmt(BreakStmt *S);
+ Stmt *VisitReturnStmt(ReturnStmt *S);
+ // FIXME: GCCAsmStmt
+ // FIXME: MSAsmStmt
+ // FIXME: SEHExceptStmt
+ // FIXME: SEHFinallyStmt
+ // FIXME: SEHTryStmt
+ // FIXME: SEHLeaveStmt
+ // FIXME: CapturedStmt
+ Stmt *VisitCXXCatchStmt(CXXCatchStmt *S);
+ Stmt *VisitCXXTryStmt(CXXTryStmt *S);
+ Stmt *VisitCXXForRangeStmt(CXXForRangeStmt *S);
+ // FIXME: MSDependentExistsStmt
+ Stmt *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
+ Stmt *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
+ Stmt *VisitObjCAtFinallyStmt(ObjCAtFinallyStmt *S);
+ Stmt *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
+ Stmt *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
+ Stmt *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
+ Stmt *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S);
+
+ // Importing expressions
+ Expr *VisitExpr(Expr *E);
+ Expr *VisitDeclRefExpr(DeclRefExpr *E);
+ Expr *VisitIntegerLiteral(IntegerLiteral *E);
+ Expr *VisitCharacterLiteral(CharacterLiteral *E);
+ Expr *VisitParenExpr(ParenExpr *E);
+ Expr *VisitUnaryOperator(UnaryOperator *E);
+ Expr *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E);
+ Expr *VisitBinaryOperator(BinaryOperator *E);
+ Expr *VisitCompoundAssignOperator(CompoundAssignOperator *E);
+ Expr *VisitImplicitCastExpr(ImplicitCastExpr *E);
+ Expr *VisitCStyleCastExpr(CStyleCastExpr *E);
+ Expr *VisitCXXConstructExpr(CXXConstructExpr *E);
+ Expr *VisitMemberExpr(MemberExpr *E);
+ Expr *VisitCallExpr(CallExpr *E);
+ };
+}
+using namespace clang;
+
+//----------------------------------------------------------------------------
+// Structural Equivalence
+//----------------------------------------------------------------------------
+
+namespace {
+ struct StructuralEquivalenceContext {
+ /// \brief AST contexts for which we are checking structural equivalence.
+ ASTContext &C1, &C2;
+
+ /// \brief The set of "tentative" equivalences between two canonical
+ /// declarations, mapping from a declaration in the first context to the
+ /// declaration in the second context that we believe to be equivalent.
+ llvm::DenseMap<Decl *, Decl *> TentativeEquivalences;
+
+ /// \brief Queue of declarations in the first context whose equivalence
+ /// with a declaration in the second context still needs to be verified.
+ std::deque<Decl *> DeclsToCheck;
+
+ /// \brief Declaration (from, to) pairs that are known not to be equivalent
+ /// (which we have already complained about).
+ llvm::DenseSet<std::pair<Decl *, Decl *> > &NonEquivalentDecls;
+
+ /// \brief Whether we're being strict about the spelling of types when
+ /// unifying two types.
+ bool StrictTypeSpelling;
+
+ /// \brief Whether to complain about failures.
+ bool Complain;
+
+ /// \brief \c true if the last diagnostic came from C2.
+ bool LastDiagFromC2;
+
+ StructuralEquivalenceContext(ASTContext &C1, ASTContext &C2,
+ llvm::DenseSet<std::pair<Decl *, Decl *> > &NonEquivalentDecls,
+ bool StrictTypeSpelling = false,
+ bool Complain = true)
+ : C1(C1), C2(C2), NonEquivalentDecls(NonEquivalentDecls),
+ StrictTypeSpelling(StrictTypeSpelling), Complain(Complain),
+ LastDiagFromC2(false) {}
+
+ /// \brief Determine whether the two declarations are structurally
+ /// equivalent.
+ bool IsStructurallyEquivalent(Decl *D1, Decl *D2);
+
+ /// \brief Determine whether the two types are structurally equivalent.
+ bool IsStructurallyEquivalent(QualType T1, QualType T2);
+
+ private:
+ /// \brief Finish checking all of the structural equivalences.
+ ///
+ /// \returns true if an error occurred, false otherwise.
+ bool Finish();
+
+ public:
+ DiagnosticBuilder Diag1(SourceLocation Loc, unsigned DiagID) {
+ assert(Complain && "Not allowed to complain");
+ if (LastDiagFromC2)
+ C1.getDiagnostics().notePriorDiagnosticFrom(C2.getDiagnostics());
+ LastDiagFromC2 = false;
+ return C1.getDiagnostics().Report(Loc, DiagID);
+ }
+
+ DiagnosticBuilder Diag2(SourceLocation Loc, unsigned DiagID) {
+ assert(Complain && "Not allowed to complain");
+ if (!LastDiagFromC2)
+ C2.getDiagnostics().notePriorDiagnosticFrom(C1.getDiagnostics());
+ LastDiagFromC2 = true;
+ return C2.getDiagnostics().Report(Loc, DiagID);
+ }
+ };
+}
+
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ QualType T1, QualType T2);
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ Decl *D1, Decl *D2);
+
+/// \brief Determine structural equivalence of two expressions.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ Expr *E1, Expr *E2) {
+ if (!E1 || !E2)
+ return E1 == E2;
+
+ // FIXME: Actually perform a structural comparison!
+ return true;
+}
+
+/// \brief Determine whether two identifiers are equivalent.
+static bool IsStructurallyEquivalent(const IdentifierInfo *Name1,
+ const IdentifierInfo *Name2) {
+ if (!Name1 || !Name2)
+ return Name1 == Name2;
+
+ return Name1->getName() == Name2->getName();
+}
+
+/// \brief Determine whether two nested-name-specifiers are equivalent.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ NestedNameSpecifier *NNS1,
+ NestedNameSpecifier *NNS2) {
+ // FIXME: Implement!
+ return true;
+}
+
+/// \brief Determine whether two template arguments are equivalent.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ const TemplateArgument &Arg1,
+ const TemplateArgument &Arg2) {
+ if (Arg1.getKind() != Arg2.getKind())
+ return false;
+
+ switch (Arg1.getKind()) {
+ case TemplateArgument::Null:
+ return true;
+
+ case TemplateArgument::Type:
+ return Context.IsStructurallyEquivalent(Arg1.getAsType(), Arg2.getAsType());
+
+ case TemplateArgument::Integral:
+ if (!Context.IsStructurallyEquivalent(Arg1.getIntegralType(),
+ Arg2.getIntegralType()))
+ return false;
+
+ return llvm::APSInt::isSameValue(Arg1.getAsIntegral(), Arg2.getAsIntegral());
+
+ case TemplateArgument::Declaration:
+ return Context.IsStructurallyEquivalent(Arg1.getAsDecl(), Arg2.getAsDecl());
+
+ case TemplateArgument::NullPtr:
+ return true; // FIXME: Is this correct?
+
+ case TemplateArgument::Template:
+ return IsStructurallyEquivalent(Context,
+ Arg1.getAsTemplate(),
+ Arg2.getAsTemplate());
+
+ case TemplateArgument::TemplateExpansion:
+ return IsStructurallyEquivalent(Context,
+ Arg1.getAsTemplateOrTemplatePattern(),
+ Arg2.getAsTemplateOrTemplatePattern());
+
+ case TemplateArgument::Expression:
+ return IsStructurallyEquivalent(Context,
+ Arg1.getAsExpr(), Arg2.getAsExpr());
+
+ case TemplateArgument::Pack:
+ if (Arg1.pack_size() != Arg2.pack_size())
+ return false;
+
+ for (unsigned I = 0, N = Arg1.pack_size(); I != N; ++I)
+ if (!IsStructurallyEquivalent(Context,
+ Arg1.pack_begin()[I],
+ Arg2.pack_begin()[I]))
+ return false;
+
+ return true;
+ }
+
+ llvm_unreachable("Invalid template argument kind");
+}
+
+/// \brief Determine structural equivalence for the common part of array
+/// types.
+static bool IsArrayStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ const ArrayType *Array1,
+ const ArrayType *Array2) {
+ if (!IsStructurallyEquivalent(Context,
+ Array1->getElementType(),
+ Array2->getElementType()))
+ return false;
+ if (Array1->getSizeModifier() != Array2->getSizeModifier())
+ return false;
+ if (Array1->getIndexTypeQualifiers() != Array2->getIndexTypeQualifiers())
+ return false;
+
+ return true;
+}
+
+/// \brief Determine structural equivalence of two types.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ QualType T1, QualType T2) {
+ if (T1.isNull() || T2.isNull())
+ return T1.isNull() && T2.isNull();
+
+ if (!Context.StrictTypeSpelling) {
+ // We aren't being strict about token-to-token equivalence of types,
+ // so map down to the canonical type.
+ T1 = Context.C1.getCanonicalType(T1);
+ T2 = Context.C2.getCanonicalType(T2);
+ }
+
+ if (T1.getQualifiers() != T2.getQualifiers())
+ return false;
+
+ Type::TypeClass TC = T1->getTypeClass();
+
+ if (T1->getTypeClass() != T2->getTypeClass()) {
+ // Compare function types with prototypes vs. without prototypes as if
+ // both did not have prototypes.
+ if (T1->getTypeClass() == Type::FunctionProto &&
+ T2->getTypeClass() == Type::FunctionNoProto)
+ TC = Type::FunctionNoProto;
+ else if (T1->getTypeClass() == Type::FunctionNoProto &&
+ T2->getTypeClass() == Type::FunctionProto)
+ TC = Type::FunctionNoProto;
+ else
+ return false;
+ }
+
+ switch (TC) {
+ case Type::Builtin:
+ // FIXME: Deal with Char_S/Char_U.
+ if (cast<BuiltinType>(T1)->getKind() != cast<BuiltinType>(T2)->getKind())
+ return false;
+ break;
+
+ case Type::Complex:
+ if (!IsStructurallyEquivalent(Context,
+ cast<ComplexType>(T1)->getElementType(),
+ cast<ComplexType>(T2)->getElementType()))
+ return false;
+ break;
+
+ case Type::Adjusted:
+ case Type::Decayed:
+ if (!IsStructurallyEquivalent(Context,
+ cast<AdjustedType>(T1)->getOriginalType(),
+ cast<AdjustedType>(T2)->getOriginalType()))
+ return false;
+ break;
+
+ case Type::Pointer:
+ if (!IsStructurallyEquivalent(Context,
+ cast<PointerType>(T1)->getPointeeType(),
+ cast<PointerType>(T2)->getPointeeType()))
+ return false;
+ break;
+
+ case Type::BlockPointer:
+ if (!IsStructurallyEquivalent(Context,
+ cast<BlockPointerType>(T1)->getPointeeType(),
+ cast<BlockPointerType>(T2)->getPointeeType()))
+ return false;
+ break;
+
+ case Type::LValueReference:
+ case Type::RValueReference: {
+ const ReferenceType *Ref1 = cast<ReferenceType>(T1);
+ const ReferenceType *Ref2 = cast<ReferenceType>(T2);
+ if (Ref1->isSpelledAsLValue() != Ref2->isSpelledAsLValue())
+ return false;
+ if (Ref1->isInnerRef() != Ref2->isInnerRef())
+ return false;
+ if (!IsStructurallyEquivalent(Context,
+ Ref1->getPointeeTypeAsWritten(),
+ Ref2->getPointeeTypeAsWritten()))
+ return false;
+ break;
+ }
+
+ case Type::MemberPointer: {
+ const MemberPointerType *MemPtr1 = cast<MemberPointerType>(T1);
+ const MemberPointerType *MemPtr2 = cast<MemberPointerType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ MemPtr1->getPointeeType(),
+ MemPtr2->getPointeeType()))
+ return false;
+ if (!IsStructurallyEquivalent(Context,
+ QualType(MemPtr1->getClass(), 0),
+ QualType(MemPtr2->getClass(), 0)))
+ return false;
+ break;
+ }
+
+ case Type::ConstantArray: {
+ const ConstantArrayType *Array1 = cast<ConstantArrayType>(T1);
+ const ConstantArrayType *Array2 = cast<ConstantArrayType>(T2);
+ if (!llvm::APInt::isSameValue(Array1->getSize(), Array2->getSize()))
+ return false;
+
+ if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
+ return false;
+ break;
+ }
+
+ case Type::IncompleteArray:
+ if (!IsArrayStructurallyEquivalent(Context,
+ cast<ArrayType>(T1),
+ cast<ArrayType>(T2)))
+ return false;
+ break;
+
+ case Type::VariableArray: {
+ const VariableArrayType *Array1 = cast<VariableArrayType>(T1);
+ const VariableArrayType *Array2 = cast<VariableArrayType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Array1->getSizeExpr(), Array2->getSizeExpr()))
+ return false;
+
+ if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
+ return false;
+
+ break;
+ }
+
+ case Type::DependentSizedArray: {
+ const DependentSizedArrayType *Array1 = cast<DependentSizedArrayType>(T1);
+ const DependentSizedArrayType *Array2 = cast<DependentSizedArrayType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Array1->getSizeExpr(), Array2->getSizeExpr()))
+ return false;
+
+ if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
+ return false;
+
+ break;
+ }
+
+ case Type::DependentSizedExtVector: {
+ const DependentSizedExtVectorType *Vec1
+ = cast<DependentSizedExtVectorType>(T1);
+ const DependentSizedExtVectorType *Vec2
+ = cast<DependentSizedExtVectorType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Vec1->getSizeExpr(), Vec2->getSizeExpr()))
+ return false;
+ if (!IsStructurallyEquivalent(Context,
+ Vec1->getElementType(),
+ Vec2->getElementType()))
+ return false;
+ break;
+ }
+
+ case Type::Vector:
+ case Type::ExtVector: {
+ const VectorType *Vec1 = cast<VectorType>(T1);
+ const VectorType *Vec2 = cast<VectorType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Vec1->getElementType(),
+ Vec2->getElementType()))
+ return false;
+ if (Vec1->getNumElements() != Vec2->getNumElements())
+ return false;
+ if (Vec1->getVectorKind() != Vec2->getVectorKind())
+ return false;
+ break;
+ }
+
+ case Type::FunctionProto: {
+ const FunctionProtoType *Proto1 = cast<FunctionProtoType>(T1);
+ const FunctionProtoType *Proto2 = cast<FunctionProtoType>(T2);
+ if (Proto1->getNumParams() != Proto2->getNumParams())
+ return false;
+ for (unsigned I = 0, N = Proto1->getNumParams(); I != N; ++I) {
+ if (!IsStructurallyEquivalent(Context, Proto1->getParamType(I),
+ Proto2->getParamType(I)))
+ return false;
+ }
+ if (Proto1->isVariadic() != Proto2->isVariadic())
+ return false;
+ if (Proto1->getExceptionSpecType() != Proto2->getExceptionSpecType())
+ return false;
+ if (Proto1->getExceptionSpecType() == EST_Dynamic) {
+ if (Proto1->getNumExceptions() != Proto2->getNumExceptions())
+ return false;
+ for (unsigned I = 0, N = Proto1->getNumExceptions(); I != N; ++I) {
+ if (!IsStructurallyEquivalent(Context,
+ Proto1->getExceptionType(I),
+ Proto2->getExceptionType(I)))
+ return false;
+ }
+ } else if (Proto1->getExceptionSpecType() == EST_ComputedNoexcept) {
+ if (!IsStructurallyEquivalent(Context,
+ Proto1->getNoexceptExpr(),
+ Proto2->getNoexceptExpr()))
+ return false;
+ }
+ if (Proto1->getTypeQuals() != Proto2->getTypeQuals())
+ return false;
+
+ // Fall through to check the bits common with FunctionNoProtoType.
+ }
+
+ case Type::FunctionNoProto: {
+ const FunctionType *Function1 = cast<FunctionType>(T1);
+ const FunctionType *Function2 = cast<FunctionType>(T2);
+ if (!IsStructurallyEquivalent(Context, Function1->getReturnType(),
+ Function2->getReturnType()))
+ return false;
+ if (Function1->getExtInfo() != Function2->getExtInfo())
+ return false;
+ break;
+ }
+
+ case Type::UnresolvedUsing:
+ if (!IsStructurallyEquivalent(Context,
+ cast<UnresolvedUsingType>(T1)->getDecl(),
+ cast<UnresolvedUsingType>(T2)->getDecl()))
+ return false;
+
+ break;
+
+ case Type::Attributed:
+ if (!IsStructurallyEquivalent(Context,
+ cast<AttributedType>(T1)->getModifiedType(),
+ cast<AttributedType>(T2)->getModifiedType()))
+ return false;
+ if (!IsStructurallyEquivalent(Context,
+ cast<AttributedType>(T1)->getEquivalentType(),
+ cast<AttributedType>(T2)->getEquivalentType()))
+ return false;
+ break;
+
+ case Type::Paren:
+ if (!IsStructurallyEquivalent(Context,
+ cast<ParenType>(T1)->getInnerType(),
+ cast<ParenType>(T2)->getInnerType()))
+ return false;
+ break;
+
+ case Type::Typedef:
+ if (!IsStructurallyEquivalent(Context,
+ cast<TypedefType>(T1)->getDecl(),
+ cast<TypedefType>(T2)->getDecl()))
+ return false;
+ break;
+
+ case Type::TypeOfExpr:
+ if (!IsStructurallyEquivalent(Context,
+ cast<TypeOfExprType>(T1)->getUnderlyingExpr(),
+ cast<TypeOfExprType>(T2)->getUnderlyingExpr()))
+ return false;
+ break;
+
+ case Type::TypeOf:
+ if (!IsStructurallyEquivalent(Context,
+ cast<TypeOfType>(T1)->getUnderlyingType(),
+ cast<TypeOfType>(T2)->getUnderlyingType()))
+ return false;
+ break;
+
+ case Type::UnaryTransform:
+ if (!IsStructurallyEquivalent(Context,
+ cast<UnaryTransformType>(T1)->getUnderlyingType(),
+ cast<UnaryTransformType>(T1)->getUnderlyingType()))
+ return false;
+ break;
+
+ case Type::Decltype:
+ if (!IsStructurallyEquivalent(Context,
+ cast<DecltypeType>(T1)->getUnderlyingExpr(),
+ cast<DecltypeType>(T2)->getUnderlyingExpr()))
+ return false;
+ break;
+
+ case Type::Auto:
+ if (!IsStructurallyEquivalent(Context,
+ cast<AutoType>(T1)->getDeducedType(),
+ cast<AutoType>(T2)->getDeducedType()))
+ return false;
+ break;
+
+ case Type::Record:
+ case Type::Enum:
+ if (!IsStructurallyEquivalent(Context,
+ cast<TagType>(T1)->getDecl(),
+ cast<TagType>(T2)->getDecl()))
+ return false;
+ break;
+
+ case Type::TemplateTypeParm: {
+ const TemplateTypeParmType *Parm1 = cast<TemplateTypeParmType>(T1);
+ const TemplateTypeParmType *Parm2 = cast<TemplateTypeParmType>(T2);
+ if (Parm1->getDepth() != Parm2->getDepth())
+ return false;
+ if (Parm1->getIndex() != Parm2->getIndex())
+ return false;
+ if (Parm1->isParameterPack() != Parm2->isParameterPack())
+ return false;
+
+ // Names of template type parameters are never significant.
+ break;
+ }
+
+ case Type::SubstTemplateTypeParm: {
+ const SubstTemplateTypeParmType *Subst1
+ = cast<SubstTemplateTypeParmType>(T1);
+ const SubstTemplateTypeParmType *Subst2
+ = cast<SubstTemplateTypeParmType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ QualType(Subst1->getReplacedParameter(), 0),
+ QualType(Subst2->getReplacedParameter(), 0)))
+ return false;
+ if (!IsStructurallyEquivalent(Context,
+ Subst1->getReplacementType(),
+ Subst2->getReplacementType()))
+ return false;
+ break;
+ }
+
+ case Type::SubstTemplateTypeParmPack: {
+ const SubstTemplateTypeParmPackType *Subst1
+ = cast<SubstTemplateTypeParmPackType>(T1);
+ const SubstTemplateTypeParmPackType *Subst2
+ = cast<SubstTemplateTypeParmPackType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ QualType(Subst1->getReplacedParameter(), 0),
+ QualType(Subst2->getReplacedParameter(), 0)))
+ return false;
+ if (!IsStructurallyEquivalent(Context,
+ Subst1->getArgumentPack(),
+ Subst2->getArgumentPack()))
+ return false;
+ break;
+ }
+ case Type::TemplateSpecialization: {
+ const TemplateSpecializationType *Spec1
+ = cast<TemplateSpecializationType>(T1);
+ const TemplateSpecializationType *Spec2
+ = cast<TemplateSpecializationType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Spec1->getTemplateName(),
+ Spec2->getTemplateName()))
+ return false;
+ if (Spec1->getNumArgs() != Spec2->getNumArgs())
+ return false;
+ for (unsigned I = 0, N = Spec1->getNumArgs(); I != N; ++I) {
+ if (!IsStructurallyEquivalent(Context,
+ Spec1->getArg(I), Spec2->getArg(I)))
+ return false;
+ }
+ break;
+ }
+
+ case Type::Elaborated: {
+ const ElaboratedType *Elab1 = cast<ElaboratedType>(T1);
+ const ElaboratedType *Elab2 = cast<ElaboratedType>(T2);
+ // CHECKME: what if a keyword is ETK_None or ETK_typename ?
+ if (Elab1->getKeyword() != Elab2->getKeyword())
+ return false;
+ if (!IsStructurallyEquivalent(Context,
+ Elab1->getQualifier(),
+ Elab2->getQualifier()))
+ return false;
+ if (!IsStructurallyEquivalent(Context,
+ Elab1->getNamedType(),
+ Elab2->getNamedType()))
+ return false;
+ break;
+ }
+
+ case Type::InjectedClassName: {
+ const InjectedClassNameType *Inj1 = cast<InjectedClassNameType>(T1);
+ const InjectedClassNameType *Inj2 = cast<InjectedClassNameType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Inj1->getInjectedSpecializationType(),
+ Inj2->getInjectedSpecializationType()))
+ return false;
+ break;
+ }
+
+ case Type::DependentName: {
+ const DependentNameType *Typename1 = cast<DependentNameType>(T1);
+ const DependentNameType *Typename2 = cast<DependentNameType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Typename1->getQualifier(),
+ Typename2->getQualifier()))
+ return false;
+ if (!IsStructurallyEquivalent(Typename1->getIdentifier(),
+ Typename2->getIdentifier()))
+ return false;
+
+ break;
+ }
+
+ case Type::DependentTemplateSpecialization: {
+ const DependentTemplateSpecializationType *Spec1 =
+ cast<DependentTemplateSpecializationType>(T1);
+ const DependentTemplateSpecializationType *Spec2 =
+ cast<DependentTemplateSpecializationType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Spec1->getQualifier(),
+ Spec2->getQualifier()))
+ return false;
+ if (!IsStructurallyEquivalent(Spec1->getIdentifier(),
+ Spec2->getIdentifier()))
+ return false;
+ if (Spec1->getNumArgs() != Spec2->getNumArgs())
+ return false;
+ for (unsigned I = 0, N = Spec1->getNumArgs(); I != N; ++I) {
+ if (!IsStructurallyEquivalent(Context,
+ Spec1->getArg(I), Spec2->getArg(I)))
+ return false;
+ }
+ break;
+ }
+
+ case Type::PackExpansion:
+ if (!IsStructurallyEquivalent(Context,
+ cast<PackExpansionType>(T1)->getPattern(),
+ cast<PackExpansionType>(T2)->getPattern()))
+ return false;
+ break;
+
+ case Type::ObjCInterface: {
+ const ObjCInterfaceType *Iface1 = cast<ObjCInterfaceType>(T1);
+ const ObjCInterfaceType *Iface2 = cast<ObjCInterfaceType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Iface1->getDecl(), Iface2->getDecl()))
+ return false;
+ break;
+ }
+
+ case Type::ObjCObject: {
+ const ObjCObjectType *Obj1 = cast<ObjCObjectType>(T1);
+ const ObjCObjectType *Obj2 = cast<ObjCObjectType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Obj1->getBaseType(),
+ Obj2->getBaseType()))
+ return false;
+ if (Obj1->getNumProtocols() != Obj2->getNumProtocols())
+ return false;
+ for (unsigned I = 0, N = Obj1->getNumProtocols(); I != N; ++I) {
+ if (!IsStructurallyEquivalent(Context,
+ Obj1->getProtocol(I),
+ Obj2->getProtocol(I)))
+ return false;
+ }
+ break;
+ }
+
+ case Type::ObjCObjectPointer: {
+ const ObjCObjectPointerType *Ptr1 = cast<ObjCObjectPointerType>(T1);
+ const ObjCObjectPointerType *Ptr2 = cast<ObjCObjectPointerType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Ptr1->getPointeeType(),
+ Ptr2->getPointeeType()))
+ return false;
+ break;
+ }
+
+ case Type::Atomic: {
+ if (!IsStructurallyEquivalent(Context,
+ cast<AtomicType>(T1)->getValueType(),
+ cast<AtomicType>(T2)->getValueType()))
+ return false;
+ break;
+ }
+
+ } // end switch
+
+ return true;
+}
+
+/// \brief Determine structural equivalence of two fields.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ FieldDecl *Field1, FieldDecl *Field2) {
+ RecordDecl *Owner2 = cast<RecordDecl>(Field2->getDeclContext());
+
+ // For anonymous structs/unions, match up the anonymous struct/union type
+ // declarations directly, so that we don't go off searching for anonymous
+ // types
+ if (Field1->isAnonymousStructOrUnion() &&
+ Field2->isAnonymousStructOrUnion()) {
+ RecordDecl *D1 = Field1->getType()->castAs<RecordType>()->getDecl();
+ RecordDecl *D2 = Field2->getType()->castAs<RecordType>()->getDecl();
+ return IsStructurallyEquivalent(Context, D1, D2);
+ }
+
+ // Check for equivalent field names.
+ IdentifierInfo *Name1 = Field1->getIdentifier();
+ IdentifierInfo *Name2 = Field2->getIdentifier();
+ if (!::IsStructurallyEquivalent(Name1, Name2))
+ return false;
+
+ if (!IsStructurallyEquivalent(Context,
+ Field1->getType(), Field2->getType())) {
+ if (Context.Complain) {
+ Context.Diag2(Owner2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(Owner2);
+ Context.Diag2(Field2->getLocation(), diag::note_odr_field)
+ << Field2->getDeclName() << Field2->getType();
+ Context.Diag1(Field1->getLocation(), diag::note_odr_field)
+ << Field1->getDeclName() << Field1->getType();
+ }
+ return false;
+ }
+
+ if (Field1->isBitField() != Field2->isBitField()) {
+ if (Context.Complain) {
+ Context.Diag2(Owner2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(Owner2);
+ if (Field1->isBitField()) {
+ Context.Diag1(Field1->getLocation(), diag::note_odr_bit_field)
+ << Field1->getDeclName() << Field1->getType()
+ << Field1->getBitWidthValue(Context.C1);
+ Context.Diag2(Field2->getLocation(), diag::note_odr_not_bit_field)
+ << Field2->getDeclName();
+ } else {
+ Context.Diag2(Field2->getLocation(), diag::note_odr_bit_field)
+ << Field2->getDeclName() << Field2->getType()
+ << Field2->getBitWidthValue(Context.C2);
+ Context.Diag1(Field1->getLocation(), diag::note_odr_not_bit_field)
+ << Field1->getDeclName();
+ }
+ }
+ return false;
+ }
+
+ if (Field1->isBitField()) {
+ // Make sure that the bit-fields are the same length.
+ unsigned Bits1 = Field1->getBitWidthValue(Context.C1);
+ unsigned Bits2 = Field2->getBitWidthValue(Context.C2);
+
+ if (Bits1 != Bits2) {
+ if (Context.Complain) {
+ Context.Diag2(Owner2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(Owner2);
+ Context.Diag2(Field2->getLocation(), diag::note_odr_bit_field)
+ << Field2->getDeclName() << Field2->getType() << Bits2;
+ Context.Diag1(Field1->getLocation(), diag::note_odr_bit_field)
+ << Field1->getDeclName() << Field1->getType() << Bits1;
+ }
+ return false;
+ }
+ }
+
+ return true;
+}
+
+/// \brief Find the index of the given anonymous struct/union within its
+/// context.
+///
+/// \returns Returns the index of this anonymous struct/union in its context,
+/// including the next assigned index (if none of them match). Returns an
+/// empty option if the context is not a record, i.e.. if the anonymous
+/// struct/union is at namespace or block scope.
+static Optional<unsigned> findAnonymousStructOrUnionIndex(RecordDecl *Anon) {
+ ASTContext &Context = Anon->getASTContext();
+ QualType AnonTy = Context.getRecordType(Anon);
+
+ RecordDecl *Owner = dyn_cast<RecordDecl>(Anon->getDeclContext());
+ if (!Owner)
+ return None;
+
+ unsigned Index = 0;
+ for (const auto *D : Owner->noload_decls()) {
+ const auto *F = dyn_cast<FieldDecl>(D);
+ if (!F || !F->isAnonymousStructOrUnion())
+ continue;
+
+ if (Context.hasSameType(F->getType(), AnonTy))
+ break;
+
+ ++Index;
+ }
+
+ return Index;
+}
+
+/// \brief Determine structural equivalence of two records.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ RecordDecl *D1, RecordDecl *D2) {
+ if (D1->isUnion() != D2->isUnion()) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ Context.Diag1(D1->getLocation(), diag::note_odr_tag_kind_here)
+ << D1->getDeclName() << (unsigned)D1->getTagKind();
+ }
+ return false;
+ }
+
+ if (D1->isAnonymousStructOrUnion() && D2->isAnonymousStructOrUnion()) {
+ // If both anonymous structs/unions are in a record context, make sure
+ // they occur in the same location in the context records.
+ if (Optional<unsigned> Index1 = findAnonymousStructOrUnionIndex(D1)) {
+ if (Optional<unsigned> Index2 = findAnonymousStructOrUnionIndex(D2)) {
+ if (*Index1 != *Index2)
+ return false;
+ }
+ }
+ }
+
+ // If both declarations are class template specializations, we know
+ // the ODR applies, so check the template and template arguments.
+ ClassTemplateSpecializationDecl *Spec1
+ = dyn_cast<ClassTemplateSpecializationDecl>(D1);
+ ClassTemplateSpecializationDecl *Spec2
+ = dyn_cast<ClassTemplateSpecializationDecl>(D2);
+ if (Spec1 && Spec2) {
+ // Check that the specialized templates are the same.
+ if (!IsStructurallyEquivalent(Context, Spec1->getSpecializedTemplate(),
+ Spec2->getSpecializedTemplate()))
+ return false;
+
+ // Check that the template arguments are the same.
+ if (Spec1->getTemplateArgs().size() != Spec2->getTemplateArgs().size())
+ return false;
+
+ for (unsigned I = 0, N = Spec1->getTemplateArgs().size(); I != N; ++I)
+ if (!IsStructurallyEquivalent(Context,
+ Spec1->getTemplateArgs().get(I),
+ Spec2->getTemplateArgs().get(I)))
+ return false;
+ }
+ // If one is a class template specialization and the other is not, these
+ // structures are different.
+ else if (Spec1 || Spec2)
+ return false;
+
+ // Compare the definitions of these two records. If either or both are
+ // incomplete, we assume that they are equivalent.
+ D1 = D1->getDefinition();
+ D2 = D2->getDefinition();
+ if (!D1 || !D2)
+ return true;
+
+ if (CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(D1)) {
+ if (CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(D2)) {
+ if (D1CXX->getNumBases() != D2CXX->getNumBases()) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ Context.Diag2(D2->getLocation(), diag::note_odr_number_of_bases)
+ << D2CXX->getNumBases();
+ Context.Diag1(D1->getLocation(), diag::note_odr_number_of_bases)
+ << D1CXX->getNumBases();
+ }
+ return false;
+ }
+
+ // Check the base classes.
+ for (CXXRecordDecl::base_class_iterator Base1 = D1CXX->bases_begin(),
+ BaseEnd1 = D1CXX->bases_end(),
+ Base2 = D2CXX->bases_begin();
+ Base1 != BaseEnd1;
+ ++Base1, ++Base2) {
+ if (!IsStructurallyEquivalent(Context,
+ Base1->getType(), Base2->getType())) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ Context.Diag2(Base2->getLocStart(), diag::note_odr_base)
+ << Base2->getType()
+ << Base2->getSourceRange();
+ Context.Diag1(Base1->getLocStart(), diag::note_odr_base)
+ << Base1->getType()
+ << Base1->getSourceRange();
+ }
+ return false;
+ }
+
+ // Check virtual vs. non-virtual inheritance mismatch.
+ if (Base1->isVirtual() != Base2->isVirtual()) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ Context.Diag2(Base2->getLocStart(),
+ diag::note_odr_virtual_base)
+ << Base2->isVirtual() << Base2->getSourceRange();
+ Context.Diag1(Base1->getLocStart(), diag::note_odr_base)
+ << Base1->isVirtual()
+ << Base1->getSourceRange();
+ }
+ return false;
+ }
+ }
+ } else if (D1CXX->getNumBases() > 0) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ const CXXBaseSpecifier *Base1 = D1CXX->bases_begin();
+ Context.Diag1(Base1->getLocStart(), diag::note_odr_base)
+ << Base1->getType()
+ << Base1->getSourceRange();
+ Context.Diag2(D2->getLocation(), diag::note_odr_missing_base);
+ }
+ return false;
+ }
+ }
+
+ // Check the fields for consistency.
+ RecordDecl::field_iterator Field2 = D2->field_begin(),
+ Field2End = D2->field_end();
+ for (RecordDecl::field_iterator Field1 = D1->field_begin(),
+ Field1End = D1->field_end();
+ Field1 != Field1End;
+ ++Field1, ++Field2) {
+ if (Field2 == Field2End) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ Context.Diag1(Field1->getLocation(), diag::note_odr_field)
+ << Field1->getDeclName() << Field1->getType();
+ Context.Diag2(D2->getLocation(), diag::note_odr_missing_field);
+ }
+ return false;
+ }
+
+ if (!IsStructurallyEquivalent(Context, *Field1, *Field2))
+ return false;
+ }
+
+ if (Field2 != Field2End) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ Context.Diag2(Field2->getLocation(), diag::note_odr_field)
+ << Field2->getDeclName() << Field2->getType();
+ Context.Diag1(D1->getLocation(), diag::note_odr_missing_field);
+ }
+ return false;
+ }
+
+ return true;
+}
+
+/// \brief Determine structural equivalence of two enums.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ EnumDecl *D1, EnumDecl *D2) {
+ EnumDecl::enumerator_iterator EC2 = D2->enumerator_begin(),
+ EC2End = D2->enumerator_end();
+ for (EnumDecl::enumerator_iterator EC1 = D1->enumerator_begin(),
+ EC1End = D1->enumerator_end();
+ EC1 != EC1End; ++EC1, ++EC2) {
+ if (EC2 == EC2End) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator)
+ << EC1->getDeclName()
+ << EC1->getInitVal().toString(10);
+ Context.Diag2(D2->getLocation(), diag::note_odr_missing_enumerator);
+ }
+ return false;
+ }
+
+ llvm::APSInt Val1 = EC1->getInitVal();
+ llvm::APSInt Val2 = EC2->getInitVal();
+ if (!llvm::APSInt::isSameValue(Val1, Val2) ||
+ !IsStructurallyEquivalent(EC1->getIdentifier(), EC2->getIdentifier())) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator)
+ << EC2->getDeclName()
+ << EC2->getInitVal().toString(10);
+ Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator)
+ << EC1->getDeclName()
+ << EC1->getInitVal().toString(10);
+ }
+ return false;
+ }
+ }
+
+ if (EC2 != EC2End) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator)
+ << EC2->getDeclName()
+ << EC2->getInitVal().toString(10);
+ Context.Diag1(D1->getLocation(), diag::note_odr_missing_enumerator);
+ }
+ return false;
+ }
+
+ return true;
+}
+
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ TemplateParameterList *Params1,
+ TemplateParameterList *Params2) {
+ if (Params1->size() != Params2->size()) {
+ if (Context.Complain) {
+ Context.Diag2(Params2->getTemplateLoc(),
+ diag::err_odr_different_num_template_parameters)
+ << Params1->size() << Params2->size();
+ Context.Diag1(Params1->getTemplateLoc(),
+ diag::note_odr_template_parameter_list);
+ }
+ return false;
+ }
+
+ for (unsigned I = 0, N = Params1->size(); I != N; ++I) {
+ if (Params1->getParam(I)->getKind() != Params2->getParam(I)->getKind()) {
+ if (Context.Complain) {
+ Context.Diag2(Params2->getParam(I)->getLocation(),
+ diag::err_odr_different_template_parameter_kind);
+ Context.Diag1(Params1->getParam(I)->getLocation(),
+ diag::note_odr_template_parameter_here);
+ }
+ return false;
+ }
+
+ if (!Context.IsStructurallyEquivalent(Params1->getParam(I),
+ Params2->getParam(I))) {
+
+ return false;
+ }
+ }
+
+ return true;
+}
+
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ TemplateTypeParmDecl *D1,
+ TemplateTypeParmDecl *D2) {
+ if (D1->isParameterPack() != D2->isParameterPack()) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(), diag::err_odr_parameter_pack_non_pack)
+ << D2->isParameterPack();
+ Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack)
+ << D1->isParameterPack();
+ }
+ return false;
+ }
+
+ return true;
+}
+
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ NonTypeTemplateParmDecl *D1,
+ NonTypeTemplateParmDecl *D2) {
+ if (D1->isParameterPack() != D2->isParameterPack()) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(), diag::err_odr_parameter_pack_non_pack)
+ << D2->isParameterPack();
+ Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack)
+ << D1->isParameterPack();
+ }
+ return false;
+ }
+
+ // Check types.
+ if (!Context.IsStructurallyEquivalent(D1->getType(), D2->getType())) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(),
+ diag::err_odr_non_type_parameter_type_inconsistent)
+ << D2->getType() << D1->getType();
+ Context.Diag1(D1->getLocation(), diag::note_odr_value_here)
+ << D1->getType();
+ }
+ return false;
+ }
+
+ return true;
+}
+
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ TemplateTemplateParmDecl *D1,
+ TemplateTemplateParmDecl *D2) {
+ if (D1->isParameterPack() != D2->isParameterPack()) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(), diag::err_odr_parameter_pack_non_pack)
+ << D2->isParameterPack();
+ Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack)
+ << D1->isParameterPack();
+ }
+ return false;
+ }
+
+ // Check template parameter lists.
+ return IsStructurallyEquivalent(Context, D1->getTemplateParameters(),
+ D2->getTemplateParameters());
+}
+
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ ClassTemplateDecl *D1,
+ ClassTemplateDecl *D2) {
+ // Check template parameters.
+ if (!IsStructurallyEquivalent(Context,
+ D1->getTemplateParameters(),
+ D2->getTemplateParameters()))
+ return false;
+
+ // Check the templated declaration.
+ return Context.IsStructurallyEquivalent(D1->getTemplatedDecl(),
+ D2->getTemplatedDecl());
+}
+
+/// \brief Determine structural equivalence of two declarations.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ Decl *D1, Decl *D2) {
+ // FIXME: Check for known structural equivalences via a callback of some sort.
+
+ // Check whether we already know that these two declarations are not
+ // structurally equivalent.
+ if (Context.NonEquivalentDecls.count(std::make_pair(D1->getCanonicalDecl(),
+ D2->getCanonicalDecl())))
+ return false;
+
+ // Determine whether we've already produced a tentative equivalence for D1.
+ Decl *&EquivToD1 = Context.TentativeEquivalences[D1->getCanonicalDecl()];
+ if (EquivToD1)
+ return EquivToD1 == D2->getCanonicalDecl();
+
+ // Produce a tentative equivalence D1 <-> D2, which will be checked later.
+ EquivToD1 = D2->getCanonicalDecl();
+ Context.DeclsToCheck.push_back(D1->getCanonicalDecl());
+ return true;
+}
+
+bool StructuralEquivalenceContext::IsStructurallyEquivalent(Decl *D1,
+ Decl *D2) {
+ if (!::IsStructurallyEquivalent(*this, D1, D2))
+ return false;
+
+ return !Finish();
+}
+
+bool StructuralEquivalenceContext::IsStructurallyEquivalent(QualType T1,
+ QualType T2) {
+ if (!::IsStructurallyEquivalent(*this, T1, T2))
+ return false;
+
+ return !Finish();
+}
+
+bool StructuralEquivalenceContext::Finish() {
+ while (!DeclsToCheck.empty()) {
+ // Check the next declaration.
+ Decl *D1 = DeclsToCheck.front();
+ DeclsToCheck.pop_front();
+
+ Decl *D2 = TentativeEquivalences[D1];
+ assert(D2 && "Unrecorded tentative equivalence?");
+
+ bool Equivalent = true;
+
+ // FIXME: Switch on all declaration kinds. For now, we're just going to
+ // check the obvious ones.
+ if (RecordDecl *Record1 = dyn_cast<RecordDecl>(D1)) {
+ if (RecordDecl *Record2 = dyn_cast<RecordDecl>(D2)) {
+ // Check for equivalent structure names.
+ IdentifierInfo *Name1 = Record1->getIdentifier();
+ if (!Name1 && Record1->getTypedefNameForAnonDecl())
+ Name1 = Record1->getTypedefNameForAnonDecl()->getIdentifier();
+ IdentifierInfo *Name2 = Record2->getIdentifier();
+ if (!Name2 && Record2->getTypedefNameForAnonDecl())
+ Name2 = Record2->getTypedefNameForAnonDecl()->getIdentifier();
+ if (!::IsStructurallyEquivalent(Name1, Name2) ||
+ !::IsStructurallyEquivalent(*this, Record1, Record2))
+ Equivalent = false;
+ } else {
+ // Record/non-record mismatch.
+ Equivalent = false;
+ }
+ } else if (EnumDecl *Enum1 = dyn_cast<EnumDecl>(D1)) {
+ if (EnumDecl *Enum2 = dyn_cast<EnumDecl>(D2)) {
+ // Check for equivalent enum names.
+ IdentifierInfo *Name1 = Enum1->getIdentifier();
+ if (!Name1 && Enum1->getTypedefNameForAnonDecl())
+ Name1 = Enum1->getTypedefNameForAnonDecl()->getIdentifier();
+ IdentifierInfo *Name2 = Enum2->getIdentifier();
+ if (!Name2 && Enum2->getTypedefNameForAnonDecl())
+ Name2 = Enum2->getTypedefNameForAnonDecl()->getIdentifier();
+ if (!::IsStructurallyEquivalent(Name1, Name2) ||
+ !::IsStructurallyEquivalent(*this, Enum1, Enum2))
+ Equivalent = false;
+ } else {
+ // Enum/non-enum mismatch
+ Equivalent = false;
+ }
+ } else if (TypedefNameDecl *Typedef1 = dyn_cast<TypedefNameDecl>(D1)) {
+ if (TypedefNameDecl *Typedef2 = dyn_cast<TypedefNameDecl>(D2)) {
+ if (!::IsStructurallyEquivalent(Typedef1->getIdentifier(),
+ Typedef2->getIdentifier()) ||
+ !::IsStructurallyEquivalent(*this,
+ Typedef1->getUnderlyingType(),
+ Typedef2->getUnderlyingType()))
+ Equivalent = false;
+ } else {
+ // Typedef/non-typedef mismatch.
+ Equivalent = false;
+ }
+ } else if (ClassTemplateDecl *ClassTemplate1
+ = dyn_cast<ClassTemplateDecl>(D1)) {
+ if (ClassTemplateDecl *ClassTemplate2 = dyn_cast<ClassTemplateDecl>(D2)) {
+ if (!::IsStructurallyEquivalent(ClassTemplate1->getIdentifier(),
+ ClassTemplate2->getIdentifier()) ||
+ !::IsStructurallyEquivalent(*this, ClassTemplate1, ClassTemplate2))
+ Equivalent = false;
+ } else {
+ // Class template/non-class-template mismatch.
+ Equivalent = false;
+ }
+ } else if (TemplateTypeParmDecl *TTP1= dyn_cast<TemplateTypeParmDecl>(D1)) {
+ if (TemplateTypeParmDecl *TTP2 = dyn_cast<TemplateTypeParmDecl>(D2)) {
+ if (!::IsStructurallyEquivalent(*this, TTP1, TTP2))
+ Equivalent = false;
+ } else {
+ // Kind mismatch.
+ Equivalent = false;
+ }
+ } else if (NonTypeTemplateParmDecl *NTTP1
+ = dyn_cast<NonTypeTemplateParmDecl>(D1)) {
+ if (NonTypeTemplateParmDecl *NTTP2
+ = dyn_cast<NonTypeTemplateParmDecl>(D2)) {
+ if (!::IsStructurallyEquivalent(*this, NTTP1, NTTP2))
+ Equivalent = false;
+ } else {
+ // Kind mismatch.
+ Equivalent = false;
+ }
+ } else if (TemplateTemplateParmDecl *TTP1
+ = dyn_cast<TemplateTemplateParmDecl>(D1)) {
+ if (TemplateTemplateParmDecl *TTP2
+ = dyn_cast<TemplateTemplateParmDecl>(D2)) {
+ if (!::IsStructurallyEquivalent(*this, TTP1, TTP2))
+ Equivalent = false;
+ } else {
+ // Kind mismatch.
+ Equivalent = false;
+ }
+ }
+
+ if (!Equivalent) {
+ // Note that these two declarations are not equivalent (and we already
+ // know about it).
+ NonEquivalentDecls.insert(std::make_pair(D1->getCanonicalDecl(),
+ D2->getCanonicalDecl()));
+ return true;
+ }
+ // FIXME: Check other declaration kinds!
+ }
+
+ return false;
+}
+
+//----------------------------------------------------------------------------
+// Import Types
+//----------------------------------------------------------------------------
+
+QualType ASTNodeImporter::VisitType(const Type *T) {
+ Importer.FromDiag(SourceLocation(), diag::err_unsupported_ast_node)
+ << T->getTypeClassName();
+ return QualType();
+}
+
+QualType ASTNodeImporter::VisitBuiltinType(const BuiltinType *T) {
+ switch (T->getKind()) {
+#define SHARED_SINGLETON_TYPE(Expansion)
+#define BUILTIN_TYPE(Id, SingletonId) \
+ case BuiltinType::Id: return Importer.getToContext().SingletonId;
+#include "clang/AST/BuiltinTypes.def"
+
+ // FIXME: for Char16, Char32, and NullPtr, make sure that the "to"
+ // context supports C++.
+
+ // FIXME: for ObjCId, ObjCClass, and ObjCSel, make sure that the "to"
+ // context supports ObjC.
+
+ case BuiltinType::Char_U:
+ // The context we're importing from has an unsigned 'char'. If we're
+ // importing into a context with a signed 'char', translate to
+ // 'unsigned char' instead.
+ if (Importer.getToContext().getLangOpts().CharIsSigned)
+ return Importer.getToContext().UnsignedCharTy;
+
+ return Importer.getToContext().CharTy;
+
+ case BuiltinType::Char_S:
+ // The context we're importing from has an unsigned 'char'. If we're
+ // importing into a context with a signed 'char', translate to
+ // 'unsigned char' instead.
+ if (!Importer.getToContext().getLangOpts().CharIsSigned)
+ return Importer.getToContext().SignedCharTy;
+
+ return Importer.getToContext().CharTy;
+
+ case BuiltinType::WChar_S:
+ case BuiltinType::WChar_U:
+ // FIXME: If not in C++, shall we translate to the C equivalent of
+ // wchar_t?
+ return Importer.getToContext().WCharTy;
+ }
+
+ llvm_unreachable("Invalid BuiltinType Kind!");
+}
+
+QualType ASTNodeImporter::VisitComplexType(const ComplexType *T) {
+ QualType ToElementType = Importer.Import(T->getElementType());
+ if (ToElementType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getComplexType(ToElementType);
+}
+
+QualType ASTNodeImporter::VisitPointerType(const PointerType *T) {
+ QualType ToPointeeType = Importer.Import(T->getPointeeType());
+ if (ToPointeeType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getPointerType(ToPointeeType);
+}
+
+QualType ASTNodeImporter::VisitBlockPointerType(const BlockPointerType *T) {
+ // FIXME: Check for blocks support in "to" context.
+ QualType ToPointeeType = Importer.Import(T->getPointeeType());
+ if (ToPointeeType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getBlockPointerType(ToPointeeType);
+}
+
+QualType
+ASTNodeImporter::VisitLValueReferenceType(const LValueReferenceType *T) {
+ // FIXME: Check for C++ support in "to" context.
+ QualType ToPointeeType = Importer.Import(T->getPointeeTypeAsWritten());
+ if (ToPointeeType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getLValueReferenceType(ToPointeeType);
+}
+
+QualType
+ASTNodeImporter::VisitRValueReferenceType(const RValueReferenceType *T) {
+ // FIXME: Check for C++0x support in "to" context.
+ QualType ToPointeeType = Importer.Import(T->getPointeeTypeAsWritten());
+ if (ToPointeeType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getRValueReferenceType(ToPointeeType);
+}
+
+QualType ASTNodeImporter::VisitMemberPointerType(const MemberPointerType *T) {
+ // FIXME: Check for C++ support in "to" context.
+ QualType ToPointeeType = Importer.Import(T->getPointeeType());
+ if (ToPointeeType.isNull())
+ return QualType();
+
+ QualType ClassType = Importer.Import(QualType(T->getClass(), 0));
+ return Importer.getToContext().getMemberPointerType(ToPointeeType,
+ ClassType.getTypePtr());
+}
+
+QualType ASTNodeImporter::VisitConstantArrayType(const ConstantArrayType *T) {
+ QualType ToElementType = Importer.Import(T->getElementType());
+ if (ToElementType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getConstantArrayType(ToElementType,
+ T->getSize(),
+ T->getSizeModifier(),
+ T->getIndexTypeCVRQualifiers());
+}
+
+QualType
+ASTNodeImporter::VisitIncompleteArrayType(const IncompleteArrayType *T) {
+ QualType ToElementType = Importer.Import(T->getElementType());
+ if (ToElementType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getIncompleteArrayType(ToElementType,
+ T->getSizeModifier(),
+ T->getIndexTypeCVRQualifiers());
+}
+
+QualType ASTNodeImporter::VisitVariableArrayType(const VariableArrayType *T) {
+ QualType ToElementType = Importer.Import(T->getElementType());
+ if (ToElementType.isNull())
+ return QualType();
+
+ Expr *Size = Importer.Import(T->getSizeExpr());
+ if (!Size)
+ return QualType();
+
+ SourceRange Brackets = Importer.Import(T->getBracketsRange());
+ return Importer.getToContext().getVariableArrayType(ToElementType, Size,
+ T->getSizeModifier(),
+ T->getIndexTypeCVRQualifiers(),
+ Brackets);
+}
+
+QualType ASTNodeImporter::VisitVectorType(const VectorType *T) {
+ QualType ToElementType = Importer.Import(T->getElementType());
+ if (ToElementType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getVectorType(ToElementType,
+ T->getNumElements(),
+ T->getVectorKind());
+}
+
+QualType ASTNodeImporter::VisitExtVectorType(const ExtVectorType *T) {
+ QualType ToElementType = Importer.Import(T->getElementType());
+ if (ToElementType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getExtVectorType(ToElementType,
+ T->getNumElements());
+}
+
+QualType
+ASTNodeImporter::VisitFunctionNoProtoType(const FunctionNoProtoType *T) {
+ // FIXME: What happens if we're importing a function without a prototype
+ // into C++? Should we make it variadic?
+ QualType ToResultType = Importer.Import(T->getReturnType());
+ if (ToResultType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getFunctionNoProtoType(ToResultType,
+ T->getExtInfo());
+}
+
+QualType ASTNodeImporter::VisitFunctionProtoType(const FunctionProtoType *T) {
+ QualType ToResultType = Importer.Import(T->getReturnType());
+ if (ToResultType.isNull())
+ return QualType();
+
+ // Import argument types
+ SmallVector<QualType, 4> ArgTypes;
+ for (const auto &A : T->param_types()) {
+ QualType ArgType = Importer.Import(A);
+ if (ArgType.isNull())
+ return QualType();
+ ArgTypes.push_back(ArgType);
+ }
+
+ // Import exception types
+ SmallVector<QualType, 4> ExceptionTypes;
+ for (const auto &E : T->exceptions()) {
+ QualType ExceptionType = Importer.Import(E);
+ if (ExceptionType.isNull())
+ return QualType();
+ ExceptionTypes.push_back(ExceptionType);
+ }
+
+ FunctionProtoType::ExtProtoInfo FromEPI = T->getExtProtoInfo();
+ FunctionProtoType::ExtProtoInfo ToEPI;
+
+ ToEPI.ExtInfo = FromEPI.ExtInfo;
+ ToEPI.Variadic = FromEPI.Variadic;
+ ToEPI.HasTrailingReturn = FromEPI.HasTrailingReturn;
+ ToEPI.TypeQuals = FromEPI.TypeQuals;
+ ToEPI.RefQualifier = FromEPI.RefQualifier;
+ ToEPI.ExceptionSpec.Type = FromEPI.ExceptionSpec.Type;
+ ToEPI.ExceptionSpec.Exceptions = ExceptionTypes;
+ ToEPI.ExceptionSpec.NoexceptExpr =
+ Importer.Import(FromEPI.ExceptionSpec.NoexceptExpr);
+ ToEPI.ExceptionSpec.SourceDecl = cast_or_null<FunctionDecl>(
+ Importer.Import(FromEPI.ExceptionSpec.SourceDecl));
+ ToEPI.ExceptionSpec.SourceTemplate = cast_or_null<FunctionDecl>(
+ Importer.Import(FromEPI.ExceptionSpec.SourceTemplate));
+
+ return Importer.getToContext().getFunctionType(ToResultType, ArgTypes, ToEPI);
+}
+
+QualType ASTNodeImporter::VisitParenType(const ParenType *T) {
+ QualType ToInnerType = Importer.Import(T->getInnerType());
+ if (ToInnerType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getParenType(ToInnerType);
+}
+
+QualType ASTNodeImporter::VisitTypedefType(const TypedefType *T) {
+ TypedefNameDecl *ToDecl
+ = dyn_cast_or_null<TypedefNameDecl>(Importer.Import(T->getDecl()));
+ if (!ToDecl)
+ return QualType();
+
+ return Importer.getToContext().getTypeDeclType(ToDecl);
+}
+
+QualType ASTNodeImporter::VisitTypeOfExprType(const TypeOfExprType *T) {
+ Expr *ToExpr = Importer.Import(T->getUnderlyingExpr());
+ if (!ToExpr)
+ return QualType();
+
+ return Importer.getToContext().getTypeOfExprType(ToExpr);
+}
+
+QualType ASTNodeImporter::VisitTypeOfType(const TypeOfType *T) {
+ QualType ToUnderlyingType = Importer.Import(T->getUnderlyingType());
+ if (ToUnderlyingType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getTypeOfType(ToUnderlyingType);
+}
+
+QualType ASTNodeImporter::VisitDecltypeType(const DecltypeType *T) {
+ // FIXME: Make sure that the "to" context supports C++0x!
+ Expr *ToExpr = Importer.Import(T->getUnderlyingExpr());
+ if (!ToExpr)
+ return QualType();
+
+ QualType UnderlyingType = Importer.Import(T->getUnderlyingType());
+ if (UnderlyingType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getDecltypeType(ToExpr, UnderlyingType);
+}
+
+QualType ASTNodeImporter::VisitUnaryTransformType(const UnaryTransformType *T) {
+ QualType ToBaseType = Importer.Import(T->getBaseType());
+ QualType ToUnderlyingType = Importer.Import(T->getUnderlyingType());
+ if (ToBaseType.isNull() || ToUnderlyingType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getUnaryTransformType(ToBaseType,
+ ToUnderlyingType,
+ T->getUTTKind());
+}
+
+QualType ASTNodeImporter::VisitAutoType(const AutoType *T) {
+ // FIXME: Make sure that the "to" context supports C++11!
+ QualType FromDeduced = T->getDeducedType();
+ QualType ToDeduced;
+ if (!FromDeduced.isNull()) {
+ ToDeduced = Importer.Import(FromDeduced);
+ if (ToDeduced.isNull())
+ return QualType();
+ }
+
+ return Importer.getToContext().getAutoType(ToDeduced, T->isDecltypeAuto(),
+ /*IsDependent*/false);
+}
+
+QualType ASTNodeImporter::VisitRecordType(const RecordType *T) {
+ RecordDecl *ToDecl
+ = dyn_cast_or_null<RecordDecl>(Importer.Import(T->getDecl()));
+ if (!ToDecl)
+ return QualType();
+
+ return Importer.getToContext().getTagDeclType(ToDecl);
+}
+
+QualType ASTNodeImporter::VisitEnumType(const EnumType *T) {
+ EnumDecl *ToDecl
+ = dyn_cast_or_null<EnumDecl>(Importer.Import(T->getDecl()));
+ if (!ToDecl)
+ return QualType();
+
+ return Importer.getToContext().getTagDeclType(ToDecl);
+}
+
+QualType ASTNodeImporter::VisitAttributedType(const AttributedType *T) {
+ QualType FromModifiedType = T->getModifiedType();
+ QualType FromEquivalentType = T->getEquivalentType();
+ QualType ToModifiedType;
+ QualType ToEquivalentType;
+
+ if (!FromModifiedType.isNull()) {
+ ToModifiedType = Importer.Import(FromModifiedType);
+ if (ToModifiedType.isNull())
+ return QualType();
+ }
+ if (!FromEquivalentType.isNull()) {
+ ToEquivalentType = Importer.Import(FromEquivalentType);
+ if (ToEquivalentType.isNull())
+ return QualType();
+ }
+
+ return Importer.getToContext().getAttributedType(T->getAttrKind(),
+ ToModifiedType, ToEquivalentType);
+}
+
+QualType ASTNodeImporter::VisitTemplateSpecializationType(
+ const TemplateSpecializationType *T) {
+ TemplateName ToTemplate = Importer.Import(T->getTemplateName());
+ if (ToTemplate.isNull())
+ return QualType();
+
+ SmallVector<TemplateArgument, 2> ToTemplateArgs;
+ if (ImportTemplateArguments(T->getArgs(), T->getNumArgs(), ToTemplateArgs))
+ return QualType();
+
+ QualType ToCanonType;
+ if (!QualType(T, 0).isCanonical()) {
+ QualType FromCanonType
+ = Importer.getFromContext().getCanonicalType(QualType(T, 0));
+ ToCanonType =Importer.Import(FromCanonType);
+ if (ToCanonType.isNull())
+ return QualType();
+ }
+ return Importer.getToContext().getTemplateSpecializationType(ToTemplate,
+ ToTemplateArgs.data(),
+ ToTemplateArgs.size(),
+ ToCanonType);
+}
+
+QualType ASTNodeImporter::VisitElaboratedType(const ElaboratedType *T) {
+ NestedNameSpecifier *ToQualifier = nullptr;
+ // Note: the qualifier in an ElaboratedType is optional.
+ if (T->getQualifier()) {
+ ToQualifier = Importer.Import(T->getQualifier());
+ if (!ToQualifier)
+ return QualType();
+ }
+
+ QualType ToNamedType = Importer.Import(T->getNamedType());
+ if (ToNamedType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getElaboratedType(T->getKeyword(),
+ ToQualifier, ToNamedType);
+}
+
+QualType ASTNodeImporter::VisitObjCInterfaceType(const ObjCInterfaceType *T) {
+ ObjCInterfaceDecl *Class
+ = dyn_cast_or_null<ObjCInterfaceDecl>(Importer.Import(T->getDecl()));
+ if (!Class)
+ return QualType();
+
+ return Importer.getToContext().getObjCInterfaceType(Class);
+}
+
+QualType ASTNodeImporter::VisitObjCObjectType(const ObjCObjectType *T) {
+ QualType ToBaseType = Importer.Import(T->getBaseType());
+ if (ToBaseType.isNull())
+ return QualType();
+
+ SmallVector<ObjCProtocolDecl *, 4> Protocols;
+ for (auto *P : T->quals()) {
+ ObjCProtocolDecl *Protocol
+ = dyn_cast_or_null<ObjCProtocolDecl>(Importer.Import(P));
+ if (!Protocol)
+ return QualType();
+ Protocols.push_back(Protocol);
+ }
+
+ return Importer.getToContext().getObjCObjectType(ToBaseType,
+ Protocols.data(),
+ Protocols.size());
+}
+
+QualType
+ASTNodeImporter::VisitObjCObjectPointerType(const ObjCObjectPointerType *T) {
+ QualType ToPointeeType = Importer.Import(T->getPointeeType());
+ if (ToPointeeType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getObjCObjectPointerType(ToPointeeType);
+}
+
+//----------------------------------------------------------------------------
+// Import Declarations
+//----------------------------------------------------------------------------
+bool ASTNodeImporter::ImportDeclParts(NamedDecl *D, DeclContext *&DC,
+ DeclContext *&LexicalDC,
+ DeclarationName &Name,
+ NamedDecl *&ToD,
+ SourceLocation &Loc) {
+ // Import the context of this declaration.
+ DC = Importer.ImportContext(D->getDeclContext());
+ if (!DC)
+ return true;
+
+ LexicalDC = DC;
+ if (D->getDeclContext() != D->getLexicalDeclContext()) {
+ LexicalDC = Importer.ImportContext(D->getLexicalDeclContext());
+ if (!LexicalDC)
+ return true;
+ }
+
+ // Import the name of this declaration.
+ Name = Importer.Import(D->getDeclName());
+ if (D->getDeclName() && !Name)
+ return true;
+
+ // Import the location of this declaration.
+ Loc = Importer.Import(D->getLocation());
+ ToD = cast_or_null<NamedDecl>(Importer.GetAlreadyImportedOrNull(D));
+ return false;
+}
+
+void ASTNodeImporter::ImportDefinitionIfNeeded(Decl *FromD, Decl *ToD) {
+ if (!FromD)
+ return;
+
+ if (!ToD) {
+ ToD = Importer.Import(FromD);
+ if (!ToD)
+ return;
+ }
+
+ if (RecordDecl *FromRecord = dyn_cast<RecordDecl>(FromD)) {
+ if (RecordDecl *ToRecord = cast_or_null<RecordDecl>(ToD)) {
+ if (FromRecord->getDefinition() && FromRecord->isCompleteDefinition() && !ToRecord->getDefinition()) {
+ ImportDefinition(FromRecord, ToRecord);
+ }
+ }
+ return;
+ }
+
+ if (EnumDecl *FromEnum = dyn_cast<EnumDecl>(FromD)) {
+ if (EnumDecl *ToEnum = cast_or_null<EnumDecl>(ToD)) {
+ if (FromEnum->getDefinition() && !ToEnum->getDefinition()) {
+ ImportDefinition(FromEnum, ToEnum);
+ }
+ }
+ return;
+ }
+}
+
+void
+ASTNodeImporter::ImportDeclarationNameLoc(const DeclarationNameInfo &From,
+ DeclarationNameInfo& To) {
+ // NOTE: To.Name and To.Loc are already imported.
+ // We only have to import To.LocInfo.
+ switch (To.getName().getNameKind()) {
+ case DeclarationName::Identifier:
+ case DeclarationName::ObjCZeroArgSelector:
+ case DeclarationName::ObjCOneArgSelector:
+ case DeclarationName::ObjCMultiArgSelector:
+ case DeclarationName::CXXUsingDirective:
+ return;
+
+ case DeclarationName::CXXOperatorName: {
+ SourceRange Range = From.getCXXOperatorNameRange();
+ To.setCXXOperatorNameRange(Importer.Import(Range));
+ return;
+ }
+ case DeclarationName::CXXLiteralOperatorName: {
+ SourceLocation Loc = From.getCXXLiteralOperatorNameLoc();
+ To.setCXXLiteralOperatorNameLoc(Importer.Import(Loc));
+ return;
+ }
+ case DeclarationName::CXXConstructorName:
+ case DeclarationName::CXXDestructorName:
+ case DeclarationName::CXXConversionFunctionName: {
+ TypeSourceInfo *FromTInfo = From.getNamedTypeInfo();
+ To.setNamedTypeInfo(Importer.Import(FromTInfo));
+ return;
+ }
+ }
+ llvm_unreachable("Unknown name kind.");
+}
+
+void ASTNodeImporter::ImportDeclContext(DeclContext *FromDC, bool ForceImport) {
+ if (Importer.isMinimalImport() && !ForceImport) {
+ Importer.ImportContext(FromDC);
+ return;
+ }
+
+ for (auto *From : FromDC->decls())
+ Importer.Import(From);
+}
+
+bool ASTNodeImporter::ImportDefinition(RecordDecl *From, RecordDecl *To,
+ ImportDefinitionKind Kind) {
+ if (To->getDefinition() || To->isBeingDefined()) {
+ if (Kind == IDK_Everything)
+ ImportDeclContext(From, /*ForceImport=*/true);
+
+ return false;
+ }
+
+ To->startDefinition();
+
+ // Add base classes.
+ if (CXXRecordDecl *ToCXX = dyn_cast<CXXRecordDecl>(To)) {
+ CXXRecordDecl *FromCXX = cast<CXXRecordDecl>(From);
+
+ struct CXXRecordDecl::DefinitionData &ToData = ToCXX->data();
+ struct CXXRecordDecl::DefinitionData &FromData = FromCXX->data();
+ ToData.UserDeclaredConstructor = FromData.UserDeclaredConstructor;
+ ToData.UserDeclaredSpecialMembers = FromData.UserDeclaredSpecialMembers;
+ ToData.Aggregate = FromData.Aggregate;
+ ToData.PlainOldData = FromData.PlainOldData;
+ ToData.Empty = FromData.Empty;
+ ToData.Polymorphic = FromData.Polymorphic;
+ ToData.Abstract = FromData.Abstract;
+ ToData.IsStandardLayout = FromData.IsStandardLayout;
+ ToData.HasNoNonEmptyBases = FromData.HasNoNonEmptyBases;
+ ToData.HasPrivateFields = FromData.HasPrivateFields;
+ ToData.HasProtectedFields = FromData.HasProtectedFields;
+ ToData.HasPublicFields = FromData.HasPublicFields;
+ ToData.HasMutableFields = FromData.HasMutableFields;
+ ToData.HasVariantMembers = FromData.HasVariantMembers;
+ ToData.HasOnlyCMembers = FromData.HasOnlyCMembers;
+ ToData.HasInClassInitializer = FromData.HasInClassInitializer;
+ ToData.HasUninitializedReferenceMember
+ = FromData.HasUninitializedReferenceMember;
+ ToData.NeedOverloadResolutionForMoveConstructor
+ = FromData.NeedOverloadResolutionForMoveConstructor;
+ ToData.NeedOverloadResolutionForMoveAssignment
+ = FromData.NeedOverloadResolutionForMoveAssignment;
+ ToData.NeedOverloadResolutionForDestructor
+ = FromData.NeedOverloadResolutionForDestructor;
+ ToData.DefaultedMoveConstructorIsDeleted
+ = FromData.DefaultedMoveConstructorIsDeleted;
+ ToData.DefaultedMoveAssignmentIsDeleted
+ = FromData.DefaultedMoveAssignmentIsDeleted;
+ ToData.DefaultedDestructorIsDeleted = FromData.DefaultedDestructorIsDeleted;
+ ToData.HasTrivialSpecialMembers = FromData.HasTrivialSpecialMembers;
+ ToData.HasIrrelevantDestructor = FromData.HasIrrelevantDestructor;
+ ToData.HasConstexprNonCopyMoveConstructor
+ = FromData.HasConstexprNonCopyMoveConstructor;
+ ToData.DefaultedDefaultConstructorIsConstexpr
+ = FromData.DefaultedDefaultConstructorIsConstexpr;
+ ToData.HasConstexprDefaultConstructor
+ = FromData.HasConstexprDefaultConstructor;
+ ToData.HasNonLiteralTypeFieldsOrBases
+ = FromData.HasNonLiteralTypeFieldsOrBases;
+ // ComputedVisibleConversions not imported.
+ ToData.UserProvidedDefaultConstructor
+ = FromData.UserProvidedDefaultConstructor;
+ ToData.DeclaredSpecialMembers = FromData.DeclaredSpecialMembers;
+ ToData.ImplicitCopyConstructorHasConstParam
+ = FromData.ImplicitCopyConstructorHasConstParam;
+ ToData.ImplicitCopyAssignmentHasConstParam
+ = FromData.ImplicitCopyAssignmentHasConstParam;
+ ToData.HasDeclaredCopyConstructorWithConstParam
+ = FromData.HasDeclaredCopyConstructorWithConstParam;
+ ToData.HasDeclaredCopyAssignmentWithConstParam
+ = FromData.HasDeclaredCopyAssignmentWithConstParam;
+ ToData.IsLambda = FromData.IsLambda;
+
+ SmallVector<CXXBaseSpecifier *, 4> Bases;
+ for (const auto &Base1 : FromCXX->bases()) {
+ QualType T = Importer.Import(Base1.getType());
+ if (T.isNull())
+ return true;
+
+ SourceLocation EllipsisLoc;
+ if (Base1.isPackExpansion())
+ EllipsisLoc = Importer.Import(Base1.getEllipsisLoc());
+
+ // Ensure that we have a definition for the base.
+ ImportDefinitionIfNeeded(Base1.getType()->getAsCXXRecordDecl());
+
+ Bases.push_back(
+ new (Importer.getToContext())
+ CXXBaseSpecifier(Importer.Import(Base1.getSourceRange()),
+ Base1.isVirtual(),
+ Base1.isBaseOfClass(),
+ Base1.getAccessSpecifierAsWritten(),
+ Importer.Import(Base1.getTypeSourceInfo()),
+ EllipsisLoc));
+ }
+ if (!Bases.empty())
+ ToCXX->setBases(Bases.data(), Bases.size());
+ }
+
+ if (shouldForceImportDeclContext(Kind))
+ ImportDeclContext(From, /*ForceImport=*/true);
+
+ To->completeDefinition();
+ return false;
+}
+
+bool ASTNodeImporter::ImportDefinition(VarDecl *From, VarDecl *To,
+ ImportDefinitionKind Kind) {
+ if (To->getAnyInitializer())
+ return false;
+
+ // FIXME: Can we really import any initializer? Alternatively, we could force
+ // ourselves to import every declaration of a variable and then only use
+ // getInit() here.
+ To->setInit(Importer.Import(const_cast<Expr *>(From->getAnyInitializer())));
+
+ // FIXME: Other bits to merge?
+
+ return false;
+}
+
+bool ASTNodeImporter::ImportDefinition(EnumDecl *From, EnumDecl *To,
+ ImportDefinitionKind Kind) {
+ if (To->getDefinition() || To->isBeingDefined()) {
+ if (Kind == IDK_Everything)
+ ImportDeclContext(From, /*ForceImport=*/true);
+ return false;
+ }
+
+ To->startDefinition();
+
+ QualType T = Importer.Import(Importer.getFromContext().getTypeDeclType(From));
+ if (T.isNull())
+ return true;
+
+ QualType ToPromotionType = Importer.Import(From->getPromotionType());
+ if (ToPromotionType.isNull())
+ return true;
+
+ if (shouldForceImportDeclContext(Kind))
+ ImportDeclContext(From, /*ForceImport=*/true);
+
+ // FIXME: we might need to merge the number of positive or negative bits
+ // if the enumerator lists don't match.
+ To->completeDefinition(T, ToPromotionType,
+ From->getNumPositiveBits(),
+ From->getNumNegativeBits());
+ return false;
+}
+
+TemplateParameterList *ASTNodeImporter::ImportTemplateParameterList(
+ TemplateParameterList *Params) {
+ SmallVector<NamedDecl *, 4> ToParams;
+ ToParams.reserve(Params->size());
+ for (TemplateParameterList::iterator P = Params->begin(),
+ PEnd = Params->end();
+ P != PEnd; ++P) {
+ Decl *To = Importer.Import(*P);
+ if (!To)
+ return nullptr;
+
+ ToParams.push_back(cast<NamedDecl>(To));
+ }
+
+ return TemplateParameterList::Create(Importer.getToContext(),
+ Importer.Import(Params->getTemplateLoc()),
+ Importer.Import(Params->getLAngleLoc()),
+ ToParams.data(), ToParams.size(),
+ Importer.Import(Params->getRAngleLoc()));
+}
+
+TemplateArgument
+ASTNodeImporter::ImportTemplateArgument(const TemplateArgument &From) {
+ switch (From.getKind()) {
+ case TemplateArgument::Null:
+ return TemplateArgument();
+
+ case TemplateArgument::Type: {
+ QualType ToType = Importer.Import(From.getAsType());
+ if (ToType.isNull())
+ return TemplateArgument();
+ return TemplateArgument(ToType);
+ }
+
+ case TemplateArgument::Integral: {
+ QualType ToType = Importer.Import(From.getIntegralType());
+ if (ToType.isNull())
+ return TemplateArgument();
+ return TemplateArgument(From, ToType);
+ }
+
+ case TemplateArgument::Declaration: {
+ ValueDecl *To = cast_or_null<ValueDecl>(Importer.Import(From.getAsDecl()));
+ QualType ToType = Importer.Import(From.getParamTypeForDecl());
+ if (!To || ToType.isNull())
+ return TemplateArgument();
+ return TemplateArgument(To, ToType);
+ }
+
+ case TemplateArgument::NullPtr: {
+ QualType ToType = Importer.Import(From.getNullPtrType());
+ if (ToType.isNull())
+ return TemplateArgument();
+ return TemplateArgument(ToType, /*isNullPtr*/true);
+ }
+
+ case TemplateArgument::Template: {
+ TemplateName ToTemplate = Importer.Import(From.getAsTemplate());
+ if (ToTemplate.isNull())
+ return TemplateArgument();
+
+ return TemplateArgument(ToTemplate);
+ }
+
+ case TemplateArgument::TemplateExpansion: {
+ TemplateName ToTemplate
+ = Importer.Import(From.getAsTemplateOrTemplatePattern());
+ if (ToTemplate.isNull())
+ return TemplateArgument();
+
+ return TemplateArgument(ToTemplate, From.getNumTemplateExpansions());
+ }
+
+ case TemplateArgument::Expression:
+ if (Expr *ToExpr = Importer.Import(From.getAsExpr()))
+ return TemplateArgument(ToExpr);
+ return TemplateArgument();
+
+ case TemplateArgument::Pack: {
+ SmallVector<TemplateArgument, 2> ToPack;
+ ToPack.reserve(From.pack_size());
+ if (ImportTemplateArguments(From.pack_begin(), From.pack_size(), ToPack))
+ return TemplateArgument();
+
+ TemplateArgument *ToArgs
+ = new (Importer.getToContext()) TemplateArgument[ToPack.size()];
+ std::copy(ToPack.begin(), ToPack.end(), ToArgs);
+ return TemplateArgument(ToArgs, ToPack.size());
+ }
+ }
+
+ llvm_unreachable("Invalid template argument kind");
+}
+
+bool ASTNodeImporter::ImportTemplateArguments(const TemplateArgument *FromArgs,
+ unsigned NumFromArgs,
+ SmallVectorImpl<TemplateArgument> &ToArgs) {
+ for (unsigned I = 0; I != NumFromArgs; ++I) {
+ TemplateArgument To = ImportTemplateArgument(FromArgs[I]);
+ if (To.isNull() && !FromArgs[I].isNull())
+ return true;
+
+ ToArgs.push_back(To);
+ }
+
+ return false;
+}
+
+bool ASTNodeImporter::IsStructuralMatch(RecordDecl *FromRecord,
+ RecordDecl *ToRecord, bool Complain) {
+ // Eliminate a potential failure point where we attempt to re-import
+ // something we're trying to import while completing ToRecord.
+ Decl *ToOrigin = Importer.GetOriginalDecl(ToRecord);
+ if (ToOrigin) {
+ RecordDecl *ToOriginRecord = dyn_cast<RecordDecl>(ToOrigin);
+ if (ToOriginRecord)
+ ToRecord = ToOriginRecord;
+ }
+
+ StructuralEquivalenceContext Ctx(Importer.getFromContext(),
+ ToRecord->getASTContext(),
+ Importer.getNonEquivalentDecls(),
+ false, Complain);
+ return Ctx.IsStructurallyEquivalent(FromRecord, ToRecord);
+}
+
+bool ASTNodeImporter::IsStructuralMatch(VarDecl *FromVar, VarDecl *ToVar,
+ bool Complain) {
+ StructuralEquivalenceContext Ctx(
+ Importer.getFromContext(), Importer.getToContext(),
+ Importer.getNonEquivalentDecls(), false, Complain);
+ return Ctx.IsStructurallyEquivalent(FromVar, ToVar);
+}
+
+bool ASTNodeImporter::IsStructuralMatch(EnumDecl *FromEnum, EnumDecl *ToEnum) {
+ StructuralEquivalenceContext Ctx(Importer.getFromContext(),
+ Importer.getToContext(),
+ Importer.getNonEquivalentDecls());
+ return Ctx.IsStructurallyEquivalent(FromEnum, ToEnum);
+}
+
+bool ASTNodeImporter::IsStructuralMatch(EnumConstantDecl *FromEC,
+ EnumConstantDecl *ToEC)
+{
+ const llvm::APSInt &FromVal = FromEC->getInitVal();
+ const llvm::APSInt &ToVal = ToEC->getInitVal();
+
+ return FromVal.isSigned() == ToVal.isSigned() &&
+ FromVal.getBitWidth() == ToVal.getBitWidth() &&
+ FromVal == ToVal;
+}
+
+bool ASTNodeImporter::IsStructuralMatch(ClassTemplateDecl *From,
+ ClassTemplateDecl *To) {
+ StructuralEquivalenceContext Ctx(Importer.getFromContext(),
+ Importer.getToContext(),
+ Importer.getNonEquivalentDecls());
+ return Ctx.IsStructurallyEquivalent(From, To);
+}
+
+bool ASTNodeImporter::IsStructuralMatch(VarTemplateDecl *From,
+ VarTemplateDecl *To) {
+ StructuralEquivalenceContext Ctx(Importer.getFromContext(),
+ Importer.getToContext(),
+ Importer.getNonEquivalentDecls());
+ return Ctx.IsStructurallyEquivalent(From, To);
+}
+
+Decl *ASTNodeImporter::VisitDecl(Decl *D) {
+ Importer.FromDiag(D->getLocation(), diag::err_unsupported_ast_node)
+ << D->getDeclKindName();
+ return nullptr;
+}
+
+Decl *ASTNodeImporter::VisitTranslationUnitDecl(TranslationUnitDecl *D) {
+ TranslationUnitDecl *ToD =
+ Importer.getToContext().getTranslationUnitDecl();
+
+ Importer.Imported(D, ToD);
+
+ return ToD;
+}
+
+Decl *ASTNodeImporter::VisitNamespaceDecl(NamespaceDecl *D) {
+ // Import the major distinguishing characteristics of this namespace.
+ DeclContext *DC, *LexicalDC;
+ DeclarationName Name;
+ SourceLocation Loc;
+ NamedDecl *ToD;
+ if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc))
+ return nullptr;
+ if (ToD)
+ return ToD;
+
+ NamespaceDecl *MergeWithNamespace = nullptr;
+ if (!Name) {
+ // This is an anonymous namespace. Adopt an existing anonymous
+ // namespace if we can.
+ // FIXME: Not testable.
+ if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(DC))
+ MergeWithNamespace = TU->getAnonymousNamespace();
+ else
+ MergeWithNamespace = cast<NamespaceDecl>(DC)->getAnonymousNamespace();
+ } else {
+ SmallVector<NamedDecl *, 4> ConflictingDecls;
+ SmallVector<NamedDecl *, 2> FoundDecls;
+ DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls);
+ for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
+ if (!FoundDecls[I]->isInIdentifierNamespace(Decl::IDNS_Namespace))
+ continue;
+
+ if (NamespaceDecl *FoundNS = dyn_cast<NamespaceDecl>(FoundDecls[I])) {
+ MergeWithNamespace = FoundNS;
+ ConflictingDecls.clear();
+ break;
+ }
+
+ ConflictingDecls.push_back(FoundDecls[I]);
+ }
+
+ if (!ConflictingDecls.empty()) {
+ Name = Importer.HandleNameConflict(Name, DC, Decl::IDNS_Namespace,
+ ConflictingDecls.data(),
+ ConflictingDecls.size());
+ }
+ }
+
+ // Create the "to" namespace, if needed.
+ NamespaceDecl *ToNamespace = MergeWithNamespace;
+ if (!ToNamespace) {
+ ToNamespace = NamespaceDecl::Create(Importer.getToContext(), DC,
+ D->isInline(),
+ Importer.Import(D->getLocStart()),
+ Loc, Name.getAsIdentifierInfo(),
+ /*PrevDecl=*/nullptr);
+ ToNamespace->setLexicalDeclContext(LexicalDC);
+ LexicalDC->addDeclInternal(ToNamespace);
+
+ // If this is an anonymous namespace, register it as the anonymous
+ // namespace within its context.
+ if (!Name) {
+ if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(DC))
+ TU->setAnonymousNamespace(ToNamespace);
+ else
+ cast<NamespaceDecl>(DC)->setAnonymousNamespace(ToNamespace);
+ }
+ }
+ Importer.Imported(D, ToNamespace);
+
+ ImportDeclContext(D);
+
+ return ToNamespace;
+}
+
+Decl *ASTNodeImporter::VisitTypedefNameDecl(TypedefNameDecl *D, bool IsAlias) {
+ // Import the major distinguishing characteristics of this typedef.
+ DeclContext *DC, *LexicalDC;
+ DeclarationName Name;
+ SourceLocation Loc;
+ NamedDecl *ToD;
+ if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc))
+ return nullptr;
+ if (ToD)
+ return ToD;
+
+ // If this typedef is not in block scope, determine whether we've
+ // seen a typedef with the same name (that we can merge with) or any
+ // other entity by that name (which name lookup could conflict with).
+ if (!DC->isFunctionOrMethod()) {
+ SmallVector<NamedDecl *, 4> ConflictingDecls;
+ unsigned IDNS = Decl::IDNS_Ordinary;
+ SmallVector<NamedDecl *, 2> FoundDecls;
+ DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls);
+ for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
+ if (!FoundDecls[I]->isInIdentifierNamespace(IDNS))
+ continue;
+ if (TypedefNameDecl *FoundTypedef =
+ dyn_cast<TypedefNameDecl>(FoundDecls[I])) {
+ if (Importer.IsStructurallyEquivalent(D->getUnderlyingType(),
+ FoundTypedef->getUnderlyingType()))
+ return Importer.Imported(D, FoundTypedef);
+ }
+
+ ConflictingDecls.push_back(FoundDecls[I]);
+ }
+
+ if (!ConflictingDecls.empty()) {
+ Name = Importer.HandleNameConflict(Name, DC, IDNS,
+ ConflictingDecls.data(),
+ ConflictingDecls.size());
+ if (!Name)
+ return nullptr;
+ }
+ }
+
+ // Import the underlying type of this typedef;
+ QualType T = Importer.Import(D->getUnderlyingType());
+ if (T.isNull())
+ return nullptr;
+
+ // Create the new typedef node.
+ TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo());
+ SourceLocation StartL = Importer.Import(D->getLocStart());
+ TypedefNameDecl *ToTypedef;
+ if (IsAlias)
+ ToTypedef = TypeAliasDecl::Create(Importer.getToContext(), DC,
+ StartL, Loc,
+ Name.getAsIdentifierInfo(),
+ TInfo);
+ else
+ ToTypedef = TypedefDecl::Create(Importer.getToContext(), DC,
+ StartL, Loc,
+ Name.getAsIdentifierInfo(),
+ TInfo);
+
+ ToTypedef->setAccess(D->getAccess());
+ ToTypedef->setLexicalDeclContext(LexicalDC);
+ Importer.Imported(D, ToTypedef);
+ LexicalDC->addDeclInternal(ToTypedef);
+
+ return ToTypedef;
+}
+
+Decl *ASTNodeImporter::VisitTypedefDecl(TypedefDecl *D) {
+ return VisitTypedefNameDecl(D, /*IsAlias=*/false);
+}
+
+Decl *ASTNodeImporter::VisitTypeAliasDecl(TypeAliasDecl *D) {
+ return VisitTypedefNameDecl(D, /*IsAlias=*/true);
+}
+
+Decl *ASTNodeImporter::VisitEnumDecl(EnumDecl *D) {
+ // Import the major distinguishing characteristics of this enum.
+ DeclContext *DC, *LexicalDC;
+ DeclarationName Name;
+ SourceLocation Loc;
+ NamedDecl *ToD;
+ if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc))
+ return nullptr;
+ if (ToD)
+ return ToD;
+
+ // Figure out what enum name we're looking for.
+ unsigned IDNS = Decl::IDNS_Tag;
+ DeclarationName SearchName = Name;
+ if (!SearchName && D->getTypedefNameForAnonDecl()) {
+ SearchName = Importer.Import(D->getTypedefNameForAnonDecl()->getDeclName());
+ IDNS = Decl::IDNS_Ordinary;
+ } else if (Importer.getToContext().getLangOpts().CPlusPlus)
+ IDNS |= Decl::IDNS_Ordinary;
+
+ // We may already have an enum of the same name; try to find and match it.
+ if (!DC->isFunctionOrMethod() && SearchName) {
+ SmallVector<NamedDecl *, 4> ConflictingDecls;
+ SmallVector<NamedDecl *, 2> FoundDecls;
+ DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls);
+ for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
+ if (!FoundDecls[I]->isInIdentifierNamespace(IDNS))
+ continue;
+
+ Decl *Found = FoundDecls[I];
+ if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Found)) {
+ if (const TagType *Tag = Typedef->getUnderlyingType()->getAs<TagType>())
+ Found = Tag->getDecl();
+ }
+
+ if (EnumDecl *FoundEnum = dyn_cast<EnumDecl>(Found)) {
+ if (IsStructuralMatch(D, FoundEnum))
+ return Importer.Imported(D, FoundEnum);
+ }
+
+ ConflictingDecls.push_back(FoundDecls[I]);
+ }
+
+ if (!ConflictingDecls.empty()) {
+ Name = Importer.HandleNameConflict(Name, DC, IDNS,
+ ConflictingDecls.data(),
+ ConflictingDecls.size());
+ }
+ }
+
+ // Create the enum declaration.
+ EnumDecl *D2 = EnumDecl::Create(Importer.getToContext(), DC,
+ Importer.Import(D->getLocStart()),
+ Loc, Name.getAsIdentifierInfo(), nullptr,
+ D->isScoped(), D->isScopedUsingClassTag(),
+ D->isFixed());
+ // Import the qualifier, if any.
+ D2->setQualifierInfo(Importer.Import(D->getQualifierLoc()));
+ D2->setAccess(D->getAccess());
+ D2->setLexicalDeclContext(LexicalDC);
+ Importer.Imported(D, D2);
+ LexicalDC->addDeclInternal(D2);
+
+ // Import the integer type.
+ QualType ToIntegerType = Importer.Import(D->getIntegerType());
+ if (ToIntegerType.isNull())
+ return nullptr;
+ D2->setIntegerType(ToIntegerType);
+
+ // Import the definition
+ if (D->isCompleteDefinition() && ImportDefinition(D, D2))
+ return nullptr;
+
+ return D2;
+}
+
+Decl *ASTNodeImporter::VisitRecordDecl(RecordDecl *D) {
+ // If this record has a definition in the translation unit we're coming from,
+ // but this particular declaration is not that definition, import the
+ // definition and map to that.
+ TagDecl *Definition = D->getDefinition();
+ if (Definition && Definition != D) {
+ Decl *ImportedDef = Importer.Import(Definition);
+ if (!ImportedDef)
+ return nullptr;
+
+ return Importer.Imported(D, ImportedDef);
+ }
+
+ // Import the major distinguishing characteristics of this record.
+ DeclContext *DC, *LexicalDC;
+ DeclarationName Name;
+ SourceLocation Loc;
+ NamedDecl *ToD;
+ if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc))
+ return nullptr;
+ if (ToD)
+ return ToD;
+
+ // Figure out what structure name we're looking for.
+ unsigned IDNS = Decl::IDNS_Tag;
+ DeclarationName SearchName = Name;
+ if (!SearchName && D->getTypedefNameForAnonDecl()) {
+ SearchName = Importer.Import(D->getTypedefNameForAnonDecl()->getDeclName());
+ IDNS = Decl::IDNS_Ordinary;
+ } else if (Importer.getToContext().getLangOpts().CPlusPlus)
+ IDNS |= Decl::IDNS_Ordinary;
+
+ // We may already have a record of the same name; try to find and match it.
+ RecordDecl *AdoptDecl = nullptr;
+ if (!DC->isFunctionOrMethod()) {
+ SmallVector<NamedDecl *, 4> ConflictingDecls;
+ SmallVector<NamedDecl *, 2> FoundDecls;
+ DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls);
+ for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
+ if (!FoundDecls[I]->isInIdentifierNamespace(IDNS))
+ continue;
+
+ Decl *Found = FoundDecls[I];
+ if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Found)) {
+ if (const TagType *Tag = Typedef->getUnderlyingType()->getAs<TagType>())
+ Found = Tag->getDecl();
+ }
+
+ if (RecordDecl *FoundRecord = dyn_cast<RecordDecl>(Found)) {
+ if (D->isAnonymousStructOrUnion() &&
+ FoundRecord->isAnonymousStructOrUnion()) {
+ // If both anonymous structs/unions are in a record context, make sure
+ // they occur in the same location in the context records.
+ if (Optional<unsigned> Index1
+ = findAnonymousStructOrUnionIndex(D)) {
+ if (Optional<unsigned> Index2 =
+ findAnonymousStructOrUnionIndex(FoundRecord)) {
+ if (*Index1 != *Index2)
+ continue;
+ }
+ }
+ }
+
+ if (RecordDecl *FoundDef = FoundRecord->getDefinition()) {
+ if ((SearchName && !D->isCompleteDefinition())
+ || (D->isCompleteDefinition() &&
+ D->isAnonymousStructOrUnion()
+ == FoundDef->isAnonymousStructOrUnion() &&
+ IsStructuralMatch(D, FoundDef))) {
+ // The record types structurally match, or the "from" translation
+ // unit only had a forward declaration anyway; call it the same
+ // function.
+ // FIXME: For C++, we should also merge methods here.
+ return Importer.Imported(D, FoundDef);
+ }
+ } else if (!D->isCompleteDefinition()) {
+ // We have a forward declaration of this type, so adopt that forward
+ // declaration rather than building a new one.
+
+ // If one or both can be completed from external storage then try one
+ // last time to complete and compare them before doing this.
+
+ if (FoundRecord->hasExternalLexicalStorage() &&
+ !FoundRecord->isCompleteDefinition())
+ FoundRecord->getASTContext().getExternalSource()->CompleteType(FoundRecord);
+ if (D->hasExternalLexicalStorage())
+ D->getASTContext().getExternalSource()->CompleteType(D);
+
+ if (FoundRecord->isCompleteDefinition() &&
+ D->isCompleteDefinition() &&
+ !IsStructuralMatch(D, FoundRecord))
+ continue;
+
+ AdoptDecl = FoundRecord;
+ continue;
+ } else if (!SearchName) {
+ continue;
+ }
+ }
+
+ ConflictingDecls.push_back(FoundDecls[I]);
+ }
+
+ if (!ConflictingDecls.empty() && SearchName) {
+ Name = Importer.HandleNameConflict(Name, DC, IDNS,
+ ConflictingDecls.data(),
+ ConflictingDecls.size());
+ }
+ }
+
+ // Create the record declaration.
+ RecordDecl *D2 = AdoptDecl;
+ SourceLocation StartLoc = Importer.Import(D->getLocStart());
+ if (!D2) {
+ if (isa<CXXRecordDecl>(D)) {
+ CXXRecordDecl *D2CXX = CXXRecordDecl::Create(Importer.getToContext(),
+ D->getTagKind(),
+ DC, StartLoc, Loc,
+ Name.getAsIdentifierInfo());
+ D2 = D2CXX;
+ D2->setAccess(D->getAccess());
+ } else {
+ D2 = RecordDecl::Create(Importer.getToContext(), D->getTagKind(),
+ DC, StartLoc, Loc, Name.getAsIdentifierInfo());
+ }
+
+ D2->setQualifierInfo(Importer.Import(D->getQualifierLoc()));
+ D2->setLexicalDeclContext(LexicalDC);
+ LexicalDC->addDeclInternal(D2);
+ if (D->isAnonymousStructOrUnion())
+ D2->setAnonymousStructOrUnion(true);
+ }
+
+ Importer.Imported(D, D2);
+
+ if (D->isCompleteDefinition() && ImportDefinition(D, D2, IDK_Default))
+ return nullptr;
+
+ return D2;
+}
+
+Decl *ASTNodeImporter::VisitEnumConstantDecl(EnumConstantDecl *D) {
+ // Import the major distinguishing characteristics of this enumerator.
+ DeclContext *DC, *LexicalDC;
+ DeclarationName Name;
+ SourceLocation Loc;
+ NamedDecl *ToD;
+ if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc))
+ return nullptr;
+ if (ToD)
+ return ToD;
+
+ QualType T = Importer.Import(D->getType());
+ if (T.isNull())
+ return nullptr;
+
+ // Determine whether there are any other declarations with the same name and
+ // in the same context.
+ if (!LexicalDC->isFunctionOrMethod()) {
+ SmallVector<NamedDecl *, 4> ConflictingDecls;
+ unsigned IDNS = Decl::IDNS_Ordinary;
+ SmallVector<NamedDecl *, 2> FoundDecls;
+ DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls);
+ for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
+ if (!FoundDecls[I]->isInIdentifierNamespace(IDNS))
+ continue;
+
+ if (EnumConstantDecl *FoundEnumConstant
+ = dyn_cast<EnumConstantDecl>(FoundDecls[I])) {
+ if (IsStructuralMatch(D, FoundEnumConstant))
+ return Importer.Imported(D, FoundEnumConstant);
+ }
+
+ ConflictingDecls.push_back(FoundDecls[I]);
+ }
+
+ if (!ConflictingDecls.empty()) {
+ Name = Importer.HandleNameConflict(Name, DC, IDNS,
+ ConflictingDecls.data(),
+ ConflictingDecls.size());
+ if (!Name)
+ return nullptr;
+ }
+ }
+
+ Expr *Init = Importer.Import(D->getInitExpr());
+ if (D->getInitExpr() && !Init)
+ return nullptr;
+
+ EnumConstantDecl *ToEnumerator
+ = EnumConstantDecl::Create(Importer.getToContext(), cast<EnumDecl>(DC), Loc,
+ Name.getAsIdentifierInfo(), T,
+ Init, D->getInitVal());
+ ToEnumerator->setAccess(D->getAccess());
+ ToEnumerator->setLexicalDeclContext(LexicalDC);
+ Importer.Imported(D, ToEnumerator);
+ LexicalDC->addDeclInternal(ToEnumerator);
+ return ToEnumerator;
+}
+
+Decl *ASTNodeImporter::VisitFunctionDecl(FunctionDecl *D) {
+ // Import the major distinguishing characteristics of this function.
+ DeclContext *DC, *LexicalDC;
+ DeclarationName Name;
+ SourceLocation Loc;
+ NamedDecl *ToD;
+ if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc))
+ return nullptr;
+ if (ToD)
+ return ToD;
+
+ // Try to find a function in our own ("to") context with the same name, same
+ // type, and in the same context as the function we're importing.
+ if (!LexicalDC->isFunctionOrMethod()) {
+ SmallVector<NamedDecl *, 4> ConflictingDecls;
+ unsigned IDNS = Decl::IDNS_Ordinary;
+ SmallVector<NamedDecl *, 2> FoundDecls;
+ DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls);
+ for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
+ if (!FoundDecls[I]->isInIdentifierNamespace(IDNS))
+ continue;
+
+ if (FunctionDecl *FoundFunction = dyn_cast<FunctionDecl>(FoundDecls[I])) {
+ if (FoundFunction->hasExternalFormalLinkage() &&
+ D->hasExternalFormalLinkage()) {
+ if (Importer.IsStructurallyEquivalent(D->getType(),
+ FoundFunction->getType())) {
+ // FIXME: Actually try to merge the body and other attributes.
+ return Importer.Imported(D, FoundFunction);
+ }
+
+ // FIXME: Check for overloading more carefully, e.g., by boosting
+ // Sema::IsOverload out to the AST library.
+
+ // Function overloading is okay in C++.
+ if (Importer.getToContext().getLangOpts().CPlusPlus)
+ continue;
+
+ // Complain about inconsistent function types.
+ Importer.ToDiag(Loc, diag::err_odr_function_type_inconsistent)
+ << Name << D->getType() << FoundFunction->getType();
+ Importer.ToDiag(FoundFunction->getLocation(),
+ diag::note_odr_value_here)
+ << FoundFunction->getType();
+ }
+ }
+
+ ConflictingDecls.push_back(FoundDecls[I]);
+ }
+
+ if (!ConflictingDecls.empty()) {
+ Name = Importer.HandleNameConflict(Name, DC, IDNS,
+ ConflictingDecls.data(),
+ ConflictingDecls.size());
+ if (!Name)
+ return nullptr;
+ }
+ }
+
+ DeclarationNameInfo NameInfo(Name, Loc);
+ // Import additional name location/type info.
+ ImportDeclarationNameLoc(D->getNameInfo(), NameInfo);
+
+ QualType FromTy = D->getType();
+ bool usedDifferentExceptionSpec = false;
+
+ if (const FunctionProtoType *
+ FromFPT = D->getType()->getAs<FunctionProtoType>()) {
+ FunctionProtoType::ExtProtoInfo FromEPI = FromFPT->getExtProtoInfo();
+ // FunctionProtoType::ExtProtoInfo's ExceptionSpecDecl can point to the
+ // FunctionDecl that we are importing the FunctionProtoType for.
+ // To avoid an infinite recursion when importing, create the FunctionDecl
+ // with a simplified function type and update it afterwards.
+ if (FromEPI.ExceptionSpec.SourceDecl ||
+ FromEPI.ExceptionSpec.SourceTemplate ||
+ FromEPI.ExceptionSpec.NoexceptExpr) {
+ FunctionProtoType::ExtProtoInfo DefaultEPI;
+ FromTy = Importer.getFromContext().getFunctionType(
+ FromFPT->getReturnType(), FromFPT->getParamTypes(), DefaultEPI);
+ usedDifferentExceptionSpec = true;
+ }
+ }
+
+ // Import the type.
+ QualType T = Importer.Import(FromTy);
+ if (T.isNull())
+ return nullptr;
+
+ // Import the function parameters.
+ SmallVector<ParmVarDecl *, 8> Parameters;
+ for (auto P : D->params()) {
+ ParmVarDecl *ToP = cast_or_null<ParmVarDecl>(Importer.Import(P));
+ if (!ToP)
+ return nullptr;
+
+ Parameters.push_back(ToP);
+ }
+
+ // Create the imported function.
+ TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo());
+ FunctionDecl *ToFunction = nullptr;
+ SourceLocation InnerLocStart = Importer.Import(D->getInnerLocStart());
+ if (CXXConstructorDecl *FromConstructor = dyn_cast<CXXConstructorDecl>(D)) {
+ ToFunction = CXXConstructorDecl::Create(Importer.getToContext(),
+ cast<CXXRecordDecl>(DC),
+ InnerLocStart,
+ NameInfo, T, TInfo,
+ FromConstructor->isExplicit(),
+ D->isInlineSpecified(),
+ D->isImplicit(),
+ D->isConstexpr());
+ } else if (isa<CXXDestructorDecl>(D)) {
+ ToFunction = CXXDestructorDecl::Create(Importer.getToContext(),
+ cast<CXXRecordDecl>(DC),
+ InnerLocStart,
+ NameInfo, T, TInfo,
+ D->isInlineSpecified(),
+ D->isImplicit());
+ } else if (CXXConversionDecl *FromConversion
+ = dyn_cast<CXXConversionDecl>(D)) {
+ ToFunction = CXXConversionDecl::Create(Importer.getToContext(),
+ cast<CXXRecordDecl>(DC),
+ InnerLocStart,
+ NameInfo, T, TInfo,
+ D->isInlineSpecified(),
+ FromConversion->isExplicit(),
+ D->isConstexpr(),
+ Importer.Import(D->getLocEnd()));
+ } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
+ ToFunction = CXXMethodDecl::Create(Importer.getToContext(),
+ cast<CXXRecordDecl>(DC),
+ InnerLocStart,
+ NameInfo, T, TInfo,
+ Method->getStorageClass(),
+ Method->isInlineSpecified(),
+ D->isConstexpr(),
+ Importer.Import(D->getLocEnd()));
+ } else {
+ ToFunction = FunctionDecl::Create(Importer.getToContext(), DC,
+ InnerLocStart,
+ NameInfo, T, TInfo, D->getStorageClass(),
+ D->isInlineSpecified(),
+ D->hasWrittenPrototype(),
+ D->isConstexpr());
+ }
+
+ // Import the qualifier, if any.
+ ToFunction->setQualifierInfo(Importer.Import(D->getQualifierLoc()));
+ ToFunction->setAccess(D->getAccess());
+ ToFunction->setLexicalDeclContext(LexicalDC);
+ ToFunction->setVirtualAsWritten(D->isVirtualAsWritten());
+ ToFunction->setTrivial(D->isTrivial());
+ ToFunction->setPure(D->isPure());
+ Importer.Imported(D, ToFunction);
+
+ // Set the parameters.
+ for (unsigned I = 0, N = Parameters.size(); I != N; ++I) {
+ Parameters[I]->setOwningFunction(ToFunction);
+ ToFunction->addDeclInternal(Parameters[I]);
+ }
+ ToFunction->setParams(Parameters);
+
+ if (usedDifferentExceptionSpec) {
+ // Update FunctionProtoType::ExtProtoInfo.
+ QualType T = Importer.Import(D->getType());
+ if (T.isNull())
+ return nullptr;
+ ToFunction->setType(T);
+ }
+
+ // Import the body, if any.
+ if (Stmt *FromBody = D->getBody()) {
+ if (Stmt *ToBody = Importer.Import(FromBody)) {
+ ToFunction->setBody(ToBody);
+ }
+ }
+
+ // FIXME: Other bits to merge?
+
+ // Add this function to the lexical context.
+ LexicalDC->addDeclInternal(ToFunction);
+
+ return ToFunction;
+}
+
+Decl *ASTNodeImporter::VisitCXXMethodDecl(CXXMethodDecl *D) {
+ return VisitFunctionDecl(D);
+}
+
+Decl *ASTNodeImporter::VisitCXXConstructorDecl(CXXConstructorDecl *D) {
+ return VisitCXXMethodDecl(D);
+}
+
+Decl *ASTNodeImporter::VisitCXXDestructorDecl(CXXDestructorDecl *D) {
+ return VisitCXXMethodDecl(D);
+}
+
+Decl *ASTNodeImporter::VisitCXXConversionDecl(CXXConversionDecl *D) {
+ return VisitCXXMethodDecl(D);
+}
+
+static unsigned getFieldIndex(Decl *F) {
+ RecordDecl *Owner = dyn_cast<RecordDecl>(F->getDeclContext());
+ if (!Owner)
+ return 0;
+
+ unsigned Index = 1;
+ for (const auto *D : Owner->noload_decls()) {
+ if (D == F)
+ return Index;
+
+ if (isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D))
+ ++Index;
+ }
+
+ return Index;
+}
+
+Decl *ASTNodeImporter::VisitFieldDecl(FieldDecl *D) {
+ // Import the major distinguishing characteristics of a variable.
+ DeclContext *DC, *LexicalDC;
+ DeclarationName Name;
+ SourceLocation Loc;
+ NamedDecl *ToD;
+ if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc))
+ return nullptr;
+ if (ToD)
+ return ToD;
+
+ // Determine whether we've already imported this field.
+ SmallVector<NamedDecl *, 2> FoundDecls;
+ DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls);
+ for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
+ if (FieldDecl *FoundField = dyn_cast<FieldDecl>(FoundDecls[I])) {
+ // For anonymous fields, match up by index.
+ if (!Name && getFieldIndex(D) != getFieldIndex(FoundField))
+ continue;
+
+ if (Importer.IsStructurallyEquivalent(D->getType(),
+ FoundField->getType())) {
+ Importer.Imported(D, FoundField);
+ return FoundField;
+ }
+
+ Importer.ToDiag(Loc, diag::err_odr_field_type_inconsistent)
+ << Name << D->getType() << FoundField->getType();
+ Importer.ToDiag(FoundField->getLocation(), diag::note_odr_value_here)
+ << FoundField->getType();
+ return nullptr;
+ }
+ }
+
+ // Import the type.
+ QualType T = Importer.Import(D->getType());
+ if (T.isNull())
+ return nullptr;
+
+ TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo());
+ Expr *BitWidth = Importer.Import(D->getBitWidth());
+ if (!BitWidth && D->getBitWidth())
+ return nullptr;
+
+ FieldDecl *ToField = FieldDecl::Create(Importer.getToContext(), DC,
+ Importer.Import(D->getInnerLocStart()),
+ Loc, Name.getAsIdentifierInfo(),
+ T, TInfo, BitWidth, D->isMutable(),
+ D->getInClassInitStyle());
+ ToField->setAccess(D->getAccess());
+ ToField->setLexicalDeclContext(LexicalDC);
+ if (ToField->hasInClassInitializer())
+ ToField->setInClassInitializer(D->getInClassInitializer());
+ ToField->setImplicit(D->isImplicit());
+ Importer.Imported(D, ToField);
+ LexicalDC->addDeclInternal(ToField);
+ return ToField;
+}
+
+Decl *ASTNodeImporter::VisitIndirectFieldDecl(IndirectFieldDecl *D) {
+ // Import the major distinguishing characteristics of a variable.
+ DeclContext *DC, *LexicalDC;
+ DeclarationName Name;
+ SourceLocation Loc;
+ NamedDecl *ToD;
+ if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc))
+ return nullptr;
+ if (ToD)
+ return ToD;
+
+ // Determine whether we've already imported this field.
+ SmallVector<NamedDecl *, 2> FoundDecls;
+ DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls);
+ for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
+ if (IndirectFieldDecl *FoundField
+ = dyn_cast<IndirectFieldDecl>(FoundDecls[I])) {
+ // For anonymous indirect fields, match up by index.
+ if (!Name && getFieldIndex(D) != getFieldIndex(FoundField))
+ continue;
+
+ if (Importer.IsStructurallyEquivalent(D->getType(),
+ FoundField->getType(),
+ !Name.isEmpty())) {
+ Importer.Imported(D, FoundField);
+ return FoundField;
+ }
+
+ // If there are more anonymous fields to check, continue.
+ if (!Name && I < N-1)
+ continue;
+
+ Importer.ToDiag(Loc, diag::err_odr_field_type_inconsistent)
+ << Name << D->getType() << FoundField->getType();
+ Importer.ToDiag(FoundField->getLocation(), diag::note_odr_value_here)
+ << FoundField->getType();
+ return nullptr;
+ }
+ }
+
+ // Import the type.
+ QualType T = Importer.Import(D->getType());
+ if (T.isNull())
+ return nullptr;
+
+ NamedDecl **NamedChain =
+ new (Importer.getToContext())NamedDecl*[D->getChainingSize()];
+
+ unsigned i = 0;
+ for (auto *PI : D->chain()) {
+ Decl *D = Importer.Import(PI);
+ if (!D)
+ return nullptr;
+ NamedChain[i++] = cast<NamedDecl>(D);
+ }
+
+ IndirectFieldDecl *ToIndirectField = IndirectFieldDecl::Create(
+ Importer.getToContext(), DC, Loc, Name.getAsIdentifierInfo(), T,
+ NamedChain, D->getChainingSize());
+
+ for (const auto *Attr : D->attrs())
+ ToIndirectField->addAttr(Attr->clone(Importer.getToContext()));
+
+ ToIndirectField->setAccess(D->getAccess());
+ ToIndirectField->setLexicalDeclContext(LexicalDC);
+ Importer.Imported(D, ToIndirectField);
+ LexicalDC->addDeclInternal(ToIndirectField);
+ return ToIndirectField;
+}
+
+Decl *ASTNodeImporter::VisitObjCIvarDecl(ObjCIvarDecl *D) {
+ // Import the major distinguishing characteristics of an ivar.
+ DeclContext *DC, *LexicalDC;
+ DeclarationName Name;
+ SourceLocation Loc;
+ NamedDecl *ToD;
+ if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc))
+ return nullptr;
+ if (ToD)
+ return ToD;
+
+ // Determine whether we've already imported this ivar
+ SmallVector<NamedDecl *, 2> FoundDecls;
+ DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls);
+ for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
+ if (ObjCIvarDecl *FoundIvar = dyn_cast<ObjCIvarDecl>(FoundDecls[I])) {
+ if (Importer.IsStructurallyEquivalent(D->getType(),
+ FoundIvar->getType())) {
+ Importer.Imported(D, FoundIvar);
+ return FoundIvar;
+ }
+
+ Importer.ToDiag(Loc, diag::err_odr_ivar_type_inconsistent)
+ << Name << D->getType() << FoundIvar->getType();
+ Importer.ToDiag(FoundIvar->getLocation(), diag::note_odr_value_here)
+ << FoundIvar->getType();
+ return nullptr;
+ }
+ }
+
+ // Import the type.
+ QualType T = Importer.Import(D->getType());
+ if (T.isNull())
+ return nullptr;
+
+ TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo());
+ Expr *BitWidth = Importer.Import(D->getBitWidth());
+ if (!BitWidth && D->getBitWidth())
+ return nullptr;
+
+ ObjCIvarDecl *ToIvar = ObjCIvarDecl::Create(Importer.getToContext(),
+ cast<ObjCContainerDecl>(DC),
+ Importer.Import(D->getInnerLocStart()),
+ Loc, Name.getAsIdentifierInfo(),
+ T, TInfo, D->getAccessControl(),
+ BitWidth, D->getSynthesize());
+ ToIvar->setLexicalDeclContext(LexicalDC);
+ Importer.Imported(D, ToIvar);
+ LexicalDC->addDeclInternal(ToIvar);
+ return ToIvar;
+
+}
+
+Decl *ASTNodeImporter::VisitVarDecl(VarDecl *D) {
+ // Import the major distinguishing characteristics of a variable.
+ DeclContext *DC, *LexicalDC;
+ DeclarationName Name;
+ SourceLocation Loc;
+ NamedDecl *ToD;
+ if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc))
+ return nullptr;
+ if (ToD)
+ return ToD;
+
+ // Try to find a variable in our own ("to") context with the same name and
+ // in the same context as the variable we're importing.
+ if (D->isFileVarDecl()) {
+ VarDecl *MergeWithVar = nullptr;
+ SmallVector<NamedDecl *, 4> ConflictingDecls;
+ unsigned IDNS = Decl::IDNS_Ordinary;
+ SmallVector<NamedDecl *, 2> FoundDecls;
+ DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls);
+ for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
+ if (!FoundDecls[I]->isInIdentifierNamespace(IDNS))
+ continue;
+
+ if (VarDecl *FoundVar = dyn_cast<VarDecl>(FoundDecls[I])) {
+ // We have found a variable that we may need to merge with. Check it.
+ if (FoundVar->hasExternalFormalLinkage() &&
+ D->hasExternalFormalLinkage()) {
+ if (Importer.IsStructurallyEquivalent(D->getType(),
+ FoundVar->getType())) {
+ MergeWithVar = FoundVar;
+ break;
+ }
+
+ const ArrayType *FoundArray
+ = Importer.getToContext().getAsArrayType(FoundVar->getType());
+ const ArrayType *TArray
+ = Importer.getToContext().getAsArrayType(D->getType());
+ if (FoundArray && TArray) {
+ if (isa<IncompleteArrayType>(FoundArray) &&
+ isa<ConstantArrayType>(TArray)) {
+ // Import the type.
+ QualType T = Importer.Import(D->getType());
+ if (T.isNull())
+ return nullptr;
+
+ FoundVar->setType(T);
+ MergeWithVar = FoundVar;
+ break;
+ } else if (isa<IncompleteArrayType>(TArray) &&
+ isa<ConstantArrayType>(FoundArray)) {
+ MergeWithVar = FoundVar;
+ break;
+ }
+ }
+
+ Importer.ToDiag(Loc, diag::err_odr_variable_type_inconsistent)
+ << Name << D->getType() << FoundVar->getType();
+ Importer.ToDiag(FoundVar->getLocation(), diag::note_odr_value_here)
+ << FoundVar->getType();
+ }
+ }
+
+ ConflictingDecls.push_back(FoundDecls[I]);
+ }
+
+ if (MergeWithVar) {
+ // An equivalent variable with external linkage has been found. Link
+ // the two declarations, then merge them.
+ Importer.Imported(D, MergeWithVar);
+
+ if (VarDecl *DDef = D->getDefinition()) {
+ if (VarDecl *ExistingDef = MergeWithVar->getDefinition()) {
+ Importer.ToDiag(ExistingDef->getLocation(),
+ diag::err_odr_variable_multiple_def)
+ << Name;
+ Importer.FromDiag(DDef->getLocation(), diag::note_odr_defined_here);
+ } else {
+ Expr *Init = Importer.Import(DDef->getInit());
+ MergeWithVar->setInit(Init);
+ if (DDef->isInitKnownICE()) {
+ EvaluatedStmt *Eval = MergeWithVar->ensureEvaluatedStmt();
+ Eval->CheckedICE = true;
+ Eval->IsICE = DDef->isInitICE();
+ }
+ }
+ }
+
+ return MergeWithVar;
+ }
+
+ if (!ConflictingDecls.empty()) {
+ Name = Importer.HandleNameConflict(Name, DC, IDNS,
+ ConflictingDecls.data(),
+ ConflictingDecls.size());
+ if (!Name)
+ return nullptr;
+ }
+ }
+
+ // Import the type.
+ QualType T = Importer.Import(D->getType());
+ if (T.isNull())
+ return nullptr;
+
+ // Create the imported variable.
+ TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo());
+ VarDecl *ToVar = VarDecl::Create(Importer.getToContext(), DC,
+ Importer.Import(D->getInnerLocStart()),
+ Loc, Name.getAsIdentifierInfo(),
+ T, TInfo,
+ D->getStorageClass());
+ ToVar->setQualifierInfo(Importer.Import(D->getQualifierLoc()));
+ ToVar->setAccess(D->getAccess());
+ ToVar->setLexicalDeclContext(LexicalDC);
+ Importer.Imported(D, ToVar);
+ LexicalDC->addDeclInternal(ToVar);
+
+ if (!D->isFileVarDecl() &&
+ D->isUsed())
+ ToVar->setIsUsed();
+
+ // Merge the initializer.
+ if (ImportDefinition(D, ToVar))
+ return nullptr;
+
+ return ToVar;
+}
+
+Decl *ASTNodeImporter::VisitImplicitParamDecl(ImplicitParamDecl *D) {
+ // Parameters are created in the translation unit's context, then moved
+ // into the function declaration's context afterward.
+ DeclContext *DC = Importer.getToContext().getTranslationUnitDecl();
+
+ // Import the name of this declaration.
+ DeclarationName Name = Importer.Import(D->getDeclName());
+ if (D->getDeclName() && !Name)
+ return nullptr;
+
+ // Import the location of this declaration.
+ SourceLocation Loc = Importer.Import(D->getLocation());
+
+ // Import the parameter's type.
+ QualType T = Importer.Import(D->getType());
+ if (T.isNull())
+ return nullptr;
+
+ // Create the imported parameter.
+ ImplicitParamDecl *ToParm
+ = ImplicitParamDecl::Create(Importer.getToContext(), DC,
+ Loc, Name.getAsIdentifierInfo(),
+ T);
+ return Importer.Imported(D, ToParm);
+}
+
+Decl *ASTNodeImporter::VisitParmVarDecl(ParmVarDecl *D) {
+ // Parameters are created in the translation unit's context, then moved
+ // into the function declaration's context afterward.
+ DeclContext *DC = Importer.getToContext().getTranslationUnitDecl();
+
+ // Import the name of this declaration.
+ DeclarationName Name = Importer.Import(D->getDeclName());
+ if (D->getDeclName() && !Name)
+ return nullptr;
+
+ // Import the location of this declaration.
+ SourceLocation Loc = Importer.Import(D->getLocation());
+
+ // Import the parameter's type.
+ QualType T = Importer.Import(D->getType());
+ if (T.isNull())
+ return nullptr;
+
+ // Create the imported parameter.
+ TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo());
+ ParmVarDecl *ToParm = ParmVarDecl::Create(Importer.getToContext(), DC,
+ Importer.Import(D->getInnerLocStart()),
+ Loc, Name.getAsIdentifierInfo(),
+ T, TInfo, D->getStorageClass(),
+ /*FIXME: Default argument*/nullptr);
+ ToParm->setHasInheritedDefaultArg(D->hasInheritedDefaultArg());
+
+ if (D->isUsed())
+ ToParm->setIsUsed();
+
+ return Importer.Imported(D, ToParm);
+}
+
+Decl *ASTNodeImporter::VisitObjCMethodDecl(ObjCMethodDecl *D) {
+ // Import the major distinguishing characteristics of a method.
+ DeclContext *DC, *LexicalDC;
+ DeclarationName Name;
+ SourceLocation Loc;
+ NamedDecl *ToD;
+ if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc))
+ return nullptr;
+ if (ToD)
+ return ToD;
+
+ SmallVector<NamedDecl *, 2> FoundDecls;
+ DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls);
+ for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
+ if (ObjCMethodDecl *FoundMethod = dyn_cast<ObjCMethodDecl>(FoundDecls[I])) {
+ if (FoundMethod->isInstanceMethod() != D->isInstanceMethod())
+ continue;
+
+ // Check return types.
+ if (!Importer.IsStructurallyEquivalent(D->getReturnType(),
+ FoundMethod->getReturnType())) {
+ Importer.ToDiag(Loc, diag::err_odr_objc_method_result_type_inconsistent)
+ << D->isInstanceMethod() << Name << D->getReturnType()
+ << FoundMethod->getReturnType();
+ Importer.ToDiag(FoundMethod->getLocation(),
+ diag::note_odr_objc_method_here)
+ << D->isInstanceMethod() << Name;
+ return nullptr;
+ }
+
+ // Check the number of parameters.
+ if (D->param_size() != FoundMethod->param_size()) {
+ Importer.ToDiag(Loc, diag::err_odr_objc_method_num_params_inconsistent)
+ << D->isInstanceMethod() << Name
+ << D->param_size() << FoundMethod->param_size();
+ Importer.ToDiag(FoundMethod->getLocation(),
+ diag::note_odr_objc_method_here)
+ << D->isInstanceMethod() << Name;
+ return nullptr;
+ }
+
+ // Check parameter types.
+ for (ObjCMethodDecl::param_iterator P = D->param_begin(),
+ PEnd = D->param_end(), FoundP = FoundMethod->param_begin();
+ P != PEnd; ++P, ++FoundP) {
+ if (!Importer.IsStructurallyEquivalent((*P)->getType(),
+ (*FoundP)->getType())) {
+ Importer.FromDiag((*P)->getLocation(),
+ diag::err_odr_objc_method_param_type_inconsistent)
+ << D->isInstanceMethod() << Name
+ << (*P)->getType() << (*FoundP)->getType();
+ Importer.ToDiag((*FoundP)->getLocation(), diag::note_odr_value_here)
+ << (*FoundP)->getType();
+ return nullptr;
+ }
+ }
+
+ // Check variadic/non-variadic.
+ // Check the number of parameters.
+ if (D->isVariadic() != FoundMethod->isVariadic()) {
+ Importer.ToDiag(Loc, diag::err_odr_objc_method_variadic_inconsistent)
+ << D->isInstanceMethod() << Name;
+ Importer.ToDiag(FoundMethod->getLocation(),
+ diag::note_odr_objc_method_here)
+ << D->isInstanceMethod() << Name;
+ return nullptr;
+ }
+
+ // FIXME: Any other bits we need to merge?
+ return Importer.Imported(D, FoundMethod);
+ }
+ }
+
+ // Import the result type.
+ QualType ResultTy = Importer.Import(D->getReturnType());
+ if (ResultTy.isNull())
+ return nullptr;
+
+ TypeSourceInfo *ReturnTInfo = Importer.Import(D->getReturnTypeSourceInfo());
+
+ ObjCMethodDecl *ToMethod = ObjCMethodDecl::Create(
+ Importer.getToContext(), Loc, Importer.Import(D->getLocEnd()),
+ Name.getObjCSelector(), ResultTy, ReturnTInfo, DC, D->isInstanceMethod(),
+ D->isVariadic(), D->isPropertyAccessor(), D->isImplicit(), D->isDefined(),
+ D->getImplementationControl(), D->hasRelatedResultType());
+
+ // FIXME: When we decide to merge method definitions, we'll need to
+ // deal with implicit parameters.
+
+ // Import the parameters
+ SmallVector<ParmVarDecl *, 5> ToParams;
+ for (auto *FromP : D->params()) {
+ ParmVarDecl *ToP = cast_or_null<ParmVarDecl>(Importer.Import(FromP));
+ if (!ToP)
+ return nullptr;
+
+ ToParams.push_back(ToP);
+ }
+
+ // Set the parameters.
+ for (unsigned I = 0, N = ToParams.size(); I != N; ++I) {
+ ToParams[I]->setOwningFunction(ToMethod);
+ ToMethod->addDeclInternal(ToParams[I]);
+ }
+ SmallVector<SourceLocation, 12> SelLocs;
+ D->getSelectorLocs(SelLocs);
+ ToMethod->setMethodParams(Importer.getToContext(), ToParams, SelLocs);
+
+ ToMethod->setLexicalDeclContext(LexicalDC);
+ Importer.Imported(D, ToMethod);
+ LexicalDC->addDeclInternal(ToMethod);
+ return ToMethod;
+}
+
+Decl *ASTNodeImporter::VisitObjCCategoryDecl(ObjCCategoryDecl *D) {
+ // Import the major distinguishing characteristics of a category.
+ DeclContext *DC, *LexicalDC;
+ DeclarationName Name;
+ SourceLocation Loc;
+ NamedDecl *ToD;
+ if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc))
+ return nullptr;
+ if (ToD)
+ return ToD;
+
+ ObjCInterfaceDecl *ToInterface
+ = cast_or_null<ObjCInterfaceDecl>(Importer.Import(D->getClassInterface()));
+ if (!ToInterface)
+ return nullptr;
+
+ // Determine if we've already encountered this category.
+ ObjCCategoryDecl *MergeWithCategory
+ = ToInterface->FindCategoryDeclaration(Name.getAsIdentifierInfo());
+ ObjCCategoryDecl *ToCategory = MergeWithCategory;
+ if (!ToCategory) {
+ ToCategory = ObjCCategoryDecl::Create(Importer.getToContext(), DC,
+ Importer.Import(D->getAtStartLoc()),
+ Loc,
+ Importer.Import(D->getCategoryNameLoc()),
+ Name.getAsIdentifierInfo(),
+ ToInterface,
+ Importer.Import(D->getIvarLBraceLoc()),
+ Importer.Import(D->getIvarRBraceLoc()));
+ ToCategory->setLexicalDeclContext(LexicalDC);
+ LexicalDC->addDeclInternal(ToCategory);
+ Importer.Imported(D, ToCategory);
+
+ // Import protocols
+ SmallVector<ObjCProtocolDecl *, 4> Protocols;
+ SmallVector<SourceLocation, 4> ProtocolLocs;
+ ObjCCategoryDecl::protocol_loc_iterator FromProtoLoc
+ = D->protocol_loc_begin();
+ for (ObjCCategoryDecl::protocol_iterator FromProto = D->protocol_begin(),
+ FromProtoEnd = D->protocol_end();
+ FromProto != FromProtoEnd;
+ ++FromProto, ++FromProtoLoc) {
+ ObjCProtocolDecl *ToProto
+ = cast_or_null<ObjCProtocolDecl>(Importer.Import(*FromProto));
+ if (!ToProto)
+ return nullptr;
+ Protocols.push_back(ToProto);
+ ProtocolLocs.push_back(Importer.Import(*FromProtoLoc));
+ }
+
+ // FIXME: If we're merging, make sure that the protocol list is the same.
+ ToCategory->setProtocolList(Protocols.data(), Protocols.size(),
+ ProtocolLocs.data(), Importer.getToContext());
+
+ } else {
+ Importer.Imported(D, ToCategory);
+ }
+
+ // Import all of the members of this category.
+ ImportDeclContext(D);
+
+ // If we have an implementation, import it as well.
+ if (D->getImplementation()) {
+ ObjCCategoryImplDecl *Impl
+ = cast_or_null<ObjCCategoryImplDecl>(
+ Importer.Import(D->getImplementation()));
+ if (!Impl)
+ return nullptr;
+
+ ToCategory->setImplementation(Impl);
+ }
+
+ return ToCategory;
+}
+
+bool ASTNodeImporter::ImportDefinition(ObjCProtocolDecl *From,
+ ObjCProtocolDecl *To,
+ ImportDefinitionKind Kind) {
+ if (To->getDefinition()) {
+ if (shouldForceImportDeclContext(Kind))
+ ImportDeclContext(From);
+ return false;
+ }
+
+ // Start the protocol definition
+ To->startDefinition();
+
+ // Import protocols
+ SmallVector<ObjCProtocolDecl *, 4> Protocols;
+ SmallVector<SourceLocation, 4> ProtocolLocs;
+ ObjCProtocolDecl::protocol_loc_iterator
+ FromProtoLoc = From->protocol_loc_begin();
+ for (ObjCProtocolDecl::protocol_iterator FromProto = From->protocol_begin(),
+ FromProtoEnd = From->protocol_end();
+ FromProto != FromProtoEnd;
+ ++FromProto, ++FromProtoLoc) {
+ ObjCProtocolDecl *ToProto
+ = cast_or_null<ObjCProtocolDecl>(Importer.Import(*FromProto));
+ if (!ToProto)
+ return true;
+ Protocols.push_back(ToProto);
+ ProtocolLocs.push_back(Importer.Import(*FromProtoLoc));
+ }
+
+ // FIXME: If we're merging, make sure that the protocol list is the same.
+ To->setProtocolList(Protocols.data(), Protocols.size(),
+ ProtocolLocs.data(), Importer.getToContext());
+
+ if (shouldForceImportDeclContext(Kind)) {
+ // Import all of the members of this protocol.
+ ImportDeclContext(From, /*ForceImport=*/true);
+ }
+ return false;
+}
+
+Decl *ASTNodeImporter::VisitObjCProtocolDecl(ObjCProtocolDecl *D) {
+ // If this protocol has a definition in the translation unit we're coming
+ // from, but this particular declaration is not that definition, import the
+ // definition and map to that.
+ ObjCProtocolDecl *Definition = D->getDefinition();
+ if (Definition && Definition != D) {
+ Decl *ImportedDef = Importer.Import(Definition);
+ if (!ImportedDef)
+ return nullptr;
+
+ return Importer.Imported(D, ImportedDef);
+ }
+
+ // Import the major distinguishing characteristics of a protocol.
+ DeclContext *DC, *LexicalDC;
+ DeclarationName Name;
+ SourceLocation Loc;
+ NamedDecl *ToD;
+ if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc))
+ return nullptr;
+ if (ToD)
+ return ToD;
+
+ ObjCProtocolDecl *MergeWithProtocol = nullptr;
+ SmallVector<NamedDecl *, 2> FoundDecls;
+ DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls);
+ for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
+ if (!FoundDecls[I]->isInIdentifierNamespace(Decl::IDNS_ObjCProtocol))
+ continue;
+
+ if ((MergeWithProtocol = dyn_cast<ObjCProtocolDecl>(FoundDecls[I])))
+ break;
+ }
+
+ ObjCProtocolDecl *ToProto = MergeWithProtocol;
+ if (!ToProto) {
+ ToProto = ObjCProtocolDecl::Create(Importer.getToContext(), DC,
+ Name.getAsIdentifierInfo(), Loc,
+ Importer.Import(D->getAtStartLoc()),
+ /*PrevDecl=*/nullptr);
+ ToProto->setLexicalDeclContext(LexicalDC);
+ LexicalDC->addDeclInternal(ToProto);
+ }
+
+ Importer.Imported(D, ToProto);
+
+ if (D->isThisDeclarationADefinition() && ImportDefinition(D, ToProto))
+ return nullptr;
+
+ return ToProto;
+}
+
+Decl *ASTNodeImporter::VisitLinkageSpecDecl(LinkageSpecDecl *D) {
+ DeclContext *DC = Importer.ImportContext(D->getDeclContext());
+ DeclContext *LexicalDC = Importer.ImportContext(D->getLexicalDeclContext());
+
+ SourceLocation ExternLoc = Importer.Import(D->getExternLoc());
+ SourceLocation LangLoc = Importer.Import(D->getLocation());
+
+ bool HasBraces = D->hasBraces();
+
+ LinkageSpecDecl *ToLinkageSpec =
+ LinkageSpecDecl::Create(Importer.getToContext(),
+ DC,
+ ExternLoc,
+ LangLoc,
+ D->getLanguage(),
+ HasBraces);
+
+ if (HasBraces) {
+ SourceLocation RBraceLoc = Importer.Import(D->getRBraceLoc());
+ ToLinkageSpec->setRBraceLoc(RBraceLoc);
+ }
+
+ ToLinkageSpec->setLexicalDeclContext(LexicalDC);
+ LexicalDC->addDeclInternal(ToLinkageSpec);
+
+ Importer.Imported(D, ToLinkageSpec);
+
+ return ToLinkageSpec;
+}
+
+bool ASTNodeImporter::ImportDefinition(ObjCInterfaceDecl *From,
+ ObjCInterfaceDecl *To,
+ ImportDefinitionKind Kind) {
+ if (To->getDefinition()) {
+ // Check consistency of superclass.
+ ObjCInterfaceDecl *FromSuper = From->getSuperClass();
+ if (FromSuper) {
+ FromSuper = cast_or_null<ObjCInterfaceDecl>(Importer.Import(FromSuper));
+ if (!FromSuper)
+ return true;
+ }
+
+ ObjCInterfaceDecl *ToSuper = To->getSuperClass();
+ if ((bool)FromSuper != (bool)ToSuper ||
+ (FromSuper && !declaresSameEntity(FromSuper, ToSuper))) {
+ Importer.ToDiag(To->getLocation(),
+ diag::err_odr_objc_superclass_inconsistent)
+ << To->getDeclName();
+ if (ToSuper)
+ Importer.ToDiag(To->getSuperClassLoc(), diag::note_odr_objc_superclass)
+ << To->getSuperClass()->getDeclName();
+ else
+ Importer.ToDiag(To->getLocation(),
+ diag::note_odr_objc_missing_superclass);
+ if (From->getSuperClass())
+ Importer.FromDiag(From->getSuperClassLoc(),
+ diag::note_odr_objc_superclass)
+ << From->getSuperClass()->getDeclName();
+ else
+ Importer.FromDiag(From->getLocation(),
+ diag::note_odr_objc_missing_superclass);
+ }
+
+ if (shouldForceImportDeclContext(Kind))
+ ImportDeclContext(From);
+ return false;
+ }
+
+ // Start the definition.
+ To->startDefinition();
+
+ // If this class has a superclass, import it.
+ if (From->getSuperClass()) {
+ ObjCInterfaceDecl *Super = cast_or_null<ObjCInterfaceDecl>(
+ Importer.Import(From->getSuperClass()));
+ if (!Super)
+ return true;
+
+ To->setSuperClass(Super);
+ To->setSuperClassLoc(Importer.Import(From->getSuperClassLoc()));
+ }
+
+ // Import protocols
+ SmallVector<ObjCProtocolDecl *, 4> Protocols;
+ SmallVector<SourceLocation, 4> ProtocolLocs;
+ ObjCInterfaceDecl::protocol_loc_iterator
+ FromProtoLoc = From->protocol_loc_begin();
+
+ for (ObjCInterfaceDecl::protocol_iterator FromProto = From->protocol_begin(),
+ FromProtoEnd = From->protocol_end();
+ FromProto != FromProtoEnd;
+ ++FromProto, ++FromProtoLoc) {
+ ObjCProtocolDecl *ToProto
+ = cast_or_null<ObjCProtocolDecl>(Importer.Import(*FromProto));
+ if (!ToProto)
+ return true;
+ Protocols.push_back(ToProto);
+ ProtocolLocs.push_back(Importer.Import(*FromProtoLoc));
+ }
+
+ // FIXME: If we're merging, make sure that the protocol list is the same.
+ To->setProtocolList(Protocols.data(), Protocols.size(),
+ ProtocolLocs.data(), Importer.getToContext());
+
+ // Import categories. When the categories themselves are imported, they'll
+ // hook themselves into this interface.
+ for (auto *Cat : From->known_categories())
+ Importer.Import(Cat);
+
+ // If we have an @implementation, import it as well.
+ if (From->getImplementation()) {
+ ObjCImplementationDecl *Impl = cast_or_null<ObjCImplementationDecl>(
+ Importer.Import(From->getImplementation()));
+ if (!Impl)
+ return true;
+
+ To->setImplementation(Impl);
+ }
+
+ if (shouldForceImportDeclContext(Kind)) {
+ // Import all of the members of this class.
+ ImportDeclContext(From, /*ForceImport=*/true);
+ }
+ return false;
+}
+
+Decl *ASTNodeImporter::VisitObjCInterfaceDecl(ObjCInterfaceDecl *D) {
+ // If this class has a definition in the translation unit we're coming from,
+ // but this particular declaration is not that definition, import the
+ // definition and map to that.
+ ObjCInterfaceDecl *Definition = D->getDefinition();
+ if (Definition && Definition != D) {
+ Decl *ImportedDef = Importer.Import(Definition);
+ if (!ImportedDef)
+ return nullptr;
+
+ return Importer.Imported(D, ImportedDef);
+ }
+
+ // Import the major distinguishing characteristics of an @interface.
+ DeclContext *DC, *LexicalDC;
+ DeclarationName Name;
+ SourceLocation Loc;
+ NamedDecl *ToD;
+ if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc))
+ return nullptr;
+ if (ToD)
+ return ToD;
+
+ // Look for an existing interface with the same name.
+ ObjCInterfaceDecl *MergeWithIface = nullptr;
+ SmallVector<NamedDecl *, 2> FoundDecls;
+ DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls);
+ for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
+ if (!FoundDecls[I]->isInIdentifierNamespace(Decl::IDNS_Ordinary))
+ continue;
+
+ if ((MergeWithIface = dyn_cast<ObjCInterfaceDecl>(FoundDecls[I])))
+ break;
+ }
+
+ // Create an interface declaration, if one does not already exist.
+ ObjCInterfaceDecl *ToIface = MergeWithIface;
+ if (!ToIface) {
+ ToIface = ObjCInterfaceDecl::Create(Importer.getToContext(), DC,
+ Importer.Import(D->getAtStartLoc()),
+ Name.getAsIdentifierInfo(),
+ /*PrevDecl=*/nullptr, Loc,
+ D->isImplicitInterfaceDecl());
+ ToIface->setLexicalDeclContext(LexicalDC);
+ LexicalDC->addDeclInternal(ToIface);
+ }
+ Importer.Imported(D, ToIface);
+
+ if (D->isThisDeclarationADefinition() && ImportDefinition(D, ToIface))
+ return nullptr;
+
+ return ToIface;
+}
+
+Decl *ASTNodeImporter::VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D) {
+ ObjCCategoryDecl *Category = cast_or_null<ObjCCategoryDecl>(
+ Importer.Import(D->getCategoryDecl()));
+ if (!Category)
+ return nullptr;
+
+ ObjCCategoryImplDecl *ToImpl = Category->getImplementation();
+ if (!ToImpl) {
+ DeclContext *DC = Importer.ImportContext(D->getDeclContext());
+ if (!DC)
+ return nullptr;
+
+ SourceLocation CategoryNameLoc = Importer.Import(D->getCategoryNameLoc());
+ ToImpl = ObjCCategoryImplDecl::Create(Importer.getToContext(), DC,
+ Importer.Import(D->getIdentifier()),
+ Category->getClassInterface(),
+ Importer.Import(D->getLocation()),
+ Importer.Import(D->getAtStartLoc()),
+ CategoryNameLoc);
+
+ DeclContext *LexicalDC = DC;
+ if (D->getDeclContext() != D->getLexicalDeclContext()) {
+ LexicalDC = Importer.ImportContext(D->getLexicalDeclContext());
+ if (!LexicalDC)
+ return nullptr;
+
+ ToImpl->setLexicalDeclContext(LexicalDC);
+ }
+
+ LexicalDC->addDeclInternal(ToImpl);
+ Category->setImplementation(ToImpl);
+ }
+
+ Importer.Imported(D, ToImpl);
+ ImportDeclContext(D);
+ return ToImpl;
+}
+
+Decl *ASTNodeImporter::VisitObjCImplementationDecl(ObjCImplementationDecl *D) {
+ // Find the corresponding interface.
+ ObjCInterfaceDecl *Iface = cast_or_null<ObjCInterfaceDecl>(
+ Importer.Import(D->getClassInterface()));
+ if (!Iface)
+ return nullptr;
+
+ // Import the superclass, if any.
+ ObjCInterfaceDecl *Super = nullptr;
+ if (D->getSuperClass()) {
+ Super = cast_or_null<ObjCInterfaceDecl>(
+ Importer.Import(D->getSuperClass()));
+ if (!Super)
+ return nullptr;
+ }
+
+ ObjCImplementationDecl *Impl = Iface->getImplementation();
+ if (!Impl) {
+ // We haven't imported an implementation yet. Create a new @implementation
+ // now.
+ Impl = ObjCImplementationDecl::Create(Importer.getToContext(),
+ Importer.ImportContext(D->getDeclContext()),
+ Iface, Super,
+ Importer.Import(D->getLocation()),
+ Importer.Import(D->getAtStartLoc()),
+ Importer.Import(D->getSuperClassLoc()),
+ Importer.Import(D->getIvarLBraceLoc()),
+ Importer.Import(D->getIvarRBraceLoc()));
+
+ if (D->getDeclContext() != D->getLexicalDeclContext()) {
+ DeclContext *LexicalDC
+ = Importer.ImportContext(D->getLexicalDeclContext());
+ if (!LexicalDC)
+ return nullptr;
+ Impl->setLexicalDeclContext(LexicalDC);
+ }
+
+ // Associate the implementation with the class it implements.
+ Iface->setImplementation(Impl);
+ Importer.Imported(D, Iface->getImplementation());
+ } else {
+ Importer.Imported(D, Iface->getImplementation());
+
+ // Verify that the existing @implementation has the same superclass.
+ if ((Super && !Impl->getSuperClass()) ||
+ (!Super && Impl->getSuperClass()) ||
+ (Super && Impl->getSuperClass() &&
+ !declaresSameEntity(Super->getCanonicalDecl(),
+ Impl->getSuperClass()))) {
+ Importer.ToDiag(Impl->getLocation(),
+ diag::err_odr_objc_superclass_inconsistent)
+ << Iface->getDeclName();
+ // FIXME: It would be nice to have the location of the superclass
+ // below.
+ if (Impl->getSuperClass())
+ Importer.ToDiag(Impl->getLocation(),
+ diag::note_odr_objc_superclass)
+ << Impl->getSuperClass()->getDeclName();
+ else
+ Importer.ToDiag(Impl->getLocation(),
+ diag::note_odr_objc_missing_superclass);
+ if (D->getSuperClass())
+ Importer.FromDiag(D->getLocation(),
+ diag::note_odr_objc_superclass)
+ << D->getSuperClass()->getDeclName();
+ else
+ Importer.FromDiag(D->getLocation(),
+ diag::note_odr_objc_missing_superclass);
+ return nullptr;
+ }
+ }
+
+ // Import all of the members of this @implementation.
+ ImportDeclContext(D);
+
+ return Impl;
+}
+
+Decl *ASTNodeImporter::VisitObjCPropertyDecl(ObjCPropertyDecl *D) {
+ // Import the major distinguishing characteristics of an @property.
+ DeclContext *DC, *LexicalDC;
+ DeclarationName Name;
+ SourceLocation Loc;
+ NamedDecl *ToD;
+ if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc))
+ return nullptr;
+ if (ToD)
+ return ToD;
+
+ // Check whether we have already imported this property.
+ SmallVector<NamedDecl *, 2> FoundDecls;
+ DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls);
+ for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
+ if (ObjCPropertyDecl *FoundProp
+ = dyn_cast<ObjCPropertyDecl>(FoundDecls[I])) {
+ // Check property types.
+ if (!Importer.IsStructurallyEquivalent(D->getType(),
+ FoundProp->getType())) {
+ Importer.ToDiag(Loc, diag::err_odr_objc_property_type_inconsistent)
+ << Name << D->getType() << FoundProp->getType();
+ Importer.ToDiag(FoundProp->getLocation(), diag::note_odr_value_here)
+ << FoundProp->getType();
+ return nullptr;
+ }
+
+ // FIXME: Check property attributes, getters, setters, etc.?
+
+ // Consider these properties to be equivalent.
+ Importer.Imported(D, FoundProp);
+ return FoundProp;
+ }
+ }
+
+ // Import the type.
+ TypeSourceInfo *T = Importer.Import(D->getTypeSourceInfo());
+ if (!T)
+ return nullptr;
+
+ // Create the new property.
+ ObjCPropertyDecl *ToProperty
+ = ObjCPropertyDecl::Create(Importer.getToContext(), DC, Loc,
+ Name.getAsIdentifierInfo(),
+ Importer.Import(D->getAtLoc()),
+ Importer.Import(D->getLParenLoc()),
+ T,
+ D->getPropertyImplementation());
+ Importer.Imported(D, ToProperty);
+ ToProperty->setLexicalDeclContext(LexicalDC);
+ LexicalDC->addDeclInternal(ToProperty);
+
+ ToProperty->setPropertyAttributes(D->getPropertyAttributes());
+ ToProperty->setPropertyAttributesAsWritten(
+ D->getPropertyAttributesAsWritten());
+ ToProperty->setGetterName(Importer.Import(D->getGetterName()));
+ ToProperty->setSetterName(Importer.Import(D->getSetterName()));
+ ToProperty->setGetterMethodDecl(
+ cast_or_null<ObjCMethodDecl>(Importer.Import(D->getGetterMethodDecl())));
+ ToProperty->setSetterMethodDecl(
+ cast_or_null<ObjCMethodDecl>(Importer.Import(D->getSetterMethodDecl())));
+ ToProperty->setPropertyIvarDecl(
+ cast_or_null<ObjCIvarDecl>(Importer.Import(D->getPropertyIvarDecl())));
+ return ToProperty;
+}
+
+Decl *ASTNodeImporter::VisitObjCPropertyImplDecl(ObjCPropertyImplDecl *D) {
+ ObjCPropertyDecl *Property = cast_or_null<ObjCPropertyDecl>(
+ Importer.Import(D->getPropertyDecl()));
+ if (!Property)
+ return nullptr;
+
+ DeclContext *DC = Importer.ImportContext(D->getDeclContext());
+ if (!DC)
+ return nullptr;
+
+ // Import the lexical declaration context.
+ DeclContext *LexicalDC = DC;
+ if (D->getDeclContext() != D->getLexicalDeclContext()) {
+ LexicalDC = Importer.ImportContext(D->getLexicalDeclContext());
+ if (!LexicalDC)
+ return nullptr;
+ }
+
+ ObjCImplDecl *InImpl = dyn_cast<ObjCImplDecl>(LexicalDC);
+ if (!InImpl)
+ return nullptr;
+
+ // Import the ivar (for an @synthesize).
+ ObjCIvarDecl *Ivar = nullptr;
+ if (D->getPropertyIvarDecl()) {
+ Ivar = cast_or_null<ObjCIvarDecl>(
+ Importer.Import(D->getPropertyIvarDecl()));
+ if (!Ivar)
+ return nullptr;
+ }
+
+ ObjCPropertyImplDecl *ToImpl
+ = InImpl->FindPropertyImplDecl(Property->getIdentifier());
+ if (!ToImpl) {
+ ToImpl = ObjCPropertyImplDecl::Create(Importer.getToContext(), DC,
+ Importer.Import(D->getLocStart()),
+ Importer.Import(D->getLocation()),
+ Property,
+ D->getPropertyImplementation(),
+ Ivar,
+ Importer.Import(D->getPropertyIvarDeclLoc()));
+ ToImpl->setLexicalDeclContext(LexicalDC);
+ Importer.Imported(D, ToImpl);
+ LexicalDC->addDeclInternal(ToImpl);
+ } else {
+ // Check that we have the same kind of property implementation (@synthesize
+ // vs. @dynamic).
+ if (D->getPropertyImplementation() != ToImpl->getPropertyImplementation()) {
+ Importer.ToDiag(ToImpl->getLocation(),
+ diag::err_odr_objc_property_impl_kind_inconsistent)
+ << Property->getDeclName()
+ << (ToImpl->getPropertyImplementation()
+ == ObjCPropertyImplDecl::Dynamic);
+ Importer.FromDiag(D->getLocation(),
+ diag::note_odr_objc_property_impl_kind)
+ << D->getPropertyDecl()->getDeclName()
+ << (D->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic);
+ return nullptr;
+ }
+
+ // For @synthesize, check that we have the same
+ if (D->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize &&
+ Ivar != ToImpl->getPropertyIvarDecl()) {
+ Importer.ToDiag(ToImpl->getPropertyIvarDeclLoc(),
+ diag::err_odr_objc_synthesize_ivar_inconsistent)
+ << Property->getDeclName()
+ << ToImpl->getPropertyIvarDecl()->getDeclName()
+ << Ivar->getDeclName();
+ Importer.FromDiag(D->getPropertyIvarDeclLoc(),
+ diag::note_odr_objc_synthesize_ivar_here)
+ << D->getPropertyIvarDecl()->getDeclName();
+ return nullptr;
+ }
+
+ // Merge the existing implementation with the new implementation.
+ Importer.Imported(D, ToImpl);
+ }
+
+ return ToImpl;
+}
+
+Decl *ASTNodeImporter::VisitTemplateTypeParmDecl(TemplateTypeParmDecl *D) {
+ // For template arguments, we adopt the translation unit as our declaration
+ // context. This context will be fixed when the actual template declaration
+ // is created.
+
+ // FIXME: Import default argument.
+ return TemplateTypeParmDecl::Create(Importer.getToContext(),
+ Importer.getToContext().getTranslationUnitDecl(),
+ Importer.Import(D->getLocStart()),
+ Importer.Import(D->getLocation()),
+ D->getDepth(),
+ D->getIndex(),
+ Importer.Import(D->getIdentifier()),
+ D->wasDeclaredWithTypename(),
+ D->isParameterPack());
+}
+
+Decl *
+ASTNodeImporter::VisitNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D) {
+ // Import the name of this declaration.
+ DeclarationName Name = Importer.Import(D->getDeclName());
+ if (D->getDeclName() && !Name)
+ return nullptr;
+
+ // Import the location of this declaration.
+ SourceLocation Loc = Importer.Import(D->getLocation());
+
+ // Import the type of this declaration.
+ QualType T = Importer.Import(D->getType());
+ if (T.isNull())
+ return nullptr;
+
+ // Import type-source information.
+ TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo());
+ if (D->getTypeSourceInfo() && !TInfo)
+ return nullptr;
+
+ // FIXME: Import default argument.
+
+ return NonTypeTemplateParmDecl::Create(Importer.getToContext(),
+ Importer.getToContext().getTranslationUnitDecl(),
+ Importer.Import(D->getInnerLocStart()),
+ Loc, D->getDepth(), D->getPosition(),
+ Name.getAsIdentifierInfo(),
+ T, D->isParameterPack(), TInfo);
+}
+
+Decl *
+ASTNodeImporter::VisitTemplateTemplateParmDecl(TemplateTemplateParmDecl *D) {
+ // Import the name of this declaration.
+ DeclarationName Name = Importer.Import(D->getDeclName());
+ if (D->getDeclName() && !Name)
+ return nullptr;
+
+ // Import the location of this declaration.
+ SourceLocation Loc = Importer.Import(D->getLocation());
+
+ // Import template parameters.
+ TemplateParameterList *TemplateParams
+ = ImportTemplateParameterList(D->getTemplateParameters());
+ if (!TemplateParams)
+ return nullptr;
+
+ // FIXME: Import default argument.
+
+ return TemplateTemplateParmDecl::Create(Importer.getToContext(),
+ Importer.getToContext().getTranslationUnitDecl(),
+ Loc, D->getDepth(), D->getPosition(),
+ D->isParameterPack(),
+ Name.getAsIdentifierInfo(),
+ TemplateParams);
+}
+
+Decl *ASTNodeImporter::VisitClassTemplateDecl(ClassTemplateDecl *D) {
+ // If this record has a definition in the translation unit we're coming from,
+ // but this particular declaration is not that definition, import the
+ // definition and map to that.
+ CXXRecordDecl *Definition
+ = cast_or_null<CXXRecordDecl>(D->getTemplatedDecl()->getDefinition());
+ if (Definition && Definition != D->getTemplatedDecl()) {
+ Decl *ImportedDef
+ = Importer.Import(Definition->getDescribedClassTemplate());
+ if (!ImportedDef)
+ return nullptr;
+
+ return Importer.Imported(D, ImportedDef);
+ }
+
+ // Import the major distinguishing characteristics of this class template.
+ DeclContext *DC, *LexicalDC;
+ DeclarationName Name;
+ SourceLocation Loc;
+ NamedDecl *ToD;
+ if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc))
+ return nullptr;
+ if (ToD)
+ return ToD;
+
+ // We may already have a template of the same name; try to find and match it.
+ if (!DC->isFunctionOrMethod()) {
+ SmallVector<NamedDecl *, 4> ConflictingDecls;
+ SmallVector<NamedDecl *, 2> FoundDecls;
+ DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls);
+ for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
+ if (!FoundDecls[I]->isInIdentifierNamespace(Decl::IDNS_Ordinary))
+ continue;
+
+ Decl *Found = FoundDecls[I];
+ if (ClassTemplateDecl *FoundTemplate
+ = dyn_cast<ClassTemplateDecl>(Found)) {
+ if (IsStructuralMatch(D, FoundTemplate)) {
+ // The class templates structurally match; call it the same template.
+ // FIXME: We may be filling in a forward declaration here. Handle
+ // this case!
+ Importer.Imported(D->getTemplatedDecl(),
+ FoundTemplate->getTemplatedDecl());
+ return Importer.Imported(D, FoundTemplate);
+ }
+ }
+
+ ConflictingDecls.push_back(FoundDecls[I]);
+ }
+
+ if (!ConflictingDecls.empty()) {
+ Name = Importer.HandleNameConflict(Name, DC, Decl::IDNS_Ordinary,
+ ConflictingDecls.data(),
+ ConflictingDecls.size());
+ }
+
+ if (!Name)
+ return nullptr;
+ }
+
+ CXXRecordDecl *DTemplated = D->getTemplatedDecl();
+
+ // Create the declaration that is being templated.
+ SourceLocation StartLoc = Importer.Import(DTemplated->getLocStart());
+ SourceLocation IdLoc = Importer.Import(DTemplated->getLocation());
+ CXXRecordDecl *D2Templated = CXXRecordDecl::Create(Importer.getToContext(),
+ DTemplated->getTagKind(),
+ DC, StartLoc, IdLoc,
+ Name.getAsIdentifierInfo());
+ D2Templated->setAccess(DTemplated->getAccess());
+ D2Templated->setQualifierInfo(Importer.Import(DTemplated->getQualifierLoc()));
+ D2Templated->setLexicalDeclContext(LexicalDC);
+
+ // Create the class template declaration itself.
+ TemplateParameterList *TemplateParams
+ = ImportTemplateParameterList(D->getTemplateParameters());
+ if (!TemplateParams)
+ return nullptr;
+
+ ClassTemplateDecl *D2 = ClassTemplateDecl::Create(Importer.getToContext(), DC,
+ Loc, Name, TemplateParams,
+ D2Templated,
+ /*PrevDecl=*/nullptr);
+ D2Templated->setDescribedClassTemplate(D2);
+
+ D2->setAccess(D->getAccess());
+ D2->setLexicalDeclContext(LexicalDC);
+ LexicalDC->addDeclInternal(D2);
+
+ // Note the relationship between the class templates.
+ Importer.Imported(D, D2);
+ Importer.Imported(DTemplated, D2Templated);
+
+ if (DTemplated->isCompleteDefinition() &&
+ !D2Templated->isCompleteDefinition()) {
+ // FIXME: Import definition!
+ }
+
+ return D2;
+}
+
+Decl *ASTNodeImporter::VisitClassTemplateSpecializationDecl(
+ ClassTemplateSpecializationDecl *D) {
+ // If this record has a definition in the translation unit we're coming from,
+ // but this particular declaration is not that definition, import the
+ // definition and map to that.
+ TagDecl *Definition = D->getDefinition();
+ if (Definition && Definition != D) {
+ Decl *ImportedDef = Importer.Import(Definition);
+ if (!ImportedDef)
+ return nullptr;
+
+ return Importer.Imported(D, ImportedDef);
+ }
+
+ ClassTemplateDecl *ClassTemplate
+ = cast_or_null<ClassTemplateDecl>(Importer.Import(
+ D->getSpecializedTemplate()));
+ if (!ClassTemplate)
+ return nullptr;
+
+ // Import the context of this declaration.
+ DeclContext *DC = ClassTemplate->getDeclContext();
+ if (!DC)
+ return nullptr;
+
+ DeclContext *LexicalDC = DC;
+ if (D->getDeclContext() != D->getLexicalDeclContext()) {
+ LexicalDC = Importer.ImportContext(D->getLexicalDeclContext());
+ if (!LexicalDC)
+ return nullptr;
+ }
+
+ // Import the location of this declaration.
+ SourceLocation StartLoc = Importer.Import(D->getLocStart());
+ SourceLocation IdLoc = Importer.Import(D->getLocation());
+
+ // Import template arguments.
+ SmallVector<TemplateArgument, 2> TemplateArgs;
+ if (ImportTemplateArguments(D->getTemplateArgs().data(),
+ D->getTemplateArgs().size(),
+ TemplateArgs))
+ return nullptr;
+
+ // Try to find an existing specialization with these template arguments.
+ void *InsertPos = nullptr;
+ ClassTemplateSpecializationDecl *D2
+ = ClassTemplate->findSpecialization(TemplateArgs, InsertPos);
+ if (D2) {
+ // We already have a class template specialization with these template
+ // arguments.
+
+ // FIXME: Check for specialization vs. instantiation errors.
+
+ if (RecordDecl *FoundDef = D2->getDefinition()) {
+ if (!D->isCompleteDefinition() || IsStructuralMatch(D, FoundDef)) {
+ // The record types structurally match, or the "from" translation
+ // unit only had a forward declaration anyway; call it the same
+ // function.
+ return Importer.Imported(D, FoundDef);
+ }
+ }
+ } else {
+ // Create a new specialization.
+ D2 = ClassTemplateSpecializationDecl::Create(Importer.getToContext(),
+ D->getTagKind(), DC,
+ StartLoc, IdLoc,
+ ClassTemplate,
+ TemplateArgs.data(),
+ TemplateArgs.size(),
+ /*PrevDecl=*/nullptr);
+ D2->setSpecializationKind(D->getSpecializationKind());
+
+ // Add this specialization to the class template.
+ ClassTemplate->AddSpecialization(D2, InsertPos);
+
+ // Import the qualifier, if any.
+ D2->setQualifierInfo(Importer.Import(D->getQualifierLoc()));
+
+ // Add the specialization to this context.
+ D2->setLexicalDeclContext(LexicalDC);
+ LexicalDC->addDeclInternal(D2);
+ }
+ Importer.Imported(D, D2);
+
+ if (D->isCompleteDefinition() && ImportDefinition(D, D2))
+ return nullptr;
+
+ return D2;
+}
+
+Decl *ASTNodeImporter::VisitVarTemplateDecl(VarTemplateDecl *D) {
+ // If this variable has a definition in the translation unit we're coming
+ // from,
+ // but this particular declaration is not that definition, import the
+ // definition and map to that.
+ VarDecl *Definition =
+ cast_or_null<VarDecl>(D->getTemplatedDecl()->getDefinition());
+ if (Definition && Definition != D->getTemplatedDecl()) {
+ Decl *ImportedDef = Importer.Import(Definition->getDescribedVarTemplate());
+ if (!ImportedDef)
+ return nullptr;
+
+ return Importer.Imported(D, ImportedDef);
+ }
+
+ // Import the major distinguishing characteristics of this variable template.
+ DeclContext *DC, *LexicalDC;
+ DeclarationName Name;
+ SourceLocation Loc;
+ NamedDecl *ToD;
+ if (ImportDeclParts(D, DC, LexicalDC, Name, ToD, Loc))
+ return nullptr;
+ if (ToD)
+ return ToD;
+
+ // We may already have a template of the same name; try to find and match it.
+ assert(!DC->isFunctionOrMethod() &&
+ "Variable templates cannot be declared at function scope");
+ SmallVector<NamedDecl *, 4> ConflictingDecls;
+ SmallVector<NamedDecl *, 2> FoundDecls;
+ DC->getRedeclContext()->localUncachedLookup(Name, FoundDecls);
+ for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
+ if (!FoundDecls[I]->isInIdentifierNamespace(Decl::IDNS_Ordinary))
+ continue;
+
+ Decl *Found = FoundDecls[I];
+ if (VarTemplateDecl *FoundTemplate = dyn_cast<VarTemplateDecl>(Found)) {
+ if (IsStructuralMatch(D, FoundTemplate)) {
+ // The variable templates structurally match; call it the same template.
+ Importer.Imported(D->getTemplatedDecl(),
+ FoundTemplate->getTemplatedDecl());
+ return Importer.Imported(D, FoundTemplate);
+ }
+ }
+
+ ConflictingDecls.push_back(FoundDecls[I]);
+ }
+
+ if (!ConflictingDecls.empty()) {
+ Name = Importer.HandleNameConflict(Name, DC, Decl::IDNS_Ordinary,
+ ConflictingDecls.data(),
+ ConflictingDecls.size());
+ }
+
+ if (!Name)
+ return nullptr;
+
+ VarDecl *DTemplated = D->getTemplatedDecl();
+
+ // Import the type.
+ QualType T = Importer.Import(DTemplated->getType());
+ if (T.isNull())
+ return nullptr;
+
+ // Create the declaration that is being templated.
+ SourceLocation StartLoc = Importer.Import(DTemplated->getLocStart());
+ SourceLocation IdLoc = Importer.Import(DTemplated->getLocation());
+ TypeSourceInfo *TInfo = Importer.Import(DTemplated->getTypeSourceInfo());
+ VarDecl *D2Templated = VarDecl::Create(Importer.getToContext(), DC, StartLoc,
+ IdLoc, Name.getAsIdentifierInfo(), T,
+ TInfo, DTemplated->getStorageClass());
+ D2Templated->setAccess(DTemplated->getAccess());
+ D2Templated->setQualifierInfo(Importer.Import(DTemplated->getQualifierLoc()));
+ D2Templated->setLexicalDeclContext(LexicalDC);
+
+ // Importer.Imported(DTemplated, D2Templated);
+ // LexicalDC->addDeclInternal(D2Templated);
+
+ // Merge the initializer.
+ if (ImportDefinition(DTemplated, D2Templated))
+ return nullptr;
+
+ // Create the variable template declaration itself.
+ TemplateParameterList *TemplateParams =
+ ImportTemplateParameterList(D->getTemplateParameters());
+ if (!TemplateParams)
+ return nullptr;
+
+ VarTemplateDecl *D2 = VarTemplateDecl::Create(
+ Importer.getToContext(), DC, Loc, Name, TemplateParams, D2Templated);
+ D2Templated->setDescribedVarTemplate(D2);
+
+ D2->setAccess(D->getAccess());
+ D2->setLexicalDeclContext(LexicalDC);
+ LexicalDC->addDeclInternal(D2);
+
+ // Note the relationship between the variable templates.
+ Importer.Imported(D, D2);
+ Importer.Imported(DTemplated, D2Templated);
+
+ if (DTemplated->isThisDeclarationADefinition() &&
+ !D2Templated->isThisDeclarationADefinition()) {
+ // FIXME: Import definition!
+ }
+
+ return D2;
+}
+
+Decl *ASTNodeImporter::VisitVarTemplateSpecializationDecl(
+ VarTemplateSpecializationDecl *D) {
+ // If this record has a definition in the translation unit we're coming from,
+ // but this particular declaration is not that definition, import the
+ // definition and map to that.
+ VarDecl *Definition = D->getDefinition();
+ if (Definition && Definition != D) {
+ Decl *ImportedDef = Importer.Import(Definition);
+ if (!ImportedDef)
+ return nullptr;
+
+ return Importer.Imported(D, ImportedDef);
+ }
+
+ VarTemplateDecl *VarTemplate = cast_or_null<VarTemplateDecl>(
+ Importer.Import(D->getSpecializedTemplate()));
+ if (!VarTemplate)
+ return nullptr;
+
+ // Import the context of this declaration.
+ DeclContext *DC = VarTemplate->getDeclContext();
+ if (!DC)
+ return nullptr;
+
+ DeclContext *LexicalDC = DC;
+ if (D->getDeclContext() != D->getLexicalDeclContext()) {
+ LexicalDC = Importer.ImportContext(D->getLexicalDeclContext());
+ if (!LexicalDC)
+ return nullptr;
+ }
+
+ // Import the location of this declaration.
+ SourceLocation StartLoc = Importer.Import(D->getLocStart());
+ SourceLocation IdLoc = Importer.Import(D->getLocation());
+
+ // Import template arguments.
+ SmallVector<TemplateArgument, 2> TemplateArgs;
+ if (ImportTemplateArguments(D->getTemplateArgs().data(),
+ D->getTemplateArgs().size(), TemplateArgs))
+ return nullptr;
+
+ // Try to find an existing specialization with these template arguments.
+ void *InsertPos = nullptr;
+ VarTemplateSpecializationDecl *D2 = VarTemplate->findSpecialization(
+ TemplateArgs, InsertPos);
+ if (D2) {
+ // We already have a variable template specialization with these template
+ // arguments.
+
+ // FIXME: Check for specialization vs. instantiation errors.
+
+ if (VarDecl *FoundDef = D2->getDefinition()) {
+ if (!D->isThisDeclarationADefinition() ||
+ IsStructuralMatch(D, FoundDef)) {
+ // The record types structurally match, or the "from" translation
+ // unit only had a forward declaration anyway; call it the same
+ // variable.
+ return Importer.Imported(D, FoundDef);
+ }
+ }
+ } else {
+
+ // Import the type.
+ QualType T = Importer.Import(D->getType());
+ if (T.isNull())
+ return nullptr;
+ TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo());
+
+ // Create a new specialization.
+ D2 = VarTemplateSpecializationDecl::Create(
+ Importer.getToContext(), DC, StartLoc, IdLoc, VarTemplate, T, TInfo,
+ D->getStorageClass(), TemplateArgs.data(), TemplateArgs.size());
+ D2->setSpecializationKind(D->getSpecializationKind());
+ D2->setTemplateArgsInfo(D->getTemplateArgsInfo());
+
+ // Add this specialization to the class template.
+ VarTemplate->AddSpecialization(D2, InsertPos);
+
+ // Import the qualifier, if any.
+ D2->setQualifierInfo(Importer.Import(D->getQualifierLoc()));
+
+ // Add the specialization to this context.
+ D2->setLexicalDeclContext(LexicalDC);
+ LexicalDC->addDeclInternal(D2);
+ }
+ Importer.Imported(D, D2);
+
+ if (D->isThisDeclarationADefinition() && ImportDefinition(D, D2))
+ return nullptr;
+
+ return D2;
+}
+
+//----------------------------------------------------------------------------
+// Import Statements
+//----------------------------------------------------------------------------
+
+DeclGroupRef ASTNodeImporter::ImportDeclGroup(DeclGroupRef DG) {
+ if (DG.isNull())
+ return DeclGroupRef::Create(Importer.getToContext(), nullptr, 0);
+ size_t NumDecls = DG.end() - DG.begin();
+ SmallVector<Decl *, 1> ToDecls(NumDecls);
+ auto &_Importer = this->Importer;
+ std::transform(DG.begin(), DG.end(), ToDecls.begin(),
+ [&_Importer](Decl *D) -> Decl * {
+ return _Importer.Import(D);
+ });
+ return DeclGroupRef::Create(Importer.getToContext(),
+ ToDecls.begin(),
+ NumDecls);
+}
+
+ Stmt *ASTNodeImporter::VisitStmt(Stmt *S) {
+ Importer.FromDiag(S->getLocStart(), diag::err_unsupported_ast_node)
+ << S->getStmtClassName();
+ return nullptr;
+ }
+
+Stmt *ASTNodeImporter::VisitDeclStmt(DeclStmt *S) {
+ DeclGroupRef ToDG = ImportDeclGroup(S->getDeclGroup());
+ for (Decl *ToD : ToDG) {
+ if (!ToD)
+ return nullptr;
+ }
+ SourceLocation ToStartLoc = Importer.Import(S->getStartLoc());
+ SourceLocation ToEndLoc = Importer.Import(S->getEndLoc());
+ return new (Importer.getToContext()) DeclStmt(ToDG, ToStartLoc, ToEndLoc);
+}
+
+Stmt *ASTNodeImporter::VisitNullStmt(NullStmt *S) {
+ SourceLocation ToSemiLoc = Importer.Import(S->getSemiLoc());
+ return new (Importer.getToContext()) NullStmt(ToSemiLoc,
+ S->hasLeadingEmptyMacro());
+}
+
+Stmt *ASTNodeImporter::VisitCompoundStmt(CompoundStmt *S) {
+ SmallVector<Stmt *, 4> ToStmts(S->size());
+ auto &_Importer = this->Importer;
+ std::transform(S->body_begin(), S->body_end(), ToStmts.begin(),
+ [&_Importer](Stmt *CS) -> Stmt * {
+ return _Importer.Import(CS);
+ });
+ for (Stmt *ToS : ToStmts) {
+ if (!ToS)
+ return nullptr;
+ }
+ SourceLocation ToLBraceLoc = Importer.Import(S->getLBracLoc());
+ SourceLocation ToRBraceLoc = Importer.Import(S->getRBracLoc());
+ return new (Importer.getToContext()) CompoundStmt(Importer.getToContext(),
+ ToStmts,
+ ToLBraceLoc, ToRBraceLoc);
+}
+
+Stmt *ASTNodeImporter::VisitCaseStmt(CaseStmt *S) {
+ Expr *ToLHS = Importer.Import(S->getLHS());
+ if (!ToLHS)
+ return nullptr;
+ Expr *ToRHS = Importer.Import(S->getRHS());
+ if (!ToRHS && S->getRHS())
+ return nullptr;
+ SourceLocation ToCaseLoc = Importer.Import(S->getCaseLoc());
+ SourceLocation ToEllipsisLoc = Importer.Import(S->getEllipsisLoc());
+ SourceLocation ToColonLoc = Importer.Import(S->getColonLoc());
+ return new (Importer.getToContext()) CaseStmt(ToLHS, ToRHS,
+ ToCaseLoc, ToEllipsisLoc,
+ ToColonLoc);
+}
+
+Stmt *ASTNodeImporter::VisitDefaultStmt(DefaultStmt *S) {
+ SourceLocation ToDefaultLoc = Importer.Import(S->getDefaultLoc());
+ SourceLocation ToColonLoc = Importer.Import(S->getColonLoc());
+ Stmt *ToSubStmt = Importer.Import(S->getSubStmt());
+ if (!ToSubStmt && S->getSubStmt())
+ return nullptr;
+ return new (Importer.getToContext()) DefaultStmt(ToDefaultLoc, ToColonLoc,
+ ToSubStmt);
+}
+
+Stmt *ASTNodeImporter::VisitLabelStmt(LabelStmt *S) {
+ SourceLocation ToIdentLoc = Importer.Import(S->getIdentLoc());
+ LabelDecl *ToLabelDecl =
+ cast_or_null<LabelDecl>(Importer.Import(S->getDecl()));
+ if (!ToLabelDecl && S->getDecl())
+ return nullptr;
+ Stmt *ToSubStmt = Importer.Import(S->getSubStmt());
+ if (!ToSubStmt && S->getSubStmt())
+ return nullptr;
+ return new (Importer.getToContext()) LabelStmt(ToIdentLoc, ToLabelDecl,
+ ToSubStmt);
+}
+
+Stmt *ASTNodeImporter::VisitAttributedStmt(AttributedStmt *S) {
+ SourceLocation ToAttrLoc = Importer.Import(S->getAttrLoc());
+ ArrayRef<const Attr*> FromAttrs(S->getAttrs());
+ SmallVector<const Attr *, 1> ToAttrs(FromAttrs.size());
+ ASTContext &_ToContext = Importer.getToContext();
+ std::transform(FromAttrs.begin(), FromAttrs.end(), ToAttrs.begin(),
+ [&_ToContext](const Attr *A) -> const Attr * {
+ return A->clone(_ToContext);
+ });
+ for (const Attr *ToA : ToAttrs) {
+ if (!ToA)
+ return nullptr;
+ }
+ Stmt *ToSubStmt = Importer.Import(S->getSubStmt());
+ if (!ToSubStmt && S->getSubStmt())
+ return nullptr;
+ return AttributedStmt::Create(Importer.getToContext(), ToAttrLoc,
+ ToAttrs, ToSubStmt);
+}
+
+Stmt *ASTNodeImporter::VisitIfStmt(IfStmt *S) {
+ SourceLocation ToIfLoc = Importer.Import(S->getIfLoc());
+ VarDecl *ToConditionVariable = nullptr;
+ if (VarDecl *FromConditionVariable = S->getConditionVariable()) {
+ ToConditionVariable =
+ dyn_cast_or_null<VarDecl>(Importer.Import(FromConditionVariable));
+ if (!ToConditionVariable)
+ return nullptr;
+ }
+ Expr *ToCondition = Importer.Import(S->getCond());
+ if (!ToCondition && S->getCond())
+ return nullptr;
+ Stmt *ToThenStmt = Importer.Import(S->getThen());
+ if (!ToThenStmt && S->getThen())
+ return nullptr;
+ SourceLocation ToElseLoc = Importer.Import(S->getElseLoc());
+ Stmt *ToElseStmt = Importer.Import(S->getElse());
+ if (!ToElseStmt && S->getElse())
+ return nullptr;
+ return new (Importer.getToContext()) IfStmt(Importer.getToContext(),
+ ToIfLoc, ToConditionVariable,
+ ToCondition, ToThenStmt,
+ ToElseLoc, ToElseStmt);
+}
+
+Stmt *ASTNodeImporter::VisitSwitchStmt(SwitchStmt *S) {
+ VarDecl *ToConditionVariable = nullptr;
+ if (VarDecl *FromConditionVariable = S->getConditionVariable()) {
+ ToConditionVariable =
+ dyn_cast_or_null<VarDecl>(Importer.Import(FromConditionVariable));
+ if (!ToConditionVariable)
+ return nullptr;
+ }
+ Expr *ToCondition = Importer.Import(S->getCond());
+ if (!ToCondition && S->getCond())
+ return nullptr;
+ SwitchStmt *ToStmt = new (Importer.getToContext()) SwitchStmt(
+ Importer.getToContext(), ToConditionVariable,
+ ToCondition);
+ Stmt *ToBody = Importer.Import(S->getBody());
+ if (!ToBody && S->getBody())
+ return nullptr;
+ ToStmt->setBody(ToBody);
+ ToStmt->setSwitchLoc(Importer.Import(S->getSwitchLoc()));
+ // Now we have to re-chain the cases.
+ SwitchCase *LastChainedSwitchCase = nullptr;
+ for (SwitchCase *SC = S->getSwitchCaseList(); SC != nullptr;
+ SC = SC->getNextSwitchCase()) {
+ SwitchCase *ToSC = dyn_cast_or_null<SwitchCase>(Importer.Import(SC));
+ if (!ToSC)
+ return nullptr;
+ if (LastChainedSwitchCase)
+ LastChainedSwitchCase->setNextSwitchCase(ToSC);
+ else
+ ToStmt->setSwitchCaseList(ToSC);
+ LastChainedSwitchCase = ToSC;
+ }
+ return ToStmt;
+}
+
+Stmt *ASTNodeImporter::VisitWhileStmt(WhileStmt *S) {
+ VarDecl *ToConditionVariable = nullptr;
+ if (VarDecl *FromConditionVariable = S->getConditionVariable()) {
+ ToConditionVariable =
+ dyn_cast_or_null<VarDecl>(Importer.Import(FromConditionVariable));
+ if (!ToConditionVariable)
+ return nullptr;
+ }
+ Expr *ToCondition = Importer.Import(S->getCond());
+ if (!ToCondition && S->getCond())
+ return nullptr;
+ Stmt *ToBody = Importer.Import(S->getBody());
+ if (!ToBody && S->getBody())
+ return nullptr;
+ SourceLocation ToWhileLoc = Importer.Import(S->getWhileLoc());
+ return new (Importer.getToContext()) WhileStmt(Importer.getToContext(),
+ ToConditionVariable,
+ ToCondition, ToBody,
+ ToWhileLoc);
+}
+
+Stmt *ASTNodeImporter::VisitDoStmt(DoStmt *S) {
+ Stmt *ToBody = Importer.Import(S->getBody());
+ if (!ToBody && S->getBody())
+ return nullptr;
+ Expr *ToCondition = Importer.Import(S->getCond());
+ if (!ToCondition && S->getCond())
+ return nullptr;
+ SourceLocation ToDoLoc = Importer.Import(S->getDoLoc());
+ SourceLocation ToWhileLoc = Importer.Import(S->getWhileLoc());
+ SourceLocation ToRParenLoc = Importer.Import(S->getRParenLoc());
+ return new (Importer.getToContext()) DoStmt(ToBody, ToCondition,
+ ToDoLoc, ToWhileLoc,
+ ToRParenLoc);
+}
+
+Stmt *ASTNodeImporter::VisitForStmt(ForStmt *S) {
+ Stmt *ToInit = Importer.Import(S->getInit());
+ if (!ToInit && S->getInit())
+ return nullptr;
+ Expr *ToCondition = Importer.Import(S->getCond());
+ if (!ToCondition && S->getCond())
+ return nullptr;
+ VarDecl *ToConditionVariable = nullptr;
+ if (VarDecl *FromConditionVariable = S->getConditionVariable()) {
+ ToConditionVariable =
+ dyn_cast_or_null<VarDecl>(Importer.Import(FromConditionVariable));
+ if (!ToConditionVariable)
+ return nullptr;
+ }
+ Expr *ToInc = Importer.Import(S->getInc());
+ if (!ToInc && S->getInc())
+ return nullptr;
+ Stmt *ToBody = Importer.Import(S->getBody());
+ if (!ToBody && S->getBody())
+ return nullptr;
+ SourceLocation ToForLoc = Importer.Import(S->getForLoc());
+ SourceLocation ToLParenLoc = Importer.Import(S->getLParenLoc());
+ SourceLocation ToRParenLoc = Importer.Import(S->getRParenLoc());
+ return new (Importer.getToContext()) ForStmt(Importer.getToContext(),
+ ToInit, ToCondition,
+ ToConditionVariable,
+ ToInc, ToBody,
+ ToForLoc, ToLParenLoc,
+ ToRParenLoc);
+}
+
+Stmt *ASTNodeImporter::VisitGotoStmt(GotoStmt *S) {
+ LabelDecl *ToLabel = nullptr;
+ if (LabelDecl *FromLabel = S->getLabel()) {
+ ToLabel = dyn_cast_or_null<LabelDecl>(Importer.Import(FromLabel));
+ if (!ToLabel)
+ return nullptr;
+ }
+ SourceLocation ToGotoLoc = Importer.Import(S->getGotoLoc());
+ SourceLocation ToLabelLoc = Importer.Import(S->getLabelLoc());
+ return new (Importer.getToContext()) GotoStmt(ToLabel,
+ ToGotoLoc, ToLabelLoc);
+}
+
+Stmt *ASTNodeImporter::VisitIndirectGotoStmt(IndirectGotoStmt *S) {
+ SourceLocation ToGotoLoc = Importer.Import(S->getGotoLoc());
+ SourceLocation ToStarLoc = Importer.Import(S->getStarLoc());
+ Expr *ToTarget = Importer.Import(S->getTarget());
+ if (!ToTarget && S->getTarget())
+ return nullptr;
+ return new (Importer.getToContext()) IndirectGotoStmt(ToGotoLoc, ToStarLoc,
+ ToTarget);
+}
+
+Stmt *ASTNodeImporter::VisitContinueStmt(ContinueStmt *S) {
+ SourceLocation ToContinueLoc = Importer.Import(S->getContinueLoc());
+ return new (Importer.getToContext()) ContinueStmt(ToContinueLoc);
+}
+
+Stmt *ASTNodeImporter::VisitBreakStmt(BreakStmt *S) {
+ SourceLocation ToBreakLoc = Importer.Import(S->getBreakLoc());
+ return new (Importer.getToContext()) BreakStmt(ToBreakLoc);
+}
+
+Stmt *ASTNodeImporter::VisitReturnStmt(ReturnStmt *S) {
+ SourceLocation ToRetLoc = Importer.Import(S->getReturnLoc());
+ Expr *ToRetExpr = Importer.Import(S->getRetValue());
+ if (!ToRetExpr && S->getRetValue())
+ return nullptr;
+ VarDecl *NRVOCandidate = const_cast<VarDecl*>(S->getNRVOCandidate());
+ VarDecl *ToNRVOCandidate = cast_or_null<VarDecl>(Importer.Import(NRVOCandidate));
+ if (!ToNRVOCandidate && NRVOCandidate)
+ return nullptr;
+ return new (Importer.getToContext()) ReturnStmt(ToRetLoc, ToRetExpr,
+ ToNRVOCandidate);
+}
+
+Stmt *ASTNodeImporter::VisitCXXCatchStmt(CXXCatchStmt *S) {
+ SourceLocation ToCatchLoc = Importer.Import(S->getCatchLoc());
+ VarDecl *ToExceptionDecl = nullptr;
+ if (VarDecl *FromExceptionDecl = S->getExceptionDecl()) {
+ ToExceptionDecl =
+ dyn_cast_or_null<VarDecl>(Importer.Import(FromExceptionDecl));
+ if (!ToExceptionDecl)
+ return nullptr;
+ }
+ Stmt *ToHandlerBlock = Importer.Import(S->getHandlerBlock());
+ if (!ToHandlerBlock && S->getHandlerBlock())
+ return nullptr;
+ return new (Importer.getToContext()) CXXCatchStmt(ToCatchLoc,
+ ToExceptionDecl,
+ ToHandlerBlock);
+}
+
+Stmt *ASTNodeImporter::VisitCXXTryStmt(CXXTryStmt *S) {
+ SourceLocation ToTryLoc = Importer.Import(S->getTryLoc());
+ Stmt *ToTryBlock = Importer.Import(S->getTryBlock());
+ if (!ToTryBlock && S->getTryBlock())
+ return nullptr;
+ SmallVector<Stmt *, 1> ToHandlers(S->getNumHandlers());
+ for (unsigned HI = 0, HE = S->getNumHandlers(); HI != HE; ++HI) {
+ CXXCatchStmt *FromHandler = S->getHandler(HI);
+ if (Stmt *ToHandler = Importer.Import(FromHandler))
+ ToHandlers[HI] = ToHandler;
+ else
+ return nullptr;
+ }
+ return CXXTryStmt::Create(Importer.getToContext(), ToTryLoc, ToTryBlock,
+ ToHandlers);
+}
+
+Stmt *ASTNodeImporter::VisitCXXForRangeStmt(CXXForRangeStmt *S) {
+ DeclStmt *ToRange =
+ dyn_cast_or_null<DeclStmt>(Importer.Import(S->getRangeStmt()));
+ if (!ToRange && S->getRangeStmt())
+ return nullptr;
+ DeclStmt *ToBeginEnd =
+ dyn_cast_or_null<DeclStmt>(Importer.Import(S->getBeginEndStmt()));
+ if (!ToBeginEnd && S->getBeginEndStmt())
+ return nullptr;
+ Expr *ToCond = Importer.Import(S->getCond());
+ if (!ToCond && S->getCond())
+ return nullptr;
+ Expr *ToInc = Importer.Import(S->getInc());
+ if (!ToInc && S->getInc())
+ return nullptr;
+ DeclStmt *ToLoopVar =
+ dyn_cast_or_null<DeclStmt>(Importer.Import(S->getLoopVarStmt()));
+ if (!ToLoopVar && S->getLoopVarStmt())
+ return nullptr;
+ Stmt *ToBody = Importer.Import(S->getBody());
+ if (!ToBody && S->getBody())
+ return nullptr;
+ SourceLocation ToForLoc = Importer.Import(S->getForLoc());
+ SourceLocation ToColonLoc = Importer.Import(S->getColonLoc());
+ SourceLocation ToRParenLoc = Importer.Import(S->getRParenLoc());
+ return new (Importer.getToContext()) CXXForRangeStmt(ToRange, ToBeginEnd,
+ ToCond, ToInc,
+ ToLoopVar, ToBody,
+ ToForLoc, ToColonLoc,
+ ToRParenLoc);
+}
+
+Stmt *ASTNodeImporter::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
+ Stmt *ToElem = Importer.Import(S->getElement());
+ if (!ToElem && S->getElement())
+ return nullptr;
+ Expr *ToCollect = Importer.Import(S->getCollection());
+ if (!ToCollect && S->getCollection())
+ return nullptr;
+ Stmt *ToBody = Importer.Import(S->getBody());
+ if (!ToBody && S->getBody())
+ return nullptr;
+ SourceLocation ToForLoc = Importer.Import(S->getForLoc());
+ SourceLocation ToRParenLoc = Importer.Import(S->getRParenLoc());
+ return new (Importer.getToContext()) ObjCForCollectionStmt(ToElem,
+ ToCollect,
+ ToBody, ToForLoc,
+ ToRParenLoc);
+}
+
+Stmt *ASTNodeImporter::VisitObjCAtCatchStmt(ObjCAtCatchStmt *S) {
+ SourceLocation ToAtCatchLoc = Importer.Import(S->getAtCatchLoc());
+ SourceLocation ToRParenLoc = Importer.Import(S->getRParenLoc());
+ VarDecl *ToExceptionDecl = nullptr;
+ if (VarDecl *FromExceptionDecl = S->getCatchParamDecl()) {
+ ToExceptionDecl =
+ dyn_cast_or_null<VarDecl>(Importer.Import(FromExceptionDecl));
+ if (!ToExceptionDecl)
+ return nullptr;
+ }
+ Stmt *ToBody = Importer.Import(S->getCatchBody());
+ if (!ToBody && S->getCatchBody())
+ return nullptr;
+ return new (Importer.getToContext()) ObjCAtCatchStmt(ToAtCatchLoc,
+ ToRParenLoc,
+ ToExceptionDecl,
+ ToBody);
+}
+
+Stmt *ASTNodeImporter::VisitObjCAtFinallyStmt(ObjCAtFinallyStmt *S) {
+ SourceLocation ToAtFinallyLoc = Importer.Import(S->getAtFinallyLoc());
+ Stmt *ToAtFinallyStmt = Importer.Import(S->getFinallyBody());
+ if (!ToAtFinallyStmt && S->getFinallyBody())
+ return nullptr;
+ return new (Importer.getToContext()) ObjCAtFinallyStmt(ToAtFinallyLoc,
+ ToAtFinallyStmt);
+}
+
+Stmt *ASTNodeImporter::VisitObjCAtTryStmt(ObjCAtTryStmt *S) {
+ SourceLocation ToAtTryLoc = Importer.Import(S->getAtTryLoc());
+ Stmt *ToAtTryStmt = Importer.Import(S->getTryBody());
+ if (!ToAtTryStmt && S->getTryBody())
+ return nullptr;
+ SmallVector<Stmt *, 1> ToCatchStmts(S->getNumCatchStmts());
+ for (unsigned CI = 0, CE = S->getNumCatchStmts(); CI != CE; ++CI) {
+ ObjCAtCatchStmt *FromCatchStmt = S->getCatchStmt(CI);
+ if (Stmt *ToCatchStmt = Importer.Import(FromCatchStmt))
+ ToCatchStmts[CI] = ToCatchStmt;
+ else
+ return nullptr;
+ }
+ Stmt *ToAtFinallyStmt = Importer.Import(S->getFinallyStmt());
+ if (!ToAtFinallyStmt && S->getFinallyStmt())
+ return nullptr;
+ return ObjCAtTryStmt::Create(Importer.getToContext(),
+ ToAtTryLoc, ToAtTryStmt,
+ ToCatchStmts.begin(), ToCatchStmts.size(),
+ ToAtFinallyStmt);
+}
+
+Stmt *ASTNodeImporter::VisitObjCAtSynchronizedStmt
+ (ObjCAtSynchronizedStmt *S) {
+ SourceLocation ToAtSynchronizedLoc =
+ Importer.Import(S->getAtSynchronizedLoc());
+ Expr *ToSynchExpr = Importer.Import(S->getSynchExpr());
+ if (!ToSynchExpr && S->getSynchExpr())
+ return nullptr;
+ Stmt *ToSynchBody = Importer.Import(S->getSynchBody());
+ if (!ToSynchBody && S->getSynchBody())
+ return nullptr;
+ return new (Importer.getToContext()) ObjCAtSynchronizedStmt(
+ ToAtSynchronizedLoc, ToSynchExpr, ToSynchBody);
+}
+
+Stmt *ASTNodeImporter::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) {
+ SourceLocation ToAtThrowLoc = Importer.Import(S->getThrowLoc());
+ Expr *ToThrow = Importer.Import(S->getThrowExpr());
+ if (!ToThrow && S->getThrowExpr())
+ return nullptr;
+ return new (Importer.getToContext()) ObjCAtThrowStmt(ToAtThrowLoc, ToThrow);
+}
+
+Stmt *ASTNodeImporter::VisitObjCAutoreleasePoolStmt
+ (ObjCAutoreleasePoolStmt *S) {
+ SourceLocation ToAtLoc = Importer.Import(S->getAtLoc());
+ Stmt *ToSubStmt = Importer.Import(S->getSubStmt());
+ if (!ToSubStmt && S->getSubStmt())
+ return nullptr;
+ return new (Importer.getToContext()) ObjCAutoreleasePoolStmt(ToAtLoc,
+ ToSubStmt);
+}
+
+//----------------------------------------------------------------------------
+// Import Expressions
+//----------------------------------------------------------------------------
+Expr *ASTNodeImporter::VisitExpr(Expr *E) {
+ Importer.FromDiag(E->getLocStart(), diag::err_unsupported_ast_node)
+ << E->getStmtClassName();
+ return nullptr;
+}
+
+Expr *ASTNodeImporter::VisitDeclRefExpr(DeclRefExpr *E) {
+ ValueDecl *ToD = cast_or_null<ValueDecl>(Importer.Import(E->getDecl()));
+ if (!ToD)
+ return nullptr;
+
+ NamedDecl *FoundD = nullptr;
+ if (E->getDecl() != E->getFoundDecl()) {
+ FoundD = cast_or_null<NamedDecl>(Importer.Import(E->getFoundDecl()));
+ if (!FoundD)
+ return nullptr;
+ }
+
+ QualType T = Importer.Import(E->getType());
+ if (T.isNull())
+ return nullptr;
+
+ DeclRefExpr *DRE = DeclRefExpr::Create(Importer.getToContext(),
+ Importer.Import(E->getQualifierLoc()),
+ Importer.Import(E->getTemplateKeywordLoc()),
+ ToD,
+ E->refersToEnclosingVariableOrCapture(),
+ Importer.Import(E->getLocation()),
+ T, E->getValueKind(),
+ FoundD,
+ /*FIXME:TemplateArgs=*/nullptr);
+ if (E->hadMultipleCandidates())
+ DRE->setHadMultipleCandidates(true);
+ return DRE;
+}
+
+Expr *ASTNodeImporter::VisitIntegerLiteral(IntegerLiteral *E) {
+ QualType T = Importer.Import(E->getType());
+ if (T.isNull())
+ return nullptr;
+
+ return IntegerLiteral::Create(Importer.getToContext(),
+ E->getValue(), T,
+ Importer.Import(E->getLocation()));
+}
+
+Expr *ASTNodeImporter::VisitCharacterLiteral(CharacterLiteral *E) {
+ QualType T = Importer.Import(E->getType());
+ if (T.isNull())
+ return nullptr;
+
+ return new (Importer.getToContext()) CharacterLiteral(E->getValue(),
+ E->getKind(), T,
+ Importer.Import(E->getLocation()));
+}
+
+Expr *ASTNodeImporter::VisitParenExpr(ParenExpr *E) {
+ Expr *SubExpr = Importer.Import(E->getSubExpr());
+ if (!SubExpr)
+ return nullptr;
+
+ return new (Importer.getToContext())
+ ParenExpr(Importer.Import(E->getLParen()),
+ Importer.Import(E->getRParen()),
+ SubExpr);
+}
+
+Expr *ASTNodeImporter::VisitUnaryOperator(UnaryOperator *E) {
+ QualType T = Importer.Import(E->getType());
+ if (T.isNull())
+ return nullptr;
+
+ Expr *SubExpr = Importer.Import(E->getSubExpr());
+ if (!SubExpr)
+ return nullptr;
+
+ return new (Importer.getToContext()) UnaryOperator(SubExpr, E->getOpcode(),
+ T, E->getValueKind(),
+ E->getObjectKind(),
+ Importer.Import(E->getOperatorLoc()));
+}
+
+Expr *ASTNodeImporter::VisitUnaryExprOrTypeTraitExpr(
+ UnaryExprOrTypeTraitExpr *E) {
+ QualType ResultType = Importer.Import(E->getType());
+
+ if (E->isArgumentType()) {
+ TypeSourceInfo *TInfo = Importer.Import(E->getArgumentTypeInfo());
+ if (!TInfo)
+ return nullptr;
+
+ return new (Importer.getToContext()) UnaryExprOrTypeTraitExpr(E->getKind(),
+ TInfo, ResultType,
+ Importer.Import(E->getOperatorLoc()),
+ Importer.Import(E->getRParenLoc()));
+ }
+
+ Expr *SubExpr = Importer.Import(E->getArgumentExpr());
+ if (!SubExpr)
+ return nullptr;
+
+ return new (Importer.getToContext()) UnaryExprOrTypeTraitExpr(E->getKind(),
+ SubExpr, ResultType,
+ Importer.Import(E->getOperatorLoc()),
+ Importer.Import(E->getRParenLoc()));
+}
+
+Expr *ASTNodeImporter::VisitBinaryOperator(BinaryOperator *E) {
+ QualType T = Importer.Import(E->getType());
+ if (T.isNull())
+ return nullptr;
+
+ Expr *LHS = Importer.Import(E->getLHS());
+ if (!LHS)
+ return nullptr;
+
+ Expr *RHS = Importer.Import(E->getRHS());
+ if (!RHS)
+ return nullptr;
+
+ return new (Importer.getToContext()) BinaryOperator(LHS, RHS, E->getOpcode(),
+ T, E->getValueKind(),
+ E->getObjectKind(),
+ Importer.Import(E->getOperatorLoc()),
+ E->isFPContractable());
+}
+
+Expr *ASTNodeImporter::VisitCompoundAssignOperator(CompoundAssignOperator *E) {
+ QualType T = Importer.Import(E->getType());
+ if (T.isNull())
+ return nullptr;
+
+ QualType CompLHSType = Importer.Import(E->getComputationLHSType());
+ if (CompLHSType.isNull())
+ return nullptr;
+
+ QualType CompResultType = Importer.Import(E->getComputationResultType());
+ if (CompResultType.isNull())
+ return nullptr;
+
+ Expr *LHS = Importer.Import(E->getLHS());
+ if (!LHS)
+ return nullptr;
+
+ Expr *RHS = Importer.Import(E->getRHS());
+ if (!RHS)
+ return nullptr;
+
+ return new (Importer.getToContext())
+ CompoundAssignOperator(LHS, RHS, E->getOpcode(),
+ T, E->getValueKind(),
+ E->getObjectKind(),
+ CompLHSType, CompResultType,
+ Importer.Import(E->getOperatorLoc()),
+ E->isFPContractable());
+}
+
+static bool ImportCastPath(CastExpr *E, CXXCastPath &Path) {
+ if (E->path_empty()) return false;
+
+ // TODO: import cast paths
+ return true;
+}
+
+Expr *ASTNodeImporter::VisitImplicitCastExpr(ImplicitCastExpr *E) {
+ QualType T = Importer.Import(E->getType());
+ if (T.isNull())
+ return nullptr;
+
+ Expr *SubExpr = Importer.Import(E->getSubExpr());
+ if (!SubExpr)
+ return nullptr;
+
+ CXXCastPath BasePath;
+ if (ImportCastPath(E, BasePath))
+ return nullptr;
+
+ return ImplicitCastExpr::Create(Importer.getToContext(), T, E->getCastKind(),
+ SubExpr, &BasePath, E->getValueKind());
+}
+
+Expr *ASTNodeImporter::VisitCStyleCastExpr(CStyleCastExpr *E) {
+ QualType T = Importer.Import(E->getType());
+ if (T.isNull())
+ return nullptr;
+
+ Expr *SubExpr = Importer.Import(E->getSubExpr());
+ if (!SubExpr)
+ return nullptr;
+
+ TypeSourceInfo *TInfo = Importer.Import(E->getTypeInfoAsWritten());
+ if (!TInfo && E->getTypeInfoAsWritten())
+ return nullptr;
+
+ CXXCastPath BasePath;
+ if (ImportCastPath(E, BasePath))
+ return nullptr;
+
+ return CStyleCastExpr::Create(Importer.getToContext(), T,
+ E->getValueKind(), E->getCastKind(),
+ SubExpr, &BasePath, TInfo,
+ Importer.Import(E->getLParenLoc()),
+ Importer.Import(E->getRParenLoc()));
+}
+
+Expr *ASTNodeImporter::VisitCXXConstructExpr(CXXConstructExpr *E) {
+ QualType T = Importer.Import(E->getType());
+ if (T.isNull())
+ return nullptr;
+
+ CXXConstructorDecl *ToCCD =
+ dyn_cast<CXXConstructorDecl>(Importer.Import(E->getConstructor()));
+ if (!ToCCD && E->getConstructor())
+ return nullptr;
+
+ size_t NumArgs = E->getNumArgs();
+ SmallVector<Expr *, 1> ToArgs(NumArgs);
+ ASTImporter &_Importer = Importer;
+ std::transform(E->arg_begin(), E->arg_end(), ToArgs.begin(),
+ [&_Importer](Expr *AE) -> Expr * {
+ return _Importer.Import(AE);
+ });
+ for (Expr *ToA : ToArgs) {
+ if (!ToA)
+ return nullptr;
+ }
+
+ return CXXConstructExpr::Create(Importer.getToContext(), T,
+ Importer.Import(E->getLocation()),
+ ToCCD, E->isElidable(),
+ ToArgs, E->hadMultipleCandidates(),
+ E->isListInitialization(),
+ E->isStdInitListInitialization(),
+ E->requiresZeroInitialization(),
+ E->getConstructionKind(),
+ Importer.Import(E->getParenOrBraceRange()));
+}
+
+Expr *ASTNodeImporter::VisitMemberExpr(MemberExpr *E) {
+ QualType T = Importer.Import(E->getType());
+ if (T.isNull())
+ return nullptr;
+
+ Expr *ToBase = Importer.Import(E->getBase());
+ if (!ToBase && E->getBase())
+ return nullptr;
+
+ ValueDecl *ToMember = dyn_cast<ValueDecl>(Importer.Import(E->getMemberDecl()));
+ if (!ToMember && E->getMemberDecl())
+ return nullptr;
+
+ DeclAccessPair ToFoundDecl = DeclAccessPair::make(
+ dyn_cast<NamedDecl>(Importer.Import(E->getFoundDecl().getDecl())),
+ E->getFoundDecl().getAccess());
+
+ DeclarationNameInfo ToMemberNameInfo(
+ Importer.Import(E->getMemberNameInfo().getName()),
+ Importer.Import(E->getMemberNameInfo().getLoc()));
+
+ if (E->hasExplicitTemplateArgs()) {
+ return nullptr; // FIXME: handle template arguments
+ }
+
+ return MemberExpr::Create(Importer.getToContext(), ToBase,
+ E->isArrow(),
+ Importer.Import(E->getOperatorLoc()),
+ Importer.Import(E->getQualifierLoc()),
+ Importer.Import(E->getTemplateKeywordLoc()),
+ ToMember, ToFoundDecl, ToMemberNameInfo,
+ nullptr, T, E->getValueKind(),
+ E->getObjectKind());
+}
+
+Expr *ASTNodeImporter::VisitCallExpr(CallExpr *E) {
+ QualType T = Importer.Import(E->getType());
+ if (T.isNull())
+ return nullptr;
+
+ Expr *ToCallee = Importer.Import(E->getCallee());
+ if (!ToCallee && E->getCallee())
+ return nullptr;
+
+ unsigned NumArgs = E->getNumArgs();
+
+ llvm::SmallVector<Expr *, 2> ToArgs(NumArgs);
+
+ for (unsigned ai = 0, ae = NumArgs; ai != ae; ++ai) {
+ Expr *FromArg = E->getArg(ai);
+ Expr *ToArg = Importer.Import(FromArg);
+ if (!ToArg)
+ return nullptr;
+ ToArgs[ai] = ToArg;
+ }
+
+ Expr **ToArgs_Copied = new (Importer.getToContext())
+ Expr*[NumArgs];
+
+ for (unsigned ai = 0, ae = NumArgs; ai != ae; ++ai)
+ ToArgs_Copied[ai] = ToArgs[ai];
+
+ return new (Importer.getToContext())
+ CallExpr(Importer.getToContext(), ToCallee,
+ ArrayRef<Expr*>(ToArgs_Copied, NumArgs), T, E->getValueKind(),
+ Importer.Import(E->getRParenLoc()));
+}
+
+ASTImporter::ASTImporter(ASTContext &ToContext, FileManager &ToFileManager,
+ ASTContext &FromContext, FileManager &FromFileManager,
+ bool MinimalImport)
+ : ToContext(ToContext), FromContext(FromContext),
+ ToFileManager(ToFileManager), FromFileManager(FromFileManager),
+ Minimal(MinimalImport), LastDiagFromFrom(false)
+{
+ ImportedDecls[FromContext.getTranslationUnitDecl()]
+ = ToContext.getTranslationUnitDecl();
+}
+
+ASTImporter::~ASTImporter() { }
+
+QualType ASTImporter::Import(QualType FromT) {
+ if (FromT.isNull())
+ return QualType();
+
+ const Type *fromTy = FromT.getTypePtr();
+
+ // Check whether we've already imported this type.
+ llvm::DenseMap<const Type *, const Type *>::iterator Pos
+ = ImportedTypes.find(fromTy);
+ if (Pos != ImportedTypes.end())
+ return ToContext.getQualifiedType(Pos->second, FromT.getLocalQualifiers());
+
+ // Import the type
+ ASTNodeImporter Importer(*this);
+ QualType ToT = Importer.Visit(fromTy);
+ if (ToT.isNull())
+ return ToT;
+
+ // Record the imported type.
+ ImportedTypes[fromTy] = ToT.getTypePtr();
+
+ return ToContext.getQualifiedType(ToT, FromT.getLocalQualifiers());
+}
+
+TypeSourceInfo *ASTImporter::Import(TypeSourceInfo *FromTSI) {
+ if (!FromTSI)
+ return FromTSI;
+
+ // FIXME: For now we just create a "trivial" type source info based
+ // on the type and a single location. Implement a real version of this.
+ QualType T = Import(FromTSI->getType());
+ if (T.isNull())
+ return nullptr;
+
+ return ToContext.getTrivialTypeSourceInfo(T,
+ FromTSI->getTypeLoc().getLocStart());
+}
+
+Decl *ASTImporter::GetAlreadyImportedOrNull(Decl *FromD) {
+ llvm::DenseMap<Decl *, Decl *>::iterator Pos = ImportedDecls.find(FromD);
+ if (Pos != ImportedDecls.end()) {
+ Decl *ToD = Pos->second;
+ ASTNodeImporter(*this).ImportDefinitionIfNeeded(FromD, ToD);
+ return ToD;
+ } else {
+ return nullptr;
+ }
+}
+
+Decl *ASTImporter::Import(Decl *FromD) {
+ if (!FromD)
+ return nullptr;
+
+ ASTNodeImporter Importer(*this);
+
+ // Check whether we've already imported this declaration.
+ llvm::DenseMap<Decl *, Decl *>::iterator Pos = ImportedDecls.find(FromD);
+ if (Pos != ImportedDecls.end()) {
+ Decl *ToD = Pos->second;
+ Importer.ImportDefinitionIfNeeded(FromD, ToD);
+ return ToD;
+ }
+
+ // Import the type
+ Decl *ToD = Importer.Visit(FromD);
+ if (!ToD)
+ return nullptr;
+
+ // Record the imported declaration.
+ ImportedDecls[FromD] = ToD;
+
+ if (TagDecl *FromTag = dyn_cast<TagDecl>(FromD)) {
+ // Keep track of anonymous tags that have an associated typedef.
+ if (FromTag->getTypedefNameForAnonDecl())
+ AnonTagsWithPendingTypedefs.push_back(FromTag);
+ } else if (TypedefNameDecl *FromTypedef = dyn_cast<TypedefNameDecl>(FromD)) {
+ // When we've finished transforming a typedef, see whether it was the
+ // typedef for an anonymous tag.
+ for (SmallVectorImpl<TagDecl *>::iterator
+ FromTag = AnonTagsWithPendingTypedefs.begin(),
+ FromTagEnd = AnonTagsWithPendingTypedefs.end();
+ FromTag != FromTagEnd; ++FromTag) {
+ if ((*FromTag)->getTypedefNameForAnonDecl() == FromTypedef) {
+ if (TagDecl *ToTag = cast_or_null<TagDecl>(Import(*FromTag))) {
+ // We found the typedef for an anonymous tag; link them.
+ ToTag->setTypedefNameForAnonDecl(cast<TypedefNameDecl>(ToD));
+ AnonTagsWithPendingTypedefs.erase(FromTag);
+ break;
+ }
+ }
+ }
+ }
+
+ return ToD;
+}
+
+DeclContext *ASTImporter::ImportContext(DeclContext *FromDC) {
+ if (!FromDC)
+ return FromDC;
+
+ DeclContext *ToDC = cast_or_null<DeclContext>(Import(cast<Decl>(FromDC)));
+ if (!ToDC)
+ return nullptr;
+
+ // When we're using a record/enum/Objective-C class/protocol as a context, we
+ // need it to have a definition.
+ if (RecordDecl *ToRecord = dyn_cast<RecordDecl>(ToDC)) {
+ RecordDecl *FromRecord = cast<RecordDecl>(FromDC);
+ if (ToRecord->isCompleteDefinition()) {
+ // Do nothing.
+ } else if (FromRecord->isCompleteDefinition()) {
+ ASTNodeImporter(*this).ImportDefinition(FromRecord, ToRecord,
+ ASTNodeImporter::IDK_Basic);
+ } else {
+ CompleteDecl(ToRecord);
+ }
+ } else if (EnumDecl *ToEnum = dyn_cast<EnumDecl>(ToDC)) {
+ EnumDecl *FromEnum = cast<EnumDecl>(FromDC);
+ if (ToEnum->isCompleteDefinition()) {
+ // Do nothing.
+ } else if (FromEnum->isCompleteDefinition()) {
+ ASTNodeImporter(*this).ImportDefinition(FromEnum, ToEnum,
+ ASTNodeImporter::IDK_Basic);
+ } else {
+ CompleteDecl(ToEnum);
+ }
+ } else if (ObjCInterfaceDecl *ToClass = dyn_cast<ObjCInterfaceDecl>(ToDC)) {
+ ObjCInterfaceDecl *FromClass = cast<ObjCInterfaceDecl>(FromDC);
+ if (ToClass->getDefinition()) {
+ // Do nothing.
+ } else if (ObjCInterfaceDecl *FromDef = FromClass->getDefinition()) {
+ ASTNodeImporter(*this).ImportDefinition(FromDef, ToClass,
+ ASTNodeImporter::IDK_Basic);
+ } else {
+ CompleteDecl(ToClass);
+ }
+ } else if (ObjCProtocolDecl *ToProto = dyn_cast<ObjCProtocolDecl>(ToDC)) {
+ ObjCProtocolDecl *FromProto = cast<ObjCProtocolDecl>(FromDC);
+ if (ToProto->getDefinition()) {
+ // Do nothing.
+ } else if (ObjCProtocolDecl *FromDef = FromProto->getDefinition()) {
+ ASTNodeImporter(*this).ImportDefinition(FromDef, ToProto,
+ ASTNodeImporter::IDK_Basic);
+ } else {
+ CompleteDecl(ToProto);
+ }
+ }
+
+ return ToDC;
+}
+
+Expr *ASTImporter::Import(Expr *FromE) {
+ if (!FromE)
+ return nullptr;
+
+ return cast_or_null<Expr>(Import(cast<Stmt>(FromE)));
+}
+
+Stmt *ASTImporter::Import(Stmt *FromS) {
+ if (!FromS)
+ return nullptr;
+
+ // Check whether we've already imported this declaration.
+ llvm::DenseMap<Stmt *, Stmt *>::iterator Pos = ImportedStmts.find(FromS);
+ if (Pos != ImportedStmts.end())
+ return Pos->second;
+
+ // Import the type
+ ASTNodeImporter Importer(*this);
+ Stmt *ToS = Importer.Visit(FromS);
+ if (!ToS)
+ return nullptr;
+
+ // Record the imported declaration.
+ ImportedStmts[FromS] = ToS;
+ return ToS;
+}
+
+NestedNameSpecifier *ASTImporter::Import(NestedNameSpecifier *FromNNS) {
+ if (!FromNNS)
+ return nullptr;
+
+ NestedNameSpecifier *prefix = Import(FromNNS->getPrefix());
+
+ switch (FromNNS->getKind()) {
+ case NestedNameSpecifier::Identifier:
+ if (IdentifierInfo *II = Import(FromNNS->getAsIdentifier())) {
+ return NestedNameSpecifier::Create(ToContext, prefix, II);
+ }
+ return nullptr;
+
+ case NestedNameSpecifier::Namespace:
+ if (NamespaceDecl *NS =
+ cast<NamespaceDecl>(Import(FromNNS->getAsNamespace()))) {
+ return NestedNameSpecifier::Create(ToContext, prefix, NS);
+ }
+ return nullptr;
+
+ case NestedNameSpecifier::NamespaceAlias:
+ if (NamespaceAliasDecl *NSAD =
+ cast<NamespaceAliasDecl>(Import(FromNNS->getAsNamespaceAlias()))) {
+ return NestedNameSpecifier::Create(ToContext, prefix, NSAD);
+ }
+ return nullptr;
+
+ case NestedNameSpecifier::Global:
+ return NestedNameSpecifier::GlobalSpecifier(ToContext);
+
+ case NestedNameSpecifier::Super:
+ if (CXXRecordDecl *RD =
+ cast<CXXRecordDecl>(Import(FromNNS->getAsRecordDecl()))) {
+ return NestedNameSpecifier::SuperSpecifier(ToContext, RD);
+ }
+ return nullptr;
+
+ case NestedNameSpecifier::TypeSpec:
+ case NestedNameSpecifier::TypeSpecWithTemplate: {
+ QualType T = Import(QualType(FromNNS->getAsType(), 0u));
+ if (!T.isNull()) {
+ bool bTemplate = FromNNS->getKind() ==
+ NestedNameSpecifier::TypeSpecWithTemplate;
+ return NestedNameSpecifier::Create(ToContext, prefix,
+ bTemplate, T.getTypePtr());
+ }
+ }
+ return nullptr;
+ }
+
+ llvm_unreachable("Invalid nested name specifier kind");
+}
+
+NestedNameSpecifierLoc ASTImporter::Import(NestedNameSpecifierLoc FromNNS) {
+ // FIXME: Implement!
+ return NestedNameSpecifierLoc();
+}
+
+TemplateName ASTImporter::Import(TemplateName From) {
+ switch (From.getKind()) {
+ case TemplateName::Template:
+ if (TemplateDecl *ToTemplate
+ = cast_or_null<TemplateDecl>(Import(From.getAsTemplateDecl())))
+ return TemplateName(ToTemplate);
+
+ return TemplateName();
+
+ case TemplateName::OverloadedTemplate: {
+ OverloadedTemplateStorage *FromStorage = From.getAsOverloadedTemplate();
+ UnresolvedSet<2> ToTemplates;
+ for (OverloadedTemplateStorage::iterator I = FromStorage->begin(),
+ E = FromStorage->end();
+ I != E; ++I) {
+ if (NamedDecl *To = cast_or_null<NamedDecl>(Import(*I)))
+ ToTemplates.addDecl(To);
+ else
+ return TemplateName();
+ }
+ return ToContext.getOverloadedTemplateName(ToTemplates.begin(),
+ ToTemplates.end());
+ }
+
+ case TemplateName::QualifiedTemplate: {
+ QualifiedTemplateName *QTN = From.getAsQualifiedTemplateName();
+ NestedNameSpecifier *Qualifier = Import(QTN->getQualifier());
+ if (!Qualifier)
+ return TemplateName();
+
+ if (TemplateDecl *ToTemplate
+ = cast_or_null<TemplateDecl>(Import(From.getAsTemplateDecl())))
+ return ToContext.getQualifiedTemplateName(Qualifier,
+ QTN->hasTemplateKeyword(),
+ ToTemplate);
+
+ return TemplateName();
+ }
+
+ case TemplateName::DependentTemplate: {
+ DependentTemplateName *DTN = From.getAsDependentTemplateName();
+ NestedNameSpecifier *Qualifier = Import(DTN->getQualifier());
+ if (!Qualifier)
+ return TemplateName();
+
+ if (DTN->isIdentifier()) {
+ return ToContext.getDependentTemplateName(Qualifier,
+ Import(DTN->getIdentifier()));
+ }
+
+ return ToContext.getDependentTemplateName(Qualifier, DTN->getOperator());
+ }
+
+ case TemplateName::SubstTemplateTemplateParm: {
+ SubstTemplateTemplateParmStorage *subst
+ = From.getAsSubstTemplateTemplateParm();
+ TemplateTemplateParmDecl *param
+ = cast_or_null<TemplateTemplateParmDecl>(Import(subst->getParameter()));
+ if (!param)
+ return TemplateName();
+
+ TemplateName replacement = Import(subst->getReplacement());
+ if (replacement.isNull()) return TemplateName();
+
+ return ToContext.getSubstTemplateTemplateParm(param, replacement);
+ }
+
+ case TemplateName::SubstTemplateTemplateParmPack: {
+ SubstTemplateTemplateParmPackStorage *SubstPack
+ = From.getAsSubstTemplateTemplateParmPack();
+ TemplateTemplateParmDecl *Param
+ = cast_or_null<TemplateTemplateParmDecl>(
+ Import(SubstPack->getParameterPack()));
+ if (!Param)
+ return TemplateName();
+
+ ASTNodeImporter Importer(*this);
+ TemplateArgument ArgPack
+ = Importer.ImportTemplateArgument(SubstPack->getArgumentPack());
+ if (ArgPack.isNull())
+ return TemplateName();
+
+ return ToContext.getSubstTemplateTemplateParmPack(Param, ArgPack);
+ }
+ }
+
+ llvm_unreachable("Invalid template name kind");
+}
+
+SourceLocation ASTImporter::Import(SourceLocation FromLoc) {
+ if (FromLoc.isInvalid())
+ return SourceLocation();
+
+ SourceManager &FromSM = FromContext.getSourceManager();
+
+ // For now, map everything down to its spelling location, so that we
+ // don't have to import macro expansions.
+ // FIXME: Import macro expansions!
+ FromLoc = FromSM.getSpellingLoc(FromLoc);
+ std::pair<FileID, unsigned> Decomposed = FromSM.getDecomposedLoc(FromLoc);
+ SourceManager &ToSM = ToContext.getSourceManager();
+ FileID ToFileID = Import(Decomposed.first);
+ if (ToFileID.isInvalid())
+ return SourceLocation();
+ SourceLocation ret = ToSM.getLocForStartOfFile(ToFileID)
+ .getLocWithOffset(Decomposed.second);
+ return ret;
+}
+
+SourceRange ASTImporter::Import(SourceRange FromRange) {
+ return SourceRange(Import(FromRange.getBegin()), Import(FromRange.getEnd()));
+}
+
+FileID ASTImporter::Import(FileID FromID) {
+ llvm::DenseMap<FileID, FileID>::iterator Pos
+ = ImportedFileIDs.find(FromID);
+ if (Pos != ImportedFileIDs.end())
+ return Pos->second;
+
+ SourceManager &FromSM = FromContext.getSourceManager();
+ SourceManager &ToSM = ToContext.getSourceManager();
+ const SrcMgr::SLocEntry &FromSLoc = FromSM.getSLocEntry(FromID);
+ assert(FromSLoc.isFile() && "Cannot handle macro expansions yet");
+
+ // Include location of this file.
+ SourceLocation ToIncludeLoc = Import(FromSLoc.getFile().getIncludeLoc());
+
+ // Map the FileID for to the "to" source manager.
+ FileID ToID;
+ const SrcMgr::ContentCache *Cache = FromSLoc.getFile().getContentCache();
+ if (Cache->OrigEntry && Cache->OrigEntry->getDir()) {
+ // FIXME: We probably want to use getVirtualFile(), so we don't hit the
+ // disk again
+ // FIXME: We definitely want to re-use the existing MemoryBuffer, rather
+ // than mmap the files several times.
+ const FileEntry *Entry = ToFileManager.getFile(Cache->OrigEntry->getName());
+ if (!Entry)
+ return FileID();
+ ToID = ToSM.createFileID(Entry, ToIncludeLoc,
+ FromSLoc.getFile().getFileCharacteristic());
+ } else {
+ // FIXME: We want to re-use the existing MemoryBuffer!
+ const llvm::MemoryBuffer *
+ FromBuf = Cache->getBuffer(FromContext.getDiagnostics(), FromSM);
+ std::unique_ptr<llvm::MemoryBuffer> ToBuf
+ = llvm::MemoryBuffer::getMemBufferCopy(FromBuf->getBuffer(),
+ FromBuf->getBufferIdentifier());
+ ToID = ToSM.createFileID(std::move(ToBuf),
+ FromSLoc.getFile().getFileCharacteristic());
+ }
+
+
+ ImportedFileIDs[FromID] = ToID;
+ return ToID;
+}
+
+void ASTImporter::ImportDefinition(Decl *From) {
+ Decl *To = Import(From);
+ if (!To)
+ return;
+
+ if (DeclContext *FromDC = cast<DeclContext>(From)) {
+ ASTNodeImporter Importer(*this);
+
+ if (RecordDecl *ToRecord = dyn_cast<RecordDecl>(To)) {
+ if (!ToRecord->getDefinition()) {
+ Importer.ImportDefinition(cast<RecordDecl>(FromDC), ToRecord,
+ ASTNodeImporter::IDK_Everything);
+ return;
+ }
+ }
+
+ if (EnumDecl *ToEnum = dyn_cast<EnumDecl>(To)) {
+ if (!ToEnum->getDefinition()) {
+ Importer.ImportDefinition(cast<EnumDecl>(FromDC), ToEnum,
+ ASTNodeImporter::IDK_Everything);
+ return;
+ }
+ }
+
+ if (ObjCInterfaceDecl *ToIFace = dyn_cast<ObjCInterfaceDecl>(To)) {
+ if (!ToIFace->getDefinition()) {
+ Importer.ImportDefinition(cast<ObjCInterfaceDecl>(FromDC), ToIFace,
+ ASTNodeImporter::IDK_Everything);
+ return;
+ }
+ }
+
+ if (ObjCProtocolDecl *ToProto = dyn_cast<ObjCProtocolDecl>(To)) {
+ if (!ToProto->getDefinition()) {
+ Importer.ImportDefinition(cast<ObjCProtocolDecl>(FromDC), ToProto,
+ ASTNodeImporter::IDK_Everything);
+ return;
+ }
+ }
+
+ Importer.ImportDeclContext(FromDC, true);
+ }
+}
+
+DeclarationName ASTImporter::Import(DeclarationName FromName) {
+ if (!FromName)
+ return DeclarationName();
+
+ switch (FromName.getNameKind()) {
+ case DeclarationName::Identifier:
+ return Import(FromName.getAsIdentifierInfo());
+
+ case DeclarationName::ObjCZeroArgSelector:
+ case DeclarationName::ObjCOneArgSelector:
+ case DeclarationName::ObjCMultiArgSelector:
+ return Import(FromName.getObjCSelector());
+
+ case DeclarationName::CXXConstructorName: {
+ QualType T = Import(FromName.getCXXNameType());
+ if (T.isNull())
+ return DeclarationName();
+
+ return ToContext.DeclarationNames.getCXXConstructorName(
+ ToContext.getCanonicalType(T));
+ }
+
+ case DeclarationName::CXXDestructorName: {
+ QualType T = Import(FromName.getCXXNameType());
+ if (T.isNull())
+ return DeclarationName();
+
+ return ToContext.DeclarationNames.getCXXDestructorName(
+ ToContext.getCanonicalType(T));
+ }
+
+ case DeclarationName::CXXConversionFunctionName: {
+ QualType T = Import(FromName.getCXXNameType());
+ if (T.isNull())
+ return DeclarationName();
+
+ return ToContext.DeclarationNames.getCXXConversionFunctionName(
+ ToContext.getCanonicalType(T));
+ }
+
+ case DeclarationName::CXXOperatorName:
+ return ToContext.DeclarationNames.getCXXOperatorName(
+ FromName.getCXXOverloadedOperator());
+
+ case DeclarationName::CXXLiteralOperatorName:
+ return ToContext.DeclarationNames.getCXXLiteralOperatorName(
+ Import(FromName.getCXXLiteralIdentifier()));
+
+ case DeclarationName::CXXUsingDirective:
+ // FIXME: STATICS!
+ return DeclarationName::getUsingDirectiveName();
+ }
+
+ llvm_unreachable("Invalid DeclarationName Kind!");
+}
+
+IdentifierInfo *ASTImporter::Import(const IdentifierInfo *FromId) {
+ if (!FromId)
+ return nullptr;
+
+ return &ToContext.Idents.get(FromId->getName());
+}
+
+Selector ASTImporter::Import(Selector FromSel) {
+ if (FromSel.isNull())
+ return Selector();
+
+ SmallVector<IdentifierInfo *, 4> Idents;
+ Idents.push_back(Import(FromSel.getIdentifierInfoForSlot(0)));
+ for (unsigned I = 1, N = FromSel.getNumArgs(); I < N; ++I)
+ Idents.push_back(Import(FromSel.getIdentifierInfoForSlot(I)));
+ return ToContext.Selectors.getSelector(FromSel.getNumArgs(), Idents.data());
+}
+
+DeclarationName ASTImporter::HandleNameConflict(DeclarationName Name,
+ DeclContext *DC,
+ unsigned IDNS,
+ NamedDecl **Decls,
+ unsigned NumDecls) {
+ return Name;
+}
+
+DiagnosticBuilder ASTImporter::ToDiag(SourceLocation Loc, unsigned DiagID) {
+ if (LastDiagFromFrom)
+ ToContext.getDiagnostics().notePriorDiagnosticFrom(
+ FromContext.getDiagnostics());
+ LastDiagFromFrom = false;
+ return ToContext.getDiagnostics().Report(Loc, DiagID);
+}
+
+DiagnosticBuilder ASTImporter::FromDiag(SourceLocation Loc, unsigned DiagID) {
+ if (!LastDiagFromFrom)
+ FromContext.getDiagnostics().notePriorDiagnosticFrom(
+ ToContext.getDiagnostics());
+ LastDiagFromFrom = true;
+ return FromContext.getDiagnostics().Report(Loc, DiagID);
+}
+
+void ASTImporter::CompleteDecl (Decl *D) {
+ if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D)) {
+ if (!ID->getDefinition())
+ ID->startDefinition();
+ }
+ else if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D)) {
+ if (!PD->getDefinition())
+ PD->startDefinition();
+ }
+ else if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
+ if (!TD->getDefinition() && !TD->isBeingDefined()) {
+ TD->startDefinition();
+ TD->setCompleteDefinition(true);
+ }
+ }
+ else {
+ assert (0 && "CompleteDecl called on a Decl that can't be completed");
+ }
+}
+
+Decl *ASTImporter::Imported(Decl *From, Decl *To) {
+ ImportedDecls[From] = To;
+ return To;
+}
+
+bool ASTImporter::IsStructurallyEquivalent(QualType From, QualType To,
+ bool Complain) {
+ llvm::DenseMap<const Type *, const Type *>::iterator Pos
+ = ImportedTypes.find(From.getTypePtr());
+ if (Pos != ImportedTypes.end() && ToContext.hasSameType(Import(From), To))
+ return true;
+
+ StructuralEquivalenceContext Ctx(FromContext, ToContext, NonEquivalentDecls,
+ false, Complain);
+ return Ctx.IsStructurallyEquivalent(From, To);
+}
diff --git a/contrib/llvm/tools/clang/lib/AST/ASTTypeTraits.cpp b/contrib/llvm/tools/clang/lib/AST/ASTTypeTraits.cpp
new file mode 100644
index 0000000..ec0671c
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/ASTTypeTraits.cpp
@@ -0,0 +1,158 @@
+//===--- ASTTypeTraits.cpp --------------------------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Provides a dynamic type identifier and a dynamically typed node container
+// that can be used to store an AST base node at runtime in the same storage in
+// a type safe way.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/ASTTypeTraits.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclCXX.h"
+
+namespace clang {
+namespace ast_type_traits {
+
+const ASTNodeKind::KindInfo ASTNodeKind::AllKindInfo[] = {
+ { NKI_None, "<None>" },
+ { NKI_None, "CXXCtorInitializer" },
+ { NKI_None, "TemplateArgument" },
+ { NKI_None, "NestedNameSpecifier" },
+ { NKI_None, "NestedNameSpecifierLoc" },
+ { NKI_None, "QualType" },
+ { NKI_None, "TypeLoc" },
+ { NKI_None, "Decl" },
+#define DECL(DERIVED, BASE) { NKI_##BASE, #DERIVED "Decl" },
+#include "clang/AST/DeclNodes.inc"
+ { NKI_None, "Stmt" },
+#define STMT(DERIVED, BASE) { NKI_##BASE, #DERIVED },
+#include "clang/AST/StmtNodes.inc"
+ { NKI_None, "Type" },
+#define TYPE(DERIVED, BASE) { NKI_##BASE, #DERIVED "Type" },
+#include "clang/AST/TypeNodes.def"
+};
+
+bool ASTNodeKind::isBaseOf(ASTNodeKind Other, unsigned *Distance) const {
+ return isBaseOf(KindId, Other.KindId, Distance);
+}
+
+bool ASTNodeKind::isSame(ASTNodeKind Other) const {
+ return KindId != NKI_None && KindId == Other.KindId;
+}
+
+bool ASTNodeKind::isBaseOf(NodeKindId Base, NodeKindId Derived,
+ unsigned *Distance) {
+ if (Base == NKI_None || Derived == NKI_None) return false;
+ unsigned Dist = 0;
+ while (Derived != Base && Derived != NKI_None) {
+ Derived = AllKindInfo[Derived].ParentId;
+ ++Dist;
+ }
+ if (Distance)
+ *Distance = Dist;
+ return Derived == Base;
+}
+
+StringRef ASTNodeKind::asStringRef() const { return AllKindInfo[KindId].Name; }
+
+ASTNodeKind ASTNodeKind::getMostDerivedType(ASTNodeKind Kind1,
+ ASTNodeKind Kind2) {
+ if (Kind1.isBaseOf(Kind2)) return Kind2;
+ if (Kind2.isBaseOf(Kind1)) return Kind1;
+ return ASTNodeKind();
+}
+
+ASTNodeKind ASTNodeKind::getMostDerivedCommonAncestor(ASTNodeKind Kind1,
+ ASTNodeKind Kind2) {
+ NodeKindId Parent = Kind1.KindId;
+ while (!isBaseOf(Parent, Kind2.KindId, nullptr) && Parent != NKI_None) {
+ Parent = AllKindInfo[Parent].ParentId;
+ }
+ return ASTNodeKind(Parent);
+}
+
+ASTNodeKind ASTNodeKind::getFromNode(const Decl &D) {
+ switch (D.getKind()) {
+#define DECL(DERIVED, BASE) \
+ case Decl::DERIVED: return ASTNodeKind(NKI_##DERIVED##Decl);
+#define ABSTRACT_DECL(D)
+#include "clang/AST/DeclNodes.inc"
+ };
+ llvm_unreachable("invalid decl kind");
+}
+
+ASTNodeKind ASTNodeKind::getFromNode(const Stmt &S) {
+ switch (S.getStmtClass()) {
+ case Stmt::NoStmtClass: return NKI_None;
+#define STMT(CLASS, PARENT) \
+ case Stmt::CLASS##Class: return ASTNodeKind(NKI_##CLASS);
+#define ABSTRACT_STMT(S)
+#include "clang/AST/StmtNodes.inc"
+ }
+ llvm_unreachable("invalid stmt kind");
+}
+
+ASTNodeKind ASTNodeKind::getFromNode(const Type &T) {
+ switch (T.getTypeClass()) {
+#define TYPE(Class, Base) \
+ case Type::Class: return ASTNodeKind(NKI_##Class##Type);
+#define ABSTRACT_TYPE(Class, Base)
+#include "clang/AST/TypeNodes.def"
+ }
+ llvm_unreachable("invalid type kind");
+}
+
+void DynTypedNode::print(llvm::raw_ostream &OS,
+ const PrintingPolicy &PP) const {
+ if (const TemplateArgument *TA = get<TemplateArgument>())
+ TA->print(PP, OS);
+ else if (const NestedNameSpecifier *NNS = get<NestedNameSpecifier>())
+ NNS->print(OS, PP);
+ else if (const NestedNameSpecifierLoc *NNSL = get<NestedNameSpecifierLoc>())
+ NNSL->getNestedNameSpecifier()->print(OS, PP);
+ else if (const QualType *QT = get<QualType>())
+ QT->print(OS, PP);
+ else if (const TypeLoc *TL = get<TypeLoc>())
+ TL->getType().print(OS, PP);
+ else if (const Decl *D = get<Decl>())
+ D->print(OS, PP);
+ else if (const Stmt *S = get<Stmt>())
+ S->printPretty(OS, nullptr, PP);
+ else if (const Type *T = get<Type>())
+ QualType(T, 0).print(OS, PP);
+ else
+ OS << "Unable to print values of type " << NodeKind.asStringRef() << "\n";
+}
+
+void DynTypedNode::dump(llvm::raw_ostream &OS, SourceManager &SM) const {
+ if (const Decl *D = get<Decl>())
+ D->dump(OS);
+ else if (const Stmt *S = get<Stmt>())
+ S->dump(OS, SM);
+ else
+ OS << "Unable to dump values of type " << NodeKind.asStringRef() << "\n";
+}
+
+SourceRange DynTypedNode::getSourceRange() const {
+ if (const CXXCtorInitializer *CCI = get<CXXCtorInitializer>())
+ return CCI->getSourceRange();
+ if (const NestedNameSpecifierLoc *NNSL = get<NestedNameSpecifierLoc>())
+ return NNSL->getSourceRange();
+ if (const TypeLoc *TL = get<TypeLoc>())
+ return TL->getSourceRange();
+ if (const Decl *D = get<Decl>())
+ return D->getSourceRange();
+ if (const Stmt *S = get<Stmt>())
+ return S->getSourceRange();
+ return SourceRange();
+}
+
+} // end namespace ast_type_traits
+} // end namespace clang
diff --git a/contrib/llvm/tools/clang/lib/AST/AttrImpl.cpp b/contrib/llvm/tools/clang/lib/AST/AttrImpl.cpp
new file mode 100644
index 0000000..cb60870
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/AttrImpl.cpp
@@ -0,0 +1,21 @@
+//===--- AttrImpl.cpp - Classes for representing attributes -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains out-of-line methods for Attr classes.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/Attr.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/Type.h"
+#include "llvm/ADT/StringSwitch.h"
+using namespace clang;
+
+#include "clang/AST/AttrImpl.inc"
diff --git a/contrib/llvm/tools/clang/lib/AST/CXXABI.h b/contrib/llvm/tools/clang/lib/AST/CXXABI.h
new file mode 100644
index 0000000..dad2264
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/CXXABI.h
@@ -0,0 +1,67 @@
+//===----- CXXABI.h - Interface to C++ ABIs ---------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This provides an abstract class for C++ AST support. Concrete
+// subclasses of this implement AST support for specific C++ ABIs.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_AST_CXXABI_H
+#define LLVM_CLANG_LIB_AST_CXXABI_H
+
+#include "clang/AST/Type.h"
+
+namespace clang {
+
+class ASTContext;
+class CXXConstructorDecl;
+class Expr;
+class MemberPointerType;
+class MangleNumberingContext;
+
+/// Implements C++ ABI-specific semantic analysis functions.
+class CXXABI {
+public:
+ virtual ~CXXABI();
+
+ /// Returns the width and alignment of a member pointer in bits.
+ virtual std::pair<uint64_t, unsigned>
+ getMemberPointerWidthAndAlign(const MemberPointerType *MPT) const = 0;
+
+ /// Returns the default calling convention for C++ methods.
+ virtual CallingConv getDefaultMethodCallConv(bool isVariadic) const = 0;
+
+ /// Returns whether the given class is nearly empty, with just virtual
+ /// pointers and no data except possibly virtual bases.
+ virtual bool isNearlyEmpty(const CXXRecordDecl *RD) const = 0;
+
+ /// Returns a new mangling number context for this C++ ABI.
+ virtual MangleNumberingContext *createMangleNumberingContext() const = 0;
+
+ /// Adds a mapping from class to copy constructor for this C++ ABI.
+ virtual void addCopyConstructorForExceptionObject(CXXRecordDecl *,
+ CXXConstructorDecl *) = 0;
+
+ /// Retrieves the mapping from class to copy constructor for this C++ ABI.
+ virtual const CXXConstructorDecl *
+ getCopyConstructorForExceptionObject(CXXRecordDecl *) = 0;
+
+ virtual void addDefaultArgExprForConstructor(const CXXConstructorDecl *CD,
+ unsigned ParmIdx, Expr *DAE) = 0;
+
+ virtual Expr *getDefaultArgExprForConstructor(const CXXConstructorDecl *CD,
+ unsigned ParmIdx) = 0;
+};
+
+/// Creates an instance of a C++ ABI class.
+CXXABI *CreateItaniumCXXABI(ASTContext &Ctx);
+CXXABI *CreateMicrosoftCXXABI(ASTContext &Ctx);
+}
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/AST/CXXInheritance.cpp b/contrib/llvm/tools/clang/lib/AST/CXXInheritance.cpp
new file mode 100644
index 0000000..800c8f8
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/CXXInheritance.cpp
@@ -0,0 +1,689 @@
+//===------ CXXInheritance.cpp - C++ Inheritance ----------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides routines that help analyzing C++ inheritance hierarchies.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/RecordLayout.h"
+#include "llvm/ADT/SetVector.h"
+#include <algorithm>
+#include <set>
+
+using namespace clang;
+
+/// \brief Computes the set of declarations referenced by these base
+/// paths.
+void CXXBasePaths::ComputeDeclsFound() {
+ assert(NumDeclsFound == 0 && !DeclsFound &&
+ "Already computed the set of declarations");
+
+ llvm::SetVector<NamedDecl *, SmallVector<NamedDecl *, 8> > Decls;
+ for (paths_iterator Path = begin(), PathEnd = end(); Path != PathEnd; ++Path)
+ Decls.insert(Path->Decls.front());
+
+ NumDeclsFound = Decls.size();
+ DeclsFound = new NamedDecl * [NumDeclsFound];
+ std::copy(Decls.begin(), Decls.end(), DeclsFound);
+}
+
+CXXBasePaths::decl_range CXXBasePaths::found_decls() {
+ if (NumDeclsFound == 0)
+ ComputeDeclsFound();
+
+ return decl_range(decl_iterator(DeclsFound),
+ decl_iterator(DeclsFound + NumDeclsFound));
+}
+
+/// isAmbiguous - Determines whether the set of paths provided is
+/// ambiguous, i.e., there are two or more paths that refer to
+/// different base class subobjects of the same type. BaseType must be
+/// an unqualified, canonical class type.
+bool CXXBasePaths::isAmbiguous(CanQualType BaseType) {
+ BaseType = BaseType.getUnqualifiedType();
+ std::pair<bool, unsigned>& Subobjects = ClassSubobjects[BaseType];
+ return Subobjects.second + (Subobjects.first? 1 : 0) > 1;
+}
+
+/// clear - Clear out all prior path information.
+void CXXBasePaths::clear() {
+ Paths.clear();
+ ClassSubobjects.clear();
+ ScratchPath.clear();
+ DetectedVirtual = nullptr;
+}
+
+/// @brief Swaps the contents of this CXXBasePaths structure with the
+/// contents of Other.
+void CXXBasePaths::swap(CXXBasePaths &Other) {
+ std::swap(Origin, Other.Origin);
+ Paths.swap(Other.Paths);
+ ClassSubobjects.swap(Other.ClassSubobjects);
+ std::swap(FindAmbiguities, Other.FindAmbiguities);
+ std::swap(RecordPaths, Other.RecordPaths);
+ std::swap(DetectVirtual, Other.DetectVirtual);
+ std::swap(DetectedVirtual, Other.DetectedVirtual);
+}
+
+bool CXXRecordDecl::isDerivedFrom(const CXXRecordDecl *Base) const {
+ CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/false,
+ /*DetectVirtual=*/false);
+ return isDerivedFrom(Base, Paths);
+}
+
+bool CXXRecordDecl::isDerivedFrom(const CXXRecordDecl *Base,
+ CXXBasePaths &Paths) const {
+ if (getCanonicalDecl() == Base->getCanonicalDecl())
+ return false;
+
+ Paths.setOrigin(const_cast<CXXRecordDecl*>(this));
+ return lookupInBases(&FindBaseClass,
+ const_cast<CXXRecordDecl*>(Base->getCanonicalDecl()),
+ Paths);
+}
+
+bool CXXRecordDecl::isVirtuallyDerivedFrom(const CXXRecordDecl *Base) const {
+ if (!getNumVBases())
+ return false;
+
+ CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/false,
+ /*DetectVirtual=*/false);
+
+ if (getCanonicalDecl() == Base->getCanonicalDecl())
+ return false;
+
+ Paths.setOrigin(const_cast<CXXRecordDecl*>(this));
+
+ const void *BasePtr = static_cast<const void*>(Base->getCanonicalDecl());
+ return lookupInBases(&FindVirtualBaseClass,
+ const_cast<void *>(BasePtr),
+ Paths);
+}
+
+static bool BaseIsNot(const CXXRecordDecl *Base, void *OpaqueTarget) {
+ // OpaqueTarget is a CXXRecordDecl*.
+ return Base->getCanonicalDecl() != (const CXXRecordDecl*) OpaqueTarget;
+}
+
+bool CXXRecordDecl::isProvablyNotDerivedFrom(const CXXRecordDecl *Base) const {
+ return forallBases(BaseIsNot,
+ const_cast<CXXRecordDecl *>(Base->getCanonicalDecl()));
+}
+
+bool
+CXXRecordDecl::isCurrentInstantiation(const DeclContext *CurContext) const {
+ assert(isDependentContext());
+
+ for (; !CurContext->isFileContext(); CurContext = CurContext->getParent())
+ if (CurContext->Equals(this))
+ return true;
+
+ return false;
+}
+
+bool CXXRecordDecl::forallBases(ForallBasesCallback *BaseMatches,
+ void *OpaqueData,
+ bool AllowShortCircuit) const {
+ SmallVector<const CXXRecordDecl*, 8> Queue;
+
+ const CXXRecordDecl *Record = this;
+ bool AllMatches = true;
+ while (true) {
+ for (const auto &I : Record->bases()) {
+ const RecordType *Ty = I.getType()->getAs<RecordType>();
+ if (!Ty) {
+ if (AllowShortCircuit) return false;
+ AllMatches = false;
+ continue;
+ }
+
+ CXXRecordDecl *Base =
+ cast_or_null<CXXRecordDecl>(Ty->getDecl()->getDefinition());
+ if (!Base ||
+ (Base->isDependentContext() &&
+ !Base->isCurrentInstantiation(Record))) {
+ if (AllowShortCircuit) return false;
+ AllMatches = false;
+ continue;
+ }
+
+ Queue.push_back(Base);
+ if (!BaseMatches(Base, OpaqueData)) {
+ if (AllowShortCircuit) return false;
+ AllMatches = false;
+ continue;
+ }
+ }
+
+ if (Queue.empty())
+ break;
+ Record = Queue.pop_back_val(); // not actually a queue.
+ }
+
+ return AllMatches;
+}
+
+bool CXXBasePaths::lookupInBases(ASTContext &Context,
+ const CXXRecordDecl *Record,
+ CXXRecordDecl::BaseMatchesCallback *BaseMatches,
+ void *UserData) {
+ bool FoundPath = false;
+
+ // The access of the path down to this record.
+ AccessSpecifier AccessToHere = ScratchPath.Access;
+ bool IsFirstStep = ScratchPath.empty();
+
+ for (const auto &BaseSpec : Record->bases()) {
+ // Find the record of the base class subobjects for this type.
+ QualType BaseType =
+ Context.getCanonicalType(BaseSpec.getType()).getUnqualifiedType();
+
+ // C++ [temp.dep]p3:
+ // In the definition of a class template or a member of a class template,
+ // if a base class of the class template depends on a template-parameter,
+ // the base class scope is not examined during unqualified name lookup
+ // either at the point of definition of the class template or member or
+ // during an instantiation of the class tem- plate or member.
+ if (BaseType->isDependentType())
+ continue;
+
+ // Determine whether we need to visit this base class at all,
+ // updating the count of subobjects appropriately.
+ std::pair<bool, unsigned>& Subobjects = ClassSubobjects[BaseType];
+ bool VisitBase = true;
+ bool SetVirtual = false;
+ if (BaseSpec.isVirtual()) {
+ VisitBase = !Subobjects.first;
+ Subobjects.first = true;
+ if (isDetectingVirtual() && DetectedVirtual == nullptr) {
+ // If this is the first virtual we find, remember it. If it turns out
+ // there is no base path here, we'll reset it later.
+ DetectedVirtual = BaseType->getAs<RecordType>();
+ SetVirtual = true;
+ }
+ } else
+ ++Subobjects.second;
+
+ if (isRecordingPaths()) {
+ // Add this base specifier to the current path.
+ CXXBasePathElement Element;
+ Element.Base = &BaseSpec;
+ Element.Class = Record;
+ if (BaseSpec.isVirtual())
+ Element.SubobjectNumber = 0;
+ else
+ Element.SubobjectNumber = Subobjects.second;
+ ScratchPath.push_back(Element);
+
+ // Calculate the "top-down" access to this base class.
+ // The spec actually describes this bottom-up, but top-down is
+ // equivalent because the definition works out as follows:
+ // 1. Write down the access along each step in the inheritance
+ // chain, followed by the access of the decl itself.
+ // For example, in
+ // class A { public: int foo; };
+ // class B : protected A {};
+ // class C : public B {};
+ // class D : private C {};
+ // we would write:
+ // private public protected public
+ // 2. If 'private' appears anywhere except far-left, access is denied.
+ // 3. Otherwise, overall access is determined by the most restrictive
+ // access in the sequence.
+ if (IsFirstStep)
+ ScratchPath.Access = BaseSpec.getAccessSpecifier();
+ else
+ ScratchPath.Access = CXXRecordDecl::MergeAccess(AccessToHere,
+ BaseSpec.getAccessSpecifier());
+ }
+
+ // Track whether there's a path involving this specific base.
+ bool FoundPathThroughBase = false;
+
+ if (BaseMatches(&BaseSpec, ScratchPath, UserData)) {
+ // We've found a path that terminates at this base.
+ FoundPath = FoundPathThroughBase = true;
+ if (isRecordingPaths()) {
+ // We have a path. Make a copy of it before moving on.
+ Paths.push_back(ScratchPath);
+ } else if (!isFindingAmbiguities()) {
+ // We found a path and we don't care about ambiguities;
+ // return immediately.
+ return FoundPath;
+ }
+ } else if (VisitBase) {
+ CXXRecordDecl *BaseRecord
+ = cast<CXXRecordDecl>(BaseSpec.getType()->castAs<RecordType>()
+ ->getDecl());
+ if (lookupInBases(Context, BaseRecord, BaseMatches, UserData)) {
+ // C++ [class.member.lookup]p2:
+ // A member name f in one sub-object B hides a member name f in
+ // a sub-object A if A is a base class sub-object of B. Any
+ // declarations that are so hidden are eliminated from
+ // consideration.
+
+ // There is a path to a base class that meets the criteria. If we're
+ // not collecting paths or finding ambiguities, we're done.
+ FoundPath = FoundPathThroughBase = true;
+ if (!isFindingAmbiguities())
+ return FoundPath;
+ }
+ }
+
+ // Pop this base specifier off the current path (if we're
+ // collecting paths).
+ if (isRecordingPaths()) {
+ ScratchPath.pop_back();
+ }
+
+ // If we set a virtual earlier, and this isn't a path, forget it again.
+ if (SetVirtual && !FoundPathThroughBase) {
+ DetectedVirtual = nullptr;
+ }
+ }
+
+ // Reset the scratch path access.
+ ScratchPath.Access = AccessToHere;
+
+ return FoundPath;
+}
+
+bool CXXRecordDecl::lookupInBases(BaseMatchesCallback *BaseMatches,
+ void *UserData,
+ CXXBasePaths &Paths) const {
+ // If we didn't find anything, report that.
+ if (!Paths.lookupInBases(getASTContext(), this, BaseMatches, UserData))
+ return false;
+
+ // If we're not recording paths or we won't ever find ambiguities,
+ // we're done.
+ if (!Paths.isRecordingPaths() || !Paths.isFindingAmbiguities())
+ return true;
+
+ // C++ [class.member.lookup]p6:
+ // When virtual base classes are used, a hidden declaration can be
+ // reached along a path through the sub-object lattice that does
+ // not pass through the hiding declaration. This is not an
+ // ambiguity. The identical use with nonvirtual base classes is an
+ // ambiguity; in that case there is no unique instance of the name
+ // that hides all the others.
+ //
+ // FIXME: This is an O(N^2) algorithm, but DPG doesn't see an easy
+ // way to make it any faster.
+ Paths.Paths.remove_if([&Paths](const CXXBasePath &Path) {
+ for (const CXXBasePathElement &PE : Path) {
+ if (!PE.Base->isVirtual())
+ continue;
+
+ CXXRecordDecl *VBase = nullptr;
+ if (const RecordType *Record = PE.Base->getType()->getAs<RecordType>())
+ VBase = cast<CXXRecordDecl>(Record->getDecl());
+ if (!VBase)
+ break;
+
+ // The declaration(s) we found along this path were found in a
+ // subobject of a virtual base. Check whether this virtual
+ // base is a subobject of any other path; if so, then the
+ // declaration in this path are hidden by that patch.
+ for (const CXXBasePath &HidingP : Paths) {
+ CXXRecordDecl *HidingClass = nullptr;
+ if (const RecordType *Record =
+ HidingP.back().Base->getType()->getAs<RecordType>())
+ HidingClass = cast<CXXRecordDecl>(Record->getDecl());
+ if (!HidingClass)
+ break;
+
+ if (HidingClass->isVirtuallyDerivedFrom(VBase))
+ return true;
+ }
+ }
+ return false;
+ });
+
+ return true;
+}
+
+bool CXXRecordDecl::FindBaseClass(const CXXBaseSpecifier *Specifier,
+ CXXBasePath &Path,
+ void *BaseRecord) {
+ assert(((Decl *)BaseRecord)->getCanonicalDecl() == BaseRecord &&
+ "User data for FindBaseClass is not canonical!");
+ return Specifier->getType()->castAs<RecordType>()->getDecl()
+ ->getCanonicalDecl() == BaseRecord;
+}
+
+bool CXXRecordDecl::FindVirtualBaseClass(const CXXBaseSpecifier *Specifier,
+ CXXBasePath &Path,
+ void *BaseRecord) {
+ assert(((Decl *)BaseRecord)->getCanonicalDecl() == BaseRecord &&
+ "User data for FindBaseClass is not canonical!");
+ return Specifier->isVirtual() &&
+ Specifier->getType()->castAs<RecordType>()->getDecl()
+ ->getCanonicalDecl() == BaseRecord;
+}
+
+bool CXXRecordDecl::FindTagMember(const CXXBaseSpecifier *Specifier,
+ CXXBasePath &Path,
+ void *Name) {
+ RecordDecl *BaseRecord =
+ Specifier->getType()->castAs<RecordType>()->getDecl();
+
+ DeclarationName N = DeclarationName::getFromOpaquePtr(Name);
+ for (Path.Decls = BaseRecord->lookup(N);
+ !Path.Decls.empty();
+ Path.Decls = Path.Decls.slice(1)) {
+ if (Path.Decls.front()->isInIdentifierNamespace(IDNS_Tag))
+ return true;
+ }
+
+ return false;
+}
+
+bool CXXRecordDecl::FindOrdinaryMember(const CXXBaseSpecifier *Specifier,
+ CXXBasePath &Path,
+ void *Name) {
+ RecordDecl *BaseRecord =
+ Specifier->getType()->castAs<RecordType>()->getDecl();
+
+ const unsigned IDNS = IDNS_Ordinary | IDNS_Tag | IDNS_Member;
+ DeclarationName N = DeclarationName::getFromOpaquePtr(Name);
+ for (Path.Decls = BaseRecord->lookup(N);
+ !Path.Decls.empty();
+ Path.Decls = Path.Decls.slice(1)) {
+ if (Path.Decls.front()->isInIdentifierNamespace(IDNS))
+ return true;
+ }
+
+ return false;
+}
+
+bool CXXRecordDecl::
+FindNestedNameSpecifierMember(const CXXBaseSpecifier *Specifier,
+ CXXBasePath &Path,
+ void *Name) {
+ RecordDecl *BaseRecord =
+ Specifier->getType()->castAs<RecordType>()->getDecl();
+
+ DeclarationName N = DeclarationName::getFromOpaquePtr(Name);
+ for (Path.Decls = BaseRecord->lookup(N);
+ !Path.Decls.empty();
+ Path.Decls = Path.Decls.slice(1)) {
+ // FIXME: Refactor the "is it a nested-name-specifier?" check
+ if (isa<TypedefNameDecl>(Path.Decls.front()) ||
+ Path.Decls.front()->isInIdentifierNamespace(IDNS_Tag))
+ return true;
+ }
+
+ return false;
+}
+
+void OverridingMethods::add(unsigned OverriddenSubobject,
+ UniqueVirtualMethod Overriding) {
+ SmallVectorImpl<UniqueVirtualMethod> &SubobjectOverrides
+ = Overrides[OverriddenSubobject];
+ if (std::find(SubobjectOverrides.begin(), SubobjectOverrides.end(),
+ Overriding) == SubobjectOverrides.end())
+ SubobjectOverrides.push_back(Overriding);
+}
+
+void OverridingMethods::add(const OverridingMethods &Other) {
+ for (const_iterator I = Other.begin(), IE = Other.end(); I != IE; ++I) {
+ for (overriding_const_iterator M = I->second.begin(),
+ MEnd = I->second.end();
+ M != MEnd;
+ ++M)
+ add(I->first, *M);
+ }
+}
+
+void OverridingMethods::replaceAll(UniqueVirtualMethod Overriding) {
+ for (iterator I = begin(), IEnd = end(); I != IEnd; ++I) {
+ I->second.clear();
+ I->second.push_back(Overriding);
+ }
+}
+
+
+namespace {
+ class FinalOverriderCollector {
+ /// \brief The number of subobjects of a given class type that
+ /// occur within the class hierarchy.
+ llvm::DenseMap<const CXXRecordDecl *, unsigned> SubobjectCount;
+
+ /// \brief Overriders for each virtual base subobject.
+ llvm::DenseMap<const CXXRecordDecl *, CXXFinalOverriderMap *> VirtualOverriders;
+
+ CXXFinalOverriderMap FinalOverriders;
+
+ public:
+ ~FinalOverriderCollector();
+
+ void Collect(const CXXRecordDecl *RD, bool VirtualBase,
+ const CXXRecordDecl *InVirtualSubobject,
+ CXXFinalOverriderMap &Overriders);
+ };
+}
+
+void FinalOverriderCollector::Collect(const CXXRecordDecl *RD,
+ bool VirtualBase,
+ const CXXRecordDecl *InVirtualSubobject,
+ CXXFinalOverriderMap &Overriders) {
+ unsigned SubobjectNumber = 0;
+ if (!VirtualBase)
+ SubobjectNumber
+ = ++SubobjectCount[cast<CXXRecordDecl>(RD->getCanonicalDecl())];
+
+ for (const auto &Base : RD->bases()) {
+ if (const RecordType *RT = Base.getType()->getAs<RecordType>()) {
+ const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
+ if (!BaseDecl->isPolymorphic())
+ continue;
+
+ if (Overriders.empty() && !Base.isVirtual()) {
+ // There are no other overriders of virtual member functions,
+ // so let the base class fill in our overriders for us.
+ Collect(BaseDecl, false, InVirtualSubobject, Overriders);
+ continue;
+ }
+
+ // Collect all of the overridders from the base class subobject
+ // and merge them into the set of overridders for this class.
+ // For virtual base classes, populate or use the cached virtual
+ // overrides so that we do not walk the virtual base class (and
+ // its base classes) more than once.
+ CXXFinalOverriderMap ComputedBaseOverriders;
+ CXXFinalOverriderMap *BaseOverriders = &ComputedBaseOverriders;
+ if (Base.isVirtual()) {
+ CXXFinalOverriderMap *&MyVirtualOverriders = VirtualOverriders[BaseDecl];
+ BaseOverriders = MyVirtualOverriders;
+ if (!MyVirtualOverriders) {
+ MyVirtualOverriders = new CXXFinalOverriderMap;
+
+ // Collect may cause VirtualOverriders to reallocate, invalidating the
+ // MyVirtualOverriders reference. Set BaseOverriders to the right
+ // value now.
+ BaseOverriders = MyVirtualOverriders;
+
+ Collect(BaseDecl, true, BaseDecl, *MyVirtualOverriders);
+ }
+ } else
+ Collect(BaseDecl, false, InVirtualSubobject, ComputedBaseOverriders);
+
+ // Merge the overriders from this base class into our own set of
+ // overriders.
+ for (CXXFinalOverriderMap::iterator OM = BaseOverriders->begin(),
+ OMEnd = BaseOverriders->end();
+ OM != OMEnd;
+ ++OM) {
+ const CXXMethodDecl *CanonOM
+ = cast<CXXMethodDecl>(OM->first->getCanonicalDecl());
+ Overriders[CanonOM].add(OM->second);
+ }
+ }
+ }
+
+ for (auto *M : RD->methods()) {
+ // We only care about virtual methods.
+ if (!M->isVirtual())
+ continue;
+
+ CXXMethodDecl *CanonM = cast<CXXMethodDecl>(M->getCanonicalDecl());
+
+ if (CanonM->begin_overridden_methods()
+ == CanonM->end_overridden_methods()) {
+ // This is a new virtual function that does not override any
+ // other virtual function. Add it to the map of virtual
+ // functions for which we are tracking overridders.
+
+ // C++ [class.virtual]p2:
+ // For convenience we say that any virtual function overrides itself.
+ Overriders[CanonM].add(SubobjectNumber,
+ UniqueVirtualMethod(CanonM, SubobjectNumber,
+ InVirtualSubobject));
+ continue;
+ }
+
+ // This virtual method overrides other virtual methods, so it does
+ // not add any new slots into the set of overriders. Instead, we
+ // replace entries in the set of overriders with the new
+ // overrider. To do so, we dig down to the original virtual
+ // functions using data recursion and update all of the methods it
+ // overrides.
+ typedef llvm::iterator_range<CXXMethodDecl::method_iterator>
+ OverriddenMethods;
+ SmallVector<OverriddenMethods, 4> Stack;
+ Stack.push_back(llvm::make_range(CanonM->begin_overridden_methods(),
+ CanonM->end_overridden_methods()));
+ while (!Stack.empty()) {
+ for (const CXXMethodDecl *OM : Stack.pop_back_val()) {
+ const CXXMethodDecl *CanonOM = OM->getCanonicalDecl();
+
+ // C++ [class.virtual]p2:
+ // A virtual member function C::vf of a class object S is
+ // a final overrider unless the most derived class (1.8)
+ // of which S is a base class subobject (if any) declares
+ // or inherits another member function that overrides vf.
+ //
+ // Treating this object like the most derived class, we
+ // replace any overrides from base classes with this
+ // overriding virtual function.
+ Overriders[CanonOM].replaceAll(
+ UniqueVirtualMethod(CanonM, SubobjectNumber,
+ InVirtualSubobject));
+
+ if (CanonOM->begin_overridden_methods()
+ == CanonOM->end_overridden_methods())
+ continue;
+
+ // Continue recursion to the methods that this virtual method
+ // overrides.
+ Stack.push_back(llvm::make_range(CanonOM->begin_overridden_methods(),
+ CanonOM->end_overridden_methods()));
+ }
+ }
+
+ // C++ [class.virtual]p2:
+ // For convenience we say that any virtual function overrides itself.
+ Overriders[CanonM].add(SubobjectNumber,
+ UniqueVirtualMethod(CanonM, SubobjectNumber,
+ InVirtualSubobject));
+ }
+}
+
+FinalOverriderCollector::~FinalOverriderCollector() {
+ for (llvm::DenseMap<const CXXRecordDecl *, CXXFinalOverriderMap *>::iterator
+ VO = VirtualOverriders.begin(), VOEnd = VirtualOverriders.end();
+ VO != VOEnd;
+ ++VO)
+ delete VO->second;
+}
+
+void
+CXXRecordDecl::getFinalOverriders(CXXFinalOverriderMap &FinalOverriders) const {
+ FinalOverriderCollector Collector;
+ Collector.Collect(this, false, nullptr, FinalOverriders);
+
+ // Weed out any final overriders that come from virtual base class
+ // subobjects that were hidden by other subobjects along any path.
+ // This is the final-overrider variant of C++ [class.member.lookup]p10.
+ for (auto &OM : FinalOverriders) {
+ for (auto &SO : OM.second) {
+ SmallVectorImpl<UniqueVirtualMethod> &Overriding = SO.second;
+ if (Overriding.size() < 2)
+ continue;
+
+ auto IsHidden = [&Overriding](const UniqueVirtualMethod &M) {
+ if (!M.InVirtualSubobject)
+ return false;
+
+ // We have an overriding method in a virtual base class
+ // subobject (or non-virtual base class subobject thereof);
+ // determine whether there exists an other overriding method
+ // in a base class subobject that hides the virtual base class
+ // subobject.
+ for (const UniqueVirtualMethod &OP : Overriding)
+ if (&M != &OP &&
+ OP.Method->getParent()->isVirtuallyDerivedFrom(
+ M.InVirtualSubobject))
+ return true;
+ return false;
+ };
+
+ Overriding.erase(
+ std::remove_if(Overriding.begin(), Overriding.end(), IsHidden),
+ Overriding.end());
+ }
+ }
+}
+
+static void
+AddIndirectPrimaryBases(const CXXRecordDecl *RD, ASTContext &Context,
+ CXXIndirectPrimaryBaseSet& Bases) {
+ // If the record has a virtual primary base class, add it to our set.
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+ if (Layout.isPrimaryBaseVirtual())
+ Bases.insert(Layout.getPrimaryBase());
+
+ for (const auto &I : RD->bases()) {
+ assert(!I.getType()->isDependentType() &&
+ "Cannot get indirect primary bases for class with dependent bases.");
+
+ const CXXRecordDecl *BaseDecl =
+ cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
+
+ // Only bases with virtual bases participate in computing the
+ // indirect primary virtual base classes.
+ if (BaseDecl->getNumVBases())
+ AddIndirectPrimaryBases(BaseDecl, Context, Bases);
+ }
+
+}
+
+void
+CXXRecordDecl::getIndirectPrimaryBases(CXXIndirectPrimaryBaseSet& Bases) const {
+ ASTContext &Context = getASTContext();
+
+ if (!getNumVBases())
+ return;
+
+ for (const auto &I : bases()) {
+ assert(!I.getType()->isDependentType() &&
+ "Cannot get indirect primary bases for class with dependent bases.");
+
+ const CXXRecordDecl *BaseDecl =
+ cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
+
+ // Only bases with virtual bases participate in computing the
+ // indirect primary virtual base classes.
+ if (BaseDecl->getNumVBases())
+ AddIndirectPrimaryBases(BaseDecl, Context, Bases);
+ }
+}
diff --git a/contrib/llvm/tools/clang/lib/AST/Comment.cpp b/contrib/llvm/tools/clang/lib/AST/Comment.cpp
new file mode 100644
index 0000000..d05c5de
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/Comment.cpp
@@ -0,0 +1,347 @@
+//===--- Comment.cpp - Comment AST node implementation --------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Comment.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/Basic/CharInfo.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+
+namespace clang {
+namespace comments {
+
+const char *Comment::getCommentKindName() const {
+ switch (getCommentKind()) {
+ case NoCommentKind: return "NoCommentKind";
+#define ABSTRACT_COMMENT(COMMENT)
+#define COMMENT(CLASS, PARENT) \
+ case CLASS##Kind: \
+ return #CLASS;
+#include "clang/AST/CommentNodes.inc"
+#undef COMMENT
+#undef ABSTRACT_COMMENT
+ }
+ llvm_unreachable("Unknown comment kind!");
+}
+
+namespace {
+struct good {};
+struct bad {};
+
+template <typename T>
+good implements_child_begin_end(Comment::child_iterator (T::*)() const) {
+ return good();
+}
+
+LLVM_ATTRIBUTE_UNUSED
+static inline bad implements_child_begin_end(
+ Comment::child_iterator (Comment::*)() const) {
+ return bad();
+}
+
+#define ASSERT_IMPLEMENTS_child_begin(function) \
+ (void) good(implements_child_begin_end(function))
+
+LLVM_ATTRIBUTE_UNUSED
+static inline void CheckCommentASTNodes() {
+#define ABSTRACT_COMMENT(COMMENT)
+#define COMMENT(CLASS, PARENT) \
+ ASSERT_IMPLEMENTS_child_begin(&CLASS::child_begin); \
+ ASSERT_IMPLEMENTS_child_begin(&CLASS::child_end);
+#include "clang/AST/CommentNodes.inc"
+#undef COMMENT
+#undef ABSTRACT_COMMENT
+}
+
+#undef ASSERT_IMPLEMENTS_child_begin
+
+} // end unnamed namespace
+
+Comment::child_iterator Comment::child_begin() const {
+ switch (getCommentKind()) {
+ case NoCommentKind: llvm_unreachable("comment without a kind");
+#define ABSTRACT_COMMENT(COMMENT)
+#define COMMENT(CLASS, PARENT) \
+ case CLASS##Kind: \
+ return static_cast<const CLASS *>(this)->child_begin();
+#include "clang/AST/CommentNodes.inc"
+#undef COMMENT
+#undef ABSTRACT_COMMENT
+ }
+ llvm_unreachable("Unknown comment kind!");
+}
+
+Comment::child_iterator Comment::child_end() const {
+ switch (getCommentKind()) {
+ case NoCommentKind: llvm_unreachable("comment without a kind");
+#define ABSTRACT_COMMENT(COMMENT)
+#define COMMENT(CLASS, PARENT) \
+ case CLASS##Kind: \
+ return static_cast<const CLASS *>(this)->child_end();
+#include "clang/AST/CommentNodes.inc"
+#undef COMMENT
+#undef ABSTRACT_COMMENT
+ }
+ llvm_unreachable("Unknown comment kind!");
+}
+
+bool TextComment::isWhitespaceNoCache() const {
+ for (StringRef::const_iterator I = Text.begin(), E = Text.end();
+ I != E; ++I) {
+ if (!clang::isWhitespace(*I))
+ return false;
+ }
+ return true;
+}
+
+bool ParagraphComment::isWhitespaceNoCache() const {
+ for (child_iterator I = child_begin(), E = child_end(); I != E; ++I) {
+ if (const TextComment *TC = dyn_cast<TextComment>(*I)) {
+ if (!TC->isWhitespace())
+ return false;
+ } else
+ return false;
+ }
+ return true;
+}
+
+const char *ParamCommandComment::getDirectionAsString(PassDirection D) {
+ switch (D) {
+ case ParamCommandComment::In:
+ return "[in]";
+ case ParamCommandComment::Out:
+ return "[out]";
+ case ParamCommandComment::InOut:
+ return "[in,out]";
+ }
+ llvm_unreachable("unknown PassDirection");
+}
+
+void DeclInfo::fill() {
+ assert(!IsFilled);
+
+ // Set defaults.
+ Kind = OtherKind;
+ TemplateKind = NotTemplate;
+ IsObjCMethod = false;
+ IsInstanceMethod = false;
+ IsClassMethod = false;
+ ParamVars = None;
+ TemplateParameters = nullptr;
+
+ if (!CommentDecl) {
+ // If there is no declaration, the defaults is our only guess.
+ IsFilled = true;
+ return;
+ }
+ CurrentDecl = CommentDecl;
+
+ Decl::Kind K = CommentDecl->getKind();
+ switch (K) {
+ default:
+ // Defaults are should be good for declarations we don't handle explicitly.
+ break;
+ case Decl::Function:
+ case Decl::CXXMethod:
+ case Decl::CXXConstructor:
+ case Decl::CXXDestructor:
+ case Decl::CXXConversion: {
+ const FunctionDecl *FD = cast<FunctionDecl>(CommentDecl);
+ Kind = FunctionKind;
+ ParamVars = llvm::makeArrayRef(FD->param_begin(), FD->getNumParams());
+ ReturnType = FD->getReturnType();
+ unsigned NumLists = FD->getNumTemplateParameterLists();
+ if (NumLists != 0) {
+ TemplateKind = TemplateSpecialization;
+ TemplateParameters =
+ FD->getTemplateParameterList(NumLists - 1);
+ }
+
+ if (K == Decl::CXXMethod || K == Decl::CXXConstructor ||
+ K == Decl::CXXDestructor || K == Decl::CXXConversion) {
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(CommentDecl);
+ IsInstanceMethod = MD->isInstance();
+ IsClassMethod = !IsInstanceMethod;
+ }
+ break;
+ }
+ case Decl::ObjCMethod: {
+ const ObjCMethodDecl *MD = cast<ObjCMethodDecl>(CommentDecl);
+ Kind = FunctionKind;
+ ParamVars = llvm::makeArrayRef(MD->param_begin(), MD->param_size());
+ ReturnType = MD->getReturnType();
+ IsObjCMethod = true;
+ IsInstanceMethod = MD->isInstanceMethod();
+ IsClassMethod = !IsInstanceMethod;
+ break;
+ }
+ case Decl::FunctionTemplate: {
+ const FunctionTemplateDecl *FTD = cast<FunctionTemplateDecl>(CommentDecl);
+ Kind = FunctionKind;
+ TemplateKind = Template;
+ const FunctionDecl *FD = FTD->getTemplatedDecl();
+ ParamVars = llvm::makeArrayRef(FD->param_begin(), FD->getNumParams());
+ ReturnType = FD->getReturnType();
+ TemplateParameters = FTD->getTemplateParameters();
+ break;
+ }
+ case Decl::ClassTemplate: {
+ const ClassTemplateDecl *CTD = cast<ClassTemplateDecl>(CommentDecl);
+ Kind = ClassKind;
+ TemplateKind = Template;
+ TemplateParameters = CTD->getTemplateParameters();
+ break;
+ }
+ case Decl::ClassTemplatePartialSpecialization: {
+ const ClassTemplatePartialSpecializationDecl *CTPSD =
+ cast<ClassTemplatePartialSpecializationDecl>(CommentDecl);
+ Kind = ClassKind;
+ TemplateKind = TemplatePartialSpecialization;
+ TemplateParameters = CTPSD->getTemplateParameters();
+ break;
+ }
+ case Decl::ClassTemplateSpecialization:
+ Kind = ClassKind;
+ TemplateKind = TemplateSpecialization;
+ break;
+ case Decl::Record:
+ case Decl::CXXRecord:
+ Kind = ClassKind;
+ break;
+ case Decl::Var:
+ case Decl::Field:
+ case Decl::EnumConstant:
+ case Decl::ObjCIvar:
+ case Decl::ObjCAtDefsField:
+ Kind = VariableKind;
+ break;
+ case Decl::Namespace:
+ Kind = NamespaceKind;
+ break;
+ case Decl::Typedef: {
+ Kind = TypedefKind;
+ // If this is a typedef to something we consider a function, extract
+ // arguments and return type.
+ const TypedefDecl *TD = cast<TypedefDecl>(CommentDecl);
+ const TypeSourceInfo *TSI = TD->getTypeSourceInfo();
+ if (!TSI)
+ break;
+ TypeLoc TL = TSI->getTypeLoc().getUnqualifiedLoc();
+ while (true) {
+ TL = TL.IgnoreParens();
+ // Look through qualified types.
+ if (QualifiedTypeLoc QualifiedTL = TL.getAs<QualifiedTypeLoc>()) {
+ TL = QualifiedTL.getUnqualifiedLoc();
+ continue;
+ }
+ // Look through pointer types.
+ if (PointerTypeLoc PointerTL = TL.getAs<PointerTypeLoc>()) {
+ TL = PointerTL.getPointeeLoc().getUnqualifiedLoc();
+ continue;
+ }
+ // Look through reference types.
+ if (ReferenceTypeLoc ReferenceTL = TL.getAs<ReferenceTypeLoc>()) {
+ TL = ReferenceTL.getPointeeLoc().getUnqualifiedLoc();
+ continue;
+ }
+ // Look through adjusted types.
+ if (AdjustedTypeLoc ATL = TL.getAs<AdjustedTypeLoc>()) {
+ TL = ATL.getOriginalLoc();
+ continue;
+ }
+ if (BlockPointerTypeLoc BlockPointerTL =
+ TL.getAs<BlockPointerTypeLoc>()) {
+ TL = BlockPointerTL.getPointeeLoc().getUnqualifiedLoc();
+ continue;
+ }
+ if (MemberPointerTypeLoc MemberPointerTL =
+ TL.getAs<MemberPointerTypeLoc>()) {
+ TL = MemberPointerTL.getPointeeLoc().getUnqualifiedLoc();
+ continue;
+ }
+ if (ElaboratedTypeLoc ETL = TL.getAs<ElaboratedTypeLoc>()) {
+ TL = ETL.getNamedTypeLoc();
+ continue;
+ }
+ // Is this a typedef for a function type?
+ if (FunctionTypeLoc FTL = TL.getAs<FunctionTypeLoc>()) {
+ Kind = FunctionKind;
+ ParamVars = FTL.getParams();
+ ReturnType = FTL.getReturnLoc().getType();
+ break;
+ }
+ if (TemplateSpecializationTypeLoc STL =
+ TL.getAs<TemplateSpecializationTypeLoc>()) {
+ // If we have a typedef to a template specialization with exactly one
+ // template argument of a function type, this looks like std::function,
+ // boost::function, or other function wrapper. Treat these typedefs as
+ // functions.
+ if (STL.getNumArgs() != 1)
+ break;
+ TemplateArgumentLoc MaybeFunction = STL.getArgLoc(0);
+ if (MaybeFunction.getArgument().getKind() != TemplateArgument::Type)
+ break;
+ TypeSourceInfo *MaybeFunctionTSI = MaybeFunction.getTypeSourceInfo();
+ TypeLoc TL = MaybeFunctionTSI->getTypeLoc().getUnqualifiedLoc();
+ if (FunctionTypeLoc FTL = TL.getAs<FunctionTypeLoc>()) {
+ Kind = FunctionKind;
+ ParamVars = FTL.getParams();
+ ReturnType = FTL.getReturnLoc().getType();
+ }
+ break;
+ }
+ break;
+ }
+ break;
+ }
+ case Decl::TypeAlias:
+ Kind = TypedefKind;
+ break;
+ case Decl::TypeAliasTemplate: {
+ const TypeAliasTemplateDecl *TAT = cast<TypeAliasTemplateDecl>(CommentDecl);
+ Kind = TypedefKind;
+ TemplateKind = Template;
+ TemplateParameters = TAT->getTemplateParameters();
+ break;
+ }
+ case Decl::Enum:
+ Kind = EnumKind;
+ break;
+ }
+
+ IsFilled = true;
+}
+
+StringRef ParamCommandComment::getParamName(const FullComment *FC) const {
+ assert(isParamIndexValid());
+ if (isVarArgParam())
+ return "...";
+ return FC->getDeclInfo()->ParamVars[getParamIndex()]->getName();
+}
+
+StringRef TParamCommandComment::getParamName(const FullComment *FC) const {
+ assert(isPositionValid());
+ const TemplateParameterList *TPL = FC->getDeclInfo()->TemplateParameters;
+ for (unsigned i = 0, e = getDepth(); i != e; ++i) {
+ if (i == e-1)
+ return TPL->getParam(getIndex(i))->getName();
+ const NamedDecl *Param = TPL->getParam(getIndex(i));
+ if (const TemplateTemplateParmDecl *TTP =
+ dyn_cast<TemplateTemplateParmDecl>(Param))
+ TPL = TTP->getTemplateParameters();
+ }
+ return "";
+}
+
+} // end namespace comments
+} // end namespace clang
+
diff --git a/contrib/llvm/tools/clang/lib/AST/CommentBriefParser.cpp b/contrib/llvm/tools/clang/lib/AST/CommentBriefParser.cpp
new file mode 100644
index 0000000..090b921
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/CommentBriefParser.cpp
@@ -0,0 +1,155 @@
+//===--- CommentBriefParser.cpp - Dumb comment parser ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/CommentBriefParser.h"
+#include "clang/AST/CommentCommandTraits.h"
+#include "llvm/ADT/StringSwitch.h"
+
+namespace clang {
+namespace comments {
+
+namespace {
+inline bool isWhitespace(char C) {
+ return C == ' ' || C == '\n' || C == '\r' ||
+ C == '\t' || C == '\f' || C == '\v';
+}
+
+/// Convert all whitespace into spaces, remove leading and trailing spaces,
+/// compress multiple spaces into one.
+void cleanupBrief(std::string &S) {
+ bool PrevWasSpace = true;
+ std::string::iterator O = S.begin();
+ for (std::string::iterator I = S.begin(), E = S.end();
+ I != E; ++I) {
+ const char C = *I;
+ if (isWhitespace(C)) {
+ if (!PrevWasSpace) {
+ *O++ = ' ';
+ PrevWasSpace = true;
+ }
+ continue;
+ } else {
+ *O++ = C;
+ PrevWasSpace = false;
+ }
+ }
+ if (O != S.begin() && *(O - 1) == ' ')
+ --O;
+
+ S.resize(O - S.begin());
+}
+
+bool isWhitespace(StringRef Text) {
+ for (StringRef::const_iterator I = Text.begin(), E = Text.end();
+ I != E; ++I) {
+ if (!isWhitespace(*I))
+ return false;
+ }
+ return true;
+}
+} // unnamed namespace
+
+BriefParser::BriefParser(Lexer &L, const CommandTraits &Traits) :
+ L(L), Traits(Traits) {
+ // Get lookahead token.
+ ConsumeToken();
+}
+
+std::string BriefParser::Parse() {
+ std::string FirstParagraphOrBrief;
+ std::string ReturnsParagraph;
+ bool InFirstParagraph = true;
+ bool InBrief = false;
+ bool InReturns = false;
+
+ while (Tok.isNot(tok::eof)) {
+ if (Tok.is(tok::text)) {
+ if (InFirstParagraph || InBrief)
+ FirstParagraphOrBrief += Tok.getText();
+ else if (InReturns)
+ ReturnsParagraph += Tok.getText();
+ ConsumeToken();
+ continue;
+ }
+
+ if (Tok.is(tok::backslash_command) || Tok.is(tok::at_command)) {
+ const CommandInfo *Info = Traits.getCommandInfo(Tok.getCommandID());
+ if (Info->IsBriefCommand) {
+ FirstParagraphOrBrief.clear();
+ InBrief = true;
+ ConsumeToken();
+ continue;
+ }
+ if (Info->IsReturnsCommand) {
+ InReturns = true;
+ InBrief = false;
+ InFirstParagraph = false;
+ ReturnsParagraph += "Returns ";
+ ConsumeToken();
+ continue;
+ }
+ // Block commands implicitly start a new paragraph.
+ if (Info->IsBlockCommand) {
+ // We found an implicit paragraph end.
+ InFirstParagraph = false;
+ if (InBrief)
+ break;
+ }
+ }
+
+ if (Tok.is(tok::newline)) {
+ if (InFirstParagraph || InBrief)
+ FirstParagraphOrBrief += ' ';
+ else if (InReturns)
+ ReturnsParagraph += ' ';
+ ConsumeToken();
+
+ // If the next token is a whitespace only text, ignore it. Thus we allow
+ // two paragraphs to be separated by line that has only whitespace in it.
+ //
+ // We don't need to add a space to the parsed text because we just added
+ // a space for the newline.
+ if (Tok.is(tok::text)) {
+ if (isWhitespace(Tok.getText()))
+ ConsumeToken();
+ }
+
+ if (Tok.is(tok::newline)) {
+ ConsumeToken();
+ // We found a paragraph end. This ends the brief description if
+ // \\brief command or its equivalent was explicitly used.
+ // Stop scanning text because an explicit \\brief paragraph is the
+ // preffered one.
+ if (InBrief)
+ break;
+ // End first paragraph if we found some non-whitespace text.
+ if (InFirstParagraph && !isWhitespace(FirstParagraphOrBrief))
+ InFirstParagraph = false;
+ // End the \\returns paragraph because we found the paragraph end.
+ InReturns = false;
+ }
+ continue;
+ }
+
+ // We didn't handle this token, so just drop it.
+ ConsumeToken();
+ }
+
+ cleanupBrief(FirstParagraphOrBrief);
+ if (!FirstParagraphOrBrief.empty())
+ return FirstParagraphOrBrief;
+
+ cleanupBrief(ReturnsParagraph);
+ return ReturnsParagraph;
+}
+
+} // end namespace comments
+} // end namespace clang
+
+
diff --git a/contrib/llvm/tools/clang/lib/AST/CommentCommandTraits.cpp b/contrib/llvm/tools/clang/lib/AST/CommentCommandTraits.cpp
new file mode 100644
index 0000000..7378a7c
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/CommentCommandTraits.cpp
@@ -0,0 +1,139 @@
+//===--- CommentCommandTraits.cpp - Comment command properties --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/CommentCommandTraits.h"
+#include "llvm/ADT/STLExtras.h"
+
+namespace clang {
+namespace comments {
+
+#include "clang/AST/CommentCommandInfo.inc"
+
+CommandTraits::CommandTraits(llvm::BumpPtrAllocator &Allocator,
+ const CommentOptions &CommentOptions) :
+ NextID(llvm::array_lengthof(Commands)), Allocator(Allocator) {
+ registerCommentOptions(CommentOptions);
+}
+
+void CommandTraits::registerCommentOptions(
+ const CommentOptions &CommentOptions) {
+ for (CommentOptions::BlockCommandNamesTy::const_iterator
+ I = CommentOptions.BlockCommandNames.begin(),
+ E = CommentOptions.BlockCommandNames.end();
+ I != E; I++) {
+ registerBlockCommand(*I);
+ }
+}
+
+const CommandInfo *CommandTraits::getCommandInfoOrNULL(StringRef Name) const {
+ if (const CommandInfo *Info = getBuiltinCommandInfo(Name))
+ return Info;
+ return getRegisteredCommandInfo(Name);
+}
+
+const CommandInfo *CommandTraits::getCommandInfo(unsigned CommandID) const {
+ if (const CommandInfo *Info = getBuiltinCommandInfo(CommandID))
+ return Info;
+ return getRegisteredCommandInfo(CommandID);
+}
+
+const CommandInfo *
+CommandTraits::getTypoCorrectCommandInfo(StringRef Typo) const {
+ // Single-character command impostures, such as \t or \n, should not go
+ // through the fixit logic.
+ if (Typo.size() <= 1)
+ return nullptr;
+
+ // The maximum edit distance we're prepared to accept.
+ const unsigned MaxEditDistance = 1;
+
+ unsigned BestEditDistance = MaxEditDistance;
+ SmallVector<const CommandInfo *, 2> BestCommand;
+
+ auto ConsiderCorrection = [&](const CommandInfo *Command) {
+ StringRef Name = Command->Name;
+
+ unsigned MinPossibleEditDistance = abs((int)Name.size() - (int)Typo.size());
+ if (MinPossibleEditDistance <= BestEditDistance) {
+ unsigned EditDistance = Typo.edit_distance(Name, true, BestEditDistance);
+ if (EditDistance < BestEditDistance) {
+ BestEditDistance = EditDistance;
+ BestCommand.clear();
+ }
+ if (EditDistance == BestEditDistance)
+ BestCommand.push_back(Command);
+ }
+ };
+
+ for (const auto &Command : Commands)
+ ConsiderCorrection(&Command);
+
+ for (const auto *Command : RegisteredCommands)
+ if (!Command->IsUnknownCommand)
+ ConsiderCorrection(Command);
+
+ return BestCommand.size() == 1 ? BestCommand[0] : nullptr;
+}
+
+CommandInfo *CommandTraits::createCommandInfoWithName(StringRef CommandName) {
+ char *Name = Allocator.Allocate<char>(CommandName.size() + 1);
+ memcpy(Name, CommandName.data(), CommandName.size());
+ Name[CommandName.size()] = '\0';
+
+ // Value-initialize (=zero-initialize in this case) a new CommandInfo.
+ CommandInfo *Info = new (Allocator) CommandInfo();
+ Info->Name = Name;
+ // We only have a limited number of bits to encode command IDs in the
+ // CommandInfo structure, so the ID numbers can potentially wrap around.
+ assert((NextID < (1 << CommandInfo::NumCommandIDBits))
+ && "Too many commands. We have limited bits for the command ID.");
+ Info->ID = NextID++;
+
+ RegisteredCommands.push_back(Info);
+
+ return Info;
+}
+
+const CommandInfo *CommandTraits::registerUnknownCommand(
+ StringRef CommandName) {
+ CommandInfo *Info = createCommandInfoWithName(CommandName);
+ Info->IsUnknownCommand = true;
+ return Info;
+}
+
+const CommandInfo *CommandTraits::registerBlockCommand(StringRef CommandName) {
+ CommandInfo *Info = createCommandInfoWithName(CommandName);
+ Info->IsBlockCommand = true;
+ return Info;
+}
+
+const CommandInfo *CommandTraits::getBuiltinCommandInfo(
+ unsigned CommandID) {
+ if (CommandID < llvm::array_lengthof(Commands))
+ return &Commands[CommandID];
+ return nullptr;
+}
+
+const CommandInfo *CommandTraits::getRegisteredCommandInfo(
+ StringRef Name) const {
+ for (unsigned i = 0, e = RegisteredCommands.size(); i != e; ++i) {
+ if (RegisteredCommands[i]->Name == Name)
+ return RegisteredCommands[i];
+ }
+ return nullptr;
+}
+
+const CommandInfo *CommandTraits::getRegisteredCommandInfo(
+ unsigned CommandID) const {
+ return RegisteredCommands[CommandID - llvm::array_lengthof(Commands)];
+}
+
+} // end namespace comments
+} // end namespace clang
+
diff --git a/contrib/llvm/tools/clang/lib/AST/CommentLexer.cpp b/contrib/llvm/tools/clang/lib/AST/CommentLexer.cpp
new file mode 100644
index 0000000..98b7e36
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/CommentLexer.cpp
@@ -0,0 +1,851 @@
+#include "clang/AST/CommentLexer.h"
+#include "clang/AST/CommentCommandTraits.h"
+#include "clang/AST/CommentDiagnostic.h"
+#include "clang/Basic/CharInfo.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/Support/ConvertUTF.h"
+#include "llvm/Support/ErrorHandling.h"
+
+namespace clang {
+namespace comments {
+
+void Token::dump(const Lexer &L, const SourceManager &SM) const {
+ llvm::errs() << "comments::Token Kind=" << Kind << " ";
+ Loc.dump(SM);
+ llvm::errs() << " " << Length << " \"" << L.getSpelling(*this, SM) << "\"\n";
+}
+
+static inline bool isHTMLNamedCharacterReferenceCharacter(char C) {
+ return isLetter(C);
+}
+
+static inline bool isHTMLDecimalCharacterReferenceCharacter(char C) {
+ return isDigit(C);
+}
+
+static inline bool isHTMLHexCharacterReferenceCharacter(char C) {
+ return isHexDigit(C);
+}
+
+static inline StringRef convertCodePointToUTF8(
+ llvm::BumpPtrAllocator &Allocator,
+ unsigned CodePoint) {
+ char *Resolved = Allocator.Allocate<char>(UNI_MAX_UTF8_BYTES_PER_CODE_POINT);
+ char *ResolvedPtr = Resolved;
+ if (llvm::ConvertCodePointToUTF8(CodePoint, ResolvedPtr))
+ return StringRef(Resolved, ResolvedPtr - Resolved);
+ else
+ return StringRef();
+}
+
+namespace {
+
+#include "clang/AST/CommentHTMLTags.inc"
+#include "clang/AST/CommentHTMLNamedCharacterReferences.inc"
+
+} // unnamed namespace
+
+StringRef Lexer::resolveHTMLNamedCharacterReference(StringRef Name) const {
+ // Fast path, first check a few most widely used named character references.
+ return llvm::StringSwitch<StringRef>(Name)
+ .Case("amp", "&")
+ .Case("lt", "<")
+ .Case("gt", ">")
+ .Case("quot", "\"")
+ .Case("apos", "\'")
+ // Slow path.
+ .Default(translateHTMLNamedCharacterReferenceToUTF8(Name));
+}
+
+StringRef Lexer::resolveHTMLDecimalCharacterReference(StringRef Name) const {
+ unsigned CodePoint = 0;
+ for (unsigned i = 0, e = Name.size(); i != e; ++i) {
+ assert(isHTMLDecimalCharacterReferenceCharacter(Name[i]));
+ CodePoint *= 10;
+ CodePoint += Name[i] - '0';
+ }
+ return convertCodePointToUTF8(Allocator, CodePoint);
+}
+
+StringRef Lexer::resolveHTMLHexCharacterReference(StringRef Name) const {
+ unsigned CodePoint = 0;
+ for (unsigned i = 0, e = Name.size(); i != e; ++i) {
+ CodePoint *= 16;
+ const char C = Name[i];
+ assert(isHTMLHexCharacterReferenceCharacter(C));
+ CodePoint += llvm::hexDigitValue(C);
+ }
+ return convertCodePointToUTF8(Allocator, CodePoint);
+}
+
+void Lexer::skipLineStartingDecorations() {
+ // This function should be called only for C comments
+ assert(CommentState == LCS_InsideCComment);
+
+ if (BufferPtr == CommentEnd)
+ return;
+
+ switch (*BufferPtr) {
+ case ' ':
+ case '\t':
+ case '\f':
+ case '\v': {
+ const char *NewBufferPtr = BufferPtr;
+ NewBufferPtr++;
+ if (NewBufferPtr == CommentEnd)
+ return;
+
+ char C = *NewBufferPtr;
+ while (isHorizontalWhitespace(C)) {
+ NewBufferPtr++;
+ if (NewBufferPtr == CommentEnd)
+ return;
+ C = *NewBufferPtr;
+ }
+ if (C == '*')
+ BufferPtr = NewBufferPtr + 1;
+ break;
+ }
+ case '*':
+ BufferPtr++;
+ break;
+ }
+}
+
+namespace {
+/// Returns pointer to the first newline character in the string.
+const char *findNewline(const char *BufferPtr, const char *BufferEnd) {
+ for ( ; BufferPtr != BufferEnd; ++BufferPtr) {
+ if (isVerticalWhitespace(*BufferPtr))
+ return BufferPtr;
+ }
+ return BufferEnd;
+}
+
+const char *skipNewline(const char *BufferPtr, const char *BufferEnd) {
+ if (BufferPtr == BufferEnd)
+ return BufferPtr;
+
+ if (*BufferPtr == '\n')
+ BufferPtr++;
+ else {
+ assert(*BufferPtr == '\r');
+ BufferPtr++;
+ if (BufferPtr != BufferEnd && *BufferPtr == '\n')
+ BufferPtr++;
+ }
+ return BufferPtr;
+}
+
+const char *skipNamedCharacterReference(const char *BufferPtr,
+ const char *BufferEnd) {
+ for ( ; BufferPtr != BufferEnd; ++BufferPtr) {
+ if (!isHTMLNamedCharacterReferenceCharacter(*BufferPtr))
+ return BufferPtr;
+ }
+ return BufferEnd;
+}
+
+const char *skipDecimalCharacterReference(const char *BufferPtr,
+ const char *BufferEnd) {
+ for ( ; BufferPtr != BufferEnd; ++BufferPtr) {
+ if (!isHTMLDecimalCharacterReferenceCharacter(*BufferPtr))
+ return BufferPtr;
+ }
+ return BufferEnd;
+}
+
+const char *skipHexCharacterReference(const char *BufferPtr,
+ const char *BufferEnd) {
+ for ( ; BufferPtr != BufferEnd; ++BufferPtr) {
+ if (!isHTMLHexCharacterReferenceCharacter(*BufferPtr))
+ return BufferPtr;
+ }
+ return BufferEnd;
+}
+
+bool isHTMLIdentifierStartingCharacter(char C) {
+ return isLetter(C);
+}
+
+bool isHTMLIdentifierCharacter(char C) {
+ return isAlphanumeric(C);
+}
+
+const char *skipHTMLIdentifier(const char *BufferPtr, const char *BufferEnd) {
+ for ( ; BufferPtr != BufferEnd; ++BufferPtr) {
+ if (!isHTMLIdentifierCharacter(*BufferPtr))
+ return BufferPtr;
+ }
+ return BufferEnd;
+}
+
+/// Skip HTML string quoted in single or double quotes. Escaping quotes inside
+/// string allowed.
+///
+/// Returns pointer to closing quote.
+const char *skipHTMLQuotedString(const char *BufferPtr, const char *BufferEnd)
+{
+ const char Quote = *BufferPtr;
+ assert(Quote == '\"' || Quote == '\'');
+
+ BufferPtr++;
+ for ( ; BufferPtr != BufferEnd; ++BufferPtr) {
+ const char C = *BufferPtr;
+ if (C == Quote && BufferPtr[-1] != '\\')
+ return BufferPtr;
+ }
+ return BufferEnd;
+}
+
+const char *skipWhitespace(const char *BufferPtr, const char *BufferEnd) {
+ for ( ; BufferPtr != BufferEnd; ++BufferPtr) {
+ if (!isWhitespace(*BufferPtr))
+ return BufferPtr;
+ }
+ return BufferEnd;
+}
+
+bool isWhitespace(const char *BufferPtr, const char *BufferEnd) {
+ return skipWhitespace(BufferPtr, BufferEnd) == BufferEnd;
+}
+
+bool isCommandNameStartCharacter(char C) {
+ return isLetter(C);
+}
+
+bool isCommandNameCharacter(char C) {
+ return isAlphanumeric(C);
+}
+
+const char *skipCommandName(const char *BufferPtr, const char *BufferEnd) {
+ for ( ; BufferPtr != BufferEnd; ++BufferPtr) {
+ if (!isCommandNameCharacter(*BufferPtr))
+ return BufferPtr;
+ }
+ return BufferEnd;
+}
+
+/// Return the one past end pointer for BCPL comments.
+/// Handles newlines escaped with backslash or trigraph for backslahs.
+const char *findBCPLCommentEnd(const char *BufferPtr, const char *BufferEnd) {
+ const char *CurPtr = BufferPtr;
+ while (CurPtr != BufferEnd) {
+ while (!isVerticalWhitespace(*CurPtr)) {
+ CurPtr++;
+ if (CurPtr == BufferEnd)
+ return BufferEnd;
+ }
+ // We found a newline, check if it is escaped.
+ const char *EscapePtr = CurPtr - 1;
+ while(isHorizontalWhitespace(*EscapePtr))
+ EscapePtr--;
+
+ if (*EscapePtr == '\\' ||
+ (EscapePtr - 2 >= BufferPtr && EscapePtr[0] == '/' &&
+ EscapePtr[-1] == '?' && EscapePtr[-2] == '?')) {
+ // We found an escaped newline.
+ CurPtr = skipNewline(CurPtr, BufferEnd);
+ } else
+ return CurPtr; // Not an escaped newline.
+ }
+ return BufferEnd;
+}
+
+/// Return the one past end pointer for C comments.
+/// Very dumb, does not handle escaped newlines or trigraphs.
+const char *findCCommentEnd(const char *BufferPtr, const char *BufferEnd) {
+ for ( ; BufferPtr != BufferEnd; ++BufferPtr) {
+ if (*BufferPtr == '*') {
+ assert(BufferPtr + 1 != BufferEnd);
+ if (*(BufferPtr + 1) == '/')
+ return BufferPtr;
+ }
+ }
+ llvm_unreachable("buffer end hit before '*/' was seen");
+}
+
+} // unnamed namespace
+
+void Lexer::formTokenWithChars(Token &Result, const char *TokEnd,
+ tok::TokenKind Kind) {
+ const unsigned TokLen = TokEnd - BufferPtr;
+ Result.setLocation(getSourceLocation(BufferPtr));
+ Result.setKind(Kind);
+ Result.setLength(TokLen);
+#ifndef NDEBUG
+ Result.TextPtr = "<UNSET>";
+ Result.IntVal = 7;
+#endif
+ BufferPtr = TokEnd;
+}
+
+void Lexer::lexCommentText(Token &T) {
+ assert(CommentState == LCS_InsideBCPLComment ||
+ CommentState == LCS_InsideCComment);
+
+ switch (State) {
+ case LS_Normal:
+ break;
+ case LS_VerbatimBlockFirstLine:
+ lexVerbatimBlockFirstLine(T);
+ return;
+ case LS_VerbatimBlockBody:
+ lexVerbatimBlockBody(T);
+ return;
+ case LS_VerbatimLineText:
+ lexVerbatimLineText(T);
+ return;
+ case LS_HTMLStartTag:
+ lexHTMLStartTag(T);
+ return;
+ case LS_HTMLEndTag:
+ lexHTMLEndTag(T);
+ return;
+ }
+
+ assert(State == LS_Normal);
+
+ const char *TokenPtr = BufferPtr;
+ assert(TokenPtr < CommentEnd);
+ while (TokenPtr != CommentEnd) {
+ switch(*TokenPtr) {
+ case '\\':
+ case '@': {
+ // Commands that start with a backslash and commands that start with
+ // 'at' have equivalent semantics. But we keep information about the
+ // exact syntax in AST for comments.
+ tok::TokenKind CommandKind =
+ (*TokenPtr == '@') ? tok::at_command : tok::backslash_command;
+ TokenPtr++;
+ if (TokenPtr == CommentEnd) {
+ formTextToken(T, TokenPtr);
+ return;
+ }
+ char C = *TokenPtr;
+ switch (C) {
+ default:
+ break;
+
+ case '\\': case '@': case '&': case '$':
+ case '#': case '<': case '>': case '%':
+ case '\"': case '.': case ':':
+ // This is one of \\ \@ \& \$ etc escape sequences.
+ TokenPtr++;
+ if (C == ':' && TokenPtr != CommentEnd && *TokenPtr == ':') {
+ // This is the \:: escape sequence.
+ TokenPtr++;
+ }
+ StringRef UnescapedText(BufferPtr + 1, TokenPtr - (BufferPtr + 1));
+ formTokenWithChars(T, TokenPtr, tok::text);
+ T.setText(UnescapedText);
+ return;
+ }
+
+ // Don't make zero-length commands.
+ if (!isCommandNameStartCharacter(*TokenPtr)) {
+ formTextToken(T, TokenPtr);
+ return;
+ }
+
+ TokenPtr = skipCommandName(TokenPtr, CommentEnd);
+ unsigned Length = TokenPtr - (BufferPtr + 1);
+
+ // Hardcoded support for lexing LaTeX formula commands
+ // \f$ \f[ \f] \f{ \f} as a single command.
+ if (Length == 1 && TokenPtr[-1] == 'f' && TokenPtr != CommentEnd) {
+ C = *TokenPtr;
+ if (C == '$' || C == '[' || C == ']' || C == '{' || C == '}') {
+ TokenPtr++;
+ Length++;
+ }
+ }
+
+ StringRef CommandName(BufferPtr + 1, Length);
+
+ const CommandInfo *Info = Traits.getCommandInfoOrNULL(CommandName);
+ if (!Info) {
+ if ((Info = Traits.getTypoCorrectCommandInfo(CommandName))) {
+ StringRef CorrectedName = Info->Name;
+ SourceLocation Loc = getSourceLocation(BufferPtr);
+ SourceRange CommandRange(Loc.getLocWithOffset(1),
+ getSourceLocation(TokenPtr));
+ Diag(Loc, diag::warn_correct_comment_command_name)
+ << CommandName << CorrectedName
+ << FixItHint::CreateReplacement(CommandRange, CorrectedName);
+ } else {
+ formTokenWithChars(T, TokenPtr, tok::unknown_command);
+ T.setUnknownCommandName(CommandName);
+ Diag(T.getLocation(), diag::warn_unknown_comment_command_name);
+ return;
+ }
+ }
+ if (Info->IsVerbatimBlockCommand) {
+ setupAndLexVerbatimBlock(T, TokenPtr, *BufferPtr, Info);
+ return;
+ }
+ if (Info->IsVerbatimLineCommand) {
+ setupAndLexVerbatimLine(T, TokenPtr, Info);
+ return;
+ }
+ formTokenWithChars(T, TokenPtr, CommandKind);
+ T.setCommandID(Info->getID());
+ return;
+ }
+
+ case '&':
+ lexHTMLCharacterReference(T);
+ return;
+
+ case '<': {
+ TokenPtr++;
+ if (TokenPtr == CommentEnd) {
+ formTextToken(T, TokenPtr);
+ return;
+ }
+ const char C = *TokenPtr;
+ if (isHTMLIdentifierStartingCharacter(C))
+ setupAndLexHTMLStartTag(T);
+ else if (C == '/')
+ setupAndLexHTMLEndTag(T);
+ else
+ formTextToken(T, TokenPtr);
+
+ return;
+ }
+
+ case '\n':
+ case '\r':
+ TokenPtr = skipNewline(TokenPtr, CommentEnd);
+ formTokenWithChars(T, TokenPtr, tok::newline);
+
+ if (CommentState == LCS_InsideCComment)
+ skipLineStartingDecorations();
+ return;
+
+ default: {
+ size_t End = StringRef(TokenPtr, CommentEnd - TokenPtr).
+ find_first_of("\n\r\\@&<");
+ if (End != StringRef::npos)
+ TokenPtr += End;
+ else
+ TokenPtr = CommentEnd;
+ formTextToken(T, TokenPtr);
+ return;
+ }
+ }
+ }
+}
+
+void Lexer::setupAndLexVerbatimBlock(Token &T,
+ const char *TextBegin,
+ char Marker, const CommandInfo *Info) {
+ assert(Info->IsVerbatimBlockCommand);
+
+ VerbatimBlockEndCommandName.clear();
+ VerbatimBlockEndCommandName.append(Marker == '\\' ? "\\" : "@");
+ VerbatimBlockEndCommandName.append(Info->EndCommandName);
+
+ formTokenWithChars(T, TextBegin, tok::verbatim_block_begin);
+ T.setVerbatimBlockID(Info->getID());
+
+ // If there is a newline following the verbatim opening command, skip the
+ // newline so that we don't create an tok::verbatim_block_line with empty
+ // text content.
+ if (BufferPtr != CommentEnd &&
+ isVerticalWhitespace(*BufferPtr)) {
+ BufferPtr = skipNewline(BufferPtr, CommentEnd);
+ State = LS_VerbatimBlockBody;
+ return;
+ }
+
+ State = LS_VerbatimBlockFirstLine;
+}
+
+void Lexer::lexVerbatimBlockFirstLine(Token &T) {
+again:
+ assert(BufferPtr < CommentEnd);
+
+ // FIXME: It would be better to scan the text once, finding either the block
+ // end command or newline.
+ //
+ // Extract current line.
+ const char *Newline = findNewline(BufferPtr, CommentEnd);
+ StringRef Line(BufferPtr, Newline - BufferPtr);
+
+ // Look for end command in current line.
+ size_t Pos = Line.find(VerbatimBlockEndCommandName);
+ const char *TextEnd;
+ const char *NextLine;
+ if (Pos == StringRef::npos) {
+ // Current line is completely verbatim.
+ TextEnd = Newline;
+ NextLine = skipNewline(Newline, CommentEnd);
+ } else if (Pos == 0) {
+ // Current line contains just an end command.
+ const char *End = BufferPtr + VerbatimBlockEndCommandName.size();
+ StringRef Name(BufferPtr + 1, End - (BufferPtr + 1));
+ formTokenWithChars(T, End, tok::verbatim_block_end);
+ T.setVerbatimBlockID(Traits.getCommandInfo(Name)->getID());
+ State = LS_Normal;
+ return;
+ } else {
+ // There is some text, followed by end command. Extract text first.
+ TextEnd = BufferPtr + Pos;
+ NextLine = TextEnd;
+ // If there is only whitespace before end command, skip whitespace.
+ if (isWhitespace(BufferPtr, TextEnd)) {
+ BufferPtr = TextEnd;
+ goto again;
+ }
+ }
+
+ StringRef Text(BufferPtr, TextEnd - BufferPtr);
+ formTokenWithChars(T, NextLine, tok::verbatim_block_line);
+ T.setVerbatimBlockText(Text);
+
+ State = LS_VerbatimBlockBody;
+}
+
+void Lexer::lexVerbatimBlockBody(Token &T) {
+ assert(State == LS_VerbatimBlockBody);
+
+ if (CommentState == LCS_InsideCComment)
+ skipLineStartingDecorations();
+
+ if (BufferPtr == CommentEnd) {
+ formTokenWithChars(T, BufferPtr, tok::verbatim_block_line);
+ T.setVerbatimBlockText("");
+ return;
+ }
+
+ lexVerbatimBlockFirstLine(T);
+}
+
+void Lexer::setupAndLexVerbatimLine(Token &T, const char *TextBegin,
+ const CommandInfo *Info) {
+ assert(Info->IsVerbatimLineCommand);
+ formTokenWithChars(T, TextBegin, tok::verbatim_line_name);
+ T.setVerbatimLineID(Info->getID());
+
+ State = LS_VerbatimLineText;
+}
+
+void Lexer::lexVerbatimLineText(Token &T) {
+ assert(State == LS_VerbatimLineText);
+
+ // Extract current line.
+ const char *Newline = findNewline(BufferPtr, CommentEnd);
+ StringRef Text(BufferPtr, Newline - BufferPtr);
+ formTokenWithChars(T, Newline, tok::verbatim_line_text);
+ T.setVerbatimLineText(Text);
+
+ State = LS_Normal;
+}
+
+void Lexer::lexHTMLCharacterReference(Token &T) {
+ const char *TokenPtr = BufferPtr;
+ assert(*TokenPtr == '&');
+ TokenPtr++;
+ if (TokenPtr == CommentEnd) {
+ formTextToken(T, TokenPtr);
+ return;
+ }
+ const char *NamePtr;
+ bool isNamed = false;
+ bool isDecimal = false;
+ char C = *TokenPtr;
+ if (isHTMLNamedCharacterReferenceCharacter(C)) {
+ NamePtr = TokenPtr;
+ TokenPtr = skipNamedCharacterReference(TokenPtr, CommentEnd);
+ isNamed = true;
+ } else if (C == '#') {
+ TokenPtr++;
+ if (TokenPtr == CommentEnd) {
+ formTextToken(T, TokenPtr);
+ return;
+ }
+ C = *TokenPtr;
+ if (isHTMLDecimalCharacterReferenceCharacter(C)) {
+ NamePtr = TokenPtr;
+ TokenPtr = skipDecimalCharacterReference(TokenPtr, CommentEnd);
+ isDecimal = true;
+ } else if (C == 'x' || C == 'X') {
+ TokenPtr++;
+ NamePtr = TokenPtr;
+ TokenPtr = skipHexCharacterReference(TokenPtr, CommentEnd);
+ } else {
+ formTextToken(T, TokenPtr);
+ return;
+ }
+ } else {
+ formTextToken(T, TokenPtr);
+ return;
+ }
+ if (NamePtr == TokenPtr || TokenPtr == CommentEnd ||
+ *TokenPtr != ';') {
+ formTextToken(T, TokenPtr);
+ return;
+ }
+ StringRef Name(NamePtr, TokenPtr - NamePtr);
+ TokenPtr++; // Skip semicolon.
+ StringRef Resolved;
+ if (isNamed)
+ Resolved = resolveHTMLNamedCharacterReference(Name);
+ else if (isDecimal)
+ Resolved = resolveHTMLDecimalCharacterReference(Name);
+ else
+ Resolved = resolveHTMLHexCharacterReference(Name);
+
+ if (Resolved.empty()) {
+ formTextToken(T, TokenPtr);
+ return;
+ }
+ formTokenWithChars(T, TokenPtr, tok::text);
+ T.setText(Resolved);
+ return;
+}
+
+void Lexer::setupAndLexHTMLStartTag(Token &T) {
+ assert(BufferPtr[0] == '<' &&
+ isHTMLIdentifierStartingCharacter(BufferPtr[1]));
+ const char *TagNameEnd = skipHTMLIdentifier(BufferPtr + 2, CommentEnd);
+ StringRef Name(BufferPtr + 1, TagNameEnd - (BufferPtr + 1));
+ if (!isHTMLTagName(Name)) {
+ formTextToken(T, TagNameEnd);
+ return;
+ }
+
+ formTokenWithChars(T, TagNameEnd, tok::html_start_tag);
+ T.setHTMLTagStartName(Name);
+
+ BufferPtr = skipWhitespace(BufferPtr, CommentEnd);
+
+ const char C = *BufferPtr;
+ if (BufferPtr != CommentEnd &&
+ (C == '>' || C == '/' || isHTMLIdentifierStartingCharacter(C)))
+ State = LS_HTMLStartTag;
+}
+
+void Lexer::lexHTMLStartTag(Token &T) {
+ assert(State == LS_HTMLStartTag);
+
+ const char *TokenPtr = BufferPtr;
+ char C = *TokenPtr;
+ if (isHTMLIdentifierCharacter(C)) {
+ TokenPtr = skipHTMLIdentifier(TokenPtr, CommentEnd);
+ StringRef Ident(BufferPtr, TokenPtr - BufferPtr);
+ formTokenWithChars(T, TokenPtr, tok::html_ident);
+ T.setHTMLIdent(Ident);
+ } else {
+ switch (C) {
+ case '=':
+ TokenPtr++;
+ formTokenWithChars(T, TokenPtr, tok::html_equals);
+ break;
+ case '\"':
+ case '\'': {
+ const char *OpenQuote = TokenPtr;
+ TokenPtr = skipHTMLQuotedString(TokenPtr, CommentEnd);
+ const char *ClosingQuote = TokenPtr;
+ if (TokenPtr != CommentEnd) // Skip closing quote.
+ TokenPtr++;
+ formTokenWithChars(T, TokenPtr, tok::html_quoted_string);
+ T.setHTMLQuotedString(StringRef(OpenQuote + 1,
+ ClosingQuote - (OpenQuote + 1)));
+ break;
+ }
+ case '>':
+ TokenPtr++;
+ formTokenWithChars(T, TokenPtr, tok::html_greater);
+ State = LS_Normal;
+ return;
+ case '/':
+ TokenPtr++;
+ if (TokenPtr != CommentEnd && *TokenPtr == '>') {
+ TokenPtr++;
+ formTokenWithChars(T, TokenPtr, tok::html_slash_greater);
+ } else
+ formTextToken(T, TokenPtr);
+
+ State = LS_Normal;
+ return;
+ }
+ }
+
+ // Now look ahead and return to normal state if we don't see any HTML tokens
+ // ahead.
+ BufferPtr = skipWhitespace(BufferPtr, CommentEnd);
+ if (BufferPtr == CommentEnd) {
+ State = LS_Normal;
+ return;
+ }
+
+ C = *BufferPtr;
+ if (!isHTMLIdentifierStartingCharacter(C) &&
+ C != '=' && C != '\"' && C != '\'' && C != '>') {
+ State = LS_Normal;
+ return;
+ }
+}
+
+void Lexer::setupAndLexHTMLEndTag(Token &T) {
+ assert(BufferPtr[0] == '<' && BufferPtr[1] == '/');
+
+ const char *TagNameBegin = skipWhitespace(BufferPtr + 2, CommentEnd);
+ const char *TagNameEnd = skipHTMLIdentifier(TagNameBegin, CommentEnd);
+ StringRef Name(TagNameBegin, TagNameEnd - TagNameBegin);
+ if (!isHTMLTagName(Name)) {
+ formTextToken(T, TagNameEnd);
+ return;
+ }
+
+ const char *End = skipWhitespace(TagNameEnd, CommentEnd);
+
+ formTokenWithChars(T, End, tok::html_end_tag);
+ T.setHTMLTagEndName(Name);
+
+ if (BufferPtr != CommentEnd && *BufferPtr == '>')
+ State = LS_HTMLEndTag;
+}
+
+void Lexer::lexHTMLEndTag(Token &T) {
+ assert(BufferPtr != CommentEnd && *BufferPtr == '>');
+
+ formTokenWithChars(T, BufferPtr + 1, tok::html_greater);
+ State = LS_Normal;
+}
+
+Lexer::Lexer(llvm::BumpPtrAllocator &Allocator, DiagnosticsEngine &Diags,
+ const CommandTraits &Traits,
+ SourceLocation FileLoc,
+ const char *BufferStart, const char *BufferEnd):
+ Allocator(Allocator), Diags(Diags), Traits(Traits),
+ BufferStart(BufferStart), BufferEnd(BufferEnd),
+ FileLoc(FileLoc), BufferPtr(BufferStart),
+ CommentState(LCS_BeforeComment), State(LS_Normal) {
+}
+
+void Lexer::lex(Token &T) {
+again:
+ switch (CommentState) {
+ case LCS_BeforeComment:
+ if (BufferPtr == BufferEnd) {
+ formTokenWithChars(T, BufferPtr, tok::eof);
+ return;
+ }
+
+ assert(*BufferPtr == '/');
+ BufferPtr++; // Skip first slash.
+ switch(*BufferPtr) {
+ case '/': { // BCPL comment.
+ BufferPtr++; // Skip second slash.
+
+ if (BufferPtr != BufferEnd) {
+ // Skip Doxygen magic marker, if it is present.
+ // It might be missing because of a typo //< or /*<, or because we
+ // merged this non-Doxygen comment into a bunch of Doxygen comments
+ // around it: /** ... */ /* ... */ /** ... */
+ const char C = *BufferPtr;
+ if (C == '/' || C == '!')
+ BufferPtr++;
+ }
+
+ // Skip less-than symbol that marks trailing comments.
+ // Skip it even if the comment is not a Doxygen one, because //< and /*<
+ // are frequent typos.
+ if (BufferPtr != BufferEnd && *BufferPtr == '<')
+ BufferPtr++;
+
+ CommentState = LCS_InsideBCPLComment;
+ if (State != LS_VerbatimBlockBody && State != LS_VerbatimBlockFirstLine)
+ State = LS_Normal;
+ CommentEnd = findBCPLCommentEnd(BufferPtr, BufferEnd);
+ goto again;
+ }
+ case '*': { // C comment.
+ BufferPtr++; // Skip star.
+
+ // Skip Doxygen magic marker.
+ const char C = *BufferPtr;
+ if ((C == '*' && *(BufferPtr + 1) != '/') || C == '!')
+ BufferPtr++;
+
+ // Skip less-than symbol that marks trailing comments.
+ if (BufferPtr != BufferEnd && *BufferPtr == '<')
+ BufferPtr++;
+
+ CommentState = LCS_InsideCComment;
+ State = LS_Normal;
+ CommentEnd = findCCommentEnd(BufferPtr, BufferEnd);
+ goto again;
+ }
+ default:
+ llvm_unreachable("second character of comment should be '/' or '*'");
+ }
+
+ case LCS_BetweenComments: {
+ // Consecutive comments are extracted only if there is only whitespace
+ // between them. So we can search for the start of the next comment.
+ const char *EndWhitespace = BufferPtr;
+ while(EndWhitespace != BufferEnd && *EndWhitespace != '/')
+ EndWhitespace++;
+
+ // Turn any whitespace between comments (and there is only whitespace
+ // between them -- guaranteed by comment extraction) into a newline. We
+ // have two newlines between C comments in total (first one was synthesized
+ // after a comment).
+ formTokenWithChars(T, EndWhitespace, tok::newline);
+
+ CommentState = LCS_BeforeComment;
+ break;
+ }
+
+ case LCS_InsideBCPLComment:
+ case LCS_InsideCComment:
+ if (BufferPtr != CommentEnd) {
+ lexCommentText(T);
+ break;
+ } else {
+ // Skip C comment closing sequence.
+ if (CommentState == LCS_InsideCComment) {
+ assert(BufferPtr[0] == '*' && BufferPtr[1] == '/');
+ BufferPtr += 2;
+ assert(BufferPtr <= BufferEnd);
+
+ // Synthenize newline just after the C comment, regardless if there is
+ // actually a newline.
+ formTokenWithChars(T, BufferPtr, tok::newline);
+
+ CommentState = LCS_BetweenComments;
+ break;
+ } else {
+ // Don't synthesized a newline after BCPL comment.
+ CommentState = LCS_BetweenComments;
+ goto again;
+ }
+ }
+ }
+}
+
+StringRef Lexer::getSpelling(const Token &Tok,
+ const SourceManager &SourceMgr,
+ bool *Invalid) const {
+ SourceLocation Loc = Tok.getLocation();
+ std::pair<FileID, unsigned> LocInfo = SourceMgr.getDecomposedLoc(Loc);
+
+ bool InvalidTemp = false;
+ StringRef File = SourceMgr.getBufferData(LocInfo.first, &InvalidTemp);
+ if (InvalidTemp) {
+ *Invalid = true;
+ return StringRef();
+ }
+
+ const char *Begin = File.data() + LocInfo.second;
+ return StringRef(Begin, Tok.getLength());
+}
+
+} // end namespace comments
+} // end namespace clang
+
diff --git a/contrib/llvm/tools/clang/lib/AST/CommentParser.cpp b/contrib/llvm/tools/clang/lib/AST/CommentParser.cpp
new file mode 100644
index 0000000..cb37ec3
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/CommentParser.cpp
@@ -0,0 +1,776 @@
+//===--- CommentParser.cpp - Doxygen comment parser -----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/CommentParser.h"
+#include "clang/AST/CommentCommandTraits.h"
+#include "clang/AST/CommentDiagnostic.h"
+#include "clang/AST/CommentSema.h"
+#include "clang/Basic/CharInfo.h"
+#include "clang/Basic/SourceManager.h"
+#include "llvm/Support/ErrorHandling.h"
+
+namespace clang {
+
+static inline bool isWhitespace(llvm::StringRef S) {
+ for (StringRef::const_iterator I = S.begin(), E = S.end(); I != E; ++I) {
+ if (!isWhitespace(*I))
+ return false;
+ }
+ return true;
+}
+
+namespace comments {
+
+/// Re-lexes a sequence of tok::text tokens.
+class TextTokenRetokenizer {
+ llvm::BumpPtrAllocator &Allocator;
+ Parser &P;
+
+ /// This flag is set when there are no more tokens we can fetch from lexer.
+ bool NoMoreInterestingTokens;
+
+ /// Token buffer: tokens we have processed and lookahead.
+ SmallVector<Token, 16> Toks;
+
+ /// A position in \c Toks.
+ struct Position {
+ unsigned CurToken;
+ const char *BufferStart;
+ const char *BufferEnd;
+ const char *BufferPtr;
+ SourceLocation BufferStartLoc;
+ };
+
+ /// Current position in Toks.
+ Position Pos;
+
+ bool isEnd() const {
+ return Pos.CurToken >= Toks.size();
+ }
+
+ /// Sets up the buffer pointers to point to current token.
+ void setupBuffer() {
+ assert(!isEnd());
+ const Token &Tok = Toks[Pos.CurToken];
+
+ Pos.BufferStart = Tok.getText().begin();
+ Pos.BufferEnd = Tok.getText().end();
+ Pos.BufferPtr = Pos.BufferStart;
+ Pos.BufferStartLoc = Tok.getLocation();
+ }
+
+ SourceLocation getSourceLocation() const {
+ const unsigned CharNo = Pos.BufferPtr - Pos.BufferStart;
+ return Pos.BufferStartLoc.getLocWithOffset(CharNo);
+ }
+
+ char peek() const {
+ assert(!isEnd());
+ assert(Pos.BufferPtr != Pos.BufferEnd);
+ return *Pos.BufferPtr;
+ }
+
+ void consumeChar() {
+ assert(!isEnd());
+ assert(Pos.BufferPtr != Pos.BufferEnd);
+ Pos.BufferPtr++;
+ if (Pos.BufferPtr == Pos.BufferEnd) {
+ Pos.CurToken++;
+ if (isEnd() && !addToken())
+ return;
+
+ assert(!isEnd());
+ setupBuffer();
+ }
+ }
+
+ /// Add a token.
+ /// Returns true on success, false if there are no interesting tokens to
+ /// fetch from lexer.
+ bool addToken() {
+ if (NoMoreInterestingTokens)
+ return false;
+
+ if (P.Tok.is(tok::newline)) {
+ // If we see a single newline token between text tokens, skip it.
+ Token Newline = P.Tok;
+ P.consumeToken();
+ if (P.Tok.isNot(tok::text)) {
+ P.putBack(Newline);
+ NoMoreInterestingTokens = true;
+ return false;
+ }
+ }
+ if (P.Tok.isNot(tok::text)) {
+ NoMoreInterestingTokens = true;
+ return false;
+ }
+
+ Toks.push_back(P.Tok);
+ P.consumeToken();
+ if (Toks.size() == 1)
+ setupBuffer();
+ return true;
+ }
+
+ void consumeWhitespace() {
+ while (!isEnd()) {
+ if (isWhitespace(peek()))
+ consumeChar();
+ else
+ break;
+ }
+ }
+
+ void formTokenWithChars(Token &Result,
+ SourceLocation Loc,
+ const char *TokBegin,
+ unsigned TokLength,
+ StringRef Text) {
+ Result.setLocation(Loc);
+ Result.setKind(tok::text);
+ Result.setLength(TokLength);
+#ifndef NDEBUG
+ Result.TextPtr = "<UNSET>";
+ Result.IntVal = 7;
+#endif
+ Result.setText(Text);
+ }
+
+public:
+ TextTokenRetokenizer(llvm::BumpPtrAllocator &Allocator, Parser &P):
+ Allocator(Allocator), P(P), NoMoreInterestingTokens(false) {
+ Pos.CurToken = 0;
+ addToken();
+ }
+
+ /// Extract a word -- sequence of non-whitespace characters.
+ bool lexWord(Token &Tok) {
+ if (isEnd())
+ return false;
+
+ Position SavedPos = Pos;
+
+ consumeWhitespace();
+ SmallString<32> WordText;
+ const char *WordBegin = Pos.BufferPtr;
+ SourceLocation Loc = getSourceLocation();
+ while (!isEnd()) {
+ const char C = peek();
+ if (!isWhitespace(C)) {
+ WordText.push_back(C);
+ consumeChar();
+ } else
+ break;
+ }
+ const unsigned Length = WordText.size();
+ if (Length == 0) {
+ Pos = SavedPos;
+ return false;
+ }
+
+ char *TextPtr = Allocator.Allocate<char>(Length + 1);
+
+ memcpy(TextPtr, WordText.c_str(), Length + 1);
+ StringRef Text = StringRef(TextPtr, Length);
+
+ formTokenWithChars(Tok, Loc, WordBegin, Length, Text);
+ return true;
+ }
+
+ bool lexDelimitedSeq(Token &Tok, char OpenDelim, char CloseDelim) {
+ if (isEnd())
+ return false;
+
+ Position SavedPos = Pos;
+
+ consumeWhitespace();
+ SmallString<32> WordText;
+ const char *WordBegin = Pos.BufferPtr;
+ SourceLocation Loc = getSourceLocation();
+ bool Error = false;
+ if (!isEnd()) {
+ const char C = peek();
+ if (C == OpenDelim) {
+ WordText.push_back(C);
+ consumeChar();
+ } else
+ Error = true;
+ }
+ char C = '\0';
+ while (!Error && !isEnd()) {
+ C = peek();
+ WordText.push_back(C);
+ consumeChar();
+ if (C == CloseDelim)
+ break;
+ }
+ if (!Error && C != CloseDelim)
+ Error = true;
+
+ if (Error) {
+ Pos = SavedPos;
+ return false;
+ }
+
+ const unsigned Length = WordText.size();
+ char *TextPtr = Allocator.Allocate<char>(Length + 1);
+
+ memcpy(TextPtr, WordText.c_str(), Length + 1);
+ StringRef Text = StringRef(TextPtr, Length);
+
+ formTokenWithChars(Tok, Loc, WordBegin,
+ Pos.BufferPtr - WordBegin, Text);
+ return true;
+ }
+
+ /// Put back tokens that we didn't consume.
+ void putBackLeftoverTokens() {
+ if (isEnd())
+ return;
+
+ bool HavePartialTok = false;
+ Token PartialTok;
+ if (Pos.BufferPtr != Pos.BufferStart) {
+ formTokenWithChars(PartialTok, getSourceLocation(),
+ Pos.BufferPtr, Pos.BufferEnd - Pos.BufferPtr,
+ StringRef(Pos.BufferPtr,
+ Pos.BufferEnd - Pos.BufferPtr));
+ HavePartialTok = true;
+ Pos.CurToken++;
+ }
+
+ P.putBack(llvm::makeArrayRef(Toks.begin() + Pos.CurToken, Toks.end()));
+ Pos.CurToken = Toks.size();
+
+ if (HavePartialTok)
+ P.putBack(PartialTok);
+ }
+};
+
+Parser::Parser(Lexer &L, Sema &S, llvm::BumpPtrAllocator &Allocator,
+ const SourceManager &SourceMgr, DiagnosticsEngine &Diags,
+ const CommandTraits &Traits):
+ L(L), S(S), Allocator(Allocator), SourceMgr(SourceMgr), Diags(Diags),
+ Traits(Traits) {
+ consumeToken();
+}
+
+void Parser::parseParamCommandArgs(ParamCommandComment *PC,
+ TextTokenRetokenizer &Retokenizer) {
+ Token Arg;
+ // Check if argument looks like direction specification: [dir]
+ // e.g., [in], [out], [in,out]
+ if (Retokenizer.lexDelimitedSeq(Arg, '[', ']'))
+ S.actOnParamCommandDirectionArg(PC,
+ Arg.getLocation(),
+ Arg.getEndLocation(),
+ Arg.getText());
+
+ if (Retokenizer.lexWord(Arg))
+ S.actOnParamCommandParamNameArg(PC,
+ Arg.getLocation(),
+ Arg.getEndLocation(),
+ Arg.getText());
+}
+
+void Parser::parseTParamCommandArgs(TParamCommandComment *TPC,
+ TextTokenRetokenizer &Retokenizer) {
+ Token Arg;
+ if (Retokenizer.lexWord(Arg))
+ S.actOnTParamCommandParamNameArg(TPC,
+ Arg.getLocation(),
+ Arg.getEndLocation(),
+ Arg.getText());
+}
+
+void Parser::parseBlockCommandArgs(BlockCommandComment *BC,
+ TextTokenRetokenizer &Retokenizer,
+ unsigned NumArgs) {
+ typedef BlockCommandComment::Argument Argument;
+ Argument *Args =
+ new (Allocator.Allocate<Argument>(NumArgs)) Argument[NumArgs];
+ unsigned ParsedArgs = 0;
+ Token Arg;
+ while (ParsedArgs < NumArgs && Retokenizer.lexWord(Arg)) {
+ Args[ParsedArgs] = Argument(SourceRange(Arg.getLocation(),
+ Arg.getEndLocation()),
+ Arg.getText());
+ ParsedArgs++;
+ }
+
+ S.actOnBlockCommandArgs(BC, llvm::makeArrayRef(Args, ParsedArgs));
+}
+
+BlockCommandComment *Parser::parseBlockCommand() {
+ assert(Tok.is(tok::backslash_command) || Tok.is(tok::at_command));
+
+ ParamCommandComment *PC = nullptr;
+ TParamCommandComment *TPC = nullptr;
+ BlockCommandComment *BC = nullptr;
+ const CommandInfo *Info = Traits.getCommandInfo(Tok.getCommandID());
+ CommandMarkerKind CommandMarker =
+ Tok.is(tok::backslash_command) ? CMK_Backslash : CMK_At;
+ if (Info->IsParamCommand) {
+ PC = S.actOnParamCommandStart(Tok.getLocation(),
+ Tok.getEndLocation(),
+ Tok.getCommandID(),
+ CommandMarker);
+ } else if (Info->IsTParamCommand) {
+ TPC = S.actOnTParamCommandStart(Tok.getLocation(),
+ Tok.getEndLocation(),
+ Tok.getCommandID(),
+ CommandMarker);
+ } else {
+ BC = S.actOnBlockCommandStart(Tok.getLocation(),
+ Tok.getEndLocation(),
+ Tok.getCommandID(),
+ CommandMarker);
+ }
+ consumeToken();
+
+ if (isTokBlockCommand()) {
+ // Block command ahead. We can't nest block commands, so pretend that this
+ // command has an empty argument.
+ ParagraphComment *Paragraph = S.actOnParagraphComment(None);
+ if (PC) {
+ S.actOnParamCommandFinish(PC, Paragraph);
+ return PC;
+ } else if (TPC) {
+ S.actOnTParamCommandFinish(TPC, Paragraph);
+ return TPC;
+ } else {
+ S.actOnBlockCommandFinish(BC, Paragraph);
+ return BC;
+ }
+ }
+
+ if (PC || TPC || Info->NumArgs > 0) {
+ // In order to parse command arguments we need to retokenize a few
+ // following text tokens.
+ TextTokenRetokenizer Retokenizer(Allocator, *this);
+
+ if (PC)
+ parseParamCommandArgs(PC, Retokenizer);
+ else if (TPC)
+ parseTParamCommandArgs(TPC, Retokenizer);
+ else
+ parseBlockCommandArgs(BC, Retokenizer, Info->NumArgs);
+
+ Retokenizer.putBackLeftoverTokens();
+ }
+
+ // If there's a block command ahead, we will attach an empty paragraph to
+ // this command.
+ bool EmptyParagraph = false;
+ if (isTokBlockCommand())
+ EmptyParagraph = true;
+ else if (Tok.is(tok::newline)) {
+ Token PrevTok = Tok;
+ consumeToken();
+ EmptyParagraph = isTokBlockCommand();
+ putBack(PrevTok);
+ }
+
+ ParagraphComment *Paragraph;
+ if (EmptyParagraph)
+ Paragraph = S.actOnParagraphComment(None);
+ else {
+ BlockContentComment *Block = parseParagraphOrBlockCommand();
+ // Since we have checked for a block command, we should have parsed a
+ // paragraph.
+ Paragraph = cast<ParagraphComment>(Block);
+ }
+
+ if (PC) {
+ S.actOnParamCommandFinish(PC, Paragraph);
+ return PC;
+ } else if (TPC) {
+ S.actOnTParamCommandFinish(TPC, Paragraph);
+ return TPC;
+ } else {
+ S.actOnBlockCommandFinish(BC, Paragraph);
+ return BC;
+ }
+}
+
+InlineCommandComment *Parser::parseInlineCommand() {
+ assert(Tok.is(tok::backslash_command) || Tok.is(tok::at_command));
+
+ const Token CommandTok = Tok;
+ consumeToken();
+
+ TextTokenRetokenizer Retokenizer(Allocator, *this);
+
+ Token ArgTok;
+ bool ArgTokValid = Retokenizer.lexWord(ArgTok);
+
+ InlineCommandComment *IC;
+ if (ArgTokValid) {
+ IC = S.actOnInlineCommand(CommandTok.getLocation(),
+ CommandTok.getEndLocation(),
+ CommandTok.getCommandID(),
+ ArgTok.getLocation(),
+ ArgTok.getEndLocation(),
+ ArgTok.getText());
+ } else {
+ IC = S.actOnInlineCommand(CommandTok.getLocation(),
+ CommandTok.getEndLocation(),
+ CommandTok.getCommandID());
+ }
+
+ Retokenizer.putBackLeftoverTokens();
+
+ return IC;
+}
+
+HTMLStartTagComment *Parser::parseHTMLStartTag() {
+ assert(Tok.is(tok::html_start_tag));
+ HTMLStartTagComment *HST =
+ S.actOnHTMLStartTagStart(Tok.getLocation(),
+ Tok.getHTMLTagStartName());
+ consumeToken();
+
+ SmallVector<HTMLStartTagComment::Attribute, 2> Attrs;
+ while (true) {
+ switch (Tok.getKind()) {
+ case tok::html_ident: {
+ Token Ident = Tok;
+ consumeToken();
+ if (Tok.isNot(tok::html_equals)) {
+ Attrs.push_back(HTMLStartTagComment::Attribute(Ident.getLocation(),
+ Ident.getHTMLIdent()));
+ continue;
+ }
+ Token Equals = Tok;
+ consumeToken();
+ if (Tok.isNot(tok::html_quoted_string)) {
+ Diag(Tok.getLocation(),
+ diag::warn_doc_html_start_tag_expected_quoted_string)
+ << SourceRange(Equals.getLocation());
+ Attrs.push_back(HTMLStartTagComment::Attribute(Ident.getLocation(),
+ Ident.getHTMLIdent()));
+ while (Tok.is(tok::html_equals) ||
+ Tok.is(tok::html_quoted_string))
+ consumeToken();
+ continue;
+ }
+ Attrs.push_back(HTMLStartTagComment::Attribute(
+ Ident.getLocation(),
+ Ident.getHTMLIdent(),
+ Equals.getLocation(),
+ SourceRange(Tok.getLocation(),
+ Tok.getEndLocation()),
+ Tok.getHTMLQuotedString()));
+ consumeToken();
+ continue;
+ }
+
+ case tok::html_greater:
+ S.actOnHTMLStartTagFinish(HST,
+ S.copyArray(llvm::makeArrayRef(Attrs)),
+ Tok.getLocation(),
+ /* IsSelfClosing = */ false);
+ consumeToken();
+ return HST;
+
+ case tok::html_slash_greater:
+ S.actOnHTMLStartTagFinish(HST,
+ S.copyArray(llvm::makeArrayRef(Attrs)),
+ Tok.getLocation(),
+ /* IsSelfClosing = */ true);
+ consumeToken();
+ return HST;
+
+ case tok::html_equals:
+ case tok::html_quoted_string:
+ Diag(Tok.getLocation(),
+ diag::warn_doc_html_start_tag_expected_ident_or_greater);
+ while (Tok.is(tok::html_equals) ||
+ Tok.is(tok::html_quoted_string))
+ consumeToken();
+ if (Tok.is(tok::html_ident) ||
+ Tok.is(tok::html_greater) ||
+ Tok.is(tok::html_slash_greater))
+ continue;
+
+ S.actOnHTMLStartTagFinish(HST,
+ S.copyArray(llvm::makeArrayRef(Attrs)),
+ SourceLocation(),
+ /* IsSelfClosing = */ false);
+ return HST;
+
+ default:
+ // Not a token from an HTML start tag. Thus HTML tag prematurely ended.
+ S.actOnHTMLStartTagFinish(HST,
+ S.copyArray(llvm::makeArrayRef(Attrs)),
+ SourceLocation(),
+ /* IsSelfClosing = */ false);
+ bool StartLineInvalid;
+ const unsigned StartLine = SourceMgr.getPresumedLineNumber(
+ HST->getLocation(),
+ &StartLineInvalid);
+ bool EndLineInvalid;
+ const unsigned EndLine = SourceMgr.getPresumedLineNumber(
+ Tok.getLocation(),
+ &EndLineInvalid);
+ if (StartLineInvalid || EndLineInvalid || StartLine == EndLine)
+ Diag(Tok.getLocation(),
+ diag::warn_doc_html_start_tag_expected_ident_or_greater)
+ << HST->getSourceRange();
+ else {
+ Diag(Tok.getLocation(),
+ diag::warn_doc_html_start_tag_expected_ident_or_greater);
+ Diag(HST->getLocation(), diag::note_doc_html_tag_started_here)
+ << HST->getSourceRange();
+ }
+ return HST;
+ }
+ }
+}
+
+HTMLEndTagComment *Parser::parseHTMLEndTag() {
+ assert(Tok.is(tok::html_end_tag));
+ Token TokEndTag = Tok;
+ consumeToken();
+ SourceLocation Loc;
+ if (Tok.is(tok::html_greater)) {
+ Loc = Tok.getLocation();
+ consumeToken();
+ }
+
+ return S.actOnHTMLEndTag(TokEndTag.getLocation(),
+ Loc,
+ TokEndTag.getHTMLTagEndName());
+}
+
+BlockContentComment *Parser::parseParagraphOrBlockCommand() {
+ SmallVector<InlineContentComment *, 8> Content;
+
+ while (true) {
+ switch (Tok.getKind()) {
+ case tok::verbatim_block_begin:
+ case tok::verbatim_line_name:
+ case tok::eof:
+ assert(Content.size() != 0);
+ break; // Block content or EOF ahead, finish this parapgaph.
+
+ case tok::unknown_command:
+ Content.push_back(S.actOnUnknownCommand(Tok.getLocation(),
+ Tok.getEndLocation(),
+ Tok.getUnknownCommandName()));
+ consumeToken();
+ continue;
+
+ case tok::backslash_command:
+ case tok::at_command: {
+ const CommandInfo *Info = Traits.getCommandInfo(Tok.getCommandID());
+ if (Info->IsBlockCommand) {
+ if (Content.size() == 0)
+ return parseBlockCommand();
+ break; // Block command ahead, finish this parapgaph.
+ }
+ if (Info->IsVerbatimBlockEndCommand) {
+ Diag(Tok.getLocation(),
+ diag::warn_verbatim_block_end_without_start)
+ << Tok.is(tok::at_command)
+ << Info->Name
+ << SourceRange(Tok.getLocation(), Tok.getEndLocation());
+ consumeToken();
+ continue;
+ }
+ if (Info->IsUnknownCommand) {
+ Content.push_back(S.actOnUnknownCommand(Tok.getLocation(),
+ Tok.getEndLocation(),
+ Info->getID()));
+ consumeToken();
+ continue;
+ }
+ assert(Info->IsInlineCommand);
+ Content.push_back(parseInlineCommand());
+ continue;
+ }
+
+ case tok::newline: {
+ consumeToken();
+ if (Tok.is(tok::newline) || Tok.is(tok::eof)) {
+ consumeToken();
+ break; // Two newlines -- end of paragraph.
+ }
+ // Also allow [tok::newline, tok::text, tok::newline] if the middle
+ // tok::text is just whitespace.
+ if (Tok.is(tok::text) && isWhitespace(Tok.getText())) {
+ Token WhitespaceTok = Tok;
+ consumeToken();
+ if (Tok.is(tok::newline) || Tok.is(tok::eof)) {
+ consumeToken();
+ break;
+ }
+ // We have [tok::newline, tok::text, non-newline]. Put back tok::text.
+ putBack(WhitespaceTok);
+ }
+ if (Content.size() > 0)
+ Content.back()->addTrailingNewline();
+ continue;
+ }
+
+ // Don't deal with HTML tag soup now.
+ case tok::html_start_tag:
+ Content.push_back(parseHTMLStartTag());
+ continue;
+
+ case tok::html_end_tag:
+ Content.push_back(parseHTMLEndTag());
+ continue;
+
+ case tok::text:
+ Content.push_back(S.actOnText(Tok.getLocation(),
+ Tok.getEndLocation(),
+ Tok.getText()));
+ consumeToken();
+ continue;
+
+ case tok::verbatim_block_line:
+ case tok::verbatim_block_end:
+ case tok::verbatim_line_text:
+ case tok::html_ident:
+ case tok::html_equals:
+ case tok::html_quoted_string:
+ case tok::html_greater:
+ case tok::html_slash_greater:
+ llvm_unreachable("should not see this token");
+ }
+ break;
+ }
+
+ return S.actOnParagraphComment(S.copyArray(llvm::makeArrayRef(Content)));
+}
+
+VerbatimBlockComment *Parser::parseVerbatimBlock() {
+ assert(Tok.is(tok::verbatim_block_begin));
+
+ VerbatimBlockComment *VB =
+ S.actOnVerbatimBlockStart(Tok.getLocation(),
+ Tok.getVerbatimBlockID());
+ consumeToken();
+
+ // Don't create an empty line if verbatim opening command is followed
+ // by a newline.
+ if (Tok.is(tok::newline))
+ consumeToken();
+
+ SmallVector<VerbatimBlockLineComment *, 8> Lines;
+ while (Tok.is(tok::verbatim_block_line) ||
+ Tok.is(tok::newline)) {
+ VerbatimBlockLineComment *Line;
+ if (Tok.is(tok::verbatim_block_line)) {
+ Line = S.actOnVerbatimBlockLine(Tok.getLocation(),
+ Tok.getVerbatimBlockText());
+ consumeToken();
+ if (Tok.is(tok::newline)) {
+ consumeToken();
+ }
+ } else {
+ // Empty line, just a tok::newline.
+ Line = S.actOnVerbatimBlockLine(Tok.getLocation(), "");
+ consumeToken();
+ }
+ Lines.push_back(Line);
+ }
+
+ if (Tok.is(tok::verbatim_block_end)) {
+ const CommandInfo *Info = Traits.getCommandInfo(Tok.getVerbatimBlockID());
+ S.actOnVerbatimBlockFinish(VB, Tok.getLocation(),
+ Info->Name,
+ S.copyArray(llvm::makeArrayRef(Lines)));
+ consumeToken();
+ } else {
+ // Unterminated \\verbatim block
+ S.actOnVerbatimBlockFinish(VB, SourceLocation(), "",
+ S.copyArray(llvm::makeArrayRef(Lines)));
+ }
+
+ return VB;
+}
+
+VerbatimLineComment *Parser::parseVerbatimLine() {
+ assert(Tok.is(tok::verbatim_line_name));
+
+ Token NameTok = Tok;
+ consumeToken();
+
+ SourceLocation TextBegin;
+ StringRef Text;
+ // Next token might not be a tok::verbatim_line_text if verbatim line
+ // starting command comes just before a newline or comment end.
+ if (Tok.is(tok::verbatim_line_text)) {
+ TextBegin = Tok.getLocation();
+ Text = Tok.getVerbatimLineText();
+ } else {
+ TextBegin = NameTok.getEndLocation();
+ Text = "";
+ }
+
+ VerbatimLineComment *VL = S.actOnVerbatimLine(NameTok.getLocation(),
+ NameTok.getVerbatimLineID(),
+ TextBegin,
+ Text);
+ consumeToken();
+ return VL;
+}
+
+BlockContentComment *Parser::parseBlockContent() {
+ switch (Tok.getKind()) {
+ case tok::text:
+ case tok::unknown_command:
+ case tok::backslash_command:
+ case tok::at_command:
+ case tok::html_start_tag:
+ case tok::html_end_tag:
+ return parseParagraphOrBlockCommand();
+
+ case tok::verbatim_block_begin:
+ return parseVerbatimBlock();
+
+ case tok::verbatim_line_name:
+ return parseVerbatimLine();
+
+ case tok::eof:
+ case tok::newline:
+ case tok::verbatim_block_line:
+ case tok::verbatim_block_end:
+ case tok::verbatim_line_text:
+ case tok::html_ident:
+ case tok::html_equals:
+ case tok::html_quoted_string:
+ case tok::html_greater:
+ case tok::html_slash_greater:
+ llvm_unreachable("should not see this token");
+ }
+ llvm_unreachable("bogus token kind");
+}
+
+FullComment *Parser::parseFullComment() {
+ // Skip newlines at the beginning of the comment.
+ while (Tok.is(tok::newline))
+ consumeToken();
+
+ SmallVector<BlockContentComment *, 8> Blocks;
+ while (Tok.isNot(tok::eof)) {
+ Blocks.push_back(parseBlockContent());
+
+ // Skip extra newlines after paragraph end.
+ while (Tok.is(tok::newline))
+ consumeToken();
+ }
+ return S.actOnFullComment(S.copyArray(llvm::makeArrayRef(Blocks)));
+}
+
+} // end namespace comments
+} // end namespace clang
diff --git a/contrib/llvm/tools/clang/lib/AST/CommentSema.cpp b/contrib/llvm/tools/clang/lib/AST/CommentSema.cpp
new file mode 100644
index 0000000..12823c3
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/CommentSema.cpp
@@ -0,0 +1,1098 @@
+//===--- CommentSema.cpp - Doxygen comment semantic analysis --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/CommentSema.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/CommentCommandTraits.h"
+#include "clang/AST/CommentDiagnostic.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Lex/Preprocessor.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringSwitch.h"
+
+namespace clang {
+namespace comments {
+
+namespace {
+#include "clang/AST/CommentHTMLTagsProperties.inc"
+} // unnamed namespace
+
+Sema::Sema(llvm::BumpPtrAllocator &Allocator, const SourceManager &SourceMgr,
+ DiagnosticsEngine &Diags, CommandTraits &Traits,
+ const Preprocessor *PP) :
+ Allocator(Allocator), SourceMgr(SourceMgr), Diags(Diags), Traits(Traits),
+ PP(PP), ThisDeclInfo(nullptr), BriefCommand(nullptr),
+ HeaderfileCommand(nullptr) {
+}
+
+void Sema::setDecl(const Decl *D) {
+ if (!D)
+ return;
+
+ ThisDeclInfo = new (Allocator) DeclInfo;
+ ThisDeclInfo->CommentDecl = D;
+ ThisDeclInfo->IsFilled = false;
+}
+
+ParagraphComment *Sema::actOnParagraphComment(
+ ArrayRef<InlineContentComment *> Content) {
+ return new (Allocator) ParagraphComment(Content);
+}
+
+BlockCommandComment *Sema::actOnBlockCommandStart(
+ SourceLocation LocBegin,
+ SourceLocation LocEnd,
+ unsigned CommandID,
+ CommandMarkerKind CommandMarker) {
+ BlockCommandComment *BC = new (Allocator) BlockCommandComment(LocBegin, LocEnd,
+ CommandID,
+ CommandMarker);
+ checkContainerDecl(BC);
+ return BC;
+}
+
+void Sema::actOnBlockCommandArgs(BlockCommandComment *Command,
+ ArrayRef<BlockCommandComment::Argument> Args) {
+ Command->setArgs(Args);
+}
+
+void Sema::actOnBlockCommandFinish(BlockCommandComment *Command,
+ ParagraphComment *Paragraph) {
+ Command->setParagraph(Paragraph);
+ checkBlockCommandEmptyParagraph(Command);
+ checkBlockCommandDuplicate(Command);
+ if (ThisDeclInfo) {
+ // These checks only make sense if the comment is attached to a
+ // declaration.
+ checkReturnsCommand(Command);
+ checkDeprecatedCommand(Command);
+ }
+}
+
+ParamCommandComment *Sema::actOnParamCommandStart(
+ SourceLocation LocBegin,
+ SourceLocation LocEnd,
+ unsigned CommandID,
+ CommandMarkerKind CommandMarker) {
+ ParamCommandComment *Command =
+ new (Allocator) ParamCommandComment(LocBegin, LocEnd, CommandID,
+ CommandMarker);
+
+ if (!isFunctionDecl())
+ Diag(Command->getLocation(),
+ diag::warn_doc_param_not_attached_to_a_function_decl)
+ << CommandMarker
+ << Command->getCommandNameRange(Traits);
+
+ return Command;
+}
+
+void Sema::checkFunctionDeclVerbatimLine(const BlockCommandComment *Comment) {
+ const CommandInfo *Info = Traits.getCommandInfo(Comment->getCommandID());
+ if (!Info->IsFunctionDeclarationCommand)
+ return;
+
+ unsigned DiagSelect;
+ switch (Comment->getCommandID()) {
+ case CommandTraits::KCI_function:
+ DiagSelect = (!isAnyFunctionDecl() && !isFunctionTemplateDecl())? 1 : 0;
+ break;
+ case CommandTraits::KCI_functiongroup:
+ DiagSelect = (!isAnyFunctionDecl() && !isFunctionTemplateDecl())? 2 : 0;
+ break;
+ case CommandTraits::KCI_method:
+ DiagSelect = !isObjCMethodDecl() ? 3 : 0;
+ break;
+ case CommandTraits::KCI_methodgroup:
+ DiagSelect = !isObjCMethodDecl() ? 4 : 0;
+ break;
+ case CommandTraits::KCI_callback:
+ DiagSelect = !isFunctionPointerVarDecl() ? 5 : 0;
+ break;
+ default:
+ DiagSelect = 0;
+ break;
+ }
+ if (DiagSelect)
+ Diag(Comment->getLocation(), diag::warn_doc_function_method_decl_mismatch)
+ << Comment->getCommandMarker()
+ << (DiagSelect-1) << (DiagSelect-1)
+ << Comment->getSourceRange();
+}
+
+void Sema::checkContainerDeclVerbatimLine(const BlockCommandComment *Comment) {
+ const CommandInfo *Info = Traits.getCommandInfo(Comment->getCommandID());
+ if (!Info->IsRecordLikeDeclarationCommand)
+ return;
+ unsigned DiagSelect;
+ switch (Comment->getCommandID()) {
+ case CommandTraits::KCI_class:
+ DiagSelect = (!isClassOrStructDecl() && !isClassTemplateDecl()) ? 1 : 0;
+ // Allow @class command on @interface declarations.
+ // FIXME. Currently, \class and @class are indistinguishable. So,
+ // \class is also allowed on an @interface declaration
+ if (DiagSelect && Comment->getCommandMarker() && isObjCInterfaceDecl())
+ DiagSelect = 0;
+ break;
+ case CommandTraits::KCI_interface:
+ DiagSelect = !isObjCInterfaceDecl() ? 2 : 0;
+ break;
+ case CommandTraits::KCI_protocol:
+ DiagSelect = !isObjCProtocolDecl() ? 3 : 0;
+ break;
+ case CommandTraits::KCI_struct:
+ DiagSelect = !isClassOrStructDecl() ? 4 : 0;
+ break;
+ case CommandTraits::KCI_union:
+ DiagSelect = !isUnionDecl() ? 5 : 0;
+ break;
+ default:
+ DiagSelect = 0;
+ break;
+ }
+ if (DiagSelect)
+ Diag(Comment->getLocation(), diag::warn_doc_api_container_decl_mismatch)
+ << Comment->getCommandMarker()
+ << (DiagSelect-1) << (DiagSelect-1)
+ << Comment->getSourceRange();
+}
+
+void Sema::checkContainerDecl(const BlockCommandComment *Comment) {
+ const CommandInfo *Info = Traits.getCommandInfo(Comment->getCommandID());
+ if (!Info->IsRecordLikeDetailCommand || isRecordLikeDecl())
+ return;
+ unsigned DiagSelect;
+ switch (Comment->getCommandID()) {
+ case CommandTraits::KCI_classdesign:
+ DiagSelect = 1;
+ break;
+ case CommandTraits::KCI_coclass:
+ DiagSelect = 2;
+ break;
+ case CommandTraits::KCI_dependency:
+ DiagSelect = 3;
+ break;
+ case CommandTraits::KCI_helper:
+ DiagSelect = 4;
+ break;
+ case CommandTraits::KCI_helperclass:
+ DiagSelect = 5;
+ break;
+ case CommandTraits::KCI_helps:
+ DiagSelect = 6;
+ break;
+ case CommandTraits::KCI_instancesize:
+ DiagSelect = 7;
+ break;
+ case CommandTraits::KCI_ownership:
+ DiagSelect = 8;
+ break;
+ case CommandTraits::KCI_performance:
+ DiagSelect = 9;
+ break;
+ case CommandTraits::KCI_security:
+ DiagSelect = 10;
+ break;
+ case CommandTraits::KCI_superclass:
+ DiagSelect = 11;
+ break;
+ default:
+ DiagSelect = 0;
+ break;
+ }
+ if (DiagSelect)
+ Diag(Comment->getLocation(), diag::warn_doc_container_decl_mismatch)
+ << Comment->getCommandMarker()
+ << (DiagSelect-1)
+ << Comment->getSourceRange();
+}
+
+/// \brief Turn a string into the corresponding PassDirection or -1 if it's not
+/// valid.
+static int getParamPassDirection(StringRef Arg) {
+ return llvm::StringSwitch<int>(Arg)
+ .Case("[in]", ParamCommandComment::In)
+ .Case("[out]", ParamCommandComment::Out)
+ .Cases("[in,out]", "[out,in]", ParamCommandComment::InOut)
+ .Default(-1);
+}
+
+void Sema::actOnParamCommandDirectionArg(ParamCommandComment *Command,
+ SourceLocation ArgLocBegin,
+ SourceLocation ArgLocEnd,
+ StringRef Arg) {
+ std::string ArgLower = Arg.lower();
+ int Direction = getParamPassDirection(ArgLower);
+
+ if (Direction == -1) {
+ // Try again with whitespace removed.
+ ArgLower.erase(
+ std::remove_if(ArgLower.begin(), ArgLower.end(), clang::isWhitespace),
+ ArgLower.end());
+ Direction = getParamPassDirection(ArgLower);
+
+ SourceRange ArgRange(ArgLocBegin, ArgLocEnd);
+ if (Direction != -1) {
+ const char *FixedName = ParamCommandComment::getDirectionAsString(
+ (ParamCommandComment::PassDirection)Direction);
+ Diag(ArgLocBegin, diag::warn_doc_param_spaces_in_direction)
+ << ArgRange << FixItHint::CreateReplacement(ArgRange, FixedName);
+ } else {
+ Diag(ArgLocBegin, diag::warn_doc_param_invalid_direction) << ArgRange;
+ Direction = ParamCommandComment::In; // Sane fall back.
+ }
+ }
+ Command->setDirection((ParamCommandComment::PassDirection)Direction,
+ /*Explicit=*/true);
+}
+
+void Sema::actOnParamCommandParamNameArg(ParamCommandComment *Command,
+ SourceLocation ArgLocBegin,
+ SourceLocation ArgLocEnd,
+ StringRef Arg) {
+ // Parser will not feed us more arguments than needed.
+ assert(Command->getNumArgs() == 0);
+
+ if (!Command->isDirectionExplicit()) {
+ // User didn't provide a direction argument.
+ Command->setDirection(ParamCommandComment::In, /* Explicit = */ false);
+ }
+ typedef BlockCommandComment::Argument Argument;
+ Argument *A = new (Allocator) Argument(SourceRange(ArgLocBegin,
+ ArgLocEnd),
+ Arg);
+ Command->setArgs(llvm::makeArrayRef(A, 1));
+}
+
+void Sema::actOnParamCommandFinish(ParamCommandComment *Command,
+ ParagraphComment *Paragraph) {
+ Command->setParagraph(Paragraph);
+ checkBlockCommandEmptyParagraph(Command);
+}
+
+TParamCommandComment *Sema::actOnTParamCommandStart(
+ SourceLocation LocBegin,
+ SourceLocation LocEnd,
+ unsigned CommandID,
+ CommandMarkerKind CommandMarker) {
+ TParamCommandComment *Command =
+ new (Allocator) TParamCommandComment(LocBegin, LocEnd, CommandID,
+ CommandMarker);
+
+ if (!isTemplateOrSpecialization())
+ Diag(Command->getLocation(),
+ diag::warn_doc_tparam_not_attached_to_a_template_decl)
+ << CommandMarker
+ << Command->getCommandNameRange(Traits);
+
+ return Command;
+}
+
+void Sema::actOnTParamCommandParamNameArg(TParamCommandComment *Command,
+ SourceLocation ArgLocBegin,
+ SourceLocation ArgLocEnd,
+ StringRef Arg) {
+ // Parser will not feed us more arguments than needed.
+ assert(Command->getNumArgs() == 0);
+
+ typedef BlockCommandComment::Argument Argument;
+ Argument *A = new (Allocator) Argument(SourceRange(ArgLocBegin,
+ ArgLocEnd),
+ Arg);
+ Command->setArgs(llvm::makeArrayRef(A, 1));
+
+ if (!isTemplateOrSpecialization()) {
+ // We already warned that this \\tparam is not attached to a template decl.
+ return;
+ }
+
+ const TemplateParameterList *TemplateParameters =
+ ThisDeclInfo->TemplateParameters;
+ SmallVector<unsigned, 2> Position;
+ if (resolveTParamReference(Arg, TemplateParameters, &Position)) {
+ Command->setPosition(copyArray(llvm::makeArrayRef(Position)));
+ TParamCommandComment *&PrevCommand = TemplateParameterDocs[Arg];
+ if (PrevCommand) {
+ SourceRange ArgRange(ArgLocBegin, ArgLocEnd);
+ Diag(ArgLocBegin, diag::warn_doc_tparam_duplicate)
+ << Arg << ArgRange;
+ Diag(PrevCommand->getLocation(), diag::note_doc_tparam_previous)
+ << PrevCommand->getParamNameRange();
+ }
+ PrevCommand = Command;
+ return;
+ }
+
+ SourceRange ArgRange(ArgLocBegin, ArgLocEnd);
+ Diag(ArgLocBegin, diag::warn_doc_tparam_not_found)
+ << Arg << ArgRange;
+
+ if (!TemplateParameters || TemplateParameters->size() == 0)
+ return;
+
+ StringRef CorrectedName;
+ if (TemplateParameters->size() == 1) {
+ const NamedDecl *Param = TemplateParameters->getParam(0);
+ const IdentifierInfo *II = Param->getIdentifier();
+ if (II)
+ CorrectedName = II->getName();
+ } else {
+ CorrectedName = correctTypoInTParamReference(Arg, TemplateParameters);
+ }
+
+ if (!CorrectedName.empty()) {
+ Diag(ArgLocBegin, diag::note_doc_tparam_name_suggestion)
+ << CorrectedName
+ << FixItHint::CreateReplacement(ArgRange, CorrectedName);
+ }
+
+ return;
+}
+
+void Sema::actOnTParamCommandFinish(TParamCommandComment *Command,
+ ParagraphComment *Paragraph) {
+ Command->setParagraph(Paragraph);
+ checkBlockCommandEmptyParagraph(Command);
+}
+
+InlineCommandComment *Sema::actOnInlineCommand(SourceLocation CommandLocBegin,
+ SourceLocation CommandLocEnd,
+ unsigned CommandID) {
+ ArrayRef<InlineCommandComment::Argument> Args;
+ StringRef CommandName = Traits.getCommandInfo(CommandID)->Name;
+ return new (Allocator) InlineCommandComment(
+ CommandLocBegin,
+ CommandLocEnd,
+ CommandID,
+ getInlineCommandRenderKind(CommandName),
+ Args);
+}
+
+InlineCommandComment *Sema::actOnInlineCommand(SourceLocation CommandLocBegin,
+ SourceLocation CommandLocEnd,
+ unsigned CommandID,
+ SourceLocation ArgLocBegin,
+ SourceLocation ArgLocEnd,
+ StringRef Arg) {
+ typedef InlineCommandComment::Argument Argument;
+ Argument *A = new (Allocator) Argument(SourceRange(ArgLocBegin,
+ ArgLocEnd),
+ Arg);
+ StringRef CommandName = Traits.getCommandInfo(CommandID)->Name;
+
+ return new (Allocator) InlineCommandComment(
+ CommandLocBegin,
+ CommandLocEnd,
+ CommandID,
+ getInlineCommandRenderKind(CommandName),
+ llvm::makeArrayRef(A, 1));
+}
+
+InlineContentComment *Sema::actOnUnknownCommand(SourceLocation LocBegin,
+ SourceLocation LocEnd,
+ StringRef CommandName) {
+ unsigned CommandID = Traits.registerUnknownCommand(CommandName)->getID();
+ return actOnUnknownCommand(LocBegin, LocEnd, CommandID);
+}
+
+InlineContentComment *Sema::actOnUnknownCommand(SourceLocation LocBegin,
+ SourceLocation LocEnd,
+ unsigned CommandID) {
+ ArrayRef<InlineCommandComment::Argument> Args;
+ return new (Allocator) InlineCommandComment(
+ LocBegin, LocEnd, CommandID,
+ InlineCommandComment::RenderNormal,
+ Args);
+}
+
+TextComment *Sema::actOnText(SourceLocation LocBegin,
+ SourceLocation LocEnd,
+ StringRef Text) {
+ return new (Allocator) TextComment(LocBegin, LocEnd, Text);
+}
+
+VerbatimBlockComment *Sema::actOnVerbatimBlockStart(SourceLocation Loc,
+ unsigned CommandID) {
+ StringRef CommandName = Traits.getCommandInfo(CommandID)->Name;
+ return new (Allocator) VerbatimBlockComment(
+ Loc,
+ Loc.getLocWithOffset(1 + CommandName.size()),
+ CommandID);
+}
+
+VerbatimBlockLineComment *Sema::actOnVerbatimBlockLine(SourceLocation Loc,
+ StringRef Text) {
+ return new (Allocator) VerbatimBlockLineComment(Loc, Text);
+}
+
+void Sema::actOnVerbatimBlockFinish(
+ VerbatimBlockComment *Block,
+ SourceLocation CloseNameLocBegin,
+ StringRef CloseName,
+ ArrayRef<VerbatimBlockLineComment *> Lines) {
+ Block->setCloseName(CloseName, CloseNameLocBegin);
+ Block->setLines(Lines);
+}
+
+VerbatimLineComment *Sema::actOnVerbatimLine(SourceLocation LocBegin,
+ unsigned CommandID,
+ SourceLocation TextBegin,
+ StringRef Text) {
+ VerbatimLineComment *VL = new (Allocator) VerbatimLineComment(
+ LocBegin,
+ TextBegin.getLocWithOffset(Text.size()),
+ CommandID,
+ TextBegin,
+ Text);
+ checkFunctionDeclVerbatimLine(VL);
+ checkContainerDeclVerbatimLine(VL);
+ return VL;
+}
+
+HTMLStartTagComment *Sema::actOnHTMLStartTagStart(SourceLocation LocBegin,
+ StringRef TagName) {
+ return new (Allocator) HTMLStartTagComment(LocBegin, TagName);
+}
+
+void Sema::actOnHTMLStartTagFinish(
+ HTMLStartTagComment *Tag,
+ ArrayRef<HTMLStartTagComment::Attribute> Attrs,
+ SourceLocation GreaterLoc,
+ bool IsSelfClosing) {
+ Tag->setAttrs(Attrs);
+ Tag->setGreaterLoc(GreaterLoc);
+ if (IsSelfClosing)
+ Tag->setSelfClosing();
+ else if (!isHTMLEndTagForbidden(Tag->getTagName()))
+ HTMLOpenTags.push_back(Tag);
+}
+
+HTMLEndTagComment *Sema::actOnHTMLEndTag(SourceLocation LocBegin,
+ SourceLocation LocEnd,
+ StringRef TagName) {
+ HTMLEndTagComment *HET =
+ new (Allocator) HTMLEndTagComment(LocBegin, LocEnd, TagName);
+ if (isHTMLEndTagForbidden(TagName)) {
+ Diag(HET->getLocation(), diag::warn_doc_html_end_forbidden)
+ << TagName << HET->getSourceRange();
+ HET->setIsMalformed();
+ return HET;
+ }
+
+ bool FoundOpen = false;
+ for (SmallVectorImpl<HTMLStartTagComment *>::const_reverse_iterator
+ I = HTMLOpenTags.rbegin(), E = HTMLOpenTags.rend();
+ I != E; ++I) {
+ if ((*I)->getTagName() == TagName) {
+ FoundOpen = true;
+ break;
+ }
+ }
+ if (!FoundOpen) {
+ Diag(HET->getLocation(), diag::warn_doc_html_end_unbalanced)
+ << HET->getSourceRange();
+ HET->setIsMalformed();
+ return HET;
+ }
+
+ while (!HTMLOpenTags.empty()) {
+ HTMLStartTagComment *HST = HTMLOpenTags.pop_back_val();
+ StringRef LastNotClosedTagName = HST->getTagName();
+ if (LastNotClosedTagName == TagName) {
+ // If the start tag is malformed, end tag is malformed as well.
+ if (HST->isMalformed())
+ HET->setIsMalformed();
+ break;
+ }
+
+ if (isHTMLEndTagOptional(LastNotClosedTagName))
+ continue;
+
+ bool OpenLineInvalid;
+ const unsigned OpenLine = SourceMgr.getPresumedLineNumber(
+ HST->getLocation(),
+ &OpenLineInvalid);
+ bool CloseLineInvalid;
+ const unsigned CloseLine = SourceMgr.getPresumedLineNumber(
+ HET->getLocation(),
+ &CloseLineInvalid);
+
+ if (OpenLineInvalid || CloseLineInvalid || OpenLine == CloseLine) {
+ Diag(HST->getLocation(), diag::warn_doc_html_start_end_mismatch)
+ << HST->getTagName() << HET->getTagName()
+ << HST->getSourceRange() << HET->getSourceRange();
+ HST->setIsMalformed();
+ } else {
+ Diag(HST->getLocation(), diag::warn_doc_html_start_end_mismatch)
+ << HST->getTagName() << HET->getTagName()
+ << HST->getSourceRange();
+ Diag(HET->getLocation(), diag::note_doc_html_end_tag)
+ << HET->getSourceRange();
+ HST->setIsMalformed();
+ }
+ }
+
+ return HET;
+}
+
+FullComment *Sema::actOnFullComment(
+ ArrayRef<BlockContentComment *> Blocks) {
+ FullComment *FC = new (Allocator) FullComment(Blocks, ThisDeclInfo);
+ resolveParamCommandIndexes(FC);
+
+ // Complain about HTML tags that are not closed.
+ while (!HTMLOpenTags.empty()) {
+ HTMLStartTagComment *HST = HTMLOpenTags.pop_back_val();
+ if (isHTMLEndTagOptional(HST->getTagName()))
+ continue;
+
+ Diag(HST->getLocation(), diag::warn_doc_html_missing_end_tag)
+ << HST->getTagName() << HST->getSourceRange();
+ HST->setIsMalformed();
+ }
+
+ return FC;
+}
+
+void Sema::checkBlockCommandEmptyParagraph(BlockCommandComment *Command) {
+ if (Traits.getCommandInfo(Command->getCommandID())->IsEmptyParagraphAllowed)
+ return;
+
+ ParagraphComment *Paragraph = Command->getParagraph();
+ if (Paragraph->isWhitespace()) {
+ SourceLocation DiagLoc;
+ if (Command->getNumArgs() > 0)
+ DiagLoc = Command->getArgRange(Command->getNumArgs() - 1).getEnd();
+ if (!DiagLoc.isValid())
+ DiagLoc = Command->getCommandNameRange(Traits).getEnd();
+ Diag(DiagLoc, diag::warn_doc_block_command_empty_paragraph)
+ << Command->getCommandMarker()
+ << Command->getCommandName(Traits)
+ << Command->getSourceRange();
+ }
+}
+
+void Sema::checkReturnsCommand(const BlockCommandComment *Command) {
+ if (!Traits.getCommandInfo(Command->getCommandID())->IsReturnsCommand)
+ return;
+
+ assert(ThisDeclInfo && "should not call this check on a bare comment");
+
+ if (isFunctionDecl()) {
+ if (ThisDeclInfo->ReturnType->isVoidType()) {
+ unsigned DiagKind;
+ switch (ThisDeclInfo->CommentDecl->getKind()) {
+ default:
+ if (ThisDeclInfo->IsObjCMethod)
+ DiagKind = 3;
+ else
+ DiagKind = 0;
+ break;
+ case Decl::CXXConstructor:
+ DiagKind = 1;
+ break;
+ case Decl::CXXDestructor:
+ DiagKind = 2;
+ break;
+ }
+ Diag(Command->getLocation(),
+ diag::warn_doc_returns_attached_to_a_void_function)
+ << Command->getCommandMarker()
+ << Command->getCommandName(Traits)
+ << DiagKind
+ << Command->getSourceRange();
+ }
+ return;
+ }
+ else if (isObjCPropertyDecl())
+ return;
+
+ Diag(Command->getLocation(),
+ diag::warn_doc_returns_not_attached_to_a_function_decl)
+ << Command->getCommandMarker()
+ << Command->getCommandName(Traits)
+ << Command->getSourceRange();
+}
+
+void Sema::checkBlockCommandDuplicate(const BlockCommandComment *Command) {
+ const CommandInfo *Info = Traits.getCommandInfo(Command->getCommandID());
+ const BlockCommandComment *PrevCommand = nullptr;
+ if (Info->IsBriefCommand) {
+ if (!BriefCommand) {
+ BriefCommand = Command;
+ return;
+ }
+ PrevCommand = BriefCommand;
+ } else if (Info->IsHeaderfileCommand) {
+ if (!HeaderfileCommand) {
+ HeaderfileCommand = Command;
+ return;
+ }
+ PrevCommand = HeaderfileCommand;
+ } else {
+ // We don't want to check this command for duplicates.
+ return;
+ }
+ StringRef CommandName = Command->getCommandName(Traits);
+ StringRef PrevCommandName = PrevCommand->getCommandName(Traits);
+ Diag(Command->getLocation(), diag::warn_doc_block_command_duplicate)
+ << Command->getCommandMarker()
+ << CommandName
+ << Command->getSourceRange();
+ if (CommandName == PrevCommandName)
+ Diag(PrevCommand->getLocation(), diag::note_doc_block_command_previous)
+ << PrevCommand->getCommandMarker()
+ << PrevCommandName
+ << PrevCommand->getSourceRange();
+ else
+ Diag(PrevCommand->getLocation(),
+ diag::note_doc_block_command_previous_alias)
+ << PrevCommand->getCommandMarker()
+ << PrevCommandName
+ << CommandName;
+}
+
+void Sema::checkDeprecatedCommand(const BlockCommandComment *Command) {
+ if (!Traits.getCommandInfo(Command->getCommandID())->IsDeprecatedCommand)
+ return;
+
+ assert(ThisDeclInfo && "should not call this check on a bare comment");
+
+ const Decl *D = ThisDeclInfo->CommentDecl;
+ if (!D)
+ return;
+
+ if (D->hasAttr<DeprecatedAttr>() ||
+ D->hasAttr<AvailabilityAttr>() ||
+ D->hasAttr<UnavailableAttr>())
+ return;
+
+ Diag(Command->getLocation(),
+ diag::warn_doc_deprecated_not_sync)
+ << Command->getSourceRange();
+
+ // Try to emit a fixit with a deprecation attribute.
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ // Don't emit a Fix-It for non-member function definitions. GCC does not
+ // accept attributes on them.
+ const DeclContext *Ctx = FD->getDeclContext();
+ if ((!Ctx || !Ctx->isRecord()) &&
+ FD->doesThisDeclarationHaveABody())
+ return;
+
+ StringRef AttributeSpelling = "__attribute__((deprecated))";
+ if (PP) {
+ TokenValue Tokens[] = {
+ tok::kw___attribute, tok::l_paren, tok::l_paren,
+ PP->getIdentifierInfo("deprecated"),
+ tok::r_paren, tok::r_paren
+ };
+ StringRef MacroName = PP->getLastMacroWithSpelling(FD->getLocation(),
+ Tokens);
+ if (!MacroName.empty())
+ AttributeSpelling = MacroName;
+ }
+
+ SmallString<64> TextToInsert(" ");
+ TextToInsert += AttributeSpelling;
+ Diag(FD->getLocEnd(),
+ diag::note_add_deprecation_attr)
+ << FixItHint::CreateInsertion(FD->getLocEnd().getLocWithOffset(1),
+ TextToInsert);
+ }
+}
+
+void Sema::resolveParamCommandIndexes(const FullComment *FC) {
+ if (!isFunctionDecl()) {
+ // We already warned that \\param commands are not attached to a function
+ // decl.
+ return;
+ }
+
+ SmallVector<ParamCommandComment *, 8> UnresolvedParamCommands;
+
+ // Comment AST nodes that correspond to \c ParamVars for which we have
+ // found a \\param command or NULL if no documentation was found so far.
+ SmallVector<ParamCommandComment *, 8> ParamVarDocs;
+
+ ArrayRef<const ParmVarDecl *> ParamVars = getParamVars();
+ ParamVarDocs.resize(ParamVars.size(), nullptr);
+
+ // First pass over all \\param commands: resolve all parameter names.
+ for (Comment::child_iterator I = FC->child_begin(), E = FC->child_end();
+ I != E; ++I) {
+ ParamCommandComment *PCC = dyn_cast<ParamCommandComment>(*I);
+ if (!PCC || !PCC->hasParamName())
+ continue;
+ StringRef ParamName = PCC->getParamNameAsWritten();
+
+ // Check that referenced parameter name is in the function decl.
+ const unsigned ResolvedParamIndex = resolveParmVarReference(ParamName,
+ ParamVars);
+ if (ResolvedParamIndex == ParamCommandComment::VarArgParamIndex) {
+ PCC->setIsVarArgParam();
+ continue;
+ }
+ if (ResolvedParamIndex == ParamCommandComment::InvalidParamIndex) {
+ UnresolvedParamCommands.push_back(PCC);
+ continue;
+ }
+ PCC->setParamIndex(ResolvedParamIndex);
+ if (ParamVarDocs[ResolvedParamIndex]) {
+ SourceRange ArgRange = PCC->getParamNameRange();
+ Diag(ArgRange.getBegin(), diag::warn_doc_param_duplicate)
+ << ParamName << ArgRange;
+ ParamCommandComment *PrevCommand = ParamVarDocs[ResolvedParamIndex];
+ Diag(PrevCommand->getLocation(), diag::note_doc_param_previous)
+ << PrevCommand->getParamNameRange();
+ }
+ ParamVarDocs[ResolvedParamIndex] = PCC;
+ }
+
+ // Find parameter declarations that have no corresponding \\param.
+ SmallVector<const ParmVarDecl *, 8> OrphanedParamDecls;
+ for (unsigned i = 0, e = ParamVarDocs.size(); i != e; ++i) {
+ if (!ParamVarDocs[i])
+ OrphanedParamDecls.push_back(ParamVars[i]);
+ }
+
+ // Second pass over unresolved \\param commands: do typo correction.
+ // Suggest corrections from a set of parameter declarations that have no
+ // corresponding \\param.
+ for (unsigned i = 0, e = UnresolvedParamCommands.size(); i != e; ++i) {
+ const ParamCommandComment *PCC = UnresolvedParamCommands[i];
+
+ SourceRange ArgRange = PCC->getParamNameRange();
+ StringRef ParamName = PCC->getParamNameAsWritten();
+ Diag(ArgRange.getBegin(), diag::warn_doc_param_not_found)
+ << ParamName << ArgRange;
+
+ // All parameters documented -- can't suggest a correction.
+ if (OrphanedParamDecls.size() == 0)
+ continue;
+
+ unsigned CorrectedParamIndex = ParamCommandComment::InvalidParamIndex;
+ if (OrphanedParamDecls.size() == 1) {
+ // If one parameter is not documented then that parameter is the only
+ // possible suggestion.
+ CorrectedParamIndex = 0;
+ } else {
+ // Do typo correction.
+ CorrectedParamIndex = correctTypoInParmVarReference(ParamName,
+ OrphanedParamDecls);
+ }
+ if (CorrectedParamIndex != ParamCommandComment::InvalidParamIndex) {
+ const ParmVarDecl *CorrectedPVD = OrphanedParamDecls[CorrectedParamIndex];
+ if (const IdentifierInfo *CorrectedII = CorrectedPVD->getIdentifier())
+ Diag(ArgRange.getBegin(), diag::note_doc_param_name_suggestion)
+ << CorrectedII->getName()
+ << FixItHint::CreateReplacement(ArgRange, CorrectedII->getName());
+ }
+ }
+}
+
+bool Sema::isFunctionDecl() {
+ if (!ThisDeclInfo)
+ return false;
+ if (!ThisDeclInfo->IsFilled)
+ inspectThisDecl();
+ return ThisDeclInfo->getKind() == DeclInfo::FunctionKind;
+}
+
+bool Sema::isAnyFunctionDecl() {
+ return isFunctionDecl() && ThisDeclInfo->CurrentDecl &&
+ isa<FunctionDecl>(ThisDeclInfo->CurrentDecl);
+}
+
+bool Sema::isFunctionOrMethodVariadic() {
+ if (!isAnyFunctionDecl() && !isObjCMethodDecl() && !isFunctionTemplateDecl())
+ return false;
+ if (const FunctionDecl *FD =
+ dyn_cast<FunctionDecl>(ThisDeclInfo->CurrentDecl))
+ return FD->isVariadic();
+ if (const FunctionTemplateDecl *FTD =
+ dyn_cast<FunctionTemplateDecl>(ThisDeclInfo->CurrentDecl))
+ return FTD->getTemplatedDecl()->isVariadic();
+ if (const ObjCMethodDecl *MD =
+ dyn_cast<ObjCMethodDecl>(ThisDeclInfo->CurrentDecl))
+ return MD->isVariadic();
+ return false;
+}
+
+bool Sema::isObjCMethodDecl() {
+ return isFunctionDecl() && ThisDeclInfo->CurrentDecl &&
+ isa<ObjCMethodDecl>(ThisDeclInfo->CurrentDecl);
+}
+
+bool Sema::isFunctionPointerVarDecl() {
+ if (!ThisDeclInfo)
+ return false;
+ if (!ThisDeclInfo->IsFilled)
+ inspectThisDecl();
+ if (ThisDeclInfo->getKind() == DeclInfo::VariableKind) {
+ if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDeclInfo->CurrentDecl)) {
+ QualType QT = VD->getType();
+ return QT->isFunctionPointerType();
+ }
+ }
+ return false;
+}
+
+bool Sema::isObjCPropertyDecl() {
+ if (!ThisDeclInfo)
+ return false;
+ if (!ThisDeclInfo->IsFilled)
+ inspectThisDecl();
+ return ThisDeclInfo->CurrentDecl->getKind() == Decl::ObjCProperty;
+}
+
+bool Sema::isTemplateOrSpecialization() {
+ if (!ThisDeclInfo)
+ return false;
+ if (!ThisDeclInfo->IsFilled)
+ inspectThisDecl();
+ return ThisDeclInfo->getTemplateKind() != DeclInfo::NotTemplate;
+}
+
+bool Sema::isRecordLikeDecl() {
+ if (!ThisDeclInfo)
+ return false;
+ if (!ThisDeclInfo->IsFilled)
+ inspectThisDecl();
+ return isUnionDecl() || isClassOrStructDecl() || isObjCInterfaceDecl() ||
+ isObjCProtocolDecl();
+}
+
+bool Sema::isUnionDecl() {
+ if (!ThisDeclInfo)
+ return false;
+ if (!ThisDeclInfo->IsFilled)
+ inspectThisDecl();
+ if (const RecordDecl *RD =
+ dyn_cast_or_null<RecordDecl>(ThisDeclInfo->CurrentDecl))
+ return RD->isUnion();
+ return false;
+}
+
+bool Sema::isClassOrStructDecl() {
+ if (!ThisDeclInfo)
+ return false;
+ if (!ThisDeclInfo->IsFilled)
+ inspectThisDecl();
+ return ThisDeclInfo->CurrentDecl &&
+ isa<RecordDecl>(ThisDeclInfo->CurrentDecl) &&
+ !isUnionDecl();
+}
+
+bool Sema::isClassTemplateDecl() {
+ if (!ThisDeclInfo)
+ return false;
+ if (!ThisDeclInfo->IsFilled)
+ inspectThisDecl();
+ return ThisDeclInfo->CurrentDecl &&
+ (isa<ClassTemplateDecl>(ThisDeclInfo->CurrentDecl));
+}
+
+bool Sema::isFunctionTemplateDecl() {
+ if (!ThisDeclInfo)
+ return false;
+ if (!ThisDeclInfo->IsFilled)
+ inspectThisDecl();
+ return ThisDeclInfo->CurrentDecl &&
+ (isa<FunctionTemplateDecl>(ThisDeclInfo->CurrentDecl));
+}
+
+bool Sema::isObjCInterfaceDecl() {
+ if (!ThisDeclInfo)
+ return false;
+ if (!ThisDeclInfo->IsFilled)
+ inspectThisDecl();
+ return ThisDeclInfo->CurrentDecl &&
+ isa<ObjCInterfaceDecl>(ThisDeclInfo->CurrentDecl);
+}
+
+bool Sema::isObjCProtocolDecl() {
+ if (!ThisDeclInfo)
+ return false;
+ if (!ThisDeclInfo->IsFilled)
+ inspectThisDecl();
+ return ThisDeclInfo->CurrentDecl &&
+ isa<ObjCProtocolDecl>(ThisDeclInfo->CurrentDecl);
+}
+
+ArrayRef<const ParmVarDecl *> Sema::getParamVars() {
+ if (!ThisDeclInfo->IsFilled)
+ inspectThisDecl();
+ return ThisDeclInfo->ParamVars;
+}
+
+void Sema::inspectThisDecl() {
+ ThisDeclInfo->fill();
+}
+
+unsigned Sema::resolveParmVarReference(StringRef Name,
+ ArrayRef<const ParmVarDecl *> ParamVars) {
+ for (unsigned i = 0, e = ParamVars.size(); i != e; ++i) {
+ const IdentifierInfo *II = ParamVars[i]->getIdentifier();
+ if (II && II->getName() == Name)
+ return i;
+ }
+ if (Name == "..." && isFunctionOrMethodVariadic())
+ return ParamCommandComment::VarArgParamIndex;
+ return ParamCommandComment::InvalidParamIndex;
+}
+
+namespace {
+class SimpleTypoCorrector {
+ StringRef Typo;
+ const unsigned MaxEditDistance;
+
+ const NamedDecl *BestDecl;
+ unsigned BestEditDistance;
+ unsigned BestIndex;
+ unsigned NextIndex;
+
+public:
+ SimpleTypoCorrector(StringRef Typo) :
+ Typo(Typo), MaxEditDistance((Typo.size() + 2) / 3),
+ BestDecl(nullptr), BestEditDistance(MaxEditDistance + 1),
+ BestIndex(0), NextIndex(0)
+ { }
+
+ void addDecl(const NamedDecl *ND);
+
+ const NamedDecl *getBestDecl() const {
+ if (BestEditDistance > MaxEditDistance)
+ return nullptr;
+
+ return BestDecl;
+ }
+
+ unsigned getBestDeclIndex() const {
+ assert(getBestDecl());
+ return BestIndex;
+ }
+};
+
+void SimpleTypoCorrector::addDecl(const NamedDecl *ND) {
+ unsigned CurrIndex = NextIndex++;
+
+ const IdentifierInfo *II = ND->getIdentifier();
+ if (!II)
+ return;
+
+ StringRef Name = II->getName();
+ unsigned MinPossibleEditDistance = abs((int)Name.size() - (int)Typo.size());
+ if (MinPossibleEditDistance > 0 &&
+ Typo.size() / MinPossibleEditDistance < 3)
+ return;
+
+ unsigned EditDistance = Typo.edit_distance(Name, true, MaxEditDistance);
+ if (EditDistance < BestEditDistance) {
+ BestEditDistance = EditDistance;
+ BestDecl = ND;
+ BestIndex = CurrIndex;
+ }
+}
+} // unnamed namespace
+
+unsigned Sema::correctTypoInParmVarReference(
+ StringRef Typo,
+ ArrayRef<const ParmVarDecl *> ParamVars) {
+ SimpleTypoCorrector Corrector(Typo);
+ for (unsigned i = 0, e = ParamVars.size(); i != e; ++i)
+ Corrector.addDecl(ParamVars[i]);
+ if (Corrector.getBestDecl())
+ return Corrector.getBestDeclIndex();
+ else
+ return ParamCommandComment::InvalidParamIndex;
+}
+
+namespace {
+bool ResolveTParamReferenceHelper(
+ StringRef Name,
+ const TemplateParameterList *TemplateParameters,
+ SmallVectorImpl<unsigned> *Position) {
+ for (unsigned i = 0, e = TemplateParameters->size(); i != e; ++i) {
+ const NamedDecl *Param = TemplateParameters->getParam(i);
+ const IdentifierInfo *II = Param->getIdentifier();
+ if (II && II->getName() == Name) {
+ Position->push_back(i);
+ return true;
+ }
+
+ if (const TemplateTemplateParmDecl *TTP =
+ dyn_cast<TemplateTemplateParmDecl>(Param)) {
+ Position->push_back(i);
+ if (ResolveTParamReferenceHelper(Name, TTP->getTemplateParameters(),
+ Position))
+ return true;
+ Position->pop_back();
+ }
+ }
+ return false;
+}
+} // unnamed namespace
+
+bool Sema::resolveTParamReference(
+ StringRef Name,
+ const TemplateParameterList *TemplateParameters,
+ SmallVectorImpl<unsigned> *Position) {
+ Position->clear();
+ if (!TemplateParameters)
+ return false;
+
+ return ResolveTParamReferenceHelper(Name, TemplateParameters, Position);
+}
+
+namespace {
+void CorrectTypoInTParamReferenceHelper(
+ const TemplateParameterList *TemplateParameters,
+ SimpleTypoCorrector &Corrector) {
+ for (unsigned i = 0, e = TemplateParameters->size(); i != e; ++i) {
+ const NamedDecl *Param = TemplateParameters->getParam(i);
+ Corrector.addDecl(Param);
+
+ if (const TemplateTemplateParmDecl *TTP =
+ dyn_cast<TemplateTemplateParmDecl>(Param))
+ CorrectTypoInTParamReferenceHelper(TTP->getTemplateParameters(),
+ Corrector);
+ }
+}
+} // unnamed namespace
+
+StringRef Sema::correctTypoInTParamReference(
+ StringRef Typo,
+ const TemplateParameterList *TemplateParameters) {
+ SimpleTypoCorrector Corrector(Typo);
+ CorrectTypoInTParamReferenceHelper(TemplateParameters, Corrector);
+ if (const NamedDecl *ND = Corrector.getBestDecl()) {
+ const IdentifierInfo *II = ND->getIdentifier();
+ assert(II && "SimpleTypoCorrector should not return this decl");
+ return II->getName();
+ }
+ return StringRef();
+}
+
+InlineCommandComment::RenderKind
+Sema::getInlineCommandRenderKind(StringRef Name) const {
+ assert(Traits.getCommandInfo(Name)->IsInlineCommand);
+
+ return llvm::StringSwitch<InlineCommandComment::RenderKind>(Name)
+ .Case("b", InlineCommandComment::RenderBold)
+ .Cases("c", "p", InlineCommandComment::RenderMonospaced)
+ .Cases("a", "e", "em", InlineCommandComment::RenderEmphasized)
+ .Default(InlineCommandComment::RenderNormal);
+}
+
+} // end namespace comments
+} // end namespace clang
+
diff --git a/contrib/llvm/tools/clang/lib/AST/Decl.cpp b/contrib/llvm/tools/clang/lib/AST/Decl.cpp
new file mode 100644
index 0000000..8eff4c4
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/Decl.cpp
@@ -0,0 +1,4093 @@
+//===--- Decl.cpp - Declaration AST Node Implementation -------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Decl subclasses.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/Decl.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTLambda.h"
+#include "clang/AST/ASTMutationListener.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/PrettyPrinter.h"
+#include "clang/AST/Stmt.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/Basic/Builtins.h"
+#include "clang/Basic/IdentifierTable.h"
+#include "clang/Basic/Module.h"
+#include "clang/Basic/Specifiers.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Frontend/FrontendDiagnostic.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <algorithm>
+
+using namespace clang;
+
+Decl *clang::getPrimaryMergedDecl(Decl *D) {
+ return D->getASTContext().getPrimaryMergedDecl(D);
+}
+
+// Defined here so that it can be inlined into its direct callers.
+bool Decl::isOutOfLine() const {
+ return !getLexicalDeclContext()->Equals(getDeclContext());
+}
+
+TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
+ : Decl(TranslationUnit, nullptr, SourceLocation()),
+ DeclContext(TranslationUnit), Ctx(ctx), AnonymousNamespace(nullptr) {
+ Hidden = Ctx.getLangOpts().ModulesLocalVisibility;
+}
+
+//===----------------------------------------------------------------------===//
+// NamedDecl Implementation
+//===----------------------------------------------------------------------===//
+
+// Visibility rules aren't rigorously externally specified, but here
+// are the basic principles behind what we implement:
+//
+// 1. An explicit visibility attribute is generally a direct expression
+// of the user's intent and should be honored. Only the innermost
+// visibility attribute applies. If no visibility attribute applies,
+// global visibility settings are considered.
+//
+// 2. There is one caveat to the above: on or in a template pattern,
+// an explicit visibility attribute is just a default rule, and
+// visibility can be decreased by the visibility of template
+// arguments. But this, too, has an exception: an attribute on an
+// explicit specialization or instantiation causes all the visibility
+// restrictions of the template arguments to be ignored.
+//
+// 3. A variable that does not otherwise have explicit visibility can
+// be restricted by the visibility of its type.
+//
+// 4. A visibility restriction is explicit if it comes from an
+// attribute (or something like it), not a global visibility setting.
+// When emitting a reference to an external symbol, visibility
+// restrictions are ignored unless they are explicit.
+//
+// 5. When computing the visibility of a non-type, including a
+// non-type member of a class, only non-type visibility restrictions
+// are considered: the 'visibility' attribute, global value-visibility
+// settings, and a few special cases like __private_extern.
+//
+// 6. When computing the visibility of a type, including a type member
+// of a class, only type visibility restrictions are considered:
+// the 'type_visibility' attribute and global type-visibility settings.
+// However, a 'visibility' attribute counts as a 'type_visibility'
+// attribute on any declaration that only has the former.
+//
+// The visibility of a "secondary" entity, like a template argument,
+// is computed using the kind of that entity, not the kind of the
+// primary entity for which we are computing visibility. For example,
+// the visibility of a specialization of either of these templates:
+// template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
+// template <class T, bool (&compare)(T, X)> class matcher;
+// is restricted according to the type visibility of the argument 'T',
+// the type visibility of 'bool(&)(T,X)', and the value visibility of
+// the argument function 'compare'. That 'has_match' is a value
+// and 'matcher' is a type only matters when looking for attributes
+// and settings from the immediate context.
+
+const unsigned IgnoreExplicitVisibilityBit = 2;
+const unsigned IgnoreAllVisibilityBit = 4;
+
+/// Kinds of LV computation. The linkage side of the computation is
+/// always the same, but different things can change how visibility is
+/// computed.
+enum LVComputationKind {
+ /// Do an LV computation for, ultimately, a type.
+ /// Visibility may be restricted by type visibility settings and
+ /// the visibility of template arguments.
+ LVForType = NamedDecl::VisibilityForType,
+
+ /// Do an LV computation for, ultimately, a non-type declaration.
+ /// Visibility may be restricted by value visibility settings and
+ /// the visibility of template arguments.
+ LVForValue = NamedDecl::VisibilityForValue,
+
+ /// Do an LV computation for, ultimately, a type that already has
+ /// some sort of explicit visibility. Visibility may only be
+ /// restricted by the visibility of template arguments.
+ LVForExplicitType = (LVForType | IgnoreExplicitVisibilityBit),
+
+ /// Do an LV computation for, ultimately, a non-type declaration
+ /// that already has some sort of explicit visibility. Visibility
+ /// may only be restricted by the visibility of template arguments.
+ LVForExplicitValue = (LVForValue | IgnoreExplicitVisibilityBit),
+
+ /// Do an LV computation when we only care about the linkage.
+ LVForLinkageOnly =
+ LVForValue | IgnoreExplicitVisibilityBit | IgnoreAllVisibilityBit
+};
+
+/// Does this computation kind permit us to consider additional
+/// visibility settings from attributes and the like?
+static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
+ return ((unsigned(computation) & IgnoreExplicitVisibilityBit) != 0);
+}
+
+/// Given an LVComputationKind, return one of the same type/value sort
+/// that records that it already has explicit visibility.
+static LVComputationKind
+withExplicitVisibilityAlready(LVComputationKind oldKind) {
+ LVComputationKind newKind =
+ static_cast<LVComputationKind>(unsigned(oldKind) |
+ IgnoreExplicitVisibilityBit);
+ assert(oldKind != LVForType || newKind == LVForExplicitType);
+ assert(oldKind != LVForValue || newKind == LVForExplicitValue);
+ assert(oldKind != LVForExplicitType || newKind == LVForExplicitType);
+ assert(oldKind != LVForExplicitValue || newKind == LVForExplicitValue);
+ return newKind;
+}
+
+static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
+ LVComputationKind kind) {
+ assert(!hasExplicitVisibilityAlready(kind) &&
+ "asking for explicit visibility when we shouldn't be");
+ return D->getExplicitVisibility((NamedDecl::ExplicitVisibilityKind) kind);
+}
+
+/// Is the given declaration a "type" or a "value" for the purposes of
+/// visibility computation?
+static bool usesTypeVisibility(const NamedDecl *D) {
+ return isa<TypeDecl>(D) ||
+ isa<ClassTemplateDecl>(D) ||
+ isa<ObjCInterfaceDecl>(D);
+}
+
+/// Does the given declaration have member specialization information,
+/// and if so, is it an explicit specialization?
+template <class T> static typename
+std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
+isExplicitMemberSpecialization(const T *D) {
+ if (const MemberSpecializationInfo *member =
+ D->getMemberSpecializationInfo()) {
+ return member->isExplicitSpecialization();
+ }
+ return false;
+}
+
+/// For templates, this question is easier: a member template can't be
+/// explicitly instantiated, so there's a single bit indicating whether
+/// or not this is an explicit member specialization.
+static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
+ return D->isMemberSpecialization();
+}
+
+/// Given a visibility attribute, return the explicit visibility
+/// associated with it.
+template <class T>
+static Visibility getVisibilityFromAttr(const T *attr) {
+ switch (attr->getVisibility()) {
+ case T::Default:
+ return DefaultVisibility;
+ case T::Hidden:
+ return HiddenVisibility;
+ case T::Protected:
+ return ProtectedVisibility;
+ }
+ llvm_unreachable("bad visibility kind");
+}
+
+/// Return the explicit visibility of the given declaration.
+static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
+ NamedDecl::ExplicitVisibilityKind kind) {
+ // If we're ultimately computing the visibility of a type, look for
+ // a 'type_visibility' attribute before looking for 'visibility'.
+ if (kind == NamedDecl::VisibilityForType) {
+ if (const TypeVisibilityAttr *A = D->getAttr<TypeVisibilityAttr>()) {
+ return getVisibilityFromAttr(A);
+ }
+ }
+
+ // If this declaration has an explicit visibility attribute, use it.
+ if (const VisibilityAttr *A = D->getAttr<VisibilityAttr>()) {
+ return getVisibilityFromAttr(A);
+ }
+
+ // If we're on Mac OS X, an 'availability' for Mac OS X attribute
+ // implies visibility(default).
+ if (D->getASTContext().getTargetInfo().getTriple().isOSDarwin()) {
+ for (const auto *A : D->specific_attrs<AvailabilityAttr>())
+ if (A->getPlatform()->getName().equals("macosx"))
+ return DefaultVisibility;
+ }
+
+ return None;
+}
+
+static LinkageInfo
+getLVForType(const Type &T, LVComputationKind computation) {
+ if (computation == LVForLinkageOnly)
+ return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
+ return T.getLinkageAndVisibility();
+}
+
+/// \brief Get the most restrictive linkage for the types in the given
+/// template parameter list. For visibility purposes, template
+/// parameters are part of the signature of a template.
+static LinkageInfo
+getLVForTemplateParameterList(const TemplateParameterList *Params,
+ LVComputationKind computation) {
+ LinkageInfo LV;
+ for (const NamedDecl *P : *Params) {
+ // Template type parameters are the most common and never
+ // contribute to visibility, pack or not.
+ if (isa<TemplateTypeParmDecl>(P))
+ continue;
+
+ // Non-type template parameters can be restricted by the value type, e.g.
+ // template <enum X> class A { ... };
+ // We have to be careful here, though, because we can be dealing with
+ // dependent types.
+ if (const NonTypeTemplateParmDecl *NTTP =
+ dyn_cast<NonTypeTemplateParmDecl>(P)) {
+ // Handle the non-pack case first.
+ if (!NTTP->isExpandedParameterPack()) {
+ if (!NTTP->getType()->isDependentType()) {
+ LV.merge(getLVForType(*NTTP->getType(), computation));
+ }
+ continue;
+ }
+
+ // Look at all the types in an expanded pack.
+ for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
+ QualType type = NTTP->getExpansionType(i);
+ if (!type->isDependentType())
+ LV.merge(type->getLinkageAndVisibility());
+ }
+ continue;
+ }
+
+ // Template template parameters can be restricted by their
+ // template parameters, recursively.
+ const TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(P);
+
+ // Handle the non-pack case first.
+ if (!TTP->isExpandedParameterPack()) {
+ LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
+ computation));
+ continue;
+ }
+
+ // Look at all expansions in an expanded pack.
+ for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
+ i != n; ++i) {
+ LV.merge(getLVForTemplateParameterList(
+ TTP->getExpansionTemplateParameters(i), computation));
+ }
+ }
+
+ return LV;
+}
+
+/// getLVForDecl - Get the linkage and visibility for the given declaration.
+static LinkageInfo getLVForDecl(const NamedDecl *D,
+ LVComputationKind computation);
+
+static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
+ const Decl *Ret = nullptr;
+ const DeclContext *DC = D->getDeclContext();
+ while (DC->getDeclKind() != Decl::TranslationUnit) {
+ if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
+ Ret = cast<Decl>(DC);
+ DC = DC->getParent();
+ }
+ return Ret;
+}
+
+/// \brief Get the most restrictive linkage for the types and
+/// declarations in the given template argument list.
+///
+/// Note that we don't take an LVComputationKind because we always
+/// want to honor the visibility of template arguments in the same way.
+static LinkageInfo getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
+ LVComputationKind computation) {
+ LinkageInfo LV;
+
+ for (const TemplateArgument &Arg : Args) {
+ switch (Arg.getKind()) {
+ case TemplateArgument::Null:
+ case TemplateArgument::Integral:
+ case TemplateArgument::Expression:
+ continue;
+
+ case TemplateArgument::Type:
+ LV.merge(getLVForType(*Arg.getAsType(), computation));
+ continue;
+
+ case TemplateArgument::Declaration:
+ if (NamedDecl *ND = dyn_cast<NamedDecl>(Arg.getAsDecl())) {
+ assert(!usesTypeVisibility(ND));
+ LV.merge(getLVForDecl(ND, computation));
+ }
+ continue;
+
+ case TemplateArgument::NullPtr:
+ LV.merge(Arg.getNullPtrType()->getLinkageAndVisibility());
+ continue;
+
+ case TemplateArgument::Template:
+ case TemplateArgument::TemplateExpansion:
+ if (TemplateDecl *Template =
+ Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
+ LV.merge(getLVForDecl(Template, computation));
+ continue;
+
+ case TemplateArgument::Pack:
+ LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
+ continue;
+ }
+ llvm_unreachable("bad template argument kind");
+ }
+
+ return LV;
+}
+
+static LinkageInfo
+getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
+ LVComputationKind computation) {
+ return getLVForTemplateArgumentList(TArgs.asArray(), computation);
+}
+
+static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
+ const FunctionTemplateSpecializationInfo *specInfo) {
+ // Include visibility from the template parameters and arguments
+ // only if this is not an explicit instantiation or specialization
+ // with direct explicit visibility. (Implicit instantiations won't
+ // have a direct attribute.)
+ if (!specInfo->isExplicitInstantiationOrSpecialization())
+ return true;
+
+ return !fn->hasAttr<VisibilityAttr>();
+}
+
+/// Merge in template-related linkage and visibility for the given
+/// function template specialization.
+///
+/// We don't need a computation kind here because we can assume
+/// LVForValue.
+///
+/// \param[out] LV the computation to use for the parent
+static void
+mergeTemplateLV(LinkageInfo &LV, const FunctionDecl *fn,
+ const FunctionTemplateSpecializationInfo *specInfo,
+ LVComputationKind computation) {
+ bool considerVisibility =
+ shouldConsiderTemplateVisibility(fn, specInfo);
+
+ // Merge information from the template parameters.
+ FunctionTemplateDecl *temp = specInfo->getTemplate();
+ LinkageInfo tempLV =
+ getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
+ LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
+
+ // Merge information from the template arguments.
+ const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
+ LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
+ LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
+}
+
+/// Does the given declaration have a direct visibility attribute
+/// that would match the given rules?
+static bool hasDirectVisibilityAttribute(const NamedDecl *D,
+ LVComputationKind computation) {
+ switch (computation) {
+ case LVForType:
+ case LVForExplicitType:
+ if (D->hasAttr<TypeVisibilityAttr>())
+ return true;
+ // fallthrough
+ case LVForValue:
+ case LVForExplicitValue:
+ if (D->hasAttr<VisibilityAttr>())
+ return true;
+ return false;
+ case LVForLinkageOnly:
+ return false;
+ }
+ llvm_unreachable("bad visibility computation kind");
+}
+
+/// Should we consider visibility associated with the template
+/// arguments and parameters of the given class template specialization?
+static bool shouldConsiderTemplateVisibility(
+ const ClassTemplateSpecializationDecl *spec,
+ LVComputationKind computation) {
+ // Include visibility from the template parameters and arguments
+ // only if this is not an explicit instantiation or specialization
+ // with direct explicit visibility (and note that implicit
+ // instantiations won't have a direct attribute).
+ //
+ // Furthermore, we want to ignore template parameters and arguments
+ // for an explicit specialization when computing the visibility of a
+ // member thereof with explicit visibility.
+ //
+ // This is a bit complex; let's unpack it.
+ //
+ // An explicit class specialization is an independent, top-level
+ // declaration. As such, if it or any of its members has an
+ // explicit visibility attribute, that must directly express the
+ // user's intent, and we should honor it. The same logic applies to
+ // an explicit instantiation of a member of such a thing.
+
+ // Fast path: if this is not an explicit instantiation or
+ // specialization, we always want to consider template-related
+ // visibility restrictions.
+ if (!spec->isExplicitInstantiationOrSpecialization())
+ return true;
+
+ // This is the 'member thereof' check.
+ if (spec->isExplicitSpecialization() &&
+ hasExplicitVisibilityAlready(computation))
+ return false;
+
+ return !hasDirectVisibilityAttribute(spec, computation);
+}
+
+/// Merge in template-related linkage and visibility for the given
+/// class template specialization.
+static void mergeTemplateLV(LinkageInfo &LV,
+ const ClassTemplateSpecializationDecl *spec,
+ LVComputationKind computation) {
+ bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
+
+ // Merge information from the template parameters, but ignore
+ // visibility if we're only considering template arguments.
+
+ ClassTemplateDecl *temp = spec->getSpecializedTemplate();
+ LinkageInfo tempLV =
+ getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
+ LV.mergeMaybeWithVisibility(tempLV,
+ considerVisibility && !hasExplicitVisibilityAlready(computation));
+
+ // Merge information from the template arguments. We ignore
+ // template-argument visibility if we've got an explicit
+ // instantiation with a visibility attribute.
+ const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
+ LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
+ if (considerVisibility)
+ LV.mergeVisibility(argsLV);
+ LV.mergeExternalVisibility(argsLV);
+}
+
+/// Should we consider visibility associated with the template
+/// arguments and parameters of the given variable template
+/// specialization? As usual, follow class template specialization
+/// logic up to initialization.
+static bool shouldConsiderTemplateVisibility(
+ const VarTemplateSpecializationDecl *spec,
+ LVComputationKind computation) {
+ // Include visibility from the template parameters and arguments
+ // only if this is not an explicit instantiation or specialization
+ // with direct explicit visibility (and note that implicit
+ // instantiations won't have a direct attribute).
+ if (!spec->isExplicitInstantiationOrSpecialization())
+ return true;
+
+ // An explicit variable specialization is an independent, top-level
+ // declaration. As such, if it has an explicit visibility attribute,
+ // that must directly express the user's intent, and we should honor
+ // it.
+ if (spec->isExplicitSpecialization() &&
+ hasExplicitVisibilityAlready(computation))
+ return false;
+
+ return !hasDirectVisibilityAttribute(spec, computation);
+}
+
+/// Merge in template-related linkage and visibility for the given
+/// variable template specialization. As usual, follow class template
+/// specialization logic up to initialization.
+static void mergeTemplateLV(LinkageInfo &LV,
+ const VarTemplateSpecializationDecl *spec,
+ LVComputationKind computation) {
+ bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
+
+ // Merge information from the template parameters, but ignore
+ // visibility if we're only considering template arguments.
+
+ VarTemplateDecl *temp = spec->getSpecializedTemplate();
+ LinkageInfo tempLV =
+ getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
+ LV.mergeMaybeWithVisibility(tempLV,
+ considerVisibility && !hasExplicitVisibilityAlready(computation));
+
+ // Merge information from the template arguments. We ignore
+ // template-argument visibility if we've got an explicit
+ // instantiation with a visibility attribute.
+ const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
+ LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
+ if (considerVisibility)
+ LV.mergeVisibility(argsLV);
+ LV.mergeExternalVisibility(argsLV);
+}
+
+static bool useInlineVisibilityHidden(const NamedDecl *D) {
+ // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
+ const LangOptions &Opts = D->getASTContext().getLangOpts();
+ if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
+ return false;
+
+ const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
+ if (!FD)
+ return false;
+
+ TemplateSpecializationKind TSK = TSK_Undeclared;
+ if (FunctionTemplateSpecializationInfo *spec
+ = FD->getTemplateSpecializationInfo()) {
+ TSK = spec->getTemplateSpecializationKind();
+ } else if (MemberSpecializationInfo *MSI =
+ FD->getMemberSpecializationInfo()) {
+ TSK = MSI->getTemplateSpecializationKind();
+ }
+
+ const FunctionDecl *Def = nullptr;
+ // InlineVisibilityHidden only applies to definitions, and
+ // isInlined() only gives meaningful answers on definitions
+ // anyway.
+ return TSK != TSK_ExplicitInstantiationDeclaration &&
+ TSK != TSK_ExplicitInstantiationDefinition &&
+ FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
+}
+
+template <typename T> static bool isFirstInExternCContext(T *D) {
+ const T *First = D->getFirstDecl();
+ return First->isInExternCContext();
+}
+
+static bool isSingleLineLanguageLinkage(const Decl &D) {
+ if (const LinkageSpecDecl *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
+ if (!SD->hasBraces())
+ return true;
+ return false;
+}
+
+static LinkageInfo getLVForNamespaceScopeDecl(const NamedDecl *D,
+ LVComputationKind computation) {
+ assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
+ "Not a name having namespace scope");
+ ASTContext &Context = D->getASTContext();
+
+ // C++ [basic.link]p3:
+ // A name having namespace scope (3.3.6) has internal linkage if it
+ // is the name of
+ // - an object, reference, function or function template that is
+ // explicitly declared static; or,
+ // (This bullet corresponds to C99 6.2.2p3.)
+ if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
+ // Explicitly declared static.
+ if (Var->getStorageClass() == SC_Static)
+ return LinkageInfo::internal();
+
+ // - a non-volatile object or reference that is explicitly declared const
+ // or constexpr and neither explicitly declared extern nor previously
+ // declared to have external linkage; or (there is no equivalent in C99)
+ if (Context.getLangOpts().CPlusPlus &&
+ Var->getType().isConstQualified() &&
+ !Var->getType().isVolatileQualified()) {
+ const VarDecl *PrevVar = Var->getPreviousDecl();
+ if (PrevVar)
+ return getLVForDecl(PrevVar, computation);
+
+ if (Var->getStorageClass() != SC_Extern &&
+ Var->getStorageClass() != SC_PrivateExtern &&
+ !isSingleLineLanguageLinkage(*Var))
+ return LinkageInfo::internal();
+ }
+
+ for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
+ PrevVar = PrevVar->getPreviousDecl()) {
+ if (PrevVar->getStorageClass() == SC_PrivateExtern &&
+ Var->getStorageClass() == SC_None)
+ return PrevVar->getLinkageAndVisibility();
+ // Explicitly declared static.
+ if (PrevVar->getStorageClass() == SC_Static)
+ return LinkageInfo::internal();
+ }
+ } else if (const FunctionDecl *Function = D->getAsFunction()) {
+ // C++ [temp]p4:
+ // A non-member function template can have internal linkage; any
+ // other template name shall have external linkage.
+
+ // Explicitly declared static.
+ if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
+ return LinkageInfo(InternalLinkage, DefaultVisibility, false);
+ } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
+ // - a data member of an anonymous union.
+ const VarDecl *VD = IFD->getVarDecl();
+ assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
+ return getLVForNamespaceScopeDecl(VD, computation);
+ }
+ assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
+
+ if (D->isInAnonymousNamespace()) {
+ const VarDecl *Var = dyn_cast<VarDecl>(D);
+ const FunctionDecl *Func = dyn_cast<FunctionDecl>(D);
+ if ((!Var || !isFirstInExternCContext(Var)) &&
+ (!Func || !isFirstInExternCContext(Func)))
+ return LinkageInfo::uniqueExternal();
+ }
+
+ // Set up the defaults.
+
+ // C99 6.2.2p5:
+ // If the declaration of an identifier for an object has file
+ // scope and no storage-class specifier, its linkage is
+ // external.
+ LinkageInfo LV;
+
+ if (!hasExplicitVisibilityAlready(computation)) {
+ if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
+ LV.mergeVisibility(*Vis, true);
+ } else {
+ // If we're declared in a namespace with a visibility attribute,
+ // use that namespace's visibility, and it still counts as explicit.
+ for (const DeclContext *DC = D->getDeclContext();
+ !isa<TranslationUnitDecl>(DC);
+ DC = DC->getParent()) {
+ const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC);
+ if (!ND) continue;
+ if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
+ LV.mergeVisibility(*Vis, true);
+ break;
+ }
+ }
+ }
+
+ // Add in global settings if the above didn't give us direct visibility.
+ if (!LV.isVisibilityExplicit()) {
+ // Use global type/value visibility as appropriate.
+ Visibility globalVisibility;
+ if (computation == LVForValue) {
+ globalVisibility = Context.getLangOpts().getValueVisibilityMode();
+ } else {
+ assert(computation == LVForType);
+ globalVisibility = Context.getLangOpts().getTypeVisibilityMode();
+ }
+ LV.mergeVisibility(globalVisibility, /*explicit*/ false);
+
+ // If we're paying attention to global visibility, apply
+ // -finline-visibility-hidden if this is an inline method.
+ if (useInlineVisibilityHidden(D))
+ LV.mergeVisibility(HiddenVisibility, true);
+ }
+ }
+
+ // C++ [basic.link]p4:
+
+ // A name having namespace scope has external linkage if it is the
+ // name of
+ //
+ // - an object or reference, unless it has internal linkage; or
+ if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
+ // GCC applies the following optimization to variables and static
+ // data members, but not to functions:
+ //
+ // Modify the variable's LV by the LV of its type unless this is
+ // C or extern "C". This follows from [basic.link]p9:
+ // A type without linkage shall not be used as the type of a
+ // variable or function with external linkage unless
+ // - the entity has C language linkage, or
+ // - the entity is declared within an unnamed namespace, or
+ // - the entity is not used or is defined in the same
+ // translation unit.
+ // and [basic.link]p10:
+ // ...the types specified by all declarations referring to a
+ // given variable or function shall be identical...
+ // C does not have an equivalent rule.
+ //
+ // Ignore this if we've got an explicit attribute; the user
+ // probably knows what they're doing.
+ //
+ // Note that we don't want to make the variable non-external
+ // because of this, but unique-external linkage suits us.
+ if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var)) {
+ LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
+ if (TypeLV.getLinkage() != ExternalLinkage)
+ return LinkageInfo::uniqueExternal();
+ if (!LV.isVisibilityExplicit())
+ LV.mergeVisibility(TypeLV);
+ }
+
+ if (Var->getStorageClass() == SC_PrivateExtern)
+ LV.mergeVisibility(HiddenVisibility, true);
+
+ // Note that Sema::MergeVarDecl already takes care of implementing
+ // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
+ // to do it here.
+
+ // As per function and class template specializations (below),
+ // consider LV for the template and template arguments. We're at file
+ // scope, so we do not need to worry about nested specializations.
+ if (const VarTemplateSpecializationDecl *spec
+ = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
+ mergeTemplateLV(LV, spec, computation);
+ }
+
+ // - a function, unless it has internal linkage; or
+ } else if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
+ // In theory, we can modify the function's LV by the LV of its
+ // type unless it has C linkage (see comment above about variables
+ // for justification). In practice, GCC doesn't do this, so it's
+ // just too painful to make work.
+
+ if (Function->getStorageClass() == SC_PrivateExtern)
+ LV.mergeVisibility(HiddenVisibility, true);
+
+ // Note that Sema::MergeCompatibleFunctionDecls already takes care of
+ // merging storage classes and visibility attributes, so we don't have to
+ // look at previous decls in here.
+
+ // In C++, then if the type of the function uses a type with
+ // unique-external linkage, it's not legally usable from outside
+ // this translation unit. However, we should use the C linkage
+ // rules instead for extern "C" declarations.
+ if (Context.getLangOpts().CPlusPlus &&
+ !Function->isInExternCContext()) {
+ // Only look at the type-as-written. If this function has an auto-deduced
+ // return type, we can't compute the linkage of that type because it could
+ // require looking at the linkage of this function, and we don't need this
+ // for correctness because the type is not part of the function's
+ // signature.
+ // FIXME: This is a hack. We should be able to solve this circularity and
+ // the one in getLVForClassMember for Functions some other way.
+ QualType TypeAsWritten = Function->getType();
+ if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
+ TypeAsWritten = TSI->getType();
+ if (TypeAsWritten->getLinkage() == UniqueExternalLinkage)
+ return LinkageInfo::uniqueExternal();
+ }
+
+ // Consider LV from the template and the template arguments.
+ // We're at file scope, so we do not need to worry about nested
+ // specializations.
+ if (FunctionTemplateSpecializationInfo *specInfo
+ = Function->getTemplateSpecializationInfo()) {
+ mergeTemplateLV(LV, Function, specInfo, computation);
+ }
+
+ // - a named class (Clause 9), or an unnamed class defined in a
+ // typedef declaration in which the class has the typedef name
+ // for linkage purposes (7.1.3); or
+ // - a named enumeration (7.2), or an unnamed enumeration
+ // defined in a typedef declaration in which the enumeration
+ // has the typedef name for linkage purposes (7.1.3); or
+ } else if (const TagDecl *Tag = dyn_cast<TagDecl>(D)) {
+ // Unnamed tags have no linkage.
+ if (!Tag->hasNameForLinkage())
+ return LinkageInfo::none();
+
+ // If this is a class template specialization, consider the
+ // linkage of the template and template arguments. We're at file
+ // scope, so we do not need to worry about nested specializations.
+ if (const ClassTemplateSpecializationDecl *spec
+ = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
+ mergeTemplateLV(LV, spec, computation);
+ }
+
+ // - an enumerator belonging to an enumeration with external linkage;
+ } else if (isa<EnumConstantDecl>(D)) {
+ LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
+ computation);
+ if (!isExternalFormalLinkage(EnumLV.getLinkage()))
+ return LinkageInfo::none();
+ LV.merge(EnumLV);
+
+ // - a template, unless it is a function template that has
+ // internal linkage (Clause 14);
+ } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) {
+ bool considerVisibility = !hasExplicitVisibilityAlready(computation);
+ LinkageInfo tempLV =
+ getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
+ LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
+
+ // - a namespace (7.3), unless it is declared within an unnamed
+ // namespace.
+ } else if (isa<NamespaceDecl>(D) && !D->isInAnonymousNamespace()) {
+ return LV;
+
+ // By extension, we assign external linkage to Objective-C
+ // interfaces.
+ } else if (isa<ObjCInterfaceDecl>(D)) {
+ // fallout
+
+ // Everything not covered here has no linkage.
+ } else {
+ // FIXME: A typedef declaration has linkage if it gives a type a name for
+ // linkage purposes.
+ return LinkageInfo::none();
+ }
+
+ // If we ended up with non-external linkage, visibility should
+ // always be default.
+ if (LV.getLinkage() != ExternalLinkage)
+ return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
+
+ return LV;
+}
+
+static LinkageInfo getLVForClassMember(const NamedDecl *D,
+ LVComputationKind computation) {
+ // Only certain class members have linkage. Note that fields don't
+ // really have linkage, but it's convenient to say they do for the
+ // purposes of calculating linkage of pointer-to-data-member
+ // template arguments.
+ //
+ // Templates also don't officially have linkage, but since we ignore
+ // the C++ standard and look at template arguments when determining
+ // linkage and visibility of a template specialization, we might hit
+ // a template template argument that way. If we do, we need to
+ // consider its linkage.
+ if (!(isa<CXXMethodDecl>(D) ||
+ isa<VarDecl>(D) ||
+ isa<FieldDecl>(D) ||
+ isa<IndirectFieldDecl>(D) ||
+ isa<TagDecl>(D) ||
+ isa<TemplateDecl>(D)))
+ return LinkageInfo::none();
+
+ LinkageInfo LV;
+
+ // If we have an explicit visibility attribute, merge that in.
+ if (!hasExplicitVisibilityAlready(computation)) {
+ if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
+ LV.mergeVisibility(*Vis, true);
+ // If we're paying attention to global visibility, apply
+ // -finline-visibility-hidden if this is an inline method.
+ //
+ // Note that we do this before merging information about
+ // the class visibility.
+ if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
+ LV.mergeVisibility(HiddenVisibility, true);
+ }
+
+ // If this class member has an explicit visibility attribute, the only
+ // thing that can change its visibility is the template arguments, so
+ // only look for them when processing the class.
+ LVComputationKind classComputation = computation;
+ if (LV.isVisibilityExplicit())
+ classComputation = withExplicitVisibilityAlready(computation);
+
+ LinkageInfo classLV =
+ getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
+ // If the class already has unique-external linkage, we can't improve.
+ if (classLV.getLinkage() == UniqueExternalLinkage)
+ return LinkageInfo::uniqueExternal();
+
+ if (!isExternallyVisible(classLV.getLinkage()))
+ return LinkageInfo::none();
+
+
+ // Otherwise, don't merge in classLV yet, because in certain cases
+ // we need to completely ignore the visibility from it.
+
+ // Specifically, if this decl exists and has an explicit attribute.
+ const NamedDecl *explicitSpecSuppressor = nullptr;
+
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
+ // If the type of the function uses a type with unique-external
+ // linkage, it's not legally usable from outside this translation unit.
+ // But only look at the type-as-written. If this function has an
+ // auto-deduced return type, we can't compute the linkage of that type
+ // because it could require looking at the linkage of this function, and we
+ // don't need this for correctness because the type is not part of the
+ // function's signature.
+ // FIXME: This is a hack. We should be able to solve this circularity and
+ // the one in getLVForNamespaceScopeDecl for Functions some other way.
+ {
+ QualType TypeAsWritten = MD->getType();
+ if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
+ TypeAsWritten = TSI->getType();
+ if (TypeAsWritten->getLinkage() == UniqueExternalLinkage)
+ return LinkageInfo::uniqueExternal();
+ }
+ // If this is a method template specialization, use the linkage for
+ // the template parameters and arguments.
+ if (FunctionTemplateSpecializationInfo *spec
+ = MD->getTemplateSpecializationInfo()) {
+ mergeTemplateLV(LV, MD, spec, computation);
+ if (spec->isExplicitSpecialization()) {
+ explicitSpecSuppressor = MD;
+ } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
+ explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
+ }
+ } else if (isExplicitMemberSpecialization(MD)) {
+ explicitSpecSuppressor = MD;
+ }
+
+ } else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
+ if (const ClassTemplateSpecializationDecl *spec
+ = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
+ mergeTemplateLV(LV, spec, computation);
+ if (spec->isExplicitSpecialization()) {
+ explicitSpecSuppressor = spec;
+ } else {
+ const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
+ if (isExplicitMemberSpecialization(temp)) {
+ explicitSpecSuppressor = temp->getTemplatedDecl();
+ }
+ }
+ } else if (isExplicitMemberSpecialization(RD)) {
+ explicitSpecSuppressor = RD;
+ }
+
+ // Static data members.
+ } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
+ if (const VarTemplateSpecializationDecl *spec
+ = dyn_cast<VarTemplateSpecializationDecl>(VD))
+ mergeTemplateLV(LV, spec, computation);
+
+ // Modify the variable's linkage by its type, but ignore the
+ // type's visibility unless it's a definition.
+ LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
+ if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
+ LV.mergeVisibility(typeLV);
+ LV.mergeExternalVisibility(typeLV);
+
+ if (isExplicitMemberSpecialization(VD)) {
+ explicitSpecSuppressor = VD;
+ }
+
+ // Template members.
+ } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) {
+ bool considerVisibility =
+ (!LV.isVisibilityExplicit() &&
+ !classLV.isVisibilityExplicit() &&
+ !hasExplicitVisibilityAlready(computation));
+ LinkageInfo tempLV =
+ getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
+ LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
+
+ if (const RedeclarableTemplateDecl *redeclTemp =
+ dyn_cast<RedeclarableTemplateDecl>(temp)) {
+ if (isExplicitMemberSpecialization(redeclTemp)) {
+ explicitSpecSuppressor = temp->getTemplatedDecl();
+ }
+ }
+ }
+
+ // We should never be looking for an attribute directly on a template.
+ assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
+
+ // If this member is an explicit member specialization, and it has
+ // an explicit attribute, ignore visibility from the parent.
+ bool considerClassVisibility = true;
+ if (explicitSpecSuppressor &&
+ // optimization: hasDVA() is true only with explicit visibility.
+ LV.isVisibilityExplicit() &&
+ classLV.getVisibility() != DefaultVisibility &&
+ hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
+ considerClassVisibility = false;
+ }
+
+ // Finally, merge in information from the class.
+ LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
+ return LV;
+}
+
+void NamedDecl::anchor() { }
+
+static LinkageInfo computeLVForDecl(const NamedDecl *D,
+ LVComputationKind computation);
+
+bool NamedDecl::isLinkageValid() const {
+ if (!hasCachedLinkage())
+ return true;
+
+ return computeLVForDecl(this, LVForLinkageOnly).getLinkage() ==
+ getCachedLinkage();
+}
+
+ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
+ StringRef name = getName();
+ if (name.empty()) return SFF_None;
+
+ if (name.front() == 'C')
+ if (name == "CFStringCreateWithFormat" ||
+ name == "CFStringCreateWithFormatAndArguments" ||
+ name == "CFStringAppendFormat" ||
+ name == "CFStringAppendFormatAndArguments")
+ return SFF_CFString;
+ return SFF_None;
+}
+
+Linkage NamedDecl::getLinkageInternal() const {
+ // We don't care about visibility here, so ask for the cheapest
+ // possible visibility analysis.
+ return getLVForDecl(this, LVForLinkageOnly).getLinkage();
+}
+
+LinkageInfo NamedDecl::getLinkageAndVisibility() const {
+ LVComputationKind computation =
+ (usesTypeVisibility(this) ? LVForType : LVForValue);
+ return getLVForDecl(this, computation);
+}
+
+static Optional<Visibility>
+getExplicitVisibilityAux(const NamedDecl *ND,
+ NamedDecl::ExplicitVisibilityKind kind,
+ bool IsMostRecent) {
+ assert(!IsMostRecent || ND == ND->getMostRecentDecl());
+
+ // Check the declaration itself first.
+ if (Optional<Visibility> V = getVisibilityOf(ND, kind))
+ return V;
+
+ // If this is a member class of a specialization of a class template
+ // and the corresponding decl has explicit visibility, use that.
+ if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(ND)) {
+ CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
+ if (InstantiatedFrom)
+ return getVisibilityOf(InstantiatedFrom, kind);
+ }
+
+ // If there wasn't explicit visibility there, and this is a
+ // specialization of a class template, check for visibility
+ // on the pattern.
+ if (const ClassTemplateSpecializationDecl *spec
+ = dyn_cast<ClassTemplateSpecializationDecl>(ND))
+ return getVisibilityOf(spec->getSpecializedTemplate()->getTemplatedDecl(),
+ kind);
+
+ // Use the most recent declaration.
+ if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
+ const NamedDecl *MostRecent = ND->getMostRecentDecl();
+ if (MostRecent != ND)
+ return getExplicitVisibilityAux(MostRecent, kind, true);
+ }
+
+ if (const VarDecl *Var = dyn_cast<VarDecl>(ND)) {
+ if (Var->isStaticDataMember()) {
+ VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
+ if (InstantiatedFrom)
+ return getVisibilityOf(InstantiatedFrom, kind);
+ }
+
+ if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
+ return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
+ kind);
+
+ return None;
+ }
+ // Also handle function template specializations.
+ if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND)) {
+ // If the function is a specialization of a template with an
+ // explicit visibility attribute, use that.
+ if (FunctionTemplateSpecializationInfo *templateInfo
+ = fn->getTemplateSpecializationInfo())
+ return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
+ kind);
+
+ // If the function is a member of a specialization of a class template
+ // and the corresponding decl has explicit visibility, use that.
+ FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
+ if (InstantiatedFrom)
+ return getVisibilityOf(InstantiatedFrom, kind);
+
+ return None;
+ }
+
+ // The visibility of a template is stored in the templated decl.
+ if (const TemplateDecl *TD = dyn_cast<TemplateDecl>(ND))
+ return getVisibilityOf(TD->getTemplatedDecl(), kind);
+
+ return None;
+}
+
+Optional<Visibility>
+NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
+ return getExplicitVisibilityAux(this, kind, false);
+}
+
+static LinkageInfo getLVForClosure(const DeclContext *DC, Decl *ContextDecl,
+ LVComputationKind computation) {
+ // This lambda has its linkage/visibility determined by its owner.
+ if (ContextDecl) {
+ if (isa<ParmVarDecl>(ContextDecl))
+ DC = ContextDecl->getDeclContext()->getRedeclContext();
+ else
+ return getLVForDecl(cast<NamedDecl>(ContextDecl), computation);
+ }
+
+ if (const NamedDecl *ND = dyn_cast<NamedDecl>(DC))
+ return getLVForDecl(ND, computation);
+
+ return LinkageInfo::external();
+}
+
+static LinkageInfo getLVForLocalDecl(const NamedDecl *D,
+ LVComputationKind computation) {
+ if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
+ if (Function->isInAnonymousNamespace() &&
+ !Function->isInExternCContext())
+ return LinkageInfo::uniqueExternal();
+
+ // This is a "void f();" which got merged with a file static.
+ if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
+ return LinkageInfo::internal();
+
+ LinkageInfo LV;
+ if (!hasExplicitVisibilityAlready(computation)) {
+ if (Optional<Visibility> Vis =
+ getExplicitVisibility(Function, computation))
+ LV.mergeVisibility(*Vis, true);
+ }
+
+ // Note that Sema::MergeCompatibleFunctionDecls already takes care of
+ // merging storage classes and visibility attributes, so we don't have to
+ // look at previous decls in here.
+
+ return LV;
+ }
+
+ if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
+ if (Var->hasExternalStorage()) {
+ if (Var->isInAnonymousNamespace() && !Var->isInExternCContext())
+ return LinkageInfo::uniqueExternal();
+
+ LinkageInfo LV;
+ if (Var->getStorageClass() == SC_PrivateExtern)
+ LV.mergeVisibility(HiddenVisibility, true);
+ else if (!hasExplicitVisibilityAlready(computation)) {
+ if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
+ LV.mergeVisibility(*Vis, true);
+ }
+
+ if (const VarDecl *Prev = Var->getPreviousDecl()) {
+ LinkageInfo PrevLV = getLVForDecl(Prev, computation);
+ if (PrevLV.getLinkage())
+ LV.setLinkage(PrevLV.getLinkage());
+ LV.mergeVisibility(PrevLV);
+ }
+
+ return LV;
+ }
+
+ if (!Var->isStaticLocal())
+ return LinkageInfo::none();
+ }
+
+ ASTContext &Context = D->getASTContext();
+ if (!Context.getLangOpts().CPlusPlus)
+ return LinkageInfo::none();
+
+ const Decl *OuterD = getOutermostFuncOrBlockContext(D);
+ if (!OuterD)
+ return LinkageInfo::none();
+
+ LinkageInfo LV;
+ if (const BlockDecl *BD = dyn_cast<BlockDecl>(OuterD)) {
+ if (!BD->getBlockManglingNumber())
+ return LinkageInfo::none();
+
+ LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
+ BD->getBlockManglingContextDecl(), computation);
+ } else {
+ const FunctionDecl *FD = cast<FunctionDecl>(OuterD);
+ if (!FD->isInlined() &&
+ !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
+ return LinkageInfo::none();
+
+ LV = getLVForDecl(FD, computation);
+ }
+ if (!isExternallyVisible(LV.getLinkage()))
+ return LinkageInfo::none();
+ return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
+ LV.isVisibilityExplicit());
+}
+
+static inline const CXXRecordDecl*
+getOutermostEnclosingLambda(const CXXRecordDecl *Record) {
+ const CXXRecordDecl *Ret = Record;
+ while (Record && Record->isLambda()) {
+ Ret = Record;
+ if (!Record->getParent()) break;
+ // Get the Containing Class of this Lambda Class
+ Record = dyn_cast_or_null<CXXRecordDecl>(
+ Record->getParent()->getParent());
+ }
+ return Ret;
+}
+
+static LinkageInfo computeLVForDecl(const NamedDecl *D,
+ LVComputationKind computation) {
+ // Objective-C: treat all Objective-C declarations as having external
+ // linkage.
+ switch (D->getKind()) {
+ default:
+ break;
+ case Decl::ParmVar:
+ return LinkageInfo::none();
+ case Decl::TemplateTemplateParm: // count these as external
+ case Decl::NonTypeTemplateParm:
+ case Decl::ObjCAtDefsField:
+ case Decl::ObjCCategory:
+ case Decl::ObjCCategoryImpl:
+ case Decl::ObjCCompatibleAlias:
+ case Decl::ObjCImplementation:
+ case Decl::ObjCMethod:
+ case Decl::ObjCProperty:
+ case Decl::ObjCPropertyImpl:
+ case Decl::ObjCProtocol:
+ return LinkageInfo::external();
+
+ case Decl::CXXRecord: {
+ const CXXRecordDecl *Record = cast<CXXRecordDecl>(D);
+ if (Record->isLambda()) {
+ if (!Record->getLambdaManglingNumber()) {
+ // This lambda has no mangling number, so it's internal.
+ return LinkageInfo::internal();
+ }
+
+ // This lambda has its linkage/visibility determined:
+ // - either by the outermost lambda if that lambda has no mangling
+ // number.
+ // - or by the parent of the outer most lambda
+ // This prevents infinite recursion in settings such as nested lambdas
+ // used in NSDMI's, for e.g.
+ // struct L {
+ // int t{};
+ // int t2 = ([](int a) { return [](int b) { return b; };})(t)(t);
+ // };
+ const CXXRecordDecl *OuterMostLambda =
+ getOutermostEnclosingLambda(Record);
+ if (!OuterMostLambda->getLambdaManglingNumber())
+ return LinkageInfo::internal();
+
+ return getLVForClosure(
+ OuterMostLambda->getDeclContext()->getRedeclContext(),
+ OuterMostLambda->getLambdaContextDecl(), computation);
+ }
+
+ break;
+ }
+ }
+
+ // Handle linkage for namespace-scope names.
+ if (D->getDeclContext()->getRedeclContext()->isFileContext())
+ return getLVForNamespaceScopeDecl(D, computation);
+
+ // C++ [basic.link]p5:
+ // In addition, a member function, static data member, a named
+ // class or enumeration of class scope, or an unnamed class or
+ // enumeration defined in a class-scope typedef declaration such
+ // that the class or enumeration has the typedef name for linkage
+ // purposes (7.1.3), has external linkage if the name of the class
+ // has external linkage.
+ if (D->getDeclContext()->isRecord())
+ return getLVForClassMember(D, computation);
+
+ // C++ [basic.link]p6:
+ // The name of a function declared in block scope and the name of
+ // an object declared by a block scope extern declaration have
+ // linkage. If there is a visible declaration of an entity with
+ // linkage having the same name and type, ignoring entities
+ // declared outside the innermost enclosing namespace scope, the
+ // block scope declaration declares that same entity and receives
+ // the linkage of the previous declaration. If there is more than
+ // one such matching entity, the program is ill-formed. Otherwise,
+ // if no matching entity is found, the block scope entity receives
+ // external linkage.
+ if (D->getDeclContext()->isFunctionOrMethod())
+ return getLVForLocalDecl(D, computation);
+
+ // C++ [basic.link]p6:
+ // Names not covered by these rules have no linkage.
+ return LinkageInfo::none();
+}
+
+namespace clang {
+class LinkageComputer {
+public:
+ static LinkageInfo getLVForDecl(const NamedDecl *D,
+ LVComputationKind computation) {
+ if (computation == LVForLinkageOnly && D->hasCachedLinkage())
+ return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
+
+ LinkageInfo LV = computeLVForDecl(D, computation);
+ if (D->hasCachedLinkage())
+ assert(D->getCachedLinkage() == LV.getLinkage());
+
+ D->setCachedLinkage(LV.getLinkage());
+
+#ifndef NDEBUG
+ // In C (because of gnu inline) and in c++ with microsoft extensions an
+ // static can follow an extern, so we can have two decls with different
+ // linkages.
+ const LangOptions &Opts = D->getASTContext().getLangOpts();
+ if (!Opts.CPlusPlus || Opts.MicrosoftExt)
+ return LV;
+
+ // We have just computed the linkage for this decl. By induction we know
+ // that all other computed linkages match, check that the one we just
+ // computed also does.
+ NamedDecl *Old = nullptr;
+ for (auto I : D->redecls()) {
+ NamedDecl *T = cast<NamedDecl>(I);
+ if (T == D)
+ continue;
+ if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
+ Old = T;
+ break;
+ }
+ }
+ assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
+#endif
+
+ return LV;
+ }
+};
+}
+
+static LinkageInfo getLVForDecl(const NamedDecl *D,
+ LVComputationKind computation) {
+ return clang::LinkageComputer::getLVForDecl(D, computation);
+}
+
+std::string NamedDecl::getQualifiedNameAsString() const {
+ std::string QualName;
+ llvm::raw_string_ostream OS(QualName);
+ printQualifiedName(OS, getASTContext().getPrintingPolicy());
+ return OS.str();
+}
+
+void NamedDecl::printQualifiedName(raw_ostream &OS) const {
+ printQualifiedName(OS, getASTContext().getPrintingPolicy());
+}
+
+void NamedDecl::printQualifiedName(raw_ostream &OS,
+ const PrintingPolicy &P) const {
+ const DeclContext *Ctx = getDeclContext();
+
+ if (Ctx->isFunctionOrMethod()) {
+ printName(OS);
+ return;
+ }
+
+ typedef SmallVector<const DeclContext *, 8> ContextsTy;
+ ContextsTy Contexts;
+
+ // Collect contexts.
+ while (Ctx && isa<NamedDecl>(Ctx)) {
+ Contexts.push_back(Ctx);
+ Ctx = Ctx->getParent();
+ }
+
+ for (ContextsTy::reverse_iterator I = Contexts.rbegin(), E = Contexts.rend();
+ I != E; ++I) {
+ if (const ClassTemplateSpecializationDecl *Spec
+ = dyn_cast<ClassTemplateSpecializationDecl>(*I)) {
+ OS << Spec->getName();
+ const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
+ TemplateSpecializationType::PrintTemplateArgumentList(OS,
+ TemplateArgs.data(),
+ TemplateArgs.size(),
+ P);
+ } else if (const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(*I)) {
+ if (P.SuppressUnwrittenScope &&
+ (ND->isAnonymousNamespace() || ND->isInline()))
+ continue;
+ if (ND->isAnonymousNamespace())
+ OS << "(anonymous namespace)";
+ else
+ OS << *ND;
+ } else if (const RecordDecl *RD = dyn_cast<RecordDecl>(*I)) {
+ if (!RD->getIdentifier())
+ OS << "(anonymous " << RD->getKindName() << ')';
+ else
+ OS << *RD;
+ } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
+ const FunctionProtoType *FT = nullptr;
+ if (FD->hasWrittenPrototype())
+ FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
+
+ OS << *FD << '(';
+ if (FT) {
+ unsigned NumParams = FD->getNumParams();
+ for (unsigned i = 0; i < NumParams; ++i) {
+ if (i)
+ OS << ", ";
+ OS << FD->getParamDecl(i)->getType().stream(P);
+ }
+
+ if (FT->isVariadic()) {
+ if (NumParams > 0)
+ OS << ", ";
+ OS << "...";
+ }
+ }
+ OS << ')';
+ } else {
+ OS << *cast<NamedDecl>(*I);
+ }
+ OS << "::";
+ }
+
+ if (getDeclName())
+ OS << *this;
+ else
+ OS << "(anonymous)";
+}
+
+void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
+ const PrintingPolicy &Policy,
+ bool Qualified) const {
+ if (Qualified)
+ printQualifiedName(OS, Policy);
+ else
+ printName(OS);
+}
+
+static bool isKindReplaceableBy(Decl::Kind OldK, Decl::Kind NewK) {
+ // For method declarations, we never replace.
+ if (ObjCMethodDecl::classofKind(NewK))
+ return false;
+
+ if (OldK == NewK)
+ return true;
+
+ // A compatibility alias for a class can be replaced by an interface.
+ if (ObjCCompatibleAliasDecl::classofKind(OldK) &&
+ ObjCInterfaceDecl::classofKind(NewK))
+ return true;
+
+ // A typedef-declaration, alias-declaration, or Objective-C class declaration
+ // can replace another declaration of the same type. Semantic analysis checks
+ // that we have matching types.
+ if ((TypedefNameDecl::classofKind(OldK) ||
+ ObjCInterfaceDecl::classofKind(OldK)) &&
+ (TypedefNameDecl::classofKind(NewK) ||
+ ObjCInterfaceDecl::classofKind(NewK)))
+ return true;
+
+ // Otherwise, a kind mismatch implies that the declaration is not replaced.
+ return false;
+}
+
+template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
+ return true;
+}
+static bool isRedeclarableImpl(...) { return false; }
+static bool isRedeclarable(Decl::Kind K) {
+ switch (K) {
+#define DECL(Type, Base) \
+ case Decl::Type: \
+ return isRedeclarableImpl((Type##Decl *)nullptr);
+#define ABSTRACT_DECL(DECL)
+#include "clang/AST/DeclNodes.inc"
+ }
+ llvm_unreachable("unknown decl kind");
+}
+
+bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
+ assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
+
+ // Never replace one imported declaration with another; we need both results
+ // when re-exporting.
+ if (OldD->isFromASTFile() && isFromASTFile())
+ return false;
+
+ if (!isKindReplaceableBy(OldD->getKind(), getKind()))
+ return false;
+
+ // Inline namespaces can give us two declarations with the same
+ // name and kind in the same scope but different contexts; we should
+ // keep both declarations in this case.
+ if (!this->getDeclContext()->getRedeclContext()->Equals(
+ OldD->getDeclContext()->getRedeclContext()))
+ return false;
+
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(this))
+ // For function declarations, we keep track of redeclarations.
+ // FIXME: This returns false for functions that should in fact be replaced.
+ // Instead, perform some kind of type check?
+ if (FD->getPreviousDecl() != OldD)
+ return false;
+
+ // For function templates, the underlying function declarations are linked.
+ if (const FunctionTemplateDecl *FunctionTemplate =
+ dyn_cast<FunctionTemplateDecl>(this))
+ return FunctionTemplate->getTemplatedDecl()->declarationReplaces(
+ cast<FunctionTemplateDecl>(OldD)->getTemplatedDecl());
+
+ // Using shadow declarations can be overloaded on their target declarations
+ // if they introduce functions.
+ // FIXME: If our target replaces the old target, can we replace the old
+ // shadow declaration?
+ if (auto *USD = dyn_cast<UsingShadowDecl>(this))
+ if (USD->getTargetDecl() != cast<UsingShadowDecl>(OldD)->getTargetDecl())
+ return false;
+
+ // Using declarations can be overloaded if they introduce functions.
+ if (auto *UD = dyn_cast<UsingDecl>(this)) {
+ ASTContext &Context = getASTContext();
+ return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
+ Context.getCanonicalNestedNameSpecifier(
+ cast<UsingDecl>(OldD)->getQualifier());
+ }
+ if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
+ ASTContext &Context = getASTContext();
+ return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
+ Context.getCanonicalNestedNameSpecifier(
+ cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
+ }
+
+ // UsingDirectiveDecl's are not really NamedDecl's, and all have same name.
+ // We want to keep it, unless it nominates same namespace.
+ if (auto *UD = dyn_cast<UsingDirectiveDecl>(this))
+ return UD->getNominatedNamespace()->getOriginalNamespace() ==
+ cast<UsingDirectiveDecl>(OldD)->getNominatedNamespace()
+ ->getOriginalNamespace();
+
+ if (!IsKnownNewer && isRedeclarable(getKind())) {
+ // Check whether this is actually newer than OldD. We want to keep the
+ // newer declaration. This loop will usually only iterate once, because
+ // OldD is usually the previous declaration.
+ for (auto D : redecls()) {
+ if (D == OldD)
+ break;
+
+ // If we reach the canonical declaration, then OldD is not actually older
+ // than this one.
+ //
+ // FIXME: In this case, we should not add this decl to the lookup table.
+ if (D->isCanonicalDecl())
+ return false;
+ }
+ }
+
+ // It's a newer declaration of the same kind of declaration in the same scope,
+ // and not an overload: we want this decl instead of the existing one.
+ return true;
+}
+
+bool NamedDecl::hasLinkage() const {
+ return getFormalLinkage() != NoLinkage;
+}
+
+NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
+ NamedDecl *ND = this;
+ while (UsingShadowDecl *UD = dyn_cast<UsingShadowDecl>(ND))
+ ND = UD->getTargetDecl();
+
+ if (ObjCCompatibleAliasDecl *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
+ return AD->getClassInterface();
+
+ return ND;
+}
+
+bool NamedDecl::isCXXInstanceMember() const {
+ if (!isCXXClassMember())
+ return false;
+
+ const NamedDecl *D = this;
+ if (isa<UsingShadowDecl>(D))
+ D = cast<UsingShadowDecl>(D)->getTargetDecl();
+
+ if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
+ return true;
+ if (const CXXMethodDecl *MD =
+ dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
+ return MD->isInstance();
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// DeclaratorDecl Implementation
+//===----------------------------------------------------------------------===//
+
+template <typename DeclT>
+static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
+ if (decl->getNumTemplateParameterLists() > 0)
+ return decl->getTemplateParameterList(0)->getTemplateLoc();
+ else
+ return decl->getInnerLocStart();
+}
+
+SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
+ TypeSourceInfo *TSI = getTypeSourceInfo();
+ if (TSI) return TSI->getTypeLoc().getBeginLoc();
+ return SourceLocation();
+}
+
+void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
+ if (QualifierLoc) {
+ // Make sure the extended decl info is allocated.
+ if (!hasExtInfo()) {
+ // Save (non-extended) type source info pointer.
+ TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
+ // Allocate external info struct.
+ DeclInfo = new (getASTContext()) ExtInfo;
+ // Restore savedTInfo into (extended) decl info.
+ getExtInfo()->TInfo = savedTInfo;
+ }
+ // Set qualifier info.
+ getExtInfo()->QualifierLoc = QualifierLoc;
+ } else {
+ // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
+ if (hasExtInfo()) {
+ if (getExtInfo()->NumTemplParamLists == 0) {
+ // Save type source info pointer.
+ TypeSourceInfo *savedTInfo = getExtInfo()->TInfo;
+ // Deallocate the extended decl info.
+ getASTContext().Deallocate(getExtInfo());
+ // Restore savedTInfo into (non-extended) decl info.
+ DeclInfo = savedTInfo;
+ }
+ else
+ getExtInfo()->QualifierLoc = QualifierLoc;
+ }
+ }
+}
+
+void
+DeclaratorDecl::setTemplateParameterListsInfo(ASTContext &Context,
+ unsigned NumTPLists,
+ TemplateParameterList **TPLists) {
+ assert(NumTPLists > 0);
+ // Make sure the extended decl info is allocated.
+ if (!hasExtInfo()) {
+ // Save (non-extended) type source info pointer.
+ TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
+ // Allocate external info struct.
+ DeclInfo = new (getASTContext()) ExtInfo;
+ // Restore savedTInfo into (extended) decl info.
+ getExtInfo()->TInfo = savedTInfo;
+ }
+ // Set the template parameter lists info.
+ getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
+}
+
+SourceLocation DeclaratorDecl::getOuterLocStart() const {
+ return getTemplateOrInnerLocStart(this);
+}
+
+namespace {
+
+// Helper function: returns true if QT is or contains a type
+// having a postfix component.
+bool typeIsPostfix(clang::QualType QT) {
+ while (true) {
+ const Type* T = QT.getTypePtr();
+ switch (T->getTypeClass()) {
+ default:
+ return false;
+ case Type::Pointer:
+ QT = cast<PointerType>(T)->getPointeeType();
+ break;
+ case Type::BlockPointer:
+ QT = cast<BlockPointerType>(T)->getPointeeType();
+ break;
+ case Type::MemberPointer:
+ QT = cast<MemberPointerType>(T)->getPointeeType();
+ break;
+ case Type::LValueReference:
+ case Type::RValueReference:
+ QT = cast<ReferenceType>(T)->getPointeeType();
+ break;
+ case Type::PackExpansion:
+ QT = cast<PackExpansionType>(T)->getPattern();
+ break;
+ case Type::Paren:
+ case Type::ConstantArray:
+ case Type::DependentSizedArray:
+ case Type::IncompleteArray:
+ case Type::VariableArray:
+ case Type::FunctionProto:
+ case Type::FunctionNoProto:
+ return true;
+ }
+ }
+}
+
+} // namespace
+
+SourceRange DeclaratorDecl::getSourceRange() const {
+ SourceLocation RangeEnd = getLocation();
+ if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
+ // If the declaration has no name or the type extends past the name take the
+ // end location of the type.
+ if (!getDeclName() || typeIsPostfix(TInfo->getType()))
+ RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
+ }
+ return SourceRange(getOuterLocStart(), RangeEnd);
+}
+
+void
+QualifierInfo::setTemplateParameterListsInfo(ASTContext &Context,
+ unsigned NumTPLists,
+ TemplateParameterList **TPLists) {
+ assert((NumTPLists == 0 || TPLists != nullptr) &&
+ "Empty array of template parameters with positive size!");
+
+ // Free previous template parameters (if any).
+ if (NumTemplParamLists > 0) {
+ Context.Deallocate(TemplParamLists);
+ TemplParamLists = nullptr;
+ NumTemplParamLists = 0;
+ }
+ // Set info on matched template parameter lists (if any).
+ if (NumTPLists > 0) {
+ TemplParamLists = new (Context) TemplateParameterList*[NumTPLists];
+ NumTemplParamLists = NumTPLists;
+ std::copy(TPLists, TPLists + NumTPLists, TemplParamLists);
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// VarDecl Implementation
+//===----------------------------------------------------------------------===//
+
+const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
+ switch (SC) {
+ case SC_None: break;
+ case SC_Auto: return "auto";
+ case SC_Extern: return "extern";
+ case SC_OpenCLWorkGroupLocal: return "<<work-group-local>>";
+ case SC_PrivateExtern: return "__private_extern__";
+ case SC_Register: return "register";
+ case SC_Static: return "static";
+ }
+
+ llvm_unreachable("Invalid storage class");
+}
+
+VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
+ SourceLocation StartLoc, SourceLocation IdLoc,
+ IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
+ StorageClass SC)
+ : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
+ redeclarable_base(C), Init() {
+ static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
+ "VarDeclBitfields too large!");
+ static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
+ "ParmVarDeclBitfields too large!");
+ static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
+ "NonParmVarDeclBitfields too large!");
+ AllBits = 0;
+ VarDeclBits.SClass = SC;
+ // Everything else is implicitly initialized to false.
+}
+
+VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation StartL, SourceLocation IdL,
+ IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
+ StorageClass S) {
+ return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
+}
+
+VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID)
+ VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
+ QualType(), nullptr, SC_None);
+}
+
+void VarDecl::setStorageClass(StorageClass SC) {
+ assert(isLegalForVariable(SC));
+ VarDeclBits.SClass = SC;
+}
+
+VarDecl::TLSKind VarDecl::getTLSKind() const {
+ switch (VarDeclBits.TSCSpec) {
+ case TSCS_unspecified:
+ if (!hasAttr<ThreadAttr>())
+ return TLS_None;
+ return getASTContext().getLangOpts().isCompatibleWithMSVC(
+ LangOptions::MSVC2015)
+ ? TLS_Dynamic
+ : TLS_Static;
+ case TSCS___thread: // Fall through.
+ case TSCS__Thread_local:
+ return TLS_Static;
+ case TSCS_thread_local:
+ return TLS_Dynamic;
+ }
+ llvm_unreachable("Unknown thread storage class specifier!");
+}
+
+SourceRange VarDecl::getSourceRange() const {
+ if (const Expr *Init = getInit()) {
+ SourceLocation InitEnd = Init->getLocEnd();
+ // If Init is implicit, ignore its source range and fallback on
+ // DeclaratorDecl::getSourceRange() to handle postfix elements.
+ if (InitEnd.isValid() && InitEnd != getLocation())
+ return SourceRange(getOuterLocStart(), InitEnd);
+ }
+ return DeclaratorDecl::getSourceRange();
+}
+
+template<typename T>
+static LanguageLinkage getDeclLanguageLinkage(const T &D) {
+ // C++ [dcl.link]p1: All function types, function names with external linkage,
+ // and variable names with external linkage have a language linkage.
+ if (!D.hasExternalFormalLinkage())
+ return NoLanguageLinkage;
+
+ // Language linkage is a C++ concept, but saying that everything else in C has
+ // C language linkage fits the implementation nicely.
+ ASTContext &Context = D.getASTContext();
+ if (!Context.getLangOpts().CPlusPlus)
+ return CLanguageLinkage;
+
+ // C++ [dcl.link]p4: A C language linkage is ignored in determining the
+ // language linkage of the names of class members and the function type of
+ // class member functions.
+ const DeclContext *DC = D.getDeclContext();
+ if (DC->isRecord())
+ return CXXLanguageLinkage;
+
+ // If the first decl is in an extern "C" context, any other redeclaration
+ // will have C language linkage. If the first one is not in an extern "C"
+ // context, we would have reported an error for any other decl being in one.
+ if (isFirstInExternCContext(&D))
+ return CLanguageLinkage;
+ return CXXLanguageLinkage;
+}
+
+template<typename T>
+static bool isDeclExternC(const T &D) {
+ // Since the context is ignored for class members, they can only have C++
+ // language linkage or no language linkage.
+ const DeclContext *DC = D.getDeclContext();
+ if (DC->isRecord()) {
+ assert(D.getASTContext().getLangOpts().CPlusPlus);
+ return false;
+ }
+
+ return D.getLanguageLinkage() == CLanguageLinkage;
+}
+
+LanguageLinkage VarDecl::getLanguageLinkage() const {
+ return getDeclLanguageLinkage(*this);
+}
+
+bool VarDecl::isExternC() const {
+ return isDeclExternC(*this);
+}
+
+bool VarDecl::isInExternCContext() const {
+ return getLexicalDeclContext()->isExternCContext();
+}
+
+bool VarDecl::isInExternCXXContext() const {
+ return getLexicalDeclContext()->isExternCXXContext();
+}
+
+VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
+
+VarDecl::DefinitionKind
+VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
+ // C++ [basic.def]p2:
+ // A declaration is a definition unless [...] it contains the 'extern'
+ // specifier or a linkage-specification and neither an initializer [...],
+ // it declares a static data member in a class declaration [...].
+ // C++1y [temp.expl.spec]p15:
+ // An explicit specialization of a static data member or an explicit
+ // specialization of a static data member template is a definition if the
+ // declaration includes an initializer; otherwise, it is a declaration.
+ //
+ // FIXME: How do you declare (but not define) a partial specialization of
+ // a static data member template outside the containing class?
+ if (isStaticDataMember()) {
+ if (isOutOfLine() &&
+ (hasInit() ||
+ // If the first declaration is out-of-line, this may be an
+ // instantiation of an out-of-line partial specialization of a variable
+ // template for which we have not yet instantiated the initializer.
+ (getFirstDecl()->isOutOfLine()
+ ? getTemplateSpecializationKind() == TSK_Undeclared
+ : getTemplateSpecializationKind() !=
+ TSK_ExplicitSpecialization) ||
+ isa<VarTemplatePartialSpecializationDecl>(this)))
+ return Definition;
+ else
+ return DeclarationOnly;
+ }
+ // C99 6.7p5:
+ // A definition of an identifier is a declaration for that identifier that
+ // [...] causes storage to be reserved for that object.
+ // Note: that applies for all non-file-scope objects.
+ // C99 6.9.2p1:
+ // If the declaration of an identifier for an object has file scope and an
+ // initializer, the declaration is an external definition for the identifier
+ if (hasInit())
+ return Definition;
+
+ if (hasAttr<AliasAttr>())
+ return Definition;
+
+ if (const auto *SAA = getAttr<SelectAnyAttr>())
+ if (!SAA->isInherited())
+ return Definition;
+
+ // A variable template specialization (other than a static data member
+ // template or an explicit specialization) is a declaration until we
+ // instantiate its initializer.
+ if (isa<VarTemplateSpecializationDecl>(this) &&
+ getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
+ return DeclarationOnly;
+
+ if (hasExternalStorage())
+ return DeclarationOnly;
+
+ // [dcl.link] p7:
+ // A declaration directly contained in a linkage-specification is treated
+ // as if it contains the extern specifier for the purpose of determining
+ // the linkage of the declared name and whether it is a definition.
+ if (isSingleLineLanguageLinkage(*this))
+ return DeclarationOnly;
+
+ // C99 6.9.2p2:
+ // A declaration of an object that has file scope without an initializer,
+ // and without a storage class specifier or the scs 'static', constitutes
+ // a tentative definition.
+ // No such thing in C++.
+ if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
+ return TentativeDefinition;
+
+ // What's left is (in C, block-scope) declarations without initializers or
+ // external storage. These are definitions.
+ return Definition;
+}
+
+VarDecl *VarDecl::getActingDefinition() {
+ DefinitionKind Kind = isThisDeclarationADefinition();
+ if (Kind != TentativeDefinition)
+ return nullptr;
+
+ VarDecl *LastTentative = nullptr;
+ VarDecl *First = getFirstDecl();
+ for (auto I : First->redecls()) {
+ Kind = I->isThisDeclarationADefinition();
+ if (Kind == Definition)
+ return nullptr;
+ else if (Kind == TentativeDefinition)
+ LastTentative = I;
+ }
+ return LastTentative;
+}
+
+VarDecl *VarDecl::getDefinition(ASTContext &C) {
+ VarDecl *First = getFirstDecl();
+ for (auto I : First->redecls()) {
+ if (I->isThisDeclarationADefinition(C) == Definition)
+ return I;
+ }
+ return nullptr;
+}
+
+VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
+ DefinitionKind Kind = DeclarationOnly;
+
+ const VarDecl *First = getFirstDecl();
+ for (auto I : First->redecls()) {
+ Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
+ if (Kind == Definition)
+ break;
+ }
+
+ return Kind;
+}
+
+const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
+ for (auto I : redecls()) {
+ if (auto Expr = I->getInit()) {
+ D = I;
+ return Expr;
+ }
+ }
+ return nullptr;
+}
+
+bool VarDecl::isOutOfLine() const {
+ if (Decl::isOutOfLine())
+ return true;
+
+ if (!isStaticDataMember())
+ return false;
+
+ // If this static data member was instantiated from a static data member of
+ // a class template, check whether that static data member was defined
+ // out-of-line.
+ if (VarDecl *VD = getInstantiatedFromStaticDataMember())
+ return VD->isOutOfLine();
+
+ return false;
+}
+
+VarDecl *VarDecl::getOutOfLineDefinition() {
+ if (!isStaticDataMember())
+ return nullptr;
+
+ for (auto RD : redecls()) {
+ if (RD->getLexicalDeclContext()->isFileContext())
+ return RD;
+ }
+
+ return nullptr;
+}
+
+void VarDecl::setInit(Expr *I) {
+ if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
+ Eval->~EvaluatedStmt();
+ getASTContext().Deallocate(Eval);
+ }
+
+ Init = I;
+}
+
+bool VarDecl::isUsableInConstantExpressions(ASTContext &C) const {
+ const LangOptions &Lang = C.getLangOpts();
+
+ if (!Lang.CPlusPlus)
+ return false;
+
+ // In C++11, any variable of reference type can be used in a constant
+ // expression if it is initialized by a constant expression.
+ if (Lang.CPlusPlus11 && getType()->isReferenceType())
+ return true;
+
+ // Only const objects can be used in constant expressions in C++. C++98 does
+ // not require the variable to be non-volatile, but we consider this to be a
+ // defect.
+ if (!getType().isConstQualified() || getType().isVolatileQualified())
+ return false;
+
+ // In C++, const, non-volatile variables of integral or enumeration types
+ // can be used in constant expressions.
+ if (getType()->isIntegralOrEnumerationType())
+ return true;
+
+ // Additionally, in C++11, non-volatile constexpr variables can be used in
+ // constant expressions.
+ return Lang.CPlusPlus11 && isConstexpr();
+}
+
+/// Convert the initializer for this declaration to the elaborated EvaluatedStmt
+/// form, which contains extra information on the evaluated value of the
+/// initializer.
+EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
+ EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>();
+ if (!Eval) {
+ Stmt *S = Init.get<Stmt *>();
+ // Note: EvaluatedStmt contains an APValue, which usually holds
+ // resources not allocated from the ASTContext. We need to do some
+ // work to avoid leaking those, but we do so in VarDecl::evaluateValue
+ // where we can detect whether there's anything to clean up or not.
+ Eval = new (getASTContext()) EvaluatedStmt;
+ Eval->Value = S;
+ Init = Eval;
+ }
+ return Eval;
+}
+
+APValue *VarDecl::evaluateValue() const {
+ SmallVector<PartialDiagnosticAt, 8> Notes;
+ return evaluateValue(Notes);
+}
+
+namespace {
+// Destroy an APValue that was allocated in an ASTContext.
+void DestroyAPValue(void* UntypedValue) {
+ static_cast<APValue*>(UntypedValue)->~APValue();
+}
+} // namespace
+
+APValue *VarDecl::evaluateValue(
+ SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
+ EvaluatedStmt *Eval = ensureEvaluatedStmt();
+
+ // We only produce notes indicating why an initializer is non-constant the
+ // first time it is evaluated. FIXME: The notes won't always be emitted the
+ // first time we try evaluation, so might not be produced at all.
+ if (Eval->WasEvaluated)
+ return Eval->Evaluated.isUninit() ? nullptr : &Eval->Evaluated;
+
+ const Expr *Init = cast<Expr>(Eval->Value);
+ assert(!Init->isValueDependent());
+
+ if (Eval->IsEvaluating) {
+ // FIXME: Produce a diagnostic for self-initialization.
+ Eval->CheckedICE = true;
+ Eval->IsICE = false;
+ return nullptr;
+ }
+
+ Eval->IsEvaluating = true;
+
+ bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
+ this, Notes);
+
+ // Ensure the computed APValue is cleaned up later if evaluation succeeded,
+ // or that it's empty (so that there's nothing to clean up) if evaluation
+ // failed.
+ if (!Result)
+ Eval->Evaluated = APValue();
+ else if (Eval->Evaluated.needsCleanup())
+ getASTContext().AddDeallocation(DestroyAPValue, &Eval->Evaluated);
+
+ Eval->IsEvaluating = false;
+ Eval->WasEvaluated = true;
+
+ // In C++11, we have determined whether the initializer was a constant
+ // expression as a side-effect.
+ if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) {
+ Eval->CheckedICE = true;
+ Eval->IsICE = Result && Notes.empty();
+ }
+
+ return Result ? &Eval->Evaluated : nullptr;
+}
+
+bool VarDecl::checkInitIsICE() const {
+ // Initializers of weak variables are never ICEs.
+ if (isWeak())
+ return false;
+
+ EvaluatedStmt *Eval = ensureEvaluatedStmt();
+ if (Eval->CheckedICE)
+ // We have already checked whether this subexpression is an
+ // integral constant expression.
+ return Eval->IsICE;
+
+ const Expr *Init = cast<Expr>(Eval->Value);
+ assert(!Init->isValueDependent());
+
+ // In C++11, evaluate the initializer to check whether it's a constant
+ // expression.
+ if (getASTContext().getLangOpts().CPlusPlus11) {
+ SmallVector<PartialDiagnosticAt, 8> Notes;
+ evaluateValue(Notes);
+ return Eval->IsICE;
+ }
+
+ // It's an ICE whether or not the definition we found is
+ // out-of-line. See DR 721 and the discussion in Clang PR
+ // 6206 for details.
+
+ if (Eval->CheckingICE)
+ return false;
+ Eval->CheckingICE = true;
+
+ Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
+ Eval->CheckingICE = false;
+ Eval->CheckedICE = true;
+ return Eval->IsICE;
+}
+
+VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
+ if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
+ return cast<VarDecl>(MSI->getInstantiatedFrom());
+
+ return nullptr;
+}
+
+TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
+ if (const VarTemplateSpecializationDecl *Spec =
+ dyn_cast<VarTemplateSpecializationDecl>(this))
+ return Spec->getSpecializationKind();
+
+ if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
+ return MSI->getTemplateSpecializationKind();
+
+ return TSK_Undeclared;
+}
+
+SourceLocation VarDecl::getPointOfInstantiation() const {
+ if (const VarTemplateSpecializationDecl *Spec =
+ dyn_cast<VarTemplateSpecializationDecl>(this))
+ return Spec->getPointOfInstantiation();
+
+ if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
+ return MSI->getPointOfInstantiation();
+
+ return SourceLocation();
+}
+
+VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
+ return getASTContext().getTemplateOrSpecializationInfo(this)
+ .dyn_cast<VarTemplateDecl *>();
+}
+
+void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
+ getASTContext().setTemplateOrSpecializationInfo(this, Template);
+}
+
+MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
+ if (isStaticDataMember())
+ // FIXME: Remove ?
+ // return getASTContext().getInstantiatedFromStaticDataMember(this);
+ return getASTContext().getTemplateOrSpecializationInfo(this)
+ .dyn_cast<MemberSpecializationInfo *>();
+ return nullptr;
+}
+
+void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
+ SourceLocation PointOfInstantiation) {
+ assert((isa<VarTemplateSpecializationDecl>(this) ||
+ getMemberSpecializationInfo()) &&
+ "not a variable or static data member template specialization");
+
+ if (VarTemplateSpecializationDecl *Spec =
+ dyn_cast<VarTemplateSpecializationDecl>(this)) {
+ Spec->setSpecializationKind(TSK);
+ if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
+ Spec->getPointOfInstantiation().isInvalid())
+ Spec->setPointOfInstantiation(PointOfInstantiation);
+ }
+
+ if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
+ MSI->setTemplateSpecializationKind(TSK);
+ if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
+ MSI->getPointOfInstantiation().isInvalid())
+ MSI->setPointOfInstantiation(PointOfInstantiation);
+ }
+}
+
+void
+VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
+ TemplateSpecializationKind TSK) {
+ assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
+ "Previous template or instantiation?");
+ getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
+}
+
+//===----------------------------------------------------------------------===//
+// ParmVarDecl Implementation
+//===----------------------------------------------------------------------===//
+
+ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation StartLoc,
+ SourceLocation IdLoc, IdentifierInfo *Id,
+ QualType T, TypeSourceInfo *TInfo,
+ StorageClass S, Expr *DefArg) {
+ return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
+ S, DefArg);
+}
+
+QualType ParmVarDecl::getOriginalType() const {
+ TypeSourceInfo *TSI = getTypeSourceInfo();
+ QualType T = TSI ? TSI->getType() : getType();
+ if (const DecayedType *DT = dyn_cast<DecayedType>(T))
+ return DT->getOriginalType();
+ return T;
+}
+
+ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID)
+ ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
+ nullptr, QualType(), nullptr, SC_None, nullptr);
+}
+
+SourceRange ParmVarDecl::getSourceRange() const {
+ if (!hasInheritedDefaultArg()) {
+ SourceRange ArgRange = getDefaultArgRange();
+ if (ArgRange.isValid())
+ return SourceRange(getOuterLocStart(), ArgRange.getEnd());
+ }
+
+ // DeclaratorDecl considers the range of postfix types as overlapping with the
+ // declaration name, but this is not the case with parameters in ObjC methods.
+ if (isa<ObjCMethodDecl>(getDeclContext()))
+ return SourceRange(DeclaratorDecl::getLocStart(), getLocation());
+
+ return DeclaratorDecl::getSourceRange();
+}
+
+Expr *ParmVarDecl::getDefaultArg() {
+ assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
+ assert(!hasUninstantiatedDefaultArg() &&
+ "Default argument is not yet instantiated!");
+
+ Expr *Arg = getInit();
+ if (ExprWithCleanups *E = dyn_cast_or_null<ExprWithCleanups>(Arg))
+ return E->getSubExpr();
+
+ return Arg;
+}
+
+SourceRange ParmVarDecl::getDefaultArgRange() const {
+ if (const Expr *E = getInit())
+ return E->getSourceRange();
+
+ if (hasUninstantiatedDefaultArg())
+ return getUninstantiatedDefaultArg()->getSourceRange();
+
+ return SourceRange();
+}
+
+bool ParmVarDecl::isParameterPack() const {
+ return isa<PackExpansionType>(getType());
+}
+
+void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
+ getASTContext().setParameterIndex(this, parameterIndex);
+ ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
+}
+
+unsigned ParmVarDecl::getParameterIndexLarge() const {
+ return getASTContext().getParameterIndex(this);
+}
+
+//===----------------------------------------------------------------------===//
+// FunctionDecl Implementation
+//===----------------------------------------------------------------------===//
+
+void FunctionDecl::getNameForDiagnostic(
+ raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
+ NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
+ const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
+ if (TemplateArgs)
+ TemplateSpecializationType::PrintTemplateArgumentList(
+ OS, TemplateArgs->data(), TemplateArgs->size(), Policy);
+}
+
+bool FunctionDecl::isVariadic() const {
+ if (const FunctionProtoType *FT = getType()->getAs<FunctionProtoType>())
+ return FT->isVariadic();
+ return false;
+}
+
+bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
+ for (auto I : redecls()) {
+ if (I->Body || I->IsLateTemplateParsed) {
+ Definition = I;
+ return true;
+ }
+ }
+
+ return false;
+}
+
+bool FunctionDecl::hasTrivialBody() const
+{
+ Stmt *S = getBody();
+ if (!S) {
+ // Since we don't have a body for this function, we don't know if it's
+ // trivial or not.
+ return false;
+ }
+
+ if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
+ return true;
+ return false;
+}
+
+bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
+ for (auto I : redecls()) {
+ if (I->IsDeleted || I->IsDefaulted || I->Body || I->IsLateTemplateParsed ||
+ I->hasAttr<AliasAttr>()) {
+ Definition = I->IsDeleted ? I->getCanonicalDecl() : I;
+ return true;
+ }
+ }
+
+ return false;
+}
+
+Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
+ if (!hasBody(Definition))
+ return nullptr;
+
+ if (Definition->Body)
+ return Definition->Body.get(getASTContext().getExternalSource());
+
+ return nullptr;
+}
+
+void FunctionDecl::setBody(Stmt *B) {
+ Body = B;
+ if (B)
+ EndRangeLoc = B->getLocEnd();
+}
+
+void FunctionDecl::setPure(bool P) {
+ IsPure = P;
+ if (P)
+ if (CXXRecordDecl *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
+ Parent->markedVirtualFunctionPure();
+}
+
+template<std::size_t Len>
+static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
+ IdentifierInfo *II = ND->getIdentifier();
+ return II && II->isStr(Str);
+}
+
+bool FunctionDecl::isMain() const {
+ const TranslationUnitDecl *tunit =
+ dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
+ return tunit &&
+ !tunit->getASTContext().getLangOpts().Freestanding &&
+ isNamed(this, "main");
+}
+
+bool FunctionDecl::isMSVCRTEntryPoint() const {
+ const TranslationUnitDecl *TUnit =
+ dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
+ if (!TUnit)
+ return false;
+
+ // Even though we aren't really targeting MSVCRT if we are freestanding,
+ // semantic analysis for these functions remains the same.
+
+ // MSVCRT entry points only exist on MSVCRT targets.
+ if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
+ return false;
+
+ // Nameless functions like constructors cannot be entry points.
+ if (!getIdentifier())
+ return false;
+
+ return llvm::StringSwitch<bool>(getName())
+ .Cases("main", // an ANSI console app
+ "wmain", // a Unicode console App
+ "WinMain", // an ANSI GUI app
+ "wWinMain", // a Unicode GUI app
+ "DllMain", // a DLL
+ true)
+ .Default(false);
+}
+
+bool FunctionDecl::isReservedGlobalPlacementOperator() const {
+ assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
+ assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
+ getDeclName().getCXXOverloadedOperator() == OO_Delete ||
+ getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
+ getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
+
+ if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
+ return false;
+
+ const FunctionProtoType *proto = getType()->castAs<FunctionProtoType>();
+ if (proto->getNumParams() != 2 || proto->isVariadic())
+ return false;
+
+ ASTContext &Context =
+ cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
+ ->getASTContext();
+
+ // The result type and first argument type are constant across all
+ // these operators. The second argument must be exactly void*.
+ return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
+}
+
+bool FunctionDecl::isReplaceableGlobalAllocationFunction() const {
+ if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
+ return false;
+ if (getDeclName().getCXXOverloadedOperator() != OO_New &&
+ getDeclName().getCXXOverloadedOperator() != OO_Delete &&
+ getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
+ getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
+ return false;
+
+ if (isa<CXXRecordDecl>(getDeclContext()))
+ return false;
+
+ // This can only fail for an invalid 'operator new' declaration.
+ if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
+ return false;
+
+ const FunctionProtoType *FPT = getType()->castAs<FunctionProtoType>();
+ if (FPT->getNumParams() == 0 || FPT->getNumParams() > 2 || FPT->isVariadic())
+ return false;
+
+ // If this is a single-parameter function, it must be a replaceable global
+ // allocation or deallocation function.
+ if (FPT->getNumParams() == 1)
+ return true;
+
+ // Otherwise, we're looking for a second parameter whose type is
+ // 'const std::nothrow_t &', or, in C++1y, 'std::size_t'.
+ QualType Ty = FPT->getParamType(1);
+ ASTContext &Ctx = getASTContext();
+ if (Ctx.getLangOpts().SizedDeallocation &&
+ Ctx.hasSameType(Ty, Ctx.getSizeType()))
+ return true;
+ if (!Ty->isReferenceType())
+ return false;
+ Ty = Ty->getPointeeType();
+ if (Ty.getCVRQualifiers() != Qualifiers::Const)
+ return false;
+ const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
+ return RD && isNamed(RD, "nothrow_t") && RD->isInStdNamespace();
+}
+
+LanguageLinkage FunctionDecl::getLanguageLinkage() const {
+ return getDeclLanguageLinkage(*this);
+}
+
+bool FunctionDecl::isExternC() const {
+ return isDeclExternC(*this);
+}
+
+bool FunctionDecl::isInExternCContext() const {
+ return getLexicalDeclContext()->isExternCContext();
+}
+
+bool FunctionDecl::isInExternCXXContext() const {
+ return getLexicalDeclContext()->isExternCXXContext();
+}
+
+bool FunctionDecl::isGlobal() const {
+ if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(this))
+ return Method->isStatic();
+
+ if (getCanonicalDecl()->getStorageClass() == SC_Static)
+ return false;
+
+ for (const DeclContext *DC = getDeclContext();
+ DC->isNamespace();
+ DC = DC->getParent()) {
+ if (const NamespaceDecl *Namespace = cast<NamespaceDecl>(DC)) {
+ if (!Namespace->getDeclName())
+ return false;
+ break;
+ }
+ }
+
+ return true;
+}
+
+bool FunctionDecl::isNoReturn() const {
+ return hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
+ hasAttr<C11NoReturnAttr>() ||
+ getType()->getAs<FunctionType>()->getNoReturnAttr();
+}
+
+void
+FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
+ redeclarable_base::setPreviousDecl(PrevDecl);
+
+ if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
+ FunctionTemplateDecl *PrevFunTmpl
+ = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
+ assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
+ FunTmpl->setPreviousDecl(PrevFunTmpl);
+ }
+
+ if (PrevDecl && PrevDecl->IsInline)
+ IsInline = true;
+}
+
+FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
+
+/// \brief Returns a value indicating whether this function
+/// corresponds to a builtin function.
+///
+/// The function corresponds to a built-in function if it is
+/// declared at translation scope or within an extern "C" block and
+/// its name matches with the name of a builtin. The returned value
+/// will be 0 for functions that do not correspond to a builtin, a
+/// value of type \c Builtin::ID if in the target-independent range
+/// \c [1,Builtin::First), or a target-specific builtin value.
+unsigned FunctionDecl::getBuiltinID() const {
+ if (!getIdentifier())
+ return 0;
+
+ unsigned BuiltinID = getIdentifier()->getBuiltinID();
+ if (!BuiltinID)
+ return 0;
+
+ ASTContext &Context = getASTContext();
+ if (Context.getLangOpts().CPlusPlus) {
+ const LinkageSpecDecl *LinkageDecl = dyn_cast<LinkageSpecDecl>(
+ getFirstDecl()->getDeclContext());
+ // In C++, the first declaration of a builtin is always inside an implicit
+ // extern "C".
+ // FIXME: A recognised library function may not be directly in an extern "C"
+ // declaration, for instance "extern "C" { namespace std { decl } }".
+ if (!LinkageDecl) {
+ if (BuiltinID == Builtin::BI__GetExceptionInfo &&
+ Context.getTargetInfo().getCXXABI().isMicrosoft() &&
+ isInStdNamespace())
+ return Builtin::BI__GetExceptionInfo;
+ return 0;
+ }
+ if (LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c)
+ return 0;
+ }
+
+ // If the function is marked "overloadable", it has a different mangled name
+ // and is not the C library function.
+ if (hasAttr<OverloadableAttr>())
+ return 0;
+
+ if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
+ return BuiltinID;
+
+ // This function has the name of a known C library
+ // function. Determine whether it actually refers to the C library
+ // function or whether it just has the same name.
+
+ // If this is a static function, it's not a builtin.
+ if (getStorageClass() == SC_Static)
+ return 0;
+
+ return BuiltinID;
+}
+
+
+/// getNumParams - Return the number of parameters this function must have
+/// based on its FunctionType. This is the length of the ParamInfo array
+/// after it has been created.
+unsigned FunctionDecl::getNumParams() const {
+ const FunctionProtoType *FPT = getType()->getAs<FunctionProtoType>();
+ return FPT ? FPT->getNumParams() : 0;
+}
+
+void FunctionDecl::setParams(ASTContext &C,
+ ArrayRef<ParmVarDecl *> NewParamInfo) {
+ assert(!ParamInfo && "Already has param info!");
+ assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
+
+ // Zero params -> null pointer.
+ if (!NewParamInfo.empty()) {
+ ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
+ std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
+ }
+}
+
+void FunctionDecl::setDeclsInPrototypeScope(ArrayRef<NamedDecl *> NewDecls) {
+ assert(DeclsInPrototypeScope.empty() && "Already has prototype decls!");
+
+ if (!NewDecls.empty()) {
+ NamedDecl **A = new (getASTContext()) NamedDecl*[NewDecls.size()];
+ std::copy(NewDecls.begin(), NewDecls.end(), A);
+ DeclsInPrototypeScope = llvm::makeArrayRef(A, NewDecls.size());
+ // Move declarations introduced in prototype to the function context.
+ for (auto I : NewDecls) {
+ DeclContext *DC = I->getDeclContext();
+ // Forward-declared reference to an enumeration is not added to
+ // declaration scope, so skip declaration that is absent from its
+ // declaration contexts.
+ if (DC->containsDecl(I)) {
+ DC->removeDecl(I);
+ I->setDeclContext(this);
+ addDecl(I);
+ }
+ }
+ }
+}
+
+/// getMinRequiredArguments - Returns the minimum number of arguments
+/// needed to call this function. This may be fewer than the number of
+/// function parameters, if some of the parameters have default
+/// arguments (in C++) or are parameter packs (C++11).
+unsigned FunctionDecl::getMinRequiredArguments() const {
+ if (!getASTContext().getLangOpts().CPlusPlus)
+ return getNumParams();
+
+ unsigned NumRequiredArgs = 0;
+ for (auto *Param : params())
+ if (!Param->isParameterPack() && !Param->hasDefaultArg())
+ ++NumRequiredArgs;
+ return NumRequiredArgs;
+}
+
+/// \brief The combination of the extern and inline keywords under MSVC forces
+/// the function to be required.
+///
+/// Note: This function assumes that we will only get called when isInlined()
+/// would return true for this FunctionDecl.
+bool FunctionDecl::isMSExternInline() const {
+ assert(isInlined() && "expected to get called on an inlined function!");
+
+ const ASTContext &Context = getASTContext();
+ if (!Context.getLangOpts().MSVCCompat && !hasAttr<DLLExportAttr>())
+ return false;
+
+ for (const FunctionDecl *FD = getMostRecentDecl(); FD;
+ FD = FD->getPreviousDecl())
+ if (FD->getStorageClass() == SC_Extern)
+ return true;
+
+ return false;
+}
+
+static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
+ if (Redecl->getStorageClass() != SC_Extern)
+ return false;
+
+ for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
+ FD = FD->getPreviousDecl())
+ if (FD->getStorageClass() == SC_Extern)
+ return false;
+
+ return true;
+}
+
+static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
+ // Only consider file-scope declarations in this test.
+ if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
+ return false;
+
+ // Only consider explicit declarations; the presence of a builtin for a
+ // libcall shouldn't affect whether a definition is externally visible.
+ if (Redecl->isImplicit())
+ return false;
+
+ if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
+ return true; // Not an inline definition
+
+ return false;
+}
+
+/// \brief For a function declaration in C or C++, determine whether this
+/// declaration causes the definition to be externally visible.
+///
+/// For instance, this determines if adding the current declaration to the set
+/// of redeclarations of the given functions causes
+/// isInlineDefinitionExternallyVisible to change from false to true.
+bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
+ assert(!doesThisDeclarationHaveABody() &&
+ "Must have a declaration without a body.");
+
+ ASTContext &Context = getASTContext();
+
+ if (Context.getLangOpts().MSVCCompat) {
+ const FunctionDecl *Definition;
+ if (hasBody(Definition) && Definition->isInlined() &&
+ redeclForcesDefMSVC(this))
+ return true;
+ }
+
+ if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
+ // With GNU inlining, a declaration with 'inline' but not 'extern', forces
+ // an externally visible definition.
+ //
+ // FIXME: What happens if gnu_inline gets added on after the first
+ // declaration?
+ if (!isInlineSpecified() || getStorageClass() == SC_Extern)
+ return false;
+
+ const FunctionDecl *Prev = this;
+ bool FoundBody = false;
+ while ((Prev = Prev->getPreviousDecl())) {
+ FoundBody |= Prev->Body.isValid();
+
+ if (Prev->Body) {
+ // If it's not the case that both 'inline' and 'extern' are
+ // specified on the definition, then it is always externally visible.
+ if (!Prev->isInlineSpecified() ||
+ Prev->getStorageClass() != SC_Extern)
+ return false;
+ } else if (Prev->isInlineSpecified() &&
+ Prev->getStorageClass() != SC_Extern) {
+ return false;
+ }
+ }
+ return FoundBody;
+ }
+
+ if (Context.getLangOpts().CPlusPlus)
+ return false;
+
+ // C99 6.7.4p6:
+ // [...] If all of the file scope declarations for a function in a
+ // translation unit include the inline function specifier without extern,
+ // then the definition in that translation unit is an inline definition.
+ if (isInlineSpecified() && getStorageClass() != SC_Extern)
+ return false;
+ const FunctionDecl *Prev = this;
+ bool FoundBody = false;
+ while ((Prev = Prev->getPreviousDecl())) {
+ FoundBody |= Prev->Body.isValid();
+ if (RedeclForcesDefC99(Prev))
+ return false;
+ }
+ return FoundBody;
+}
+
+SourceRange FunctionDecl::getReturnTypeSourceRange() const {
+ const TypeSourceInfo *TSI = getTypeSourceInfo();
+ if (!TSI)
+ return SourceRange();
+ FunctionTypeLoc FTL =
+ TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>();
+ if (!FTL)
+ return SourceRange();
+
+ // Skip self-referential return types.
+ const SourceManager &SM = getASTContext().getSourceManager();
+ SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
+ SourceLocation Boundary = getNameInfo().getLocStart();
+ if (RTRange.isInvalid() || Boundary.isInvalid() ||
+ !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
+ return SourceRange();
+
+ return RTRange;
+}
+
+bool FunctionDecl::hasUnusedResultAttr() const {
+ QualType RetType = getReturnType();
+ if (RetType->isRecordType()) {
+ const CXXRecordDecl *Ret = RetType->getAsCXXRecordDecl();
+ const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(this);
+ if (Ret && Ret->hasAttr<WarnUnusedResultAttr>() &&
+ !(MD && MD->getCorrespondingMethodInClass(Ret, true)))
+ return true;
+ }
+ return hasAttr<WarnUnusedResultAttr>();
+}
+
+/// \brief For an inline function definition in C, or for a gnu_inline function
+/// in C++, determine whether the definition will be externally visible.
+///
+/// Inline function definitions are always available for inlining optimizations.
+/// However, depending on the language dialect, declaration specifiers, and
+/// attributes, the definition of an inline function may or may not be
+/// "externally" visible to other translation units in the program.
+///
+/// In C99, inline definitions are not externally visible by default. However,
+/// if even one of the global-scope declarations is marked "extern inline", the
+/// inline definition becomes externally visible (C99 6.7.4p6).
+///
+/// In GNU89 mode, or if the gnu_inline attribute is attached to the function
+/// definition, we use the GNU semantics for inline, which are nearly the
+/// opposite of C99 semantics. In particular, "inline" by itself will create
+/// an externally visible symbol, but "extern inline" will not create an
+/// externally visible symbol.
+bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
+ assert(doesThisDeclarationHaveABody() && "Must have the function definition");
+ assert(isInlined() && "Function must be inline");
+ ASTContext &Context = getASTContext();
+
+ if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
+ // Note: If you change the logic here, please change
+ // doesDeclarationForceExternallyVisibleDefinition as well.
+ //
+ // If it's not the case that both 'inline' and 'extern' are
+ // specified on the definition, then this inline definition is
+ // externally visible.
+ if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
+ return true;
+
+ // If any declaration is 'inline' but not 'extern', then this definition
+ // is externally visible.
+ for (auto Redecl : redecls()) {
+ if (Redecl->isInlineSpecified() &&
+ Redecl->getStorageClass() != SC_Extern)
+ return true;
+ }
+
+ return false;
+ }
+
+ // The rest of this function is C-only.
+ assert(!Context.getLangOpts().CPlusPlus &&
+ "should not use C inline rules in C++");
+
+ // C99 6.7.4p6:
+ // [...] If all of the file scope declarations for a function in a
+ // translation unit include the inline function specifier without extern,
+ // then the definition in that translation unit is an inline definition.
+ for (auto Redecl : redecls()) {
+ if (RedeclForcesDefC99(Redecl))
+ return true;
+ }
+
+ // C99 6.7.4p6:
+ // An inline definition does not provide an external definition for the
+ // function, and does not forbid an external definition in another
+ // translation unit.
+ return false;
+}
+
+/// getOverloadedOperator - Which C++ overloaded operator this
+/// function represents, if any.
+OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
+ if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
+ return getDeclName().getCXXOverloadedOperator();
+ else
+ return OO_None;
+}
+
+/// getLiteralIdentifier - The literal suffix identifier this function
+/// represents, if any.
+const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
+ if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
+ return getDeclName().getCXXLiteralIdentifier();
+ else
+ return nullptr;
+}
+
+FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
+ if (TemplateOrSpecialization.isNull())
+ return TK_NonTemplate;
+ if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
+ return TK_FunctionTemplate;
+ if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
+ return TK_MemberSpecialization;
+ if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
+ return TK_FunctionTemplateSpecialization;
+ if (TemplateOrSpecialization.is
+ <DependentFunctionTemplateSpecializationInfo*>())
+ return TK_DependentFunctionTemplateSpecialization;
+
+ llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
+}
+
+FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
+ if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
+ return cast<FunctionDecl>(Info->getInstantiatedFrom());
+
+ return nullptr;
+}
+
+void
+FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
+ FunctionDecl *FD,
+ TemplateSpecializationKind TSK) {
+ assert(TemplateOrSpecialization.isNull() &&
+ "Member function is already a specialization");
+ MemberSpecializationInfo *Info
+ = new (C) MemberSpecializationInfo(FD, TSK);
+ TemplateOrSpecialization = Info;
+}
+
+bool FunctionDecl::isImplicitlyInstantiable() const {
+ // If the function is invalid, it can't be implicitly instantiated.
+ if (isInvalidDecl())
+ return false;
+
+ switch (getTemplateSpecializationKind()) {
+ case TSK_Undeclared:
+ case TSK_ExplicitInstantiationDefinition:
+ return false;
+
+ case TSK_ImplicitInstantiation:
+ return true;
+
+ // It is possible to instantiate TSK_ExplicitSpecialization kind
+ // if the FunctionDecl has a class scope specialization pattern.
+ case TSK_ExplicitSpecialization:
+ return getClassScopeSpecializationPattern() != nullptr;
+
+ case TSK_ExplicitInstantiationDeclaration:
+ // Handled below.
+ break;
+ }
+
+ // Find the actual template from which we will instantiate.
+ const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
+ bool HasPattern = false;
+ if (PatternDecl)
+ HasPattern = PatternDecl->hasBody(PatternDecl);
+
+ // C++0x [temp.explicit]p9:
+ // Except for inline functions, other explicit instantiation declarations
+ // have the effect of suppressing the implicit instantiation of the entity
+ // to which they refer.
+ if (!HasPattern || !PatternDecl)
+ return true;
+
+ return PatternDecl->isInlined();
+}
+
+bool FunctionDecl::isTemplateInstantiation() const {
+ switch (getTemplateSpecializationKind()) {
+ case TSK_Undeclared:
+ case TSK_ExplicitSpecialization:
+ return false;
+ case TSK_ImplicitInstantiation:
+ case TSK_ExplicitInstantiationDeclaration:
+ case TSK_ExplicitInstantiationDefinition:
+ return true;
+ }
+ llvm_unreachable("All TSK values handled.");
+}
+
+FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const {
+ // Handle class scope explicit specialization special case.
+ if (getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
+ return getClassScopeSpecializationPattern();
+
+ // If this is a generic lambda call operator specialization, its
+ // instantiation pattern is always its primary template's pattern
+ // even if its primary template was instantiated from another
+ // member template (which happens with nested generic lambdas).
+ // Since a lambda's call operator's body is transformed eagerly,
+ // we don't have to go hunting for a prototype definition template
+ // (i.e. instantiated-from-member-template) to use as an instantiation
+ // pattern.
+
+ if (isGenericLambdaCallOperatorSpecialization(
+ dyn_cast<CXXMethodDecl>(this))) {
+ assert(getPrimaryTemplate() && "A generic lambda specialization must be "
+ "generated from a primary call operator "
+ "template");
+ assert(getPrimaryTemplate()->getTemplatedDecl()->getBody() &&
+ "A generic lambda call operator template must always have a body - "
+ "even if instantiated from a prototype (i.e. as written) member "
+ "template");
+ return getPrimaryTemplate()->getTemplatedDecl();
+ }
+
+ if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
+ while (Primary->getInstantiatedFromMemberTemplate()) {
+ // If we have hit a point where the user provided a specialization of
+ // this template, we're done looking.
+ if (Primary->isMemberSpecialization())
+ break;
+ Primary = Primary->getInstantiatedFromMemberTemplate();
+ }
+
+ return Primary->getTemplatedDecl();
+ }
+
+ return getInstantiatedFromMemberFunction();
+}
+
+FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
+ if (FunctionTemplateSpecializationInfo *Info
+ = TemplateOrSpecialization
+ .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
+ return Info->Template.getPointer();
+ }
+ return nullptr;
+}
+
+FunctionDecl *FunctionDecl::getClassScopeSpecializationPattern() const {
+ return getASTContext().getClassScopeSpecializationPattern(this);
+}
+
+const TemplateArgumentList *
+FunctionDecl::getTemplateSpecializationArgs() const {
+ if (FunctionTemplateSpecializationInfo *Info
+ = TemplateOrSpecialization
+ .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
+ return Info->TemplateArguments;
+ }
+ return nullptr;
+}
+
+const ASTTemplateArgumentListInfo *
+FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
+ if (FunctionTemplateSpecializationInfo *Info
+ = TemplateOrSpecialization
+ .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
+ return Info->TemplateArgumentsAsWritten;
+ }
+ return nullptr;
+}
+
+void
+FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
+ FunctionTemplateDecl *Template,
+ const TemplateArgumentList *TemplateArgs,
+ void *InsertPos,
+ TemplateSpecializationKind TSK,
+ const TemplateArgumentListInfo *TemplateArgsAsWritten,
+ SourceLocation PointOfInstantiation) {
+ assert(TSK != TSK_Undeclared &&
+ "Must specify the type of function template specialization");
+ FunctionTemplateSpecializationInfo *Info
+ = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
+ if (!Info)
+ Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK,
+ TemplateArgs,
+ TemplateArgsAsWritten,
+ PointOfInstantiation);
+ TemplateOrSpecialization = Info;
+ Template->addSpecialization(Info, InsertPos);
+}
+
+void
+FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
+ const UnresolvedSetImpl &Templates,
+ const TemplateArgumentListInfo &TemplateArgs) {
+ assert(TemplateOrSpecialization.isNull());
+ size_t Size = sizeof(DependentFunctionTemplateSpecializationInfo);
+ Size += Templates.size() * sizeof(FunctionTemplateDecl*);
+ Size += TemplateArgs.size() * sizeof(TemplateArgumentLoc);
+ void *Buffer = Context.Allocate(Size);
+ DependentFunctionTemplateSpecializationInfo *Info =
+ new (Buffer) DependentFunctionTemplateSpecializationInfo(Templates,
+ TemplateArgs);
+ TemplateOrSpecialization = Info;
+}
+
+DependentFunctionTemplateSpecializationInfo::
+DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
+ const TemplateArgumentListInfo &TArgs)
+ : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
+ static_assert(sizeof(*this) % llvm::AlignOf<void *>::Alignment == 0,
+ "Trailing data is unaligned!");
+
+ d.NumTemplates = Ts.size();
+ d.NumArgs = TArgs.size();
+
+ FunctionTemplateDecl **TsArray =
+ const_cast<FunctionTemplateDecl**>(getTemplates());
+ for (unsigned I = 0, E = Ts.size(); I != E; ++I)
+ TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
+
+ TemplateArgumentLoc *ArgsArray =
+ const_cast<TemplateArgumentLoc*>(getTemplateArgs());
+ for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
+ new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
+}
+
+TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
+ // For a function template specialization, query the specialization
+ // information object.
+ FunctionTemplateSpecializationInfo *FTSInfo
+ = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
+ if (FTSInfo)
+ return FTSInfo->getTemplateSpecializationKind();
+
+ MemberSpecializationInfo *MSInfo
+ = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
+ if (MSInfo)
+ return MSInfo->getTemplateSpecializationKind();
+
+ return TSK_Undeclared;
+}
+
+void
+FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
+ SourceLocation PointOfInstantiation) {
+ if (FunctionTemplateSpecializationInfo *FTSInfo
+ = TemplateOrSpecialization.dyn_cast<
+ FunctionTemplateSpecializationInfo*>()) {
+ FTSInfo->setTemplateSpecializationKind(TSK);
+ if (TSK != TSK_ExplicitSpecialization &&
+ PointOfInstantiation.isValid() &&
+ FTSInfo->getPointOfInstantiation().isInvalid())
+ FTSInfo->setPointOfInstantiation(PointOfInstantiation);
+ } else if (MemberSpecializationInfo *MSInfo
+ = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
+ MSInfo->setTemplateSpecializationKind(TSK);
+ if (TSK != TSK_ExplicitSpecialization &&
+ PointOfInstantiation.isValid() &&
+ MSInfo->getPointOfInstantiation().isInvalid())
+ MSInfo->setPointOfInstantiation(PointOfInstantiation);
+ } else
+ llvm_unreachable("Function cannot have a template specialization kind");
+}
+
+SourceLocation FunctionDecl::getPointOfInstantiation() const {
+ if (FunctionTemplateSpecializationInfo *FTSInfo
+ = TemplateOrSpecialization.dyn_cast<
+ FunctionTemplateSpecializationInfo*>())
+ return FTSInfo->getPointOfInstantiation();
+ else if (MemberSpecializationInfo *MSInfo
+ = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
+ return MSInfo->getPointOfInstantiation();
+
+ return SourceLocation();
+}
+
+bool FunctionDecl::isOutOfLine() const {
+ if (Decl::isOutOfLine())
+ return true;
+
+ // If this function was instantiated from a member function of a
+ // class template, check whether that member function was defined out-of-line.
+ if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
+ const FunctionDecl *Definition;
+ if (FD->hasBody(Definition))
+ return Definition->isOutOfLine();
+ }
+
+ // If this function was instantiated from a function template,
+ // check whether that function template was defined out-of-line.
+ if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
+ const FunctionDecl *Definition;
+ if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
+ return Definition->isOutOfLine();
+ }
+
+ return false;
+}
+
+SourceRange FunctionDecl::getSourceRange() const {
+ return SourceRange(getOuterLocStart(), EndRangeLoc);
+}
+
+unsigned FunctionDecl::getMemoryFunctionKind() const {
+ IdentifierInfo *FnInfo = getIdentifier();
+
+ if (!FnInfo)
+ return 0;
+
+ // Builtin handling.
+ switch (getBuiltinID()) {
+ case Builtin::BI__builtin_memset:
+ case Builtin::BI__builtin___memset_chk:
+ case Builtin::BImemset:
+ return Builtin::BImemset;
+
+ case Builtin::BI__builtin_memcpy:
+ case Builtin::BI__builtin___memcpy_chk:
+ case Builtin::BImemcpy:
+ return Builtin::BImemcpy;
+
+ case Builtin::BI__builtin_memmove:
+ case Builtin::BI__builtin___memmove_chk:
+ case Builtin::BImemmove:
+ return Builtin::BImemmove;
+
+ case Builtin::BIstrlcpy:
+ case Builtin::BI__builtin___strlcpy_chk:
+ return Builtin::BIstrlcpy;
+
+ case Builtin::BIstrlcat:
+ case Builtin::BI__builtin___strlcat_chk:
+ return Builtin::BIstrlcat;
+
+ case Builtin::BI__builtin_memcmp:
+ case Builtin::BImemcmp:
+ return Builtin::BImemcmp;
+
+ case Builtin::BI__builtin_strncpy:
+ case Builtin::BI__builtin___strncpy_chk:
+ case Builtin::BIstrncpy:
+ return Builtin::BIstrncpy;
+
+ case Builtin::BI__builtin_strncmp:
+ case Builtin::BIstrncmp:
+ return Builtin::BIstrncmp;
+
+ case Builtin::BI__builtin_strncasecmp:
+ case Builtin::BIstrncasecmp:
+ return Builtin::BIstrncasecmp;
+
+ case Builtin::BI__builtin_strncat:
+ case Builtin::BI__builtin___strncat_chk:
+ case Builtin::BIstrncat:
+ return Builtin::BIstrncat;
+
+ case Builtin::BI__builtin_strndup:
+ case Builtin::BIstrndup:
+ return Builtin::BIstrndup;
+
+ case Builtin::BI__builtin_strlen:
+ case Builtin::BIstrlen:
+ return Builtin::BIstrlen;
+
+ default:
+ if (isExternC()) {
+ if (FnInfo->isStr("memset"))
+ return Builtin::BImemset;
+ else if (FnInfo->isStr("memcpy"))
+ return Builtin::BImemcpy;
+ else if (FnInfo->isStr("memmove"))
+ return Builtin::BImemmove;
+ else if (FnInfo->isStr("memcmp"))
+ return Builtin::BImemcmp;
+ else if (FnInfo->isStr("strncpy"))
+ return Builtin::BIstrncpy;
+ else if (FnInfo->isStr("strncmp"))
+ return Builtin::BIstrncmp;
+ else if (FnInfo->isStr("strncasecmp"))
+ return Builtin::BIstrncasecmp;
+ else if (FnInfo->isStr("strncat"))
+ return Builtin::BIstrncat;
+ else if (FnInfo->isStr("strndup"))
+ return Builtin::BIstrndup;
+ else if (FnInfo->isStr("strlen"))
+ return Builtin::BIstrlen;
+ }
+ break;
+ }
+ return 0;
+}
+
+//===----------------------------------------------------------------------===//
+// FieldDecl Implementation
+//===----------------------------------------------------------------------===//
+
+FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
+ SourceLocation StartLoc, SourceLocation IdLoc,
+ IdentifierInfo *Id, QualType T,
+ TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
+ InClassInitStyle InitStyle) {
+ return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
+ BW, Mutable, InitStyle);
+}
+
+FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
+ SourceLocation(), nullptr, QualType(), nullptr,
+ nullptr, false, ICIS_NoInit);
+}
+
+bool FieldDecl::isAnonymousStructOrUnion() const {
+ if (!isImplicit() || getDeclName())
+ return false;
+
+ if (const RecordType *Record = getType()->getAs<RecordType>())
+ return Record->getDecl()->isAnonymousStructOrUnion();
+
+ return false;
+}
+
+unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
+ assert(isBitField() && "not a bitfield");
+ Expr *BitWidth = static_cast<Expr *>(InitStorage.getPointer());
+ return BitWidth->EvaluateKnownConstInt(Ctx).getZExtValue();
+}
+
+unsigned FieldDecl::getFieldIndex() const {
+ const FieldDecl *Canonical = getCanonicalDecl();
+ if (Canonical != this)
+ return Canonical->getFieldIndex();
+
+ if (CachedFieldIndex) return CachedFieldIndex - 1;
+
+ unsigned Index = 0;
+ const RecordDecl *RD = getParent();
+
+ for (auto *Field : RD->fields()) {
+ Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
+ ++Index;
+ }
+
+ assert(CachedFieldIndex && "failed to find field in parent");
+ return CachedFieldIndex - 1;
+}
+
+SourceRange FieldDecl::getSourceRange() const {
+ switch (InitStorage.getInt()) {
+ // All three of these cases store an optional Expr*.
+ case ISK_BitWidthOrNothing:
+ case ISK_InClassCopyInit:
+ case ISK_InClassListInit:
+ if (const Expr *E = static_cast<const Expr *>(InitStorage.getPointer()))
+ return SourceRange(getInnerLocStart(), E->getLocEnd());
+ // FALLTHROUGH
+
+ case ISK_CapturedVLAType:
+ return DeclaratorDecl::getSourceRange();
+ }
+ llvm_unreachable("bad init storage kind");
+}
+
+void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
+ assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
+ "capturing type in non-lambda or captured record.");
+ assert(InitStorage.getInt() == ISK_BitWidthOrNothing &&
+ InitStorage.getPointer() == nullptr &&
+ "bit width, initializer or captured type already set");
+ InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
+ ISK_CapturedVLAType);
+}
+
+//===----------------------------------------------------------------------===//
+// TagDecl Implementation
+//===----------------------------------------------------------------------===//
+
+SourceLocation TagDecl::getOuterLocStart() const {
+ return getTemplateOrInnerLocStart(this);
+}
+
+SourceRange TagDecl::getSourceRange() const {
+ SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
+ return SourceRange(getOuterLocStart(), E);
+}
+
+TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
+
+void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
+ NamedDeclOrQualifier = TDD;
+ if (const Type *T = getTypeForDecl()) {
+ (void)T;
+ assert(T->isLinkageValid());
+ }
+ assert(isLinkageValid());
+}
+
+void TagDecl::startDefinition() {
+ IsBeingDefined = true;
+
+ if (CXXRecordDecl *D = dyn_cast<CXXRecordDecl>(this)) {
+ struct CXXRecordDecl::DefinitionData *Data =
+ new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
+ for (auto I : redecls())
+ cast<CXXRecordDecl>(I)->DefinitionData = Data;
+ }
+}
+
+void TagDecl::completeDefinition() {
+ assert((!isa<CXXRecordDecl>(this) ||
+ cast<CXXRecordDecl>(this)->hasDefinition()) &&
+ "definition completed but not started");
+
+ IsCompleteDefinition = true;
+ IsBeingDefined = false;
+
+ if (ASTMutationListener *L = getASTMutationListener())
+ L->CompletedTagDefinition(this);
+}
+
+TagDecl *TagDecl::getDefinition() const {
+ if (isCompleteDefinition())
+ return const_cast<TagDecl *>(this);
+
+ // If it's possible for us to have an out-of-date definition, check now.
+ if (MayHaveOutOfDateDef) {
+ if (IdentifierInfo *II = getIdentifier()) {
+ if (II->isOutOfDate()) {
+ updateOutOfDate(*II);
+ }
+ }
+ }
+
+ if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(this))
+ return CXXRD->getDefinition();
+
+ for (auto R : redecls())
+ if (R->isCompleteDefinition())
+ return R;
+
+ return nullptr;
+}
+
+void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
+ if (QualifierLoc) {
+ // Make sure the extended qualifier info is allocated.
+ if (!hasExtInfo())
+ NamedDeclOrQualifier = new (getASTContext()) ExtInfo;
+ // Set qualifier info.
+ getExtInfo()->QualifierLoc = QualifierLoc;
+ } else {
+ // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
+ if (hasExtInfo()) {
+ if (getExtInfo()->NumTemplParamLists == 0) {
+ getASTContext().Deallocate(getExtInfo());
+ NamedDeclOrQualifier = (TypedefNameDecl*)nullptr;
+ }
+ else
+ getExtInfo()->QualifierLoc = QualifierLoc;
+ }
+ }
+}
+
+void TagDecl::setTemplateParameterListsInfo(ASTContext &Context,
+ unsigned NumTPLists,
+ TemplateParameterList **TPLists) {
+ assert(NumTPLists > 0);
+ // Make sure the extended decl info is allocated.
+ if (!hasExtInfo())
+ // Allocate external info struct.
+ NamedDeclOrQualifier = new (getASTContext()) ExtInfo;
+ // Set the template parameter lists info.
+ getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
+}
+
+//===----------------------------------------------------------------------===//
+// EnumDecl Implementation
+//===----------------------------------------------------------------------===//
+
+void EnumDecl::anchor() { }
+
+EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation StartLoc, SourceLocation IdLoc,
+ IdentifierInfo *Id,
+ EnumDecl *PrevDecl, bool IsScoped,
+ bool IsScopedUsingClassTag, bool IsFixed) {
+ EnumDecl *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
+ IsScoped, IsScopedUsingClassTag,
+ IsFixed);
+ Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
+ C.getTypeDeclType(Enum, PrevDecl);
+ return Enum;
+}
+
+EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ EnumDecl *Enum =
+ new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
+ nullptr, nullptr, false, false, false);
+ Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
+ return Enum;
+}
+
+SourceRange EnumDecl::getIntegerTypeRange() const {
+ if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
+ return TI->getTypeLoc().getSourceRange();
+ return SourceRange();
+}
+
+void EnumDecl::completeDefinition(QualType NewType,
+ QualType NewPromotionType,
+ unsigned NumPositiveBits,
+ unsigned NumNegativeBits) {
+ assert(!isCompleteDefinition() && "Cannot redefine enums!");
+ if (!IntegerType)
+ IntegerType = NewType.getTypePtr();
+ PromotionType = NewPromotionType;
+ setNumPositiveBits(NumPositiveBits);
+ setNumNegativeBits(NumNegativeBits);
+ TagDecl::completeDefinition();
+}
+
+TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
+ if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
+ return MSI->getTemplateSpecializationKind();
+
+ return TSK_Undeclared;
+}
+
+void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
+ SourceLocation PointOfInstantiation) {
+ MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
+ assert(MSI && "Not an instantiated member enumeration?");
+ MSI->setTemplateSpecializationKind(TSK);
+ if (TSK != TSK_ExplicitSpecialization &&
+ PointOfInstantiation.isValid() &&
+ MSI->getPointOfInstantiation().isInvalid())
+ MSI->setPointOfInstantiation(PointOfInstantiation);
+}
+
+EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
+ if (SpecializationInfo)
+ return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
+
+ return nullptr;
+}
+
+void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
+ TemplateSpecializationKind TSK) {
+ assert(!SpecializationInfo && "Member enum is already a specialization");
+ SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
+}
+
+//===----------------------------------------------------------------------===//
+// RecordDecl Implementation
+//===----------------------------------------------------------------------===//
+
+RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
+ DeclContext *DC, SourceLocation StartLoc,
+ SourceLocation IdLoc, IdentifierInfo *Id,
+ RecordDecl *PrevDecl)
+ : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
+ HasFlexibleArrayMember = false;
+ AnonymousStructOrUnion = false;
+ HasObjectMember = false;
+ HasVolatileMember = false;
+ LoadedFieldsFromExternalStorage = false;
+ assert(classof(static_cast<Decl*>(this)) && "Invalid Kind!");
+}
+
+RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
+ SourceLocation StartLoc, SourceLocation IdLoc,
+ IdentifierInfo *Id, RecordDecl* PrevDecl) {
+ RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
+ StartLoc, IdLoc, Id, PrevDecl);
+ R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
+
+ C.getTypeDeclType(R, PrevDecl);
+ return R;
+}
+
+RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
+ RecordDecl *R =
+ new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
+ SourceLocation(), nullptr, nullptr);
+ R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
+ return R;
+}
+
+bool RecordDecl::isInjectedClassName() const {
+ return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
+ cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
+}
+
+bool RecordDecl::isLambda() const {
+ if (auto RD = dyn_cast<CXXRecordDecl>(this))
+ return RD->isLambda();
+ return false;
+}
+
+bool RecordDecl::isCapturedRecord() const {
+ return hasAttr<CapturedRecordAttr>();
+}
+
+void RecordDecl::setCapturedRecord() {
+ addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
+}
+
+RecordDecl::field_iterator RecordDecl::field_begin() const {
+ if (hasExternalLexicalStorage() && !LoadedFieldsFromExternalStorage)
+ LoadFieldsFromExternalStorage();
+
+ return field_iterator(decl_iterator(FirstDecl));
+}
+
+/// completeDefinition - Notes that the definition of this type is now
+/// complete.
+void RecordDecl::completeDefinition() {
+ assert(!isCompleteDefinition() && "Cannot redefine record!");
+ TagDecl::completeDefinition();
+}
+
+/// isMsStruct - Get whether or not this record uses ms_struct layout.
+/// This which can be turned on with an attribute, pragma, or the
+/// -mms-bitfields command-line option.
+bool RecordDecl::isMsStruct(const ASTContext &C) const {
+ return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
+}
+
+static bool isFieldOrIndirectField(Decl::Kind K) {
+ return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
+}
+
+void RecordDecl::LoadFieldsFromExternalStorage() const {
+ ExternalASTSource *Source = getASTContext().getExternalSource();
+ assert(hasExternalLexicalStorage() && Source && "No external storage?");
+
+ // Notify that we have a RecordDecl doing some initialization.
+ ExternalASTSource::Deserializing TheFields(Source);
+
+ SmallVector<Decl*, 64> Decls;
+ LoadedFieldsFromExternalStorage = true;
+ switch (Source->FindExternalLexicalDecls(this, isFieldOrIndirectField,
+ Decls)) {
+ case ELR_Success:
+ break;
+
+ case ELR_AlreadyLoaded:
+ case ELR_Failure:
+ return;
+ }
+
+#ifndef NDEBUG
+ // Check that all decls we got were FieldDecls.
+ for (unsigned i=0, e=Decls.size(); i != e; ++i)
+ assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
+#endif
+
+ if (Decls.empty())
+ return;
+
+ std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
+ /*FieldsAlreadyLoaded=*/false);
+}
+
+bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
+ ASTContext &Context = getASTContext();
+ if (!Context.getLangOpts().Sanitize.has(SanitizerKind::Address) ||
+ !Context.getLangOpts().SanitizeAddressFieldPadding)
+ return false;
+ const auto &Blacklist = Context.getSanitizerBlacklist();
+ const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(this);
+ // We may be able to relax some of these requirements.
+ int ReasonToReject = -1;
+ if (!CXXRD || CXXRD->isExternCContext())
+ ReasonToReject = 0; // is not C++.
+ else if (CXXRD->hasAttr<PackedAttr>())
+ ReasonToReject = 1; // is packed.
+ else if (CXXRD->isUnion())
+ ReasonToReject = 2; // is a union.
+ else if (CXXRD->isTriviallyCopyable())
+ ReasonToReject = 3; // is trivially copyable.
+ else if (CXXRD->hasTrivialDestructor())
+ ReasonToReject = 4; // has trivial destructor.
+ else if (CXXRD->isStandardLayout())
+ ReasonToReject = 5; // is standard layout.
+ else if (Blacklist.isBlacklistedLocation(getLocation(), "field-padding"))
+ ReasonToReject = 6; // is in a blacklisted file.
+ else if (Blacklist.isBlacklistedType(getQualifiedNameAsString(),
+ "field-padding"))
+ ReasonToReject = 7; // is blacklisted.
+
+ if (EmitRemark) {
+ if (ReasonToReject >= 0)
+ Context.getDiagnostics().Report(
+ getLocation(),
+ diag::remark_sanitize_address_insert_extra_padding_rejected)
+ << getQualifiedNameAsString() << ReasonToReject;
+ else
+ Context.getDiagnostics().Report(
+ getLocation(),
+ diag::remark_sanitize_address_insert_extra_padding_accepted)
+ << getQualifiedNameAsString();
+ }
+ return ReasonToReject < 0;
+}
+
+const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
+ for (const auto *I : fields()) {
+ if (I->getIdentifier())
+ return I;
+
+ if (const RecordType *RT = I->getType()->getAs<RecordType>())
+ if (const FieldDecl *NamedDataMember =
+ RT->getDecl()->findFirstNamedDataMember())
+ return NamedDataMember;
+ }
+
+ // We didn't find a named data member.
+ return nullptr;
+}
+
+
+//===----------------------------------------------------------------------===//
+// BlockDecl Implementation
+//===----------------------------------------------------------------------===//
+
+void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
+ assert(!ParamInfo && "Already has param info!");
+
+ // Zero params -> null pointer.
+ if (!NewParamInfo.empty()) {
+ NumParams = NewParamInfo.size();
+ ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
+ std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
+ }
+}
+
+void BlockDecl::setCaptures(ASTContext &Context,
+ const Capture *begin,
+ const Capture *end,
+ bool capturesCXXThis) {
+ CapturesCXXThis = capturesCXXThis;
+
+ if (begin == end) {
+ NumCaptures = 0;
+ Captures = nullptr;
+ return;
+ }
+
+ NumCaptures = end - begin;
+
+ // Avoid new Capture[] because we don't want to provide a default
+ // constructor.
+ size_t allocationSize = NumCaptures * sizeof(Capture);
+ void *buffer = Context.Allocate(allocationSize, /*alignment*/sizeof(void*));
+ memcpy(buffer, begin, allocationSize);
+ Captures = static_cast<Capture*>(buffer);
+}
+
+bool BlockDecl::capturesVariable(const VarDecl *variable) const {
+ for (const auto &I : captures())
+ // Only auto vars can be captured, so no redeclaration worries.
+ if (I.getVariable() == variable)
+ return true;
+
+ return false;
+}
+
+SourceRange BlockDecl::getSourceRange() const {
+ return SourceRange(getLocation(), Body? Body->getLocEnd() : getLocation());
+}
+
+//===----------------------------------------------------------------------===//
+// Other Decl Allocation/Deallocation Method Implementations
+//===----------------------------------------------------------------------===//
+
+void TranslationUnitDecl::anchor() { }
+
+TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
+ return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
+}
+
+void ExternCContextDecl::anchor() { }
+
+ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
+ TranslationUnitDecl *DC) {
+ return new (C, DC) ExternCContextDecl(DC);
+}
+
+void LabelDecl::anchor() { }
+
+LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation IdentL, IdentifierInfo *II) {
+ return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
+}
+
+LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation IdentL, IdentifierInfo *II,
+ SourceLocation GnuLabelL) {
+ assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
+ return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
+}
+
+LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
+ SourceLocation());
+}
+
+void LabelDecl::setMSAsmLabel(StringRef Name) {
+ char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
+ memcpy(Buffer, Name.data(), Name.size());
+ Buffer[Name.size()] = '\0';
+ MSAsmName = Buffer;
+}
+
+void ValueDecl::anchor() { }
+
+bool ValueDecl::isWeak() const {
+ for (const auto *I : attrs())
+ if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I))
+ return true;
+
+ return isWeakImported();
+}
+
+void ImplicitParamDecl::anchor() { }
+
+ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation IdLoc,
+ IdentifierInfo *Id,
+ QualType Type) {
+ return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type);
+}
+
+ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
+ unsigned ID) {
+ return new (C, ID) ImplicitParamDecl(C, nullptr, SourceLocation(), nullptr,
+ QualType());
+}
+
+FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation StartLoc,
+ const DeclarationNameInfo &NameInfo,
+ QualType T, TypeSourceInfo *TInfo,
+ StorageClass SC,
+ bool isInlineSpecified,
+ bool hasWrittenPrototype,
+ bool isConstexprSpecified) {
+ FunctionDecl *New =
+ new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo,
+ SC, isInlineSpecified, isConstexprSpecified);
+ New->HasWrittenPrototype = hasWrittenPrototype;
+ return New;
+}
+
+FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(),
+ DeclarationNameInfo(), QualType(), nullptr,
+ SC_None, false, false);
+}
+
+BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
+ return new (C, DC) BlockDecl(DC, L);
+}
+
+BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) BlockDecl(nullptr, SourceLocation());
+}
+
+CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
+ unsigned NumParams) {
+ return new (C, DC, NumParams * sizeof(ImplicitParamDecl *))
+ CapturedDecl(DC, NumParams);
+}
+
+CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
+ unsigned NumParams) {
+ return new (C, ID, NumParams * sizeof(ImplicitParamDecl *))
+ CapturedDecl(nullptr, NumParams);
+}
+
+EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
+ SourceLocation L,
+ IdentifierInfo *Id, QualType T,
+ Expr *E, const llvm::APSInt &V) {
+ return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
+}
+
+EnumConstantDecl *
+EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
+ QualType(), nullptr, llvm::APSInt());
+}
+
+void IndirectFieldDecl::anchor() { }
+
+IndirectFieldDecl *
+IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
+ IdentifierInfo *Id, QualType T, NamedDecl **CH,
+ unsigned CHS) {
+ return new (C, DC) IndirectFieldDecl(DC, L, Id, T, CH, CHS);
+}
+
+IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
+ unsigned ID) {
+ return new (C, ID) IndirectFieldDecl(nullptr, SourceLocation(),
+ DeclarationName(), QualType(), nullptr,
+ 0);
+}
+
+SourceRange EnumConstantDecl::getSourceRange() const {
+ SourceLocation End = getLocation();
+ if (Init)
+ End = Init->getLocEnd();
+ return SourceRange(getLocation(), End);
+}
+
+void TypeDecl::anchor() { }
+
+TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation StartLoc, SourceLocation IdLoc,
+ IdentifierInfo *Id, TypeSourceInfo *TInfo) {
+ return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
+}
+
+void TypedefNameDecl::anchor() { }
+
+TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const {
+ if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
+ auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
+ auto *ThisTypedef = this;
+ if (AnyRedecl && OwningTypedef) {
+ OwningTypedef = OwningTypedef->getCanonicalDecl();
+ ThisTypedef = ThisTypedef->getCanonicalDecl();
+ }
+ if (OwningTypedef == ThisTypedef)
+ return TT->getDecl();
+ }
+
+ return nullptr;
+}
+
+TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
+ nullptr, nullptr);
+}
+
+TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation StartLoc,
+ SourceLocation IdLoc, IdentifierInfo *Id,
+ TypeSourceInfo *TInfo) {
+ return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
+}
+
+TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
+ SourceLocation(), nullptr, nullptr);
+}
+
+SourceRange TypedefDecl::getSourceRange() const {
+ SourceLocation RangeEnd = getLocation();
+ if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
+ if (typeIsPostfix(TInfo->getType()))
+ RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
+ }
+ return SourceRange(getLocStart(), RangeEnd);
+}
+
+SourceRange TypeAliasDecl::getSourceRange() const {
+ SourceLocation RangeEnd = getLocStart();
+ if (TypeSourceInfo *TInfo = getTypeSourceInfo())
+ RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
+ return SourceRange(getLocStart(), RangeEnd);
+}
+
+void FileScopeAsmDecl::anchor() { }
+
+FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
+ StringLiteral *Str,
+ SourceLocation AsmLoc,
+ SourceLocation RParenLoc) {
+ return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
+}
+
+FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
+ unsigned ID) {
+ return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
+ SourceLocation());
+}
+
+void EmptyDecl::anchor() {}
+
+EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
+ return new (C, DC) EmptyDecl(DC, L);
+}
+
+EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) EmptyDecl(nullptr, SourceLocation());
+}
+
+//===----------------------------------------------------------------------===//
+// ImportDecl Implementation
+//===----------------------------------------------------------------------===//
+
+/// \brief Retrieve the number of module identifiers needed to name the given
+/// module.
+static unsigned getNumModuleIdentifiers(Module *Mod) {
+ unsigned Result = 1;
+ while (Mod->Parent) {
+ Mod = Mod->Parent;
+ ++Result;
+ }
+ return Result;
+}
+
+ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
+ Module *Imported,
+ ArrayRef<SourceLocation> IdentifierLocs)
+ : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true),
+ NextLocalImport()
+{
+ assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
+ SourceLocation *StoredLocs = reinterpret_cast<SourceLocation *>(this + 1);
+ memcpy(StoredLocs, IdentifierLocs.data(),
+ IdentifierLocs.size() * sizeof(SourceLocation));
+}
+
+ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
+ Module *Imported, SourceLocation EndLoc)
+ : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false),
+ NextLocalImport()
+{
+ *reinterpret_cast<SourceLocation *>(this + 1) = EndLoc;
+}
+
+ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation StartLoc, Module *Imported,
+ ArrayRef<SourceLocation> IdentifierLocs) {
+ return new (C, DC, IdentifierLocs.size() * sizeof(SourceLocation))
+ ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
+}
+
+ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
+ SourceLocation StartLoc,
+ Module *Imported,
+ SourceLocation EndLoc) {
+ ImportDecl *Import =
+ new (C, DC, sizeof(SourceLocation)) ImportDecl(DC, StartLoc,
+ Imported, EndLoc);
+ Import->setImplicit();
+ return Import;
+}
+
+ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
+ unsigned NumLocations) {
+ return new (C, ID, NumLocations * sizeof(SourceLocation))
+ ImportDecl(EmptyShell());
+}
+
+ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
+ if (!ImportedAndComplete.getInt())
+ return None;
+
+ const SourceLocation *StoredLocs
+ = reinterpret_cast<const SourceLocation *>(this + 1);
+ return llvm::makeArrayRef(StoredLocs,
+ getNumModuleIdentifiers(getImportedModule()));
+}
+
+SourceRange ImportDecl::getSourceRange() const {
+ if (!ImportedAndComplete.getInt())
+ return SourceRange(getLocation(),
+ *reinterpret_cast<const SourceLocation *>(this + 1));
+
+ return SourceRange(getLocation(), getIdentifierLocs().back());
+}
diff --git a/contrib/llvm/tools/clang/lib/AST/DeclBase.cpp b/contrib/llvm/tools/clang/lib/AST/DeclBase.cpp
new file mode 100644
index 0000000..79cadcf
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/DeclBase.cpp
@@ -0,0 +1,1686 @@
+//===--- DeclBase.cpp - Declaration AST Node Implementation ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Decl and DeclContext classes.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/DeclBase.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTMutationListener.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclContextInternals.h"
+#include "clang/AST/DeclFriend.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclOpenMP.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/DependentDiagnostic.h"
+#include "clang/AST/ExternalASTSource.h"
+#include "clang/AST/Stmt.h"
+#include "clang/AST/StmtCXX.h"
+#include "clang/AST/Type.h"
+#include "clang/Basic/TargetInfo.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// Statistics
+//===----------------------------------------------------------------------===//
+
+#define DECL(DERIVED, BASE) static int n##DERIVED##s = 0;
+#define ABSTRACT_DECL(DECL)
+#include "clang/AST/DeclNodes.inc"
+
+void Decl::updateOutOfDate(IdentifierInfo &II) const {
+ getASTContext().getExternalSource()->updateOutOfDateIdentifier(II);
+}
+
+void *Decl::operator new(std::size_t Size, const ASTContext &Context,
+ unsigned ID, std::size_t Extra) {
+ // Allocate an extra 8 bytes worth of storage, which ensures that the
+ // resulting pointer will still be 8-byte aligned.
+ void *Start = Context.Allocate(Size + Extra + 8);
+ void *Result = (char*)Start + 8;
+
+ unsigned *PrefixPtr = (unsigned *)Result - 2;
+
+ // Zero out the first 4 bytes; this is used to store the owning module ID.
+ PrefixPtr[0] = 0;
+
+ // Store the global declaration ID in the second 4 bytes.
+ PrefixPtr[1] = ID;
+
+ return Result;
+}
+
+void *Decl::operator new(std::size_t Size, const ASTContext &Ctx,
+ DeclContext *Parent, std::size_t Extra) {
+ assert(!Parent || &Parent->getParentASTContext() == &Ctx);
+ // With local visibility enabled, we track the owning module even for local
+ // declarations.
+ if (Ctx.getLangOpts().ModulesLocalVisibility) {
+ void *Buffer = ::operator new(sizeof(Module *) + Size + Extra, Ctx);
+ return new (Buffer) Module*(nullptr) + 1;
+ }
+ return ::operator new(Size + Extra, Ctx);
+}
+
+Module *Decl::getOwningModuleSlow() const {
+ assert(isFromASTFile() && "Not from AST file?");
+ return getASTContext().getExternalSource()->getModule(getOwningModuleID());
+}
+
+const char *Decl::getDeclKindName() const {
+ switch (DeclKind) {
+ default: llvm_unreachable("Declaration not in DeclNodes.inc!");
+#define DECL(DERIVED, BASE) case DERIVED: return #DERIVED;
+#define ABSTRACT_DECL(DECL)
+#include "clang/AST/DeclNodes.inc"
+ }
+}
+
+void Decl::setInvalidDecl(bool Invalid) {
+ InvalidDecl = Invalid;
+ assert(!isa<TagDecl>(this) || !cast<TagDecl>(this)->isCompleteDefinition());
+ if (Invalid && !isa<ParmVarDecl>(this)) {
+ // Defensive maneuver for ill-formed code: we're likely not to make it to
+ // a point where we set the access specifier, so default it to "public"
+ // to avoid triggering asserts elsewhere in the front end.
+ setAccess(AS_public);
+ }
+}
+
+const char *DeclContext::getDeclKindName() const {
+ switch (DeclKind) {
+ default: llvm_unreachable("Declaration context not in DeclNodes.inc!");
+#define DECL(DERIVED, BASE) case Decl::DERIVED: return #DERIVED;
+#define ABSTRACT_DECL(DECL)
+#include "clang/AST/DeclNodes.inc"
+ }
+}
+
+bool Decl::StatisticsEnabled = false;
+void Decl::EnableStatistics() {
+ StatisticsEnabled = true;
+}
+
+void Decl::PrintStats() {
+ llvm::errs() << "\n*** Decl Stats:\n";
+
+ int totalDecls = 0;
+#define DECL(DERIVED, BASE) totalDecls += n##DERIVED##s;
+#define ABSTRACT_DECL(DECL)
+#include "clang/AST/DeclNodes.inc"
+ llvm::errs() << " " << totalDecls << " decls total.\n";
+
+ int totalBytes = 0;
+#define DECL(DERIVED, BASE) \
+ if (n##DERIVED##s > 0) { \
+ totalBytes += (int)(n##DERIVED##s * sizeof(DERIVED##Decl)); \
+ llvm::errs() << " " << n##DERIVED##s << " " #DERIVED " decls, " \
+ << sizeof(DERIVED##Decl) << " each (" \
+ << n##DERIVED##s * sizeof(DERIVED##Decl) \
+ << " bytes)\n"; \
+ }
+#define ABSTRACT_DECL(DECL)
+#include "clang/AST/DeclNodes.inc"
+
+ llvm::errs() << "Total bytes = " << totalBytes << "\n";
+}
+
+void Decl::add(Kind k) {
+ switch (k) {
+#define DECL(DERIVED, BASE) case DERIVED: ++n##DERIVED##s; break;
+#define ABSTRACT_DECL(DECL)
+#include "clang/AST/DeclNodes.inc"
+ }
+}
+
+bool Decl::isTemplateParameterPack() const {
+ if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(this))
+ return TTP->isParameterPack();
+ if (const NonTypeTemplateParmDecl *NTTP
+ = dyn_cast<NonTypeTemplateParmDecl>(this))
+ return NTTP->isParameterPack();
+ if (const TemplateTemplateParmDecl *TTP
+ = dyn_cast<TemplateTemplateParmDecl>(this))
+ return TTP->isParameterPack();
+ return false;
+}
+
+bool Decl::isParameterPack() const {
+ if (const ParmVarDecl *Parm = dyn_cast<ParmVarDecl>(this))
+ return Parm->isParameterPack();
+
+ return isTemplateParameterPack();
+}
+
+FunctionDecl *Decl::getAsFunction() {
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(this))
+ return FD;
+ if (const FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(this))
+ return FTD->getTemplatedDecl();
+ return nullptr;
+}
+
+bool Decl::isTemplateDecl() const {
+ return isa<TemplateDecl>(this);
+}
+
+const DeclContext *Decl::getParentFunctionOrMethod() const {
+ for (const DeclContext *DC = getDeclContext();
+ DC && !DC->isTranslationUnit() && !DC->isNamespace();
+ DC = DC->getParent())
+ if (DC->isFunctionOrMethod())
+ return DC;
+
+ return nullptr;
+}
+
+
+//===----------------------------------------------------------------------===//
+// PrettyStackTraceDecl Implementation
+//===----------------------------------------------------------------------===//
+
+void PrettyStackTraceDecl::print(raw_ostream &OS) const {
+ SourceLocation TheLoc = Loc;
+ if (TheLoc.isInvalid() && TheDecl)
+ TheLoc = TheDecl->getLocation();
+
+ if (TheLoc.isValid()) {
+ TheLoc.print(OS, SM);
+ OS << ": ";
+ }
+
+ OS << Message;
+
+ if (const NamedDecl *DN = dyn_cast_or_null<NamedDecl>(TheDecl)) {
+ OS << " '";
+ DN->printQualifiedName(OS);
+ OS << '\'';
+ }
+ OS << '\n';
+}
+
+//===----------------------------------------------------------------------===//
+// Decl Implementation
+//===----------------------------------------------------------------------===//
+
+// Out-of-line virtual method providing a home for Decl.
+Decl::~Decl() { }
+
+void Decl::setDeclContext(DeclContext *DC) {
+ DeclCtx = DC;
+}
+
+void Decl::setLexicalDeclContext(DeclContext *DC) {
+ if (DC == getLexicalDeclContext())
+ return;
+
+ if (isInSemaDC()) {
+ setDeclContextsImpl(getDeclContext(), DC, getASTContext());
+ } else {
+ getMultipleDC()->LexicalDC = DC;
+ }
+}
+
+void Decl::setDeclContextsImpl(DeclContext *SemaDC, DeclContext *LexicalDC,
+ ASTContext &Ctx) {
+ if (SemaDC == LexicalDC) {
+ DeclCtx = SemaDC;
+ } else {
+ Decl::MultipleDC *MDC = new (Ctx) Decl::MultipleDC();
+ MDC->SemanticDC = SemaDC;
+ MDC->LexicalDC = LexicalDC;
+ DeclCtx = MDC;
+ }
+}
+
+bool Decl::isInAnonymousNamespace() const {
+ const DeclContext *DC = getDeclContext();
+ do {
+ if (const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC))
+ if (ND->isAnonymousNamespace())
+ return true;
+ } while ((DC = DC->getParent()));
+
+ return false;
+}
+
+bool Decl::isInStdNamespace() const {
+ return getDeclContext()->isStdNamespace();
+}
+
+TranslationUnitDecl *Decl::getTranslationUnitDecl() {
+ if (TranslationUnitDecl *TUD = dyn_cast<TranslationUnitDecl>(this))
+ return TUD;
+
+ DeclContext *DC = getDeclContext();
+ assert(DC && "This decl is not contained in a translation unit!");
+
+ while (!DC->isTranslationUnit()) {
+ DC = DC->getParent();
+ assert(DC && "This decl is not contained in a translation unit!");
+ }
+
+ return cast<TranslationUnitDecl>(DC);
+}
+
+ASTContext &Decl::getASTContext() const {
+ return getTranslationUnitDecl()->getASTContext();
+}
+
+ASTMutationListener *Decl::getASTMutationListener() const {
+ return getASTContext().getASTMutationListener();
+}
+
+unsigned Decl::getMaxAlignment() const {
+ if (!hasAttrs())
+ return 0;
+
+ unsigned Align = 0;
+ const AttrVec &V = getAttrs();
+ ASTContext &Ctx = getASTContext();
+ specific_attr_iterator<AlignedAttr> I(V.begin()), E(V.end());
+ for (; I != E; ++I)
+ Align = std::max(Align, I->getAlignment(Ctx));
+ return Align;
+}
+
+bool Decl::isUsed(bool CheckUsedAttr) const {
+ if (Used)
+ return true;
+
+ // Check for used attribute.
+ if (CheckUsedAttr && hasAttr<UsedAttr>())
+ return true;
+
+ return false;
+}
+
+void Decl::markUsed(ASTContext &C) {
+ if (Used)
+ return;
+
+ if (C.getASTMutationListener())
+ C.getASTMutationListener()->DeclarationMarkedUsed(this);
+
+ Used = true;
+}
+
+bool Decl::isReferenced() const {
+ if (Referenced)
+ return true;
+
+ // Check redeclarations.
+ for (auto I : redecls())
+ if (I->Referenced)
+ return true;
+
+ return false;
+}
+
+/// \brief Determine the availability of the given declaration based on
+/// the target platform.
+///
+/// When it returns an availability result other than \c AR_Available,
+/// if the \p Message parameter is non-NULL, it will be set to a
+/// string describing why the entity is unavailable.
+///
+/// FIXME: Make these strings localizable, since they end up in
+/// diagnostics.
+static AvailabilityResult CheckAvailability(ASTContext &Context,
+ const AvailabilityAttr *A,
+ std::string *Message) {
+ VersionTuple TargetMinVersion =
+ Context.getTargetInfo().getPlatformMinVersion();
+
+ if (TargetMinVersion.empty())
+ return AR_Available;
+
+ // Check if this is an App Extension "platform", and if so chop off
+ // the suffix for matching with the actual platform.
+ StringRef ActualPlatform = A->getPlatform()->getName();
+ StringRef RealizedPlatform = ActualPlatform;
+ if (Context.getLangOpts().AppExt) {
+ size_t suffix = RealizedPlatform.rfind("_app_extension");
+ if (suffix != StringRef::npos)
+ RealizedPlatform = RealizedPlatform.slice(0, suffix);
+ }
+
+ StringRef TargetPlatform = Context.getTargetInfo().getPlatformName();
+
+ // Match the platform name.
+ if (RealizedPlatform != TargetPlatform)
+ return AR_Available;
+
+ StringRef PrettyPlatformName
+ = AvailabilityAttr::getPrettyPlatformName(ActualPlatform);
+
+ if (PrettyPlatformName.empty())
+ PrettyPlatformName = ActualPlatform;
+
+ std::string HintMessage;
+ if (!A->getMessage().empty()) {
+ HintMessage = " - ";
+ HintMessage += A->getMessage();
+ }
+
+ // Make sure that this declaration has not been marked 'unavailable'.
+ if (A->getUnavailable()) {
+ if (Message) {
+ Message->clear();
+ llvm::raw_string_ostream Out(*Message);
+ Out << "not available on " << PrettyPlatformName
+ << HintMessage;
+ }
+
+ return AR_Unavailable;
+ }
+
+ // Make sure that this declaration has already been introduced.
+ if (!A->getIntroduced().empty() &&
+ TargetMinVersion < A->getIntroduced()) {
+ if (Message) {
+ Message->clear();
+ llvm::raw_string_ostream Out(*Message);
+ VersionTuple VTI(A->getIntroduced());
+ VTI.UseDotAsSeparator();
+ Out << "introduced in " << PrettyPlatformName << ' '
+ << VTI << HintMessage;
+ }
+
+ return AR_NotYetIntroduced;
+ }
+
+ // Make sure that this declaration hasn't been obsoleted.
+ if (!A->getObsoleted().empty() && TargetMinVersion >= A->getObsoleted()) {
+ if (Message) {
+ Message->clear();
+ llvm::raw_string_ostream Out(*Message);
+ VersionTuple VTO(A->getObsoleted());
+ VTO.UseDotAsSeparator();
+ Out << "obsoleted in " << PrettyPlatformName << ' '
+ << VTO << HintMessage;
+ }
+
+ return AR_Unavailable;
+ }
+
+ // Make sure that this declaration hasn't been deprecated.
+ if (!A->getDeprecated().empty() && TargetMinVersion >= A->getDeprecated()) {
+ if (Message) {
+ Message->clear();
+ llvm::raw_string_ostream Out(*Message);
+ VersionTuple VTD(A->getDeprecated());
+ VTD.UseDotAsSeparator();
+ Out << "first deprecated in " << PrettyPlatformName << ' '
+ << VTD << HintMessage;
+ }
+
+ return AR_Deprecated;
+ }
+
+ return AR_Available;
+}
+
+AvailabilityResult Decl::getAvailability(std::string *Message) const {
+ AvailabilityResult Result = AR_Available;
+ std::string ResultMessage;
+
+ for (const auto *A : attrs()) {
+ if (const auto *Deprecated = dyn_cast<DeprecatedAttr>(A)) {
+ if (Result >= AR_Deprecated)
+ continue;
+
+ if (Message)
+ ResultMessage = Deprecated->getMessage();
+
+ Result = AR_Deprecated;
+ continue;
+ }
+
+ if (const auto *Unavailable = dyn_cast<UnavailableAttr>(A)) {
+ if (Message)
+ *Message = Unavailable->getMessage();
+ return AR_Unavailable;
+ }
+
+ if (const auto *Availability = dyn_cast<AvailabilityAttr>(A)) {
+ AvailabilityResult AR = CheckAvailability(getASTContext(), Availability,
+ Message);
+
+ if (AR == AR_Unavailable)
+ return AR_Unavailable;
+
+ if (AR > Result) {
+ Result = AR;
+ if (Message)
+ ResultMessage.swap(*Message);
+ }
+ continue;
+ }
+ }
+
+ if (Message)
+ Message->swap(ResultMessage);
+ return Result;
+}
+
+bool Decl::canBeWeakImported(bool &IsDefinition) const {
+ IsDefinition = false;
+
+ // Variables, if they aren't definitions.
+ if (const VarDecl *Var = dyn_cast<VarDecl>(this)) {
+ if (Var->isThisDeclarationADefinition()) {
+ IsDefinition = true;
+ return false;
+ }
+ return true;
+
+ // Functions, if they aren't definitions.
+ } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(this)) {
+ if (FD->hasBody()) {
+ IsDefinition = true;
+ return false;
+ }
+ return true;
+
+ // Objective-C classes, if this is the non-fragile runtime.
+ } else if (isa<ObjCInterfaceDecl>(this) &&
+ getASTContext().getLangOpts().ObjCRuntime.hasWeakClassImport()) {
+ return true;
+
+ // Nothing else.
+ } else {
+ return false;
+ }
+}
+
+bool Decl::isWeakImported() const {
+ bool IsDefinition;
+ if (!canBeWeakImported(IsDefinition))
+ return false;
+
+ for (const auto *A : attrs()) {
+ if (isa<WeakImportAttr>(A))
+ return true;
+
+ if (const auto *Availability = dyn_cast<AvailabilityAttr>(A)) {
+ if (CheckAvailability(getASTContext(), Availability,
+ nullptr) == AR_NotYetIntroduced)
+ return true;
+ }
+ }
+
+ return false;
+}
+
+unsigned Decl::getIdentifierNamespaceForKind(Kind DeclKind) {
+ switch (DeclKind) {
+ case Function:
+ case CXXMethod:
+ case CXXConstructor:
+ case CXXDestructor:
+ case CXXConversion:
+ case EnumConstant:
+ case Var:
+ case ImplicitParam:
+ case ParmVar:
+ case NonTypeTemplateParm:
+ case ObjCMethod:
+ case ObjCProperty:
+ case MSProperty:
+ return IDNS_Ordinary;
+ case Label:
+ return IDNS_Label;
+ case IndirectField:
+ return IDNS_Ordinary | IDNS_Member;
+
+ case ObjCCompatibleAlias:
+ case ObjCInterface:
+ return IDNS_Ordinary | IDNS_Type;
+
+ case Typedef:
+ case TypeAlias:
+ case TypeAliasTemplate:
+ case UnresolvedUsingTypename:
+ case TemplateTypeParm:
+ return IDNS_Ordinary | IDNS_Type;
+
+ case UsingShadow:
+ return 0; // we'll actually overwrite this later
+
+ case UnresolvedUsingValue:
+ return IDNS_Ordinary | IDNS_Using;
+
+ case Using:
+ return IDNS_Using;
+
+ case ObjCProtocol:
+ return IDNS_ObjCProtocol;
+
+ case Field:
+ case ObjCAtDefsField:
+ case ObjCIvar:
+ return IDNS_Member;
+
+ case Record:
+ case CXXRecord:
+ case Enum:
+ return IDNS_Tag | IDNS_Type;
+
+ case Namespace:
+ case NamespaceAlias:
+ return IDNS_Namespace;
+
+ case FunctionTemplate:
+ case VarTemplate:
+ return IDNS_Ordinary;
+
+ case ClassTemplate:
+ case TemplateTemplateParm:
+ return IDNS_Ordinary | IDNS_Tag | IDNS_Type;
+
+ // Never have names.
+ case Friend:
+ case FriendTemplate:
+ case AccessSpec:
+ case LinkageSpec:
+ case FileScopeAsm:
+ case StaticAssert:
+ case ObjCPropertyImpl:
+ case Block:
+ case Captured:
+ case TranslationUnit:
+ case ExternCContext:
+
+ case UsingDirective:
+ case ClassTemplateSpecialization:
+ case ClassTemplatePartialSpecialization:
+ case ClassScopeFunctionSpecialization:
+ case VarTemplateSpecialization:
+ case VarTemplatePartialSpecialization:
+ case ObjCImplementation:
+ case ObjCCategory:
+ case ObjCCategoryImpl:
+ case Import:
+ case OMPThreadPrivate:
+ case Empty:
+ // Never looked up by name.
+ return 0;
+ }
+
+ llvm_unreachable("Invalid DeclKind!");
+}
+
+void Decl::setAttrsImpl(const AttrVec &attrs, ASTContext &Ctx) {
+ assert(!HasAttrs && "Decl already contains attrs.");
+
+ AttrVec &AttrBlank = Ctx.getDeclAttrs(this);
+ assert(AttrBlank.empty() && "HasAttrs was wrong?");
+
+ AttrBlank = attrs;
+ HasAttrs = true;
+}
+
+void Decl::dropAttrs() {
+ if (!HasAttrs) return;
+
+ HasAttrs = false;
+ getASTContext().eraseDeclAttrs(this);
+}
+
+const AttrVec &Decl::getAttrs() const {
+ assert(HasAttrs && "No attrs to get!");
+ return getASTContext().getDeclAttrs(this);
+}
+
+Decl *Decl::castFromDeclContext (const DeclContext *D) {
+ Decl::Kind DK = D->getDeclKind();
+ switch(DK) {
+#define DECL(NAME, BASE)
+#define DECL_CONTEXT(NAME) \
+ case Decl::NAME: \
+ return static_cast<NAME##Decl*>(const_cast<DeclContext*>(D));
+#define DECL_CONTEXT_BASE(NAME)
+#include "clang/AST/DeclNodes.inc"
+ default:
+#define DECL(NAME, BASE)
+#define DECL_CONTEXT_BASE(NAME) \
+ if (DK >= first##NAME && DK <= last##NAME) \
+ return static_cast<NAME##Decl*>(const_cast<DeclContext*>(D));
+#include "clang/AST/DeclNodes.inc"
+ llvm_unreachable("a decl that inherits DeclContext isn't handled");
+ }
+}
+
+DeclContext *Decl::castToDeclContext(const Decl *D) {
+ Decl::Kind DK = D->getKind();
+ switch(DK) {
+#define DECL(NAME, BASE)
+#define DECL_CONTEXT(NAME) \
+ case Decl::NAME: \
+ return static_cast<NAME##Decl*>(const_cast<Decl*>(D));
+#define DECL_CONTEXT_BASE(NAME)
+#include "clang/AST/DeclNodes.inc"
+ default:
+#define DECL(NAME, BASE)
+#define DECL_CONTEXT_BASE(NAME) \
+ if (DK >= first##NAME && DK <= last##NAME) \
+ return static_cast<NAME##Decl*>(const_cast<Decl*>(D));
+#include "clang/AST/DeclNodes.inc"
+ llvm_unreachable("a decl that inherits DeclContext isn't handled");
+ }
+}
+
+SourceLocation Decl::getBodyRBrace() const {
+ // Special handling of FunctionDecl to avoid de-serializing the body from PCH.
+ // FunctionDecl stores EndRangeLoc for this purpose.
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(this)) {
+ const FunctionDecl *Definition;
+ if (FD->hasBody(Definition))
+ return Definition->getSourceRange().getEnd();
+ return SourceLocation();
+ }
+
+ if (Stmt *Body = getBody())
+ return Body->getSourceRange().getEnd();
+
+ return SourceLocation();
+}
+
+bool Decl::AccessDeclContextSanity() const {
+#ifndef NDEBUG
+ // Suppress this check if any of the following hold:
+ // 1. this is the translation unit (and thus has no parent)
+ // 2. this is a template parameter (and thus doesn't belong to its context)
+ // 3. this is a non-type template parameter
+ // 4. the context is not a record
+ // 5. it's invalid
+ // 6. it's a C++0x static_assert.
+ if (isa<TranslationUnitDecl>(this) ||
+ isa<TemplateTypeParmDecl>(this) ||
+ isa<NonTypeTemplateParmDecl>(this) ||
+ !isa<CXXRecordDecl>(getDeclContext()) ||
+ isInvalidDecl() ||
+ isa<StaticAssertDecl>(this) ||
+ // FIXME: a ParmVarDecl can have ClassTemplateSpecialization
+ // as DeclContext (?).
+ isa<ParmVarDecl>(this) ||
+ // FIXME: a ClassTemplateSpecialization or CXXRecordDecl can have
+ // AS_none as access specifier.
+ isa<CXXRecordDecl>(this) ||
+ isa<ClassScopeFunctionSpecializationDecl>(this))
+ return true;
+
+ assert(Access != AS_none &&
+ "Access specifier is AS_none inside a record decl");
+#endif
+ return true;
+}
+
+static Decl::Kind getKind(const Decl *D) { return D->getKind(); }
+static Decl::Kind getKind(const DeclContext *DC) { return DC->getDeclKind(); }
+
+const FunctionType *Decl::getFunctionType(bool BlocksToo) const {
+ QualType Ty;
+ if (const ValueDecl *D = dyn_cast<ValueDecl>(this))
+ Ty = D->getType();
+ else if (const TypedefNameDecl *D = dyn_cast<TypedefNameDecl>(this))
+ Ty = D->getUnderlyingType();
+ else
+ return nullptr;
+
+ if (Ty->isFunctionPointerType())
+ Ty = Ty->getAs<PointerType>()->getPointeeType();
+ else if (BlocksToo && Ty->isBlockPointerType())
+ Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
+
+ return Ty->getAs<FunctionType>();
+}
+
+
+/// Starting at a given context (a Decl or DeclContext), look for a
+/// code context that is not a closure (a lambda, block, etc.).
+template <class T> static Decl *getNonClosureContext(T *D) {
+ if (getKind(D) == Decl::CXXMethod) {
+ CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
+ if (MD->getOverloadedOperator() == OO_Call &&
+ MD->getParent()->isLambda())
+ return getNonClosureContext(MD->getParent()->getParent());
+ return MD;
+ } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ return FD;
+ } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
+ return MD;
+ } else if (BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
+ return getNonClosureContext(BD->getParent());
+ } else if (CapturedDecl *CD = dyn_cast<CapturedDecl>(D)) {
+ return getNonClosureContext(CD->getParent());
+ } else {
+ return nullptr;
+ }
+}
+
+Decl *Decl::getNonClosureContext() {
+ return ::getNonClosureContext(this);
+}
+
+Decl *DeclContext::getNonClosureAncestor() {
+ return ::getNonClosureContext(this);
+}
+
+//===----------------------------------------------------------------------===//
+// DeclContext Implementation
+//===----------------------------------------------------------------------===//
+
+bool DeclContext::classof(const Decl *D) {
+ switch (D->getKind()) {
+#define DECL(NAME, BASE)
+#define DECL_CONTEXT(NAME) case Decl::NAME:
+#define DECL_CONTEXT_BASE(NAME)
+#include "clang/AST/DeclNodes.inc"
+ return true;
+ default:
+#define DECL(NAME, BASE)
+#define DECL_CONTEXT_BASE(NAME) \
+ if (D->getKind() >= Decl::first##NAME && \
+ D->getKind() <= Decl::last##NAME) \
+ return true;
+#include "clang/AST/DeclNodes.inc"
+ return false;
+ }
+}
+
+DeclContext::~DeclContext() { }
+
+/// \brief Find the parent context of this context that will be
+/// used for unqualified name lookup.
+///
+/// Generally, the parent lookup context is the semantic context. However, for
+/// a friend function the parent lookup context is the lexical context, which
+/// is the class in which the friend is declared.
+DeclContext *DeclContext::getLookupParent() {
+ // FIXME: Find a better way to identify friends
+ if (isa<FunctionDecl>(this))
+ if (getParent()->getRedeclContext()->isFileContext() &&
+ getLexicalParent()->getRedeclContext()->isRecord())
+ return getLexicalParent();
+
+ return getParent();
+}
+
+bool DeclContext::isInlineNamespace() const {
+ return isNamespace() &&
+ cast<NamespaceDecl>(this)->isInline();
+}
+
+bool DeclContext::isStdNamespace() const {
+ if (!isNamespace())
+ return false;
+
+ const NamespaceDecl *ND = cast<NamespaceDecl>(this);
+ if (ND->isInline()) {
+ return ND->getParent()->isStdNamespace();
+ }
+
+ if (!getParent()->getRedeclContext()->isTranslationUnit())
+ return false;
+
+ const IdentifierInfo *II = ND->getIdentifier();
+ return II && II->isStr("std");
+}
+
+bool DeclContext::isDependentContext() const {
+ if (isFileContext())
+ return false;
+
+ if (isa<ClassTemplatePartialSpecializationDecl>(this))
+ return true;
+
+ if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(this)) {
+ if (Record->getDescribedClassTemplate())
+ return true;
+
+ if (Record->isDependentLambda())
+ return true;
+ }
+
+ if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(this)) {
+ if (Function->getDescribedFunctionTemplate())
+ return true;
+
+ // Friend function declarations are dependent if their *lexical*
+ // context is dependent.
+ if (cast<Decl>(this)->getFriendObjectKind())
+ return getLexicalParent()->isDependentContext();
+ }
+
+ // FIXME: A variable template is a dependent context, but is not a
+ // DeclContext. A context within it (such as a lambda-expression)
+ // should be considered dependent.
+
+ return getParent() && getParent()->isDependentContext();
+}
+
+bool DeclContext::isTransparentContext() const {
+ if (DeclKind == Decl::Enum)
+ return !cast<EnumDecl>(this)->isScoped();
+ else if (DeclKind == Decl::LinkageSpec)
+ return true;
+
+ return false;
+}
+
+static bool isLinkageSpecContext(const DeclContext *DC,
+ LinkageSpecDecl::LanguageIDs ID) {
+ while (DC->getDeclKind() != Decl::TranslationUnit) {
+ if (DC->getDeclKind() == Decl::LinkageSpec)
+ return cast<LinkageSpecDecl>(DC)->getLanguage() == ID;
+ DC = DC->getLexicalParent();
+ }
+ return false;
+}
+
+bool DeclContext::isExternCContext() const {
+ return isLinkageSpecContext(this, clang::LinkageSpecDecl::lang_c);
+}
+
+bool DeclContext::isExternCXXContext() const {
+ return isLinkageSpecContext(this, clang::LinkageSpecDecl::lang_cxx);
+}
+
+bool DeclContext::Encloses(const DeclContext *DC) const {
+ if (getPrimaryContext() != this)
+ return getPrimaryContext()->Encloses(DC);
+
+ for (; DC; DC = DC->getParent())
+ if (DC->getPrimaryContext() == this)
+ return true;
+ return false;
+}
+
+DeclContext *DeclContext::getPrimaryContext() {
+ switch (DeclKind) {
+ case Decl::TranslationUnit:
+ case Decl::ExternCContext:
+ case Decl::LinkageSpec:
+ case Decl::Block:
+ case Decl::Captured:
+ // There is only one DeclContext for these entities.
+ return this;
+
+ case Decl::Namespace:
+ // The original namespace is our primary context.
+ return static_cast<NamespaceDecl*>(this)->getOriginalNamespace();
+
+ case Decl::ObjCMethod:
+ return this;
+
+ case Decl::ObjCInterface:
+ if (ObjCInterfaceDecl *Def = cast<ObjCInterfaceDecl>(this)->getDefinition())
+ return Def;
+
+ return this;
+
+ case Decl::ObjCProtocol:
+ if (ObjCProtocolDecl *Def = cast<ObjCProtocolDecl>(this)->getDefinition())
+ return Def;
+
+ return this;
+
+ case Decl::ObjCCategory:
+ return this;
+
+ case Decl::ObjCImplementation:
+ case Decl::ObjCCategoryImpl:
+ return this;
+
+ default:
+ if (DeclKind >= Decl::firstTag && DeclKind <= Decl::lastTag) {
+ // If this is a tag type that has a definition or is currently
+ // being defined, that definition is our primary context.
+ TagDecl *Tag = cast<TagDecl>(this);
+
+ if (TagDecl *Def = Tag->getDefinition())
+ return Def;
+
+ if (const TagType *TagTy = dyn_cast<TagType>(Tag->getTypeForDecl())) {
+ // Note, TagType::getDecl returns the (partial) definition one exists.
+ TagDecl *PossiblePartialDef = TagTy->getDecl();
+ if (PossiblePartialDef->isBeingDefined())
+ return PossiblePartialDef;
+ } else {
+ assert(isa<InjectedClassNameType>(Tag->getTypeForDecl()));
+ }
+
+ return Tag;
+ }
+
+ assert(DeclKind >= Decl::firstFunction && DeclKind <= Decl::lastFunction &&
+ "Unknown DeclContext kind");
+ return this;
+ }
+}
+
+void
+DeclContext::collectAllContexts(SmallVectorImpl<DeclContext *> &Contexts){
+ Contexts.clear();
+
+ if (DeclKind != Decl::Namespace) {
+ Contexts.push_back(this);
+ return;
+ }
+
+ NamespaceDecl *Self = static_cast<NamespaceDecl *>(this);
+ for (NamespaceDecl *N = Self->getMostRecentDecl(); N;
+ N = N->getPreviousDecl())
+ Contexts.push_back(N);
+
+ std::reverse(Contexts.begin(), Contexts.end());
+}
+
+std::pair<Decl *, Decl *>
+DeclContext::BuildDeclChain(ArrayRef<Decl*> Decls,
+ bool FieldsAlreadyLoaded) {
+ // Build up a chain of declarations via the Decl::NextInContextAndBits field.
+ Decl *FirstNewDecl = nullptr;
+ Decl *PrevDecl = nullptr;
+ for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
+ if (FieldsAlreadyLoaded && isa<FieldDecl>(Decls[I]))
+ continue;
+
+ Decl *D = Decls[I];
+ if (PrevDecl)
+ PrevDecl->NextInContextAndBits.setPointer(D);
+ else
+ FirstNewDecl = D;
+
+ PrevDecl = D;
+ }
+
+ return std::make_pair(FirstNewDecl, PrevDecl);
+}
+
+/// \brief We have just acquired external visible storage, and we already have
+/// built a lookup map. For every name in the map, pull in the new names from
+/// the external storage.
+void DeclContext::reconcileExternalVisibleStorage() const {
+ assert(NeedToReconcileExternalVisibleStorage && LookupPtr);
+ NeedToReconcileExternalVisibleStorage = false;
+
+ for (auto &Lookup : *LookupPtr)
+ Lookup.second.setHasExternalDecls();
+}
+
+/// \brief Load the declarations within this lexical storage from an
+/// external source.
+/// \return \c true if any declarations were added.
+bool
+DeclContext::LoadLexicalDeclsFromExternalStorage() const {
+ ExternalASTSource *Source = getParentASTContext().getExternalSource();
+ assert(hasExternalLexicalStorage() && Source && "No external storage?");
+
+ // Notify that we have a DeclContext that is initializing.
+ ExternalASTSource::Deserializing ADeclContext(Source);
+
+ // Load the external declarations, if any.
+ SmallVector<Decl*, 64> Decls;
+ ExternalLexicalStorage = false;
+ switch (Source->FindExternalLexicalDecls(this, Decls)) {
+ case ELR_Success:
+ break;
+
+ case ELR_Failure:
+ case ELR_AlreadyLoaded:
+ return false;
+ }
+
+ if (Decls.empty())
+ return false;
+
+ // We may have already loaded just the fields of this record, in which case
+ // we need to ignore them.
+ bool FieldsAlreadyLoaded = false;
+ if (const RecordDecl *RD = dyn_cast<RecordDecl>(this))
+ FieldsAlreadyLoaded = RD->LoadedFieldsFromExternalStorage;
+
+ // Splice the newly-read declarations into the beginning of the list
+ // of declarations.
+ Decl *ExternalFirst, *ExternalLast;
+ std::tie(ExternalFirst, ExternalLast) =
+ BuildDeclChain(Decls, FieldsAlreadyLoaded);
+ ExternalLast->NextInContextAndBits.setPointer(FirstDecl);
+ FirstDecl = ExternalFirst;
+ if (!LastDecl)
+ LastDecl = ExternalLast;
+ return true;
+}
+
+DeclContext::lookup_result
+ExternalASTSource::SetNoExternalVisibleDeclsForName(const DeclContext *DC,
+ DeclarationName Name) {
+ ASTContext &Context = DC->getParentASTContext();
+ StoredDeclsMap *Map;
+ if (!(Map = DC->LookupPtr))
+ Map = DC->CreateStoredDeclsMap(Context);
+ if (DC->NeedToReconcileExternalVisibleStorage)
+ DC->reconcileExternalVisibleStorage();
+
+ (*Map)[Name].removeExternalDecls();
+
+ return DeclContext::lookup_result();
+}
+
+DeclContext::lookup_result
+ExternalASTSource::SetExternalVisibleDeclsForName(const DeclContext *DC,
+ DeclarationName Name,
+ ArrayRef<NamedDecl*> Decls) {
+ ASTContext &Context = DC->getParentASTContext();
+ StoredDeclsMap *Map;
+ if (!(Map = DC->LookupPtr))
+ Map = DC->CreateStoredDeclsMap(Context);
+ if (DC->NeedToReconcileExternalVisibleStorage)
+ DC->reconcileExternalVisibleStorage();
+
+ StoredDeclsList &List = (*Map)[Name];
+
+ // Clear out any old external visible declarations, to avoid quadratic
+ // performance in the redeclaration checks below.
+ List.removeExternalDecls();
+
+ if (!List.isNull()) {
+ // We have both existing declarations and new declarations for this name.
+ // Some of the declarations may simply replace existing ones. Handle those
+ // first.
+ llvm::SmallVector<unsigned, 8> Skip;
+ for (unsigned I = 0, N = Decls.size(); I != N; ++I)
+ if (List.HandleRedeclaration(Decls[I], /*IsKnownNewer*/false))
+ Skip.push_back(I);
+ Skip.push_back(Decls.size());
+
+ // Add in any new declarations.
+ unsigned SkipPos = 0;
+ for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
+ if (I == Skip[SkipPos])
+ ++SkipPos;
+ else
+ List.AddSubsequentDecl(Decls[I]);
+ }
+ } else {
+ // Convert the array to a StoredDeclsList.
+ for (ArrayRef<NamedDecl*>::iterator
+ I = Decls.begin(), E = Decls.end(); I != E; ++I) {
+ if (List.isNull())
+ List.setOnlyValue(*I);
+ else
+ List.AddSubsequentDecl(*I);
+ }
+ }
+
+ return List.getLookupResult();
+}
+
+DeclContext::decl_iterator DeclContext::decls_begin() const {
+ if (hasExternalLexicalStorage())
+ LoadLexicalDeclsFromExternalStorage();
+ return decl_iterator(FirstDecl);
+}
+
+bool DeclContext::decls_empty() const {
+ if (hasExternalLexicalStorage())
+ LoadLexicalDeclsFromExternalStorage();
+
+ return !FirstDecl;
+}
+
+bool DeclContext::containsDecl(Decl *D) const {
+ return (D->getLexicalDeclContext() == this &&
+ (D->NextInContextAndBits.getPointer() || D == LastDecl));
+}
+
+void DeclContext::removeDecl(Decl *D) {
+ assert(D->getLexicalDeclContext() == this &&
+ "decl being removed from non-lexical context");
+ assert((D->NextInContextAndBits.getPointer() || D == LastDecl) &&
+ "decl is not in decls list");
+
+ // Remove D from the decl chain. This is O(n) but hopefully rare.
+ if (D == FirstDecl) {
+ if (D == LastDecl)
+ FirstDecl = LastDecl = nullptr;
+ else
+ FirstDecl = D->NextInContextAndBits.getPointer();
+ } else {
+ for (Decl *I = FirstDecl; true; I = I->NextInContextAndBits.getPointer()) {
+ assert(I && "decl not found in linked list");
+ if (I->NextInContextAndBits.getPointer() == D) {
+ I->NextInContextAndBits.setPointer(D->NextInContextAndBits.getPointer());
+ if (D == LastDecl) LastDecl = I;
+ break;
+ }
+ }
+ }
+
+ // Mark that D is no longer in the decl chain.
+ D->NextInContextAndBits.setPointer(nullptr);
+
+ // Remove D from the lookup table if necessary.
+ if (isa<NamedDecl>(D)) {
+ NamedDecl *ND = cast<NamedDecl>(D);
+
+ // Remove only decls that have a name
+ if (!ND->getDeclName()) return;
+
+ StoredDeclsMap *Map = getPrimaryContext()->LookupPtr;
+ if (!Map) return;
+
+ StoredDeclsMap::iterator Pos = Map->find(ND->getDeclName());
+ assert(Pos != Map->end() && "no lookup entry for decl");
+ if (Pos->second.getAsVector() || Pos->second.getAsDecl() == ND)
+ Pos->second.remove(ND);
+ }
+}
+
+void DeclContext::addHiddenDecl(Decl *D) {
+ assert(D->getLexicalDeclContext() == this &&
+ "Decl inserted into wrong lexical context");
+ assert(!D->getNextDeclInContext() && D != LastDecl &&
+ "Decl already inserted into a DeclContext");
+
+ if (FirstDecl) {
+ LastDecl->NextInContextAndBits.setPointer(D);
+ LastDecl = D;
+ } else {
+ FirstDecl = LastDecl = D;
+ }
+
+ // Notify a C++ record declaration that we've added a member, so it can
+ // update it's class-specific state.
+ if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(this))
+ Record->addedMember(D);
+
+ // If this is a newly-created (not de-serialized) import declaration, wire
+ // it in to the list of local import declarations.
+ if (!D->isFromASTFile()) {
+ if (ImportDecl *Import = dyn_cast<ImportDecl>(D))
+ D->getASTContext().addedLocalImportDecl(Import);
+ }
+}
+
+void DeclContext::addDecl(Decl *D) {
+ addHiddenDecl(D);
+
+ if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
+ ND->getDeclContext()->getPrimaryContext()->
+ makeDeclVisibleInContextWithFlags(ND, false, true);
+}
+
+void DeclContext::addDeclInternal(Decl *D) {
+ addHiddenDecl(D);
+
+ if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
+ ND->getDeclContext()->getPrimaryContext()->
+ makeDeclVisibleInContextWithFlags(ND, true, true);
+}
+
+/// shouldBeHidden - Determine whether a declaration which was declared
+/// within its semantic context should be invisible to qualified name lookup.
+static bool shouldBeHidden(NamedDecl *D) {
+ // Skip unnamed declarations.
+ if (!D->getDeclName())
+ return true;
+
+ // Skip entities that can't be found by name lookup into a particular
+ // context.
+ if ((D->getIdentifierNamespace() == 0 && !isa<UsingDirectiveDecl>(D)) ||
+ D->isTemplateParameter())
+ return true;
+
+ // Skip template specializations.
+ // FIXME: This feels like a hack. Should DeclarationName support
+ // template-ids, or is there a better way to keep specializations
+ // from being visible?
+ if (isa<ClassTemplateSpecializationDecl>(D))
+ return true;
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
+ if (FD->isFunctionTemplateSpecialization())
+ return true;
+
+ return false;
+}
+
+/// buildLookup - Build the lookup data structure with all of the
+/// declarations in this DeclContext (and any other contexts linked
+/// to it or transparent contexts nested within it) and return it.
+///
+/// Note that the produced map may miss out declarations from an
+/// external source. If it does, those entries will be marked with
+/// the 'hasExternalDecls' flag.
+StoredDeclsMap *DeclContext::buildLookup() {
+ assert(this == getPrimaryContext() && "buildLookup called on non-primary DC");
+
+ if (!HasLazyLocalLexicalLookups && !HasLazyExternalLexicalLookups)
+ return LookupPtr;
+
+ SmallVector<DeclContext *, 2> Contexts;
+ collectAllContexts(Contexts);
+
+ if (HasLazyExternalLexicalLookups) {
+ HasLazyExternalLexicalLookups = false;
+ for (auto *DC : Contexts) {
+ if (DC->hasExternalLexicalStorage())
+ HasLazyLocalLexicalLookups |=
+ DC->LoadLexicalDeclsFromExternalStorage();
+ }
+
+ if (!HasLazyLocalLexicalLookups)
+ return LookupPtr;
+ }
+
+ for (auto *DC : Contexts)
+ buildLookupImpl(DC, hasExternalVisibleStorage());
+
+ // We no longer have any lazy decls.
+ HasLazyLocalLexicalLookups = false;
+ return LookupPtr;
+}
+
+/// buildLookupImpl - Build part of the lookup data structure for the
+/// declarations contained within DCtx, which will either be this
+/// DeclContext, a DeclContext linked to it, or a transparent context
+/// nested within it.
+void DeclContext::buildLookupImpl(DeclContext *DCtx, bool Internal) {
+ for (Decl *D : DCtx->noload_decls()) {
+ // Insert this declaration into the lookup structure, but only if
+ // it's semantically within its decl context. Any other decls which
+ // should be found in this context are added eagerly.
+ //
+ // If it's from an AST file, don't add it now. It'll get handled by
+ // FindExternalVisibleDeclsByName if needed. Exception: if we're not
+ // in C++, we do not track external visible decls for the TU, so in
+ // that case we need to collect them all here.
+ if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
+ if (ND->getDeclContext() == DCtx && !shouldBeHidden(ND) &&
+ (!ND->isFromASTFile() ||
+ (isTranslationUnit() &&
+ !getParentASTContext().getLangOpts().CPlusPlus)))
+ makeDeclVisibleInContextImpl(ND, Internal);
+
+ // If this declaration is itself a transparent declaration context
+ // or inline namespace, add the members of this declaration of that
+ // context (recursively).
+ if (DeclContext *InnerCtx = dyn_cast<DeclContext>(D))
+ if (InnerCtx->isTransparentContext() || InnerCtx->isInlineNamespace())
+ buildLookupImpl(InnerCtx, Internal);
+ }
+}
+
+NamedDecl *const DeclContextLookupResult::SingleElementDummyList = nullptr;
+
+DeclContext::lookup_result
+DeclContext::lookup(DeclarationName Name) const {
+ assert(DeclKind != Decl::LinkageSpec &&
+ "Should not perform lookups into linkage specs!");
+
+ const DeclContext *PrimaryContext = getPrimaryContext();
+ if (PrimaryContext != this)
+ return PrimaryContext->lookup(Name);
+
+ // If we have an external source, ensure that any later redeclarations of this
+ // context have been loaded, since they may add names to the result of this
+ // lookup (or add external visible storage).
+ ExternalASTSource *Source = getParentASTContext().getExternalSource();
+ if (Source)
+ (void)cast<Decl>(this)->getMostRecentDecl();
+
+ if (hasExternalVisibleStorage()) {
+ assert(Source && "external visible storage but no external source?");
+
+ if (NeedToReconcileExternalVisibleStorage)
+ reconcileExternalVisibleStorage();
+
+ StoredDeclsMap *Map = LookupPtr;
+
+ if (HasLazyLocalLexicalLookups || HasLazyExternalLexicalLookups)
+ // FIXME: Make buildLookup const?
+ Map = const_cast<DeclContext*>(this)->buildLookup();
+
+ if (!Map)
+ Map = CreateStoredDeclsMap(getParentASTContext());
+
+ // If we have a lookup result with no external decls, we are done.
+ std::pair<StoredDeclsMap::iterator, bool> R =
+ Map->insert(std::make_pair(Name, StoredDeclsList()));
+ if (!R.second && !R.first->second.hasExternalDecls())
+ return R.first->second.getLookupResult();
+
+ if (Source->FindExternalVisibleDeclsByName(this, Name) || !R.second) {
+ if (StoredDeclsMap *Map = LookupPtr) {
+ StoredDeclsMap::iterator I = Map->find(Name);
+ if (I != Map->end())
+ return I->second.getLookupResult();
+ }
+ }
+
+ return lookup_result();
+ }
+
+ StoredDeclsMap *Map = LookupPtr;
+ if (HasLazyLocalLexicalLookups || HasLazyExternalLexicalLookups)
+ Map = const_cast<DeclContext*>(this)->buildLookup();
+
+ if (!Map)
+ return lookup_result();
+
+ StoredDeclsMap::iterator I = Map->find(Name);
+ if (I == Map->end())
+ return lookup_result();
+
+ return I->second.getLookupResult();
+}
+
+DeclContext::lookup_result
+DeclContext::noload_lookup(DeclarationName Name) {
+ assert(DeclKind != Decl::LinkageSpec &&
+ "Should not perform lookups into linkage specs!");
+
+ DeclContext *PrimaryContext = getPrimaryContext();
+ if (PrimaryContext != this)
+ return PrimaryContext->noload_lookup(Name);
+
+ // If we have any lazy lexical declarations not in our lookup map, add them
+ // now. Don't import any external declarations, not even if we know we have
+ // some missing from the external visible lookups.
+ if (HasLazyLocalLexicalLookups) {
+ SmallVector<DeclContext *, 2> Contexts;
+ collectAllContexts(Contexts);
+ for (unsigned I = 0, N = Contexts.size(); I != N; ++I)
+ buildLookupImpl(Contexts[I], hasExternalVisibleStorage());
+ HasLazyLocalLexicalLookups = false;
+ }
+
+ StoredDeclsMap *Map = LookupPtr;
+ if (!Map)
+ return lookup_result();
+
+ StoredDeclsMap::iterator I = Map->find(Name);
+ return I != Map->end() ? I->second.getLookupResult()
+ : lookup_result();
+}
+
+void DeclContext::localUncachedLookup(DeclarationName Name,
+ SmallVectorImpl<NamedDecl *> &Results) {
+ Results.clear();
+
+ // If there's no external storage, just perform a normal lookup and copy
+ // the results.
+ if (!hasExternalVisibleStorage() && !hasExternalLexicalStorage() && Name) {
+ lookup_result LookupResults = lookup(Name);
+ Results.insert(Results.end(), LookupResults.begin(), LookupResults.end());
+ return;
+ }
+
+ // If we have a lookup table, check there first. Maybe we'll get lucky.
+ // FIXME: Should we be checking these flags on the primary context?
+ if (Name && !HasLazyLocalLexicalLookups && !HasLazyExternalLexicalLookups) {
+ if (StoredDeclsMap *Map = LookupPtr) {
+ StoredDeclsMap::iterator Pos = Map->find(Name);
+ if (Pos != Map->end()) {
+ Results.insert(Results.end(),
+ Pos->second.getLookupResult().begin(),
+ Pos->second.getLookupResult().end());
+ return;
+ }
+ }
+ }
+
+ // Slow case: grovel through the declarations in our chain looking for
+ // matches.
+ // FIXME: If we have lazy external declarations, this will not find them!
+ // FIXME: Should we CollectAllContexts and walk them all here?
+ for (Decl *D = FirstDecl; D; D = D->getNextDeclInContext()) {
+ if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
+ if (ND->getDeclName() == Name)
+ Results.push_back(ND);
+ }
+}
+
+DeclContext *DeclContext::getRedeclContext() {
+ DeclContext *Ctx = this;
+ // Skip through transparent contexts.
+ while (Ctx->isTransparentContext())
+ Ctx = Ctx->getParent();
+ return Ctx;
+}
+
+DeclContext *DeclContext::getEnclosingNamespaceContext() {
+ DeclContext *Ctx = this;
+ // Skip through non-namespace, non-translation-unit contexts.
+ while (!Ctx->isFileContext())
+ Ctx = Ctx->getParent();
+ return Ctx->getPrimaryContext();
+}
+
+RecordDecl *DeclContext::getOuterLexicalRecordContext() {
+ // Loop until we find a non-record context.
+ RecordDecl *OutermostRD = nullptr;
+ DeclContext *DC = this;
+ while (DC->isRecord()) {
+ OutermostRD = cast<RecordDecl>(DC);
+ DC = DC->getLexicalParent();
+ }
+ return OutermostRD;
+}
+
+bool DeclContext::InEnclosingNamespaceSetOf(const DeclContext *O) const {
+ // For non-file contexts, this is equivalent to Equals.
+ if (!isFileContext())
+ return O->Equals(this);
+
+ do {
+ if (O->Equals(this))
+ return true;
+
+ const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(O);
+ if (!NS || !NS->isInline())
+ break;
+ O = NS->getParent();
+ } while (O);
+
+ return false;
+}
+
+void DeclContext::makeDeclVisibleInContext(NamedDecl *D) {
+ DeclContext *PrimaryDC = this->getPrimaryContext();
+ DeclContext *DeclDC = D->getDeclContext()->getPrimaryContext();
+ // If the decl is being added outside of its semantic decl context, we
+ // need to ensure that we eagerly build the lookup information for it.
+ PrimaryDC->makeDeclVisibleInContextWithFlags(D, false, PrimaryDC == DeclDC);
+}
+
+void DeclContext::makeDeclVisibleInContextWithFlags(NamedDecl *D, bool Internal,
+ bool Recoverable) {
+ assert(this == getPrimaryContext() && "expected a primary DC");
+
+ // Skip declarations within functions.
+ if (isFunctionOrMethod())
+ return;
+
+ // Skip declarations which should be invisible to name lookup.
+ if (shouldBeHidden(D))
+ return;
+
+ // If we already have a lookup data structure, perform the insertion into
+ // it. If we might have externally-stored decls with this name, look them
+ // up and perform the insertion. If this decl was declared outside its
+ // semantic context, buildLookup won't add it, so add it now.
+ //
+ // FIXME: As a performance hack, don't add such decls into the translation
+ // unit unless we're in C++, since qualified lookup into the TU is never
+ // performed.
+ if (LookupPtr || hasExternalVisibleStorage() ||
+ ((!Recoverable || D->getDeclContext() != D->getLexicalDeclContext()) &&
+ (getParentASTContext().getLangOpts().CPlusPlus ||
+ !isTranslationUnit()))) {
+ // If we have lazily omitted any decls, they might have the same name as
+ // the decl which we are adding, so build a full lookup table before adding
+ // this decl.
+ buildLookup();
+ makeDeclVisibleInContextImpl(D, Internal);
+ } else {
+ HasLazyLocalLexicalLookups = true;
+ }
+
+ // If we are a transparent context or inline namespace, insert into our
+ // parent context, too. This operation is recursive.
+ if (isTransparentContext() || isInlineNamespace())
+ getParent()->getPrimaryContext()->
+ makeDeclVisibleInContextWithFlags(D, Internal, Recoverable);
+
+ Decl *DCAsDecl = cast<Decl>(this);
+ // Notify that a decl was made visible unless we are a Tag being defined.
+ if (!(isa<TagDecl>(DCAsDecl) && cast<TagDecl>(DCAsDecl)->isBeingDefined()))
+ if (ASTMutationListener *L = DCAsDecl->getASTMutationListener())
+ L->AddedVisibleDecl(this, D);
+}
+
+void DeclContext::makeDeclVisibleInContextImpl(NamedDecl *D, bool Internal) {
+ // Find or create the stored declaration map.
+ StoredDeclsMap *Map = LookupPtr;
+ if (!Map) {
+ ASTContext *C = &getParentASTContext();
+ Map = CreateStoredDeclsMap(*C);
+ }
+
+ // If there is an external AST source, load any declarations it knows about
+ // with this declaration's name.
+ // If the lookup table contains an entry about this name it means that we
+ // have already checked the external source.
+ if (!Internal)
+ if (ExternalASTSource *Source = getParentASTContext().getExternalSource())
+ if (hasExternalVisibleStorage() &&
+ Map->find(D->getDeclName()) == Map->end())
+ Source->FindExternalVisibleDeclsByName(this, D->getDeclName());
+
+ // Insert this declaration into the map.
+ StoredDeclsList &DeclNameEntries = (*Map)[D->getDeclName()];
+
+ if (Internal) {
+ // If this is being added as part of loading an external declaration,
+ // this may not be the only external declaration with this name.
+ // In this case, we never try to replace an existing declaration; we'll
+ // handle that when we finalize the list of declarations for this name.
+ DeclNameEntries.setHasExternalDecls();
+ DeclNameEntries.AddSubsequentDecl(D);
+ return;
+ }
+
+ if (DeclNameEntries.isNull()) {
+ DeclNameEntries.setOnlyValue(D);
+ return;
+ }
+
+ if (DeclNameEntries.HandleRedeclaration(D, /*IsKnownNewer*/!Internal)) {
+ // This declaration has replaced an existing one for which
+ // declarationReplaces returns true.
+ return;
+ }
+
+ // Put this declaration into the appropriate slot.
+ DeclNameEntries.AddSubsequentDecl(D);
+}
+
+UsingDirectiveDecl *DeclContext::udir_iterator::operator*() const {
+ return cast<UsingDirectiveDecl>(*I);
+}
+
+/// Returns iterator range [First, Last) of UsingDirectiveDecls stored within
+/// this context.
+DeclContext::udir_range DeclContext::using_directives() const {
+ // FIXME: Use something more efficient than normal lookup for using
+ // directives. In C++, using directives are looked up more than anything else.
+ lookup_result Result = lookup(UsingDirectiveDecl::getName());
+ return udir_range(Result.begin(), Result.end());
+}
+
+//===----------------------------------------------------------------------===//
+// Creation and Destruction of StoredDeclsMaps. //
+//===----------------------------------------------------------------------===//
+
+StoredDeclsMap *DeclContext::CreateStoredDeclsMap(ASTContext &C) const {
+ assert(!LookupPtr && "context already has a decls map");
+ assert(getPrimaryContext() == this &&
+ "creating decls map on non-primary context");
+
+ StoredDeclsMap *M;
+ bool Dependent = isDependentContext();
+ if (Dependent)
+ M = new DependentStoredDeclsMap();
+ else
+ M = new StoredDeclsMap();
+ M->Previous = C.LastSDM;
+ C.LastSDM = llvm::PointerIntPair<StoredDeclsMap*,1>(M, Dependent);
+ LookupPtr = M;
+ return M;
+}
+
+void ASTContext::ReleaseDeclContextMaps() {
+ // It's okay to delete DependentStoredDeclsMaps via a StoredDeclsMap
+ // pointer because the subclass doesn't add anything that needs to
+ // be deleted.
+ StoredDeclsMap::DestroyAll(LastSDM.getPointer(), LastSDM.getInt());
+}
+
+void StoredDeclsMap::DestroyAll(StoredDeclsMap *Map, bool Dependent) {
+ while (Map) {
+ // Advance the iteration before we invalidate memory.
+ llvm::PointerIntPair<StoredDeclsMap*,1> Next = Map->Previous;
+
+ if (Dependent)
+ delete static_cast<DependentStoredDeclsMap*>(Map);
+ else
+ delete Map;
+
+ Map = Next.getPointer();
+ Dependent = Next.getInt();
+ }
+}
+
+DependentDiagnostic *DependentDiagnostic::Create(ASTContext &C,
+ DeclContext *Parent,
+ const PartialDiagnostic &PDiag) {
+ assert(Parent->isDependentContext()
+ && "cannot iterate dependent diagnostics of non-dependent context");
+ Parent = Parent->getPrimaryContext();
+ if (!Parent->LookupPtr)
+ Parent->CreateStoredDeclsMap(C);
+
+ DependentStoredDeclsMap *Map =
+ static_cast<DependentStoredDeclsMap *>(Parent->LookupPtr);
+
+ // Allocate the copy of the PartialDiagnostic via the ASTContext's
+ // BumpPtrAllocator, rather than the ASTContext itself.
+ PartialDiagnostic::Storage *DiagStorage = nullptr;
+ if (PDiag.hasStorage())
+ DiagStorage = new (C) PartialDiagnostic::Storage;
+
+ DependentDiagnostic *DD = new (C) DependentDiagnostic(PDiag, DiagStorage);
+
+ // TODO: Maybe we shouldn't reverse the order during insertion.
+ DD->NextDiagnostic = Map->FirstDiagnostic;
+ Map->FirstDiagnostic = DD;
+
+ return DD;
+}
diff --git a/contrib/llvm/tools/clang/lib/AST/DeclCXX.cpp b/contrib/llvm/tools/clang/lib/AST/DeclCXX.cpp
new file mode 100644
index 0000000..8dc62dd
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/DeclCXX.cpp
@@ -0,0 +1,2218 @@
+//===--- DeclCXX.cpp - C++ Declaration AST Node Implementation ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the C++ related Decl classes.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTLambda.h"
+#include "clang/AST/ASTMutationListener.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/Basic/IdentifierTable.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// Decl Allocation/Deallocation Method Implementations
+//===----------------------------------------------------------------------===//
+
+void AccessSpecDecl::anchor() { }
+
+AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) AccessSpecDecl(EmptyShell());
+}
+
+void LazyASTUnresolvedSet::getFromExternalSource(ASTContext &C) const {
+ ExternalASTSource *Source = C.getExternalSource();
+ assert(Impl.Decls.isLazy() && "getFromExternalSource for non-lazy set");
+ assert(Source && "getFromExternalSource with no external source");
+
+ for (ASTUnresolvedSet::iterator I = Impl.begin(); I != Impl.end(); ++I)
+ I.setDecl(cast<NamedDecl>(Source->GetExternalDecl(
+ reinterpret_cast<uintptr_t>(I.getDecl()) >> 2)));
+ Impl.Decls.setLazy(false);
+}
+
+CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D)
+ : UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0),
+ Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
+ Abstract(false), IsStandardLayout(true), HasNoNonEmptyBases(true),
+ HasPrivateFields(false), HasProtectedFields(false), HasPublicFields(false),
+ HasMutableFields(false), HasVariantMembers(false), HasOnlyCMembers(true),
+ HasInClassInitializer(false), HasUninitializedReferenceMember(false),
+ NeedOverloadResolutionForMoveConstructor(false),
+ NeedOverloadResolutionForMoveAssignment(false),
+ NeedOverloadResolutionForDestructor(false),
+ DefaultedMoveConstructorIsDeleted(false),
+ DefaultedMoveAssignmentIsDeleted(false),
+ DefaultedDestructorIsDeleted(false),
+ HasTrivialSpecialMembers(SMF_All),
+ DeclaredNonTrivialSpecialMembers(0),
+ HasIrrelevantDestructor(true),
+ HasConstexprNonCopyMoveConstructor(false),
+ DefaultedDefaultConstructorIsConstexpr(true),
+ HasConstexprDefaultConstructor(false),
+ HasNonLiteralTypeFieldsOrBases(false), ComputedVisibleConversions(false),
+ UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0),
+ ImplicitCopyConstructorHasConstParam(true),
+ ImplicitCopyAssignmentHasConstParam(true),
+ HasDeclaredCopyConstructorWithConstParam(false),
+ HasDeclaredCopyAssignmentWithConstParam(false),
+ IsLambda(false), IsParsingBaseSpecifiers(false), NumBases(0), NumVBases(0),
+ Bases(), VBases(),
+ Definition(D), FirstFriend() {
+}
+
+CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getBasesSlowCase() const {
+ return Bases.get(Definition->getASTContext().getExternalSource());
+}
+
+CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getVBasesSlowCase() const {
+ return VBases.get(Definition->getASTContext().getExternalSource());
+}
+
+CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C,
+ DeclContext *DC, SourceLocation StartLoc,
+ SourceLocation IdLoc, IdentifierInfo *Id,
+ CXXRecordDecl *PrevDecl)
+ : RecordDecl(K, TK, C, DC, StartLoc, IdLoc, Id, PrevDecl),
+ DefinitionData(PrevDecl ? PrevDecl->DefinitionData
+ : DefinitionDataPtr(this)),
+ TemplateOrInstantiation() {}
+
+CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK,
+ DeclContext *DC, SourceLocation StartLoc,
+ SourceLocation IdLoc, IdentifierInfo *Id,
+ CXXRecordDecl* PrevDecl,
+ bool DelayTypeCreation) {
+ CXXRecordDecl *R = new (C, DC) CXXRecordDecl(CXXRecord, TK, C, DC, StartLoc,
+ IdLoc, Id, PrevDecl);
+ R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
+
+ // FIXME: DelayTypeCreation seems like such a hack
+ if (!DelayTypeCreation)
+ C.getTypeDeclType(R, PrevDecl);
+ return R;
+}
+
+CXXRecordDecl *
+CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC,
+ TypeSourceInfo *Info, SourceLocation Loc,
+ bool Dependent, bool IsGeneric,
+ LambdaCaptureDefault CaptureDefault) {
+ CXXRecordDecl *R =
+ new (C, DC) CXXRecordDecl(CXXRecord, TTK_Class, C, DC, Loc, Loc,
+ nullptr, nullptr);
+ R->IsBeingDefined = true;
+ R->DefinitionData =
+ new (C) struct LambdaDefinitionData(R, Info, Dependent, IsGeneric,
+ CaptureDefault);
+ R->MayHaveOutOfDateDef = false;
+ R->setImplicit(true);
+ C.getTypeDeclType(R, /*PrevDecl=*/nullptr);
+ return R;
+}
+
+CXXRecordDecl *
+CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
+ CXXRecordDecl *R = new (C, ID) CXXRecordDecl(
+ CXXRecord, TTK_Struct, C, nullptr, SourceLocation(), SourceLocation(),
+ nullptr, nullptr);
+ R->MayHaveOutOfDateDef = false;
+ return R;
+}
+
+void
+CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases,
+ unsigned NumBases) {
+ ASTContext &C = getASTContext();
+
+ if (!data().Bases.isOffset() && data().NumBases > 0)
+ C.Deallocate(data().getBases());
+
+ if (NumBases) {
+ // C++ [dcl.init.aggr]p1:
+ // An aggregate is [...] a class with [...] no base classes [...].
+ data().Aggregate = false;
+
+ // C++ [class]p4:
+ // A POD-struct is an aggregate class...
+ data().PlainOldData = false;
+ }
+
+ // The set of seen virtual base types.
+ llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes;
+
+ // The virtual bases of this class.
+ SmallVector<const CXXBaseSpecifier *, 8> VBases;
+
+ data().Bases = new(C) CXXBaseSpecifier [NumBases];
+ data().NumBases = NumBases;
+ for (unsigned i = 0; i < NumBases; ++i) {
+ data().getBases()[i] = *Bases[i];
+ // Keep track of inherited vbases for this base class.
+ const CXXBaseSpecifier *Base = Bases[i];
+ QualType BaseType = Base->getType();
+ // Skip dependent types; we can't do any checking on them now.
+ if (BaseType->isDependentType())
+ continue;
+ CXXRecordDecl *BaseClassDecl
+ = cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
+
+ // A class with a non-empty base class is not empty.
+ // FIXME: Standard ref?
+ if (!BaseClassDecl->isEmpty()) {
+ if (!data().Empty) {
+ // C++0x [class]p7:
+ // A standard-layout class is a class that:
+ // [...]
+ // -- either has no non-static data members in the most derived
+ // class and at most one base class with non-static data members,
+ // or has no base classes with non-static data members, and
+ // If this is the second non-empty base, then neither of these two
+ // clauses can be true.
+ data().IsStandardLayout = false;
+ }
+
+ data().Empty = false;
+ data().HasNoNonEmptyBases = false;
+ }
+
+ // C++ [class.virtual]p1:
+ // A class that declares or inherits a virtual function is called a
+ // polymorphic class.
+ if (BaseClassDecl->isPolymorphic())
+ data().Polymorphic = true;
+
+ // C++0x [class]p7:
+ // A standard-layout class is a class that: [...]
+ // -- has no non-standard-layout base classes
+ if (!BaseClassDecl->isStandardLayout())
+ data().IsStandardLayout = false;
+
+ // Record if this base is the first non-literal field or base.
+ if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType(C))
+ data().HasNonLiteralTypeFieldsOrBases = true;
+
+ // Now go through all virtual bases of this base and add them.
+ for (const auto &VBase : BaseClassDecl->vbases()) {
+ // Add this base if it's not already in the list.
+ if (SeenVBaseTypes.insert(C.getCanonicalType(VBase.getType())).second) {
+ VBases.push_back(&VBase);
+
+ // C++11 [class.copy]p8:
+ // The implicitly-declared copy constructor for a class X will have
+ // the form 'X::X(const X&)' if each [...] virtual base class B of X
+ // has a copy constructor whose first parameter is of type
+ // 'const B&' or 'const volatile B&' [...]
+ if (CXXRecordDecl *VBaseDecl = VBase.getType()->getAsCXXRecordDecl())
+ if (!VBaseDecl->hasCopyConstructorWithConstParam())
+ data().ImplicitCopyConstructorHasConstParam = false;
+ }
+ }
+
+ if (Base->isVirtual()) {
+ // Add this base if it's not already in the list.
+ if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)).second)
+ VBases.push_back(Base);
+
+ // C++0x [meta.unary.prop] is_empty:
+ // T is a class type, but not a union type, with ... no virtual base
+ // classes
+ data().Empty = false;
+
+ // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
+ // A [default constructor, copy/move constructor, or copy/move assignment
+ // operator for a class X] is trivial [...] if:
+ // -- class X has [...] no virtual base classes
+ data().HasTrivialSpecialMembers &= SMF_Destructor;
+
+ // C++0x [class]p7:
+ // A standard-layout class is a class that: [...]
+ // -- has [...] no virtual base classes
+ data().IsStandardLayout = false;
+
+ // C++11 [dcl.constexpr]p4:
+ // In the definition of a constexpr constructor [...]
+ // -- the class shall not have any virtual base classes
+ data().DefaultedDefaultConstructorIsConstexpr = false;
+ } else {
+ // C++ [class.ctor]p5:
+ // A default constructor is trivial [...] if:
+ // -- all the direct base classes of its class have trivial default
+ // constructors.
+ if (!BaseClassDecl->hasTrivialDefaultConstructor())
+ data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
+
+ // C++0x [class.copy]p13:
+ // A copy/move constructor for class X is trivial if [...]
+ // [...]
+ // -- the constructor selected to copy/move each direct base class
+ // subobject is trivial, and
+ if (!BaseClassDecl->hasTrivialCopyConstructor())
+ data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
+ // If the base class doesn't have a simple move constructor, we'll eagerly
+ // declare it and perform overload resolution to determine which function
+ // it actually calls. If it does have a simple move constructor, this
+ // check is correct.
+ if (!BaseClassDecl->hasTrivialMoveConstructor())
+ data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
+
+ // C++0x [class.copy]p27:
+ // A copy/move assignment operator for class X is trivial if [...]
+ // [...]
+ // -- the assignment operator selected to copy/move each direct base
+ // class subobject is trivial, and
+ if (!BaseClassDecl->hasTrivialCopyAssignment())
+ data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
+ // If the base class doesn't have a simple move assignment, we'll eagerly
+ // declare it and perform overload resolution to determine which function
+ // it actually calls. If it does have a simple move assignment, this
+ // check is correct.
+ if (!BaseClassDecl->hasTrivialMoveAssignment())
+ data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
+
+ // C++11 [class.ctor]p6:
+ // If that user-written default constructor would satisfy the
+ // requirements of a constexpr constructor, the implicitly-defined
+ // default constructor is constexpr.
+ if (!BaseClassDecl->hasConstexprDefaultConstructor())
+ data().DefaultedDefaultConstructorIsConstexpr = false;
+ }
+
+ // C++ [class.ctor]p3:
+ // A destructor is trivial if all the direct base classes of its class
+ // have trivial destructors.
+ if (!BaseClassDecl->hasTrivialDestructor())
+ data().HasTrivialSpecialMembers &= ~SMF_Destructor;
+
+ if (!BaseClassDecl->hasIrrelevantDestructor())
+ data().HasIrrelevantDestructor = false;
+
+ // C++11 [class.copy]p18:
+ // The implicitly-declared copy assignment oeprator for a class X will
+ // have the form 'X& X::operator=(const X&)' if each direct base class B
+ // of X has a copy assignment operator whose parameter is of type 'const
+ // B&', 'const volatile B&', or 'B' [...]
+ if (!BaseClassDecl->hasCopyAssignmentWithConstParam())
+ data().ImplicitCopyAssignmentHasConstParam = false;
+
+ // C++11 [class.copy]p8:
+ // The implicitly-declared copy constructor for a class X will have
+ // the form 'X::X(const X&)' if each direct [...] base class B of X
+ // has a copy constructor whose first parameter is of type
+ // 'const B&' or 'const volatile B&' [...]
+ if (!BaseClassDecl->hasCopyConstructorWithConstParam())
+ data().ImplicitCopyConstructorHasConstParam = false;
+
+ // A class has an Objective-C object member if... or any of its bases
+ // has an Objective-C object member.
+ if (BaseClassDecl->hasObjectMember())
+ setHasObjectMember(true);
+
+ if (BaseClassDecl->hasVolatileMember())
+ setHasVolatileMember(true);
+
+ // Keep track of the presence of mutable fields.
+ if (BaseClassDecl->hasMutableFields())
+ data().HasMutableFields = true;
+
+ if (BaseClassDecl->hasUninitializedReferenceMember())
+ data().HasUninitializedReferenceMember = true;
+
+ addedClassSubobject(BaseClassDecl);
+ }
+
+ if (VBases.empty()) {
+ data().IsParsingBaseSpecifiers = false;
+ return;
+ }
+
+ // Create base specifier for any direct or indirect virtual bases.
+ data().VBases = new (C) CXXBaseSpecifier[VBases.size()];
+ data().NumVBases = VBases.size();
+ for (int I = 0, E = VBases.size(); I != E; ++I) {
+ QualType Type = VBases[I]->getType();
+ if (!Type->isDependentType())
+ addedClassSubobject(Type->getAsCXXRecordDecl());
+ data().getVBases()[I] = *VBases[I];
+ }
+
+ data().IsParsingBaseSpecifiers = false;
+}
+
+void CXXRecordDecl::addedClassSubobject(CXXRecordDecl *Subobj) {
+ // C++11 [class.copy]p11:
+ // A defaulted copy/move constructor for a class X is defined as
+ // deleted if X has:
+ // -- a direct or virtual base class B that cannot be copied/moved [...]
+ // -- a non-static data member of class type M (or array thereof)
+ // that cannot be copied or moved [...]
+ if (!Subobj->hasSimpleMoveConstructor())
+ data().NeedOverloadResolutionForMoveConstructor = true;
+
+ // C++11 [class.copy]p23:
+ // A defaulted copy/move assignment operator for a class X is defined as
+ // deleted if X has:
+ // -- a direct or virtual base class B that cannot be copied/moved [...]
+ // -- a non-static data member of class type M (or array thereof)
+ // that cannot be copied or moved [...]
+ if (!Subobj->hasSimpleMoveAssignment())
+ data().NeedOverloadResolutionForMoveAssignment = true;
+
+ // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5:
+ // A defaulted [ctor or dtor] for a class X is defined as
+ // deleted if X has:
+ // -- any direct or virtual base class [...] has a type with a destructor
+ // that is deleted or inaccessible from the defaulted [ctor or dtor].
+ // -- any non-static data member has a type with a destructor
+ // that is deleted or inaccessible from the defaulted [ctor or dtor].
+ if (!Subobj->hasSimpleDestructor()) {
+ data().NeedOverloadResolutionForMoveConstructor = true;
+ data().NeedOverloadResolutionForDestructor = true;
+ }
+}
+
+/// Callback function for CXXRecordDecl::forallBases that acknowledges
+/// that it saw a base class.
+static bool SawBase(const CXXRecordDecl *, void *) {
+ return true;
+}
+
+bool CXXRecordDecl::hasAnyDependentBases() const {
+ if (!isDependentContext())
+ return false;
+
+ return !forallBases(SawBase, nullptr);
+}
+
+bool CXXRecordDecl::isTriviallyCopyable() const {
+ // C++0x [class]p5:
+ // A trivially copyable class is a class that:
+ // -- has no non-trivial copy constructors,
+ if (hasNonTrivialCopyConstructor()) return false;
+ // -- has no non-trivial move constructors,
+ if (hasNonTrivialMoveConstructor()) return false;
+ // -- has no non-trivial copy assignment operators,
+ if (hasNonTrivialCopyAssignment()) return false;
+ // -- has no non-trivial move assignment operators, and
+ if (hasNonTrivialMoveAssignment()) return false;
+ // -- has a trivial destructor.
+ if (!hasTrivialDestructor()) return false;
+
+ return true;
+}
+
+void CXXRecordDecl::markedVirtualFunctionPure() {
+ // C++ [class.abstract]p2:
+ // A class is abstract if it has at least one pure virtual function.
+ data().Abstract = true;
+}
+
+void CXXRecordDecl::addedMember(Decl *D) {
+ if (!D->isImplicit() &&
+ !isa<FieldDecl>(D) &&
+ !isa<IndirectFieldDecl>(D) &&
+ (!isa<TagDecl>(D) || cast<TagDecl>(D)->getTagKind() == TTK_Class ||
+ cast<TagDecl>(D)->getTagKind() == TTK_Interface))
+ data().HasOnlyCMembers = false;
+
+ // Ignore friends and invalid declarations.
+ if (D->getFriendObjectKind() || D->isInvalidDecl())
+ return;
+
+ FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
+ if (FunTmpl)
+ D = FunTmpl->getTemplatedDecl();
+
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
+ if (Method->isVirtual()) {
+ // C++ [dcl.init.aggr]p1:
+ // An aggregate is an array or a class with [...] no virtual functions.
+ data().Aggregate = false;
+
+ // C++ [class]p4:
+ // A POD-struct is an aggregate class...
+ data().PlainOldData = false;
+
+ // Virtual functions make the class non-empty.
+ // FIXME: Standard ref?
+ data().Empty = false;
+
+ // C++ [class.virtual]p1:
+ // A class that declares or inherits a virtual function is called a
+ // polymorphic class.
+ data().Polymorphic = true;
+
+ // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
+ // A [default constructor, copy/move constructor, or copy/move
+ // assignment operator for a class X] is trivial [...] if:
+ // -- class X has no virtual functions [...]
+ data().HasTrivialSpecialMembers &= SMF_Destructor;
+
+ // C++0x [class]p7:
+ // A standard-layout class is a class that: [...]
+ // -- has no virtual functions
+ data().IsStandardLayout = false;
+ }
+ }
+
+ // Notify the listener if an implicit member was added after the definition
+ // was completed.
+ if (!isBeingDefined() && D->isImplicit())
+ if (ASTMutationListener *L = getASTMutationListener())
+ L->AddedCXXImplicitMember(data().Definition, D);
+
+ // The kind of special member this declaration is, if any.
+ unsigned SMKind = 0;
+
+ // Handle constructors.
+ if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
+ if (!Constructor->isImplicit()) {
+ // Note that we have a user-declared constructor.
+ data().UserDeclaredConstructor = true;
+
+ // C++ [class]p4:
+ // A POD-struct is an aggregate class [...]
+ // Since the POD bit is meant to be C++03 POD-ness, clear it even if the
+ // type is technically an aggregate in C++0x since it wouldn't be in 03.
+ data().PlainOldData = false;
+ }
+
+ // Technically, "user-provided" is only defined for special member
+ // functions, but the intent of the standard is clearly that it should apply
+ // to all functions.
+ bool UserProvided = Constructor->isUserProvided();
+
+ if (Constructor->isDefaultConstructor()) {
+ SMKind |= SMF_DefaultConstructor;
+
+ if (UserProvided)
+ data().UserProvidedDefaultConstructor = true;
+ if (Constructor->isConstexpr())
+ data().HasConstexprDefaultConstructor = true;
+ }
+
+ if (!FunTmpl) {
+ unsigned Quals;
+ if (Constructor->isCopyConstructor(Quals)) {
+ SMKind |= SMF_CopyConstructor;
+
+ if (Quals & Qualifiers::Const)
+ data().HasDeclaredCopyConstructorWithConstParam = true;
+ } else if (Constructor->isMoveConstructor())
+ SMKind |= SMF_MoveConstructor;
+ }
+
+ // Record if we see any constexpr constructors which are neither copy
+ // nor move constructors.
+ if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor())
+ data().HasConstexprNonCopyMoveConstructor = true;
+
+ // C++ [dcl.init.aggr]p1:
+ // An aggregate is an array or a class with no user-declared
+ // constructors [...].
+ // C++11 [dcl.init.aggr]p1:
+ // An aggregate is an array or a class with no user-provided
+ // constructors [...].
+ if (getASTContext().getLangOpts().CPlusPlus11
+ ? UserProvided : !Constructor->isImplicit())
+ data().Aggregate = false;
+ }
+
+ // Handle destructors.
+ if (CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) {
+ SMKind |= SMF_Destructor;
+
+ if (DD->isUserProvided())
+ data().HasIrrelevantDestructor = false;
+ // If the destructor is explicitly defaulted and not trivial or not public
+ // or if the destructor is deleted, we clear HasIrrelevantDestructor in
+ // finishedDefaultedOrDeletedMember.
+
+ // C++11 [class.dtor]p5:
+ // A destructor is trivial if [...] the destructor is not virtual.
+ if (DD->isVirtual())
+ data().HasTrivialSpecialMembers &= ~SMF_Destructor;
+ }
+
+ // Handle member functions.
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
+ if (Method->isCopyAssignmentOperator()) {
+ SMKind |= SMF_CopyAssignment;
+
+ const ReferenceType *ParamTy =
+ Method->getParamDecl(0)->getType()->getAs<ReferenceType>();
+ if (!ParamTy || ParamTy->getPointeeType().isConstQualified())
+ data().HasDeclaredCopyAssignmentWithConstParam = true;
+ }
+
+ if (Method->isMoveAssignmentOperator())
+ SMKind |= SMF_MoveAssignment;
+
+ // Keep the list of conversion functions up-to-date.
+ if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) {
+ // FIXME: We use the 'unsafe' accessor for the access specifier here,
+ // because Sema may not have set it yet. That's really just a misdesign
+ // in Sema. However, LLDB *will* have set the access specifier correctly,
+ // and adds declarations after the class is technically completed,
+ // so completeDefinition()'s overriding of the access specifiers doesn't
+ // work.
+ AccessSpecifier AS = Conversion->getAccessUnsafe();
+
+ if (Conversion->getPrimaryTemplate()) {
+ // We don't record specializations.
+ } else {
+ ASTContext &Ctx = getASTContext();
+ ASTUnresolvedSet &Conversions = data().Conversions.get(Ctx);
+ NamedDecl *Primary =
+ FunTmpl ? cast<NamedDecl>(FunTmpl) : cast<NamedDecl>(Conversion);
+ if (Primary->getPreviousDecl())
+ Conversions.replace(cast<NamedDecl>(Primary->getPreviousDecl()),
+ Primary, AS);
+ else
+ Conversions.addDecl(Ctx, Primary, AS);
+ }
+ }
+
+ if (SMKind) {
+ // If this is the first declaration of a special member, we no longer have
+ // an implicit trivial special member.
+ data().HasTrivialSpecialMembers &=
+ data().DeclaredSpecialMembers | ~SMKind;
+
+ if (!Method->isImplicit() && !Method->isUserProvided()) {
+ // This method is user-declared but not user-provided. We can't work out
+ // whether it's trivial yet (not until we get to the end of the class).
+ // We'll handle this method in finishedDefaultedOrDeletedMember.
+ } else if (Method->isTrivial())
+ data().HasTrivialSpecialMembers |= SMKind;
+ else
+ data().DeclaredNonTrivialSpecialMembers |= SMKind;
+
+ // Note when we have declared a declared special member, and suppress the
+ // implicit declaration of this special member.
+ data().DeclaredSpecialMembers |= SMKind;
+
+ if (!Method->isImplicit()) {
+ data().UserDeclaredSpecialMembers |= SMKind;
+
+ // C++03 [class]p4:
+ // A POD-struct is an aggregate class that has [...] no user-defined
+ // copy assignment operator and no user-defined destructor.
+ //
+ // Since the POD bit is meant to be C++03 POD-ness, and in C++03,
+ // aggregates could not have any constructors, clear it even for an
+ // explicitly defaulted or deleted constructor.
+ // type is technically an aggregate in C++0x since it wouldn't be in 03.
+ //
+ // Also, a user-declared move assignment operator makes a class non-POD.
+ // This is an extension in C++03.
+ data().PlainOldData = false;
+ }
+ }
+
+ return;
+ }
+
+ // Handle non-static data members.
+ if (FieldDecl *Field = dyn_cast<FieldDecl>(D)) {
+ // C++ [class.bit]p2:
+ // A declaration for a bit-field that omits the identifier declares an
+ // unnamed bit-field. Unnamed bit-fields are not members and cannot be
+ // initialized.
+ if (Field->isUnnamedBitfield())
+ return;
+
+ // C++ [dcl.init.aggr]p1:
+ // An aggregate is an array or a class (clause 9) with [...] no
+ // private or protected non-static data members (clause 11).
+ //
+ // A POD must be an aggregate.
+ if (D->getAccess() == AS_private || D->getAccess() == AS_protected) {
+ data().Aggregate = false;
+ data().PlainOldData = false;
+ }
+
+ // C++0x [class]p7:
+ // A standard-layout class is a class that:
+ // [...]
+ // -- has the same access control for all non-static data members,
+ switch (D->getAccess()) {
+ case AS_private: data().HasPrivateFields = true; break;
+ case AS_protected: data().HasProtectedFields = true; break;
+ case AS_public: data().HasPublicFields = true; break;
+ case AS_none: llvm_unreachable("Invalid access specifier");
+ };
+ if ((data().HasPrivateFields + data().HasProtectedFields +
+ data().HasPublicFields) > 1)
+ data().IsStandardLayout = false;
+
+ // Keep track of the presence of mutable fields.
+ if (Field->isMutable())
+ data().HasMutableFields = true;
+
+ // C++11 [class.union]p8, DR1460:
+ // If X is a union, a non-static data member of X that is not an anonymous
+ // union is a variant member of X.
+ if (isUnion() && !Field->isAnonymousStructOrUnion())
+ data().HasVariantMembers = true;
+
+ // C++0x [class]p9:
+ // A POD struct is a class that is both a trivial class and a
+ // standard-layout class, and has no non-static data members of type
+ // non-POD struct, non-POD union (or array of such types).
+ //
+ // Automatic Reference Counting: the presence of a member of Objective-C pointer type
+ // that does not explicitly have no lifetime makes the class a non-POD.
+ ASTContext &Context = getASTContext();
+ QualType T = Context.getBaseElementType(Field->getType());
+ if (T->isObjCRetainableType() || T.isObjCGCStrong()) {
+ if (!Context.getLangOpts().ObjCAutoRefCount) {
+ setHasObjectMember(true);
+ } else if (T.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
+ // Objective-C Automatic Reference Counting:
+ // If a class has a non-static data member of Objective-C pointer
+ // type (or array thereof), it is a non-POD type and its
+ // default constructor (if any), copy constructor, move constructor,
+ // copy assignment operator, move assignment operator, and destructor are
+ // non-trivial.
+ setHasObjectMember(true);
+ struct DefinitionData &Data = data();
+ Data.PlainOldData = false;
+ Data.HasTrivialSpecialMembers = 0;
+ Data.HasIrrelevantDestructor = false;
+ }
+ } else if (!T.isCXX98PODType(Context))
+ data().PlainOldData = false;
+
+ if (T->isReferenceType()) {
+ if (!Field->hasInClassInitializer())
+ data().HasUninitializedReferenceMember = true;
+
+ // C++0x [class]p7:
+ // A standard-layout class is a class that:
+ // -- has no non-static data members of type [...] reference,
+ data().IsStandardLayout = false;
+ }
+
+ // Record if this field is the first non-literal or volatile field or base.
+ if (!T->isLiteralType(Context) || T.isVolatileQualified())
+ data().HasNonLiteralTypeFieldsOrBases = true;
+
+ if (Field->hasInClassInitializer() ||
+ (Field->isAnonymousStructOrUnion() &&
+ Field->getType()->getAsCXXRecordDecl()->hasInClassInitializer())) {
+ data().HasInClassInitializer = true;
+
+ // C++11 [class]p5:
+ // A default constructor is trivial if [...] no non-static data member
+ // of its class has a brace-or-equal-initializer.
+ data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
+
+ // C++11 [dcl.init.aggr]p1:
+ // An aggregate is a [...] class with [...] no
+ // brace-or-equal-initializers for non-static data members.
+ //
+ // This rule was removed in C++1y.
+ if (!getASTContext().getLangOpts().CPlusPlus14)
+ data().Aggregate = false;
+
+ // C++11 [class]p10:
+ // A POD struct is [...] a trivial class.
+ data().PlainOldData = false;
+ }
+
+ // C++11 [class.copy]p23:
+ // A defaulted copy/move assignment operator for a class X is defined
+ // as deleted if X has:
+ // -- a non-static data member of reference type
+ if (T->isReferenceType())
+ data().DefaultedMoveAssignmentIsDeleted = true;
+
+ if (const RecordType *RecordTy = T->getAs<RecordType>()) {
+ CXXRecordDecl* FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl());
+ if (FieldRec->getDefinition()) {
+ addedClassSubobject(FieldRec);
+
+ // We may need to perform overload resolution to determine whether a
+ // field can be moved if it's const or volatile qualified.
+ if (T.getCVRQualifiers() & (Qualifiers::Const | Qualifiers::Volatile)) {
+ data().NeedOverloadResolutionForMoveConstructor = true;
+ data().NeedOverloadResolutionForMoveAssignment = true;
+ }
+
+ // C++11 [class.ctor]p5, C++11 [class.copy]p11:
+ // A defaulted [special member] for a class X is defined as
+ // deleted if:
+ // -- X is a union-like class that has a variant member with a
+ // non-trivial [corresponding special member]
+ if (isUnion()) {
+ if (FieldRec->hasNonTrivialMoveConstructor())
+ data().DefaultedMoveConstructorIsDeleted = true;
+ if (FieldRec->hasNonTrivialMoveAssignment())
+ data().DefaultedMoveAssignmentIsDeleted = true;
+ if (FieldRec->hasNonTrivialDestructor())
+ data().DefaultedDestructorIsDeleted = true;
+ }
+
+ // C++0x [class.ctor]p5:
+ // A default constructor is trivial [...] if:
+ // -- for all the non-static data members of its class that are of
+ // class type (or array thereof), each such class has a trivial
+ // default constructor.
+ if (!FieldRec->hasTrivialDefaultConstructor())
+ data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
+
+ // C++0x [class.copy]p13:
+ // A copy/move constructor for class X is trivial if [...]
+ // [...]
+ // -- for each non-static data member of X that is of class type (or
+ // an array thereof), the constructor selected to copy/move that
+ // member is trivial;
+ if (!FieldRec->hasTrivialCopyConstructor())
+ data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
+ // If the field doesn't have a simple move constructor, we'll eagerly
+ // declare the move constructor for this class and we'll decide whether
+ // it's trivial then.
+ if (!FieldRec->hasTrivialMoveConstructor())
+ data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
+
+ // C++0x [class.copy]p27:
+ // A copy/move assignment operator for class X is trivial if [...]
+ // [...]
+ // -- for each non-static data member of X that is of class type (or
+ // an array thereof), the assignment operator selected to
+ // copy/move that member is trivial;
+ if (!FieldRec->hasTrivialCopyAssignment())
+ data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
+ // If the field doesn't have a simple move assignment, we'll eagerly
+ // declare the move assignment for this class and we'll decide whether
+ // it's trivial then.
+ if (!FieldRec->hasTrivialMoveAssignment())
+ data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
+
+ if (!FieldRec->hasTrivialDestructor())
+ data().HasTrivialSpecialMembers &= ~SMF_Destructor;
+ if (!FieldRec->hasIrrelevantDestructor())
+ data().HasIrrelevantDestructor = false;
+ if (FieldRec->hasObjectMember())
+ setHasObjectMember(true);
+ if (FieldRec->hasVolatileMember())
+ setHasVolatileMember(true);
+
+ // C++0x [class]p7:
+ // A standard-layout class is a class that:
+ // -- has no non-static data members of type non-standard-layout
+ // class (or array of such types) [...]
+ if (!FieldRec->isStandardLayout())
+ data().IsStandardLayout = false;
+
+ // C++0x [class]p7:
+ // A standard-layout class is a class that:
+ // [...]
+ // -- has no base classes of the same type as the first non-static
+ // data member.
+ // We don't want to expend bits in the state of the record decl
+ // tracking whether this is the first non-static data member so we
+ // cheat a bit and use some of the existing state: the empty bit.
+ // Virtual bases and virtual methods make a class non-empty, but they
+ // also make it non-standard-layout so we needn't check here.
+ // A non-empty base class may leave the class standard-layout, but not
+ // if we have arrived here, and have at least one non-static data
+ // member. If IsStandardLayout remains true, then the first non-static
+ // data member must come through here with Empty still true, and Empty
+ // will subsequently be set to false below.
+ if (data().IsStandardLayout && data().Empty) {
+ for (const auto &BI : bases()) {
+ if (Context.hasSameUnqualifiedType(BI.getType(), T)) {
+ data().IsStandardLayout = false;
+ break;
+ }
+ }
+ }
+
+ // Keep track of the presence of mutable fields.
+ if (FieldRec->hasMutableFields())
+ data().HasMutableFields = true;
+
+ // C++11 [class.copy]p13:
+ // If the implicitly-defined constructor would satisfy the
+ // requirements of a constexpr constructor, the implicitly-defined
+ // constructor is constexpr.
+ // C++11 [dcl.constexpr]p4:
+ // -- every constructor involved in initializing non-static data
+ // members [...] shall be a constexpr constructor
+ if (!Field->hasInClassInitializer() &&
+ !FieldRec->hasConstexprDefaultConstructor() && !isUnion())
+ // The standard requires any in-class initializer to be a constant
+ // expression. We consider this to be a defect.
+ data().DefaultedDefaultConstructorIsConstexpr = false;
+
+ // C++11 [class.copy]p8:
+ // The implicitly-declared copy constructor for a class X will have
+ // the form 'X::X(const X&)' if [...] for all the non-static data
+ // members of X that are of a class type M (or array thereof), each
+ // such class type has a copy constructor whose first parameter is
+ // of type 'const M&' or 'const volatile M&'.
+ if (!FieldRec->hasCopyConstructorWithConstParam())
+ data().ImplicitCopyConstructorHasConstParam = false;
+
+ // C++11 [class.copy]p18:
+ // The implicitly-declared copy assignment oeprator for a class X will
+ // have the form 'X& X::operator=(const X&)' if [...] for all the
+ // non-static data members of X that are of a class type M (or array
+ // thereof), each such class type has a copy assignment operator whose
+ // parameter is of type 'const M&', 'const volatile M&' or 'M'.
+ if (!FieldRec->hasCopyAssignmentWithConstParam())
+ data().ImplicitCopyAssignmentHasConstParam = false;
+
+ if (FieldRec->hasUninitializedReferenceMember() &&
+ !Field->hasInClassInitializer())
+ data().HasUninitializedReferenceMember = true;
+
+ // C++11 [class.union]p8, DR1460:
+ // a non-static data member of an anonymous union that is a member of
+ // X is also a variant member of X.
+ if (FieldRec->hasVariantMembers() &&
+ Field->isAnonymousStructOrUnion())
+ data().HasVariantMembers = true;
+ }
+ } else {
+ // Base element type of field is a non-class type.
+ if (!T->isLiteralType(Context) ||
+ (!Field->hasInClassInitializer() && !isUnion()))
+ data().DefaultedDefaultConstructorIsConstexpr = false;
+
+ // C++11 [class.copy]p23:
+ // A defaulted copy/move assignment operator for a class X is defined
+ // as deleted if X has:
+ // -- a non-static data member of const non-class type (or array
+ // thereof)
+ if (T.isConstQualified())
+ data().DefaultedMoveAssignmentIsDeleted = true;
+ }
+
+ // C++0x [class]p7:
+ // A standard-layout class is a class that:
+ // [...]
+ // -- either has no non-static data members in the most derived
+ // class and at most one base class with non-static data members,
+ // or has no base classes with non-static data members, and
+ // At this point we know that we have a non-static data member, so the last
+ // clause holds.
+ if (!data().HasNoNonEmptyBases)
+ data().IsStandardLayout = false;
+
+ // If this is not a zero-length bit-field, then the class is not empty.
+ if (data().Empty) {
+ if (!Field->isBitField() ||
+ (!Field->getBitWidth()->isTypeDependent() &&
+ !Field->getBitWidth()->isValueDependent() &&
+ Field->getBitWidthValue(Context) != 0))
+ data().Empty = false;
+ }
+ }
+
+ // Handle using declarations of conversion functions.
+ if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(D)) {
+ if (Shadow->getDeclName().getNameKind()
+ == DeclarationName::CXXConversionFunctionName) {
+ ASTContext &Ctx = getASTContext();
+ data().Conversions.get(Ctx).addDecl(Ctx, Shadow, Shadow->getAccess());
+ }
+ }
+}
+
+void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl *D) {
+ assert(!D->isImplicit() && !D->isUserProvided());
+
+ // The kind of special member this declaration is, if any.
+ unsigned SMKind = 0;
+
+ if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
+ if (Constructor->isDefaultConstructor()) {
+ SMKind |= SMF_DefaultConstructor;
+ if (Constructor->isConstexpr())
+ data().HasConstexprDefaultConstructor = true;
+ }
+ if (Constructor->isCopyConstructor())
+ SMKind |= SMF_CopyConstructor;
+ else if (Constructor->isMoveConstructor())
+ SMKind |= SMF_MoveConstructor;
+ else if (Constructor->isConstexpr())
+ // We may now know that the constructor is constexpr.
+ data().HasConstexprNonCopyMoveConstructor = true;
+ } else if (isa<CXXDestructorDecl>(D)) {
+ SMKind |= SMF_Destructor;
+ if (!D->isTrivial() || D->getAccess() != AS_public || D->isDeleted())
+ data().HasIrrelevantDestructor = false;
+ } else if (D->isCopyAssignmentOperator())
+ SMKind |= SMF_CopyAssignment;
+ else if (D->isMoveAssignmentOperator())
+ SMKind |= SMF_MoveAssignment;
+
+ // Update which trivial / non-trivial special members we have.
+ // addedMember will have skipped this step for this member.
+ if (D->isTrivial())
+ data().HasTrivialSpecialMembers |= SMKind;
+ else
+ data().DeclaredNonTrivialSpecialMembers |= SMKind;
+}
+
+bool CXXRecordDecl::isCLike() const {
+ if (getTagKind() == TTK_Class || getTagKind() == TTK_Interface ||
+ !TemplateOrInstantiation.isNull())
+ return false;
+ if (!hasDefinition())
+ return true;
+
+ return isPOD() && data().HasOnlyCMembers;
+}
+
+bool CXXRecordDecl::isGenericLambda() const {
+ if (!isLambda()) return false;
+ return getLambdaData().IsGenericLambda;
+}
+
+CXXMethodDecl* CXXRecordDecl::getLambdaCallOperator() const {
+ if (!isLambda()) return nullptr;
+ DeclarationName Name =
+ getASTContext().DeclarationNames.getCXXOperatorName(OO_Call);
+ DeclContext::lookup_result Calls = lookup(Name);
+
+ assert(!Calls.empty() && "Missing lambda call operator!");
+ assert(Calls.size() == 1 && "More than one lambda call operator!");
+
+ NamedDecl *CallOp = Calls.front();
+ if (FunctionTemplateDecl *CallOpTmpl =
+ dyn_cast<FunctionTemplateDecl>(CallOp))
+ return cast<CXXMethodDecl>(CallOpTmpl->getTemplatedDecl());
+
+ return cast<CXXMethodDecl>(CallOp);
+}
+
+CXXMethodDecl* CXXRecordDecl::getLambdaStaticInvoker() const {
+ if (!isLambda()) return nullptr;
+ DeclarationName Name =
+ &getASTContext().Idents.get(getLambdaStaticInvokerName());
+ DeclContext::lookup_result Invoker = lookup(Name);
+ if (Invoker.empty()) return nullptr;
+ assert(Invoker.size() == 1 && "More than one static invoker operator!");
+ NamedDecl *InvokerFun = Invoker.front();
+ if (FunctionTemplateDecl *InvokerTemplate =
+ dyn_cast<FunctionTemplateDecl>(InvokerFun))
+ return cast<CXXMethodDecl>(InvokerTemplate->getTemplatedDecl());
+
+ return cast<CXXMethodDecl>(InvokerFun);
+}
+
+void CXXRecordDecl::getCaptureFields(
+ llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
+ FieldDecl *&ThisCapture) const {
+ Captures.clear();
+ ThisCapture = nullptr;
+
+ LambdaDefinitionData &Lambda = getLambdaData();
+ RecordDecl::field_iterator Field = field_begin();
+ for (const LambdaCapture *C = Lambda.Captures, *CEnd = C + Lambda.NumCaptures;
+ C != CEnd; ++C, ++Field) {
+ if (C->capturesThis())
+ ThisCapture = *Field;
+ else if (C->capturesVariable())
+ Captures[C->getCapturedVar()] = *Field;
+ }
+ assert(Field == field_end());
+}
+
+TemplateParameterList *
+CXXRecordDecl::getGenericLambdaTemplateParameterList() const {
+ if (!isLambda()) return nullptr;
+ CXXMethodDecl *CallOp = getLambdaCallOperator();
+ if (FunctionTemplateDecl *Tmpl = CallOp->getDescribedFunctionTemplate())
+ return Tmpl->getTemplateParameters();
+ return nullptr;
+}
+
+static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) {
+ QualType T =
+ cast<CXXConversionDecl>(Conv->getUnderlyingDecl()->getAsFunction())
+ ->getConversionType();
+ return Context.getCanonicalType(T);
+}
+
+/// Collect the visible conversions of a base class.
+///
+/// \param Record a base class of the class we're considering
+/// \param InVirtual whether this base class is a virtual base (or a base
+/// of a virtual base)
+/// \param Access the access along the inheritance path to this base
+/// \param ParentHiddenTypes the conversions provided by the inheritors
+/// of this base
+/// \param Output the set to which to add conversions from non-virtual bases
+/// \param VOutput the set to which to add conversions from virtual bases
+/// \param HiddenVBaseCs the set of conversions which were hidden in a
+/// virtual base along some inheritance path
+static void CollectVisibleConversions(ASTContext &Context,
+ CXXRecordDecl *Record,
+ bool InVirtual,
+ AccessSpecifier Access,
+ const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes,
+ ASTUnresolvedSet &Output,
+ UnresolvedSetImpl &VOutput,
+ llvm::SmallPtrSet<NamedDecl*, 8> &HiddenVBaseCs) {
+ // The set of types which have conversions in this class or its
+ // subclasses. As an optimization, we don't copy the derived set
+ // unless it might change.
+ const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes;
+ llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer;
+
+ // Collect the direct conversions and figure out which conversions
+ // will be hidden in the subclasses.
+ CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
+ CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
+ if (ConvI != ConvE) {
+ HiddenTypesBuffer = ParentHiddenTypes;
+ HiddenTypes = &HiddenTypesBuffer;
+
+ for (CXXRecordDecl::conversion_iterator I = ConvI; I != ConvE; ++I) {
+ CanQualType ConvType(GetConversionType(Context, I.getDecl()));
+ bool Hidden = ParentHiddenTypes.count(ConvType);
+ if (!Hidden)
+ HiddenTypesBuffer.insert(ConvType);
+
+ // If this conversion is hidden and we're in a virtual base,
+ // remember that it's hidden along some inheritance path.
+ if (Hidden && InVirtual)
+ HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()));
+
+ // If this conversion isn't hidden, add it to the appropriate output.
+ else if (!Hidden) {
+ AccessSpecifier IAccess
+ = CXXRecordDecl::MergeAccess(Access, I.getAccess());
+
+ if (InVirtual)
+ VOutput.addDecl(I.getDecl(), IAccess);
+ else
+ Output.addDecl(Context, I.getDecl(), IAccess);
+ }
+ }
+ }
+
+ // Collect information recursively from any base classes.
+ for (const auto &I : Record->bases()) {
+ const RecordType *RT = I.getType()->getAs<RecordType>();
+ if (!RT) continue;
+
+ AccessSpecifier BaseAccess
+ = CXXRecordDecl::MergeAccess(Access, I.getAccessSpecifier());
+ bool BaseInVirtual = InVirtual || I.isVirtual();
+
+ CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl());
+ CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess,
+ *HiddenTypes, Output, VOutput, HiddenVBaseCs);
+ }
+}
+
+/// Collect the visible conversions of a class.
+///
+/// This would be extremely straightforward if it weren't for virtual
+/// bases. It might be worth special-casing that, really.
+static void CollectVisibleConversions(ASTContext &Context,
+ CXXRecordDecl *Record,
+ ASTUnresolvedSet &Output) {
+ // The collection of all conversions in virtual bases that we've
+ // found. These will be added to the output as long as they don't
+ // appear in the hidden-conversions set.
+ UnresolvedSet<8> VBaseCs;
+
+ // The set of conversions in virtual bases that we've determined to
+ // be hidden.
+ llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs;
+
+ // The set of types hidden by classes derived from this one.
+ llvm::SmallPtrSet<CanQualType, 8> HiddenTypes;
+
+ // Go ahead and collect the direct conversions and add them to the
+ // hidden-types set.
+ CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
+ CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
+ Output.append(Context, ConvI, ConvE);
+ for (; ConvI != ConvE; ++ConvI)
+ HiddenTypes.insert(GetConversionType(Context, ConvI.getDecl()));
+
+ // Recursively collect conversions from base classes.
+ for (const auto &I : Record->bases()) {
+ const RecordType *RT = I.getType()->getAs<RecordType>();
+ if (!RT) continue;
+
+ CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()),
+ I.isVirtual(), I.getAccessSpecifier(),
+ HiddenTypes, Output, VBaseCs, HiddenVBaseCs);
+ }
+
+ // Add any unhidden conversions provided by virtual bases.
+ for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end();
+ I != E; ++I) {
+ if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())))
+ Output.addDecl(Context, I.getDecl(), I.getAccess());
+ }
+}
+
+/// getVisibleConversionFunctions - get all conversion functions visible
+/// in current class; including conversion function templates.
+llvm::iterator_range<CXXRecordDecl::conversion_iterator>
+CXXRecordDecl::getVisibleConversionFunctions() {
+ ASTContext &Ctx = getASTContext();
+
+ ASTUnresolvedSet *Set;
+ if (bases_begin() == bases_end()) {
+ // If root class, all conversions are visible.
+ Set = &data().Conversions.get(Ctx);
+ } else {
+ Set = &data().VisibleConversions.get(Ctx);
+ // If visible conversion list is not evaluated, evaluate it.
+ if (!data().ComputedVisibleConversions) {
+ CollectVisibleConversions(Ctx, this, *Set);
+ data().ComputedVisibleConversions = true;
+ }
+ }
+ return llvm::make_range(Set->begin(), Set->end());
+}
+
+void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) {
+ // This operation is O(N) but extremely rare. Sema only uses it to
+ // remove UsingShadowDecls in a class that were followed by a direct
+ // declaration, e.g.:
+ // class A : B {
+ // using B::operator int;
+ // operator int();
+ // };
+ // This is uncommon by itself and even more uncommon in conjunction
+ // with sufficiently large numbers of directly-declared conversions
+ // that asymptotic behavior matters.
+
+ ASTUnresolvedSet &Convs = data().Conversions.get(getASTContext());
+ for (unsigned I = 0, E = Convs.size(); I != E; ++I) {
+ if (Convs[I].getDecl() == ConvDecl) {
+ Convs.erase(I);
+ assert(std::find(Convs.begin(), Convs.end(), ConvDecl) == Convs.end()
+ && "conversion was found multiple times in unresolved set");
+ return;
+ }
+ }
+
+ llvm_unreachable("conversion not found in set!");
+}
+
+CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
+ if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
+ return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
+
+ return nullptr;
+}
+
+void
+CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
+ TemplateSpecializationKind TSK) {
+ assert(TemplateOrInstantiation.isNull() &&
+ "Previous template or instantiation?");
+ assert(!isa<ClassTemplatePartialSpecializationDecl>(this));
+ TemplateOrInstantiation
+ = new (getASTContext()) MemberSpecializationInfo(RD, TSK);
+}
+
+TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{
+ if (const ClassTemplateSpecializationDecl *Spec
+ = dyn_cast<ClassTemplateSpecializationDecl>(this))
+ return Spec->getSpecializationKind();
+
+ if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
+ return MSInfo->getTemplateSpecializationKind();
+
+ return TSK_Undeclared;
+}
+
+void
+CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
+ if (ClassTemplateSpecializationDecl *Spec
+ = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
+ Spec->setSpecializationKind(TSK);
+ return;
+ }
+
+ if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
+ MSInfo->setTemplateSpecializationKind(TSK);
+ return;
+ }
+
+ llvm_unreachable("Not a class template or member class specialization");
+}
+
+const CXXRecordDecl *CXXRecordDecl::getTemplateInstantiationPattern() const {
+ // If it's a class template specialization, find the template or partial
+ // specialization from which it was instantiated.
+ if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
+ auto From = TD->getInstantiatedFrom();
+ if (auto *CTD = From.dyn_cast<ClassTemplateDecl *>()) {
+ while (auto *NewCTD = CTD->getInstantiatedFromMemberTemplate()) {
+ if (NewCTD->isMemberSpecialization())
+ break;
+ CTD = NewCTD;
+ }
+ return CTD->getTemplatedDecl();
+ }
+ if (auto *CTPSD =
+ From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
+ while (auto *NewCTPSD = CTPSD->getInstantiatedFromMember()) {
+ if (NewCTPSD->isMemberSpecialization())
+ break;
+ CTPSD = NewCTPSD;
+ }
+ return CTPSD;
+ }
+ }
+
+ if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
+ if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
+ const CXXRecordDecl *RD = this;
+ while (auto *NewRD = RD->getInstantiatedFromMemberClass())
+ RD = NewRD;
+ return RD;
+ }
+ }
+
+ assert(!isTemplateInstantiation(this->getTemplateSpecializationKind()) &&
+ "couldn't find pattern for class template instantiation");
+ return nullptr;
+}
+
+CXXDestructorDecl *CXXRecordDecl::getDestructor() const {
+ ASTContext &Context = getASTContext();
+ QualType ClassType = Context.getTypeDeclType(this);
+
+ DeclarationName Name
+ = Context.DeclarationNames.getCXXDestructorName(
+ Context.getCanonicalType(ClassType));
+
+ DeclContext::lookup_result R = lookup(Name);
+ if (R.empty())
+ return nullptr;
+
+ CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(R.front());
+ return Dtor;
+}
+
+void CXXRecordDecl::completeDefinition() {
+ completeDefinition(nullptr);
+}
+
+void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) {
+ RecordDecl::completeDefinition();
+
+ // If the class may be abstract (but hasn't been marked as such), check for
+ // any pure final overriders.
+ if (mayBeAbstract()) {
+ CXXFinalOverriderMap MyFinalOverriders;
+ if (!FinalOverriders) {
+ getFinalOverriders(MyFinalOverriders);
+ FinalOverriders = &MyFinalOverriders;
+ }
+
+ bool Done = false;
+ for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(),
+ MEnd = FinalOverriders->end();
+ M != MEnd && !Done; ++M) {
+ for (OverridingMethods::iterator SO = M->second.begin(),
+ SOEnd = M->second.end();
+ SO != SOEnd && !Done; ++SO) {
+ assert(SO->second.size() > 0 &&
+ "All virtual functions have overridding virtual functions");
+
+ // C++ [class.abstract]p4:
+ // A class is abstract if it contains or inherits at least one
+ // pure virtual function for which the final overrider is pure
+ // virtual.
+ if (SO->second.front().Method->isPure()) {
+ data().Abstract = true;
+ Done = true;
+ break;
+ }
+ }
+ }
+ }
+
+ // Set access bits correctly on the directly-declared conversions.
+ for (conversion_iterator I = conversion_begin(), E = conversion_end();
+ I != E; ++I)
+ I.setAccess((*I)->getAccess());
+}
+
+bool CXXRecordDecl::mayBeAbstract() const {
+ if (data().Abstract || isInvalidDecl() || !data().Polymorphic ||
+ isDependentContext())
+ return false;
+
+ for (const auto &B : bases()) {
+ CXXRecordDecl *BaseDecl
+ = cast<CXXRecordDecl>(B.getType()->getAs<RecordType>()->getDecl());
+ if (BaseDecl->isAbstract())
+ return true;
+ }
+
+ return false;
+}
+
+void CXXMethodDecl::anchor() { }
+
+bool CXXMethodDecl::isStatic() const {
+ const CXXMethodDecl *MD = getCanonicalDecl();
+
+ if (MD->getStorageClass() == SC_Static)
+ return true;
+
+ OverloadedOperatorKind OOK = getDeclName().getCXXOverloadedOperator();
+ return isStaticOverloadedOperator(OOK);
+}
+
+static bool recursivelyOverrides(const CXXMethodDecl *DerivedMD,
+ const CXXMethodDecl *BaseMD) {
+ for (CXXMethodDecl::method_iterator I = DerivedMD->begin_overridden_methods(),
+ E = DerivedMD->end_overridden_methods(); I != E; ++I) {
+ const CXXMethodDecl *MD = *I;
+ if (MD->getCanonicalDecl() == BaseMD->getCanonicalDecl())
+ return true;
+ if (recursivelyOverrides(MD, BaseMD))
+ return true;
+ }
+ return false;
+}
+
+CXXMethodDecl *
+CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl *RD,
+ bool MayBeBase) {
+ if (this->getParent()->getCanonicalDecl() == RD->getCanonicalDecl())
+ return this;
+
+ // Lookup doesn't work for destructors, so handle them separately.
+ if (isa<CXXDestructorDecl>(this)) {
+ CXXMethodDecl *MD = RD->getDestructor();
+ if (MD) {
+ if (recursivelyOverrides(MD, this))
+ return MD;
+ if (MayBeBase && recursivelyOverrides(this, MD))
+ return MD;
+ }
+ return nullptr;
+ }
+
+ for (auto *ND : RD->lookup(getDeclName())) {
+ CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND);
+ if (!MD)
+ continue;
+ if (recursivelyOverrides(MD, this))
+ return MD;
+ if (MayBeBase && recursivelyOverrides(this, MD))
+ return MD;
+ }
+
+ for (const auto &I : RD->bases()) {
+ const RecordType *RT = I.getType()->getAs<RecordType>();
+ if (!RT)
+ continue;
+ const CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl());
+ CXXMethodDecl *T = this->getCorrespondingMethodInClass(Base);
+ if (T)
+ return T;
+ }
+
+ return nullptr;
+}
+
+CXXMethodDecl *
+CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD,
+ SourceLocation StartLoc,
+ const DeclarationNameInfo &NameInfo,
+ QualType T, TypeSourceInfo *TInfo,
+ StorageClass SC, bool isInline,
+ bool isConstexpr, SourceLocation EndLocation) {
+ return new (C, RD) CXXMethodDecl(CXXMethod, C, RD, StartLoc, NameInfo,
+ T, TInfo, SC, isInline, isConstexpr,
+ EndLocation);
+}
+
+CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) CXXMethodDecl(CXXMethod, C, nullptr, SourceLocation(),
+ DeclarationNameInfo(), QualType(), nullptr,
+ SC_None, false, false, SourceLocation());
+}
+
+bool CXXMethodDecl::isUsualDeallocationFunction() const {
+ if (getOverloadedOperator() != OO_Delete &&
+ getOverloadedOperator() != OO_Array_Delete)
+ return false;
+
+ // C++ [basic.stc.dynamic.deallocation]p2:
+ // A template instance is never a usual deallocation function,
+ // regardless of its signature.
+ if (getPrimaryTemplate())
+ return false;
+
+ // C++ [basic.stc.dynamic.deallocation]p2:
+ // If a class T has a member deallocation function named operator delete
+ // with exactly one parameter, then that function is a usual (non-placement)
+ // deallocation function. [...]
+ if (getNumParams() == 1)
+ return true;
+
+ // C++ [basic.stc.dynamic.deallocation]p2:
+ // [...] If class T does not declare such an operator delete but does
+ // declare a member deallocation function named operator delete with
+ // exactly two parameters, the second of which has type std::size_t (18.1),
+ // then this function is a usual deallocation function.
+ ASTContext &Context = getASTContext();
+ if (getNumParams() != 2 ||
+ !Context.hasSameUnqualifiedType(getParamDecl(1)->getType(),
+ Context.getSizeType()))
+ return false;
+
+ // This function is a usual deallocation function if there are no
+ // single-parameter deallocation functions of the same kind.
+ DeclContext::lookup_result R = getDeclContext()->lookup(getDeclName());
+ for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
+ I != E; ++I) {
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I))
+ if (FD->getNumParams() == 1)
+ return false;
+ }
+
+ return true;
+}
+
+bool CXXMethodDecl::isCopyAssignmentOperator() const {
+ // C++0x [class.copy]p17:
+ // A user-declared copy assignment operator X::operator= is a non-static
+ // non-template member function of class X with exactly one parameter of
+ // type X, X&, const X&, volatile X& or const volatile X&.
+ if (/*operator=*/getOverloadedOperator() != OO_Equal ||
+ /*non-static*/ isStatic() ||
+ /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate() ||
+ getNumParams() != 1)
+ return false;
+
+ QualType ParamType = getParamDecl(0)->getType();
+ if (const LValueReferenceType *Ref = ParamType->getAs<LValueReferenceType>())
+ ParamType = Ref->getPointeeType();
+
+ ASTContext &Context = getASTContext();
+ QualType ClassType
+ = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
+ return Context.hasSameUnqualifiedType(ClassType, ParamType);
+}
+
+bool CXXMethodDecl::isMoveAssignmentOperator() const {
+ // C++0x [class.copy]p19:
+ // A user-declared move assignment operator X::operator= is a non-static
+ // non-template member function of class X with exactly one parameter of type
+ // X&&, const X&&, volatile X&&, or const volatile X&&.
+ if (getOverloadedOperator() != OO_Equal || isStatic() ||
+ getPrimaryTemplate() || getDescribedFunctionTemplate() ||
+ getNumParams() != 1)
+ return false;
+
+ QualType ParamType = getParamDecl(0)->getType();
+ if (!isa<RValueReferenceType>(ParamType))
+ return false;
+ ParamType = ParamType->getPointeeType();
+
+ ASTContext &Context = getASTContext();
+ QualType ClassType
+ = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
+ return Context.hasSameUnqualifiedType(ClassType, ParamType);
+}
+
+void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
+ assert(MD->isCanonicalDecl() && "Method is not canonical!");
+ assert(!MD->getParent()->isDependentContext() &&
+ "Can't add an overridden method to a class template!");
+ assert(MD->isVirtual() && "Method is not virtual!");
+
+ getASTContext().addOverriddenMethod(this, MD);
+}
+
+CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
+ if (isa<CXXConstructorDecl>(this)) return nullptr;
+ return getASTContext().overridden_methods_begin(this);
+}
+
+CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
+ if (isa<CXXConstructorDecl>(this)) return nullptr;
+ return getASTContext().overridden_methods_end(this);
+}
+
+unsigned CXXMethodDecl::size_overridden_methods() const {
+ if (isa<CXXConstructorDecl>(this)) return 0;
+ return getASTContext().overridden_methods_size(this);
+}
+
+QualType CXXMethodDecl::getThisType(ASTContext &C) const {
+ // C++ 9.3.2p1: The type of this in a member function of a class X is X*.
+ // If the member function is declared const, the type of this is const X*,
+ // if the member function is declared volatile, the type of this is
+ // volatile X*, and if the member function is declared const volatile,
+ // the type of this is const volatile X*.
+
+ assert(isInstance() && "No 'this' for static methods!");
+
+ QualType ClassTy = C.getTypeDeclType(getParent());
+ ClassTy = C.getQualifiedType(ClassTy,
+ Qualifiers::fromCVRMask(getTypeQualifiers()));
+ return C.getPointerType(ClassTy);
+}
+
+bool CXXMethodDecl::hasInlineBody() const {
+ // If this function is a template instantiation, look at the template from
+ // which it was instantiated.
+ const FunctionDecl *CheckFn = getTemplateInstantiationPattern();
+ if (!CheckFn)
+ CheckFn = this;
+
+ const FunctionDecl *fn;
+ return CheckFn->hasBody(fn) && !fn->isOutOfLine();
+}
+
+bool CXXMethodDecl::isLambdaStaticInvoker() const {
+ const CXXRecordDecl *P = getParent();
+ if (P->isLambda()) {
+ if (const CXXMethodDecl *StaticInvoker = P->getLambdaStaticInvoker()) {
+ if (StaticInvoker == this) return true;
+ if (P->isGenericLambda() && this->isFunctionTemplateSpecialization())
+ return StaticInvoker == this->getPrimaryTemplate()->getTemplatedDecl();
+ }
+ }
+ return false;
+}
+
+CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
+ TypeSourceInfo *TInfo, bool IsVirtual,
+ SourceLocation L, Expr *Init,
+ SourceLocation R,
+ SourceLocation EllipsisLoc)
+ : Initializee(TInfo), MemberOrEllipsisLocation(EllipsisLoc), Init(Init),
+ LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual),
+ IsWritten(false), SourceOrderOrNumArrayIndices(0)
+{
+}
+
+CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
+ FieldDecl *Member,
+ SourceLocation MemberLoc,
+ SourceLocation L, Expr *Init,
+ SourceLocation R)
+ : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
+ LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
+ IsWritten(false), SourceOrderOrNumArrayIndices(0)
+{
+}
+
+CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
+ IndirectFieldDecl *Member,
+ SourceLocation MemberLoc,
+ SourceLocation L, Expr *Init,
+ SourceLocation R)
+ : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
+ LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
+ IsWritten(false), SourceOrderOrNumArrayIndices(0)
+{
+}
+
+CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
+ TypeSourceInfo *TInfo,
+ SourceLocation L, Expr *Init,
+ SourceLocation R)
+ : Initializee(TInfo), MemberOrEllipsisLocation(), Init(Init),
+ LParenLoc(L), RParenLoc(R), IsDelegating(true), IsVirtual(false),
+ IsWritten(false), SourceOrderOrNumArrayIndices(0)
+{
+}
+
+CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
+ FieldDecl *Member,
+ SourceLocation MemberLoc,
+ SourceLocation L, Expr *Init,
+ SourceLocation R,
+ VarDecl **Indices,
+ unsigned NumIndices)
+ : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
+ LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
+ IsWritten(false), SourceOrderOrNumArrayIndices(NumIndices)
+{
+ VarDecl **MyIndices = reinterpret_cast<VarDecl **> (this + 1);
+ memcpy(MyIndices, Indices, NumIndices * sizeof(VarDecl *));
+}
+
+CXXCtorInitializer *CXXCtorInitializer::Create(ASTContext &Context,
+ FieldDecl *Member,
+ SourceLocation MemberLoc,
+ SourceLocation L, Expr *Init,
+ SourceLocation R,
+ VarDecl **Indices,
+ unsigned NumIndices) {
+ void *Mem = Context.Allocate(sizeof(CXXCtorInitializer) +
+ sizeof(VarDecl *) * NumIndices,
+ llvm::alignOf<CXXCtorInitializer>());
+ return new (Mem) CXXCtorInitializer(Context, Member, MemberLoc, L, Init, R,
+ Indices, NumIndices);
+}
+
+TypeLoc CXXCtorInitializer::getBaseClassLoc() const {
+ if (isBaseInitializer())
+ return Initializee.get<TypeSourceInfo*>()->getTypeLoc();
+ else
+ return TypeLoc();
+}
+
+const Type *CXXCtorInitializer::getBaseClass() const {
+ if (isBaseInitializer())
+ return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr();
+ else
+ return nullptr;
+}
+
+SourceLocation CXXCtorInitializer::getSourceLocation() const {
+ if (isInClassMemberInitializer())
+ return getAnyMember()->getLocation();
+
+ if (isAnyMemberInitializer())
+ return getMemberLocation();
+
+ if (TypeSourceInfo *TSInfo = Initializee.get<TypeSourceInfo*>())
+ return TSInfo->getTypeLoc().getLocalSourceRange().getBegin();
+
+ return SourceLocation();
+}
+
+SourceRange CXXCtorInitializer::getSourceRange() const {
+ if (isInClassMemberInitializer()) {
+ FieldDecl *D = getAnyMember();
+ if (Expr *I = D->getInClassInitializer())
+ return I->getSourceRange();
+ return SourceRange();
+ }
+
+ return SourceRange(getSourceLocation(), getRParenLoc());
+}
+
+void CXXConstructorDecl::anchor() { }
+
+CXXConstructorDecl *
+CXXConstructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) CXXConstructorDecl(C, nullptr, SourceLocation(),
+ DeclarationNameInfo(), QualType(),
+ nullptr, false, false, false, false);
+}
+
+CXXConstructorDecl *
+CXXConstructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
+ SourceLocation StartLoc,
+ const DeclarationNameInfo &NameInfo,
+ QualType T, TypeSourceInfo *TInfo,
+ bool isExplicit, bool isInline,
+ bool isImplicitlyDeclared, bool isConstexpr) {
+ assert(NameInfo.getName().getNameKind()
+ == DeclarationName::CXXConstructorName &&
+ "Name must refer to a constructor");
+ return new (C, RD) CXXConstructorDecl(C, RD, StartLoc, NameInfo, T, TInfo,
+ isExplicit, isInline,
+ isImplicitlyDeclared, isConstexpr);
+}
+
+CXXConstructorDecl::init_const_iterator CXXConstructorDecl::init_begin() const {
+ return CtorInitializers.get(getASTContext().getExternalSource());
+}
+
+CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const {
+ assert(isDelegatingConstructor() && "Not a delegating constructor!");
+ Expr *E = (*init_begin())->getInit()->IgnoreImplicit();
+ if (CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(E))
+ return Construct->getConstructor();
+
+ return nullptr;
+}
+
+bool CXXConstructorDecl::isDefaultConstructor() const {
+ // C++ [class.ctor]p5:
+ // A default constructor for a class X is a constructor of class
+ // X that can be called without an argument.
+ return (getNumParams() == 0) ||
+ (getNumParams() > 0 && getParamDecl(0)->hasDefaultArg());
+}
+
+bool
+CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const {
+ return isCopyOrMoveConstructor(TypeQuals) &&
+ getParamDecl(0)->getType()->isLValueReferenceType();
+}
+
+bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const {
+ return isCopyOrMoveConstructor(TypeQuals) &&
+ getParamDecl(0)->getType()->isRValueReferenceType();
+}
+
+/// \brief Determine whether this is a copy or move constructor.
+bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const {
+ // C++ [class.copy]p2:
+ // A non-template constructor for class X is a copy constructor
+ // if its first parameter is of type X&, const X&, volatile X& or
+ // const volatile X&, and either there are no other parameters
+ // or else all other parameters have default arguments (8.3.6).
+ // C++0x [class.copy]p3:
+ // A non-template constructor for class X is a move constructor if its
+ // first parameter is of type X&&, const X&&, volatile X&&, or
+ // const volatile X&&, and either there are no other parameters or else
+ // all other parameters have default arguments.
+ if ((getNumParams() < 1) ||
+ (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
+ (getPrimaryTemplate() != nullptr) ||
+ (getDescribedFunctionTemplate() != nullptr))
+ return false;
+
+ const ParmVarDecl *Param = getParamDecl(0);
+
+ // Do we have a reference type?
+ const ReferenceType *ParamRefType = Param->getType()->getAs<ReferenceType>();
+ if (!ParamRefType)
+ return false;
+
+ // Is it a reference to our class type?
+ ASTContext &Context = getASTContext();
+
+ CanQualType PointeeType
+ = Context.getCanonicalType(ParamRefType->getPointeeType());
+ CanQualType ClassTy
+ = Context.getCanonicalType(Context.getTagDeclType(getParent()));
+ if (PointeeType.getUnqualifiedType() != ClassTy)
+ return false;
+
+ // FIXME: other qualifiers?
+
+ // We have a copy or move constructor.
+ TypeQuals = PointeeType.getCVRQualifiers();
+ return true;
+}
+
+bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
+ // C++ [class.conv.ctor]p1:
+ // A constructor declared without the function-specifier explicit
+ // that can be called with a single parameter specifies a
+ // conversion from the type of its first parameter to the type of
+ // its class. Such a constructor is called a converting
+ // constructor.
+ if (isExplicit() && !AllowExplicit)
+ return false;
+
+ return (getNumParams() == 0 &&
+ getType()->getAs<FunctionProtoType>()->isVariadic()) ||
+ (getNumParams() == 1) ||
+ (getNumParams() > 1 &&
+ (getParamDecl(1)->hasDefaultArg() ||
+ getParamDecl(1)->isParameterPack()));
+}
+
+bool CXXConstructorDecl::isSpecializationCopyingObject() const {
+ if ((getNumParams() < 1) ||
+ (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
+ (getDescribedFunctionTemplate() != nullptr))
+ return false;
+
+ const ParmVarDecl *Param = getParamDecl(0);
+
+ ASTContext &Context = getASTContext();
+ CanQualType ParamType = Context.getCanonicalType(Param->getType());
+
+ // Is it the same as our our class type?
+ CanQualType ClassTy
+ = Context.getCanonicalType(Context.getTagDeclType(getParent()));
+ if (ParamType.getUnqualifiedType() != ClassTy)
+ return false;
+
+ return true;
+}
+
+const CXXConstructorDecl *CXXConstructorDecl::getInheritedConstructor() const {
+ // Hack: we store the inherited constructor in the overridden method table
+ method_iterator It = getASTContext().overridden_methods_begin(this);
+ if (It == getASTContext().overridden_methods_end(this))
+ return nullptr;
+
+ return cast<CXXConstructorDecl>(*It);
+}
+
+void
+CXXConstructorDecl::setInheritedConstructor(const CXXConstructorDecl *BaseCtor){
+ // Hack: we store the inherited constructor in the overridden method table
+ assert(getASTContext().overridden_methods_size(this) == 0 &&
+ "Base ctor already set.");
+ getASTContext().addOverriddenMethod(this, BaseCtor);
+}
+
+void CXXDestructorDecl::anchor() { }
+
+CXXDestructorDecl *
+CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID)
+ CXXDestructorDecl(C, nullptr, SourceLocation(), DeclarationNameInfo(),
+ QualType(), nullptr, false, false);
+}
+
+CXXDestructorDecl *
+CXXDestructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
+ SourceLocation StartLoc,
+ const DeclarationNameInfo &NameInfo,
+ QualType T, TypeSourceInfo *TInfo,
+ bool isInline, bool isImplicitlyDeclared) {
+ assert(NameInfo.getName().getNameKind()
+ == DeclarationName::CXXDestructorName &&
+ "Name must refer to a destructor");
+ return new (C, RD) CXXDestructorDecl(C, RD, StartLoc, NameInfo, T, TInfo,
+ isInline, isImplicitlyDeclared);
+}
+
+void CXXDestructorDecl::setOperatorDelete(FunctionDecl *OD) {
+ auto *First = cast<CXXDestructorDecl>(getFirstDecl());
+ if (OD && !First->OperatorDelete) {
+ First->OperatorDelete = OD;
+ if (auto *L = getASTMutationListener())
+ L->ResolvedOperatorDelete(First, OD);
+ }
+}
+
+void CXXConversionDecl::anchor() { }
+
+CXXConversionDecl *
+CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) CXXConversionDecl(C, nullptr, SourceLocation(),
+ DeclarationNameInfo(), QualType(),
+ nullptr, false, false, false,
+ SourceLocation());
+}
+
+CXXConversionDecl *
+CXXConversionDecl::Create(ASTContext &C, CXXRecordDecl *RD,
+ SourceLocation StartLoc,
+ const DeclarationNameInfo &NameInfo,
+ QualType T, TypeSourceInfo *TInfo,
+ bool isInline, bool isExplicit,
+ bool isConstexpr, SourceLocation EndLocation) {
+ assert(NameInfo.getName().getNameKind()
+ == DeclarationName::CXXConversionFunctionName &&
+ "Name must refer to a conversion function");
+ return new (C, RD) CXXConversionDecl(C, RD, StartLoc, NameInfo, T, TInfo,
+ isInline, isExplicit, isConstexpr,
+ EndLocation);
+}
+
+bool CXXConversionDecl::isLambdaToBlockPointerConversion() const {
+ return isImplicit() && getParent()->isLambda() &&
+ getConversionType()->isBlockPointerType();
+}
+
+void LinkageSpecDecl::anchor() { }
+
+LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C,
+ DeclContext *DC,
+ SourceLocation ExternLoc,
+ SourceLocation LangLoc,
+ LanguageIDs Lang,
+ bool HasBraces) {
+ return new (C, DC) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, HasBraces);
+}
+
+LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C,
+ unsigned ID) {
+ return new (C, ID) LinkageSpecDecl(nullptr, SourceLocation(),
+ SourceLocation(), lang_c, false);
+}
+
+void UsingDirectiveDecl::anchor() { }
+
+UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation L,
+ SourceLocation NamespaceLoc,
+ NestedNameSpecifierLoc QualifierLoc,
+ SourceLocation IdentLoc,
+ NamedDecl *Used,
+ DeclContext *CommonAncestor) {
+ if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Used))
+ Used = NS->getOriginalNamespace();
+ return new (C, DC) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc,
+ IdentLoc, Used, CommonAncestor);
+}
+
+UsingDirectiveDecl *UsingDirectiveDecl::CreateDeserialized(ASTContext &C,
+ unsigned ID) {
+ return new (C, ID) UsingDirectiveDecl(nullptr, SourceLocation(),
+ SourceLocation(),
+ NestedNameSpecifierLoc(),
+ SourceLocation(), nullptr, nullptr);
+}
+
+NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() {
+ if (NamespaceAliasDecl *NA =
+ dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace))
+ return NA->getNamespace();
+ return cast_or_null<NamespaceDecl>(NominatedNamespace);
+}
+
+NamespaceDecl::NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
+ SourceLocation StartLoc, SourceLocation IdLoc,
+ IdentifierInfo *Id, NamespaceDecl *PrevDecl)
+ : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace),
+ redeclarable_base(C), LocStart(StartLoc), RBraceLoc(),
+ AnonOrFirstNamespaceAndInline(nullptr, Inline) {
+ setPreviousDecl(PrevDecl);
+
+ if (PrevDecl)
+ AnonOrFirstNamespaceAndInline.setPointer(PrevDecl->getOriginalNamespace());
+}
+
+NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC,
+ bool Inline, SourceLocation StartLoc,
+ SourceLocation IdLoc, IdentifierInfo *Id,
+ NamespaceDecl *PrevDecl) {
+ return new (C, DC) NamespaceDecl(C, DC, Inline, StartLoc, IdLoc, Id,
+ PrevDecl);
+}
+
+NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) NamespaceDecl(C, nullptr, false, SourceLocation(),
+ SourceLocation(), nullptr, nullptr);
+}
+
+NamespaceDecl *NamespaceDecl::getNextRedeclarationImpl() {
+ return getNextRedeclaration();
+}
+NamespaceDecl *NamespaceDecl::getPreviousDeclImpl() {
+ return getPreviousDecl();
+}
+NamespaceDecl *NamespaceDecl::getMostRecentDeclImpl() {
+ return getMostRecentDecl();
+}
+
+void NamespaceAliasDecl::anchor() { }
+
+NamespaceAliasDecl *NamespaceAliasDecl::getNextRedeclarationImpl() {
+ return getNextRedeclaration();
+}
+NamespaceAliasDecl *NamespaceAliasDecl::getPreviousDeclImpl() {
+ return getPreviousDecl();
+}
+NamespaceAliasDecl *NamespaceAliasDecl::getMostRecentDeclImpl() {
+ return getMostRecentDecl();
+}
+
+NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation UsingLoc,
+ SourceLocation AliasLoc,
+ IdentifierInfo *Alias,
+ NestedNameSpecifierLoc QualifierLoc,
+ SourceLocation IdentLoc,
+ NamedDecl *Namespace) {
+ // FIXME: Preserve the aliased namespace as written.
+ if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Namespace))
+ Namespace = NS->getOriginalNamespace();
+ return new (C, DC) NamespaceAliasDecl(C, DC, UsingLoc, AliasLoc, Alias,
+ QualifierLoc, IdentLoc, Namespace);
+}
+
+NamespaceAliasDecl *
+NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) NamespaceAliasDecl(C, nullptr, SourceLocation(),
+ SourceLocation(), nullptr,
+ NestedNameSpecifierLoc(),
+ SourceLocation(), nullptr);
+}
+
+void UsingShadowDecl::anchor() { }
+
+UsingShadowDecl *
+UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) UsingShadowDecl(C, nullptr, SourceLocation(),
+ nullptr, nullptr);
+}
+
+UsingDecl *UsingShadowDecl::getUsingDecl() const {
+ const UsingShadowDecl *Shadow = this;
+ while (const UsingShadowDecl *NextShadow =
+ dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow))
+ Shadow = NextShadow;
+ return cast<UsingDecl>(Shadow->UsingOrNextShadow);
+}
+
+void UsingDecl::anchor() { }
+
+void UsingDecl::addShadowDecl(UsingShadowDecl *S) {
+ assert(std::find(shadow_begin(), shadow_end(), S) == shadow_end() &&
+ "declaration already in set");
+ assert(S->getUsingDecl() == this);
+
+ if (FirstUsingShadow.getPointer())
+ S->UsingOrNextShadow = FirstUsingShadow.getPointer();
+ FirstUsingShadow.setPointer(S);
+}
+
+void UsingDecl::removeShadowDecl(UsingShadowDecl *S) {
+ assert(std::find(shadow_begin(), shadow_end(), S) != shadow_end() &&
+ "declaration not in set");
+ assert(S->getUsingDecl() == this);
+
+ // Remove S from the shadow decl chain. This is O(n) but hopefully rare.
+
+ if (FirstUsingShadow.getPointer() == S) {
+ FirstUsingShadow.setPointer(
+ dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow));
+ S->UsingOrNextShadow = this;
+ return;
+ }
+
+ UsingShadowDecl *Prev = FirstUsingShadow.getPointer();
+ while (Prev->UsingOrNextShadow != S)
+ Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow);
+ Prev->UsingOrNextShadow = S->UsingOrNextShadow;
+ S->UsingOrNextShadow = this;
+}
+
+UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL,
+ NestedNameSpecifierLoc QualifierLoc,
+ const DeclarationNameInfo &NameInfo,
+ bool HasTypename) {
+ return new (C, DC) UsingDecl(DC, UL, QualifierLoc, NameInfo, HasTypename);
+}
+
+UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) UsingDecl(nullptr, SourceLocation(),
+ NestedNameSpecifierLoc(), DeclarationNameInfo(),
+ false);
+}
+
+SourceRange UsingDecl::getSourceRange() const {
+ SourceLocation Begin = isAccessDeclaration()
+ ? getQualifierLoc().getBeginLoc() : UsingLocation;
+ return SourceRange(Begin, getNameInfo().getEndLoc());
+}
+
+void UnresolvedUsingValueDecl::anchor() { }
+
+UnresolvedUsingValueDecl *
+UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation UsingLoc,
+ NestedNameSpecifierLoc QualifierLoc,
+ const DeclarationNameInfo &NameInfo) {
+ return new (C, DC) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc,
+ QualifierLoc, NameInfo);
+}
+
+UnresolvedUsingValueDecl *
+UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) UnresolvedUsingValueDecl(nullptr, QualType(),
+ SourceLocation(),
+ NestedNameSpecifierLoc(),
+ DeclarationNameInfo());
+}
+
+SourceRange UnresolvedUsingValueDecl::getSourceRange() const {
+ SourceLocation Begin = isAccessDeclaration()
+ ? getQualifierLoc().getBeginLoc() : UsingLocation;
+ return SourceRange(Begin, getNameInfo().getEndLoc());
+}
+
+void UnresolvedUsingTypenameDecl::anchor() { }
+
+UnresolvedUsingTypenameDecl *
+UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation UsingLoc,
+ SourceLocation TypenameLoc,
+ NestedNameSpecifierLoc QualifierLoc,
+ SourceLocation TargetNameLoc,
+ DeclarationName TargetName) {
+ return new (C, DC) UnresolvedUsingTypenameDecl(
+ DC, UsingLoc, TypenameLoc, QualifierLoc, TargetNameLoc,
+ TargetName.getAsIdentifierInfo());
+}
+
+UnresolvedUsingTypenameDecl *
+UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) UnresolvedUsingTypenameDecl(
+ nullptr, SourceLocation(), SourceLocation(), NestedNameSpecifierLoc(),
+ SourceLocation(), nullptr);
+}
+
+void StaticAssertDecl::anchor() { }
+
+StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation StaticAssertLoc,
+ Expr *AssertExpr,
+ StringLiteral *Message,
+ SourceLocation RParenLoc,
+ bool Failed) {
+ return new (C, DC) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message,
+ RParenLoc, Failed);
+}
+
+StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C,
+ unsigned ID) {
+ return new (C, ID) StaticAssertDecl(nullptr, SourceLocation(), nullptr,
+ nullptr, SourceLocation(), false);
+}
+
+MSPropertyDecl *MSPropertyDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation L, DeclarationName N,
+ QualType T, TypeSourceInfo *TInfo,
+ SourceLocation StartL,
+ IdentifierInfo *Getter,
+ IdentifierInfo *Setter) {
+ return new (C, DC) MSPropertyDecl(DC, L, N, T, TInfo, StartL, Getter, Setter);
+}
+
+MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C,
+ unsigned ID) {
+ return new (C, ID) MSPropertyDecl(nullptr, SourceLocation(),
+ DeclarationName(), QualType(), nullptr,
+ SourceLocation(), nullptr, nullptr);
+}
+
+static const char *getAccessName(AccessSpecifier AS) {
+ switch (AS) {
+ case AS_none:
+ llvm_unreachable("Invalid access specifier!");
+ case AS_public:
+ return "public";
+ case AS_private:
+ return "private";
+ case AS_protected:
+ return "protected";
+ }
+ llvm_unreachable("Invalid access specifier!");
+}
+
+const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB,
+ AccessSpecifier AS) {
+ return DB << getAccessName(AS);
+}
+
+const PartialDiagnostic &clang::operator<<(const PartialDiagnostic &DB,
+ AccessSpecifier AS) {
+ return DB << getAccessName(AS);
+}
diff --git a/contrib/llvm/tools/clang/lib/AST/DeclFriend.cpp b/contrib/llvm/tools/clang/lib/AST/DeclFriend.cpp
new file mode 100644
index 0000000..a996cab
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/DeclFriend.cpp
@@ -0,0 +1,66 @@
+//===--- DeclFriend.cpp - C++ Friend Declaration AST Node Implementation --===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the AST classes related to C++ friend
+// declarations.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclFriend.h"
+#include "clang/AST/DeclTemplate.h"
+using namespace clang;
+
+void FriendDecl::anchor() { }
+
+FriendDecl *FriendDecl::getNextFriendSlowCase() {
+ return cast_or_null<FriendDecl>(
+ NextFriend.get(getASTContext().getExternalSource()));
+}
+
+FriendDecl *FriendDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation L,
+ FriendUnion Friend,
+ SourceLocation FriendL,
+ ArrayRef<TemplateParameterList*> FriendTypeTPLists) {
+#ifndef NDEBUG
+ if (Friend.is<NamedDecl*>()) {
+ NamedDecl *D = Friend.get<NamedDecl*>();
+ assert(isa<FunctionDecl>(D) ||
+ isa<CXXRecordDecl>(D) ||
+ isa<FunctionTemplateDecl>(D) ||
+ isa<ClassTemplateDecl>(D));
+
+ // As a temporary hack, we permit template instantiation to point
+ // to the original declaration when instantiating members.
+ assert(D->getFriendObjectKind() ||
+ (cast<CXXRecordDecl>(DC)->getTemplateSpecializationKind()));
+ // These template parameters are for friend types only.
+ assert(FriendTypeTPLists.size() == 0);
+ }
+#endif
+
+ std::size_t Extra = FriendTypeTPLists.size() * sizeof(TemplateParameterList*);
+ FriendDecl *FD = new (C, DC, Extra) FriendDecl(DC, L, Friend, FriendL,
+ FriendTypeTPLists);
+ cast<CXXRecordDecl>(DC)->pushFriendDecl(FD);
+ return FD;
+}
+
+FriendDecl *FriendDecl::CreateDeserialized(ASTContext &C, unsigned ID,
+ unsigned FriendTypeNumTPLists) {
+ std::size_t Extra = FriendTypeNumTPLists * sizeof(TemplateParameterList*);
+ return new (C, ID, Extra) FriendDecl(EmptyShell(), FriendTypeNumTPLists);
+}
+
+FriendDecl *CXXRecordDecl::getFirstFriend() const {
+ ExternalASTSource *Source = getParentASTContext().getExternalSource();
+ Decl *First = data().FirstFriend.get(Source);
+ return First ? cast<FriendDecl>(First) : nullptr;
+}
diff --git a/contrib/llvm/tools/clang/lib/AST/DeclGroup.cpp b/contrib/llvm/tools/clang/lib/AST/DeclGroup.cpp
new file mode 100644
index 0000000..512837f
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/DeclGroup.cpp
@@ -0,0 +1,34 @@
+//===--- DeclGroup.cpp - Classes for representing groups of Decls -*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the DeclGroup and DeclGroupRef classes.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/DeclGroup.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Decl.h"
+#include "llvm/Support/Allocator.h"
+using namespace clang;
+
+DeclGroup* DeclGroup::Create(ASTContext &C, Decl **Decls, unsigned NumDecls) {
+ static_assert(sizeof(DeclGroup) % llvm::AlignOf<void *>::Alignment == 0,
+ "Trailing data is unaligned!");
+ assert(NumDecls > 1 && "Invalid DeclGroup");
+ unsigned Size = sizeof(DeclGroup) + sizeof(Decl*) * NumDecls;
+ void* Mem = C.Allocate(Size, llvm::AlignOf<DeclGroup>::Alignment);
+ new (Mem) DeclGroup(NumDecls, Decls);
+ return static_cast<DeclGroup*>(Mem);
+}
+
+DeclGroup::DeclGroup(unsigned numdecls, Decl** decls) : NumDecls(numdecls) {
+ assert(numdecls > 0);
+ assert(decls);
+ memcpy(this+1, decls, numdecls * sizeof(*decls));
+}
diff --git a/contrib/llvm/tools/clang/lib/AST/DeclObjC.cpp b/contrib/llvm/tools/clang/lib/AST/DeclObjC.cpp
new file mode 100644
index 0000000..a63ba7e
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/DeclObjC.cpp
@@ -0,0 +1,1906 @@
+//===--- DeclObjC.cpp - ObjC Declaration AST Node Implementation ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Objective-C related Decl classes.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTMutationListener.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/Stmt.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallString.h"
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// ObjCListBase
+//===----------------------------------------------------------------------===//
+
+void ObjCListBase::set(void *const* InList, unsigned Elts, ASTContext &Ctx) {
+ List = nullptr;
+ if (Elts == 0) return; // Setting to an empty list is a noop.
+
+
+ List = new (Ctx) void*[Elts];
+ NumElts = Elts;
+ memcpy(List, InList, sizeof(void*)*Elts);
+}
+
+void ObjCProtocolList::set(ObjCProtocolDecl* const* InList, unsigned Elts,
+ const SourceLocation *Locs, ASTContext &Ctx) {
+ if (Elts == 0)
+ return;
+
+ Locations = new (Ctx) SourceLocation[Elts];
+ memcpy(Locations, Locs, sizeof(SourceLocation) * Elts);
+ set(InList, Elts, Ctx);
+}
+
+//===----------------------------------------------------------------------===//
+// ObjCInterfaceDecl
+//===----------------------------------------------------------------------===//
+
+void ObjCContainerDecl::anchor() { }
+
+/// getIvarDecl - This method looks up an ivar in this ContextDecl.
+///
+ObjCIvarDecl *
+ObjCContainerDecl::getIvarDecl(IdentifierInfo *Id) const {
+ lookup_result R = lookup(Id);
+ for (lookup_iterator Ivar = R.begin(), IvarEnd = R.end();
+ Ivar != IvarEnd; ++Ivar) {
+ if (ObjCIvarDecl *ivar = dyn_cast<ObjCIvarDecl>(*Ivar))
+ return ivar;
+ }
+ return nullptr;
+}
+
+// Get the local instance/class method declared in this interface.
+ObjCMethodDecl *
+ObjCContainerDecl::getMethod(Selector Sel, bool isInstance,
+ bool AllowHidden) const {
+ // If this context is a hidden protocol definition, don't find any
+ // methods there.
+ if (const ObjCProtocolDecl *Proto = dyn_cast<ObjCProtocolDecl>(this)) {
+ if (const ObjCProtocolDecl *Def = Proto->getDefinition())
+ if (Def->isHidden() && !AllowHidden)
+ return nullptr;
+ }
+
+ // Since instance & class methods can have the same name, the loop below
+ // ensures we get the correct method.
+ //
+ // @interface Whatever
+ // - (int) class_method;
+ // + (float) class_method;
+ // @end
+ //
+ lookup_result R = lookup(Sel);
+ for (lookup_iterator Meth = R.begin(), MethEnd = R.end();
+ Meth != MethEnd; ++Meth) {
+ ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(*Meth);
+ if (MD && MD->isInstanceMethod() == isInstance)
+ return MD;
+ }
+ return nullptr;
+}
+
+/// \brief This routine returns 'true' if a user declared setter method was
+/// found in the class, its protocols, its super classes or categories.
+/// It also returns 'true' if one of its categories has declared a 'readwrite'
+/// property. This is because, user must provide a setter method for the
+/// category's 'readwrite' property.
+bool ObjCContainerDecl::HasUserDeclaredSetterMethod(
+ const ObjCPropertyDecl *Property) const {
+ Selector Sel = Property->getSetterName();
+ lookup_result R = lookup(Sel);
+ for (lookup_iterator Meth = R.begin(), MethEnd = R.end();
+ Meth != MethEnd; ++Meth) {
+ ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(*Meth);
+ if (MD && MD->isInstanceMethod() && !MD->isImplicit())
+ return true;
+ }
+
+ if (const ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(this)) {
+ // Also look into categories, including class extensions, looking
+ // for a user declared instance method.
+ for (const auto *Cat : ID->visible_categories()) {
+ if (ObjCMethodDecl *MD = Cat->getInstanceMethod(Sel))
+ if (!MD->isImplicit())
+ return true;
+ if (Cat->IsClassExtension())
+ continue;
+ // Also search through the categories looking for a 'readwrite'
+ // declaration of this property. If one found, presumably a setter will
+ // be provided (properties declared in categories will not get
+ // auto-synthesized).
+ for (const auto *P : Cat->properties())
+ if (P->getIdentifier() == Property->getIdentifier()) {
+ if (P->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_readwrite)
+ return true;
+ break;
+ }
+ }
+
+ // Also look into protocols, for a user declared instance method.
+ for (const auto *Proto : ID->all_referenced_protocols())
+ if (Proto->HasUserDeclaredSetterMethod(Property))
+ return true;
+
+ // And in its super class.
+ ObjCInterfaceDecl *OSC = ID->getSuperClass();
+ while (OSC) {
+ if (OSC->HasUserDeclaredSetterMethod(Property))
+ return true;
+ OSC = OSC->getSuperClass();
+ }
+ }
+ if (const ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(this))
+ for (const auto *PI : PD->protocols())
+ if (PI->HasUserDeclaredSetterMethod(Property))
+ return true;
+ return false;
+}
+
+ObjCPropertyDecl *
+ObjCPropertyDecl::findPropertyDecl(const DeclContext *DC,
+ const IdentifierInfo *propertyID) {
+ // If this context is a hidden protocol definition, don't find any
+ // property.
+ if (const ObjCProtocolDecl *Proto = dyn_cast<ObjCProtocolDecl>(DC)) {
+ if (const ObjCProtocolDecl *Def = Proto->getDefinition())
+ if (Def->isHidden())
+ return nullptr;
+ }
+
+ DeclContext::lookup_result R = DC->lookup(propertyID);
+ for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
+ ++I)
+ if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(*I))
+ return PD;
+
+ return nullptr;
+}
+
+IdentifierInfo *
+ObjCPropertyDecl::getDefaultSynthIvarName(ASTContext &Ctx) const {
+ SmallString<128> ivarName;
+ {
+ llvm::raw_svector_ostream os(ivarName);
+ os << '_' << getIdentifier()->getName();
+ }
+ return &Ctx.Idents.get(ivarName.str());
+}
+
+/// FindPropertyDeclaration - Finds declaration of the property given its name
+/// in 'PropertyId' and returns it. It returns 0, if not found.
+ObjCPropertyDecl *ObjCContainerDecl::FindPropertyDeclaration(
+ const IdentifierInfo *PropertyId) const {
+ // Don't find properties within hidden protocol definitions.
+ if (const ObjCProtocolDecl *Proto = dyn_cast<ObjCProtocolDecl>(this)) {
+ if (const ObjCProtocolDecl *Def = Proto->getDefinition())
+ if (Def->isHidden())
+ return nullptr;
+ }
+
+ if (ObjCPropertyDecl *PD =
+ ObjCPropertyDecl::findPropertyDecl(cast<DeclContext>(this), PropertyId))
+ return PD;
+
+ switch (getKind()) {
+ default:
+ break;
+ case Decl::ObjCProtocol: {
+ const ObjCProtocolDecl *PID = cast<ObjCProtocolDecl>(this);
+ for (const auto *I : PID->protocols())
+ if (ObjCPropertyDecl *P = I->FindPropertyDeclaration(PropertyId))
+ return P;
+ break;
+ }
+ case Decl::ObjCInterface: {
+ const ObjCInterfaceDecl *OID = cast<ObjCInterfaceDecl>(this);
+ // Look through categories (but not extensions).
+ for (const auto *Cat : OID->visible_categories()) {
+ if (!Cat->IsClassExtension())
+ if (ObjCPropertyDecl *P = Cat->FindPropertyDeclaration(PropertyId))
+ return P;
+ }
+
+ // Look through protocols.
+ for (const auto *I : OID->all_referenced_protocols())
+ if (ObjCPropertyDecl *P = I->FindPropertyDeclaration(PropertyId))
+ return P;
+
+ // Finally, check the super class.
+ if (const ObjCInterfaceDecl *superClass = OID->getSuperClass())
+ return superClass->FindPropertyDeclaration(PropertyId);
+ break;
+ }
+ case Decl::ObjCCategory: {
+ const ObjCCategoryDecl *OCD = cast<ObjCCategoryDecl>(this);
+ // Look through protocols.
+ if (!OCD->IsClassExtension())
+ for (const auto *I : OCD->protocols())
+ if (ObjCPropertyDecl *P = I->FindPropertyDeclaration(PropertyId))
+ return P;
+ break;
+ }
+ }
+ return nullptr;
+}
+
+void ObjCInterfaceDecl::anchor() { }
+
+/// FindPropertyVisibleInPrimaryClass - Finds declaration of the property
+/// with name 'PropertyId' in the primary class; including those in protocols
+/// (direct or indirect) used by the primary class.
+///
+ObjCPropertyDecl *
+ObjCInterfaceDecl::FindPropertyVisibleInPrimaryClass(
+ IdentifierInfo *PropertyId) const {
+ // FIXME: Should make sure no callers ever do this.
+ if (!hasDefinition())
+ return nullptr;
+
+ if (data().ExternallyCompleted)
+ LoadExternalDefinition();
+
+ if (ObjCPropertyDecl *PD =
+ ObjCPropertyDecl::findPropertyDecl(cast<DeclContext>(this), PropertyId))
+ return PD;
+
+ // Look through protocols.
+ for (const auto *I : all_referenced_protocols())
+ if (ObjCPropertyDecl *P = I->FindPropertyDeclaration(PropertyId))
+ return P;
+
+ return nullptr;
+}
+
+void ObjCInterfaceDecl::collectPropertiesToImplement(PropertyMap &PM,
+ PropertyDeclOrder &PO) const {
+ for (auto *Prop : properties()) {
+ PM[Prop->getIdentifier()] = Prop;
+ PO.push_back(Prop);
+ }
+ for (const auto *PI : all_referenced_protocols())
+ PI->collectPropertiesToImplement(PM, PO);
+ // Note, the properties declared only in class extensions are still copied
+ // into the main @interface's property list, and therefore we don't
+ // explicitly, have to search class extension properties.
+}
+
+bool ObjCInterfaceDecl::isArcWeakrefUnavailable() const {
+ const ObjCInterfaceDecl *Class = this;
+ while (Class) {
+ if (Class->hasAttr<ArcWeakrefUnavailableAttr>())
+ return true;
+ Class = Class->getSuperClass();
+ }
+ return false;
+}
+
+const ObjCInterfaceDecl *ObjCInterfaceDecl::isObjCRequiresPropertyDefs() const {
+ const ObjCInterfaceDecl *Class = this;
+ while (Class) {
+ if (Class->hasAttr<ObjCRequiresPropertyDefsAttr>())
+ return Class;
+ Class = Class->getSuperClass();
+ }
+ return nullptr;
+}
+
+void ObjCInterfaceDecl::mergeClassExtensionProtocolList(
+ ObjCProtocolDecl *const* ExtList, unsigned ExtNum,
+ ASTContext &C)
+{
+ if (data().ExternallyCompleted)
+ LoadExternalDefinition();
+
+ if (data().AllReferencedProtocols.empty() &&
+ data().ReferencedProtocols.empty()) {
+ data().AllReferencedProtocols.set(ExtList, ExtNum, C);
+ return;
+ }
+
+ // Check for duplicate protocol in class's protocol list.
+ // This is O(n*m). But it is extremely rare and number of protocols in
+ // class or its extension are very few.
+ SmallVector<ObjCProtocolDecl*, 8> ProtocolRefs;
+ for (unsigned i = 0; i < ExtNum; i++) {
+ bool protocolExists = false;
+ ObjCProtocolDecl *ProtoInExtension = ExtList[i];
+ for (auto *Proto : all_referenced_protocols()) {
+ if (C.ProtocolCompatibleWithProtocol(ProtoInExtension, Proto)) {
+ protocolExists = true;
+ break;
+ }
+ }
+ // Do we want to warn on a protocol in extension class which
+ // already exist in the class? Probably not.
+ if (!protocolExists)
+ ProtocolRefs.push_back(ProtoInExtension);
+ }
+
+ if (ProtocolRefs.empty())
+ return;
+
+ // Merge ProtocolRefs into class's protocol list;
+ ProtocolRefs.append(all_referenced_protocol_begin(),
+ all_referenced_protocol_end());
+
+ data().AllReferencedProtocols.set(ProtocolRefs.data(), ProtocolRefs.size(),C);
+}
+
+const ObjCInterfaceDecl *
+ObjCInterfaceDecl::findInterfaceWithDesignatedInitializers() const {
+ const ObjCInterfaceDecl *IFace = this;
+ while (IFace) {
+ if (IFace->hasDesignatedInitializers())
+ return IFace;
+ if (!IFace->inheritsDesignatedInitializers())
+ break;
+ IFace = IFace->getSuperClass();
+ }
+ return nullptr;
+}
+
+static bool isIntroducingInitializers(const ObjCInterfaceDecl *D) {
+ for (const auto *MD : D->instance_methods()) {
+ if (MD->getMethodFamily() == OMF_init && !MD->isOverriding())
+ return true;
+ }
+ for (const auto *Ext : D->visible_extensions()) {
+ for (const auto *MD : Ext->instance_methods()) {
+ if (MD->getMethodFamily() == OMF_init && !MD->isOverriding())
+ return true;
+ }
+ }
+ if (const auto *ImplD = D->getImplementation()) {
+ for (const auto *MD : ImplD->instance_methods()) {
+ if (MD->getMethodFamily() == OMF_init && !MD->isOverriding())
+ return true;
+ }
+ }
+ return false;
+}
+
+bool ObjCInterfaceDecl::inheritsDesignatedInitializers() const {
+ switch (data().InheritedDesignatedInitializers) {
+ case DefinitionData::IDI_Inherited:
+ return true;
+ case DefinitionData::IDI_NotInherited:
+ return false;
+ case DefinitionData::IDI_Unknown: {
+ // If the class introduced initializers we conservatively assume that we
+ // don't know if any of them is a designated initializer to avoid possible
+ // misleading warnings.
+ if (isIntroducingInitializers(this)) {
+ data().InheritedDesignatedInitializers = DefinitionData::IDI_NotInherited;
+ } else {
+ if (auto SuperD = getSuperClass()) {
+ data().InheritedDesignatedInitializers =
+ SuperD->declaresOrInheritsDesignatedInitializers() ?
+ DefinitionData::IDI_Inherited :
+ DefinitionData::IDI_NotInherited;
+ } else {
+ data().InheritedDesignatedInitializers =
+ DefinitionData::IDI_NotInherited;
+ }
+ }
+ assert(data().InheritedDesignatedInitializers
+ != DefinitionData::IDI_Unknown);
+ return data().InheritedDesignatedInitializers ==
+ DefinitionData::IDI_Inherited;
+ }
+ }
+
+ llvm_unreachable("unexpected InheritedDesignatedInitializers value");
+}
+
+void ObjCInterfaceDecl::getDesignatedInitializers(
+ llvm::SmallVectorImpl<const ObjCMethodDecl *> &Methods) const {
+ // Check for a complete definition and recover if not so.
+ if (!isThisDeclarationADefinition())
+ return;
+ if (data().ExternallyCompleted)
+ LoadExternalDefinition();
+
+ const ObjCInterfaceDecl *IFace= findInterfaceWithDesignatedInitializers();
+ if (!IFace)
+ return;
+
+ for (const auto *MD : IFace->instance_methods())
+ if (MD->isThisDeclarationADesignatedInitializer())
+ Methods.push_back(MD);
+ for (const auto *Ext : IFace->visible_extensions()) {
+ for (const auto *MD : Ext->instance_methods())
+ if (MD->isThisDeclarationADesignatedInitializer())
+ Methods.push_back(MD);
+ }
+}
+
+bool ObjCInterfaceDecl::isDesignatedInitializer(Selector Sel,
+ const ObjCMethodDecl **InitMethod) const {
+ // Check for a complete definition and recover if not so.
+ if (!isThisDeclarationADefinition())
+ return false;
+ if (data().ExternallyCompleted)
+ LoadExternalDefinition();
+
+ const ObjCInterfaceDecl *IFace= findInterfaceWithDesignatedInitializers();
+ if (!IFace)
+ return false;
+
+ if (const ObjCMethodDecl *MD = IFace->getInstanceMethod(Sel)) {
+ if (MD->isThisDeclarationADesignatedInitializer()) {
+ if (InitMethod)
+ *InitMethod = MD;
+ return true;
+ }
+ }
+ for (const auto *Ext : IFace->visible_extensions()) {
+ if (const ObjCMethodDecl *MD = Ext->getInstanceMethod(Sel)) {
+ if (MD->isThisDeclarationADesignatedInitializer()) {
+ if (InitMethod)
+ *InitMethod = MD;
+ return true;
+ }
+ }
+ }
+ return false;
+}
+
+void ObjCInterfaceDecl::allocateDefinitionData() {
+ assert(!hasDefinition() && "ObjC class already has a definition");
+ Data.setPointer(new (getASTContext()) DefinitionData());
+ Data.getPointer()->Definition = this;
+
+ // Make the type point at the definition, now that we have one.
+ if (TypeForDecl)
+ cast<ObjCInterfaceType>(TypeForDecl)->Decl = this;
+}
+
+void ObjCInterfaceDecl::startDefinition() {
+ allocateDefinitionData();
+
+ // Update all of the declarations with a pointer to the definition.
+ for (auto RD : redecls()) {
+ if (RD != this)
+ RD->Data = Data;
+ }
+}
+
+ObjCIvarDecl *ObjCInterfaceDecl::lookupInstanceVariable(IdentifierInfo *ID,
+ ObjCInterfaceDecl *&clsDeclared) {
+ // FIXME: Should make sure no callers ever do this.
+ if (!hasDefinition())
+ return nullptr;
+
+ if (data().ExternallyCompleted)
+ LoadExternalDefinition();
+
+ ObjCInterfaceDecl* ClassDecl = this;
+ while (ClassDecl != nullptr) {
+ if (ObjCIvarDecl *I = ClassDecl->getIvarDecl(ID)) {
+ clsDeclared = ClassDecl;
+ return I;
+ }
+
+ for (const auto *Ext : ClassDecl->visible_extensions()) {
+ if (ObjCIvarDecl *I = Ext->getIvarDecl(ID)) {
+ clsDeclared = ClassDecl;
+ return I;
+ }
+ }
+
+ ClassDecl = ClassDecl->getSuperClass();
+ }
+ return nullptr;
+}
+
+/// lookupInheritedClass - This method returns ObjCInterfaceDecl * of the super
+/// class whose name is passed as argument. If it is not one of the super classes
+/// the it returns NULL.
+ObjCInterfaceDecl *ObjCInterfaceDecl::lookupInheritedClass(
+ const IdentifierInfo*ICName) {
+ // FIXME: Should make sure no callers ever do this.
+ if (!hasDefinition())
+ return nullptr;
+
+ if (data().ExternallyCompleted)
+ LoadExternalDefinition();
+
+ ObjCInterfaceDecl* ClassDecl = this;
+ while (ClassDecl != nullptr) {
+ if (ClassDecl->getIdentifier() == ICName)
+ return ClassDecl;
+ ClassDecl = ClassDecl->getSuperClass();
+ }
+ return nullptr;
+}
+
+ObjCProtocolDecl *
+ObjCInterfaceDecl::lookupNestedProtocol(IdentifierInfo *Name) {
+ for (auto *P : all_referenced_protocols())
+ if (P->lookupProtocolNamed(Name))
+ return P;
+ ObjCInterfaceDecl *SuperClass = getSuperClass();
+ return SuperClass ? SuperClass->lookupNestedProtocol(Name) : nullptr;
+}
+
+/// lookupMethod - This method returns an instance/class method by looking in
+/// the class, its categories, and its super classes (using a linear search).
+/// When argument category "C" is specified, any implicit method found
+/// in this category is ignored.
+ObjCMethodDecl *ObjCInterfaceDecl::lookupMethod(Selector Sel,
+ bool isInstance,
+ bool shallowCategoryLookup,
+ bool followSuper,
+ const ObjCCategoryDecl *C) const
+{
+ // FIXME: Should make sure no callers ever do this.
+ if (!hasDefinition())
+ return nullptr;
+
+ const ObjCInterfaceDecl* ClassDecl = this;
+ ObjCMethodDecl *MethodDecl = nullptr;
+
+ if (data().ExternallyCompleted)
+ LoadExternalDefinition();
+
+ while (ClassDecl) {
+ // 1. Look through primary class.
+ if ((MethodDecl = ClassDecl->getMethod(Sel, isInstance)))
+ return MethodDecl;
+
+ // 2. Didn't find one yet - now look through categories.
+ for (const auto *Cat : ClassDecl->visible_categories())
+ if ((MethodDecl = Cat->getMethod(Sel, isInstance)))
+ if (C != Cat || !MethodDecl->isImplicit())
+ return MethodDecl;
+
+ // 3. Didn't find one yet - look through primary class's protocols.
+ for (const auto *I : ClassDecl->protocols())
+ if ((MethodDecl = I->lookupMethod(Sel, isInstance)))
+ return MethodDecl;
+
+ // 4. Didn't find one yet - now look through categories' protocols
+ if (!shallowCategoryLookup)
+ for (const auto *Cat : ClassDecl->visible_categories()) {
+ // Didn't find one yet - look through protocols.
+ const ObjCList<ObjCProtocolDecl> &Protocols =
+ Cat->getReferencedProtocols();
+ for (ObjCList<ObjCProtocolDecl>::iterator I = Protocols.begin(),
+ E = Protocols.end(); I != E; ++I)
+ if ((MethodDecl = (*I)->lookupMethod(Sel, isInstance)))
+ if (C != Cat || !MethodDecl->isImplicit())
+ return MethodDecl;
+ }
+
+
+ if (!followSuper)
+ return nullptr;
+
+ // 5. Get to the super class (if any).
+ ClassDecl = ClassDecl->getSuperClass();
+ }
+ return nullptr;
+}
+
+// Will search "local" class/category implementations for a method decl.
+// If failed, then we search in class's root for an instance method.
+// Returns 0 if no method is found.
+ObjCMethodDecl *ObjCInterfaceDecl::lookupPrivateMethod(
+ const Selector &Sel,
+ bool Instance) const {
+ // FIXME: Should make sure no callers ever do this.
+ if (!hasDefinition())
+ return nullptr;
+
+ if (data().ExternallyCompleted)
+ LoadExternalDefinition();
+
+ ObjCMethodDecl *Method = nullptr;
+ if (ObjCImplementationDecl *ImpDecl = getImplementation())
+ Method = Instance ? ImpDecl->getInstanceMethod(Sel)
+ : ImpDecl->getClassMethod(Sel);
+
+ // Look through local category implementations associated with the class.
+ if (!Method)
+ Method = getCategoryMethod(Sel, Instance);
+
+ // Before we give up, check if the selector is an instance method.
+ // But only in the root. This matches gcc's behavior and what the
+ // runtime expects.
+ if (!Instance && !Method && !getSuperClass()) {
+ Method = lookupInstanceMethod(Sel);
+ // Look through local category implementations associated
+ // with the root class.
+ if (!Method)
+ Method = lookupPrivateMethod(Sel, true);
+ }
+
+ if (!Method && getSuperClass())
+ return getSuperClass()->lookupPrivateMethod(Sel, Instance);
+ return Method;
+}
+
+//===----------------------------------------------------------------------===//
+// ObjCMethodDecl
+//===----------------------------------------------------------------------===//
+
+ObjCMethodDecl *ObjCMethodDecl::Create(
+ ASTContext &C, SourceLocation beginLoc, SourceLocation endLoc,
+ Selector SelInfo, QualType T, TypeSourceInfo *ReturnTInfo,
+ DeclContext *contextDecl, bool isInstance, bool isVariadic,
+ bool isPropertyAccessor, bool isImplicitlyDeclared, bool isDefined,
+ ImplementationControl impControl, bool HasRelatedResultType) {
+ return new (C, contextDecl) ObjCMethodDecl(
+ beginLoc, endLoc, SelInfo, T, ReturnTInfo, contextDecl, isInstance,
+ isVariadic, isPropertyAccessor, isImplicitlyDeclared, isDefined,
+ impControl, HasRelatedResultType);
+}
+
+ObjCMethodDecl *ObjCMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) ObjCMethodDecl(SourceLocation(), SourceLocation(),
+ Selector(), QualType(), nullptr, nullptr);
+}
+
+bool ObjCMethodDecl::isThisDeclarationADesignatedInitializer() const {
+ return getMethodFamily() == OMF_init &&
+ hasAttr<ObjCDesignatedInitializerAttr>();
+}
+
+bool ObjCMethodDecl::isDesignatedInitializerForTheInterface(
+ const ObjCMethodDecl **InitMethod) const {
+ if (getMethodFamily() != OMF_init)
+ return false;
+ const DeclContext *DC = getDeclContext();
+ if (isa<ObjCProtocolDecl>(DC))
+ return false;
+ if (const ObjCInterfaceDecl *ID = getClassInterface())
+ return ID->isDesignatedInitializer(getSelector(), InitMethod);
+ return false;
+}
+
+Stmt *ObjCMethodDecl::getBody() const {
+ return Body.get(getASTContext().getExternalSource());
+}
+
+void ObjCMethodDecl::setAsRedeclaration(const ObjCMethodDecl *PrevMethod) {
+ assert(PrevMethod);
+ getASTContext().setObjCMethodRedeclaration(PrevMethod, this);
+ IsRedeclaration = true;
+ PrevMethod->HasRedeclaration = true;
+}
+
+void ObjCMethodDecl::setParamsAndSelLocs(ASTContext &C,
+ ArrayRef<ParmVarDecl*> Params,
+ ArrayRef<SourceLocation> SelLocs) {
+ ParamsAndSelLocs = nullptr;
+ NumParams = Params.size();
+ if (Params.empty() && SelLocs.empty())
+ return;
+
+ unsigned Size = sizeof(ParmVarDecl *) * NumParams +
+ sizeof(SourceLocation) * SelLocs.size();
+ ParamsAndSelLocs = C.Allocate(Size);
+ std::copy(Params.begin(), Params.end(), getParams());
+ std::copy(SelLocs.begin(), SelLocs.end(), getStoredSelLocs());
+}
+
+void ObjCMethodDecl::getSelectorLocs(
+ SmallVectorImpl<SourceLocation> &SelLocs) const {
+ for (unsigned i = 0, e = getNumSelectorLocs(); i != e; ++i)
+ SelLocs.push_back(getSelectorLoc(i));
+}
+
+void ObjCMethodDecl::setMethodParams(ASTContext &C,
+ ArrayRef<ParmVarDecl*> Params,
+ ArrayRef<SourceLocation> SelLocs) {
+ assert((!SelLocs.empty() || isImplicit()) &&
+ "No selector locs for non-implicit method");
+ if (isImplicit())
+ return setParamsAndSelLocs(C, Params, llvm::None);
+
+ SelLocsKind = hasStandardSelectorLocs(getSelector(), SelLocs, Params,
+ DeclEndLoc);
+ if (SelLocsKind != SelLoc_NonStandard)
+ return setParamsAndSelLocs(C, Params, llvm::None);
+
+ setParamsAndSelLocs(C, Params, SelLocs);
+}
+
+/// \brief A definition will return its interface declaration.
+/// An interface declaration will return its definition.
+/// Otherwise it will return itself.
+ObjCMethodDecl *ObjCMethodDecl::getNextRedeclarationImpl() {
+ ASTContext &Ctx = getASTContext();
+ ObjCMethodDecl *Redecl = nullptr;
+ if (HasRedeclaration)
+ Redecl = const_cast<ObjCMethodDecl*>(Ctx.getObjCMethodRedeclaration(this));
+ if (Redecl)
+ return Redecl;
+
+ Decl *CtxD = cast<Decl>(getDeclContext());
+
+ if (!CtxD->isInvalidDecl()) {
+ if (ObjCInterfaceDecl *IFD = dyn_cast<ObjCInterfaceDecl>(CtxD)) {
+ if (ObjCImplementationDecl *ImplD = Ctx.getObjCImplementation(IFD))
+ if (!ImplD->isInvalidDecl())
+ Redecl = ImplD->getMethod(getSelector(), isInstanceMethod());
+
+ } else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CtxD)) {
+ if (ObjCCategoryImplDecl *ImplD = Ctx.getObjCImplementation(CD))
+ if (!ImplD->isInvalidDecl())
+ Redecl = ImplD->getMethod(getSelector(), isInstanceMethod());
+
+ } else if (ObjCImplementationDecl *ImplD =
+ dyn_cast<ObjCImplementationDecl>(CtxD)) {
+ if (ObjCInterfaceDecl *IFD = ImplD->getClassInterface())
+ if (!IFD->isInvalidDecl())
+ Redecl = IFD->getMethod(getSelector(), isInstanceMethod());
+
+ } else if (ObjCCategoryImplDecl *CImplD =
+ dyn_cast<ObjCCategoryImplDecl>(CtxD)) {
+ if (ObjCCategoryDecl *CatD = CImplD->getCategoryDecl())
+ if (!CatD->isInvalidDecl())
+ Redecl = CatD->getMethod(getSelector(), isInstanceMethod());
+ }
+ }
+
+ if (!Redecl && isRedeclaration()) {
+ // This is the last redeclaration, go back to the first method.
+ return cast<ObjCContainerDecl>(CtxD)->getMethod(getSelector(),
+ isInstanceMethod());
+ }
+
+ return Redecl ? Redecl : this;
+}
+
+ObjCMethodDecl *ObjCMethodDecl::getCanonicalDecl() {
+ Decl *CtxD = cast<Decl>(getDeclContext());
+
+ if (ObjCImplementationDecl *ImplD = dyn_cast<ObjCImplementationDecl>(CtxD)) {
+ if (ObjCInterfaceDecl *IFD = ImplD->getClassInterface())
+ if (ObjCMethodDecl *MD = IFD->getMethod(getSelector(),
+ isInstanceMethod()))
+ return MD;
+
+ } else if (ObjCCategoryImplDecl *CImplD =
+ dyn_cast<ObjCCategoryImplDecl>(CtxD)) {
+ if (ObjCCategoryDecl *CatD = CImplD->getCategoryDecl())
+ if (ObjCMethodDecl *MD = CatD->getMethod(getSelector(),
+ isInstanceMethod()))
+ return MD;
+ }
+
+ if (isRedeclaration())
+ return cast<ObjCContainerDecl>(CtxD)->getMethod(getSelector(),
+ isInstanceMethod());
+
+ return this;
+}
+
+SourceLocation ObjCMethodDecl::getLocEnd() const {
+ if (Stmt *Body = getBody())
+ return Body->getLocEnd();
+ return DeclEndLoc;
+}
+
+ObjCMethodFamily ObjCMethodDecl::getMethodFamily() const {
+ ObjCMethodFamily family = static_cast<ObjCMethodFamily>(Family);
+ if (family != static_cast<unsigned>(InvalidObjCMethodFamily))
+ return family;
+
+ // Check for an explicit attribute.
+ if (const ObjCMethodFamilyAttr *attr = getAttr<ObjCMethodFamilyAttr>()) {
+ // The unfortunate necessity of mapping between enums here is due
+ // to the attributes framework.
+ switch (attr->getFamily()) {
+ case ObjCMethodFamilyAttr::OMF_None: family = OMF_None; break;
+ case ObjCMethodFamilyAttr::OMF_alloc: family = OMF_alloc; break;
+ case ObjCMethodFamilyAttr::OMF_copy: family = OMF_copy; break;
+ case ObjCMethodFamilyAttr::OMF_init: family = OMF_init; break;
+ case ObjCMethodFamilyAttr::OMF_mutableCopy: family = OMF_mutableCopy; break;
+ case ObjCMethodFamilyAttr::OMF_new: family = OMF_new; break;
+ }
+ Family = static_cast<unsigned>(family);
+ return family;
+ }
+
+ family = getSelector().getMethodFamily();
+ switch (family) {
+ case OMF_None: break;
+
+ // init only has a conventional meaning for an instance method, and
+ // it has to return an object.
+ case OMF_init:
+ if (!isInstanceMethod() || !getReturnType()->isObjCObjectPointerType())
+ family = OMF_None;
+ break;
+
+ // alloc/copy/new have a conventional meaning for both class and
+ // instance methods, but they require an object return.
+ case OMF_alloc:
+ case OMF_copy:
+ case OMF_mutableCopy:
+ case OMF_new:
+ if (!getReturnType()->isObjCObjectPointerType())
+ family = OMF_None;
+ break;
+
+ // These selectors have a conventional meaning only for instance methods.
+ case OMF_dealloc:
+ case OMF_finalize:
+ case OMF_retain:
+ case OMF_release:
+ case OMF_autorelease:
+ case OMF_retainCount:
+ case OMF_self:
+ if (!isInstanceMethod())
+ family = OMF_None;
+ break;
+
+ case OMF_initialize:
+ if (isInstanceMethod() || !getReturnType()->isVoidType())
+ family = OMF_None;
+ break;
+
+ case OMF_performSelector:
+ if (!isInstanceMethod() || !getReturnType()->isObjCIdType())
+ family = OMF_None;
+ else {
+ unsigned noParams = param_size();
+ if (noParams < 1 || noParams > 3)
+ family = OMF_None;
+ else {
+ ObjCMethodDecl::param_type_iterator it = param_type_begin();
+ QualType ArgT = (*it);
+ if (!ArgT->isObjCSelType()) {
+ family = OMF_None;
+ break;
+ }
+ while (--noParams) {
+ it++;
+ ArgT = (*it);
+ if (!ArgT->isObjCIdType()) {
+ family = OMF_None;
+ break;
+ }
+ }
+ }
+ }
+ break;
+
+ }
+
+ // Cache the result.
+ Family = static_cast<unsigned>(family);
+ return family;
+}
+
+void ObjCMethodDecl::createImplicitParams(ASTContext &Context,
+ const ObjCInterfaceDecl *OID) {
+ QualType selfTy;
+ if (isInstanceMethod()) {
+ // There may be no interface context due to error in declaration
+ // of the interface (which has been reported). Recover gracefully.
+ if (OID) {
+ selfTy = Context.getObjCInterfaceType(OID);
+ selfTy = Context.getObjCObjectPointerType(selfTy);
+ } else {
+ selfTy = Context.getObjCIdType();
+ }
+ } else // we have a factory method.
+ selfTy = Context.getObjCClassType();
+
+ bool selfIsPseudoStrong = false;
+ bool selfIsConsumed = false;
+
+ if (Context.getLangOpts().ObjCAutoRefCount) {
+ if (isInstanceMethod()) {
+ selfIsConsumed = hasAttr<NSConsumesSelfAttr>();
+
+ // 'self' is always __strong. It's actually pseudo-strong except
+ // in init methods (or methods labeled ns_consumes_self), though.
+ Qualifiers qs;
+ qs.setObjCLifetime(Qualifiers::OCL_Strong);
+ selfTy = Context.getQualifiedType(selfTy, qs);
+
+ // In addition, 'self' is const unless this is an init method.
+ if (getMethodFamily() != OMF_init && !selfIsConsumed) {
+ selfTy = selfTy.withConst();
+ selfIsPseudoStrong = true;
+ }
+ }
+ else {
+ assert(isClassMethod());
+ // 'self' is always const in class methods.
+ selfTy = selfTy.withConst();
+ selfIsPseudoStrong = true;
+ }
+ }
+
+ ImplicitParamDecl *self
+ = ImplicitParamDecl::Create(Context, this, SourceLocation(),
+ &Context.Idents.get("self"), selfTy);
+ setSelfDecl(self);
+
+ if (selfIsConsumed)
+ self->addAttr(NSConsumedAttr::CreateImplicit(Context));
+
+ if (selfIsPseudoStrong)
+ self->setARCPseudoStrong(true);
+
+ setCmdDecl(ImplicitParamDecl::Create(Context, this, SourceLocation(),
+ &Context.Idents.get("_cmd"),
+ Context.getObjCSelType()));
+}
+
+ObjCInterfaceDecl *ObjCMethodDecl::getClassInterface() {
+ if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(getDeclContext()))
+ return ID;
+ if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(getDeclContext()))
+ return CD->getClassInterface();
+ if (ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(getDeclContext()))
+ return IMD->getClassInterface();
+ if (isa<ObjCProtocolDecl>(getDeclContext()))
+ return nullptr;
+ llvm_unreachable("unknown method context");
+}
+
+SourceRange ObjCMethodDecl::getReturnTypeSourceRange() const {
+ const auto *TSI = getReturnTypeSourceInfo();
+ if (TSI)
+ return TSI->getTypeLoc().getSourceRange();
+ return SourceRange();
+}
+
+static void CollectOverriddenMethodsRecurse(const ObjCContainerDecl *Container,
+ const ObjCMethodDecl *Method,
+ SmallVectorImpl<const ObjCMethodDecl *> &Methods,
+ bool MovedToSuper) {
+ if (!Container)
+ return;
+
+ // In categories look for overriden methods from protocols. A method from
+ // category is not "overriden" since it is considered as the "same" method
+ // (same USR) as the one from the interface.
+ if (const ObjCCategoryDecl *
+ Category = dyn_cast<ObjCCategoryDecl>(Container)) {
+ // Check whether we have a matching method at this category but only if we
+ // are at the super class level.
+ if (MovedToSuper)
+ if (ObjCMethodDecl *
+ Overridden = Container->getMethod(Method->getSelector(),
+ Method->isInstanceMethod(),
+ /*AllowHidden=*/true))
+ if (Method != Overridden) {
+ // We found an override at this category; there is no need to look
+ // into its protocols.
+ Methods.push_back(Overridden);
+ return;
+ }
+
+ for (const auto *P : Category->protocols())
+ CollectOverriddenMethodsRecurse(P, Method, Methods, MovedToSuper);
+ return;
+ }
+
+ // Check whether we have a matching method at this level.
+ if (const ObjCMethodDecl *
+ Overridden = Container->getMethod(Method->getSelector(),
+ Method->isInstanceMethod(),
+ /*AllowHidden=*/true))
+ if (Method != Overridden) {
+ // We found an override at this level; there is no need to look
+ // into other protocols or categories.
+ Methods.push_back(Overridden);
+ return;
+ }
+
+ if (const ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Container)){
+ for (const auto *P : Protocol->protocols())
+ CollectOverriddenMethodsRecurse(P, Method, Methods, MovedToSuper);
+ }
+
+ if (const ObjCInterfaceDecl *
+ Interface = dyn_cast<ObjCInterfaceDecl>(Container)) {
+ for (const auto *P : Interface->protocols())
+ CollectOverriddenMethodsRecurse(P, Method, Methods, MovedToSuper);
+
+ for (const auto *Cat : Interface->known_categories())
+ CollectOverriddenMethodsRecurse(Cat, Method, Methods, MovedToSuper);
+
+ if (const ObjCInterfaceDecl *Super = Interface->getSuperClass())
+ return CollectOverriddenMethodsRecurse(Super, Method, Methods,
+ /*MovedToSuper=*/true);
+ }
+}
+
+static inline void CollectOverriddenMethods(const ObjCContainerDecl *Container,
+ const ObjCMethodDecl *Method,
+ SmallVectorImpl<const ObjCMethodDecl *> &Methods) {
+ CollectOverriddenMethodsRecurse(Container, Method, Methods,
+ /*MovedToSuper=*/false);
+}
+
+static void collectOverriddenMethodsSlow(const ObjCMethodDecl *Method,
+ SmallVectorImpl<const ObjCMethodDecl *> &overridden) {
+ assert(Method->isOverriding());
+
+ if (const ObjCProtocolDecl *
+ ProtD = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext())) {
+ CollectOverriddenMethods(ProtD, Method, overridden);
+
+ } else if (const ObjCImplDecl *
+ IMD = dyn_cast<ObjCImplDecl>(Method->getDeclContext())) {
+ const ObjCInterfaceDecl *ID = IMD->getClassInterface();
+ if (!ID)
+ return;
+ // Start searching for overridden methods using the method from the
+ // interface as starting point.
+ if (const ObjCMethodDecl *IFaceMeth = ID->getMethod(Method->getSelector(),
+ Method->isInstanceMethod(),
+ /*AllowHidden=*/true))
+ Method = IFaceMeth;
+ CollectOverriddenMethods(ID, Method, overridden);
+
+ } else if (const ObjCCategoryDecl *
+ CatD = dyn_cast<ObjCCategoryDecl>(Method->getDeclContext())) {
+ const ObjCInterfaceDecl *ID = CatD->getClassInterface();
+ if (!ID)
+ return;
+ // Start searching for overridden methods using the method from the
+ // interface as starting point.
+ if (const ObjCMethodDecl *IFaceMeth = ID->getMethod(Method->getSelector(),
+ Method->isInstanceMethod(),
+ /*AllowHidden=*/true))
+ Method = IFaceMeth;
+ CollectOverriddenMethods(ID, Method, overridden);
+
+ } else {
+ CollectOverriddenMethods(
+ dyn_cast_or_null<ObjCContainerDecl>(Method->getDeclContext()),
+ Method, overridden);
+ }
+}
+
+void ObjCMethodDecl::getOverriddenMethods(
+ SmallVectorImpl<const ObjCMethodDecl *> &Overridden) const {
+ const ObjCMethodDecl *Method = this;
+
+ if (Method->isRedeclaration()) {
+ Method = cast<ObjCContainerDecl>(Method->getDeclContext())->
+ getMethod(Method->getSelector(), Method->isInstanceMethod());
+ }
+
+ if (Method->isOverriding()) {
+ collectOverriddenMethodsSlow(Method, Overridden);
+ assert(!Overridden.empty() &&
+ "ObjCMethodDecl's overriding bit is not as expected");
+ }
+}
+
+const ObjCPropertyDecl *
+ObjCMethodDecl::findPropertyDecl(bool CheckOverrides) const {
+ Selector Sel = getSelector();
+ unsigned NumArgs = Sel.getNumArgs();
+ if (NumArgs > 1)
+ return nullptr;
+
+ if (!isInstanceMethod())
+ return nullptr;
+
+ if (isPropertyAccessor()) {
+ const ObjCContainerDecl *Container = cast<ObjCContainerDecl>(getParent());
+ // If container is class extension, find its primary class.
+ if (const ObjCCategoryDecl *CatDecl = dyn_cast<ObjCCategoryDecl>(Container))
+ if (CatDecl->IsClassExtension())
+ Container = CatDecl->getClassInterface();
+
+ bool IsGetter = (NumArgs == 0);
+
+ for (const auto *I : Container->properties()) {
+ Selector NextSel = IsGetter ? I->getGetterName()
+ : I->getSetterName();
+ if (NextSel == Sel)
+ return I;
+ }
+
+ llvm_unreachable("Marked as a property accessor but no property found!");
+ }
+
+ if (!CheckOverrides)
+ return nullptr;
+
+ typedef SmallVector<const ObjCMethodDecl *, 8> OverridesTy;
+ OverridesTy Overrides;
+ getOverriddenMethods(Overrides);
+ for (OverridesTy::const_iterator I = Overrides.begin(), E = Overrides.end();
+ I != E; ++I) {
+ if (const ObjCPropertyDecl *Prop = (*I)->findPropertyDecl(false))
+ return Prop;
+ }
+
+ return nullptr;
+}
+
+//===----------------------------------------------------------------------===//
+// ObjCInterfaceDecl
+//===----------------------------------------------------------------------===//
+
+ObjCInterfaceDecl *ObjCInterfaceDecl::Create(const ASTContext &C,
+ DeclContext *DC,
+ SourceLocation atLoc,
+ IdentifierInfo *Id,
+ ObjCInterfaceDecl *PrevDecl,
+ SourceLocation ClassLoc,
+ bool isInternal){
+ ObjCInterfaceDecl *Result = new (C, DC)
+ ObjCInterfaceDecl(C, DC, atLoc, Id, ClassLoc, PrevDecl, isInternal);
+ Result->Data.setInt(!C.getLangOpts().Modules);
+ C.getObjCInterfaceType(Result, PrevDecl);
+ return Result;
+}
+
+ObjCInterfaceDecl *ObjCInterfaceDecl::CreateDeserialized(const ASTContext &C,
+ unsigned ID) {
+ ObjCInterfaceDecl *Result = new (C, ID) ObjCInterfaceDecl(C, nullptr,
+ SourceLocation(),
+ nullptr,
+ SourceLocation(),
+ nullptr, false);
+ Result->Data.setInt(!C.getLangOpts().Modules);
+ return Result;
+}
+
+ObjCInterfaceDecl::ObjCInterfaceDecl(const ASTContext &C, DeclContext *DC,
+ SourceLocation AtLoc, IdentifierInfo *Id,
+ SourceLocation CLoc,
+ ObjCInterfaceDecl *PrevDecl,
+ bool IsInternal)
+ : ObjCContainerDecl(ObjCInterface, DC, Id, CLoc, AtLoc),
+ redeclarable_base(C), TypeForDecl(nullptr), Data() {
+ setPreviousDecl(PrevDecl);
+
+ // Copy the 'data' pointer over.
+ if (PrevDecl)
+ Data = PrevDecl->Data;
+
+ setImplicit(IsInternal);
+}
+
+void ObjCInterfaceDecl::LoadExternalDefinition() const {
+ assert(data().ExternallyCompleted && "Class is not externally completed");
+ data().ExternallyCompleted = false;
+ getASTContext().getExternalSource()->CompleteType(
+ const_cast<ObjCInterfaceDecl *>(this));
+}
+
+void ObjCInterfaceDecl::setExternallyCompleted() {
+ assert(getASTContext().getExternalSource() &&
+ "Class can't be externally completed without an external source");
+ assert(hasDefinition() &&
+ "Forward declarations can't be externally completed");
+ data().ExternallyCompleted = true;
+}
+
+void ObjCInterfaceDecl::setHasDesignatedInitializers() {
+ // Check for a complete definition and recover if not so.
+ if (!isThisDeclarationADefinition())
+ return;
+ data().HasDesignatedInitializers = true;
+}
+
+bool ObjCInterfaceDecl::hasDesignatedInitializers() const {
+ // Check for a complete definition and recover if not so.
+ if (!isThisDeclarationADefinition())
+ return false;
+ if (data().ExternallyCompleted)
+ LoadExternalDefinition();
+
+ return data().HasDesignatedInitializers;
+}
+
+StringRef
+ObjCInterfaceDecl::getObjCRuntimeNameAsString() const {
+ if (ObjCRuntimeNameAttr *ObjCRTName = getAttr<ObjCRuntimeNameAttr>())
+ return ObjCRTName->getMetadataName();
+
+ return getName();
+}
+
+StringRef
+ObjCImplementationDecl::getObjCRuntimeNameAsString() const {
+ if (ObjCInterfaceDecl *ID =
+ const_cast<ObjCImplementationDecl*>(this)->getClassInterface())
+ return ID->getObjCRuntimeNameAsString();
+
+ return getName();
+}
+
+ObjCImplementationDecl *ObjCInterfaceDecl::getImplementation() const {
+ if (const ObjCInterfaceDecl *Def = getDefinition()) {
+ if (data().ExternallyCompleted)
+ LoadExternalDefinition();
+
+ return getASTContext().getObjCImplementation(
+ const_cast<ObjCInterfaceDecl*>(Def));
+ }
+
+ // FIXME: Should make sure no callers ever do this.
+ return nullptr;
+}
+
+void ObjCInterfaceDecl::setImplementation(ObjCImplementationDecl *ImplD) {
+ getASTContext().setObjCImplementation(getDefinition(), ImplD);
+}
+
+namespace {
+ struct SynthesizeIvarChunk {
+ uint64_t Size;
+ ObjCIvarDecl *Ivar;
+ SynthesizeIvarChunk(uint64_t size, ObjCIvarDecl *ivar)
+ : Size(size), Ivar(ivar) {}
+ };
+
+ bool operator<(const SynthesizeIvarChunk & LHS,
+ const SynthesizeIvarChunk &RHS) {
+ return LHS.Size < RHS.Size;
+ }
+}
+
+/// all_declared_ivar_begin - return first ivar declared in this class,
+/// its extensions and its implementation. Lazily build the list on first
+/// access.
+///
+/// Caveat: The list returned by this method reflects the current
+/// state of the parser. The cache will be updated for every ivar
+/// added by an extension or the implementation when they are
+/// encountered.
+/// See also ObjCIvarDecl::Create().
+ObjCIvarDecl *ObjCInterfaceDecl::all_declared_ivar_begin() {
+ // FIXME: Should make sure no callers ever do this.
+ if (!hasDefinition())
+ return nullptr;
+
+ ObjCIvarDecl *curIvar = nullptr;
+ if (!data().IvarList) {
+ if (!ivar_empty()) {
+ ObjCInterfaceDecl::ivar_iterator I = ivar_begin(), E = ivar_end();
+ data().IvarList = *I; ++I;
+ for (curIvar = data().IvarList; I != E; curIvar = *I, ++I)
+ curIvar->setNextIvar(*I);
+ }
+
+ for (const auto *Ext : known_extensions()) {
+ if (!Ext->ivar_empty()) {
+ ObjCCategoryDecl::ivar_iterator
+ I = Ext->ivar_begin(),
+ E = Ext->ivar_end();
+ if (!data().IvarList) {
+ data().IvarList = *I; ++I;
+ curIvar = data().IvarList;
+ }
+ for ( ;I != E; curIvar = *I, ++I)
+ curIvar->setNextIvar(*I);
+ }
+ }
+ data().IvarListMissingImplementation = true;
+ }
+
+ // cached and complete!
+ if (!data().IvarListMissingImplementation)
+ return data().IvarList;
+
+ if (ObjCImplementationDecl *ImplDecl = getImplementation()) {
+ data().IvarListMissingImplementation = false;
+ if (!ImplDecl->ivar_empty()) {
+ SmallVector<SynthesizeIvarChunk, 16> layout;
+ for (auto *IV : ImplDecl->ivars()) {
+ if (IV->getSynthesize() && !IV->isInvalidDecl()) {
+ layout.push_back(SynthesizeIvarChunk(
+ IV->getASTContext().getTypeSize(IV->getType()), IV));
+ continue;
+ }
+ if (!data().IvarList)
+ data().IvarList = IV;
+ else
+ curIvar->setNextIvar(IV);
+ curIvar = IV;
+ }
+
+ if (!layout.empty()) {
+ // Order synthesized ivars by their size.
+ std::stable_sort(layout.begin(), layout.end());
+ unsigned Ix = 0, EIx = layout.size();
+ if (!data().IvarList) {
+ data().IvarList = layout[0].Ivar; Ix++;
+ curIvar = data().IvarList;
+ }
+ for ( ; Ix != EIx; curIvar = layout[Ix].Ivar, Ix++)
+ curIvar->setNextIvar(layout[Ix].Ivar);
+ }
+ }
+ }
+ return data().IvarList;
+}
+
+/// FindCategoryDeclaration - Finds category declaration in the list of
+/// categories for this class and returns it. Name of the category is passed
+/// in 'CategoryId'. If category not found, return 0;
+///
+ObjCCategoryDecl *
+ObjCInterfaceDecl::FindCategoryDeclaration(IdentifierInfo *CategoryId) const {
+ // FIXME: Should make sure no callers ever do this.
+ if (!hasDefinition())
+ return nullptr;
+
+ if (data().ExternallyCompleted)
+ LoadExternalDefinition();
+
+ for (auto *Cat : visible_categories())
+ if (Cat->getIdentifier() == CategoryId)
+ return Cat;
+
+ return nullptr;
+}
+
+ObjCMethodDecl *
+ObjCInterfaceDecl::getCategoryInstanceMethod(Selector Sel) const {
+ for (const auto *Cat : visible_categories()) {
+ if (ObjCCategoryImplDecl *Impl = Cat->getImplementation())
+ if (ObjCMethodDecl *MD = Impl->getInstanceMethod(Sel))
+ return MD;
+ }
+
+ return nullptr;
+}
+
+ObjCMethodDecl *ObjCInterfaceDecl::getCategoryClassMethod(Selector Sel) const {
+ for (const auto *Cat : visible_categories()) {
+ if (ObjCCategoryImplDecl *Impl = Cat->getImplementation())
+ if (ObjCMethodDecl *MD = Impl->getClassMethod(Sel))
+ return MD;
+ }
+
+ return nullptr;
+}
+
+/// ClassImplementsProtocol - Checks that 'lProto' protocol
+/// has been implemented in IDecl class, its super class or categories (if
+/// lookupCategory is true).
+bool ObjCInterfaceDecl::ClassImplementsProtocol(ObjCProtocolDecl *lProto,
+ bool lookupCategory,
+ bool RHSIsQualifiedID) {
+ if (!hasDefinition())
+ return false;
+
+ ObjCInterfaceDecl *IDecl = this;
+ // 1st, look up the class.
+ for (auto *PI : IDecl->protocols()){
+ if (getASTContext().ProtocolCompatibleWithProtocol(lProto, PI))
+ return true;
+ // This is dubious and is added to be compatible with gcc. In gcc, it is
+ // also allowed assigning a protocol-qualified 'id' type to a LHS object
+ // when protocol in qualified LHS is in list of protocols in the rhs 'id'
+ // object. This IMO, should be a bug.
+ // FIXME: Treat this as an extension, and flag this as an error when GCC
+ // extensions are not enabled.
+ if (RHSIsQualifiedID &&
+ getASTContext().ProtocolCompatibleWithProtocol(PI, lProto))
+ return true;
+ }
+
+ // 2nd, look up the category.
+ if (lookupCategory)
+ for (const auto *Cat : visible_categories()) {
+ for (auto *PI : Cat->protocols())
+ if (getASTContext().ProtocolCompatibleWithProtocol(lProto, PI))
+ return true;
+ }
+
+ // 3rd, look up the super class(s)
+ if (IDecl->getSuperClass())
+ return
+ IDecl->getSuperClass()->ClassImplementsProtocol(lProto, lookupCategory,
+ RHSIsQualifiedID);
+
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// ObjCIvarDecl
+//===----------------------------------------------------------------------===//
+
+void ObjCIvarDecl::anchor() { }
+
+ObjCIvarDecl *ObjCIvarDecl::Create(ASTContext &C, ObjCContainerDecl *DC,
+ SourceLocation StartLoc,
+ SourceLocation IdLoc, IdentifierInfo *Id,
+ QualType T, TypeSourceInfo *TInfo,
+ AccessControl ac, Expr *BW,
+ bool synthesized) {
+ if (DC) {
+ // Ivar's can only appear in interfaces, implementations (via synthesized
+ // properties), and class extensions (via direct declaration, or synthesized
+ // properties).
+ //
+ // FIXME: This should really be asserting this:
+ // (isa<ObjCCategoryDecl>(DC) &&
+ // cast<ObjCCategoryDecl>(DC)->IsClassExtension()))
+ // but unfortunately we sometimes place ivars into non-class extension
+ // categories on error. This breaks an AST invariant, and should not be
+ // fixed.
+ assert((isa<ObjCInterfaceDecl>(DC) || isa<ObjCImplementationDecl>(DC) ||
+ isa<ObjCCategoryDecl>(DC)) &&
+ "Invalid ivar decl context!");
+ // Once a new ivar is created in any of class/class-extension/implementation
+ // decl contexts, the previously built IvarList must be rebuilt.
+ ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(DC);
+ if (!ID) {
+ if (ObjCImplementationDecl *IM = dyn_cast<ObjCImplementationDecl>(DC))
+ ID = IM->getClassInterface();
+ else
+ ID = cast<ObjCCategoryDecl>(DC)->getClassInterface();
+ }
+ ID->setIvarList(nullptr);
+ }
+
+ return new (C, DC) ObjCIvarDecl(DC, StartLoc, IdLoc, Id, T, TInfo, ac, BW,
+ synthesized);
+}
+
+ObjCIvarDecl *ObjCIvarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) ObjCIvarDecl(nullptr, SourceLocation(), SourceLocation(),
+ nullptr, QualType(), nullptr,
+ ObjCIvarDecl::None, nullptr, false);
+}
+
+const ObjCInterfaceDecl *ObjCIvarDecl::getContainingInterface() const {
+ const ObjCContainerDecl *DC = cast<ObjCContainerDecl>(getDeclContext());
+
+ switch (DC->getKind()) {
+ default:
+ case ObjCCategoryImpl:
+ case ObjCProtocol:
+ llvm_unreachable("invalid ivar container!");
+
+ // Ivars can only appear in class extension categories.
+ case ObjCCategory: {
+ const ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(DC);
+ assert(CD->IsClassExtension() && "invalid container for ivar!");
+ return CD->getClassInterface();
+ }
+
+ case ObjCImplementation:
+ return cast<ObjCImplementationDecl>(DC)->getClassInterface();
+
+ case ObjCInterface:
+ return cast<ObjCInterfaceDecl>(DC);
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// ObjCAtDefsFieldDecl
+//===----------------------------------------------------------------------===//
+
+void ObjCAtDefsFieldDecl::anchor() { }
+
+ObjCAtDefsFieldDecl
+*ObjCAtDefsFieldDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation StartLoc, SourceLocation IdLoc,
+ IdentifierInfo *Id, QualType T, Expr *BW) {
+ return new (C, DC) ObjCAtDefsFieldDecl(DC, StartLoc, IdLoc, Id, T, BW);
+}
+
+ObjCAtDefsFieldDecl *ObjCAtDefsFieldDecl::CreateDeserialized(ASTContext &C,
+ unsigned ID) {
+ return new (C, ID) ObjCAtDefsFieldDecl(nullptr, SourceLocation(),
+ SourceLocation(), nullptr, QualType(),
+ nullptr);
+}
+
+//===----------------------------------------------------------------------===//
+// ObjCProtocolDecl
+//===----------------------------------------------------------------------===//
+
+void ObjCProtocolDecl::anchor() { }
+
+ObjCProtocolDecl::ObjCProtocolDecl(ASTContext &C, DeclContext *DC,
+ IdentifierInfo *Id, SourceLocation nameLoc,
+ SourceLocation atStartLoc,
+ ObjCProtocolDecl *PrevDecl)
+ : ObjCContainerDecl(ObjCProtocol, DC, Id, nameLoc, atStartLoc),
+ redeclarable_base(C), Data() {
+ setPreviousDecl(PrevDecl);
+ if (PrevDecl)
+ Data = PrevDecl->Data;
+}
+
+ObjCProtocolDecl *ObjCProtocolDecl::Create(ASTContext &C, DeclContext *DC,
+ IdentifierInfo *Id,
+ SourceLocation nameLoc,
+ SourceLocation atStartLoc,
+ ObjCProtocolDecl *PrevDecl) {
+ ObjCProtocolDecl *Result =
+ new (C, DC) ObjCProtocolDecl(C, DC, Id, nameLoc, atStartLoc, PrevDecl);
+ Result->Data.setInt(!C.getLangOpts().Modules);
+ return Result;
+}
+
+ObjCProtocolDecl *ObjCProtocolDecl::CreateDeserialized(ASTContext &C,
+ unsigned ID) {
+ ObjCProtocolDecl *Result =
+ new (C, ID) ObjCProtocolDecl(C, nullptr, nullptr, SourceLocation(),
+ SourceLocation(), nullptr);
+ Result->Data.setInt(!C.getLangOpts().Modules);
+ return Result;
+}
+
+ObjCProtocolDecl *ObjCProtocolDecl::lookupProtocolNamed(IdentifierInfo *Name) {
+ ObjCProtocolDecl *PDecl = this;
+
+ if (Name == getIdentifier())
+ return PDecl;
+
+ for (auto *I : protocols())
+ if ((PDecl = I->lookupProtocolNamed(Name)))
+ return PDecl;
+
+ return nullptr;
+}
+
+// lookupMethod - Lookup a instance/class method in the protocol and protocols
+// it inherited.
+ObjCMethodDecl *ObjCProtocolDecl::lookupMethod(Selector Sel,
+ bool isInstance) const {
+ ObjCMethodDecl *MethodDecl = nullptr;
+
+ // If there is no definition or the definition is hidden, we don't find
+ // anything.
+ const ObjCProtocolDecl *Def = getDefinition();
+ if (!Def || Def->isHidden())
+ return nullptr;
+
+ if ((MethodDecl = getMethod(Sel, isInstance)))
+ return MethodDecl;
+
+ for (const auto *I : protocols())
+ if ((MethodDecl = I->lookupMethod(Sel, isInstance)))
+ return MethodDecl;
+ return nullptr;
+}
+
+void ObjCProtocolDecl::allocateDefinitionData() {
+ assert(!Data.getPointer() && "Protocol already has a definition!");
+ Data.setPointer(new (getASTContext()) DefinitionData);
+ Data.getPointer()->Definition = this;
+}
+
+void ObjCProtocolDecl::startDefinition() {
+ allocateDefinitionData();
+
+ // Update all of the declarations with a pointer to the definition.
+ for (auto RD : redecls())
+ RD->Data = this->Data;
+}
+
+void ObjCProtocolDecl::collectPropertiesToImplement(PropertyMap &PM,
+ PropertyDeclOrder &PO) const {
+
+ if (const ObjCProtocolDecl *PDecl = getDefinition()) {
+ for (auto *Prop : PDecl->properties()) {
+ // Insert into PM if not there already.
+ PM.insert(std::make_pair(Prop->getIdentifier(), Prop));
+ PO.push_back(Prop);
+ }
+ // Scan through protocol's protocols.
+ for (const auto *PI : PDecl->protocols())
+ PI->collectPropertiesToImplement(PM, PO);
+ }
+}
+
+
+void ObjCProtocolDecl::collectInheritedProtocolProperties(
+ const ObjCPropertyDecl *Property,
+ ProtocolPropertyMap &PM) const {
+ if (const ObjCProtocolDecl *PDecl = getDefinition()) {
+ bool MatchFound = false;
+ for (auto *Prop : PDecl->properties()) {
+ if (Prop == Property)
+ continue;
+ if (Prop->getIdentifier() == Property->getIdentifier()) {
+ PM[PDecl] = Prop;
+ MatchFound = true;
+ break;
+ }
+ }
+ // Scan through protocol's protocols which did not have a matching property.
+ if (!MatchFound)
+ for (const auto *PI : PDecl->protocols())
+ PI->collectInheritedProtocolProperties(Property, PM);
+ }
+}
+
+StringRef
+ObjCProtocolDecl::getObjCRuntimeNameAsString() const {
+ if (ObjCRuntimeNameAttr *ObjCRTName = getAttr<ObjCRuntimeNameAttr>())
+ return ObjCRTName->getMetadataName();
+
+ return getName();
+}
+
+//===----------------------------------------------------------------------===//
+// ObjCCategoryDecl
+//===----------------------------------------------------------------------===//
+
+void ObjCCategoryDecl::anchor() { }
+
+ObjCCategoryDecl *ObjCCategoryDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation AtLoc,
+ SourceLocation ClassNameLoc,
+ SourceLocation CategoryNameLoc,
+ IdentifierInfo *Id,
+ ObjCInterfaceDecl *IDecl,
+ SourceLocation IvarLBraceLoc,
+ SourceLocation IvarRBraceLoc) {
+ ObjCCategoryDecl *CatDecl =
+ new (C, DC) ObjCCategoryDecl(DC, AtLoc, ClassNameLoc, CategoryNameLoc, Id,
+ IDecl, IvarLBraceLoc, IvarRBraceLoc);
+ if (IDecl) {
+ // Link this category into its class's category list.
+ CatDecl->NextClassCategory = IDecl->getCategoryListRaw();
+ if (IDecl->hasDefinition()) {
+ IDecl->setCategoryListRaw(CatDecl);
+ if (ASTMutationListener *L = C.getASTMutationListener())
+ L->AddedObjCCategoryToInterface(CatDecl, IDecl);
+ }
+ }
+
+ return CatDecl;
+}
+
+ObjCCategoryDecl *ObjCCategoryDecl::CreateDeserialized(ASTContext &C,
+ unsigned ID) {
+ return new (C, ID) ObjCCategoryDecl(nullptr, SourceLocation(),
+ SourceLocation(), SourceLocation(),
+ nullptr, nullptr);
+}
+
+ObjCCategoryImplDecl *ObjCCategoryDecl::getImplementation() const {
+ return getASTContext().getObjCImplementation(
+ const_cast<ObjCCategoryDecl*>(this));
+}
+
+void ObjCCategoryDecl::setImplementation(ObjCCategoryImplDecl *ImplD) {
+ getASTContext().setObjCImplementation(this, ImplD);
+}
+
+
+//===----------------------------------------------------------------------===//
+// ObjCCategoryImplDecl
+//===----------------------------------------------------------------------===//
+
+void ObjCCategoryImplDecl::anchor() { }
+
+ObjCCategoryImplDecl *
+ObjCCategoryImplDecl::Create(ASTContext &C, DeclContext *DC,
+ IdentifierInfo *Id,
+ ObjCInterfaceDecl *ClassInterface,
+ SourceLocation nameLoc,
+ SourceLocation atStartLoc,
+ SourceLocation CategoryNameLoc) {
+ if (ClassInterface && ClassInterface->hasDefinition())
+ ClassInterface = ClassInterface->getDefinition();
+ return new (C, DC) ObjCCategoryImplDecl(DC, Id, ClassInterface, nameLoc,
+ atStartLoc, CategoryNameLoc);
+}
+
+ObjCCategoryImplDecl *ObjCCategoryImplDecl::CreateDeserialized(ASTContext &C,
+ unsigned ID) {
+ return new (C, ID) ObjCCategoryImplDecl(nullptr, nullptr, nullptr,
+ SourceLocation(), SourceLocation(),
+ SourceLocation());
+}
+
+ObjCCategoryDecl *ObjCCategoryImplDecl::getCategoryDecl() const {
+ // The class interface might be NULL if we are working with invalid code.
+ if (const ObjCInterfaceDecl *ID = getClassInterface())
+ return ID->FindCategoryDeclaration(getIdentifier());
+ return nullptr;
+}
+
+
+void ObjCImplDecl::anchor() { }
+
+void ObjCImplDecl::addPropertyImplementation(ObjCPropertyImplDecl *property) {
+ // FIXME: The context should be correct before we get here.
+ property->setLexicalDeclContext(this);
+ addDecl(property);
+}
+
+void ObjCImplDecl::setClassInterface(ObjCInterfaceDecl *IFace) {
+ ASTContext &Ctx = getASTContext();
+
+ if (ObjCImplementationDecl *ImplD
+ = dyn_cast_or_null<ObjCImplementationDecl>(this)) {
+ if (IFace)
+ Ctx.setObjCImplementation(IFace, ImplD);
+
+ } else if (ObjCCategoryImplDecl *ImplD =
+ dyn_cast_or_null<ObjCCategoryImplDecl>(this)) {
+ if (ObjCCategoryDecl *CD = IFace->FindCategoryDeclaration(getIdentifier()))
+ Ctx.setObjCImplementation(CD, ImplD);
+ }
+
+ ClassInterface = IFace;
+}
+
+/// FindPropertyImplIvarDecl - This method lookup the ivar in the list of
+/// properties implemented in this \@implementation block and returns
+/// the implemented property that uses it.
+///
+ObjCPropertyImplDecl *ObjCImplDecl::
+FindPropertyImplIvarDecl(IdentifierInfo *ivarId) const {
+ for (auto *PID : property_impls())
+ if (PID->getPropertyIvarDecl() &&
+ PID->getPropertyIvarDecl()->getIdentifier() == ivarId)
+ return PID;
+ return nullptr;
+}
+
+/// FindPropertyImplDecl - This method looks up a previous ObjCPropertyImplDecl
+/// added to the list of those properties \@synthesized/\@dynamic in this
+/// category \@implementation block.
+///
+ObjCPropertyImplDecl *ObjCImplDecl::
+FindPropertyImplDecl(IdentifierInfo *Id) const {
+ for (auto *PID : property_impls())
+ if (PID->getPropertyDecl()->getIdentifier() == Id)
+ return PID;
+ return nullptr;
+}
+
+raw_ostream &clang::operator<<(raw_ostream &OS,
+ const ObjCCategoryImplDecl &CID) {
+ OS << CID.getName();
+ return OS;
+}
+
+//===----------------------------------------------------------------------===//
+// ObjCImplementationDecl
+//===----------------------------------------------------------------------===//
+
+void ObjCImplementationDecl::anchor() { }
+
+ObjCImplementationDecl *
+ObjCImplementationDecl::Create(ASTContext &C, DeclContext *DC,
+ ObjCInterfaceDecl *ClassInterface,
+ ObjCInterfaceDecl *SuperDecl,
+ SourceLocation nameLoc,
+ SourceLocation atStartLoc,
+ SourceLocation superLoc,
+ SourceLocation IvarLBraceLoc,
+ SourceLocation IvarRBraceLoc) {
+ if (ClassInterface && ClassInterface->hasDefinition())
+ ClassInterface = ClassInterface->getDefinition();
+ return new (C, DC) ObjCImplementationDecl(DC, ClassInterface, SuperDecl,
+ nameLoc, atStartLoc, superLoc,
+ IvarLBraceLoc, IvarRBraceLoc);
+}
+
+ObjCImplementationDecl *
+ObjCImplementationDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) ObjCImplementationDecl(nullptr, nullptr, nullptr,
+ SourceLocation(), SourceLocation());
+}
+
+void ObjCImplementationDecl::setIvarInitializers(ASTContext &C,
+ CXXCtorInitializer ** initializers,
+ unsigned numInitializers) {
+ if (numInitializers > 0) {
+ NumIvarInitializers = numInitializers;
+ CXXCtorInitializer **ivarInitializers =
+ new (C) CXXCtorInitializer*[NumIvarInitializers];
+ memcpy(ivarInitializers, initializers,
+ numInitializers * sizeof(CXXCtorInitializer*));
+ IvarInitializers = ivarInitializers;
+ }
+}
+
+ObjCImplementationDecl::init_const_iterator
+ObjCImplementationDecl::init_begin() const {
+ return IvarInitializers.get(getASTContext().getExternalSource());
+}
+
+raw_ostream &clang::operator<<(raw_ostream &OS,
+ const ObjCImplementationDecl &ID) {
+ OS << ID.getName();
+ return OS;
+}
+
+//===----------------------------------------------------------------------===//
+// ObjCCompatibleAliasDecl
+//===----------------------------------------------------------------------===//
+
+void ObjCCompatibleAliasDecl::anchor() { }
+
+ObjCCompatibleAliasDecl *
+ObjCCompatibleAliasDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation L,
+ IdentifierInfo *Id,
+ ObjCInterfaceDecl* AliasedClass) {
+ return new (C, DC) ObjCCompatibleAliasDecl(DC, L, Id, AliasedClass);
+}
+
+ObjCCompatibleAliasDecl *
+ObjCCompatibleAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) ObjCCompatibleAliasDecl(nullptr, SourceLocation(),
+ nullptr, nullptr);
+}
+
+//===----------------------------------------------------------------------===//
+// ObjCPropertyDecl
+//===----------------------------------------------------------------------===//
+
+void ObjCPropertyDecl::anchor() { }
+
+ObjCPropertyDecl *ObjCPropertyDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation L,
+ IdentifierInfo *Id,
+ SourceLocation AtLoc,
+ SourceLocation LParenLoc,
+ TypeSourceInfo *T,
+ PropertyControl propControl) {
+ return new (C, DC) ObjCPropertyDecl(DC, L, Id, AtLoc, LParenLoc, T);
+}
+
+ObjCPropertyDecl *ObjCPropertyDecl::CreateDeserialized(ASTContext &C,
+ unsigned ID) {
+ return new (C, ID) ObjCPropertyDecl(nullptr, SourceLocation(), nullptr,
+ SourceLocation(), SourceLocation(),
+ nullptr);
+}
+
+//===----------------------------------------------------------------------===//
+// ObjCPropertyImplDecl
+//===----------------------------------------------------------------------===//
+
+ObjCPropertyImplDecl *ObjCPropertyImplDecl::Create(ASTContext &C,
+ DeclContext *DC,
+ SourceLocation atLoc,
+ SourceLocation L,
+ ObjCPropertyDecl *property,
+ Kind PK,
+ ObjCIvarDecl *ivar,
+ SourceLocation ivarLoc) {
+ return new (C, DC) ObjCPropertyImplDecl(DC, atLoc, L, property, PK, ivar,
+ ivarLoc);
+}
+
+ObjCPropertyImplDecl *ObjCPropertyImplDecl::CreateDeserialized(ASTContext &C,
+ unsigned ID) {
+ return new (C, ID) ObjCPropertyImplDecl(nullptr, SourceLocation(),
+ SourceLocation(), nullptr, Dynamic,
+ nullptr, SourceLocation());
+}
+
+SourceRange ObjCPropertyImplDecl::getSourceRange() const {
+ SourceLocation EndLoc = getLocation();
+ if (IvarLoc.isValid())
+ EndLoc = IvarLoc;
+
+ return SourceRange(AtLoc, EndLoc);
+}
diff --git a/contrib/llvm/tools/clang/lib/AST/DeclOpenMP.cpp b/contrib/llvm/tools/clang/lib/AST/DeclOpenMP.cpp
new file mode 100644
index 0000000..5f8b42b
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/DeclOpenMP.cpp
@@ -0,0 +1,54 @@
+//===--- DeclOpenMP.cpp - Declaration OpenMP AST Node Implementation ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// \brief This file implements OMPThreadPrivateDecl class.
+///
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclBase.h"
+#include "clang/AST/DeclOpenMP.h"
+#include "clang/AST/Expr.h"
+
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// OMPThreadPrivateDecl Implementation.
+//===----------------------------------------------------------------------===//
+
+void OMPThreadPrivateDecl::anchor() { }
+
+OMPThreadPrivateDecl *OMPThreadPrivateDecl::Create(ASTContext &C,
+ DeclContext *DC,
+ SourceLocation L,
+ ArrayRef<Expr *> VL) {
+ OMPThreadPrivateDecl *D = new (C, DC, VL.size() * sizeof(Expr *))
+ OMPThreadPrivateDecl(OMPThreadPrivate, DC, L);
+ D->NumVars = VL.size();
+ D->setVars(VL);
+ return D;
+}
+
+OMPThreadPrivateDecl *OMPThreadPrivateDecl::CreateDeserialized(ASTContext &C,
+ unsigned ID,
+ unsigned N) {
+ OMPThreadPrivateDecl *D = new (C, ID, N * sizeof(Expr *))
+ OMPThreadPrivateDecl(OMPThreadPrivate, nullptr, SourceLocation());
+ D->NumVars = N;
+ return D;
+}
+
+void OMPThreadPrivateDecl::setVars(ArrayRef<Expr *> VL) {
+ assert(VL.size() == NumVars &&
+ "Number of variables is not the same as the preallocated buffer");
+ Expr **Vars = reinterpret_cast<Expr **>(this + 1);
+ std::copy(VL.begin(), VL.end(), Vars);
+}
+
diff --git a/contrib/llvm/tools/clang/lib/AST/DeclPrinter.cpp b/contrib/llvm/tools/clang/lib/AST/DeclPrinter.cpp
new file mode 100644
index 0000000..c0f3e17
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/DeclPrinter.cpp
@@ -0,0 +1,1221 @@
+//===--- DeclPrinter.cpp - Printing implementation for Decl ASTs ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Decl::print method, which pretty prints the
+// AST back out to C/Objective-C/C++/Objective-C++ code.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclVisitor.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/PrettyPrinter.h"
+#include "clang/Basic/Module.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace clang;
+
+namespace {
+ class DeclPrinter : public DeclVisitor<DeclPrinter> {
+ raw_ostream &Out;
+ PrintingPolicy Policy;
+ unsigned Indentation;
+ bool PrintInstantiation;
+
+ raw_ostream& Indent() { return Indent(Indentation); }
+ raw_ostream& Indent(unsigned Indentation);
+ void ProcessDeclGroup(SmallVectorImpl<Decl*>& Decls);
+
+ void Print(AccessSpecifier AS);
+
+ public:
+ DeclPrinter(raw_ostream &Out, const PrintingPolicy &Policy,
+ unsigned Indentation = 0, bool PrintInstantiation = false)
+ : Out(Out), Policy(Policy), Indentation(Indentation),
+ PrintInstantiation(PrintInstantiation) { }
+
+ void VisitDeclContext(DeclContext *DC, bool Indent = true);
+
+ void VisitTranslationUnitDecl(TranslationUnitDecl *D);
+ void VisitTypedefDecl(TypedefDecl *D);
+ void VisitTypeAliasDecl(TypeAliasDecl *D);
+ void VisitEnumDecl(EnumDecl *D);
+ void VisitRecordDecl(RecordDecl *D);
+ void VisitEnumConstantDecl(EnumConstantDecl *D);
+ void VisitEmptyDecl(EmptyDecl *D);
+ void VisitFunctionDecl(FunctionDecl *D);
+ void VisitFriendDecl(FriendDecl *D);
+ void VisitFieldDecl(FieldDecl *D);
+ void VisitVarDecl(VarDecl *D);
+ void VisitLabelDecl(LabelDecl *D);
+ void VisitParmVarDecl(ParmVarDecl *D);
+ void VisitFileScopeAsmDecl(FileScopeAsmDecl *D);
+ void VisitImportDecl(ImportDecl *D);
+ void VisitStaticAssertDecl(StaticAssertDecl *D);
+ void VisitNamespaceDecl(NamespaceDecl *D);
+ void VisitUsingDirectiveDecl(UsingDirectiveDecl *D);
+ void VisitNamespaceAliasDecl(NamespaceAliasDecl *D);
+ void VisitCXXRecordDecl(CXXRecordDecl *D);
+ void VisitLinkageSpecDecl(LinkageSpecDecl *D);
+ void VisitTemplateDecl(const TemplateDecl *D);
+ void VisitFunctionTemplateDecl(FunctionTemplateDecl *D);
+ void VisitClassTemplateDecl(ClassTemplateDecl *D);
+ void VisitObjCMethodDecl(ObjCMethodDecl *D);
+ void VisitObjCImplementationDecl(ObjCImplementationDecl *D);
+ void VisitObjCInterfaceDecl(ObjCInterfaceDecl *D);
+ void VisitObjCProtocolDecl(ObjCProtocolDecl *D);
+ void VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D);
+ void VisitObjCCategoryDecl(ObjCCategoryDecl *D);
+ void VisitObjCCompatibleAliasDecl(ObjCCompatibleAliasDecl *D);
+ void VisitObjCPropertyDecl(ObjCPropertyDecl *D);
+ void VisitObjCPropertyImplDecl(ObjCPropertyImplDecl *D);
+ void VisitUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *D);
+ void VisitUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *D);
+ void VisitUsingDecl(UsingDecl *D);
+ void VisitUsingShadowDecl(UsingShadowDecl *D);
+ void VisitOMPThreadPrivateDecl(OMPThreadPrivateDecl *D);
+
+ void PrintTemplateParameters(const TemplateParameterList *Params,
+ const TemplateArgumentList *Args = nullptr);
+ void prettyPrintAttributes(Decl *D);
+ void printDeclType(QualType T, StringRef DeclName, bool Pack = false);
+ };
+}
+
+void Decl::print(raw_ostream &Out, unsigned Indentation,
+ bool PrintInstantiation) const {
+ print(Out, getASTContext().getPrintingPolicy(), Indentation, PrintInstantiation);
+}
+
+void Decl::print(raw_ostream &Out, const PrintingPolicy &Policy,
+ unsigned Indentation, bool PrintInstantiation) const {
+ DeclPrinter Printer(Out, Policy, Indentation, PrintInstantiation);
+ Printer.Visit(const_cast<Decl*>(this));
+}
+
+static QualType GetBaseType(QualType T) {
+ // FIXME: This should be on the Type class!
+ QualType BaseType = T;
+ while (!BaseType->isSpecifierType()) {
+ if (isa<TypedefType>(BaseType))
+ break;
+ else if (const PointerType* PTy = BaseType->getAs<PointerType>())
+ BaseType = PTy->getPointeeType();
+ else if (const BlockPointerType *BPy = BaseType->getAs<BlockPointerType>())
+ BaseType = BPy->getPointeeType();
+ else if (const ArrayType* ATy = dyn_cast<ArrayType>(BaseType))
+ BaseType = ATy->getElementType();
+ else if (const FunctionType* FTy = BaseType->getAs<FunctionType>())
+ BaseType = FTy->getReturnType();
+ else if (const VectorType *VTy = BaseType->getAs<VectorType>())
+ BaseType = VTy->getElementType();
+ else if (const ReferenceType *RTy = BaseType->getAs<ReferenceType>())
+ BaseType = RTy->getPointeeType();
+ else
+ llvm_unreachable("Unknown declarator!");
+ }
+ return BaseType;
+}
+
+static QualType getDeclType(Decl* D) {
+ if (TypedefNameDecl* TDD = dyn_cast<TypedefNameDecl>(D))
+ return TDD->getUnderlyingType();
+ if (ValueDecl* VD = dyn_cast<ValueDecl>(D))
+ return VD->getType();
+ return QualType();
+}
+
+void Decl::printGroup(Decl** Begin, unsigned NumDecls,
+ raw_ostream &Out, const PrintingPolicy &Policy,
+ unsigned Indentation) {
+ if (NumDecls == 1) {
+ (*Begin)->print(Out, Policy, Indentation);
+ return;
+ }
+
+ Decl** End = Begin + NumDecls;
+ TagDecl* TD = dyn_cast<TagDecl>(*Begin);
+ if (TD)
+ ++Begin;
+
+ PrintingPolicy SubPolicy(Policy);
+ if (TD && TD->isCompleteDefinition()) {
+ TD->print(Out, Policy, Indentation);
+ Out << " ";
+ SubPolicy.SuppressTag = true;
+ }
+
+ bool isFirst = true;
+ for ( ; Begin != End; ++Begin) {
+ if (isFirst) {
+ SubPolicy.SuppressSpecifiers = false;
+ isFirst = false;
+ } else {
+ if (!isFirst) Out << ", ";
+ SubPolicy.SuppressSpecifiers = true;
+ }
+
+ (*Begin)->print(Out, SubPolicy, Indentation);
+ }
+}
+
+LLVM_DUMP_METHOD void DeclContext::dumpDeclContext() const {
+ // Get the translation unit
+ const DeclContext *DC = this;
+ while (!DC->isTranslationUnit())
+ DC = DC->getParent();
+
+ ASTContext &Ctx = cast<TranslationUnitDecl>(DC)->getASTContext();
+ DeclPrinter Printer(llvm::errs(), Ctx.getPrintingPolicy(), 0);
+ Printer.VisitDeclContext(const_cast<DeclContext *>(this), /*Indent=*/false);
+}
+
+raw_ostream& DeclPrinter::Indent(unsigned Indentation) {
+ for (unsigned i = 0; i != Indentation; ++i)
+ Out << " ";
+ return Out;
+}
+
+void DeclPrinter::prettyPrintAttributes(Decl *D) {
+ if (Policy.PolishForDeclaration)
+ return;
+
+ if (D->hasAttrs()) {
+ AttrVec &Attrs = D->getAttrs();
+ for (AttrVec::const_iterator i=Attrs.begin(), e=Attrs.end(); i!=e; ++i) {
+ Attr *A = *i;
+ A->printPretty(Out, Policy);
+ }
+ }
+}
+
+void DeclPrinter::printDeclType(QualType T, StringRef DeclName, bool Pack) {
+ // Normally, a PackExpansionType is written as T[3]... (for instance, as a
+ // template argument), but if it is the type of a declaration, the ellipsis
+ // is placed before the name being declared.
+ if (auto *PET = T->getAs<PackExpansionType>()) {
+ Pack = true;
+ T = PET->getPattern();
+ }
+ T.print(Out, Policy, (Pack ? "..." : "") + DeclName);
+}
+
+void DeclPrinter::ProcessDeclGroup(SmallVectorImpl<Decl*>& Decls) {
+ this->Indent();
+ Decl::printGroup(Decls.data(), Decls.size(), Out, Policy, Indentation);
+ Out << ";\n";
+ Decls.clear();
+
+}
+
+void DeclPrinter::Print(AccessSpecifier AS) {
+ switch(AS) {
+ case AS_none: llvm_unreachable("No access specifier!");
+ case AS_public: Out << "public"; break;
+ case AS_protected: Out << "protected"; break;
+ case AS_private: Out << "private"; break;
+ }
+}
+
+//----------------------------------------------------------------------------
+// Common C declarations
+//----------------------------------------------------------------------------
+
+void DeclPrinter::VisitDeclContext(DeclContext *DC, bool Indent) {
+ if (Policy.TerseOutput)
+ return;
+
+ if (Indent)
+ Indentation += Policy.Indentation;
+
+ SmallVector<Decl*, 2> Decls;
+ for (DeclContext::decl_iterator D = DC->decls_begin(), DEnd = DC->decls_end();
+ D != DEnd; ++D) {
+
+ // Don't print ObjCIvarDecls, as they are printed when visiting the
+ // containing ObjCInterfaceDecl.
+ if (isa<ObjCIvarDecl>(*D))
+ continue;
+
+ // Skip over implicit declarations in pretty-printing mode.
+ if (D->isImplicit())
+ continue;
+
+ // The next bits of code handles stuff like "struct {int x;} a,b"; we're
+ // forced to merge the declarations because there's no other way to
+ // refer to the struct in question. This limited merging is safe without
+ // a bunch of other checks because it only merges declarations directly
+ // referring to the tag, not typedefs.
+ //
+ // Check whether the current declaration should be grouped with a previous
+ // unnamed struct.
+ QualType CurDeclType = getDeclType(*D);
+ if (!Decls.empty() && !CurDeclType.isNull()) {
+ QualType BaseType = GetBaseType(CurDeclType);
+ if (!BaseType.isNull() && isa<ElaboratedType>(BaseType))
+ BaseType = cast<ElaboratedType>(BaseType)->getNamedType();
+ if (!BaseType.isNull() && isa<TagType>(BaseType) &&
+ cast<TagType>(BaseType)->getDecl() == Decls[0]) {
+ Decls.push_back(*D);
+ continue;
+ }
+ }
+
+ // If we have a merged group waiting to be handled, handle it now.
+ if (!Decls.empty())
+ ProcessDeclGroup(Decls);
+
+ // If the current declaration is an unnamed tag type, save it
+ // so we can merge it with the subsequent declaration(s) using it.
+ if (isa<TagDecl>(*D) && !cast<TagDecl>(*D)->getIdentifier()) {
+ Decls.push_back(*D);
+ continue;
+ }
+
+ if (isa<AccessSpecDecl>(*D)) {
+ Indentation -= Policy.Indentation;
+ this->Indent();
+ Print(D->getAccess());
+ Out << ":\n";
+ Indentation += Policy.Indentation;
+ continue;
+ }
+
+ this->Indent();
+ Visit(*D);
+
+ // FIXME: Need to be able to tell the DeclPrinter when
+ const char *Terminator = nullptr;
+ if (isa<OMPThreadPrivateDecl>(*D))
+ Terminator = nullptr;
+ else if (isa<FunctionDecl>(*D) &&
+ cast<FunctionDecl>(*D)->isThisDeclarationADefinition())
+ Terminator = nullptr;
+ else if (isa<ObjCMethodDecl>(*D) && cast<ObjCMethodDecl>(*D)->getBody())
+ Terminator = nullptr;
+ else if (isa<NamespaceDecl>(*D) || isa<LinkageSpecDecl>(*D) ||
+ isa<ObjCImplementationDecl>(*D) ||
+ isa<ObjCInterfaceDecl>(*D) ||
+ isa<ObjCProtocolDecl>(*D) ||
+ isa<ObjCCategoryImplDecl>(*D) ||
+ isa<ObjCCategoryDecl>(*D))
+ Terminator = nullptr;
+ else if (isa<EnumConstantDecl>(*D)) {
+ DeclContext::decl_iterator Next = D;
+ ++Next;
+ if (Next != DEnd)
+ Terminator = ",";
+ } else
+ Terminator = ";";
+
+ if (Terminator)
+ Out << Terminator;
+ Out << "\n";
+ }
+
+ if (!Decls.empty())
+ ProcessDeclGroup(Decls);
+
+ if (Indent)
+ Indentation -= Policy.Indentation;
+}
+
+void DeclPrinter::VisitTranslationUnitDecl(TranslationUnitDecl *D) {
+ VisitDeclContext(D, false);
+}
+
+void DeclPrinter::VisitTypedefDecl(TypedefDecl *D) {
+ if (!Policy.SuppressSpecifiers) {
+ Out << "typedef ";
+
+ if (D->isModulePrivate())
+ Out << "__module_private__ ";
+ }
+ D->getTypeSourceInfo()->getType().print(Out, Policy, D->getName());
+ prettyPrintAttributes(D);
+}
+
+void DeclPrinter::VisitTypeAliasDecl(TypeAliasDecl *D) {
+ Out << "using " << *D;
+ prettyPrintAttributes(D);
+ Out << " = " << D->getTypeSourceInfo()->getType().getAsString(Policy);
+}
+
+void DeclPrinter::VisitEnumDecl(EnumDecl *D) {
+ if (!Policy.SuppressSpecifiers && D->isModulePrivate())
+ Out << "__module_private__ ";
+ Out << "enum ";
+ if (D->isScoped()) {
+ if (D->isScopedUsingClassTag())
+ Out << "class ";
+ else
+ Out << "struct ";
+ }
+ Out << *D;
+
+ if (D->isFixed())
+ Out << " : " << D->getIntegerType().stream(Policy);
+
+ if (D->isCompleteDefinition()) {
+ Out << " {\n";
+ VisitDeclContext(D);
+ Indent() << "}";
+ }
+ prettyPrintAttributes(D);
+}
+
+void DeclPrinter::VisitRecordDecl(RecordDecl *D) {
+ if (!Policy.SuppressSpecifiers && D->isModulePrivate())
+ Out << "__module_private__ ";
+ Out << D->getKindName();
+
+ prettyPrintAttributes(D);
+
+ if (D->getIdentifier())
+ Out << ' ' << *D;
+
+ if (D->isCompleteDefinition()) {
+ Out << " {\n";
+ VisitDeclContext(D);
+ Indent() << "}";
+ }
+}
+
+void DeclPrinter::VisitEnumConstantDecl(EnumConstantDecl *D) {
+ Out << *D;
+ if (Expr *Init = D->getInitExpr()) {
+ Out << " = ";
+ Init->printPretty(Out, nullptr, Policy, Indentation);
+ }
+}
+
+void DeclPrinter::VisitFunctionDecl(FunctionDecl *D) {
+ CXXConstructorDecl *CDecl = dyn_cast<CXXConstructorDecl>(D);
+ CXXConversionDecl *ConversionDecl = dyn_cast<CXXConversionDecl>(D);
+ if (!Policy.SuppressSpecifiers) {
+ switch (D->getStorageClass()) {
+ case SC_None: break;
+ case SC_Extern: Out << "extern "; break;
+ case SC_Static: Out << "static "; break;
+ case SC_PrivateExtern: Out << "__private_extern__ "; break;
+ case SC_Auto: case SC_Register: case SC_OpenCLWorkGroupLocal:
+ llvm_unreachable("invalid for functions");
+ }
+
+ if (D->isInlineSpecified()) Out << "inline ";
+ if (D->isVirtualAsWritten()) Out << "virtual ";
+ if (D->isModulePrivate()) Out << "__module_private__ ";
+ if (D->isConstexpr() && !D->isExplicitlyDefaulted()) Out << "constexpr ";
+ if ((CDecl && CDecl->isExplicitSpecified()) ||
+ (ConversionDecl && ConversionDecl->isExplicit()))
+ Out << "explicit ";
+ }
+
+ PrintingPolicy SubPolicy(Policy);
+ SubPolicy.SuppressSpecifiers = false;
+ std::string Proto = D->getNameInfo().getAsString();
+
+ QualType Ty = D->getType();
+ while (const ParenType *PT = dyn_cast<ParenType>(Ty)) {
+ Proto = '(' + Proto + ')';
+ Ty = PT->getInnerType();
+ }
+
+ if (const FunctionType *AFT = Ty->getAs<FunctionType>()) {
+ const FunctionProtoType *FT = nullptr;
+ if (D->hasWrittenPrototype())
+ FT = dyn_cast<FunctionProtoType>(AFT);
+
+ Proto += "(";
+ if (FT) {
+ llvm::raw_string_ostream POut(Proto);
+ DeclPrinter ParamPrinter(POut, SubPolicy, Indentation);
+ for (unsigned i = 0, e = D->getNumParams(); i != e; ++i) {
+ if (i) POut << ", ";
+ ParamPrinter.VisitParmVarDecl(D->getParamDecl(i));
+ }
+
+ if (FT->isVariadic()) {
+ if (D->getNumParams()) POut << ", ";
+ POut << "...";
+ }
+ } else if (D->doesThisDeclarationHaveABody() && !D->hasPrototype()) {
+ for (unsigned i = 0, e = D->getNumParams(); i != e; ++i) {
+ if (i)
+ Proto += ", ";
+ Proto += D->getParamDecl(i)->getNameAsString();
+ }
+ }
+
+ Proto += ")";
+
+ if (FT) {
+ if (FT->isConst())
+ Proto += " const";
+ if (FT->isVolatile())
+ Proto += " volatile";
+ if (FT->isRestrict())
+ Proto += " restrict";
+
+ switch (FT->getRefQualifier()) {
+ case RQ_None:
+ break;
+ case RQ_LValue:
+ Proto += " &";
+ break;
+ case RQ_RValue:
+ Proto += " &&";
+ break;
+ }
+ }
+
+ if (FT && FT->hasDynamicExceptionSpec()) {
+ Proto += " throw(";
+ if (FT->getExceptionSpecType() == EST_MSAny)
+ Proto += "...";
+ else
+ for (unsigned I = 0, N = FT->getNumExceptions(); I != N; ++I) {
+ if (I)
+ Proto += ", ";
+
+ Proto += FT->getExceptionType(I).getAsString(SubPolicy);
+ }
+ Proto += ")";
+ } else if (FT && isNoexceptExceptionSpec(FT->getExceptionSpecType())) {
+ Proto += " noexcept";
+ if (FT->getExceptionSpecType() == EST_ComputedNoexcept) {
+ Proto += "(";
+ llvm::raw_string_ostream EOut(Proto);
+ FT->getNoexceptExpr()->printPretty(EOut, nullptr, SubPolicy,
+ Indentation);
+ EOut.flush();
+ Proto += EOut.str();
+ Proto += ")";
+ }
+ }
+
+ if (CDecl) {
+ bool HasInitializerList = false;
+ for (const auto *BMInitializer : CDecl->inits()) {
+ if (BMInitializer->isInClassMemberInitializer())
+ continue;
+
+ if (!HasInitializerList) {
+ Proto += " : ";
+ Out << Proto;
+ Proto.clear();
+ HasInitializerList = true;
+ } else
+ Out << ", ";
+
+ if (BMInitializer->isAnyMemberInitializer()) {
+ FieldDecl *FD = BMInitializer->getAnyMember();
+ Out << *FD;
+ } else {
+ Out << QualType(BMInitializer->getBaseClass(), 0).getAsString(Policy);
+ }
+
+ Out << "(";
+ if (!BMInitializer->getInit()) {
+ // Nothing to print
+ } else {
+ Expr *Init = BMInitializer->getInit();
+ if (ExprWithCleanups *Tmp = dyn_cast<ExprWithCleanups>(Init))
+ Init = Tmp->getSubExpr();
+
+ Init = Init->IgnoreParens();
+
+ Expr *SimpleInit = nullptr;
+ Expr **Args = nullptr;
+ unsigned NumArgs = 0;
+ if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
+ Args = ParenList->getExprs();
+ NumArgs = ParenList->getNumExprs();
+ } else if (CXXConstructExpr *Construct
+ = dyn_cast<CXXConstructExpr>(Init)) {
+ Args = Construct->getArgs();
+ NumArgs = Construct->getNumArgs();
+ } else
+ SimpleInit = Init;
+
+ if (SimpleInit)
+ SimpleInit->printPretty(Out, nullptr, Policy, Indentation);
+ else {
+ for (unsigned I = 0; I != NumArgs; ++I) {
+ assert(Args[I] != nullptr && "Expected non-null Expr");
+ if (isa<CXXDefaultArgExpr>(Args[I]))
+ break;
+
+ if (I)
+ Out << ", ";
+ Args[I]->printPretty(Out, nullptr, Policy, Indentation);
+ }
+ }
+ }
+ Out << ")";
+ if (BMInitializer->isPackExpansion())
+ Out << "...";
+ }
+ } else if (!ConversionDecl && !isa<CXXDestructorDecl>(D)) {
+ if (FT && FT->hasTrailingReturn()) {
+ Out << "auto " << Proto << " -> ";
+ Proto.clear();
+ }
+ AFT->getReturnType().print(Out, Policy, Proto);
+ Proto.clear();
+ }
+ Out << Proto;
+ } else {
+ Ty.print(Out, Policy, Proto);
+ }
+
+ prettyPrintAttributes(D);
+
+ if (D->isPure())
+ Out << " = 0";
+ else if (D->isDeletedAsWritten())
+ Out << " = delete";
+ else if (D->isExplicitlyDefaulted())
+ Out << " = default";
+ else if (D->doesThisDeclarationHaveABody() && !Policy.TerseOutput) {
+ if (!D->hasPrototype() && D->getNumParams()) {
+ // This is a K&R function definition, so we need to print the
+ // parameters.
+ Out << '\n';
+ DeclPrinter ParamPrinter(Out, SubPolicy, Indentation);
+ Indentation += Policy.Indentation;
+ for (unsigned i = 0, e = D->getNumParams(); i != e; ++i) {
+ Indent();
+ ParamPrinter.VisitParmVarDecl(D->getParamDecl(i));
+ Out << ";\n";
+ }
+ Indentation -= Policy.Indentation;
+ } else
+ Out << ' ';
+
+ if (D->getBody())
+ D->getBody()->printPretty(Out, nullptr, SubPolicy, Indentation);
+ Out << '\n';
+ }
+}
+
+void DeclPrinter::VisitFriendDecl(FriendDecl *D) {
+ if (TypeSourceInfo *TSI = D->getFriendType()) {
+ unsigned NumTPLists = D->getFriendTypeNumTemplateParameterLists();
+ for (unsigned i = 0; i < NumTPLists; ++i)
+ PrintTemplateParameters(D->getFriendTypeTemplateParameterList(i));
+ Out << "friend ";
+ Out << " " << TSI->getType().getAsString(Policy);
+ }
+ else if (FunctionDecl *FD =
+ dyn_cast<FunctionDecl>(D->getFriendDecl())) {
+ Out << "friend ";
+ VisitFunctionDecl(FD);
+ }
+ else if (FunctionTemplateDecl *FTD =
+ dyn_cast<FunctionTemplateDecl>(D->getFriendDecl())) {
+ Out << "friend ";
+ VisitFunctionTemplateDecl(FTD);
+ }
+ else if (ClassTemplateDecl *CTD =
+ dyn_cast<ClassTemplateDecl>(D->getFriendDecl())) {
+ Out << "friend ";
+ VisitRedeclarableTemplateDecl(CTD);
+ }
+}
+
+void DeclPrinter::VisitFieldDecl(FieldDecl *D) {
+ if (!Policy.SuppressSpecifiers && D->isMutable())
+ Out << "mutable ";
+ if (!Policy.SuppressSpecifiers && D->isModulePrivate())
+ Out << "__module_private__ ";
+
+ Out << D->getASTContext().getUnqualifiedObjCPointerType(D->getType()).
+ stream(Policy, D->getName());
+
+ if (D->isBitField()) {
+ Out << " : ";
+ D->getBitWidth()->printPretty(Out, nullptr, Policy, Indentation);
+ }
+
+ Expr *Init = D->getInClassInitializer();
+ if (!Policy.SuppressInitializers && Init) {
+ if (D->getInClassInitStyle() == ICIS_ListInit)
+ Out << " ";
+ else
+ Out << " = ";
+ Init->printPretty(Out, nullptr, Policy, Indentation);
+ }
+ prettyPrintAttributes(D);
+}
+
+void DeclPrinter::VisitLabelDecl(LabelDecl *D) {
+ Out << *D << ":";
+}
+
+void DeclPrinter::VisitVarDecl(VarDecl *D) {
+ if (!Policy.SuppressSpecifiers) {
+ StorageClass SC = D->getStorageClass();
+ if (SC != SC_None)
+ Out << VarDecl::getStorageClassSpecifierString(SC) << " ";
+
+ switch (D->getTSCSpec()) {
+ case TSCS_unspecified:
+ break;
+ case TSCS___thread:
+ Out << "__thread ";
+ break;
+ case TSCS__Thread_local:
+ Out << "_Thread_local ";
+ break;
+ case TSCS_thread_local:
+ Out << "thread_local ";
+ break;
+ }
+
+ if (D->isModulePrivate())
+ Out << "__module_private__ ";
+ }
+
+ QualType T = D->getTypeSourceInfo()
+ ? D->getTypeSourceInfo()->getType()
+ : D->getASTContext().getUnqualifiedObjCPointerType(D->getType());
+ printDeclType(T, D->getName());
+ Expr *Init = D->getInit();
+ if (!Policy.SuppressInitializers && Init) {
+ bool ImplicitInit = false;
+ if (CXXConstructExpr *Construct =
+ dyn_cast<CXXConstructExpr>(Init->IgnoreImplicit())) {
+ if (D->getInitStyle() == VarDecl::CallInit &&
+ !Construct->isListInitialization()) {
+ ImplicitInit = Construct->getNumArgs() == 0 ||
+ Construct->getArg(0)->isDefaultArgument();
+ }
+ }
+ if (!ImplicitInit) {
+ if ((D->getInitStyle() == VarDecl::CallInit) && !isa<ParenListExpr>(Init))
+ Out << "(";
+ else if (D->getInitStyle() == VarDecl::CInit) {
+ Out << " = ";
+ }
+ Init->printPretty(Out, nullptr, Policy, Indentation);
+ if ((D->getInitStyle() == VarDecl::CallInit) && !isa<ParenListExpr>(Init))
+ Out << ")";
+ }
+ }
+ prettyPrintAttributes(D);
+}
+
+void DeclPrinter::VisitParmVarDecl(ParmVarDecl *D) {
+ VisitVarDecl(D);
+}
+
+void DeclPrinter::VisitFileScopeAsmDecl(FileScopeAsmDecl *D) {
+ Out << "__asm (";
+ D->getAsmString()->printPretty(Out, nullptr, Policy, Indentation);
+ Out << ")";
+}
+
+void DeclPrinter::VisitImportDecl(ImportDecl *D) {
+ Out << "@import " << D->getImportedModule()->getFullModuleName()
+ << ";\n";
+}
+
+void DeclPrinter::VisitStaticAssertDecl(StaticAssertDecl *D) {
+ Out << "static_assert(";
+ D->getAssertExpr()->printPretty(Out, nullptr, Policy, Indentation);
+ Out << ", ";
+ D->getMessage()->printPretty(Out, nullptr, Policy, Indentation);
+ Out << ")";
+}
+
+//----------------------------------------------------------------------------
+// C++ declarations
+//----------------------------------------------------------------------------
+void DeclPrinter::VisitNamespaceDecl(NamespaceDecl *D) {
+ if (D->isInline())
+ Out << "inline ";
+ Out << "namespace " << *D << " {\n";
+ VisitDeclContext(D);
+ Indent() << "}";
+}
+
+void DeclPrinter::VisitUsingDirectiveDecl(UsingDirectiveDecl *D) {
+ Out << "using namespace ";
+ if (D->getQualifier())
+ D->getQualifier()->print(Out, Policy);
+ Out << *D->getNominatedNamespaceAsWritten();
+}
+
+void DeclPrinter::VisitNamespaceAliasDecl(NamespaceAliasDecl *D) {
+ Out << "namespace " << *D << " = ";
+ if (D->getQualifier())
+ D->getQualifier()->print(Out, Policy);
+ Out << *D->getAliasedNamespace();
+}
+
+void DeclPrinter::VisitEmptyDecl(EmptyDecl *D) {
+ prettyPrintAttributes(D);
+}
+
+void DeclPrinter::VisitCXXRecordDecl(CXXRecordDecl *D) {
+ if (!Policy.SuppressSpecifiers && D->isModulePrivate())
+ Out << "__module_private__ ";
+ Out << D->getKindName();
+
+ prettyPrintAttributes(D);
+
+ if (D->getIdentifier())
+ Out << ' ' << *D;
+
+ if (D->isCompleteDefinition()) {
+ // Print the base classes
+ if (D->getNumBases()) {
+ Out << " : ";
+ for (CXXRecordDecl::base_class_iterator Base = D->bases_begin(),
+ BaseEnd = D->bases_end(); Base != BaseEnd; ++Base) {
+ if (Base != D->bases_begin())
+ Out << ", ";
+
+ if (Base->isVirtual())
+ Out << "virtual ";
+
+ AccessSpecifier AS = Base->getAccessSpecifierAsWritten();
+ if (AS != AS_none) {
+ Print(AS);
+ Out << " ";
+ }
+ Out << Base->getType().getAsString(Policy);
+
+ if (Base->isPackExpansion())
+ Out << "...";
+ }
+ }
+
+ // Print the class definition
+ // FIXME: Doesn't print access specifiers, e.g., "public:"
+ Out << " {\n";
+ VisitDeclContext(D);
+ Indent() << "}";
+ }
+}
+
+void DeclPrinter::VisitLinkageSpecDecl(LinkageSpecDecl *D) {
+ const char *l;
+ if (D->getLanguage() == LinkageSpecDecl::lang_c)
+ l = "C";
+ else {
+ assert(D->getLanguage() == LinkageSpecDecl::lang_cxx &&
+ "unknown language in linkage specification");
+ l = "C++";
+ }
+
+ Out << "extern \"" << l << "\" ";
+ if (D->hasBraces()) {
+ Out << "{\n";
+ VisitDeclContext(D);
+ Indent() << "}";
+ } else
+ Visit(*D->decls_begin());
+}
+
+void DeclPrinter::PrintTemplateParameters(const TemplateParameterList *Params,
+ const TemplateArgumentList *Args) {
+ assert(Params);
+ assert(!Args || Params->size() == Args->size());
+
+ Out << "template <";
+
+ for (unsigned i = 0, e = Params->size(); i != e; ++i) {
+ if (i != 0)
+ Out << ", ";
+
+ const Decl *Param = Params->getParam(i);
+ if (const TemplateTypeParmDecl *TTP =
+ dyn_cast<TemplateTypeParmDecl>(Param)) {
+
+ if (TTP->wasDeclaredWithTypename())
+ Out << "typename ";
+ else
+ Out << "class ";
+
+ if (TTP->isParameterPack())
+ Out << "...";
+
+ Out << *TTP;
+
+ if (Args) {
+ Out << " = ";
+ Args->get(i).print(Policy, Out);
+ } else if (TTP->hasDefaultArgument()) {
+ Out << " = ";
+ Out << TTP->getDefaultArgument().getAsString(Policy);
+ };
+ } else if (const NonTypeTemplateParmDecl *NTTP =
+ dyn_cast<NonTypeTemplateParmDecl>(Param)) {
+ StringRef Name;
+ if (IdentifierInfo *II = NTTP->getIdentifier())
+ Name = II->getName();
+ printDeclType(NTTP->getType(), Name, NTTP->isParameterPack());
+
+ if (Args) {
+ Out << " = ";
+ Args->get(i).print(Policy, Out);
+ } else if (NTTP->hasDefaultArgument()) {
+ Out << " = ";
+ NTTP->getDefaultArgument()->printPretty(Out, nullptr, Policy,
+ Indentation);
+ }
+ } else if (const TemplateTemplateParmDecl *TTPD =
+ dyn_cast<TemplateTemplateParmDecl>(Param)) {
+ VisitTemplateDecl(TTPD);
+ // FIXME: print the default argument, if present.
+ }
+ }
+
+ Out << "> ";
+}
+
+void DeclPrinter::VisitTemplateDecl(const TemplateDecl *D) {
+ PrintTemplateParameters(D->getTemplateParameters());
+
+ if (const TemplateTemplateParmDecl *TTP =
+ dyn_cast<TemplateTemplateParmDecl>(D)) {
+ Out << "class ";
+ if (TTP->isParameterPack())
+ Out << "...";
+ Out << D->getName();
+ } else {
+ Visit(D->getTemplatedDecl());
+ }
+}
+
+void DeclPrinter::VisitFunctionTemplateDecl(FunctionTemplateDecl *D) {
+ if (PrintInstantiation) {
+ TemplateParameterList *Params = D->getTemplateParameters();
+ for (auto *I : D->specializations()) {
+ PrintTemplateParameters(Params, I->getTemplateSpecializationArgs());
+ Visit(I);
+ }
+ }
+
+ return VisitRedeclarableTemplateDecl(D);
+}
+
+void DeclPrinter::VisitClassTemplateDecl(ClassTemplateDecl *D) {
+ if (PrintInstantiation) {
+ TemplateParameterList *Params = D->getTemplateParameters();
+ for (auto *I : D->specializations()) {
+ PrintTemplateParameters(Params, &I->getTemplateArgs());
+ Visit(I);
+ Out << '\n';
+ }
+ }
+
+ return VisitRedeclarableTemplateDecl(D);
+}
+
+//----------------------------------------------------------------------------
+// Objective-C declarations
+//----------------------------------------------------------------------------
+
+void DeclPrinter::VisitObjCMethodDecl(ObjCMethodDecl *OMD) {
+ if (OMD->isInstanceMethod())
+ Out << "- ";
+ else
+ Out << "+ ";
+ if (!OMD->getReturnType().isNull())
+ Out << '(' << OMD->getASTContext()
+ .getUnqualifiedObjCPointerType(OMD->getReturnType())
+ .getAsString(Policy) << ")";
+
+ std::string name = OMD->getSelector().getAsString();
+ std::string::size_type pos, lastPos = 0;
+ for (const auto *PI : OMD->params()) {
+ // FIXME: selector is missing here!
+ pos = name.find_first_of(':', lastPos);
+ Out << " " << name.substr(lastPos, pos - lastPos);
+ Out << ":(" << PI->getASTContext().getUnqualifiedObjCPointerType(PI->getType()).
+ getAsString(Policy) << ')' << *PI;
+ lastPos = pos + 1;
+ }
+
+ if (OMD->param_begin() == OMD->param_end())
+ Out << " " << name;
+
+ if (OMD->isVariadic())
+ Out << ", ...";
+
+ prettyPrintAttributes(OMD);
+
+ if (OMD->getBody() && !Policy.TerseOutput) {
+ Out << ' ';
+ OMD->getBody()->printPretty(Out, nullptr, Policy);
+ }
+ else if (Policy.PolishForDeclaration)
+ Out << ';';
+}
+
+void DeclPrinter::VisitObjCImplementationDecl(ObjCImplementationDecl *OID) {
+ std::string I = OID->getNameAsString();
+ ObjCInterfaceDecl *SID = OID->getSuperClass();
+
+ bool eolnOut = false;
+ if (SID)
+ Out << "@implementation " << I << " : " << *SID;
+ else
+ Out << "@implementation " << I;
+
+ if (OID->ivar_size() > 0) {
+ Out << "{\n";
+ eolnOut = true;
+ Indentation += Policy.Indentation;
+ for (const auto *I : OID->ivars()) {
+ Indent() << I->getASTContext().getUnqualifiedObjCPointerType(I->getType()).
+ getAsString(Policy) << ' ' << *I << ";\n";
+ }
+ Indentation -= Policy.Indentation;
+ Out << "}\n";
+ }
+ else if (SID || (OID->decls_begin() != OID->decls_end())) {
+ Out << "\n";
+ eolnOut = true;
+ }
+ VisitDeclContext(OID, false);
+ if (!eolnOut)
+ Out << "\n";
+ Out << "@end";
+}
+
+void DeclPrinter::VisitObjCInterfaceDecl(ObjCInterfaceDecl *OID) {
+ std::string I = OID->getNameAsString();
+ ObjCInterfaceDecl *SID = OID->getSuperClass();
+
+ if (!OID->isThisDeclarationADefinition()) {
+ Out << "@class " << I << ";";
+ return;
+ }
+ bool eolnOut = false;
+ if (SID)
+ Out << "@interface " << I << " : " << *SID;
+ else
+ Out << "@interface " << I;
+
+ // Protocols?
+ const ObjCList<ObjCProtocolDecl> &Protocols = OID->getReferencedProtocols();
+ if (!Protocols.empty()) {
+ for (ObjCList<ObjCProtocolDecl>::iterator I = Protocols.begin(),
+ E = Protocols.end(); I != E; ++I)
+ Out << (I == Protocols.begin() ? '<' : ',') << **I;
+ Out << "> ";
+ }
+
+ if (OID->ivar_size() > 0) {
+ Out << "{\n";
+ eolnOut = true;
+ Indentation += Policy.Indentation;
+ for (const auto *I : OID->ivars()) {
+ Indent() << I->getASTContext()
+ .getUnqualifiedObjCPointerType(I->getType())
+ .getAsString(Policy) << ' ' << *I << ";\n";
+ }
+ Indentation -= Policy.Indentation;
+ Out << "}\n";
+ }
+ else if (SID || (OID->decls_begin() != OID->decls_end())) {
+ Out << "\n";
+ eolnOut = true;
+ }
+
+ VisitDeclContext(OID, false);
+ if (!eolnOut)
+ Out << "\n";
+ Out << "@end";
+ // FIXME: implement the rest...
+}
+
+void DeclPrinter::VisitObjCProtocolDecl(ObjCProtocolDecl *PID) {
+ if (!PID->isThisDeclarationADefinition()) {
+ Out << "@protocol " << *PID << ";\n";
+ return;
+ }
+ // Protocols?
+ const ObjCList<ObjCProtocolDecl> &Protocols = PID->getReferencedProtocols();
+ if (!Protocols.empty()) {
+ Out << "@protocol " << *PID;
+ for (ObjCList<ObjCProtocolDecl>::iterator I = Protocols.begin(),
+ E = Protocols.end(); I != E; ++I)
+ Out << (I == Protocols.begin() ? '<' : ',') << **I;
+ Out << ">\n";
+ } else
+ Out << "@protocol " << *PID << '\n';
+ VisitDeclContext(PID, false);
+ Out << "@end";
+}
+
+void DeclPrinter::VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *PID) {
+ Out << "@implementation " << *PID->getClassInterface() << '(' << *PID <<")\n";
+
+ VisitDeclContext(PID, false);
+ Out << "@end";
+ // FIXME: implement the rest...
+}
+
+void DeclPrinter::VisitObjCCategoryDecl(ObjCCategoryDecl *PID) {
+ Out << "@interface " << *PID->getClassInterface() << '(' << *PID << ")\n";
+ if (PID->ivar_size() > 0) {
+ Out << "{\n";
+ Indentation += Policy.Indentation;
+ for (const auto *I : PID->ivars())
+ Indent() << I->getASTContext().getUnqualifiedObjCPointerType(I->getType()).
+ getAsString(Policy) << ' ' << *I << ";\n";
+ Indentation -= Policy.Indentation;
+ Out << "}\n";
+ }
+
+ VisitDeclContext(PID, false);
+ Out << "@end";
+
+ // FIXME: implement the rest...
+}
+
+void DeclPrinter::VisitObjCCompatibleAliasDecl(ObjCCompatibleAliasDecl *AID) {
+ Out << "@compatibility_alias " << *AID
+ << ' ' << *AID->getClassInterface() << ";\n";
+}
+
+/// PrintObjCPropertyDecl - print a property declaration.
+///
+void DeclPrinter::VisitObjCPropertyDecl(ObjCPropertyDecl *PDecl) {
+ if (PDecl->getPropertyImplementation() == ObjCPropertyDecl::Required)
+ Out << "@required\n";
+ else if (PDecl->getPropertyImplementation() == ObjCPropertyDecl::Optional)
+ Out << "@optional\n";
+
+ Out << "@property";
+ if (PDecl->getPropertyAttributes() != ObjCPropertyDecl::OBJC_PR_noattr) {
+ bool first = true;
+ Out << " (";
+ if (PDecl->getPropertyAttributes() &
+ ObjCPropertyDecl::OBJC_PR_readonly) {
+ Out << (first ? ' ' : ',') << "readonly";
+ first = false;
+ }
+
+ if (PDecl->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
+ Out << (first ? ' ' : ',') << "getter = ";
+ PDecl->getGetterName().print(Out);
+ first = false;
+ }
+ if (PDecl->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
+ Out << (first ? ' ' : ',') << "setter = ";
+ PDecl->getSetterName().print(Out);
+ first = false;
+ }
+
+ if (PDecl->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_assign) {
+ Out << (first ? ' ' : ',') << "assign";
+ first = false;
+ }
+
+ if (PDecl->getPropertyAttributes() &
+ ObjCPropertyDecl::OBJC_PR_readwrite) {
+ Out << (first ? ' ' : ',') << "readwrite";
+ first = false;
+ }
+
+ if (PDecl->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_retain) {
+ Out << (first ? ' ' : ',') << "retain";
+ first = false;
+ }
+
+ if (PDecl->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_strong) {
+ Out << (first ? ' ' : ',') << "strong";
+ first = false;
+ }
+
+ if (PDecl->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_copy) {
+ Out << (first ? ' ' : ',') << "copy";
+ first = false;
+ }
+
+ if (PDecl->getPropertyAttributes() &
+ ObjCPropertyDecl::OBJC_PR_nonatomic) {
+ Out << (first ? ' ' : ',') << "nonatomic";
+ first = false;
+ }
+ if (PDecl->getPropertyAttributes() &
+ ObjCPropertyDecl::OBJC_PR_atomic) {
+ Out << (first ? ' ' : ',') << "atomic";
+ first = false;
+ }
+
+ (void) first; // Silence dead store warning due to idiomatic code.
+ Out << " )";
+ }
+ Out << ' ' << PDecl->getASTContext().getUnqualifiedObjCPointerType(PDecl->getType()).
+ getAsString(Policy) << ' ' << *PDecl;
+ if (Policy.PolishForDeclaration)
+ Out << ';';
+}
+
+void DeclPrinter::VisitObjCPropertyImplDecl(ObjCPropertyImplDecl *PID) {
+ if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize)
+ Out << "@synthesize ";
+ else
+ Out << "@dynamic ";
+ Out << *PID->getPropertyDecl();
+ if (PID->getPropertyIvarDecl())
+ Out << '=' << *PID->getPropertyIvarDecl();
+}
+
+void DeclPrinter::VisitUsingDecl(UsingDecl *D) {
+ if (!D->isAccessDeclaration())
+ Out << "using ";
+ if (D->hasTypename())
+ Out << "typename ";
+ D->getQualifier()->print(Out, Policy);
+ Out << *D;
+}
+
+void
+DeclPrinter::VisitUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *D) {
+ Out << "using typename ";
+ D->getQualifier()->print(Out, Policy);
+ Out << D->getDeclName();
+}
+
+void DeclPrinter::VisitUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *D) {
+ if (!D->isAccessDeclaration())
+ Out << "using ";
+ D->getQualifier()->print(Out, Policy);
+ Out << D->getName();
+}
+
+void DeclPrinter::VisitUsingShadowDecl(UsingShadowDecl *D) {
+ // ignore
+}
+
+void DeclPrinter::VisitOMPThreadPrivateDecl(OMPThreadPrivateDecl *D) {
+ Out << "#pragma omp threadprivate";
+ if (!D->varlist_empty()) {
+ for (OMPThreadPrivateDecl::varlist_iterator I = D->varlist_begin(),
+ E = D->varlist_end();
+ I != E; ++I) {
+ Out << (I == D->varlist_begin() ? '(' : ',');
+ NamedDecl *ND = cast<NamedDecl>(cast<DeclRefExpr>(*I)->getDecl());
+ ND->printQualifiedName(Out);
+ }
+ Out << ")";
+ }
+}
+
diff --git a/contrib/llvm/tools/clang/lib/AST/DeclTemplate.cpp b/contrib/llvm/tools/clang/lib/AST/DeclTemplate.cpp
new file mode 100644
index 0000000..6374a92
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/DeclTemplate.cpp
@@ -0,0 +1,1173 @@
+//===--- DeclTemplate.cpp - Template Declaration AST Node Implementation --===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the C++ related Decl classes for templates.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTMutationListener.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/Basic/IdentifierTable.h"
+#include "llvm/ADT/STLExtras.h"
+#include <memory>
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// TemplateParameterList Implementation
+//===----------------------------------------------------------------------===//
+
+TemplateParameterList::TemplateParameterList(SourceLocation TemplateLoc,
+ SourceLocation LAngleLoc,
+ NamedDecl **Params, unsigned NumParams,
+ SourceLocation RAngleLoc)
+ : TemplateLoc(TemplateLoc), LAngleLoc(LAngleLoc), RAngleLoc(RAngleLoc),
+ NumParams(NumParams), ContainsUnexpandedParameterPack(false) {
+ assert(this->NumParams == NumParams && "Too many template parameters");
+ for (unsigned Idx = 0; Idx < NumParams; ++Idx) {
+ NamedDecl *P = Params[Idx];
+ begin()[Idx] = P;
+
+ if (!P->isTemplateParameterPack()) {
+ if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P))
+ if (NTTP->getType()->containsUnexpandedParameterPack())
+ ContainsUnexpandedParameterPack = true;
+
+ if (TemplateTemplateParmDecl *TTP = dyn_cast<TemplateTemplateParmDecl>(P))
+ if (TTP->getTemplateParameters()->containsUnexpandedParameterPack())
+ ContainsUnexpandedParameterPack = true;
+
+ // FIXME: If a default argument contains an unexpanded parameter pack, the
+ // template parameter list does too.
+ }
+ }
+}
+
+TemplateParameterList *
+TemplateParameterList::Create(const ASTContext &C, SourceLocation TemplateLoc,
+ SourceLocation LAngleLoc, NamedDecl **Params,
+ unsigned NumParams, SourceLocation RAngleLoc) {
+ unsigned Size = sizeof(TemplateParameterList)
+ + sizeof(NamedDecl *) * NumParams;
+ unsigned Align = std::max(llvm::alignOf<TemplateParameterList>(),
+ llvm::alignOf<NamedDecl*>());
+ void *Mem = C.Allocate(Size, Align);
+ return new (Mem) TemplateParameterList(TemplateLoc, LAngleLoc, Params,
+ NumParams, RAngleLoc);
+}
+
+unsigned TemplateParameterList::getMinRequiredArguments() const {
+ unsigned NumRequiredArgs = 0;
+ for (iterator P = const_cast<TemplateParameterList *>(this)->begin(),
+ PEnd = const_cast<TemplateParameterList *>(this)->end();
+ P != PEnd; ++P) {
+ if ((*P)->isTemplateParameterPack()) {
+ if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P))
+ if (NTTP->isExpandedParameterPack()) {
+ NumRequiredArgs += NTTP->getNumExpansionTypes();
+ continue;
+ }
+
+ break;
+ }
+
+ if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
+ if (TTP->hasDefaultArgument())
+ break;
+ } else if (NonTypeTemplateParmDecl *NTTP
+ = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
+ if (NTTP->hasDefaultArgument())
+ break;
+ } else if (cast<TemplateTemplateParmDecl>(*P)->hasDefaultArgument())
+ break;
+
+ ++NumRequiredArgs;
+ }
+
+ return NumRequiredArgs;
+}
+
+unsigned TemplateParameterList::getDepth() const {
+ if (size() == 0)
+ return 0;
+
+ const NamedDecl *FirstParm = getParam(0);
+ if (const TemplateTypeParmDecl *TTP
+ = dyn_cast<TemplateTypeParmDecl>(FirstParm))
+ return TTP->getDepth();
+ else if (const NonTypeTemplateParmDecl *NTTP
+ = dyn_cast<NonTypeTemplateParmDecl>(FirstParm))
+ return NTTP->getDepth();
+ else
+ return cast<TemplateTemplateParmDecl>(FirstParm)->getDepth();
+}
+
+static void AdoptTemplateParameterList(TemplateParameterList *Params,
+ DeclContext *Owner) {
+ for (TemplateParameterList::iterator P = Params->begin(),
+ PEnd = Params->end();
+ P != PEnd; ++P) {
+ (*P)->setDeclContext(Owner);
+
+ if (TemplateTemplateParmDecl *TTP = dyn_cast<TemplateTemplateParmDecl>(*P))
+ AdoptTemplateParameterList(TTP->getTemplateParameters(), Owner);
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// RedeclarableTemplateDecl Implementation
+//===----------------------------------------------------------------------===//
+
+RedeclarableTemplateDecl::CommonBase *RedeclarableTemplateDecl::getCommonPtr() const {
+ if (Common)
+ return Common;
+
+ // Walk the previous-declaration chain until we either find a declaration
+ // with a common pointer or we run out of previous declarations.
+ SmallVector<const RedeclarableTemplateDecl *, 2> PrevDecls;
+ for (const RedeclarableTemplateDecl *Prev = getPreviousDecl(); Prev;
+ Prev = Prev->getPreviousDecl()) {
+ if (Prev->Common) {
+ Common = Prev->Common;
+ break;
+ }
+
+ PrevDecls.push_back(Prev);
+ }
+
+ // If we never found a common pointer, allocate one now.
+ if (!Common) {
+ // FIXME: If any of the declarations is from an AST file, we probably
+ // need an update record to add the common data.
+
+ Common = newCommon(getASTContext());
+ }
+
+ // Update any previous declarations we saw with the common pointer.
+ for (unsigned I = 0, N = PrevDecls.size(); I != N; ++I)
+ PrevDecls[I]->Common = Common;
+
+ return Common;
+}
+
+template<class EntryType>
+typename RedeclarableTemplateDecl::SpecEntryTraits<EntryType>::DeclType *
+RedeclarableTemplateDecl::findSpecializationImpl(
+ llvm::FoldingSetVector<EntryType> &Specs, ArrayRef<TemplateArgument> Args,
+ void *&InsertPos) {
+ typedef SpecEntryTraits<EntryType> SETraits;
+ llvm::FoldingSetNodeID ID;
+ EntryType::Profile(ID,Args, getASTContext());
+ EntryType *Entry = Specs.FindNodeOrInsertPos(ID, InsertPos);
+ return Entry ? SETraits::getDecl(Entry)->getMostRecentDecl() : nullptr;
+}
+
+template<class Derived, class EntryType>
+void RedeclarableTemplateDecl::addSpecializationImpl(
+ llvm::FoldingSetVector<EntryType> &Specializations, EntryType *Entry,
+ void *InsertPos) {
+ typedef SpecEntryTraits<EntryType> SETraits;
+ if (InsertPos) {
+#ifndef NDEBUG
+ void *CorrectInsertPos;
+ assert(!findSpecializationImpl(Specializations,
+ SETraits::getTemplateArgs(Entry),
+ CorrectInsertPos) &&
+ InsertPos == CorrectInsertPos &&
+ "given incorrect InsertPos for specialization");
+#endif
+ Specializations.InsertNode(Entry, InsertPos);
+ } else {
+ EntryType *Existing = Specializations.GetOrInsertNode(Entry);
+ (void)Existing;
+ assert(SETraits::getDecl(Existing)->isCanonicalDecl() &&
+ "non-canonical specialization?");
+ }
+
+ if (ASTMutationListener *L = getASTMutationListener())
+ L->AddedCXXTemplateSpecialization(cast<Derived>(this),
+ SETraits::getDecl(Entry));
+}
+
+/// \brief Generate the injected template arguments for the given template
+/// parameter list, e.g., for the injected-class-name of a class template.
+static void GenerateInjectedTemplateArgs(ASTContext &Context,
+ TemplateParameterList *Params,
+ TemplateArgument *Args) {
+ for (TemplateParameterList::iterator Param = Params->begin(),
+ ParamEnd = Params->end();
+ Param != ParamEnd; ++Param) {
+ TemplateArgument Arg;
+ if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
+ QualType ArgType = Context.getTypeDeclType(TTP);
+ if (TTP->isParameterPack())
+ ArgType = Context.getPackExpansionType(ArgType, None);
+
+ Arg = TemplateArgument(ArgType);
+ } else if (NonTypeTemplateParmDecl *NTTP =
+ dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
+ Expr *E = new (Context) DeclRefExpr(NTTP, /*enclosing*/ false,
+ NTTP->getType().getNonLValueExprType(Context),
+ Expr::getValueKindForType(NTTP->getType()),
+ NTTP->getLocation());
+
+ if (NTTP->isParameterPack())
+ E = new (Context) PackExpansionExpr(Context.DependentTy, E,
+ NTTP->getLocation(), None);
+ Arg = TemplateArgument(E);
+ } else {
+ TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*Param);
+ if (TTP->isParameterPack())
+ Arg = TemplateArgument(TemplateName(TTP), Optional<unsigned>());
+ else
+ Arg = TemplateArgument(TemplateName(TTP));
+ }
+
+ if ((*Param)->isTemplateParameterPack())
+ Arg = TemplateArgument::CreatePackCopy(Context, &Arg, 1);
+
+ *Args++ = Arg;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// FunctionTemplateDecl Implementation
+//===----------------------------------------------------------------------===//
+
+void FunctionTemplateDecl::DeallocateCommon(void *Ptr) {
+ static_cast<Common *>(Ptr)->~Common();
+}
+
+FunctionTemplateDecl *FunctionTemplateDecl::Create(ASTContext &C,
+ DeclContext *DC,
+ SourceLocation L,
+ DeclarationName Name,
+ TemplateParameterList *Params,
+ NamedDecl *Decl) {
+ AdoptTemplateParameterList(Params, cast<DeclContext>(Decl));
+ return new (C, DC) FunctionTemplateDecl(C, DC, L, Name, Params, Decl);
+}
+
+FunctionTemplateDecl *FunctionTemplateDecl::CreateDeserialized(ASTContext &C,
+ unsigned ID) {
+ return new (C, ID) FunctionTemplateDecl(C, nullptr, SourceLocation(),
+ DeclarationName(), nullptr, nullptr);
+}
+
+RedeclarableTemplateDecl::CommonBase *
+FunctionTemplateDecl::newCommon(ASTContext &C) const {
+ Common *CommonPtr = new (C) Common;
+ C.AddDeallocation(DeallocateCommon, CommonPtr);
+ return CommonPtr;
+}
+
+void FunctionTemplateDecl::LoadLazySpecializations() const {
+ // Grab the most recent declaration to ensure we've loaded any lazy
+ // redeclarations of this template.
+ //
+ // FIXME: Avoid walking the entire redeclaration chain here.
+ Common *CommonPtr = getMostRecentDecl()->getCommonPtr();
+ if (CommonPtr->LazySpecializations) {
+ ASTContext &Context = getASTContext();
+ uint32_t *Specs = CommonPtr->LazySpecializations;
+ CommonPtr->LazySpecializations = nullptr;
+ for (uint32_t I = 0, N = *Specs++; I != N; ++I)
+ (void)Context.getExternalSource()->GetExternalDecl(Specs[I]);
+ }
+}
+
+llvm::FoldingSetVector<FunctionTemplateSpecializationInfo> &
+FunctionTemplateDecl::getSpecializations() const {
+ LoadLazySpecializations();
+ return getCommonPtr()->Specializations;
+}
+
+FunctionDecl *
+FunctionTemplateDecl::findSpecialization(ArrayRef<TemplateArgument> Args,
+ void *&InsertPos) {
+ return findSpecializationImpl(getSpecializations(), Args, InsertPos);
+}
+
+void FunctionTemplateDecl::addSpecialization(
+ FunctionTemplateSpecializationInfo *Info, void *InsertPos) {
+ addSpecializationImpl<FunctionTemplateDecl>(getSpecializations(), Info,
+ InsertPos);
+}
+
+ArrayRef<TemplateArgument> FunctionTemplateDecl::getInjectedTemplateArgs() {
+ TemplateParameterList *Params = getTemplateParameters();
+ Common *CommonPtr = getCommonPtr();
+ if (!CommonPtr->InjectedArgs) {
+ CommonPtr->InjectedArgs
+ = new (getASTContext()) TemplateArgument[Params->size()];
+ GenerateInjectedTemplateArgs(getASTContext(), Params,
+ CommonPtr->InjectedArgs);
+ }
+
+ return llvm::makeArrayRef(CommonPtr->InjectedArgs, Params->size());
+}
+
+//===----------------------------------------------------------------------===//
+// ClassTemplateDecl Implementation
+//===----------------------------------------------------------------------===//
+
+void ClassTemplateDecl::DeallocateCommon(void *Ptr) {
+ static_cast<Common *>(Ptr)->~Common();
+}
+
+ClassTemplateDecl *ClassTemplateDecl::Create(ASTContext &C,
+ DeclContext *DC,
+ SourceLocation L,
+ DeclarationName Name,
+ TemplateParameterList *Params,
+ NamedDecl *Decl,
+ ClassTemplateDecl *PrevDecl) {
+ AdoptTemplateParameterList(Params, cast<DeclContext>(Decl));
+ ClassTemplateDecl *New = new (C, DC) ClassTemplateDecl(C, DC, L, Name,
+ Params, Decl);
+ New->setPreviousDecl(PrevDecl);
+ return New;
+}
+
+ClassTemplateDecl *ClassTemplateDecl::CreateDeserialized(ASTContext &C,
+ unsigned ID) {
+ return new (C, ID) ClassTemplateDecl(C, nullptr, SourceLocation(),
+ DeclarationName(), nullptr, nullptr);
+}
+
+void ClassTemplateDecl::LoadLazySpecializations() const {
+ // Grab the most recent declaration to ensure we've loaded any lazy
+ // redeclarations of this template.
+ //
+ // FIXME: Avoid walking the entire redeclaration chain here.
+ Common *CommonPtr = getMostRecentDecl()->getCommonPtr();
+ if (CommonPtr->LazySpecializations) {
+ ASTContext &Context = getASTContext();
+ uint32_t *Specs = CommonPtr->LazySpecializations;
+ CommonPtr->LazySpecializations = nullptr;
+ for (uint32_t I = 0, N = *Specs++; I != N; ++I)
+ (void)Context.getExternalSource()->GetExternalDecl(Specs[I]);
+ }
+}
+
+llvm::FoldingSetVector<ClassTemplateSpecializationDecl> &
+ClassTemplateDecl::getSpecializations() const {
+ LoadLazySpecializations();
+ return getCommonPtr()->Specializations;
+}
+
+llvm::FoldingSetVector<ClassTemplatePartialSpecializationDecl> &
+ClassTemplateDecl::getPartialSpecializations() {
+ LoadLazySpecializations();
+ return getCommonPtr()->PartialSpecializations;
+}
+
+RedeclarableTemplateDecl::CommonBase *
+ClassTemplateDecl::newCommon(ASTContext &C) const {
+ Common *CommonPtr = new (C) Common;
+ C.AddDeallocation(DeallocateCommon, CommonPtr);
+ return CommonPtr;
+}
+
+ClassTemplateSpecializationDecl *
+ClassTemplateDecl::findSpecialization(ArrayRef<TemplateArgument> Args,
+ void *&InsertPos) {
+ return findSpecializationImpl(getSpecializations(), Args, InsertPos);
+}
+
+void ClassTemplateDecl::AddSpecialization(ClassTemplateSpecializationDecl *D,
+ void *InsertPos) {
+ addSpecializationImpl<ClassTemplateDecl>(getSpecializations(), D, InsertPos);
+}
+
+ClassTemplatePartialSpecializationDecl *
+ClassTemplateDecl::findPartialSpecialization(ArrayRef<TemplateArgument> Args,
+ void *&InsertPos) {
+ return findSpecializationImpl(getPartialSpecializations(), Args, InsertPos);
+}
+
+void ClassTemplateDecl::AddPartialSpecialization(
+ ClassTemplatePartialSpecializationDecl *D,
+ void *InsertPos) {
+ if (InsertPos)
+ getPartialSpecializations().InsertNode(D, InsertPos);
+ else {
+ ClassTemplatePartialSpecializationDecl *Existing
+ = getPartialSpecializations().GetOrInsertNode(D);
+ (void)Existing;
+ assert(Existing->isCanonicalDecl() && "Non-canonical specialization?");
+ }
+
+ if (ASTMutationListener *L = getASTMutationListener())
+ L->AddedCXXTemplateSpecialization(this, D);
+}
+
+void ClassTemplateDecl::getPartialSpecializations(
+ SmallVectorImpl<ClassTemplatePartialSpecializationDecl *> &PS) {
+ llvm::FoldingSetVector<ClassTemplatePartialSpecializationDecl> &PartialSpecs
+ = getPartialSpecializations();
+ PS.clear();
+ PS.reserve(PartialSpecs.size());
+ for (llvm::FoldingSetVector<ClassTemplatePartialSpecializationDecl>::iterator
+ P = PartialSpecs.begin(), PEnd = PartialSpecs.end();
+ P != PEnd; ++P)
+ PS.push_back(P->getMostRecentDecl());
+}
+
+ClassTemplatePartialSpecializationDecl *
+ClassTemplateDecl::findPartialSpecialization(QualType T) {
+ ASTContext &Context = getASTContext();
+ using llvm::FoldingSetVector;
+ typedef FoldingSetVector<ClassTemplatePartialSpecializationDecl>::iterator
+ partial_spec_iterator;
+ for (partial_spec_iterator P = getPartialSpecializations().begin(),
+ PEnd = getPartialSpecializations().end();
+ P != PEnd; ++P) {
+ if (Context.hasSameType(P->getInjectedSpecializationType(), T))
+ return P->getMostRecentDecl();
+ }
+
+ return nullptr;
+}
+
+ClassTemplatePartialSpecializationDecl *
+ClassTemplateDecl::findPartialSpecInstantiatedFromMember(
+ ClassTemplatePartialSpecializationDecl *D) {
+ Decl *DCanon = D->getCanonicalDecl();
+ for (llvm::FoldingSetVector<ClassTemplatePartialSpecializationDecl>::iterator
+ P = getPartialSpecializations().begin(),
+ PEnd = getPartialSpecializations().end();
+ P != PEnd; ++P) {
+ if (P->getInstantiatedFromMember()->getCanonicalDecl() == DCanon)
+ return P->getMostRecentDecl();
+ }
+
+ return nullptr;
+}
+
+QualType
+ClassTemplateDecl::getInjectedClassNameSpecialization() {
+ Common *CommonPtr = getCommonPtr();
+ if (!CommonPtr->InjectedClassNameType.isNull())
+ return CommonPtr->InjectedClassNameType;
+
+ // C++0x [temp.dep.type]p2:
+ // The template argument list of a primary template is a template argument
+ // list in which the nth template argument has the value of the nth template
+ // parameter of the class template. If the nth template parameter is a
+ // template parameter pack (14.5.3), the nth template argument is a pack
+ // expansion (14.5.3) whose pattern is the name of the template parameter
+ // pack.
+ ASTContext &Context = getASTContext();
+ TemplateParameterList *Params = getTemplateParameters();
+ SmallVector<TemplateArgument, 16> TemplateArgs;
+ TemplateArgs.resize(Params->size());
+ GenerateInjectedTemplateArgs(getASTContext(), Params, TemplateArgs.data());
+ CommonPtr->InjectedClassNameType
+ = Context.getTemplateSpecializationType(TemplateName(this),
+ &TemplateArgs[0],
+ TemplateArgs.size());
+ return CommonPtr->InjectedClassNameType;
+}
+
+//===----------------------------------------------------------------------===//
+// TemplateTypeParm Allocation/Deallocation Method Implementations
+//===----------------------------------------------------------------------===//
+
+TemplateTypeParmDecl *
+TemplateTypeParmDecl::Create(const ASTContext &C, DeclContext *DC,
+ SourceLocation KeyLoc, SourceLocation NameLoc,
+ unsigned D, unsigned P, IdentifierInfo *Id,
+ bool Typename, bool ParameterPack) {
+ TemplateTypeParmDecl *TTPDecl =
+ new (C, DC) TemplateTypeParmDecl(DC, KeyLoc, NameLoc, Id, Typename);
+ QualType TTPType = C.getTemplateTypeParmType(D, P, ParameterPack, TTPDecl);
+ TTPDecl->setTypeForDecl(TTPType.getTypePtr());
+ return TTPDecl;
+}
+
+TemplateTypeParmDecl *
+TemplateTypeParmDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
+ return new (C, ID) TemplateTypeParmDecl(nullptr, SourceLocation(),
+ SourceLocation(), nullptr, false);
+}
+
+SourceLocation TemplateTypeParmDecl::getDefaultArgumentLoc() const {
+ return hasDefaultArgument()
+ ? DefaultArgument->getTypeLoc().getBeginLoc()
+ : SourceLocation();
+}
+
+SourceRange TemplateTypeParmDecl::getSourceRange() const {
+ if (hasDefaultArgument() && !defaultArgumentWasInherited())
+ return SourceRange(getLocStart(),
+ DefaultArgument->getTypeLoc().getEndLoc());
+ else
+ return TypeDecl::getSourceRange();
+}
+
+unsigned TemplateTypeParmDecl::getDepth() const {
+ return getTypeForDecl()->getAs<TemplateTypeParmType>()->getDepth();
+}
+
+unsigned TemplateTypeParmDecl::getIndex() const {
+ return getTypeForDecl()->getAs<TemplateTypeParmType>()->getIndex();
+}
+
+bool TemplateTypeParmDecl::isParameterPack() const {
+ return getTypeForDecl()->getAs<TemplateTypeParmType>()->isParameterPack();
+}
+
+//===----------------------------------------------------------------------===//
+// NonTypeTemplateParmDecl Method Implementations
+//===----------------------------------------------------------------------===//
+
+NonTypeTemplateParmDecl::NonTypeTemplateParmDecl(DeclContext *DC,
+ SourceLocation StartLoc,
+ SourceLocation IdLoc,
+ unsigned D, unsigned P,
+ IdentifierInfo *Id,
+ QualType T,
+ TypeSourceInfo *TInfo,
+ const QualType *ExpandedTypes,
+ unsigned NumExpandedTypes,
+ TypeSourceInfo **ExpandedTInfos)
+ : DeclaratorDecl(NonTypeTemplateParm, DC, IdLoc, Id, T, TInfo, StartLoc),
+ TemplateParmPosition(D, P), DefaultArgumentAndInherited(nullptr, false),
+ ParameterPack(true), ExpandedParameterPack(true),
+ NumExpandedTypes(NumExpandedTypes)
+{
+ if (ExpandedTypes && ExpandedTInfos) {
+ void **TypesAndInfos = reinterpret_cast<void **>(this + 1);
+ for (unsigned I = 0; I != NumExpandedTypes; ++I) {
+ TypesAndInfos[2*I] = ExpandedTypes[I].getAsOpaquePtr();
+ TypesAndInfos[2*I + 1] = ExpandedTInfos[I];
+ }
+ }
+}
+
+NonTypeTemplateParmDecl *
+NonTypeTemplateParmDecl::Create(const ASTContext &C, DeclContext *DC,
+ SourceLocation StartLoc, SourceLocation IdLoc,
+ unsigned D, unsigned P, IdentifierInfo *Id,
+ QualType T, bool ParameterPack,
+ TypeSourceInfo *TInfo) {
+ return new (C, DC) NonTypeTemplateParmDecl(DC, StartLoc, IdLoc, D, P, Id,
+ T, ParameterPack, TInfo);
+}
+
+NonTypeTemplateParmDecl *
+NonTypeTemplateParmDecl::Create(const ASTContext &C, DeclContext *DC,
+ SourceLocation StartLoc, SourceLocation IdLoc,
+ unsigned D, unsigned P,
+ IdentifierInfo *Id, QualType T,
+ TypeSourceInfo *TInfo,
+ const QualType *ExpandedTypes,
+ unsigned NumExpandedTypes,
+ TypeSourceInfo **ExpandedTInfos) {
+ unsigned Extra = NumExpandedTypes * 2 * sizeof(void*);
+ return new (C, DC, Extra) NonTypeTemplateParmDecl(
+ DC, StartLoc, IdLoc, D, P, Id, T, TInfo,
+ ExpandedTypes, NumExpandedTypes, ExpandedTInfos);
+}
+
+NonTypeTemplateParmDecl *
+NonTypeTemplateParmDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) NonTypeTemplateParmDecl(nullptr, SourceLocation(),
+ SourceLocation(), 0, 0, nullptr,
+ QualType(), false, nullptr);
+}
+
+NonTypeTemplateParmDecl *
+NonTypeTemplateParmDecl::CreateDeserialized(ASTContext &C, unsigned ID,
+ unsigned NumExpandedTypes) {
+ unsigned Extra = NumExpandedTypes * 2 * sizeof(void*);
+ return new (C, ID, Extra) NonTypeTemplateParmDecl(
+ nullptr, SourceLocation(), SourceLocation(), 0, 0, nullptr, QualType(),
+ nullptr, nullptr, NumExpandedTypes, nullptr);
+}
+
+SourceRange NonTypeTemplateParmDecl::getSourceRange() const {
+ if (hasDefaultArgument() && !defaultArgumentWasInherited())
+ return SourceRange(getOuterLocStart(),
+ getDefaultArgument()->getSourceRange().getEnd());
+ return DeclaratorDecl::getSourceRange();
+}
+
+SourceLocation NonTypeTemplateParmDecl::getDefaultArgumentLoc() const {
+ return hasDefaultArgument()
+ ? getDefaultArgument()->getSourceRange().getBegin()
+ : SourceLocation();
+}
+
+//===----------------------------------------------------------------------===//
+// TemplateTemplateParmDecl Method Implementations
+//===----------------------------------------------------------------------===//
+
+void TemplateTemplateParmDecl::anchor() { }
+
+TemplateTemplateParmDecl::TemplateTemplateParmDecl(
+ DeclContext *DC, SourceLocation L, unsigned D, unsigned P,
+ IdentifierInfo *Id, TemplateParameterList *Params,
+ unsigned NumExpansions, TemplateParameterList * const *Expansions)
+ : TemplateDecl(TemplateTemplateParm, DC, L, Id, Params),
+ TemplateParmPosition(D, P), DefaultArgument(),
+ DefaultArgumentWasInherited(false), ParameterPack(true),
+ ExpandedParameterPack(true), NumExpandedParams(NumExpansions) {
+ if (Expansions)
+ std::memcpy(reinterpret_cast<void*>(this + 1), Expansions,
+ sizeof(TemplateParameterList*) * NumExpandedParams);
+}
+
+TemplateTemplateParmDecl *
+TemplateTemplateParmDecl::Create(const ASTContext &C, DeclContext *DC,
+ SourceLocation L, unsigned D, unsigned P,
+ bool ParameterPack, IdentifierInfo *Id,
+ TemplateParameterList *Params) {
+ return new (C, DC) TemplateTemplateParmDecl(DC, L, D, P, ParameterPack, Id,
+ Params);
+}
+
+TemplateTemplateParmDecl *
+TemplateTemplateParmDecl::Create(const ASTContext &C, DeclContext *DC,
+ SourceLocation L, unsigned D, unsigned P,
+ IdentifierInfo *Id,
+ TemplateParameterList *Params,
+ ArrayRef<TemplateParameterList *> Expansions) {
+ return new (C, DC, sizeof(TemplateParameterList*) * Expansions.size())
+ TemplateTemplateParmDecl(DC, L, D, P, Id, Params,
+ Expansions.size(), Expansions.data());
+}
+
+TemplateTemplateParmDecl *
+TemplateTemplateParmDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) TemplateTemplateParmDecl(nullptr, SourceLocation(), 0, 0,
+ false, nullptr, nullptr);
+}
+
+TemplateTemplateParmDecl *
+TemplateTemplateParmDecl::CreateDeserialized(ASTContext &C, unsigned ID,
+ unsigned NumExpansions) {
+ return new (C, ID, sizeof(TemplateParameterList*) * NumExpansions)
+ TemplateTemplateParmDecl(nullptr, SourceLocation(), 0, 0, nullptr,
+ nullptr, NumExpansions, nullptr);
+}
+
+//===----------------------------------------------------------------------===//
+// TemplateArgumentList Implementation
+//===----------------------------------------------------------------------===//
+TemplateArgumentList *
+TemplateArgumentList::CreateCopy(ASTContext &Context,
+ const TemplateArgument *Args,
+ unsigned NumArgs) {
+ std::size_t Size = sizeof(TemplateArgumentList)
+ + NumArgs * sizeof(TemplateArgument);
+ void *Mem = Context.Allocate(Size);
+ TemplateArgument *StoredArgs
+ = reinterpret_cast<TemplateArgument *>(
+ static_cast<TemplateArgumentList *>(Mem) + 1);
+ std::uninitialized_copy(Args, Args + NumArgs, StoredArgs);
+ return new (Mem) TemplateArgumentList(StoredArgs, NumArgs, true);
+}
+
+FunctionTemplateSpecializationInfo *
+FunctionTemplateSpecializationInfo::Create(ASTContext &C, FunctionDecl *FD,
+ FunctionTemplateDecl *Template,
+ TemplateSpecializationKind TSK,
+ const TemplateArgumentList *TemplateArgs,
+ const TemplateArgumentListInfo *TemplateArgsAsWritten,
+ SourceLocation POI) {
+ const ASTTemplateArgumentListInfo *ArgsAsWritten = nullptr;
+ if (TemplateArgsAsWritten)
+ ArgsAsWritten = ASTTemplateArgumentListInfo::Create(C,
+ *TemplateArgsAsWritten);
+
+ return new (C) FunctionTemplateSpecializationInfo(FD, Template, TSK,
+ TemplateArgs,
+ ArgsAsWritten,
+ POI);
+}
+
+//===----------------------------------------------------------------------===//
+// TemplateDecl Implementation
+//===----------------------------------------------------------------------===//
+
+void TemplateDecl::anchor() { }
+
+//===----------------------------------------------------------------------===//
+// ClassTemplateSpecializationDecl Implementation
+//===----------------------------------------------------------------------===//
+ClassTemplateSpecializationDecl::
+ClassTemplateSpecializationDecl(ASTContext &Context, Kind DK, TagKind TK,
+ DeclContext *DC, SourceLocation StartLoc,
+ SourceLocation IdLoc,
+ ClassTemplateDecl *SpecializedTemplate,
+ const TemplateArgument *Args,
+ unsigned NumArgs,
+ ClassTemplateSpecializationDecl *PrevDecl)
+ : CXXRecordDecl(DK, TK, Context, DC, StartLoc, IdLoc,
+ SpecializedTemplate->getIdentifier(),
+ PrevDecl),
+ SpecializedTemplate(SpecializedTemplate),
+ ExplicitInfo(nullptr),
+ TemplateArgs(TemplateArgumentList::CreateCopy(Context, Args, NumArgs)),
+ SpecializationKind(TSK_Undeclared) {
+}
+
+ClassTemplateSpecializationDecl::ClassTemplateSpecializationDecl(ASTContext &C,
+ Kind DK)
+ : CXXRecordDecl(DK, TTK_Struct, C, nullptr, SourceLocation(),
+ SourceLocation(), nullptr, nullptr),
+ ExplicitInfo(nullptr), SpecializationKind(TSK_Undeclared) {}
+
+ClassTemplateSpecializationDecl *
+ClassTemplateSpecializationDecl::Create(ASTContext &Context, TagKind TK,
+ DeclContext *DC,
+ SourceLocation StartLoc,
+ SourceLocation IdLoc,
+ ClassTemplateDecl *SpecializedTemplate,
+ const TemplateArgument *Args,
+ unsigned NumArgs,
+ ClassTemplateSpecializationDecl *PrevDecl) {
+ ClassTemplateSpecializationDecl *Result =
+ new (Context, DC) ClassTemplateSpecializationDecl(
+ Context, ClassTemplateSpecialization, TK, DC, StartLoc, IdLoc,
+ SpecializedTemplate, Args, NumArgs, PrevDecl);
+ Result->MayHaveOutOfDateDef = false;
+
+ Context.getTypeDeclType(Result, PrevDecl);
+ return Result;
+}
+
+ClassTemplateSpecializationDecl *
+ClassTemplateSpecializationDecl::CreateDeserialized(ASTContext &C,
+ unsigned ID) {
+ ClassTemplateSpecializationDecl *Result =
+ new (C, ID) ClassTemplateSpecializationDecl(C, ClassTemplateSpecialization);
+ Result->MayHaveOutOfDateDef = false;
+ return Result;
+}
+
+void ClassTemplateSpecializationDecl::getNameForDiagnostic(
+ raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
+ NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
+
+ const TemplateArgumentList &TemplateArgs = getTemplateArgs();
+ TemplateSpecializationType::PrintTemplateArgumentList(
+ OS, TemplateArgs.data(), TemplateArgs.size(), Policy);
+}
+
+ClassTemplateDecl *
+ClassTemplateSpecializationDecl::getSpecializedTemplate() const {
+ if (SpecializedPartialSpecialization *PartialSpec
+ = SpecializedTemplate.dyn_cast<SpecializedPartialSpecialization*>())
+ return PartialSpec->PartialSpecialization->getSpecializedTemplate();
+ return SpecializedTemplate.get<ClassTemplateDecl*>();
+}
+
+SourceRange
+ClassTemplateSpecializationDecl::getSourceRange() const {
+ if (ExplicitInfo) {
+ SourceLocation Begin = getTemplateKeywordLoc();
+ if (Begin.isValid()) {
+ // Here we have an explicit (partial) specialization or instantiation.
+ assert(getSpecializationKind() == TSK_ExplicitSpecialization ||
+ getSpecializationKind() == TSK_ExplicitInstantiationDeclaration ||
+ getSpecializationKind() == TSK_ExplicitInstantiationDefinition);
+ if (getExternLoc().isValid())
+ Begin = getExternLoc();
+ SourceLocation End = getRBraceLoc();
+ if (End.isInvalid())
+ End = getTypeAsWritten()->getTypeLoc().getEndLoc();
+ return SourceRange(Begin, End);
+ }
+ // An implicit instantiation of a class template partial specialization
+ // uses ExplicitInfo to record the TypeAsWritten, but the source
+ // locations should be retrieved from the instantiation pattern.
+ typedef ClassTemplatePartialSpecializationDecl CTPSDecl;
+ CTPSDecl *ctpsd = const_cast<CTPSDecl*>(cast<CTPSDecl>(this));
+ CTPSDecl *inst_from = ctpsd->getInstantiatedFromMember();
+ assert(inst_from != nullptr);
+ return inst_from->getSourceRange();
+ }
+ else {
+ // No explicit info available.
+ llvm::PointerUnion<ClassTemplateDecl *,
+ ClassTemplatePartialSpecializationDecl *>
+ inst_from = getInstantiatedFrom();
+ if (inst_from.isNull())
+ return getSpecializedTemplate()->getSourceRange();
+ if (ClassTemplateDecl *ctd = inst_from.dyn_cast<ClassTemplateDecl*>())
+ return ctd->getSourceRange();
+ return inst_from.get<ClassTemplatePartialSpecializationDecl*>()
+ ->getSourceRange();
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// ClassTemplatePartialSpecializationDecl Implementation
+//===----------------------------------------------------------------------===//
+void ClassTemplatePartialSpecializationDecl::anchor() { }
+
+ClassTemplatePartialSpecializationDecl::
+ClassTemplatePartialSpecializationDecl(ASTContext &Context, TagKind TK,
+ DeclContext *DC,
+ SourceLocation StartLoc,
+ SourceLocation IdLoc,
+ TemplateParameterList *Params,
+ ClassTemplateDecl *SpecializedTemplate,
+ const TemplateArgument *Args,
+ unsigned NumArgs,
+ const ASTTemplateArgumentListInfo *ArgInfos,
+ ClassTemplatePartialSpecializationDecl *PrevDecl)
+ : ClassTemplateSpecializationDecl(Context,
+ ClassTemplatePartialSpecialization,
+ TK, DC, StartLoc, IdLoc,
+ SpecializedTemplate,
+ Args, NumArgs, PrevDecl),
+ TemplateParams(Params), ArgsAsWritten(ArgInfos),
+ InstantiatedFromMember(nullptr, false)
+{
+ AdoptTemplateParameterList(Params, this);
+}
+
+ClassTemplatePartialSpecializationDecl *
+ClassTemplatePartialSpecializationDecl::
+Create(ASTContext &Context, TagKind TK,DeclContext *DC,
+ SourceLocation StartLoc, SourceLocation IdLoc,
+ TemplateParameterList *Params,
+ ClassTemplateDecl *SpecializedTemplate,
+ const TemplateArgument *Args,
+ unsigned NumArgs,
+ const TemplateArgumentListInfo &ArgInfos,
+ QualType CanonInjectedType,
+ ClassTemplatePartialSpecializationDecl *PrevDecl) {
+ const ASTTemplateArgumentListInfo *ASTArgInfos =
+ ASTTemplateArgumentListInfo::Create(Context, ArgInfos);
+
+ ClassTemplatePartialSpecializationDecl *Result = new (Context, DC)
+ ClassTemplatePartialSpecializationDecl(Context, TK, DC, StartLoc, IdLoc,
+ Params, SpecializedTemplate, Args,
+ NumArgs, ASTArgInfos, PrevDecl);
+ Result->setSpecializationKind(TSK_ExplicitSpecialization);
+ Result->MayHaveOutOfDateDef = false;
+
+ Context.getInjectedClassNameType(Result, CanonInjectedType);
+ return Result;
+}
+
+ClassTemplatePartialSpecializationDecl *
+ClassTemplatePartialSpecializationDecl::CreateDeserialized(ASTContext &C,
+ unsigned ID) {
+ ClassTemplatePartialSpecializationDecl *Result =
+ new (C, ID) ClassTemplatePartialSpecializationDecl(C);
+ Result->MayHaveOutOfDateDef = false;
+ return Result;
+}
+
+//===----------------------------------------------------------------------===//
+// FriendTemplateDecl Implementation
+//===----------------------------------------------------------------------===//
+
+void FriendTemplateDecl::anchor() { }
+
+FriendTemplateDecl *FriendTemplateDecl::Create(ASTContext &Context,
+ DeclContext *DC,
+ SourceLocation L,
+ unsigned NParams,
+ TemplateParameterList **Params,
+ FriendUnion Friend,
+ SourceLocation FLoc) {
+ return new (Context, DC) FriendTemplateDecl(DC, L, NParams, Params,
+ Friend, FLoc);
+}
+
+FriendTemplateDecl *FriendTemplateDecl::CreateDeserialized(ASTContext &C,
+ unsigned ID) {
+ return new (C, ID) FriendTemplateDecl(EmptyShell());
+}
+
+//===----------------------------------------------------------------------===//
+// TypeAliasTemplateDecl Implementation
+//===----------------------------------------------------------------------===//
+
+TypeAliasTemplateDecl *TypeAliasTemplateDecl::Create(ASTContext &C,
+ DeclContext *DC,
+ SourceLocation L,
+ DeclarationName Name,
+ TemplateParameterList *Params,
+ NamedDecl *Decl) {
+ AdoptTemplateParameterList(Params, DC);
+ return new (C, DC) TypeAliasTemplateDecl(C, DC, L, Name, Params, Decl);
+}
+
+TypeAliasTemplateDecl *TypeAliasTemplateDecl::CreateDeserialized(ASTContext &C,
+ unsigned ID) {
+ return new (C, ID) TypeAliasTemplateDecl(C, nullptr, SourceLocation(),
+ DeclarationName(), nullptr, nullptr);
+}
+
+void TypeAliasTemplateDecl::DeallocateCommon(void *Ptr) {
+ static_cast<Common *>(Ptr)->~Common();
+}
+RedeclarableTemplateDecl::CommonBase *
+TypeAliasTemplateDecl::newCommon(ASTContext &C) const {
+ Common *CommonPtr = new (C) Common;
+ C.AddDeallocation(DeallocateCommon, CommonPtr);
+ return CommonPtr;
+}
+
+//===----------------------------------------------------------------------===//
+// ClassScopeFunctionSpecializationDecl Implementation
+//===----------------------------------------------------------------------===//
+
+void ClassScopeFunctionSpecializationDecl::anchor() { }
+
+ClassScopeFunctionSpecializationDecl *
+ClassScopeFunctionSpecializationDecl::CreateDeserialized(ASTContext &C,
+ unsigned ID) {
+ return new (C, ID) ClassScopeFunctionSpecializationDecl(
+ nullptr, SourceLocation(), nullptr, false, TemplateArgumentListInfo());
+}
+
+//===----------------------------------------------------------------------===//
+// VarTemplateDecl Implementation
+//===----------------------------------------------------------------------===//
+
+void VarTemplateDecl::DeallocateCommon(void *Ptr) {
+ static_cast<Common *>(Ptr)->~Common();
+}
+
+VarTemplateDecl *VarTemplateDecl::getDefinition() {
+ VarTemplateDecl *CurD = this;
+ while (CurD) {
+ if (CurD->isThisDeclarationADefinition())
+ return CurD;
+ CurD = CurD->getPreviousDecl();
+ }
+ return nullptr;
+}
+
+VarTemplateDecl *VarTemplateDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation L, DeclarationName Name,
+ TemplateParameterList *Params,
+ VarDecl *Decl) {
+ return new (C, DC) VarTemplateDecl(C, DC, L, Name, Params, Decl);
+}
+
+VarTemplateDecl *VarTemplateDecl::CreateDeserialized(ASTContext &C,
+ unsigned ID) {
+ return new (C, ID) VarTemplateDecl(C, nullptr, SourceLocation(),
+ DeclarationName(), nullptr, nullptr);
+}
+
+// TODO: Unify across class, function and variable templates?
+// May require moving this and Common to RedeclarableTemplateDecl.
+void VarTemplateDecl::LoadLazySpecializations() const {
+ // Grab the most recent declaration to ensure we've loaded any lazy
+ // redeclarations of this template.
+ //
+ // FIXME: Avoid walking the entire redeclaration chain here.
+ Common *CommonPtr = getMostRecentDecl()->getCommonPtr();
+ if (CommonPtr->LazySpecializations) {
+ ASTContext &Context = getASTContext();
+ uint32_t *Specs = CommonPtr->LazySpecializations;
+ CommonPtr->LazySpecializations = nullptr;
+ for (uint32_t I = 0, N = *Specs++; I != N; ++I)
+ (void)Context.getExternalSource()->GetExternalDecl(Specs[I]);
+ }
+}
+
+llvm::FoldingSetVector<VarTemplateSpecializationDecl> &
+VarTemplateDecl::getSpecializations() const {
+ LoadLazySpecializations();
+ return getCommonPtr()->Specializations;
+}
+
+llvm::FoldingSetVector<VarTemplatePartialSpecializationDecl> &
+VarTemplateDecl::getPartialSpecializations() {
+ LoadLazySpecializations();
+ return getCommonPtr()->PartialSpecializations;
+}
+
+RedeclarableTemplateDecl::CommonBase *
+VarTemplateDecl::newCommon(ASTContext &C) const {
+ Common *CommonPtr = new (C) Common;
+ C.AddDeallocation(DeallocateCommon, CommonPtr);
+ return CommonPtr;
+}
+
+VarTemplateSpecializationDecl *
+VarTemplateDecl::findSpecialization(ArrayRef<TemplateArgument> Args,
+ void *&InsertPos) {
+ return findSpecializationImpl(getSpecializations(), Args, InsertPos);
+}
+
+void VarTemplateDecl::AddSpecialization(VarTemplateSpecializationDecl *D,
+ void *InsertPos) {
+ addSpecializationImpl<VarTemplateDecl>(getSpecializations(), D, InsertPos);
+}
+
+VarTemplatePartialSpecializationDecl *
+VarTemplateDecl::findPartialSpecialization(ArrayRef<TemplateArgument> Args,
+ void *&InsertPos) {
+ return findSpecializationImpl(getPartialSpecializations(), Args, InsertPos);
+}
+
+void VarTemplateDecl::AddPartialSpecialization(
+ VarTemplatePartialSpecializationDecl *D, void *InsertPos) {
+ if (InsertPos)
+ getPartialSpecializations().InsertNode(D, InsertPos);
+ else {
+ VarTemplatePartialSpecializationDecl *Existing =
+ getPartialSpecializations().GetOrInsertNode(D);
+ (void)Existing;
+ assert(Existing->isCanonicalDecl() && "Non-canonical specialization?");
+ }
+
+ if (ASTMutationListener *L = getASTMutationListener())
+ L->AddedCXXTemplateSpecialization(this, D);
+}
+
+void VarTemplateDecl::getPartialSpecializations(
+ SmallVectorImpl<VarTemplatePartialSpecializationDecl *> &PS) {
+ llvm::FoldingSetVector<VarTemplatePartialSpecializationDecl> &PartialSpecs =
+ getPartialSpecializations();
+ PS.clear();
+ PS.reserve(PartialSpecs.size());
+ for (llvm::FoldingSetVector<VarTemplatePartialSpecializationDecl>::iterator
+ P = PartialSpecs.begin(),
+ PEnd = PartialSpecs.end();
+ P != PEnd; ++P)
+ PS.push_back(P->getMostRecentDecl());
+}
+
+VarTemplatePartialSpecializationDecl *
+VarTemplateDecl::findPartialSpecInstantiatedFromMember(
+ VarTemplatePartialSpecializationDecl *D) {
+ Decl *DCanon = D->getCanonicalDecl();
+ for (llvm::FoldingSetVector<VarTemplatePartialSpecializationDecl>::iterator
+ P = getPartialSpecializations().begin(),
+ PEnd = getPartialSpecializations().end();
+ P != PEnd; ++P) {
+ if (P->getInstantiatedFromMember()->getCanonicalDecl() == DCanon)
+ return P->getMostRecentDecl();
+ }
+
+ return nullptr;
+}
+
+//===----------------------------------------------------------------------===//
+// VarTemplateSpecializationDecl Implementation
+//===----------------------------------------------------------------------===//
+VarTemplateSpecializationDecl::VarTemplateSpecializationDecl(
+ Kind DK, ASTContext &Context, DeclContext *DC, SourceLocation StartLoc,
+ SourceLocation IdLoc, VarTemplateDecl *SpecializedTemplate, QualType T,
+ TypeSourceInfo *TInfo, StorageClass S, const TemplateArgument *Args,
+ unsigned NumArgs)
+ : VarDecl(DK, Context, DC, StartLoc, IdLoc,
+ SpecializedTemplate->getIdentifier(), T, TInfo, S),
+ SpecializedTemplate(SpecializedTemplate), ExplicitInfo(nullptr),
+ TemplateArgs(TemplateArgumentList::CreateCopy(Context, Args, NumArgs)),
+ SpecializationKind(TSK_Undeclared) {}
+
+VarTemplateSpecializationDecl::VarTemplateSpecializationDecl(Kind DK,
+ ASTContext &C)
+ : VarDecl(DK, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
+ QualType(), nullptr, SC_None),
+ ExplicitInfo(nullptr), SpecializationKind(TSK_Undeclared) {}
+
+VarTemplateSpecializationDecl *VarTemplateSpecializationDecl::Create(
+ ASTContext &Context, DeclContext *DC, SourceLocation StartLoc,
+ SourceLocation IdLoc, VarTemplateDecl *SpecializedTemplate, QualType T,
+ TypeSourceInfo *TInfo, StorageClass S, const TemplateArgument *Args,
+ unsigned NumArgs) {
+ return new (Context, DC) VarTemplateSpecializationDecl(
+ VarTemplateSpecialization, Context, DC, StartLoc, IdLoc,
+ SpecializedTemplate, T, TInfo, S, Args, NumArgs);
+}
+
+VarTemplateSpecializationDecl *
+VarTemplateSpecializationDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID)
+ VarTemplateSpecializationDecl(VarTemplateSpecialization, C);
+}
+
+void VarTemplateSpecializationDecl::getNameForDiagnostic(
+ raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
+ NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
+
+ const TemplateArgumentList &TemplateArgs = getTemplateArgs();
+ TemplateSpecializationType::PrintTemplateArgumentList(
+ OS, TemplateArgs.data(), TemplateArgs.size(), Policy);
+}
+
+VarTemplateDecl *VarTemplateSpecializationDecl::getSpecializedTemplate() const {
+ if (SpecializedPartialSpecialization *PartialSpec =
+ SpecializedTemplate.dyn_cast<SpecializedPartialSpecialization *>())
+ return PartialSpec->PartialSpecialization->getSpecializedTemplate();
+ return SpecializedTemplate.get<VarTemplateDecl *>();
+}
+
+void VarTemplateSpecializationDecl::setTemplateArgsInfo(
+ const TemplateArgumentListInfo &ArgsInfo) {
+ unsigned N = ArgsInfo.size();
+ TemplateArgsInfo.setLAngleLoc(ArgsInfo.getLAngleLoc());
+ TemplateArgsInfo.setRAngleLoc(ArgsInfo.getRAngleLoc());
+ for (unsigned I = 0; I != N; ++I)
+ TemplateArgsInfo.addArgument(ArgsInfo[I]);
+}
+
+//===----------------------------------------------------------------------===//
+// VarTemplatePartialSpecializationDecl Implementation
+//===----------------------------------------------------------------------===//
+void VarTemplatePartialSpecializationDecl::anchor() {}
+
+VarTemplatePartialSpecializationDecl::VarTemplatePartialSpecializationDecl(
+ ASTContext &Context, DeclContext *DC, SourceLocation StartLoc,
+ SourceLocation IdLoc, TemplateParameterList *Params,
+ VarTemplateDecl *SpecializedTemplate, QualType T, TypeSourceInfo *TInfo,
+ StorageClass S, const TemplateArgument *Args, unsigned NumArgs,
+ const ASTTemplateArgumentListInfo *ArgInfos)
+ : VarTemplateSpecializationDecl(VarTemplatePartialSpecialization, Context,
+ DC, StartLoc, IdLoc, SpecializedTemplate, T,
+ TInfo, S, Args, NumArgs),
+ TemplateParams(Params), ArgsAsWritten(ArgInfos),
+ InstantiatedFromMember(nullptr, false) {
+ // TODO: The template parameters should be in DC by now. Verify.
+ // AdoptTemplateParameterList(Params, DC);
+}
+
+VarTemplatePartialSpecializationDecl *
+VarTemplatePartialSpecializationDecl::Create(
+ ASTContext &Context, DeclContext *DC, SourceLocation StartLoc,
+ SourceLocation IdLoc, TemplateParameterList *Params,
+ VarTemplateDecl *SpecializedTemplate, QualType T, TypeSourceInfo *TInfo,
+ StorageClass S, const TemplateArgument *Args, unsigned NumArgs,
+ const TemplateArgumentListInfo &ArgInfos) {
+ const ASTTemplateArgumentListInfo *ASTArgInfos
+ = ASTTemplateArgumentListInfo::Create(Context, ArgInfos);
+
+ VarTemplatePartialSpecializationDecl *Result =
+ new (Context, DC) VarTemplatePartialSpecializationDecl(
+ Context, DC, StartLoc, IdLoc, Params, SpecializedTemplate, T, TInfo,
+ S, Args, NumArgs, ASTArgInfos);
+ Result->setSpecializationKind(TSK_ExplicitSpecialization);
+ return Result;
+}
+
+VarTemplatePartialSpecializationDecl *
+VarTemplatePartialSpecializationDecl::CreateDeserialized(ASTContext &C,
+ unsigned ID) {
+ return new (C, ID) VarTemplatePartialSpecializationDecl(C);
+}
diff --git a/contrib/llvm/tools/clang/lib/AST/DeclarationName.cpp b/contrib/llvm/tools/clang/lib/AST/DeclarationName.cpp
new file mode 100644
index 0000000..b7c2877
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/DeclarationName.cpp
@@ -0,0 +1,590 @@
+//===-- DeclarationName.cpp - Declaration names implementation --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the DeclarationName and DeclarationNameTable
+// classes.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclarationName.h"
+#include "clang/AST/Type.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/AST/TypeOrdering.h"
+#include "clang/Basic/IdentifierTable.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace clang;
+
+namespace clang {
+/// CXXSpecialName - Records the type associated with one of the
+/// "special" kinds of declaration names in C++, e.g., constructors,
+/// destructors, and conversion functions.
+class CXXSpecialName
+ : public DeclarationNameExtra, public llvm::FoldingSetNode {
+public:
+ /// Type - The type associated with this declaration name.
+ QualType Type;
+
+ /// FETokenInfo - Extra information associated with this declaration
+ /// name that can be used by the front end.
+ void *FETokenInfo;
+
+ void Profile(llvm::FoldingSetNodeID &ID) {
+ ID.AddInteger(ExtraKindOrNumArgs);
+ ID.AddPointer(Type.getAsOpaquePtr());
+ }
+};
+
+/// CXXOperatorIdName - Contains extra information for the name of an
+/// overloaded operator in C++, such as "operator+.
+class CXXOperatorIdName : public DeclarationNameExtra {
+public:
+ /// FETokenInfo - Extra information associated with this operator
+ /// name that can be used by the front end.
+ void *FETokenInfo;
+};
+
+/// CXXLiteralOperatorName - Contains the actual identifier that makes up the
+/// name.
+///
+/// This identifier is stored here rather than directly in DeclarationName so as
+/// to allow Objective-C selectors, which are about a million times more common,
+/// to consume minimal memory.
+class CXXLiteralOperatorIdName
+ : public DeclarationNameExtra, public llvm::FoldingSetNode {
+public:
+ IdentifierInfo *ID;
+
+ /// FETokenInfo - Extra information associated with this operator
+ /// name that can be used by the front end.
+ void *FETokenInfo;
+
+ void Profile(llvm::FoldingSetNodeID &FSID) {
+ FSID.AddPointer(ID);
+ }
+};
+
+static int compareInt(unsigned A, unsigned B) {
+ return (A < B ? -1 : (A > B ? 1 : 0));
+}
+
+int DeclarationName::compare(DeclarationName LHS, DeclarationName RHS) {
+ if (LHS.getNameKind() != RHS.getNameKind())
+ return (LHS.getNameKind() < RHS.getNameKind() ? -1 : 1);
+
+ switch (LHS.getNameKind()) {
+ case DeclarationName::Identifier: {
+ IdentifierInfo *LII = LHS.getAsIdentifierInfo();
+ IdentifierInfo *RII = RHS.getAsIdentifierInfo();
+ if (!LII) return RII ? -1 : 0;
+ if (!RII) return 1;
+
+ return LII->getName().compare(RII->getName());
+ }
+
+ case DeclarationName::ObjCZeroArgSelector:
+ case DeclarationName::ObjCOneArgSelector:
+ case DeclarationName::ObjCMultiArgSelector: {
+ Selector LHSSelector = LHS.getObjCSelector();
+ Selector RHSSelector = RHS.getObjCSelector();
+ unsigned LN = LHSSelector.getNumArgs(), RN = RHSSelector.getNumArgs();
+ for (unsigned I = 0, N = std::min(LN, RN); I != N; ++I) {
+ switch (LHSSelector.getNameForSlot(I).compare(
+ RHSSelector.getNameForSlot(I))) {
+ case -1: return true;
+ case 1: return false;
+ default: break;
+ }
+ }
+
+ return compareInt(LN, RN);
+ }
+
+ case DeclarationName::CXXConstructorName:
+ case DeclarationName::CXXDestructorName:
+ case DeclarationName::CXXConversionFunctionName:
+ if (QualTypeOrdering()(LHS.getCXXNameType(), RHS.getCXXNameType()))
+ return -1;
+ if (QualTypeOrdering()(RHS.getCXXNameType(), LHS.getCXXNameType()))
+ return 1;
+ return 0;
+
+ case DeclarationName::CXXOperatorName:
+ return compareInt(LHS.getCXXOverloadedOperator(),
+ RHS.getCXXOverloadedOperator());
+
+ case DeclarationName::CXXLiteralOperatorName:
+ return LHS.getCXXLiteralIdentifier()->getName().compare(
+ RHS.getCXXLiteralIdentifier()->getName());
+
+ case DeclarationName::CXXUsingDirective:
+ return 0;
+ }
+
+ llvm_unreachable("Invalid DeclarationName Kind!");
+}
+
+raw_ostream &operator<<(raw_ostream &OS, DeclarationName N) {
+ switch (N.getNameKind()) {
+ case DeclarationName::Identifier:
+ if (const IdentifierInfo *II = N.getAsIdentifierInfo())
+ OS << II->getName();
+ return OS;
+
+ case DeclarationName::ObjCZeroArgSelector:
+ case DeclarationName::ObjCOneArgSelector:
+ case DeclarationName::ObjCMultiArgSelector:
+ N.getObjCSelector().print(OS);
+ return OS;
+
+ case DeclarationName::CXXConstructorName: {
+ QualType ClassType = N.getCXXNameType();
+ if (const RecordType *ClassRec = ClassType->getAs<RecordType>())
+ return OS << *ClassRec->getDecl();
+ LangOptions LO;
+ LO.CPlusPlus = true;
+ return OS << ClassType.getAsString(PrintingPolicy(LO));
+ }
+
+ case DeclarationName::CXXDestructorName: {
+ OS << '~';
+ QualType Type = N.getCXXNameType();
+ if (const RecordType *Rec = Type->getAs<RecordType>())
+ return OS << *Rec->getDecl();
+ LangOptions LO;
+ LO.CPlusPlus = true;
+ return OS << Type.getAsString(PrintingPolicy(LO));
+ }
+
+ case DeclarationName::CXXOperatorName: {
+ static const char* const OperatorNames[NUM_OVERLOADED_OPERATORS] = {
+ nullptr,
+#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
+ Spelling,
+#include "clang/Basic/OperatorKinds.def"
+ };
+ const char *OpName = OperatorNames[N.getCXXOverloadedOperator()];
+ assert(OpName && "not an overloaded operator");
+
+ OS << "operator";
+ if (OpName[0] >= 'a' && OpName[0] <= 'z')
+ OS << ' ';
+ return OS << OpName;
+ }
+
+ case DeclarationName::CXXLiteralOperatorName:
+ return OS << "operator \"\" " << N.getCXXLiteralIdentifier()->getName();
+
+ case DeclarationName::CXXConversionFunctionName: {
+ OS << "operator ";
+ QualType Type = N.getCXXNameType();
+ if (const RecordType *Rec = Type->getAs<RecordType>())
+ return OS << *Rec->getDecl();
+ LangOptions LO;
+ LO.CPlusPlus = true;
+ LO.Bool = true;
+ return OS << Type.getAsString(PrintingPolicy(LO));
+ }
+ case DeclarationName::CXXUsingDirective:
+ return OS << "<using-directive>";
+ }
+
+ llvm_unreachable("Unexpected declaration name kind");
+}
+
+} // end namespace clang
+
+DeclarationName::NameKind DeclarationName::getNameKind() const {
+ switch (getStoredNameKind()) {
+ case StoredIdentifier: return Identifier;
+ case StoredObjCZeroArgSelector: return ObjCZeroArgSelector;
+ case StoredObjCOneArgSelector: return ObjCOneArgSelector;
+
+ case StoredDeclarationNameExtra:
+ switch (getExtra()->ExtraKindOrNumArgs) {
+ case DeclarationNameExtra::CXXConstructor:
+ return CXXConstructorName;
+
+ case DeclarationNameExtra::CXXDestructor:
+ return CXXDestructorName;
+
+ case DeclarationNameExtra::CXXConversionFunction:
+ return CXXConversionFunctionName;
+
+ case DeclarationNameExtra::CXXLiteralOperator:
+ return CXXLiteralOperatorName;
+
+ case DeclarationNameExtra::CXXUsingDirective:
+ return CXXUsingDirective;
+
+ default:
+ // Check if we have one of the CXXOperator* enumeration values.
+ if (getExtra()->ExtraKindOrNumArgs <
+ DeclarationNameExtra::CXXUsingDirective)
+ return CXXOperatorName;
+
+ return ObjCMultiArgSelector;
+ }
+ }
+
+ // Can't actually get here.
+ llvm_unreachable("This should be unreachable!");
+}
+
+bool DeclarationName::isDependentName() const {
+ QualType T = getCXXNameType();
+ return !T.isNull() && T->isDependentType();
+}
+
+std::string DeclarationName::getAsString() const {
+ std::string Result;
+ llvm::raw_string_ostream OS(Result);
+ OS << *this;
+ return OS.str();
+}
+
+QualType DeclarationName::getCXXNameType() const {
+ if (CXXSpecialName *CXXName = getAsCXXSpecialName())
+ return CXXName->Type;
+ else
+ return QualType();
+}
+
+OverloadedOperatorKind DeclarationName::getCXXOverloadedOperator() const {
+ if (CXXOperatorIdName *CXXOp = getAsCXXOperatorIdName()) {
+ unsigned value
+ = CXXOp->ExtraKindOrNumArgs - DeclarationNameExtra::CXXConversionFunction;
+ return static_cast<OverloadedOperatorKind>(value);
+ } else {
+ return OO_None;
+ }
+}
+
+IdentifierInfo *DeclarationName::getCXXLiteralIdentifier() const {
+ if (CXXLiteralOperatorIdName *CXXLit = getAsCXXLiteralOperatorIdName())
+ return CXXLit->ID;
+ else
+ return nullptr;
+}
+
+void *DeclarationName::getFETokenInfoAsVoidSlow() const {
+ switch (getNameKind()) {
+ case Identifier:
+ llvm_unreachable("Handled by getFETokenInfo()");
+
+ case CXXConstructorName:
+ case CXXDestructorName:
+ case CXXConversionFunctionName:
+ return getAsCXXSpecialName()->FETokenInfo;
+
+ case CXXOperatorName:
+ return getAsCXXOperatorIdName()->FETokenInfo;
+
+ case CXXLiteralOperatorName:
+ return getAsCXXLiteralOperatorIdName()->FETokenInfo;
+
+ default:
+ llvm_unreachable("Declaration name has no FETokenInfo");
+ }
+}
+
+void DeclarationName::setFETokenInfo(void *T) {
+ switch (getNameKind()) {
+ case Identifier:
+ getAsIdentifierInfo()->setFETokenInfo(T);
+ break;
+
+ case CXXConstructorName:
+ case CXXDestructorName:
+ case CXXConversionFunctionName:
+ getAsCXXSpecialName()->FETokenInfo = T;
+ break;
+
+ case CXXOperatorName:
+ getAsCXXOperatorIdName()->FETokenInfo = T;
+ break;
+
+ case CXXLiteralOperatorName:
+ getAsCXXLiteralOperatorIdName()->FETokenInfo = T;
+ break;
+
+ default:
+ llvm_unreachable("Declaration name has no FETokenInfo");
+ }
+}
+
+DeclarationName DeclarationName::getUsingDirectiveName() {
+ // Single instance of DeclarationNameExtra for using-directive
+ static const DeclarationNameExtra UDirExtra =
+ { DeclarationNameExtra::CXXUsingDirective };
+
+ uintptr_t Ptr = reinterpret_cast<uintptr_t>(&UDirExtra);
+ Ptr |= StoredDeclarationNameExtra;
+
+ return DeclarationName(Ptr);
+}
+
+void DeclarationName::dump() const {
+ llvm::errs() << *this << '\n';
+}
+
+DeclarationNameTable::DeclarationNameTable(const ASTContext &C) : Ctx(C) {
+ CXXSpecialNamesImpl = new llvm::FoldingSet<CXXSpecialName>;
+ CXXLiteralOperatorNames = new llvm::FoldingSet<CXXLiteralOperatorIdName>;
+
+ // Initialize the overloaded operator names.
+ CXXOperatorNames = new (Ctx) CXXOperatorIdName[NUM_OVERLOADED_OPERATORS];
+ for (unsigned Op = 0; Op < NUM_OVERLOADED_OPERATORS; ++Op) {
+ CXXOperatorNames[Op].ExtraKindOrNumArgs
+ = Op + DeclarationNameExtra::CXXConversionFunction;
+ CXXOperatorNames[Op].FETokenInfo = nullptr;
+ }
+}
+
+DeclarationNameTable::~DeclarationNameTable() {
+ llvm::FoldingSet<CXXSpecialName> *SpecialNames =
+ static_cast<llvm::FoldingSet<CXXSpecialName>*>(CXXSpecialNamesImpl);
+ llvm::FoldingSet<CXXLiteralOperatorIdName> *LiteralNames
+ = static_cast<llvm::FoldingSet<CXXLiteralOperatorIdName>*>
+ (CXXLiteralOperatorNames);
+
+ delete SpecialNames;
+ delete LiteralNames;
+}
+
+DeclarationName DeclarationNameTable::getCXXConstructorName(CanQualType Ty) {
+ return getCXXSpecialName(DeclarationName::CXXConstructorName,
+ Ty.getUnqualifiedType());
+}
+
+DeclarationName DeclarationNameTable::getCXXDestructorName(CanQualType Ty) {
+ return getCXXSpecialName(DeclarationName::CXXDestructorName,
+ Ty.getUnqualifiedType());
+}
+
+DeclarationName
+DeclarationNameTable::getCXXConversionFunctionName(CanQualType Ty) {
+ return getCXXSpecialName(DeclarationName::CXXConversionFunctionName, Ty);
+}
+
+DeclarationName
+DeclarationNameTable::getCXXSpecialName(DeclarationName::NameKind Kind,
+ CanQualType Ty) {
+ assert(Kind >= DeclarationName::CXXConstructorName &&
+ Kind <= DeclarationName::CXXConversionFunctionName &&
+ "Kind must be a C++ special name kind");
+ llvm::FoldingSet<CXXSpecialName> *SpecialNames
+ = static_cast<llvm::FoldingSet<CXXSpecialName>*>(CXXSpecialNamesImpl);
+
+ DeclarationNameExtra::ExtraKind EKind;
+ switch (Kind) {
+ case DeclarationName::CXXConstructorName:
+ EKind = DeclarationNameExtra::CXXConstructor;
+ assert(!Ty.hasQualifiers() &&"Constructor type must be unqualified");
+ break;
+ case DeclarationName::CXXDestructorName:
+ EKind = DeclarationNameExtra::CXXDestructor;
+ assert(!Ty.hasQualifiers() && "Destructor type must be unqualified");
+ break;
+ case DeclarationName::CXXConversionFunctionName:
+ EKind = DeclarationNameExtra::CXXConversionFunction;
+ break;
+ default:
+ return DeclarationName();
+ }
+
+ // Unique selector, to guarantee there is one per name.
+ llvm::FoldingSetNodeID ID;
+ ID.AddInteger(EKind);
+ ID.AddPointer(Ty.getAsOpaquePtr());
+
+ void *InsertPos = nullptr;
+ if (CXXSpecialName *Name = SpecialNames->FindNodeOrInsertPos(ID, InsertPos))
+ return DeclarationName(Name);
+
+ CXXSpecialName *SpecialName = new (Ctx) CXXSpecialName;
+ SpecialName->ExtraKindOrNumArgs = EKind;
+ SpecialName->Type = Ty;
+ SpecialName->FETokenInfo = nullptr;
+
+ SpecialNames->InsertNode(SpecialName, InsertPos);
+ return DeclarationName(SpecialName);
+}
+
+DeclarationName
+DeclarationNameTable::getCXXOperatorName(OverloadedOperatorKind Op) {
+ return DeclarationName(&CXXOperatorNames[(unsigned)Op]);
+}
+
+DeclarationName
+DeclarationNameTable::getCXXLiteralOperatorName(IdentifierInfo *II) {
+ llvm::FoldingSet<CXXLiteralOperatorIdName> *LiteralNames
+ = static_cast<llvm::FoldingSet<CXXLiteralOperatorIdName>*>
+ (CXXLiteralOperatorNames);
+
+ llvm::FoldingSetNodeID ID;
+ ID.AddPointer(II);
+
+ void *InsertPos = nullptr;
+ if (CXXLiteralOperatorIdName *Name =
+ LiteralNames->FindNodeOrInsertPos(ID, InsertPos))
+ return DeclarationName (Name);
+
+ CXXLiteralOperatorIdName *LiteralName = new (Ctx) CXXLiteralOperatorIdName;
+ LiteralName->ExtraKindOrNumArgs = DeclarationNameExtra::CXXLiteralOperator;
+ LiteralName->ID = II;
+ LiteralName->FETokenInfo = nullptr;
+
+ LiteralNames->InsertNode(LiteralName, InsertPos);
+ return DeclarationName(LiteralName);
+}
+
+DeclarationNameLoc::DeclarationNameLoc(DeclarationName Name) {
+ switch (Name.getNameKind()) {
+ case DeclarationName::Identifier:
+ break;
+ case DeclarationName::CXXConstructorName:
+ case DeclarationName::CXXDestructorName:
+ case DeclarationName::CXXConversionFunctionName:
+ NamedType.TInfo = nullptr;
+ break;
+ case DeclarationName::CXXOperatorName:
+ CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
+ CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
+ break;
+ case DeclarationName::CXXLiteralOperatorName:
+ CXXLiteralOperatorName.OpNameLoc = SourceLocation().getRawEncoding();
+ break;
+ case DeclarationName::ObjCZeroArgSelector:
+ case DeclarationName::ObjCOneArgSelector:
+ case DeclarationName::ObjCMultiArgSelector:
+ // FIXME: ?
+ break;
+ case DeclarationName::CXXUsingDirective:
+ break;
+ }
+}
+
+bool DeclarationNameInfo::containsUnexpandedParameterPack() const {
+ switch (Name.getNameKind()) {
+ case DeclarationName::Identifier:
+ case DeclarationName::ObjCZeroArgSelector:
+ case DeclarationName::ObjCOneArgSelector:
+ case DeclarationName::ObjCMultiArgSelector:
+ case DeclarationName::CXXOperatorName:
+ case DeclarationName::CXXLiteralOperatorName:
+ case DeclarationName::CXXUsingDirective:
+ return false;
+
+ case DeclarationName::CXXConstructorName:
+ case DeclarationName::CXXDestructorName:
+ case DeclarationName::CXXConversionFunctionName:
+ if (TypeSourceInfo *TInfo = LocInfo.NamedType.TInfo)
+ return TInfo->getType()->containsUnexpandedParameterPack();
+
+ return Name.getCXXNameType()->containsUnexpandedParameterPack();
+ }
+ llvm_unreachable("All name kinds handled.");
+}
+
+bool DeclarationNameInfo::isInstantiationDependent() const {
+ switch (Name.getNameKind()) {
+ case DeclarationName::Identifier:
+ case DeclarationName::ObjCZeroArgSelector:
+ case DeclarationName::ObjCOneArgSelector:
+ case DeclarationName::ObjCMultiArgSelector:
+ case DeclarationName::CXXOperatorName:
+ case DeclarationName::CXXLiteralOperatorName:
+ case DeclarationName::CXXUsingDirective:
+ return false;
+
+ case DeclarationName::CXXConstructorName:
+ case DeclarationName::CXXDestructorName:
+ case DeclarationName::CXXConversionFunctionName:
+ if (TypeSourceInfo *TInfo = LocInfo.NamedType.TInfo)
+ return TInfo->getType()->isInstantiationDependentType();
+
+ return Name.getCXXNameType()->isInstantiationDependentType();
+ }
+ llvm_unreachable("All name kinds handled.");
+}
+
+std::string DeclarationNameInfo::getAsString() const {
+ std::string Result;
+ llvm::raw_string_ostream OS(Result);
+ printName(OS);
+ return OS.str();
+}
+
+void DeclarationNameInfo::printName(raw_ostream &OS) const {
+ switch (Name.getNameKind()) {
+ case DeclarationName::Identifier:
+ case DeclarationName::ObjCZeroArgSelector:
+ case DeclarationName::ObjCOneArgSelector:
+ case DeclarationName::ObjCMultiArgSelector:
+ case DeclarationName::CXXOperatorName:
+ case DeclarationName::CXXLiteralOperatorName:
+ case DeclarationName::CXXUsingDirective:
+ OS << Name;
+ return;
+
+ case DeclarationName::CXXConstructorName:
+ case DeclarationName::CXXDestructorName:
+ case DeclarationName::CXXConversionFunctionName:
+ if (TypeSourceInfo *TInfo = LocInfo.NamedType.TInfo) {
+ if (Name.getNameKind() == DeclarationName::CXXDestructorName)
+ OS << '~';
+ else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
+ OS << "operator ";
+ LangOptions LO;
+ LO.CPlusPlus = true;
+ LO.Bool = true;
+ OS << TInfo->getType().getAsString(PrintingPolicy(LO));
+ } else
+ OS << Name;
+ return;
+ }
+ llvm_unreachable("Unexpected declaration name kind");
+}
+
+SourceLocation DeclarationNameInfo::getEndLoc() const {
+ switch (Name.getNameKind()) {
+ case DeclarationName::Identifier:
+ return NameLoc;
+
+ case DeclarationName::CXXOperatorName: {
+ unsigned raw = LocInfo.CXXOperatorName.EndOpNameLoc;
+ return SourceLocation::getFromRawEncoding(raw);
+ }
+
+ case DeclarationName::CXXLiteralOperatorName: {
+ unsigned raw = LocInfo.CXXLiteralOperatorName.OpNameLoc;
+ return SourceLocation::getFromRawEncoding(raw);
+ }
+
+ case DeclarationName::CXXConstructorName:
+ case DeclarationName::CXXDestructorName:
+ case DeclarationName::CXXConversionFunctionName:
+ if (TypeSourceInfo *TInfo = LocInfo.NamedType.TInfo)
+ return TInfo->getTypeLoc().getEndLoc();
+ else
+ return NameLoc;
+
+ // DNInfo work in progress: FIXME.
+ case DeclarationName::ObjCZeroArgSelector:
+ case DeclarationName::ObjCOneArgSelector:
+ case DeclarationName::ObjCMultiArgSelector:
+ case DeclarationName::CXXUsingDirective:
+ return NameLoc;
+ }
+ llvm_unreachable("Unexpected declaration name kind");
+}
diff --git a/contrib/llvm/tools/clang/lib/AST/Expr.cpp b/contrib/llvm/tools/clang/lib/AST/Expr.cpp
new file mode 100644
index 0000000..76a4da2
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/Expr.cpp
@@ -0,0 +1,4310 @@
+//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Expr class and subclasses.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/APValue.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/EvaluatedExprVisitor.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/Mangle.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Basic/Builtins.h"
+#include "clang/Basic/CharInfo.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Lex/Lexer.h"
+#include "clang/Lex/LiteralSupport.h"
+#include "clang/Sema/SemaDiagnostic.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cstring>
+using namespace clang;
+
+const CXXRecordDecl *Expr::getBestDynamicClassType() const {
+ const Expr *E = ignoreParenBaseCasts();
+
+ QualType DerivedType = E->getType();
+ if (const PointerType *PTy = DerivedType->getAs<PointerType>())
+ DerivedType = PTy->getPointeeType();
+
+ if (DerivedType->isDependentType())
+ return nullptr;
+
+ const RecordType *Ty = DerivedType->castAs<RecordType>();
+ Decl *D = Ty->getDecl();
+ return cast<CXXRecordDecl>(D);
+}
+
+const Expr *Expr::skipRValueSubobjectAdjustments(
+ SmallVectorImpl<const Expr *> &CommaLHSs,
+ SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
+ const Expr *E = this;
+ while (true) {
+ E = E->IgnoreParens();
+
+ if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
+ if ((CE->getCastKind() == CK_DerivedToBase ||
+ CE->getCastKind() == CK_UncheckedDerivedToBase) &&
+ E->getType()->isRecordType()) {
+ E = CE->getSubExpr();
+ CXXRecordDecl *Derived
+ = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
+ Adjustments.push_back(SubobjectAdjustment(CE, Derived));
+ continue;
+ }
+
+ if (CE->getCastKind() == CK_NoOp) {
+ E = CE->getSubExpr();
+ continue;
+ }
+ } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
+ if (!ME->isArrow()) {
+ assert(ME->getBase()->getType()->isRecordType());
+ if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
+ if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
+ E = ME->getBase();
+ Adjustments.push_back(SubobjectAdjustment(Field));
+ continue;
+ }
+ }
+ }
+ } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
+ if (BO->isPtrMemOp()) {
+ assert(BO->getRHS()->isRValue());
+ E = BO->getLHS();
+ const MemberPointerType *MPT =
+ BO->getRHS()->getType()->getAs<MemberPointerType>();
+ Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
+ continue;
+ } else if (BO->getOpcode() == BO_Comma) {
+ CommaLHSs.push_back(BO->getLHS());
+ E = BO->getRHS();
+ continue;
+ }
+ }
+
+ // Nothing changed.
+ break;
+ }
+ return E;
+}
+
+/// isKnownToHaveBooleanValue - Return true if this is an integer expression
+/// that is known to return 0 or 1. This happens for _Bool/bool expressions
+/// but also int expressions which are produced by things like comparisons in
+/// C.
+bool Expr::isKnownToHaveBooleanValue() const {
+ const Expr *E = IgnoreParens();
+
+ // If this value has _Bool type, it is obvious 0/1.
+ if (E->getType()->isBooleanType()) return true;
+ // If this is a non-scalar-integer type, we don't care enough to try.
+ if (!E->getType()->isIntegralOrEnumerationType()) return false;
+
+ if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
+ switch (UO->getOpcode()) {
+ case UO_Plus:
+ return UO->getSubExpr()->isKnownToHaveBooleanValue();
+ case UO_LNot:
+ return true;
+ default:
+ return false;
+ }
+ }
+
+ // Only look through implicit casts. If the user writes
+ // '(int) (a && b)' treat it as an arbitrary int.
+ if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
+ return CE->getSubExpr()->isKnownToHaveBooleanValue();
+
+ if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
+ switch (BO->getOpcode()) {
+ default: return false;
+ case BO_LT: // Relational operators.
+ case BO_GT:
+ case BO_LE:
+ case BO_GE:
+ case BO_EQ: // Equality operators.
+ case BO_NE:
+ case BO_LAnd: // AND operator.
+ case BO_LOr: // Logical OR operator.
+ return true;
+
+ case BO_And: // Bitwise AND operator.
+ case BO_Xor: // Bitwise XOR operator.
+ case BO_Or: // Bitwise OR operator.
+ // Handle things like (x==2)|(y==12).
+ return BO->getLHS()->isKnownToHaveBooleanValue() &&
+ BO->getRHS()->isKnownToHaveBooleanValue();
+
+ case BO_Comma:
+ case BO_Assign:
+ return BO->getRHS()->isKnownToHaveBooleanValue();
+ }
+ }
+
+ if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
+ return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
+ CO->getFalseExpr()->isKnownToHaveBooleanValue();
+
+ return false;
+}
+
+// Amusing macro metaprogramming hack: check whether a class provides
+// a more specific implementation of getExprLoc().
+//
+// See also Stmt.cpp:{getLocStart(),getLocEnd()}.
+namespace {
+ /// This implementation is used when a class provides a custom
+ /// implementation of getExprLoc.
+ template <class E, class T>
+ SourceLocation getExprLocImpl(const Expr *expr,
+ SourceLocation (T::*v)() const) {
+ return static_cast<const E*>(expr)->getExprLoc();
+ }
+
+ /// This implementation is used when a class doesn't provide
+ /// a custom implementation of getExprLoc. Overload resolution
+ /// should pick it over the implementation above because it's
+ /// more specialized according to function template partial ordering.
+ template <class E>
+ SourceLocation getExprLocImpl(const Expr *expr,
+ SourceLocation (Expr::*v)() const) {
+ return static_cast<const E*>(expr)->getLocStart();
+ }
+}
+
+SourceLocation Expr::getExprLoc() const {
+ switch (getStmtClass()) {
+ case Stmt::NoStmtClass: llvm_unreachable("statement without class");
+#define ABSTRACT_STMT(type)
+#define STMT(type, base) \
+ case Stmt::type##Class: break;
+#define EXPR(type, base) \
+ case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
+#include "clang/AST/StmtNodes.inc"
+ }
+ llvm_unreachable("unknown expression kind");
+}
+
+//===----------------------------------------------------------------------===//
+// Primary Expressions.
+//===----------------------------------------------------------------------===//
+
+/// \brief Compute the type-, value-, and instantiation-dependence of a
+/// declaration reference
+/// based on the declaration being referenced.
+static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D,
+ QualType T, bool &TypeDependent,
+ bool &ValueDependent,
+ bool &InstantiationDependent) {
+ TypeDependent = false;
+ ValueDependent = false;
+ InstantiationDependent = false;
+
+ // (TD) C++ [temp.dep.expr]p3:
+ // An id-expression is type-dependent if it contains:
+ //
+ // and
+ //
+ // (VD) C++ [temp.dep.constexpr]p2:
+ // An identifier is value-dependent if it is:
+
+ // (TD) - an identifier that was declared with dependent type
+ // (VD) - a name declared with a dependent type,
+ if (T->isDependentType()) {
+ TypeDependent = true;
+ ValueDependent = true;
+ InstantiationDependent = true;
+ return;
+ } else if (T->isInstantiationDependentType()) {
+ InstantiationDependent = true;
+ }
+
+ // (TD) - a conversion-function-id that specifies a dependent type
+ if (D->getDeclName().getNameKind()
+ == DeclarationName::CXXConversionFunctionName) {
+ QualType T = D->getDeclName().getCXXNameType();
+ if (T->isDependentType()) {
+ TypeDependent = true;
+ ValueDependent = true;
+ InstantiationDependent = true;
+ return;
+ }
+
+ if (T->isInstantiationDependentType())
+ InstantiationDependent = true;
+ }
+
+ // (VD) - the name of a non-type template parameter,
+ if (isa<NonTypeTemplateParmDecl>(D)) {
+ ValueDependent = true;
+ InstantiationDependent = true;
+ return;
+ }
+
+ // (VD) - a constant with integral or enumeration type and is
+ // initialized with an expression that is value-dependent.
+ // (VD) - a constant with literal type and is initialized with an
+ // expression that is value-dependent [C++11].
+ // (VD) - FIXME: Missing from the standard:
+ // - an entity with reference type and is initialized with an
+ // expression that is value-dependent [C++11]
+ if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
+ if ((Ctx.getLangOpts().CPlusPlus11 ?
+ Var->getType()->isLiteralType(Ctx) :
+ Var->getType()->isIntegralOrEnumerationType()) &&
+ (Var->getType().isConstQualified() ||
+ Var->getType()->isReferenceType())) {
+ if (const Expr *Init = Var->getAnyInitializer())
+ if (Init->isValueDependent()) {
+ ValueDependent = true;
+ InstantiationDependent = true;
+ }
+ }
+
+ // (VD) - FIXME: Missing from the standard:
+ // - a member function or a static data member of the current
+ // instantiation
+ if (Var->isStaticDataMember() &&
+ Var->getDeclContext()->isDependentContext()) {
+ ValueDependent = true;
+ InstantiationDependent = true;
+ TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo();
+ if (TInfo->getType()->isIncompleteArrayType())
+ TypeDependent = true;
+ }
+
+ return;
+ }
+
+ // (VD) - FIXME: Missing from the standard:
+ // - a member function or a static data member of the current
+ // instantiation
+ if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
+ ValueDependent = true;
+ InstantiationDependent = true;
+ }
+}
+
+void DeclRefExpr::computeDependence(const ASTContext &Ctx) {
+ bool TypeDependent = false;
+ bool ValueDependent = false;
+ bool InstantiationDependent = false;
+ computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
+ ValueDependent, InstantiationDependent);
+
+ ExprBits.TypeDependent |= TypeDependent;
+ ExprBits.ValueDependent |= ValueDependent;
+ ExprBits.InstantiationDependent |= InstantiationDependent;
+
+ // Is the declaration a parameter pack?
+ if (getDecl()->isParameterPack())
+ ExprBits.ContainsUnexpandedParameterPack = true;
+}
+
+DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
+ NestedNameSpecifierLoc QualifierLoc,
+ SourceLocation TemplateKWLoc,
+ ValueDecl *D, bool RefersToEnclosingVariableOrCapture,
+ const DeclarationNameInfo &NameInfo,
+ NamedDecl *FoundD,
+ const TemplateArgumentListInfo *TemplateArgs,
+ QualType T, ExprValueKind VK)
+ : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
+ D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
+ DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
+ if (QualifierLoc) {
+ getInternalQualifierLoc() = QualifierLoc;
+ auto *NNS = QualifierLoc.getNestedNameSpecifier();
+ if (NNS->isInstantiationDependent())
+ ExprBits.InstantiationDependent = true;
+ if (NNS->containsUnexpandedParameterPack())
+ ExprBits.ContainsUnexpandedParameterPack = true;
+ }
+ DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
+ if (FoundD)
+ getInternalFoundDecl() = FoundD;
+ DeclRefExprBits.HasTemplateKWAndArgsInfo
+ = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
+ DeclRefExprBits.RefersToEnclosingVariableOrCapture =
+ RefersToEnclosingVariableOrCapture;
+ if (TemplateArgs) {
+ bool Dependent = false;
+ bool InstantiationDependent = false;
+ bool ContainsUnexpandedParameterPack = false;
+ getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs,
+ Dependent,
+ InstantiationDependent,
+ ContainsUnexpandedParameterPack);
+ assert(!Dependent && "built a DeclRefExpr with dependent template args");
+ ExprBits.InstantiationDependent |= InstantiationDependent;
+ ExprBits.ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
+ } else if (TemplateKWLoc.isValid()) {
+ getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
+ }
+ DeclRefExprBits.HadMultipleCandidates = 0;
+
+ computeDependence(Ctx);
+}
+
+DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
+ NestedNameSpecifierLoc QualifierLoc,
+ SourceLocation TemplateKWLoc,
+ ValueDecl *D,
+ bool RefersToEnclosingVariableOrCapture,
+ SourceLocation NameLoc,
+ QualType T,
+ ExprValueKind VK,
+ NamedDecl *FoundD,
+ const TemplateArgumentListInfo *TemplateArgs) {
+ return Create(Context, QualifierLoc, TemplateKWLoc, D,
+ RefersToEnclosingVariableOrCapture,
+ DeclarationNameInfo(D->getDeclName(), NameLoc),
+ T, VK, FoundD, TemplateArgs);
+}
+
+DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
+ NestedNameSpecifierLoc QualifierLoc,
+ SourceLocation TemplateKWLoc,
+ ValueDecl *D,
+ bool RefersToEnclosingVariableOrCapture,
+ const DeclarationNameInfo &NameInfo,
+ QualType T,
+ ExprValueKind VK,
+ NamedDecl *FoundD,
+ const TemplateArgumentListInfo *TemplateArgs) {
+ // Filter out cases where the found Decl is the same as the value refenenced.
+ if (D == FoundD)
+ FoundD = nullptr;
+
+ std::size_t Size = sizeof(DeclRefExpr);
+ if (QualifierLoc)
+ Size += sizeof(NestedNameSpecifierLoc);
+ if (FoundD)
+ Size += sizeof(NamedDecl *);
+ if (TemplateArgs)
+ Size += ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs->size());
+ else if (TemplateKWLoc.isValid())
+ Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
+
+ void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
+ return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
+ RefersToEnclosingVariableOrCapture,
+ NameInfo, FoundD, TemplateArgs, T, VK);
+}
+
+DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
+ bool HasQualifier,
+ bool HasFoundDecl,
+ bool HasTemplateKWAndArgsInfo,
+ unsigned NumTemplateArgs) {
+ std::size_t Size = sizeof(DeclRefExpr);
+ if (HasQualifier)
+ Size += sizeof(NestedNameSpecifierLoc);
+ if (HasFoundDecl)
+ Size += sizeof(NamedDecl *);
+ if (HasTemplateKWAndArgsInfo)
+ Size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
+
+ void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
+ return new (Mem) DeclRefExpr(EmptyShell());
+}
+
+SourceLocation DeclRefExpr::getLocStart() const {
+ if (hasQualifier())
+ return getQualifierLoc().getBeginLoc();
+ return getNameInfo().getLocStart();
+}
+SourceLocation DeclRefExpr::getLocEnd() const {
+ if (hasExplicitTemplateArgs())
+ return getRAngleLoc();
+ return getNameInfo().getLocEnd();
+}
+
+PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentType IT,
+ StringLiteral *SL)
+ : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary,
+ FNTy->isDependentType(), FNTy->isDependentType(),
+ FNTy->isInstantiationDependentType(),
+ /*ContainsUnexpandedParameterPack=*/false),
+ Loc(L), Type(IT), FnName(SL) {}
+
+StringLiteral *PredefinedExpr::getFunctionName() {
+ return cast_or_null<StringLiteral>(FnName);
+}
+
+StringRef PredefinedExpr::getIdentTypeName(PredefinedExpr::IdentType IT) {
+ switch (IT) {
+ case Func:
+ return "__func__";
+ case Function:
+ return "__FUNCTION__";
+ case FuncDName:
+ return "__FUNCDNAME__";
+ case LFunction:
+ return "L__FUNCTION__";
+ case PrettyFunction:
+ return "__PRETTY_FUNCTION__";
+ case FuncSig:
+ return "__FUNCSIG__";
+ case PrettyFunctionNoVirtual:
+ break;
+ }
+ llvm_unreachable("Unknown ident type for PredefinedExpr");
+}
+
+// FIXME: Maybe this should use DeclPrinter with a special "print predefined
+// expr" policy instead.
+std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
+ ASTContext &Context = CurrentDecl->getASTContext();
+
+ if (IT == PredefinedExpr::FuncDName) {
+ if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
+ std::unique_ptr<MangleContext> MC;
+ MC.reset(Context.createMangleContext());
+
+ if (MC->shouldMangleDeclName(ND)) {
+ SmallString<256> Buffer;
+ llvm::raw_svector_ostream Out(Buffer);
+ if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
+ MC->mangleCXXCtor(CD, Ctor_Base, Out);
+ else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
+ MC->mangleCXXDtor(DD, Dtor_Base, Out);
+ else
+ MC->mangleName(ND, Out);
+
+ Out.flush();
+ if (!Buffer.empty() && Buffer.front() == '\01')
+ return Buffer.substr(1);
+ return Buffer.str();
+ } else
+ return ND->getIdentifier()->getName();
+ }
+ return "";
+ }
+ if (auto *BD = dyn_cast<BlockDecl>(CurrentDecl)) {
+ std::unique_ptr<MangleContext> MC;
+ MC.reset(Context.createMangleContext());
+ SmallString<256> Buffer;
+ llvm::raw_svector_ostream Out(Buffer);
+ auto DC = CurrentDecl->getDeclContext();
+ if (DC->isFileContext())
+ MC->mangleGlobalBlock(BD, /*ID*/ nullptr, Out);
+ else if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
+ MC->mangleCtorBlock(CD, /*CT*/ Ctor_Complete, BD, Out);
+ else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
+ MC->mangleDtorBlock(DD, /*DT*/ Dtor_Complete, BD, Out);
+ else
+ MC->mangleBlock(DC, BD, Out);
+ return Out.str();
+ }
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
+ if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual && IT != FuncSig)
+ return FD->getNameAsString();
+
+ SmallString<256> Name;
+ llvm::raw_svector_ostream Out(Name);
+
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
+ if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
+ Out << "virtual ";
+ if (MD->isStatic())
+ Out << "static ";
+ }
+
+ PrintingPolicy Policy(Context.getLangOpts());
+ std::string Proto;
+ llvm::raw_string_ostream POut(Proto);
+
+ const FunctionDecl *Decl = FD;
+ if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
+ Decl = Pattern;
+ const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
+ const FunctionProtoType *FT = nullptr;
+ if (FD->hasWrittenPrototype())
+ FT = dyn_cast<FunctionProtoType>(AFT);
+
+ if (IT == FuncSig) {
+ switch (FT->getCallConv()) {
+ case CC_C: POut << "__cdecl "; break;
+ case CC_X86StdCall: POut << "__stdcall "; break;
+ case CC_X86FastCall: POut << "__fastcall "; break;
+ case CC_X86ThisCall: POut << "__thiscall "; break;
+ case CC_X86VectorCall: POut << "__vectorcall "; break;
+ // Only bother printing the conventions that MSVC knows about.
+ default: break;
+ }
+ }
+
+ FD->printQualifiedName(POut, Policy);
+
+ POut << "(";
+ if (FT) {
+ for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
+ if (i) POut << ", ";
+ POut << Decl->getParamDecl(i)->getType().stream(Policy);
+ }
+
+ if (FT->isVariadic()) {
+ if (FD->getNumParams()) POut << ", ";
+ POut << "...";
+ }
+ }
+ POut << ")";
+
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
+ const FunctionType *FT = MD->getType()->castAs<FunctionType>();
+ if (FT->isConst())
+ POut << " const";
+ if (FT->isVolatile())
+ POut << " volatile";
+ RefQualifierKind Ref = MD->getRefQualifier();
+ if (Ref == RQ_LValue)
+ POut << " &";
+ else if (Ref == RQ_RValue)
+ POut << " &&";
+ }
+
+ typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
+ SpecsTy Specs;
+ const DeclContext *Ctx = FD->getDeclContext();
+ while (Ctx && isa<NamedDecl>(Ctx)) {
+ const ClassTemplateSpecializationDecl *Spec
+ = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
+ if (Spec && !Spec->isExplicitSpecialization())
+ Specs.push_back(Spec);
+ Ctx = Ctx->getParent();
+ }
+
+ std::string TemplateParams;
+ llvm::raw_string_ostream TOut(TemplateParams);
+ for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
+ I != E; ++I) {
+ const TemplateParameterList *Params
+ = (*I)->getSpecializedTemplate()->getTemplateParameters();
+ const TemplateArgumentList &Args = (*I)->getTemplateArgs();
+ assert(Params->size() == Args.size());
+ for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
+ StringRef Param = Params->getParam(i)->getName();
+ if (Param.empty()) continue;
+ TOut << Param << " = ";
+ Args.get(i).print(Policy, TOut);
+ TOut << ", ";
+ }
+ }
+
+ FunctionTemplateSpecializationInfo *FSI
+ = FD->getTemplateSpecializationInfo();
+ if (FSI && !FSI->isExplicitSpecialization()) {
+ const TemplateParameterList* Params
+ = FSI->getTemplate()->getTemplateParameters();
+ const TemplateArgumentList* Args = FSI->TemplateArguments;
+ assert(Params->size() == Args->size());
+ for (unsigned i = 0, e = Params->size(); i != e; ++i) {
+ StringRef Param = Params->getParam(i)->getName();
+ if (Param.empty()) continue;
+ TOut << Param << " = ";
+ Args->get(i).print(Policy, TOut);
+ TOut << ", ";
+ }
+ }
+
+ TOut.flush();
+ if (!TemplateParams.empty()) {
+ // remove the trailing comma and space
+ TemplateParams.resize(TemplateParams.size() - 2);
+ POut << " [" << TemplateParams << "]";
+ }
+
+ POut.flush();
+
+ // Print "auto" for all deduced return types. This includes C++1y return
+ // type deduction and lambdas. For trailing return types resolve the
+ // decltype expression. Otherwise print the real type when this is
+ // not a constructor or destructor.
+ if (isa<CXXMethodDecl>(FD) &&
+ cast<CXXMethodDecl>(FD)->getParent()->isLambda())
+ Proto = "auto " + Proto;
+ else if (FT && FT->getReturnType()->getAs<DecltypeType>())
+ FT->getReturnType()
+ ->getAs<DecltypeType>()
+ ->getUnderlyingType()
+ .getAsStringInternal(Proto, Policy);
+ else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
+ AFT->getReturnType().getAsStringInternal(Proto, Policy);
+
+ Out << Proto;
+
+ Out.flush();
+ return Name.str().str();
+ }
+ if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
+ for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
+ // Skip to its enclosing function or method, but not its enclosing
+ // CapturedDecl.
+ if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
+ const Decl *D = Decl::castFromDeclContext(DC);
+ return ComputeName(IT, D);
+ }
+ llvm_unreachable("CapturedDecl not inside a function or method");
+ }
+ if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
+ SmallString<256> Name;
+ llvm::raw_svector_ostream Out(Name);
+ Out << (MD->isInstanceMethod() ? '-' : '+');
+ Out << '[';
+
+ // For incorrect code, there might not be an ObjCInterfaceDecl. Do
+ // a null check to avoid a crash.
+ if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
+ Out << *ID;
+
+ if (const ObjCCategoryImplDecl *CID =
+ dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
+ Out << '(' << *CID << ')';
+
+ Out << ' ';
+ MD->getSelector().print(Out);
+ Out << ']';
+
+ Out.flush();
+ return Name.str().str();
+ }
+ if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
+ // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
+ return "top level";
+ }
+ return "";
+}
+
+void APNumericStorage::setIntValue(const ASTContext &C,
+ const llvm::APInt &Val) {
+ if (hasAllocation())
+ C.Deallocate(pVal);
+
+ BitWidth = Val.getBitWidth();
+ unsigned NumWords = Val.getNumWords();
+ const uint64_t* Words = Val.getRawData();
+ if (NumWords > 1) {
+ pVal = new (C) uint64_t[NumWords];
+ std::copy(Words, Words + NumWords, pVal);
+ } else if (NumWords == 1)
+ VAL = Words[0];
+ else
+ VAL = 0;
+}
+
+IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
+ QualType type, SourceLocation l)
+ : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
+ false, false),
+ Loc(l) {
+ assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
+ assert(V.getBitWidth() == C.getIntWidth(type) &&
+ "Integer type is not the correct size for constant.");
+ setValue(C, V);
+}
+
+IntegerLiteral *
+IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
+ QualType type, SourceLocation l) {
+ return new (C) IntegerLiteral(C, V, type, l);
+}
+
+IntegerLiteral *
+IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
+ return new (C) IntegerLiteral(Empty);
+}
+
+FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
+ bool isexact, QualType Type, SourceLocation L)
+ : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
+ false, false), Loc(L) {
+ setSemantics(V.getSemantics());
+ FloatingLiteralBits.IsExact = isexact;
+ setValue(C, V);
+}
+
+FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
+ : Expr(FloatingLiteralClass, Empty) {
+ setRawSemantics(IEEEhalf);
+ FloatingLiteralBits.IsExact = false;
+}
+
+FloatingLiteral *
+FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
+ bool isexact, QualType Type, SourceLocation L) {
+ return new (C) FloatingLiteral(C, V, isexact, Type, L);
+}
+
+FloatingLiteral *
+FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
+ return new (C) FloatingLiteral(C, Empty);
+}
+
+const llvm::fltSemantics &FloatingLiteral::getSemantics() const {
+ switch(FloatingLiteralBits.Semantics) {
+ case IEEEhalf:
+ return llvm::APFloat::IEEEhalf;
+ case IEEEsingle:
+ return llvm::APFloat::IEEEsingle;
+ case IEEEdouble:
+ return llvm::APFloat::IEEEdouble;
+ case x87DoubleExtended:
+ return llvm::APFloat::x87DoubleExtended;
+ case IEEEquad:
+ return llvm::APFloat::IEEEquad;
+ case PPCDoubleDouble:
+ return llvm::APFloat::PPCDoubleDouble;
+ }
+ llvm_unreachable("Unrecognised floating semantics");
+}
+
+void FloatingLiteral::setSemantics(const llvm::fltSemantics &Sem) {
+ if (&Sem == &llvm::APFloat::IEEEhalf)
+ FloatingLiteralBits.Semantics = IEEEhalf;
+ else if (&Sem == &llvm::APFloat::IEEEsingle)
+ FloatingLiteralBits.Semantics = IEEEsingle;
+ else if (&Sem == &llvm::APFloat::IEEEdouble)
+ FloatingLiteralBits.Semantics = IEEEdouble;
+ else if (&Sem == &llvm::APFloat::x87DoubleExtended)
+ FloatingLiteralBits.Semantics = x87DoubleExtended;
+ else if (&Sem == &llvm::APFloat::IEEEquad)
+ FloatingLiteralBits.Semantics = IEEEquad;
+ else if (&Sem == &llvm::APFloat::PPCDoubleDouble)
+ FloatingLiteralBits.Semantics = PPCDoubleDouble;
+ else
+ llvm_unreachable("Unknown floating semantics");
+}
+
+/// getValueAsApproximateDouble - This returns the value as an inaccurate
+/// double. Note that this may cause loss of precision, but is useful for
+/// debugging dumps, etc.
+double FloatingLiteral::getValueAsApproximateDouble() const {
+ llvm::APFloat V = getValue();
+ bool ignored;
+ V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
+ &ignored);
+ return V.convertToDouble();
+}
+
+int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) {
+ int CharByteWidth = 0;
+ switch(k) {
+ case Ascii:
+ case UTF8:
+ CharByteWidth = target.getCharWidth();
+ break;
+ case Wide:
+ CharByteWidth = target.getWCharWidth();
+ break;
+ case UTF16:
+ CharByteWidth = target.getChar16Width();
+ break;
+ case UTF32:
+ CharByteWidth = target.getChar32Width();
+ break;
+ }
+ assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
+ CharByteWidth /= 8;
+ assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
+ && "character byte widths supported are 1, 2, and 4 only");
+ return CharByteWidth;
+}
+
+StringLiteral *StringLiteral::Create(const ASTContext &C, StringRef Str,
+ StringKind Kind, bool Pascal, QualType Ty,
+ const SourceLocation *Loc,
+ unsigned NumStrs) {
+ assert(C.getAsConstantArrayType(Ty) &&
+ "StringLiteral must be of constant array type!");
+
+ // Allocate enough space for the StringLiteral plus an array of locations for
+ // any concatenated string tokens.
+ void *Mem = C.Allocate(sizeof(StringLiteral)+
+ sizeof(SourceLocation)*(NumStrs-1),
+ llvm::alignOf<StringLiteral>());
+ StringLiteral *SL = new (Mem) StringLiteral(Ty);
+
+ // OPTIMIZE: could allocate this appended to the StringLiteral.
+ SL->setString(C,Str,Kind,Pascal);
+
+ SL->TokLocs[0] = Loc[0];
+ SL->NumConcatenated = NumStrs;
+
+ if (NumStrs != 1)
+ memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
+ return SL;
+}
+
+StringLiteral *StringLiteral::CreateEmpty(const ASTContext &C,
+ unsigned NumStrs) {
+ void *Mem = C.Allocate(sizeof(StringLiteral)+
+ sizeof(SourceLocation)*(NumStrs-1),
+ llvm::alignOf<StringLiteral>());
+ StringLiteral *SL = new (Mem) StringLiteral(QualType());
+ SL->CharByteWidth = 0;
+ SL->Length = 0;
+ SL->NumConcatenated = NumStrs;
+ return SL;
+}
+
+void StringLiteral::outputString(raw_ostream &OS) const {
+ switch (getKind()) {
+ case Ascii: break; // no prefix.
+ case Wide: OS << 'L'; break;
+ case UTF8: OS << "u8"; break;
+ case UTF16: OS << 'u'; break;
+ case UTF32: OS << 'U'; break;
+ }
+ OS << '"';
+ static const char Hex[] = "0123456789ABCDEF";
+
+ unsigned LastSlashX = getLength();
+ for (unsigned I = 0, N = getLength(); I != N; ++I) {
+ switch (uint32_t Char = getCodeUnit(I)) {
+ default:
+ // FIXME: Convert UTF-8 back to codepoints before rendering.
+
+ // Convert UTF-16 surrogate pairs back to codepoints before rendering.
+ // Leave invalid surrogates alone; we'll use \x for those.
+ if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
+ Char <= 0xdbff) {
+ uint32_t Trail = getCodeUnit(I + 1);
+ if (Trail >= 0xdc00 && Trail <= 0xdfff) {
+ Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
+ ++I;
+ }
+ }
+
+ if (Char > 0xff) {
+ // If this is a wide string, output characters over 0xff using \x
+ // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
+ // codepoint: use \x escapes for invalid codepoints.
+ if (getKind() == Wide ||
+ (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
+ // FIXME: Is this the best way to print wchar_t?
+ OS << "\\x";
+ int Shift = 28;
+ while ((Char >> Shift) == 0)
+ Shift -= 4;
+ for (/**/; Shift >= 0; Shift -= 4)
+ OS << Hex[(Char >> Shift) & 15];
+ LastSlashX = I;
+ break;
+ }
+
+ if (Char > 0xffff)
+ OS << "\\U00"
+ << Hex[(Char >> 20) & 15]
+ << Hex[(Char >> 16) & 15];
+ else
+ OS << "\\u";
+ OS << Hex[(Char >> 12) & 15]
+ << Hex[(Char >> 8) & 15]
+ << Hex[(Char >> 4) & 15]
+ << Hex[(Char >> 0) & 15];
+ break;
+ }
+
+ // If we used \x... for the previous character, and this character is a
+ // hexadecimal digit, prevent it being slurped as part of the \x.
+ if (LastSlashX + 1 == I) {
+ switch (Char) {
+ case '0': case '1': case '2': case '3': case '4':
+ case '5': case '6': case '7': case '8': case '9':
+ case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
+ case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
+ OS << "\"\"";
+ }
+ }
+
+ assert(Char <= 0xff &&
+ "Characters above 0xff should already have been handled.");
+
+ if (isPrintable(Char))
+ OS << (char)Char;
+ else // Output anything hard as an octal escape.
+ OS << '\\'
+ << (char)('0' + ((Char >> 6) & 7))
+ << (char)('0' + ((Char >> 3) & 7))
+ << (char)('0' + ((Char >> 0) & 7));
+ break;
+ // Handle some common non-printable cases to make dumps prettier.
+ case '\\': OS << "\\\\"; break;
+ case '"': OS << "\\\""; break;
+ case '\n': OS << "\\n"; break;
+ case '\t': OS << "\\t"; break;
+ case '\a': OS << "\\a"; break;
+ case '\b': OS << "\\b"; break;
+ }
+ }
+ OS << '"';
+}
+
+void StringLiteral::setString(const ASTContext &C, StringRef Str,
+ StringKind Kind, bool IsPascal) {
+ //FIXME: we assume that the string data comes from a target that uses the same
+ // code unit size and endianess for the type of string.
+ this->Kind = Kind;
+ this->IsPascal = IsPascal;
+
+ CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind);
+ assert((Str.size()%CharByteWidth == 0)
+ && "size of data must be multiple of CharByteWidth");
+ Length = Str.size()/CharByteWidth;
+
+ switch(CharByteWidth) {
+ case 1: {
+ char *AStrData = new (C) char[Length];
+ std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
+ StrData.asChar = AStrData;
+ break;
+ }
+ case 2: {
+ uint16_t *AStrData = new (C) uint16_t[Length];
+ std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
+ StrData.asUInt16 = AStrData;
+ break;
+ }
+ case 4: {
+ uint32_t *AStrData = new (C) uint32_t[Length];
+ std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
+ StrData.asUInt32 = AStrData;
+ break;
+ }
+ default:
+ assert(false && "unsupported CharByteWidth");
+ }
+}
+
+/// getLocationOfByte - Return a source location that points to the specified
+/// byte of this string literal.
+///
+/// Strings are amazingly complex. They can be formed from multiple tokens and
+/// can have escape sequences in them in addition to the usual trigraph and
+/// escaped newline business. This routine handles this complexity.
+///
+SourceLocation StringLiteral::
+getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
+ const LangOptions &Features, const TargetInfo &Target) const {
+ assert((Kind == StringLiteral::Ascii || Kind == StringLiteral::UTF8) &&
+ "Only narrow string literals are currently supported");
+
+ // Loop over all of the tokens in this string until we find the one that
+ // contains the byte we're looking for.
+ unsigned TokNo = 0;
+ while (1) {
+ assert(TokNo < getNumConcatenated() && "Invalid byte number!");
+ SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
+
+ // Get the spelling of the string so that we can get the data that makes up
+ // the string literal, not the identifier for the macro it is potentially
+ // expanded through.
+ SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
+
+ // Re-lex the token to get its length and original spelling.
+ std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc);
+ bool Invalid = false;
+ StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
+ if (Invalid)
+ return StrTokSpellingLoc;
+
+ const char *StrData = Buffer.data()+LocInfo.second;
+
+ // Create a lexer starting at the beginning of this token.
+ Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
+ Buffer.begin(), StrData, Buffer.end());
+ Token TheTok;
+ TheLexer.LexFromRawLexer(TheTok);
+
+ // Use the StringLiteralParser to compute the length of the string in bytes.
+ StringLiteralParser SLP(TheTok, SM, Features, Target);
+ unsigned TokNumBytes = SLP.GetStringLength();
+
+ // If the byte is in this token, return the location of the byte.
+ if (ByteNo < TokNumBytes ||
+ (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
+ unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
+
+ // Now that we know the offset of the token in the spelling, use the
+ // preprocessor to get the offset in the original source.
+ return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
+ }
+
+ // Move to the next string token.
+ ++TokNo;
+ ByteNo -= TokNumBytes;
+ }
+}
+
+
+
+/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
+/// corresponds to, e.g. "sizeof" or "[pre]++".
+StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
+ switch (Op) {
+ case UO_PostInc: return "++";
+ case UO_PostDec: return "--";
+ case UO_PreInc: return "++";
+ case UO_PreDec: return "--";
+ case UO_AddrOf: return "&";
+ case UO_Deref: return "*";
+ case UO_Plus: return "+";
+ case UO_Minus: return "-";
+ case UO_Not: return "~";
+ case UO_LNot: return "!";
+ case UO_Real: return "__real";
+ case UO_Imag: return "__imag";
+ case UO_Extension: return "__extension__";
+ }
+ llvm_unreachable("Unknown unary operator");
+}
+
+UnaryOperatorKind
+UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
+ switch (OO) {
+ default: llvm_unreachable("No unary operator for overloaded function");
+ case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc;
+ case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
+ case OO_Amp: return UO_AddrOf;
+ case OO_Star: return UO_Deref;
+ case OO_Plus: return UO_Plus;
+ case OO_Minus: return UO_Minus;
+ case OO_Tilde: return UO_Not;
+ case OO_Exclaim: return UO_LNot;
+ }
+}
+
+OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
+ switch (Opc) {
+ case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
+ case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
+ case UO_AddrOf: return OO_Amp;
+ case UO_Deref: return OO_Star;
+ case UO_Plus: return OO_Plus;
+ case UO_Minus: return OO_Minus;
+ case UO_Not: return OO_Tilde;
+ case UO_LNot: return OO_Exclaim;
+ default: return OO_None;
+ }
+}
+
+
+//===----------------------------------------------------------------------===//
+// Postfix Operators.
+//===----------------------------------------------------------------------===//
+
+CallExpr::CallExpr(const ASTContext& C, StmtClass SC, Expr *fn,
+ unsigned NumPreArgs, ArrayRef<Expr*> args, QualType t,
+ ExprValueKind VK, SourceLocation rparenloc)
+ : Expr(SC, t, VK, OK_Ordinary,
+ fn->isTypeDependent(),
+ fn->isValueDependent(),
+ fn->isInstantiationDependent(),
+ fn->containsUnexpandedParameterPack()),
+ NumArgs(args.size()) {
+
+ SubExprs = new (C) Stmt*[args.size()+PREARGS_START+NumPreArgs];
+ SubExprs[FN] = fn;
+ for (unsigned i = 0; i != args.size(); ++i) {
+ if (args[i]->isTypeDependent())
+ ExprBits.TypeDependent = true;
+ if (args[i]->isValueDependent())
+ ExprBits.ValueDependent = true;
+ if (args[i]->isInstantiationDependent())
+ ExprBits.InstantiationDependent = true;
+ if (args[i]->containsUnexpandedParameterPack())
+ ExprBits.ContainsUnexpandedParameterPack = true;
+
+ SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
+ }
+
+ CallExprBits.NumPreArgs = NumPreArgs;
+ RParenLoc = rparenloc;
+}
+
+CallExpr::CallExpr(const ASTContext &C, Expr *fn, ArrayRef<Expr *> args,
+ QualType t, ExprValueKind VK, SourceLocation rparenloc)
+ : CallExpr(C, CallExprClass, fn, /*NumPreArgs=*/0, args, t, VK, rparenloc) {
+}
+
+CallExpr::CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty)
+ : CallExpr(C, SC, /*NumPreArgs=*/0, Empty) {}
+
+CallExpr::CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs,
+ EmptyShell Empty)
+ : Expr(SC, Empty), SubExprs(nullptr), NumArgs(0) {
+ // FIXME: Why do we allocate this?
+ SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs];
+ CallExprBits.NumPreArgs = NumPreArgs;
+}
+
+Decl *CallExpr::getCalleeDecl() {
+ Expr *CEE = getCallee()->IgnoreParenImpCasts();
+
+ while (SubstNonTypeTemplateParmExpr *NTTP
+ = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
+ CEE = NTTP->getReplacement()->IgnoreParenCasts();
+ }
+
+ // If we're calling a dereference, look at the pointer instead.
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
+ if (BO->isPtrMemOp())
+ CEE = BO->getRHS()->IgnoreParenCasts();
+ } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
+ if (UO->getOpcode() == UO_Deref)
+ CEE = UO->getSubExpr()->IgnoreParenCasts();
+ }
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
+ return DRE->getDecl();
+ if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
+ return ME->getMemberDecl();
+
+ return nullptr;
+}
+
+FunctionDecl *CallExpr::getDirectCallee() {
+ return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
+}
+
+/// setNumArgs - This changes the number of arguments present in this call.
+/// Any orphaned expressions are deleted by this, and any new operands are set
+/// to null.
+void CallExpr::setNumArgs(const ASTContext& C, unsigned NumArgs) {
+ // No change, just return.
+ if (NumArgs == getNumArgs()) return;
+
+ // If shrinking # arguments, just delete the extras and forgot them.
+ if (NumArgs < getNumArgs()) {
+ this->NumArgs = NumArgs;
+ return;
+ }
+
+ // Otherwise, we are growing the # arguments. New an bigger argument array.
+ unsigned NumPreArgs = getNumPreArgs();
+ Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
+ // Copy over args.
+ for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
+ NewSubExprs[i] = SubExprs[i];
+ // Null out new args.
+ for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
+ i != NumArgs+PREARGS_START+NumPreArgs; ++i)
+ NewSubExprs[i] = nullptr;
+
+ if (SubExprs) C.Deallocate(SubExprs);
+ SubExprs = NewSubExprs;
+ this->NumArgs = NumArgs;
+}
+
+/// getBuiltinCallee - If this is a call to a builtin, return the builtin ID. If
+/// not, return 0.
+unsigned CallExpr::getBuiltinCallee() const {
+ // All simple function calls (e.g. func()) are implicitly cast to pointer to
+ // function. As a result, we try and obtain the DeclRefExpr from the
+ // ImplicitCastExpr.
+ const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
+ if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
+ return 0;
+
+ const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
+ if (!DRE)
+ return 0;
+
+ const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
+ if (!FDecl)
+ return 0;
+
+ if (!FDecl->getIdentifier())
+ return 0;
+
+ return FDecl->getBuiltinID();
+}
+
+bool CallExpr::isUnevaluatedBuiltinCall(ASTContext &Ctx) const {
+ if (unsigned BI = getBuiltinCallee())
+ return Ctx.BuiltinInfo.isUnevaluated(BI);
+ return false;
+}
+
+QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const {
+ const Expr *Callee = getCallee();
+ QualType CalleeType = Callee->getType();
+ if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
+ CalleeType = FnTypePtr->getPointeeType();
+ } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
+ CalleeType = BPT->getPointeeType();
+ } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
+ if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
+ return Ctx.VoidTy;
+
+ // This should never be overloaded and so should never return null.
+ CalleeType = Expr::findBoundMemberType(Callee);
+ }
+
+ const FunctionType *FnType = CalleeType->castAs<FunctionType>();
+ return FnType->getReturnType();
+}
+
+SourceLocation CallExpr::getLocStart() const {
+ if (isa<CXXOperatorCallExpr>(this))
+ return cast<CXXOperatorCallExpr>(this)->getLocStart();
+
+ SourceLocation begin = getCallee()->getLocStart();
+ if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
+ begin = getArg(0)->getLocStart();
+ return begin;
+}
+SourceLocation CallExpr::getLocEnd() const {
+ if (isa<CXXOperatorCallExpr>(this))
+ return cast<CXXOperatorCallExpr>(this)->getLocEnd();
+
+ SourceLocation end = getRParenLoc();
+ if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
+ end = getArg(getNumArgs() - 1)->getLocEnd();
+ return end;
+}
+
+OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
+ SourceLocation OperatorLoc,
+ TypeSourceInfo *tsi,
+ ArrayRef<OffsetOfNode> comps,
+ ArrayRef<Expr*> exprs,
+ SourceLocation RParenLoc) {
+ void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
+ sizeof(OffsetOfNode) * comps.size() +
+ sizeof(Expr*) * exprs.size());
+
+ return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
+ RParenLoc);
+}
+
+OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
+ unsigned numComps, unsigned numExprs) {
+ void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
+ sizeof(OffsetOfNode) * numComps +
+ sizeof(Expr*) * numExprs);
+ return new (Mem) OffsetOfExpr(numComps, numExprs);
+}
+
+OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
+ SourceLocation OperatorLoc, TypeSourceInfo *tsi,
+ ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
+ SourceLocation RParenLoc)
+ : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
+ /*TypeDependent=*/false,
+ /*ValueDependent=*/tsi->getType()->isDependentType(),
+ tsi->getType()->isInstantiationDependentType(),
+ tsi->getType()->containsUnexpandedParameterPack()),
+ OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
+ NumComps(comps.size()), NumExprs(exprs.size())
+{
+ for (unsigned i = 0; i != comps.size(); ++i) {
+ setComponent(i, comps[i]);
+ }
+
+ for (unsigned i = 0; i != exprs.size(); ++i) {
+ if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
+ ExprBits.ValueDependent = true;
+ if (exprs[i]->containsUnexpandedParameterPack())
+ ExprBits.ContainsUnexpandedParameterPack = true;
+
+ setIndexExpr(i, exprs[i]);
+ }
+}
+
+IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
+ assert(getKind() == Field || getKind() == Identifier);
+ if (getKind() == Field)
+ return getField()->getIdentifier();
+
+ return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
+}
+
+UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr(
+ UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
+ SourceLocation op, SourceLocation rp)
+ : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
+ false, // Never type-dependent (C++ [temp.dep.expr]p3).
+ // Value-dependent if the argument is type-dependent.
+ E->isTypeDependent(), E->isInstantiationDependent(),
+ E->containsUnexpandedParameterPack()),
+ OpLoc(op), RParenLoc(rp) {
+ UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
+ UnaryExprOrTypeTraitExprBits.IsType = false;
+ Argument.Ex = E;
+
+ // Check to see if we are in the situation where alignof(decl) should be
+ // dependent because decl's alignment is dependent.
+ if (ExprKind == UETT_AlignOf) {
+ if (!isValueDependent() || !isInstantiationDependent()) {
+ E = E->IgnoreParens();
+
+ const ValueDecl *D = nullptr;
+ if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
+ D = DRE->getDecl();
+ else if (const auto *ME = dyn_cast<MemberExpr>(E))
+ D = ME->getMemberDecl();
+
+ if (D) {
+ for (const auto *I : D->specific_attrs<AlignedAttr>()) {
+ if (I->isAlignmentDependent()) {
+ setValueDependent(true);
+ setInstantiationDependent(true);
+ break;
+ }
+ }
+ }
+ }
+ }
+}
+
+MemberExpr *MemberExpr::Create(
+ const ASTContext &C, Expr *base, bool isarrow, SourceLocation OperatorLoc,
+ NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
+ ValueDecl *memberdecl, DeclAccessPair founddecl,
+ DeclarationNameInfo nameinfo, const TemplateArgumentListInfo *targs,
+ QualType ty, ExprValueKind vk, ExprObjectKind ok) {
+ std::size_t Size = sizeof(MemberExpr);
+
+ bool hasQualOrFound = (QualifierLoc ||
+ founddecl.getDecl() != memberdecl ||
+ founddecl.getAccess() != memberdecl->getAccess());
+ if (hasQualOrFound)
+ Size += sizeof(MemberNameQualifier);
+
+ if (targs)
+ Size += ASTTemplateKWAndArgsInfo::sizeFor(targs->size());
+ else if (TemplateKWLoc.isValid())
+ Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
+
+ void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
+ MemberExpr *E = new (Mem)
+ MemberExpr(base, isarrow, OperatorLoc, memberdecl, nameinfo, ty, vk, ok);
+
+ if (hasQualOrFound) {
+ // FIXME: Wrong. We should be looking at the member declaration we found.
+ if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
+ E->setValueDependent(true);
+ E->setTypeDependent(true);
+ E->setInstantiationDependent(true);
+ }
+ else if (QualifierLoc &&
+ QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
+ E->setInstantiationDependent(true);
+
+ E->HasQualifierOrFoundDecl = true;
+
+ MemberNameQualifier *NQ = E->getMemberQualifier();
+ NQ->QualifierLoc = QualifierLoc;
+ NQ->FoundDecl = founddecl;
+ }
+
+ E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid());
+
+ if (targs) {
+ bool Dependent = false;
+ bool InstantiationDependent = false;
+ bool ContainsUnexpandedParameterPack = false;
+ E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *targs,
+ Dependent,
+ InstantiationDependent,
+ ContainsUnexpandedParameterPack);
+ if (InstantiationDependent)
+ E->setInstantiationDependent(true);
+ } else if (TemplateKWLoc.isValid()) {
+ E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
+ }
+
+ return E;
+}
+
+SourceLocation MemberExpr::getLocStart() const {
+ if (isImplicitAccess()) {
+ if (hasQualifier())
+ return getQualifierLoc().getBeginLoc();
+ return MemberLoc;
+ }
+
+ // FIXME: We don't want this to happen. Rather, we should be able to
+ // detect all kinds of implicit accesses more cleanly.
+ SourceLocation BaseStartLoc = getBase()->getLocStart();
+ if (BaseStartLoc.isValid())
+ return BaseStartLoc;
+ return MemberLoc;
+}
+SourceLocation MemberExpr::getLocEnd() const {
+ SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
+ if (hasExplicitTemplateArgs())
+ EndLoc = getRAngleLoc();
+ else if (EndLoc.isInvalid())
+ EndLoc = getBase()->getLocEnd();
+ return EndLoc;
+}
+
+bool CastExpr::CastConsistency() const {
+ switch (getCastKind()) {
+ case CK_DerivedToBase:
+ case CK_UncheckedDerivedToBase:
+ case CK_DerivedToBaseMemberPointer:
+ case CK_BaseToDerived:
+ case CK_BaseToDerivedMemberPointer:
+ assert(!path_empty() && "Cast kind should have a base path!");
+ break;
+
+ case CK_CPointerToObjCPointerCast:
+ assert(getType()->isObjCObjectPointerType());
+ assert(getSubExpr()->getType()->isPointerType());
+ goto CheckNoBasePath;
+
+ case CK_BlockPointerToObjCPointerCast:
+ assert(getType()->isObjCObjectPointerType());
+ assert(getSubExpr()->getType()->isBlockPointerType());
+ goto CheckNoBasePath;
+
+ case CK_ReinterpretMemberPointer:
+ assert(getType()->isMemberPointerType());
+ assert(getSubExpr()->getType()->isMemberPointerType());
+ goto CheckNoBasePath;
+
+ case CK_BitCast:
+ // Arbitrary casts to C pointer types count as bitcasts.
+ // Otherwise, we should only have block and ObjC pointer casts
+ // here if they stay within the type kind.
+ if (!getType()->isPointerType()) {
+ assert(getType()->isObjCObjectPointerType() ==
+ getSubExpr()->getType()->isObjCObjectPointerType());
+ assert(getType()->isBlockPointerType() ==
+ getSubExpr()->getType()->isBlockPointerType());
+ }
+ goto CheckNoBasePath;
+
+ case CK_AnyPointerToBlockPointerCast:
+ assert(getType()->isBlockPointerType());
+ assert(getSubExpr()->getType()->isAnyPointerType() &&
+ !getSubExpr()->getType()->isBlockPointerType());
+ goto CheckNoBasePath;
+
+ case CK_CopyAndAutoreleaseBlockObject:
+ assert(getType()->isBlockPointerType());
+ assert(getSubExpr()->getType()->isBlockPointerType());
+ goto CheckNoBasePath;
+
+ case CK_FunctionToPointerDecay:
+ assert(getType()->isPointerType());
+ assert(getSubExpr()->getType()->isFunctionType());
+ goto CheckNoBasePath;
+
+ case CK_AddressSpaceConversion:
+ assert(getType()->isPointerType());
+ assert(getSubExpr()->getType()->isPointerType());
+ assert(getType()->getPointeeType().getAddressSpace() !=
+ getSubExpr()->getType()->getPointeeType().getAddressSpace());
+ // These should not have an inheritance path.
+ case CK_Dynamic:
+ case CK_ToUnion:
+ case CK_ArrayToPointerDecay:
+ case CK_NullToMemberPointer:
+ case CK_NullToPointer:
+ case CK_ConstructorConversion:
+ case CK_IntegralToPointer:
+ case CK_PointerToIntegral:
+ case CK_ToVoid:
+ case CK_VectorSplat:
+ case CK_IntegralCast:
+ case CK_IntegralToFloating:
+ case CK_FloatingToIntegral:
+ case CK_FloatingCast:
+ case CK_ObjCObjectLValueCast:
+ case CK_FloatingRealToComplex:
+ case CK_FloatingComplexToReal:
+ case CK_FloatingComplexCast:
+ case CK_FloatingComplexToIntegralComplex:
+ case CK_IntegralRealToComplex:
+ case CK_IntegralComplexToReal:
+ case CK_IntegralComplexCast:
+ case CK_IntegralComplexToFloatingComplex:
+ case CK_ARCProduceObject:
+ case CK_ARCConsumeObject:
+ case CK_ARCReclaimReturnedObject:
+ case CK_ARCExtendBlockObject:
+ case CK_ZeroToOCLEvent:
+ assert(!getType()->isBooleanType() && "unheralded conversion to bool");
+ goto CheckNoBasePath;
+
+ case CK_Dependent:
+ case CK_LValueToRValue:
+ case CK_NoOp:
+ case CK_AtomicToNonAtomic:
+ case CK_NonAtomicToAtomic:
+ case CK_PointerToBoolean:
+ case CK_IntegralToBoolean:
+ case CK_FloatingToBoolean:
+ case CK_MemberPointerToBoolean:
+ case CK_FloatingComplexToBoolean:
+ case CK_IntegralComplexToBoolean:
+ case CK_LValueBitCast: // -> bool&
+ case CK_UserDefinedConversion: // operator bool()
+ case CK_BuiltinFnToFnPtr:
+ CheckNoBasePath:
+ assert(path_empty() && "Cast kind should not have a base path!");
+ break;
+ }
+ return true;
+}
+
+const char *CastExpr::getCastKindName() const {
+ switch (getCastKind()) {
+ case CK_Dependent:
+ return "Dependent";
+ case CK_BitCast:
+ return "BitCast";
+ case CK_LValueBitCast:
+ return "LValueBitCast";
+ case CK_LValueToRValue:
+ return "LValueToRValue";
+ case CK_NoOp:
+ return "NoOp";
+ case CK_BaseToDerived:
+ return "BaseToDerived";
+ case CK_DerivedToBase:
+ return "DerivedToBase";
+ case CK_UncheckedDerivedToBase:
+ return "UncheckedDerivedToBase";
+ case CK_Dynamic:
+ return "Dynamic";
+ case CK_ToUnion:
+ return "ToUnion";
+ case CK_ArrayToPointerDecay:
+ return "ArrayToPointerDecay";
+ case CK_FunctionToPointerDecay:
+ return "FunctionToPointerDecay";
+ case CK_NullToMemberPointer:
+ return "NullToMemberPointer";
+ case CK_NullToPointer:
+ return "NullToPointer";
+ case CK_BaseToDerivedMemberPointer:
+ return "BaseToDerivedMemberPointer";
+ case CK_DerivedToBaseMemberPointer:
+ return "DerivedToBaseMemberPointer";
+ case CK_ReinterpretMemberPointer:
+ return "ReinterpretMemberPointer";
+ case CK_UserDefinedConversion:
+ return "UserDefinedConversion";
+ case CK_ConstructorConversion:
+ return "ConstructorConversion";
+ case CK_IntegralToPointer:
+ return "IntegralToPointer";
+ case CK_PointerToIntegral:
+ return "PointerToIntegral";
+ case CK_PointerToBoolean:
+ return "PointerToBoolean";
+ case CK_ToVoid:
+ return "ToVoid";
+ case CK_VectorSplat:
+ return "VectorSplat";
+ case CK_IntegralCast:
+ return "IntegralCast";
+ case CK_IntegralToBoolean:
+ return "IntegralToBoolean";
+ case CK_IntegralToFloating:
+ return "IntegralToFloating";
+ case CK_FloatingToIntegral:
+ return "FloatingToIntegral";
+ case CK_FloatingCast:
+ return "FloatingCast";
+ case CK_FloatingToBoolean:
+ return "FloatingToBoolean";
+ case CK_MemberPointerToBoolean:
+ return "MemberPointerToBoolean";
+ case CK_CPointerToObjCPointerCast:
+ return "CPointerToObjCPointerCast";
+ case CK_BlockPointerToObjCPointerCast:
+ return "BlockPointerToObjCPointerCast";
+ case CK_AnyPointerToBlockPointerCast:
+ return "AnyPointerToBlockPointerCast";
+ case CK_ObjCObjectLValueCast:
+ return "ObjCObjectLValueCast";
+ case CK_FloatingRealToComplex:
+ return "FloatingRealToComplex";
+ case CK_FloatingComplexToReal:
+ return "FloatingComplexToReal";
+ case CK_FloatingComplexToBoolean:
+ return "FloatingComplexToBoolean";
+ case CK_FloatingComplexCast:
+ return "FloatingComplexCast";
+ case CK_FloatingComplexToIntegralComplex:
+ return "FloatingComplexToIntegralComplex";
+ case CK_IntegralRealToComplex:
+ return "IntegralRealToComplex";
+ case CK_IntegralComplexToReal:
+ return "IntegralComplexToReal";
+ case CK_IntegralComplexToBoolean:
+ return "IntegralComplexToBoolean";
+ case CK_IntegralComplexCast:
+ return "IntegralComplexCast";
+ case CK_IntegralComplexToFloatingComplex:
+ return "IntegralComplexToFloatingComplex";
+ case CK_ARCConsumeObject:
+ return "ARCConsumeObject";
+ case CK_ARCProduceObject:
+ return "ARCProduceObject";
+ case CK_ARCReclaimReturnedObject:
+ return "ARCReclaimReturnedObject";
+ case CK_ARCExtendBlockObject:
+ return "ARCExtendBlockObject";
+ case CK_AtomicToNonAtomic:
+ return "AtomicToNonAtomic";
+ case CK_NonAtomicToAtomic:
+ return "NonAtomicToAtomic";
+ case CK_CopyAndAutoreleaseBlockObject:
+ return "CopyAndAutoreleaseBlockObject";
+ case CK_BuiltinFnToFnPtr:
+ return "BuiltinFnToFnPtr";
+ case CK_ZeroToOCLEvent:
+ return "ZeroToOCLEvent";
+ case CK_AddressSpaceConversion:
+ return "AddressSpaceConversion";
+ }
+
+ llvm_unreachable("Unhandled cast kind!");
+}
+
+Expr *CastExpr::getSubExprAsWritten() {
+ Expr *SubExpr = nullptr;
+ CastExpr *E = this;
+ do {
+ SubExpr = E->getSubExpr();
+
+ // Skip through reference binding to temporary.
+ if (MaterializeTemporaryExpr *Materialize
+ = dyn_cast<MaterializeTemporaryExpr>(SubExpr))
+ SubExpr = Materialize->GetTemporaryExpr();
+
+ // Skip any temporary bindings; they're implicit.
+ if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
+ SubExpr = Binder->getSubExpr();
+
+ // Conversions by constructor and conversion functions have a
+ // subexpression describing the call; strip it off.
+ if (E->getCastKind() == CK_ConstructorConversion)
+ SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
+ else if (E->getCastKind() == CK_UserDefinedConversion)
+ SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
+
+ // If the subexpression we're left with is an implicit cast, look
+ // through that, too.
+ } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
+
+ return SubExpr;
+}
+
+CXXBaseSpecifier **CastExpr::path_buffer() {
+ switch (getStmtClass()) {
+#define ABSTRACT_STMT(x)
+#define CASTEXPR(Type, Base) \
+ case Stmt::Type##Class: \
+ return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
+#define STMT(Type, Base)
+#include "clang/AST/StmtNodes.inc"
+ default:
+ llvm_unreachable("non-cast expressions not possible here");
+ }
+}
+
+void CastExpr::setCastPath(const CXXCastPath &Path) {
+ assert(Path.size() == path_size());
+ memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
+}
+
+ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
+ CastKind Kind, Expr *Operand,
+ const CXXCastPath *BasePath,
+ ExprValueKind VK) {
+ unsigned PathSize = (BasePath ? BasePath->size() : 0);
+ void *Buffer =
+ C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
+ ImplicitCastExpr *E =
+ new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
+ if (PathSize) E->setCastPath(*BasePath);
+ return E;
+}
+
+ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
+ unsigned PathSize) {
+ void *Buffer =
+ C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
+ return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
+}
+
+
+CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
+ ExprValueKind VK, CastKind K, Expr *Op,
+ const CXXCastPath *BasePath,
+ TypeSourceInfo *WrittenTy,
+ SourceLocation L, SourceLocation R) {
+ unsigned PathSize = (BasePath ? BasePath->size() : 0);
+ void *Buffer =
+ C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
+ CStyleCastExpr *E =
+ new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
+ if (PathSize) E->setCastPath(*BasePath);
+ return E;
+}
+
+CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
+ unsigned PathSize) {
+ void *Buffer =
+ C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
+ return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
+}
+
+/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
+/// corresponds to, e.g. "<<=".
+StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
+ switch (Op) {
+ case BO_PtrMemD: return ".*";
+ case BO_PtrMemI: return "->*";
+ case BO_Mul: return "*";
+ case BO_Div: return "/";
+ case BO_Rem: return "%";
+ case BO_Add: return "+";
+ case BO_Sub: return "-";
+ case BO_Shl: return "<<";
+ case BO_Shr: return ">>";
+ case BO_LT: return "<";
+ case BO_GT: return ">";
+ case BO_LE: return "<=";
+ case BO_GE: return ">=";
+ case BO_EQ: return "==";
+ case BO_NE: return "!=";
+ case BO_And: return "&";
+ case BO_Xor: return "^";
+ case BO_Or: return "|";
+ case BO_LAnd: return "&&";
+ case BO_LOr: return "||";
+ case BO_Assign: return "=";
+ case BO_MulAssign: return "*=";
+ case BO_DivAssign: return "/=";
+ case BO_RemAssign: return "%=";
+ case BO_AddAssign: return "+=";
+ case BO_SubAssign: return "-=";
+ case BO_ShlAssign: return "<<=";
+ case BO_ShrAssign: return ">>=";
+ case BO_AndAssign: return "&=";
+ case BO_XorAssign: return "^=";
+ case BO_OrAssign: return "|=";
+ case BO_Comma: return ",";
+ }
+
+ llvm_unreachable("Invalid OpCode!");
+}
+
+BinaryOperatorKind
+BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
+ switch (OO) {
+ default: llvm_unreachable("Not an overloadable binary operator");
+ case OO_Plus: return BO_Add;
+ case OO_Minus: return BO_Sub;
+ case OO_Star: return BO_Mul;
+ case OO_Slash: return BO_Div;
+ case OO_Percent: return BO_Rem;
+ case OO_Caret: return BO_Xor;
+ case OO_Amp: return BO_And;
+ case OO_Pipe: return BO_Or;
+ case OO_Equal: return BO_Assign;
+ case OO_Less: return BO_LT;
+ case OO_Greater: return BO_GT;
+ case OO_PlusEqual: return BO_AddAssign;
+ case OO_MinusEqual: return BO_SubAssign;
+ case OO_StarEqual: return BO_MulAssign;
+ case OO_SlashEqual: return BO_DivAssign;
+ case OO_PercentEqual: return BO_RemAssign;
+ case OO_CaretEqual: return BO_XorAssign;
+ case OO_AmpEqual: return BO_AndAssign;
+ case OO_PipeEqual: return BO_OrAssign;
+ case OO_LessLess: return BO_Shl;
+ case OO_GreaterGreater: return BO_Shr;
+ case OO_LessLessEqual: return BO_ShlAssign;
+ case OO_GreaterGreaterEqual: return BO_ShrAssign;
+ case OO_EqualEqual: return BO_EQ;
+ case OO_ExclaimEqual: return BO_NE;
+ case OO_LessEqual: return BO_LE;
+ case OO_GreaterEqual: return BO_GE;
+ case OO_AmpAmp: return BO_LAnd;
+ case OO_PipePipe: return BO_LOr;
+ case OO_Comma: return BO_Comma;
+ case OO_ArrowStar: return BO_PtrMemI;
+ }
+}
+
+OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
+ static const OverloadedOperatorKind OverOps[] = {
+ /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
+ OO_Star, OO_Slash, OO_Percent,
+ OO_Plus, OO_Minus,
+ OO_LessLess, OO_GreaterGreater,
+ OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
+ OO_EqualEqual, OO_ExclaimEqual,
+ OO_Amp,
+ OO_Caret,
+ OO_Pipe,
+ OO_AmpAmp,
+ OO_PipePipe,
+ OO_Equal, OO_StarEqual,
+ OO_SlashEqual, OO_PercentEqual,
+ OO_PlusEqual, OO_MinusEqual,
+ OO_LessLessEqual, OO_GreaterGreaterEqual,
+ OO_AmpEqual, OO_CaretEqual,
+ OO_PipeEqual,
+ OO_Comma
+ };
+ return OverOps[Opc];
+}
+
+InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
+ ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
+ : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
+ false, false),
+ InitExprs(C, initExprs.size()),
+ LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(nullptr, true)
+{
+ sawArrayRangeDesignator(false);
+ for (unsigned I = 0; I != initExprs.size(); ++I) {
+ if (initExprs[I]->isTypeDependent())
+ ExprBits.TypeDependent = true;
+ if (initExprs[I]->isValueDependent())
+ ExprBits.ValueDependent = true;
+ if (initExprs[I]->isInstantiationDependent())
+ ExprBits.InstantiationDependent = true;
+ if (initExprs[I]->containsUnexpandedParameterPack())
+ ExprBits.ContainsUnexpandedParameterPack = true;
+ }
+
+ InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
+}
+
+void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
+ if (NumInits > InitExprs.size())
+ InitExprs.reserve(C, NumInits);
+}
+
+void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
+ InitExprs.resize(C, NumInits, nullptr);
+}
+
+Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
+ if (Init >= InitExprs.size()) {
+ InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
+ setInit(Init, expr);
+ return nullptr;
+ }
+
+ Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
+ setInit(Init, expr);
+ return Result;
+}
+
+void InitListExpr::setArrayFiller(Expr *filler) {
+ assert(!hasArrayFiller() && "Filler already set!");
+ ArrayFillerOrUnionFieldInit = filler;
+ // Fill out any "holes" in the array due to designated initializers.
+ Expr **inits = getInits();
+ for (unsigned i = 0, e = getNumInits(); i != e; ++i)
+ if (inits[i] == nullptr)
+ inits[i] = filler;
+}
+
+bool InitListExpr::isStringLiteralInit() const {
+ if (getNumInits() != 1)
+ return false;
+ const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
+ if (!AT || !AT->getElementType()->isIntegerType())
+ return false;
+ // It is possible for getInit() to return null.
+ const Expr *Init = getInit(0);
+ if (!Init)
+ return false;
+ Init = Init->IgnoreParens();
+ return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
+}
+
+SourceLocation InitListExpr::getLocStart() const {
+ if (InitListExpr *SyntacticForm = getSyntacticForm())
+ return SyntacticForm->getLocStart();
+ SourceLocation Beg = LBraceLoc;
+ if (Beg.isInvalid()) {
+ // Find the first non-null initializer.
+ for (InitExprsTy::const_iterator I = InitExprs.begin(),
+ E = InitExprs.end();
+ I != E; ++I) {
+ if (Stmt *S = *I) {
+ Beg = S->getLocStart();
+ break;
+ }
+ }
+ }
+ return Beg;
+}
+
+SourceLocation InitListExpr::getLocEnd() const {
+ if (InitListExpr *SyntacticForm = getSyntacticForm())
+ return SyntacticForm->getLocEnd();
+ SourceLocation End = RBraceLoc;
+ if (End.isInvalid()) {
+ // Find the first non-null initializer from the end.
+ for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
+ E = InitExprs.rend();
+ I != E; ++I) {
+ if (Stmt *S = *I) {
+ End = S->getLocEnd();
+ break;
+ }
+ }
+ }
+ return End;
+}
+
+/// getFunctionType - Return the underlying function type for this block.
+///
+const FunctionProtoType *BlockExpr::getFunctionType() const {
+ // The block pointer is never sugared, but the function type might be.
+ return cast<BlockPointerType>(getType())
+ ->getPointeeType()->castAs<FunctionProtoType>();
+}
+
+SourceLocation BlockExpr::getCaretLocation() const {
+ return TheBlock->getCaretLocation();
+}
+const Stmt *BlockExpr::getBody() const {
+ return TheBlock->getBody();
+}
+Stmt *BlockExpr::getBody() {
+ return TheBlock->getBody();
+}
+
+
+//===----------------------------------------------------------------------===//
+// Generic Expression Routines
+//===----------------------------------------------------------------------===//
+
+/// isUnusedResultAWarning - Return true if this immediate expression should
+/// be warned about if the result is unused. If so, fill in Loc and Ranges
+/// with location to warn on and the source range[s] to report with the
+/// warning.
+bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
+ SourceRange &R1, SourceRange &R2,
+ ASTContext &Ctx) const {
+ // Don't warn if the expr is type dependent. The type could end up
+ // instantiating to void.
+ if (isTypeDependent())
+ return false;
+
+ switch (getStmtClass()) {
+ default:
+ if (getType()->isVoidType())
+ return false;
+ WarnE = this;
+ Loc = getExprLoc();
+ R1 = getSourceRange();
+ return true;
+ case ParenExprClass:
+ return cast<ParenExpr>(this)->getSubExpr()->
+ isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
+ case GenericSelectionExprClass:
+ return cast<GenericSelectionExpr>(this)->getResultExpr()->
+ isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
+ case ChooseExprClass:
+ return cast<ChooseExpr>(this)->getChosenSubExpr()->
+ isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
+ case UnaryOperatorClass: {
+ const UnaryOperator *UO = cast<UnaryOperator>(this);
+
+ switch (UO->getOpcode()) {
+ case UO_Plus:
+ case UO_Minus:
+ case UO_AddrOf:
+ case UO_Not:
+ case UO_LNot:
+ case UO_Deref:
+ break;
+ case UO_PostInc:
+ case UO_PostDec:
+ case UO_PreInc:
+ case UO_PreDec: // ++/--
+ return false; // Not a warning.
+ case UO_Real:
+ case UO_Imag:
+ // accessing a piece of a volatile complex is a side-effect.
+ if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
+ .isVolatileQualified())
+ return false;
+ break;
+ case UO_Extension:
+ return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
+ }
+ WarnE = this;
+ Loc = UO->getOperatorLoc();
+ R1 = UO->getSubExpr()->getSourceRange();
+ return true;
+ }
+ case BinaryOperatorClass: {
+ const BinaryOperator *BO = cast<BinaryOperator>(this);
+ switch (BO->getOpcode()) {
+ default:
+ break;
+ // Consider the RHS of comma for side effects. LHS was checked by
+ // Sema::CheckCommaOperands.
+ case BO_Comma:
+ // ((foo = <blah>), 0) is an idiom for hiding the result (and
+ // lvalue-ness) of an assignment written in a macro.
+ if (IntegerLiteral *IE =
+ dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
+ if (IE->getValue() == 0)
+ return false;
+ return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
+ // Consider '||', '&&' to have side effects if the LHS or RHS does.
+ case BO_LAnd:
+ case BO_LOr:
+ if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
+ !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
+ return false;
+ break;
+ }
+ if (BO->isAssignmentOp())
+ return false;
+ WarnE = this;
+ Loc = BO->getOperatorLoc();
+ R1 = BO->getLHS()->getSourceRange();
+ R2 = BO->getRHS()->getSourceRange();
+ return true;
+ }
+ case CompoundAssignOperatorClass:
+ case VAArgExprClass:
+ case AtomicExprClass:
+ return false;
+
+ case ConditionalOperatorClass: {
+ // If only one of the LHS or RHS is a warning, the operator might
+ // be being used for control flow. Only warn if both the LHS and
+ // RHS are warnings.
+ const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
+ if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
+ return false;
+ if (!Exp->getLHS())
+ return true;
+ return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
+ }
+
+ case MemberExprClass:
+ WarnE = this;
+ Loc = cast<MemberExpr>(this)->getMemberLoc();
+ R1 = SourceRange(Loc, Loc);
+ R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
+ return true;
+
+ case ArraySubscriptExprClass:
+ WarnE = this;
+ Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
+ R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
+ R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
+ return true;
+
+ case CXXOperatorCallExprClass: {
+ // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
+ // overloads as there is no reasonable way to define these such that they
+ // have non-trivial, desirable side-effects. See the -Wunused-comparison
+ // warning: operators == and != are commonly typo'ed, and so warning on them
+ // provides additional value as well. If this list is updated,
+ // DiagnoseUnusedComparison should be as well.
+ const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
+ switch (Op->getOperator()) {
+ default:
+ break;
+ case OO_EqualEqual:
+ case OO_ExclaimEqual:
+ case OO_Less:
+ case OO_Greater:
+ case OO_GreaterEqual:
+ case OO_LessEqual:
+ if (Op->getCallReturnType(Ctx)->isReferenceType() ||
+ Op->getCallReturnType(Ctx)->isVoidType())
+ break;
+ WarnE = this;
+ Loc = Op->getOperatorLoc();
+ R1 = Op->getSourceRange();
+ return true;
+ }
+
+ // Fallthrough for generic call handling.
+ }
+ case CallExprClass:
+ case CXXMemberCallExprClass:
+ case UserDefinedLiteralClass: {
+ // If this is a direct call, get the callee.
+ const CallExpr *CE = cast<CallExpr>(this);
+ if (const Decl *FD = CE->getCalleeDecl()) {
+ const FunctionDecl *Func = dyn_cast<FunctionDecl>(FD);
+ bool HasWarnUnusedResultAttr = Func ? Func->hasUnusedResultAttr()
+ : FD->hasAttr<WarnUnusedResultAttr>();
+
+ // If the callee has attribute pure, const, or warn_unused_result, warn
+ // about it. void foo() { strlen("bar"); } should warn.
+ //
+ // Note: If new cases are added here, DiagnoseUnusedExprResult should be
+ // updated to match for QoI.
+ if (HasWarnUnusedResultAttr ||
+ FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
+ WarnE = this;
+ Loc = CE->getCallee()->getLocStart();
+ R1 = CE->getCallee()->getSourceRange();
+
+ if (unsigned NumArgs = CE->getNumArgs())
+ R2 = SourceRange(CE->getArg(0)->getLocStart(),
+ CE->getArg(NumArgs-1)->getLocEnd());
+ return true;
+ }
+ }
+ return false;
+ }
+
+ // If we don't know precisely what we're looking at, let's not warn.
+ case UnresolvedLookupExprClass:
+ case CXXUnresolvedConstructExprClass:
+ return false;
+
+ case CXXTemporaryObjectExprClass:
+ case CXXConstructExprClass: {
+ if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
+ if (Type->hasAttr<WarnUnusedAttr>()) {
+ WarnE = this;
+ Loc = getLocStart();
+ R1 = getSourceRange();
+ return true;
+ }
+ }
+ return false;
+ }
+
+ case ObjCMessageExprClass: {
+ const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
+ if (Ctx.getLangOpts().ObjCAutoRefCount &&
+ ME->isInstanceMessage() &&
+ !ME->getType()->isVoidType() &&
+ ME->getMethodFamily() == OMF_init) {
+ WarnE = this;
+ Loc = getExprLoc();
+ R1 = ME->getSourceRange();
+ return true;
+ }
+
+ if (const ObjCMethodDecl *MD = ME->getMethodDecl())
+ if (MD->hasAttr<WarnUnusedResultAttr>()) {
+ WarnE = this;
+ Loc = getExprLoc();
+ return true;
+ }
+
+ return false;
+ }
+
+ case ObjCPropertyRefExprClass:
+ WarnE = this;
+ Loc = getExprLoc();
+ R1 = getSourceRange();
+ return true;
+
+ case PseudoObjectExprClass: {
+ const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
+
+ // Only complain about things that have the form of a getter.
+ if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
+ isa<BinaryOperator>(PO->getSyntacticForm()))
+ return false;
+
+ WarnE = this;
+ Loc = getExprLoc();
+ R1 = getSourceRange();
+ return true;
+ }
+
+ case StmtExprClass: {
+ // Statement exprs don't logically have side effects themselves, but are
+ // sometimes used in macros in ways that give them a type that is unused.
+ // For example ({ blah; foo(); }) will end up with a type if foo has a type.
+ // however, if the result of the stmt expr is dead, we don't want to emit a
+ // warning.
+ const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
+ if (!CS->body_empty()) {
+ if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
+ return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
+ if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
+ if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
+ return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
+ }
+
+ if (getType()->isVoidType())
+ return false;
+ WarnE = this;
+ Loc = cast<StmtExpr>(this)->getLParenLoc();
+ R1 = getSourceRange();
+ return true;
+ }
+ case CXXFunctionalCastExprClass:
+ case CStyleCastExprClass: {
+ // Ignore an explicit cast to void unless the operand is a non-trivial
+ // volatile lvalue.
+ const CastExpr *CE = cast<CastExpr>(this);
+ if (CE->getCastKind() == CK_ToVoid) {
+ if (CE->getSubExpr()->isGLValue() &&
+ CE->getSubExpr()->getType().isVolatileQualified()) {
+ const DeclRefExpr *DRE =
+ dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
+ if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
+ cast<VarDecl>(DRE->getDecl())->hasLocalStorage())) {
+ return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
+ R1, R2, Ctx);
+ }
+ }
+ return false;
+ }
+
+ // If this is a cast to a constructor conversion, check the operand.
+ // Otherwise, the result of the cast is unused.
+ if (CE->getCastKind() == CK_ConstructorConversion)
+ return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
+
+ WarnE = this;
+ if (const CXXFunctionalCastExpr *CXXCE =
+ dyn_cast<CXXFunctionalCastExpr>(this)) {
+ Loc = CXXCE->getLocStart();
+ R1 = CXXCE->getSubExpr()->getSourceRange();
+ } else {
+ const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
+ Loc = CStyleCE->getLParenLoc();
+ R1 = CStyleCE->getSubExpr()->getSourceRange();
+ }
+ return true;
+ }
+ case ImplicitCastExprClass: {
+ const CastExpr *ICE = cast<ImplicitCastExpr>(this);
+
+ // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
+ if (ICE->getCastKind() == CK_LValueToRValue &&
+ ICE->getSubExpr()->getType().isVolatileQualified())
+ return false;
+
+ return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
+ }
+ case CXXDefaultArgExprClass:
+ return (cast<CXXDefaultArgExpr>(this)
+ ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
+ case CXXDefaultInitExprClass:
+ return (cast<CXXDefaultInitExpr>(this)
+ ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
+
+ case CXXNewExprClass:
+ // FIXME: In theory, there might be new expressions that don't have side
+ // effects (e.g. a placement new with an uninitialized POD).
+ case CXXDeleteExprClass:
+ return false;
+ case CXXBindTemporaryExprClass:
+ return (cast<CXXBindTemporaryExpr>(this)
+ ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
+ case ExprWithCleanupsClass:
+ return (cast<ExprWithCleanups>(this)
+ ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
+ }
+}
+
+/// isOBJCGCCandidate - Check if an expression is objc gc'able.
+/// returns true, if it is; false otherwise.
+bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
+ const Expr *E = IgnoreParens();
+ switch (E->getStmtClass()) {
+ default:
+ return false;
+ case ObjCIvarRefExprClass:
+ return true;
+ case Expr::UnaryOperatorClass:
+ return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
+ case ImplicitCastExprClass:
+ return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
+ case MaterializeTemporaryExprClass:
+ return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
+ ->isOBJCGCCandidate(Ctx);
+ case CStyleCastExprClass:
+ return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
+ case DeclRefExprClass: {
+ const Decl *D = cast<DeclRefExpr>(E)->getDecl();
+
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
+ if (VD->hasGlobalStorage())
+ return true;
+ QualType T = VD->getType();
+ // dereferencing to a pointer is always a gc'able candidate,
+ // unless it is __weak.
+ return T->isPointerType() &&
+ (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
+ }
+ return false;
+ }
+ case MemberExprClass: {
+ const MemberExpr *M = cast<MemberExpr>(E);
+ return M->getBase()->isOBJCGCCandidate(Ctx);
+ }
+ case ArraySubscriptExprClass:
+ return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
+ }
+}
+
+bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
+ if (isTypeDependent())
+ return false;
+ return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
+}
+
+QualType Expr::findBoundMemberType(const Expr *expr) {
+ assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
+
+ // Bound member expressions are always one of these possibilities:
+ // x->m x.m x->*y x.*y
+ // (possibly parenthesized)
+
+ expr = expr->IgnoreParens();
+ if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
+ assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
+ return mem->getMemberDecl()->getType();
+ }
+
+ if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
+ QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
+ ->getPointeeType();
+ assert(type->isFunctionType());
+ return type;
+ }
+
+ assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
+ return QualType();
+}
+
+Expr* Expr::IgnoreParens() {
+ Expr* E = this;
+ while (true) {
+ if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
+ E = P->getSubExpr();
+ continue;
+ }
+ if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
+ if (P->getOpcode() == UO_Extension) {
+ E = P->getSubExpr();
+ continue;
+ }
+ }
+ if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
+ if (!P->isResultDependent()) {
+ E = P->getResultExpr();
+ continue;
+ }
+ }
+ if (ChooseExpr* P = dyn_cast<ChooseExpr>(E)) {
+ if (!P->isConditionDependent()) {
+ E = P->getChosenSubExpr();
+ continue;
+ }
+ }
+ return E;
+ }
+}
+
+/// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr
+/// or CastExprs or ImplicitCastExprs, returning their operand.
+Expr *Expr::IgnoreParenCasts() {
+ Expr *E = this;
+ while (true) {
+ E = E->IgnoreParens();
+ if (CastExpr *P = dyn_cast<CastExpr>(E)) {
+ E = P->getSubExpr();
+ continue;
+ }
+ if (MaterializeTemporaryExpr *Materialize
+ = dyn_cast<MaterializeTemporaryExpr>(E)) {
+ E = Materialize->GetTemporaryExpr();
+ continue;
+ }
+ if (SubstNonTypeTemplateParmExpr *NTTP
+ = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
+ E = NTTP->getReplacement();
+ continue;
+ }
+ return E;
+ }
+}
+
+Expr *Expr::IgnoreCasts() {
+ Expr *E = this;
+ while (true) {
+ if (CastExpr *P = dyn_cast<CastExpr>(E)) {
+ E = P->getSubExpr();
+ continue;
+ }
+ if (MaterializeTemporaryExpr *Materialize
+ = dyn_cast<MaterializeTemporaryExpr>(E)) {
+ E = Materialize->GetTemporaryExpr();
+ continue;
+ }
+ if (SubstNonTypeTemplateParmExpr *NTTP
+ = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
+ E = NTTP->getReplacement();
+ continue;
+ }
+ return E;
+ }
+}
+
+/// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
+/// casts. This is intended purely as a temporary workaround for code
+/// that hasn't yet been rewritten to do the right thing about those
+/// casts, and may disappear along with the last internal use.
+Expr *Expr::IgnoreParenLValueCasts() {
+ Expr *E = this;
+ while (true) {
+ E = E->IgnoreParens();
+ if (CastExpr *P = dyn_cast<CastExpr>(E)) {
+ if (P->getCastKind() == CK_LValueToRValue) {
+ E = P->getSubExpr();
+ continue;
+ }
+ } else if (MaterializeTemporaryExpr *Materialize
+ = dyn_cast<MaterializeTemporaryExpr>(E)) {
+ E = Materialize->GetTemporaryExpr();
+ continue;
+ } else if (SubstNonTypeTemplateParmExpr *NTTP
+ = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
+ E = NTTP->getReplacement();
+ continue;
+ }
+ break;
+ }
+ return E;
+}
+
+Expr *Expr::ignoreParenBaseCasts() {
+ Expr *E = this;
+ while (true) {
+ E = E->IgnoreParens();
+ if (CastExpr *CE = dyn_cast<CastExpr>(E)) {
+ if (CE->getCastKind() == CK_DerivedToBase ||
+ CE->getCastKind() == CK_UncheckedDerivedToBase ||
+ CE->getCastKind() == CK_NoOp) {
+ E = CE->getSubExpr();
+ continue;
+ }
+ }
+
+ return E;
+ }
+}
+
+Expr *Expr::IgnoreParenImpCasts() {
+ Expr *E = this;
+ while (true) {
+ E = E->IgnoreParens();
+ if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
+ E = P->getSubExpr();
+ continue;
+ }
+ if (MaterializeTemporaryExpr *Materialize
+ = dyn_cast<MaterializeTemporaryExpr>(E)) {
+ E = Materialize->GetTemporaryExpr();
+ continue;
+ }
+ if (SubstNonTypeTemplateParmExpr *NTTP
+ = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
+ E = NTTP->getReplacement();
+ continue;
+ }
+ return E;
+ }
+}
+
+Expr *Expr::IgnoreConversionOperator() {
+ if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
+ if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
+ return MCE->getImplicitObjectArgument();
+ }
+ return this;
+}
+
+/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
+/// value (including ptr->int casts of the same size). Strip off any
+/// ParenExpr or CastExprs, returning their operand.
+Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
+ Expr *E = this;
+ while (true) {
+ E = E->IgnoreParens();
+
+ if (CastExpr *P = dyn_cast<CastExpr>(E)) {
+ // We ignore integer <-> casts that are of the same width, ptr<->ptr and
+ // ptr<->int casts of the same width. We also ignore all identity casts.
+ Expr *SE = P->getSubExpr();
+
+ if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
+ E = SE;
+ continue;
+ }
+
+ if ((E->getType()->isPointerType() ||
+ E->getType()->isIntegralType(Ctx)) &&
+ (SE->getType()->isPointerType() ||
+ SE->getType()->isIntegralType(Ctx)) &&
+ Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
+ E = SE;
+ continue;
+ }
+ }
+
+ if (SubstNonTypeTemplateParmExpr *NTTP
+ = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
+ E = NTTP->getReplacement();
+ continue;
+ }
+
+ return E;
+ }
+}
+
+bool Expr::isDefaultArgument() const {
+ const Expr *E = this;
+ if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
+ E = M->GetTemporaryExpr();
+
+ while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
+ E = ICE->getSubExprAsWritten();
+
+ return isa<CXXDefaultArgExpr>(E);
+}
+
+/// \brief Skip over any no-op casts and any temporary-binding
+/// expressions.
+static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
+ if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
+ E = M->GetTemporaryExpr();
+
+ while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
+ if (ICE->getCastKind() == CK_NoOp)
+ E = ICE->getSubExpr();
+ else
+ break;
+ }
+
+ while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
+ E = BE->getSubExpr();
+
+ while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
+ if (ICE->getCastKind() == CK_NoOp)
+ E = ICE->getSubExpr();
+ else
+ break;
+ }
+
+ return E->IgnoreParens();
+}
+
+/// isTemporaryObject - Determines if this expression produces a
+/// temporary of the given class type.
+bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
+ if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
+ return false;
+
+ const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
+
+ // Temporaries are by definition pr-values of class type.
+ if (!E->Classify(C).isPRValue()) {
+ // In this context, property reference is a message call and is pr-value.
+ if (!isa<ObjCPropertyRefExpr>(E))
+ return false;
+ }
+
+ // Black-list a few cases which yield pr-values of class type that don't
+ // refer to temporaries of that type:
+
+ // - implicit derived-to-base conversions
+ if (isa<ImplicitCastExpr>(E)) {
+ switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
+ case CK_DerivedToBase:
+ case CK_UncheckedDerivedToBase:
+ return false;
+ default:
+ break;
+ }
+ }
+
+ // - member expressions (all)
+ if (isa<MemberExpr>(E))
+ return false;
+
+ if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
+ if (BO->isPtrMemOp())
+ return false;
+
+ // - opaque values (all)
+ if (isa<OpaqueValueExpr>(E))
+ return false;
+
+ return true;
+}
+
+bool Expr::isImplicitCXXThis() const {
+ const Expr *E = this;
+
+ // Strip away parentheses and casts we don't care about.
+ while (true) {
+ if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
+ E = Paren->getSubExpr();
+ continue;
+ }
+
+ if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
+ if (ICE->getCastKind() == CK_NoOp ||
+ ICE->getCastKind() == CK_LValueToRValue ||
+ ICE->getCastKind() == CK_DerivedToBase ||
+ ICE->getCastKind() == CK_UncheckedDerivedToBase) {
+ E = ICE->getSubExpr();
+ continue;
+ }
+ }
+
+ if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
+ if (UnOp->getOpcode() == UO_Extension) {
+ E = UnOp->getSubExpr();
+ continue;
+ }
+ }
+
+ if (const MaterializeTemporaryExpr *M
+ = dyn_cast<MaterializeTemporaryExpr>(E)) {
+ E = M->GetTemporaryExpr();
+ continue;
+ }
+
+ break;
+ }
+
+ if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
+ return This->isImplicit();
+
+ return false;
+}
+
+/// hasAnyTypeDependentArguments - Determines if any of the expressions
+/// in Exprs is type-dependent.
+bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
+ for (unsigned I = 0; I < Exprs.size(); ++I)
+ if (Exprs[I]->isTypeDependent())
+ return true;
+
+ return false;
+}
+
+bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
+ const Expr **Culprit) const {
+ // This function is attempting whether an expression is an initializer
+ // which can be evaluated at compile-time. It very closely parallels
+ // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
+ // will lead to unexpected results. Like ConstExprEmitter, it falls back
+ // to isEvaluatable most of the time.
+ //
+ // If we ever capture reference-binding directly in the AST, we can
+ // kill the second parameter.
+
+ if (IsForRef) {
+ EvalResult Result;
+ if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
+ return true;
+ if (Culprit)
+ *Culprit = this;
+ return false;
+ }
+
+ switch (getStmtClass()) {
+ default: break;
+ case StringLiteralClass:
+ case ObjCEncodeExprClass:
+ return true;
+ case CXXTemporaryObjectExprClass:
+ case CXXConstructExprClass: {
+ const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
+
+ if (CE->getConstructor()->isTrivial() &&
+ CE->getConstructor()->getParent()->hasTrivialDestructor()) {
+ // Trivial default constructor
+ if (!CE->getNumArgs()) return true;
+
+ // Trivial copy constructor
+ assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
+ return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
+ }
+
+ break;
+ }
+ case CompoundLiteralExprClass: {
+ // This handles gcc's extension that allows global initializers like
+ // "struct x {int x;} x = (struct x) {};".
+ // FIXME: This accepts other cases it shouldn't!
+ const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
+ return Exp->isConstantInitializer(Ctx, false, Culprit);
+ }
+ case InitListExprClass: {
+ const InitListExpr *ILE = cast<InitListExpr>(this);
+ if (ILE->getType()->isArrayType()) {
+ unsigned numInits = ILE->getNumInits();
+ for (unsigned i = 0; i < numInits; i++) {
+ if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
+ return false;
+ }
+ return true;
+ }
+
+ if (ILE->getType()->isRecordType()) {
+ unsigned ElementNo = 0;
+ RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
+ for (const auto *Field : RD->fields()) {
+ // If this is a union, skip all the fields that aren't being initialized.
+ if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
+ continue;
+
+ // Don't emit anonymous bitfields, they just affect layout.
+ if (Field->isUnnamedBitfield())
+ continue;
+
+ if (ElementNo < ILE->getNumInits()) {
+ const Expr *Elt = ILE->getInit(ElementNo++);
+ if (Field->isBitField()) {
+ // Bitfields have to evaluate to an integer.
+ llvm::APSInt ResultTmp;
+ if (!Elt->EvaluateAsInt(ResultTmp, Ctx)) {
+ if (Culprit)
+ *Culprit = Elt;
+ return false;
+ }
+ } else {
+ bool RefType = Field->getType()->isReferenceType();
+ if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
+ return false;
+ }
+ }
+ }
+ return true;
+ }
+
+ break;
+ }
+ case ImplicitValueInitExprClass:
+ return true;
+ case ParenExprClass:
+ return cast<ParenExpr>(this)->getSubExpr()
+ ->isConstantInitializer(Ctx, IsForRef, Culprit);
+ case GenericSelectionExprClass:
+ return cast<GenericSelectionExpr>(this)->getResultExpr()
+ ->isConstantInitializer(Ctx, IsForRef, Culprit);
+ case ChooseExprClass:
+ if (cast<ChooseExpr>(this)->isConditionDependent()) {
+ if (Culprit)
+ *Culprit = this;
+ return false;
+ }
+ return cast<ChooseExpr>(this)->getChosenSubExpr()
+ ->isConstantInitializer(Ctx, IsForRef, Culprit);
+ case UnaryOperatorClass: {
+ const UnaryOperator* Exp = cast<UnaryOperator>(this);
+ if (Exp->getOpcode() == UO_Extension)
+ return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
+ break;
+ }
+ case CXXFunctionalCastExprClass:
+ case CXXStaticCastExprClass:
+ case ImplicitCastExprClass:
+ case CStyleCastExprClass:
+ case ObjCBridgedCastExprClass:
+ case CXXDynamicCastExprClass:
+ case CXXReinterpretCastExprClass:
+ case CXXConstCastExprClass: {
+ const CastExpr *CE = cast<CastExpr>(this);
+
+ // Handle misc casts we want to ignore.
+ if (CE->getCastKind() == CK_NoOp ||
+ CE->getCastKind() == CK_LValueToRValue ||
+ CE->getCastKind() == CK_ToUnion ||
+ CE->getCastKind() == CK_ConstructorConversion ||
+ CE->getCastKind() == CK_NonAtomicToAtomic ||
+ CE->getCastKind() == CK_AtomicToNonAtomic)
+ return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
+
+ break;
+ }
+ case MaterializeTemporaryExprClass:
+ return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
+ ->isConstantInitializer(Ctx, false, Culprit);
+
+ case SubstNonTypeTemplateParmExprClass:
+ return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
+ ->isConstantInitializer(Ctx, false, Culprit);
+ case CXXDefaultArgExprClass:
+ return cast<CXXDefaultArgExpr>(this)->getExpr()
+ ->isConstantInitializer(Ctx, false, Culprit);
+ case CXXDefaultInitExprClass:
+ return cast<CXXDefaultInitExpr>(this)->getExpr()
+ ->isConstantInitializer(Ctx, false, Culprit);
+ }
+ if (isEvaluatable(Ctx))
+ return true;
+ if (Culprit)
+ *Culprit = this;
+ return false;
+}
+
+bool Expr::HasSideEffects(const ASTContext &Ctx,
+ bool IncludePossibleEffects) const {
+ // In circumstances where we care about definite side effects instead of
+ // potential side effects, we want to ignore expressions that are part of a
+ // macro expansion as a potential side effect.
+ if (!IncludePossibleEffects && getExprLoc().isMacroID())
+ return false;
+
+ if (isInstantiationDependent())
+ return IncludePossibleEffects;
+
+ switch (getStmtClass()) {
+ case NoStmtClass:
+ #define ABSTRACT_STMT(Type)
+ #define STMT(Type, Base) case Type##Class:
+ #define EXPR(Type, Base)
+ #include "clang/AST/StmtNodes.inc"
+ llvm_unreachable("unexpected Expr kind");
+
+ case DependentScopeDeclRefExprClass:
+ case CXXUnresolvedConstructExprClass:
+ case CXXDependentScopeMemberExprClass:
+ case UnresolvedLookupExprClass:
+ case UnresolvedMemberExprClass:
+ case PackExpansionExprClass:
+ case SubstNonTypeTemplateParmPackExprClass:
+ case FunctionParmPackExprClass:
+ case TypoExprClass:
+ case CXXFoldExprClass:
+ llvm_unreachable("shouldn't see dependent / unresolved nodes here");
+
+ case DeclRefExprClass:
+ case ObjCIvarRefExprClass:
+ case PredefinedExprClass:
+ case IntegerLiteralClass:
+ case FloatingLiteralClass:
+ case ImaginaryLiteralClass:
+ case StringLiteralClass:
+ case CharacterLiteralClass:
+ case OffsetOfExprClass:
+ case ImplicitValueInitExprClass:
+ case UnaryExprOrTypeTraitExprClass:
+ case AddrLabelExprClass:
+ case GNUNullExprClass:
+ case CXXBoolLiteralExprClass:
+ case CXXNullPtrLiteralExprClass:
+ case CXXThisExprClass:
+ case CXXScalarValueInitExprClass:
+ case TypeTraitExprClass:
+ case ArrayTypeTraitExprClass:
+ case ExpressionTraitExprClass:
+ case CXXNoexceptExprClass:
+ case SizeOfPackExprClass:
+ case ObjCStringLiteralClass:
+ case ObjCEncodeExprClass:
+ case ObjCBoolLiteralExprClass:
+ case CXXUuidofExprClass:
+ case OpaqueValueExprClass:
+ // These never have a side-effect.
+ return false;
+
+ case CallExprClass:
+ case CXXOperatorCallExprClass:
+ case CXXMemberCallExprClass:
+ case CUDAKernelCallExprClass:
+ case UserDefinedLiteralClass: {
+ // We don't know a call definitely has side effects, except for calls
+ // to pure/const functions that definitely don't.
+ // If the call itself is considered side-effect free, check the operands.
+ const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
+ bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
+ if (IsPure || !IncludePossibleEffects)
+ break;
+ return true;
+ }
+
+ case BlockExprClass:
+ case CXXBindTemporaryExprClass:
+ if (!IncludePossibleEffects)
+ break;
+ return true;
+
+ case MSPropertyRefExprClass:
+ case CompoundAssignOperatorClass:
+ case VAArgExprClass:
+ case AtomicExprClass:
+ case StmtExprClass:
+ case CXXThrowExprClass:
+ case CXXNewExprClass:
+ case CXXDeleteExprClass:
+ case ExprWithCleanupsClass:
+ // These always have a side-effect.
+ return true;
+
+ case ParenExprClass:
+ case ArraySubscriptExprClass:
+ case MemberExprClass:
+ case ConditionalOperatorClass:
+ case BinaryConditionalOperatorClass:
+ case CompoundLiteralExprClass:
+ case ExtVectorElementExprClass:
+ case DesignatedInitExprClass:
+ case ParenListExprClass:
+ case CXXPseudoDestructorExprClass:
+ case CXXStdInitializerListExprClass:
+ case SubstNonTypeTemplateParmExprClass:
+ case MaterializeTemporaryExprClass:
+ case ShuffleVectorExprClass:
+ case ConvertVectorExprClass:
+ case AsTypeExprClass:
+ // These have a side-effect if any subexpression does.
+ break;
+
+ case UnaryOperatorClass:
+ if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
+ return true;
+ break;
+
+ case BinaryOperatorClass:
+ if (cast<BinaryOperator>(this)->isAssignmentOp())
+ return true;
+ break;
+
+ case InitListExprClass:
+ // FIXME: The children for an InitListExpr doesn't include the array filler.
+ if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
+ if (E->HasSideEffects(Ctx, IncludePossibleEffects))
+ return true;
+ break;
+
+ case GenericSelectionExprClass:
+ return cast<GenericSelectionExpr>(this)->getResultExpr()->
+ HasSideEffects(Ctx, IncludePossibleEffects);
+
+ case ChooseExprClass:
+ return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
+ Ctx, IncludePossibleEffects);
+
+ case CXXDefaultArgExprClass:
+ return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
+ Ctx, IncludePossibleEffects);
+
+ case CXXDefaultInitExprClass: {
+ const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
+ if (const Expr *E = FD->getInClassInitializer())
+ return E->HasSideEffects(Ctx, IncludePossibleEffects);
+ // If we've not yet parsed the initializer, assume it has side-effects.
+ return true;
+ }
+
+ case CXXDynamicCastExprClass: {
+ // A dynamic_cast expression has side-effects if it can throw.
+ const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
+ if (DCE->getTypeAsWritten()->isReferenceType() &&
+ DCE->getCastKind() == CK_Dynamic)
+ return true;
+ } // Fall through.
+ case ImplicitCastExprClass:
+ case CStyleCastExprClass:
+ case CXXStaticCastExprClass:
+ case CXXReinterpretCastExprClass:
+ case CXXConstCastExprClass:
+ case CXXFunctionalCastExprClass: {
+ // While volatile reads are side-effecting in both C and C++, we treat them
+ // as having possible (not definite) side-effects. This allows idiomatic
+ // code to behave without warning, such as sizeof(*v) for a volatile-
+ // qualified pointer.
+ if (!IncludePossibleEffects)
+ break;
+
+ const CastExpr *CE = cast<CastExpr>(this);
+ if (CE->getCastKind() == CK_LValueToRValue &&
+ CE->getSubExpr()->getType().isVolatileQualified())
+ return true;
+ break;
+ }
+
+ case CXXTypeidExprClass:
+ // typeid might throw if its subexpression is potentially-evaluated, so has
+ // side-effects in that case whether or not its subexpression does.
+ return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
+
+ case CXXConstructExprClass:
+ case CXXTemporaryObjectExprClass: {
+ const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
+ if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
+ return true;
+ // A trivial constructor does not add any side-effects of its own. Just look
+ // at its arguments.
+ break;
+ }
+
+ case LambdaExprClass: {
+ const LambdaExpr *LE = cast<LambdaExpr>(this);
+ for (LambdaExpr::capture_iterator I = LE->capture_begin(),
+ E = LE->capture_end(); I != E; ++I)
+ if (I->getCaptureKind() == LCK_ByCopy)
+ // FIXME: Only has a side-effect if the variable is volatile or if
+ // the copy would invoke a non-trivial copy constructor.
+ return true;
+ return false;
+ }
+
+ case PseudoObjectExprClass: {
+ // Only look for side-effects in the semantic form, and look past
+ // OpaqueValueExpr bindings in that form.
+ const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
+ for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
+ E = PO->semantics_end();
+ I != E; ++I) {
+ const Expr *Subexpr = *I;
+ if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
+ Subexpr = OVE->getSourceExpr();
+ if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
+ return true;
+ }
+ return false;
+ }
+
+ case ObjCBoxedExprClass:
+ case ObjCArrayLiteralClass:
+ case ObjCDictionaryLiteralClass:
+ case ObjCSelectorExprClass:
+ case ObjCProtocolExprClass:
+ case ObjCIsaExprClass:
+ case ObjCIndirectCopyRestoreExprClass:
+ case ObjCSubscriptRefExprClass:
+ case ObjCBridgedCastExprClass:
+ case ObjCMessageExprClass:
+ case ObjCPropertyRefExprClass:
+ // FIXME: Classify these cases better.
+ if (IncludePossibleEffects)
+ return true;
+ break;
+ }
+
+ // Recurse to children.
+ for (const_child_range SubStmts = children(); SubStmts; ++SubStmts)
+ if (const Stmt *S = *SubStmts)
+ if (cast<Expr>(S)->HasSideEffects(Ctx, IncludePossibleEffects))
+ return true;
+
+ return false;
+}
+
+namespace {
+ /// \brief Look for a call to a non-trivial function within an expression.
+ class NonTrivialCallFinder : public EvaluatedExprVisitor<NonTrivialCallFinder>
+ {
+ typedef EvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
+
+ bool NonTrivial;
+
+ public:
+ explicit NonTrivialCallFinder(ASTContext &Context)
+ : Inherited(Context), NonTrivial(false) { }
+
+ bool hasNonTrivialCall() const { return NonTrivial; }
+
+ void VisitCallExpr(CallExpr *E) {
+ if (CXXMethodDecl *Method
+ = dyn_cast_or_null<CXXMethodDecl>(E->getCalleeDecl())) {
+ if (Method->isTrivial()) {
+ // Recurse to children of the call.
+ Inherited::VisitStmt(E);
+ return;
+ }
+ }
+
+ NonTrivial = true;
+ }
+
+ void VisitCXXConstructExpr(CXXConstructExpr *E) {
+ if (E->getConstructor()->isTrivial()) {
+ // Recurse to children of the call.
+ Inherited::VisitStmt(E);
+ return;
+ }
+
+ NonTrivial = true;
+ }
+
+ void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
+ if (E->getTemporary()->getDestructor()->isTrivial()) {
+ Inherited::VisitStmt(E);
+ return;
+ }
+
+ NonTrivial = true;
+ }
+ };
+}
+
+bool Expr::hasNonTrivialCall(ASTContext &Ctx) {
+ NonTrivialCallFinder Finder(Ctx);
+ Finder.Visit(this);
+ return Finder.hasNonTrivialCall();
+}
+
+/// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
+/// pointer constant or not, as well as the specific kind of constant detected.
+/// Null pointer constants can be integer constant expressions with the
+/// value zero, casts of zero to void*, nullptr (C++0X), or __null
+/// (a GNU extension).
+Expr::NullPointerConstantKind
+Expr::isNullPointerConstant(ASTContext &Ctx,
+ NullPointerConstantValueDependence NPC) const {
+ if (isValueDependent() &&
+ (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
+ switch (NPC) {
+ case NPC_NeverValueDependent:
+ llvm_unreachable("Unexpected value dependent expression!");
+ case NPC_ValueDependentIsNull:
+ if (isTypeDependent() || getType()->isIntegralType(Ctx))
+ return NPCK_ZeroExpression;
+ else
+ return NPCK_NotNull;
+
+ case NPC_ValueDependentIsNotNull:
+ return NPCK_NotNull;
+ }
+ }
+
+ // Strip off a cast to void*, if it exists. Except in C++.
+ if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
+ if (!Ctx.getLangOpts().CPlusPlus) {
+ // Check that it is a cast to void*.
+ if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
+ QualType Pointee = PT->getPointeeType();
+ if (!Pointee.hasQualifiers() &&
+ Pointee->isVoidType() && // to void*
+ CE->getSubExpr()->getType()->isIntegerType()) // from int.
+ return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
+ }
+ }
+ } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
+ // Ignore the ImplicitCastExpr type entirely.
+ return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
+ } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
+ // Accept ((void*)0) as a null pointer constant, as many other
+ // implementations do.
+ return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
+ } else if (const GenericSelectionExpr *GE =
+ dyn_cast<GenericSelectionExpr>(this)) {
+ if (GE->isResultDependent())
+ return NPCK_NotNull;
+ return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
+ } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
+ if (CE->isConditionDependent())
+ return NPCK_NotNull;
+ return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
+ } else if (const CXXDefaultArgExpr *DefaultArg
+ = dyn_cast<CXXDefaultArgExpr>(this)) {
+ // See through default argument expressions.
+ return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
+ } else if (const CXXDefaultInitExpr *DefaultInit
+ = dyn_cast<CXXDefaultInitExpr>(this)) {
+ // See through default initializer expressions.
+ return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
+ } else if (isa<GNUNullExpr>(this)) {
+ // The GNU __null extension is always a null pointer constant.
+ return NPCK_GNUNull;
+ } else if (const MaterializeTemporaryExpr *M
+ = dyn_cast<MaterializeTemporaryExpr>(this)) {
+ return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
+ } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
+ if (const Expr *Source = OVE->getSourceExpr())
+ return Source->isNullPointerConstant(Ctx, NPC);
+ }
+
+ // C++11 nullptr_t is always a null pointer constant.
+ if (getType()->isNullPtrType())
+ return NPCK_CXX11_nullptr;
+
+ if (const RecordType *UT = getType()->getAsUnionType())
+ if (!Ctx.getLangOpts().CPlusPlus11 &&
+ UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
+ if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
+ const Expr *InitExpr = CLE->getInitializer();
+ if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
+ return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
+ }
+ // This expression must be an integer type.
+ if (!getType()->isIntegerType() ||
+ (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
+ return NPCK_NotNull;
+
+ if (Ctx.getLangOpts().CPlusPlus11) {
+ // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
+ // value zero or a prvalue of type std::nullptr_t.
+ // Microsoft mode permits C++98 rules reflecting MSVC behavior.
+ const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
+ if (Lit && !Lit->getValue())
+ return NPCK_ZeroLiteral;
+ else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
+ return NPCK_NotNull;
+ } else {
+ // If we have an integer constant expression, we need to *evaluate* it and
+ // test for the value 0.
+ if (!isIntegerConstantExpr(Ctx))
+ return NPCK_NotNull;
+ }
+
+ if (EvaluateKnownConstInt(Ctx) != 0)
+ return NPCK_NotNull;
+
+ if (isa<IntegerLiteral>(this))
+ return NPCK_ZeroLiteral;
+ return NPCK_ZeroExpression;
+}
+
+/// \brief If this expression is an l-value for an Objective C
+/// property, find the underlying property reference expression.
+const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
+ const Expr *E = this;
+ while (true) {
+ assert((E->getValueKind() == VK_LValue &&
+ E->getObjectKind() == OK_ObjCProperty) &&
+ "expression is not a property reference");
+ E = E->IgnoreParenCasts();
+ if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
+ if (BO->getOpcode() == BO_Comma) {
+ E = BO->getRHS();
+ continue;
+ }
+ }
+
+ break;
+ }
+
+ return cast<ObjCPropertyRefExpr>(E);
+}
+
+bool Expr::isObjCSelfExpr() const {
+ const Expr *E = IgnoreParenImpCasts();
+
+ const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
+ if (!DRE)
+ return false;
+
+ const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
+ if (!Param)
+ return false;
+
+ const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
+ if (!M)
+ return false;
+
+ return M->getSelfDecl() == Param;
+}
+
+FieldDecl *Expr::getSourceBitField() {
+ Expr *E = this->IgnoreParens();
+
+ while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
+ if (ICE->getCastKind() == CK_LValueToRValue ||
+ (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
+ E = ICE->getSubExpr()->IgnoreParens();
+ else
+ break;
+ }
+
+ if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
+ if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
+ if (Field->isBitField())
+ return Field;
+
+ if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E))
+ if (FieldDecl *Ivar = dyn_cast<FieldDecl>(IvarRef->getDecl()))
+ if (Ivar->isBitField())
+ return Ivar;
+
+ if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
+ if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
+ if (Field->isBitField())
+ return Field;
+
+ if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
+ if (BinOp->isAssignmentOp() && BinOp->getLHS())
+ return BinOp->getLHS()->getSourceBitField();
+
+ if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
+ return BinOp->getRHS()->getSourceBitField();
+ }
+
+ if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
+ if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
+ return UnOp->getSubExpr()->getSourceBitField();
+
+ return nullptr;
+}
+
+bool Expr::refersToVectorElement() const {
+ const Expr *E = this->IgnoreParens();
+
+ while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
+ if (ICE->getValueKind() != VK_RValue &&
+ ICE->getCastKind() == CK_NoOp)
+ E = ICE->getSubExpr()->IgnoreParens();
+ else
+ break;
+ }
+
+ if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
+ return ASE->getBase()->getType()->isVectorType();
+
+ if (isa<ExtVectorElementExpr>(E))
+ return true;
+
+ return false;
+}
+
+/// isArrow - Return true if the base expression is a pointer to vector,
+/// return false if the base expression is a vector.
+bool ExtVectorElementExpr::isArrow() const {
+ return getBase()->getType()->isPointerType();
+}
+
+unsigned ExtVectorElementExpr::getNumElements() const {
+ if (const VectorType *VT = getType()->getAs<VectorType>())
+ return VT->getNumElements();
+ return 1;
+}
+
+/// containsDuplicateElements - Return true if any element access is repeated.
+bool ExtVectorElementExpr::containsDuplicateElements() const {
+ // FIXME: Refactor this code to an accessor on the AST node which returns the
+ // "type" of component access, and share with code below and in Sema.
+ StringRef Comp = Accessor->getName();
+
+ // Halving swizzles do not contain duplicate elements.
+ if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
+ return false;
+
+ // Advance past s-char prefix on hex swizzles.
+ if (Comp[0] == 's' || Comp[0] == 'S')
+ Comp = Comp.substr(1);
+
+ for (unsigned i = 0, e = Comp.size(); i != e; ++i)
+ if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
+ return true;
+
+ return false;
+}
+
+/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
+void ExtVectorElementExpr::getEncodedElementAccess(
+ SmallVectorImpl<unsigned> &Elts) const {
+ StringRef Comp = Accessor->getName();
+ if (Comp[0] == 's' || Comp[0] == 'S')
+ Comp = Comp.substr(1);
+
+ bool isHi = Comp == "hi";
+ bool isLo = Comp == "lo";
+ bool isEven = Comp == "even";
+ bool isOdd = Comp == "odd";
+
+ for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
+ uint64_t Index;
+
+ if (isHi)
+ Index = e + i;
+ else if (isLo)
+ Index = i;
+ else if (isEven)
+ Index = 2 * i;
+ else if (isOdd)
+ Index = 2 * i + 1;
+ else
+ Index = ExtVectorType::getAccessorIdx(Comp[i]);
+
+ Elts.push_back(Index);
+ }
+}
+
+ObjCMessageExpr::ObjCMessageExpr(QualType T,
+ ExprValueKind VK,
+ SourceLocation LBracLoc,
+ SourceLocation SuperLoc,
+ bool IsInstanceSuper,
+ QualType SuperType,
+ Selector Sel,
+ ArrayRef<SourceLocation> SelLocs,
+ SelectorLocationsKind SelLocsK,
+ ObjCMethodDecl *Method,
+ ArrayRef<Expr *> Args,
+ SourceLocation RBracLoc,
+ bool isImplicit)
+ : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary,
+ /*TypeDependent=*/false, /*ValueDependent=*/false,
+ /*InstantiationDependent=*/false,
+ /*ContainsUnexpandedParameterPack=*/false),
+ SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
+ : Sel.getAsOpaquePtr())),
+ Kind(IsInstanceSuper? SuperInstance : SuperClass),
+ HasMethod(Method != nullptr), IsDelegateInitCall(false),
+ IsImplicit(isImplicit), SuperLoc(SuperLoc), LBracLoc(LBracLoc),
+ RBracLoc(RBracLoc)
+{
+ initArgsAndSelLocs(Args, SelLocs, SelLocsK);
+ setReceiverPointer(SuperType.getAsOpaquePtr());
+}
+
+ObjCMessageExpr::ObjCMessageExpr(QualType T,
+ ExprValueKind VK,
+ SourceLocation LBracLoc,
+ TypeSourceInfo *Receiver,
+ Selector Sel,
+ ArrayRef<SourceLocation> SelLocs,
+ SelectorLocationsKind SelLocsK,
+ ObjCMethodDecl *Method,
+ ArrayRef<Expr *> Args,
+ SourceLocation RBracLoc,
+ bool isImplicit)
+ : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(),
+ T->isDependentType(), T->isInstantiationDependentType(),
+ T->containsUnexpandedParameterPack()),
+ SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
+ : Sel.getAsOpaquePtr())),
+ Kind(Class),
+ HasMethod(Method != nullptr), IsDelegateInitCall(false),
+ IsImplicit(isImplicit), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
+{
+ initArgsAndSelLocs(Args, SelLocs, SelLocsK);
+ setReceiverPointer(Receiver);
+}
+
+ObjCMessageExpr::ObjCMessageExpr(QualType T,
+ ExprValueKind VK,
+ SourceLocation LBracLoc,
+ Expr *Receiver,
+ Selector Sel,
+ ArrayRef<SourceLocation> SelLocs,
+ SelectorLocationsKind SelLocsK,
+ ObjCMethodDecl *Method,
+ ArrayRef<Expr *> Args,
+ SourceLocation RBracLoc,
+ bool isImplicit)
+ : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(),
+ Receiver->isTypeDependent(),
+ Receiver->isInstantiationDependent(),
+ Receiver->containsUnexpandedParameterPack()),
+ SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
+ : Sel.getAsOpaquePtr())),
+ Kind(Instance),
+ HasMethod(Method != nullptr), IsDelegateInitCall(false),
+ IsImplicit(isImplicit), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
+{
+ initArgsAndSelLocs(Args, SelLocs, SelLocsK);
+ setReceiverPointer(Receiver);
+}
+
+void ObjCMessageExpr::initArgsAndSelLocs(ArrayRef<Expr *> Args,
+ ArrayRef<SourceLocation> SelLocs,
+ SelectorLocationsKind SelLocsK) {
+ setNumArgs(Args.size());
+ Expr **MyArgs = getArgs();
+ for (unsigned I = 0; I != Args.size(); ++I) {
+ if (Args[I]->isTypeDependent())
+ ExprBits.TypeDependent = true;
+ if (Args[I]->isValueDependent())
+ ExprBits.ValueDependent = true;
+ if (Args[I]->isInstantiationDependent())
+ ExprBits.InstantiationDependent = true;
+ if (Args[I]->containsUnexpandedParameterPack())
+ ExprBits.ContainsUnexpandedParameterPack = true;
+
+ MyArgs[I] = Args[I];
+ }
+
+ SelLocsKind = SelLocsK;
+ if (!isImplicit()) {
+ if (SelLocsK == SelLoc_NonStandard)
+ std::copy(SelLocs.begin(), SelLocs.end(), getStoredSelLocs());
+ }
+}
+
+ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T,
+ ExprValueKind VK,
+ SourceLocation LBracLoc,
+ SourceLocation SuperLoc,
+ bool IsInstanceSuper,
+ QualType SuperType,
+ Selector Sel,
+ ArrayRef<SourceLocation> SelLocs,
+ ObjCMethodDecl *Method,
+ ArrayRef<Expr *> Args,
+ SourceLocation RBracLoc,
+ bool isImplicit) {
+ assert((!SelLocs.empty() || isImplicit) &&
+ "No selector locs for non-implicit message");
+ ObjCMessageExpr *Mem;
+ SelectorLocationsKind SelLocsK = SelectorLocationsKind();
+ if (isImplicit)
+ Mem = alloc(Context, Args.size(), 0);
+ else
+ Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
+ return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper,
+ SuperType, Sel, SelLocs, SelLocsK,
+ Method, Args, RBracLoc, isImplicit);
+}
+
+ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T,
+ ExprValueKind VK,
+ SourceLocation LBracLoc,
+ TypeSourceInfo *Receiver,
+ Selector Sel,
+ ArrayRef<SourceLocation> SelLocs,
+ ObjCMethodDecl *Method,
+ ArrayRef<Expr *> Args,
+ SourceLocation RBracLoc,
+ bool isImplicit) {
+ assert((!SelLocs.empty() || isImplicit) &&
+ "No selector locs for non-implicit message");
+ ObjCMessageExpr *Mem;
+ SelectorLocationsKind SelLocsK = SelectorLocationsKind();
+ if (isImplicit)
+ Mem = alloc(Context, Args.size(), 0);
+ else
+ Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
+ return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
+ SelLocs, SelLocsK, Method, Args, RBracLoc,
+ isImplicit);
+}
+
+ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T,
+ ExprValueKind VK,
+ SourceLocation LBracLoc,
+ Expr *Receiver,
+ Selector Sel,
+ ArrayRef<SourceLocation> SelLocs,
+ ObjCMethodDecl *Method,
+ ArrayRef<Expr *> Args,
+ SourceLocation RBracLoc,
+ bool isImplicit) {
+ assert((!SelLocs.empty() || isImplicit) &&
+ "No selector locs for non-implicit message");
+ ObjCMessageExpr *Mem;
+ SelectorLocationsKind SelLocsK = SelectorLocationsKind();
+ if (isImplicit)
+ Mem = alloc(Context, Args.size(), 0);
+ else
+ Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
+ return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
+ SelLocs, SelLocsK, Method, Args, RBracLoc,
+ isImplicit);
+}
+
+ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(const ASTContext &Context,
+ unsigned NumArgs,
+ unsigned NumStoredSelLocs) {
+ ObjCMessageExpr *Mem = alloc(Context, NumArgs, NumStoredSelLocs);
+ return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
+}
+
+ObjCMessageExpr *ObjCMessageExpr::alloc(const ASTContext &C,
+ ArrayRef<Expr *> Args,
+ SourceLocation RBraceLoc,
+ ArrayRef<SourceLocation> SelLocs,
+ Selector Sel,
+ SelectorLocationsKind &SelLocsK) {
+ SelLocsK = hasStandardSelectorLocs(Sel, SelLocs, Args, RBraceLoc);
+ unsigned NumStoredSelLocs = (SelLocsK == SelLoc_NonStandard) ? SelLocs.size()
+ : 0;
+ return alloc(C, Args.size(), NumStoredSelLocs);
+}
+
+ObjCMessageExpr *ObjCMessageExpr::alloc(const ASTContext &C,
+ unsigned NumArgs,
+ unsigned NumStoredSelLocs) {
+ unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
+ NumArgs * sizeof(Expr *) + NumStoredSelLocs * sizeof(SourceLocation);
+ return (ObjCMessageExpr *)C.Allocate(Size,
+ llvm::AlignOf<ObjCMessageExpr>::Alignment);
+}
+
+void ObjCMessageExpr::getSelectorLocs(
+ SmallVectorImpl<SourceLocation> &SelLocs) const {
+ for (unsigned i = 0, e = getNumSelectorLocs(); i != e; ++i)
+ SelLocs.push_back(getSelectorLoc(i));
+}
+
+SourceRange ObjCMessageExpr::getReceiverRange() const {
+ switch (getReceiverKind()) {
+ case Instance:
+ return getInstanceReceiver()->getSourceRange();
+
+ case Class:
+ return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange();
+
+ case SuperInstance:
+ case SuperClass:
+ return getSuperLoc();
+ }
+
+ llvm_unreachable("Invalid ReceiverKind!");
+}
+
+Selector ObjCMessageExpr::getSelector() const {
+ if (HasMethod)
+ return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
+ ->getSelector();
+ return Selector(SelectorOrMethod);
+}
+
+QualType ObjCMessageExpr::getReceiverType() const {
+ switch (getReceiverKind()) {
+ case Instance:
+ return getInstanceReceiver()->getType();
+ case Class:
+ return getClassReceiver();
+ case SuperInstance:
+ case SuperClass:
+ return getSuperType();
+ }
+
+ llvm_unreachable("unexpected receiver kind");
+}
+
+ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
+ QualType T = getReceiverType();
+
+ if (const ObjCObjectPointerType *Ptr = T->getAs<ObjCObjectPointerType>())
+ return Ptr->getInterfaceDecl();
+
+ if (const ObjCObjectType *Ty = T->getAs<ObjCObjectType>())
+ return Ty->getInterface();
+
+ return nullptr;
+}
+
+StringRef ObjCBridgedCastExpr::getBridgeKindName() const {
+ switch (getBridgeKind()) {
+ case OBC_Bridge:
+ return "__bridge";
+ case OBC_BridgeTransfer:
+ return "__bridge_transfer";
+ case OBC_BridgeRetained:
+ return "__bridge_retained";
+ }
+
+ llvm_unreachable("Invalid BridgeKind!");
+}
+
+ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args,
+ QualType Type, SourceLocation BLoc,
+ SourceLocation RP)
+ : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
+ Type->isDependentType(), Type->isDependentType(),
+ Type->isInstantiationDependentType(),
+ Type->containsUnexpandedParameterPack()),
+ BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size())
+{
+ SubExprs = new (C) Stmt*[args.size()];
+ for (unsigned i = 0; i != args.size(); i++) {
+ if (args[i]->isTypeDependent())
+ ExprBits.TypeDependent = true;
+ if (args[i]->isValueDependent())
+ ExprBits.ValueDependent = true;
+ if (args[i]->isInstantiationDependent())
+ ExprBits.InstantiationDependent = true;
+ if (args[i]->containsUnexpandedParameterPack())
+ ExprBits.ContainsUnexpandedParameterPack = true;
+
+ SubExprs[i] = args[i];
+ }
+}
+
+void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
+ if (SubExprs) C.Deallocate(SubExprs);
+
+ this->NumExprs = Exprs.size();
+ SubExprs = new (C) Stmt*[NumExprs];
+ memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
+}
+
+GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context,
+ SourceLocation GenericLoc, Expr *ControllingExpr,
+ ArrayRef<TypeSourceInfo*> AssocTypes,
+ ArrayRef<Expr*> AssocExprs,
+ SourceLocation DefaultLoc,
+ SourceLocation RParenLoc,
+ bool ContainsUnexpandedParameterPack,
+ unsigned ResultIndex)
+ : Expr(GenericSelectionExprClass,
+ AssocExprs[ResultIndex]->getType(),
+ AssocExprs[ResultIndex]->getValueKind(),
+ AssocExprs[ResultIndex]->getObjectKind(),
+ AssocExprs[ResultIndex]->isTypeDependent(),
+ AssocExprs[ResultIndex]->isValueDependent(),
+ AssocExprs[ResultIndex]->isInstantiationDependent(),
+ ContainsUnexpandedParameterPack),
+ AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
+ SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
+ NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
+ GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
+ SubExprs[CONTROLLING] = ControllingExpr;
+ assert(AssocTypes.size() == AssocExprs.size());
+ std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
+ std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
+}
+
+GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context,
+ SourceLocation GenericLoc, Expr *ControllingExpr,
+ ArrayRef<TypeSourceInfo*> AssocTypes,
+ ArrayRef<Expr*> AssocExprs,
+ SourceLocation DefaultLoc,
+ SourceLocation RParenLoc,
+ bool ContainsUnexpandedParameterPack)
+ : Expr(GenericSelectionExprClass,
+ Context.DependentTy,
+ VK_RValue,
+ OK_Ordinary,
+ /*isTypeDependent=*/true,
+ /*isValueDependent=*/true,
+ /*isInstantiationDependent=*/true,
+ ContainsUnexpandedParameterPack),
+ AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
+ SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
+ NumAssocs(AssocExprs.size()), ResultIndex(-1U), GenericLoc(GenericLoc),
+ DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
+ SubExprs[CONTROLLING] = ControllingExpr;
+ assert(AssocTypes.size() == AssocExprs.size());
+ std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
+ std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
+}
+
+//===----------------------------------------------------------------------===//
+// DesignatedInitExpr
+//===----------------------------------------------------------------------===//
+
+IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
+ assert(Kind == FieldDesignator && "Only valid on a field designator");
+ if (Field.NameOrField & 0x01)
+ return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
+ else
+ return getField()->getIdentifier();
+}
+
+DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
+ unsigned NumDesignators,
+ const Designator *Designators,
+ SourceLocation EqualOrColonLoc,
+ bool GNUSyntax,
+ ArrayRef<Expr*> IndexExprs,
+ Expr *Init)
+ : Expr(DesignatedInitExprClass, Ty,
+ Init->getValueKind(), Init->getObjectKind(),
+ Init->isTypeDependent(), Init->isValueDependent(),
+ Init->isInstantiationDependent(),
+ Init->containsUnexpandedParameterPack()),
+ EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
+ NumDesignators(NumDesignators), NumSubExprs(IndexExprs.size() + 1) {
+ this->Designators = new (C) Designator[NumDesignators];
+
+ // Record the initializer itself.
+ child_range Child = children();
+ *Child++ = Init;
+
+ // Copy the designators and their subexpressions, computing
+ // value-dependence along the way.
+ unsigned IndexIdx = 0;
+ for (unsigned I = 0; I != NumDesignators; ++I) {
+ this->Designators[I] = Designators[I];
+
+ if (this->Designators[I].isArrayDesignator()) {
+ // Compute type- and value-dependence.
+ Expr *Index = IndexExprs[IndexIdx];
+ if (Index->isTypeDependent() || Index->isValueDependent())
+ ExprBits.TypeDependent = ExprBits.ValueDependent = true;
+ if (Index->isInstantiationDependent())
+ ExprBits.InstantiationDependent = true;
+ // Propagate unexpanded parameter packs.
+ if (Index->containsUnexpandedParameterPack())
+ ExprBits.ContainsUnexpandedParameterPack = true;
+
+ // Copy the index expressions into permanent storage.
+ *Child++ = IndexExprs[IndexIdx++];
+ } else if (this->Designators[I].isArrayRangeDesignator()) {
+ // Compute type- and value-dependence.
+ Expr *Start = IndexExprs[IndexIdx];
+ Expr *End = IndexExprs[IndexIdx + 1];
+ if (Start->isTypeDependent() || Start->isValueDependent() ||
+ End->isTypeDependent() || End->isValueDependent()) {
+ ExprBits.TypeDependent = ExprBits.ValueDependent = true;
+ ExprBits.InstantiationDependent = true;
+ } else if (Start->isInstantiationDependent() ||
+ End->isInstantiationDependent()) {
+ ExprBits.InstantiationDependent = true;
+ }
+
+ // Propagate unexpanded parameter packs.
+ if (Start->containsUnexpandedParameterPack() ||
+ End->containsUnexpandedParameterPack())
+ ExprBits.ContainsUnexpandedParameterPack = true;
+
+ // Copy the start/end expressions into permanent storage.
+ *Child++ = IndexExprs[IndexIdx++];
+ *Child++ = IndexExprs[IndexIdx++];
+ }
+ }
+
+ assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
+}
+
+DesignatedInitExpr *
+DesignatedInitExpr::Create(const ASTContext &C, Designator *Designators,
+ unsigned NumDesignators,
+ ArrayRef<Expr*> IndexExprs,
+ SourceLocation ColonOrEqualLoc,
+ bool UsesColonSyntax, Expr *Init) {
+ void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
+ sizeof(Stmt *) * (IndexExprs.size() + 1), 8);
+ return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
+ ColonOrEqualLoc, UsesColonSyntax,
+ IndexExprs, Init);
+}
+
+DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
+ unsigned NumIndexExprs) {
+ void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
+ sizeof(Stmt *) * (NumIndexExprs + 1), 8);
+ return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
+}
+
+void DesignatedInitExpr::setDesignators(const ASTContext &C,
+ const Designator *Desigs,
+ unsigned NumDesigs) {
+ Designators = new (C) Designator[NumDesigs];
+ NumDesignators = NumDesigs;
+ for (unsigned I = 0; I != NumDesigs; ++I)
+ Designators[I] = Desigs[I];
+}
+
+SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
+ DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
+ if (size() == 1)
+ return DIE->getDesignator(0)->getSourceRange();
+ return SourceRange(DIE->getDesignator(0)->getLocStart(),
+ DIE->getDesignator(size()-1)->getLocEnd());
+}
+
+SourceLocation DesignatedInitExpr::getLocStart() const {
+ SourceLocation StartLoc;
+ Designator &First =
+ *const_cast<DesignatedInitExpr*>(this)->designators_begin();
+ if (First.isFieldDesignator()) {
+ if (GNUSyntax)
+ StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
+ else
+ StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
+ } else
+ StartLoc =
+ SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
+ return StartLoc;
+}
+
+SourceLocation DesignatedInitExpr::getLocEnd() const {
+ return getInit()->getLocEnd();
+}
+
+Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
+ assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
+ Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1);
+ return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
+}
+
+Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
+ assert(D.Kind == Designator::ArrayRangeDesignator &&
+ "Requires array range designator");
+ Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1);
+ return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
+}
+
+Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
+ assert(D.Kind == Designator::ArrayRangeDesignator &&
+ "Requires array range designator");
+ Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1);
+ return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
+}
+
+/// \brief Replaces the designator at index @p Idx with the series
+/// of designators in [First, Last).
+void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
+ const Designator *First,
+ const Designator *Last) {
+ unsigned NumNewDesignators = Last - First;
+ if (NumNewDesignators == 0) {
+ std::copy_backward(Designators + Idx + 1,
+ Designators + NumDesignators,
+ Designators + Idx);
+ --NumNewDesignators;
+ return;
+ } else if (NumNewDesignators == 1) {
+ Designators[Idx] = *First;
+ return;
+ }
+
+ Designator *NewDesignators
+ = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
+ std::copy(Designators, Designators + Idx, NewDesignators);
+ std::copy(First, Last, NewDesignators + Idx);
+ std::copy(Designators + Idx + 1, Designators + NumDesignators,
+ NewDesignators + Idx + NumNewDesignators);
+ Designators = NewDesignators;
+ NumDesignators = NumDesignators - 1 + NumNewDesignators;
+}
+
+ParenListExpr::ParenListExpr(const ASTContext& C, SourceLocation lparenloc,
+ ArrayRef<Expr*> exprs,
+ SourceLocation rparenloc)
+ : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
+ false, false, false, false),
+ NumExprs(exprs.size()), LParenLoc(lparenloc), RParenLoc(rparenloc) {
+ Exprs = new (C) Stmt*[exprs.size()];
+ for (unsigned i = 0; i != exprs.size(); ++i) {
+ if (exprs[i]->isTypeDependent())
+ ExprBits.TypeDependent = true;
+ if (exprs[i]->isValueDependent())
+ ExprBits.ValueDependent = true;
+ if (exprs[i]->isInstantiationDependent())
+ ExprBits.InstantiationDependent = true;
+ if (exprs[i]->containsUnexpandedParameterPack())
+ ExprBits.ContainsUnexpandedParameterPack = true;
+
+ Exprs[i] = exprs[i];
+ }
+}
+
+const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
+ if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
+ e = ewc->getSubExpr();
+ if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
+ e = m->GetTemporaryExpr();
+ e = cast<CXXConstructExpr>(e)->getArg(0);
+ while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
+ e = ice->getSubExpr();
+ return cast<OpaqueValueExpr>(e);
+}
+
+PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
+ EmptyShell sh,
+ unsigned numSemanticExprs) {
+ void *buffer = Context.Allocate(sizeof(PseudoObjectExpr) +
+ (1 + numSemanticExprs) * sizeof(Expr*),
+ llvm::alignOf<PseudoObjectExpr>());
+ return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
+}
+
+PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
+ : Expr(PseudoObjectExprClass, shell) {
+ PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
+}
+
+PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
+ ArrayRef<Expr*> semantics,
+ unsigned resultIndex) {
+ assert(syntax && "no syntactic expression!");
+ assert(semantics.size() && "no semantic expressions!");
+
+ QualType type;
+ ExprValueKind VK;
+ if (resultIndex == NoResult) {
+ type = C.VoidTy;
+ VK = VK_RValue;
+ } else {
+ assert(resultIndex < semantics.size());
+ type = semantics[resultIndex]->getType();
+ VK = semantics[resultIndex]->getValueKind();
+ assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
+ }
+
+ void *buffer = C.Allocate(sizeof(PseudoObjectExpr) +
+ (1 + semantics.size()) * sizeof(Expr*),
+ llvm::alignOf<PseudoObjectExpr>());
+ return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
+ resultIndex);
+}
+
+PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
+ Expr *syntax, ArrayRef<Expr*> semantics,
+ unsigned resultIndex)
+ : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
+ /*filled in at end of ctor*/ false, false, false, false) {
+ PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
+ PseudoObjectExprBits.ResultIndex = resultIndex + 1;
+
+ for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
+ Expr *E = (i == 0 ? syntax : semantics[i-1]);
+ getSubExprsBuffer()[i] = E;
+
+ if (E->isTypeDependent())
+ ExprBits.TypeDependent = true;
+ if (E->isValueDependent())
+ ExprBits.ValueDependent = true;
+ if (E->isInstantiationDependent())
+ ExprBits.InstantiationDependent = true;
+ if (E->containsUnexpandedParameterPack())
+ ExprBits.ContainsUnexpandedParameterPack = true;
+
+ if (isa<OpaqueValueExpr>(E))
+ assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
+ "opaque-value semantic expressions for pseudo-object "
+ "operations must have sources");
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// ExprIterator.
+//===----------------------------------------------------------------------===//
+
+Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
+Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
+Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
+const Expr* ConstExprIterator::operator[](size_t idx) const {
+ return cast<Expr>(I[idx]);
+}
+const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
+const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
+
+//===----------------------------------------------------------------------===//
+// Child Iterators for iterating over subexpressions/substatements
+//===----------------------------------------------------------------------===//
+
+// UnaryExprOrTypeTraitExpr
+Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
+ // If this is of a type and the type is a VLA type (and not a typedef), the
+ // size expression of the VLA needs to be treated as an executable expression.
+ // Why isn't this weirdness documented better in StmtIterator?
+ if (isArgumentType()) {
+ if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
+ getArgumentType().getTypePtr()))
+ return child_range(child_iterator(T), child_iterator());
+ return child_range();
+ }
+ return child_range(&Argument.Ex, &Argument.Ex + 1);
+}
+
+// ObjCMessageExpr
+Stmt::child_range ObjCMessageExpr::children() {
+ Stmt **begin;
+ if (getReceiverKind() == Instance)
+ begin = reinterpret_cast<Stmt **>(this + 1);
+ else
+ begin = reinterpret_cast<Stmt **>(getArgs());
+ return child_range(begin,
+ reinterpret_cast<Stmt **>(getArgs() + getNumArgs()));
+}
+
+ObjCArrayLiteral::ObjCArrayLiteral(ArrayRef<Expr *> Elements,
+ QualType T, ObjCMethodDecl *Method,
+ SourceRange SR)
+ : Expr(ObjCArrayLiteralClass, T, VK_RValue, OK_Ordinary,
+ false, false, false, false),
+ NumElements(Elements.size()), Range(SR), ArrayWithObjectsMethod(Method)
+{
+ Expr **SaveElements = getElements();
+ for (unsigned I = 0, N = Elements.size(); I != N; ++I) {
+ if (Elements[I]->isTypeDependent() || Elements[I]->isValueDependent())
+ ExprBits.ValueDependent = true;
+ if (Elements[I]->isInstantiationDependent())
+ ExprBits.InstantiationDependent = true;
+ if (Elements[I]->containsUnexpandedParameterPack())
+ ExprBits.ContainsUnexpandedParameterPack = true;
+
+ SaveElements[I] = Elements[I];
+ }
+}
+
+ObjCArrayLiteral *ObjCArrayLiteral::Create(const ASTContext &C,
+ ArrayRef<Expr *> Elements,
+ QualType T, ObjCMethodDecl * Method,
+ SourceRange SR) {
+ void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
+ + Elements.size() * sizeof(Expr *));
+ return new (Mem) ObjCArrayLiteral(Elements, T, Method, SR);
+}
+
+ObjCArrayLiteral *ObjCArrayLiteral::CreateEmpty(const ASTContext &C,
+ unsigned NumElements) {
+
+ void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
+ + NumElements * sizeof(Expr *));
+ return new (Mem) ObjCArrayLiteral(EmptyShell(), NumElements);
+}
+
+ObjCDictionaryLiteral::ObjCDictionaryLiteral(
+ ArrayRef<ObjCDictionaryElement> VK,
+ bool HasPackExpansions,
+ QualType T, ObjCMethodDecl *method,
+ SourceRange SR)
+ : Expr(ObjCDictionaryLiteralClass, T, VK_RValue, OK_Ordinary, false, false,
+ false, false),
+ NumElements(VK.size()), HasPackExpansions(HasPackExpansions), Range(SR),
+ DictWithObjectsMethod(method)
+{
+ KeyValuePair *KeyValues = getKeyValues();
+ ExpansionData *Expansions = getExpansionData();
+ for (unsigned I = 0; I < NumElements; I++) {
+ if (VK[I].Key->isTypeDependent() || VK[I].Key->isValueDependent() ||
+ VK[I].Value->isTypeDependent() || VK[I].Value->isValueDependent())
+ ExprBits.ValueDependent = true;
+ if (VK[I].Key->isInstantiationDependent() ||
+ VK[I].Value->isInstantiationDependent())
+ ExprBits.InstantiationDependent = true;
+ if (VK[I].EllipsisLoc.isInvalid() &&
+ (VK[I].Key->containsUnexpandedParameterPack() ||
+ VK[I].Value->containsUnexpandedParameterPack()))
+ ExprBits.ContainsUnexpandedParameterPack = true;
+
+ KeyValues[I].Key = VK[I].Key;
+ KeyValues[I].Value = VK[I].Value;
+ if (Expansions) {
+ Expansions[I].EllipsisLoc = VK[I].EllipsisLoc;
+ if (VK[I].NumExpansions)
+ Expansions[I].NumExpansionsPlusOne = *VK[I].NumExpansions + 1;
+ else
+ Expansions[I].NumExpansionsPlusOne = 0;
+ }
+ }
+}
+
+ObjCDictionaryLiteral *
+ObjCDictionaryLiteral::Create(const ASTContext &C,
+ ArrayRef<ObjCDictionaryElement> VK,
+ bool HasPackExpansions,
+ QualType T, ObjCMethodDecl *method,
+ SourceRange SR) {
+ unsigned ExpansionsSize = 0;
+ if (HasPackExpansions)
+ ExpansionsSize = sizeof(ExpansionData) * VK.size();
+
+ void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
+ sizeof(KeyValuePair) * VK.size() + ExpansionsSize);
+ return new (Mem) ObjCDictionaryLiteral(VK, HasPackExpansions, T, method, SR);
+}
+
+ObjCDictionaryLiteral *
+ObjCDictionaryLiteral::CreateEmpty(const ASTContext &C, unsigned NumElements,
+ bool HasPackExpansions) {
+ unsigned ExpansionsSize = 0;
+ if (HasPackExpansions)
+ ExpansionsSize = sizeof(ExpansionData) * NumElements;
+ void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
+ sizeof(KeyValuePair) * NumElements + ExpansionsSize);
+ return new (Mem) ObjCDictionaryLiteral(EmptyShell(), NumElements,
+ HasPackExpansions);
+}
+
+ObjCSubscriptRefExpr *ObjCSubscriptRefExpr::Create(const ASTContext &C,
+ Expr *base,
+ Expr *key, QualType T,
+ ObjCMethodDecl *getMethod,
+ ObjCMethodDecl *setMethod,
+ SourceLocation RB) {
+ void *Mem = C.Allocate(sizeof(ObjCSubscriptRefExpr));
+ return new (Mem) ObjCSubscriptRefExpr(base, key, T, VK_LValue,
+ OK_ObjCSubscript,
+ getMethod, setMethod, RB);
+}
+
+AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args,
+ QualType t, AtomicOp op, SourceLocation RP)
+ : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
+ false, false, false, false),
+ NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
+{
+ assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
+ for (unsigned i = 0; i != args.size(); i++) {
+ if (args[i]->isTypeDependent())
+ ExprBits.TypeDependent = true;
+ if (args[i]->isValueDependent())
+ ExprBits.ValueDependent = true;
+ if (args[i]->isInstantiationDependent())
+ ExprBits.InstantiationDependent = true;
+ if (args[i]->containsUnexpandedParameterPack())
+ ExprBits.ContainsUnexpandedParameterPack = true;
+
+ SubExprs[i] = args[i];
+ }
+}
+
+unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
+ switch (Op) {
+ case AO__c11_atomic_init:
+ case AO__c11_atomic_load:
+ case AO__atomic_load_n:
+ return 2;
+
+ case AO__c11_atomic_store:
+ case AO__c11_atomic_exchange:
+ case AO__atomic_load:
+ case AO__atomic_store:
+ case AO__atomic_store_n:
+ case AO__atomic_exchange_n:
+ case AO__c11_atomic_fetch_add:
+ case AO__c11_atomic_fetch_sub:
+ case AO__c11_atomic_fetch_and:
+ case AO__c11_atomic_fetch_or:
+ case AO__c11_atomic_fetch_xor:
+ case AO__atomic_fetch_add:
+ case AO__atomic_fetch_sub:
+ case AO__atomic_fetch_and:
+ case AO__atomic_fetch_or:
+ case AO__atomic_fetch_xor:
+ case AO__atomic_fetch_nand:
+ case AO__atomic_add_fetch:
+ case AO__atomic_sub_fetch:
+ case AO__atomic_and_fetch:
+ case AO__atomic_or_fetch:
+ case AO__atomic_xor_fetch:
+ case AO__atomic_nand_fetch:
+ return 3;
+
+ case AO__atomic_exchange:
+ return 4;
+
+ case AO__c11_atomic_compare_exchange_strong:
+ case AO__c11_atomic_compare_exchange_weak:
+ return 5;
+
+ case AO__atomic_compare_exchange:
+ case AO__atomic_compare_exchange_n:
+ return 6;
+ }
+ llvm_unreachable("unknown atomic op");
+}
diff --git a/contrib/llvm/tools/clang/lib/AST/ExprCXX.cpp b/contrib/llvm/tools/clang/lib/AST/ExprCXX.cpp
new file mode 100644
index 0000000..d6f2ce6
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/ExprCXX.cpp
@@ -0,0 +1,1540 @@
+//===--- ExprCXX.cpp - (C++) Expression AST Node Implementation -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the subclesses of Expr class declared in ExprCXX.h
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/Basic/IdentifierTable.h"
+using namespace clang;
+
+
+//===----------------------------------------------------------------------===//
+// Child Iterators for iterating over subexpressions/substatements
+//===----------------------------------------------------------------------===//
+
+bool CXXTypeidExpr::isPotentiallyEvaluated() const {
+ if (isTypeOperand())
+ return false;
+
+ // C++11 [expr.typeid]p3:
+ // When typeid is applied to an expression other than a glvalue of
+ // polymorphic class type, [...] the expression is an unevaluated operand.
+ const Expr *E = getExprOperand();
+ if (const CXXRecordDecl *RD = E->getType()->getAsCXXRecordDecl())
+ if (RD->isPolymorphic() && E->isGLValue())
+ return true;
+
+ return false;
+}
+
+QualType CXXTypeidExpr::getTypeOperand(ASTContext &Context) const {
+ assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
+ Qualifiers Quals;
+ return Context.getUnqualifiedArrayType(
+ Operand.get<TypeSourceInfo *>()->getType().getNonReferenceType(), Quals);
+}
+
+QualType CXXUuidofExpr::getTypeOperand(ASTContext &Context) const {
+ assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
+ Qualifiers Quals;
+ return Context.getUnqualifiedArrayType(
+ Operand.get<TypeSourceInfo *>()->getType().getNonReferenceType(), Quals);
+}
+
+// static
+const UuidAttr *CXXUuidofExpr::GetUuidAttrOfType(QualType QT,
+ bool *RDHasMultipleGUIDsPtr) {
+ // Optionally remove one level of pointer, reference or array indirection.
+ const Type *Ty = QT.getTypePtr();
+ if (QT->isPointerType() || QT->isReferenceType())
+ Ty = QT->getPointeeType().getTypePtr();
+ else if (QT->isArrayType())
+ Ty = Ty->getBaseElementTypeUnsafe();
+
+ const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
+ if (!RD)
+ return nullptr;
+
+ if (const UuidAttr *Uuid = RD->getMostRecentDecl()->getAttr<UuidAttr>())
+ return Uuid;
+
+ // __uuidof can grab UUIDs from template arguments.
+ if (const ClassTemplateSpecializationDecl *CTSD =
+ dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
+ const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
+ const UuidAttr *UuidForRD = nullptr;
+
+ for (const TemplateArgument &TA : TAL.asArray()) {
+ bool SeenMultipleGUIDs = false;
+
+ const UuidAttr *UuidForTA = nullptr;
+ if (TA.getKind() == TemplateArgument::Type)
+ UuidForTA = GetUuidAttrOfType(TA.getAsType(), &SeenMultipleGUIDs);
+ else if (TA.getKind() == TemplateArgument::Declaration)
+ UuidForTA =
+ GetUuidAttrOfType(TA.getAsDecl()->getType(), &SeenMultipleGUIDs);
+
+ // If the template argument has a UUID, there are three cases:
+ // - This is the first UUID seen for this RecordDecl.
+ // - This is a different UUID than previously seen for this RecordDecl.
+ // - This is the same UUID than previously seen for this RecordDecl.
+ if (UuidForTA) {
+ if (!UuidForRD)
+ UuidForRD = UuidForTA;
+ else if (UuidForRD != UuidForTA)
+ SeenMultipleGUIDs = true;
+ }
+
+ // Seeing multiple UUIDs means that we couldn't find a UUID
+ if (SeenMultipleGUIDs) {
+ if (RDHasMultipleGUIDsPtr)
+ *RDHasMultipleGUIDsPtr = true;
+ return nullptr;
+ }
+ }
+
+ return UuidForRD;
+ }
+
+ return nullptr;
+}
+
+StringRef CXXUuidofExpr::getUuidAsStringRef(ASTContext &Context) const {
+ StringRef Uuid;
+ if (isTypeOperand())
+ Uuid = CXXUuidofExpr::GetUuidAttrOfType(getTypeOperand(Context))->getGuid();
+ else {
+ // Special case: __uuidof(0) means an all-zero GUID.
+ Expr *Op = getExprOperand();
+ if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
+ Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid();
+ else
+ Uuid = "00000000-0000-0000-0000-000000000000";
+ }
+ return Uuid;
+}
+
+// CXXScalarValueInitExpr
+SourceLocation CXXScalarValueInitExpr::getLocStart() const {
+ return TypeInfo ? TypeInfo->getTypeLoc().getBeginLoc() : RParenLoc;
+}
+
+// CXXNewExpr
+CXXNewExpr::CXXNewExpr(const ASTContext &C, bool globalNew,
+ FunctionDecl *operatorNew, FunctionDecl *operatorDelete,
+ bool usualArrayDeleteWantsSize,
+ ArrayRef<Expr*> placementArgs,
+ SourceRange typeIdParens, Expr *arraySize,
+ InitializationStyle initializationStyle,
+ Expr *initializer, QualType ty,
+ TypeSourceInfo *allocatedTypeInfo,
+ SourceRange Range, SourceRange directInitRange)
+ : Expr(CXXNewExprClass, ty, VK_RValue, OK_Ordinary,
+ ty->isDependentType(), ty->isDependentType(),
+ ty->isInstantiationDependentType(),
+ ty->containsUnexpandedParameterPack()),
+ SubExprs(nullptr), OperatorNew(operatorNew), OperatorDelete(operatorDelete),
+ AllocatedTypeInfo(allocatedTypeInfo), TypeIdParens(typeIdParens),
+ Range(Range), DirectInitRange(directInitRange),
+ GlobalNew(globalNew), UsualArrayDeleteWantsSize(usualArrayDeleteWantsSize) {
+ assert((initializer != nullptr || initializationStyle == NoInit) &&
+ "Only NoInit can have no initializer.");
+ StoredInitializationStyle = initializer ? initializationStyle + 1 : 0;
+ AllocateArgsArray(C, arraySize != nullptr, placementArgs.size(),
+ initializer != nullptr);
+ unsigned i = 0;
+ if (Array) {
+ if (arraySize->isInstantiationDependent())
+ ExprBits.InstantiationDependent = true;
+
+ if (arraySize->containsUnexpandedParameterPack())
+ ExprBits.ContainsUnexpandedParameterPack = true;
+
+ SubExprs[i++] = arraySize;
+ }
+
+ if (initializer) {
+ if (initializer->isInstantiationDependent())
+ ExprBits.InstantiationDependent = true;
+
+ if (initializer->containsUnexpandedParameterPack())
+ ExprBits.ContainsUnexpandedParameterPack = true;
+
+ SubExprs[i++] = initializer;
+ }
+
+ for (unsigned j = 0; j != placementArgs.size(); ++j) {
+ if (placementArgs[j]->isInstantiationDependent())
+ ExprBits.InstantiationDependent = true;
+ if (placementArgs[j]->containsUnexpandedParameterPack())
+ ExprBits.ContainsUnexpandedParameterPack = true;
+
+ SubExprs[i++] = placementArgs[j];
+ }
+
+ switch (getInitializationStyle()) {
+ case CallInit:
+ this->Range.setEnd(DirectInitRange.getEnd()); break;
+ case ListInit:
+ this->Range.setEnd(getInitializer()->getSourceRange().getEnd()); break;
+ default:
+ if (TypeIdParens.isValid())
+ this->Range.setEnd(TypeIdParens.getEnd());
+ break;
+ }
+}
+
+void CXXNewExpr::AllocateArgsArray(const ASTContext &C, bool isArray,
+ unsigned numPlaceArgs, bool hasInitializer){
+ assert(SubExprs == nullptr && "SubExprs already allocated");
+ Array = isArray;
+ NumPlacementArgs = numPlaceArgs;
+
+ unsigned TotalSize = Array + hasInitializer + NumPlacementArgs;
+ SubExprs = new (C) Stmt*[TotalSize];
+}
+
+bool CXXNewExpr::shouldNullCheckAllocation(const ASTContext &Ctx) const {
+ return getOperatorNew()->getType()->castAs<FunctionProtoType>()->isNothrow(
+ Ctx) &&
+ !getOperatorNew()->isReservedGlobalPlacementOperator();
+}
+
+// CXXDeleteExpr
+QualType CXXDeleteExpr::getDestroyedType() const {
+ const Expr *Arg = getArgument();
+ // The type-to-delete may not be a pointer if it's a dependent type.
+ const QualType ArgType = Arg->getType();
+
+ if (ArgType->isDependentType() && !ArgType->isPointerType())
+ return QualType();
+
+ return ArgType->getAs<PointerType>()->getPointeeType();
+}
+
+// CXXPseudoDestructorExpr
+PseudoDestructorTypeStorage::PseudoDestructorTypeStorage(TypeSourceInfo *Info)
+ : Type(Info)
+{
+ Location = Info->getTypeLoc().getLocalSourceRange().getBegin();
+}
+
+CXXPseudoDestructorExpr::CXXPseudoDestructorExpr(const ASTContext &Context,
+ Expr *Base, bool isArrow, SourceLocation OperatorLoc,
+ NestedNameSpecifierLoc QualifierLoc, TypeSourceInfo *ScopeType,
+ SourceLocation ColonColonLoc, SourceLocation TildeLoc,
+ PseudoDestructorTypeStorage DestroyedType)
+ : Expr(CXXPseudoDestructorExprClass,
+ Context.BoundMemberTy,
+ VK_RValue, OK_Ordinary,
+ /*isTypeDependent=*/(Base->isTypeDependent() ||
+ (DestroyedType.getTypeSourceInfo() &&
+ DestroyedType.getTypeSourceInfo()->getType()->isDependentType())),
+ /*isValueDependent=*/Base->isValueDependent(),
+ (Base->isInstantiationDependent() ||
+ (QualifierLoc &&
+ QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent()) ||
+ (ScopeType &&
+ ScopeType->getType()->isInstantiationDependentType()) ||
+ (DestroyedType.getTypeSourceInfo() &&
+ DestroyedType.getTypeSourceInfo()->getType()
+ ->isInstantiationDependentType())),
+ // ContainsUnexpandedParameterPack
+ (Base->containsUnexpandedParameterPack() ||
+ (QualifierLoc &&
+ QualifierLoc.getNestedNameSpecifier()
+ ->containsUnexpandedParameterPack()) ||
+ (ScopeType &&
+ ScopeType->getType()->containsUnexpandedParameterPack()) ||
+ (DestroyedType.getTypeSourceInfo() &&
+ DestroyedType.getTypeSourceInfo()->getType()
+ ->containsUnexpandedParameterPack()))),
+ Base(static_cast<Stmt *>(Base)), IsArrow(isArrow),
+ OperatorLoc(OperatorLoc), QualifierLoc(QualifierLoc),
+ ScopeType(ScopeType), ColonColonLoc(ColonColonLoc), TildeLoc(TildeLoc),
+ DestroyedType(DestroyedType) { }
+
+QualType CXXPseudoDestructorExpr::getDestroyedType() const {
+ if (TypeSourceInfo *TInfo = DestroyedType.getTypeSourceInfo())
+ return TInfo->getType();
+
+ return QualType();
+}
+
+SourceLocation CXXPseudoDestructorExpr::getLocEnd() const {
+ SourceLocation End = DestroyedType.getLocation();
+ if (TypeSourceInfo *TInfo = DestroyedType.getTypeSourceInfo())
+ End = TInfo->getTypeLoc().getLocalSourceRange().getEnd();
+ return End;
+}
+
+// UnresolvedLookupExpr
+UnresolvedLookupExpr *
+UnresolvedLookupExpr::Create(const ASTContext &C,
+ CXXRecordDecl *NamingClass,
+ NestedNameSpecifierLoc QualifierLoc,
+ SourceLocation TemplateKWLoc,
+ const DeclarationNameInfo &NameInfo,
+ bool ADL,
+ const TemplateArgumentListInfo *Args,
+ UnresolvedSetIterator Begin,
+ UnresolvedSetIterator End)
+{
+ assert(Args || TemplateKWLoc.isValid());
+ unsigned num_args = Args ? Args->size() : 0;
+ void *Mem = C.Allocate(sizeof(UnresolvedLookupExpr) +
+ ASTTemplateKWAndArgsInfo::sizeFor(num_args));
+ return new (Mem) UnresolvedLookupExpr(C, NamingClass, QualifierLoc,
+ TemplateKWLoc, NameInfo,
+ ADL, /*Overload*/ true, Args,
+ Begin, End);
+}
+
+UnresolvedLookupExpr *
+UnresolvedLookupExpr::CreateEmpty(const ASTContext &C,
+ bool HasTemplateKWAndArgsInfo,
+ unsigned NumTemplateArgs) {
+ std::size_t size = sizeof(UnresolvedLookupExpr);
+ if (HasTemplateKWAndArgsInfo)
+ size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
+
+ void *Mem = C.Allocate(size, llvm::alignOf<UnresolvedLookupExpr>());
+ UnresolvedLookupExpr *E = new (Mem) UnresolvedLookupExpr(EmptyShell());
+ E->HasTemplateKWAndArgsInfo = HasTemplateKWAndArgsInfo;
+ return E;
+}
+
+OverloadExpr::OverloadExpr(StmtClass K, const ASTContext &C,
+ NestedNameSpecifierLoc QualifierLoc,
+ SourceLocation TemplateKWLoc,
+ const DeclarationNameInfo &NameInfo,
+ const TemplateArgumentListInfo *TemplateArgs,
+ UnresolvedSetIterator Begin,
+ UnresolvedSetIterator End,
+ bool KnownDependent,
+ bool KnownInstantiationDependent,
+ bool KnownContainsUnexpandedParameterPack)
+ : Expr(K, C.OverloadTy, VK_LValue, OK_Ordinary, KnownDependent,
+ KnownDependent,
+ (KnownInstantiationDependent ||
+ NameInfo.isInstantiationDependent() ||
+ (QualifierLoc &&
+ QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())),
+ (KnownContainsUnexpandedParameterPack ||
+ NameInfo.containsUnexpandedParameterPack() ||
+ (QualifierLoc &&
+ QualifierLoc.getNestedNameSpecifier()
+ ->containsUnexpandedParameterPack()))),
+ NameInfo(NameInfo), QualifierLoc(QualifierLoc),
+ Results(nullptr), NumResults(End - Begin),
+ HasTemplateKWAndArgsInfo(TemplateArgs != nullptr ||
+ TemplateKWLoc.isValid()) {
+ NumResults = End - Begin;
+ if (NumResults) {
+ // Determine whether this expression is type-dependent.
+ for (UnresolvedSetImpl::const_iterator I = Begin; I != End; ++I) {
+ if ((*I)->getDeclContext()->isDependentContext() ||
+ isa<UnresolvedUsingValueDecl>(*I)) {
+ ExprBits.TypeDependent = true;
+ ExprBits.ValueDependent = true;
+ ExprBits.InstantiationDependent = true;
+ }
+ }
+
+ Results = static_cast<DeclAccessPair *>(
+ C.Allocate(sizeof(DeclAccessPair) * NumResults,
+ llvm::alignOf<DeclAccessPair>()));
+ memcpy(Results, Begin.I, NumResults * sizeof(DeclAccessPair));
+ }
+
+ // If we have explicit template arguments, check for dependent
+ // template arguments and whether they contain any unexpanded pack
+ // expansions.
+ if (TemplateArgs) {
+ bool Dependent = false;
+ bool InstantiationDependent = false;
+ bool ContainsUnexpandedParameterPack = false;
+ getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs,
+ Dependent,
+ InstantiationDependent,
+ ContainsUnexpandedParameterPack);
+
+ if (Dependent) {
+ ExprBits.TypeDependent = true;
+ ExprBits.ValueDependent = true;
+ }
+ if (InstantiationDependent)
+ ExprBits.InstantiationDependent = true;
+ if (ContainsUnexpandedParameterPack)
+ ExprBits.ContainsUnexpandedParameterPack = true;
+ } else if (TemplateKWLoc.isValid()) {
+ getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
+ }
+
+ if (isTypeDependent())
+ setType(C.DependentTy);
+}
+
+void OverloadExpr::initializeResults(const ASTContext &C,
+ UnresolvedSetIterator Begin,
+ UnresolvedSetIterator End) {
+ assert(!Results && "Results already initialized!");
+ NumResults = End - Begin;
+ if (NumResults) {
+ Results = static_cast<DeclAccessPair *>(
+ C.Allocate(sizeof(DeclAccessPair) * NumResults,
+
+ llvm::alignOf<DeclAccessPair>()));
+ memcpy(Results, Begin.I, NumResults * sizeof(DeclAccessPair));
+ }
+}
+
+CXXRecordDecl *OverloadExpr::getNamingClass() const {
+ if (isa<UnresolvedLookupExpr>(this))
+ return cast<UnresolvedLookupExpr>(this)->getNamingClass();
+ else
+ return cast<UnresolvedMemberExpr>(this)->getNamingClass();
+}
+
+// DependentScopeDeclRefExpr
+DependentScopeDeclRefExpr::DependentScopeDeclRefExpr(QualType T,
+ NestedNameSpecifierLoc QualifierLoc,
+ SourceLocation TemplateKWLoc,
+ const DeclarationNameInfo &NameInfo,
+ const TemplateArgumentListInfo *Args)
+ : Expr(DependentScopeDeclRefExprClass, T, VK_LValue, OK_Ordinary,
+ true, true,
+ (NameInfo.isInstantiationDependent() ||
+ (QualifierLoc &&
+ QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())),
+ (NameInfo.containsUnexpandedParameterPack() ||
+ (QualifierLoc &&
+ QualifierLoc.getNestedNameSpecifier()
+ ->containsUnexpandedParameterPack()))),
+ QualifierLoc(QualifierLoc), NameInfo(NameInfo),
+ HasTemplateKWAndArgsInfo(Args != nullptr || TemplateKWLoc.isValid())
+{
+ if (Args) {
+ bool Dependent = true;
+ bool InstantiationDependent = true;
+ bool ContainsUnexpandedParameterPack
+ = ExprBits.ContainsUnexpandedParameterPack;
+ getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *Args,
+ Dependent,
+ InstantiationDependent,
+ ContainsUnexpandedParameterPack);
+ ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
+ } else if (TemplateKWLoc.isValid()) {
+ getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
+ }
+}
+
+DependentScopeDeclRefExpr *
+DependentScopeDeclRefExpr::Create(const ASTContext &C,
+ NestedNameSpecifierLoc QualifierLoc,
+ SourceLocation TemplateKWLoc,
+ const DeclarationNameInfo &NameInfo,
+ const TemplateArgumentListInfo *Args) {
+ assert(QualifierLoc && "should be created for dependent qualifiers");
+ std::size_t size = sizeof(DependentScopeDeclRefExpr);
+ if (Args)
+ size += ASTTemplateKWAndArgsInfo::sizeFor(Args->size());
+ else if (TemplateKWLoc.isValid())
+ size += ASTTemplateKWAndArgsInfo::sizeFor(0);
+ void *Mem = C.Allocate(size);
+ return new (Mem) DependentScopeDeclRefExpr(C.DependentTy, QualifierLoc,
+ TemplateKWLoc, NameInfo, Args);
+}
+
+DependentScopeDeclRefExpr *
+DependentScopeDeclRefExpr::CreateEmpty(const ASTContext &C,
+ bool HasTemplateKWAndArgsInfo,
+ unsigned NumTemplateArgs) {
+ std::size_t size = sizeof(DependentScopeDeclRefExpr);
+ if (HasTemplateKWAndArgsInfo)
+ size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
+ void *Mem = C.Allocate(size);
+ DependentScopeDeclRefExpr *E
+ = new (Mem) DependentScopeDeclRefExpr(QualType(), NestedNameSpecifierLoc(),
+ SourceLocation(),
+ DeclarationNameInfo(), nullptr);
+ E->HasTemplateKWAndArgsInfo = HasTemplateKWAndArgsInfo;
+ return E;
+}
+
+SourceLocation CXXConstructExpr::getLocStart() const {
+ if (isa<CXXTemporaryObjectExpr>(this))
+ return cast<CXXTemporaryObjectExpr>(this)->getLocStart();
+ return Loc;
+}
+
+SourceLocation CXXConstructExpr::getLocEnd() const {
+ if (isa<CXXTemporaryObjectExpr>(this))
+ return cast<CXXTemporaryObjectExpr>(this)->getLocEnd();
+
+ if (ParenOrBraceRange.isValid())
+ return ParenOrBraceRange.getEnd();
+
+ SourceLocation End = Loc;
+ for (unsigned I = getNumArgs(); I > 0; --I) {
+ const Expr *Arg = getArg(I-1);
+ if (!Arg->isDefaultArgument()) {
+ SourceLocation NewEnd = Arg->getLocEnd();
+ if (NewEnd.isValid()) {
+ End = NewEnd;
+ break;
+ }
+ }
+ }
+
+ return End;
+}
+
+SourceRange CXXOperatorCallExpr::getSourceRangeImpl() const {
+ OverloadedOperatorKind Kind = getOperator();
+ if (Kind == OO_PlusPlus || Kind == OO_MinusMinus) {
+ if (getNumArgs() == 1)
+ // Prefix operator
+ return SourceRange(getOperatorLoc(), getArg(0)->getLocEnd());
+ else
+ // Postfix operator
+ return SourceRange(getArg(0)->getLocStart(), getOperatorLoc());
+ } else if (Kind == OO_Arrow) {
+ return getArg(0)->getSourceRange();
+ } else if (Kind == OO_Call) {
+ return SourceRange(getArg(0)->getLocStart(), getRParenLoc());
+ } else if (Kind == OO_Subscript) {
+ return SourceRange(getArg(0)->getLocStart(), getRParenLoc());
+ } else if (getNumArgs() == 1) {
+ return SourceRange(getOperatorLoc(), getArg(0)->getLocEnd());
+ } else if (getNumArgs() == 2) {
+ return SourceRange(getArg(0)->getLocStart(), getArg(1)->getLocEnd());
+ } else {
+ return getOperatorLoc();
+ }
+}
+
+Expr *CXXMemberCallExpr::getImplicitObjectArgument() const {
+ const Expr *Callee = getCallee()->IgnoreParens();
+ if (const MemberExpr *MemExpr = dyn_cast<MemberExpr>(Callee))
+ return MemExpr->getBase();
+ if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Callee))
+ if (BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI)
+ return BO->getLHS();
+
+ // FIXME: Will eventually need to cope with member pointers.
+ return nullptr;
+}
+
+CXXMethodDecl *CXXMemberCallExpr::getMethodDecl() const {
+ if (const MemberExpr *MemExpr =
+ dyn_cast<MemberExpr>(getCallee()->IgnoreParens()))
+ return cast<CXXMethodDecl>(MemExpr->getMemberDecl());
+
+ // FIXME: Will eventually need to cope with member pointers.
+ return nullptr;
+}
+
+
+CXXRecordDecl *CXXMemberCallExpr::getRecordDecl() const {
+ Expr* ThisArg = getImplicitObjectArgument();
+ if (!ThisArg)
+ return nullptr;
+
+ if (ThisArg->getType()->isAnyPointerType())
+ return ThisArg->getType()->getPointeeType()->getAsCXXRecordDecl();
+
+ return ThisArg->getType()->getAsCXXRecordDecl();
+}
+
+
+//===----------------------------------------------------------------------===//
+// Named casts
+//===----------------------------------------------------------------------===//
+
+/// getCastName - Get the name of the C++ cast being used, e.g.,
+/// "static_cast", "dynamic_cast", "reinterpret_cast", or
+/// "const_cast". The returned pointer must not be freed.
+const char *CXXNamedCastExpr::getCastName() const {
+ switch (getStmtClass()) {
+ case CXXStaticCastExprClass: return "static_cast";
+ case CXXDynamicCastExprClass: return "dynamic_cast";
+ case CXXReinterpretCastExprClass: return "reinterpret_cast";
+ case CXXConstCastExprClass: return "const_cast";
+ default: return "<invalid cast>";
+ }
+}
+
+CXXStaticCastExpr *CXXStaticCastExpr::Create(const ASTContext &C, QualType T,
+ ExprValueKind VK,
+ CastKind K, Expr *Op,
+ const CXXCastPath *BasePath,
+ TypeSourceInfo *WrittenTy,
+ SourceLocation L,
+ SourceLocation RParenLoc,
+ SourceRange AngleBrackets) {
+ unsigned PathSize = (BasePath ? BasePath->size() : 0);
+ void *Buffer = C.Allocate(sizeof(CXXStaticCastExpr)
+ + PathSize * sizeof(CXXBaseSpecifier*));
+ CXXStaticCastExpr *E =
+ new (Buffer) CXXStaticCastExpr(T, VK, K, Op, PathSize, WrittenTy, L,
+ RParenLoc, AngleBrackets);
+ if (PathSize) E->setCastPath(*BasePath);
+ return E;
+}
+
+CXXStaticCastExpr *CXXStaticCastExpr::CreateEmpty(const ASTContext &C,
+ unsigned PathSize) {
+ void *Buffer =
+ C.Allocate(sizeof(CXXStaticCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
+ return new (Buffer) CXXStaticCastExpr(EmptyShell(), PathSize);
+}
+
+CXXDynamicCastExpr *CXXDynamicCastExpr::Create(const ASTContext &C, QualType T,
+ ExprValueKind VK,
+ CastKind K, Expr *Op,
+ const CXXCastPath *BasePath,
+ TypeSourceInfo *WrittenTy,
+ SourceLocation L,
+ SourceLocation RParenLoc,
+ SourceRange AngleBrackets) {
+ unsigned PathSize = (BasePath ? BasePath->size() : 0);
+ void *Buffer = C.Allocate(sizeof(CXXDynamicCastExpr)
+ + PathSize * sizeof(CXXBaseSpecifier*));
+ CXXDynamicCastExpr *E =
+ new (Buffer) CXXDynamicCastExpr(T, VK, K, Op, PathSize, WrittenTy, L,
+ RParenLoc, AngleBrackets);
+ if (PathSize) E->setCastPath(*BasePath);
+ return E;
+}
+
+CXXDynamicCastExpr *CXXDynamicCastExpr::CreateEmpty(const ASTContext &C,
+ unsigned PathSize) {
+ void *Buffer =
+ C.Allocate(sizeof(CXXDynamicCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
+ return new (Buffer) CXXDynamicCastExpr(EmptyShell(), PathSize);
+}
+
+/// isAlwaysNull - Return whether the result of the dynamic_cast is proven
+/// to always be null. For example:
+///
+/// struct A { };
+/// struct B final : A { };
+/// struct C { };
+///
+/// C *f(B* b) { return dynamic_cast<C*>(b); }
+bool CXXDynamicCastExpr::isAlwaysNull() const
+{
+ QualType SrcType = getSubExpr()->getType();
+ QualType DestType = getType();
+
+ if (const PointerType *SrcPTy = SrcType->getAs<PointerType>()) {
+ SrcType = SrcPTy->getPointeeType();
+ DestType = DestType->castAs<PointerType>()->getPointeeType();
+ }
+
+ if (DestType->isVoidType())
+ return false;
+
+ const CXXRecordDecl *SrcRD =
+ cast<CXXRecordDecl>(SrcType->castAs<RecordType>()->getDecl());
+
+ if (!SrcRD->hasAttr<FinalAttr>())
+ return false;
+
+ const CXXRecordDecl *DestRD =
+ cast<CXXRecordDecl>(DestType->castAs<RecordType>()->getDecl());
+
+ return !DestRD->isDerivedFrom(SrcRD);
+}
+
+CXXReinterpretCastExpr *
+CXXReinterpretCastExpr::Create(const ASTContext &C, QualType T,
+ ExprValueKind VK, CastKind K, Expr *Op,
+ const CXXCastPath *BasePath,
+ TypeSourceInfo *WrittenTy, SourceLocation L,
+ SourceLocation RParenLoc,
+ SourceRange AngleBrackets) {
+ unsigned PathSize = (BasePath ? BasePath->size() : 0);
+ void *Buffer =
+ C.Allocate(sizeof(CXXReinterpretCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
+ CXXReinterpretCastExpr *E =
+ new (Buffer) CXXReinterpretCastExpr(T, VK, K, Op, PathSize, WrittenTy, L,
+ RParenLoc, AngleBrackets);
+ if (PathSize) E->setCastPath(*BasePath);
+ return E;
+}
+
+CXXReinterpretCastExpr *
+CXXReinterpretCastExpr::CreateEmpty(const ASTContext &C, unsigned PathSize) {
+ void *Buffer = C.Allocate(sizeof(CXXReinterpretCastExpr)
+ + PathSize * sizeof(CXXBaseSpecifier*));
+ return new (Buffer) CXXReinterpretCastExpr(EmptyShell(), PathSize);
+}
+
+CXXConstCastExpr *CXXConstCastExpr::Create(const ASTContext &C, QualType T,
+ ExprValueKind VK, Expr *Op,
+ TypeSourceInfo *WrittenTy,
+ SourceLocation L,
+ SourceLocation RParenLoc,
+ SourceRange AngleBrackets) {
+ return new (C) CXXConstCastExpr(T, VK, Op, WrittenTy, L, RParenLoc, AngleBrackets);
+}
+
+CXXConstCastExpr *CXXConstCastExpr::CreateEmpty(const ASTContext &C) {
+ return new (C) CXXConstCastExpr(EmptyShell());
+}
+
+CXXFunctionalCastExpr *
+CXXFunctionalCastExpr::Create(const ASTContext &C, QualType T, ExprValueKind VK,
+ TypeSourceInfo *Written, CastKind K, Expr *Op,
+ const CXXCastPath *BasePath,
+ SourceLocation L, SourceLocation R) {
+ unsigned PathSize = (BasePath ? BasePath->size() : 0);
+ void *Buffer = C.Allocate(sizeof(CXXFunctionalCastExpr)
+ + PathSize * sizeof(CXXBaseSpecifier*));
+ CXXFunctionalCastExpr *E =
+ new (Buffer) CXXFunctionalCastExpr(T, VK, Written, K, Op, PathSize, L, R);
+ if (PathSize) E->setCastPath(*BasePath);
+ return E;
+}
+
+CXXFunctionalCastExpr *
+CXXFunctionalCastExpr::CreateEmpty(const ASTContext &C, unsigned PathSize) {
+ void *Buffer = C.Allocate(sizeof(CXXFunctionalCastExpr)
+ + PathSize * sizeof(CXXBaseSpecifier*));
+ return new (Buffer) CXXFunctionalCastExpr(EmptyShell(), PathSize);
+}
+
+SourceLocation CXXFunctionalCastExpr::getLocStart() const {
+ return getTypeInfoAsWritten()->getTypeLoc().getLocStart();
+}
+
+SourceLocation CXXFunctionalCastExpr::getLocEnd() const {
+ return RParenLoc.isValid() ? RParenLoc : getSubExpr()->getLocEnd();
+}
+
+UserDefinedLiteral::LiteralOperatorKind
+UserDefinedLiteral::getLiteralOperatorKind() const {
+ if (getNumArgs() == 0)
+ return LOK_Template;
+ if (getNumArgs() == 2)
+ return LOK_String;
+
+ assert(getNumArgs() == 1 && "unexpected #args in literal operator call");
+ QualType ParamTy =
+ cast<FunctionDecl>(getCalleeDecl())->getParamDecl(0)->getType();
+ if (ParamTy->isPointerType())
+ return LOK_Raw;
+ if (ParamTy->isAnyCharacterType())
+ return LOK_Character;
+ if (ParamTy->isIntegerType())
+ return LOK_Integer;
+ if (ParamTy->isFloatingType())
+ return LOK_Floating;
+
+ llvm_unreachable("unknown kind of literal operator");
+}
+
+Expr *UserDefinedLiteral::getCookedLiteral() {
+#ifndef NDEBUG
+ LiteralOperatorKind LOK = getLiteralOperatorKind();
+ assert(LOK != LOK_Template && LOK != LOK_Raw && "not a cooked literal");
+#endif
+ return getArg(0);
+}
+
+const IdentifierInfo *UserDefinedLiteral::getUDSuffix() const {
+ return cast<FunctionDecl>(getCalleeDecl())->getLiteralIdentifier();
+}
+
+CXXDefaultArgExpr *
+CXXDefaultArgExpr::Create(const ASTContext &C, SourceLocation Loc,
+ ParmVarDecl *Param, Expr *SubExpr) {
+ void *Mem = C.Allocate(sizeof(CXXDefaultArgExpr) + sizeof(Stmt *));
+ return new (Mem) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param,
+ SubExpr);
+}
+
+CXXDefaultInitExpr::CXXDefaultInitExpr(const ASTContext &C, SourceLocation Loc,
+ FieldDecl *Field, QualType T)
+ : Expr(CXXDefaultInitExprClass, T.getNonLValueExprType(C),
+ T->isLValueReferenceType() ? VK_LValue : T->isRValueReferenceType()
+ ? VK_XValue
+ : VK_RValue,
+ /*FIXME*/ OK_Ordinary, false, false, false, false),
+ Field(Field), Loc(Loc) {
+ assert(Field->hasInClassInitializer());
+}
+
+CXXTemporary *CXXTemporary::Create(const ASTContext &C,
+ const CXXDestructorDecl *Destructor) {
+ return new (C) CXXTemporary(Destructor);
+}
+
+CXXBindTemporaryExpr *CXXBindTemporaryExpr::Create(const ASTContext &C,
+ CXXTemporary *Temp,
+ Expr* SubExpr) {
+ assert((SubExpr->getType()->isRecordType() ||
+ SubExpr->getType()->isArrayType()) &&
+ "Expression bound to a temporary must have record or array type!");
+
+ return new (C) CXXBindTemporaryExpr(Temp, SubExpr);
+}
+
+CXXTemporaryObjectExpr::CXXTemporaryObjectExpr(const ASTContext &C,
+ CXXConstructorDecl *Cons,
+ TypeSourceInfo *Type,
+ ArrayRef<Expr*> Args,
+ SourceRange ParenOrBraceRange,
+ bool HadMultipleCandidates,
+ bool ListInitialization,
+ bool StdInitListInitialization,
+ bool ZeroInitialization)
+ : CXXConstructExpr(C, CXXTemporaryObjectExprClass,
+ Type->getType().getNonReferenceType(),
+ Type->getTypeLoc().getBeginLoc(),
+ Cons, false, Args,
+ HadMultipleCandidates,
+ ListInitialization,
+ StdInitListInitialization,
+ ZeroInitialization,
+ CXXConstructExpr::CK_Complete, ParenOrBraceRange),
+ Type(Type) {
+}
+
+SourceLocation CXXTemporaryObjectExpr::getLocStart() const {
+ return Type->getTypeLoc().getBeginLoc();
+}
+
+SourceLocation CXXTemporaryObjectExpr::getLocEnd() const {
+ SourceLocation Loc = getParenOrBraceRange().getEnd();
+ if (Loc.isInvalid() && getNumArgs())
+ Loc = getArg(getNumArgs()-1)->getLocEnd();
+ return Loc;
+}
+
+CXXConstructExpr *CXXConstructExpr::Create(const ASTContext &C, QualType T,
+ SourceLocation Loc,
+ CXXConstructorDecl *D, bool Elidable,
+ ArrayRef<Expr*> Args,
+ bool HadMultipleCandidates,
+ bool ListInitialization,
+ bool StdInitListInitialization,
+ bool ZeroInitialization,
+ ConstructionKind ConstructKind,
+ SourceRange ParenOrBraceRange) {
+ return new (C) CXXConstructExpr(C, CXXConstructExprClass, T, Loc, D,
+ Elidable, Args,
+ HadMultipleCandidates, ListInitialization,
+ StdInitListInitialization,
+ ZeroInitialization, ConstructKind,
+ ParenOrBraceRange);
+}
+
+CXXConstructExpr::CXXConstructExpr(const ASTContext &C, StmtClass SC,
+ QualType T, SourceLocation Loc,
+ CXXConstructorDecl *D, bool elidable,
+ ArrayRef<Expr*> args,
+ bool HadMultipleCandidates,
+ bool ListInitialization,
+ bool StdInitListInitialization,
+ bool ZeroInitialization,
+ ConstructionKind ConstructKind,
+ SourceRange ParenOrBraceRange)
+ : Expr(SC, T, VK_RValue, OK_Ordinary,
+ T->isDependentType(), T->isDependentType(),
+ T->isInstantiationDependentType(),
+ T->containsUnexpandedParameterPack()),
+ Constructor(D), Loc(Loc), ParenOrBraceRange(ParenOrBraceRange),
+ NumArgs(args.size()),
+ Elidable(elidable), HadMultipleCandidates(HadMultipleCandidates),
+ ListInitialization(ListInitialization),
+ StdInitListInitialization(StdInitListInitialization),
+ ZeroInitialization(ZeroInitialization),
+ ConstructKind(ConstructKind), Args(nullptr)
+{
+ if (NumArgs) {
+ Args = new (C) Stmt*[args.size()];
+
+ for (unsigned i = 0; i != args.size(); ++i) {
+ assert(args[i] && "NULL argument in CXXConstructExpr");
+
+ if (args[i]->isValueDependent())
+ ExprBits.ValueDependent = true;
+ if (args[i]->isInstantiationDependent())
+ ExprBits.InstantiationDependent = true;
+ if (args[i]->containsUnexpandedParameterPack())
+ ExprBits.ContainsUnexpandedParameterPack = true;
+
+ Args[i] = args[i];
+ }
+ }
+}
+
+LambdaCapture::LambdaCapture(SourceLocation Loc, bool Implicit,
+ LambdaCaptureKind Kind, VarDecl *Var,
+ SourceLocation EllipsisLoc)
+ : DeclAndBits(Var, 0), Loc(Loc), EllipsisLoc(EllipsisLoc)
+{
+ unsigned Bits = 0;
+ if (Implicit)
+ Bits |= Capture_Implicit;
+
+ switch (Kind) {
+ case LCK_This:
+ assert(!Var && "'this' capture cannot have a variable!");
+ break;
+
+ case LCK_ByCopy:
+ Bits |= Capture_ByCopy;
+ // Fall through
+ case LCK_ByRef:
+ assert(Var && "capture must have a variable!");
+ break;
+ case LCK_VLAType:
+ assert(!Var && "VLA type capture cannot have a variable!");
+ Bits |= Capture_ByCopy;
+ break;
+ }
+ DeclAndBits.setInt(Bits);
+}
+
+LambdaCaptureKind LambdaCapture::getCaptureKind() const {
+ Decl *D = DeclAndBits.getPointer();
+ bool CapByCopy = DeclAndBits.getInt() & Capture_ByCopy;
+ if (!D)
+ return CapByCopy ? LCK_VLAType : LCK_This;
+
+ return CapByCopy ? LCK_ByCopy : LCK_ByRef;
+}
+
+LambdaExpr::LambdaExpr(QualType T,
+ SourceRange IntroducerRange,
+ LambdaCaptureDefault CaptureDefault,
+ SourceLocation CaptureDefaultLoc,
+ ArrayRef<Capture> Captures,
+ bool ExplicitParams,
+ bool ExplicitResultType,
+ ArrayRef<Expr *> CaptureInits,
+ ArrayRef<VarDecl *> ArrayIndexVars,
+ ArrayRef<unsigned> ArrayIndexStarts,
+ SourceLocation ClosingBrace,
+ bool ContainsUnexpandedParameterPack)
+ : Expr(LambdaExprClass, T, VK_RValue, OK_Ordinary,
+ T->isDependentType(), T->isDependentType(), T->isDependentType(),
+ ContainsUnexpandedParameterPack),
+ IntroducerRange(IntroducerRange),
+ CaptureDefaultLoc(CaptureDefaultLoc),
+ NumCaptures(Captures.size()),
+ CaptureDefault(CaptureDefault),
+ ExplicitParams(ExplicitParams),
+ ExplicitResultType(ExplicitResultType),
+ ClosingBrace(ClosingBrace)
+{
+ assert(CaptureInits.size() == Captures.size() && "Wrong number of arguments");
+ CXXRecordDecl *Class = getLambdaClass();
+ CXXRecordDecl::LambdaDefinitionData &Data = Class->getLambdaData();
+
+ // FIXME: Propagate "has unexpanded parameter pack" bit.
+
+ // Copy captures.
+ const ASTContext &Context = Class->getASTContext();
+ Data.NumCaptures = NumCaptures;
+ Data.NumExplicitCaptures = 0;
+ Data.Captures = (Capture *)Context.Allocate(sizeof(Capture) * NumCaptures);
+ Capture *ToCapture = Data.Captures;
+ for (unsigned I = 0, N = Captures.size(); I != N; ++I) {
+ if (Captures[I].isExplicit())
+ ++Data.NumExplicitCaptures;
+
+ *ToCapture++ = Captures[I];
+ }
+
+ // Copy initialization expressions for the non-static data members.
+ Stmt **Stored = getStoredStmts();
+ for (unsigned I = 0, N = CaptureInits.size(); I != N; ++I)
+ *Stored++ = CaptureInits[I];
+
+ // Copy the body of the lambda.
+ *Stored++ = getCallOperator()->getBody();
+
+ // Copy the array index variables, if any.
+ HasArrayIndexVars = !ArrayIndexVars.empty();
+ if (HasArrayIndexVars) {
+ assert(ArrayIndexStarts.size() == NumCaptures);
+ memcpy(getArrayIndexVars(), ArrayIndexVars.data(),
+ sizeof(VarDecl *) * ArrayIndexVars.size());
+ memcpy(getArrayIndexStarts(), ArrayIndexStarts.data(),
+ sizeof(unsigned) * Captures.size());
+ getArrayIndexStarts()[Captures.size()] = ArrayIndexVars.size();
+ }
+}
+
+LambdaExpr *LambdaExpr::Create(const ASTContext &Context,
+ CXXRecordDecl *Class,
+ SourceRange IntroducerRange,
+ LambdaCaptureDefault CaptureDefault,
+ SourceLocation CaptureDefaultLoc,
+ ArrayRef<Capture> Captures,
+ bool ExplicitParams,
+ bool ExplicitResultType,
+ ArrayRef<Expr *> CaptureInits,
+ ArrayRef<VarDecl *> ArrayIndexVars,
+ ArrayRef<unsigned> ArrayIndexStarts,
+ SourceLocation ClosingBrace,
+ bool ContainsUnexpandedParameterPack) {
+ // Determine the type of the expression (i.e., the type of the
+ // function object we're creating).
+ QualType T = Context.getTypeDeclType(Class);
+
+ unsigned Size = sizeof(LambdaExpr) + sizeof(Stmt *) * (Captures.size() + 1);
+ if (!ArrayIndexVars.empty()) {
+ Size += sizeof(unsigned) * (Captures.size() + 1);
+ // Realign for following VarDecl array.
+ Size = llvm::RoundUpToAlignment(Size, llvm::alignOf<VarDecl*>());
+ Size += sizeof(VarDecl *) * ArrayIndexVars.size();
+ }
+ void *Mem = Context.Allocate(Size);
+ return new (Mem) LambdaExpr(T, IntroducerRange,
+ CaptureDefault, CaptureDefaultLoc, Captures,
+ ExplicitParams, ExplicitResultType,
+ CaptureInits, ArrayIndexVars, ArrayIndexStarts,
+ ClosingBrace, ContainsUnexpandedParameterPack);
+}
+
+LambdaExpr *LambdaExpr::CreateDeserialized(const ASTContext &C,
+ unsigned NumCaptures,
+ unsigned NumArrayIndexVars) {
+ unsigned Size = sizeof(LambdaExpr) + sizeof(Stmt *) * (NumCaptures + 1);
+ if (NumArrayIndexVars)
+ Size += sizeof(VarDecl) * NumArrayIndexVars
+ + sizeof(unsigned) * (NumCaptures + 1);
+ void *Mem = C.Allocate(Size);
+ return new (Mem) LambdaExpr(EmptyShell(), NumCaptures, NumArrayIndexVars > 0);
+}
+
+bool LambdaExpr::isInitCapture(const LambdaCapture *C) const {
+ return (C->capturesVariable() && C->getCapturedVar()->isInitCapture() &&
+ (getCallOperator() == C->getCapturedVar()->getDeclContext()));
+}
+
+LambdaExpr::capture_iterator LambdaExpr::capture_begin() const {
+ return getLambdaClass()->getLambdaData().Captures;
+}
+
+LambdaExpr::capture_iterator LambdaExpr::capture_end() const {
+ return capture_begin() + NumCaptures;
+}
+
+LambdaExpr::capture_range LambdaExpr::captures() const {
+ return capture_range(capture_begin(), capture_end());
+}
+
+LambdaExpr::capture_iterator LambdaExpr::explicit_capture_begin() const {
+ return capture_begin();
+}
+
+LambdaExpr::capture_iterator LambdaExpr::explicit_capture_end() const {
+ struct CXXRecordDecl::LambdaDefinitionData &Data
+ = getLambdaClass()->getLambdaData();
+ return Data.Captures + Data.NumExplicitCaptures;
+}
+
+LambdaExpr::capture_range LambdaExpr::explicit_captures() const {
+ return capture_range(explicit_capture_begin(), explicit_capture_end());
+}
+
+LambdaExpr::capture_iterator LambdaExpr::implicit_capture_begin() const {
+ return explicit_capture_end();
+}
+
+LambdaExpr::capture_iterator LambdaExpr::implicit_capture_end() const {
+ return capture_end();
+}
+
+LambdaExpr::capture_range LambdaExpr::implicit_captures() const {
+ return capture_range(implicit_capture_begin(), implicit_capture_end());
+}
+
+ArrayRef<VarDecl *>
+LambdaExpr::getCaptureInitIndexVars(capture_init_iterator Iter) const {
+ assert(HasArrayIndexVars && "No array index-var data?");
+
+ unsigned Index = Iter - capture_init_begin();
+ assert(Index < getLambdaClass()->getLambdaData().NumCaptures &&
+ "Capture index out-of-range");
+ VarDecl **IndexVars = getArrayIndexVars();
+ unsigned *IndexStarts = getArrayIndexStarts();
+ return llvm::makeArrayRef(IndexVars + IndexStarts[Index],
+ IndexVars + IndexStarts[Index + 1]);
+}
+
+CXXRecordDecl *LambdaExpr::getLambdaClass() const {
+ return getType()->getAsCXXRecordDecl();
+}
+
+CXXMethodDecl *LambdaExpr::getCallOperator() const {
+ CXXRecordDecl *Record = getLambdaClass();
+ return Record->getLambdaCallOperator();
+}
+
+TemplateParameterList *LambdaExpr::getTemplateParameterList() const {
+ CXXRecordDecl *Record = getLambdaClass();
+ return Record->getGenericLambdaTemplateParameterList();
+
+}
+
+CompoundStmt *LambdaExpr::getBody() const {
+ if (!getStoredStmts()[NumCaptures])
+ getStoredStmts()[NumCaptures] = getCallOperator()->getBody();
+
+ return reinterpret_cast<CompoundStmt *>(getStoredStmts()[NumCaptures]);
+}
+
+bool LambdaExpr::isMutable() const {
+ return !getCallOperator()->isConst();
+}
+
+ExprWithCleanups::ExprWithCleanups(Expr *subexpr,
+ ArrayRef<CleanupObject> objects)
+ : Expr(ExprWithCleanupsClass, subexpr->getType(),
+ subexpr->getValueKind(), subexpr->getObjectKind(),
+ subexpr->isTypeDependent(), subexpr->isValueDependent(),
+ subexpr->isInstantiationDependent(),
+ subexpr->containsUnexpandedParameterPack()),
+ SubExpr(subexpr) {
+ ExprWithCleanupsBits.NumObjects = objects.size();
+ for (unsigned i = 0, e = objects.size(); i != e; ++i)
+ getObjectsBuffer()[i] = objects[i];
+}
+
+ExprWithCleanups *ExprWithCleanups::Create(const ASTContext &C, Expr *subexpr,
+ ArrayRef<CleanupObject> objects) {
+ size_t size = sizeof(ExprWithCleanups)
+ + objects.size() * sizeof(CleanupObject);
+ void *buffer = C.Allocate(size, llvm::alignOf<ExprWithCleanups>());
+ return new (buffer) ExprWithCleanups(subexpr, objects);
+}
+
+ExprWithCleanups::ExprWithCleanups(EmptyShell empty, unsigned numObjects)
+ : Expr(ExprWithCleanupsClass, empty) {
+ ExprWithCleanupsBits.NumObjects = numObjects;
+}
+
+ExprWithCleanups *ExprWithCleanups::Create(const ASTContext &C,
+ EmptyShell empty,
+ unsigned numObjects) {
+ size_t size = sizeof(ExprWithCleanups) + numObjects * sizeof(CleanupObject);
+ void *buffer = C.Allocate(size, llvm::alignOf<ExprWithCleanups>());
+ return new (buffer) ExprWithCleanups(empty, numObjects);
+}
+
+CXXUnresolvedConstructExpr::CXXUnresolvedConstructExpr(TypeSourceInfo *Type,
+ SourceLocation LParenLoc,
+ ArrayRef<Expr*> Args,
+ SourceLocation RParenLoc)
+ : Expr(CXXUnresolvedConstructExprClass,
+ Type->getType().getNonReferenceType(),
+ (Type->getType()->isLValueReferenceType() ? VK_LValue
+ :Type->getType()->isRValueReferenceType()? VK_XValue
+ :VK_RValue),
+ OK_Ordinary,
+ Type->getType()->isDependentType(), true, true,
+ Type->getType()->containsUnexpandedParameterPack()),
+ Type(Type),
+ LParenLoc(LParenLoc),
+ RParenLoc(RParenLoc),
+ NumArgs(Args.size()) {
+ Stmt **StoredArgs = reinterpret_cast<Stmt **>(this + 1);
+ for (unsigned I = 0; I != Args.size(); ++I) {
+ if (Args[I]->containsUnexpandedParameterPack())
+ ExprBits.ContainsUnexpandedParameterPack = true;
+
+ StoredArgs[I] = Args[I];
+ }
+}
+
+CXXUnresolvedConstructExpr *
+CXXUnresolvedConstructExpr::Create(const ASTContext &C,
+ TypeSourceInfo *Type,
+ SourceLocation LParenLoc,
+ ArrayRef<Expr*> Args,
+ SourceLocation RParenLoc) {
+ void *Mem = C.Allocate(sizeof(CXXUnresolvedConstructExpr) +
+ sizeof(Expr *) * Args.size());
+ return new (Mem) CXXUnresolvedConstructExpr(Type, LParenLoc, Args, RParenLoc);
+}
+
+CXXUnresolvedConstructExpr *
+CXXUnresolvedConstructExpr::CreateEmpty(const ASTContext &C, unsigned NumArgs) {
+ Stmt::EmptyShell Empty;
+ void *Mem = C.Allocate(sizeof(CXXUnresolvedConstructExpr) +
+ sizeof(Expr *) * NumArgs);
+ return new (Mem) CXXUnresolvedConstructExpr(Empty, NumArgs);
+}
+
+SourceLocation CXXUnresolvedConstructExpr::getLocStart() const {
+ return Type->getTypeLoc().getBeginLoc();
+}
+
+CXXDependentScopeMemberExpr::CXXDependentScopeMemberExpr(const ASTContext &C,
+ Expr *Base, QualType BaseType,
+ bool IsArrow,
+ SourceLocation OperatorLoc,
+ NestedNameSpecifierLoc QualifierLoc,
+ SourceLocation TemplateKWLoc,
+ NamedDecl *FirstQualifierFoundInScope,
+ DeclarationNameInfo MemberNameInfo,
+ const TemplateArgumentListInfo *TemplateArgs)
+ : Expr(CXXDependentScopeMemberExprClass, C.DependentTy,
+ VK_LValue, OK_Ordinary, true, true, true,
+ ((Base && Base->containsUnexpandedParameterPack()) ||
+ (QualifierLoc &&
+ QualifierLoc.getNestedNameSpecifier()
+ ->containsUnexpandedParameterPack()) ||
+ MemberNameInfo.containsUnexpandedParameterPack())),
+ Base(Base), BaseType(BaseType), IsArrow(IsArrow),
+ HasTemplateKWAndArgsInfo(TemplateArgs != nullptr ||
+ TemplateKWLoc.isValid()),
+ OperatorLoc(OperatorLoc), QualifierLoc(QualifierLoc),
+ FirstQualifierFoundInScope(FirstQualifierFoundInScope),
+ MemberNameInfo(MemberNameInfo) {
+ if (TemplateArgs) {
+ bool Dependent = true;
+ bool InstantiationDependent = true;
+ bool ContainsUnexpandedParameterPack = false;
+ getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs,
+ Dependent,
+ InstantiationDependent,
+ ContainsUnexpandedParameterPack);
+ if (ContainsUnexpandedParameterPack)
+ ExprBits.ContainsUnexpandedParameterPack = true;
+ } else if (TemplateKWLoc.isValid()) {
+ getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
+ }
+}
+
+CXXDependentScopeMemberExpr::CXXDependentScopeMemberExpr(const ASTContext &C,
+ Expr *Base, QualType BaseType,
+ bool IsArrow,
+ SourceLocation OperatorLoc,
+ NestedNameSpecifierLoc QualifierLoc,
+ NamedDecl *FirstQualifierFoundInScope,
+ DeclarationNameInfo MemberNameInfo)
+ : Expr(CXXDependentScopeMemberExprClass, C.DependentTy,
+ VK_LValue, OK_Ordinary, true, true, true,
+ ((Base && Base->containsUnexpandedParameterPack()) ||
+ (QualifierLoc &&
+ QualifierLoc.getNestedNameSpecifier()->
+ containsUnexpandedParameterPack()) ||
+ MemberNameInfo.containsUnexpandedParameterPack())),
+ Base(Base), BaseType(BaseType), IsArrow(IsArrow),
+ HasTemplateKWAndArgsInfo(false),
+ OperatorLoc(OperatorLoc), QualifierLoc(QualifierLoc),
+ FirstQualifierFoundInScope(FirstQualifierFoundInScope),
+ MemberNameInfo(MemberNameInfo) { }
+
+CXXDependentScopeMemberExpr *
+CXXDependentScopeMemberExpr::Create(const ASTContext &C,
+ Expr *Base, QualType BaseType, bool IsArrow,
+ SourceLocation OperatorLoc,
+ NestedNameSpecifierLoc QualifierLoc,
+ SourceLocation TemplateKWLoc,
+ NamedDecl *FirstQualifierFoundInScope,
+ DeclarationNameInfo MemberNameInfo,
+ const TemplateArgumentListInfo *TemplateArgs) {
+ if (!TemplateArgs && !TemplateKWLoc.isValid())
+ return new (C) CXXDependentScopeMemberExpr(C, Base, BaseType,
+ IsArrow, OperatorLoc,
+ QualifierLoc,
+ FirstQualifierFoundInScope,
+ MemberNameInfo);
+
+ unsigned NumTemplateArgs = TemplateArgs ? TemplateArgs->size() : 0;
+ std::size_t size = sizeof(CXXDependentScopeMemberExpr)
+ + ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
+
+ void *Mem = C.Allocate(size, llvm::alignOf<CXXDependentScopeMemberExpr>());
+ return new (Mem) CXXDependentScopeMemberExpr(C, Base, BaseType,
+ IsArrow, OperatorLoc,
+ QualifierLoc,
+ TemplateKWLoc,
+ FirstQualifierFoundInScope,
+ MemberNameInfo, TemplateArgs);
+}
+
+CXXDependentScopeMemberExpr *
+CXXDependentScopeMemberExpr::CreateEmpty(const ASTContext &C,
+ bool HasTemplateKWAndArgsInfo,
+ unsigned NumTemplateArgs) {
+ if (!HasTemplateKWAndArgsInfo)
+ return new (C) CXXDependentScopeMemberExpr(C, nullptr, QualType(),
+ 0, SourceLocation(),
+ NestedNameSpecifierLoc(),
+ nullptr, DeclarationNameInfo());
+
+ std::size_t size = sizeof(CXXDependentScopeMemberExpr) +
+ ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
+ void *Mem = C.Allocate(size, llvm::alignOf<CXXDependentScopeMemberExpr>());
+ CXXDependentScopeMemberExpr *E
+ = new (Mem) CXXDependentScopeMemberExpr(C, nullptr, QualType(),
+ 0, SourceLocation(),
+ NestedNameSpecifierLoc(),
+ SourceLocation(), nullptr,
+ DeclarationNameInfo(), nullptr);
+ E->HasTemplateKWAndArgsInfo = true;
+ return E;
+}
+
+bool CXXDependentScopeMemberExpr::isImplicitAccess() const {
+ if (!Base)
+ return true;
+
+ return cast<Expr>(Base)->isImplicitCXXThis();
+}
+
+static bool hasOnlyNonStaticMemberFunctions(UnresolvedSetIterator begin,
+ UnresolvedSetIterator end) {
+ do {
+ NamedDecl *decl = *begin;
+ if (isa<UnresolvedUsingValueDecl>(decl))
+ return false;
+
+ // Unresolved member expressions should only contain methods and
+ // method templates.
+ if (cast<CXXMethodDecl>(decl->getUnderlyingDecl()->getAsFunction())
+ ->isStatic())
+ return false;
+ } while (++begin != end);
+
+ return true;
+}
+
+UnresolvedMemberExpr::UnresolvedMemberExpr(const ASTContext &C,
+ bool HasUnresolvedUsing,
+ Expr *Base, QualType BaseType,
+ bool IsArrow,
+ SourceLocation OperatorLoc,
+ NestedNameSpecifierLoc QualifierLoc,
+ SourceLocation TemplateKWLoc,
+ const DeclarationNameInfo &MemberNameInfo,
+ const TemplateArgumentListInfo *TemplateArgs,
+ UnresolvedSetIterator Begin,
+ UnresolvedSetIterator End)
+ : OverloadExpr(UnresolvedMemberExprClass, C, QualifierLoc, TemplateKWLoc,
+ MemberNameInfo, TemplateArgs, Begin, End,
+ // Dependent
+ ((Base && Base->isTypeDependent()) ||
+ BaseType->isDependentType()),
+ ((Base && Base->isInstantiationDependent()) ||
+ BaseType->isInstantiationDependentType()),
+ // Contains unexpanded parameter pack
+ ((Base && Base->containsUnexpandedParameterPack()) ||
+ BaseType->containsUnexpandedParameterPack())),
+ IsArrow(IsArrow), HasUnresolvedUsing(HasUnresolvedUsing),
+ Base(Base), BaseType(BaseType), OperatorLoc(OperatorLoc) {
+
+ // Check whether all of the members are non-static member functions,
+ // and if so, mark give this bound-member type instead of overload type.
+ if (hasOnlyNonStaticMemberFunctions(Begin, End))
+ setType(C.BoundMemberTy);
+}
+
+bool UnresolvedMemberExpr::isImplicitAccess() const {
+ if (!Base)
+ return true;
+
+ return cast<Expr>(Base)->isImplicitCXXThis();
+}
+
+UnresolvedMemberExpr *
+UnresolvedMemberExpr::Create(const ASTContext &C, bool HasUnresolvedUsing,
+ Expr *Base, QualType BaseType, bool IsArrow,
+ SourceLocation OperatorLoc,
+ NestedNameSpecifierLoc QualifierLoc,
+ SourceLocation TemplateKWLoc,
+ const DeclarationNameInfo &MemberNameInfo,
+ const TemplateArgumentListInfo *TemplateArgs,
+ UnresolvedSetIterator Begin,
+ UnresolvedSetIterator End) {
+ std::size_t size = sizeof(UnresolvedMemberExpr);
+ if (TemplateArgs)
+ size += ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs->size());
+ else if (TemplateKWLoc.isValid())
+ size += ASTTemplateKWAndArgsInfo::sizeFor(0);
+
+ void *Mem = C.Allocate(size, llvm::alignOf<UnresolvedMemberExpr>());
+ return new (Mem) UnresolvedMemberExpr(C,
+ HasUnresolvedUsing, Base, BaseType,
+ IsArrow, OperatorLoc, QualifierLoc, TemplateKWLoc,
+ MemberNameInfo, TemplateArgs, Begin, End);
+}
+
+UnresolvedMemberExpr *
+UnresolvedMemberExpr::CreateEmpty(const ASTContext &C,
+ bool HasTemplateKWAndArgsInfo,
+ unsigned NumTemplateArgs) {
+ std::size_t size = sizeof(UnresolvedMemberExpr);
+ if (HasTemplateKWAndArgsInfo)
+ size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
+
+ void *Mem = C.Allocate(size, llvm::alignOf<UnresolvedMemberExpr>());
+ UnresolvedMemberExpr *E = new (Mem) UnresolvedMemberExpr(EmptyShell());
+ E->HasTemplateKWAndArgsInfo = HasTemplateKWAndArgsInfo;
+ return E;
+}
+
+CXXRecordDecl *UnresolvedMemberExpr::getNamingClass() const {
+ // Unlike for UnresolvedLookupExpr, it is very easy to re-derive this.
+
+ // If there was a nested name specifier, it names the naming class.
+ // It can't be dependent: after all, we were actually able to do the
+ // lookup.
+ CXXRecordDecl *Record = nullptr;
+ auto *NNS = getQualifier();
+ if (NNS && NNS->getKind() != NestedNameSpecifier::Super) {
+ const Type *T = getQualifier()->getAsType();
+ assert(T && "qualifier in member expression does not name type");
+ Record = T->getAsCXXRecordDecl();
+ assert(Record && "qualifier in member expression does not name record");
+ }
+ // Otherwise the naming class must have been the base class.
+ else {
+ QualType BaseType = getBaseType().getNonReferenceType();
+ if (isArrow()) {
+ const PointerType *PT = BaseType->getAs<PointerType>();
+ assert(PT && "base of arrow member access is not pointer");
+ BaseType = PT->getPointeeType();
+ }
+
+ Record = BaseType->getAsCXXRecordDecl();
+ assert(Record && "base of member expression does not name record");
+ }
+
+ return Record;
+}
+
+SubstNonTypeTemplateParmPackExpr::
+SubstNonTypeTemplateParmPackExpr(QualType T,
+ NonTypeTemplateParmDecl *Param,
+ SourceLocation NameLoc,
+ const TemplateArgument &ArgPack)
+ : Expr(SubstNonTypeTemplateParmPackExprClass, T, VK_RValue, OK_Ordinary,
+ true, true, true, true),
+ Param(Param), Arguments(ArgPack.pack_begin()),
+ NumArguments(ArgPack.pack_size()), NameLoc(NameLoc) { }
+
+TemplateArgument SubstNonTypeTemplateParmPackExpr::getArgumentPack() const {
+ return TemplateArgument(Arguments, NumArguments);
+}
+
+FunctionParmPackExpr::FunctionParmPackExpr(QualType T, ParmVarDecl *ParamPack,
+ SourceLocation NameLoc,
+ unsigned NumParams,
+ Decl * const *Params)
+ : Expr(FunctionParmPackExprClass, T, VK_LValue, OK_Ordinary,
+ true, true, true, true),
+ ParamPack(ParamPack), NameLoc(NameLoc), NumParameters(NumParams) {
+ if (Params)
+ std::uninitialized_copy(Params, Params + NumParams,
+ reinterpret_cast<Decl**>(this+1));
+}
+
+FunctionParmPackExpr *
+FunctionParmPackExpr::Create(const ASTContext &Context, QualType T,
+ ParmVarDecl *ParamPack, SourceLocation NameLoc,
+ ArrayRef<Decl *> Params) {
+ return new (Context.Allocate(sizeof(FunctionParmPackExpr) +
+ sizeof(ParmVarDecl*) * Params.size()))
+ FunctionParmPackExpr(T, ParamPack, NameLoc, Params.size(), Params.data());
+}
+
+FunctionParmPackExpr *
+FunctionParmPackExpr::CreateEmpty(const ASTContext &Context,
+ unsigned NumParams) {
+ return new (Context.Allocate(sizeof(FunctionParmPackExpr) +
+ sizeof(ParmVarDecl*) * NumParams))
+ FunctionParmPackExpr(QualType(), nullptr, SourceLocation(), 0, nullptr);
+}
+
+void MaterializeTemporaryExpr::setExtendingDecl(const ValueDecl *ExtendedBy,
+ unsigned ManglingNumber) {
+ // We only need extra state if we have to remember more than just the Stmt.
+ if (!ExtendedBy)
+ return;
+
+ // We may need to allocate extra storage for the mangling number and the
+ // extended-by ValueDecl.
+ if (!State.is<ExtraState *>()) {
+ auto ES = new (ExtendedBy->getASTContext()) ExtraState;
+ ES->Temporary = State.get<Stmt *>();
+ State = ES;
+ }
+
+ auto ES = State.get<ExtraState *>();
+ ES->ExtendingDecl = ExtendedBy;
+ ES->ManglingNumber = ManglingNumber;
+}
+
+TypeTraitExpr::TypeTraitExpr(QualType T, SourceLocation Loc, TypeTrait Kind,
+ ArrayRef<TypeSourceInfo *> Args,
+ SourceLocation RParenLoc,
+ bool Value)
+ : Expr(TypeTraitExprClass, T, VK_RValue, OK_Ordinary,
+ /*TypeDependent=*/false,
+ /*ValueDependent=*/false,
+ /*InstantiationDependent=*/false,
+ /*ContainsUnexpandedParameterPack=*/false),
+ Loc(Loc), RParenLoc(RParenLoc)
+{
+ TypeTraitExprBits.Kind = Kind;
+ TypeTraitExprBits.Value = Value;
+ TypeTraitExprBits.NumArgs = Args.size();
+
+ TypeSourceInfo **ToArgs = getTypeSourceInfos();
+
+ for (unsigned I = 0, N = Args.size(); I != N; ++I) {
+ if (Args[I]->getType()->isDependentType())
+ setValueDependent(true);
+ if (Args[I]->getType()->isInstantiationDependentType())
+ setInstantiationDependent(true);
+ if (Args[I]->getType()->containsUnexpandedParameterPack())
+ setContainsUnexpandedParameterPack(true);
+
+ ToArgs[I] = Args[I];
+ }
+}
+
+TypeTraitExpr *TypeTraitExpr::Create(const ASTContext &C, QualType T,
+ SourceLocation Loc,
+ TypeTrait Kind,
+ ArrayRef<TypeSourceInfo *> Args,
+ SourceLocation RParenLoc,
+ bool Value) {
+ unsigned Size = sizeof(TypeTraitExpr) + sizeof(TypeSourceInfo*) * Args.size();
+ void *Mem = C.Allocate(Size);
+ return new (Mem) TypeTraitExpr(T, Loc, Kind, Args, RParenLoc, Value);
+}
+
+TypeTraitExpr *TypeTraitExpr::CreateDeserialized(const ASTContext &C,
+ unsigned NumArgs) {
+ unsigned Size = sizeof(TypeTraitExpr) + sizeof(TypeSourceInfo*) * NumArgs;
+ void *Mem = C.Allocate(Size);
+ return new (Mem) TypeTraitExpr(EmptyShell());
+}
+
+void ArrayTypeTraitExpr::anchor() { }
diff --git a/contrib/llvm/tools/clang/lib/AST/ExprClassification.cpp b/contrib/llvm/tools/clang/lib/AST/ExprClassification.cpp
new file mode 100644
index 0000000..5b320c2
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/ExprClassification.cpp
@@ -0,0 +1,680 @@
+//===--- ExprClassification.cpp - Expression AST Node Implementation ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements Expr::classify.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/Expr.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+#include "llvm/Support/ErrorHandling.h"
+using namespace clang;
+
+typedef Expr::Classification Cl;
+
+static Cl::Kinds ClassifyInternal(ASTContext &Ctx, const Expr *E);
+static Cl::Kinds ClassifyDecl(ASTContext &Ctx, const Decl *D);
+static Cl::Kinds ClassifyUnnamed(ASTContext &Ctx, QualType T);
+static Cl::Kinds ClassifyMemberExpr(ASTContext &Ctx, const MemberExpr *E);
+static Cl::Kinds ClassifyBinaryOp(ASTContext &Ctx, const BinaryOperator *E);
+static Cl::Kinds ClassifyConditional(ASTContext &Ctx,
+ const Expr *trueExpr,
+ const Expr *falseExpr);
+static Cl::ModifiableType IsModifiable(ASTContext &Ctx, const Expr *E,
+ Cl::Kinds Kind, SourceLocation &Loc);
+
+Cl Expr::ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const {
+ assert(!TR->isReferenceType() && "Expressions can't have reference type.");
+
+ Cl::Kinds kind = ClassifyInternal(Ctx, this);
+ // C99 6.3.2.1: An lvalue is an expression with an object type or an
+ // incomplete type other than void.
+ if (!Ctx.getLangOpts().CPlusPlus) {
+ // Thus, no functions.
+ if (TR->isFunctionType() || TR == Ctx.OverloadTy)
+ kind = Cl::CL_Function;
+ // No void either, but qualified void is OK because it is "other than void".
+ // Void "lvalues" are classified as addressable void values, which are void
+ // expressions whose address can be taken.
+ else if (TR->isVoidType() && !TR.hasQualifiers())
+ kind = (kind == Cl::CL_LValue ? Cl::CL_AddressableVoid : Cl::CL_Void);
+ }
+
+ // Enable this assertion for testing.
+ switch (kind) {
+ case Cl::CL_LValue: assert(getValueKind() == VK_LValue); break;
+ case Cl::CL_XValue: assert(getValueKind() == VK_XValue); break;
+ case Cl::CL_Function:
+ case Cl::CL_Void:
+ case Cl::CL_AddressableVoid:
+ case Cl::CL_DuplicateVectorComponents:
+ case Cl::CL_MemberFunction:
+ case Cl::CL_SubObjCPropertySetting:
+ case Cl::CL_ClassTemporary:
+ case Cl::CL_ArrayTemporary:
+ case Cl::CL_ObjCMessageRValue:
+ case Cl::CL_PRValue: assert(getValueKind() == VK_RValue); break;
+ }
+
+ Cl::ModifiableType modifiable = Cl::CM_Untested;
+ if (Loc)
+ modifiable = IsModifiable(Ctx, this, kind, *Loc);
+ return Classification(kind, modifiable);
+}
+
+/// Classify an expression which creates a temporary, based on its type.
+static Cl::Kinds ClassifyTemporary(QualType T) {
+ if (T->isRecordType())
+ return Cl::CL_ClassTemporary;
+ if (T->isArrayType())
+ return Cl::CL_ArrayTemporary;
+
+ // No special classification: these don't behave differently from normal
+ // prvalues.
+ return Cl::CL_PRValue;
+}
+
+static Cl::Kinds ClassifyExprValueKind(const LangOptions &Lang,
+ const Expr *E,
+ ExprValueKind Kind) {
+ switch (Kind) {
+ case VK_RValue:
+ return Lang.CPlusPlus ? ClassifyTemporary(E->getType()) : Cl::CL_PRValue;
+ case VK_LValue:
+ return Cl::CL_LValue;
+ case VK_XValue:
+ return Cl::CL_XValue;
+ }
+ llvm_unreachable("Invalid value category of implicit cast.");
+}
+
+static Cl::Kinds ClassifyInternal(ASTContext &Ctx, const Expr *E) {
+ // This function takes the first stab at classifying expressions.
+ const LangOptions &Lang = Ctx.getLangOpts();
+
+ switch (E->getStmtClass()) {
+ case Stmt::NoStmtClass:
+#define ABSTRACT_STMT(Kind)
+#define STMT(Kind, Base) case Expr::Kind##Class:
+#define EXPR(Kind, Base)
+#include "clang/AST/StmtNodes.inc"
+ llvm_unreachable("cannot classify a statement");
+
+ // First come the expressions that are always lvalues, unconditionally.
+ case Expr::ObjCIsaExprClass:
+ // C++ [expr.prim.general]p1: A string literal is an lvalue.
+ case Expr::StringLiteralClass:
+ // @encode is equivalent to its string
+ case Expr::ObjCEncodeExprClass:
+ // __func__ and friends are too.
+ case Expr::PredefinedExprClass:
+ // Property references are lvalues
+ case Expr::ObjCSubscriptRefExprClass:
+ case Expr::ObjCPropertyRefExprClass:
+ // C++ [expr.typeid]p1: The result of a typeid expression is an lvalue of...
+ case Expr::CXXTypeidExprClass:
+ // Unresolved lookups and uncorrected typos get classified as lvalues.
+ // FIXME: Is this wise? Should they get their own kind?
+ case Expr::UnresolvedLookupExprClass:
+ case Expr::UnresolvedMemberExprClass:
+ case Expr::TypoExprClass:
+ case Expr::CXXDependentScopeMemberExprClass:
+ case Expr::DependentScopeDeclRefExprClass:
+ // ObjC instance variables are lvalues
+ // FIXME: ObjC++0x might have different rules
+ case Expr::ObjCIvarRefExprClass:
+ case Expr::FunctionParmPackExprClass:
+ case Expr::MSPropertyRefExprClass:
+ return Cl::CL_LValue;
+
+ // C99 6.5.2.5p5 says that compound literals are lvalues.
+ // In C++, they're prvalue temporaries.
+ case Expr::CompoundLiteralExprClass:
+ return Ctx.getLangOpts().CPlusPlus ? ClassifyTemporary(E->getType())
+ : Cl::CL_LValue;
+
+ // Expressions that are prvalues.
+ case Expr::CXXBoolLiteralExprClass:
+ case Expr::CXXPseudoDestructorExprClass:
+ case Expr::UnaryExprOrTypeTraitExprClass:
+ case Expr::CXXNewExprClass:
+ case Expr::CXXThisExprClass:
+ case Expr::CXXNullPtrLiteralExprClass:
+ case Expr::ImaginaryLiteralClass:
+ case Expr::GNUNullExprClass:
+ case Expr::OffsetOfExprClass:
+ case Expr::CXXThrowExprClass:
+ case Expr::ShuffleVectorExprClass:
+ case Expr::ConvertVectorExprClass:
+ case Expr::IntegerLiteralClass:
+ case Expr::CharacterLiteralClass:
+ case Expr::AddrLabelExprClass:
+ case Expr::CXXDeleteExprClass:
+ case Expr::ImplicitValueInitExprClass:
+ case Expr::BlockExprClass:
+ case Expr::FloatingLiteralClass:
+ case Expr::CXXNoexceptExprClass:
+ case Expr::CXXScalarValueInitExprClass:
+ case Expr::TypeTraitExprClass:
+ case Expr::ArrayTypeTraitExprClass:
+ case Expr::ExpressionTraitExprClass:
+ case Expr::ObjCSelectorExprClass:
+ case Expr::ObjCProtocolExprClass:
+ case Expr::ObjCStringLiteralClass:
+ case Expr::ObjCBoxedExprClass:
+ case Expr::ObjCArrayLiteralClass:
+ case Expr::ObjCDictionaryLiteralClass:
+ case Expr::ObjCBoolLiteralExprClass:
+ case Expr::ParenListExprClass:
+ case Expr::SizeOfPackExprClass:
+ case Expr::SubstNonTypeTemplateParmPackExprClass:
+ case Expr::AsTypeExprClass:
+ case Expr::ObjCIndirectCopyRestoreExprClass:
+ case Expr::AtomicExprClass:
+ case Expr::CXXFoldExprClass:
+ return Cl::CL_PRValue;
+
+ // Next come the complicated cases.
+ case Expr::SubstNonTypeTemplateParmExprClass:
+ return ClassifyInternal(Ctx,
+ cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
+
+ // C++ [expr.sub]p1: The result is an lvalue of type "T".
+ // However, subscripting vector types is more like member access.
+ case Expr::ArraySubscriptExprClass:
+ if (cast<ArraySubscriptExpr>(E)->getBase()->getType()->isVectorType())
+ return ClassifyInternal(Ctx, cast<ArraySubscriptExpr>(E)->getBase());
+ return Cl::CL_LValue;
+
+ // C++ [expr.prim.general]p3: The result is an lvalue if the entity is a
+ // function or variable and a prvalue otherwise.
+ case Expr::DeclRefExprClass:
+ if (E->getType() == Ctx.UnknownAnyTy)
+ return isa<FunctionDecl>(cast<DeclRefExpr>(E)->getDecl())
+ ? Cl::CL_PRValue : Cl::CL_LValue;
+ return ClassifyDecl(Ctx, cast<DeclRefExpr>(E)->getDecl());
+
+ // Member access is complex.
+ case Expr::MemberExprClass:
+ return ClassifyMemberExpr(Ctx, cast<MemberExpr>(E));
+
+ case Expr::UnaryOperatorClass:
+ switch (cast<UnaryOperator>(E)->getOpcode()) {
+ // C++ [expr.unary.op]p1: The unary * operator performs indirection:
+ // [...] the result is an lvalue referring to the object or function
+ // to which the expression points.
+ case UO_Deref:
+ return Cl::CL_LValue;
+
+ // GNU extensions, simply look through them.
+ case UO_Extension:
+ return ClassifyInternal(Ctx, cast<UnaryOperator>(E)->getSubExpr());
+
+ // Treat _Real and _Imag basically as if they were member
+ // expressions: l-value only if the operand is a true l-value.
+ case UO_Real:
+ case UO_Imag: {
+ const Expr *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
+ Cl::Kinds K = ClassifyInternal(Ctx, Op);
+ if (K != Cl::CL_LValue) return K;
+
+ if (isa<ObjCPropertyRefExpr>(Op))
+ return Cl::CL_SubObjCPropertySetting;
+ return Cl::CL_LValue;
+ }
+
+ // C++ [expr.pre.incr]p1: The result is the updated operand; it is an
+ // lvalue, [...]
+ // Not so in C.
+ case UO_PreInc:
+ case UO_PreDec:
+ return Lang.CPlusPlus ? Cl::CL_LValue : Cl::CL_PRValue;
+
+ default:
+ return Cl::CL_PRValue;
+ }
+
+ case Expr::OpaqueValueExprClass:
+ return ClassifyExprValueKind(Lang, E, E->getValueKind());
+
+ // Pseudo-object expressions can produce l-values with reference magic.
+ case Expr::PseudoObjectExprClass:
+ return ClassifyExprValueKind(Lang, E,
+ cast<PseudoObjectExpr>(E)->getValueKind());
+
+ // Implicit casts are lvalues if they're lvalue casts. Other than that, we
+ // only specifically record class temporaries.
+ case Expr::ImplicitCastExprClass:
+ return ClassifyExprValueKind(Lang, E, E->getValueKind());
+
+ // C++ [expr.prim.general]p4: The presence of parentheses does not affect
+ // whether the expression is an lvalue.
+ case Expr::ParenExprClass:
+ return ClassifyInternal(Ctx, cast<ParenExpr>(E)->getSubExpr());
+
+ // C11 6.5.1.1p4: [A generic selection] is an lvalue, a function designator,
+ // or a void expression if its result expression is, respectively, an
+ // lvalue, a function designator, or a void expression.
+ case Expr::GenericSelectionExprClass:
+ if (cast<GenericSelectionExpr>(E)->isResultDependent())
+ return Cl::CL_PRValue;
+ return ClassifyInternal(Ctx,cast<GenericSelectionExpr>(E)->getResultExpr());
+
+ case Expr::BinaryOperatorClass:
+ case Expr::CompoundAssignOperatorClass:
+ // C doesn't have any binary expressions that are lvalues.
+ if (Lang.CPlusPlus)
+ return ClassifyBinaryOp(Ctx, cast<BinaryOperator>(E));
+ return Cl::CL_PRValue;
+
+ case Expr::CallExprClass:
+ case Expr::CXXOperatorCallExprClass:
+ case Expr::CXXMemberCallExprClass:
+ case Expr::UserDefinedLiteralClass:
+ case Expr::CUDAKernelCallExprClass:
+ return ClassifyUnnamed(Ctx, cast<CallExpr>(E)->getCallReturnType(Ctx));
+
+ // __builtin_choose_expr is equivalent to the chosen expression.
+ case Expr::ChooseExprClass:
+ return ClassifyInternal(Ctx, cast<ChooseExpr>(E)->getChosenSubExpr());
+
+ // Extended vector element access is an lvalue unless there are duplicates
+ // in the shuffle expression.
+ case Expr::ExtVectorElementExprClass:
+ if (cast<ExtVectorElementExpr>(E)->containsDuplicateElements())
+ return Cl::CL_DuplicateVectorComponents;
+ if (cast<ExtVectorElementExpr>(E)->isArrow())
+ return Cl::CL_LValue;
+ return ClassifyInternal(Ctx, cast<ExtVectorElementExpr>(E)->getBase());
+
+ // Simply look at the actual default argument.
+ case Expr::CXXDefaultArgExprClass:
+ return ClassifyInternal(Ctx, cast<CXXDefaultArgExpr>(E)->getExpr());
+
+ // Same idea for default initializers.
+ case Expr::CXXDefaultInitExprClass:
+ return ClassifyInternal(Ctx, cast<CXXDefaultInitExpr>(E)->getExpr());
+
+ // Same idea for temporary binding.
+ case Expr::CXXBindTemporaryExprClass:
+ return ClassifyInternal(Ctx, cast<CXXBindTemporaryExpr>(E)->getSubExpr());
+
+ // And the cleanups guard.
+ case Expr::ExprWithCleanupsClass:
+ return ClassifyInternal(Ctx, cast<ExprWithCleanups>(E)->getSubExpr());
+
+ // Casts depend completely on the target type. All casts work the same.
+ case Expr::CStyleCastExprClass:
+ case Expr::CXXFunctionalCastExprClass:
+ case Expr::CXXStaticCastExprClass:
+ case Expr::CXXDynamicCastExprClass:
+ case Expr::CXXReinterpretCastExprClass:
+ case Expr::CXXConstCastExprClass:
+ case Expr::ObjCBridgedCastExprClass:
+ // Only in C++ can casts be interesting at all.
+ if (!Lang.CPlusPlus) return Cl::CL_PRValue;
+ return ClassifyUnnamed(Ctx, cast<ExplicitCastExpr>(E)->getTypeAsWritten());
+
+ case Expr::CXXUnresolvedConstructExprClass:
+ return ClassifyUnnamed(Ctx,
+ cast<CXXUnresolvedConstructExpr>(E)->getTypeAsWritten());
+
+ case Expr::BinaryConditionalOperatorClass: {
+ if (!Lang.CPlusPlus) return Cl::CL_PRValue;
+ const BinaryConditionalOperator *co = cast<BinaryConditionalOperator>(E);
+ return ClassifyConditional(Ctx, co->getTrueExpr(), co->getFalseExpr());
+ }
+
+ case Expr::ConditionalOperatorClass: {
+ // Once again, only C++ is interesting.
+ if (!Lang.CPlusPlus) return Cl::CL_PRValue;
+ const ConditionalOperator *co = cast<ConditionalOperator>(E);
+ return ClassifyConditional(Ctx, co->getTrueExpr(), co->getFalseExpr());
+ }
+
+ // ObjC message sends are effectively function calls, if the target function
+ // is known.
+ case Expr::ObjCMessageExprClass:
+ if (const ObjCMethodDecl *Method =
+ cast<ObjCMessageExpr>(E)->getMethodDecl()) {
+ Cl::Kinds kind = ClassifyUnnamed(Ctx, Method->getReturnType());
+ return (kind == Cl::CL_PRValue) ? Cl::CL_ObjCMessageRValue : kind;
+ }
+ return Cl::CL_PRValue;
+
+ // Some C++ expressions are always class temporaries.
+ case Expr::CXXConstructExprClass:
+ case Expr::CXXTemporaryObjectExprClass:
+ case Expr::LambdaExprClass:
+ case Expr::CXXStdInitializerListExprClass:
+ return Cl::CL_ClassTemporary;
+
+ case Expr::VAArgExprClass:
+ return ClassifyUnnamed(Ctx, E->getType());
+
+ case Expr::DesignatedInitExprClass:
+ return ClassifyInternal(Ctx, cast<DesignatedInitExpr>(E)->getInit());
+
+ case Expr::StmtExprClass: {
+ const CompoundStmt *S = cast<StmtExpr>(E)->getSubStmt();
+ if (const Expr *LastExpr = dyn_cast_or_null<Expr>(S->body_back()))
+ return ClassifyUnnamed(Ctx, LastExpr->getType());
+ return Cl::CL_PRValue;
+ }
+
+ case Expr::CXXUuidofExprClass:
+ return Cl::CL_LValue;
+
+ case Expr::PackExpansionExprClass:
+ return ClassifyInternal(Ctx, cast<PackExpansionExpr>(E)->getPattern());
+
+ case Expr::MaterializeTemporaryExprClass:
+ return cast<MaterializeTemporaryExpr>(E)->isBoundToLvalueReference()
+ ? Cl::CL_LValue
+ : Cl::CL_XValue;
+
+ case Expr::InitListExprClass:
+ // An init list can be an lvalue if it is bound to a reference and
+ // contains only one element. In that case, we look at that element
+ // for an exact classification. Init list creation takes care of the
+ // value kind for us, so we only need to fine-tune.
+ if (E->isRValue())
+ return ClassifyExprValueKind(Lang, E, E->getValueKind());
+ assert(cast<InitListExpr>(E)->getNumInits() == 1 &&
+ "Only 1-element init lists can be glvalues.");
+ return ClassifyInternal(Ctx, cast<InitListExpr>(E)->getInit(0));
+ }
+
+ llvm_unreachable("unhandled expression kind in classification");
+}
+
+/// ClassifyDecl - Return the classification of an expression referencing the
+/// given declaration.
+static Cl::Kinds ClassifyDecl(ASTContext &Ctx, const Decl *D) {
+ // C++ [expr.prim.general]p6: The result is an lvalue if the entity is a
+ // function, variable, or data member and a prvalue otherwise.
+ // In C, functions are not lvalues.
+ // In addition, NonTypeTemplateParmDecl derives from VarDecl but isn't an
+ // lvalue unless it's a reference type (C++ [temp.param]p6), so we need to
+ // special-case this.
+
+ if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance())
+ return Cl::CL_MemberFunction;
+
+ bool islvalue;
+ if (const NonTypeTemplateParmDecl *NTTParm =
+ dyn_cast<NonTypeTemplateParmDecl>(D))
+ islvalue = NTTParm->getType()->isReferenceType();
+ else
+ islvalue = isa<VarDecl>(D) || isa<FieldDecl>(D) ||
+ isa<IndirectFieldDecl>(D) ||
+ (Ctx.getLangOpts().CPlusPlus &&
+ (isa<FunctionDecl>(D) || isa<MSPropertyDecl>(D) ||
+ isa<FunctionTemplateDecl>(D)));
+
+ return islvalue ? Cl::CL_LValue : Cl::CL_PRValue;
+}
+
+/// ClassifyUnnamed - Return the classification of an expression yielding an
+/// unnamed value of the given type. This applies in particular to function
+/// calls and casts.
+static Cl::Kinds ClassifyUnnamed(ASTContext &Ctx, QualType T) {
+ // In C, function calls are always rvalues.
+ if (!Ctx.getLangOpts().CPlusPlus) return Cl::CL_PRValue;
+
+ // C++ [expr.call]p10: A function call is an lvalue if the result type is an
+ // lvalue reference type or an rvalue reference to function type, an xvalue
+ // if the result type is an rvalue reference to object type, and a prvalue
+ // otherwise.
+ if (T->isLValueReferenceType())
+ return Cl::CL_LValue;
+ const RValueReferenceType *RV = T->getAs<RValueReferenceType>();
+ if (!RV) // Could still be a class temporary, though.
+ return ClassifyTemporary(T);
+
+ return RV->getPointeeType()->isFunctionType() ? Cl::CL_LValue : Cl::CL_XValue;
+}
+
+static Cl::Kinds ClassifyMemberExpr(ASTContext &Ctx, const MemberExpr *E) {
+ if (E->getType() == Ctx.UnknownAnyTy)
+ return (isa<FunctionDecl>(E->getMemberDecl())
+ ? Cl::CL_PRValue : Cl::CL_LValue);
+
+ // Handle C first, it's easier.
+ if (!Ctx.getLangOpts().CPlusPlus) {
+ // C99 6.5.2.3p3
+ // For dot access, the expression is an lvalue if the first part is. For
+ // arrow access, it always is an lvalue.
+ if (E->isArrow())
+ return Cl::CL_LValue;
+ // ObjC property accesses are not lvalues, but get special treatment.
+ Expr *Base = E->getBase()->IgnoreParens();
+ if (isa<ObjCPropertyRefExpr>(Base))
+ return Cl::CL_SubObjCPropertySetting;
+ return ClassifyInternal(Ctx, Base);
+ }
+
+ NamedDecl *Member = E->getMemberDecl();
+ // C++ [expr.ref]p3: E1->E2 is converted to the equivalent form (*(E1)).E2.
+ // C++ [expr.ref]p4: If E2 is declared to have type "reference to T", then
+ // E1.E2 is an lvalue.
+ if (ValueDecl *Value = dyn_cast<ValueDecl>(Member))
+ if (Value->getType()->isReferenceType())
+ return Cl::CL_LValue;
+
+ // Otherwise, one of the following rules applies.
+ // -- If E2 is a static member [...] then E1.E2 is an lvalue.
+ if (isa<VarDecl>(Member) && Member->getDeclContext()->isRecord())
+ return Cl::CL_LValue;
+
+ // -- If E2 is a non-static data member [...]. If E1 is an lvalue, then
+ // E1.E2 is an lvalue; if E1 is an xvalue, then E1.E2 is an xvalue;
+ // otherwise, it is a prvalue.
+ if (isa<FieldDecl>(Member)) {
+ // *E1 is an lvalue
+ if (E->isArrow())
+ return Cl::CL_LValue;
+ Expr *Base = E->getBase()->IgnoreParenImpCasts();
+ if (isa<ObjCPropertyRefExpr>(Base))
+ return Cl::CL_SubObjCPropertySetting;
+ return ClassifyInternal(Ctx, E->getBase());
+ }
+
+ // -- If E2 is a [...] member function, [...]
+ // -- If it refers to a static member function [...], then E1.E2 is an
+ // lvalue; [...]
+ // -- Otherwise [...] E1.E2 is a prvalue.
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member))
+ return Method->isStatic() ? Cl::CL_LValue : Cl::CL_MemberFunction;
+
+ // -- If E2 is a member enumerator [...], the expression E1.E2 is a prvalue.
+ // So is everything else we haven't handled yet.
+ return Cl::CL_PRValue;
+}
+
+static Cl::Kinds ClassifyBinaryOp(ASTContext &Ctx, const BinaryOperator *E) {
+ assert(Ctx.getLangOpts().CPlusPlus &&
+ "This is only relevant for C++.");
+ // C++ [expr.ass]p1: All [...] return an lvalue referring to the left operand.
+ // Except we override this for writes to ObjC properties.
+ if (E->isAssignmentOp())
+ return (E->getLHS()->getObjectKind() == OK_ObjCProperty
+ ? Cl::CL_PRValue : Cl::CL_LValue);
+
+ // C++ [expr.comma]p1: the result is of the same value category as its right
+ // operand, [...].
+ if (E->getOpcode() == BO_Comma)
+ return ClassifyInternal(Ctx, E->getRHS());
+
+ // C++ [expr.mptr.oper]p6: The result of a .* expression whose second operand
+ // is a pointer to a data member is of the same value category as its first
+ // operand.
+ if (E->getOpcode() == BO_PtrMemD)
+ return (E->getType()->isFunctionType() ||
+ E->hasPlaceholderType(BuiltinType::BoundMember))
+ ? Cl::CL_MemberFunction
+ : ClassifyInternal(Ctx, E->getLHS());
+
+ // C++ [expr.mptr.oper]p6: The result of an ->* expression is an lvalue if its
+ // second operand is a pointer to data member and a prvalue otherwise.
+ if (E->getOpcode() == BO_PtrMemI)
+ return (E->getType()->isFunctionType() ||
+ E->hasPlaceholderType(BuiltinType::BoundMember))
+ ? Cl::CL_MemberFunction
+ : Cl::CL_LValue;
+
+ // All other binary operations are prvalues.
+ return Cl::CL_PRValue;
+}
+
+static Cl::Kinds ClassifyConditional(ASTContext &Ctx, const Expr *True,
+ const Expr *False) {
+ assert(Ctx.getLangOpts().CPlusPlus &&
+ "This is only relevant for C++.");
+
+ // C++ [expr.cond]p2
+ // If either the second or the third operand has type (cv) void,
+ // one of the following shall hold:
+ if (True->getType()->isVoidType() || False->getType()->isVoidType()) {
+ // The second or the third operand (but not both) is a (possibly
+ // parenthesized) throw-expression; the result is of the [...] value
+ // category of the other.
+ bool TrueIsThrow = isa<CXXThrowExpr>(True->IgnoreParenImpCasts());
+ bool FalseIsThrow = isa<CXXThrowExpr>(False->IgnoreParenImpCasts());
+ if (const Expr *NonThrow = TrueIsThrow ? (FalseIsThrow ? nullptr : False)
+ : (FalseIsThrow ? True : nullptr))
+ return ClassifyInternal(Ctx, NonThrow);
+
+ // [Otherwise] the result [...] is a prvalue.
+ return Cl::CL_PRValue;
+ }
+
+ // Note that at this point, we have already performed all conversions
+ // according to [expr.cond]p3.
+ // C++ [expr.cond]p4: If the second and third operands are glvalues of the
+ // same value category [...], the result is of that [...] value category.
+ // C++ [expr.cond]p5: Otherwise, the result is a prvalue.
+ Cl::Kinds LCl = ClassifyInternal(Ctx, True),
+ RCl = ClassifyInternal(Ctx, False);
+ return LCl == RCl ? LCl : Cl::CL_PRValue;
+}
+
+static Cl::ModifiableType IsModifiable(ASTContext &Ctx, const Expr *E,
+ Cl::Kinds Kind, SourceLocation &Loc) {
+ // As a general rule, we only care about lvalues. But there are some rvalues
+ // for which we want to generate special results.
+ if (Kind == Cl::CL_PRValue) {
+ // For the sake of better diagnostics, we want to specifically recognize
+ // use of the GCC cast-as-lvalue extension.
+ if (const ExplicitCastExpr *CE =
+ dyn_cast<ExplicitCastExpr>(E->IgnoreParens())) {
+ if (CE->getSubExpr()->IgnoreParenImpCasts()->isLValue()) {
+ Loc = CE->getExprLoc();
+ return Cl::CM_LValueCast;
+ }
+ }
+ }
+ if (Kind != Cl::CL_LValue)
+ return Cl::CM_RValue;
+
+ // This is the lvalue case.
+ // Functions are lvalues in C++, but not modifiable. (C++ [basic.lval]p6)
+ if (Ctx.getLangOpts().CPlusPlus && E->getType()->isFunctionType())
+ return Cl::CM_Function;
+
+ // Assignment to a property in ObjC is an implicit setter access. But a
+ // setter might not exist.
+ if (const ObjCPropertyRefExpr *Expr = dyn_cast<ObjCPropertyRefExpr>(E)) {
+ if (Expr->isImplicitProperty() &&
+ Expr->getImplicitPropertySetter() == nullptr)
+ return Cl::CM_NoSetterProperty;
+ }
+
+ CanQualType CT = Ctx.getCanonicalType(E->getType());
+ // Const stuff is obviously not modifiable.
+ if (CT.isConstQualified())
+ return Cl::CM_ConstQualified;
+ if (CT.getQualifiers().getAddressSpace() == LangAS::opencl_constant)
+ return Cl::CM_ConstAddrSpace;
+
+ // Arrays are not modifiable, only their elements are.
+ if (CT->isArrayType())
+ return Cl::CM_ArrayType;
+ // Incomplete types are not modifiable.
+ if (CT->isIncompleteType())
+ return Cl::CM_IncompleteType;
+
+ // Records with any const fields (recursively) are not modifiable.
+ if (const RecordType *R = CT->getAs<RecordType>())
+ if (R->hasConstFields())
+ return Cl::CM_ConstQualified;
+
+ return Cl::CM_Modifiable;
+}
+
+Expr::LValueClassification Expr::ClassifyLValue(ASTContext &Ctx) const {
+ Classification VC = Classify(Ctx);
+ switch (VC.getKind()) {
+ case Cl::CL_LValue: return LV_Valid;
+ case Cl::CL_XValue: return LV_InvalidExpression;
+ case Cl::CL_Function: return LV_NotObjectType;
+ case Cl::CL_Void: return LV_InvalidExpression;
+ case Cl::CL_AddressableVoid: return LV_IncompleteVoidType;
+ case Cl::CL_DuplicateVectorComponents: return LV_DuplicateVectorComponents;
+ case Cl::CL_MemberFunction: return LV_MemberFunction;
+ case Cl::CL_SubObjCPropertySetting: return LV_SubObjCPropertySetting;
+ case Cl::CL_ClassTemporary: return LV_ClassTemporary;
+ case Cl::CL_ArrayTemporary: return LV_ArrayTemporary;
+ case Cl::CL_ObjCMessageRValue: return LV_InvalidMessageExpression;
+ case Cl::CL_PRValue: return LV_InvalidExpression;
+ }
+ llvm_unreachable("Unhandled kind");
+}
+
+Expr::isModifiableLvalueResult
+Expr::isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc) const {
+ SourceLocation dummy;
+ Classification VC = ClassifyModifiable(Ctx, Loc ? *Loc : dummy);
+ switch (VC.getKind()) {
+ case Cl::CL_LValue: break;
+ case Cl::CL_XValue: return MLV_InvalidExpression;
+ case Cl::CL_Function: return MLV_NotObjectType;
+ case Cl::CL_Void: return MLV_InvalidExpression;
+ case Cl::CL_AddressableVoid: return MLV_IncompleteVoidType;
+ case Cl::CL_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
+ case Cl::CL_MemberFunction: return MLV_MemberFunction;
+ case Cl::CL_SubObjCPropertySetting: return MLV_SubObjCPropertySetting;
+ case Cl::CL_ClassTemporary: return MLV_ClassTemporary;
+ case Cl::CL_ArrayTemporary: return MLV_ArrayTemporary;
+ case Cl::CL_ObjCMessageRValue: return MLV_InvalidMessageExpression;
+ case Cl::CL_PRValue:
+ return VC.getModifiable() == Cl::CM_LValueCast ?
+ MLV_LValueCast : MLV_InvalidExpression;
+ }
+ assert(VC.getKind() == Cl::CL_LValue && "Unhandled kind");
+ switch (VC.getModifiable()) {
+ case Cl::CM_Untested: llvm_unreachable("Did not test modifiability");
+ case Cl::CM_Modifiable: return MLV_Valid;
+ case Cl::CM_RValue: llvm_unreachable("CM_RValue and CL_LValue don't match");
+ case Cl::CM_Function: return MLV_NotObjectType;
+ case Cl::CM_LValueCast:
+ llvm_unreachable("CM_LValueCast and CL_LValue don't match");
+ case Cl::CM_NoSetterProperty: return MLV_NoSetterProperty;
+ case Cl::CM_ConstQualified: return MLV_ConstQualified;
+ case Cl::CM_ConstAddrSpace: return MLV_ConstAddrSpace;
+ case Cl::CM_ArrayType: return MLV_ArrayType;
+ case Cl::CM_IncompleteType: return MLV_IncompleteType;
+ }
+ llvm_unreachable("Unhandled modifiable type");
+}
diff --git a/contrib/llvm/tools/clang/lib/AST/ExprConstant.cpp b/contrib/llvm/tools/clang/lib/AST/ExprConstant.cpp
new file mode 100644
index 0000000..d1ec7ae
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/ExprConstant.cpp
@@ -0,0 +1,9188 @@
+//===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Expr constant evaluator.
+//
+// Constant expression evaluation produces four main results:
+//
+// * A success/failure flag indicating whether constant folding was successful.
+// This is the 'bool' return value used by most of the code in this file. A
+// 'false' return value indicates that constant folding has failed, and any
+// appropriate diagnostic has already been produced.
+//
+// * An evaluated result, valid only if constant folding has not failed.
+//
+// * A flag indicating if evaluation encountered (unevaluated) side-effects.
+// These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
+// where it is possible to determine the evaluated result regardless.
+//
+// * A set of notes indicating why the evaluation was not a constant expression
+// (under the C++11 / C++1y rules only, at the moment), or, if folding failed
+// too, why the expression could not be folded.
+//
+// If we are checking for a potential constant expression, failure to constant
+// fold a potential constant sub-expression will be indicated by a 'false'
+// return value (the expression could not be folded) and no diagnostic (the
+// expression is not necessarily non-constant).
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/APValue.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTDiagnostic.h"
+#include "clang/AST/CharUnits.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/Basic/Builtins.h"
+#include "clang/Basic/TargetInfo.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cstring>
+#include <functional>
+
+using namespace clang;
+using llvm::APSInt;
+using llvm::APFloat;
+
+static bool IsGlobalLValue(APValue::LValueBase B);
+
+namespace {
+ struct LValue;
+ struct CallStackFrame;
+ struct EvalInfo;
+
+ static QualType getType(APValue::LValueBase B) {
+ if (!B) return QualType();
+ if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>())
+ return D->getType();
+
+ const Expr *Base = B.get<const Expr*>();
+
+ // For a materialized temporary, the type of the temporary we materialized
+ // may not be the type of the expression.
+ if (const MaterializeTemporaryExpr *MTE =
+ dyn_cast<MaterializeTemporaryExpr>(Base)) {
+ SmallVector<const Expr *, 2> CommaLHSs;
+ SmallVector<SubobjectAdjustment, 2> Adjustments;
+ const Expr *Temp = MTE->GetTemporaryExpr();
+ const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHSs,
+ Adjustments);
+ // Keep any cv-qualifiers from the reference if we generated a temporary
+ // for it.
+ if (Inner != Temp)
+ return Inner->getType();
+ }
+
+ return Base->getType();
+ }
+
+ /// Get an LValue path entry, which is known to not be an array index, as a
+ /// field or base class.
+ static
+ APValue::BaseOrMemberType getAsBaseOrMember(APValue::LValuePathEntry E) {
+ APValue::BaseOrMemberType Value;
+ Value.setFromOpaqueValue(E.BaseOrMember);
+ return Value;
+ }
+
+ /// Get an LValue path entry, which is known to not be an array index, as a
+ /// field declaration.
+ static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
+ return dyn_cast<FieldDecl>(getAsBaseOrMember(E).getPointer());
+ }
+ /// Get an LValue path entry, which is known to not be an array index, as a
+ /// base class declaration.
+ static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
+ return dyn_cast<CXXRecordDecl>(getAsBaseOrMember(E).getPointer());
+ }
+ /// Determine whether this LValue path entry for a base class names a virtual
+ /// base class.
+ static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
+ return getAsBaseOrMember(E).getInt();
+ }
+
+ /// Find the path length and type of the most-derived subobject in the given
+ /// path, and find the size of the containing array, if any.
+ static
+ unsigned findMostDerivedSubobject(ASTContext &Ctx, QualType Base,
+ ArrayRef<APValue::LValuePathEntry> Path,
+ uint64_t &ArraySize, QualType &Type) {
+ unsigned MostDerivedLength = 0;
+ Type = Base;
+ for (unsigned I = 0, N = Path.size(); I != N; ++I) {
+ if (Type->isArrayType()) {
+ const ConstantArrayType *CAT =
+ cast<ConstantArrayType>(Ctx.getAsArrayType(Type));
+ Type = CAT->getElementType();
+ ArraySize = CAT->getSize().getZExtValue();
+ MostDerivedLength = I + 1;
+ } else if (Type->isAnyComplexType()) {
+ const ComplexType *CT = Type->castAs<ComplexType>();
+ Type = CT->getElementType();
+ ArraySize = 2;
+ MostDerivedLength = I + 1;
+ } else if (const FieldDecl *FD = getAsField(Path[I])) {
+ Type = FD->getType();
+ ArraySize = 0;
+ MostDerivedLength = I + 1;
+ } else {
+ // Path[I] describes a base class.
+ ArraySize = 0;
+ }
+ }
+ return MostDerivedLength;
+ }
+
+ // The order of this enum is important for diagnostics.
+ enum CheckSubobjectKind {
+ CSK_Base, CSK_Derived, CSK_Field, CSK_ArrayToPointer, CSK_ArrayIndex,
+ CSK_This, CSK_Real, CSK_Imag
+ };
+
+ /// A path from a glvalue to a subobject of that glvalue.
+ struct SubobjectDesignator {
+ /// True if the subobject was named in a manner not supported by C++11. Such
+ /// lvalues can still be folded, but they are not core constant expressions
+ /// and we cannot perform lvalue-to-rvalue conversions on them.
+ bool Invalid : 1;
+
+ /// Is this a pointer one past the end of an object?
+ bool IsOnePastTheEnd : 1;
+
+ /// The length of the path to the most-derived object of which this is a
+ /// subobject.
+ unsigned MostDerivedPathLength : 30;
+
+ /// The size of the array of which the most-derived object is an element, or
+ /// 0 if the most-derived object is not an array element.
+ uint64_t MostDerivedArraySize;
+
+ /// The type of the most derived object referred to by this address.
+ QualType MostDerivedType;
+
+ typedef APValue::LValuePathEntry PathEntry;
+
+ /// The entries on the path from the glvalue to the designated subobject.
+ SmallVector<PathEntry, 8> Entries;
+
+ SubobjectDesignator() : Invalid(true) {}
+
+ explicit SubobjectDesignator(QualType T)
+ : Invalid(false), IsOnePastTheEnd(false), MostDerivedPathLength(0),
+ MostDerivedArraySize(0), MostDerivedType(T) {}
+
+ SubobjectDesignator(ASTContext &Ctx, const APValue &V)
+ : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
+ MostDerivedPathLength(0), MostDerivedArraySize(0) {
+ if (!Invalid) {
+ IsOnePastTheEnd = V.isLValueOnePastTheEnd();
+ ArrayRef<PathEntry> VEntries = V.getLValuePath();
+ Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
+ if (V.getLValueBase())
+ MostDerivedPathLength =
+ findMostDerivedSubobject(Ctx, getType(V.getLValueBase()),
+ V.getLValuePath(), MostDerivedArraySize,
+ MostDerivedType);
+ }
+ }
+
+ void setInvalid() {
+ Invalid = true;
+ Entries.clear();
+ }
+
+ /// Determine whether this is a one-past-the-end pointer.
+ bool isOnePastTheEnd() const {
+ assert(!Invalid);
+ if (IsOnePastTheEnd)
+ return true;
+ if (MostDerivedArraySize &&
+ Entries[MostDerivedPathLength - 1].ArrayIndex == MostDerivedArraySize)
+ return true;
+ return false;
+ }
+
+ /// Check that this refers to a valid subobject.
+ bool isValidSubobject() const {
+ if (Invalid)
+ return false;
+ return !isOnePastTheEnd();
+ }
+ /// Check that this refers to a valid subobject, and if not, produce a
+ /// relevant diagnostic and set the designator as invalid.
+ bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
+
+ /// Update this designator to refer to the first element within this array.
+ void addArrayUnchecked(const ConstantArrayType *CAT) {
+ PathEntry Entry;
+ Entry.ArrayIndex = 0;
+ Entries.push_back(Entry);
+
+ // This is a most-derived object.
+ MostDerivedType = CAT->getElementType();
+ MostDerivedArraySize = CAT->getSize().getZExtValue();
+ MostDerivedPathLength = Entries.size();
+ }
+ /// Update this designator to refer to the given base or member of this
+ /// object.
+ void addDeclUnchecked(const Decl *D, bool Virtual = false) {
+ PathEntry Entry;
+ APValue::BaseOrMemberType Value(D, Virtual);
+ Entry.BaseOrMember = Value.getOpaqueValue();
+ Entries.push_back(Entry);
+
+ // If this isn't a base class, it's a new most-derived object.
+ if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
+ MostDerivedType = FD->getType();
+ MostDerivedArraySize = 0;
+ MostDerivedPathLength = Entries.size();
+ }
+ }
+ /// Update this designator to refer to the given complex component.
+ void addComplexUnchecked(QualType EltTy, bool Imag) {
+ PathEntry Entry;
+ Entry.ArrayIndex = Imag;
+ Entries.push_back(Entry);
+
+ // This is technically a most-derived object, though in practice this
+ // is unlikely to matter.
+ MostDerivedType = EltTy;
+ MostDerivedArraySize = 2;
+ MostDerivedPathLength = Entries.size();
+ }
+ void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, uint64_t N);
+ /// Add N to the address of this subobject.
+ void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
+ if (Invalid) return;
+ if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize) {
+ Entries.back().ArrayIndex += N;
+ if (Entries.back().ArrayIndex > MostDerivedArraySize) {
+ diagnosePointerArithmetic(Info, E, Entries.back().ArrayIndex);
+ setInvalid();
+ }
+ return;
+ }
+ // [expr.add]p4: For the purposes of these operators, a pointer to a
+ // nonarray object behaves the same as a pointer to the first element of
+ // an array of length one with the type of the object as its element type.
+ if (IsOnePastTheEnd && N == (uint64_t)-1)
+ IsOnePastTheEnd = false;
+ else if (!IsOnePastTheEnd && N == 1)
+ IsOnePastTheEnd = true;
+ else if (N != 0) {
+ diagnosePointerArithmetic(Info, E, uint64_t(IsOnePastTheEnd) + N);
+ setInvalid();
+ }
+ }
+ };
+
+ /// A stack frame in the constexpr call stack.
+ struct CallStackFrame {
+ EvalInfo &Info;
+
+ /// Parent - The caller of this stack frame.
+ CallStackFrame *Caller;
+
+ /// CallLoc - The location of the call expression for this call.
+ SourceLocation CallLoc;
+
+ /// Callee - The function which was called.
+ const FunctionDecl *Callee;
+
+ /// Index - The call index of this call.
+ unsigned Index;
+
+ /// This - The binding for the this pointer in this call, if any.
+ const LValue *This;
+
+ /// Arguments - Parameter bindings for this function call, indexed by
+ /// parameters' function scope indices.
+ APValue *Arguments;
+
+ // Note that we intentionally use std::map here so that references to
+ // values are stable.
+ typedef std::map<const void*, APValue> MapTy;
+ typedef MapTy::const_iterator temp_iterator;
+ /// Temporaries - Temporary lvalues materialized within this stack frame.
+ MapTy Temporaries;
+
+ CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
+ const FunctionDecl *Callee, const LValue *This,
+ APValue *Arguments);
+ ~CallStackFrame();
+
+ APValue *getTemporary(const void *Key) {
+ MapTy::iterator I = Temporaries.find(Key);
+ return I == Temporaries.end() ? nullptr : &I->second;
+ }
+ APValue &createTemporary(const void *Key, bool IsLifetimeExtended);
+ };
+
+ /// Temporarily override 'this'.
+ class ThisOverrideRAII {
+ public:
+ ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
+ : Frame(Frame), OldThis(Frame.This) {
+ if (Enable)
+ Frame.This = NewThis;
+ }
+ ~ThisOverrideRAII() {
+ Frame.This = OldThis;
+ }
+ private:
+ CallStackFrame &Frame;
+ const LValue *OldThis;
+ };
+
+ /// A partial diagnostic which we might know in advance that we are not going
+ /// to emit.
+ class OptionalDiagnostic {
+ PartialDiagnostic *Diag;
+
+ public:
+ explicit OptionalDiagnostic(PartialDiagnostic *Diag = nullptr)
+ : Diag(Diag) {}
+
+ template<typename T>
+ OptionalDiagnostic &operator<<(const T &v) {
+ if (Diag)
+ *Diag << v;
+ return *this;
+ }
+
+ OptionalDiagnostic &operator<<(const APSInt &I) {
+ if (Diag) {
+ SmallVector<char, 32> Buffer;
+ I.toString(Buffer);
+ *Diag << StringRef(Buffer.data(), Buffer.size());
+ }
+ return *this;
+ }
+
+ OptionalDiagnostic &operator<<(const APFloat &F) {
+ if (Diag) {
+ // FIXME: Force the precision of the source value down so we don't
+ // print digits which are usually useless (we don't really care here if
+ // we truncate a digit by accident in edge cases). Ideally,
+ // APFloat::toString would automatically print the shortest
+ // representation which rounds to the correct value, but it's a bit
+ // tricky to implement.
+ unsigned precision =
+ llvm::APFloat::semanticsPrecision(F.getSemantics());
+ precision = (precision * 59 + 195) / 196;
+ SmallVector<char, 32> Buffer;
+ F.toString(Buffer, precision);
+ *Diag << StringRef(Buffer.data(), Buffer.size());
+ }
+ return *this;
+ }
+ };
+
+ /// A cleanup, and a flag indicating whether it is lifetime-extended.
+ class Cleanup {
+ llvm::PointerIntPair<APValue*, 1, bool> Value;
+
+ public:
+ Cleanup(APValue *Val, bool IsLifetimeExtended)
+ : Value(Val, IsLifetimeExtended) {}
+
+ bool isLifetimeExtended() const { return Value.getInt(); }
+ void endLifetime() {
+ *Value.getPointer() = APValue();
+ }
+ };
+
+ /// EvalInfo - This is a private struct used by the evaluator to capture
+ /// information about a subexpression as it is folded. It retains information
+ /// about the AST context, but also maintains information about the folded
+ /// expression.
+ ///
+ /// If an expression could be evaluated, it is still possible it is not a C
+ /// "integer constant expression" or constant expression. If not, this struct
+ /// captures information about how and why not.
+ ///
+ /// One bit of information passed *into* the request for constant folding
+ /// indicates whether the subexpression is "evaluated" or not according to C
+ /// rules. For example, the RHS of (0 && foo()) is not evaluated. We can
+ /// evaluate the expression regardless of what the RHS is, but C only allows
+ /// certain things in certain situations.
+ struct EvalInfo {
+ ASTContext &Ctx;
+
+ /// EvalStatus - Contains information about the evaluation.
+ Expr::EvalStatus &EvalStatus;
+
+ /// CurrentCall - The top of the constexpr call stack.
+ CallStackFrame *CurrentCall;
+
+ /// CallStackDepth - The number of calls in the call stack right now.
+ unsigned CallStackDepth;
+
+ /// NextCallIndex - The next call index to assign.
+ unsigned NextCallIndex;
+
+ /// StepsLeft - The remaining number of evaluation steps we're permitted
+ /// to perform. This is essentially a limit for the number of statements
+ /// we will evaluate.
+ unsigned StepsLeft;
+
+ /// BottomFrame - The frame in which evaluation started. This must be
+ /// initialized after CurrentCall and CallStackDepth.
+ CallStackFrame BottomFrame;
+
+ /// A stack of values whose lifetimes end at the end of some surrounding
+ /// evaluation frame.
+ llvm::SmallVector<Cleanup, 16> CleanupStack;
+
+ /// EvaluatingDecl - This is the declaration whose initializer is being
+ /// evaluated, if any.
+ APValue::LValueBase EvaluatingDecl;
+
+ /// EvaluatingDeclValue - This is the value being constructed for the
+ /// declaration whose initializer is being evaluated, if any.
+ APValue *EvaluatingDeclValue;
+
+ /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
+ /// notes attached to it will also be stored, otherwise they will not be.
+ bool HasActiveDiagnostic;
+
+ enum EvaluationMode {
+ /// Evaluate as a constant expression. Stop if we find that the expression
+ /// is not a constant expression.
+ EM_ConstantExpression,
+
+ /// Evaluate as a potential constant expression. Keep going if we hit a
+ /// construct that we can't evaluate yet (because we don't yet know the
+ /// value of something) but stop if we hit something that could never be
+ /// a constant expression.
+ EM_PotentialConstantExpression,
+
+ /// Fold the expression to a constant. Stop if we hit a side-effect that
+ /// we can't model.
+ EM_ConstantFold,
+
+ /// Evaluate the expression looking for integer overflow and similar
+ /// issues. Don't worry about side-effects, and try to visit all
+ /// subexpressions.
+ EM_EvaluateForOverflow,
+
+ /// Evaluate in any way we know how. Don't worry about side-effects that
+ /// can't be modeled.
+ EM_IgnoreSideEffects,
+
+ /// Evaluate as a constant expression. Stop if we find that the expression
+ /// is not a constant expression. Some expressions can be retried in the
+ /// optimizer if we don't constant fold them here, but in an unevaluated
+ /// context we try to fold them immediately since the optimizer never
+ /// gets a chance to look at it.
+ EM_ConstantExpressionUnevaluated,
+
+ /// Evaluate as a potential constant expression. Keep going if we hit a
+ /// construct that we can't evaluate yet (because we don't yet know the
+ /// value of something) but stop if we hit something that could never be
+ /// a constant expression. Some expressions can be retried in the
+ /// optimizer if we don't constant fold them here, but in an unevaluated
+ /// context we try to fold them immediately since the optimizer never
+ /// gets a chance to look at it.
+ EM_PotentialConstantExpressionUnevaluated
+ } EvalMode;
+
+ /// Are we checking whether the expression is a potential constant
+ /// expression?
+ bool checkingPotentialConstantExpression() const {
+ return EvalMode == EM_PotentialConstantExpression ||
+ EvalMode == EM_PotentialConstantExpressionUnevaluated;
+ }
+
+ /// Are we checking an expression for overflow?
+ // FIXME: We should check for any kind of undefined or suspicious behavior
+ // in such constructs, not just overflow.
+ bool checkingForOverflow() { return EvalMode == EM_EvaluateForOverflow; }
+
+ EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
+ : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr),
+ CallStackDepth(0), NextCallIndex(1),
+ StepsLeft(getLangOpts().ConstexprStepLimit),
+ BottomFrame(*this, SourceLocation(), nullptr, nullptr, nullptr),
+ EvaluatingDecl((const ValueDecl *)nullptr),
+ EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
+ EvalMode(Mode) {}
+
+ void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value) {
+ EvaluatingDecl = Base;
+ EvaluatingDeclValue = &Value;
+ }
+
+ const LangOptions &getLangOpts() const { return Ctx.getLangOpts(); }
+
+ bool CheckCallLimit(SourceLocation Loc) {
+ // Don't perform any constexpr calls (other than the call we're checking)
+ // when checking a potential constant expression.
+ if (checkingPotentialConstantExpression() && CallStackDepth > 1)
+ return false;
+ if (NextCallIndex == 0) {
+ // NextCallIndex has wrapped around.
+ Diag(Loc, diag::note_constexpr_call_limit_exceeded);
+ return false;
+ }
+ if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
+ return true;
+ Diag(Loc, diag::note_constexpr_depth_limit_exceeded)
+ << getLangOpts().ConstexprCallDepth;
+ return false;
+ }
+
+ CallStackFrame *getCallFrame(unsigned CallIndex) {
+ assert(CallIndex && "no call index in getCallFrame");
+ // We will eventually hit BottomFrame, which has Index 1, so Frame can't
+ // be null in this loop.
+ CallStackFrame *Frame = CurrentCall;
+ while (Frame->Index > CallIndex)
+ Frame = Frame->Caller;
+ return (Frame->Index == CallIndex) ? Frame : nullptr;
+ }
+
+ bool nextStep(const Stmt *S) {
+ if (!StepsLeft) {
+ Diag(S->getLocStart(), diag::note_constexpr_step_limit_exceeded);
+ return false;
+ }
+ --StepsLeft;
+ return true;
+ }
+
+ private:
+ /// Add a diagnostic to the diagnostics list.
+ PartialDiagnostic &addDiag(SourceLocation Loc, diag::kind DiagId) {
+ PartialDiagnostic PD(DiagId, Ctx.getDiagAllocator());
+ EvalStatus.Diag->push_back(std::make_pair(Loc, PD));
+ return EvalStatus.Diag->back().second;
+ }
+
+ /// Add notes containing a call stack to the current point of evaluation.
+ void addCallStack(unsigned Limit);
+
+ public:
+ /// Diagnose that the evaluation cannot be folded.
+ OptionalDiagnostic Diag(SourceLocation Loc, diag::kind DiagId
+ = diag::note_invalid_subexpr_in_const_expr,
+ unsigned ExtraNotes = 0) {
+ if (EvalStatus.Diag) {
+ // If we have a prior diagnostic, it will be noting that the expression
+ // isn't a constant expression. This diagnostic is more important,
+ // unless we require this evaluation to produce a constant expression.
+ //
+ // FIXME: We might want to show both diagnostics to the user in
+ // EM_ConstantFold mode.
+ if (!EvalStatus.Diag->empty()) {
+ switch (EvalMode) {
+ case EM_ConstantFold:
+ case EM_IgnoreSideEffects:
+ case EM_EvaluateForOverflow:
+ if (!EvalStatus.HasSideEffects)
+ break;
+ // We've had side-effects; we want the diagnostic from them, not
+ // some later problem.
+ case EM_ConstantExpression:
+ case EM_PotentialConstantExpression:
+ case EM_ConstantExpressionUnevaluated:
+ case EM_PotentialConstantExpressionUnevaluated:
+ HasActiveDiagnostic = false;
+ return OptionalDiagnostic();
+ }
+ }
+
+ unsigned CallStackNotes = CallStackDepth - 1;
+ unsigned Limit = Ctx.getDiagnostics().getConstexprBacktraceLimit();
+ if (Limit)
+ CallStackNotes = std::min(CallStackNotes, Limit + 1);
+ if (checkingPotentialConstantExpression())
+ CallStackNotes = 0;
+
+ HasActiveDiagnostic = true;
+ EvalStatus.Diag->clear();
+ EvalStatus.Diag->reserve(1 + ExtraNotes + CallStackNotes);
+ addDiag(Loc, DiagId);
+ if (!checkingPotentialConstantExpression())
+ addCallStack(Limit);
+ return OptionalDiagnostic(&(*EvalStatus.Diag)[0].second);
+ }
+ HasActiveDiagnostic = false;
+ return OptionalDiagnostic();
+ }
+
+ OptionalDiagnostic Diag(const Expr *E, diag::kind DiagId
+ = diag::note_invalid_subexpr_in_const_expr,
+ unsigned ExtraNotes = 0) {
+ if (EvalStatus.Diag)
+ return Diag(E->getExprLoc(), DiagId, ExtraNotes);
+ HasActiveDiagnostic = false;
+ return OptionalDiagnostic();
+ }
+
+ /// Diagnose that the evaluation does not produce a C++11 core constant
+ /// expression.
+ ///
+ /// FIXME: Stop evaluating if we're in EM_ConstantExpression or
+ /// EM_PotentialConstantExpression mode and we produce one of these.
+ template<typename LocArg>
+ OptionalDiagnostic CCEDiag(LocArg Loc, diag::kind DiagId
+ = diag::note_invalid_subexpr_in_const_expr,
+ unsigned ExtraNotes = 0) {
+ // Don't override a previous diagnostic. Don't bother collecting
+ // diagnostics if we're evaluating for overflow.
+ if (!EvalStatus.Diag || !EvalStatus.Diag->empty()) {
+ HasActiveDiagnostic = false;
+ return OptionalDiagnostic();
+ }
+ return Diag(Loc, DiagId, ExtraNotes);
+ }
+
+ /// Add a note to a prior diagnostic.
+ OptionalDiagnostic Note(SourceLocation Loc, diag::kind DiagId) {
+ if (!HasActiveDiagnostic)
+ return OptionalDiagnostic();
+ return OptionalDiagnostic(&addDiag(Loc, DiagId));
+ }
+
+ /// Add a stack of notes to a prior diagnostic.
+ void addNotes(ArrayRef<PartialDiagnosticAt> Diags) {
+ if (HasActiveDiagnostic) {
+ EvalStatus.Diag->insert(EvalStatus.Diag->end(),
+ Diags.begin(), Diags.end());
+ }
+ }
+
+ /// Should we continue evaluation after encountering a side-effect that we
+ /// couldn't model?
+ bool keepEvaluatingAfterSideEffect() {
+ switch (EvalMode) {
+ case EM_PotentialConstantExpression:
+ case EM_PotentialConstantExpressionUnevaluated:
+ case EM_EvaluateForOverflow:
+ case EM_IgnoreSideEffects:
+ return true;
+
+ case EM_ConstantExpression:
+ case EM_ConstantExpressionUnevaluated:
+ case EM_ConstantFold:
+ return false;
+ }
+ llvm_unreachable("Missed EvalMode case");
+ }
+
+ /// Note that we have had a side-effect, and determine whether we should
+ /// keep evaluating.
+ bool noteSideEffect() {
+ EvalStatus.HasSideEffects = true;
+ return keepEvaluatingAfterSideEffect();
+ }
+
+ /// Should we continue evaluation as much as possible after encountering a
+ /// construct which can't be reduced to a value?
+ bool keepEvaluatingAfterFailure() {
+ if (!StepsLeft)
+ return false;
+
+ switch (EvalMode) {
+ case EM_PotentialConstantExpression:
+ case EM_PotentialConstantExpressionUnevaluated:
+ case EM_EvaluateForOverflow:
+ return true;
+
+ case EM_ConstantExpression:
+ case EM_ConstantExpressionUnevaluated:
+ case EM_ConstantFold:
+ case EM_IgnoreSideEffects:
+ return false;
+ }
+ llvm_unreachable("Missed EvalMode case");
+ }
+ };
+
+ /// Object used to treat all foldable expressions as constant expressions.
+ struct FoldConstant {
+ EvalInfo &Info;
+ bool Enabled;
+ bool HadNoPriorDiags;
+ EvalInfo::EvaluationMode OldMode;
+
+ explicit FoldConstant(EvalInfo &Info, bool Enabled)
+ : Info(Info),
+ Enabled(Enabled),
+ HadNoPriorDiags(Info.EvalStatus.Diag &&
+ Info.EvalStatus.Diag->empty() &&
+ !Info.EvalStatus.HasSideEffects),
+ OldMode(Info.EvalMode) {
+ if (Enabled &&
+ (Info.EvalMode == EvalInfo::EM_ConstantExpression ||
+ Info.EvalMode == EvalInfo::EM_ConstantExpressionUnevaluated))
+ Info.EvalMode = EvalInfo::EM_ConstantFold;
+ }
+ void keepDiagnostics() { Enabled = false; }
+ ~FoldConstant() {
+ if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
+ !Info.EvalStatus.HasSideEffects)
+ Info.EvalStatus.Diag->clear();
+ Info.EvalMode = OldMode;
+ }
+ };
+
+ /// RAII object used to suppress diagnostics and side-effects from a
+ /// speculative evaluation.
+ class SpeculativeEvaluationRAII {
+ EvalInfo &Info;
+ Expr::EvalStatus Old;
+
+ public:
+ SpeculativeEvaluationRAII(EvalInfo &Info,
+ SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr)
+ : Info(Info), Old(Info.EvalStatus) {
+ Info.EvalStatus.Diag = NewDiag;
+ // If we're speculatively evaluating, we may have skipped over some
+ // evaluations and missed out a side effect.
+ Info.EvalStatus.HasSideEffects = true;
+ }
+ ~SpeculativeEvaluationRAII() {
+ Info.EvalStatus = Old;
+ }
+ };
+
+ /// RAII object wrapping a full-expression or block scope, and handling
+ /// the ending of the lifetime of temporaries created within it.
+ template<bool IsFullExpression>
+ class ScopeRAII {
+ EvalInfo &Info;
+ unsigned OldStackSize;
+ public:
+ ScopeRAII(EvalInfo &Info)
+ : Info(Info), OldStackSize(Info.CleanupStack.size()) {}
+ ~ScopeRAII() {
+ // Body moved to a static method to encourage the compiler to inline away
+ // instances of this class.
+ cleanup(Info, OldStackSize);
+ }
+ private:
+ static void cleanup(EvalInfo &Info, unsigned OldStackSize) {
+ unsigned NewEnd = OldStackSize;
+ for (unsigned I = OldStackSize, N = Info.CleanupStack.size();
+ I != N; ++I) {
+ if (IsFullExpression && Info.CleanupStack[I].isLifetimeExtended()) {
+ // Full-expression cleanup of a lifetime-extended temporary: nothing
+ // to do, just move this cleanup to the right place in the stack.
+ std::swap(Info.CleanupStack[I], Info.CleanupStack[NewEnd]);
+ ++NewEnd;
+ } else {
+ // End the lifetime of the object.
+ Info.CleanupStack[I].endLifetime();
+ }
+ }
+ Info.CleanupStack.erase(Info.CleanupStack.begin() + NewEnd,
+ Info.CleanupStack.end());
+ }
+ };
+ typedef ScopeRAII<false> BlockScopeRAII;
+ typedef ScopeRAII<true> FullExpressionRAII;
+}
+
+bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
+ CheckSubobjectKind CSK) {
+ if (Invalid)
+ return false;
+ if (isOnePastTheEnd()) {
+ Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
+ << CSK;
+ setInvalid();
+ return false;
+ }
+ return true;
+}
+
+void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
+ const Expr *E, uint64_t N) {
+ if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize)
+ Info.CCEDiag(E, diag::note_constexpr_array_index)
+ << static_cast<int>(N) << /*array*/ 0
+ << static_cast<unsigned>(MostDerivedArraySize);
+ else
+ Info.CCEDiag(E, diag::note_constexpr_array_index)
+ << static_cast<int>(N) << /*non-array*/ 1;
+ setInvalid();
+}
+
+CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
+ const FunctionDecl *Callee, const LValue *This,
+ APValue *Arguments)
+ : Info(Info), Caller(Info.CurrentCall), CallLoc(CallLoc), Callee(Callee),
+ Index(Info.NextCallIndex++), This(This), Arguments(Arguments) {
+ Info.CurrentCall = this;
+ ++Info.CallStackDepth;
+}
+
+CallStackFrame::~CallStackFrame() {
+ assert(Info.CurrentCall == this && "calls retired out of order");
+ --Info.CallStackDepth;
+ Info.CurrentCall = Caller;
+}
+
+APValue &CallStackFrame::createTemporary(const void *Key,
+ bool IsLifetimeExtended) {
+ APValue &Result = Temporaries[Key];
+ assert(Result.isUninit() && "temporary created multiple times");
+ Info.CleanupStack.push_back(Cleanup(&Result, IsLifetimeExtended));
+ return Result;
+}
+
+static void describeCall(CallStackFrame *Frame, raw_ostream &Out);
+
+void EvalInfo::addCallStack(unsigned Limit) {
+ // Determine which calls to skip, if any.
+ unsigned ActiveCalls = CallStackDepth - 1;
+ unsigned SkipStart = ActiveCalls, SkipEnd = SkipStart;
+ if (Limit && Limit < ActiveCalls) {
+ SkipStart = Limit / 2 + Limit % 2;
+ SkipEnd = ActiveCalls - Limit / 2;
+ }
+
+ // Walk the call stack and add the diagnostics.
+ unsigned CallIdx = 0;
+ for (CallStackFrame *Frame = CurrentCall; Frame != &BottomFrame;
+ Frame = Frame->Caller, ++CallIdx) {
+ // Skip this call?
+ if (CallIdx >= SkipStart && CallIdx < SkipEnd) {
+ if (CallIdx == SkipStart) {
+ // Note that we're skipping calls.
+ addDiag(Frame->CallLoc, diag::note_constexpr_calls_suppressed)
+ << unsigned(ActiveCalls - Limit);
+ }
+ continue;
+ }
+
+ SmallVector<char, 128> Buffer;
+ llvm::raw_svector_ostream Out(Buffer);
+ describeCall(Frame, Out);
+ addDiag(Frame->CallLoc, diag::note_constexpr_call_here) << Out.str();
+ }
+}
+
+namespace {
+ struct ComplexValue {
+ private:
+ bool IsInt;
+
+ public:
+ APSInt IntReal, IntImag;
+ APFloat FloatReal, FloatImag;
+
+ ComplexValue() : FloatReal(APFloat::Bogus), FloatImag(APFloat::Bogus) {}
+
+ void makeComplexFloat() { IsInt = false; }
+ bool isComplexFloat() const { return !IsInt; }
+ APFloat &getComplexFloatReal() { return FloatReal; }
+ APFloat &getComplexFloatImag() { return FloatImag; }
+
+ void makeComplexInt() { IsInt = true; }
+ bool isComplexInt() const { return IsInt; }
+ APSInt &getComplexIntReal() { return IntReal; }
+ APSInt &getComplexIntImag() { return IntImag; }
+
+ void moveInto(APValue &v) const {
+ if (isComplexFloat())
+ v = APValue(FloatReal, FloatImag);
+ else
+ v = APValue(IntReal, IntImag);
+ }
+ void setFrom(const APValue &v) {
+ assert(v.isComplexFloat() || v.isComplexInt());
+ if (v.isComplexFloat()) {
+ makeComplexFloat();
+ FloatReal = v.getComplexFloatReal();
+ FloatImag = v.getComplexFloatImag();
+ } else {
+ makeComplexInt();
+ IntReal = v.getComplexIntReal();
+ IntImag = v.getComplexIntImag();
+ }
+ }
+ };
+
+ struct LValue {
+ APValue::LValueBase Base;
+ CharUnits Offset;
+ unsigned CallIndex;
+ SubobjectDesignator Designator;
+
+ const APValue::LValueBase getLValueBase() const { return Base; }
+ CharUnits &getLValueOffset() { return Offset; }
+ const CharUnits &getLValueOffset() const { return Offset; }
+ unsigned getLValueCallIndex() const { return CallIndex; }
+ SubobjectDesignator &getLValueDesignator() { return Designator; }
+ const SubobjectDesignator &getLValueDesignator() const { return Designator;}
+
+ void moveInto(APValue &V) const {
+ if (Designator.Invalid)
+ V = APValue(Base, Offset, APValue::NoLValuePath(), CallIndex);
+ else
+ V = APValue(Base, Offset, Designator.Entries,
+ Designator.IsOnePastTheEnd, CallIndex);
+ }
+ void setFrom(ASTContext &Ctx, const APValue &V) {
+ assert(V.isLValue());
+ Base = V.getLValueBase();
+ Offset = V.getLValueOffset();
+ CallIndex = V.getLValueCallIndex();
+ Designator = SubobjectDesignator(Ctx, V);
+ }
+
+ void set(APValue::LValueBase B, unsigned I = 0) {
+ Base = B;
+ Offset = CharUnits::Zero();
+ CallIndex = I;
+ Designator = SubobjectDesignator(getType(B));
+ }
+
+ // Check that this LValue is not based on a null pointer. If it is, produce
+ // a diagnostic and mark the designator as invalid.
+ bool checkNullPointer(EvalInfo &Info, const Expr *E,
+ CheckSubobjectKind CSK) {
+ if (Designator.Invalid)
+ return false;
+ if (!Base) {
+ Info.CCEDiag(E, diag::note_constexpr_null_subobject)
+ << CSK;
+ Designator.setInvalid();
+ return false;
+ }
+ return true;
+ }
+
+ // Check this LValue refers to an object. If not, set the designator to be
+ // invalid and emit a diagnostic.
+ bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
+ // Outside C++11, do not build a designator referring to a subobject of
+ // any object: we won't use such a designator for anything.
+ if (!Info.getLangOpts().CPlusPlus11)
+ Designator.setInvalid();
+ return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) &&
+ Designator.checkSubobject(Info, E, CSK);
+ }
+
+ void addDecl(EvalInfo &Info, const Expr *E,
+ const Decl *D, bool Virtual = false) {
+ if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
+ Designator.addDeclUnchecked(D, Virtual);
+ }
+ void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
+ if (checkSubobject(Info, E, CSK_ArrayToPointer))
+ Designator.addArrayUnchecked(CAT);
+ }
+ void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
+ if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
+ Designator.addComplexUnchecked(EltTy, Imag);
+ }
+ void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
+ if (N && checkNullPointer(Info, E, CSK_ArrayIndex))
+ Designator.adjustIndex(Info, E, N);
+ }
+ };
+
+ struct MemberPtr {
+ MemberPtr() {}
+ explicit MemberPtr(const ValueDecl *Decl) :
+ DeclAndIsDerivedMember(Decl, false), Path() {}
+
+ /// The member or (direct or indirect) field referred to by this member
+ /// pointer, or 0 if this is a null member pointer.
+ const ValueDecl *getDecl() const {
+ return DeclAndIsDerivedMember.getPointer();
+ }
+ /// Is this actually a member of some type derived from the relevant class?
+ bool isDerivedMember() const {
+ return DeclAndIsDerivedMember.getInt();
+ }
+ /// Get the class which the declaration actually lives in.
+ const CXXRecordDecl *getContainingRecord() const {
+ return cast<CXXRecordDecl>(
+ DeclAndIsDerivedMember.getPointer()->getDeclContext());
+ }
+
+ void moveInto(APValue &V) const {
+ V = APValue(getDecl(), isDerivedMember(), Path);
+ }
+ void setFrom(const APValue &V) {
+ assert(V.isMemberPointer());
+ DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
+ DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
+ Path.clear();
+ ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
+ Path.insert(Path.end(), P.begin(), P.end());
+ }
+
+ /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
+ /// whether the member is a member of some class derived from the class type
+ /// of the member pointer.
+ llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
+ /// Path - The path of base/derived classes from the member declaration's
+ /// class (exclusive) to the class type of the member pointer (inclusive).
+ SmallVector<const CXXRecordDecl*, 4> Path;
+
+ /// Perform a cast towards the class of the Decl (either up or down the
+ /// hierarchy).
+ bool castBack(const CXXRecordDecl *Class) {
+ assert(!Path.empty());
+ const CXXRecordDecl *Expected;
+ if (Path.size() >= 2)
+ Expected = Path[Path.size() - 2];
+ else
+ Expected = getContainingRecord();
+ if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
+ // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
+ // if B does not contain the original member and is not a base or
+ // derived class of the class containing the original member, the result
+ // of the cast is undefined.
+ // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
+ // (D::*). We consider that to be a language defect.
+ return false;
+ }
+ Path.pop_back();
+ return true;
+ }
+ /// Perform a base-to-derived member pointer cast.
+ bool castToDerived(const CXXRecordDecl *Derived) {
+ if (!getDecl())
+ return true;
+ if (!isDerivedMember()) {
+ Path.push_back(Derived);
+ return true;
+ }
+ if (!castBack(Derived))
+ return false;
+ if (Path.empty())
+ DeclAndIsDerivedMember.setInt(false);
+ return true;
+ }
+ /// Perform a derived-to-base member pointer cast.
+ bool castToBase(const CXXRecordDecl *Base) {
+ if (!getDecl())
+ return true;
+ if (Path.empty())
+ DeclAndIsDerivedMember.setInt(true);
+ if (isDerivedMember()) {
+ Path.push_back(Base);
+ return true;
+ }
+ return castBack(Base);
+ }
+ };
+
+ /// Compare two member pointers, which are assumed to be of the same type.
+ static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
+ if (!LHS.getDecl() || !RHS.getDecl())
+ return !LHS.getDecl() && !RHS.getDecl();
+ if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
+ return false;
+ return LHS.Path == RHS.Path;
+ }
+}
+
+static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
+static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
+ const LValue &This, const Expr *E,
+ bool AllowNonLiteralTypes = false);
+static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info);
+static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info);
+static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
+ EvalInfo &Info);
+static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
+static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
+static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
+ EvalInfo &Info);
+static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
+static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
+static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info);
+
+//===----------------------------------------------------------------------===//
+// Misc utilities
+//===----------------------------------------------------------------------===//
+
+/// Produce a string describing the given constexpr call.
+static void describeCall(CallStackFrame *Frame, raw_ostream &Out) {
+ unsigned ArgIndex = 0;
+ bool IsMemberCall = isa<CXXMethodDecl>(Frame->Callee) &&
+ !isa<CXXConstructorDecl>(Frame->Callee) &&
+ cast<CXXMethodDecl>(Frame->Callee)->isInstance();
+
+ if (!IsMemberCall)
+ Out << *Frame->Callee << '(';
+
+ if (Frame->This && IsMemberCall) {
+ APValue Val;
+ Frame->This->moveInto(Val);
+ Val.printPretty(Out, Frame->Info.Ctx,
+ Frame->This->Designator.MostDerivedType);
+ // FIXME: Add parens around Val if needed.
+ Out << "->" << *Frame->Callee << '(';
+ IsMemberCall = false;
+ }
+
+ for (FunctionDecl::param_const_iterator I = Frame->Callee->param_begin(),
+ E = Frame->Callee->param_end(); I != E; ++I, ++ArgIndex) {
+ if (ArgIndex > (unsigned)IsMemberCall)
+ Out << ", ";
+
+ const ParmVarDecl *Param = *I;
+ const APValue &Arg = Frame->Arguments[ArgIndex];
+ Arg.printPretty(Out, Frame->Info.Ctx, Param->getType());
+
+ if (ArgIndex == 0 && IsMemberCall)
+ Out << "->" << *Frame->Callee << '(';
+ }
+
+ Out << ')';
+}
+
+/// Evaluate an expression to see if it had side-effects, and discard its
+/// result.
+/// \return \c true if the caller should keep evaluating.
+static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
+ APValue Scratch;
+ if (!Evaluate(Scratch, Info, E))
+ // We don't need the value, but we might have skipped a side effect here.
+ return Info.noteSideEffect();
+ return true;
+}
+
+/// Sign- or zero-extend a value to 64 bits. If it's already 64 bits, just
+/// return its existing value.
+static int64_t getExtValue(const APSInt &Value) {
+ return Value.isSigned() ? Value.getSExtValue()
+ : static_cast<int64_t>(Value.getZExtValue());
+}
+
+/// Should this call expression be treated as a string literal?
+static bool IsStringLiteralCall(const CallExpr *E) {
+ unsigned Builtin = E->getBuiltinCallee();
+ return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
+ Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
+}
+
+static bool IsGlobalLValue(APValue::LValueBase B) {
+ // C++11 [expr.const]p3 An address constant expression is a prvalue core
+ // constant expression of pointer type that evaluates to...
+
+ // ... a null pointer value, or a prvalue core constant expression of type
+ // std::nullptr_t.
+ if (!B) return true;
+
+ if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
+ // ... the address of an object with static storage duration,
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D))
+ return VD->hasGlobalStorage();
+ // ... the address of a function,
+ return isa<FunctionDecl>(D);
+ }
+
+ const Expr *E = B.get<const Expr*>();
+ switch (E->getStmtClass()) {
+ default:
+ return false;
+ case Expr::CompoundLiteralExprClass: {
+ const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
+ return CLE->isFileScope() && CLE->isLValue();
+ }
+ case Expr::MaterializeTemporaryExprClass:
+ // A materialized temporary might have been lifetime-extended to static
+ // storage duration.
+ return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
+ // A string literal has static storage duration.
+ case Expr::StringLiteralClass:
+ case Expr::PredefinedExprClass:
+ case Expr::ObjCStringLiteralClass:
+ case Expr::ObjCEncodeExprClass:
+ case Expr::CXXTypeidExprClass:
+ case Expr::CXXUuidofExprClass:
+ return true;
+ case Expr::CallExprClass:
+ return IsStringLiteralCall(cast<CallExpr>(E));
+ // For GCC compatibility, &&label has static storage duration.
+ case Expr::AddrLabelExprClass:
+ return true;
+ // A Block literal expression may be used as the initialization value for
+ // Block variables at global or local static scope.
+ case Expr::BlockExprClass:
+ return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
+ case Expr::ImplicitValueInitExprClass:
+ // FIXME:
+ // We can never form an lvalue with an implicit value initialization as its
+ // base through expression evaluation, so these only appear in one case: the
+ // implicit variable declaration we invent when checking whether a constexpr
+ // constructor can produce a constant expression. We must assume that such
+ // an expression might be a global lvalue.
+ return true;
+ }
+}
+
+static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
+ assert(Base && "no location for a null lvalue");
+ const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
+ if (VD)
+ Info.Note(VD->getLocation(), diag::note_declared_at);
+ else
+ Info.Note(Base.get<const Expr*>()->getExprLoc(),
+ diag::note_constexpr_temporary_here);
+}
+
+/// Check that this reference or pointer core constant expression is a valid
+/// value for an address or reference constant expression. Return true if we
+/// can fold this expression, whether or not it's a constant expression.
+static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
+ QualType Type, const LValue &LVal) {
+ bool IsReferenceType = Type->isReferenceType();
+
+ APValue::LValueBase Base = LVal.getLValueBase();
+ const SubobjectDesignator &Designator = LVal.getLValueDesignator();
+
+ // Check that the object is a global. Note that the fake 'this' object we
+ // manufacture when checking potential constant expressions is conservatively
+ // assumed to be global here.
+ if (!IsGlobalLValue(Base)) {
+ if (Info.getLangOpts().CPlusPlus11) {
+ const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
+ Info.Diag(Loc, diag::note_constexpr_non_global, 1)
+ << IsReferenceType << !Designator.Entries.empty()
+ << !!VD << VD;
+ NoteLValueLocation(Info, Base);
+ } else {
+ Info.Diag(Loc);
+ }
+ // Don't allow references to temporaries to escape.
+ return false;
+ }
+ assert((Info.checkingPotentialConstantExpression() ||
+ LVal.getLValueCallIndex() == 0) &&
+ "have call index for global lvalue");
+
+ if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) {
+ if (const VarDecl *Var = dyn_cast<const VarDecl>(VD)) {
+ // Check if this is a thread-local variable.
+ if (Var->getTLSKind())
+ return false;
+
+ // A dllimport variable never acts like a constant.
+ if (Var->hasAttr<DLLImportAttr>())
+ return false;
+ }
+ if (const auto *FD = dyn_cast<const FunctionDecl>(VD)) {
+ // __declspec(dllimport) must be handled very carefully:
+ // We must never initialize an expression with the thunk in C++.
+ // Doing otherwise would allow the same id-expression to yield
+ // different addresses for the same function in different translation
+ // units. However, this means that we must dynamically initialize the
+ // expression with the contents of the import address table at runtime.
+ //
+ // The C language has no notion of ODR; furthermore, it has no notion of
+ // dynamic initialization. This means that we are permitted to
+ // perform initialization with the address of the thunk.
+ if (Info.getLangOpts().CPlusPlus && FD->hasAttr<DLLImportAttr>())
+ return false;
+ }
+ }
+
+ // Allow address constant expressions to be past-the-end pointers. This is
+ // an extension: the standard requires them to point to an object.
+ if (!IsReferenceType)
+ return true;
+
+ // A reference constant expression must refer to an object.
+ if (!Base) {
+ // FIXME: diagnostic
+ Info.CCEDiag(Loc);
+ return true;
+ }
+
+ // Does this refer one past the end of some object?
+ if (!Designator.Invalid && Designator.isOnePastTheEnd()) {
+ const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
+ Info.Diag(Loc, diag::note_constexpr_past_end, 1)
+ << !Designator.Entries.empty() << !!VD << VD;
+ NoteLValueLocation(Info, Base);
+ }
+
+ return true;
+}
+
+/// Check that this core constant expression is of literal type, and if not,
+/// produce an appropriate diagnostic.
+static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
+ const LValue *This = nullptr) {
+ if (!E->isRValue() || E->getType()->isLiteralType(Info.Ctx))
+ return true;
+
+ // C++1y: A constant initializer for an object o [...] may also invoke
+ // constexpr constructors for o and its subobjects even if those objects
+ // are of non-literal class types.
+ if (Info.getLangOpts().CPlusPlus14 && This &&
+ Info.EvaluatingDecl == This->getLValueBase())
+ return true;
+
+ // Prvalue constant expressions must be of literal types.
+ if (Info.getLangOpts().CPlusPlus11)
+ Info.Diag(E, diag::note_constexpr_nonliteral)
+ << E->getType();
+ else
+ Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
+ return false;
+}
+
+/// Check that this core constant expression value is a valid value for a
+/// constant expression. If not, report an appropriate diagnostic. Does not
+/// check that the expression is of literal type.
+static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
+ QualType Type, const APValue &Value) {
+ if (Value.isUninit()) {
+ Info.Diag(DiagLoc, diag::note_constexpr_uninitialized)
+ << true << Type;
+ return false;
+ }
+
+ // We allow _Atomic(T) to be initialized from anything that T can be
+ // initialized from.
+ if (const AtomicType *AT = Type->getAs<AtomicType>())
+ Type = AT->getValueType();
+
+ // Core issue 1454: For a literal constant expression of array or class type,
+ // each subobject of its value shall have been initialized by a constant
+ // expression.
+ if (Value.isArray()) {
+ QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
+ for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
+ if (!CheckConstantExpression(Info, DiagLoc, EltTy,
+ Value.getArrayInitializedElt(I)))
+ return false;
+ }
+ if (!Value.hasArrayFiller())
+ return true;
+ return CheckConstantExpression(Info, DiagLoc, EltTy,
+ Value.getArrayFiller());
+ }
+ if (Value.isUnion() && Value.getUnionField()) {
+ return CheckConstantExpression(Info, DiagLoc,
+ Value.getUnionField()->getType(),
+ Value.getUnionValue());
+ }
+ if (Value.isStruct()) {
+ RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
+ if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
+ unsigned BaseIndex = 0;
+ for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
+ End = CD->bases_end(); I != End; ++I, ++BaseIndex) {
+ if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
+ Value.getStructBase(BaseIndex)))
+ return false;
+ }
+ }
+ for (const auto *I : RD->fields()) {
+ if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
+ Value.getStructField(I->getFieldIndex())))
+ return false;
+ }
+ }
+
+ if (Value.isLValue()) {
+ LValue LVal;
+ LVal.setFrom(Info.Ctx, Value);
+ return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal);
+ }
+
+ // Everything else is fine.
+ return true;
+}
+
+static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
+ return LVal.Base.dyn_cast<const ValueDecl*>();
+}
+
+static bool IsLiteralLValue(const LValue &Value) {
+ if (Value.CallIndex)
+ return false;
+ const Expr *E = Value.Base.dyn_cast<const Expr*>();
+ return E && !isa<MaterializeTemporaryExpr>(E);
+}
+
+static bool IsWeakLValue(const LValue &Value) {
+ const ValueDecl *Decl = GetLValueBaseDecl(Value);
+ return Decl && Decl->isWeak();
+}
+
+static bool isZeroSized(const LValue &Value) {
+ const ValueDecl *Decl = GetLValueBaseDecl(Value);
+ if (Decl && isa<VarDecl>(Decl)) {
+ QualType Ty = Decl->getType();
+ if (Ty->isArrayType())
+ return Ty->isIncompleteType() ||
+ Decl->getASTContext().getTypeSize(Ty) == 0;
+ }
+ return false;
+}
+
+static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
+ // A null base expression indicates a null pointer. These are always
+ // evaluatable, and they are false unless the offset is zero.
+ if (!Value.getLValueBase()) {
+ Result = !Value.getLValueOffset().isZero();
+ return true;
+ }
+
+ // We have a non-null base. These are generally known to be true, but if it's
+ // a weak declaration it can be null at runtime.
+ Result = true;
+ const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
+ return !Decl || !Decl->isWeak();
+}
+
+static bool HandleConversionToBool(const APValue &Val, bool &Result) {
+ switch (Val.getKind()) {
+ case APValue::Uninitialized:
+ return false;
+ case APValue::Int:
+ Result = Val.getInt().getBoolValue();
+ return true;
+ case APValue::Float:
+ Result = !Val.getFloat().isZero();
+ return true;
+ case APValue::ComplexInt:
+ Result = Val.getComplexIntReal().getBoolValue() ||
+ Val.getComplexIntImag().getBoolValue();
+ return true;
+ case APValue::ComplexFloat:
+ Result = !Val.getComplexFloatReal().isZero() ||
+ !Val.getComplexFloatImag().isZero();
+ return true;
+ case APValue::LValue:
+ return EvalPointerValueAsBool(Val, Result);
+ case APValue::MemberPointer:
+ Result = Val.getMemberPointerDecl();
+ return true;
+ case APValue::Vector:
+ case APValue::Array:
+ case APValue::Struct:
+ case APValue::Union:
+ case APValue::AddrLabelDiff:
+ return false;
+ }
+
+ llvm_unreachable("unknown APValue kind");
+}
+
+static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
+ EvalInfo &Info) {
+ assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
+ APValue Val;
+ if (!Evaluate(Val, Info, E))
+ return false;
+ return HandleConversionToBool(Val, Result);
+}
+
+template<typename T>
+static void HandleOverflow(EvalInfo &Info, const Expr *E,
+ const T &SrcValue, QualType DestType) {
+ Info.CCEDiag(E, diag::note_constexpr_overflow)
+ << SrcValue << DestType;
+}
+
+static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
+ QualType SrcType, const APFloat &Value,
+ QualType DestType, APSInt &Result) {
+ unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
+ // Determine whether we are converting to unsigned or signed.
+ bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
+
+ Result = APSInt(DestWidth, !DestSigned);
+ bool ignored;
+ if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
+ & APFloat::opInvalidOp)
+ HandleOverflow(Info, E, Value, DestType);
+ return true;
+}
+
+static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
+ QualType SrcType, QualType DestType,
+ APFloat &Result) {
+ APFloat Value = Result;
+ bool ignored;
+ if (Result.convert(Info.Ctx.getFloatTypeSemantics(DestType),
+ APFloat::rmNearestTiesToEven, &ignored)
+ & APFloat::opOverflow)
+ HandleOverflow(Info, E, Value, DestType);
+ return true;
+}
+
+static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
+ QualType DestType, QualType SrcType,
+ APSInt &Value) {
+ unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
+ APSInt Result = Value;
+ // Figure out if this is a truncate, extend or noop cast.
+ // If the input is signed, do a sign extend, noop, or truncate.
+ Result = Result.extOrTrunc(DestWidth);
+ Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
+ return Result;
+}
+
+static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
+ QualType SrcType, const APSInt &Value,
+ QualType DestType, APFloat &Result) {
+ Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
+ if (Result.convertFromAPInt(Value, Value.isSigned(),
+ APFloat::rmNearestTiesToEven)
+ & APFloat::opOverflow)
+ HandleOverflow(Info, E, Value, DestType);
+ return true;
+}
+
+static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
+ APValue &Value, const FieldDecl *FD) {
+ assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
+
+ if (!Value.isInt()) {
+ // Trying to store a pointer-cast-to-integer into a bitfield.
+ // FIXME: In this case, we should provide the diagnostic for casting
+ // a pointer to an integer.
+ assert(Value.isLValue() && "integral value neither int nor lvalue?");
+ Info.Diag(E);
+ return false;
+ }
+
+ APSInt &Int = Value.getInt();
+ unsigned OldBitWidth = Int.getBitWidth();
+ unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
+ if (NewBitWidth < OldBitWidth)
+ Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
+ return true;
+}
+
+static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
+ llvm::APInt &Res) {
+ APValue SVal;
+ if (!Evaluate(SVal, Info, E))
+ return false;
+ if (SVal.isInt()) {
+ Res = SVal.getInt();
+ return true;
+ }
+ if (SVal.isFloat()) {
+ Res = SVal.getFloat().bitcastToAPInt();
+ return true;
+ }
+ if (SVal.isVector()) {
+ QualType VecTy = E->getType();
+ unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
+ QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
+ unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
+ bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
+ Res = llvm::APInt::getNullValue(VecSize);
+ for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
+ APValue &Elt = SVal.getVectorElt(i);
+ llvm::APInt EltAsInt;
+ if (Elt.isInt()) {
+ EltAsInt = Elt.getInt();
+ } else if (Elt.isFloat()) {
+ EltAsInt = Elt.getFloat().bitcastToAPInt();
+ } else {
+ // Don't try to handle vectors of anything other than int or float
+ // (not sure if it's possible to hit this case).
+ Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
+ return false;
+ }
+ unsigned BaseEltSize = EltAsInt.getBitWidth();
+ if (BigEndian)
+ Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
+ else
+ Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
+ }
+ return true;
+ }
+ // Give up if the input isn't an int, float, or vector. For example, we
+ // reject "(v4i16)(intptr_t)&a".
+ Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
+ return false;
+}
+
+/// Perform the given integer operation, which is known to need at most BitWidth
+/// bits, and check for overflow in the original type (if that type was not an
+/// unsigned type).
+template<typename Operation>
+static APSInt CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
+ const APSInt &LHS, const APSInt &RHS,
+ unsigned BitWidth, Operation Op) {
+ if (LHS.isUnsigned())
+ return Op(LHS, RHS);
+
+ APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
+ APSInt Result = Value.trunc(LHS.getBitWidth());
+ if (Result.extend(BitWidth) != Value) {
+ if (Info.checkingForOverflow())
+ Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
+ diag::warn_integer_constant_overflow)
+ << Result.toString(10) << E->getType();
+ else
+ HandleOverflow(Info, E, Value, E->getType());
+ }
+ return Result;
+}
+
+/// Perform the given binary integer operation.
+static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS,
+ BinaryOperatorKind Opcode, APSInt RHS,
+ APSInt &Result) {
+ switch (Opcode) {
+ default:
+ Info.Diag(E);
+ return false;
+ case BO_Mul:
+ Result = CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
+ std::multiplies<APSInt>());
+ return true;
+ case BO_Add:
+ Result = CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
+ std::plus<APSInt>());
+ return true;
+ case BO_Sub:
+ Result = CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
+ std::minus<APSInt>());
+ return true;
+ case BO_And: Result = LHS & RHS; return true;
+ case BO_Xor: Result = LHS ^ RHS; return true;
+ case BO_Or: Result = LHS | RHS; return true;
+ case BO_Div:
+ case BO_Rem:
+ if (RHS == 0) {
+ Info.Diag(E, diag::note_expr_divide_by_zero);
+ return false;
+ }
+ // Check for overflow case: INT_MIN / -1 or INT_MIN % -1.
+ if (RHS.isNegative() && RHS.isAllOnesValue() &&
+ LHS.isSigned() && LHS.isMinSignedValue())
+ HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1), E->getType());
+ Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
+ return true;
+ case BO_Shl: {
+ if (Info.getLangOpts().OpenCL)
+ // OpenCL 6.3j: shift values are effectively % word size of LHS.
+ RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
+ static_cast<uint64_t>(LHS.getBitWidth() - 1)),
+ RHS.isUnsigned());
+ else if (RHS.isSigned() && RHS.isNegative()) {
+ // During constant-folding, a negative shift is an opposite shift. Such
+ // a shift is not a constant expression.
+ Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
+ RHS = -RHS;
+ goto shift_right;
+ }
+ shift_left:
+ // C++11 [expr.shift]p1: Shift width must be less than the bit width of
+ // the shifted type.
+ unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
+ if (SA != RHS) {
+ Info.CCEDiag(E, diag::note_constexpr_large_shift)
+ << RHS << E->getType() << LHS.getBitWidth();
+ } else if (LHS.isSigned()) {
+ // C++11 [expr.shift]p2: A signed left shift must have a non-negative
+ // operand, and must not overflow the corresponding unsigned type.
+ if (LHS.isNegative())
+ Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
+ else if (LHS.countLeadingZeros() < SA)
+ Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
+ }
+ Result = LHS << SA;
+ return true;
+ }
+ case BO_Shr: {
+ if (Info.getLangOpts().OpenCL)
+ // OpenCL 6.3j: shift values are effectively % word size of LHS.
+ RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
+ static_cast<uint64_t>(LHS.getBitWidth() - 1)),
+ RHS.isUnsigned());
+ else if (RHS.isSigned() && RHS.isNegative()) {
+ // During constant-folding, a negative shift is an opposite shift. Such a
+ // shift is not a constant expression.
+ Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
+ RHS = -RHS;
+ goto shift_left;
+ }
+ shift_right:
+ // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
+ // shifted type.
+ unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
+ if (SA != RHS)
+ Info.CCEDiag(E, diag::note_constexpr_large_shift)
+ << RHS << E->getType() << LHS.getBitWidth();
+ Result = LHS >> SA;
+ return true;
+ }
+
+ case BO_LT: Result = LHS < RHS; return true;
+ case BO_GT: Result = LHS > RHS; return true;
+ case BO_LE: Result = LHS <= RHS; return true;
+ case BO_GE: Result = LHS >= RHS; return true;
+ case BO_EQ: Result = LHS == RHS; return true;
+ case BO_NE: Result = LHS != RHS; return true;
+ }
+}
+
+/// Perform the given binary floating-point operation, in-place, on LHS.
+static bool handleFloatFloatBinOp(EvalInfo &Info, const Expr *E,
+ APFloat &LHS, BinaryOperatorKind Opcode,
+ const APFloat &RHS) {
+ switch (Opcode) {
+ default:
+ Info.Diag(E);
+ return false;
+ case BO_Mul:
+ LHS.multiply(RHS, APFloat::rmNearestTiesToEven);
+ break;
+ case BO_Add:
+ LHS.add(RHS, APFloat::rmNearestTiesToEven);
+ break;
+ case BO_Sub:
+ LHS.subtract(RHS, APFloat::rmNearestTiesToEven);
+ break;
+ case BO_Div:
+ LHS.divide(RHS, APFloat::rmNearestTiesToEven);
+ break;
+ }
+
+ if (LHS.isInfinity() || LHS.isNaN())
+ Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
+ return true;
+}
+
+/// Cast an lvalue referring to a base subobject to a derived class, by
+/// truncating the lvalue's path to the given length.
+static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
+ const RecordDecl *TruncatedType,
+ unsigned TruncatedElements) {
+ SubobjectDesignator &D = Result.Designator;
+
+ // Check we actually point to a derived class object.
+ if (TruncatedElements == D.Entries.size())
+ return true;
+ assert(TruncatedElements >= D.MostDerivedPathLength &&
+ "not casting to a derived class");
+ if (!Result.checkSubobject(Info, E, CSK_Derived))
+ return false;
+
+ // Truncate the path to the subobject, and remove any derived-to-base offsets.
+ const RecordDecl *RD = TruncatedType;
+ for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
+ if (RD->isInvalidDecl()) return false;
+ const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
+ const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
+ if (isVirtualBaseClass(D.Entries[I]))
+ Result.Offset -= Layout.getVBaseClassOffset(Base);
+ else
+ Result.Offset -= Layout.getBaseClassOffset(Base);
+ RD = Base;
+ }
+ D.Entries.resize(TruncatedElements);
+ return true;
+}
+
+static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
+ const CXXRecordDecl *Derived,
+ const CXXRecordDecl *Base,
+ const ASTRecordLayout *RL = nullptr) {
+ if (!RL) {
+ if (Derived->isInvalidDecl()) return false;
+ RL = &Info.Ctx.getASTRecordLayout(Derived);
+ }
+
+ Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
+ Obj.addDecl(Info, E, Base, /*Virtual*/ false);
+ return true;
+}
+
+static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
+ const CXXRecordDecl *DerivedDecl,
+ const CXXBaseSpecifier *Base) {
+ const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
+
+ if (!Base->isVirtual())
+ return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
+
+ SubobjectDesignator &D = Obj.Designator;
+ if (D.Invalid)
+ return false;
+
+ // Extract most-derived object and corresponding type.
+ DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
+ if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
+ return false;
+
+ // Find the virtual base class.
+ if (DerivedDecl->isInvalidDecl()) return false;
+ const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
+ Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
+ Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
+ return true;
+}
+
+static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
+ QualType Type, LValue &Result) {
+ for (CastExpr::path_const_iterator PathI = E->path_begin(),
+ PathE = E->path_end();
+ PathI != PathE; ++PathI) {
+ if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
+ *PathI))
+ return false;
+ Type = (*PathI)->getType();
+ }
+ return true;
+}
+
+/// Update LVal to refer to the given field, which must be a member of the type
+/// currently described by LVal.
+static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
+ const FieldDecl *FD,
+ const ASTRecordLayout *RL = nullptr) {
+ if (!RL) {
+ if (FD->getParent()->isInvalidDecl()) return false;
+ RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
+ }
+
+ unsigned I = FD->getFieldIndex();
+ LVal.Offset += Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I));
+ LVal.addDecl(Info, E, FD);
+ return true;
+}
+
+/// Update LVal to refer to the given indirect field.
+static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
+ LValue &LVal,
+ const IndirectFieldDecl *IFD) {
+ for (const auto *C : IFD->chain())
+ if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C)))
+ return false;
+ return true;
+}
+
+/// Get the size of the given type in char units.
+static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
+ QualType Type, CharUnits &Size) {
+ // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
+ // extension.
+ if (Type->isVoidType() || Type->isFunctionType()) {
+ Size = CharUnits::One();
+ return true;
+ }
+
+ if (!Type->isConstantSizeType()) {
+ // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
+ // FIXME: Better diagnostic.
+ Info.Diag(Loc);
+ return false;
+ }
+
+ Size = Info.Ctx.getTypeSizeInChars(Type);
+ return true;
+}
+
+/// Update a pointer value to model pointer arithmetic.
+/// \param Info - Information about the ongoing evaluation.
+/// \param E - The expression being evaluated, for diagnostic purposes.
+/// \param LVal - The pointer value to be updated.
+/// \param EltTy - The pointee type represented by LVal.
+/// \param Adjustment - The adjustment, in objects of type EltTy, to add.
+static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
+ LValue &LVal, QualType EltTy,
+ int64_t Adjustment) {
+ CharUnits SizeOfPointee;
+ if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
+ return false;
+
+ // Compute the new offset in the appropriate width.
+ LVal.Offset += Adjustment * SizeOfPointee;
+ LVal.adjustIndex(Info, E, Adjustment);
+ return true;
+}
+
+/// Update an lvalue to refer to a component of a complex number.
+/// \param Info - Information about the ongoing evaluation.
+/// \param LVal - The lvalue to be updated.
+/// \param EltTy - The complex number's component type.
+/// \param Imag - False for the real component, true for the imaginary.
+static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
+ LValue &LVal, QualType EltTy,
+ bool Imag) {
+ if (Imag) {
+ CharUnits SizeOfComponent;
+ if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
+ return false;
+ LVal.Offset += SizeOfComponent;
+ }
+ LVal.addComplex(Info, E, EltTy, Imag);
+ return true;
+}
+
+/// Try to evaluate the initializer for a variable declaration.
+///
+/// \param Info Information about the ongoing evaluation.
+/// \param E An expression to be used when printing diagnostics.
+/// \param VD The variable whose initializer should be obtained.
+/// \param Frame The frame in which the variable was created. Must be null
+/// if this variable is not local to the evaluation.
+/// \param Result Filled in with a pointer to the value of the variable.
+static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
+ const VarDecl *VD, CallStackFrame *Frame,
+ APValue *&Result) {
+ // If this is a parameter to an active constexpr function call, perform
+ // argument substitution.
+ if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
+ // Assume arguments of a potential constant expression are unknown
+ // constant expressions.
+ if (Info.checkingPotentialConstantExpression())
+ return false;
+ if (!Frame || !Frame->Arguments) {
+ Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
+ return false;
+ }
+ Result = &Frame->Arguments[PVD->getFunctionScopeIndex()];
+ return true;
+ }
+
+ // If this is a local variable, dig out its value.
+ if (Frame) {
+ Result = Frame->getTemporary(VD);
+ assert(Result && "missing value for local variable");
+ return true;
+ }
+
+ // Dig out the initializer, and use the declaration which it's attached to.
+ const Expr *Init = VD->getAnyInitializer(VD);
+ if (!Init || Init->isValueDependent()) {
+ // If we're checking a potential constant expression, the variable could be
+ // initialized later.
+ if (!Info.checkingPotentialConstantExpression())
+ Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
+ return false;
+ }
+
+ // If we're currently evaluating the initializer of this declaration, use that
+ // in-flight value.
+ if (Info.EvaluatingDecl.dyn_cast<const ValueDecl*>() == VD) {
+ Result = Info.EvaluatingDeclValue;
+ return true;
+ }
+
+ // Never evaluate the initializer of a weak variable. We can't be sure that
+ // this is the definition which will be used.
+ if (VD->isWeak()) {
+ Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
+ return false;
+ }
+
+ // Check that we can fold the initializer. In C++, we will have already done
+ // this in the cases where it matters for conformance.
+ SmallVector<PartialDiagnosticAt, 8> Notes;
+ if (!VD->evaluateValue(Notes)) {
+ Info.Diag(E, diag::note_constexpr_var_init_non_constant,
+ Notes.size() + 1) << VD;
+ Info.Note(VD->getLocation(), diag::note_declared_at);
+ Info.addNotes(Notes);
+ return false;
+ } else if (!VD->checkInitIsICE()) {
+ Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant,
+ Notes.size() + 1) << VD;
+ Info.Note(VD->getLocation(), diag::note_declared_at);
+ Info.addNotes(Notes);
+ }
+
+ Result = VD->getEvaluatedValue();
+ return true;
+}
+
+static bool IsConstNonVolatile(QualType T) {
+ Qualifiers Quals = T.getQualifiers();
+ return Quals.hasConst() && !Quals.hasVolatile();
+}
+
+/// Get the base index of the given base class within an APValue representing
+/// the given derived class.
+static unsigned getBaseIndex(const CXXRecordDecl *Derived,
+ const CXXRecordDecl *Base) {
+ Base = Base->getCanonicalDecl();
+ unsigned Index = 0;
+ for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
+ E = Derived->bases_end(); I != E; ++I, ++Index) {
+ if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
+ return Index;
+ }
+
+ llvm_unreachable("base class missing from derived class's bases list");
+}
+
+/// Extract the value of a character from a string literal.
+static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
+ uint64_t Index) {
+ // FIXME: Support ObjCEncodeExpr, MakeStringConstant
+ if (auto PE = dyn_cast<PredefinedExpr>(Lit))
+ Lit = PE->getFunctionName();
+ const StringLiteral *S = cast<StringLiteral>(Lit);
+ const ConstantArrayType *CAT =
+ Info.Ctx.getAsConstantArrayType(S->getType());
+ assert(CAT && "string literal isn't an array");
+ QualType CharType = CAT->getElementType();
+ assert(CharType->isIntegerType() && "unexpected character type");
+
+ APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
+ CharType->isUnsignedIntegerType());
+ if (Index < S->getLength())
+ Value = S->getCodeUnit(Index);
+ return Value;
+}
+
+// Expand a string literal into an array of characters.
+static void expandStringLiteral(EvalInfo &Info, const Expr *Lit,
+ APValue &Result) {
+ const StringLiteral *S = cast<StringLiteral>(Lit);
+ const ConstantArrayType *CAT =
+ Info.Ctx.getAsConstantArrayType(S->getType());
+ assert(CAT && "string literal isn't an array");
+ QualType CharType = CAT->getElementType();
+ assert(CharType->isIntegerType() && "unexpected character type");
+
+ unsigned Elts = CAT->getSize().getZExtValue();
+ Result = APValue(APValue::UninitArray(),
+ std::min(S->getLength(), Elts), Elts);
+ APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
+ CharType->isUnsignedIntegerType());
+ if (Result.hasArrayFiller())
+ Result.getArrayFiller() = APValue(Value);
+ for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
+ Value = S->getCodeUnit(I);
+ Result.getArrayInitializedElt(I) = APValue(Value);
+ }
+}
+
+// Expand an array so that it has more than Index filled elements.
+static void expandArray(APValue &Array, unsigned Index) {
+ unsigned Size = Array.getArraySize();
+ assert(Index < Size);
+
+ // Always at least double the number of elements for which we store a value.
+ unsigned OldElts = Array.getArrayInitializedElts();
+ unsigned NewElts = std::max(Index+1, OldElts * 2);
+ NewElts = std::min(Size, std::max(NewElts, 8u));
+
+ // Copy the data across.
+ APValue NewValue(APValue::UninitArray(), NewElts, Size);
+ for (unsigned I = 0; I != OldElts; ++I)
+ NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
+ for (unsigned I = OldElts; I != NewElts; ++I)
+ NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
+ if (NewValue.hasArrayFiller())
+ NewValue.getArrayFiller() = Array.getArrayFiller();
+ Array.swap(NewValue);
+}
+
+/// Determine whether a type would actually be read by an lvalue-to-rvalue
+/// conversion. If it's of class type, we may assume that the copy operation
+/// is trivial. Note that this is never true for a union type with fields
+/// (because the copy always "reads" the active member) and always true for
+/// a non-class type.
+static bool isReadByLvalueToRvalueConversion(QualType T) {
+ CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
+ if (!RD || (RD->isUnion() && !RD->field_empty()))
+ return true;
+ if (RD->isEmpty())
+ return false;
+
+ for (auto *Field : RD->fields())
+ if (isReadByLvalueToRvalueConversion(Field->getType()))
+ return true;
+
+ for (auto &BaseSpec : RD->bases())
+ if (isReadByLvalueToRvalueConversion(BaseSpec.getType()))
+ return true;
+
+ return false;
+}
+
+/// Diagnose an attempt to read from any unreadable field within the specified
+/// type, which might be a class type.
+static bool diagnoseUnreadableFields(EvalInfo &Info, const Expr *E,
+ QualType T) {
+ CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
+ if (!RD)
+ return false;
+
+ if (!RD->hasMutableFields())
+ return false;
+
+ for (auto *Field : RD->fields()) {
+ // If we're actually going to read this field in some way, then it can't
+ // be mutable. If we're in a union, then assigning to a mutable field
+ // (even an empty one) can change the active member, so that's not OK.
+ // FIXME: Add core issue number for the union case.
+ if (Field->isMutable() &&
+ (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) {
+ Info.Diag(E, diag::note_constexpr_ltor_mutable, 1) << Field;
+ Info.Note(Field->getLocation(), diag::note_declared_at);
+ return true;
+ }
+
+ if (diagnoseUnreadableFields(Info, E, Field->getType()))
+ return true;
+ }
+
+ for (auto &BaseSpec : RD->bases())
+ if (diagnoseUnreadableFields(Info, E, BaseSpec.getType()))
+ return true;
+
+ // All mutable fields were empty, and thus not actually read.
+ return false;
+}
+
+/// Kinds of access we can perform on an object, for diagnostics.
+enum AccessKinds {
+ AK_Read,
+ AK_Assign,
+ AK_Increment,
+ AK_Decrement
+};
+
+/// A handle to a complete object (an object that is not a subobject of
+/// another object).
+struct CompleteObject {
+ /// The value of the complete object.
+ APValue *Value;
+ /// The type of the complete object.
+ QualType Type;
+
+ CompleteObject() : Value(nullptr) {}
+ CompleteObject(APValue *Value, QualType Type)
+ : Value(Value), Type(Type) {
+ assert(Value && "missing value for complete object");
+ }
+
+ explicit operator bool() const { return Value; }
+};
+
+/// Find the designated sub-object of an rvalue.
+template<typename SubobjectHandler>
+typename SubobjectHandler::result_type
+findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
+ const SubobjectDesignator &Sub, SubobjectHandler &handler) {
+ if (Sub.Invalid)
+ // A diagnostic will have already been produced.
+ return handler.failed();
+ if (Sub.isOnePastTheEnd()) {
+ if (Info.getLangOpts().CPlusPlus11)
+ Info.Diag(E, diag::note_constexpr_access_past_end)
+ << handler.AccessKind;
+ else
+ Info.Diag(E);
+ return handler.failed();
+ }
+
+ APValue *O = Obj.Value;
+ QualType ObjType = Obj.Type;
+ const FieldDecl *LastField = nullptr;
+
+ // Walk the designator's path to find the subobject.
+ for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
+ if (O->isUninit()) {
+ if (!Info.checkingPotentialConstantExpression())
+ Info.Diag(E, diag::note_constexpr_access_uninit) << handler.AccessKind;
+ return handler.failed();
+ }
+
+ if (I == N) {
+ // If we are reading an object of class type, there may still be more
+ // things we need to check: if there are any mutable subobjects, we
+ // cannot perform this read. (This only happens when performing a trivial
+ // copy or assignment.)
+ if (ObjType->isRecordType() && handler.AccessKind == AK_Read &&
+ diagnoseUnreadableFields(Info, E, ObjType))
+ return handler.failed();
+
+ if (!handler.found(*O, ObjType))
+ return false;
+
+ // If we modified a bit-field, truncate it to the right width.
+ if (handler.AccessKind != AK_Read &&
+ LastField && LastField->isBitField() &&
+ !truncateBitfieldValue(Info, E, *O, LastField))
+ return false;
+
+ return true;
+ }
+
+ LastField = nullptr;
+ if (ObjType->isArrayType()) {
+ // Next subobject is an array element.
+ const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
+ assert(CAT && "vla in literal type?");
+ uint64_t Index = Sub.Entries[I].ArrayIndex;
+ if (CAT->getSize().ule(Index)) {
+ // Note, it should not be possible to form a pointer with a valid
+ // designator which points more than one past the end of the array.
+ if (Info.getLangOpts().CPlusPlus11)
+ Info.Diag(E, diag::note_constexpr_access_past_end)
+ << handler.AccessKind;
+ else
+ Info.Diag(E);
+ return handler.failed();
+ }
+
+ ObjType = CAT->getElementType();
+
+ // An array object is represented as either an Array APValue or as an
+ // LValue which refers to a string literal.
+ if (O->isLValue()) {
+ assert(I == N - 1 && "extracting subobject of character?");
+ assert(!O->hasLValuePath() || O->getLValuePath().empty());
+ if (handler.AccessKind != AK_Read)
+ expandStringLiteral(Info, O->getLValueBase().get<const Expr *>(),
+ *O);
+ else
+ return handler.foundString(*O, ObjType, Index);
+ }
+
+ if (O->getArrayInitializedElts() > Index)
+ O = &O->getArrayInitializedElt(Index);
+ else if (handler.AccessKind != AK_Read) {
+ expandArray(*O, Index);
+ O = &O->getArrayInitializedElt(Index);
+ } else
+ O = &O->getArrayFiller();
+ } else if (ObjType->isAnyComplexType()) {
+ // Next subobject is a complex number.
+ uint64_t Index = Sub.Entries[I].ArrayIndex;
+ if (Index > 1) {
+ if (Info.getLangOpts().CPlusPlus11)
+ Info.Diag(E, diag::note_constexpr_access_past_end)
+ << handler.AccessKind;
+ else
+ Info.Diag(E);
+ return handler.failed();
+ }
+
+ bool WasConstQualified = ObjType.isConstQualified();
+ ObjType = ObjType->castAs<ComplexType>()->getElementType();
+ if (WasConstQualified)
+ ObjType.addConst();
+
+ assert(I == N - 1 && "extracting subobject of scalar?");
+ if (O->isComplexInt()) {
+ return handler.found(Index ? O->getComplexIntImag()
+ : O->getComplexIntReal(), ObjType);
+ } else {
+ assert(O->isComplexFloat());
+ return handler.found(Index ? O->getComplexFloatImag()
+ : O->getComplexFloatReal(), ObjType);
+ }
+ } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
+ if (Field->isMutable() && handler.AccessKind == AK_Read) {
+ Info.Diag(E, diag::note_constexpr_ltor_mutable, 1)
+ << Field;
+ Info.Note(Field->getLocation(), diag::note_declared_at);
+ return handler.failed();
+ }
+
+ // Next subobject is a class, struct or union field.
+ RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
+ if (RD->isUnion()) {
+ const FieldDecl *UnionField = O->getUnionField();
+ if (!UnionField ||
+ UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
+ Info.Diag(E, diag::note_constexpr_access_inactive_union_member)
+ << handler.AccessKind << Field << !UnionField << UnionField;
+ return handler.failed();
+ }
+ O = &O->getUnionValue();
+ } else
+ O = &O->getStructField(Field->getFieldIndex());
+
+ bool WasConstQualified = ObjType.isConstQualified();
+ ObjType = Field->getType();
+ if (WasConstQualified && !Field->isMutable())
+ ObjType.addConst();
+
+ if (ObjType.isVolatileQualified()) {
+ if (Info.getLangOpts().CPlusPlus) {
+ // FIXME: Include a description of the path to the volatile subobject.
+ Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
+ << handler.AccessKind << 2 << Field;
+ Info.Note(Field->getLocation(), diag::note_declared_at);
+ } else {
+ Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
+ }
+ return handler.failed();
+ }
+
+ LastField = Field;
+ } else {
+ // Next subobject is a base class.
+ const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
+ const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
+ O = &O->getStructBase(getBaseIndex(Derived, Base));
+
+ bool WasConstQualified = ObjType.isConstQualified();
+ ObjType = Info.Ctx.getRecordType(Base);
+ if (WasConstQualified)
+ ObjType.addConst();
+ }
+ }
+}
+
+namespace {
+struct ExtractSubobjectHandler {
+ EvalInfo &Info;
+ APValue &Result;
+
+ static const AccessKinds AccessKind = AK_Read;
+
+ typedef bool result_type;
+ bool failed() { return false; }
+ bool found(APValue &Subobj, QualType SubobjType) {
+ Result = Subobj;
+ return true;
+ }
+ bool found(APSInt &Value, QualType SubobjType) {
+ Result = APValue(Value);
+ return true;
+ }
+ bool found(APFloat &Value, QualType SubobjType) {
+ Result = APValue(Value);
+ return true;
+ }
+ bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
+ Result = APValue(extractStringLiteralCharacter(
+ Info, Subobj.getLValueBase().get<const Expr *>(), Character));
+ return true;
+ }
+};
+} // end anonymous namespace
+
+const AccessKinds ExtractSubobjectHandler::AccessKind;
+
+/// Extract the designated sub-object of an rvalue.
+static bool extractSubobject(EvalInfo &Info, const Expr *E,
+ const CompleteObject &Obj,
+ const SubobjectDesignator &Sub,
+ APValue &Result) {
+ ExtractSubobjectHandler Handler = { Info, Result };
+ return findSubobject(Info, E, Obj, Sub, Handler);
+}
+
+namespace {
+struct ModifySubobjectHandler {
+ EvalInfo &Info;
+ APValue &NewVal;
+ const Expr *E;
+
+ typedef bool result_type;
+ static const AccessKinds AccessKind = AK_Assign;
+
+ bool checkConst(QualType QT) {
+ // Assigning to a const object has undefined behavior.
+ if (QT.isConstQualified()) {
+ Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
+ return false;
+ }
+ return true;
+ }
+
+ bool failed() { return false; }
+ bool found(APValue &Subobj, QualType SubobjType) {
+ if (!checkConst(SubobjType))
+ return false;
+ // We've been given ownership of NewVal, so just swap it in.
+ Subobj.swap(NewVal);
+ return true;
+ }
+ bool found(APSInt &Value, QualType SubobjType) {
+ if (!checkConst(SubobjType))
+ return false;
+ if (!NewVal.isInt()) {
+ // Maybe trying to write a cast pointer value into a complex?
+ Info.Diag(E);
+ return false;
+ }
+ Value = NewVal.getInt();
+ return true;
+ }
+ bool found(APFloat &Value, QualType SubobjType) {
+ if (!checkConst(SubobjType))
+ return false;
+ Value = NewVal.getFloat();
+ return true;
+ }
+ bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
+ llvm_unreachable("shouldn't encounter string elements with ExpandArrays");
+ }
+};
+} // end anonymous namespace
+
+const AccessKinds ModifySubobjectHandler::AccessKind;
+
+/// Update the designated sub-object of an rvalue to the given value.
+static bool modifySubobject(EvalInfo &Info, const Expr *E,
+ const CompleteObject &Obj,
+ const SubobjectDesignator &Sub,
+ APValue &NewVal) {
+ ModifySubobjectHandler Handler = { Info, NewVal, E };
+ return findSubobject(Info, E, Obj, Sub, Handler);
+}
+
+/// Find the position where two subobject designators diverge, or equivalently
+/// the length of the common initial subsequence.
+static unsigned FindDesignatorMismatch(QualType ObjType,
+ const SubobjectDesignator &A,
+ const SubobjectDesignator &B,
+ bool &WasArrayIndex) {
+ unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
+ for (/**/; I != N; ++I) {
+ if (!ObjType.isNull() &&
+ (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
+ // Next subobject is an array element.
+ if (A.Entries[I].ArrayIndex != B.Entries[I].ArrayIndex) {
+ WasArrayIndex = true;
+ return I;
+ }
+ if (ObjType->isAnyComplexType())
+ ObjType = ObjType->castAs<ComplexType>()->getElementType();
+ else
+ ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
+ } else {
+ if (A.Entries[I].BaseOrMember != B.Entries[I].BaseOrMember) {
+ WasArrayIndex = false;
+ return I;
+ }
+ if (const FieldDecl *FD = getAsField(A.Entries[I]))
+ // Next subobject is a field.
+ ObjType = FD->getType();
+ else
+ // Next subobject is a base class.
+ ObjType = QualType();
+ }
+ }
+ WasArrayIndex = false;
+ return I;
+}
+
+/// Determine whether the given subobject designators refer to elements of the
+/// same array object.
+static bool AreElementsOfSameArray(QualType ObjType,
+ const SubobjectDesignator &A,
+ const SubobjectDesignator &B) {
+ if (A.Entries.size() != B.Entries.size())
+ return false;
+
+ bool IsArray = A.MostDerivedArraySize != 0;
+ if (IsArray && A.MostDerivedPathLength != A.Entries.size())
+ // A is a subobject of the array element.
+ return false;
+
+ // If A (and B) designates an array element, the last entry will be the array
+ // index. That doesn't have to match. Otherwise, we're in the 'implicit array
+ // of length 1' case, and the entire path must match.
+ bool WasArrayIndex;
+ unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
+ return CommonLength >= A.Entries.size() - IsArray;
+}
+
+/// Find the complete object to which an LValue refers.
+static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E,
+ AccessKinds AK, const LValue &LVal,
+ QualType LValType) {
+ if (!LVal.Base) {
+ Info.Diag(E, diag::note_constexpr_access_null) << AK;
+ return CompleteObject();
+ }
+
+ CallStackFrame *Frame = nullptr;
+ if (LVal.CallIndex) {
+ Frame = Info.getCallFrame(LVal.CallIndex);
+ if (!Frame) {
+ Info.Diag(E, diag::note_constexpr_lifetime_ended, 1)
+ << AK << LVal.Base.is<const ValueDecl*>();
+ NoteLValueLocation(Info, LVal.Base);
+ return CompleteObject();
+ }
+ }
+
+ // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
+ // is not a constant expression (even if the object is non-volatile). We also
+ // apply this rule to C++98, in order to conform to the expected 'volatile'
+ // semantics.
+ if (LValType.isVolatileQualified()) {
+ if (Info.getLangOpts().CPlusPlus)
+ Info.Diag(E, diag::note_constexpr_access_volatile_type)
+ << AK << LValType;
+ else
+ Info.Diag(E);
+ return CompleteObject();
+ }
+
+ // Compute value storage location and type of base object.
+ APValue *BaseVal = nullptr;
+ QualType BaseType = getType(LVal.Base);
+
+ if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) {
+ // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
+ // In C++11, constexpr, non-volatile variables initialized with constant
+ // expressions are constant expressions too. Inside constexpr functions,
+ // parameters are constant expressions even if they're non-const.
+ // In C++1y, objects local to a constant expression (those with a Frame) are
+ // both readable and writable inside constant expressions.
+ // In C, such things can also be folded, although they are not ICEs.
+ const VarDecl *VD = dyn_cast<VarDecl>(D);
+ if (VD) {
+ if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
+ VD = VDef;
+ }
+ if (!VD || VD->isInvalidDecl()) {
+ Info.Diag(E);
+ return CompleteObject();
+ }
+
+ // Accesses of volatile-qualified objects are not allowed.
+ if (BaseType.isVolatileQualified()) {
+ if (Info.getLangOpts().CPlusPlus) {
+ Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
+ << AK << 1 << VD;
+ Info.Note(VD->getLocation(), diag::note_declared_at);
+ } else {
+ Info.Diag(E);
+ }
+ return CompleteObject();
+ }
+
+ // Unless we're looking at a local variable or argument in a constexpr call,
+ // the variable we're reading must be const.
+ if (!Frame) {
+ if (Info.getLangOpts().CPlusPlus14 &&
+ VD == Info.EvaluatingDecl.dyn_cast<const ValueDecl *>()) {
+ // OK, we can read and modify an object if we're in the process of
+ // evaluating its initializer, because its lifetime began in this
+ // evaluation.
+ } else if (AK != AK_Read) {
+ // All the remaining cases only permit reading.
+ Info.Diag(E, diag::note_constexpr_modify_global);
+ return CompleteObject();
+ } else if (VD->isConstexpr()) {
+ // OK, we can read this variable.
+ } else if (BaseType->isIntegralOrEnumerationType()) {
+ if (!BaseType.isConstQualified()) {
+ if (Info.getLangOpts().CPlusPlus) {
+ Info.Diag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
+ Info.Note(VD->getLocation(), diag::note_declared_at);
+ } else {
+ Info.Diag(E);
+ }
+ return CompleteObject();
+ }
+ } else if (BaseType->isFloatingType() && BaseType.isConstQualified()) {
+ // We support folding of const floating-point types, in order to make
+ // static const data members of such types (supported as an extension)
+ // more useful.
+ if (Info.getLangOpts().CPlusPlus11) {
+ Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
+ Info.Note(VD->getLocation(), diag::note_declared_at);
+ } else {
+ Info.CCEDiag(E);
+ }
+ } else {
+ // FIXME: Allow folding of values of any literal type in all languages.
+ if (Info.getLangOpts().CPlusPlus11) {
+ Info.Diag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
+ Info.Note(VD->getLocation(), diag::note_declared_at);
+ } else {
+ Info.Diag(E);
+ }
+ return CompleteObject();
+ }
+ }
+
+ if (!evaluateVarDeclInit(Info, E, VD, Frame, BaseVal))
+ return CompleteObject();
+ } else {
+ const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
+
+ if (!Frame) {
+ if (const MaterializeTemporaryExpr *MTE =
+ dyn_cast<MaterializeTemporaryExpr>(Base)) {
+ assert(MTE->getStorageDuration() == SD_Static &&
+ "should have a frame for a non-global materialized temporary");
+
+ // Per C++1y [expr.const]p2:
+ // an lvalue-to-rvalue conversion [is not allowed unless it applies to]
+ // - a [...] glvalue of integral or enumeration type that refers to
+ // a non-volatile const object [...]
+ // [...]
+ // - a [...] glvalue of literal type that refers to a non-volatile
+ // object whose lifetime began within the evaluation of e.
+ //
+ // C++11 misses the 'began within the evaluation of e' check and
+ // instead allows all temporaries, including things like:
+ // int &&r = 1;
+ // int x = ++r;
+ // constexpr int k = r;
+ // Therefore we use the C++1y rules in C++11 too.
+ const ValueDecl *VD = Info.EvaluatingDecl.dyn_cast<const ValueDecl*>();
+ const ValueDecl *ED = MTE->getExtendingDecl();
+ if (!(BaseType.isConstQualified() &&
+ BaseType->isIntegralOrEnumerationType()) &&
+ !(VD && VD->getCanonicalDecl() == ED->getCanonicalDecl())) {
+ Info.Diag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
+ Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
+ return CompleteObject();
+ }
+
+ BaseVal = Info.Ctx.getMaterializedTemporaryValue(MTE, false);
+ assert(BaseVal && "got reference to unevaluated temporary");
+ } else {
+ Info.Diag(E);
+ return CompleteObject();
+ }
+ } else {
+ BaseVal = Frame->getTemporary(Base);
+ assert(BaseVal && "missing value for temporary");
+ }
+
+ // Volatile temporary objects cannot be accessed in constant expressions.
+ if (BaseType.isVolatileQualified()) {
+ if (Info.getLangOpts().CPlusPlus) {
+ Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
+ << AK << 0;
+ Info.Note(Base->getExprLoc(), diag::note_constexpr_temporary_here);
+ } else {
+ Info.Diag(E);
+ }
+ return CompleteObject();
+ }
+ }
+
+ // During the construction of an object, it is not yet 'const'.
+ // FIXME: We don't set up EvaluatingDecl for local variables or temporaries,
+ // and this doesn't do quite the right thing for const subobjects of the
+ // object under construction.
+ if (LVal.getLValueBase() == Info.EvaluatingDecl) {
+ BaseType = Info.Ctx.getCanonicalType(BaseType);
+ BaseType.removeLocalConst();
+ }
+
+ // In C++1y, we can't safely access any mutable state when we might be
+ // evaluating after an unmodeled side effect or an evaluation failure.
+ //
+ // FIXME: Not all local state is mutable. Allow local constant subobjects
+ // to be read here (but take care with 'mutable' fields).
+ if (Frame && Info.getLangOpts().CPlusPlus14 &&
+ (Info.EvalStatus.HasSideEffects || Info.keepEvaluatingAfterFailure()))
+ return CompleteObject();
+
+ return CompleteObject(BaseVal, BaseType);
+}
+
+/// \brief Perform an lvalue-to-rvalue conversion on the given glvalue. This
+/// can also be used for 'lvalue-to-lvalue' conversions for looking up the
+/// glvalue referred to by an entity of reference type.
+///
+/// \param Info - Information about the ongoing evaluation.
+/// \param Conv - The expression for which we are performing the conversion.
+/// Used for diagnostics.
+/// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
+/// case of a non-class type).
+/// \param LVal - The glvalue on which we are attempting to perform this action.
+/// \param RVal - The produced value will be placed here.
+static bool handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv,
+ QualType Type,
+ const LValue &LVal, APValue &RVal) {
+ if (LVal.Designator.Invalid)
+ return false;
+
+ // Check for special cases where there is no existing APValue to look at.
+ const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
+ if (!LVal.Designator.Invalid && Base && !LVal.CallIndex &&
+ !Type.isVolatileQualified()) {
+ if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
+ // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
+ // initializer until now for such expressions. Such an expression can't be
+ // an ICE in C, so this only matters for fold.
+ assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
+ if (Type.isVolatileQualified()) {
+ Info.Diag(Conv);
+ return false;
+ }
+ APValue Lit;
+ if (!Evaluate(Lit, Info, CLE->getInitializer()))
+ return false;
+ CompleteObject LitObj(&Lit, Base->getType());
+ return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal);
+ } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) {
+ // We represent a string literal array as an lvalue pointing at the
+ // corresponding expression, rather than building an array of chars.
+ // FIXME: Support ObjCEncodeExpr, MakeStringConstant
+ APValue Str(Base, CharUnits::Zero(), APValue::NoLValuePath(), 0);
+ CompleteObject StrObj(&Str, Base->getType());
+ return extractSubobject(Info, Conv, StrObj, LVal.Designator, RVal);
+ }
+ }
+
+ CompleteObject Obj = findCompleteObject(Info, Conv, AK_Read, LVal, Type);
+ return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal);
+}
+
+/// Perform an assignment of Val to LVal. Takes ownership of Val.
+static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
+ QualType LValType, APValue &Val) {
+ if (LVal.Designator.Invalid)
+ return false;
+
+ if (!Info.getLangOpts().CPlusPlus14) {
+ Info.Diag(E);
+ return false;
+ }
+
+ CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
+ return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
+}
+
+static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
+ return T->isSignedIntegerType() &&
+ Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
+}
+
+namespace {
+struct CompoundAssignSubobjectHandler {
+ EvalInfo &Info;
+ const Expr *E;
+ QualType PromotedLHSType;
+ BinaryOperatorKind Opcode;
+ const APValue &RHS;
+
+ static const AccessKinds AccessKind = AK_Assign;
+
+ typedef bool result_type;
+
+ bool checkConst(QualType QT) {
+ // Assigning to a const object has undefined behavior.
+ if (QT.isConstQualified()) {
+ Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
+ return false;
+ }
+ return true;
+ }
+
+ bool failed() { return false; }
+ bool found(APValue &Subobj, QualType SubobjType) {
+ switch (Subobj.getKind()) {
+ case APValue::Int:
+ return found(Subobj.getInt(), SubobjType);
+ case APValue::Float:
+ return found(Subobj.getFloat(), SubobjType);
+ case APValue::ComplexInt:
+ case APValue::ComplexFloat:
+ // FIXME: Implement complex compound assignment.
+ Info.Diag(E);
+ return false;
+ case APValue::LValue:
+ return foundPointer(Subobj, SubobjType);
+ default:
+ // FIXME: can this happen?
+ Info.Diag(E);
+ return false;
+ }
+ }
+ bool found(APSInt &Value, QualType SubobjType) {
+ if (!checkConst(SubobjType))
+ return false;
+
+ if (!SubobjType->isIntegerType() || !RHS.isInt()) {
+ // We don't support compound assignment on integer-cast-to-pointer
+ // values.
+ Info.Diag(E);
+ return false;
+ }
+
+ APSInt LHS = HandleIntToIntCast(Info, E, PromotedLHSType,
+ SubobjType, Value);
+ if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
+ return false;
+ Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
+ return true;
+ }
+ bool found(APFloat &Value, QualType SubobjType) {
+ return checkConst(SubobjType) &&
+ HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
+ Value) &&
+ handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
+ HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
+ }
+ bool foundPointer(APValue &Subobj, QualType SubobjType) {
+ if (!checkConst(SubobjType))
+ return false;
+
+ QualType PointeeType;
+ if (const PointerType *PT = SubobjType->getAs<PointerType>())
+ PointeeType = PT->getPointeeType();
+
+ if (PointeeType.isNull() || !RHS.isInt() ||
+ (Opcode != BO_Add && Opcode != BO_Sub)) {
+ Info.Diag(E);
+ return false;
+ }
+
+ int64_t Offset = getExtValue(RHS.getInt());
+ if (Opcode == BO_Sub)
+ Offset = -Offset;
+
+ LValue LVal;
+ LVal.setFrom(Info.Ctx, Subobj);
+ if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
+ return false;
+ LVal.moveInto(Subobj);
+ return true;
+ }
+ bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
+ llvm_unreachable("shouldn't encounter string elements here");
+ }
+};
+} // end anonymous namespace
+
+const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
+
+/// Perform a compound assignment of LVal <op>= RVal.
+static bool handleCompoundAssignment(
+ EvalInfo &Info, const Expr *E,
+ const LValue &LVal, QualType LValType, QualType PromotedLValType,
+ BinaryOperatorKind Opcode, const APValue &RVal) {
+ if (LVal.Designator.Invalid)
+ return false;
+
+ if (!Info.getLangOpts().CPlusPlus14) {
+ Info.Diag(E);
+ return false;
+ }
+
+ CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
+ CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
+ RVal };
+ return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
+}
+
+namespace {
+struct IncDecSubobjectHandler {
+ EvalInfo &Info;
+ const Expr *E;
+ AccessKinds AccessKind;
+ APValue *Old;
+
+ typedef bool result_type;
+
+ bool checkConst(QualType QT) {
+ // Assigning to a const object has undefined behavior.
+ if (QT.isConstQualified()) {
+ Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
+ return false;
+ }
+ return true;
+ }
+
+ bool failed() { return false; }
+ bool found(APValue &Subobj, QualType SubobjType) {
+ // Stash the old value. Also clear Old, so we don't clobber it later
+ // if we're post-incrementing a complex.
+ if (Old) {
+ *Old = Subobj;
+ Old = nullptr;
+ }
+
+ switch (Subobj.getKind()) {
+ case APValue::Int:
+ return found(Subobj.getInt(), SubobjType);
+ case APValue::Float:
+ return found(Subobj.getFloat(), SubobjType);
+ case APValue::ComplexInt:
+ return found(Subobj.getComplexIntReal(),
+ SubobjType->castAs<ComplexType>()->getElementType()
+ .withCVRQualifiers(SubobjType.getCVRQualifiers()));
+ case APValue::ComplexFloat:
+ return found(Subobj.getComplexFloatReal(),
+ SubobjType->castAs<ComplexType>()->getElementType()
+ .withCVRQualifiers(SubobjType.getCVRQualifiers()));
+ case APValue::LValue:
+ return foundPointer(Subobj, SubobjType);
+ default:
+ // FIXME: can this happen?
+ Info.Diag(E);
+ return false;
+ }
+ }
+ bool found(APSInt &Value, QualType SubobjType) {
+ if (!checkConst(SubobjType))
+ return false;
+
+ if (!SubobjType->isIntegerType()) {
+ // We don't support increment / decrement on integer-cast-to-pointer
+ // values.
+ Info.Diag(E);
+ return false;
+ }
+
+ if (Old) *Old = APValue(Value);
+
+ // bool arithmetic promotes to int, and the conversion back to bool
+ // doesn't reduce mod 2^n, so special-case it.
+ if (SubobjType->isBooleanType()) {
+ if (AccessKind == AK_Increment)
+ Value = 1;
+ else
+ Value = !Value;
+ return true;
+ }
+
+ bool WasNegative = Value.isNegative();
+ if (AccessKind == AK_Increment) {
+ ++Value;
+
+ if (!WasNegative && Value.isNegative() &&
+ isOverflowingIntegerType(Info.Ctx, SubobjType)) {
+ APSInt ActualValue(Value, /*IsUnsigned*/true);
+ HandleOverflow(Info, E, ActualValue, SubobjType);
+ }
+ } else {
+ --Value;
+
+ if (WasNegative && !Value.isNegative() &&
+ isOverflowingIntegerType(Info.Ctx, SubobjType)) {
+ unsigned BitWidth = Value.getBitWidth();
+ APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
+ ActualValue.setBit(BitWidth);
+ HandleOverflow(Info, E, ActualValue, SubobjType);
+ }
+ }
+ return true;
+ }
+ bool found(APFloat &Value, QualType SubobjType) {
+ if (!checkConst(SubobjType))
+ return false;
+
+ if (Old) *Old = APValue(Value);
+
+ APFloat One(Value.getSemantics(), 1);
+ if (AccessKind == AK_Increment)
+ Value.add(One, APFloat::rmNearestTiesToEven);
+ else
+ Value.subtract(One, APFloat::rmNearestTiesToEven);
+ return true;
+ }
+ bool foundPointer(APValue &Subobj, QualType SubobjType) {
+ if (!checkConst(SubobjType))
+ return false;
+
+ QualType PointeeType;
+ if (const PointerType *PT = SubobjType->getAs<PointerType>())
+ PointeeType = PT->getPointeeType();
+ else {
+ Info.Diag(E);
+ return false;
+ }
+
+ LValue LVal;
+ LVal.setFrom(Info.Ctx, Subobj);
+ if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
+ AccessKind == AK_Increment ? 1 : -1))
+ return false;
+ LVal.moveInto(Subobj);
+ return true;
+ }
+ bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
+ llvm_unreachable("shouldn't encounter string elements here");
+ }
+};
+} // end anonymous namespace
+
+/// Perform an increment or decrement on LVal.
+static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
+ QualType LValType, bool IsIncrement, APValue *Old) {
+ if (LVal.Designator.Invalid)
+ return false;
+
+ if (!Info.getLangOpts().CPlusPlus14) {
+ Info.Diag(E);
+ return false;
+ }
+
+ AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
+ CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
+ IncDecSubobjectHandler Handler = { Info, E, AK, Old };
+ return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
+}
+
+/// Build an lvalue for the object argument of a member function call.
+static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
+ LValue &This) {
+ if (Object->getType()->isPointerType())
+ return EvaluatePointer(Object, This, Info);
+
+ if (Object->isGLValue())
+ return EvaluateLValue(Object, This, Info);
+
+ if (Object->getType()->isLiteralType(Info.Ctx))
+ return EvaluateTemporary(Object, This, Info);
+
+ Info.Diag(Object, diag::note_constexpr_nonliteral) << Object->getType();
+ return false;
+}
+
+/// HandleMemberPointerAccess - Evaluate a member access operation and build an
+/// lvalue referring to the result.
+///
+/// \param Info - Information about the ongoing evaluation.
+/// \param LV - An lvalue referring to the base of the member pointer.
+/// \param RHS - The member pointer expression.
+/// \param IncludeMember - Specifies whether the member itself is included in
+/// the resulting LValue subobject designator. This is not possible when
+/// creating a bound member function.
+/// \return The field or method declaration to which the member pointer refers,
+/// or 0 if evaluation fails.
+static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
+ QualType LVType,
+ LValue &LV,
+ const Expr *RHS,
+ bool IncludeMember = true) {
+ MemberPtr MemPtr;
+ if (!EvaluateMemberPointer(RHS, MemPtr, Info))
+ return nullptr;
+
+ // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
+ // member value, the behavior is undefined.
+ if (!MemPtr.getDecl()) {
+ // FIXME: Specific diagnostic.
+ Info.Diag(RHS);
+ return nullptr;
+ }
+
+ if (MemPtr.isDerivedMember()) {
+ // This is a member of some derived class. Truncate LV appropriately.
+ // The end of the derived-to-base path for the base object must match the
+ // derived-to-base path for the member pointer.
+ if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
+ LV.Designator.Entries.size()) {
+ Info.Diag(RHS);
+ return nullptr;
+ }
+ unsigned PathLengthToMember =
+ LV.Designator.Entries.size() - MemPtr.Path.size();
+ for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
+ const CXXRecordDecl *LVDecl = getAsBaseClass(
+ LV.Designator.Entries[PathLengthToMember + I]);
+ const CXXRecordDecl *MPDecl = MemPtr.Path[I];
+ if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
+ Info.Diag(RHS);
+ return nullptr;
+ }
+ }
+
+ // Truncate the lvalue to the appropriate derived class.
+ if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
+ PathLengthToMember))
+ return nullptr;
+ } else if (!MemPtr.Path.empty()) {
+ // Extend the LValue path with the member pointer's path.
+ LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
+ MemPtr.Path.size() + IncludeMember);
+
+ // Walk down to the appropriate base class.
+ if (const PointerType *PT = LVType->getAs<PointerType>())
+ LVType = PT->getPointeeType();
+ const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
+ assert(RD && "member pointer access on non-class-type expression");
+ // The first class in the path is that of the lvalue.
+ for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
+ const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
+ if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
+ return nullptr;
+ RD = Base;
+ }
+ // Finally cast to the class containing the member.
+ if (!HandleLValueDirectBase(Info, RHS, LV, RD,
+ MemPtr.getContainingRecord()))
+ return nullptr;
+ }
+
+ // Add the member. Note that we cannot build bound member functions here.
+ if (IncludeMember) {
+ if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
+ if (!HandleLValueMember(Info, RHS, LV, FD))
+ return nullptr;
+ } else if (const IndirectFieldDecl *IFD =
+ dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
+ if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
+ return nullptr;
+ } else {
+ llvm_unreachable("can't construct reference to bound member function");
+ }
+ }
+
+ return MemPtr.getDecl();
+}
+
+static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
+ const BinaryOperator *BO,
+ LValue &LV,
+ bool IncludeMember = true) {
+ assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
+
+ if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
+ if (Info.keepEvaluatingAfterFailure()) {
+ MemberPtr MemPtr;
+ EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
+ }
+ return nullptr;
+ }
+
+ return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
+ BO->getRHS(), IncludeMember);
+}
+
+/// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
+/// the provided lvalue, which currently refers to the base object.
+static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
+ LValue &Result) {
+ SubobjectDesignator &D = Result.Designator;
+ if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
+ return false;
+
+ QualType TargetQT = E->getType();
+ if (const PointerType *PT = TargetQT->getAs<PointerType>())
+ TargetQT = PT->getPointeeType();
+
+ // Check this cast lands within the final derived-to-base subobject path.
+ if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
+ Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
+ << D.MostDerivedType << TargetQT;
+ return false;
+ }
+
+ // Check the type of the final cast. We don't need to check the path,
+ // since a cast can only be formed if the path is unique.
+ unsigned NewEntriesSize = D.Entries.size() - E->path_size();
+ const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
+ const CXXRecordDecl *FinalType;
+ if (NewEntriesSize == D.MostDerivedPathLength)
+ FinalType = D.MostDerivedType->getAsCXXRecordDecl();
+ else
+ FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
+ if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
+ Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
+ << D.MostDerivedType << TargetQT;
+ return false;
+ }
+
+ // Truncate the lvalue to the appropriate derived class.
+ return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
+}
+
+namespace {
+enum EvalStmtResult {
+ /// Evaluation failed.
+ ESR_Failed,
+ /// Hit a 'return' statement.
+ ESR_Returned,
+ /// Evaluation succeeded.
+ ESR_Succeeded,
+ /// Hit a 'continue' statement.
+ ESR_Continue,
+ /// Hit a 'break' statement.
+ ESR_Break,
+ /// Still scanning for 'case' or 'default' statement.
+ ESR_CaseNotFound
+};
+}
+
+static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
+ // We don't need to evaluate the initializer for a static local.
+ if (!VD->hasLocalStorage())
+ return true;
+
+ LValue Result;
+ Result.set(VD, Info.CurrentCall->Index);
+ APValue &Val = Info.CurrentCall->createTemporary(VD, true);
+
+ const Expr *InitE = VD->getInit();
+ if (!InitE) {
+ Info.Diag(D->getLocStart(), diag::note_constexpr_uninitialized)
+ << false << VD->getType();
+ Val = APValue();
+ return false;
+ }
+
+ if (InitE->isValueDependent())
+ return false;
+
+ if (!EvaluateInPlace(Val, Info, Result, InitE)) {
+ // Wipe out any partially-computed value, to allow tracking that this
+ // evaluation failed.
+ Val = APValue();
+ return false;
+ }
+ }
+
+ return true;
+}
+
+/// Evaluate a condition (either a variable declaration or an expression).
+static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
+ const Expr *Cond, bool &Result) {
+ FullExpressionRAII Scope(Info);
+ if (CondDecl && !EvaluateDecl(Info, CondDecl))
+ return false;
+ return EvaluateAsBooleanCondition(Cond, Result, Info);
+}
+
+static EvalStmtResult EvaluateStmt(APValue &Result, EvalInfo &Info,
+ const Stmt *S,
+ const SwitchCase *SC = nullptr);
+
+/// Evaluate the body of a loop, and translate the result as appropriate.
+static EvalStmtResult EvaluateLoopBody(APValue &Result, EvalInfo &Info,
+ const Stmt *Body,
+ const SwitchCase *Case = nullptr) {
+ BlockScopeRAII Scope(Info);
+ switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case)) {
+ case ESR_Break:
+ return ESR_Succeeded;
+ case ESR_Succeeded:
+ case ESR_Continue:
+ return ESR_Continue;
+ case ESR_Failed:
+ case ESR_Returned:
+ case ESR_CaseNotFound:
+ return ESR;
+ }
+ llvm_unreachable("Invalid EvalStmtResult!");
+}
+
+/// Evaluate a switch statement.
+static EvalStmtResult EvaluateSwitch(APValue &Result, EvalInfo &Info,
+ const SwitchStmt *SS) {
+ BlockScopeRAII Scope(Info);
+
+ // Evaluate the switch condition.
+ APSInt Value;
+ {
+ FullExpressionRAII Scope(Info);
+ if (SS->getConditionVariable() &&
+ !EvaluateDecl(Info, SS->getConditionVariable()))
+ return ESR_Failed;
+ if (!EvaluateInteger(SS->getCond(), Value, Info))
+ return ESR_Failed;
+ }
+
+ // Find the switch case corresponding to the value of the condition.
+ // FIXME: Cache this lookup.
+ const SwitchCase *Found = nullptr;
+ for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
+ SC = SC->getNextSwitchCase()) {
+ if (isa<DefaultStmt>(SC)) {
+ Found = SC;
+ continue;
+ }
+
+ const CaseStmt *CS = cast<CaseStmt>(SC);
+ APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
+ APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
+ : LHS;
+ if (LHS <= Value && Value <= RHS) {
+ Found = SC;
+ break;
+ }
+ }
+
+ if (!Found)
+ return ESR_Succeeded;
+
+ // Search the switch body for the switch case and evaluate it from there.
+ switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found)) {
+ case ESR_Break:
+ return ESR_Succeeded;
+ case ESR_Succeeded:
+ case ESR_Continue:
+ case ESR_Failed:
+ case ESR_Returned:
+ return ESR;
+ case ESR_CaseNotFound:
+ // This can only happen if the switch case is nested within a statement
+ // expression. We have no intention of supporting that.
+ Info.Diag(Found->getLocStart(), diag::note_constexpr_stmt_expr_unsupported);
+ return ESR_Failed;
+ }
+ llvm_unreachable("Invalid EvalStmtResult!");
+}
+
+// Evaluate a statement.
+static EvalStmtResult EvaluateStmt(APValue &Result, EvalInfo &Info,
+ const Stmt *S, const SwitchCase *Case) {
+ if (!Info.nextStep(S))
+ return ESR_Failed;
+
+ // If we're hunting down a 'case' or 'default' label, recurse through
+ // substatements until we hit the label.
+ if (Case) {
+ // FIXME: We don't start the lifetime of objects whose initialization we
+ // jump over. However, such objects must be of class type with a trivial
+ // default constructor that initialize all subobjects, so must be empty,
+ // so this almost never matters.
+ switch (S->getStmtClass()) {
+ case Stmt::CompoundStmtClass:
+ // FIXME: Precompute which substatement of a compound statement we
+ // would jump to, and go straight there rather than performing a
+ // linear scan each time.
+ case Stmt::LabelStmtClass:
+ case Stmt::AttributedStmtClass:
+ case Stmt::DoStmtClass:
+ break;
+
+ case Stmt::CaseStmtClass:
+ case Stmt::DefaultStmtClass:
+ if (Case == S)
+ Case = nullptr;
+ break;
+
+ case Stmt::IfStmtClass: {
+ // FIXME: Precompute which side of an 'if' we would jump to, and go
+ // straight there rather than scanning both sides.
+ const IfStmt *IS = cast<IfStmt>(S);
+
+ // Wrap the evaluation in a block scope, in case it's a DeclStmt
+ // preceded by our switch label.
+ BlockScopeRAII Scope(Info);
+
+ EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
+ if (ESR != ESR_CaseNotFound || !IS->getElse())
+ return ESR;
+ return EvaluateStmt(Result, Info, IS->getElse(), Case);
+ }
+
+ case Stmt::WhileStmtClass: {
+ EvalStmtResult ESR =
+ EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
+ if (ESR != ESR_Continue)
+ return ESR;
+ break;
+ }
+
+ case Stmt::ForStmtClass: {
+ const ForStmt *FS = cast<ForStmt>(S);
+ EvalStmtResult ESR =
+ EvaluateLoopBody(Result, Info, FS->getBody(), Case);
+ if (ESR != ESR_Continue)
+ return ESR;
+ if (FS->getInc()) {
+ FullExpressionRAII IncScope(Info);
+ if (!EvaluateIgnoredValue(Info, FS->getInc()))
+ return ESR_Failed;
+ }
+ break;
+ }
+
+ case Stmt::DeclStmtClass:
+ // FIXME: If the variable has initialization that can't be jumped over,
+ // bail out of any immediately-surrounding compound-statement too.
+ default:
+ return ESR_CaseNotFound;
+ }
+ }
+
+ switch (S->getStmtClass()) {
+ default:
+ if (const Expr *E = dyn_cast<Expr>(S)) {
+ // Don't bother evaluating beyond an expression-statement which couldn't
+ // be evaluated.
+ FullExpressionRAII Scope(Info);
+ if (!EvaluateIgnoredValue(Info, E))
+ return ESR_Failed;
+ return ESR_Succeeded;
+ }
+
+ Info.Diag(S->getLocStart());
+ return ESR_Failed;
+
+ case Stmt::NullStmtClass:
+ return ESR_Succeeded;
+
+ case Stmt::DeclStmtClass: {
+ const DeclStmt *DS = cast<DeclStmt>(S);
+ for (const auto *DclIt : DS->decls()) {
+ // Each declaration initialization is its own full-expression.
+ // FIXME: This isn't quite right; if we're performing aggregate
+ // initialization, each braced subexpression is its own full-expression.
+ FullExpressionRAII Scope(Info);
+ if (!EvaluateDecl(Info, DclIt) && !Info.keepEvaluatingAfterFailure())
+ return ESR_Failed;
+ }
+ return ESR_Succeeded;
+ }
+
+ case Stmt::ReturnStmtClass: {
+ const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
+ FullExpressionRAII Scope(Info);
+ if (RetExpr && !Evaluate(Result, Info, RetExpr))
+ return ESR_Failed;
+ return ESR_Returned;
+ }
+
+ case Stmt::CompoundStmtClass: {
+ BlockScopeRAII Scope(Info);
+
+ const CompoundStmt *CS = cast<CompoundStmt>(S);
+ for (const auto *BI : CS->body()) {
+ EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case);
+ if (ESR == ESR_Succeeded)
+ Case = nullptr;
+ else if (ESR != ESR_CaseNotFound)
+ return ESR;
+ }
+ return Case ? ESR_CaseNotFound : ESR_Succeeded;
+ }
+
+ case Stmt::IfStmtClass: {
+ const IfStmt *IS = cast<IfStmt>(S);
+
+ // Evaluate the condition, as either a var decl or as an expression.
+ BlockScopeRAII Scope(Info);
+ bool Cond;
+ if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), Cond))
+ return ESR_Failed;
+
+ if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
+ EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
+ if (ESR != ESR_Succeeded)
+ return ESR;
+ }
+ return ESR_Succeeded;
+ }
+
+ case Stmt::WhileStmtClass: {
+ const WhileStmt *WS = cast<WhileStmt>(S);
+ while (true) {
+ BlockScopeRAII Scope(Info);
+ bool Continue;
+ if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
+ Continue))
+ return ESR_Failed;
+ if (!Continue)
+ break;
+
+ EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
+ if (ESR != ESR_Continue)
+ return ESR;
+ }
+ return ESR_Succeeded;
+ }
+
+ case Stmt::DoStmtClass: {
+ const DoStmt *DS = cast<DoStmt>(S);
+ bool Continue;
+ do {
+ EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
+ if (ESR != ESR_Continue)
+ return ESR;
+ Case = nullptr;
+
+ FullExpressionRAII CondScope(Info);
+ if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info))
+ return ESR_Failed;
+ } while (Continue);
+ return ESR_Succeeded;
+ }
+
+ case Stmt::ForStmtClass: {
+ const ForStmt *FS = cast<ForStmt>(S);
+ BlockScopeRAII Scope(Info);
+ if (FS->getInit()) {
+ EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
+ if (ESR != ESR_Succeeded)
+ return ESR;
+ }
+ while (true) {
+ BlockScopeRAII Scope(Info);
+ bool Continue = true;
+ if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
+ FS->getCond(), Continue))
+ return ESR_Failed;
+ if (!Continue)
+ break;
+
+ EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
+ if (ESR != ESR_Continue)
+ return ESR;
+
+ if (FS->getInc()) {
+ FullExpressionRAII IncScope(Info);
+ if (!EvaluateIgnoredValue(Info, FS->getInc()))
+ return ESR_Failed;
+ }
+ }
+ return ESR_Succeeded;
+ }
+
+ case Stmt::CXXForRangeStmtClass: {
+ const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
+ BlockScopeRAII Scope(Info);
+
+ // Initialize the __range variable.
+ EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
+ if (ESR != ESR_Succeeded)
+ return ESR;
+
+ // Create the __begin and __end iterators.
+ ESR = EvaluateStmt(Result, Info, FS->getBeginEndStmt());
+ if (ESR != ESR_Succeeded)
+ return ESR;
+
+ while (true) {
+ // Condition: __begin != __end.
+ {
+ bool Continue = true;
+ FullExpressionRAII CondExpr(Info);
+ if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
+ return ESR_Failed;
+ if (!Continue)
+ break;
+ }
+
+ // User's variable declaration, initialized by *__begin.
+ BlockScopeRAII InnerScope(Info);
+ ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
+ if (ESR != ESR_Succeeded)
+ return ESR;
+
+ // Loop body.
+ ESR = EvaluateLoopBody(Result, Info, FS->getBody());
+ if (ESR != ESR_Continue)
+ return ESR;
+
+ // Increment: ++__begin
+ if (!EvaluateIgnoredValue(Info, FS->getInc()))
+ return ESR_Failed;
+ }
+
+ return ESR_Succeeded;
+ }
+
+ case Stmt::SwitchStmtClass:
+ return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
+
+ case Stmt::ContinueStmtClass:
+ return ESR_Continue;
+
+ case Stmt::BreakStmtClass:
+ return ESR_Break;
+
+ case Stmt::LabelStmtClass:
+ return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
+
+ case Stmt::AttributedStmtClass:
+ // As a general principle, C++11 attributes can be ignored without
+ // any semantic impact.
+ return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
+ Case);
+
+ case Stmt::CaseStmtClass:
+ case Stmt::DefaultStmtClass:
+ return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
+ }
+}
+
+/// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
+/// default constructor. If so, we'll fold it whether or not it's marked as
+/// constexpr. If it is marked as constexpr, we will never implicitly define it,
+/// so we need special handling.
+static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
+ const CXXConstructorDecl *CD,
+ bool IsValueInitialization) {
+ if (!CD->isTrivial() || !CD->isDefaultConstructor())
+ return false;
+
+ // Value-initialization does not call a trivial default constructor, so such a
+ // call is a core constant expression whether or not the constructor is
+ // constexpr.
+ if (!CD->isConstexpr() && !IsValueInitialization) {
+ if (Info.getLangOpts().CPlusPlus11) {
+ // FIXME: If DiagDecl is an implicitly-declared special member function,
+ // we should be much more explicit about why it's not constexpr.
+ Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
+ << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
+ Info.Note(CD->getLocation(), diag::note_declared_at);
+ } else {
+ Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
+ }
+ }
+ return true;
+}
+
+/// CheckConstexprFunction - Check that a function can be called in a constant
+/// expression.
+static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
+ const FunctionDecl *Declaration,
+ const FunctionDecl *Definition) {
+ // Potential constant expressions can contain calls to declared, but not yet
+ // defined, constexpr functions.
+ if (Info.checkingPotentialConstantExpression() && !Definition &&
+ Declaration->isConstexpr())
+ return false;
+
+ // Bail out with no diagnostic if the function declaration itself is invalid.
+ // We will have produced a relevant diagnostic while parsing it.
+ if (Declaration->isInvalidDecl())
+ return false;
+
+ // Can we evaluate this function call?
+ if (Definition && Definition->isConstexpr() && !Definition->isInvalidDecl())
+ return true;
+
+ if (Info.getLangOpts().CPlusPlus11) {
+ const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
+ // FIXME: If DiagDecl is an implicitly-declared special member function, we
+ // should be much more explicit about why it's not constexpr.
+ Info.Diag(CallLoc, diag::note_constexpr_invalid_function, 1)
+ << DiagDecl->isConstexpr() << isa<CXXConstructorDecl>(DiagDecl)
+ << DiagDecl;
+ Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
+ } else {
+ Info.Diag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
+ }
+ return false;
+}
+
+/// Determine if a class has any fields that might need to be copied by a
+/// trivial copy or move operation.
+static bool hasFields(const CXXRecordDecl *RD) {
+ if (!RD || RD->isEmpty())
+ return false;
+ for (auto *FD : RD->fields()) {
+ if (FD->isUnnamedBitfield())
+ continue;
+ return true;
+ }
+ for (auto &Base : RD->bases())
+ if (hasFields(Base.getType()->getAsCXXRecordDecl()))
+ return true;
+ return false;
+}
+
+namespace {
+typedef SmallVector<APValue, 8> ArgVector;
+}
+
+/// EvaluateArgs - Evaluate the arguments to a function call.
+static bool EvaluateArgs(ArrayRef<const Expr*> Args, ArgVector &ArgValues,
+ EvalInfo &Info) {
+ bool Success = true;
+ for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
+ I != E; ++I) {
+ if (!Evaluate(ArgValues[I - Args.begin()], Info, *I)) {
+ // If we're checking for a potential constant expression, evaluate all
+ // initializers even if some of them fail.
+ if (!Info.keepEvaluatingAfterFailure())
+ return false;
+ Success = false;
+ }
+ }
+ return Success;
+}
+
+/// Evaluate a function call.
+static bool HandleFunctionCall(SourceLocation CallLoc,
+ const FunctionDecl *Callee, const LValue *This,
+ ArrayRef<const Expr*> Args, const Stmt *Body,
+ EvalInfo &Info, APValue &Result) {
+ ArgVector ArgValues(Args.size());
+ if (!EvaluateArgs(Args, ArgValues, Info))
+ return false;
+
+ if (!Info.CheckCallLimit(CallLoc))
+ return false;
+
+ CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data());
+
+ // For a trivial copy or move assignment, perform an APValue copy. This is
+ // essential for unions, where the operations performed by the assignment
+ // operator cannot be represented as statements.
+ //
+ // Skip this for non-union classes with no fields; in that case, the defaulted
+ // copy/move does not actually read the object.
+ const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
+ if (MD && MD->isDefaulted() &&
+ (MD->getParent()->isUnion() ||
+ (MD->isTrivial() && hasFields(MD->getParent())))) {
+ assert(This &&
+ (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
+ LValue RHS;
+ RHS.setFrom(Info.Ctx, ArgValues[0]);
+ APValue RHSValue;
+ if (!handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
+ RHS, RHSValue))
+ return false;
+ if (!handleAssignment(Info, Args[0], *This, MD->getThisType(Info.Ctx),
+ RHSValue))
+ return false;
+ This->moveInto(Result);
+ return true;
+ }
+
+ EvalStmtResult ESR = EvaluateStmt(Result, Info, Body);
+ if (ESR == ESR_Succeeded) {
+ if (Callee->getReturnType()->isVoidType())
+ return true;
+ Info.Diag(Callee->getLocEnd(), diag::note_constexpr_no_return);
+ }
+ return ESR == ESR_Returned;
+}
+
+/// Evaluate a constructor call.
+static bool HandleConstructorCall(SourceLocation CallLoc, const LValue &This,
+ ArrayRef<const Expr*> Args,
+ const CXXConstructorDecl *Definition,
+ EvalInfo &Info, APValue &Result) {
+ ArgVector ArgValues(Args.size());
+ if (!EvaluateArgs(Args, ArgValues, Info))
+ return false;
+
+ if (!Info.CheckCallLimit(CallLoc))
+ return false;
+
+ const CXXRecordDecl *RD = Definition->getParent();
+ if (RD->getNumVBases()) {
+ Info.Diag(CallLoc, diag::note_constexpr_virtual_base) << RD;
+ return false;
+ }
+
+ CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues.data());
+
+ // If it's a delegating constructor, just delegate.
+ if (Definition->isDelegatingConstructor()) {
+ CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
+ {
+ FullExpressionRAII InitScope(Info);
+ if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()))
+ return false;
+ }
+ return EvaluateStmt(Result, Info, Definition->getBody()) != ESR_Failed;
+ }
+
+ // For a trivial copy or move constructor, perform an APValue copy. This is
+ // essential for unions (or classes with anonymous union members), where the
+ // operations performed by the constructor cannot be represented by
+ // ctor-initializers.
+ //
+ // Skip this for empty non-union classes; we should not perform an
+ // lvalue-to-rvalue conversion on them because their copy constructor does not
+ // actually read them.
+ if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() &&
+ (Definition->getParent()->isUnion() ||
+ (Definition->isTrivial() && hasFields(Definition->getParent())))) {
+ LValue RHS;
+ RHS.setFrom(Info.Ctx, ArgValues[0]);
+ return handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
+ RHS, Result);
+ }
+
+ // Reserve space for the struct members.
+ if (!RD->isUnion() && Result.isUninit())
+ Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
+ std::distance(RD->field_begin(), RD->field_end()));
+
+ if (RD->isInvalidDecl()) return false;
+ const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
+
+ // A scope for temporaries lifetime-extended by reference members.
+ BlockScopeRAII LifetimeExtendedScope(Info);
+
+ bool Success = true;
+ unsigned BasesSeen = 0;
+#ifndef NDEBUG
+ CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
+#endif
+ for (const auto *I : Definition->inits()) {
+ LValue Subobject = This;
+ APValue *Value = &Result;
+
+ // Determine the subobject to initialize.
+ FieldDecl *FD = nullptr;
+ if (I->isBaseInitializer()) {
+ QualType BaseType(I->getBaseClass(), 0);
+#ifndef NDEBUG
+ // Non-virtual base classes are initialized in the order in the class
+ // definition. We have already checked for virtual base classes.
+ assert(!BaseIt->isVirtual() && "virtual base for literal type");
+ assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
+ "base class initializers not in expected order");
+ ++BaseIt;
+#endif
+ if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD,
+ BaseType->getAsCXXRecordDecl(), &Layout))
+ return false;
+ Value = &Result.getStructBase(BasesSeen++);
+ } else if ((FD = I->getMember())) {
+ if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout))
+ return false;
+ if (RD->isUnion()) {
+ Result = APValue(FD);
+ Value = &Result.getUnionValue();
+ } else {
+ Value = &Result.getStructField(FD->getFieldIndex());
+ }
+ } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) {
+ // Walk the indirect field decl's chain to find the object to initialize,
+ // and make sure we've initialized every step along it.
+ for (auto *C : IFD->chain()) {
+ FD = cast<FieldDecl>(C);
+ CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
+ // Switch the union field if it differs. This happens if we had
+ // preceding zero-initialization, and we're now initializing a union
+ // subobject other than the first.
+ // FIXME: In this case, the values of the other subobjects are
+ // specified, since zero-initialization sets all padding bits to zero.
+ if (Value->isUninit() ||
+ (Value->isUnion() && Value->getUnionField() != FD)) {
+ if (CD->isUnion())
+ *Value = APValue(FD);
+ else
+ *Value = APValue(APValue::UninitStruct(), CD->getNumBases(),
+ std::distance(CD->field_begin(), CD->field_end()));
+ }
+ if (!HandleLValueMember(Info, I->getInit(), Subobject, FD))
+ return false;
+ if (CD->isUnion())
+ Value = &Value->getUnionValue();
+ else
+ Value = &Value->getStructField(FD->getFieldIndex());
+ }
+ } else {
+ llvm_unreachable("unknown base initializer kind");
+ }
+
+ FullExpressionRAII InitScope(Info);
+ if (!EvaluateInPlace(*Value, Info, Subobject, I->getInit()) ||
+ (FD && FD->isBitField() && !truncateBitfieldValue(Info, I->getInit(),
+ *Value, FD))) {
+ // If we're checking for a potential constant expression, evaluate all
+ // initializers even if some of them fail.
+ if (!Info.keepEvaluatingAfterFailure())
+ return false;
+ Success = false;
+ }
+ }
+
+ return Success &&
+ EvaluateStmt(Result, Info, Definition->getBody()) != ESR_Failed;
+}
+
+//===----------------------------------------------------------------------===//
+// Generic Evaluation
+//===----------------------------------------------------------------------===//
+namespace {
+
+template <class Derived>
+class ExprEvaluatorBase
+ : public ConstStmtVisitor<Derived, bool> {
+private:
+ bool DerivedSuccess(const APValue &V, const Expr *E) {
+ return static_cast<Derived*>(this)->Success(V, E);
+ }
+ bool DerivedZeroInitialization(const Expr *E) {
+ return static_cast<Derived*>(this)->ZeroInitialization(E);
+ }
+
+ // Check whether a conditional operator with a non-constant condition is a
+ // potential constant expression. If neither arm is a potential constant
+ // expression, then the conditional operator is not either.
+ template<typename ConditionalOperator>
+ void CheckPotentialConstantConditional(const ConditionalOperator *E) {
+ assert(Info.checkingPotentialConstantExpression());
+
+ // Speculatively evaluate both arms.
+ {
+ SmallVector<PartialDiagnosticAt, 8> Diag;
+ SpeculativeEvaluationRAII Speculate(Info, &Diag);
+
+ StmtVisitorTy::Visit(E->getFalseExpr());
+ if (Diag.empty())
+ return;
+
+ Diag.clear();
+ StmtVisitorTy::Visit(E->getTrueExpr());
+ if (Diag.empty())
+ return;
+ }
+
+ Error(E, diag::note_constexpr_conditional_never_const);
+ }
+
+
+ template<typename ConditionalOperator>
+ bool HandleConditionalOperator(const ConditionalOperator *E) {
+ bool BoolResult;
+ if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
+ if (Info.checkingPotentialConstantExpression())
+ CheckPotentialConstantConditional(E);
+ return false;
+ }
+
+ Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
+ return StmtVisitorTy::Visit(EvalExpr);
+ }
+
+protected:
+ EvalInfo &Info;
+ typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy;
+ typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
+
+ OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
+ return Info.CCEDiag(E, D);
+ }
+
+ bool ZeroInitialization(const Expr *E) { return Error(E); }
+
+public:
+ ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
+
+ EvalInfo &getEvalInfo() { return Info; }
+
+ /// Report an evaluation error. This should only be called when an error is
+ /// first discovered. When propagating an error, just return false.
+ bool Error(const Expr *E, diag::kind D) {
+ Info.Diag(E, D);
+ return false;
+ }
+ bool Error(const Expr *E) {
+ return Error(E, diag::note_invalid_subexpr_in_const_expr);
+ }
+
+ bool VisitStmt(const Stmt *) {
+ llvm_unreachable("Expression evaluator should not be called on stmts");
+ }
+ bool VisitExpr(const Expr *E) {
+ return Error(E);
+ }
+
+ bool VisitParenExpr(const ParenExpr *E)
+ { return StmtVisitorTy::Visit(E->getSubExpr()); }
+ bool VisitUnaryExtension(const UnaryOperator *E)
+ { return StmtVisitorTy::Visit(E->getSubExpr()); }
+ bool VisitUnaryPlus(const UnaryOperator *E)
+ { return StmtVisitorTy::Visit(E->getSubExpr()); }
+ bool VisitChooseExpr(const ChooseExpr *E)
+ { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
+ bool VisitGenericSelectionExpr(const GenericSelectionExpr *E)
+ { return StmtVisitorTy::Visit(E->getResultExpr()); }
+ bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
+ { return StmtVisitorTy::Visit(E->getReplacement()); }
+ bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E)
+ { return StmtVisitorTy::Visit(E->getExpr()); }
+ bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
+ // The initializer may not have been parsed yet, or might be erroneous.
+ if (!E->getExpr())
+ return Error(E);
+ return StmtVisitorTy::Visit(E->getExpr());
+ }
+ // We cannot create any objects for which cleanups are required, so there is
+ // nothing to do here; all cleanups must come from unevaluated subexpressions.
+ bool VisitExprWithCleanups(const ExprWithCleanups *E)
+ { return StmtVisitorTy::Visit(E->getSubExpr()); }
+
+ bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
+ CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
+ return static_cast<Derived*>(this)->VisitCastExpr(E);
+ }
+ bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
+ CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
+ return static_cast<Derived*>(this)->VisitCastExpr(E);
+ }
+
+ bool VisitBinaryOperator(const BinaryOperator *E) {
+ switch (E->getOpcode()) {
+ default:
+ return Error(E);
+
+ case BO_Comma:
+ VisitIgnoredValue(E->getLHS());
+ return StmtVisitorTy::Visit(E->getRHS());
+
+ case BO_PtrMemD:
+ case BO_PtrMemI: {
+ LValue Obj;
+ if (!HandleMemberPointerAccess(Info, E, Obj))
+ return false;
+ APValue Result;
+ if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
+ return false;
+ return DerivedSuccess(Result, E);
+ }
+ }
+ }
+
+ bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
+ // Evaluate and cache the common expression. We treat it as a temporary,
+ // even though it's not quite the same thing.
+ if (!Evaluate(Info.CurrentCall->createTemporary(E->getOpaqueValue(), false),
+ Info, E->getCommon()))
+ return false;
+
+ return HandleConditionalOperator(E);
+ }
+
+ bool VisitConditionalOperator(const ConditionalOperator *E) {
+ bool IsBcpCall = false;
+ // If the condition (ignoring parens) is a __builtin_constant_p call,
+ // the result is a constant expression if it can be folded without
+ // side-effects. This is an important GNU extension. See GCC PR38377
+ // for discussion.
+ if (const CallExpr *CallCE =
+ dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
+ if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
+ IsBcpCall = true;
+
+ // Always assume __builtin_constant_p(...) ? ... : ... is a potential
+ // constant expression; we can't check whether it's potentially foldable.
+ if (Info.checkingPotentialConstantExpression() && IsBcpCall)
+ return false;
+
+ FoldConstant Fold(Info, IsBcpCall);
+ if (!HandleConditionalOperator(E)) {
+ Fold.keepDiagnostics();
+ return false;
+ }
+
+ return true;
+ }
+
+ bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
+ if (APValue *Value = Info.CurrentCall->getTemporary(E))
+ return DerivedSuccess(*Value, E);
+
+ const Expr *Source = E->getSourceExpr();
+ if (!Source)
+ return Error(E);
+ if (Source == E) { // sanity checking.
+ assert(0 && "OpaqueValueExpr recursively refers to itself");
+ return Error(E);
+ }
+ return StmtVisitorTy::Visit(Source);
+ }
+
+ bool VisitCallExpr(const CallExpr *E) {
+ const Expr *Callee = E->getCallee()->IgnoreParens();
+ QualType CalleeType = Callee->getType();
+
+ const FunctionDecl *FD = nullptr;
+ LValue *This = nullptr, ThisVal;
+ auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
+ bool HasQualifier = false;
+
+ // Extract function decl and 'this' pointer from the callee.
+ if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
+ const ValueDecl *Member = nullptr;
+ if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
+ // Explicit bound member calls, such as x.f() or p->g();
+ if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
+ return false;
+ Member = ME->getMemberDecl();
+ This = &ThisVal;
+ HasQualifier = ME->hasQualifier();
+ } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
+ // Indirect bound member calls ('.*' or '->*').
+ Member = HandleMemberPointerAccess(Info, BE, ThisVal, false);
+ if (!Member) return false;
+ This = &ThisVal;
+ } else
+ return Error(Callee);
+
+ FD = dyn_cast<FunctionDecl>(Member);
+ if (!FD)
+ return Error(Callee);
+ } else if (CalleeType->isFunctionPointerType()) {
+ LValue Call;
+ if (!EvaluatePointer(Callee, Call, Info))
+ return false;
+
+ if (!Call.getLValueOffset().isZero())
+ return Error(Callee);
+ FD = dyn_cast_or_null<FunctionDecl>(
+ Call.getLValueBase().dyn_cast<const ValueDecl*>());
+ if (!FD)
+ return Error(Callee);
+
+ // Overloaded operator calls to member functions are represented as normal
+ // calls with '*this' as the first argument.
+ const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
+ if (MD && !MD->isStatic()) {
+ // FIXME: When selecting an implicit conversion for an overloaded
+ // operator delete, we sometimes try to evaluate calls to conversion
+ // operators without a 'this' parameter!
+ if (Args.empty())
+ return Error(E);
+
+ if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
+ return false;
+ This = &ThisVal;
+ Args = Args.slice(1);
+ }
+
+ // Don't call function pointers which have been cast to some other type.
+ if (!Info.Ctx.hasSameType(CalleeType->getPointeeType(), FD->getType()))
+ return Error(E);
+ } else
+ return Error(E);
+
+ if (This && !This->checkSubobject(Info, E, CSK_This))
+ return false;
+
+ // DR1358 allows virtual constexpr functions in some cases. Don't allow
+ // calls to such functions in constant expressions.
+ if (This && !HasQualifier &&
+ isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isVirtual())
+ return Error(E, diag::note_constexpr_virtual_call);
+
+ const FunctionDecl *Definition = nullptr;
+ Stmt *Body = FD->getBody(Definition);
+ APValue Result;
+
+ if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition) ||
+ !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body,
+ Info, Result))
+ return false;
+
+ return DerivedSuccess(Result, E);
+ }
+
+ bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
+ return StmtVisitorTy::Visit(E->getInitializer());
+ }
+ bool VisitInitListExpr(const InitListExpr *E) {
+ if (E->getNumInits() == 0)
+ return DerivedZeroInitialization(E);
+ if (E->getNumInits() == 1)
+ return StmtVisitorTy::Visit(E->getInit(0));
+ return Error(E);
+ }
+ bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
+ return DerivedZeroInitialization(E);
+ }
+ bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
+ return DerivedZeroInitialization(E);
+ }
+ bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
+ return DerivedZeroInitialization(E);
+ }
+
+ /// A member expression where the object is a prvalue is itself a prvalue.
+ bool VisitMemberExpr(const MemberExpr *E) {
+ assert(!E->isArrow() && "missing call to bound member function?");
+
+ APValue Val;
+ if (!Evaluate(Val, Info, E->getBase()))
+ return false;
+
+ QualType BaseTy = E->getBase()->getType();
+
+ const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
+ if (!FD) return Error(E);
+ assert(!FD->getType()->isReferenceType() && "prvalue reference?");
+ assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
+ FD->getParent()->getCanonicalDecl() && "record / field mismatch");
+
+ CompleteObject Obj(&Val, BaseTy);
+ SubobjectDesignator Designator(BaseTy);
+ Designator.addDeclUnchecked(FD);
+
+ APValue Result;
+ return extractSubobject(Info, E, Obj, Designator, Result) &&
+ DerivedSuccess(Result, E);
+ }
+
+ bool VisitCastExpr(const CastExpr *E) {
+ switch (E->getCastKind()) {
+ default:
+ break;
+
+ case CK_AtomicToNonAtomic: {
+ APValue AtomicVal;
+ if (!EvaluateAtomic(E->getSubExpr(), AtomicVal, Info))
+ return false;
+ return DerivedSuccess(AtomicVal, E);
+ }
+
+ case CK_NoOp:
+ case CK_UserDefinedConversion:
+ return StmtVisitorTy::Visit(E->getSubExpr());
+
+ case CK_LValueToRValue: {
+ LValue LVal;
+ if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
+ return false;
+ APValue RVal;
+ // Note, we use the subexpression's type in order to retain cv-qualifiers.
+ if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
+ LVal, RVal))
+ return false;
+ return DerivedSuccess(RVal, E);
+ }
+ }
+
+ return Error(E);
+ }
+
+ bool VisitUnaryPostInc(const UnaryOperator *UO) {
+ return VisitUnaryPostIncDec(UO);
+ }
+ bool VisitUnaryPostDec(const UnaryOperator *UO) {
+ return VisitUnaryPostIncDec(UO);
+ }
+ bool VisitUnaryPostIncDec(const UnaryOperator *UO) {
+ if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
+ return Error(UO);
+
+ LValue LVal;
+ if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
+ return false;
+ APValue RVal;
+ if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
+ UO->isIncrementOp(), &RVal))
+ return false;
+ return DerivedSuccess(RVal, UO);
+ }
+
+ bool VisitStmtExpr(const StmtExpr *E) {
+ // We will have checked the full-expressions inside the statement expression
+ // when they were completed, and don't need to check them again now.
+ if (Info.checkingForOverflow())
+ return Error(E);
+
+ BlockScopeRAII Scope(Info);
+ const CompoundStmt *CS = E->getSubStmt();
+ for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
+ BE = CS->body_end();
+ /**/; ++BI) {
+ if (BI + 1 == BE) {
+ const Expr *FinalExpr = dyn_cast<Expr>(*BI);
+ if (!FinalExpr) {
+ Info.Diag((*BI)->getLocStart(),
+ diag::note_constexpr_stmt_expr_unsupported);
+ return false;
+ }
+ return this->Visit(FinalExpr);
+ }
+
+ APValue ReturnValue;
+ EvalStmtResult ESR = EvaluateStmt(ReturnValue, Info, *BI);
+ if (ESR != ESR_Succeeded) {
+ // FIXME: If the statement-expression terminated due to 'return',
+ // 'break', or 'continue', it would be nice to propagate that to
+ // the outer statement evaluation rather than bailing out.
+ if (ESR != ESR_Failed)
+ Info.Diag((*BI)->getLocStart(),
+ diag::note_constexpr_stmt_expr_unsupported);
+ return false;
+ }
+ }
+ }
+
+ /// Visit a value which is evaluated, but whose value is ignored.
+ void VisitIgnoredValue(const Expr *E) {
+ EvaluateIgnoredValue(Info, E);
+ }
+};
+
+}
+
+//===----------------------------------------------------------------------===//
+// Common base class for lvalue and temporary evaluation.
+//===----------------------------------------------------------------------===//
+namespace {
+template<class Derived>
+class LValueExprEvaluatorBase
+ : public ExprEvaluatorBase<Derived> {
+protected:
+ LValue &Result;
+ typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
+ typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy;
+
+ bool Success(APValue::LValueBase B) {
+ Result.set(B);
+ return true;
+ }
+
+public:
+ LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result) :
+ ExprEvaluatorBaseTy(Info), Result(Result) {}
+
+ bool Success(const APValue &V, const Expr *E) {
+ Result.setFrom(this->Info.Ctx, V);
+ return true;
+ }
+
+ bool VisitMemberExpr(const MemberExpr *E) {
+ // Handle non-static data members.
+ QualType BaseTy;
+ if (E->isArrow()) {
+ if (!EvaluatePointer(E->getBase(), Result, this->Info))
+ return false;
+ BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
+ } else if (E->getBase()->isRValue()) {
+ assert(E->getBase()->getType()->isRecordType());
+ if (!EvaluateTemporary(E->getBase(), Result, this->Info))
+ return false;
+ BaseTy = E->getBase()->getType();
+ } else {
+ if (!this->Visit(E->getBase()))
+ return false;
+ BaseTy = E->getBase()->getType();
+ }
+
+ const ValueDecl *MD = E->getMemberDecl();
+ if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
+ assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() ==
+ FD->getParent()->getCanonicalDecl() && "record / field mismatch");
+ (void)BaseTy;
+ if (!HandleLValueMember(this->Info, E, Result, FD))
+ return false;
+ } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
+ if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
+ return false;
+ } else
+ return this->Error(E);
+
+ if (MD->getType()->isReferenceType()) {
+ APValue RefValue;
+ if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
+ RefValue))
+ return false;
+ return Success(RefValue, E);
+ }
+ return true;
+ }
+
+ bool VisitBinaryOperator(const BinaryOperator *E) {
+ switch (E->getOpcode()) {
+ default:
+ return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
+
+ case BO_PtrMemD:
+ case BO_PtrMemI:
+ return HandleMemberPointerAccess(this->Info, E, Result);
+ }
+ }
+
+ bool VisitCastExpr(const CastExpr *E) {
+ switch (E->getCastKind()) {
+ default:
+ return ExprEvaluatorBaseTy::VisitCastExpr(E);
+
+ case CK_DerivedToBase:
+ case CK_UncheckedDerivedToBase:
+ if (!this->Visit(E->getSubExpr()))
+ return false;
+
+ // Now figure out the necessary offset to add to the base LV to get from
+ // the derived class to the base class.
+ return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
+ Result);
+ }
+ }
+};
+}
+
+//===----------------------------------------------------------------------===//
+// LValue Evaluation
+//
+// This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
+// function designators (in C), decl references to void objects (in C), and
+// temporaries (if building with -Wno-address-of-temporary).
+//
+// LValue evaluation produces values comprising a base expression of one of the
+// following types:
+// - Declarations
+// * VarDecl
+// * FunctionDecl
+// - Literals
+// * CompoundLiteralExpr in C
+// * StringLiteral
+// * CXXTypeidExpr
+// * PredefinedExpr
+// * ObjCStringLiteralExpr
+// * ObjCEncodeExpr
+// * AddrLabelExpr
+// * BlockExpr
+// * CallExpr for a MakeStringConstant builtin
+// - Locals and temporaries
+// * MaterializeTemporaryExpr
+// * Any Expr, with a CallIndex indicating the function in which the temporary
+// was evaluated, for cases where the MaterializeTemporaryExpr is missing
+// from the AST (FIXME).
+// * A MaterializeTemporaryExpr that has static storage duration, with no
+// CallIndex, for a lifetime-extended temporary.
+// plus an offset in bytes.
+//===----------------------------------------------------------------------===//
+namespace {
+class LValueExprEvaluator
+ : public LValueExprEvaluatorBase<LValueExprEvaluator> {
+public:
+ LValueExprEvaluator(EvalInfo &Info, LValue &Result) :
+ LValueExprEvaluatorBaseTy(Info, Result) {}
+
+ bool VisitVarDecl(const Expr *E, const VarDecl *VD);
+ bool VisitUnaryPreIncDec(const UnaryOperator *UO);
+
+ bool VisitDeclRefExpr(const DeclRefExpr *E);
+ bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
+ bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
+ bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
+ bool VisitMemberExpr(const MemberExpr *E);
+ bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
+ bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
+ bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
+ bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
+ bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
+ bool VisitUnaryDeref(const UnaryOperator *E);
+ bool VisitUnaryReal(const UnaryOperator *E);
+ bool VisitUnaryImag(const UnaryOperator *E);
+ bool VisitUnaryPreInc(const UnaryOperator *UO) {
+ return VisitUnaryPreIncDec(UO);
+ }
+ bool VisitUnaryPreDec(const UnaryOperator *UO) {
+ return VisitUnaryPreIncDec(UO);
+ }
+ bool VisitBinAssign(const BinaryOperator *BO);
+ bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
+
+ bool VisitCastExpr(const CastExpr *E) {
+ switch (E->getCastKind()) {
+ default:
+ return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
+
+ case CK_LValueBitCast:
+ this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
+ if (!Visit(E->getSubExpr()))
+ return false;
+ Result.Designator.setInvalid();
+ return true;
+
+ case CK_BaseToDerived:
+ if (!Visit(E->getSubExpr()))
+ return false;
+ return HandleBaseToDerivedCast(Info, E, Result);
+ }
+ }
+};
+} // end anonymous namespace
+
+/// Evaluate an expression as an lvalue. This can be legitimately called on
+/// expressions which are not glvalues, in two cases:
+/// * function designators in C, and
+/// * "extern void" objects
+static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info) {
+ assert(E->isGLValue() || E->getType()->isFunctionType() ||
+ E->getType()->isVoidType());
+ return LValueExprEvaluator(Info, Result).Visit(E);
+}
+
+bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl()))
+ return Success(FD);
+ if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
+ return VisitVarDecl(E, VD);
+ return Error(E);
+}
+
+bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
+ CallStackFrame *Frame = nullptr;
+ if (VD->hasLocalStorage() && Info.CurrentCall->Index > 1)
+ Frame = Info.CurrentCall;
+
+ if (!VD->getType()->isReferenceType()) {
+ if (Frame) {
+ Result.set(VD, Frame->Index);
+ return true;
+ }
+ return Success(VD);
+ }
+
+ APValue *V;
+ if (!evaluateVarDeclInit(Info, E, VD, Frame, V))
+ return false;
+ if (V->isUninit()) {
+ if (!Info.checkingPotentialConstantExpression())
+ Info.Diag(E, diag::note_constexpr_use_uninit_reference);
+ return false;
+ }
+ return Success(*V, E);
+}
+
+bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
+ const MaterializeTemporaryExpr *E) {
+ // Walk through the expression to find the materialized temporary itself.
+ SmallVector<const Expr *, 2> CommaLHSs;
+ SmallVector<SubobjectAdjustment, 2> Adjustments;
+ const Expr *Inner = E->GetTemporaryExpr()->
+ skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
+
+ // If we passed any comma operators, evaluate their LHSs.
+ for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
+ if (!EvaluateIgnoredValue(Info, CommaLHSs[I]))
+ return false;
+
+ // A materialized temporary with static storage duration can appear within the
+ // result of a constant expression evaluation, so we need to preserve its
+ // value for use outside this evaluation.
+ APValue *Value;
+ if (E->getStorageDuration() == SD_Static) {
+ Value = Info.Ctx.getMaterializedTemporaryValue(E, true);
+ *Value = APValue();
+ Result.set(E);
+ } else {
+ Value = &Info.CurrentCall->
+ createTemporary(E, E->getStorageDuration() == SD_Automatic);
+ Result.set(E, Info.CurrentCall->Index);
+ }
+
+ QualType Type = Inner->getType();
+
+ // Materialize the temporary itself.
+ if (!EvaluateInPlace(*Value, Info, Result, Inner) ||
+ (E->getStorageDuration() == SD_Static &&
+ !CheckConstantExpression(Info, E->getExprLoc(), Type, *Value))) {
+ *Value = APValue();
+ return false;
+ }
+
+ // Adjust our lvalue to refer to the desired subobject.
+ for (unsigned I = Adjustments.size(); I != 0; /**/) {
+ --I;
+ switch (Adjustments[I].Kind) {
+ case SubobjectAdjustment::DerivedToBaseAdjustment:
+ if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
+ Type, Result))
+ return false;
+ Type = Adjustments[I].DerivedToBase.BasePath->getType();
+ break;
+
+ case SubobjectAdjustment::FieldAdjustment:
+ if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
+ return false;
+ Type = Adjustments[I].Field->getType();
+ break;
+
+ case SubobjectAdjustment::MemberPointerAdjustment:
+ if (!HandleMemberPointerAccess(this->Info, Type, Result,
+ Adjustments[I].Ptr.RHS))
+ return false;
+ Type = Adjustments[I].Ptr.MPT->getPointeeType();
+ break;
+ }
+ }
+
+ return true;
+}
+
+bool
+LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
+ assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
+ // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
+ // only see this when folding in C, so there's no standard to follow here.
+ return Success(E);
+}
+
+bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
+ if (!E->isPotentiallyEvaluated())
+ return Success(E);
+
+ Info.Diag(E, diag::note_constexpr_typeid_polymorphic)
+ << E->getExprOperand()->getType()
+ << E->getExprOperand()->getSourceRange();
+ return false;
+}
+
+bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
+ return Success(E);
+}
+
+bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
+ // Handle static data members.
+ if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
+ VisitIgnoredValue(E->getBase());
+ return VisitVarDecl(E, VD);
+ }
+
+ // Handle static member functions.
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
+ if (MD->isStatic()) {
+ VisitIgnoredValue(E->getBase());
+ return Success(MD);
+ }
+ }
+
+ // Handle non-static data members.
+ return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
+}
+
+bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
+ // FIXME: Deal with vectors as array subscript bases.
+ if (E->getBase()->getType()->isVectorType())
+ return Error(E);
+
+ if (!EvaluatePointer(E->getBase(), Result, Info))
+ return false;
+
+ APSInt Index;
+ if (!EvaluateInteger(E->getIdx(), Index, Info))
+ return false;
+
+ return HandleLValueArrayAdjustment(Info, E, Result, E->getType(),
+ getExtValue(Index));
+}
+
+bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
+ return EvaluatePointer(E->getSubExpr(), Result, Info);
+}
+
+bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
+ if (!Visit(E->getSubExpr()))
+ return false;
+ // __real is a no-op on scalar lvalues.
+ if (E->getSubExpr()->getType()->isAnyComplexType())
+ HandleLValueComplexElement(Info, E, Result, E->getType(), false);
+ return true;
+}
+
+bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
+ assert(E->getSubExpr()->getType()->isAnyComplexType() &&
+ "lvalue __imag__ on scalar?");
+ if (!Visit(E->getSubExpr()))
+ return false;
+ HandleLValueComplexElement(Info, E, Result, E->getType(), true);
+ return true;
+}
+
+bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
+ if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
+ return Error(UO);
+
+ if (!this->Visit(UO->getSubExpr()))
+ return false;
+
+ return handleIncDec(
+ this->Info, UO, Result, UO->getSubExpr()->getType(),
+ UO->isIncrementOp(), nullptr);
+}
+
+bool LValueExprEvaluator::VisitCompoundAssignOperator(
+ const CompoundAssignOperator *CAO) {
+ if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
+ return Error(CAO);
+
+ APValue RHS;
+
+ // The overall lvalue result is the result of evaluating the LHS.
+ if (!this->Visit(CAO->getLHS())) {
+ if (Info.keepEvaluatingAfterFailure())
+ Evaluate(RHS, this->Info, CAO->getRHS());
+ return false;
+ }
+
+ if (!Evaluate(RHS, this->Info, CAO->getRHS()))
+ return false;
+
+ return handleCompoundAssignment(
+ this->Info, CAO,
+ Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
+ CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
+}
+
+bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
+ if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
+ return Error(E);
+
+ APValue NewVal;
+
+ if (!this->Visit(E->getLHS())) {
+ if (Info.keepEvaluatingAfterFailure())
+ Evaluate(NewVal, this->Info, E->getRHS());
+ return false;
+ }
+
+ if (!Evaluate(NewVal, this->Info, E->getRHS()))
+ return false;
+
+ return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
+ NewVal);
+}
+
+//===----------------------------------------------------------------------===//
+// Pointer Evaluation
+//===----------------------------------------------------------------------===//
+
+namespace {
+class PointerExprEvaluator
+ : public ExprEvaluatorBase<PointerExprEvaluator> {
+ LValue &Result;
+
+ bool Success(const Expr *E) {
+ Result.set(E);
+ return true;
+ }
+public:
+
+ PointerExprEvaluator(EvalInfo &info, LValue &Result)
+ : ExprEvaluatorBaseTy(info), Result(Result) {}
+
+ bool Success(const APValue &V, const Expr *E) {
+ Result.setFrom(Info.Ctx, V);
+ return true;
+ }
+ bool ZeroInitialization(const Expr *E) {
+ return Success((Expr*)nullptr);
+ }
+
+ bool VisitBinaryOperator(const BinaryOperator *E);
+ bool VisitCastExpr(const CastExpr* E);
+ bool VisitUnaryAddrOf(const UnaryOperator *E);
+ bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
+ { return Success(E); }
+ bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E)
+ { return Success(E); }
+ bool VisitAddrLabelExpr(const AddrLabelExpr *E)
+ { return Success(E); }
+ bool VisitCallExpr(const CallExpr *E);
+ bool VisitBlockExpr(const BlockExpr *E) {
+ if (!E->getBlockDecl()->hasCaptures())
+ return Success(E);
+ return Error(E);
+ }
+ bool VisitCXXThisExpr(const CXXThisExpr *E) {
+ // Can't look at 'this' when checking a potential constant expression.
+ if (Info.checkingPotentialConstantExpression())
+ return false;
+ if (!Info.CurrentCall->This) {
+ if (Info.getLangOpts().CPlusPlus11)
+ Info.Diag(E, diag::note_constexpr_this) << E->isImplicit();
+ else
+ Info.Diag(E);
+ return false;
+ }
+ Result = *Info.CurrentCall->This;
+ return true;
+ }
+
+ // FIXME: Missing: @protocol, @selector
+};
+} // end anonymous namespace
+
+static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info) {
+ assert(E->isRValue() && E->getType()->hasPointerRepresentation());
+ return PointerExprEvaluator(Info, Result).Visit(E);
+}
+
+bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
+ if (E->getOpcode() != BO_Add &&
+ E->getOpcode() != BO_Sub)
+ return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
+
+ const Expr *PExp = E->getLHS();
+ const Expr *IExp = E->getRHS();
+ if (IExp->getType()->isPointerType())
+ std::swap(PExp, IExp);
+
+ bool EvalPtrOK = EvaluatePointer(PExp, Result, Info);
+ if (!EvalPtrOK && !Info.keepEvaluatingAfterFailure())
+ return false;
+
+ llvm::APSInt Offset;
+ if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
+ return false;
+
+ int64_t AdditionalOffset = getExtValue(Offset);
+ if (E->getOpcode() == BO_Sub)
+ AdditionalOffset = -AdditionalOffset;
+
+ QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
+ return HandleLValueArrayAdjustment(Info, E, Result, Pointee,
+ AdditionalOffset);
+}
+
+bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
+ return EvaluateLValue(E->getSubExpr(), Result, Info);
+}
+
+bool PointerExprEvaluator::VisitCastExpr(const CastExpr* E) {
+ const Expr* SubExpr = E->getSubExpr();
+
+ switch (E->getCastKind()) {
+ default:
+ break;
+
+ case CK_BitCast:
+ case CK_CPointerToObjCPointerCast:
+ case CK_BlockPointerToObjCPointerCast:
+ case CK_AnyPointerToBlockPointerCast:
+ case CK_AddressSpaceConversion:
+ if (!Visit(SubExpr))
+ return false;
+ // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
+ // permitted in constant expressions in C++11. Bitcasts from cv void* are
+ // also static_casts, but we disallow them as a resolution to DR1312.
+ if (!E->getType()->isVoidPointerType()) {
+ Result.Designator.setInvalid();
+ if (SubExpr->getType()->isVoidPointerType())
+ CCEDiag(E, diag::note_constexpr_invalid_cast)
+ << 3 << SubExpr->getType();
+ else
+ CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
+ }
+ return true;
+
+ case CK_DerivedToBase:
+ case CK_UncheckedDerivedToBase:
+ if (!EvaluatePointer(E->getSubExpr(), Result, Info))
+ return false;
+ if (!Result.Base && Result.Offset.isZero())
+ return true;
+
+ // Now figure out the necessary offset to add to the base LV to get from
+ // the derived class to the base class.
+ return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
+ castAs<PointerType>()->getPointeeType(),
+ Result);
+
+ case CK_BaseToDerived:
+ if (!Visit(E->getSubExpr()))
+ return false;
+ if (!Result.Base && Result.Offset.isZero())
+ return true;
+ return HandleBaseToDerivedCast(Info, E, Result);
+
+ case CK_NullToPointer:
+ VisitIgnoredValue(E->getSubExpr());
+ return ZeroInitialization(E);
+
+ case CK_IntegralToPointer: {
+ CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
+
+ APValue Value;
+ if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
+ break;
+
+ if (Value.isInt()) {
+ unsigned Size = Info.Ctx.getTypeSize(E->getType());
+ uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
+ Result.Base = (Expr*)nullptr;
+ Result.Offset = CharUnits::fromQuantity(N);
+ Result.CallIndex = 0;
+ Result.Designator.setInvalid();
+ return true;
+ } else {
+ // Cast is of an lvalue, no need to change value.
+ Result.setFrom(Info.Ctx, Value);
+ return true;
+ }
+ }
+ case CK_ArrayToPointerDecay:
+ if (SubExpr->isGLValue()) {
+ if (!EvaluateLValue(SubExpr, Result, Info))
+ return false;
+ } else {
+ Result.set(SubExpr, Info.CurrentCall->Index);
+ if (!EvaluateInPlace(Info.CurrentCall->createTemporary(SubExpr, false),
+ Info, Result, SubExpr))
+ return false;
+ }
+ // The result is a pointer to the first element of the array.
+ if (const ConstantArrayType *CAT
+ = Info.Ctx.getAsConstantArrayType(SubExpr->getType()))
+ Result.addArray(Info, E, CAT);
+ else
+ Result.Designator.setInvalid();
+ return true;
+
+ case CK_FunctionToPointerDecay:
+ return EvaluateLValue(SubExpr, Result, Info);
+ }
+
+ return ExprEvaluatorBaseTy::VisitCastExpr(E);
+}
+
+static CharUnits GetAlignOfType(EvalInfo &Info, QualType T) {
+ // C++ [expr.alignof]p3:
+ // When alignof is applied to a reference type, the result is the
+ // alignment of the referenced type.
+ if (const ReferenceType *Ref = T->getAs<ReferenceType>())
+ T = Ref->getPointeeType();
+
+ // __alignof is defined to return the preferred alignment.
+ return Info.Ctx.toCharUnitsFromBits(
+ Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
+}
+
+static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E) {
+ E = E->IgnoreParens();
+
+ // The kinds of expressions that we have special-case logic here for
+ // should be kept up to date with the special checks for those
+ // expressions in Sema.
+
+ // alignof decl is always accepted, even if it doesn't make sense: we default
+ // to 1 in those cases.
+ if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
+ return Info.Ctx.getDeclAlign(DRE->getDecl(),
+ /*RefAsPointee*/true);
+
+ if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
+ return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
+ /*RefAsPointee*/true);
+
+ return GetAlignOfType(Info, E->getType());
+}
+
+bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
+ if (IsStringLiteralCall(E))
+ return Success(E);
+
+ switch (E->getBuiltinCallee()) {
+ case Builtin::BI__builtin_addressof:
+ return EvaluateLValue(E->getArg(0), Result, Info);
+ case Builtin::BI__builtin_assume_aligned: {
+ // We need to be very careful here because: if the pointer does not have the
+ // asserted alignment, then the behavior is undefined, and undefined
+ // behavior is non-constant.
+ if (!EvaluatePointer(E->getArg(0), Result, Info))
+ return false;
+
+ LValue OffsetResult(Result);
+ APSInt Alignment;
+ if (!EvaluateInteger(E->getArg(1), Alignment, Info))
+ return false;
+ CharUnits Align = CharUnits::fromQuantity(getExtValue(Alignment));
+
+ if (E->getNumArgs() > 2) {
+ APSInt Offset;
+ if (!EvaluateInteger(E->getArg(2), Offset, Info))
+ return false;
+
+ int64_t AdditionalOffset = -getExtValue(Offset);
+ OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset);
+ }
+
+ // If there is a base object, then it must have the correct alignment.
+ if (OffsetResult.Base) {
+ CharUnits BaseAlignment;
+ if (const ValueDecl *VD =
+ OffsetResult.Base.dyn_cast<const ValueDecl*>()) {
+ BaseAlignment = Info.Ctx.getDeclAlign(VD);
+ } else {
+ BaseAlignment =
+ GetAlignOfExpr(Info, OffsetResult.Base.get<const Expr*>());
+ }
+
+ if (BaseAlignment < Align) {
+ Result.Designator.setInvalid();
+ // FIXME: Quantities here cast to integers because the plural modifier
+ // does not work on APSInts yet.
+ CCEDiag(E->getArg(0),
+ diag::note_constexpr_baa_insufficient_alignment) << 0
+ << (int) BaseAlignment.getQuantity()
+ << (unsigned) getExtValue(Alignment);
+ return false;
+ }
+ }
+
+ // The offset must also have the correct alignment.
+ if (OffsetResult.Offset.RoundUpToAlignment(Align) != OffsetResult.Offset) {
+ Result.Designator.setInvalid();
+ APSInt Offset(64, false);
+ Offset = OffsetResult.Offset.getQuantity();
+
+ if (OffsetResult.Base)
+ CCEDiag(E->getArg(0),
+ diag::note_constexpr_baa_insufficient_alignment) << 1
+ << (int) getExtValue(Offset) << (unsigned) getExtValue(Alignment);
+ else
+ CCEDiag(E->getArg(0),
+ diag::note_constexpr_baa_value_insufficient_alignment)
+ << Offset << (unsigned) getExtValue(Alignment);
+
+ return false;
+ }
+
+ return true;
+ }
+ default:
+ return ExprEvaluatorBaseTy::VisitCallExpr(E);
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Member Pointer Evaluation
+//===----------------------------------------------------------------------===//
+
+namespace {
+class MemberPointerExprEvaluator
+ : public ExprEvaluatorBase<MemberPointerExprEvaluator> {
+ MemberPtr &Result;
+
+ bool Success(const ValueDecl *D) {
+ Result = MemberPtr(D);
+ return true;
+ }
+public:
+
+ MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
+ : ExprEvaluatorBaseTy(Info), Result(Result) {}
+
+ bool Success(const APValue &V, const Expr *E) {
+ Result.setFrom(V);
+ return true;
+ }
+ bool ZeroInitialization(const Expr *E) {
+ return Success((const ValueDecl*)nullptr);
+ }
+
+ bool VisitCastExpr(const CastExpr *E);
+ bool VisitUnaryAddrOf(const UnaryOperator *E);
+};
+} // end anonymous namespace
+
+static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
+ EvalInfo &Info) {
+ assert(E->isRValue() && E->getType()->isMemberPointerType());
+ return MemberPointerExprEvaluator(Info, Result).Visit(E);
+}
+
+bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
+ switch (E->getCastKind()) {
+ default:
+ return ExprEvaluatorBaseTy::VisitCastExpr(E);
+
+ case CK_NullToMemberPointer:
+ VisitIgnoredValue(E->getSubExpr());
+ return ZeroInitialization(E);
+
+ case CK_BaseToDerivedMemberPointer: {
+ if (!Visit(E->getSubExpr()))
+ return false;
+ if (E->path_empty())
+ return true;
+ // Base-to-derived member pointer casts store the path in derived-to-base
+ // order, so iterate backwards. The CXXBaseSpecifier also provides us with
+ // the wrong end of the derived->base arc, so stagger the path by one class.
+ typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
+ for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
+ PathI != PathE; ++PathI) {
+ assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
+ const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
+ if (!Result.castToDerived(Derived))
+ return Error(E);
+ }
+ const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
+ if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
+ return Error(E);
+ return true;
+ }
+
+ case CK_DerivedToBaseMemberPointer:
+ if (!Visit(E->getSubExpr()))
+ return false;
+ for (CastExpr::path_const_iterator PathI = E->path_begin(),
+ PathE = E->path_end(); PathI != PathE; ++PathI) {
+ assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
+ const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
+ if (!Result.castToBase(Base))
+ return Error(E);
+ }
+ return true;
+ }
+}
+
+bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
+ // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
+ // member can be formed.
+ return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
+}
+
+//===----------------------------------------------------------------------===//
+// Record Evaluation
+//===----------------------------------------------------------------------===//
+
+namespace {
+ class RecordExprEvaluator
+ : public ExprEvaluatorBase<RecordExprEvaluator> {
+ const LValue &This;
+ APValue &Result;
+ public:
+
+ RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
+ : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
+
+ bool Success(const APValue &V, const Expr *E) {
+ Result = V;
+ return true;
+ }
+ bool ZeroInitialization(const Expr *E);
+
+ bool VisitCastExpr(const CastExpr *E);
+ bool VisitInitListExpr(const InitListExpr *E);
+ bool VisitCXXConstructExpr(const CXXConstructExpr *E);
+ bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
+ };
+}
+
+/// Perform zero-initialization on an object of non-union class type.
+/// C++11 [dcl.init]p5:
+/// To zero-initialize an object or reference of type T means:
+/// [...]
+/// -- if T is a (possibly cv-qualified) non-union class type,
+/// each non-static data member and each base-class subobject is
+/// zero-initialized
+static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
+ const RecordDecl *RD,
+ const LValue &This, APValue &Result) {
+ assert(!RD->isUnion() && "Expected non-union class type");
+ const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
+ Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
+ std::distance(RD->field_begin(), RD->field_end()));
+
+ if (RD->isInvalidDecl()) return false;
+ const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
+
+ if (CD) {
+ unsigned Index = 0;
+ for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
+ End = CD->bases_end(); I != End; ++I, ++Index) {
+ const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
+ LValue Subobject = This;
+ if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
+ return false;
+ if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
+ Result.getStructBase(Index)))
+ return false;
+ }
+ }
+
+ for (const auto *I : RD->fields()) {
+ // -- if T is a reference type, no initialization is performed.
+ if (I->getType()->isReferenceType())
+ continue;
+
+ LValue Subobject = This;
+ if (!HandleLValueMember(Info, E, Subobject, I, &Layout))
+ return false;
+
+ ImplicitValueInitExpr VIE(I->getType());
+ if (!EvaluateInPlace(
+ Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
+ return false;
+ }
+
+ return true;
+}
+
+bool RecordExprEvaluator::ZeroInitialization(const Expr *E) {
+ const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
+ if (RD->isInvalidDecl()) return false;
+ if (RD->isUnion()) {
+ // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
+ // object's first non-static named data member is zero-initialized
+ RecordDecl::field_iterator I = RD->field_begin();
+ if (I == RD->field_end()) {
+ Result = APValue((const FieldDecl*)nullptr);
+ return true;
+ }
+
+ LValue Subobject = This;
+ if (!HandleLValueMember(Info, E, Subobject, *I))
+ return false;
+ Result = APValue(*I);
+ ImplicitValueInitExpr VIE(I->getType());
+ return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
+ }
+
+ if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
+ Info.Diag(E, diag::note_constexpr_virtual_base) << RD;
+ return false;
+ }
+
+ return HandleClassZeroInitialization(Info, E, RD, This, Result);
+}
+
+bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
+ switch (E->getCastKind()) {
+ default:
+ return ExprEvaluatorBaseTy::VisitCastExpr(E);
+
+ case CK_ConstructorConversion:
+ return Visit(E->getSubExpr());
+
+ case CK_DerivedToBase:
+ case CK_UncheckedDerivedToBase: {
+ APValue DerivedObject;
+ if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
+ return false;
+ if (!DerivedObject.isStruct())
+ return Error(E->getSubExpr());
+
+ // Derived-to-base rvalue conversion: just slice off the derived part.
+ APValue *Value = &DerivedObject;
+ const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
+ for (CastExpr::path_const_iterator PathI = E->path_begin(),
+ PathE = E->path_end(); PathI != PathE; ++PathI) {
+ assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
+ const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
+ Value = &Value->getStructBase(getBaseIndex(RD, Base));
+ RD = Base;
+ }
+ Result = *Value;
+ return true;
+ }
+ }
+}
+
+bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
+ const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
+ if (RD->isInvalidDecl()) return false;
+ const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
+
+ if (RD->isUnion()) {
+ const FieldDecl *Field = E->getInitializedFieldInUnion();
+ Result = APValue(Field);
+ if (!Field)
+ return true;
+
+ // If the initializer list for a union does not contain any elements, the
+ // first element of the union is value-initialized.
+ // FIXME: The element should be initialized from an initializer list.
+ // Is this difference ever observable for initializer lists which
+ // we don't build?
+ ImplicitValueInitExpr VIE(Field->getType());
+ const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
+
+ LValue Subobject = This;
+ if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
+ return false;
+
+ // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
+ ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
+ isa<CXXDefaultInitExpr>(InitExpr));
+
+ return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr);
+ }
+
+ assert((!isa<CXXRecordDecl>(RD) || !cast<CXXRecordDecl>(RD)->getNumBases()) &&
+ "initializer list for class with base classes");
+ Result = APValue(APValue::UninitStruct(), 0,
+ std::distance(RD->field_begin(), RD->field_end()));
+ unsigned ElementNo = 0;
+ bool Success = true;
+ for (const auto *Field : RD->fields()) {
+ // Anonymous bit-fields are not considered members of the class for
+ // purposes of aggregate initialization.
+ if (Field->isUnnamedBitfield())
+ continue;
+
+ LValue Subobject = This;
+
+ bool HaveInit = ElementNo < E->getNumInits();
+
+ // FIXME: Diagnostics here should point to the end of the initializer
+ // list, not the start.
+ if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
+ Subobject, Field, &Layout))
+ return false;
+
+ // Perform an implicit value-initialization for members beyond the end of
+ // the initializer list.
+ ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
+ const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE;
+
+ // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
+ ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
+ isa<CXXDefaultInitExpr>(Init));
+
+ APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
+ if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
+ (Field->isBitField() && !truncateBitfieldValue(Info, Init,
+ FieldVal, Field))) {
+ if (!Info.keepEvaluatingAfterFailure())
+ return false;
+ Success = false;
+ }
+ }
+
+ return Success;
+}
+
+bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
+ const CXXConstructorDecl *FD = E->getConstructor();
+ if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
+
+ bool ZeroInit = E->requiresZeroInitialization();
+ if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
+ // If we've already performed zero-initialization, we're already done.
+ if (!Result.isUninit())
+ return true;
+
+ // We can get here in two different ways:
+ // 1) We're performing value-initialization, and should zero-initialize
+ // the object, or
+ // 2) We're performing default-initialization of an object with a trivial
+ // constexpr default constructor, in which case we should start the
+ // lifetimes of all the base subobjects (there can be no data member
+ // subobjects in this case) per [basic.life]p1.
+ // Either way, ZeroInitialization is appropriate.
+ return ZeroInitialization(E);
+ }
+
+ const FunctionDecl *Definition = nullptr;
+ FD->getBody(Definition);
+
+ if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
+ return false;
+
+ // Avoid materializing a temporary for an elidable copy/move constructor.
+ if (E->isElidable() && !ZeroInit)
+ if (const MaterializeTemporaryExpr *ME
+ = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
+ return Visit(ME->GetTemporaryExpr());
+
+ if (ZeroInit && !ZeroInitialization(E))
+ return false;
+
+ auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
+ return HandleConstructorCall(E->getExprLoc(), This, Args,
+ cast<CXXConstructorDecl>(Definition), Info,
+ Result);
+}
+
+bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
+ const CXXStdInitializerListExpr *E) {
+ const ConstantArrayType *ArrayType =
+ Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
+
+ LValue Array;
+ if (!EvaluateLValue(E->getSubExpr(), Array, Info))
+ return false;
+
+ // Get a pointer to the first element of the array.
+ Array.addArray(Info, E, ArrayType);
+
+ // FIXME: Perform the checks on the field types in SemaInit.
+ RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
+ RecordDecl::field_iterator Field = Record->field_begin();
+ if (Field == Record->field_end())
+ return Error(E);
+
+ // Start pointer.
+ if (!Field->getType()->isPointerType() ||
+ !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
+ ArrayType->getElementType()))
+ return Error(E);
+
+ // FIXME: What if the initializer_list type has base classes, etc?
+ Result = APValue(APValue::UninitStruct(), 0, 2);
+ Array.moveInto(Result.getStructField(0));
+
+ if (++Field == Record->field_end())
+ return Error(E);
+
+ if (Field->getType()->isPointerType() &&
+ Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
+ ArrayType->getElementType())) {
+ // End pointer.
+ if (!HandleLValueArrayAdjustment(Info, E, Array,
+ ArrayType->getElementType(),
+ ArrayType->getSize().getZExtValue()))
+ return false;
+ Array.moveInto(Result.getStructField(1));
+ } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
+ // Length.
+ Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
+ else
+ return Error(E);
+
+ if (++Field != Record->field_end())
+ return Error(E);
+
+ return true;
+}
+
+static bool EvaluateRecord(const Expr *E, const LValue &This,
+ APValue &Result, EvalInfo &Info) {
+ assert(E->isRValue() && E->getType()->isRecordType() &&
+ "can't evaluate expression as a record rvalue");
+ return RecordExprEvaluator(Info, This, Result).Visit(E);
+}
+
+//===----------------------------------------------------------------------===//
+// Temporary Evaluation
+//
+// Temporaries are represented in the AST as rvalues, but generally behave like
+// lvalues. The full-object of which the temporary is a subobject is implicitly
+// materialized so that a reference can bind to it.
+//===----------------------------------------------------------------------===//
+namespace {
+class TemporaryExprEvaluator
+ : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
+public:
+ TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
+ LValueExprEvaluatorBaseTy(Info, Result) {}
+
+ /// Visit an expression which constructs the value of this temporary.
+ bool VisitConstructExpr(const Expr *E) {
+ Result.set(E, Info.CurrentCall->Index);
+ return EvaluateInPlace(Info.CurrentCall->createTemporary(E, false),
+ Info, Result, E);
+ }
+
+ bool VisitCastExpr(const CastExpr *E) {
+ switch (E->getCastKind()) {
+ default:
+ return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
+
+ case CK_ConstructorConversion:
+ return VisitConstructExpr(E->getSubExpr());
+ }
+ }
+ bool VisitInitListExpr(const InitListExpr *E) {
+ return VisitConstructExpr(E);
+ }
+ bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
+ return VisitConstructExpr(E);
+ }
+ bool VisitCallExpr(const CallExpr *E) {
+ return VisitConstructExpr(E);
+ }
+ bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) {
+ return VisitConstructExpr(E);
+ }
+};
+} // end anonymous namespace
+
+/// Evaluate an expression of record type as a temporary.
+static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
+ assert(E->isRValue() && E->getType()->isRecordType());
+ return TemporaryExprEvaluator(Info, Result).Visit(E);
+}
+
+//===----------------------------------------------------------------------===//
+// Vector Evaluation
+//===----------------------------------------------------------------------===//
+
+namespace {
+ class VectorExprEvaluator
+ : public ExprEvaluatorBase<VectorExprEvaluator> {
+ APValue &Result;
+ public:
+
+ VectorExprEvaluator(EvalInfo &info, APValue &Result)
+ : ExprEvaluatorBaseTy(info), Result(Result) {}
+
+ bool Success(const ArrayRef<APValue> &V, const Expr *E) {
+ assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
+ // FIXME: remove this APValue copy.
+ Result = APValue(V.data(), V.size());
+ return true;
+ }
+ bool Success(const APValue &V, const Expr *E) {
+ assert(V.isVector());
+ Result = V;
+ return true;
+ }
+ bool ZeroInitialization(const Expr *E);
+
+ bool VisitUnaryReal(const UnaryOperator *E)
+ { return Visit(E->getSubExpr()); }
+ bool VisitCastExpr(const CastExpr* E);
+ bool VisitInitListExpr(const InitListExpr *E);
+ bool VisitUnaryImag(const UnaryOperator *E);
+ // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
+ // binary comparisons, binary and/or/xor,
+ // shufflevector, ExtVectorElementExpr
+ };
+} // end anonymous namespace
+
+static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
+ assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
+ return VectorExprEvaluator(Info, Result).Visit(E);
+}
+
+bool VectorExprEvaluator::VisitCastExpr(const CastExpr* E) {
+ const VectorType *VTy = E->getType()->castAs<VectorType>();
+ unsigned NElts = VTy->getNumElements();
+
+ const Expr *SE = E->getSubExpr();
+ QualType SETy = SE->getType();
+
+ switch (E->getCastKind()) {
+ case CK_VectorSplat: {
+ APValue Val = APValue();
+ if (SETy->isIntegerType()) {
+ APSInt IntResult;
+ if (!EvaluateInteger(SE, IntResult, Info))
+ return false;
+ Val = APValue(IntResult);
+ } else if (SETy->isRealFloatingType()) {
+ APFloat F(0.0);
+ if (!EvaluateFloat(SE, F, Info))
+ return false;
+ Val = APValue(F);
+ } else {
+ return Error(E);
+ }
+
+ // Splat and create vector APValue.
+ SmallVector<APValue, 4> Elts(NElts, Val);
+ return Success(Elts, E);
+ }
+ case CK_BitCast: {
+ // Evaluate the operand into an APInt we can extract from.
+ llvm::APInt SValInt;
+ if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
+ return false;
+ // Extract the elements
+ QualType EltTy = VTy->getElementType();
+ unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
+ bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
+ SmallVector<APValue, 4> Elts;
+ if (EltTy->isRealFloatingType()) {
+ const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
+ unsigned FloatEltSize = EltSize;
+ if (&Sem == &APFloat::x87DoubleExtended)
+ FloatEltSize = 80;
+ for (unsigned i = 0; i < NElts; i++) {
+ llvm::APInt Elt;
+ if (BigEndian)
+ Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
+ else
+ Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
+ Elts.push_back(APValue(APFloat(Sem, Elt)));
+ }
+ } else if (EltTy->isIntegerType()) {
+ for (unsigned i = 0; i < NElts; i++) {
+ llvm::APInt Elt;
+ if (BigEndian)
+ Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
+ else
+ Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
+ Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType())));
+ }
+ } else {
+ return Error(E);
+ }
+ return Success(Elts, E);
+ }
+ default:
+ return ExprEvaluatorBaseTy::VisitCastExpr(E);
+ }
+}
+
+bool
+VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
+ const VectorType *VT = E->getType()->castAs<VectorType>();
+ unsigned NumInits = E->getNumInits();
+ unsigned NumElements = VT->getNumElements();
+
+ QualType EltTy = VT->getElementType();
+ SmallVector<APValue, 4> Elements;
+
+ // The number of initializers can be less than the number of
+ // vector elements. For OpenCL, this can be due to nested vector
+ // initialization. For GCC compatibility, missing trailing elements
+ // should be initialized with zeroes.
+ unsigned CountInits = 0, CountElts = 0;
+ while (CountElts < NumElements) {
+ // Handle nested vector initialization.
+ if (CountInits < NumInits
+ && E->getInit(CountInits)->getType()->isVectorType()) {
+ APValue v;
+ if (!EvaluateVector(E->getInit(CountInits), v, Info))
+ return Error(E);
+ unsigned vlen = v.getVectorLength();
+ for (unsigned j = 0; j < vlen; j++)
+ Elements.push_back(v.getVectorElt(j));
+ CountElts += vlen;
+ } else if (EltTy->isIntegerType()) {
+ llvm::APSInt sInt(32);
+ if (CountInits < NumInits) {
+ if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
+ return false;
+ } else // trailing integer zero.
+ sInt = Info.Ctx.MakeIntValue(0, EltTy);
+ Elements.push_back(APValue(sInt));
+ CountElts++;
+ } else {
+ llvm::APFloat f(0.0);
+ if (CountInits < NumInits) {
+ if (!EvaluateFloat(E->getInit(CountInits), f, Info))
+ return false;
+ } else // trailing float zero.
+ f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
+ Elements.push_back(APValue(f));
+ CountElts++;
+ }
+ CountInits++;
+ }
+ return Success(Elements, E);
+}
+
+bool
+VectorExprEvaluator::ZeroInitialization(const Expr *E) {
+ const VectorType *VT = E->getType()->getAs<VectorType>();
+ QualType EltTy = VT->getElementType();
+ APValue ZeroElement;
+ if (EltTy->isIntegerType())
+ ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
+ else
+ ZeroElement =
+ APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
+
+ SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
+ return Success(Elements, E);
+}
+
+bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
+ VisitIgnoredValue(E->getSubExpr());
+ return ZeroInitialization(E);
+}
+
+//===----------------------------------------------------------------------===//
+// Array Evaluation
+//===----------------------------------------------------------------------===//
+
+namespace {
+ class ArrayExprEvaluator
+ : public ExprEvaluatorBase<ArrayExprEvaluator> {
+ const LValue &This;
+ APValue &Result;
+ public:
+
+ ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
+ : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
+
+ bool Success(const APValue &V, const Expr *E) {
+ assert((V.isArray() || V.isLValue()) &&
+ "expected array or string literal");
+ Result = V;
+ return true;
+ }
+
+ bool ZeroInitialization(const Expr *E) {
+ const ConstantArrayType *CAT =
+ Info.Ctx.getAsConstantArrayType(E->getType());
+ if (!CAT)
+ return Error(E);
+
+ Result = APValue(APValue::UninitArray(), 0,
+ CAT->getSize().getZExtValue());
+ if (!Result.hasArrayFiller()) return true;
+
+ // Zero-initialize all elements.
+ LValue Subobject = This;
+ Subobject.addArray(Info, E, CAT);
+ ImplicitValueInitExpr VIE(CAT->getElementType());
+ return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
+ }
+
+ bool VisitInitListExpr(const InitListExpr *E);
+ bool VisitCXXConstructExpr(const CXXConstructExpr *E);
+ bool VisitCXXConstructExpr(const CXXConstructExpr *E,
+ const LValue &Subobject,
+ APValue *Value, QualType Type);
+ };
+} // end anonymous namespace
+
+static bool EvaluateArray(const Expr *E, const LValue &This,
+ APValue &Result, EvalInfo &Info) {
+ assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue");
+ return ArrayExprEvaluator(Info, This, Result).Visit(E);
+}
+
+bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
+ const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(E->getType());
+ if (!CAT)
+ return Error(E);
+
+ // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
+ // an appropriately-typed string literal enclosed in braces.
+ if (E->isStringLiteralInit()) {
+ LValue LV;
+ if (!EvaluateLValue(E->getInit(0), LV, Info))
+ return false;
+ APValue Val;
+ LV.moveInto(Val);
+ return Success(Val, E);
+ }
+
+ bool Success = true;
+
+ assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
+ "zero-initialized array shouldn't have any initialized elts");
+ APValue Filler;
+ if (Result.isArray() && Result.hasArrayFiller())
+ Filler = Result.getArrayFiller();
+
+ unsigned NumEltsToInit = E->getNumInits();
+ unsigned NumElts = CAT->getSize().getZExtValue();
+ const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : nullptr;
+
+ // If the initializer might depend on the array index, run it for each
+ // array element. For now, just whitelist non-class value-initialization.
+ if (NumEltsToInit != NumElts && !isa<ImplicitValueInitExpr>(FillerExpr))
+ NumEltsToInit = NumElts;
+
+ Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
+
+ // If the array was previously zero-initialized, preserve the
+ // zero-initialized values.
+ if (!Filler.isUninit()) {
+ for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
+ Result.getArrayInitializedElt(I) = Filler;
+ if (Result.hasArrayFiller())
+ Result.getArrayFiller() = Filler;
+ }
+
+ LValue Subobject = This;
+ Subobject.addArray(Info, E, CAT);
+ for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
+ const Expr *Init =
+ Index < E->getNumInits() ? E->getInit(Index) : FillerExpr;
+ if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
+ Info, Subobject, Init) ||
+ !HandleLValueArrayAdjustment(Info, Init, Subobject,
+ CAT->getElementType(), 1)) {
+ if (!Info.keepEvaluatingAfterFailure())
+ return false;
+ Success = false;
+ }
+ }
+
+ if (!Result.hasArrayFiller())
+ return Success;
+
+ // If we get here, we have a trivial filler, which we can just evaluate
+ // once and splat over the rest of the array elements.
+ assert(FillerExpr && "no array filler for incomplete init list");
+ return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
+ FillerExpr) && Success;
+}
+
+bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
+ return VisitCXXConstructExpr(E, This, &Result, E->getType());
+}
+
+bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
+ const LValue &Subobject,
+ APValue *Value,
+ QualType Type) {
+ bool HadZeroInit = !Value->isUninit();
+
+ if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
+ unsigned N = CAT->getSize().getZExtValue();
+
+ // Preserve the array filler if we had prior zero-initialization.
+ APValue Filler =
+ HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
+ : APValue();
+
+ *Value = APValue(APValue::UninitArray(), N, N);
+
+ if (HadZeroInit)
+ for (unsigned I = 0; I != N; ++I)
+ Value->getArrayInitializedElt(I) = Filler;
+
+ // Initialize the elements.
+ LValue ArrayElt = Subobject;
+ ArrayElt.addArray(Info, E, CAT);
+ for (unsigned I = 0; I != N; ++I)
+ if (!VisitCXXConstructExpr(E, ArrayElt, &Value->getArrayInitializedElt(I),
+ CAT->getElementType()) ||
+ !HandleLValueArrayAdjustment(Info, E, ArrayElt,
+ CAT->getElementType(), 1))
+ return false;
+
+ return true;
+ }
+
+ if (!Type->isRecordType())
+ return Error(E);
+
+ const CXXConstructorDecl *FD = E->getConstructor();
+
+ bool ZeroInit = E->requiresZeroInitialization();
+ if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
+ if (HadZeroInit)
+ return true;
+
+ // See RecordExprEvaluator::VisitCXXConstructExpr for explanation.
+ ImplicitValueInitExpr VIE(Type);
+ return EvaluateInPlace(*Value, Info, Subobject, &VIE);
+ }
+
+ const FunctionDecl *Definition = nullptr;
+ FD->getBody(Definition);
+
+ if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
+ return false;
+
+ if (ZeroInit && !HadZeroInit) {
+ ImplicitValueInitExpr VIE(Type);
+ if (!EvaluateInPlace(*Value, Info, Subobject, &VIE))
+ return false;
+ }
+
+ auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
+ return HandleConstructorCall(E->getExprLoc(), Subobject, Args,
+ cast<CXXConstructorDecl>(Definition),
+ Info, *Value);
+}
+
+//===----------------------------------------------------------------------===//
+// Integer Evaluation
+//
+// As a GNU extension, we support casting pointers to sufficiently-wide integer
+// types and back in constant folding. Integer values are thus represented
+// either as an integer-valued APValue, or as an lvalue-valued APValue.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class IntExprEvaluator
+ : public ExprEvaluatorBase<IntExprEvaluator> {
+ APValue &Result;
+public:
+ IntExprEvaluator(EvalInfo &info, APValue &result)
+ : ExprEvaluatorBaseTy(info), Result(result) {}
+
+ bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
+ assert(E->getType()->isIntegralOrEnumerationType() &&
+ "Invalid evaluation result.");
+ assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
+ "Invalid evaluation result.");
+ assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
+ "Invalid evaluation result.");
+ Result = APValue(SI);
+ return true;
+ }
+ bool Success(const llvm::APSInt &SI, const Expr *E) {
+ return Success(SI, E, Result);
+ }
+
+ bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
+ assert(E->getType()->isIntegralOrEnumerationType() &&
+ "Invalid evaluation result.");
+ assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
+ "Invalid evaluation result.");
+ Result = APValue(APSInt(I));
+ Result.getInt().setIsUnsigned(
+ E->getType()->isUnsignedIntegerOrEnumerationType());
+ return true;
+ }
+ bool Success(const llvm::APInt &I, const Expr *E) {
+ return Success(I, E, Result);
+ }
+
+ bool Success(uint64_t Value, const Expr *E, APValue &Result) {
+ assert(E->getType()->isIntegralOrEnumerationType() &&
+ "Invalid evaluation result.");
+ Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
+ return true;
+ }
+ bool Success(uint64_t Value, const Expr *E) {
+ return Success(Value, E, Result);
+ }
+
+ bool Success(CharUnits Size, const Expr *E) {
+ return Success(Size.getQuantity(), E);
+ }
+
+ bool Success(const APValue &V, const Expr *E) {
+ if (V.isLValue() || V.isAddrLabelDiff()) {
+ Result = V;
+ return true;
+ }
+ return Success(V.getInt(), E);
+ }
+
+ bool ZeroInitialization(const Expr *E) { return Success(0, E); }
+
+ //===--------------------------------------------------------------------===//
+ // Visitor Methods
+ //===--------------------------------------------------------------------===//
+
+ bool VisitIntegerLiteral(const IntegerLiteral *E) {
+ return Success(E->getValue(), E);
+ }
+ bool VisitCharacterLiteral(const CharacterLiteral *E) {
+ return Success(E->getValue(), E);
+ }
+
+ bool CheckReferencedDecl(const Expr *E, const Decl *D);
+ bool VisitDeclRefExpr(const DeclRefExpr *E) {
+ if (CheckReferencedDecl(E, E->getDecl()))
+ return true;
+
+ return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
+ }
+ bool VisitMemberExpr(const MemberExpr *E) {
+ if (CheckReferencedDecl(E, E->getMemberDecl())) {
+ VisitIgnoredValue(E->getBase());
+ return true;
+ }
+
+ return ExprEvaluatorBaseTy::VisitMemberExpr(E);
+ }
+
+ bool VisitCallExpr(const CallExpr *E);
+ bool VisitBinaryOperator(const BinaryOperator *E);
+ bool VisitOffsetOfExpr(const OffsetOfExpr *E);
+ bool VisitUnaryOperator(const UnaryOperator *E);
+
+ bool VisitCastExpr(const CastExpr* E);
+ bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
+
+ bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
+ return Success(E->getValue(), E);
+ }
+
+ bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
+ return Success(E->getValue(), E);
+ }
+
+ // Note, GNU defines __null as an integer, not a pointer.
+ bool VisitGNUNullExpr(const GNUNullExpr *E) {
+ return ZeroInitialization(E);
+ }
+
+ bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
+ return Success(E->getValue(), E);
+ }
+
+ bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
+ return Success(E->getValue(), E);
+ }
+
+ bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
+ return Success(E->getValue(), E);
+ }
+
+ bool VisitUnaryReal(const UnaryOperator *E);
+ bool VisitUnaryImag(const UnaryOperator *E);
+
+ bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
+ bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
+
+private:
+ static QualType GetObjectType(APValue::LValueBase B);
+ bool TryEvaluateBuiltinObjectSize(const CallExpr *E);
+ // FIXME: Missing: array subscript of vector, member of vector
+};
+} // end anonymous namespace
+
+/// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
+/// produce either the integer value or a pointer.
+///
+/// GCC has a heinous extension which folds casts between pointer types and
+/// pointer-sized integral types. We support this by allowing the evaluation of
+/// an integer rvalue to produce a pointer (represented as an lvalue) instead.
+/// Some simple arithmetic on such values is supported (they are treated much
+/// like char*).
+static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
+ EvalInfo &Info) {
+ assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
+ return IntExprEvaluator(Info, Result).Visit(E);
+}
+
+static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
+ APValue Val;
+ if (!EvaluateIntegerOrLValue(E, Val, Info))
+ return false;
+ if (!Val.isInt()) {
+ // FIXME: It would be better to produce the diagnostic for casting
+ // a pointer to an integer.
+ Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
+ return false;
+ }
+ Result = Val.getInt();
+ return true;
+}
+
+/// Check whether the given declaration can be directly converted to an integral
+/// rvalue. If not, no diagnostic is produced; there are other things we can
+/// try.
+bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
+ // Enums are integer constant exprs.
+ if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
+ // Check for signedness/width mismatches between E type and ECD value.
+ bool SameSign = (ECD->getInitVal().isSigned()
+ == E->getType()->isSignedIntegerOrEnumerationType());
+ bool SameWidth = (ECD->getInitVal().getBitWidth()
+ == Info.Ctx.getIntWidth(E->getType()));
+ if (SameSign && SameWidth)
+ return Success(ECD->getInitVal(), E);
+ else {
+ // Get rid of mismatch (otherwise Success assertions will fail)
+ // by computing a new value matching the type of E.
+ llvm::APSInt Val = ECD->getInitVal();
+ if (!SameSign)
+ Val.setIsSigned(!ECD->getInitVal().isSigned());
+ if (!SameWidth)
+ Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
+ return Success(Val, E);
+ }
+ }
+ return false;
+}
+
+/// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
+/// as GCC.
+static int EvaluateBuiltinClassifyType(const CallExpr *E) {
+ // The following enum mimics the values returned by GCC.
+ // FIXME: Does GCC differ between lvalue and rvalue references here?
+ enum gcc_type_class {
+ no_type_class = -1,
+ void_type_class, integer_type_class, char_type_class,
+ enumeral_type_class, boolean_type_class,
+ pointer_type_class, reference_type_class, offset_type_class,
+ real_type_class, complex_type_class,
+ function_type_class, method_type_class,
+ record_type_class, union_type_class,
+ array_type_class, string_type_class,
+ lang_type_class
+ };
+
+ // If no argument was supplied, default to "no_type_class". This isn't
+ // ideal, however it is what gcc does.
+ if (E->getNumArgs() == 0)
+ return no_type_class;
+
+ QualType ArgTy = E->getArg(0)->getType();
+ if (ArgTy->isVoidType())
+ return void_type_class;
+ else if (ArgTy->isEnumeralType())
+ return enumeral_type_class;
+ else if (ArgTy->isBooleanType())
+ return boolean_type_class;
+ else if (ArgTy->isCharType())
+ return string_type_class; // gcc doesn't appear to use char_type_class
+ else if (ArgTy->isIntegerType())
+ return integer_type_class;
+ else if (ArgTy->isPointerType())
+ return pointer_type_class;
+ else if (ArgTy->isReferenceType())
+ return reference_type_class;
+ else if (ArgTy->isRealType())
+ return real_type_class;
+ else if (ArgTy->isComplexType())
+ return complex_type_class;
+ else if (ArgTy->isFunctionType())
+ return function_type_class;
+ else if (ArgTy->isStructureOrClassType())
+ return record_type_class;
+ else if (ArgTy->isUnionType())
+ return union_type_class;
+ else if (ArgTy->isArrayType())
+ return array_type_class;
+ else if (ArgTy->isUnionType())
+ return union_type_class;
+ else // FIXME: offset_type_class, method_type_class, & lang_type_class?
+ llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
+}
+
+/// EvaluateBuiltinConstantPForLValue - Determine the result of
+/// __builtin_constant_p when applied to the given lvalue.
+///
+/// An lvalue is only "constant" if it is a pointer or reference to the first
+/// character of a string literal.
+template<typename LValue>
+static bool EvaluateBuiltinConstantPForLValue(const LValue &LV) {
+ const Expr *E = LV.getLValueBase().template dyn_cast<const Expr*>();
+ return E && isa<StringLiteral>(E) && LV.getLValueOffset().isZero();
+}
+
+/// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
+/// GCC as we can manage.
+static bool EvaluateBuiltinConstantP(ASTContext &Ctx, const Expr *Arg) {
+ QualType ArgType = Arg->getType();
+
+ // __builtin_constant_p always has one operand. The rules which gcc follows
+ // are not precisely documented, but are as follows:
+ //
+ // - If the operand is of integral, floating, complex or enumeration type,
+ // and can be folded to a known value of that type, it returns 1.
+ // - If the operand and can be folded to a pointer to the first character
+ // of a string literal (or such a pointer cast to an integral type), it
+ // returns 1.
+ //
+ // Otherwise, it returns 0.
+ //
+ // FIXME: GCC also intends to return 1 for literals of aggregate types, but
+ // its support for this does not currently work.
+ if (ArgType->isIntegralOrEnumerationType()) {
+ Expr::EvalResult Result;
+ if (!Arg->EvaluateAsRValue(Result, Ctx) || Result.HasSideEffects)
+ return false;
+
+ APValue &V = Result.Val;
+ if (V.getKind() == APValue::Int)
+ return true;
+
+ return EvaluateBuiltinConstantPForLValue(V);
+ } else if (ArgType->isFloatingType() || ArgType->isAnyComplexType()) {
+ return Arg->isEvaluatable(Ctx);
+ } else if (ArgType->isPointerType() || Arg->isGLValue()) {
+ LValue LV;
+ Expr::EvalStatus Status;
+ EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
+ if ((Arg->isGLValue() ? EvaluateLValue(Arg, LV, Info)
+ : EvaluatePointer(Arg, LV, Info)) &&
+ !Status.HasSideEffects)
+ return EvaluateBuiltinConstantPForLValue(LV);
+ }
+
+ // Anything else isn't considered to be sufficiently constant.
+ return false;
+}
+
+/// Retrieves the "underlying object type" of the given expression,
+/// as used by __builtin_object_size.
+QualType IntExprEvaluator::GetObjectType(APValue::LValueBase B) {
+ if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D))
+ return VD->getType();
+ } else if (const Expr *E = B.get<const Expr*>()) {
+ if (isa<CompoundLiteralExpr>(E))
+ return E->getType();
+ }
+
+ return QualType();
+}
+
+bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E) {
+ LValue Base;
+
+ {
+ // The operand of __builtin_object_size is never evaluated for side-effects.
+ // If there are any, but we can determine the pointed-to object anyway, then
+ // ignore the side-effects.
+ SpeculativeEvaluationRAII SpeculativeEval(Info);
+ if (!EvaluatePointer(E->getArg(0), Base, Info))
+ return false;
+ }
+
+ if (!Base.getLValueBase()) {
+ // It is not possible to determine which objects ptr points to at compile time,
+ // __builtin_object_size should return (size_t) -1 for type 0 or 1
+ // and (size_t) 0 for type 2 or 3.
+ llvm::APSInt TypeIntVaue;
+ const Expr *ExprType = E->getArg(1);
+ if (!ExprType->EvaluateAsInt(TypeIntVaue, Info.Ctx))
+ return false;
+ if (TypeIntVaue == 0 || TypeIntVaue == 1)
+ return Success(-1, E);
+ if (TypeIntVaue == 2 || TypeIntVaue == 3)
+ return Success(0, E);
+ return Error(E);
+ }
+
+ QualType T = GetObjectType(Base.getLValueBase());
+ if (T.isNull() ||
+ T->isIncompleteType() ||
+ T->isFunctionType() ||
+ T->isVariablyModifiedType() ||
+ T->isDependentType())
+ return Error(E);
+
+ CharUnits Size = Info.Ctx.getTypeSizeInChars(T);
+ CharUnits Offset = Base.getLValueOffset();
+
+ if (!Offset.isNegative() && Offset <= Size)
+ Size -= Offset;
+ else
+ Size = CharUnits::Zero();
+ return Success(Size, E);
+}
+
+bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
+ switch (unsigned BuiltinOp = E->getBuiltinCallee()) {
+ default:
+ return ExprEvaluatorBaseTy::VisitCallExpr(E);
+
+ case Builtin::BI__builtin_object_size: {
+ if (TryEvaluateBuiltinObjectSize(E))
+ return true;
+
+ // If evaluating the argument has side-effects, we can't determine the size
+ // of the object, and so we lower it to unknown now. CodeGen relies on us to
+ // handle all cases where the expression has side-effects.
+ if (E->getArg(0)->HasSideEffects(Info.Ctx)) {
+ if (E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue() <= 1)
+ return Success(-1ULL, E);
+ return Success(0, E);
+ }
+
+ // Expression had no side effects, but we couldn't statically determine the
+ // size of the referenced object.
+ switch (Info.EvalMode) {
+ case EvalInfo::EM_ConstantExpression:
+ case EvalInfo::EM_PotentialConstantExpression:
+ case EvalInfo::EM_ConstantFold:
+ case EvalInfo::EM_EvaluateForOverflow:
+ case EvalInfo::EM_IgnoreSideEffects:
+ return Error(E);
+ case EvalInfo::EM_ConstantExpressionUnevaluated:
+ case EvalInfo::EM_PotentialConstantExpressionUnevaluated:
+ return Success(-1ULL, E);
+ }
+ }
+
+ case Builtin::BI__builtin_bswap16:
+ case Builtin::BI__builtin_bswap32:
+ case Builtin::BI__builtin_bswap64: {
+ APSInt Val;
+ if (!EvaluateInteger(E->getArg(0), Val, Info))
+ return false;
+
+ return Success(Val.byteSwap(), E);
+ }
+
+ case Builtin::BI__builtin_classify_type:
+ return Success(EvaluateBuiltinClassifyType(E), E);
+
+ // FIXME: BI__builtin_clrsb
+ // FIXME: BI__builtin_clrsbl
+ // FIXME: BI__builtin_clrsbll
+
+ case Builtin::BI__builtin_clz:
+ case Builtin::BI__builtin_clzl:
+ case Builtin::BI__builtin_clzll:
+ case Builtin::BI__builtin_clzs: {
+ APSInt Val;
+ if (!EvaluateInteger(E->getArg(0), Val, Info))
+ return false;
+ if (!Val)
+ return Error(E);
+
+ return Success(Val.countLeadingZeros(), E);
+ }
+
+ case Builtin::BI__builtin_constant_p:
+ return Success(EvaluateBuiltinConstantP(Info.Ctx, E->getArg(0)), E);
+
+ case Builtin::BI__builtin_ctz:
+ case Builtin::BI__builtin_ctzl:
+ case Builtin::BI__builtin_ctzll:
+ case Builtin::BI__builtin_ctzs: {
+ APSInt Val;
+ if (!EvaluateInteger(E->getArg(0), Val, Info))
+ return false;
+ if (!Val)
+ return Error(E);
+
+ return Success(Val.countTrailingZeros(), E);
+ }
+
+ case Builtin::BI__builtin_eh_return_data_regno: {
+ int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
+ Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
+ return Success(Operand, E);
+ }
+
+ case Builtin::BI__builtin_expect:
+ return Visit(E->getArg(0));
+
+ case Builtin::BI__builtin_ffs:
+ case Builtin::BI__builtin_ffsl:
+ case Builtin::BI__builtin_ffsll: {
+ APSInt Val;
+ if (!EvaluateInteger(E->getArg(0), Val, Info))
+ return false;
+
+ unsigned N = Val.countTrailingZeros();
+ return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
+ }
+
+ case Builtin::BI__builtin_fpclassify: {
+ APFloat Val(0.0);
+ if (!EvaluateFloat(E->getArg(5), Val, Info))
+ return false;
+ unsigned Arg;
+ switch (Val.getCategory()) {
+ case APFloat::fcNaN: Arg = 0; break;
+ case APFloat::fcInfinity: Arg = 1; break;
+ case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
+ case APFloat::fcZero: Arg = 4; break;
+ }
+ return Visit(E->getArg(Arg));
+ }
+
+ case Builtin::BI__builtin_isinf_sign: {
+ APFloat Val(0.0);
+ return EvaluateFloat(E->getArg(0), Val, Info) &&
+ Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
+ }
+
+ case Builtin::BI__builtin_isinf: {
+ APFloat Val(0.0);
+ return EvaluateFloat(E->getArg(0), Val, Info) &&
+ Success(Val.isInfinity() ? 1 : 0, E);
+ }
+
+ case Builtin::BI__builtin_isfinite: {
+ APFloat Val(0.0);
+ return EvaluateFloat(E->getArg(0), Val, Info) &&
+ Success(Val.isFinite() ? 1 : 0, E);
+ }
+
+ case Builtin::BI__builtin_isnan: {
+ APFloat Val(0.0);
+ return EvaluateFloat(E->getArg(0), Val, Info) &&
+ Success(Val.isNaN() ? 1 : 0, E);
+ }
+
+ case Builtin::BI__builtin_isnormal: {
+ APFloat Val(0.0);
+ return EvaluateFloat(E->getArg(0), Val, Info) &&
+ Success(Val.isNormal() ? 1 : 0, E);
+ }
+
+ case Builtin::BI__builtin_parity:
+ case Builtin::BI__builtin_parityl:
+ case Builtin::BI__builtin_parityll: {
+ APSInt Val;
+ if (!EvaluateInteger(E->getArg(0), Val, Info))
+ return false;
+
+ return Success(Val.countPopulation() % 2, E);
+ }
+
+ case Builtin::BI__builtin_popcount:
+ case Builtin::BI__builtin_popcountl:
+ case Builtin::BI__builtin_popcountll: {
+ APSInt Val;
+ if (!EvaluateInteger(E->getArg(0), Val, Info))
+ return false;
+
+ return Success(Val.countPopulation(), E);
+ }
+
+ case Builtin::BIstrlen:
+ // A call to strlen is not a constant expression.
+ if (Info.getLangOpts().CPlusPlus11)
+ Info.CCEDiag(E, diag::note_constexpr_invalid_function)
+ << /*isConstexpr*/0 << /*isConstructor*/0 << "'strlen'";
+ else
+ Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
+ // Fall through.
+ case Builtin::BI__builtin_strlen: {
+ // As an extension, we support __builtin_strlen() as a constant expression,
+ // and support folding strlen() to a constant.
+ LValue String;
+ if (!EvaluatePointer(E->getArg(0), String, Info))
+ return false;
+
+ // Fast path: if it's a string literal, search the string value.
+ if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
+ String.getLValueBase().dyn_cast<const Expr *>())) {
+ // The string literal may have embedded null characters. Find the first
+ // one and truncate there.
+ StringRef Str = S->getBytes();
+ int64_t Off = String.Offset.getQuantity();
+ if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
+ S->getCharByteWidth() == 1) {
+ Str = Str.substr(Off);
+
+ StringRef::size_type Pos = Str.find(0);
+ if (Pos != StringRef::npos)
+ Str = Str.substr(0, Pos);
+
+ return Success(Str.size(), E);
+ }
+
+ // Fall through to slow path to issue appropriate diagnostic.
+ }
+
+ // Slow path: scan the bytes of the string looking for the terminating 0.
+ QualType CharTy = E->getArg(0)->getType()->getPointeeType();
+ for (uint64_t Strlen = 0; /**/; ++Strlen) {
+ APValue Char;
+ if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) ||
+ !Char.isInt())
+ return false;
+ if (!Char.getInt())
+ return Success(Strlen, E);
+ if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1))
+ return false;
+ }
+ }
+
+ case Builtin::BI__atomic_always_lock_free:
+ case Builtin::BI__atomic_is_lock_free:
+ case Builtin::BI__c11_atomic_is_lock_free: {
+ APSInt SizeVal;
+ if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
+ return false;
+
+ // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
+ // of two less than the maximum inline atomic width, we know it is
+ // lock-free. If the size isn't a power of two, or greater than the
+ // maximum alignment where we promote atomics, we know it is not lock-free
+ // (at least not in the sense of atomic_is_lock_free). Otherwise,
+ // the answer can only be determined at runtime; for example, 16-byte
+ // atomics have lock-free implementations on some, but not all,
+ // x86-64 processors.
+
+ // Check power-of-two.
+ CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
+ if (Size.isPowerOfTwo()) {
+ // Check against inlining width.
+ unsigned InlineWidthBits =
+ Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
+ if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
+ if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
+ Size == CharUnits::One() ||
+ E->getArg(1)->isNullPointerConstant(Info.Ctx,
+ Expr::NPC_NeverValueDependent))
+ // OK, we will inline appropriately-aligned operations of this size,
+ // and _Atomic(T) is appropriately-aligned.
+ return Success(1, E);
+
+ QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
+ castAs<PointerType>()->getPointeeType();
+ if (!PointeeType->isIncompleteType() &&
+ Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
+ // OK, we will inline operations on this object.
+ return Success(1, E);
+ }
+ }
+ }
+
+ return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
+ Success(0, E) : Error(E);
+ }
+ }
+}
+
+static bool HasSameBase(const LValue &A, const LValue &B) {
+ if (!A.getLValueBase())
+ return !B.getLValueBase();
+ if (!B.getLValueBase())
+ return false;
+
+ if (A.getLValueBase().getOpaqueValue() !=
+ B.getLValueBase().getOpaqueValue()) {
+ const Decl *ADecl = GetLValueBaseDecl(A);
+ if (!ADecl)
+ return false;
+ const Decl *BDecl = GetLValueBaseDecl(B);
+ if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
+ return false;
+ }
+
+ return IsGlobalLValue(A.getLValueBase()) ||
+ A.getLValueCallIndex() == B.getLValueCallIndex();
+}
+
+/// \brief Determine whether this is a pointer past the end of the complete
+/// object referred to by the lvalue.
+static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx,
+ const LValue &LV) {
+ // A null pointer can be viewed as being "past the end" but we don't
+ // choose to look at it that way here.
+ if (!LV.getLValueBase())
+ return false;
+
+ // If the designator is valid and refers to a subobject, we're not pointing
+ // past the end.
+ if (!LV.getLValueDesignator().Invalid &&
+ !LV.getLValueDesignator().isOnePastTheEnd())
+ return false;
+
+ // We're a past-the-end pointer if we point to the byte after the object,
+ // no matter what our type or path is.
+ auto Size = Ctx.getTypeSizeInChars(getType(LV.getLValueBase()));
+ return LV.getLValueOffset() == Size;
+}
+
+namespace {
+
+/// \brief Data recursive integer evaluator of certain binary operators.
+///
+/// We use a data recursive algorithm for binary operators so that we are able
+/// to handle extreme cases of chained binary operators without causing stack
+/// overflow.
+class DataRecursiveIntBinOpEvaluator {
+ struct EvalResult {
+ APValue Val;
+ bool Failed;
+
+ EvalResult() : Failed(false) { }
+
+ void swap(EvalResult &RHS) {
+ Val.swap(RHS.Val);
+ Failed = RHS.Failed;
+ RHS.Failed = false;
+ }
+ };
+
+ struct Job {
+ const Expr *E;
+ EvalResult LHSResult; // meaningful only for binary operator expression.
+ enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
+
+ Job() : StoredInfo(nullptr) {}
+ void startSpeculativeEval(EvalInfo &Info) {
+ OldEvalStatus = Info.EvalStatus;
+ Info.EvalStatus.Diag = nullptr;
+ StoredInfo = &Info;
+ }
+ ~Job() {
+ if (StoredInfo) {
+ StoredInfo->EvalStatus = OldEvalStatus;
+ }
+ }
+ private:
+ EvalInfo *StoredInfo; // non-null if status changed.
+ Expr::EvalStatus OldEvalStatus;
+ };
+
+ SmallVector<Job, 16> Queue;
+
+ IntExprEvaluator &IntEval;
+ EvalInfo &Info;
+ APValue &FinalResult;
+
+public:
+ DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
+ : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
+
+ /// \brief True if \param E is a binary operator that we are going to handle
+ /// data recursively.
+ /// We handle binary operators that are comma, logical, or that have operands
+ /// with integral or enumeration type.
+ static bool shouldEnqueue(const BinaryOperator *E) {
+ return E->getOpcode() == BO_Comma ||
+ E->isLogicalOp() ||
+ (E->getLHS()->getType()->isIntegralOrEnumerationType() &&
+ E->getRHS()->getType()->isIntegralOrEnumerationType());
+ }
+
+ bool Traverse(const BinaryOperator *E) {
+ enqueue(E);
+ EvalResult PrevResult;
+ while (!Queue.empty())
+ process(PrevResult);
+
+ if (PrevResult.Failed) return false;
+
+ FinalResult.swap(PrevResult.Val);
+ return true;
+ }
+
+private:
+ bool Success(uint64_t Value, const Expr *E, APValue &Result) {
+ return IntEval.Success(Value, E, Result);
+ }
+ bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
+ return IntEval.Success(Value, E, Result);
+ }
+ bool Error(const Expr *E) {
+ return IntEval.Error(E);
+ }
+ bool Error(const Expr *E, diag::kind D) {
+ return IntEval.Error(E, D);
+ }
+
+ OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
+ return Info.CCEDiag(E, D);
+ }
+
+ // \brief Returns true if visiting the RHS is necessary, false otherwise.
+ bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
+ bool &SuppressRHSDiags);
+
+ bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
+ const BinaryOperator *E, APValue &Result);
+
+ void EvaluateExpr(const Expr *E, EvalResult &Result) {
+ Result.Failed = !Evaluate(Result.Val, Info, E);
+ if (Result.Failed)
+ Result.Val = APValue();
+ }
+
+ void process(EvalResult &Result);
+
+ void enqueue(const Expr *E) {
+ E = E->IgnoreParens();
+ Queue.resize(Queue.size()+1);
+ Queue.back().E = E;
+ Queue.back().Kind = Job::AnyExprKind;
+ }
+};
+
+}
+
+bool DataRecursiveIntBinOpEvaluator::
+ VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
+ bool &SuppressRHSDiags) {
+ if (E->getOpcode() == BO_Comma) {
+ // Ignore LHS but note if we could not evaluate it.
+ if (LHSResult.Failed)
+ return Info.noteSideEffect();
+ return true;
+ }
+
+ if (E->isLogicalOp()) {
+ bool LHSAsBool;
+ if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) {
+ // We were able to evaluate the LHS, see if we can get away with not
+ // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
+ if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
+ Success(LHSAsBool, E, LHSResult.Val);
+ return false; // Ignore RHS
+ }
+ } else {
+ LHSResult.Failed = true;
+
+ // Since we weren't able to evaluate the left hand side, it
+ // must have had side effects.
+ if (!Info.noteSideEffect())
+ return false;
+
+ // We can't evaluate the LHS; however, sometimes the result
+ // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
+ // Don't ignore RHS and suppress diagnostics from this arm.
+ SuppressRHSDiags = true;
+ }
+
+ return true;
+ }
+
+ assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
+ E->getRHS()->getType()->isIntegralOrEnumerationType());
+
+ if (LHSResult.Failed && !Info.keepEvaluatingAfterFailure())
+ return false; // Ignore RHS;
+
+ return true;
+}
+
+bool DataRecursiveIntBinOpEvaluator::
+ VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
+ const BinaryOperator *E, APValue &Result) {
+ if (E->getOpcode() == BO_Comma) {
+ if (RHSResult.Failed)
+ return false;
+ Result = RHSResult.Val;
+ return true;
+ }
+
+ if (E->isLogicalOp()) {
+ bool lhsResult, rhsResult;
+ bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
+ bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
+
+ if (LHSIsOK) {
+ if (RHSIsOK) {
+ if (E->getOpcode() == BO_LOr)
+ return Success(lhsResult || rhsResult, E, Result);
+ else
+ return Success(lhsResult && rhsResult, E, Result);
+ }
+ } else {
+ if (RHSIsOK) {
+ // We can't evaluate the LHS; however, sometimes the result
+ // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
+ if (rhsResult == (E->getOpcode() == BO_LOr))
+ return Success(rhsResult, E, Result);
+ }
+ }
+
+ return false;
+ }
+
+ assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
+ E->getRHS()->getType()->isIntegralOrEnumerationType());
+
+ if (LHSResult.Failed || RHSResult.Failed)
+ return false;
+
+ const APValue &LHSVal = LHSResult.Val;
+ const APValue &RHSVal = RHSResult.Val;
+
+ // Handle cases like (unsigned long)&a + 4.
+ if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
+ Result = LHSVal;
+ CharUnits AdditionalOffset =
+ CharUnits::fromQuantity(RHSVal.getInt().getZExtValue());
+ if (E->getOpcode() == BO_Add)
+ Result.getLValueOffset() += AdditionalOffset;
+ else
+ Result.getLValueOffset() -= AdditionalOffset;
+ return true;
+ }
+
+ // Handle cases like 4 + (unsigned long)&a
+ if (E->getOpcode() == BO_Add &&
+ RHSVal.isLValue() && LHSVal.isInt()) {
+ Result = RHSVal;
+ Result.getLValueOffset() +=
+ CharUnits::fromQuantity(LHSVal.getInt().getZExtValue());
+ return true;
+ }
+
+ if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
+ // Handle (intptr_t)&&A - (intptr_t)&&B.
+ if (!LHSVal.getLValueOffset().isZero() ||
+ !RHSVal.getLValueOffset().isZero())
+ return false;
+ const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
+ const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
+ if (!LHSExpr || !RHSExpr)
+ return false;
+ const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
+ const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
+ if (!LHSAddrExpr || !RHSAddrExpr)
+ return false;
+ // Make sure both labels come from the same function.
+ if (LHSAddrExpr->getLabel()->getDeclContext() !=
+ RHSAddrExpr->getLabel()->getDeclContext())
+ return false;
+ Result = APValue(LHSAddrExpr, RHSAddrExpr);
+ return true;
+ }
+
+ // All the remaining cases expect both operands to be an integer
+ if (!LHSVal.isInt() || !RHSVal.isInt())
+ return Error(E);
+
+ // Set up the width and signedness manually, in case it can't be deduced
+ // from the operation we're performing.
+ // FIXME: Don't do this in the cases where we can deduce it.
+ APSInt Value(Info.Ctx.getIntWidth(E->getType()),
+ E->getType()->isUnsignedIntegerOrEnumerationType());
+ if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
+ RHSVal.getInt(), Value))
+ return false;
+ return Success(Value, E, Result);
+}
+
+void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
+ Job &job = Queue.back();
+
+ switch (job.Kind) {
+ case Job::AnyExprKind: {
+ if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
+ if (shouldEnqueue(Bop)) {
+ job.Kind = Job::BinOpKind;
+ enqueue(Bop->getLHS());
+ return;
+ }
+ }
+
+ EvaluateExpr(job.E, Result);
+ Queue.pop_back();
+ return;
+ }
+
+ case Job::BinOpKind: {
+ const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
+ bool SuppressRHSDiags = false;
+ if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
+ Queue.pop_back();
+ return;
+ }
+ if (SuppressRHSDiags)
+ job.startSpeculativeEval(Info);
+ job.LHSResult.swap(Result);
+ job.Kind = Job::BinOpVisitedLHSKind;
+ enqueue(Bop->getRHS());
+ return;
+ }
+
+ case Job::BinOpVisitedLHSKind: {
+ const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
+ EvalResult RHS;
+ RHS.swap(Result);
+ Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
+ Queue.pop_back();
+ return;
+ }
+ }
+
+ llvm_unreachable("Invalid Job::Kind!");
+}
+
+bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
+ if (!Info.keepEvaluatingAfterFailure() && E->isAssignmentOp())
+ return Error(E);
+
+ if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
+ return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
+
+ QualType LHSTy = E->getLHS()->getType();
+ QualType RHSTy = E->getRHS()->getType();
+
+ if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) {
+ ComplexValue LHS, RHS;
+ bool LHSOK;
+ if (E->isAssignmentOp()) {
+ LValue LV;
+ EvaluateLValue(E->getLHS(), LV, Info);
+ LHSOK = false;
+ } else if (LHSTy->isRealFloatingType()) {
+ LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info);
+ if (LHSOK) {
+ LHS.makeComplexFloat();
+ LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics());
+ }
+ } else {
+ LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
+ }
+ if (!LHSOK && !Info.keepEvaluatingAfterFailure())
+ return false;
+
+ if (E->getRHS()->getType()->isRealFloatingType()) {
+ if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK)
+ return false;
+ RHS.makeComplexFloat();
+ RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics());
+ } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
+ return false;
+
+ if (LHS.isComplexFloat()) {
+ APFloat::cmpResult CR_r =
+ LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
+ APFloat::cmpResult CR_i =
+ LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
+
+ if (E->getOpcode() == BO_EQ)
+ return Success((CR_r == APFloat::cmpEqual &&
+ CR_i == APFloat::cmpEqual), E);
+ else {
+ assert(E->getOpcode() == BO_NE &&
+ "Invalid complex comparison.");
+ return Success(((CR_r == APFloat::cmpGreaterThan ||
+ CR_r == APFloat::cmpLessThan ||
+ CR_r == APFloat::cmpUnordered) ||
+ (CR_i == APFloat::cmpGreaterThan ||
+ CR_i == APFloat::cmpLessThan ||
+ CR_i == APFloat::cmpUnordered)), E);
+ }
+ } else {
+ if (E->getOpcode() == BO_EQ)
+ return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
+ LHS.getComplexIntImag() == RHS.getComplexIntImag()), E);
+ else {
+ assert(E->getOpcode() == BO_NE &&
+ "Invalid compex comparison.");
+ return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() ||
+ LHS.getComplexIntImag() != RHS.getComplexIntImag()), E);
+ }
+ }
+ }
+
+ if (LHSTy->isRealFloatingType() &&
+ RHSTy->isRealFloatingType()) {
+ APFloat RHS(0.0), LHS(0.0);
+
+ bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
+ if (!LHSOK && !Info.keepEvaluatingAfterFailure())
+ return false;
+
+ if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
+ return false;
+
+ APFloat::cmpResult CR = LHS.compare(RHS);
+
+ switch (E->getOpcode()) {
+ default:
+ llvm_unreachable("Invalid binary operator!");
+ case BO_LT:
+ return Success(CR == APFloat::cmpLessThan, E);
+ case BO_GT:
+ return Success(CR == APFloat::cmpGreaterThan, E);
+ case BO_LE:
+ return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E);
+ case BO_GE:
+ return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual,
+ E);
+ case BO_EQ:
+ return Success(CR == APFloat::cmpEqual, E);
+ case BO_NE:
+ return Success(CR == APFloat::cmpGreaterThan
+ || CR == APFloat::cmpLessThan
+ || CR == APFloat::cmpUnordered, E);
+ }
+ }
+
+ if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
+ if (E->getOpcode() == BO_Sub || E->isComparisonOp()) {
+ LValue LHSValue, RHSValue;
+
+ bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
+ if (!LHSOK && Info.keepEvaluatingAfterFailure())
+ return false;
+
+ if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
+ return false;
+
+ // Reject differing bases from the normal codepath; we special-case
+ // comparisons to null.
+ if (!HasSameBase(LHSValue, RHSValue)) {
+ if (E->getOpcode() == BO_Sub) {
+ // Handle &&A - &&B.
+ if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
+ return false;
+ const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr*>();
+ const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr*>();
+ if (!LHSExpr || !RHSExpr)
+ return false;
+ const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
+ const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
+ if (!LHSAddrExpr || !RHSAddrExpr)
+ return false;
+ // Make sure both labels come from the same function.
+ if (LHSAddrExpr->getLabel()->getDeclContext() !=
+ RHSAddrExpr->getLabel()->getDeclContext())
+ return false;
+ Result = APValue(LHSAddrExpr, RHSAddrExpr);
+ return true;
+ }
+ // Inequalities and subtractions between unrelated pointers have
+ // unspecified or undefined behavior.
+ if (!E->isEqualityOp())
+ return Error(E);
+ // A constant address may compare equal to the address of a symbol.
+ // The one exception is that address of an object cannot compare equal
+ // to a null pointer constant.
+ if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
+ (!RHSValue.Base && !RHSValue.Offset.isZero()))
+ return Error(E);
+ // It's implementation-defined whether distinct literals will have
+ // distinct addresses. In clang, the result of such a comparison is
+ // unspecified, so it is not a constant expression. However, we do know
+ // that the address of a literal will be non-null.
+ if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
+ LHSValue.Base && RHSValue.Base)
+ return Error(E);
+ // We can't tell whether weak symbols will end up pointing to the same
+ // object.
+ if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
+ return Error(E);
+ // We can't compare the address of the start of one object with the
+ // past-the-end address of another object, per C++ DR1652.
+ if ((LHSValue.Base && LHSValue.Offset.isZero() &&
+ isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) ||
+ (RHSValue.Base && RHSValue.Offset.isZero() &&
+ isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue)))
+ return Error(E);
+ // We can't tell whether an object is at the same address as another
+ // zero sized object.
+ if ((RHSValue.Base && isZeroSized(LHSValue)) ||
+ (LHSValue.Base && isZeroSized(RHSValue)))
+ return Error(E);
+ // Pointers with different bases cannot represent the same object.
+ // (Note that clang defaults to -fmerge-all-constants, which can
+ // lead to inconsistent results for comparisons involving the address
+ // of a constant; this generally doesn't matter in practice.)
+ return Success(E->getOpcode() == BO_NE, E);
+ }
+
+ const CharUnits &LHSOffset = LHSValue.getLValueOffset();
+ const CharUnits &RHSOffset = RHSValue.getLValueOffset();
+
+ SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
+ SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
+
+ if (E->getOpcode() == BO_Sub) {
+ // C++11 [expr.add]p6:
+ // Unless both pointers point to elements of the same array object, or
+ // one past the last element of the array object, the behavior is
+ // undefined.
+ if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
+ !AreElementsOfSameArray(getType(LHSValue.Base),
+ LHSDesignator, RHSDesignator))
+ CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
+
+ QualType Type = E->getLHS()->getType();
+ QualType ElementType = Type->getAs<PointerType>()->getPointeeType();
+
+ CharUnits ElementSize;
+ if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
+ return false;
+
+ // As an extension, a type may have zero size (empty struct or union in
+ // C, array of zero length). Pointer subtraction in such cases has
+ // undefined behavior, so is not constant.
+ if (ElementSize.isZero()) {
+ Info.Diag(E, diag::note_constexpr_pointer_subtraction_zero_size)
+ << ElementType;
+ return false;
+ }
+
+ // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
+ // and produce incorrect results when it overflows. Such behavior
+ // appears to be non-conforming, but is common, so perhaps we should
+ // assume the standard intended for such cases to be undefined behavior
+ // and check for them.
+
+ // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
+ // overflow in the final conversion to ptrdiff_t.
+ APSInt LHS(
+ llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
+ APSInt RHS(
+ llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
+ APSInt ElemSize(
+ llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), false);
+ APSInt TrueResult = (LHS - RHS) / ElemSize;
+ APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
+
+ if (Result.extend(65) != TrueResult)
+ HandleOverflow(Info, E, TrueResult, E->getType());
+ return Success(Result, E);
+ }
+
+ // C++11 [expr.rel]p3:
+ // Pointers to void (after pointer conversions) can be compared, with a
+ // result defined as follows: If both pointers represent the same
+ // address or are both the null pointer value, the result is true if the
+ // operator is <= or >= and false otherwise; otherwise the result is
+ // unspecified.
+ // We interpret this as applying to pointers to *cv* void.
+ if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset &&
+ E->isRelationalOp())
+ CCEDiag(E, diag::note_constexpr_void_comparison);
+
+ // C++11 [expr.rel]p2:
+ // - If two pointers point to non-static data members of the same object,
+ // or to subobjects or array elements fo such members, recursively, the
+ // pointer to the later declared member compares greater provided the
+ // two members have the same access control and provided their class is
+ // not a union.
+ // [...]
+ // - Otherwise pointer comparisons are unspecified.
+ if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
+ E->isRelationalOp()) {
+ bool WasArrayIndex;
+ unsigned Mismatch =
+ FindDesignatorMismatch(getType(LHSValue.Base), LHSDesignator,
+ RHSDesignator, WasArrayIndex);
+ // At the point where the designators diverge, the comparison has a
+ // specified value if:
+ // - we are comparing array indices
+ // - we are comparing fields of a union, or fields with the same access
+ // Otherwise, the result is unspecified and thus the comparison is not a
+ // constant expression.
+ if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
+ Mismatch < RHSDesignator.Entries.size()) {
+ const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
+ const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
+ if (!LF && !RF)
+ CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
+ else if (!LF)
+ CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
+ << getAsBaseClass(LHSDesignator.Entries[Mismatch])
+ << RF->getParent() << RF;
+ else if (!RF)
+ CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
+ << getAsBaseClass(RHSDesignator.Entries[Mismatch])
+ << LF->getParent() << LF;
+ else if (!LF->getParent()->isUnion() &&
+ LF->getAccess() != RF->getAccess())
+ CCEDiag(E, diag::note_constexpr_pointer_comparison_differing_access)
+ << LF << LF->getAccess() << RF << RF->getAccess()
+ << LF->getParent();
+ }
+ }
+
+ // The comparison here must be unsigned, and performed with the same
+ // width as the pointer.
+ unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
+ uint64_t CompareLHS = LHSOffset.getQuantity();
+ uint64_t CompareRHS = RHSOffset.getQuantity();
+ assert(PtrSize <= 64 && "Unexpected pointer width");
+ uint64_t Mask = ~0ULL >> (64 - PtrSize);
+ CompareLHS &= Mask;
+ CompareRHS &= Mask;
+
+ // If there is a base and this is a relational operator, we can only
+ // compare pointers within the object in question; otherwise, the result
+ // depends on where the object is located in memory.
+ if (!LHSValue.Base.isNull() && E->isRelationalOp()) {
+ QualType BaseTy = getType(LHSValue.Base);
+ if (BaseTy->isIncompleteType())
+ return Error(E);
+ CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
+ uint64_t OffsetLimit = Size.getQuantity();
+ if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
+ return Error(E);
+ }
+
+ switch (E->getOpcode()) {
+ default: llvm_unreachable("missing comparison operator");
+ case BO_LT: return Success(CompareLHS < CompareRHS, E);
+ case BO_GT: return Success(CompareLHS > CompareRHS, E);
+ case BO_LE: return Success(CompareLHS <= CompareRHS, E);
+ case BO_GE: return Success(CompareLHS >= CompareRHS, E);
+ case BO_EQ: return Success(CompareLHS == CompareRHS, E);
+ case BO_NE: return Success(CompareLHS != CompareRHS, E);
+ }
+ }
+ }
+
+ if (LHSTy->isMemberPointerType()) {
+ assert(E->isEqualityOp() && "unexpected member pointer operation");
+ assert(RHSTy->isMemberPointerType() && "invalid comparison");
+
+ MemberPtr LHSValue, RHSValue;
+
+ bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
+ if (!LHSOK && Info.keepEvaluatingAfterFailure())
+ return false;
+
+ if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
+ return false;
+
+ // C++11 [expr.eq]p2:
+ // If both operands are null, they compare equal. Otherwise if only one is
+ // null, they compare unequal.
+ if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
+ bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
+ return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
+ }
+
+ // Otherwise if either is a pointer to a virtual member function, the
+ // result is unspecified.
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
+ if (MD->isVirtual())
+ CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
+ if (MD->isVirtual())
+ CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
+
+ // Otherwise they compare equal if and only if they would refer to the
+ // same member of the same most derived object or the same subobject if
+ // they were dereferenced with a hypothetical object of the associated
+ // class type.
+ bool Equal = LHSValue == RHSValue;
+ return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
+ }
+
+ if (LHSTy->isNullPtrType()) {
+ assert(E->isComparisonOp() && "unexpected nullptr operation");
+ assert(RHSTy->isNullPtrType() && "missing pointer conversion");
+ // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
+ // are compared, the result is true of the operator is <=, >= or ==, and
+ // false otherwise.
+ BinaryOperator::Opcode Opcode = E->getOpcode();
+ return Success(Opcode == BO_EQ || Opcode == BO_LE || Opcode == BO_GE, E);
+ }
+
+ assert((!LHSTy->isIntegralOrEnumerationType() ||
+ !RHSTy->isIntegralOrEnumerationType()) &&
+ "DataRecursiveIntBinOpEvaluator should have handled integral types");
+ // We can't continue from here for non-integral types.
+ return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
+}
+
+/// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
+/// a result as the expression's type.
+bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
+ const UnaryExprOrTypeTraitExpr *E) {
+ switch(E->getKind()) {
+ case UETT_AlignOf: {
+ if (E->isArgumentType())
+ return Success(GetAlignOfType(Info, E->getArgumentType()), E);
+ else
+ return Success(GetAlignOfExpr(Info, E->getArgumentExpr()), E);
+ }
+
+ case UETT_VecStep: {
+ QualType Ty = E->getTypeOfArgument();
+
+ if (Ty->isVectorType()) {
+ unsigned n = Ty->castAs<VectorType>()->getNumElements();
+
+ // The vec_step built-in functions that take a 3-component
+ // vector return 4. (OpenCL 1.1 spec 6.11.12)
+ if (n == 3)
+ n = 4;
+
+ return Success(n, E);
+ } else
+ return Success(1, E);
+ }
+
+ case UETT_SizeOf: {
+ QualType SrcTy = E->getTypeOfArgument();
+ // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
+ // the result is the size of the referenced type."
+ if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
+ SrcTy = Ref->getPointeeType();
+
+ CharUnits Sizeof;
+ if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
+ return false;
+ return Success(Sizeof, E);
+ }
+ }
+
+ llvm_unreachable("unknown expr/type trait");
+}
+
+bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
+ CharUnits Result;
+ unsigned n = OOE->getNumComponents();
+ if (n == 0)
+ return Error(OOE);
+ QualType CurrentType = OOE->getTypeSourceInfo()->getType();
+ for (unsigned i = 0; i != n; ++i) {
+ OffsetOfExpr::OffsetOfNode ON = OOE->getComponent(i);
+ switch (ON.getKind()) {
+ case OffsetOfExpr::OffsetOfNode::Array: {
+ const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
+ APSInt IdxResult;
+ if (!EvaluateInteger(Idx, IdxResult, Info))
+ return false;
+ const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
+ if (!AT)
+ return Error(OOE);
+ CurrentType = AT->getElementType();
+ CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
+ Result += IdxResult.getSExtValue() * ElementSize;
+ break;
+ }
+
+ case OffsetOfExpr::OffsetOfNode::Field: {
+ FieldDecl *MemberDecl = ON.getField();
+ const RecordType *RT = CurrentType->getAs<RecordType>();
+ if (!RT)
+ return Error(OOE);
+ RecordDecl *RD = RT->getDecl();
+ if (RD->isInvalidDecl()) return false;
+ const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
+ unsigned i = MemberDecl->getFieldIndex();
+ assert(i < RL.getFieldCount() && "offsetof field in wrong type");
+ Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
+ CurrentType = MemberDecl->getType().getNonReferenceType();
+ break;
+ }
+
+ case OffsetOfExpr::OffsetOfNode::Identifier:
+ llvm_unreachable("dependent __builtin_offsetof");
+
+ case OffsetOfExpr::OffsetOfNode::Base: {
+ CXXBaseSpecifier *BaseSpec = ON.getBase();
+ if (BaseSpec->isVirtual())
+ return Error(OOE);
+
+ // Find the layout of the class whose base we are looking into.
+ const RecordType *RT = CurrentType->getAs<RecordType>();
+ if (!RT)
+ return Error(OOE);
+ RecordDecl *RD = RT->getDecl();
+ if (RD->isInvalidDecl()) return false;
+ const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
+
+ // Find the base class itself.
+ CurrentType = BaseSpec->getType();
+ const RecordType *BaseRT = CurrentType->getAs<RecordType>();
+ if (!BaseRT)
+ return Error(OOE);
+
+ // Add the offset to the base.
+ Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
+ break;
+ }
+ }
+ }
+ return Success(Result, OOE);
+}
+
+bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
+ switch (E->getOpcode()) {
+ default:
+ // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
+ // See C99 6.6p3.
+ return Error(E);
+ case UO_Extension:
+ // FIXME: Should extension allow i-c-e extension expressions in its scope?
+ // If so, we could clear the diagnostic ID.
+ return Visit(E->getSubExpr());
+ case UO_Plus:
+ // The result is just the value.
+ return Visit(E->getSubExpr());
+ case UO_Minus: {
+ if (!Visit(E->getSubExpr()))
+ return false;
+ if (!Result.isInt()) return Error(E);
+ const APSInt &Value = Result.getInt();
+ if (Value.isSigned() && Value.isMinSignedValue())
+ HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
+ E->getType());
+ return Success(-Value, E);
+ }
+ case UO_Not: {
+ if (!Visit(E->getSubExpr()))
+ return false;
+ if (!Result.isInt()) return Error(E);
+ return Success(~Result.getInt(), E);
+ }
+ case UO_LNot: {
+ bool bres;
+ if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
+ return false;
+ return Success(!bres, E);
+ }
+ }
+}
+
+/// HandleCast - This is used to evaluate implicit or explicit casts where the
+/// result type is integer.
+bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
+ const Expr *SubExpr = E->getSubExpr();
+ QualType DestType = E->getType();
+ QualType SrcType = SubExpr->getType();
+
+ switch (E->getCastKind()) {
+ case CK_BaseToDerived:
+ case CK_DerivedToBase:
+ case CK_UncheckedDerivedToBase:
+ case CK_Dynamic:
+ case CK_ToUnion:
+ case CK_ArrayToPointerDecay:
+ case CK_FunctionToPointerDecay:
+ case CK_NullToPointer:
+ case CK_NullToMemberPointer:
+ case CK_BaseToDerivedMemberPointer:
+ case CK_DerivedToBaseMemberPointer:
+ case CK_ReinterpretMemberPointer:
+ case CK_ConstructorConversion:
+ case CK_IntegralToPointer:
+ case CK_ToVoid:
+ case CK_VectorSplat:
+ case CK_IntegralToFloating:
+ case CK_FloatingCast:
+ case CK_CPointerToObjCPointerCast:
+ case CK_BlockPointerToObjCPointerCast:
+ case CK_AnyPointerToBlockPointerCast:
+ case CK_ObjCObjectLValueCast:
+ case CK_FloatingRealToComplex:
+ case CK_FloatingComplexToReal:
+ case CK_FloatingComplexCast:
+ case CK_FloatingComplexToIntegralComplex:
+ case CK_IntegralRealToComplex:
+ case CK_IntegralComplexCast:
+ case CK_IntegralComplexToFloatingComplex:
+ case CK_BuiltinFnToFnPtr:
+ case CK_ZeroToOCLEvent:
+ case CK_NonAtomicToAtomic:
+ case CK_AddressSpaceConversion:
+ llvm_unreachable("invalid cast kind for integral value");
+
+ case CK_BitCast:
+ case CK_Dependent:
+ case CK_LValueBitCast:
+ case CK_ARCProduceObject:
+ case CK_ARCConsumeObject:
+ case CK_ARCReclaimReturnedObject:
+ case CK_ARCExtendBlockObject:
+ case CK_CopyAndAutoreleaseBlockObject:
+ return Error(E);
+
+ case CK_UserDefinedConversion:
+ case CK_LValueToRValue:
+ case CK_AtomicToNonAtomic:
+ case CK_NoOp:
+ return ExprEvaluatorBaseTy::VisitCastExpr(E);
+
+ case CK_MemberPointerToBoolean:
+ case CK_PointerToBoolean:
+ case CK_IntegralToBoolean:
+ case CK_FloatingToBoolean:
+ case CK_FloatingComplexToBoolean:
+ case CK_IntegralComplexToBoolean: {
+ bool BoolResult;
+ if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
+ return false;
+ return Success(BoolResult, E);
+ }
+
+ case CK_IntegralCast: {
+ if (!Visit(SubExpr))
+ return false;
+
+ if (!Result.isInt()) {
+ // Allow casts of address-of-label differences if they are no-ops
+ // or narrowing. (The narrowing case isn't actually guaranteed to
+ // be constant-evaluatable except in some narrow cases which are hard
+ // to detect here. We let it through on the assumption the user knows
+ // what they are doing.)
+ if (Result.isAddrLabelDiff())
+ return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
+ // Only allow casts of lvalues if they are lossless.
+ return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
+ }
+
+ return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
+ Result.getInt()), E);
+ }
+
+ case CK_PointerToIntegral: {
+ CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
+
+ LValue LV;
+ if (!EvaluatePointer(SubExpr, LV, Info))
+ return false;
+
+ if (LV.getLValueBase()) {
+ // Only allow based lvalue casts if they are lossless.
+ // FIXME: Allow a larger integer size than the pointer size, and allow
+ // narrowing back down to pointer width in subsequent integral casts.
+ // FIXME: Check integer type's active bits, not its type size.
+ if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
+ return Error(E);
+
+ LV.Designator.setInvalid();
+ LV.moveInto(Result);
+ return true;
+ }
+
+ APSInt AsInt = Info.Ctx.MakeIntValue(LV.getLValueOffset().getQuantity(),
+ SrcType);
+ return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
+ }
+
+ case CK_IntegralComplexToReal: {
+ ComplexValue C;
+ if (!EvaluateComplex(SubExpr, C, Info))
+ return false;
+ return Success(C.getComplexIntReal(), E);
+ }
+
+ case CK_FloatingToIntegral: {
+ APFloat F(0.0);
+ if (!EvaluateFloat(SubExpr, F, Info))
+ return false;
+
+ APSInt Value;
+ if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
+ return false;
+ return Success(Value, E);
+ }
+ }
+
+ llvm_unreachable("unknown cast resulting in integral value");
+}
+
+bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
+ if (E->getSubExpr()->getType()->isAnyComplexType()) {
+ ComplexValue LV;
+ if (!EvaluateComplex(E->getSubExpr(), LV, Info))
+ return false;
+ if (!LV.isComplexInt())
+ return Error(E);
+ return Success(LV.getComplexIntReal(), E);
+ }
+
+ return Visit(E->getSubExpr());
+}
+
+bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
+ if (E->getSubExpr()->getType()->isComplexIntegerType()) {
+ ComplexValue LV;
+ if (!EvaluateComplex(E->getSubExpr(), LV, Info))
+ return false;
+ if (!LV.isComplexInt())
+ return Error(E);
+ return Success(LV.getComplexIntImag(), E);
+ }
+
+ VisitIgnoredValue(E->getSubExpr());
+ return Success(0, E);
+}
+
+bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
+ return Success(E->getPackLength(), E);
+}
+
+bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
+ return Success(E->getValue(), E);
+}
+
+//===----------------------------------------------------------------------===//
+// Float Evaluation
+//===----------------------------------------------------------------------===//
+
+namespace {
+class FloatExprEvaluator
+ : public ExprEvaluatorBase<FloatExprEvaluator> {
+ APFloat &Result;
+public:
+ FloatExprEvaluator(EvalInfo &info, APFloat &result)
+ : ExprEvaluatorBaseTy(info), Result(result) {}
+
+ bool Success(const APValue &V, const Expr *e) {
+ Result = V.getFloat();
+ return true;
+ }
+
+ bool ZeroInitialization(const Expr *E) {
+ Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
+ return true;
+ }
+
+ bool VisitCallExpr(const CallExpr *E);
+
+ bool VisitUnaryOperator(const UnaryOperator *E);
+ bool VisitBinaryOperator(const BinaryOperator *E);
+ bool VisitFloatingLiteral(const FloatingLiteral *E);
+ bool VisitCastExpr(const CastExpr *E);
+
+ bool VisitUnaryReal(const UnaryOperator *E);
+ bool VisitUnaryImag(const UnaryOperator *E);
+
+ // FIXME: Missing: array subscript of vector, member of vector
+};
+} // end anonymous namespace
+
+static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
+ assert(E->isRValue() && E->getType()->isRealFloatingType());
+ return FloatExprEvaluator(Info, Result).Visit(E);
+}
+
+static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
+ QualType ResultTy,
+ const Expr *Arg,
+ bool SNaN,
+ llvm::APFloat &Result) {
+ const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
+ if (!S) return false;
+
+ const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
+
+ llvm::APInt fill;
+
+ // Treat empty strings as if they were zero.
+ if (S->getString().empty())
+ fill = llvm::APInt(32, 0);
+ else if (S->getString().getAsInteger(0, fill))
+ return false;
+
+ if (Context.getTargetInfo().isNan2008()) {
+ if (SNaN)
+ Result = llvm::APFloat::getSNaN(Sem, false, &fill);
+ else
+ Result = llvm::APFloat::getQNaN(Sem, false, &fill);
+ } else {
+ // Prior to IEEE 754-2008, architectures were allowed to choose whether
+ // the first bit of their significand was set for qNaN or sNaN. MIPS chose
+ // a different encoding to what became a standard in 2008, and for pre-
+ // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as
+ // sNaN. This is now known as "legacy NaN" encoding.
+ if (SNaN)
+ Result = llvm::APFloat::getQNaN(Sem, false, &fill);
+ else
+ Result = llvm::APFloat::getSNaN(Sem, false, &fill);
+ }
+
+ return true;
+}
+
+bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
+ switch (E->getBuiltinCallee()) {
+ default:
+ return ExprEvaluatorBaseTy::VisitCallExpr(E);
+
+ case Builtin::BI__builtin_huge_val:
+ case Builtin::BI__builtin_huge_valf:
+ case Builtin::BI__builtin_huge_vall:
+ case Builtin::BI__builtin_inf:
+ case Builtin::BI__builtin_inff:
+ case Builtin::BI__builtin_infl: {
+ const llvm::fltSemantics &Sem =
+ Info.Ctx.getFloatTypeSemantics(E->getType());
+ Result = llvm::APFloat::getInf(Sem);
+ return true;
+ }
+
+ case Builtin::BI__builtin_nans:
+ case Builtin::BI__builtin_nansf:
+ case Builtin::BI__builtin_nansl:
+ if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
+ true, Result))
+ return Error(E);
+ return true;
+
+ case Builtin::BI__builtin_nan:
+ case Builtin::BI__builtin_nanf:
+ case Builtin::BI__builtin_nanl:
+ // If this is __builtin_nan() turn this into a nan, otherwise we
+ // can't constant fold it.
+ if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
+ false, Result))
+ return Error(E);
+ return true;
+
+ case Builtin::BI__builtin_fabs:
+ case Builtin::BI__builtin_fabsf:
+ case Builtin::BI__builtin_fabsl:
+ if (!EvaluateFloat(E->getArg(0), Result, Info))
+ return false;
+
+ if (Result.isNegative())
+ Result.changeSign();
+ return true;
+
+ // FIXME: Builtin::BI__builtin_powi
+ // FIXME: Builtin::BI__builtin_powif
+ // FIXME: Builtin::BI__builtin_powil
+
+ case Builtin::BI__builtin_copysign:
+ case Builtin::BI__builtin_copysignf:
+ case Builtin::BI__builtin_copysignl: {
+ APFloat RHS(0.);
+ if (!EvaluateFloat(E->getArg(0), Result, Info) ||
+ !EvaluateFloat(E->getArg(1), RHS, Info))
+ return false;
+ Result.copySign(RHS);
+ return true;
+ }
+ }
+}
+
+bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
+ if (E->getSubExpr()->getType()->isAnyComplexType()) {
+ ComplexValue CV;
+ if (!EvaluateComplex(E->getSubExpr(), CV, Info))
+ return false;
+ Result = CV.FloatReal;
+ return true;
+ }
+
+ return Visit(E->getSubExpr());
+}
+
+bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
+ if (E->getSubExpr()->getType()->isAnyComplexType()) {
+ ComplexValue CV;
+ if (!EvaluateComplex(E->getSubExpr(), CV, Info))
+ return false;
+ Result = CV.FloatImag;
+ return true;
+ }
+
+ VisitIgnoredValue(E->getSubExpr());
+ const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
+ Result = llvm::APFloat::getZero(Sem);
+ return true;
+}
+
+bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
+ switch (E->getOpcode()) {
+ default: return Error(E);
+ case UO_Plus:
+ return EvaluateFloat(E->getSubExpr(), Result, Info);
+ case UO_Minus:
+ if (!EvaluateFloat(E->getSubExpr(), Result, Info))
+ return false;
+ Result.changeSign();
+ return true;
+ }
+}
+
+bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
+ if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
+ return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
+
+ APFloat RHS(0.0);
+ bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
+ if (!LHSOK && !Info.keepEvaluatingAfterFailure())
+ return false;
+ return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
+ handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
+}
+
+bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
+ Result = E->getValue();
+ return true;
+}
+
+bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
+ const Expr* SubExpr = E->getSubExpr();
+
+ switch (E->getCastKind()) {
+ default:
+ return ExprEvaluatorBaseTy::VisitCastExpr(E);
+
+ case CK_IntegralToFloating: {
+ APSInt IntResult;
+ return EvaluateInteger(SubExpr, IntResult, Info) &&
+ HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult,
+ E->getType(), Result);
+ }
+
+ case CK_FloatingCast: {
+ if (!Visit(SubExpr))
+ return false;
+ return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
+ Result);
+ }
+
+ case CK_FloatingComplexToReal: {
+ ComplexValue V;
+ if (!EvaluateComplex(SubExpr, V, Info))
+ return false;
+ Result = V.getComplexFloatReal();
+ return true;
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Complex Evaluation (for float and integer)
+//===----------------------------------------------------------------------===//
+
+namespace {
+class ComplexExprEvaluator
+ : public ExprEvaluatorBase<ComplexExprEvaluator> {
+ ComplexValue &Result;
+
+public:
+ ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
+ : ExprEvaluatorBaseTy(info), Result(Result) {}
+
+ bool Success(const APValue &V, const Expr *e) {
+ Result.setFrom(V);
+ return true;
+ }
+
+ bool ZeroInitialization(const Expr *E);
+
+ //===--------------------------------------------------------------------===//
+ // Visitor Methods
+ //===--------------------------------------------------------------------===//
+
+ bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
+ bool VisitCastExpr(const CastExpr *E);
+ bool VisitBinaryOperator(const BinaryOperator *E);
+ bool VisitUnaryOperator(const UnaryOperator *E);
+ bool VisitInitListExpr(const InitListExpr *E);
+};
+} // end anonymous namespace
+
+static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
+ EvalInfo &Info) {
+ assert(E->isRValue() && E->getType()->isAnyComplexType());
+ return ComplexExprEvaluator(Info, Result).Visit(E);
+}
+
+bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
+ QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
+ if (ElemTy->isRealFloatingType()) {
+ Result.makeComplexFloat();
+ APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
+ Result.FloatReal = Zero;
+ Result.FloatImag = Zero;
+ } else {
+ Result.makeComplexInt();
+ APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
+ Result.IntReal = Zero;
+ Result.IntImag = Zero;
+ }
+ return true;
+}
+
+bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
+ const Expr* SubExpr = E->getSubExpr();
+
+ if (SubExpr->getType()->isRealFloatingType()) {
+ Result.makeComplexFloat();
+ APFloat &Imag = Result.FloatImag;
+ if (!EvaluateFloat(SubExpr, Imag, Info))
+ return false;
+
+ Result.FloatReal = APFloat(Imag.getSemantics());
+ return true;
+ } else {
+ assert(SubExpr->getType()->isIntegerType() &&
+ "Unexpected imaginary literal.");
+
+ Result.makeComplexInt();
+ APSInt &Imag = Result.IntImag;
+ if (!EvaluateInteger(SubExpr, Imag, Info))
+ return false;
+
+ Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
+ return true;
+ }
+}
+
+bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
+
+ switch (E->getCastKind()) {
+ case CK_BitCast:
+ case CK_BaseToDerived:
+ case CK_DerivedToBase:
+ case CK_UncheckedDerivedToBase:
+ case CK_Dynamic:
+ case CK_ToUnion:
+ case CK_ArrayToPointerDecay:
+ case CK_FunctionToPointerDecay:
+ case CK_NullToPointer:
+ case CK_NullToMemberPointer:
+ case CK_BaseToDerivedMemberPointer:
+ case CK_DerivedToBaseMemberPointer:
+ case CK_MemberPointerToBoolean:
+ case CK_ReinterpretMemberPointer:
+ case CK_ConstructorConversion:
+ case CK_IntegralToPointer:
+ case CK_PointerToIntegral:
+ case CK_PointerToBoolean:
+ case CK_ToVoid:
+ case CK_VectorSplat:
+ case CK_IntegralCast:
+ case CK_IntegralToBoolean:
+ case CK_IntegralToFloating:
+ case CK_FloatingToIntegral:
+ case CK_FloatingToBoolean:
+ case CK_FloatingCast:
+ case CK_CPointerToObjCPointerCast:
+ case CK_BlockPointerToObjCPointerCast:
+ case CK_AnyPointerToBlockPointerCast:
+ case CK_ObjCObjectLValueCast:
+ case CK_FloatingComplexToReal:
+ case CK_FloatingComplexToBoolean:
+ case CK_IntegralComplexToReal:
+ case CK_IntegralComplexToBoolean:
+ case CK_ARCProduceObject:
+ case CK_ARCConsumeObject:
+ case CK_ARCReclaimReturnedObject:
+ case CK_ARCExtendBlockObject:
+ case CK_CopyAndAutoreleaseBlockObject:
+ case CK_BuiltinFnToFnPtr:
+ case CK_ZeroToOCLEvent:
+ case CK_NonAtomicToAtomic:
+ case CK_AddressSpaceConversion:
+ llvm_unreachable("invalid cast kind for complex value");
+
+ case CK_LValueToRValue:
+ case CK_AtomicToNonAtomic:
+ case CK_NoOp:
+ return ExprEvaluatorBaseTy::VisitCastExpr(E);
+
+ case CK_Dependent:
+ case CK_LValueBitCast:
+ case CK_UserDefinedConversion:
+ return Error(E);
+
+ case CK_FloatingRealToComplex: {
+ APFloat &Real = Result.FloatReal;
+ if (!EvaluateFloat(E->getSubExpr(), Real, Info))
+ return false;
+
+ Result.makeComplexFloat();
+ Result.FloatImag = APFloat(Real.getSemantics());
+ return true;
+ }
+
+ case CK_FloatingComplexCast: {
+ if (!Visit(E->getSubExpr()))
+ return false;
+
+ QualType To = E->getType()->getAs<ComplexType>()->getElementType();
+ QualType From
+ = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
+
+ return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
+ HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
+ }
+
+ case CK_FloatingComplexToIntegralComplex: {
+ if (!Visit(E->getSubExpr()))
+ return false;
+
+ QualType To = E->getType()->getAs<ComplexType>()->getElementType();
+ QualType From
+ = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
+ Result.makeComplexInt();
+ return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
+ To, Result.IntReal) &&
+ HandleFloatToIntCast(Info, E, From, Result.FloatImag,
+ To, Result.IntImag);
+ }
+
+ case CK_IntegralRealToComplex: {
+ APSInt &Real = Result.IntReal;
+ if (!EvaluateInteger(E->getSubExpr(), Real, Info))
+ return false;
+
+ Result.makeComplexInt();
+ Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
+ return true;
+ }
+
+ case CK_IntegralComplexCast: {
+ if (!Visit(E->getSubExpr()))
+ return false;
+
+ QualType To = E->getType()->getAs<ComplexType>()->getElementType();
+ QualType From
+ = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
+
+ Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
+ Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
+ return true;
+ }
+
+ case CK_IntegralComplexToFloatingComplex: {
+ if (!Visit(E->getSubExpr()))
+ return false;
+
+ QualType To = E->getType()->castAs<ComplexType>()->getElementType();
+ QualType From
+ = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
+ Result.makeComplexFloat();
+ return HandleIntToFloatCast(Info, E, From, Result.IntReal,
+ To, Result.FloatReal) &&
+ HandleIntToFloatCast(Info, E, From, Result.IntImag,
+ To, Result.FloatImag);
+ }
+ }
+
+ llvm_unreachable("unknown cast resulting in complex value");
+}
+
+bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
+ if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
+ return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
+
+ // Track whether the LHS or RHS is real at the type system level. When this is
+ // the case we can simplify our evaluation strategy.
+ bool LHSReal = false, RHSReal = false;
+
+ bool LHSOK;
+ if (E->getLHS()->getType()->isRealFloatingType()) {
+ LHSReal = true;
+ APFloat &Real = Result.FloatReal;
+ LHSOK = EvaluateFloat(E->getLHS(), Real, Info);
+ if (LHSOK) {
+ Result.makeComplexFloat();
+ Result.FloatImag = APFloat(Real.getSemantics());
+ }
+ } else {
+ LHSOK = Visit(E->getLHS());
+ }
+ if (!LHSOK && !Info.keepEvaluatingAfterFailure())
+ return false;
+
+ ComplexValue RHS;
+ if (E->getRHS()->getType()->isRealFloatingType()) {
+ RHSReal = true;
+ APFloat &Real = RHS.FloatReal;
+ if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK)
+ return false;
+ RHS.makeComplexFloat();
+ RHS.FloatImag = APFloat(Real.getSemantics());
+ } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
+ return false;
+
+ assert(!(LHSReal && RHSReal) &&
+ "Cannot have both operands of a complex operation be real.");
+ switch (E->getOpcode()) {
+ default: return Error(E);
+ case BO_Add:
+ if (Result.isComplexFloat()) {
+ Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
+ APFloat::rmNearestTiesToEven);
+ if (LHSReal)
+ Result.getComplexFloatImag() = RHS.getComplexFloatImag();
+ else if (!RHSReal)
+ Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
+ APFloat::rmNearestTiesToEven);
+ } else {
+ Result.getComplexIntReal() += RHS.getComplexIntReal();
+ Result.getComplexIntImag() += RHS.getComplexIntImag();
+ }
+ break;
+ case BO_Sub:
+ if (Result.isComplexFloat()) {
+ Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
+ APFloat::rmNearestTiesToEven);
+ if (LHSReal) {
+ Result.getComplexFloatImag() = RHS.getComplexFloatImag();
+ Result.getComplexFloatImag().changeSign();
+ } else if (!RHSReal) {
+ Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
+ APFloat::rmNearestTiesToEven);
+ }
+ } else {
+ Result.getComplexIntReal() -= RHS.getComplexIntReal();
+ Result.getComplexIntImag() -= RHS.getComplexIntImag();
+ }
+ break;
+ case BO_Mul:
+ if (Result.isComplexFloat()) {
+ // This is an implementation of complex multiplication according to the
+ // constraints laid out in C11 Annex G. The implemantion uses the
+ // following naming scheme:
+ // (a + ib) * (c + id)
+ ComplexValue LHS = Result;
+ APFloat &A = LHS.getComplexFloatReal();
+ APFloat &B = LHS.getComplexFloatImag();
+ APFloat &C = RHS.getComplexFloatReal();
+ APFloat &D = RHS.getComplexFloatImag();
+ APFloat &ResR = Result.getComplexFloatReal();
+ APFloat &ResI = Result.getComplexFloatImag();
+ if (LHSReal) {
+ assert(!RHSReal && "Cannot have two real operands for a complex op!");
+ ResR = A * C;
+ ResI = A * D;
+ } else if (RHSReal) {
+ ResR = C * A;
+ ResI = C * B;
+ } else {
+ // In the fully general case, we need to handle NaNs and infinities
+ // robustly.
+ APFloat AC = A * C;
+ APFloat BD = B * D;
+ APFloat AD = A * D;
+ APFloat BC = B * C;
+ ResR = AC - BD;
+ ResI = AD + BC;
+ if (ResR.isNaN() && ResI.isNaN()) {
+ bool Recalc = false;
+ if (A.isInfinity() || B.isInfinity()) {
+ A = APFloat::copySign(
+ APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
+ B = APFloat::copySign(
+ APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
+ if (C.isNaN())
+ C = APFloat::copySign(APFloat(C.getSemantics()), C);
+ if (D.isNaN())
+ D = APFloat::copySign(APFloat(D.getSemantics()), D);
+ Recalc = true;
+ }
+ if (C.isInfinity() || D.isInfinity()) {
+ C = APFloat::copySign(
+ APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
+ D = APFloat::copySign(
+ APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
+ if (A.isNaN())
+ A = APFloat::copySign(APFloat(A.getSemantics()), A);
+ if (B.isNaN())
+ B = APFloat::copySign(APFloat(B.getSemantics()), B);
+ Recalc = true;
+ }
+ if (!Recalc && (AC.isInfinity() || BD.isInfinity() ||
+ AD.isInfinity() || BC.isInfinity())) {
+ if (A.isNaN())
+ A = APFloat::copySign(APFloat(A.getSemantics()), A);
+ if (B.isNaN())
+ B = APFloat::copySign(APFloat(B.getSemantics()), B);
+ if (C.isNaN())
+ C = APFloat::copySign(APFloat(C.getSemantics()), C);
+ if (D.isNaN())
+ D = APFloat::copySign(APFloat(D.getSemantics()), D);
+ Recalc = true;
+ }
+ if (Recalc) {
+ ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D);
+ ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C);
+ }
+ }
+ }
+ } else {
+ ComplexValue LHS = Result;
+ Result.getComplexIntReal() =
+ (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
+ LHS.getComplexIntImag() * RHS.getComplexIntImag());
+ Result.getComplexIntImag() =
+ (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
+ LHS.getComplexIntImag() * RHS.getComplexIntReal());
+ }
+ break;
+ case BO_Div:
+ if (Result.isComplexFloat()) {
+ // This is an implementation of complex division according to the
+ // constraints laid out in C11 Annex G. The implemantion uses the
+ // following naming scheme:
+ // (a + ib) / (c + id)
+ ComplexValue LHS = Result;
+ APFloat &A = LHS.getComplexFloatReal();
+ APFloat &B = LHS.getComplexFloatImag();
+ APFloat &C = RHS.getComplexFloatReal();
+ APFloat &D = RHS.getComplexFloatImag();
+ APFloat &ResR = Result.getComplexFloatReal();
+ APFloat &ResI = Result.getComplexFloatImag();
+ if (RHSReal) {
+ ResR = A / C;
+ ResI = B / C;
+ } else {
+ if (LHSReal) {
+ // No real optimizations we can do here, stub out with zero.
+ B = APFloat::getZero(A.getSemantics());
+ }
+ int DenomLogB = 0;
+ APFloat MaxCD = maxnum(abs(C), abs(D));
+ if (MaxCD.isFinite()) {
+ DenomLogB = ilogb(MaxCD);
+ C = scalbn(C, -DenomLogB);
+ D = scalbn(D, -DenomLogB);
+ }
+ APFloat Denom = C * C + D * D;
+ ResR = scalbn((A * C + B * D) / Denom, -DenomLogB);
+ ResI = scalbn((B * C - A * D) / Denom, -DenomLogB);
+ if (ResR.isNaN() && ResI.isNaN()) {
+ if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) {
+ ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A;
+ ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B;
+ } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() &&
+ D.isFinite()) {
+ A = APFloat::copySign(
+ APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
+ B = APFloat::copySign(
+ APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
+ ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D);
+ ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D);
+ } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) {
+ C = APFloat::copySign(
+ APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
+ D = APFloat::copySign(
+ APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
+ ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D);
+ ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D);
+ }
+ }
+ }
+ } else {
+ if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
+ return Error(E, diag::note_expr_divide_by_zero);
+
+ ComplexValue LHS = Result;
+ APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
+ RHS.getComplexIntImag() * RHS.getComplexIntImag();
+ Result.getComplexIntReal() =
+ (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
+ LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
+ Result.getComplexIntImag() =
+ (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
+ LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
+ }
+ break;
+ }
+
+ return true;
+}
+
+bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
+ // Get the operand value into 'Result'.
+ if (!Visit(E->getSubExpr()))
+ return false;
+
+ switch (E->getOpcode()) {
+ default:
+ return Error(E);
+ case UO_Extension:
+ return true;
+ case UO_Plus:
+ // The result is always just the subexpr.
+ return true;
+ case UO_Minus:
+ if (Result.isComplexFloat()) {
+ Result.getComplexFloatReal().changeSign();
+ Result.getComplexFloatImag().changeSign();
+ }
+ else {
+ Result.getComplexIntReal() = -Result.getComplexIntReal();
+ Result.getComplexIntImag() = -Result.getComplexIntImag();
+ }
+ return true;
+ case UO_Not:
+ if (Result.isComplexFloat())
+ Result.getComplexFloatImag().changeSign();
+ else
+ Result.getComplexIntImag() = -Result.getComplexIntImag();
+ return true;
+ }
+}
+
+bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
+ if (E->getNumInits() == 2) {
+ if (E->getType()->isComplexType()) {
+ Result.makeComplexFloat();
+ if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
+ return false;
+ if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
+ return false;
+ } else {
+ Result.makeComplexInt();
+ if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
+ return false;
+ if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
+ return false;
+ }
+ return true;
+ }
+ return ExprEvaluatorBaseTy::VisitInitListExpr(E);
+}
+
+//===----------------------------------------------------------------------===//
+// Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
+// implicit conversion.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class AtomicExprEvaluator :
+ public ExprEvaluatorBase<AtomicExprEvaluator> {
+ APValue &Result;
+public:
+ AtomicExprEvaluator(EvalInfo &Info, APValue &Result)
+ : ExprEvaluatorBaseTy(Info), Result(Result) {}
+
+ bool Success(const APValue &V, const Expr *E) {
+ Result = V;
+ return true;
+ }
+
+ bool ZeroInitialization(const Expr *E) {
+ ImplicitValueInitExpr VIE(
+ E->getType()->castAs<AtomicType>()->getValueType());
+ return Evaluate(Result, Info, &VIE);
+ }
+
+ bool VisitCastExpr(const CastExpr *E) {
+ switch (E->getCastKind()) {
+ default:
+ return ExprEvaluatorBaseTy::VisitCastExpr(E);
+ case CK_NonAtomicToAtomic:
+ return Evaluate(Result, Info, E->getSubExpr());
+ }
+ }
+};
+} // end anonymous namespace
+
+static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info) {
+ assert(E->isRValue() && E->getType()->isAtomicType());
+ return AtomicExprEvaluator(Info, Result).Visit(E);
+}
+
+//===----------------------------------------------------------------------===//
+// Void expression evaluation, primarily for a cast to void on the LHS of a
+// comma operator
+//===----------------------------------------------------------------------===//
+
+namespace {
+class VoidExprEvaluator
+ : public ExprEvaluatorBase<VoidExprEvaluator> {
+public:
+ VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
+
+ bool Success(const APValue &V, const Expr *e) { return true; }
+
+ bool VisitCastExpr(const CastExpr *E) {
+ switch (E->getCastKind()) {
+ default:
+ return ExprEvaluatorBaseTy::VisitCastExpr(E);
+ case CK_ToVoid:
+ VisitIgnoredValue(E->getSubExpr());
+ return true;
+ }
+ }
+
+ bool VisitCallExpr(const CallExpr *E) {
+ switch (E->getBuiltinCallee()) {
+ default:
+ return ExprEvaluatorBaseTy::VisitCallExpr(E);
+ case Builtin::BI__assume:
+ case Builtin::BI__builtin_assume:
+ // The argument is not evaluated!
+ return true;
+ }
+ }
+};
+} // end anonymous namespace
+
+static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
+ assert(E->isRValue() && E->getType()->isVoidType());
+ return VoidExprEvaluator(Info).Visit(E);
+}
+
+//===----------------------------------------------------------------------===//
+// Top level Expr::EvaluateAsRValue method.
+//===----------------------------------------------------------------------===//
+
+static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
+ // In C, function designators are not lvalues, but we evaluate them as if they
+ // are.
+ QualType T = E->getType();
+ if (E->isGLValue() || T->isFunctionType()) {
+ LValue LV;
+ if (!EvaluateLValue(E, LV, Info))
+ return false;
+ LV.moveInto(Result);
+ } else if (T->isVectorType()) {
+ if (!EvaluateVector(E, Result, Info))
+ return false;
+ } else if (T->isIntegralOrEnumerationType()) {
+ if (!IntExprEvaluator(Info, Result).Visit(E))
+ return false;
+ } else if (T->hasPointerRepresentation()) {
+ LValue LV;
+ if (!EvaluatePointer(E, LV, Info))
+ return false;
+ LV.moveInto(Result);
+ } else if (T->isRealFloatingType()) {
+ llvm::APFloat F(0.0);
+ if (!EvaluateFloat(E, F, Info))
+ return false;
+ Result = APValue(F);
+ } else if (T->isAnyComplexType()) {
+ ComplexValue C;
+ if (!EvaluateComplex(E, C, Info))
+ return false;
+ C.moveInto(Result);
+ } else if (T->isMemberPointerType()) {
+ MemberPtr P;
+ if (!EvaluateMemberPointer(E, P, Info))
+ return false;
+ P.moveInto(Result);
+ return true;
+ } else if (T->isArrayType()) {
+ LValue LV;
+ LV.set(E, Info.CurrentCall->Index);
+ APValue &Value = Info.CurrentCall->createTemporary(E, false);
+ if (!EvaluateArray(E, LV, Value, Info))
+ return false;
+ Result = Value;
+ } else if (T->isRecordType()) {
+ LValue LV;
+ LV.set(E, Info.CurrentCall->Index);
+ APValue &Value = Info.CurrentCall->createTemporary(E, false);
+ if (!EvaluateRecord(E, LV, Value, Info))
+ return false;
+ Result = Value;
+ } else if (T->isVoidType()) {
+ if (!Info.getLangOpts().CPlusPlus11)
+ Info.CCEDiag(E, diag::note_constexpr_nonliteral)
+ << E->getType();
+ if (!EvaluateVoid(E, Info))
+ return false;
+ } else if (T->isAtomicType()) {
+ if (!EvaluateAtomic(E, Result, Info))
+ return false;
+ } else if (Info.getLangOpts().CPlusPlus11) {
+ Info.Diag(E, diag::note_constexpr_nonliteral) << E->getType();
+ return false;
+ } else {
+ Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
+ return false;
+ }
+
+ return true;
+}
+
+/// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
+/// cases, the in-place evaluation is essential, since later initializers for
+/// an object can indirectly refer to subobjects which were initialized earlier.
+static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
+ const Expr *E, bool AllowNonLiteralTypes) {
+ assert(!E->isValueDependent());
+
+ if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
+ return false;
+
+ if (E->isRValue()) {
+ // Evaluate arrays and record types in-place, so that later initializers can
+ // refer to earlier-initialized members of the object.
+ if (E->getType()->isArrayType())
+ return EvaluateArray(E, This, Result, Info);
+ else if (E->getType()->isRecordType())
+ return EvaluateRecord(E, This, Result, Info);
+ }
+
+ // For any other type, in-place evaluation is unimportant.
+ return Evaluate(Result, Info, E);
+}
+
+/// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
+/// lvalue-to-rvalue cast if it is an lvalue.
+static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
+ if (E->getType().isNull())
+ return false;
+
+ if (!CheckLiteralType(Info, E))
+ return false;
+
+ if (!::Evaluate(Result, Info, E))
+ return false;
+
+ if (E->isGLValue()) {
+ LValue LV;
+ LV.setFrom(Info.Ctx, Result);
+ if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
+ return false;
+ }
+
+ // Check this core constant expression is a constant expression.
+ return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result);
+}
+
+static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
+ const ASTContext &Ctx, bool &IsConst) {
+ // Fast-path evaluations of integer literals, since we sometimes see files
+ // containing vast quantities of these.
+ if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
+ Result.Val = APValue(APSInt(L->getValue(),
+ L->getType()->isUnsignedIntegerType()));
+ IsConst = true;
+ return true;
+ }
+
+ // This case should be rare, but we need to check it before we check on
+ // the type below.
+ if (Exp->getType().isNull()) {
+ IsConst = false;
+ return true;
+ }
+
+ // FIXME: Evaluating values of large array and record types can cause
+ // performance problems. Only do so in C++11 for now.
+ if (Exp->isRValue() && (Exp->getType()->isArrayType() ||
+ Exp->getType()->isRecordType()) &&
+ !Ctx.getLangOpts().CPlusPlus11) {
+ IsConst = false;
+ return true;
+ }
+ return false;
+}
+
+
+/// EvaluateAsRValue - Return true if this is a constant which we can fold using
+/// any crazy technique (that has nothing to do with language standards) that
+/// we want to. If this function returns true, it returns the folded constant
+/// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
+/// will be applied to the result.
+bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const {
+ bool IsConst;
+ if (FastEvaluateAsRValue(this, Result, Ctx, IsConst))
+ return IsConst;
+
+ EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
+ return ::EvaluateAsRValue(Info, this, Result.Val);
+}
+
+bool Expr::EvaluateAsBooleanCondition(bool &Result,
+ const ASTContext &Ctx) const {
+ EvalResult Scratch;
+ return EvaluateAsRValue(Scratch, Ctx) &&
+ HandleConversionToBool(Scratch.Val, Result);
+}
+
+bool Expr::EvaluateAsInt(APSInt &Result, const ASTContext &Ctx,
+ SideEffectsKind AllowSideEffects) const {
+ if (!getType()->isIntegralOrEnumerationType())
+ return false;
+
+ EvalResult ExprResult;
+ if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isInt() ||
+ (!AllowSideEffects && ExprResult.HasSideEffects))
+ return false;
+
+ Result = ExprResult.Val.getInt();
+ return true;
+}
+
+bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const {
+ EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
+
+ LValue LV;
+ if (!EvaluateLValue(this, LV, Info) || Result.HasSideEffects ||
+ !CheckLValueConstantExpression(Info, getExprLoc(),
+ Ctx.getLValueReferenceType(getType()), LV))
+ return false;
+
+ LV.moveInto(Result.Val);
+ return true;
+}
+
+bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
+ const VarDecl *VD,
+ SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
+ // FIXME: Evaluating initializers for large array and record types can cause
+ // performance problems. Only do so in C++11 for now.
+ if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
+ !Ctx.getLangOpts().CPlusPlus11)
+ return false;
+
+ Expr::EvalStatus EStatus;
+ EStatus.Diag = &Notes;
+
+ EvalInfo InitInfo(Ctx, EStatus, EvalInfo::EM_ConstantFold);
+ InitInfo.setEvaluatingDecl(VD, Value);
+
+ LValue LVal;
+ LVal.set(VD);
+
+ // C++11 [basic.start.init]p2:
+ // Variables with static storage duration or thread storage duration shall be
+ // zero-initialized before any other initialization takes place.
+ // This behavior is not present in C.
+ if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() &&
+ !VD->getType()->isReferenceType()) {
+ ImplicitValueInitExpr VIE(VD->getType());
+ if (!EvaluateInPlace(Value, InitInfo, LVal, &VIE,
+ /*AllowNonLiteralTypes=*/true))
+ return false;
+ }
+
+ if (!EvaluateInPlace(Value, InitInfo, LVal, this,
+ /*AllowNonLiteralTypes=*/true) ||
+ EStatus.HasSideEffects)
+ return false;
+
+ return CheckConstantExpression(InitInfo, VD->getLocation(), VD->getType(),
+ Value);
+}
+
+/// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
+/// constant folded, but discard the result.
+bool Expr::isEvaluatable(const ASTContext &Ctx) const {
+ EvalResult Result;
+ return EvaluateAsRValue(Result, Ctx) && !Result.HasSideEffects;
+}
+
+APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
+ SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
+ EvalResult EvalResult;
+ EvalResult.Diag = Diag;
+ bool Result = EvaluateAsRValue(EvalResult, Ctx);
+ (void)Result;
+ assert(Result && "Could not evaluate expression");
+ assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer");
+
+ return EvalResult.Val.getInt();
+}
+
+void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
+ bool IsConst;
+ EvalResult EvalResult;
+ if (!FastEvaluateAsRValue(this, EvalResult, Ctx, IsConst)) {
+ EvalInfo Info(Ctx, EvalResult, EvalInfo::EM_EvaluateForOverflow);
+ (void)::EvaluateAsRValue(Info, this, EvalResult.Val);
+ }
+}
+
+bool Expr::EvalResult::isGlobalLValue() const {
+ assert(Val.isLValue());
+ return IsGlobalLValue(Val.getLValueBase());
+}
+
+
+/// isIntegerConstantExpr - this recursive routine will test if an expression is
+/// an integer constant expression.
+
+/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
+/// comma, etc
+
+// CheckICE - This function does the fundamental ICE checking: the returned
+// ICEDiag contains an ICEKind indicating whether the expression is an ICE,
+// and a (possibly null) SourceLocation indicating the location of the problem.
+//
+// Note that to reduce code duplication, this helper does no evaluation
+// itself; the caller checks whether the expression is evaluatable, and
+// in the rare cases where CheckICE actually cares about the evaluated
+// value, it calls into Evalute.
+
+namespace {
+
+enum ICEKind {
+ /// This expression is an ICE.
+ IK_ICE,
+ /// This expression is not an ICE, but if it isn't evaluated, it's
+ /// a legal subexpression for an ICE. This return value is used to handle
+ /// the comma operator in C99 mode, and non-constant subexpressions.
+ IK_ICEIfUnevaluated,
+ /// This expression is not an ICE, and is not a legal subexpression for one.
+ IK_NotICE
+};
+
+struct ICEDiag {
+ ICEKind Kind;
+ SourceLocation Loc;
+
+ ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
+};
+
+}
+
+static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
+
+static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
+
+static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
+ Expr::EvalResult EVResult;
+ if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects ||
+ !EVResult.Val.isInt())
+ return ICEDiag(IK_NotICE, E->getLocStart());
+
+ return NoDiag();
+}
+
+static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
+ assert(!E->isValueDependent() && "Should not see value dependent exprs!");
+ if (!E->getType()->isIntegralOrEnumerationType())
+ return ICEDiag(IK_NotICE, E->getLocStart());
+
+ switch (E->getStmtClass()) {
+#define ABSTRACT_STMT(Node)
+#define STMT(Node, Base) case Expr::Node##Class:
+#define EXPR(Node, Base)
+#include "clang/AST/StmtNodes.inc"
+ case Expr::PredefinedExprClass:
+ case Expr::FloatingLiteralClass:
+ case Expr::ImaginaryLiteralClass:
+ case Expr::StringLiteralClass:
+ case Expr::ArraySubscriptExprClass:
+ case Expr::MemberExprClass:
+ case Expr::CompoundAssignOperatorClass:
+ case Expr::CompoundLiteralExprClass:
+ case Expr::ExtVectorElementExprClass:
+ case Expr::DesignatedInitExprClass:
+ case Expr::ImplicitValueInitExprClass:
+ case Expr::ParenListExprClass:
+ case Expr::VAArgExprClass:
+ case Expr::AddrLabelExprClass:
+ case Expr::StmtExprClass:
+ case Expr::CXXMemberCallExprClass:
+ case Expr::CUDAKernelCallExprClass:
+ case Expr::CXXDynamicCastExprClass:
+ case Expr::CXXTypeidExprClass:
+ case Expr::CXXUuidofExprClass:
+ case Expr::MSPropertyRefExprClass:
+ case Expr::CXXNullPtrLiteralExprClass:
+ case Expr::UserDefinedLiteralClass:
+ case Expr::CXXThisExprClass:
+ case Expr::CXXThrowExprClass:
+ case Expr::CXXNewExprClass:
+ case Expr::CXXDeleteExprClass:
+ case Expr::CXXPseudoDestructorExprClass:
+ case Expr::UnresolvedLookupExprClass:
+ case Expr::TypoExprClass:
+ case Expr::DependentScopeDeclRefExprClass:
+ case Expr::CXXConstructExprClass:
+ case Expr::CXXStdInitializerListExprClass:
+ case Expr::CXXBindTemporaryExprClass:
+ case Expr::ExprWithCleanupsClass:
+ case Expr::CXXTemporaryObjectExprClass:
+ case Expr::CXXUnresolvedConstructExprClass:
+ case Expr::CXXDependentScopeMemberExprClass:
+ case Expr::UnresolvedMemberExprClass:
+ case Expr::ObjCStringLiteralClass:
+ case Expr::ObjCBoxedExprClass:
+ case Expr::ObjCArrayLiteralClass:
+ case Expr::ObjCDictionaryLiteralClass:
+ case Expr::ObjCEncodeExprClass:
+ case Expr::ObjCMessageExprClass:
+ case Expr::ObjCSelectorExprClass:
+ case Expr::ObjCProtocolExprClass:
+ case Expr::ObjCIvarRefExprClass:
+ case Expr::ObjCPropertyRefExprClass:
+ case Expr::ObjCSubscriptRefExprClass:
+ case Expr::ObjCIsaExprClass:
+ case Expr::ShuffleVectorExprClass:
+ case Expr::ConvertVectorExprClass:
+ case Expr::BlockExprClass:
+ case Expr::NoStmtClass:
+ case Expr::OpaqueValueExprClass:
+ case Expr::PackExpansionExprClass:
+ case Expr::SubstNonTypeTemplateParmPackExprClass:
+ case Expr::FunctionParmPackExprClass:
+ case Expr::AsTypeExprClass:
+ case Expr::ObjCIndirectCopyRestoreExprClass:
+ case Expr::MaterializeTemporaryExprClass:
+ case Expr::PseudoObjectExprClass:
+ case Expr::AtomicExprClass:
+ case Expr::LambdaExprClass:
+ case Expr::CXXFoldExprClass:
+ return ICEDiag(IK_NotICE, E->getLocStart());
+
+ case Expr::InitListExprClass: {
+ // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
+ // form "T x = { a };" is equivalent to "T x = a;".
+ // Unless we're initializing a reference, T is a scalar as it is known to be
+ // of integral or enumeration type.
+ if (E->isRValue())
+ if (cast<InitListExpr>(E)->getNumInits() == 1)
+ return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx);
+ return ICEDiag(IK_NotICE, E->getLocStart());
+ }
+
+ case Expr::SizeOfPackExprClass:
+ case Expr::GNUNullExprClass:
+ // GCC considers the GNU __null value to be an integral constant expression.
+ return NoDiag();
+
+ case Expr::SubstNonTypeTemplateParmExprClass:
+ return
+ CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
+
+ case Expr::ParenExprClass:
+ return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
+ case Expr::GenericSelectionExprClass:
+ return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
+ case Expr::IntegerLiteralClass:
+ case Expr::CharacterLiteralClass:
+ case Expr::ObjCBoolLiteralExprClass:
+ case Expr::CXXBoolLiteralExprClass:
+ case Expr::CXXScalarValueInitExprClass:
+ case Expr::TypeTraitExprClass:
+ case Expr::ArrayTypeTraitExprClass:
+ case Expr::ExpressionTraitExprClass:
+ case Expr::CXXNoexceptExprClass:
+ return NoDiag();
+ case Expr::CallExprClass:
+ case Expr::CXXOperatorCallExprClass: {
+ // C99 6.6/3 allows function calls within unevaluated subexpressions of
+ // constant expressions, but they can never be ICEs because an ICE cannot
+ // contain an operand of (pointer to) function type.
+ const CallExpr *CE = cast<CallExpr>(E);
+ if (CE->getBuiltinCallee())
+ return CheckEvalInICE(E, Ctx);
+ return ICEDiag(IK_NotICE, E->getLocStart());
+ }
+ case Expr::DeclRefExprClass: {
+ if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
+ return NoDiag();
+ const ValueDecl *D = dyn_cast<ValueDecl>(cast<DeclRefExpr>(E)->getDecl());
+ if (Ctx.getLangOpts().CPlusPlus &&
+ D && IsConstNonVolatile(D->getType())) {
+ // Parameter variables are never constants. Without this check,
+ // getAnyInitializer() can find a default argument, which leads
+ // to chaos.
+ if (isa<ParmVarDecl>(D))
+ return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
+
+ // C++ 7.1.5.1p2
+ // A variable of non-volatile const-qualified integral or enumeration
+ // type initialized by an ICE can be used in ICEs.
+ if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
+ if (!Dcl->getType()->isIntegralOrEnumerationType())
+ return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
+
+ const VarDecl *VD;
+ // Look for a declaration of this variable that has an initializer, and
+ // check whether it is an ICE.
+ if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE())
+ return NoDiag();
+ else
+ return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
+ }
+ }
+ return ICEDiag(IK_NotICE, E->getLocStart());
+ }
+ case Expr::UnaryOperatorClass: {
+ const UnaryOperator *Exp = cast<UnaryOperator>(E);
+ switch (Exp->getOpcode()) {
+ case UO_PostInc:
+ case UO_PostDec:
+ case UO_PreInc:
+ case UO_PreDec:
+ case UO_AddrOf:
+ case UO_Deref:
+ // C99 6.6/3 allows increment and decrement within unevaluated
+ // subexpressions of constant expressions, but they can never be ICEs
+ // because an ICE cannot contain an lvalue operand.
+ return ICEDiag(IK_NotICE, E->getLocStart());
+ case UO_Extension:
+ case UO_LNot:
+ case UO_Plus:
+ case UO_Minus:
+ case UO_Not:
+ case UO_Real:
+ case UO_Imag:
+ return CheckICE(Exp->getSubExpr(), Ctx);
+ }
+
+ // OffsetOf falls through here.
+ }
+ case Expr::OffsetOfExprClass: {
+ // Note that per C99, offsetof must be an ICE. And AFAIK, using
+ // EvaluateAsRValue matches the proposed gcc behavior for cases like
+ // "offsetof(struct s{int x[4];}, x[1.0])". This doesn't affect
+ // compliance: we should warn earlier for offsetof expressions with
+ // array subscripts that aren't ICEs, and if the array subscripts
+ // are ICEs, the value of the offsetof must be an integer constant.
+ return CheckEvalInICE(E, Ctx);
+ }
+ case Expr::UnaryExprOrTypeTraitExprClass: {
+ const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
+ if ((Exp->getKind() == UETT_SizeOf) &&
+ Exp->getTypeOfArgument()->isVariableArrayType())
+ return ICEDiag(IK_NotICE, E->getLocStart());
+ return NoDiag();
+ }
+ case Expr::BinaryOperatorClass: {
+ const BinaryOperator *Exp = cast<BinaryOperator>(E);
+ switch (Exp->getOpcode()) {
+ case BO_PtrMemD:
+ case BO_PtrMemI:
+ case BO_Assign:
+ case BO_MulAssign:
+ case BO_DivAssign:
+ case BO_RemAssign:
+ case BO_AddAssign:
+ case BO_SubAssign:
+ case BO_ShlAssign:
+ case BO_ShrAssign:
+ case BO_AndAssign:
+ case BO_XorAssign:
+ case BO_OrAssign:
+ // C99 6.6/3 allows assignments within unevaluated subexpressions of
+ // constant expressions, but they can never be ICEs because an ICE cannot
+ // contain an lvalue operand.
+ return ICEDiag(IK_NotICE, E->getLocStart());
+
+ case BO_Mul:
+ case BO_Div:
+ case BO_Rem:
+ case BO_Add:
+ case BO_Sub:
+ case BO_Shl:
+ case BO_Shr:
+ case BO_LT:
+ case BO_GT:
+ case BO_LE:
+ case BO_GE:
+ case BO_EQ:
+ case BO_NE:
+ case BO_And:
+ case BO_Xor:
+ case BO_Or:
+ case BO_Comma: {
+ ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
+ ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
+ if (Exp->getOpcode() == BO_Div ||
+ Exp->getOpcode() == BO_Rem) {
+ // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
+ // we don't evaluate one.
+ if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
+ llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
+ if (REval == 0)
+ return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
+ if (REval.isSigned() && REval.isAllOnesValue()) {
+ llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
+ if (LEval.isMinSignedValue())
+ return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
+ }
+ }
+ }
+ if (Exp->getOpcode() == BO_Comma) {
+ if (Ctx.getLangOpts().C99) {
+ // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
+ // if it isn't evaluated.
+ if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
+ return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
+ } else {
+ // In both C89 and C++, commas in ICEs are illegal.
+ return ICEDiag(IK_NotICE, E->getLocStart());
+ }
+ }
+ return Worst(LHSResult, RHSResult);
+ }
+ case BO_LAnd:
+ case BO_LOr: {
+ ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
+ ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
+ if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
+ // Rare case where the RHS has a comma "side-effect"; we need
+ // to actually check the condition to see whether the side
+ // with the comma is evaluated.
+ if ((Exp->getOpcode() == BO_LAnd) !=
+ (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
+ return RHSResult;
+ return NoDiag();
+ }
+
+ return Worst(LHSResult, RHSResult);
+ }
+ }
+ }
+ case Expr::ImplicitCastExprClass:
+ case Expr::CStyleCastExprClass:
+ case Expr::CXXFunctionalCastExprClass:
+ case Expr::CXXStaticCastExprClass:
+ case Expr::CXXReinterpretCastExprClass:
+ case Expr::CXXConstCastExprClass:
+ case Expr::ObjCBridgedCastExprClass: {
+ const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
+ if (isa<ExplicitCastExpr>(E)) {
+ if (const FloatingLiteral *FL
+ = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
+ unsigned DestWidth = Ctx.getIntWidth(E->getType());
+ bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
+ APSInt IgnoredVal(DestWidth, !DestSigned);
+ bool Ignored;
+ // If the value does not fit in the destination type, the behavior is
+ // undefined, so we are not required to treat it as a constant
+ // expression.
+ if (FL->getValue().convertToInteger(IgnoredVal,
+ llvm::APFloat::rmTowardZero,
+ &Ignored) & APFloat::opInvalidOp)
+ return ICEDiag(IK_NotICE, E->getLocStart());
+ return NoDiag();
+ }
+ }
+ switch (cast<CastExpr>(E)->getCastKind()) {
+ case CK_LValueToRValue:
+ case CK_AtomicToNonAtomic:
+ case CK_NonAtomicToAtomic:
+ case CK_NoOp:
+ case CK_IntegralToBoolean:
+ case CK_IntegralCast:
+ return CheckICE(SubExpr, Ctx);
+ default:
+ return ICEDiag(IK_NotICE, E->getLocStart());
+ }
+ }
+ case Expr::BinaryConditionalOperatorClass: {
+ const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
+ ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
+ if (CommonResult.Kind == IK_NotICE) return CommonResult;
+ ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
+ if (FalseResult.Kind == IK_NotICE) return FalseResult;
+ if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
+ if (FalseResult.Kind == IK_ICEIfUnevaluated &&
+ Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
+ return FalseResult;
+ }
+ case Expr::ConditionalOperatorClass: {
+ const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
+ // If the condition (ignoring parens) is a __builtin_constant_p call,
+ // then only the true side is actually considered in an integer constant
+ // expression, and it is fully evaluated. This is an important GNU
+ // extension. See GCC PR38377 for discussion.
+ if (const CallExpr *CallCE
+ = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
+ if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
+ return CheckEvalInICE(E, Ctx);
+ ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
+ if (CondResult.Kind == IK_NotICE)
+ return CondResult;
+
+ ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
+ ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
+
+ if (TrueResult.Kind == IK_NotICE)
+ return TrueResult;
+ if (FalseResult.Kind == IK_NotICE)
+ return FalseResult;
+ if (CondResult.Kind == IK_ICEIfUnevaluated)
+ return CondResult;
+ if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
+ return NoDiag();
+ // Rare case where the diagnostics depend on which side is evaluated
+ // Note that if we get here, CondResult is 0, and at least one of
+ // TrueResult and FalseResult is non-zero.
+ if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
+ return FalseResult;
+ return TrueResult;
+ }
+ case Expr::CXXDefaultArgExprClass:
+ return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
+ case Expr::CXXDefaultInitExprClass:
+ return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
+ case Expr::ChooseExprClass: {
+ return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
+ }
+ }
+
+ llvm_unreachable("Invalid StmtClass!");
+}
+
+/// Evaluate an expression as a C++11 integral constant expression.
+static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
+ const Expr *E,
+ llvm::APSInt *Value,
+ SourceLocation *Loc) {
+ if (!E->getType()->isIntegralOrEnumerationType()) {
+ if (Loc) *Loc = E->getExprLoc();
+ return false;
+ }
+
+ APValue Result;
+ if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
+ return false;
+
+ if (!Result.isInt()) {
+ if (Loc) *Loc = E->getExprLoc();
+ return false;
+ }
+
+ if (Value) *Value = Result.getInt();
+ return true;
+}
+
+bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
+ SourceLocation *Loc) const {
+ if (Ctx.getLangOpts().CPlusPlus11)
+ return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc);
+
+ ICEDiag D = CheckICE(this, Ctx);
+ if (D.Kind != IK_ICE) {
+ if (Loc) *Loc = D.Loc;
+ return false;
+ }
+ return true;
+}
+
+bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, const ASTContext &Ctx,
+ SourceLocation *Loc, bool isEvaluated) const {
+ if (Ctx.getLangOpts().CPlusPlus11)
+ return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc);
+
+ if (!isIntegerConstantExpr(Ctx, Loc))
+ return false;
+ if (!EvaluateAsInt(Value, Ctx))
+ llvm_unreachable("ICE cannot be evaluated!");
+ return true;
+}
+
+bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
+ return CheckICE(this, Ctx).Kind == IK_ICE;
+}
+
+bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
+ SourceLocation *Loc) const {
+ // We support this checking in C++98 mode in order to diagnose compatibility
+ // issues.
+ assert(Ctx.getLangOpts().CPlusPlus);
+
+ // Build evaluation settings.
+ Expr::EvalStatus Status;
+ SmallVector<PartialDiagnosticAt, 8> Diags;
+ Status.Diag = &Diags;
+ EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
+
+ APValue Scratch;
+ bool IsConstExpr = ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch);
+
+ if (!Diags.empty()) {
+ IsConstExpr = false;
+ if (Loc) *Loc = Diags[0].first;
+ } else if (!IsConstExpr) {
+ // FIXME: This shouldn't happen.
+ if (Loc) *Loc = getExprLoc();
+ }
+
+ return IsConstExpr;
+}
+
+bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
+ const FunctionDecl *Callee,
+ ArrayRef<const Expr*> Args) const {
+ Expr::EvalStatus Status;
+ EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
+
+ ArgVector ArgValues(Args.size());
+ for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
+ I != E; ++I) {
+ if ((*I)->isValueDependent() ||
+ !Evaluate(ArgValues[I - Args.begin()], Info, *I))
+ // If evaluation fails, throw away the argument entirely.
+ ArgValues[I - Args.begin()] = APValue();
+ if (Info.EvalStatus.HasSideEffects)
+ return false;
+ }
+
+ // Build fake call to Callee.
+ CallStackFrame Frame(Info, Callee->getLocation(), Callee, /*This*/nullptr,
+ ArgValues.data());
+ return Evaluate(Value, Info, this) && !Info.EvalStatus.HasSideEffects;
+}
+
+bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
+ SmallVectorImpl<
+ PartialDiagnosticAt> &Diags) {
+ // FIXME: It would be useful to check constexpr function templates, but at the
+ // moment the constant expression evaluator cannot cope with the non-rigorous
+ // ASTs which we build for dependent expressions.
+ if (FD->isDependentContext())
+ return true;
+
+ Expr::EvalStatus Status;
+ Status.Diag = &Diags;
+
+ EvalInfo Info(FD->getASTContext(), Status,
+ EvalInfo::EM_PotentialConstantExpression);
+
+ const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
+ const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr;
+
+ // Fabricate an arbitrary expression on the stack and pretend that it
+ // is a temporary being used as the 'this' pointer.
+ LValue This;
+ ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
+ This.set(&VIE, Info.CurrentCall->Index);
+
+ ArrayRef<const Expr*> Args;
+
+ SourceLocation Loc = FD->getLocation();
+
+ APValue Scratch;
+ if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
+ // Evaluate the call as a constant initializer, to allow the construction
+ // of objects of non-literal types.
+ Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
+ HandleConstructorCall(Loc, This, Args, CD, Info, Scratch);
+ } else
+ HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr,
+ Args, FD->getBody(), Info, Scratch);
+
+ return Diags.empty();
+}
+
+bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
+ const FunctionDecl *FD,
+ SmallVectorImpl<
+ PartialDiagnosticAt> &Diags) {
+ Expr::EvalStatus Status;
+ Status.Diag = &Diags;
+
+ EvalInfo Info(FD->getASTContext(), Status,
+ EvalInfo::EM_PotentialConstantExpressionUnevaluated);
+
+ // Fabricate a call stack frame to give the arguments a plausible cover story.
+ ArrayRef<const Expr*> Args;
+ ArgVector ArgValues(0);
+ bool Success = EvaluateArgs(Args, ArgValues, Info);
+ (void)Success;
+ assert(Success &&
+ "Failed to set up arguments for potential constant evaluation");
+ CallStackFrame Frame(Info, SourceLocation(), FD, nullptr, ArgValues.data());
+
+ APValue ResultScratch;
+ Evaluate(ResultScratch, Info, E);
+ return Diags.empty();
+}
diff --git a/contrib/llvm/tools/clang/lib/AST/ExternalASTSource.cpp b/contrib/llvm/tools/clang/lib/AST/ExternalASTSource.cpp
new file mode 100644
index 0000000..730842a
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/ExternalASTSource.cpp
@@ -0,0 +1,113 @@
+//===- ExternalASTSource.cpp - Abstract External AST Interface --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides the default implementation of the ExternalASTSource
+// interface, which enables construction of AST nodes from some external
+// source.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/ExternalASTSource.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclarationName.h"
+#include "llvm/Support/ErrorHandling.h"
+
+using namespace clang;
+
+ExternalASTSource::~ExternalASTSource() { }
+
+void ExternalASTSource::FindFileRegionDecls(FileID File, unsigned Offset,
+ unsigned Length,
+ SmallVectorImpl<Decl *> &Decls) {}
+
+void ExternalASTSource::CompleteRedeclChain(const Decl *D) {}
+
+void ExternalASTSource::CompleteType(TagDecl *Tag) {}
+
+void ExternalASTSource::CompleteType(ObjCInterfaceDecl *Class) {}
+
+void ExternalASTSource::ReadComments() {}
+
+void ExternalASTSource::StartedDeserializing() {}
+
+void ExternalASTSource::FinishedDeserializing() {}
+
+void ExternalASTSource::StartTranslationUnit(ASTConsumer *Consumer) {}
+
+void ExternalASTSource::PrintStats() { }
+
+bool ExternalASTSource::layoutRecordType(
+ const RecordDecl *Record, uint64_t &Size, uint64_t &Alignment,
+ llvm::DenseMap<const FieldDecl *, uint64_t> &FieldOffsets,
+ llvm::DenseMap<const CXXRecordDecl *, CharUnits> &BaseOffsets,
+ llvm::DenseMap<const CXXRecordDecl *, CharUnits> &VirtualBaseOffsets) {
+ return false;
+}
+
+Decl *ExternalASTSource::GetExternalDecl(uint32_t ID) {
+ return nullptr;
+}
+
+Selector ExternalASTSource::GetExternalSelector(uint32_t ID) {
+ return Selector();
+}
+
+uint32_t ExternalASTSource::GetNumExternalSelectors() {
+ return 0;
+}
+
+Stmt *ExternalASTSource::GetExternalDeclStmt(uint64_t Offset) {
+ return nullptr;
+}
+
+CXXCtorInitializer **
+ExternalASTSource::GetExternalCXXCtorInitializers(uint64_t Offset) {
+ return nullptr;
+}
+
+CXXBaseSpecifier *
+ExternalASTSource::GetExternalCXXBaseSpecifiers(uint64_t Offset) {
+ return nullptr;
+}
+
+bool
+ExternalASTSource::FindExternalVisibleDeclsByName(const DeclContext *DC,
+ DeclarationName Name) {
+ return false;
+}
+
+void ExternalASTSource::completeVisibleDeclsMap(const DeclContext *DC) {
+}
+
+ExternalLoadResult
+ExternalASTSource::FindExternalLexicalDecls(const DeclContext *DC,
+ bool (*isKindWeWant)(Decl::Kind),
+ SmallVectorImpl<Decl*> &Result) {
+ return ELR_AlreadyLoaded;
+}
+
+void ExternalASTSource::getMemoryBufferSizes(MemoryBufferSizes &sizes) const { }
+
+uint32_t ExternalASTSource::incrementGeneration(ASTContext &C) {
+ uint32_t OldGeneration = CurrentGeneration;
+
+ // Make sure the generation of the topmost external source for the context is
+ // incremented. That might not be us.
+ auto *P = C.getExternalSource();
+ if (P && P != this)
+ CurrentGeneration = P->incrementGeneration(C);
+ else {
+ // FIXME: Only bump the generation counter if the current generation number
+ // has been observed?
+ if (!++CurrentGeneration)
+ llvm::report_fatal_error("generation counter overflowed", false);
+ }
+
+ return OldGeneration;
+}
diff --git a/contrib/llvm/tools/clang/lib/AST/InheritViz.cpp b/contrib/llvm/tools/clang/lib/AST/InheritViz.cpp
new file mode 100644
index 0000000..0b82da1
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/InheritViz.cpp
@@ -0,0 +1,160 @@
+//===- InheritViz.cpp - Graphviz visualization for inheritance --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements CXXRecordDecl::viewInheritance, which
+// generates a GraphViz DOT file that depicts the class inheritance
+// diagram and then calls Graphviz/dot+gv on it.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/TypeOrdering.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/GraphWriter.h"
+#include "llvm/Support/raw_ostream.h"
+#include <map>
+#include <set>
+using namespace clang;
+
+namespace {
+/// InheritanceHierarchyWriter - Helper class that writes out a
+/// GraphViz file that diagrams the inheritance hierarchy starting at
+/// a given C++ class type. Note that we do not use LLVM's
+/// GraphWriter, because the interface does not permit us to properly
+/// differentiate between uses of types as virtual bases
+/// vs. non-virtual bases.
+class InheritanceHierarchyWriter {
+ ASTContext& Context;
+ raw_ostream &Out;
+ std::map<QualType, int, QualTypeOrdering> DirectBaseCount;
+ std::set<QualType, QualTypeOrdering> KnownVirtualBases;
+
+public:
+ InheritanceHierarchyWriter(ASTContext& Context, raw_ostream& Out)
+ : Context(Context), Out(Out) { }
+
+ void WriteGraph(QualType Type) {
+ Out << "digraph \"" << llvm::DOT::EscapeString(Type.getAsString())
+ << "\" {\n";
+ WriteNode(Type, false);
+ Out << "}\n";
+ }
+
+protected:
+ /// WriteNode - Write out the description of node in the inheritance
+ /// diagram, which may be a base class or it may be the root node.
+ void WriteNode(QualType Type, bool FromVirtual);
+
+ /// WriteNodeReference - Write out a reference to the given node,
+ /// using a unique identifier for each direct base and for the
+ /// (only) virtual base.
+ raw_ostream& WriteNodeReference(QualType Type, bool FromVirtual);
+};
+} // namespace
+
+void InheritanceHierarchyWriter::WriteNode(QualType Type, bool FromVirtual) {
+ QualType CanonType = Context.getCanonicalType(Type);
+
+ if (FromVirtual) {
+ if (KnownVirtualBases.find(CanonType) != KnownVirtualBases.end())
+ return;
+
+ // We haven't seen this virtual base before, so display it and
+ // its bases.
+ KnownVirtualBases.insert(CanonType);
+ }
+
+ // Declare the node itself.
+ Out << " ";
+ WriteNodeReference(Type, FromVirtual);
+
+ // Give the node a label based on the name of the class.
+ std::string TypeName = Type.getAsString();
+ Out << " [ shape=\"box\", label=\"" << llvm::DOT::EscapeString(TypeName);
+
+ // If the name of the class was a typedef or something different
+ // from the "real" class name, show the real class name in
+ // parentheses so we don't confuse ourselves.
+ if (TypeName != CanonType.getAsString()) {
+ Out << "\\n(" << CanonType.getAsString() << ")";
+ }
+
+ // Finished describing the node.
+ Out << " \"];\n";
+
+ // Display the base classes.
+ const CXXRecordDecl *Decl
+ = static_cast<const CXXRecordDecl *>(Type->getAs<RecordType>()->getDecl());
+ for (const auto &Base : Decl->bases()) {
+ QualType CanonBaseType = Context.getCanonicalType(Base.getType());
+
+ // If this is not virtual inheritance, bump the direct base
+ // count for the type.
+ if (!Base.isVirtual())
+ ++DirectBaseCount[CanonBaseType];
+
+ // Write out the node (if we need to).
+ WriteNode(Base.getType(), Base.isVirtual());
+
+ // Write out the edge.
+ Out << " ";
+ WriteNodeReference(Type, FromVirtual);
+ Out << " -> ";
+ WriteNodeReference(Base.getType(), Base.isVirtual());
+
+ // Write out edge attributes to show the kind of inheritance.
+ if (Base.isVirtual()) {
+ Out << " [ style=\"dashed\" ]";
+ }
+ Out << ";";
+ }
+}
+
+/// WriteNodeReference - Write out a reference to the given node,
+/// using a unique identifier for each direct base and for the
+/// (only) virtual base.
+raw_ostream&
+InheritanceHierarchyWriter::WriteNodeReference(QualType Type,
+ bool FromVirtual) {
+ QualType CanonType = Context.getCanonicalType(Type);
+
+ Out << "Class_" << CanonType.getAsOpaquePtr();
+ if (!FromVirtual)
+ Out << "_" << DirectBaseCount[CanonType];
+ return Out;
+}
+
+/// viewInheritance - Display the inheritance hierarchy of this C++
+/// class using GraphViz.
+void CXXRecordDecl::viewInheritance(ASTContext& Context) const {
+ QualType Self = Context.getTypeDeclType(this);
+
+ int FD;
+ SmallString<128> Filename;
+ if (std::error_code EC = llvm::sys::fs::createTemporaryFile(
+ Self.getAsString(), "dot", FD, Filename)) {
+ llvm::errs() << "Error: " << EC.message() << "\n";
+ return;
+ }
+
+ llvm::errs() << "Writing '" << Filename << "'... ";
+
+ llvm::raw_fd_ostream O(FD, true);
+
+ InheritanceHierarchyWriter Writer(Context, O);
+ Writer.WriteGraph(Self);
+ llvm::errs() << " done. \n";
+
+ O.close();
+
+ // Display the graph
+ DisplayGraph(Filename);
+}
diff --git a/contrib/llvm/tools/clang/lib/AST/ItaniumCXXABI.cpp b/contrib/llvm/tools/clang/lib/AST/ItaniumCXXABI.cpp
new file mode 100644
index 0000000..7503cbf
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/ItaniumCXXABI.cpp
@@ -0,0 +1,160 @@
+//===------- ItaniumCXXABI.cpp - AST support for the Itanium C++ ABI ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This provides C++ AST support targeting the Itanium C++ ABI, which is
+// documented at:
+// http://www.codesourcery.com/public/cxx-abi/abi.html
+// http://www.codesourcery.com/public/cxx-abi/abi-eh.html
+//
+// It also supports the closely-related ARM C++ ABI, documented at:
+// http://infocenter.arm.com/help/topic/com.arm.doc.ihi0041c/IHI0041C_cppabi.pdf
+//
+//===----------------------------------------------------------------------===//
+
+#include "CXXABI.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/MangleNumberingContext.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/AST/Type.h"
+#include "clang/Basic/TargetInfo.h"
+
+using namespace clang;
+
+namespace {
+
+/// According to Itanium C++ ABI 5.1.2:
+/// the name of an anonymous union is considered to be
+/// the name of the first named data member found by a pre-order,
+/// depth-first, declaration-order walk of the data members of
+/// the anonymous union.
+/// If there is no such data member (i.e., if all of the data members
+/// in the union are unnamed), then there is no way for a program to
+/// refer to the anonymous union, and there is therefore no need to mangle its name.
+///
+/// Returns the name of anonymous union VarDecl or nullptr if it is not found.
+static const IdentifierInfo *findAnonymousUnionVarDeclName(const VarDecl& VD) {
+ const RecordType *RT = VD.getType()->getAs<RecordType>();
+ assert(RT && "type of VarDecl is expected to be RecordType.");
+ assert(RT->getDecl()->isUnion() && "RecordType is expected to be a union.");
+ if (const FieldDecl *FD = RT->getDecl()->findFirstNamedDataMember()) {
+ return FD->getIdentifier();
+ }
+
+ return nullptr;
+}
+
+/// \brief Keeps track of the mangled names of lambda expressions and block
+/// literals within a particular context.
+class ItaniumNumberingContext : public MangleNumberingContext {
+ llvm::DenseMap<const Type *, unsigned> ManglingNumbers;
+ llvm::DenseMap<const IdentifierInfo *, unsigned> VarManglingNumbers;
+ llvm::DenseMap<const IdentifierInfo *, unsigned> TagManglingNumbers;
+
+public:
+ unsigned getManglingNumber(const CXXMethodDecl *CallOperator) override {
+ const FunctionProtoType *Proto =
+ CallOperator->getType()->getAs<FunctionProtoType>();
+ ASTContext &Context = CallOperator->getASTContext();
+
+ QualType Key =
+ Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(),
+ FunctionProtoType::ExtProtoInfo());
+ Key = Context.getCanonicalType(Key);
+ return ++ManglingNumbers[Key->castAs<FunctionProtoType>()];
+ }
+
+ unsigned getManglingNumber(const BlockDecl *BD) override {
+ const Type *Ty = nullptr;
+ return ++ManglingNumbers[Ty];
+ }
+
+ unsigned getStaticLocalNumber(const VarDecl *VD) override {
+ return 0;
+ }
+
+ /// Variable decls are numbered by identifier.
+ unsigned getManglingNumber(const VarDecl *VD, unsigned) override {
+ const IdentifierInfo *Identifier = VD->getIdentifier();
+ if (!Identifier) {
+ // VarDecl without an identifier represents an anonymous union declaration.
+ Identifier = findAnonymousUnionVarDeclName(*VD);
+ }
+ return ++VarManglingNumbers[Identifier];
+ }
+
+ unsigned getManglingNumber(const TagDecl *TD, unsigned) override {
+ return ++TagManglingNumbers[TD->getIdentifier()];
+ }
+};
+
+class ItaniumCXXABI : public CXXABI {
+protected:
+ ASTContext &Context;
+public:
+ ItaniumCXXABI(ASTContext &Ctx) : Context(Ctx) { }
+
+ std::pair<uint64_t, unsigned>
+ getMemberPointerWidthAndAlign(const MemberPointerType *MPT) const override {
+ const TargetInfo &Target = Context.getTargetInfo();
+ TargetInfo::IntType PtrDiff = Target.getPtrDiffType(0);
+ uint64_t Width = Target.getTypeWidth(PtrDiff);
+ unsigned Align = Target.getTypeAlign(PtrDiff);
+ if (MPT->isMemberFunctionPointer())
+ Width = 2 * Width;
+ return std::make_pair(Width, Align);
+ }
+
+ CallingConv getDefaultMethodCallConv(bool isVariadic) const override {
+ const llvm::Triple &T = Context.getTargetInfo().getTriple();
+ if (!isVariadic && T.isWindowsGNUEnvironment() &&
+ T.getArch() == llvm::Triple::x86)
+ return CC_X86ThisCall;
+ return CC_C;
+ }
+
+ // We cheat and just check that the class has a vtable pointer, and that it's
+ // only big enough to have a vtable pointer and nothing more (or less).
+ bool isNearlyEmpty(const CXXRecordDecl *RD) const override {
+
+ // Check that the class has a vtable pointer.
+ if (!RD->isDynamicClass())
+ return false;
+
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+ CharUnits PointerSize =
+ Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
+ return Layout.getNonVirtualSize() == PointerSize;
+ }
+
+ const CXXConstructorDecl *
+ getCopyConstructorForExceptionObject(CXXRecordDecl *RD) override {
+ return nullptr;
+ }
+
+ void addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
+ CXXConstructorDecl *CD) override {}
+
+ void addDefaultArgExprForConstructor(const CXXConstructorDecl *CD,
+ unsigned ParmIdx, Expr *DAE) override {}
+
+ Expr *getDefaultArgExprForConstructor(const CXXConstructorDecl *CD,
+ unsigned ParmIdx) override {
+ return nullptr;
+ }
+
+ MangleNumberingContext *createMangleNumberingContext() const override {
+ return new ItaniumNumberingContext();
+ }
+};
+}
+
+CXXABI *clang::CreateItaniumCXXABI(ASTContext &Ctx) {
+ return new ItaniumCXXABI(Ctx);
+}
diff --git a/contrib/llvm/tools/clang/lib/AST/ItaniumMangle.cpp b/contrib/llvm/tools/clang/lib/AST/ItaniumMangle.cpp
new file mode 100644
index 0000000..d07efae
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/ItaniumMangle.cpp
@@ -0,0 +1,4085 @@
+//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Implements C++ name mangling according to the Itanium C++ ABI,
+// which is used in GCC 3.2 and newer (and many compilers that are
+// ABI-compatible with GCC):
+//
+// http://mentorembedded.github.io/cxx-abi/abi.html#mangling
+//
+//===----------------------------------------------------------------------===//
+#include "clang/AST/Mangle.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/Basic/ABI.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TargetInfo.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+
+#define MANGLE_CHECKER 0
+
+#if MANGLE_CHECKER
+#include <cxxabi.h>
+#endif
+
+using namespace clang;
+
+namespace {
+
+/// Retrieve the declaration context that should be used when mangling the given
+/// declaration.
+static const DeclContext *getEffectiveDeclContext(const Decl *D) {
+ // The ABI assumes that lambda closure types that occur within
+ // default arguments live in the context of the function. However, due to
+ // the way in which Clang parses and creates function declarations, this is
+ // not the case: the lambda closure type ends up living in the context
+ // where the function itself resides, because the function declaration itself
+ // had not yet been created. Fix the context here.
+ if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
+ if (RD->isLambda())
+ if (ParmVarDecl *ContextParam
+ = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
+ return ContextParam->getDeclContext();
+ }
+
+ // Perform the same check for block literals.
+ if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
+ if (ParmVarDecl *ContextParam
+ = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
+ return ContextParam->getDeclContext();
+ }
+
+ const DeclContext *DC = D->getDeclContext();
+ if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(DC))
+ return getEffectiveDeclContext(CD);
+
+ if (const auto *VD = dyn_cast<VarDecl>(D))
+ if (VD->isExternC())
+ return VD->getASTContext().getTranslationUnitDecl();
+
+ if (const auto *FD = dyn_cast<FunctionDecl>(D))
+ if (FD->isExternC())
+ return FD->getASTContext().getTranslationUnitDecl();
+
+ return DC;
+}
+
+static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
+ return getEffectiveDeclContext(cast<Decl>(DC));
+}
+
+static bool isLocalContainerContext(const DeclContext *DC) {
+ return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
+}
+
+static const RecordDecl *GetLocalClassDecl(const Decl *D) {
+ const DeclContext *DC = getEffectiveDeclContext(D);
+ while (!DC->isNamespace() && !DC->isTranslationUnit()) {
+ if (isLocalContainerContext(DC))
+ return dyn_cast<RecordDecl>(D);
+ D = cast<Decl>(DC);
+ DC = getEffectiveDeclContext(D);
+ }
+ return nullptr;
+}
+
+static const FunctionDecl *getStructor(const FunctionDecl *fn) {
+ if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
+ return ftd->getTemplatedDecl();
+
+ return fn;
+}
+
+static const NamedDecl *getStructor(const NamedDecl *decl) {
+ const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
+ return (fn ? getStructor(fn) : decl);
+}
+
+static bool isLambda(const NamedDecl *ND) {
+ const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
+ if (!Record)
+ return false;
+
+ return Record->isLambda();
+}
+
+static const unsigned UnknownArity = ~0U;
+
+class ItaniumMangleContextImpl : public ItaniumMangleContext {
+ typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
+ llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
+ llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
+
+public:
+ explicit ItaniumMangleContextImpl(ASTContext &Context,
+ DiagnosticsEngine &Diags)
+ : ItaniumMangleContext(Context, Diags) {}
+
+ /// @name Mangler Entry Points
+ /// @{
+
+ bool shouldMangleCXXName(const NamedDecl *D) override;
+ bool shouldMangleStringLiteral(const StringLiteral *) override {
+ return false;
+ }
+ void mangleCXXName(const NamedDecl *D, raw_ostream &) override;
+ void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
+ raw_ostream &) override;
+ void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
+ const ThisAdjustment &ThisAdjustment,
+ raw_ostream &) override;
+ void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber,
+ raw_ostream &) override;
+ void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override;
+ void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override;
+ void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
+ const CXXRecordDecl *Type, raw_ostream &) override;
+ void mangleCXXRTTI(QualType T, raw_ostream &) override;
+ void mangleCXXRTTIName(QualType T, raw_ostream &) override;
+ void mangleTypeName(QualType T, raw_ostream &) override;
+ void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
+ raw_ostream &) override;
+ void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
+ raw_ostream &) override;
+
+ void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override;
+ void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override;
+ void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override;
+ void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
+ void mangleDynamicAtExitDestructor(const VarDecl *D,
+ raw_ostream &Out) override;
+ void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
+ raw_ostream &Out) override;
+ void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
+ raw_ostream &Out) override;
+ void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override;
+ void mangleItaniumThreadLocalWrapper(const VarDecl *D,
+ raw_ostream &) override;
+
+ void mangleStringLiteral(const StringLiteral *, raw_ostream &) override;
+
+ void mangleCXXVTableBitSet(const CXXRecordDecl *RD, raw_ostream &) override;
+
+ bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
+ // Lambda closure types are already numbered.
+ if (isLambda(ND))
+ return false;
+
+ // Anonymous tags are already numbered.
+ if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
+ if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
+ return false;
+ }
+
+ // Use the canonical number for externally visible decls.
+ if (ND->isExternallyVisible()) {
+ unsigned discriminator = getASTContext().getManglingNumber(ND);
+ if (discriminator == 1)
+ return false;
+ disc = discriminator - 2;
+ return true;
+ }
+
+ // Make up a reasonable number for internal decls.
+ unsigned &discriminator = Uniquifier[ND];
+ if (!discriminator) {
+ const DeclContext *DC = getEffectiveDeclContext(ND);
+ discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
+ }
+ if (discriminator == 1)
+ return false;
+ disc = discriminator-2;
+ return true;
+ }
+ /// @}
+};
+
+/// Manage the mangling of a single name.
+class CXXNameMangler {
+ ItaniumMangleContextImpl &Context;
+ raw_ostream &Out;
+
+ /// The "structor" is the top-level declaration being mangled, if
+ /// that's not a template specialization; otherwise it's the pattern
+ /// for that specialization.
+ const NamedDecl *Structor;
+ unsigned StructorType;
+
+ /// The next substitution sequence number.
+ unsigned SeqID;
+
+ class FunctionTypeDepthState {
+ unsigned Bits;
+
+ enum { InResultTypeMask = 1 };
+
+ public:
+ FunctionTypeDepthState() : Bits(0) {}
+
+ /// The number of function types we're inside.
+ unsigned getDepth() const {
+ return Bits >> 1;
+ }
+
+ /// True if we're in the return type of the innermost function type.
+ bool isInResultType() const {
+ return Bits & InResultTypeMask;
+ }
+
+ FunctionTypeDepthState push() {
+ FunctionTypeDepthState tmp = *this;
+ Bits = (Bits & ~InResultTypeMask) + 2;
+ return tmp;
+ }
+
+ void enterResultType() {
+ Bits |= InResultTypeMask;
+ }
+
+ void leaveResultType() {
+ Bits &= ~InResultTypeMask;
+ }
+
+ void pop(FunctionTypeDepthState saved) {
+ assert(getDepth() == saved.getDepth() + 1);
+ Bits = saved.Bits;
+ }
+
+ } FunctionTypeDepth;
+
+ llvm::DenseMap<uintptr_t, unsigned> Substitutions;
+
+ ASTContext &getASTContext() const { return Context.getASTContext(); }
+
+public:
+ CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
+ const NamedDecl *D = nullptr)
+ : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
+ SeqID(0) {
+ // These can't be mangled without a ctor type or dtor type.
+ assert(!D || (!isa<CXXDestructorDecl>(D) &&
+ !isa<CXXConstructorDecl>(D)));
+ }
+ CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
+ const CXXConstructorDecl *D, CXXCtorType Type)
+ : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
+ SeqID(0) { }
+ CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
+ const CXXDestructorDecl *D, CXXDtorType Type)
+ : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
+ SeqID(0) { }
+
+#if MANGLE_CHECKER
+ ~CXXNameMangler() {
+ if (Out.str()[0] == '\01')
+ return;
+
+ int status = 0;
+ char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
+ assert(status == 0 && "Could not demangle mangled name!");
+ free(result);
+ }
+#endif
+ raw_ostream &getStream() { return Out; }
+
+ void mangle(const NamedDecl *D);
+ void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
+ void mangleNumber(const llvm::APSInt &I);
+ void mangleNumber(int64_t Number);
+ void mangleFloat(const llvm::APFloat &F);
+ void mangleFunctionEncoding(const FunctionDecl *FD);
+ void mangleSeqID(unsigned SeqID);
+ void mangleName(const NamedDecl *ND);
+ void mangleType(QualType T);
+ void mangleNameOrStandardSubstitution(const NamedDecl *ND);
+
+private:
+
+ bool mangleSubstitution(const NamedDecl *ND);
+ bool mangleSubstitution(QualType T);
+ bool mangleSubstitution(TemplateName Template);
+ bool mangleSubstitution(uintptr_t Ptr);
+
+ void mangleExistingSubstitution(QualType type);
+ void mangleExistingSubstitution(TemplateName name);
+
+ bool mangleStandardSubstitution(const NamedDecl *ND);
+
+ void addSubstitution(const NamedDecl *ND) {
+ ND = cast<NamedDecl>(ND->getCanonicalDecl());
+
+ addSubstitution(reinterpret_cast<uintptr_t>(ND));
+ }
+ void addSubstitution(QualType T);
+ void addSubstitution(TemplateName Template);
+ void addSubstitution(uintptr_t Ptr);
+
+ void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
+ bool recursive = false);
+ void mangleUnresolvedName(NestedNameSpecifier *qualifier,
+ DeclarationName name,
+ unsigned KnownArity = UnknownArity);
+
+ void mangleName(const TemplateDecl *TD,
+ const TemplateArgument *TemplateArgs,
+ unsigned NumTemplateArgs);
+ void mangleUnqualifiedName(const NamedDecl *ND) {
+ mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
+ }
+ void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
+ unsigned KnownArity);
+ void mangleUnscopedName(const NamedDecl *ND);
+ void mangleUnscopedTemplateName(const TemplateDecl *ND);
+ void mangleUnscopedTemplateName(TemplateName);
+ void mangleSourceName(const IdentifierInfo *II);
+ void mangleLocalName(const Decl *D);
+ void mangleBlockForPrefix(const BlockDecl *Block);
+ void mangleUnqualifiedBlock(const BlockDecl *Block);
+ void mangleLambda(const CXXRecordDecl *Lambda);
+ void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
+ bool NoFunction=false);
+ void mangleNestedName(const TemplateDecl *TD,
+ const TemplateArgument *TemplateArgs,
+ unsigned NumTemplateArgs);
+ void manglePrefix(NestedNameSpecifier *qualifier);
+ void manglePrefix(const DeclContext *DC, bool NoFunction=false);
+ void manglePrefix(QualType type);
+ void mangleTemplatePrefix(const TemplateDecl *ND, bool NoFunction=false);
+ void mangleTemplatePrefix(TemplateName Template);
+ bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType,
+ StringRef Prefix = "");
+ void mangleOperatorName(DeclarationName Name, unsigned Arity);
+ void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
+ void mangleQualifiers(Qualifiers Quals);
+ void mangleRefQualifier(RefQualifierKind RefQualifier);
+
+ void mangleObjCMethodName(const ObjCMethodDecl *MD);
+
+ // Declare manglers for every type class.
+#define ABSTRACT_TYPE(CLASS, PARENT)
+#define NON_CANONICAL_TYPE(CLASS, PARENT)
+#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
+#include "clang/AST/TypeNodes.def"
+
+ void mangleType(const TagType*);
+ void mangleType(TemplateName);
+ void mangleBareFunctionType(const FunctionType *T,
+ bool MangleReturnType);
+ void mangleNeonVectorType(const VectorType *T);
+ void mangleAArch64NeonVectorType(const VectorType *T);
+
+ void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
+ void mangleMemberExprBase(const Expr *base, bool isArrow);
+ void mangleMemberExpr(const Expr *base, bool isArrow,
+ NestedNameSpecifier *qualifier,
+ NamedDecl *firstQualifierLookup,
+ DeclarationName name,
+ unsigned knownArity);
+ void mangleCastExpression(const Expr *E, StringRef CastEncoding);
+ void mangleInitListElements(const InitListExpr *InitList);
+ void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
+ void mangleCXXCtorType(CXXCtorType T);
+ void mangleCXXDtorType(CXXDtorType T);
+
+ void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs);
+ void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
+ unsigned NumTemplateArgs);
+ void mangleTemplateArgs(const TemplateArgumentList &AL);
+ void mangleTemplateArg(TemplateArgument A);
+
+ void mangleTemplateParameter(unsigned Index);
+
+ void mangleFunctionParam(const ParmVarDecl *parm);
+};
+
+}
+
+bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
+ const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
+ if (FD) {
+ LanguageLinkage L = FD->getLanguageLinkage();
+ // Overloadable functions need mangling.
+ if (FD->hasAttr<OverloadableAttr>())
+ return true;
+
+ // "main" is not mangled.
+ if (FD->isMain())
+ return false;
+
+ // C++ functions and those whose names are not a simple identifier need
+ // mangling.
+ if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
+ return true;
+
+ // C functions are not mangled.
+ if (L == CLanguageLinkage)
+ return false;
+ }
+
+ // Otherwise, no mangling is done outside C++ mode.
+ if (!getASTContext().getLangOpts().CPlusPlus)
+ return false;
+
+ const VarDecl *VD = dyn_cast<VarDecl>(D);
+ if (VD) {
+ // C variables are not mangled.
+ if (VD->isExternC())
+ return false;
+
+ // Variables at global scope with non-internal linkage are not mangled
+ const DeclContext *DC = getEffectiveDeclContext(D);
+ // Check for extern variable declared locally.
+ if (DC->isFunctionOrMethod() && D->hasLinkage())
+ while (!DC->isNamespace() && !DC->isTranslationUnit())
+ DC = getEffectiveParentContext(DC);
+ if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
+ !isa<VarTemplateSpecializationDecl>(D))
+ return false;
+ }
+
+ return true;
+}
+
+void CXXNameMangler::mangle(const NamedDecl *D) {
+ // <mangled-name> ::= _Z <encoding>
+ // ::= <data name>
+ // ::= <special-name>
+ Out << "_Z";
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
+ mangleFunctionEncoding(FD);
+ else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
+ mangleName(VD);
+ else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
+ mangleName(IFD->getAnonField());
+ else
+ mangleName(cast<FieldDecl>(D));
+}
+
+void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
+ // <encoding> ::= <function name> <bare-function-type>
+ mangleName(FD);
+
+ // Don't mangle in the type if this isn't a decl we should typically mangle.
+ if (!Context.shouldMangleDeclName(FD))
+ return;
+
+ if (FD->hasAttr<EnableIfAttr>()) {
+ FunctionTypeDepthState Saved = FunctionTypeDepth.push();
+ Out << "Ua9enable_ifI";
+ // FIXME: specific_attr_iterator iterates in reverse order. Fix that and use
+ // it here.
+ for (AttrVec::const_reverse_iterator I = FD->getAttrs().rbegin(),
+ E = FD->getAttrs().rend();
+ I != E; ++I) {
+ EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I);
+ if (!EIA)
+ continue;
+ Out << 'X';
+ mangleExpression(EIA->getCond());
+ Out << 'E';
+ }
+ Out << 'E';
+ FunctionTypeDepth.pop(Saved);
+ }
+
+ // Whether the mangling of a function type includes the return type depends on
+ // the context and the nature of the function. The rules for deciding whether
+ // the return type is included are:
+ //
+ // 1. Template functions (names or types) have return types encoded, with
+ // the exceptions listed below.
+ // 2. Function types not appearing as part of a function name mangling,
+ // e.g. parameters, pointer types, etc., have return type encoded, with the
+ // exceptions listed below.
+ // 3. Non-template function names do not have return types encoded.
+ //
+ // The exceptions mentioned in (1) and (2) above, for which the return type is
+ // never included, are
+ // 1. Constructors.
+ // 2. Destructors.
+ // 3. Conversion operator functions, e.g. operator int.
+ bool MangleReturnType = false;
+ if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
+ if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
+ isa<CXXConversionDecl>(FD)))
+ MangleReturnType = true;
+
+ // Mangle the type of the primary template.
+ FD = PrimaryTemplate->getTemplatedDecl();
+ }
+
+ mangleBareFunctionType(FD->getType()->getAs<FunctionType>(),
+ MangleReturnType);
+}
+
+static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
+ while (isa<LinkageSpecDecl>(DC)) {
+ DC = getEffectiveParentContext(DC);
+ }
+
+ return DC;
+}
+
+/// Return whether a given namespace is the 'std' namespace.
+static bool isStd(const NamespaceDecl *NS) {
+ if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
+ ->isTranslationUnit())
+ return false;
+
+ const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
+ return II && II->isStr("std");
+}
+
+// isStdNamespace - Return whether a given decl context is a toplevel 'std'
+// namespace.
+static bool isStdNamespace(const DeclContext *DC) {
+ if (!DC->isNamespace())
+ return false;
+
+ return isStd(cast<NamespaceDecl>(DC));
+}
+
+static const TemplateDecl *
+isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
+ // Check if we have a function template.
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
+ if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
+ TemplateArgs = FD->getTemplateSpecializationArgs();
+ return TD;
+ }
+ }
+
+ // Check if we have a class template.
+ if (const ClassTemplateSpecializationDecl *Spec =
+ dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
+ TemplateArgs = &Spec->getTemplateArgs();
+ return Spec->getSpecializedTemplate();
+ }
+
+ // Check if we have a variable template.
+ if (const VarTemplateSpecializationDecl *Spec =
+ dyn_cast<VarTemplateSpecializationDecl>(ND)) {
+ TemplateArgs = &Spec->getTemplateArgs();
+ return Spec->getSpecializedTemplate();
+ }
+
+ return nullptr;
+}
+
+void CXXNameMangler::mangleName(const NamedDecl *ND) {
+ // <name> ::= <nested-name>
+ // ::= <unscoped-name>
+ // ::= <unscoped-template-name> <template-args>
+ // ::= <local-name>
+ //
+ const DeclContext *DC = getEffectiveDeclContext(ND);
+
+ // If this is an extern variable declared locally, the relevant DeclContext
+ // is that of the containing namespace, or the translation unit.
+ // FIXME: This is a hack; extern variables declared locally should have
+ // a proper semantic declaration context!
+ if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
+ while (!DC->isNamespace() && !DC->isTranslationUnit())
+ DC = getEffectiveParentContext(DC);
+ else if (GetLocalClassDecl(ND)) {
+ mangleLocalName(ND);
+ return;
+ }
+
+ DC = IgnoreLinkageSpecDecls(DC);
+
+ if (DC->isTranslationUnit() || isStdNamespace(DC)) {
+ // Check if we have a template.
+ const TemplateArgumentList *TemplateArgs = nullptr;
+ if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
+ mangleUnscopedTemplateName(TD);
+ mangleTemplateArgs(*TemplateArgs);
+ return;
+ }
+
+ mangleUnscopedName(ND);
+ return;
+ }
+
+ if (isLocalContainerContext(DC)) {
+ mangleLocalName(ND);
+ return;
+ }
+
+ mangleNestedName(ND, DC);
+}
+void CXXNameMangler::mangleName(const TemplateDecl *TD,
+ const TemplateArgument *TemplateArgs,
+ unsigned NumTemplateArgs) {
+ const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
+
+ if (DC->isTranslationUnit() || isStdNamespace(DC)) {
+ mangleUnscopedTemplateName(TD);
+ mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
+ } else {
+ mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
+ }
+}
+
+void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
+ // <unscoped-name> ::= <unqualified-name>
+ // ::= St <unqualified-name> # ::std::
+
+ if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
+ Out << "St";
+
+ mangleUnqualifiedName(ND);
+}
+
+void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
+ // <unscoped-template-name> ::= <unscoped-name>
+ // ::= <substitution>
+ if (mangleSubstitution(ND))
+ return;
+
+ // <template-template-param> ::= <template-param>
+ if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND))
+ mangleTemplateParameter(TTP->getIndex());
+ else
+ mangleUnscopedName(ND->getTemplatedDecl());
+
+ addSubstitution(ND);
+}
+
+void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
+ // <unscoped-template-name> ::= <unscoped-name>
+ // ::= <substitution>
+ if (TemplateDecl *TD = Template.getAsTemplateDecl())
+ return mangleUnscopedTemplateName(TD);
+
+ if (mangleSubstitution(Template))
+ return;
+
+ DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
+ assert(Dependent && "Not a dependent template name?");
+ if (const IdentifierInfo *Id = Dependent->getIdentifier())
+ mangleSourceName(Id);
+ else
+ mangleOperatorName(Dependent->getOperator(), UnknownArity);
+
+ addSubstitution(Template);
+}
+
+void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
+ // ABI:
+ // Floating-point literals are encoded using a fixed-length
+ // lowercase hexadecimal string corresponding to the internal
+ // representation (IEEE on Itanium), high-order bytes first,
+ // without leading zeroes. For example: "Lf bf800000 E" is -1.0f
+ // on Itanium.
+ // The 'without leading zeroes' thing seems to be an editorial
+ // mistake; see the discussion on cxx-abi-dev beginning on
+ // 2012-01-16.
+
+ // Our requirements here are just barely weird enough to justify
+ // using a custom algorithm instead of post-processing APInt::toString().
+
+ llvm::APInt valueBits = f.bitcastToAPInt();
+ unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
+ assert(numCharacters != 0);
+
+ // Allocate a buffer of the right number of characters.
+ SmallVector<char, 20> buffer;
+ buffer.set_size(numCharacters);
+
+ // Fill the buffer left-to-right.
+ for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
+ // The bit-index of the next hex digit.
+ unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
+
+ // Project out 4 bits starting at 'digitIndex'.
+ llvm::integerPart hexDigit
+ = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth];
+ hexDigit >>= (digitBitIndex % llvm::integerPartWidth);
+ hexDigit &= 0xF;
+
+ // Map that over to a lowercase hex digit.
+ static const char charForHex[16] = {
+ '0', '1', '2', '3', '4', '5', '6', '7',
+ '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
+ };
+ buffer[stringIndex] = charForHex[hexDigit];
+ }
+
+ Out.write(buffer.data(), numCharacters);
+}
+
+void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
+ if (Value.isSigned() && Value.isNegative()) {
+ Out << 'n';
+ Value.abs().print(Out, /*signed*/ false);
+ } else {
+ Value.print(Out, /*signed*/ false);
+ }
+}
+
+void CXXNameMangler::mangleNumber(int64_t Number) {
+ // <number> ::= [n] <non-negative decimal integer>
+ if (Number < 0) {
+ Out << 'n';
+ Number = -Number;
+ }
+
+ Out << Number;
+}
+
+void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
+ // <call-offset> ::= h <nv-offset> _
+ // ::= v <v-offset> _
+ // <nv-offset> ::= <offset number> # non-virtual base override
+ // <v-offset> ::= <offset number> _ <virtual offset number>
+ // # virtual base override, with vcall offset
+ if (!Virtual) {
+ Out << 'h';
+ mangleNumber(NonVirtual);
+ Out << '_';
+ return;
+ }
+
+ Out << 'v';
+ mangleNumber(NonVirtual);
+ Out << '_';
+ mangleNumber(Virtual);
+ Out << '_';
+}
+
+void CXXNameMangler::manglePrefix(QualType type) {
+ if (const auto *TST = type->getAs<TemplateSpecializationType>()) {
+ if (!mangleSubstitution(QualType(TST, 0))) {
+ mangleTemplatePrefix(TST->getTemplateName());
+
+ // FIXME: GCC does not appear to mangle the template arguments when
+ // the template in question is a dependent template name. Should we
+ // emulate that badness?
+ mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
+ addSubstitution(QualType(TST, 0));
+ }
+ } else if (const auto *DTST =
+ type->getAs<DependentTemplateSpecializationType>()) {
+ if (!mangleSubstitution(QualType(DTST, 0))) {
+ TemplateName Template = getASTContext().getDependentTemplateName(
+ DTST->getQualifier(), DTST->getIdentifier());
+ mangleTemplatePrefix(Template);
+
+ // FIXME: GCC does not appear to mangle the template arguments when
+ // the template in question is a dependent template name. Should we
+ // emulate that badness?
+ mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
+ addSubstitution(QualType(DTST, 0));
+ }
+ } else {
+ // We use the QualType mangle type variant here because it handles
+ // substitutions.
+ mangleType(type);
+ }
+}
+
+/// Mangle everything prior to the base-unresolved-name in an unresolved-name.
+///
+/// \param recursive - true if this is being called recursively,
+/// i.e. if there is more prefix "to the right".
+void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
+ bool recursive) {
+
+ // x, ::x
+ // <unresolved-name> ::= [gs] <base-unresolved-name>
+
+ // T::x / decltype(p)::x
+ // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
+
+ // T::N::x /decltype(p)::N::x
+ // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
+ // <base-unresolved-name>
+
+ // A::x, N::y, A<T>::z; "gs" means leading "::"
+ // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
+ // <base-unresolved-name>
+
+ switch (qualifier->getKind()) {
+ case NestedNameSpecifier::Global:
+ Out << "gs";
+
+ // We want an 'sr' unless this is the entire NNS.
+ if (recursive)
+ Out << "sr";
+
+ // We never want an 'E' here.
+ return;
+
+ case NestedNameSpecifier::Super:
+ llvm_unreachable("Can't mangle __super specifier");
+
+ case NestedNameSpecifier::Namespace:
+ if (qualifier->getPrefix())
+ mangleUnresolvedPrefix(qualifier->getPrefix(),
+ /*recursive*/ true);
+ else
+ Out << "sr";
+ mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
+ break;
+ case NestedNameSpecifier::NamespaceAlias:
+ if (qualifier->getPrefix())
+ mangleUnresolvedPrefix(qualifier->getPrefix(),
+ /*recursive*/ true);
+ else
+ Out << "sr";
+ mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
+ break;
+
+ case NestedNameSpecifier::TypeSpec:
+ case NestedNameSpecifier::TypeSpecWithTemplate: {
+ const Type *type = qualifier->getAsType();
+
+ // We only want to use an unresolved-type encoding if this is one of:
+ // - a decltype
+ // - a template type parameter
+ // - a template template parameter with arguments
+ // In all of these cases, we should have no prefix.
+ if (qualifier->getPrefix()) {
+ mangleUnresolvedPrefix(qualifier->getPrefix(),
+ /*recursive*/ true);
+ } else {
+ // Otherwise, all the cases want this.
+ Out << "sr";
+ }
+
+ if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : ""))
+ return;
+
+ break;
+ }
+
+ case NestedNameSpecifier::Identifier:
+ // Member expressions can have these without prefixes.
+ if (qualifier->getPrefix())
+ mangleUnresolvedPrefix(qualifier->getPrefix(),
+ /*recursive*/ true);
+ else
+ Out << "sr";
+
+ mangleSourceName(qualifier->getAsIdentifier());
+ break;
+ }
+
+ // If this was the innermost part of the NNS, and we fell out to
+ // here, append an 'E'.
+ if (!recursive)
+ Out << 'E';
+}
+
+/// Mangle an unresolved-name, which is generally used for names which
+/// weren't resolved to specific entities.
+void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
+ DeclarationName name,
+ unsigned knownArity) {
+ if (qualifier) mangleUnresolvedPrefix(qualifier);
+ switch (name.getNameKind()) {
+ // <base-unresolved-name> ::= <simple-id>
+ case DeclarationName::Identifier:
+ mangleSourceName(name.getAsIdentifierInfo());
+ break;
+ // <base-unresolved-name> ::= dn <destructor-name>
+ case DeclarationName::CXXDestructorName:
+ Out << "dn";
+ mangleUnresolvedTypeOrSimpleId(name.getCXXNameType());
+ break;
+ // <base-unresolved-name> ::= on <operator-name>
+ case DeclarationName::CXXConversionFunctionName:
+ case DeclarationName::CXXLiteralOperatorName:
+ case DeclarationName::CXXOperatorName:
+ Out << "on";
+ mangleOperatorName(name, knownArity);
+ break;
+ case DeclarationName::CXXConstructorName:
+ llvm_unreachable("Can't mangle a constructor name!");
+ case DeclarationName::CXXUsingDirective:
+ llvm_unreachable("Can't mangle a using directive name!");
+ case DeclarationName::ObjCMultiArgSelector:
+ case DeclarationName::ObjCOneArgSelector:
+ case DeclarationName::ObjCZeroArgSelector:
+ llvm_unreachable("Can't mangle Objective-C selector names here!");
+ }
+}
+
+void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
+ DeclarationName Name,
+ unsigned KnownArity) {
+ unsigned Arity = KnownArity;
+ // <unqualified-name> ::= <operator-name>
+ // ::= <ctor-dtor-name>
+ // ::= <source-name>
+ switch (Name.getNameKind()) {
+ case DeclarationName::Identifier: {
+ if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
+ // We must avoid conflicts between internally- and externally-
+ // linked variable and function declaration names in the same TU:
+ // void test() { extern void foo(); }
+ // static void foo();
+ // This naming convention is the same as that followed by GCC,
+ // though it shouldn't actually matter.
+ if (ND && ND->getFormalLinkage() == InternalLinkage &&
+ getEffectiveDeclContext(ND)->isFileContext())
+ Out << 'L';
+
+ mangleSourceName(II);
+ break;
+ }
+
+ // Otherwise, an anonymous entity. We must have a declaration.
+ assert(ND && "mangling empty name without declaration");
+
+ if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
+ if (NS->isAnonymousNamespace()) {
+ // This is how gcc mangles these names.
+ Out << "12_GLOBAL__N_1";
+ break;
+ }
+ }
+
+ if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
+ // We must have an anonymous union or struct declaration.
+ const RecordDecl *RD =
+ cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
+
+ // Itanium C++ ABI 5.1.2:
+ //
+ // For the purposes of mangling, the name of an anonymous union is
+ // considered to be the name of the first named data member found by a
+ // pre-order, depth-first, declaration-order walk of the data members of
+ // the anonymous union. If there is no such data member (i.e., if all of
+ // the data members in the union are unnamed), then there is no way for
+ // a program to refer to the anonymous union, and there is therefore no
+ // need to mangle its name.
+ assert(RD->isAnonymousStructOrUnion()
+ && "Expected anonymous struct or union!");
+ const FieldDecl *FD = RD->findFirstNamedDataMember();
+
+ // It's actually possible for various reasons for us to get here
+ // with an empty anonymous struct / union. Fortunately, it
+ // doesn't really matter what name we generate.
+ if (!FD) break;
+ assert(FD->getIdentifier() && "Data member name isn't an identifier!");
+
+ mangleSourceName(FD->getIdentifier());
+ break;
+ }
+
+ // Class extensions have no name as a category, and it's possible
+ // for them to be the semantic parent of certain declarations
+ // (primarily, tag decls defined within declarations). Such
+ // declarations will always have internal linkage, so the name
+ // doesn't really matter, but we shouldn't crash on them. For
+ // safety, just handle all ObjC containers here.
+ if (isa<ObjCContainerDecl>(ND))
+ break;
+
+ // We must have an anonymous struct.
+ const TagDecl *TD = cast<TagDecl>(ND);
+ if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
+ assert(TD->getDeclContext() == D->getDeclContext() &&
+ "Typedef should not be in another decl context!");
+ assert(D->getDeclName().getAsIdentifierInfo() &&
+ "Typedef was not named!");
+ mangleSourceName(D->getDeclName().getAsIdentifierInfo());
+ break;
+ }
+
+ // <unnamed-type-name> ::= <closure-type-name>
+ //
+ // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
+ // <lambda-sig> ::= <parameter-type>+ # Parameter types or 'v' for 'void'.
+ if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
+ if (Record->isLambda() && Record->getLambdaManglingNumber()) {
+ mangleLambda(Record);
+ break;
+ }
+ }
+
+ if (TD->isExternallyVisible()) {
+ unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
+ Out << "Ut";
+ if (UnnamedMangle > 1)
+ Out << llvm::utostr(UnnamedMangle - 2);
+ Out << '_';
+ break;
+ }
+
+ // Get a unique id for the anonymous struct.
+ unsigned AnonStructId = Context.getAnonymousStructId(TD);
+
+ // Mangle it as a source name in the form
+ // [n] $_<id>
+ // where n is the length of the string.
+ SmallString<8> Str;
+ Str += "$_";
+ Str += llvm::utostr(AnonStructId);
+
+ Out << Str.size();
+ Out << Str;
+ break;
+ }
+
+ case DeclarationName::ObjCZeroArgSelector:
+ case DeclarationName::ObjCOneArgSelector:
+ case DeclarationName::ObjCMultiArgSelector:
+ llvm_unreachable("Can't mangle Objective-C selector names here!");
+
+ case DeclarationName::CXXConstructorName:
+ if (ND == Structor)
+ // If the named decl is the C++ constructor we're mangling, use the type
+ // we were given.
+ mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
+ else
+ // Otherwise, use the complete constructor name. This is relevant if a
+ // class with a constructor is declared within a constructor.
+ mangleCXXCtorType(Ctor_Complete);
+ break;
+
+ case DeclarationName::CXXDestructorName:
+ if (ND == Structor)
+ // If the named decl is the C++ destructor we're mangling, use the type we
+ // were given.
+ mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
+ else
+ // Otherwise, use the complete destructor name. This is relevant if a
+ // class with a destructor is declared within a destructor.
+ mangleCXXDtorType(Dtor_Complete);
+ break;
+
+ case DeclarationName::CXXOperatorName:
+ if (ND && Arity == UnknownArity) {
+ Arity = cast<FunctionDecl>(ND)->getNumParams();
+
+ // If we have a member function, we need to include the 'this' pointer.
+ if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
+ if (!MD->isStatic())
+ Arity++;
+ }
+ // FALLTHROUGH
+ case DeclarationName::CXXConversionFunctionName:
+ case DeclarationName::CXXLiteralOperatorName:
+ mangleOperatorName(Name, Arity);
+ break;
+
+ case DeclarationName::CXXUsingDirective:
+ llvm_unreachable("Can't mangle a using directive name!");
+ }
+}
+
+void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
+ // <source-name> ::= <positive length number> <identifier>
+ // <number> ::= [n] <non-negative decimal integer>
+ // <identifier> ::= <unqualified source code identifier>
+ Out << II->getLength() << II->getName();
+}
+
+void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
+ const DeclContext *DC,
+ bool NoFunction) {
+ // <nested-name>
+ // ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
+ // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
+ // <template-args> E
+
+ Out << 'N';
+ if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
+ Qualifiers MethodQuals =
+ Qualifiers::fromCVRMask(Method->getTypeQualifiers());
+ // We do not consider restrict a distinguishing attribute for overloading
+ // purposes so we must not mangle it.
+ MethodQuals.removeRestrict();
+ mangleQualifiers(MethodQuals);
+ mangleRefQualifier(Method->getRefQualifier());
+ }
+
+ // Check if we have a template.
+ const TemplateArgumentList *TemplateArgs = nullptr;
+ if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
+ mangleTemplatePrefix(TD, NoFunction);
+ mangleTemplateArgs(*TemplateArgs);
+ }
+ else {
+ manglePrefix(DC, NoFunction);
+ mangleUnqualifiedName(ND);
+ }
+
+ Out << 'E';
+}
+void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
+ const TemplateArgument *TemplateArgs,
+ unsigned NumTemplateArgs) {
+ // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
+
+ Out << 'N';
+
+ mangleTemplatePrefix(TD);
+ mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
+
+ Out << 'E';
+}
+
+void CXXNameMangler::mangleLocalName(const Decl *D) {
+ // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
+ // := Z <function encoding> E s [<discriminator>]
+ // <local-name> := Z <function encoding> E d [ <parameter number> ]
+ // _ <entity name>
+ // <discriminator> := _ <non-negative number>
+ assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
+ const RecordDecl *RD = GetLocalClassDecl(D);
+ const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
+
+ Out << 'Z';
+
+ if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
+ mangleObjCMethodName(MD);
+ else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
+ mangleBlockForPrefix(BD);
+ else
+ mangleFunctionEncoding(cast<FunctionDecl>(DC));
+
+ Out << 'E';
+
+ if (RD) {
+ // The parameter number is omitted for the last parameter, 0 for the
+ // second-to-last parameter, 1 for the third-to-last parameter, etc. The
+ // <entity name> will of course contain a <closure-type-name>: Its
+ // numbering will be local to the particular argument in which it appears
+ // -- other default arguments do not affect its encoding.
+ const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
+ if (CXXRD->isLambda()) {
+ if (const ParmVarDecl *Parm
+ = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
+ if (const FunctionDecl *Func
+ = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
+ Out << 'd';
+ unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
+ if (Num > 1)
+ mangleNumber(Num - 2);
+ Out << '_';
+ }
+ }
+ }
+
+ // Mangle the name relative to the closest enclosing function.
+ // equality ok because RD derived from ND above
+ if (D == RD) {
+ mangleUnqualifiedName(RD);
+ } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
+ manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
+ mangleUnqualifiedBlock(BD);
+ } else {
+ const NamedDecl *ND = cast<NamedDecl>(D);
+ mangleNestedName(ND, getEffectiveDeclContext(ND), true /*NoFunction*/);
+ }
+ } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
+ // Mangle a block in a default parameter; see above explanation for
+ // lambdas.
+ if (const ParmVarDecl *Parm
+ = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
+ if (const FunctionDecl *Func
+ = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
+ Out << 'd';
+ unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
+ if (Num > 1)
+ mangleNumber(Num - 2);
+ Out << '_';
+ }
+ }
+
+ mangleUnqualifiedBlock(BD);
+ } else {
+ mangleUnqualifiedName(cast<NamedDecl>(D));
+ }
+
+ if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
+ unsigned disc;
+ if (Context.getNextDiscriminator(ND, disc)) {
+ if (disc < 10)
+ Out << '_' << disc;
+ else
+ Out << "__" << disc << '_';
+ }
+ }
+}
+
+void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
+ if (GetLocalClassDecl(Block)) {
+ mangleLocalName(Block);
+ return;
+ }
+ const DeclContext *DC = getEffectiveDeclContext(Block);
+ if (isLocalContainerContext(DC)) {
+ mangleLocalName(Block);
+ return;
+ }
+ manglePrefix(getEffectiveDeclContext(Block));
+ mangleUnqualifiedBlock(Block);
+}
+
+void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
+ if (Decl *Context = Block->getBlockManglingContextDecl()) {
+ if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
+ Context->getDeclContext()->isRecord()) {
+ if (const IdentifierInfo *Name
+ = cast<NamedDecl>(Context)->getIdentifier()) {
+ mangleSourceName(Name);
+ Out << 'M';
+ }
+ }
+ }
+
+ // If we have a block mangling number, use it.
+ unsigned Number = Block->getBlockManglingNumber();
+ // Otherwise, just make up a number. It doesn't matter what it is because
+ // the symbol in question isn't externally visible.
+ if (!Number)
+ Number = Context.getBlockId(Block, false);
+ Out << "Ub";
+ if (Number > 0)
+ Out << Number - 1;
+ Out << '_';
+}
+
+void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
+ // If the context of a closure type is an initializer for a class member
+ // (static or nonstatic), it is encoded in a qualified name with a final
+ // <prefix> of the form:
+ //
+ // <data-member-prefix> := <member source-name> M
+ //
+ // Technically, the data-member-prefix is part of the <prefix>. However,
+ // since a closure type will always be mangled with a prefix, it's easier
+ // to emit that last part of the prefix here.
+ if (Decl *Context = Lambda->getLambdaContextDecl()) {
+ if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
+ Context->getDeclContext()->isRecord()) {
+ if (const IdentifierInfo *Name
+ = cast<NamedDecl>(Context)->getIdentifier()) {
+ mangleSourceName(Name);
+ Out << 'M';
+ }
+ }
+ }
+
+ Out << "Ul";
+ const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
+ getAs<FunctionProtoType>();
+ mangleBareFunctionType(Proto, /*MangleReturnType=*/false);
+ Out << "E";
+
+ // The number is omitted for the first closure type with a given
+ // <lambda-sig> in a given context; it is n-2 for the nth closure type
+ // (in lexical order) with that same <lambda-sig> and context.
+ //
+ // The AST keeps track of the number for us.
+ unsigned Number = Lambda->getLambdaManglingNumber();
+ assert(Number > 0 && "Lambda should be mangled as an unnamed class");
+ if (Number > 1)
+ mangleNumber(Number - 2);
+ Out << '_';
+}
+
+void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
+ switch (qualifier->getKind()) {
+ case NestedNameSpecifier::Global:
+ // nothing
+ return;
+
+ case NestedNameSpecifier::Super:
+ llvm_unreachable("Can't mangle __super specifier");
+
+ case NestedNameSpecifier::Namespace:
+ mangleName(qualifier->getAsNamespace());
+ return;
+
+ case NestedNameSpecifier::NamespaceAlias:
+ mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
+ return;
+
+ case NestedNameSpecifier::TypeSpec:
+ case NestedNameSpecifier::TypeSpecWithTemplate:
+ manglePrefix(QualType(qualifier->getAsType(), 0));
+ return;
+
+ case NestedNameSpecifier::Identifier:
+ // Member expressions can have these without prefixes, but that
+ // should end up in mangleUnresolvedPrefix instead.
+ assert(qualifier->getPrefix());
+ manglePrefix(qualifier->getPrefix());
+
+ mangleSourceName(qualifier->getAsIdentifier());
+ return;
+ }
+
+ llvm_unreachable("unexpected nested name specifier");
+}
+
+void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
+ // <prefix> ::= <prefix> <unqualified-name>
+ // ::= <template-prefix> <template-args>
+ // ::= <template-param>
+ // ::= # empty
+ // ::= <substitution>
+
+ DC = IgnoreLinkageSpecDecls(DC);
+
+ if (DC->isTranslationUnit())
+ return;
+
+ if (NoFunction && isLocalContainerContext(DC))
+ return;
+
+ assert(!isLocalContainerContext(DC));
+
+ const NamedDecl *ND = cast<NamedDecl>(DC);
+ if (mangleSubstitution(ND))
+ return;
+
+ // Check if we have a template.
+ const TemplateArgumentList *TemplateArgs = nullptr;
+ if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
+ mangleTemplatePrefix(TD);
+ mangleTemplateArgs(*TemplateArgs);
+ } else {
+ manglePrefix(getEffectiveDeclContext(ND), NoFunction);
+ mangleUnqualifiedName(ND);
+ }
+
+ addSubstitution(ND);
+}
+
+void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
+ // <template-prefix> ::= <prefix> <template unqualified-name>
+ // ::= <template-param>
+ // ::= <substitution>
+ if (TemplateDecl *TD = Template.getAsTemplateDecl())
+ return mangleTemplatePrefix(TD);
+
+ if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
+ manglePrefix(Qualified->getQualifier());
+
+ if (OverloadedTemplateStorage *Overloaded
+ = Template.getAsOverloadedTemplate()) {
+ mangleUnqualifiedName(nullptr, (*Overloaded->begin())->getDeclName(),
+ UnknownArity);
+ return;
+ }
+
+ DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
+ assert(Dependent && "Unknown template name kind?");
+ if (NestedNameSpecifier *Qualifier = Dependent->getQualifier())
+ manglePrefix(Qualifier);
+ mangleUnscopedTemplateName(Template);
+}
+
+void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND,
+ bool NoFunction) {
+ // <template-prefix> ::= <prefix> <template unqualified-name>
+ // ::= <template-param>
+ // ::= <substitution>
+ // <template-template-param> ::= <template-param>
+ // <substitution>
+
+ if (mangleSubstitution(ND))
+ return;
+
+ // <template-template-param> ::= <template-param>
+ if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
+ mangleTemplateParameter(TTP->getIndex());
+ } else {
+ manglePrefix(getEffectiveDeclContext(ND), NoFunction);
+ mangleUnqualifiedName(ND->getTemplatedDecl());
+ }
+
+ addSubstitution(ND);
+}
+
+/// Mangles a template name under the production <type>. Required for
+/// template template arguments.
+/// <type> ::= <class-enum-type>
+/// ::= <template-param>
+/// ::= <substitution>
+void CXXNameMangler::mangleType(TemplateName TN) {
+ if (mangleSubstitution(TN))
+ return;
+
+ TemplateDecl *TD = nullptr;
+
+ switch (TN.getKind()) {
+ case TemplateName::QualifiedTemplate:
+ TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
+ goto HaveDecl;
+
+ case TemplateName::Template:
+ TD = TN.getAsTemplateDecl();
+ goto HaveDecl;
+
+ HaveDecl:
+ if (isa<TemplateTemplateParmDecl>(TD))
+ mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
+ else
+ mangleName(TD);
+ break;
+
+ case TemplateName::OverloadedTemplate:
+ llvm_unreachable("can't mangle an overloaded template name as a <type>");
+
+ case TemplateName::DependentTemplate: {
+ const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
+ assert(Dependent->isIdentifier());
+
+ // <class-enum-type> ::= <name>
+ // <name> ::= <nested-name>
+ mangleUnresolvedPrefix(Dependent->getQualifier());
+ mangleSourceName(Dependent->getIdentifier());
+ break;
+ }
+
+ case TemplateName::SubstTemplateTemplateParm: {
+ // Substituted template parameters are mangled as the substituted
+ // template. This will check for the substitution twice, which is
+ // fine, but we have to return early so that we don't try to *add*
+ // the substitution twice.
+ SubstTemplateTemplateParmStorage *subst
+ = TN.getAsSubstTemplateTemplateParm();
+ mangleType(subst->getReplacement());
+ return;
+ }
+
+ case TemplateName::SubstTemplateTemplateParmPack: {
+ // FIXME: not clear how to mangle this!
+ // template <template <class> class T...> class A {
+ // template <template <class> class U...> void foo(B<T,U> x...);
+ // };
+ Out << "_SUBSTPACK_";
+ break;
+ }
+ }
+
+ addSubstitution(TN);
+}
+
+bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty,
+ StringRef Prefix) {
+ // Only certain other types are valid as prefixes; enumerate them.
+ switch (Ty->getTypeClass()) {
+ case Type::Builtin:
+ case Type::Complex:
+ case Type::Adjusted:
+ case Type::Decayed:
+ case Type::Pointer:
+ case Type::BlockPointer:
+ case Type::LValueReference:
+ case Type::RValueReference:
+ case Type::MemberPointer:
+ case Type::ConstantArray:
+ case Type::IncompleteArray:
+ case Type::VariableArray:
+ case Type::DependentSizedArray:
+ case Type::DependentSizedExtVector:
+ case Type::Vector:
+ case Type::ExtVector:
+ case Type::FunctionProto:
+ case Type::FunctionNoProto:
+ case Type::Paren:
+ case Type::Attributed:
+ case Type::Auto:
+ case Type::PackExpansion:
+ case Type::ObjCObject:
+ case Type::ObjCInterface:
+ case Type::ObjCObjectPointer:
+ case Type::Atomic:
+ llvm_unreachable("type is illegal as a nested name specifier");
+
+ case Type::SubstTemplateTypeParmPack:
+ // FIXME: not clear how to mangle this!
+ // template <class T...> class A {
+ // template <class U...> void foo(decltype(T::foo(U())) x...);
+ // };
+ Out << "_SUBSTPACK_";
+ break;
+
+ // <unresolved-type> ::= <template-param>
+ // ::= <decltype>
+ // ::= <template-template-param> <template-args>
+ // (this last is not official yet)
+ case Type::TypeOfExpr:
+ case Type::TypeOf:
+ case Type::Decltype:
+ case Type::TemplateTypeParm:
+ case Type::UnaryTransform:
+ case Type::SubstTemplateTypeParm:
+ unresolvedType:
+ // Some callers want a prefix before the mangled type.
+ Out << Prefix;
+
+ // This seems to do everything we want. It's not really
+ // sanctioned for a substituted template parameter, though.
+ mangleType(Ty);
+
+ // We never want to print 'E' directly after an unresolved-type,
+ // so we return directly.
+ return true;
+
+ case Type::Typedef:
+ mangleSourceName(cast<TypedefType>(Ty)->getDecl()->getIdentifier());
+ break;
+
+ case Type::UnresolvedUsing:
+ mangleSourceName(
+ cast<UnresolvedUsingType>(Ty)->getDecl()->getIdentifier());
+ break;
+
+ case Type::Enum:
+ case Type::Record:
+ mangleSourceName(cast<TagType>(Ty)->getDecl()->getIdentifier());
+ break;
+
+ case Type::TemplateSpecialization: {
+ const TemplateSpecializationType *TST =
+ cast<TemplateSpecializationType>(Ty);
+ TemplateName TN = TST->getTemplateName();
+ switch (TN.getKind()) {
+ case TemplateName::Template:
+ case TemplateName::QualifiedTemplate: {
+ TemplateDecl *TD = TN.getAsTemplateDecl();
+
+ // If the base is a template template parameter, this is an
+ // unresolved type.
+ assert(TD && "no template for template specialization type");
+ if (isa<TemplateTemplateParmDecl>(TD))
+ goto unresolvedType;
+
+ mangleSourceName(TD->getIdentifier());
+ break;
+ }
+
+ case TemplateName::OverloadedTemplate:
+ case TemplateName::DependentTemplate:
+ llvm_unreachable("invalid base for a template specialization type");
+
+ case TemplateName::SubstTemplateTemplateParm: {
+ SubstTemplateTemplateParmStorage *subst =
+ TN.getAsSubstTemplateTemplateParm();
+ mangleExistingSubstitution(subst->getReplacement());
+ break;
+ }
+
+ case TemplateName::SubstTemplateTemplateParmPack: {
+ // FIXME: not clear how to mangle this!
+ // template <template <class U> class T...> class A {
+ // template <class U...> void foo(decltype(T<U>::foo) x...);
+ // };
+ Out << "_SUBSTPACK_";
+ break;
+ }
+ }
+
+ mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
+ break;
+ }
+
+ case Type::InjectedClassName:
+ mangleSourceName(
+ cast<InjectedClassNameType>(Ty)->getDecl()->getIdentifier());
+ break;
+
+ case Type::DependentName:
+ mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier());
+ break;
+
+ case Type::DependentTemplateSpecialization: {
+ const DependentTemplateSpecializationType *DTST =
+ cast<DependentTemplateSpecializationType>(Ty);
+ mangleSourceName(DTST->getIdentifier());
+ mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
+ break;
+ }
+
+ case Type::Elaborated:
+ return mangleUnresolvedTypeOrSimpleId(
+ cast<ElaboratedType>(Ty)->getNamedType(), Prefix);
+ }
+
+ return false;
+}
+
+void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) {
+ switch (Name.getNameKind()) {
+ case DeclarationName::CXXConstructorName:
+ case DeclarationName::CXXDestructorName:
+ case DeclarationName::CXXUsingDirective:
+ case DeclarationName::Identifier:
+ case DeclarationName::ObjCMultiArgSelector:
+ case DeclarationName::ObjCOneArgSelector:
+ case DeclarationName::ObjCZeroArgSelector:
+ llvm_unreachable("Not an operator name");
+
+ case DeclarationName::CXXConversionFunctionName:
+ // <operator-name> ::= cv <type> # (cast)
+ Out << "cv";
+ mangleType(Name.getCXXNameType());
+ break;
+
+ case DeclarationName::CXXLiteralOperatorName:
+ Out << "li";
+ mangleSourceName(Name.getCXXLiteralIdentifier());
+ return;
+
+ case DeclarationName::CXXOperatorName:
+ mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
+ break;
+ }
+}
+
+
+
+void
+CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
+ switch (OO) {
+ // <operator-name> ::= nw # new
+ case OO_New: Out << "nw"; break;
+ // ::= na # new[]
+ case OO_Array_New: Out << "na"; break;
+ // ::= dl # delete
+ case OO_Delete: Out << "dl"; break;
+ // ::= da # delete[]
+ case OO_Array_Delete: Out << "da"; break;
+ // ::= ps # + (unary)
+ // ::= pl # + (binary or unknown)
+ case OO_Plus:
+ Out << (Arity == 1? "ps" : "pl"); break;
+ // ::= ng # - (unary)
+ // ::= mi # - (binary or unknown)
+ case OO_Minus:
+ Out << (Arity == 1? "ng" : "mi"); break;
+ // ::= ad # & (unary)
+ // ::= an # & (binary or unknown)
+ case OO_Amp:
+ Out << (Arity == 1? "ad" : "an"); break;
+ // ::= de # * (unary)
+ // ::= ml # * (binary or unknown)
+ case OO_Star:
+ // Use binary when unknown.
+ Out << (Arity == 1? "de" : "ml"); break;
+ // ::= co # ~
+ case OO_Tilde: Out << "co"; break;
+ // ::= dv # /
+ case OO_Slash: Out << "dv"; break;
+ // ::= rm # %
+ case OO_Percent: Out << "rm"; break;
+ // ::= or # |
+ case OO_Pipe: Out << "or"; break;
+ // ::= eo # ^
+ case OO_Caret: Out << "eo"; break;
+ // ::= aS # =
+ case OO_Equal: Out << "aS"; break;
+ // ::= pL # +=
+ case OO_PlusEqual: Out << "pL"; break;
+ // ::= mI # -=
+ case OO_MinusEqual: Out << "mI"; break;
+ // ::= mL # *=
+ case OO_StarEqual: Out << "mL"; break;
+ // ::= dV # /=
+ case OO_SlashEqual: Out << "dV"; break;
+ // ::= rM # %=
+ case OO_PercentEqual: Out << "rM"; break;
+ // ::= aN # &=
+ case OO_AmpEqual: Out << "aN"; break;
+ // ::= oR # |=
+ case OO_PipeEqual: Out << "oR"; break;
+ // ::= eO # ^=
+ case OO_CaretEqual: Out << "eO"; break;
+ // ::= ls # <<
+ case OO_LessLess: Out << "ls"; break;
+ // ::= rs # >>
+ case OO_GreaterGreater: Out << "rs"; break;
+ // ::= lS # <<=
+ case OO_LessLessEqual: Out << "lS"; break;
+ // ::= rS # >>=
+ case OO_GreaterGreaterEqual: Out << "rS"; break;
+ // ::= eq # ==
+ case OO_EqualEqual: Out << "eq"; break;
+ // ::= ne # !=
+ case OO_ExclaimEqual: Out << "ne"; break;
+ // ::= lt # <
+ case OO_Less: Out << "lt"; break;
+ // ::= gt # >
+ case OO_Greater: Out << "gt"; break;
+ // ::= le # <=
+ case OO_LessEqual: Out << "le"; break;
+ // ::= ge # >=
+ case OO_GreaterEqual: Out << "ge"; break;
+ // ::= nt # !
+ case OO_Exclaim: Out << "nt"; break;
+ // ::= aa # &&
+ case OO_AmpAmp: Out << "aa"; break;
+ // ::= oo # ||
+ case OO_PipePipe: Out << "oo"; break;
+ // ::= pp # ++
+ case OO_PlusPlus: Out << "pp"; break;
+ // ::= mm # --
+ case OO_MinusMinus: Out << "mm"; break;
+ // ::= cm # ,
+ case OO_Comma: Out << "cm"; break;
+ // ::= pm # ->*
+ case OO_ArrowStar: Out << "pm"; break;
+ // ::= pt # ->
+ case OO_Arrow: Out << "pt"; break;
+ // ::= cl # ()
+ case OO_Call: Out << "cl"; break;
+ // ::= ix # []
+ case OO_Subscript: Out << "ix"; break;
+
+ // ::= qu # ?
+ // The conditional operator can't be overloaded, but we still handle it when
+ // mangling expressions.
+ case OO_Conditional: Out << "qu"; break;
+
+ case OO_None:
+ case NUM_OVERLOADED_OPERATORS:
+ llvm_unreachable("Not an overloaded operator");
+ }
+}
+
+void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
+ // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const
+ if (Quals.hasRestrict())
+ Out << 'r';
+ if (Quals.hasVolatile())
+ Out << 'V';
+ if (Quals.hasConst())
+ Out << 'K';
+
+ if (Quals.hasAddressSpace()) {
+ // Address space extension:
+ //
+ // <type> ::= U <target-addrspace>
+ // <type> ::= U <OpenCL-addrspace>
+ // <type> ::= U <CUDA-addrspace>
+
+ SmallString<64> ASString;
+ unsigned AS = Quals.getAddressSpace();
+
+ if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
+ // <target-addrspace> ::= "AS" <address-space-number>
+ unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
+ ASString = "AS" + llvm::utostr_32(TargetAS);
+ } else {
+ switch (AS) {
+ default: llvm_unreachable("Not a language specific address space");
+ // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" ]
+ case LangAS::opencl_global: ASString = "CLglobal"; break;
+ case LangAS::opencl_local: ASString = "CLlocal"; break;
+ case LangAS::opencl_constant: ASString = "CLconstant"; break;
+ // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
+ case LangAS::cuda_device: ASString = "CUdevice"; break;
+ case LangAS::cuda_constant: ASString = "CUconstant"; break;
+ case LangAS::cuda_shared: ASString = "CUshared"; break;
+ }
+ }
+ Out << 'U' << ASString.size() << ASString;
+ }
+
+ StringRef LifetimeName;
+ switch (Quals.getObjCLifetime()) {
+ // Objective-C ARC Extension:
+ //
+ // <type> ::= U "__strong"
+ // <type> ::= U "__weak"
+ // <type> ::= U "__autoreleasing"
+ case Qualifiers::OCL_None:
+ break;
+
+ case Qualifiers::OCL_Weak:
+ LifetimeName = "__weak";
+ break;
+
+ case Qualifiers::OCL_Strong:
+ LifetimeName = "__strong";
+ break;
+
+ case Qualifiers::OCL_Autoreleasing:
+ LifetimeName = "__autoreleasing";
+ break;
+
+ case Qualifiers::OCL_ExplicitNone:
+ // The __unsafe_unretained qualifier is *not* mangled, so that
+ // __unsafe_unretained types in ARC produce the same manglings as the
+ // equivalent (but, naturally, unqualified) types in non-ARC, providing
+ // better ABI compatibility.
+ //
+ // It's safe to do this because unqualified 'id' won't show up
+ // in any type signatures that need to be mangled.
+ break;
+ }
+ if (!LifetimeName.empty())
+ Out << 'U' << LifetimeName.size() << LifetimeName;
+}
+
+void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
+ // <ref-qualifier> ::= R # lvalue reference
+ // ::= O # rvalue-reference
+ switch (RefQualifier) {
+ case RQ_None:
+ break;
+
+ case RQ_LValue:
+ Out << 'R';
+ break;
+
+ case RQ_RValue:
+ Out << 'O';
+ break;
+ }
+}
+
+void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
+ Context.mangleObjCMethodName(MD, Out);
+}
+
+static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty) {
+ if (Quals)
+ return true;
+ if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel))
+ return true;
+ if (Ty->isOpenCLSpecificType())
+ return true;
+ if (Ty->isBuiltinType())
+ return false;
+
+ return true;
+}
+
+void CXXNameMangler::mangleType(QualType T) {
+ // If our type is instantiation-dependent but not dependent, we mangle
+ // it as it was written in the source, removing any top-level sugar.
+ // Otherwise, use the canonical type.
+ //
+ // FIXME: This is an approximation of the instantiation-dependent name
+ // mangling rules, since we should really be using the type as written and
+ // augmented via semantic analysis (i.e., with implicit conversions and
+ // default template arguments) for any instantiation-dependent type.
+ // Unfortunately, that requires several changes to our AST:
+ // - Instantiation-dependent TemplateSpecializationTypes will need to be
+ // uniqued, so that we can handle substitutions properly
+ // - Default template arguments will need to be represented in the
+ // TemplateSpecializationType, since they need to be mangled even though
+ // they aren't written.
+ // - Conversions on non-type template arguments need to be expressed, since
+ // they can affect the mangling of sizeof/alignof.
+ if (!T->isInstantiationDependentType() || T->isDependentType())
+ T = T.getCanonicalType();
+ else {
+ // Desugar any types that are purely sugar.
+ do {
+ // Don't desugar through template specialization types that aren't
+ // type aliases. We need to mangle the template arguments as written.
+ if (const TemplateSpecializationType *TST
+ = dyn_cast<TemplateSpecializationType>(T))
+ if (!TST->isTypeAlias())
+ break;
+
+ QualType Desugared
+ = T.getSingleStepDesugaredType(Context.getASTContext());
+ if (Desugared == T)
+ break;
+
+ T = Desugared;
+ } while (true);
+ }
+ SplitQualType split = T.split();
+ Qualifiers quals = split.Quals;
+ const Type *ty = split.Ty;
+
+ bool isSubstitutable = isTypeSubstitutable(quals, ty);
+ if (isSubstitutable && mangleSubstitution(T))
+ return;
+
+ // If we're mangling a qualified array type, push the qualifiers to
+ // the element type.
+ if (quals && isa<ArrayType>(T)) {
+ ty = Context.getASTContext().getAsArrayType(T);
+ quals = Qualifiers();
+
+ // Note that we don't update T: we want to add the
+ // substitution at the original type.
+ }
+
+ if (quals) {
+ mangleQualifiers(quals);
+ // Recurse: even if the qualified type isn't yet substitutable,
+ // the unqualified type might be.
+ mangleType(QualType(ty, 0));
+ } else {
+ switch (ty->getTypeClass()) {
+#define ABSTRACT_TYPE(CLASS, PARENT)
+#define NON_CANONICAL_TYPE(CLASS, PARENT) \
+ case Type::CLASS: \
+ llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
+ return;
+#define TYPE(CLASS, PARENT) \
+ case Type::CLASS: \
+ mangleType(static_cast<const CLASS##Type*>(ty)); \
+ break;
+#include "clang/AST/TypeNodes.def"
+ }
+ }
+
+ // Add the substitution.
+ if (isSubstitutable)
+ addSubstitution(T);
+}
+
+void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
+ if (!mangleStandardSubstitution(ND))
+ mangleName(ND);
+}
+
+void CXXNameMangler::mangleType(const BuiltinType *T) {
+ // <type> ::= <builtin-type>
+ // <builtin-type> ::= v # void
+ // ::= w # wchar_t
+ // ::= b # bool
+ // ::= c # char
+ // ::= a # signed char
+ // ::= h # unsigned char
+ // ::= s # short
+ // ::= t # unsigned short
+ // ::= i # int
+ // ::= j # unsigned int
+ // ::= l # long
+ // ::= m # unsigned long
+ // ::= x # long long, __int64
+ // ::= y # unsigned long long, __int64
+ // ::= n # __int128
+ // ::= o # unsigned __int128
+ // ::= f # float
+ // ::= d # double
+ // ::= e # long double, __float80
+ // UNSUPPORTED: ::= g # __float128
+ // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits)
+ // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits)
+ // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits)
+ // ::= Dh # IEEE 754r half-precision floating point (16 bits)
+ // ::= Di # char32_t
+ // ::= Ds # char16_t
+ // ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
+ // ::= u <source-name> # vendor extended type
+ switch (T->getKind()) {
+ case BuiltinType::Void: Out << 'v'; break;
+ case BuiltinType::Bool: Out << 'b'; break;
+ case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
+ case BuiltinType::UChar: Out << 'h'; break;
+ case BuiltinType::UShort: Out << 't'; break;
+ case BuiltinType::UInt: Out << 'j'; break;
+ case BuiltinType::ULong: Out << 'm'; break;
+ case BuiltinType::ULongLong: Out << 'y'; break;
+ case BuiltinType::UInt128: Out << 'o'; break;
+ case BuiltinType::SChar: Out << 'a'; break;
+ case BuiltinType::WChar_S:
+ case BuiltinType::WChar_U: Out << 'w'; break;
+ case BuiltinType::Char16: Out << "Ds"; break;
+ case BuiltinType::Char32: Out << "Di"; break;
+ case BuiltinType::Short: Out << 's'; break;
+ case BuiltinType::Int: Out << 'i'; break;
+ case BuiltinType::Long: Out << 'l'; break;
+ case BuiltinType::LongLong: Out << 'x'; break;
+ case BuiltinType::Int128: Out << 'n'; break;
+ case BuiltinType::Half: Out << "Dh"; break;
+ case BuiltinType::Float: Out << 'f'; break;
+ case BuiltinType::Double: Out << 'd'; break;
+ case BuiltinType::LongDouble: Out << 'e'; break;
+ case BuiltinType::NullPtr: Out << "Dn"; break;
+
+#define BUILTIN_TYPE(Id, SingletonId)
+#define PLACEHOLDER_TYPE(Id, SingletonId) \
+ case BuiltinType::Id:
+#include "clang/AST/BuiltinTypes.def"
+ case BuiltinType::Dependent:
+ llvm_unreachable("mangling a placeholder type");
+ case BuiltinType::ObjCId: Out << "11objc_object"; break;
+ case BuiltinType::ObjCClass: Out << "10objc_class"; break;
+ case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
+ case BuiltinType::OCLImage1d: Out << "11ocl_image1d"; break;
+ case BuiltinType::OCLImage1dArray: Out << "16ocl_image1darray"; break;
+ case BuiltinType::OCLImage1dBuffer: Out << "17ocl_image1dbuffer"; break;
+ case BuiltinType::OCLImage2d: Out << "11ocl_image2d"; break;
+ case BuiltinType::OCLImage2dArray: Out << "16ocl_image2darray"; break;
+ case BuiltinType::OCLImage3d: Out << "11ocl_image3d"; break;
+ case BuiltinType::OCLSampler: Out << "11ocl_sampler"; break;
+ case BuiltinType::OCLEvent: Out << "9ocl_event"; break;
+ }
+}
+
+// <type> ::= <function-type>
+// <function-type> ::= [<CV-qualifiers>] F [Y]
+// <bare-function-type> [<ref-qualifier>] E
+void CXXNameMangler::mangleType(const FunctionProtoType *T) {
+ // Mangle CV-qualifiers, if present. These are 'this' qualifiers,
+ // e.g. "const" in "int (A::*)() const".
+ mangleQualifiers(Qualifiers::fromCVRMask(T->getTypeQuals()));
+
+ Out << 'F';
+
+ // FIXME: We don't have enough information in the AST to produce the 'Y'
+ // encoding for extern "C" function types.
+ mangleBareFunctionType(T, /*MangleReturnType=*/true);
+
+ // Mangle the ref-qualifier, if present.
+ mangleRefQualifier(T->getRefQualifier());
+
+ Out << 'E';
+}
+void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
+ llvm_unreachable("Can't mangle K&R function prototypes");
+}
+void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
+ bool MangleReturnType) {
+ // We should never be mangling something without a prototype.
+ const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
+
+ // Record that we're in a function type. See mangleFunctionParam
+ // for details on what we're trying to achieve here.
+ FunctionTypeDepthState saved = FunctionTypeDepth.push();
+
+ // <bare-function-type> ::= <signature type>+
+ if (MangleReturnType) {
+ FunctionTypeDepth.enterResultType();
+ mangleType(Proto->getReturnType());
+ FunctionTypeDepth.leaveResultType();
+ }
+
+ if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
+ // <builtin-type> ::= v # void
+ Out << 'v';
+
+ FunctionTypeDepth.pop(saved);
+ return;
+ }
+
+ for (const auto &Arg : Proto->param_types())
+ mangleType(Context.getASTContext().getSignatureParameterType(Arg));
+
+ FunctionTypeDepth.pop(saved);
+
+ // <builtin-type> ::= z # ellipsis
+ if (Proto->isVariadic())
+ Out << 'z';
+}
+
+// <type> ::= <class-enum-type>
+// <class-enum-type> ::= <name>
+void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
+ mangleName(T->getDecl());
+}
+
+// <type> ::= <class-enum-type>
+// <class-enum-type> ::= <name>
+void CXXNameMangler::mangleType(const EnumType *T) {
+ mangleType(static_cast<const TagType*>(T));
+}
+void CXXNameMangler::mangleType(const RecordType *T) {
+ mangleType(static_cast<const TagType*>(T));
+}
+void CXXNameMangler::mangleType(const TagType *T) {
+ mangleName(T->getDecl());
+}
+
+// <type> ::= <array-type>
+// <array-type> ::= A <positive dimension number> _ <element type>
+// ::= A [<dimension expression>] _ <element type>
+void CXXNameMangler::mangleType(const ConstantArrayType *T) {
+ Out << 'A' << T->getSize() << '_';
+ mangleType(T->getElementType());
+}
+void CXXNameMangler::mangleType(const VariableArrayType *T) {
+ Out << 'A';
+ // decayed vla types (size 0) will just be skipped.
+ if (T->getSizeExpr())
+ mangleExpression(T->getSizeExpr());
+ Out << '_';
+ mangleType(T->getElementType());
+}
+void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
+ Out << 'A';
+ mangleExpression(T->getSizeExpr());
+ Out << '_';
+ mangleType(T->getElementType());
+}
+void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
+ Out << "A_";
+ mangleType(T->getElementType());
+}
+
+// <type> ::= <pointer-to-member-type>
+// <pointer-to-member-type> ::= M <class type> <member type>
+void CXXNameMangler::mangleType(const MemberPointerType *T) {
+ Out << 'M';
+ mangleType(QualType(T->getClass(), 0));
+ QualType PointeeType = T->getPointeeType();
+ if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
+ mangleType(FPT);
+
+ // Itanium C++ ABI 5.1.8:
+ //
+ // The type of a non-static member function is considered to be different,
+ // for the purposes of substitution, from the type of a namespace-scope or
+ // static member function whose type appears similar. The types of two
+ // non-static member functions are considered to be different, for the
+ // purposes of substitution, if the functions are members of different
+ // classes. In other words, for the purposes of substitution, the class of
+ // which the function is a member is considered part of the type of
+ // function.
+
+ // Given that we already substitute member function pointers as a
+ // whole, the net effect of this rule is just to unconditionally
+ // suppress substitution on the function type in a member pointer.
+ // We increment the SeqID here to emulate adding an entry to the
+ // substitution table.
+ ++SeqID;
+ } else
+ mangleType(PointeeType);
+}
+
+// <type> ::= <template-param>
+void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
+ mangleTemplateParameter(T->getIndex());
+}
+
+// <type> ::= <template-param>
+void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
+ // FIXME: not clear how to mangle this!
+ // template <class T...> class A {
+ // template <class U...> void foo(T(*)(U) x...);
+ // };
+ Out << "_SUBSTPACK_";
+}
+
+// <type> ::= P <type> # pointer-to
+void CXXNameMangler::mangleType(const PointerType *T) {
+ Out << 'P';
+ mangleType(T->getPointeeType());
+}
+void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
+ Out << 'P';
+ mangleType(T->getPointeeType());
+}
+
+// <type> ::= R <type> # reference-to
+void CXXNameMangler::mangleType(const LValueReferenceType *T) {
+ Out << 'R';
+ mangleType(T->getPointeeType());
+}
+
+// <type> ::= O <type> # rvalue reference-to (C++0x)
+void CXXNameMangler::mangleType(const RValueReferenceType *T) {
+ Out << 'O';
+ mangleType(T->getPointeeType());
+}
+
+// <type> ::= C <type> # complex pair (C 2000)
+void CXXNameMangler::mangleType(const ComplexType *T) {
+ Out << 'C';
+ mangleType(T->getElementType());
+}
+
+// ARM's ABI for Neon vector types specifies that they should be mangled as
+// if they are structs (to match ARM's initial implementation). The
+// vector type must be one of the special types predefined by ARM.
+void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
+ QualType EltType = T->getElementType();
+ assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
+ const char *EltName = nullptr;
+ if (T->getVectorKind() == VectorType::NeonPolyVector) {
+ switch (cast<BuiltinType>(EltType)->getKind()) {
+ case BuiltinType::SChar:
+ case BuiltinType::UChar:
+ EltName = "poly8_t";
+ break;
+ case BuiltinType::Short:
+ case BuiltinType::UShort:
+ EltName = "poly16_t";
+ break;
+ case BuiltinType::ULongLong:
+ EltName = "poly64_t";
+ break;
+ default: llvm_unreachable("unexpected Neon polynomial vector element type");
+ }
+ } else {
+ switch (cast<BuiltinType>(EltType)->getKind()) {
+ case BuiltinType::SChar: EltName = "int8_t"; break;
+ case BuiltinType::UChar: EltName = "uint8_t"; break;
+ case BuiltinType::Short: EltName = "int16_t"; break;
+ case BuiltinType::UShort: EltName = "uint16_t"; break;
+ case BuiltinType::Int: EltName = "int32_t"; break;
+ case BuiltinType::UInt: EltName = "uint32_t"; break;
+ case BuiltinType::LongLong: EltName = "int64_t"; break;
+ case BuiltinType::ULongLong: EltName = "uint64_t"; break;
+ case BuiltinType::Double: EltName = "float64_t"; break;
+ case BuiltinType::Float: EltName = "float32_t"; break;
+ case BuiltinType::Half: EltName = "float16_t";break;
+ default:
+ llvm_unreachable("unexpected Neon vector element type");
+ }
+ }
+ const char *BaseName = nullptr;
+ unsigned BitSize = (T->getNumElements() *
+ getASTContext().getTypeSize(EltType));
+ if (BitSize == 64)
+ BaseName = "__simd64_";
+ else {
+ assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
+ BaseName = "__simd128_";
+ }
+ Out << strlen(BaseName) + strlen(EltName);
+ Out << BaseName << EltName;
+}
+
+static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
+ switch (EltType->getKind()) {
+ case BuiltinType::SChar:
+ return "Int8";
+ case BuiltinType::Short:
+ return "Int16";
+ case BuiltinType::Int:
+ return "Int32";
+ case BuiltinType::Long:
+ case BuiltinType::LongLong:
+ return "Int64";
+ case BuiltinType::UChar:
+ return "Uint8";
+ case BuiltinType::UShort:
+ return "Uint16";
+ case BuiltinType::UInt:
+ return "Uint32";
+ case BuiltinType::ULong:
+ case BuiltinType::ULongLong:
+ return "Uint64";
+ case BuiltinType::Half:
+ return "Float16";
+ case BuiltinType::Float:
+ return "Float32";
+ case BuiltinType::Double:
+ return "Float64";
+ default:
+ llvm_unreachable("Unexpected vector element base type");
+ }
+}
+
+// AArch64's ABI for Neon vector types specifies that they should be mangled as
+// the equivalent internal name. The vector type must be one of the special
+// types predefined by ARM.
+void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
+ QualType EltType = T->getElementType();
+ assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
+ unsigned BitSize =
+ (T->getNumElements() * getASTContext().getTypeSize(EltType));
+ (void)BitSize; // Silence warning.
+
+ assert((BitSize == 64 || BitSize == 128) &&
+ "Neon vector type not 64 or 128 bits");
+
+ StringRef EltName;
+ if (T->getVectorKind() == VectorType::NeonPolyVector) {
+ switch (cast<BuiltinType>(EltType)->getKind()) {
+ case BuiltinType::UChar:
+ EltName = "Poly8";
+ break;
+ case BuiltinType::UShort:
+ EltName = "Poly16";
+ break;
+ case BuiltinType::ULong:
+ case BuiltinType::ULongLong:
+ EltName = "Poly64";
+ break;
+ default:
+ llvm_unreachable("unexpected Neon polynomial vector element type");
+ }
+ } else
+ EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
+
+ std::string TypeName =
+ ("__" + EltName + "x" + llvm::utostr(T->getNumElements()) + "_t").str();
+ Out << TypeName.length() << TypeName;
+}
+
+// GNU extension: vector types
+// <type> ::= <vector-type>
+// <vector-type> ::= Dv <positive dimension number> _
+// <extended element type>
+// ::= Dv [<dimension expression>] _ <element type>
+// <extended element type> ::= <element type>
+// ::= p # AltiVec vector pixel
+// ::= b # Altivec vector bool
+void CXXNameMangler::mangleType(const VectorType *T) {
+ if ((T->getVectorKind() == VectorType::NeonVector ||
+ T->getVectorKind() == VectorType::NeonPolyVector)) {
+ llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
+ llvm::Triple::ArchType Arch =
+ getASTContext().getTargetInfo().getTriple().getArch();
+ if ((Arch == llvm::Triple::aarch64 ||
+ Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin())
+ mangleAArch64NeonVectorType(T);
+ else
+ mangleNeonVectorType(T);
+ return;
+ }
+ Out << "Dv" << T->getNumElements() << '_';
+ if (T->getVectorKind() == VectorType::AltiVecPixel)
+ Out << 'p';
+ else if (T->getVectorKind() == VectorType::AltiVecBool)
+ Out << 'b';
+ else
+ mangleType(T->getElementType());
+}
+void CXXNameMangler::mangleType(const ExtVectorType *T) {
+ mangleType(static_cast<const VectorType*>(T));
+}
+void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
+ Out << "Dv";
+ mangleExpression(T->getSizeExpr());
+ Out << '_';
+ mangleType(T->getElementType());
+}
+
+void CXXNameMangler::mangleType(const PackExpansionType *T) {
+ // <type> ::= Dp <type> # pack expansion (C++0x)
+ Out << "Dp";
+ mangleType(T->getPattern());
+}
+
+void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
+ mangleSourceName(T->getDecl()->getIdentifier());
+}
+
+void CXXNameMangler::mangleType(const ObjCObjectType *T) {
+ if (!T->qual_empty()) {
+ // Mangle protocol qualifiers.
+ SmallString<64> QualStr;
+ llvm::raw_svector_ostream QualOS(QualStr);
+ QualOS << "objcproto";
+ for (const auto *I : T->quals()) {
+ StringRef name = I->getName();
+ QualOS << name.size() << name;
+ }
+ QualOS.flush();
+ Out << 'U' << QualStr.size() << QualStr;
+ }
+ mangleType(T->getBaseType());
+}
+
+void CXXNameMangler::mangleType(const BlockPointerType *T) {
+ Out << "U13block_pointer";
+ mangleType(T->getPointeeType());
+}
+
+void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
+ // Mangle injected class name types as if the user had written the
+ // specialization out fully. It may not actually be possible to see
+ // this mangling, though.
+ mangleType(T->getInjectedSpecializationType());
+}
+
+void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
+ if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
+ mangleName(TD, T->getArgs(), T->getNumArgs());
+ } else {
+ if (mangleSubstitution(QualType(T, 0)))
+ return;
+
+ mangleTemplatePrefix(T->getTemplateName());
+
+ // FIXME: GCC does not appear to mangle the template arguments when
+ // the template in question is a dependent template name. Should we
+ // emulate that badness?
+ mangleTemplateArgs(T->getArgs(), T->getNumArgs());
+ addSubstitution(QualType(T, 0));
+ }
+}
+
+void CXXNameMangler::mangleType(const DependentNameType *T) {
+ // Proposal by cxx-abi-dev, 2014-03-26
+ // <class-enum-type> ::= <name> # non-dependent or dependent type name or
+ // # dependent elaborated type specifier using
+ // # 'typename'
+ // ::= Ts <name> # dependent elaborated type specifier using
+ // # 'struct' or 'class'
+ // ::= Tu <name> # dependent elaborated type specifier using
+ // # 'union'
+ // ::= Te <name> # dependent elaborated type specifier using
+ // # 'enum'
+ switch (T->getKeyword()) {
+ case ETK_Typename:
+ break;
+ case ETK_Struct:
+ case ETK_Class:
+ case ETK_Interface:
+ Out << "Ts";
+ break;
+ case ETK_Union:
+ Out << "Tu";
+ break;
+ case ETK_Enum:
+ Out << "Te";
+ break;
+ default:
+ llvm_unreachable("unexpected keyword for dependent type name");
+ }
+ // Typename types are always nested
+ Out << 'N';
+ manglePrefix(T->getQualifier());
+ mangleSourceName(T->getIdentifier());
+ Out << 'E';
+}
+
+void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
+ // Dependently-scoped template types are nested if they have a prefix.
+ Out << 'N';
+
+ // TODO: avoid making this TemplateName.
+ TemplateName Prefix =
+ getASTContext().getDependentTemplateName(T->getQualifier(),
+ T->getIdentifier());
+ mangleTemplatePrefix(Prefix);
+
+ // FIXME: GCC does not appear to mangle the template arguments when
+ // the template in question is a dependent template name. Should we
+ // emulate that badness?
+ mangleTemplateArgs(T->getArgs(), T->getNumArgs());
+ Out << 'E';
+}
+
+void CXXNameMangler::mangleType(const TypeOfType *T) {
+ // FIXME: this is pretty unsatisfactory, but there isn't an obvious
+ // "extension with parameters" mangling.
+ Out << "u6typeof";
+}
+
+void CXXNameMangler::mangleType(const TypeOfExprType *T) {
+ // FIXME: this is pretty unsatisfactory, but there isn't an obvious
+ // "extension with parameters" mangling.
+ Out << "u6typeof";
+}
+
+void CXXNameMangler::mangleType(const DecltypeType *T) {
+ Expr *E = T->getUnderlyingExpr();
+
+ // type ::= Dt <expression> E # decltype of an id-expression
+ // # or class member access
+ // ::= DT <expression> E # decltype of an expression
+
+ // This purports to be an exhaustive list of id-expressions and
+ // class member accesses. Note that we do not ignore parentheses;
+ // parentheses change the semantics of decltype for these
+ // expressions (and cause the mangler to use the other form).
+ if (isa<DeclRefExpr>(E) ||
+ isa<MemberExpr>(E) ||
+ isa<UnresolvedLookupExpr>(E) ||
+ isa<DependentScopeDeclRefExpr>(E) ||
+ isa<CXXDependentScopeMemberExpr>(E) ||
+ isa<UnresolvedMemberExpr>(E))
+ Out << "Dt";
+ else
+ Out << "DT";
+ mangleExpression(E);
+ Out << 'E';
+}
+
+void CXXNameMangler::mangleType(const UnaryTransformType *T) {
+ // If this is dependent, we need to record that. If not, we simply
+ // mangle it as the underlying type since they are equivalent.
+ if (T->isDependentType()) {
+ Out << 'U';
+
+ switch (T->getUTTKind()) {
+ case UnaryTransformType::EnumUnderlyingType:
+ Out << "3eut";
+ break;
+ }
+ }
+
+ mangleType(T->getUnderlyingType());
+}
+
+void CXXNameMangler::mangleType(const AutoType *T) {
+ QualType D = T->getDeducedType();
+ // <builtin-type> ::= Da # dependent auto
+ if (D.isNull())
+ Out << (T->isDecltypeAuto() ? "Dc" : "Da");
+ else
+ mangleType(D);
+}
+
+void CXXNameMangler::mangleType(const AtomicType *T) {
+ // <type> ::= U <source-name> <type> # vendor extended type qualifier
+ // (Until there's a standardized mangling...)
+ Out << "U7_Atomic";
+ mangleType(T->getValueType());
+}
+
+void CXXNameMangler::mangleIntegerLiteral(QualType T,
+ const llvm::APSInt &Value) {
+ // <expr-primary> ::= L <type> <value number> E # integer literal
+ Out << 'L';
+
+ mangleType(T);
+ if (T->isBooleanType()) {
+ // Boolean values are encoded as 0/1.
+ Out << (Value.getBoolValue() ? '1' : '0');
+ } else {
+ mangleNumber(Value);
+ }
+ Out << 'E';
+
+}
+
+void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) {
+ // Ignore member expressions involving anonymous unions.
+ while (const auto *RT = Base->getType()->getAs<RecordType>()) {
+ if (!RT->getDecl()->isAnonymousStructOrUnion())
+ break;
+ const auto *ME = dyn_cast<MemberExpr>(Base);
+ if (!ME)
+ break;
+ Base = ME->getBase();
+ IsArrow = ME->isArrow();
+ }
+
+ if (Base->isImplicitCXXThis()) {
+ // Note: GCC mangles member expressions to the implicit 'this' as
+ // *this., whereas we represent them as this->. The Itanium C++ ABI
+ // does not specify anything here, so we follow GCC.
+ Out << "dtdefpT";
+ } else {
+ Out << (IsArrow ? "pt" : "dt");
+ mangleExpression(Base);
+ }
+}
+
+/// Mangles a member expression.
+void CXXNameMangler::mangleMemberExpr(const Expr *base,
+ bool isArrow,
+ NestedNameSpecifier *qualifier,
+ NamedDecl *firstQualifierLookup,
+ DeclarationName member,
+ unsigned arity) {
+ // <expression> ::= dt <expression> <unresolved-name>
+ // ::= pt <expression> <unresolved-name>
+ if (base)
+ mangleMemberExprBase(base, isArrow);
+ mangleUnresolvedName(qualifier, member, arity);
+}
+
+/// Look at the callee of the given call expression and determine if
+/// it's a parenthesized id-expression which would have triggered ADL
+/// otherwise.
+static bool isParenthesizedADLCallee(const CallExpr *call) {
+ const Expr *callee = call->getCallee();
+ const Expr *fn = callee->IgnoreParens();
+
+ // Must be parenthesized. IgnoreParens() skips __extension__ nodes,
+ // too, but for those to appear in the callee, it would have to be
+ // parenthesized.
+ if (callee == fn) return false;
+
+ // Must be an unresolved lookup.
+ const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
+ if (!lookup) return false;
+
+ assert(!lookup->requiresADL());
+
+ // Must be an unqualified lookup.
+ if (lookup->getQualifier()) return false;
+
+ // Must not have found a class member. Note that if one is a class
+ // member, they're all class members.
+ if (lookup->getNumDecls() > 0 &&
+ (*lookup->decls_begin())->isCXXClassMember())
+ return false;
+
+ // Otherwise, ADL would have been triggered.
+ return true;
+}
+
+void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) {
+ const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
+ Out << CastEncoding;
+ mangleType(ECE->getType());
+ mangleExpression(ECE->getSubExpr());
+}
+
+void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) {
+ if (auto *Syntactic = InitList->getSyntacticForm())
+ InitList = Syntactic;
+ for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
+ mangleExpression(InitList->getInit(i));
+}
+
+void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
+ // <expression> ::= <unary operator-name> <expression>
+ // ::= <binary operator-name> <expression> <expression>
+ // ::= <trinary operator-name> <expression> <expression> <expression>
+ // ::= cv <type> expression # conversion with one argument
+ // ::= cv <type> _ <expression>* E # conversion with a different number of arguments
+ // ::= dc <type> <expression> # dynamic_cast<type> (expression)
+ // ::= sc <type> <expression> # static_cast<type> (expression)
+ // ::= cc <type> <expression> # const_cast<type> (expression)
+ // ::= rc <type> <expression> # reinterpret_cast<type> (expression)
+ // ::= st <type> # sizeof (a type)
+ // ::= at <type> # alignof (a type)
+ // ::= <template-param>
+ // ::= <function-param>
+ // ::= sr <type> <unqualified-name> # dependent name
+ // ::= sr <type> <unqualified-name> <template-args> # dependent template-id
+ // ::= ds <expression> <expression> # expr.*expr
+ // ::= sZ <template-param> # size of a parameter pack
+ // ::= sZ <function-param> # size of a function parameter pack
+ // ::= <expr-primary>
+ // <expr-primary> ::= L <type> <value number> E # integer literal
+ // ::= L <type <value float> E # floating literal
+ // ::= L <mangled-name> E # external name
+ // ::= fpT # 'this' expression
+ QualType ImplicitlyConvertedToType;
+
+recurse:
+ switch (E->getStmtClass()) {
+ case Expr::NoStmtClass:
+#define ABSTRACT_STMT(Type)
+#define EXPR(Type, Base)
+#define STMT(Type, Base) \
+ case Expr::Type##Class:
+#include "clang/AST/StmtNodes.inc"
+ // fallthrough
+
+ // These all can only appear in local or variable-initialization
+ // contexts and so should never appear in a mangling.
+ case Expr::AddrLabelExprClass:
+ case Expr::ImplicitValueInitExprClass:
+ case Expr::ParenListExprClass:
+ case Expr::LambdaExprClass:
+ case Expr::MSPropertyRefExprClass:
+ case Expr::TypoExprClass: // This should no longer exist in the AST by now.
+ llvm_unreachable("unexpected statement kind");
+
+ // FIXME: invent manglings for all these.
+ case Expr::BlockExprClass:
+ case Expr::ChooseExprClass:
+ case Expr::CompoundLiteralExprClass:
+ case Expr::DesignatedInitExprClass:
+ case Expr::ExtVectorElementExprClass:
+ case Expr::GenericSelectionExprClass:
+ case Expr::ObjCEncodeExprClass:
+ case Expr::ObjCIsaExprClass:
+ case Expr::ObjCIvarRefExprClass:
+ case Expr::ObjCMessageExprClass:
+ case Expr::ObjCPropertyRefExprClass:
+ case Expr::ObjCProtocolExprClass:
+ case Expr::ObjCSelectorExprClass:
+ case Expr::ObjCStringLiteralClass:
+ case Expr::ObjCBoxedExprClass:
+ case Expr::ObjCArrayLiteralClass:
+ case Expr::ObjCDictionaryLiteralClass:
+ case Expr::ObjCSubscriptRefExprClass:
+ case Expr::ObjCIndirectCopyRestoreExprClass:
+ case Expr::OffsetOfExprClass:
+ case Expr::PredefinedExprClass:
+ case Expr::ShuffleVectorExprClass:
+ case Expr::ConvertVectorExprClass:
+ case Expr::StmtExprClass:
+ case Expr::TypeTraitExprClass:
+ case Expr::ArrayTypeTraitExprClass:
+ case Expr::ExpressionTraitExprClass:
+ case Expr::VAArgExprClass:
+ case Expr::CUDAKernelCallExprClass:
+ case Expr::AsTypeExprClass:
+ case Expr::PseudoObjectExprClass:
+ case Expr::AtomicExprClass:
+ {
+ // As bad as this diagnostic is, it's better than crashing.
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot yet mangle expression type %0");
+ Diags.Report(E->getExprLoc(), DiagID)
+ << E->getStmtClassName() << E->getSourceRange();
+ break;
+ }
+
+ case Expr::CXXUuidofExprClass: {
+ const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E);
+ if (UE->isTypeOperand()) {
+ QualType UuidT = UE->getTypeOperand(Context.getASTContext());
+ Out << "u8__uuidoft";
+ mangleType(UuidT);
+ } else {
+ Expr *UuidExp = UE->getExprOperand();
+ Out << "u8__uuidofz";
+ mangleExpression(UuidExp, Arity);
+ }
+ break;
+ }
+
+ // Even gcc-4.5 doesn't mangle this.
+ case Expr::BinaryConditionalOperatorClass: {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID =
+ Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "?: operator with omitted middle operand cannot be mangled");
+ Diags.Report(E->getExprLoc(), DiagID)
+ << E->getStmtClassName() << E->getSourceRange();
+ break;
+ }
+
+ // These are used for internal purposes and cannot be meaningfully mangled.
+ case Expr::OpaqueValueExprClass:
+ llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
+
+ case Expr::InitListExprClass: {
+ Out << "il";
+ mangleInitListElements(cast<InitListExpr>(E));
+ Out << "E";
+ break;
+ }
+
+ case Expr::CXXDefaultArgExprClass:
+ mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
+ break;
+
+ case Expr::CXXDefaultInitExprClass:
+ mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity);
+ break;
+
+ case Expr::CXXStdInitializerListExprClass:
+ mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity);
+ break;
+
+ case Expr::SubstNonTypeTemplateParmExprClass:
+ mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
+ Arity);
+ break;
+
+ case Expr::UserDefinedLiteralClass:
+ // We follow g++'s approach of mangling a UDL as a call to the literal
+ // operator.
+ case Expr::CXXMemberCallExprClass: // fallthrough
+ case Expr::CallExprClass: {
+ const CallExpr *CE = cast<CallExpr>(E);
+
+ // <expression> ::= cp <simple-id> <expression>* E
+ // We use this mangling only when the call would use ADL except
+ // for being parenthesized. Per discussion with David
+ // Vandervoorde, 2011.04.25.
+ if (isParenthesizedADLCallee(CE)) {
+ Out << "cp";
+ // The callee here is a parenthesized UnresolvedLookupExpr with
+ // no qualifier and should always get mangled as a <simple-id>
+ // anyway.
+
+ // <expression> ::= cl <expression>* E
+ } else {
+ Out << "cl";
+ }
+
+ unsigned CallArity = CE->getNumArgs();
+ for (const Expr *Arg : CE->arguments())
+ if (isa<PackExpansionExpr>(Arg))
+ CallArity = UnknownArity;
+
+ mangleExpression(CE->getCallee(), CallArity);
+ for (const Expr *Arg : CE->arguments())
+ mangleExpression(Arg);
+ Out << 'E';
+ break;
+ }
+
+ case Expr::CXXNewExprClass: {
+ const CXXNewExpr *New = cast<CXXNewExpr>(E);
+ if (New->isGlobalNew()) Out << "gs";
+ Out << (New->isArray() ? "na" : "nw");
+ for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
+ E = New->placement_arg_end(); I != E; ++I)
+ mangleExpression(*I);
+ Out << '_';
+ mangleType(New->getAllocatedType());
+ if (New->hasInitializer()) {
+ if (New->getInitializationStyle() == CXXNewExpr::ListInit)
+ Out << "il";
+ else
+ Out << "pi";
+ const Expr *Init = New->getInitializer();
+ if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
+ // Directly inline the initializers.
+ for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
+ E = CCE->arg_end();
+ I != E; ++I)
+ mangleExpression(*I);
+ } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
+ for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
+ mangleExpression(PLE->getExpr(i));
+ } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
+ isa<InitListExpr>(Init)) {
+ // Only take InitListExprs apart for list-initialization.
+ mangleInitListElements(cast<InitListExpr>(Init));
+ } else
+ mangleExpression(Init);
+ }
+ Out << 'E';
+ break;
+ }
+
+ case Expr::CXXPseudoDestructorExprClass: {
+ const auto *PDE = cast<CXXPseudoDestructorExpr>(E);
+ if (const Expr *Base = PDE->getBase())
+ mangleMemberExprBase(Base, PDE->isArrow());
+ NestedNameSpecifier *Qualifier = PDE->getQualifier();
+ QualType ScopeType;
+ if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) {
+ if (Qualifier) {
+ mangleUnresolvedPrefix(Qualifier,
+ /*Recursive=*/true);
+ mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType());
+ Out << 'E';
+ } else {
+ Out << "sr";
+ if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()))
+ Out << 'E';
+ }
+ } else if (Qualifier) {
+ mangleUnresolvedPrefix(Qualifier);
+ }
+ // <base-unresolved-name> ::= dn <destructor-name>
+ Out << "dn";
+ QualType DestroyedType = PDE->getDestroyedType();
+ mangleUnresolvedTypeOrSimpleId(DestroyedType);
+ break;
+ }
+
+ case Expr::MemberExprClass: {
+ const MemberExpr *ME = cast<MemberExpr>(E);
+ mangleMemberExpr(ME->getBase(), ME->isArrow(),
+ ME->getQualifier(), nullptr,
+ ME->getMemberDecl()->getDeclName(), Arity);
+ break;
+ }
+
+ case Expr::UnresolvedMemberExprClass: {
+ const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
+ mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
+ ME->isArrow(), ME->getQualifier(), nullptr,
+ ME->getMemberName(), Arity);
+ if (ME->hasExplicitTemplateArgs())
+ mangleTemplateArgs(ME->getExplicitTemplateArgs());
+ break;
+ }
+
+ case Expr::CXXDependentScopeMemberExprClass: {
+ const CXXDependentScopeMemberExpr *ME
+ = cast<CXXDependentScopeMemberExpr>(E);
+ mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
+ ME->isArrow(), ME->getQualifier(),
+ ME->getFirstQualifierFoundInScope(),
+ ME->getMember(), Arity);
+ if (ME->hasExplicitTemplateArgs())
+ mangleTemplateArgs(ME->getExplicitTemplateArgs());
+ break;
+ }
+
+ case Expr::UnresolvedLookupExprClass: {
+ const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
+ mangleUnresolvedName(ULE->getQualifier(), ULE->getName(), Arity);
+
+ // All the <unresolved-name> productions end in a
+ // base-unresolved-name, where <template-args> are just tacked
+ // onto the end.
+ if (ULE->hasExplicitTemplateArgs())
+ mangleTemplateArgs(ULE->getExplicitTemplateArgs());
+ break;
+ }
+
+ case Expr::CXXUnresolvedConstructExprClass: {
+ const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
+ unsigned N = CE->arg_size();
+
+ Out << "cv";
+ mangleType(CE->getType());
+ if (N != 1) Out << '_';
+ for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
+ if (N != 1) Out << 'E';
+ break;
+ }
+
+ case Expr::CXXConstructExprClass: {
+ const auto *CE = cast<CXXConstructExpr>(E);
+ if (!CE->isListInitialization() || CE->isStdInitListInitialization()) {
+ assert(
+ CE->getNumArgs() >= 1 &&
+ (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) &&
+ "implicit CXXConstructExpr must have one argument");
+ return mangleExpression(cast<CXXConstructExpr>(E)->getArg(0));
+ }
+ Out << "il";
+ for (auto *E : CE->arguments())
+ mangleExpression(E);
+ Out << "E";
+ break;
+ }
+
+ case Expr::CXXTemporaryObjectExprClass: {
+ const auto *CE = cast<CXXTemporaryObjectExpr>(E);
+ unsigned N = CE->getNumArgs();
+ bool List = CE->isListInitialization();
+
+ if (List)
+ Out << "tl";
+ else
+ Out << "cv";
+ mangleType(CE->getType());
+ if (!List && N != 1)
+ Out << '_';
+ if (CE->isStdInitListInitialization()) {
+ // We implicitly created a std::initializer_list<T> for the first argument
+ // of a constructor of type U in an expression of the form U{a, b, c}.
+ // Strip all the semantic gunk off the initializer list.
+ auto *SILE =
+ cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit());
+ auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit());
+ mangleInitListElements(ILE);
+ } else {
+ for (auto *E : CE->arguments())
+ mangleExpression(E);
+ }
+ if (List || N != 1)
+ Out << 'E';
+ break;
+ }
+
+ case Expr::CXXScalarValueInitExprClass:
+ Out << "cv";
+ mangleType(E->getType());
+ Out << "_E";
+ break;
+
+ case Expr::CXXNoexceptExprClass:
+ Out << "nx";
+ mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
+ break;
+
+ case Expr::UnaryExprOrTypeTraitExprClass: {
+ const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
+
+ if (!SAE->isInstantiationDependent()) {
+ // Itanium C++ ABI:
+ // If the operand of a sizeof or alignof operator is not
+ // instantiation-dependent it is encoded as an integer literal
+ // reflecting the result of the operator.
+ //
+ // If the result of the operator is implicitly converted to a known
+ // integer type, that type is used for the literal; otherwise, the type
+ // of std::size_t or std::ptrdiff_t is used.
+ QualType T = (ImplicitlyConvertedToType.isNull() ||
+ !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
+ : ImplicitlyConvertedToType;
+ llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
+ mangleIntegerLiteral(T, V);
+ break;
+ }
+
+ switch(SAE->getKind()) {
+ case UETT_SizeOf:
+ Out << 's';
+ break;
+ case UETT_AlignOf:
+ Out << 'a';
+ break;
+ case UETT_VecStep:
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot yet mangle vec_step expression");
+ Diags.Report(DiagID);
+ return;
+ }
+ if (SAE->isArgumentType()) {
+ Out << 't';
+ mangleType(SAE->getArgumentType());
+ } else {
+ Out << 'z';
+ mangleExpression(SAE->getArgumentExpr());
+ }
+ break;
+ }
+
+ case Expr::CXXThrowExprClass: {
+ const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
+ // <expression> ::= tw <expression> # throw expression
+ // ::= tr # rethrow
+ if (TE->getSubExpr()) {
+ Out << "tw";
+ mangleExpression(TE->getSubExpr());
+ } else {
+ Out << "tr";
+ }
+ break;
+ }
+
+ case Expr::CXXTypeidExprClass: {
+ const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
+ // <expression> ::= ti <type> # typeid (type)
+ // ::= te <expression> # typeid (expression)
+ if (TIE->isTypeOperand()) {
+ Out << "ti";
+ mangleType(TIE->getTypeOperand(Context.getASTContext()));
+ } else {
+ Out << "te";
+ mangleExpression(TIE->getExprOperand());
+ }
+ break;
+ }
+
+ case Expr::CXXDeleteExprClass: {
+ const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
+ // <expression> ::= [gs] dl <expression> # [::] delete expr
+ // ::= [gs] da <expression> # [::] delete [] expr
+ if (DE->isGlobalDelete()) Out << "gs";
+ Out << (DE->isArrayForm() ? "da" : "dl");
+ mangleExpression(DE->getArgument());
+ break;
+ }
+
+ case Expr::UnaryOperatorClass: {
+ const UnaryOperator *UO = cast<UnaryOperator>(E);
+ mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
+ /*Arity=*/1);
+ mangleExpression(UO->getSubExpr());
+ break;
+ }
+
+ case Expr::ArraySubscriptExprClass: {
+ const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
+
+ // Array subscript is treated as a syntactically weird form of
+ // binary operator.
+ Out << "ix";
+ mangleExpression(AE->getLHS());
+ mangleExpression(AE->getRHS());
+ break;
+ }
+
+ case Expr::CompoundAssignOperatorClass: // fallthrough
+ case Expr::BinaryOperatorClass: {
+ const BinaryOperator *BO = cast<BinaryOperator>(E);
+ if (BO->getOpcode() == BO_PtrMemD)
+ Out << "ds";
+ else
+ mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
+ /*Arity=*/2);
+ mangleExpression(BO->getLHS());
+ mangleExpression(BO->getRHS());
+ break;
+ }
+
+ case Expr::ConditionalOperatorClass: {
+ const ConditionalOperator *CO = cast<ConditionalOperator>(E);
+ mangleOperatorName(OO_Conditional, /*Arity=*/3);
+ mangleExpression(CO->getCond());
+ mangleExpression(CO->getLHS(), Arity);
+ mangleExpression(CO->getRHS(), Arity);
+ break;
+ }
+
+ case Expr::ImplicitCastExprClass: {
+ ImplicitlyConvertedToType = E->getType();
+ E = cast<ImplicitCastExpr>(E)->getSubExpr();
+ goto recurse;
+ }
+
+ case Expr::ObjCBridgedCastExprClass: {
+ // Mangle ownership casts as a vendor extended operator __bridge,
+ // __bridge_transfer, or __bridge_retain.
+ StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
+ Out << "v1U" << Kind.size() << Kind;
+ }
+ // Fall through to mangle the cast itself.
+
+ case Expr::CStyleCastExprClass:
+ mangleCastExpression(E, "cv");
+ break;
+
+ case Expr::CXXFunctionalCastExprClass: {
+ auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit();
+ // FIXME: Add isImplicit to CXXConstructExpr.
+ if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub))
+ if (CCE->getParenOrBraceRange().isInvalid())
+ Sub = CCE->getArg(0)->IgnoreImplicit();
+ if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub))
+ Sub = StdInitList->getSubExpr()->IgnoreImplicit();
+ if (auto *IL = dyn_cast<InitListExpr>(Sub)) {
+ Out << "tl";
+ mangleType(E->getType());
+ mangleInitListElements(IL);
+ Out << "E";
+ } else {
+ mangleCastExpression(E, "cv");
+ }
+ break;
+ }
+
+ case Expr::CXXStaticCastExprClass:
+ mangleCastExpression(E, "sc");
+ break;
+ case Expr::CXXDynamicCastExprClass:
+ mangleCastExpression(E, "dc");
+ break;
+ case Expr::CXXReinterpretCastExprClass:
+ mangleCastExpression(E, "rc");
+ break;
+ case Expr::CXXConstCastExprClass:
+ mangleCastExpression(E, "cc");
+ break;
+
+ case Expr::CXXOperatorCallExprClass: {
+ const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
+ unsigned NumArgs = CE->getNumArgs();
+ mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
+ // Mangle the arguments.
+ for (unsigned i = 0; i != NumArgs; ++i)
+ mangleExpression(CE->getArg(i));
+ break;
+ }
+
+ case Expr::ParenExprClass:
+ mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
+ break;
+
+ case Expr::DeclRefExprClass: {
+ const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
+
+ switch (D->getKind()) {
+ default:
+ // <expr-primary> ::= L <mangled-name> E # external name
+ Out << 'L';
+ mangle(D);
+ Out << 'E';
+ break;
+
+ case Decl::ParmVar:
+ mangleFunctionParam(cast<ParmVarDecl>(D));
+ break;
+
+ case Decl::EnumConstant: {
+ const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
+ mangleIntegerLiteral(ED->getType(), ED->getInitVal());
+ break;
+ }
+
+ case Decl::NonTypeTemplateParm: {
+ const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
+ mangleTemplateParameter(PD->getIndex());
+ break;
+ }
+
+ }
+
+ break;
+ }
+
+ case Expr::SubstNonTypeTemplateParmPackExprClass:
+ // FIXME: not clear how to mangle this!
+ // template <unsigned N...> class A {
+ // template <class U...> void foo(U (&x)[N]...);
+ // };
+ Out << "_SUBSTPACK_";
+ break;
+
+ case Expr::FunctionParmPackExprClass: {
+ // FIXME: not clear how to mangle this!
+ const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
+ Out << "v110_SUBSTPACK";
+ mangleFunctionParam(FPPE->getParameterPack());
+ break;
+ }
+
+ case Expr::DependentScopeDeclRefExprClass: {
+ const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
+ mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(), Arity);
+
+ // All the <unresolved-name> productions end in a
+ // base-unresolved-name, where <template-args> are just tacked
+ // onto the end.
+ if (DRE->hasExplicitTemplateArgs())
+ mangleTemplateArgs(DRE->getExplicitTemplateArgs());
+ break;
+ }
+
+ case Expr::CXXBindTemporaryExprClass:
+ mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
+ break;
+
+ case Expr::ExprWithCleanupsClass:
+ mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
+ break;
+
+ case Expr::FloatingLiteralClass: {
+ const FloatingLiteral *FL = cast<FloatingLiteral>(E);
+ Out << 'L';
+ mangleType(FL->getType());
+ mangleFloat(FL->getValue());
+ Out << 'E';
+ break;
+ }
+
+ case Expr::CharacterLiteralClass:
+ Out << 'L';
+ mangleType(E->getType());
+ Out << cast<CharacterLiteral>(E)->getValue();
+ Out << 'E';
+ break;
+
+ // FIXME. __objc_yes/__objc_no are mangled same as true/false
+ case Expr::ObjCBoolLiteralExprClass:
+ Out << "Lb";
+ Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
+ Out << 'E';
+ break;
+
+ case Expr::CXXBoolLiteralExprClass:
+ Out << "Lb";
+ Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
+ Out << 'E';
+ break;
+
+ case Expr::IntegerLiteralClass: {
+ llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
+ if (E->getType()->isSignedIntegerType())
+ Value.setIsSigned(true);
+ mangleIntegerLiteral(E->getType(), Value);
+ break;
+ }
+
+ case Expr::ImaginaryLiteralClass: {
+ const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
+ // Mangle as if a complex literal.
+ // Proposal from David Vandevoorde, 2010.06.30.
+ Out << 'L';
+ mangleType(E->getType());
+ if (const FloatingLiteral *Imag =
+ dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
+ // Mangle a floating-point zero of the appropriate type.
+ mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
+ Out << '_';
+ mangleFloat(Imag->getValue());
+ } else {
+ Out << "0_";
+ llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
+ if (IE->getSubExpr()->getType()->isSignedIntegerType())
+ Value.setIsSigned(true);
+ mangleNumber(Value);
+ }
+ Out << 'E';
+ break;
+ }
+
+ case Expr::StringLiteralClass: {
+ // Revised proposal from David Vandervoorde, 2010.07.15.
+ Out << 'L';
+ assert(isa<ConstantArrayType>(E->getType()));
+ mangleType(E->getType());
+ Out << 'E';
+ break;
+ }
+
+ case Expr::GNUNullExprClass:
+ // FIXME: should this really be mangled the same as nullptr?
+ // fallthrough
+
+ case Expr::CXXNullPtrLiteralExprClass: {
+ Out << "LDnE";
+ break;
+ }
+
+ case Expr::PackExpansionExprClass:
+ Out << "sp";
+ mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
+ break;
+
+ case Expr::SizeOfPackExprClass: {
+ Out << "sZ";
+ const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
+ if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
+ mangleTemplateParameter(TTP->getIndex());
+ else if (const NonTypeTemplateParmDecl *NTTP
+ = dyn_cast<NonTypeTemplateParmDecl>(Pack))
+ mangleTemplateParameter(NTTP->getIndex());
+ else if (const TemplateTemplateParmDecl *TempTP
+ = dyn_cast<TemplateTemplateParmDecl>(Pack))
+ mangleTemplateParameter(TempTP->getIndex());
+ else
+ mangleFunctionParam(cast<ParmVarDecl>(Pack));
+ break;
+ }
+
+ case Expr::MaterializeTemporaryExprClass: {
+ mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
+ break;
+ }
+
+ case Expr::CXXFoldExprClass: {
+ auto *FE = cast<CXXFoldExpr>(E);
+ if (FE->isLeftFold())
+ Out << (FE->getInit() ? "fL" : "fl");
+ else
+ Out << (FE->getInit() ? "fR" : "fr");
+
+ if (FE->getOperator() == BO_PtrMemD)
+ Out << "ds";
+ else
+ mangleOperatorName(
+ BinaryOperator::getOverloadedOperator(FE->getOperator()),
+ /*Arity=*/2);
+
+ if (FE->getLHS())
+ mangleExpression(FE->getLHS());
+ if (FE->getRHS())
+ mangleExpression(FE->getRHS());
+ break;
+ }
+
+ case Expr::CXXThisExprClass:
+ Out << "fpT";
+ break;
+ }
+}
+
+/// Mangle an expression which refers to a parameter variable.
+///
+/// <expression> ::= <function-param>
+/// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0
+/// <function-param> ::= fp <top-level CV-qualifiers>
+/// <parameter-2 non-negative number> _ # L == 0, I > 0
+/// <function-param> ::= fL <L-1 non-negative number>
+/// p <top-level CV-qualifiers> _ # L > 0, I == 0
+/// <function-param> ::= fL <L-1 non-negative number>
+/// p <top-level CV-qualifiers>
+/// <I-1 non-negative number> _ # L > 0, I > 0
+///
+/// L is the nesting depth of the parameter, defined as 1 if the
+/// parameter comes from the innermost function prototype scope
+/// enclosing the current context, 2 if from the next enclosing
+/// function prototype scope, and so on, with one special case: if
+/// we've processed the full parameter clause for the innermost
+/// function type, then L is one less. This definition conveniently
+/// makes it irrelevant whether a function's result type was written
+/// trailing or leading, but is otherwise overly complicated; the
+/// numbering was first designed without considering references to
+/// parameter in locations other than return types, and then the
+/// mangling had to be generalized without changing the existing
+/// manglings.
+///
+/// I is the zero-based index of the parameter within its parameter
+/// declaration clause. Note that the original ABI document describes
+/// this using 1-based ordinals.
+void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
+ unsigned parmDepth = parm->getFunctionScopeDepth();
+ unsigned parmIndex = parm->getFunctionScopeIndex();
+
+ // Compute 'L'.
+ // parmDepth does not include the declaring function prototype.
+ // FunctionTypeDepth does account for that.
+ assert(parmDepth < FunctionTypeDepth.getDepth());
+ unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
+ if (FunctionTypeDepth.isInResultType())
+ nestingDepth--;
+
+ if (nestingDepth == 0) {
+ Out << "fp";
+ } else {
+ Out << "fL" << (nestingDepth - 1) << 'p';
+ }
+
+ // Top-level qualifiers. We don't have to worry about arrays here,
+ // because parameters declared as arrays should already have been
+ // transformed to have pointer type. FIXME: apparently these don't
+ // get mangled if used as an rvalue of a known non-class type?
+ assert(!parm->getType()->isArrayType()
+ && "parameter's type is still an array type?");
+ mangleQualifiers(parm->getType().getQualifiers());
+
+ // Parameter index.
+ if (parmIndex != 0) {
+ Out << (parmIndex - 1);
+ }
+ Out << '_';
+}
+
+void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
+ // <ctor-dtor-name> ::= C1 # complete object constructor
+ // ::= C2 # base object constructor
+ //
+ // In addition, C5 is a comdat name with C1 and C2 in it.
+ switch (T) {
+ case Ctor_Complete:
+ Out << "C1";
+ break;
+ case Ctor_Base:
+ Out << "C2";
+ break;
+ case Ctor_Comdat:
+ Out << "C5";
+ break;
+ case Ctor_DefaultClosure:
+ case Ctor_CopyingClosure:
+ llvm_unreachable("closure constructors don't exist for the Itanium ABI!");
+ }
+}
+
+void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
+ // <ctor-dtor-name> ::= D0 # deleting destructor
+ // ::= D1 # complete object destructor
+ // ::= D2 # base object destructor
+ //
+ // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it.
+ switch (T) {
+ case Dtor_Deleting:
+ Out << "D0";
+ break;
+ case Dtor_Complete:
+ Out << "D1";
+ break;
+ case Dtor_Base:
+ Out << "D2";
+ break;
+ case Dtor_Comdat:
+ Out << "D5";
+ break;
+ }
+}
+
+void CXXNameMangler::mangleTemplateArgs(
+ const ASTTemplateArgumentListInfo &TemplateArgs) {
+ // <template-args> ::= I <template-arg>+ E
+ Out << 'I';
+ for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)
+ mangleTemplateArg(TemplateArgs.getTemplateArgs()[i].getArgument());
+ Out << 'E';
+}
+
+void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
+ // <template-args> ::= I <template-arg>+ E
+ Out << 'I';
+ for (unsigned i = 0, e = AL.size(); i != e; ++i)
+ mangleTemplateArg(AL[i]);
+ Out << 'E';
+}
+
+void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
+ unsigned NumTemplateArgs) {
+ // <template-args> ::= I <template-arg>+ E
+ Out << 'I';
+ for (unsigned i = 0; i != NumTemplateArgs; ++i)
+ mangleTemplateArg(TemplateArgs[i]);
+ Out << 'E';
+}
+
+void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
+ // <template-arg> ::= <type> # type or template
+ // ::= X <expression> E # expression
+ // ::= <expr-primary> # simple expressions
+ // ::= J <template-arg>* E # argument pack
+ if (!A.isInstantiationDependent() || A.isDependent())
+ A = Context.getASTContext().getCanonicalTemplateArgument(A);
+
+ switch (A.getKind()) {
+ case TemplateArgument::Null:
+ llvm_unreachable("Cannot mangle NULL template argument");
+
+ case TemplateArgument::Type:
+ mangleType(A.getAsType());
+ break;
+ case TemplateArgument::Template:
+ // This is mangled as <type>.
+ mangleType(A.getAsTemplate());
+ break;
+ case TemplateArgument::TemplateExpansion:
+ // <type> ::= Dp <type> # pack expansion (C++0x)
+ Out << "Dp";
+ mangleType(A.getAsTemplateOrTemplatePattern());
+ break;
+ case TemplateArgument::Expression: {
+ // It's possible to end up with a DeclRefExpr here in certain
+ // dependent cases, in which case we should mangle as a
+ // declaration.
+ const Expr *E = A.getAsExpr()->IgnoreParens();
+ if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
+ const ValueDecl *D = DRE->getDecl();
+ if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
+ Out << 'L';
+ mangle(D);
+ Out << 'E';
+ break;
+ }
+ }
+
+ Out << 'X';
+ mangleExpression(E);
+ Out << 'E';
+ break;
+ }
+ case TemplateArgument::Integral:
+ mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
+ break;
+ case TemplateArgument::Declaration: {
+ // <expr-primary> ::= L <mangled-name> E # external name
+ // Clang produces AST's where pointer-to-member-function expressions
+ // and pointer-to-function expressions are represented as a declaration not
+ // an expression. We compensate for it here to produce the correct mangling.
+ ValueDecl *D = A.getAsDecl();
+ bool compensateMangling = !A.getParamTypeForDecl()->isReferenceType();
+ if (compensateMangling) {
+ Out << 'X';
+ mangleOperatorName(OO_Amp, 1);
+ }
+
+ Out << 'L';
+ // References to external entities use the mangled name; if the name would
+ // not normally be manged then mangle it as unqualified.
+ mangle(D);
+ Out << 'E';
+
+ if (compensateMangling)
+ Out << 'E';
+
+ break;
+ }
+ case TemplateArgument::NullPtr: {
+ // <expr-primary> ::= L <type> 0 E
+ Out << 'L';
+ mangleType(A.getNullPtrType());
+ Out << "0E";
+ break;
+ }
+ case TemplateArgument::Pack: {
+ // <template-arg> ::= J <template-arg>* E
+ Out << 'J';
+ for (const auto &P : A.pack_elements())
+ mangleTemplateArg(P);
+ Out << 'E';
+ }
+ }
+}
+
+void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
+ // <template-param> ::= T_ # first template parameter
+ // ::= T <parameter-2 non-negative number> _
+ if (Index == 0)
+ Out << "T_";
+ else
+ Out << 'T' << (Index - 1) << '_';
+}
+
+void CXXNameMangler::mangleSeqID(unsigned SeqID) {
+ if (SeqID == 1)
+ Out << '0';
+ else if (SeqID > 1) {
+ SeqID--;
+
+ // <seq-id> is encoded in base-36, using digits and upper case letters.
+ char Buffer[7]; // log(2**32) / log(36) ~= 7
+ MutableArrayRef<char> BufferRef(Buffer);
+ MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
+
+ for (; SeqID != 0; SeqID /= 36) {
+ unsigned C = SeqID % 36;
+ *I++ = (C < 10 ? '0' + C : 'A' + C - 10);
+ }
+
+ Out.write(I.base(), I - BufferRef.rbegin());
+ }
+ Out << '_';
+}
+
+void CXXNameMangler::mangleExistingSubstitution(QualType type) {
+ bool result = mangleSubstitution(type);
+ assert(result && "no existing substitution for type");
+ (void) result;
+}
+
+void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
+ bool result = mangleSubstitution(tname);
+ assert(result && "no existing substitution for template name");
+ (void) result;
+}
+
+// <substitution> ::= S <seq-id> _
+// ::= S_
+bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
+ // Try one of the standard substitutions first.
+ if (mangleStandardSubstitution(ND))
+ return true;
+
+ ND = cast<NamedDecl>(ND->getCanonicalDecl());
+ return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
+}
+
+/// Determine whether the given type has any qualifiers that are relevant for
+/// substitutions.
+static bool hasMangledSubstitutionQualifiers(QualType T) {
+ Qualifiers Qs = T.getQualifiers();
+ return Qs.getCVRQualifiers() || Qs.hasAddressSpace();
+}
+
+bool CXXNameMangler::mangleSubstitution(QualType T) {
+ if (!hasMangledSubstitutionQualifiers(T)) {
+ if (const RecordType *RT = T->getAs<RecordType>())
+ return mangleSubstitution(RT->getDecl());
+ }
+
+ uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
+
+ return mangleSubstitution(TypePtr);
+}
+
+bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
+ if (TemplateDecl *TD = Template.getAsTemplateDecl())
+ return mangleSubstitution(TD);
+
+ Template = Context.getASTContext().getCanonicalTemplateName(Template);
+ return mangleSubstitution(
+ reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
+}
+
+bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
+ llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
+ if (I == Substitutions.end())
+ return false;
+
+ unsigned SeqID = I->second;
+ Out << 'S';
+ mangleSeqID(SeqID);
+
+ return true;
+}
+
+static bool isCharType(QualType T) {
+ if (T.isNull())
+ return false;
+
+ return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
+ T->isSpecificBuiltinType(BuiltinType::Char_U);
+}
+
+/// Returns whether a given type is a template specialization of a given name
+/// with a single argument of type char.
+static bool isCharSpecialization(QualType T, const char *Name) {
+ if (T.isNull())
+ return false;
+
+ const RecordType *RT = T->getAs<RecordType>();
+ if (!RT)
+ return false;
+
+ const ClassTemplateSpecializationDecl *SD =
+ dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
+ if (!SD)
+ return false;
+
+ if (!isStdNamespace(getEffectiveDeclContext(SD)))
+ return false;
+
+ const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
+ if (TemplateArgs.size() != 1)
+ return false;
+
+ if (!isCharType(TemplateArgs[0].getAsType()))
+ return false;
+
+ return SD->getIdentifier()->getName() == Name;
+}
+
+template <std::size_t StrLen>
+static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
+ const char (&Str)[StrLen]) {
+ if (!SD->getIdentifier()->isStr(Str))
+ return false;
+
+ const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
+ if (TemplateArgs.size() != 2)
+ return false;
+
+ if (!isCharType(TemplateArgs[0].getAsType()))
+ return false;
+
+ if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
+ return false;
+
+ return true;
+}
+
+bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
+ // <substitution> ::= St # ::std::
+ if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
+ if (isStd(NS)) {
+ Out << "St";
+ return true;
+ }
+ }
+
+ if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
+ if (!isStdNamespace(getEffectiveDeclContext(TD)))
+ return false;
+
+ // <substitution> ::= Sa # ::std::allocator
+ if (TD->getIdentifier()->isStr("allocator")) {
+ Out << "Sa";
+ return true;
+ }
+
+ // <<substitution> ::= Sb # ::std::basic_string
+ if (TD->getIdentifier()->isStr("basic_string")) {
+ Out << "Sb";
+ return true;
+ }
+ }
+
+ if (const ClassTemplateSpecializationDecl *SD =
+ dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
+ if (!isStdNamespace(getEffectiveDeclContext(SD)))
+ return false;
+
+ // <substitution> ::= Ss # ::std::basic_string<char,
+ // ::std::char_traits<char>,
+ // ::std::allocator<char> >
+ if (SD->getIdentifier()->isStr("basic_string")) {
+ const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
+
+ if (TemplateArgs.size() != 3)
+ return false;
+
+ if (!isCharType(TemplateArgs[0].getAsType()))
+ return false;
+
+ if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
+ return false;
+
+ if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
+ return false;
+
+ Out << "Ss";
+ return true;
+ }
+
+ // <substitution> ::= Si # ::std::basic_istream<char,
+ // ::std::char_traits<char> >
+ if (isStreamCharSpecialization(SD, "basic_istream")) {
+ Out << "Si";
+ return true;
+ }
+
+ // <substitution> ::= So # ::std::basic_ostream<char,
+ // ::std::char_traits<char> >
+ if (isStreamCharSpecialization(SD, "basic_ostream")) {
+ Out << "So";
+ return true;
+ }
+
+ // <substitution> ::= Sd # ::std::basic_iostream<char,
+ // ::std::char_traits<char> >
+ if (isStreamCharSpecialization(SD, "basic_iostream")) {
+ Out << "Sd";
+ return true;
+ }
+ }
+ return false;
+}
+
+void CXXNameMangler::addSubstitution(QualType T) {
+ if (!hasMangledSubstitutionQualifiers(T)) {
+ if (const RecordType *RT = T->getAs<RecordType>()) {
+ addSubstitution(RT->getDecl());
+ return;
+ }
+ }
+
+ uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
+ addSubstitution(TypePtr);
+}
+
+void CXXNameMangler::addSubstitution(TemplateName Template) {
+ if (TemplateDecl *TD = Template.getAsTemplateDecl())
+ return addSubstitution(TD);
+
+ Template = Context.getASTContext().getCanonicalTemplateName(Template);
+ addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
+}
+
+void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
+ assert(!Substitutions.count(Ptr) && "Substitution already exists!");
+ Substitutions[Ptr] = SeqID++;
+}
+
+//
+
+/// Mangles the name of the declaration D and emits that name to the given
+/// output stream.
+///
+/// If the declaration D requires a mangled name, this routine will emit that
+/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
+/// and this routine will return false. In this case, the caller should just
+/// emit the identifier of the declaration (\c D->getIdentifier()) as its
+/// name.
+void ItaniumMangleContextImpl::mangleCXXName(const NamedDecl *D,
+ raw_ostream &Out) {
+ assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
+ "Invalid mangleName() call, argument is not a variable or function!");
+ assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
+ "Invalid mangleName() call on 'structor decl!");
+
+ PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
+ getASTContext().getSourceManager(),
+ "Mangling declaration");
+
+ CXXNameMangler Mangler(*this, Out, D);
+ Mangler.mangle(D);
+}
+
+void ItaniumMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
+ CXXCtorType Type,
+ raw_ostream &Out) {
+ CXXNameMangler Mangler(*this, Out, D, Type);
+ Mangler.mangle(D);
+}
+
+void ItaniumMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
+ CXXDtorType Type,
+ raw_ostream &Out) {
+ CXXNameMangler Mangler(*this, Out, D, Type);
+ Mangler.mangle(D);
+}
+
+void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D,
+ raw_ostream &Out) {
+ CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat);
+ Mangler.mangle(D);
+}
+
+void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D,
+ raw_ostream &Out) {
+ CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat);
+ Mangler.mangle(D);
+}
+
+void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
+ const ThunkInfo &Thunk,
+ raw_ostream &Out) {
+ // <special-name> ::= T <call-offset> <base encoding>
+ // # base is the nominal target function of thunk
+ // <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
+ // # base is the nominal target function of thunk
+ // # first call-offset is 'this' adjustment
+ // # second call-offset is result adjustment
+
+ assert(!isa<CXXDestructorDecl>(MD) &&
+ "Use mangleCXXDtor for destructor decls!");
+ CXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "_ZT";
+ if (!Thunk.Return.isEmpty())
+ Mangler.getStream() << 'c';
+
+ // Mangle the 'this' pointer adjustment.
+ Mangler.mangleCallOffset(Thunk.This.NonVirtual,
+ Thunk.This.Virtual.Itanium.VCallOffsetOffset);
+
+ // Mangle the return pointer adjustment if there is one.
+ if (!Thunk.Return.isEmpty())
+ Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
+ Thunk.Return.Virtual.Itanium.VBaseOffsetOffset);
+
+ Mangler.mangleFunctionEncoding(MD);
+}
+
+void ItaniumMangleContextImpl::mangleCXXDtorThunk(
+ const CXXDestructorDecl *DD, CXXDtorType Type,
+ const ThisAdjustment &ThisAdjustment, raw_ostream &Out) {
+ // <special-name> ::= T <call-offset> <base encoding>
+ // # base is the nominal target function of thunk
+ CXXNameMangler Mangler(*this, Out, DD, Type);
+ Mangler.getStream() << "_ZT";
+
+ // Mangle the 'this' pointer adjustment.
+ Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
+ ThisAdjustment.Virtual.Itanium.VCallOffsetOffset);
+
+ Mangler.mangleFunctionEncoding(DD);
+}
+
+/// Returns the mangled name for a guard variable for the passed in VarDecl.
+void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D,
+ raw_ostream &Out) {
+ // <special-name> ::= GV <object name> # Guard variable for one-time
+ // # initialization
+ CXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "_ZGV";
+ Mangler.mangleName(D);
+}
+
+void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD,
+ raw_ostream &Out) {
+ // These symbols are internal in the Itanium ABI, so the names don't matter.
+ // Clang has traditionally used this symbol and allowed LLVM to adjust it to
+ // avoid duplicate symbols.
+ Out << "__cxx_global_var_init";
+}
+
+void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
+ raw_ostream &Out) {
+ // Prefix the mangling of D with __dtor_.
+ CXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "__dtor_";
+ if (shouldMangleDeclName(D))
+ Mangler.mangle(D);
+ else
+ Mangler.getStream() << D->getName();
+}
+
+void ItaniumMangleContextImpl::mangleSEHFilterExpression(
+ const NamedDecl *EnclosingDecl, raw_ostream &Out) {
+ CXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "__filt_";
+ if (shouldMangleDeclName(EnclosingDecl))
+ Mangler.mangle(EnclosingDecl);
+ else
+ Mangler.getStream() << EnclosingDecl->getName();
+}
+
+void ItaniumMangleContextImpl::mangleSEHFinallyBlock(
+ const NamedDecl *EnclosingDecl, raw_ostream &Out) {
+ CXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "__fin_";
+ if (shouldMangleDeclName(EnclosingDecl))
+ Mangler.mangle(EnclosingDecl);
+ else
+ Mangler.getStream() << EnclosingDecl->getName();
+}
+
+void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D,
+ raw_ostream &Out) {
+ // <special-name> ::= TH <object name>
+ CXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "_ZTH";
+ Mangler.mangleName(D);
+}
+
+void
+ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D,
+ raw_ostream &Out) {
+ // <special-name> ::= TW <object name>
+ CXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "_ZTW";
+ Mangler.mangleName(D);
+}
+
+void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D,
+ unsigned ManglingNumber,
+ raw_ostream &Out) {
+ // We match the GCC mangling here.
+ // <special-name> ::= GR <object name>
+ CXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "_ZGR";
+ Mangler.mangleName(D);
+ assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!");
+ Mangler.mangleSeqID(ManglingNumber - 1);
+}
+
+void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD,
+ raw_ostream &Out) {
+ // <special-name> ::= TV <type> # virtual table
+ CXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "_ZTV";
+ Mangler.mangleNameOrStandardSubstitution(RD);
+}
+
+void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD,
+ raw_ostream &Out) {
+ // <special-name> ::= TT <type> # VTT structure
+ CXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "_ZTT";
+ Mangler.mangleNameOrStandardSubstitution(RD);
+}
+
+void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD,
+ int64_t Offset,
+ const CXXRecordDecl *Type,
+ raw_ostream &Out) {
+ // <special-name> ::= TC <type> <offset number> _ <base type>
+ CXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "_ZTC";
+ Mangler.mangleNameOrStandardSubstitution(RD);
+ Mangler.getStream() << Offset;
+ Mangler.getStream() << '_';
+ Mangler.mangleNameOrStandardSubstitution(Type);
+}
+
+void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) {
+ // <special-name> ::= TI <type> # typeinfo structure
+ assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
+ CXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "_ZTI";
+ Mangler.mangleType(Ty);
+}
+
+void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty,
+ raw_ostream &Out) {
+ // <special-name> ::= TS <type> # typeinfo name (null terminated byte string)
+ CXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "_ZTS";
+ Mangler.mangleType(Ty);
+}
+
+void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) {
+ mangleCXXRTTIName(Ty, Out);
+}
+
+void ItaniumMangleContextImpl::mangleCXXVTableBitSet(const CXXRecordDecl *RD,
+ raw_ostream &Out) {
+ Linkage L = RD->getLinkageInternal();
+ if (L == InternalLinkage || L == UniqueExternalLinkage) {
+ // This part of the identifier needs to be unique across all translation
+ // units in the linked program. The scheme fails if multiple translation
+ // units are compiled using the same relative source file path, or if
+ // multiple translation units are built from the same source file.
+ SourceManager &SM = getASTContext().getSourceManager();
+ Out << "[" << SM.getFileEntryForID(SM.getMainFileID())->getName() << "]";
+ }
+
+ CXXNameMangler Mangler(*this, Out);
+ Mangler.mangleType(QualType(RD->getTypeForDecl(), 0));
+}
+
+void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) {
+ llvm_unreachable("Can't mangle string literals");
+}
+
+ItaniumMangleContext *
+ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
+ return new ItaniumMangleContextImpl(Context, Diags);
+}
+
diff --git a/contrib/llvm/tools/clang/lib/AST/Mangle.cpp b/contrib/llvm/tools/clang/lib/AST/Mangle.cpp
new file mode 100644
index 0000000..1a061c4
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/Mangle.cpp
@@ -0,0 +1,276 @@
+//===--- Mangle.cpp - Mangle C++ Names --------------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Implements generic name mangling support for blocks and Objective-C.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/AST/Attr.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/Mangle.h"
+#include "clang/Basic/ABI.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TargetInfo.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+
+#define MANGLE_CHECKER 0
+
+#if MANGLE_CHECKER
+#include <cxxabi.h>
+#endif
+
+using namespace clang;
+
+// FIXME: For blocks we currently mimic GCC's mangling scheme, which leaves
+// much to be desired. Come up with a better mangling scheme.
+
+static void mangleFunctionBlock(MangleContext &Context,
+ StringRef Outer,
+ const BlockDecl *BD,
+ raw_ostream &Out) {
+ unsigned discriminator = Context.getBlockId(BD, true);
+ if (discriminator == 0)
+ Out << "__" << Outer << "_block_invoke";
+ else
+ Out << "__" << Outer << "_block_invoke_" << discriminator+1;
+}
+
+void MangleContext::anchor() { }
+
+enum CCMangling {
+ CCM_Other,
+ CCM_Fast,
+ CCM_Vector,
+ CCM_Std
+};
+
+static bool isExternC(const NamedDecl *ND) {
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
+ return FD->isExternC();
+ return cast<VarDecl>(ND)->isExternC();
+}
+
+static CCMangling getCallingConvMangling(const ASTContext &Context,
+ const NamedDecl *ND) {
+ const TargetInfo &TI = Context.getTargetInfo();
+ const llvm::Triple &Triple = TI.getTriple();
+ if (!Triple.isOSWindows() ||
+ !(Triple.getArch() == llvm::Triple::x86 ||
+ Triple.getArch() == llvm::Triple::x86_64))
+ return CCM_Other;
+
+ if (Context.getLangOpts().CPlusPlus && !isExternC(ND) &&
+ TI.getCXXABI() == TargetCXXABI::Microsoft)
+ return CCM_Other;
+
+ const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND);
+ if (!FD)
+ return CCM_Other;
+ QualType T = FD->getType();
+
+ const FunctionType *FT = T->castAs<FunctionType>();
+
+ CallingConv CC = FT->getCallConv();
+ switch (CC) {
+ default:
+ return CCM_Other;
+ case CC_X86FastCall:
+ return CCM_Fast;
+ case CC_X86StdCall:
+ return CCM_Std;
+ case CC_X86VectorCall:
+ return CCM_Vector;
+ }
+}
+
+bool MangleContext::shouldMangleDeclName(const NamedDecl *D) {
+ const ASTContext &ASTContext = getASTContext();
+
+ CCMangling CC = getCallingConvMangling(ASTContext, D);
+ if (CC != CCM_Other)
+ return true;
+
+ // In C, functions with no attributes never need to be mangled. Fastpath them.
+ if (!getASTContext().getLangOpts().CPlusPlus && !D->hasAttrs())
+ return false;
+
+ // Any decl can be declared with __asm("foo") on it, and this takes precedence
+ // over all other naming in the .o file.
+ if (D->hasAttr<AsmLabelAttr>())
+ return true;
+
+ return shouldMangleCXXName(D);
+}
+
+void MangleContext::mangleName(const NamedDecl *D, raw_ostream &Out) {
+ // Any decl can be declared with __asm("foo") on it, and this takes precedence
+ // over all other naming in the .o file.
+ if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
+ // If we have an asm name, then we use it as the mangling.
+
+ // Adding the prefix can cause problems when one file has a "foo" and
+ // another has a "\01foo". That is known to happen on ELF with the
+ // tricks normally used for producing aliases (PR9177). Fortunately the
+ // llvm mangler on ELF is a nop, so we can just avoid adding the \01
+ // marker. We also avoid adding the marker if this is an alias for an
+ // LLVM intrinsic.
+ StringRef UserLabelPrefix =
+ getASTContext().getTargetInfo().getUserLabelPrefix();
+ if (!UserLabelPrefix.empty() && !ALA->getLabel().startswith("llvm."))
+ Out << '\01'; // LLVM IR Marker for __asm("foo")
+
+ Out << ALA->getLabel();
+ return;
+ }
+
+ const ASTContext &ASTContext = getASTContext();
+ CCMangling CC = getCallingConvMangling(ASTContext, D);
+ bool MCXX = shouldMangleCXXName(D);
+ const TargetInfo &TI = Context.getTargetInfo();
+ if (CC == CCM_Other || (MCXX && TI.getCXXABI() == TargetCXXABI::Microsoft)) {
+ if (const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D))
+ mangleObjCMethodName(OMD, Out);
+ else
+ mangleCXXName(D, Out);
+ return;
+ }
+
+ Out << '\01';
+ if (CC == CCM_Std)
+ Out << '_';
+ else if (CC == CCM_Fast)
+ Out << '@';
+
+ if (!MCXX)
+ Out << D->getIdentifier()->getName();
+ else if (const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D))
+ mangleObjCMethodName(OMD, Out);
+ else
+ mangleCXXName(D, Out);
+
+ const FunctionDecl *FD = cast<FunctionDecl>(D);
+ const FunctionType *FT = FD->getType()->castAs<FunctionType>();
+ const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT);
+ if (CC == CCM_Vector)
+ Out << '@';
+ Out << '@';
+ if (!Proto) {
+ Out << '0';
+ return;
+ }
+ assert(!Proto->isVariadic());
+ unsigned ArgWords = 0;
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
+ if (!MD->isStatic())
+ ++ArgWords;
+ for (const auto &AT : Proto->param_types())
+ // Size should be aligned to pointer size.
+ ArgWords += llvm::RoundUpToAlignment(ASTContext.getTypeSize(AT),
+ TI.getPointerWidth(0)) /
+ TI.getPointerWidth(0);
+ Out << ((TI.getPointerWidth(0) / 8) * ArgWords);
+}
+
+void MangleContext::mangleGlobalBlock(const BlockDecl *BD,
+ const NamedDecl *ID,
+ raw_ostream &Out) {
+ unsigned discriminator = getBlockId(BD, false);
+ if (ID) {
+ if (shouldMangleDeclName(ID))
+ mangleName(ID, Out);
+ else {
+ Out << ID->getIdentifier()->getName();
+ }
+ }
+ if (discriminator == 0)
+ Out << "_block_invoke";
+ else
+ Out << "_block_invoke_" << discriminator+1;
+}
+
+void MangleContext::mangleCtorBlock(const CXXConstructorDecl *CD,
+ CXXCtorType CT, const BlockDecl *BD,
+ raw_ostream &ResStream) {
+ SmallString<64> Buffer;
+ llvm::raw_svector_ostream Out(Buffer);
+ mangleCXXCtor(CD, CT, Out);
+ Out.flush();
+ mangleFunctionBlock(*this, Buffer, BD, ResStream);
+}
+
+void MangleContext::mangleDtorBlock(const CXXDestructorDecl *DD,
+ CXXDtorType DT, const BlockDecl *BD,
+ raw_ostream &ResStream) {
+ SmallString<64> Buffer;
+ llvm::raw_svector_ostream Out(Buffer);
+ mangleCXXDtor(DD, DT, Out);
+ Out.flush();
+ mangleFunctionBlock(*this, Buffer, BD, ResStream);
+}
+
+void MangleContext::mangleBlock(const DeclContext *DC, const BlockDecl *BD,
+ raw_ostream &Out) {
+ assert(!isa<CXXConstructorDecl>(DC) && !isa<CXXDestructorDecl>(DC));
+
+ SmallString<64> Buffer;
+ llvm::raw_svector_ostream Stream(Buffer);
+ if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC)) {
+ mangleObjCMethodName(Method, Stream);
+ } else {
+ assert((isa<NamedDecl>(DC) || isa<BlockDecl>(DC)) &&
+ "expected a NamedDecl or BlockDecl");
+ if (isa<BlockDecl>(DC))
+ for (; DC && isa<BlockDecl>(DC); DC = DC->getParent())
+ (void) getBlockId(cast<BlockDecl>(DC), true);
+ assert((isa<TranslationUnitDecl>(DC) || isa<NamedDecl>(DC)) &&
+ "expected a TranslationUnitDecl or a NamedDecl");
+ if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
+ mangleCtorBlock(CD, /*CT*/ Ctor_Complete, BD, Out);
+ else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
+ mangleDtorBlock(DD, /*DT*/ Dtor_Complete, BD, Out);
+ else if (auto ND = dyn_cast<NamedDecl>(DC)) {
+ if (!shouldMangleDeclName(ND) && ND->getIdentifier())
+ Stream << ND->getIdentifier()->getName();
+ else {
+ // FIXME: We were doing a mangleUnqualifiedName() before, but that's
+ // a private member of a class that will soon itself be private to the
+ // Itanium C++ ABI object. What should we do now? Right now, I'm just
+ // calling the mangleName() method on the MangleContext; is there a
+ // better way?
+ mangleName(ND, Stream);
+ }
+ }
+ }
+ Stream.flush();
+ mangleFunctionBlock(*this, Buffer, BD, Out);
+}
+
+void MangleContext::mangleObjCMethodName(const ObjCMethodDecl *MD,
+ raw_ostream &Out) {
+ SmallString<64> Name;
+ llvm::raw_svector_ostream OS(Name);
+
+ const ObjCContainerDecl *CD =
+ dyn_cast<ObjCContainerDecl>(MD->getDeclContext());
+ assert (CD && "Missing container decl in GetNameForMethod");
+ OS << (MD->isInstanceMethod() ? '-' : '+') << '[' << CD->getName();
+ if (const ObjCCategoryImplDecl *CID = dyn_cast<ObjCCategoryImplDecl>(CD))
+ OS << '(' << *CID << ')';
+ OS << ' ';
+ MD->getSelector().print(OS);
+ OS << ']';
+
+ Out << OS.str().size() << OS.str();
+}
diff --git a/contrib/llvm/tools/clang/lib/AST/MicrosoftCXXABI.cpp b/contrib/llvm/tools/clang/lib/AST/MicrosoftCXXABI.cpp
new file mode 100644
index 0000000..93ff77a
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/MicrosoftCXXABI.cpp
@@ -0,0 +1,248 @@
+//===------- MicrosoftCXXABI.cpp - AST support for the Microsoft C++ ABI --===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This provides C++ AST support targeting the Microsoft Visual C++
+// ABI.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CXXABI.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/MangleNumberingContext.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/AST/Type.h"
+#include "clang/Basic/TargetInfo.h"
+
+using namespace clang;
+
+namespace {
+
+/// \brief Numbers things which need to correspond across multiple TUs.
+/// Typically these are things like static locals, lambdas, or blocks.
+class MicrosoftNumberingContext : public MangleNumberingContext {
+ llvm::DenseMap<const Type *, unsigned> ManglingNumbers;
+ unsigned LambdaManglingNumber;
+ unsigned StaticLocalNumber;
+ unsigned StaticThreadlocalNumber;
+
+public:
+ MicrosoftNumberingContext()
+ : MangleNumberingContext(), LambdaManglingNumber(0),
+ StaticLocalNumber(0), StaticThreadlocalNumber(0) {}
+
+ unsigned getManglingNumber(const CXXMethodDecl *CallOperator) override {
+ return ++LambdaManglingNumber;
+ }
+
+ unsigned getManglingNumber(const BlockDecl *BD) override {
+ const Type *Ty = nullptr;
+ return ++ManglingNumbers[Ty];
+ }
+
+ unsigned getStaticLocalNumber(const VarDecl *VD) override {
+ if (VD->getTLSKind())
+ return ++StaticThreadlocalNumber;
+ return ++StaticLocalNumber;
+ }
+
+ unsigned getManglingNumber(const VarDecl *VD,
+ unsigned MSLocalManglingNumber) override {
+ return MSLocalManglingNumber;
+ }
+
+ unsigned getManglingNumber(const TagDecl *TD,
+ unsigned MSLocalManglingNumber) override {
+ return MSLocalManglingNumber;
+ }
+};
+
+class MicrosoftCXXABI : public CXXABI {
+ ASTContext &Context;
+ llvm::SmallDenseMap<CXXRecordDecl *, CXXConstructorDecl *> RecordToCopyCtor;
+ llvm::SmallDenseMap<std::pair<const CXXConstructorDecl *, unsigned>, Expr *>
+ CtorToDefaultArgExpr;
+
+public:
+ MicrosoftCXXABI(ASTContext &Ctx) : Context(Ctx) { }
+
+ std::pair<uint64_t, unsigned>
+ getMemberPointerWidthAndAlign(const MemberPointerType *MPT) const override;
+
+ CallingConv getDefaultMethodCallConv(bool isVariadic) const override {
+ if (!isVariadic &&
+ Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
+ return CC_X86ThisCall;
+ return CC_C;
+ }
+
+ bool isNearlyEmpty(const CXXRecordDecl *RD) const override {
+ // FIXME: Audit the corners
+ if (!RD->isDynamicClass())
+ return false;
+
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+
+ // In the Microsoft ABI, classes can have one or two vtable pointers.
+ CharUnits PointerSize =
+ Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
+ return Layout.getNonVirtualSize() == PointerSize ||
+ Layout.getNonVirtualSize() == PointerSize * 2;
+ }
+
+ void addDefaultArgExprForConstructor(const CXXConstructorDecl *CD,
+ unsigned ParmIdx, Expr *DAE) override {
+ CtorToDefaultArgExpr[std::make_pair(CD, ParmIdx)] = DAE;
+ }
+
+ Expr *getDefaultArgExprForConstructor(const CXXConstructorDecl *CD,
+ unsigned ParmIdx) override {
+ return CtorToDefaultArgExpr[std::make_pair(CD, ParmIdx)];
+ }
+
+ const CXXConstructorDecl *
+ getCopyConstructorForExceptionObject(CXXRecordDecl *RD) override {
+ return RecordToCopyCtor[RD];
+ }
+
+ void
+ addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
+ CXXConstructorDecl *CD) override {
+ assert(CD != nullptr);
+ assert(RecordToCopyCtor[RD] == nullptr || RecordToCopyCtor[RD] == CD);
+ RecordToCopyCtor[RD] = CD;
+ }
+
+ MangleNumberingContext *createMangleNumberingContext() const override {
+ return new MicrosoftNumberingContext();
+ }
+};
+}
+
+// getNumBases() seems to only give us the number of direct bases, and not the
+// total. This function tells us if we inherit from anybody that uses MI, or if
+// we have a non-primary base class, which uses the multiple inheritance model.
+static bool usesMultipleInheritanceModel(const CXXRecordDecl *RD) {
+ while (RD->getNumBases() > 0) {
+ if (RD->getNumBases() > 1)
+ return true;
+ assert(RD->getNumBases() == 1);
+ const CXXRecordDecl *Base =
+ RD->bases_begin()->getType()->getAsCXXRecordDecl();
+ if (RD->isPolymorphic() && !Base->isPolymorphic())
+ return true;
+ RD = Base;
+ }
+ return false;
+}
+
+MSInheritanceAttr::Spelling CXXRecordDecl::calculateInheritanceModel() const {
+ if (!hasDefinition() || isParsingBaseSpecifiers())
+ return MSInheritanceAttr::Keyword_unspecified_inheritance;
+ if (getNumVBases() > 0)
+ return MSInheritanceAttr::Keyword_virtual_inheritance;
+ if (usesMultipleInheritanceModel(this))
+ return MSInheritanceAttr::Keyword_multiple_inheritance;
+ return MSInheritanceAttr::Keyword_single_inheritance;
+}
+
+MSInheritanceAttr::Spelling
+CXXRecordDecl::getMSInheritanceModel() const {
+ MSInheritanceAttr *IA = getAttr<MSInheritanceAttr>();
+ assert(IA && "Expected MSInheritanceAttr on the CXXRecordDecl!");
+ return IA->getSemanticSpelling();
+}
+
+MSVtorDispAttr::Mode CXXRecordDecl::getMSVtorDispMode() const {
+ if (MSVtorDispAttr *VDA = getAttr<MSVtorDispAttr>())
+ return VDA->getVtorDispMode();
+ return MSVtorDispAttr::Mode(getASTContext().getLangOpts().VtorDispMode);
+}
+
+// Returns the number of pointer and integer slots used to represent a member
+// pointer in the MS C++ ABI.
+//
+// Member function pointers have the following general form; however, fields
+// are dropped as permitted (under the MSVC interpretation) by the inheritance
+// model of the actual class.
+//
+// struct {
+// // A pointer to the member function to call. If the member function is
+// // virtual, this will be a thunk that forwards to the appropriate vftable
+// // slot.
+// void *FunctionPointerOrVirtualThunk;
+//
+// // An offset to add to the address of the vbtable pointer after (possibly)
+// // selecting the virtual base but before resolving and calling the function.
+// // Only needed if the class has any virtual bases or bases at a non-zero
+// // offset.
+// int NonVirtualBaseAdjustment;
+//
+// // The offset of the vb-table pointer within the object. Only needed for
+// // incomplete types.
+// int VBPtrOffset;
+//
+// // An offset within the vb-table that selects the virtual base containing
+// // the member. Loading from this offset produces a new offset that is
+// // added to the address of the vb-table pointer to produce the base.
+// int VirtualBaseAdjustmentOffset;
+// };
+static std::pair<unsigned, unsigned>
+getMSMemberPointerSlots(const MemberPointerType *MPT) {
+ const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
+ MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
+ unsigned Ptrs = 0;
+ unsigned Ints = 0;
+ if (MPT->isMemberFunctionPointer())
+ Ptrs = 1;
+ else
+ Ints = 1;
+ if (MSInheritanceAttr::hasNVOffsetField(MPT->isMemberFunctionPointer(),
+ Inheritance))
+ Ints++;
+ if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
+ Ints++;
+ if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
+ Ints++;
+ return std::make_pair(Ptrs, Ints);
+}
+
+std::pair<uint64_t, unsigned> MicrosoftCXXABI::getMemberPointerWidthAndAlign(
+ const MemberPointerType *MPT) const {
+ // The nominal struct is laid out with pointers followed by ints and aligned
+ // to a pointer width if any are present and an int width otherwise.
+ const TargetInfo &Target = Context.getTargetInfo();
+ unsigned PtrSize = Target.getPointerWidth(0);
+ unsigned IntSize = Target.getIntWidth();
+
+ unsigned Ptrs, Ints;
+ std::tie(Ptrs, Ints) = getMSMemberPointerSlots(MPT);
+ uint64_t Width = Ptrs * PtrSize + Ints * IntSize;
+ unsigned Align;
+
+ // When MSVC does x86_32 record layout, it aligns aggregate member pointers to
+ // 8 bytes. However, __alignof usually returns 4 for data memptrs and 8 for
+ // function memptrs.
+ if (Ptrs + Ints > 1 && Target.getTriple().isArch32Bit())
+ Align = 64;
+ else if (Ptrs)
+ Align = Target.getPointerAlign(0);
+ else
+ Align = Target.getIntAlign();
+
+ if (Target.getTriple().isArch64Bit())
+ Width = llvm::RoundUpToAlignment(Width, Align);
+ return std::make_pair(Width, Align);
+}
+
+CXXABI *clang::CreateMicrosoftCXXABI(ASTContext &Ctx) {
+ return new MicrosoftCXXABI(Ctx);
+}
+
diff --git a/contrib/llvm/tools/clang/lib/AST/MicrosoftMangle.cpp b/contrib/llvm/tools/clang/lib/AST/MicrosoftMangle.cpp
new file mode 100644
index 0000000..77522c1
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/MicrosoftMangle.cpp
@@ -0,0 +1,2764 @@
+//===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This provides C++ name mangling targeting the Microsoft Visual C++ ABI.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/Mangle.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/CharUnits.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/VTableBuilder.h"
+#include "clang/Basic/ABI.h"
+#include "clang/Basic/DiagnosticOptions.h"
+#include "clang/Basic/TargetInfo.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/MathExtras.h"
+
+using namespace clang;
+
+namespace {
+
+/// \brief Retrieve the declaration context that should be used when mangling
+/// the given declaration.
+static const DeclContext *getEffectiveDeclContext(const Decl *D) {
+ // The ABI assumes that lambda closure types that occur within
+ // default arguments live in the context of the function. However, due to
+ // the way in which Clang parses and creates function declarations, this is
+ // not the case: the lambda closure type ends up living in the context
+ // where the function itself resides, because the function declaration itself
+ // had not yet been created. Fix the context here.
+ if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
+ if (RD->isLambda())
+ if (ParmVarDecl *ContextParam =
+ dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
+ return ContextParam->getDeclContext();
+ }
+
+ // Perform the same check for block literals.
+ if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
+ if (ParmVarDecl *ContextParam =
+ dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
+ return ContextParam->getDeclContext();
+ }
+
+ const DeclContext *DC = D->getDeclContext();
+ if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(DC))
+ return getEffectiveDeclContext(CD);
+
+ return DC;
+}
+
+static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
+ return getEffectiveDeclContext(cast<Decl>(DC));
+}
+
+static const FunctionDecl *getStructor(const NamedDecl *ND) {
+ if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(ND))
+ return FTD->getTemplatedDecl();
+
+ const auto *FD = cast<FunctionDecl>(ND);
+ if (const auto *FTD = FD->getPrimaryTemplate())
+ return FTD->getTemplatedDecl();
+
+ return FD;
+}
+
+static bool isLambda(const NamedDecl *ND) {
+ const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
+ if (!Record)
+ return false;
+
+ return Record->isLambda();
+}
+
+/// MicrosoftMangleContextImpl - Overrides the default MangleContext for the
+/// Microsoft Visual C++ ABI.
+class MicrosoftMangleContextImpl : public MicrosoftMangleContext {
+ typedef std::pair<const DeclContext *, IdentifierInfo *> DiscriminatorKeyTy;
+ llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
+ llvm::DenseMap<const NamedDecl *, unsigned> Uniquifier;
+ llvm::DenseMap<const CXXRecordDecl *, unsigned> LambdaIds;
+ llvm::DenseMap<const NamedDecl *, unsigned> SEHFilterIds;
+ llvm::DenseMap<const NamedDecl *, unsigned> SEHFinallyIds;
+
+public:
+ MicrosoftMangleContextImpl(ASTContext &Context, DiagnosticsEngine &Diags)
+ : MicrosoftMangleContext(Context, Diags) {}
+ bool shouldMangleCXXName(const NamedDecl *D) override;
+ bool shouldMangleStringLiteral(const StringLiteral *SL) override;
+ void mangleCXXName(const NamedDecl *D, raw_ostream &Out) override;
+ void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
+ raw_ostream &) override;
+ void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
+ raw_ostream &) override;
+ void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
+ const ThisAdjustment &ThisAdjustment,
+ raw_ostream &) override;
+ void mangleCXXVFTable(const CXXRecordDecl *Derived,
+ ArrayRef<const CXXRecordDecl *> BasePath,
+ raw_ostream &Out) override;
+ void mangleCXXVBTable(const CXXRecordDecl *Derived,
+ ArrayRef<const CXXRecordDecl *> BasePath,
+ raw_ostream &Out) override;
+ void mangleCXXThrowInfo(QualType T, bool IsConst, bool IsVolatile,
+ uint32_t NumEntries, raw_ostream &Out) override;
+ void mangleCXXCatchableTypeArray(QualType T, uint32_t NumEntries,
+ raw_ostream &Out) override;
+ void mangleCXXCatchableType(QualType T, const CXXConstructorDecl *CD,
+ CXXCtorType CT, uint32_t Size, uint32_t NVOffset,
+ int32_t VBPtrOffset, uint32_t VBIndex,
+ raw_ostream &Out) override;
+ void mangleCXXCatchHandlerType(QualType T, uint32_t Flags,
+ raw_ostream &Out) override;
+ void mangleCXXRTTI(QualType T, raw_ostream &Out) override;
+ void mangleCXXRTTIName(QualType T, raw_ostream &Out) override;
+ void mangleCXXRTTIBaseClassDescriptor(const CXXRecordDecl *Derived,
+ uint32_t NVOffset, int32_t VBPtrOffset,
+ uint32_t VBTableOffset, uint32_t Flags,
+ raw_ostream &Out) override;
+ void mangleCXXRTTIBaseClassArray(const CXXRecordDecl *Derived,
+ raw_ostream &Out) override;
+ void mangleCXXRTTIClassHierarchyDescriptor(const CXXRecordDecl *Derived,
+ raw_ostream &Out) override;
+ void
+ mangleCXXRTTICompleteObjectLocator(const CXXRecordDecl *Derived,
+ ArrayRef<const CXXRecordDecl *> BasePath,
+ raw_ostream &Out) override;
+ void mangleTypeName(QualType T, raw_ostream &) override;
+ void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
+ raw_ostream &) override;
+ void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
+ raw_ostream &) override;
+ void mangleReferenceTemporary(const VarDecl *, unsigned ManglingNumber,
+ raw_ostream &) override;
+ void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &Out) override;
+ void mangleThreadSafeStaticGuardVariable(const VarDecl *D, unsigned GuardNum,
+ raw_ostream &Out) override;
+ void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
+ void mangleDynamicAtExitDestructor(const VarDecl *D,
+ raw_ostream &Out) override;
+ void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
+ raw_ostream &Out) override;
+ void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
+ raw_ostream &Out) override;
+ void mangleStringLiteral(const StringLiteral *SL, raw_ostream &Out) override;
+ void mangleCXXVTableBitSet(const CXXRecordDecl *RD,
+ raw_ostream &Out) override;
+ bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
+ // Lambda closure types are already numbered.
+ if (isLambda(ND))
+ return false;
+
+ const DeclContext *DC = getEffectiveDeclContext(ND);
+ if (!DC->isFunctionOrMethod())
+ return false;
+
+ // Use the canonical number for externally visible decls.
+ if (ND->isExternallyVisible()) {
+ disc = getASTContext().getManglingNumber(ND);
+ return true;
+ }
+
+ // Anonymous tags are already numbered.
+ if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
+ if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
+ return false;
+ }
+
+ // Make up a reasonable number for internal decls.
+ unsigned &discriminator = Uniquifier[ND];
+ if (!discriminator)
+ discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
+ disc = discriminator + 1;
+ return true;
+ }
+
+ unsigned getLambdaId(const CXXRecordDecl *RD) {
+ assert(RD->isLambda() && "RD must be a lambda!");
+ assert(!RD->isExternallyVisible() && "RD must not be visible!");
+ assert(RD->getLambdaManglingNumber() == 0 &&
+ "RD must not have a mangling number!");
+ std::pair<llvm::DenseMap<const CXXRecordDecl *, unsigned>::iterator, bool>
+ Result = LambdaIds.insert(std::make_pair(RD, LambdaIds.size()));
+ return Result.first->second;
+ }
+
+private:
+ void mangleInitFiniStub(const VarDecl *D, raw_ostream &Out, char CharCode);
+};
+
+/// MicrosoftCXXNameMangler - Manage the mangling of a single name for the
+/// Microsoft Visual C++ ABI.
+class MicrosoftCXXNameMangler {
+ MicrosoftMangleContextImpl &Context;
+ raw_ostream &Out;
+
+ /// The "structor" is the top-level declaration being mangled, if
+ /// that's not a template specialization; otherwise it's the pattern
+ /// for that specialization.
+ const NamedDecl *Structor;
+ unsigned StructorType;
+
+ typedef llvm::SmallVector<std::string, 10> BackRefVec;
+ BackRefVec NameBackReferences;
+
+ typedef llvm::DenseMap<void *, unsigned> ArgBackRefMap;
+ ArgBackRefMap TypeBackReferences;
+
+ ASTContext &getASTContext() const { return Context.getASTContext(); }
+
+ // FIXME: If we add support for __ptr32/64 qualifiers, then we should push
+ // this check into mangleQualifiers().
+ const bool PointersAre64Bit;
+
+public:
+ enum QualifierMangleMode { QMM_Drop, QMM_Mangle, QMM_Escape, QMM_Result };
+
+ MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_)
+ : Context(C), Out(Out_), Structor(nullptr), StructorType(-1),
+ PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
+ 64) {}
+
+ MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_,
+ const CXXConstructorDecl *D, CXXCtorType Type)
+ : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
+ PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
+ 64) {}
+
+ MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_,
+ const CXXDestructorDecl *D, CXXDtorType Type)
+ : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
+ PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
+ 64) {}
+
+ raw_ostream &getStream() const { return Out; }
+
+ void mangle(const NamedDecl *D, StringRef Prefix = "\01?");
+ void mangleName(const NamedDecl *ND);
+ void mangleFunctionEncoding(const FunctionDecl *FD, bool ShouldMangle);
+ void mangleVariableEncoding(const VarDecl *VD);
+ void mangleMemberDataPointer(const CXXRecordDecl *RD, const ValueDecl *VD);
+ void mangleMemberFunctionPointer(const CXXRecordDecl *RD,
+ const CXXMethodDecl *MD);
+ void mangleVirtualMemPtrThunk(
+ const CXXMethodDecl *MD,
+ const MicrosoftVTableContext::MethodVFTableLocation &ML);
+ void mangleNumber(int64_t Number);
+ void mangleType(QualType T, SourceRange Range,
+ QualifierMangleMode QMM = QMM_Mangle);
+ void mangleFunctionType(const FunctionType *T,
+ const FunctionDecl *D = nullptr,
+ bool ForceThisQuals = false);
+ void mangleNestedName(const NamedDecl *ND);
+
+private:
+ void mangleUnqualifiedName(const NamedDecl *ND) {
+ mangleUnqualifiedName(ND, ND->getDeclName());
+ }
+ void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name);
+ void mangleSourceName(StringRef Name);
+ void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc);
+ void mangleCXXDtorType(CXXDtorType T);
+ void mangleQualifiers(Qualifiers Quals, bool IsMember);
+ void mangleRefQualifier(RefQualifierKind RefQualifier);
+ void manglePointerCVQualifiers(Qualifiers Quals);
+ void manglePointerExtQualifiers(Qualifiers Quals, QualType PointeeType);
+
+ void mangleUnscopedTemplateName(const TemplateDecl *ND);
+ void
+ mangleTemplateInstantiationName(const TemplateDecl *TD,
+ const TemplateArgumentList &TemplateArgs);
+ void mangleObjCMethodName(const ObjCMethodDecl *MD);
+
+ void mangleArgumentType(QualType T, SourceRange Range);
+
+ // Declare manglers for every type class.
+#define ABSTRACT_TYPE(CLASS, PARENT)
+#define NON_CANONICAL_TYPE(CLASS, PARENT)
+#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \
+ Qualifiers Quals, \
+ SourceRange Range);
+#include "clang/AST/TypeNodes.def"
+#undef ABSTRACT_TYPE
+#undef NON_CANONICAL_TYPE
+#undef TYPE
+
+ void mangleType(const TagDecl *TD);
+ void mangleDecayedArrayType(const ArrayType *T);
+ void mangleArrayType(const ArrayType *T);
+ void mangleFunctionClass(const FunctionDecl *FD);
+ void mangleCallingConvention(CallingConv CC);
+ void mangleCallingConvention(const FunctionType *T);
+ void mangleIntegerLiteral(const llvm::APSInt &Number, bool IsBoolean);
+ void mangleExpression(const Expr *E);
+ void mangleThrowSpecification(const FunctionProtoType *T);
+
+ void mangleTemplateArgs(const TemplateDecl *TD,
+ const TemplateArgumentList &TemplateArgs);
+ void mangleTemplateArg(const TemplateDecl *TD, const TemplateArgument &TA,
+ const NamedDecl *Parm);
+};
+}
+
+bool MicrosoftMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ LanguageLinkage L = FD->getLanguageLinkage();
+ // Overloadable functions need mangling.
+ if (FD->hasAttr<OverloadableAttr>())
+ return true;
+
+ // The ABI expects that we would never mangle "typical" user-defined entry
+ // points regardless of visibility or freestanding-ness.
+ //
+ // N.B. This is distinct from asking about "main". "main" has a lot of
+ // special rules associated with it in the standard while these
+ // user-defined entry points are outside of the purview of the standard.
+ // For example, there can be only one definition for "main" in a standards
+ // compliant program; however nothing forbids the existence of wmain and
+ // WinMain in the same translation unit.
+ if (FD->isMSVCRTEntryPoint())
+ return false;
+
+ // C++ functions and those whose names are not a simple identifier need
+ // mangling.
+ if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
+ return true;
+
+ // C functions are not mangled.
+ if (L == CLanguageLinkage)
+ return false;
+ }
+
+ // Otherwise, no mangling is done outside C++ mode.
+ if (!getASTContext().getLangOpts().CPlusPlus)
+ return false;
+
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
+ // C variables are not mangled.
+ if (VD->isExternC())
+ return false;
+
+ // Variables at global scope with non-internal linkage are not mangled.
+ const DeclContext *DC = getEffectiveDeclContext(D);
+ // Check for extern variable declared locally.
+ if (DC->isFunctionOrMethod() && D->hasLinkage())
+ while (!DC->isNamespace() && !DC->isTranslationUnit())
+ DC = getEffectiveParentContext(DC);
+
+ if (DC->isTranslationUnit() && D->getFormalLinkage() == InternalLinkage &&
+ !isa<VarTemplateSpecializationDecl>(D))
+ return false;
+ }
+
+ return true;
+}
+
+bool
+MicrosoftMangleContextImpl::shouldMangleStringLiteral(const StringLiteral *SL) {
+ return true;
+}
+
+void MicrosoftCXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
+ // MSVC doesn't mangle C++ names the same way it mangles extern "C" names.
+ // Therefore it's really important that we don't decorate the
+ // name with leading underscores or leading/trailing at signs. So, by
+ // default, we emit an asm marker at the start so we get the name right.
+ // Callers can override this with a custom prefix.
+
+ // <mangled-name> ::= ? <name> <type-encoding>
+ Out << Prefix;
+ mangleName(D);
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
+ mangleFunctionEncoding(FD, Context.shouldMangleDeclName(FD));
+ else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
+ mangleVariableEncoding(VD);
+ else {
+ // TODO: Fields? Can MSVC even mangle them?
+ // Issue a diagnostic for now.
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(
+ DiagnosticsEngine::Error, "cannot mangle this declaration yet");
+ Diags.Report(D->getLocation(), DiagID) << D->getSourceRange();
+ }
+}
+
+void MicrosoftCXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD,
+ bool ShouldMangle) {
+ // <type-encoding> ::= <function-class> <function-type>
+
+ // Since MSVC operates on the type as written and not the canonical type, it
+ // actually matters which decl we have here. MSVC appears to choose the
+ // first, since it is most likely to be the declaration in a header file.
+ FD = FD->getFirstDecl();
+
+ // We should never ever see a FunctionNoProtoType at this point.
+ // We don't even know how to mangle their types anyway :).
+ const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>();
+
+ // extern "C" functions can hold entities that must be mangled.
+ // As it stands, these functions still need to get expressed in the full
+ // external name. They have their class and type omitted, replaced with '9'.
+ if (ShouldMangle) {
+ // We would like to mangle all extern "C" functions using this additional
+ // component but this would break compatibility with MSVC's behavior.
+ // Instead, do this when we know that compatibility isn't important (in
+ // other words, when it is an overloaded extern "C" funciton).
+ if (FD->isExternC() && FD->hasAttr<OverloadableAttr>())
+ Out << "$$J0";
+
+ mangleFunctionClass(FD);
+
+ mangleFunctionType(FT, FD);
+ } else {
+ Out << '9';
+ }
+}
+
+void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) {
+ // <type-encoding> ::= <storage-class> <variable-type>
+ // <storage-class> ::= 0 # private static member
+ // ::= 1 # protected static member
+ // ::= 2 # public static member
+ // ::= 3 # global
+ // ::= 4 # static local
+
+ // The first character in the encoding (after the name) is the storage class.
+ if (VD->isStaticDataMember()) {
+ // If it's a static member, it also encodes the access level.
+ switch (VD->getAccess()) {
+ default:
+ case AS_private: Out << '0'; break;
+ case AS_protected: Out << '1'; break;
+ case AS_public: Out << '2'; break;
+ }
+ }
+ else if (!VD->isStaticLocal())
+ Out << '3';
+ else
+ Out << '4';
+ // Now mangle the type.
+ // <variable-type> ::= <type> <cvr-qualifiers>
+ // ::= <type> <pointee-cvr-qualifiers> # pointers, references
+ // Pointers and references are odd. The type of 'int * const foo;' gets
+ // mangled as 'QAHA' instead of 'PAHB', for example.
+ SourceRange SR = VD->getSourceRange();
+ QualType Ty = VD->getType();
+ if (Ty->isPointerType() || Ty->isReferenceType() ||
+ Ty->isMemberPointerType()) {
+ mangleType(Ty, SR, QMM_Drop);
+ manglePointerExtQualifiers(
+ Ty.getDesugaredType(getASTContext()).getLocalQualifiers(), QualType());
+ if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()) {
+ mangleQualifiers(MPT->getPointeeType().getQualifiers(), true);
+ // Member pointers are suffixed with a back reference to the member
+ // pointer's class name.
+ mangleName(MPT->getClass()->getAsCXXRecordDecl());
+ } else
+ mangleQualifiers(Ty->getPointeeType().getQualifiers(), false);
+ } else if (const ArrayType *AT = getASTContext().getAsArrayType(Ty)) {
+ // Global arrays are funny, too.
+ mangleDecayedArrayType(AT);
+ if (AT->getElementType()->isArrayType())
+ Out << 'A';
+ else
+ mangleQualifiers(Ty.getQualifiers(), false);
+ } else {
+ mangleType(Ty, SR, QMM_Drop);
+ mangleQualifiers(Ty.getQualifiers(), false);
+ }
+}
+
+void MicrosoftCXXNameMangler::mangleMemberDataPointer(const CXXRecordDecl *RD,
+ const ValueDecl *VD) {
+ // <member-data-pointer> ::= <integer-literal>
+ // ::= $F <number> <number>
+ // ::= $G <number> <number> <number>
+
+ int64_t FieldOffset;
+ int64_t VBTableOffset;
+ MSInheritanceAttr::Spelling IM = RD->getMSInheritanceModel();
+ if (VD) {
+ FieldOffset = getASTContext().getFieldOffset(VD);
+ assert(FieldOffset % getASTContext().getCharWidth() == 0 &&
+ "cannot take address of bitfield");
+ FieldOffset /= getASTContext().getCharWidth();
+
+ VBTableOffset = 0;
+ } else {
+ FieldOffset = RD->nullFieldOffsetIsZero() ? 0 : -1;
+
+ VBTableOffset = -1;
+ }
+
+ char Code = '\0';
+ switch (IM) {
+ case MSInheritanceAttr::Keyword_single_inheritance: Code = '0'; break;
+ case MSInheritanceAttr::Keyword_multiple_inheritance: Code = '0'; break;
+ case MSInheritanceAttr::Keyword_virtual_inheritance: Code = 'F'; break;
+ case MSInheritanceAttr::Keyword_unspecified_inheritance: Code = 'G'; break;
+ }
+
+ Out << '$' << Code;
+
+ mangleNumber(FieldOffset);
+
+ // The C++ standard doesn't allow base-to-derived member pointer conversions
+ // in template parameter contexts, so the vbptr offset of data member pointers
+ // is always zero.
+ if (MSInheritanceAttr::hasVBPtrOffsetField(IM))
+ mangleNumber(0);
+ if (MSInheritanceAttr::hasVBTableOffsetField(IM))
+ mangleNumber(VBTableOffset);
+}
+
+void
+MicrosoftCXXNameMangler::mangleMemberFunctionPointer(const CXXRecordDecl *RD,
+ const CXXMethodDecl *MD) {
+ // <member-function-pointer> ::= $1? <name>
+ // ::= $H? <name> <number>
+ // ::= $I? <name> <number> <number>
+ // ::= $J? <name> <number> <number> <number>
+
+ MSInheritanceAttr::Spelling IM = RD->getMSInheritanceModel();
+
+ char Code = '\0';
+ switch (IM) {
+ case MSInheritanceAttr::Keyword_single_inheritance: Code = '1'; break;
+ case MSInheritanceAttr::Keyword_multiple_inheritance: Code = 'H'; break;
+ case MSInheritanceAttr::Keyword_virtual_inheritance: Code = 'I'; break;
+ case MSInheritanceAttr::Keyword_unspecified_inheritance: Code = 'J'; break;
+ }
+
+ // If non-virtual, mangle the name. If virtual, mangle as a virtual memptr
+ // thunk.
+ uint64_t NVOffset = 0;
+ uint64_t VBTableOffset = 0;
+ uint64_t VBPtrOffset = 0;
+ if (MD) {
+ Out << '$' << Code << '?';
+ if (MD->isVirtual()) {
+ MicrosoftVTableContext *VTContext =
+ cast<MicrosoftVTableContext>(getASTContext().getVTableContext());
+ const MicrosoftVTableContext::MethodVFTableLocation &ML =
+ VTContext->getMethodVFTableLocation(GlobalDecl(MD));
+ mangleVirtualMemPtrThunk(MD, ML);
+ NVOffset = ML.VFPtrOffset.getQuantity();
+ VBTableOffset = ML.VBTableIndex * 4;
+ if (ML.VBase) {
+ const ASTRecordLayout &Layout = getASTContext().getASTRecordLayout(RD);
+ VBPtrOffset = Layout.getVBPtrOffset().getQuantity();
+ }
+ } else {
+ mangleName(MD);
+ mangleFunctionEncoding(MD, /*ShouldMangle=*/true);
+ }
+ } else {
+ // Null single inheritance member functions are encoded as a simple nullptr.
+ if (IM == MSInheritanceAttr::Keyword_single_inheritance) {
+ Out << "$0A@";
+ return;
+ }
+ if (IM == MSInheritanceAttr::Keyword_unspecified_inheritance)
+ VBTableOffset = -1;
+ Out << '$' << Code;
+ }
+
+ if (MSInheritanceAttr::hasNVOffsetField(/*IsMemberFunction=*/true, IM))
+ mangleNumber(NVOffset);
+ if (MSInheritanceAttr::hasVBPtrOffsetField(IM))
+ mangleNumber(VBPtrOffset);
+ if (MSInheritanceAttr::hasVBTableOffsetField(IM))
+ mangleNumber(VBTableOffset);
+}
+
+void MicrosoftCXXNameMangler::mangleVirtualMemPtrThunk(
+ const CXXMethodDecl *MD,
+ const MicrosoftVTableContext::MethodVFTableLocation &ML) {
+ // Get the vftable offset.
+ CharUnits PointerWidth = getASTContext().toCharUnitsFromBits(
+ getASTContext().getTargetInfo().getPointerWidth(0));
+ uint64_t OffsetInVFTable = ML.Index * PointerWidth.getQuantity();
+
+ Out << "?_9";
+ mangleName(MD->getParent());
+ Out << "$B";
+ mangleNumber(OffsetInVFTable);
+ Out << 'A';
+ mangleCallingConvention(MD->getType()->getAs<FunctionProtoType>());
+}
+
+void MicrosoftCXXNameMangler::mangleName(const NamedDecl *ND) {
+ // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
+
+ // Always start with the unqualified name.
+ mangleUnqualifiedName(ND);
+
+ mangleNestedName(ND);
+
+ // Terminate the whole name with an '@'.
+ Out << '@';
+}
+
+void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) {
+ // <non-negative integer> ::= A@ # when Number == 0
+ // ::= <decimal digit> # when 1 <= Number <= 10
+ // ::= <hex digit>+ @ # when Number >= 10
+ //
+ // <number> ::= [?] <non-negative integer>
+
+ uint64_t Value = static_cast<uint64_t>(Number);
+ if (Number < 0) {
+ Value = -Value;
+ Out << '?';
+ }
+
+ if (Value == 0)
+ Out << "A@";
+ else if (Value >= 1 && Value <= 10)
+ Out << (Value - 1);
+ else {
+ // Numbers that are not encoded as decimal digits are represented as nibbles
+ // in the range of ASCII characters 'A' to 'P'.
+ // The number 0x123450 would be encoded as 'BCDEFA'
+ char EncodedNumberBuffer[sizeof(uint64_t) * 2];
+ MutableArrayRef<char> BufferRef(EncodedNumberBuffer);
+ MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
+ for (; Value != 0; Value >>= 4)
+ *I++ = 'A' + (Value & 0xf);
+ Out.write(I.base(), I - BufferRef.rbegin());
+ Out << '@';
+ }
+}
+
+static const TemplateDecl *
+isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
+ // Check if we have a function template.
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
+ if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
+ TemplateArgs = FD->getTemplateSpecializationArgs();
+ return TD;
+ }
+ }
+
+ // Check if we have a class template.
+ if (const ClassTemplateSpecializationDecl *Spec =
+ dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
+ TemplateArgs = &Spec->getTemplateArgs();
+ return Spec->getSpecializedTemplate();
+ }
+
+ // Check if we have a variable template.
+ if (const VarTemplateSpecializationDecl *Spec =
+ dyn_cast<VarTemplateSpecializationDecl>(ND)) {
+ TemplateArgs = &Spec->getTemplateArgs();
+ return Spec->getSpecializedTemplate();
+ }
+
+ return nullptr;
+}
+
+void MicrosoftCXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
+ DeclarationName Name) {
+ // <unqualified-name> ::= <operator-name>
+ // ::= <ctor-dtor-name>
+ // ::= <source-name>
+ // ::= <template-name>
+
+ // Check if we have a template.
+ const TemplateArgumentList *TemplateArgs = nullptr;
+ if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
+ // Function templates aren't considered for name back referencing. This
+ // makes sense since function templates aren't likely to occur multiple
+ // times in a symbol.
+ // FIXME: Test alias template mangling with MSVC 2013.
+ if (!isa<ClassTemplateDecl>(TD)) {
+ mangleTemplateInstantiationName(TD, *TemplateArgs);
+ Out << '@';
+ return;
+ }
+
+ // Here comes the tricky thing: if we need to mangle something like
+ // void foo(A::X<Y>, B::X<Y>),
+ // the X<Y> part is aliased. However, if you need to mangle
+ // void foo(A::X<A::Y>, A::X<B::Y>),
+ // the A::X<> part is not aliased.
+ // That said, from the mangler's perspective we have a structure like this:
+ // namespace[s] -> type[ -> template-parameters]
+ // but from the Clang perspective we have
+ // type [ -> template-parameters]
+ // \-> namespace[s]
+ // What we do is we create a new mangler, mangle the same type (without
+ // a namespace suffix) to a string using the extra mangler and then use
+ // the mangled type name as a key to check the mangling of different types
+ // for aliasing.
+
+ llvm::SmallString<64> TemplateMangling;
+ llvm::raw_svector_ostream Stream(TemplateMangling);
+ MicrosoftCXXNameMangler Extra(Context, Stream);
+ Extra.mangleTemplateInstantiationName(TD, *TemplateArgs);
+ Stream.flush();
+
+ mangleSourceName(TemplateMangling);
+ return;
+ }
+
+ switch (Name.getNameKind()) {
+ case DeclarationName::Identifier: {
+ if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
+ mangleSourceName(II->getName());
+ break;
+ }
+
+ // Otherwise, an anonymous entity. We must have a declaration.
+ assert(ND && "mangling empty name without declaration");
+
+ if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
+ if (NS->isAnonymousNamespace()) {
+ Out << "?A@";
+ break;
+ }
+ }
+
+ if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
+ // We must have an anonymous union or struct declaration.
+ const CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl();
+ assert(RD && "expected variable decl to have a record type");
+ // Anonymous types with no tag or typedef get the name of their
+ // declarator mangled in. If they have no declarator, number them with
+ // a $S prefix.
+ llvm::SmallString<64> Name("$S");
+ // Get a unique id for the anonymous struct.
+ Name += llvm::utostr(Context.getAnonymousStructId(RD) + 1);
+ mangleSourceName(Name.str());
+ break;
+ }
+
+ // We must have an anonymous struct.
+ const TagDecl *TD = cast<TagDecl>(ND);
+ if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
+ assert(TD->getDeclContext() == D->getDeclContext() &&
+ "Typedef should not be in another decl context!");
+ assert(D->getDeclName().getAsIdentifierInfo() &&
+ "Typedef was not named!");
+ mangleSourceName(D->getDeclName().getAsIdentifierInfo()->getName());
+ break;
+ }
+
+ if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
+ if (Record->isLambda()) {
+ llvm::SmallString<10> Name("<lambda_");
+ unsigned LambdaId;
+ if (Record->getLambdaManglingNumber())
+ LambdaId = Record->getLambdaManglingNumber();
+ else
+ LambdaId = Context.getLambdaId(Record);
+
+ Name += llvm::utostr(LambdaId);
+ Name += ">";
+
+ mangleSourceName(Name);
+ break;
+ }
+ }
+
+ llvm::SmallString<64> Name("<unnamed-type-");
+ if (TD->hasDeclaratorForAnonDecl()) {
+ // Anonymous types with no tag or typedef get the name of their
+ // declarator mangled in if they have one.
+ Name += TD->getDeclaratorForAnonDecl()->getName();
+ } else {
+ // Otherwise, number the types using a $S prefix.
+ Name += "$S";
+ Name += llvm::utostr(Context.getAnonymousStructId(TD));
+ }
+ Name += ">";
+ mangleSourceName(Name.str());
+ break;
+ }
+
+ case DeclarationName::ObjCZeroArgSelector:
+ case DeclarationName::ObjCOneArgSelector:
+ case DeclarationName::ObjCMultiArgSelector:
+ llvm_unreachable("Can't mangle Objective-C selector names here!");
+
+ case DeclarationName::CXXConstructorName:
+ if (Structor == getStructor(ND)) {
+ if (StructorType == Ctor_CopyingClosure) {
+ Out << "?_O";
+ return;
+ }
+ if (StructorType == Ctor_DefaultClosure) {
+ Out << "?_F";
+ return;
+ }
+ }
+ Out << "?0";
+ return;
+
+ case DeclarationName::CXXDestructorName:
+ if (ND == Structor)
+ // If the named decl is the C++ destructor we're mangling,
+ // use the type we were given.
+ mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
+ else
+ // Otherwise, use the base destructor name. This is relevant if a
+ // class with a destructor is declared within a destructor.
+ mangleCXXDtorType(Dtor_Base);
+ break;
+
+ case DeclarationName::CXXConversionFunctionName:
+ // <operator-name> ::= ?B # (cast)
+ // The target type is encoded as the return type.
+ Out << "?B";
+ break;
+
+ case DeclarationName::CXXOperatorName:
+ mangleOperatorName(Name.getCXXOverloadedOperator(), ND->getLocation());
+ break;
+
+ case DeclarationName::CXXLiteralOperatorName: {
+ Out << "?__K";
+ mangleSourceName(Name.getCXXLiteralIdentifier()->getName());
+ break;
+ }
+
+ case DeclarationName::CXXUsingDirective:
+ llvm_unreachable("Can't mangle a using directive name!");
+ }
+}
+
+void MicrosoftCXXNameMangler::mangleNestedName(const NamedDecl *ND) {
+ // <postfix> ::= <unqualified-name> [<postfix>]
+ // ::= <substitution> [<postfix>]
+ const DeclContext *DC = getEffectiveDeclContext(ND);
+
+ while (!DC->isTranslationUnit()) {
+ if (isa<TagDecl>(ND) || isa<VarDecl>(ND)) {
+ unsigned Disc;
+ if (Context.getNextDiscriminator(ND, Disc)) {
+ Out << '?';
+ mangleNumber(Disc);
+ Out << '?';
+ }
+ }
+
+ if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID =
+ Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle a local inside this block yet");
+ Diags.Report(BD->getLocation(), DiagID);
+
+ // FIXME: This is completely, utterly, wrong; see ItaniumMangle
+ // for how this should be done.
+ Out << "__block_invoke" << Context.getBlockId(BD, false);
+ Out << '@';
+ continue;
+ } else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC)) {
+ mangleObjCMethodName(Method);
+ } else if (isa<NamedDecl>(DC)) {
+ ND = cast<NamedDecl>(DC);
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
+ mangle(FD, "?");
+ break;
+ } else
+ mangleUnqualifiedName(ND);
+ }
+ DC = DC->getParent();
+ }
+}
+
+void MicrosoftCXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
+ // Microsoft uses the names on the case labels for these dtor variants. Clang
+ // uses the Itanium terminology internally. Everything in this ABI delegates
+ // towards the base dtor.
+ switch (T) {
+ // <operator-name> ::= ?1 # destructor
+ case Dtor_Base: Out << "?1"; return;
+ // <operator-name> ::= ?_D # vbase destructor
+ case Dtor_Complete: Out << "?_D"; return;
+ // <operator-name> ::= ?_G # scalar deleting destructor
+ case Dtor_Deleting: Out << "?_G"; return;
+ // <operator-name> ::= ?_E # vector deleting destructor
+ // FIXME: Add a vector deleting dtor type. It goes in the vtable, so we need
+ // it.
+ case Dtor_Comdat:
+ llvm_unreachable("not expecting a COMDAT");
+ }
+ llvm_unreachable("Unsupported dtor type?");
+}
+
+void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO,
+ SourceLocation Loc) {
+ switch (OO) {
+ // ?0 # constructor
+ // ?1 # destructor
+ // <operator-name> ::= ?2 # new
+ case OO_New: Out << "?2"; break;
+ // <operator-name> ::= ?3 # delete
+ case OO_Delete: Out << "?3"; break;
+ // <operator-name> ::= ?4 # =
+ case OO_Equal: Out << "?4"; break;
+ // <operator-name> ::= ?5 # >>
+ case OO_GreaterGreater: Out << "?5"; break;
+ // <operator-name> ::= ?6 # <<
+ case OO_LessLess: Out << "?6"; break;
+ // <operator-name> ::= ?7 # !
+ case OO_Exclaim: Out << "?7"; break;
+ // <operator-name> ::= ?8 # ==
+ case OO_EqualEqual: Out << "?8"; break;
+ // <operator-name> ::= ?9 # !=
+ case OO_ExclaimEqual: Out << "?9"; break;
+ // <operator-name> ::= ?A # []
+ case OO_Subscript: Out << "?A"; break;
+ // ?B # conversion
+ // <operator-name> ::= ?C # ->
+ case OO_Arrow: Out << "?C"; break;
+ // <operator-name> ::= ?D # *
+ case OO_Star: Out << "?D"; break;
+ // <operator-name> ::= ?E # ++
+ case OO_PlusPlus: Out << "?E"; break;
+ // <operator-name> ::= ?F # --
+ case OO_MinusMinus: Out << "?F"; break;
+ // <operator-name> ::= ?G # -
+ case OO_Minus: Out << "?G"; break;
+ // <operator-name> ::= ?H # +
+ case OO_Plus: Out << "?H"; break;
+ // <operator-name> ::= ?I # &
+ case OO_Amp: Out << "?I"; break;
+ // <operator-name> ::= ?J # ->*
+ case OO_ArrowStar: Out << "?J"; break;
+ // <operator-name> ::= ?K # /
+ case OO_Slash: Out << "?K"; break;
+ // <operator-name> ::= ?L # %
+ case OO_Percent: Out << "?L"; break;
+ // <operator-name> ::= ?M # <
+ case OO_Less: Out << "?M"; break;
+ // <operator-name> ::= ?N # <=
+ case OO_LessEqual: Out << "?N"; break;
+ // <operator-name> ::= ?O # >
+ case OO_Greater: Out << "?O"; break;
+ // <operator-name> ::= ?P # >=
+ case OO_GreaterEqual: Out << "?P"; break;
+ // <operator-name> ::= ?Q # ,
+ case OO_Comma: Out << "?Q"; break;
+ // <operator-name> ::= ?R # ()
+ case OO_Call: Out << "?R"; break;
+ // <operator-name> ::= ?S # ~
+ case OO_Tilde: Out << "?S"; break;
+ // <operator-name> ::= ?T # ^
+ case OO_Caret: Out << "?T"; break;
+ // <operator-name> ::= ?U # |
+ case OO_Pipe: Out << "?U"; break;
+ // <operator-name> ::= ?V # &&
+ case OO_AmpAmp: Out << "?V"; break;
+ // <operator-name> ::= ?W # ||
+ case OO_PipePipe: Out << "?W"; break;
+ // <operator-name> ::= ?X # *=
+ case OO_StarEqual: Out << "?X"; break;
+ // <operator-name> ::= ?Y # +=
+ case OO_PlusEqual: Out << "?Y"; break;
+ // <operator-name> ::= ?Z # -=
+ case OO_MinusEqual: Out << "?Z"; break;
+ // <operator-name> ::= ?_0 # /=
+ case OO_SlashEqual: Out << "?_0"; break;
+ // <operator-name> ::= ?_1 # %=
+ case OO_PercentEqual: Out << "?_1"; break;
+ // <operator-name> ::= ?_2 # >>=
+ case OO_GreaterGreaterEqual: Out << "?_2"; break;
+ // <operator-name> ::= ?_3 # <<=
+ case OO_LessLessEqual: Out << "?_3"; break;
+ // <operator-name> ::= ?_4 # &=
+ case OO_AmpEqual: Out << "?_4"; break;
+ // <operator-name> ::= ?_5 # |=
+ case OO_PipeEqual: Out << "?_5"; break;
+ // <operator-name> ::= ?_6 # ^=
+ case OO_CaretEqual: Out << "?_6"; break;
+ // ?_7 # vftable
+ // ?_8 # vbtable
+ // ?_9 # vcall
+ // ?_A # typeof
+ // ?_B # local static guard
+ // ?_C # string
+ // ?_D # vbase destructor
+ // ?_E # vector deleting destructor
+ // ?_F # default constructor closure
+ // ?_G # scalar deleting destructor
+ // ?_H # vector constructor iterator
+ // ?_I # vector destructor iterator
+ // ?_J # vector vbase constructor iterator
+ // ?_K # virtual displacement map
+ // ?_L # eh vector constructor iterator
+ // ?_M # eh vector destructor iterator
+ // ?_N # eh vector vbase constructor iterator
+ // ?_O # copy constructor closure
+ // ?_P<name> # udt returning <name>
+ // ?_Q # <unknown>
+ // ?_R0 # RTTI Type Descriptor
+ // ?_R1 # RTTI Base Class Descriptor at (a,b,c,d)
+ // ?_R2 # RTTI Base Class Array
+ // ?_R3 # RTTI Class Hierarchy Descriptor
+ // ?_R4 # RTTI Complete Object Locator
+ // ?_S # local vftable
+ // ?_T # local vftable constructor closure
+ // <operator-name> ::= ?_U # new[]
+ case OO_Array_New: Out << "?_U"; break;
+ // <operator-name> ::= ?_V # delete[]
+ case OO_Array_Delete: Out << "?_V"; break;
+
+ case OO_Conditional: {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this conditional operator yet");
+ Diags.Report(Loc, DiagID);
+ break;
+ }
+
+ case OO_None:
+ case NUM_OVERLOADED_OPERATORS:
+ llvm_unreachable("Not an overloaded operator");
+ }
+}
+
+void MicrosoftCXXNameMangler::mangleSourceName(StringRef Name) {
+ // <source name> ::= <identifier> @
+ BackRefVec::iterator Found =
+ std::find(NameBackReferences.begin(), NameBackReferences.end(), Name);
+ if (Found == NameBackReferences.end()) {
+ if (NameBackReferences.size() < 10)
+ NameBackReferences.push_back(Name);
+ Out << Name << '@';
+ } else {
+ Out << (Found - NameBackReferences.begin());
+ }
+}
+
+void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
+ Context.mangleObjCMethodName(MD, Out);
+}
+
+void MicrosoftCXXNameMangler::mangleTemplateInstantiationName(
+ const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) {
+ // <template-name> ::= <unscoped-template-name> <template-args>
+ // ::= <substitution>
+ // Always start with the unqualified name.
+
+ // Templates have their own context for back references.
+ ArgBackRefMap OuterArgsContext;
+ BackRefVec OuterTemplateContext;
+ NameBackReferences.swap(OuterTemplateContext);
+ TypeBackReferences.swap(OuterArgsContext);
+
+ mangleUnscopedTemplateName(TD);
+ mangleTemplateArgs(TD, TemplateArgs);
+
+ // Restore the previous back reference contexts.
+ NameBackReferences.swap(OuterTemplateContext);
+ TypeBackReferences.swap(OuterArgsContext);
+}
+
+void
+MicrosoftCXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *TD) {
+ // <unscoped-template-name> ::= ?$ <unqualified-name>
+ Out << "?$";
+ mangleUnqualifiedName(TD);
+}
+
+void MicrosoftCXXNameMangler::mangleIntegerLiteral(const llvm::APSInt &Value,
+ bool IsBoolean) {
+ // <integer-literal> ::= $0 <number>
+ Out << "$0";
+ // Make sure booleans are encoded as 0/1.
+ if (IsBoolean && Value.getBoolValue())
+ mangleNumber(1);
+ else if (Value.isSigned())
+ mangleNumber(Value.getSExtValue());
+ else
+ mangleNumber(Value.getZExtValue());
+}
+
+void MicrosoftCXXNameMangler::mangleExpression(const Expr *E) {
+ // See if this is a constant expression.
+ llvm::APSInt Value;
+ if (E->isIntegerConstantExpr(Value, Context.getASTContext())) {
+ mangleIntegerLiteral(Value, E->getType()->isBooleanType());
+ return;
+ }
+
+ // Look through no-op casts like template parameter substitutions.
+ E = E->IgnoreParenNoopCasts(Context.getASTContext());
+
+ const CXXUuidofExpr *UE = nullptr;
+ if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
+ if (UO->getOpcode() == UO_AddrOf)
+ UE = dyn_cast<CXXUuidofExpr>(UO->getSubExpr());
+ } else
+ UE = dyn_cast<CXXUuidofExpr>(E);
+
+ if (UE) {
+ // This CXXUuidofExpr is mangled as-if it were actually a VarDecl from
+ // const __s_GUID _GUID_{lower case UUID with underscores}
+ StringRef Uuid = UE->getUuidAsStringRef(Context.getASTContext());
+ std::string Name = "_GUID_" + Uuid.lower();
+ std::replace(Name.begin(), Name.end(), '-', '_');
+
+ // If we had to peek through an address-of operator, treat this like we are
+ // dealing with a pointer type. Otherwise, treat it like a const reference.
+ //
+ // N.B. This matches up with the handling of TemplateArgument::Declaration
+ // in mangleTemplateArg
+ if (UE == E)
+ Out << "$E?";
+ else
+ Out << "$1?";
+ Out << Name << "@@3U__s_GUID@@B";
+ return;
+ }
+
+ // As bad as this diagnostic is, it's better than crashing.
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(
+ DiagnosticsEngine::Error, "cannot yet mangle expression type %0");
+ Diags.Report(E->getExprLoc(), DiagID) << E->getStmtClassName()
+ << E->getSourceRange();
+}
+
+void MicrosoftCXXNameMangler::mangleTemplateArgs(
+ const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) {
+ // <template-args> ::= <template-arg>+
+ const TemplateParameterList *TPL = TD->getTemplateParameters();
+ assert(TPL->size() == TemplateArgs.size() &&
+ "size mismatch between args and parms!");
+
+ unsigned Idx = 0;
+ for (const TemplateArgument &TA : TemplateArgs.asArray())
+ mangleTemplateArg(TD, TA, TPL->getParam(Idx++));
+}
+
+void MicrosoftCXXNameMangler::mangleTemplateArg(const TemplateDecl *TD,
+ const TemplateArgument &TA,
+ const NamedDecl *Parm) {
+ // <template-arg> ::= <type>
+ // ::= <integer-literal>
+ // ::= <member-data-pointer>
+ // ::= <member-function-pointer>
+ // ::= $E? <name> <type-encoding>
+ // ::= $1? <name> <type-encoding>
+ // ::= $0A@
+ // ::= <template-args>
+
+ switch (TA.getKind()) {
+ case TemplateArgument::Null:
+ llvm_unreachable("Can't mangle null template arguments!");
+ case TemplateArgument::TemplateExpansion:
+ llvm_unreachable("Can't mangle template expansion arguments!");
+ case TemplateArgument::Type: {
+ QualType T = TA.getAsType();
+ mangleType(T, SourceRange(), QMM_Escape);
+ break;
+ }
+ case TemplateArgument::Declaration: {
+ const NamedDecl *ND = cast<NamedDecl>(TA.getAsDecl());
+ if (isa<FieldDecl>(ND) || isa<IndirectFieldDecl>(ND)) {
+ mangleMemberDataPointer(
+ cast<CXXRecordDecl>(ND->getDeclContext())->getMostRecentDecl(),
+ cast<ValueDecl>(ND));
+ } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
+ const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
+ if (MD && MD->isInstance()) {
+ mangleMemberFunctionPointer(MD->getParent()->getMostRecentDecl(), MD);
+ } else {
+ Out << "$1?";
+ mangleName(FD);
+ mangleFunctionEncoding(FD, /*ShouldMangle=*/true);
+ }
+ } else {
+ mangle(ND, TA.getParamTypeForDecl()->isReferenceType() ? "$E?" : "$1?");
+ }
+ break;
+ }
+ case TemplateArgument::Integral:
+ mangleIntegerLiteral(TA.getAsIntegral(),
+ TA.getIntegralType()->isBooleanType());
+ break;
+ case TemplateArgument::NullPtr: {
+ QualType T = TA.getNullPtrType();
+ if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) {
+ const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
+ if (MPT->isMemberFunctionPointerType() && isa<ClassTemplateDecl>(TD)) {
+ mangleMemberFunctionPointer(RD, nullptr);
+ return;
+ }
+ if (MPT->isMemberDataPointer()) {
+ mangleMemberDataPointer(RD, nullptr);
+ return;
+ }
+ }
+ Out << "$0A@";
+ break;
+ }
+ case TemplateArgument::Expression:
+ mangleExpression(TA.getAsExpr());
+ break;
+ case TemplateArgument::Pack: {
+ ArrayRef<TemplateArgument> TemplateArgs = TA.getPackAsArray();
+ if (TemplateArgs.empty()) {
+ if (isa<TemplateTypeParmDecl>(Parm) ||
+ isa<TemplateTemplateParmDecl>(Parm))
+ // MSVC 2015 changed the mangling for empty expanded template packs,
+ // use the old mangling for link compatibility for old versions.
+ Out << (Context.getASTContext().getLangOpts().isCompatibleWithMSVC(
+ LangOptions::MSVC2015)
+ ? "$$V"
+ : "$$$V");
+ else if (isa<NonTypeTemplateParmDecl>(Parm))
+ Out << "$S";
+ else
+ llvm_unreachable("unexpected template parameter decl!");
+ } else {
+ for (const TemplateArgument &PA : TemplateArgs)
+ mangleTemplateArg(TD, PA, Parm);
+ }
+ break;
+ }
+ case TemplateArgument::Template: {
+ const NamedDecl *ND =
+ TA.getAsTemplate().getAsTemplateDecl()->getTemplatedDecl();
+ if (const auto *TD = dyn_cast<TagDecl>(ND)) {
+ mangleType(TD);
+ } else if (isa<TypeAliasDecl>(ND)) {
+ Out << "$$Y";
+ mangleName(ND);
+ } else {
+ llvm_unreachable("unexpected template template NamedDecl!");
+ }
+ break;
+ }
+ }
+}
+
+void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals,
+ bool IsMember) {
+ // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers>
+ // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only);
+ // 'I' means __restrict (32/64-bit).
+ // Note that the MSVC __restrict keyword isn't the same as the C99 restrict
+ // keyword!
+ // <base-cvr-qualifiers> ::= A # near
+ // ::= B # near const
+ // ::= C # near volatile
+ // ::= D # near const volatile
+ // ::= E # far (16-bit)
+ // ::= F # far const (16-bit)
+ // ::= G # far volatile (16-bit)
+ // ::= H # far const volatile (16-bit)
+ // ::= I # huge (16-bit)
+ // ::= J # huge const (16-bit)
+ // ::= K # huge volatile (16-bit)
+ // ::= L # huge const volatile (16-bit)
+ // ::= M <basis> # based
+ // ::= N <basis> # based const
+ // ::= O <basis> # based volatile
+ // ::= P <basis> # based const volatile
+ // ::= Q # near member
+ // ::= R # near const member
+ // ::= S # near volatile member
+ // ::= T # near const volatile member
+ // ::= U # far member (16-bit)
+ // ::= V # far const member (16-bit)
+ // ::= W # far volatile member (16-bit)
+ // ::= X # far const volatile member (16-bit)
+ // ::= Y # huge member (16-bit)
+ // ::= Z # huge const member (16-bit)
+ // ::= 0 # huge volatile member (16-bit)
+ // ::= 1 # huge const volatile member (16-bit)
+ // ::= 2 <basis> # based member
+ // ::= 3 <basis> # based const member
+ // ::= 4 <basis> # based volatile member
+ // ::= 5 <basis> # based const volatile member
+ // ::= 6 # near function (pointers only)
+ // ::= 7 # far function (pointers only)
+ // ::= 8 # near method (pointers only)
+ // ::= 9 # far method (pointers only)
+ // ::= _A <basis> # based function (pointers only)
+ // ::= _B <basis> # based function (far?) (pointers only)
+ // ::= _C <basis> # based method (pointers only)
+ // ::= _D <basis> # based method (far?) (pointers only)
+ // ::= _E # block (Clang)
+ // <basis> ::= 0 # __based(void)
+ // ::= 1 # __based(segment)?
+ // ::= 2 <name> # __based(name)
+ // ::= 3 # ?
+ // ::= 4 # ?
+ // ::= 5 # not really based
+ bool HasConst = Quals.hasConst(),
+ HasVolatile = Quals.hasVolatile();
+
+ if (!IsMember) {
+ if (HasConst && HasVolatile) {
+ Out << 'D';
+ } else if (HasVolatile) {
+ Out << 'C';
+ } else if (HasConst) {
+ Out << 'B';
+ } else {
+ Out << 'A';
+ }
+ } else {
+ if (HasConst && HasVolatile) {
+ Out << 'T';
+ } else if (HasVolatile) {
+ Out << 'S';
+ } else if (HasConst) {
+ Out << 'R';
+ } else {
+ Out << 'Q';
+ }
+ }
+
+ // FIXME: For now, just drop all extension qualifiers on the floor.
+}
+
+void
+MicrosoftCXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
+ // <ref-qualifier> ::= G # lvalue reference
+ // ::= H # rvalue-reference
+ switch (RefQualifier) {
+ case RQ_None:
+ break;
+
+ case RQ_LValue:
+ Out << 'G';
+ break;
+
+ case RQ_RValue:
+ Out << 'H';
+ break;
+ }
+}
+
+void MicrosoftCXXNameMangler::manglePointerExtQualifiers(Qualifiers Quals,
+ QualType PointeeType) {
+ bool HasRestrict = Quals.hasRestrict();
+ if (PointersAre64Bit &&
+ (PointeeType.isNull() || !PointeeType->isFunctionType()))
+ Out << 'E';
+
+ if (HasRestrict)
+ Out << 'I';
+}
+
+void MicrosoftCXXNameMangler::manglePointerCVQualifiers(Qualifiers Quals) {
+ // <pointer-cv-qualifiers> ::= P # no qualifiers
+ // ::= Q # const
+ // ::= R # volatile
+ // ::= S # const volatile
+ bool HasConst = Quals.hasConst(),
+ HasVolatile = Quals.hasVolatile();
+
+ if (HasConst && HasVolatile) {
+ Out << 'S';
+ } else if (HasVolatile) {
+ Out << 'R';
+ } else if (HasConst) {
+ Out << 'Q';
+ } else {
+ Out << 'P';
+ }
+}
+
+void MicrosoftCXXNameMangler::mangleArgumentType(QualType T,
+ SourceRange Range) {
+ // MSVC will backreference two canonically equivalent types that have slightly
+ // different manglings when mangled alone.
+
+ // Decayed types do not match up with non-decayed versions of the same type.
+ //
+ // e.g.
+ // void (*x)(void) will not form a backreference with void x(void)
+ void *TypePtr;
+ if (const auto *DT = T->getAs<DecayedType>()) {
+ QualType OriginalType = DT->getOriginalType();
+ // All decayed ArrayTypes should be treated identically; as-if they were
+ // a decayed IncompleteArrayType.
+ if (const auto *AT = getASTContext().getAsArrayType(OriginalType))
+ OriginalType = getASTContext().getIncompleteArrayType(
+ AT->getElementType(), AT->getSizeModifier(),
+ AT->getIndexTypeCVRQualifiers());
+
+ TypePtr = OriginalType.getCanonicalType().getAsOpaquePtr();
+ // If the original parameter was textually written as an array,
+ // instead treat the decayed parameter like it's const.
+ //
+ // e.g.
+ // int [] -> int * const
+ if (OriginalType->isArrayType())
+ T = T.withConst();
+ } else {
+ TypePtr = T.getCanonicalType().getAsOpaquePtr();
+ }
+
+ ArgBackRefMap::iterator Found = TypeBackReferences.find(TypePtr);
+
+ if (Found == TypeBackReferences.end()) {
+ size_t OutSizeBefore = Out.tell();
+
+ mangleType(T, Range, QMM_Drop);
+
+ // See if it's worth creating a back reference.
+ // Only types longer than 1 character are considered
+ // and only 10 back references slots are available:
+ bool LongerThanOneChar = (Out.tell() - OutSizeBefore > 1);
+ if (LongerThanOneChar && TypeBackReferences.size() < 10) {
+ size_t Size = TypeBackReferences.size();
+ TypeBackReferences[TypePtr] = Size;
+ }
+ } else {
+ Out << Found->second;
+ }
+}
+
+void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range,
+ QualifierMangleMode QMM) {
+ // Don't use the canonical types. MSVC includes things like 'const' on
+ // pointer arguments to function pointers that canonicalization strips away.
+ T = T.getDesugaredType(getASTContext());
+ Qualifiers Quals = T.getLocalQualifiers();
+ if (const ArrayType *AT = getASTContext().getAsArrayType(T)) {
+ // If there were any Quals, getAsArrayType() pushed them onto the array
+ // element type.
+ if (QMM == QMM_Mangle)
+ Out << 'A';
+ else if (QMM == QMM_Escape || QMM == QMM_Result)
+ Out << "$$B";
+ mangleArrayType(AT);
+ return;
+ }
+
+ bool IsPointer = T->isAnyPointerType() || T->isMemberPointerType() ||
+ T->isReferenceType() || T->isBlockPointerType();
+
+ switch (QMM) {
+ case QMM_Drop:
+ break;
+ case QMM_Mangle:
+ if (const FunctionType *FT = dyn_cast<FunctionType>(T)) {
+ Out << '6';
+ mangleFunctionType(FT);
+ return;
+ }
+ mangleQualifiers(Quals, false);
+ break;
+ case QMM_Escape:
+ if (!IsPointer && Quals) {
+ Out << "$$C";
+ mangleQualifiers(Quals, false);
+ }
+ break;
+ case QMM_Result:
+ if ((!IsPointer && Quals) || isa<TagType>(T)) {
+ Out << '?';
+ mangleQualifiers(Quals, false);
+ }
+ break;
+ }
+
+ const Type *ty = T.getTypePtr();
+
+ switch (ty->getTypeClass()) {
+#define ABSTRACT_TYPE(CLASS, PARENT)
+#define NON_CANONICAL_TYPE(CLASS, PARENT) \
+ case Type::CLASS: \
+ llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
+ return;
+#define TYPE(CLASS, PARENT) \
+ case Type::CLASS: \
+ mangleType(cast<CLASS##Type>(ty), Quals, Range); \
+ break;
+#include "clang/AST/TypeNodes.def"
+#undef ABSTRACT_TYPE
+#undef NON_CANONICAL_TYPE
+#undef TYPE
+ }
+}
+
+void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T, Qualifiers,
+ SourceRange Range) {
+ // <type> ::= <builtin-type>
+ // <builtin-type> ::= X # void
+ // ::= C # signed char
+ // ::= D # char
+ // ::= E # unsigned char
+ // ::= F # short
+ // ::= G # unsigned short (or wchar_t if it's not a builtin)
+ // ::= H # int
+ // ::= I # unsigned int
+ // ::= J # long
+ // ::= K # unsigned long
+ // L # <none>
+ // ::= M # float
+ // ::= N # double
+ // ::= O # long double (__float80 is mangled differently)
+ // ::= _J # long long, __int64
+ // ::= _K # unsigned long long, __int64
+ // ::= _L # __int128
+ // ::= _M # unsigned __int128
+ // ::= _N # bool
+ // _O # <array in parameter>
+ // ::= _T # __float80 (Intel)
+ // ::= _W # wchar_t
+ // ::= _Z # __float80 (Digital Mars)
+ switch (T->getKind()) {
+ case BuiltinType::Void: Out << 'X'; break;
+ case BuiltinType::SChar: Out << 'C'; break;
+ case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'D'; break;
+ case BuiltinType::UChar: Out << 'E'; break;
+ case BuiltinType::Short: Out << 'F'; break;
+ case BuiltinType::UShort: Out << 'G'; break;
+ case BuiltinType::Int: Out << 'H'; break;
+ case BuiltinType::UInt: Out << 'I'; break;
+ case BuiltinType::Long: Out << 'J'; break;
+ case BuiltinType::ULong: Out << 'K'; break;
+ case BuiltinType::Float: Out << 'M'; break;
+ case BuiltinType::Double: Out << 'N'; break;
+ // TODO: Determine size and mangle accordingly
+ case BuiltinType::LongDouble: Out << 'O'; break;
+ case BuiltinType::LongLong: Out << "_J"; break;
+ case BuiltinType::ULongLong: Out << "_K"; break;
+ case BuiltinType::Int128: Out << "_L"; break;
+ case BuiltinType::UInt128: Out << "_M"; break;
+ case BuiltinType::Bool: Out << "_N"; break;
+ case BuiltinType::Char16: Out << "_S"; break;
+ case BuiltinType::Char32: Out << "_U"; break;
+ case BuiltinType::WChar_S:
+ case BuiltinType::WChar_U: Out << "_W"; break;
+
+#define BUILTIN_TYPE(Id, SingletonId)
+#define PLACEHOLDER_TYPE(Id, SingletonId) \
+ case BuiltinType::Id:
+#include "clang/AST/BuiltinTypes.def"
+ case BuiltinType::Dependent:
+ llvm_unreachable("placeholder types shouldn't get to name mangling");
+
+ case BuiltinType::ObjCId: Out << "PAUobjc_object@@"; break;
+ case BuiltinType::ObjCClass: Out << "PAUobjc_class@@"; break;
+ case BuiltinType::ObjCSel: Out << "PAUobjc_selector@@"; break;
+
+ case BuiltinType::OCLImage1d: Out << "PAUocl_image1d@@"; break;
+ case BuiltinType::OCLImage1dArray: Out << "PAUocl_image1darray@@"; break;
+ case BuiltinType::OCLImage1dBuffer: Out << "PAUocl_image1dbuffer@@"; break;
+ case BuiltinType::OCLImage2d: Out << "PAUocl_image2d@@"; break;
+ case BuiltinType::OCLImage2dArray: Out << "PAUocl_image2darray@@"; break;
+ case BuiltinType::OCLImage3d: Out << "PAUocl_image3d@@"; break;
+ case BuiltinType::OCLSampler: Out << "PAUocl_sampler@@"; break;
+ case BuiltinType::OCLEvent: Out << "PAUocl_event@@"; break;
+
+ case BuiltinType::NullPtr: Out << "$$T"; break;
+
+ case BuiltinType::Half: {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this built-in %0 type yet");
+ Diags.Report(Range.getBegin(), DiagID)
+ << T->getName(Context.getASTContext().getPrintingPolicy())
+ << Range;
+ break;
+ }
+ }
+}
+
+// <type> ::= <function-type>
+void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T, Qualifiers,
+ SourceRange) {
+ // Structors only appear in decls, so at this point we know it's not a
+ // structor type.
+ // FIXME: This may not be lambda-friendly.
+ if (T->getTypeQuals() || T->getRefQualifier() != RQ_None) {
+ Out << "$$A8@@";
+ mangleFunctionType(T, /*D=*/nullptr, /*ForceThisQuals=*/true);
+ } else {
+ Out << "$$A6";
+ mangleFunctionType(T);
+ }
+}
+void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T,
+ Qualifiers, SourceRange) {
+ llvm_unreachable("Can't mangle K&R function prototypes");
+}
+
+void MicrosoftCXXNameMangler::mangleFunctionType(const FunctionType *T,
+ const FunctionDecl *D,
+ bool ForceThisQuals) {
+ // <function-type> ::= <this-cvr-qualifiers> <calling-convention>
+ // <return-type> <argument-list> <throw-spec>
+ const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
+
+ SourceRange Range;
+ if (D) Range = D->getSourceRange();
+
+ bool IsStructor = false, HasThisQuals = ForceThisQuals, IsCtorClosure = false;
+ CallingConv CC = T->getCallConv();
+ if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(D)) {
+ if (MD->isInstance())
+ HasThisQuals = true;
+ if (isa<CXXDestructorDecl>(MD)) {
+ IsStructor = true;
+ } else if (isa<CXXConstructorDecl>(MD)) {
+ IsStructor = true;
+ IsCtorClosure = (StructorType == Ctor_CopyingClosure ||
+ StructorType == Ctor_DefaultClosure) &&
+ getStructor(MD) == Structor;
+ if (IsCtorClosure)
+ CC = getASTContext().getDefaultCallingConvention(
+ /*IsVariadic=*/false, /*IsCXXMethod=*/true);
+ }
+ }
+
+ // If this is a C++ instance method, mangle the CVR qualifiers for the
+ // this pointer.
+ if (HasThisQuals) {
+ Qualifiers Quals = Qualifiers::fromCVRMask(Proto->getTypeQuals());
+ manglePointerExtQualifiers(Quals, /*PointeeType=*/QualType());
+ mangleRefQualifier(Proto->getRefQualifier());
+ mangleQualifiers(Quals, /*IsMember=*/false);
+ }
+
+ mangleCallingConvention(CC);
+
+ // <return-type> ::= <type>
+ // ::= @ # structors (they have no declared return type)
+ if (IsStructor) {
+ if (isa<CXXDestructorDecl>(D) && D == Structor &&
+ StructorType == Dtor_Deleting) {
+ // The scalar deleting destructor takes an extra int argument.
+ // However, the FunctionType generated has 0 arguments.
+ // FIXME: This is a temporary hack.
+ // Maybe should fix the FunctionType creation instead?
+ Out << (PointersAre64Bit ? "PEAXI@Z" : "PAXI@Z");
+ return;
+ }
+ if (IsCtorClosure) {
+ // Default constructor closure and copy constructor closure both return
+ // void.
+ Out << 'X';
+
+ if (StructorType == Ctor_DefaultClosure) {
+ // Default constructor closure always has no arguments.
+ Out << 'X';
+ } else if (StructorType == Ctor_CopyingClosure) {
+ // Copy constructor closure always takes an unqualified reference.
+ mangleArgumentType(getASTContext().getLValueReferenceType(
+ Proto->getParamType(0)
+ ->getAs<LValueReferenceType>()
+ ->getPointeeType(),
+ /*SpelledAsLValue=*/true),
+ Range);
+ Out << '@';
+ } else {
+ llvm_unreachable("unexpected constructor closure!");
+ }
+ Out << 'Z';
+ return;
+ }
+ Out << '@';
+ } else {
+ QualType ResultType = Proto->getReturnType();
+ if (const auto *AT =
+ dyn_cast_or_null<AutoType>(ResultType->getContainedAutoType())) {
+ Out << '?';
+ mangleQualifiers(ResultType.getLocalQualifiers(), /*IsMember=*/false);
+ Out << '?';
+ mangleSourceName(AT->isDecltypeAuto() ? "<decltype-auto>" : "<auto>");
+ Out << '@';
+ } else {
+ if (ResultType->isVoidType())
+ ResultType = ResultType.getUnqualifiedType();
+ mangleType(ResultType, Range, QMM_Result);
+ }
+ }
+
+ // <argument-list> ::= X # void
+ // ::= <type>+ @
+ // ::= <type>* Z # varargs
+ if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
+ Out << 'X';
+ } else {
+ // Happens for function pointer type arguments for example.
+ for (const QualType &Arg : Proto->param_types())
+ mangleArgumentType(Arg, Range);
+ // <builtin-type> ::= Z # ellipsis
+ if (Proto->isVariadic())
+ Out << 'Z';
+ else
+ Out << '@';
+ }
+
+ mangleThrowSpecification(Proto);
+}
+
+void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) {
+ // <function-class> ::= <member-function> E? # E designates a 64-bit 'this'
+ // # pointer. in 64-bit mode *all*
+ // # 'this' pointers are 64-bit.
+ // ::= <global-function>
+ // <member-function> ::= A # private: near
+ // ::= B # private: far
+ // ::= C # private: static near
+ // ::= D # private: static far
+ // ::= E # private: virtual near
+ // ::= F # private: virtual far
+ // ::= I # protected: near
+ // ::= J # protected: far
+ // ::= K # protected: static near
+ // ::= L # protected: static far
+ // ::= M # protected: virtual near
+ // ::= N # protected: virtual far
+ // ::= Q # public: near
+ // ::= R # public: far
+ // ::= S # public: static near
+ // ::= T # public: static far
+ // ::= U # public: virtual near
+ // ::= V # public: virtual far
+ // <global-function> ::= Y # global near
+ // ::= Z # global far
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
+ switch (MD->getAccess()) {
+ case AS_none:
+ llvm_unreachable("Unsupported access specifier");
+ case AS_private:
+ if (MD->isStatic())
+ Out << 'C';
+ else if (MD->isVirtual())
+ Out << 'E';
+ else
+ Out << 'A';
+ break;
+ case AS_protected:
+ if (MD->isStatic())
+ Out << 'K';
+ else if (MD->isVirtual())
+ Out << 'M';
+ else
+ Out << 'I';
+ break;
+ case AS_public:
+ if (MD->isStatic())
+ Out << 'S';
+ else if (MD->isVirtual())
+ Out << 'U';
+ else
+ Out << 'Q';
+ }
+ } else {
+ Out << 'Y';
+ }
+}
+void MicrosoftCXXNameMangler::mangleCallingConvention(CallingConv CC) {
+ // <calling-convention> ::= A # __cdecl
+ // ::= B # __export __cdecl
+ // ::= C # __pascal
+ // ::= D # __export __pascal
+ // ::= E # __thiscall
+ // ::= F # __export __thiscall
+ // ::= G # __stdcall
+ // ::= H # __export __stdcall
+ // ::= I # __fastcall
+ // ::= J # __export __fastcall
+ // ::= Q # __vectorcall
+ // The 'export' calling conventions are from a bygone era
+ // (*cough*Win16*cough*) when functions were declared for export with
+ // that keyword. (It didn't actually export them, it just made them so
+ // that they could be in a DLL and somebody from another module could call
+ // them.)
+
+ switch (CC) {
+ default:
+ llvm_unreachable("Unsupported CC for mangling");
+ case CC_X86_64Win64:
+ case CC_X86_64SysV:
+ case CC_C: Out << 'A'; break;
+ case CC_X86Pascal: Out << 'C'; break;
+ case CC_X86ThisCall: Out << 'E'; break;
+ case CC_X86StdCall: Out << 'G'; break;
+ case CC_X86FastCall: Out << 'I'; break;
+ case CC_X86VectorCall: Out << 'Q'; break;
+ }
+}
+void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T) {
+ mangleCallingConvention(T->getCallConv());
+}
+void MicrosoftCXXNameMangler::mangleThrowSpecification(
+ const FunctionProtoType *FT) {
+ // <throw-spec> ::= Z # throw(...) (default)
+ // ::= @ # throw() or __declspec/__attribute__((nothrow))
+ // ::= <type>+
+ // NOTE: Since the Microsoft compiler ignores throw specifications, they are
+ // all actually mangled as 'Z'. (They're ignored because their associated
+ // functionality isn't implemented, and probably never will be.)
+ Out << 'Z';
+}
+
+void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T,
+ Qualifiers, SourceRange Range) {
+ // Probably should be mangled as a template instantiation; need to see what
+ // VC does first.
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this unresolved dependent type yet");
+ Diags.Report(Range.getBegin(), DiagID)
+ << Range;
+}
+
+// <type> ::= <union-type> | <struct-type> | <class-type> | <enum-type>
+// <union-type> ::= T <name>
+// <struct-type> ::= U <name>
+// <class-type> ::= V <name>
+// <enum-type> ::= W4 <name>
+void MicrosoftCXXNameMangler::mangleType(const EnumType *T, Qualifiers,
+ SourceRange) {
+ mangleType(cast<TagType>(T)->getDecl());
+}
+void MicrosoftCXXNameMangler::mangleType(const RecordType *T, Qualifiers,
+ SourceRange) {
+ mangleType(cast<TagType>(T)->getDecl());
+}
+void MicrosoftCXXNameMangler::mangleType(const TagDecl *TD) {
+ switch (TD->getTagKind()) {
+ case TTK_Union:
+ Out << 'T';
+ break;
+ case TTK_Struct:
+ case TTK_Interface:
+ Out << 'U';
+ break;
+ case TTK_Class:
+ Out << 'V';
+ break;
+ case TTK_Enum:
+ Out << "W4";
+ break;
+ }
+ mangleName(TD);
+}
+
+// <type> ::= <array-type>
+// <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
+// [Y <dimension-count> <dimension>+]
+// <element-type> # as global, E is never required
+// It's supposed to be the other way around, but for some strange reason, it
+// isn't. Today this behavior is retained for the sole purpose of backwards
+// compatibility.
+void MicrosoftCXXNameMangler::mangleDecayedArrayType(const ArrayType *T) {
+ // This isn't a recursive mangling, so now we have to do it all in this
+ // one call.
+ manglePointerCVQualifiers(T->getElementType().getQualifiers());
+ mangleType(T->getElementType(), SourceRange());
+}
+void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T, Qualifiers,
+ SourceRange) {
+ llvm_unreachable("Should have been special cased");
+}
+void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T, Qualifiers,
+ SourceRange) {
+ llvm_unreachable("Should have been special cased");
+}
+void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T,
+ Qualifiers, SourceRange) {
+ llvm_unreachable("Should have been special cased");
+}
+void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T,
+ Qualifiers, SourceRange) {
+ llvm_unreachable("Should have been special cased");
+}
+void MicrosoftCXXNameMangler::mangleArrayType(const ArrayType *T) {
+ QualType ElementTy(T, 0);
+ SmallVector<llvm::APInt, 3> Dimensions;
+ for (;;) {
+ if (ElementTy->isConstantArrayType()) {
+ const ConstantArrayType *CAT =
+ getASTContext().getAsConstantArrayType(ElementTy);
+ Dimensions.push_back(CAT->getSize());
+ ElementTy = CAT->getElementType();
+ } else if (ElementTy->isIncompleteArrayType()) {
+ const IncompleteArrayType *IAT =
+ getASTContext().getAsIncompleteArrayType(ElementTy);
+ Dimensions.push_back(llvm::APInt(32, 0));
+ ElementTy = IAT->getElementType();
+ } else if (ElementTy->isVariableArrayType()) {
+ const VariableArrayType *VAT =
+ getASTContext().getAsVariableArrayType(ElementTy);
+ Dimensions.push_back(llvm::APInt(32, 0));
+ ElementTy = VAT->getElementType();
+ } else if (ElementTy->isDependentSizedArrayType()) {
+ // The dependent expression has to be folded into a constant (TODO).
+ const DependentSizedArrayType *DSAT =
+ getASTContext().getAsDependentSizedArrayType(ElementTy);
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this dependent-length array yet");
+ Diags.Report(DSAT->getSizeExpr()->getExprLoc(), DiagID)
+ << DSAT->getBracketsRange();
+ return;
+ } else {
+ break;
+ }
+ }
+ Out << 'Y';
+ // <dimension-count> ::= <number> # number of extra dimensions
+ mangleNumber(Dimensions.size());
+ for (const llvm::APInt &Dimension : Dimensions)
+ mangleNumber(Dimension.getLimitedValue());
+ mangleType(ElementTy, SourceRange(), QMM_Escape);
+}
+
+// <type> ::= <pointer-to-member-type>
+// <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
+// <class name> <type>
+void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T, Qualifiers Quals,
+ SourceRange Range) {
+ QualType PointeeType = T->getPointeeType();
+ manglePointerCVQualifiers(Quals);
+ manglePointerExtQualifiers(Quals, PointeeType);
+ if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) {
+ Out << '8';
+ mangleName(T->getClass()->castAs<RecordType>()->getDecl());
+ mangleFunctionType(FPT, nullptr, true);
+ } else {
+ mangleQualifiers(PointeeType.getQualifiers(), true);
+ mangleName(T->getClass()->castAs<RecordType>()->getDecl());
+ mangleType(PointeeType, Range, QMM_Drop);
+ }
+}
+
+void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T,
+ Qualifiers, SourceRange Range) {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this template type parameter type yet");
+ Diags.Report(Range.getBegin(), DiagID)
+ << Range;
+}
+
+void MicrosoftCXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T,
+ Qualifiers, SourceRange Range) {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this substituted parameter pack yet");
+ Diags.Report(Range.getBegin(), DiagID)
+ << Range;
+}
+
+// <type> ::= <pointer-type>
+// <pointer-type> ::= E? <pointer-cvr-qualifiers> <cvr-qualifiers> <type>
+// # the E is required for 64-bit non-static pointers
+void MicrosoftCXXNameMangler::mangleType(const PointerType *T, Qualifiers Quals,
+ SourceRange Range) {
+ QualType PointeeType = T->getPointeeType();
+ manglePointerCVQualifiers(Quals);
+ manglePointerExtQualifiers(Quals, PointeeType);
+ mangleType(PointeeType, Range);
+}
+void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T,
+ Qualifiers Quals, SourceRange Range) {
+ QualType PointeeType = T->getPointeeType();
+ manglePointerCVQualifiers(Quals);
+ manglePointerExtQualifiers(Quals, PointeeType);
+ // Object pointers never have qualifiers.
+ Out << 'A';
+ mangleType(PointeeType, Range);
+}
+
+// <type> ::= <reference-type>
+// <reference-type> ::= A E? <cvr-qualifiers> <type>
+// # the E is required for 64-bit non-static lvalue references
+void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T,
+ Qualifiers Quals, SourceRange Range) {
+ QualType PointeeType = T->getPointeeType();
+ Out << (Quals.hasVolatile() ? 'B' : 'A');
+ manglePointerExtQualifiers(Quals, PointeeType);
+ mangleType(PointeeType, Range);
+}
+
+// <type> ::= <r-value-reference-type>
+// <r-value-reference-type> ::= $$Q E? <cvr-qualifiers> <type>
+// # the E is required for 64-bit non-static rvalue references
+void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T,
+ Qualifiers Quals, SourceRange Range) {
+ QualType PointeeType = T->getPointeeType();
+ Out << (Quals.hasVolatile() ? "$$R" : "$$Q");
+ manglePointerExtQualifiers(Quals, PointeeType);
+ mangleType(PointeeType, Range);
+}
+
+void MicrosoftCXXNameMangler::mangleType(const ComplexType *T, Qualifiers,
+ SourceRange Range) {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this complex number type yet");
+ Diags.Report(Range.getBegin(), DiagID)
+ << Range;
+}
+
+void MicrosoftCXXNameMangler::mangleType(const VectorType *T, Qualifiers Quals,
+ SourceRange Range) {
+ const BuiltinType *ET = T->getElementType()->getAs<BuiltinType>();
+ assert(ET && "vectors with non-builtin elements are unsupported");
+ uint64_t Width = getASTContext().getTypeSize(T);
+ // Pattern match exactly the typedefs in our intrinsic headers. Anything that
+ // doesn't match the Intel types uses a custom mangling below.
+ bool IntelVector = true;
+ if (Width == 64 && ET->getKind() == BuiltinType::LongLong) {
+ Out << "T__m64";
+ } else if (Width == 128 || Width == 256) {
+ if (ET->getKind() == BuiltinType::Float)
+ Out << "T__m" << Width;
+ else if (ET->getKind() == BuiltinType::LongLong)
+ Out << "T__m" << Width << 'i';
+ else if (ET->getKind() == BuiltinType::Double)
+ Out << "U__m" << Width << 'd';
+ else
+ IntelVector = false;
+ } else {
+ IntelVector = false;
+ }
+
+ if (!IntelVector) {
+ // The MS ABI doesn't have a special mangling for vector types, so we define
+ // our own mangling to handle uses of __vector_size__ on user-specified
+ // types, and for extensions like __v4sf.
+ Out << "T__clang_vec" << T->getNumElements() << '_';
+ mangleType(ET, Quals, Range);
+ }
+
+ Out << "@@";
+}
+
+void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T, Qualifiers,
+ SourceRange Range) {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this extended vector type yet");
+ Diags.Report(Range.getBegin(), DiagID)
+ << Range;
+}
+void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T,
+ Qualifiers, SourceRange Range) {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this dependent-sized extended vector type yet");
+ Diags.Report(Range.getBegin(), DiagID)
+ << Range;
+}
+
+void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T, Qualifiers,
+ SourceRange) {
+ // ObjC interfaces have structs underlying them.
+ Out << 'U';
+ mangleName(T->getDecl());
+}
+
+void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T, Qualifiers,
+ SourceRange Range) {
+ // We don't allow overloading by different protocol qualification,
+ // so mangling them isn't necessary.
+ mangleType(T->getBaseType(), Range);
+}
+
+void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T,
+ Qualifiers Quals, SourceRange Range) {
+ QualType PointeeType = T->getPointeeType();
+ manglePointerCVQualifiers(Quals);
+ manglePointerExtQualifiers(Quals, PointeeType);
+
+ Out << "_E";
+
+ mangleFunctionType(PointeeType->castAs<FunctionProtoType>());
+}
+
+void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *,
+ Qualifiers, SourceRange) {
+ llvm_unreachable("Cannot mangle injected class name type.");
+}
+
+void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T,
+ Qualifiers, SourceRange Range) {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this template specialization type yet");
+ Diags.Report(Range.getBegin(), DiagID)
+ << Range;
+}
+
+void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T, Qualifiers,
+ SourceRange Range) {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this dependent name type yet");
+ Diags.Report(Range.getBegin(), DiagID)
+ << Range;
+}
+
+void MicrosoftCXXNameMangler::mangleType(
+ const DependentTemplateSpecializationType *T, Qualifiers,
+ SourceRange Range) {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this dependent template specialization type yet");
+ Diags.Report(Range.getBegin(), DiagID)
+ << Range;
+}
+
+void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T, Qualifiers,
+ SourceRange Range) {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this pack expansion yet");
+ Diags.Report(Range.getBegin(), DiagID)
+ << Range;
+}
+
+void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T, Qualifiers,
+ SourceRange Range) {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this typeof(type) yet");
+ Diags.Report(Range.getBegin(), DiagID)
+ << Range;
+}
+
+void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T, Qualifiers,
+ SourceRange Range) {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this typeof(expression) yet");
+ Diags.Report(Range.getBegin(), DiagID)
+ << Range;
+}
+
+void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T, Qualifiers,
+ SourceRange Range) {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this decltype() yet");
+ Diags.Report(Range.getBegin(), DiagID)
+ << Range;
+}
+
+void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T,
+ Qualifiers, SourceRange Range) {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this unary transform type yet");
+ Diags.Report(Range.getBegin(), DiagID)
+ << Range;
+}
+
+void MicrosoftCXXNameMangler::mangleType(const AutoType *T, Qualifiers,
+ SourceRange Range) {
+ assert(T->getDeducedType().isNull() && "expecting a dependent type!");
+
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this 'auto' type yet");
+ Diags.Report(Range.getBegin(), DiagID)
+ << Range;
+}
+
+void MicrosoftCXXNameMangler::mangleType(const AtomicType *T, Qualifiers,
+ SourceRange Range) {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this C11 atomic type yet");
+ Diags.Report(Range.getBegin(), DiagID)
+ << Range;
+}
+
+void MicrosoftMangleContextImpl::mangleCXXName(const NamedDecl *D,
+ raw_ostream &Out) {
+ assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
+ "Invalid mangleName() call, argument is not a variable or function!");
+ assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
+ "Invalid mangleName() call on 'structor decl!");
+
+ PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
+ getASTContext().getSourceManager(),
+ "Mangling declaration");
+
+ MicrosoftCXXNameMangler Mangler(*this, Out);
+ return Mangler.mangle(D);
+}
+
+// <this-adjustment> ::= <no-adjustment> | <static-adjustment> |
+// <virtual-adjustment>
+// <no-adjustment> ::= A # private near
+// ::= B # private far
+// ::= I # protected near
+// ::= J # protected far
+// ::= Q # public near
+// ::= R # public far
+// <static-adjustment> ::= G <static-offset> # private near
+// ::= H <static-offset> # private far
+// ::= O <static-offset> # protected near
+// ::= P <static-offset> # protected far
+// ::= W <static-offset> # public near
+// ::= X <static-offset> # public far
+// <virtual-adjustment> ::= $0 <virtual-shift> <static-offset> # private near
+// ::= $1 <virtual-shift> <static-offset> # private far
+// ::= $2 <virtual-shift> <static-offset> # protected near
+// ::= $3 <virtual-shift> <static-offset> # protected far
+// ::= $4 <virtual-shift> <static-offset> # public near
+// ::= $5 <virtual-shift> <static-offset> # public far
+// <virtual-shift> ::= <vtordisp-shift> | <vtordispex-shift>
+// <vtordisp-shift> ::= <offset-to-vtordisp>
+// <vtordispex-shift> ::= <offset-to-vbptr> <vbase-offset-offset>
+// <offset-to-vtordisp>
+static void mangleThunkThisAdjustment(const CXXMethodDecl *MD,
+ const ThisAdjustment &Adjustment,
+ MicrosoftCXXNameMangler &Mangler,
+ raw_ostream &Out) {
+ if (!Adjustment.Virtual.isEmpty()) {
+ Out << '$';
+ char AccessSpec;
+ switch (MD->getAccess()) {
+ case AS_none:
+ llvm_unreachable("Unsupported access specifier");
+ case AS_private:
+ AccessSpec = '0';
+ break;
+ case AS_protected:
+ AccessSpec = '2';
+ break;
+ case AS_public:
+ AccessSpec = '4';
+ }
+ if (Adjustment.Virtual.Microsoft.VBPtrOffset) {
+ Out << 'R' << AccessSpec;
+ Mangler.mangleNumber(
+ static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBPtrOffset));
+ Mangler.mangleNumber(
+ static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBOffsetOffset));
+ Mangler.mangleNumber(
+ static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
+ Mangler.mangleNumber(static_cast<uint32_t>(Adjustment.NonVirtual));
+ } else {
+ Out << AccessSpec;
+ Mangler.mangleNumber(
+ static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
+ Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
+ }
+ } else if (Adjustment.NonVirtual != 0) {
+ switch (MD->getAccess()) {
+ case AS_none:
+ llvm_unreachable("Unsupported access specifier");
+ case AS_private:
+ Out << 'G';
+ break;
+ case AS_protected:
+ Out << 'O';
+ break;
+ case AS_public:
+ Out << 'W';
+ }
+ Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
+ } else {
+ switch (MD->getAccess()) {
+ case AS_none:
+ llvm_unreachable("Unsupported access specifier");
+ case AS_private:
+ Out << 'A';
+ break;
+ case AS_protected:
+ Out << 'I';
+ break;
+ case AS_public:
+ Out << 'Q';
+ }
+ }
+}
+
+void
+MicrosoftMangleContextImpl::mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
+ raw_ostream &Out) {
+ MicrosoftVTableContext *VTContext =
+ cast<MicrosoftVTableContext>(getASTContext().getVTableContext());
+ const MicrosoftVTableContext::MethodVFTableLocation &ML =
+ VTContext->getMethodVFTableLocation(GlobalDecl(MD));
+
+ MicrosoftCXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "\01?";
+ Mangler.mangleVirtualMemPtrThunk(MD, ML);
+}
+
+void MicrosoftMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
+ const ThunkInfo &Thunk,
+ raw_ostream &Out) {
+ MicrosoftCXXNameMangler Mangler(*this, Out);
+ Out << "\01?";
+ Mangler.mangleName(MD);
+ mangleThunkThisAdjustment(MD, Thunk.This, Mangler, Out);
+ if (!Thunk.Return.isEmpty())
+ assert(Thunk.Method != nullptr &&
+ "Thunk info should hold the overridee decl");
+
+ const CXXMethodDecl *DeclForFPT = Thunk.Method ? Thunk.Method : MD;
+ Mangler.mangleFunctionType(
+ DeclForFPT->getType()->castAs<FunctionProtoType>(), MD);
+}
+
+void MicrosoftMangleContextImpl::mangleCXXDtorThunk(
+ const CXXDestructorDecl *DD, CXXDtorType Type,
+ const ThisAdjustment &Adjustment, raw_ostream &Out) {
+ // FIXME: Actually, the dtor thunk should be emitted for vector deleting
+ // dtors rather than scalar deleting dtors. Just use the vector deleting dtor
+ // mangling manually until we support both deleting dtor types.
+ assert(Type == Dtor_Deleting);
+ MicrosoftCXXNameMangler Mangler(*this, Out, DD, Type);
+ Out << "\01??_E";
+ Mangler.mangleName(DD->getParent());
+ mangleThunkThisAdjustment(DD, Adjustment, Mangler, Out);
+ Mangler.mangleFunctionType(DD->getType()->castAs<FunctionProtoType>(), DD);
+}
+
+void MicrosoftMangleContextImpl::mangleCXXVFTable(
+ const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
+ raw_ostream &Out) {
+ // <mangled-name> ::= ?_7 <class-name> <storage-class>
+ // <cvr-qualifiers> [<name>] @
+ // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
+ // is always '6' for vftables.
+ MicrosoftCXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "\01??_7";
+ Mangler.mangleName(Derived);
+ Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const.
+ for (const CXXRecordDecl *RD : BasePath)
+ Mangler.mangleName(RD);
+ Mangler.getStream() << '@';
+}
+
+void MicrosoftMangleContextImpl::mangleCXXVBTable(
+ const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
+ raw_ostream &Out) {
+ // <mangled-name> ::= ?_8 <class-name> <storage-class>
+ // <cvr-qualifiers> [<name>] @
+ // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
+ // is always '7' for vbtables.
+ MicrosoftCXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "\01??_8";
+ Mangler.mangleName(Derived);
+ Mangler.getStream() << "7B"; // '7' for vbtable, 'B' for const.
+ for (const CXXRecordDecl *RD : BasePath)
+ Mangler.mangleName(RD);
+ Mangler.getStream() << '@';
+}
+
+void MicrosoftMangleContextImpl::mangleCXXRTTI(QualType T, raw_ostream &Out) {
+ MicrosoftCXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "\01??_R0";
+ Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
+ Mangler.getStream() << "@8";
+}
+
+void MicrosoftMangleContextImpl::mangleCXXRTTIName(QualType T,
+ raw_ostream &Out) {
+ MicrosoftCXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << '.';
+ Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
+}
+
+void MicrosoftMangleContextImpl::mangleCXXCatchHandlerType(QualType T,
+ uint32_t Flags,
+ raw_ostream &Out) {
+ MicrosoftCXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "llvm.eh.handlertype.";
+ Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
+ Mangler.getStream() << '.' << Flags;
+}
+
+void MicrosoftMangleContextImpl::mangleCXXThrowInfo(QualType T,
+ bool IsConst,
+ bool IsVolatile,
+ uint32_t NumEntries,
+ raw_ostream &Out) {
+ MicrosoftCXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "_TI";
+ if (IsConst)
+ Mangler.getStream() << 'C';
+ if (IsVolatile)
+ Mangler.getStream() << 'V';
+ Mangler.getStream() << NumEntries;
+ Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
+}
+
+void MicrosoftMangleContextImpl::mangleCXXCatchableTypeArray(
+ QualType T, uint32_t NumEntries, raw_ostream &Out) {
+ MicrosoftCXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "_CTA";
+ Mangler.getStream() << NumEntries;
+ Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
+}
+
+void MicrosoftMangleContextImpl::mangleCXXCatchableType(
+ QualType T, const CXXConstructorDecl *CD, CXXCtorType CT, uint32_t Size,
+ uint32_t NVOffset, int32_t VBPtrOffset, uint32_t VBIndex,
+ raw_ostream &Out) {
+ MicrosoftCXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "_CT";
+
+ llvm::SmallString<64> RTTIMangling;
+ {
+ llvm::raw_svector_ostream Stream(RTTIMangling);
+ mangleCXXRTTI(T, Stream);
+ }
+ Mangler.getStream() << RTTIMangling.substr(1);
+
+ // VS2015 CTP6 omits the copy-constructor in the mangled name. This name is,
+ // in fact, superfluous but I'm not sure the change was made consciously.
+ // TODO: Revisit this when VS2015 gets released.
+ llvm::SmallString<64> CopyCtorMangling;
+ if (CD) {
+ llvm::raw_svector_ostream Stream(CopyCtorMangling);
+ mangleCXXCtor(CD, CT, Stream);
+ }
+ Mangler.getStream() << CopyCtorMangling.substr(1);
+
+ Mangler.getStream() << Size;
+ if (VBPtrOffset == -1) {
+ if (NVOffset) {
+ Mangler.getStream() << NVOffset;
+ }
+ } else {
+ Mangler.getStream() << NVOffset;
+ Mangler.getStream() << VBPtrOffset;
+ Mangler.getStream() << VBIndex;
+ }
+}
+
+void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassDescriptor(
+ const CXXRecordDecl *Derived, uint32_t NVOffset, int32_t VBPtrOffset,
+ uint32_t VBTableOffset, uint32_t Flags, raw_ostream &Out) {
+ MicrosoftCXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "\01??_R1";
+ Mangler.mangleNumber(NVOffset);
+ Mangler.mangleNumber(VBPtrOffset);
+ Mangler.mangleNumber(VBTableOffset);
+ Mangler.mangleNumber(Flags);
+ Mangler.mangleName(Derived);
+ Mangler.getStream() << "8";
+}
+
+void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassArray(
+ const CXXRecordDecl *Derived, raw_ostream &Out) {
+ MicrosoftCXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "\01??_R2";
+ Mangler.mangleName(Derived);
+ Mangler.getStream() << "8";
+}
+
+void MicrosoftMangleContextImpl::mangleCXXRTTIClassHierarchyDescriptor(
+ const CXXRecordDecl *Derived, raw_ostream &Out) {
+ MicrosoftCXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "\01??_R3";
+ Mangler.mangleName(Derived);
+ Mangler.getStream() << "8";
+}
+
+void MicrosoftMangleContextImpl::mangleCXXRTTICompleteObjectLocator(
+ const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
+ raw_ostream &Out) {
+ // <mangled-name> ::= ?_R4 <class-name> <storage-class>
+ // <cvr-qualifiers> [<name>] @
+ // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
+ // is always '6' for vftables.
+ MicrosoftCXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "\01??_R4";
+ Mangler.mangleName(Derived);
+ Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const.
+ for (const CXXRecordDecl *RD : BasePath)
+ Mangler.mangleName(RD);
+ Mangler.getStream() << '@';
+}
+
+void MicrosoftMangleContextImpl::mangleSEHFilterExpression(
+ const NamedDecl *EnclosingDecl, raw_ostream &Out) {
+ MicrosoftCXXNameMangler Mangler(*this, Out);
+ // The function body is in the same comdat as the function with the handler,
+ // so the numbering here doesn't have to be the same across TUs.
+ //
+ // <mangled-name> ::= ?filt$ <filter-number> @0
+ Mangler.getStream() << "\01?filt$" << SEHFilterIds[EnclosingDecl]++ << "@0@";
+ Mangler.mangleName(EnclosingDecl);
+}
+
+void MicrosoftMangleContextImpl::mangleSEHFinallyBlock(
+ const NamedDecl *EnclosingDecl, raw_ostream &Out) {
+ MicrosoftCXXNameMangler Mangler(*this, Out);
+ // The function body is in the same comdat as the function with the handler,
+ // so the numbering here doesn't have to be the same across TUs.
+ //
+ // <mangled-name> ::= ?fin$ <filter-number> @0
+ Mangler.getStream() << "\01?fin$" << SEHFinallyIds[EnclosingDecl]++ << "@0@";
+ Mangler.mangleName(EnclosingDecl);
+}
+
+void MicrosoftMangleContextImpl::mangleTypeName(QualType T, raw_ostream &Out) {
+ // This is just a made up unique string for the purposes of tbaa. undname
+ // does *not* know how to demangle it.
+ MicrosoftCXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << '?';
+ Mangler.mangleType(T, SourceRange());
+}
+
+void MicrosoftMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
+ CXXCtorType Type,
+ raw_ostream &Out) {
+ MicrosoftCXXNameMangler mangler(*this, Out, D, Type);
+ mangler.mangle(D);
+}
+
+void MicrosoftMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
+ CXXDtorType Type,
+ raw_ostream &Out) {
+ MicrosoftCXXNameMangler mangler(*this, Out, D, Type);
+ mangler.mangle(D);
+}
+
+void MicrosoftMangleContextImpl::mangleReferenceTemporary(const VarDecl *VD,
+ unsigned,
+ raw_ostream &) {
+ unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot mangle this reference temporary yet");
+ getDiags().Report(VD->getLocation(), DiagID);
+}
+
+void MicrosoftMangleContextImpl::mangleThreadSafeStaticGuardVariable(
+ const VarDecl *VD, unsigned GuardNum, raw_ostream &Out) {
+ MicrosoftCXXNameMangler Mangler(*this, Out);
+
+ Mangler.getStream() << "\01?$TSS" << GuardNum << '@';
+ Mangler.mangleNestedName(VD);
+}
+
+void MicrosoftMangleContextImpl::mangleStaticGuardVariable(const VarDecl *VD,
+ raw_ostream &Out) {
+ // <guard-name> ::= ?_B <postfix> @5 <scope-depth>
+ // ::= ?__J <postfix> @5 <scope-depth>
+ // ::= ?$S <guard-num> @ <postfix> @4IA
+
+ // The first mangling is what MSVC uses to guard static locals in inline
+ // functions. It uses a different mangling in external functions to support
+ // guarding more than 32 variables. MSVC rejects inline functions with more
+ // than 32 static locals. We don't fully implement the second mangling
+ // because those guards are not externally visible, and instead use LLVM's
+ // default renaming when creating a new guard variable.
+ MicrosoftCXXNameMangler Mangler(*this, Out);
+
+ bool Visible = VD->isExternallyVisible();
+ if (Visible) {
+ Mangler.getStream() << (VD->getTLSKind() ? "\01??__J" : "\01??_B");
+ } else {
+ Mangler.getStream() << "\01?$S1@";
+ }
+ unsigned ScopeDepth = 0;
+ if (Visible && !getNextDiscriminator(VD, ScopeDepth))
+ // If we do not have a discriminator and are emitting a guard variable for
+ // use at global scope, then mangling the nested name will not be enough to
+ // remove ambiguities.
+ Mangler.mangle(VD, "");
+ else
+ Mangler.mangleNestedName(VD);
+ Mangler.getStream() << (Visible ? "@5" : "@4IA");
+ if (ScopeDepth)
+ Mangler.mangleNumber(ScopeDepth);
+}
+
+void MicrosoftMangleContextImpl::mangleInitFiniStub(const VarDecl *D,
+ raw_ostream &Out,
+ char CharCode) {
+ MicrosoftCXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "\01??__" << CharCode;
+ Mangler.mangleName(D);
+ if (D->isStaticDataMember()) {
+ Mangler.mangleVariableEncoding(D);
+ Mangler.getStream() << '@';
+ }
+ // This is the function class mangling. These stubs are global, non-variadic,
+ // cdecl functions that return void and take no args.
+ Mangler.getStream() << "YAXXZ";
+}
+
+void MicrosoftMangleContextImpl::mangleDynamicInitializer(const VarDecl *D,
+ raw_ostream &Out) {
+ // <initializer-name> ::= ?__E <name> YAXXZ
+ mangleInitFiniStub(D, Out, 'E');
+}
+
+void
+MicrosoftMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
+ raw_ostream &Out) {
+ // <destructor-name> ::= ?__F <name> YAXXZ
+ mangleInitFiniStub(D, Out, 'F');
+}
+
+void MicrosoftMangleContextImpl::mangleStringLiteral(const StringLiteral *SL,
+ raw_ostream &Out) {
+ // <char-type> ::= 0 # char
+ // ::= 1 # wchar_t
+ // ::= ??? # char16_t/char32_t will need a mangling too...
+ //
+ // <literal-length> ::= <non-negative integer> # the length of the literal
+ //
+ // <encoded-crc> ::= <hex digit>+ @ # crc of the literal including
+ // # null-terminator
+ //
+ // <encoded-string> ::= <simple character> # uninteresting character
+ // ::= '?$' <hex digit> <hex digit> # these two nibbles
+ // # encode the byte for the
+ // # character
+ // ::= '?' [a-z] # \xe1 - \xfa
+ // ::= '?' [A-Z] # \xc1 - \xda
+ // ::= '?' [0-9] # [,/\:. \n\t'-]
+ //
+ // <literal> ::= '??_C@_' <char-type> <literal-length> <encoded-crc>
+ // <encoded-string> '@'
+ MicrosoftCXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "\01??_C@_";
+
+ // <char-type>: The "kind" of string literal is encoded into the mangled name.
+ if (SL->isWide())
+ Mangler.getStream() << '1';
+ else
+ Mangler.getStream() << '0';
+
+ // <literal-length>: The next part of the mangled name consists of the length
+ // of the string.
+ // The StringLiteral does not consider the NUL terminator byte(s) but the
+ // mangling does.
+ // N.B. The length is in terms of bytes, not characters.
+ Mangler.mangleNumber(SL->getByteLength() + SL->getCharByteWidth());
+
+ // We will use the "Rocksoft^tm Model CRC Algorithm" to describe the
+ // properties of our CRC:
+ // Width : 32
+ // Poly : 04C11DB7
+ // Init : FFFFFFFF
+ // RefIn : True
+ // RefOut : True
+ // XorOut : 00000000
+ // Check : 340BC6D9
+ uint32_t CRC = 0xFFFFFFFFU;
+
+ auto UpdateCRC = [&CRC](char Byte) {
+ for (unsigned i = 0; i < 8; ++i) {
+ bool Bit = CRC & 0x80000000U;
+ if (Byte & (1U << i))
+ Bit = !Bit;
+ CRC <<= 1;
+ if (Bit)
+ CRC ^= 0x04C11DB7U;
+ }
+ };
+
+ auto GetLittleEndianByte = [&Mangler, &SL](unsigned Index) {
+ unsigned CharByteWidth = SL->getCharByteWidth();
+ uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
+ unsigned OffsetInCodeUnit = Index % CharByteWidth;
+ return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
+ };
+
+ auto GetBigEndianByte = [&Mangler, &SL](unsigned Index) {
+ unsigned CharByteWidth = SL->getCharByteWidth();
+ uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
+ unsigned OffsetInCodeUnit = (CharByteWidth - 1) - (Index % CharByteWidth);
+ return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
+ };
+
+ // CRC all the bytes of the StringLiteral.
+ for (unsigned I = 0, E = SL->getByteLength(); I != E; ++I)
+ UpdateCRC(GetLittleEndianByte(I));
+
+ // The NUL terminator byte(s) were not present earlier,
+ // we need to manually process those bytes into the CRC.
+ for (unsigned NullTerminator = 0; NullTerminator < SL->getCharByteWidth();
+ ++NullTerminator)
+ UpdateCRC('\x00');
+
+ // The literature refers to the process of reversing the bits in the final CRC
+ // output as "reflection".
+ CRC = llvm::reverseBits(CRC);
+
+ // <encoded-crc>: The CRC is encoded utilizing the standard number mangling
+ // scheme.
+ Mangler.mangleNumber(CRC);
+
+ // <encoded-string>: The mangled name also contains the first 32 _characters_
+ // (including null-terminator bytes) of the StringLiteral.
+ // Each character is encoded by splitting them into bytes and then encoding
+ // the constituent bytes.
+ auto MangleByte = [&Mangler](char Byte) {
+ // There are five different manglings for characters:
+ // - [a-zA-Z0-9_$]: A one-to-one mapping.
+ // - ?[a-z]: The range from \xe1 to \xfa.
+ // - ?[A-Z]: The range from \xc1 to \xda.
+ // - ?[0-9]: The set of [,/\:. \n\t'-].
+ // - ?$XX: A fallback which maps nibbles.
+ if (isIdentifierBody(Byte, /*AllowDollar=*/true)) {
+ Mangler.getStream() << Byte;
+ } else if (isLetter(Byte & 0x7f)) {
+ Mangler.getStream() << '?' << static_cast<char>(Byte & 0x7f);
+ } else {
+ const char SpecialChars[] = {',', '/', '\\', ':', '.',
+ ' ', '\n', '\t', '\'', '-'};
+ const char *Pos =
+ std::find(std::begin(SpecialChars), std::end(SpecialChars), Byte);
+ if (Pos != std::end(SpecialChars)) {
+ Mangler.getStream() << '?' << (Pos - std::begin(SpecialChars));
+ } else {
+ Mangler.getStream() << "?$";
+ Mangler.getStream() << static_cast<char>('A' + ((Byte >> 4) & 0xf));
+ Mangler.getStream() << static_cast<char>('A' + (Byte & 0xf));
+ }
+ }
+ };
+
+ // Enforce our 32 character max.
+ unsigned NumCharsToMangle = std::min(32U, SL->getLength());
+ for (unsigned I = 0, E = NumCharsToMangle * SL->getCharByteWidth(); I != E;
+ ++I)
+ if (SL->isWide())
+ MangleByte(GetBigEndianByte(I));
+ else
+ MangleByte(GetLittleEndianByte(I));
+
+ // Encode the NUL terminator if there is room.
+ if (NumCharsToMangle < 32)
+ for (unsigned NullTerminator = 0; NullTerminator < SL->getCharByteWidth();
+ ++NullTerminator)
+ MangleByte(0);
+
+ Mangler.getStream() << '@';
+}
+
+void MicrosoftMangleContextImpl::mangleCXXVTableBitSet(const CXXRecordDecl *RD,
+ raw_ostream &Out) {
+ llvm::report_fatal_error("Cannot mangle bitsets yet");
+}
+
+MicrosoftMangleContext *
+MicrosoftMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
+ return new MicrosoftMangleContextImpl(Context, Diags);
+}
diff --git a/contrib/llvm/tools/clang/lib/AST/NSAPI.cpp b/contrib/llvm/tools/clang/lib/AST/NSAPI.cpp
new file mode 100644
index 0000000..2749100
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/NSAPI.cpp
@@ -0,0 +1,560 @@
+//===--- NSAPI.cpp - NSFoundation APIs ------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/NSAPI.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Expr.h"
+#include "llvm/ADT/StringSwitch.h"
+
+using namespace clang;
+
+NSAPI::NSAPI(ASTContext &ctx)
+ : Ctx(ctx), ClassIds(), BOOLId(nullptr), NSIntegerId(nullptr),
+ NSUIntegerId(nullptr), NSASCIIStringEncodingId(nullptr),
+ NSUTF8StringEncodingId(nullptr) {}
+
+IdentifierInfo *NSAPI::getNSClassId(NSClassIdKindKind K) const {
+ static const char *ClassName[NumClassIds] = {
+ "NSObject",
+ "NSString",
+ "NSArray",
+ "NSMutableArray",
+ "NSDictionary",
+ "NSMutableDictionary",
+ "NSNumber",
+ "NSMutableSet",
+ "NSCountedSet",
+ "NSMutableOrderedSet"
+ };
+
+ if (!ClassIds[K])
+ return (ClassIds[K] = &Ctx.Idents.get(ClassName[K]));
+
+ return ClassIds[K];
+}
+
+Selector NSAPI::getNSStringSelector(NSStringMethodKind MK) const {
+ if (NSStringSelectors[MK].isNull()) {
+ Selector Sel;
+ switch (MK) {
+ case NSStr_stringWithString:
+ Sel = Ctx.Selectors.getUnarySelector(&Ctx.Idents.get("stringWithString"));
+ break;
+ case NSStr_stringWithUTF8String:
+ Sel = Ctx.Selectors.getUnarySelector(
+ &Ctx.Idents.get("stringWithUTF8String"));
+ break;
+ case NSStr_initWithUTF8String:
+ Sel = Ctx.Selectors.getUnarySelector(
+ &Ctx.Idents.get("initWithUTF8String"));
+ break;
+ case NSStr_stringWithCStringEncoding: {
+ IdentifierInfo *KeyIdents[] = {
+ &Ctx.Idents.get("stringWithCString"),
+ &Ctx.Idents.get("encoding")
+ };
+ Sel = Ctx.Selectors.getSelector(2, KeyIdents);
+ break;
+ }
+ case NSStr_stringWithCString:
+ Sel= Ctx.Selectors.getUnarySelector(&Ctx.Idents.get("stringWithCString"));
+ break;
+ case NSStr_initWithString:
+ Sel = Ctx.Selectors.getUnarySelector(&Ctx.Idents.get("initWithString"));
+ break;
+ }
+ return (NSStringSelectors[MK] = Sel);
+ }
+
+ return NSStringSelectors[MK];
+}
+
+Optional<NSAPI::NSStringMethodKind>
+NSAPI::getNSStringMethodKind(Selector Sel) const {
+ for (unsigned i = 0; i != NumNSStringMethods; ++i) {
+ NSStringMethodKind MK = NSStringMethodKind(i);
+ if (Sel == getNSStringSelector(MK))
+ return MK;
+ }
+
+ return None;
+}
+
+Selector NSAPI::getNSArraySelector(NSArrayMethodKind MK) const {
+ if (NSArraySelectors[MK].isNull()) {
+ Selector Sel;
+ switch (MK) {
+ case NSArr_array:
+ Sel = Ctx.Selectors.getNullarySelector(&Ctx.Idents.get("array"));
+ break;
+ case NSArr_arrayWithArray:
+ Sel = Ctx.Selectors.getUnarySelector(&Ctx.Idents.get("arrayWithArray"));
+ break;
+ case NSArr_arrayWithObject:
+ Sel = Ctx.Selectors.getUnarySelector(&Ctx.Idents.get("arrayWithObject"));
+ break;
+ case NSArr_arrayWithObjects:
+ Sel = Ctx.Selectors.getUnarySelector(&Ctx.Idents.get("arrayWithObjects"));
+ break;
+ case NSArr_arrayWithObjectsCount: {
+ IdentifierInfo *KeyIdents[] = {
+ &Ctx.Idents.get("arrayWithObjects"),
+ &Ctx.Idents.get("count")
+ };
+ Sel = Ctx.Selectors.getSelector(2, KeyIdents);
+ break;
+ }
+ case NSArr_initWithArray:
+ Sel = Ctx.Selectors.getUnarySelector(&Ctx.Idents.get("initWithArray"));
+ break;
+ case NSArr_initWithObjects:
+ Sel = Ctx.Selectors.getUnarySelector(&Ctx.Idents.get("initWithObjects"));
+ break;
+ case NSArr_objectAtIndex:
+ Sel = Ctx.Selectors.getUnarySelector(&Ctx.Idents.get("objectAtIndex"));
+ break;
+ case NSMutableArr_replaceObjectAtIndex: {
+ IdentifierInfo *KeyIdents[] = {
+ &Ctx.Idents.get("replaceObjectAtIndex"),
+ &Ctx.Idents.get("withObject")
+ };
+ Sel = Ctx.Selectors.getSelector(2, KeyIdents);
+ break;
+ }
+ case NSMutableArr_addObject:
+ Sel = Ctx.Selectors.getUnarySelector(&Ctx.Idents.get("addObject"));
+ break;
+ case NSMutableArr_insertObjectAtIndex: {
+ IdentifierInfo *KeyIdents[] = {
+ &Ctx.Idents.get("insertObject"),
+ &Ctx.Idents.get("atIndex")
+ };
+ Sel = Ctx.Selectors.getSelector(2, KeyIdents);
+ break;
+ }
+ case NSMutableArr_setObjectAtIndexedSubscript: {
+ IdentifierInfo *KeyIdents[] = {
+ &Ctx.Idents.get("setObject"),
+ &Ctx.Idents.get("atIndexedSubscript")
+ };
+ Sel = Ctx.Selectors.getSelector(2, KeyIdents);
+ break;
+ }
+ }
+ return (NSArraySelectors[MK] = Sel);
+ }
+
+ return NSArraySelectors[MK];
+}
+
+Optional<NSAPI::NSArrayMethodKind> NSAPI::getNSArrayMethodKind(Selector Sel) {
+ for (unsigned i = 0; i != NumNSArrayMethods; ++i) {
+ NSArrayMethodKind MK = NSArrayMethodKind(i);
+ if (Sel == getNSArraySelector(MK))
+ return MK;
+ }
+
+ return None;
+}
+
+Selector NSAPI::getNSDictionarySelector(
+ NSDictionaryMethodKind MK) const {
+ if (NSDictionarySelectors[MK].isNull()) {
+ Selector Sel;
+ switch (MK) {
+ case NSDict_dictionary:
+ Sel = Ctx.Selectors.getNullarySelector(&Ctx.Idents.get("dictionary"));
+ break;
+ case NSDict_dictionaryWithDictionary:
+ Sel = Ctx.Selectors.getUnarySelector(
+ &Ctx.Idents.get("dictionaryWithDictionary"));
+ break;
+ case NSDict_dictionaryWithObjectForKey: {
+ IdentifierInfo *KeyIdents[] = {
+ &Ctx.Idents.get("dictionaryWithObject"),
+ &Ctx.Idents.get("forKey")
+ };
+ Sel = Ctx.Selectors.getSelector(2, KeyIdents);
+ break;
+ }
+ case NSDict_dictionaryWithObjectsForKeys: {
+ IdentifierInfo *KeyIdents[] = {
+ &Ctx.Idents.get("dictionaryWithObjects"),
+ &Ctx.Idents.get("forKeys")
+ };
+ Sel = Ctx.Selectors.getSelector(2, KeyIdents);
+ break;
+ }
+ case NSDict_dictionaryWithObjectsForKeysCount: {
+ IdentifierInfo *KeyIdents[] = {
+ &Ctx.Idents.get("dictionaryWithObjects"),
+ &Ctx.Idents.get("forKeys"),
+ &Ctx.Idents.get("count")
+ };
+ Sel = Ctx.Selectors.getSelector(3, KeyIdents);
+ break;
+ }
+ case NSDict_dictionaryWithObjectsAndKeys:
+ Sel = Ctx.Selectors.getUnarySelector(
+ &Ctx.Idents.get("dictionaryWithObjectsAndKeys"));
+ break;
+ case NSDict_initWithDictionary:
+ Sel = Ctx.Selectors.getUnarySelector(
+ &Ctx.Idents.get("initWithDictionary"));
+ break;
+ case NSDict_initWithObjectsAndKeys:
+ Sel = Ctx.Selectors.getUnarySelector(
+ &Ctx.Idents.get("initWithObjectsAndKeys"));
+ break;
+ case NSDict_initWithObjectsForKeys: {
+ IdentifierInfo *KeyIdents[] = {
+ &Ctx.Idents.get("initWithObjects"),
+ &Ctx.Idents.get("forKeys")
+ };
+ Sel = Ctx.Selectors.getSelector(2, KeyIdents);
+ break;
+ }
+ case NSDict_objectForKey:
+ Sel = Ctx.Selectors.getUnarySelector(&Ctx.Idents.get("objectForKey"));
+ break;
+ case NSMutableDict_setObjectForKey: {
+ IdentifierInfo *KeyIdents[] = {
+ &Ctx.Idents.get("setObject"),
+ &Ctx.Idents.get("forKey")
+ };
+ Sel = Ctx.Selectors.getSelector(2, KeyIdents);
+ break;
+ }
+ case NSMutableDict_setObjectForKeyedSubscript: {
+ IdentifierInfo *KeyIdents[] = {
+ &Ctx.Idents.get("setObject"),
+ &Ctx.Idents.get("forKeyedSubscript")
+ };
+ Sel = Ctx.Selectors.getSelector(2, KeyIdents);
+ break;
+ }
+ case NSMutableDict_setValueForKey: {
+ IdentifierInfo *KeyIdents[] = {
+ &Ctx.Idents.get("setValue"),
+ &Ctx.Idents.get("forKey")
+ };
+ Sel = Ctx.Selectors.getSelector(2, KeyIdents);
+ break;
+ }
+ }
+ return (NSDictionarySelectors[MK] = Sel);
+ }
+
+ return NSDictionarySelectors[MK];
+}
+
+Optional<NSAPI::NSDictionaryMethodKind>
+NSAPI::getNSDictionaryMethodKind(Selector Sel) {
+ for (unsigned i = 0; i != NumNSDictionaryMethods; ++i) {
+ NSDictionaryMethodKind MK = NSDictionaryMethodKind(i);
+ if (Sel == getNSDictionarySelector(MK))
+ return MK;
+ }
+
+ return None;
+}
+
+Selector NSAPI::getNSSetSelector(NSSetMethodKind MK) const {
+ if (NSSetSelectors[MK].isNull()) {
+ Selector Sel;
+ switch (MK) {
+ case NSMutableSet_addObject:
+ Sel = Ctx.Selectors.getUnarySelector(&Ctx.Idents.get("addObject"));
+ break;
+ case NSOrderedSet_insertObjectAtIndex: {
+ IdentifierInfo *KeyIdents[] = {
+ &Ctx.Idents.get("insertObject"),
+ &Ctx.Idents.get("atIndex")
+ };
+ Sel = Ctx.Selectors.getSelector(2, KeyIdents);
+ break;
+ }
+ case NSOrderedSet_setObjectAtIndex: {
+ IdentifierInfo *KeyIdents[] = {
+ &Ctx.Idents.get("setObject"),
+ &Ctx.Idents.get("atIndex")
+ };
+ Sel = Ctx.Selectors.getSelector(2, KeyIdents);
+ break;
+ }
+ case NSOrderedSet_setObjectAtIndexedSubscript: {
+ IdentifierInfo *KeyIdents[] = {
+ &Ctx.Idents.get("setObject"),
+ &Ctx.Idents.get("atIndexedSubscript")
+ };
+ Sel = Ctx.Selectors.getSelector(2, KeyIdents);
+ break;
+ }
+ case NSOrderedSet_replaceObjectAtIndexWithObject: {
+ IdentifierInfo *KeyIdents[] = {
+ &Ctx.Idents.get("replaceObjectAtIndex"),
+ &Ctx.Idents.get("withObject")
+ };
+ Sel = Ctx.Selectors.getSelector(2, KeyIdents);
+ break;
+ }
+ }
+ return (NSSetSelectors[MK] = Sel);
+ }
+
+ return NSSetSelectors[MK];
+}
+
+Optional<NSAPI::NSSetMethodKind>
+NSAPI::getNSSetMethodKind(Selector Sel) {
+ for (unsigned i = 0; i != NumNSSetMethods; ++i) {
+ NSSetMethodKind MK = NSSetMethodKind(i);
+ if (Sel == getNSSetSelector(MK))
+ return MK;
+ }
+
+ return None;
+}
+
+Selector NSAPI::getNSNumberLiteralSelector(NSNumberLiteralMethodKind MK,
+ bool Instance) const {
+ static const char *ClassSelectorName[NumNSNumberLiteralMethods] = {
+ "numberWithChar",
+ "numberWithUnsignedChar",
+ "numberWithShort",
+ "numberWithUnsignedShort",
+ "numberWithInt",
+ "numberWithUnsignedInt",
+ "numberWithLong",
+ "numberWithUnsignedLong",
+ "numberWithLongLong",
+ "numberWithUnsignedLongLong",
+ "numberWithFloat",
+ "numberWithDouble",
+ "numberWithBool",
+ "numberWithInteger",
+ "numberWithUnsignedInteger"
+ };
+ static const char *InstanceSelectorName[NumNSNumberLiteralMethods] = {
+ "initWithChar",
+ "initWithUnsignedChar",
+ "initWithShort",
+ "initWithUnsignedShort",
+ "initWithInt",
+ "initWithUnsignedInt",
+ "initWithLong",
+ "initWithUnsignedLong",
+ "initWithLongLong",
+ "initWithUnsignedLongLong",
+ "initWithFloat",
+ "initWithDouble",
+ "initWithBool",
+ "initWithInteger",
+ "initWithUnsignedInteger"
+ };
+
+ Selector *Sels;
+ const char **Names;
+ if (Instance) {
+ Sels = NSNumberInstanceSelectors;
+ Names = InstanceSelectorName;
+ } else {
+ Sels = NSNumberClassSelectors;
+ Names = ClassSelectorName;
+ }
+
+ if (Sels[MK].isNull())
+ Sels[MK] = Ctx.Selectors.getUnarySelector(&Ctx.Idents.get(Names[MK]));
+ return Sels[MK];
+}
+
+Optional<NSAPI::NSNumberLiteralMethodKind>
+NSAPI::getNSNumberLiteralMethodKind(Selector Sel) const {
+ for (unsigned i = 0; i != NumNSNumberLiteralMethods; ++i) {
+ NSNumberLiteralMethodKind MK = NSNumberLiteralMethodKind(i);
+ if (isNSNumberLiteralSelector(MK, Sel))
+ return MK;
+ }
+
+ return None;
+}
+
+Optional<NSAPI::NSNumberLiteralMethodKind>
+NSAPI::getNSNumberFactoryMethodKind(QualType T) const {
+ const BuiltinType *BT = T->getAs<BuiltinType>();
+ if (!BT)
+ return None;
+
+ const TypedefType *TDT = T->getAs<TypedefType>();
+ if (TDT) {
+ QualType TDTTy = QualType(TDT, 0);
+ if (isObjCBOOLType(TDTTy))
+ return NSAPI::NSNumberWithBool;
+ if (isObjCNSIntegerType(TDTTy))
+ return NSAPI::NSNumberWithInteger;
+ if (isObjCNSUIntegerType(TDTTy))
+ return NSAPI::NSNumberWithUnsignedInteger;
+ }
+
+ switch (BT->getKind()) {
+ case BuiltinType::Char_S:
+ case BuiltinType::SChar:
+ return NSAPI::NSNumberWithChar;
+ case BuiltinType::Char_U:
+ case BuiltinType::UChar:
+ return NSAPI::NSNumberWithUnsignedChar;
+ case BuiltinType::Short:
+ return NSAPI::NSNumberWithShort;
+ case BuiltinType::UShort:
+ return NSAPI::NSNumberWithUnsignedShort;
+ case BuiltinType::Int:
+ return NSAPI::NSNumberWithInt;
+ case BuiltinType::UInt:
+ return NSAPI::NSNumberWithUnsignedInt;
+ case BuiltinType::Long:
+ return NSAPI::NSNumberWithLong;
+ case BuiltinType::ULong:
+ return NSAPI::NSNumberWithUnsignedLong;
+ case BuiltinType::LongLong:
+ return NSAPI::NSNumberWithLongLong;
+ case BuiltinType::ULongLong:
+ return NSAPI::NSNumberWithUnsignedLongLong;
+ case BuiltinType::Float:
+ return NSAPI::NSNumberWithFloat;
+ case BuiltinType::Double:
+ return NSAPI::NSNumberWithDouble;
+ case BuiltinType::Bool:
+ return NSAPI::NSNumberWithBool;
+
+ case BuiltinType::Void:
+ case BuiltinType::WChar_U:
+ case BuiltinType::WChar_S:
+ case BuiltinType::Char16:
+ case BuiltinType::Char32:
+ case BuiltinType::Int128:
+ case BuiltinType::LongDouble:
+ case BuiltinType::UInt128:
+ case BuiltinType::NullPtr:
+ case BuiltinType::ObjCClass:
+ case BuiltinType::ObjCId:
+ case BuiltinType::ObjCSel:
+ case BuiltinType::OCLImage1d:
+ case BuiltinType::OCLImage1dArray:
+ case BuiltinType::OCLImage1dBuffer:
+ case BuiltinType::OCLImage2d:
+ case BuiltinType::OCLImage2dArray:
+ case BuiltinType::OCLImage3d:
+ case BuiltinType::OCLSampler:
+ case BuiltinType::OCLEvent:
+ case BuiltinType::BoundMember:
+ case BuiltinType::Dependent:
+ case BuiltinType::Overload:
+ case BuiltinType::UnknownAny:
+ case BuiltinType::ARCUnbridgedCast:
+ case BuiltinType::Half:
+ case BuiltinType::PseudoObject:
+ case BuiltinType::BuiltinFn:
+ break;
+ }
+
+ return None;
+}
+
+/// \brief Returns true if \param T is a typedef of "BOOL" in objective-c.
+bool NSAPI::isObjCBOOLType(QualType T) const {
+ return isObjCTypedef(T, "BOOL", BOOLId);
+}
+/// \brief Returns true if \param T is a typedef of "NSInteger" in objective-c.
+bool NSAPI::isObjCNSIntegerType(QualType T) const {
+ return isObjCTypedef(T, "NSInteger", NSIntegerId);
+}
+/// \brief Returns true if \param T is a typedef of "NSUInteger" in objective-c.
+bool NSAPI::isObjCNSUIntegerType(QualType T) const {
+ return isObjCTypedef(T, "NSUInteger", NSUIntegerId);
+}
+
+StringRef NSAPI::GetNSIntegralKind(QualType T) const {
+ if (!Ctx.getLangOpts().ObjC1 || T.isNull())
+ return StringRef();
+
+ while (const TypedefType *TDT = T->getAs<TypedefType>()) {
+ StringRef NSIntegralResust =
+ llvm::StringSwitch<StringRef>(
+ TDT->getDecl()->getDeclName().getAsIdentifierInfo()->getName())
+ .Case("int8_t", "int8_t")
+ .Case("int16_t", "int16_t")
+ .Case("int32_t", "int32_t")
+ .Case("NSInteger", "NSInteger")
+ .Case("int64_t", "int64_t")
+ .Case("uint8_t", "uint8_t")
+ .Case("uint16_t", "uint16_t")
+ .Case("uint32_t", "uint32_t")
+ .Case("NSUInteger", "NSUInteger")
+ .Case("uint64_t", "uint64_t")
+ .Default(StringRef());
+ if (!NSIntegralResust.empty())
+ return NSIntegralResust;
+ T = TDT->desugar();
+ }
+ return StringRef();
+}
+
+bool NSAPI::isMacroDefined(StringRef Id) const {
+ // FIXME: Check whether the relevant module macros are visible.
+ return Ctx.Idents.get(Id).hasMacroDefinition();
+}
+
+bool NSAPI::isObjCTypedef(QualType T,
+ StringRef name, IdentifierInfo *&II) const {
+ if (!Ctx.getLangOpts().ObjC1)
+ return false;
+ if (T.isNull())
+ return false;
+
+ if (!II)
+ II = &Ctx.Idents.get(name);
+
+ while (const TypedefType *TDT = T->getAs<TypedefType>()) {
+ if (TDT->getDecl()->getDeclName().getAsIdentifierInfo() == II)
+ return true;
+ T = TDT->desugar();
+ }
+
+ return false;
+}
+
+bool NSAPI::isObjCEnumerator(const Expr *E,
+ StringRef name, IdentifierInfo *&II) const {
+ if (!Ctx.getLangOpts().ObjC1)
+ return false;
+ if (!E)
+ return false;
+
+ if (!II)
+ II = &Ctx.Idents.get(name);
+
+ if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
+ if (const EnumConstantDecl *
+ EnumD = dyn_cast_or_null<EnumConstantDecl>(DRE->getDecl()))
+ return EnumD->getIdentifier() == II;
+
+ return false;
+}
+
+Selector NSAPI::getOrInitSelector(ArrayRef<StringRef> Ids,
+ Selector &Sel) const {
+ if (Sel.isNull()) {
+ SmallVector<IdentifierInfo *, 4> Idents;
+ for (ArrayRef<StringRef>::const_iterator
+ I = Ids.begin(), E = Ids.end(); I != E; ++I)
+ Idents.push_back(&Ctx.Idents.get(*I));
+ Sel = Ctx.Selectors.getSelector(Idents.size(), Idents.data());
+ }
+ return Sel;
+}
diff --git a/contrib/llvm/tools/clang/lib/AST/NestedNameSpecifier.cpp b/contrib/llvm/tools/clang/lib/AST/NestedNameSpecifier.cpp
new file mode 100644
index 0000000..50a0050
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/NestedNameSpecifier.cpp
@@ -0,0 +1,677 @@
+//===--- NestedNameSpecifier.cpp - C++ nested name specifiers -----*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the NestedNameSpecifier class, which represents
+// a C++ nested-name-specifier.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/AST/NestedNameSpecifier.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/PrettyPrinter.h"
+#include "clang/AST/Type.h"
+#include "clang/AST/TypeLoc.h"
+#include "llvm/Support/AlignOf.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cassert>
+
+using namespace clang;
+
+NestedNameSpecifier *
+NestedNameSpecifier::FindOrInsert(const ASTContext &Context,
+ const NestedNameSpecifier &Mockup) {
+ llvm::FoldingSetNodeID ID;
+ Mockup.Profile(ID);
+
+ void *InsertPos = nullptr;
+ NestedNameSpecifier *NNS
+ = Context.NestedNameSpecifiers.FindNodeOrInsertPos(ID, InsertPos);
+ if (!NNS) {
+ NNS = new (Context, llvm::alignOf<NestedNameSpecifier>())
+ NestedNameSpecifier(Mockup);
+ Context.NestedNameSpecifiers.InsertNode(NNS, InsertPos);
+ }
+
+ return NNS;
+}
+
+NestedNameSpecifier *
+NestedNameSpecifier::Create(const ASTContext &Context,
+ NestedNameSpecifier *Prefix, IdentifierInfo *II) {
+ assert(II && "Identifier cannot be NULL");
+ assert((!Prefix || Prefix->isDependent()) && "Prefix must be dependent");
+
+ NestedNameSpecifier Mockup;
+ Mockup.Prefix.setPointer(Prefix);
+ Mockup.Prefix.setInt(StoredIdentifier);
+ Mockup.Specifier = II;
+ return FindOrInsert(Context, Mockup);
+}
+
+NestedNameSpecifier *
+NestedNameSpecifier::Create(const ASTContext &Context,
+ NestedNameSpecifier *Prefix,
+ const NamespaceDecl *NS) {
+ assert(NS && "Namespace cannot be NULL");
+ assert((!Prefix ||
+ (Prefix->getAsType() == nullptr &&
+ Prefix->getAsIdentifier() == nullptr)) &&
+ "Broken nested name specifier");
+ NestedNameSpecifier Mockup;
+ Mockup.Prefix.setPointer(Prefix);
+ Mockup.Prefix.setInt(StoredDecl);
+ Mockup.Specifier = const_cast<NamespaceDecl *>(NS);
+ return FindOrInsert(Context, Mockup);
+}
+
+NestedNameSpecifier *
+NestedNameSpecifier::Create(const ASTContext &Context,
+ NestedNameSpecifier *Prefix,
+ NamespaceAliasDecl *Alias) {
+ assert(Alias && "Namespace alias cannot be NULL");
+ assert((!Prefix ||
+ (Prefix->getAsType() == nullptr &&
+ Prefix->getAsIdentifier() == nullptr)) &&
+ "Broken nested name specifier");
+ NestedNameSpecifier Mockup;
+ Mockup.Prefix.setPointer(Prefix);
+ Mockup.Prefix.setInt(StoredDecl);
+ Mockup.Specifier = Alias;
+ return FindOrInsert(Context, Mockup);
+}
+
+NestedNameSpecifier *
+NestedNameSpecifier::Create(const ASTContext &Context,
+ NestedNameSpecifier *Prefix,
+ bool Template, const Type *T) {
+ assert(T && "Type cannot be NULL");
+ NestedNameSpecifier Mockup;
+ Mockup.Prefix.setPointer(Prefix);
+ Mockup.Prefix.setInt(Template? StoredTypeSpecWithTemplate : StoredTypeSpec);
+ Mockup.Specifier = const_cast<Type*>(T);
+ return FindOrInsert(Context, Mockup);
+}
+
+NestedNameSpecifier *
+NestedNameSpecifier::Create(const ASTContext &Context, IdentifierInfo *II) {
+ assert(II && "Identifier cannot be NULL");
+ NestedNameSpecifier Mockup;
+ Mockup.Prefix.setPointer(nullptr);
+ Mockup.Prefix.setInt(StoredIdentifier);
+ Mockup.Specifier = II;
+ return FindOrInsert(Context, Mockup);
+}
+
+NestedNameSpecifier *
+NestedNameSpecifier::GlobalSpecifier(const ASTContext &Context) {
+ if (!Context.GlobalNestedNameSpecifier)
+ Context.GlobalNestedNameSpecifier =
+ new (Context, llvm::alignOf<NestedNameSpecifier>())
+ NestedNameSpecifier();
+ return Context.GlobalNestedNameSpecifier;
+}
+
+NestedNameSpecifier *
+NestedNameSpecifier::SuperSpecifier(const ASTContext &Context,
+ CXXRecordDecl *RD) {
+ NestedNameSpecifier Mockup;
+ Mockup.Prefix.setPointer(nullptr);
+ Mockup.Prefix.setInt(StoredDecl);
+ Mockup.Specifier = RD;
+ return FindOrInsert(Context, Mockup);
+}
+
+NestedNameSpecifier::SpecifierKind NestedNameSpecifier::getKind() const {
+ if (!Specifier)
+ return Global;
+
+ switch (Prefix.getInt()) {
+ case StoredIdentifier:
+ return Identifier;
+
+ case StoredDecl: {
+ NamedDecl *ND = static_cast<NamedDecl *>(Specifier);
+ if (isa<CXXRecordDecl>(ND))
+ return Super;
+ return isa<NamespaceDecl>(ND) ? Namespace : NamespaceAlias;
+ }
+
+ case StoredTypeSpec:
+ return TypeSpec;
+
+ case StoredTypeSpecWithTemplate:
+ return TypeSpecWithTemplate;
+ }
+
+ llvm_unreachable("Invalid NNS Kind!");
+}
+
+/// \brief Retrieve the namespace stored in this nested name specifier.
+NamespaceDecl *NestedNameSpecifier::getAsNamespace() const {
+ if (Prefix.getInt() == StoredDecl)
+ return dyn_cast<NamespaceDecl>(static_cast<NamedDecl *>(Specifier));
+
+ return nullptr;
+}
+
+/// \brief Retrieve the namespace alias stored in this nested name specifier.
+NamespaceAliasDecl *NestedNameSpecifier::getAsNamespaceAlias() const {
+ if (Prefix.getInt() == StoredDecl)
+ return dyn_cast<NamespaceAliasDecl>(static_cast<NamedDecl *>(Specifier));
+
+ return nullptr;
+}
+
+/// \brief Retrieve the record declaration stored in this nested name specifier.
+CXXRecordDecl *NestedNameSpecifier::getAsRecordDecl() const {
+ if (Prefix.getInt() == StoredDecl)
+ return dyn_cast<CXXRecordDecl>(static_cast<NamedDecl *>(Specifier));
+
+ return nullptr;
+}
+
+/// \brief Whether this nested name specifier refers to a dependent
+/// type or not.
+bool NestedNameSpecifier::isDependent() const {
+ switch (getKind()) {
+ case Identifier:
+ // Identifier specifiers always represent dependent types
+ return true;
+
+ case Namespace:
+ case NamespaceAlias:
+ case Global:
+ return false;
+
+ case Super: {
+ CXXRecordDecl *RD = static_cast<CXXRecordDecl *>(Specifier);
+ for (const auto &Base : RD->bases())
+ if (Base.getType()->isDependentType())
+ return true;
+
+ return false;
+ }
+
+ case TypeSpec:
+ case TypeSpecWithTemplate:
+ return getAsType()->isDependentType();
+ }
+
+ llvm_unreachable("Invalid NNS Kind!");
+}
+
+/// \brief Whether this nested name specifier refers to a dependent
+/// type or not.
+bool NestedNameSpecifier::isInstantiationDependent() const {
+ switch (getKind()) {
+ case Identifier:
+ // Identifier specifiers always represent dependent types
+ return true;
+
+ case Namespace:
+ case NamespaceAlias:
+ case Global:
+ case Super:
+ return false;
+
+ case TypeSpec:
+ case TypeSpecWithTemplate:
+ return getAsType()->isInstantiationDependentType();
+ }
+
+ llvm_unreachable("Invalid NNS Kind!");
+}
+
+bool NestedNameSpecifier::containsUnexpandedParameterPack() const {
+ switch (getKind()) {
+ case Identifier:
+ return getPrefix() && getPrefix()->containsUnexpandedParameterPack();
+
+ case Namespace:
+ case NamespaceAlias:
+ case Global:
+ case Super:
+ return false;
+
+ case TypeSpec:
+ case TypeSpecWithTemplate:
+ return getAsType()->containsUnexpandedParameterPack();
+ }
+
+ llvm_unreachable("Invalid NNS Kind!");
+}
+
+/// \brief Print this nested name specifier to the given output
+/// stream.
+void
+NestedNameSpecifier::print(raw_ostream &OS,
+ const PrintingPolicy &Policy) const {
+ if (getPrefix())
+ getPrefix()->print(OS, Policy);
+
+ switch (getKind()) {
+ case Identifier:
+ OS << getAsIdentifier()->getName();
+ break;
+
+ case Namespace:
+ if (getAsNamespace()->isAnonymousNamespace())
+ return;
+
+ OS << getAsNamespace()->getName();
+ break;
+
+ case NamespaceAlias:
+ OS << getAsNamespaceAlias()->getName();
+ break;
+
+ case Global:
+ break;
+
+ case Super:
+ OS << "__super";
+ break;
+
+ case TypeSpecWithTemplate:
+ OS << "template ";
+ // Fall through to print the type.
+
+ case TypeSpec: {
+ const Type *T = getAsType();
+
+ PrintingPolicy InnerPolicy(Policy);
+ InnerPolicy.SuppressScope = true;
+
+ // Nested-name-specifiers are intended to contain minimally-qualified
+ // types. An actual ElaboratedType will not occur, since we'll store
+ // just the type that is referred to in the nested-name-specifier (e.g.,
+ // a TypedefType, TagType, etc.). However, when we are dealing with
+ // dependent template-id types (e.g., Outer<T>::template Inner<U>),
+ // the type requires its own nested-name-specifier for uniqueness, so we
+ // suppress that nested-name-specifier during printing.
+ assert(!isa<ElaboratedType>(T) &&
+ "Elaborated type in nested-name-specifier");
+ if (const TemplateSpecializationType *SpecType
+ = dyn_cast<TemplateSpecializationType>(T)) {
+ // Print the template name without its corresponding
+ // nested-name-specifier.
+ SpecType->getTemplateName().print(OS, InnerPolicy, true);
+
+ // Print the template argument list.
+ TemplateSpecializationType::PrintTemplateArgumentList(
+ OS, SpecType->getArgs(), SpecType->getNumArgs(), InnerPolicy);
+ } else {
+ // Print the type normally
+ QualType(T, 0).print(OS, InnerPolicy);
+ }
+ break;
+ }
+ }
+
+ OS << "::";
+}
+
+void NestedNameSpecifier::dump(const LangOptions &LO) {
+ print(llvm::errs(), PrintingPolicy(LO));
+}
+
+unsigned
+NestedNameSpecifierLoc::getLocalDataLength(NestedNameSpecifier *Qualifier) {
+ assert(Qualifier && "Expected a non-NULL qualifier");
+
+ // Location of the trailing '::'.
+ unsigned Length = sizeof(unsigned);
+
+ switch (Qualifier->getKind()) {
+ case NestedNameSpecifier::Global:
+ // Nothing more to add.
+ break;
+
+ case NestedNameSpecifier::Identifier:
+ case NestedNameSpecifier::Namespace:
+ case NestedNameSpecifier::NamespaceAlias:
+ case NestedNameSpecifier::Super:
+ // The location of the identifier or namespace name.
+ Length += sizeof(unsigned);
+ break;
+
+ case NestedNameSpecifier::TypeSpecWithTemplate:
+ case NestedNameSpecifier::TypeSpec:
+ // The "void*" that points at the TypeLoc data.
+ // Note: the 'template' keyword is part of the TypeLoc.
+ Length += sizeof(void *);
+ break;
+ }
+
+ return Length;
+}
+
+unsigned
+NestedNameSpecifierLoc::getDataLength(NestedNameSpecifier *Qualifier) {
+ unsigned Length = 0;
+ for (; Qualifier; Qualifier = Qualifier->getPrefix())
+ Length += getLocalDataLength(Qualifier);
+ return Length;
+}
+
+namespace {
+ /// \brief Load a (possibly unaligned) source location from a given address
+ /// and offset.
+ SourceLocation LoadSourceLocation(void *Data, unsigned Offset) {
+ unsigned Raw;
+ memcpy(&Raw, static_cast<char *>(Data) + Offset, sizeof(unsigned));
+ return SourceLocation::getFromRawEncoding(Raw);
+ }
+
+ /// \brief Load a (possibly unaligned) pointer from a given address and
+ /// offset.
+ void *LoadPointer(void *Data, unsigned Offset) {
+ void *Result;
+ memcpy(&Result, static_cast<char *>(Data) + Offset, sizeof(void*));
+ return Result;
+ }
+}
+
+SourceRange NestedNameSpecifierLoc::getSourceRange() const {
+ if (!Qualifier)
+ return SourceRange();
+
+ NestedNameSpecifierLoc First = *this;
+ while (NestedNameSpecifierLoc Prefix = First.getPrefix())
+ First = Prefix;
+
+ return SourceRange(First.getLocalSourceRange().getBegin(),
+ getLocalSourceRange().getEnd());
+}
+
+SourceRange NestedNameSpecifierLoc::getLocalSourceRange() const {
+ if (!Qualifier)
+ return SourceRange();
+
+ unsigned Offset = getDataLength(Qualifier->getPrefix());
+ switch (Qualifier->getKind()) {
+ case NestedNameSpecifier::Global:
+ return LoadSourceLocation(Data, Offset);
+
+ case NestedNameSpecifier::Identifier:
+ case NestedNameSpecifier::Namespace:
+ case NestedNameSpecifier::NamespaceAlias:
+ case NestedNameSpecifier::Super:
+ return SourceRange(LoadSourceLocation(Data, Offset),
+ LoadSourceLocation(Data, Offset + sizeof(unsigned)));
+
+ case NestedNameSpecifier::TypeSpecWithTemplate:
+ case NestedNameSpecifier::TypeSpec: {
+ // The "void*" that points at the TypeLoc data.
+ // Note: the 'template' keyword is part of the TypeLoc.
+ void *TypeData = LoadPointer(Data, Offset);
+ TypeLoc TL(Qualifier->getAsType(), TypeData);
+ return SourceRange(TL.getBeginLoc(),
+ LoadSourceLocation(Data, Offset + sizeof(void*)));
+ }
+ }
+
+ llvm_unreachable("Invalid NNS Kind!");
+}
+
+TypeLoc NestedNameSpecifierLoc::getTypeLoc() const {
+ assert((Qualifier->getKind() == NestedNameSpecifier::TypeSpec ||
+ Qualifier->getKind() == NestedNameSpecifier::TypeSpecWithTemplate) &&
+ "Nested-name-specifier location is not a type");
+
+ // The "void*" that points at the TypeLoc data.
+ unsigned Offset = getDataLength(Qualifier->getPrefix());
+ void *TypeData = LoadPointer(Data, Offset);
+ return TypeLoc(Qualifier->getAsType(), TypeData);
+}
+
+namespace {
+ void Append(char *Start, char *End, char *&Buffer, unsigned &BufferSize,
+ unsigned &BufferCapacity) {
+ if (BufferSize + (End - Start) > BufferCapacity) {
+ // Reallocate the buffer.
+ unsigned NewCapacity
+ = std::max((unsigned)(BufferCapacity? BufferCapacity * 2
+ : sizeof(void*) * 2),
+ (unsigned)(BufferSize + (End - Start)));
+ char *NewBuffer = static_cast<char *>(malloc(NewCapacity));
+ memcpy(NewBuffer, Buffer, BufferSize);
+
+ if (BufferCapacity)
+ free(Buffer);
+ Buffer = NewBuffer;
+ BufferCapacity = NewCapacity;
+ }
+
+ memcpy(Buffer + BufferSize, Start, End - Start);
+ BufferSize += End-Start;
+ }
+
+ /// \brief Save a source location to the given buffer.
+ void SaveSourceLocation(SourceLocation Loc, char *&Buffer,
+ unsigned &BufferSize, unsigned &BufferCapacity) {
+ unsigned Raw = Loc.getRawEncoding();
+ Append(reinterpret_cast<char *>(&Raw),
+ reinterpret_cast<char *>(&Raw) + sizeof(unsigned),
+ Buffer, BufferSize, BufferCapacity);
+ }
+
+ /// \brief Save a pointer to the given buffer.
+ void SavePointer(void *Ptr, char *&Buffer, unsigned &BufferSize,
+ unsigned &BufferCapacity) {
+ Append(reinterpret_cast<char *>(&Ptr),
+ reinterpret_cast<char *>(&Ptr) + sizeof(void *),
+ Buffer, BufferSize, BufferCapacity);
+ }
+}
+
+NestedNameSpecifierLocBuilder::
+NestedNameSpecifierLocBuilder(const NestedNameSpecifierLocBuilder &Other)
+ : Representation(Other.Representation), Buffer(nullptr),
+ BufferSize(0), BufferCapacity(0)
+{
+ if (!Other.Buffer)
+ return;
+
+ if (Other.BufferCapacity == 0) {
+ // Shallow copy is okay.
+ Buffer = Other.Buffer;
+ BufferSize = Other.BufferSize;
+ return;
+ }
+
+ // Deep copy
+ Append(Other.Buffer, Other.Buffer + Other.BufferSize, Buffer, BufferSize,
+ BufferCapacity);
+}
+
+NestedNameSpecifierLocBuilder &
+NestedNameSpecifierLocBuilder::
+operator=(const NestedNameSpecifierLocBuilder &Other) {
+ Representation = Other.Representation;
+
+ if (Buffer && Other.Buffer && BufferCapacity >= Other.BufferSize) {
+ // Re-use our storage.
+ BufferSize = Other.BufferSize;
+ memcpy(Buffer, Other.Buffer, BufferSize);
+ return *this;
+ }
+
+ // Free our storage, if we have any.
+ if (BufferCapacity) {
+ free(Buffer);
+ BufferCapacity = 0;
+ }
+
+ if (!Other.Buffer) {
+ // Empty.
+ Buffer = nullptr;
+ BufferSize = 0;
+ return *this;
+ }
+
+ if (Other.BufferCapacity == 0) {
+ // Shallow copy is okay.
+ Buffer = Other.Buffer;
+ BufferSize = Other.BufferSize;
+ return *this;
+ }
+
+ // Deep copy.
+ Append(Other.Buffer, Other.Buffer + Other.BufferSize, Buffer, BufferSize,
+ BufferCapacity);
+ return *this;
+}
+
+void NestedNameSpecifierLocBuilder::Extend(ASTContext &Context,
+ SourceLocation TemplateKWLoc,
+ TypeLoc TL,
+ SourceLocation ColonColonLoc) {
+ Representation = NestedNameSpecifier::Create(Context, Representation,
+ TemplateKWLoc.isValid(),
+ TL.getTypePtr());
+
+ // Push source-location info into the buffer.
+ SavePointer(TL.getOpaqueData(), Buffer, BufferSize, BufferCapacity);
+ SaveSourceLocation(ColonColonLoc, Buffer, BufferSize, BufferCapacity);
+}
+
+void NestedNameSpecifierLocBuilder::Extend(ASTContext &Context,
+ IdentifierInfo *Identifier,
+ SourceLocation IdentifierLoc,
+ SourceLocation ColonColonLoc) {
+ Representation = NestedNameSpecifier::Create(Context, Representation,
+ Identifier);
+
+ // Push source-location info into the buffer.
+ SaveSourceLocation(IdentifierLoc, Buffer, BufferSize, BufferCapacity);
+ SaveSourceLocation(ColonColonLoc, Buffer, BufferSize, BufferCapacity);
+}
+
+void NestedNameSpecifierLocBuilder::Extend(ASTContext &Context,
+ NamespaceDecl *Namespace,
+ SourceLocation NamespaceLoc,
+ SourceLocation ColonColonLoc) {
+ Representation = NestedNameSpecifier::Create(Context, Representation,
+ Namespace);
+
+ // Push source-location info into the buffer.
+ SaveSourceLocation(NamespaceLoc, Buffer, BufferSize, BufferCapacity);
+ SaveSourceLocation(ColonColonLoc, Buffer, BufferSize, BufferCapacity);
+}
+
+void NestedNameSpecifierLocBuilder::Extend(ASTContext &Context,
+ NamespaceAliasDecl *Alias,
+ SourceLocation AliasLoc,
+ SourceLocation ColonColonLoc) {
+ Representation = NestedNameSpecifier::Create(Context, Representation, Alias);
+
+ // Push source-location info into the buffer.
+ SaveSourceLocation(AliasLoc, Buffer, BufferSize, BufferCapacity);
+ SaveSourceLocation(ColonColonLoc, Buffer, BufferSize, BufferCapacity);
+}
+
+void NestedNameSpecifierLocBuilder::MakeGlobal(ASTContext &Context,
+ SourceLocation ColonColonLoc) {
+ assert(!Representation && "Already have a nested-name-specifier!?");
+ Representation = NestedNameSpecifier::GlobalSpecifier(Context);
+
+ // Push source-location info into the buffer.
+ SaveSourceLocation(ColonColonLoc, Buffer, BufferSize, BufferCapacity);
+}
+
+void NestedNameSpecifierLocBuilder::MakeSuper(ASTContext &Context,
+ CXXRecordDecl *RD,
+ SourceLocation SuperLoc,
+ SourceLocation ColonColonLoc) {
+ Representation = NestedNameSpecifier::SuperSpecifier(Context, RD);
+
+ // Push source-location info into the buffer.
+ SaveSourceLocation(SuperLoc, Buffer, BufferSize, BufferCapacity);
+ SaveSourceLocation(ColonColonLoc, Buffer, BufferSize, BufferCapacity);
+}
+
+void NestedNameSpecifierLocBuilder::MakeTrivial(ASTContext &Context,
+ NestedNameSpecifier *Qualifier,
+ SourceRange R) {
+ Representation = Qualifier;
+
+ // Construct bogus (but well-formed) source information for the
+ // nested-name-specifier.
+ BufferSize = 0;
+ SmallVector<NestedNameSpecifier *, 4> Stack;
+ for (NestedNameSpecifier *NNS = Qualifier; NNS; NNS = NNS->getPrefix())
+ Stack.push_back(NNS);
+ while (!Stack.empty()) {
+ NestedNameSpecifier *NNS = Stack.pop_back_val();
+ switch (NNS->getKind()) {
+ case NestedNameSpecifier::Identifier:
+ case NestedNameSpecifier::Namespace:
+ case NestedNameSpecifier::NamespaceAlias:
+ SaveSourceLocation(R.getBegin(), Buffer, BufferSize, BufferCapacity);
+ break;
+
+ case NestedNameSpecifier::TypeSpec:
+ case NestedNameSpecifier::TypeSpecWithTemplate: {
+ TypeSourceInfo *TSInfo
+ = Context.getTrivialTypeSourceInfo(QualType(NNS->getAsType(), 0),
+ R.getBegin());
+ SavePointer(TSInfo->getTypeLoc().getOpaqueData(), Buffer, BufferSize,
+ BufferCapacity);
+ break;
+ }
+
+ case NestedNameSpecifier::Global:
+ case NestedNameSpecifier::Super:
+ break;
+ }
+
+ // Save the location of the '::'.
+ SaveSourceLocation(Stack.empty()? R.getEnd() : R.getBegin(),
+ Buffer, BufferSize, BufferCapacity);
+ }
+}
+
+void NestedNameSpecifierLocBuilder::Adopt(NestedNameSpecifierLoc Other) {
+ if (BufferCapacity)
+ free(Buffer);
+
+ if (!Other) {
+ Representation = nullptr;
+ BufferSize = 0;
+ return;
+ }
+
+ // Rather than copying the data (which is wasteful), "adopt" the
+ // pointer (which points into the ASTContext) but set the capacity to zero to
+ // indicate that we don't own it.
+ Representation = Other.getNestedNameSpecifier();
+ Buffer = static_cast<char *>(Other.getOpaqueData());
+ BufferSize = Other.getDataLength();
+ BufferCapacity = 0;
+}
+
+NestedNameSpecifierLoc
+NestedNameSpecifierLocBuilder::getWithLocInContext(ASTContext &Context) const {
+ if (!Representation)
+ return NestedNameSpecifierLoc();
+
+ // If we adopted our data pointer from elsewhere in the AST context, there's
+ // no need to copy the memory.
+ if (BufferCapacity == 0)
+ return NestedNameSpecifierLoc(Representation, Buffer);
+
+ // FIXME: After copying the source-location information, should we free
+ // our (temporary) buffer and adopt the ASTContext-allocated memory?
+ // Doing so would optimize repeated calls to getWithLocInContext().
+ void *Mem = Context.Allocate(BufferSize, llvm::alignOf<void *>());
+ memcpy(Mem, Buffer, BufferSize);
+ return NestedNameSpecifierLoc(Representation, Mem);
+}
diff --git a/contrib/llvm/tools/clang/lib/AST/ParentMap.cpp b/contrib/llvm/tools/clang/lib/AST/ParentMap.cpp
new file mode 100644
index 0000000..a991302
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/ParentMap.cpp
@@ -0,0 +1,198 @@
+//===--- ParentMap.cpp - Mappings from Stmts to their Parents ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the ParentMap class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/ParentMap.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "llvm/ADT/DenseMap.h"
+
+using namespace clang;
+
+typedef llvm::DenseMap<Stmt*, Stmt*> MapTy;
+
+enum OpaqueValueMode {
+ OV_Transparent,
+ OV_Opaque
+};
+
+static void BuildParentMap(MapTy& M, Stmt* S,
+ OpaqueValueMode OVMode = OV_Transparent) {
+
+ switch (S->getStmtClass()) {
+ case Stmt::PseudoObjectExprClass: {
+ assert(OVMode == OV_Transparent && "Should not appear alongside OVEs");
+ PseudoObjectExpr *POE = cast<PseudoObjectExpr>(S);
+
+ // If we are rebuilding the map, clear out any existing state.
+ if (M[POE->getSyntacticForm()])
+ for (Stmt::child_range I = S->children(); I; ++I)
+ M[*I] = nullptr;
+
+ M[POE->getSyntacticForm()] = S;
+ BuildParentMap(M, POE->getSyntacticForm(), OV_Transparent);
+
+ for (PseudoObjectExpr::semantics_iterator I = POE->semantics_begin(),
+ E = POE->semantics_end();
+ I != E; ++I) {
+ M[*I] = S;
+ BuildParentMap(M, *I, OV_Opaque);
+ }
+ break;
+ }
+ case Stmt::BinaryConditionalOperatorClass: {
+ assert(OVMode == OV_Transparent && "Should not appear alongside OVEs");
+ BinaryConditionalOperator *BCO = cast<BinaryConditionalOperator>(S);
+
+ M[BCO->getCommon()] = S;
+ BuildParentMap(M, BCO->getCommon(), OV_Transparent);
+
+ M[BCO->getCond()] = S;
+ BuildParentMap(M, BCO->getCond(), OV_Opaque);
+
+ M[BCO->getTrueExpr()] = S;
+ BuildParentMap(M, BCO->getTrueExpr(), OV_Opaque);
+
+ M[BCO->getFalseExpr()] = S;
+ BuildParentMap(M, BCO->getFalseExpr(), OV_Transparent);
+
+ break;
+ }
+ case Stmt::OpaqueValueExprClass: {
+ // FIXME: This isn't correct; it assumes that multiple OpaqueValueExprs
+ // share a single source expression, but in the AST a single
+ // OpaqueValueExpr is shared among multiple parent expressions.
+ // The right thing to do is to give the OpaqueValueExpr its syntactic
+ // parent, then not reassign that when traversing the semantic expressions.
+ OpaqueValueExpr *OVE = cast<OpaqueValueExpr>(S);
+ if (OVMode == OV_Transparent || !M[OVE->getSourceExpr()]) {
+ M[OVE->getSourceExpr()] = S;
+ BuildParentMap(M, OVE->getSourceExpr(), OV_Transparent);
+ }
+ break;
+ }
+ default:
+ for (Stmt::child_range I = S->children(); I; ++I) {
+ if (*I) {
+ M[*I] = S;
+ BuildParentMap(M, *I, OVMode);
+ }
+ }
+ break;
+ }
+}
+
+ParentMap::ParentMap(Stmt *S) : Impl(nullptr) {
+ if (S) {
+ MapTy *M = new MapTy();
+ BuildParentMap(*M, S);
+ Impl = M;
+ }
+}
+
+ParentMap::~ParentMap() {
+ delete (MapTy*) Impl;
+}
+
+void ParentMap::addStmt(Stmt* S) {
+ if (S) {
+ BuildParentMap(*(MapTy*) Impl, S);
+ }
+}
+
+void ParentMap::setParent(const Stmt *S, const Stmt *Parent) {
+ assert(S);
+ assert(Parent);
+ MapTy *M = reinterpret_cast<MapTy *>(Impl);
+ M->insert(std::make_pair(const_cast<Stmt *>(S), const_cast<Stmt *>(Parent)));
+}
+
+Stmt* ParentMap::getParent(Stmt* S) const {
+ MapTy* M = (MapTy*) Impl;
+ MapTy::iterator I = M->find(S);
+ return I == M->end() ? nullptr : I->second;
+}
+
+Stmt *ParentMap::getParentIgnoreParens(Stmt *S) const {
+ do { S = getParent(S); } while (S && isa<ParenExpr>(S));
+ return S;
+}
+
+Stmt *ParentMap::getParentIgnoreParenCasts(Stmt *S) const {
+ do {
+ S = getParent(S);
+ }
+ while (S && (isa<ParenExpr>(S) || isa<CastExpr>(S)));
+
+ return S;
+}
+
+Stmt *ParentMap::getParentIgnoreParenImpCasts(Stmt *S) const {
+ do {
+ S = getParent(S);
+ } while (S && isa<Expr>(S) && cast<Expr>(S)->IgnoreParenImpCasts() != S);
+
+ return S;
+}
+
+Stmt *ParentMap::getOuterParenParent(Stmt *S) const {
+ Stmt *Paren = nullptr;
+ while (isa<ParenExpr>(S)) {
+ Paren = S;
+ S = getParent(S);
+ };
+ return Paren;
+}
+
+bool ParentMap::isConsumedExpr(Expr* E) const {
+ Stmt *P = getParent(E);
+ Stmt *DirectChild = E;
+
+ // Ignore parents that don't guarantee consumption.
+ while (P && (isa<ParenExpr>(P) || isa<CastExpr>(P) ||
+ isa<ExprWithCleanups>(P))) {
+ DirectChild = P;
+ P = getParent(P);
+ }
+
+ if (!P)
+ return false;
+
+ switch (P->getStmtClass()) {
+ default:
+ return isa<Expr>(P);
+ case Stmt::DeclStmtClass:
+ return true;
+ case Stmt::BinaryOperatorClass: {
+ BinaryOperator *BE = cast<BinaryOperator>(P);
+ // If it is a comma, only the right side is consumed.
+ // If it isn't a comma, both sides are consumed.
+ return BE->getOpcode()!=BO_Comma ||DirectChild==BE->getRHS();
+ }
+ case Stmt::ForStmtClass:
+ return DirectChild == cast<ForStmt>(P)->getCond();
+ case Stmt::WhileStmtClass:
+ return DirectChild == cast<WhileStmt>(P)->getCond();
+ case Stmt::DoStmtClass:
+ return DirectChild == cast<DoStmt>(P)->getCond();
+ case Stmt::IfStmtClass:
+ return DirectChild == cast<IfStmt>(P)->getCond();
+ case Stmt::IndirectGotoStmtClass:
+ return DirectChild == cast<IndirectGotoStmt>(P)->getTarget();
+ case Stmt::SwitchStmtClass:
+ return DirectChild == cast<SwitchStmt>(P)->getCond();
+ case Stmt::ReturnStmtClass:
+ return true;
+ }
+}
+
diff --git a/contrib/llvm/tools/clang/lib/AST/RawCommentList.cpp b/contrib/llvm/tools/clang/lib/AST/RawCommentList.cpp
new file mode 100644
index 0000000..24b129a
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/RawCommentList.cpp
@@ -0,0 +1,265 @@
+//===--- RawCommentList.cpp - Processing raw comments -----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/RawCommentList.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Comment.h"
+#include "clang/AST/CommentBriefParser.h"
+#include "clang/AST/CommentCommandTraits.h"
+#include "clang/AST/CommentLexer.h"
+#include "clang/AST/CommentParser.h"
+#include "clang/AST/CommentSema.h"
+#include "llvm/ADT/STLExtras.h"
+
+using namespace clang;
+
+namespace {
+/// Get comment kind and bool describing if it is a trailing comment.
+std::pair<RawComment::CommentKind, bool> getCommentKind(StringRef Comment,
+ bool ParseAllComments) {
+ const size_t MinCommentLength = ParseAllComments ? 2 : 3;
+ if ((Comment.size() < MinCommentLength) || Comment[0] != '/')
+ return std::make_pair(RawComment::RCK_Invalid, false);
+
+ RawComment::CommentKind K;
+ if (Comment[1] == '/') {
+ if (Comment.size() < 3)
+ return std::make_pair(RawComment::RCK_OrdinaryBCPL, false);
+
+ if (Comment[2] == '/')
+ K = RawComment::RCK_BCPLSlash;
+ else if (Comment[2] == '!')
+ K = RawComment::RCK_BCPLExcl;
+ else
+ return std::make_pair(RawComment::RCK_OrdinaryBCPL, false);
+ } else {
+ assert(Comment.size() >= 4);
+
+ // Comment lexer does not understand escapes in comment markers, so pretend
+ // that this is not a comment.
+ if (Comment[1] != '*' ||
+ Comment[Comment.size() - 2] != '*' ||
+ Comment[Comment.size() - 1] != '/')
+ return std::make_pair(RawComment::RCK_Invalid, false);
+
+ if (Comment[2] == '*')
+ K = RawComment::RCK_JavaDoc;
+ else if (Comment[2] == '!')
+ K = RawComment::RCK_Qt;
+ else
+ return std::make_pair(RawComment::RCK_OrdinaryC, false);
+ }
+ const bool TrailingComment = (Comment.size() > 3) && (Comment[3] == '<');
+ return std::make_pair(K, TrailingComment);
+}
+
+bool mergedCommentIsTrailingComment(StringRef Comment) {
+ return (Comment.size() > 3) && (Comment[3] == '<');
+}
+} // unnamed namespace
+
+RawComment::RawComment(const SourceManager &SourceMgr, SourceRange SR,
+ bool Merged, bool ParseAllComments) :
+ Range(SR), RawTextValid(false), BriefTextValid(false),
+ IsAttached(false), IsAlmostTrailingComment(false),
+ ParseAllComments(ParseAllComments) {
+ // Extract raw comment text, if possible.
+ if (SR.getBegin() == SR.getEnd() || getRawText(SourceMgr).empty()) {
+ Kind = RCK_Invalid;
+ return;
+ }
+
+ if (!Merged) {
+ // Guess comment kind.
+ std::pair<CommentKind, bool> K = getCommentKind(RawText, ParseAllComments);
+ Kind = K.first;
+ IsTrailingComment = K.second;
+
+ IsAlmostTrailingComment = RawText.startswith("//<") ||
+ RawText.startswith("/*<");
+ } else {
+ Kind = RCK_Merged;
+ IsTrailingComment = mergedCommentIsTrailingComment(RawText);
+ }
+}
+
+StringRef RawComment::getRawTextSlow(const SourceManager &SourceMgr) const {
+ FileID BeginFileID;
+ FileID EndFileID;
+ unsigned BeginOffset;
+ unsigned EndOffset;
+
+ std::tie(BeginFileID, BeginOffset) =
+ SourceMgr.getDecomposedLoc(Range.getBegin());
+ std::tie(EndFileID, EndOffset) = SourceMgr.getDecomposedLoc(Range.getEnd());
+
+ const unsigned Length = EndOffset - BeginOffset;
+ if (Length < 2)
+ return StringRef();
+
+ // The comment can't begin in one file and end in another.
+ assert(BeginFileID == EndFileID);
+
+ bool Invalid = false;
+ const char *BufferStart = SourceMgr.getBufferData(BeginFileID,
+ &Invalid).data();
+ if (Invalid)
+ return StringRef();
+
+ return StringRef(BufferStart + BeginOffset, Length);
+}
+
+const char *RawComment::extractBriefText(const ASTContext &Context) const {
+ // Make sure that RawText is valid.
+ getRawText(Context.getSourceManager());
+
+ // Since we will be copying the resulting text, all allocations made during
+ // parsing are garbage after resulting string is formed. Thus we can use
+ // a separate allocator for all temporary stuff.
+ llvm::BumpPtrAllocator Allocator;
+
+ comments::Lexer L(Allocator, Context.getDiagnostics(),
+ Context.getCommentCommandTraits(),
+ Range.getBegin(),
+ RawText.begin(), RawText.end());
+ comments::BriefParser P(L, Context.getCommentCommandTraits());
+
+ const std::string Result = P.Parse();
+ const unsigned BriefTextLength = Result.size();
+ char *BriefTextPtr = new (Context) char[BriefTextLength + 1];
+ memcpy(BriefTextPtr, Result.c_str(), BriefTextLength + 1);
+ BriefText = BriefTextPtr;
+ BriefTextValid = true;
+
+ return BriefTextPtr;
+}
+
+comments::FullComment *RawComment::parse(const ASTContext &Context,
+ const Preprocessor *PP,
+ const Decl *D) const {
+ // Make sure that RawText is valid.
+ getRawText(Context.getSourceManager());
+
+ comments::Lexer L(Context.getAllocator(), Context.getDiagnostics(),
+ Context.getCommentCommandTraits(),
+ getSourceRange().getBegin(),
+ RawText.begin(), RawText.end());
+ comments::Sema S(Context.getAllocator(), Context.getSourceManager(),
+ Context.getDiagnostics(),
+ Context.getCommentCommandTraits(),
+ PP);
+ S.setDecl(D);
+ comments::Parser P(L, S, Context.getAllocator(), Context.getSourceManager(),
+ Context.getDiagnostics(),
+ Context.getCommentCommandTraits());
+
+ return P.parseFullComment();
+}
+
+static bool onlyWhitespaceBetween(SourceManager &SM,
+ SourceLocation Loc1, SourceLocation Loc2,
+ unsigned MaxNewlinesAllowed) {
+ std::pair<FileID, unsigned> Loc1Info = SM.getDecomposedLoc(Loc1);
+ std::pair<FileID, unsigned> Loc2Info = SM.getDecomposedLoc(Loc2);
+
+ // Question does not make sense if locations are in different files.
+ if (Loc1Info.first != Loc2Info.first)
+ return false;
+
+ bool Invalid = false;
+ const char *Buffer = SM.getBufferData(Loc1Info.first, &Invalid).data();
+ if (Invalid)
+ return false;
+
+ unsigned NumNewlines = 0;
+ assert(Loc1Info.second <= Loc2Info.second && "Loc1 after Loc2!");
+ // Look for non-whitespace characters and remember any newlines seen.
+ for (unsigned I = Loc1Info.second; I != Loc2Info.second; ++I) {
+ switch (Buffer[I]) {
+ default:
+ return false;
+ case ' ':
+ case '\t':
+ case '\f':
+ case '\v':
+ break;
+ case '\r':
+ case '\n':
+ ++NumNewlines;
+
+ // Check if we have found more than the maximum allowed number of
+ // newlines.
+ if (NumNewlines > MaxNewlinesAllowed)
+ return false;
+
+ // Collapse \r\n and \n\r into a single newline.
+ if (I + 1 != Loc2Info.second &&
+ (Buffer[I + 1] == '\n' || Buffer[I + 1] == '\r') &&
+ Buffer[I] != Buffer[I + 1])
+ ++I;
+ break;
+ }
+ }
+
+ return true;
+}
+
+void RawCommentList::addComment(const RawComment &RC,
+ llvm::BumpPtrAllocator &Allocator) {
+ if (RC.isInvalid())
+ return;
+
+ // Check if the comments are not in source order.
+ while (!Comments.empty() &&
+ !SourceMgr.isBeforeInTranslationUnit(Comments.back()->getLocStart(),
+ RC.getLocStart())) {
+ // If they are, just pop a few last comments that don't fit.
+ // This happens if an \#include directive contains comments.
+ Comments.pop_back();
+ }
+
+ // Ordinary comments are not interesting for us.
+ if (RC.isOrdinary())
+ return;
+
+ // If this is the first Doxygen comment, save it (because there isn't
+ // anything to merge it with).
+ if (Comments.empty()) {
+ Comments.push_back(new (Allocator) RawComment(RC));
+ return;
+ }
+
+ const RawComment &C1 = *Comments.back();
+ const RawComment &C2 = RC;
+
+ // Merge comments only if there is only whitespace between them.
+ // Can't merge trailing and non-trailing comments.
+ // Merge comments if they are on same or consecutive lines.
+ if (C1.isTrailingComment() == C2.isTrailingComment() &&
+ onlyWhitespaceBetween(SourceMgr, C1.getLocEnd(), C2.getLocStart(),
+ /*MaxNewlinesAllowed=*/1)) {
+ SourceRange MergedRange(C1.getLocStart(), C2.getLocEnd());
+ *Comments.back() = RawComment(SourceMgr, MergedRange, true,
+ RC.isParseAllComments());
+ } else {
+ Comments.push_back(new (Allocator) RawComment(RC));
+ }
+}
+
+void RawCommentList::addDeserializedComments(ArrayRef<RawComment *> DeserializedComments) {
+ std::vector<RawComment *> MergedComments;
+ MergedComments.reserve(Comments.size() + DeserializedComments.size());
+
+ std::merge(Comments.begin(), Comments.end(),
+ DeserializedComments.begin(), DeserializedComments.end(),
+ std::back_inserter(MergedComments),
+ BeforeThanCompare<RawComment>(SourceMgr));
+ std::swap(Comments, MergedComments);
+}
+
diff --git a/contrib/llvm/tools/clang/lib/AST/RecordLayout.cpp b/contrib/llvm/tools/clang/lib/AST/RecordLayout.cpp
new file mode 100644
index 0000000..b2c244e
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/RecordLayout.cpp
@@ -0,0 +1,102 @@
+//===-- RecordLayout.cpp - Layout information for a struct/union -*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the RecordLayout interface.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/Basic/TargetInfo.h"
+
+using namespace clang;
+
+void ASTRecordLayout::Destroy(ASTContext &Ctx) {
+ if (FieldOffsets)
+ Ctx.Deallocate(FieldOffsets);
+ if (CXXInfo) {
+ CXXInfo->~CXXRecordLayoutInfo();
+ Ctx.Deallocate(CXXInfo);
+ }
+ this->~ASTRecordLayout();
+ Ctx.Deallocate(this);
+}
+
+ASTRecordLayout::ASTRecordLayout(const ASTContext &Ctx, CharUnits size,
+ CharUnits alignment,
+ CharUnits requiredAlignment,
+ CharUnits datasize,
+ const uint64_t *fieldoffsets,
+ unsigned fieldcount)
+ : Size(size), DataSize(datasize), Alignment(alignment),
+ RequiredAlignment(requiredAlignment), FieldOffsets(nullptr),
+ FieldCount(fieldcount), CXXInfo(nullptr) {
+ if (FieldCount > 0) {
+ FieldOffsets = new (Ctx) uint64_t[FieldCount];
+ memcpy(FieldOffsets, fieldoffsets, FieldCount * sizeof(*FieldOffsets));
+ }
+}
+
+// Constructor for C++ records.
+ASTRecordLayout::ASTRecordLayout(const ASTContext &Ctx,
+ CharUnits size, CharUnits alignment,
+ CharUnits requiredAlignment,
+ bool hasOwnVFPtr, bool hasExtendableVFPtr,
+ CharUnits vbptroffset,
+ CharUnits datasize,
+ const uint64_t *fieldoffsets,
+ unsigned fieldcount,
+ CharUnits nonvirtualsize,
+ CharUnits nonvirtualalignment,
+ CharUnits SizeOfLargestEmptySubobject,
+ const CXXRecordDecl *PrimaryBase,
+ bool IsPrimaryBaseVirtual,
+ const CXXRecordDecl *BaseSharingVBPtr,
+ bool HasZeroSizedSubObject,
+ bool LeadsWithZeroSizedBase,
+ const BaseOffsetsMapTy& BaseOffsets,
+ const VBaseOffsetsMapTy& VBaseOffsets)
+ : Size(size), DataSize(datasize), Alignment(alignment),
+ RequiredAlignment(requiredAlignment), FieldOffsets(nullptr),
+ FieldCount(fieldcount), CXXInfo(new (Ctx) CXXRecordLayoutInfo)
+{
+ if (FieldCount > 0) {
+ FieldOffsets = new (Ctx) uint64_t[FieldCount];
+ memcpy(FieldOffsets, fieldoffsets, FieldCount * sizeof(*FieldOffsets));
+ }
+
+ CXXInfo->PrimaryBase.setPointer(PrimaryBase);
+ CXXInfo->PrimaryBase.setInt(IsPrimaryBaseVirtual);
+ CXXInfo->NonVirtualSize = nonvirtualsize;
+ CXXInfo->NonVirtualAlignment = nonvirtualalignment;
+ CXXInfo->SizeOfLargestEmptySubobject = SizeOfLargestEmptySubobject;
+ CXXInfo->BaseOffsets = BaseOffsets;
+ CXXInfo->VBaseOffsets = VBaseOffsets;
+ CXXInfo->HasOwnVFPtr = hasOwnVFPtr;
+ CXXInfo->VBPtrOffset = vbptroffset;
+ CXXInfo->HasExtendableVFPtr = hasExtendableVFPtr;
+ CXXInfo->BaseSharingVBPtr = BaseSharingVBPtr;
+ CXXInfo->HasZeroSizedSubObject = HasZeroSizedSubObject;
+ CXXInfo->LeadsWithZeroSizedBase = LeadsWithZeroSizedBase;
+
+
+#ifndef NDEBUG
+ if (const CXXRecordDecl *PrimaryBase = getPrimaryBase()) {
+ if (isPrimaryBaseVirtual()) {
+ if (Ctx.getTargetInfo().getCXXABI().hasPrimaryVBases()) {
+ assert(getVBaseClassOffset(PrimaryBase).isZero() &&
+ "Primary virtual base must be at offset 0!");
+ }
+ } else {
+ assert(getBaseClassOffset(PrimaryBase).isZero() &&
+ "Primary base must be at offset 0!");
+ }
+ }
+#endif
+}
diff --git a/contrib/llvm/tools/clang/lib/AST/RecordLayoutBuilder.cpp b/contrib/llvm/tools/clang/lib/AST/RecordLayoutBuilder.cpp
new file mode 100644
index 0000000..2101a55
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/RecordLayoutBuilder.cpp
@@ -0,0 +1,3215 @@
+//=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/RecordLayout.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/Expr.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Sema/SemaDiagnostic.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/Support/CrashRecoveryContext.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Support/MathExtras.h"
+
+using namespace clang;
+
+namespace {
+
+/// BaseSubobjectInfo - Represents a single base subobject in a complete class.
+/// For a class hierarchy like
+///
+/// class A { };
+/// class B : A { };
+/// class C : A, B { };
+///
+/// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
+/// instances, one for B and two for A.
+///
+/// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
+struct BaseSubobjectInfo {
+ /// Class - The class for this base info.
+ const CXXRecordDecl *Class;
+
+ /// IsVirtual - Whether the BaseInfo represents a virtual base or not.
+ bool IsVirtual;
+
+ /// Bases - Information about the base subobjects.
+ SmallVector<BaseSubobjectInfo*, 4> Bases;
+
+ /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
+ /// of this base info (if one exists).
+ BaseSubobjectInfo *PrimaryVirtualBaseInfo;
+
+ // FIXME: Document.
+ const BaseSubobjectInfo *Derived;
+};
+
+/// \brief Externally provided layout. Typically used when the AST source, such
+/// as DWARF, lacks all the information that was available at compile time, such
+/// as alignment attributes on fields and pragmas in effect.
+struct ExternalLayout {
+ ExternalLayout() : Size(0), Align(0) {}
+
+ /// \brief Overall record size in bits.
+ uint64_t Size;
+
+ /// \brief Overall record alignment in bits.
+ uint64_t Align;
+
+ /// \brief Record field offsets in bits.
+ llvm::DenseMap<const FieldDecl *, uint64_t> FieldOffsets;
+
+ /// \brief Direct, non-virtual base offsets.
+ llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsets;
+
+ /// \brief Virtual base offsets.
+ llvm::DenseMap<const CXXRecordDecl *, CharUnits> VirtualBaseOffsets;
+
+ /// Get the offset of the given field. The external source must provide
+ /// entries for all fields in the record.
+ uint64_t getExternalFieldOffset(const FieldDecl *FD) {
+ assert(FieldOffsets.count(FD) &&
+ "Field does not have an external offset");
+ return FieldOffsets[FD];
+ }
+
+ bool getExternalNVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
+ auto Known = BaseOffsets.find(RD);
+ if (Known == BaseOffsets.end())
+ return false;
+ BaseOffset = Known->second;
+ return true;
+ }
+
+ bool getExternalVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
+ auto Known = VirtualBaseOffsets.find(RD);
+ if (Known == VirtualBaseOffsets.end())
+ return false;
+ BaseOffset = Known->second;
+ return true;
+ }
+};
+
+/// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
+/// offsets while laying out a C++ class.
+class EmptySubobjectMap {
+ const ASTContext &Context;
+ uint64_t CharWidth;
+
+ /// Class - The class whose empty entries we're keeping track of.
+ const CXXRecordDecl *Class;
+
+ /// EmptyClassOffsets - A map from offsets to empty record decls.
+ typedef llvm::TinyPtrVector<const CXXRecordDecl *> ClassVectorTy;
+ typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy;
+ EmptyClassOffsetsMapTy EmptyClassOffsets;
+
+ /// MaxEmptyClassOffset - The highest offset known to contain an empty
+ /// base subobject.
+ CharUnits MaxEmptyClassOffset;
+
+ /// ComputeEmptySubobjectSizes - Compute the size of the largest base or
+ /// member subobject that is empty.
+ void ComputeEmptySubobjectSizes();
+
+ void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset);
+
+ void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
+ CharUnits Offset, bool PlacingEmptyBase);
+
+ void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
+ const CXXRecordDecl *Class,
+ CharUnits Offset);
+ void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset);
+
+ /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
+ /// subobjects beyond the given offset.
+ bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const {
+ return Offset <= MaxEmptyClassOffset;
+ }
+
+ CharUnits
+ getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const {
+ uint64_t FieldOffset = Layout.getFieldOffset(FieldNo);
+ assert(FieldOffset % CharWidth == 0 &&
+ "Field offset not at char boundary!");
+
+ return Context.toCharUnitsFromBits(FieldOffset);
+ }
+
+protected:
+ bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
+ CharUnits Offset) const;
+
+ bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
+ CharUnits Offset);
+
+ bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
+ const CXXRecordDecl *Class,
+ CharUnits Offset) const;
+ bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
+ CharUnits Offset) const;
+
+public:
+ /// This holds the size of the largest empty subobject (either a base
+ /// or a member). Will be zero if the record being built doesn't contain
+ /// any empty classes.
+ CharUnits SizeOfLargestEmptySubobject;
+
+ EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class)
+ : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) {
+ ComputeEmptySubobjectSizes();
+ }
+
+ /// CanPlaceBaseAtOffset - Return whether the given base class can be placed
+ /// at the given offset.
+ /// Returns false if placing the record will result in two components
+ /// (direct or indirect) of the same type having the same offset.
+ bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
+ CharUnits Offset);
+
+ /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
+ /// offset.
+ bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset);
+};
+
+void EmptySubobjectMap::ComputeEmptySubobjectSizes() {
+ // Check the bases.
+ for (const CXXBaseSpecifier &Base : Class->bases()) {
+ const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
+
+ CharUnits EmptySize;
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
+ if (BaseDecl->isEmpty()) {
+ // If the class decl is empty, get its size.
+ EmptySize = Layout.getSize();
+ } else {
+ // Otherwise, we get the largest empty subobject for the decl.
+ EmptySize = Layout.getSizeOfLargestEmptySubobject();
+ }
+
+ if (EmptySize > SizeOfLargestEmptySubobject)
+ SizeOfLargestEmptySubobject = EmptySize;
+ }
+
+ // Check the fields.
+ for (const FieldDecl *FD : Class->fields()) {
+ const RecordType *RT =
+ Context.getBaseElementType(FD->getType())->getAs<RecordType>();
+
+ // We only care about record types.
+ if (!RT)
+ continue;
+
+ CharUnits EmptySize;
+ const CXXRecordDecl *MemberDecl = RT->getAsCXXRecordDecl();
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl);
+ if (MemberDecl->isEmpty()) {
+ // If the class decl is empty, get its size.
+ EmptySize = Layout.getSize();
+ } else {
+ // Otherwise, we get the largest empty subobject for the decl.
+ EmptySize = Layout.getSizeOfLargestEmptySubobject();
+ }
+
+ if (EmptySize > SizeOfLargestEmptySubobject)
+ SizeOfLargestEmptySubobject = EmptySize;
+ }
+}
+
+bool
+EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
+ CharUnits Offset) const {
+ // We only need to check empty bases.
+ if (!RD->isEmpty())
+ return true;
+
+ EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset);
+ if (I == EmptyClassOffsets.end())
+ return true;
+
+ const ClassVectorTy &Classes = I->second;
+ if (std::find(Classes.begin(), Classes.end(), RD) == Classes.end())
+ return true;
+
+ // There is already an empty class of the same type at this offset.
+ return false;
+}
+
+void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD,
+ CharUnits Offset) {
+ // We only care about empty bases.
+ if (!RD->isEmpty())
+ return;
+
+ // If we have empty structures inside a union, we can assign both
+ // the same offset. Just avoid pushing them twice in the list.
+ ClassVectorTy &Classes = EmptyClassOffsets[Offset];
+ if (std::find(Classes.begin(), Classes.end(), RD) != Classes.end())
+ return;
+
+ Classes.push_back(RD);
+
+ // Update the empty class offset.
+ if (Offset > MaxEmptyClassOffset)
+ MaxEmptyClassOffset = Offset;
+}
+
+bool
+EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
+ CharUnits Offset) {
+ // We don't have to keep looking past the maximum offset that's known to
+ // contain an empty class.
+ if (!AnyEmptySubobjectsBeyondOffset(Offset))
+ return true;
+
+ if (!CanPlaceSubobjectAtOffset(Info->Class, Offset))
+ return false;
+
+ // Traverse all non-virtual bases.
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
+ for (const BaseSubobjectInfo *Base : Info->Bases) {
+ if (Base->IsVirtual)
+ continue;
+
+ CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
+
+ if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset))
+ return false;
+ }
+
+ if (Info->PrimaryVirtualBaseInfo) {
+ BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
+
+ if (Info == PrimaryVirtualBaseInfo->Derived) {
+ if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset))
+ return false;
+ }
+ }
+
+ // Traverse all member variables.
+ unsigned FieldNo = 0;
+ for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
+ E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
+ if (I->isBitField())
+ continue;
+
+ CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
+ if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
+ return false;
+ }
+
+ return true;
+}
+
+void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
+ CharUnits Offset,
+ bool PlacingEmptyBase) {
+ if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) {
+ // We know that the only empty subobjects that can conflict with empty
+ // subobject of non-empty bases, are empty bases that can be placed at
+ // offset zero. Because of this, we only need to keep track of empty base
+ // subobjects with offsets less than the size of the largest empty
+ // subobject for our class.
+ return;
+ }
+
+ AddSubobjectAtOffset(Info->Class, Offset);
+
+ // Traverse all non-virtual bases.
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
+ for (const BaseSubobjectInfo *Base : Info->Bases) {
+ if (Base->IsVirtual)
+ continue;
+
+ CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
+ UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase);
+ }
+
+ if (Info->PrimaryVirtualBaseInfo) {
+ BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
+
+ if (Info == PrimaryVirtualBaseInfo->Derived)
+ UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset,
+ PlacingEmptyBase);
+ }
+
+ // Traverse all member variables.
+ unsigned FieldNo = 0;
+ for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
+ E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
+ if (I->isBitField())
+ continue;
+
+ CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
+ UpdateEmptyFieldSubobjects(*I, FieldOffset);
+ }
+}
+
+bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
+ CharUnits Offset) {
+ // If we know this class doesn't have any empty subobjects we don't need to
+ // bother checking.
+ if (SizeOfLargestEmptySubobject.isZero())
+ return true;
+
+ if (!CanPlaceBaseSubobjectAtOffset(Info, Offset))
+ return false;
+
+ // We are able to place the base at this offset. Make sure to update the
+ // empty base subobject map.
+ UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty());
+ return true;
+}
+
+bool
+EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
+ const CXXRecordDecl *Class,
+ CharUnits Offset) const {
+ // We don't have to keep looking past the maximum offset that's known to
+ // contain an empty class.
+ if (!AnyEmptySubobjectsBeyondOffset(Offset))
+ return true;
+
+ if (!CanPlaceSubobjectAtOffset(RD, Offset))
+ return false;
+
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+
+ // Traverse all non-virtual bases.
+ for (const CXXBaseSpecifier &Base : RD->bases()) {
+ if (Base.isVirtual())
+ continue;
+
+ const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
+
+ CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
+ if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset))
+ return false;
+ }
+
+ if (RD == Class) {
+ // This is the most derived class, traverse virtual bases as well.
+ for (const CXXBaseSpecifier &Base : RD->vbases()) {
+ const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
+
+ CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
+ if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset))
+ return false;
+ }
+ }
+
+ // Traverse all member variables.
+ unsigned FieldNo = 0;
+ for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
+ I != E; ++I, ++FieldNo) {
+ if (I->isBitField())
+ continue;
+
+ CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
+
+ if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
+ return false;
+ }
+
+ return true;
+}
+
+bool
+EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
+ CharUnits Offset) const {
+ // We don't have to keep looking past the maximum offset that's known to
+ // contain an empty class.
+ if (!AnyEmptySubobjectsBeyondOffset(Offset))
+ return true;
+
+ QualType T = FD->getType();
+ if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
+ return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset);
+
+ // If we have an array type we need to look at every element.
+ if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
+ QualType ElemTy = Context.getBaseElementType(AT);
+ const RecordType *RT = ElemTy->getAs<RecordType>();
+ if (!RT)
+ return true;
+
+ const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+
+ uint64_t NumElements = Context.getConstantArrayElementCount(AT);
+ CharUnits ElementOffset = Offset;
+ for (uint64_t I = 0; I != NumElements; ++I) {
+ // We don't have to keep looking past the maximum offset that's known to
+ // contain an empty class.
+ if (!AnyEmptySubobjectsBeyondOffset(ElementOffset))
+ return true;
+
+ if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset))
+ return false;
+
+ ElementOffset += Layout.getSize();
+ }
+ }
+
+ return true;
+}
+
+bool
+EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD,
+ CharUnits Offset) {
+ if (!CanPlaceFieldSubobjectAtOffset(FD, Offset))
+ return false;
+
+ // We are able to place the member variable at this offset.
+ // Make sure to update the empty base subobject map.
+ UpdateEmptyFieldSubobjects(FD, Offset);
+ return true;
+}
+
+void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
+ const CXXRecordDecl *Class,
+ CharUnits Offset) {
+ // We know that the only empty subobjects that can conflict with empty
+ // field subobjects are subobjects of empty bases that can be placed at offset
+ // zero. Because of this, we only need to keep track of empty field
+ // subobjects with offsets less than the size of the largest empty
+ // subobject for our class.
+ if (Offset >= SizeOfLargestEmptySubobject)
+ return;
+
+ AddSubobjectAtOffset(RD, Offset);
+
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+
+ // Traverse all non-virtual bases.
+ for (const CXXBaseSpecifier &Base : RD->bases()) {
+ if (Base.isVirtual())
+ continue;
+
+ const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
+
+ CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
+ UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset);
+ }
+
+ if (RD == Class) {
+ // This is the most derived class, traverse virtual bases as well.
+ for (const CXXBaseSpecifier &Base : RD->vbases()) {
+ const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
+
+ CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
+ UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset);
+ }
+ }
+
+ // Traverse all member variables.
+ unsigned FieldNo = 0;
+ for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
+ I != E; ++I, ++FieldNo) {
+ if (I->isBitField())
+ continue;
+
+ CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
+
+ UpdateEmptyFieldSubobjects(*I, FieldOffset);
+ }
+}
+
+void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const FieldDecl *FD,
+ CharUnits Offset) {
+ QualType T = FD->getType();
+ if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
+ UpdateEmptyFieldSubobjects(RD, RD, Offset);
+ return;
+ }
+
+ // If we have an array type we need to update every element.
+ if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
+ QualType ElemTy = Context.getBaseElementType(AT);
+ const RecordType *RT = ElemTy->getAs<RecordType>();
+ if (!RT)
+ return;
+
+ const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+
+ uint64_t NumElements = Context.getConstantArrayElementCount(AT);
+ CharUnits ElementOffset = Offset;
+
+ for (uint64_t I = 0; I != NumElements; ++I) {
+ // We know that the only empty subobjects that can conflict with empty
+ // field subobjects are subobjects of empty bases that can be placed at
+ // offset zero. Because of this, we only need to keep track of empty field
+ // subobjects with offsets less than the size of the largest empty
+ // subobject for our class.
+ if (ElementOffset >= SizeOfLargestEmptySubobject)
+ return;
+
+ UpdateEmptyFieldSubobjects(RD, RD, ElementOffset);
+ ElementOffset += Layout.getSize();
+ }
+ }
+}
+
+typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy;
+
+class RecordLayoutBuilder {
+protected:
+ // FIXME: Remove this and make the appropriate fields public.
+ friend class clang::ASTContext;
+
+ const ASTContext &Context;
+
+ EmptySubobjectMap *EmptySubobjects;
+
+ /// Size - The current size of the record layout.
+ uint64_t Size;
+
+ /// Alignment - The current alignment of the record layout.
+ CharUnits Alignment;
+
+ /// \brief The alignment if attribute packed is not used.
+ CharUnits UnpackedAlignment;
+
+ SmallVector<uint64_t, 16> FieldOffsets;
+
+ /// \brief Whether the external AST source has provided a layout for this
+ /// record.
+ unsigned UseExternalLayout : 1;
+
+ /// \brief Whether we need to infer alignment, even when we have an
+ /// externally-provided layout.
+ unsigned InferAlignment : 1;
+
+ /// Packed - Whether the record is packed or not.
+ unsigned Packed : 1;
+
+ unsigned IsUnion : 1;
+
+ unsigned IsMac68kAlign : 1;
+
+ unsigned IsMsStruct : 1;
+
+ /// UnfilledBitsInLastUnit - If the last field laid out was a bitfield,
+ /// this contains the number of bits in the last unit that can be used for
+ /// an adjacent bitfield if necessary. The unit in question is usually
+ /// a byte, but larger units are used if IsMsStruct.
+ unsigned char UnfilledBitsInLastUnit;
+ /// LastBitfieldTypeSize - If IsMsStruct, represents the size of the type
+ /// of the previous field if it was a bitfield.
+ unsigned char LastBitfieldTypeSize;
+
+ /// MaxFieldAlignment - The maximum allowed field alignment. This is set by
+ /// #pragma pack.
+ CharUnits MaxFieldAlignment;
+
+ /// DataSize - The data size of the record being laid out.
+ uint64_t DataSize;
+
+ CharUnits NonVirtualSize;
+ CharUnits NonVirtualAlignment;
+
+ /// PrimaryBase - the primary base class (if one exists) of the class
+ /// we're laying out.
+ const CXXRecordDecl *PrimaryBase;
+
+ /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
+ /// out is virtual.
+ bool PrimaryBaseIsVirtual;
+
+ /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl
+ /// pointer, as opposed to inheriting one from a primary base class.
+ bool HasOwnVFPtr;
+
+ typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
+
+ /// Bases - base classes and their offsets in the record.
+ BaseOffsetsMapTy Bases;
+
+ // VBases - virtual base classes and their offsets in the record.
+ ASTRecordLayout::VBaseOffsetsMapTy VBases;
+
+ /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
+ /// primary base classes for some other direct or indirect base class.
+ CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
+
+ /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
+ /// inheritance graph order. Used for determining the primary base class.
+ const CXXRecordDecl *FirstNearlyEmptyVBase;
+
+ /// VisitedVirtualBases - A set of all the visited virtual bases, used to
+ /// avoid visiting virtual bases more than once.
+ llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
+
+ /// Valid if UseExternalLayout is true.
+ ExternalLayout External;
+
+ RecordLayoutBuilder(const ASTContext &Context,
+ EmptySubobjectMap *EmptySubobjects)
+ : Context(Context), EmptySubobjects(EmptySubobjects), Size(0),
+ Alignment(CharUnits::One()), UnpackedAlignment(CharUnits::One()),
+ UseExternalLayout(false), InferAlignment(false),
+ Packed(false), IsUnion(false), IsMac68kAlign(false), IsMsStruct(false),
+ UnfilledBitsInLastUnit(0), LastBitfieldTypeSize(0),
+ MaxFieldAlignment(CharUnits::Zero()),
+ DataSize(0), NonVirtualSize(CharUnits::Zero()),
+ NonVirtualAlignment(CharUnits::One()),
+ PrimaryBase(nullptr), PrimaryBaseIsVirtual(false),
+ HasOwnVFPtr(false),
+ FirstNearlyEmptyVBase(nullptr) {}
+
+ void Layout(const RecordDecl *D);
+ void Layout(const CXXRecordDecl *D);
+ void Layout(const ObjCInterfaceDecl *D);
+
+ void LayoutFields(const RecordDecl *D);
+ void LayoutField(const FieldDecl *D, bool InsertExtraPadding);
+ void LayoutWideBitField(uint64_t FieldSize, uint64_t TypeSize,
+ bool FieldPacked, const FieldDecl *D);
+ void LayoutBitField(const FieldDecl *D);
+
+ TargetCXXABI getCXXABI() const {
+ return Context.getTargetInfo().getCXXABI();
+ }
+
+ /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
+ llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator;
+
+ typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *>
+ BaseSubobjectInfoMapTy;
+
+ /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
+ /// of the class we're laying out to their base subobject info.
+ BaseSubobjectInfoMapTy VirtualBaseInfo;
+
+ /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
+ /// class we're laying out to their base subobject info.
+ BaseSubobjectInfoMapTy NonVirtualBaseInfo;
+
+ /// ComputeBaseSubobjectInfo - Compute the base subobject information for the
+ /// bases of the given class.
+ void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD);
+
+ /// ComputeBaseSubobjectInfo - Compute the base subobject information for a
+ /// single class and all of its base classes.
+ BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
+ bool IsVirtual,
+ BaseSubobjectInfo *Derived);
+
+ /// DeterminePrimaryBase - Determine the primary base of the given class.
+ void DeterminePrimaryBase(const CXXRecordDecl *RD);
+
+ void SelectPrimaryVBase(const CXXRecordDecl *RD);
+
+ void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign);
+
+ /// LayoutNonVirtualBases - Determines the primary base class (if any) and
+ /// lays it out. Will then proceed to lay out all non-virtual base clasess.
+ void LayoutNonVirtualBases(const CXXRecordDecl *RD);
+
+ /// LayoutNonVirtualBase - Lays out a single non-virtual base.
+ void LayoutNonVirtualBase(const BaseSubobjectInfo *Base);
+
+ void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
+ CharUnits Offset);
+
+ /// LayoutVirtualBases - Lays out all the virtual bases.
+ void LayoutVirtualBases(const CXXRecordDecl *RD,
+ const CXXRecordDecl *MostDerivedClass);
+
+ /// LayoutVirtualBase - Lays out a single virtual base.
+ void LayoutVirtualBase(const BaseSubobjectInfo *Base);
+
+ /// LayoutBase - Will lay out a base and return the offset where it was
+ /// placed, in chars.
+ CharUnits LayoutBase(const BaseSubobjectInfo *Base);
+
+ /// InitializeLayout - Initialize record layout for the given record decl.
+ void InitializeLayout(const Decl *D);
+
+ /// FinishLayout - Finalize record layout. Adjust record size based on the
+ /// alignment.
+ void FinishLayout(const NamedDecl *D);
+
+ void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment);
+ void UpdateAlignment(CharUnits NewAlignment) {
+ UpdateAlignment(NewAlignment, NewAlignment);
+ }
+
+ /// \brief Retrieve the externally-supplied field offset for the given
+ /// field.
+ ///
+ /// \param Field The field whose offset is being queried.
+ /// \param ComputedOffset The offset that we've computed for this field.
+ uint64_t updateExternalFieldOffset(const FieldDecl *Field,
+ uint64_t ComputedOffset);
+
+ void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset,
+ uint64_t UnpackedOffset, unsigned UnpackedAlign,
+ bool isPacked, const FieldDecl *D);
+
+ DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);
+
+ CharUnits getSize() const {
+ assert(Size % Context.getCharWidth() == 0);
+ return Context.toCharUnitsFromBits(Size);
+ }
+ uint64_t getSizeInBits() const { return Size; }
+
+ void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); }
+ void setSize(uint64_t NewSize) { Size = NewSize; }
+
+ CharUnits getAligment() const { return Alignment; }
+
+ CharUnits getDataSize() const {
+ assert(DataSize % Context.getCharWidth() == 0);
+ return Context.toCharUnitsFromBits(DataSize);
+ }
+ uint64_t getDataSizeInBits() const { return DataSize; }
+
+ void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); }
+ void setDataSize(uint64_t NewSize) { DataSize = NewSize; }
+
+ RecordLayoutBuilder(const RecordLayoutBuilder &) = delete;
+ void operator=(const RecordLayoutBuilder &) = delete;
+};
+} // end anonymous namespace
+
+void
+RecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) {
+ for (const auto &I : RD->bases()) {
+ assert(!I.getType()->isDependentType() &&
+ "Cannot layout class with dependent bases.");
+
+ const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
+
+ // Check if this is a nearly empty virtual base.
+ if (I.isVirtual() && Context.isNearlyEmpty(Base)) {
+ // If it's not an indirect primary base, then we've found our primary
+ // base.
+ if (!IndirectPrimaryBases.count(Base)) {
+ PrimaryBase = Base;
+ PrimaryBaseIsVirtual = true;
+ return;
+ }
+
+ // Is this the first nearly empty virtual base?
+ if (!FirstNearlyEmptyVBase)
+ FirstNearlyEmptyVBase = Base;
+ }
+
+ SelectPrimaryVBase(Base);
+ if (PrimaryBase)
+ return;
+ }
+}
+
+/// DeterminePrimaryBase - Determine the primary base of the given class.
+void RecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) {
+ // If the class isn't dynamic, it won't have a primary base.
+ if (!RD->isDynamicClass())
+ return;
+
+ // Compute all the primary virtual bases for all of our direct and
+ // indirect bases, and record all their primary virtual base classes.
+ RD->getIndirectPrimaryBases(IndirectPrimaryBases);
+
+ // If the record has a dynamic base class, attempt to choose a primary base
+ // class. It is the first (in direct base class order) non-virtual dynamic
+ // base class, if one exists.
+ for (const auto &I : RD->bases()) {
+ // Ignore virtual bases.
+ if (I.isVirtual())
+ continue;
+
+ const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
+
+ if (Base->isDynamicClass()) {
+ // We found it.
+ PrimaryBase = Base;
+ PrimaryBaseIsVirtual = false;
+ return;
+ }
+ }
+
+ // Under the Itanium ABI, if there is no non-virtual primary base class,
+ // try to compute the primary virtual base. The primary virtual base is
+ // the first nearly empty virtual base that is not an indirect primary
+ // virtual base class, if one exists.
+ if (RD->getNumVBases() != 0) {
+ SelectPrimaryVBase(RD);
+ if (PrimaryBase)
+ return;
+ }
+
+ // Otherwise, it is the first indirect primary base class, if one exists.
+ if (FirstNearlyEmptyVBase) {
+ PrimaryBase = FirstNearlyEmptyVBase;
+ PrimaryBaseIsVirtual = true;
+ return;
+ }
+
+ assert(!PrimaryBase && "Should not get here with a primary base!");
+}
+
+BaseSubobjectInfo *
+RecordLayoutBuilder::ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
+ bool IsVirtual,
+ BaseSubobjectInfo *Derived) {
+ BaseSubobjectInfo *Info;
+
+ if (IsVirtual) {
+ // Check if we already have info about this virtual base.
+ BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD];
+ if (InfoSlot) {
+ assert(InfoSlot->Class == RD && "Wrong class for virtual base info!");
+ return InfoSlot;
+ }
+
+ // We don't, create it.
+ InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
+ Info = InfoSlot;
+ } else {
+ Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
+ }
+
+ Info->Class = RD;
+ Info->IsVirtual = IsVirtual;
+ Info->Derived = nullptr;
+ Info->PrimaryVirtualBaseInfo = nullptr;
+
+ const CXXRecordDecl *PrimaryVirtualBase = nullptr;
+ BaseSubobjectInfo *PrimaryVirtualBaseInfo = nullptr;
+
+ // Check if this base has a primary virtual base.
+ if (RD->getNumVBases()) {
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+ if (Layout.isPrimaryBaseVirtual()) {
+ // This base does have a primary virtual base.
+ PrimaryVirtualBase = Layout.getPrimaryBase();
+ assert(PrimaryVirtualBase && "Didn't have a primary virtual base!");
+
+ // Now check if we have base subobject info about this primary base.
+ PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
+
+ if (PrimaryVirtualBaseInfo) {
+ if (PrimaryVirtualBaseInfo->Derived) {
+ // We did have info about this primary base, and it turns out that it
+ // has already been claimed as a primary virtual base for another
+ // base.
+ PrimaryVirtualBase = nullptr;
+ } else {
+ // We can claim this base as our primary base.
+ Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
+ PrimaryVirtualBaseInfo->Derived = Info;
+ }
+ }
+ }
+ }
+
+ // Now go through all direct bases.
+ for (const auto &I : RD->bases()) {
+ bool IsVirtual = I.isVirtual();
+
+ const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
+
+ Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info));
+ }
+
+ if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) {
+ // Traversing the bases must have created the base info for our primary
+ // virtual base.
+ PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
+ assert(PrimaryVirtualBaseInfo &&
+ "Did not create a primary virtual base!");
+
+ // Claim the primary virtual base as our primary virtual base.
+ Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
+ PrimaryVirtualBaseInfo->Derived = Info;
+ }
+
+ return Info;
+}
+
+void RecordLayoutBuilder::ComputeBaseSubobjectInfo(const CXXRecordDecl *RD) {
+ for (const auto &I : RD->bases()) {
+ bool IsVirtual = I.isVirtual();
+
+ const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
+
+ // Compute the base subobject info for this base.
+ BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual,
+ nullptr);
+
+ if (IsVirtual) {
+ // ComputeBaseInfo has already added this base for us.
+ assert(VirtualBaseInfo.count(BaseDecl) &&
+ "Did not add virtual base!");
+ } else {
+ // Add the base info to the map of non-virtual bases.
+ assert(!NonVirtualBaseInfo.count(BaseDecl) &&
+ "Non-virtual base already exists!");
+ NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info));
+ }
+ }
+}
+
+void
+RecordLayoutBuilder::EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign) {
+ CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign;
+
+ // The maximum field alignment overrides base align.
+ if (!MaxFieldAlignment.isZero()) {
+ BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
+ UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
+ }
+
+ // Round up the current record size to pointer alignment.
+ setSize(getSize().RoundUpToAlignment(BaseAlign));
+ setDataSize(getSize());
+
+ // Update the alignment.
+ UpdateAlignment(BaseAlign, UnpackedBaseAlign);
+}
+
+void
+RecordLayoutBuilder::LayoutNonVirtualBases(const CXXRecordDecl *RD) {
+ // Then, determine the primary base class.
+ DeterminePrimaryBase(RD);
+
+ // Compute base subobject info.
+ ComputeBaseSubobjectInfo(RD);
+
+ // If we have a primary base class, lay it out.
+ if (PrimaryBase) {
+ if (PrimaryBaseIsVirtual) {
+ // If the primary virtual base was a primary virtual base of some other
+ // base class we'll have to steal it.
+ BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase);
+ PrimaryBaseInfo->Derived = nullptr;
+
+ // We have a virtual primary base, insert it as an indirect primary base.
+ IndirectPrimaryBases.insert(PrimaryBase);
+
+ assert(!VisitedVirtualBases.count(PrimaryBase) &&
+ "vbase already visited!");
+ VisitedVirtualBases.insert(PrimaryBase);
+
+ LayoutVirtualBase(PrimaryBaseInfo);
+ } else {
+ BaseSubobjectInfo *PrimaryBaseInfo =
+ NonVirtualBaseInfo.lookup(PrimaryBase);
+ assert(PrimaryBaseInfo &&
+ "Did not find base info for non-virtual primary base!");
+
+ LayoutNonVirtualBase(PrimaryBaseInfo);
+ }
+
+ // If this class needs a vtable/vf-table and didn't get one from a
+ // primary base, add it in now.
+ } else if (RD->isDynamicClass()) {
+ assert(DataSize == 0 && "Vtable pointer must be at offset zero!");
+ CharUnits PtrWidth =
+ Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
+ CharUnits PtrAlign =
+ Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
+ EnsureVTablePointerAlignment(PtrAlign);
+ HasOwnVFPtr = true;
+ setSize(getSize() + PtrWidth);
+ setDataSize(getSize());
+ }
+
+ // Now lay out the non-virtual bases.
+ for (const auto &I : RD->bases()) {
+
+ // Ignore virtual bases.
+ if (I.isVirtual())
+ continue;
+
+ const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
+
+ // Skip the primary base, because we've already laid it out. The
+ // !PrimaryBaseIsVirtual check is required because we might have a
+ // non-virtual base of the same type as a primary virtual base.
+ if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual)
+ continue;
+
+ // Lay out the base.
+ BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl);
+ assert(BaseInfo && "Did not find base info for non-virtual base!");
+
+ LayoutNonVirtualBase(BaseInfo);
+ }
+}
+
+void RecordLayoutBuilder::LayoutNonVirtualBase(const BaseSubobjectInfo *Base) {
+ // Layout the base.
+ CharUnits Offset = LayoutBase(Base);
+
+ // Add its base class offset.
+ assert(!Bases.count(Base->Class) && "base offset already exists!");
+ Bases.insert(std::make_pair(Base->Class, Offset));
+
+ AddPrimaryVirtualBaseOffsets(Base, Offset);
+}
+
+void
+RecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
+ CharUnits Offset) {
+ // This base isn't interesting, it has no virtual bases.
+ if (!Info->Class->getNumVBases())
+ return;
+
+ // First, check if we have a virtual primary base to add offsets for.
+ if (Info->PrimaryVirtualBaseInfo) {
+ assert(Info->PrimaryVirtualBaseInfo->IsVirtual &&
+ "Primary virtual base is not virtual!");
+ if (Info->PrimaryVirtualBaseInfo->Derived == Info) {
+ // Add the offset.
+ assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) &&
+ "primary vbase offset already exists!");
+ VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class,
+ ASTRecordLayout::VBaseInfo(Offset, false)));
+
+ // Traverse the primary virtual base.
+ AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset);
+ }
+ }
+
+ // Now go through all direct non-virtual bases.
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
+ for (const BaseSubobjectInfo *Base : Info->Bases) {
+ if (Base->IsVirtual)
+ continue;
+
+ CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
+ AddPrimaryVirtualBaseOffsets(Base, BaseOffset);
+ }
+}
+
+void
+RecordLayoutBuilder::LayoutVirtualBases(const CXXRecordDecl *RD,
+ const CXXRecordDecl *MostDerivedClass) {
+ const CXXRecordDecl *PrimaryBase;
+ bool PrimaryBaseIsVirtual;
+
+ if (MostDerivedClass == RD) {
+ PrimaryBase = this->PrimaryBase;
+ PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual;
+ } else {
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+ PrimaryBase = Layout.getPrimaryBase();
+ PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
+ }
+
+ for (const CXXBaseSpecifier &Base : RD->bases()) {
+ assert(!Base.getType()->isDependentType() &&
+ "Cannot layout class with dependent bases.");
+
+ const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
+
+ if (Base.isVirtual()) {
+ if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) {
+ bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl);
+
+ // Only lay out the virtual base if it's not an indirect primary base.
+ if (!IndirectPrimaryBase) {
+ // Only visit virtual bases once.
+ if (!VisitedVirtualBases.insert(BaseDecl).second)
+ continue;
+
+ const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
+ assert(BaseInfo && "Did not find virtual base info!");
+ LayoutVirtualBase(BaseInfo);
+ }
+ }
+ }
+
+ if (!BaseDecl->getNumVBases()) {
+ // This base isn't interesting since it doesn't have any virtual bases.
+ continue;
+ }
+
+ LayoutVirtualBases(BaseDecl, MostDerivedClass);
+ }
+}
+
+void RecordLayoutBuilder::LayoutVirtualBase(const BaseSubobjectInfo *Base) {
+ assert(!Base->Derived && "Trying to lay out a primary virtual base!");
+
+ // Layout the base.
+ CharUnits Offset = LayoutBase(Base);
+
+ // Add its base class offset.
+ assert(!VBases.count(Base->Class) && "vbase offset already exists!");
+ VBases.insert(std::make_pair(Base->Class,
+ ASTRecordLayout::VBaseInfo(Offset, false)));
+
+ AddPrimaryVirtualBaseOffsets(Base, Offset);
+}
+
+CharUnits RecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) {
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class);
+
+
+ CharUnits Offset;
+
+ // Query the external layout to see if it provides an offset.
+ bool HasExternalLayout = false;
+ if (UseExternalLayout) {
+ llvm::DenseMap<const CXXRecordDecl *, CharUnits>::iterator Known;
+ if (Base->IsVirtual)
+ HasExternalLayout = External.getExternalNVBaseOffset(Base->Class, Offset);
+ else
+ HasExternalLayout = External.getExternalVBaseOffset(Base->Class, Offset);
+ }
+
+ CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlignment();
+ CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign;
+
+ // If we have an empty base class, try to place it at offset 0.
+ if (Base->Class->isEmpty() &&
+ (!HasExternalLayout || Offset == CharUnits::Zero()) &&
+ EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) {
+ setSize(std::max(getSize(), Layout.getSize()));
+ UpdateAlignment(BaseAlign, UnpackedBaseAlign);
+
+ return CharUnits::Zero();
+ }
+
+ // The maximum field alignment overrides base align.
+ if (!MaxFieldAlignment.isZero()) {
+ BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
+ UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
+ }
+
+ if (!HasExternalLayout) {
+ // Round up the current record size to the base's alignment boundary.
+ Offset = getDataSize().RoundUpToAlignment(BaseAlign);
+
+ // Try to place the base.
+ while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset))
+ Offset += BaseAlign;
+ } else {
+ bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset);
+ (void)Allowed;
+ assert(Allowed && "Base subobject externally placed at overlapping offset");
+
+ if (InferAlignment && Offset < getDataSize().RoundUpToAlignment(BaseAlign)){
+ // The externally-supplied base offset is before the base offset we
+ // computed. Assume that the structure is packed.
+ Alignment = CharUnits::One();
+ InferAlignment = false;
+ }
+ }
+
+ if (!Base->Class->isEmpty()) {
+ // Update the data size.
+ setDataSize(Offset + Layout.getNonVirtualSize());
+
+ setSize(std::max(getSize(), getDataSize()));
+ } else
+ setSize(std::max(getSize(), Offset + Layout.getSize()));
+
+ // Remember max struct/class alignment.
+ UpdateAlignment(BaseAlign, UnpackedBaseAlign);
+
+ return Offset;
+}
+
+void RecordLayoutBuilder::InitializeLayout(const Decl *D) {
+ if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
+ IsUnion = RD->isUnion();
+ IsMsStruct = RD->isMsStruct(Context);
+ }
+
+ Packed = D->hasAttr<PackedAttr>();
+
+ // Honor the default struct packing maximum alignment flag.
+ if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) {
+ MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
+ }
+
+ // mac68k alignment supersedes maximum field alignment and attribute aligned,
+ // and forces all structures to have 2-byte alignment. The IBM docs on it
+ // allude to additional (more complicated) semantics, especially with regard
+ // to bit-fields, but gcc appears not to follow that.
+ if (D->hasAttr<AlignMac68kAttr>()) {
+ IsMac68kAlign = true;
+ MaxFieldAlignment = CharUnits::fromQuantity(2);
+ Alignment = CharUnits::fromQuantity(2);
+ } else {
+ if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>())
+ MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment());
+
+ if (unsigned MaxAlign = D->getMaxAlignment())
+ UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign));
+ }
+
+ // If there is an external AST source, ask it for the various offsets.
+ if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
+ if (ExternalASTSource *Source = Context.getExternalSource()) {
+ UseExternalLayout = Source->layoutRecordType(
+ RD, External.Size, External.Align, External.FieldOffsets,
+ External.BaseOffsets, External.VirtualBaseOffsets);
+
+ // Update based on external alignment.
+ if (UseExternalLayout) {
+ if (External.Align > 0) {
+ Alignment = Context.toCharUnitsFromBits(External.Align);
+ } else {
+ // The external source didn't have alignment information; infer it.
+ InferAlignment = true;
+ }
+ }
+ }
+}
+
+void RecordLayoutBuilder::Layout(const RecordDecl *D) {
+ InitializeLayout(D);
+ LayoutFields(D);
+
+ // Finally, round the size of the total struct up to the alignment of the
+ // struct itself.
+ FinishLayout(D);
+}
+
+void RecordLayoutBuilder::Layout(const CXXRecordDecl *RD) {
+ InitializeLayout(RD);
+
+ // Lay out the vtable and the non-virtual bases.
+ LayoutNonVirtualBases(RD);
+
+ LayoutFields(RD);
+
+ NonVirtualSize = Context.toCharUnitsFromBits(
+ llvm::RoundUpToAlignment(getSizeInBits(),
+ Context.getTargetInfo().getCharAlign()));
+ NonVirtualAlignment = Alignment;
+
+ // Lay out the virtual bases and add the primary virtual base offsets.
+ LayoutVirtualBases(RD, RD);
+
+ // Finally, round the size of the total struct up to the alignment
+ // of the struct itself.
+ FinishLayout(RD);
+
+#ifndef NDEBUG
+ // Check that we have base offsets for all bases.
+ for (const CXXBaseSpecifier &Base : RD->bases()) {
+ if (Base.isVirtual())
+ continue;
+
+ const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
+
+ assert(Bases.count(BaseDecl) && "Did not find base offset!");
+ }
+
+ // And all virtual bases.
+ for (const CXXBaseSpecifier &Base : RD->vbases()) {
+ const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
+
+ assert(VBases.count(BaseDecl) && "Did not find base offset!");
+ }
+#endif
+}
+
+void RecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) {
+ if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
+ const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD);
+
+ UpdateAlignment(SL.getAlignment());
+
+ // We start laying out ivars not at the end of the superclass
+ // structure, but at the next byte following the last field.
+ setSize(SL.getDataSize());
+ setDataSize(getSize());
+ }
+
+ InitializeLayout(D);
+ // Layout each ivar sequentially.
+ for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD;
+ IVD = IVD->getNextIvar())
+ LayoutField(IVD, false);
+
+ // Finally, round the size of the total struct up to the alignment of the
+ // struct itself.
+ FinishLayout(D);
+}
+
+void RecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
+ // Layout each field, for now, just sequentially, respecting alignment. In
+ // the future, this will need to be tweakable by targets.
+ bool InsertExtraPadding = D->mayInsertExtraPadding(/*EmitRemark=*/true);
+ bool HasFlexibleArrayMember = D->hasFlexibleArrayMember();
+ for (auto I = D->field_begin(), End = D->field_end(); I != End; ++I) {
+ auto Next(I);
+ ++Next;
+ LayoutField(*I,
+ InsertExtraPadding && (Next != End || !HasFlexibleArrayMember));
+ }
+}
+
+// Rounds the specified size to have it a multiple of the char size.
+static uint64_t
+roundUpSizeToCharAlignment(uint64_t Size,
+ const ASTContext &Context) {
+ uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
+ return llvm::RoundUpToAlignment(Size, CharAlignment);
+}
+
+void RecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize,
+ uint64_t TypeSize,
+ bool FieldPacked,
+ const FieldDecl *D) {
+ assert(Context.getLangOpts().CPlusPlus &&
+ "Can only have wide bit-fields in C++!");
+
+ // Itanium C++ ABI 2.4:
+ // If sizeof(T)*8 < n, let T' be the largest integral POD type with
+ // sizeof(T')*8 <= n.
+
+ QualType IntegralPODTypes[] = {
+ Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy,
+ Context.UnsignedLongTy, Context.UnsignedLongLongTy
+ };
+
+ QualType Type;
+ for (const QualType &QT : IntegralPODTypes) {
+ uint64_t Size = Context.getTypeSize(QT);
+
+ if (Size > FieldSize)
+ break;
+
+ Type = QT;
+ }
+ assert(!Type.isNull() && "Did not find a type!");
+
+ CharUnits TypeAlign = Context.getTypeAlignInChars(Type);
+
+ // We're not going to use any of the unfilled bits in the last byte.
+ UnfilledBitsInLastUnit = 0;
+ LastBitfieldTypeSize = 0;
+
+ uint64_t FieldOffset;
+ uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
+
+ if (IsUnion) {
+ uint64_t RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize,
+ Context);
+ setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
+ FieldOffset = 0;
+ } else {
+ // The bitfield is allocated starting at the next offset aligned
+ // appropriately for T', with length n bits.
+ FieldOffset = llvm::RoundUpToAlignment(getDataSizeInBits(),
+ Context.toBits(TypeAlign));
+
+ uint64_t NewSizeInBits = FieldOffset + FieldSize;
+
+ setDataSize(llvm::RoundUpToAlignment(NewSizeInBits,
+ Context.getTargetInfo().getCharAlign()));
+ UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
+ }
+
+ // Place this field at the current location.
+ FieldOffsets.push_back(FieldOffset);
+
+ CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset,
+ Context.toBits(TypeAlign), FieldPacked, D);
+
+ // Update the size.
+ setSize(std::max(getSizeInBits(), getDataSizeInBits()));
+
+ // Remember max struct/class alignment.
+ UpdateAlignment(TypeAlign);
+}
+
+void RecordLayoutBuilder::LayoutBitField(const FieldDecl *D) {
+ bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
+ uint64_t FieldSize = D->getBitWidthValue(Context);
+ TypeInfo FieldInfo = Context.getTypeInfo(D->getType());
+ uint64_t TypeSize = FieldInfo.Width;
+ unsigned FieldAlign = FieldInfo.Align;
+
+ // UnfilledBitsInLastUnit is the difference between the end of the
+ // last allocated bitfield (i.e. the first bit offset available for
+ // bitfields) and the end of the current data size in bits (i.e. the
+ // first bit offset available for non-bitfields). The current data
+ // size in bits is always a multiple of the char size; additionally,
+ // for ms_struct records it's also a multiple of the
+ // LastBitfieldTypeSize (if set).
+
+ // The struct-layout algorithm is dictated by the platform ABI,
+ // which in principle could use almost any rules it likes. In
+ // practice, UNIXy targets tend to inherit the algorithm described
+ // in the System V generic ABI. The basic bitfield layout rule in
+ // System V is to place bitfields at the next available bit offset
+ // where the entire bitfield would fit in an aligned storage unit of
+ // the declared type; it's okay if an earlier or later non-bitfield
+ // is allocated in the same storage unit. However, some targets
+ // (those that !useBitFieldTypeAlignment(), e.g. ARM APCS) don't
+ // require this storage unit to be aligned, and therefore always put
+ // the bitfield at the next available bit offset.
+
+ // ms_struct basically requests a complete replacement of the
+ // platform ABI's struct-layout algorithm, with the high-level goal
+ // of duplicating MSVC's layout. For non-bitfields, this follows
+ // the the standard algorithm. The basic bitfield layout rule is to
+ // allocate an entire unit of the bitfield's declared type
+ // (e.g. 'unsigned long'), then parcel it up among successive
+ // bitfields whose declared types have the same size, making a new
+ // unit as soon as the last can no longer store the whole value.
+ // Since it completely replaces the platform ABI's algorithm,
+ // settings like !useBitFieldTypeAlignment() do not apply.
+
+ // A zero-width bitfield forces the use of a new storage unit for
+ // later bitfields. In general, this occurs by rounding up the
+ // current size of the struct as if the algorithm were about to
+ // place a non-bitfield of the field's formal type. Usually this
+ // does not change the alignment of the struct itself, but it does
+ // on some targets (those that useZeroLengthBitfieldAlignment(),
+ // e.g. ARM). In ms_struct layout, zero-width bitfields are
+ // ignored unless they follow a non-zero-width bitfield.
+
+ // A field alignment restriction (e.g. from #pragma pack) or
+ // specification (e.g. from __attribute__((aligned))) changes the
+ // formal alignment of the field. For System V, this alters the
+ // required alignment of the notional storage unit that must contain
+ // the bitfield. For ms_struct, this only affects the placement of
+ // new storage units. In both cases, the effect of #pragma pack is
+ // ignored on zero-width bitfields.
+
+ // On System V, a packed field (e.g. from #pragma pack or
+ // __attribute__((packed))) always uses the next available bit
+ // offset.
+
+ // In an ms_struct struct, the alignment of a fundamental type is
+ // always equal to its size. This is necessary in order to mimic
+ // the i386 alignment rules on targets which might not fully align
+ // all types (e.g. Darwin PPC32, where alignof(long long) == 4).
+
+ // First, some simple bookkeeping to perform for ms_struct structs.
+ if (IsMsStruct) {
+ // The field alignment for integer types is always the size.
+ FieldAlign = TypeSize;
+
+ // If the previous field was not a bitfield, or was a bitfield
+ // with a different storage unit size, we're done with that
+ // storage unit.
+ if (LastBitfieldTypeSize != TypeSize) {
+ // Also, ignore zero-length bitfields after non-bitfields.
+ if (!LastBitfieldTypeSize && !FieldSize)
+ FieldAlign = 1;
+
+ UnfilledBitsInLastUnit = 0;
+ LastBitfieldTypeSize = 0;
+ }
+ }
+
+ // If the field is wider than its declared type, it follows
+ // different rules in all cases.
+ if (FieldSize > TypeSize) {
+ LayoutWideBitField(FieldSize, TypeSize, FieldPacked, D);
+ return;
+ }
+
+ // Compute the next available bit offset.
+ uint64_t FieldOffset =
+ IsUnion ? 0 : (getDataSizeInBits() - UnfilledBitsInLastUnit);
+
+ // Handle targets that don't honor bitfield type alignment.
+ if (!IsMsStruct && !Context.getTargetInfo().useBitFieldTypeAlignment()) {
+ // Some such targets do honor it on zero-width bitfields.
+ if (FieldSize == 0 &&
+ Context.getTargetInfo().useZeroLengthBitfieldAlignment()) {
+ // The alignment to round up to is the max of the field's natural
+ // alignment and a target-specific fixed value (sometimes zero).
+ unsigned ZeroLengthBitfieldBoundary =
+ Context.getTargetInfo().getZeroLengthBitfieldBoundary();
+ FieldAlign = std::max(FieldAlign, ZeroLengthBitfieldBoundary);
+
+ // If that doesn't apply, just ignore the field alignment.
+ } else {
+ FieldAlign = 1;
+ }
+ }
+
+ // Remember the alignment we would have used if the field were not packed.
+ unsigned UnpackedFieldAlign = FieldAlign;
+
+ // Ignore the field alignment if the field is packed unless it has zero-size.
+ if (!IsMsStruct && FieldPacked && FieldSize != 0)
+ FieldAlign = 1;
+
+ // But, if there's an 'aligned' attribute on the field, honor that.
+ if (unsigned ExplicitFieldAlign = D->getMaxAlignment()) {
+ FieldAlign = std::max(FieldAlign, ExplicitFieldAlign);
+ UnpackedFieldAlign = std::max(UnpackedFieldAlign, ExplicitFieldAlign);
+ }
+
+ // But, if there's a #pragma pack in play, that takes precedent over
+ // even the 'aligned' attribute, for non-zero-width bitfields.
+ if (!MaxFieldAlignment.isZero() && FieldSize) {
+ unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment);
+ FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
+ UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
+ }
+
+ // For purposes of diagnostics, we're going to simultaneously
+ // compute the field offsets that we would have used if we weren't
+ // adding any alignment padding or if the field weren't packed.
+ uint64_t UnpaddedFieldOffset = FieldOffset;
+ uint64_t UnpackedFieldOffset = FieldOffset;
+
+ // Check if we need to add padding to fit the bitfield within an
+ // allocation unit with the right size and alignment. The rules are
+ // somewhat different here for ms_struct structs.
+ if (IsMsStruct) {
+ // If it's not a zero-width bitfield, and we can fit the bitfield
+ // into the active storage unit (and we haven't already decided to
+ // start a new storage unit), just do so, regardless of any other
+ // other consideration. Otherwise, round up to the right alignment.
+ if (FieldSize == 0 || FieldSize > UnfilledBitsInLastUnit) {
+ FieldOffset = llvm::RoundUpToAlignment(FieldOffset, FieldAlign);
+ UnpackedFieldOffset = llvm::RoundUpToAlignment(UnpackedFieldOffset,
+ UnpackedFieldAlign);
+ UnfilledBitsInLastUnit = 0;
+ }
+
+ } else {
+ // #pragma pack, with any value, suppresses the insertion of padding.
+ bool AllowPadding = MaxFieldAlignment.isZero();
+
+ // Compute the real offset.
+ if (FieldSize == 0 ||
+ (AllowPadding &&
+ (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)) {
+ FieldOffset = llvm::RoundUpToAlignment(FieldOffset, FieldAlign);
+ }
+
+ // Repeat the computation for diagnostic purposes.
+ if (FieldSize == 0 ||
+ (AllowPadding &&
+ (UnpackedFieldOffset & (UnpackedFieldAlign-1)) + FieldSize > TypeSize))
+ UnpackedFieldOffset = llvm::RoundUpToAlignment(UnpackedFieldOffset,
+ UnpackedFieldAlign);
+ }
+
+ // If we're using external layout, give the external layout a chance
+ // to override this information.
+ if (UseExternalLayout)
+ FieldOffset = updateExternalFieldOffset(D, FieldOffset);
+
+ // Okay, place the bitfield at the calculated offset.
+ FieldOffsets.push_back(FieldOffset);
+
+ // Bookkeeping:
+
+ // Anonymous members don't affect the overall record alignment,
+ // except on targets where they do.
+ if (!IsMsStruct &&
+ !Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
+ !D->getIdentifier())
+ FieldAlign = UnpackedFieldAlign = 1;
+
+ // Diagnose differences in layout due to padding or packing.
+ if (!UseExternalLayout)
+ CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset,
+ UnpackedFieldAlign, FieldPacked, D);
+
+ // Update DataSize to include the last byte containing (part of) the bitfield.
+
+ // For unions, this is just a max operation, as usual.
+ if (IsUnion) {
+ uint64_t RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize,
+ Context);
+ setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
+ // For non-zero-width bitfields in ms_struct structs, allocate a new
+ // storage unit if necessary.
+ } else if (IsMsStruct && FieldSize) {
+ // We should have cleared UnfilledBitsInLastUnit in every case
+ // where we changed storage units.
+ if (!UnfilledBitsInLastUnit) {
+ setDataSize(FieldOffset + TypeSize);
+ UnfilledBitsInLastUnit = TypeSize;
+ }
+ UnfilledBitsInLastUnit -= FieldSize;
+ LastBitfieldTypeSize = TypeSize;
+
+ // Otherwise, bump the data size up to include the bitfield,
+ // including padding up to char alignment, and then remember how
+ // bits we didn't use.
+ } else {
+ uint64_t NewSizeInBits = FieldOffset + FieldSize;
+ uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
+ setDataSize(llvm::RoundUpToAlignment(NewSizeInBits, CharAlignment));
+ UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
+
+ // The only time we can get here for an ms_struct is if this is a
+ // zero-width bitfield, which doesn't count as anything for the
+ // purposes of unfilled bits.
+ LastBitfieldTypeSize = 0;
+ }
+
+ // Update the size.
+ setSize(std::max(getSizeInBits(), getDataSizeInBits()));
+
+ // Remember max struct/class alignment.
+ UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign),
+ Context.toCharUnitsFromBits(UnpackedFieldAlign));
+}
+
+void RecordLayoutBuilder::LayoutField(const FieldDecl *D,
+ bool InsertExtraPadding) {
+ if (D->isBitField()) {
+ LayoutBitField(D);
+ return;
+ }
+
+ uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
+
+ // Reset the unfilled bits.
+ UnfilledBitsInLastUnit = 0;
+ LastBitfieldTypeSize = 0;
+
+ bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
+ CharUnits FieldOffset =
+ IsUnion ? CharUnits::Zero() : getDataSize();
+ CharUnits FieldSize;
+ CharUnits FieldAlign;
+
+ if (D->getType()->isIncompleteArrayType()) {
+ // This is a flexible array member; we can't directly
+ // query getTypeInfo about these, so we figure it out here.
+ // Flexible array members don't have any size, but they
+ // have to be aligned appropriately for their element type.
+ FieldSize = CharUnits::Zero();
+ const ArrayType* ATy = Context.getAsArrayType(D->getType());
+ FieldAlign = Context.getTypeAlignInChars(ATy->getElementType());
+ } else if (const ReferenceType *RT = D->getType()->getAs<ReferenceType>()) {
+ unsigned AS = RT->getPointeeType().getAddressSpace();
+ FieldSize =
+ Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(AS));
+ FieldAlign =
+ Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(AS));
+ } else {
+ std::pair<CharUnits, CharUnits> FieldInfo =
+ Context.getTypeInfoInChars(D->getType());
+ FieldSize = FieldInfo.first;
+ FieldAlign = FieldInfo.second;
+
+ if (IsMsStruct) {
+ // If MS bitfield layout is required, figure out what type is being
+ // laid out and align the field to the width of that type.
+
+ // Resolve all typedefs down to their base type and round up the field
+ // alignment if necessary.
+ QualType T = Context.getBaseElementType(D->getType());
+ if (const BuiltinType *BTy = T->getAs<BuiltinType>()) {
+ CharUnits TypeSize = Context.getTypeSizeInChars(BTy);
+ if (TypeSize > FieldAlign)
+ FieldAlign = TypeSize;
+ }
+ }
+ }
+
+ // The align if the field is not packed. This is to check if the attribute
+ // was unnecessary (-Wpacked).
+ CharUnits UnpackedFieldAlign = FieldAlign;
+ CharUnits UnpackedFieldOffset = FieldOffset;
+
+ if (FieldPacked)
+ FieldAlign = CharUnits::One();
+ CharUnits MaxAlignmentInChars =
+ Context.toCharUnitsFromBits(D->getMaxAlignment());
+ FieldAlign = std::max(FieldAlign, MaxAlignmentInChars);
+ UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars);
+
+ // The maximum field alignment overrides the aligned attribute.
+ if (!MaxFieldAlignment.isZero()) {
+ FieldAlign = std::min(FieldAlign, MaxFieldAlignment);
+ UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment);
+ }
+
+ // Round up the current record size to the field's alignment boundary.
+ FieldOffset = FieldOffset.RoundUpToAlignment(FieldAlign);
+ UnpackedFieldOffset =
+ UnpackedFieldOffset.RoundUpToAlignment(UnpackedFieldAlign);
+
+ if (UseExternalLayout) {
+ FieldOffset = Context.toCharUnitsFromBits(
+ updateExternalFieldOffset(D, Context.toBits(FieldOffset)));
+
+ if (!IsUnion && EmptySubobjects) {
+ // Record the fact that we're placing a field at this offset.
+ bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset);
+ (void)Allowed;
+ assert(Allowed && "Externally-placed field cannot be placed here");
+ }
+ } else {
+ if (!IsUnion && EmptySubobjects) {
+ // Check if we can place the field at this offset.
+ while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) {
+ // We couldn't place the field at the offset. Try again at a new offset.
+ FieldOffset += FieldAlign;
+ }
+ }
+ }
+
+ // Place this field at the current location.
+ FieldOffsets.push_back(Context.toBits(FieldOffset));
+
+ if (!UseExternalLayout)
+ CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset,
+ Context.toBits(UnpackedFieldOffset),
+ Context.toBits(UnpackedFieldAlign), FieldPacked, D);
+
+ if (InsertExtraPadding) {
+ CharUnits ASanAlignment = CharUnits::fromQuantity(8);
+ CharUnits ExtraSizeForAsan = ASanAlignment;
+ if (FieldSize % ASanAlignment)
+ ExtraSizeForAsan +=
+ ASanAlignment - CharUnits::fromQuantity(FieldSize % ASanAlignment);
+ FieldSize += ExtraSizeForAsan;
+ }
+
+ // Reserve space for this field.
+ uint64_t FieldSizeInBits = Context.toBits(FieldSize);
+ if (IsUnion)
+ setDataSize(std::max(getDataSizeInBits(), FieldSizeInBits));
+ else
+ setDataSize(FieldOffset + FieldSize);
+
+ // Update the size.
+ setSize(std::max(getSizeInBits(), getDataSizeInBits()));
+
+ // Remember max struct/class alignment.
+ UpdateAlignment(FieldAlign, UnpackedFieldAlign);
+}
+
+void RecordLayoutBuilder::FinishLayout(const NamedDecl *D) {
+ // In C++, records cannot be of size 0.
+ if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) {
+ if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
+ // Compatibility with gcc requires a class (pod or non-pod)
+ // which is not empty but of size 0; such as having fields of
+ // array of zero-length, remains of Size 0
+ if (RD->isEmpty())
+ setSize(CharUnits::One());
+ }
+ else
+ setSize(CharUnits::One());
+ }
+
+ // Finally, round the size of the record up to the alignment of the
+ // record itself.
+ uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit;
+ uint64_t UnpackedSizeInBits =
+ llvm::RoundUpToAlignment(getSizeInBits(),
+ Context.toBits(UnpackedAlignment));
+ CharUnits UnpackedSize = Context.toCharUnitsFromBits(UnpackedSizeInBits);
+ uint64_t RoundedSize
+ = llvm::RoundUpToAlignment(getSizeInBits(), Context.toBits(Alignment));
+
+ if (UseExternalLayout) {
+ // If we're inferring alignment, and the external size is smaller than
+ // our size after we've rounded up to alignment, conservatively set the
+ // alignment to 1.
+ if (InferAlignment && External.Size < RoundedSize) {
+ Alignment = CharUnits::One();
+ InferAlignment = false;
+ }
+ setSize(External.Size);
+ return;
+ }
+
+ // Set the size to the final size.
+ setSize(RoundedSize);
+
+ unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
+ if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
+ // Warn if padding was introduced to the struct/class/union.
+ if (getSizeInBits() > UnpaddedSize) {
+ unsigned PadSize = getSizeInBits() - UnpaddedSize;
+ bool InBits = true;
+ if (PadSize % CharBitNum == 0) {
+ PadSize = PadSize / CharBitNum;
+ InBits = false;
+ }
+ Diag(RD->getLocation(), diag::warn_padded_struct_size)
+ << Context.getTypeDeclType(RD)
+ << PadSize
+ << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1); // plural or not
+ }
+
+ // Warn if we packed it unnecessarily. If the alignment is 1 byte don't
+ // bother since there won't be alignment issues.
+ if (Packed && UnpackedAlignment > CharUnits::One() &&
+ getSize() == UnpackedSize)
+ Diag(D->getLocation(), diag::warn_unnecessary_packed)
+ << Context.getTypeDeclType(RD);
+ }
+}
+
+void RecordLayoutBuilder::UpdateAlignment(CharUnits NewAlignment,
+ CharUnits UnpackedNewAlignment) {
+ // The alignment is not modified when using 'mac68k' alignment or when
+ // we have an externally-supplied layout that also provides overall alignment.
+ if (IsMac68kAlign || (UseExternalLayout && !InferAlignment))
+ return;
+
+ if (NewAlignment > Alignment) {
+ assert(llvm::isPowerOf2_64(NewAlignment.getQuantity()) &&
+ "Alignment not a power of 2");
+ Alignment = NewAlignment;
+ }
+
+ if (UnpackedNewAlignment > UnpackedAlignment) {
+ assert(llvm::isPowerOf2_64(UnpackedNewAlignment.getQuantity()) &&
+ "Alignment not a power of 2");
+ UnpackedAlignment = UnpackedNewAlignment;
+ }
+}
+
+uint64_t
+RecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field,
+ uint64_t ComputedOffset) {
+ uint64_t ExternalFieldOffset = External.getExternalFieldOffset(Field);
+
+ if (InferAlignment && ExternalFieldOffset < ComputedOffset) {
+ // The externally-supplied field offset is before the field offset we
+ // computed. Assume that the structure is packed.
+ Alignment = CharUnits::One();
+ InferAlignment = false;
+ }
+
+ // Use the externally-supplied field offset.
+ return ExternalFieldOffset;
+}
+
+/// \brief Get diagnostic %select index for tag kind for
+/// field padding diagnostic message.
+/// WARNING: Indexes apply to particular diagnostics only!
+///
+/// \returns diagnostic %select index.
+static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) {
+ switch (Tag) {
+ case TTK_Struct: return 0;
+ case TTK_Interface: return 1;
+ case TTK_Class: return 2;
+ default: llvm_unreachable("Invalid tag kind for field padding diagnostic!");
+ }
+}
+
+void RecordLayoutBuilder::CheckFieldPadding(uint64_t Offset,
+ uint64_t UnpaddedOffset,
+ uint64_t UnpackedOffset,
+ unsigned UnpackedAlign,
+ bool isPacked,
+ const FieldDecl *D) {
+ // We let objc ivars without warning, objc interfaces generally are not used
+ // for padding tricks.
+ if (isa<ObjCIvarDecl>(D))
+ return;
+
+ // Don't warn about structs created without a SourceLocation. This can
+ // be done by clients of the AST, such as codegen.
+ if (D->getLocation().isInvalid())
+ return;
+
+ unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
+
+ // Warn if padding was introduced to the struct/class.
+ if (!IsUnion && Offset > UnpaddedOffset) {
+ unsigned PadSize = Offset - UnpaddedOffset;
+ bool InBits = true;
+ if (PadSize % CharBitNum == 0) {
+ PadSize = PadSize / CharBitNum;
+ InBits = false;
+ }
+ if (D->getIdentifier())
+ Diag(D->getLocation(), diag::warn_padded_struct_field)
+ << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
+ << Context.getTypeDeclType(D->getParent())
+ << PadSize
+ << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1) // plural or not
+ << D->getIdentifier();
+ else
+ Diag(D->getLocation(), diag::warn_padded_struct_anon_field)
+ << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
+ << Context.getTypeDeclType(D->getParent())
+ << PadSize
+ << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1); // plural or not
+ }
+
+ // Warn if we packed it unnecessarily. If the alignment is 1 byte don't
+ // bother since there won't be alignment issues.
+ if (isPacked && UnpackedAlign > CharBitNum && Offset == UnpackedOffset)
+ Diag(D->getLocation(), diag::warn_unnecessary_packed)
+ << D->getIdentifier();
+}
+
+static const CXXMethodDecl *computeKeyFunction(ASTContext &Context,
+ const CXXRecordDecl *RD) {
+ // If a class isn't polymorphic it doesn't have a key function.
+ if (!RD->isPolymorphic())
+ return nullptr;
+
+ // A class that is not externally visible doesn't have a key function. (Or
+ // at least, there's no point to assigning a key function to such a class;
+ // this doesn't affect the ABI.)
+ if (!RD->isExternallyVisible())
+ return nullptr;
+
+ // Template instantiations don't have key functions per Itanium C++ ABI 5.2.6.
+ // Same behavior as GCC.
+ TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
+ if (TSK == TSK_ImplicitInstantiation ||
+ TSK == TSK_ExplicitInstantiationDeclaration ||
+ TSK == TSK_ExplicitInstantiationDefinition)
+ return nullptr;
+
+ bool allowInlineFunctions =
+ Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline();
+
+ for (const CXXMethodDecl *MD : RD->methods()) {
+ if (!MD->isVirtual())
+ continue;
+
+ if (MD->isPure())
+ continue;
+
+ // Ignore implicit member functions, they are always marked as inline, but
+ // they don't have a body until they're defined.
+ if (MD->isImplicit())
+ continue;
+
+ if (MD->isInlineSpecified())
+ continue;
+
+ if (MD->hasInlineBody())
+ continue;
+
+ // Ignore inline deleted or defaulted functions.
+ if (!MD->isUserProvided())
+ continue;
+
+ // In certain ABIs, ignore functions with out-of-line inline definitions.
+ if (!allowInlineFunctions) {
+ const FunctionDecl *Def;
+ if (MD->hasBody(Def) && Def->isInlineSpecified())
+ continue;
+ }
+
+ // We found it.
+ return MD;
+ }
+
+ return nullptr;
+}
+
+DiagnosticBuilder
+RecordLayoutBuilder::Diag(SourceLocation Loc, unsigned DiagID) {
+ return Context.getDiagnostics().Report(Loc, DiagID);
+}
+
+/// Does the target C++ ABI require us to skip over the tail-padding
+/// of the given class (considering it as a base class) when allocating
+/// objects?
+static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) {
+ switch (ABI.getTailPaddingUseRules()) {
+ case TargetCXXABI::AlwaysUseTailPadding:
+ return false;
+
+ case TargetCXXABI::UseTailPaddingUnlessPOD03:
+ // FIXME: To the extent that this is meant to cover the Itanium ABI
+ // rules, we should implement the restrictions about over-sized
+ // bitfields:
+ //
+ // http://mentorembedded.github.com/cxx-abi/abi.html#POD :
+ // In general, a type is considered a POD for the purposes of
+ // layout if it is a POD type (in the sense of ISO C++
+ // [basic.types]). However, a POD-struct or POD-union (in the
+ // sense of ISO C++ [class]) with a bitfield member whose
+ // declared width is wider than the declared type of the
+ // bitfield is not a POD for the purpose of layout. Similarly,
+ // an array type is not a POD for the purpose of layout if the
+ // element type of the array is not a POD for the purpose of
+ // layout.
+ //
+ // Where references to the ISO C++ are made in this paragraph,
+ // the Technical Corrigendum 1 version of the standard is
+ // intended.
+ return RD->isPOD();
+
+ case TargetCXXABI::UseTailPaddingUnlessPOD11:
+ // This is equivalent to RD->getTypeForDecl().isCXX11PODType(),
+ // but with a lot of abstraction penalty stripped off. This does
+ // assume that these properties are set correctly even in C++98
+ // mode; fortunately, that is true because we want to assign
+ // consistently semantics to the type-traits intrinsics (or at
+ // least as many of them as possible).
+ return RD->isTrivial() && RD->isStandardLayout();
+ }
+
+ llvm_unreachable("bad tail-padding use kind");
+}
+
+static bool isMsLayout(const RecordDecl* D) {
+ return D->getASTContext().getTargetInfo().getCXXABI().isMicrosoft();
+}
+
+// This section contains an implementation of struct layout that is, up to the
+// included tests, compatible with cl.exe (2013). The layout produced is
+// significantly different than those produced by the Itanium ABI. Here we note
+// the most important differences.
+//
+// * The alignment of bitfields in unions is ignored when computing the
+// alignment of the union.
+// * The existence of zero-width bitfield that occurs after anything other than
+// a non-zero length bitfield is ignored.
+// * There is no explicit primary base for the purposes of layout. All bases
+// with vfptrs are laid out first, followed by all bases without vfptrs.
+// * The Itanium equivalent vtable pointers are split into a vfptr (virtual
+// function pointer) and a vbptr (virtual base pointer). They can each be
+// shared with a, non-virtual bases. These bases need not be the same. vfptrs
+// always occur at offset 0. vbptrs can occur at an arbitrary offset and are
+// placed after the lexiographically last non-virtual base. This placement
+// is always before fields but can be in the middle of the non-virtual bases
+// due to the two-pass layout scheme for non-virtual-bases.
+// * Virtual bases sometimes require a 'vtordisp' field that is laid out before
+// the virtual base and is used in conjunction with virtual overrides during
+// construction and destruction. This is always a 4 byte value and is used as
+// an alternative to constructor vtables.
+// * vtordisps are allocated in a block of memory with size and alignment equal
+// to the alignment of the completed structure (before applying __declspec(
+// align())). The vtordisp always occur at the end of the allocation block,
+// immediately prior to the virtual base.
+// * vfptrs are injected after all bases and fields have been laid out. In
+// order to guarantee proper alignment of all fields, the vfptr injection
+// pushes all bases and fields back by the alignment imposed by those bases
+// and fields. This can potentially add a significant amount of padding.
+// vfptrs are always injected at offset 0.
+// * vbptrs are injected after all bases and fields have been laid out. In
+// order to guarantee proper alignment of all fields, the vfptr injection
+// pushes all bases and fields back by the alignment imposed by those bases
+// and fields. This can potentially add a significant amount of padding.
+// vbptrs are injected immediately after the last non-virtual base as
+// lexiographically ordered in the code. If this site isn't pointer aligned
+// the vbptr is placed at the next properly aligned location. Enough padding
+// is added to guarantee a fit.
+// * The last zero sized non-virtual base can be placed at the end of the
+// struct (potentially aliasing another object), or may alias with the first
+// field, even if they are of the same type.
+// * The last zero size virtual base may be placed at the end of the struct
+// potentially aliasing another object.
+// * The ABI attempts to avoid aliasing of zero sized bases by adding padding
+// between bases or vbases with specific properties. The criteria for
+// additional padding between two bases is that the first base is zero sized
+// or ends with a zero sized subobject and the second base is zero sized or
+// trails with a zero sized base or field (sharing of vfptrs can reorder the
+// layout of the so the leading base is not always the first one declared).
+// This rule does take into account fields that are not records, so padding
+// will occur even if the last field is, e.g. an int. The padding added for
+// bases is 1 byte. The padding added between vbases depends on the alignment
+// of the object but is at least 4 bytes (in both 32 and 64 bit modes).
+// * There is no concept of non-virtual alignment, non-virtual alignment and
+// alignment are always identical.
+// * There is a distinction between alignment and required alignment.
+// __declspec(align) changes the required alignment of a struct. This
+// alignment is _always_ obeyed, even in the presence of #pragma pack. A
+// record inherits required alignment from all of its fields and bases.
+// * __declspec(align) on bitfields has the effect of changing the bitfield's
+// alignment instead of its required alignment. This is the only known way
+// to make the alignment of a struct bigger than 8. Interestingly enough
+// this alignment is also immune to the effects of #pragma pack and can be
+// used to create structures with large alignment under #pragma pack.
+// However, because it does not impact required alignment, such a structure,
+// when used as a field or base, will not be aligned if #pragma pack is
+// still active at the time of use.
+//
+// Known incompatibilities:
+// * all: #pragma pack between fields in a record
+// * 2010 and back: If the last field in a record is a bitfield, every object
+// laid out after the record will have extra padding inserted before it. The
+// extra padding will have size equal to the size of the storage class of the
+// bitfield. 0 sized bitfields don't exhibit this behavior and the extra
+// padding can be avoided by adding a 0 sized bitfield after the non-zero-
+// sized bitfield.
+// * 2012 and back: In 64-bit mode, if the alignment of a record is 16 or
+// greater due to __declspec(align()) then a second layout phase occurs after
+// The locations of the vf and vb pointers are known. This layout phase
+// suffers from the "last field is a bitfield" bug in 2010 and results in
+// _every_ field getting padding put in front of it, potentially including the
+// vfptr, leaving the vfprt at a non-zero location which results in a fault if
+// anything tries to read the vftbl. The second layout phase also treats
+// bitfields as separate entities and gives them each storage rather than
+// packing them. Additionally, because this phase appears to perform a
+// (an unstable) sort on the members before laying them out and because merged
+// bitfields have the same address, the bitfields end up in whatever order
+// the sort left them in, a behavior we could never hope to replicate.
+
+namespace {
+struct MicrosoftRecordLayoutBuilder {
+ struct ElementInfo {
+ CharUnits Size;
+ CharUnits Alignment;
+ };
+ typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
+ MicrosoftRecordLayoutBuilder(const ASTContext &Context) : Context(Context) {}
+private:
+ MicrosoftRecordLayoutBuilder(const MicrosoftRecordLayoutBuilder &) = delete;
+ void operator=(const MicrosoftRecordLayoutBuilder &) = delete;
+public:
+ void layout(const RecordDecl *RD);
+ void cxxLayout(const CXXRecordDecl *RD);
+ /// \brief Initializes size and alignment and honors some flags.
+ void initializeLayout(const RecordDecl *RD);
+ /// \brief Initialized C++ layout, compute alignment and virtual alignment and
+ /// existence of vfptrs and vbptrs. Alignment is needed before the vfptr is
+ /// laid out.
+ void initializeCXXLayout(const CXXRecordDecl *RD);
+ void layoutNonVirtualBases(const CXXRecordDecl *RD);
+ void layoutNonVirtualBase(const CXXRecordDecl *BaseDecl,
+ const ASTRecordLayout &BaseLayout,
+ const ASTRecordLayout *&PreviousBaseLayout);
+ void injectVFPtr(const CXXRecordDecl *RD);
+ void injectVBPtr(const CXXRecordDecl *RD);
+ /// \brief Lays out the fields of the record. Also rounds size up to
+ /// alignment.
+ void layoutFields(const RecordDecl *RD);
+ void layoutField(const FieldDecl *FD);
+ void layoutBitField(const FieldDecl *FD);
+ /// \brief Lays out a single zero-width bit-field in the record and handles
+ /// special cases associated with zero-width bit-fields.
+ void layoutZeroWidthBitField(const FieldDecl *FD);
+ void layoutVirtualBases(const CXXRecordDecl *RD);
+ void finalizeLayout(const RecordDecl *RD);
+ /// \brief Gets the size and alignment of a base taking pragma pack and
+ /// __declspec(align) into account.
+ ElementInfo getAdjustedElementInfo(const ASTRecordLayout &Layout);
+ /// \brief Gets the size and alignment of a field taking pragma pack and
+ /// __declspec(align) into account. It also updates RequiredAlignment as a
+ /// side effect because it is most convenient to do so here.
+ ElementInfo getAdjustedElementInfo(const FieldDecl *FD);
+ /// \brief Places a field at an offset in CharUnits.
+ void placeFieldAtOffset(CharUnits FieldOffset) {
+ FieldOffsets.push_back(Context.toBits(FieldOffset));
+ }
+ /// \brief Places a bitfield at a bit offset.
+ void placeFieldAtBitOffset(uint64_t FieldOffset) {
+ FieldOffsets.push_back(FieldOffset);
+ }
+ /// \brief Compute the set of virtual bases for which vtordisps are required.
+ void computeVtorDispSet(
+ llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtorDispSet,
+ const CXXRecordDecl *RD) const;
+ const ASTContext &Context;
+ /// \brief The size of the record being laid out.
+ CharUnits Size;
+ /// \brief The non-virtual size of the record layout.
+ CharUnits NonVirtualSize;
+ /// \brief The data size of the record layout.
+ CharUnits DataSize;
+ /// \brief The current alignment of the record layout.
+ CharUnits Alignment;
+ /// \brief The maximum allowed field alignment. This is set by #pragma pack.
+ CharUnits MaxFieldAlignment;
+ /// \brief The alignment that this record must obey. This is imposed by
+ /// __declspec(align()) on the record itself or one of its fields or bases.
+ CharUnits RequiredAlignment;
+ /// \brief The size of the allocation of the currently active bitfield.
+ /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield
+ /// is true.
+ CharUnits CurrentBitfieldSize;
+ /// \brief Offset to the virtual base table pointer (if one exists).
+ CharUnits VBPtrOffset;
+ /// \brief Minimum record size possible.
+ CharUnits MinEmptyStructSize;
+ /// \brief The size and alignment info of a pointer.
+ ElementInfo PointerInfo;
+ /// \brief The primary base class (if one exists).
+ const CXXRecordDecl *PrimaryBase;
+ /// \brief The class we share our vb-pointer with.
+ const CXXRecordDecl *SharedVBPtrBase;
+ /// \brief The collection of field offsets.
+ SmallVector<uint64_t, 16> FieldOffsets;
+ /// \brief Base classes and their offsets in the record.
+ BaseOffsetsMapTy Bases;
+ /// \brief virtual base classes and their offsets in the record.
+ ASTRecordLayout::VBaseOffsetsMapTy VBases;
+ /// \brief The number of remaining bits in our last bitfield allocation.
+ /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield is
+ /// true.
+ unsigned RemainingBitsInField;
+ bool IsUnion : 1;
+ /// \brief True if the last field laid out was a bitfield and was not 0
+ /// width.
+ bool LastFieldIsNonZeroWidthBitfield : 1;
+ /// \brief True if the class has its own vftable pointer.
+ bool HasOwnVFPtr : 1;
+ /// \brief True if the class has a vbtable pointer.
+ bool HasVBPtr : 1;
+ /// \brief True if the last sub-object within the type is zero sized or the
+ /// object itself is zero sized. This *does not* count members that are not
+ /// records. Only used for MS-ABI.
+ bool EndsWithZeroSizedObject : 1;
+ /// \brief True if this class is zero sized or first base is zero sized or
+ /// has this property. Only used for MS-ABI.
+ bool LeadsWithZeroSizedBase : 1;
+
+ /// \brief True if the external AST source provided a layout for this record.
+ bool UseExternalLayout : 1;
+
+ /// \brief The layout provided by the external AST source. Only active if
+ /// UseExternalLayout is true.
+ ExternalLayout External;
+};
+} // namespace
+
+MicrosoftRecordLayoutBuilder::ElementInfo
+MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
+ const ASTRecordLayout &Layout) {
+ ElementInfo Info;
+ Info.Alignment = Layout.getAlignment();
+ // Respect pragma pack.
+ if (!MaxFieldAlignment.isZero())
+ Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
+ // Track zero-sized subobjects here where it's already available.
+ EndsWithZeroSizedObject = Layout.hasZeroSizedSubObject();
+ // Respect required alignment, this is necessary because we may have adjusted
+ // the alignment in the case of pragam pack. Note that the required alignment
+ // doesn't actually apply to the struct alignment at this point.
+ Alignment = std::max(Alignment, Info.Alignment);
+ RequiredAlignment = std::max(RequiredAlignment, Layout.getRequiredAlignment());
+ Info.Alignment = std::max(Info.Alignment, Layout.getRequiredAlignment());
+ Info.Size = Layout.getNonVirtualSize();
+ return Info;
+}
+
+MicrosoftRecordLayoutBuilder::ElementInfo
+MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
+ const FieldDecl *FD) {
+ // Get the alignment of the field type's natural alignment, ignore any
+ // alignment attributes.
+ ElementInfo Info;
+ std::tie(Info.Size, Info.Alignment) =
+ Context.getTypeInfoInChars(FD->getType()->getUnqualifiedDesugaredType());
+ // Respect align attributes on the field.
+ CharUnits FieldRequiredAlignment =
+ Context.toCharUnitsFromBits(FD->getMaxAlignment());
+ // Respect align attributes on the type.
+ if (Context.isAlignmentRequired(FD->getType()))
+ FieldRequiredAlignment = std::max(
+ Context.getTypeAlignInChars(FD->getType()), FieldRequiredAlignment);
+ // Respect attributes applied to subobjects of the field.
+ if (FD->isBitField())
+ // For some reason __declspec align impacts alignment rather than required
+ // alignment when it is applied to bitfields.
+ Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
+ else {
+ if (auto RT =
+ FD->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
+ auto const &Layout = Context.getASTRecordLayout(RT->getDecl());
+ EndsWithZeroSizedObject = Layout.hasZeroSizedSubObject();
+ FieldRequiredAlignment = std::max(FieldRequiredAlignment,
+ Layout.getRequiredAlignment());
+ }
+ // Capture required alignment as a side-effect.
+ RequiredAlignment = std::max(RequiredAlignment, FieldRequiredAlignment);
+ }
+ // Respect pragma pack, attribute pack and declspec align
+ if (!MaxFieldAlignment.isZero())
+ Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
+ if (FD->hasAttr<PackedAttr>())
+ Info.Alignment = CharUnits::One();
+ Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
+ return Info;
+}
+
+void MicrosoftRecordLayoutBuilder::layout(const RecordDecl *RD) {
+ // For C record layout, zero-sized records always have size 4.
+ MinEmptyStructSize = CharUnits::fromQuantity(4);
+ initializeLayout(RD);
+ layoutFields(RD);
+ DataSize = Size = Size.RoundUpToAlignment(Alignment);
+ RequiredAlignment = std::max(
+ RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
+ finalizeLayout(RD);
+}
+
+void MicrosoftRecordLayoutBuilder::cxxLayout(const CXXRecordDecl *RD) {
+ // The C++ standard says that empty structs have size 1.
+ MinEmptyStructSize = CharUnits::One();
+ initializeLayout(RD);
+ initializeCXXLayout(RD);
+ layoutNonVirtualBases(RD);
+ layoutFields(RD);
+ injectVBPtr(RD);
+ injectVFPtr(RD);
+ if (HasOwnVFPtr || (HasVBPtr && !SharedVBPtrBase))
+ Alignment = std::max(Alignment, PointerInfo.Alignment);
+ auto RoundingAlignment = Alignment;
+ if (!MaxFieldAlignment.isZero())
+ RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
+ NonVirtualSize = Size = Size.RoundUpToAlignment(RoundingAlignment);
+ RequiredAlignment = std::max(
+ RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
+ layoutVirtualBases(RD);
+ finalizeLayout(RD);
+}
+
+void MicrosoftRecordLayoutBuilder::initializeLayout(const RecordDecl *RD) {
+ IsUnion = RD->isUnion();
+ Size = CharUnits::Zero();
+ Alignment = CharUnits::One();
+ // In 64-bit mode we always perform an alignment step after laying out vbases.
+ // In 32-bit mode we do not. The check to see if we need to perform alignment
+ // checks the RequiredAlignment field and performs alignment if it isn't 0.
+ RequiredAlignment = Context.getTargetInfo().getTriple().isArch64Bit()
+ ? CharUnits::One()
+ : CharUnits::Zero();
+ // Compute the maximum field alignment.
+ MaxFieldAlignment = CharUnits::Zero();
+ // Honor the default struct packing maximum alignment flag.
+ if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct)
+ MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
+ // Honor the packing attribute. The MS-ABI ignores pragma pack if its larger
+ // than the pointer size.
+ if (const MaxFieldAlignmentAttr *MFAA = RD->getAttr<MaxFieldAlignmentAttr>()){
+ unsigned PackedAlignment = MFAA->getAlignment();
+ if (PackedAlignment <= Context.getTargetInfo().getPointerWidth(0))
+ MaxFieldAlignment = Context.toCharUnitsFromBits(PackedAlignment);
+ }
+ // Packed attribute forces max field alignment to be 1.
+ if (RD->hasAttr<PackedAttr>())
+ MaxFieldAlignment = CharUnits::One();
+
+ // Try to respect the external layout if present.
+ UseExternalLayout = false;
+ if (ExternalASTSource *Source = Context.getExternalSource())
+ UseExternalLayout = Source->layoutRecordType(
+ RD, External.Size, External.Align, External.FieldOffsets,
+ External.BaseOffsets, External.VirtualBaseOffsets);
+}
+
+void
+MicrosoftRecordLayoutBuilder::initializeCXXLayout(const CXXRecordDecl *RD) {
+ EndsWithZeroSizedObject = false;
+ LeadsWithZeroSizedBase = false;
+ HasOwnVFPtr = false;
+ HasVBPtr = false;
+ PrimaryBase = nullptr;
+ SharedVBPtrBase = nullptr;
+ // Calculate pointer size and alignment. These are used for vfptr and vbprt
+ // injection.
+ PointerInfo.Size =
+ Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
+ PointerInfo.Alignment =
+ Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
+ // Respect pragma pack.
+ if (!MaxFieldAlignment.isZero())
+ PointerInfo.Alignment = std::min(PointerInfo.Alignment, MaxFieldAlignment);
+}
+
+void
+MicrosoftRecordLayoutBuilder::layoutNonVirtualBases(const CXXRecordDecl *RD) {
+ // The MS-ABI lays out all bases that contain leading vfptrs before it lays
+ // out any bases that do not contain vfptrs. We implement this as two passes
+ // over the bases. This approach guarantees that the primary base is laid out
+ // first. We use these passes to calculate some additional aggregated
+ // information about the bases, such as reqruied alignment and the presence of
+ // zero sized members.
+ const ASTRecordLayout *PreviousBaseLayout = nullptr;
+ // Iterate through the bases and lay out the non-virtual ones.
+ for (const CXXBaseSpecifier &Base : RD->bases()) {
+ const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
+ const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
+ // Mark and skip virtual bases.
+ if (Base.isVirtual()) {
+ HasVBPtr = true;
+ continue;
+ }
+ // Check fo a base to share a VBPtr with.
+ if (!SharedVBPtrBase && BaseLayout.hasVBPtr()) {
+ SharedVBPtrBase = BaseDecl;
+ HasVBPtr = true;
+ }
+ // Only lay out bases with extendable VFPtrs on the first pass.
+ if (!BaseLayout.hasExtendableVFPtr())
+ continue;
+ // If we don't have a primary base, this one qualifies.
+ if (!PrimaryBase) {
+ PrimaryBase = BaseDecl;
+ LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
+ }
+ // Lay out the base.
+ layoutNonVirtualBase(BaseDecl, BaseLayout, PreviousBaseLayout);
+ }
+ // Figure out if we need a fresh VFPtr for this class.
+ if (!PrimaryBase && RD->isDynamicClass())
+ for (CXXRecordDecl::method_iterator i = RD->method_begin(),
+ e = RD->method_end();
+ !HasOwnVFPtr && i != e; ++i)
+ HasOwnVFPtr = i->isVirtual() && i->size_overridden_methods() == 0;
+ // If we don't have a primary base then we have a leading object that could
+ // itself lead with a zero-sized object, something we track.
+ bool CheckLeadingLayout = !PrimaryBase;
+ // Iterate through the bases and lay out the non-virtual ones.
+ for (const CXXBaseSpecifier &Base : RD->bases()) {
+ if (Base.isVirtual())
+ continue;
+ const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
+ const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
+ // Only lay out bases without extendable VFPtrs on the second pass.
+ if (BaseLayout.hasExtendableVFPtr()) {
+ VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
+ continue;
+ }
+ // If this is the first layout, check to see if it leads with a zero sized
+ // object. If it does, so do we.
+ if (CheckLeadingLayout) {
+ CheckLeadingLayout = false;
+ LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
+ }
+ // Lay out the base.
+ layoutNonVirtualBase(BaseDecl, BaseLayout, PreviousBaseLayout);
+ VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
+ }
+ // Set our VBPtroffset if we know it at this point.
+ if (!HasVBPtr)
+ VBPtrOffset = CharUnits::fromQuantity(-1);
+ else if (SharedVBPtrBase) {
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(SharedVBPtrBase);
+ VBPtrOffset = Bases[SharedVBPtrBase] + Layout.getVBPtrOffset();
+ }
+}
+
+void MicrosoftRecordLayoutBuilder::layoutNonVirtualBase(
+ const CXXRecordDecl *BaseDecl,
+ const ASTRecordLayout &BaseLayout,
+ const ASTRecordLayout *&PreviousBaseLayout) {
+ // Insert padding between two bases if the left first one is zero sized or
+ // contains a zero sized subobject and the right is zero sized or one leads
+ // with a zero sized base.
+ if (PreviousBaseLayout && PreviousBaseLayout->hasZeroSizedSubObject() &&
+ BaseLayout.leadsWithZeroSizedBase())
+ Size++;
+ ElementInfo Info = getAdjustedElementInfo(BaseLayout);
+ CharUnits BaseOffset;
+
+ // Respect the external AST source base offset, if present.
+ bool FoundBase = false;
+ if (UseExternalLayout) {
+ FoundBase = External.getExternalNVBaseOffset(BaseDecl, BaseOffset);
+ if (FoundBase)
+ assert(BaseOffset >= Size && "base offset already allocated");
+ }
+
+ if (!FoundBase)
+ BaseOffset = Size.RoundUpToAlignment(Info.Alignment);
+ Bases.insert(std::make_pair(BaseDecl, BaseOffset));
+ Size = BaseOffset + BaseLayout.getNonVirtualSize();
+ PreviousBaseLayout = &BaseLayout;
+}
+
+void MicrosoftRecordLayoutBuilder::layoutFields(const RecordDecl *RD) {
+ LastFieldIsNonZeroWidthBitfield = false;
+ for (const FieldDecl *Field : RD->fields())
+ layoutField(Field);
+}
+
+void MicrosoftRecordLayoutBuilder::layoutField(const FieldDecl *FD) {
+ if (FD->isBitField()) {
+ layoutBitField(FD);
+ return;
+ }
+ LastFieldIsNonZeroWidthBitfield = false;
+ ElementInfo Info = getAdjustedElementInfo(FD);
+ Alignment = std::max(Alignment, Info.Alignment);
+ if (IsUnion) {
+ placeFieldAtOffset(CharUnits::Zero());
+ Size = std::max(Size, Info.Size);
+ } else {
+ CharUnits FieldOffset;
+ if (UseExternalLayout) {
+ FieldOffset =
+ Context.toCharUnitsFromBits(External.getExternalFieldOffset(FD));
+ assert(FieldOffset >= Size && "field offset already allocated");
+ } else {
+ FieldOffset = Size.RoundUpToAlignment(Info.Alignment);
+ }
+ placeFieldAtOffset(FieldOffset);
+ Size = FieldOffset + Info.Size;
+ }
+}
+
+void MicrosoftRecordLayoutBuilder::layoutBitField(const FieldDecl *FD) {
+ unsigned Width = FD->getBitWidthValue(Context);
+ if (Width == 0) {
+ layoutZeroWidthBitField(FD);
+ return;
+ }
+ ElementInfo Info = getAdjustedElementInfo(FD);
+ // Clamp the bitfield to a containable size for the sake of being able
+ // to lay them out. Sema will throw an error.
+ if (Width > Context.toBits(Info.Size))
+ Width = Context.toBits(Info.Size);
+ // Check to see if this bitfield fits into an existing allocation. Note:
+ // MSVC refuses to pack bitfields of formal types with different sizes
+ // into the same allocation.
+ if (!IsUnion && LastFieldIsNonZeroWidthBitfield &&
+ CurrentBitfieldSize == Info.Size && Width <= RemainingBitsInField) {
+ placeFieldAtBitOffset(Context.toBits(Size) - RemainingBitsInField);
+ RemainingBitsInField -= Width;
+ return;
+ }
+ LastFieldIsNonZeroWidthBitfield = true;
+ CurrentBitfieldSize = Info.Size;
+ if (IsUnion) {
+ placeFieldAtOffset(CharUnits::Zero());
+ Size = std::max(Size, Info.Size);
+ // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
+ } else {
+ // Allocate a new block of memory and place the bitfield in it.
+ CharUnits FieldOffset = Size.RoundUpToAlignment(Info.Alignment);
+ placeFieldAtOffset(FieldOffset);
+ Size = FieldOffset + Info.Size;
+ Alignment = std::max(Alignment, Info.Alignment);
+ RemainingBitsInField = Context.toBits(Info.Size) - Width;
+ }
+}
+
+void
+MicrosoftRecordLayoutBuilder::layoutZeroWidthBitField(const FieldDecl *FD) {
+ // Zero-width bitfields are ignored unless they follow a non-zero-width
+ // bitfield.
+ if (!LastFieldIsNonZeroWidthBitfield) {
+ placeFieldAtOffset(IsUnion ? CharUnits::Zero() : Size);
+ // TODO: Add a Sema warning that MS ignores alignment for zero
+ // sized bitfields that occur after zero-size bitfields or non-bitfields.
+ return;
+ }
+ LastFieldIsNonZeroWidthBitfield = false;
+ ElementInfo Info = getAdjustedElementInfo(FD);
+ if (IsUnion) {
+ placeFieldAtOffset(CharUnits::Zero());
+ Size = std::max(Size, Info.Size);
+ // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
+ } else {
+ // Round up the current record size to the field's alignment boundary.
+ CharUnits FieldOffset = Size.RoundUpToAlignment(Info.Alignment);
+ placeFieldAtOffset(FieldOffset);
+ Size = FieldOffset;
+ Alignment = std::max(Alignment, Info.Alignment);
+ }
+}
+
+void MicrosoftRecordLayoutBuilder::injectVBPtr(const CXXRecordDecl *RD) {
+ if (!HasVBPtr || SharedVBPtrBase)
+ return;
+ // Inject the VBPointer at the injection site.
+ CharUnits InjectionSite = VBPtrOffset;
+ // But before we do, make sure it's properly aligned.
+ VBPtrOffset = VBPtrOffset.RoundUpToAlignment(PointerInfo.Alignment);
+ // Shift everything after the vbptr down, unless we're using an external
+ // layout.
+ if (UseExternalLayout)
+ return;
+ // Determine where the first field should be laid out after the vbptr.
+ CharUnits FieldStart = VBPtrOffset + PointerInfo.Size;
+ // Make sure that the amount we push the fields back by is a multiple of the
+ // alignment.
+ CharUnits Offset = (FieldStart - InjectionSite).RoundUpToAlignment(
+ std::max(RequiredAlignment, Alignment));
+ Size += Offset;
+ for (uint64_t &FieldOffset : FieldOffsets)
+ FieldOffset += Context.toBits(Offset);
+ for (BaseOffsetsMapTy::value_type &Base : Bases)
+ if (Base.second >= InjectionSite)
+ Base.second += Offset;
+}
+
+void MicrosoftRecordLayoutBuilder::injectVFPtr(const CXXRecordDecl *RD) {
+ if (!HasOwnVFPtr)
+ return;
+ // Make sure that the amount we push the struct back by is a multiple of the
+ // alignment.
+ CharUnits Offset = PointerInfo.Size.RoundUpToAlignment(
+ std::max(RequiredAlignment, Alignment));
+ // Increase the size of the object and push back all fields, the vbptr and all
+ // bases by the offset amount.
+ Size += Offset;
+ for (uint64_t &FieldOffset : FieldOffsets)
+ FieldOffset += Context.toBits(Offset);
+ if (HasVBPtr)
+ VBPtrOffset += Offset;
+ for (BaseOffsetsMapTy::value_type &Base : Bases)
+ Base.second += Offset;
+}
+
+void MicrosoftRecordLayoutBuilder::layoutVirtualBases(const CXXRecordDecl *RD) {
+ if (!HasVBPtr)
+ return;
+ // Vtordisps are always 4 bytes (even in 64-bit mode)
+ CharUnits VtorDispSize = CharUnits::fromQuantity(4);
+ CharUnits VtorDispAlignment = VtorDispSize;
+ // vtordisps respect pragma pack.
+ if (!MaxFieldAlignment.isZero())
+ VtorDispAlignment = std::min(VtorDispAlignment, MaxFieldAlignment);
+ // The alignment of the vtordisp is at least the required alignment of the
+ // entire record. This requirement may be present to support vtordisp
+ // injection.
+ for (const CXXBaseSpecifier &VBase : RD->vbases()) {
+ const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
+ const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
+ RequiredAlignment =
+ std::max(RequiredAlignment, BaseLayout.getRequiredAlignment());
+ }
+ VtorDispAlignment = std::max(VtorDispAlignment, RequiredAlignment);
+ // Compute the vtordisp set.
+ llvm::SmallPtrSet<const CXXRecordDecl *, 2> HasVtorDispSet;
+ computeVtorDispSet(HasVtorDispSet, RD);
+ // Iterate through the virtual bases and lay them out.
+ const ASTRecordLayout *PreviousBaseLayout = nullptr;
+ for (const CXXBaseSpecifier &VBase : RD->vbases()) {
+ const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
+ const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
+ bool HasVtordisp = HasVtorDispSet.count(BaseDecl) > 0;
+ // Insert padding between two bases if the left first one is zero sized or
+ // contains a zero sized subobject and the right is zero sized or one leads
+ // with a zero sized base. The padding between virtual bases is 4
+ // bytes (in both 32 and 64 bits modes) and always involves rounding up to
+ // the required alignment, we don't know why.
+ if ((PreviousBaseLayout && PreviousBaseLayout->hasZeroSizedSubObject() &&
+ BaseLayout.leadsWithZeroSizedBase()) || HasVtordisp) {
+ Size = Size.RoundUpToAlignment(VtorDispAlignment) + VtorDispSize;
+ Alignment = std::max(VtorDispAlignment, Alignment);
+ }
+ // Insert the virtual base.
+ ElementInfo Info = getAdjustedElementInfo(BaseLayout);
+ CharUnits BaseOffset;
+
+ // Respect the external AST source base offset, if present.
+ bool FoundBase = false;
+ if (UseExternalLayout) {
+ FoundBase = External.getExternalVBaseOffset(BaseDecl, BaseOffset);
+ if (FoundBase)
+ assert(BaseOffset >= Size && "base offset already allocated");
+ }
+ if (!FoundBase)
+ BaseOffset = Size.RoundUpToAlignment(Info.Alignment);
+
+ VBases.insert(std::make_pair(BaseDecl,
+ ASTRecordLayout::VBaseInfo(BaseOffset, HasVtordisp)));
+ Size = BaseOffset + BaseLayout.getNonVirtualSize();
+ PreviousBaseLayout = &BaseLayout;
+ }
+}
+
+void MicrosoftRecordLayoutBuilder::finalizeLayout(const RecordDecl *RD) {
+ // Respect required alignment. Note that in 32-bit mode Required alignment
+ // may be 0 and cause size not to be updated.
+ DataSize = Size;
+ if (!RequiredAlignment.isZero()) {
+ Alignment = std::max(Alignment, RequiredAlignment);
+ auto RoundingAlignment = Alignment;
+ if (!MaxFieldAlignment.isZero())
+ RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
+ RoundingAlignment = std::max(RoundingAlignment, RequiredAlignment);
+ Size = Size.RoundUpToAlignment(RoundingAlignment);
+ }
+ if (Size.isZero()) {
+ EndsWithZeroSizedObject = true;
+ LeadsWithZeroSizedBase = true;
+ // Zero-sized structures have size equal to their alignment if a
+ // __declspec(align) came into play.
+ if (RequiredAlignment >= MinEmptyStructSize)
+ Size = Alignment;
+ else
+ Size = MinEmptyStructSize;
+ }
+
+ if (UseExternalLayout) {
+ Size = Context.toCharUnitsFromBits(External.Size);
+ if (External.Align)
+ Alignment = Context.toCharUnitsFromBits(External.Align);
+ }
+}
+
+// Recursively walks the non-virtual bases of a class and determines if any of
+// them are in the bases with overridden methods set.
+static bool
+RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl *> &
+ BasesWithOverriddenMethods,
+ const CXXRecordDecl *RD) {
+ if (BasesWithOverriddenMethods.count(RD))
+ return true;
+ // If any of a virtual bases non-virtual bases (recursively) requires a
+ // vtordisp than so does this virtual base.
+ for (const CXXBaseSpecifier &Base : RD->bases())
+ if (!Base.isVirtual() &&
+ RequiresVtordisp(BasesWithOverriddenMethods,
+ Base.getType()->getAsCXXRecordDecl()))
+ return true;
+ return false;
+}
+
+void MicrosoftRecordLayoutBuilder::computeVtorDispSet(
+ llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtordispSet,
+ const CXXRecordDecl *RD) const {
+ // /vd2 or #pragma vtordisp(2): Always use vtordisps for virtual bases with
+ // vftables.
+ if (RD->getMSVtorDispMode() == MSVtorDispAttr::ForVFTable) {
+ for (const CXXBaseSpecifier &Base : RD->vbases()) {
+ const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
+ if (Layout.hasExtendableVFPtr())
+ HasVtordispSet.insert(BaseDecl);
+ }
+ return;
+ }
+
+ // If any of our bases need a vtordisp for this type, so do we. Check our
+ // direct bases for vtordisp requirements.
+ for (const CXXBaseSpecifier &Base : RD->bases()) {
+ const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
+ for (const auto &bi : Layout.getVBaseOffsetsMap())
+ if (bi.second.hasVtorDisp())
+ HasVtordispSet.insert(bi.first);
+ }
+ // We don't introduce any additional vtordisps if either:
+ // * A user declared constructor or destructor aren't declared.
+ // * #pragma vtordisp(0) or the /vd0 flag are in use.
+ if ((!RD->hasUserDeclaredConstructor() && !RD->hasUserDeclaredDestructor()) ||
+ RD->getMSVtorDispMode() == MSVtorDispAttr::Never)
+ return;
+ // /vd1 or #pragma vtordisp(1): Try to guess based on whether we think it's
+ // possible for a partially constructed object with virtual base overrides to
+ // escape a non-trivial constructor.
+ assert(RD->getMSVtorDispMode() == MSVtorDispAttr::ForVBaseOverride);
+ // Compute a set of base classes which define methods we override. A virtual
+ // base in this set will require a vtordisp. A virtual base that transitively
+ // contains one of these bases as a non-virtual base will also require a
+ // vtordisp.
+ llvm::SmallPtrSet<const CXXMethodDecl *, 8> Work;
+ llvm::SmallPtrSet<const CXXRecordDecl *, 2> BasesWithOverriddenMethods;
+ // Seed the working set with our non-destructor, non-pure virtual methods.
+ for (const CXXMethodDecl *MD : RD->methods())
+ if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD) && !MD->isPure())
+ Work.insert(MD);
+ while (!Work.empty()) {
+ const CXXMethodDecl *MD = *Work.begin();
+ CXXMethodDecl::method_iterator i = MD->begin_overridden_methods(),
+ e = MD->end_overridden_methods();
+ // If a virtual method has no-overrides it lives in its parent's vtable.
+ if (i == e)
+ BasesWithOverriddenMethods.insert(MD->getParent());
+ else
+ Work.insert(i, e);
+ // We've finished processing this element, remove it from the working set.
+ Work.erase(MD);
+ }
+ // For each of our virtual bases, check if it is in the set of overridden
+ // bases or if it transitively contains a non-virtual base that is.
+ for (const CXXBaseSpecifier &Base : RD->vbases()) {
+ const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
+ if (!HasVtordispSet.count(BaseDecl) &&
+ RequiresVtordisp(BasesWithOverriddenMethods, BaseDecl))
+ HasVtordispSet.insert(BaseDecl);
+ }
+}
+
+/// \brief Get or compute information about the layout of the specified record
+/// (struct/union/class), which indicates its size and field position
+/// information.
+const ASTRecordLayout *
+ASTContext::BuildMicrosoftASTRecordLayout(const RecordDecl *D) const {
+ MicrosoftRecordLayoutBuilder Builder(*this);
+ if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
+ Builder.cxxLayout(RD);
+ return new (*this) ASTRecordLayout(
+ *this, Builder.Size, Builder.Alignment, Builder.RequiredAlignment,
+ Builder.HasOwnVFPtr,
+ Builder.HasOwnVFPtr || Builder.PrimaryBase,
+ Builder.VBPtrOffset, Builder.NonVirtualSize, Builder.FieldOffsets.data(),
+ Builder.FieldOffsets.size(), Builder.NonVirtualSize,
+ Builder.Alignment, CharUnits::Zero(), Builder.PrimaryBase,
+ false, Builder.SharedVBPtrBase,
+ Builder.EndsWithZeroSizedObject, Builder.LeadsWithZeroSizedBase,
+ Builder.Bases, Builder.VBases);
+ } else {
+ Builder.layout(D);
+ return new (*this) ASTRecordLayout(
+ *this, Builder.Size, Builder.Alignment, Builder.RequiredAlignment,
+ Builder.Size, Builder.FieldOffsets.data(), Builder.FieldOffsets.size());
+ }
+}
+
+/// getASTRecordLayout - Get or compute information about the layout of the
+/// specified record (struct/union/class), which indicates its size and field
+/// position information.
+const ASTRecordLayout &
+ASTContext::getASTRecordLayout(const RecordDecl *D) const {
+ // These asserts test different things. A record has a definition
+ // as soon as we begin to parse the definition. That definition is
+ // not a complete definition (which is what isDefinition() tests)
+ // until we *finish* parsing the definition.
+
+ if (D->hasExternalLexicalStorage() && !D->getDefinition())
+ getExternalSource()->CompleteType(const_cast<RecordDecl*>(D));
+
+ D = D->getDefinition();
+ assert(D && "Cannot get layout of forward declarations!");
+ assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!");
+ assert(D->isCompleteDefinition() && "Cannot layout type before complete!");
+
+ // Look up this layout, if already laid out, return what we have.
+ // Note that we can't save a reference to the entry because this function
+ // is recursive.
+ const ASTRecordLayout *Entry = ASTRecordLayouts[D];
+ if (Entry) return *Entry;
+
+ const ASTRecordLayout *NewEntry = nullptr;
+
+ if (isMsLayout(D)) {
+ NewEntry = BuildMicrosoftASTRecordLayout(D);
+ } else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
+ EmptySubobjectMap EmptySubobjects(*this, RD);
+ RecordLayoutBuilder Builder(*this, &EmptySubobjects);
+ Builder.Layout(RD);
+
+ // In certain situations, we are allowed to lay out objects in the
+ // tail-padding of base classes. This is ABI-dependent.
+ // FIXME: this should be stored in the record layout.
+ bool skipTailPadding =
+ mustSkipTailPadding(getTargetInfo().getCXXABI(), cast<CXXRecordDecl>(D));
+
+ // FIXME: This should be done in FinalizeLayout.
+ CharUnits DataSize =
+ skipTailPadding ? Builder.getSize() : Builder.getDataSize();
+ CharUnits NonVirtualSize =
+ skipTailPadding ? DataSize : Builder.NonVirtualSize;
+ NewEntry =
+ new (*this) ASTRecordLayout(*this, Builder.getSize(),
+ Builder.Alignment,
+ /*RequiredAlignment : used by MS-ABI)*/
+ Builder.Alignment,
+ Builder.HasOwnVFPtr,
+ RD->isDynamicClass(),
+ CharUnits::fromQuantity(-1),
+ DataSize,
+ Builder.FieldOffsets.data(),
+ Builder.FieldOffsets.size(),
+ NonVirtualSize,
+ Builder.NonVirtualAlignment,
+ EmptySubobjects.SizeOfLargestEmptySubobject,
+ Builder.PrimaryBase,
+ Builder.PrimaryBaseIsVirtual,
+ nullptr, false, false,
+ Builder.Bases, Builder.VBases);
+ } else {
+ RecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
+ Builder.Layout(D);
+
+ NewEntry =
+ new (*this) ASTRecordLayout(*this, Builder.getSize(),
+ Builder.Alignment,
+ /*RequiredAlignment : used by MS-ABI)*/
+ Builder.Alignment,
+ Builder.getSize(),
+ Builder.FieldOffsets.data(),
+ Builder.FieldOffsets.size());
+ }
+
+ ASTRecordLayouts[D] = NewEntry;
+
+ if (getLangOpts().DumpRecordLayouts) {
+ llvm::outs() << "\n*** Dumping AST Record Layout\n";
+ DumpRecordLayout(D, llvm::outs(), getLangOpts().DumpRecordLayoutsSimple);
+ }
+
+ return *NewEntry;
+}
+
+const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) {
+ if (!getTargetInfo().getCXXABI().hasKeyFunctions())
+ return nullptr;
+
+ assert(RD->getDefinition() && "Cannot get key function for forward decl!");
+ RD = cast<CXXRecordDecl>(RD->getDefinition());
+
+ // Beware:
+ // 1) computing the key function might trigger deserialization, which might
+ // invalidate iterators into KeyFunctions
+ // 2) 'get' on the LazyDeclPtr might also trigger deserialization and
+ // invalidate the LazyDeclPtr within the map itself
+ LazyDeclPtr Entry = KeyFunctions[RD];
+ const Decl *Result =
+ Entry ? Entry.get(getExternalSource()) : computeKeyFunction(*this, RD);
+
+ // Store it back if it changed.
+ if (Entry.isOffset() || Entry.isValid() != bool(Result))
+ KeyFunctions[RD] = const_cast<Decl*>(Result);
+
+ return cast_or_null<CXXMethodDecl>(Result);
+}
+
+void ASTContext::setNonKeyFunction(const CXXMethodDecl *Method) {
+ assert(Method == Method->getFirstDecl() &&
+ "not working with method declaration from class definition");
+
+ // Look up the cache entry. Since we're working with the first
+ // declaration, its parent must be the class definition, which is
+ // the correct key for the KeyFunctions hash.
+ const auto &Map = KeyFunctions;
+ auto I = Map.find(Method->getParent());
+
+ // If it's not cached, there's nothing to do.
+ if (I == Map.end()) return;
+
+ // If it is cached, check whether it's the target method, and if so,
+ // remove it from the cache. Note, the call to 'get' might invalidate
+ // the iterator and the LazyDeclPtr object within the map.
+ LazyDeclPtr Ptr = I->second;
+ if (Ptr.get(getExternalSource()) == Method) {
+ // FIXME: remember that we did this for module / chained PCH state?
+ KeyFunctions.erase(Method->getParent());
+ }
+}
+
+static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) {
+ const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent());
+ return Layout.getFieldOffset(FD->getFieldIndex());
+}
+
+uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const {
+ uint64_t OffsetInBits;
+ if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
+ OffsetInBits = ::getFieldOffset(*this, FD);
+ } else {
+ const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD);
+
+ OffsetInBits = 0;
+ for (const NamedDecl *ND : IFD->chain())
+ OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(ND));
+ }
+
+ return OffsetInBits;
+}
+
+/// getObjCLayout - Get or compute information about the layout of the
+/// given interface.
+///
+/// \param Impl - If given, also include the layout of the interface's
+/// implementation. This may differ by including synthesized ivars.
+const ASTRecordLayout &
+ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
+ const ObjCImplementationDecl *Impl) const {
+ // Retrieve the definition
+ if (D->hasExternalLexicalStorage() && !D->getDefinition())
+ getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D));
+ D = D->getDefinition();
+ assert(D && D->isThisDeclarationADefinition() && "Invalid interface decl!");
+
+ // Look up this layout, if already laid out, return what we have.
+ const ObjCContainerDecl *Key =
+ Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D;
+ if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
+ return *Entry;
+
+ // Add in synthesized ivar count if laying out an implementation.
+ if (Impl) {
+ unsigned SynthCount = CountNonClassIvars(D);
+ // If there aren't any sythesized ivars then reuse the interface
+ // entry. Note we can't cache this because we simply free all
+ // entries later; however we shouldn't look up implementations
+ // frequently.
+ if (SynthCount == 0)
+ return getObjCLayout(D, nullptr);
+ }
+
+ RecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
+ Builder.Layout(D);
+
+ const ASTRecordLayout *NewEntry =
+ new (*this) ASTRecordLayout(*this, Builder.getSize(),
+ Builder.Alignment,
+ /*RequiredAlignment : used by MS-ABI)*/
+ Builder.Alignment,
+ Builder.getDataSize(),
+ Builder.FieldOffsets.data(),
+ Builder.FieldOffsets.size());
+
+ ObjCLayouts[Key] = NewEntry;
+
+ return *NewEntry;
+}
+
+static void PrintOffset(raw_ostream &OS,
+ CharUnits Offset, unsigned IndentLevel) {
+ OS << llvm::format("%4" PRId64 " | ", (int64_t)Offset.getQuantity());
+ OS.indent(IndentLevel * 2);
+}
+
+static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) {
+ OS << " | ";
+ OS.indent(IndentLevel * 2);
+}
+
+static void DumpCXXRecordLayout(raw_ostream &OS,
+ const CXXRecordDecl *RD, const ASTContext &C,
+ CharUnits Offset,
+ unsigned IndentLevel,
+ const char* Description,
+ bool IncludeVirtualBases) {
+ const ASTRecordLayout &Layout = C.getASTRecordLayout(RD);
+
+ PrintOffset(OS, Offset, IndentLevel);
+ OS << C.getTypeDeclType(const_cast<CXXRecordDecl *>(RD)).getAsString();
+ if (Description)
+ OS << ' ' << Description;
+ if (RD->isEmpty())
+ OS << " (empty)";
+ OS << '\n';
+
+ IndentLevel++;
+
+ const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
+ bool HasOwnVFPtr = Layout.hasOwnVFPtr();
+ bool HasOwnVBPtr = Layout.hasOwnVBPtr();
+
+ // Vtable pointer.
+ if (RD->isDynamicClass() && !PrimaryBase && !isMsLayout(RD)) {
+ PrintOffset(OS, Offset, IndentLevel);
+ OS << '(' << *RD << " vtable pointer)\n";
+ } else if (HasOwnVFPtr) {
+ PrintOffset(OS, Offset, IndentLevel);
+ // vfptr (for Microsoft C++ ABI)
+ OS << '(' << *RD << " vftable pointer)\n";
+ }
+
+ // Collect nvbases.
+ SmallVector<const CXXRecordDecl *, 4> Bases;
+ for (const CXXBaseSpecifier &Base : RD->bases()) {
+ assert(!Base.getType()->isDependentType() &&
+ "Cannot layout class with dependent bases.");
+ if (!Base.isVirtual())
+ Bases.push_back(Base.getType()->getAsCXXRecordDecl());
+ }
+
+ // Sort nvbases by offset.
+ std::stable_sort(Bases.begin(), Bases.end(),
+ [&](const CXXRecordDecl *L, const CXXRecordDecl *R) {
+ return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R);
+ });
+
+ // Dump (non-virtual) bases
+ for (const CXXRecordDecl *Base : Bases) {
+ CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base);
+ DumpCXXRecordLayout(OS, Base, C, BaseOffset, IndentLevel,
+ Base == PrimaryBase ? "(primary base)" : "(base)",
+ /*IncludeVirtualBases=*/false);
+ }
+
+ // vbptr (for Microsoft C++ ABI)
+ if (HasOwnVBPtr) {
+ PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel);
+ OS << '(' << *RD << " vbtable pointer)\n";
+ }
+
+ // Dump fields.
+ uint64_t FieldNo = 0;
+ for (CXXRecordDecl::field_iterator I = RD->field_begin(),
+ E = RD->field_end(); I != E; ++I, ++FieldNo) {
+ const FieldDecl &Field = **I;
+ CharUnits FieldOffset = Offset +
+ C.toCharUnitsFromBits(Layout.getFieldOffset(FieldNo));
+
+ if (const CXXRecordDecl *D = Field.getType()->getAsCXXRecordDecl()) {
+ DumpCXXRecordLayout(OS, D, C, FieldOffset, IndentLevel,
+ Field.getName().data(),
+ /*IncludeVirtualBases=*/true);
+ continue;
+ }
+
+ PrintOffset(OS, FieldOffset, IndentLevel);
+ OS << Field.getType().getAsString() << ' ' << Field << '\n';
+ }
+
+ if (!IncludeVirtualBases)
+ return;
+
+ // Dump virtual bases.
+ const ASTRecordLayout::VBaseOffsetsMapTy &vtordisps =
+ Layout.getVBaseOffsetsMap();
+ for (const CXXBaseSpecifier &Base : RD->vbases()) {
+ assert(Base.isVirtual() && "Found non-virtual class!");
+ const CXXRecordDecl *VBase = Base.getType()->getAsCXXRecordDecl();
+
+ CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase);
+
+ if (vtordisps.find(VBase)->second.hasVtorDisp()) {
+ PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel);
+ OS << "(vtordisp for vbase " << *VBase << ")\n";
+ }
+
+ DumpCXXRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel,
+ VBase == PrimaryBase ?
+ "(primary virtual base)" : "(virtual base)",
+ /*IncludeVirtualBases=*/false);
+ }
+
+ PrintIndentNoOffset(OS, IndentLevel - 1);
+ OS << "[sizeof=" << Layout.getSize().getQuantity();
+ if (!isMsLayout(RD))
+ OS << ", dsize=" << Layout.getDataSize().getQuantity();
+ OS << ", align=" << Layout.getAlignment().getQuantity() << '\n';
+
+ PrintIndentNoOffset(OS, IndentLevel - 1);
+ OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity();
+ OS << ", nvalign=" << Layout.getNonVirtualAlignment().getQuantity() << "]\n";
+}
+
+void ASTContext::DumpRecordLayout(const RecordDecl *RD,
+ raw_ostream &OS,
+ bool Simple) const {
+ const ASTRecordLayout &Info = getASTRecordLayout(RD);
+
+ if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
+ if (!Simple)
+ return DumpCXXRecordLayout(OS, CXXRD, *this, CharUnits(), 0, nullptr,
+ /*IncludeVirtualBases=*/true);
+
+ OS << "Type: " << getTypeDeclType(RD).getAsString() << "\n";
+ if (!Simple) {
+ OS << "Record: ";
+ RD->dump();
+ }
+ OS << "\nLayout: ";
+ OS << "<ASTRecordLayout\n";
+ OS << " Size:" << toBits(Info.getSize()) << "\n";
+ if (!isMsLayout(RD))
+ OS << " DataSize:" << toBits(Info.getDataSize()) << "\n";
+ OS << " Alignment:" << toBits(Info.getAlignment()) << "\n";
+ OS << " FieldOffsets: [";
+ for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) {
+ if (i) OS << ", ";
+ OS << Info.getFieldOffset(i);
+ }
+ OS << "]>\n";
+}
diff --git a/contrib/llvm/tools/clang/lib/AST/SelectorLocationsKind.cpp b/contrib/llvm/tools/clang/lib/AST/SelectorLocationsKind.cpp
new file mode 100644
index 0000000..671207a
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/SelectorLocationsKind.cpp
@@ -0,0 +1,128 @@
+//===--- SelectorLocationsKind.cpp - Kind of selector locations -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Describes whether the identifier locations for a selector are "standard"
+// or not.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/SelectorLocationsKind.h"
+#include "clang/AST/Expr.h"
+
+using namespace clang;
+
+static SourceLocation getStandardSelLoc(unsigned Index,
+ Selector Sel,
+ bool WithArgSpace,
+ SourceLocation ArgLoc,
+ SourceLocation EndLoc) {
+ unsigned NumSelArgs = Sel.getNumArgs();
+ if (NumSelArgs == 0) {
+ assert(Index == 0);
+ if (EndLoc.isInvalid())
+ return SourceLocation();
+ IdentifierInfo *II = Sel.getIdentifierInfoForSlot(0);
+ unsigned Len = II ? II->getLength() : 0;
+ return EndLoc.getLocWithOffset(-Len);
+ }
+
+ assert(Index < NumSelArgs);
+ if (ArgLoc.isInvalid())
+ return SourceLocation();
+ IdentifierInfo *II = Sel.getIdentifierInfoForSlot(Index);
+ unsigned Len = /* selector id */ (II ? II->getLength() : 0) + /* ':' */ 1;
+ if (WithArgSpace)
+ ++Len;
+ return ArgLoc.getLocWithOffset(-Len);
+}
+
+namespace {
+
+template <typename T>
+SourceLocation getArgLoc(T* Arg);
+
+template <>
+SourceLocation getArgLoc<Expr>(Expr *Arg) {
+ return Arg->getLocStart();
+}
+
+template <>
+SourceLocation getArgLoc<ParmVarDecl>(ParmVarDecl *Arg) {
+ SourceLocation Loc = Arg->getLocStart();
+ if (Loc.isInvalid())
+ return Loc;
+ // -1 to point to left paren of the method parameter's type.
+ return Loc.getLocWithOffset(-1);
+}
+
+template <typename T>
+SourceLocation getArgLoc(unsigned Index, ArrayRef<T*> Args) {
+ return Index < Args.size() ? getArgLoc(Args[Index]) : SourceLocation();
+}
+
+template <typename T>
+SelectorLocationsKind hasStandardSelLocs(Selector Sel,
+ ArrayRef<SourceLocation> SelLocs,
+ ArrayRef<T *> Args,
+ SourceLocation EndLoc) {
+ // Are selector locations in standard position with no space between args ?
+ unsigned i;
+ for (i = 0; i != SelLocs.size(); ++i) {
+ if (SelLocs[i] != getStandardSelectorLoc(i, Sel, /*WithArgSpace=*/false,
+ Args, EndLoc))
+ break;
+ }
+ if (i == SelLocs.size())
+ return SelLoc_StandardNoSpace;
+
+ // Are selector locations in standard position with space between args ?
+ for (i = 0; i != SelLocs.size(); ++i) {
+ if (SelLocs[i] != getStandardSelectorLoc(i, Sel, /*WithArgSpace=*/true,
+ Args, EndLoc))
+ return SelLoc_NonStandard;
+ }
+
+ return SelLoc_StandardWithSpace;
+}
+
+} // anonymous namespace
+
+SelectorLocationsKind
+clang::hasStandardSelectorLocs(Selector Sel,
+ ArrayRef<SourceLocation> SelLocs,
+ ArrayRef<Expr *> Args,
+ SourceLocation EndLoc) {
+ return hasStandardSelLocs(Sel, SelLocs, Args, EndLoc);
+}
+
+SourceLocation clang::getStandardSelectorLoc(unsigned Index,
+ Selector Sel,
+ bool WithArgSpace,
+ ArrayRef<Expr *> Args,
+ SourceLocation EndLoc) {
+ return getStandardSelLoc(Index, Sel, WithArgSpace,
+ getArgLoc(Index, Args), EndLoc);
+}
+
+SelectorLocationsKind
+clang::hasStandardSelectorLocs(Selector Sel,
+ ArrayRef<SourceLocation> SelLocs,
+ ArrayRef<ParmVarDecl *> Args,
+ SourceLocation EndLoc) {
+ return hasStandardSelLocs(Sel, SelLocs, Args, EndLoc);
+}
+
+SourceLocation clang::getStandardSelectorLoc(unsigned Index,
+ Selector Sel,
+ bool WithArgSpace,
+ ArrayRef<ParmVarDecl *> Args,
+ SourceLocation EndLoc) {
+ return getStandardSelLoc(Index, Sel, WithArgSpace,
+ getArgLoc(Index, Args), EndLoc);
+}
diff --git a/contrib/llvm/tools/clang/lib/AST/Stmt.cpp b/contrib/llvm/tools/clang/lib/AST/Stmt.cpp
new file mode 100644
index 0000000..6baa99b
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/Stmt.cpp
@@ -0,0 +1,2168 @@
+//===--- Stmt.cpp - Statement AST Node Implementation ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Stmt class and statement subclasses.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTDiagnostic.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/AST/Stmt.h"
+#include "clang/AST/StmtCXX.h"
+#include "clang/AST/StmtObjC.h"
+#include "clang/AST/StmtOpenMP.h"
+#include "clang/AST/Type.h"
+#include "clang/Basic/CharInfo.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Lex/Token.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace clang;
+
+static struct StmtClassNameTable {
+ const char *Name;
+ unsigned Counter;
+ unsigned Size;
+} StmtClassInfo[Stmt::lastStmtConstant+1];
+
+static StmtClassNameTable &getStmtInfoTableEntry(Stmt::StmtClass E) {
+ static bool Initialized = false;
+ if (Initialized)
+ return StmtClassInfo[E];
+
+ // Intialize the table on the first use.
+ Initialized = true;
+#define ABSTRACT_STMT(STMT)
+#define STMT(CLASS, PARENT) \
+ StmtClassInfo[(unsigned)Stmt::CLASS##Class].Name = #CLASS; \
+ StmtClassInfo[(unsigned)Stmt::CLASS##Class].Size = sizeof(CLASS);
+#include "clang/AST/StmtNodes.inc"
+
+ return StmtClassInfo[E];
+}
+
+void *Stmt::operator new(size_t bytes, const ASTContext& C,
+ unsigned alignment) {
+ return ::operator new(bytes, C, alignment);
+}
+
+const char *Stmt::getStmtClassName() const {
+ return getStmtInfoTableEntry((StmtClass) StmtBits.sClass).Name;
+}
+
+void Stmt::PrintStats() {
+ // Ensure the table is primed.
+ getStmtInfoTableEntry(Stmt::NullStmtClass);
+
+ unsigned sum = 0;
+ llvm::errs() << "\n*** Stmt/Expr Stats:\n";
+ for (int i = 0; i != Stmt::lastStmtConstant+1; i++) {
+ if (StmtClassInfo[i].Name == nullptr) continue;
+ sum += StmtClassInfo[i].Counter;
+ }
+ llvm::errs() << " " << sum << " stmts/exprs total.\n";
+ sum = 0;
+ for (int i = 0; i != Stmt::lastStmtConstant+1; i++) {
+ if (StmtClassInfo[i].Name == nullptr) continue;
+ if (StmtClassInfo[i].Counter == 0) continue;
+ llvm::errs() << " " << StmtClassInfo[i].Counter << " "
+ << StmtClassInfo[i].Name << ", " << StmtClassInfo[i].Size
+ << " each (" << StmtClassInfo[i].Counter*StmtClassInfo[i].Size
+ << " bytes)\n";
+ sum += StmtClassInfo[i].Counter*StmtClassInfo[i].Size;
+ }
+
+ llvm::errs() << "Total bytes = " << sum << "\n";
+}
+
+void Stmt::addStmtClass(StmtClass s) {
+ ++getStmtInfoTableEntry(s).Counter;
+}
+
+bool Stmt::StatisticsEnabled = false;
+void Stmt::EnableStatistics() {
+ StatisticsEnabled = true;
+}
+
+Stmt *Stmt::IgnoreImplicit() {
+ Stmt *s = this;
+
+ if (auto *ewc = dyn_cast<ExprWithCleanups>(s))
+ s = ewc->getSubExpr();
+
+ if (auto *mte = dyn_cast<MaterializeTemporaryExpr>(s))
+ s = mte->GetTemporaryExpr();
+
+ if (auto *bte = dyn_cast<CXXBindTemporaryExpr>(s))
+ s = bte->getSubExpr();
+
+ while (auto *ice = dyn_cast<ImplicitCastExpr>(s))
+ s = ice->getSubExpr();
+
+ return s;
+}
+
+/// \brief Skip no-op (attributed, compound) container stmts and skip captured
+/// stmt at the top, if \a IgnoreCaptured is true.
+Stmt *Stmt::IgnoreContainers(bool IgnoreCaptured) {
+ Stmt *S = this;
+ if (IgnoreCaptured)
+ if (auto CapS = dyn_cast_or_null<CapturedStmt>(S))
+ S = CapS->getCapturedStmt();
+ while (true) {
+ if (auto AS = dyn_cast_or_null<AttributedStmt>(S))
+ S = AS->getSubStmt();
+ else if (auto CS = dyn_cast_or_null<CompoundStmt>(S)) {
+ if (CS->size() != 1)
+ break;
+ S = CS->body_back();
+ } else
+ break;
+ }
+ return S;
+}
+
+/// \brief Strip off all label-like statements.
+///
+/// This will strip off label statements, case statements, attributed
+/// statements and default statements recursively.
+const Stmt *Stmt::stripLabelLikeStatements() const {
+ const Stmt *S = this;
+ while (true) {
+ if (const LabelStmt *LS = dyn_cast<LabelStmt>(S))
+ S = LS->getSubStmt();
+ else if (const SwitchCase *SC = dyn_cast<SwitchCase>(S))
+ S = SC->getSubStmt();
+ else if (const AttributedStmt *AS = dyn_cast<AttributedStmt>(S))
+ S = AS->getSubStmt();
+ else
+ return S;
+ }
+}
+
+namespace {
+ struct good {};
+ struct bad {};
+
+ // These silly little functions have to be static inline to suppress
+ // unused warnings, and they have to be defined to suppress other
+ // warnings.
+ static inline good is_good(good) { return good(); }
+
+ typedef Stmt::child_range children_t();
+ template <class T> good implements_children(children_t T::*) {
+ return good();
+ }
+ LLVM_ATTRIBUTE_UNUSED
+ static inline bad implements_children(children_t Stmt::*) {
+ return bad();
+ }
+
+ typedef SourceLocation getLocStart_t() const;
+ template <class T> good implements_getLocStart(getLocStart_t T::*) {
+ return good();
+ }
+ LLVM_ATTRIBUTE_UNUSED
+ static inline bad implements_getLocStart(getLocStart_t Stmt::*) {
+ return bad();
+ }
+
+ typedef SourceLocation getLocEnd_t() const;
+ template <class T> good implements_getLocEnd(getLocEnd_t T::*) {
+ return good();
+ }
+ LLVM_ATTRIBUTE_UNUSED
+ static inline bad implements_getLocEnd(getLocEnd_t Stmt::*) {
+ return bad();
+ }
+
+#define ASSERT_IMPLEMENTS_children(type) \
+ (void) is_good(implements_children(&type::children))
+#define ASSERT_IMPLEMENTS_getLocStart(type) \
+ (void) is_good(implements_getLocStart(&type::getLocStart))
+#define ASSERT_IMPLEMENTS_getLocEnd(type) \
+ (void) is_good(implements_getLocEnd(&type::getLocEnd))
+}
+
+/// Check whether the various Stmt classes implement their member
+/// functions.
+LLVM_ATTRIBUTE_UNUSED
+static inline void check_implementations() {
+#define ABSTRACT_STMT(type)
+#define STMT(type, base) \
+ ASSERT_IMPLEMENTS_children(type); \
+ ASSERT_IMPLEMENTS_getLocStart(type); \
+ ASSERT_IMPLEMENTS_getLocEnd(type);
+#include "clang/AST/StmtNodes.inc"
+}
+
+Stmt::child_range Stmt::children() {
+ switch (getStmtClass()) {
+ case Stmt::NoStmtClass: llvm_unreachable("statement without class");
+#define ABSTRACT_STMT(type)
+#define STMT(type, base) \
+ case Stmt::type##Class: \
+ return static_cast<type*>(this)->children();
+#include "clang/AST/StmtNodes.inc"
+ }
+ llvm_unreachable("unknown statement kind!");
+}
+
+// Amusing macro metaprogramming hack: check whether a class provides
+// a more specific implementation of getSourceRange.
+//
+// See also Expr.cpp:getExprLoc().
+namespace {
+ /// This implementation is used when a class provides a custom
+ /// implementation of getSourceRange.
+ template <class S, class T>
+ SourceRange getSourceRangeImpl(const Stmt *stmt,
+ SourceRange (T::*v)() const) {
+ return static_cast<const S*>(stmt)->getSourceRange();
+ }
+
+ /// This implementation is used when a class doesn't provide a custom
+ /// implementation of getSourceRange. Overload resolution should pick it over
+ /// the implementation above because it's more specialized according to
+ /// function template partial ordering.
+ template <class S>
+ SourceRange getSourceRangeImpl(const Stmt *stmt,
+ SourceRange (Stmt::*v)() const) {
+ return SourceRange(static_cast<const S*>(stmt)->getLocStart(),
+ static_cast<const S*>(stmt)->getLocEnd());
+ }
+}
+
+SourceRange Stmt::getSourceRange() const {
+ switch (getStmtClass()) {
+ case Stmt::NoStmtClass: llvm_unreachable("statement without class");
+#define ABSTRACT_STMT(type)
+#define STMT(type, base) \
+ case Stmt::type##Class: \
+ return getSourceRangeImpl<type>(this, &type::getSourceRange);
+#include "clang/AST/StmtNodes.inc"
+ }
+ llvm_unreachable("unknown statement kind!");
+}
+
+SourceLocation Stmt::getLocStart() const {
+// llvm::errs() << "getLocStart() for " << getStmtClassName() << "\n";
+ switch (getStmtClass()) {
+ case Stmt::NoStmtClass: llvm_unreachable("statement without class");
+#define ABSTRACT_STMT(type)
+#define STMT(type, base) \
+ case Stmt::type##Class: \
+ return static_cast<const type*>(this)->getLocStart();
+#include "clang/AST/StmtNodes.inc"
+ }
+ llvm_unreachable("unknown statement kind");
+}
+
+SourceLocation Stmt::getLocEnd() const {
+ switch (getStmtClass()) {
+ case Stmt::NoStmtClass: llvm_unreachable("statement without class");
+#define ABSTRACT_STMT(type)
+#define STMT(type, base) \
+ case Stmt::type##Class: \
+ return static_cast<const type*>(this)->getLocEnd();
+#include "clang/AST/StmtNodes.inc"
+ }
+ llvm_unreachable("unknown statement kind");
+}
+
+CompoundStmt::CompoundStmt(const ASTContext &C, ArrayRef<Stmt*> Stmts,
+ SourceLocation LB, SourceLocation RB)
+ : Stmt(CompoundStmtClass), LBraceLoc(LB), RBraceLoc(RB) {
+ CompoundStmtBits.NumStmts = Stmts.size();
+ assert(CompoundStmtBits.NumStmts == Stmts.size() &&
+ "NumStmts doesn't fit in bits of CompoundStmtBits.NumStmts!");
+
+ if (Stmts.size() == 0) {
+ Body = nullptr;
+ return;
+ }
+
+ Body = new (C) Stmt*[Stmts.size()];
+ std::copy(Stmts.begin(), Stmts.end(), Body);
+}
+
+void CompoundStmt::setStmts(const ASTContext &C, Stmt **Stmts,
+ unsigned NumStmts) {
+ if (this->Body)
+ C.Deallocate(Body);
+ this->CompoundStmtBits.NumStmts = NumStmts;
+
+ Body = new (C) Stmt*[NumStmts];
+ memcpy(Body, Stmts, sizeof(Stmt *) * NumStmts);
+}
+
+const char *LabelStmt::getName() const {
+ return getDecl()->getIdentifier()->getNameStart();
+}
+
+AttributedStmt *AttributedStmt::Create(const ASTContext &C, SourceLocation Loc,
+ ArrayRef<const Attr*> Attrs,
+ Stmt *SubStmt) {
+ assert(!Attrs.empty() && "Attrs should not be empty");
+ void *Mem = C.Allocate(sizeof(AttributedStmt) + sizeof(Attr *) * Attrs.size(),
+ llvm::alignOf<AttributedStmt>());
+ return new (Mem) AttributedStmt(Loc, Attrs, SubStmt);
+}
+
+AttributedStmt *AttributedStmt::CreateEmpty(const ASTContext &C,
+ unsigned NumAttrs) {
+ assert(NumAttrs > 0 && "NumAttrs should be greater than zero");
+ void *Mem = C.Allocate(sizeof(AttributedStmt) + sizeof(Attr *) * NumAttrs,
+ llvm::alignOf<AttributedStmt>());
+ return new (Mem) AttributedStmt(EmptyShell(), NumAttrs);
+}
+
+std::string AsmStmt::generateAsmString(const ASTContext &C) const {
+ if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(this))
+ return gccAsmStmt->generateAsmString(C);
+ if (const MSAsmStmt *msAsmStmt = dyn_cast<MSAsmStmt>(this))
+ return msAsmStmt->generateAsmString(C);
+ llvm_unreachable("unknown asm statement kind!");
+}
+
+StringRef AsmStmt::getOutputConstraint(unsigned i) const {
+ if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(this))
+ return gccAsmStmt->getOutputConstraint(i);
+ if (const MSAsmStmt *msAsmStmt = dyn_cast<MSAsmStmt>(this))
+ return msAsmStmt->getOutputConstraint(i);
+ llvm_unreachable("unknown asm statement kind!");
+}
+
+const Expr *AsmStmt::getOutputExpr(unsigned i) const {
+ if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(this))
+ return gccAsmStmt->getOutputExpr(i);
+ if (const MSAsmStmt *msAsmStmt = dyn_cast<MSAsmStmt>(this))
+ return msAsmStmt->getOutputExpr(i);
+ llvm_unreachable("unknown asm statement kind!");
+}
+
+StringRef AsmStmt::getInputConstraint(unsigned i) const {
+ if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(this))
+ return gccAsmStmt->getInputConstraint(i);
+ if (const MSAsmStmt *msAsmStmt = dyn_cast<MSAsmStmt>(this))
+ return msAsmStmt->getInputConstraint(i);
+ llvm_unreachable("unknown asm statement kind!");
+}
+
+const Expr *AsmStmt::getInputExpr(unsigned i) const {
+ if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(this))
+ return gccAsmStmt->getInputExpr(i);
+ if (const MSAsmStmt *msAsmStmt = dyn_cast<MSAsmStmt>(this))
+ return msAsmStmt->getInputExpr(i);
+ llvm_unreachable("unknown asm statement kind!");
+}
+
+StringRef AsmStmt::getClobber(unsigned i) const {
+ if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(this))
+ return gccAsmStmt->getClobber(i);
+ if (const MSAsmStmt *msAsmStmt = dyn_cast<MSAsmStmt>(this))
+ return msAsmStmt->getClobber(i);
+ llvm_unreachable("unknown asm statement kind!");
+}
+
+/// getNumPlusOperands - Return the number of output operands that have a "+"
+/// constraint.
+unsigned AsmStmt::getNumPlusOperands() const {
+ unsigned Res = 0;
+ for (unsigned i = 0, e = getNumOutputs(); i != e; ++i)
+ if (isOutputPlusConstraint(i))
+ ++Res;
+ return Res;
+}
+
+char GCCAsmStmt::AsmStringPiece::getModifier() const {
+ assert(isOperand() && "Only Operands can have modifiers.");
+ return isLetter(Str[0]) ? Str[0] : '\0';
+}
+
+StringRef GCCAsmStmt::getClobber(unsigned i) const {
+ return getClobberStringLiteral(i)->getString();
+}
+
+Expr *GCCAsmStmt::getOutputExpr(unsigned i) {
+ return cast<Expr>(Exprs[i]);
+}
+
+/// getOutputConstraint - Return the constraint string for the specified
+/// output operand. All output constraints are known to be non-empty (either
+/// '=' or '+').
+StringRef GCCAsmStmt::getOutputConstraint(unsigned i) const {
+ return getOutputConstraintLiteral(i)->getString();
+}
+
+Expr *GCCAsmStmt::getInputExpr(unsigned i) {
+ return cast<Expr>(Exprs[i + NumOutputs]);
+}
+void GCCAsmStmt::setInputExpr(unsigned i, Expr *E) {
+ Exprs[i + NumOutputs] = E;
+}
+
+/// getInputConstraint - Return the specified input constraint. Unlike output
+/// constraints, these can be empty.
+StringRef GCCAsmStmt::getInputConstraint(unsigned i) const {
+ return getInputConstraintLiteral(i)->getString();
+}
+
+void GCCAsmStmt::setOutputsAndInputsAndClobbers(const ASTContext &C,
+ IdentifierInfo **Names,
+ StringLiteral **Constraints,
+ Stmt **Exprs,
+ unsigned NumOutputs,
+ unsigned NumInputs,
+ StringLiteral **Clobbers,
+ unsigned NumClobbers) {
+ this->NumOutputs = NumOutputs;
+ this->NumInputs = NumInputs;
+ this->NumClobbers = NumClobbers;
+
+ unsigned NumExprs = NumOutputs + NumInputs;
+
+ C.Deallocate(this->Names);
+ this->Names = new (C) IdentifierInfo*[NumExprs];
+ std::copy(Names, Names + NumExprs, this->Names);
+
+ C.Deallocate(this->Exprs);
+ this->Exprs = new (C) Stmt*[NumExprs];
+ std::copy(Exprs, Exprs + NumExprs, this->Exprs);
+
+ C.Deallocate(this->Constraints);
+ this->Constraints = new (C) StringLiteral*[NumExprs];
+ std::copy(Constraints, Constraints + NumExprs, this->Constraints);
+
+ C.Deallocate(this->Clobbers);
+ this->Clobbers = new (C) StringLiteral*[NumClobbers];
+ std::copy(Clobbers, Clobbers + NumClobbers, this->Clobbers);
+}
+
+/// getNamedOperand - Given a symbolic operand reference like %[foo],
+/// translate this into a numeric value needed to reference the same operand.
+/// This returns -1 if the operand name is invalid.
+int GCCAsmStmt::getNamedOperand(StringRef SymbolicName) const {
+ unsigned NumPlusOperands = 0;
+
+ // Check if this is an output operand.
+ for (unsigned i = 0, e = getNumOutputs(); i != e; ++i) {
+ if (getOutputName(i) == SymbolicName)
+ return i;
+ }
+
+ for (unsigned i = 0, e = getNumInputs(); i != e; ++i)
+ if (getInputName(i) == SymbolicName)
+ return getNumOutputs() + NumPlusOperands + i;
+
+ // Not found.
+ return -1;
+}
+
+/// AnalyzeAsmString - Analyze the asm string of the current asm, decomposing
+/// it into pieces. If the asm string is erroneous, emit errors and return
+/// true, otherwise return false.
+unsigned GCCAsmStmt::AnalyzeAsmString(SmallVectorImpl<AsmStringPiece>&Pieces,
+ const ASTContext &C, unsigned &DiagOffs) const {
+ StringRef Str = getAsmString()->getString();
+ const char *StrStart = Str.begin();
+ const char *StrEnd = Str.end();
+ const char *CurPtr = StrStart;
+
+ // "Simple" inline asms have no constraints or operands, just convert the asm
+ // string to escape $'s.
+ if (isSimple()) {
+ std::string Result;
+ for (; CurPtr != StrEnd; ++CurPtr) {
+ switch (*CurPtr) {
+ case '$':
+ Result += "$$";
+ break;
+ default:
+ Result += *CurPtr;
+ break;
+ }
+ }
+ Pieces.push_back(AsmStringPiece(Result));
+ return 0;
+ }
+
+ // CurStringPiece - The current string that we are building up as we scan the
+ // asm string.
+ std::string CurStringPiece;
+
+ bool HasVariants = !C.getTargetInfo().hasNoAsmVariants();
+
+ while (1) {
+ // Done with the string?
+ if (CurPtr == StrEnd) {
+ if (!CurStringPiece.empty())
+ Pieces.push_back(AsmStringPiece(CurStringPiece));
+ return 0;
+ }
+
+ char CurChar = *CurPtr++;
+ switch (CurChar) {
+ case '$': CurStringPiece += "$$"; continue;
+ case '{': CurStringPiece += (HasVariants ? "$(" : "{"); continue;
+ case '|': CurStringPiece += (HasVariants ? "$|" : "|"); continue;
+ case '}': CurStringPiece += (HasVariants ? "$)" : "}"); continue;
+ case '%':
+ break;
+ default:
+ CurStringPiece += CurChar;
+ continue;
+ }
+
+ // Escaped "%" character in asm string.
+ if (CurPtr == StrEnd) {
+ // % at end of string is invalid (no escape).
+ DiagOffs = CurPtr-StrStart-1;
+ return diag::err_asm_invalid_escape;
+ }
+
+ char EscapedChar = *CurPtr++;
+ if (EscapedChar == '%') { // %% -> %
+ // Escaped percentage sign.
+ CurStringPiece += '%';
+ continue;
+ }
+
+ if (EscapedChar == '=') { // %= -> Generate an unique ID.
+ CurStringPiece += "${:uid}";
+ continue;
+ }
+
+ // Otherwise, we have an operand. If we have accumulated a string so far,
+ // add it to the Pieces list.
+ if (!CurStringPiece.empty()) {
+ Pieces.push_back(AsmStringPiece(CurStringPiece));
+ CurStringPiece.clear();
+ }
+
+ // Handle operands that have asmSymbolicName (e.g., %x[foo]) and those that
+ // don't (e.g., %x4). 'x' following the '%' is the constraint modifier.
+
+ const char *Begin = CurPtr - 1; // Points to the character following '%'.
+ const char *Percent = Begin - 1; // Points to '%'.
+
+ if (isLetter(EscapedChar)) {
+ if (CurPtr == StrEnd) { // Premature end.
+ DiagOffs = CurPtr-StrStart-1;
+ return diag::err_asm_invalid_escape;
+ }
+ EscapedChar = *CurPtr++;
+ }
+
+ const TargetInfo &TI = C.getTargetInfo();
+ const SourceManager &SM = C.getSourceManager();
+ const LangOptions &LO = C.getLangOpts();
+
+ // Handle operands that don't have asmSymbolicName (e.g., %x4).
+ if (isDigit(EscapedChar)) {
+ // %n - Assembler operand n
+ unsigned N = 0;
+
+ --CurPtr;
+ while (CurPtr != StrEnd && isDigit(*CurPtr))
+ N = N*10 + ((*CurPtr++)-'0');
+
+ unsigned NumOperands =
+ getNumOutputs() + getNumPlusOperands() + getNumInputs();
+ if (N >= NumOperands) {
+ DiagOffs = CurPtr-StrStart-1;
+ return diag::err_asm_invalid_operand_number;
+ }
+
+ // Str contains "x4" (Operand without the leading %).
+ std::string Str(Begin, CurPtr - Begin);
+
+ // (BeginLoc, EndLoc) represents the range of the operand we are currently
+ // processing. Unlike Str, the range includes the leading '%'.
+ SourceLocation BeginLoc =
+ getAsmString()->getLocationOfByte(Percent - StrStart, SM, LO, TI);
+ SourceLocation EndLoc =
+ getAsmString()->getLocationOfByte(CurPtr - StrStart, SM, LO, TI);
+
+ Pieces.push_back(AsmStringPiece(N, Str, BeginLoc, EndLoc));
+ continue;
+ }
+
+ // Handle operands that have asmSymbolicName (e.g., %x[foo]).
+ if (EscapedChar == '[') {
+ DiagOffs = CurPtr-StrStart-1;
+
+ // Find the ']'.
+ const char *NameEnd = (const char*)memchr(CurPtr, ']', StrEnd-CurPtr);
+ if (NameEnd == nullptr)
+ return diag::err_asm_unterminated_symbolic_operand_name;
+ if (NameEnd == CurPtr)
+ return diag::err_asm_empty_symbolic_operand_name;
+
+ StringRef SymbolicName(CurPtr, NameEnd - CurPtr);
+
+ int N = getNamedOperand(SymbolicName);
+ if (N == -1) {
+ // Verify that an operand with that name exists.
+ DiagOffs = CurPtr-StrStart;
+ return diag::err_asm_unknown_symbolic_operand_name;
+ }
+
+ // Str contains "x[foo]" (Operand without the leading %).
+ std::string Str(Begin, NameEnd + 1 - Begin);
+
+ // (BeginLoc, EndLoc) represents the range of the operand we are currently
+ // processing. Unlike Str, the range includes the leading '%'.
+ SourceLocation BeginLoc =
+ getAsmString()->getLocationOfByte(Percent - StrStart, SM, LO, TI);
+ SourceLocation EndLoc =
+ getAsmString()->getLocationOfByte(NameEnd + 1 - StrStart, SM, LO, TI);
+
+ Pieces.push_back(AsmStringPiece(N, Str, BeginLoc, EndLoc));
+
+ CurPtr = NameEnd+1;
+ continue;
+ }
+
+ DiagOffs = CurPtr-StrStart-1;
+ return diag::err_asm_invalid_escape;
+ }
+}
+
+/// Assemble final IR asm string (GCC-style).
+std::string GCCAsmStmt::generateAsmString(const ASTContext &C) const {
+ // Analyze the asm string to decompose it into its pieces. We know that Sema
+ // has already done this, so it is guaranteed to be successful.
+ SmallVector<GCCAsmStmt::AsmStringPiece, 4> Pieces;
+ unsigned DiagOffs;
+ AnalyzeAsmString(Pieces, C, DiagOffs);
+
+ std::string AsmString;
+ for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
+ if (Pieces[i].isString())
+ AsmString += Pieces[i].getString();
+ else if (Pieces[i].getModifier() == '\0')
+ AsmString += '$' + llvm::utostr(Pieces[i].getOperandNo());
+ else
+ AsmString += "${" + llvm::utostr(Pieces[i].getOperandNo()) + ':' +
+ Pieces[i].getModifier() + '}';
+ }
+ return AsmString;
+}
+
+/// Assemble final IR asm string (MS-style).
+std::string MSAsmStmt::generateAsmString(const ASTContext &C) const {
+ // FIXME: This needs to be translated into the IR string representation.
+ return AsmStr;
+}
+
+Expr *MSAsmStmt::getOutputExpr(unsigned i) {
+ return cast<Expr>(Exprs[i]);
+}
+
+Expr *MSAsmStmt::getInputExpr(unsigned i) {
+ return cast<Expr>(Exprs[i + NumOutputs]);
+}
+void MSAsmStmt::setInputExpr(unsigned i, Expr *E) {
+ Exprs[i + NumOutputs] = E;
+}
+
+QualType CXXCatchStmt::getCaughtType() const {
+ if (ExceptionDecl)
+ return ExceptionDecl->getType();
+ return QualType();
+}
+
+//===----------------------------------------------------------------------===//
+// Constructors
+//===----------------------------------------------------------------------===//
+
+GCCAsmStmt::GCCAsmStmt(const ASTContext &C, SourceLocation asmloc,
+ bool issimple, bool isvolatile, unsigned numoutputs,
+ unsigned numinputs, IdentifierInfo **names,
+ StringLiteral **constraints, Expr **exprs,
+ StringLiteral *asmstr, unsigned numclobbers,
+ StringLiteral **clobbers, SourceLocation rparenloc)
+ : AsmStmt(GCCAsmStmtClass, asmloc, issimple, isvolatile, numoutputs,
+ numinputs, numclobbers), RParenLoc(rparenloc), AsmStr(asmstr) {
+
+ unsigned NumExprs = NumOutputs + NumInputs;
+
+ Names = new (C) IdentifierInfo*[NumExprs];
+ std::copy(names, names + NumExprs, Names);
+
+ Exprs = new (C) Stmt*[NumExprs];
+ std::copy(exprs, exprs + NumExprs, Exprs);
+
+ Constraints = new (C) StringLiteral*[NumExprs];
+ std::copy(constraints, constraints + NumExprs, Constraints);
+
+ Clobbers = new (C) StringLiteral*[NumClobbers];
+ std::copy(clobbers, clobbers + NumClobbers, Clobbers);
+}
+
+MSAsmStmt::MSAsmStmt(const ASTContext &C, SourceLocation asmloc,
+ SourceLocation lbraceloc, bool issimple, bool isvolatile,
+ ArrayRef<Token> asmtoks, unsigned numoutputs,
+ unsigned numinputs,
+ ArrayRef<StringRef> constraints, ArrayRef<Expr*> exprs,
+ StringRef asmstr, ArrayRef<StringRef> clobbers,
+ SourceLocation endloc)
+ : AsmStmt(MSAsmStmtClass, asmloc, issimple, isvolatile, numoutputs,
+ numinputs, clobbers.size()), LBraceLoc(lbraceloc),
+ EndLoc(endloc), NumAsmToks(asmtoks.size()) {
+
+ initialize(C, asmstr, asmtoks, constraints, exprs, clobbers);
+}
+
+static StringRef copyIntoContext(const ASTContext &C, StringRef str) {
+ size_t size = str.size();
+ char *buffer = new (C) char[size];
+ memcpy(buffer, str.data(), size);
+ return StringRef(buffer, size);
+}
+
+void MSAsmStmt::initialize(const ASTContext &C, StringRef asmstr,
+ ArrayRef<Token> asmtoks,
+ ArrayRef<StringRef> constraints,
+ ArrayRef<Expr*> exprs,
+ ArrayRef<StringRef> clobbers) {
+ assert(NumAsmToks == asmtoks.size());
+ assert(NumClobbers == clobbers.size());
+
+ unsigned NumExprs = exprs.size();
+ assert(NumExprs == NumOutputs + NumInputs);
+ assert(NumExprs == constraints.size());
+
+ AsmStr = copyIntoContext(C, asmstr);
+
+ Exprs = new (C) Stmt*[NumExprs];
+ for (unsigned i = 0, e = NumExprs; i != e; ++i)
+ Exprs[i] = exprs[i];
+
+ AsmToks = new (C) Token[NumAsmToks];
+ for (unsigned i = 0, e = NumAsmToks; i != e; ++i)
+ AsmToks[i] = asmtoks[i];
+
+ Constraints = new (C) StringRef[NumExprs];
+ for (unsigned i = 0, e = NumExprs; i != e; ++i) {
+ Constraints[i] = copyIntoContext(C, constraints[i]);
+ }
+
+ Clobbers = new (C) StringRef[NumClobbers];
+ for (unsigned i = 0, e = NumClobbers; i != e; ++i) {
+ // FIXME: Avoid the allocation/copy if at all possible.
+ Clobbers[i] = copyIntoContext(C, clobbers[i]);
+ }
+}
+
+ObjCForCollectionStmt::ObjCForCollectionStmt(Stmt *Elem, Expr *Collect,
+ Stmt *Body, SourceLocation FCL,
+ SourceLocation RPL)
+: Stmt(ObjCForCollectionStmtClass) {
+ SubExprs[ELEM] = Elem;
+ SubExprs[COLLECTION] = Collect;
+ SubExprs[BODY] = Body;
+ ForLoc = FCL;
+ RParenLoc = RPL;
+}
+
+ObjCAtTryStmt::ObjCAtTryStmt(SourceLocation atTryLoc, Stmt *atTryStmt,
+ Stmt **CatchStmts, unsigned NumCatchStmts,
+ Stmt *atFinallyStmt)
+ : Stmt(ObjCAtTryStmtClass), AtTryLoc(atTryLoc),
+ NumCatchStmts(NumCatchStmts), HasFinally(atFinallyStmt != nullptr) {
+ Stmt **Stmts = getStmts();
+ Stmts[0] = atTryStmt;
+ for (unsigned I = 0; I != NumCatchStmts; ++I)
+ Stmts[I + 1] = CatchStmts[I];
+
+ if (HasFinally)
+ Stmts[NumCatchStmts + 1] = atFinallyStmt;
+}
+
+ObjCAtTryStmt *ObjCAtTryStmt::Create(const ASTContext &Context,
+ SourceLocation atTryLoc,
+ Stmt *atTryStmt,
+ Stmt **CatchStmts,
+ unsigned NumCatchStmts,
+ Stmt *atFinallyStmt) {
+ unsigned Size = sizeof(ObjCAtTryStmt) +
+ (1 + NumCatchStmts + (atFinallyStmt != nullptr)) * sizeof(Stmt *);
+ void *Mem = Context.Allocate(Size, llvm::alignOf<ObjCAtTryStmt>());
+ return new (Mem) ObjCAtTryStmt(atTryLoc, atTryStmt, CatchStmts, NumCatchStmts,
+ atFinallyStmt);
+}
+
+ObjCAtTryStmt *ObjCAtTryStmt::CreateEmpty(const ASTContext &Context,
+ unsigned NumCatchStmts,
+ bool HasFinally) {
+ unsigned Size = sizeof(ObjCAtTryStmt) +
+ (1 + NumCatchStmts + HasFinally) * sizeof(Stmt *);
+ void *Mem = Context.Allocate(Size, llvm::alignOf<ObjCAtTryStmt>());
+ return new (Mem) ObjCAtTryStmt(EmptyShell(), NumCatchStmts, HasFinally);
+}
+
+SourceLocation ObjCAtTryStmt::getLocEnd() const {
+ if (HasFinally)
+ return getFinallyStmt()->getLocEnd();
+ if (NumCatchStmts)
+ return getCatchStmt(NumCatchStmts - 1)->getLocEnd();
+ return getTryBody()->getLocEnd();
+}
+
+CXXTryStmt *CXXTryStmt::Create(const ASTContext &C, SourceLocation tryLoc,
+ Stmt *tryBlock, ArrayRef<Stmt*> handlers) {
+ std::size_t Size = sizeof(CXXTryStmt);
+ Size += ((handlers.size() + 1) * sizeof(Stmt));
+
+ void *Mem = C.Allocate(Size, llvm::alignOf<CXXTryStmt>());
+ return new (Mem) CXXTryStmt(tryLoc, tryBlock, handlers);
+}
+
+CXXTryStmt *CXXTryStmt::Create(const ASTContext &C, EmptyShell Empty,
+ unsigned numHandlers) {
+ std::size_t Size = sizeof(CXXTryStmt);
+ Size += ((numHandlers + 1) * sizeof(Stmt));
+
+ void *Mem = C.Allocate(Size, llvm::alignOf<CXXTryStmt>());
+ return new (Mem) CXXTryStmt(Empty, numHandlers);
+}
+
+CXXTryStmt::CXXTryStmt(SourceLocation tryLoc, Stmt *tryBlock,
+ ArrayRef<Stmt*> handlers)
+ : Stmt(CXXTryStmtClass), TryLoc(tryLoc), NumHandlers(handlers.size()) {
+ Stmt **Stmts = reinterpret_cast<Stmt **>(this + 1);
+ Stmts[0] = tryBlock;
+ std::copy(handlers.begin(), handlers.end(), Stmts + 1);
+}
+
+CXXForRangeStmt::CXXForRangeStmt(DeclStmt *Range, DeclStmt *BeginEndStmt,
+ Expr *Cond, Expr *Inc, DeclStmt *LoopVar,
+ Stmt *Body, SourceLocation FL,
+ SourceLocation CL, SourceLocation RPL)
+ : Stmt(CXXForRangeStmtClass), ForLoc(FL), ColonLoc(CL), RParenLoc(RPL) {
+ SubExprs[RANGE] = Range;
+ SubExprs[BEGINEND] = BeginEndStmt;
+ SubExprs[COND] = Cond;
+ SubExprs[INC] = Inc;
+ SubExprs[LOOPVAR] = LoopVar;
+ SubExprs[BODY] = Body;
+}
+
+Expr *CXXForRangeStmt::getRangeInit() {
+ DeclStmt *RangeStmt = getRangeStmt();
+ VarDecl *RangeDecl = dyn_cast_or_null<VarDecl>(RangeStmt->getSingleDecl());
+ assert(RangeDecl && "for-range should have a single var decl");
+ return RangeDecl->getInit();
+}
+
+const Expr *CXXForRangeStmt::getRangeInit() const {
+ return const_cast<CXXForRangeStmt*>(this)->getRangeInit();
+}
+
+VarDecl *CXXForRangeStmt::getLoopVariable() {
+ Decl *LV = cast<DeclStmt>(getLoopVarStmt())->getSingleDecl();
+ assert(LV && "No loop variable in CXXForRangeStmt");
+ return cast<VarDecl>(LV);
+}
+
+const VarDecl *CXXForRangeStmt::getLoopVariable() const {
+ return const_cast<CXXForRangeStmt*>(this)->getLoopVariable();
+}
+
+IfStmt::IfStmt(const ASTContext &C, SourceLocation IL, VarDecl *var, Expr *cond,
+ Stmt *then, SourceLocation EL, Stmt *elsev)
+ : Stmt(IfStmtClass), IfLoc(IL), ElseLoc(EL)
+{
+ setConditionVariable(C, var);
+ SubExprs[COND] = cond;
+ SubExprs[THEN] = then;
+ SubExprs[ELSE] = elsev;
+}
+
+VarDecl *IfStmt::getConditionVariable() const {
+ if (!SubExprs[VAR])
+ return nullptr;
+
+ DeclStmt *DS = cast<DeclStmt>(SubExprs[VAR]);
+ return cast<VarDecl>(DS->getSingleDecl());
+}
+
+void IfStmt::setConditionVariable(const ASTContext &C, VarDecl *V) {
+ if (!V) {
+ SubExprs[VAR] = nullptr;
+ return;
+ }
+
+ SourceRange VarRange = V->getSourceRange();
+ SubExprs[VAR] = new (C) DeclStmt(DeclGroupRef(V), VarRange.getBegin(),
+ VarRange.getEnd());
+}
+
+ForStmt::ForStmt(const ASTContext &C, Stmt *Init, Expr *Cond, VarDecl *condVar,
+ Expr *Inc, Stmt *Body, SourceLocation FL, SourceLocation LP,
+ SourceLocation RP)
+ : Stmt(ForStmtClass), ForLoc(FL), LParenLoc(LP), RParenLoc(RP)
+{
+ SubExprs[INIT] = Init;
+ setConditionVariable(C, condVar);
+ SubExprs[COND] = Cond;
+ SubExprs[INC] = Inc;
+ SubExprs[BODY] = Body;
+}
+
+VarDecl *ForStmt::getConditionVariable() const {
+ if (!SubExprs[CONDVAR])
+ return nullptr;
+
+ DeclStmt *DS = cast<DeclStmt>(SubExprs[CONDVAR]);
+ return cast<VarDecl>(DS->getSingleDecl());
+}
+
+void ForStmt::setConditionVariable(const ASTContext &C, VarDecl *V) {
+ if (!V) {
+ SubExprs[CONDVAR] = nullptr;
+ return;
+ }
+
+ SourceRange VarRange = V->getSourceRange();
+ SubExprs[CONDVAR] = new (C) DeclStmt(DeclGroupRef(V), VarRange.getBegin(),
+ VarRange.getEnd());
+}
+
+SwitchStmt::SwitchStmt(const ASTContext &C, VarDecl *Var, Expr *cond)
+ : Stmt(SwitchStmtClass), FirstCase(nullptr, false) {
+ setConditionVariable(C, Var);
+ SubExprs[COND] = cond;
+ SubExprs[BODY] = nullptr;
+}
+
+VarDecl *SwitchStmt::getConditionVariable() const {
+ if (!SubExprs[VAR])
+ return nullptr;
+
+ DeclStmt *DS = cast<DeclStmt>(SubExprs[VAR]);
+ return cast<VarDecl>(DS->getSingleDecl());
+}
+
+void SwitchStmt::setConditionVariable(const ASTContext &C, VarDecl *V) {
+ if (!V) {
+ SubExprs[VAR] = nullptr;
+ return;
+ }
+
+ SourceRange VarRange = V->getSourceRange();
+ SubExprs[VAR] = new (C) DeclStmt(DeclGroupRef(V), VarRange.getBegin(),
+ VarRange.getEnd());
+}
+
+Stmt *SwitchCase::getSubStmt() {
+ if (isa<CaseStmt>(this))
+ return cast<CaseStmt>(this)->getSubStmt();
+ return cast<DefaultStmt>(this)->getSubStmt();
+}
+
+WhileStmt::WhileStmt(const ASTContext &C, VarDecl *Var, Expr *cond, Stmt *body,
+ SourceLocation WL)
+ : Stmt(WhileStmtClass) {
+ setConditionVariable(C, Var);
+ SubExprs[COND] = cond;
+ SubExprs[BODY] = body;
+ WhileLoc = WL;
+}
+
+VarDecl *WhileStmt::getConditionVariable() const {
+ if (!SubExprs[VAR])
+ return nullptr;
+
+ DeclStmt *DS = cast<DeclStmt>(SubExprs[VAR]);
+ return cast<VarDecl>(DS->getSingleDecl());
+}
+
+void WhileStmt::setConditionVariable(const ASTContext &C, VarDecl *V) {
+ if (!V) {
+ SubExprs[VAR] = nullptr;
+ return;
+ }
+
+ SourceRange VarRange = V->getSourceRange();
+ SubExprs[VAR] = new (C) DeclStmt(DeclGroupRef(V), VarRange.getBegin(),
+ VarRange.getEnd());
+}
+
+// IndirectGotoStmt
+LabelDecl *IndirectGotoStmt::getConstantTarget() {
+ if (AddrLabelExpr *E =
+ dyn_cast<AddrLabelExpr>(getTarget()->IgnoreParenImpCasts()))
+ return E->getLabel();
+ return nullptr;
+}
+
+// ReturnStmt
+const Expr* ReturnStmt::getRetValue() const {
+ return cast_or_null<Expr>(RetExpr);
+}
+Expr* ReturnStmt::getRetValue() {
+ return cast_or_null<Expr>(RetExpr);
+}
+
+SEHTryStmt::SEHTryStmt(bool IsCXXTry,
+ SourceLocation TryLoc,
+ Stmt *TryBlock,
+ Stmt *Handler)
+ : Stmt(SEHTryStmtClass),
+ IsCXXTry(IsCXXTry),
+ TryLoc(TryLoc)
+{
+ Children[TRY] = TryBlock;
+ Children[HANDLER] = Handler;
+}
+
+SEHTryStmt* SEHTryStmt::Create(const ASTContext &C, bool IsCXXTry,
+ SourceLocation TryLoc, Stmt *TryBlock,
+ Stmt *Handler) {
+ return new(C) SEHTryStmt(IsCXXTry,TryLoc,TryBlock,Handler);
+}
+
+SEHExceptStmt* SEHTryStmt::getExceptHandler() const {
+ return dyn_cast<SEHExceptStmt>(getHandler());
+}
+
+SEHFinallyStmt* SEHTryStmt::getFinallyHandler() const {
+ return dyn_cast<SEHFinallyStmt>(getHandler());
+}
+
+SEHExceptStmt::SEHExceptStmt(SourceLocation Loc,
+ Expr *FilterExpr,
+ Stmt *Block)
+ : Stmt(SEHExceptStmtClass),
+ Loc(Loc)
+{
+ Children[FILTER_EXPR] = FilterExpr;
+ Children[BLOCK] = Block;
+}
+
+SEHExceptStmt* SEHExceptStmt::Create(const ASTContext &C, SourceLocation Loc,
+ Expr *FilterExpr, Stmt *Block) {
+ return new(C) SEHExceptStmt(Loc,FilterExpr,Block);
+}
+
+SEHFinallyStmt::SEHFinallyStmt(SourceLocation Loc,
+ Stmt *Block)
+ : Stmt(SEHFinallyStmtClass),
+ Loc(Loc),
+ Block(Block)
+{}
+
+SEHFinallyStmt* SEHFinallyStmt::Create(const ASTContext &C, SourceLocation Loc,
+ Stmt *Block) {
+ return new(C)SEHFinallyStmt(Loc,Block);
+}
+
+CapturedStmt::Capture *CapturedStmt::getStoredCaptures() const {
+ unsigned Size = sizeof(CapturedStmt) + sizeof(Stmt *) * (NumCaptures + 1);
+
+ // Offset of the first Capture object.
+ unsigned FirstCaptureOffset =
+ llvm::RoundUpToAlignment(Size, llvm::alignOf<Capture>());
+
+ return reinterpret_cast<Capture *>(
+ reinterpret_cast<char *>(const_cast<CapturedStmt *>(this))
+ + FirstCaptureOffset);
+}
+
+CapturedStmt::CapturedStmt(Stmt *S, CapturedRegionKind Kind,
+ ArrayRef<Capture> Captures,
+ ArrayRef<Expr *> CaptureInits,
+ CapturedDecl *CD,
+ RecordDecl *RD)
+ : Stmt(CapturedStmtClass), NumCaptures(Captures.size()),
+ CapDeclAndKind(CD, Kind), TheRecordDecl(RD) {
+ assert( S && "null captured statement");
+ assert(CD && "null captured declaration for captured statement");
+ assert(RD && "null record declaration for captured statement");
+
+ // Copy initialization expressions.
+ Stmt **Stored = getStoredStmts();
+ for (unsigned I = 0, N = NumCaptures; I != N; ++I)
+ *Stored++ = CaptureInits[I];
+
+ // Copy the statement being captured.
+ *Stored = S;
+
+ // Copy all Capture objects.
+ Capture *Buffer = getStoredCaptures();
+ std::copy(Captures.begin(), Captures.end(), Buffer);
+}
+
+CapturedStmt::CapturedStmt(EmptyShell Empty, unsigned NumCaptures)
+ : Stmt(CapturedStmtClass, Empty), NumCaptures(NumCaptures),
+ CapDeclAndKind(nullptr, CR_Default), TheRecordDecl(nullptr) {
+ getStoredStmts()[NumCaptures] = nullptr;
+}
+
+CapturedStmt *CapturedStmt::Create(const ASTContext &Context, Stmt *S,
+ CapturedRegionKind Kind,
+ ArrayRef<Capture> Captures,
+ ArrayRef<Expr *> CaptureInits,
+ CapturedDecl *CD,
+ RecordDecl *RD) {
+ // The layout is
+ //
+ // -----------------------------------------------------------
+ // | CapturedStmt, Init, ..., Init, S, Capture, ..., Capture |
+ // ----------------^-------------------^----------------------
+ // getStoredStmts() getStoredCaptures()
+ //
+ // where S is the statement being captured.
+ //
+ assert(CaptureInits.size() == Captures.size() && "wrong number of arguments");
+
+ unsigned Size = sizeof(CapturedStmt) + sizeof(Stmt *) * (Captures.size() + 1);
+ if (!Captures.empty()) {
+ // Realign for the following Capture array.
+ Size = llvm::RoundUpToAlignment(Size, llvm::alignOf<Capture>());
+ Size += sizeof(Capture) * Captures.size();
+ }
+
+ void *Mem = Context.Allocate(Size);
+ return new (Mem) CapturedStmt(S, Kind, Captures, CaptureInits, CD, RD);
+}
+
+CapturedStmt *CapturedStmt::CreateDeserialized(const ASTContext &Context,
+ unsigned NumCaptures) {
+ unsigned Size = sizeof(CapturedStmt) + sizeof(Stmt *) * (NumCaptures + 1);
+ if (NumCaptures > 0) {
+ // Realign for the following Capture array.
+ Size = llvm::RoundUpToAlignment(Size, llvm::alignOf<Capture>());
+ Size += sizeof(Capture) * NumCaptures;
+ }
+
+ void *Mem = Context.Allocate(Size);
+ return new (Mem) CapturedStmt(EmptyShell(), NumCaptures);
+}
+
+Stmt::child_range CapturedStmt::children() {
+ // Children are captured field initilizers.
+ return child_range(getStoredStmts(), getStoredStmts() + NumCaptures);
+}
+
+bool CapturedStmt::capturesVariable(const VarDecl *Var) const {
+ for (const auto &I : captures()) {
+ if (!I.capturesVariable())
+ continue;
+
+ // This does not handle variable redeclarations. This should be
+ // extended to capture variables with redeclarations, for example
+ // a thread-private variable in OpenMP.
+ if (I.getCapturedVar() == Var)
+ return true;
+ }
+
+ return false;
+}
+
+StmtRange OMPClause::children() {
+ switch(getClauseKind()) {
+ default : break;
+#define OPENMP_CLAUSE(Name, Class) \
+ case OMPC_ ## Name : return static_cast<Class *>(this)->children();
+#include "clang/Basic/OpenMPKinds.def"
+ }
+ llvm_unreachable("unknown OMPClause");
+}
+
+void OMPPrivateClause::setPrivateCopies(ArrayRef<Expr *> VL) {
+ assert(VL.size() == varlist_size() &&
+ "Number of private copies is not the same as the preallocated buffer");
+ std::copy(VL.begin(), VL.end(), varlist_end());
+}
+
+OMPPrivateClause *
+OMPPrivateClause::Create(const ASTContext &C, SourceLocation StartLoc,
+ SourceLocation LParenLoc, SourceLocation EndLoc,
+ ArrayRef<Expr *> VL, ArrayRef<Expr *> PrivateVL) {
+ // Allocate space for private variables and initializer expressions.
+ void *Mem = C.Allocate(llvm::RoundUpToAlignment(sizeof(OMPPrivateClause),
+ llvm::alignOf<Expr *>()) +
+ 2 * sizeof(Expr *) * VL.size());
+ OMPPrivateClause *Clause =
+ new (Mem) OMPPrivateClause(StartLoc, LParenLoc, EndLoc, VL.size());
+ Clause->setVarRefs(VL);
+ Clause->setPrivateCopies(PrivateVL);
+ return Clause;
+}
+
+OMPPrivateClause *OMPPrivateClause::CreateEmpty(const ASTContext &C,
+ unsigned N) {
+ void *Mem = C.Allocate(llvm::RoundUpToAlignment(sizeof(OMPPrivateClause),
+ llvm::alignOf<Expr *>()) +
+ 2 * sizeof(Expr *) * N);
+ return new (Mem) OMPPrivateClause(N);
+}
+
+void OMPFirstprivateClause::setPrivateCopies(ArrayRef<Expr *> VL) {
+ assert(VL.size() == varlist_size() &&
+ "Number of private copies is not the same as the preallocated buffer");
+ std::copy(VL.begin(), VL.end(), varlist_end());
+}
+
+void OMPFirstprivateClause::setInits(ArrayRef<Expr *> VL) {
+ assert(VL.size() == varlist_size() &&
+ "Number of inits is not the same as the preallocated buffer");
+ std::copy(VL.begin(), VL.end(), getPrivateCopies().end());
+}
+
+OMPFirstprivateClause *
+OMPFirstprivateClause::Create(const ASTContext &C, SourceLocation StartLoc,
+ SourceLocation LParenLoc, SourceLocation EndLoc,
+ ArrayRef<Expr *> VL, ArrayRef<Expr *> PrivateVL,
+ ArrayRef<Expr *> InitVL) {
+ void *Mem = C.Allocate(llvm::RoundUpToAlignment(sizeof(OMPFirstprivateClause),
+ llvm::alignOf<Expr *>()) +
+ 3 * sizeof(Expr *) * VL.size());
+ OMPFirstprivateClause *Clause =
+ new (Mem) OMPFirstprivateClause(StartLoc, LParenLoc, EndLoc, VL.size());
+ Clause->setVarRefs(VL);
+ Clause->setPrivateCopies(PrivateVL);
+ Clause->setInits(InitVL);
+ return Clause;
+}
+
+OMPFirstprivateClause *OMPFirstprivateClause::CreateEmpty(const ASTContext &C,
+ unsigned N) {
+ void *Mem = C.Allocate(llvm::RoundUpToAlignment(sizeof(OMPFirstprivateClause),
+ llvm::alignOf<Expr *>()) +
+ 3 * sizeof(Expr *) * N);
+ return new (Mem) OMPFirstprivateClause(N);
+}
+
+void OMPLastprivateClause::setPrivateCopies(ArrayRef<Expr *> PrivateCopies) {
+ assert(PrivateCopies.size() == varlist_size() &&
+ "Number of private copies is not the same as the preallocated buffer");
+ std::copy(PrivateCopies.begin(), PrivateCopies.end(), varlist_end());
+}
+
+void OMPLastprivateClause::setSourceExprs(ArrayRef<Expr *> SrcExprs) {
+ assert(SrcExprs.size() == varlist_size() && "Number of source expressions is "
+ "not the same as the "
+ "preallocated buffer");
+ std::copy(SrcExprs.begin(), SrcExprs.end(), getPrivateCopies().end());
+}
+
+void OMPLastprivateClause::setDestinationExprs(ArrayRef<Expr *> DstExprs) {
+ assert(DstExprs.size() == varlist_size() && "Number of destination "
+ "expressions is not the same as "
+ "the preallocated buffer");
+ std::copy(DstExprs.begin(), DstExprs.end(), getSourceExprs().end());
+}
+
+void OMPLastprivateClause::setAssignmentOps(ArrayRef<Expr *> AssignmentOps) {
+ assert(AssignmentOps.size() == varlist_size() &&
+ "Number of assignment expressions is not the same as the preallocated "
+ "buffer");
+ std::copy(AssignmentOps.begin(), AssignmentOps.end(),
+ getDestinationExprs().end());
+}
+
+OMPLastprivateClause *OMPLastprivateClause::Create(
+ const ASTContext &C, SourceLocation StartLoc, SourceLocation LParenLoc,
+ SourceLocation EndLoc, ArrayRef<Expr *> VL, ArrayRef<Expr *> SrcExprs,
+ ArrayRef<Expr *> DstExprs, ArrayRef<Expr *> AssignmentOps) {
+ void *Mem = C.Allocate(llvm::RoundUpToAlignment(sizeof(OMPLastprivateClause),
+ llvm::alignOf<Expr *>()) +
+ 5 * sizeof(Expr *) * VL.size());
+ OMPLastprivateClause *Clause =
+ new (Mem) OMPLastprivateClause(StartLoc, LParenLoc, EndLoc, VL.size());
+ Clause->setVarRefs(VL);
+ Clause->setSourceExprs(SrcExprs);
+ Clause->setDestinationExprs(DstExprs);
+ Clause->setAssignmentOps(AssignmentOps);
+ return Clause;
+}
+
+OMPLastprivateClause *OMPLastprivateClause::CreateEmpty(const ASTContext &C,
+ unsigned N) {
+ void *Mem = C.Allocate(llvm::RoundUpToAlignment(sizeof(OMPLastprivateClause),
+ llvm::alignOf<Expr *>()) +
+ 5 * sizeof(Expr *) * N);
+ return new (Mem) OMPLastprivateClause(N);
+}
+
+OMPSharedClause *OMPSharedClause::Create(const ASTContext &C,
+ SourceLocation StartLoc,
+ SourceLocation LParenLoc,
+ SourceLocation EndLoc,
+ ArrayRef<Expr *> VL) {
+ void *Mem = C.Allocate(llvm::RoundUpToAlignment(sizeof(OMPSharedClause),
+ llvm::alignOf<Expr *>()) +
+ sizeof(Expr *) * VL.size());
+ OMPSharedClause *Clause = new (Mem) OMPSharedClause(StartLoc, LParenLoc,
+ EndLoc, VL.size());
+ Clause->setVarRefs(VL);
+ return Clause;
+}
+
+OMPSharedClause *OMPSharedClause::CreateEmpty(const ASTContext &C,
+ unsigned N) {
+ void *Mem = C.Allocate(llvm::RoundUpToAlignment(sizeof(OMPSharedClause),
+ llvm::alignOf<Expr *>()) +
+ sizeof(Expr *) * N);
+ return new (Mem) OMPSharedClause(N);
+}
+
+void OMPLinearClause::setInits(ArrayRef<Expr *> IL) {
+ assert(IL.size() == varlist_size() &&
+ "Number of inits is not the same as the preallocated buffer");
+ std::copy(IL.begin(), IL.end(), varlist_end());
+}
+
+void OMPLinearClause::setUpdates(ArrayRef<Expr *> UL) {
+ assert(UL.size() == varlist_size() &&
+ "Number of updates is not the same as the preallocated buffer");
+ std::copy(UL.begin(), UL.end(), getInits().end());
+}
+
+void OMPLinearClause::setFinals(ArrayRef<Expr *> FL) {
+ assert(FL.size() == varlist_size() &&
+ "Number of final updates is not the same as the preallocated buffer");
+ std::copy(FL.begin(), FL.end(), getUpdates().end());
+}
+
+OMPLinearClause *
+OMPLinearClause::Create(const ASTContext &C, SourceLocation StartLoc,
+ SourceLocation LParenLoc, SourceLocation ColonLoc,
+ SourceLocation EndLoc, ArrayRef<Expr *> VL,
+ ArrayRef<Expr *> IL, Expr *Step, Expr *CalcStep) {
+ // Allocate space for 4 lists (Vars, Inits, Updates, Finals) and 2 expressions
+ // (Step and CalcStep).
+ void *Mem = C.Allocate(llvm::RoundUpToAlignment(sizeof(OMPLinearClause),
+ llvm::alignOf<Expr *>()) +
+ (4 * VL.size() + 2) * sizeof(Expr *));
+ OMPLinearClause *Clause = new (Mem)
+ OMPLinearClause(StartLoc, LParenLoc, ColonLoc, EndLoc, VL.size());
+ Clause->setVarRefs(VL);
+ Clause->setInits(IL);
+ // Fill update and final expressions with zeroes, they are provided later,
+ // after the directive construction.
+ std::fill(Clause->getInits().end(), Clause->getInits().end() + VL.size(),
+ nullptr);
+ std::fill(Clause->getUpdates().end(), Clause->getUpdates().end() + VL.size(),
+ nullptr);
+ Clause->setStep(Step);
+ Clause->setCalcStep(CalcStep);
+ return Clause;
+}
+
+OMPLinearClause *OMPLinearClause::CreateEmpty(const ASTContext &C,
+ unsigned NumVars) {
+ // Allocate space for 4 lists (Vars, Inits, Updates, Finals) and 2 expressions
+ // (Step and CalcStep).
+ void *Mem = C.Allocate(llvm::RoundUpToAlignment(sizeof(OMPLinearClause),
+ llvm::alignOf<Expr *>()) +
+ (4 * NumVars + 2) * sizeof(Expr *));
+ return new (Mem) OMPLinearClause(NumVars);
+}
+
+OMPAlignedClause *
+OMPAlignedClause::Create(const ASTContext &C, SourceLocation StartLoc,
+ SourceLocation LParenLoc, SourceLocation ColonLoc,
+ SourceLocation EndLoc, ArrayRef<Expr *> VL, Expr *A) {
+ void *Mem = C.Allocate(llvm::RoundUpToAlignment(sizeof(OMPAlignedClause),
+ llvm::alignOf<Expr *>()) +
+ sizeof(Expr *) * (VL.size() + 1));
+ OMPAlignedClause *Clause = new (Mem)
+ OMPAlignedClause(StartLoc, LParenLoc, ColonLoc, EndLoc, VL.size());
+ Clause->setVarRefs(VL);
+ Clause->setAlignment(A);
+ return Clause;
+}
+
+OMPAlignedClause *OMPAlignedClause::CreateEmpty(const ASTContext &C,
+ unsigned NumVars) {
+ void *Mem = C.Allocate(llvm::RoundUpToAlignment(sizeof(OMPAlignedClause),
+ llvm::alignOf<Expr *>()) +
+ sizeof(Expr *) * (NumVars + 1));
+ return new (Mem) OMPAlignedClause(NumVars);
+}
+
+void OMPCopyinClause::setSourceExprs(ArrayRef<Expr *> SrcExprs) {
+ assert(SrcExprs.size() == varlist_size() && "Number of source expressions is "
+ "not the same as the "
+ "preallocated buffer");
+ std::copy(SrcExprs.begin(), SrcExprs.end(), varlist_end());
+}
+
+void OMPCopyinClause::setDestinationExprs(ArrayRef<Expr *> DstExprs) {
+ assert(DstExprs.size() == varlist_size() && "Number of destination "
+ "expressions is not the same as "
+ "the preallocated buffer");
+ std::copy(DstExprs.begin(), DstExprs.end(), getSourceExprs().end());
+}
+
+void OMPCopyinClause::setAssignmentOps(ArrayRef<Expr *> AssignmentOps) {
+ assert(AssignmentOps.size() == varlist_size() &&
+ "Number of assignment expressions is not the same as the preallocated "
+ "buffer");
+ std::copy(AssignmentOps.begin(), AssignmentOps.end(),
+ getDestinationExprs().end());
+}
+
+OMPCopyinClause *OMPCopyinClause::Create(
+ const ASTContext &C, SourceLocation StartLoc, SourceLocation LParenLoc,
+ SourceLocation EndLoc, ArrayRef<Expr *> VL, ArrayRef<Expr *> SrcExprs,
+ ArrayRef<Expr *> DstExprs, ArrayRef<Expr *> AssignmentOps) {
+ void *Mem = C.Allocate(llvm::RoundUpToAlignment(sizeof(OMPCopyinClause),
+ llvm::alignOf<Expr *>()) +
+ 4 * sizeof(Expr *) * VL.size());
+ OMPCopyinClause *Clause = new (Mem) OMPCopyinClause(StartLoc, LParenLoc,
+ EndLoc, VL.size());
+ Clause->setVarRefs(VL);
+ Clause->setSourceExprs(SrcExprs);
+ Clause->setDestinationExprs(DstExprs);
+ Clause->setAssignmentOps(AssignmentOps);
+ return Clause;
+}
+
+OMPCopyinClause *OMPCopyinClause::CreateEmpty(const ASTContext &C,
+ unsigned N) {
+ void *Mem = C.Allocate(llvm::RoundUpToAlignment(sizeof(OMPCopyinClause),
+ llvm::alignOf<Expr *>()) +
+ 4 * sizeof(Expr *) * N);
+ return new (Mem) OMPCopyinClause(N);
+}
+
+void OMPCopyprivateClause::setSourceExprs(ArrayRef<Expr *> SrcExprs) {
+ assert(SrcExprs.size() == varlist_size() && "Number of source expressions is "
+ "not the same as the "
+ "preallocated buffer");
+ std::copy(SrcExprs.begin(), SrcExprs.end(), varlist_end());
+}
+
+void OMPCopyprivateClause::setDestinationExprs(ArrayRef<Expr *> DstExprs) {
+ assert(DstExprs.size() == varlist_size() && "Number of destination "
+ "expressions is not the same as "
+ "the preallocated buffer");
+ std::copy(DstExprs.begin(), DstExprs.end(), getSourceExprs().end());
+}
+
+void OMPCopyprivateClause::setAssignmentOps(ArrayRef<Expr *> AssignmentOps) {
+ assert(AssignmentOps.size() == varlist_size() &&
+ "Number of assignment expressions is not the same as the preallocated "
+ "buffer");
+ std::copy(AssignmentOps.begin(), AssignmentOps.end(),
+ getDestinationExprs().end());
+}
+
+OMPCopyprivateClause *OMPCopyprivateClause::Create(
+ const ASTContext &C, SourceLocation StartLoc, SourceLocation LParenLoc,
+ SourceLocation EndLoc, ArrayRef<Expr *> VL, ArrayRef<Expr *> SrcExprs,
+ ArrayRef<Expr *> DstExprs, ArrayRef<Expr *> AssignmentOps) {
+ void *Mem = C.Allocate(llvm::RoundUpToAlignment(sizeof(OMPCopyprivateClause),
+ llvm::alignOf<Expr *>()) +
+ 4 * sizeof(Expr *) * VL.size());
+ OMPCopyprivateClause *Clause =
+ new (Mem) OMPCopyprivateClause(StartLoc, LParenLoc, EndLoc, VL.size());
+ Clause->setVarRefs(VL);
+ Clause->setSourceExprs(SrcExprs);
+ Clause->setDestinationExprs(DstExprs);
+ Clause->setAssignmentOps(AssignmentOps);
+ return Clause;
+}
+
+OMPCopyprivateClause *OMPCopyprivateClause::CreateEmpty(const ASTContext &C,
+ unsigned N) {
+ void *Mem = C.Allocate(llvm::RoundUpToAlignment(sizeof(OMPCopyprivateClause),
+ llvm::alignOf<Expr *>()) +
+ 4 * sizeof(Expr *) * N);
+ return new (Mem) OMPCopyprivateClause(N);
+}
+
+void OMPExecutableDirective::setClauses(ArrayRef<OMPClause *> Clauses) {
+ assert(Clauses.size() == getNumClauses() &&
+ "Number of clauses is not the same as the preallocated buffer");
+ std::copy(Clauses.begin(), Clauses.end(), getClauses().begin());
+}
+
+void OMPLoopDirective::setCounters(ArrayRef<Expr *> A) {
+ assert(A.size() == getCollapsedNumber() &&
+ "Number of loop counters is not the same as the collapsed number");
+ std::copy(A.begin(), A.end(), getCounters().begin());
+}
+
+void OMPLoopDirective::setUpdates(ArrayRef<Expr *> A) {
+ assert(A.size() == getCollapsedNumber() &&
+ "Number of counter updates is not the same as the collapsed number");
+ std::copy(A.begin(), A.end(), getUpdates().begin());
+}
+
+void OMPLoopDirective::setFinals(ArrayRef<Expr *> A) {
+ assert(A.size() == getCollapsedNumber() &&
+ "Number of counter finals is not the same as the collapsed number");
+ std::copy(A.begin(), A.end(), getFinals().begin());
+}
+
+void OMPReductionClause::setLHSExprs(ArrayRef<Expr *> LHSExprs) {
+ assert(
+ LHSExprs.size() == varlist_size() &&
+ "Number of LHS expressions is not the same as the preallocated buffer");
+ std::copy(LHSExprs.begin(), LHSExprs.end(), varlist_end());
+}
+
+void OMPReductionClause::setRHSExprs(ArrayRef<Expr *> RHSExprs) {
+ assert(
+ RHSExprs.size() == varlist_size() &&
+ "Number of RHS expressions is not the same as the preallocated buffer");
+ std::copy(RHSExprs.begin(), RHSExprs.end(), getLHSExprs().end());
+}
+
+void OMPReductionClause::setReductionOps(ArrayRef<Expr *> ReductionOps) {
+ assert(ReductionOps.size() == varlist_size() && "Number of reduction "
+ "expressions is not the same "
+ "as the preallocated buffer");
+ std::copy(ReductionOps.begin(), ReductionOps.end(), getRHSExprs().end());
+}
+
+OMPReductionClause *OMPReductionClause::Create(
+ const ASTContext &C, SourceLocation StartLoc, SourceLocation LParenLoc,
+ SourceLocation EndLoc, SourceLocation ColonLoc, ArrayRef<Expr *> VL,
+ NestedNameSpecifierLoc QualifierLoc, const DeclarationNameInfo &NameInfo,
+ ArrayRef<Expr *> LHSExprs, ArrayRef<Expr *> RHSExprs,
+ ArrayRef<Expr *> ReductionOps) {
+ void *Mem = C.Allocate(llvm::RoundUpToAlignment(sizeof(OMPReductionClause),
+ llvm::alignOf<Expr *>()) +
+ 4 * sizeof(Expr *) * VL.size());
+ OMPReductionClause *Clause = new (Mem) OMPReductionClause(
+ StartLoc, LParenLoc, EndLoc, ColonLoc, VL.size(), QualifierLoc, NameInfo);
+ Clause->setVarRefs(VL);
+ Clause->setLHSExprs(LHSExprs);
+ Clause->setRHSExprs(RHSExprs);
+ Clause->setReductionOps(ReductionOps);
+ return Clause;
+}
+
+OMPReductionClause *OMPReductionClause::CreateEmpty(const ASTContext &C,
+ unsigned N) {
+ void *Mem = C.Allocate(llvm::RoundUpToAlignment(sizeof(OMPReductionClause),
+ llvm::alignOf<Expr *>()) +
+ 4 * sizeof(Expr *) * N);
+ return new (Mem) OMPReductionClause(N);
+}
+
+OMPFlushClause *OMPFlushClause::Create(const ASTContext &C,
+ SourceLocation StartLoc,
+ SourceLocation LParenLoc,
+ SourceLocation EndLoc,
+ ArrayRef<Expr *> VL) {
+ void *Mem = C.Allocate(llvm::RoundUpToAlignment(sizeof(OMPFlushClause),
+ llvm::alignOf<Expr *>()) +
+ sizeof(Expr *) * VL.size());
+ OMPFlushClause *Clause =
+ new (Mem) OMPFlushClause(StartLoc, LParenLoc, EndLoc, VL.size());
+ Clause->setVarRefs(VL);
+ return Clause;
+}
+
+OMPFlushClause *OMPFlushClause::CreateEmpty(const ASTContext &C, unsigned N) {
+ void *Mem = C.Allocate(llvm::RoundUpToAlignment(sizeof(OMPFlushClause),
+ llvm::alignOf<Expr *>()) +
+ sizeof(Expr *) * N);
+ return new (Mem) OMPFlushClause(N);
+}
+
+const OMPClause *
+OMPExecutableDirective::getSingleClause(OpenMPClauseKind K) const {
+ auto &&I = getClausesOfKind(K);
+
+ if (I) {
+ auto *Clause = *I;
+ assert(!++I && "There are at least 2 clauses of the specified kind");
+ return Clause;
+ }
+ return nullptr;
+}
+
+OMPParallelDirective *OMPParallelDirective::Create(
+ const ASTContext &C,
+ SourceLocation StartLoc,
+ SourceLocation EndLoc,
+ ArrayRef<OMPClause *> Clauses,
+ Stmt *AssociatedStmt) {
+ unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPParallelDirective),
+ llvm::alignOf<OMPClause *>());
+ void *Mem = C.Allocate(Size + sizeof(OMPClause *) * Clauses.size() +
+ sizeof(Stmt *));
+ OMPParallelDirective *Dir = new (Mem) OMPParallelDirective(StartLoc, EndLoc,
+ Clauses.size());
+ Dir->setClauses(Clauses);
+ Dir->setAssociatedStmt(AssociatedStmt);
+ return Dir;
+}
+
+OMPParallelDirective *OMPParallelDirective::CreateEmpty(const ASTContext &C,
+ unsigned NumClauses,
+ EmptyShell) {
+ unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPParallelDirective),
+ llvm::alignOf<OMPClause *>());
+ void *Mem = C.Allocate(Size + sizeof(OMPClause *) * NumClauses +
+ sizeof(Stmt *));
+ return new (Mem) OMPParallelDirective(NumClauses);
+}
+
+OMPSimdDirective *
+OMPSimdDirective::Create(const ASTContext &C, SourceLocation StartLoc,
+ SourceLocation EndLoc, unsigned CollapsedNum,
+ ArrayRef<OMPClause *> Clauses, Stmt *AssociatedStmt,
+ const HelperExprs &Exprs) {
+ unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPSimdDirective),
+ llvm::alignOf<OMPClause *>());
+ void *Mem =
+ C.Allocate(Size + sizeof(OMPClause *) * Clauses.size() +
+ sizeof(Stmt *) * numLoopChildren(CollapsedNum, OMPD_simd));
+ OMPSimdDirective *Dir = new (Mem)
+ OMPSimdDirective(StartLoc, EndLoc, CollapsedNum, Clauses.size());
+ Dir->setClauses(Clauses);
+ Dir->setAssociatedStmt(AssociatedStmt);
+ Dir->setIterationVariable(Exprs.IterationVarRef);
+ Dir->setLastIteration(Exprs.LastIteration);
+ Dir->setCalcLastIteration(Exprs.CalcLastIteration);
+ Dir->setPreCond(Exprs.PreCond);
+ Dir->setCond(Exprs.Cond, Exprs.SeparatedCond);
+ Dir->setInit(Exprs.Init);
+ Dir->setInc(Exprs.Inc);
+ Dir->setCounters(Exprs.Counters);
+ Dir->setUpdates(Exprs.Updates);
+ Dir->setFinals(Exprs.Finals);
+ return Dir;
+}
+
+OMPSimdDirective *OMPSimdDirective::CreateEmpty(const ASTContext &C,
+ unsigned NumClauses,
+ unsigned CollapsedNum,
+ EmptyShell) {
+ unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPSimdDirective),
+ llvm::alignOf<OMPClause *>());
+ void *Mem =
+ C.Allocate(Size + sizeof(OMPClause *) * NumClauses +
+ sizeof(Stmt *) * numLoopChildren(CollapsedNum, OMPD_simd));
+ return new (Mem) OMPSimdDirective(CollapsedNum, NumClauses);
+}
+
+OMPForDirective *
+OMPForDirective::Create(const ASTContext &C, SourceLocation StartLoc,
+ SourceLocation EndLoc, unsigned CollapsedNum,
+ ArrayRef<OMPClause *> Clauses, Stmt *AssociatedStmt,
+ const HelperExprs &Exprs) {
+ unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPForDirective),
+ llvm::alignOf<OMPClause *>());
+ void *Mem =
+ C.Allocate(Size + sizeof(OMPClause *) * Clauses.size() +
+ sizeof(Stmt *) * numLoopChildren(CollapsedNum, OMPD_for));
+ OMPForDirective *Dir =
+ new (Mem) OMPForDirective(StartLoc, EndLoc, CollapsedNum, Clauses.size());
+ Dir->setClauses(Clauses);
+ Dir->setAssociatedStmt(AssociatedStmt);
+ Dir->setIterationVariable(Exprs.IterationVarRef);
+ Dir->setLastIteration(Exprs.LastIteration);
+ Dir->setCalcLastIteration(Exprs.CalcLastIteration);
+ Dir->setPreCond(Exprs.PreCond);
+ Dir->setCond(Exprs.Cond, Exprs.SeparatedCond);
+ Dir->setInit(Exprs.Init);
+ Dir->setInc(Exprs.Inc);
+ Dir->setIsLastIterVariable(Exprs.IL);
+ Dir->setLowerBoundVariable(Exprs.LB);
+ Dir->setUpperBoundVariable(Exprs.UB);
+ Dir->setStrideVariable(Exprs.ST);
+ Dir->setEnsureUpperBound(Exprs.EUB);
+ Dir->setNextLowerBound(Exprs.NLB);
+ Dir->setNextUpperBound(Exprs.NUB);
+ Dir->setCounters(Exprs.Counters);
+ Dir->setUpdates(Exprs.Updates);
+ Dir->setFinals(Exprs.Finals);
+ return Dir;
+}
+
+OMPForDirective *OMPForDirective::CreateEmpty(const ASTContext &C,
+ unsigned NumClauses,
+ unsigned CollapsedNum,
+ EmptyShell) {
+ unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPForDirective),
+ llvm::alignOf<OMPClause *>());
+ void *Mem =
+ C.Allocate(Size + sizeof(OMPClause *) * NumClauses +
+ sizeof(Stmt *) * numLoopChildren(CollapsedNum, OMPD_for));
+ return new (Mem) OMPForDirective(CollapsedNum, NumClauses);
+}
+
+OMPForSimdDirective *
+OMPForSimdDirective::Create(const ASTContext &C, SourceLocation StartLoc,
+ SourceLocation EndLoc, unsigned CollapsedNum,
+ ArrayRef<OMPClause *> Clauses, Stmt *AssociatedStmt,
+ const HelperExprs &Exprs) {
+ unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPForSimdDirective),
+ llvm::alignOf<OMPClause *>());
+ void *Mem =
+ C.Allocate(Size + sizeof(OMPClause *) * Clauses.size() +
+ sizeof(Stmt *) * numLoopChildren(CollapsedNum, OMPD_for_simd));
+ OMPForSimdDirective *Dir = new (Mem)
+ OMPForSimdDirective(StartLoc, EndLoc, CollapsedNum, Clauses.size());
+ Dir->setClauses(Clauses);
+ Dir->setAssociatedStmt(AssociatedStmt);
+ Dir->setIterationVariable(Exprs.IterationVarRef);
+ Dir->setLastIteration(Exprs.LastIteration);
+ Dir->setCalcLastIteration(Exprs.CalcLastIteration);
+ Dir->setPreCond(Exprs.PreCond);
+ Dir->setCond(Exprs.Cond, Exprs.SeparatedCond);
+ Dir->setInit(Exprs.Init);
+ Dir->setInc(Exprs.Inc);
+ Dir->setIsLastIterVariable(Exprs.IL);
+ Dir->setLowerBoundVariable(Exprs.LB);
+ Dir->setUpperBoundVariable(Exprs.UB);
+ Dir->setStrideVariable(Exprs.ST);
+ Dir->setEnsureUpperBound(Exprs.EUB);
+ Dir->setNextLowerBound(Exprs.NLB);
+ Dir->setNextUpperBound(Exprs.NUB);
+ Dir->setCounters(Exprs.Counters);
+ Dir->setUpdates(Exprs.Updates);
+ Dir->setFinals(Exprs.Finals);
+ return Dir;
+}
+
+OMPForSimdDirective *OMPForSimdDirective::CreateEmpty(const ASTContext &C,
+ unsigned NumClauses,
+ unsigned CollapsedNum,
+ EmptyShell) {
+ unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPForSimdDirective),
+ llvm::alignOf<OMPClause *>());
+ void *Mem =
+ C.Allocate(Size + sizeof(OMPClause *) * NumClauses +
+ sizeof(Stmt *) * numLoopChildren(CollapsedNum, OMPD_for_simd));
+ return new (Mem) OMPForSimdDirective(CollapsedNum, NumClauses);
+}
+
+OMPSectionsDirective *OMPSectionsDirective::Create(
+ const ASTContext &C, SourceLocation StartLoc, SourceLocation EndLoc,
+ ArrayRef<OMPClause *> Clauses, Stmt *AssociatedStmt) {
+ unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPSectionsDirective),
+ llvm::alignOf<OMPClause *>());
+ void *Mem =
+ C.Allocate(Size + sizeof(OMPClause *) * Clauses.size() + sizeof(Stmt *));
+ OMPSectionsDirective *Dir =
+ new (Mem) OMPSectionsDirective(StartLoc, EndLoc, Clauses.size());
+ Dir->setClauses(Clauses);
+ Dir->setAssociatedStmt(AssociatedStmt);
+ return Dir;
+}
+
+OMPSectionsDirective *OMPSectionsDirective::CreateEmpty(const ASTContext &C,
+ unsigned NumClauses,
+ EmptyShell) {
+ unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPSectionsDirective),
+ llvm::alignOf<OMPClause *>());
+ void *Mem =
+ C.Allocate(Size + sizeof(OMPClause *) * NumClauses + sizeof(Stmt *));
+ return new (Mem) OMPSectionsDirective(NumClauses);
+}
+
+OMPSectionDirective *OMPSectionDirective::Create(const ASTContext &C,
+ SourceLocation StartLoc,
+ SourceLocation EndLoc,
+ Stmt *AssociatedStmt) {
+ unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPSectionsDirective),
+ llvm::alignOf<Stmt *>());
+ void *Mem = C.Allocate(Size + sizeof(Stmt *));
+ OMPSectionDirective *Dir = new (Mem) OMPSectionDirective(StartLoc, EndLoc);
+ Dir->setAssociatedStmt(AssociatedStmt);
+ return Dir;
+}
+
+OMPSectionDirective *OMPSectionDirective::CreateEmpty(const ASTContext &C,
+ EmptyShell) {
+ unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPSectionDirective),
+ llvm::alignOf<Stmt *>());
+ void *Mem = C.Allocate(Size + sizeof(Stmt *));
+ return new (Mem) OMPSectionDirective();
+}
+
+OMPSingleDirective *OMPSingleDirective::Create(const ASTContext &C,
+ SourceLocation StartLoc,
+ SourceLocation EndLoc,
+ ArrayRef<OMPClause *> Clauses,
+ Stmt *AssociatedStmt) {
+ unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPSingleDirective),
+ llvm::alignOf<OMPClause *>());
+ void *Mem =
+ C.Allocate(Size + sizeof(OMPClause *) * Clauses.size() + sizeof(Stmt *));
+ OMPSingleDirective *Dir =
+ new (Mem) OMPSingleDirective(StartLoc, EndLoc, Clauses.size());
+ Dir->setClauses(Clauses);
+ Dir->setAssociatedStmt(AssociatedStmt);
+ return Dir;
+}
+
+OMPSingleDirective *OMPSingleDirective::CreateEmpty(const ASTContext &C,
+ unsigned NumClauses,
+ EmptyShell) {
+ unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPSingleDirective),
+ llvm::alignOf<OMPClause *>());
+ void *Mem =
+ C.Allocate(Size + sizeof(OMPClause *) * NumClauses + sizeof(Stmt *));
+ return new (Mem) OMPSingleDirective(NumClauses);
+}
+
+OMPMasterDirective *OMPMasterDirective::Create(const ASTContext &C,
+ SourceLocation StartLoc,
+ SourceLocation EndLoc,
+ Stmt *AssociatedStmt) {
+ unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPMasterDirective),
+ llvm::alignOf<Stmt *>());
+ void *Mem = C.Allocate(Size + sizeof(Stmt *));
+ OMPMasterDirective *Dir = new (Mem) OMPMasterDirective(StartLoc, EndLoc);
+ Dir->setAssociatedStmt(AssociatedStmt);
+ return Dir;
+}
+
+OMPMasterDirective *OMPMasterDirective::CreateEmpty(const ASTContext &C,
+ EmptyShell) {
+ unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPMasterDirective),
+ llvm::alignOf<Stmt *>());
+ void *Mem = C.Allocate(Size + sizeof(Stmt *));
+ return new (Mem) OMPMasterDirective();
+}
+
+OMPCriticalDirective *OMPCriticalDirective::Create(
+ const ASTContext &C, const DeclarationNameInfo &Name,
+ SourceLocation StartLoc, SourceLocation EndLoc, Stmt *AssociatedStmt) {
+ unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPCriticalDirective),
+ llvm::alignOf<Stmt *>());
+ void *Mem = C.Allocate(Size + sizeof(Stmt *));
+ OMPCriticalDirective *Dir =
+ new (Mem) OMPCriticalDirective(Name, StartLoc, EndLoc);
+ Dir->setAssociatedStmt(AssociatedStmt);
+ return Dir;
+}
+
+OMPCriticalDirective *OMPCriticalDirective::CreateEmpty(const ASTContext &C,
+ EmptyShell) {
+ unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPCriticalDirective),
+ llvm::alignOf<Stmt *>());
+ void *Mem = C.Allocate(Size + sizeof(Stmt *));
+ return new (Mem) OMPCriticalDirective();
+}
+
+OMPParallelForDirective *OMPParallelForDirective::Create(
+ const ASTContext &C, SourceLocation StartLoc, SourceLocation EndLoc,
+ unsigned CollapsedNum, ArrayRef<OMPClause *> Clauses, Stmt *AssociatedStmt,
+ const HelperExprs &Exprs) {
+ unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPParallelForDirective),
+ llvm::alignOf<OMPClause *>());
+ void *Mem = C.Allocate(Size + sizeof(OMPClause *) * Clauses.size() +
+ sizeof(Stmt *) *
+ numLoopChildren(CollapsedNum, OMPD_parallel_for));
+ OMPParallelForDirective *Dir = new (Mem)
+ OMPParallelForDirective(StartLoc, EndLoc, CollapsedNum, Clauses.size());
+ Dir->setClauses(Clauses);
+ Dir->setAssociatedStmt(AssociatedStmt);
+ Dir->setIterationVariable(Exprs.IterationVarRef);
+ Dir->setLastIteration(Exprs.LastIteration);
+ Dir->setCalcLastIteration(Exprs.CalcLastIteration);
+ Dir->setPreCond(Exprs.PreCond);
+ Dir->setCond(Exprs.Cond, Exprs.SeparatedCond);
+ Dir->setInit(Exprs.Init);
+ Dir->setInc(Exprs.Inc);
+ Dir->setIsLastIterVariable(Exprs.IL);
+ Dir->setLowerBoundVariable(Exprs.LB);
+ Dir->setUpperBoundVariable(Exprs.UB);
+ Dir->setStrideVariable(Exprs.ST);
+ Dir->setEnsureUpperBound(Exprs.EUB);
+ Dir->setNextLowerBound(Exprs.NLB);
+ Dir->setNextUpperBound(Exprs.NUB);
+ Dir->setCounters(Exprs.Counters);
+ Dir->setUpdates(Exprs.Updates);
+ Dir->setFinals(Exprs.Finals);
+ return Dir;
+}
+
+OMPParallelForDirective *
+OMPParallelForDirective::CreateEmpty(const ASTContext &C, unsigned NumClauses,
+ unsigned CollapsedNum, EmptyShell) {
+ unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPParallelForDirective),
+ llvm::alignOf<OMPClause *>());
+ void *Mem = C.Allocate(Size + sizeof(OMPClause *) * NumClauses +
+ sizeof(Stmt *) *
+ numLoopChildren(CollapsedNum, OMPD_parallel_for));
+ return new (Mem) OMPParallelForDirective(CollapsedNum, NumClauses);
+}
+
+OMPParallelForSimdDirective *OMPParallelForSimdDirective::Create(
+ const ASTContext &C, SourceLocation StartLoc, SourceLocation EndLoc,
+ unsigned CollapsedNum, ArrayRef<OMPClause *> Clauses, Stmt *AssociatedStmt,
+ const HelperExprs &Exprs) {
+ unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPParallelForSimdDirective),
+ llvm::alignOf<OMPClause *>());
+ void *Mem = C.Allocate(
+ Size + sizeof(OMPClause *) * Clauses.size() +
+ sizeof(Stmt *) * numLoopChildren(CollapsedNum, OMPD_parallel_for_simd));
+ OMPParallelForSimdDirective *Dir = new (Mem) OMPParallelForSimdDirective(
+ StartLoc, EndLoc, CollapsedNum, Clauses.size());
+ Dir->setClauses(Clauses);
+ Dir->setAssociatedStmt(AssociatedStmt);
+ Dir->setIterationVariable(Exprs.IterationVarRef);
+ Dir->setLastIteration(Exprs.LastIteration);
+ Dir->setCalcLastIteration(Exprs.CalcLastIteration);
+ Dir->setPreCond(Exprs.PreCond);
+ Dir->setCond(Exprs.Cond, Exprs.SeparatedCond);
+ Dir->setInit(Exprs.Init);
+ Dir->setInc(Exprs.Inc);
+ Dir->setIsLastIterVariable(Exprs.IL);
+ Dir->setLowerBoundVariable(Exprs.LB);
+ Dir->setUpperBoundVariable(Exprs.UB);
+ Dir->setStrideVariable(Exprs.ST);
+ Dir->setEnsureUpperBound(Exprs.EUB);
+ Dir->setNextLowerBound(Exprs.NLB);
+ Dir->setNextUpperBound(Exprs.NUB);
+ Dir->setCounters(Exprs.Counters);
+ Dir->setUpdates(Exprs.Updates);
+ Dir->setFinals(Exprs.Finals);
+ return Dir;
+}
+
+OMPParallelForSimdDirective *
+OMPParallelForSimdDirective::CreateEmpty(const ASTContext &C,
+ unsigned NumClauses,
+ unsigned CollapsedNum, EmptyShell) {
+ unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPParallelForSimdDirective),
+ llvm::alignOf<OMPClause *>());
+ void *Mem = C.Allocate(
+ Size + sizeof(OMPClause *) * NumClauses +
+ sizeof(Stmt *) * numLoopChildren(CollapsedNum, OMPD_parallel_for_simd));
+ return new (Mem) OMPParallelForSimdDirective(CollapsedNum, NumClauses);
+}
+
+OMPParallelSectionsDirective *OMPParallelSectionsDirective::Create(
+ const ASTContext &C, SourceLocation StartLoc, SourceLocation EndLoc,
+ ArrayRef<OMPClause *> Clauses, Stmt *AssociatedStmt) {
+ unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPParallelSectionsDirective),
+ llvm::alignOf<OMPClause *>());
+ void *Mem =
+ C.Allocate(Size + sizeof(OMPClause *) * Clauses.size() + sizeof(Stmt *));
+ OMPParallelSectionsDirective *Dir =
+ new (Mem) OMPParallelSectionsDirective(StartLoc, EndLoc, Clauses.size());
+ Dir->setClauses(Clauses);
+ Dir->setAssociatedStmt(AssociatedStmt);
+ return Dir;
+}
+
+OMPParallelSectionsDirective *
+OMPParallelSectionsDirective::CreateEmpty(const ASTContext &C,
+ unsigned NumClauses, EmptyShell) {
+ unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPParallelSectionsDirective),
+ llvm::alignOf<OMPClause *>());
+ void *Mem =
+ C.Allocate(Size + sizeof(OMPClause *) * NumClauses + sizeof(Stmt *));
+ return new (Mem) OMPParallelSectionsDirective(NumClauses);
+}
+
+OMPTaskDirective *OMPTaskDirective::Create(const ASTContext &C,
+ SourceLocation StartLoc,
+ SourceLocation EndLoc,
+ ArrayRef<OMPClause *> Clauses,
+ Stmt *AssociatedStmt) {
+ unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPTaskDirective),
+ llvm::alignOf<OMPClause *>());
+ void *Mem =
+ C.Allocate(Size + sizeof(OMPClause *) * Clauses.size() + sizeof(Stmt *));
+ OMPTaskDirective *Dir =
+ new (Mem) OMPTaskDirective(StartLoc, EndLoc, Clauses.size());
+ Dir->setClauses(Clauses);
+ Dir->setAssociatedStmt(AssociatedStmt);
+ return Dir;
+}
+
+OMPTaskDirective *OMPTaskDirective::CreateEmpty(const ASTContext &C,
+ unsigned NumClauses,
+ EmptyShell) {
+ unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPTaskDirective),
+ llvm::alignOf<OMPClause *>());
+ void *Mem =
+ C.Allocate(Size + sizeof(OMPClause *) * NumClauses + sizeof(Stmt *));
+ return new (Mem) OMPTaskDirective(NumClauses);
+}
+
+OMPTaskyieldDirective *OMPTaskyieldDirective::Create(const ASTContext &C,
+ SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+ void *Mem = C.Allocate(sizeof(OMPTaskyieldDirective));
+ OMPTaskyieldDirective *Dir =
+ new (Mem) OMPTaskyieldDirective(StartLoc, EndLoc);
+ return Dir;
+}
+
+OMPTaskyieldDirective *OMPTaskyieldDirective::CreateEmpty(const ASTContext &C,
+ EmptyShell) {
+ void *Mem = C.Allocate(sizeof(OMPTaskyieldDirective));
+ return new (Mem) OMPTaskyieldDirective();
+}
+
+OMPBarrierDirective *OMPBarrierDirective::Create(const ASTContext &C,
+ SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+ void *Mem = C.Allocate(sizeof(OMPBarrierDirective));
+ OMPBarrierDirective *Dir = new (Mem) OMPBarrierDirective(StartLoc, EndLoc);
+ return Dir;
+}
+
+OMPBarrierDirective *OMPBarrierDirective::CreateEmpty(const ASTContext &C,
+ EmptyShell) {
+ void *Mem = C.Allocate(sizeof(OMPBarrierDirective));
+ return new (Mem) OMPBarrierDirective();
+}
+
+OMPTaskwaitDirective *OMPTaskwaitDirective::Create(const ASTContext &C,
+ SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+ void *Mem = C.Allocate(sizeof(OMPTaskwaitDirective));
+ OMPTaskwaitDirective *Dir = new (Mem) OMPTaskwaitDirective(StartLoc, EndLoc);
+ return Dir;
+}
+
+OMPTaskwaitDirective *OMPTaskwaitDirective::CreateEmpty(const ASTContext &C,
+ EmptyShell) {
+ void *Mem = C.Allocate(sizeof(OMPTaskwaitDirective));
+ return new (Mem) OMPTaskwaitDirective();
+}
+
+OMPFlushDirective *OMPFlushDirective::Create(const ASTContext &C,
+ SourceLocation StartLoc,
+ SourceLocation EndLoc,
+ ArrayRef<OMPClause *> Clauses) {
+ unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPFlushDirective),
+ llvm::alignOf<OMPClause *>());
+ void *Mem = C.Allocate(Size + sizeof(OMPClause *) * Clauses.size());
+ OMPFlushDirective *Dir =
+ new (Mem) OMPFlushDirective(StartLoc, EndLoc, Clauses.size());
+ Dir->setClauses(Clauses);
+ return Dir;
+}
+
+OMPFlushDirective *OMPFlushDirective::CreateEmpty(const ASTContext &C,
+ unsigned NumClauses,
+ EmptyShell) {
+ unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPFlushDirective),
+ llvm::alignOf<OMPClause *>());
+ void *Mem = C.Allocate(Size + sizeof(OMPClause *) * NumClauses);
+ return new (Mem) OMPFlushDirective(NumClauses);
+}
+
+OMPOrderedDirective *OMPOrderedDirective::Create(const ASTContext &C,
+ SourceLocation StartLoc,
+ SourceLocation EndLoc,
+ Stmt *AssociatedStmt) {
+ unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPOrderedDirective),
+ llvm::alignOf<Stmt *>());
+ void *Mem = C.Allocate(Size + sizeof(Stmt *));
+ OMPOrderedDirective *Dir = new (Mem) OMPOrderedDirective(StartLoc, EndLoc);
+ Dir->setAssociatedStmt(AssociatedStmt);
+ return Dir;
+}
+
+OMPOrderedDirective *OMPOrderedDirective::CreateEmpty(const ASTContext &C,
+ EmptyShell) {
+ unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPOrderedDirective),
+ llvm::alignOf<Stmt *>());
+ void *Mem = C.Allocate(Size + sizeof(Stmt *));
+ return new (Mem) OMPOrderedDirective();
+}
+
+OMPAtomicDirective *OMPAtomicDirective::Create(
+ const ASTContext &C, SourceLocation StartLoc, SourceLocation EndLoc,
+ ArrayRef<OMPClause *> Clauses, Stmt *AssociatedStmt, Expr *X, Expr *V,
+ Expr *E, Expr *UE, bool IsXLHSInRHSPart, bool IsPostfixUpdate) {
+ unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPAtomicDirective),
+ llvm::alignOf<OMPClause *>());
+ void *Mem = C.Allocate(Size + sizeof(OMPClause *) * Clauses.size() +
+ 5 * sizeof(Stmt *));
+ OMPAtomicDirective *Dir =
+ new (Mem) OMPAtomicDirective(StartLoc, EndLoc, Clauses.size());
+ Dir->setClauses(Clauses);
+ Dir->setAssociatedStmt(AssociatedStmt);
+ Dir->setX(X);
+ Dir->setV(V);
+ Dir->setExpr(E);
+ Dir->setUpdateExpr(UE);
+ Dir->IsXLHSInRHSPart = IsXLHSInRHSPart;
+ Dir->IsPostfixUpdate = IsPostfixUpdate;
+ return Dir;
+}
+
+OMPAtomicDirective *OMPAtomicDirective::CreateEmpty(const ASTContext &C,
+ unsigned NumClauses,
+ EmptyShell) {
+ unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPAtomicDirective),
+ llvm::alignOf<OMPClause *>());
+ void *Mem =
+ C.Allocate(Size + sizeof(OMPClause *) * NumClauses + 5 * sizeof(Stmt *));
+ return new (Mem) OMPAtomicDirective(NumClauses);
+}
+
+OMPTargetDirective *OMPTargetDirective::Create(const ASTContext &C,
+ SourceLocation StartLoc,
+ SourceLocation EndLoc,
+ ArrayRef<OMPClause *> Clauses,
+ Stmt *AssociatedStmt) {
+ unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPTargetDirective),
+ llvm::alignOf<OMPClause *>());
+ void *Mem =
+ C.Allocate(Size + sizeof(OMPClause *) * Clauses.size() + sizeof(Stmt *));
+ OMPTargetDirective *Dir =
+ new (Mem) OMPTargetDirective(StartLoc, EndLoc, Clauses.size());
+ Dir->setClauses(Clauses);
+ Dir->setAssociatedStmt(AssociatedStmt);
+ return Dir;
+}
+
+OMPTargetDirective *OMPTargetDirective::CreateEmpty(const ASTContext &C,
+ unsigned NumClauses,
+ EmptyShell) {
+ unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPTargetDirective),
+ llvm::alignOf<OMPClause *>());
+ void *Mem =
+ C.Allocate(Size + sizeof(OMPClause *) * NumClauses + sizeof(Stmt *));
+ return new (Mem) OMPTargetDirective(NumClauses);
+}
+
+OMPTeamsDirective *OMPTeamsDirective::Create(const ASTContext &C,
+ SourceLocation StartLoc,
+ SourceLocation EndLoc,
+ ArrayRef<OMPClause *> Clauses,
+ Stmt *AssociatedStmt) {
+ unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPTeamsDirective),
+ llvm::alignOf<OMPClause *>());
+ void *Mem =
+ C.Allocate(Size + sizeof(OMPClause *) * Clauses.size() + sizeof(Stmt *));
+ OMPTeamsDirective *Dir =
+ new (Mem) OMPTeamsDirective(StartLoc, EndLoc, Clauses.size());
+ Dir->setClauses(Clauses);
+ Dir->setAssociatedStmt(AssociatedStmt);
+ return Dir;
+}
+
+OMPTeamsDirective *OMPTeamsDirective::CreateEmpty(const ASTContext &C,
+ unsigned NumClauses,
+ EmptyShell) {
+ unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPTeamsDirective),
+ llvm::alignOf<OMPClause *>());
+ void *Mem =
+ C.Allocate(Size + sizeof(OMPClause *) * NumClauses + sizeof(Stmt *));
+ return new (Mem) OMPTeamsDirective(NumClauses);
+}
+
diff --git a/contrib/llvm/tools/clang/lib/AST/StmtIterator.cpp b/contrib/llvm/tools/clang/lib/AST/StmtIterator.cpp
new file mode 100644
index 0000000..1ccba04
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/StmtIterator.cpp
@@ -0,0 +1,114 @@
+//===--- StmtIterator.cpp - Iterators for Statements ------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines internal methods for StmtIterator.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/StmtIterator.h"
+#include "clang/AST/Decl.h"
+
+using namespace clang;
+
+// FIXME: Add support for dependent-sized array types in C++?
+// Does it even make sense to build a CFG for an uninstantiated template?
+static inline const VariableArrayType *FindVA(const Type* t) {
+ while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
+ if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
+ if (vat->getSizeExpr())
+ return vat;
+
+ t = vt->getElementType().getTypePtr();
+ }
+
+ return nullptr;
+}
+
+void StmtIteratorBase::NextVA() {
+ assert (getVAPtr());
+
+ const VariableArrayType *p = getVAPtr();
+ p = FindVA(p->getElementType().getTypePtr());
+ setVAPtr(p);
+
+ if (p)
+ return;
+
+ if (inDeclGroup()) {
+ if (VarDecl* VD = dyn_cast<VarDecl>(*DGI))
+ if (VD->Init)
+ return;
+
+ NextDecl();
+ }
+ else {
+ assert(inSizeOfTypeVA());
+ RawVAPtr = 0;
+ }
+}
+
+void StmtIteratorBase::NextDecl(bool ImmediateAdvance) {
+ assert(getVAPtr() == nullptr);
+ assert(inDeclGroup());
+
+ if (ImmediateAdvance)
+ ++DGI;
+
+ for ( ; DGI != DGE; ++DGI)
+ if (HandleDecl(*DGI))
+ return;
+
+ RawVAPtr = 0;
+}
+
+bool StmtIteratorBase::HandleDecl(Decl* D) {
+ if (VarDecl* VD = dyn_cast<VarDecl>(D)) {
+ if (const VariableArrayType* VAPtr = FindVA(VD->getType().getTypePtr())) {
+ setVAPtr(VAPtr);
+ return true;
+ }
+
+ if (VD->getInit())
+ return true;
+ }
+ else if (TypedefNameDecl* TD = dyn_cast<TypedefNameDecl>(D)) {
+ if (const VariableArrayType* VAPtr =
+ FindVA(TD->getUnderlyingType().getTypePtr())) {
+ setVAPtr(VAPtr);
+ return true;
+ }
+ }
+ else if (EnumConstantDecl* ECD = dyn_cast<EnumConstantDecl>(D)) {
+ if (ECD->getInitExpr())
+ return true;
+ }
+
+ return false;
+}
+
+StmtIteratorBase::StmtIteratorBase(Decl** dgi, Decl** dge)
+ : stmt(nullptr), DGI(dgi), RawVAPtr(DeclGroupMode), DGE(dge) {
+ NextDecl(false);
+}
+
+StmtIteratorBase::StmtIteratorBase(const VariableArrayType* t)
+ : stmt(nullptr), DGI(nullptr), RawVAPtr(SizeOfTypeVAMode) {
+ RawVAPtr |= reinterpret_cast<uintptr_t>(t);
+}
+
+Stmt*& StmtIteratorBase::GetDeclExpr() const {
+ if (const VariableArrayType* VAPtr = getVAPtr()) {
+ assert (VAPtr->SizeExpr);
+ return const_cast<Stmt*&>(VAPtr->SizeExpr);
+ }
+
+ assert (inDeclGroup());
+ VarDecl* VD = cast<VarDecl>(*DGI);
+ return *VD->getInitAddress();
+}
diff --git a/contrib/llvm/tools/clang/lib/AST/StmtPrinter.cpp b/contrib/llvm/tools/clang/lib/AST/StmtPrinter.cpp
new file mode 100644
index 0000000..dc4f996
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/StmtPrinter.cpp
@@ -0,0 +1,2241 @@
+//===--- StmtPrinter.cpp - Printing implementation for Stmt ASTs ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Stmt::dumpPretty/Stmt::printPretty methods, which
+// pretty print the AST back out to C code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/PrettyPrinter.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Basic/CharInfo.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/Format.h"
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// StmtPrinter Visitor
+//===----------------------------------------------------------------------===//
+
+namespace {
+ class StmtPrinter : public StmtVisitor<StmtPrinter> {
+ raw_ostream &OS;
+ unsigned IndentLevel;
+ clang::PrinterHelper* Helper;
+ PrintingPolicy Policy;
+
+ public:
+ StmtPrinter(raw_ostream &os, PrinterHelper* helper,
+ const PrintingPolicy &Policy,
+ unsigned Indentation = 0)
+ : OS(os), IndentLevel(Indentation), Helper(helper), Policy(Policy) {}
+
+ void PrintStmt(Stmt *S) {
+ PrintStmt(S, Policy.Indentation);
+ }
+
+ void PrintStmt(Stmt *S, int SubIndent) {
+ IndentLevel += SubIndent;
+ if (S && isa<Expr>(S)) {
+ // If this is an expr used in a stmt context, indent and newline it.
+ Indent();
+ Visit(S);
+ OS << ";\n";
+ } else if (S) {
+ Visit(S);
+ } else {
+ Indent() << "<<<NULL STATEMENT>>>\n";
+ }
+ IndentLevel -= SubIndent;
+ }
+
+ void PrintRawCompoundStmt(CompoundStmt *S);
+ void PrintRawDecl(Decl *D);
+ void PrintRawDeclStmt(const DeclStmt *S);
+ void PrintRawIfStmt(IfStmt *If);
+ void PrintRawCXXCatchStmt(CXXCatchStmt *Catch);
+ void PrintCallArgs(CallExpr *E);
+ void PrintRawSEHExceptHandler(SEHExceptStmt *S);
+ void PrintRawSEHFinallyStmt(SEHFinallyStmt *S);
+ void PrintOMPExecutableDirective(OMPExecutableDirective *S);
+
+ void PrintExpr(Expr *E) {
+ if (E)
+ Visit(E);
+ else
+ OS << "<null expr>";
+ }
+
+ raw_ostream &Indent(int Delta = 0) {
+ for (int i = 0, e = IndentLevel+Delta; i < e; ++i)
+ OS << " ";
+ return OS;
+ }
+
+ void Visit(Stmt* S) {
+ if (Helper && Helper->handledStmt(S,OS))
+ return;
+ else StmtVisitor<StmtPrinter>::Visit(S);
+ }
+
+ void VisitStmt(Stmt *Node) LLVM_ATTRIBUTE_UNUSED {
+ Indent() << "<<unknown stmt type>>\n";
+ }
+ void VisitExpr(Expr *Node) LLVM_ATTRIBUTE_UNUSED {
+ OS << "<<unknown expr type>>";
+ }
+ void VisitCXXNamedCastExpr(CXXNamedCastExpr *Node);
+
+#define ABSTRACT_STMT(CLASS)
+#define STMT(CLASS, PARENT) \
+ void Visit##CLASS(CLASS *Node);
+#include "clang/AST/StmtNodes.inc"
+ };
+}
+
+//===----------------------------------------------------------------------===//
+// Stmt printing methods.
+//===----------------------------------------------------------------------===//
+
+/// PrintRawCompoundStmt - Print a compound stmt without indenting the {, and
+/// with no newline after the }.
+void StmtPrinter::PrintRawCompoundStmt(CompoundStmt *Node) {
+ OS << "{\n";
+ for (auto *I : Node->body())
+ PrintStmt(I);
+
+ Indent() << "}";
+}
+
+void StmtPrinter::PrintRawDecl(Decl *D) {
+ D->print(OS, Policy, IndentLevel);
+}
+
+void StmtPrinter::PrintRawDeclStmt(const DeclStmt *S) {
+ SmallVector<Decl*, 2> Decls(S->decls());
+ Decl::printGroup(Decls.data(), Decls.size(), OS, Policy, IndentLevel);
+}
+
+void StmtPrinter::VisitNullStmt(NullStmt *Node) {
+ Indent() << ";\n";
+}
+
+void StmtPrinter::VisitDeclStmt(DeclStmt *Node) {
+ Indent();
+ PrintRawDeclStmt(Node);
+ OS << ";\n";
+}
+
+void StmtPrinter::VisitCompoundStmt(CompoundStmt *Node) {
+ Indent();
+ PrintRawCompoundStmt(Node);
+ OS << "\n";
+}
+
+void StmtPrinter::VisitCaseStmt(CaseStmt *Node) {
+ Indent(-1) << "case ";
+ PrintExpr(Node->getLHS());
+ if (Node->getRHS()) {
+ OS << " ... ";
+ PrintExpr(Node->getRHS());
+ }
+ OS << ":\n";
+
+ PrintStmt(Node->getSubStmt(), 0);
+}
+
+void StmtPrinter::VisitDefaultStmt(DefaultStmt *Node) {
+ Indent(-1) << "default:\n";
+ PrintStmt(Node->getSubStmt(), 0);
+}
+
+void StmtPrinter::VisitLabelStmt(LabelStmt *Node) {
+ Indent(-1) << Node->getName() << ":\n";
+ PrintStmt(Node->getSubStmt(), 0);
+}
+
+void StmtPrinter::VisitAttributedStmt(AttributedStmt *Node) {
+ for (const auto *Attr : Node->getAttrs()) {
+ Attr->printPretty(OS, Policy);
+ }
+
+ PrintStmt(Node->getSubStmt(), 0);
+}
+
+void StmtPrinter::PrintRawIfStmt(IfStmt *If) {
+ OS << "if (";
+ if (const DeclStmt *DS = If->getConditionVariableDeclStmt())
+ PrintRawDeclStmt(DS);
+ else
+ PrintExpr(If->getCond());
+ OS << ')';
+
+ if (CompoundStmt *CS = dyn_cast<CompoundStmt>(If->getThen())) {
+ OS << ' ';
+ PrintRawCompoundStmt(CS);
+ OS << (If->getElse() ? ' ' : '\n');
+ } else {
+ OS << '\n';
+ PrintStmt(If->getThen());
+ if (If->getElse()) Indent();
+ }
+
+ if (Stmt *Else = If->getElse()) {
+ OS << "else";
+
+ if (CompoundStmt *CS = dyn_cast<CompoundStmt>(Else)) {
+ OS << ' ';
+ PrintRawCompoundStmt(CS);
+ OS << '\n';
+ } else if (IfStmt *ElseIf = dyn_cast<IfStmt>(Else)) {
+ OS << ' ';
+ PrintRawIfStmt(ElseIf);
+ } else {
+ OS << '\n';
+ PrintStmt(If->getElse());
+ }
+ }
+}
+
+void StmtPrinter::VisitIfStmt(IfStmt *If) {
+ Indent();
+ PrintRawIfStmt(If);
+}
+
+void StmtPrinter::VisitSwitchStmt(SwitchStmt *Node) {
+ Indent() << "switch (";
+ if (const DeclStmt *DS = Node->getConditionVariableDeclStmt())
+ PrintRawDeclStmt(DS);
+ else
+ PrintExpr(Node->getCond());
+ OS << ")";
+
+ // Pretty print compoundstmt bodies (very common).
+ if (CompoundStmt *CS = dyn_cast<CompoundStmt>(Node->getBody())) {
+ OS << " ";
+ PrintRawCompoundStmt(CS);
+ OS << "\n";
+ } else {
+ OS << "\n";
+ PrintStmt(Node->getBody());
+ }
+}
+
+void StmtPrinter::VisitWhileStmt(WhileStmt *Node) {
+ Indent() << "while (";
+ if (const DeclStmt *DS = Node->getConditionVariableDeclStmt())
+ PrintRawDeclStmt(DS);
+ else
+ PrintExpr(Node->getCond());
+ OS << ")\n";
+ PrintStmt(Node->getBody());
+}
+
+void StmtPrinter::VisitDoStmt(DoStmt *Node) {
+ Indent() << "do ";
+ if (CompoundStmt *CS = dyn_cast<CompoundStmt>(Node->getBody())) {
+ PrintRawCompoundStmt(CS);
+ OS << " ";
+ } else {
+ OS << "\n";
+ PrintStmt(Node->getBody());
+ Indent();
+ }
+
+ OS << "while (";
+ PrintExpr(Node->getCond());
+ OS << ");\n";
+}
+
+void StmtPrinter::VisitForStmt(ForStmt *Node) {
+ Indent() << "for (";
+ if (Node->getInit()) {
+ if (DeclStmt *DS = dyn_cast<DeclStmt>(Node->getInit()))
+ PrintRawDeclStmt(DS);
+ else
+ PrintExpr(cast<Expr>(Node->getInit()));
+ }
+ OS << ";";
+ if (Node->getCond()) {
+ OS << " ";
+ PrintExpr(Node->getCond());
+ }
+ OS << ";";
+ if (Node->getInc()) {
+ OS << " ";
+ PrintExpr(Node->getInc());
+ }
+ OS << ") ";
+
+ if (CompoundStmt *CS = dyn_cast<CompoundStmt>(Node->getBody())) {
+ PrintRawCompoundStmt(CS);
+ OS << "\n";
+ } else {
+ OS << "\n";
+ PrintStmt(Node->getBody());
+ }
+}
+
+void StmtPrinter::VisitObjCForCollectionStmt(ObjCForCollectionStmt *Node) {
+ Indent() << "for (";
+ if (DeclStmt *DS = dyn_cast<DeclStmt>(Node->getElement()))
+ PrintRawDeclStmt(DS);
+ else
+ PrintExpr(cast<Expr>(Node->getElement()));
+ OS << " in ";
+ PrintExpr(Node->getCollection());
+ OS << ") ";
+
+ if (CompoundStmt *CS = dyn_cast<CompoundStmt>(Node->getBody())) {
+ PrintRawCompoundStmt(CS);
+ OS << "\n";
+ } else {
+ OS << "\n";
+ PrintStmt(Node->getBody());
+ }
+}
+
+void StmtPrinter::VisitCXXForRangeStmt(CXXForRangeStmt *Node) {
+ Indent() << "for (";
+ PrintingPolicy SubPolicy(Policy);
+ SubPolicy.SuppressInitializers = true;
+ Node->getLoopVariable()->print(OS, SubPolicy, IndentLevel);
+ OS << " : ";
+ PrintExpr(Node->getRangeInit());
+ OS << ") {\n";
+ PrintStmt(Node->getBody());
+ Indent() << "}";
+ if (Policy.IncludeNewlines) OS << "\n";
+}
+
+void StmtPrinter::VisitMSDependentExistsStmt(MSDependentExistsStmt *Node) {
+ Indent();
+ if (Node->isIfExists())
+ OS << "__if_exists (";
+ else
+ OS << "__if_not_exists (";
+
+ if (NestedNameSpecifier *Qualifier
+ = Node->getQualifierLoc().getNestedNameSpecifier())
+ Qualifier->print(OS, Policy);
+
+ OS << Node->getNameInfo() << ") ";
+
+ PrintRawCompoundStmt(Node->getSubStmt());
+}
+
+void StmtPrinter::VisitGotoStmt(GotoStmt *Node) {
+ Indent() << "goto " << Node->getLabel()->getName() << ";";
+ if (Policy.IncludeNewlines) OS << "\n";
+}
+
+void StmtPrinter::VisitIndirectGotoStmt(IndirectGotoStmt *Node) {
+ Indent() << "goto *";
+ PrintExpr(Node->getTarget());
+ OS << ";";
+ if (Policy.IncludeNewlines) OS << "\n";
+}
+
+void StmtPrinter::VisitContinueStmt(ContinueStmt *Node) {
+ Indent() << "continue;";
+ if (Policy.IncludeNewlines) OS << "\n";
+}
+
+void StmtPrinter::VisitBreakStmt(BreakStmt *Node) {
+ Indent() << "break;";
+ if (Policy.IncludeNewlines) OS << "\n";
+}
+
+
+void StmtPrinter::VisitReturnStmt(ReturnStmt *Node) {
+ Indent() << "return";
+ if (Node->getRetValue()) {
+ OS << " ";
+ PrintExpr(Node->getRetValue());
+ }
+ OS << ";";
+ if (Policy.IncludeNewlines) OS << "\n";
+}
+
+
+void StmtPrinter::VisitGCCAsmStmt(GCCAsmStmt *Node) {
+ Indent() << "asm ";
+
+ if (Node->isVolatile())
+ OS << "volatile ";
+
+ OS << "(";
+ VisitStringLiteral(Node->getAsmString());
+
+ // Outputs
+ if (Node->getNumOutputs() != 0 || Node->getNumInputs() != 0 ||
+ Node->getNumClobbers() != 0)
+ OS << " : ";
+
+ for (unsigned i = 0, e = Node->getNumOutputs(); i != e; ++i) {
+ if (i != 0)
+ OS << ", ";
+
+ if (!Node->getOutputName(i).empty()) {
+ OS << '[';
+ OS << Node->getOutputName(i);
+ OS << "] ";
+ }
+
+ VisitStringLiteral(Node->getOutputConstraintLiteral(i));
+ OS << " ";
+ Visit(Node->getOutputExpr(i));
+ }
+
+ // Inputs
+ if (Node->getNumInputs() != 0 || Node->getNumClobbers() != 0)
+ OS << " : ";
+
+ for (unsigned i = 0, e = Node->getNumInputs(); i != e; ++i) {
+ if (i != 0)
+ OS << ", ";
+
+ if (!Node->getInputName(i).empty()) {
+ OS << '[';
+ OS << Node->getInputName(i);
+ OS << "] ";
+ }
+
+ VisitStringLiteral(Node->getInputConstraintLiteral(i));
+ OS << " ";
+ Visit(Node->getInputExpr(i));
+ }
+
+ // Clobbers
+ if (Node->getNumClobbers() != 0)
+ OS << " : ";
+
+ for (unsigned i = 0, e = Node->getNumClobbers(); i != e; ++i) {
+ if (i != 0)
+ OS << ", ";
+
+ VisitStringLiteral(Node->getClobberStringLiteral(i));
+ }
+
+ OS << ");";
+ if (Policy.IncludeNewlines) OS << "\n";
+}
+
+void StmtPrinter::VisitMSAsmStmt(MSAsmStmt *Node) {
+ // FIXME: Implement MS style inline asm statement printer.
+ Indent() << "__asm ";
+ if (Node->hasBraces())
+ OS << "{\n";
+ OS << Node->getAsmString() << "\n";
+ if (Node->hasBraces())
+ Indent() << "}\n";
+}
+
+void StmtPrinter::VisitCapturedStmt(CapturedStmt *Node) {
+ PrintStmt(Node->getCapturedDecl()->getBody());
+}
+
+void StmtPrinter::VisitObjCAtTryStmt(ObjCAtTryStmt *Node) {
+ Indent() << "@try";
+ if (CompoundStmt *TS = dyn_cast<CompoundStmt>(Node->getTryBody())) {
+ PrintRawCompoundStmt(TS);
+ OS << "\n";
+ }
+
+ for (unsigned I = 0, N = Node->getNumCatchStmts(); I != N; ++I) {
+ ObjCAtCatchStmt *catchStmt = Node->getCatchStmt(I);
+ Indent() << "@catch(";
+ if (catchStmt->getCatchParamDecl()) {
+ if (Decl *DS = catchStmt->getCatchParamDecl())
+ PrintRawDecl(DS);
+ }
+ OS << ")";
+ if (CompoundStmt *CS = dyn_cast<CompoundStmt>(catchStmt->getCatchBody())) {
+ PrintRawCompoundStmt(CS);
+ OS << "\n";
+ }
+ }
+
+ if (ObjCAtFinallyStmt *FS = static_cast<ObjCAtFinallyStmt *>(
+ Node->getFinallyStmt())) {
+ Indent() << "@finally";
+ PrintRawCompoundStmt(dyn_cast<CompoundStmt>(FS->getFinallyBody()));
+ OS << "\n";
+ }
+}
+
+void StmtPrinter::VisitObjCAtFinallyStmt(ObjCAtFinallyStmt *Node) {
+}
+
+void StmtPrinter::VisitObjCAtCatchStmt (ObjCAtCatchStmt *Node) {
+ Indent() << "@catch (...) { /* todo */ } \n";
+}
+
+void StmtPrinter::VisitObjCAtThrowStmt(ObjCAtThrowStmt *Node) {
+ Indent() << "@throw";
+ if (Node->getThrowExpr()) {
+ OS << " ";
+ PrintExpr(Node->getThrowExpr());
+ }
+ OS << ";\n";
+}
+
+void StmtPrinter::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *Node) {
+ Indent() << "@synchronized (";
+ PrintExpr(Node->getSynchExpr());
+ OS << ")";
+ PrintRawCompoundStmt(Node->getSynchBody());
+ OS << "\n";
+}
+
+void StmtPrinter::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *Node) {
+ Indent() << "@autoreleasepool";
+ PrintRawCompoundStmt(dyn_cast<CompoundStmt>(Node->getSubStmt()));
+ OS << "\n";
+}
+
+void StmtPrinter::PrintRawCXXCatchStmt(CXXCatchStmt *Node) {
+ OS << "catch (";
+ if (Decl *ExDecl = Node->getExceptionDecl())
+ PrintRawDecl(ExDecl);
+ else
+ OS << "...";
+ OS << ") ";
+ PrintRawCompoundStmt(cast<CompoundStmt>(Node->getHandlerBlock()));
+}
+
+void StmtPrinter::VisitCXXCatchStmt(CXXCatchStmt *Node) {
+ Indent();
+ PrintRawCXXCatchStmt(Node);
+ OS << "\n";
+}
+
+void StmtPrinter::VisitCXXTryStmt(CXXTryStmt *Node) {
+ Indent() << "try ";
+ PrintRawCompoundStmt(Node->getTryBlock());
+ for (unsigned i = 0, e = Node->getNumHandlers(); i < e; ++i) {
+ OS << " ";
+ PrintRawCXXCatchStmt(Node->getHandler(i));
+ }
+ OS << "\n";
+}
+
+void StmtPrinter::VisitSEHTryStmt(SEHTryStmt *Node) {
+ Indent() << (Node->getIsCXXTry() ? "try " : "__try ");
+ PrintRawCompoundStmt(Node->getTryBlock());
+ SEHExceptStmt *E = Node->getExceptHandler();
+ SEHFinallyStmt *F = Node->getFinallyHandler();
+ if(E)
+ PrintRawSEHExceptHandler(E);
+ else {
+ assert(F && "Must have a finally block...");
+ PrintRawSEHFinallyStmt(F);
+ }
+ OS << "\n";
+}
+
+void StmtPrinter::PrintRawSEHFinallyStmt(SEHFinallyStmt *Node) {
+ OS << "__finally ";
+ PrintRawCompoundStmt(Node->getBlock());
+ OS << "\n";
+}
+
+void StmtPrinter::PrintRawSEHExceptHandler(SEHExceptStmt *Node) {
+ OS << "__except (";
+ VisitExpr(Node->getFilterExpr());
+ OS << ")\n";
+ PrintRawCompoundStmt(Node->getBlock());
+ OS << "\n";
+}
+
+void StmtPrinter::VisitSEHExceptStmt(SEHExceptStmt *Node) {
+ Indent();
+ PrintRawSEHExceptHandler(Node);
+ OS << "\n";
+}
+
+void StmtPrinter::VisitSEHFinallyStmt(SEHFinallyStmt *Node) {
+ Indent();
+ PrintRawSEHFinallyStmt(Node);
+ OS << "\n";
+}
+
+void StmtPrinter::VisitSEHLeaveStmt(SEHLeaveStmt *Node) {
+ Indent() << "__leave;";
+ if (Policy.IncludeNewlines) OS << "\n";
+}
+
+//===----------------------------------------------------------------------===//
+// OpenMP clauses printing methods
+//===----------------------------------------------------------------------===//
+
+namespace {
+class OMPClausePrinter : public OMPClauseVisitor<OMPClausePrinter> {
+ raw_ostream &OS;
+ const PrintingPolicy &Policy;
+ /// \brief Process clauses with list of variables.
+ template <typename T>
+ void VisitOMPClauseList(T *Node, char StartSym);
+public:
+ OMPClausePrinter(raw_ostream &OS, const PrintingPolicy &Policy)
+ : OS(OS), Policy(Policy) { }
+#define OPENMP_CLAUSE(Name, Class) \
+ void Visit##Class(Class *S);
+#include "clang/Basic/OpenMPKinds.def"
+};
+
+void OMPClausePrinter::VisitOMPIfClause(OMPIfClause *Node) {
+ OS << "if(";
+ Node->getCondition()->printPretty(OS, nullptr, Policy, 0);
+ OS << ")";
+}
+
+void OMPClausePrinter::VisitOMPFinalClause(OMPFinalClause *Node) {
+ OS << "final(";
+ Node->getCondition()->printPretty(OS, nullptr, Policy, 0);
+ OS << ")";
+}
+
+void OMPClausePrinter::VisitOMPNumThreadsClause(OMPNumThreadsClause *Node) {
+ OS << "num_threads(";
+ Node->getNumThreads()->printPretty(OS, nullptr, Policy, 0);
+ OS << ")";
+}
+
+void OMPClausePrinter::VisitOMPSafelenClause(OMPSafelenClause *Node) {
+ OS << "safelen(";
+ Node->getSafelen()->printPretty(OS, nullptr, Policy, 0);
+ OS << ")";
+}
+
+void OMPClausePrinter::VisitOMPCollapseClause(OMPCollapseClause *Node) {
+ OS << "collapse(";
+ Node->getNumForLoops()->printPretty(OS, nullptr, Policy, 0);
+ OS << ")";
+}
+
+void OMPClausePrinter::VisitOMPDefaultClause(OMPDefaultClause *Node) {
+ OS << "default("
+ << getOpenMPSimpleClauseTypeName(OMPC_default, Node->getDefaultKind())
+ << ")";
+}
+
+void OMPClausePrinter::VisitOMPProcBindClause(OMPProcBindClause *Node) {
+ OS << "proc_bind("
+ << getOpenMPSimpleClauseTypeName(OMPC_proc_bind, Node->getProcBindKind())
+ << ")";
+}
+
+void OMPClausePrinter::VisitOMPScheduleClause(OMPScheduleClause *Node) {
+ OS << "schedule("
+ << getOpenMPSimpleClauseTypeName(OMPC_schedule, Node->getScheduleKind());
+ if (Node->getChunkSize()) {
+ OS << ", ";
+ Node->getChunkSize()->printPretty(OS, nullptr, Policy);
+ }
+ OS << ")";
+}
+
+void OMPClausePrinter::VisitOMPOrderedClause(OMPOrderedClause *) {
+ OS << "ordered";
+}
+
+void OMPClausePrinter::VisitOMPNowaitClause(OMPNowaitClause *) {
+ OS << "nowait";
+}
+
+void OMPClausePrinter::VisitOMPUntiedClause(OMPUntiedClause *) {
+ OS << "untied";
+}
+
+void OMPClausePrinter::VisitOMPMergeableClause(OMPMergeableClause *) {
+ OS << "mergeable";
+}
+
+void OMPClausePrinter::VisitOMPReadClause(OMPReadClause *) { OS << "read"; }
+
+void OMPClausePrinter::VisitOMPWriteClause(OMPWriteClause *) { OS << "write"; }
+
+void OMPClausePrinter::VisitOMPUpdateClause(OMPUpdateClause *) {
+ OS << "update";
+}
+
+void OMPClausePrinter::VisitOMPCaptureClause(OMPCaptureClause *) {
+ OS << "capture";
+}
+
+void OMPClausePrinter::VisitOMPSeqCstClause(OMPSeqCstClause *) {
+ OS << "seq_cst";
+}
+
+template<typename T>
+void OMPClausePrinter::VisitOMPClauseList(T *Node, char StartSym) {
+ for (typename T::varlist_iterator I = Node->varlist_begin(),
+ E = Node->varlist_end();
+ I != E; ++I) {
+ assert(*I && "Expected non-null Stmt");
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(*I)) {
+ OS << (I == Node->varlist_begin() ? StartSym : ',');
+ cast<NamedDecl>(DRE->getDecl())->printQualifiedName(OS);
+ } else {
+ OS << (I == Node->varlist_begin() ? StartSym : ',');
+ (*I)->printPretty(OS, nullptr, Policy, 0);
+ }
+ }
+}
+
+void OMPClausePrinter::VisitOMPPrivateClause(OMPPrivateClause *Node) {
+ if (!Node->varlist_empty()) {
+ OS << "private";
+ VisitOMPClauseList(Node, '(');
+ OS << ")";
+ }
+}
+
+void OMPClausePrinter::VisitOMPFirstprivateClause(OMPFirstprivateClause *Node) {
+ if (!Node->varlist_empty()) {
+ OS << "firstprivate";
+ VisitOMPClauseList(Node, '(');
+ OS << ")";
+ }
+}
+
+void OMPClausePrinter::VisitOMPLastprivateClause(OMPLastprivateClause *Node) {
+ if (!Node->varlist_empty()) {
+ OS << "lastprivate";
+ VisitOMPClauseList(Node, '(');
+ OS << ")";
+ }
+}
+
+void OMPClausePrinter::VisitOMPSharedClause(OMPSharedClause *Node) {
+ if (!Node->varlist_empty()) {
+ OS << "shared";
+ VisitOMPClauseList(Node, '(');
+ OS << ")";
+ }
+}
+
+void OMPClausePrinter::VisitOMPReductionClause(OMPReductionClause *Node) {
+ if (!Node->varlist_empty()) {
+ OS << "reduction(";
+ NestedNameSpecifier *QualifierLoc =
+ Node->getQualifierLoc().getNestedNameSpecifier();
+ OverloadedOperatorKind OOK =
+ Node->getNameInfo().getName().getCXXOverloadedOperator();
+ if (QualifierLoc == nullptr && OOK != OO_None) {
+ // Print reduction identifier in C format
+ OS << getOperatorSpelling(OOK);
+ } else {
+ // Use C++ format
+ if (QualifierLoc != nullptr)
+ QualifierLoc->print(OS, Policy);
+ OS << Node->getNameInfo();
+ }
+ OS << ":";
+ VisitOMPClauseList(Node, ' ');
+ OS << ")";
+ }
+}
+
+void OMPClausePrinter::VisitOMPLinearClause(OMPLinearClause *Node) {
+ if (!Node->varlist_empty()) {
+ OS << "linear";
+ VisitOMPClauseList(Node, '(');
+ if (Node->getStep() != nullptr) {
+ OS << ": ";
+ Node->getStep()->printPretty(OS, nullptr, Policy, 0);
+ }
+ OS << ")";
+ }
+}
+
+void OMPClausePrinter::VisitOMPAlignedClause(OMPAlignedClause *Node) {
+ if (!Node->varlist_empty()) {
+ OS << "aligned";
+ VisitOMPClauseList(Node, '(');
+ if (Node->getAlignment() != nullptr) {
+ OS << ": ";
+ Node->getAlignment()->printPretty(OS, nullptr, Policy, 0);
+ }
+ OS << ")";
+ }
+}
+
+void OMPClausePrinter::VisitOMPCopyinClause(OMPCopyinClause *Node) {
+ if (!Node->varlist_empty()) {
+ OS << "copyin";
+ VisitOMPClauseList(Node, '(');
+ OS << ")";
+ }
+}
+
+void OMPClausePrinter::VisitOMPCopyprivateClause(OMPCopyprivateClause *Node) {
+ if (!Node->varlist_empty()) {
+ OS << "copyprivate";
+ VisitOMPClauseList(Node, '(');
+ OS << ")";
+ }
+}
+
+void OMPClausePrinter::VisitOMPFlushClause(OMPFlushClause *Node) {
+ if (!Node->varlist_empty()) {
+ VisitOMPClauseList(Node, '(');
+ OS << ")";
+ }
+}
+}
+
+//===----------------------------------------------------------------------===//
+// OpenMP directives printing methods
+//===----------------------------------------------------------------------===//
+
+void StmtPrinter::PrintOMPExecutableDirective(OMPExecutableDirective *S) {
+ OMPClausePrinter Printer(OS, Policy);
+ ArrayRef<OMPClause *> Clauses = S->clauses();
+ for (ArrayRef<OMPClause *>::iterator I = Clauses.begin(), E = Clauses.end();
+ I != E; ++I)
+ if (*I && !(*I)->isImplicit()) {
+ Printer.Visit(*I);
+ OS << ' ';
+ }
+ OS << "\n";
+ if (S->hasAssociatedStmt() && S->getAssociatedStmt()) {
+ assert(isa<CapturedStmt>(S->getAssociatedStmt()) &&
+ "Expected captured statement!");
+ Stmt *CS = cast<CapturedStmt>(S->getAssociatedStmt())->getCapturedStmt();
+ PrintStmt(CS);
+ }
+}
+
+void StmtPrinter::VisitOMPParallelDirective(OMPParallelDirective *Node) {
+ Indent() << "#pragma omp parallel ";
+ PrintOMPExecutableDirective(Node);
+}
+
+void StmtPrinter::VisitOMPSimdDirective(OMPSimdDirective *Node) {
+ Indent() << "#pragma omp simd ";
+ PrintOMPExecutableDirective(Node);
+}
+
+void StmtPrinter::VisitOMPForDirective(OMPForDirective *Node) {
+ Indent() << "#pragma omp for ";
+ PrintOMPExecutableDirective(Node);
+}
+
+void StmtPrinter::VisitOMPForSimdDirective(OMPForSimdDirective *Node) {
+ Indent() << "#pragma omp for simd ";
+ PrintOMPExecutableDirective(Node);
+}
+
+void StmtPrinter::VisitOMPSectionsDirective(OMPSectionsDirective *Node) {
+ Indent() << "#pragma omp sections ";
+ PrintOMPExecutableDirective(Node);
+}
+
+void StmtPrinter::VisitOMPSectionDirective(OMPSectionDirective *Node) {
+ Indent() << "#pragma omp section";
+ PrintOMPExecutableDirective(Node);
+}
+
+void StmtPrinter::VisitOMPSingleDirective(OMPSingleDirective *Node) {
+ Indent() << "#pragma omp single ";
+ PrintOMPExecutableDirective(Node);
+}
+
+void StmtPrinter::VisitOMPMasterDirective(OMPMasterDirective *Node) {
+ Indent() << "#pragma omp master";
+ PrintOMPExecutableDirective(Node);
+}
+
+void StmtPrinter::VisitOMPCriticalDirective(OMPCriticalDirective *Node) {
+ Indent() << "#pragma omp critical";
+ if (Node->getDirectiveName().getName()) {
+ OS << " (";
+ Node->getDirectiveName().printName(OS);
+ OS << ")";
+ }
+ PrintOMPExecutableDirective(Node);
+}
+
+void StmtPrinter::VisitOMPParallelForDirective(OMPParallelForDirective *Node) {
+ Indent() << "#pragma omp parallel for ";
+ PrintOMPExecutableDirective(Node);
+}
+
+void StmtPrinter::VisitOMPParallelForSimdDirective(
+ OMPParallelForSimdDirective *Node) {
+ Indent() << "#pragma omp parallel for simd ";
+ PrintOMPExecutableDirective(Node);
+}
+
+void StmtPrinter::VisitOMPParallelSectionsDirective(
+ OMPParallelSectionsDirective *Node) {
+ Indent() << "#pragma omp parallel sections ";
+ PrintOMPExecutableDirective(Node);
+}
+
+void StmtPrinter::VisitOMPTaskDirective(OMPTaskDirective *Node) {
+ Indent() << "#pragma omp task ";
+ PrintOMPExecutableDirective(Node);
+}
+
+void StmtPrinter::VisitOMPTaskyieldDirective(OMPTaskyieldDirective *Node) {
+ Indent() << "#pragma omp taskyield";
+ PrintOMPExecutableDirective(Node);
+}
+
+void StmtPrinter::VisitOMPBarrierDirective(OMPBarrierDirective *Node) {
+ Indent() << "#pragma omp barrier";
+ PrintOMPExecutableDirective(Node);
+}
+
+void StmtPrinter::VisitOMPTaskwaitDirective(OMPTaskwaitDirective *Node) {
+ Indent() << "#pragma omp taskwait";
+ PrintOMPExecutableDirective(Node);
+}
+
+void StmtPrinter::VisitOMPFlushDirective(OMPFlushDirective *Node) {
+ Indent() << "#pragma omp flush ";
+ PrintOMPExecutableDirective(Node);
+}
+
+void StmtPrinter::VisitOMPOrderedDirective(OMPOrderedDirective *Node) {
+ Indent() << "#pragma omp ordered";
+ PrintOMPExecutableDirective(Node);
+}
+
+void StmtPrinter::VisitOMPAtomicDirective(OMPAtomicDirective *Node) {
+ Indent() << "#pragma omp atomic ";
+ PrintOMPExecutableDirective(Node);
+}
+
+void StmtPrinter::VisitOMPTargetDirective(OMPTargetDirective *Node) {
+ Indent() << "#pragma omp target ";
+ PrintOMPExecutableDirective(Node);
+}
+
+void StmtPrinter::VisitOMPTeamsDirective(OMPTeamsDirective *Node) {
+ Indent() << "#pragma omp teams ";
+ PrintOMPExecutableDirective(Node);
+}
+
+//===----------------------------------------------------------------------===//
+// Expr printing methods.
+//===----------------------------------------------------------------------===//
+
+void StmtPrinter::VisitDeclRefExpr(DeclRefExpr *Node) {
+ if (NestedNameSpecifier *Qualifier = Node->getQualifier())
+ Qualifier->print(OS, Policy);
+ if (Node->hasTemplateKeyword())
+ OS << "template ";
+ OS << Node->getNameInfo();
+ if (Node->hasExplicitTemplateArgs())
+ TemplateSpecializationType::PrintTemplateArgumentList(
+ OS, Node->getTemplateArgs(), Node->getNumTemplateArgs(), Policy);
+}
+
+void StmtPrinter::VisitDependentScopeDeclRefExpr(
+ DependentScopeDeclRefExpr *Node) {
+ if (NestedNameSpecifier *Qualifier = Node->getQualifier())
+ Qualifier->print(OS, Policy);
+ if (Node->hasTemplateKeyword())
+ OS << "template ";
+ OS << Node->getNameInfo();
+ if (Node->hasExplicitTemplateArgs())
+ TemplateSpecializationType::PrintTemplateArgumentList(
+ OS, Node->getTemplateArgs(), Node->getNumTemplateArgs(), Policy);
+}
+
+void StmtPrinter::VisitUnresolvedLookupExpr(UnresolvedLookupExpr *Node) {
+ if (Node->getQualifier())
+ Node->getQualifier()->print(OS, Policy);
+ if (Node->hasTemplateKeyword())
+ OS << "template ";
+ OS << Node->getNameInfo();
+ if (Node->hasExplicitTemplateArgs())
+ TemplateSpecializationType::PrintTemplateArgumentList(
+ OS, Node->getTemplateArgs(), Node->getNumTemplateArgs(), Policy);
+}
+
+void StmtPrinter::VisitObjCIvarRefExpr(ObjCIvarRefExpr *Node) {
+ if (Node->getBase()) {
+ PrintExpr(Node->getBase());
+ OS << (Node->isArrow() ? "->" : ".");
+ }
+ OS << *Node->getDecl();
+}
+
+void StmtPrinter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *Node) {
+ if (Node->isSuperReceiver())
+ OS << "super.";
+ else if (Node->isObjectReceiver() && Node->getBase()) {
+ PrintExpr(Node->getBase());
+ OS << ".";
+ } else if (Node->isClassReceiver() && Node->getClassReceiver()) {
+ OS << Node->getClassReceiver()->getName() << ".";
+ }
+
+ if (Node->isImplicitProperty())
+ Node->getImplicitPropertyGetter()->getSelector().print(OS);
+ else
+ OS << Node->getExplicitProperty()->getName();
+}
+
+void StmtPrinter::VisitObjCSubscriptRefExpr(ObjCSubscriptRefExpr *Node) {
+
+ PrintExpr(Node->getBaseExpr());
+ OS << "[";
+ PrintExpr(Node->getKeyExpr());
+ OS << "]";
+}
+
+void StmtPrinter::VisitPredefinedExpr(PredefinedExpr *Node) {
+ OS << PredefinedExpr::getIdentTypeName(Node->getIdentType());
+}
+
+void StmtPrinter::VisitCharacterLiteral(CharacterLiteral *Node) {
+ unsigned value = Node->getValue();
+
+ switch (Node->getKind()) {
+ case CharacterLiteral::Ascii: break; // no prefix.
+ case CharacterLiteral::Wide: OS << 'L'; break;
+ case CharacterLiteral::UTF16: OS << 'u'; break;
+ case CharacterLiteral::UTF32: OS << 'U'; break;
+ }
+
+ switch (value) {
+ case '\\':
+ OS << "'\\\\'";
+ break;
+ case '\'':
+ OS << "'\\''";
+ break;
+ case '\a':
+ // TODO: K&R: the meaning of '\\a' is different in traditional C
+ OS << "'\\a'";
+ break;
+ case '\b':
+ OS << "'\\b'";
+ break;
+ // Nonstandard escape sequence.
+ /*case '\e':
+ OS << "'\\e'";
+ break;*/
+ case '\f':
+ OS << "'\\f'";
+ break;
+ case '\n':
+ OS << "'\\n'";
+ break;
+ case '\r':
+ OS << "'\\r'";
+ break;
+ case '\t':
+ OS << "'\\t'";
+ break;
+ case '\v':
+ OS << "'\\v'";
+ break;
+ default:
+ if (value < 256 && isPrintable((unsigned char)value))
+ OS << "'" << (char)value << "'";
+ else if (value < 256)
+ OS << "'\\x" << llvm::format("%02x", value) << "'";
+ else if (value <= 0xFFFF)
+ OS << "'\\u" << llvm::format("%04x", value) << "'";
+ else
+ OS << "'\\U" << llvm::format("%08x", value) << "'";
+ }
+}
+
+void StmtPrinter::VisitIntegerLiteral(IntegerLiteral *Node) {
+ bool isSigned = Node->getType()->isSignedIntegerType();
+ OS << Node->getValue().toString(10, isSigned);
+
+ // Emit suffixes. Integer literals are always a builtin integer type.
+ switch (Node->getType()->getAs<BuiltinType>()->getKind()) {
+ default: llvm_unreachable("Unexpected type for integer literal!");
+ case BuiltinType::Char_S:
+ case BuiltinType::Char_U: OS << "i8"; break;
+ case BuiltinType::UChar: OS << "Ui8"; break;
+ case BuiltinType::Short: OS << "i16"; break;
+ case BuiltinType::UShort: OS << "Ui16"; break;
+ case BuiltinType::Int: break; // no suffix.
+ case BuiltinType::UInt: OS << 'U'; break;
+ case BuiltinType::Long: OS << 'L'; break;
+ case BuiltinType::ULong: OS << "UL"; break;
+ case BuiltinType::LongLong: OS << "LL"; break;
+ case BuiltinType::ULongLong: OS << "ULL"; break;
+ case BuiltinType::Int128: OS << "i128"; break;
+ case BuiltinType::UInt128: OS << "Ui128"; break;
+ }
+}
+
+static void PrintFloatingLiteral(raw_ostream &OS, FloatingLiteral *Node,
+ bool PrintSuffix) {
+ SmallString<16> Str;
+ Node->getValue().toString(Str);
+ OS << Str;
+ if (Str.find_first_not_of("-0123456789") == StringRef::npos)
+ OS << '.'; // Trailing dot in order to separate from ints.
+
+ if (!PrintSuffix)
+ return;
+
+ // Emit suffixes. Float literals are always a builtin float type.
+ switch (Node->getType()->getAs<BuiltinType>()->getKind()) {
+ default: llvm_unreachable("Unexpected type for float literal!");
+ case BuiltinType::Half: break; // FIXME: suffix?
+ case BuiltinType::Double: break; // no suffix.
+ case BuiltinType::Float: OS << 'F'; break;
+ case BuiltinType::LongDouble: OS << 'L'; break;
+ }
+}
+
+void StmtPrinter::VisitFloatingLiteral(FloatingLiteral *Node) {
+ PrintFloatingLiteral(OS, Node, /*PrintSuffix=*/true);
+}
+
+void StmtPrinter::VisitImaginaryLiteral(ImaginaryLiteral *Node) {
+ PrintExpr(Node->getSubExpr());
+ OS << "i";
+}
+
+void StmtPrinter::VisitStringLiteral(StringLiteral *Str) {
+ Str->outputString(OS);
+}
+void StmtPrinter::VisitParenExpr(ParenExpr *Node) {
+ OS << "(";
+ PrintExpr(Node->getSubExpr());
+ OS << ")";
+}
+void StmtPrinter::VisitUnaryOperator(UnaryOperator *Node) {
+ if (!Node->isPostfix()) {
+ OS << UnaryOperator::getOpcodeStr(Node->getOpcode());
+
+ // Print a space if this is an "identifier operator" like __real, or if
+ // it might be concatenated incorrectly like '+'.
+ switch (Node->getOpcode()) {
+ default: break;
+ case UO_Real:
+ case UO_Imag:
+ case UO_Extension:
+ OS << ' ';
+ break;
+ case UO_Plus:
+ case UO_Minus:
+ if (isa<UnaryOperator>(Node->getSubExpr()))
+ OS << ' ';
+ break;
+ }
+ }
+ PrintExpr(Node->getSubExpr());
+
+ if (Node->isPostfix())
+ OS << UnaryOperator::getOpcodeStr(Node->getOpcode());
+}
+
+void StmtPrinter::VisitOffsetOfExpr(OffsetOfExpr *Node) {
+ OS << "__builtin_offsetof(";
+ Node->getTypeSourceInfo()->getType().print(OS, Policy);
+ OS << ", ";
+ bool PrintedSomething = false;
+ for (unsigned i = 0, n = Node->getNumComponents(); i < n; ++i) {
+ OffsetOfExpr::OffsetOfNode ON = Node->getComponent(i);
+ if (ON.getKind() == OffsetOfExpr::OffsetOfNode::Array) {
+ // Array node
+ OS << "[";
+ PrintExpr(Node->getIndexExpr(ON.getArrayExprIndex()));
+ OS << "]";
+ PrintedSomething = true;
+ continue;
+ }
+
+ // Skip implicit base indirections.
+ if (ON.getKind() == OffsetOfExpr::OffsetOfNode::Base)
+ continue;
+
+ // Field or identifier node.
+ IdentifierInfo *Id = ON.getFieldName();
+ if (!Id)
+ continue;
+
+ if (PrintedSomething)
+ OS << ".";
+ else
+ PrintedSomething = true;
+ OS << Id->getName();
+ }
+ OS << ")";
+}
+
+void StmtPrinter::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *Node){
+ switch(Node->getKind()) {
+ case UETT_SizeOf:
+ OS << "sizeof";
+ break;
+ case UETT_AlignOf:
+ if (Policy.LangOpts.CPlusPlus)
+ OS << "alignof";
+ else if (Policy.LangOpts.C11)
+ OS << "_Alignof";
+ else
+ OS << "__alignof";
+ break;
+ case UETT_VecStep:
+ OS << "vec_step";
+ break;
+ }
+ if (Node->isArgumentType()) {
+ OS << '(';
+ Node->getArgumentType().print(OS, Policy);
+ OS << ')';
+ } else {
+ OS << " ";
+ PrintExpr(Node->getArgumentExpr());
+ }
+}
+
+void StmtPrinter::VisitGenericSelectionExpr(GenericSelectionExpr *Node) {
+ OS << "_Generic(";
+ PrintExpr(Node->getControllingExpr());
+ for (unsigned i = 0; i != Node->getNumAssocs(); ++i) {
+ OS << ", ";
+ QualType T = Node->getAssocType(i);
+ if (T.isNull())
+ OS << "default";
+ else
+ T.print(OS, Policy);
+ OS << ": ";
+ PrintExpr(Node->getAssocExpr(i));
+ }
+ OS << ")";
+}
+
+void StmtPrinter::VisitArraySubscriptExpr(ArraySubscriptExpr *Node) {
+ PrintExpr(Node->getLHS());
+ OS << "[";
+ PrintExpr(Node->getRHS());
+ OS << "]";
+}
+
+void StmtPrinter::PrintCallArgs(CallExpr *Call) {
+ for (unsigned i = 0, e = Call->getNumArgs(); i != e; ++i) {
+ if (isa<CXXDefaultArgExpr>(Call->getArg(i))) {
+ // Don't print any defaulted arguments
+ break;
+ }
+
+ if (i) OS << ", ";
+ PrintExpr(Call->getArg(i));
+ }
+}
+
+void StmtPrinter::VisitCallExpr(CallExpr *Call) {
+ PrintExpr(Call->getCallee());
+ OS << "(";
+ PrintCallArgs(Call);
+ OS << ")";
+}
+void StmtPrinter::VisitMemberExpr(MemberExpr *Node) {
+ // FIXME: Suppress printing implicit bases (like "this")
+ PrintExpr(Node->getBase());
+
+ MemberExpr *ParentMember = dyn_cast<MemberExpr>(Node->getBase());
+ FieldDecl *ParentDecl = ParentMember
+ ? dyn_cast<FieldDecl>(ParentMember->getMemberDecl()) : nullptr;
+
+ if (!ParentDecl || !ParentDecl->isAnonymousStructOrUnion())
+ OS << (Node->isArrow() ? "->" : ".");
+
+ if (FieldDecl *FD = dyn_cast<FieldDecl>(Node->getMemberDecl()))
+ if (FD->isAnonymousStructOrUnion())
+ return;
+
+ if (NestedNameSpecifier *Qualifier = Node->getQualifier())
+ Qualifier->print(OS, Policy);
+ if (Node->hasTemplateKeyword())
+ OS << "template ";
+ OS << Node->getMemberNameInfo();
+ if (Node->hasExplicitTemplateArgs())
+ TemplateSpecializationType::PrintTemplateArgumentList(
+ OS, Node->getTemplateArgs(), Node->getNumTemplateArgs(), Policy);
+}
+void StmtPrinter::VisitObjCIsaExpr(ObjCIsaExpr *Node) {
+ PrintExpr(Node->getBase());
+ OS << (Node->isArrow() ? "->isa" : ".isa");
+}
+
+void StmtPrinter::VisitExtVectorElementExpr(ExtVectorElementExpr *Node) {
+ PrintExpr(Node->getBase());
+ OS << ".";
+ OS << Node->getAccessor().getName();
+}
+void StmtPrinter::VisitCStyleCastExpr(CStyleCastExpr *Node) {
+ OS << '(';
+ Node->getTypeAsWritten().print(OS, Policy);
+ OS << ')';
+ PrintExpr(Node->getSubExpr());
+}
+void StmtPrinter::VisitCompoundLiteralExpr(CompoundLiteralExpr *Node) {
+ OS << '(';
+ Node->getType().print(OS, Policy);
+ OS << ')';
+ PrintExpr(Node->getInitializer());
+}
+void StmtPrinter::VisitImplicitCastExpr(ImplicitCastExpr *Node) {
+ // No need to print anything, simply forward to the subexpression.
+ PrintExpr(Node->getSubExpr());
+}
+void StmtPrinter::VisitBinaryOperator(BinaryOperator *Node) {
+ PrintExpr(Node->getLHS());
+ OS << " " << BinaryOperator::getOpcodeStr(Node->getOpcode()) << " ";
+ PrintExpr(Node->getRHS());
+}
+void StmtPrinter::VisitCompoundAssignOperator(CompoundAssignOperator *Node) {
+ PrintExpr(Node->getLHS());
+ OS << " " << BinaryOperator::getOpcodeStr(Node->getOpcode()) << " ";
+ PrintExpr(Node->getRHS());
+}
+void StmtPrinter::VisitConditionalOperator(ConditionalOperator *Node) {
+ PrintExpr(Node->getCond());
+ OS << " ? ";
+ PrintExpr(Node->getLHS());
+ OS << " : ";
+ PrintExpr(Node->getRHS());
+}
+
+// GNU extensions.
+
+void
+StmtPrinter::VisitBinaryConditionalOperator(BinaryConditionalOperator *Node) {
+ PrintExpr(Node->getCommon());
+ OS << " ?: ";
+ PrintExpr(Node->getFalseExpr());
+}
+void StmtPrinter::VisitAddrLabelExpr(AddrLabelExpr *Node) {
+ OS << "&&" << Node->getLabel()->getName();
+}
+
+void StmtPrinter::VisitStmtExpr(StmtExpr *E) {
+ OS << "(";
+ PrintRawCompoundStmt(E->getSubStmt());
+ OS << ")";
+}
+
+void StmtPrinter::VisitChooseExpr(ChooseExpr *Node) {
+ OS << "__builtin_choose_expr(";
+ PrintExpr(Node->getCond());
+ OS << ", ";
+ PrintExpr(Node->getLHS());
+ OS << ", ";
+ PrintExpr(Node->getRHS());
+ OS << ")";
+}
+
+void StmtPrinter::VisitGNUNullExpr(GNUNullExpr *) {
+ OS << "__null";
+}
+
+void StmtPrinter::VisitShuffleVectorExpr(ShuffleVectorExpr *Node) {
+ OS << "__builtin_shufflevector(";
+ for (unsigned i = 0, e = Node->getNumSubExprs(); i != e; ++i) {
+ if (i) OS << ", ";
+ PrintExpr(Node->getExpr(i));
+ }
+ OS << ")";
+}
+
+void StmtPrinter::VisitConvertVectorExpr(ConvertVectorExpr *Node) {
+ OS << "__builtin_convertvector(";
+ PrintExpr(Node->getSrcExpr());
+ OS << ", ";
+ Node->getType().print(OS, Policy);
+ OS << ")";
+}
+
+void StmtPrinter::VisitInitListExpr(InitListExpr* Node) {
+ if (Node->getSyntacticForm()) {
+ Visit(Node->getSyntacticForm());
+ return;
+ }
+
+ OS << "{";
+ for (unsigned i = 0, e = Node->getNumInits(); i != e; ++i) {
+ if (i) OS << ", ";
+ if (Node->getInit(i))
+ PrintExpr(Node->getInit(i));
+ else
+ OS << "{}";
+ }
+ OS << "}";
+}
+
+void StmtPrinter::VisitParenListExpr(ParenListExpr* Node) {
+ OS << "(";
+ for (unsigned i = 0, e = Node->getNumExprs(); i != e; ++i) {
+ if (i) OS << ", ";
+ PrintExpr(Node->getExpr(i));
+ }
+ OS << ")";
+}
+
+void StmtPrinter::VisitDesignatedInitExpr(DesignatedInitExpr *Node) {
+ for (DesignatedInitExpr::designators_iterator D = Node->designators_begin(),
+ DEnd = Node->designators_end();
+ D != DEnd; ++D) {
+ if (D->isFieldDesignator()) {
+ if (D->getDotLoc().isInvalid()) {
+ if (IdentifierInfo *II = D->getFieldName())
+ OS << II->getName() << ":";
+ } else {
+ OS << "." << D->getFieldName()->getName();
+ }
+ } else {
+ OS << "[";
+ if (D->isArrayDesignator()) {
+ PrintExpr(Node->getArrayIndex(*D));
+ } else {
+ PrintExpr(Node->getArrayRangeStart(*D));
+ OS << " ... ";
+ PrintExpr(Node->getArrayRangeEnd(*D));
+ }
+ OS << "]";
+ }
+ }
+
+ OS << " = ";
+ PrintExpr(Node->getInit());
+}
+
+void StmtPrinter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *Node) {
+ if (Policy.LangOpts.CPlusPlus) {
+ OS << "/*implicit*/";
+ Node->getType().print(OS, Policy);
+ OS << "()";
+ } else {
+ OS << "/*implicit*/(";
+ Node->getType().print(OS, Policy);
+ OS << ')';
+ if (Node->getType()->isRecordType())
+ OS << "{}";
+ else
+ OS << 0;
+ }
+}
+
+void StmtPrinter::VisitVAArgExpr(VAArgExpr *Node) {
+ OS << "__builtin_va_arg(";
+ PrintExpr(Node->getSubExpr());
+ OS << ", ";
+ Node->getType().print(OS, Policy);
+ OS << ")";
+}
+
+void StmtPrinter::VisitPseudoObjectExpr(PseudoObjectExpr *Node) {
+ PrintExpr(Node->getSyntacticForm());
+}
+
+void StmtPrinter::VisitAtomicExpr(AtomicExpr *Node) {
+ const char *Name = nullptr;
+ switch (Node->getOp()) {
+#define BUILTIN(ID, TYPE, ATTRS)
+#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
+ case AtomicExpr::AO ## ID: \
+ Name = #ID "("; \
+ break;
+#include "clang/Basic/Builtins.def"
+ }
+ OS << Name;
+
+ // AtomicExpr stores its subexpressions in a permuted order.
+ PrintExpr(Node->getPtr());
+ if (Node->getOp() != AtomicExpr::AO__c11_atomic_load &&
+ Node->getOp() != AtomicExpr::AO__atomic_load_n) {
+ OS << ", ";
+ PrintExpr(Node->getVal1());
+ }
+ if (Node->getOp() == AtomicExpr::AO__atomic_exchange ||
+ Node->isCmpXChg()) {
+ OS << ", ";
+ PrintExpr(Node->getVal2());
+ }
+ if (Node->getOp() == AtomicExpr::AO__atomic_compare_exchange ||
+ Node->getOp() == AtomicExpr::AO__atomic_compare_exchange_n) {
+ OS << ", ";
+ PrintExpr(Node->getWeak());
+ }
+ if (Node->getOp() != AtomicExpr::AO__c11_atomic_init) {
+ OS << ", ";
+ PrintExpr(Node->getOrder());
+ }
+ if (Node->isCmpXChg()) {
+ OS << ", ";
+ PrintExpr(Node->getOrderFail());
+ }
+ OS << ")";
+}
+
+// C++
+void StmtPrinter::VisitCXXOperatorCallExpr(CXXOperatorCallExpr *Node) {
+ const char *OpStrings[NUM_OVERLOADED_OPERATORS] = {
+ "",
+#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
+ Spelling,
+#include "clang/Basic/OperatorKinds.def"
+ };
+
+ OverloadedOperatorKind Kind = Node->getOperator();
+ if (Kind == OO_PlusPlus || Kind == OO_MinusMinus) {
+ if (Node->getNumArgs() == 1) {
+ OS << OpStrings[Kind] << ' ';
+ PrintExpr(Node->getArg(0));
+ } else {
+ PrintExpr(Node->getArg(0));
+ OS << ' ' << OpStrings[Kind];
+ }
+ } else if (Kind == OO_Arrow) {
+ PrintExpr(Node->getArg(0));
+ } else if (Kind == OO_Call) {
+ PrintExpr(Node->getArg(0));
+ OS << '(';
+ for (unsigned ArgIdx = 1; ArgIdx < Node->getNumArgs(); ++ArgIdx) {
+ if (ArgIdx > 1)
+ OS << ", ";
+ if (!isa<CXXDefaultArgExpr>(Node->getArg(ArgIdx)))
+ PrintExpr(Node->getArg(ArgIdx));
+ }
+ OS << ')';
+ } else if (Kind == OO_Subscript) {
+ PrintExpr(Node->getArg(0));
+ OS << '[';
+ PrintExpr(Node->getArg(1));
+ OS << ']';
+ } else if (Node->getNumArgs() == 1) {
+ OS << OpStrings[Kind] << ' ';
+ PrintExpr(Node->getArg(0));
+ } else if (Node->getNumArgs() == 2) {
+ PrintExpr(Node->getArg(0));
+ OS << ' ' << OpStrings[Kind] << ' ';
+ PrintExpr(Node->getArg(1));
+ } else {
+ llvm_unreachable("unknown overloaded operator");
+ }
+}
+
+void StmtPrinter::VisitCXXMemberCallExpr(CXXMemberCallExpr *Node) {
+ // If we have a conversion operator call only print the argument.
+ CXXMethodDecl *MD = Node->getMethodDecl();
+ if (MD && isa<CXXConversionDecl>(MD)) {
+ PrintExpr(Node->getImplicitObjectArgument());
+ return;
+ }
+ VisitCallExpr(cast<CallExpr>(Node));
+}
+
+void StmtPrinter::VisitCUDAKernelCallExpr(CUDAKernelCallExpr *Node) {
+ PrintExpr(Node->getCallee());
+ OS << "<<<";
+ PrintCallArgs(Node->getConfig());
+ OS << ">>>(";
+ PrintCallArgs(Node);
+ OS << ")";
+}
+
+void StmtPrinter::VisitCXXNamedCastExpr(CXXNamedCastExpr *Node) {
+ OS << Node->getCastName() << '<';
+ Node->getTypeAsWritten().print(OS, Policy);
+ OS << ">(";
+ PrintExpr(Node->getSubExpr());
+ OS << ")";
+}
+
+void StmtPrinter::VisitCXXStaticCastExpr(CXXStaticCastExpr *Node) {
+ VisitCXXNamedCastExpr(Node);
+}
+
+void StmtPrinter::VisitCXXDynamicCastExpr(CXXDynamicCastExpr *Node) {
+ VisitCXXNamedCastExpr(Node);
+}
+
+void StmtPrinter::VisitCXXReinterpretCastExpr(CXXReinterpretCastExpr *Node) {
+ VisitCXXNamedCastExpr(Node);
+}
+
+void StmtPrinter::VisitCXXConstCastExpr(CXXConstCastExpr *Node) {
+ VisitCXXNamedCastExpr(Node);
+}
+
+void StmtPrinter::VisitCXXTypeidExpr(CXXTypeidExpr *Node) {
+ OS << "typeid(";
+ if (Node->isTypeOperand()) {
+ Node->getTypeOperandSourceInfo()->getType().print(OS, Policy);
+ } else {
+ PrintExpr(Node->getExprOperand());
+ }
+ OS << ")";
+}
+
+void StmtPrinter::VisitCXXUuidofExpr(CXXUuidofExpr *Node) {
+ OS << "__uuidof(";
+ if (Node->isTypeOperand()) {
+ Node->getTypeOperandSourceInfo()->getType().print(OS, Policy);
+ } else {
+ PrintExpr(Node->getExprOperand());
+ }
+ OS << ")";
+}
+
+void StmtPrinter::VisitMSPropertyRefExpr(MSPropertyRefExpr *Node) {
+ PrintExpr(Node->getBaseExpr());
+ if (Node->isArrow())
+ OS << "->";
+ else
+ OS << ".";
+ if (NestedNameSpecifier *Qualifier =
+ Node->getQualifierLoc().getNestedNameSpecifier())
+ Qualifier->print(OS, Policy);
+ OS << Node->getPropertyDecl()->getDeclName();
+}
+
+void StmtPrinter::VisitUserDefinedLiteral(UserDefinedLiteral *Node) {
+ switch (Node->getLiteralOperatorKind()) {
+ case UserDefinedLiteral::LOK_Raw:
+ OS << cast<StringLiteral>(Node->getArg(0)->IgnoreImpCasts())->getString();
+ break;
+ case UserDefinedLiteral::LOK_Template: {
+ DeclRefExpr *DRE = cast<DeclRefExpr>(Node->getCallee()->IgnoreImpCasts());
+ const TemplateArgumentList *Args =
+ cast<FunctionDecl>(DRE->getDecl())->getTemplateSpecializationArgs();
+ assert(Args);
+
+ if (Args->size() != 1) {
+ OS << "operator \"\" " << Node->getUDSuffix()->getName();
+ TemplateSpecializationType::PrintTemplateArgumentList(
+ OS, Args->data(), Args->size(), Policy);
+ OS << "()";
+ return;
+ }
+
+ const TemplateArgument &Pack = Args->get(0);
+ for (const auto &P : Pack.pack_elements()) {
+ char C = (char)P.getAsIntegral().getZExtValue();
+ OS << C;
+ }
+ break;
+ }
+ case UserDefinedLiteral::LOK_Integer: {
+ // Print integer literal without suffix.
+ IntegerLiteral *Int = cast<IntegerLiteral>(Node->getCookedLiteral());
+ OS << Int->getValue().toString(10, /*isSigned*/false);
+ break;
+ }
+ case UserDefinedLiteral::LOK_Floating: {
+ // Print floating literal without suffix.
+ FloatingLiteral *Float = cast<FloatingLiteral>(Node->getCookedLiteral());
+ PrintFloatingLiteral(OS, Float, /*PrintSuffix=*/false);
+ break;
+ }
+ case UserDefinedLiteral::LOK_String:
+ case UserDefinedLiteral::LOK_Character:
+ PrintExpr(Node->getCookedLiteral());
+ break;
+ }
+ OS << Node->getUDSuffix()->getName();
+}
+
+void StmtPrinter::VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *Node) {
+ OS << (Node->getValue() ? "true" : "false");
+}
+
+void StmtPrinter::VisitCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr *Node) {
+ OS << "nullptr";
+}
+
+void StmtPrinter::VisitCXXThisExpr(CXXThisExpr *Node) {
+ OS << "this";
+}
+
+void StmtPrinter::VisitCXXThrowExpr(CXXThrowExpr *Node) {
+ if (!Node->getSubExpr())
+ OS << "throw";
+ else {
+ OS << "throw ";
+ PrintExpr(Node->getSubExpr());
+ }
+}
+
+void StmtPrinter::VisitCXXDefaultArgExpr(CXXDefaultArgExpr *Node) {
+ // Nothing to print: we picked up the default argument.
+}
+
+void StmtPrinter::VisitCXXDefaultInitExpr(CXXDefaultInitExpr *Node) {
+ // Nothing to print: we picked up the default initializer.
+}
+
+void StmtPrinter::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *Node) {
+ Node->getType().print(OS, Policy);
+ // If there are no parens, this is list-initialization, and the braces are
+ // part of the syntax of the inner construct.
+ if (Node->getLParenLoc().isValid())
+ OS << "(";
+ PrintExpr(Node->getSubExpr());
+ if (Node->getLParenLoc().isValid())
+ OS << ")";
+}
+
+void StmtPrinter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *Node) {
+ PrintExpr(Node->getSubExpr());
+}
+
+void StmtPrinter::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *Node) {
+ Node->getType().print(OS, Policy);
+ if (Node->isStdInitListInitialization())
+ /* Nothing to do; braces are part of creating the std::initializer_list. */;
+ else if (Node->isListInitialization())
+ OS << "{";
+ else
+ OS << "(";
+ for (CXXTemporaryObjectExpr::arg_iterator Arg = Node->arg_begin(),
+ ArgEnd = Node->arg_end();
+ Arg != ArgEnd; ++Arg) {
+ if (Arg->isDefaultArgument())
+ break;
+ if (Arg != Node->arg_begin())
+ OS << ", ";
+ PrintExpr(*Arg);
+ }
+ if (Node->isStdInitListInitialization())
+ /* See above. */;
+ else if (Node->isListInitialization())
+ OS << "}";
+ else
+ OS << ")";
+}
+
+void StmtPrinter::VisitLambdaExpr(LambdaExpr *Node) {
+ OS << '[';
+ bool NeedComma = false;
+ switch (Node->getCaptureDefault()) {
+ case LCD_None:
+ break;
+
+ case LCD_ByCopy:
+ OS << '=';
+ NeedComma = true;
+ break;
+
+ case LCD_ByRef:
+ OS << '&';
+ NeedComma = true;
+ break;
+ }
+ for (LambdaExpr::capture_iterator C = Node->explicit_capture_begin(),
+ CEnd = Node->explicit_capture_end();
+ C != CEnd;
+ ++C) {
+ if (NeedComma)
+ OS << ", ";
+ NeedComma = true;
+
+ switch (C->getCaptureKind()) {
+ case LCK_This:
+ OS << "this";
+ break;
+
+ case LCK_ByRef:
+ if (Node->getCaptureDefault() != LCD_ByRef || Node->isInitCapture(C))
+ OS << '&';
+ OS << C->getCapturedVar()->getName();
+ break;
+
+ case LCK_ByCopy:
+ OS << C->getCapturedVar()->getName();
+ break;
+ case LCK_VLAType:
+ llvm_unreachable("VLA type in explicit captures.");
+ }
+
+ if (Node->isInitCapture(C))
+ PrintExpr(C->getCapturedVar()->getInit());
+ }
+ OS << ']';
+
+ if (Node->hasExplicitParameters()) {
+ OS << " (";
+ CXXMethodDecl *Method = Node->getCallOperator();
+ NeedComma = false;
+ for (auto P : Method->params()) {
+ if (NeedComma) {
+ OS << ", ";
+ } else {
+ NeedComma = true;
+ }
+ std::string ParamStr = P->getNameAsString();
+ P->getOriginalType().print(OS, Policy, ParamStr);
+ }
+ if (Method->isVariadic()) {
+ if (NeedComma)
+ OS << ", ";
+ OS << "...";
+ }
+ OS << ')';
+
+ if (Node->isMutable())
+ OS << " mutable";
+
+ const FunctionProtoType *Proto
+ = Method->getType()->getAs<FunctionProtoType>();
+ Proto->printExceptionSpecification(OS, Policy);
+
+ // FIXME: Attributes
+
+ // Print the trailing return type if it was specified in the source.
+ if (Node->hasExplicitResultType()) {
+ OS << " -> ";
+ Proto->getReturnType().print(OS, Policy);
+ }
+ }
+
+ // Print the body.
+ CompoundStmt *Body = Node->getBody();
+ OS << ' ';
+ PrintStmt(Body);
+}
+
+void StmtPrinter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *Node) {
+ if (TypeSourceInfo *TSInfo = Node->getTypeSourceInfo())
+ TSInfo->getType().print(OS, Policy);
+ else
+ Node->getType().print(OS, Policy);
+ OS << "()";
+}
+
+void StmtPrinter::VisitCXXNewExpr(CXXNewExpr *E) {
+ if (E->isGlobalNew())
+ OS << "::";
+ OS << "new ";
+ unsigned NumPlace = E->getNumPlacementArgs();
+ if (NumPlace > 0 && !isa<CXXDefaultArgExpr>(E->getPlacementArg(0))) {
+ OS << "(";
+ PrintExpr(E->getPlacementArg(0));
+ for (unsigned i = 1; i < NumPlace; ++i) {
+ if (isa<CXXDefaultArgExpr>(E->getPlacementArg(i)))
+ break;
+ OS << ", ";
+ PrintExpr(E->getPlacementArg(i));
+ }
+ OS << ") ";
+ }
+ if (E->isParenTypeId())
+ OS << "(";
+ std::string TypeS;
+ if (Expr *Size = E->getArraySize()) {
+ llvm::raw_string_ostream s(TypeS);
+ s << '[';
+ Size->printPretty(s, Helper, Policy);
+ s << ']';
+ }
+ E->getAllocatedType().print(OS, Policy, TypeS);
+ if (E->isParenTypeId())
+ OS << ")";
+
+ CXXNewExpr::InitializationStyle InitStyle = E->getInitializationStyle();
+ if (InitStyle) {
+ if (InitStyle == CXXNewExpr::CallInit)
+ OS << "(";
+ PrintExpr(E->getInitializer());
+ if (InitStyle == CXXNewExpr::CallInit)
+ OS << ")";
+ }
+}
+
+void StmtPrinter::VisitCXXDeleteExpr(CXXDeleteExpr *E) {
+ if (E->isGlobalDelete())
+ OS << "::";
+ OS << "delete ";
+ if (E->isArrayForm())
+ OS << "[] ";
+ PrintExpr(E->getArgument());
+}
+
+void StmtPrinter::VisitCXXPseudoDestructorExpr(CXXPseudoDestructorExpr *E) {
+ PrintExpr(E->getBase());
+ if (E->isArrow())
+ OS << "->";
+ else
+ OS << '.';
+ if (E->getQualifier())
+ E->getQualifier()->print(OS, Policy);
+ OS << "~";
+
+ if (IdentifierInfo *II = E->getDestroyedTypeIdentifier())
+ OS << II->getName();
+ else
+ E->getDestroyedType().print(OS, Policy);
+}
+
+void StmtPrinter::VisitCXXConstructExpr(CXXConstructExpr *E) {
+ if (E->isListInitialization() && !E->isStdInitListInitialization())
+ OS << "{";
+
+ for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
+ if (isa<CXXDefaultArgExpr>(E->getArg(i))) {
+ // Don't print any defaulted arguments
+ break;
+ }
+
+ if (i) OS << ", ";
+ PrintExpr(E->getArg(i));
+ }
+
+ if (E->isListInitialization() && !E->isStdInitListInitialization())
+ OS << "}";
+}
+
+void StmtPrinter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
+ PrintExpr(E->getSubExpr());
+}
+
+void StmtPrinter::VisitExprWithCleanups(ExprWithCleanups *E) {
+ // Just forward to the subexpression.
+ PrintExpr(E->getSubExpr());
+}
+
+void
+StmtPrinter::VisitCXXUnresolvedConstructExpr(
+ CXXUnresolvedConstructExpr *Node) {
+ Node->getTypeAsWritten().print(OS, Policy);
+ OS << "(";
+ for (CXXUnresolvedConstructExpr::arg_iterator Arg = Node->arg_begin(),
+ ArgEnd = Node->arg_end();
+ Arg != ArgEnd; ++Arg) {
+ if (Arg != Node->arg_begin())
+ OS << ", ";
+ PrintExpr(*Arg);
+ }
+ OS << ")";
+}
+
+void StmtPrinter::VisitCXXDependentScopeMemberExpr(
+ CXXDependentScopeMemberExpr *Node) {
+ if (!Node->isImplicitAccess()) {
+ PrintExpr(Node->getBase());
+ OS << (Node->isArrow() ? "->" : ".");
+ }
+ if (NestedNameSpecifier *Qualifier = Node->getQualifier())
+ Qualifier->print(OS, Policy);
+ if (Node->hasTemplateKeyword())
+ OS << "template ";
+ OS << Node->getMemberNameInfo();
+ if (Node->hasExplicitTemplateArgs())
+ TemplateSpecializationType::PrintTemplateArgumentList(
+ OS, Node->getTemplateArgs(), Node->getNumTemplateArgs(), Policy);
+}
+
+void StmtPrinter::VisitUnresolvedMemberExpr(UnresolvedMemberExpr *Node) {
+ if (!Node->isImplicitAccess()) {
+ PrintExpr(Node->getBase());
+ OS << (Node->isArrow() ? "->" : ".");
+ }
+ if (NestedNameSpecifier *Qualifier = Node->getQualifier())
+ Qualifier->print(OS, Policy);
+ if (Node->hasTemplateKeyword())
+ OS << "template ";
+ OS << Node->getMemberNameInfo();
+ if (Node->hasExplicitTemplateArgs())
+ TemplateSpecializationType::PrintTemplateArgumentList(
+ OS, Node->getTemplateArgs(), Node->getNumTemplateArgs(), Policy);
+}
+
+static const char *getTypeTraitName(TypeTrait TT) {
+ switch (TT) {
+#define TYPE_TRAIT_1(Spelling, Name, Key) \
+case clang::UTT_##Name: return #Spelling;
+#define TYPE_TRAIT_2(Spelling, Name, Key) \
+case clang::BTT_##Name: return #Spelling;
+#define TYPE_TRAIT_N(Spelling, Name, Key) \
+ case clang::TT_##Name: return #Spelling;
+#include "clang/Basic/TokenKinds.def"
+ }
+ llvm_unreachable("Type trait not covered by switch");
+}
+
+static const char *getTypeTraitName(ArrayTypeTrait ATT) {
+ switch (ATT) {
+ case ATT_ArrayRank: return "__array_rank";
+ case ATT_ArrayExtent: return "__array_extent";
+ }
+ llvm_unreachable("Array type trait not covered by switch");
+}
+
+static const char *getExpressionTraitName(ExpressionTrait ET) {
+ switch (ET) {
+ case ET_IsLValueExpr: return "__is_lvalue_expr";
+ case ET_IsRValueExpr: return "__is_rvalue_expr";
+ }
+ llvm_unreachable("Expression type trait not covered by switch");
+}
+
+void StmtPrinter::VisitTypeTraitExpr(TypeTraitExpr *E) {
+ OS << getTypeTraitName(E->getTrait()) << "(";
+ for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I) {
+ if (I > 0)
+ OS << ", ";
+ E->getArg(I)->getType().print(OS, Policy);
+ }
+ OS << ")";
+}
+
+void StmtPrinter::VisitArrayTypeTraitExpr(ArrayTypeTraitExpr *E) {
+ OS << getTypeTraitName(E->getTrait()) << '(';
+ E->getQueriedType().print(OS, Policy);
+ OS << ')';
+}
+
+void StmtPrinter::VisitExpressionTraitExpr(ExpressionTraitExpr *E) {
+ OS << getExpressionTraitName(E->getTrait()) << '(';
+ PrintExpr(E->getQueriedExpression());
+ OS << ')';
+}
+
+void StmtPrinter::VisitCXXNoexceptExpr(CXXNoexceptExpr *E) {
+ OS << "noexcept(";
+ PrintExpr(E->getOperand());
+ OS << ")";
+}
+
+void StmtPrinter::VisitPackExpansionExpr(PackExpansionExpr *E) {
+ PrintExpr(E->getPattern());
+ OS << "...";
+}
+
+void StmtPrinter::VisitSizeOfPackExpr(SizeOfPackExpr *E) {
+ OS << "sizeof...(" << *E->getPack() << ")";
+}
+
+void StmtPrinter::VisitSubstNonTypeTemplateParmPackExpr(
+ SubstNonTypeTemplateParmPackExpr *Node) {
+ OS << *Node->getParameterPack();
+}
+
+void StmtPrinter::VisitSubstNonTypeTemplateParmExpr(
+ SubstNonTypeTemplateParmExpr *Node) {
+ Visit(Node->getReplacement());
+}
+
+void StmtPrinter::VisitFunctionParmPackExpr(FunctionParmPackExpr *E) {
+ OS << *E->getParameterPack();
+}
+
+void StmtPrinter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *Node){
+ PrintExpr(Node->GetTemporaryExpr());
+}
+
+void StmtPrinter::VisitCXXFoldExpr(CXXFoldExpr *E) {
+ OS << "(";
+ if (E->getLHS()) {
+ PrintExpr(E->getLHS());
+ OS << " " << BinaryOperator::getOpcodeStr(E->getOperator()) << " ";
+ }
+ OS << "...";
+ if (E->getRHS()) {
+ OS << " " << BinaryOperator::getOpcodeStr(E->getOperator()) << " ";
+ PrintExpr(E->getRHS());
+ }
+ OS << ")";
+}
+
+// Obj-C
+
+void StmtPrinter::VisitObjCStringLiteral(ObjCStringLiteral *Node) {
+ OS << "@";
+ VisitStringLiteral(Node->getString());
+}
+
+void StmtPrinter::VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
+ OS << "@";
+ Visit(E->getSubExpr());
+}
+
+void StmtPrinter::VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
+ OS << "@[ ";
+ StmtRange ch = E->children();
+ if (ch.first != ch.second) {
+ while (1) {
+ Visit(*ch.first);
+ ++ch.first;
+ if (ch.first == ch.second) break;
+ OS << ", ";
+ }
+ }
+ OS << " ]";
+}
+
+void StmtPrinter::VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
+ OS << "@{ ";
+ for (unsigned I = 0, N = E->getNumElements(); I != N; ++I) {
+ if (I > 0)
+ OS << ", ";
+
+ ObjCDictionaryElement Element = E->getKeyValueElement(I);
+ Visit(Element.Key);
+ OS << " : ";
+ Visit(Element.Value);
+ if (Element.isPackExpansion())
+ OS << "...";
+ }
+ OS << " }";
+}
+
+void StmtPrinter::VisitObjCEncodeExpr(ObjCEncodeExpr *Node) {
+ OS << "@encode(";
+ Node->getEncodedType().print(OS, Policy);
+ OS << ')';
+}
+
+void StmtPrinter::VisitObjCSelectorExpr(ObjCSelectorExpr *Node) {
+ OS << "@selector(";
+ Node->getSelector().print(OS);
+ OS << ')';
+}
+
+void StmtPrinter::VisitObjCProtocolExpr(ObjCProtocolExpr *Node) {
+ OS << "@protocol(" << *Node->getProtocol() << ')';
+}
+
+void StmtPrinter::VisitObjCMessageExpr(ObjCMessageExpr *Mess) {
+ OS << "[";
+ switch (Mess->getReceiverKind()) {
+ case ObjCMessageExpr::Instance:
+ PrintExpr(Mess->getInstanceReceiver());
+ break;
+
+ case ObjCMessageExpr::Class:
+ Mess->getClassReceiver().print(OS, Policy);
+ break;
+
+ case ObjCMessageExpr::SuperInstance:
+ case ObjCMessageExpr::SuperClass:
+ OS << "Super";
+ break;
+ }
+
+ OS << ' ';
+ Selector selector = Mess->getSelector();
+ if (selector.isUnarySelector()) {
+ OS << selector.getNameForSlot(0);
+ } else {
+ for (unsigned i = 0, e = Mess->getNumArgs(); i != e; ++i) {
+ if (i < selector.getNumArgs()) {
+ if (i > 0) OS << ' ';
+ if (selector.getIdentifierInfoForSlot(i))
+ OS << selector.getIdentifierInfoForSlot(i)->getName() << ':';
+ else
+ OS << ":";
+ }
+ else OS << ", "; // Handle variadic methods.
+
+ PrintExpr(Mess->getArg(i));
+ }
+ }
+ OS << "]";
+}
+
+void StmtPrinter::VisitObjCBoolLiteralExpr(ObjCBoolLiteralExpr *Node) {
+ OS << (Node->getValue() ? "__objc_yes" : "__objc_no");
+}
+
+void
+StmtPrinter::VisitObjCIndirectCopyRestoreExpr(ObjCIndirectCopyRestoreExpr *E) {
+ PrintExpr(E->getSubExpr());
+}
+
+void
+StmtPrinter::VisitObjCBridgedCastExpr(ObjCBridgedCastExpr *E) {
+ OS << '(' << E->getBridgeKindName();
+ E->getType().print(OS, Policy);
+ OS << ')';
+ PrintExpr(E->getSubExpr());
+}
+
+void StmtPrinter::VisitBlockExpr(BlockExpr *Node) {
+ BlockDecl *BD = Node->getBlockDecl();
+ OS << "^";
+
+ const FunctionType *AFT = Node->getFunctionType();
+
+ if (isa<FunctionNoProtoType>(AFT)) {
+ OS << "()";
+ } else if (!BD->param_empty() || cast<FunctionProtoType>(AFT)->isVariadic()) {
+ OS << '(';
+ for (BlockDecl::param_iterator AI = BD->param_begin(),
+ E = BD->param_end(); AI != E; ++AI) {
+ if (AI != BD->param_begin()) OS << ", ";
+ std::string ParamStr = (*AI)->getNameAsString();
+ (*AI)->getType().print(OS, Policy, ParamStr);
+ }
+
+ const FunctionProtoType *FT = cast<FunctionProtoType>(AFT);
+ if (FT->isVariadic()) {
+ if (!BD->param_empty()) OS << ", ";
+ OS << "...";
+ }
+ OS << ')';
+ }
+ OS << "{ }";
+}
+
+void StmtPrinter::VisitOpaqueValueExpr(OpaqueValueExpr *Node) {
+ PrintExpr(Node->getSourceExpr());
+}
+
+void StmtPrinter::VisitTypoExpr(TypoExpr *Node) {
+ // TODO: Print something reasonable for a TypoExpr, if necessary.
+ assert(false && "Cannot print TypoExpr nodes");
+}
+
+void StmtPrinter::VisitAsTypeExpr(AsTypeExpr *Node) {
+ OS << "__builtin_astype(";
+ PrintExpr(Node->getSrcExpr());
+ OS << ", ";
+ Node->getType().print(OS, Policy);
+ OS << ")";
+}
+
+//===----------------------------------------------------------------------===//
+// Stmt method implementations
+//===----------------------------------------------------------------------===//
+
+void Stmt::dumpPretty(const ASTContext &Context) const {
+ printPretty(llvm::errs(), nullptr, PrintingPolicy(Context.getLangOpts()));
+}
+
+void Stmt::printPretty(raw_ostream &OS,
+ PrinterHelper *Helper,
+ const PrintingPolicy &Policy,
+ unsigned Indentation) const {
+ StmtPrinter P(OS, Helper, Policy, Indentation);
+ P.Visit(const_cast<Stmt*>(this));
+}
+
+//===----------------------------------------------------------------------===//
+// PrinterHelper
+//===----------------------------------------------------------------------===//
+
+// Implement virtual destructor.
+PrinterHelper::~PrinterHelper() {}
diff --git a/contrib/llvm/tools/clang/lib/AST/StmtProfile.cpp b/contrib/llvm/tools/clang/lib/AST/StmtProfile.cpp
new file mode 100644
index 0000000..c66b153
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/StmtProfile.cpp
@@ -0,0 +1,1513 @@
+//===---- StmtProfile.cpp - Profile implementation for Stmt ASTs ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Stmt::Profile method, which builds a unique bit
+// representation that identifies a statement/expression.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/AST/StmtVisitor.h"
+#include "llvm/ADT/FoldingSet.h"
+using namespace clang;
+
+namespace {
+ class StmtProfiler : public ConstStmtVisitor<StmtProfiler> {
+ llvm::FoldingSetNodeID &ID;
+ const ASTContext &Context;
+ bool Canonical;
+
+ public:
+ StmtProfiler(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
+ bool Canonical)
+ : ID(ID), Context(Context), Canonical(Canonical) { }
+
+ void VisitStmt(const Stmt *S);
+
+#define STMT(Node, Base) void Visit##Node(const Node *S);
+#include "clang/AST/StmtNodes.inc"
+
+ /// \brief Visit a declaration that is referenced within an expression
+ /// or statement.
+ void VisitDecl(const Decl *D);
+
+ /// \brief Visit a type that is referenced within an expression or
+ /// statement.
+ void VisitType(QualType T);
+
+ /// \brief Visit a name that occurs within an expression or statement.
+ void VisitName(DeclarationName Name);
+
+ /// \brief Visit a nested-name-specifier that occurs within an expression
+ /// or statement.
+ void VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
+
+ /// \brief Visit a template name that occurs within an expression or
+ /// statement.
+ void VisitTemplateName(TemplateName Name);
+
+ /// \brief Visit template arguments that occur within an expression or
+ /// statement.
+ void VisitTemplateArguments(const TemplateArgumentLoc *Args,
+ unsigned NumArgs);
+
+ /// \brief Visit a single template argument.
+ void VisitTemplateArgument(const TemplateArgument &Arg);
+ };
+}
+
+void StmtProfiler::VisitStmt(const Stmt *S) {
+ ID.AddInteger(S->getStmtClass());
+ for (Stmt::const_child_range C = S->children(); C; ++C) {
+ if (*C)
+ Visit(*C);
+ else
+ ID.AddInteger(0);
+ }
+}
+
+void StmtProfiler::VisitDeclStmt(const DeclStmt *S) {
+ VisitStmt(S);
+ for (const auto *D : S->decls())
+ VisitDecl(D);
+}
+
+void StmtProfiler::VisitNullStmt(const NullStmt *S) {
+ VisitStmt(S);
+}
+
+void StmtProfiler::VisitCompoundStmt(const CompoundStmt *S) {
+ VisitStmt(S);
+}
+
+void StmtProfiler::VisitSwitchCase(const SwitchCase *S) {
+ VisitStmt(S);
+}
+
+void StmtProfiler::VisitCaseStmt(const CaseStmt *S) {
+ VisitStmt(S);
+}
+
+void StmtProfiler::VisitDefaultStmt(const DefaultStmt *S) {
+ VisitStmt(S);
+}
+
+void StmtProfiler::VisitLabelStmt(const LabelStmt *S) {
+ VisitStmt(S);
+ VisitDecl(S->getDecl());
+}
+
+void StmtProfiler::VisitAttributedStmt(const AttributedStmt *S) {
+ VisitStmt(S);
+ // TODO: maybe visit attributes?
+}
+
+void StmtProfiler::VisitIfStmt(const IfStmt *S) {
+ VisitStmt(S);
+ VisitDecl(S->getConditionVariable());
+}
+
+void StmtProfiler::VisitSwitchStmt(const SwitchStmt *S) {
+ VisitStmt(S);
+ VisitDecl(S->getConditionVariable());
+}
+
+void StmtProfiler::VisitWhileStmt(const WhileStmt *S) {
+ VisitStmt(S);
+ VisitDecl(S->getConditionVariable());
+}
+
+void StmtProfiler::VisitDoStmt(const DoStmt *S) {
+ VisitStmt(S);
+}
+
+void StmtProfiler::VisitForStmt(const ForStmt *S) {
+ VisitStmt(S);
+}
+
+void StmtProfiler::VisitGotoStmt(const GotoStmt *S) {
+ VisitStmt(S);
+ VisitDecl(S->getLabel());
+}
+
+void StmtProfiler::VisitIndirectGotoStmt(const IndirectGotoStmt *S) {
+ VisitStmt(S);
+}
+
+void StmtProfiler::VisitContinueStmt(const ContinueStmt *S) {
+ VisitStmt(S);
+}
+
+void StmtProfiler::VisitBreakStmt(const BreakStmt *S) {
+ VisitStmt(S);
+}
+
+void StmtProfiler::VisitReturnStmt(const ReturnStmt *S) {
+ VisitStmt(S);
+}
+
+void StmtProfiler::VisitGCCAsmStmt(const GCCAsmStmt *S) {
+ VisitStmt(S);
+ ID.AddBoolean(S->isVolatile());
+ ID.AddBoolean(S->isSimple());
+ VisitStringLiteral(S->getAsmString());
+ ID.AddInteger(S->getNumOutputs());
+ for (unsigned I = 0, N = S->getNumOutputs(); I != N; ++I) {
+ ID.AddString(S->getOutputName(I));
+ VisitStringLiteral(S->getOutputConstraintLiteral(I));
+ }
+ ID.AddInteger(S->getNumInputs());
+ for (unsigned I = 0, N = S->getNumInputs(); I != N; ++I) {
+ ID.AddString(S->getInputName(I));
+ VisitStringLiteral(S->getInputConstraintLiteral(I));
+ }
+ ID.AddInteger(S->getNumClobbers());
+ for (unsigned I = 0, N = S->getNumClobbers(); I != N; ++I)
+ VisitStringLiteral(S->getClobberStringLiteral(I));
+}
+
+void StmtProfiler::VisitMSAsmStmt(const MSAsmStmt *S) {
+ // FIXME: Implement MS style inline asm statement profiler.
+ VisitStmt(S);
+}
+
+void StmtProfiler::VisitCXXCatchStmt(const CXXCatchStmt *S) {
+ VisitStmt(S);
+ VisitType(S->getCaughtType());
+}
+
+void StmtProfiler::VisitCXXTryStmt(const CXXTryStmt *S) {
+ VisitStmt(S);
+}
+
+void StmtProfiler::VisitCXXForRangeStmt(const CXXForRangeStmt *S) {
+ VisitStmt(S);
+}
+
+void StmtProfiler::VisitMSDependentExistsStmt(const MSDependentExistsStmt *S) {
+ VisitStmt(S);
+ ID.AddBoolean(S->isIfExists());
+ VisitNestedNameSpecifier(S->getQualifierLoc().getNestedNameSpecifier());
+ VisitName(S->getNameInfo().getName());
+}
+
+void StmtProfiler::VisitSEHTryStmt(const SEHTryStmt *S) {
+ VisitStmt(S);
+}
+
+void StmtProfiler::VisitSEHFinallyStmt(const SEHFinallyStmt *S) {
+ VisitStmt(S);
+}
+
+void StmtProfiler::VisitSEHExceptStmt(const SEHExceptStmt *S) {
+ VisitStmt(S);
+}
+
+void StmtProfiler::VisitSEHLeaveStmt(const SEHLeaveStmt *S) {
+ VisitStmt(S);
+}
+
+void StmtProfiler::VisitCapturedStmt(const CapturedStmt *S) {
+ VisitStmt(S);
+}
+
+void StmtProfiler::VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) {
+ VisitStmt(S);
+}
+
+void StmtProfiler::VisitObjCAtCatchStmt(const ObjCAtCatchStmt *S) {
+ VisitStmt(S);
+ ID.AddBoolean(S->hasEllipsis());
+ if (S->getCatchParamDecl())
+ VisitType(S->getCatchParamDecl()->getType());
+}
+
+void StmtProfiler::VisitObjCAtFinallyStmt(const ObjCAtFinallyStmt *S) {
+ VisitStmt(S);
+}
+
+void StmtProfiler::VisitObjCAtTryStmt(const ObjCAtTryStmt *S) {
+ VisitStmt(S);
+}
+
+void
+StmtProfiler::VisitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt *S) {
+ VisitStmt(S);
+}
+
+void StmtProfiler::VisitObjCAtThrowStmt(const ObjCAtThrowStmt *S) {
+ VisitStmt(S);
+}
+
+void
+StmtProfiler::VisitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt *S) {
+ VisitStmt(S);
+}
+
+namespace {
+class OMPClauseProfiler : public ConstOMPClauseVisitor<OMPClauseProfiler> {
+ StmtProfiler *Profiler;
+ /// \brief Process clauses with list of variables.
+ template <typename T>
+ void VisitOMPClauseList(T *Node);
+public:
+ OMPClauseProfiler(StmtProfiler *P) : Profiler(P) { }
+#define OPENMP_CLAUSE(Name, Class) \
+ void Visit##Class(const Class *C);
+#include "clang/Basic/OpenMPKinds.def"
+};
+
+void OMPClauseProfiler::VisitOMPIfClause(const OMPIfClause *C) {
+ if (C->getCondition())
+ Profiler->VisitStmt(C->getCondition());
+}
+
+void OMPClauseProfiler::VisitOMPFinalClause(const OMPFinalClause *C) {
+ if (C->getCondition())
+ Profiler->VisitStmt(C->getCondition());
+}
+
+void OMPClauseProfiler::VisitOMPNumThreadsClause(const OMPNumThreadsClause *C) {
+ if (C->getNumThreads())
+ Profiler->VisitStmt(C->getNumThreads());
+}
+
+void OMPClauseProfiler::VisitOMPSafelenClause(const OMPSafelenClause *C) {
+ if (C->getSafelen())
+ Profiler->VisitStmt(C->getSafelen());
+}
+
+void OMPClauseProfiler::VisitOMPCollapseClause(const OMPCollapseClause *C) {
+ if (C->getNumForLoops())
+ Profiler->VisitStmt(C->getNumForLoops());
+}
+
+void OMPClauseProfiler::VisitOMPDefaultClause(const OMPDefaultClause *C) { }
+
+void OMPClauseProfiler::VisitOMPProcBindClause(const OMPProcBindClause *C) { }
+
+void OMPClauseProfiler::VisitOMPScheduleClause(const OMPScheduleClause *C) {
+ if (C->getChunkSize()) {
+ Profiler->VisitStmt(C->getChunkSize());
+ if (C->getHelperChunkSize()) {
+ Profiler->VisitStmt(C->getChunkSize());
+ }
+ }
+}
+
+void OMPClauseProfiler::VisitOMPOrderedClause(const OMPOrderedClause *) {}
+
+void OMPClauseProfiler::VisitOMPNowaitClause(const OMPNowaitClause *) {}
+
+void OMPClauseProfiler::VisitOMPUntiedClause(const OMPUntiedClause *) {}
+
+void OMPClauseProfiler::VisitOMPMergeableClause(const OMPMergeableClause *) {}
+
+void OMPClauseProfiler::VisitOMPReadClause(const OMPReadClause *) {}
+
+void OMPClauseProfiler::VisitOMPWriteClause(const OMPWriteClause *) {}
+
+void OMPClauseProfiler::VisitOMPUpdateClause(const OMPUpdateClause *) {}
+
+void OMPClauseProfiler::VisitOMPCaptureClause(const OMPCaptureClause *) {}
+
+void OMPClauseProfiler::VisitOMPSeqCstClause(const OMPSeqCstClause *) {}
+
+template<typename T>
+void OMPClauseProfiler::VisitOMPClauseList(T *Node) {
+ for (auto *E : Node->varlists()) {
+ Profiler->VisitStmt(E);
+ }
+}
+
+void OMPClauseProfiler::VisitOMPPrivateClause(const OMPPrivateClause *C) {
+ VisitOMPClauseList(C);
+ for (auto *E : C->private_copies()) {
+ Profiler->VisitStmt(E);
+ }
+}
+void
+OMPClauseProfiler::VisitOMPFirstprivateClause(const OMPFirstprivateClause *C) {
+ VisitOMPClauseList(C);
+ for (auto *E : C->private_copies()) {
+ Profiler->VisitStmt(E);
+ }
+ for (auto *E : C->inits()) {
+ Profiler->VisitStmt(E);
+ }
+}
+void
+OMPClauseProfiler::VisitOMPLastprivateClause(const OMPLastprivateClause *C) {
+ VisitOMPClauseList(C);
+ for (auto *E : C->source_exprs()) {
+ Profiler->VisitStmt(E);
+ }
+ for (auto *E : C->destination_exprs()) {
+ Profiler->VisitStmt(E);
+ }
+ for (auto *E : C->assignment_ops()) {
+ Profiler->VisitStmt(E);
+ }
+}
+void OMPClauseProfiler::VisitOMPSharedClause(const OMPSharedClause *C) {
+ VisitOMPClauseList(C);
+}
+void OMPClauseProfiler::VisitOMPReductionClause(
+ const OMPReductionClause *C) {
+ Profiler->VisitNestedNameSpecifier(
+ C->getQualifierLoc().getNestedNameSpecifier());
+ Profiler->VisitName(C->getNameInfo().getName());
+ VisitOMPClauseList(C);
+ for (auto *E : C->lhs_exprs()) {
+ Profiler->VisitStmt(E);
+ }
+ for (auto *E : C->rhs_exprs()) {
+ Profiler->VisitStmt(E);
+ }
+ for (auto *E : C->reduction_ops()) {
+ Profiler->VisitStmt(E);
+ }
+}
+void OMPClauseProfiler::VisitOMPLinearClause(const OMPLinearClause *C) {
+ VisitOMPClauseList(C);
+ for (auto *E : C->inits()) {
+ Profiler->VisitStmt(E);
+ }
+ for (auto *E : C->updates()) {
+ Profiler->VisitStmt(E);
+ }
+ for (auto *E : C->finals()) {
+ Profiler->VisitStmt(E);
+ }
+ Profiler->VisitStmt(C->getStep());
+ Profiler->VisitStmt(C->getCalcStep());
+}
+void OMPClauseProfiler::VisitOMPAlignedClause(const OMPAlignedClause *C) {
+ VisitOMPClauseList(C);
+ Profiler->VisitStmt(C->getAlignment());
+}
+void OMPClauseProfiler::VisitOMPCopyinClause(const OMPCopyinClause *C) {
+ VisitOMPClauseList(C);
+ for (auto *E : C->source_exprs()) {
+ Profiler->VisitStmt(E);
+ }
+ for (auto *E : C->destination_exprs()) {
+ Profiler->VisitStmt(E);
+ }
+ for (auto *E : C->assignment_ops()) {
+ Profiler->VisitStmt(E);
+ }
+}
+void
+OMPClauseProfiler::VisitOMPCopyprivateClause(const OMPCopyprivateClause *C) {
+ VisitOMPClauseList(C);
+ for (auto *E : C->source_exprs()) {
+ Profiler->VisitStmt(E);
+ }
+ for (auto *E : C->destination_exprs()) {
+ Profiler->VisitStmt(E);
+ }
+ for (auto *E : C->assignment_ops()) {
+ Profiler->VisitStmt(E);
+ }
+}
+void OMPClauseProfiler::VisitOMPFlushClause(const OMPFlushClause *C) {
+ VisitOMPClauseList(C);
+}
+}
+
+void
+StmtProfiler::VisitOMPExecutableDirective(const OMPExecutableDirective *S) {
+ VisitStmt(S);
+ OMPClauseProfiler P(this);
+ ArrayRef<OMPClause *> Clauses = S->clauses();
+ for (ArrayRef<OMPClause *>::iterator I = Clauses.begin(), E = Clauses.end();
+ I != E; ++I)
+ if (*I)
+ P.Visit(*I);
+}
+
+void StmtProfiler::VisitOMPLoopDirective(const OMPLoopDirective *S) {
+ VisitOMPExecutableDirective(S);
+}
+
+void StmtProfiler::VisitOMPParallelDirective(const OMPParallelDirective *S) {
+ VisitOMPExecutableDirective(S);
+}
+
+void StmtProfiler::VisitOMPSimdDirective(const OMPSimdDirective *S) {
+ VisitOMPLoopDirective(S);
+}
+
+void StmtProfiler::VisitOMPForDirective(const OMPForDirective *S) {
+ VisitOMPLoopDirective(S);
+}
+
+void StmtProfiler::VisitOMPForSimdDirective(const OMPForSimdDirective *S) {
+ VisitOMPLoopDirective(S);
+}
+
+void StmtProfiler::VisitOMPSectionsDirective(const OMPSectionsDirective *S) {
+ VisitOMPExecutableDirective(S);
+}
+
+void StmtProfiler::VisitOMPSectionDirective(const OMPSectionDirective *S) {
+ VisitOMPExecutableDirective(S);
+}
+
+void StmtProfiler::VisitOMPSingleDirective(const OMPSingleDirective *S) {
+ VisitOMPExecutableDirective(S);
+}
+
+void StmtProfiler::VisitOMPMasterDirective(const OMPMasterDirective *S) {
+ VisitOMPExecutableDirective(S);
+}
+
+void StmtProfiler::VisitOMPCriticalDirective(const OMPCriticalDirective *S) {
+ VisitOMPExecutableDirective(S);
+ VisitName(S->getDirectiveName().getName());
+}
+
+void
+StmtProfiler::VisitOMPParallelForDirective(const OMPParallelForDirective *S) {
+ VisitOMPLoopDirective(S);
+}
+
+void StmtProfiler::VisitOMPParallelForSimdDirective(
+ const OMPParallelForSimdDirective *S) {
+ VisitOMPLoopDirective(S);
+}
+
+void StmtProfiler::VisitOMPParallelSectionsDirective(
+ const OMPParallelSectionsDirective *S) {
+ VisitOMPExecutableDirective(S);
+}
+
+void StmtProfiler::VisitOMPTaskDirective(const OMPTaskDirective *S) {
+ VisitOMPExecutableDirective(S);
+}
+
+void StmtProfiler::VisitOMPTaskyieldDirective(const OMPTaskyieldDirective *S) {
+ VisitOMPExecutableDirective(S);
+}
+
+void StmtProfiler::VisitOMPBarrierDirective(const OMPBarrierDirective *S) {
+ VisitOMPExecutableDirective(S);
+}
+
+void StmtProfiler::VisitOMPTaskwaitDirective(const OMPTaskwaitDirective *S) {
+ VisitOMPExecutableDirective(S);
+}
+
+void StmtProfiler::VisitOMPFlushDirective(const OMPFlushDirective *S) {
+ VisitOMPExecutableDirective(S);
+}
+
+void StmtProfiler::VisitOMPOrderedDirective(const OMPOrderedDirective *S) {
+ VisitOMPExecutableDirective(S);
+}
+
+void StmtProfiler::VisitOMPAtomicDirective(const OMPAtomicDirective *S) {
+ VisitOMPExecutableDirective(S);
+}
+
+void StmtProfiler::VisitOMPTargetDirective(const OMPTargetDirective *S) {
+ VisitOMPExecutableDirective(S);
+}
+
+void StmtProfiler::VisitOMPTeamsDirective(const OMPTeamsDirective *S) {
+ VisitOMPExecutableDirective(S);
+}
+
+void StmtProfiler::VisitExpr(const Expr *S) {
+ VisitStmt(S);
+}
+
+void StmtProfiler::VisitDeclRefExpr(const DeclRefExpr *S) {
+ VisitExpr(S);
+ if (!Canonical)
+ VisitNestedNameSpecifier(S->getQualifier());
+ VisitDecl(S->getDecl());
+ if (!Canonical)
+ VisitTemplateArguments(S->getTemplateArgs(), S->getNumTemplateArgs());
+}
+
+void StmtProfiler::VisitPredefinedExpr(const PredefinedExpr *S) {
+ VisitExpr(S);
+ ID.AddInteger(S->getIdentType());
+}
+
+void StmtProfiler::VisitIntegerLiteral(const IntegerLiteral *S) {
+ VisitExpr(S);
+ S->getValue().Profile(ID);
+ ID.AddInteger(S->getType()->castAs<BuiltinType>()->getKind());
+}
+
+void StmtProfiler::VisitCharacterLiteral(const CharacterLiteral *S) {
+ VisitExpr(S);
+ ID.AddInteger(S->getKind());
+ ID.AddInteger(S->getValue());
+}
+
+void StmtProfiler::VisitFloatingLiteral(const FloatingLiteral *S) {
+ VisitExpr(S);
+ S->getValue().Profile(ID);
+ ID.AddBoolean(S->isExact());
+ ID.AddInteger(S->getType()->castAs<BuiltinType>()->getKind());
+}
+
+void StmtProfiler::VisitImaginaryLiteral(const ImaginaryLiteral *S) {
+ VisitExpr(S);
+}
+
+void StmtProfiler::VisitStringLiteral(const StringLiteral *S) {
+ VisitExpr(S);
+ ID.AddString(S->getBytes());
+ ID.AddInteger(S->getKind());
+}
+
+void StmtProfiler::VisitParenExpr(const ParenExpr *S) {
+ VisitExpr(S);
+}
+
+void StmtProfiler::VisitParenListExpr(const ParenListExpr *S) {
+ VisitExpr(S);
+}
+
+void StmtProfiler::VisitUnaryOperator(const UnaryOperator *S) {
+ VisitExpr(S);
+ ID.AddInteger(S->getOpcode());
+}
+
+void StmtProfiler::VisitOffsetOfExpr(const OffsetOfExpr *S) {
+ VisitType(S->getTypeSourceInfo()->getType());
+ unsigned n = S->getNumComponents();
+ for (unsigned i = 0; i < n; ++i) {
+ const OffsetOfExpr::OffsetOfNode& ON = S->getComponent(i);
+ ID.AddInteger(ON.getKind());
+ switch (ON.getKind()) {
+ case OffsetOfExpr::OffsetOfNode::Array:
+ // Expressions handled below.
+ break;
+
+ case OffsetOfExpr::OffsetOfNode::Field:
+ VisitDecl(ON.getField());
+ break;
+
+ case OffsetOfExpr::OffsetOfNode::Identifier:
+ ID.AddPointer(ON.getFieldName());
+ break;
+
+ case OffsetOfExpr::OffsetOfNode::Base:
+ // These nodes are implicit, and therefore don't need profiling.
+ break;
+ }
+ }
+
+ VisitExpr(S);
+}
+
+void
+StmtProfiler::VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *S) {
+ VisitExpr(S);
+ ID.AddInteger(S->getKind());
+ if (S->isArgumentType())
+ VisitType(S->getArgumentType());
+}
+
+void StmtProfiler::VisitArraySubscriptExpr(const ArraySubscriptExpr *S) {
+ VisitExpr(S);
+}
+
+void StmtProfiler::VisitCallExpr(const CallExpr *S) {
+ VisitExpr(S);
+}
+
+void StmtProfiler::VisitMemberExpr(const MemberExpr *S) {
+ VisitExpr(S);
+ VisitDecl(S->getMemberDecl());
+ if (!Canonical)
+ VisitNestedNameSpecifier(S->getQualifier());
+ ID.AddBoolean(S->isArrow());
+}
+
+void StmtProfiler::VisitCompoundLiteralExpr(const CompoundLiteralExpr *S) {
+ VisitExpr(S);
+ ID.AddBoolean(S->isFileScope());
+}
+
+void StmtProfiler::VisitCastExpr(const CastExpr *S) {
+ VisitExpr(S);
+}
+
+void StmtProfiler::VisitImplicitCastExpr(const ImplicitCastExpr *S) {
+ VisitCastExpr(S);
+ ID.AddInteger(S->getValueKind());
+}
+
+void StmtProfiler::VisitExplicitCastExpr(const ExplicitCastExpr *S) {
+ VisitCastExpr(S);
+ VisitType(S->getTypeAsWritten());
+}
+
+void StmtProfiler::VisitCStyleCastExpr(const CStyleCastExpr *S) {
+ VisitExplicitCastExpr(S);
+}
+
+void StmtProfiler::VisitBinaryOperator(const BinaryOperator *S) {
+ VisitExpr(S);
+ ID.AddInteger(S->getOpcode());
+}
+
+void
+StmtProfiler::VisitCompoundAssignOperator(const CompoundAssignOperator *S) {
+ VisitBinaryOperator(S);
+}
+
+void StmtProfiler::VisitConditionalOperator(const ConditionalOperator *S) {
+ VisitExpr(S);
+}
+
+void StmtProfiler::VisitBinaryConditionalOperator(
+ const BinaryConditionalOperator *S) {
+ VisitExpr(S);
+}
+
+void StmtProfiler::VisitAddrLabelExpr(const AddrLabelExpr *S) {
+ VisitExpr(S);
+ VisitDecl(S->getLabel());
+}
+
+void StmtProfiler::VisitStmtExpr(const StmtExpr *S) {
+ VisitExpr(S);
+}
+
+void StmtProfiler::VisitShuffleVectorExpr(const ShuffleVectorExpr *S) {
+ VisitExpr(S);
+}
+
+void StmtProfiler::VisitConvertVectorExpr(const ConvertVectorExpr *S) {
+ VisitExpr(S);
+}
+
+void StmtProfiler::VisitChooseExpr(const ChooseExpr *S) {
+ VisitExpr(S);
+}
+
+void StmtProfiler::VisitGNUNullExpr(const GNUNullExpr *S) {
+ VisitExpr(S);
+}
+
+void StmtProfiler::VisitVAArgExpr(const VAArgExpr *S) {
+ VisitExpr(S);
+}
+
+void StmtProfiler::VisitInitListExpr(const InitListExpr *S) {
+ if (S->getSyntacticForm()) {
+ VisitInitListExpr(S->getSyntacticForm());
+ return;
+ }
+
+ VisitExpr(S);
+}
+
+void StmtProfiler::VisitDesignatedInitExpr(const DesignatedInitExpr *S) {
+ VisitExpr(S);
+ ID.AddBoolean(S->usesGNUSyntax());
+ for (DesignatedInitExpr::const_designators_iterator D =
+ S->designators_begin(), DEnd = S->designators_end();
+ D != DEnd; ++D) {
+ if (D->isFieldDesignator()) {
+ ID.AddInteger(0);
+ VisitName(D->getFieldName());
+ continue;
+ }
+
+ if (D->isArrayDesignator()) {
+ ID.AddInteger(1);
+ } else {
+ assert(D->isArrayRangeDesignator());
+ ID.AddInteger(2);
+ }
+ ID.AddInteger(D->getFirstExprIndex());
+ }
+}
+
+void StmtProfiler::VisitImplicitValueInitExpr(const ImplicitValueInitExpr *S) {
+ VisitExpr(S);
+}
+
+void StmtProfiler::VisitExtVectorElementExpr(const ExtVectorElementExpr *S) {
+ VisitExpr(S);
+ VisitName(&S->getAccessor());
+}
+
+void StmtProfiler::VisitBlockExpr(const BlockExpr *S) {
+ VisitExpr(S);
+ VisitDecl(S->getBlockDecl());
+}
+
+void StmtProfiler::VisitGenericSelectionExpr(const GenericSelectionExpr *S) {
+ VisitExpr(S);
+ for (unsigned i = 0; i != S->getNumAssocs(); ++i) {
+ QualType T = S->getAssocType(i);
+ if (T.isNull())
+ ID.AddPointer(nullptr);
+ else
+ VisitType(T);
+ VisitExpr(S->getAssocExpr(i));
+ }
+}
+
+void StmtProfiler::VisitPseudoObjectExpr(const PseudoObjectExpr *S) {
+ VisitExpr(S);
+ for (PseudoObjectExpr::const_semantics_iterator
+ i = S->semantics_begin(), e = S->semantics_end(); i != e; ++i)
+ // Normally, we would not profile the source expressions of OVEs.
+ if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(*i))
+ Visit(OVE->getSourceExpr());
+}
+
+void StmtProfiler::VisitAtomicExpr(const AtomicExpr *S) {
+ VisitExpr(S);
+ ID.AddInteger(S->getOp());
+}
+
+static Stmt::StmtClass DecodeOperatorCall(const CXXOperatorCallExpr *S,
+ UnaryOperatorKind &UnaryOp,
+ BinaryOperatorKind &BinaryOp) {
+ switch (S->getOperator()) {
+ case OO_None:
+ case OO_New:
+ case OO_Delete:
+ case OO_Array_New:
+ case OO_Array_Delete:
+ case OO_Arrow:
+ case OO_Call:
+ case OO_Conditional:
+ case NUM_OVERLOADED_OPERATORS:
+ llvm_unreachable("Invalid operator call kind");
+
+ case OO_Plus:
+ if (S->getNumArgs() == 1) {
+ UnaryOp = UO_Plus;
+ return Stmt::UnaryOperatorClass;
+ }
+
+ BinaryOp = BO_Add;
+ return Stmt::BinaryOperatorClass;
+
+ case OO_Minus:
+ if (S->getNumArgs() == 1) {
+ UnaryOp = UO_Minus;
+ return Stmt::UnaryOperatorClass;
+ }
+
+ BinaryOp = BO_Sub;
+ return Stmt::BinaryOperatorClass;
+
+ case OO_Star:
+ if (S->getNumArgs() == 1) {
+ UnaryOp = UO_Deref;
+ return Stmt::UnaryOperatorClass;
+ }
+
+ BinaryOp = BO_Mul;
+ return Stmt::BinaryOperatorClass;
+
+ case OO_Slash:
+ BinaryOp = BO_Div;
+ return Stmt::BinaryOperatorClass;
+
+ case OO_Percent:
+ BinaryOp = BO_Rem;
+ return Stmt::BinaryOperatorClass;
+
+ case OO_Caret:
+ BinaryOp = BO_Xor;
+ return Stmt::BinaryOperatorClass;
+
+ case OO_Amp:
+ if (S->getNumArgs() == 1) {
+ UnaryOp = UO_AddrOf;
+ return Stmt::UnaryOperatorClass;
+ }
+
+ BinaryOp = BO_And;
+ return Stmt::BinaryOperatorClass;
+
+ case OO_Pipe:
+ BinaryOp = BO_Or;
+ return Stmt::BinaryOperatorClass;
+
+ case OO_Tilde:
+ UnaryOp = UO_Not;
+ return Stmt::UnaryOperatorClass;
+
+ case OO_Exclaim:
+ UnaryOp = UO_LNot;
+ return Stmt::UnaryOperatorClass;
+
+ case OO_Equal:
+ BinaryOp = BO_Assign;
+ return Stmt::BinaryOperatorClass;
+
+ case OO_Less:
+ BinaryOp = BO_LT;
+ return Stmt::BinaryOperatorClass;
+
+ case OO_Greater:
+ BinaryOp = BO_GT;
+ return Stmt::BinaryOperatorClass;
+
+ case OO_PlusEqual:
+ BinaryOp = BO_AddAssign;
+ return Stmt::CompoundAssignOperatorClass;
+
+ case OO_MinusEqual:
+ BinaryOp = BO_SubAssign;
+ return Stmt::CompoundAssignOperatorClass;
+
+ case OO_StarEqual:
+ BinaryOp = BO_MulAssign;
+ return Stmt::CompoundAssignOperatorClass;
+
+ case OO_SlashEqual:
+ BinaryOp = BO_DivAssign;
+ return Stmt::CompoundAssignOperatorClass;
+
+ case OO_PercentEqual:
+ BinaryOp = BO_RemAssign;
+ return Stmt::CompoundAssignOperatorClass;
+
+ case OO_CaretEqual:
+ BinaryOp = BO_XorAssign;
+ return Stmt::CompoundAssignOperatorClass;
+
+ case OO_AmpEqual:
+ BinaryOp = BO_AndAssign;
+ return Stmt::CompoundAssignOperatorClass;
+
+ case OO_PipeEqual:
+ BinaryOp = BO_OrAssign;
+ return Stmt::CompoundAssignOperatorClass;
+
+ case OO_LessLess:
+ BinaryOp = BO_Shl;
+ return Stmt::BinaryOperatorClass;
+
+ case OO_GreaterGreater:
+ BinaryOp = BO_Shr;
+ return Stmt::BinaryOperatorClass;
+
+ case OO_LessLessEqual:
+ BinaryOp = BO_ShlAssign;
+ return Stmt::CompoundAssignOperatorClass;
+
+ case OO_GreaterGreaterEqual:
+ BinaryOp = BO_ShrAssign;
+ return Stmt::CompoundAssignOperatorClass;
+
+ case OO_EqualEqual:
+ BinaryOp = BO_EQ;
+ return Stmt::BinaryOperatorClass;
+
+ case OO_ExclaimEqual:
+ BinaryOp = BO_NE;
+ return Stmt::BinaryOperatorClass;
+
+ case OO_LessEqual:
+ BinaryOp = BO_LE;
+ return Stmt::BinaryOperatorClass;
+
+ case OO_GreaterEqual:
+ BinaryOp = BO_GE;
+ return Stmt::BinaryOperatorClass;
+
+ case OO_AmpAmp:
+ BinaryOp = BO_LAnd;
+ return Stmt::BinaryOperatorClass;
+
+ case OO_PipePipe:
+ BinaryOp = BO_LOr;
+ return Stmt::BinaryOperatorClass;
+
+ case OO_PlusPlus:
+ UnaryOp = S->getNumArgs() == 1? UO_PreInc
+ : UO_PostInc;
+ return Stmt::UnaryOperatorClass;
+
+ case OO_MinusMinus:
+ UnaryOp = S->getNumArgs() == 1? UO_PreDec
+ : UO_PostDec;
+ return Stmt::UnaryOperatorClass;
+
+ case OO_Comma:
+ BinaryOp = BO_Comma;
+ return Stmt::BinaryOperatorClass;
+
+
+ case OO_ArrowStar:
+ BinaryOp = BO_PtrMemI;
+ return Stmt::BinaryOperatorClass;
+
+ case OO_Subscript:
+ return Stmt::ArraySubscriptExprClass;
+ }
+
+ llvm_unreachable("Invalid overloaded operator expression");
+}
+
+
+void StmtProfiler::VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *S) {
+ if (S->isTypeDependent()) {
+ // Type-dependent operator calls are profiled like their underlying
+ // syntactic operator.
+ UnaryOperatorKind UnaryOp = UO_Extension;
+ BinaryOperatorKind BinaryOp = BO_Comma;
+ Stmt::StmtClass SC = DecodeOperatorCall(S, UnaryOp, BinaryOp);
+
+ ID.AddInteger(SC);
+ for (unsigned I = 0, N = S->getNumArgs(); I != N; ++I)
+ Visit(S->getArg(I));
+ if (SC == Stmt::UnaryOperatorClass)
+ ID.AddInteger(UnaryOp);
+ else if (SC == Stmt::BinaryOperatorClass ||
+ SC == Stmt::CompoundAssignOperatorClass)
+ ID.AddInteger(BinaryOp);
+ else
+ assert(SC == Stmt::ArraySubscriptExprClass);
+
+ return;
+ }
+
+ VisitCallExpr(S);
+ ID.AddInteger(S->getOperator());
+}
+
+void StmtProfiler::VisitCXXMemberCallExpr(const CXXMemberCallExpr *S) {
+ VisitCallExpr(S);
+}
+
+void StmtProfiler::VisitCUDAKernelCallExpr(const CUDAKernelCallExpr *S) {
+ VisitCallExpr(S);
+}
+
+void StmtProfiler::VisitAsTypeExpr(const AsTypeExpr *S) {
+ VisitExpr(S);
+}
+
+void StmtProfiler::VisitCXXNamedCastExpr(const CXXNamedCastExpr *S) {
+ VisitExplicitCastExpr(S);
+}
+
+void StmtProfiler::VisitCXXStaticCastExpr(const CXXStaticCastExpr *S) {
+ VisitCXXNamedCastExpr(S);
+}
+
+void StmtProfiler::VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *S) {
+ VisitCXXNamedCastExpr(S);
+}
+
+void
+StmtProfiler::VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *S) {
+ VisitCXXNamedCastExpr(S);
+}
+
+void StmtProfiler::VisitCXXConstCastExpr(const CXXConstCastExpr *S) {
+ VisitCXXNamedCastExpr(S);
+}
+
+void StmtProfiler::VisitUserDefinedLiteral(const UserDefinedLiteral *S) {
+ VisitCallExpr(S);
+}
+
+void StmtProfiler::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *S) {
+ VisitExpr(S);
+ ID.AddBoolean(S->getValue());
+}
+
+void StmtProfiler::VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *S) {
+ VisitExpr(S);
+}
+
+void StmtProfiler::VisitCXXStdInitializerListExpr(
+ const CXXStdInitializerListExpr *S) {
+ VisitExpr(S);
+}
+
+void StmtProfiler::VisitCXXTypeidExpr(const CXXTypeidExpr *S) {
+ VisitExpr(S);
+ if (S->isTypeOperand())
+ VisitType(S->getTypeOperandSourceInfo()->getType());
+}
+
+void StmtProfiler::VisitCXXUuidofExpr(const CXXUuidofExpr *S) {
+ VisitExpr(S);
+ if (S->isTypeOperand())
+ VisitType(S->getTypeOperandSourceInfo()->getType());
+}
+
+void StmtProfiler::VisitMSPropertyRefExpr(const MSPropertyRefExpr *S) {
+ VisitExpr(S);
+ VisitDecl(S->getPropertyDecl());
+}
+
+void StmtProfiler::VisitCXXThisExpr(const CXXThisExpr *S) {
+ VisitExpr(S);
+ ID.AddBoolean(S->isImplicit());
+}
+
+void StmtProfiler::VisitCXXThrowExpr(const CXXThrowExpr *S) {
+ VisitExpr(S);
+}
+
+void StmtProfiler::VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *S) {
+ VisitExpr(S);
+ VisitDecl(S->getParam());
+}
+
+void StmtProfiler::VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *S) {
+ VisitExpr(S);
+ VisitDecl(S->getField());
+}
+
+void StmtProfiler::VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *S) {
+ VisitExpr(S);
+ VisitDecl(
+ const_cast<CXXDestructorDecl *>(S->getTemporary()->getDestructor()));
+}
+
+void StmtProfiler::VisitCXXConstructExpr(const CXXConstructExpr *S) {
+ VisitExpr(S);
+ VisitDecl(S->getConstructor());
+ ID.AddBoolean(S->isElidable());
+}
+
+void StmtProfiler::VisitCXXFunctionalCastExpr(const CXXFunctionalCastExpr *S) {
+ VisitExplicitCastExpr(S);
+}
+
+void
+StmtProfiler::VisitCXXTemporaryObjectExpr(const CXXTemporaryObjectExpr *S) {
+ VisitCXXConstructExpr(S);
+}
+
+void
+StmtProfiler::VisitLambdaExpr(const LambdaExpr *S) {
+ VisitExpr(S);
+ for (LambdaExpr::capture_iterator C = S->explicit_capture_begin(),
+ CEnd = S->explicit_capture_end();
+ C != CEnd; ++C) {
+ ID.AddInteger(C->getCaptureKind());
+ switch (C->getCaptureKind()) {
+ case LCK_This:
+ break;
+ case LCK_ByRef:
+ case LCK_ByCopy:
+ VisitDecl(C->getCapturedVar());
+ ID.AddBoolean(C->isPackExpansion());
+ break;
+ case LCK_VLAType:
+ llvm_unreachable("VLA type in explicit captures.");
+ }
+ }
+ // Note: If we actually needed to be able to match lambda
+ // expressions, we would have to consider parameters and return type
+ // here, among other things.
+ VisitStmt(S->getBody());
+}
+
+void
+StmtProfiler::VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *S) {
+ VisitExpr(S);
+}
+
+void StmtProfiler::VisitCXXDeleteExpr(const CXXDeleteExpr *S) {
+ VisitExpr(S);
+ ID.AddBoolean(S->isGlobalDelete());
+ ID.AddBoolean(S->isArrayForm());
+ VisitDecl(S->getOperatorDelete());
+}
+
+
+void StmtProfiler::VisitCXXNewExpr(const CXXNewExpr *S) {
+ VisitExpr(S);
+ VisitType(S->getAllocatedType());
+ VisitDecl(S->getOperatorNew());
+ VisitDecl(S->getOperatorDelete());
+ ID.AddBoolean(S->isArray());
+ ID.AddInteger(S->getNumPlacementArgs());
+ ID.AddBoolean(S->isGlobalNew());
+ ID.AddBoolean(S->isParenTypeId());
+ ID.AddInteger(S->getInitializationStyle());
+}
+
+void
+StmtProfiler::VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *S) {
+ VisitExpr(S);
+ ID.AddBoolean(S->isArrow());
+ VisitNestedNameSpecifier(S->getQualifier());
+ ID.AddBoolean(S->getScopeTypeInfo() != nullptr);
+ if (S->getScopeTypeInfo())
+ VisitType(S->getScopeTypeInfo()->getType());
+ ID.AddBoolean(S->getDestroyedTypeInfo() != nullptr);
+ if (S->getDestroyedTypeInfo())
+ VisitType(S->getDestroyedType());
+ else
+ ID.AddPointer(S->getDestroyedTypeIdentifier());
+}
+
+void StmtProfiler::VisitOverloadExpr(const OverloadExpr *S) {
+ VisitExpr(S);
+ VisitNestedNameSpecifier(S->getQualifier());
+ VisitName(S->getName());
+ ID.AddBoolean(S->hasExplicitTemplateArgs());
+ if (S->hasExplicitTemplateArgs())
+ VisitTemplateArguments(S->getExplicitTemplateArgs().getTemplateArgs(),
+ S->getExplicitTemplateArgs().NumTemplateArgs);
+}
+
+void
+StmtProfiler::VisitUnresolvedLookupExpr(const UnresolvedLookupExpr *S) {
+ VisitOverloadExpr(S);
+}
+
+void StmtProfiler::VisitTypeTraitExpr(const TypeTraitExpr *S) {
+ VisitExpr(S);
+ ID.AddInteger(S->getTrait());
+ ID.AddInteger(S->getNumArgs());
+ for (unsigned I = 0, N = S->getNumArgs(); I != N; ++I)
+ VisitType(S->getArg(I)->getType());
+}
+
+void StmtProfiler::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *S) {
+ VisitExpr(S);
+ ID.AddInteger(S->getTrait());
+ VisitType(S->getQueriedType());
+}
+
+void StmtProfiler::VisitExpressionTraitExpr(const ExpressionTraitExpr *S) {
+ VisitExpr(S);
+ ID.AddInteger(S->getTrait());
+ VisitExpr(S->getQueriedExpression());
+}
+
+void StmtProfiler::VisitDependentScopeDeclRefExpr(
+ const DependentScopeDeclRefExpr *S) {
+ VisitExpr(S);
+ VisitName(S->getDeclName());
+ VisitNestedNameSpecifier(S->getQualifier());
+ ID.AddBoolean(S->hasExplicitTemplateArgs());
+ if (S->hasExplicitTemplateArgs())
+ VisitTemplateArguments(S->getTemplateArgs(), S->getNumTemplateArgs());
+}
+
+void StmtProfiler::VisitExprWithCleanups(const ExprWithCleanups *S) {
+ VisitExpr(S);
+}
+
+void StmtProfiler::VisitCXXUnresolvedConstructExpr(
+ const CXXUnresolvedConstructExpr *S) {
+ VisitExpr(S);
+ VisitType(S->getTypeAsWritten());
+}
+
+void StmtProfiler::VisitCXXDependentScopeMemberExpr(
+ const CXXDependentScopeMemberExpr *S) {
+ ID.AddBoolean(S->isImplicitAccess());
+ if (!S->isImplicitAccess()) {
+ VisitExpr(S);
+ ID.AddBoolean(S->isArrow());
+ }
+ VisitNestedNameSpecifier(S->getQualifier());
+ VisitName(S->getMember());
+ ID.AddBoolean(S->hasExplicitTemplateArgs());
+ if (S->hasExplicitTemplateArgs())
+ VisitTemplateArguments(S->getTemplateArgs(), S->getNumTemplateArgs());
+}
+
+void StmtProfiler::VisitUnresolvedMemberExpr(const UnresolvedMemberExpr *S) {
+ ID.AddBoolean(S->isImplicitAccess());
+ if (!S->isImplicitAccess()) {
+ VisitExpr(S);
+ ID.AddBoolean(S->isArrow());
+ }
+ VisitNestedNameSpecifier(S->getQualifier());
+ VisitName(S->getMemberName());
+ ID.AddBoolean(S->hasExplicitTemplateArgs());
+ if (S->hasExplicitTemplateArgs())
+ VisitTemplateArguments(S->getTemplateArgs(), S->getNumTemplateArgs());
+}
+
+void StmtProfiler::VisitCXXNoexceptExpr(const CXXNoexceptExpr *S) {
+ VisitExpr(S);
+}
+
+void StmtProfiler::VisitPackExpansionExpr(const PackExpansionExpr *S) {
+ VisitExpr(S);
+}
+
+void StmtProfiler::VisitSizeOfPackExpr(const SizeOfPackExpr *S) {
+ VisitExpr(S);
+ VisitDecl(S->getPack());
+}
+
+void StmtProfiler::VisitSubstNonTypeTemplateParmPackExpr(
+ const SubstNonTypeTemplateParmPackExpr *S) {
+ VisitExpr(S);
+ VisitDecl(S->getParameterPack());
+ VisitTemplateArgument(S->getArgumentPack());
+}
+
+void StmtProfiler::VisitSubstNonTypeTemplateParmExpr(
+ const SubstNonTypeTemplateParmExpr *E) {
+ // Profile exactly as the replacement expression.
+ Visit(E->getReplacement());
+}
+
+void StmtProfiler::VisitFunctionParmPackExpr(const FunctionParmPackExpr *S) {
+ VisitExpr(S);
+ VisitDecl(S->getParameterPack());
+ ID.AddInteger(S->getNumExpansions());
+ for (FunctionParmPackExpr::iterator I = S->begin(), E = S->end(); I != E; ++I)
+ VisitDecl(*I);
+}
+
+void StmtProfiler::VisitMaterializeTemporaryExpr(
+ const MaterializeTemporaryExpr *S) {
+ VisitExpr(S);
+}
+
+void StmtProfiler::VisitCXXFoldExpr(const CXXFoldExpr *S) {
+ VisitExpr(S);
+ ID.AddInteger(S->getOperator());
+}
+
+void StmtProfiler::VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
+ VisitExpr(E);
+}
+
+void StmtProfiler::VisitTypoExpr(const TypoExpr *E) {
+ VisitExpr(E);
+}
+
+void StmtProfiler::VisitObjCStringLiteral(const ObjCStringLiteral *S) {
+ VisitExpr(S);
+}
+
+void StmtProfiler::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
+ VisitExpr(E);
+}
+
+void StmtProfiler::VisitObjCArrayLiteral(const ObjCArrayLiteral *E) {
+ VisitExpr(E);
+}
+
+void StmtProfiler::VisitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E) {
+ VisitExpr(E);
+}
+
+void StmtProfiler::VisitObjCEncodeExpr(const ObjCEncodeExpr *S) {
+ VisitExpr(S);
+ VisitType(S->getEncodedType());
+}
+
+void StmtProfiler::VisitObjCSelectorExpr(const ObjCSelectorExpr *S) {
+ VisitExpr(S);
+ VisitName(S->getSelector());
+}
+
+void StmtProfiler::VisitObjCProtocolExpr(const ObjCProtocolExpr *S) {
+ VisitExpr(S);
+ VisitDecl(S->getProtocol());
+}
+
+void StmtProfiler::VisitObjCIvarRefExpr(const ObjCIvarRefExpr *S) {
+ VisitExpr(S);
+ VisitDecl(S->getDecl());
+ ID.AddBoolean(S->isArrow());
+ ID.AddBoolean(S->isFreeIvar());
+}
+
+void StmtProfiler::VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *S) {
+ VisitExpr(S);
+ if (S->isImplicitProperty()) {
+ VisitDecl(S->getImplicitPropertyGetter());
+ VisitDecl(S->getImplicitPropertySetter());
+ } else {
+ VisitDecl(S->getExplicitProperty());
+ }
+ if (S->isSuperReceiver()) {
+ ID.AddBoolean(S->isSuperReceiver());
+ VisitType(S->getSuperReceiverType());
+ }
+}
+
+void StmtProfiler::VisitObjCSubscriptRefExpr(const ObjCSubscriptRefExpr *S) {
+ VisitExpr(S);
+ VisitDecl(S->getAtIndexMethodDecl());
+ VisitDecl(S->setAtIndexMethodDecl());
+}
+
+void StmtProfiler::VisitObjCMessageExpr(const ObjCMessageExpr *S) {
+ VisitExpr(S);
+ VisitName(S->getSelector());
+ VisitDecl(S->getMethodDecl());
+}
+
+void StmtProfiler::VisitObjCIsaExpr(const ObjCIsaExpr *S) {
+ VisitExpr(S);
+ ID.AddBoolean(S->isArrow());
+}
+
+void StmtProfiler::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *S) {
+ VisitExpr(S);
+ ID.AddBoolean(S->getValue());
+}
+
+void StmtProfiler::VisitObjCIndirectCopyRestoreExpr(
+ const ObjCIndirectCopyRestoreExpr *S) {
+ VisitExpr(S);
+ ID.AddBoolean(S->shouldCopy());
+}
+
+void StmtProfiler::VisitObjCBridgedCastExpr(const ObjCBridgedCastExpr *S) {
+ VisitExplicitCastExpr(S);
+ ID.AddBoolean(S->getBridgeKind());
+}
+
+void StmtProfiler::VisitDecl(const Decl *D) {
+ ID.AddInteger(D? D->getKind() : 0);
+
+ if (Canonical && D) {
+ if (const NonTypeTemplateParmDecl *NTTP =
+ dyn_cast<NonTypeTemplateParmDecl>(D)) {
+ ID.AddInteger(NTTP->getDepth());
+ ID.AddInteger(NTTP->getIndex());
+ ID.AddBoolean(NTTP->isParameterPack());
+ VisitType(NTTP->getType());
+ return;
+ }
+
+ if (const ParmVarDecl *Parm = dyn_cast<ParmVarDecl>(D)) {
+ // The Itanium C++ ABI uses the type, scope depth, and scope
+ // index of a parameter when mangling expressions that involve
+ // function parameters, so we will use the parameter's type for
+ // establishing function parameter identity. That way, our
+ // definition of "equivalent" (per C++ [temp.over.link]) is at
+ // least as strong as the definition of "equivalent" used for
+ // name mangling.
+ VisitType(Parm->getType());
+ ID.AddInteger(Parm->getFunctionScopeDepth());
+ ID.AddInteger(Parm->getFunctionScopeIndex());
+ return;
+ }
+
+ if (const TemplateTypeParmDecl *TTP =
+ dyn_cast<TemplateTypeParmDecl>(D)) {
+ ID.AddInteger(TTP->getDepth());
+ ID.AddInteger(TTP->getIndex());
+ ID.AddBoolean(TTP->isParameterPack());
+ return;
+ }
+
+ if (const TemplateTemplateParmDecl *TTP =
+ dyn_cast<TemplateTemplateParmDecl>(D)) {
+ ID.AddInteger(TTP->getDepth());
+ ID.AddInteger(TTP->getIndex());
+ ID.AddBoolean(TTP->isParameterPack());
+ return;
+ }
+ }
+
+ ID.AddPointer(D? D->getCanonicalDecl() : nullptr);
+}
+
+void StmtProfiler::VisitType(QualType T) {
+ if (Canonical)
+ T = Context.getCanonicalType(T);
+
+ ID.AddPointer(T.getAsOpaquePtr());
+}
+
+void StmtProfiler::VisitName(DeclarationName Name) {
+ ID.AddPointer(Name.getAsOpaquePtr());
+}
+
+void StmtProfiler::VisitNestedNameSpecifier(NestedNameSpecifier *NNS) {
+ if (Canonical)
+ NNS = Context.getCanonicalNestedNameSpecifier(NNS);
+ ID.AddPointer(NNS);
+}
+
+void StmtProfiler::VisitTemplateName(TemplateName Name) {
+ if (Canonical)
+ Name = Context.getCanonicalTemplateName(Name);
+
+ Name.Profile(ID);
+}
+
+void StmtProfiler::VisitTemplateArguments(const TemplateArgumentLoc *Args,
+ unsigned NumArgs) {
+ ID.AddInteger(NumArgs);
+ for (unsigned I = 0; I != NumArgs; ++I)
+ VisitTemplateArgument(Args[I].getArgument());
+}
+
+void StmtProfiler::VisitTemplateArgument(const TemplateArgument &Arg) {
+ // Mostly repetitive with TemplateArgument::Profile!
+ ID.AddInteger(Arg.getKind());
+ switch (Arg.getKind()) {
+ case TemplateArgument::Null:
+ break;
+
+ case TemplateArgument::Type:
+ VisitType(Arg.getAsType());
+ break;
+
+ case TemplateArgument::Template:
+ case TemplateArgument::TemplateExpansion:
+ VisitTemplateName(Arg.getAsTemplateOrTemplatePattern());
+ break;
+
+ case TemplateArgument::Declaration:
+ VisitDecl(Arg.getAsDecl());
+ break;
+
+ case TemplateArgument::NullPtr:
+ VisitType(Arg.getNullPtrType());
+ break;
+
+ case TemplateArgument::Integral:
+ Arg.getAsIntegral().Profile(ID);
+ VisitType(Arg.getIntegralType());
+ break;
+
+ case TemplateArgument::Expression:
+ Visit(Arg.getAsExpr());
+ break;
+
+ case TemplateArgument::Pack:
+ for (const auto &P : Arg.pack_elements())
+ VisitTemplateArgument(P);
+ break;
+ }
+}
+
+void Stmt::Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
+ bool Canonical) const {
+ StmtProfiler Profiler(ID, Context, Canonical);
+ Profiler.Visit(this);
+}
diff --git a/contrib/llvm/tools/clang/lib/AST/StmtViz.cpp b/contrib/llvm/tools/clang/lib/AST/StmtViz.cpp
new file mode 100644
index 0000000..8be287e
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/StmtViz.cpp
@@ -0,0 +1,62 @@
+//===--- StmtViz.cpp - Graphviz visualization for Stmt ASTs -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements Stmt::viewAST, which generates a Graphviz DOT file
+// that depicts the AST and then calls Graphviz/dot+gv on it.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/StmtGraphTraits.h"
+#include "clang/AST/Decl.h"
+#include "llvm/Support/GraphWriter.h"
+
+using namespace clang;
+
+void Stmt::viewAST() const {
+#ifndef NDEBUG
+ llvm::ViewGraph(this,"AST");
+#else
+ llvm::errs() << "Stmt::viewAST is only available in debug builds on "
+ << "systems with Graphviz or gv!\n";
+#endif
+}
+
+namespace llvm {
+template<>
+struct DOTGraphTraits<const Stmt*> : public DefaultDOTGraphTraits {
+ DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
+
+ static std::string getNodeLabel(const Stmt* Node, const Stmt* Graph) {
+
+#ifndef NDEBUG
+ std::string OutSStr;
+ llvm::raw_string_ostream Out(OutSStr);
+
+ if (Node)
+ Out << Node->getStmtClassName();
+ else
+ Out << "<NULL>";
+
+ std::string OutStr = Out.str();
+ if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
+
+ // Process string output to make it nicer...
+ for (unsigned i = 0; i != OutStr.length(); ++i)
+ if (OutStr[i] == '\n') { // Left justify
+ OutStr[i] = '\\';
+ OutStr.insert(OutStr.begin()+i+1, 'l');
+ }
+
+ return OutStr;
+#else
+ return "";
+#endif
+ }
+};
+} // end namespace llvm
diff --git a/contrib/llvm/tools/clang/lib/AST/TemplateBase.cpp b/contrib/llvm/tools/clang/lib/AST/TemplateBase.cpp
new file mode 100644
index 0000000..f8b73cb
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/TemplateBase.cpp
@@ -0,0 +1,615 @@
+//===--- TemplateBase.cpp - Common template AST class implementation ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements common classes used throughout C++ template
+// representations.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/TemplateBase.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclBase.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/Type.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/Basic/Diagnostic.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+
+using namespace clang;
+
+/// \brief Print a template integral argument value.
+///
+/// \param TemplArg the TemplateArgument instance to print.
+///
+/// \param Out the raw_ostream instance to use for printing.
+///
+/// \param Policy the printing policy for EnumConstantDecl printing.
+static void printIntegral(const TemplateArgument &TemplArg,
+ raw_ostream &Out, const PrintingPolicy& Policy) {
+ const ::clang::Type *T = TemplArg.getIntegralType().getTypePtr();
+ const llvm::APSInt &Val = TemplArg.getAsIntegral();
+
+ if (const EnumType *ET = T->getAs<EnumType>()) {
+ for (const EnumConstantDecl* ECD : ET->getDecl()->enumerators()) {
+ // In Sema::CheckTemplateArugment, enum template arguments value are
+ // extended to the size of the integer underlying the enum type. This
+ // may create a size difference between the enum value and template
+ // argument value, requiring isSameValue here instead of operator==.
+ if (llvm::APSInt::isSameValue(ECD->getInitVal(), Val)) {
+ ECD->printQualifiedName(Out, Policy);
+ return;
+ }
+ }
+ }
+
+ if (T->isBooleanType()) {
+ Out << (Val.getBoolValue() ? "true" : "false");
+ } else if (T->isCharType()) {
+ const char Ch = Val.getZExtValue();
+ Out << ((Ch == '\'') ? "'\\" : "'");
+ Out.write_escaped(StringRef(&Ch, 1), /*UseHexEscapes=*/ true);
+ Out << "'";
+ } else {
+ Out << Val;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// TemplateArgument Implementation
+//===----------------------------------------------------------------------===//
+
+TemplateArgument::TemplateArgument(ASTContext &Ctx, const llvm::APSInt &Value,
+ QualType Type) {
+ Integer.Kind = Integral;
+ // Copy the APSInt value into our decomposed form.
+ Integer.BitWidth = Value.getBitWidth();
+ Integer.IsUnsigned = Value.isUnsigned();
+ // If the value is large, we have to get additional memory from the ASTContext
+ unsigned NumWords = Value.getNumWords();
+ if (NumWords > 1) {
+ void *Mem = Ctx.Allocate(NumWords * sizeof(uint64_t));
+ std::memcpy(Mem, Value.getRawData(), NumWords * sizeof(uint64_t));
+ Integer.pVal = static_cast<uint64_t *>(Mem);
+ } else {
+ Integer.VAL = Value.getZExtValue();
+ }
+
+ Integer.Type = Type.getAsOpaquePtr();
+}
+
+TemplateArgument TemplateArgument::CreatePackCopy(ASTContext &Context,
+ const TemplateArgument *Args,
+ unsigned NumArgs) {
+ if (NumArgs == 0)
+ return getEmptyPack();
+
+ TemplateArgument *Storage = new (Context) TemplateArgument [NumArgs];
+ std::copy(Args, Args + NumArgs, Storage);
+ return TemplateArgument(Storage, NumArgs);
+}
+
+bool TemplateArgument::isDependent() const {
+ switch (getKind()) {
+ case Null:
+ llvm_unreachable("Should not have a NULL template argument");
+
+ case Type:
+ return getAsType()->isDependentType() ||
+ isa<PackExpansionType>(getAsType());
+
+ case Template:
+ return getAsTemplate().isDependent();
+
+ case TemplateExpansion:
+ return true;
+
+ case Declaration:
+ if (DeclContext *DC = dyn_cast<DeclContext>(getAsDecl()))
+ return DC->isDependentContext();
+ return getAsDecl()->getDeclContext()->isDependentContext();
+
+ case NullPtr:
+ return false;
+
+ case Integral:
+ // Never dependent
+ return false;
+
+ case Expression:
+ return (getAsExpr()->isTypeDependent() || getAsExpr()->isValueDependent() ||
+ isa<PackExpansionExpr>(getAsExpr()));
+
+ case Pack:
+ for (const auto &P : pack_elements())
+ if (P.isDependent())
+ return true;
+ return false;
+ }
+
+ llvm_unreachable("Invalid TemplateArgument Kind!");
+}
+
+bool TemplateArgument::isInstantiationDependent() const {
+ switch (getKind()) {
+ case Null:
+ llvm_unreachable("Should not have a NULL template argument");
+
+ case Type:
+ return getAsType()->isInstantiationDependentType();
+
+ case Template:
+ return getAsTemplate().isInstantiationDependent();
+
+ case TemplateExpansion:
+ return true;
+
+ case Declaration:
+ if (DeclContext *DC = dyn_cast<DeclContext>(getAsDecl()))
+ return DC->isDependentContext();
+ return getAsDecl()->getDeclContext()->isDependentContext();
+
+ case NullPtr:
+ return false;
+
+ case Integral:
+ // Never dependent
+ return false;
+
+ case Expression:
+ return getAsExpr()->isInstantiationDependent();
+
+ case Pack:
+ for (const auto &P : pack_elements())
+ if (P.isInstantiationDependent())
+ return true;
+ return false;
+ }
+
+ llvm_unreachable("Invalid TemplateArgument Kind!");
+}
+
+bool TemplateArgument::isPackExpansion() const {
+ switch (getKind()) {
+ case Null:
+ case Declaration:
+ case Integral:
+ case Pack:
+ case Template:
+ case NullPtr:
+ return false;
+
+ case TemplateExpansion:
+ return true;
+
+ case Type:
+ return isa<PackExpansionType>(getAsType());
+
+ case Expression:
+ return isa<PackExpansionExpr>(getAsExpr());
+ }
+
+ llvm_unreachable("Invalid TemplateArgument Kind!");
+}
+
+bool TemplateArgument::containsUnexpandedParameterPack() const {
+ switch (getKind()) {
+ case Null:
+ case Declaration:
+ case Integral:
+ case TemplateExpansion:
+ case NullPtr:
+ break;
+
+ case Type:
+ if (getAsType()->containsUnexpandedParameterPack())
+ return true;
+ break;
+
+ case Template:
+ if (getAsTemplate().containsUnexpandedParameterPack())
+ return true;
+ break;
+
+ case Expression:
+ if (getAsExpr()->containsUnexpandedParameterPack())
+ return true;
+ break;
+
+ case Pack:
+ for (const auto &P : pack_elements())
+ if (P.containsUnexpandedParameterPack())
+ return true;
+
+ break;
+ }
+
+ return false;
+}
+
+Optional<unsigned> TemplateArgument::getNumTemplateExpansions() const {
+ assert(getKind() == TemplateExpansion);
+ if (TemplateArg.NumExpansions)
+ return TemplateArg.NumExpansions - 1;
+
+ return None;
+}
+
+void TemplateArgument::Profile(llvm::FoldingSetNodeID &ID,
+ const ASTContext &Context) const {
+ ID.AddInteger(getKind());
+ switch (getKind()) {
+ case Null:
+ break;
+
+ case Type:
+ getAsType().Profile(ID);
+ break;
+
+ case NullPtr:
+ getNullPtrType().Profile(ID);
+ break;
+
+ case Declaration:
+ ID.AddPointer(getAsDecl()? getAsDecl()->getCanonicalDecl() : nullptr);
+ break;
+
+ case Template:
+ case TemplateExpansion: {
+ TemplateName Template = getAsTemplateOrTemplatePattern();
+ if (TemplateTemplateParmDecl *TTP
+ = dyn_cast_or_null<TemplateTemplateParmDecl>(
+ Template.getAsTemplateDecl())) {
+ ID.AddBoolean(true);
+ ID.AddInteger(TTP->getDepth());
+ ID.AddInteger(TTP->getPosition());
+ ID.AddBoolean(TTP->isParameterPack());
+ } else {
+ ID.AddBoolean(false);
+ ID.AddPointer(Context.getCanonicalTemplateName(Template)
+ .getAsVoidPointer());
+ }
+ break;
+ }
+
+ case Integral:
+ getAsIntegral().Profile(ID);
+ getIntegralType().Profile(ID);
+ break;
+
+ case Expression:
+ getAsExpr()->Profile(ID, Context, true);
+ break;
+
+ case Pack:
+ ID.AddInteger(Args.NumArgs);
+ for (unsigned I = 0; I != Args.NumArgs; ++I)
+ Args.Args[I].Profile(ID, Context);
+ }
+}
+
+bool TemplateArgument::structurallyEquals(const TemplateArgument &Other) const {
+ if (getKind() != Other.getKind()) return false;
+
+ switch (getKind()) {
+ case Null:
+ case Type:
+ case Expression:
+ case Template:
+ case TemplateExpansion:
+ case NullPtr:
+ return TypeOrValue.V == Other.TypeOrValue.V;
+
+ case Declaration:
+ return getAsDecl() == Other.getAsDecl();
+
+ case Integral:
+ return getIntegralType() == Other.getIntegralType() &&
+ getAsIntegral() == Other.getAsIntegral();
+
+ case Pack:
+ if (Args.NumArgs != Other.Args.NumArgs) return false;
+ for (unsigned I = 0, E = Args.NumArgs; I != E; ++I)
+ if (!Args.Args[I].structurallyEquals(Other.Args.Args[I]))
+ return false;
+ return true;
+ }
+
+ llvm_unreachable("Invalid TemplateArgument Kind!");
+}
+
+TemplateArgument TemplateArgument::getPackExpansionPattern() const {
+ assert(isPackExpansion());
+
+ switch (getKind()) {
+ case Type:
+ return getAsType()->getAs<PackExpansionType>()->getPattern();
+
+ case Expression:
+ return cast<PackExpansionExpr>(getAsExpr())->getPattern();
+
+ case TemplateExpansion:
+ return TemplateArgument(getAsTemplateOrTemplatePattern());
+
+ case Declaration:
+ case Integral:
+ case Pack:
+ case Null:
+ case Template:
+ case NullPtr:
+ return TemplateArgument();
+ }
+
+ llvm_unreachable("Invalid TemplateArgument Kind!");
+}
+
+void TemplateArgument::print(const PrintingPolicy &Policy,
+ raw_ostream &Out) const {
+ switch (getKind()) {
+ case Null:
+ Out << "(no value)";
+ break;
+
+ case Type: {
+ PrintingPolicy SubPolicy(Policy);
+ SubPolicy.SuppressStrongLifetime = true;
+ getAsType().print(Out, SubPolicy);
+ break;
+ }
+
+ case Declaration: {
+ NamedDecl *ND = cast<NamedDecl>(getAsDecl());
+ Out << '&';
+ if (ND->getDeclName()) {
+ // FIXME: distinguish between pointer and reference args?
+ ND->printQualifiedName(Out);
+ } else {
+ Out << "(anonymous)";
+ }
+ break;
+ }
+
+ case NullPtr:
+ Out << "nullptr";
+ break;
+
+ case Template:
+ getAsTemplate().print(Out, Policy);
+ break;
+
+ case TemplateExpansion:
+ getAsTemplateOrTemplatePattern().print(Out, Policy);
+ Out << "...";
+ break;
+
+ case Integral: {
+ printIntegral(*this, Out, Policy);
+ break;
+ }
+
+ case Expression:
+ getAsExpr()->printPretty(Out, nullptr, Policy);
+ break;
+
+ case Pack:
+ Out << "<";
+ bool First = true;
+ for (const auto &P : pack_elements()) {
+ if (First)
+ First = false;
+ else
+ Out << ", ";
+
+ P.print(Policy, Out);
+ }
+ Out << ">";
+ break;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// TemplateArgumentLoc Implementation
+//===----------------------------------------------------------------------===//
+
+TemplateArgumentLocInfo::TemplateArgumentLocInfo() {
+ memset((void*)this, 0, sizeof(TemplateArgumentLocInfo));
+}
+
+SourceRange TemplateArgumentLoc::getSourceRange() const {
+ switch (Argument.getKind()) {
+ case TemplateArgument::Expression:
+ return getSourceExpression()->getSourceRange();
+
+ case TemplateArgument::Declaration:
+ return getSourceDeclExpression()->getSourceRange();
+
+ case TemplateArgument::NullPtr:
+ return getSourceNullPtrExpression()->getSourceRange();
+
+ case TemplateArgument::Type:
+ if (TypeSourceInfo *TSI = getTypeSourceInfo())
+ return TSI->getTypeLoc().getSourceRange();
+ else
+ return SourceRange();
+
+ case TemplateArgument::Template:
+ if (getTemplateQualifierLoc())
+ return SourceRange(getTemplateQualifierLoc().getBeginLoc(),
+ getTemplateNameLoc());
+ return SourceRange(getTemplateNameLoc());
+
+ case TemplateArgument::TemplateExpansion:
+ if (getTemplateQualifierLoc())
+ return SourceRange(getTemplateQualifierLoc().getBeginLoc(),
+ getTemplateEllipsisLoc());
+ return SourceRange(getTemplateNameLoc(), getTemplateEllipsisLoc());
+
+ case TemplateArgument::Integral:
+ return getSourceIntegralExpression()->getSourceRange();
+
+ case TemplateArgument::Pack:
+ case TemplateArgument::Null:
+ return SourceRange();
+ }
+
+ llvm_unreachable("Invalid TemplateArgument Kind!");
+}
+
+const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB,
+ const TemplateArgument &Arg) {
+ switch (Arg.getKind()) {
+ case TemplateArgument::Null:
+ // This is bad, but not as bad as crashing because of argument
+ // count mismatches.
+ return DB << "(null template argument)";
+
+ case TemplateArgument::Type:
+ return DB << Arg.getAsType();
+
+ case TemplateArgument::Declaration:
+ return DB << Arg.getAsDecl();
+
+ case TemplateArgument::NullPtr:
+ return DB << "nullptr";
+
+ case TemplateArgument::Integral:
+ return DB << Arg.getAsIntegral().toString(10);
+
+ case TemplateArgument::Template:
+ return DB << Arg.getAsTemplate();
+
+ case TemplateArgument::TemplateExpansion:
+ return DB << Arg.getAsTemplateOrTemplatePattern() << "...";
+
+ case TemplateArgument::Expression: {
+ // This shouldn't actually ever happen, so it's okay that we're
+ // regurgitating an expression here.
+ // FIXME: We're guessing at LangOptions!
+ SmallString<32> Str;
+ llvm::raw_svector_ostream OS(Str);
+ LangOptions LangOpts;
+ LangOpts.CPlusPlus = true;
+ PrintingPolicy Policy(LangOpts);
+ Arg.getAsExpr()->printPretty(OS, nullptr, Policy);
+ return DB << OS.str();
+ }
+
+ case TemplateArgument::Pack: {
+ // FIXME: We're guessing at LangOptions!
+ SmallString<32> Str;
+ llvm::raw_svector_ostream OS(Str);
+ LangOptions LangOpts;
+ LangOpts.CPlusPlus = true;
+ PrintingPolicy Policy(LangOpts);
+ Arg.print(Policy, OS);
+ return DB << OS.str();
+ }
+ }
+
+ llvm_unreachable("Invalid TemplateArgument Kind!");
+}
+
+const ASTTemplateArgumentListInfo *
+ASTTemplateArgumentListInfo::Create(ASTContext &C,
+ const TemplateArgumentListInfo &List) {
+ assert(llvm::alignOf<ASTTemplateArgumentListInfo>() >=
+ llvm::alignOf<TemplateArgumentLoc>());
+ std::size_t size = ASTTemplateArgumentListInfo::sizeFor(List.size());
+ void *Mem = C.Allocate(size, llvm::alignOf<ASTTemplateArgumentListInfo>());
+ ASTTemplateArgumentListInfo *TAI = new (Mem) ASTTemplateArgumentListInfo();
+ TAI->initializeFrom(List);
+ return TAI;
+}
+
+void ASTTemplateArgumentListInfo::initializeFrom(
+ const TemplateArgumentListInfo &Info) {
+ LAngleLoc = Info.getLAngleLoc();
+ RAngleLoc = Info.getRAngleLoc();
+ NumTemplateArgs = Info.size();
+
+ TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
+ for (unsigned i = 0; i != NumTemplateArgs; ++i)
+ new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
+}
+
+void ASTTemplateArgumentListInfo::initializeFrom(
+ const TemplateArgumentListInfo &Info,
+ bool &Dependent,
+ bool &InstantiationDependent,
+ bool &ContainsUnexpandedParameterPack) {
+ LAngleLoc = Info.getLAngleLoc();
+ RAngleLoc = Info.getRAngleLoc();
+ NumTemplateArgs = Info.size();
+
+ TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
+ for (unsigned i = 0; i != NumTemplateArgs; ++i) {
+ Dependent = Dependent || Info[i].getArgument().isDependent();
+ InstantiationDependent = InstantiationDependent ||
+ Info[i].getArgument().isInstantiationDependent();
+ ContainsUnexpandedParameterPack
+ = ContainsUnexpandedParameterPack ||
+ Info[i].getArgument().containsUnexpandedParameterPack();
+
+ new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
+ }
+}
+
+void ASTTemplateArgumentListInfo::copyInto(
+ TemplateArgumentListInfo &Info) const {
+ Info.setLAngleLoc(LAngleLoc);
+ Info.setRAngleLoc(RAngleLoc);
+ for (unsigned I = 0; I != NumTemplateArgs; ++I)
+ Info.addArgument(getTemplateArgs()[I]);
+}
+
+std::size_t ASTTemplateArgumentListInfo::sizeFor(unsigned NumTemplateArgs) {
+ return sizeof(ASTTemplateArgumentListInfo) +
+ sizeof(TemplateArgumentLoc) * NumTemplateArgs;
+}
+
+void
+ASTTemplateKWAndArgsInfo::initializeFrom(SourceLocation TemplateKWLoc,
+ const TemplateArgumentListInfo &Info) {
+ Base::initializeFrom(Info);
+ setTemplateKeywordLoc(TemplateKWLoc);
+}
+
+void
+ASTTemplateKWAndArgsInfo
+::initializeFrom(SourceLocation TemplateKWLoc,
+ const TemplateArgumentListInfo &Info,
+ bool &Dependent,
+ bool &InstantiationDependent,
+ bool &ContainsUnexpandedParameterPack) {
+ Base::initializeFrom(Info, Dependent, InstantiationDependent,
+ ContainsUnexpandedParameterPack);
+ setTemplateKeywordLoc(TemplateKWLoc);
+}
+
+void
+ASTTemplateKWAndArgsInfo::initializeFrom(SourceLocation TemplateKWLoc) {
+ // No explicit template arguments, but template keyword loc is valid.
+ assert(TemplateKWLoc.isValid());
+ LAngleLoc = SourceLocation();
+ RAngleLoc = SourceLocation();
+ NumTemplateArgs = 0;
+ setTemplateKeywordLoc(TemplateKWLoc);
+}
+
+std::size_t
+ASTTemplateKWAndArgsInfo::sizeFor(unsigned NumTemplateArgs) {
+ // Add space for the template keyword location.
+ // FIXME: There's room for this in the padding before the template args in
+ // 64-bit builds.
+ return Base::sizeFor(NumTemplateArgs) + sizeof(SourceLocation);
+}
diff --git a/contrib/llvm/tools/clang/lib/AST/TemplateName.cpp b/contrib/llvm/tools/clang/lib/AST/TemplateName.cpp
new file mode 100644
index 0000000..77c8fd5
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/TemplateName.cpp
@@ -0,0 +1,182 @@
+//===--- TemplateName.cpp - C++ Template Name Representation---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the TemplateName interface and subclasses.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/TemplateName.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/NestedNameSpecifier.h"
+#include "clang/AST/PrettyPrinter.h"
+#include "clang/AST/TemplateBase.h"
+#include "clang/Basic/Diagnostic.h"
+#include "clang/Basic/LangOptions.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace clang;
+using namespace llvm;
+
+TemplateArgument
+SubstTemplateTemplateParmPackStorage::getArgumentPack() const {
+ return TemplateArgument(Arguments, size());
+}
+
+void SubstTemplateTemplateParmStorage::Profile(llvm::FoldingSetNodeID &ID) {
+ Profile(ID, Parameter, Replacement);
+}
+
+void SubstTemplateTemplateParmStorage::Profile(llvm::FoldingSetNodeID &ID,
+ TemplateTemplateParmDecl *parameter,
+ TemplateName replacement) {
+ ID.AddPointer(parameter);
+ ID.AddPointer(replacement.getAsVoidPointer());
+}
+
+void SubstTemplateTemplateParmPackStorage::Profile(llvm::FoldingSetNodeID &ID,
+ ASTContext &Context) {
+ Profile(ID, Context, Parameter, TemplateArgument(Arguments, size()));
+}
+
+void SubstTemplateTemplateParmPackStorage::Profile(llvm::FoldingSetNodeID &ID,
+ ASTContext &Context,
+ TemplateTemplateParmDecl *Parameter,
+ const TemplateArgument &ArgPack) {
+ ID.AddPointer(Parameter);
+ ArgPack.Profile(ID, Context);
+}
+
+TemplateName::NameKind TemplateName::getKind() const {
+ if (Storage.is<TemplateDecl *>())
+ return Template;
+ if (Storage.is<DependentTemplateName *>())
+ return DependentTemplate;
+ if (Storage.is<QualifiedTemplateName *>())
+ return QualifiedTemplate;
+
+ UncommonTemplateNameStorage *uncommon
+ = Storage.get<UncommonTemplateNameStorage*>();
+ if (uncommon->getAsOverloadedStorage())
+ return OverloadedTemplate;
+ if (uncommon->getAsSubstTemplateTemplateParm())
+ return SubstTemplateTemplateParm;
+ return SubstTemplateTemplateParmPack;
+}
+
+TemplateDecl *TemplateName::getAsTemplateDecl() const {
+ if (TemplateDecl *Template = Storage.dyn_cast<TemplateDecl *>())
+ return Template;
+
+ if (QualifiedTemplateName *QTN = getAsQualifiedTemplateName())
+ return QTN->getTemplateDecl();
+
+ if (SubstTemplateTemplateParmStorage *sub = getAsSubstTemplateTemplateParm())
+ return sub->getReplacement().getAsTemplateDecl();
+
+ return nullptr;
+}
+
+bool TemplateName::isDependent() const {
+ if (TemplateDecl *Template = getAsTemplateDecl()) {
+ if (isa<TemplateTemplateParmDecl>(Template))
+ return true;
+ // FIXME: Hack, getDeclContext() can be null if Template is still
+ // initializing due to PCH reading, so we check it before using it.
+ // Should probably modify TemplateSpecializationType to allow constructing
+ // it without the isDependent() checking.
+ return Template->getDeclContext() &&
+ Template->getDeclContext()->isDependentContext();
+ }
+
+ assert(!getAsOverloadedTemplate() &&
+ "overloaded templates shouldn't survive to here");
+
+ return true;
+}
+
+bool TemplateName::isInstantiationDependent() const {
+ if (QualifiedTemplateName *QTN = getAsQualifiedTemplateName()) {
+ if (QTN->getQualifier()->isInstantiationDependent())
+ return true;
+ }
+
+ return isDependent();
+}
+
+bool TemplateName::containsUnexpandedParameterPack() const {
+ if (TemplateDecl *Template = getAsTemplateDecl()) {
+ if (TemplateTemplateParmDecl *TTP
+ = dyn_cast<TemplateTemplateParmDecl>(Template))
+ return TTP->isParameterPack();
+
+ return false;
+ }
+
+ if (DependentTemplateName *DTN = getAsDependentTemplateName())
+ return DTN->getQualifier() &&
+ DTN->getQualifier()->containsUnexpandedParameterPack();
+
+ return getAsSubstTemplateTemplateParmPack() != nullptr;
+}
+
+void
+TemplateName::print(raw_ostream &OS, const PrintingPolicy &Policy,
+ bool SuppressNNS) const {
+ if (TemplateDecl *Template = Storage.dyn_cast<TemplateDecl *>())
+ OS << *Template;
+ else if (QualifiedTemplateName *QTN = getAsQualifiedTemplateName()) {
+ if (!SuppressNNS)
+ QTN->getQualifier()->print(OS, Policy);
+ if (QTN->hasTemplateKeyword())
+ OS << "template ";
+ OS << *QTN->getDecl();
+ } else if (DependentTemplateName *DTN = getAsDependentTemplateName()) {
+ if (!SuppressNNS && DTN->getQualifier())
+ DTN->getQualifier()->print(OS, Policy);
+ OS << "template ";
+
+ if (DTN->isIdentifier())
+ OS << DTN->getIdentifier()->getName();
+ else
+ OS << "operator " << getOperatorSpelling(DTN->getOperator());
+ } else if (SubstTemplateTemplateParmStorage *subst
+ = getAsSubstTemplateTemplateParm()) {
+ subst->getReplacement().print(OS, Policy, SuppressNNS);
+ } else if (SubstTemplateTemplateParmPackStorage *SubstPack
+ = getAsSubstTemplateTemplateParmPack())
+ OS << *SubstPack->getParameterPack();
+ else {
+ OverloadedTemplateStorage *OTS = getAsOverloadedTemplate();
+ (*OTS->begin())->printName(OS);
+ }
+}
+
+const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB,
+ TemplateName N) {
+ std::string NameStr;
+ raw_string_ostream OS(NameStr);
+ LangOptions LO;
+ LO.CPlusPlus = true;
+ LO.Bool = true;
+ OS << '\'';
+ N.print(OS, PrintingPolicy(LO));
+ OS << '\'';
+ OS.flush();
+ return DB << NameStr;
+}
+
+void TemplateName::dump(raw_ostream &OS) const {
+ LangOptions LO; // FIXME!
+ LO.CPlusPlus = true;
+ LO.Bool = true;
+ print(OS, PrintingPolicy(LO));
+}
+
+void TemplateName::dump() const {
+ dump(llvm::errs());
+}
diff --git a/contrib/llvm/tools/clang/lib/AST/Type.cpp b/contrib/llvm/tools/clang/lib/AST/Type.cpp
new file mode 100644
index 0000000..09bb769
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/Type.cpp
@@ -0,0 +1,2464 @@
+//===--- Type.cpp - Type representation and manipulation ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements type-related functionality.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/CharUnits.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/PrettyPrinter.h"
+#include "clang/AST/Type.h"
+#include "clang/AST/TypeVisitor.h"
+#include "clang/Basic/Specifiers.h"
+#include "llvm/ADT/APSInt.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+using namespace clang;
+
+bool Qualifiers::isStrictSupersetOf(Qualifiers Other) const {
+ return (*this != Other) &&
+ // CVR qualifiers superset
+ (((Mask & CVRMask) | (Other.Mask & CVRMask)) == (Mask & CVRMask)) &&
+ // ObjC GC qualifiers superset
+ ((getObjCGCAttr() == Other.getObjCGCAttr()) ||
+ (hasObjCGCAttr() && !Other.hasObjCGCAttr())) &&
+ // Address space superset.
+ ((getAddressSpace() == Other.getAddressSpace()) ||
+ (hasAddressSpace()&& !Other.hasAddressSpace())) &&
+ // Lifetime qualifier superset.
+ ((getObjCLifetime() == Other.getObjCLifetime()) ||
+ (hasObjCLifetime() && !Other.hasObjCLifetime()));
+}
+
+const IdentifierInfo* QualType::getBaseTypeIdentifier() const {
+ const Type* ty = getTypePtr();
+ NamedDecl *ND = nullptr;
+ if (ty->isPointerType() || ty->isReferenceType())
+ return ty->getPointeeType().getBaseTypeIdentifier();
+ else if (ty->isRecordType())
+ ND = ty->getAs<RecordType>()->getDecl();
+ else if (ty->isEnumeralType())
+ ND = ty->getAs<EnumType>()->getDecl();
+ else if (ty->getTypeClass() == Type::Typedef)
+ ND = ty->getAs<TypedefType>()->getDecl();
+ else if (ty->isArrayType())
+ return ty->castAsArrayTypeUnsafe()->
+ getElementType().getBaseTypeIdentifier();
+
+ if (ND)
+ return ND->getIdentifier();
+ return nullptr;
+}
+
+bool QualType::isConstant(QualType T, ASTContext &Ctx) {
+ if (T.isConstQualified())
+ return true;
+
+ if (const ArrayType *AT = Ctx.getAsArrayType(T))
+ return AT->getElementType().isConstant(Ctx);
+
+ return T.getAddressSpace() == LangAS::opencl_constant;
+}
+
+unsigned ConstantArrayType::getNumAddressingBits(ASTContext &Context,
+ QualType ElementType,
+ const llvm::APInt &NumElements) {
+ uint64_t ElementSize = Context.getTypeSizeInChars(ElementType).getQuantity();
+
+ // Fast path the common cases so we can avoid the conservative computation
+ // below, which in common cases allocates "large" APSInt values, which are
+ // slow.
+
+ // If the element size is a power of 2, we can directly compute the additional
+ // number of addressing bits beyond those required for the element count.
+ if (llvm::isPowerOf2_64(ElementSize)) {
+ return NumElements.getActiveBits() + llvm::Log2_64(ElementSize);
+ }
+
+ // If both the element count and element size fit in 32-bits, we can do the
+ // computation directly in 64-bits.
+ if ((ElementSize >> 32) == 0 && NumElements.getBitWidth() <= 64 &&
+ (NumElements.getZExtValue() >> 32) == 0) {
+ uint64_t TotalSize = NumElements.getZExtValue() * ElementSize;
+ return 64 - llvm::countLeadingZeros(TotalSize);
+ }
+
+ // Otherwise, use APSInt to handle arbitrary sized values.
+ llvm::APSInt SizeExtended(NumElements, true);
+ unsigned SizeTypeBits = Context.getTypeSize(Context.getSizeType());
+ SizeExtended = SizeExtended.extend(std::max(SizeTypeBits,
+ SizeExtended.getBitWidth()) * 2);
+
+ llvm::APSInt TotalSize(llvm::APInt(SizeExtended.getBitWidth(), ElementSize));
+ TotalSize *= SizeExtended;
+
+ return TotalSize.getActiveBits();
+}
+
+unsigned ConstantArrayType::getMaxSizeBits(ASTContext &Context) {
+ unsigned Bits = Context.getTypeSize(Context.getSizeType());
+
+ // Limit the number of bits in size_t so that maximal bit size fits 64 bit
+ // integer (see PR8256). We can do this as currently there is no hardware
+ // that supports full 64-bit virtual space.
+ if (Bits > 61)
+ Bits = 61;
+
+ return Bits;
+}
+
+DependentSizedArrayType::DependentSizedArrayType(const ASTContext &Context,
+ QualType et, QualType can,
+ Expr *e, ArraySizeModifier sm,
+ unsigned tq,
+ SourceRange brackets)
+ : ArrayType(DependentSizedArray, et, can, sm, tq,
+ (et->containsUnexpandedParameterPack() ||
+ (e && e->containsUnexpandedParameterPack()))),
+ Context(Context), SizeExpr((Stmt*) e), Brackets(brackets)
+{
+}
+
+void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID,
+ const ASTContext &Context,
+ QualType ET,
+ ArraySizeModifier SizeMod,
+ unsigned TypeQuals,
+ Expr *E) {
+ ID.AddPointer(ET.getAsOpaquePtr());
+ ID.AddInteger(SizeMod);
+ ID.AddInteger(TypeQuals);
+ E->Profile(ID, Context, true);
+}
+
+DependentSizedExtVectorType::DependentSizedExtVectorType(const
+ ASTContext &Context,
+ QualType ElementType,
+ QualType can,
+ Expr *SizeExpr,
+ SourceLocation loc)
+ : Type(DependentSizedExtVector, can, /*Dependent=*/true,
+ /*InstantiationDependent=*/true,
+ ElementType->isVariablyModifiedType(),
+ (ElementType->containsUnexpandedParameterPack() ||
+ (SizeExpr && SizeExpr->containsUnexpandedParameterPack()))),
+ Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
+ loc(loc)
+{
+}
+
+void
+DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID,
+ const ASTContext &Context,
+ QualType ElementType, Expr *SizeExpr) {
+ ID.AddPointer(ElementType.getAsOpaquePtr());
+ SizeExpr->Profile(ID, Context, true);
+}
+
+VectorType::VectorType(QualType vecType, unsigned nElements, QualType canonType,
+ VectorKind vecKind)
+ : VectorType(Vector, vecType, nElements, canonType, vecKind) {}
+
+VectorType::VectorType(TypeClass tc, QualType vecType, unsigned nElements,
+ QualType canonType, VectorKind vecKind)
+ : Type(tc, canonType, vecType->isDependentType(),
+ vecType->isInstantiationDependentType(),
+ vecType->isVariablyModifiedType(),
+ vecType->containsUnexpandedParameterPack()),
+ ElementType(vecType)
+{
+ VectorTypeBits.VecKind = vecKind;
+ VectorTypeBits.NumElements = nElements;
+}
+
+/// getArrayElementTypeNoTypeQual - If this is an array type, return the
+/// element type of the array, potentially with type qualifiers missing.
+/// This method should never be used when type qualifiers are meaningful.
+const Type *Type::getArrayElementTypeNoTypeQual() const {
+ // If this is directly an array type, return it.
+ if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
+ return ATy->getElementType().getTypePtr();
+
+ // If the canonical form of this type isn't the right kind, reject it.
+ if (!isa<ArrayType>(CanonicalType))
+ return nullptr;
+
+ // If this is a typedef for an array type, strip the typedef off without
+ // losing all typedef information.
+ return cast<ArrayType>(getUnqualifiedDesugaredType())
+ ->getElementType().getTypePtr();
+}
+
+/// getDesugaredType - Return the specified type with any "sugar" removed from
+/// the type. This takes off typedefs, typeof's etc. If the outer level of
+/// the type is already concrete, it returns it unmodified. This is similar
+/// to getting the canonical type, but it doesn't remove *all* typedefs. For
+/// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
+/// concrete.
+QualType QualType::getDesugaredType(QualType T, const ASTContext &Context) {
+ SplitQualType split = getSplitDesugaredType(T);
+ return Context.getQualifiedType(split.Ty, split.Quals);
+}
+
+QualType QualType::getSingleStepDesugaredTypeImpl(QualType type,
+ const ASTContext &Context) {
+ SplitQualType split = type.split();
+ QualType desugar = split.Ty->getLocallyUnqualifiedSingleStepDesugaredType();
+ return Context.getQualifiedType(desugar, split.Quals);
+}
+
+QualType Type::getLocallyUnqualifiedSingleStepDesugaredType() const {
+ switch (getTypeClass()) {
+#define ABSTRACT_TYPE(Class, Parent)
+#define TYPE(Class, Parent) \
+ case Type::Class: { \
+ const Class##Type *ty = cast<Class##Type>(this); \
+ if (!ty->isSugared()) return QualType(ty, 0); \
+ return ty->desugar(); \
+ }
+#include "clang/AST/TypeNodes.def"
+ }
+ llvm_unreachable("bad type kind!");
+}
+
+SplitQualType QualType::getSplitDesugaredType(QualType T) {
+ QualifierCollector Qs;
+
+ QualType Cur = T;
+ while (true) {
+ const Type *CurTy = Qs.strip(Cur);
+ switch (CurTy->getTypeClass()) {
+#define ABSTRACT_TYPE(Class, Parent)
+#define TYPE(Class, Parent) \
+ case Type::Class: { \
+ const Class##Type *Ty = cast<Class##Type>(CurTy); \
+ if (!Ty->isSugared()) \
+ return SplitQualType(Ty, Qs); \
+ Cur = Ty->desugar(); \
+ break; \
+ }
+#include "clang/AST/TypeNodes.def"
+ }
+ }
+}
+
+SplitQualType QualType::getSplitUnqualifiedTypeImpl(QualType type) {
+ SplitQualType split = type.split();
+
+ // All the qualifiers we've seen so far.
+ Qualifiers quals = split.Quals;
+
+ // The last type node we saw with any nodes inside it.
+ const Type *lastTypeWithQuals = split.Ty;
+
+ while (true) {
+ QualType next;
+
+ // Do a single-step desugar, aborting the loop if the type isn't
+ // sugared.
+ switch (split.Ty->getTypeClass()) {
+#define ABSTRACT_TYPE(Class, Parent)
+#define TYPE(Class, Parent) \
+ case Type::Class: { \
+ const Class##Type *ty = cast<Class##Type>(split.Ty); \
+ if (!ty->isSugared()) goto done; \
+ next = ty->desugar(); \
+ break; \
+ }
+#include "clang/AST/TypeNodes.def"
+ }
+
+ // Otherwise, split the underlying type. If that yields qualifiers,
+ // update the information.
+ split = next.split();
+ if (!split.Quals.empty()) {
+ lastTypeWithQuals = split.Ty;
+ quals.addConsistentQualifiers(split.Quals);
+ }
+ }
+
+ done:
+ return SplitQualType(lastTypeWithQuals, quals);
+}
+
+QualType QualType::IgnoreParens(QualType T) {
+ // FIXME: this seems inherently un-qualifiers-safe.
+ while (const ParenType *PT = T->getAs<ParenType>())
+ T = PT->getInnerType();
+ return T;
+}
+
+/// \brief This will check for a T (which should be a Type which can act as
+/// sugar, such as a TypedefType) by removing any existing sugar until it
+/// reaches a T or a non-sugared type.
+template<typename T> static const T *getAsSugar(const Type *Cur) {
+ while (true) {
+ if (const T *Sugar = dyn_cast<T>(Cur))
+ return Sugar;
+ switch (Cur->getTypeClass()) {
+#define ABSTRACT_TYPE(Class, Parent)
+#define TYPE(Class, Parent) \
+ case Type::Class: { \
+ const Class##Type *Ty = cast<Class##Type>(Cur); \
+ if (!Ty->isSugared()) return 0; \
+ Cur = Ty->desugar().getTypePtr(); \
+ break; \
+ }
+#include "clang/AST/TypeNodes.def"
+ }
+ }
+}
+
+template <> const TypedefType *Type::getAs() const {
+ return getAsSugar<TypedefType>(this);
+}
+
+template <> const TemplateSpecializationType *Type::getAs() const {
+ return getAsSugar<TemplateSpecializationType>(this);
+}
+
+template <> const AttributedType *Type::getAs() const {
+ return getAsSugar<AttributedType>(this);
+}
+
+/// getUnqualifiedDesugaredType - Pull any qualifiers and syntactic
+/// sugar off the given type. This should produce an object of the
+/// same dynamic type as the canonical type.
+const Type *Type::getUnqualifiedDesugaredType() const {
+ const Type *Cur = this;
+
+ while (true) {
+ switch (Cur->getTypeClass()) {
+#define ABSTRACT_TYPE(Class, Parent)
+#define TYPE(Class, Parent) \
+ case Class: { \
+ const Class##Type *Ty = cast<Class##Type>(Cur); \
+ if (!Ty->isSugared()) return Cur; \
+ Cur = Ty->desugar().getTypePtr(); \
+ break; \
+ }
+#include "clang/AST/TypeNodes.def"
+ }
+ }
+}
+bool Type::isClassType() const {
+ if (const RecordType *RT = getAs<RecordType>())
+ return RT->getDecl()->isClass();
+ return false;
+}
+bool Type::isStructureType() const {
+ if (const RecordType *RT = getAs<RecordType>())
+ return RT->getDecl()->isStruct();
+ return false;
+}
+bool Type::isInterfaceType() const {
+ if (const RecordType *RT = getAs<RecordType>())
+ return RT->getDecl()->isInterface();
+ return false;
+}
+bool Type::isStructureOrClassType() const {
+ if (const RecordType *RT = getAs<RecordType>()) {
+ RecordDecl *RD = RT->getDecl();
+ return RD->isStruct() || RD->isClass() || RD->isInterface();
+ }
+ return false;
+}
+bool Type::isVoidPointerType() const {
+ if (const PointerType *PT = getAs<PointerType>())
+ return PT->getPointeeType()->isVoidType();
+ return false;
+}
+
+bool Type::isUnionType() const {
+ if (const RecordType *RT = getAs<RecordType>())
+ return RT->getDecl()->isUnion();
+ return false;
+}
+
+bool Type::isComplexType() const {
+ if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
+ return CT->getElementType()->isFloatingType();
+ return false;
+}
+
+bool Type::isComplexIntegerType() const {
+ // Check for GCC complex integer extension.
+ return getAsComplexIntegerType();
+}
+
+const ComplexType *Type::getAsComplexIntegerType() const {
+ if (const ComplexType *Complex = getAs<ComplexType>())
+ if (Complex->getElementType()->isIntegerType())
+ return Complex;
+ return nullptr;
+}
+
+QualType Type::getPointeeType() const {
+ if (const PointerType *PT = getAs<PointerType>())
+ return PT->getPointeeType();
+ if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
+ return OPT->getPointeeType();
+ if (const BlockPointerType *BPT = getAs<BlockPointerType>())
+ return BPT->getPointeeType();
+ if (const ReferenceType *RT = getAs<ReferenceType>())
+ return RT->getPointeeType();
+ if (const MemberPointerType *MPT = getAs<MemberPointerType>())
+ return MPT->getPointeeType();
+ if (const DecayedType *DT = getAs<DecayedType>())
+ return DT->getPointeeType();
+ return QualType();
+}
+
+const RecordType *Type::getAsStructureType() const {
+ // If this is directly a structure type, return it.
+ if (const RecordType *RT = dyn_cast<RecordType>(this)) {
+ if (RT->getDecl()->isStruct())
+ return RT;
+ }
+
+ // If the canonical form of this type isn't the right kind, reject it.
+ if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
+ if (!RT->getDecl()->isStruct())
+ return nullptr;
+
+ // If this is a typedef for a structure type, strip the typedef off without
+ // losing all typedef information.
+ return cast<RecordType>(getUnqualifiedDesugaredType());
+ }
+ return nullptr;
+}
+
+const RecordType *Type::getAsUnionType() const {
+ // If this is directly a union type, return it.
+ if (const RecordType *RT = dyn_cast<RecordType>(this)) {
+ if (RT->getDecl()->isUnion())
+ return RT;
+ }
+
+ // If the canonical form of this type isn't the right kind, reject it.
+ if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
+ if (!RT->getDecl()->isUnion())
+ return nullptr;
+
+ // If this is a typedef for a union type, strip the typedef off without
+ // losing all typedef information.
+ return cast<RecordType>(getUnqualifiedDesugaredType());
+ }
+
+ return nullptr;
+}
+
+ObjCObjectType::ObjCObjectType(QualType Canonical, QualType Base,
+ ObjCProtocolDecl * const *Protocols,
+ unsigned NumProtocols)
+ : Type(ObjCObject, Canonical, false, false, false, false),
+ BaseType(Base)
+{
+ ObjCObjectTypeBits.NumProtocols = NumProtocols;
+ assert(getNumProtocols() == NumProtocols &&
+ "bitfield overflow in protocol count");
+ if (NumProtocols)
+ memcpy(getProtocolStorage(), Protocols,
+ NumProtocols * sizeof(ObjCProtocolDecl*));
+}
+
+const ObjCObjectType *Type::getAsObjCQualifiedInterfaceType() const {
+ // There is no sugar for ObjCObjectType's, just return the canonical
+ // type pointer if it is the right class. There is no typedef information to
+ // return and these cannot be Address-space qualified.
+ if (const ObjCObjectType *T = getAs<ObjCObjectType>())
+ if (T->getNumProtocols() && T->getInterface())
+ return T;
+ return nullptr;
+}
+
+bool Type::isObjCQualifiedInterfaceType() const {
+ return getAsObjCQualifiedInterfaceType() != nullptr;
+}
+
+const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const {
+ // There is no sugar for ObjCQualifiedIdType's, just return the canonical
+ // type pointer if it is the right class.
+ if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
+ if (OPT->isObjCQualifiedIdType())
+ return OPT;
+ }
+ return nullptr;
+}
+
+const ObjCObjectPointerType *Type::getAsObjCQualifiedClassType() const {
+ // There is no sugar for ObjCQualifiedClassType's, just return the canonical
+ // type pointer if it is the right class.
+ if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
+ if (OPT->isObjCQualifiedClassType())
+ return OPT;
+ }
+ return nullptr;
+}
+
+const ObjCObjectPointerType *Type::getAsObjCInterfacePointerType() const {
+ if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
+ if (OPT->getInterfaceType())
+ return OPT;
+ }
+ return nullptr;
+}
+
+const CXXRecordDecl *Type::getPointeeCXXRecordDecl() const {
+ QualType PointeeType;
+ if (const PointerType *PT = getAs<PointerType>())
+ PointeeType = PT->getPointeeType();
+ else if (const ReferenceType *RT = getAs<ReferenceType>())
+ PointeeType = RT->getPointeeType();
+ else
+ return nullptr;
+
+ if (const RecordType *RT = PointeeType->getAs<RecordType>())
+ return dyn_cast<CXXRecordDecl>(RT->getDecl());
+
+ return nullptr;
+}
+
+CXXRecordDecl *Type::getAsCXXRecordDecl() const {
+ return dyn_cast_or_null<CXXRecordDecl>(getAsTagDecl());
+}
+
+TagDecl *Type::getAsTagDecl() const {
+ if (const auto *TT = getAs<TagType>())
+ return cast<TagDecl>(TT->getDecl());
+ if (const auto *Injected = getAs<InjectedClassNameType>())
+ return Injected->getDecl();
+
+ return nullptr;
+}
+
+namespace {
+ class GetContainedAutoVisitor :
+ public TypeVisitor<GetContainedAutoVisitor, AutoType*> {
+ public:
+ using TypeVisitor<GetContainedAutoVisitor, AutoType*>::Visit;
+ AutoType *Visit(QualType T) {
+ if (T.isNull())
+ return nullptr;
+ return Visit(T.getTypePtr());
+ }
+
+ // The 'auto' type itself.
+ AutoType *VisitAutoType(const AutoType *AT) {
+ return const_cast<AutoType*>(AT);
+ }
+
+ // Only these types can contain the desired 'auto' type.
+ AutoType *VisitPointerType(const PointerType *T) {
+ return Visit(T->getPointeeType());
+ }
+ AutoType *VisitBlockPointerType(const BlockPointerType *T) {
+ return Visit(T->getPointeeType());
+ }
+ AutoType *VisitReferenceType(const ReferenceType *T) {
+ return Visit(T->getPointeeTypeAsWritten());
+ }
+ AutoType *VisitMemberPointerType(const MemberPointerType *T) {
+ return Visit(T->getPointeeType());
+ }
+ AutoType *VisitArrayType(const ArrayType *T) {
+ return Visit(T->getElementType());
+ }
+ AutoType *VisitDependentSizedExtVectorType(
+ const DependentSizedExtVectorType *T) {
+ return Visit(T->getElementType());
+ }
+ AutoType *VisitVectorType(const VectorType *T) {
+ return Visit(T->getElementType());
+ }
+ AutoType *VisitFunctionType(const FunctionType *T) {
+ return Visit(T->getReturnType());
+ }
+ AutoType *VisitParenType(const ParenType *T) {
+ return Visit(T->getInnerType());
+ }
+ AutoType *VisitAttributedType(const AttributedType *T) {
+ return Visit(T->getModifiedType());
+ }
+ AutoType *VisitAdjustedType(const AdjustedType *T) {
+ return Visit(T->getOriginalType());
+ }
+ };
+}
+
+AutoType *Type::getContainedAutoType() const {
+ return GetContainedAutoVisitor().Visit(this);
+}
+
+bool Type::hasIntegerRepresentation() const {
+ if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
+ return VT->getElementType()->isIntegerType();
+ else
+ return isIntegerType();
+}
+
+/// \brief Determine whether this type is an integral type.
+///
+/// This routine determines whether the given type is an integral type per
+/// C++ [basic.fundamental]p7. Although the C standard does not define the
+/// term "integral type", it has a similar term "integer type", and in C++
+/// the two terms are equivalent. However, C's "integer type" includes
+/// enumeration types, while C++'s "integer type" does not. The \c ASTContext
+/// parameter is used to determine whether we should be following the C or
+/// C++ rules when determining whether this type is an integral/integer type.
+///
+/// For cases where C permits "an integer type" and C++ permits "an integral
+/// type", use this routine.
+///
+/// For cases where C permits "an integer type" and C++ permits "an integral
+/// or enumeration type", use \c isIntegralOrEnumerationType() instead.
+///
+/// \param Ctx The context in which this type occurs.
+///
+/// \returns true if the type is considered an integral type, false otherwise.
+bool Type::isIntegralType(ASTContext &Ctx) const {
+ if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
+ return BT->getKind() >= BuiltinType::Bool &&
+ BT->getKind() <= BuiltinType::Int128;
+
+ // Complete enum types are integral in C.
+ if (!Ctx.getLangOpts().CPlusPlus)
+ if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
+ return ET->getDecl()->isComplete();
+
+ return false;
+}
+
+
+bool Type::isIntegralOrUnscopedEnumerationType() const {
+ if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
+ return BT->getKind() >= BuiltinType::Bool &&
+ BT->getKind() <= BuiltinType::Int128;
+
+ // Check for a complete enum type; incomplete enum types are not properly an
+ // enumeration type in the sense required here.
+ // C++0x: However, if the underlying type of the enum is fixed, it is
+ // considered complete.
+ if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
+ return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
+
+ return false;
+}
+
+
+
+bool Type::isCharType() const {
+ if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
+ return BT->getKind() == BuiltinType::Char_U ||
+ BT->getKind() == BuiltinType::UChar ||
+ BT->getKind() == BuiltinType::Char_S ||
+ BT->getKind() == BuiltinType::SChar;
+ return false;
+}
+
+bool Type::isWideCharType() const {
+ if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
+ return BT->getKind() == BuiltinType::WChar_S ||
+ BT->getKind() == BuiltinType::WChar_U;
+ return false;
+}
+
+bool Type::isChar16Type() const {
+ if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
+ return BT->getKind() == BuiltinType::Char16;
+ return false;
+}
+
+bool Type::isChar32Type() const {
+ if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
+ return BT->getKind() == BuiltinType::Char32;
+ return false;
+}
+
+/// \brief Determine whether this type is any of the built-in character
+/// types.
+bool Type::isAnyCharacterType() const {
+ const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType);
+ if (!BT) return false;
+ switch (BT->getKind()) {
+ default: return false;
+ case BuiltinType::Char_U:
+ case BuiltinType::UChar:
+ case BuiltinType::WChar_U:
+ case BuiltinType::Char16:
+ case BuiltinType::Char32:
+ case BuiltinType::Char_S:
+ case BuiltinType::SChar:
+ case BuiltinType::WChar_S:
+ return true;
+ }
+}
+
+/// isSignedIntegerType - Return true if this is an integer type that is
+/// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
+/// an enum decl which has a signed representation
+bool Type::isSignedIntegerType() const {
+ if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
+ return BT->getKind() >= BuiltinType::Char_S &&
+ BT->getKind() <= BuiltinType::Int128;
+ }
+
+ if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
+ // Incomplete enum types are not treated as integer types.
+ // FIXME: In C++, enum types are never integer types.
+ if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
+ return ET->getDecl()->getIntegerType()->isSignedIntegerType();
+ }
+
+ return false;
+}
+
+bool Type::isSignedIntegerOrEnumerationType() const {
+ if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
+ return BT->getKind() >= BuiltinType::Char_S &&
+ BT->getKind() <= BuiltinType::Int128;
+ }
+
+ if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
+ if (ET->getDecl()->isComplete())
+ return ET->getDecl()->getIntegerType()->isSignedIntegerType();
+ }
+
+ return false;
+}
+
+bool Type::hasSignedIntegerRepresentation() const {
+ if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
+ return VT->getElementType()->isSignedIntegerOrEnumerationType();
+ else
+ return isSignedIntegerOrEnumerationType();
+}
+
+/// isUnsignedIntegerType - Return true if this is an integer type that is
+/// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
+/// decl which has an unsigned representation
+bool Type::isUnsignedIntegerType() const {
+ if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
+ return BT->getKind() >= BuiltinType::Bool &&
+ BT->getKind() <= BuiltinType::UInt128;
+ }
+
+ if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
+ // Incomplete enum types are not treated as integer types.
+ // FIXME: In C++, enum types are never integer types.
+ if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
+ return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
+ }
+
+ return false;
+}
+
+bool Type::isUnsignedIntegerOrEnumerationType() const {
+ if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
+ return BT->getKind() >= BuiltinType::Bool &&
+ BT->getKind() <= BuiltinType::UInt128;
+ }
+
+ if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
+ if (ET->getDecl()->isComplete())
+ return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
+ }
+
+ return false;
+}
+
+bool Type::hasUnsignedIntegerRepresentation() const {
+ if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
+ return VT->getElementType()->isUnsignedIntegerOrEnumerationType();
+ else
+ return isUnsignedIntegerOrEnumerationType();
+}
+
+bool Type::isFloatingType() const {
+ if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
+ return BT->getKind() >= BuiltinType::Half &&
+ BT->getKind() <= BuiltinType::LongDouble;
+ if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
+ return CT->getElementType()->isFloatingType();
+ return false;
+}
+
+bool Type::hasFloatingRepresentation() const {
+ if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
+ return VT->getElementType()->isFloatingType();
+ else
+ return isFloatingType();
+}
+
+bool Type::isRealFloatingType() const {
+ if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
+ return BT->isFloatingPoint();
+ return false;
+}
+
+bool Type::isRealType() const {
+ if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
+ return BT->getKind() >= BuiltinType::Bool &&
+ BT->getKind() <= BuiltinType::LongDouble;
+ if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
+ return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
+ return false;
+}
+
+bool Type::isArithmeticType() const {
+ if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
+ return BT->getKind() >= BuiltinType::Bool &&
+ BT->getKind() <= BuiltinType::LongDouble;
+ if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
+ // GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2).
+ // If a body isn't seen by the time we get here, return false.
+ //
+ // C++0x: Enumerations are not arithmetic types. For now, just return
+ // false for scoped enumerations since that will disable any
+ // unwanted implicit conversions.
+ return !ET->getDecl()->isScoped() && ET->getDecl()->isComplete();
+ return isa<ComplexType>(CanonicalType);
+}
+
+Type::ScalarTypeKind Type::getScalarTypeKind() const {
+ assert(isScalarType());
+
+ const Type *T = CanonicalType.getTypePtr();
+ if (const BuiltinType *BT = dyn_cast<BuiltinType>(T)) {
+ if (BT->getKind() == BuiltinType::Bool) return STK_Bool;
+ if (BT->getKind() == BuiltinType::NullPtr) return STK_CPointer;
+ if (BT->isInteger()) return STK_Integral;
+ if (BT->isFloatingPoint()) return STK_Floating;
+ llvm_unreachable("unknown scalar builtin type");
+ } else if (isa<PointerType>(T)) {
+ return STK_CPointer;
+ } else if (isa<BlockPointerType>(T)) {
+ return STK_BlockPointer;
+ } else if (isa<ObjCObjectPointerType>(T)) {
+ return STK_ObjCObjectPointer;
+ } else if (isa<MemberPointerType>(T)) {
+ return STK_MemberPointer;
+ } else if (isa<EnumType>(T)) {
+ assert(cast<EnumType>(T)->getDecl()->isComplete());
+ return STK_Integral;
+ } else if (const ComplexType *CT = dyn_cast<ComplexType>(T)) {
+ if (CT->getElementType()->isRealFloatingType())
+ return STK_FloatingComplex;
+ return STK_IntegralComplex;
+ }
+
+ llvm_unreachable("unknown scalar type");
+}
+
+/// \brief Determines whether the type is a C++ aggregate type or C
+/// aggregate or union type.
+///
+/// An aggregate type is an array or a class type (struct, union, or
+/// class) that has no user-declared constructors, no private or
+/// protected non-static data members, no base classes, and no virtual
+/// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type
+/// subsumes the notion of C aggregates (C99 6.2.5p21) because it also
+/// includes union types.
+bool Type::isAggregateType() const {
+ if (const RecordType *Record = dyn_cast<RecordType>(CanonicalType)) {
+ if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(Record->getDecl()))
+ return ClassDecl->isAggregate();
+
+ return true;
+ }
+
+ return isa<ArrayType>(CanonicalType);
+}
+
+/// isConstantSizeType - Return true if this is not a variable sized type,
+/// according to the rules of C99 6.7.5p3. It is not legal to call this on
+/// incomplete types or dependent types.
+bool Type::isConstantSizeType() const {
+ assert(!isIncompleteType() && "This doesn't make sense for incomplete types");
+ assert(!isDependentType() && "This doesn't make sense for dependent types");
+ // The VAT must have a size, as it is known to be complete.
+ return !isa<VariableArrayType>(CanonicalType);
+}
+
+/// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
+/// - a type that can describe objects, but which lacks information needed to
+/// determine its size.
+bool Type::isIncompleteType(NamedDecl **Def) const {
+ if (Def)
+ *Def = nullptr;
+
+ switch (CanonicalType->getTypeClass()) {
+ default: return false;
+ case Builtin:
+ // Void is the only incomplete builtin type. Per C99 6.2.5p19, it can never
+ // be completed.
+ return isVoidType();
+ case Enum: {
+ EnumDecl *EnumD = cast<EnumType>(CanonicalType)->getDecl();
+ if (Def)
+ *Def = EnumD;
+
+ // An enumeration with fixed underlying type is complete (C++0x 7.2p3).
+ if (EnumD->isFixed())
+ return false;
+
+ return !EnumD->isCompleteDefinition();
+ }
+ case Record: {
+ // A tagged type (struct/union/enum/class) is incomplete if the decl is a
+ // forward declaration, but not a full definition (C99 6.2.5p22).
+ RecordDecl *Rec = cast<RecordType>(CanonicalType)->getDecl();
+ if (Def)
+ *Def = Rec;
+ return !Rec->isCompleteDefinition();
+ }
+ case ConstantArray:
+ // An array is incomplete if its element type is incomplete
+ // (C++ [dcl.array]p1).
+ // We don't handle variable arrays (they're not allowed in C++) or
+ // dependent-sized arrays (dependent types are never treated as incomplete).
+ return cast<ArrayType>(CanonicalType)->getElementType()
+ ->isIncompleteType(Def);
+ case IncompleteArray:
+ // An array of unknown size is an incomplete type (C99 6.2.5p22).
+ return true;
+ case ObjCObject:
+ return cast<ObjCObjectType>(CanonicalType)->getBaseType()
+ ->isIncompleteType(Def);
+ case ObjCInterface: {
+ // ObjC interfaces are incomplete if they are @class, not @interface.
+ ObjCInterfaceDecl *Interface
+ = cast<ObjCInterfaceType>(CanonicalType)->getDecl();
+ if (Def)
+ *Def = Interface;
+ return !Interface->hasDefinition();
+ }
+ }
+}
+
+bool QualType::isPODType(ASTContext &Context) const {
+ // C++11 has a more relaxed definition of POD.
+ if (Context.getLangOpts().CPlusPlus11)
+ return isCXX11PODType(Context);
+
+ return isCXX98PODType(Context);
+}
+
+bool QualType::isCXX98PODType(ASTContext &Context) const {
+ // The compiler shouldn't query this for incomplete types, but the user might.
+ // We return false for that case. Except for incomplete arrays of PODs, which
+ // are PODs according to the standard.
+ if (isNull())
+ return 0;
+
+ if ((*this)->isIncompleteArrayType())
+ return Context.getBaseElementType(*this).isCXX98PODType(Context);
+
+ if ((*this)->isIncompleteType())
+ return false;
+
+ if (Context.getLangOpts().ObjCAutoRefCount) {
+ switch (getObjCLifetime()) {
+ case Qualifiers::OCL_ExplicitNone:
+ return true;
+
+ case Qualifiers::OCL_Strong:
+ case Qualifiers::OCL_Weak:
+ case Qualifiers::OCL_Autoreleasing:
+ return false;
+
+ case Qualifiers::OCL_None:
+ break;
+ }
+ }
+
+ QualType CanonicalType = getTypePtr()->CanonicalType;
+ switch (CanonicalType->getTypeClass()) {
+ // Everything not explicitly mentioned is not POD.
+ default: return false;
+ case Type::VariableArray:
+ case Type::ConstantArray:
+ // IncompleteArray is handled above.
+ return Context.getBaseElementType(*this).isCXX98PODType(Context);
+
+ case Type::ObjCObjectPointer:
+ case Type::BlockPointer:
+ case Type::Builtin:
+ case Type::Complex:
+ case Type::Pointer:
+ case Type::MemberPointer:
+ case Type::Vector:
+ case Type::ExtVector:
+ return true;
+
+ case Type::Enum:
+ return true;
+
+ case Type::Record:
+ if (CXXRecordDecl *ClassDecl
+ = dyn_cast<CXXRecordDecl>(cast<RecordType>(CanonicalType)->getDecl()))
+ return ClassDecl->isPOD();
+
+ // C struct/union is POD.
+ return true;
+ }
+}
+
+bool QualType::isTrivialType(ASTContext &Context) const {
+ // The compiler shouldn't query this for incomplete types, but the user might.
+ // We return false for that case. Except for incomplete arrays of PODs, which
+ // are PODs according to the standard.
+ if (isNull())
+ return 0;
+
+ if ((*this)->isArrayType())
+ return Context.getBaseElementType(*this).isTrivialType(Context);
+
+ // Return false for incomplete types after skipping any incomplete array
+ // types which are expressly allowed by the standard and thus our API.
+ if ((*this)->isIncompleteType())
+ return false;
+
+ if (Context.getLangOpts().ObjCAutoRefCount) {
+ switch (getObjCLifetime()) {
+ case Qualifiers::OCL_ExplicitNone:
+ return true;
+
+ case Qualifiers::OCL_Strong:
+ case Qualifiers::OCL_Weak:
+ case Qualifiers::OCL_Autoreleasing:
+ return false;
+
+ case Qualifiers::OCL_None:
+ if ((*this)->isObjCLifetimeType())
+ return false;
+ break;
+ }
+ }
+
+ QualType CanonicalType = getTypePtr()->CanonicalType;
+ if (CanonicalType->isDependentType())
+ return false;
+
+ // C++0x [basic.types]p9:
+ // Scalar types, trivial class types, arrays of such types, and
+ // cv-qualified versions of these types are collectively called trivial
+ // types.
+
+ // As an extension, Clang treats vector types as Scalar types.
+ if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
+ return true;
+ if (const RecordType *RT = CanonicalType->getAs<RecordType>()) {
+ if (const CXXRecordDecl *ClassDecl =
+ dyn_cast<CXXRecordDecl>(RT->getDecl())) {
+ // C++11 [class]p6:
+ // A trivial class is a class that has a default constructor,
+ // has no non-trivial default constructors, and is trivially
+ // copyable.
+ return ClassDecl->hasDefaultConstructor() &&
+ !ClassDecl->hasNonTrivialDefaultConstructor() &&
+ ClassDecl->isTriviallyCopyable();
+ }
+
+ return true;
+ }
+
+ // No other types can match.
+ return false;
+}
+
+bool QualType::isTriviallyCopyableType(ASTContext &Context) const {
+ if ((*this)->isArrayType())
+ return Context.getBaseElementType(*this).isTriviallyCopyableType(Context);
+
+ if (Context.getLangOpts().ObjCAutoRefCount) {
+ switch (getObjCLifetime()) {
+ case Qualifiers::OCL_ExplicitNone:
+ return true;
+
+ case Qualifiers::OCL_Strong:
+ case Qualifiers::OCL_Weak:
+ case Qualifiers::OCL_Autoreleasing:
+ return false;
+
+ case Qualifiers::OCL_None:
+ if ((*this)->isObjCLifetimeType())
+ return false;
+ break;
+ }
+ }
+
+ // C++11 [basic.types]p9
+ // Scalar types, trivially copyable class types, arrays of such types, and
+ // non-volatile const-qualified versions of these types are collectively
+ // called trivially copyable types.
+
+ QualType CanonicalType = getCanonicalType();
+ if (CanonicalType->isDependentType())
+ return false;
+
+ if (CanonicalType.isVolatileQualified())
+ return false;
+
+ // Return false for incomplete types after skipping any incomplete array types
+ // which are expressly allowed by the standard and thus our API.
+ if (CanonicalType->isIncompleteType())
+ return false;
+
+ // As an extension, Clang treats vector types as Scalar types.
+ if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
+ return true;
+
+ if (const RecordType *RT = CanonicalType->getAs<RecordType>()) {
+ if (const CXXRecordDecl *ClassDecl =
+ dyn_cast<CXXRecordDecl>(RT->getDecl())) {
+ if (!ClassDecl->isTriviallyCopyable()) return false;
+ }
+
+ return true;
+ }
+
+ // No other types can match.
+ return false;
+}
+
+
+
+bool Type::isLiteralType(const ASTContext &Ctx) const {
+ if (isDependentType())
+ return false;
+
+ // C++1y [basic.types]p10:
+ // A type is a literal type if it is:
+ // -- cv void; or
+ if (Ctx.getLangOpts().CPlusPlus14 && isVoidType())
+ return true;
+
+ // C++11 [basic.types]p10:
+ // A type is a literal type if it is:
+ // [...]
+ // -- an array of literal type other than an array of runtime bound; or
+ if (isVariableArrayType())
+ return false;
+ const Type *BaseTy = getBaseElementTypeUnsafe();
+ assert(BaseTy && "NULL element type");
+
+ // Return false for incomplete types after skipping any incomplete array
+ // types; those are expressly allowed by the standard and thus our API.
+ if (BaseTy->isIncompleteType())
+ return false;
+
+ // C++11 [basic.types]p10:
+ // A type is a literal type if it is:
+ // -- a scalar type; or
+ // As an extension, Clang treats vector types and complex types as
+ // literal types.
+ if (BaseTy->isScalarType() || BaseTy->isVectorType() ||
+ BaseTy->isAnyComplexType())
+ return true;
+ // -- a reference type; or
+ if (BaseTy->isReferenceType())
+ return true;
+ // -- a class type that has all of the following properties:
+ if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
+ // -- a trivial destructor,
+ // -- every constructor call and full-expression in the
+ // brace-or-equal-initializers for non-static data members (if any)
+ // is a constant expression,
+ // -- it is an aggregate type or has at least one constexpr
+ // constructor or constructor template that is not a copy or move
+ // constructor, and
+ // -- all non-static data members and base classes of literal types
+ //
+ // We resolve DR1361 by ignoring the second bullet.
+ if (const CXXRecordDecl *ClassDecl =
+ dyn_cast<CXXRecordDecl>(RT->getDecl()))
+ return ClassDecl->isLiteral();
+
+ return true;
+ }
+
+ // We treat _Atomic T as a literal type if T is a literal type.
+ if (const AtomicType *AT = BaseTy->getAs<AtomicType>())
+ return AT->getValueType()->isLiteralType(Ctx);
+
+ // If this type hasn't been deduced yet, then conservatively assume that
+ // it'll work out to be a literal type.
+ if (isa<AutoType>(BaseTy->getCanonicalTypeInternal()))
+ return true;
+
+ return false;
+}
+
+bool Type::isStandardLayoutType() const {
+ if (isDependentType())
+ return false;
+
+ // C++0x [basic.types]p9:
+ // Scalar types, standard-layout class types, arrays of such types, and
+ // cv-qualified versions of these types are collectively called
+ // standard-layout types.
+ const Type *BaseTy = getBaseElementTypeUnsafe();
+ assert(BaseTy && "NULL element type");
+
+ // Return false for incomplete types after skipping any incomplete array
+ // types which are expressly allowed by the standard and thus our API.
+ if (BaseTy->isIncompleteType())
+ return false;
+
+ // As an extension, Clang treats vector types as Scalar types.
+ if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
+ if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
+ if (const CXXRecordDecl *ClassDecl =
+ dyn_cast<CXXRecordDecl>(RT->getDecl()))
+ if (!ClassDecl->isStandardLayout())
+ return false;
+
+ // Default to 'true' for non-C++ class types.
+ // FIXME: This is a bit dubious, but plain C structs should trivially meet
+ // all the requirements of standard layout classes.
+ return true;
+ }
+
+ // No other types can match.
+ return false;
+}
+
+// This is effectively the intersection of isTrivialType and
+// isStandardLayoutType. We implement it directly to avoid redundant
+// conversions from a type to a CXXRecordDecl.
+bool QualType::isCXX11PODType(ASTContext &Context) const {
+ const Type *ty = getTypePtr();
+ if (ty->isDependentType())
+ return false;
+
+ if (Context.getLangOpts().ObjCAutoRefCount) {
+ switch (getObjCLifetime()) {
+ case Qualifiers::OCL_ExplicitNone:
+ return true;
+
+ case Qualifiers::OCL_Strong:
+ case Qualifiers::OCL_Weak:
+ case Qualifiers::OCL_Autoreleasing:
+ return false;
+
+ case Qualifiers::OCL_None:
+ break;
+ }
+ }
+
+ // C++11 [basic.types]p9:
+ // Scalar types, POD classes, arrays of such types, and cv-qualified
+ // versions of these types are collectively called trivial types.
+ const Type *BaseTy = ty->getBaseElementTypeUnsafe();
+ assert(BaseTy && "NULL element type");
+
+ // Return false for incomplete types after skipping any incomplete array
+ // types which are expressly allowed by the standard and thus our API.
+ if (BaseTy->isIncompleteType())
+ return false;
+
+ // As an extension, Clang treats vector types as Scalar types.
+ if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
+ if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
+ if (const CXXRecordDecl *ClassDecl =
+ dyn_cast<CXXRecordDecl>(RT->getDecl())) {
+ // C++11 [class]p10:
+ // A POD struct is a non-union class that is both a trivial class [...]
+ if (!ClassDecl->isTrivial()) return false;
+
+ // C++11 [class]p10:
+ // A POD struct is a non-union class that is both a trivial class and
+ // a standard-layout class [...]
+ if (!ClassDecl->isStandardLayout()) return false;
+
+ // C++11 [class]p10:
+ // A POD struct is a non-union class that is both a trivial class and
+ // a standard-layout class, and has no non-static data members of type
+ // non-POD struct, non-POD union (or array of such types). [...]
+ //
+ // We don't directly query the recursive aspect as the requiremets for
+ // both standard-layout classes and trivial classes apply recursively
+ // already.
+ }
+
+ return true;
+ }
+
+ // No other types can match.
+ return false;
+}
+
+bool Type::isPromotableIntegerType() const {
+ if (const BuiltinType *BT = getAs<BuiltinType>())
+ switch (BT->getKind()) {
+ case BuiltinType::Bool:
+ case BuiltinType::Char_S:
+ case BuiltinType::Char_U:
+ case BuiltinType::SChar:
+ case BuiltinType::UChar:
+ case BuiltinType::Short:
+ case BuiltinType::UShort:
+ case BuiltinType::WChar_S:
+ case BuiltinType::WChar_U:
+ case BuiltinType::Char16:
+ case BuiltinType::Char32:
+ return true;
+ default:
+ return false;
+ }
+
+ // Enumerated types are promotable to their compatible integer types
+ // (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2).
+ if (const EnumType *ET = getAs<EnumType>()){
+ if (this->isDependentType() || ET->getDecl()->getPromotionType().isNull()
+ || ET->getDecl()->isScoped())
+ return false;
+
+ return true;
+ }
+
+ return false;
+}
+
+bool Type::isSpecifierType() const {
+ // Note that this intentionally does not use the canonical type.
+ switch (getTypeClass()) {
+ case Builtin:
+ case Record:
+ case Enum:
+ case Typedef:
+ case Complex:
+ case TypeOfExpr:
+ case TypeOf:
+ case TemplateTypeParm:
+ case SubstTemplateTypeParm:
+ case TemplateSpecialization:
+ case Elaborated:
+ case DependentName:
+ case DependentTemplateSpecialization:
+ case ObjCInterface:
+ case ObjCObject:
+ case ObjCObjectPointer: // FIXME: object pointers aren't really specifiers
+ return true;
+ default:
+ return false;
+ }
+}
+
+ElaboratedTypeKeyword
+TypeWithKeyword::getKeywordForTypeSpec(unsigned TypeSpec) {
+ switch (TypeSpec) {
+ default: return ETK_None;
+ case TST_typename: return ETK_Typename;
+ case TST_class: return ETK_Class;
+ case TST_struct: return ETK_Struct;
+ case TST_interface: return ETK_Interface;
+ case TST_union: return ETK_Union;
+ case TST_enum: return ETK_Enum;
+ }
+}
+
+TagTypeKind
+TypeWithKeyword::getTagTypeKindForTypeSpec(unsigned TypeSpec) {
+ switch(TypeSpec) {
+ case TST_class: return TTK_Class;
+ case TST_struct: return TTK_Struct;
+ case TST_interface: return TTK_Interface;
+ case TST_union: return TTK_Union;
+ case TST_enum: return TTK_Enum;
+ }
+
+ llvm_unreachable("Type specifier is not a tag type kind.");
+}
+
+ElaboratedTypeKeyword
+TypeWithKeyword::getKeywordForTagTypeKind(TagTypeKind Kind) {
+ switch (Kind) {
+ case TTK_Class: return ETK_Class;
+ case TTK_Struct: return ETK_Struct;
+ case TTK_Interface: return ETK_Interface;
+ case TTK_Union: return ETK_Union;
+ case TTK_Enum: return ETK_Enum;
+ }
+ llvm_unreachable("Unknown tag type kind.");
+}
+
+TagTypeKind
+TypeWithKeyword::getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword) {
+ switch (Keyword) {
+ case ETK_Class: return TTK_Class;
+ case ETK_Struct: return TTK_Struct;
+ case ETK_Interface: return TTK_Interface;
+ case ETK_Union: return TTK_Union;
+ case ETK_Enum: return TTK_Enum;
+ case ETK_None: // Fall through.
+ case ETK_Typename:
+ llvm_unreachable("Elaborated type keyword is not a tag type kind.");
+ }
+ llvm_unreachable("Unknown elaborated type keyword.");
+}
+
+bool
+TypeWithKeyword::KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword) {
+ switch (Keyword) {
+ case ETK_None:
+ case ETK_Typename:
+ return false;
+ case ETK_Class:
+ case ETK_Struct:
+ case ETK_Interface:
+ case ETK_Union:
+ case ETK_Enum:
+ return true;
+ }
+ llvm_unreachable("Unknown elaborated type keyword.");
+}
+
+StringRef TypeWithKeyword::getKeywordName(ElaboratedTypeKeyword Keyword) {
+ switch (Keyword) {
+ case ETK_None: return "";
+ case ETK_Typename: return "typename";
+ case ETK_Class: return "class";
+ case ETK_Struct: return "struct";
+ case ETK_Interface: return "__interface";
+ case ETK_Union: return "union";
+ case ETK_Enum: return "enum";
+ }
+
+ llvm_unreachable("Unknown elaborated type keyword.");
+}
+
+DependentTemplateSpecializationType::DependentTemplateSpecializationType(
+ ElaboratedTypeKeyword Keyword,
+ NestedNameSpecifier *NNS, const IdentifierInfo *Name,
+ unsigned NumArgs, const TemplateArgument *Args,
+ QualType Canon)
+ : TypeWithKeyword(Keyword, DependentTemplateSpecialization, Canon, true, true,
+ /*VariablyModified=*/false,
+ NNS && NNS->containsUnexpandedParameterPack()),
+ NNS(NNS), Name(Name), NumArgs(NumArgs) {
+ assert((!NNS || NNS->isDependent()) &&
+ "DependentTemplateSpecializatonType requires dependent qualifier");
+ for (unsigned I = 0; I != NumArgs; ++I) {
+ if (Args[I].containsUnexpandedParameterPack())
+ setContainsUnexpandedParameterPack();
+
+ new (&getArgBuffer()[I]) TemplateArgument(Args[I]);
+ }
+}
+
+void
+DependentTemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
+ const ASTContext &Context,
+ ElaboratedTypeKeyword Keyword,
+ NestedNameSpecifier *Qualifier,
+ const IdentifierInfo *Name,
+ unsigned NumArgs,
+ const TemplateArgument *Args) {
+ ID.AddInteger(Keyword);
+ ID.AddPointer(Qualifier);
+ ID.AddPointer(Name);
+ for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
+ Args[Idx].Profile(ID, Context);
+}
+
+bool Type::isElaboratedTypeSpecifier() const {
+ ElaboratedTypeKeyword Keyword;
+ if (const ElaboratedType *Elab = dyn_cast<ElaboratedType>(this))
+ Keyword = Elab->getKeyword();
+ else if (const DependentNameType *DepName = dyn_cast<DependentNameType>(this))
+ Keyword = DepName->getKeyword();
+ else if (const DependentTemplateSpecializationType *DepTST =
+ dyn_cast<DependentTemplateSpecializationType>(this))
+ Keyword = DepTST->getKeyword();
+ else
+ return false;
+
+ return TypeWithKeyword::KeywordIsTagTypeKind(Keyword);
+}
+
+const char *Type::getTypeClassName() const {
+ switch (TypeBits.TC) {
+#define ABSTRACT_TYPE(Derived, Base)
+#define TYPE(Derived, Base) case Derived: return #Derived;
+#include "clang/AST/TypeNodes.def"
+ }
+
+ llvm_unreachable("Invalid type class.");
+}
+
+StringRef BuiltinType::getName(const PrintingPolicy &Policy) const {
+ switch (getKind()) {
+ case Void: return "void";
+ case Bool: return Policy.Bool ? "bool" : "_Bool";
+ case Char_S: return "char";
+ case Char_U: return "char";
+ case SChar: return "signed char";
+ case Short: return "short";
+ case Int: return "int";
+ case Long: return "long";
+ case LongLong: return "long long";
+ case Int128: return "__int128";
+ case UChar: return "unsigned char";
+ case UShort: return "unsigned short";
+ case UInt: return "unsigned int";
+ case ULong: return "unsigned long";
+ case ULongLong: return "unsigned long long";
+ case UInt128: return "unsigned __int128";
+ case Half: return Policy.Half ? "half" : "__fp16";
+ case Float: return "float";
+ case Double: return "double";
+ case LongDouble: return "long double";
+ case WChar_S:
+ case WChar_U: return Policy.MSWChar ? "__wchar_t" : "wchar_t";
+ case Char16: return "char16_t";
+ case Char32: return "char32_t";
+ case NullPtr: return "nullptr_t";
+ case Overload: return "<overloaded function type>";
+ case BoundMember: return "<bound member function type>";
+ case PseudoObject: return "<pseudo-object type>";
+ case Dependent: return "<dependent type>";
+ case UnknownAny: return "<unknown type>";
+ case ARCUnbridgedCast: return "<ARC unbridged cast type>";
+ case BuiltinFn: return "<builtin fn type>";
+ case ObjCId: return "id";
+ case ObjCClass: return "Class";
+ case ObjCSel: return "SEL";
+ case OCLImage1d: return "image1d_t";
+ case OCLImage1dArray: return "image1d_array_t";
+ case OCLImage1dBuffer: return "image1d_buffer_t";
+ case OCLImage2d: return "image2d_t";
+ case OCLImage2dArray: return "image2d_array_t";
+ case OCLImage3d: return "image3d_t";
+ case OCLSampler: return "sampler_t";
+ case OCLEvent: return "event_t";
+ }
+
+ llvm_unreachable("Invalid builtin type.");
+}
+
+QualType QualType::getNonLValueExprType(const ASTContext &Context) const {
+ if (const ReferenceType *RefType = getTypePtr()->getAs<ReferenceType>())
+ return RefType->getPointeeType();
+
+ // C++0x [basic.lval]:
+ // Class prvalues can have cv-qualified types; non-class prvalues always
+ // have cv-unqualified types.
+ //
+ // See also C99 6.3.2.1p2.
+ if (!Context.getLangOpts().CPlusPlus ||
+ (!getTypePtr()->isDependentType() && !getTypePtr()->isRecordType()))
+ return getUnqualifiedType();
+
+ return *this;
+}
+
+StringRef FunctionType::getNameForCallConv(CallingConv CC) {
+ switch (CC) {
+ case CC_C: return "cdecl";
+ case CC_X86StdCall: return "stdcall";
+ case CC_X86FastCall: return "fastcall";
+ case CC_X86ThisCall: return "thiscall";
+ case CC_X86Pascal: return "pascal";
+ case CC_X86VectorCall: return "vectorcall";
+ case CC_X86_64Win64: return "ms_abi";
+ case CC_X86_64SysV: return "sysv_abi";
+ case CC_AAPCS: return "aapcs";
+ case CC_AAPCS_VFP: return "aapcs-vfp";
+ case CC_IntelOclBicc: return "intel_ocl_bicc";
+ case CC_SpirFunction: return "spir_function";
+ case CC_SpirKernel: return "spir_kernel";
+ }
+
+ llvm_unreachable("Invalid calling convention.");
+}
+
+FunctionProtoType::FunctionProtoType(QualType result, ArrayRef<QualType> params,
+ QualType canonical,
+ const ExtProtoInfo &epi)
+ : FunctionType(FunctionProto, result, canonical,
+ result->isDependentType(),
+ result->isInstantiationDependentType(),
+ result->isVariablyModifiedType(),
+ result->containsUnexpandedParameterPack(), epi.ExtInfo),
+ NumParams(params.size()),
+ NumExceptions(epi.ExceptionSpec.Exceptions.size()),
+ ExceptionSpecType(epi.ExceptionSpec.Type),
+ HasAnyConsumedParams(epi.ConsumedParameters != nullptr),
+ Variadic(epi.Variadic), HasTrailingReturn(epi.HasTrailingReturn) {
+ assert(NumParams == params.size() && "function has too many parameters");
+
+ FunctionTypeBits.TypeQuals = epi.TypeQuals;
+ FunctionTypeBits.RefQualifier = epi.RefQualifier;
+
+ // Fill in the trailing argument array.
+ QualType *argSlot = reinterpret_cast<QualType*>(this+1);
+ for (unsigned i = 0; i != NumParams; ++i) {
+ if (params[i]->isDependentType())
+ setDependent();
+ else if (params[i]->isInstantiationDependentType())
+ setInstantiationDependent();
+
+ if (params[i]->containsUnexpandedParameterPack())
+ setContainsUnexpandedParameterPack();
+
+ argSlot[i] = params[i];
+ }
+
+ if (getExceptionSpecType() == EST_Dynamic) {
+ // Fill in the exception array.
+ QualType *exnSlot = argSlot + NumParams;
+ unsigned I = 0;
+ for (QualType ExceptionType : epi.ExceptionSpec.Exceptions) {
+ // Note that a dependent exception specification does *not* make
+ // a type dependent; it's not even part of the C++ type system.
+ if (ExceptionType->isInstantiationDependentType())
+ setInstantiationDependent();
+
+ if (ExceptionType->containsUnexpandedParameterPack())
+ setContainsUnexpandedParameterPack();
+
+ exnSlot[I++] = ExceptionType;
+ }
+ } else if (getExceptionSpecType() == EST_ComputedNoexcept) {
+ // Store the noexcept expression and context.
+ Expr **noexSlot = reinterpret_cast<Expr **>(argSlot + NumParams);
+ *noexSlot = epi.ExceptionSpec.NoexceptExpr;
+
+ if (epi.ExceptionSpec.NoexceptExpr) {
+ if (epi.ExceptionSpec.NoexceptExpr->isValueDependent() ||
+ epi.ExceptionSpec.NoexceptExpr->isInstantiationDependent())
+ setInstantiationDependent();
+
+ if (epi.ExceptionSpec.NoexceptExpr->containsUnexpandedParameterPack())
+ setContainsUnexpandedParameterPack();
+ }
+ } else if (getExceptionSpecType() == EST_Uninstantiated) {
+ // Store the function decl from which we will resolve our
+ // exception specification.
+ FunctionDecl **slot =
+ reinterpret_cast<FunctionDecl **>(argSlot + NumParams);
+ slot[0] = epi.ExceptionSpec.SourceDecl;
+ slot[1] = epi.ExceptionSpec.SourceTemplate;
+ // This exception specification doesn't make the type dependent, because
+ // it's not instantiated as part of instantiating the type.
+ } else if (getExceptionSpecType() == EST_Unevaluated) {
+ // Store the function decl from which we will resolve our
+ // exception specification.
+ FunctionDecl **slot =
+ reinterpret_cast<FunctionDecl **>(argSlot + NumParams);
+ slot[0] = epi.ExceptionSpec.SourceDecl;
+ }
+
+ if (epi.ConsumedParameters) {
+ bool *consumedParams = const_cast<bool *>(getConsumedParamsBuffer());
+ for (unsigned i = 0; i != NumParams; ++i)
+ consumedParams[i] = epi.ConsumedParameters[i];
+ }
+}
+
+bool FunctionProtoType::hasDependentExceptionSpec() const {
+ if (Expr *NE = getNoexceptExpr())
+ return NE->isValueDependent();
+ for (QualType ET : exceptions())
+ // A pack expansion with a non-dependent pattern is still dependent,
+ // because we don't know whether the pattern is in the exception spec
+ // or not (that depends on whether the pack has 0 expansions).
+ if (ET->isDependentType() || ET->getAs<PackExpansionType>())
+ return true;
+ return false;
+}
+
+FunctionProtoType::NoexceptResult
+FunctionProtoType::getNoexceptSpec(const ASTContext &ctx) const {
+ ExceptionSpecificationType est = getExceptionSpecType();
+ if (est == EST_BasicNoexcept)
+ return NR_Nothrow;
+
+ if (est != EST_ComputedNoexcept)
+ return NR_NoNoexcept;
+
+ Expr *noexceptExpr = getNoexceptExpr();
+ if (!noexceptExpr)
+ return NR_BadNoexcept;
+ if (noexceptExpr->isValueDependent())
+ return NR_Dependent;
+
+ llvm::APSInt value;
+ bool isICE = noexceptExpr->isIntegerConstantExpr(value, ctx, nullptr,
+ /*evaluated*/false);
+ (void)isICE;
+ assert(isICE && "AST should not contain bad noexcept expressions.");
+
+ return value.getBoolValue() ? NR_Nothrow : NR_Throw;
+}
+
+bool FunctionProtoType::isNothrow(const ASTContext &Ctx,
+ bool ResultIfDependent) const {
+ ExceptionSpecificationType EST = getExceptionSpecType();
+ assert(EST != EST_Unevaluated && EST != EST_Uninstantiated);
+ if (EST == EST_DynamicNone || EST == EST_BasicNoexcept)
+ return true;
+
+ if (EST == EST_Dynamic && ResultIfDependent) {
+ // A dynamic exception specification is throwing unless every exception
+ // type is an (unexpanded) pack expansion type.
+ for (unsigned I = 0, N = NumExceptions; I != N; ++I)
+ if (!getExceptionType(I)->getAs<PackExpansionType>())
+ return false;
+ return ResultIfDependent;
+ }
+
+ if (EST != EST_ComputedNoexcept)
+ return false;
+
+ NoexceptResult NR = getNoexceptSpec(Ctx);
+ if (NR == NR_Dependent)
+ return ResultIfDependent;
+ return NR == NR_Nothrow;
+}
+
+bool FunctionProtoType::isTemplateVariadic() const {
+ for (unsigned ArgIdx = getNumParams(); ArgIdx; --ArgIdx)
+ if (isa<PackExpansionType>(getParamType(ArgIdx - 1)))
+ return true;
+
+ return false;
+}
+
+void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
+ const QualType *ArgTys, unsigned NumParams,
+ const ExtProtoInfo &epi,
+ const ASTContext &Context) {
+
+ // We have to be careful not to get ambiguous profile encodings.
+ // Note that valid type pointers are never ambiguous with anything else.
+ //
+ // The encoding grammar begins:
+ // type type* bool int bool
+ // If that final bool is true, then there is a section for the EH spec:
+ // bool type*
+ // This is followed by an optional "consumed argument" section of the
+ // same length as the first type sequence:
+ // bool*
+ // Finally, we have the ext info and trailing return type flag:
+ // int bool
+ //
+ // There is no ambiguity between the consumed arguments and an empty EH
+ // spec because of the leading 'bool' which unambiguously indicates
+ // whether the following bool is the EH spec or part of the arguments.
+
+ ID.AddPointer(Result.getAsOpaquePtr());
+ for (unsigned i = 0; i != NumParams; ++i)
+ ID.AddPointer(ArgTys[i].getAsOpaquePtr());
+ // This method is relatively performance sensitive, so as a performance
+ // shortcut, use one AddInteger call instead of four for the next four
+ // fields.
+ assert(!(unsigned(epi.Variadic) & ~1) &&
+ !(unsigned(epi.TypeQuals) & ~255) &&
+ !(unsigned(epi.RefQualifier) & ~3) &&
+ !(unsigned(epi.ExceptionSpec.Type) & ~15) &&
+ "Values larger than expected.");
+ ID.AddInteger(unsigned(epi.Variadic) +
+ (epi.TypeQuals << 1) +
+ (epi.RefQualifier << 9) +
+ (epi.ExceptionSpec.Type << 11));
+ if (epi.ExceptionSpec.Type == EST_Dynamic) {
+ for (QualType Ex : epi.ExceptionSpec.Exceptions)
+ ID.AddPointer(Ex.getAsOpaquePtr());
+ } else if (epi.ExceptionSpec.Type == EST_ComputedNoexcept &&
+ epi.ExceptionSpec.NoexceptExpr) {
+ epi.ExceptionSpec.NoexceptExpr->Profile(ID, Context, false);
+ } else if (epi.ExceptionSpec.Type == EST_Uninstantiated ||
+ epi.ExceptionSpec.Type == EST_Unevaluated) {
+ ID.AddPointer(epi.ExceptionSpec.SourceDecl->getCanonicalDecl());
+ }
+ if (epi.ConsumedParameters) {
+ for (unsigned i = 0; i != NumParams; ++i)
+ ID.AddBoolean(epi.ConsumedParameters[i]);
+ }
+ epi.ExtInfo.Profile(ID);
+ ID.AddBoolean(epi.HasTrailingReturn);
+}
+
+void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID,
+ const ASTContext &Ctx) {
+ Profile(ID, getReturnType(), param_type_begin(), NumParams, getExtProtoInfo(),
+ Ctx);
+}
+
+QualType TypedefType::desugar() const {
+ return getDecl()->getUnderlyingType();
+}
+
+TypeOfExprType::TypeOfExprType(Expr *E, QualType can)
+ : Type(TypeOfExpr, can, E->isTypeDependent(),
+ E->isInstantiationDependent(),
+ E->getType()->isVariablyModifiedType(),
+ E->containsUnexpandedParameterPack()),
+ TOExpr(E) {
+}
+
+bool TypeOfExprType::isSugared() const {
+ return !TOExpr->isTypeDependent();
+}
+
+QualType TypeOfExprType::desugar() const {
+ if (isSugared())
+ return getUnderlyingExpr()->getType();
+
+ return QualType(this, 0);
+}
+
+void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID,
+ const ASTContext &Context, Expr *E) {
+ E->Profile(ID, Context, true);
+}
+
+DecltypeType::DecltypeType(Expr *E, QualType underlyingType, QualType can)
+ // C++11 [temp.type]p2: "If an expression e involves a template parameter,
+ // decltype(e) denotes a unique dependent type." Hence a decltype type is
+ // type-dependent even if its expression is only instantiation-dependent.
+ : Type(Decltype, can, E->isInstantiationDependent(),
+ E->isInstantiationDependent(),
+ E->getType()->isVariablyModifiedType(),
+ E->containsUnexpandedParameterPack()),
+ E(E),
+ UnderlyingType(underlyingType) {
+}
+
+bool DecltypeType::isSugared() const { return !E->isInstantiationDependent(); }
+
+QualType DecltypeType::desugar() const {
+ if (isSugared())
+ return getUnderlyingType();
+
+ return QualType(this, 0);
+}
+
+DependentDecltypeType::DependentDecltypeType(const ASTContext &Context, Expr *E)
+ : DecltypeType(E, Context.DependentTy), Context(Context) { }
+
+void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID,
+ const ASTContext &Context, Expr *E) {
+ E->Profile(ID, Context, true);
+}
+
+TagType::TagType(TypeClass TC, const TagDecl *D, QualType can)
+ : Type(TC, can, D->isDependentType(),
+ /*InstantiationDependent=*/D->isDependentType(),
+ /*VariablyModified=*/false,
+ /*ContainsUnexpandedParameterPack=*/false),
+ decl(const_cast<TagDecl*>(D)) {}
+
+static TagDecl *getInterestingTagDecl(TagDecl *decl) {
+ for (auto I : decl->redecls()) {
+ if (I->isCompleteDefinition() || I->isBeingDefined())
+ return I;
+ }
+ // If there's no definition (not even in progress), return what we have.
+ return decl;
+}
+
+UnaryTransformType::UnaryTransformType(QualType BaseType,
+ QualType UnderlyingType,
+ UTTKind UKind,
+ QualType CanonicalType)
+ : Type(UnaryTransform, CanonicalType, UnderlyingType->isDependentType(),
+ UnderlyingType->isInstantiationDependentType(),
+ UnderlyingType->isVariablyModifiedType(),
+ BaseType->containsUnexpandedParameterPack())
+ , BaseType(BaseType), UnderlyingType(UnderlyingType), UKind(UKind)
+{}
+
+TagDecl *TagType::getDecl() const {
+ return getInterestingTagDecl(decl);
+}
+
+bool TagType::isBeingDefined() const {
+ return getDecl()->isBeingDefined();
+}
+
+bool AttributedType::isMSTypeSpec() const {
+ switch (getAttrKind()) {
+ default: return false;
+ case attr_ptr32:
+ case attr_ptr64:
+ case attr_sptr:
+ case attr_uptr:
+ return true;
+ }
+ llvm_unreachable("invalid attr kind");
+}
+
+bool AttributedType::isCallingConv() const {
+ switch (getAttrKind()) {
+ case attr_ptr32:
+ case attr_ptr64:
+ case attr_sptr:
+ case attr_uptr:
+ case attr_address_space:
+ case attr_regparm:
+ case attr_vector_size:
+ case attr_neon_vector_type:
+ case attr_neon_polyvector_type:
+ case attr_objc_gc:
+ case attr_objc_ownership:
+ case attr_noreturn:
+ return false;
+ case attr_pcs:
+ case attr_pcs_vfp:
+ case attr_cdecl:
+ case attr_fastcall:
+ case attr_stdcall:
+ case attr_thiscall:
+ case attr_vectorcall:
+ case attr_pascal:
+ case attr_ms_abi:
+ case attr_sysv_abi:
+ case attr_inteloclbicc:
+ return true;
+ }
+ llvm_unreachable("invalid attr kind");
+}
+
+CXXRecordDecl *InjectedClassNameType::getDecl() const {
+ return cast<CXXRecordDecl>(getInterestingTagDecl(Decl));
+}
+
+IdentifierInfo *TemplateTypeParmType::getIdentifier() const {
+ return isCanonicalUnqualified() ? nullptr : getDecl()->getIdentifier();
+}
+
+SubstTemplateTypeParmPackType::
+SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
+ QualType Canon,
+ const TemplateArgument &ArgPack)
+ : Type(SubstTemplateTypeParmPack, Canon, true, true, false, true),
+ Replaced(Param),
+ Arguments(ArgPack.pack_begin()), NumArguments(ArgPack.pack_size())
+{
+}
+
+TemplateArgument SubstTemplateTypeParmPackType::getArgumentPack() const {
+ return TemplateArgument(Arguments, NumArguments);
+}
+
+void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID) {
+ Profile(ID, getReplacedParameter(), getArgumentPack());
+}
+
+void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID,
+ const TemplateTypeParmType *Replaced,
+ const TemplateArgument &ArgPack) {
+ ID.AddPointer(Replaced);
+ ID.AddInteger(ArgPack.pack_size());
+ for (const auto &P : ArgPack.pack_elements())
+ ID.AddPointer(P.getAsType().getAsOpaquePtr());
+}
+
+bool TemplateSpecializationType::
+anyDependentTemplateArguments(const TemplateArgumentListInfo &Args,
+ bool &InstantiationDependent) {
+ return anyDependentTemplateArguments(Args.getArgumentArray(), Args.size(),
+ InstantiationDependent);
+}
+
+bool TemplateSpecializationType::
+anyDependentTemplateArguments(const TemplateArgumentLoc *Args, unsigned N,
+ bool &InstantiationDependent) {
+ for (unsigned i = 0; i != N; ++i) {
+ if (Args[i].getArgument().isDependent()) {
+ InstantiationDependent = true;
+ return true;
+ }
+
+ if (Args[i].getArgument().isInstantiationDependent())
+ InstantiationDependent = true;
+ }
+ return false;
+}
+
+TemplateSpecializationType::
+TemplateSpecializationType(TemplateName T,
+ const TemplateArgument *Args, unsigned NumArgs,
+ QualType Canon, QualType AliasedType)
+ : Type(TemplateSpecialization,
+ Canon.isNull()? QualType(this, 0) : Canon,
+ Canon.isNull()? true : Canon->isDependentType(),
+ Canon.isNull()? true : Canon->isInstantiationDependentType(),
+ false,
+ T.containsUnexpandedParameterPack()),
+ Template(T), NumArgs(NumArgs), TypeAlias(!AliasedType.isNull()) {
+ assert(!T.getAsDependentTemplateName() &&
+ "Use DependentTemplateSpecializationType for dependent template-name");
+ assert((T.getKind() == TemplateName::Template ||
+ T.getKind() == TemplateName::SubstTemplateTemplateParm ||
+ T.getKind() == TemplateName::SubstTemplateTemplateParmPack) &&
+ "Unexpected template name for TemplateSpecializationType");
+
+ TemplateArgument *TemplateArgs
+ = reinterpret_cast<TemplateArgument *>(this + 1);
+ for (unsigned Arg = 0; Arg < NumArgs; ++Arg) {
+ // Update instantiation-dependent and variably-modified bits.
+ // If the canonical type exists and is non-dependent, the template
+ // specialization type can be non-dependent even if one of the type
+ // arguments is. Given:
+ // template<typename T> using U = int;
+ // U<T> is always non-dependent, irrespective of the type T.
+ // However, U<Ts> contains an unexpanded parameter pack, even though
+ // its expansion (and thus its desugared type) doesn't.
+ if (Args[Arg].isInstantiationDependent())
+ setInstantiationDependent();
+ if (Args[Arg].getKind() == TemplateArgument::Type &&
+ Args[Arg].getAsType()->isVariablyModifiedType())
+ setVariablyModified();
+ if (Args[Arg].containsUnexpandedParameterPack())
+ setContainsUnexpandedParameterPack();
+ new (&TemplateArgs[Arg]) TemplateArgument(Args[Arg]);
+ }
+
+ // Store the aliased type if this is a type alias template specialization.
+ if (TypeAlias) {
+ TemplateArgument *Begin = reinterpret_cast<TemplateArgument *>(this + 1);
+ *reinterpret_cast<QualType*>(Begin + getNumArgs()) = AliasedType;
+ }
+}
+
+void
+TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
+ TemplateName T,
+ const TemplateArgument *Args,
+ unsigned NumArgs,
+ const ASTContext &Context) {
+ T.Profile(ID);
+ for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
+ Args[Idx].Profile(ID, Context);
+}
+
+QualType
+QualifierCollector::apply(const ASTContext &Context, QualType QT) const {
+ if (!hasNonFastQualifiers())
+ return QT.withFastQualifiers(getFastQualifiers());
+
+ return Context.getQualifiedType(QT, *this);
+}
+
+QualType
+QualifierCollector::apply(const ASTContext &Context, const Type *T) const {
+ if (!hasNonFastQualifiers())
+ return QualType(T, getFastQualifiers());
+
+ return Context.getQualifiedType(T, *this);
+}
+
+void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID,
+ QualType BaseType,
+ ObjCProtocolDecl * const *Protocols,
+ unsigned NumProtocols) {
+ ID.AddPointer(BaseType.getAsOpaquePtr());
+ for (unsigned i = 0; i != NumProtocols; i++)
+ ID.AddPointer(Protocols[i]);
+}
+
+void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID) {
+ Profile(ID, getBaseType(), qual_begin(), getNumProtocols());
+}
+
+namespace {
+
+/// \brief The cached properties of a type.
+class CachedProperties {
+ Linkage L;
+ bool local;
+
+public:
+ CachedProperties(Linkage L, bool local) : L(L), local(local) {}
+
+ Linkage getLinkage() const { return L; }
+ bool hasLocalOrUnnamedType() const { return local; }
+
+ friend CachedProperties merge(CachedProperties L, CachedProperties R) {
+ Linkage MergedLinkage = minLinkage(L.L, R.L);
+ return CachedProperties(MergedLinkage,
+ L.hasLocalOrUnnamedType() | R.hasLocalOrUnnamedType());
+ }
+};
+}
+
+static CachedProperties computeCachedProperties(const Type *T);
+
+namespace clang {
+/// The type-property cache. This is templated so as to be
+/// instantiated at an internal type to prevent unnecessary symbol
+/// leakage.
+template <class Private> class TypePropertyCache {
+public:
+ static CachedProperties get(QualType T) {
+ return get(T.getTypePtr());
+ }
+
+ static CachedProperties get(const Type *T) {
+ ensure(T);
+ return CachedProperties(T->TypeBits.getLinkage(),
+ T->TypeBits.hasLocalOrUnnamedType());
+ }
+
+ static void ensure(const Type *T) {
+ // If the cache is valid, we're okay.
+ if (T->TypeBits.isCacheValid()) return;
+
+ // If this type is non-canonical, ask its canonical type for the
+ // relevant information.
+ if (!T->isCanonicalUnqualified()) {
+ const Type *CT = T->getCanonicalTypeInternal().getTypePtr();
+ ensure(CT);
+ T->TypeBits.CacheValid = true;
+ T->TypeBits.CachedLinkage = CT->TypeBits.CachedLinkage;
+ T->TypeBits.CachedLocalOrUnnamed = CT->TypeBits.CachedLocalOrUnnamed;
+ return;
+ }
+
+ // Compute the cached properties and then set the cache.
+ CachedProperties Result = computeCachedProperties(T);
+ T->TypeBits.CacheValid = true;
+ T->TypeBits.CachedLinkage = Result.getLinkage();
+ T->TypeBits.CachedLocalOrUnnamed = Result.hasLocalOrUnnamedType();
+ }
+};
+}
+
+// Instantiate the friend template at a private class. In a
+// reasonable implementation, these symbols will be internal.
+// It is terrible that this is the best way to accomplish this.
+namespace { class Private {}; }
+typedef TypePropertyCache<Private> Cache;
+
+static CachedProperties computeCachedProperties(const Type *T) {
+ switch (T->getTypeClass()) {
+#define TYPE(Class,Base)
+#define NON_CANONICAL_TYPE(Class,Base) case Type::Class:
+#include "clang/AST/TypeNodes.def"
+ llvm_unreachable("didn't expect a non-canonical type here");
+
+#define TYPE(Class,Base)
+#define DEPENDENT_TYPE(Class,Base) case Type::Class:
+#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class:
+#include "clang/AST/TypeNodes.def"
+ // Treat instantiation-dependent types as external.
+ assert(T->isInstantiationDependentType());
+ return CachedProperties(ExternalLinkage, false);
+
+ case Type::Auto:
+ // Give non-deduced 'auto' types external linkage. We should only see them
+ // here in error recovery.
+ return CachedProperties(ExternalLinkage, false);
+
+ case Type::Builtin:
+ // C++ [basic.link]p8:
+ // A type is said to have linkage if and only if:
+ // - it is a fundamental type (3.9.1); or
+ return CachedProperties(ExternalLinkage, false);
+
+ case Type::Record:
+ case Type::Enum: {
+ const TagDecl *Tag = cast<TagType>(T)->getDecl();
+
+ // C++ [basic.link]p8:
+ // - it is a class or enumeration type that is named (or has a name
+ // for linkage purposes (7.1.3)) and the name has linkage; or
+ // - it is a specialization of a class template (14); or
+ Linkage L = Tag->getLinkageInternal();
+ bool IsLocalOrUnnamed =
+ Tag->getDeclContext()->isFunctionOrMethod() ||
+ !Tag->hasNameForLinkage();
+ return CachedProperties(L, IsLocalOrUnnamed);
+ }
+
+ // C++ [basic.link]p8:
+ // - it is a compound type (3.9.2) other than a class or enumeration,
+ // compounded exclusively from types that have linkage; or
+ case Type::Complex:
+ return Cache::get(cast<ComplexType>(T)->getElementType());
+ case Type::Pointer:
+ return Cache::get(cast<PointerType>(T)->getPointeeType());
+ case Type::BlockPointer:
+ return Cache::get(cast<BlockPointerType>(T)->getPointeeType());
+ case Type::LValueReference:
+ case Type::RValueReference:
+ return Cache::get(cast<ReferenceType>(T)->getPointeeType());
+ case Type::MemberPointer: {
+ const MemberPointerType *MPT = cast<MemberPointerType>(T);
+ return merge(Cache::get(MPT->getClass()),
+ Cache::get(MPT->getPointeeType()));
+ }
+ case Type::ConstantArray:
+ case Type::IncompleteArray:
+ case Type::VariableArray:
+ return Cache::get(cast<ArrayType>(T)->getElementType());
+ case Type::Vector:
+ case Type::ExtVector:
+ return Cache::get(cast<VectorType>(T)->getElementType());
+ case Type::FunctionNoProto:
+ return Cache::get(cast<FunctionType>(T)->getReturnType());
+ case Type::FunctionProto: {
+ const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
+ CachedProperties result = Cache::get(FPT->getReturnType());
+ for (const auto &ai : FPT->param_types())
+ result = merge(result, Cache::get(ai));
+ return result;
+ }
+ case Type::ObjCInterface: {
+ Linkage L = cast<ObjCInterfaceType>(T)->getDecl()->getLinkageInternal();
+ return CachedProperties(L, false);
+ }
+ case Type::ObjCObject:
+ return Cache::get(cast<ObjCObjectType>(T)->getBaseType());
+ case Type::ObjCObjectPointer:
+ return Cache::get(cast<ObjCObjectPointerType>(T)->getPointeeType());
+ case Type::Atomic:
+ return Cache::get(cast<AtomicType>(T)->getValueType());
+ }
+
+ llvm_unreachable("unhandled type class");
+}
+
+/// \brief Determine the linkage of this type.
+Linkage Type::getLinkage() const {
+ Cache::ensure(this);
+ return TypeBits.getLinkage();
+}
+
+bool Type::hasUnnamedOrLocalType() const {
+ Cache::ensure(this);
+ return TypeBits.hasLocalOrUnnamedType();
+}
+
+static LinkageInfo computeLinkageInfo(QualType T);
+
+static LinkageInfo computeLinkageInfo(const Type *T) {
+ switch (T->getTypeClass()) {
+#define TYPE(Class,Base)
+#define NON_CANONICAL_TYPE(Class,Base) case Type::Class:
+#include "clang/AST/TypeNodes.def"
+ llvm_unreachable("didn't expect a non-canonical type here");
+
+#define TYPE(Class,Base)
+#define DEPENDENT_TYPE(Class,Base) case Type::Class:
+#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class:
+#include "clang/AST/TypeNodes.def"
+ // Treat instantiation-dependent types as external.
+ assert(T->isInstantiationDependentType());
+ return LinkageInfo::external();
+
+ case Type::Builtin:
+ return LinkageInfo::external();
+
+ case Type::Auto:
+ return LinkageInfo::external();
+
+ case Type::Record:
+ case Type::Enum:
+ return cast<TagType>(T)->getDecl()->getLinkageAndVisibility();
+
+ case Type::Complex:
+ return computeLinkageInfo(cast<ComplexType>(T)->getElementType());
+ case Type::Pointer:
+ return computeLinkageInfo(cast<PointerType>(T)->getPointeeType());
+ case Type::BlockPointer:
+ return computeLinkageInfo(cast<BlockPointerType>(T)->getPointeeType());
+ case Type::LValueReference:
+ case Type::RValueReference:
+ return computeLinkageInfo(cast<ReferenceType>(T)->getPointeeType());
+ case Type::MemberPointer: {
+ const MemberPointerType *MPT = cast<MemberPointerType>(T);
+ LinkageInfo LV = computeLinkageInfo(MPT->getClass());
+ LV.merge(computeLinkageInfo(MPT->getPointeeType()));
+ return LV;
+ }
+ case Type::ConstantArray:
+ case Type::IncompleteArray:
+ case Type::VariableArray:
+ return computeLinkageInfo(cast<ArrayType>(T)->getElementType());
+ case Type::Vector:
+ case Type::ExtVector:
+ return computeLinkageInfo(cast<VectorType>(T)->getElementType());
+ case Type::FunctionNoProto:
+ return computeLinkageInfo(cast<FunctionType>(T)->getReturnType());
+ case Type::FunctionProto: {
+ const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
+ LinkageInfo LV = computeLinkageInfo(FPT->getReturnType());
+ for (const auto &ai : FPT->param_types())
+ LV.merge(computeLinkageInfo(ai));
+ return LV;
+ }
+ case Type::ObjCInterface:
+ return cast<ObjCInterfaceType>(T)->getDecl()->getLinkageAndVisibility();
+ case Type::ObjCObject:
+ return computeLinkageInfo(cast<ObjCObjectType>(T)->getBaseType());
+ case Type::ObjCObjectPointer:
+ return computeLinkageInfo(cast<ObjCObjectPointerType>(T)->getPointeeType());
+ case Type::Atomic:
+ return computeLinkageInfo(cast<AtomicType>(T)->getValueType());
+ }
+
+ llvm_unreachable("unhandled type class");
+}
+
+static LinkageInfo computeLinkageInfo(QualType T) {
+ return computeLinkageInfo(T.getTypePtr());
+}
+
+bool Type::isLinkageValid() const {
+ if (!TypeBits.isCacheValid())
+ return true;
+
+ return computeLinkageInfo(getCanonicalTypeInternal()).getLinkage() ==
+ TypeBits.getLinkage();
+}
+
+LinkageInfo Type::getLinkageAndVisibility() const {
+ if (!isCanonicalUnqualified())
+ return computeLinkageInfo(getCanonicalTypeInternal());
+
+ LinkageInfo LV = computeLinkageInfo(this);
+ assert(LV.getLinkage() == getLinkage());
+ return LV;
+}
+
+Qualifiers::ObjCLifetime Type::getObjCARCImplicitLifetime() const {
+ if (isObjCARCImplicitlyUnretainedType())
+ return Qualifiers::OCL_ExplicitNone;
+ return Qualifiers::OCL_Strong;
+}
+
+bool Type::isObjCARCImplicitlyUnretainedType() const {
+ assert(isObjCLifetimeType() &&
+ "cannot query implicit lifetime for non-inferrable type");
+
+ const Type *canon = getCanonicalTypeInternal().getTypePtr();
+
+ // Walk down to the base type. We don't care about qualifiers for this.
+ while (const ArrayType *array = dyn_cast<ArrayType>(canon))
+ canon = array->getElementType().getTypePtr();
+
+ if (const ObjCObjectPointerType *opt
+ = dyn_cast<ObjCObjectPointerType>(canon)) {
+ // Class and Class<Protocol> don't require retension.
+ if (opt->getObjectType()->isObjCClass())
+ return true;
+ }
+
+ return false;
+}
+
+bool Type::isObjCNSObjectType() const {
+ if (const TypedefType *typedefType = dyn_cast<TypedefType>(this))
+ return typedefType->getDecl()->hasAttr<ObjCNSObjectAttr>();
+ return false;
+}
+bool Type::isObjCIndependentClassType() const {
+ if (const TypedefType *typedefType = dyn_cast<TypedefType>(this))
+ return typedefType->getDecl()->hasAttr<ObjCIndependentClassAttr>();
+ return false;
+}
+bool Type::isObjCRetainableType() const {
+ return isObjCObjectPointerType() ||
+ isBlockPointerType() ||
+ isObjCNSObjectType();
+}
+bool Type::isObjCIndirectLifetimeType() const {
+ if (isObjCLifetimeType())
+ return true;
+ if (const PointerType *OPT = getAs<PointerType>())
+ return OPT->getPointeeType()->isObjCIndirectLifetimeType();
+ if (const ReferenceType *Ref = getAs<ReferenceType>())
+ return Ref->getPointeeType()->isObjCIndirectLifetimeType();
+ if (const MemberPointerType *MemPtr = getAs<MemberPointerType>())
+ return MemPtr->getPointeeType()->isObjCIndirectLifetimeType();
+ return false;
+}
+
+/// Returns true if objects of this type have lifetime semantics under
+/// ARC.
+bool Type::isObjCLifetimeType() const {
+ const Type *type = this;
+ while (const ArrayType *array = type->getAsArrayTypeUnsafe())
+ type = array->getElementType().getTypePtr();
+ return type->isObjCRetainableType();
+}
+
+/// \brief Determine whether the given type T is a "bridgable" Objective-C type,
+/// which is either an Objective-C object pointer type or an
+bool Type::isObjCARCBridgableType() const {
+ return isObjCObjectPointerType() || isBlockPointerType();
+}
+
+/// \brief Determine whether the given type T is a "bridgeable" C type.
+bool Type::isCARCBridgableType() const {
+ const PointerType *Pointer = getAs<PointerType>();
+ if (!Pointer)
+ return false;
+
+ QualType Pointee = Pointer->getPointeeType();
+ return Pointee->isVoidType() || Pointee->isRecordType();
+}
+
+bool Type::hasSizedVLAType() const {
+ if (!isVariablyModifiedType()) return false;
+
+ if (const PointerType *ptr = getAs<PointerType>())
+ return ptr->getPointeeType()->hasSizedVLAType();
+ if (const ReferenceType *ref = getAs<ReferenceType>())
+ return ref->getPointeeType()->hasSizedVLAType();
+ if (const ArrayType *arr = getAsArrayTypeUnsafe()) {
+ if (isa<VariableArrayType>(arr) &&
+ cast<VariableArrayType>(arr)->getSizeExpr())
+ return true;
+
+ return arr->getElementType()->hasSizedVLAType();
+ }
+
+ return false;
+}
+
+QualType::DestructionKind QualType::isDestructedTypeImpl(QualType type) {
+ switch (type.getObjCLifetime()) {
+ case Qualifiers::OCL_None:
+ case Qualifiers::OCL_ExplicitNone:
+ case Qualifiers::OCL_Autoreleasing:
+ break;
+
+ case Qualifiers::OCL_Strong:
+ return DK_objc_strong_lifetime;
+ case Qualifiers::OCL_Weak:
+ return DK_objc_weak_lifetime;
+ }
+
+ /// Currently, the only destruction kind we recognize is C++ objects
+ /// with non-trivial destructors.
+ const CXXRecordDecl *record =
+ type->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
+ if (record && record->hasDefinition() && !record->hasTrivialDestructor())
+ return DK_cxx_destructor;
+
+ return DK_none;
+}
+
+CXXRecordDecl *MemberPointerType::getMostRecentCXXRecordDecl() const {
+ return getClass()->getAsCXXRecordDecl()->getMostRecentDecl();
+}
diff --git a/contrib/llvm/tools/clang/lib/AST/TypeLoc.cpp b/contrib/llvm/tools/clang/lib/AST/TypeLoc.cpp
new file mode 100644
index 0000000..c069eb0
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/TypeLoc.cpp
@@ -0,0 +1,407 @@
+//===--- TypeLoc.cpp - Type Source Info Wrapper -----------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the TypeLoc subclasses implementations.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/TypeLoc.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/TypeLocVisitor.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// TypeLoc Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+ class TypeLocRanger : public TypeLocVisitor<TypeLocRanger, SourceRange> {
+ public:
+#define ABSTRACT_TYPELOC(CLASS, PARENT)
+#define TYPELOC(CLASS, PARENT) \
+ SourceRange Visit##CLASS##TypeLoc(CLASS##TypeLoc TyLoc) { \
+ return TyLoc.getLocalSourceRange(); \
+ }
+#include "clang/AST/TypeLocNodes.def"
+ };
+}
+
+SourceRange TypeLoc::getLocalSourceRangeImpl(TypeLoc TL) {
+ if (TL.isNull()) return SourceRange();
+ return TypeLocRanger().Visit(TL);
+}
+
+namespace {
+ class TypeAligner : public TypeLocVisitor<TypeAligner, unsigned> {
+ public:
+#define ABSTRACT_TYPELOC(CLASS, PARENT)
+#define TYPELOC(CLASS, PARENT) \
+ unsigned Visit##CLASS##TypeLoc(CLASS##TypeLoc TyLoc) { \
+ return TyLoc.getLocalDataAlignment(); \
+ }
+#include "clang/AST/TypeLocNodes.def"
+ };
+}
+
+/// \brief Returns the alignment of the type source info data block.
+unsigned TypeLoc::getLocalAlignmentForType(QualType Ty) {
+ if (Ty.isNull()) return 1;
+ return TypeAligner().Visit(TypeLoc(Ty, nullptr));
+}
+
+namespace {
+ class TypeSizer : public TypeLocVisitor<TypeSizer, unsigned> {
+ public:
+#define ABSTRACT_TYPELOC(CLASS, PARENT)
+#define TYPELOC(CLASS, PARENT) \
+ unsigned Visit##CLASS##TypeLoc(CLASS##TypeLoc TyLoc) { \
+ return TyLoc.getLocalDataSize(); \
+ }
+#include "clang/AST/TypeLocNodes.def"
+ };
+}
+
+/// \brief Returns the size of the type source info data block.
+unsigned TypeLoc::getFullDataSizeForType(QualType Ty) {
+ unsigned Total = 0;
+ TypeLoc TyLoc(Ty, nullptr);
+ unsigned MaxAlign = 1;
+ while (!TyLoc.isNull()) {
+ unsigned Align = getLocalAlignmentForType(TyLoc.getType());
+ MaxAlign = std::max(Align, MaxAlign);
+ Total = llvm::RoundUpToAlignment(Total, Align);
+ Total += TypeSizer().Visit(TyLoc);
+ TyLoc = TyLoc.getNextTypeLoc();
+ }
+ Total = llvm::RoundUpToAlignment(Total, MaxAlign);
+ return Total;
+}
+
+namespace {
+ class NextLoc : public TypeLocVisitor<NextLoc, TypeLoc> {
+ public:
+#define ABSTRACT_TYPELOC(CLASS, PARENT)
+#define TYPELOC(CLASS, PARENT) \
+ TypeLoc Visit##CLASS##TypeLoc(CLASS##TypeLoc TyLoc) { \
+ return TyLoc.getNextTypeLoc(); \
+ }
+#include "clang/AST/TypeLocNodes.def"
+ };
+}
+
+/// \brief Get the next TypeLoc pointed by this TypeLoc, e.g for "int*" the
+/// TypeLoc is a PointerLoc and next TypeLoc is for "int".
+TypeLoc TypeLoc::getNextTypeLocImpl(TypeLoc TL) {
+ return NextLoc().Visit(TL);
+}
+
+/// \brief Initializes a type location, and all of its children
+/// recursively, as if the entire tree had been written in the
+/// given location.
+void TypeLoc::initializeImpl(ASTContext &Context, TypeLoc TL,
+ SourceLocation Loc) {
+ while (true) {
+ switch (TL.getTypeLocClass()) {
+#define ABSTRACT_TYPELOC(CLASS, PARENT)
+#define TYPELOC(CLASS, PARENT) \
+ case CLASS: { \
+ CLASS##TypeLoc TLCasted = TL.castAs<CLASS##TypeLoc>(); \
+ TLCasted.initializeLocal(Context, Loc); \
+ TL = TLCasted.getNextTypeLoc(); \
+ if (!TL) return; \
+ continue; \
+ }
+#include "clang/AST/TypeLocNodes.def"
+ }
+ }
+}
+
+SourceLocation TypeLoc::getBeginLoc() const {
+ TypeLoc Cur = *this;
+ TypeLoc LeftMost = Cur;
+ while (true) {
+ switch (Cur.getTypeLocClass()) {
+ case Elaborated:
+ LeftMost = Cur;
+ break;
+ case FunctionProto:
+ if (Cur.castAs<FunctionProtoTypeLoc>().getTypePtr()
+ ->hasTrailingReturn()) {
+ LeftMost = Cur;
+ break;
+ }
+ /* Fall through */
+ case FunctionNoProto:
+ case ConstantArray:
+ case DependentSizedArray:
+ case IncompleteArray:
+ case VariableArray:
+ // FIXME: Currently QualifiedTypeLoc does not have a source range
+ case Qualified:
+ Cur = Cur.getNextTypeLoc();
+ continue;
+ default:
+ if (!Cur.getLocalSourceRange().getBegin().isInvalid())
+ LeftMost = Cur;
+ Cur = Cur.getNextTypeLoc();
+ if (Cur.isNull())
+ break;
+ continue;
+ } // switch
+ break;
+ } // while
+ return LeftMost.getLocalSourceRange().getBegin();
+}
+
+SourceLocation TypeLoc::getEndLoc() const {
+ TypeLoc Cur = *this;
+ TypeLoc Last;
+ while (true) {
+ switch (Cur.getTypeLocClass()) {
+ default:
+ if (!Last)
+ Last = Cur;
+ return Last.getLocalSourceRange().getEnd();
+ case Paren:
+ case ConstantArray:
+ case DependentSizedArray:
+ case IncompleteArray:
+ case VariableArray:
+ case FunctionNoProto:
+ Last = Cur;
+ break;
+ case FunctionProto:
+ if (Cur.castAs<FunctionProtoTypeLoc>().getTypePtr()->hasTrailingReturn())
+ Last = TypeLoc();
+ else
+ Last = Cur;
+ break;
+ case Pointer:
+ case BlockPointer:
+ case MemberPointer:
+ case LValueReference:
+ case RValueReference:
+ case PackExpansion:
+ if (!Last)
+ Last = Cur;
+ break;
+ case Qualified:
+ case Elaborated:
+ break;
+ }
+ Cur = Cur.getNextTypeLoc();
+ }
+}
+
+
+namespace {
+ struct TSTChecker : public TypeLocVisitor<TSTChecker, bool> {
+ // Overload resolution does the real work for us.
+ static bool isTypeSpec(TypeSpecTypeLoc _) { return true; }
+ static bool isTypeSpec(TypeLoc _) { return false; }
+
+#define ABSTRACT_TYPELOC(CLASS, PARENT)
+#define TYPELOC(CLASS, PARENT) \
+ bool Visit##CLASS##TypeLoc(CLASS##TypeLoc TyLoc) { \
+ return isTypeSpec(TyLoc); \
+ }
+#include "clang/AST/TypeLocNodes.def"
+ };
+}
+
+
+/// \brief Determines if the given type loc corresponds to a
+/// TypeSpecTypeLoc. Since there is not actually a TypeSpecType in
+/// the type hierarchy, this is made somewhat complicated.
+///
+/// There are a lot of types that currently use TypeSpecTypeLoc
+/// because it's a convenient base class. Ideally we would not accept
+/// those here, but ideally we would have better implementations for
+/// them.
+bool TypeSpecTypeLoc::isKind(const TypeLoc &TL) {
+ if (TL.getType().hasLocalQualifiers()) return false;
+ return TSTChecker().Visit(TL);
+}
+
+// Reimplemented to account for GNU/C++ extension
+// typeof unary-expression
+// where there are no parentheses.
+SourceRange TypeOfExprTypeLoc::getLocalSourceRange() const {
+ if (getRParenLoc().isValid())
+ return SourceRange(getTypeofLoc(), getRParenLoc());
+ else
+ return SourceRange(getTypeofLoc(),
+ getUnderlyingExpr()->getSourceRange().getEnd());
+}
+
+
+TypeSpecifierType BuiltinTypeLoc::getWrittenTypeSpec() const {
+ if (needsExtraLocalData())
+ return static_cast<TypeSpecifierType>(getWrittenBuiltinSpecs().Type);
+ switch (getTypePtr()->getKind()) {
+ case BuiltinType::Void:
+ return TST_void;
+ case BuiltinType::Bool:
+ return TST_bool;
+ case BuiltinType::Char_U:
+ case BuiltinType::Char_S:
+ return TST_char;
+ case BuiltinType::Char16:
+ return TST_char16;
+ case BuiltinType::Char32:
+ return TST_char32;
+ case BuiltinType::WChar_S:
+ case BuiltinType::WChar_U:
+ return TST_wchar;
+ case BuiltinType::UChar:
+ case BuiltinType::UShort:
+ case BuiltinType::UInt:
+ case BuiltinType::ULong:
+ case BuiltinType::ULongLong:
+ case BuiltinType::UInt128:
+ case BuiltinType::SChar:
+ case BuiltinType::Short:
+ case BuiltinType::Int:
+ case BuiltinType::Long:
+ case BuiltinType::LongLong:
+ case BuiltinType::Int128:
+ case BuiltinType::Half:
+ case BuiltinType::Float:
+ case BuiltinType::Double:
+ case BuiltinType::LongDouble:
+ llvm_unreachable("Builtin type needs extra local data!");
+ // Fall through, if the impossible happens.
+
+ case BuiltinType::NullPtr:
+ case BuiltinType::Overload:
+ case BuiltinType::Dependent:
+ case BuiltinType::BoundMember:
+ case BuiltinType::UnknownAny:
+ case BuiltinType::ARCUnbridgedCast:
+ case BuiltinType::PseudoObject:
+ case BuiltinType::ObjCId:
+ case BuiltinType::ObjCClass:
+ case BuiltinType::ObjCSel:
+ case BuiltinType::OCLImage1d:
+ case BuiltinType::OCLImage1dArray:
+ case BuiltinType::OCLImage1dBuffer:
+ case BuiltinType::OCLImage2d:
+ case BuiltinType::OCLImage2dArray:
+ case BuiltinType::OCLImage3d:
+ case BuiltinType::OCLSampler:
+ case BuiltinType::OCLEvent:
+ case BuiltinType::BuiltinFn:
+ return TST_unspecified;
+ }
+
+ llvm_unreachable("Invalid BuiltinType Kind!");
+}
+
+TypeLoc TypeLoc::IgnoreParensImpl(TypeLoc TL) {
+ while (ParenTypeLoc PTL = TL.getAs<ParenTypeLoc>())
+ TL = PTL.getInnerLoc();
+ return TL;
+}
+
+void TypeOfTypeLoc::initializeLocal(ASTContext &Context,
+ SourceLocation Loc) {
+ TypeofLikeTypeLoc<TypeOfTypeLoc, TypeOfType, TypeOfTypeLocInfo>
+ ::initializeLocal(Context, Loc);
+ this->getLocalData()->UnderlyingTInfo = Context.getTrivialTypeSourceInfo(
+ getUnderlyingType(), Loc);
+}
+
+void ElaboratedTypeLoc::initializeLocal(ASTContext &Context,
+ SourceLocation Loc) {
+ setElaboratedKeywordLoc(Loc);
+ NestedNameSpecifierLocBuilder Builder;
+ Builder.MakeTrivial(Context, getTypePtr()->getQualifier(), Loc);
+ setQualifierLoc(Builder.getWithLocInContext(Context));
+}
+
+void DependentNameTypeLoc::initializeLocal(ASTContext &Context,
+ SourceLocation Loc) {
+ setElaboratedKeywordLoc(Loc);
+ NestedNameSpecifierLocBuilder Builder;
+ Builder.MakeTrivial(Context, getTypePtr()->getQualifier(), Loc);
+ setQualifierLoc(Builder.getWithLocInContext(Context));
+ setNameLoc(Loc);
+}
+
+void
+DependentTemplateSpecializationTypeLoc::initializeLocal(ASTContext &Context,
+ SourceLocation Loc) {
+ setElaboratedKeywordLoc(Loc);
+ if (getTypePtr()->getQualifier()) {
+ NestedNameSpecifierLocBuilder Builder;
+ Builder.MakeTrivial(Context, getTypePtr()->getQualifier(), Loc);
+ setQualifierLoc(Builder.getWithLocInContext(Context));
+ } else {
+ setQualifierLoc(NestedNameSpecifierLoc());
+ }
+ setTemplateKeywordLoc(Loc);
+ setTemplateNameLoc(Loc);
+ setLAngleLoc(Loc);
+ setRAngleLoc(Loc);
+ TemplateSpecializationTypeLoc::initializeArgLocs(Context, getNumArgs(),
+ getTypePtr()->getArgs(),
+ getArgInfos(), Loc);
+}
+
+void TemplateSpecializationTypeLoc::initializeArgLocs(ASTContext &Context,
+ unsigned NumArgs,
+ const TemplateArgument *Args,
+ TemplateArgumentLocInfo *ArgInfos,
+ SourceLocation Loc) {
+ for (unsigned i = 0, e = NumArgs; i != e; ++i) {
+ switch (Args[i].getKind()) {
+ case TemplateArgument::Null:
+ llvm_unreachable("Impossible TemplateArgument");
+
+ case TemplateArgument::Integral:
+ case TemplateArgument::Declaration:
+ case TemplateArgument::NullPtr:
+ ArgInfos[i] = TemplateArgumentLocInfo();
+ break;
+
+ case TemplateArgument::Expression:
+ ArgInfos[i] = TemplateArgumentLocInfo(Args[i].getAsExpr());
+ break;
+
+ case TemplateArgument::Type:
+ ArgInfos[i] = TemplateArgumentLocInfo(
+ Context.getTrivialTypeSourceInfo(Args[i].getAsType(),
+ Loc));
+ break;
+
+ case TemplateArgument::Template:
+ case TemplateArgument::TemplateExpansion: {
+ NestedNameSpecifierLocBuilder Builder;
+ TemplateName Template = Args[i].getAsTemplateOrTemplatePattern();
+ if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
+ Builder.MakeTrivial(Context, DTN->getQualifier(), Loc);
+ else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
+ Builder.MakeTrivial(Context, QTN->getQualifier(), Loc);
+
+ ArgInfos[i] = TemplateArgumentLocInfo(
+ Builder.getWithLocInContext(Context), Loc,
+ Args[i].getKind() == TemplateArgument::Template ? SourceLocation()
+ : Loc);
+ break;
+ }
+
+ case TemplateArgument::Pack:
+ ArgInfos[i] = TemplateArgumentLocInfo();
+ break;
+ }
+ }
+}
diff --git a/contrib/llvm/tools/clang/lib/AST/TypePrinter.cpp b/contrib/llvm/tools/clang/lib/AST/TypePrinter.cpp
new file mode 100644
index 0000000..3928fe8
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/TypePrinter.cpp
@@ -0,0 +1,1569 @@
+//===--- TypePrinter.cpp - Pretty-Print Clang Types -----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code to print types from Clang's type system.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/PrettyPrinter.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/Type.h"
+#include "clang/Basic/LangOptions.h"
+#include "clang/Basic/SourceManager.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/SaveAndRestore.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace clang;
+
+namespace {
+ /// \brief RAII object that enables printing of the ARC __strong lifetime
+ /// qualifier.
+ class IncludeStrongLifetimeRAII {
+ PrintingPolicy &Policy;
+ bool Old;
+
+ public:
+ explicit IncludeStrongLifetimeRAII(PrintingPolicy &Policy)
+ : Policy(Policy), Old(Policy.SuppressStrongLifetime) {
+ if (!Policy.SuppressLifetimeQualifiers)
+ Policy.SuppressStrongLifetime = false;
+ }
+
+ ~IncludeStrongLifetimeRAII() {
+ Policy.SuppressStrongLifetime = Old;
+ }
+ };
+
+ class ParamPolicyRAII {
+ PrintingPolicy &Policy;
+ bool Old;
+
+ public:
+ explicit ParamPolicyRAII(PrintingPolicy &Policy)
+ : Policy(Policy), Old(Policy.SuppressSpecifiers) {
+ Policy.SuppressSpecifiers = false;
+ }
+
+ ~ParamPolicyRAII() {
+ Policy.SuppressSpecifiers = Old;
+ }
+ };
+
+ class ElaboratedTypePolicyRAII {
+ PrintingPolicy &Policy;
+ bool SuppressTagKeyword;
+ bool SuppressScope;
+
+ public:
+ explicit ElaboratedTypePolicyRAII(PrintingPolicy &Policy) : Policy(Policy) {
+ SuppressTagKeyword = Policy.SuppressTagKeyword;
+ SuppressScope = Policy.SuppressScope;
+ Policy.SuppressTagKeyword = true;
+ Policy.SuppressScope = true;
+ }
+
+ ~ElaboratedTypePolicyRAII() {
+ Policy.SuppressTagKeyword = SuppressTagKeyword;
+ Policy.SuppressScope = SuppressScope;
+ }
+ };
+
+ class TypePrinter {
+ PrintingPolicy Policy;
+ bool HasEmptyPlaceHolder;
+ bool InsideCCAttribute;
+
+ public:
+ explicit TypePrinter(const PrintingPolicy &Policy)
+ : Policy(Policy), HasEmptyPlaceHolder(false), InsideCCAttribute(false) { }
+
+ void print(const Type *ty, Qualifiers qs, raw_ostream &OS,
+ StringRef PlaceHolder);
+ void print(QualType T, raw_ostream &OS, StringRef PlaceHolder);
+
+ static bool canPrefixQualifiers(const Type *T, bool &NeedARCStrongQualifier);
+ void spaceBeforePlaceHolder(raw_ostream &OS);
+ void printTypeSpec(const NamedDecl *D, raw_ostream &OS);
+
+ void printBefore(const Type *ty, Qualifiers qs, raw_ostream &OS);
+ void printBefore(QualType T, raw_ostream &OS);
+ void printAfter(const Type *ty, Qualifiers qs, raw_ostream &OS);
+ void printAfter(QualType T, raw_ostream &OS);
+ void AppendScope(DeclContext *DC, raw_ostream &OS);
+ void printTag(TagDecl *T, raw_ostream &OS);
+#define ABSTRACT_TYPE(CLASS, PARENT)
+#define TYPE(CLASS, PARENT) \
+ void print##CLASS##Before(const CLASS##Type *T, raw_ostream &OS); \
+ void print##CLASS##After(const CLASS##Type *T, raw_ostream &OS);
+#include "clang/AST/TypeNodes.def"
+ };
+}
+
+static void AppendTypeQualList(raw_ostream &OS, unsigned TypeQuals, bool C99) {
+ bool appendSpace = false;
+ if (TypeQuals & Qualifiers::Const) {
+ OS << "const";
+ appendSpace = true;
+ }
+ if (TypeQuals & Qualifiers::Volatile) {
+ if (appendSpace) OS << ' ';
+ OS << "volatile";
+ appendSpace = true;
+ }
+ if (TypeQuals & Qualifiers::Restrict) {
+ if (appendSpace) OS << ' ';
+ if (C99) {
+ OS << "restrict";
+ } else {
+ OS << "__restrict";
+ }
+ }
+}
+
+void TypePrinter::spaceBeforePlaceHolder(raw_ostream &OS) {
+ if (!HasEmptyPlaceHolder)
+ OS << ' ';
+}
+
+void TypePrinter::print(QualType t, raw_ostream &OS, StringRef PlaceHolder) {
+ SplitQualType split = t.split();
+ print(split.Ty, split.Quals, OS, PlaceHolder);
+}
+
+void TypePrinter::print(const Type *T, Qualifiers Quals, raw_ostream &OS,
+ StringRef PlaceHolder) {
+ if (!T) {
+ OS << "NULL TYPE";
+ return;
+ }
+
+ SaveAndRestore<bool> PHVal(HasEmptyPlaceHolder, PlaceHolder.empty());
+
+ printBefore(T, Quals, OS);
+ OS << PlaceHolder;
+ printAfter(T, Quals, OS);
+}
+
+bool TypePrinter::canPrefixQualifiers(const Type *T,
+ bool &NeedARCStrongQualifier) {
+ // CanPrefixQualifiers - We prefer to print type qualifiers before the type,
+ // so that we get "const int" instead of "int const", but we can't do this if
+ // the type is complex. For example if the type is "int*", we *must* print
+ // "int * const", printing "const int *" is different. Only do this when the
+ // type expands to a simple string.
+ bool CanPrefixQualifiers = false;
+ NeedARCStrongQualifier = false;
+ Type::TypeClass TC = T->getTypeClass();
+ if (const AutoType *AT = dyn_cast<AutoType>(T))
+ TC = AT->desugar()->getTypeClass();
+ if (const SubstTemplateTypeParmType *Subst
+ = dyn_cast<SubstTemplateTypeParmType>(T))
+ TC = Subst->getReplacementType()->getTypeClass();
+
+ switch (TC) {
+ case Type::Auto:
+ case Type::Builtin:
+ case Type::Complex:
+ case Type::UnresolvedUsing:
+ case Type::Typedef:
+ case Type::TypeOfExpr:
+ case Type::TypeOf:
+ case Type::Decltype:
+ case Type::UnaryTransform:
+ case Type::Record:
+ case Type::Enum:
+ case Type::Elaborated:
+ case Type::TemplateTypeParm:
+ case Type::SubstTemplateTypeParmPack:
+ case Type::TemplateSpecialization:
+ case Type::InjectedClassName:
+ case Type::DependentName:
+ case Type::DependentTemplateSpecialization:
+ case Type::ObjCObject:
+ case Type::ObjCInterface:
+ case Type::Atomic:
+ CanPrefixQualifiers = true;
+ break;
+
+ case Type::ObjCObjectPointer:
+ CanPrefixQualifiers = T->isObjCIdType() || T->isObjCClassType() ||
+ T->isObjCQualifiedIdType() || T->isObjCQualifiedClassType();
+ break;
+
+ case Type::ConstantArray:
+ case Type::IncompleteArray:
+ case Type::VariableArray:
+ case Type::DependentSizedArray:
+ NeedARCStrongQualifier = true;
+ // Fall through
+
+ case Type::Adjusted:
+ case Type::Decayed:
+ case Type::Pointer:
+ case Type::BlockPointer:
+ case Type::LValueReference:
+ case Type::RValueReference:
+ case Type::MemberPointer:
+ case Type::DependentSizedExtVector:
+ case Type::Vector:
+ case Type::ExtVector:
+ case Type::FunctionProto:
+ case Type::FunctionNoProto:
+ case Type::Paren:
+ case Type::Attributed:
+ case Type::PackExpansion:
+ case Type::SubstTemplateTypeParm:
+ CanPrefixQualifiers = false;
+ break;
+ }
+
+ return CanPrefixQualifiers;
+}
+
+void TypePrinter::printBefore(QualType T, raw_ostream &OS) {
+ SplitQualType Split = T.split();
+
+ // If we have cv1 T, where T is substituted for cv2 U, only print cv1 - cv2
+ // at this level.
+ Qualifiers Quals = Split.Quals;
+ if (const SubstTemplateTypeParmType *Subst =
+ dyn_cast<SubstTemplateTypeParmType>(Split.Ty))
+ Quals -= QualType(Subst, 0).getQualifiers();
+
+ printBefore(Split.Ty, Quals, OS);
+}
+
+/// \brief Prints the part of the type string before an identifier, e.g. for
+/// "int foo[10]" it prints "int ".
+void TypePrinter::printBefore(const Type *T,Qualifiers Quals, raw_ostream &OS) {
+ if (Policy.SuppressSpecifiers && T->isSpecifierType())
+ return;
+
+ SaveAndRestore<bool> PrevPHIsEmpty(HasEmptyPlaceHolder);
+
+ // Print qualifiers as appropriate.
+
+ bool CanPrefixQualifiers = false;
+ bool NeedARCStrongQualifier = false;
+ CanPrefixQualifiers = canPrefixQualifiers(T, NeedARCStrongQualifier);
+
+ if (CanPrefixQualifiers && !Quals.empty()) {
+ if (NeedARCStrongQualifier) {
+ IncludeStrongLifetimeRAII Strong(Policy);
+ Quals.print(OS, Policy, /*appendSpaceIfNonEmpty=*/true);
+ } else {
+ Quals.print(OS, Policy, /*appendSpaceIfNonEmpty=*/true);
+ }
+ }
+
+ bool hasAfterQuals = false;
+ if (!CanPrefixQualifiers && !Quals.empty()) {
+ hasAfterQuals = !Quals.isEmptyWhenPrinted(Policy);
+ if (hasAfterQuals)
+ HasEmptyPlaceHolder = false;
+ }
+
+ switch (T->getTypeClass()) {
+#define ABSTRACT_TYPE(CLASS, PARENT)
+#define TYPE(CLASS, PARENT) case Type::CLASS: \
+ print##CLASS##Before(cast<CLASS##Type>(T), OS); \
+ break;
+#include "clang/AST/TypeNodes.def"
+ }
+
+ if (hasAfterQuals) {
+ if (NeedARCStrongQualifier) {
+ IncludeStrongLifetimeRAII Strong(Policy);
+ Quals.print(OS, Policy, /*appendSpaceIfNonEmpty=*/!PrevPHIsEmpty.get());
+ } else {
+ Quals.print(OS, Policy, /*appendSpaceIfNonEmpty=*/!PrevPHIsEmpty.get());
+ }
+ }
+}
+
+void TypePrinter::printAfter(QualType t, raw_ostream &OS) {
+ SplitQualType split = t.split();
+ printAfter(split.Ty, split.Quals, OS);
+}
+
+/// \brief Prints the part of the type string after an identifier, e.g. for
+/// "int foo[10]" it prints "[10]".
+void TypePrinter::printAfter(const Type *T, Qualifiers Quals, raw_ostream &OS) {
+ switch (T->getTypeClass()) {
+#define ABSTRACT_TYPE(CLASS, PARENT)
+#define TYPE(CLASS, PARENT) case Type::CLASS: \
+ print##CLASS##After(cast<CLASS##Type>(T), OS); \
+ break;
+#include "clang/AST/TypeNodes.def"
+ }
+}
+
+void TypePrinter::printBuiltinBefore(const BuiltinType *T, raw_ostream &OS) {
+ OS << T->getName(Policy);
+ spaceBeforePlaceHolder(OS);
+}
+void TypePrinter::printBuiltinAfter(const BuiltinType *T, raw_ostream &OS) { }
+
+void TypePrinter::printComplexBefore(const ComplexType *T, raw_ostream &OS) {
+ OS << "_Complex ";
+ printBefore(T->getElementType(), OS);
+}
+void TypePrinter::printComplexAfter(const ComplexType *T, raw_ostream &OS) {
+ printAfter(T->getElementType(), OS);
+}
+
+void TypePrinter::printPointerBefore(const PointerType *T, raw_ostream &OS) {
+ IncludeStrongLifetimeRAII Strong(Policy);
+ SaveAndRestore<bool> NonEmptyPH(HasEmptyPlaceHolder, false);
+ printBefore(T->getPointeeType(), OS);
+ // Handle things like 'int (*A)[4];' correctly.
+ // FIXME: this should include vectors, but vectors use attributes I guess.
+ if (isa<ArrayType>(T->getPointeeType()))
+ OS << '(';
+ OS << '*';
+}
+void TypePrinter::printPointerAfter(const PointerType *T, raw_ostream &OS) {
+ IncludeStrongLifetimeRAII Strong(Policy);
+ SaveAndRestore<bool> NonEmptyPH(HasEmptyPlaceHolder, false);
+ // Handle things like 'int (*A)[4];' correctly.
+ // FIXME: this should include vectors, but vectors use attributes I guess.
+ if (isa<ArrayType>(T->getPointeeType()))
+ OS << ')';
+ printAfter(T->getPointeeType(), OS);
+}
+
+void TypePrinter::printBlockPointerBefore(const BlockPointerType *T,
+ raw_ostream &OS) {
+ SaveAndRestore<bool> NonEmptyPH(HasEmptyPlaceHolder, false);
+ printBefore(T->getPointeeType(), OS);
+ OS << '^';
+}
+void TypePrinter::printBlockPointerAfter(const BlockPointerType *T,
+ raw_ostream &OS) {
+ SaveAndRestore<bool> NonEmptyPH(HasEmptyPlaceHolder, false);
+ printAfter(T->getPointeeType(), OS);
+}
+
+void TypePrinter::printLValueReferenceBefore(const LValueReferenceType *T,
+ raw_ostream &OS) {
+ IncludeStrongLifetimeRAII Strong(Policy);
+ SaveAndRestore<bool> NonEmptyPH(HasEmptyPlaceHolder, false);
+ printBefore(T->getPointeeTypeAsWritten(), OS);
+ // Handle things like 'int (&A)[4];' correctly.
+ // FIXME: this should include vectors, but vectors use attributes I guess.
+ if (isa<ArrayType>(T->getPointeeTypeAsWritten()))
+ OS << '(';
+ OS << '&';
+}
+void TypePrinter::printLValueReferenceAfter(const LValueReferenceType *T,
+ raw_ostream &OS) {
+ IncludeStrongLifetimeRAII Strong(Policy);
+ SaveAndRestore<bool> NonEmptyPH(HasEmptyPlaceHolder, false);
+ // Handle things like 'int (&A)[4];' correctly.
+ // FIXME: this should include vectors, but vectors use attributes I guess.
+ if (isa<ArrayType>(T->getPointeeTypeAsWritten()))
+ OS << ')';
+ printAfter(T->getPointeeTypeAsWritten(), OS);
+}
+
+void TypePrinter::printRValueReferenceBefore(const RValueReferenceType *T,
+ raw_ostream &OS) {
+ IncludeStrongLifetimeRAII Strong(Policy);
+ SaveAndRestore<bool> NonEmptyPH(HasEmptyPlaceHolder, false);
+ printBefore(T->getPointeeTypeAsWritten(), OS);
+ // Handle things like 'int (&&A)[4];' correctly.
+ // FIXME: this should include vectors, but vectors use attributes I guess.
+ if (isa<ArrayType>(T->getPointeeTypeAsWritten()))
+ OS << '(';
+ OS << "&&";
+}
+void TypePrinter::printRValueReferenceAfter(const RValueReferenceType *T,
+ raw_ostream &OS) {
+ IncludeStrongLifetimeRAII Strong(Policy);
+ SaveAndRestore<bool> NonEmptyPH(HasEmptyPlaceHolder, false);
+ // Handle things like 'int (&&A)[4];' correctly.
+ // FIXME: this should include vectors, but vectors use attributes I guess.
+ if (isa<ArrayType>(T->getPointeeTypeAsWritten()))
+ OS << ')';
+ printAfter(T->getPointeeTypeAsWritten(), OS);
+}
+
+void TypePrinter::printMemberPointerBefore(const MemberPointerType *T,
+ raw_ostream &OS) {
+ IncludeStrongLifetimeRAII Strong(Policy);
+ SaveAndRestore<bool> NonEmptyPH(HasEmptyPlaceHolder, false);
+ printBefore(T->getPointeeType(), OS);
+ // Handle things like 'int (Cls::*A)[4];' correctly.
+ // FIXME: this should include vectors, but vectors use attributes I guess.
+ if (isa<ArrayType>(T->getPointeeType()))
+ OS << '(';
+
+ PrintingPolicy InnerPolicy(Policy);
+ InnerPolicy.SuppressTag = false;
+ TypePrinter(InnerPolicy).print(QualType(T->getClass(), 0), OS, StringRef());
+
+ OS << "::*";
+}
+void TypePrinter::printMemberPointerAfter(const MemberPointerType *T,
+ raw_ostream &OS) {
+ IncludeStrongLifetimeRAII Strong(Policy);
+ SaveAndRestore<bool> NonEmptyPH(HasEmptyPlaceHolder, false);
+ // Handle things like 'int (Cls::*A)[4];' correctly.
+ // FIXME: this should include vectors, but vectors use attributes I guess.
+ if (isa<ArrayType>(T->getPointeeType()))
+ OS << ')';
+ printAfter(T->getPointeeType(), OS);
+}
+
+void TypePrinter::printConstantArrayBefore(const ConstantArrayType *T,
+ raw_ostream &OS) {
+ IncludeStrongLifetimeRAII Strong(Policy);
+ SaveAndRestore<bool> NonEmptyPH(HasEmptyPlaceHolder, false);
+ printBefore(T->getElementType(), OS);
+}
+void TypePrinter::printConstantArrayAfter(const ConstantArrayType *T,
+ raw_ostream &OS) {
+ OS << '[';
+ if (T->getIndexTypeQualifiers().hasQualifiers()) {
+ AppendTypeQualList(OS, T->getIndexTypeCVRQualifiers(), Policy.LangOpts.C99);
+ OS << ' ';
+ }
+
+ if (T->getSizeModifier() == ArrayType::Static)
+ OS << "static ";
+
+ OS << T->getSize().getZExtValue() << ']';
+ printAfter(T->getElementType(), OS);
+}
+
+void TypePrinter::printIncompleteArrayBefore(const IncompleteArrayType *T,
+ raw_ostream &OS) {
+ IncludeStrongLifetimeRAII Strong(Policy);
+ SaveAndRestore<bool> NonEmptyPH(HasEmptyPlaceHolder, false);
+ printBefore(T->getElementType(), OS);
+}
+void TypePrinter::printIncompleteArrayAfter(const IncompleteArrayType *T,
+ raw_ostream &OS) {
+ OS << "[]";
+ printAfter(T->getElementType(), OS);
+}
+
+void TypePrinter::printVariableArrayBefore(const VariableArrayType *T,
+ raw_ostream &OS) {
+ IncludeStrongLifetimeRAII Strong(Policy);
+ SaveAndRestore<bool> NonEmptyPH(HasEmptyPlaceHolder, false);
+ printBefore(T->getElementType(), OS);
+}
+void TypePrinter::printVariableArrayAfter(const VariableArrayType *T,
+ raw_ostream &OS) {
+ OS << '[';
+ if (T->getIndexTypeQualifiers().hasQualifiers()) {
+ AppendTypeQualList(OS, T->getIndexTypeCVRQualifiers(), Policy.LangOpts.C99);
+ OS << ' ';
+ }
+
+ if (T->getSizeModifier() == VariableArrayType::Static)
+ OS << "static ";
+ else if (T->getSizeModifier() == VariableArrayType::Star)
+ OS << '*';
+
+ if (T->getSizeExpr())
+ T->getSizeExpr()->printPretty(OS, nullptr, Policy);
+ OS << ']';
+
+ printAfter(T->getElementType(), OS);
+}
+
+void TypePrinter::printAdjustedBefore(const AdjustedType *T, raw_ostream &OS) {
+ // Print the adjusted representation, otherwise the adjustment will be
+ // invisible.
+ printBefore(T->getAdjustedType(), OS);
+}
+void TypePrinter::printAdjustedAfter(const AdjustedType *T, raw_ostream &OS) {
+ printAfter(T->getAdjustedType(), OS);
+}
+
+void TypePrinter::printDecayedBefore(const DecayedType *T, raw_ostream &OS) {
+ // Print as though it's a pointer.
+ printAdjustedBefore(T, OS);
+}
+void TypePrinter::printDecayedAfter(const DecayedType *T, raw_ostream &OS) {
+ printAdjustedAfter(T, OS);
+}
+
+void TypePrinter::printDependentSizedArrayBefore(
+ const DependentSizedArrayType *T,
+ raw_ostream &OS) {
+ IncludeStrongLifetimeRAII Strong(Policy);
+ SaveAndRestore<bool> NonEmptyPH(HasEmptyPlaceHolder, false);
+ printBefore(T->getElementType(), OS);
+}
+void TypePrinter::printDependentSizedArrayAfter(
+ const DependentSizedArrayType *T,
+ raw_ostream &OS) {
+ OS << '[';
+ if (T->getSizeExpr())
+ T->getSizeExpr()->printPretty(OS, nullptr, Policy);
+ OS << ']';
+ printAfter(T->getElementType(), OS);
+}
+
+void TypePrinter::printDependentSizedExtVectorBefore(
+ const DependentSizedExtVectorType *T,
+ raw_ostream &OS) {
+ printBefore(T->getElementType(), OS);
+}
+void TypePrinter::printDependentSizedExtVectorAfter(
+ const DependentSizedExtVectorType *T,
+ raw_ostream &OS) {
+ OS << " __attribute__((ext_vector_type(";
+ if (T->getSizeExpr())
+ T->getSizeExpr()->printPretty(OS, nullptr, Policy);
+ OS << ")))";
+ printAfter(T->getElementType(), OS);
+}
+
+void TypePrinter::printVectorBefore(const VectorType *T, raw_ostream &OS) {
+ switch (T->getVectorKind()) {
+ case VectorType::AltiVecPixel:
+ OS << "__vector __pixel ";
+ break;
+ case VectorType::AltiVecBool:
+ OS << "__vector __bool ";
+ printBefore(T->getElementType(), OS);
+ break;
+ case VectorType::AltiVecVector:
+ OS << "__vector ";
+ printBefore(T->getElementType(), OS);
+ break;
+ case VectorType::NeonVector:
+ OS << "__attribute__((neon_vector_type("
+ << T->getNumElements() << "))) ";
+ printBefore(T->getElementType(), OS);
+ break;
+ case VectorType::NeonPolyVector:
+ OS << "__attribute__((neon_polyvector_type(" <<
+ T->getNumElements() << "))) ";
+ printBefore(T->getElementType(), OS);
+ break;
+ case VectorType::GenericVector: {
+ // FIXME: We prefer to print the size directly here, but have no way
+ // to get the size of the type.
+ OS << "__attribute__((__vector_size__("
+ << T->getNumElements()
+ << " * sizeof(";
+ print(T->getElementType(), OS, StringRef());
+ OS << ")))) ";
+ printBefore(T->getElementType(), OS);
+ break;
+ }
+ }
+}
+void TypePrinter::printVectorAfter(const VectorType *T, raw_ostream &OS) {
+ printAfter(T->getElementType(), OS);
+}
+
+void TypePrinter::printExtVectorBefore(const ExtVectorType *T,
+ raw_ostream &OS) {
+ printBefore(T->getElementType(), OS);
+}
+void TypePrinter::printExtVectorAfter(const ExtVectorType *T, raw_ostream &OS) {
+ printAfter(T->getElementType(), OS);
+ OS << " __attribute__((ext_vector_type(";
+ OS << T->getNumElements();
+ OS << ")))";
+}
+
+void
+FunctionProtoType::printExceptionSpecification(raw_ostream &OS,
+ const PrintingPolicy &Policy)
+ const {
+
+ if (hasDynamicExceptionSpec()) {
+ OS << " throw(";
+ if (getExceptionSpecType() == EST_MSAny)
+ OS << "...";
+ else
+ for (unsigned I = 0, N = getNumExceptions(); I != N; ++I) {
+ if (I)
+ OS << ", ";
+
+ OS << getExceptionType(I).stream(Policy);
+ }
+ OS << ')';
+ } else if (isNoexceptExceptionSpec(getExceptionSpecType())) {
+ OS << " noexcept";
+ if (getExceptionSpecType() == EST_ComputedNoexcept) {
+ OS << '(';
+ if (getNoexceptExpr())
+ getNoexceptExpr()->printPretty(OS, nullptr, Policy);
+ OS << ')';
+ }
+ }
+}
+
+void TypePrinter::printFunctionProtoBefore(const FunctionProtoType *T,
+ raw_ostream &OS) {
+ if (T->hasTrailingReturn()) {
+ OS << "auto ";
+ if (!HasEmptyPlaceHolder)
+ OS << '(';
+ } else {
+ // If needed for precedence reasons, wrap the inner part in grouping parens.
+ SaveAndRestore<bool> PrevPHIsEmpty(HasEmptyPlaceHolder, false);
+ printBefore(T->getReturnType(), OS);
+ if (!PrevPHIsEmpty.get())
+ OS << '(';
+ }
+}
+
+void TypePrinter::printFunctionProtoAfter(const FunctionProtoType *T,
+ raw_ostream &OS) {
+ // If needed for precedence reasons, wrap the inner part in grouping parens.
+ if (!HasEmptyPlaceHolder)
+ OS << ')';
+ SaveAndRestore<bool> NonEmptyPH(HasEmptyPlaceHolder, false);
+
+ OS << '(';
+ {
+ ParamPolicyRAII ParamPolicy(Policy);
+ for (unsigned i = 0, e = T->getNumParams(); i != e; ++i) {
+ if (i) OS << ", ";
+ print(T->getParamType(i), OS, StringRef());
+ }
+ }
+
+ if (T->isVariadic()) {
+ if (T->getNumParams())
+ OS << ", ";
+ OS << "...";
+ } else if (T->getNumParams() == 0 && !Policy.LangOpts.CPlusPlus) {
+ // Do not emit int() if we have a proto, emit 'int(void)'.
+ OS << "void";
+ }
+
+ OS << ')';
+
+ FunctionType::ExtInfo Info = T->getExtInfo();
+
+ if (!InsideCCAttribute) {
+ switch (Info.getCC()) {
+ case CC_C:
+ // The C calling convention is the default on the vast majority of platforms
+ // we support. If the user wrote it explicitly, it will usually be printed
+ // while traversing the AttributedType. If the type has been desugared, let
+ // the canonical spelling be the implicit calling convention.
+ // FIXME: It would be better to be explicit in certain contexts, such as a
+ // cdecl function typedef used to declare a member function with the
+ // Microsoft C++ ABI.
+ break;
+ case CC_X86StdCall:
+ OS << " __attribute__((stdcall))";
+ break;
+ case CC_X86FastCall:
+ OS << " __attribute__((fastcall))";
+ break;
+ case CC_X86ThisCall:
+ OS << " __attribute__((thiscall))";
+ break;
+ case CC_X86VectorCall:
+ OS << " __attribute__((vectorcall))";
+ break;
+ case CC_X86Pascal:
+ OS << " __attribute__((pascal))";
+ break;
+ case CC_AAPCS:
+ OS << " __attribute__((pcs(\"aapcs\")))";
+ break;
+ case CC_AAPCS_VFP:
+ OS << " __attribute__((pcs(\"aapcs-vfp\")))";
+ break;
+ case CC_IntelOclBicc:
+ OS << " __attribute__((intel_ocl_bicc))";
+ break;
+ case CC_X86_64Win64:
+ OS << " __attribute__((ms_abi))";
+ break;
+ case CC_X86_64SysV:
+ OS << " __attribute__((sysv_abi))";
+ break;
+ case CC_SpirFunction:
+ case CC_SpirKernel:
+ // Do nothing. These CCs are not available as attributes.
+ break;
+ }
+ }
+
+ if (Info.getNoReturn())
+ OS << " __attribute__((noreturn))";
+ if (Info.getRegParm())
+ OS << " __attribute__((regparm ("
+ << Info.getRegParm() << ")))";
+
+ if (unsigned quals = T->getTypeQuals()) {
+ OS << ' ';
+ AppendTypeQualList(OS, quals, Policy.LangOpts.C99);
+ }
+
+ switch (T->getRefQualifier()) {
+ case RQ_None:
+ break;
+
+ case RQ_LValue:
+ OS << " &";
+ break;
+
+ case RQ_RValue:
+ OS << " &&";
+ break;
+ }
+ T->printExceptionSpecification(OS, Policy);
+
+ if (T->hasTrailingReturn()) {
+ OS << " -> ";
+ print(T->getReturnType(), OS, StringRef());
+ } else
+ printAfter(T->getReturnType(), OS);
+}
+
+void TypePrinter::printFunctionNoProtoBefore(const FunctionNoProtoType *T,
+ raw_ostream &OS) {
+ // If needed for precedence reasons, wrap the inner part in grouping parens.
+ SaveAndRestore<bool> PrevPHIsEmpty(HasEmptyPlaceHolder, false);
+ printBefore(T->getReturnType(), OS);
+ if (!PrevPHIsEmpty.get())
+ OS << '(';
+}
+void TypePrinter::printFunctionNoProtoAfter(const FunctionNoProtoType *T,
+ raw_ostream &OS) {
+ // If needed for precedence reasons, wrap the inner part in grouping parens.
+ if (!HasEmptyPlaceHolder)
+ OS << ')';
+ SaveAndRestore<bool> NonEmptyPH(HasEmptyPlaceHolder, false);
+
+ OS << "()";
+ if (T->getNoReturnAttr())
+ OS << " __attribute__((noreturn))";
+ printAfter(T->getReturnType(), OS);
+}
+
+void TypePrinter::printTypeSpec(const NamedDecl *D, raw_ostream &OS) {
+ IdentifierInfo *II = D->getIdentifier();
+ OS << II->getName();
+ spaceBeforePlaceHolder(OS);
+}
+
+void TypePrinter::printUnresolvedUsingBefore(const UnresolvedUsingType *T,
+ raw_ostream &OS) {
+ printTypeSpec(T->getDecl(), OS);
+}
+void TypePrinter::printUnresolvedUsingAfter(const UnresolvedUsingType *T,
+ raw_ostream &OS) { }
+
+void TypePrinter::printTypedefBefore(const TypedefType *T, raw_ostream &OS) {
+ printTypeSpec(T->getDecl(), OS);
+}
+void TypePrinter::printTypedefAfter(const TypedefType *T, raw_ostream &OS) { }
+
+void TypePrinter::printTypeOfExprBefore(const TypeOfExprType *T,
+ raw_ostream &OS) {
+ OS << "typeof ";
+ if (T->getUnderlyingExpr())
+ T->getUnderlyingExpr()->printPretty(OS, nullptr, Policy);
+ spaceBeforePlaceHolder(OS);
+}
+void TypePrinter::printTypeOfExprAfter(const TypeOfExprType *T,
+ raw_ostream &OS) { }
+
+void TypePrinter::printTypeOfBefore(const TypeOfType *T, raw_ostream &OS) {
+ OS << "typeof(";
+ print(T->getUnderlyingType(), OS, StringRef());
+ OS << ')';
+ spaceBeforePlaceHolder(OS);
+}
+void TypePrinter::printTypeOfAfter(const TypeOfType *T, raw_ostream &OS) { }
+
+void TypePrinter::printDecltypeBefore(const DecltypeType *T, raw_ostream &OS) {
+ OS << "decltype(";
+ if (T->getUnderlyingExpr())
+ T->getUnderlyingExpr()->printPretty(OS, nullptr, Policy);
+ OS << ')';
+ spaceBeforePlaceHolder(OS);
+}
+void TypePrinter::printDecltypeAfter(const DecltypeType *T, raw_ostream &OS) { }
+
+void TypePrinter::printUnaryTransformBefore(const UnaryTransformType *T,
+ raw_ostream &OS) {
+ IncludeStrongLifetimeRAII Strong(Policy);
+
+ switch (T->getUTTKind()) {
+ case UnaryTransformType::EnumUnderlyingType:
+ OS << "__underlying_type(";
+ print(T->getBaseType(), OS, StringRef());
+ OS << ')';
+ spaceBeforePlaceHolder(OS);
+ return;
+ }
+
+ printBefore(T->getBaseType(), OS);
+}
+void TypePrinter::printUnaryTransformAfter(const UnaryTransformType *T,
+ raw_ostream &OS) {
+ IncludeStrongLifetimeRAII Strong(Policy);
+
+ switch (T->getUTTKind()) {
+ case UnaryTransformType::EnumUnderlyingType:
+ return;
+ }
+
+ printAfter(T->getBaseType(), OS);
+}
+
+void TypePrinter::printAutoBefore(const AutoType *T, raw_ostream &OS) {
+ // If the type has been deduced, do not print 'auto'.
+ if (!T->getDeducedType().isNull()) {
+ printBefore(T->getDeducedType(), OS);
+ } else {
+ OS << (T->isDecltypeAuto() ? "decltype(auto)" : "auto");
+ spaceBeforePlaceHolder(OS);
+ }
+}
+void TypePrinter::printAutoAfter(const AutoType *T, raw_ostream &OS) {
+ // If the type has been deduced, do not print 'auto'.
+ if (!T->getDeducedType().isNull())
+ printAfter(T->getDeducedType(), OS);
+}
+
+void TypePrinter::printAtomicBefore(const AtomicType *T, raw_ostream &OS) {
+ IncludeStrongLifetimeRAII Strong(Policy);
+
+ OS << "_Atomic(";
+ print(T->getValueType(), OS, StringRef());
+ OS << ')';
+ spaceBeforePlaceHolder(OS);
+}
+void TypePrinter::printAtomicAfter(const AtomicType *T, raw_ostream &OS) { }
+
+/// Appends the given scope to the end of a string.
+void TypePrinter::AppendScope(DeclContext *DC, raw_ostream &OS) {
+ if (DC->isTranslationUnit()) return;
+ if (DC->isFunctionOrMethod()) return;
+ AppendScope(DC->getParent(), OS);
+
+ if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(DC)) {
+ if (Policy.SuppressUnwrittenScope &&
+ (NS->isAnonymousNamespace() || NS->isInline()))
+ return;
+ if (NS->getIdentifier())
+ OS << NS->getName() << "::";
+ else
+ OS << "(anonymous namespace)::";
+ } else if (ClassTemplateSpecializationDecl *Spec
+ = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
+ IncludeStrongLifetimeRAII Strong(Policy);
+ OS << Spec->getIdentifier()->getName();
+ const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
+ TemplateSpecializationType::PrintTemplateArgumentList(OS,
+ TemplateArgs.data(),
+ TemplateArgs.size(),
+ Policy);
+ OS << "::";
+ } else if (TagDecl *Tag = dyn_cast<TagDecl>(DC)) {
+ if (TypedefNameDecl *Typedef = Tag->getTypedefNameForAnonDecl())
+ OS << Typedef->getIdentifier()->getName() << "::";
+ else if (Tag->getIdentifier())
+ OS << Tag->getIdentifier()->getName() << "::";
+ else
+ return;
+ }
+}
+
+void TypePrinter::printTag(TagDecl *D, raw_ostream &OS) {
+ if (Policy.SuppressTag)
+ return;
+
+ bool HasKindDecoration = false;
+
+ // bool SuppressTagKeyword
+ // = Policy.LangOpts.CPlusPlus || Policy.SuppressTagKeyword;
+
+ // We don't print tags unless this is an elaborated type.
+ // In C, we just assume every RecordType is an elaborated type.
+ if (!(Policy.LangOpts.CPlusPlus || Policy.SuppressTagKeyword ||
+ D->getTypedefNameForAnonDecl())) {
+ HasKindDecoration = true;
+ OS << D->getKindName();
+ OS << ' ';
+ }
+
+ // Compute the full nested-name-specifier for this type.
+ // In C, this will always be empty except when the type
+ // being printed is anonymous within other Record.
+ if (!Policy.SuppressScope)
+ AppendScope(D->getDeclContext(), OS);
+
+ if (const IdentifierInfo *II = D->getIdentifier())
+ OS << II->getName();
+ else if (TypedefNameDecl *Typedef = D->getTypedefNameForAnonDecl()) {
+ assert(Typedef->getIdentifier() && "Typedef without identifier?");
+ OS << Typedef->getIdentifier()->getName();
+ } else {
+ // Make an unambiguous representation for anonymous types, e.g.
+ // (anonymous enum at /usr/include/string.h:120:9)
+
+ if (isa<CXXRecordDecl>(D) && cast<CXXRecordDecl>(D)->isLambda()) {
+ OS << "(lambda";
+ HasKindDecoration = true;
+ } else {
+ OS << "(anonymous";
+ }
+
+ if (Policy.AnonymousTagLocations) {
+ // Suppress the redundant tag keyword if we just printed one.
+ // We don't have to worry about ElaboratedTypes here because you can't
+ // refer to an anonymous type with one.
+ if (!HasKindDecoration)
+ OS << " " << D->getKindName();
+
+ PresumedLoc PLoc = D->getASTContext().getSourceManager().getPresumedLoc(
+ D->getLocation());
+ if (PLoc.isValid()) {
+ OS << " at " << PLoc.getFilename()
+ << ':' << PLoc.getLine()
+ << ':' << PLoc.getColumn();
+ }
+ }
+
+ OS << ')';
+ }
+
+ // If this is a class template specialization, print the template
+ // arguments.
+ if (ClassTemplateSpecializationDecl *Spec
+ = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
+ const TemplateArgument *Args;
+ unsigned NumArgs;
+ if (TypeSourceInfo *TAW = Spec->getTypeAsWritten()) {
+ const TemplateSpecializationType *TST =
+ cast<TemplateSpecializationType>(TAW->getType());
+ Args = TST->getArgs();
+ NumArgs = TST->getNumArgs();
+ } else {
+ const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
+ Args = TemplateArgs.data();
+ NumArgs = TemplateArgs.size();
+ }
+ IncludeStrongLifetimeRAII Strong(Policy);
+ TemplateSpecializationType::PrintTemplateArgumentList(OS,
+ Args, NumArgs,
+ Policy);
+ }
+
+ spaceBeforePlaceHolder(OS);
+}
+
+void TypePrinter::printRecordBefore(const RecordType *T, raw_ostream &OS) {
+ printTag(T->getDecl(), OS);
+}
+void TypePrinter::printRecordAfter(const RecordType *T, raw_ostream &OS) { }
+
+void TypePrinter::printEnumBefore(const EnumType *T, raw_ostream &OS) {
+ printTag(T->getDecl(), OS);
+}
+void TypePrinter::printEnumAfter(const EnumType *T, raw_ostream &OS) { }
+
+void TypePrinter::printTemplateTypeParmBefore(const TemplateTypeParmType *T,
+ raw_ostream &OS) {
+ if (IdentifierInfo *Id = T->getIdentifier())
+ OS << Id->getName();
+ else
+ OS << "type-parameter-" << T->getDepth() << '-' << T->getIndex();
+ spaceBeforePlaceHolder(OS);
+}
+void TypePrinter::printTemplateTypeParmAfter(const TemplateTypeParmType *T,
+ raw_ostream &OS) { }
+
+void TypePrinter::printSubstTemplateTypeParmBefore(
+ const SubstTemplateTypeParmType *T,
+ raw_ostream &OS) {
+ IncludeStrongLifetimeRAII Strong(Policy);
+ printBefore(T->getReplacementType(), OS);
+}
+void TypePrinter::printSubstTemplateTypeParmAfter(
+ const SubstTemplateTypeParmType *T,
+ raw_ostream &OS) {
+ IncludeStrongLifetimeRAII Strong(Policy);
+ printAfter(T->getReplacementType(), OS);
+}
+
+void TypePrinter::printSubstTemplateTypeParmPackBefore(
+ const SubstTemplateTypeParmPackType *T,
+ raw_ostream &OS) {
+ IncludeStrongLifetimeRAII Strong(Policy);
+ printTemplateTypeParmBefore(T->getReplacedParameter(), OS);
+}
+void TypePrinter::printSubstTemplateTypeParmPackAfter(
+ const SubstTemplateTypeParmPackType *T,
+ raw_ostream &OS) {
+ IncludeStrongLifetimeRAII Strong(Policy);
+ printTemplateTypeParmAfter(T->getReplacedParameter(), OS);
+}
+
+void TypePrinter::printTemplateSpecializationBefore(
+ const TemplateSpecializationType *T,
+ raw_ostream &OS) {
+ IncludeStrongLifetimeRAII Strong(Policy);
+ T->getTemplateName().print(OS, Policy);
+
+ TemplateSpecializationType::PrintTemplateArgumentList(OS,
+ T->getArgs(),
+ T->getNumArgs(),
+ Policy);
+ spaceBeforePlaceHolder(OS);
+}
+void TypePrinter::printTemplateSpecializationAfter(
+ const TemplateSpecializationType *T,
+ raw_ostream &OS) { }
+
+void TypePrinter::printInjectedClassNameBefore(const InjectedClassNameType *T,
+ raw_ostream &OS) {
+ printTemplateSpecializationBefore(T->getInjectedTST(), OS);
+}
+void TypePrinter::printInjectedClassNameAfter(const InjectedClassNameType *T,
+ raw_ostream &OS) { }
+
+void TypePrinter::printElaboratedBefore(const ElaboratedType *T,
+ raw_ostream &OS) {
+ if (Policy.SuppressTag && isa<TagType>(T->getNamedType()))
+ return;
+ OS << TypeWithKeyword::getKeywordName(T->getKeyword());
+ if (T->getKeyword() != ETK_None)
+ OS << " ";
+ NestedNameSpecifier* Qualifier = T->getQualifier();
+ if (Qualifier)
+ Qualifier->print(OS, Policy);
+
+ ElaboratedTypePolicyRAII PolicyRAII(Policy);
+ printBefore(T->getNamedType(), OS);
+}
+void TypePrinter::printElaboratedAfter(const ElaboratedType *T,
+ raw_ostream &OS) {
+ ElaboratedTypePolicyRAII PolicyRAII(Policy);
+ printAfter(T->getNamedType(), OS);
+}
+
+void TypePrinter::printParenBefore(const ParenType *T, raw_ostream &OS) {
+ if (!HasEmptyPlaceHolder && !isa<FunctionType>(T->getInnerType())) {
+ printBefore(T->getInnerType(), OS);
+ OS << '(';
+ } else
+ printBefore(T->getInnerType(), OS);
+}
+void TypePrinter::printParenAfter(const ParenType *T, raw_ostream &OS) {
+ if (!HasEmptyPlaceHolder && !isa<FunctionType>(T->getInnerType())) {
+ OS << ')';
+ printAfter(T->getInnerType(), OS);
+ } else
+ printAfter(T->getInnerType(), OS);
+}
+
+void TypePrinter::printDependentNameBefore(const DependentNameType *T,
+ raw_ostream &OS) {
+ OS << TypeWithKeyword::getKeywordName(T->getKeyword());
+ if (T->getKeyword() != ETK_None)
+ OS << " ";
+
+ T->getQualifier()->print(OS, Policy);
+
+ OS << T->getIdentifier()->getName();
+ spaceBeforePlaceHolder(OS);
+}
+void TypePrinter::printDependentNameAfter(const DependentNameType *T,
+ raw_ostream &OS) { }
+
+void TypePrinter::printDependentTemplateSpecializationBefore(
+ const DependentTemplateSpecializationType *T, raw_ostream &OS) {
+ IncludeStrongLifetimeRAII Strong(Policy);
+
+ OS << TypeWithKeyword::getKeywordName(T->getKeyword());
+ if (T->getKeyword() != ETK_None)
+ OS << " ";
+
+ if (T->getQualifier())
+ T->getQualifier()->print(OS, Policy);
+ OS << T->getIdentifier()->getName();
+ TemplateSpecializationType::PrintTemplateArgumentList(OS,
+ T->getArgs(),
+ T->getNumArgs(),
+ Policy);
+ spaceBeforePlaceHolder(OS);
+}
+void TypePrinter::printDependentTemplateSpecializationAfter(
+ const DependentTemplateSpecializationType *T, raw_ostream &OS) { }
+
+void TypePrinter::printPackExpansionBefore(const PackExpansionType *T,
+ raw_ostream &OS) {
+ printBefore(T->getPattern(), OS);
+}
+void TypePrinter::printPackExpansionAfter(const PackExpansionType *T,
+ raw_ostream &OS) {
+ printAfter(T->getPattern(), OS);
+ OS << "...";
+}
+
+void TypePrinter::printAttributedBefore(const AttributedType *T,
+ raw_ostream &OS) {
+ // Prefer the macro forms of the GC and ownership qualifiers.
+ if (T->getAttrKind() == AttributedType::attr_objc_gc ||
+ T->getAttrKind() == AttributedType::attr_objc_ownership)
+ return printBefore(T->getEquivalentType(), OS);
+
+ printBefore(T->getModifiedType(), OS);
+
+ if (T->isMSTypeSpec()) {
+ switch (T->getAttrKind()) {
+ default: return;
+ case AttributedType::attr_ptr32: OS << " __ptr32"; break;
+ case AttributedType::attr_ptr64: OS << " __ptr64"; break;
+ case AttributedType::attr_sptr: OS << " __sptr"; break;
+ case AttributedType::attr_uptr: OS << " __uptr"; break;
+ }
+ spaceBeforePlaceHolder(OS);
+ }
+}
+
+void TypePrinter::printAttributedAfter(const AttributedType *T,
+ raw_ostream &OS) {
+ // Prefer the macro forms of the GC and ownership qualifiers.
+ if (T->getAttrKind() == AttributedType::attr_objc_gc ||
+ T->getAttrKind() == AttributedType::attr_objc_ownership)
+ return printAfter(T->getEquivalentType(), OS);
+
+ // TODO: not all attributes are GCC-style attributes.
+ if (T->isMSTypeSpec())
+ return;
+
+ // If this is a calling convention attribute, don't print the implicit CC from
+ // the modified type.
+ SaveAndRestore<bool> MaybeSuppressCC(InsideCCAttribute, T->isCallingConv());
+
+ printAfter(T->getModifiedType(), OS);
+
+ OS << " __attribute__((";
+ switch (T->getAttrKind()) {
+ default: llvm_unreachable("This attribute should have been handled already");
+ case AttributedType::attr_address_space:
+ OS << "address_space(";
+ OS << T->getEquivalentType().getAddressSpace();
+ OS << ')';
+ break;
+
+ case AttributedType::attr_vector_size: {
+ OS << "__vector_size__(";
+ if (const VectorType *vector =T->getEquivalentType()->getAs<VectorType>()) {
+ OS << vector->getNumElements();
+ OS << " * sizeof(";
+ print(vector->getElementType(), OS, StringRef());
+ OS << ')';
+ }
+ OS << ')';
+ break;
+ }
+
+ case AttributedType::attr_neon_vector_type:
+ case AttributedType::attr_neon_polyvector_type: {
+ if (T->getAttrKind() == AttributedType::attr_neon_vector_type)
+ OS << "neon_vector_type(";
+ else
+ OS << "neon_polyvector_type(";
+ const VectorType *vector = T->getEquivalentType()->getAs<VectorType>();
+ OS << vector->getNumElements();
+ OS << ')';
+ break;
+ }
+
+ case AttributedType::attr_regparm: {
+ // FIXME: When Sema learns to form this AttributedType, avoid printing the
+ // attribute again in printFunctionProtoAfter.
+ OS << "regparm(";
+ QualType t = T->getEquivalentType();
+ while (!t->isFunctionType())
+ t = t->getPointeeType();
+ OS << t->getAs<FunctionType>()->getRegParmType();
+ OS << ')';
+ break;
+ }
+
+ case AttributedType::attr_objc_gc: {
+ OS << "objc_gc(";
+
+ QualType tmp = T->getEquivalentType();
+ while (tmp.getObjCGCAttr() == Qualifiers::GCNone) {
+ QualType next = tmp->getPointeeType();
+ if (next == tmp) break;
+ tmp = next;
+ }
+
+ if (tmp.isObjCGCWeak())
+ OS << "weak";
+ else
+ OS << "strong";
+ OS << ')';
+ break;
+ }
+
+ case AttributedType::attr_objc_ownership:
+ OS << "objc_ownership(";
+ switch (T->getEquivalentType().getObjCLifetime()) {
+ case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
+ case Qualifiers::OCL_ExplicitNone: OS << "none"; break;
+ case Qualifiers::OCL_Strong: OS << "strong"; break;
+ case Qualifiers::OCL_Weak: OS << "weak"; break;
+ case Qualifiers::OCL_Autoreleasing: OS << "autoreleasing"; break;
+ }
+ OS << ')';
+ break;
+
+ // FIXME: When Sema learns to form this AttributedType, avoid printing the
+ // attribute again in printFunctionProtoAfter.
+ case AttributedType::attr_noreturn: OS << "noreturn"; break;
+
+ case AttributedType::attr_cdecl: OS << "cdecl"; break;
+ case AttributedType::attr_fastcall: OS << "fastcall"; break;
+ case AttributedType::attr_stdcall: OS << "stdcall"; break;
+ case AttributedType::attr_thiscall: OS << "thiscall"; break;
+ case AttributedType::attr_vectorcall: OS << "vectorcall"; break;
+ case AttributedType::attr_pascal: OS << "pascal"; break;
+ case AttributedType::attr_ms_abi: OS << "ms_abi"; break;
+ case AttributedType::attr_sysv_abi: OS << "sysv_abi"; break;
+ case AttributedType::attr_pcs:
+ case AttributedType::attr_pcs_vfp: {
+ OS << "pcs(";
+ QualType t = T->getEquivalentType();
+ while (!t->isFunctionType())
+ t = t->getPointeeType();
+ OS << (t->getAs<FunctionType>()->getCallConv() == CC_AAPCS ?
+ "\"aapcs\"" : "\"aapcs-vfp\"");
+ OS << ')';
+ break;
+ }
+ case AttributedType::attr_inteloclbicc: OS << "inteloclbicc"; break;
+ }
+ OS << "))";
+}
+
+void TypePrinter::printObjCInterfaceBefore(const ObjCInterfaceType *T,
+ raw_ostream &OS) {
+ OS << T->getDecl()->getName();
+ spaceBeforePlaceHolder(OS);
+}
+void TypePrinter::printObjCInterfaceAfter(const ObjCInterfaceType *T,
+ raw_ostream &OS) { }
+
+void TypePrinter::printObjCObjectBefore(const ObjCObjectType *T,
+ raw_ostream &OS) {
+ if (T->qual_empty())
+ return printBefore(T->getBaseType(), OS);
+
+ print(T->getBaseType(), OS, StringRef());
+ OS << '<';
+ bool isFirst = true;
+ for (const auto *I : T->quals()) {
+ if (isFirst)
+ isFirst = false;
+ else
+ OS << ',';
+ OS << I->getName();
+ }
+ OS << '>';
+ spaceBeforePlaceHolder(OS);
+}
+void TypePrinter::printObjCObjectAfter(const ObjCObjectType *T,
+ raw_ostream &OS) {
+ if (T->qual_empty())
+ return printAfter(T->getBaseType(), OS);
+}
+
+void TypePrinter::printObjCObjectPointerBefore(const ObjCObjectPointerType *T,
+ raw_ostream &OS) {
+ T->getPointeeType().getLocalQualifiers().print(OS, Policy,
+ /*appendSpaceIfNonEmpty=*/true);
+
+ assert(!T->isObjCSelType());
+
+ if (T->isObjCIdType() || T->isObjCQualifiedIdType())
+ OS << "id";
+ else if (T->isObjCClassType() || T->isObjCQualifiedClassType())
+ OS << "Class";
+ else
+ OS << T->getInterfaceDecl()->getName();
+
+ if (!T->qual_empty()) {
+ OS << '<';
+ for (ObjCObjectPointerType::qual_iterator I = T->qual_begin(),
+ E = T->qual_end();
+ I != E; ++I) {
+ OS << (*I)->getName();
+ if (I+1 != E)
+ OS << ',';
+ }
+ OS << '>';
+ }
+
+ if (!T->isObjCIdType() && !T->isObjCQualifiedIdType() &&
+ !T->isObjCClassType() && !T->isObjCQualifiedClassType()) {
+ OS << " *"; // Don't forget the implicit pointer.
+ } else {
+ spaceBeforePlaceHolder(OS);
+ }
+}
+void TypePrinter::printObjCObjectPointerAfter(const ObjCObjectPointerType *T,
+ raw_ostream &OS) { }
+
+void TemplateSpecializationType::
+ PrintTemplateArgumentList(raw_ostream &OS,
+ const TemplateArgumentListInfo &Args,
+ const PrintingPolicy &Policy) {
+ return PrintTemplateArgumentList(OS,
+ Args.getArgumentArray(),
+ Args.size(),
+ Policy);
+}
+
+void
+TemplateSpecializationType::PrintTemplateArgumentList(
+ raw_ostream &OS,
+ const TemplateArgument *Args,
+ unsigned NumArgs,
+ const PrintingPolicy &Policy,
+ bool SkipBrackets) {
+ if (!SkipBrackets)
+ OS << '<';
+
+ bool needSpace = false;
+ for (unsigned Arg = 0; Arg < NumArgs; ++Arg) {
+ // Print the argument into a string.
+ SmallString<128> Buf;
+ llvm::raw_svector_ostream ArgOS(Buf);
+ if (Args[Arg].getKind() == TemplateArgument::Pack) {
+ if (Args[Arg].pack_size() && Arg > 0)
+ OS << ", ";
+ PrintTemplateArgumentList(ArgOS,
+ Args[Arg].pack_begin(),
+ Args[Arg].pack_size(),
+ Policy, true);
+ } else {
+ if (Arg > 0)
+ OS << ", ";
+ Args[Arg].print(Policy, ArgOS);
+ }
+ StringRef ArgString = ArgOS.str();
+
+ // If this is the first argument and its string representation
+ // begins with the global scope specifier ('::foo'), add a space
+ // to avoid printing the diagraph '<:'.
+ if (!Arg && !ArgString.empty() && ArgString[0] == ':')
+ OS << ' ';
+
+ OS << ArgString;
+
+ needSpace = (!ArgString.empty() && ArgString.back() == '>');
+ }
+
+ // If the last character of our string is '>', add another space to
+ // keep the two '>''s separate tokens. We don't *have* to do this in
+ // C++0x, but it's still good hygiene.
+ if (needSpace)
+ OS << ' ';
+
+ if (!SkipBrackets)
+ OS << '>';
+}
+
+// Sadly, repeat all that with TemplateArgLoc.
+void TemplateSpecializationType::
+PrintTemplateArgumentList(raw_ostream &OS,
+ const TemplateArgumentLoc *Args, unsigned NumArgs,
+ const PrintingPolicy &Policy) {
+ OS << '<';
+
+ bool needSpace = false;
+ for (unsigned Arg = 0; Arg < NumArgs; ++Arg) {
+ if (Arg > 0)
+ OS << ", ";
+
+ // Print the argument into a string.
+ SmallString<128> Buf;
+ llvm::raw_svector_ostream ArgOS(Buf);
+ if (Args[Arg].getArgument().getKind() == TemplateArgument::Pack) {
+ PrintTemplateArgumentList(ArgOS,
+ Args[Arg].getArgument().pack_begin(),
+ Args[Arg].getArgument().pack_size(),
+ Policy, true);
+ } else {
+ Args[Arg].getArgument().print(Policy, ArgOS);
+ }
+ StringRef ArgString = ArgOS.str();
+
+ // If this is the first argument and its string representation
+ // begins with the global scope specifier ('::foo'), add a space
+ // to avoid printing the diagraph '<:'.
+ if (!Arg && !ArgString.empty() && ArgString[0] == ':')
+ OS << ' ';
+
+ OS << ArgString;
+
+ needSpace = (!ArgString.empty() && ArgString.back() == '>');
+ }
+
+ // If the last character of our string is '>', add another space to
+ // keep the two '>''s separate tokens. We don't *have* to do this in
+ // C++0x, but it's still good hygiene.
+ if (needSpace)
+ OS << ' ';
+
+ OS << '>';
+}
+
+std::string Qualifiers::getAsString() const {
+ LangOptions LO;
+ return getAsString(PrintingPolicy(LO));
+}
+
+// Appends qualifiers to the given string, separated by spaces. Will
+// prefix a space if the string is non-empty. Will not append a final
+// space.
+std::string Qualifiers::getAsString(const PrintingPolicy &Policy) const {
+ SmallString<64> Buf;
+ llvm::raw_svector_ostream StrOS(Buf);
+ print(StrOS, Policy);
+ return StrOS.str();
+}
+
+bool Qualifiers::isEmptyWhenPrinted(const PrintingPolicy &Policy) const {
+ if (getCVRQualifiers())
+ return false;
+
+ if (getAddressSpace())
+ return false;
+
+ if (getObjCGCAttr())
+ return false;
+
+ if (Qualifiers::ObjCLifetime lifetime = getObjCLifetime())
+ if (!(lifetime == Qualifiers::OCL_Strong && Policy.SuppressStrongLifetime))
+ return false;
+
+ return true;
+}
+
+// Appends qualifiers to the given string, separated by spaces. Will
+// prefix a space if the string is non-empty. Will not append a final
+// space.
+void Qualifiers::print(raw_ostream &OS, const PrintingPolicy& Policy,
+ bool appendSpaceIfNonEmpty) const {
+ bool addSpace = false;
+
+ unsigned quals = getCVRQualifiers();
+ if (quals) {
+ AppendTypeQualList(OS, quals, Policy.LangOpts.C99);
+ addSpace = true;
+ }
+ if (unsigned addrspace = getAddressSpace()) {
+ if (addSpace)
+ OS << ' ';
+ addSpace = true;
+ switch (addrspace) {
+ case LangAS::opencl_global:
+ OS << "__global";
+ break;
+ case LangAS::opencl_local:
+ OS << "__local";
+ break;
+ case LangAS::opencl_constant:
+ OS << "__constant";
+ break;
+ case LangAS::opencl_generic:
+ OS << "__generic";
+ break;
+ default:
+ OS << "__attribute__((address_space(";
+ OS << addrspace;
+ OS << ")))";
+ }
+ }
+ if (Qualifiers::GC gc = getObjCGCAttr()) {
+ if (addSpace)
+ OS << ' ';
+ addSpace = true;
+ if (gc == Qualifiers::Weak)
+ OS << "__weak";
+ else
+ OS << "__strong";
+ }
+ if (Qualifiers::ObjCLifetime lifetime = getObjCLifetime()) {
+ if (!(lifetime == Qualifiers::OCL_Strong && Policy.SuppressStrongLifetime)){
+ if (addSpace)
+ OS << ' ';
+ addSpace = true;
+ }
+
+ switch (lifetime) {
+ case Qualifiers::OCL_None: llvm_unreachable("none but true");
+ case Qualifiers::OCL_ExplicitNone: OS << "__unsafe_unretained"; break;
+ case Qualifiers::OCL_Strong:
+ if (!Policy.SuppressStrongLifetime)
+ OS << "__strong";
+ break;
+
+ case Qualifiers::OCL_Weak: OS << "__weak"; break;
+ case Qualifiers::OCL_Autoreleasing: OS << "__autoreleasing"; break;
+ }
+ }
+
+ if (appendSpaceIfNonEmpty && addSpace)
+ OS << ' ';
+}
+
+std::string QualType::getAsString(const PrintingPolicy &Policy) const {
+ std::string S;
+ getAsStringInternal(S, Policy);
+ return S;
+}
+
+std::string QualType::getAsString(const Type *ty, Qualifiers qs) {
+ std::string buffer;
+ LangOptions options;
+ getAsStringInternal(ty, qs, buffer, PrintingPolicy(options));
+ return buffer;
+}
+
+void QualType::print(const Type *ty, Qualifiers qs,
+ raw_ostream &OS, const PrintingPolicy &policy,
+ const Twine &PlaceHolder) {
+ SmallString<128> PHBuf;
+ StringRef PH = PlaceHolder.toStringRef(PHBuf);
+
+ TypePrinter(policy).print(ty, qs, OS, PH);
+}
+
+void QualType::getAsStringInternal(const Type *ty, Qualifiers qs,
+ std::string &buffer,
+ const PrintingPolicy &policy) {
+ SmallString<256> Buf;
+ llvm::raw_svector_ostream StrOS(Buf);
+ TypePrinter(policy).print(ty, qs, StrOS, buffer);
+ std::string str = StrOS.str();
+ buffer.swap(str);
+}
diff --git a/contrib/llvm/tools/clang/lib/AST/VTTBuilder.cpp b/contrib/llvm/tools/clang/lib/AST/VTTBuilder.cpp
new file mode 100644
index 0000000..53461eb
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/VTTBuilder.cpp
@@ -0,0 +1,209 @@
+//===--- VTTBuilder.cpp - C++ VTT layout builder --------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code dealing with generation of the layout of virtual table
+// tables (VTT).
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/VTTBuilder.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/Basic/TargetInfo.h"
+#include "llvm/Support/Format.h"
+#include <algorithm>
+#include <cstdio>
+
+using namespace clang;
+
+#define DUMP_OVERRIDERS 0
+
+VTTBuilder::VTTBuilder(ASTContext &Ctx,
+ const CXXRecordDecl *MostDerivedClass,
+ bool GenerateDefinition)
+ : Ctx(Ctx), MostDerivedClass(MostDerivedClass),
+ MostDerivedClassLayout(Ctx.getASTRecordLayout(MostDerivedClass)),
+ GenerateDefinition(GenerateDefinition) {
+ // Lay out this VTT.
+ LayoutVTT(BaseSubobject(MostDerivedClass, CharUnits::Zero()),
+ /*BaseIsVirtual=*/false);
+}
+
+void VTTBuilder::AddVTablePointer(BaseSubobject Base, uint64_t VTableIndex,
+ const CXXRecordDecl *VTableClass) {
+ // Store the vtable pointer index if we're generating the primary VTT.
+ if (VTableClass == MostDerivedClass) {
+ assert(!SecondaryVirtualPointerIndices.count(Base) &&
+ "A virtual pointer index already exists for this base subobject!");
+ SecondaryVirtualPointerIndices[Base] = VTTComponents.size();
+ }
+
+ if (!GenerateDefinition) {
+ VTTComponents.push_back(VTTComponent());
+ return;
+ }
+
+ VTTComponents.push_back(VTTComponent(VTableIndex, Base));
+}
+
+void VTTBuilder::LayoutSecondaryVTTs(BaseSubobject Base) {
+ const CXXRecordDecl *RD = Base.getBase();
+
+ for (const auto &I : RD->bases()) {
+ // Don't layout virtual bases.
+ if (I.isVirtual())
+ continue;
+
+ const CXXRecordDecl *BaseDecl =
+ cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
+
+ const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(RD);
+ CharUnits BaseOffset = Base.getBaseOffset() +
+ Layout.getBaseClassOffset(BaseDecl);
+
+ // Layout the VTT for this base.
+ LayoutVTT(BaseSubobject(BaseDecl, BaseOffset), /*BaseIsVirtual=*/false);
+ }
+}
+
+void
+VTTBuilder::LayoutSecondaryVirtualPointers(BaseSubobject Base,
+ bool BaseIsMorallyVirtual,
+ uint64_t VTableIndex,
+ const CXXRecordDecl *VTableClass,
+ VisitedVirtualBasesSetTy &VBases) {
+ const CXXRecordDecl *RD = Base.getBase();
+
+ // We're not interested in bases that don't have virtual bases, and not
+ // morally virtual bases.
+ if (!RD->getNumVBases() && !BaseIsMorallyVirtual)
+ return;
+
+ for (const auto &I : RD->bases()) {
+ const CXXRecordDecl *BaseDecl =
+ cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
+
+ // Itanium C++ ABI 2.6.2:
+ // Secondary virtual pointers are present for all bases with either
+ // virtual bases or virtual function declarations overridden along a
+ // virtual path.
+ //
+ // If the base class is not dynamic, we don't want to add it, nor any
+ // of its base classes.
+ if (!BaseDecl->isDynamicClass())
+ continue;
+
+ bool BaseDeclIsMorallyVirtual = BaseIsMorallyVirtual;
+ bool BaseDeclIsNonVirtualPrimaryBase = false;
+ CharUnits BaseOffset;
+ if (I.isVirtual()) {
+ // Ignore virtual bases that we've already visited.
+ if (!VBases.insert(BaseDecl).second)
+ continue;
+
+ BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
+ BaseDeclIsMorallyVirtual = true;
+ } else {
+ const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(RD);
+
+ BaseOffset = Base.getBaseOffset() +
+ Layout.getBaseClassOffset(BaseDecl);
+
+ if (!Layout.isPrimaryBaseVirtual() &&
+ Layout.getPrimaryBase() == BaseDecl)
+ BaseDeclIsNonVirtualPrimaryBase = true;
+ }
+
+ // Itanium C++ ABI 2.6.2:
+ // Secondary virtual pointers: for each base class X which (a) has virtual
+ // bases or is reachable along a virtual path from D, and (b) is not a
+ // non-virtual primary base, the address of the virtual table for X-in-D
+ // or an appropriate construction virtual table.
+ if (!BaseDeclIsNonVirtualPrimaryBase &&
+ (BaseDecl->getNumVBases() || BaseDeclIsMorallyVirtual)) {
+ // Add the vtable pointer.
+ AddVTablePointer(BaseSubobject(BaseDecl, BaseOffset), VTableIndex,
+ VTableClass);
+ }
+
+ // And lay out the secondary virtual pointers for the base class.
+ LayoutSecondaryVirtualPointers(BaseSubobject(BaseDecl, BaseOffset),
+ BaseDeclIsMorallyVirtual, VTableIndex,
+ VTableClass, VBases);
+ }
+}
+
+void
+VTTBuilder::LayoutSecondaryVirtualPointers(BaseSubobject Base,
+ uint64_t VTableIndex) {
+ VisitedVirtualBasesSetTy VBases;
+ LayoutSecondaryVirtualPointers(Base, /*BaseIsMorallyVirtual=*/false,
+ VTableIndex, Base.getBase(), VBases);
+}
+
+void VTTBuilder::LayoutVirtualVTTs(const CXXRecordDecl *RD,
+ VisitedVirtualBasesSetTy &VBases) {
+ for (const auto &I : RD->bases()) {
+ const CXXRecordDecl *BaseDecl =
+ cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
+
+ // Check if this is a virtual base.
+ if (I.isVirtual()) {
+ // Check if we've seen this base before.
+ if (!VBases.insert(BaseDecl).second)
+ continue;
+
+ CharUnits BaseOffset =
+ MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
+
+ LayoutVTT(BaseSubobject(BaseDecl, BaseOffset), /*BaseIsVirtual=*/true);
+ }
+
+ // We only need to layout virtual VTTs for this base if it actually has
+ // virtual bases.
+ if (BaseDecl->getNumVBases())
+ LayoutVirtualVTTs(BaseDecl, VBases);
+ }
+}
+
+void VTTBuilder::LayoutVTT(BaseSubobject Base, bool BaseIsVirtual) {
+ const CXXRecordDecl *RD = Base.getBase();
+
+ // Itanium C++ ABI 2.6.2:
+ // An array of virtual table addresses, called the VTT, is declared for
+ // each class type that has indirect or direct virtual base classes.
+ if (RD->getNumVBases() == 0)
+ return;
+
+ bool IsPrimaryVTT = Base.getBase() == MostDerivedClass;
+
+ if (!IsPrimaryVTT) {
+ // Remember the sub-VTT index.
+ SubVTTIndicies[Base] = VTTComponents.size();
+ }
+
+ uint64_t VTableIndex = VTTVTables.size();
+ VTTVTables.push_back(VTTVTable(Base, BaseIsVirtual));
+
+ // Add the primary vtable pointer.
+ AddVTablePointer(Base, VTableIndex, RD);
+
+ // Add the secondary VTTs.
+ LayoutSecondaryVTTs(Base);
+
+ // Add the secondary virtual pointers.
+ LayoutSecondaryVirtualPointers(Base, VTableIndex);
+
+ // If this is the primary VTT, we want to lay out virtual VTTs as well.
+ if (IsPrimaryVTT) {
+ VisitedVirtualBasesSetTy VBases;
+ LayoutVirtualVTTs(Base.getBase(), VBases);
+ }
+}
diff --git a/contrib/llvm/tools/clang/lib/AST/VTableBuilder.cpp b/contrib/llvm/tools/clang/lib/AST/VTableBuilder.cpp
new file mode 100644
index 0000000..ca5f0aa
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/VTableBuilder.cpp
@@ -0,0 +1,3816 @@
+//===--- VTableBuilder.cpp - C++ vtable layout builder --------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code dealing with generation of the layout of virtual tables.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/VTableBuilder.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTDiagnostic.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/Basic/TargetInfo.h"
+#include "llvm/ADT/SetOperations.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cstdio>
+
+using namespace clang;
+
+#define DUMP_OVERRIDERS 0
+
+namespace {
+
+/// BaseOffset - Represents an offset from a derived class to a direct or
+/// indirect base class.
+struct BaseOffset {
+ /// DerivedClass - The derived class.
+ const CXXRecordDecl *DerivedClass;
+
+ /// VirtualBase - If the path from the derived class to the base class
+ /// involves virtual base classes, this holds the declaration of the last
+ /// virtual base in this path (i.e. closest to the base class).
+ const CXXRecordDecl *VirtualBase;
+
+ /// NonVirtualOffset - The offset from the derived class to the base class.
+ /// (Or the offset from the virtual base class to the base class, if the
+ /// path from the derived class to the base class involves a virtual base
+ /// class.
+ CharUnits NonVirtualOffset;
+
+ BaseOffset() : DerivedClass(nullptr), VirtualBase(nullptr),
+ NonVirtualOffset(CharUnits::Zero()) { }
+ BaseOffset(const CXXRecordDecl *DerivedClass,
+ const CXXRecordDecl *VirtualBase, CharUnits NonVirtualOffset)
+ : DerivedClass(DerivedClass), VirtualBase(VirtualBase),
+ NonVirtualOffset(NonVirtualOffset) { }
+
+ bool isEmpty() const { return NonVirtualOffset.isZero() && !VirtualBase; }
+};
+
+/// FinalOverriders - Contains the final overrider member functions for all
+/// member functions in the base subobjects of a class.
+class FinalOverriders {
+public:
+ /// OverriderInfo - Information about a final overrider.
+ struct OverriderInfo {
+ /// Method - The method decl of the overrider.
+ const CXXMethodDecl *Method;
+
+ /// VirtualBase - The virtual base class subobject of this overrider.
+ /// Note that this records the closest derived virtual base class subobject.
+ const CXXRecordDecl *VirtualBase;
+
+ /// Offset - the base offset of the overrider's parent in the layout class.
+ CharUnits Offset;
+
+ OverriderInfo() : Method(nullptr), VirtualBase(nullptr),
+ Offset(CharUnits::Zero()) { }
+ };
+
+private:
+ /// MostDerivedClass - The most derived class for which the final overriders
+ /// are stored.
+ const CXXRecordDecl *MostDerivedClass;
+
+ /// MostDerivedClassOffset - If we're building final overriders for a
+ /// construction vtable, this holds the offset from the layout class to the
+ /// most derived class.
+ const CharUnits MostDerivedClassOffset;
+
+ /// LayoutClass - The class we're using for layout information. Will be
+ /// different than the most derived class if the final overriders are for a
+ /// construction vtable.
+ const CXXRecordDecl *LayoutClass;
+
+ ASTContext &Context;
+
+ /// MostDerivedClassLayout - the AST record layout of the most derived class.
+ const ASTRecordLayout &MostDerivedClassLayout;
+
+ /// MethodBaseOffsetPairTy - Uniquely identifies a member function
+ /// in a base subobject.
+ typedef std::pair<const CXXMethodDecl *, CharUnits> MethodBaseOffsetPairTy;
+
+ typedef llvm::DenseMap<MethodBaseOffsetPairTy,
+ OverriderInfo> OverridersMapTy;
+
+ /// OverridersMap - The final overriders for all virtual member functions of
+ /// all the base subobjects of the most derived class.
+ OverridersMapTy OverridersMap;
+
+ /// SubobjectsToOffsetsMapTy - A mapping from a base subobject (represented
+ /// as a record decl and a subobject number) and its offsets in the most
+ /// derived class as well as the layout class.
+ typedef llvm::DenseMap<std::pair<const CXXRecordDecl *, unsigned>,
+ CharUnits> SubobjectOffsetMapTy;
+
+ typedef llvm::DenseMap<const CXXRecordDecl *, unsigned> SubobjectCountMapTy;
+
+ /// ComputeBaseOffsets - Compute the offsets for all base subobjects of the
+ /// given base.
+ void ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
+ CharUnits OffsetInLayoutClass,
+ SubobjectOffsetMapTy &SubobjectOffsets,
+ SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
+ SubobjectCountMapTy &SubobjectCounts);
+
+ typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
+
+ /// dump - dump the final overriders for a base subobject, and all its direct
+ /// and indirect base subobjects.
+ void dump(raw_ostream &Out, BaseSubobject Base,
+ VisitedVirtualBasesSetTy& VisitedVirtualBases);
+
+public:
+ FinalOverriders(const CXXRecordDecl *MostDerivedClass,
+ CharUnits MostDerivedClassOffset,
+ const CXXRecordDecl *LayoutClass);
+
+ /// getOverrider - Get the final overrider for the given method declaration in
+ /// the subobject with the given base offset.
+ OverriderInfo getOverrider(const CXXMethodDecl *MD,
+ CharUnits BaseOffset) const {
+ assert(OverridersMap.count(std::make_pair(MD, BaseOffset)) &&
+ "Did not find overrider!");
+
+ return OverridersMap.lookup(std::make_pair(MD, BaseOffset));
+ }
+
+ /// dump - dump the final overriders.
+ void dump() {
+ VisitedVirtualBasesSetTy VisitedVirtualBases;
+ dump(llvm::errs(), BaseSubobject(MostDerivedClass, CharUnits::Zero()),
+ VisitedVirtualBases);
+ }
+
+};
+
+FinalOverriders::FinalOverriders(const CXXRecordDecl *MostDerivedClass,
+ CharUnits MostDerivedClassOffset,
+ const CXXRecordDecl *LayoutClass)
+ : MostDerivedClass(MostDerivedClass),
+ MostDerivedClassOffset(MostDerivedClassOffset), LayoutClass(LayoutClass),
+ Context(MostDerivedClass->getASTContext()),
+ MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)) {
+
+ // Compute base offsets.
+ SubobjectOffsetMapTy SubobjectOffsets;
+ SubobjectOffsetMapTy SubobjectLayoutClassOffsets;
+ SubobjectCountMapTy SubobjectCounts;
+ ComputeBaseOffsets(BaseSubobject(MostDerivedClass, CharUnits::Zero()),
+ /*IsVirtual=*/false,
+ MostDerivedClassOffset,
+ SubobjectOffsets, SubobjectLayoutClassOffsets,
+ SubobjectCounts);
+
+ // Get the final overriders.
+ CXXFinalOverriderMap FinalOverriders;
+ MostDerivedClass->getFinalOverriders(FinalOverriders);
+
+ for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
+ E = FinalOverriders.end(); I != E; ++I) {
+ const CXXMethodDecl *MD = I->first;
+ const OverridingMethods& Methods = I->second;
+
+ for (OverridingMethods::const_iterator I = Methods.begin(),
+ E = Methods.end(); I != E; ++I) {
+ unsigned SubobjectNumber = I->first;
+ assert(SubobjectOffsets.count(std::make_pair(MD->getParent(),
+ SubobjectNumber)) &&
+ "Did not find subobject offset!");
+
+ CharUnits BaseOffset = SubobjectOffsets[std::make_pair(MD->getParent(),
+ SubobjectNumber)];
+
+ assert(I->second.size() == 1 && "Final overrider is not unique!");
+ const UniqueVirtualMethod &Method = I->second.front();
+
+ const CXXRecordDecl *OverriderRD = Method.Method->getParent();
+ assert(SubobjectLayoutClassOffsets.count(
+ std::make_pair(OverriderRD, Method.Subobject))
+ && "Did not find subobject offset!");
+ CharUnits OverriderOffset =
+ SubobjectLayoutClassOffsets[std::make_pair(OverriderRD,
+ Method.Subobject)];
+
+ OverriderInfo& Overrider = OverridersMap[std::make_pair(MD, BaseOffset)];
+ assert(!Overrider.Method && "Overrider should not exist yet!");
+
+ Overrider.Offset = OverriderOffset;
+ Overrider.Method = Method.Method;
+ Overrider.VirtualBase = Method.InVirtualSubobject;
+ }
+ }
+
+#if DUMP_OVERRIDERS
+ // And dump them (for now).
+ dump();
+#endif
+}
+
+static BaseOffset ComputeBaseOffset(const ASTContext &Context,
+ const CXXRecordDecl *DerivedRD,
+ const CXXBasePath &Path) {
+ CharUnits NonVirtualOffset = CharUnits::Zero();
+
+ unsigned NonVirtualStart = 0;
+ const CXXRecordDecl *VirtualBase = nullptr;
+
+ // First, look for the virtual base class.
+ for (int I = Path.size(), E = 0; I != E; --I) {
+ const CXXBasePathElement &Element = Path[I - 1];
+
+ if (Element.Base->isVirtual()) {
+ NonVirtualStart = I;
+ QualType VBaseType = Element.Base->getType();
+ VirtualBase = VBaseType->getAsCXXRecordDecl();
+ break;
+ }
+ }
+
+ // Now compute the non-virtual offset.
+ for (unsigned I = NonVirtualStart, E = Path.size(); I != E; ++I) {
+ const CXXBasePathElement &Element = Path[I];
+
+ // Check the base class offset.
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(Element.Class);
+
+ const CXXRecordDecl *Base = Element.Base->getType()->getAsCXXRecordDecl();
+
+ NonVirtualOffset += Layout.getBaseClassOffset(Base);
+ }
+
+ // FIXME: This should probably use CharUnits or something. Maybe we should
+ // even change the base offsets in ASTRecordLayout to be specified in
+ // CharUnits.
+ return BaseOffset(DerivedRD, VirtualBase, NonVirtualOffset);
+
+}
+
+static BaseOffset ComputeBaseOffset(const ASTContext &Context,
+ const CXXRecordDecl *BaseRD,
+ const CXXRecordDecl *DerivedRD) {
+ CXXBasePaths Paths(/*FindAmbiguities=*/false,
+ /*RecordPaths=*/true, /*DetectVirtual=*/false);
+
+ if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
+ llvm_unreachable("Class must be derived from the passed in base class!");
+
+ return ComputeBaseOffset(Context, DerivedRD, Paths.front());
+}
+
+static BaseOffset
+ComputeReturnAdjustmentBaseOffset(ASTContext &Context,
+ const CXXMethodDecl *DerivedMD,
+ const CXXMethodDecl *BaseMD) {
+ const FunctionType *BaseFT = BaseMD->getType()->getAs<FunctionType>();
+ const FunctionType *DerivedFT = DerivedMD->getType()->getAs<FunctionType>();
+
+ // Canonicalize the return types.
+ CanQualType CanDerivedReturnType =
+ Context.getCanonicalType(DerivedFT->getReturnType());
+ CanQualType CanBaseReturnType =
+ Context.getCanonicalType(BaseFT->getReturnType());
+
+ assert(CanDerivedReturnType->getTypeClass() ==
+ CanBaseReturnType->getTypeClass() &&
+ "Types must have same type class!");
+
+ if (CanDerivedReturnType == CanBaseReturnType) {
+ // No adjustment needed.
+ return BaseOffset();
+ }
+
+ if (isa<ReferenceType>(CanDerivedReturnType)) {
+ CanDerivedReturnType =
+ CanDerivedReturnType->getAs<ReferenceType>()->getPointeeType();
+ CanBaseReturnType =
+ CanBaseReturnType->getAs<ReferenceType>()->getPointeeType();
+ } else if (isa<PointerType>(CanDerivedReturnType)) {
+ CanDerivedReturnType =
+ CanDerivedReturnType->getAs<PointerType>()->getPointeeType();
+ CanBaseReturnType =
+ CanBaseReturnType->getAs<PointerType>()->getPointeeType();
+ } else {
+ llvm_unreachable("Unexpected return type!");
+ }
+
+ // We need to compare unqualified types here; consider
+ // const T *Base::foo();
+ // T *Derived::foo();
+ if (CanDerivedReturnType.getUnqualifiedType() ==
+ CanBaseReturnType.getUnqualifiedType()) {
+ // No adjustment needed.
+ return BaseOffset();
+ }
+
+ const CXXRecordDecl *DerivedRD =
+ cast<CXXRecordDecl>(cast<RecordType>(CanDerivedReturnType)->getDecl());
+
+ const CXXRecordDecl *BaseRD =
+ cast<CXXRecordDecl>(cast<RecordType>(CanBaseReturnType)->getDecl());
+
+ return ComputeBaseOffset(Context, BaseRD, DerivedRD);
+}
+
+void
+FinalOverriders::ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
+ CharUnits OffsetInLayoutClass,
+ SubobjectOffsetMapTy &SubobjectOffsets,
+ SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
+ SubobjectCountMapTy &SubobjectCounts) {
+ const CXXRecordDecl *RD = Base.getBase();
+
+ unsigned SubobjectNumber = 0;
+ if (!IsVirtual)
+ SubobjectNumber = ++SubobjectCounts[RD];
+
+ // Set up the subobject to offset mapping.
+ assert(!SubobjectOffsets.count(std::make_pair(RD, SubobjectNumber))
+ && "Subobject offset already exists!");
+ assert(!SubobjectLayoutClassOffsets.count(std::make_pair(RD, SubobjectNumber))
+ && "Subobject offset already exists!");
+
+ SubobjectOffsets[std::make_pair(RD, SubobjectNumber)] = Base.getBaseOffset();
+ SubobjectLayoutClassOffsets[std::make_pair(RD, SubobjectNumber)] =
+ OffsetInLayoutClass;
+
+ // Traverse our bases.
+ for (const auto &B : RD->bases()) {
+ const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
+
+ CharUnits BaseOffset;
+ CharUnits BaseOffsetInLayoutClass;
+ if (B.isVirtual()) {
+ // Check if we've visited this virtual base before.
+ if (SubobjectOffsets.count(std::make_pair(BaseDecl, 0)))
+ continue;
+
+ const ASTRecordLayout &LayoutClassLayout =
+ Context.getASTRecordLayout(LayoutClass);
+
+ BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
+ BaseOffsetInLayoutClass =
+ LayoutClassLayout.getVBaseClassOffset(BaseDecl);
+ } else {
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+ CharUnits Offset = Layout.getBaseClassOffset(BaseDecl);
+
+ BaseOffset = Base.getBaseOffset() + Offset;
+ BaseOffsetInLayoutClass = OffsetInLayoutClass + Offset;
+ }
+
+ ComputeBaseOffsets(BaseSubobject(BaseDecl, BaseOffset),
+ B.isVirtual(), BaseOffsetInLayoutClass,
+ SubobjectOffsets, SubobjectLayoutClassOffsets,
+ SubobjectCounts);
+ }
+}
+
+void FinalOverriders::dump(raw_ostream &Out, BaseSubobject Base,
+ VisitedVirtualBasesSetTy &VisitedVirtualBases) {
+ const CXXRecordDecl *RD = Base.getBase();
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+
+ for (const auto &B : RD->bases()) {
+ const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
+
+ // Ignore bases that don't have any virtual member functions.
+ if (!BaseDecl->isPolymorphic())
+ continue;
+
+ CharUnits BaseOffset;
+ if (B.isVirtual()) {
+ if (!VisitedVirtualBases.insert(BaseDecl).second) {
+ // We've visited this base before.
+ continue;
+ }
+
+ BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
+ } else {
+ BaseOffset = Layout.getBaseClassOffset(BaseDecl) + Base.getBaseOffset();
+ }
+
+ dump(Out, BaseSubobject(BaseDecl, BaseOffset), VisitedVirtualBases);
+ }
+
+ Out << "Final overriders for (";
+ RD->printQualifiedName(Out);
+ Out << ", ";
+ Out << Base.getBaseOffset().getQuantity() << ")\n";
+
+ // Now dump the overriders for this base subobject.
+ for (const auto *MD : RD->methods()) {
+ if (!MD->isVirtual())
+ continue;
+ MD = MD->getCanonicalDecl();
+
+ OverriderInfo Overrider = getOverrider(MD, Base.getBaseOffset());
+
+ Out << " ";
+ MD->printQualifiedName(Out);
+ Out << " - (";
+ Overrider.Method->printQualifiedName(Out);
+ Out << ", " << Overrider.Offset.getQuantity() << ')';
+
+ BaseOffset Offset;
+ if (!Overrider.Method->isPure())
+ Offset = ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
+
+ if (!Offset.isEmpty()) {
+ Out << " [ret-adj: ";
+ if (Offset.VirtualBase) {
+ Offset.VirtualBase->printQualifiedName(Out);
+ Out << " vbase, ";
+ }
+
+ Out << Offset.NonVirtualOffset.getQuantity() << " nv]";
+ }
+
+ Out << "\n";
+ }
+}
+
+/// VCallOffsetMap - Keeps track of vcall offsets when building a vtable.
+struct VCallOffsetMap {
+
+ typedef std::pair<const CXXMethodDecl *, CharUnits> MethodAndOffsetPairTy;
+
+ /// Offsets - Keeps track of methods and their offsets.
+ // FIXME: This should be a real map and not a vector.
+ SmallVector<MethodAndOffsetPairTy, 16> Offsets;
+
+ /// MethodsCanShareVCallOffset - Returns whether two virtual member functions
+ /// can share the same vcall offset.
+ static bool MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
+ const CXXMethodDecl *RHS);
+
+public:
+ /// AddVCallOffset - Adds a vcall offset to the map. Returns true if the
+ /// add was successful, or false if there was already a member function with
+ /// the same signature in the map.
+ bool AddVCallOffset(const CXXMethodDecl *MD, CharUnits OffsetOffset);
+
+ /// getVCallOffsetOffset - Returns the vcall offset offset (relative to the
+ /// vtable address point) for the given virtual member function.
+ CharUnits getVCallOffsetOffset(const CXXMethodDecl *MD);
+
+ // empty - Return whether the offset map is empty or not.
+ bool empty() const { return Offsets.empty(); }
+};
+
+static bool HasSameVirtualSignature(const CXXMethodDecl *LHS,
+ const CXXMethodDecl *RHS) {
+ const FunctionProtoType *LT =
+ cast<FunctionProtoType>(LHS->getType().getCanonicalType());
+ const FunctionProtoType *RT =
+ cast<FunctionProtoType>(RHS->getType().getCanonicalType());
+
+ // Fast-path matches in the canonical types.
+ if (LT == RT) return true;
+
+ // Force the signatures to match. We can't rely on the overrides
+ // list here because there isn't necessarily an inheritance
+ // relationship between the two methods.
+ if (LT->getTypeQuals() != RT->getTypeQuals() ||
+ LT->getNumParams() != RT->getNumParams())
+ return false;
+ for (unsigned I = 0, E = LT->getNumParams(); I != E; ++I)
+ if (LT->getParamType(I) != RT->getParamType(I))
+ return false;
+ return true;
+}
+
+bool VCallOffsetMap::MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
+ const CXXMethodDecl *RHS) {
+ assert(LHS->isVirtual() && "LHS must be virtual!");
+ assert(RHS->isVirtual() && "LHS must be virtual!");
+
+ // A destructor can share a vcall offset with another destructor.
+ if (isa<CXXDestructorDecl>(LHS))
+ return isa<CXXDestructorDecl>(RHS);
+
+ // FIXME: We need to check more things here.
+
+ // The methods must have the same name.
+ DeclarationName LHSName = LHS->getDeclName();
+ DeclarationName RHSName = RHS->getDeclName();
+ if (LHSName != RHSName)
+ return false;
+
+ // And the same signatures.
+ return HasSameVirtualSignature(LHS, RHS);
+}
+
+bool VCallOffsetMap::AddVCallOffset(const CXXMethodDecl *MD,
+ CharUnits OffsetOffset) {
+ // Check if we can reuse an offset.
+ for (unsigned I = 0, E = Offsets.size(); I != E; ++I) {
+ if (MethodsCanShareVCallOffset(Offsets[I].first, MD))
+ return false;
+ }
+
+ // Add the offset.
+ Offsets.push_back(MethodAndOffsetPairTy(MD, OffsetOffset));
+ return true;
+}
+
+CharUnits VCallOffsetMap::getVCallOffsetOffset(const CXXMethodDecl *MD) {
+ // Look for an offset.
+ for (unsigned I = 0, E = Offsets.size(); I != E; ++I) {
+ if (MethodsCanShareVCallOffset(Offsets[I].first, MD))
+ return Offsets[I].second;
+ }
+
+ llvm_unreachable("Should always find a vcall offset offset!");
+}
+
+/// VCallAndVBaseOffsetBuilder - Class for building vcall and vbase offsets.
+class VCallAndVBaseOffsetBuilder {
+public:
+ typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
+ VBaseOffsetOffsetsMapTy;
+
+private:
+ /// MostDerivedClass - The most derived class for which we're building vcall
+ /// and vbase offsets.
+ const CXXRecordDecl *MostDerivedClass;
+
+ /// LayoutClass - The class we're using for layout information. Will be
+ /// different than the most derived class if we're building a construction
+ /// vtable.
+ const CXXRecordDecl *LayoutClass;
+
+ /// Context - The ASTContext which we will use for layout information.
+ ASTContext &Context;
+
+ /// Components - vcall and vbase offset components
+ typedef SmallVector<VTableComponent, 64> VTableComponentVectorTy;
+ VTableComponentVectorTy Components;
+
+ /// VisitedVirtualBases - Visited virtual bases.
+ llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
+
+ /// VCallOffsets - Keeps track of vcall offsets.
+ VCallOffsetMap VCallOffsets;
+
+
+ /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets,
+ /// relative to the address point.
+ VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
+
+ /// FinalOverriders - The final overriders of the most derived class.
+ /// (Can be null when we're not building a vtable of the most derived class).
+ const FinalOverriders *Overriders;
+
+ /// AddVCallAndVBaseOffsets - Add vcall offsets and vbase offsets for the
+ /// given base subobject.
+ void AddVCallAndVBaseOffsets(BaseSubobject Base, bool BaseIsVirtual,
+ CharUnits RealBaseOffset);
+
+ /// AddVCallOffsets - Add vcall offsets for the given base subobject.
+ void AddVCallOffsets(BaseSubobject Base, CharUnits VBaseOffset);
+
+ /// AddVBaseOffsets - Add vbase offsets for the given class.
+ void AddVBaseOffsets(const CXXRecordDecl *Base,
+ CharUnits OffsetInLayoutClass);
+
+ /// getCurrentOffsetOffset - Get the current vcall or vbase offset offset in
+ /// chars, relative to the vtable address point.
+ CharUnits getCurrentOffsetOffset() const;
+
+public:
+ VCallAndVBaseOffsetBuilder(const CXXRecordDecl *MostDerivedClass,
+ const CXXRecordDecl *LayoutClass,
+ const FinalOverriders *Overriders,
+ BaseSubobject Base, bool BaseIsVirtual,
+ CharUnits OffsetInLayoutClass)
+ : MostDerivedClass(MostDerivedClass), LayoutClass(LayoutClass),
+ Context(MostDerivedClass->getASTContext()), Overriders(Overriders) {
+
+ // Add vcall and vbase offsets.
+ AddVCallAndVBaseOffsets(Base, BaseIsVirtual, OffsetInLayoutClass);
+ }
+
+ /// Methods for iterating over the components.
+ typedef VTableComponentVectorTy::const_reverse_iterator const_iterator;
+ const_iterator components_begin() const { return Components.rbegin(); }
+ const_iterator components_end() const { return Components.rend(); }
+
+ const VCallOffsetMap &getVCallOffsets() const { return VCallOffsets; }
+ const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
+ return VBaseOffsetOffsets;
+ }
+};
+
+void
+VCallAndVBaseOffsetBuilder::AddVCallAndVBaseOffsets(BaseSubobject Base,
+ bool BaseIsVirtual,
+ CharUnits RealBaseOffset) {
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base.getBase());
+
+ // Itanium C++ ABI 2.5.2:
+ // ..in classes sharing a virtual table with a primary base class, the vcall
+ // and vbase offsets added by the derived class all come before the vcall
+ // and vbase offsets required by the base class, so that the latter may be
+ // laid out as required by the base class without regard to additions from
+ // the derived class(es).
+
+ // (Since we're emitting the vcall and vbase offsets in reverse order, we'll
+ // emit them for the primary base first).
+ if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
+ bool PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
+
+ CharUnits PrimaryBaseOffset;
+
+ // Get the base offset of the primary base.
+ if (PrimaryBaseIsVirtual) {
+ assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
+ "Primary vbase should have a zero offset!");
+
+ const ASTRecordLayout &MostDerivedClassLayout =
+ Context.getASTRecordLayout(MostDerivedClass);
+
+ PrimaryBaseOffset =
+ MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
+ } else {
+ assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
+ "Primary base should have a zero offset!");
+
+ PrimaryBaseOffset = Base.getBaseOffset();
+ }
+
+ AddVCallAndVBaseOffsets(
+ BaseSubobject(PrimaryBase,PrimaryBaseOffset),
+ PrimaryBaseIsVirtual, RealBaseOffset);
+ }
+
+ AddVBaseOffsets(Base.getBase(), RealBaseOffset);
+
+ // We only want to add vcall offsets for virtual bases.
+ if (BaseIsVirtual)
+ AddVCallOffsets(Base, RealBaseOffset);
+}
+
+CharUnits VCallAndVBaseOffsetBuilder::getCurrentOffsetOffset() const {
+ // OffsetIndex is the index of this vcall or vbase offset, relative to the
+ // vtable address point. (We subtract 3 to account for the information just
+ // above the address point, the RTTI info, the offset to top, and the
+ // vcall offset itself).
+ int64_t OffsetIndex = -(int64_t)(3 + Components.size());
+
+ CharUnits PointerWidth =
+ Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
+ CharUnits OffsetOffset = PointerWidth * OffsetIndex;
+ return OffsetOffset;
+}
+
+void VCallAndVBaseOffsetBuilder::AddVCallOffsets(BaseSubobject Base,
+ CharUnits VBaseOffset) {
+ const CXXRecordDecl *RD = Base.getBase();
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+
+ const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
+
+ // Handle the primary base first.
+ // We only want to add vcall offsets if the base is non-virtual; a virtual
+ // primary base will have its vcall and vbase offsets emitted already.
+ if (PrimaryBase && !Layout.isPrimaryBaseVirtual()) {
+ // Get the base offset of the primary base.
+ assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
+ "Primary base should have a zero offset!");
+
+ AddVCallOffsets(BaseSubobject(PrimaryBase, Base.getBaseOffset()),
+ VBaseOffset);
+ }
+
+ // Add the vcall offsets.
+ for (const auto *MD : RD->methods()) {
+ if (!MD->isVirtual())
+ continue;
+ MD = MD->getCanonicalDecl();
+
+ CharUnits OffsetOffset = getCurrentOffsetOffset();
+
+ // Don't add a vcall offset if we already have one for this member function
+ // signature.
+ if (!VCallOffsets.AddVCallOffset(MD, OffsetOffset))
+ continue;
+
+ CharUnits Offset = CharUnits::Zero();
+
+ if (Overriders) {
+ // Get the final overrider.
+ FinalOverriders::OverriderInfo Overrider =
+ Overriders->getOverrider(MD, Base.getBaseOffset());
+
+ /// The vcall offset is the offset from the virtual base to the object
+ /// where the function was overridden.
+ Offset = Overrider.Offset - VBaseOffset;
+ }
+
+ Components.push_back(
+ VTableComponent::MakeVCallOffset(Offset));
+ }
+
+ // And iterate over all non-virtual bases (ignoring the primary base).
+ for (const auto &B : RD->bases()) {
+ if (B.isVirtual())
+ continue;
+
+ const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
+ if (BaseDecl == PrimaryBase)
+ continue;
+
+ // Get the base offset of this base.
+ CharUnits BaseOffset = Base.getBaseOffset() +
+ Layout.getBaseClassOffset(BaseDecl);
+
+ AddVCallOffsets(BaseSubobject(BaseDecl, BaseOffset),
+ VBaseOffset);
+ }
+}
+
+void
+VCallAndVBaseOffsetBuilder::AddVBaseOffsets(const CXXRecordDecl *RD,
+ CharUnits OffsetInLayoutClass) {
+ const ASTRecordLayout &LayoutClassLayout =
+ Context.getASTRecordLayout(LayoutClass);
+
+ // Add vbase offsets.
+ for (const auto &B : RD->bases()) {
+ const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
+
+ // Check if this is a virtual base that we haven't visited before.
+ if (B.isVirtual() && VisitedVirtualBases.insert(BaseDecl).second) {
+ CharUnits Offset =
+ LayoutClassLayout.getVBaseClassOffset(BaseDecl) - OffsetInLayoutClass;
+
+ // Add the vbase offset offset.
+ assert(!VBaseOffsetOffsets.count(BaseDecl) &&
+ "vbase offset offset already exists!");
+
+ CharUnits VBaseOffsetOffset = getCurrentOffsetOffset();
+ VBaseOffsetOffsets.insert(
+ std::make_pair(BaseDecl, VBaseOffsetOffset));
+
+ Components.push_back(
+ VTableComponent::MakeVBaseOffset(Offset));
+ }
+
+ // Check the base class looking for more vbase offsets.
+ AddVBaseOffsets(BaseDecl, OffsetInLayoutClass);
+ }
+}
+
+/// ItaniumVTableBuilder - Class for building vtable layout information.
+class ItaniumVTableBuilder {
+public:
+ /// PrimaryBasesSetVectorTy - A set vector of direct and indirect
+ /// primary bases.
+ typedef llvm::SmallSetVector<const CXXRecordDecl *, 8>
+ PrimaryBasesSetVectorTy;
+
+ typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
+ VBaseOffsetOffsetsMapTy;
+
+ typedef llvm::DenseMap<BaseSubobject, uint64_t>
+ AddressPointsMapTy;
+
+ typedef llvm::DenseMap<GlobalDecl, int64_t> MethodVTableIndicesTy;
+
+private:
+ /// VTables - Global vtable information.
+ ItaniumVTableContext &VTables;
+
+ /// MostDerivedClass - The most derived class for which we're building this
+ /// vtable.
+ const CXXRecordDecl *MostDerivedClass;
+
+ /// MostDerivedClassOffset - If we're building a construction vtable, this
+ /// holds the offset from the layout class to the most derived class.
+ const CharUnits MostDerivedClassOffset;
+
+ /// MostDerivedClassIsVirtual - Whether the most derived class is a virtual
+ /// base. (This only makes sense when building a construction vtable).
+ bool MostDerivedClassIsVirtual;
+
+ /// LayoutClass - The class we're using for layout information. Will be
+ /// different than the most derived class if we're building a construction
+ /// vtable.
+ const CXXRecordDecl *LayoutClass;
+
+ /// Context - The ASTContext which we will use for layout information.
+ ASTContext &Context;
+
+ /// FinalOverriders - The final overriders of the most derived class.
+ const FinalOverriders Overriders;
+
+ /// VCallOffsetsForVBases - Keeps track of vcall offsets for the virtual
+ /// bases in this vtable.
+ llvm::DenseMap<const CXXRecordDecl *, VCallOffsetMap> VCallOffsetsForVBases;
+
+ /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets for
+ /// the most derived class.
+ VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
+
+ /// Components - The components of the vtable being built.
+ SmallVector<VTableComponent, 64> Components;
+
+ /// AddressPoints - Address points for the vtable being built.
+ AddressPointsMapTy AddressPoints;
+
+ /// MethodInfo - Contains information about a method in a vtable.
+ /// (Used for computing 'this' pointer adjustment thunks.
+ struct MethodInfo {
+ /// BaseOffset - The base offset of this method.
+ const CharUnits BaseOffset;
+
+ /// BaseOffsetInLayoutClass - The base offset in the layout class of this
+ /// method.
+ const CharUnits BaseOffsetInLayoutClass;
+
+ /// VTableIndex - The index in the vtable that this method has.
+ /// (For destructors, this is the index of the complete destructor).
+ const uint64_t VTableIndex;
+
+ MethodInfo(CharUnits BaseOffset, CharUnits BaseOffsetInLayoutClass,
+ uint64_t VTableIndex)
+ : BaseOffset(BaseOffset),
+ BaseOffsetInLayoutClass(BaseOffsetInLayoutClass),
+ VTableIndex(VTableIndex) { }
+
+ MethodInfo()
+ : BaseOffset(CharUnits::Zero()),
+ BaseOffsetInLayoutClass(CharUnits::Zero()),
+ VTableIndex(0) { }
+ };
+
+ typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
+
+ /// MethodInfoMap - The information for all methods in the vtable we're
+ /// currently building.
+ MethodInfoMapTy MethodInfoMap;
+
+ /// MethodVTableIndices - Contains the index (relative to the vtable address
+ /// point) where the function pointer for a virtual function is stored.
+ MethodVTableIndicesTy MethodVTableIndices;
+
+ typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
+
+ /// VTableThunks - The thunks by vtable index in the vtable currently being
+ /// built.
+ VTableThunksMapTy VTableThunks;
+
+ typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
+ typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
+
+ /// Thunks - A map that contains all the thunks needed for all methods in the
+ /// most derived class for which the vtable is currently being built.
+ ThunksMapTy Thunks;
+
+ /// AddThunk - Add a thunk for the given method.
+ void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk);
+
+ /// ComputeThisAdjustments - Compute the 'this' pointer adjustments for the
+ /// part of the vtable we're currently building.
+ void ComputeThisAdjustments();
+
+ typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
+
+ /// PrimaryVirtualBases - All known virtual bases who are a primary base of
+ /// some other base.
+ VisitedVirtualBasesSetTy PrimaryVirtualBases;
+
+ /// ComputeReturnAdjustment - Compute the return adjustment given a return
+ /// adjustment base offset.
+ ReturnAdjustment ComputeReturnAdjustment(BaseOffset Offset);
+
+ /// ComputeThisAdjustmentBaseOffset - Compute the base offset for adjusting
+ /// the 'this' pointer from the base subobject to the derived subobject.
+ BaseOffset ComputeThisAdjustmentBaseOffset(BaseSubobject Base,
+ BaseSubobject Derived) const;
+
+ /// ComputeThisAdjustment - Compute the 'this' pointer adjustment for the
+ /// given virtual member function, its offset in the layout class and its
+ /// final overrider.
+ ThisAdjustment
+ ComputeThisAdjustment(const CXXMethodDecl *MD,
+ CharUnits BaseOffsetInLayoutClass,
+ FinalOverriders::OverriderInfo Overrider);
+
+ /// AddMethod - Add a single virtual member function to the vtable
+ /// components vector.
+ void AddMethod(const CXXMethodDecl *MD, ReturnAdjustment ReturnAdjustment);
+
+ /// IsOverriderUsed - Returns whether the overrider will ever be used in this
+ /// part of the vtable.
+ ///
+ /// Itanium C++ ABI 2.5.2:
+ ///
+ /// struct A { virtual void f(); };
+ /// struct B : virtual public A { int i; };
+ /// struct C : virtual public A { int j; };
+ /// struct D : public B, public C {};
+ ///
+ /// When B and C are declared, A is a primary base in each case, so although
+ /// vcall offsets are allocated in the A-in-B and A-in-C vtables, no this
+ /// adjustment is required and no thunk is generated. However, inside D
+ /// objects, A is no longer a primary base of C, so if we allowed calls to
+ /// C::f() to use the copy of A's vtable in the C subobject, we would need
+ /// to adjust this from C* to B::A*, which would require a third-party
+ /// thunk. Since we require that a call to C::f() first convert to A*,
+ /// C-in-D's copy of A's vtable is never referenced, so this is not
+ /// necessary.
+ bool IsOverriderUsed(const CXXMethodDecl *Overrider,
+ CharUnits BaseOffsetInLayoutClass,
+ const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
+ CharUnits FirstBaseOffsetInLayoutClass) const;
+
+
+ /// AddMethods - Add the methods of this base subobject and all its
+ /// primary bases to the vtable components vector.
+ void AddMethods(BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
+ const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
+ CharUnits FirstBaseOffsetInLayoutClass,
+ PrimaryBasesSetVectorTy &PrimaryBases);
+
+ // LayoutVTable - Layout the vtable for the given base class, including its
+ // secondary vtables and any vtables for virtual bases.
+ void LayoutVTable();
+
+ /// LayoutPrimaryAndSecondaryVTables - Layout the primary vtable for the
+ /// given base subobject, as well as all its secondary vtables.
+ ///
+ /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
+ /// or a direct or indirect base of a virtual base.
+ ///
+ /// \param BaseIsVirtualInLayoutClass - Whether the base subobject is virtual
+ /// in the layout class.
+ void LayoutPrimaryAndSecondaryVTables(BaseSubobject Base,
+ bool BaseIsMorallyVirtual,
+ bool BaseIsVirtualInLayoutClass,
+ CharUnits OffsetInLayoutClass);
+
+ /// LayoutSecondaryVTables - Layout the secondary vtables for the given base
+ /// subobject.
+ ///
+ /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
+ /// or a direct or indirect base of a virtual base.
+ void LayoutSecondaryVTables(BaseSubobject Base, bool BaseIsMorallyVirtual,
+ CharUnits OffsetInLayoutClass);
+
+ /// DeterminePrimaryVirtualBases - Determine the primary virtual bases in this
+ /// class hierarchy.
+ void DeterminePrimaryVirtualBases(const CXXRecordDecl *RD,
+ CharUnits OffsetInLayoutClass,
+ VisitedVirtualBasesSetTy &VBases);
+
+ /// LayoutVTablesForVirtualBases - Layout vtables for all virtual bases of the
+ /// given base (excluding any primary bases).
+ void LayoutVTablesForVirtualBases(const CXXRecordDecl *RD,
+ VisitedVirtualBasesSetTy &VBases);
+
+ /// isBuildingConstructionVTable - Return whether this vtable builder is
+ /// building a construction vtable.
+ bool isBuildingConstructorVTable() const {
+ return MostDerivedClass != LayoutClass;
+ }
+
+public:
+ ItaniumVTableBuilder(ItaniumVTableContext &VTables,
+ const CXXRecordDecl *MostDerivedClass,
+ CharUnits MostDerivedClassOffset,
+ bool MostDerivedClassIsVirtual,
+ const CXXRecordDecl *LayoutClass)
+ : VTables(VTables), MostDerivedClass(MostDerivedClass),
+ MostDerivedClassOffset(MostDerivedClassOffset),
+ MostDerivedClassIsVirtual(MostDerivedClassIsVirtual),
+ LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()),
+ Overriders(MostDerivedClass, MostDerivedClassOffset, LayoutClass) {
+ assert(!Context.getTargetInfo().getCXXABI().isMicrosoft());
+
+ LayoutVTable();
+
+ if (Context.getLangOpts().DumpVTableLayouts)
+ dumpLayout(llvm::outs());
+ }
+
+ uint64_t getNumThunks() const {
+ return Thunks.size();
+ }
+
+ ThunksMapTy::const_iterator thunks_begin() const {
+ return Thunks.begin();
+ }
+
+ ThunksMapTy::const_iterator thunks_end() const {
+ return Thunks.end();
+ }
+
+ const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
+ return VBaseOffsetOffsets;
+ }
+
+ const AddressPointsMapTy &getAddressPoints() const {
+ return AddressPoints;
+ }
+
+ MethodVTableIndicesTy::const_iterator vtable_indices_begin() const {
+ return MethodVTableIndices.begin();
+ }
+
+ MethodVTableIndicesTy::const_iterator vtable_indices_end() const {
+ return MethodVTableIndices.end();
+ }
+
+ /// getNumVTableComponents - Return the number of components in the vtable
+ /// currently built.
+ uint64_t getNumVTableComponents() const {
+ return Components.size();
+ }
+
+ const VTableComponent *vtable_component_begin() const {
+ return Components.begin();
+ }
+
+ const VTableComponent *vtable_component_end() const {
+ return Components.end();
+ }
+
+ AddressPointsMapTy::const_iterator address_points_begin() const {
+ return AddressPoints.begin();
+ }
+
+ AddressPointsMapTy::const_iterator address_points_end() const {
+ return AddressPoints.end();
+ }
+
+ VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
+ return VTableThunks.begin();
+ }
+
+ VTableThunksMapTy::const_iterator vtable_thunks_end() const {
+ return VTableThunks.end();
+ }
+
+ /// dumpLayout - Dump the vtable layout.
+ void dumpLayout(raw_ostream&);
+};
+
+void ItaniumVTableBuilder::AddThunk(const CXXMethodDecl *MD,
+ const ThunkInfo &Thunk) {
+ assert(!isBuildingConstructorVTable() &&
+ "Can't add thunks for construction vtable");
+
+ SmallVectorImpl<ThunkInfo> &ThunksVector = Thunks[MD];
+
+ // Check if we have this thunk already.
+ if (std::find(ThunksVector.begin(), ThunksVector.end(), Thunk) !=
+ ThunksVector.end())
+ return;
+
+ ThunksVector.push_back(Thunk);
+}
+
+typedef llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverriddenMethodsSetTy;
+
+/// Visit all the methods overridden by the given method recursively,
+/// in a depth-first pre-order. The Visitor's visitor method returns a bool
+/// indicating whether to continue the recursion for the given overridden
+/// method (i.e. returning false stops the iteration).
+template <class VisitorTy>
+static void
+visitAllOverriddenMethods(const CXXMethodDecl *MD, VisitorTy &Visitor) {
+ assert(MD->isVirtual() && "Method is not virtual!");
+
+ for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
+ E = MD->end_overridden_methods(); I != E; ++I) {
+ const CXXMethodDecl *OverriddenMD = *I;
+ if (!Visitor.visit(OverriddenMD))
+ continue;
+ visitAllOverriddenMethods(OverriddenMD, Visitor);
+ }
+}
+
+namespace {
+ struct OverriddenMethodsCollector {
+ OverriddenMethodsSetTy *Methods;
+
+ bool visit(const CXXMethodDecl *MD) {
+ // Don't recurse on this method if we've already collected it.
+ return Methods->insert(MD).second;
+ }
+ };
+}
+
+/// ComputeAllOverriddenMethods - Given a method decl, will return a set of all
+/// the overridden methods that the function decl overrides.
+static void
+ComputeAllOverriddenMethods(const CXXMethodDecl *MD,
+ OverriddenMethodsSetTy& OverriddenMethods) {
+ OverriddenMethodsCollector Collector = { &OverriddenMethods };
+ visitAllOverriddenMethods(MD, Collector);
+}
+
+void ItaniumVTableBuilder::ComputeThisAdjustments() {
+ // Now go through the method info map and see if any of the methods need
+ // 'this' pointer adjustments.
+ for (MethodInfoMapTy::const_iterator I = MethodInfoMap.begin(),
+ E = MethodInfoMap.end(); I != E; ++I) {
+ const CXXMethodDecl *MD = I->first;
+ const MethodInfo &MethodInfo = I->second;
+
+ // Ignore adjustments for unused function pointers.
+ uint64_t VTableIndex = MethodInfo.VTableIndex;
+ if (Components[VTableIndex].getKind() ==
+ VTableComponent::CK_UnusedFunctionPointer)
+ continue;
+
+ // Get the final overrider for this method.
+ FinalOverriders::OverriderInfo Overrider =
+ Overriders.getOverrider(MD, MethodInfo.BaseOffset);
+
+ // Check if we need an adjustment at all.
+ if (MethodInfo.BaseOffsetInLayoutClass == Overrider.Offset) {
+ // When a return thunk is needed by a derived class that overrides a
+ // virtual base, gcc uses a virtual 'this' adjustment as well.
+ // While the thunk itself might be needed by vtables in subclasses or
+ // in construction vtables, there doesn't seem to be a reason for using
+ // the thunk in this vtable. Still, we do so to match gcc.
+ if (VTableThunks.lookup(VTableIndex).Return.isEmpty())
+ continue;
+ }
+
+ ThisAdjustment ThisAdjustment =
+ ComputeThisAdjustment(MD, MethodInfo.BaseOffsetInLayoutClass, Overrider);
+
+ if (ThisAdjustment.isEmpty())
+ continue;
+
+ // Add it.
+ VTableThunks[VTableIndex].This = ThisAdjustment;
+
+ if (isa<CXXDestructorDecl>(MD)) {
+ // Add an adjustment for the deleting destructor as well.
+ VTableThunks[VTableIndex + 1].This = ThisAdjustment;
+ }
+ }
+
+ /// Clear the method info map.
+ MethodInfoMap.clear();
+
+ if (isBuildingConstructorVTable()) {
+ // We don't need to store thunk information for construction vtables.
+ return;
+ }
+
+ for (VTableThunksMapTy::const_iterator I = VTableThunks.begin(),
+ E = VTableThunks.end(); I != E; ++I) {
+ const VTableComponent &Component = Components[I->first];
+ const ThunkInfo &Thunk = I->second;
+ const CXXMethodDecl *MD;
+
+ switch (Component.getKind()) {
+ default:
+ llvm_unreachable("Unexpected vtable component kind!");
+ case VTableComponent::CK_FunctionPointer:
+ MD = Component.getFunctionDecl();
+ break;
+ case VTableComponent::CK_CompleteDtorPointer:
+ MD = Component.getDestructorDecl();
+ break;
+ case VTableComponent::CK_DeletingDtorPointer:
+ // We've already added the thunk when we saw the complete dtor pointer.
+ continue;
+ }
+
+ if (MD->getParent() == MostDerivedClass)
+ AddThunk(MD, Thunk);
+ }
+}
+
+ReturnAdjustment
+ItaniumVTableBuilder::ComputeReturnAdjustment(BaseOffset Offset) {
+ ReturnAdjustment Adjustment;
+
+ if (!Offset.isEmpty()) {
+ if (Offset.VirtualBase) {
+ // Get the virtual base offset offset.
+ if (Offset.DerivedClass == MostDerivedClass) {
+ // We can get the offset offset directly from our map.
+ Adjustment.Virtual.Itanium.VBaseOffsetOffset =
+ VBaseOffsetOffsets.lookup(Offset.VirtualBase).getQuantity();
+ } else {
+ Adjustment.Virtual.Itanium.VBaseOffsetOffset =
+ VTables.getVirtualBaseOffsetOffset(Offset.DerivedClass,
+ Offset.VirtualBase).getQuantity();
+ }
+ }
+
+ Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
+ }
+
+ return Adjustment;
+}
+
+BaseOffset ItaniumVTableBuilder::ComputeThisAdjustmentBaseOffset(
+ BaseSubobject Base, BaseSubobject Derived) const {
+ const CXXRecordDecl *BaseRD = Base.getBase();
+ const CXXRecordDecl *DerivedRD = Derived.getBase();
+
+ CXXBasePaths Paths(/*FindAmbiguities=*/true,
+ /*RecordPaths=*/true, /*DetectVirtual=*/true);
+
+ if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
+ llvm_unreachable("Class must be derived from the passed in base class!");
+
+ // We have to go through all the paths, and see which one leads us to the
+ // right base subobject.
+ for (CXXBasePaths::const_paths_iterator I = Paths.begin(), E = Paths.end();
+ I != E; ++I) {
+ BaseOffset Offset = ComputeBaseOffset(Context, DerivedRD, *I);
+
+ CharUnits OffsetToBaseSubobject = Offset.NonVirtualOffset;
+
+ if (Offset.VirtualBase) {
+ // If we have a virtual base class, the non-virtual offset is relative
+ // to the virtual base class offset.
+ const ASTRecordLayout &LayoutClassLayout =
+ Context.getASTRecordLayout(LayoutClass);
+
+ /// Get the virtual base offset, relative to the most derived class
+ /// layout.
+ OffsetToBaseSubobject +=
+ LayoutClassLayout.getVBaseClassOffset(Offset.VirtualBase);
+ } else {
+ // Otherwise, the non-virtual offset is relative to the derived class
+ // offset.
+ OffsetToBaseSubobject += Derived.getBaseOffset();
+ }
+
+ // Check if this path gives us the right base subobject.
+ if (OffsetToBaseSubobject == Base.getBaseOffset()) {
+ // Since we're going from the base class _to_ the derived class, we'll
+ // invert the non-virtual offset here.
+ Offset.NonVirtualOffset = -Offset.NonVirtualOffset;
+ return Offset;
+ }
+ }
+
+ return BaseOffset();
+}
+
+ThisAdjustment ItaniumVTableBuilder::ComputeThisAdjustment(
+ const CXXMethodDecl *MD, CharUnits BaseOffsetInLayoutClass,
+ FinalOverriders::OverriderInfo Overrider) {
+ // Ignore adjustments for pure virtual member functions.
+ if (Overrider.Method->isPure())
+ return ThisAdjustment();
+
+ BaseSubobject OverriddenBaseSubobject(MD->getParent(),
+ BaseOffsetInLayoutClass);
+
+ BaseSubobject OverriderBaseSubobject(Overrider.Method->getParent(),
+ Overrider.Offset);
+
+ // Compute the adjustment offset.
+ BaseOffset Offset = ComputeThisAdjustmentBaseOffset(OverriddenBaseSubobject,
+ OverriderBaseSubobject);
+ if (Offset.isEmpty())
+ return ThisAdjustment();
+
+ ThisAdjustment Adjustment;
+
+ if (Offset.VirtualBase) {
+ // Get the vcall offset map for this virtual base.
+ VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Offset.VirtualBase];
+
+ if (VCallOffsets.empty()) {
+ // We don't have vcall offsets for this virtual base, go ahead and
+ // build them.
+ VCallAndVBaseOffsetBuilder Builder(MostDerivedClass, MostDerivedClass,
+ /*FinalOverriders=*/nullptr,
+ BaseSubobject(Offset.VirtualBase,
+ CharUnits::Zero()),
+ /*BaseIsVirtual=*/true,
+ /*OffsetInLayoutClass=*/
+ CharUnits::Zero());
+
+ VCallOffsets = Builder.getVCallOffsets();
+ }
+
+ Adjustment.Virtual.Itanium.VCallOffsetOffset =
+ VCallOffsets.getVCallOffsetOffset(MD).getQuantity();
+ }
+
+ // Set the non-virtual part of the adjustment.
+ Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
+
+ return Adjustment;
+}
+
+void ItaniumVTableBuilder::AddMethod(const CXXMethodDecl *MD,
+ ReturnAdjustment ReturnAdjustment) {
+ if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
+ assert(ReturnAdjustment.isEmpty() &&
+ "Destructor can't have return adjustment!");
+
+ // Add both the complete destructor and the deleting destructor.
+ Components.push_back(VTableComponent::MakeCompleteDtor(DD));
+ Components.push_back(VTableComponent::MakeDeletingDtor(DD));
+ } else {
+ // Add the return adjustment if necessary.
+ if (!ReturnAdjustment.isEmpty())
+ VTableThunks[Components.size()].Return = ReturnAdjustment;
+
+ // Add the function.
+ Components.push_back(VTableComponent::MakeFunction(MD));
+ }
+}
+
+/// OverridesIndirectMethodInBase - Return whether the given member function
+/// overrides any methods in the set of given bases.
+/// Unlike OverridesMethodInBase, this checks "overriders of overriders".
+/// For example, if we have:
+///
+/// struct A { virtual void f(); }
+/// struct B : A { virtual void f(); }
+/// struct C : B { virtual void f(); }
+///
+/// OverridesIndirectMethodInBase will return true if given C::f as the method
+/// and { A } as the set of bases.
+static bool OverridesIndirectMethodInBases(
+ const CXXMethodDecl *MD,
+ ItaniumVTableBuilder::PrimaryBasesSetVectorTy &Bases) {
+ if (Bases.count(MD->getParent()))
+ return true;
+
+ for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
+ E = MD->end_overridden_methods(); I != E; ++I) {
+ const CXXMethodDecl *OverriddenMD = *I;
+
+ // Check "indirect overriders".
+ if (OverridesIndirectMethodInBases(OverriddenMD, Bases))
+ return true;
+ }
+
+ return false;
+}
+
+bool ItaniumVTableBuilder::IsOverriderUsed(
+ const CXXMethodDecl *Overrider, CharUnits BaseOffsetInLayoutClass,
+ const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
+ CharUnits FirstBaseOffsetInLayoutClass) const {
+ // If the base and the first base in the primary base chain have the same
+ // offsets, then this overrider will be used.
+ if (BaseOffsetInLayoutClass == FirstBaseOffsetInLayoutClass)
+ return true;
+
+ // We know now that Base (or a direct or indirect base of it) is a primary
+ // base in part of the class hierarchy, but not a primary base in the most
+ // derived class.
+
+ // If the overrider is the first base in the primary base chain, we know
+ // that the overrider will be used.
+ if (Overrider->getParent() == FirstBaseInPrimaryBaseChain)
+ return true;
+
+ ItaniumVTableBuilder::PrimaryBasesSetVectorTy PrimaryBases;
+
+ const CXXRecordDecl *RD = FirstBaseInPrimaryBaseChain;
+ PrimaryBases.insert(RD);
+
+ // Now traverse the base chain, starting with the first base, until we find
+ // the base that is no longer a primary base.
+ while (true) {
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+ const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
+
+ if (!PrimaryBase)
+ break;
+
+ if (Layout.isPrimaryBaseVirtual()) {
+ assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
+ "Primary base should always be at offset 0!");
+
+ const ASTRecordLayout &LayoutClassLayout =
+ Context.getASTRecordLayout(LayoutClass);
+
+ // Now check if this is the primary base that is not a primary base in the
+ // most derived class.
+ if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
+ FirstBaseOffsetInLayoutClass) {
+ // We found it, stop walking the chain.
+ break;
+ }
+ } else {
+ assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
+ "Primary base should always be at offset 0!");
+ }
+
+ if (!PrimaryBases.insert(PrimaryBase))
+ llvm_unreachable("Found a duplicate primary base!");
+
+ RD = PrimaryBase;
+ }
+
+ // If the final overrider is an override of one of the primary bases,
+ // then we know that it will be used.
+ return OverridesIndirectMethodInBases(Overrider, PrimaryBases);
+}
+
+typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> BasesSetVectorTy;
+
+/// FindNearestOverriddenMethod - Given a method, returns the overridden method
+/// from the nearest base. Returns null if no method was found.
+/// The Bases are expected to be sorted in a base-to-derived order.
+static const CXXMethodDecl *
+FindNearestOverriddenMethod(const CXXMethodDecl *MD,
+ BasesSetVectorTy &Bases) {
+ OverriddenMethodsSetTy OverriddenMethods;
+ ComputeAllOverriddenMethods(MD, OverriddenMethods);
+
+ for (int I = Bases.size(), E = 0; I != E; --I) {
+ const CXXRecordDecl *PrimaryBase = Bases[I - 1];
+
+ // Now check the overridden methods.
+ for (OverriddenMethodsSetTy::const_iterator I = OverriddenMethods.begin(),
+ E = OverriddenMethods.end(); I != E; ++I) {
+ const CXXMethodDecl *OverriddenMD = *I;
+
+ // We found our overridden method.
+ if (OverriddenMD->getParent() == PrimaryBase)
+ return OverriddenMD;
+ }
+ }
+
+ return nullptr;
+}
+
+void ItaniumVTableBuilder::AddMethods(
+ BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
+ const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
+ CharUnits FirstBaseOffsetInLayoutClass,
+ PrimaryBasesSetVectorTy &PrimaryBases) {
+ // Itanium C++ ABI 2.5.2:
+ // The order of the virtual function pointers in a virtual table is the
+ // order of declaration of the corresponding member functions in the class.
+ //
+ // There is an entry for any virtual function declared in a class,
+ // whether it is a new function or overrides a base class function,
+ // unless it overrides a function from the primary base, and conversion
+ // between their return types does not require an adjustment.
+
+ const CXXRecordDecl *RD = Base.getBase();
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+
+ if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
+ CharUnits PrimaryBaseOffset;
+ CharUnits PrimaryBaseOffsetInLayoutClass;
+ if (Layout.isPrimaryBaseVirtual()) {
+ assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
+ "Primary vbase should have a zero offset!");
+
+ const ASTRecordLayout &MostDerivedClassLayout =
+ Context.getASTRecordLayout(MostDerivedClass);
+
+ PrimaryBaseOffset =
+ MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
+
+ const ASTRecordLayout &LayoutClassLayout =
+ Context.getASTRecordLayout(LayoutClass);
+
+ PrimaryBaseOffsetInLayoutClass =
+ LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
+ } else {
+ assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
+ "Primary base should have a zero offset!");
+
+ PrimaryBaseOffset = Base.getBaseOffset();
+ PrimaryBaseOffsetInLayoutClass = BaseOffsetInLayoutClass;
+ }
+
+ AddMethods(BaseSubobject(PrimaryBase, PrimaryBaseOffset),
+ PrimaryBaseOffsetInLayoutClass, FirstBaseInPrimaryBaseChain,
+ FirstBaseOffsetInLayoutClass, PrimaryBases);
+
+ if (!PrimaryBases.insert(PrimaryBase))
+ llvm_unreachable("Found a duplicate primary base!");
+ }
+
+ const CXXDestructorDecl *ImplicitVirtualDtor = nullptr;
+
+ typedef llvm::SmallVector<const CXXMethodDecl *, 8> NewVirtualFunctionsTy;
+ NewVirtualFunctionsTy NewVirtualFunctions;
+
+ // Now go through all virtual member functions and add them.
+ for (const auto *MD : RD->methods()) {
+ if (!MD->isVirtual())
+ continue;
+ MD = MD->getCanonicalDecl();
+
+ // Get the final overrider.
+ FinalOverriders::OverriderInfo Overrider =
+ Overriders.getOverrider(MD, Base.getBaseOffset());
+
+ // Check if this virtual member function overrides a method in a primary
+ // base. If this is the case, and the return type doesn't require adjustment
+ // then we can just use the member function from the primary base.
+ if (const CXXMethodDecl *OverriddenMD =
+ FindNearestOverriddenMethod(MD, PrimaryBases)) {
+ if (ComputeReturnAdjustmentBaseOffset(Context, MD,
+ OverriddenMD).isEmpty()) {
+ // Replace the method info of the overridden method with our own
+ // method.
+ assert(MethodInfoMap.count(OverriddenMD) &&
+ "Did not find the overridden method!");
+ MethodInfo &OverriddenMethodInfo = MethodInfoMap[OverriddenMD];
+
+ MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
+ OverriddenMethodInfo.VTableIndex);
+
+ assert(!MethodInfoMap.count(MD) &&
+ "Should not have method info for this method yet!");
+
+ MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
+ MethodInfoMap.erase(OverriddenMD);
+
+ // If the overridden method exists in a virtual base class or a direct
+ // or indirect base class of a virtual base class, we need to emit a
+ // thunk if we ever have a class hierarchy where the base class is not
+ // a primary base in the complete object.
+ if (!isBuildingConstructorVTable() && OverriddenMD != MD) {
+ // Compute the this adjustment.
+ ThisAdjustment ThisAdjustment =
+ ComputeThisAdjustment(OverriddenMD, BaseOffsetInLayoutClass,
+ Overrider);
+
+ if (ThisAdjustment.Virtual.Itanium.VCallOffsetOffset &&
+ Overrider.Method->getParent() == MostDerivedClass) {
+
+ // There's no return adjustment from OverriddenMD and MD,
+ // but that doesn't mean there isn't one between MD and
+ // the final overrider.
+ BaseOffset ReturnAdjustmentOffset =
+ ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
+ ReturnAdjustment ReturnAdjustment =
+ ComputeReturnAdjustment(ReturnAdjustmentOffset);
+
+ // This is a virtual thunk for the most derived class, add it.
+ AddThunk(Overrider.Method,
+ ThunkInfo(ThisAdjustment, ReturnAdjustment));
+ }
+ }
+
+ continue;
+ }
+ }
+
+ if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
+ if (MD->isImplicit()) {
+ // Itanium C++ ABI 2.5.2:
+ // If a class has an implicitly-defined virtual destructor,
+ // its entries come after the declared virtual function pointers.
+
+ assert(!ImplicitVirtualDtor &&
+ "Did already see an implicit virtual dtor!");
+ ImplicitVirtualDtor = DD;
+ continue;
+ }
+ }
+
+ NewVirtualFunctions.push_back(MD);
+ }
+
+ if (ImplicitVirtualDtor)
+ NewVirtualFunctions.push_back(ImplicitVirtualDtor);
+
+ for (NewVirtualFunctionsTy::const_iterator I = NewVirtualFunctions.begin(),
+ E = NewVirtualFunctions.end(); I != E; ++I) {
+ const CXXMethodDecl *MD = *I;
+
+ // Get the final overrider.
+ FinalOverriders::OverriderInfo Overrider =
+ Overriders.getOverrider(MD, Base.getBaseOffset());
+
+ // Insert the method info for this method.
+ MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
+ Components.size());
+
+ assert(!MethodInfoMap.count(MD) &&
+ "Should not have method info for this method yet!");
+ MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
+
+ // Check if this overrider is going to be used.
+ const CXXMethodDecl *OverriderMD = Overrider.Method;
+ if (!IsOverriderUsed(OverriderMD, BaseOffsetInLayoutClass,
+ FirstBaseInPrimaryBaseChain,
+ FirstBaseOffsetInLayoutClass)) {
+ Components.push_back(VTableComponent::MakeUnusedFunction(OverriderMD));
+ continue;
+ }
+
+ // Check if this overrider needs a return adjustment.
+ // We don't want to do this for pure virtual member functions.
+ BaseOffset ReturnAdjustmentOffset;
+ if (!OverriderMD->isPure()) {
+ ReturnAdjustmentOffset =
+ ComputeReturnAdjustmentBaseOffset(Context, OverriderMD, MD);
+ }
+
+ ReturnAdjustment ReturnAdjustment =
+ ComputeReturnAdjustment(ReturnAdjustmentOffset);
+
+ AddMethod(Overrider.Method, ReturnAdjustment);
+ }
+}
+
+void ItaniumVTableBuilder::LayoutVTable() {
+ LayoutPrimaryAndSecondaryVTables(BaseSubobject(MostDerivedClass,
+ CharUnits::Zero()),
+ /*BaseIsMorallyVirtual=*/false,
+ MostDerivedClassIsVirtual,
+ MostDerivedClassOffset);
+
+ VisitedVirtualBasesSetTy VBases;
+
+ // Determine the primary virtual bases.
+ DeterminePrimaryVirtualBases(MostDerivedClass, MostDerivedClassOffset,
+ VBases);
+ VBases.clear();
+
+ LayoutVTablesForVirtualBases(MostDerivedClass, VBases);
+
+ // -fapple-kext adds an extra entry at end of vtbl.
+ bool IsAppleKext = Context.getLangOpts().AppleKext;
+ if (IsAppleKext)
+ Components.push_back(VTableComponent::MakeVCallOffset(CharUnits::Zero()));
+}
+
+void ItaniumVTableBuilder::LayoutPrimaryAndSecondaryVTables(
+ BaseSubobject Base, bool BaseIsMorallyVirtual,
+ bool BaseIsVirtualInLayoutClass, CharUnits OffsetInLayoutClass) {
+ assert(Base.getBase()->isDynamicClass() && "class does not have a vtable!");
+
+ // Add vcall and vbase offsets for this vtable.
+ VCallAndVBaseOffsetBuilder Builder(MostDerivedClass, LayoutClass, &Overriders,
+ Base, BaseIsVirtualInLayoutClass,
+ OffsetInLayoutClass);
+ Components.append(Builder.components_begin(), Builder.components_end());
+
+ // Check if we need to add these vcall offsets.
+ if (BaseIsVirtualInLayoutClass && !Builder.getVCallOffsets().empty()) {
+ VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Base.getBase()];
+
+ if (VCallOffsets.empty())
+ VCallOffsets = Builder.getVCallOffsets();
+ }
+
+ // If we're laying out the most derived class we want to keep track of the
+ // virtual base class offset offsets.
+ if (Base.getBase() == MostDerivedClass)
+ VBaseOffsetOffsets = Builder.getVBaseOffsetOffsets();
+
+ // Add the offset to top.
+ CharUnits OffsetToTop = MostDerivedClassOffset - OffsetInLayoutClass;
+ Components.push_back(VTableComponent::MakeOffsetToTop(OffsetToTop));
+
+ // Next, add the RTTI.
+ Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));
+
+ uint64_t AddressPoint = Components.size();
+
+ // Now go through all virtual member functions and add them.
+ PrimaryBasesSetVectorTy PrimaryBases;
+ AddMethods(Base, OffsetInLayoutClass,
+ Base.getBase(), OffsetInLayoutClass,
+ PrimaryBases);
+
+ const CXXRecordDecl *RD = Base.getBase();
+ if (RD == MostDerivedClass) {
+ assert(MethodVTableIndices.empty());
+ for (MethodInfoMapTy::const_iterator I = MethodInfoMap.begin(),
+ E = MethodInfoMap.end(); I != E; ++I) {
+ const CXXMethodDecl *MD = I->first;
+ const MethodInfo &MI = I->second;
+ if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
+ MethodVTableIndices[GlobalDecl(DD, Dtor_Complete)]
+ = MI.VTableIndex - AddressPoint;
+ MethodVTableIndices[GlobalDecl(DD, Dtor_Deleting)]
+ = MI.VTableIndex + 1 - AddressPoint;
+ } else {
+ MethodVTableIndices[MD] = MI.VTableIndex - AddressPoint;
+ }
+ }
+ }
+
+ // Compute 'this' pointer adjustments.
+ ComputeThisAdjustments();
+
+ // Add all address points.
+ while (true) {
+ AddressPoints.insert(std::make_pair(
+ BaseSubobject(RD, OffsetInLayoutClass),
+ AddressPoint));
+
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+ const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
+
+ if (!PrimaryBase)
+ break;
+
+ if (Layout.isPrimaryBaseVirtual()) {
+ // Check if this virtual primary base is a primary base in the layout
+ // class. If it's not, we don't want to add it.
+ const ASTRecordLayout &LayoutClassLayout =
+ Context.getASTRecordLayout(LayoutClass);
+
+ if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
+ OffsetInLayoutClass) {
+ // We don't want to add this class (or any of its primary bases).
+ break;
+ }
+ }
+
+ RD = PrimaryBase;
+ }
+
+ // Layout secondary vtables.
+ LayoutSecondaryVTables(Base, BaseIsMorallyVirtual, OffsetInLayoutClass);
+}
+
+void
+ItaniumVTableBuilder::LayoutSecondaryVTables(BaseSubobject Base,
+ bool BaseIsMorallyVirtual,
+ CharUnits OffsetInLayoutClass) {
+ // Itanium C++ ABI 2.5.2:
+ // Following the primary virtual table of a derived class are secondary
+ // virtual tables for each of its proper base classes, except any primary
+ // base(s) with which it shares its primary virtual table.
+
+ const CXXRecordDecl *RD = Base.getBase();
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+ const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
+
+ for (const auto &B : RD->bases()) {
+ // Ignore virtual bases, we'll emit them later.
+ if (B.isVirtual())
+ continue;
+
+ const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
+
+ // Ignore bases that don't have a vtable.
+ if (!BaseDecl->isDynamicClass())
+ continue;
+
+ if (isBuildingConstructorVTable()) {
+ // Itanium C++ ABI 2.6.4:
+ // Some of the base class subobjects may not need construction virtual
+ // tables, which will therefore not be present in the construction
+ // virtual table group, even though the subobject virtual tables are
+ // present in the main virtual table group for the complete object.
+ if (!BaseIsMorallyVirtual && !BaseDecl->getNumVBases())
+ continue;
+ }
+
+ // Get the base offset of this base.
+ CharUnits RelativeBaseOffset = Layout.getBaseClassOffset(BaseDecl);
+ CharUnits BaseOffset = Base.getBaseOffset() + RelativeBaseOffset;
+
+ CharUnits BaseOffsetInLayoutClass =
+ OffsetInLayoutClass + RelativeBaseOffset;
+
+ // Don't emit a secondary vtable for a primary base. We might however want
+ // to emit secondary vtables for other bases of this base.
+ if (BaseDecl == PrimaryBase) {
+ LayoutSecondaryVTables(BaseSubobject(BaseDecl, BaseOffset),
+ BaseIsMorallyVirtual, BaseOffsetInLayoutClass);
+ continue;
+ }
+
+ // Layout the primary vtable (and any secondary vtables) for this base.
+ LayoutPrimaryAndSecondaryVTables(
+ BaseSubobject(BaseDecl, BaseOffset),
+ BaseIsMorallyVirtual,
+ /*BaseIsVirtualInLayoutClass=*/false,
+ BaseOffsetInLayoutClass);
+ }
+}
+
+void ItaniumVTableBuilder::DeterminePrimaryVirtualBases(
+ const CXXRecordDecl *RD, CharUnits OffsetInLayoutClass,
+ VisitedVirtualBasesSetTy &VBases) {
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+
+ // Check if this base has a primary base.
+ if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
+
+ // Check if it's virtual.
+ if (Layout.isPrimaryBaseVirtual()) {
+ bool IsPrimaryVirtualBase = true;
+
+ if (isBuildingConstructorVTable()) {
+ // Check if the base is actually a primary base in the class we use for
+ // layout.
+ const ASTRecordLayout &LayoutClassLayout =
+ Context.getASTRecordLayout(LayoutClass);
+
+ CharUnits PrimaryBaseOffsetInLayoutClass =
+ LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
+
+ // We know that the base is not a primary base in the layout class if
+ // the base offsets are different.
+ if (PrimaryBaseOffsetInLayoutClass != OffsetInLayoutClass)
+ IsPrimaryVirtualBase = false;
+ }
+
+ if (IsPrimaryVirtualBase)
+ PrimaryVirtualBases.insert(PrimaryBase);
+ }
+ }
+
+ // Traverse bases, looking for more primary virtual bases.
+ for (const auto &B : RD->bases()) {
+ const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
+
+ CharUnits BaseOffsetInLayoutClass;
+
+ if (B.isVirtual()) {
+ if (!VBases.insert(BaseDecl).second)
+ continue;
+
+ const ASTRecordLayout &LayoutClassLayout =
+ Context.getASTRecordLayout(LayoutClass);
+
+ BaseOffsetInLayoutClass =
+ LayoutClassLayout.getVBaseClassOffset(BaseDecl);
+ } else {
+ BaseOffsetInLayoutClass =
+ OffsetInLayoutClass + Layout.getBaseClassOffset(BaseDecl);
+ }
+
+ DeterminePrimaryVirtualBases(BaseDecl, BaseOffsetInLayoutClass, VBases);
+ }
+}
+
+void ItaniumVTableBuilder::LayoutVTablesForVirtualBases(
+ const CXXRecordDecl *RD, VisitedVirtualBasesSetTy &VBases) {
+ // Itanium C++ ABI 2.5.2:
+ // Then come the virtual base virtual tables, also in inheritance graph
+ // order, and again excluding primary bases (which share virtual tables with
+ // the classes for which they are primary).
+ for (const auto &B : RD->bases()) {
+ const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
+
+ // Check if this base needs a vtable. (If it's virtual, not a primary base
+ // of some other class, and we haven't visited it before).
+ if (B.isVirtual() && BaseDecl->isDynamicClass() &&
+ !PrimaryVirtualBases.count(BaseDecl) &&
+ VBases.insert(BaseDecl).second) {
+ const ASTRecordLayout &MostDerivedClassLayout =
+ Context.getASTRecordLayout(MostDerivedClass);
+ CharUnits BaseOffset =
+ MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
+
+ const ASTRecordLayout &LayoutClassLayout =
+ Context.getASTRecordLayout(LayoutClass);
+ CharUnits BaseOffsetInLayoutClass =
+ LayoutClassLayout.getVBaseClassOffset(BaseDecl);
+
+ LayoutPrimaryAndSecondaryVTables(
+ BaseSubobject(BaseDecl, BaseOffset),
+ /*BaseIsMorallyVirtual=*/true,
+ /*BaseIsVirtualInLayoutClass=*/true,
+ BaseOffsetInLayoutClass);
+ }
+
+ // We only need to check the base for virtual base vtables if it actually
+ // has virtual bases.
+ if (BaseDecl->getNumVBases())
+ LayoutVTablesForVirtualBases(BaseDecl, VBases);
+ }
+}
+
+/// dumpLayout - Dump the vtable layout.
+void ItaniumVTableBuilder::dumpLayout(raw_ostream &Out) {
+ // FIXME: write more tests that actually use the dumpLayout output to prevent
+ // ItaniumVTableBuilder regressions.
+
+ if (isBuildingConstructorVTable()) {
+ Out << "Construction vtable for ('";
+ MostDerivedClass->printQualifiedName(Out);
+ Out << "', ";
+ Out << MostDerivedClassOffset.getQuantity() << ") in '";
+ LayoutClass->printQualifiedName(Out);
+ } else {
+ Out << "Vtable for '";
+ MostDerivedClass->printQualifiedName(Out);
+ }
+ Out << "' (" << Components.size() << " entries).\n";
+
+ // Iterate through the address points and insert them into a new map where
+ // they are keyed by the index and not the base object.
+ // Since an address point can be shared by multiple subobjects, we use an
+ // STL multimap.
+ std::multimap<uint64_t, BaseSubobject> AddressPointsByIndex;
+ for (AddressPointsMapTy::const_iterator I = AddressPoints.begin(),
+ E = AddressPoints.end(); I != E; ++I) {
+ const BaseSubobject& Base = I->first;
+ uint64_t Index = I->second;
+
+ AddressPointsByIndex.insert(std::make_pair(Index, Base));
+ }
+
+ for (unsigned I = 0, E = Components.size(); I != E; ++I) {
+ uint64_t Index = I;
+
+ Out << llvm::format("%4d | ", I);
+
+ const VTableComponent &Component = Components[I];
+
+ // Dump the component.
+ switch (Component.getKind()) {
+
+ case VTableComponent::CK_VCallOffset:
+ Out << "vcall_offset ("
+ << Component.getVCallOffset().getQuantity()
+ << ")";
+ break;
+
+ case VTableComponent::CK_VBaseOffset:
+ Out << "vbase_offset ("
+ << Component.getVBaseOffset().getQuantity()
+ << ")";
+ break;
+
+ case VTableComponent::CK_OffsetToTop:
+ Out << "offset_to_top ("
+ << Component.getOffsetToTop().getQuantity()
+ << ")";
+ break;
+
+ case VTableComponent::CK_RTTI:
+ Component.getRTTIDecl()->printQualifiedName(Out);
+ Out << " RTTI";
+ break;
+
+ case VTableComponent::CK_FunctionPointer: {
+ const CXXMethodDecl *MD = Component.getFunctionDecl();
+
+ std::string Str =
+ PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
+ MD);
+ Out << Str;
+ if (MD->isPure())
+ Out << " [pure]";
+
+ if (MD->isDeleted())
+ Out << " [deleted]";
+
+ ThunkInfo Thunk = VTableThunks.lookup(I);
+ if (!Thunk.isEmpty()) {
+ // If this function pointer has a return adjustment, dump it.
+ if (!Thunk.Return.isEmpty()) {
+ Out << "\n [return adjustment: ";
+ Out << Thunk.Return.NonVirtual << " non-virtual";
+
+ if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
+ Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
+ Out << " vbase offset offset";
+ }
+
+ Out << ']';
+ }
+
+ // If this function pointer has a 'this' pointer adjustment, dump it.
+ if (!Thunk.This.isEmpty()) {
+ Out << "\n [this adjustment: ";
+ Out << Thunk.This.NonVirtual << " non-virtual";
+
+ if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
+ Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
+ Out << " vcall offset offset";
+ }
+
+ Out << ']';
+ }
+ }
+
+ break;
+ }
+
+ case VTableComponent::CK_CompleteDtorPointer:
+ case VTableComponent::CK_DeletingDtorPointer: {
+ bool IsComplete =
+ Component.getKind() == VTableComponent::CK_CompleteDtorPointer;
+
+ const CXXDestructorDecl *DD = Component.getDestructorDecl();
+
+ DD->printQualifiedName(Out);
+ if (IsComplete)
+ Out << "() [complete]";
+ else
+ Out << "() [deleting]";
+
+ if (DD->isPure())
+ Out << " [pure]";
+
+ ThunkInfo Thunk = VTableThunks.lookup(I);
+ if (!Thunk.isEmpty()) {
+ // If this destructor has a 'this' pointer adjustment, dump it.
+ if (!Thunk.This.isEmpty()) {
+ Out << "\n [this adjustment: ";
+ Out << Thunk.This.NonVirtual << " non-virtual";
+
+ if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
+ Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
+ Out << " vcall offset offset";
+ }
+
+ Out << ']';
+ }
+ }
+
+ break;
+ }
+
+ case VTableComponent::CK_UnusedFunctionPointer: {
+ const CXXMethodDecl *MD = Component.getUnusedFunctionDecl();
+
+ std::string Str =
+ PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
+ MD);
+ Out << "[unused] " << Str;
+ if (MD->isPure())
+ Out << " [pure]";
+ }
+
+ }
+
+ Out << '\n';
+
+ // Dump the next address point.
+ uint64_t NextIndex = Index + 1;
+ if (AddressPointsByIndex.count(NextIndex)) {
+ if (AddressPointsByIndex.count(NextIndex) == 1) {
+ const BaseSubobject &Base =
+ AddressPointsByIndex.find(NextIndex)->second;
+
+ Out << " -- (";
+ Base.getBase()->printQualifiedName(Out);
+ Out << ", " << Base.getBaseOffset().getQuantity();
+ Out << ") vtable address --\n";
+ } else {
+ CharUnits BaseOffset =
+ AddressPointsByIndex.lower_bound(NextIndex)->second.getBaseOffset();
+
+ // We store the class names in a set to get a stable order.
+ std::set<std::string> ClassNames;
+ for (std::multimap<uint64_t, BaseSubobject>::const_iterator I =
+ AddressPointsByIndex.lower_bound(NextIndex), E =
+ AddressPointsByIndex.upper_bound(NextIndex); I != E; ++I) {
+ assert(I->second.getBaseOffset() == BaseOffset &&
+ "Invalid base offset!");
+ const CXXRecordDecl *RD = I->second.getBase();
+ ClassNames.insert(RD->getQualifiedNameAsString());
+ }
+
+ for (std::set<std::string>::const_iterator I = ClassNames.begin(),
+ E = ClassNames.end(); I != E; ++I) {
+ Out << " -- (" << *I;
+ Out << ", " << BaseOffset.getQuantity() << ") vtable address --\n";
+ }
+ }
+ }
+ }
+
+ Out << '\n';
+
+ if (isBuildingConstructorVTable())
+ return;
+
+ if (MostDerivedClass->getNumVBases()) {
+ // We store the virtual base class names and their offsets in a map to get
+ // a stable order.
+
+ std::map<std::string, CharUnits> ClassNamesAndOffsets;
+ for (VBaseOffsetOffsetsMapTy::const_iterator I = VBaseOffsetOffsets.begin(),
+ E = VBaseOffsetOffsets.end(); I != E; ++I) {
+ std::string ClassName = I->first->getQualifiedNameAsString();
+ CharUnits OffsetOffset = I->second;
+ ClassNamesAndOffsets.insert(
+ std::make_pair(ClassName, OffsetOffset));
+ }
+
+ Out << "Virtual base offset offsets for '";
+ MostDerivedClass->printQualifiedName(Out);
+ Out << "' (";
+ Out << ClassNamesAndOffsets.size();
+ Out << (ClassNamesAndOffsets.size() == 1 ? " entry" : " entries") << ").\n";
+
+ for (std::map<std::string, CharUnits>::const_iterator I =
+ ClassNamesAndOffsets.begin(), E = ClassNamesAndOffsets.end();
+ I != E; ++I)
+ Out << " " << I->first << " | " << I->second.getQuantity() << '\n';
+
+ Out << "\n";
+ }
+
+ if (!Thunks.empty()) {
+ // We store the method names in a map to get a stable order.
+ std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
+
+ for (ThunksMapTy::const_iterator I = Thunks.begin(), E = Thunks.end();
+ I != E; ++I) {
+ const CXXMethodDecl *MD = I->first;
+ std::string MethodName =
+ PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
+ MD);
+
+ MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
+ }
+
+ for (std::map<std::string, const CXXMethodDecl *>::const_iterator I =
+ MethodNamesAndDecls.begin(), E = MethodNamesAndDecls.end();
+ I != E; ++I) {
+ const std::string &MethodName = I->first;
+ const CXXMethodDecl *MD = I->second;
+
+ ThunkInfoVectorTy ThunksVector = Thunks[MD];
+ std::sort(ThunksVector.begin(), ThunksVector.end(),
+ [](const ThunkInfo &LHS, const ThunkInfo &RHS) {
+ assert(LHS.Method == nullptr && RHS.Method == nullptr);
+ return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return);
+ });
+
+ Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
+ Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
+
+ for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
+ const ThunkInfo &Thunk = ThunksVector[I];
+
+ Out << llvm::format("%4d | ", I);
+
+ // If this function pointer has a return pointer adjustment, dump it.
+ if (!Thunk.Return.isEmpty()) {
+ Out << "return adjustment: " << Thunk.Return.NonVirtual;
+ Out << " non-virtual";
+ if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
+ Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
+ Out << " vbase offset offset";
+ }
+
+ if (!Thunk.This.isEmpty())
+ Out << "\n ";
+ }
+
+ // If this function pointer has a 'this' pointer adjustment, dump it.
+ if (!Thunk.This.isEmpty()) {
+ Out << "this adjustment: ";
+ Out << Thunk.This.NonVirtual << " non-virtual";
+
+ if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
+ Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
+ Out << " vcall offset offset";
+ }
+ }
+
+ Out << '\n';
+ }
+
+ Out << '\n';
+ }
+ }
+
+ // Compute the vtable indices for all the member functions.
+ // Store them in a map keyed by the index so we'll get a sorted table.
+ std::map<uint64_t, std::string> IndicesMap;
+
+ for (const auto *MD : MostDerivedClass->methods()) {
+ // We only want virtual member functions.
+ if (!MD->isVirtual())
+ continue;
+ MD = MD->getCanonicalDecl();
+
+ std::string MethodName =
+ PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
+ MD);
+
+ if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
+ GlobalDecl GD(DD, Dtor_Complete);
+ assert(MethodVTableIndices.count(GD));
+ uint64_t VTableIndex = MethodVTableIndices[GD];
+ IndicesMap[VTableIndex] = MethodName + " [complete]";
+ IndicesMap[VTableIndex + 1] = MethodName + " [deleting]";
+ } else {
+ assert(MethodVTableIndices.count(MD));
+ IndicesMap[MethodVTableIndices[MD]] = MethodName;
+ }
+ }
+
+ // Print the vtable indices for all the member functions.
+ if (!IndicesMap.empty()) {
+ Out << "VTable indices for '";
+ MostDerivedClass->printQualifiedName(Out);
+ Out << "' (" << IndicesMap.size() << " entries).\n";
+
+ for (std::map<uint64_t, std::string>::const_iterator I = IndicesMap.begin(),
+ E = IndicesMap.end(); I != E; ++I) {
+ uint64_t VTableIndex = I->first;
+ const std::string &MethodName = I->second;
+
+ Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName
+ << '\n';
+ }
+ }
+
+ Out << '\n';
+}
+}
+
+VTableLayout::VTableLayout(uint64_t NumVTableComponents,
+ const VTableComponent *VTableComponents,
+ uint64_t NumVTableThunks,
+ const VTableThunkTy *VTableThunks,
+ const AddressPointsMapTy &AddressPoints,
+ bool IsMicrosoftABI)
+ : NumVTableComponents(NumVTableComponents),
+ VTableComponents(new VTableComponent[NumVTableComponents]),
+ NumVTableThunks(NumVTableThunks),
+ VTableThunks(new VTableThunkTy[NumVTableThunks]),
+ AddressPoints(AddressPoints),
+ IsMicrosoftABI(IsMicrosoftABI) {
+ std::copy(VTableComponents, VTableComponents+NumVTableComponents,
+ this->VTableComponents.get());
+ std::copy(VTableThunks, VTableThunks+NumVTableThunks,
+ this->VTableThunks.get());
+ std::sort(this->VTableThunks.get(),
+ this->VTableThunks.get() + NumVTableThunks,
+ [](const VTableLayout::VTableThunkTy &LHS,
+ const VTableLayout::VTableThunkTy &RHS) {
+ assert((LHS.first != RHS.first || LHS.second == RHS.second) &&
+ "Different thunks should have unique indices!");
+ return LHS.first < RHS.first;
+ });
+}
+
+VTableLayout::~VTableLayout() { }
+
+ItaniumVTableContext::ItaniumVTableContext(ASTContext &Context)
+ : VTableContextBase(/*MS=*/false) {}
+
+ItaniumVTableContext::~ItaniumVTableContext() {
+ llvm::DeleteContainerSeconds(VTableLayouts);
+}
+
+uint64_t ItaniumVTableContext::getMethodVTableIndex(GlobalDecl GD) {
+ MethodVTableIndicesTy::iterator I = MethodVTableIndices.find(GD);
+ if (I != MethodVTableIndices.end())
+ return I->second;
+
+ const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
+
+ computeVTableRelatedInformation(RD);
+
+ I = MethodVTableIndices.find(GD);
+ assert(I != MethodVTableIndices.end() && "Did not find index!");
+ return I->second;
+}
+
+CharUnits
+ItaniumVTableContext::getVirtualBaseOffsetOffset(const CXXRecordDecl *RD,
+ const CXXRecordDecl *VBase) {
+ ClassPairTy ClassPair(RD, VBase);
+
+ VirtualBaseClassOffsetOffsetsMapTy::iterator I =
+ VirtualBaseClassOffsetOffsets.find(ClassPair);
+ if (I != VirtualBaseClassOffsetOffsets.end())
+ return I->second;
+
+ VCallAndVBaseOffsetBuilder Builder(RD, RD, /*FinalOverriders=*/nullptr,
+ BaseSubobject(RD, CharUnits::Zero()),
+ /*BaseIsVirtual=*/false,
+ /*OffsetInLayoutClass=*/CharUnits::Zero());
+
+ for (VCallAndVBaseOffsetBuilder::VBaseOffsetOffsetsMapTy::const_iterator I =
+ Builder.getVBaseOffsetOffsets().begin(),
+ E = Builder.getVBaseOffsetOffsets().end(); I != E; ++I) {
+ // Insert all types.
+ ClassPairTy ClassPair(RD, I->first);
+
+ VirtualBaseClassOffsetOffsets.insert(
+ std::make_pair(ClassPair, I->second));
+ }
+
+ I = VirtualBaseClassOffsetOffsets.find(ClassPair);
+ assert(I != VirtualBaseClassOffsetOffsets.end() && "Did not find index!");
+
+ return I->second;
+}
+
+static VTableLayout *CreateVTableLayout(const ItaniumVTableBuilder &Builder) {
+ SmallVector<VTableLayout::VTableThunkTy, 1>
+ VTableThunks(Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
+
+ return new VTableLayout(Builder.getNumVTableComponents(),
+ Builder.vtable_component_begin(),
+ VTableThunks.size(),
+ VTableThunks.data(),
+ Builder.getAddressPoints(),
+ /*IsMicrosoftABI=*/false);
+}
+
+void
+ItaniumVTableContext::computeVTableRelatedInformation(const CXXRecordDecl *RD) {
+ const VTableLayout *&Entry = VTableLayouts[RD];
+
+ // Check if we've computed this information before.
+ if (Entry)
+ return;
+
+ ItaniumVTableBuilder Builder(*this, RD, CharUnits::Zero(),
+ /*MostDerivedClassIsVirtual=*/0, RD);
+ Entry = CreateVTableLayout(Builder);
+
+ MethodVTableIndices.insert(Builder.vtable_indices_begin(),
+ Builder.vtable_indices_end());
+
+ // Add the known thunks.
+ Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
+
+ // If we don't have the vbase information for this class, insert it.
+ // getVirtualBaseOffsetOffset will compute it separately without computing
+ // the rest of the vtable related information.
+ if (!RD->getNumVBases())
+ return;
+
+ const CXXRecordDecl *VBase =
+ RD->vbases_begin()->getType()->getAsCXXRecordDecl();
+
+ if (VirtualBaseClassOffsetOffsets.count(std::make_pair(RD, VBase)))
+ return;
+
+ for (ItaniumVTableBuilder::VBaseOffsetOffsetsMapTy::const_iterator
+ I = Builder.getVBaseOffsetOffsets().begin(),
+ E = Builder.getVBaseOffsetOffsets().end();
+ I != E; ++I) {
+ // Insert all types.
+ ClassPairTy ClassPair(RD, I->first);
+
+ VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I->second));
+ }
+}
+
+VTableLayout *ItaniumVTableContext::createConstructionVTableLayout(
+ const CXXRecordDecl *MostDerivedClass, CharUnits MostDerivedClassOffset,
+ bool MostDerivedClassIsVirtual, const CXXRecordDecl *LayoutClass) {
+ ItaniumVTableBuilder Builder(*this, MostDerivedClass, MostDerivedClassOffset,
+ MostDerivedClassIsVirtual, LayoutClass);
+ return CreateVTableLayout(Builder);
+}
+
+namespace {
+
+// Vtables in the Microsoft ABI are different from the Itanium ABI.
+//
+// The main differences are:
+// 1. Separate vftable and vbtable.
+//
+// 2. Each subobject with a vfptr gets its own vftable rather than an address
+// point in a single vtable shared between all the subobjects.
+// Each vftable is represented by a separate section and virtual calls
+// must be done using the vftable which has a slot for the function to be
+// called.
+//
+// 3. Virtual method definitions expect their 'this' parameter to point to the
+// first vfptr whose table provides a compatible overridden method. In many
+// cases, this permits the original vf-table entry to directly call
+// the method instead of passing through a thunk.
+// See example before VFTableBuilder::ComputeThisOffset below.
+//
+// A compatible overridden method is one which does not have a non-trivial
+// covariant-return adjustment.
+//
+// The first vfptr is the one with the lowest offset in the complete-object
+// layout of the defining class, and the method definition will subtract
+// that constant offset from the parameter value to get the real 'this'
+// value. Therefore, if the offset isn't really constant (e.g. if a virtual
+// function defined in a virtual base is overridden in a more derived
+// virtual base and these bases have a reverse order in the complete
+// object), the vf-table may require a this-adjustment thunk.
+//
+// 4. vftables do not contain new entries for overrides that merely require
+// this-adjustment. Together with #3, this keeps vf-tables smaller and
+// eliminates the need for this-adjustment thunks in many cases, at the cost
+// of often requiring redundant work to adjust the "this" pointer.
+//
+// 5. Instead of VTT and constructor vtables, vbtables and vtordisps are used.
+// Vtordisps are emitted into the class layout if a class has
+// a) a user-defined ctor/dtor
+// and
+// b) a method overriding a method in a virtual base.
+//
+// To get a better understanding of this code,
+// you might want to see examples in test/CodeGenCXX/microsoft-abi-vtables-*.cpp
+
+class VFTableBuilder {
+public:
+ typedef MicrosoftVTableContext::MethodVFTableLocation MethodVFTableLocation;
+
+ typedef llvm::DenseMap<GlobalDecl, MethodVFTableLocation>
+ MethodVFTableLocationsTy;
+
+ typedef llvm::iterator_range<MethodVFTableLocationsTy::const_iterator>
+ method_locations_range;
+
+private:
+ /// VTables - Global vtable information.
+ MicrosoftVTableContext &VTables;
+
+ /// Context - The ASTContext which we will use for layout information.
+ ASTContext &Context;
+
+ /// MostDerivedClass - The most derived class for which we're building this
+ /// vtable.
+ const CXXRecordDecl *MostDerivedClass;
+
+ const ASTRecordLayout &MostDerivedClassLayout;
+
+ const VPtrInfo &WhichVFPtr;
+
+ /// FinalOverriders - The final overriders of the most derived class.
+ const FinalOverriders Overriders;
+
+ /// Components - The components of the vftable being built.
+ SmallVector<VTableComponent, 64> Components;
+
+ MethodVFTableLocationsTy MethodVFTableLocations;
+
+ /// \brief Does this class have an RTTI component?
+ bool HasRTTIComponent;
+
+ /// MethodInfo - Contains information about a method in a vtable.
+ /// (Used for computing 'this' pointer adjustment thunks.
+ struct MethodInfo {
+ /// VBTableIndex - The nonzero index in the vbtable that
+ /// this method's base has, or zero.
+ const uint64_t VBTableIndex;
+
+ /// VFTableIndex - The index in the vftable that this method has.
+ const uint64_t VFTableIndex;
+
+ /// Shadowed - Indicates if this vftable slot is shadowed by
+ /// a slot for a covariant-return override. If so, it shouldn't be printed
+ /// or used for vcalls in the most derived class.
+ bool Shadowed;
+
+ /// UsesExtraSlot - Indicates if this vftable slot was created because
+ /// any of the overridden slots required a return adjusting thunk.
+ bool UsesExtraSlot;
+
+ MethodInfo(uint64_t VBTableIndex, uint64_t VFTableIndex,
+ bool UsesExtraSlot = false)
+ : VBTableIndex(VBTableIndex), VFTableIndex(VFTableIndex),
+ Shadowed(false), UsesExtraSlot(UsesExtraSlot) {}
+
+ MethodInfo()
+ : VBTableIndex(0), VFTableIndex(0), Shadowed(false),
+ UsesExtraSlot(false) {}
+ };
+
+ typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
+
+ /// MethodInfoMap - The information for all methods in the vftable we're
+ /// currently building.
+ MethodInfoMapTy MethodInfoMap;
+
+ typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
+
+ /// VTableThunks - The thunks by vftable index in the vftable currently being
+ /// built.
+ VTableThunksMapTy VTableThunks;
+
+ typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
+ typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
+
+ /// Thunks - A map that contains all the thunks needed for all methods in the
+ /// most derived class for which the vftable is currently being built.
+ ThunksMapTy Thunks;
+
+ /// AddThunk - Add a thunk for the given method.
+ void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk) {
+ SmallVector<ThunkInfo, 1> &ThunksVector = Thunks[MD];
+
+ // Check if we have this thunk already.
+ if (std::find(ThunksVector.begin(), ThunksVector.end(), Thunk) !=
+ ThunksVector.end())
+ return;
+
+ ThunksVector.push_back(Thunk);
+ }
+
+ /// ComputeThisOffset - Returns the 'this' argument offset for the given
+ /// method, relative to the beginning of the MostDerivedClass.
+ CharUnits ComputeThisOffset(FinalOverriders::OverriderInfo Overrider);
+
+ void CalculateVtordispAdjustment(FinalOverriders::OverriderInfo Overrider,
+ CharUnits ThisOffset, ThisAdjustment &TA);
+
+ /// AddMethod - Add a single virtual member function to the vftable
+ /// components vector.
+ void AddMethod(const CXXMethodDecl *MD, ThunkInfo TI) {
+ if (!TI.isEmpty()) {
+ VTableThunks[Components.size()] = TI;
+ AddThunk(MD, TI);
+ }
+ if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
+ assert(TI.Return.isEmpty() &&
+ "Destructor can't have return adjustment!");
+ Components.push_back(VTableComponent::MakeDeletingDtor(DD));
+ } else {
+ Components.push_back(VTableComponent::MakeFunction(MD));
+ }
+ }
+
+ /// AddMethods - Add the methods of this base subobject and the relevant
+ /// subbases to the vftable we're currently laying out.
+ void AddMethods(BaseSubobject Base, unsigned BaseDepth,
+ const CXXRecordDecl *LastVBase,
+ BasesSetVectorTy &VisitedBases);
+
+ void LayoutVFTable() {
+ // RTTI data goes before all other entries.
+ if (HasRTTIComponent)
+ Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));
+
+ BasesSetVectorTy VisitedBases;
+ AddMethods(BaseSubobject(MostDerivedClass, CharUnits::Zero()), 0, nullptr,
+ VisitedBases);
+ assert((HasRTTIComponent ? Components.size() - 1 : Components.size()) &&
+ "vftable can't be empty");
+
+ assert(MethodVFTableLocations.empty());
+ for (MethodInfoMapTy::const_iterator I = MethodInfoMap.begin(),
+ E = MethodInfoMap.end(); I != E; ++I) {
+ const CXXMethodDecl *MD = I->first;
+ const MethodInfo &MI = I->second;
+ // Skip the methods that the MostDerivedClass didn't override
+ // and the entries shadowed by return adjusting thunks.
+ if (MD->getParent() != MostDerivedClass || MI.Shadowed)
+ continue;
+ MethodVFTableLocation Loc(MI.VBTableIndex, WhichVFPtr.getVBaseWithVPtr(),
+ WhichVFPtr.NonVirtualOffset, MI.VFTableIndex);
+ if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
+ MethodVFTableLocations[GlobalDecl(DD, Dtor_Deleting)] = Loc;
+ } else {
+ MethodVFTableLocations[MD] = Loc;
+ }
+ }
+ }
+
+public:
+ VFTableBuilder(MicrosoftVTableContext &VTables,
+ const CXXRecordDecl *MostDerivedClass, const VPtrInfo *Which)
+ : VTables(VTables),
+ Context(MostDerivedClass->getASTContext()),
+ MostDerivedClass(MostDerivedClass),
+ MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)),
+ WhichVFPtr(*Which),
+ Overriders(MostDerivedClass, CharUnits(), MostDerivedClass) {
+ // Only include the RTTI component if we know that we will provide a
+ // definition of the vftable.
+ HasRTTIComponent = Context.getLangOpts().RTTIData &&
+ !MostDerivedClass->hasAttr<DLLImportAttr>() &&
+ MostDerivedClass->getTemplateSpecializationKind() !=
+ TSK_ExplicitInstantiationDeclaration;
+
+ LayoutVFTable();
+
+ if (Context.getLangOpts().DumpVTableLayouts)
+ dumpLayout(llvm::outs());
+ }
+
+ uint64_t getNumThunks() const { return Thunks.size(); }
+
+ ThunksMapTy::const_iterator thunks_begin() const { return Thunks.begin(); }
+
+ ThunksMapTy::const_iterator thunks_end() const { return Thunks.end(); }
+
+ method_locations_range vtable_locations() const {
+ return method_locations_range(MethodVFTableLocations.begin(),
+ MethodVFTableLocations.end());
+ }
+
+ uint64_t getNumVTableComponents() const { return Components.size(); }
+
+ const VTableComponent *vtable_component_begin() const {
+ return Components.begin();
+ }
+
+ const VTableComponent *vtable_component_end() const {
+ return Components.end();
+ }
+
+ VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
+ return VTableThunks.begin();
+ }
+
+ VTableThunksMapTy::const_iterator vtable_thunks_end() const {
+ return VTableThunks.end();
+ }
+
+ void dumpLayout(raw_ostream &);
+};
+
+/// InitialOverriddenDefinitionCollector - Finds the set of least derived bases
+/// that define the given method.
+struct InitialOverriddenDefinitionCollector {
+ BasesSetVectorTy Bases;
+ OverriddenMethodsSetTy VisitedOverriddenMethods;
+
+ bool visit(const CXXMethodDecl *OverriddenMD) {
+ if (OverriddenMD->size_overridden_methods() == 0)
+ Bases.insert(OverriddenMD->getParent());
+ // Don't recurse on this method if we've already collected it.
+ return VisitedOverriddenMethods.insert(OverriddenMD).second;
+ }
+};
+
+} // end namespace
+
+static bool BaseInSet(const CXXBaseSpecifier *Specifier,
+ CXXBasePath &Path, void *BasesSet) {
+ BasesSetVectorTy *Bases = (BasesSetVectorTy *)BasesSet;
+ return Bases->count(Specifier->getType()->getAsCXXRecordDecl());
+}
+
+// Let's study one class hierarchy as an example:
+// struct A {
+// virtual void f();
+// int x;
+// };
+//
+// struct B : virtual A {
+// virtual void f();
+// };
+//
+// Record layouts:
+// struct A:
+// 0 | (A vftable pointer)
+// 4 | int x
+//
+// struct B:
+// 0 | (B vbtable pointer)
+// 4 | struct A (virtual base)
+// 4 | (A vftable pointer)
+// 8 | int x
+//
+// Let's assume we have a pointer to the A part of an object of dynamic type B:
+// B b;
+// A *a = (A*)&b;
+// a->f();
+//
+// In this hierarchy, f() belongs to the vftable of A, so B::f() expects
+// "this" parameter to point at the A subobject, which is B+4.
+// In the B::f() prologue, it adjusts "this" back to B by subtracting 4,
+// performed as a *static* adjustment.
+//
+// Interesting thing happens when we alter the relative placement of A and B
+// subobjects in a class:
+// struct C : virtual B { };
+//
+// C c;
+// A *a = (A*)&c;
+// a->f();
+//
+// Respective record layout is:
+// 0 | (C vbtable pointer)
+// 4 | struct A (virtual base)
+// 4 | (A vftable pointer)
+// 8 | int x
+// 12 | struct B (virtual base)
+// 12 | (B vbtable pointer)
+//
+// The final overrider of f() in class C is still B::f(), so B+4 should be
+// passed as "this" to that code. However, "a" points at B-8, so the respective
+// vftable entry should hold a thunk that adds 12 to the "this" argument before
+// performing a tail call to B::f().
+//
+// With this example in mind, we can now calculate the 'this' argument offset
+// for the given method, relative to the beginning of the MostDerivedClass.
+CharUnits
+VFTableBuilder::ComputeThisOffset(FinalOverriders::OverriderInfo Overrider) {
+ InitialOverriddenDefinitionCollector Collector;
+ visitAllOverriddenMethods(Overrider.Method, Collector);
+
+ // If there are no overrides then 'this' is located
+ // in the base that defines the method.
+ if (Collector.Bases.size() == 0)
+ return Overrider.Offset;
+
+ CXXBasePaths Paths;
+ Overrider.Method->getParent()->lookupInBases(BaseInSet, &Collector.Bases,
+ Paths);
+
+ // This will hold the smallest this offset among overridees of MD.
+ // This implies that an offset of a non-virtual base will dominate an offset
+ // of a virtual base to potentially reduce the number of thunks required
+ // in the derived classes that inherit this method.
+ CharUnits Ret;
+ bool First = true;
+
+ const ASTRecordLayout &OverriderRDLayout =
+ Context.getASTRecordLayout(Overrider.Method->getParent());
+ for (CXXBasePaths::paths_iterator I = Paths.begin(), E = Paths.end();
+ I != E; ++I) {
+ const CXXBasePath &Path = (*I);
+ CharUnits ThisOffset = Overrider.Offset;
+ CharUnits LastVBaseOffset;
+
+ // For each path from the overrider to the parents of the overridden
+ // methods, traverse the path, calculating the this offset in the most
+ // derived class.
+ for (int J = 0, F = Path.size(); J != F; ++J) {
+ const CXXBasePathElement &Element = Path[J];
+ QualType CurTy = Element.Base->getType();
+ const CXXRecordDecl *PrevRD = Element.Class,
+ *CurRD = CurTy->getAsCXXRecordDecl();
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(PrevRD);
+
+ if (Element.Base->isVirtual()) {
+ // The interesting things begin when you have virtual inheritance.
+ // The final overrider will use a static adjustment equal to the offset
+ // of the vbase in the final overrider class.
+ // For example, if the final overrider is in a vbase B of the most
+ // derived class and it overrides a method of the B's own vbase A,
+ // it uses A* as "this". In its prologue, it can cast A* to B* with
+ // a static offset. This offset is used regardless of the actual
+ // offset of A from B in the most derived class, requiring an
+ // this-adjusting thunk in the vftable if A and B are laid out
+ // differently in the most derived class.
+ LastVBaseOffset = ThisOffset =
+ Overrider.Offset + OverriderRDLayout.getVBaseClassOffset(CurRD);
+ } else {
+ ThisOffset += Layout.getBaseClassOffset(CurRD);
+ }
+ }
+
+ if (isa<CXXDestructorDecl>(Overrider.Method)) {
+ if (LastVBaseOffset.isZero()) {
+ // If a "Base" class has at least one non-virtual base with a virtual
+ // destructor, the "Base" virtual destructor will take the address
+ // of the "Base" subobject as the "this" argument.
+ ThisOffset = Overrider.Offset;
+ } else {
+ // A virtual destructor of a virtual base takes the address of the
+ // virtual base subobject as the "this" argument.
+ ThisOffset = LastVBaseOffset;
+ }
+ }
+
+ if (Ret > ThisOffset || First) {
+ First = false;
+ Ret = ThisOffset;
+ }
+ }
+
+ assert(!First && "Method not found in the given subobject?");
+ return Ret;
+}
+
+// Things are getting even more complex when the "this" adjustment has to
+// use a dynamic offset instead of a static one, or even two dynamic offsets.
+// This is sometimes required when a virtual call happens in the middle of
+// a non-most-derived class construction or destruction.
+//
+// Let's take a look at the following example:
+// struct A {
+// virtual void f();
+// };
+//
+// void foo(A *a) { a->f(); } // Knows nothing about siblings of A.
+//
+// struct B : virtual A {
+// virtual void f();
+// B() {
+// foo(this);
+// }
+// };
+//
+// struct C : virtual B {
+// virtual void f();
+// };
+//
+// Record layouts for these classes are:
+// struct A
+// 0 | (A vftable pointer)
+//
+// struct B
+// 0 | (B vbtable pointer)
+// 4 | (vtordisp for vbase A)
+// 8 | struct A (virtual base)
+// 8 | (A vftable pointer)
+//
+// struct C
+// 0 | (C vbtable pointer)
+// 4 | (vtordisp for vbase A)
+// 8 | struct A (virtual base) // A precedes B!
+// 8 | (A vftable pointer)
+// 12 | struct B (virtual base)
+// 12 | (B vbtable pointer)
+//
+// When one creates an object of type C, the C constructor:
+// - initializes all the vbptrs, then
+// - calls the A subobject constructor
+// (initializes A's vfptr with an address of A vftable), then
+// - calls the B subobject constructor
+// (initializes A's vfptr with an address of B vftable and vtordisp for A),
+// that in turn calls foo(), then
+// - initializes A's vfptr with an address of C vftable and zeroes out the
+// vtordisp
+// FIXME: if a structor knows it belongs to MDC, why doesn't it use a vftable
+// without vtordisp thunks?
+// FIXME: how are vtordisp handled in the presence of nooverride/final?
+//
+// When foo() is called, an object with a layout of class C has a vftable
+// referencing B::f() that assumes a B layout, so the "this" adjustments are
+// incorrect, unless an extra adjustment is done. This adjustment is called
+// "vtordisp adjustment". Vtordisp basically holds the difference between the
+// actual location of a vbase in the layout class and the location assumed by
+// the vftable of the class being constructed/destructed. Vtordisp is only
+// needed if "this" escapes a
+// structor (or we can't prove otherwise).
+// [i.e. vtordisp is a dynamic adjustment for a static adjustment, which is an
+// estimation of a dynamic adjustment]
+//
+// foo() gets a pointer to the A vbase and doesn't know anything about B or C,
+// so it just passes that pointer as "this" in a virtual call.
+// If there was no vtordisp, that would just dispatch to B::f().
+// However, B::f() assumes B+8 is passed as "this",
+// yet the pointer foo() passes along is B-4 (i.e. C+8).
+// An extra adjustment is needed, so we emit a thunk into the B vftable.
+// This vtordisp thunk subtracts the value of vtordisp
+// from the "this" argument (-12) before making a tailcall to B::f().
+//
+// Let's consider an even more complex example:
+// struct D : virtual B, virtual C {
+// D() {
+// foo(this);
+// }
+// };
+//
+// struct D
+// 0 | (D vbtable pointer)
+// 4 | (vtordisp for vbase A)
+// 8 | struct A (virtual base) // A precedes both B and C!
+// 8 | (A vftable pointer)
+// 12 | struct B (virtual base) // B precedes C!
+// 12 | (B vbtable pointer)
+// 16 | struct C (virtual base)
+// 16 | (C vbtable pointer)
+//
+// When D::D() calls foo(), we find ourselves in a thunk that should tailcall
+// to C::f(), which assumes C+8 as its "this" parameter. This time, foo()
+// passes along A, which is C-8. The A vtordisp holds
+// "D.vbptr[index_of_A] - offset_of_A_in_D"
+// and we statically know offset_of_A_in_D, so can get a pointer to D.
+// When we know it, we can make an extra vbtable lookup to locate the C vbase
+// and one extra static adjustment to calculate the expected value of C+8.
+void VFTableBuilder::CalculateVtordispAdjustment(
+ FinalOverriders::OverriderInfo Overrider, CharUnits ThisOffset,
+ ThisAdjustment &TA) {
+ const ASTRecordLayout::VBaseOffsetsMapTy &VBaseMap =
+ MostDerivedClassLayout.getVBaseOffsetsMap();
+ const ASTRecordLayout::VBaseOffsetsMapTy::const_iterator &VBaseMapEntry =
+ VBaseMap.find(WhichVFPtr.getVBaseWithVPtr());
+ assert(VBaseMapEntry != VBaseMap.end());
+
+ // If there's no vtordisp or the final overrider is defined in the same vbase
+ // as the initial declaration, we don't need any vtordisp adjustment.
+ if (!VBaseMapEntry->second.hasVtorDisp() ||
+ Overrider.VirtualBase == WhichVFPtr.getVBaseWithVPtr())
+ return;
+
+ // OK, now we know we need to use a vtordisp thunk.
+ // The implicit vtordisp field is located right before the vbase.
+ CharUnits OffsetOfVBaseWithVFPtr = VBaseMapEntry->second.VBaseOffset;
+ TA.Virtual.Microsoft.VtordispOffset =
+ (OffsetOfVBaseWithVFPtr - WhichVFPtr.FullOffsetInMDC).getQuantity() - 4;
+
+ // A simple vtordisp thunk will suffice if the final overrider is defined
+ // in either the most derived class or its non-virtual base.
+ if (Overrider.Method->getParent() == MostDerivedClass ||
+ !Overrider.VirtualBase)
+ return;
+
+ // Otherwise, we need to do use the dynamic offset of the final overrider
+ // in order to get "this" adjustment right.
+ TA.Virtual.Microsoft.VBPtrOffset =
+ (OffsetOfVBaseWithVFPtr + WhichVFPtr.NonVirtualOffset -
+ MostDerivedClassLayout.getVBPtrOffset()).getQuantity();
+ TA.Virtual.Microsoft.VBOffsetOffset =
+ Context.getTypeSizeInChars(Context.IntTy).getQuantity() *
+ VTables.getVBTableIndex(MostDerivedClass, Overrider.VirtualBase);
+
+ TA.NonVirtual = (ThisOffset - Overrider.Offset).getQuantity();
+}
+
+static void GroupNewVirtualOverloads(
+ const CXXRecordDecl *RD,
+ SmallVector<const CXXMethodDecl *, 10> &VirtualMethods) {
+ // Put the virtual methods into VirtualMethods in the proper order:
+ // 1) Group overloads by declaration name. New groups are added to the
+ // vftable in the order of their first declarations in this class
+ // (including overrides and non-virtual methods).
+ // 2) In each group, new overloads appear in the reverse order of declaration.
+ typedef SmallVector<const CXXMethodDecl *, 1> MethodGroup;
+ SmallVector<MethodGroup, 10> Groups;
+ typedef llvm::DenseMap<DeclarationName, unsigned> VisitedGroupIndicesTy;
+ VisitedGroupIndicesTy VisitedGroupIndices;
+ for (const auto *MD : RD->methods()) {
+ MD = MD->getCanonicalDecl();
+ VisitedGroupIndicesTy::iterator J;
+ bool Inserted;
+ std::tie(J, Inserted) = VisitedGroupIndices.insert(
+ std::make_pair(MD->getDeclName(), Groups.size()));
+ if (Inserted)
+ Groups.push_back(MethodGroup());
+ if (MD->isVirtual())
+ Groups[J->second].push_back(MD);
+ }
+
+ for (unsigned I = 0, E = Groups.size(); I != E; ++I)
+ VirtualMethods.append(Groups[I].rbegin(), Groups[I].rend());
+}
+
+static bool isDirectVBase(const CXXRecordDecl *Base, const CXXRecordDecl *RD) {
+ for (const auto &B : RD->bases()) {
+ if (B.isVirtual() && B.getType()->getAsCXXRecordDecl() == Base)
+ return true;
+ }
+ return false;
+}
+
+void VFTableBuilder::AddMethods(BaseSubobject Base, unsigned BaseDepth,
+ const CXXRecordDecl *LastVBase,
+ BasesSetVectorTy &VisitedBases) {
+ const CXXRecordDecl *RD = Base.getBase();
+ if (!RD->isPolymorphic())
+ return;
+
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+
+ // See if this class expands a vftable of the base we look at, which is either
+ // the one defined by the vfptr base path or the primary base of the current
+ // class.
+ const CXXRecordDecl *NextBase = nullptr, *NextLastVBase = LastVBase;
+ CharUnits NextBaseOffset;
+ if (BaseDepth < WhichVFPtr.PathToBaseWithVPtr.size()) {
+ NextBase = WhichVFPtr.PathToBaseWithVPtr[BaseDepth];
+ if (isDirectVBase(NextBase, RD)) {
+ NextLastVBase = NextBase;
+ NextBaseOffset = MostDerivedClassLayout.getVBaseClassOffset(NextBase);
+ } else {
+ NextBaseOffset =
+ Base.getBaseOffset() + Layout.getBaseClassOffset(NextBase);
+ }
+ } else if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
+ assert(!Layout.isPrimaryBaseVirtual() &&
+ "No primary virtual bases in this ABI");
+ NextBase = PrimaryBase;
+ NextBaseOffset = Base.getBaseOffset();
+ }
+
+ if (NextBase) {
+ AddMethods(BaseSubobject(NextBase, NextBaseOffset), BaseDepth + 1,
+ NextLastVBase, VisitedBases);
+ if (!VisitedBases.insert(NextBase))
+ llvm_unreachable("Found a duplicate primary base!");
+ }
+
+ SmallVector<const CXXMethodDecl*, 10> VirtualMethods;
+ // Put virtual methods in the proper order.
+ GroupNewVirtualOverloads(RD, VirtualMethods);
+
+ // Now go through all virtual member functions and add them to the current
+ // vftable. This is done by
+ // - replacing overridden methods in their existing slots, as long as they
+ // don't require return adjustment; calculating This adjustment if needed.
+ // - adding new slots for methods of the current base not present in any
+ // sub-bases;
+ // - adding new slots for methods that require Return adjustment.
+ // We keep track of the methods visited in the sub-bases in MethodInfoMap.
+ for (unsigned I = 0, E = VirtualMethods.size(); I != E; ++I) {
+ const CXXMethodDecl *MD = VirtualMethods[I];
+
+ FinalOverriders::OverriderInfo FinalOverrider =
+ Overriders.getOverrider(MD, Base.getBaseOffset());
+ const CXXMethodDecl *FinalOverriderMD = FinalOverrider.Method;
+ const CXXMethodDecl *OverriddenMD =
+ FindNearestOverriddenMethod(MD, VisitedBases);
+
+ ThisAdjustment ThisAdjustmentOffset;
+ bool ReturnAdjustingThunk = false, ForceReturnAdjustmentMangling = false;
+ CharUnits ThisOffset = ComputeThisOffset(FinalOverrider);
+ ThisAdjustmentOffset.NonVirtual =
+ (ThisOffset - WhichVFPtr.FullOffsetInMDC).getQuantity();
+ if ((OverriddenMD || FinalOverriderMD != MD) &&
+ WhichVFPtr.getVBaseWithVPtr())
+ CalculateVtordispAdjustment(FinalOverrider, ThisOffset,
+ ThisAdjustmentOffset);
+
+ if (OverriddenMD) {
+ // If MD overrides anything in this vftable, we need to update the
+ // entries.
+ MethodInfoMapTy::iterator OverriddenMDIterator =
+ MethodInfoMap.find(OverriddenMD);
+
+ // If the overridden method went to a different vftable, skip it.
+ if (OverriddenMDIterator == MethodInfoMap.end())
+ continue;
+
+ MethodInfo &OverriddenMethodInfo = OverriddenMDIterator->second;
+
+ // Let's check if the overrider requires any return adjustments.
+ // We must create a new slot if the MD's return type is not trivially
+ // convertible to the OverriddenMD's one.
+ // Once a chain of method overrides adds a return adjusting vftable slot,
+ // all subsequent overrides will also use an extra method slot.
+ ReturnAdjustingThunk = !ComputeReturnAdjustmentBaseOffset(
+ Context, MD, OverriddenMD).isEmpty() ||
+ OverriddenMethodInfo.UsesExtraSlot;
+
+ if (!ReturnAdjustingThunk) {
+ // No return adjustment needed - just replace the overridden method info
+ // with the current info.
+ MethodInfo MI(OverriddenMethodInfo.VBTableIndex,
+ OverriddenMethodInfo.VFTableIndex);
+ MethodInfoMap.erase(OverriddenMDIterator);
+
+ assert(!MethodInfoMap.count(MD) &&
+ "Should not have method info for this method yet!");
+ MethodInfoMap.insert(std::make_pair(MD, MI));
+ continue;
+ }
+
+ // In case we need a return adjustment, we'll add a new slot for
+ // the overrider. Mark the overriden method as shadowed by the new slot.
+ OverriddenMethodInfo.Shadowed = true;
+
+ // Force a special name mangling for a return-adjusting thunk
+ // unless the method is the final overrider without this adjustment.
+ ForceReturnAdjustmentMangling =
+ !(MD == FinalOverriderMD && ThisAdjustmentOffset.isEmpty());
+ } else if (Base.getBaseOffset() != WhichVFPtr.FullOffsetInMDC ||
+ MD->size_overridden_methods()) {
+ // Skip methods that don't belong to the vftable of the current class,
+ // e.g. each method that wasn't seen in any of the visited sub-bases
+ // but overrides multiple methods of other sub-bases.
+ continue;
+ }
+
+ // If we got here, MD is a method not seen in any of the sub-bases or
+ // it requires return adjustment. Insert the method info for this method.
+ unsigned VBIndex =
+ LastVBase ? VTables.getVBTableIndex(MostDerivedClass, LastVBase) : 0;
+ MethodInfo MI(VBIndex,
+ HasRTTIComponent ? Components.size() - 1 : Components.size(),
+ ReturnAdjustingThunk);
+
+ assert(!MethodInfoMap.count(MD) &&
+ "Should not have method info for this method yet!");
+ MethodInfoMap.insert(std::make_pair(MD, MI));
+
+ // Check if this overrider needs a return adjustment.
+ // We don't want to do this for pure virtual member functions.
+ BaseOffset ReturnAdjustmentOffset;
+ ReturnAdjustment ReturnAdjustment;
+ if (!FinalOverriderMD->isPure()) {
+ ReturnAdjustmentOffset =
+ ComputeReturnAdjustmentBaseOffset(Context, FinalOverriderMD, MD);
+ }
+ if (!ReturnAdjustmentOffset.isEmpty()) {
+ ForceReturnAdjustmentMangling = true;
+ ReturnAdjustment.NonVirtual =
+ ReturnAdjustmentOffset.NonVirtualOffset.getQuantity();
+ if (ReturnAdjustmentOffset.VirtualBase) {
+ const ASTRecordLayout &DerivedLayout =
+ Context.getASTRecordLayout(ReturnAdjustmentOffset.DerivedClass);
+ ReturnAdjustment.Virtual.Microsoft.VBPtrOffset =
+ DerivedLayout.getVBPtrOffset().getQuantity();
+ ReturnAdjustment.Virtual.Microsoft.VBIndex =
+ VTables.getVBTableIndex(ReturnAdjustmentOffset.DerivedClass,
+ ReturnAdjustmentOffset.VirtualBase);
+ }
+ }
+
+ AddMethod(FinalOverriderMD,
+ ThunkInfo(ThisAdjustmentOffset, ReturnAdjustment,
+ ForceReturnAdjustmentMangling ? MD : nullptr));
+ }
+}
+
+static void PrintBasePath(const VPtrInfo::BasePath &Path, raw_ostream &Out) {
+ for (VPtrInfo::BasePath::const_reverse_iterator I = Path.rbegin(),
+ E = Path.rend(); I != E; ++I) {
+ Out << "'";
+ (*I)->printQualifiedName(Out);
+ Out << "' in ";
+ }
+}
+
+static void dumpMicrosoftThunkAdjustment(const ThunkInfo &TI, raw_ostream &Out,
+ bool ContinueFirstLine) {
+ const ReturnAdjustment &R = TI.Return;
+ bool Multiline = false;
+ const char *LinePrefix = "\n ";
+ if (!R.isEmpty() || TI.Method) {
+ if (!ContinueFirstLine)
+ Out << LinePrefix;
+ Out << "[return adjustment (to type '"
+ << TI.Method->getReturnType().getCanonicalType().getAsString()
+ << "'): ";
+ if (R.Virtual.Microsoft.VBPtrOffset)
+ Out << "vbptr at offset " << R.Virtual.Microsoft.VBPtrOffset << ", ";
+ if (R.Virtual.Microsoft.VBIndex)
+ Out << "vbase #" << R.Virtual.Microsoft.VBIndex << ", ";
+ Out << R.NonVirtual << " non-virtual]";
+ Multiline = true;
+ }
+
+ const ThisAdjustment &T = TI.This;
+ if (!T.isEmpty()) {
+ if (Multiline || !ContinueFirstLine)
+ Out << LinePrefix;
+ Out << "[this adjustment: ";
+ if (!TI.This.Virtual.isEmpty()) {
+ assert(T.Virtual.Microsoft.VtordispOffset < 0);
+ Out << "vtordisp at " << T.Virtual.Microsoft.VtordispOffset << ", ";
+ if (T.Virtual.Microsoft.VBPtrOffset) {
+ Out << "vbptr at " << T.Virtual.Microsoft.VBPtrOffset
+ << " to the left,";
+ assert(T.Virtual.Microsoft.VBOffsetOffset > 0);
+ Out << LinePrefix << " vboffset at "
+ << T.Virtual.Microsoft.VBOffsetOffset << " in the vbtable, ";
+ }
+ }
+ Out << T.NonVirtual << " non-virtual]";
+ }
+}
+
+void VFTableBuilder::dumpLayout(raw_ostream &Out) {
+ Out << "VFTable for ";
+ PrintBasePath(WhichVFPtr.PathToBaseWithVPtr, Out);
+ Out << "'";
+ MostDerivedClass->printQualifiedName(Out);
+ Out << "' (" << Components.size()
+ << (Components.size() == 1 ? " entry" : " entries") << ").\n";
+
+ for (unsigned I = 0, E = Components.size(); I != E; ++I) {
+ Out << llvm::format("%4d | ", I);
+
+ const VTableComponent &Component = Components[I];
+
+ // Dump the component.
+ switch (Component.getKind()) {
+ case VTableComponent::CK_RTTI:
+ Component.getRTTIDecl()->printQualifiedName(Out);
+ Out << " RTTI";
+ break;
+
+ case VTableComponent::CK_FunctionPointer: {
+ const CXXMethodDecl *MD = Component.getFunctionDecl();
+
+ // FIXME: Figure out how to print the real thunk type, since they can
+ // differ in the return type.
+ std::string Str = PredefinedExpr::ComputeName(
+ PredefinedExpr::PrettyFunctionNoVirtual, MD);
+ Out << Str;
+ if (MD->isPure())
+ Out << " [pure]";
+
+ if (MD->isDeleted())
+ Out << " [deleted]";
+
+ ThunkInfo Thunk = VTableThunks.lookup(I);
+ if (!Thunk.isEmpty())
+ dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);
+
+ break;
+ }
+
+ case VTableComponent::CK_DeletingDtorPointer: {
+ const CXXDestructorDecl *DD = Component.getDestructorDecl();
+
+ DD->printQualifiedName(Out);
+ Out << "() [scalar deleting]";
+
+ if (DD->isPure())
+ Out << " [pure]";
+
+ ThunkInfo Thunk = VTableThunks.lookup(I);
+ if (!Thunk.isEmpty()) {
+ assert(Thunk.Return.isEmpty() &&
+ "No return adjustment needed for destructors!");
+ dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);
+ }
+
+ break;
+ }
+
+ default:
+ DiagnosticsEngine &Diags = Context.getDiagnostics();
+ unsigned DiagID = Diags.getCustomDiagID(
+ DiagnosticsEngine::Error,
+ "Unexpected vftable component type %0 for component number %1");
+ Diags.Report(MostDerivedClass->getLocation(), DiagID)
+ << I << Component.getKind();
+ }
+
+ Out << '\n';
+ }
+
+ Out << '\n';
+
+ if (!Thunks.empty()) {
+ // We store the method names in a map to get a stable order.
+ std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
+
+ for (ThunksMapTy::const_iterator I = Thunks.begin(), E = Thunks.end();
+ I != E; ++I) {
+ const CXXMethodDecl *MD = I->first;
+ std::string MethodName = PredefinedExpr::ComputeName(
+ PredefinedExpr::PrettyFunctionNoVirtual, MD);
+
+ MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
+ }
+
+ for (std::map<std::string, const CXXMethodDecl *>::const_iterator
+ I = MethodNamesAndDecls.begin(),
+ E = MethodNamesAndDecls.end();
+ I != E; ++I) {
+ const std::string &MethodName = I->first;
+ const CXXMethodDecl *MD = I->second;
+
+ ThunkInfoVectorTy ThunksVector = Thunks[MD];
+ std::stable_sort(ThunksVector.begin(), ThunksVector.end(),
+ [](const ThunkInfo &LHS, const ThunkInfo &RHS) {
+ // Keep different thunks with the same adjustments in the order they
+ // were put into the vector.
+ return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return);
+ });
+
+ Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
+ Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
+
+ for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
+ const ThunkInfo &Thunk = ThunksVector[I];
+
+ Out << llvm::format("%4d | ", I);
+ dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/true);
+ Out << '\n';
+ }
+
+ Out << '\n';
+ }
+ }
+
+ Out.flush();
+}
+
+static bool setsIntersect(const llvm::SmallPtrSet<const CXXRecordDecl *, 4> &A,
+ ArrayRef<const CXXRecordDecl *> B) {
+ for (ArrayRef<const CXXRecordDecl *>::iterator I = B.begin(), E = B.end();
+ I != E; ++I) {
+ if (A.count(*I))
+ return true;
+ }
+ return false;
+}
+
+static bool rebucketPaths(VPtrInfoVector &Paths);
+
+/// Produces MSVC-compatible vbtable data. The symbols produced by this
+/// algorithm match those produced by MSVC 2012 and newer, which is different
+/// from MSVC 2010.
+///
+/// MSVC 2012 appears to minimize the vbtable names using the following
+/// algorithm. First, walk the class hierarchy in the usual order, depth first,
+/// left to right, to find all of the subobjects which contain a vbptr field.
+/// Visiting each class node yields a list of inheritance paths to vbptrs. Each
+/// record with a vbptr creates an initially empty path.
+///
+/// To combine paths from child nodes, the paths are compared to check for
+/// ambiguity. Paths are "ambiguous" if multiple paths have the same set of
+/// components in the same order. Each group of ambiguous paths is extended by
+/// appending the class of the base from which it came. If the current class
+/// node produced an ambiguous path, its path is extended with the current class.
+/// After extending paths, MSVC again checks for ambiguity, and extends any
+/// ambiguous path which wasn't already extended. Because each node yields an
+/// unambiguous set of paths, MSVC doesn't need to extend any path more than once
+/// to produce an unambiguous set of paths.
+///
+/// TODO: Presumably vftables use the same algorithm.
+void MicrosoftVTableContext::computeVTablePaths(bool ForVBTables,
+ const CXXRecordDecl *RD,
+ VPtrInfoVector &Paths) {
+ assert(Paths.empty());
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+
+ // Base case: this subobject has its own vptr.
+ if (ForVBTables ? Layout.hasOwnVBPtr() : Layout.hasOwnVFPtr())
+ Paths.push_back(new VPtrInfo(RD));
+
+ // Recursive case: get all the vbtables from our bases and remove anything
+ // that shares a virtual base.
+ llvm::SmallPtrSet<const CXXRecordDecl*, 4> VBasesSeen;
+ for (const auto &B : RD->bases()) {
+ const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl();
+ if (B.isVirtual() && VBasesSeen.count(Base))
+ continue;
+
+ if (!Base->isDynamicClass())
+ continue;
+
+ const VPtrInfoVector &BasePaths =
+ ForVBTables ? enumerateVBTables(Base) : getVFPtrOffsets(Base);
+
+ for (VPtrInfo *BaseInfo : BasePaths) {
+ // Don't include the path if it goes through a virtual base that we've
+ // already included.
+ if (setsIntersect(VBasesSeen, BaseInfo->ContainingVBases))
+ continue;
+
+ // Copy the path and adjust it as necessary.
+ VPtrInfo *P = new VPtrInfo(*BaseInfo);
+
+ // We mangle Base into the path if the path would've been ambiguous and it
+ // wasn't already extended with Base.
+ if (P->MangledPath.empty() || P->MangledPath.back() != Base)
+ P->NextBaseToMangle = Base;
+
+ // Keep track of which vtable the derived class is going to extend with
+ // new methods or bases. We append to either the vftable of our primary
+ // base, or the first non-virtual base that has a vbtable.
+ if (P->ReusingBase == Base &&
+ Base == (ForVBTables ? Layout.getBaseSharingVBPtr()
+ : Layout.getPrimaryBase()))
+ P->ReusingBase = RD;
+
+ // Keep track of the full adjustment from the MDC to this vtable. The
+ // adjustment is captured by an optional vbase and a non-virtual offset.
+ if (B.isVirtual())
+ P->ContainingVBases.push_back(Base);
+ else if (P->ContainingVBases.empty())
+ P->NonVirtualOffset += Layout.getBaseClassOffset(Base);
+
+ // Update the full offset in the MDC.
+ P->FullOffsetInMDC = P->NonVirtualOffset;
+ if (const CXXRecordDecl *VB = P->getVBaseWithVPtr())
+ P->FullOffsetInMDC += Layout.getVBaseClassOffset(VB);
+
+ Paths.push_back(P);
+ }
+
+ if (B.isVirtual())
+ VBasesSeen.insert(Base);
+
+ // After visiting any direct base, we've transitively visited all of its
+ // morally virtual bases.
+ for (const auto &VB : Base->vbases())
+ VBasesSeen.insert(VB.getType()->getAsCXXRecordDecl());
+ }
+
+ // Sort the paths into buckets, and if any of them are ambiguous, extend all
+ // paths in ambiguous buckets.
+ bool Changed = true;
+ while (Changed)
+ Changed = rebucketPaths(Paths);
+}
+
+static bool extendPath(VPtrInfo *P) {
+ if (P->NextBaseToMangle) {
+ P->MangledPath.push_back(P->NextBaseToMangle);
+ P->NextBaseToMangle = nullptr;// Prevent the path from being extended twice.
+ return true;
+ }
+ return false;
+}
+
+static bool rebucketPaths(VPtrInfoVector &Paths) {
+ // What we're essentially doing here is bucketing together ambiguous paths.
+ // Any bucket with more than one path in it gets extended by NextBase, which
+ // is usually the direct base of the inherited the vbptr. This code uses a
+ // sorted vector to implement a multiset to form the buckets. Note that the
+ // ordering is based on pointers, but it doesn't change our output order. The
+ // current algorithm is designed to match MSVC 2012's names.
+ VPtrInfoVector PathsSorted(Paths);
+ std::sort(PathsSorted.begin(), PathsSorted.end(),
+ [](const VPtrInfo *LHS, const VPtrInfo *RHS) {
+ return LHS->MangledPath < RHS->MangledPath;
+ });
+ bool Changed = false;
+ for (size_t I = 0, E = PathsSorted.size(); I != E;) {
+ // Scan forward to find the end of the bucket.
+ size_t BucketStart = I;
+ do {
+ ++I;
+ } while (I != E && PathsSorted[BucketStart]->MangledPath ==
+ PathsSorted[I]->MangledPath);
+
+ // If this bucket has multiple paths, extend them all.
+ if (I - BucketStart > 1) {
+ for (size_t II = BucketStart; II != I; ++II)
+ Changed |= extendPath(PathsSorted[II]);
+ assert(Changed && "no paths were extended to fix ambiguity");
+ }
+ }
+ return Changed;
+}
+
+MicrosoftVTableContext::~MicrosoftVTableContext() {
+ for (auto &P : VFPtrLocations)
+ llvm::DeleteContainerPointers(*P.second);
+ llvm::DeleteContainerSeconds(VFPtrLocations);
+ llvm::DeleteContainerSeconds(VFTableLayouts);
+ llvm::DeleteContainerSeconds(VBaseInfo);
+}
+
+namespace {
+typedef llvm::SetVector<BaseSubobject, std::vector<BaseSubobject>,
+ llvm::DenseSet<BaseSubobject>> FullPathTy;
+}
+
+// This recursive function finds all paths from a subobject centered at
+// (RD, Offset) to the subobject located at BaseWithVPtr.
+static void findPathsToSubobject(ASTContext &Context,
+ const ASTRecordLayout &MostDerivedLayout,
+ const CXXRecordDecl *RD, CharUnits Offset,
+ BaseSubobject BaseWithVPtr,
+ FullPathTy &FullPath,
+ std::list<FullPathTy> &Paths) {
+ if (BaseSubobject(RD, Offset) == BaseWithVPtr) {
+ Paths.push_back(FullPath);
+ return;
+ }
+
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+
+ for (const CXXBaseSpecifier &BS : RD->bases()) {
+ const CXXRecordDecl *Base = BS.getType()->getAsCXXRecordDecl();
+ CharUnits NewOffset = BS.isVirtual()
+ ? MostDerivedLayout.getVBaseClassOffset(Base)
+ : Offset + Layout.getBaseClassOffset(Base);
+ FullPath.insert(BaseSubobject(Base, NewOffset));
+ findPathsToSubobject(Context, MostDerivedLayout, Base, NewOffset,
+ BaseWithVPtr, FullPath, Paths);
+ FullPath.pop_back();
+ }
+}
+
+// Return the paths which are not subsets of other paths.
+static void removeRedundantPaths(std::list<FullPathTy> &FullPaths) {
+ FullPaths.remove_if([&](const FullPathTy &SpecificPath) {
+ for (const FullPathTy &OtherPath : FullPaths) {
+ if (&SpecificPath == &OtherPath)
+ continue;
+ if (std::all_of(SpecificPath.begin(), SpecificPath.end(),
+ [&](const BaseSubobject &BSO) {
+ return OtherPath.count(BSO) != 0;
+ })) {
+ return true;
+ }
+ }
+ return false;
+ });
+}
+
+static CharUnits getOffsetOfFullPath(ASTContext &Context,
+ const CXXRecordDecl *RD,
+ const FullPathTy &FullPath) {
+ const ASTRecordLayout &MostDerivedLayout =
+ Context.getASTRecordLayout(RD);
+ CharUnits Offset = CharUnits::fromQuantity(-1);
+ for (const BaseSubobject &BSO : FullPath) {
+ const CXXRecordDecl *Base = BSO.getBase();
+ // The first entry in the path is always the most derived record, skip it.
+ if (Base == RD) {
+ assert(Offset.getQuantity() == -1);
+ Offset = CharUnits::Zero();
+ continue;
+ }
+ assert(Offset.getQuantity() != -1);
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+ // While we know which base has to be traversed, we don't know if that base
+ // was a virtual base.
+ const CXXBaseSpecifier *BaseBS = std::find_if(
+ RD->bases_begin(), RD->bases_end(), [&](const CXXBaseSpecifier &BS) {
+ return BS.getType()->getAsCXXRecordDecl() == Base;
+ });
+ Offset = BaseBS->isVirtual() ? MostDerivedLayout.getVBaseClassOffset(Base)
+ : Offset + Layout.getBaseClassOffset(Base);
+ RD = Base;
+ }
+ return Offset;
+}
+
+// We want to select the path which introduces the most covariant overrides. If
+// two paths introduce overrides which the other path doesn't contain, issue a
+// diagnostic.
+static const FullPathTy *selectBestPath(ASTContext &Context,
+ const CXXRecordDecl *RD, VPtrInfo *Info,
+ std::list<FullPathTy> &FullPaths) {
+ // Handle some easy cases first.
+ if (FullPaths.empty())
+ return nullptr;
+ if (FullPaths.size() == 1)
+ return &FullPaths.front();
+
+ const FullPathTy *BestPath = nullptr;
+ typedef std::set<const CXXMethodDecl *> OverriderSetTy;
+ OverriderSetTy LastOverrides;
+ for (const FullPathTy &SpecificPath : FullPaths) {
+ assert(!SpecificPath.empty());
+ OverriderSetTy CurrentOverrides;
+ const CXXRecordDecl *TopLevelRD = SpecificPath.begin()->getBase();
+ // Find the distance from the start of the path to the subobject with the
+ // VPtr.
+ CharUnits BaseOffset =
+ getOffsetOfFullPath(Context, TopLevelRD, SpecificPath);
+ FinalOverriders Overriders(TopLevelRD, CharUnits::Zero(), TopLevelRD);
+ for (const CXXMethodDecl *MD : Info->BaseWithVPtr->methods()) {
+ if (!MD->isVirtual())
+ continue;
+ FinalOverriders::OverriderInfo OI =
+ Overriders.getOverrider(MD->getCanonicalDecl(), BaseOffset);
+ const CXXMethodDecl *OverridingMethod = OI.Method;
+ // Only overriders which have a return adjustment introduce problematic
+ // thunks.
+ if (ComputeReturnAdjustmentBaseOffset(Context, OverridingMethod, MD)
+ .isEmpty())
+ continue;
+ // It's possible that the overrider isn't in this path. If so, skip it
+ // because this path didn't introduce it.
+ const CXXRecordDecl *OverridingParent = OverridingMethod->getParent();
+ if (std::none_of(SpecificPath.begin(), SpecificPath.end(),
+ [&](const BaseSubobject &BSO) {
+ return BSO.getBase() == OverridingParent;
+ }))
+ continue;
+ CurrentOverrides.insert(OverridingMethod);
+ }
+ OverriderSetTy NewOverrides =
+ llvm::set_difference(CurrentOverrides, LastOverrides);
+ if (NewOverrides.empty())
+ continue;
+ OverriderSetTy MissingOverrides =
+ llvm::set_difference(LastOverrides, CurrentOverrides);
+ if (MissingOverrides.empty()) {
+ // This path is a strict improvement over the last path, let's use it.
+ BestPath = &SpecificPath;
+ std::swap(CurrentOverrides, LastOverrides);
+ } else {
+ // This path introduces an overrider with a conflicting covariant thunk.
+ DiagnosticsEngine &Diags = Context.getDiagnostics();
+ const CXXMethodDecl *CovariantMD = *NewOverrides.begin();
+ const CXXMethodDecl *ConflictMD = *MissingOverrides.begin();
+ Diags.Report(RD->getLocation(), diag::err_vftable_ambiguous_component)
+ << RD;
+ Diags.Report(CovariantMD->getLocation(), diag::note_covariant_thunk)
+ << CovariantMD;
+ Diags.Report(ConflictMD->getLocation(), diag::note_covariant_thunk)
+ << ConflictMD;
+ }
+ }
+ // Go with the path that introduced the most covariant overrides. If there is
+ // no such path, pick the first path.
+ return BestPath ? BestPath : &FullPaths.front();
+}
+
+static void computeFullPathsForVFTables(ASTContext &Context,
+ const CXXRecordDecl *RD,
+ VPtrInfoVector &Paths) {
+ const ASTRecordLayout &MostDerivedLayout = Context.getASTRecordLayout(RD);
+ FullPathTy FullPath;
+ std::list<FullPathTy> FullPaths;
+ for (VPtrInfo *Info : Paths) {
+ findPathsToSubobject(
+ Context, MostDerivedLayout, RD, CharUnits::Zero(),
+ BaseSubobject(Info->BaseWithVPtr, Info->FullOffsetInMDC), FullPath,
+ FullPaths);
+ FullPath.clear();
+ removeRedundantPaths(FullPaths);
+ Info->PathToBaseWithVPtr.clear();
+ if (const FullPathTy *BestPath =
+ selectBestPath(Context, RD, Info, FullPaths))
+ for (const BaseSubobject &BSO : *BestPath)
+ Info->PathToBaseWithVPtr.push_back(BSO.getBase());
+ FullPaths.clear();
+ }
+}
+
+void MicrosoftVTableContext::computeVTableRelatedInformation(
+ const CXXRecordDecl *RD) {
+ assert(RD->isDynamicClass());
+
+ // Check if we've computed this information before.
+ if (VFPtrLocations.count(RD))
+ return;
+
+ const VTableLayout::AddressPointsMapTy EmptyAddressPointsMap;
+
+ VPtrInfoVector *VFPtrs = new VPtrInfoVector();
+ computeVTablePaths(/*ForVBTables=*/false, RD, *VFPtrs);
+ computeFullPathsForVFTables(Context, RD, *VFPtrs);
+ VFPtrLocations[RD] = VFPtrs;
+
+ MethodVFTableLocationsTy NewMethodLocations;
+ for (VPtrInfoVector::iterator I = VFPtrs->begin(), E = VFPtrs->end();
+ I != E; ++I) {
+ VFTableBuilder Builder(*this, RD, *I);
+
+ VFTableIdTy id(RD, (*I)->FullOffsetInMDC);
+ assert(VFTableLayouts.count(id) == 0);
+ SmallVector<VTableLayout::VTableThunkTy, 1> VTableThunks(
+ Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
+ VFTableLayouts[id] = new VTableLayout(
+ Builder.getNumVTableComponents(), Builder.vtable_component_begin(),
+ VTableThunks.size(), VTableThunks.data(), EmptyAddressPointsMap, true);
+ Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
+
+ for (const auto &Loc : Builder.vtable_locations()) {
+ GlobalDecl GD = Loc.first;
+ MethodVFTableLocation NewLoc = Loc.second;
+ auto M = NewMethodLocations.find(GD);
+ if (M == NewMethodLocations.end() || NewLoc < M->second)
+ NewMethodLocations[GD] = NewLoc;
+ }
+ }
+
+ MethodVFTableLocations.insert(NewMethodLocations.begin(),
+ NewMethodLocations.end());
+ if (Context.getLangOpts().DumpVTableLayouts)
+ dumpMethodLocations(RD, NewMethodLocations, llvm::outs());
+}
+
+void MicrosoftVTableContext::dumpMethodLocations(
+ const CXXRecordDecl *RD, const MethodVFTableLocationsTy &NewMethods,
+ raw_ostream &Out) {
+ // Compute the vtable indices for all the member functions.
+ // Store them in a map keyed by the location so we'll get a sorted table.
+ std::map<MethodVFTableLocation, std::string> IndicesMap;
+ bool HasNonzeroOffset = false;
+
+ for (MethodVFTableLocationsTy::const_iterator I = NewMethods.begin(),
+ E = NewMethods.end(); I != E; ++I) {
+ const CXXMethodDecl *MD = cast<const CXXMethodDecl>(I->first.getDecl());
+ assert(MD->isVirtual());
+
+ std::string MethodName = PredefinedExpr::ComputeName(
+ PredefinedExpr::PrettyFunctionNoVirtual, MD);
+
+ if (isa<CXXDestructorDecl>(MD)) {
+ IndicesMap[I->second] = MethodName + " [scalar deleting]";
+ } else {
+ IndicesMap[I->second] = MethodName;
+ }
+
+ if (!I->second.VFPtrOffset.isZero() || I->second.VBTableIndex != 0)
+ HasNonzeroOffset = true;
+ }
+
+ // Print the vtable indices for all the member functions.
+ if (!IndicesMap.empty()) {
+ Out << "VFTable indices for ";
+ Out << "'";
+ RD->printQualifiedName(Out);
+ Out << "' (" << IndicesMap.size()
+ << (IndicesMap.size() == 1 ? " entry" : " entries") << ").\n";
+
+ CharUnits LastVFPtrOffset = CharUnits::fromQuantity(-1);
+ uint64_t LastVBIndex = 0;
+ for (std::map<MethodVFTableLocation, std::string>::const_iterator
+ I = IndicesMap.begin(),
+ E = IndicesMap.end();
+ I != E; ++I) {
+ CharUnits VFPtrOffset = I->first.VFPtrOffset;
+ uint64_t VBIndex = I->first.VBTableIndex;
+ if (HasNonzeroOffset &&
+ (VFPtrOffset != LastVFPtrOffset || VBIndex != LastVBIndex)) {
+ assert(VBIndex > LastVBIndex || VFPtrOffset > LastVFPtrOffset);
+ Out << " -- accessible via ";
+ if (VBIndex)
+ Out << "vbtable index " << VBIndex << ", ";
+ Out << "vfptr at offset " << VFPtrOffset.getQuantity() << " --\n";
+ LastVFPtrOffset = VFPtrOffset;
+ LastVBIndex = VBIndex;
+ }
+
+ uint64_t VTableIndex = I->first.Index;
+ const std::string &MethodName = I->second;
+ Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName << '\n';
+ }
+ Out << '\n';
+ }
+
+ Out.flush();
+}
+
+const VirtualBaseInfo *MicrosoftVTableContext::computeVBTableRelatedInformation(
+ const CXXRecordDecl *RD) {
+ VirtualBaseInfo *VBI;
+
+ {
+ // Get or create a VBI for RD. Don't hold a reference to the DenseMap cell,
+ // as it may be modified and rehashed under us.
+ VirtualBaseInfo *&Entry = VBaseInfo[RD];
+ if (Entry)
+ return Entry;
+ Entry = VBI = new VirtualBaseInfo();
+ }
+
+ computeVTablePaths(/*ForVBTables=*/true, RD, VBI->VBPtrPaths);
+
+ // First, see if the Derived class shared the vbptr with a non-virtual base.
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+ if (const CXXRecordDecl *VBPtrBase = Layout.getBaseSharingVBPtr()) {
+ // If the Derived class shares the vbptr with a non-virtual base, the shared
+ // virtual bases come first so that the layout is the same.
+ const VirtualBaseInfo *BaseInfo =
+ computeVBTableRelatedInformation(VBPtrBase);
+ VBI->VBTableIndices.insert(BaseInfo->VBTableIndices.begin(),
+ BaseInfo->VBTableIndices.end());
+ }
+
+ // New vbases are added to the end of the vbtable.
+ // Skip the self entry and vbases visited in the non-virtual base, if any.
+ unsigned VBTableIndex = 1 + VBI->VBTableIndices.size();
+ for (const auto &VB : RD->vbases()) {
+ const CXXRecordDecl *CurVBase = VB.getType()->getAsCXXRecordDecl();
+ if (!VBI->VBTableIndices.count(CurVBase))
+ VBI->VBTableIndices[CurVBase] = VBTableIndex++;
+ }
+
+ return VBI;
+}
+
+unsigned MicrosoftVTableContext::getVBTableIndex(const CXXRecordDecl *Derived,
+ const CXXRecordDecl *VBase) {
+ const VirtualBaseInfo *VBInfo = computeVBTableRelatedInformation(Derived);
+ assert(VBInfo->VBTableIndices.count(VBase));
+ return VBInfo->VBTableIndices.find(VBase)->second;
+}
+
+const VPtrInfoVector &
+MicrosoftVTableContext::enumerateVBTables(const CXXRecordDecl *RD) {
+ return computeVBTableRelatedInformation(RD)->VBPtrPaths;
+}
+
+const VPtrInfoVector &
+MicrosoftVTableContext::getVFPtrOffsets(const CXXRecordDecl *RD) {
+ computeVTableRelatedInformation(RD);
+
+ assert(VFPtrLocations.count(RD) && "Couldn't find vfptr locations");
+ return *VFPtrLocations[RD];
+}
+
+const VTableLayout &
+MicrosoftVTableContext::getVFTableLayout(const CXXRecordDecl *RD,
+ CharUnits VFPtrOffset) {
+ computeVTableRelatedInformation(RD);
+
+ VFTableIdTy id(RD, VFPtrOffset);
+ assert(VFTableLayouts.count(id) && "Couldn't find a VFTable at this offset");
+ return *VFTableLayouts[id];
+}
+
+const MicrosoftVTableContext::MethodVFTableLocation &
+MicrosoftVTableContext::getMethodVFTableLocation(GlobalDecl GD) {
+ assert(cast<CXXMethodDecl>(GD.getDecl())->isVirtual() &&
+ "Only use this method for virtual methods or dtors");
+ if (isa<CXXDestructorDecl>(GD.getDecl()))
+ assert(GD.getDtorType() == Dtor_Deleting);
+
+ MethodVFTableLocationsTy::iterator I = MethodVFTableLocations.find(GD);
+ if (I != MethodVFTableLocations.end())
+ return I->second;
+
+ const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
+
+ computeVTableRelatedInformation(RD);
+
+ I = MethodVFTableLocations.find(GD);
+ assert(I != MethodVFTableLocations.end() && "Did not find index!");
+ return I->second;
+}
diff --git a/contrib/llvm/tools/clang/lib/ASTMatchers/ASTMatchFinder.cpp b/contrib/llvm/tools/clang/lib/ASTMatchers/ASTMatchFinder.cpp
new file mode 100644
index 0000000..c5f3063
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/ASTMatchers/ASTMatchFinder.cpp
@@ -0,0 +1,1000 @@
+//===--- ASTMatchFinder.cpp - Structural query framework ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Implements an algorithm to efficiently search for matches on AST nodes.
+// Uses memoization to support recursive matches like HasDescendant.
+//
+// The general idea is to visit all AST nodes with a RecursiveASTVisitor,
+// calling the Matches(...) method of each matcher we are running on each
+// AST node. The matcher can recurse via the ASTMatchFinder interface.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/ASTMatchers/ASTMatchFinder.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/RecursiveASTVisitor.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/StringMap.h"
+#include "llvm/Support/Timer.h"
+#include <deque>
+#include <memory>
+#include <set>
+
+namespace clang {
+namespace ast_matchers {
+namespace internal {
+namespace {
+
+typedef MatchFinder::MatchCallback MatchCallback;
+
+// The maximum number of memoization entries to store.
+// 10k has been experimentally found to give a good trade-off
+// of performance vs. memory consumption by running matcher
+// that match on every statement over a very large codebase.
+//
+// FIXME: Do some performance optimization in general and
+// revisit this number; also, put up micro-benchmarks that we can
+// optimize this on.
+static const unsigned MaxMemoizationEntries = 10000;
+
+// We use memoization to avoid running the same matcher on the same
+// AST node twice. This struct is the key for looking up match
+// result. It consists of an ID of the MatcherInterface (for
+// identifying the matcher), a pointer to the AST node and the
+// bound nodes before the matcher was executed.
+//
+// We currently only memoize on nodes whose pointers identify the
+// nodes (\c Stmt and \c Decl, but not \c QualType or \c TypeLoc).
+// For \c QualType and \c TypeLoc it is possible to implement
+// generation of keys for each type.
+// FIXME: Benchmark whether memoization of non-pointer typed nodes
+// provides enough benefit for the additional amount of code.
+struct MatchKey {
+ DynTypedMatcher::MatcherIDType MatcherID;
+ ast_type_traits::DynTypedNode Node;
+ BoundNodesTreeBuilder BoundNodes;
+
+ bool operator<(const MatchKey &Other) const {
+ return std::tie(MatcherID, Node, BoundNodes) <
+ std::tie(Other.MatcherID, Other.Node, Other.BoundNodes);
+ }
+};
+
+// Used to store the result of a match and possibly bound nodes.
+struct MemoizedMatchResult {
+ bool ResultOfMatch;
+ BoundNodesTreeBuilder Nodes;
+};
+
+// A RecursiveASTVisitor that traverses all children or all descendants of
+// a node.
+class MatchChildASTVisitor
+ : public RecursiveASTVisitor<MatchChildASTVisitor> {
+public:
+ typedef RecursiveASTVisitor<MatchChildASTVisitor> VisitorBase;
+
+ // Creates an AST visitor that matches 'matcher' on all children or
+ // descendants of a traversed node. max_depth is the maximum depth
+ // to traverse: use 1 for matching the children and INT_MAX for
+ // matching the descendants.
+ MatchChildASTVisitor(const DynTypedMatcher *Matcher,
+ ASTMatchFinder *Finder,
+ BoundNodesTreeBuilder *Builder,
+ int MaxDepth,
+ ASTMatchFinder::TraversalKind Traversal,
+ ASTMatchFinder::BindKind Bind)
+ : Matcher(Matcher),
+ Finder(Finder),
+ Builder(Builder),
+ CurrentDepth(0),
+ MaxDepth(MaxDepth),
+ Traversal(Traversal),
+ Bind(Bind),
+ Matches(false) {}
+
+ // Returns true if a match is found in the subtree rooted at the
+ // given AST node. This is done via a set of mutually recursive
+ // functions. Here's how the recursion is done (the *wildcard can
+ // actually be Decl, Stmt, or Type):
+ //
+ // - Traverse(node) calls BaseTraverse(node) when it needs
+ // to visit the descendants of node.
+ // - BaseTraverse(node) then calls (via VisitorBase::Traverse*(node))
+ // Traverse*(c) for each child c of 'node'.
+ // - Traverse*(c) in turn calls Traverse(c), completing the
+ // recursion.
+ bool findMatch(const ast_type_traits::DynTypedNode &DynNode) {
+ reset();
+ if (const Decl *D = DynNode.get<Decl>())
+ traverse(*D);
+ else if (const Stmt *S = DynNode.get<Stmt>())
+ traverse(*S);
+ else if (const NestedNameSpecifier *NNS =
+ DynNode.get<NestedNameSpecifier>())
+ traverse(*NNS);
+ else if (const NestedNameSpecifierLoc *NNSLoc =
+ DynNode.get<NestedNameSpecifierLoc>())
+ traverse(*NNSLoc);
+ else if (const QualType *Q = DynNode.get<QualType>())
+ traverse(*Q);
+ else if (const TypeLoc *T = DynNode.get<TypeLoc>())
+ traverse(*T);
+ // FIXME: Add other base types after adding tests.
+
+ // It's OK to always overwrite the bound nodes, as if there was
+ // no match in this recursive branch, the result set is empty
+ // anyway.
+ *Builder = ResultBindings;
+
+ return Matches;
+ }
+
+ // The following are overriding methods from the base visitor class.
+ // They are public only to allow CRTP to work. They are *not *part
+ // of the public API of this class.
+ bool TraverseDecl(Decl *DeclNode) {
+ ScopedIncrement ScopedDepth(&CurrentDepth);
+ return (DeclNode == nullptr) || traverse(*DeclNode);
+ }
+ bool TraverseStmt(Stmt *StmtNode) {
+ ScopedIncrement ScopedDepth(&CurrentDepth);
+ const Stmt *StmtToTraverse = StmtNode;
+ if (Traversal ==
+ ASTMatchFinder::TK_IgnoreImplicitCastsAndParentheses) {
+ const Expr *ExprNode = dyn_cast_or_null<Expr>(StmtNode);
+ if (ExprNode) {
+ StmtToTraverse = ExprNode->IgnoreParenImpCasts();
+ }
+ }
+ return (StmtToTraverse == nullptr) || traverse(*StmtToTraverse);
+ }
+ // We assume that the QualType and the contained type are on the same
+ // hierarchy level. Thus, we try to match either of them.
+ bool TraverseType(QualType TypeNode) {
+ if (TypeNode.isNull())
+ return true;
+ ScopedIncrement ScopedDepth(&CurrentDepth);
+ // Match the Type.
+ if (!match(*TypeNode))
+ return false;
+ // The QualType is matched inside traverse.
+ return traverse(TypeNode);
+ }
+ // We assume that the TypeLoc, contained QualType and contained Type all are
+ // on the same hierarchy level. Thus, we try to match all of them.
+ bool TraverseTypeLoc(TypeLoc TypeLocNode) {
+ if (TypeLocNode.isNull())
+ return true;
+ ScopedIncrement ScopedDepth(&CurrentDepth);
+ // Match the Type.
+ if (!match(*TypeLocNode.getType()))
+ return false;
+ // Match the QualType.
+ if (!match(TypeLocNode.getType()))
+ return false;
+ // The TypeLoc is matched inside traverse.
+ return traverse(TypeLocNode);
+ }
+ bool TraverseNestedNameSpecifier(NestedNameSpecifier *NNS) {
+ ScopedIncrement ScopedDepth(&CurrentDepth);
+ return (NNS == nullptr) || traverse(*NNS);
+ }
+ bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS) {
+ if (!NNS)
+ return true;
+ ScopedIncrement ScopedDepth(&CurrentDepth);
+ if (!match(*NNS.getNestedNameSpecifier()))
+ return false;
+ return traverse(NNS);
+ }
+
+ bool shouldVisitTemplateInstantiations() const { return true; }
+ bool shouldVisitImplicitCode() const { return true; }
+ // Disables data recursion. We intercept Traverse* methods in the RAV, which
+ // are not triggered during data recursion.
+ bool shouldUseDataRecursionFor(clang::Stmt *S) const { return false; }
+
+private:
+ // Used for updating the depth during traversal.
+ struct ScopedIncrement {
+ explicit ScopedIncrement(int *Depth) : Depth(Depth) { ++(*Depth); }
+ ~ScopedIncrement() { --(*Depth); }
+
+ private:
+ int *Depth;
+ };
+
+ // Resets the state of this object.
+ void reset() {
+ Matches = false;
+ CurrentDepth = 0;
+ }
+
+ // Forwards the call to the corresponding Traverse*() method in the
+ // base visitor class.
+ bool baseTraverse(const Decl &DeclNode) {
+ return VisitorBase::TraverseDecl(const_cast<Decl*>(&DeclNode));
+ }
+ bool baseTraverse(const Stmt &StmtNode) {
+ return VisitorBase::TraverseStmt(const_cast<Stmt*>(&StmtNode));
+ }
+ bool baseTraverse(QualType TypeNode) {
+ return VisitorBase::TraverseType(TypeNode);
+ }
+ bool baseTraverse(TypeLoc TypeLocNode) {
+ return VisitorBase::TraverseTypeLoc(TypeLocNode);
+ }
+ bool baseTraverse(const NestedNameSpecifier &NNS) {
+ return VisitorBase::TraverseNestedNameSpecifier(
+ const_cast<NestedNameSpecifier*>(&NNS));
+ }
+ bool baseTraverse(NestedNameSpecifierLoc NNS) {
+ return VisitorBase::TraverseNestedNameSpecifierLoc(NNS);
+ }
+
+ // Sets 'Matched' to true if 'Matcher' matches 'Node' and:
+ // 0 < CurrentDepth <= MaxDepth.
+ //
+ // Returns 'true' if traversal should continue after this function
+ // returns, i.e. if no match is found or 'Bind' is 'BK_All'.
+ template <typename T>
+ bool match(const T &Node) {
+ if (CurrentDepth == 0 || CurrentDepth > MaxDepth) {
+ return true;
+ }
+ if (Bind != ASTMatchFinder::BK_All) {
+ BoundNodesTreeBuilder RecursiveBuilder(*Builder);
+ if (Matcher->matches(ast_type_traits::DynTypedNode::create(Node), Finder,
+ &RecursiveBuilder)) {
+ Matches = true;
+ ResultBindings.addMatch(RecursiveBuilder);
+ return false; // Abort as soon as a match is found.
+ }
+ } else {
+ BoundNodesTreeBuilder RecursiveBuilder(*Builder);
+ if (Matcher->matches(ast_type_traits::DynTypedNode::create(Node), Finder,
+ &RecursiveBuilder)) {
+ // After the first match the matcher succeeds.
+ Matches = true;
+ ResultBindings.addMatch(RecursiveBuilder);
+ }
+ }
+ return true;
+ }
+
+ // Traverses the subtree rooted at 'Node'; returns true if the
+ // traversal should continue after this function returns.
+ template <typename T>
+ bool traverse(const T &Node) {
+ static_assert(IsBaseType<T>::value,
+ "traverse can only be instantiated with base type");
+ if (!match(Node))
+ return false;
+ return baseTraverse(Node);
+ }
+
+ const DynTypedMatcher *const Matcher;
+ ASTMatchFinder *const Finder;
+ BoundNodesTreeBuilder *const Builder;
+ BoundNodesTreeBuilder ResultBindings;
+ int CurrentDepth;
+ const int MaxDepth;
+ const ASTMatchFinder::TraversalKind Traversal;
+ const ASTMatchFinder::BindKind Bind;
+ bool Matches;
+};
+
+// Controls the outermost traversal of the AST and allows to match multiple
+// matchers.
+class MatchASTVisitor : public RecursiveASTVisitor<MatchASTVisitor>,
+ public ASTMatchFinder {
+public:
+ MatchASTVisitor(const MatchFinder::MatchersByType *Matchers,
+ const MatchFinder::MatchFinderOptions &Options)
+ : Matchers(Matchers), Options(Options), ActiveASTContext(nullptr) {}
+
+ ~MatchASTVisitor() override {
+ if (Options.CheckProfiling) {
+ Options.CheckProfiling->Records = std::move(TimeByBucket);
+ }
+ }
+
+ void onStartOfTranslationUnit() {
+ const bool EnableCheckProfiling = Options.CheckProfiling.hasValue();
+ TimeBucketRegion Timer;
+ for (MatchCallback *MC : Matchers->AllCallbacks) {
+ if (EnableCheckProfiling)
+ Timer.setBucket(&TimeByBucket[MC->getID()]);
+ MC->onStartOfTranslationUnit();
+ }
+ }
+
+ void onEndOfTranslationUnit() {
+ const bool EnableCheckProfiling = Options.CheckProfiling.hasValue();
+ TimeBucketRegion Timer;
+ for (MatchCallback *MC : Matchers->AllCallbacks) {
+ if (EnableCheckProfiling)
+ Timer.setBucket(&TimeByBucket[MC->getID()]);
+ MC->onEndOfTranslationUnit();
+ }
+ }
+
+ void set_active_ast_context(ASTContext *NewActiveASTContext) {
+ ActiveASTContext = NewActiveASTContext;
+ }
+
+ // The following Visit*() and Traverse*() functions "override"
+ // methods in RecursiveASTVisitor.
+
+ bool VisitTypedefNameDecl(TypedefNameDecl *DeclNode) {
+ // When we see 'typedef A B', we add name 'B' to the set of names
+ // A's canonical type maps to. This is necessary for implementing
+ // isDerivedFrom(x) properly, where x can be the name of the base
+ // class or any of its aliases.
+ //
+ // In general, the is-alias-of (as defined by typedefs) relation
+ // is tree-shaped, as you can typedef a type more than once. For
+ // example,
+ //
+ // typedef A B;
+ // typedef A C;
+ // typedef C D;
+ // typedef C E;
+ //
+ // gives you
+ //
+ // A
+ // |- B
+ // `- C
+ // |- D
+ // `- E
+ //
+ // It is wrong to assume that the relation is a chain. A correct
+ // implementation of isDerivedFrom() needs to recognize that B and
+ // E are aliases, even though neither is a typedef of the other.
+ // Therefore, we cannot simply walk through one typedef chain to
+ // find out whether the type name matches.
+ const Type *TypeNode = DeclNode->getUnderlyingType().getTypePtr();
+ const Type *CanonicalType = // root of the typedef tree
+ ActiveASTContext->getCanonicalType(TypeNode);
+ TypeAliases[CanonicalType].insert(DeclNode);
+ return true;
+ }
+
+ bool TraverseDecl(Decl *DeclNode);
+ bool TraverseStmt(Stmt *StmtNode);
+ bool TraverseType(QualType TypeNode);
+ bool TraverseTypeLoc(TypeLoc TypeNode);
+ bool TraverseNestedNameSpecifier(NestedNameSpecifier *NNS);
+ bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS);
+
+ // Matches children or descendants of 'Node' with 'BaseMatcher'.
+ bool memoizedMatchesRecursively(const ast_type_traits::DynTypedNode &Node,
+ const DynTypedMatcher &Matcher,
+ BoundNodesTreeBuilder *Builder, int MaxDepth,
+ TraversalKind Traversal, BindKind Bind) {
+ // For AST-nodes that don't have an identity, we can't memoize.
+ if (!Node.getMemoizationData() || !Builder->isComparable())
+ return matchesRecursively(Node, Matcher, Builder, MaxDepth, Traversal,
+ Bind);
+
+ MatchKey Key;
+ Key.MatcherID = Matcher.getID();
+ Key.Node = Node;
+ // Note that we key on the bindings *before* the match.
+ Key.BoundNodes = *Builder;
+
+ MemoizationMap::iterator I = ResultCache.find(Key);
+ if (I != ResultCache.end()) {
+ *Builder = I->second.Nodes;
+ return I->second.ResultOfMatch;
+ }
+
+ MemoizedMatchResult Result;
+ Result.Nodes = *Builder;
+ Result.ResultOfMatch = matchesRecursively(Node, Matcher, &Result.Nodes,
+ MaxDepth, Traversal, Bind);
+
+ MemoizedMatchResult &CachedResult = ResultCache[Key];
+ CachedResult = std::move(Result);
+
+ *Builder = CachedResult.Nodes;
+ return CachedResult.ResultOfMatch;
+ }
+
+ // Matches children or descendants of 'Node' with 'BaseMatcher'.
+ bool matchesRecursively(const ast_type_traits::DynTypedNode &Node,
+ const DynTypedMatcher &Matcher,
+ BoundNodesTreeBuilder *Builder, int MaxDepth,
+ TraversalKind Traversal, BindKind Bind) {
+ MatchChildASTVisitor Visitor(
+ &Matcher, this, Builder, MaxDepth, Traversal, Bind);
+ return Visitor.findMatch(Node);
+ }
+
+ bool classIsDerivedFrom(const CXXRecordDecl *Declaration,
+ const Matcher<NamedDecl> &Base,
+ BoundNodesTreeBuilder *Builder) override;
+
+ // Implements ASTMatchFinder::matchesChildOf.
+ bool matchesChildOf(const ast_type_traits::DynTypedNode &Node,
+ const DynTypedMatcher &Matcher,
+ BoundNodesTreeBuilder *Builder,
+ TraversalKind Traversal,
+ BindKind Bind) override {
+ if (ResultCache.size() > MaxMemoizationEntries)
+ ResultCache.clear();
+ return memoizedMatchesRecursively(Node, Matcher, Builder, 1, Traversal,
+ Bind);
+ }
+ // Implements ASTMatchFinder::matchesDescendantOf.
+ bool matchesDescendantOf(const ast_type_traits::DynTypedNode &Node,
+ const DynTypedMatcher &Matcher,
+ BoundNodesTreeBuilder *Builder,
+ BindKind Bind) override {
+ if (ResultCache.size() > MaxMemoizationEntries)
+ ResultCache.clear();
+ return memoizedMatchesRecursively(Node, Matcher, Builder, INT_MAX,
+ TK_AsIs, Bind);
+ }
+ // Implements ASTMatchFinder::matchesAncestorOf.
+ bool matchesAncestorOf(const ast_type_traits::DynTypedNode &Node,
+ const DynTypedMatcher &Matcher,
+ BoundNodesTreeBuilder *Builder,
+ AncestorMatchMode MatchMode) override {
+ // Reset the cache outside of the recursive call to make sure we
+ // don't invalidate any iterators.
+ if (ResultCache.size() > MaxMemoizationEntries)
+ ResultCache.clear();
+ return memoizedMatchesAncestorOfRecursively(Node, Matcher, Builder,
+ MatchMode);
+ }
+
+ // Matches all registered matchers on the given node and calls the
+ // result callback for every node that matches.
+ void match(const ast_type_traits::DynTypedNode &Node) {
+ // FIXME: Improve this with a switch or a visitor pattern.
+ if (auto *N = Node.get<Decl>()) {
+ match(*N);
+ } else if (auto *N = Node.get<Stmt>()) {
+ match(*N);
+ } else if (auto *N = Node.get<Type>()) {
+ match(*N);
+ } else if (auto *N = Node.get<QualType>()) {
+ match(*N);
+ } else if (auto *N = Node.get<NestedNameSpecifier>()) {
+ match(*N);
+ } else if (auto *N = Node.get<NestedNameSpecifierLoc>()) {
+ match(*N);
+ } else if (auto *N = Node.get<TypeLoc>()) {
+ match(*N);
+ }
+ }
+
+ template <typename T> void match(const T &Node) {
+ matchDispatch(&Node);
+ }
+
+ // Implements ASTMatchFinder::getASTContext.
+ ASTContext &getASTContext() const override { return *ActiveASTContext; }
+
+ bool shouldVisitTemplateInstantiations() const { return true; }
+ bool shouldVisitImplicitCode() const { return true; }
+ // Disables data recursion. We intercept Traverse* methods in the RAV, which
+ // are not triggered during data recursion.
+ bool shouldUseDataRecursionFor(clang::Stmt *S) const { return false; }
+
+private:
+ class TimeBucketRegion {
+ public:
+ TimeBucketRegion() : Bucket(nullptr) {}
+ ~TimeBucketRegion() { setBucket(nullptr); }
+
+ /// \brief Start timing for \p NewBucket.
+ ///
+ /// If there was a bucket already set, it will finish the timing for that
+ /// other bucket.
+ /// \p NewBucket will be timed until the next call to \c setBucket() or
+ /// until the \c TimeBucketRegion is destroyed.
+ /// If \p NewBucket is the same as the currently timed bucket, this call
+ /// does nothing.
+ void setBucket(llvm::TimeRecord *NewBucket) {
+ if (Bucket != NewBucket) {
+ auto Now = llvm::TimeRecord::getCurrentTime(true);
+ if (Bucket)
+ *Bucket += Now;
+ if (NewBucket)
+ *NewBucket -= Now;
+ Bucket = NewBucket;
+ }
+ }
+
+ private:
+ llvm::TimeRecord *Bucket;
+ };
+
+ /// \brief Runs all the \p Matchers on \p Node.
+ ///
+ /// Used by \c matchDispatch() below.
+ template <typename T, typename MC>
+ void matchWithoutFilter(const T &Node, const MC &Matchers) {
+ const bool EnableCheckProfiling = Options.CheckProfiling.hasValue();
+ TimeBucketRegion Timer;
+ for (const auto &MP : Matchers) {
+ if (EnableCheckProfiling)
+ Timer.setBucket(&TimeByBucket[MP.second->getID()]);
+ BoundNodesTreeBuilder Builder;
+ if (MP.first.matches(Node, this, &Builder)) {
+ MatchVisitor Visitor(ActiveASTContext, MP.second);
+ Builder.visitMatches(&Visitor);
+ }
+ }
+ }
+
+ void matchWithFilter(const ast_type_traits::DynTypedNode &DynNode) {
+ auto Kind = DynNode.getNodeKind();
+ auto it = MatcherFiltersMap.find(Kind);
+ const auto &Filter =
+ it != MatcherFiltersMap.end() ? it->second : getFilterForKind(Kind);
+
+ if (Filter.empty())
+ return;
+
+ const bool EnableCheckProfiling = Options.CheckProfiling.hasValue();
+ TimeBucketRegion Timer;
+ auto &Matchers = this->Matchers->DeclOrStmt;
+ for (unsigned short I : Filter) {
+ auto &MP = Matchers[I];
+ if (EnableCheckProfiling)
+ Timer.setBucket(&TimeByBucket[MP.second->getID()]);
+ BoundNodesTreeBuilder Builder;
+ if (MP.first.matchesNoKindCheck(DynNode, this, &Builder)) {
+ MatchVisitor Visitor(ActiveASTContext, MP.second);
+ Builder.visitMatches(&Visitor);
+ }
+ }
+ }
+
+ const std::vector<unsigned short> &
+ getFilterForKind(ast_type_traits::ASTNodeKind Kind) {
+ auto &Filter = MatcherFiltersMap[Kind];
+ auto &Matchers = this->Matchers->DeclOrStmt;
+ assert((Matchers.size() < USHRT_MAX) && "Too many matchers.");
+ for (unsigned I = 0, E = Matchers.size(); I != E; ++I) {
+ if (Matchers[I].first.canMatchNodesOfKind(Kind)) {
+ Filter.push_back(I);
+ }
+ }
+ return Filter;
+ }
+
+ /// @{
+ /// \brief Overloads to pair the different node types to their matchers.
+ void matchDispatch(const Decl *Node) {
+ return matchWithFilter(ast_type_traits::DynTypedNode::create(*Node));
+ }
+ void matchDispatch(const Stmt *Node) {
+ return matchWithFilter(ast_type_traits::DynTypedNode::create(*Node));
+ }
+
+ void matchDispatch(const Type *Node) {
+ matchWithoutFilter(QualType(Node, 0), Matchers->Type);
+ }
+ void matchDispatch(const TypeLoc *Node) {
+ matchWithoutFilter(*Node, Matchers->TypeLoc);
+ }
+ void matchDispatch(const QualType *Node) {
+ matchWithoutFilter(*Node, Matchers->Type);
+ }
+ void matchDispatch(const NestedNameSpecifier *Node) {
+ matchWithoutFilter(*Node, Matchers->NestedNameSpecifier);
+ }
+ void matchDispatch(const NestedNameSpecifierLoc *Node) {
+ matchWithoutFilter(*Node, Matchers->NestedNameSpecifierLoc);
+ }
+ void matchDispatch(const void *) { /* Do nothing. */ }
+ /// @}
+
+ // Returns whether an ancestor of \p Node matches \p Matcher.
+ //
+ // The order of matching ((which can lead to different nodes being bound in
+ // case there are multiple matches) is breadth first search.
+ //
+ // To allow memoization in the very common case of having deeply nested
+ // expressions inside a template function, we first walk up the AST, memoizing
+ // the result of the match along the way, as long as there is only a single
+ // parent.
+ //
+ // Once there are multiple parents, the breadth first search order does not
+ // allow simple memoization on the ancestors. Thus, we only memoize as long
+ // as there is a single parent.
+ bool memoizedMatchesAncestorOfRecursively(
+ const ast_type_traits::DynTypedNode &Node, const DynTypedMatcher &Matcher,
+ BoundNodesTreeBuilder *Builder, AncestorMatchMode MatchMode) {
+ if (Node.get<TranslationUnitDecl>() ==
+ ActiveASTContext->getTranslationUnitDecl())
+ return false;
+ assert(Node.getMemoizationData() &&
+ "Invariant broken: only nodes that support memoization may be "
+ "used in the parent map.");
+
+ MatchKey Key;
+ Key.MatcherID = Matcher.getID();
+ Key.Node = Node;
+ Key.BoundNodes = *Builder;
+
+ // Note that we cannot use insert and reuse the iterator, as recursive
+ // calls to match might invalidate the result cache iterators.
+ MemoizationMap::iterator I = ResultCache.find(Key);
+ if (I != ResultCache.end()) {
+ *Builder = I->second.Nodes;
+ return I->second.ResultOfMatch;
+ }
+
+ MemoizedMatchResult Result;
+ Result.ResultOfMatch = false;
+ Result.Nodes = *Builder;
+
+ const auto &Parents = ActiveASTContext->getParents(Node);
+ assert(!Parents.empty() && "Found node that is not in the parent map.");
+ if (Parents.size() == 1) {
+ // Only one parent - do recursive memoization.
+ const ast_type_traits::DynTypedNode Parent = Parents[0];
+ if (Matcher.matches(Parent, this, &Result.Nodes)) {
+ Result.ResultOfMatch = true;
+ } else if (MatchMode != ASTMatchFinder::AMM_ParentOnly) {
+ // Reset the results to not include the bound nodes from the failed
+ // match above.
+ Result.Nodes = *Builder;
+ Result.ResultOfMatch = memoizedMatchesAncestorOfRecursively(
+ Parent, Matcher, &Result.Nodes, MatchMode);
+ // Once we get back from the recursive call, the result will be the
+ // same as the parent's result.
+ }
+ } else {
+ // Multiple parents - BFS over the rest of the nodes.
+ llvm::DenseSet<const void *> Visited;
+ std::deque<ast_type_traits::DynTypedNode> Queue(Parents.begin(),
+ Parents.end());
+ while (!Queue.empty()) {
+ Result.Nodes = *Builder;
+ if (Matcher.matches(Queue.front(), this, &Result.Nodes)) {
+ Result.ResultOfMatch = true;
+ break;
+ }
+ if (MatchMode != ASTMatchFinder::AMM_ParentOnly) {
+ for (const auto &Parent :
+ ActiveASTContext->getParents(Queue.front())) {
+ // Make sure we do not visit the same node twice.
+ // Otherwise, we'll visit the common ancestors as often as there
+ // are splits on the way down.
+ if (Visited.insert(Parent.getMemoizationData()).second)
+ Queue.push_back(Parent);
+ }
+ }
+ Queue.pop_front();
+ }
+ }
+
+ MemoizedMatchResult &CachedResult = ResultCache[Key];
+ CachedResult = std::move(Result);
+
+ *Builder = CachedResult.Nodes;
+ return CachedResult.ResultOfMatch;
+ }
+
+ // Implements a BoundNodesTree::Visitor that calls a MatchCallback with
+ // the aggregated bound nodes for each match.
+ class MatchVisitor : public BoundNodesTreeBuilder::Visitor {
+ public:
+ MatchVisitor(ASTContext* Context,
+ MatchFinder::MatchCallback* Callback)
+ : Context(Context),
+ Callback(Callback) {}
+
+ void visitMatch(const BoundNodes& BoundNodesView) override {
+ Callback->run(MatchFinder::MatchResult(BoundNodesView, Context));
+ }
+
+ private:
+ ASTContext* Context;
+ MatchFinder::MatchCallback* Callback;
+ };
+
+ // Returns true if 'TypeNode' has an alias that matches the given matcher.
+ bool typeHasMatchingAlias(const Type *TypeNode,
+ const Matcher<NamedDecl> Matcher,
+ BoundNodesTreeBuilder *Builder) {
+ const Type *const CanonicalType =
+ ActiveASTContext->getCanonicalType(TypeNode);
+ for (const TypedefNameDecl *Alias : TypeAliases.lookup(CanonicalType)) {
+ BoundNodesTreeBuilder Result(*Builder);
+ if (Matcher.matches(*Alias, this, &Result)) {
+ *Builder = std::move(Result);
+ return true;
+ }
+ }
+ return false;
+ }
+
+ /// \brief Bucket to record map.
+ ///
+ /// Used to get the appropriate bucket for each matcher.
+ llvm::StringMap<llvm::TimeRecord> TimeByBucket;
+
+ const MatchFinder::MatchersByType *Matchers;
+
+ /// \brief Filtered list of matcher indices for each matcher kind.
+ ///
+ /// \c Decl and \c Stmt toplevel matchers usually apply to a specific node
+ /// kind (and derived kinds) so it is a waste to try every matcher on every
+ /// node.
+ /// We precalculate a list of matchers that pass the toplevel restrict check.
+ /// This also allows us to skip the restrict check at matching time. See
+ /// use \c matchesNoKindCheck() above.
+ llvm::DenseMap<ast_type_traits::ASTNodeKind, std::vector<unsigned short>>
+ MatcherFiltersMap;
+
+ const MatchFinder::MatchFinderOptions &Options;
+ ASTContext *ActiveASTContext;
+
+ // Maps a canonical type to its TypedefDecls.
+ llvm::DenseMap<const Type*, std::set<const TypedefNameDecl*> > TypeAliases;
+
+ // Maps (matcher, node) -> the match result for memoization.
+ typedef std::map<MatchKey, MemoizedMatchResult> MemoizationMap;
+ MemoizationMap ResultCache;
+};
+
+static CXXRecordDecl *getAsCXXRecordDecl(const Type *TypeNode) {
+ // Type::getAs<...>() drills through typedefs.
+ if (TypeNode->getAs<DependentNameType>() != nullptr ||
+ TypeNode->getAs<DependentTemplateSpecializationType>() != nullptr ||
+ TypeNode->getAs<TemplateTypeParmType>() != nullptr)
+ // Dependent names and template TypeNode parameters will be matched when
+ // the template is instantiated.
+ return nullptr;
+ TemplateSpecializationType const *TemplateType =
+ TypeNode->getAs<TemplateSpecializationType>();
+ if (!TemplateType) {
+ return TypeNode->getAsCXXRecordDecl();
+ }
+ if (TemplateType->getTemplateName().isDependent())
+ // Dependent template specializations will be matched when the
+ // template is instantiated.
+ return nullptr;
+
+ // For template specialization types which are specializing a template
+ // declaration which is an explicit or partial specialization of another
+ // template declaration, getAsCXXRecordDecl() returns the corresponding
+ // ClassTemplateSpecializationDecl.
+ //
+ // For template specialization types which are specializing a template
+ // declaration which is neither an explicit nor partial specialization of
+ // another template declaration, getAsCXXRecordDecl() returns NULL and
+ // we get the CXXRecordDecl of the templated declaration.
+ CXXRecordDecl *SpecializationDecl = TemplateType->getAsCXXRecordDecl();
+ if (SpecializationDecl) {
+ return SpecializationDecl;
+ }
+ NamedDecl *Templated =
+ TemplateType->getTemplateName().getAsTemplateDecl()->getTemplatedDecl();
+ if (CXXRecordDecl *TemplatedRecord = dyn_cast<CXXRecordDecl>(Templated)) {
+ return TemplatedRecord;
+ }
+ // Now it can still be that we have an alias template.
+ TypeAliasDecl *AliasDecl = dyn_cast<TypeAliasDecl>(Templated);
+ assert(AliasDecl);
+ return getAsCXXRecordDecl(AliasDecl->getUnderlyingType().getTypePtr());
+}
+
+// Returns true if the given class is directly or indirectly derived
+// from a base type with the given name. A class is not considered to be
+// derived from itself.
+bool MatchASTVisitor::classIsDerivedFrom(const CXXRecordDecl *Declaration,
+ const Matcher<NamedDecl> &Base,
+ BoundNodesTreeBuilder *Builder) {
+ if (!Declaration->hasDefinition())
+ return false;
+ for (const auto &It : Declaration->bases()) {
+ const Type *TypeNode = It.getType().getTypePtr();
+
+ if (typeHasMatchingAlias(TypeNode, Base, Builder))
+ return true;
+
+ CXXRecordDecl *ClassDecl = getAsCXXRecordDecl(TypeNode);
+ if (!ClassDecl)
+ continue;
+ if (ClassDecl == Declaration) {
+ // This can happen for recursive template definitions; if the
+ // current declaration did not match, we can safely return false.
+ return false;
+ }
+ BoundNodesTreeBuilder Result(*Builder);
+ if (Base.matches(*ClassDecl, this, &Result)) {
+ *Builder = std::move(Result);
+ return true;
+ }
+ if (classIsDerivedFrom(ClassDecl, Base, Builder))
+ return true;
+ }
+ return false;
+}
+
+bool MatchASTVisitor::TraverseDecl(Decl *DeclNode) {
+ if (!DeclNode) {
+ return true;
+ }
+ match(*DeclNode);
+ return RecursiveASTVisitor<MatchASTVisitor>::TraverseDecl(DeclNode);
+}
+
+bool MatchASTVisitor::TraverseStmt(Stmt *StmtNode) {
+ if (!StmtNode) {
+ return true;
+ }
+ match(*StmtNode);
+ return RecursiveASTVisitor<MatchASTVisitor>::TraverseStmt(StmtNode);
+}
+
+bool MatchASTVisitor::TraverseType(QualType TypeNode) {
+ match(TypeNode);
+ return RecursiveASTVisitor<MatchASTVisitor>::TraverseType(TypeNode);
+}
+
+bool MatchASTVisitor::TraverseTypeLoc(TypeLoc TypeLocNode) {
+ // The RecursiveASTVisitor only visits types if they're not within TypeLocs.
+ // We still want to find those types via matchers, so we match them here. Note
+ // that the TypeLocs are structurally a shadow-hierarchy to the expressed
+ // type, so we visit all involved parts of a compound type when matching on
+ // each TypeLoc.
+ match(TypeLocNode);
+ match(TypeLocNode.getType());
+ return RecursiveASTVisitor<MatchASTVisitor>::TraverseTypeLoc(TypeLocNode);
+}
+
+bool MatchASTVisitor::TraverseNestedNameSpecifier(NestedNameSpecifier *NNS) {
+ match(*NNS);
+ return RecursiveASTVisitor<MatchASTVisitor>::TraverseNestedNameSpecifier(NNS);
+}
+
+bool MatchASTVisitor::TraverseNestedNameSpecifierLoc(
+ NestedNameSpecifierLoc NNS) {
+ match(NNS);
+ // We only match the nested name specifier here (as opposed to traversing it)
+ // because the traversal is already done in the parallel "Loc"-hierarchy.
+ if (NNS.hasQualifier())
+ match(*NNS.getNestedNameSpecifier());
+ return
+ RecursiveASTVisitor<MatchASTVisitor>::TraverseNestedNameSpecifierLoc(NNS);
+}
+
+class MatchASTConsumer : public ASTConsumer {
+public:
+ MatchASTConsumer(MatchFinder *Finder,
+ MatchFinder::ParsingDoneTestCallback *ParsingDone)
+ : Finder(Finder), ParsingDone(ParsingDone) {}
+
+private:
+ void HandleTranslationUnit(ASTContext &Context) override {
+ if (ParsingDone != nullptr) {
+ ParsingDone->run();
+ }
+ Finder->matchAST(Context);
+ }
+
+ MatchFinder *Finder;
+ MatchFinder::ParsingDoneTestCallback *ParsingDone;
+};
+
+} // end namespace
+} // end namespace internal
+
+MatchFinder::MatchResult::MatchResult(const BoundNodes &Nodes,
+ ASTContext *Context)
+ : Nodes(Nodes), Context(Context),
+ SourceManager(&Context->getSourceManager()) {}
+
+MatchFinder::MatchCallback::~MatchCallback() {}
+MatchFinder::ParsingDoneTestCallback::~ParsingDoneTestCallback() {}
+
+MatchFinder::MatchFinder(MatchFinderOptions Options)
+ : Options(std::move(Options)), ParsingDone(nullptr) {}
+
+MatchFinder::~MatchFinder() {}
+
+void MatchFinder::addMatcher(const DeclarationMatcher &NodeMatch,
+ MatchCallback *Action) {
+ Matchers.DeclOrStmt.push_back(std::make_pair(NodeMatch, Action));
+ Matchers.AllCallbacks.push_back(Action);
+}
+
+void MatchFinder::addMatcher(const TypeMatcher &NodeMatch,
+ MatchCallback *Action) {
+ Matchers.Type.push_back(std::make_pair(NodeMatch, Action));
+ Matchers.AllCallbacks.push_back(Action);
+}
+
+void MatchFinder::addMatcher(const StatementMatcher &NodeMatch,
+ MatchCallback *Action) {
+ Matchers.DeclOrStmt.push_back(std::make_pair(NodeMatch, Action));
+ Matchers.AllCallbacks.push_back(Action);
+}
+
+void MatchFinder::addMatcher(const NestedNameSpecifierMatcher &NodeMatch,
+ MatchCallback *Action) {
+ Matchers.NestedNameSpecifier.push_back(std::make_pair(NodeMatch, Action));
+ Matchers.AllCallbacks.push_back(Action);
+}
+
+void MatchFinder::addMatcher(const NestedNameSpecifierLocMatcher &NodeMatch,
+ MatchCallback *Action) {
+ Matchers.NestedNameSpecifierLoc.push_back(std::make_pair(NodeMatch, Action));
+ Matchers.AllCallbacks.push_back(Action);
+}
+
+void MatchFinder::addMatcher(const TypeLocMatcher &NodeMatch,
+ MatchCallback *Action) {
+ Matchers.TypeLoc.push_back(std::make_pair(NodeMatch, Action));
+ Matchers.AllCallbacks.push_back(Action);
+}
+
+bool MatchFinder::addDynamicMatcher(const internal::DynTypedMatcher &NodeMatch,
+ MatchCallback *Action) {
+ if (NodeMatch.canConvertTo<Decl>()) {
+ addMatcher(NodeMatch.convertTo<Decl>(), Action);
+ return true;
+ } else if (NodeMatch.canConvertTo<QualType>()) {
+ addMatcher(NodeMatch.convertTo<QualType>(), Action);
+ return true;
+ } else if (NodeMatch.canConvertTo<Stmt>()) {
+ addMatcher(NodeMatch.convertTo<Stmt>(), Action);
+ return true;
+ } else if (NodeMatch.canConvertTo<NestedNameSpecifier>()) {
+ addMatcher(NodeMatch.convertTo<NestedNameSpecifier>(), Action);
+ return true;
+ } else if (NodeMatch.canConvertTo<NestedNameSpecifierLoc>()) {
+ addMatcher(NodeMatch.convertTo<NestedNameSpecifierLoc>(), Action);
+ return true;
+ } else if (NodeMatch.canConvertTo<TypeLoc>()) {
+ addMatcher(NodeMatch.convertTo<TypeLoc>(), Action);
+ return true;
+ }
+ return false;
+}
+
+std::unique_ptr<ASTConsumer> MatchFinder::newASTConsumer() {
+ return llvm::make_unique<internal::MatchASTConsumer>(this, ParsingDone);
+}
+
+void MatchFinder::match(const clang::ast_type_traits::DynTypedNode &Node,
+ ASTContext &Context) {
+ internal::MatchASTVisitor Visitor(&Matchers, Options);
+ Visitor.set_active_ast_context(&Context);
+ Visitor.match(Node);
+}
+
+void MatchFinder::matchAST(ASTContext &Context) {
+ internal::MatchASTVisitor Visitor(&Matchers, Options);
+ Visitor.set_active_ast_context(&Context);
+ Visitor.onStartOfTranslationUnit();
+ Visitor.TraverseDecl(Context.getTranslationUnitDecl());
+ Visitor.onEndOfTranslationUnit();
+}
+
+void MatchFinder::registerTestCallbackAfterParsing(
+ MatchFinder::ParsingDoneTestCallback *NewParsingDone) {
+ ParsingDone = NewParsingDone;
+}
+
+StringRef MatchFinder::MatchCallback::getID() const { return "<unknown>"; }
+
+} // end namespace ast_matchers
+} // end namespace clang
diff --git a/contrib/llvm/tools/clang/lib/ASTMatchers/ASTMatchersInternal.cpp b/contrib/llvm/tools/clang/lib/ASTMatchers/ASTMatchersInternal.cpp
new file mode 100644
index 0000000..2c482e3
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/ASTMatchers/ASTMatchersInternal.cpp
@@ -0,0 +1,344 @@
+//===--- ASTMatchersInternal.cpp - Structural query framework -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Implements the base layer of the matcher framework.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/ASTMatchers/ASTMatchers.h"
+#include "clang/ASTMatchers/ASTMatchersInternal.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/ManagedStatic.h"
+
+namespace clang {
+namespace ast_matchers {
+namespace internal {
+
+bool NotUnaryOperator(const ast_type_traits::DynTypedNode DynNode,
+ ASTMatchFinder *Finder, BoundNodesTreeBuilder *Builder,
+ ArrayRef<DynTypedMatcher> InnerMatchers);
+
+bool AllOfVariadicOperator(const ast_type_traits::DynTypedNode DynNode,
+ ASTMatchFinder *Finder,
+ BoundNodesTreeBuilder *Builder,
+ ArrayRef<DynTypedMatcher> InnerMatchers);
+
+bool EachOfVariadicOperator(const ast_type_traits::DynTypedNode DynNode,
+ ASTMatchFinder *Finder,
+ BoundNodesTreeBuilder *Builder,
+ ArrayRef<DynTypedMatcher> InnerMatchers);
+
+bool AnyOfVariadicOperator(const ast_type_traits::DynTypedNode DynNode,
+ ASTMatchFinder *Finder,
+ BoundNodesTreeBuilder *Builder,
+ ArrayRef<DynTypedMatcher> InnerMatchers);
+
+
+void BoundNodesTreeBuilder::visitMatches(Visitor *ResultVisitor) {
+ if (Bindings.empty())
+ Bindings.push_back(BoundNodesMap());
+ for (BoundNodesMap &Binding : Bindings) {
+ ResultVisitor->visitMatch(BoundNodes(Binding));
+ }
+}
+
+namespace {
+
+typedef bool (*VariadicOperatorFunction)(
+ const ast_type_traits::DynTypedNode DynNode, ASTMatchFinder *Finder,
+ BoundNodesTreeBuilder *Builder, ArrayRef<DynTypedMatcher> InnerMatchers);
+
+template <VariadicOperatorFunction Func>
+class VariadicMatcher : public DynMatcherInterface {
+public:
+ VariadicMatcher(std::vector<DynTypedMatcher> InnerMatchers)
+ : InnerMatchers(std::move(InnerMatchers)) {}
+
+ bool dynMatches(const ast_type_traits::DynTypedNode &DynNode,
+ ASTMatchFinder *Finder,
+ BoundNodesTreeBuilder *Builder) const override {
+ return Func(DynNode, Finder, Builder, InnerMatchers);
+ }
+
+private:
+ std::vector<DynTypedMatcher> InnerMatchers;
+};
+
+class IdDynMatcher : public DynMatcherInterface {
+ public:
+ IdDynMatcher(StringRef ID,
+ const IntrusiveRefCntPtr<DynMatcherInterface> &InnerMatcher)
+ : ID(ID), InnerMatcher(InnerMatcher) {}
+
+ bool dynMatches(const ast_type_traits::DynTypedNode &DynNode,
+ ASTMatchFinder *Finder,
+ BoundNodesTreeBuilder *Builder) const override {
+ bool Result = InnerMatcher->dynMatches(DynNode, Finder, Builder);
+ if (Result) Builder->setBinding(ID, DynNode);
+ return Result;
+ }
+
+ private:
+ const std::string ID;
+ const IntrusiveRefCntPtr<DynMatcherInterface> InnerMatcher;
+};
+
+/// \brief A matcher that always returns true.
+///
+/// We only ever need one instance of this matcher, so we create a global one
+/// and reuse it to reduce the overhead of the matcher and increase the chance
+/// of cache hits.
+class TrueMatcherImpl : public DynMatcherInterface {
+public:
+ TrueMatcherImpl() {
+ Retain(); // Reference count will never become zero.
+ }
+ bool dynMatches(const ast_type_traits::DynTypedNode &, ASTMatchFinder *,
+ BoundNodesTreeBuilder *) const override {
+ return true;
+ }
+};
+static llvm::ManagedStatic<TrueMatcherImpl> TrueMatcherInstance;
+
+} // namespace
+
+DynTypedMatcher DynTypedMatcher::constructVariadic(
+ DynTypedMatcher::VariadicOperator Op,
+ std::vector<DynTypedMatcher> InnerMatchers) {
+ assert(InnerMatchers.size() > 0 && "Array must not be empty.");
+ assert(std::all_of(InnerMatchers.begin(), InnerMatchers.end(),
+ [&InnerMatchers](const DynTypedMatcher &M) {
+ return InnerMatchers[0].SupportedKind.isSame(M.SupportedKind);
+ }) &&
+ "SupportedKind must match!");
+
+ auto SupportedKind = InnerMatchers[0].SupportedKind;
+ // We must relax the restrict kind here.
+ // The different operators might deal differently with a mismatch.
+ // Make it the same as SupportedKind, since that is the broadest type we are
+ // allowed to accept.
+ auto RestrictKind = SupportedKind;
+
+ switch (Op) {
+ case VO_AllOf:
+ // In the case of allOf() we must pass all the checks, so making
+ // RestrictKind the most restrictive can save us time. This way we reject
+ // invalid types earlier and we can elide the kind checks inside the
+ // matcher.
+ for (auto &IM : InnerMatchers) {
+ RestrictKind = ast_type_traits::ASTNodeKind::getMostDerivedType(
+ RestrictKind, IM.RestrictKind);
+ }
+ return DynTypedMatcher(
+ SupportedKind, RestrictKind,
+ new VariadicMatcher<AllOfVariadicOperator>(std::move(InnerMatchers)));
+
+ case VO_AnyOf:
+ return DynTypedMatcher(
+ SupportedKind, RestrictKind,
+ new VariadicMatcher<AnyOfVariadicOperator>(std::move(InnerMatchers)));
+
+ case VO_EachOf:
+ return DynTypedMatcher(
+ SupportedKind, RestrictKind,
+ new VariadicMatcher<EachOfVariadicOperator>(std::move(InnerMatchers)));
+
+ case VO_UnaryNot:
+ // FIXME: Implement the Not operator to take a single matcher instead of a
+ // vector.
+ return DynTypedMatcher(
+ SupportedKind, RestrictKind,
+ new VariadicMatcher<NotUnaryOperator>(std::move(InnerMatchers)));
+ }
+ llvm_unreachable("Invalid Op value.");
+}
+
+DynTypedMatcher DynTypedMatcher::trueMatcher(
+ ast_type_traits::ASTNodeKind NodeKind) {
+ return DynTypedMatcher(NodeKind, NodeKind, &*TrueMatcherInstance);
+}
+
+bool DynTypedMatcher::canMatchNodesOfKind(
+ ast_type_traits::ASTNodeKind Kind) const {
+ return RestrictKind.isBaseOf(Kind);
+}
+
+DynTypedMatcher DynTypedMatcher::dynCastTo(
+ const ast_type_traits::ASTNodeKind Kind) const {
+ auto Copy = *this;
+ Copy.SupportedKind = Kind;
+ Copy.RestrictKind =
+ ast_type_traits::ASTNodeKind::getMostDerivedType(Kind, RestrictKind);
+ return Copy;
+}
+
+bool DynTypedMatcher::matches(const ast_type_traits::DynTypedNode &DynNode,
+ ASTMatchFinder *Finder,
+ BoundNodesTreeBuilder *Builder) const {
+ if (RestrictKind.isBaseOf(DynNode.getNodeKind()) &&
+ Implementation->dynMatches(DynNode, Finder, Builder)) {
+ return true;
+ }
+ // Delete all bindings when a matcher does not match.
+ // This prevents unexpected exposure of bound nodes in unmatches
+ // branches of the match tree.
+ Builder->removeBindings([](const BoundNodesMap &) { return true; });
+ return false;
+}
+
+bool DynTypedMatcher::matchesNoKindCheck(
+ const ast_type_traits::DynTypedNode &DynNode, ASTMatchFinder *Finder,
+ BoundNodesTreeBuilder *Builder) const {
+ assert(RestrictKind.isBaseOf(DynNode.getNodeKind()));
+ if (Implementation->dynMatches(DynNode, Finder, Builder)) {
+ return true;
+ }
+ // Delete all bindings when a matcher does not match.
+ // This prevents unexpected exposure of bound nodes in unmatches
+ // branches of the match tree.
+ Builder->removeBindings([](const BoundNodesMap &) { return true; });
+ return false;
+}
+
+llvm::Optional<DynTypedMatcher> DynTypedMatcher::tryBind(StringRef ID) const {
+ if (!AllowBind) return llvm::None;
+ auto Result = *this;
+ Result.Implementation = new IdDynMatcher(ID, Result.Implementation);
+ return Result;
+}
+
+bool DynTypedMatcher::canConvertTo(ast_type_traits::ASTNodeKind To) const {
+ const auto From = getSupportedKind();
+ auto QualKind = ast_type_traits::ASTNodeKind::getFromNodeKind<QualType>();
+ auto TypeKind = ast_type_traits::ASTNodeKind::getFromNodeKind<Type>();
+ /// Mimic the implicit conversions of Matcher<>.
+ /// - From Matcher<Type> to Matcher<QualType>
+ if (From.isSame(TypeKind) && To.isSame(QualKind)) return true;
+ /// - From Matcher<Base> to Matcher<Derived>
+ return From.isBaseOf(To);
+}
+
+void BoundNodesTreeBuilder::addMatch(const BoundNodesTreeBuilder &Other) {
+ Bindings.append(Other.Bindings.begin(), Other.Bindings.end());
+}
+
+bool NotUnaryOperator(const ast_type_traits::DynTypedNode DynNode,
+ ASTMatchFinder *Finder, BoundNodesTreeBuilder *Builder,
+ ArrayRef<DynTypedMatcher> InnerMatchers) {
+ if (InnerMatchers.size() != 1)
+ return false;
+
+ // The 'unless' matcher will always discard the result:
+ // If the inner matcher doesn't match, unless returns true,
+ // but the inner matcher cannot have bound anything.
+ // If the inner matcher matches, the result is false, and
+ // any possible binding will be discarded.
+ // We still need to hand in all the bound nodes up to this
+ // point so the inner matcher can depend on bound nodes,
+ // and we need to actively discard the bound nodes, otherwise
+ // the inner matcher will reset the bound nodes if it doesn't
+ // match, but this would be inversed by 'unless'.
+ BoundNodesTreeBuilder Discard(*Builder);
+ return !InnerMatchers[0].matches(DynNode, Finder, &Discard);
+}
+
+bool AllOfVariadicOperator(const ast_type_traits::DynTypedNode DynNode,
+ ASTMatchFinder *Finder,
+ BoundNodesTreeBuilder *Builder,
+ ArrayRef<DynTypedMatcher> InnerMatchers) {
+ // allOf leads to one matcher for each alternative in the first
+ // matcher combined with each alternative in the second matcher.
+ // Thus, we can reuse the same Builder.
+ for (const DynTypedMatcher &InnerMatcher : InnerMatchers) {
+ if (!InnerMatcher.matchesNoKindCheck(DynNode, Finder, Builder))
+ return false;
+ }
+ return true;
+}
+
+bool EachOfVariadicOperator(const ast_type_traits::DynTypedNode DynNode,
+ ASTMatchFinder *Finder,
+ BoundNodesTreeBuilder *Builder,
+ ArrayRef<DynTypedMatcher> InnerMatchers) {
+ BoundNodesTreeBuilder Result;
+ bool Matched = false;
+ for (const DynTypedMatcher &InnerMatcher : InnerMatchers) {
+ BoundNodesTreeBuilder BuilderInner(*Builder);
+ if (InnerMatcher.matches(DynNode, Finder, &BuilderInner)) {
+ Matched = true;
+ Result.addMatch(BuilderInner);
+ }
+ }
+ *Builder = std::move(Result);
+ return Matched;
+}
+
+bool AnyOfVariadicOperator(const ast_type_traits::DynTypedNode DynNode,
+ ASTMatchFinder *Finder,
+ BoundNodesTreeBuilder *Builder,
+ ArrayRef<DynTypedMatcher> InnerMatchers) {
+ for (const DynTypedMatcher &InnerMatcher : InnerMatchers) {
+ BoundNodesTreeBuilder Result = *Builder;
+ if (InnerMatcher.matches(DynNode, Finder, &Result)) {
+ *Builder = std::move(Result);
+ return true;
+ }
+ }
+ return false;
+}
+
+HasNameMatcher::HasNameMatcher(StringRef NameRef)
+ : UseUnqualifiedMatch(NameRef.find("::") == NameRef.npos), Name(NameRef) {
+ assert(!Name.empty());
+}
+
+bool HasNameMatcher::matchesNodeUnqualified(const NamedDecl &Node) const {
+ assert(UseUnqualifiedMatch);
+ if (Node.getIdentifier()) {
+ // Simple name.
+ return Name == Node.getName();
+ }
+ if (Node.getDeclName()) {
+ // Name needs to be constructed.
+ llvm::SmallString<128> NodeName;
+ llvm::raw_svector_ostream OS(NodeName);
+ Node.printName(OS);
+ return Name == OS.str();
+ }
+ return false;
+}
+
+bool HasNameMatcher::matchesNodeFull(const NamedDecl &Node) const {
+ llvm::SmallString<128> NodeName = StringRef("::");
+ llvm::raw_svector_ostream OS(NodeName);
+ Node.printQualifiedName(OS);
+ const StringRef FullName = OS.str();
+ const StringRef Pattern = Name;
+
+ if (Pattern.startswith("::"))
+ return FullName == Pattern;
+
+ return FullName.endswith(Pattern) &&
+ FullName.drop_back(Pattern.size()).endswith("::");
+}
+
+bool HasNameMatcher::matchesNode(const NamedDecl &Node) const {
+ // FIXME: There is still room for improvement, but it would require copying a
+ // lot of the logic from NamedDecl::printQualifiedName(). The benchmarks do
+ // not show like that extra complexity is needed right now.
+ if (UseUnqualifiedMatch) {
+ assert(matchesNodeUnqualified(Node) == matchesNodeFull(Node));
+ return matchesNodeUnqualified(Node);
+ }
+ return matchesNodeFull(Node);
+}
+
+} // end namespace internal
+} // end namespace ast_matchers
+} // end namespace clang
diff --git a/contrib/llvm/tools/clang/lib/ASTMatchers/Dynamic/Diagnostics.cpp b/contrib/llvm/tools/clang/lib/ASTMatchers/Dynamic/Diagnostics.cpp
new file mode 100644
index 0000000..f6d3449
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/ASTMatchers/Dynamic/Diagnostics.cpp
@@ -0,0 +1,222 @@
+//===--- Diagnostics.cpp - Helper class for error diagnostics -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/ASTMatchers/Dynamic/Diagnostics.h"
+
+namespace clang {
+namespace ast_matchers {
+namespace dynamic {
+Diagnostics::ArgStream Diagnostics::pushContextFrame(ContextType Type,
+ SourceRange Range) {
+ ContextStack.push_back(ContextFrame());
+ ContextFrame& data = ContextStack.back();
+ data.Type = Type;
+ data.Range = Range;
+ return ArgStream(&data.Args);
+}
+
+Diagnostics::Context::Context(ConstructMatcherEnum, Diagnostics *Error,
+ StringRef MatcherName,
+ const SourceRange &MatcherRange)
+ : Error(Error) {
+ Error->pushContextFrame(CT_MatcherConstruct, MatcherRange) << MatcherName;
+}
+
+Diagnostics::Context::Context(MatcherArgEnum, Diagnostics *Error,
+ StringRef MatcherName,
+ const SourceRange &MatcherRange,
+ unsigned ArgNumber)
+ : Error(Error) {
+ Error->pushContextFrame(CT_MatcherArg, MatcherRange) << ArgNumber
+ << MatcherName;
+}
+
+Diagnostics::Context::~Context() { Error->ContextStack.pop_back(); }
+
+Diagnostics::OverloadContext::OverloadContext(Diagnostics *Error)
+ : Error(Error), BeginIndex(Error->Errors.size()) {}
+
+Diagnostics::OverloadContext::~OverloadContext() {
+ // Merge all errors that happened while in this context.
+ if (BeginIndex < Error->Errors.size()) {
+ Diagnostics::ErrorContent &Dest = Error->Errors[BeginIndex];
+ for (size_t i = BeginIndex + 1, e = Error->Errors.size(); i < e; ++i) {
+ Dest.Messages.push_back(Error->Errors[i].Messages[0]);
+ }
+ Error->Errors.resize(BeginIndex + 1);
+ }
+}
+
+void Diagnostics::OverloadContext::revertErrors() {
+ // Revert the errors.
+ Error->Errors.resize(BeginIndex);
+}
+
+Diagnostics::ArgStream &Diagnostics::ArgStream::operator<<(const Twine &Arg) {
+ Out->push_back(Arg.str());
+ return *this;
+}
+
+Diagnostics::ArgStream Diagnostics::addError(const SourceRange &Range,
+ ErrorType Error) {
+ Errors.push_back(ErrorContent());
+ ErrorContent &Last = Errors.back();
+ Last.ContextStack = ContextStack;
+ Last.Messages.push_back(ErrorContent::Message());
+ Last.Messages.back().Range = Range;
+ Last.Messages.back().Type = Error;
+ return ArgStream(&Last.Messages.back().Args);
+}
+
+static StringRef contextTypeToFormatString(Diagnostics::ContextType Type) {
+ switch (Type) {
+ case Diagnostics::CT_MatcherConstruct:
+ return "Error building matcher $0.";
+ case Diagnostics::CT_MatcherArg:
+ return "Error parsing argument $0 for matcher $1.";
+ }
+ llvm_unreachable("Unknown ContextType value.");
+}
+
+static StringRef errorTypeToFormatString(Diagnostics::ErrorType Type) {
+ switch (Type) {
+ case Diagnostics::ET_RegistryMatcherNotFound:
+ return "Matcher not found: $0";
+ case Diagnostics::ET_RegistryWrongArgCount:
+ return "Incorrect argument count. (Expected = $0) != (Actual = $1)";
+ case Diagnostics::ET_RegistryWrongArgType:
+ return "Incorrect type for arg $0. (Expected = $1) != (Actual = $2)";
+ case Diagnostics::ET_RegistryNotBindable:
+ return "Matcher does not support binding.";
+ case Diagnostics::ET_RegistryAmbiguousOverload:
+ // TODO: Add type info about the overload error.
+ return "Ambiguous matcher overload.";
+ case Diagnostics::ET_RegistryValueNotFound:
+ return "Value not found: $0";
+
+ case Diagnostics::ET_ParserStringError:
+ return "Error parsing string token: <$0>";
+ case Diagnostics::ET_ParserNoOpenParen:
+ return "Error parsing matcher. Found token <$0> while looking for '('.";
+ case Diagnostics::ET_ParserNoCloseParen:
+ return "Error parsing matcher. Found end-of-code while looking for ')'.";
+ case Diagnostics::ET_ParserNoComma:
+ return "Error parsing matcher. Found token <$0> while looking for ','.";
+ case Diagnostics::ET_ParserNoCode:
+ return "End of code found while looking for token.";
+ case Diagnostics::ET_ParserNotAMatcher:
+ return "Input value is not a matcher expression.";
+ case Diagnostics::ET_ParserInvalidToken:
+ return "Invalid token <$0> found when looking for a value.";
+ case Diagnostics::ET_ParserMalformedBindExpr:
+ return "Malformed bind() expression.";
+ case Diagnostics::ET_ParserTrailingCode:
+ return "Expected end of code.";
+ case Diagnostics::ET_ParserUnsignedError:
+ return "Error parsing unsigned token: <$0>";
+ case Diagnostics::ET_ParserOverloadedType:
+ return "Input value has unresolved overloaded type: $0";
+
+ case Diagnostics::ET_None:
+ return "<N/A>";
+ }
+ llvm_unreachable("Unknown ErrorType value.");
+}
+
+static void formatErrorString(StringRef FormatString,
+ ArrayRef<std::string> Args,
+ llvm::raw_ostream &OS) {
+ while (!FormatString.empty()) {
+ std::pair<StringRef, StringRef> Pieces = FormatString.split("$");
+ OS << Pieces.first.str();
+ if (Pieces.second.empty()) break;
+
+ const char Next = Pieces.second.front();
+ FormatString = Pieces.second.drop_front();
+ if (Next >= '0' && Next <= '9') {
+ const unsigned Index = Next - '0';
+ if (Index < Args.size()) {
+ OS << Args[Index];
+ } else {
+ OS << "<Argument_Not_Provided>";
+ }
+ }
+ }
+}
+
+static void maybeAddLineAndColumn(const SourceRange &Range,
+ llvm::raw_ostream &OS) {
+ if (Range.Start.Line > 0 && Range.Start.Column > 0) {
+ OS << Range.Start.Line << ":" << Range.Start.Column << ": ";
+ }
+}
+
+static void printContextFrameToStream(const Diagnostics::ContextFrame &Frame,
+ llvm::raw_ostream &OS) {
+ maybeAddLineAndColumn(Frame.Range, OS);
+ formatErrorString(contextTypeToFormatString(Frame.Type), Frame.Args, OS);
+}
+
+static void
+printMessageToStream(const Diagnostics::ErrorContent::Message &Message,
+ const Twine Prefix, llvm::raw_ostream &OS) {
+ maybeAddLineAndColumn(Message.Range, OS);
+ OS << Prefix;
+ formatErrorString(errorTypeToFormatString(Message.Type), Message.Args, OS);
+}
+
+static void printErrorContentToStream(const Diagnostics::ErrorContent &Content,
+ llvm::raw_ostream &OS) {
+ if (Content.Messages.size() == 1) {
+ printMessageToStream(Content.Messages[0], "", OS);
+ } else {
+ for (size_t i = 0, e = Content.Messages.size(); i != e; ++i) {
+ if (i != 0) OS << "\n";
+ printMessageToStream(Content.Messages[i],
+ "Candidate " + Twine(i + 1) + ": ", OS);
+ }
+ }
+}
+
+void Diagnostics::printToStream(llvm::raw_ostream &OS) const {
+ for (size_t i = 0, e = Errors.size(); i != e; ++i) {
+ if (i != 0) OS << "\n";
+ printErrorContentToStream(Errors[i], OS);
+ }
+}
+
+std::string Diagnostics::toString() const {
+ std::string S;
+ llvm::raw_string_ostream OS(S);
+ printToStream(OS);
+ return OS.str();
+}
+
+void Diagnostics::printToStreamFull(llvm::raw_ostream &OS) const {
+ for (size_t i = 0, e = Errors.size(); i != e; ++i) {
+ if (i != 0) OS << "\n";
+ const ErrorContent &Error = Errors[i];
+ for (size_t i = 0, e = Error.ContextStack.size(); i != e; ++i) {
+ printContextFrameToStream(Error.ContextStack[i], OS);
+ OS << "\n";
+ }
+ printErrorContentToStream(Error, OS);
+ }
+}
+
+std::string Diagnostics::toStringFull() const {
+ std::string S;
+ llvm::raw_string_ostream OS(S);
+ printToStreamFull(OS);
+ return OS.str();
+}
+
+} // namespace dynamic
+} // namespace ast_matchers
+} // namespace clang
diff --git a/contrib/llvm/tools/clang/lib/ASTMatchers/Dynamic/Marshallers.h b/contrib/llvm/tools/clang/lib/ASTMatchers/Dynamic/Marshallers.h
new file mode 100644
index 0000000..36a6415
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/ASTMatchers/Dynamic/Marshallers.h
@@ -0,0 +1,716 @@
+//===--- Marshallers.h - Generic matcher function marshallers -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// \brief Functions templates and classes to wrap matcher construct functions.
+///
+/// A collection of template function and classes that provide a generic
+/// marshalling layer on top of matcher construct functions.
+/// These are used by the registry to export all marshaller constructors with
+/// the same generic interface.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_ASTMATCHERS_DYNAMIC_MARSHALLERS_H
+#define LLVM_CLANG_LIB_ASTMATCHERS_DYNAMIC_MARSHALLERS_H
+
+#include "clang/ASTMatchers/ASTMatchers.h"
+#include "clang/ASTMatchers/Dynamic/Diagnostics.h"
+#include "clang/ASTMatchers/Dynamic/VariantValue.h"
+#include "clang/Basic/LLVM.h"
+#include "llvm/ADT/STLExtras.h"
+#include <string>
+
+namespace clang {
+namespace ast_matchers {
+namespace dynamic {
+namespace internal {
+
+
+/// \brief Helper template class to just from argument type to the right is/get
+/// functions in VariantValue.
+/// Used to verify and extract the matcher arguments below.
+template <class T> struct ArgTypeTraits;
+template <class T> struct ArgTypeTraits<const T &> : public ArgTypeTraits<T> {
+};
+
+template <> struct ArgTypeTraits<std::string> {
+ static bool is(const VariantValue &Value) { return Value.isString(); }
+ static const std::string &get(const VariantValue &Value) {
+ return Value.getString();
+ }
+ static ArgKind getKind() {
+ return ArgKind(ArgKind::AK_String);
+ }
+};
+
+template <>
+struct ArgTypeTraits<StringRef> : public ArgTypeTraits<std::string> {
+};
+
+template <class T> struct ArgTypeTraits<ast_matchers::internal::Matcher<T> > {
+ static bool is(const VariantValue &Value) {
+ return Value.isMatcher() && Value.getMatcher().hasTypedMatcher<T>();
+ }
+ static ast_matchers::internal::Matcher<T> get(const VariantValue &Value) {
+ return Value.getMatcher().getTypedMatcher<T>();
+ }
+ static ArgKind getKind() {
+ return ArgKind(ast_type_traits::ASTNodeKind::getFromNodeKind<T>());
+ }
+};
+
+template <> struct ArgTypeTraits<unsigned> {
+ static bool is(const VariantValue &Value) { return Value.isUnsigned(); }
+ static unsigned get(const VariantValue &Value) {
+ return Value.getUnsigned();
+ }
+ static ArgKind getKind() {
+ return ArgKind(ArgKind::AK_Unsigned);
+ }
+};
+
+template <> struct ArgTypeTraits<attr::Kind> {
+private:
+ static attr::Kind getAttrKind(llvm::StringRef AttrKind) {
+ return llvm::StringSwitch<attr::Kind>(AttrKind)
+#define ATTR(X) .Case("attr::" #X, attr:: X)
+#include "clang/Basic/AttrList.inc"
+ .Default(attr::Kind(-1));
+ }
+public:
+ static bool is(const VariantValue &Value) {
+ return Value.isString() &&
+ getAttrKind(Value.getString()) != attr::Kind(-1);
+ }
+ static attr::Kind get(const VariantValue &Value) {
+ return getAttrKind(Value.getString());
+ }
+ static ArgKind getKind() {
+ return ArgKind(ArgKind::AK_String);
+ }
+};
+
+/// \brief Matcher descriptor interface.
+///
+/// Provides a \c create() method that constructs the matcher from the provided
+/// arguments, and various other methods for type introspection.
+class MatcherDescriptor {
+public:
+ virtual ~MatcherDescriptor() {}
+ virtual VariantMatcher create(const SourceRange &NameRange,
+ ArrayRef<ParserValue> Args,
+ Diagnostics *Error) const = 0;
+
+ /// Returns whether the matcher is variadic. Variadic matchers can take any
+ /// number of arguments, but they must be of the same type.
+ virtual bool isVariadic() const = 0;
+
+ /// Returns the number of arguments accepted by the matcher if not variadic.
+ virtual unsigned getNumArgs() const = 0;
+
+ /// Given that the matcher is being converted to type \p ThisKind, append the
+ /// set of argument types accepted for argument \p ArgNo to \p ArgKinds.
+ // FIXME: We should provide the ability to constrain the output of this
+ // function based on the types of other matcher arguments.
+ virtual void getArgKinds(ast_type_traits::ASTNodeKind ThisKind, unsigned ArgNo,
+ std::vector<ArgKind> &ArgKinds) const = 0;
+
+ /// Returns whether this matcher is convertible to the given type. If it is
+ /// so convertible, store in *Specificity a value corresponding to the
+ /// "specificity" of the converted matcher to the given context, and in
+ /// *LeastDerivedKind the least derived matcher kind which would result in the
+ /// same matcher overload. Zero specificity indicates that this conversion
+ /// would produce a trivial matcher that will either always or never match.
+ /// Such matchers are excluded from code completion results.
+ virtual bool isConvertibleTo(
+ ast_type_traits::ASTNodeKind Kind, unsigned *Specificity = nullptr,
+ ast_type_traits::ASTNodeKind *LeastDerivedKind = nullptr) const = 0;
+
+ /// Returns whether the matcher will, given a matcher of any type T, yield a
+ /// matcher of type T.
+ virtual bool isPolymorphic() const { return false; }
+};
+
+inline bool isRetKindConvertibleTo(
+ ArrayRef<ast_type_traits::ASTNodeKind> RetKinds,
+ ast_type_traits::ASTNodeKind Kind, unsigned *Specificity,
+ ast_type_traits::ASTNodeKind *LeastDerivedKind) {
+ for (const ast_type_traits::ASTNodeKind &NodeKind : RetKinds) {
+ if (ArgKind(NodeKind).isConvertibleTo(Kind, Specificity)) {
+ if (LeastDerivedKind)
+ *LeastDerivedKind = NodeKind;
+ return true;
+ }
+ }
+ return false;
+}
+
+/// \brief Simple callback implementation. Marshaller and function are provided.
+///
+/// This class wraps a function of arbitrary signature and a marshaller
+/// function into a MatcherDescriptor.
+/// The marshaller is in charge of taking the VariantValue arguments, checking
+/// their types, unpacking them and calling the underlying function.
+class FixedArgCountMatcherDescriptor : public MatcherDescriptor {
+public:
+ typedef VariantMatcher (*MarshallerType)(void (*Func)(),
+ StringRef MatcherName,
+ const SourceRange &NameRange,
+ ArrayRef<ParserValue> Args,
+ Diagnostics *Error);
+
+ /// \param Marshaller Function to unpack the arguments and call \c Func
+ /// \param Func Matcher construct function. This is the function that
+ /// compile-time matcher expressions would use to create the matcher.
+ /// \param RetKinds The list of matcher types to which the matcher is
+ /// convertible.
+ /// \param ArgKinds The types of the arguments this matcher takes.
+ FixedArgCountMatcherDescriptor(
+ MarshallerType Marshaller, void (*Func)(), StringRef MatcherName,
+ ArrayRef<ast_type_traits::ASTNodeKind> RetKinds,
+ ArrayRef<ArgKind> ArgKinds)
+ : Marshaller(Marshaller), Func(Func), MatcherName(MatcherName),
+ RetKinds(RetKinds.begin(), RetKinds.end()),
+ ArgKinds(ArgKinds.begin(), ArgKinds.end()) {}
+
+ VariantMatcher create(const SourceRange &NameRange,
+ ArrayRef<ParserValue> Args,
+ Diagnostics *Error) const override {
+ return Marshaller(Func, MatcherName, NameRange, Args, Error);
+ }
+
+ bool isVariadic() const override { return false; }
+ unsigned getNumArgs() const override { return ArgKinds.size(); }
+ void getArgKinds(ast_type_traits::ASTNodeKind ThisKind, unsigned ArgNo,
+ std::vector<ArgKind> &Kinds) const override {
+ Kinds.push_back(ArgKinds[ArgNo]);
+ }
+ bool isConvertibleTo(
+ ast_type_traits::ASTNodeKind Kind, unsigned *Specificity,
+ ast_type_traits::ASTNodeKind *LeastDerivedKind) const override {
+ return isRetKindConvertibleTo(RetKinds, Kind, Specificity,
+ LeastDerivedKind);
+ }
+
+private:
+ const MarshallerType Marshaller;
+ void (* const Func)();
+ const std::string MatcherName;
+ const std::vector<ast_type_traits::ASTNodeKind> RetKinds;
+ const std::vector<ArgKind> ArgKinds;
+};
+
+/// \brief Helper methods to extract and merge all possible typed matchers
+/// out of the polymorphic object.
+template <class PolyMatcher>
+static void mergePolyMatchers(const PolyMatcher &Poly,
+ std::vector<DynTypedMatcher> &Out,
+ ast_matchers::internal::EmptyTypeList) {}
+
+template <class PolyMatcher, class TypeList>
+static void mergePolyMatchers(const PolyMatcher &Poly,
+ std::vector<DynTypedMatcher> &Out, TypeList) {
+ Out.push_back(ast_matchers::internal::Matcher<typename TypeList::head>(Poly));
+ mergePolyMatchers(Poly, Out, typename TypeList::tail());
+}
+
+/// \brief Convert the return values of the functions into a VariantMatcher.
+///
+/// There are 2 cases right now: The return value is a Matcher<T> or is a
+/// polymorphic matcher. For the former, we just construct the VariantMatcher.
+/// For the latter, we instantiate all the possible Matcher<T> of the poly
+/// matcher.
+static VariantMatcher outvalueToVariantMatcher(const DynTypedMatcher &Matcher) {
+ return VariantMatcher::SingleMatcher(Matcher);
+}
+
+template <typename T>
+static VariantMatcher outvalueToVariantMatcher(const T &PolyMatcher,
+ typename T::ReturnTypes * =
+ NULL) {
+ std::vector<DynTypedMatcher> Matchers;
+ mergePolyMatchers(PolyMatcher, Matchers, typename T::ReturnTypes());
+ VariantMatcher Out = VariantMatcher::PolymorphicMatcher(std::move(Matchers));
+ return Out;
+}
+
+template <typename T>
+inline void buildReturnTypeVectorFromTypeList(
+ std::vector<ast_type_traits::ASTNodeKind> &RetTypes) {
+ RetTypes.push_back(
+ ast_type_traits::ASTNodeKind::getFromNodeKind<typename T::head>());
+ buildReturnTypeVectorFromTypeList<typename T::tail>(RetTypes);
+}
+
+template <>
+inline void
+buildReturnTypeVectorFromTypeList<ast_matchers::internal::EmptyTypeList>(
+ std::vector<ast_type_traits::ASTNodeKind> &RetTypes) {}
+
+template <typename T>
+struct BuildReturnTypeVector {
+ static void build(std::vector<ast_type_traits::ASTNodeKind> &RetTypes) {
+ buildReturnTypeVectorFromTypeList<typename T::ReturnTypes>(RetTypes);
+ }
+};
+
+template <typename T>
+struct BuildReturnTypeVector<ast_matchers::internal::Matcher<T> > {
+ static void build(std::vector<ast_type_traits::ASTNodeKind> &RetTypes) {
+ RetTypes.push_back(ast_type_traits::ASTNodeKind::getFromNodeKind<T>());
+ }
+};
+
+template <typename T>
+struct BuildReturnTypeVector<ast_matchers::internal::BindableMatcher<T> > {
+ static void build(std::vector<ast_type_traits::ASTNodeKind> &RetTypes) {
+ RetTypes.push_back(ast_type_traits::ASTNodeKind::getFromNodeKind<T>());
+ }
+};
+
+/// \brief Variadic marshaller function.
+template <typename ResultT, typename ArgT,
+ ResultT (*Func)(ArrayRef<const ArgT *>)>
+VariantMatcher
+variadicMatcherDescriptor(StringRef MatcherName, const SourceRange &NameRange,
+ ArrayRef<ParserValue> Args, Diagnostics *Error) {
+ ArgT **InnerArgs = new ArgT *[Args.size()]();
+
+ bool HasError = false;
+ for (size_t i = 0, e = Args.size(); i != e; ++i) {
+ typedef ArgTypeTraits<ArgT> ArgTraits;
+ const ParserValue &Arg = Args[i];
+ const VariantValue &Value = Arg.Value;
+ if (!ArgTraits::is(Value)) {
+ Error->addError(Arg.Range, Error->ET_RegistryWrongArgType)
+ << (i + 1) << ArgTraits::getKind().asString() << Value.getTypeAsString();
+ HasError = true;
+ break;
+ }
+ InnerArgs[i] = new ArgT(ArgTraits::get(Value));
+ }
+
+ VariantMatcher Out;
+ if (!HasError) {
+ Out = outvalueToVariantMatcher(Func(llvm::makeArrayRef(InnerArgs,
+ Args.size())));
+ }
+
+ for (size_t i = 0, e = Args.size(); i != e; ++i) {
+ delete InnerArgs[i];
+ }
+ delete[] InnerArgs;
+ return Out;
+}
+
+/// \brief Matcher descriptor for variadic functions.
+///
+/// This class simply wraps a VariadicFunction with the right signature to export
+/// it as a MatcherDescriptor.
+/// This allows us to have one implementation of the interface for as many free
+/// functions as we want, reducing the number of symbols and size of the
+/// object file.
+class VariadicFuncMatcherDescriptor : public MatcherDescriptor {
+public:
+ typedef VariantMatcher (*RunFunc)(StringRef MatcherName,
+ const SourceRange &NameRange,
+ ArrayRef<ParserValue> Args,
+ Diagnostics *Error);
+
+ template <typename ResultT, typename ArgT,
+ ResultT (*F)(ArrayRef<const ArgT *>)>
+ VariadicFuncMatcherDescriptor(llvm::VariadicFunction<ResultT, ArgT, F> Func,
+ StringRef MatcherName)
+ : Func(&variadicMatcherDescriptor<ResultT, ArgT, F>),
+ MatcherName(MatcherName.str()),
+ ArgsKind(ArgTypeTraits<ArgT>::getKind()) {
+ BuildReturnTypeVector<ResultT>::build(RetKinds);
+ }
+
+ VariantMatcher create(const SourceRange &NameRange,
+ ArrayRef<ParserValue> Args,
+ Diagnostics *Error) const override {
+ return Func(MatcherName, NameRange, Args, Error);
+ }
+
+ bool isVariadic() const override { return true; }
+ unsigned getNumArgs() const override { return 0; }
+ void getArgKinds(ast_type_traits::ASTNodeKind ThisKind, unsigned ArgNo,
+ std::vector<ArgKind> &Kinds) const override {
+ Kinds.push_back(ArgsKind);
+ }
+ bool isConvertibleTo(
+ ast_type_traits::ASTNodeKind Kind, unsigned *Specificity,
+ ast_type_traits::ASTNodeKind *LeastDerivedKind) const override {
+ return isRetKindConvertibleTo(RetKinds, Kind, Specificity,
+ LeastDerivedKind);
+ }
+
+private:
+ const RunFunc Func;
+ const std::string MatcherName;
+ std::vector<ast_type_traits::ASTNodeKind> RetKinds;
+ const ArgKind ArgsKind;
+};
+
+/// \brief Return CK_Trivial when appropriate for VariadicDynCastAllOfMatchers.
+class DynCastAllOfMatcherDescriptor : public VariadicFuncMatcherDescriptor {
+public:
+ template <typename BaseT, typename DerivedT>
+ DynCastAllOfMatcherDescriptor(
+ ast_matchers::internal::VariadicDynCastAllOfMatcher<BaseT, DerivedT> Func,
+ StringRef MatcherName)
+ : VariadicFuncMatcherDescriptor(Func, MatcherName),
+ DerivedKind(ast_type_traits::ASTNodeKind::getFromNodeKind<DerivedT>()) {
+ }
+
+ bool
+ isConvertibleTo(ast_type_traits::ASTNodeKind Kind, unsigned *Specificity,
+ ast_type_traits::ASTNodeKind *LeastDerivedKind) const override {
+ // If Kind is not a base of DerivedKind, either DerivedKind is a base of
+ // Kind (in which case the match will always succeed) or Kind and
+ // DerivedKind are unrelated (in which case it will always fail), so set
+ // Specificity to 0.
+ if (VariadicFuncMatcherDescriptor::isConvertibleTo(Kind, Specificity,
+ LeastDerivedKind)) {
+ if (Kind.isSame(DerivedKind) || !Kind.isBaseOf(DerivedKind)) {
+ if (Specificity)
+ *Specificity = 0;
+ }
+ return true;
+ } else {
+ return false;
+ }
+ }
+
+private:
+ const ast_type_traits::ASTNodeKind DerivedKind;
+};
+
+/// \brief Helper macros to check the arguments on all marshaller functions.
+#define CHECK_ARG_COUNT(count) \
+ if (Args.size() != count) { \
+ Error->addError(NameRange, Error->ET_RegistryWrongArgCount) \
+ << count << Args.size(); \
+ return VariantMatcher(); \
+ }
+
+#define CHECK_ARG_TYPE(index, type) \
+ if (!ArgTypeTraits<type>::is(Args[index].Value)) { \
+ Error->addError(Args[index].Range, Error->ET_RegistryWrongArgType) \
+ << (index + 1) << ArgTypeTraits<type>::getKind().asString() \
+ << Args[index].Value.getTypeAsString(); \
+ return VariantMatcher(); \
+ }
+
+
+/// \brief 0-arg marshaller function.
+template <typename ReturnType>
+static VariantMatcher matcherMarshall0(void (*Func)(), StringRef MatcherName,
+ const SourceRange &NameRange,
+ ArrayRef<ParserValue> Args,
+ Diagnostics *Error) {
+ typedef ReturnType (*FuncType)();
+ CHECK_ARG_COUNT(0);
+ return outvalueToVariantMatcher(reinterpret_cast<FuncType>(Func)());
+}
+
+/// \brief 1-arg marshaller function.
+template <typename ReturnType, typename ArgType1>
+static VariantMatcher matcherMarshall1(void (*Func)(), StringRef MatcherName,
+ const SourceRange &NameRange,
+ ArrayRef<ParserValue> Args,
+ Diagnostics *Error) {
+ typedef ReturnType (*FuncType)(ArgType1);
+ CHECK_ARG_COUNT(1);
+ CHECK_ARG_TYPE(0, ArgType1);
+ return outvalueToVariantMatcher(reinterpret_cast<FuncType>(Func)(
+ ArgTypeTraits<ArgType1>::get(Args[0].Value)));
+}
+
+/// \brief 2-arg marshaller function.
+template <typename ReturnType, typename ArgType1, typename ArgType2>
+static VariantMatcher matcherMarshall2(void (*Func)(), StringRef MatcherName,
+ const SourceRange &NameRange,
+ ArrayRef<ParserValue> Args,
+ Diagnostics *Error) {
+ typedef ReturnType (*FuncType)(ArgType1, ArgType2);
+ CHECK_ARG_COUNT(2);
+ CHECK_ARG_TYPE(0, ArgType1);
+ CHECK_ARG_TYPE(1, ArgType2);
+ return outvalueToVariantMatcher(reinterpret_cast<FuncType>(Func)(
+ ArgTypeTraits<ArgType1>::get(Args[0].Value),
+ ArgTypeTraits<ArgType2>::get(Args[1].Value)));
+}
+
+#undef CHECK_ARG_COUNT
+#undef CHECK_ARG_TYPE
+
+/// \brief Helper class used to collect all the possible overloads of an
+/// argument adaptative matcher function.
+template <template <typename ToArg, typename FromArg> class ArgumentAdapterT,
+ typename FromTypes, typename ToTypes>
+class AdaptativeOverloadCollector {
+public:
+ AdaptativeOverloadCollector(StringRef Name,
+ std::vector<MatcherDescriptor *> &Out)
+ : Name(Name), Out(Out) {
+ collect(FromTypes());
+ }
+
+private:
+ typedef ast_matchers::internal::ArgumentAdaptingMatcherFunc<
+ ArgumentAdapterT, FromTypes, ToTypes> AdaptativeFunc;
+
+ /// \brief End case for the recursion
+ static void collect(ast_matchers::internal::EmptyTypeList) {}
+
+ /// \brief Recursive case. Get the overload for the head of the list, and
+ /// recurse to the tail.
+ template <typename FromTypeList>
+ inline void collect(FromTypeList);
+
+ StringRef Name;
+ std::vector<MatcherDescriptor *> &Out;
+};
+
+/// \brief MatcherDescriptor that wraps multiple "overloads" of the same
+/// matcher.
+///
+/// It will try every overload and generate appropriate errors for when none or
+/// more than one overloads match the arguments.
+class OverloadedMatcherDescriptor : public MatcherDescriptor {
+public:
+ OverloadedMatcherDescriptor(ArrayRef<MatcherDescriptor *> Callbacks)
+ : Overloads(Callbacks.begin(), Callbacks.end()) {}
+
+ ~OverloadedMatcherDescriptor() override {}
+
+ VariantMatcher create(const SourceRange &NameRange,
+ ArrayRef<ParserValue> Args,
+ Diagnostics *Error) const override {
+ std::vector<VariantMatcher> Constructed;
+ Diagnostics::OverloadContext Ctx(Error);
+ for (const auto &O : Overloads) {
+ VariantMatcher SubMatcher = O->create(NameRange, Args, Error);
+ if (!SubMatcher.isNull()) {
+ Constructed.push_back(SubMatcher);
+ }
+ }
+
+ if (Constructed.empty()) return VariantMatcher(); // No overload matched.
+ // We ignore the errors if any matcher succeeded.
+ Ctx.revertErrors();
+ if (Constructed.size() > 1) {
+ // More than one constructed. It is ambiguous.
+ Error->addError(NameRange, Error->ET_RegistryAmbiguousOverload);
+ return VariantMatcher();
+ }
+ return Constructed[0];
+ }
+
+ bool isVariadic() const override {
+ bool Overload0Variadic = Overloads[0]->isVariadic();
+#ifndef NDEBUG
+ for (const auto &O : Overloads) {
+ assert(Overload0Variadic == O->isVariadic());
+ }
+#endif
+ return Overload0Variadic;
+ }
+
+ unsigned getNumArgs() const override {
+ unsigned Overload0NumArgs = Overloads[0]->getNumArgs();
+#ifndef NDEBUG
+ for (const auto &O : Overloads) {
+ assert(Overload0NumArgs == O->getNumArgs());
+ }
+#endif
+ return Overload0NumArgs;
+ }
+
+ void getArgKinds(ast_type_traits::ASTNodeKind ThisKind, unsigned ArgNo,
+ std::vector<ArgKind> &Kinds) const override {
+ for (const auto &O : Overloads) {
+ if (O->isConvertibleTo(ThisKind))
+ O->getArgKinds(ThisKind, ArgNo, Kinds);
+ }
+ }
+
+ bool isConvertibleTo(
+ ast_type_traits::ASTNodeKind Kind, unsigned *Specificity,
+ ast_type_traits::ASTNodeKind *LeastDerivedKind) const override {
+ for (const auto &O : Overloads) {
+ if (O->isConvertibleTo(Kind, Specificity, LeastDerivedKind))
+ return true;
+ }
+ return false;
+ }
+
+private:
+ std::vector<std::unique_ptr<MatcherDescriptor>> Overloads;
+};
+
+/// \brief Variadic operator marshaller function.
+class VariadicOperatorMatcherDescriptor : public MatcherDescriptor {
+public:
+ typedef DynTypedMatcher::VariadicOperator VarOp;
+ VariadicOperatorMatcherDescriptor(unsigned MinCount, unsigned MaxCount,
+ VarOp Op, StringRef MatcherName)
+ : MinCount(MinCount), MaxCount(MaxCount), Op(Op),
+ MatcherName(MatcherName) {}
+
+ VariantMatcher create(const SourceRange &NameRange,
+ ArrayRef<ParserValue> Args,
+ Diagnostics *Error) const override {
+ if (Args.size() < MinCount || MaxCount < Args.size()) {
+ const std::string MaxStr =
+ (MaxCount == UINT_MAX ? "" : Twine(MaxCount)).str();
+ Error->addError(NameRange, Error->ET_RegistryWrongArgCount)
+ << ("(" + Twine(MinCount) + ", " + MaxStr + ")") << Args.size();
+ return VariantMatcher();
+ }
+
+ std::vector<VariantMatcher> InnerArgs;
+ for (size_t i = 0, e = Args.size(); i != e; ++i) {
+ const ParserValue &Arg = Args[i];
+ const VariantValue &Value = Arg.Value;
+ if (!Value.isMatcher()) {
+ Error->addError(Arg.Range, Error->ET_RegistryWrongArgType)
+ << (i + 1) << "Matcher<>" << Value.getTypeAsString();
+ return VariantMatcher();
+ }
+ InnerArgs.push_back(Value.getMatcher());
+ }
+ return VariantMatcher::VariadicOperatorMatcher(Op, std::move(InnerArgs));
+ }
+
+ bool isVariadic() const override { return true; }
+ unsigned getNumArgs() const override { return 0; }
+ void getArgKinds(ast_type_traits::ASTNodeKind ThisKind, unsigned ArgNo,
+ std::vector<ArgKind> &Kinds) const override {
+ Kinds.push_back(ThisKind);
+ }
+ bool isConvertibleTo(ast_type_traits::ASTNodeKind Kind, unsigned *Specificity,
+ ast_type_traits::ASTNodeKind *LeastDerivedKind) const override {
+ if (Specificity)
+ *Specificity = 1;
+ if (LeastDerivedKind)
+ *LeastDerivedKind = Kind;
+ return true;
+ }
+ bool isPolymorphic() const override { return true; }
+
+private:
+ const unsigned MinCount;
+ const unsigned MaxCount;
+ const VarOp Op;
+ const StringRef MatcherName;
+};
+
+/// Helper functions to select the appropriate marshaller functions.
+/// They detect the number of arguments, arguments types and return type.
+
+/// \brief 0-arg overload
+template <typename ReturnType>
+MatcherDescriptor *makeMatcherAutoMarshall(ReturnType (*Func)(),
+ StringRef MatcherName) {
+ std::vector<ast_type_traits::ASTNodeKind> RetTypes;
+ BuildReturnTypeVector<ReturnType>::build(RetTypes);
+ return new FixedArgCountMatcherDescriptor(
+ matcherMarshall0<ReturnType>, reinterpret_cast<void (*)()>(Func),
+ MatcherName, RetTypes, None);
+}
+
+/// \brief 1-arg overload
+template <typename ReturnType, typename ArgType1>
+MatcherDescriptor *makeMatcherAutoMarshall(ReturnType (*Func)(ArgType1),
+ StringRef MatcherName) {
+ std::vector<ast_type_traits::ASTNodeKind> RetTypes;
+ BuildReturnTypeVector<ReturnType>::build(RetTypes);
+ ArgKind AK = ArgTypeTraits<ArgType1>::getKind();
+ return new FixedArgCountMatcherDescriptor(
+ matcherMarshall1<ReturnType, ArgType1>,
+ reinterpret_cast<void (*)()>(Func), MatcherName, RetTypes, AK);
+}
+
+/// \brief 2-arg overload
+template <typename ReturnType, typename ArgType1, typename ArgType2>
+MatcherDescriptor *makeMatcherAutoMarshall(ReturnType (*Func)(ArgType1, ArgType2),
+ StringRef MatcherName) {
+ std::vector<ast_type_traits::ASTNodeKind> RetTypes;
+ BuildReturnTypeVector<ReturnType>::build(RetTypes);
+ ArgKind AKs[] = { ArgTypeTraits<ArgType1>::getKind(),
+ ArgTypeTraits<ArgType2>::getKind() };
+ return new FixedArgCountMatcherDescriptor(
+ matcherMarshall2<ReturnType, ArgType1, ArgType2>,
+ reinterpret_cast<void (*)()>(Func), MatcherName, RetTypes, AKs);
+}
+
+/// \brief Variadic overload.
+template <typename ResultT, typename ArgT,
+ ResultT (*Func)(ArrayRef<const ArgT *>)>
+MatcherDescriptor *
+makeMatcherAutoMarshall(llvm::VariadicFunction<ResultT, ArgT, Func> VarFunc,
+ StringRef MatcherName) {
+ return new VariadicFuncMatcherDescriptor(VarFunc, MatcherName);
+}
+
+/// \brief Overload for VariadicDynCastAllOfMatchers.
+///
+/// Not strictly necessary, but DynCastAllOfMatcherDescriptor gives us better
+/// completion results for that type of matcher.
+template <typename BaseT, typename DerivedT>
+MatcherDescriptor *
+makeMatcherAutoMarshall(ast_matchers::internal::VariadicDynCastAllOfMatcher<
+ BaseT, DerivedT> VarFunc,
+ StringRef MatcherName) {
+ return new DynCastAllOfMatcherDescriptor(VarFunc, MatcherName);
+}
+
+/// \brief Argument adaptative overload.
+template <template <typename ToArg, typename FromArg> class ArgumentAdapterT,
+ typename FromTypes, typename ToTypes>
+MatcherDescriptor *
+makeMatcherAutoMarshall(ast_matchers::internal::ArgumentAdaptingMatcherFunc<
+ ArgumentAdapterT, FromTypes, ToTypes>,
+ StringRef MatcherName) {
+ std::vector<MatcherDescriptor *> Overloads;
+ AdaptativeOverloadCollector<ArgumentAdapterT, FromTypes, ToTypes>(MatcherName,
+ Overloads);
+ return new OverloadedMatcherDescriptor(Overloads);
+}
+
+template <template <typename ToArg, typename FromArg> class ArgumentAdapterT,
+ typename FromTypes, typename ToTypes>
+template <typename FromTypeList>
+inline void AdaptativeOverloadCollector<ArgumentAdapterT, FromTypes,
+ ToTypes>::collect(FromTypeList) {
+ Out.push_back(makeMatcherAutoMarshall(
+ &AdaptativeFunc::template create<typename FromTypeList::head>, Name));
+ collect(typename FromTypeList::tail());
+}
+
+/// \brief Variadic operator overload.
+template <unsigned MinCount, unsigned MaxCount>
+MatcherDescriptor *
+makeMatcherAutoMarshall(ast_matchers::internal::VariadicOperatorMatcherFunc<
+ MinCount, MaxCount> Func,
+ StringRef MatcherName) {
+ return new VariadicOperatorMatcherDescriptor(MinCount, MaxCount, Func.Op,
+ MatcherName);
+}
+
+} // namespace internal
+} // namespace dynamic
+} // namespace ast_matchers
+} // namespace clang
+
+#endif // LLVM_CLANG_AST_MATCHERS_DYNAMIC_MARSHALLERS_H
diff --git a/contrib/llvm/tools/clang/lib/ASTMatchers/Dynamic/Parser.cpp b/contrib/llvm/tools/clang/lib/ASTMatchers/Dynamic/Parser.cpp
new file mode 100644
index 0000000..9930c53
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/ASTMatchers/Dynamic/Parser.cpp
@@ -0,0 +1,613 @@
+//===--- Parser.cpp - Matcher expression parser -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// \brief Recursive parser implementation for the matcher expression grammar.
+///
+//===----------------------------------------------------------------------===//
+
+#include "clang/ASTMatchers/Dynamic/Parser.h"
+#include "clang/ASTMatchers/Dynamic/Registry.h"
+#include "clang/Basic/CharInfo.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/Support/ManagedStatic.h"
+#include <string>
+#include <vector>
+
+namespace clang {
+namespace ast_matchers {
+namespace dynamic {
+
+/// \brief Simple structure to hold information for one token from the parser.
+struct Parser::TokenInfo {
+ /// \brief Different possible tokens.
+ enum TokenKind {
+ TK_Eof,
+ TK_OpenParen,
+ TK_CloseParen,
+ TK_Comma,
+ TK_Period,
+ TK_Literal,
+ TK_Ident,
+ TK_InvalidChar,
+ TK_Error,
+ TK_CodeCompletion
+ };
+
+ /// \brief Some known identifiers.
+ static const char* const ID_Bind;
+
+ TokenInfo() : Text(), Kind(TK_Eof), Range(), Value() {}
+
+ StringRef Text;
+ TokenKind Kind;
+ SourceRange Range;
+ VariantValue Value;
+};
+
+const char* const Parser::TokenInfo::ID_Bind = "bind";
+
+/// \brief Simple tokenizer for the parser.
+class Parser::CodeTokenizer {
+public:
+ explicit CodeTokenizer(StringRef MatcherCode, Diagnostics *Error)
+ : Code(MatcherCode), StartOfLine(MatcherCode), Line(1), Error(Error),
+ CodeCompletionLocation(nullptr) {
+ NextToken = getNextToken();
+ }
+
+ CodeTokenizer(StringRef MatcherCode, Diagnostics *Error,
+ unsigned CodeCompletionOffset)
+ : Code(MatcherCode), StartOfLine(MatcherCode), Line(1), Error(Error),
+ CodeCompletionLocation(MatcherCode.data() + CodeCompletionOffset) {
+ NextToken = getNextToken();
+ }
+
+ /// \brief Returns but doesn't consume the next token.
+ const TokenInfo &peekNextToken() const { return NextToken; }
+
+ /// \brief Consumes and returns the next token.
+ TokenInfo consumeNextToken() {
+ TokenInfo ThisToken = NextToken;
+ NextToken = getNextToken();
+ return ThisToken;
+ }
+
+ TokenInfo::TokenKind nextTokenKind() const { return NextToken.Kind; }
+
+private:
+ TokenInfo getNextToken() {
+ consumeWhitespace();
+ TokenInfo Result;
+ Result.Range.Start = currentLocation();
+
+ if (CodeCompletionLocation && CodeCompletionLocation <= Code.data()) {
+ Result.Kind = TokenInfo::TK_CodeCompletion;
+ Result.Text = StringRef(CodeCompletionLocation, 0);
+ CodeCompletionLocation = nullptr;
+ return Result;
+ }
+
+ if (Code.empty()) {
+ Result.Kind = TokenInfo::TK_Eof;
+ Result.Text = "";
+ return Result;
+ }
+
+ switch (Code[0]) {
+ case ',':
+ Result.Kind = TokenInfo::TK_Comma;
+ Result.Text = Code.substr(0, 1);
+ Code = Code.drop_front();
+ break;
+ case '.':
+ Result.Kind = TokenInfo::TK_Period;
+ Result.Text = Code.substr(0, 1);
+ Code = Code.drop_front();
+ break;
+ case '(':
+ Result.Kind = TokenInfo::TK_OpenParen;
+ Result.Text = Code.substr(0, 1);
+ Code = Code.drop_front();
+ break;
+ case ')':
+ Result.Kind = TokenInfo::TK_CloseParen;
+ Result.Text = Code.substr(0, 1);
+ Code = Code.drop_front();
+ break;
+
+ case '"':
+ case '\'':
+ // Parse a string literal.
+ consumeStringLiteral(&Result);
+ break;
+
+ case '0': case '1': case '2': case '3': case '4':
+ case '5': case '6': case '7': case '8': case '9':
+ // Parse an unsigned literal.
+ consumeUnsignedLiteral(&Result);
+ break;
+
+ default:
+ if (isAlphanumeric(Code[0])) {
+ // Parse an identifier
+ size_t TokenLength = 1;
+ while (1) {
+ // A code completion location in/immediately after an identifier will
+ // cause the portion of the identifier before the code completion
+ // location to become a code completion token.
+ if (CodeCompletionLocation == Code.data() + TokenLength) {
+ CodeCompletionLocation = nullptr;
+ Result.Kind = TokenInfo::TK_CodeCompletion;
+ Result.Text = Code.substr(0, TokenLength);
+ Code = Code.drop_front(TokenLength);
+ return Result;
+ }
+ if (TokenLength == Code.size() || !isAlphanumeric(Code[TokenLength]))
+ break;
+ ++TokenLength;
+ }
+ Result.Kind = TokenInfo::TK_Ident;
+ Result.Text = Code.substr(0, TokenLength);
+ Code = Code.drop_front(TokenLength);
+ } else {
+ Result.Kind = TokenInfo::TK_InvalidChar;
+ Result.Text = Code.substr(0, 1);
+ Code = Code.drop_front(1);
+ }
+ break;
+ }
+
+ Result.Range.End = currentLocation();
+ return Result;
+ }
+
+ /// \brief Consume an unsigned literal.
+ void consumeUnsignedLiteral(TokenInfo *Result) {
+ unsigned Length = 1;
+ if (Code.size() > 1) {
+ // Consume the 'x' or 'b' radix modifier, if present.
+ switch (toLowercase(Code[1])) {
+ case 'x': case 'b': Length = 2;
+ }
+ }
+ while (Length < Code.size() && isHexDigit(Code[Length]))
+ ++Length;
+
+ Result->Text = Code.substr(0, Length);
+ Code = Code.drop_front(Length);
+
+ unsigned Value;
+ if (!Result->Text.getAsInteger(0, Value)) {
+ Result->Kind = TokenInfo::TK_Literal;
+ Result->Value = Value;
+ } else {
+ SourceRange Range;
+ Range.Start = Result->Range.Start;
+ Range.End = currentLocation();
+ Error->addError(Range, Error->ET_ParserUnsignedError) << Result->Text;
+ Result->Kind = TokenInfo::TK_Error;
+ }
+ }
+
+ /// \brief Consume a string literal.
+ ///
+ /// \c Code must be positioned at the start of the literal (the opening
+ /// quote). Consumed until it finds the same closing quote character.
+ void consumeStringLiteral(TokenInfo *Result) {
+ bool InEscape = false;
+ const char Marker = Code[0];
+ for (size_t Length = 1, Size = Code.size(); Length != Size; ++Length) {
+ if (InEscape) {
+ InEscape = false;
+ continue;
+ }
+ if (Code[Length] == '\\') {
+ InEscape = true;
+ continue;
+ }
+ if (Code[Length] == Marker) {
+ Result->Kind = TokenInfo::TK_Literal;
+ Result->Text = Code.substr(0, Length + 1);
+ Result->Value = Code.substr(1, Length - 1).str();
+ Code = Code.drop_front(Length + 1);
+ return;
+ }
+ }
+
+ StringRef ErrorText = Code;
+ Code = Code.drop_front(Code.size());
+ SourceRange Range;
+ Range.Start = Result->Range.Start;
+ Range.End = currentLocation();
+ Error->addError(Range, Error->ET_ParserStringError) << ErrorText;
+ Result->Kind = TokenInfo::TK_Error;
+ }
+
+ /// \brief Consume all leading whitespace from \c Code.
+ void consumeWhitespace() {
+ while (!Code.empty() && isWhitespace(Code[0])) {
+ if (Code[0] == '\n') {
+ ++Line;
+ StartOfLine = Code.drop_front();
+ }
+ Code = Code.drop_front();
+ }
+ }
+
+ SourceLocation currentLocation() {
+ SourceLocation Location;
+ Location.Line = Line;
+ Location.Column = Code.data() - StartOfLine.data() + 1;
+ return Location;
+ }
+
+ StringRef Code;
+ StringRef StartOfLine;
+ unsigned Line;
+ Diagnostics *Error;
+ TokenInfo NextToken;
+ const char *CodeCompletionLocation;
+};
+
+Parser::Sema::~Sema() {}
+
+std::vector<ArgKind> Parser::Sema::getAcceptedCompletionTypes(
+ llvm::ArrayRef<std::pair<MatcherCtor, unsigned>> Context) {
+ return std::vector<ArgKind>();
+}
+
+std::vector<MatcherCompletion>
+Parser::Sema::getMatcherCompletions(llvm::ArrayRef<ArgKind> AcceptedTypes) {
+ return std::vector<MatcherCompletion>();
+}
+
+struct Parser::ScopedContextEntry {
+ Parser *P;
+
+ ScopedContextEntry(Parser *P, MatcherCtor C) : P(P) {
+ P->ContextStack.push_back(std::make_pair(C, 0u));
+ }
+
+ ~ScopedContextEntry() {
+ P->ContextStack.pop_back();
+ }
+
+ void nextArg() {
+ ++P->ContextStack.back().second;
+ }
+};
+
+/// \brief Parse expressions that start with an identifier.
+///
+/// This function can parse named values and matchers.
+/// In case of failure it will try to determine the user's intent to give
+/// an appropriate error message.
+bool Parser::parseIdentifierPrefixImpl(VariantValue *Value) {
+ const TokenInfo NameToken = Tokenizer->consumeNextToken();
+
+ if (Tokenizer->nextTokenKind() != TokenInfo::TK_OpenParen) {
+ // Parse as a named value.
+ if (const VariantValue NamedValue =
+ NamedValues ? NamedValues->lookup(NameToken.Text)
+ : VariantValue()) {
+ *Value = NamedValue;
+ return true;
+ }
+ // If the syntax is correct and the name is not a matcher either, report
+ // unknown named value.
+ if ((Tokenizer->nextTokenKind() == TokenInfo::TK_Comma ||
+ Tokenizer->nextTokenKind() == TokenInfo::TK_CloseParen ||
+ Tokenizer->nextTokenKind() == TokenInfo::TK_Eof) &&
+ !S->lookupMatcherCtor(NameToken.Text)) {
+ Error->addError(NameToken.Range, Error->ET_RegistryValueNotFound)
+ << NameToken.Text;
+ return false;
+ }
+ // Otherwise, fallback to the matcher parser.
+ }
+
+ // Parse as a matcher expression.
+ return parseMatcherExpressionImpl(NameToken, Value);
+}
+
+/// \brief Parse and validate a matcher expression.
+/// \return \c true on success, in which case \c Value has the matcher parsed.
+/// If the input is malformed, or some argument has an error, it
+/// returns \c false.
+bool Parser::parseMatcherExpressionImpl(const TokenInfo &NameToken,
+ VariantValue *Value) {
+ assert(NameToken.Kind == TokenInfo::TK_Ident);
+ const TokenInfo OpenToken = Tokenizer->consumeNextToken();
+ if (OpenToken.Kind != TokenInfo::TK_OpenParen) {
+ Error->addError(OpenToken.Range, Error->ET_ParserNoOpenParen)
+ << OpenToken.Text;
+ return false;
+ }
+
+ llvm::Optional<MatcherCtor> Ctor = S->lookupMatcherCtor(NameToken.Text);
+
+ if (!Ctor) {
+ Error->addError(NameToken.Range, Error->ET_RegistryMatcherNotFound)
+ << NameToken.Text;
+ // Do not return here. We need to continue to give completion suggestions.
+ }
+
+ std::vector<ParserValue> Args;
+ TokenInfo EndToken;
+
+ {
+ ScopedContextEntry SCE(this, Ctor ? *Ctor : nullptr);
+
+ while (Tokenizer->nextTokenKind() != TokenInfo::TK_Eof) {
+ if (Tokenizer->nextTokenKind() == TokenInfo::TK_CloseParen) {
+ // End of args.
+ EndToken = Tokenizer->consumeNextToken();
+ break;
+ }
+ if (Args.size() > 0) {
+ // We must find a , token to continue.
+ const TokenInfo CommaToken = Tokenizer->consumeNextToken();
+ if (CommaToken.Kind != TokenInfo::TK_Comma) {
+ Error->addError(CommaToken.Range, Error->ET_ParserNoComma)
+ << CommaToken.Text;
+ return false;
+ }
+ }
+
+ Diagnostics::Context Ctx(Diagnostics::Context::MatcherArg, Error,
+ NameToken.Text, NameToken.Range,
+ Args.size() + 1);
+ ParserValue ArgValue;
+ ArgValue.Text = Tokenizer->peekNextToken().Text;
+ ArgValue.Range = Tokenizer->peekNextToken().Range;
+ if (!parseExpressionImpl(&ArgValue.Value)) {
+ return false;
+ }
+
+ Args.push_back(ArgValue);
+ SCE.nextArg();
+ }
+ }
+
+ if (EndToken.Kind == TokenInfo::TK_Eof) {
+ Error->addError(OpenToken.Range, Error->ET_ParserNoCloseParen);
+ return false;
+ }
+
+ std::string BindID;
+ if (Tokenizer->peekNextToken().Kind == TokenInfo::TK_Period) {
+ // Parse .bind("foo")
+ Tokenizer->consumeNextToken(); // consume the period.
+ const TokenInfo BindToken = Tokenizer->consumeNextToken();
+ if (BindToken.Kind == TokenInfo::TK_CodeCompletion) {
+ addCompletion(BindToken, MatcherCompletion("bind(\"", "bind", 1));
+ return false;
+ }
+
+ const TokenInfo OpenToken = Tokenizer->consumeNextToken();
+ const TokenInfo IDToken = Tokenizer->consumeNextToken();
+ const TokenInfo CloseToken = Tokenizer->consumeNextToken();
+
+ // TODO: We could use different error codes for each/some to be more
+ // explicit about the syntax error.
+ if (BindToken.Kind != TokenInfo::TK_Ident ||
+ BindToken.Text != TokenInfo::ID_Bind) {
+ Error->addError(BindToken.Range, Error->ET_ParserMalformedBindExpr);
+ return false;
+ }
+ if (OpenToken.Kind != TokenInfo::TK_OpenParen) {
+ Error->addError(OpenToken.Range, Error->ET_ParserMalformedBindExpr);
+ return false;
+ }
+ if (IDToken.Kind != TokenInfo::TK_Literal || !IDToken.Value.isString()) {
+ Error->addError(IDToken.Range, Error->ET_ParserMalformedBindExpr);
+ return false;
+ }
+ if (CloseToken.Kind != TokenInfo::TK_CloseParen) {
+ Error->addError(CloseToken.Range, Error->ET_ParserMalformedBindExpr);
+ return false;
+ }
+ BindID = IDToken.Value.getString();
+ }
+
+ if (!Ctor)
+ return false;
+
+ // Merge the start and end infos.
+ Diagnostics::Context Ctx(Diagnostics::Context::ConstructMatcher, Error,
+ NameToken.Text, NameToken.Range);
+ SourceRange MatcherRange = NameToken.Range;
+ MatcherRange.End = EndToken.Range.End;
+ VariantMatcher Result = S->actOnMatcherExpression(
+ *Ctor, MatcherRange, BindID, Args, Error);
+ if (Result.isNull()) return false;
+
+ *Value = Result;
+ return true;
+}
+
+// If the prefix of this completion matches the completion token, add it to
+// Completions minus the prefix.
+void Parser::addCompletion(const TokenInfo &CompToken,
+ const MatcherCompletion& Completion) {
+ if (StringRef(Completion.TypedText).startswith(CompToken.Text) &&
+ Completion.Specificity > 0) {
+ Completions.emplace_back(Completion.TypedText.substr(CompToken.Text.size()),
+ Completion.MatcherDecl, Completion.Specificity);
+ }
+}
+
+std::vector<MatcherCompletion> Parser::getNamedValueCompletions(
+ ArrayRef<ArgKind> AcceptedTypes) {
+ if (!NamedValues) return std::vector<MatcherCompletion>();
+ std::vector<MatcherCompletion> Result;
+ for (const auto &Entry : *NamedValues) {
+ unsigned Specificity;
+ if (Entry.getValue().isConvertibleTo(AcceptedTypes, &Specificity)) {
+ std::string Decl =
+ (Entry.getValue().getTypeAsString() + " " + Entry.getKey()).str();
+ Result.emplace_back(Entry.getKey(), Decl, Specificity);
+ }
+ }
+ return Result;
+}
+
+void Parser::addExpressionCompletions() {
+ const TokenInfo CompToken = Tokenizer->consumeNextToken();
+ assert(CompToken.Kind == TokenInfo::TK_CodeCompletion);
+
+ // We cannot complete code if there is an invalid element on the context
+ // stack.
+ for (ContextStackTy::iterator I = ContextStack.begin(),
+ E = ContextStack.end();
+ I != E; ++I) {
+ if (!I->first)
+ return;
+ }
+
+ auto AcceptedTypes = S->getAcceptedCompletionTypes(ContextStack);
+ for (const auto &Completion : S->getMatcherCompletions(AcceptedTypes)) {
+ addCompletion(CompToken, Completion);
+ }
+
+ for (const auto &Completion : getNamedValueCompletions(AcceptedTypes)) {
+ addCompletion(CompToken, Completion);
+ }
+}
+
+/// \brief Parse an <Expresssion>
+bool Parser::parseExpressionImpl(VariantValue *Value) {
+ switch (Tokenizer->nextTokenKind()) {
+ case TokenInfo::TK_Literal:
+ *Value = Tokenizer->consumeNextToken().Value;
+ return true;
+
+ case TokenInfo::TK_Ident:
+ return parseIdentifierPrefixImpl(Value);
+
+ case TokenInfo::TK_CodeCompletion:
+ addExpressionCompletions();
+ return false;
+
+ case TokenInfo::TK_Eof:
+ Error->addError(Tokenizer->consumeNextToken().Range,
+ Error->ET_ParserNoCode);
+ return false;
+
+ case TokenInfo::TK_Error:
+ // This error was already reported by the tokenizer.
+ return false;
+
+ case TokenInfo::TK_OpenParen:
+ case TokenInfo::TK_CloseParen:
+ case TokenInfo::TK_Comma:
+ case TokenInfo::TK_Period:
+ case TokenInfo::TK_InvalidChar:
+ const TokenInfo Token = Tokenizer->consumeNextToken();
+ Error->addError(Token.Range, Error->ET_ParserInvalidToken) << Token.Text;
+ return false;
+ }
+
+ llvm_unreachable("Unknown token kind.");
+}
+
+static llvm::ManagedStatic<Parser::RegistrySema> DefaultRegistrySema;
+
+Parser::Parser(CodeTokenizer *Tokenizer, Sema *S,
+ const NamedValueMap *NamedValues, Diagnostics *Error)
+ : Tokenizer(Tokenizer), S(S ? S : &*DefaultRegistrySema),
+ NamedValues(NamedValues), Error(Error) {}
+
+Parser::RegistrySema::~RegistrySema() {}
+
+llvm::Optional<MatcherCtor>
+Parser::RegistrySema::lookupMatcherCtor(StringRef MatcherName) {
+ return Registry::lookupMatcherCtor(MatcherName);
+}
+
+VariantMatcher Parser::RegistrySema::actOnMatcherExpression(
+ MatcherCtor Ctor, const SourceRange &NameRange, StringRef BindID,
+ ArrayRef<ParserValue> Args, Diagnostics *Error) {
+ if (BindID.empty()) {
+ return Registry::constructMatcher(Ctor, NameRange, Args, Error);
+ } else {
+ return Registry::constructBoundMatcher(Ctor, NameRange, BindID, Args,
+ Error);
+ }
+}
+
+std::vector<ArgKind> Parser::RegistrySema::getAcceptedCompletionTypes(
+ ArrayRef<std::pair<MatcherCtor, unsigned>> Context) {
+ return Registry::getAcceptedCompletionTypes(Context);
+}
+
+std::vector<MatcherCompletion> Parser::RegistrySema::getMatcherCompletions(
+ ArrayRef<ArgKind> AcceptedTypes) {
+ return Registry::getMatcherCompletions(AcceptedTypes);
+}
+
+bool Parser::parseExpression(StringRef Code, Sema *S,
+ const NamedValueMap *NamedValues,
+ VariantValue *Value, Diagnostics *Error) {
+ CodeTokenizer Tokenizer(Code, Error);
+ if (!Parser(&Tokenizer, S, NamedValues, Error).parseExpressionImpl(Value))
+ return false;
+ if (Tokenizer.peekNextToken().Kind != TokenInfo::TK_Eof) {
+ Error->addError(Tokenizer.peekNextToken().Range,
+ Error->ET_ParserTrailingCode);
+ return false;
+ }
+ return true;
+}
+
+std::vector<MatcherCompletion>
+Parser::completeExpression(StringRef Code, unsigned CompletionOffset, Sema *S,
+ const NamedValueMap *NamedValues) {
+ Diagnostics Error;
+ CodeTokenizer Tokenizer(Code, &Error, CompletionOffset);
+ Parser P(&Tokenizer, S, NamedValues, &Error);
+ VariantValue Dummy;
+ P.parseExpressionImpl(&Dummy);
+
+ // Sort by specificity, then by name.
+ std::sort(P.Completions.begin(), P.Completions.end(),
+ [](const MatcherCompletion &A, const MatcherCompletion &B) {
+ if (A.Specificity != B.Specificity)
+ return A.Specificity > B.Specificity;
+ return A.TypedText < B.TypedText;
+ });
+
+ return P.Completions;
+}
+
+llvm::Optional<DynTypedMatcher>
+Parser::parseMatcherExpression(StringRef Code, Sema *S,
+ const NamedValueMap *NamedValues,
+ Diagnostics *Error) {
+ VariantValue Value;
+ if (!parseExpression(Code, S, NamedValues, &Value, Error))
+ return llvm::Optional<DynTypedMatcher>();
+ if (!Value.isMatcher()) {
+ Error->addError(SourceRange(), Error->ET_ParserNotAMatcher);
+ return llvm::Optional<DynTypedMatcher>();
+ }
+ llvm::Optional<DynTypedMatcher> Result =
+ Value.getMatcher().getSingleMatcher();
+ if (!Result.hasValue()) {
+ Error->addError(SourceRange(), Error->ET_ParserOverloadedType)
+ << Value.getTypeAsString();
+ }
+ return Result;
+}
+
+} // namespace dynamic
+} // namespace ast_matchers
+} // namespace clang
diff --git a/contrib/llvm/tools/clang/lib/ASTMatchers/Dynamic/Registry.cpp b/contrib/llvm/tools/clang/lib/ASTMatchers/Dynamic/Registry.cpp
new file mode 100644
index 0000000..04d3a32
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/ASTMatchers/Dynamic/Registry.cpp
@@ -0,0 +1,529 @@
+//===--- Registry.cpp - Matcher registry -------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===------------------------------------------------------------===//
+///
+/// \file
+/// \brief Registry map populated at static initialization time.
+///
+//===------------------------------------------------------------===//
+
+#include "clang/ASTMatchers/Dynamic/Registry.h"
+#include "Marshallers.h"
+#include "clang/ASTMatchers/ASTMatchers.h"
+#include "llvm/ADT/StringMap.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/Support/ManagedStatic.h"
+#include <set>
+#include <utility>
+
+using namespace clang::ast_type_traits;
+
+namespace clang {
+namespace ast_matchers {
+namespace dynamic {
+namespace {
+
+using internal::MatcherDescriptor;
+
+typedef llvm::StringMap<const MatcherDescriptor *> ConstructorMap;
+class RegistryMaps {
+public:
+ RegistryMaps();
+ ~RegistryMaps();
+
+ const ConstructorMap &constructors() const { return Constructors; }
+
+private:
+ void registerMatcher(StringRef MatcherName, MatcherDescriptor *Callback);
+ ConstructorMap Constructors;
+};
+
+void RegistryMaps::registerMatcher(StringRef MatcherName,
+ MatcherDescriptor *Callback) {
+ assert(Constructors.find(MatcherName) == Constructors.end());
+ Constructors[MatcherName] = Callback;
+}
+
+#define REGISTER_MATCHER(name) \
+ registerMatcher(#name, internal::makeMatcherAutoMarshall( \
+ ::clang::ast_matchers::name, #name));
+
+#define SPECIFIC_MATCHER_OVERLOAD(name, Id) \
+ static_cast< ::clang::ast_matchers::name##_Type##Id>( \
+ ::clang::ast_matchers::name)
+
+#define REGISTER_OVERLOADED_2(name) \
+ do { \
+ MatcherDescriptor *Callbacks[] = { \
+ internal::makeMatcherAutoMarshall(SPECIFIC_MATCHER_OVERLOAD(name, 0), \
+ #name), \
+ internal::makeMatcherAutoMarshall(SPECIFIC_MATCHER_OVERLOAD(name, 1), \
+ #name) \
+ }; \
+ registerMatcher(#name, \
+ new internal::OverloadedMatcherDescriptor(Callbacks)); \
+ } while (0)
+
+/// \brief Generate a registry map with all the known matchers.
+RegistryMaps::RegistryMaps() {
+ // TODO: Here is the list of the missing matchers, grouped by reason.
+ //
+ // Need Variant/Parser fixes:
+ // ofKind
+ //
+ // Polymorphic + argument overload:
+ // findAll
+ //
+ // Other:
+ // equals
+ // equalsNode
+
+ REGISTER_OVERLOADED_2(callee);
+ REGISTER_OVERLOADED_2(hasPrefix);
+ REGISTER_OVERLOADED_2(hasType);
+ REGISTER_OVERLOADED_2(isDerivedFrom);
+ REGISTER_OVERLOADED_2(isSameOrDerivedFrom);
+ REGISTER_OVERLOADED_2(loc);
+ REGISTER_OVERLOADED_2(pointsTo);
+ REGISTER_OVERLOADED_2(references);
+ REGISTER_OVERLOADED_2(thisPointerType);
+
+ REGISTER_MATCHER(accessSpecDecl);
+ REGISTER_MATCHER(alignOfExpr);
+ REGISTER_MATCHER(allOf);
+ REGISTER_MATCHER(anyOf);
+ REGISTER_MATCHER(anything);
+ REGISTER_MATCHER(argumentCountIs);
+ REGISTER_MATCHER(arraySubscriptExpr);
+ REGISTER_MATCHER(arrayType);
+ REGISTER_MATCHER(asmStmt);
+ REGISTER_MATCHER(asString);
+ REGISTER_MATCHER(atomicType);
+ REGISTER_MATCHER(autoType);
+ REGISTER_MATCHER(binaryOperator);
+ REGISTER_MATCHER(bindTemporaryExpr);
+ REGISTER_MATCHER(blockPointerType);
+ REGISTER_MATCHER(boolLiteral);
+ REGISTER_MATCHER(breakStmt);
+ REGISTER_MATCHER(builtinType);
+ REGISTER_MATCHER(callExpr);
+ REGISTER_MATCHER(caseStmt);
+ REGISTER_MATCHER(castExpr);
+ REGISTER_MATCHER(catchStmt);
+ REGISTER_MATCHER(characterLiteral);
+ REGISTER_MATCHER(classTemplateDecl);
+ REGISTER_MATCHER(classTemplateSpecializationDecl);
+ REGISTER_MATCHER(complexType);
+ REGISTER_MATCHER(compoundLiteralExpr);
+ REGISTER_MATCHER(compoundStmt);
+ REGISTER_MATCHER(conditionalOperator);
+ REGISTER_MATCHER(constantArrayType);
+ REGISTER_MATCHER(constCastExpr);
+ REGISTER_MATCHER(constructExpr);
+ REGISTER_MATCHER(constructorDecl);
+ REGISTER_MATCHER(containsDeclaration);
+ REGISTER_MATCHER(continueStmt);
+ REGISTER_MATCHER(conversionDecl);
+ REGISTER_MATCHER(cStyleCastExpr);
+ REGISTER_MATCHER(ctorInitializer);
+ REGISTER_MATCHER(CUDAKernelCallExpr);
+ REGISTER_MATCHER(decl);
+ REGISTER_MATCHER(declaratorDecl);
+ REGISTER_MATCHER(declCountIs);
+ REGISTER_MATCHER(declRefExpr);
+ REGISTER_MATCHER(declStmt);
+ REGISTER_MATCHER(defaultArgExpr);
+ REGISTER_MATCHER(defaultStmt);
+ REGISTER_MATCHER(deleteExpr);
+ REGISTER_MATCHER(dependentSizedArrayType);
+ REGISTER_MATCHER(destructorDecl);
+ REGISTER_MATCHER(doStmt);
+ REGISTER_MATCHER(dynamicCastExpr);
+ REGISTER_MATCHER(eachOf);
+ REGISTER_MATCHER(elaboratedType);
+ REGISTER_MATCHER(enumConstantDecl);
+ REGISTER_MATCHER(enumDecl);
+ REGISTER_MATCHER(equalsBoundNode);
+ REGISTER_MATCHER(equalsIntegralValue);
+ REGISTER_MATCHER(explicitCastExpr);
+ REGISTER_MATCHER(expr);
+ REGISTER_MATCHER(exprWithCleanups);
+ REGISTER_MATCHER(fieldDecl);
+ REGISTER_MATCHER(floatLiteral);
+ REGISTER_MATCHER(forEach);
+ REGISTER_MATCHER(forEachConstructorInitializer);
+ REGISTER_MATCHER(forEachDescendant);
+ REGISTER_MATCHER(forEachSwitchCase);
+ REGISTER_MATCHER(forField);
+ REGISTER_MATCHER(forRangeStmt);
+ REGISTER_MATCHER(forStmt);
+ REGISTER_MATCHER(friendDecl);
+ REGISTER_MATCHER(functionalCastExpr);
+ REGISTER_MATCHER(functionDecl);
+ REGISTER_MATCHER(functionTemplateDecl);
+ REGISTER_MATCHER(functionType);
+ REGISTER_MATCHER(gotoStmt);
+ REGISTER_MATCHER(has);
+ REGISTER_MATCHER(hasAncestor);
+ REGISTER_MATCHER(hasAnyArgument);
+ REGISTER_MATCHER(hasAnyConstructorInitializer);
+ REGISTER_MATCHER(hasAnyParameter);
+ REGISTER_MATCHER(hasAnySubstatement);
+ REGISTER_MATCHER(hasAnyTemplateArgument);
+ REGISTER_MATCHER(hasAnyUsingShadowDecl);
+ REGISTER_MATCHER(hasArgument);
+ REGISTER_MATCHER(hasArgumentOfType);
+ REGISTER_MATCHER(hasAttr);
+ REGISTER_MATCHER(hasBase);
+ REGISTER_MATCHER(hasBody);
+ REGISTER_MATCHER(hasCanonicalType);
+ REGISTER_MATCHER(hasCaseConstant);
+ REGISTER_MATCHER(hasCondition);
+ REGISTER_MATCHER(hasConditionVariableStatement);
+ REGISTER_MATCHER(hasDeclaration);
+ REGISTER_MATCHER(hasDeclContext);
+ REGISTER_MATCHER(hasDeducedType);
+ REGISTER_MATCHER(hasDescendant);
+ REGISTER_MATCHER(hasDestinationType);
+ REGISTER_MATCHER(hasEitherOperand);
+ REGISTER_MATCHER(hasElementType);
+ REGISTER_MATCHER(hasElse);
+ REGISTER_MATCHER(hasFalseExpression);
+ REGISTER_MATCHER(hasGlobalStorage);
+ REGISTER_MATCHER(hasImplicitDestinationType);
+ REGISTER_MATCHER(hasIncrement);
+ REGISTER_MATCHER(hasIndex);
+ REGISTER_MATCHER(hasInitializer);
+ REGISTER_MATCHER(hasKeywordSelector);
+ REGISTER_MATCHER(hasLHS);
+ REGISTER_MATCHER(hasLocalQualifiers);
+ REGISTER_MATCHER(hasLocalStorage);
+ REGISTER_MATCHER(hasLoopInit);
+ REGISTER_MATCHER(hasLoopVariable);
+ REGISTER_MATCHER(hasMethod);
+ REGISTER_MATCHER(hasName);
+ REGISTER_MATCHER(hasNullSelector);
+ REGISTER_MATCHER(hasObjectExpression);
+ REGISTER_MATCHER(hasOperatorName);
+ REGISTER_MATCHER(hasOverloadedOperatorName);
+ REGISTER_MATCHER(hasParameter);
+ REGISTER_MATCHER(hasParent);
+ REGISTER_MATCHER(hasQualifier);
+ REGISTER_MATCHER(hasRangeInit);
+ REGISTER_MATCHER(hasReceiverType);
+ REGISTER_MATCHER(hasRHS);
+ REGISTER_MATCHER(hasSelector);
+ REGISTER_MATCHER(hasSingleDecl);
+ REGISTER_MATCHER(hasSize);
+ REGISTER_MATCHER(hasSizeExpr);
+ REGISTER_MATCHER(hasSourceExpression);
+ REGISTER_MATCHER(hasTargetDecl);
+ REGISTER_MATCHER(hasTemplateArgument);
+ REGISTER_MATCHER(hasThen);
+ REGISTER_MATCHER(hasTrueExpression);
+ REGISTER_MATCHER(hasTypeLoc);
+ REGISTER_MATCHER(hasUnaryOperand);
+ REGISTER_MATCHER(hasUnarySelector);
+ REGISTER_MATCHER(hasValueType);
+ REGISTER_MATCHER(ifStmt);
+ REGISTER_MATCHER(ignoringImpCasts);
+ REGISTER_MATCHER(ignoringParenCasts);
+ REGISTER_MATCHER(ignoringParenImpCasts);
+ REGISTER_MATCHER(implicitCastExpr);
+ REGISTER_MATCHER(incompleteArrayType);
+ REGISTER_MATCHER(initListExpr);
+ REGISTER_MATCHER(innerType);
+ REGISTER_MATCHER(integerLiteral);
+ REGISTER_MATCHER(isArrow);
+ REGISTER_MATCHER(isConst);
+ REGISTER_MATCHER(isConstQualified);
+ REGISTER_MATCHER(isDefinition);
+ REGISTER_MATCHER(isDeleted);
+ REGISTER_MATCHER(isExplicitTemplateSpecialization);
+ REGISTER_MATCHER(isExpr);
+ REGISTER_MATCHER(isExternC);
+ REGISTER_MATCHER(isImplicit);
+ REGISTER_MATCHER(isExpansionInFileMatching);
+ REGISTER_MATCHER(isExpansionInMainFile);
+ REGISTER_MATCHER(isInstantiated);
+ REGISTER_MATCHER(isExpansionInSystemHeader);
+ REGISTER_MATCHER(isInteger);
+ REGISTER_MATCHER(isIntegral);
+ REGISTER_MATCHER(isInTemplateInstantiation);
+ REGISTER_MATCHER(isListInitialization);
+ REGISTER_MATCHER(isOverride);
+ REGISTER_MATCHER(isPrivate);
+ REGISTER_MATCHER(isProtected);
+ REGISTER_MATCHER(isPublic);
+ REGISTER_MATCHER(isPure);
+ REGISTER_MATCHER(isTemplateInstantiation);
+ REGISTER_MATCHER(isVirtual);
+ REGISTER_MATCHER(isWritten);
+ REGISTER_MATCHER(labelStmt);
+ REGISTER_MATCHER(lambdaExpr);
+ REGISTER_MATCHER(lValueReferenceType);
+ REGISTER_MATCHER(matchesName);
+ REGISTER_MATCHER(matchesSelector);
+ REGISTER_MATCHER(materializeTemporaryExpr);
+ REGISTER_MATCHER(member);
+ REGISTER_MATCHER(memberCallExpr);
+ REGISTER_MATCHER(memberExpr);
+ REGISTER_MATCHER(memberPointerType);
+ REGISTER_MATCHER(methodDecl);
+ REGISTER_MATCHER(namedDecl);
+ REGISTER_MATCHER(namespaceDecl);
+ REGISTER_MATCHER(namesType);
+ REGISTER_MATCHER(nestedNameSpecifier);
+ REGISTER_MATCHER(nestedNameSpecifierLoc);
+ REGISTER_MATCHER(newExpr);
+ REGISTER_MATCHER(nullPtrLiteralExpr);
+ REGISTER_MATCHER(nullStmt);
+ REGISTER_MATCHER(numSelectorArgs);
+ REGISTER_MATCHER(ofClass);
+ REGISTER_MATCHER(objcMessageExpr);
+ REGISTER_MATCHER(on);
+ REGISTER_MATCHER(onImplicitObjectArgument);
+ REGISTER_MATCHER(operatorCallExpr);
+ REGISTER_MATCHER(parameterCountIs);
+ REGISTER_MATCHER(parenType);
+ REGISTER_MATCHER(parmVarDecl);
+ REGISTER_MATCHER(pointee);
+ REGISTER_MATCHER(pointerType);
+ REGISTER_MATCHER(qualType);
+ REGISTER_MATCHER(recordDecl);
+ REGISTER_MATCHER(recordType);
+ REGISTER_MATCHER(referenceType);
+ REGISTER_MATCHER(refersToDeclaration);
+ REGISTER_MATCHER(refersToIntegralType);
+ REGISTER_MATCHER(refersToType);
+ REGISTER_MATCHER(reinterpretCastExpr);
+ REGISTER_MATCHER(returns);
+ REGISTER_MATCHER(returnStmt);
+ REGISTER_MATCHER(rValueReferenceType);
+ REGISTER_MATCHER(sizeOfExpr);
+ REGISTER_MATCHER(specifiesNamespace);
+ REGISTER_MATCHER(specifiesType);
+ REGISTER_MATCHER(specifiesTypeLoc);
+ REGISTER_MATCHER(statementCountIs);
+ REGISTER_MATCHER(staticCastExpr);
+ REGISTER_MATCHER(stmt);
+ REGISTER_MATCHER(stringLiteral);
+ REGISTER_MATCHER(substNonTypeTemplateParmExpr);
+ REGISTER_MATCHER(switchCase);
+ REGISTER_MATCHER(switchStmt);
+ REGISTER_MATCHER(templateArgument);
+ REGISTER_MATCHER(templateArgumentCountIs);
+ REGISTER_MATCHER(templateSpecializationType);
+ REGISTER_MATCHER(temporaryObjectExpr);
+ REGISTER_MATCHER(thisExpr);
+ REGISTER_MATCHER(throughUsingDecl);
+ REGISTER_MATCHER(throwExpr);
+ REGISTER_MATCHER(to);
+ REGISTER_MATCHER(translationUnitDecl);
+ REGISTER_MATCHER(tryStmt);
+ REGISTER_MATCHER(type);
+ REGISTER_MATCHER(typedefDecl);
+ REGISTER_MATCHER(typedefType);
+ REGISTER_MATCHER(typeLoc);
+ REGISTER_MATCHER(unaryExprOrTypeTraitExpr);
+ REGISTER_MATCHER(unaryOperator);
+ REGISTER_MATCHER(unaryTransformType);
+ REGISTER_MATCHER(unless);
+ REGISTER_MATCHER(unresolvedConstructExpr);
+ REGISTER_MATCHER(unresolvedUsingValueDecl);
+ REGISTER_MATCHER(userDefinedLiteral);
+ REGISTER_MATCHER(usingDecl);
+ REGISTER_MATCHER(usingDirectiveDecl);
+ REGISTER_MATCHER(valueDecl);
+ REGISTER_MATCHER(varDecl);
+ REGISTER_MATCHER(variableArrayType);
+ REGISTER_MATCHER(voidType);
+ REGISTER_MATCHER(whileStmt);
+ REGISTER_MATCHER(withInitializer);
+}
+
+RegistryMaps::~RegistryMaps() {
+ for (ConstructorMap::iterator it = Constructors.begin(),
+ end = Constructors.end();
+ it != end; ++it) {
+ delete it->second;
+ }
+}
+
+static llvm::ManagedStatic<RegistryMaps> RegistryData;
+
+} // anonymous namespace
+
+// static
+llvm::Optional<MatcherCtor> Registry::lookupMatcherCtor(StringRef MatcherName) {
+ ConstructorMap::const_iterator it =
+ RegistryData->constructors().find(MatcherName);
+ return it == RegistryData->constructors().end()
+ ? llvm::Optional<MatcherCtor>()
+ : it->second;
+}
+
+namespace {
+
+llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
+ const std::set<ASTNodeKind> &KS) {
+ unsigned Count = 0;
+ for (std::set<ASTNodeKind>::const_iterator I = KS.begin(), E = KS.end();
+ I != E; ++I) {
+ if (I != KS.begin())
+ OS << "|";
+ if (Count++ == 3) {
+ OS << "...";
+ break;
+ }
+ OS << *I;
+ }
+ return OS;
+}
+
+} // namespace
+
+std::vector<ArgKind> Registry::getAcceptedCompletionTypes(
+ ArrayRef<std::pair<MatcherCtor, unsigned>> Context) {
+ ASTNodeKind InitialTypes[] = {
+ ASTNodeKind::getFromNodeKind<Decl>(),
+ ASTNodeKind::getFromNodeKind<QualType>(),
+ ASTNodeKind::getFromNodeKind<Type>(),
+ ASTNodeKind::getFromNodeKind<Stmt>(),
+ ASTNodeKind::getFromNodeKind<NestedNameSpecifier>(),
+ ASTNodeKind::getFromNodeKind<NestedNameSpecifierLoc>(),
+ ASTNodeKind::getFromNodeKind<TypeLoc>()};
+
+ // Starting with the above seed of acceptable top-level matcher types, compute
+ // the acceptable type set for the argument indicated by each context element.
+ std::set<ArgKind> TypeSet(std::begin(InitialTypes), std::end(InitialTypes));
+ for (const auto &CtxEntry : Context) {
+ MatcherCtor Ctor = CtxEntry.first;
+ unsigned ArgNumber = CtxEntry.second;
+ std::vector<ArgKind> NextTypeSet;
+ for (const ArgKind &Kind : TypeSet) {
+ if (Kind.getArgKind() == Kind.AK_Matcher &&
+ Ctor->isConvertibleTo(Kind.getMatcherKind()) &&
+ (Ctor->isVariadic() || ArgNumber < Ctor->getNumArgs()))
+ Ctor->getArgKinds(Kind.getMatcherKind(), ArgNumber, NextTypeSet);
+ }
+ TypeSet.clear();
+ TypeSet.insert(NextTypeSet.begin(), NextTypeSet.end());
+ }
+ return std::vector<ArgKind>(TypeSet.begin(), TypeSet.end());
+}
+
+std::vector<MatcherCompletion>
+Registry::getMatcherCompletions(ArrayRef<ArgKind> AcceptedTypes) {
+ std::vector<MatcherCompletion> Completions;
+
+ // Search the registry for acceptable matchers.
+ for (ConstructorMap::const_iterator I = RegistryData->constructors().begin(),
+ E = RegistryData->constructors().end();
+ I != E; ++I) {
+ std::set<ASTNodeKind> RetKinds;
+ unsigned NumArgs = I->second->isVariadic() ? 1 : I->second->getNumArgs();
+ bool IsPolymorphic = I->second->isPolymorphic();
+ std::vector<std::vector<ArgKind>> ArgsKinds(NumArgs);
+ unsigned MaxSpecificity = 0;
+ for (const ArgKind& Kind : AcceptedTypes) {
+ if (Kind.getArgKind() != Kind.AK_Matcher)
+ continue;
+ unsigned Specificity;
+ ASTNodeKind LeastDerivedKind;
+ if (I->second->isConvertibleTo(Kind.getMatcherKind(), &Specificity,
+ &LeastDerivedKind)) {
+ if (MaxSpecificity < Specificity)
+ MaxSpecificity = Specificity;
+ RetKinds.insert(LeastDerivedKind);
+ for (unsigned Arg = 0; Arg != NumArgs; ++Arg)
+ I->second->getArgKinds(Kind.getMatcherKind(), Arg, ArgsKinds[Arg]);
+ if (IsPolymorphic)
+ break;
+ }
+ }
+
+ if (!RetKinds.empty() && MaxSpecificity > 0) {
+ std::string Decl;
+ llvm::raw_string_ostream OS(Decl);
+
+ if (IsPolymorphic) {
+ OS << "Matcher<T> " << I->first() << "(Matcher<T>";
+ } else {
+ OS << "Matcher<" << RetKinds << "> " << I->first() << "(";
+ for (const std::vector<ArgKind> &Arg : ArgsKinds) {
+ if (&Arg != &ArgsKinds[0])
+ OS << ", ";
+
+ bool FirstArgKind = true;
+ std::set<ASTNodeKind> MatcherKinds;
+ // Two steps. First all non-matchers, then matchers only.
+ for (const ArgKind &AK : Arg) {
+ if (AK.getArgKind() == ArgKind::AK_Matcher) {
+ MatcherKinds.insert(AK.getMatcherKind());
+ } else {
+ if (!FirstArgKind) OS << "|";
+ FirstArgKind = false;
+ OS << AK.asString();
+ }
+ }
+ if (!MatcherKinds.empty()) {
+ if (!FirstArgKind) OS << "|";
+ OS << "Matcher<" << MatcherKinds << ">";
+ }
+ }
+ }
+ if (I->second->isVariadic())
+ OS << "...";
+ OS << ")";
+
+ std::string TypedText = I->first();
+ TypedText += "(";
+ if (ArgsKinds.empty())
+ TypedText += ")";
+ else if (ArgsKinds[0][0].getArgKind() == ArgKind::AK_String)
+ TypedText += "\"";
+
+ Completions.emplace_back(TypedText, OS.str(), MaxSpecificity);
+ }
+ }
+
+ return Completions;
+}
+
+// static
+VariantMatcher Registry::constructMatcher(MatcherCtor Ctor,
+ const SourceRange &NameRange,
+ ArrayRef<ParserValue> Args,
+ Diagnostics *Error) {
+ return Ctor->create(NameRange, Args, Error);
+}
+
+// static
+VariantMatcher Registry::constructBoundMatcher(MatcherCtor Ctor,
+ const SourceRange &NameRange,
+ StringRef BindID,
+ ArrayRef<ParserValue> Args,
+ Diagnostics *Error) {
+ VariantMatcher Out = constructMatcher(Ctor, NameRange, Args, Error);
+ if (Out.isNull()) return Out;
+
+ llvm::Optional<DynTypedMatcher> Result = Out.getSingleMatcher();
+ if (Result.hasValue()) {
+ llvm::Optional<DynTypedMatcher> Bound = Result->tryBind(BindID);
+ if (Bound.hasValue()) {
+ return VariantMatcher::SingleMatcher(*Bound);
+ }
+ }
+ Error->addError(NameRange, Error->ET_RegistryNotBindable);
+ return VariantMatcher();
+}
+
+} // namespace dynamic
+} // namespace ast_matchers
+} // namespace clang
diff --git a/contrib/llvm/tools/clang/lib/ASTMatchers/Dynamic/VariantValue.cpp b/contrib/llvm/tools/clang/lib/ASTMatchers/Dynamic/VariantValue.cpp
new file mode 100644
index 0000000..a88b707
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/ASTMatchers/Dynamic/VariantValue.cpp
@@ -0,0 +1,392 @@
+//===--- VariantValue.cpp - Polymorphic value type -*- C++ -*-===/
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// \brief Polymorphic value type.
+///
+//===----------------------------------------------------------------------===//
+
+#include "clang/ASTMatchers/Dynamic/VariantValue.h"
+#include "clang/Basic/LLVM.h"
+#include "llvm/ADT/STLExtras.h"
+
+namespace clang {
+namespace ast_matchers {
+namespace dynamic {
+
+std::string ArgKind::asString() const {
+ switch (getArgKind()) {
+ case AK_Matcher:
+ return (Twine("Matcher<") + MatcherKind.asStringRef() + ">").str();
+ case AK_Unsigned:
+ return "unsigned";
+ case AK_String:
+ return "string";
+ }
+ llvm_unreachable("unhandled ArgKind");
+}
+
+bool ArgKind::isConvertibleTo(ArgKind To, unsigned *Specificity) const {
+ if (K != To.K)
+ return false;
+ if (K != AK_Matcher) {
+ if (Specificity)
+ *Specificity = 1;
+ return true;
+ }
+ unsigned Distance;
+ if (!MatcherKind.isBaseOf(To.MatcherKind, &Distance))
+ return false;
+
+ if (Specificity)
+ *Specificity = 100 - Distance;
+ return true;
+}
+
+bool
+VariantMatcher::MatcherOps::canConstructFrom(const DynTypedMatcher &Matcher,
+ bool &IsExactMatch) const {
+ IsExactMatch = Matcher.getSupportedKind().isSame(NodeKind);
+ return Matcher.canConvertTo(NodeKind);
+}
+
+llvm::Optional<DynTypedMatcher>
+VariantMatcher::MatcherOps::constructVariadicOperator(
+ DynTypedMatcher::VariadicOperator Op,
+ ArrayRef<VariantMatcher> InnerMatchers) const {
+ std::vector<DynTypedMatcher> DynMatchers;
+ for (const auto &InnerMatcher : InnerMatchers) {
+ // Abort if any of the inner matchers can't be converted to
+ // Matcher<T>.
+ if (!InnerMatcher.Value)
+ return llvm::None;
+ llvm::Optional<DynTypedMatcher> Inner =
+ InnerMatcher.Value->getTypedMatcher(*this);
+ if (!Inner)
+ return llvm::None;
+ DynMatchers.push_back(*Inner);
+ }
+ return DynTypedMatcher::constructVariadic(Op, DynMatchers);
+}
+
+VariantMatcher::Payload::~Payload() {}
+
+class VariantMatcher::SinglePayload : public VariantMatcher::Payload {
+public:
+ SinglePayload(const DynTypedMatcher &Matcher) : Matcher(Matcher) {}
+
+ llvm::Optional<DynTypedMatcher> getSingleMatcher() const override {
+ return Matcher;
+ }
+
+ std::string getTypeAsString() const override {
+ return (Twine("Matcher<") + Matcher.getSupportedKind().asStringRef() + ">")
+ .str();
+ }
+
+ llvm::Optional<DynTypedMatcher>
+ getTypedMatcher(const MatcherOps &Ops) const override {
+ bool Ignore;
+ if (Ops.canConstructFrom(Matcher, Ignore))
+ return Matcher;
+ return llvm::None;
+ }
+
+ bool isConvertibleTo(ast_type_traits::ASTNodeKind Kind,
+ unsigned *Specificity) const override {
+ return ArgKind(Matcher.getSupportedKind())
+ .isConvertibleTo(Kind, Specificity);
+ }
+
+private:
+ const DynTypedMatcher Matcher;
+};
+
+class VariantMatcher::PolymorphicPayload : public VariantMatcher::Payload {
+public:
+ PolymorphicPayload(std::vector<DynTypedMatcher> MatchersIn)
+ : Matchers(std::move(MatchersIn)) {}
+
+ ~PolymorphicPayload() override {}
+
+ llvm::Optional<DynTypedMatcher> getSingleMatcher() const override {
+ if (Matchers.size() != 1)
+ return llvm::Optional<DynTypedMatcher>();
+ return Matchers[0];
+ }
+
+ std::string getTypeAsString() const override {
+ std::string Inner;
+ for (size_t i = 0, e = Matchers.size(); i != e; ++i) {
+ if (i != 0)
+ Inner += "|";
+ Inner += Matchers[i].getSupportedKind().asStringRef();
+ }
+ return (Twine("Matcher<") + Inner + ">").str();
+ }
+
+ llvm::Optional<DynTypedMatcher>
+ getTypedMatcher(const MatcherOps &Ops) const override {
+ bool FoundIsExact = false;
+ const DynTypedMatcher *Found = nullptr;
+ int NumFound = 0;
+ for (size_t i = 0, e = Matchers.size(); i != e; ++i) {
+ bool IsExactMatch;
+ if (Ops.canConstructFrom(Matchers[i], IsExactMatch)) {
+ if (Found) {
+ if (FoundIsExact) {
+ assert(!IsExactMatch && "We should not have two exact matches.");
+ continue;
+ }
+ }
+ Found = &Matchers[i];
+ FoundIsExact = IsExactMatch;
+ ++NumFound;
+ }
+ }
+ // We only succeed if we found exactly one, or if we found an exact match.
+ if (Found && (FoundIsExact || NumFound == 1))
+ return *Found;
+ return llvm::None;
+ }
+
+ bool isConvertibleTo(ast_type_traits::ASTNodeKind Kind,
+ unsigned *Specificity) const override {
+ unsigned MaxSpecificity = 0;
+ for (const DynTypedMatcher &Matcher : Matchers) {
+ unsigned ThisSpecificity;
+ if (ArgKind(Matcher.getSupportedKind())
+ .isConvertibleTo(Kind, &ThisSpecificity)) {
+ MaxSpecificity = std::max(MaxSpecificity, ThisSpecificity);
+ }
+ }
+ if (Specificity)
+ *Specificity = MaxSpecificity;
+ return MaxSpecificity > 0;
+ }
+
+ const std::vector<DynTypedMatcher> Matchers;
+};
+
+class VariantMatcher::VariadicOpPayload : public VariantMatcher::Payload {
+public:
+ VariadicOpPayload(DynTypedMatcher::VariadicOperator Op,
+ std::vector<VariantMatcher> Args)
+ : Op(Op), Args(std::move(Args)) {}
+
+ llvm::Optional<DynTypedMatcher> getSingleMatcher() const override {
+ return llvm::Optional<DynTypedMatcher>();
+ }
+
+ std::string getTypeAsString() const override {
+ std::string Inner;
+ for (size_t i = 0, e = Args.size(); i != e; ++i) {
+ if (i != 0)
+ Inner += "&";
+ Inner += Args[i].getTypeAsString();
+ }
+ return Inner;
+ }
+
+ llvm::Optional<DynTypedMatcher>
+ getTypedMatcher(const MatcherOps &Ops) const override {
+ return Ops.constructVariadicOperator(Op, Args);
+ }
+
+ bool isConvertibleTo(ast_type_traits::ASTNodeKind Kind,
+ unsigned *Specificity) const override {
+ for (const VariantMatcher &Matcher : Args) {
+ if (!Matcher.isConvertibleTo(Kind, Specificity))
+ return false;
+ }
+ return true;
+ }
+
+private:
+ const DynTypedMatcher::VariadicOperator Op;
+ const std::vector<VariantMatcher> Args;
+};
+
+VariantMatcher::VariantMatcher() {}
+
+VariantMatcher VariantMatcher::SingleMatcher(const DynTypedMatcher &Matcher) {
+ return VariantMatcher(new SinglePayload(Matcher));
+}
+
+VariantMatcher
+VariantMatcher::PolymorphicMatcher(std::vector<DynTypedMatcher> Matchers) {
+ return VariantMatcher(new PolymorphicPayload(std::move(Matchers)));
+}
+
+VariantMatcher VariantMatcher::VariadicOperatorMatcher(
+ DynTypedMatcher::VariadicOperator Op,
+ std::vector<VariantMatcher> Args) {
+ return VariantMatcher(new VariadicOpPayload(Op, std::move(Args)));
+}
+
+llvm::Optional<DynTypedMatcher> VariantMatcher::getSingleMatcher() const {
+ return Value ? Value->getSingleMatcher() : llvm::Optional<DynTypedMatcher>();
+}
+
+void VariantMatcher::reset() { Value.reset(); }
+
+std::string VariantMatcher::getTypeAsString() const {
+ if (Value) return Value->getTypeAsString();
+ return "<Nothing>";
+}
+
+VariantValue::VariantValue(const VariantValue &Other) : Type(VT_Nothing) {
+ *this = Other;
+}
+
+VariantValue::VariantValue(unsigned Unsigned) : Type(VT_Nothing) {
+ setUnsigned(Unsigned);
+}
+
+VariantValue::VariantValue(const std::string &String) : Type(VT_Nothing) {
+ setString(String);
+}
+
+VariantValue::VariantValue(const VariantMatcher &Matcher) : Type(VT_Nothing) {
+ setMatcher(Matcher);
+}
+
+VariantValue::~VariantValue() { reset(); }
+
+VariantValue &VariantValue::operator=(const VariantValue &Other) {
+ if (this == &Other) return *this;
+ reset();
+ switch (Other.Type) {
+ case VT_Unsigned:
+ setUnsigned(Other.getUnsigned());
+ break;
+ case VT_String:
+ setString(Other.getString());
+ break;
+ case VT_Matcher:
+ setMatcher(Other.getMatcher());
+ break;
+ case VT_Nothing:
+ Type = VT_Nothing;
+ break;
+ }
+ return *this;
+}
+
+void VariantValue::reset() {
+ switch (Type) {
+ case VT_String:
+ delete Value.String;
+ break;
+ case VT_Matcher:
+ delete Value.Matcher;
+ break;
+ // Cases that do nothing.
+ case VT_Unsigned:
+ case VT_Nothing:
+ break;
+ }
+ Type = VT_Nothing;
+}
+
+bool VariantValue::isUnsigned() const {
+ return Type == VT_Unsigned;
+}
+
+unsigned VariantValue::getUnsigned() const {
+ assert(isUnsigned());
+ return Value.Unsigned;
+}
+
+void VariantValue::setUnsigned(unsigned NewValue) {
+ reset();
+ Type = VT_Unsigned;
+ Value.Unsigned = NewValue;
+}
+
+bool VariantValue::isString() const {
+ return Type == VT_String;
+}
+
+const std::string &VariantValue::getString() const {
+ assert(isString());
+ return *Value.String;
+}
+
+void VariantValue::setString(const std::string &NewValue) {
+ reset();
+ Type = VT_String;
+ Value.String = new std::string(NewValue);
+}
+
+bool VariantValue::isMatcher() const {
+ return Type == VT_Matcher;
+}
+
+const VariantMatcher &VariantValue::getMatcher() const {
+ assert(isMatcher());
+ return *Value.Matcher;
+}
+
+void VariantValue::setMatcher(const VariantMatcher &NewValue) {
+ reset();
+ Type = VT_Matcher;
+ Value.Matcher = new VariantMatcher(NewValue);
+}
+
+bool VariantValue::isConvertibleTo(ArgKind Kind, unsigned *Specificity) const {
+ switch (Kind.getArgKind()) {
+ case ArgKind::AK_Unsigned:
+ if (!isUnsigned())
+ return false;
+ *Specificity = 1;
+ return true;
+
+ case ArgKind::AK_String:
+ if (!isString())
+ return false;
+ *Specificity = 1;
+ return true;
+
+ case ArgKind::AK_Matcher:
+ if (!isMatcher())
+ return false;
+ return getMatcher().isConvertibleTo(Kind.getMatcherKind(), Specificity);
+ }
+ llvm_unreachable("Invalid Type");
+}
+
+bool VariantValue::isConvertibleTo(ArrayRef<ArgKind> Kinds,
+ unsigned *Specificity) const {
+ unsigned MaxSpecificity = 0;
+ for (const ArgKind& Kind : Kinds) {
+ unsigned ThisSpecificity;
+ if (!isConvertibleTo(Kind, &ThisSpecificity))
+ continue;
+ MaxSpecificity = std::max(MaxSpecificity, ThisSpecificity);
+ }
+ if (Specificity && MaxSpecificity > 0) {
+ *Specificity = MaxSpecificity;
+ }
+ return MaxSpecificity > 0;
+}
+
+std::string VariantValue::getTypeAsString() const {
+ switch (Type) {
+ case VT_String: return "String";
+ case VT_Matcher: return getMatcher().getTypeAsString();
+ case VT_Unsigned: return "Unsigned";
+ case VT_Nothing: return "Nothing";
+ }
+ llvm_unreachable("Invalid Type");
+}
+
+} // end namespace dynamic
+} // end namespace ast_matchers
+} // end namespace clang
diff --git a/contrib/llvm/tools/clang/lib/Analysis/AnalysisDeclContext.cpp b/contrib/llvm/tools/clang/lib/Analysis/AnalysisDeclContext.cpp
new file mode 100644
index 0000000..4e623c8
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/AnalysisDeclContext.cpp
@@ -0,0 +1,587 @@
+//== AnalysisDeclContext.cpp - Analysis context for Path Sens analysis -*- C++ -*-//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines AnalysisDeclContext, a class that manages the analysis context
+// data for path sensitive analysis.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/AnalysisContext.h"
+#include "BodyFarm.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/ParentMap.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h"
+#include "clang/Analysis/Analyses/LiveVariables.h"
+#include "clang/Analysis/Analyses/PseudoConstantAnalysis.h"
+#include "clang/Analysis/CFG.h"
+#include "clang/Analysis/CFGStmtMap.h"
+#include "clang/Analysis/Support/BumpVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/SaveAndRestore.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+
+typedef llvm::DenseMap<const void *, ManagedAnalysis *> ManagedAnalysisMap;
+
+AnalysisDeclContext::AnalysisDeclContext(AnalysisDeclContextManager *Mgr,
+ const Decl *d,
+ const CFG::BuildOptions &buildOptions)
+ : Manager(Mgr),
+ D(d),
+ cfgBuildOptions(buildOptions),
+ forcedBlkExprs(nullptr),
+ builtCFG(false),
+ builtCompleteCFG(false),
+ ReferencedBlockVars(nullptr),
+ ManagedAnalyses(nullptr)
+{
+ cfgBuildOptions.forcedBlkExprs = &forcedBlkExprs;
+}
+
+AnalysisDeclContext::AnalysisDeclContext(AnalysisDeclContextManager *Mgr,
+ const Decl *d)
+: Manager(Mgr),
+ D(d),
+ forcedBlkExprs(nullptr),
+ builtCFG(false),
+ builtCompleteCFG(false),
+ ReferencedBlockVars(nullptr),
+ ManagedAnalyses(nullptr)
+{
+ cfgBuildOptions.forcedBlkExprs = &forcedBlkExprs;
+}
+
+AnalysisDeclContextManager::AnalysisDeclContextManager(bool useUnoptimizedCFG,
+ bool addImplicitDtors,
+ bool addInitializers,
+ bool addTemporaryDtors,
+ bool synthesizeBodies,
+ bool addStaticInitBranch,
+ bool addCXXNewAllocator,
+ CodeInjector *injector)
+ : Injector(injector), SynthesizeBodies(synthesizeBodies)
+{
+ cfgBuildOptions.PruneTriviallyFalseEdges = !useUnoptimizedCFG;
+ cfgBuildOptions.AddImplicitDtors = addImplicitDtors;
+ cfgBuildOptions.AddInitializers = addInitializers;
+ cfgBuildOptions.AddTemporaryDtors = addTemporaryDtors;
+ cfgBuildOptions.AddStaticInitBranches = addStaticInitBranch;
+ cfgBuildOptions.AddCXXNewAllocator = addCXXNewAllocator;
+}
+
+void AnalysisDeclContextManager::clear() {
+ llvm::DeleteContainerSeconds(Contexts);
+}
+
+static BodyFarm &getBodyFarm(ASTContext &C, CodeInjector *injector = nullptr) {
+ static BodyFarm *BF = new BodyFarm(C, injector);
+ return *BF;
+}
+
+Stmt *AnalysisDeclContext::getBody(bool &IsAutosynthesized) const {
+ IsAutosynthesized = false;
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ Stmt *Body = FD->getBody();
+ if (!Body && Manager && Manager->synthesizeBodies()) {
+ Body = getBodyFarm(getASTContext(), Manager->Injector.get()).getBody(FD);
+ if (Body)
+ IsAutosynthesized = true;
+ }
+ return Body;
+ }
+ else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
+ Stmt *Body = MD->getBody();
+ if (!Body && Manager && Manager->synthesizeBodies()) {
+ Body = getBodyFarm(getASTContext(), Manager->Injector.get()).getBody(MD);
+ if (Body)
+ IsAutosynthesized = true;
+ }
+ return Body;
+ } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
+ return BD->getBody();
+ else if (const FunctionTemplateDecl *FunTmpl
+ = dyn_cast_or_null<FunctionTemplateDecl>(D))
+ return FunTmpl->getTemplatedDecl()->getBody();
+
+ llvm_unreachable("unknown code decl");
+}
+
+Stmt *AnalysisDeclContext::getBody() const {
+ bool Tmp;
+ return getBody(Tmp);
+}
+
+bool AnalysisDeclContext::isBodyAutosynthesized() const {
+ bool Tmp;
+ getBody(Tmp);
+ return Tmp;
+}
+
+bool AnalysisDeclContext::isBodyAutosynthesizedFromModelFile() const {
+ bool Tmp;
+ Stmt *Body = getBody(Tmp);
+ return Tmp && Body->getLocStart().isValid();
+}
+
+
+const ImplicitParamDecl *AnalysisDeclContext::getSelfDecl() const {
+ if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
+ return MD->getSelfDecl();
+ if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
+ // See if 'self' was captured by the block.
+ for (const auto &I : BD->captures()) {
+ const VarDecl *VD = I.getVariable();
+ if (VD->getName() == "self")
+ return dyn_cast<ImplicitParamDecl>(VD);
+ }
+ }
+
+ return nullptr;
+}
+
+void AnalysisDeclContext::registerForcedBlockExpression(const Stmt *stmt) {
+ if (!forcedBlkExprs)
+ forcedBlkExprs = new CFG::BuildOptions::ForcedBlkExprs();
+ // Default construct an entry for 'stmt'.
+ if (const Expr *e = dyn_cast<Expr>(stmt))
+ stmt = e->IgnoreParens();
+ (void) (*forcedBlkExprs)[stmt];
+}
+
+const CFGBlock *
+AnalysisDeclContext::getBlockForRegisteredExpression(const Stmt *stmt) {
+ assert(forcedBlkExprs);
+ if (const Expr *e = dyn_cast<Expr>(stmt))
+ stmt = e->IgnoreParens();
+ CFG::BuildOptions::ForcedBlkExprs::const_iterator itr =
+ forcedBlkExprs->find(stmt);
+ assert(itr != forcedBlkExprs->end());
+ return itr->second;
+}
+
+/// Add each synthetic statement in the CFG to the parent map, using the
+/// source statement's parent.
+static void addParentsForSyntheticStmts(const CFG *TheCFG, ParentMap &PM) {
+ if (!TheCFG)
+ return;
+
+ for (CFG::synthetic_stmt_iterator I = TheCFG->synthetic_stmt_begin(),
+ E = TheCFG->synthetic_stmt_end();
+ I != E; ++I) {
+ PM.setParent(I->first, PM.getParent(I->second));
+ }
+}
+
+CFG *AnalysisDeclContext::getCFG() {
+ if (!cfgBuildOptions.PruneTriviallyFalseEdges)
+ return getUnoptimizedCFG();
+
+ if (!builtCFG) {
+ cfg = CFG::buildCFG(D, getBody(), &D->getASTContext(), cfgBuildOptions);
+ // Even when the cfg is not successfully built, we don't
+ // want to try building it again.
+ builtCFG = true;
+
+ if (PM)
+ addParentsForSyntheticStmts(cfg.get(), *PM);
+
+ // The Observer should only observe one build of the CFG.
+ getCFGBuildOptions().Observer = nullptr;
+ }
+ return cfg.get();
+}
+
+CFG *AnalysisDeclContext::getUnoptimizedCFG() {
+ if (!builtCompleteCFG) {
+ SaveAndRestore<bool> NotPrune(cfgBuildOptions.PruneTriviallyFalseEdges,
+ false);
+ completeCFG =
+ CFG::buildCFG(D, getBody(), &D->getASTContext(), cfgBuildOptions);
+ // Even when the cfg is not successfully built, we don't
+ // want to try building it again.
+ builtCompleteCFG = true;
+
+ if (PM)
+ addParentsForSyntheticStmts(completeCFG.get(), *PM);
+
+ // The Observer should only observe one build of the CFG.
+ getCFGBuildOptions().Observer = nullptr;
+ }
+ return completeCFG.get();
+}
+
+CFGStmtMap *AnalysisDeclContext::getCFGStmtMap() {
+ if (cfgStmtMap)
+ return cfgStmtMap.get();
+
+ if (CFG *c = getCFG()) {
+ cfgStmtMap.reset(CFGStmtMap::Build(c, &getParentMap()));
+ return cfgStmtMap.get();
+ }
+
+ return nullptr;
+}
+
+CFGReverseBlockReachabilityAnalysis *AnalysisDeclContext::getCFGReachablityAnalysis() {
+ if (CFA)
+ return CFA.get();
+
+ if (CFG *c = getCFG()) {
+ CFA.reset(new CFGReverseBlockReachabilityAnalysis(*c));
+ return CFA.get();
+ }
+
+ return nullptr;
+}
+
+void AnalysisDeclContext::dumpCFG(bool ShowColors) {
+ getCFG()->dump(getASTContext().getLangOpts(), ShowColors);
+}
+
+ParentMap &AnalysisDeclContext::getParentMap() {
+ if (!PM) {
+ PM.reset(new ParentMap(getBody()));
+ if (const CXXConstructorDecl *C = dyn_cast<CXXConstructorDecl>(getDecl())) {
+ for (const auto *I : C->inits()) {
+ PM->addStmt(I->getInit());
+ }
+ }
+ if (builtCFG)
+ addParentsForSyntheticStmts(getCFG(), *PM);
+ if (builtCompleteCFG)
+ addParentsForSyntheticStmts(getUnoptimizedCFG(), *PM);
+ }
+ return *PM;
+}
+
+PseudoConstantAnalysis *AnalysisDeclContext::getPseudoConstantAnalysis() {
+ if (!PCA)
+ PCA.reset(new PseudoConstantAnalysis(getBody()));
+ return PCA.get();
+}
+
+AnalysisDeclContext *AnalysisDeclContextManager::getContext(const Decl *D) {
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ // Calling 'hasBody' replaces 'FD' in place with the FunctionDecl
+ // that has the body.
+ FD->hasBody(FD);
+ D = FD;
+ }
+
+ AnalysisDeclContext *&AC = Contexts[D];
+ if (!AC)
+ AC = new AnalysisDeclContext(this, D, cfgBuildOptions);
+ return AC;
+}
+
+const StackFrameContext *
+AnalysisDeclContext::getStackFrame(LocationContext const *Parent, const Stmt *S,
+ const CFGBlock *Blk, unsigned Idx) {
+ return getLocationContextManager().getStackFrame(this, Parent, S, Blk, Idx);
+}
+
+const BlockInvocationContext *
+AnalysisDeclContext::getBlockInvocationContext(const LocationContext *parent,
+ const clang::BlockDecl *BD,
+ const void *ContextData) {
+ return getLocationContextManager().getBlockInvocationContext(this, parent,
+ BD, ContextData);
+}
+
+LocationContextManager & AnalysisDeclContext::getLocationContextManager() {
+ assert(Manager &&
+ "Cannot create LocationContexts without an AnalysisDeclContextManager!");
+ return Manager->getLocationContextManager();
+}
+
+//===----------------------------------------------------------------------===//
+// FoldingSet profiling.
+//===----------------------------------------------------------------------===//
+
+void LocationContext::ProfileCommon(llvm::FoldingSetNodeID &ID,
+ ContextKind ck,
+ AnalysisDeclContext *ctx,
+ const LocationContext *parent,
+ const void *data) {
+ ID.AddInteger(ck);
+ ID.AddPointer(ctx);
+ ID.AddPointer(parent);
+ ID.AddPointer(data);
+}
+
+void StackFrameContext::Profile(llvm::FoldingSetNodeID &ID) {
+ Profile(ID, getAnalysisDeclContext(), getParent(), CallSite, Block, Index);
+}
+
+void ScopeContext::Profile(llvm::FoldingSetNodeID &ID) {
+ Profile(ID, getAnalysisDeclContext(), getParent(), Enter);
+}
+
+void BlockInvocationContext::Profile(llvm::FoldingSetNodeID &ID) {
+ Profile(ID, getAnalysisDeclContext(), getParent(), BD, ContextData);
+}
+
+//===----------------------------------------------------------------------===//
+// LocationContext creation.
+//===----------------------------------------------------------------------===//
+
+template <typename LOC, typename DATA>
+const LOC*
+LocationContextManager::getLocationContext(AnalysisDeclContext *ctx,
+ const LocationContext *parent,
+ const DATA *d) {
+ llvm::FoldingSetNodeID ID;
+ LOC::Profile(ID, ctx, parent, d);
+ void *InsertPos;
+
+ LOC *L = cast_or_null<LOC>(Contexts.FindNodeOrInsertPos(ID, InsertPos));
+
+ if (!L) {
+ L = new LOC(ctx, parent, d);
+ Contexts.InsertNode(L, InsertPos);
+ }
+ return L;
+}
+
+const StackFrameContext*
+LocationContextManager::getStackFrame(AnalysisDeclContext *ctx,
+ const LocationContext *parent,
+ const Stmt *s,
+ const CFGBlock *blk, unsigned idx) {
+ llvm::FoldingSetNodeID ID;
+ StackFrameContext::Profile(ID, ctx, parent, s, blk, idx);
+ void *InsertPos;
+ StackFrameContext *L =
+ cast_or_null<StackFrameContext>(Contexts.FindNodeOrInsertPos(ID, InsertPos));
+ if (!L) {
+ L = new StackFrameContext(ctx, parent, s, blk, idx);
+ Contexts.InsertNode(L, InsertPos);
+ }
+ return L;
+}
+
+const ScopeContext *
+LocationContextManager::getScope(AnalysisDeclContext *ctx,
+ const LocationContext *parent,
+ const Stmt *s) {
+ return getLocationContext<ScopeContext, Stmt>(ctx, parent, s);
+}
+
+const BlockInvocationContext *
+LocationContextManager::getBlockInvocationContext(AnalysisDeclContext *ctx,
+ const LocationContext *parent,
+ const BlockDecl *BD,
+ const void *ContextData) {
+ llvm::FoldingSetNodeID ID;
+ BlockInvocationContext::Profile(ID, ctx, parent, BD, ContextData);
+ void *InsertPos;
+ BlockInvocationContext *L =
+ cast_or_null<BlockInvocationContext>(Contexts.FindNodeOrInsertPos(ID,
+ InsertPos));
+ if (!L) {
+ L = new BlockInvocationContext(ctx, parent, BD, ContextData);
+ Contexts.InsertNode(L, InsertPos);
+ }
+ return L;
+}
+
+//===----------------------------------------------------------------------===//
+// LocationContext methods.
+//===----------------------------------------------------------------------===//
+
+const StackFrameContext *LocationContext::getCurrentStackFrame() const {
+ const LocationContext *LC = this;
+ while (LC) {
+ if (const StackFrameContext *SFC = dyn_cast<StackFrameContext>(LC))
+ return SFC;
+ LC = LC->getParent();
+ }
+ return nullptr;
+}
+
+bool LocationContext::inTopFrame() const {
+ return getCurrentStackFrame()->inTopFrame();
+}
+
+bool LocationContext::isParentOf(const LocationContext *LC) const {
+ do {
+ const LocationContext *Parent = LC->getParent();
+ if (Parent == this)
+ return true;
+ else
+ LC = Parent;
+ } while (LC);
+
+ return false;
+}
+
+void LocationContext::dumpStack(raw_ostream &OS, StringRef Indent) const {
+ ASTContext &Ctx = getAnalysisDeclContext()->getASTContext();
+ PrintingPolicy PP(Ctx.getLangOpts());
+ PP.TerseOutput = 1;
+
+ unsigned Frame = 0;
+ for (const LocationContext *LCtx = this; LCtx; LCtx = LCtx->getParent()) {
+ switch (LCtx->getKind()) {
+ case StackFrame:
+ OS << Indent << '#' << Frame++ << ' ';
+ cast<StackFrameContext>(LCtx)->getDecl()->print(OS, PP);
+ OS << '\n';
+ break;
+ case Scope:
+ OS << Indent << " (scope)\n";
+ break;
+ case Block:
+ OS << Indent << " (block context: "
+ << cast<BlockInvocationContext>(LCtx)->getContextData()
+ << ")\n";
+ break;
+ }
+ }
+}
+
+LLVM_DUMP_METHOD void LocationContext::dumpStack() const {
+ dumpStack(llvm::errs());
+}
+
+//===----------------------------------------------------------------------===//
+// Lazily generated map to query the external variables referenced by a Block.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class FindBlockDeclRefExprsVals : public StmtVisitor<FindBlockDeclRefExprsVals>{
+ BumpVector<const VarDecl*> &BEVals;
+ BumpVectorContext &BC;
+ llvm::SmallPtrSet<const VarDecl*, 4> Visited;
+ llvm::SmallPtrSet<const DeclContext*, 4> IgnoredContexts;
+public:
+ FindBlockDeclRefExprsVals(BumpVector<const VarDecl*> &bevals,
+ BumpVectorContext &bc)
+ : BEVals(bevals), BC(bc) {}
+
+ void VisitStmt(Stmt *S) {
+ for (Stmt::child_range I = S->children(); I; ++I)
+ if (Stmt *child = *I)
+ Visit(child);
+ }
+
+ void VisitDeclRefExpr(DeclRefExpr *DR) {
+ // Non-local variables are also directly modified.
+ if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
+ if (!VD->hasLocalStorage()) {
+ if (Visited.insert(VD).second)
+ BEVals.push_back(VD, BC);
+ }
+ }
+ }
+
+ void VisitBlockExpr(BlockExpr *BR) {
+ // Blocks containing blocks can transitively capture more variables.
+ IgnoredContexts.insert(BR->getBlockDecl());
+ Visit(BR->getBlockDecl()->getBody());
+ }
+
+ void VisitPseudoObjectExpr(PseudoObjectExpr *PE) {
+ for (PseudoObjectExpr::semantics_iterator it = PE->semantics_begin(),
+ et = PE->semantics_end(); it != et; ++it) {
+ Expr *Semantic = *it;
+ if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Semantic))
+ Semantic = OVE->getSourceExpr();
+ Visit(Semantic);
+ }
+ }
+};
+} // end anonymous namespace
+
+typedef BumpVector<const VarDecl*> DeclVec;
+
+static DeclVec* LazyInitializeReferencedDecls(const BlockDecl *BD,
+ void *&Vec,
+ llvm::BumpPtrAllocator &A) {
+ if (Vec)
+ return (DeclVec*) Vec;
+
+ BumpVectorContext BC(A);
+ DeclVec *BV = (DeclVec*) A.Allocate<DeclVec>();
+ new (BV) DeclVec(BC, 10);
+
+ // Go through the capture list.
+ for (const auto &CI : BD->captures()) {
+ BV->push_back(CI.getVariable(), BC);
+ }
+
+ // Find the referenced global/static variables.
+ FindBlockDeclRefExprsVals F(*BV, BC);
+ F.Visit(BD->getBody());
+
+ Vec = BV;
+ return BV;
+}
+
+llvm::iterator_range<AnalysisDeclContext::referenced_decls_iterator>
+AnalysisDeclContext::getReferencedBlockVars(const BlockDecl *BD) {
+ if (!ReferencedBlockVars)
+ ReferencedBlockVars = new llvm::DenseMap<const BlockDecl*,void*>();
+
+ const DeclVec *V =
+ LazyInitializeReferencedDecls(BD, (*ReferencedBlockVars)[BD], A);
+ return llvm::make_range(V->begin(), V->end());
+}
+
+ManagedAnalysis *&AnalysisDeclContext::getAnalysisImpl(const void *tag) {
+ if (!ManagedAnalyses)
+ ManagedAnalyses = new ManagedAnalysisMap();
+ ManagedAnalysisMap *M = (ManagedAnalysisMap*) ManagedAnalyses;
+ return (*M)[tag];
+}
+
+//===----------------------------------------------------------------------===//
+// Cleanup.
+//===----------------------------------------------------------------------===//
+
+ManagedAnalysis::~ManagedAnalysis() {}
+
+AnalysisDeclContext::~AnalysisDeclContext() {
+ delete forcedBlkExprs;
+ delete ReferencedBlockVars;
+ // Release the managed analyses.
+ if (ManagedAnalyses) {
+ ManagedAnalysisMap *M = (ManagedAnalysisMap*) ManagedAnalyses;
+ llvm::DeleteContainerSeconds(*M);
+ delete M;
+ }
+}
+
+AnalysisDeclContextManager::~AnalysisDeclContextManager() {
+ llvm::DeleteContainerSeconds(Contexts);
+}
+
+LocationContext::~LocationContext() {}
+
+LocationContextManager::~LocationContextManager() {
+ clear();
+}
+
+void LocationContextManager::clear() {
+ for (llvm::FoldingSet<LocationContext>::iterator I = Contexts.begin(),
+ E = Contexts.end(); I != E; ) {
+ LocationContext *LC = &*I;
+ ++I;
+ delete LC;
+ }
+
+ Contexts.clear();
+}
+
diff --git a/contrib/llvm/tools/clang/lib/Analysis/BodyFarm.cpp b/contrib/llvm/tools/clang/lib/Analysis/BodyFarm.cpp
new file mode 100644
index 0000000..7d1b235
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/BodyFarm.cpp
@@ -0,0 +1,472 @@
+//== BodyFarm.cpp - Factory for conjuring up fake bodies ----------*- C++ -*-//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// BodyFarm is a factory for creating faux implementations for functions/methods
+// for analysis purposes.
+//
+//===----------------------------------------------------------------------===//
+
+#include "BodyFarm.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/Analysis/CodeInjector.h"
+#include "llvm/ADT/StringSwitch.h"
+
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// Helper creation functions for constructing faux ASTs.
+//===----------------------------------------------------------------------===//
+
+static bool isDispatchBlock(QualType Ty) {
+ // Is it a block pointer?
+ const BlockPointerType *BPT = Ty->getAs<BlockPointerType>();
+ if (!BPT)
+ return false;
+
+ // Check if the block pointer type takes no arguments and
+ // returns void.
+ const FunctionProtoType *FT =
+ BPT->getPointeeType()->getAs<FunctionProtoType>();
+ if (!FT || !FT->getReturnType()->isVoidType() || FT->getNumParams() != 0)
+ return false;
+
+ return true;
+}
+
+namespace {
+class ASTMaker {
+public:
+ ASTMaker(ASTContext &C) : C(C) {}
+
+ /// Create a new BinaryOperator representing a simple assignment.
+ BinaryOperator *makeAssignment(const Expr *LHS, const Expr *RHS, QualType Ty);
+
+ /// Create a new BinaryOperator representing a comparison.
+ BinaryOperator *makeComparison(const Expr *LHS, const Expr *RHS,
+ BinaryOperator::Opcode Op);
+
+ /// Create a new compound stmt using the provided statements.
+ CompoundStmt *makeCompound(ArrayRef<Stmt*>);
+
+ /// Create a new DeclRefExpr for the referenced variable.
+ DeclRefExpr *makeDeclRefExpr(const VarDecl *D);
+
+ /// Create a new UnaryOperator representing a dereference.
+ UnaryOperator *makeDereference(const Expr *Arg, QualType Ty);
+
+ /// Create an implicit cast for an integer conversion.
+ Expr *makeIntegralCast(const Expr *Arg, QualType Ty);
+
+ /// Create an implicit cast to a builtin boolean type.
+ ImplicitCastExpr *makeIntegralCastToBoolean(const Expr *Arg);
+
+ // Create an implicit cast for lvalue-to-rvaluate conversions.
+ ImplicitCastExpr *makeLvalueToRvalue(const Expr *Arg, QualType Ty);
+
+ /// Create an Objective-C bool literal.
+ ObjCBoolLiteralExpr *makeObjCBool(bool Val);
+
+ /// Create an Objective-C ivar reference.
+ ObjCIvarRefExpr *makeObjCIvarRef(const Expr *Base, const ObjCIvarDecl *IVar);
+
+ /// Create a Return statement.
+ ReturnStmt *makeReturn(const Expr *RetVal);
+
+private:
+ ASTContext &C;
+};
+}
+
+BinaryOperator *ASTMaker::makeAssignment(const Expr *LHS, const Expr *RHS,
+ QualType Ty) {
+ return new (C) BinaryOperator(const_cast<Expr*>(LHS), const_cast<Expr*>(RHS),
+ BO_Assign, Ty, VK_RValue,
+ OK_Ordinary, SourceLocation(), false);
+}
+
+BinaryOperator *ASTMaker::makeComparison(const Expr *LHS, const Expr *RHS,
+ BinaryOperator::Opcode Op) {
+ assert(BinaryOperator::isLogicalOp(Op) ||
+ BinaryOperator::isComparisonOp(Op));
+ return new (C) BinaryOperator(const_cast<Expr*>(LHS),
+ const_cast<Expr*>(RHS),
+ Op,
+ C.getLogicalOperationType(),
+ VK_RValue,
+ OK_Ordinary, SourceLocation(), false);
+}
+
+CompoundStmt *ASTMaker::makeCompound(ArrayRef<Stmt *> Stmts) {
+ return new (C) CompoundStmt(C, Stmts, SourceLocation(), SourceLocation());
+}
+
+DeclRefExpr *ASTMaker::makeDeclRefExpr(const VarDecl *D) {
+ DeclRefExpr *DR =
+ DeclRefExpr::Create(/* Ctx = */ C,
+ /* QualifierLoc = */ NestedNameSpecifierLoc(),
+ /* TemplateKWLoc = */ SourceLocation(),
+ /* D = */ const_cast<VarDecl*>(D),
+ /* RefersToEnclosingVariableOrCapture = */ false,
+ /* NameLoc = */ SourceLocation(),
+ /* T = */ D->getType(),
+ /* VK = */ VK_LValue);
+ return DR;
+}
+
+UnaryOperator *ASTMaker::makeDereference(const Expr *Arg, QualType Ty) {
+ return new (C) UnaryOperator(const_cast<Expr*>(Arg), UO_Deref, Ty,
+ VK_LValue, OK_Ordinary, SourceLocation());
+}
+
+ImplicitCastExpr *ASTMaker::makeLvalueToRvalue(const Expr *Arg, QualType Ty) {
+ return ImplicitCastExpr::Create(C, Ty, CK_LValueToRValue,
+ const_cast<Expr*>(Arg), nullptr, VK_RValue);
+}
+
+Expr *ASTMaker::makeIntegralCast(const Expr *Arg, QualType Ty) {
+ if (Arg->getType() == Ty)
+ return const_cast<Expr*>(Arg);
+
+ return ImplicitCastExpr::Create(C, Ty, CK_IntegralCast,
+ const_cast<Expr*>(Arg), nullptr, VK_RValue);
+}
+
+ImplicitCastExpr *ASTMaker::makeIntegralCastToBoolean(const Expr *Arg) {
+ return ImplicitCastExpr::Create(C, C.BoolTy, CK_IntegralToBoolean,
+ const_cast<Expr*>(Arg), nullptr, VK_RValue);
+}
+
+ObjCBoolLiteralExpr *ASTMaker::makeObjCBool(bool Val) {
+ QualType Ty = C.getBOOLDecl() ? C.getBOOLType() : C.ObjCBuiltinBoolTy;
+ return new (C) ObjCBoolLiteralExpr(Val, Ty, SourceLocation());
+}
+
+ObjCIvarRefExpr *ASTMaker::makeObjCIvarRef(const Expr *Base,
+ const ObjCIvarDecl *IVar) {
+ return new (C) ObjCIvarRefExpr(const_cast<ObjCIvarDecl*>(IVar),
+ IVar->getType(), SourceLocation(),
+ SourceLocation(), const_cast<Expr*>(Base),
+ /*arrow=*/true, /*free=*/false);
+}
+
+
+ReturnStmt *ASTMaker::makeReturn(const Expr *RetVal) {
+ return new (C) ReturnStmt(SourceLocation(), const_cast<Expr*>(RetVal),
+ nullptr);
+}
+
+//===----------------------------------------------------------------------===//
+// Creation functions for faux ASTs.
+//===----------------------------------------------------------------------===//
+
+typedef Stmt *(*FunctionFarmer)(ASTContext &C, const FunctionDecl *D);
+
+/// Create a fake body for dispatch_once.
+static Stmt *create_dispatch_once(ASTContext &C, const FunctionDecl *D) {
+ // Check if we have at least two parameters.
+ if (D->param_size() != 2)
+ return nullptr;
+
+ // Check if the first parameter is a pointer to integer type.
+ const ParmVarDecl *Predicate = D->getParamDecl(0);
+ QualType PredicateQPtrTy = Predicate->getType();
+ const PointerType *PredicatePtrTy = PredicateQPtrTy->getAs<PointerType>();
+ if (!PredicatePtrTy)
+ return nullptr;
+ QualType PredicateTy = PredicatePtrTy->getPointeeType();
+ if (!PredicateTy->isIntegerType())
+ return nullptr;
+
+ // Check if the second parameter is the proper block type.
+ const ParmVarDecl *Block = D->getParamDecl(1);
+ QualType Ty = Block->getType();
+ if (!isDispatchBlock(Ty))
+ return nullptr;
+
+ // Everything checks out. Create a fakse body that checks the predicate,
+ // sets it, and calls the block. Basically, an AST dump of:
+ //
+ // void dispatch_once(dispatch_once_t *predicate, dispatch_block_t block) {
+ // if (!*predicate) {
+ // *predicate = 1;
+ // block();
+ // }
+ // }
+
+ ASTMaker M(C);
+
+ // (1) Create the call.
+ DeclRefExpr *DR = M.makeDeclRefExpr(Block);
+ ImplicitCastExpr *ICE = M.makeLvalueToRvalue(DR, Ty);
+ CallExpr *CE = new (C) CallExpr(C, ICE, None, C.VoidTy, VK_RValue,
+ SourceLocation());
+
+ // (2) Create the assignment to the predicate.
+ IntegerLiteral *IL =
+ IntegerLiteral::Create(C, llvm::APInt(C.getTypeSize(C.IntTy), (uint64_t) 1),
+ C.IntTy, SourceLocation());
+ BinaryOperator *B =
+ M.makeAssignment(
+ M.makeDereference(
+ M.makeLvalueToRvalue(
+ M.makeDeclRefExpr(Predicate), PredicateQPtrTy),
+ PredicateTy),
+ M.makeIntegralCast(IL, PredicateTy),
+ PredicateTy);
+
+ // (3) Create the compound statement.
+ Stmt *Stmts[] = { B, CE };
+ CompoundStmt *CS = M.makeCompound(Stmts);
+
+ // (4) Create the 'if' condition.
+ ImplicitCastExpr *LValToRval =
+ M.makeLvalueToRvalue(
+ M.makeDereference(
+ M.makeLvalueToRvalue(
+ M.makeDeclRefExpr(Predicate),
+ PredicateQPtrTy),
+ PredicateTy),
+ PredicateTy);
+
+ UnaryOperator *UO = new (C) UnaryOperator(LValToRval, UO_LNot, C.IntTy,
+ VK_RValue, OK_Ordinary,
+ SourceLocation());
+
+ // (5) Create the 'if' statement.
+ IfStmt *If = new (C) IfStmt(C, SourceLocation(), nullptr, UO, CS);
+ return If;
+}
+
+/// Create a fake body for dispatch_sync.
+static Stmt *create_dispatch_sync(ASTContext &C, const FunctionDecl *D) {
+ // Check if we have at least two parameters.
+ if (D->param_size() != 2)
+ return nullptr;
+
+ // Check if the second parameter is a block.
+ const ParmVarDecl *PV = D->getParamDecl(1);
+ QualType Ty = PV->getType();
+ if (!isDispatchBlock(Ty))
+ return nullptr;
+
+ // Everything checks out. Create a fake body that just calls the block.
+ // This is basically just an AST dump of:
+ //
+ // void dispatch_sync(dispatch_queue_t queue, void (^block)(void)) {
+ // block();
+ // }
+ //
+ ASTMaker M(C);
+ DeclRefExpr *DR = M.makeDeclRefExpr(PV);
+ ImplicitCastExpr *ICE = M.makeLvalueToRvalue(DR, Ty);
+ CallExpr *CE = new (C) CallExpr(C, ICE, None, C.VoidTy, VK_RValue,
+ SourceLocation());
+ return CE;
+}
+
+static Stmt *create_OSAtomicCompareAndSwap(ASTContext &C, const FunctionDecl *D)
+{
+ // There are exactly 3 arguments.
+ if (D->param_size() != 3)
+ return nullptr;
+
+ // Signature:
+ // _Bool OSAtomicCompareAndSwapPtr(void *__oldValue,
+ // void *__newValue,
+ // void * volatile *__theValue)
+ // Generate body:
+ // if (oldValue == *theValue) {
+ // *theValue = newValue;
+ // return YES;
+ // }
+ // else return NO;
+
+ QualType ResultTy = D->getReturnType();
+ bool isBoolean = ResultTy->isBooleanType();
+ if (!isBoolean && !ResultTy->isIntegralType(C))
+ return nullptr;
+
+ const ParmVarDecl *OldValue = D->getParamDecl(0);
+ QualType OldValueTy = OldValue->getType();
+
+ const ParmVarDecl *NewValue = D->getParamDecl(1);
+ QualType NewValueTy = NewValue->getType();
+
+ assert(OldValueTy == NewValueTy);
+
+ const ParmVarDecl *TheValue = D->getParamDecl(2);
+ QualType TheValueTy = TheValue->getType();
+ const PointerType *PT = TheValueTy->getAs<PointerType>();
+ if (!PT)
+ return nullptr;
+ QualType PointeeTy = PT->getPointeeType();
+
+ ASTMaker M(C);
+ // Construct the comparison.
+ Expr *Comparison =
+ M.makeComparison(
+ M.makeLvalueToRvalue(M.makeDeclRefExpr(OldValue), OldValueTy),
+ M.makeLvalueToRvalue(
+ M.makeDereference(
+ M.makeLvalueToRvalue(M.makeDeclRefExpr(TheValue), TheValueTy),
+ PointeeTy),
+ PointeeTy),
+ BO_EQ);
+
+ // Construct the body of the IfStmt.
+ Stmt *Stmts[2];
+ Stmts[0] =
+ M.makeAssignment(
+ M.makeDereference(
+ M.makeLvalueToRvalue(M.makeDeclRefExpr(TheValue), TheValueTy),
+ PointeeTy),
+ M.makeLvalueToRvalue(M.makeDeclRefExpr(NewValue), NewValueTy),
+ NewValueTy);
+
+ Expr *BoolVal = M.makeObjCBool(true);
+ Expr *RetVal = isBoolean ? M.makeIntegralCastToBoolean(BoolVal)
+ : M.makeIntegralCast(BoolVal, ResultTy);
+ Stmts[1] = M.makeReturn(RetVal);
+ CompoundStmt *Body = M.makeCompound(Stmts);
+
+ // Construct the else clause.
+ BoolVal = M.makeObjCBool(false);
+ RetVal = isBoolean ? M.makeIntegralCastToBoolean(BoolVal)
+ : M.makeIntegralCast(BoolVal, ResultTy);
+ Stmt *Else = M.makeReturn(RetVal);
+
+ /// Construct the If.
+ Stmt *If =
+ new (C) IfStmt(C, SourceLocation(), nullptr, Comparison, Body,
+ SourceLocation(), Else);
+
+ return If;
+}
+
+Stmt *BodyFarm::getBody(const FunctionDecl *D) {
+ D = D->getCanonicalDecl();
+
+ Optional<Stmt *> &Val = Bodies[D];
+ if (Val.hasValue())
+ return Val.getValue();
+
+ Val = nullptr;
+
+ if (D->getIdentifier() == nullptr)
+ return nullptr;
+
+ StringRef Name = D->getName();
+ if (Name.empty())
+ return nullptr;
+
+ FunctionFarmer FF;
+
+ if (Name.startswith("OSAtomicCompareAndSwap") ||
+ Name.startswith("objc_atomicCompareAndSwap")) {
+ FF = create_OSAtomicCompareAndSwap;
+ }
+ else {
+ FF = llvm::StringSwitch<FunctionFarmer>(Name)
+ .Case("dispatch_sync", create_dispatch_sync)
+ .Case("dispatch_once", create_dispatch_once)
+ .Default(nullptr);
+ }
+
+ if (FF) { Val = FF(C, D); }
+ else if (Injector) { Val = Injector->getBody(D); }
+ return Val.getValue();
+}
+
+static Stmt *createObjCPropertyGetter(ASTContext &Ctx,
+ const ObjCPropertyDecl *Prop) {
+ // First, find the backing ivar.
+ const ObjCIvarDecl *IVar = Prop->getPropertyIvarDecl();
+ if (!IVar)
+ return nullptr;
+
+ // Ignore weak variables, which have special behavior.
+ if (Prop->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak)
+ return nullptr;
+
+ // Look to see if Sema has synthesized a body for us. This happens in
+ // Objective-C++ because the return value may be a C++ class type with a
+ // non-trivial copy constructor. We can only do this if we can find the
+ // @synthesize for this property, though (or if we know it's been auto-
+ // synthesized).
+ const ObjCImplementationDecl *ImplDecl =
+ IVar->getContainingInterface()->getImplementation();
+ if (ImplDecl) {
+ for (const auto *I : ImplDecl->property_impls()) {
+ if (I->getPropertyDecl() != Prop)
+ continue;
+
+ if (I->getGetterCXXConstructor()) {
+ ASTMaker M(Ctx);
+ return M.makeReturn(I->getGetterCXXConstructor());
+ }
+ }
+ }
+
+ // Sanity check that the property is the same type as the ivar, or a
+ // reference to it, and that it is either an object pointer or trivially
+ // copyable.
+ if (!Ctx.hasSameUnqualifiedType(IVar->getType(),
+ Prop->getType().getNonReferenceType()))
+ return nullptr;
+ if (!IVar->getType()->isObjCLifetimeType() &&
+ !IVar->getType().isTriviallyCopyableType(Ctx))
+ return nullptr;
+
+ // Generate our body:
+ // return self->_ivar;
+ ASTMaker M(Ctx);
+
+ const VarDecl *selfVar = Prop->getGetterMethodDecl()->getSelfDecl();
+
+ Expr *loadedIVar =
+ M.makeObjCIvarRef(
+ M.makeLvalueToRvalue(
+ M.makeDeclRefExpr(selfVar),
+ selfVar->getType()),
+ IVar);
+
+ if (!Prop->getType()->isReferenceType())
+ loadedIVar = M.makeLvalueToRvalue(loadedIVar, IVar->getType());
+
+ return M.makeReturn(loadedIVar);
+}
+
+Stmt *BodyFarm::getBody(const ObjCMethodDecl *D) {
+ // We currently only know how to synthesize property accessors.
+ if (!D->isPropertyAccessor())
+ return nullptr;
+
+ D = D->getCanonicalDecl();
+
+ Optional<Stmt *> &Val = Bodies[D];
+ if (Val.hasValue())
+ return Val.getValue();
+ Val = nullptr;
+
+ const ObjCPropertyDecl *Prop = D->findPropertyDecl();
+ if (!Prop)
+ return nullptr;
+
+ // For now, we only synthesize getters.
+ if (D->param_size() != 0)
+ return nullptr;
+
+ Val = createObjCPropertyGetter(C, Prop);
+
+ return Val.getValue();
+}
+
diff --git a/contrib/llvm/tools/clang/lib/Analysis/BodyFarm.h b/contrib/llvm/tools/clang/lib/Analysis/BodyFarm.h
new file mode 100644
index 0000000..9137943
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/BodyFarm.h
@@ -0,0 +1,51 @@
+//== BodyFarm.h - Factory for conjuring up fake bodies -------------*- C++ -*-//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// BodyFarm is a factory for creating faux implementations for functions/methods
+// for analysis purposes.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_ANALYSIS_BODYFARM_H
+#define LLVM_CLANG_LIB_ANALYSIS_BODYFARM_H
+
+#include "clang/Basic/LLVM.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/Optional.h"
+
+namespace clang {
+
+class ASTContext;
+class Decl;
+class FunctionDecl;
+class ObjCMethodDecl;
+class ObjCPropertyDecl;
+class Stmt;
+class CodeInjector;
+
+class BodyFarm {
+public:
+ BodyFarm(ASTContext &C, CodeInjector *injector) : C(C), Injector(injector) {}
+
+ /// Factory method for creating bodies for ordinary functions.
+ Stmt *getBody(const FunctionDecl *D);
+
+ /// Factory method for creating bodies for Objective-C properties.
+ Stmt *getBody(const ObjCMethodDecl *D);
+
+private:
+ typedef llvm::DenseMap<const Decl *, Optional<Stmt *> > BodyMap;
+
+ ASTContext &C;
+ BodyMap Bodies;
+ CodeInjector *Injector;
+};
+}
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/Analysis/CFG.cpp b/contrib/llvm/tools/clang/lib/Analysis/CFG.cpp
new file mode 100644
index 0000000..2744c5f
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/CFG.cpp
@@ -0,0 +1,4571 @@
+ //===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the CFG and CFGBuilder classes for representing and
+// building Control-Flow Graphs (CFGs) from ASTs.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/CFG.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/CharUnits.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/PrettyPrinter.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Basic/Builtins.h"
+#include "llvm/ADT/DenseMap.h"
+#include <memory>
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/Support/Allocator.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Support/GraphWriter.h"
+#include "llvm/Support/SaveAndRestore.h"
+
+using namespace clang;
+
+namespace {
+
+static SourceLocation GetEndLoc(Decl *D) {
+ if (VarDecl *VD = dyn_cast<VarDecl>(D))
+ if (Expr *Ex = VD->getInit())
+ return Ex->getSourceRange().getEnd();
+ return D->getLocation();
+}
+
+class CFGBuilder;
+
+/// The CFG builder uses a recursive algorithm to build the CFG. When
+/// we process an expression, sometimes we know that we must add the
+/// subexpressions as block-level expressions. For example:
+///
+/// exp1 || exp2
+///
+/// When processing the '||' expression, we know that exp1 and exp2
+/// need to be added as block-level expressions, even though they
+/// might not normally need to be. AddStmtChoice records this
+/// contextual information. If AddStmtChoice is 'NotAlwaysAdd', then
+/// the builder has an option not to add a subexpression as a
+/// block-level expression.
+///
+class AddStmtChoice {
+public:
+ enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
+
+ AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
+
+ bool alwaysAdd(CFGBuilder &builder,
+ const Stmt *stmt) const;
+
+ /// Return a copy of this object, except with the 'always-add' bit
+ /// set as specified.
+ AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
+ return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd);
+ }
+
+private:
+ Kind kind;
+};
+
+/// LocalScope - Node in tree of local scopes created for C++ implicit
+/// destructor calls generation. It contains list of automatic variables
+/// declared in the scope and link to position in previous scope this scope
+/// began in.
+///
+/// The process of creating local scopes is as follows:
+/// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
+/// - Before processing statements in scope (e.g. CompoundStmt) create
+/// LocalScope object using CFGBuilder::ScopePos as link to previous scope
+/// and set CFGBuilder::ScopePos to the end of new scope,
+/// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
+/// at this VarDecl,
+/// - For every normal (without jump) end of scope add to CFGBlock destructors
+/// for objects in the current scope,
+/// - For every jump add to CFGBlock destructors for objects
+/// between CFGBuilder::ScopePos and local scope position saved for jump
+/// target. Thanks to C++ restrictions on goto jumps we can be sure that
+/// jump target position will be on the path to root from CFGBuilder::ScopePos
+/// (adding any variable that doesn't need constructor to be called to
+/// LocalScope can break this assumption),
+///
+class LocalScope {
+public:
+ typedef BumpVector<VarDecl*> AutomaticVarsTy;
+
+ /// const_iterator - Iterates local scope backwards and jumps to previous
+ /// scope on reaching the beginning of currently iterated scope.
+ class const_iterator {
+ const LocalScope* Scope;
+
+ /// VarIter is guaranteed to be greater then 0 for every valid iterator.
+ /// Invalid iterator (with null Scope) has VarIter equal to 0.
+ unsigned VarIter;
+
+ public:
+ /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
+ /// Incrementing invalid iterator is allowed and will result in invalid
+ /// iterator.
+ const_iterator()
+ : Scope(nullptr), VarIter(0) {}
+
+ /// Create valid iterator. In case when S.Prev is an invalid iterator and
+ /// I is equal to 0, this will create invalid iterator.
+ const_iterator(const LocalScope& S, unsigned I)
+ : Scope(&S), VarIter(I) {
+ // Iterator to "end" of scope is not allowed. Handle it by going up
+ // in scopes tree possibly up to invalid iterator in the root.
+ if (VarIter == 0 && Scope)
+ *this = Scope->Prev;
+ }
+
+ VarDecl *const* operator->() const {
+ assert (Scope && "Dereferencing invalid iterator is not allowed");
+ assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
+ return &Scope->Vars[VarIter - 1];
+ }
+ VarDecl *operator*() const {
+ return *this->operator->();
+ }
+
+ const_iterator &operator++() {
+ if (!Scope)
+ return *this;
+
+ assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
+ --VarIter;
+ if (VarIter == 0)
+ *this = Scope->Prev;
+ return *this;
+ }
+ const_iterator operator++(int) {
+ const_iterator P = *this;
+ ++*this;
+ return P;
+ }
+
+ bool operator==(const const_iterator &rhs) const {
+ return Scope == rhs.Scope && VarIter == rhs.VarIter;
+ }
+ bool operator!=(const const_iterator &rhs) const {
+ return !(*this == rhs);
+ }
+
+ explicit operator bool() const {
+ return *this != const_iterator();
+ }
+
+ int distance(const_iterator L);
+ };
+
+ friend class const_iterator;
+
+private:
+ BumpVectorContext ctx;
+
+ /// Automatic variables in order of declaration.
+ AutomaticVarsTy Vars;
+ /// Iterator to variable in previous scope that was declared just before
+ /// begin of this scope.
+ const_iterator Prev;
+
+public:
+ /// Constructs empty scope linked to previous scope in specified place.
+ LocalScope(BumpVectorContext &ctx, const_iterator P)
+ : ctx(ctx), Vars(ctx, 4), Prev(P) {}
+
+ /// Begin of scope in direction of CFG building (backwards).
+ const_iterator begin() const { return const_iterator(*this, Vars.size()); }
+
+ void addVar(VarDecl *VD) {
+ Vars.push_back(VD, ctx);
+ }
+};
+
+/// distance - Calculates distance from this to L. L must be reachable from this
+/// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
+/// number of scopes between this and L.
+int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
+ int D = 0;
+ const_iterator F = *this;
+ while (F.Scope != L.Scope) {
+ assert (F != const_iterator()
+ && "L iterator is not reachable from F iterator.");
+ D += F.VarIter;
+ F = F.Scope->Prev;
+ }
+ D += F.VarIter - L.VarIter;
+ return D;
+}
+
+/// Structure for specifying position in CFG during its build process. It
+/// consists of CFGBlock that specifies position in CFG and
+/// LocalScope::const_iterator that specifies position in LocalScope graph.
+struct BlockScopePosPair {
+ BlockScopePosPair() : block(nullptr) {}
+ BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos)
+ : block(b), scopePosition(scopePos) {}
+
+ CFGBlock *block;
+ LocalScope::const_iterator scopePosition;
+};
+
+/// TryResult - a class representing a variant over the values
+/// 'true', 'false', or 'unknown'. This is returned by tryEvaluateBool,
+/// and is used by the CFGBuilder to decide if a branch condition
+/// can be decided up front during CFG construction.
+class TryResult {
+ int X;
+public:
+ TryResult(bool b) : X(b ? 1 : 0) {}
+ TryResult() : X(-1) {}
+
+ bool isTrue() const { return X == 1; }
+ bool isFalse() const { return X == 0; }
+ bool isKnown() const { return X >= 0; }
+ void negate() {
+ assert(isKnown());
+ X ^= 0x1;
+ }
+};
+
+TryResult bothKnownTrue(TryResult R1, TryResult R2) {
+ if (!R1.isKnown() || !R2.isKnown())
+ return TryResult();
+ return TryResult(R1.isTrue() && R2.isTrue());
+}
+
+class reverse_children {
+ llvm::SmallVector<Stmt *, 12> childrenBuf;
+ ArrayRef<Stmt*> children;
+public:
+ reverse_children(Stmt *S);
+
+ typedef ArrayRef<Stmt*>::reverse_iterator iterator;
+ iterator begin() const { return children.rbegin(); }
+ iterator end() const { return children.rend(); }
+};
+
+
+reverse_children::reverse_children(Stmt *S) {
+ if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
+ children = CE->getRawSubExprs();
+ return;
+ }
+ switch (S->getStmtClass()) {
+ // Note: Fill in this switch with more cases we want to optimize.
+ case Stmt::InitListExprClass: {
+ InitListExpr *IE = cast<InitListExpr>(S);
+ children = llvm::makeArrayRef(reinterpret_cast<Stmt**>(IE->getInits()),
+ IE->getNumInits());
+ return;
+ }
+ default:
+ break;
+ }
+
+ // Default case for all other statements.
+ for (Stmt::child_range I = S->children(); I; ++I) {
+ childrenBuf.push_back(*I);
+ }
+
+ // This needs to be done *after* childrenBuf has been populated.
+ children = childrenBuf;
+}
+
+/// CFGBuilder - This class implements CFG construction from an AST.
+/// The builder is stateful: an instance of the builder should be used to only
+/// construct a single CFG.
+///
+/// Example usage:
+///
+/// CFGBuilder builder;
+/// CFG* cfg = builder.BuildAST(stmt1);
+///
+/// CFG construction is done via a recursive walk of an AST. We actually parse
+/// the AST in reverse order so that the successor of a basic block is
+/// constructed prior to its predecessor. This allows us to nicely capture
+/// implicit fall-throughs without extra basic blocks.
+///
+class CFGBuilder {
+ typedef BlockScopePosPair JumpTarget;
+ typedef BlockScopePosPair JumpSource;
+
+ ASTContext *Context;
+ std::unique_ptr<CFG> cfg;
+
+ CFGBlock *Block;
+ CFGBlock *Succ;
+ JumpTarget ContinueJumpTarget;
+ JumpTarget BreakJumpTarget;
+ CFGBlock *SwitchTerminatedBlock;
+ CFGBlock *DefaultCaseBlock;
+ CFGBlock *TryTerminatedBlock;
+
+ // Current position in local scope.
+ LocalScope::const_iterator ScopePos;
+
+ // LabelMap records the mapping from Label expressions to their jump targets.
+ typedef llvm::DenseMap<LabelDecl*, JumpTarget> LabelMapTy;
+ LabelMapTy LabelMap;
+
+ // A list of blocks that end with a "goto" that must be backpatched to their
+ // resolved targets upon completion of CFG construction.
+ typedef std::vector<JumpSource> BackpatchBlocksTy;
+ BackpatchBlocksTy BackpatchBlocks;
+
+ // A list of labels whose address has been taken (for indirect gotos).
+ typedef llvm::SmallPtrSet<LabelDecl*, 5> LabelSetTy;
+ LabelSetTy AddressTakenLabels;
+
+ bool badCFG;
+ const CFG::BuildOptions &BuildOpts;
+
+ // State to track for building switch statements.
+ bool switchExclusivelyCovered;
+ Expr::EvalResult *switchCond;
+
+ CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry;
+ const Stmt *lastLookup;
+
+ // Caches boolean evaluations of expressions to avoid multiple re-evaluations
+ // during construction of branches for chained logical operators.
+ typedef llvm::DenseMap<Expr *, TryResult> CachedBoolEvalsTy;
+ CachedBoolEvalsTy CachedBoolEvals;
+
+public:
+ explicit CFGBuilder(ASTContext *astContext,
+ const CFG::BuildOptions &buildOpts)
+ : Context(astContext), cfg(new CFG()), // crew a new CFG
+ Block(nullptr), Succ(nullptr),
+ SwitchTerminatedBlock(nullptr), DefaultCaseBlock(nullptr),
+ TryTerminatedBlock(nullptr), badCFG(false), BuildOpts(buildOpts),
+ switchExclusivelyCovered(false), switchCond(nullptr),
+ cachedEntry(nullptr), lastLookup(nullptr) {}
+
+ // buildCFG - Used by external clients to construct the CFG.
+ std::unique_ptr<CFG> buildCFG(const Decl *D, Stmt *Statement);
+
+ bool alwaysAdd(const Stmt *stmt);
+
+private:
+ // Visitors to walk an AST and construct the CFG.
+ CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
+ CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
+ CFGBlock *VisitBreakStmt(BreakStmt *B);
+ CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
+ CFGBlock *VisitCaseStmt(CaseStmt *C);
+ CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
+ CFGBlock *VisitCompoundStmt(CompoundStmt *C);
+ CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
+ AddStmtChoice asc);
+ CFGBlock *VisitContinueStmt(ContinueStmt *C);
+ CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
+ AddStmtChoice asc);
+ CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
+ CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
+ CFGBlock *VisitCXXNewExpr(CXXNewExpr *DE, AddStmtChoice asc);
+ CFGBlock *VisitCXXDeleteExpr(CXXDeleteExpr *DE, AddStmtChoice asc);
+ CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S);
+ CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
+ AddStmtChoice asc);
+ CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
+ AddStmtChoice asc);
+ CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
+ CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
+ CFGBlock *VisitDeclStmt(DeclStmt *DS);
+ CFGBlock *VisitDeclSubExpr(DeclStmt *DS);
+ CFGBlock *VisitDefaultStmt(DefaultStmt *D);
+ CFGBlock *VisitDoStmt(DoStmt *D);
+ CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E, AddStmtChoice asc);
+ CFGBlock *VisitForStmt(ForStmt *F);
+ CFGBlock *VisitGotoStmt(GotoStmt *G);
+ CFGBlock *VisitIfStmt(IfStmt *I);
+ CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
+ CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
+ CFGBlock *VisitLabelStmt(LabelStmt *L);
+ CFGBlock *VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc);
+ CFGBlock *VisitLogicalOperator(BinaryOperator *B);
+ std::pair<CFGBlock *, CFGBlock *> VisitLogicalOperator(BinaryOperator *B,
+ Stmt *Term,
+ CFGBlock *TrueBlock,
+ CFGBlock *FalseBlock);
+ CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
+ CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
+ CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
+ CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
+ CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
+ CFGBlock *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S);
+ CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
+ CFGBlock *VisitPseudoObjectExpr(PseudoObjectExpr *E);
+ CFGBlock *VisitReturnStmt(ReturnStmt *R);
+ CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
+ CFGBlock *VisitSwitchStmt(SwitchStmt *S);
+ CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
+ AddStmtChoice asc);
+ CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
+ CFGBlock *VisitWhileStmt(WhileStmt *W);
+
+ CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
+ CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
+ CFGBlock *VisitChildren(Stmt *S);
+ CFGBlock *VisitNoRecurse(Expr *E, AddStmtChoice asc);
+
+ /// When creating the CFG for temporary destructors, we want to mirror the
+ /// branch structure of the corresponding constructor calls.
+ /// Thus, while visiting a statement for temporary destructors, we keep a
+ /// context to keep track of the following information:
+ /// - whether a subexpression is executed unconditionally
+ /// - if a subexpression is executed conditionally, the first
+ /// CXXBindTemporaryExpr we encounter in that subexpression (which
+ /// corresponds to the last temporary destructor we have to call for this
+ /// subexpression) and the CFG block at that point (which will become the
+ /// successor block when inserting the decision point).
+ ///
+ /// That way, we can build the branch structure for temporary destructors as
+ /// follows:
+ /// 1. If a subexpression is executed unconditionally, we add the temporary
+ /// destructor calls to the current block.
+ /// 2. If a subexpression is executed conditionally, when we encounter a
+ /// CXXBindTemporaryExpr:
+ /// a) If it is the first temporary destructor call in the subexpression,
+ /// we remember the CXXBindTemporaryExpr and the current block in the
+ /// TempDtorContext; we start a new block, and insert the temporary
+ /// destructor call.
+ /// b) Otherwise, add the temporary destructor call to the current block.
+ /// 3. When we finished visiting a conditionally executed subexpression,
+ /// and we found at least one temporary constructor during the visitation
+ /// (2.a has executed), we insert a decision block that uses the
+ /// CXXBindTemporaryExpr as terminator, and branches to the current block
+ /// if the CXXBindTemporaryExpr was marked executed, and otherwise
+ /// branches to the stored successor.
+ struct TempDtorContext {
+ TempDtorContext()
+ : IsConditional(false), KnownExecuted(true), Succ(nullptr),
+ TerminatorExpr(nullptr) {}
+
+ TempDtorContext(TryResult KnownExecuted)
+ : IsConditional(true), KnownExecuted(KnownExecuted), Succ(nullptr),
+ TerminatorExpr(nullptr) {}
+
+ /// Returns whether we need to start a new branch for a temporary destructor
+ /// call. This is the case when the the temporary destructor is
+ /// conditionally executed, and it is the first one we encounter while
+ /// visiting a subexpression - other temporary destructors at the same level
+ /// will be added to the same block and are executed under the same
+ /// condition.
+ bool needsTempDtorBranch() const {
+ return IsConditional && !TerminatorExpr;
+ }
+
+ /// Remember the successor S of a temporary destructor decision branch for
+ /// the corresponding CXXBindTemporaryExpr E.
+ void setDecisionPoint(CFGBlock *S, CXXBindTemporaryExpr *E) {
+ Succ = S;
+ TerminatorExpr = E;
+ }
+
+ const bool IsConditional;
+ const TryResult KnownExecuted;
+ CFGBlock *Succ;
+ CXXBindTemporaryExpr *TerminatorExpr;
+ };
+
+ // Visitors to walk an AST and generate destructors of temporaries in
+ // full expression.
+ CFGBlock *VisitForTemporaryDtors(Stmt *E, bool BindToTemporary,
+ TempDtorContext &Context);
+ CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E, TempDtorContext &Context);
+ CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E,
+ TempDtorContext &Context);
+ CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(
+ CXXBindTemporaryExpr *E, bool BindToTemporary, TempDtorContext &Context);
+ CFGBlock *VisitConditionalOperatorForTemporaryDtors(
+ AbstractConditionalOperator *E, bool BindToTemporary,
+ TempDtorContext &Context);
+ void InsertTempDtorDecisionBlock(const TempDtorContext &Context,
+ CFGBlock *FalseSucc = nullptr);
+
+ // NYS == Not Yet Supported
+ CFGBlock *NYS() {
+ badCFG = true;
+ return Block;
+ }
+
+ void autoCreateBlock() { if (!Block) Block = createBlock(); }
+ CFGBlock *createBlock(bool add_successor = true);
+ CFGBlock *createNoReturnBlock();
+
+ CFGBlock *addStmt(Stmt *S) {
+ return Visit(S, AddStmtChoice::AlwaysAdd);
+ }
+ CFGBlock *addInitializer(CXXCtorInitializer *I);
+ void addAutomaticObjDtors(LocalScope::const_iterator B,
+ LocalScope::const_iterator E, Stmt *S);
+ void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
+
+ // Local scopes creation.
+ LocalScope* createOrReuseLocalScope(LocalScope* Scope);
+
+ void addLocalScopeForStmt(Stmt *S);
+ LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS,
+ LocalScope* Scope = nullptr);
+ LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = nullptr);
+
+ void addLocalScopeAndDtors(Stmt *S);
+
+ // Interface to CFGBlock - adding CFGElements.
+ void appendStmt(CFGBlock *B, const Stmt *S) {
+ if (alwaysAdd(S) && cachedEntry)
+ cachedEntry->second = B;
+
+ // All block-level expressions should have already been IgnoreParens()ed.
+ assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S);
+ B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext());
+ }
+ void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
+ B->appendInitializer(I, cfg->getBumpVectorContext());
+ }
+ void appendNewAllocator(CFGBlock *B, CXXNewExpr *NE) {
+ B->appendNewAllocator(NE, cfg->getBumpVectorContext());
+ }
+ void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
+ B->appendBaseDtor(BS, cfg->getBumpVectorContext());
+ }
+ void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
+ B->appendMemberDtor(FD, cfg->getBumpVectorContext());
+ }
+ void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
+ B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
+ }
+ void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) {
+ B->appendAutomaticObjDtor(VD, S, cfg->getBumpVectorContext());
+ }
+
+ void appendDeleteDtor(CFGBlock *B, CXXRecordDecl *RD, CXXDeleteExpr *DE) {
+ B->appendDeleteDtor(RD, DE, cfg->getBumpVectorContext());
+ }
+
+ void prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
+ LocalScope::const_iterator B, LocalScope::const_iterator E);
+
+ void addSuccessor(CFGBlock *B, CFGBlock *S, bool IsReachable = true) {
+ B->addSuccessor(CFGBlock::AdjacentBlock(S, IsReachable),
+ cfg->getBumpVectorContext());
+ }
+
+ /// Add a reachable successor to a block, with the alternate variant that is
+ /// unreachable.
+ void addSuccessor(CFGBlock *B, CFGBlock *ReachableBlock, CFGBlock *AltBlock) {
+ B->addSuccessor(CFGBlock::AdjacentBlock(ReachableBlock, AltBlock),
+ cfg->getBumpVectorContext());
+ }
+
+ /// \brief Find a relational comparison with an expression evaluating to a
+ /// boolean and a constant other than 0 and 1.
+ /// e.g. if ((x < y) == 10)
+ TryResult checkIncorrectRelationalOperator(const BinaryOperator *B) {
+ const Expr *LHSExpr = B->getLHS()->IgnoreParens();
+ const Expr *RHSExpr = B->getRHS()->IgnoreParens();
+
+ const IntegerLiteral *IntLiteral = dyn_cast<IntegerLiteral>(LHSExpr);
+ const Expr *BoolExpr = RHSExpr;
+ bool IntFirst = true;
+ if (!IntLiteral) {
+ IntLiteral = dyn_cast<IntegerLiteral>(RHSExpr);
+ BoolExpr = LHSExpr;
+ IntFirst = false;
+ }
+
+ if (!IntLiteral || !BoolExpr->isKnownToHaveBooleanValue())
+ return TryResult();
+
+ llvm::APInt IntValue = IntLiteral->getValue();
+ if ((IntValue == 1) || (IntValue == 0))
+ return TryResult();
+
+ bool IntLarger = IntLiteral->getType()->isUnsignedIntegerType() ||
+ !IntValue.isNegative();
+
+ BinaryOperatorKind Bok = B->getOpcode();
+ if (Bok == BO_GT || Bok == BO_GE) {
+ // Always true for 10 > bool and bool > -1
+ // Always false for -1 > bool and bool > 10
+ return TryResult(IntFirst == IntLarger);
+ } else {
+ // Always true for -1 < bool and bool < 10
+ // Always false for 10 < bool and bool < -1
+ return TryResult(IntFirst != IntLarger);
+ }
+ }
+
+ /// Find an incorrect equality comparison. Either with an expression
+ /// evaluating to a boolean and a constant other than 0 and 1.
+ /// e.g. if (!x == 10) or a bitwise and/or operation that always evaluates to
+ /// true/false e.q. (x & 8) == 4.
+ TryResult checkIncorrectEqualityOperator(const BinaryOperator *B) {
+ const Expr *LHSExpr = B->getLHS()->IgnoreParens();
+ const Expr *RHSExpr = B->getRHS()->IgnoreParens();
+
+ const IntegerLiteral *IntLiteral = dyn_cast<IntegerLiteral>(LHSExpr);
+ const Expr *BoolExpr = RHSExpr;
+
+ if (!IntLiteral) {
+ IntLiteral = dyn_cast<IntegerLiteral>(RHSExpr);
+ BoolExpr = LHSExpr;
+ }
+
+ if (!IntLiteral)
+ return TryResult();
+
+ const BinaryOperator *BitOp = dyn_cast<BinaryOperator>(BoolExpr);
+ if (BitOp && (BitOp->getOpcode() == BO_And ||
+ BitOp->getOpcode() == BO_Or)) {
+ const Expr *LHSExpr2 = BitOp->getLHS()->IgnoreParens();
+ const Expr *RHSExpr2 = BitOp->getRHS()->IgnoreParens();
+
+ const IntegerLiteral *IntLiteral2 = dyn_cast<IntegerLiteral>(LHSExpr2);
+
+ if (!IntLiteral2)
+ IntLiteral2 = dyn_cast<IntegerLiteral>(RHSExpr2);
+
+ if (!IntLiteral2)
+ return TryResult();
+
+ llvm::APInt L1 = IntLiteral->getValue();
+ llvm::APInt L2 = IntLiteral2->getValue();
+ if ((BitOp->getOpcode() == BO_And && (L2 & L1) != L1) ||
+ (BitOp->getOpcode() == BO_Or && (L2 | L1) != L1)) {
+ if (BuildOpts.Observer)
+ BuildOpts.Observer->compareBitwiseEquality(B,
+ B->getOpcode() != BO_EQ);
+ TryResult(B->getOpcode() != BO_EQ);
+ }
+ } else if (BoolExpr->isKnownToHaveBooleanValue()) {
+ llvm::APInt IntValue = IntLiteral->getValue();
+ if ((IntValue == 1) || (IntValue == 0)) {
+ return TryResult();
+ }
+ return TryResult(B->getOpcode() != BO_EQ);
+ }
+
+ return TryResult();
+ }
+
+ TryResult analyzeLogicOperatorCondition(BinaryOperatorKind Relation,
+ const llvm::APSInt &Value1,
+ const llvm::APSInt &Value2) {
+ assert(Value1.isSigned() == Value2.isSigned());
+ switch (Relation) {
+ default:
+ return TryResult();
+ case BO_EQ:
+ return TryResult(Value1 == Value2);
+ case BO_NE:
+ return TryResult(Value1 != Value2);
+ case BO_LT:
+ return TryResult(Value1 < Value2);
+ case BO_LE:
+ return TryResult(Value1 <= Value2);
+ case BO_GT:
+ return TryResult(Value1 > Value2);
+ case BO_GE:
+ return TryResult(Value1 >= Value2);
+ }
+ }
+
+ /// \brief Find a pair of comparison expressions with or without parentheses
+ /// with a shared variable and constants and a logical operator between them
+ /// that always evaluates to either true or false.
+ /// e.g. if (x != 3 || x != 4)
+ TryResult checkIncorrectLogicOperator(const BinaryOperator *B) {
+ assert(B->isLogicalOp());
+ const BinaryOperator *LHS =
+ dyn_cast<BinaryOperator>(B->getLHS()->IgnoreParens());
+ const BinaryOperator *RHS =
+ dyn_cast<BinaryOperator>(B->getRHS()->IgnoreParens());
+ if (!LHS || !RHS)
+ return TryResult();
+
+ if (!LHS->isComparisonOp() || !RHS->isComparisonOp())
+ return TryResult();
+
+ BinaryOperatorKind BO1 = LHS->getOpcode();
+ const DeclRefExpr *Decl1 =
+ dyn_cast<DeclRefExpr>(LHS->getLHS()->IgnoreParenImpCasts());
+ const IntegerLiteral *Literal1 =
+ dyn_cast<IntegerLiteral>(LHS->getRHS()->IgnoreParens());
+ if (!Decl1 && !Literal1) {
+ if (BO1 == BO_GT)
+ BO1 = BO_LT;
+ else if (BO1 == BO_GE)
+ BO1 = BO_LE;
+ else if (BO1 == BO_LT)
+ BO1 = BO_GT;
+ else if (BO1 == BO_LE)
+ BO1 = BO_GE;
+ Decl1 = dyn_cast<DeclRefExpr>(LHS->getRHS()->IgnoreParenImpCasts());
+ Literal1 = dyn_cast<IntegerLiteral>(LHS->getLHS()->IgnoreParens());
+ }
+
+ if (!Decl1 || !Literal1)
+ return TryResult();
+
+ BinaryOperatorKind BO2 = RHS->getOpcode();
+ const DeclRefExpr *Decl2 =
+ dyn_cast<DeclRefExpr>(RHS->getLHS()->IgnoreParenImpCasts());
+ const IntegerLiteral *Literal2 =
+ dyn_cast<IntegerLiteral>(RHS->getRHS()->IgnoreParens());
+ if (!Decl2 && !Literal2) {
+ if (BO2 == BO_GT)
+ BO2 = BO_LT;
+ else if (BO2 == BO_GE)
+ BO2 = BO_LE;
+ else if (BO2 == BO_LT)
+ BO2 = BO_GT;
+ else if (BO2 == BO_LE)
+ BO2 = BO_GE;
+ Decl2 = dyn_cast<DeclRefExpr>(RHS->getRHS()->IgnoreParenImpCasts());
+ Literal2 = dyn_cast<IntegerLiteral>(RHS->getLHS()->IgnoreParens());
+ }
+
+ if (!Decl2 || !Literal2)
+ return TryResult();
+
+ // Check that it is the same variable on both sides.
+ if (Decl1->getDecl() != Decl2->getDecl())
+ return TryResult();
+
+ llvm::APSInt L1, L2;
+
+ if (!Literal1->EvaluateAsInt(L1, *Context) ||
+ !Literal2->EvaluateAsInt(L2, *Context))
+ return TryResult();
+
+ // Can't compare signed with unsigned or with different bit width.
+ if (L1.isSigned() != L2.isSigned() || L1.getBitWidth() != L2.getBitWidth())
+ return TryResult();
+
+ // Values that will be used to determine if result of logical
+ // operator is always true/false
+ const llvm::APSInt Values[] = {
+ // Value less than both Value1 and Value2
+ llvm::APSInt::getMinValue(L1.getBitWidth(), L1.isUnsigned()),
+ // L1
+ L1,
+ // Value between Value1 and Value2
+ ((L1 < L2) ? L1 : L2) + llvm::APSInt(llvm::APInt(L1.getBitWidth(), 1),
+ L1.isUnsigned()),
+ // L2
+ L2,
+ // Value greater than both Value1 and Value2
+ llvm::APSInt::getMaxValue(L1.getBitWidth(), L1.isUnsigned()),
+ };
+
+ // Check whether expression is always true/false by evaluating the following
+ // * variable x is less than the smallest literal.
+ // * variable x is equal to the smallest literal.
+ // * Variable x is between smallest and largest literal.
+ // * Variable x is equal to the largest literal.
+ // * Variable x is greater than largest literal.
+ bool AlwaysTrue = true, AlwaysFalse = true;
+ for (unsigned int ValueIndex = 0;
+ ValueIndex < sizeof(Values) / sizeof(Values[0]);
+ ++ValueIndex) {
+ llvm::APSInt Value = Values[ValueIndex];
+ TryResult Res1, Res2;
+ Res1 = analyzeLogicOperatorCondition(BO1, Value, L1);
+ Res2 = analyzeLogicOperatorCondition(BO2, Value, L2);
+
+ if (!Res1.isKnown() || !Res2.isKnown())
+ return TryResult();
+
+ if (B->getOpcode() == BO_LAnd) {
+ AlwaysTrue &= (Res1.isTrue() && Res2.isTrue());
+ AlwaysFalse &= !(Res1.isTrue() && Res2.isTrue());
+ } else {
+ AlwaysTrue &= (Res1.isTrue() || Res2.isTrue());
+ AlwaysFalse &= !(Res1.isTrue() || Res2.isTrue());
+ }
+ }
+
+ if (AlwaysTrue || AlwaysFalse) {
+ if (BuildOpts.Observer)
+ BuildOpts.Observer->compareAlwaysTrue(B, AlwaysTrue);
+ return TryResult(AlwaysTrue);
+ }
+ return TryResult();
+ }
+
+ /// Try and evaluate an expression to an integer constant.
+ bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
+ if (!BuildOpts.PruneTriviallyFalseEdges)
+ return false;
+ return !S->isTypeDependent() &&
+ !S->isValueDependent() &&
+ S->EvaluateAsRValue(outResult, *Context);
+ }
+
+ /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
+ /// if we can evaluate to a known value, otherwise return -1.
+ TryResult tryEvaluateBool(Expr *S) {
+ if (!BuildOpts.PruneTriviallyFalseEdges ||
+ S->isTypeDependent() || S->isValueDependent())
+ return TryResult();
+
+ if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(S)) {
+ if (Bop->isLogicalOp()) {
+ // Check the cache first.
+ CachedBoolEvalsTy::iterator I = CachedBoolEvals.find(S);
+ if (I != CachedBoolEvals.end())
+ return I->second; // already in map;
+
+ // Retrieve result at first, or the map might be updated.
+ TryResult Result = evaluateAsBooleanConditionNoCache(S);
+ CachedBoolEvals[S] = Result; // update or insert
+ return Result;
+ }
+ else {
+ switch (Bop->getOpcode()) {
+ default: break;
+ // For 'x & 0' and 'x * 0', we can determine that
+ // the value is always false.
+ case BO_Mul:
+ case BO_And: {
+ // If either operand is zero, we know the value
+ // must be false.
+ llvm::APSInt IntVal;
+ if (Bop->getLHS()->EvaluateAsInt(IntVal, *Context)) {
+ if (!IntVal.getBoolValue()) {
+ return TryResult(false);
+ }
+ }
+ if (Bop->getRHS()->EvaluateAsInt(IntVal, *Context)) {
+ if (!IntVal.getBoolValue()) {
+ return TryResult(false);
+ }
+ }
+ }
+ break;
+ }
+ }
+ }
+
+ return evaluateAsBooleanConditionNoCache(S);
+ }
+
+ /// \brief Evaluate as boolean \param E without using the cache.
+ TryResult evaluateAsBooleanConditionNoCache(Expr *E) {
+ if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(E)) {
+ if (Bop->isLogicalOp()) {
+ TryResult LHS = tryEvaluateBool(Bop->getLHS());
+ if (LHS.isKnown()) {
+ // We were able to evaluate the LHS, see if we can get away with not
+ // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
+ if (LHS.isTrue() == (Bop->getOpcode() == BO_LOr))
+ return LHS.isTrue();
+
+ TryResult RHS = tryEvaluateBool(Bop->getRHS());
+ if (RHS.isKnown()) {
+ if (Bop->getOpcode() == BO_LOr)
+ return LHS.isTrue() || RHS.isTrue();
+ else
+ return LHS.isTrue() && RHS.isTrue();
+ }
+ } else {
+ TryResult RHS = tryEvaluateBool(Bop->getRHS());
+ if (RHS.isKnown()) {
+ // We can't evaluate the LHS; however, sometimes the result
+ // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
+ if (RHS.isTrue() == (Bop->getOpcode() == BO_LOr))
+ return RHS.isTrue();
+ } else {
+ TryResult BopRes = checkIncorrectLogicOperator(Bop);
+ if (BopRes.isKnown())
+ return BopRes.isTrue();
+ }
+ }
+
+ return TryResult();
+ } else if (Bop->isEqualityOp()) {
+ TryResult BopRes = checkIncorrectEqualityOperator(Bop);
+ if (BopRes.isKnown())
+ return BopRes.isTrue();
+ } else if (Bop->isRelationalOp()) {
+ TryResult BopRes = checkIncorrectRelationalOperator(Bop);
+ if (BopRes.isKnown())
+ return BopRes.isTrue();
+ }
+ }
+
+ bool Result;
+ if (E->EvaluateAsBooleanCondition(Result, *Context))
+ return Result;
+
+ return TryResult();
+ }
+
+};
+
+inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder,
+ const Stmt *stmt) const {
+ return builder.alwaysAdd(stmt) || kind == AlwaysAdd;
+}
+
+bool CFGBuilder::alwaysAdd(const Stmt *stmt) {
+ bool shouldAdd = BuildOpts.alwaysAdd(stmt);
+
+ if (!BuildOpts.forcedBlkExprs)
+ return shouldAdd;
+
+ if (lastLookup == stmt) {
+ if (cachedEntry) {
+ assert(cachedEntry->first == stmt);
+ return true;
+ }
+ return shouldAdd;
+ }
+
+ lastLookup = stmt;
+
+ // Perform the lookup!
+ CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs;
+
+ if (!fb) {
+ // No need to update 'cachedEntry', since it will always be null.
+ assert(!cachedEntry);
+ return shouldAdd;
+ }
+
+ CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt);
+ if (itr == fb->end()) {
+ cachedEntry = nullptr;
+ return shouldAdd;
+ }
+
+ cachedEntry = &*itr;
+ return true;
+}
+
+// FIXME: Add support for dependent-sized array types in C++?
+// Does it even make sense to build a CFG for an uninstantiated template?
+static const VariableArrayType *FindVA(const Type *t) {
+ while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
+ if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
+ if (vat->getSizeExpr())
+ return vat;
+
+ t = vt->getElementType().getTypePtr();
+ }
+
+ return nullptr;
+}
+
+/// BuildCFG - Constructs a CFG from an AST (a Stmt*). The AST can represent an
+/// arbitrary statement. Examples include a single expression or a function
+/// body (compound statement). The ownership of the returned CFG is
+/// transferred to the caller. If CFG construction fails, this method returns
+/// NULL.
+std::unique_ptr<CFG> CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) {
+ assert(cfg.get());
+ if (!Statement)
+ return nullptr;
+
+ // Create an empty block that will serve as the exit block for the CFG. Since
+ // this is the first block added to the CFG, it will be implicitly registered
+ // as the exit block.
+ Succ = createBlock();
+ assert(Succ == &cfg->getExit());
+ Block = nullptr; // the EXIT block is empty. Create all other blocks lazily.
+
+ if (BuildOpts.AddImplicitDtors)
+ if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
+ addImplicitDtorsForDestructor(DD);
+
+ // Visit the statements and create the CFG.
+ CFGBlock *B = addStmt(Statement);
+
+ if (badCFG)
+ return nullptr;
+
+ // For C++ constructor add initializers to CFG.
+ if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
+ for (CXXConstructorDecl::init_const_reverse_iterator I = CD->init_rbegin(),
+ E = CD->init_rend(); I != E; ++I) {
+ B = addInitializer(*I);
+ if (badCFG)
+ return nullptr;
+ }
+ }
+
+ if (B)
+ Succ = B;
+
+ // Backpatch the gotos whose label -> block mappings we didn't know when we
+ // encountered them.
+ for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
+ E = BackpatchBlocks.end(); I != E; ++I ) {
+
+ CFGBlock *B = I->block;
+ const GotoStmt *G = cast<GotoStmt>(B->getTerminator());
+ LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
+
+ // If there is no target for the goto, then we are looking at an
+ // incomplete AST. Handle this by not registering a successor.
+ if (LI == LabelMap.end()) continue;
+
+ JumpTarget JT = LI->second;
+ prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
+ JT.scopePosition);
+ addSuccessor(B, JT.block);
+ }
+
+ // Add successors to the Indirect Goto Dispatch block (if we have one).
+ if (CFGBlock *B = cfg->getIndirectGotoBlock())
+ for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
+ E = AddressTakenLabels.end(); I != E; ++I ) {
+
+ // Lookup the target block.
+ LabelMapTy::iterator LI = LabelMap.find(*I);
+
+ // If there is no target block that contains label, then we are looking
+ // at an incomplete AST. Handle this by not registering a successor.
+ if (LI == LabelMap.end()) continue;
+
+ addSuccessor(B, LI->second.block);
+ }
+
+ // Create an empty entry block that has no predecessors.
+ cfg->setEntry(createBlock());
+
+ return std::move(cfg);
+}
+
+/// createBlock - Used to lazily create blocks that are connected
+/// to the current (global) succcessor.
+CFGBlock *CFGBuilder::createBlock(bool add_successor) {
+ CFGBlock *B = cfg->createBlock();
+ if (add_successor && Succ)
+ addSuccessor(B, Succ);
+ return B;
+}
+
+/// createNoReturnBlock - Used to create a block is a 'noreturn' point in the
+/// CFG. It is *not* connected to the current (global) successor, and instead
+/// directly tied to the exit block in order to be reachable.
+CFGBlock *CFGBuilder::createNoReturnBlock() {
+ CFGBlock *B = createBlock(false);
+ B->setHasNoReturnElement();
+ addSuccessor(B, &cfg->getExit(), Succ);
+ return B;
+}
+
+/// addInitializer - Add C++ base or member initializer element to CFG.
+CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
+ if (!BuildOpts.AddInitializers)
+ return Block;
+
+ bool HasTemporaries = false;
+
+ // Destructors of temporaries in initialization expression should be called
+ // after initialization finishes.
+ Expr *Init = I->getInit();
+ if (Init) {
+ HasTemporaries = isa<ExprWithCleanups>(Init);
+
+ if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
+ // Generate destructors for temporaries in initialization expression.
+ TempDtorContext Context;
+ VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
+ /*BindToTemporary=*/false, Context);
+ }
+ }
+
+ autoCreateBlock();
+ appendInitializer(Block, I);
+
+ if (Init) {
+ if (HasTemporaries) {
+ // For expression with temporaries go directly to subexpression to omit
+ // generating destructors for the second time.
+ return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
+ }
+ return Visit(Init);
+ }
+
+ return Block;
+}
+
+/// \brief Retrieve the type of the temporary object whose lifetime was
+/// extended by a local reference with the given initializer.
+static QualType getReferenceInitTemporaryType(ASTContext &Context,
+ const Expr *Init) {
+ while (true) {
+ // Skip parentheses.
+ Init = Init->IgnoreParens();
+
+ // Skip through cleanups.
+ if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init)) {
+ Init = EWC->getSubExpr();
+ continue;
+ }
+
+ // Skip through the temporary-materialization expression.
+ if (const MaterializeTemporaryExpr *MTE
+ = dyn_cast<MaterializeTemporaryExpr>(Init)) {
+ Init = MTE->GetTemporaryExpr();
+ continue;
+ }
+
+ // Skip derived-to-base and no-op casts.
+ if (const CastExpr *CE = dyn_cast<CastExpr>(Init)) {
+ if ((CE->getCastKind() == CK_DerivedToBase ||
+ CE->getCastKind() == CK_UncheckedDerivedToBase ||
+ CE->getCastKind() == CK_NoOp) &&
+ Init->getType()->isRecordType()) {
+ Init = CE->getSubExpr();
+ continue;
+ }
+ }
+
+ // Skip member accesses into rvalues.
+ if (const MemberExpr *ME = dyn_cast<MemberExpr>(Init)) {
+ if (!ME->isArrow() && ME->getBase()->isRValue()) {
+ Init = ME->getBase();
+ continue;
+ }
+ }
+
+ break;
+ }
+
+ return Init->getType();
+}
+
+/// addAutomaticObjDtors - Add to current block automatic objects destructors
+/// for objects in range of local scope positions. Use S as trigger statement
+/// for destructors.
+void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
+ LocalScope::const_iterator E, Stmt *S) {
+ if (!BuildOpts.AddImplicitDtors)
+ return;
+
+ if (B == E)
+ return;
+
+ // We need to append the destructors in reverse order, but any one of them
+ // may be a no-return destructor which changes the CFG. As a result, buffer
+ // this sequence up and replay them in reverse order when appending onto the
+ // CFGBlock(s).
+ SmallVector<VarDecl*, 10> Decls;
+ Decls.reserve(B.distance(E));
+ for (LocalScope::const_iterator I = B; I != E; ++I)
+ Decls.push_back(*I);
+
+ for (SmallVectorImpl<VarDecl*>::reverse_iterator I = Decls.rbegin(),
+ E = Decls.rend();
+ I != E; ++I) {
+ // If this destructor is marked as a no-return destructor, we need to
+ // create a new block for the destructor which does not have as a successor
+ // anything built thus far: control won't flow out of this block.
+ QualType Ty = (*I)->getType();
+ if (Ty->isReferenceType()) {
+ Ty = getReferenceInitTemporaryType(*Context, (*I)->getInit());
+ }
+ Ty = Context->getBaseElementType(Ty);
+
+ const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
+ if (Dtor->isNoReturn())
+ Block = createNoReturnBlock();
+ else
+ autoCreateBlock();
+
+ appendAutomaticObjDtor(Block, *I, S);
+ }
+}
+
+/// addImplicitDtorsForDestructor - Add implicit destructors generated for
+/// base and member objects in destructor.
+void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
+ assert (BuildOpts.AddImplicitDtors
+ && "Can be called only when dtors should be added");
+ const CXXRecordDecl *RD = DD->getParent();
+
+ // At the end destroy virtual base objects.
+ for (const auto &VI : RD->vbases()) {
+ const CXXRecordDecl *CD = VI.getType()->getAsCXXRecordDecl();
+ if (!CD->hasTrivialDestructor()) {
+ autoCreateBlock();
+ appendBaseDtor(Block, &VI);
+ }
+ }
+
+ // Before virtual bases destroy direct base objects.
+ for (const auto &BI : RD->bases()) {
+ if (!BI.isVirtual()) {
+ const CXXRecordDecl *CD = BI.getType()->getAsCXXRecordDecl();
+ if (!CD->hasTrivialDestructor()) {
+ autoCreateBlock();
+ appendBaseDtor(Block, &BI);
+ }
+ }
+ }
+
+ // First destroy member objects.
+ for (auto *FI : RD->fields()) {
+ // Check for constant size array. Set type to array element type.
+ QualType QT = FI->getType();
+ if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
+ if (AT->getSize() == 0)
+ continue;
+ QT = AT->getElementType();
+ }
+
+ if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
+ if (!CD->hasTrivialDestructor()) {
+ autoCreateBlock();
+ appendMemberDtor(Block, FI);
+ }
+ }
+}
+
+/// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
+/// way return valid LocalScope object.
+LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
+ if (!Scope) {
+ llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
+ Scope = alloc.Allocate<LocalScope>();
+ BumpVectorContext ctx(alloc);
+ new (Scope) LocalScope(ctx, ScopePos);
+ }
+ return Scope;
+}
+
+/// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
+/// that should create implicit scope (e.g. if/else substatements).
+void CFGBuilder::addLocalScopeForStmt(Stmt *S) {
+ if (!BuildOpts.AddImplicitDtors)
+ return;
+
+ LocalScope *Scope = nullptr;
+
+ // For compound statement we will be creating explicit scope.
+ if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
+ for (auto *BI : CS->body()) {
+ Stmt *SI = BI->stripLabelLikeStatements();
+ if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
+ Scope = addLocalScopeForDeclStmt(DS, Scope);
+ }
+ return;
+ }
+
+ // For any other statement scope will be implicit and as such will be
+ // interesting only for DeclStmt.
+ if (DeclStmt *DS = dyn_cast<DeclStmt>(S->stripLabelLikeStatements()))
+ addLocalScopeForDeclStmt(DS);
+}
+
+/// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
+/// reuse Scope if not NULL.
+LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS,
+ LocalScope* Scope) {
+ if (!BuildOpts.AddImplicitDtors)
+ return Scope;
+
+ for (auto *DI : DS->decls())
+ if (VarDecl *VD = dyn_cast<VarDecl>(DI))
+ Scope = addLocalScopeForVarDecl(VD, Scope);
+ return Scope;
+}
+
+/// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
+/// create add scope for automatic objects and temporary objects bound to
+/// const reference. Will reuse Scope if not NULL.
+LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD,
+ LocalScope* Scope) {
+ if (!BuildOpts.AddImplicitDtors)
+ return Scope;
+
+ // Check if variable is local.
+ switch (VD->getStorageClass()) {
+ case SC_None:
+ case SC_Auto:
+ case SC_Register:
+ break;
+ default: return Scope;
+ }
+
+ // Check for const references bound to temporary. Set type to pointee.
+ QualType QT = VD->getType();
+ if (QT.getTypePtr()->isReferenceType()) {
+ // Attempt to determine whether this declaration lifetime-extends a
+ // temporary.
+ //
+ // FIXME: This is incorrect. Non-reference declarations can lifetime-extend
+ // temporaries, and a single declaration can extend multiple temporaries.
+ // We should look at the storage duration on each nested
+ // MaterializeTemporaryExpr instead.
+ const Expr *Init = VD->getInit();
+ if (!Init)
+ return Scope;
+ if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init))
+ Init = EWC->getSubExpr();
+ if (!isa<MaterializeTemporaryExpr>(Init))
+ return Scope;
+
+ // Lifetime-extending a temporary.
+ QT = getReferenceInitTemporaryType(*Context, Init);
+ }
+
+ // Check for constant size array. Set type to array element type.
+ while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
+ if (AT->getSize() == 0)
+ return Scope;
+ QT = AT->getElementType();
+ }
+
+ // Check if type is a C++ class with non-trivial destructor.
+ if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
+ if (!CD->hasTrivialDestructor()) {
+ // Add the variable to scope
+ Scope = createOrReuseLocalScope(Scope);
+ Scope->addVar(VD);
+ ScopePos = Scope->begin();
+ }
+ return Scope;
+}
+
+/// addLocalScopeAndDtors - For given statement add local scope for it and
+/// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
+void CFGBuilder::addLocalScopeAndDtors(Stmt *S) {
+ if (!BuildOpts.AddImplicitDtors)
+ return;
+
+ LocalScope::const_iterator scopeBeginPos = ScopePos;
+ addLocalScopeForStmt(S);
+ addAutomaticObjDtors(ScopePos, scopeBeginPos, S);
+}
+
+/// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
+/// variables with automatic storage duration to CFGBlock's elements vector.
+/// Elements will be prepended to physical beginning of the vector which
+/// happens to be logical end. Use blocks terminator as statement that specifies
+/// destructors call site.
+/// FIXME: This mechanism for adding automatic destructors doesn't handle
+/// no-return destructors properly.
+void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
+ LocalScope::const_iterator B, LocalScope::const_iterator E) {
+ BumpVectorContext &C = cfg->getBumpVectorContext();
+ CFGBlock::iterator InsertPos
+ = Blk->beginAutomaticObjDtorsInsert(Blk->end(), B.distance(E), C);
+ for (LocalScope::const_iterator I = B; I != E; ++I)
+ InsertPos = Blk->insertAutomaticObjDtor(InsertPos, *I,
+ Blk->getTerminator());
+}
+
+/// Visit - Walk the subtree of a statement and add extra
+/// blocks for ternary operators, &&, and ||. We also process "," and
+/// DeclStmts (which may contain nested control-flow).
+CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
+ if (!S) {
+ badCFG = true;
+ return nullptr;
+ }
+
+ if (Expr *E = dyn_cast<Expr>(S))
+ S = E->IgnoreParens();
+
+ switch (S->getStmtClass()) {
+ default:
+ return VisitStmt(S, asc);
+
+ case Stmt::AddrLabelExprClass:
+ return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
+
+ case Stmt::BinaryConditionalOperatorClass:
+ return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
+
+ case Stmt::BinaryOperatorClass:
+ return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
+
+ case Stmt::BlockExprClass:
+ return VisitNoRecurse(cast<Expr>(S), asc);
+
+ case Stmt::BreakStmtClass:
+ return VisitBreakStmt(cast<BreakStmt>(S));
+
+ case Stmt::CallExprClass:
+ case Stmt::CXXOperatorCallExprClass:
+ case Stmt::CXXMemberCallExprClass:
+ case Stmt::UserDefinedLiteralClass:
+ return VisitCallExpr(cast<CallExpr>(S), asc);
+
+ case Stmt::CaseStmtClass:
+ return VisitCaseStmt(cast<CaseStmt>(S));
+
+ case Stmt::ChooseExprClass:
+ return VisitChooseExpr(cast<ChooseExpr>(S), asc);
+
+ case Stmt::CompoundStmtClass:
+ return VisitCompoundStmt(cast<CompoundStmt>(S));
+
+ case Stmt::ConditionalOperatorClass:
+ return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
+
+ case Stmt::ContinueStmtClass:
+ return VisitContinueStmt(cast<ContinueStmt>(S));
+
+ case Stmt::CXXCatchStmtClass:
+ return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
+
+ case Stmt::ExprWithCleanupsClass:
+ return VisitExprWithCleanups(cast<ExprWithCleanups>(S), asc);
+
+ case Stmt::CXXDefaultArgExprClass:
+ case Stmt::CXXDefaultInitExprClass:
+ // FIXME: The expression inside a CXXDefaultArgExpr is owned by the
+ // called function's declaration, not by the caller. If we simply add
+ // this expression to the CFG, we could end up with the same Expr
+ // appearing multiple times.
+ // PR13385 / <rdar://problem/12156507>
+ //
+ // It's likewise possible for multiple CXXDefaultInitExprs for the same
+ // expression to be used in the same function (through aggregate
+ // initialization).
+ return VisitStmt(S, asc);
+
+ case Stmt::CXXBindTemporaryExprClass:
+ return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
+
+ case Stmt::CXXConstructExprClass:
+ return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
+
+ case Stmt::CXXNewExprClass:
+ return VisitCXXNewExpr(cast<CXXNewExpr>(S), asc);
+
+ case Stmt::CXXDeleteExprClass:
+ return VisitCXXDeleteExpr(cast<CXXDeleteExpr>(S), asc);
+
+ case Stmt::CXXFunctionalCastExprClass:
+ return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
+
+ case Stmt::CXXTemporaryObjectExprClass:
+ return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
+
+ case Stmt::CXXThrowExprClass:
+ return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
+
+ case Stmt::CXXTryStmtClass:
+ return VisitCXXTryStmt(cast<CXXTryStmt>(S));
+
+ case Stmt::CXXForRangeStmtClass:
+ return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
+
+ case Stmt::DeclStmtClass:
+ return VisitDeclStmt(cast<DeclStmt>(S));
+
+ case Stmt::DefaultStmtClass:
+ return VisitDefaultStmt(cast<DefaultStmt>(S));
+
+ case Stmt::DoStmtClass:
+ return VisitDoStmt(cast<DoStmt>(S));
+
+ case Stmt::ForStmtClass:
+ return VisitForStmt(cast<ForStmt>(S));
+
+ case Stmt::GotoStmtClass:
+ return VisitGotoStmt(cast<GotoStmt>(S));
+
+ case Stmt::IfStmtClass:
+ return VisitIfStmt(cast<IfStmt>(S));
+
+ case Stmt::ImplicitCastExprClass:
+ return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
+
+ case Stmt::IndirectGotoStmtClass:
+ return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
+
+ case Stmt::LabelStmtClass:
+ return VisitLabelStmt(cast<LabelStmt>(S));
+
+ case Stmt::LambdaExprClass:
+ return VisitLambdaExpr(cast<LambdaExpr>(S), asc);
+
+ case Stmt::MemberExprClass:
+ return VisitMemberExpr(cast<MemberExpr>(S), asc);
+
+ case Stmt::NullStmtClass:
+ return Block;
+
+ case Stmt::ObjCAtCatchStmtClass:
+ return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
+
+ case Stmt::ObjCAutoreleasePoolStmtClass:
+ return VisitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(S));
+
+ case Stmt::ObjCAtSynchronizedStmtClass:
+ return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
+
+ case Stmt::ObjCAtThrowStmtClass:
+ return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
+
+ case Stmt::ObjCAtTryStmtClass:
+ return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
+
+ case Stmt::ObjCForCollectionStmtClass:
+ return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
+
+ case Stmt::OpaqueValueExprClass:
+ return Block;
+
+ case Stmt::PseudoObjectExprClass:
+ return VisitPseudoObjectExpr(cast<PseudoObjectExpr>(S));
+
+ case Stmt::ReturnStmtClass:
+ return VisitReturnStmt(cast<ReturnStmt>(S));
+
+ case Stmt::UnaryExprOrTypeTraitExprClass:
+ return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
+ asc);
+
+ case Stmt::StmtExprClass:
+ return VisitStmtExpr(cast<StmtExpr>(S), asc);
+
+ case Stmt::SwitchStmtClass:
+ return VisitSwitchStmt(cast<SwitchStmt>(S));
+
+ case Stmt::UnaryOperatorClass:
+ return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
+
+ case Stmt::WhileStmtClass:
+ return VisitWhileStmt(cast<WhileStmt>(S));
+ }
+}
+
+CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
+ if (asc.alwaysAdd(*this, S)) {
+ autoCreateBlock();
+ appendStmt(Block, S);
+ }
+
+ return VisitChildren(S);
+}
+
+/// VisitChildren - Visit the children of a Stmt.
+CFGBlock *CFGBuilder::VisitChildren(Stmt *S) {
+ CFGBlock *B = Block;
+
+ // Visit the children in their reverse order so that they appear in
+ // left-to-right (natural) order in the CFG.
+ reverse_children RChildren(S);
+ for (reverse_children::iterator I = RChildren.begin(), E = RChildren.end();
+ I != E; ++I) {
+ if (Stmt *Child = *I)
+ if (CFGBlock *R = Visit(Child))
+ B = R;
+ }
+ return B;
+}
+
+CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
+ AddStmtChoice asc) {
+ AddressTakenLabels.insert(A->getLabel());
+
+ if (asc.alwaysAdd(*this, A)) {
+ autoCreateBlock();
+ appendStmt(Block, A);
+ }
+
+ return Block;
+}
+
+CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U,
+ AddStmtChoice asc) {
+ if (asc.alwaysAdd(*this, U)) {
+ autoCreateBlock();
+ appendStmt(Block, U);
+ }
+
+ return Visit(U->getSubExpr(), AddStmtChoice());
+}
+
+CFGBlock *CFGBuilder::VisitLogicalOperator(BinaryOperator *B) {
+ CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
+ appendStmt(ConfluenceBlock, B);
+
+ if (badCFG)
+ return nullptr;
+
+ return VisitLogicalOperator(B, nullptr, ConfluenceBlock,
+ ConfluenceBlock).first;
+}
+
+std::pair<CFGBlock*, CFGBlock*>
+CFGBuilder::VisitLogicalOperator(BinaryOperator *B,
+ Stmt *Term,
+ CFGBlock *TrueBlock,
+ CFGBlock *FalseBlock) {
+
+ // Introspect the RHS. If it is a nested logical operation, we recursively
+ // build the CFG using this function. Otherwise, resort to default
+ // CFG construction behavior.
+ Expr *RHS = B->getRHS()->IgnoreParens();
+ CFGBlock *RHSBlock, *ExitBlock;
+
+ do {
+ if (BinaryOperator *B_RHS = dyn_cast<BinaryOperator>(RHS))
+ if (B_RHS->isLogicalOp()) {
+ std::tie(RHSBlock, ExitBlock) =
+ VisitLogicalOperator(B_RHS, Term, TrueBlock, FalseBlock);
+ break;
+ }
+
+ // The RHS is not a nested logical operation. Don't push the terminator
+ // down further, but instead visit RHS and construct the respective
+ // pieces of the CFG, and link up the RHSBlock with the terminator
+ // we have been provided.
+ ExitBlock = RHSBlock = createBlock(false);
+
+ if (!Term) {
+ assert(TrueBlock == FalseBlock);
+ addSuccessor(RHSBlock, TrueBlock);
+ }
+ else {
+ RHSBlock->setTerminator(Term);
+ TryResult KnownVal = tryEvaluateBool(RHS);
+ if (!KnownVal.isKnown())
+ KnownVal = tryEvaluateBool(B);
+ addSuccessor(RHSBlock, TrueBlock, !KnownVal.isFalse());
+ addSuccessor(RHSBlock, FalseBlock, !KnownVal.isTrue());
+ }
+
+ Block = RHSBlock;
+ RHSBlock = addStmt(RHS);
+ }
+ while (false);
+
+ if (badCFG)
+ return std::make_pair(nullptr, nullptr);
+
+ // Generate the blocks for evaluating the LHS.
+ Expr *LHS = B->getLHS()->IgnoreParens();
+
+ if (BinaryOperator *B_LHS = dyn_cast<BinaryOperator>(LHS))
+ if (B_LHS->isLogicalOp()) {
+ if (B->getOpcode() == BO_LOr)
+ FalseBlock = RHSBlock;
+ else
+ TrueBlock = RHSBlock;
+
+ // For the LHS, treat 'B' as the terminator that we want to sink
+ // into the nested branch. The RHS always gets the top-most
+ // terminator.
+ return VisitLogicalOperator(B_LHS, B, TrueBlock, FalseBlock);
+ }
+
+ // Create the block evaluating the LHS.
+ // This contains the '&&' or '||' as the terminator.
+ CFGBlock *LHSBlock = createBlock(false);
+ LHSBlock->setTerminator(B);
+
+ Block = LHSBlock;
+ CFGBlock *EntryLHSBlock = addStmt(LHS);
+
+ if (badCFG)
+ return std::make_pair(nullptr, nullptr);
+
+ // See if this is a known constant.
+ TryResult KnownVal = tryEvaluateBool(LHS);
+
+ // Now link the LHSBlock with RHSBlock.
+ if (B->getOpcode() == BO_LOr) {
+ addSuccessor(LHSBlock, TrueBlock, !KnownVal.isFalse());
+ addSuccessor(LHSBlock, RHSBlock, !KnownVal.isTrue());
+ } else {
+ assert(B->getOpcode() == BO_LAnd);
+ addSuccessor(LHSBlock, RHSBlock, !KnownVal.isFalse());
+ addSuccessor(LHSBlock, FalseBlock, !KnownVal.isTrue());
+ }
+
+ return std::make_pair(EntryLHSBlock, ExitBlock);
+}
+
+
+CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
+ AddStmtChoice asc) {
+ // && or ||
+ if (B->isLogicalOp())
+ return VisitLogicalOperator(B);
+
+ if (B->getOpcode() == BO_Comma) { // ,
+ autoCreateBlock();
+ appendStmt(Block, B);
+ addStmt(B->getRHS());
+ return addStmt(B->getLHS());
+ }
+
+ if (B->isAssignmentOp()) {
+ if (asc.alwaysAdd(*this, B)) {
+ autoCreateBlock();
+ appendStmt(Block, B);
+ }
+ Visit(B->getLHS());
+ return Visit(B->getRHS());
+ }
+
+ if (asc.alwaysAdd(*this, B)) {
+ autoCreateBlock();
+ appendStmt(Block, B);
+ }
+
+ CFGBlock *RBlock = Visit(B->getRHS());
+ CFGBlock *LBlock = Visit(B->getLHS());
+ // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
+ // containing a DoStmt, and the LHS doesn't create a new block, then we should
+ // return RBlock. Otherwise we'll incorrectly return NULL.
+ return (LBlock ? LBlock : RBlock);
+}
+
+CFGBlock *CFGBuilder::VisitNoRecurse(Expr *E, AddStmtChoice asc) {
+ if (asc.alwaysAdd(*this, E)) {
+ autoCreateBlock();
+ appendStmt(Block, E);
+ }
+ return Block;
+}
+
+CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
+ // "break" is a control-flow statement. Thus we stop processing the current
+ // block.
+ if (badCFG)
+ return nullptr;
+
+ // Now create a new block that ends with the break statement.
+ Block = createBlock(false);
+ Block->setTerminator(B);
+
+ // If there is no target for the break, then we are looking at an incomplete
+ // AST. This means that the CFG cannot be constructed.
+ if (BreakJumpTarget.block) {
+ addAutomaticObjDtors(ScopePos, BreakJumpTarget.scopePosition, B);
+ addSuccessor(Block, BreakJumpTarget.block);
+ } else
+ badCFG = true;
+
+
+ return Block;
+}
+
+static bool CanThrow(Expr *E, ASTContext &Ctx) {
+ QualType Ty = E->getType();
+ if (Ty->isFunctionPointerType())
+ Ty = Ty->getAs<PointerType>()->getPointeeType();
+ else if (Ty->isBlockPointerType())
+ Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
+
+ const FunctionType *FT = Ty->getAs<FunctionType>();
+ if (FT) {
+ if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
+ if (!isUnresolvedExceptionSpec(Proto->getExceptionSpecType()) &&
+ Proto->isNothrow(Ctx))
+ return false;
+ }
+ return true;
+}
+
+CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
+ // Compute the callee type.
+ QualType calleeType = C->getCallee()->getType();
+ if (calleeType == Context->BoundMemberTy) {
+ QualType boundType = Expr::findBoundMemberType(C->getCallee());
+
+ // We should only get a null bound type if processing a dependent
+ // CFG. Recover by assuming nothing.
+ if (!boundType.isNull()) calleeType = boundType;
+ }
+
+ // If this is a call to a no-return function, this stops the block here.
+ bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn();
+
+ bool AddEHEdge = false;
+
+ // Languages without exceptions are assumed to not throw.
+ if (Context->getLangOpts().Exceptions) {
+ if (BuildOpts.AddEHEdges)
+ AddEHEdge = true;
+ }
+
+ // If this is a call to a builtin function, it might not actually evaluate
+ // its arguments. Don't add them to the CFG if this is the case.
+ bool OmitArguments = false;
+
+ if (FunctionDecl *FD = C->getDirectCallee()) {
+ if (FD->isNoReturn())
+ NoReturn = true;
+ if (FD->hasAttr<NoThrowAttr>())
+ AddEHEdge = false;
+ if (FD->getBuiltinID() == Builtin::BI__builtin_object_size)
+ OmitArguments = true;
+ }
+
+ if (!CanThrow(C->getCallee(), *Context))
+ AddEHEdge = false;
+
+ if (OmitArguments) {
+ assert(!NoReturn && "noreturn calls with unevaluated args not implemented");
+ assert(!AddEHEdge && "EH calls with unevaluated args not implemented");
+ autoCreateBlock();
+ appendStmt(Block, C);
+ return Visit(C->getCallee());
+ }
+
+ if (!NoReturn && !AddEHEdge) {
+ return VisitStmt(C, asc.withAlwaysAdd(true));
+ }
+
+ if (Block) {
+ Succ = Block;
+ if (badCFG)
+ return nullptr;
+ }
+
+ if (NoReturn)
+ Block = createNoReturnBlock();
+ else
+ Block = createBlock();
+
+ appendStmt(Block, C);
+
+ if (AddEHEdge) {
+ // Add exceptional edges.
+ if (TryTerminatedBlock)
+ addSuccessor(Block, TryTerminatedBlock);
+ else
+ addSuccessor(Block, &cfg->getExit());
+ }
+
+ return VisitChildren(C);
+}
+
+CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
+ AddStmtChoice asc) {
+ CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
+ appendStmt(ConfluenceBlock, C);
+ if (badCFG)
+ return nullptr;
+
+ AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
+ Succ = ConfluenceBlock;
+ Block = nullptr;
+ CFGBlock *LHSBlock = Visit(C->getLHS(), alwaysAdd);
+ if (badCFG)
+ return nullptr;
+
+ Succ = ConfluenceBlock;
+ Block = nullptr;
+ CFGBlock *RHSBlock = Visit(C->getRHS(), alwaysAdd);
+ if (badCFG)
+ return nullptr;
+
+ Block = createBlock(false);
+ // See if this is a known constant.
+ const TryResult& KnownVal = tryEvaluateBool(C->getCond());
+ addSuccessor(Block, KnownVal.isFalse() ? nullptr : LHSBlock);
+ addSuccessor(Block, KnownVal.isTrue() ? nullptr : RHSBlock);
+ Block->setTerminator(C);
+ return addStmt(C->getCond());
+}
+
+
+CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C) {
+ addLocalScopeAndDtors(C);
+ CFGBlock *LastBlock = Block;
+
+ for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
+ I != E; ++I ) {
+ // If we hit a segment of code just containing ';' (NullStmts), we can
+ // get a null block back. In such cases, just use the LastBlock
+ if (CFGBlock *newBlock = addStmt(*I))
+ LastBlock = newBlock;
+
+ if (badCFG)
+ return nullptr;
+ }
+
+ return LastBlock;
+}
+
+CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
+ AddStmtChoice asc) {
+ const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
+ const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : nullptr);
+
+ // Create the confluence block that will "merge" the results of the ternary
+ // expression.
+ CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
+ appendStmt(ConfluenceBlock, C);
+ if (badCFG)
+ return nullptr;
+
+ AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
+
+ // Create a block for the LHS expression if there is an LHS expression. A
+ // GCC extension allows LHS to be NULL, causing the condition to be the
+ // value that is returned instead.
+ // e.g: x ?: y is shorthand for: x ? x : y;
+ Succ = ConfluenceBlock;
+ Block = nullptr;
+ CFGBlock *LHSBlock = nullptr;
+ const Expr *trueExpr = C->getTrueExpr();
+ if (trueExpr != opaqueValue) {
+ LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
+ if (badCFG)
+ return nullptr;
+ Block = nullptr;
+ }
+ else
+ LHSBlock = ConfluenceBlock;
+
+ // Create the block for the RHS expression.
+ Succ = ConfluenceBlock;
+ CFGBlock *RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
+ if (badCFG)
+ return nullptr;
+
+ // If the condition is a logical '&&' or '||', build a more accurate CFG.
+ if (BinaryOperator *Cond =
+ dyn_cast<BinaryOperator>(C->getCond()->IgnoreParens()))
+ if (Cond->isLogicalOp())
+ return VisitLogicalOperator(Cond, C, LHSBlock, RHSBlock).first;
+
+ // Create the block that will contain the condition.
+ Block = createBlock(false);
+
+ // See if this is a known constant.
+ const TryResult& KnownVal = tryEvaluateBool(C->getCond());
+ addSuccessor(Block, LHSBlock, !KnownVal.isFalse());
+ addSuccessor(Block, RHSBlock, !KnownVal.isTrue());
+ Block->setTerminator(C);
+ Expr *condExpr = C->getCond();
+
+ if (opaqueValue) {
+ // Run the condition expression if it's not trivially expressed in
+ // terms of the opaque value (or if there is no opaque value).
+ if (condExpr != opaqueValue)
+ addStmt(condExpr);
+
+ // Before that, run the common subexpression if there was one.
+ // At least one of this or the above will be run.
+ return addStmt(BCO->getCommon());
+ }
+
+ return addStmt(condExpr);
+}
+
+CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
+ // Check if the Decl is for an __label__. If so, elide it from the
+ // CFG entirely.
+ if (isa<LabelDecl>(*DS->decl_begin()))
+ return Block;
+
+ // This case also handles static_asserts.
+ if (DS->isSingleDecl())
+ return VisitDeclSubExpr(DS);
+
+ CFGBlock *B = nullptr;
+
+ // Build an individual DeclStmt for each decl.
+ for (DeclStmt::reverse_decl_iterator I = DS->decl_rbegin(),
+ E = DS->decl_rend();
+ I != E; ++I) {
+ // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
+ unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
+ ? 8 : llvm::AlignOf<DeclStmt>::Alignment;
+
+ // Allocate the DeclStmt using the BumpPtrAllocator. It will get
+ // automatically freed with the CFG.
+ DeclGroupRef DG(*I);
+ Decl *D = *I;
+ void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
+ DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
+ cfg->addSyntheticDeclStmt(DSNew, DS);
+
+ // Append the fake DeclStmt to block.
+ B = VisitDeclSubExpr(DSNew);
+ }
+
+ return B;
+}
+
+/// VisitDeclSubExpr - Utility method to add block-level expressions for
+/// DeclStmts and initializers in them.
+CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) {
+ assert(DS->isSingleDecl() && "Can handle single declarations only.");
+ VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
+
+ if (!VD) {
+ // Of everything that can be declared in a DeclStmt, only VarDecls impact
+ // runtime semantics.
+ return Block;
+ }
+
+ bool HasTemporaries = false;
+
+ // Guard static initializers under a branch.
+ CFGBlock *blockAfterStaticInit = nullptr;
+
+ if (BuildOpts.AddStaticInitBranches && VD->isStaticLocal()) {
+ // For static variables, we need to create a branch to track
+ // whether or not they are initialized.
+ if (Block) {
+ Succ = Block;
+ Block = nullptr;
+ if (badCFG)
+ return nullptr;
+ }
+ blockAfterStaticInit = Succ;
+ }
+
+ // Destructors of temporaries in initialization expression should be called
+ // after initialization finishes.
+ Expr *Init = VD->getInit();
+ if (Init) {
+ HasTemporaries = isa<ExprWithCleanups>(Init);
+
+ if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
+ // Generate destructors for temporaries in initialization expression.
+ TempDtorContext Context;
+ VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
+ /*BindToTemporary=*/false, Context);
+ }
+ }
+
+ autoCreateBlock();
+ appendStmt(Block, DS);
+
+ // Keep track of the last non-null block, as 'Block' can be nulled out
+ // if the initializer expression is something like a 'while' in a
+ // statement-expression.
+ CFGBlock *LastBlock = Block;
+
+ if (Init) {
+ if (HasTemporaries) {
+ // For expression with temporaries go directly to subexpression to omit
+ // generating destructors for the second time.
+ ExprWithCleanups *EC = cast<ExprWithCleanups>(Init);
+ if (CFGBlock *newBlock = Visit(EC->getSubExpr()))
+ LastBlock = newBlock;
+ }
+ else {
+ if (CFGBlock *newBlock = Visit(Init))
+ LastBlock = newBlock;
+ }
+ }
+
+ // If the type of VD is a VLA, then we must process its size expressions.
+ for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
+ VA != nullptr; VA = FindVA(VA->getElementType().getTypePtr())) {
+ if (CFGBlock *newBlock = addStmt(VA->getSizeExpr()))
+ LastBlock = newBlock;
+ }
+
+ // Remove variable from local scope.
+ if (ScopePos && VD == *ScopePos)
+ ++ScopePos;
+
+ CFGBlock *B = LastBlock;
+ if (blockAfterStaticInit) {
+ Succ = B;
+ Block = createBlock(false);
+ Block->setTerminator(DS);
+ addSuccessor(Block, blockAfterStaticInit);
+ addSuccessor(Block, B);
+ B = Block;
+ }
+
+ return B;
+}
+
+CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) {
+ // We may see an if statement in the middle of a basic block, or it may be the
+ // first statement we are processing. In either case, we create a new basic
+ // block. First, we create the blocks for the then...else statements, and
+ // then we create the block containing the if statement. If we were in the
+ // middle of a block, we stop processing that block. That block is then the
+ // implicit successor for the "then" and "else" clauses.
+
+ // Save local scope position because in case of condition variable ScopePos
+ // won't be restored when traversing AST.
+ SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
+
+ // Create local scope for possible condition variable.
+ // Store scope position. Add implicit destructor.
+ if (VarDecl *VD = I->getConditionVariable()) {
+ LocalScope::const_iterator BeginScopePos = ScopePos;
+ addLocalScopeForVarDecl(VD);
+ addAutomaticObjDtors(ScopePos, BeginScopePos, I);
+ }
+
+ // The block we were processing is now finished. Make it the successor
+ // block.
+ if (Block) {
+ Succ = Block;
+ if (badCFG)
+ return nullptr;
+ }
+
+ // Process the false branch.
+ CFGBlock *ElseBlock = Succ;
+
+ if (Stmt *Else = I->getElse()) {
+ SaveAndRestore<CFGBlock*> sv(Succ);
+
+ // NULL out Block so that the recursive call to Visit will
+ // create a new basic block.
+ Block = nullptr;
+
+ // If branch is not a compound statement create implicit scope
+ // and add destructors.
+ if (!isa<CompoundStmt>(Else))
+ addLocalScopeAndDtors(Else);
+
+ ElseBlock = addStmt(Else);
+
+ if (!ElseBlock) // Can occur when the Else body has all NullStmts.
+ ElseBlock = sv.get();
+ else if (Block) {
+ if (badCFG)
+ return nullptr;
+ }
+ }
+
+ // Process the true branch.
+ CFGBlock *ThenBlock;
+ {
+ Stmt *Then = I->getThen();
+ assert(Then);
+ SaveAndRestore<CFGBlock*> sv(Succ);
+ Block = nullptr;
+
+ // If branch is not a compound statement create implicit scope
+ // and add destructors.
+ if (!isa<CompoundStmt>(Then))
+ addLocalScopeAndDtors(Then);
+
+ ThenBlock = addStmt(Then);
+
+ if (!ThenBlock) {
+ // We can reach here if the "then" body has all NullStmts.
+ // Create an empty block so we can distinguish between true and false
+ // branches in path-sensitive analyses.
+ ThenBlock = createBlock(false);
+ addSuccessor(ThenBlock, sv.get());
+ } else if (Block) {
+ if (badCFG)
+ return nullptr;
+ }
+ }
+
+ // Specially handle "if (expr1 || ...)" and "if (expr1 && ...)" by
+ // having these handle the actual control-flow jump. Note that
+ // if we introduce a condition variable, e.g. "if (int x = exp1 || exp2)"
+ // we resort to the old control-flow behavior. This special handling
+ // removes infeasible paths from the control-flow graph by having the
+ // control-flow transfer of '&&' or '||' go directly into the then/else
+ // blocks directly.
+ if (!I->getConditionVariable())
+ if (BinaryOperator *Cond =
+ dyn_cast<BinaryOperator>(I->getCond()->IgnoreParens()))
+ if (Cond->isLogicalOp())
+ return VisitLogicalOperator(Cond, I, ThenBlock, ElseBlock).first;
+
+ // Now create a new block containing the if statement.
+ Block = createBlock(false);
+
+ // Set the terminator of the new block to the If statement.
+ Block->setTerminator(I);
+
+ // See if this is a known constant.
+ const TryResult &KnownVal = tryEvaluateBool(I->getCond());
+
+ // Add the successors. If we know that specific branches are
+ // unreachable, inform addSuccessor() of that knowledge.
+ addSuccessor(Block, ThenBlock, /* isReachable = */ !KnownVal.isFalse());
+ addSuccessor(Block, ElseBlock, /* isReachable = */ !KnownVal.isTrue());
+
+ // Add the condition as the last statement in the new block. This may create
+ // new blocks as the condition may contain control-flow. Any newly created
+ // blocks will be pointed to be "Block".
+ CFGBlock *LastBlock = addStmt(I->getCond());
+
+ // Finally, if the IfStmt contains a condition variable, add it and its
+ // initializer to the CFG.
+ if (const DeclStmt* DS = I->getConditionVariableDeclStmt()) {
+ autoCreateBlock();
+ LastBlock = addStmt(const_cast<DeclStmt *>(DS));
+ }
+
+ return LastBlock;
+}
+
+
+CFGBlock *CFGBuilder::VisitReturnStmt(ReturnStmt *R) {
+ // If we were in the middle of a block we stop processing that block.
+ //
+ // NOTE: If a "return" appears in the middle of a block, this means that the
+ // code afterwards is DEAD (unreachable). We still keep a basic block
+ // for that code; a simple "mark-and-sweep" from the entry block will be
+ // able to report such dead blocks.
+
+ // Create the new block.
+ Block = createBlock(false);
+
+ addAutomaticObjDtors(ScopePos, LocalScope::const_iterator(), R);
+
+ // If the one of the destructors does not return, we already have the Exit
+ // block as a successor.
+ if (!Block->hasNoReturnElement())
+ addSuccessor(Block, &cfg->getExit());
+
+ // Add the return statement to the block. This may create new blocks if R
+ // contains control-flow (short-circuit operations).
+ return VisitStmt(R, AddStmtChoice::AlwaysAdd);
+}
+
+CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) {
+ // Get the block of the labeled statement. Add it to our map.
+ addStmt(L->getSubStmt());
+ CFGBlock *LabelBlock = Block;
+
+ if (!LabelBlock) // This can happen when the body is empty, i.e.
+ LabelBlock = createBlock(); // scopes that only contains NullStmts.
+
+ assert(LabelMap.find(L->getDecl()) == LabelMap.end() &&
+ "label already in map");
+ LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);
+
+ // Labels partition blocks, so this is the end of the basic block we were
+ // processing (L is the block's label). Because this is label (and we have
+ // already processed the substatement) there is no extra control-flow to worry
+ // about.
+ LabelBlock->setLabel(L);
+ if (badCFG)
+ return nullptr;
+
+ // We set Block to NULL to allow lazy creation of a new block (if necessary);
+ Block = nullptr;
+
+ // This block is now the implicit successor of other blocks.
+ Succ = LabelBlock;
+
+ return LabelBlock;
+}
+
+CFGBlock *CFGBuilder::VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc) {
+ CFGBlock *LastBlock = VisitNoRecurse(E, asc);
+ for (LambdaExpr::capture_init_iterator it = E->capture_init_begin(),
+ et = E->capture_init_end(); it != et; ++it) {
+ if (Expr *Init = *it) {
+ CFGBlock *Tmp = Visit(Init);
+ if (Tmp)
+ LastBlock = Tmp;
+ }
+ }
+ return LastBlock;
+}
+
+CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) {
+ // Goto is a control-flow statement. Thus we stop processing the current
+ // block and create a new one.
+
+ Block = createBlock(false);
+ Block->setTerminator(G);
+
+ // If we already know the mapping to the label block add the successor now.
+ LabelMapTy::iterator I = LabelMap.find(G->getLabel());
+
+ if (I == LabelMap.end())
+ // We will need to backpatch this block later.
+ BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
+ else {
+ JumpTarget JT = I->second;
+ addAutomaticObjDtors(ScopePos, JT.scopePosition, G);
+ addSuccessor(Block, JT.block);
+ }
+
+ return Block;
+}
+
+CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) {
+ CFGBlock *LoopSuccessor = nullptr;
+
+ // Save local scope position because in case of condition variable ScopePos
+ // won't be restored when traversing AST.
+ SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
+
+ // Create local scope for init statement and possible condition variable.
+ // Add destructor for init statement and condition variable.
+ // Store scope position for continue statement.
+ if (Stmt *Init = F->getInit())
+ addLocalScopeForStmt(Init);
+ LocalScope::const_iterator LoopBeginScopePos = ScopePos;
+
+ if (VarDecl *VD = F->getConditionVariable())
+ addLocalScopeForVarDecl(VD);
+ LocalScope::const_iterator ContinueScopePos = ScopePos;
+
+ addAutomaticObjDtors(ScopePos, save_scope_pos.get(), F);
+
+ // "for" is a control-flow statement. Thus we stop processing the current
+ // block.
+ if (Block) {
+ if (badCFG)
+ return nullptr;
+ LoopSuccessor = Block;
+ } else
+ LoopSuccessor = Succ;
+
+ // Save the current value for the break targets.
+ // All breaks should go to the code following the loop.
+ SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
+ BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
+
+ CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr;
+
+ // Now create the loop body.
+ {
+ assert(F->getBody());
+
+ // Save the current values for Block, Succ, continue and break targets.
+ SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
+ SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
+
+ // Create an empty block to represent the transition block for looping back
+ // to the head of the loop. If we have increment code, it will
+ // go in this block as well.
+ Block = Succ = TransitionBlock = createBlock(false);
+ TransitionBlock->setLoopTarget(F);
+
+ if (Stmt *I = F->getInc()) {
+ // Generate increment code in its own basic block. This is the target of
+ // continue statements.
+ Succ = addStmt(I);
+ }
+
+ // Finish up the increment (or empty) block if it hasn't been already.
+ if (Block) {
+ assert(Block == Succ);
+ if (badCFG)
+ return nullptr;
+ Block = nullptr;
+ }
+
+ // The starting block for the loop increment is the block that should
+ // represent the 'loop target' for looping back to the start of the loop.
+ ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
+ ContinueJumpTarget.block->setLoopTarget(F);
+
+ // Loop body should end with destructor of Condition variable (if any).
+ addAutomaticObjDtors(ScopePos, LoopBeginScopePos, F);
+
+ // If body is not a compound statement create implicit scope
+ // and add destructors.
+ if (!isa<CompoundStmt>(F->getBody()))
+ addLocalScopeAndDtors(F->getBody());
+
+ // Now populate the body block, and in the process create new blocks as we
+ // walk the body of the loop.
+ BodyBlock = addStmt(F->getBody());
+
+ if (!BodyBlock) {
+ // In the case of "for (...;...;...);" we can have a null BodyBlock.
+ // Use the continue jump target as the proxy for the body.
+ BodyBlock = ContinueJumpTarget.block;
+ }
+ else if (badCFG)
+ return nullptr;
+ }
+
+ // Because of short-circuit evaluation, the condition of the loop can span
+ // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that
+ // evaluate the condition.
+ CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr;
+
+ do {
+ Expr *C = F->getCond();
+
+ // Specially handle logical operators, which have a slightly
+ // more optimal CFG representation.
+ if (BinaryOperator *Cond =
+ dyn_cast_or_null<BinaryOperator>(C ? C->IgnoreParens() : nullptr))
+ if (Cond->isLogicalOp()) {
+ std::tie(EntryConditionBlock, ExitConditionBlock) =
+ VisitLogicalOperator(Cond, F, BodyBlock, LoopSuccessor);
+ break;
+ }
+
+ // The default case when not handling logical operators.
+ EntryConditionBlock = ExitConditionBlock = createBlock(false);
+ ExitConditionBlock->setTerminator(F);
+
+ // See if this is a known constant.
+ TryResult KnownVal(true);
+
+ if (C) {
+ // Now add the actual condition to the condition block.
+ // Because the condition itself may contain control-flow, new blocks may
+ // be created. Thus we update "Succ" after adding the condition.
+ Block = ExitConditionBlock;
+ EntryConditionBlock = addStmt(C);
+
+ // If this block contains a condition variable, add both the condition
+ // variable and initializer to the CFG.
+ if (VarDecl *VD = F->getConditionVariable()) {
+ if (Expr *Init = VD->getInit()) {
+ autoCreateBlock();
+ appendStmt(Block, F->getConditionVariableDeclStmt());
+ EntryConditionBlock = addStmt(Init);
+ assert(Block == EntryConditionBlock);
+ }
+ }
+
+ if (Block && badCFG)
+ return nullptr;
+
+ KnownVal = tryEvaluateBool(C);
+ }
+
+ // Add the loop body entry as a successor to the condition.
+ addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? nullptr : BodyBlock);
+ // Link up the condition block with the code that follows the loop. (the
+ // false branch).
+ addSuccessor(ExitConditionBlock,
+ KnownVal.isTrue() ? nullptr : LoopSuccessor);
+
+ } while (false);
+
+ // Link up the loop-back block to the entry condition block.
+ addSuccessor(TransitionBlock, EntryConditionBlock);
+
+ // The condition block is the implicit successor for any code above the loop.
+ Succ = EntryConditionBlock;
+
+ // If the loop contains initialization, create a new block for those
+ // statements. This block can also contain statements that precede the loop.
+ if (Stmt *I = F->getInit()) {
+ Block = createBlock();
+ return addStmt(I);
+ }
+
+ // There is no loop initialization. We are thus basically a while loop.
+ // NULL out Block to force lazy block construction.
+ Block = nullptr;
+ Succ = EntryConditionBlock;
+ return EntryConditionBlock;
+}
+
+CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
+ if (asc.alwaysAdd(*this, M)) {
+ autoCreateBlock();
+ appendStmt(Block, M);
+ }
+ return Visit(M->getBase());
+}
+
+CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
+ // Objective-C fast enumeration 'for' statements:
+ // http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
+ //
+ // for ( Type newVariable in collection_expression ) { statements }
+ //
+ // becomes:
+ //
+ // prologue:
+ // 1. collection_expression
+ // T. jump to loop_entry
+ // loop_entry:
+ // 1. side-effects of element expression
+ // 1. ObjCForCollectionStmt [performs binding to newVariable]
+ // T. ObjCForCollectionStmt TB, FB [jumps to TB if newVariable != nil]
+ // TB:
+ // statements
+ // T. jump to loop_entry
+ // FB:
+ // what comes after
+ //
+ // and
+ //
+ // Type existingItem;
+ // for ( existingItem in expression ) { statements }
+ //
+ // becomes:
+ //
+ // the same with newVariable replaced with existingItem; the binding works
+ // the same except that for one ObjCForCollectionStmt::getElement() returns
+ // a DeclStmt and the other returns a DeclRefExpr.
+ //
+
+ CFGBlock *LoopSuccessor = nullptr;
+
+ if (Block) {
+ if (badCFG)
+ return nullptr;
+ LoopSuccessor = Block;
+ Block = nullptr;
+ } else
+ LoopSuccessor = Succ;
+
+ // Build the condition blocks.
+ CFGBlock *ExitConditionBlock = createBlock(false);
+
+ // Set the terminator for the "exit" condition block.
+ ExitConditionBlock->setTerminator(S);
+
+ // The last statement in the block should be the ObjCForCollectionStmt, which
+ // performs the actual binding to 'element' and determines if there are any
+ // more items in the collection.
+ appendStmt(ExitConditionBlock, S);
+ Block = ExitConditionBlock;
+
+ // Walk the 'element' expression to see if there are any side-effects. We
+ // generate new blocks as necessary. We DON'T add the statement by default to
+ // the CFG unless it contains control-flow.
+ CFGBlock *EntryConditionBlock = Visit(S->getElement(),
+ AddStmtChoice::NotAlwaysAdd);
+ if (Block) {
+ if (badCFG)
+ return nullptr;
+ Block = nullptr;
+ }
+
+ // The condition block is the implicit successor for the loop body as well as
+ // any code above the loop.
+ Succ = EntryConditionBlock;
+
+ // Now create the true branch.
+ {
+ // Save the current values for Succ, continue and break targets.
+ SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
+ SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
+ save_break(BreakJumpTarget);
+
+ // Add an intermediate block between the BodyBlock and the
+ // EntryConditionBlock to represent the "loop back" transition, for looping
+ // back to the head of the loop.
+ CFGBlock *LoopBackBlock = nullptr;
+ Succ = LoopBackBlock = createBlock();
+ LoopBackBlock->setLoopTarget(S);
+
+ BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
+ ContinueJumpTarget = JumpTarget(Succ, ScopePos);
+
+ CFGBlock *BodyBlock = addStmt(S->getBody());
+
+ if (!BodyBlock)
+ BodyBlock = ContinueJumpTarget.block; // can happen for "for (X in Y) ;"
+ else if (Block) {
+ if (badCFG)
+ return nullptr;
+ }
+
+ // This new body block is a successor to our "exit" condition block.
+ addSuccessor(ExitConditionBlock, BodyBlock);
+ }
+
+ // Link up the condition block with the code that follows the loop.
+ // (the false branch).
+ addSuccessor(ExitConditionBlock, LoopSuccessor);
+
+ // Now create a prologue block to contain the collection expression.
+ Block = createBlock();
+ return addStmt(S->getCollection());
+}
+
+CFGBlock *CFGBuilder::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) {
+ // Inline the body.
+ return addStmt(S->getSubStmt());
+ // TODO: consider adding cleanups for the end of @autoreleasepool scope.
+}
+
+CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) {
+ // FIXME: Add locking 'primitives' to CFG for @synchronized.
+
+ // Inline the body.
+ CFGBlock *SyncBlock = addStmt(S->getSynchBody());
+
+ // The sync body starts its own basic block. This makes it a little easier
+ // for diagnostic clients.
+ if (SyncBlock) {
+ if (badCFG)
+ return nullptr;
+
+ Block = nullptr;
+ Succ = SyncBlock;
+ }
+
+ // Add the @synchronized to the CFG.
+ autoCreateBlock();
+ appendStmt(Block, S);
+
+ // Inline the sync expression.
+ return addStmt(S->getSynchExpr());
+}
+
+CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *S) {
+ // FIXME
+ return NYS();
+}
+
+CFGBlock *CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr *E) {
+ autoCreateBlock();
+
+ // Add the PseudoObject as the last thing.
+ appendStmt(Block, E);
+
+ CFGBlock *lastBlock = Block;
+
+ // Before that, evaluate all of the semantics in order. In
+ // CFG-land, that means appending them in reverse order.
+ for (unsigned i = E->getNumSemanticExprs(); i != 0; ) {
+ Expr *Semantic = E->getSemanticExpr(--i);
+
+ // If the semantic is an opaque value, we're being asked to bind
+ // it to its source expression.
+ if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Semantic))
+ Semantic = OVE->getSourceExpr();
+
+ if (CFGBlock *B = Visit(Semantic))
+ lastBlock = B;
+ }
+
+ return lastBlock;
+}
+
+CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) {
+ CFGBlock *LoopSuccessor = nullptr;
+
+ // Save local scope position because in case of condition variable ScopePos
+ // won't be restored when traversing AST.
+ SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
+
+ // Create local scope for possible condition variable.
+ // Store scope position for continue statement.
+ LocalScope::const_iterator LoopBeginScopePos = ScopePos;
+ if (VarDecl *VD = W->getConditionVariable()) {
+ addLocalScopeForVarDecl(VD);
+ addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
+ }
+
+ // "while" is a control-flow statement. Thus we stop processing the current
+ // block.
+ if (Block) {
+ if (badCFG)
+ return nullptr;
+ LoopSuccessor = Block;
+ Block = nullptr;
+ } else {
+ LoopSuccessor = Succ;
+ }
+
+ CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr;
+
+ // Process the loop body.
+ {
+ assert(W->getBody());
+
+ // Save the current values for Block, Succ, continue and break targets.
+ SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
+ SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
+ save_break(BreakJumpTarget);
+
+ // Create an empty block to represent the transition block for looping back
+ // to the head of the loop.
+ Succ = TransitionBlock = createBlock(false);
+ TransitionBlock->setLoopTarget(W);
+ ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
+
+ // All breaks should go to the code following the loop.
+ BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
+
+ // Loop body should end with destructor of Condition variable (if any).
+ addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
+
+ // If body is not a compound statement create implicit scope
+ // and add destructors.
+ if (!isa<CompoundStmt>(W->getBody()))
+ addLocalScopeAndDtors(W->getBody());
+
+ // Create the body. The returned block is the entry to the loop body.
+ BodyBlock = addStmt(W->getBody());
+
+ if (!BodyBlock)
+ BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
+ else if (Block && badCFG)
+ return nullptr;
+ }
+
+ // Because of short-circuit evaluation, the condition of the loop can span
+ // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that
+ // evaluate the condition.
+ CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr;
+
+ do {
+ Expr *C = W->getCond();
+
+ // Specially handle logical operators, which have a slightly
+ // more optimal CFG representation.
+ if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(C->IgnoreParens()))
+ if (Cond->isLogicalOp()) {
+ std::tie(EntryConditionBlock, ExitConditionBlock) =
+ VisitLogicalOperator(Cond, W, BodyBlock, LoopSuccessor);
+ break;
+ }
+
+ // The default case when not handling logical operators.
+ ExitConditionBlock = createBlock(false);
+ ExitConditionBlock->setTerminator(W);
+
+ // Now add the actual condition to the condition block.
+ // Because the condition itself may contain control-flow, new blocks may
+ // be created. Thus we update "Succ" after adding the condition.
+ Block = ExitConditionBlock;
+ Block = EntryConditionBlock = addStmt(C);
+
+ // If this block contains a condition variable, add both the condition
+ // variable and initializer to the CFG.
+ if (VarDecl *VD = W->getConditionVariable()) {
+ if (Expr *Init = VD->getInit()) {
+ autoCreateBlock();
+ appendStmt(Block, W->getConditionVariableDeclStmt());
+ EntryConditionBlock = addStmt(Init);
+ assert(Block == EntryConditionBlock);
+ }
+ }
+
+ if (Block && badCFG)
+ return nullptr;
+
+ // See if this is a known constant.
+ const TryResult& KnownVal = tryEvaluateBool(C);
+
+ // Add the loop body entry as a successor to the condition.
+ addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? nullptr : BodyBlock);
+ // Link up the condition block with the code that follows the loop. (the
+ // false branch).
+ addSuccessor(ExitConditionBlock,
+ KnownVal.isTrue() ? nullptr : LoopSuccessor);
+
+ } while(false);
+
+ // Link up the loop-back block to the entry condition block.
+ addSuccessor(TransitionBlock, EntryConditionBlock);
+
+ // There can be no more statements in the condition block since we loop back
+ // to this block. NULL out Block to force lazy creation of another block.
+ Block = nullptr;
+
+ // Return the condition block, which is the dominating block for the loop.
+ Succ = EntryConditionBlock;
+ return EntryConditionBlock;
+}
+
+
+CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *S) {
+ // FIXME: For now we pretend that @catch and the code it contains does not
+ // exit.
+ return Block;
+}
+
+CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) {
+ // FIXME: This isn't complete. We basically treat @throw like a return
+ // statement.
+
+ // If we were in the middle of a block we stop processing that block.
+ if (badCFG)
+ return nullptr;
+
+ // Create the new block.
+ Block = createBlock(false);
+
+ // The Exit block is the only successor.
+ addSuccessor(Block, &cfg->getExit());
+
+ // Add the statement to the block. This may create new blocks if S contains
+ // control-flow (short-circuit operations).
+ return VisitStmt(S, AddStmtChoice::AlwaysAdd);
+}
+
+CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) {
+ // If we were in the middle of a block we stop processing that block.
+ if (badCFG)
+ return nullptr;
+
+ // Create the new block.
+ Block = createBlock(false);
+
+ if (TryTerminatedBlock)
+ // The current try statement is the only successor.
+ addSuccessor(Block, TryTerminatedBlock);
+ else
+ // otherwise the Exit block is the only successor.
+ addSuccessor(Block, &cfg->getExit());
+
+ // Add the statement to the block. This may create new blocks if S contains
+ // control-flow (short-circuit operations).
+ return VisitStmt(T, AddStmtChoice::AlwaysAdd);
+}
+
+CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) {
+ CFGBlock *LoopSuccessor = nullptr;
+
+ // "do...while" is a control-flow statement. Thus we stop processing the
+ // current block.
+ if (Block) {
+ if (badCFG)
+ return nullptr;
+ LoopSuccessor = Block;
+ } else
+ LoopSuccessor = Succ;
+
+ // Because of short-circuit evaluation, the condition of the loop can span
+ // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that
+ // evaluate the condition.
+ CFGBlock *ExitConditionBlock = createBlock(false);
+ CFGBlock *EntryConditionBlock = ExitConditionBlock;
+
+ // Set the terminator for the "exit" condition block.
+ ExitConditionBlock->setTerminator(D);
+
+ // Now add the actual condition to the condition block. Because the condition
+ // itself may contain control-flow, new blocks may be created.
+ if (Stmt *C = D->getCond()) {
+ Block = ExitConditionBlock;
+ EntryConditionBlock = addStmt(C);
+ if (Block) {
+ if (badCFG)
+ return nullptr;
+ }
+ }
+
+ // The condition block is the implicit successor for the loop body.
+ Succ = EntryConditionBlock;
+
+ // See if this is a known constant.
+ const TryResult &KnownVal = tryEvaluateBool(D->getCond());
+
+ // Process the loop body.
+ CFGBlock *BodyBlock = nullptr;
+ {
+ assert(D->getBody());
+
+ // Save the current values for Block, Succ, and continue and break targets
+ SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
+ SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
+ save_break(BreakJumpTarget);
+
+ // All continues within this loop should go to the condition block
+ ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
+
+ // All breaks should go to the code following the loop.
+ BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
+
+ // NULL out Block to force lazy instantiation of blocks for the body.
+ Block = nullptr;
+
+ // If body is not a compound statement create implicit scope
+ // and add destructors.
+ if (!isa<CompoundStmt>(D->getBody()))
+ addLocalScopeAndDtors(D->getBody());
+
+ // Create the body. The returned block is the entry to the loop body.
+ BodyBlock = addStmt(D->getBody());
+
+ if (!BodyBlock)
+ BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
+ else if (Block) {
+ if (badCFG)
+ return nullptr;
+ }
+
+ if (!KnownVal.isFalse()) {
+ // Add an intermediate block between the BodyBlock and the
+ // ExitConditionBlock to represent the "loop back" transition. Create an
+ // empty block to represent the transition block for looping back to the
+ // head of the loop.
+ // FIXME: Can we do this more efficiently without adding another block?
+ Block = nullptr;
+ Succ = BodyBlock;
+ CFGBlock *LoopBackBlock = createBlock();
+ LoopBackBlock->setLoopTarget(D);
+
+ // Add the loop body entry as a successor to the condition.
+ addSuccessor(ExitConditionBlock, LoopBackBlock);
+ }
+ else
+ addSuccessor(ExitConditionBlock, nullptr);
+ }
+
+ // Link up the condition block with the code that follows the loop.
+ // (the false branch).
+ addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor);
+
+ // There can be no more statements in the body block(s) since we loop back to
+ // the body. NULL out Block to force lazy creation of another block.
+ Block = nullptr;
+
+ // Return the loop body, which is the dominating block for the loop.
+ Succ = BodyBlock;
+ return BodyBlock;
+}
+
+CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) {
+ // "continue" is a control-flow statement. Thus we stop processing the
+ // current block.
+ if (badCFG)
+ return nullptr;
+
+ // Now create a new block that ends with the continue statement.
+ Block = createBlock(false);
+ Block->setTerminator(C);
+
+ // If there is no target for the continue, then we are looking at an
+ // incomplete AST. This means the CFG cannot be constructed.
+ if (ContinueJumpTarget.block) {
+ addAutomaticObjDtors(ScopePos, ContinueJumpTarget.scopePosition, C);
+ addSuccessor(Block, ContinueJumpTarget.block);
+ } else
+ badCFG = true;
+
+ return Block;
+}
+
+CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
+ AddStmtChoice asc) {
+
+ if (asc.alwaysAdd(*this, E)) {
+ autoCreateBlock();
+ appendStmt(Block, E);
+ }
+
+ // VLA types have expressions that must be evaluated.
+ CFGBlock *lastBlock = Block;
+
+ if (E->isArgumentType()) {
+ for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
+ VA != nullptr; VA = FindVA(VA->getElementType().getTypePtr()))
+ lastBlock = addStmt(VA->getSizeExpr());
+ }
+ return lastBlock;
+}
+
+/// VisitStmtExpr - Utility method to handle (nested) statement
+/// expressions (a GCC extension).
+CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
+ if (asc.alwaysAdd(*this, SE)) {
+ autoCreateBlock();
+ appendStmt(Block, SE);
+ }
+ return VisitCompoundStmt(SE->getSubStmt());
+}
+
+CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) {
+ // "switch" is a control-flow statement. Thus we stop processing the current
+ // block.
+ CFGBlock *SwitchSuccessor = nullptr;
+
+ // Save local scope position because in case of condition variable ScopePos
+ // won't be restored when traversing AST.
+ SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
+
+ // Create local scope for possible condition variable.
+ // Store scope position. Add implicit destructor.
+ if (VarDecl *VD = Terminator->getConditionVariable()) {
+ LocalScope::const_iterator SwitchBeginScopePos = ScopePos;
+ addLocalScopeForVarDecl(VD);
+ addAutomaticObjDtors(ScopePos, SwitchBeginScopePos, Terminator);
+ }
+
+ if (Block) {
+ if (badCFG)
+ return nullptr;
+ SwitchSuccessor = Block;
+ } else SwitchSuccessor = Succ;
+
+ // Save the current "switch" context.
+ SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
+ save_default(DefaultCaseBlock);
+ SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
+
+ // Set the "default" case to be the block after the switch statement. If the
+ // switch statement contains a "default:", this value will be overwritten with
+ // the block for that code.
+ DefaultCaseBlock = SwitchSuccessor;
+
+ // Create a new block that will contain the switch statement.
+ SwitchTerminatedBlock = createBlock(false);
+
+ // Now process the switch body. The code after the switch is the implicit
+ // successor.
+ Succ = SwitchSuccessor;
+ BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
+
+ // When visiting the body, the case statements should automatically get linked
+ // up to the switch. We also don't keep a pointer to the body, since all
+ // control-flow from the switch goes to case/default statements.
+ assert(Terminator->getBody() && "switch must contain a non-NULL body");
+ Block = nullptr;
+
+ // For pruning unreachable case statements, save the current state
+ // for tracking the condition value.
+ SaveAndRestore<bool> save_switchExclusivelyCovered(switchExclusivelyCovered,
+ false);
+
+ // Determine if the switch condition can be explicitly evaluated.
+ assert(Terminator->getCond() && "switch condition must be non-NULL");
+ Expr::EvalResult result;
+ bool b = tryEvaluate(Terminator->getCond(), result);
+ SaveAndRestore<Expr::EvalResult*> save_switchCond(switchCond,
+ b ? &result : nullptr);
+
+ // If body is not a compound statement create implicit scope
+ // and add destructors.
+ if (!isa<CompoundStmt>(Terminator->getBody()))
+ addLocalScopeAndDtors(Terminator->getBody());
+
+ addStmt(Terminator->getBody());
+ if (Block) {
+ if (badCFG)
+ return nullptr;
+ }
+
+ // If we have no "default:" case, the default transition is to the code
+ // following the switch body. Moreover, take into account if all the
+ // cases of a switch are covered (e.g., switching on an enum value).
+ //
+ // Note: We add a successor to a switch that is considered covered yet has no
+ // case statements if the enumeration has no enumerators.
+ bool SwitchAlwaysHasSuccessor = false;
+ SwitchAlwaysHasSuccessor |= switchExclusivelyCovered;
+ SwitchAlwaysHasSuccessor |= Terminator->isAllEnumCasesCovered() &&
+ Terminator->getSwitchCaseList();
+ addSuccessor(SwitchTerminatedBlock, DefaultCaseBlock,
+ !SwitchAlwaysHasSuccessor);
+
+ // Add the terminator and condition in the switch block.
+ SwitchTerminatedBlock->setTerminator(Terminator);
+ Block = SwitchTerminatedBlock;
+ CFGBlock *LastBlock = addStmt(Terminator->getCond());
+
+ // Finally, if the SwitchStmt contains a condition variable, add both the
+ // SwitchStmt and the condition variable initialization to the CFG.
+ if (VarDecl *VD = Terminator->getConditionVariable()) {
+ if (Expr *Init = VD->getInit()) {
+ autoCreateBlock();
+ appendStmt(Block, Terminator->getConditionVariableDeclStmt());
+ LastBlock = addStmt(Init);
+ }
+ }
+
+ return LastBlock;
+}
+
+static bool shouldAddCase(bool &switchExclusivelyCovered,
+ const Expr::EvalResult *switchCond,
+ const CaseStmt *CS,
+ ASTContext &Ctx) {
+ if (!switchCond)
+ return true;
+
+ bool addCase = false;
+
+ if (!switchExclusivelyCovered) {
+ if (switchCond->Val.isInt()) {
+ // Evaluate the LHS of the case value.
+ const llvm::APSInt &lhsInt = CS->getLHS()->EvaluateKnownConstInt(Ctx);
+ const llvm::APSInt &condInt = switchCond->Val.getInt();
+
+ if (condInt == lhsInt) {
+ addCase = true;
+ switchExclusivelyCovered = true;
+ }
+ else if (condInt < lhsInt) {
+ if (const Expr *RHS = CS->getRHS()) {
+ // Evaluate the RHS of the case value.
+ const llvm::APSInt &V2 = RHS->EvaluateKnownConstInt(Ctx);
+ if (V2 <= condInt) {
+ addCase = true;
+ switchExclusivelyCovered = true;
+ }
+ }
+ }
+ }
+ else
+ addCase = true;
+ }
+ return addCase;
+}
+
+CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) {
+ // CaseStmts are essentially labels, so they are the first statement in a
+ // block.
+ CFGBlock *TopBlock = nullptr, *LastBlock = nullptr;
+
+ if (Stmt *Sub = CS->getSubStmt()) {
+ // For deeply nested chains of CaseStmts, instead of doing a recursion
+ // (which can blow out the stack), manually unroll and create blocks
+ // along the way.
+ while (isa<CaseStmt>(Sub)) {
+ CFGBlock *currentBlock = createBlock(false);
+ currentBlock->setLabel(CS);
+
+ if (TopBlock)
+ addSuccessor(LastBlock, currentBlock);
+ else
+ TopBlock = currentBlock;
+
+ addSuccessor(SwitchTerminatedBlock,
+ shouldAddCase(switchExclusivelyCovered, switchCond,
+ CS, *Context)
+ ? currentBlock : nullptr);
+
+ LastBlock = currentBlock;
+ CS = cast<CaseStmt>(Sub);
+ Sub = CS->getSubStmt();
+ }
+
+ addStmt(Sub);
+ }
+
+ CFGBlock *CaseBlock = Block;
+ if (!CaseBlock)
+ CaseBlock = createBlock();
+
+ // Cases statements partition blocks, so this is the top of the basic block we
+ // were processing (the "case XXX:" is the label).
+ CaseBlock->setLabel(CS);
+
+ if (badCFG)
+ return nullptr;
+
+ // Add this block to the list of successors for the block with the switch
+ // statement.
+ assert(SwitchTerminatedBlock);
+ addSuccessor(SwitchTerminatedBlock, CaseBlock,
+ shouldAddCase(switchExclusivelyCovered, switchCond,
+ CS, *Context));
+
+ // We set Block to NULL to allow lazy creation of a new block (if necessary)
+ Block = nullptr;
+
+ if (TopBlock) {
+ addSuccessor(LastBlock, CaseBlock);
+ Succ = TopBlock;
+ } else {
+ // This block is now the implicit successor of other blocks.
+ Succ = CaseBlock;
+ }
+
+ return Succ;
+}
+
+CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) {
+ if (Terminator->getSubStmt())
+ addStmt(Terminator->getSubStmt());
+
+ DefaultCaseBlock = Block;
+
+ if (!DefaultCaseBlock)
+ DefaultCaseBlock = createBlock();
+
+ // Default statements partition blocks, so this is the top of the basic block
+ // we were processing (the "default:" is the label).
+ DefaultCaseBlock->setLabel(Terminator);
+
+ if (badCFG)
+ return nullptr;
+
+ // Unlike case statements, we don't add the default block to the successors
+ // for the switch statement immediately. This is done when we finish
+ // processing the switch statement. This allows for the default case
+ // (including a fall-through to the code after the switch statement) to always
+ // be the last successor of a switch-terminated block.
+
+ // We set Block to NULL to allow lazy creation of a new block (if necessary)
+ Block = nullptr;
+
+ // This block is now the implicit successor of other blocks.
+ Succ = DefaultCaseBlock;
+
+ return DefaultCaseBlock;
+}
+
+CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
+ // "try"/"catch" is a control-flow statement. Thus we stop processing the
+ // current block.
+ CFGBlock *TrySuccessor = nullptr;
+
+ if (Block) {
+ if (badCFG)
+ return nullptr;
+ TrySuccessor = Block;
+ } else TrySuccessor = Succ;
+
+ CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
+
+ // Create a new block that will contain the try statement.
+ CFGBlock *NewTryTerminatedBlock = createBlock(false);
+ // Add the terminator in the try block.
+ NewTryTerminatedBlock->setTerminator(Terminator);
+
+ bool HasCatchAll = false;
+ for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
+ // The code after the try is the implicit successor.
+ Succ = TrySuccessor;
+ CXXCatchStmt *CS = Terminator->getHandler(h);
+ if (CS->getExceptionDecl() == nullptr) {
+ HasCatchAll = true;
+ }
+ Block = nullptr;
+ CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
+ if (!CatchBlock)
+ return nullptr;
+ // Add this block to the list of successors for the block with the try
+ // statement.
+ addSuccessor(NewTryTerminatedBlock, CatchBlock);
+ }
+ if (!HasCatchAll) {
+ if (PrevTryTerminatedBlock)
+ addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
+ else
+ addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
+ }
+
+ // The code after the try is the implicit successor.
+ Succ = TrySuccessor;
+
+ // Save the current "try" context.
+ SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock, NewTryTerminatedBlock);
+ cfg->addTryDispatchBlock(TryTerminatedBlock);
+
+ assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
+ Block = nullptr;
+ return addStmt(Terminator->getTryBlock());
+}
+
+CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) {
+ // CXXCatchStmt are treated like labels, so they are the first statement in a
+ // block.
+
+ // Save local scope position because in case of exception variable ScopePos
+ // won't be restored when traversing AST.
+ SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
+
+ // Create local scope for possible exception variable.
+ // Store scope position. Add implicit destructor.
+ if (VarDecl *VD = CS->getExceptionDecl()) {
+ LocalScope::const_iterator BeginScopePos = ScopePos;
+ addLocalScopeForVarDecl(VD);
+ addAutomaticObjDtors(ScopePos, BeginScopePos, CS);
+ }
+
+ if (CS->getHandlerBlock())
+ addStmt(CS->getHandlerBlock());
+
+ CFGBlock *CatchBlock = Block;
+ if (!CatchBlock)
+ CatchBlock = createBlock();
+
+ // CXXCatchStmt is more than just a label. They have semantic meaning
+ // as well, as they implicitly "initialize" the catch variable. Add
+ // it to the CFG as a CFGElement so that the control-flow of these
+ // semantics gets captured.
+ appendStmt(CatchBlock, CS);
+
+ // Also add the CXXCatchStmt as a label, to mirror handling of regular
+ // labels.
+ CatchBlock->setLabel(CS);
+
+ // Bail out if the CFG is bad.
+ if (badCFG)
+ return nullptr;
+
+ // We set Block to NULL to allow lazy creation of a new block (if necessary)
+ Block = nullptr;
+
+ return CatchBlock;
+}
+
+CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) {
+ // C++0x for-range statements are specified as [stmt.ranged]:
+ //
+ // {
+ // auto && __range = range-init;
+ // for ( auto __begin = begin-expr,
+ // __end = end-expr;
+ // __begin != __end;
+ // ++__begin ) {
+ // for-range-declaration = *__begin;
+ // statement
+ // }
+ // }
+
+ // Save local scope position before the addition of the implicit variables.
+ SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
+
+ // Create local scopes and destructors for range, begin and end variables.
+ if (Stmt *Range = S->getRangeStmt())
+ addLocalScopeForStmt(Range);
+ if (Stmt *BeginEnd = S->getBeginEndStmt())
+ addLocalScopeForStmt(BeginEnd);
+ addAutomaticObjDtors(ScopePos, save_scope_pos.get(), S);
+
+ LocalScope::const_iterator ContinueScopePos = ScopePos;
+
+ // "for" is a control-flow statement. Thus we stop processing the current
+ // block.
+ CFGBlock *LoopSuccessor = nullptr;
+ if (Block) {
+ if (badCFG)
+ return nullptr;
+ LoopSuccessor = Block;
+ } else
+ LoopSuccessor = Succ;
+
+ // Save the current value for the break targets.
+ // All breaks should go to the code following the loop.
+ SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
+ BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
+
+ // The block for the __begin != __end expression.
+ CFGBlock *ConditionBlock = createBlock(false);
+ ConditionBlock->setTerminator(S);
+
+ // Now add the actual condition to the condition block.
+ if (Expr *C = S->getCond()) {
+ Block = ConditionBlock;
+ CFGBlock *BeginConditionBlock = addStmt(C);
+ if (badCFG)
+ return nullptr;
+ assert(BeginConditionBlock == ConditionBlock &&
+ "condition block in for-range was unexpectedly complex");
+ (void)BeginConditionBlock;
+ }
+
+ // The condition block is the implicit successor for the loop body as well as
+ // any code above the loop.
+ Succ = ConditionBlock;
+
+ // See if this is a known constant.
+ TryResult KnownVal(true);
+
+ if (S->getCond())
+ KnownVal = tryEvaluateBool(S->getCond());
+
+ // Now create the loop body.
+ {
+ assert(S->getBody());
+
+ // Save the current values for Block, Succ, and continue targets.
+ SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
+ SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
+
+ // Generate increment code in its own basic block. This is the target of
+ // continue statements.
+ Block = nullptr;
+ Succ = addStmt(S->getInc());
+ ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
+
+ // The starting block for the loop increment is the block that should
+ // represent the 'loop target' for looping back to the start of the loop.
+ ContinueJumpTarget.block->setLoopTarget(S);
+
+ // Finish up the increment block and prepare to start the loop body.
+ assert(Block);
+ if (badCFG)
+ return nullptr;
+ Block = nullptr;
+
+ // Add implicit scope and dtors for loop variable.
+ addLocalScopeAndDtors(S->getLoopVarStmt());
+
+ // Populate a new block to contain the loop body and loop variable.
+ addStmt(S->getBody());
+ if (badCFG)
+ return nullptr;
+ CFGBlock *LoopVarStmtBlock = addStmt(S->getLoopVarStmt());
+ if (badCFG)
+ return nullptr;
+
+ // This new body block is a successor to our condition block.
+ addSuccessor(ConditionBlock,
+ KnownVal.isFalse() ? nullptr : LoopVarStmtBlock);
+ }
+
+ // Link up the condition block with the code that follows the loop (the
+ // false branch).
+ addSuccessor(ConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor);
+
+ // Add the initialization statements.
+ Block = createBlock();
+ addStmt(S->getBeginEndStmt());
+ return addStmt(S->getRangeStmt());
+}
+
+CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
+ AddStmtChoice asc) {
+ if (BuildOpts.AddTemporaryDtors) {
+ // If adding implicit destructors visit the full expression for adding
+ // destructors of temporaries.
+ TempDtorContext Context;
+ VisitForTemporaryDtors(E->getSubExpr(), false, Context);
+
+ // Full expression has to be added as CFGStmt so it will be sequenced
+ // before destructors of it's temporaries.
+ asc = asc.withAlwaysAdd(true);
+ }
+ return Visit(E->getSubExpr(), asc);
+}
+
+CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
+ AddStmtChoice asc) {
+ if (asc.alwaysAdd(*this, E)) {
+ autoCreateBlock();
+ appendStmt(Block, E);
+
+ // We do not want to propagate the AlwaysAdd property.
+ asc = asc.withAlwaysAdd(false);
+ }
+ return Visit(E->getSubExpr(), asc);
+}
+
+CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
+ AddStmtChoice asc) {
+ autoCreateBlock();
+ appendStmt(Block, C);
+
+ return VisitChildren(C);
+}
+
+CFGBlock *CFGBuilder::VisitCXXNewExpr(CXXNewExpr *NE,
+ AddStmtChoice asc) {
+
+ autoCreateBlock();
+ appendStmt(Block, NE);
+
+ if (NE->getInitializer())
+ Block = Visit(NE->getInitializer());
+ if (BuildOpts.AddCXXNewAllocator)
+ appendNewAllocator(Block, NE);
+ if (NE->isArray())
+ Block = Visit(NE->getArraySize());
+ for (CXXNewExpr::arg_iterator I = NE->placement_arg_begin(),
+ E = NE->placement_arg_end(); I != E; ++I)
+ Block = Visit(*I);
+ return Block;
+}
+
+CFGBlock *CFGBuilder::VisitCXXDeleteExpr(CXXDeleteExpr *DE,
+ AddStmtChoice asc) {
+ autoCreateBlock();
+ appendStmt(Block, DE);
+ QualType DTy = DE->getDestroyedType();
+ DTy = DTy.getNonReferenceType();
+ CXXRecordDecl *RD = Context->getBaseElementType(DTy)->getAsCXXRecordDecl();
+ if (RD) {
+ if (RD->isCompleteDefinition() && !RD->hasTrivialDestructor())
+ appendDeleteDtor(Block, RD, DE);
+ }
+
+ return VisitChildren(DE);
+}
+
+CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
+ AddStmtChoice asc) {
+ if (asc.alwaysAdd(*this, E)) {
+ autoCreateBlock();
+ appendStmt(Block, E);
+ // We do not want to propagate the AlwaysAdd property.
+ asc = asc.withAlwaysAdd(false);
+ }
+ return Visit(E->getSubExpr(), asc);
+}
+
+CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
+ AddStmtChoice asc) {
+ autoCreateBlock();
+ appendStmt(Block, C);
+ return VisitChildren(C);
+}
+
+CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
+ AddStmtChoice asc) {
+ if (asc.alwaysAdd(*this, E)) {
+ autoCreateBlock();
+ appendStmt(Block, E);
+ }
+ return Visit(E->getSubExpr(), AddStmtChoice());
+}
+
+CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) {
+ // Lazily create the indirect-goto dispatch block if there isn't one already.
+ CFGBlock *IBlock = cfg->getIndirectGotoBlock();
+
+ if (!IBlock) {
+ IBlock = createBlock(false);
+ cfg->setIndirectGotoBlock(IBlock);
+ }
+
+ // IndirectGoto is a control-flow statement. Thus we stop processing the
+ // current block and create a new one.
+ if (badCFG)
+ return nullptr;
+
+ Block = createBlock(false);
+ Block->setTerminator(I);
+ addSuccessor(Block, IBlock);
+ return addStmt(I->getTarget());
+}
+
+CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool BindToTemporary,
+ TempDtorContext &Context) {
+ assert(BuildOpts.AddImplicitDtors && BuildOpts.AddTemporaryDtors);
+
+tryAgain:
+ if (!E) {
+ badCFG = true;
+ return nullptr;
+ }
+ switch (E->getStmtClass()) {
+ default:
+ return VisitChildrenForTemporaryDtors(E, Context);
+
+ case Stmt::BinaryOperatorClass:
+ return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E),
+ Context);
+
+ case Stmt::CXXBindTemporaryExprClass:
+ return VisitCXXBindTemporaryExprForTemporaryDtors(
+ cast<CXXBindTemporaryExpr>(E), BindToTemporary, Context);
+
+ case Stmt::BinaryConditionalOperatorClass:
+ case Stmt::ConditionalOperatorClass:
+ return VisitConditionalOperatorForTemporaryDtors(
+ cast<AbstractConditionalOperator>(E), BindToTemporary, Context);
+
+ case Stmt::ImplicitCastExprClass:
+ // For implicit cast we want BindToTemporary to be passed further.
+ E = cast<CastExpr>(E)->getSubExpr();
+ goto tryAgain;
+
+ case Stmt::CXXFunctionalCastExprClass:
+ // For functional cast we want BindToTemporary to be passed further.
+ E = cast<CXXFunctionalCastExpr>(E)->getSubExpr();
+ goto tryAgain;
+
+ case Stmt::ParenExprClass:
+ E = cast<ParenExpr>(E)->getSubExpr();
+ goto tryAgain;
+
+ case Stmt::MaterializeTemporaryExprClass: {
+ const MaterializeTemporaryExpr* MTE = cast<MaterializeTemporaryExpr>(E);
+ BindToTemporary = (MTE->getStorageDuration() != SD_FullExpression);
+ SmallVector<const Expr *, 2> CommaLHSs;
+ SmallVector<SubobjectAdjustment, 2> Adjustments;
+ // Find the expression whose lifetime needs to be extended.
+ E = const_cast<Expr *>(
+ cast<MaterializeTemporaryExpr>(E)
+ ->GetTemporaryExpr()
+ ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
+ // Visit the skipped comma operator left-hand sides for other temporaries.
+ for (const Expr *CommaLHS : CommaLHSs) {
+ VisitForTemporaryDtors(const_cast<Expr *>(CommaLHS),
+ /*BindToTemporary=*/false, Context);
+ }
+ goto tryAgain;
+ }
+
+ case Stmt::BlockExprClass:
+ // Don't recurse into blocks; their subexpressions don't get evaluated
+ // here.
+ return Block;
+
+ case Stmt::LambdaExprClass: {
+ // For lambda expressions, only recurse into the capture initializers,
+ // and not the body.
+ auto *LE = cast<LambdaExpr>(E);
+ CFGBlock *B = Block;
+ for (Expr *Init : LE->capture_inits()) {
+ if (CFGBlock *R = VisitForTemporaryDtors(
+ Init, /*BindToTemporary=*/false, Context))
+ B = R;
+ }
+ return B;
+ }
+
+ case Stmt::CXXDefaultArgExprClass:
+ E = cast<CXXDefaultArgExpr>(E)->getExpr();
+ goto tryAgain;
+
+ case Stmt::CXXDefaultInitExprClass:
+ E = cast<CXXDefaultInitExpr>(E)->getExpr();
+ goto tryAgain;
+ }
+}
+
+CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E,
+ TempDtorContext &Context) {
+ if (isa<LambdaExpr>(E)) {
+ // Do not visit the children of lambdas; they have their own CFGs.
+ return Block;
+ }
+
+ // When visiting children for destructors we want to visit them in reverse
+ // order that they will appear in the CFG. Because the CFG is built
+ // bottom-up, this means we visit them in their natural order, which
+ // reverses them in the CFG.
+ CFGBlock *B = Block;
+ for (Stmt::child_range I = E->children(); I; ++I) {
+ if (Stmt *Child = *I)
+ if (CFGBlock *R = VisitForTemporaryDtors(Child, false, Context))
+ B = R;
+ }
+ return B;
+}
+
+CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(
+ BinaryOperator *E, TempDtorContext &Context) {
+ if (E->isLogicalOp()) {
+ VisitForTemporaryDtors(E->getLHS(), false, Context);
+ TryResult RHSExecuted = tryEvaluateBool(E->getLHS());
+ if (RHSExecuted.isKnown() && E->getOpcode() == BO_LOr)
+ RHSExecuted.negate();
+
+ // We do not know at CFG-construction time whether the right-hand-side was
+ // executed, thus we add a branch node that depends on the temporary
+ // constructor call.
+ TempDtorContext RHSContext(
+ bothKnownTrue(Context.KnownExecuted, RHSExecuted));
+ VisitForTemporaryDtors(E->getRHS(), false, RHSContext);
+ InsertTempDtorDecisionBlock(RHSContext);
+
+ return Block;
+ }
+
+ if (E->isAssignmentOp()) {
+ // For assignment operator (=) LHS expression is visited
+ // before RHS expression. For destructors visit them in reverse order.
+ CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS(), false, Context);
+ CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS(), false, Context);
+ return LHSBlock ? LHSBlock : RHSBlock;
+ }
+
+ // For any other binary operator RHS expression is visited before
+ // LHS expression (order of children). For destructors visit them in reverse
+ // order.
+ CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS(), false, Context);
+ CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS(), false, Context);
+ return RHSBlock ? RHSBlock : LHSBlock;
+}
+
+CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
+ CXXBindTemporaryExpr *E, bool BindToTemporary, TempDtorContext &Context) {
+ // First add destructors for temporaries in subexpression.
+ CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr(), false, Context);
+ if (!BindToTemporary) {
+ // If lifetime of temporary is not prolonged (by assigning to constant
+ // reference) add destructor for it.
+
+ const CXXDestructorDecl *Dtor = E->getTemporary()->getDestructor();
+
+ if (Dtor->isNoReturn()) {
+ // If the destructor is marked as a no-return destructor, we need to
+ // create a new block for the destructor which does not have as a
+ // successor anything built thus far. Control won't flow out of this
+ // block.
+ if (B) Succ = B;
+ Block = createNoReturnBlock();
+ } else if (Context.needsTempDtorBranch()) {
+ // If we need to introduce a branch, we add a new block that we will hook
+ // up to a decision block later.
+ if (B) Succ = B;
+ Block = createBlock();
+ } else {
+ autoCreateBlock();
+ }
+ if (Context.needsTempDtorBranch()) {
+ Context.setDecisionPoint(Succ, E);
+ }
+ appendTemporaryDtor(Block, E);
+
+ B = Block;
+ }
+ return B;
+}
+
+void CFGBuilder::InsertTempDtorDecisionBlock(const TempDtorContext &Context,
+ CFGBlock *FalseSucc) {
+ if (!Context.TerminatorExpr) {
+ // If no temporary was found, we do not need to insert a decision point.
+ return;
+ }
+ assert(Context.TerminatorExpr);
+ CFGBlock *Decision = createBlock(false);
+ Decision->setTerminator(CFGTerminator(Context.TerminatorExpr, true));
+ addSuccessor(Decision, Block, !Context.KnownExecuted.isFalse());
+ addSuccessor(Decision, FalseSucc ? FalseSucc : Context.Succ,
+ !Context.KnownExecuted.isTrue());
+ Block = Decision;
+}
+
+CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
+ AbstractConditionalOperator *E, bool BindToTemporary,
+ TempDtorContext &Context) {
+ VisitForTemporaryDtors(E->getCond(), false, Context);
+ CFGBlock *ConditionBlock = Block;
+ CFGBlock *ConditionSucc = Succ;
+ TryResult ConditionVal = tryEvaluateBool(E->getCond());
+ TryResult NegatedVal = ConditionVal;
+ if (NegatedVal.isKnown()) NegatedVal.negate();
+
+ TempDtorContext TrueContext(
+ bothKnownTrue(Context.KnownExecuted, ConditionVal));
+ VisitForTemporaryDtors(E->getTrueExpr(), BindToTemporary, TrueContext);
+ CFGBlock *TrueBlock = Block;
+
+ Block = ConditionBlock;
+ Succ = ConditionSucc;
+ TempDtorContext FalseContext(
+ bothKnownTrue(Context.KnownExecuted, NegatedVal));
+ VisitForTemporaryDtors(E->getFalseExpr(), BindToTemporary, FalseContext);
+
+ if (TrueContext.TerminatorExpr && FalseContext.TerminatorExpr) {
+ InsertTempDtorDecisionBlock(FalseContext, TrueBlock);
+ } else if (TrueContext.TerminatorExpr) {
+ Block = TrueBlock;
+ InsertTempDtorDecisionBlock(TrueContext);
+ } else {
+ InsertTempDtorDecisionBlock(FalseContext);
+ }
+ return Block;
+}
+
+} // end anonymous namespace
+
+/// createBlock - Constructs and adds a new CFGBlock to the CFG. The block has
+/// no successors or predecessors. If this is the first block created in the
+/// CFG, it is automatically set to be the Entry and Exit of the CFG.
+CFGBlock *CFG::createBlock() {
+ bool first_block = begin() == end();
+
+ // Create the block.
+ CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
+ new (Mem) CFGBlock(NumBlockIDs++, BlkBVC, this);
+ Blocks.push_back(Mem, BlkBVC);
+
+ // If this is the first block, set it as the Entry and Exit.
+ if (first_block)
+ Entry = Exit = &back();
+
+ // Return the block.
+ return &back();
+}
+
+/// buildCFG - Constructs a CFG from an AST.
+std::unique_ptr<CFG> CFG::buildCFG(const Decl *D, Stmt *Statement,
+ ASTContext *C, const BuildOptions &BO) {
+ CFGBuilder Builder(C, BO);
+ return Builder.buildCFG(D, Statement);
+}
+
+const CXXDestructorDecl *
+CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
+ switch (getKind()) {
+ case CFGElement::Statement:
+ case CFGElement::Initializer:
+ case CFGElement::NewAllocator:
+ llvm_unreachable("getDestructorDecl should only be used with "
+ "ImplicitDtors");
+ case CFGElement::AutomaticObjectDtor: {
+ const VarDecl *var = castAs<CFGAutomaticObjDtor>().getVarDecl();
+ QualType ty = var->getType();
+ ty = ty.getNonReferenceType();
+ while (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
+ ty = arrayType->getElementType();
+ }
+ const RecordType *recordType = ty->getAs<RecordType>();
+ const CXXRecordDecl *classDecl =
+ cast<CXXRecordDecl>(recordType->getDecl());
+ return classDecl->getDestructor();
+ }
+ case CFGElement::DeleteDtor: {
+ const CXXDeleteExpr *DE = castAs<CFGDeleteDtor>().getDeleteExpr();
+ QualType DTy = DE->getDestroyedType();
+ DTy = DTy.getNonReferenceType();
+ const CXXRecordDecl *classDecl =
+ astContext.getBaseElementType(DTy)->getAsCXXRecordDecl();
+ return classDecl->getDestructor();
+ }
+ case CFGElement::TemporaryDtor: {
+ const CXXBindTemporaryExpr *bindExpr =
+ castAs<CFGTemporaryDtor>().getBindTemporaryExpr();
+ const CXXTemporary *temp = bindExpr->getTemporary();
+ return temp->getDestructor();
+ }
+ case CFGElement::BaseDtor:
+ case CFGElement::MemberDtor:
+
+ // Not yet supported.
+ return nullptr;
+ }
+ llvm_unreachable("getKind() returned bogus value");
+}
+
+bool CFGImplicitDtor::isNoReturn(ASTContext &astContext) const {
+ if (const CXXDestructorDecl *DD = getDestructorDecl(astContext))
+ return DD->isNoReturn();
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// CFGBlock operations.
+//===----------------------------------------------------------------------===//
+
+CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, bool IsReachable)
+ : ReachableBlock(IsReachable ? B : nullptr),
+ UnreachableBlock(!IsReachable ? B : nullptr,
+ B && IsReachable ? AB_Normal : AB_Unreachable) {}
+
+CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, CFGBlock *AlternateBlock)
+ : ReachableBlock(B),
+ UnreachableBlock(B == AlternateBlock ? nullptr : AlternateBlock,
+ B == AlternateBlock ? AB_Alternate : AB_Normal) {}
+
+void CFGBlock::addSuccessor(AdjacentBlock Succ,
+ BumpVectorContext &C) {
+ if (CFGBlock *B = Succ.getReachableBlock())
+ B->Preds.push_back(AdjacentBlock(this, Succ.isReachable()), C);
+
+ if (CFGBlock *UnreachableB = Succ.getPossiblyUnreachableBlock())
+ UnreachableB->Preds.push_back(AdjacentBlock(this, false), C);
+
+ Succs.push_back(Succ, C);
+}
+
+bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
+ const CFGBlock *From, const CFGBlock *To) {
+
+ if (F.IgnoreNullPredecessors && !From)
+ return true;
+
+ if (To && From && F.IgnoreDefaultsWithCoveredEnums) {
+ // If the 'To' has no label or is labeled but the label isn't a
+ // CaseStmt then filter this edge.
+ if (const SwitchStmt *S =
+ dyn_cast_or_null<SwitchStmt>(From->getTerminator().getStmt())) {
+ if (S->isAllEnumCasesCovered()) {
+ const Stmt *L = To->getLabel();
+ if (!L || !isa<CaseStmt>(L))
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// CFG pretty printing
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class StmtPrinterHelper : public PrinterHelper {
+ typedef llvm::DenseMap<const Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
+ typedef llvm::DenseMap<const Decl*,std::pair<unsigned,unsigned> > DeclMapTy;
+ StmtMapTy StmtMap;
+ DeclMapTy DeclMap;
+ signed currentBlock;
+ unsigned currStmt;
+ const LangOptions &LangOpts;
+public:
+
+ StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
+ : currentBlock(0), currStmt(0), LangOpts(LO)
+ {
+ for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
+ unsigned j = 1;
+ for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
+ BI != BEnd; ++BI, ++j ) {
+ if (Optional<CFGStmt> SE = BI->getAs<CFGStmt>()) {
+ const Stmt *stmt= SE->getStmt();
+ std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
+ StmtMap[stmt] = P;
+
+ switch (stmt->getStmtClass()) {
+ case Stmt::DeclStmtClass:
+ DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P;
+ break;
+ case Stmt::IfStmtClass: {
+ const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable();
+ if (var)
+ DeclMap[var] = P;
+ break;
+ }
+ case Stmt::ForStmtClass: {
+ const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable();
+ if (var)
+ DeclMap[var] = P;
+ break;
+ }
+ case Stmt::WhileStmtClass: {
+ const VarDecl *var =
+ cast<WhileStmt>(stmt)->getConditionVariable();
+ if (var)
+ DeclMap[var] = P;
+ break;
+ }
+ case Stmt::SwitchStmtClass: {
+ const VarDecl *var =
+ cast<SwitchStmt>(stmt)->getConditionVariable();
+ if (var)
+ DeclMap[var] = P;
+ break;
+ }
+ case Stmt::CXXCatchStmtClass: {
+ const VarDecl *var =
+ cast<CXXCatchStmt>(stmt)->getExceptionDecl();
+ if (var)
+ DeclMap[var] = P;
+ break;
+ }
+ default:
+ break;
+ }
+ }
+ }
+ }
+ }
+
+ ~StmtPrinterHelper() override {}
+
+ const LangOptions &getLangOpts() const { return LangOpts; }
+ void setBlockID(signed i) { currentBlock = i; }
+ void setStmtID(unsigned i) { currStmt = i; }
+
+ bool handledStmt(Stmt *S, raw_ostream &OS) override {
+ StmtMapTy::iterator I = StmtMap.find(S);
+
+ if (I == StmtMap.end())
+ return false;
+
+ if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
+ && I->second.second == currStmt) {
+ return false;
+ }
+
+ OS << "[B" << I->second.first << "." << I->second.second << "]";
+ return true;
+ }
+
+ bool handleDecl(const Decl *D, raw_ostream &OS) {
+ DeclMapTy::iterator I = DeclMap.find(D);
+
+ if (I == DeclMap.end())
+ return false;
+
+ if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
+ && I->second.second == currStmt) {
+ return false;
+ }
+
+ OS << "[B" << I->second.first << "." << I->second.second << "]";
+ return true;
+ }
+};
+} // end anonymous namespace
+
+
+namespace {
+class CFGBlockTerminatorPrint
+ : public StmtVisitor<CFGBlockTerminatorPrint,void> {
+
+ raw_ostream &OS;
+ StmtPrinterHelper* Helper;
+ PrintingPolicy Policy;
+public:
+ CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper,
+ const PrintingPolicy &Policy)
+ : OS(os), Helper(helper), Policy(Policy) {
+ this->Policy.IncludeNewlines = false;
+ }
+
+ void VisitIfStmt(IfStmt *I) {
+ OS << "if ";
+ if (Stmt *C = I->getCond())
+ C->printPretty(OS, Helper, Policy);
+ }
+
+ // Default case.
+ void VisitStmt(Stmt *Terminator) {
+ Terminator->printPretty(OS, Helper, Policy);
+ }
+
+ void VisitDeclStmt(DeclStmt *DS) {
+ VarDecl *VD = cast<VarDecl>(DS->getSingleDecl());
+ OS << "static init " << VD->getName();
+ }
+
+ void VisitForStmt(ForStmt *F) {
+ OS << "for (" ;
+ if (F->getInit())
+ OS << "...";
+ OS << "; ";
+ if (Stmt *C = F->getCond())
+ C->printPretty(OS, Helper, Policy);
+ OS << "; ";
+ if (F->getInc())
+ OS << "...";
+ OS << ")";
+ }
+
+ void VisitWhileStmt(WhileStmt *W) {
+ OS << "while " ;
+ if (Stmt *C = W->getCond())
+ C->printPretty(OS, Helper, Policy);
+ }
+
+ void VisitDoStmt(DoStmt *D) {
+ OS << "do ... while ";
+ if (Stmt *C = D->getCond())
+ C->printPretty(OS, Helper, Policy);
+ }
+
+ void VisitSwitchStmt(SwitchStmt *Terminator) {
+ OS << "switch ";
+ Terminator->getCond()->printPretty(OS, Helper, Policy);
+ }
+
+ void VisitCXXTryStmt(CXXTryStmt *CS) {
+ OS << "try ...";
+ }
+
+ void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
+ if (Stmt *Cond = C->getCond())
+ Cond->printPretty(OS, Helper, Policy);
+ OS << " ? ... : ...";
+ }
+
+ void VisitChooseExpr(ChooseExpr *C) {
+ OS << "__builtin_choose_expr( ";
+ if (Stmt *Cond = C->getCond())
+ Cond->printPretty(OS, Helper, Policy);
+ OS << " )";
+ }
+
+ void VisitIndirectGotoStmt(IndirectGotoStmt *I) {
+ OS << "goto *";
+ if (Stmt *T = I->getTarget())
+ T->printPretty(OS, Helper, Policy);
+ }
+
+ void VisitBinaryOperator(BinaryOperator* B) {
+ if (!B->isLogicalOp()) {
+ VisitExpr(B);
+ return;
+ }
+
+ if (B->getLHS())
+ B->getLHS()->printPretty(OS, Helper, Policy);
+
+ switch (B->getOpcode()) {
+ case BO_LOr:
+ OS << " || ...";
+ return;
+ case BO_LAnd:
+ OS << " && ...";
+ return;
+ default:
+ llvm_unreachable("Invalid logical operator.");
+ }
+ }
+
+ void VisitExpr(Expr *E) {
+ E->printPretty(OS, Helper, Policy);
+ }
+
+public:
+ void print(CFGTerminator T) {
+ if (T.isTemporaryDtorsBranch())
+ OS << "(Temp Dtor) ";
+ Visit(T.getStmt());
+ }
+};
+} // end anonymous namespace
+
+static void print_elem(raw_ostream &OS, StmtPrinterHelper &Helper,
+ const CFGElement &E) {
+ if (Optional<CFGStmt> CS = E.getAs<CFGStmt>()) {
+ const Stmt *S = CS->getStmt();
+ assert(S != nullptr && "Expecting non-null Stmt");
+
+ // special printing for statement-expressions.
+ if (const StmtExpr *SE = dyn_cast<StmtExpr>(S)) {
+ const CompoundStmt *Sub = SE->getSubStmt();
+
+ if (Sub->children()) {
+ OS << "({ ... ; ";
+ Helper.handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
+ OS << " })\n";
+ return;
+ }
+ }
+ // special printing for comma expressions.
+ if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
+ if (B->getOpcode() == BO_Comma) {
+ OS << "... , ";
+ Helper.handledStmt(B->getRHS(),OS);
+ OS << '\n';
+ return;
+ }
+ }
+ S->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
+
+ if (isa<CXXOperatorCallExpr>(S)) {
+ OS << " (OperatorCall)";
+ }
+ else if (isa<CXXBindTemporaryExpr>(S)) {
+ OS << " (BindTemporary)";
+ }
+ else if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(S)) {
+ OS << " (CXXConstructExpr, " << CCE->getType().getAsString() << ")";
+ }
+ else if (const CastExpr *CE = dyn_cast<CastExpr>(S)) {
+ OS << " (" << CE->getStmtClassName() << ", "
+ << CE->getCastKindName()
+ << ", " << CE->getType().getAsString()
+ << ")";
+ }
+
+ // Expressions need a newline.
+ if (isa<Expr>(S))
+ OS << '\n';
+
+ } else if (Optional<CFGInitializer> IE = E.getAs<CFGInitializer>()) {
+ const CXXCtorInitializer *I = IE->getInitializer();
+ if (I->isBaseInitializer())
+ OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
+ else if (I->isDelegatingInitializer())
+ OS << I->getTypeSourceInfo()->getType()->getAsCXXRecordDecl()->getName();
+ else OS << I->getAnyMember()->getName();
+
+ OS << "(";
+ if (Expr *IE = I->getInit())
+ IE->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
+ OS << ")";
+
+ if (I->isBaseInitializer())
+ OS << " (Base initializer)\n";
+ else if (I->isDelegatingInitializer())
+ OS << " (Delegating initializer)\n";
+ else OS << " (Member initializer)\n";
+
+ } else if (Optional<CFGAutomaticObjDtor> DE =
+ E.getAs<CFGAutomaticObjDtor>()) {
+ const VarDecl *VD = DE->getVarDecl();
+ Helper.handleDecl(VD, OS);
+
+ const Type* T = VD->getType().getTypePtr();
+ if (const ReferenceType* RT = T->getAs<ReferenceType>())
+ T = RT->getPointeeType().getTypePtr();
+ T = T->getBaseElementTypeUnsafe();
+
+ OS << ".~" << T->getAsCXXRecordDecl()->getName().str() << "()";
+ OS << " (Implicit destructor)\n";
+
+ } else if (Optional<CFGNewAllocator> NE = E.getAs<CFGNewAllocator>()) {
+ OS << "CFGNewAllocator(";
+ if (const CXXNewExpr *AllocExpr = NE->getAllocatorExpr())
+ AllocExpr->getType().print(OS, PrintingPolicy(Helper.getLangOpts()));
+ OS << ")\n";
+ } else if (Optional<CFGDeleteDtor> DE = E.getAs<CFGDeleteDtor>()) {
+ const CXXRecordDecl *RD = DE->getCXXRecordDecl();
+ if (!RD)
+ return;
+ CXXDeleteExpr *DelExpr =
+ const_cast<CXXDeleteExpr*>(DE->getDeleteExpr());
+ Helper.handledStmt(cast<Stmt>(DelExpr->getArgument()), OS);
+ OS << "->~" << RD->getName().str() << "()";
+ OS << " (Implicit destructor)\n";
+ } else if (Optional<CFGBaseDtor> BE = E.getAs<CFGBaseDtor>()) {
+ const CXXBaseSpecifier *BS = BE->getBaseSpecifier();
+ OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
+ OS << " (Base object destructor)\n";
+
+ } else if (Optional<CFGMemberDtor> ME = E.getAs<CFGMemberDtor>()) {
+ const FieldDecl *FD = ME->getFieldDecl();
+ const Type *T = FD->getType()->getBaseElementTypeUnsafe();
+ OS << "this->" << FD->getName();
+ OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
+ OS << " (Member object destructor)\n";
+
+ } else if (Optional<CFGTemporaryDtor> TE = E.getAs<CFGTemporaryDtor>()) {
+ const CXXBindTemporaryExpr *BT = TE->getBindTemporaryExpr();
+ OS << "~";
+ BT->getType().print(OS, PrintingPolicy(Helper.getLangOpts()));
+ OS << "() (Temporary object destructor)\n";
+ }
+}
+
+static void print_block(raw_ostream &OS, const CFG* cfg,
+ const CFGBlock &B,
+ StmtPrinterHelper &Helper, bool print_edges,
+ bool ShowColors) {
+
+ Helper.setBlockID(B.getBlockID());
+
+ // Print the header.
+ if (ShowColors)
+ OS.changeColor(raw_ostream::YELLOW, true);
+
+ OS << "\n [B" << B.getBlockID();
+
+ if (&B == &cfg->getEntry())
+ OS << " (ENTRY)]\n";
+ else if (&B == &cfg->getExit())
+ OS << " (EXIT)]\n";
+ else if (&B == cfg->getIndirectGotoBlock())
+ OS << " (INDIRECT GOTO DISPATCH)]\n";
+ else if (B.hasNoReturnElement())
+ OS << " (NORETURN)]\n";
+ else
+ OS << "]\n";
+
+ if (ShowColors)
+ OS.resetColor();
+
+ // Print the label of this block.
+ if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) {
+
+ if (print_edges)
+ OS << " ";
+
+ if (LabelStmt *L = dyn_cast<LabelStmt>(Label))
+ OS << L->getName();
+ else if (CaseStmt *C = dyn_cast<CaseStmt>(Label)) {
+ OS << "case ";
+ if (C->getLHS())
+ C->getLHS()->printPretty(OS, &Helper,
+ PrintingPolicy(Helper.getLangOpts()));
+ if (C->getRHS()) {
+ OS << " ... ";
+ C->getRHS()->printPretty(OS, &Helper,
+ PrintingPolicy(Helper.getLangOpts()));
+ }
+ } else if (isa<DefaultStmt>(Label))
+ OS << "default";
+ else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
+ OS << "catch (";
+ if (CS->getExceptionDecl())
+ CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper.getLangOpts()),
+ 0);
+ else
+ OS << "...";
+ OS << ")";
+
+ } else
+ llvm_unreachable("Invalid label statement in CFGBlock.");
+
+ OS << ":\n";
+ }
+
+ // Iterate through the statements in the block and print them.
+ unsigned j = 1;
+
+ for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
+ I != E ; ++I, ++j ) {
+
+ // Print the statement # in the basic block and the statement itself.
+ if (print_edges)
+ OS << " ";
+
+ OS << llvm::format("%3d", j) << ": ";
+
+ Helper.setStmtID(j);
+
+ print_elem(OS, Helper, *I);
+ }
+
+ // Print the terminator of this block.
+ if (B.getTerminator()) {
+ if (ShowColors)
+ OS.changeColor(raw_ostream::GREEN);
+
+ OS << " T: ";
+
+ Helper.setBlockID(-1);
+
+ PrintingPolicy PP(Helper.getLangOpts());
+ CFGBlockTerminatorPrint TPrinter(OS, &Helper, PP);
+ TPrinter.print(B.getTerminator());
+ OS << '\n';
+
+ if (ShowColors)
+ OS.resetColor();
+ }
+
+ if (print_edges) {
+ // Print the predecessors of this block.
+ if (!B.pred_empty()) {
+ const raw_ostream::Colors Color = raw_ostream::BLUE;
+ if (ShowColors)
+ OS.changeColor(Color);
+ OS << " Preds " ;
+ if (ShowColors)
+ OS.resetColor();
+ OS << '(' << B.pred_size() << "):";
+ unsigned i = 0;
+
+ if (ShowColors)
+ OS.changeColor(Color);
+
+ for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
+ I != E; ++I, ++i) {
+
+ if (i % 10 == 8)
+ OS << "\n ";
+
+ CFGBlock *B = *I;
+ bool Reachable = true;
+ if (!B) {
+ Reachable = false;
+ B = I->getPossiblyUnreachableBlock();
+ }
+
+ OS << " B" << B->getBlockID();
+ if (!Reachable)
+ OS << "(Unreachable)";
+ }
+
+ if (ShowColors)
+ OS.resetColor();
+
+ OS << '\n';
+ }
+
+ // Print the successors of this block.
+ if (!B.succ_empty()) {
+ const raw_ostream::Colors Color = raw_ostream::MAGENTA;
+ if (ShowColors)
+ OS.changeColor(Color);
+ OS << " Succs ";
+ if (ShowColors)
+ OS.resetColor();
+ OS << '(' << B.succ_size() << "):";
+ unsigned i = 0;
+
+ if (ShowColors)
+ OS.changeColor(Color);
+
+ for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
+ I != E; ++I, ++i) {
+
+ if (i % 10 == 8)
+ OS << "\n ";
+
+ CFGBlock *B = *I;
+
+ bool Reachable = true;
+ if (!B) {
+ Reachable = false;
+ B = I->getPossiblyUnreachableBlock();
+ }
+
+ if (B) {
+ OS << " B" << B->getBlockID();
+ if (!Reachable)
+ OS << "(Unreachable)";
+ }
+ else {
+ OS << " NULL";
+ }
+ }
+
+ if (ShowColors)
+ OS.resetColor();
+ OS << '\n';
+ }
+ }
+}
+
+
+/// dump - A simple pretty printer of a CFG that outputs to stderr.
+void CFG::dump(const LangOptions &LO, bool ShowColors) const {
+ print(llvm::errs(), LO, ShowColors);
+}
+
+/// print - A simple pretty printer of a CFG that outputs to an ostream.
+void CFG::print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const {
+ StmtPrinterHelper Helper(this, LO);
+
+ // Print the entry block.
+ print_block(OS, this, getEntry(), Helper, true, ShowColors);
+
+ // Iterate through the CFGBlocks and print them one by one.
+ for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
+ // Skip the entry block, because we already printed it.
+ if (&(**I) == &getEntry() || &(**I) == &getExit())
+ continue;
+
+ print_block(OS, this, **I, Helper, true, ShowColors);
+ }
+
+ // Print the exit block.
+ print_block(OS, this, getExit(), Helper, true, ShowColors);
+ OS << '\n';
+ OS.flush();
+}
+
+/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
+void CFGBlock::dump(const CFG* cfg, const LangOptions &LO,
+ bool ShowColors) const {
+ print(llvm::errs(), cfg, LO, ShowColors);
+}
+
+void CFGBlock::dump() const {
+ dump(getParent(), LangOptions(), false);
+}
+
+/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
+/// Generally this will only be called from CFG::print.
+void CFGBlock::print(raw_ostream &OS, const CFG* cfg,
+ const LangOptions &LO, bool ShowColors) const {
+ StmtPrinterHelper Helper(cfg, LO);
+ print_block(OS, cfg, *this, Helper, true, ShowColors);
+ OS << '\n';
+}
+
+/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
+void CFGBlock::printTerminator(raw_ostream &OS,
+ const LangOptions &LO) const {
+ CFGBlockTerminatorPrint TPrinter(OS, nullptr, PrintingPolicy(LO));
+ TPrinter.print(getTerminator());
+}
+
+Stmt *CFGBlock::getTerminatorCondition(bool StripParens) {
+ Stmt *Terminator = this->Terminator;
+ if (!Terminator)
+ return nullptr;
+
+ Expr *E = nullptr;
+
+ switch (Terminator->getStmtClass()) {
+ default:
+ break;
+
+ case Stmt::CXXForRangeStmtClass:
+ E = cast<CXXForRangeStmt>(Terminator)->getCond();
+ break;
+
+ case Stmt::ForStmtClass:
+ E = cast<ForStmt>(Terminator)->getCond();
+ break;
+
+ case Stmt::WhileStmtClass:
+ E = cast<WhileStmt>(Terminator)->getCond();
+ break;
+
+ case Stmt::DoStmtClass:
+ E = cast<DoStmt>(Terminator)->getCond();
+ break;
+
+ case Stmt::IfStmtClass:
+ E = cast<IfStmt>(Terminator)->getCond();
+ break;
+
+ case Stmt::ChooseExprClass:
+ E = cast<ChooseExpr>(Terminator)->getCond();
+ break;
+
+ case Stmt::IndirectGotoStmtClass:
+ E = cast<IndirectGotoStmt>(Terminator)->getTarget();
+ break;
+
+ case Stmt::SwitchStmtClass:
+ E = cast<SwitchStmt>(Terminator)->getCond();
+ break;
+
+ case Stmt::BinaryConditionalOperatorClass:
+ E = cast<BinaryConditionalOperator>(Terminator)->getCond();
+ break;
+
+ case Stmt::ConditionalOperatorClass:
+ E = cast<ConditionalOperator>(Terminator)->getCond();
+ break;
+
+ case Stmt::BinaryOperatorClass: // '&&' and '||'
+ E = cast<BinaryOperator>(Terminator)->getLHS();
+ break;
+
+ case Stmt::ObjCForCollectionStmtClass:
+ return Terminator;
+ }
+
+ if (!StripParens)
+ return E;
+
+ return E ? E->IgnoreParens() : nullptr;
+}
+
+//===----------------------------------------------------------------------===//
+// CFG Graphviz Visualization
+//===----------------------------------------------------------------------===//
+
+
+#ifndef NDEBUG
+static StmtPrinterHelper* GraphHelper;
+#endif
+
+void CFG::viewCFG(const LangOptions &LO) const {
+#ifndef NDEBUG
+ StmtPrinterHelper H(this, LO);
+ GraphHelper = &H;
+ llvm::ViewGraph(this,"CFG");
+ GraphHelper = nullptr;
+#endif
+}
+
+namespace llvm {
+template<>
+struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
+
+ DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
+
+ static std::string getNodeLabel(const CFGBlock *Node, const CFG* Graph) {
+
+#ifndef NDEBUG
+ std::string OutSStr;
+ llvm::raw_string_ostream Out(OutSStr);
+ print_block(Out,Graph, *Node, *GraphHelper, false, false);
+ std::string& OutStr = Out.str();
+
+ if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
+
+ // Process string output to make it nicer...
+ for (unsigned i = 0; i != OutStr.length(); ++i)
+ if (OutStr[i] == '\n') { // Left justify
+ OutStr[i] = '\\';
+ OutStr.insert(OutStr.begin()+i+1, 'l');
+ }
+
+ return OutStr;
+#else
+ return "";
+#endif
+ }
+};
+} // end namespace llvm
diff --git a/contrib/llvm/tools/clang/lib/Analysis/CFGReachabilityAnalysis.cpp b/contrib/llvm/tools/clang/lib/Analysis/CFGReachabilityAnalysis.cpp
new file mode 100644
index 0000000..4ae135f
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/CFGReachabilityAnalysis.cpp
@@ -0,0 +1,76 @@
+//==- CFGReachabilityAnalysis.cpp - Basic reachability analysis --*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a flow-sensitive, (mostly) path-insensitive reachability
+// analysis based on Clang's CFGs. Clients can query if a given basic block
+// is reachable within the CFG.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/SmallVector.h"
+#include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h"
+#include "clang/Analysis/CFG.h"
+
+using namespace clang;
+
+CFGReverseBlockReachabilityAnalysis::CFGReverseBlockReachabilityAnalysis(const CFG &cfg)
+ : analyzed(cfg.getNumBlockIDs(), false) {}
+
+bool CFGReverseBlockReachabilityAnalysis::isReachable(const CFGBlock *Src,
+ const CFGBlock *Dst) {
+
+ const unsigned DstBlockID = Dst->getBlockID();
+
+ // If we haven't analyzed the destination node, run the analysis now
+ if (!analyzed[DstBlockID]) {
+ mapReachability(Dst);
+ analyzed[DstBlockID] = true;
+ }
+
+ // Return the cached result
+ return reachable[DstBlockID][Src->getBlockID()];
+}
+
+// Maps reachability to a common node by walking the predecessors of the
+// destination node.
+void CFGReverseBlockReachabilityAnalysis::mapReachability(const CFGBlock *Dst) {
+ SmallVector<const CFGBlock *, 11> worklist;
+ llvm::BitVector visited(analyzed.size());
+
+ ReachableSet &DstReachability = reachable[Dst->getBlockID()];
+ DstReachability.resize(analyzed.size(), false);
+
+ // Start searching from the destination node, since we commonly will perform
+ // multiple queries relating to a destination node.
+ worklist.push_back(Dst);
+ bool firstRun = true;
+
+ while (!worklist.empty()) {
+ const CFGBlock *block = worklist.pop_back_val();
+
+ if (visited[block->getBlockID()])
+ continue;
+ visited[block->getBlockID()] = true;
+
+ // Update reachability information for this node -> Dst
+ if (!firstRun) {
+ // Don't insert Dst -> Dst unless it was a predecessor of itself
+ DstReachability[block->getBlockID()] = true;
+ }
+ else
+ firstRun = false;
+
+ // Add the predecessors to the worklist.
+ for (CFGBlock::const_pred_iterator i = block->pred_begin(),
+ e = block->pred_end(); i != e; ++i) {
+ if (*i)
+ worklist.push_back(*i);
+ }
+ }
+}
diff --git a/contrib/llvm/tools/clang/lib/Analysis/CFGStmtMap.cpp b/contrib/llvm/tools/clang/lib/Analysis/CFGStmtMap.cpp
new file mode 100644
index 0000000..19b8019
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/CFGStmtMap.cpp
@@ -0,0 +1,91 @@
+//===--- CFGStmtMap.h - Map from Stmt* to CFGBlock* -----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the CFGStmtMap class, which defines a mapping from
+// Stmt* to CFGBlock*
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/DenseMap.h"
+#include "clang/AST/ParentMap.h"
+#include "clang/Analysis/CFG.h"
+#include "clang/Analysis/CFGStmtMap.h"
+
+using namespace clang;
+
+typedef llvm::DenseMap<const Stmt*, CFGBlock*> SMap;
+static SMap *AsMap(void *m) { return (SMap*) m; }
+
+CFGStmtMap::~CFGStmtMap() { delete AsMap(M); }
+
+CFGBlock *CFGStmtMap::getBlock(Stmt *S) {
+ SMap *SM = AsMap(M);
+ Stmt *X = S;
+
+ // If 'S' isn't in the map, walk the ParentMap to see if one of its ancestors
+ // is in the map.
+ while (X) {
+ SMap::iterator I = SM->find(X);
+ if (I != SM->end()) {
+ CFGBlock *B = I->second;
+ // Memoize this lookup.
+ if (X != S)
+ (*SM)[X] = B;
+ return B;
+ }
+
+ X = PM->getParentIgnoreParens(X);
+ }
+
+ return nullptr;
+}
+
+static void Accumulate(SMap &SM, CFGBlock *B) {
+ // First walk the block-level expressions.
+ for (CFGBlock::iterator I = B->begin(), E = B->end(); I != E; ++I) {
+ const CFGElement &CE = *I;
+ Optional<CFGStmt> CS = CE.getAs<CFGStmt>();
+ if (!CS)
+ continue;
+
+ CFGBlock *&Entry = SM[CS->getStmt()];
+ // If 'Entry' is already initialized (e.g., a terminator was already),
+ // skip.
+ if (Entry)
+ continue;
+
+ Entry = B;
+
+ }
+
+ // Look at the label of the block.
+ if (Stmt *Label = B->getLabel())
+ SM[Label] = B;
+
+ // Finally, look at the terminator. If the terminator was already added
+ // because it is a block-level expression in another block, overwrite
+ // that mapping.
+ if (Stmt *Term = B->getTerminator())
+ SM[Term] = B;
+}
+
+CFGStmtMap *CFGStmtMap::Build(CFG *C, ParentMap *PM) {
+ if (!C || !PM)
+ return nullptr;
+
+ SMap *SM = new SMap();
+
+ // Walk all blocks, accumulating the block-level expressions, labels,
+ // and terminators.
+ for (CFG::iterator I = C->begin(), E = C->end(); I != E; ++I)
+ Accumulate(*SM, *I);
+
+ return new CFGStmtMap(PM, SM);
+}
+
diff --git a/contrib/llvm/tools/clang/lib/Analysis/CallGraph.cpp b/contrib/llvm/tools/clang/lib/Analysis/CallGraph.cpp
new file mode 100644
index 0000000..91a8492
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/CallGraph.cpp
@@ -0,0 +1,228 @@
+//== CallGraph.cpp - AST-based Call graph ----------------------*- C++ -*--==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the AST-based CallGraph.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/Analysis/CallGraph.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/StmtVisitor.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/GraphWriter.h"
+
+using namespace clang;
+
+#define DEBUG_TYPE "CallGraph"
+
+STATISTIC(NumObjCCallEdges, "Number of Objective-C method call edges");
+STATISTIC(NumBlockCallEdges, "Number of block call edges");
+
+namespace {
+/// A helper class, which walks the AST and locates all the call sites in the
+/// given function body.
+class CGBuilder : public StmtVisitor<CGBuilder> {
+ CallGraph *G;
+ CallGraphNode *CallerNode;
+
+public:
+ CGBuilder(CallGraph *g, CallGraphNode *N)
+ : G(g), CallerNode(N) {}
+
+ void VisitStmt(Stmt *S) { VisitChildren(S); }
+
+ Decl *getDeclFromCall(CallExpr *CE) {
+ if (FunctionDecl *CalleeDecl = CE->getDirectCallee())
+ return CalleeDecl;
+
+ // Simple detection of a call through a block.
+ Expr *CEE = CE->getCallee()->IgnoreParenImpCasts();
+ if (BlockExpr *Block = dyn_cast<BlockExpr>(CEE)) {
+ NumBlockCallEdges++;
+ return Block->getBlockDecl();
+ }
+
+ return nullptr;
+ }
+
+ void addCalledDecl(Decl *D) {
+ if (G->includeInGraph(D)) {
+ CallGraphNode *CalleeNode = G->getOrInsertNode(D);
+ CallerNode->addCallee(CalleeNode, G);
+ }
+ }
+
+ void VisitCallExpr(CallExpr *CE) {
+ if (Decl *D = getDeclFromCall(CE))
+ addCalledDecl(D);
+ }
+
+ // Adds may-call edges for the ObjC message sends.
+ void VisitObjCMessageExpr(ObjCMessageExpr *ME) {
+ if (ObjCInterfaceDecl *IDecl = ME->getReceiverInterface()) {
+ Selector Sel = ME->getSelector();
+
+ // Find the callee definition within the same translation unit.
+ Decl *D = nullptr;
+ if (ME->isInstanceMessage())
+ D = IDecl->lookupPrivateMethod(Sel);
+ else
+ D = IDecl->lookupPrivateClassMethod(Sel);
+ if (D) {
+ addCalledDecl(D);
+ NumObjCCallEdges++;
+ }
+ }
+ }
+
+ void VisitChildren(Stmt *S) {
+ for (Stmt::child_range I = S->children(); I; ++I)
+ if (*I)
+ static_cast<CGBuilder*>(this)->Visit(*I);
+ }
+};
+
+} // end anonymous namespace
+
+void CallGraph::addNodesForBlocks(DeclContext *D) {
+ if (BlockDecl *BD = dyn_cast<BlockDecl>(D))
+ addNodeForDecl(BD, true);
+
+ for (auto *I : D->decls())
+ if (auto *DC = dyn_cast<DeclContext>(I))
+ addNodesForBlocks(DC);
+}
+
+CallGraph::CallGraph() {
+ Root = getOrInsertNode(nullptr);
+}
+
+CallGraph::~CallGraph() {
+ llvm::DeleteContainerSeconds(FunctionMap);
+}
+
+bool CallGraph::includeInGraph(const Decl *D) {
+ assert(D);
+ if (!D->hasBody())
+ return false;
+
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ // We skip function template definitions, as their semantics is
+ // only determined when they are instantiated.
+ if (FD->isDependentContext())
+ return false;
+
+ IdentifierInfo *II = FD->getIdentifier();
+ if (II && II->getName().startswith("__inline"))
+ return false;
+ }
+
+ return true;
+}
+
+void CallGraph::addNodeForDecl(Decl* D, bool IsGlobal) {
+ assert(D);
+
+ // Allocate a new node, mark it as root, and process it's calls.
+ CallGraphNode *Node = getOrInsertNode(D);
+
+ // Process all the calls by this function as well.
+ CGBuilder builder(this, Node);
+ if (Stmt *Body = D->getBody())
+ builder.Visit(Body);
+}
+
+CallGraphNode *CallGraph::getNode(const Decl *F) const {
+ FunctionMapTy::const_iterator I = FunctionMap.find(F);
+ if (I == FunctionMap.end()) return nullptr;
+ return I->second;
+}
+
+CallGraphNode *CallGraph::getOrInsertNode(Decl *F) {
+ if (F && !isa<ObjCMethodDecl>(F))
+ F = F->getCanonicalDecl();
+
+ CallGraphNode *&Node = FunctionMap[F];
+ if (Node)
+ return Node;
+
+ Node = new CallGraphNode(F);
+ // Make Root node a parent of all functions to make sure all are reachable.
+ if (F)
+ Root->addCallee(Node, this);
+ return Node;
+}
+
+void CallGraph::print(raw_ostream &OS) const {
+ OS << " --- Call graph Dump --- \n";
+
+ // We are going to print the graph in reverse post order, partially, to make
+ // sure the output is deterministic.
+ llvm::ReversePostOrderTraversal<const clang::CallGraph*> RPOT(this);
+ for (llvm::ReversePostOrderTraversal<const clang::CallGraph*>::rpo_iterator
+ I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
+ const CallGraphNode *N = *I;
+
+ OS << " Function: ";
+ if (N == Root)
+ OS << "< root >";
+ else
+ N->print(OS);
+
+ OS << " calls: ";
+ for (CallGraphNode::const_iterator CI = N->begin(),
+ CE = N->end(); CI != CE; ++CI) {
+ assert(*CI != Root && "No one can call the root node.");
+ (*CI)->print(OS);
+ OS << " ";
+ }
+ OS << '\n';
+ }
+ OS.flush();
+}
+
+void CallGraph::dump() const {
+ print(llvm::errs());
+}
+
+void CallGraph::viewGraph() const {
+ llvm::ViewGraph(this, "CallGraph");
+}
+
+void CallGraphNode::print(raw_ostream &os) const {
+ if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(FD))
+ return ND->printName(os);
+ os << "< >";
+}
+
+void CallGraphNode::dump() const {
+ print(llvm::errs());
+}
+
+namespace llvm {
+
+template <>
+struct DOTGraphTraits<const CallGraph*> : public DefaultDOTGraphTraits {
+
+ DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
+
+ static std::string getNodeLabel(const CallGraphNode *Node,
+ const CallGraph *CG) {
+ if (CG->getRoot() == Node) {
+ return "< root >";
+ }
+ if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Node->getDecl()))
+ return ND->getNameAsString();
+ else
+ return "< >";
+ }
+
+};
+}
diff --git a/contrib/llvm/tools/clang/lib/Analysis/CocoaConventions.cpp b/contrib/llvm/tools/clang/lib/Analysis/CocoaConventions.cpp
new file mode 100644
index 0000000..0db3cac
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/CocoaConventions.cpp
@@ -0,0 +1,140 @@
+//===- CocoaConventions.h - Special handling of Cocoa conventions -*- C++ -*--//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements cocoa naming convention analysis.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/DomainSpecific/CocoaConventions.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/Type.h"
+#include "clang/Basic/CharInfo.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/ErrorHandling.h"
+
+using namespace clang;
+using namespace ento;
+
+bool cocoa::isRefType(QualType RetTy, StringRef Prefix,
+ StringRef Name) {
+ // Recursively walk the typedef stack, allowing typedefs of reference types.
+ while (const TypedefType *TD = dyn_cast<TypedefType>(RetTy.getTypePtr())) {
+ StringRef TDName = TD->getDecl()->getIdentifier()->getName();
+ if (TDName.startswith(Prefix) && TDName.endswith("Ref"))
+ return true;
+ // XPC unfortunately uses CF-style function names, but aren't CF types.
+ if (TDName.startswith("xpc_"))
+ return false;
+ RetTy = TD->getDecl()->getUnderlyingType();
+ }
+
+ if (Name.empty())
+ return false;
+
+ // Is the type void*?
+ const PointerType* PT = RetTy->getAs<PointerType>();
+ if (!(PT->getPointeeType().getUnqualifiedType()->isVoidType()))
+ return false;
+
+ // Does the name start with the prefix?
+ return Name.startswith(Prefix);
+}
+
+bool coreFoundation::isCFObjectRef(QualType T) {
+ return cocoa::isRefType(T, "CF") || // Core Foundation.
+ cocoa::isRefType(T, "CG") || // Core Graphics.
+ cocoa::isRefType(T, "DADisk") || // Disk Arbitration API.
+ cocoa::isRefType(T, "DADissenter") ||
+ cocoa::isRefType(T, "DASessionRef");
+}
+
+
+bool cocoa::isCocoaObjectRef(QualType Ty) {
+ if (!Ty->isObjCObjectPointerType())
+ return false;
+
+ const ObjCObjectPointerType *PT = Ty->getAs<ObjCObjectPointerType>();
+
+ // Can be true for objects with the 'NSObject' attribute.
+ if (!PT)
+ return true;
+
+ // We assume that id<..>, id, Class, and Class<..> all represent tracked
+ // objects.
+ if (PT->isObjCIdType() || PT->isObjCQualifiedIdType() ||
+ PT->isObjCClassType() || PT->isObjCQualifiedClassType())
+ return true;
+
+ // Does the interface subclass NSObject?
+ // FIXME: We can memoize here if this gets too expensive.
+ const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
+
+ // Assume that anything declared with a forward declaration and no
+ // @interface subclasses NSObject.
+ if (!ID->hasDefinition())
+ return true;
+
+ for ( ; ID ; ID = ID->getSuperClass())
+ if (ID->getIdentifier()->getName() == "NSObject")
+ return true;
+
+ return false;
+}
+
+bool coreFoundation::followsCreateRule(const FunctionDecl *fn) {
+ // For now, *just* base this on the function name, not on anything else.
+
+ const IdentifierInfo *ident = fn->getIdentifier();
+ if (!ident) return false;
+ StringRef functionName = ident->getName();
+
+ StringRef::iterator it = functionName.begin();
+ StringRef::iterator start = it;
+ StringRef::iterator endI = functionName.end();
+
+ while (true) {
+ // Scan for the start of 'create' or 'copy'.
+ for ( ; it != endI ; ++it) {
+ // Search for the first character. It can either be 'C' or 'c'.
+ char ch = *it;
+ if (ch == 'C' || ch == 'c') {
+ // Make sure this isn't something like 'recreate' or 'Scopy'.
+ if (ch == 'c' && it != start && isLetter(*(it - 1)))
+ continue;
+
+ ++it;
+ break;
+ }
+ }
+
+ // Did we hit the end of the string? If so, we didn't find a match.
+ if (it == endI)
+ return false;
+
+ // Scan for *lowercase* 'reate' or 'opy', followed by no lowercase
+ // character.
+ StringRef suffix = functionName.substr(it - start);
+ if (suffix.startswith("reate")) {
+ it += 5;
+ }
+ else if (suffix.startswith("opy")) {
+ it += 3;
+ } else {
+ // Keep scanning.
+ continue;
+ }
+
+ if (it == endI || !isLowercase(*it))
+ return true;
+
+ // If we matched a lowercase character, it isn't the end of the
+ // word. Keep scanning.
+ }
+}
diff --git a/contrib/llvm/tools/clang/lib/Analysis/CodeInjector.cpp b/contrib/llvm/tools/clang/lib/Analysis/CodeInjector.cpp
new file mode 100644
index 0000000..76bf364
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/CodeInjector.cpp
@@ -0,0 +1,15 @@
+//===-- CodeInjector.cpp ----------------------------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/CodeInjector.h"
+
+using namespace clang;
+
+CodeInjector::CodeInjector() {}
+CodeInjector::~CodeInjector() {}
diff --git a/contrib/llvm/tools/clang/lib/Analysis/Consumed.cpp b/contrib/llvm/tools/clang/lib/Analysis/Consumed.cpp
new file mode 100644
index 0000000..fa985ee
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/Consumed.cpp
@@ -0,0 +1,1470 @@
+//===- Consumed.cpp --------------------------------------------*- C++ --*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// A intra-procedural analysis for checking consumed properties. This is based,
+// in part, on research on linear types.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/RecursiveASTVisitor.h"
+#include "clang/AST/StmtCXX.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/AST/Type.h"
+#include "clang/Analysis/Analyses/Consumed.h"
+#include "clang/Analysis/Analyses/PostOrderCFGView.h"
+#include "clang/Analysis/AnalysisContext.h"
+#include "clang/Analysis/CFG.h"
+#include "clang/Basic/OperatorKinds.h"
+#include "clang/Basic/SourceLocation.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/raw_ostream.h"
+#include <memory>
+
+// TODO: Adjust states of args to constructors in the same way that arguments to
+// function calls are handled.
+// TODO: Use information from tests in for- and while-loop conditional.
+// TODO: Add notes about the actual and expected state for
+// TODO: Correctly identify unreachable blocks when chaining boolean operators.
+// TODO: Adjust the parser and AttributesList class to support lists of
+// identifiers.
+// TODO: Warn about unreachable code.
+// TODO: Switch to using a bitmap to track unreachable blocks.
+// TODO: Handle variable definitions, e.g. bool valid = x.isValid();
+// if (valid) ...; (Deferred)
+// TODO: Take notes on state transitions to provide better warning messages.
+// (Deferred)
+// TODO: Test nested conditionals: A) Checking the same value multiple times,
+// and 2) Checking different values. (Deferred)
+
+using namespace clang;
+using namespace consumed;
+
+// Key method definition
+ConsumedWarningsHandlerBase::~ConsumedWarningsHandlerBase() {}
+
+static SourceLocation getFirstStmtLoc(const CFGBlock *Block) {
+ // Find the source location of the first statement in the block, if the block
+ // is not empty.
+ for (const auto &B : *Block)
+ if (Optional<CFGStmt> CS = B.getAs<CFGStmt>())
+ return CS->getStmt()->getLocStart();
+
+ // Block is empty.
+ // If we have one successor, return the first statement in that block
+ if (Block->succ_size() == 1 && *Block->succ_begin())
+ return getFirstStmtLoc(*Block->succ_begin());
+
+ return SourceLocation();
+}
+
+static SourceLocation getLastStmtLoc(const CFGBlock *Block) {
+ // Find the source location of the last statement in the block, if the block
+ // is not empty.
+ if (const Stmt *StmtNode = Block->getTerminator()) {
+ return StmtNode->getLocStart();
+ } else {
+ for (CFGBlock::const_reverse_iterator BI = Block->rbegin(),
+ BE = Block->rend(); BI != BE; ++BI) {
+ if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>())
+ return CS->getStmt()->getLocStart();
+ }
+ }
+
+ // If we have one successor, return the first statement in that block
+ SourceLocation Loc;
+ if (Block->succ_size() == 1 && *Block->succ_begin())
+ Loc = getFirstStmtLoc(*Block->succ_begin());
+ if (Loc.isValid())
+ return Loc;
+
+ // If we have one predecessor, return the last statement in that block
+ if (Block->pred_size() == 1 && *Block->pred_begin())
+ return getLastStmtLoc(*Block->pred_begin());
+
+ return Loc;
+}
+
+static ConsumedState invertConsumedUnconsumed(ConsumedState State) {
+ switch (State) {
+ case CS_Unconsumed:
+ return CS_Consumed;
+ case CS_Consumed:
+ return CS_Unconsumed;
+ case CS_None:
+ return CS_None;
+ case CS_Unknown:
+ return CS_Unknown;
+ }
+ llvm_unreachable("invalid enum");
+}
+
+static bool isCallableInState(const CallableWhenAttr *CWAttr,
+ ConsumedState State) {
+
+ for (const auto &S : CWAttr->callableStates()) {
+ ConsumedState MappedAttrState = CS_None;
+
+ switch (S) {
+ case CallableWhenAttr::Unknown:
+ MappedAttrState = CS_Unknown;
+ break;
+
+ case CallableWhenAttr::Unconsumed:
+ MappedAttrState = CS_Unconsumed;
+ break;
+
+ case CallableWhenAttr::Consumed:
+ MappedAttrState = CS_Consumed;
+ break;
+ }
+
+ if (MappedAttrState == State)
+ return true;
+ }
+
+ return false;
+}
+
+
+static bool isConsumableType(const QualType &QT) {
+ if (QT->isPointerType() || QT->isReferenceType())
+ return false;
+
+ if (const CXXRecordDecl *RD = QT->getAsCXXRecordDecl())
+ return RD->hasAttr<ConsumableAttr>();
+
+ return false;
+}
+
+static bool isAutoCastType(const QualType &QT) {
+ if (QT->isPointerType() || QT->isReferenceType())
+ return false;
+
+ if (const CXXRecordDecl *RD = QT->getAsCXXRecordDecl())
+ return RD->hasAttr<ConsumableAutoCastAttr>();
+
+ return false;
+}
+
+static bool isSetOnReadPtrType(const QualType &QT) {
+ if (const CXXRecordDecl *RD = QT->getPointeeCXXRecordDecl())
+ return RD->hasAttr<ConsumableSetOnReadAttr>();
+ return false;
+}
+
+
+static bool isKnownState(ConsumedState State) {
+ switch (State) {
+ case CS_Unconsumed:
+ case CS_Consumed:
+ return true;
+ case CS_None:
+ case CS_Unknown:
+ return false;
+ }
+ llvm_unreachable("invalid enum");
+}
+
+static bool isRValueRef(QualType ParamType) {
+ return ParamType->isRValueReferenceType();
+}
+
+static bool isTestingFunction(const FunctionDecl *FunDecl) {
+ return FunDecl->hasAttr<TestTypestateAttr>();
+}
+
+static bool isPointerOrRef(QualType ParamType) {
+ return ParamType->isPointerType() || ParamType->isReferenceType();
+}
+
+static ConsumedState mapConsumableAttrState(const QualType QT) {
+ assert(isConsumableType(QT));
+
+ const ConsumableAttr *CAttr =
+ QT->getAsCXXRecordDecl()->getAttr<ConsumableAttr>();
+
+ switch (CAttr->getDefaultState()) {
+ case ConsumableAttr::Unknown:
+ return CS_Unknown;
+ case ConsumableAttr::Unconsumed:
+ return CS_Unconsumed;
+ case ConsumableAttr::Consumed:
+ return CS_Consumed;
+ }
+ llvm_unreachable("invalid enum");
+}
+
+static ConsumedState
+mapParamTypestateAttrState(const ParamTypestateAttr *PTAttr) {
+ switch (PTAttr->getParamState()) {
+ case ParamTypestateAttr::Unknown:
+ return CS_Unknown;
+ case ParamTypestateAttr::Unconsumed:
+ return CS_Unconsumed;
+ case ParamTypestateAttr::Consumed:
+ return CS_Consumed;
+ }
+ llvm_unreachable("invalid_enum");
+}
+
+static ConsumedState
+mapReturnTypestateAttrState(const ReturnTypestateAttr *RTSAttr) {
+ switch (RTSAttr->getState()) {
+ case ReturnTypestateAttr::Unknown:
+ return CS_Unknown;
+ case ReturnTypestateAttr::Unconsumed:
+ return CS_Unconsumed;
+ case ReturnTypestateAttr::Consumed:
+ return CS_Consumed;
+ }
+ llvm_unreachable("invalid enum");
+}
+
+static ConsumedState mapSetTypestateAttrState(const SetTypestateAttr *STAttr) {
+ switch (STAttr->getNewState()) {
+ case SetTypestateAttr::Unknown:
+ return CS_Unknown;
+ case SetTypestateAttr::Unconsumed:
+ return CS_Unconsumed;
+ case SetTypestateAttr::Consumed:
+ return CS_Consumed;
+ }
+ llvm_unreachable("invalid_enum");
+}
+
+static StringRef stateToString(ConsumedState State) {
+ switch (State) {
+ case consumed::CS_None:
+ return "none";
+
+ case consumed::CS_Unknown:
+ return "unknown";
+
+ case consumed::CS_Unconsumed:
+ return "unconsumed";
+
+ case consumed::CS_Consumed:
+ return "consumed";
+ }
+ llvm_unreachable("invalid enum");
+}
+
+static ConsumedState testsFor(const FunctionDecl *FunDecl) {
+ assert(isTestingFunction(FunDecl));
+ switch (FunDecl->getAttr<TestTypestateAttr>()->getTestState()) {
+ case TestTypestateAttr::Unconsumed:
+ return CS_Unconsumed;
+ case TestTypestateAttr::Consumed:
+ return CS_Consumed;
+ }
+ llvm_unreachable("invalid enum");
+}
+
+namespace {
+struct VarTestResult {
+ const VarDecl *Var;
+ ConsumedState TestsFor;
+};
+} // end anonymous::VarTestResult
+
+namespace clang {
+namespace consumed {
+
+enum EffectiveOp {
+ EO_And,
+ EO_Or
+};
+
+class PropagationInfo {
+ enum {
+ IT_None,
+ IT_State,
+ IT_VarTest,
+ IT_BinTest,
+ IT_Var,
+ IT_Tmp
+ } InfoType;
+
+ struct BinTestTy {
+ const BinaryOperator *Source;
+ EffectiveOp EOp;
+ VarTestResult LTest;
+ VarTestResult RTest;
+ };
+
+ union {
+ ConsumedState State;
+ VarTestResult VarTest;
+ const VarDecl *Var;
+ const CXXBindTemporaryExpr *Tmp;
+ BinTestTy BinTest;
+ };
+
+public:
+ PropagationInfo() : InfoType(IT_None) {}
+
+ PropagationInfo(const VarTestResult &VarTest)
+ : InfoType(IT_VarTest), VarTest(VarTest) {}
+
+ PropagationInfo(const VarDecl *Var, ConsumedState TestsFor)
+ : InfoType(IT_VarTest) {
+
+ VarTest.Var = Var;
+ VarTest.TestsFor = TestsFor;
+ }
+
+ PropagationInfo(const BinaryOperator *Source, EffectiveOp EOp,
+ const VarTestResult &LTest, const VarTestResult &RTest)
+ : InfoType(IT_BinTest) {
+
+ BinTest.Source = Source;
+ BinTest.EOp = EOp;
+ BinTest.LTest = LTest;
+ BinTest.RTest = RTest;
+ }
+
+ PropagationInfo(const BinaryOperator *Source, EffectiveOp EOp,
+ const VarDecl *LVar, ConsumedState LTestsFor,
+ const VarDecl *RVar, ConsumedState RTestsFor)
+ : InfoType(IT_BinTest) {
+
+ BinTest.Source = Source;
+ BinTest.EOp = EOp;
+ BinTest.LTest.Var = LVar;
+ BinTest.LTest.TestsFor = LTestsFor;
+ BinTest.RTest.Var = RVar;
+ BinTest.RTest.TestsFor = RTestsFor;
+ }
+
+ PropagationInfo(ConsumedState State)
+ : InfoType(IT_State), State(State) {}
+
+ PropagationInfo(const VarDecl *Var) : InfoType(IT_Var), Var(Var) {}
+ PropagationInfo(const CXXBindTemporaryExpr *Tmp)
+ : InfoType(IT_Tmp), Tmp(Tmp) {}
+
+ const ConsumedState & getState() const {
+ assert(InfoType == IT_State);
+ return State;
+ }
+
+ const VarTestResult & getVarTest() const {
+ assert(InfoType == IT_VarTest);
+ return VarTest;
+ }
+
+ const VarTestResult & getLTest() const {
+ assert(InfoType == IT_BinTest);
+ return BinTest.LTest;
+ }
+
+ const VarTestResult & getRTest() const {
+ assert(InfoType == IT_BinTest);
+ return BinTest.RTest;
+ }
+
+ const VarDecl * getVar() const {
+ assert(InfoType == IT_Var);
+ return Var;
+ }
+
+ const CXXBindTemporaryExpr * getTmp() const {
+ assert(InfoType == IT_Tmp);
+ return Tmp;
+ }
+
+ ConsumedState getAsState(const ConsumedStateMap *StateMap) const {
+ assert(isVar() || isTmp() || isState());
+
+ if (isVar())
+ return StateMap->getState(Var);
+ else if (isTmp())
+ return StateMap->getState(Tmp);
+ else if (isState())
+ return State;
+ else
+ return CS_None;
+ }
+
+ EffectiveOp testEffectiveOp() const {
+ assert(InfoType == IT_BinTest);
+ return BinTest.EOp;
+ }
+
+ const BinaryOperator * testSourceNode() const {
+ assert(InfoType == IT_BinTest);
+ return BinTest.Source;
+ }
+
+ inline bool isValid() const { return InfoType != IT_None; }
+ inline bool isState() const { return InfoType == IT_State; }
+ inline bool isVarTest() const { return InfoType == IT_VarTest; }
+ inline bool isBinTest() const { return InfoType == IT_BinTest; }
+ inline bool isVar() const { return InfoType == IT_Var; }
+ inline bool isTmp() const { return InfoType == IT_Tmp; }
+
+ bool isTest() const {
+ return InfoType == IT_VarTest || InfoType == IT_BinTest;
+ }
+
+ bool isPointerToValue() const {
+ return InfoType == IT_Var || InfoType == IT_Tmp;
+ }
+
+ PropagationInfo invertTest() const {
+ assert(InfoType == IT_VarTest || InfoType == IT_BinTest);
+
+ if (InfoType == IT_VarTest) {
+ return PropagationInfo(VarTest.Var,
+ invertConsumedUnconsumed(VarTest.TestsFor));
+
+ } else if (InfoType == IT_BinTest) {
+ return PropagationInfo(BinTest.Source,
+ BinTest.EOp == EO_And ? EO_Or : EO_And,
+ BinTest.LTest.Var, invertConsumedUnconsumed(BinTest.LTest.TestsFor),
+ BinTest.RTest.Var, invertConsumedUnconsumed(BinTest.RTest.TestsFor));
+ } else {
+ return PropagationInfo();
+ }
+ }
+};
+
+static inline void
+setStateForVarOrTmp(ConsumedStateMap *StateMap, const PropagationInfo &PInfo,
+ ConsumedState State) {
+
+ assert(PInfo.isVar() || PInfo.isTmp());
+
+ if (PInfo.isVar())
+ StateMap->setState(PInfo.getVar(), State);
+ else
+ StateMap->setState(PInfo.getTmp(), State);
+}
+
+class ConsumedStmtVisitor : public ConstStmtVisitor<ConsumedStmtVisitor> {
+
+ typedef llvm::DenseMap<const Stmt *, PropagationInfo> MapType;
+ typedef std::pair<const Stmt *, PropagationInfo> PairType;
+ typedef MapType::iterator InfoEntry;
+ typedef MapType::const_iterator ConstInfoEntry;
+
+ AnalysisDeclContext &AC;
+ ConsumedAnalyzer &Analyzer;
+ ConsumedStateMap *StateMap;
+ MapType PropagationMap;
+
+ InfoEntry findInfo(const Expr *E) {
+ return PropagationMap.find(E->IgnoreParens());
+ }
+ ConstInfoEntry findInfo(const Expr *E) const {
+ return PropagationMap.find(E->IgnoreParens());
+ }
+ void insertInfo(const Expr *E, const PropagationInfo &PI) {
+ PropagationMap.insert(PairType(E->IgnoreParens(), PI));
+ }
+
+ void forwardInfo(const Expr *From, const Expr *To);
+ void copyInfo(const Expr *From, const Expr *To, ConsumedState CS);
+ ConsumedState getInfo(const Expr *From);
+ void setInfo(const Expr *To, ConsumedState NS);
+ void propagateReturnType(const Expr *Call, const FunctionDecl *Fun);
+
+public:
+ void checkCallability(const PropagationInfo &PInfo,
+ const FunctionDecl *FunDecl,
+ SourceLocation BlameLoc);
+ bool handleCall(const CallExpr *Call, const Expr *ObjArg,
+ const FunctionDecl *FunD);
+
+ void VisitBinaryOperator(const BinaryOperator *BinOp);
+ void VisitCallExpr(const CallExpr *Call);
+ void VisitCastExpr(const CastExpr *Cast);
+ void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *Temp);
+ void VisitCXXConstructExpr(const CXXConstructExpr *Call);
+ void VisitCXXMemberCallExpr(const CXXMemberCallExpr *Call);
+ void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *Call);
+ void VisitDeclRefExpr(const DeclRefExpr *DeclRef);
+ void VisitDeclStmt(const DeclStmt *DelcS);
+ void VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *Temp);
+ void VisitMemberExpr(const MemberExpr *MExpr);
+ void VisitParmVarDecl(const ParmVarDecl *Param);
+ void VisitReturnStmt(const ReturnStmt *Ret);
+ void VisitUnaryOperator(const UnaryOperator *UOp);
+ void VisitVarDecl(const VarDecl *Var);
+
+ ConsumedStmtVisitor(AnalysisDeclContext &AC, ConsumedAnalyzer &Analyzer,
+ ConsumedStateMap *StateMap)
+ : AC(AC), Analyzer(Analyzer), StateMap(StateMap) {}
+
+ PropagationInfo getInfo(const Expr *StmtNode) const {
+ ConstInfoEntry Entry = findInfo(StmtNode);
+
+ if (Entry != PropagationMap.end())
+ return Entry->second;
+ else
+ return PropagationInfo();
+ }
+
+ void reset(ConsumedStateMap *NewStateMap) {
+ StateMap = NewStateMap;
+ }
+};
+
+
+void ConsumedStmtVisitor::forwardInfo(const Expr *From, const Expr *To) {
+ InfoEntry Entry = findInfo(From);
+ if (Entry != PropagationMap.end())
+ insertInfo(To, Entry->second);
+}
+
+
+// Create a new state for To, which is initialized to the state of From.
+// If NS is not CS_None, sets the state of From to NS.
+void ConsumedStmtVisitor::copyInfo(const Expr *From, const Expr *To,
+ ConsumedState NS) {
+ InfoEntry Entry = findInfo(From);
+ if (Entry != PropagationMap.end()) {
+ PropagationInfo& PInfo = Entry->second;
+ ConsumedState CS = PInfo.getAsState(StateMap);
+ if (CS != CS_None)
+ insertInfo(To, PropagationInfo(CS));
+ if (NS != CS_None && PInfo.isPointerToValue())
+ setStateForVarOrTmp(StateMap, PInfo, NS);
+ }
+}
+
+
+// Get the ConsumedState for From
+ConsumedState ConsumedStmtVisitor::getInfo(const Expr *From) {
+ InfoEntry Entry = findInfo(From);
+ if (Entry != PropagationMap.end()) {
+ PropagationInfo& PInfo = Entry->second;
+ return PInfo.getAsState(StateMap);
+ }
+ return CS_None;
+}
+
+
+// If we already have info for To then update it, otherwise create a new entry.
+void ConsumedStmtVisitor::setInfo(const Expr *To, ConsumedState NS) {
+ InfoEntry Entry = findInfo(To);
+ if (Entry != PropagationMap.end()) {
+ PropagationInfo& PInfo = Entry->second;
+ if (PInfo.isPointerToValue())
+ setStateForVarOrTmp(StateMap, PInfo, NS);
+ } else if (NS != CS_None) {
+ insertInfo(To, PropagationInfo(NS));
+ }
+}
+
+
+
+void ConsumedStmtVisitor::checkCallability(const PropagationInfo &PInfo,
+ const FunctionDecl *FunDecl,
+ SourceLocation BlameLoc) {
+ assert(!PInfo.isTest());
+
+ const CallableWhenAttr *CWAttr = FunDecl->getAttr<CallableWhenAttr>();
+ if (!CWAttr)
+ return;
+
+ if (PInfo.isVar()) {
+ ConsumedState VarState = StateMap->getState(PInfo.getVar());
+
+ if (VarState == CS_None || isCallableInState(CWAttr, VarState))
+ return;
+
+ Analyzer.WarningsHandler.warnUseInInvalidState(
+ FunDecl->getNameAsString(), PInfo.getVar()->getNameAsString(),
+ stateToString(VarState), BlameLoc);
+
+ } else {
+ ConsumedState TmpState = PInfo.getAsState(StateMap);
+
+ if (TmpState == CS_None || isCallableInState(CWAttr, TmpState))
+ return;
+
+ Analyzer.WarningsHandler.warnUseOfTempInInvalidState(
+ FunDecl->getNameAsString(), stateToString(TmpState), BlameLoc);
+ }
+}
+
+
+// Factors out common behavior for function, method, and operator calls.
+// Check parameters and set parameter state if necessary.
+// Returns true if the state of ObjArg is set, or false otherwise.
+bool ConsumedStmtVisitor::handleCall(const CallExpr *Call, const Expr *ObjArg,
+ const FunctionDecl *FunD) {
+ unsigned Offset = 0;
+ if (isa<CXXOperatorCallExpr>(Call) && isa<CXXMethodDecl>(FunD))
+ Offset = 1; // first argument is 'this'
+
+ // check explicit parameters
+ for (unsigned Index = Offset; Index < Call->getNumArgs(); ++Index) {
+ // Skip variable argument lists.
+ if (Index - Offset >= FunD->getNumParams())
+ break;
+
+ const ParmVarDecl *Param = FunD->getParamDecl(Index - Offset);
+ QualType ParamType = Param->getType();
+
+ InfoEntry Entry = findInfo(Call->getArg(Index));
+
+ if (Entry == PropagationMap.end() || Entry->second.isTest())
+ continue;
+ PropagationInfo PInfo = Entry->second;
+
+ // Check that the parameter is in the correct state.
+ if (ParamTypestateAttr *PTA = Param->getAttr<ParamTypestateAttr>()) {
+ ConsumedState ParamState = PInfo.getAsState(StateMap);
+ ConsumedState ExpectedState = mapParamTypestateAttrState(PTA);
+
+ if (ParamState != ExpectedState)
+ Analyzer.WarningsHandler.warnParamTypestateMismatch(
+ Call->getArg(Index)->getExprLoc(),
+ stateToString(ExpectedState), stateToString(ParamState));
+ }
+
+ if (!(Entry->second.isVar() || Entry->second.isTmp()))
+ continue;
+
+ // Adjust state on the caller side.
+ if (isRValueRef(ParamType))
+ setStateForVarOrTmp(StateMap, PInfo, consumed::CS_Consumed);
+ else if (ReturnTypestateAttr *RT = Param->getAttr<ReturnTypestateAttr>())
+ setStateForVarOrTmp(StateMap, PInfo, mapReturnTypestateAttrState(RT));
+ else if (isPointerOrRef(ParamType) &&
+ (!ParamType->getPointeeType().isConstQualified() ||
+ isSetOnReadPtrType(ParamType)))
+ setStateForVarOrTmp(StateMap, PInfo, consumed::CS_Unknown);
+ }
+
+ if (!ObjArg)
+ return false;
+
+ // check implicit 'self' parameter, if present
+ InfoEntry Entry = findInfo(ObjArg);
+ if (Entry != PropagationMap.end()) {
+ PropagationInfo PInfo = Entry->second;
+ checkCallability(PInfo, FunD, Call->getExprLoc());
+
+ if (SetTypestateAttr *STA = FunD->getAttr<SetTypestateAttr>()) {
+ if (PInfo.isVar()) {
+ StateMap->setState(PInfo.getVar(), mapSetTypestateAttrState(STA));
+ return true;
+ }
+ else if (PInfo.isTmp()) {
+ StateMap->setState(PInfo.getTmp(), mapSetTypestateAttrState(STA));
+ return true;
+ }
+ }
+ else if (isTestingFunction(FunD) && PInfo.isVar()) {
+ PropagationMap.insert(PairType(Call,
+ PropagationInfo(PInfo.getVar(), testsFor(FunD))));
+ }
+ }
+ return false;
+}
+
+
+void ConsumedStmtVisitor::propagateReturnType(const Expr *Call,
+ const FunctionDecl *Fun) {
+ QualType RetType = Fun->getCallResultType();
+ if (RetType->isReferenceType())
+ RetType = RetType->getPointeeType();
+
+ if (isConsumableType(RetType)) {
+ ConsumedState ReturnState;
+ if (ReturnTypestateAttr *RTA = Fun->getAttr<ReturnTypestateAttr>())
+ ReturnState = mapReturnTypestateAttrState(RTA);
+ else
+ ReturnState = mapConsumableAttrState(RetType);
+
+ PropagationMap.insert(PairType(Call, PropagationInfo(ReturnState)));
+ }
+}
+
+
+void ConsumedStmtVisitor::VisitBinaryOperator(const BinaryOperator *BinOp) {
+ switch (BinOp->getOpcode()) {
+ case BO_LAnd:
+ case BO_LOr : {
+ InfoEntry LEntry = findInfo(BinOp->getLHS()),
+ REntry = findInfo(BinOp->getRHS());
+
+ VarTestResult LTest, RTest;
+
+ if (LEntry != PropagationMap.end() && LEntry->second.isVarTest()) {
+ LTest = LEntry->second.getVarTest();
+
+ } else {
+ LTest.Var = nullptr;
+ LTest.TestsFor = CS_None;
+ }
+
+ if (REntry != PropagationMap.end() && REntry->second.isVarTest()) {
+ RTest = REntry->second.getVarTest();
+
+ } else {
+ RTest.Var = nullptr;
+ RTest.TestsFor = CS_None;
+ }
+
+ if (!(LTest.Var == nullptr && RTest.Var == nullptr))
+ PropagationMap.insert(PairType(BinOp, PropagationInfo(BinOp,
+ static_cast<EffectiveOp>(BinOp->getOpcode() == BO_LOr), LTest, RTest)));
+
+ break;
+ }
+
+ case BO_PtrMemD:
+ case BO_PtrMemI:
+ forwardInfo(BinOp->getLHS(), BinOp);
+ break;
+
+ default:
+ break;
+ }
+}
+
+void ConsumedStmtVisitor::VisitCallExpr(const CallExpr *Call) {
+ const FunctionDecl *FunDecl = Call->getDirectCallee();
+ if (!FunDecl)
+ return;
+
+ // Special case for the std::move function.
+ // TODO: Make this more specific. (Deferred)
+ if (Call->getNumArgs() == 1 && FunDecl->getNameAsString() == "move" &&
+ FunDecl->isInStdNamespace()) {
+ copyInfo(Call->getArg(0), Call, CS_Consumed);
+ return;
+ }
+
+ handleCall(Call, nullptr, FunDecl);
+ propagateReturnType(Call, FunDecl);
+}
+
+void ConsumedStmtVisitor::VisitCastExpr(const CastExpr *Cast) {
+ forwardInfo(Cast->getSubExpr(), Cast);
+}
+
+void ConsumedStmtVisitor::VisitCXXBindTemporaryExpr(
+ const CXXBindTemporaryExpr *Temp) {
+
+ InfoEntry Entry = findInfo(Temp->getSubExpr());
+
+ if (Entry != PropagationMap.end() && !Entry->second.isTest()) {
+ StateMap->setState(Temp, Entry->second.getAsState(StateMap));
+ PropagationMap.insert(PairType(Temp, PropagationInfo(Temp)));
+ }
+}
+
+void ConsumedStmtVisitor::VisitCXXConstructExpr(const CXXConstructExpr *Call) {
+ CXXConstructorDecl *Constructor = Call->getConstructor();
+
+ ASTContext &CurrContext = AC.getASTContext();
+ QualType ThisType = Constructor->getThisType(CurrContext)->getPointeeType();
+
+ if (!isConsumableType(ThisType))
+ return;
+
+ // FIXME: What should happen if someone annotates the move constructor?
+ if (ReturnTypestateAttr *RTA = Constructor->getAttr<ReturnTypestateAttr>()) {
+ // TODO: Adjust state of args appropriately.
+ ConsumedState RetState = mapReturnTypestateAttrState(RTA);
+ PropagationMap.insert(PairType(Call, PropagationInfo(RetState)));
+ } else if (Constructor->isDefaultConstructor()) {
+ PropagationMap.insert(PairType(Call,
+ PropagationInfo(consumed::CS_Consumed)));
+ } else if (Constructor->isMoveConstructor()) {
+ copyInfo(Call->getArg(0), Call, CS_Consumed);
+ } else if (Constructor->isCopyConstructor()) {
+ // Copy state from arg. If setStateOnRead then set arg to CS_Unknown.
+ ConsumedState NS =
+ isSetOnReadPtrType(Constructor->getThisType(CurrContext)) ?
+ CS_Unknown : CS_None;
+ copyInfo(Call->getArg(0), Call, NS);
+ } else {
+ // TODO: Adjust state of args appropriately.
+ ConsumedState RetState = mapConsumableAttrState(ThisType);
+ PropagationMap.insert(PairType(Call, PropagationInfo(RetState)));
+ }
+}
+
+
+void ConsumedStmtVisitor::VisitCXXMemberCallExpr(
+ const CXXMemberCallExpr *Call) {
+ CXXMethodDecl* MD = Call->getMethodDecl();
+ if (!MD)
+ return;
+
+ handleCall(Call, Call->getImplicitObjectArgument(), MD);
+ propagateReturnType(Call, MD);
+}
+
+
+void ConsumedStmtVisitor::VisitCXXOperatorCallExpr(
+ const CXXOperatorCallExpr *Call) {
+
+ const FunctionDecl *FunDecl =
+ dyn_cast_or_null<FunctionDecl>(Call->getDirectCallee());
+ if (!FunDecl) return;
+
+ if (Call->getOperator() == OO_Equal) {
+ ConsumedState CS = getInfo(Call->getArg(1));
+ if (!handleCall(Call, Call->getArg(0), FunDecl))
+ setInfo(Call->getArg(0), CS);
+ return;
+ }
+
+ if (const CXXMemberCallExpr *MCall = dyn_cast<CXXMemberCallExpr>(Call))
+ handleCall(MCall, MCall->getImplicitObjectArgument(), FunDecl);
+ else
+ handleCall(Call, Call->getArg(0), FunDecl);
+
+ propagateReturnType(Call, FunDecl);
+}
+
+void ConsumedStmtVisitor::VisitDeclRefExpr(const DeclRefExpr *DeclRef) {
+ if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(DeclRef->getDecl()))
+ if (StateMap->getState(Var) != consumed::CS_None)
+ PropagationMap.insert(PairType(DeclRef, PropagationInfo(Var)));
+}
+
+void ConsumedStmtVisitor::VisitDeclStmt(const DeclStmt *DeclS) {
+ for (const auto *DI : DeclS->decls())
+ if (isa<VarDecl>(DI))
+ VisitVarDecl(cast<VarDecl>(DI));
+
+ if (DeclS->isSingleDecl())
+ if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(DeclS->getSingleDecl()))
+ PropagationMap.insert(PairType(DeclS, PropagationInfo(Var)));
+}
+
+void ConsumedStmtVisitor::VisitMaterializeTemporaryExpr(
+ const MaterializeTemporaryExpr *Temp) {
+
+ forwardInfo(Temp->GetTemporaryExpr(), Temp);
+}
+
+void ConsumedStmtVisitor::VisitMemberExpr(const MemberExpr *MExpr) {
+ forwardInfo(MExpr->getBase(), MExpr);
+}
+
+
+void ConsumedStmtVisitor::VisitParmVarDecl(const ParmVarDecl *Param) {
+ QualType ParamType = Param->getType();
+ ConsumedState ParamState = consumed::CS_None;
+
+ if (const ParamTypestateAttr *PTA = Param->getAttr<ParamTypestateAttr>())
+ ParamState = mapParamTypestateAttrState(PTA);
+ else if (isConsumableType(ParamType))
+ ParamState = mapConsumableAttrState(ParamType);
+ else if (isRValueRef(ParamType) &&
+ isConsumableType(ParamType->getPointeeType()))
+ ParamState = mapConsumableAttrState(ParamType->getPointeeType());
+ else if (ParamType->isReferenceType() &&
+ isConsumableType(ParamType->getPointeeType()))
+ ParamState = consumed::CS_Unknown;
+
+ if (ParamState != CS_None)
+ StateMap->setState(Param, ParamState);
+}
+
+void ConsumedStmtVisitor::VisitReturnStmt(const ReturnStmt *Ret) {
+ ConsumedState ExpectedState = Analyzer.getExpectedReturnState();
+
+ if (ExpectedState != CS_None) {
+ InfoEntry Entry = findInfo(Ret->getRetValue());
+
+ if (Entry != PropagationMap.end()) {
+ ConsumedState RetState = Entry->second.getAsState(StateMap);
+
+ if (RetState != ExpectedState)
+ Analyzer.WarningsHandler.warnReturnTypestateMismatch(
+ Ret->getReturnLoc(), stateToString(ExpectedState),
+ stateToString(RetState));
+ }
+ }
+
+ StateMap->checkParamsForReturnTypestate(Ret->getLocStart(),
+ Analyzer.WarningsHandler);
+}
+
+void ConsumedStmtVisitor::VisitUnaryOperator(const UnaryOperator *UOp) {
+ InfoEntry Entry = findInfo(UOp->getSubExpr());
+ if (Entry == PropagationMap.end()) return;
+
+ switch (UOp->getOpcode()) {
+ case UO_AddrOf:
+ PropagationMap.insert(PairType(UOp, Entry->second));
+ break;
+
+ case UO_LNot:
+ if (Entry->second.isTest())
+ PropagationMap.insert(PairType(UOp, Entry->second.invertTest()));
+ break;
+
+ default:
+ break;
+ }
+}
+
+// TODO: See if I need to check for reference types here.
+void ConsumedStmtVisitor::VisitVarDecl(const VarDecl *Var) {
+ if (isConsumableType(Var->getType())) {
+ if (Var->hasInit()) {
+ MapType::iterator VIT = findInfo(Var->getInit()->IgnoreImplicit());
+ if (VIT != PropagationMap.end()) {
+ PropagationInfo PInfo = VIT->second;
+ ConsumedState St = PInfo.getAsState(StateMap);
+
+ if (St != consumed::CS_None) {
+ StateMap->setState(Var, St);
+ return;
+ }
+ }
+ }
+ // Otherwise
+ StateMap->setState(Var, consumed::CS_Unknown);
+ }
+}
+}} // end clang::consumed::ConsumedStmtVisitor
+
+namespace clang {
+namespace consumed {
+
+static void splitVarStateForIf(const IfStmt *IfNode, const VarTestResult &Test,
+ ConsumedStateMap *ThenStates,
+ ConsumedStateMap *ElseStates) {
+ ConsumedState VarState = ThenStates->getState(Test.Var);
+
+ if (VarState == CS_Unknown) {
+ ThenStates->setState(Test.Var, Test.TestsFor);
+ ElseStates->setState(Test.Var, invertConsumedUnconsumed(Test.TestsFor));
+
+ } else if (VarState == invertConsumedUnconsumed(Test.TestsFor)) {
+ ThenStates->markUnreachable();
+
+ } else if (VarState == Test.TestsFor) {
+ ElseStates->markUnreachable();
+ }
+}
+
+static void splitVarStateForIfBinOp(const PropagationInfo &PInfo,
+ ConsumedStateMap *ThenStates,
+ ConsumedStateMap *ElseStates) {
+ const VarTestResult &LTest = PInfo.getLTest(),
+ &RTest = PInfo.getRTest();
+
+ ConsumedState LState = LTest.Var ? ThenStates->getState(LTest.Var) : CS_None,
+ RState = RTest.Var ? ThenStates->getState(RTest.Var) : CS_None;
+
+ if (LTest.Var) {
+ if (PInfo.testEffectiveOp() == EO_And) {
+ if (LState == CS_Unknown) {
+ ThenStates->setState(LTest.Var, LTest.TestsFor);
+
+ } else if (LState == invertConsumedUnconsumed(LTest.TestsFor)) {
+ ThenStates->markUnreachable();
+
+ } else if (LState == LTest.TestsFor && isKnownState(RState)) {
+ if (RState == RTest.TestsFor)
+ ElseStates->markUnreachable();
+ else
+ ThenStates->markUnreachable();
+ }
+
+ } else {
+ if (LState == CS_Unknown) {
+ ElseStates->setState(LTest.Var,
+ invertConsumedUnconsumed(LTest.TestsFor));
+
+ } else if (LState == LTest.TestsFor) {
+ ElseStates->markUnreachable();
+
+ } else if (LState == invertConsumedUnconsumed(LTest.TestsFor) &&
+ isKnownState(RState)) {
+
+ if (RState == RTest.TestsFor)
+ ElseStates->markUnreachable();
+ else
+ ThenStates->markUnreachable();
+ }
+ }
+ }
+
+ if (RTest.Var) {
+ if (PInfo.testEffectiveOp() == EO_And) {
+ if (RState == CS_Unknown)
+ ThenStates->setState(RTest.Var, RTest.TestsFor);
+ else if (RState == invertConsumedUnconsumed(RTest.TestsFor))
+ ThenStates->markUnreachable();
+
+ } else {
+ if (RState == CS_Unknown)
+ ElseStates->setState(RTest.Var,
+ invertConsumedUnconsumed(RTest.TestsFor));
+ else if (RState == RTest.TestsFor)
+ ElseStates->markUnreachable();
+ }
+ }
+}
+
+bool ConsumedBlockInfo::allBackEdgesVisited(const CFGBlock *CurrBlock,
+ const CFGBlock *TargetBlock) {
+
+ assert(CurrBlock && "Block pointer must not be NULL");
+ assert(TargetBlock && "TargetBlock pointer must not be NULL");
+
+ unsigned int CurrBlockOrder = VisitOrder[CurrBlock->getBlockID()];
+ for (CFGBlock::const_pred_iterator PI = TargetBlock->pred_begin(),
+ PE = TargetBlock->pred_end(); PI != PE; ++PI) {
+ if (*PI && CurrBlockOrder < VisitOrder[(*PI)->getBlockID()] )
+ return false;
+ }
+ return true;
+}
+
+void ConsumedBlockInfo::addInfo(const CFGBlock *Block,
+ ConsumedStateMap *StateMap,
+ bool &AlreadyOwned) {
+
+ assert(Block && "Block pointer must not be NULL");
+
+ ConsumedStateMap *Entry = StateMapsArray[Block->getBlockID()];
+
+ if (Entry) {
+ Entry->intersect(StateMap);
+
+ } else if (AlreadyOwned) {
+ StateMapsArray[Block->getBlockID()] = new ConsumedStateMap(*StateMap);
+
+ } else {
+ StateMapsArray[Block->getBlockID()] = StateMap;
+ AlreadyOwned = true;
+ }
+}
+
+void ConsumedBlockInfo::addInfo(const CFGBlock *Block,
+ ConsumedStateMap *StateMap) {
+
+ assert(Block && "Block pointer must not be NULL");
+
+ ConsumedStateMap *Entry = StateMapsArray[Block->getBlockID()];
+
+ if (Entry) {
+ Entry->intersect(StateMap);
+ delete StateMap;
+
+ } else {
+ StateMapsArray[Block->getBlockID()] = StateMap;
+ }
+}
+
+ConsumedStateMap* ConsumedBlockInfo::borrowInfo(const CFGBlock *Block) {
+ assert(Block && "Block pointer must not be NULL");
+ assert(StateMapsArray[Block->getBlockID()] && "Block has no block info");
+
+ return StateMapsArray[Block->getBlockID()];
+}
+
+void ConsumedBlockInfo::discardInfo(const CFGBlock *Block) {
+ unsigned int BlockID = Block->getBlockID();
+ delete StateMapsArray[BlockID];
+ StateMapsArray[BlockID] = nullptr;
+}
+
+ConsumedStateMap* ConsumedBlockInfo::getInfo(const CFGBlock *Block) {
+ assert(Block && "Block pointer must not be NULL");
+
+ ConsumedStateMap *StateMap = StateMapsArray[Block->getBlockID()];
+ if (isBackEdgeTarget(Block)) {
+ return new ConsumedStateMap(*StateMap);
+ } else {
+ StateMapsArray[Block->getBlockID()] = nullptr;
+ return StateMap;
+ }
+}
+
+bool ConsumedBlockInfo::isBackEdge(const CFGBlock *From, const CFGBlock *To) {
+ assert(From && "From block must not be NULL");
+ assert(To && "From block must not be NULL");
+
+ return VisitOrder[From->getBlockID()] > VisitOrder[To->getBlockID()];
+}
+
+bool ConsumedBlockInfo::isBackEdgeTarget(const CFGBlock *Block) {
+ assert(Block && "Block pointer must not be NULL");
+
+ // Anything with less than two predecessors can't be the target of a back
+ // edge.
+ if (Block->pred_size() < 2)
+ return false;
+
+ unsigned int BlockVisitOrder = VisitOrder[Block->getBlockID()];
+ for (CFGBlock::const_pred_iterator PI = Block->pred_begin(),
+ PE = Block->pred_end(); PI != PE; ++PI) {
+ if (*PI && BlockVisitOrder < VisitOrder[(*PI)->getBlockID()])
+ return true;
+ }
+ return false;
+}
+
+void ConsumedStateMap::checkParamsForReturnTypestate(SourceLocation BlameLoc,
+ ConsumedWarningsHandlerBase &WarningsHandler) const {
+
+ for (const auto &DM : VarMap) {
+ if (isa<ParmVarDecl>(DM.first)) {
+ const ParmVarDecl *Param = cast<ParmVarDecl>(DM.first);
+ const ReturnTypestateAttr *RTA = Param->getAttr<ReturnTypestateAttr>();
+
+ if (!RTA)
+ continue;
+
+ ConsumedState ExpectedState = mapReturnTypestateAttrState(RTA);
+ if (DM.second != ExpectedState)
+ WarningsHandler.warnParamReturnTypestateMismatch(BlameLoc,
+ Param->getNameAsString(), stateToString(ExpectedState),
+ stateToString(DM.second));
+ }
+ }
+}
+
+void ConsumedStateMap::clearTemporaries() {
+ TmpMap.clear();
+}
+
+ConsumedState ConsumedStateMap::getState(const VarDecl *Var) const {
+ VarMapType::const_iterator Entry = VarMap.find(Var);
+
+ if (Entry != VarMap.end())
+ return Entry->second;
+
+ return CS_None;
+}
+
+ConsumedState
+ConsumedStateMap::getState(const CXXBindTemporaryExpr *Tmp) const {
+ TmpMapType::const_iterator Entry = TmpMap.find(Tmp);
+
+ if (Entry != TmpMap.end())
+ return Entry->second;
+
+ return CS_None;
+}
+
+void ConsumedStateMap::intersect(const ConsumedStateMap *Other) {
+ ConsumedState LocalState;
+
+ if (this->From && this->From == Other->From && !Other->Reachable) {
+ this->markUnreachable();
+ return;
+ }
+
+ for (const auto &DM : Other->VarMap) {
+ LocalState = this->getState(DM.first);
+
+ if (LocalState == CS_None)
+ continue;
+
+ if (LocalState != DM.second)
+ VarMap[DM.first] = CS_Unknown;
+ }
+}
+
+void ConsumedStateMap::intersectAtLoopHead(const CFGBlock *LoopHead,
+ const CFGBlock *LoopBack, const ConsumedStateMap *LoopBackStates,
+ ConsumedWarningsHandlerBase &WarningsHandler) {
+
+ ConsumedState LocalState;
+ SourceLocation BlameLoc = getLastStmtLoc(LoopBack);
+
+ for (const auto &DM : LoopBackStates->VarMap) {
+ LocalState = this->getState(DM.first);
+
+ if (LocalState == CS_None)
+ continue;
+
+ if (LocalState != DM.second) {
+ VarMap[DM.first] = CS_Unknown;
+ WarningsHandler.warnLoopStateMismatch(BlameLoc,
+ DM.first->getNameAsString());
+ }
+ }
+}
+
+void ConsumedStateMap::markUnreachable() {
+ this->Reachable = false;
+ VarMap.clear();
+ TmpMap.clear();
+}
+
+void ConsumedStateMap::setState(const VarDecl *Var, ConsumedState State) {
+ VarMap[Var] = State;
+}
+
+void ConsumedStateMap::setState(const CXXBindTemporaryExpr *Tmp,
+ ConsumedState State) {
+ TmpMap[Tmp] = State;
+}
+
+void ConsumedStateMap::remove(const CXXBindTemporaryExpr *Tmp) {
+ TmpMap.erase(Tmp);
+}
+
+bool ConsumedStateMap::operator!=(const ConsumedStateMap *Other) const {
+ for (const auto &DM : Other->VarMap)
+ if (this->getState(DM.first) != DM.second)
+ return true;
+ return false;
+}
+
+void ConsumedAnalyzer::determineExpectedReturnState(AnalysisDeclContext &AC,
+ const FunctionDecl *D) {
+ QualType ReturnType;
+ if (const CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
+ ASTContext &CurrContext = AC.getASTContext();
+ ReturnType = Constructor->getThisType(CurrContext)->getPointeeType();
+ } else
+ ReturnType = D->getCallResultType();
+
+ if (const ReturnTypestateAttr *RTSAttr = D->getAttr<ReturnTypestateAttr>()) {
+ const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
+ if (!RD || !RD->hasAttr<ConsumableAttr>()) {
+ // FIXME: This should be removed when template instantiation propagates
+ // attributes at template specialization definition, not
+ // declaration. When it is removed the test needs to be enabled
+ // in SemaDeclAttr.cpp.
+ WarningsHandler.warnReturnTypestateForUnconsumableType(
+ RTSAttr->getLocation(), ReturnType.getAsString());
+ ExpectedReturnState = CS_None;
+ } else
+ ExpectedReturnState = mapReturnTypestateAttrState(RTSAttr);
+ } else if (isConsumableType(ReturnType)) {
+ if (isAutoCastType(ReturnType)) // We can auto-cast the state to the
+ ExpectedReturnState = CS_None; // expected state.
+ else
+ ExpectedReturnState = mapConsumableAttrState(ReturnType);
+ }
+ else
+ ExpectedReturnState = CS_None;
+}
+
+bool ConsumedAnalyzer::splitState(const CFGBlock *CurrBlock,
+ const ConsumedStmtVisitor &Visitor) {
+
+ std::unique_ptr<ConsumedStateMap> FalseStates(
+ new ConsumedStateMap(*CurrStates));
+ PropagationInfo PInfo;
+
+ if (const IfStmt *IfNode =
+ dyn_cast_or_null<IfStmt>(CurrBlock->getTerminator().getStmt())) {
+
+ const Expr *Cond = IfNode->getCond();
+
+ PInfo = Visitor.getInfo(Cond);
+ if (!PInfo.isValid() && isa<BinaryOperator>(Cond))
+ PInfo = Visitor.getInfo(cast<BinaryOperator>(Cond)->getRHS());
+
+ if (PInfo.isVarTest()) {
+ CurrStates->setSource(Cond);
+ FalseStates->setSource(Cond);
+ splitVarStateForIf(IfNode, PInfo.getVarTest(), CurrStates,
+ FalseStates.get());
+
+ } else if (PInfo.isBinTest()) {
+ CurrStates->setSource(PInfo.testSourceNode());
+ FalseStates->setSource(PInfo.testSourceNode());
+ splitVarStateForIfBinOp(PInfo, CurrStates, FalseStates.get());
+
+ } else {
+ return false;
+ }
+
+ } else if (const BinaryOperator *BinOp =
+ dyn_cast_or_null<BinaryOperator>(CurrBlock->getTerminator().getStmt())) {
+
+ PInfo = Visitor.getInfo(BinOp->getLHS());
+ if (!PInfo.isVarTest()) {
+ if ((BinOp = dyn_cast_or_null<BinaryOperator>(BinOp->getLHS()))) {
+ PInfo = Visitor.getInfo(BinOp->getRHS());
+
+ if (!PInfo.isVarTest())
+ return false;
+
+ } else {
+ return false;
+ }
+ }
+
+ CurrStates->setSource(BinOp);
+ FalseStates->setSource(BinOp);
+
+ const VarTestResult &Test = PInfo.getVarTest();
+ ConsumedState VarState = CurrStates->getState(Test.Var);
+
+ if (BinOp->getOpcode() == BO_LAnd) {
+ if (VarState == CS_Unknown)
+ CurrStates->setState(Test.Var, Test.TestsFor);
+ else if (VarState == invertConsumedUnconsumed(Test.TestsFor))
+ CurrStates->markUnreachable();
+
+ } else if (BinOp->getOpcode() == BO_LOr) {
+ if (VarState == CS_Unknown)
+ FalseStates->setState(Test.Var,
+ invertConsumedUnconsumed(Test.TestsFor));
+ else if (VarState == Test.TestsFor)
+ FalseStates->markUnreachable();
+ }
+
+ } else {
+ return false;
+ }
+
+ CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin();
+
+ if (*SI)
+ BlockInfo.addInfo(*SI, CurrStates);
+ else
+ delete CurrStates;
+
+ if (*++SI)
+ BlockInfo.addInfo(*SI, FalseStates.release());
+
+ CurrStates = nullptr;
+ return true;
+}
+
+void ConsumedAnalyzer::run(AnalysisDeclContext &AC) {
+ const FunctionDecl *D = dyn_cast_or_null<FunctionDecl>(AC.getDecl());
+ if (!D)
+ return;
+
+ CFG *CFGraph = AC.getCFG();
+ if (!CFGraph)
+ return;
+
+ determineExpectedReturnState(AC, D);
+
+ PostOrderCFGView *SortedGraph = AC.getAnalysis<PostOrderCFGView>();
+ // AC.getCFG()->viewCFG(LangOptions());
+
+ BlockInfo = ConsumedBlockInfo(CFGraph->getNumBlockIDs(), SortedGraph);
+
+ CurrStates = new ConsumedStateMap();
+ ConsumedStmtVisitor Visitor(AC, *this, CurrStates);
+
+ // Add all trackable parameters to the state map.
+ for (const auto *PI : D->params())
+ Visitor.VisitParmVarDecl(PI);
+
+ // Visit all of the function's basic blocks.
+ for (const auto *CurrBlock : *SortedGraph) {
+ if (!CurrStates)
+ CurrStates = BlockInfo.getInfo(CurrBlock);
+
+ if (!CurrStates) {
+ continue;
+
+ } else if (!CurrStates->isReachable()) {
+ delete CurrStates;
+ CurrStates = nullptr;
+ continue;
+ }
+
+ Visitor.reset(CurrStates);
+
+ // Visit all of the basic block's statements.
+ for (const auto &B : *CurrBlock) {
+ switch (B.getKind()) {
+ case CFGElement::Statement:
+ Visitor.Visit(B.castAs<CFGStmt>().getStmt());
+ break;
+
+ case CFGElement::TemporaryDtor: {
+ const CFGTemporaryDtor &DTor = B.castAs<CFGTemporaryDtor>();
+ const CXXBindTemporaryExpr *BTE = DTor.getBindTemporaryExpr();
+
+ Visitor.checkCallability(PropagationInfo(BTE),
+ DTor.getDestructorDecl(AC.getASTContext()),
+ BTE->getExprLoc());
+ CurrStates->remove(BTE);
+ break;
+ }
+
+ case CFGElement::AutomaticObjectDtor: {
+ const CFGAutomaticObjDtor &DTor = B.castAs<CFGAutomaticObjDtor>();
+ SourceLocation Loc = DTor.getTriggerStmt()->getLocEnd();
+ const VarDecl *Var = DTor.getVarDecl();
+
+ Visitor.checkCallability(PropagationInfo(Var),
+ DTor.getDestructorDecl(AC.getASTContext()),
+ Loc);
+ break;
+ }
+
+ default:
+ break;
+ }
+ }
+
+ // TODO: Handle other forms of branching with precision, including while-
+ // and for-loops. (Deferred)
+ if (!splitState(CurrBlock, Visitor)) {
+ CurrStates->setSource(nullptr);
+
+ if (CurrBlock->succ_size() > 1 ||
+ (CurrBlock->succ_size() == 1 &&
+ (*CurrBlock->succ_begin())->pred_size() > 1)) {
+
+ bool OwnershipTaken = false;
+
+ for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
+ SE = CurrBlock->succ_end(); SI != SE; ++SI) {
+
+ if (*SI == nullptr) continue;
+
+ if (BlockInfo.isBackEdge(CurrBlock, *SI)) {
+ BlockInfo.borrowInfo(*SI)->intersectAtLoopHead(*SI, CurrBlock,
+ CurrStates,
+ WarningsHandler);
+
+ if (BlockInfo.allBackEdgesVisited(CurrBlock, *SI))
+ BlockInfo.discardInfo(*SI);
+ } else {
+ BlockInfo.addInfo(*SI, CurrStates, OwnershipTaken);
+ }
+ }
+
+ if (!OwnershipTaken)
+ delete CurrStates;
+
+ CurrStates = nullptr;
+ }
+ }
+
+ if (CurrBlock == &AC.getCFG()->getExit() &&
+ D->getCallResultType()->isVoidType())
+ CurrStates->checkParamsForReturnTypestate(D->getLocation(),
+ WarningsHandler);
+ } // End of block iterator.
+
+ // Delete the last existing state map.
+ delete CurrStates;
+
+ WarningsHandler.emitDiagnostics();
+}
+}} // end namespace clang::consumed
diff --git a/contrib/llvm/tools/clang/lib/Analysis/Dominators.cpp b/contrib/llvm/tools/clang/lib/Analysis/Dominators.cpp
new file mode 100644
index 0000000..0e02c6d
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/Dominators.cpp
@@ -0,0 +1,14 @@
+//=- Dominators.cpp - Implementation of dominators tree for Clang CFG C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/Analyses/Dominators.h"
+
+using namespace clang;
+
+void DominatorTree::anchor() { }
diff --git a/contrib/llvm/tools/clang/lib/Analysis/FormatString.cpp b/contrib/llvm/tools/clang/lib/Analysis/FormatString.cpp
new file mode 100644
index 0000000..0948bc0
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/FormatString.cpp
@@ -0,0 +1,907 @@
+// FormatString.cpp - Common stuff for handling printf/scanf formats -*- C++ -*-
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Shared details for processing format strings of printf and scanf
+// (and friends).
+//
+//===----------------------------------------------------------------------===//
+
+#include "FormatStringParsing.h"
+#include "clang/Basic/LangOptions.h"
+#include "clang/Basic/TargetInfo.h"
+
+using clang::analyze_format_string::ArgType;
+using clang::analyze_format_string::FormatStringHandler;
+using clang::analyze_format_string::FormatSpecifier;
+using clang::analyze_format_string::LengthModifier;
+using clang::analyze_format_string::OptionalAmount;
+using clang::analyze_format_string::PositionContext;
+using clang::analyze_format_string::ConversionSpecifier;
+using namespace clang;
+
+// Key function to FormatStringHandler.
+FormatStringHandler::~FormatStringHandler() {}
+
+//===----------------------------------------------------------------------===//
+// Functions for parsing format strings components in both printf and
+// scanf format strings.
+//===----------------------------------------------------------------------===//
+
+OptionalAmount
+clang::analyze_format_string::ParseAmount(const char *&Beg, const char *E) {
+ const char *I = Beg;
+ UpdateOnReturn <const char*> UpdateBeg(Beg, I);
+
+ unsigned accumulator = 0;
+ bool hasDigits = false;
+
+ for ( ; I != E; ++I) {
+ char c = *I;
+ if (c >= '0' && c <= '9') {
+ hasDigits = true;
+ accumulator = (accumulator * 10) + (c - '0');
+ continue;
+ }
+
+ if (hasDigits)
+ return OptionalAmount(OptionalAmount::Constant, accumulator, Beg, I - Beg,
+ false);
+
+ break;
+ }
+
+ return OptionalAmount();
+}
+
+OptionalAmount
+clang::analyze_format_string::ParseNonPositionAmount(const char *&Beg,
+ const char *E,
+ unsigned &argIndex) {
+ if (*Beg == '*') {
+ ++Beg;
+ return OptionalAmount(OptionalAmount::Arg, argIndex++, Beg, 0, false);
+ }
+
+ return ParseAmount(Beg, E);
+}
+
+OptionalAmount
+clang::analyze_format_string::ParsePositionAmount(FormatStringHandler &H,
+ const char *Start,
+ const char *&Beg,
+ const char *E,
+ PositionContext p) {
+ if (*Beg == '*') {
+ const char *I = Beg + 1;
+ const OptionalAmount &Amt = ParseAmount(I, E);
+
+ if (Amt.getHowSpecified() == OptionalAmount::NotSpecified) {
+ H.HandleInvalidPosition(Beg, I - Beg, p);
+ return OptionalAmount(false);
+ }
+
+ if (I == E) {
+ // No more characters left?
+ H.HandleIncompleteSpecifier(Start, E - Start);
+ return OptionalAmount(false);
+ }
+
+ assert(Amt.getHowSpecified() == OptionalAmount::Constant);
+
+ if (*I == '$') {
+ // Handle positional arguments
+
+ // Special case: '*0$', since this is an easy mistake.
+ if (Amt.getConstantAmount() == 0) {
+ H.HandleZeroPosition(Beg, I - Beg + 1);
+ return OptionalAmount(false);
+ }
+
+ const char *Tmp = Beg;
+ Beg = ++I;
+
+ return OptionalAmount(OptionalAmount::Arg, Amt.getConstantAmount() - 1,
+ Tmp, 0, true);
+ }
+
+ H.HandleInvalidPosition(Beg, I - Beg, p);
+ return OptionalAmount(false);
+ }
+
+ return ParseAmount(Beg, E);
+}
+
+
+bool
+clang::analyze_format_string::ParseFieldWidth(FormatStringHandler &H,
+ FormatSpecifier &CS,
+ const char *Start,
+ const char *&Beg, const char *E,
+ unsigned *argIndex) {
+ // FIXME: Support negative field widths.
+ if (argIndex) {
+ CS.setFieldWidth(ParseNonPositionAmount(Beg, E, *argIndex));
+ }
+ else {
+ const OptionalAmount Amt =
+ ParsePositionAmount(H, Start, Beg, E,
+ analyze_format_string::FieldWidthPos);
+
+ if (Amt.isInvalid())
+ return true;
+ CS.setFieldWidth(Amt);
+ }
+ return false;
+}
+
+bool
+clang::analyze_format_string::ParseArgPosition(FormatStringHandler &H,
+ FormatSpecifier &FS,
+ const char *Start,
+ const char *&Beg,
+ const char *E) {
+ const char *I = Beg;
+
+ const OptionalAmount &Amt = ParseAmount(I, E);
+
+ if (I == E) {
+ // No more characters left?
+ H.HandleIncompleteSpecifier(Start, E - Start);
+ return true;
+ }
+
+ if (Amt.getHowSpecified() == OptionalAmount::Constant && *(I++) == '$') {
+ // Warn that positional arguments are non-standard.
+ H.HandlePosition(Start, I - Start);
+
+ // Special case: '%0$', since this is an easy mistake.
+ if (Amt.getConstantAmount() == 0) {
+ H.HandleZeroPosition(Start, I - Start);
+ return true;
+ }
+
+ FS.setArgIndex(Amt.getConstantAmount() - 1);
+ FS.setUsesPositionalArg();
+ // Update the caller's pointer if we decided to consume
+ // these characters.
+ Beg = I;
+ return false;
+ }
+
+ return false;
+}
+
+bool
+clang::analyze_format_string::ParseLengthModifier(FormatSpecifier &FS,
+ const char *&I,
+ const char *E,
+ const LangOptions &LO,
+ bool IsScanf) {
+ LengthModifier::Kind lmKind = LengthModifier::None;
+ const char *lmPosition = I;
+ switch (*I) {
+ default:
+ return false;
+ case 'h':
+ ++I;
+ lmKind = (I != E && *I == 'h') ? (++I, LengthModifier::AsChar)
+ : LengthModifier::AsShort;
+ break;
+ case 'l':
+ ++I;
+ lmKind = (I != E && *I == 'l') ? (++I, LengthModifier::AsLongLong)
+ : LengthModifier::AsLong;
+ break;
+ case 'j': lmKind = LengthModifier::AsIntMax; ++I; break;
+ case 'z': lmKind = LengthModifier::AsSizeT; ++I; break;
+ case 't': lmKind = LengthModifier::AsPtrDiff; ++I; break;
+ case 'L': lmKind = LengthModifier::AsLongDouble; ++I; break;
+ case 'q': lmKind = LengthModifier::AsQuad; ++I; break;
+ case 'a':
+ if (IsScanf && !LO.C99 && !LO.CPlusPlus11) {
+ // For scanf in C90, look at the next character to see if this should
+ // be parsed as the GNU extension 'a' length modifier. If not, this
+ // will be parsed as a conversion specifier.
+ ++I;
+ if (I != E && (*I == 's' || *I == 'S' || *I == '[')) {
+ lmKind = LengthModifier::AsAllocate;
+ break;
+ }
+ --I;
+ }
+ return false;
+ case 'm':
+ if (IsScanf) {
+ lmKind = LengthModifier::AsMAllocate;
+ ++I;
+ break;
+ }
+ return false;
+ // printf: AsInt64, AsInt32, AsInt3264
+ // scanf: AsInt64
+ case 'I':
+ if (I + 1 != E && I + 2 != E) {
+ if (I[1] == '6' && I[2] == '4') {
+ I += 3;
+ lmKind = LengthModifier::AsInt64;
+ break;
+ }
+ if (IsScanf)
+ return false;
+
+ if (I[1] == '3' && I[2] == '2') {
+ I += 3;
+ lmKind = LengthModifier::AsInt32;
+ break;
+ }
+ }
+ ++I;
+ lmKind = LengthModifier::AsInt3264;
+ break;
+ case 'w':
+ lmKind = LengthModifier::AsWide; ++I; break;
+ }
+ LengthModifier lm(lmPosition, lmKind);
+ FS.setLengthModifier(lm);
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// Methods on ArgType.
+//===----------------------------------------------------------------------===//
+
+clang::analyze_format_string::ArgType::MatchKind
+ArgType::matchesType(ASTContext &C, QualType argTy) const {
+ if (Ptr) {
+ // It has to be a pointer.
+ const PointerType *PT = argTy->getAs<PointerType>();
+ if (!PT)
+ return NoMatch;
+
+ // We cannot write through a const qualified pointer.
+ if (PT->getPointeeType().isConstQualified())
+ return NoMatch;
+
+ argTy = PT->getPointeeType();
+ }
+
+ switch (K) {
+ case InvalidTy:
+ llvm_unreachable("ArgType must be valid");
+
+ case UnknownTy:
+ return Match;
+
+ case AnyCharTy: {
+ if (const EnumType *ETy = argTy->getAs<EnumType>())
+ argTy = ETy->getDecl()->getIntegerType();
+
+ if (const BuiltinType *BT = argTy->getAs<BuiltinType>())
+ switch (BT->getKind()) {
+ default:
+ break;
+ case BuiltinType::Char_S:
+ case BuiltinType::SChar:
+ case BuiltinType::UChar:
+ case BuiltinType::Char_U:
+ return Match;
+ }
+ return NoMatch;
+ }
+
+ case SpecificTy: {
+ if (const EnumType *ETy = argTy->getAs<EnumType>())
+ argTy = ETy->getDecl()->getIntegerType();
+ argTy = C.getCanonicalType(argTy).getUnqualifiedType();
+
+ if (T == argTy)
+ return Match;
+ // Check for "compatible types".
+ if (const BuiltinType *BT = argTy->getAs<BuiltinType>())
+ switch (BT->getKind()) {
+ default:
+ break;
+ case BuiltinType::Char_S:
+ case BuiltinType::SChar:
+ case BuiltinType::Char_U:
+ case BuiltinType::UChar:
+ return T == C.UnsignedCharTy || T == C.SignedCharTy ? Match
+ : NoMatch;
+ case BuiltinType::Short:
+ return T == C.UnsignedShortTy ? Match : NoMatch;
+ case BuiltinType::UShort:
+ return T == C.ShortTy ? Match : NoMatch;
+ case BuiltinType::Int:
+ return T == C.UnsignedIntTy ? Match : NoMatch;
+ case BuiltinType::UInt:
+ return T == C.IntTy ? Match : NoMatch;
+ case BuiltinType::Long:
+ return T == C.UnsignedLongTy ? Match : NoMatch;
+ case BuiltinType::ULong:
+ return T == C.LongTy ? Match : NoMatch;
+ case BuiltinType::LongLong:
+ return T == C.UnsignedLongLongTy ? Match : NoMatch;
+ case BuiltinType::ULongLong:
+ return T == C.LongLongTy ? Match : NoMatch;
+ }
+ return NoMatch;
+ }
+
+ case CStrTy: {
+ const PointerType *PT = argTy->getAs<PointerType>();
+ if (!PT)
+ return NoMatch;
+ QualType pointeeTy = PT->getPointeeType();
+ if (const BuiltinType *BT = pointeeTy->getAs<BuiltinType>())
+ switch (BT->getKind()) {
+ case BuiltinType::Void:
+ case BuiltinType::Char_U:
+ case BuiltinType::UChar:
+ case BuiltinType::Char_S:
+ case BuiltinType::SChar:
+ return Match;
+ default:
+ break;
+ }
+
+ return NoMatch;
+ }
+
+ case WCStrTy: {
+ const PointerType *PT = argTy->getAs<PointerType>();
+ if (!PT)
+ return NoMatch;
+ QualType pointeeTy =
+ C.getCanonicalType(PT->getPointeeType()).getUnqualifiedType();
+ return pointeeTy == C.getWideCharType() ? Match : NoMatch;
+ }
+
+ case WIntTy: {
+
+ QualType PromoArg =
+ argTy->isPromotableIntegerType()
+ ? C.getPromotedIntegerType(argTy) : argTy;
+
+ QualType WInt = C.getCanonicalType(C.getWIntType()).getUnqualifiedType();
+ PromoArg = C.getCanonicalType(PromoArg).getUnqualifiedType();
+
+ // If the promoted argument is the corresponding signed type of the
+ // wint_t type, then it should match.
+ if (PromoArg->hasSignedIntegerRepresentation() &&
+ C.getCorrespondingUnsignedType(PromoArg) == WInt)
+ return Match;
+
+ return WInt == PromoArg ? Match : NoMatch;
+ }
+
+ case CPointerTy:
+ if (argTy->isVoidPointerType()) {
+ return Match;
+ } if (argTy->isPointerType() || argTy->isObjCObjectPointerType() ||
+ argTy->isBlockPointerType() || argTy->isNullPtrType()) {
+ return NoMatchPedantic;
+ } else {
+ return NoMatch;
+ }
+
+ case ObjCPointerTy: {
+ if (argTy->getAs<ObjCObjectPointerType>() ||
+ argTy->getAs<BlockPointerType>())
+ return Match;
+
+ // Handle implicit toll-free bridging.
+ if (const PointerType *PT = argTy->getAs<PointerType>()) {
+ // Things such as CFTypeRef are really just opaque pointers
+ // to C structs representing CF types that can often be bridged
+ // to Objective-C objects. Since the compiler doesn't know which
+ // structs can be toll-free bridged, we just accept them all.
+ QualType pointee = PT->getPointeeType();
+ if (pointee->getAsStructureType() || pointee->isVoidType())
+ return Match;
+ }
+ return NoMatch;
+ }
+ }
+
+ llvm_unreachable("Invalid ArgType Kind!");
+}
+
+QualType ArgType::getRepresentativeType(ASTContext &C) const {
+ QualType Res;
+ switch (K) {
+ case InvalidTy:
+ llvm_unreachable("No representative type for Invalid ArgType");
+ case UnknownTy:
+ llvm_unreachable("No representative type for Unknown ArgType");
+ case AnyCharTy:
+ Res = C.CharTy;
+ break;
+ case SpecificTy:
+ Res = T;
+ break;
+ case CStrTy:
+ Res = C.getPointerType(C.CharTy);
+ break;
+ case WCStrTy:
+ Res = C.getPointerType(C.getWideCharType());
+ break;
+ case ObjCPointerTy:
+ Res = C.ObjCBuiltinIdTy;
+ break;
+ case CPointerTy:
+ Res = C.VoidPtrTy;
+ break;
+ case WIntTy: {
+ Res = C.getWIntType();
+ break;
+ }
+ }
+
+ if (Ptr)
+ Res = C.getPointerType(Res);
+ return Res;
+}
+
+std::string ArgType::getRepresentativeTypeName(ASTContext &C) const {
+ std::string S = getRepresentativeType(C).getAsString();
+
+ std::string Alias;
+ if (Name) {
+ // Use a specific name for this type, e.g. "size_t".
+ Alias = Name;
+ if (Ptr) {
+ // If ArgType is actually a pointer to T, append an asterisk.
+ Alias += (Alias[Alias.size()-1] == '*') ? "*" : " *";
+ }
+ // If Alias is the same as the underlying type, e.g. wchar_t, then drop it.
+ if (S == Alias)
+ Alias.clear();
+ }
+
+ if (!Alias.empty())
+ return std::string("'") + Alias + "' (aka '" + S + "')";
+ return std::string("'") + S + "'";
+}
+
+
+//===----------------------------------------------------------------------===//
+// Methods on OptionalAmount.
+//===----------------------------------------------------------------------===//
+
+ArgType
+analyze_format_string::OptionalAmount::getArgType(ASTContext &Ctx) const {
+ return Ctx.IntTy;
+}
+
+//===----------------------------------------------------------------------===//
+// Methods on LengthModifier.
+//===----------------------------------------------------------------------===//
+
+const char *
+analyze_format_string::LengthModifier::toString() const {
+ switch (kind) {
+ case AsChar:
+ return "hh";
+ case AsShort:
+ return "h";
+ case AsLong: // or AsWideChar
+ return "l";
+ case AsLongLong:
+ return "ll";
+ case AsQuad:
+ return "q";
+ case AsIntMax:
+ return "j";
+ case AsSizeT:
+ return "z";
+ case AsPtrDiff:
+ return "t";
+ case AsInt32:
+ return "I32";
+ case AsInt3264:
+ return "I";
+ case AsInt64:
+ return "I64";
+ case AsLongDouble:
+ return "L";
+ case AsAllocate:
+ return "a";
+ case AsMAllocate:
+ return "m";
+ case AsWide:
+ return "w";
+ case None:
+ return "";
+ }
+ return nullptr;
+}
+
+//===----------------------------------------------------------------------===//
+// Methods on ConversionSpecifier.
+//===----------------------------------------------------------------------===//
+
+const char *ConversionSpecifier::toString() const {
+ switch (kind) {
+ case dArg: return "d";
+ case DArg: return "D";
+ case iArg: return "i";
+ case oArg: return "o";
+ case OArg: return "O";
+ case uArg: return "u";
+ case UArg: return "U";
+ case xArg: return "x";
+ case XArg: return "X";
+ case fArg: return "f";
+ case FArg: return "F";
+ case eArg: return "e";
+ case EArg: return "E";
+ case gArg: return "g";
+ case GArg: return "G";
+ case aArg: return "a";
+ case AArg: return "A";
+ case cArg: return "c";
+ case sArg: return "s";
+ case pArg: return "p";
+ case nArg: return "n";
+ case PercentArg: return "%";
+ case ScanListArg: return "[";
+ case InvalidSpecifier: return nullptr;
+
+ // POSIX unicode extensions.
+ case CArg: return "C";
+ case SArg: return "S";
+
+ // Objective-C specific specifiers.
+ case ObjCObjArg: return "@";
+
+ // FreeBSD kernel specific specifiers.
+ case FreeBSDbArg: return "b";
+ case FreeBSDDArg: return "D";
+ case FreeBSDrArg: return "r";
+ case FreeBSDyArg: return "y";
+
+ // GlibC specific specifiers.
+ case PrintErrno: return "m";
+
+ // MS specific specifiers.
+ case ZArg: return "Z";
+ }
+ return nullptr;
+}
+
+Optional<ConversionSpecifier>
+ConversionSpecifier::getStandardSpecifier() const {
+ ConversionSpecifier::Kind NewKind;
+
+ switch (getKind()) {
+ default:
+ return None;
+ case DArg:
+ NewKind = dArg;
+ break;
+ case UArg:
+ NewKind = uArg;
+ break;
+ case OArg:
+ NewKind = oArg;
+ break;
+ }
+
+ ConversionSpecifier FixedCS(*this);
+ FixedCS.setKind(NewKind);
+ return FixedCS;
+}
+
+//===----------------------------------------------------------------------===//
+// Methods on OptionalAmount.
+//===----------------------------------------------------------------------===//
+
+void OptionalAmount::toString(raw_ostream &os) const {
+ switch (hs) {
+ case Invalid:
+ case NotSpecified:
+ return;
+ case Arg:
+ if (UsesDotPrefix)
+ os << ".";
+ if (usesPositionalArg())
+ os << "*" << getPositionalArgIndex() << "$";
+ else
+ os << "*";
+ break;
+ case Constant:
+ if (UsesDotPrefix)
+ os << ".";
+ os << amt;
+ break;
+ }
+}
+
+bool FormatSpecifier::hasValidLengthModifier(const TargetInfo &Target) const {
+ switch (LM.getKind()) {
+ case LengthModifier::None:
+ return true;
+
+ // Handle most integer flags
+ case LengthModifier::AsShort:
+ if (Target.getTriple().isOSMSVCRT()) {
+ switch (CS.getKind()) {
+ case ConversionSpecifier::cArg:
+ case ConversionSpecifier::CArg:
+ case ConversionSpecifier::sArg:
+ case ConversionSpecifier::SArg:
+ case ConversionSpecifier::ZArg:
+ return true;
+ default:
+ break;
+ }
+ }
+ // Fall through.
+ case LengthModifier::AsChar:
+ case LengthModifier::AsLongLong:
+ case LengthModifier::AsQuad:
+ case LengthModifier::AsIntMax:
+ case LengthModifier::AsSizeT:
+ case LengthModifier::AsPtrDiff:
+ switch (CS.getKind()) {
+ case ConversionSpecifier::dArg:
+ case ConversionSpecifier::DArg:
+ case ConversionSpecifier::iArg:
+ case ConversionSpecifier::oArg:
+ case ConversionSpecifier::OArg:
+ case ConversionSpecifier::uArg:
+ case ConversionSpecifier::UArg:
+ case ConversionSpecifier::xArg:
+ case ConversionSpecifier::XArg:
+ case ConversionSpecifier::nArg:
+ return true;
+ case ConversionSpecifier::FreeBSDrArg:
+ case ConversionSpecifier::FreeBSDyArg:
+ return Target.getTriple().isOSFreeBSD();
+ default:
+ return false;
+ }
+
+ // Handle 'l' flag
+ case LengthModifier::AsLong: // or AsWideChar
+ switch (CS.getKind()) {
+ case ConversionSpecifier::dArg:
+ case ConversionSpecifier::DArg:
+ case ConversionSpecifier::iArg:
+ case ConversionSpecifier::oArg:
+ case ConversionSpecifier::OArg:
+ case ConversionSpecifier::uArg:
+ case ConversionSpecifier::UArg:
+ case ConversionSpecifier::xArg:
+ case ConversionSpecifier::XArg:
+ case ConversionSpecifier::aArg:
+ case ConversionSpecifier::AArg:
+ case ConversionSpecifier::fArg:
+ case ConversionSpecifier::FArg:
+ case ConversionSpecifier::eArg:
+ case ConversionSpecifier::EArg:
+ case ConversionSpecifier::gArg:
+ case ConversionSpecifier::GArg:
+ case ConversionSpecifier::nArg:
+ case ConversionSpecifier::cArg:
+ case ConversionSpecifier::sArg:
+ case ConversionSpecifier::ScanListArg:
+ case ConversionSpecifier::ZArg:
+ return true;
+ case ConversionSpecifier::FreeBSDrArg:
+ case ConversionSpecifier::FreeBSDyArg:
+ return Target.getTriple().isOSFreeBSD();
+ default:
+ return false;
+ }
+
+ case LengthModifier::AsLongDouble:
+ switch (CS.getKind()) {
+ case ConversionSpecifier::aArg:
+ case ConversionSpecifier::AArg:
+ case ConversionSpecifier::fArg:
+ case ConversionSpecifier::FArg:
+ case ConversionSpecifier::eArg:
+ case ConversionSpecifier::EArg:
+ case ConversionSpecifier::gArg:
+ case ConversionSpecifier::GArg:
+ return true;
+ // GNU libc extension.
+ case ConversionSpecifier::dArg:
+ case ConversionSpecifier::iArg:
+ case ConversionSpecifier::oArg:
+ case ConversionSpecifier::uArg:
+ case ConversionSpecifier::xArg:
+ case ConversionSpecifier::XArg:
+ return !Target.getTriple().isOSDarwin() &&
+ !Target.getTriple().isOSWindows();
+ default:
+ return false;
+ }
+
+ case LengthModifier::AsAllocate:
+ switch (CS.getKind()) {
+ case ConversionSpecifier::sArg:
+ case ConversionSpecifier::SArg:
+ case ConversionSpecifier::ScanListArg:
+ return true;
+ default:
+ return false;
+ }
+
+ case LengthModifier::AsMAllocate:
+ switch (CS.getKind()) {
+ case ConversionSpecifier::cArg:
+ case ConversionSpecifier::CArg:
+ case ConversionSpecifier::sArg:
+ case ConversionSpecifier::SArg:
+ case ConversionSpecifier::ScanListArg:
+ return true;
+ default:
+ return false;
+ }
+ case LengthModifier::AsInt32:
+ case LengthModifier::AsInt3264:
+ case LengthModifier::AsInt64:
+ switch (CS.getKind()) {
+ case ConversionSpecifier::dArg:
+ case ConversionSpecifier::iArg:
+ case ConversionSpecifier::oArg:
+ case ConversionSpecifier::uArg:
+ case ConversionSpecifier::xArg:
+ case ConversionSpecifier::XArg:
+ return Target.getTriple().isOSMSVCRT();
+ default:
+ return false;
+ }
+ case LengthModifier::AsWide:
+ switch (CS.getKind()) {
+ case ConversionSpecifier::cArg:
+ case ConversionSpecifier::CArg:
+ case ConversionSpecifier::sArg:
+ case ConversionSpecifier::SArg:
+ case ConversionSpecifier::ZArg:
+ return Target.getTriple().isOSMSVCRT();
+ default:
+ return false;
+ }
+ }
+ llvm_unreachable("Invalid LengthModifier Kind!");
+}
+
+bool FormatSpecifier::hasStandardLengthModifier() const {
+ switch (LM.getKind()) {
+ case LengthModifier::None:
+ case LengthModifier::AsChar:
+ case LengthModifier::AsShort:
+ case LengthModifier::AsLong:
+ case LengthModifier::AsLongLong:
+ case LengthModifier::AsIntMax:
+ case LengthModifier::AsSizeT:
+ case LengthModifier::AsPtrDiff:
+ case LengthModifier::AsLongDouble:
+ return true;
+ case LengthModifier::AsAllocate:
+ case LengthModifier::AsMAllocate:
+ case LengthModifier::AsQuad:
+ case LengthModifier::AsInt32:
+ case LengthModifier::AsInt3264:
+ case LengthModifier::AsInt64:
+ case LengthModifier::AsWide:
+ return false;
+ }
+ llvm_unreachable("Invalid LengthModifier Kind!");
+}
+
+bool FormatSpecifier::hasStandardConversionSpecifier(
+ const LangOptions &LangOpt) const {
+ switch (CS.getKind()) {
+ case ConversionSpecifier::cArg:
+ case ConversionSpecifier::dArg:
+ case ConversionSpecifier::iArg:
+ case ConversionSpecifier::oArg:
+ case ConversionSpecifier::uArg:
+ case ConversionSpecifier::xArg:
+ case ConversionSpecifier::XArg:
+ case ConversionSpecifier::fArg:
+ case ConversionSpecifier::FArg:
+ case ConversionSpecifier::eArg:
+ case ConversionSpecifier::EArg:
+ case ConversionSpecifier::gArg:
+ case ConversionSpecifier::GArg:
+ case ConversionSpecifier::aArg:
+ case ConversionSpecifier::AArg:
+ case ConversionSpecifier::sArg:
+ case ConversionSpecifier::pArg:
+ case ConversionSpecifier::nArg:
+ case ConversionSpecifier::ObjCObjArg:
+ case ConversionSpecifier::ScanListArg:
+ case ConversionSpecifier::PercentArg:
+ return true;
+ case ConversionSpecifier::CArg:
+ case ConversionSpecifier::SArg:
+ return LangOpt.ObjC1 || LangOpt.ObjC2;
+ case ConversionSpecifier::InvalidSpecifier:
+ case ConversionSpecifier::FreeBSDbArg:
+ case ConversionSpecifier::FreeBSDDArg:
+ case ConversionSpecifier::FreeBSDrArg:
+ case ConversionSpecifier::FreeBSDyArg:
+ case ConversionSpecifier::PrintErrno:
+ case ConversionSpecifier::DArg:
+ case ConversionSpecifier::OArg:
+ case ConversionSpecifier::UArg:
+ case ConversionSpecifier::ZArg:
+ return false;
+ }
+ llvm_unreachable("Invalid ConversionSpecifier Kind!");
+}
+
+bool FormatSpecifier::hasStandardLengthConversionCombination() const {
+ if (LM.getKind() == LengthModifier::AsLongDouble) {
+ switch(CS.getKind()) {
+ case ConversionSpecifier::dArg:
+ case ConversionSpecifier::iArg:
+ case ConversionSpecifier::oArg:
+ case ConversionSpecifier::uArg:
+ case ConversionSpecifier::xArg:
+ case ConversionSpecifier::XArg:
+ return false;
+ default:
+ return true;
+ }
+ }
+ return true;
+}
+
+Optional<LengthModifier> FormatSpecifier::getCorrectedLengthModifier() const {
+ if (CS.isAnyIntArg() || CS.getKind() == ConversionSpecifier::nArg) {
+ if (LM.getKind() == LengthModifier::AsLongDouble ||
+ LM.getKind() == LengthModifier::AsQuad) {
+ LengthModifier FixedLM(LM);
+ FixedLM.setKind(LengthModifier::AsLongLong);
+ return FixedLM;
+ }
+ }
+
+ return None;
+}
+
+bool FormatSpecifier::namedTypeToLengthModifier(QualType QT,
+ LengthModifier &LM) {
+ assert(isa<TypedefType>(QT) && "Expected a TypedefType");
+ const TypedefNameDecl *Typedef = cast<TypedefType>(QT)->getDecl();
+
+ for (;;) {
+ const IdentifierInfo *Identifier = Typedef->getIdentifier();
+ if (Identifier->getName() == "size_t") {
+ LM.setKind(LengthModifier::AsSizeT);
+ return true;
+ } else if (Identifier->getName() == "ssize_t") {
+ // Not C99, but common in Unix.
+ LM.setKind(LengthModifier::AsSizeT);
+ return true;
+ } else if (Identifier->getName() == "intmax_t") {
+ LM.setKind(LengthModifier::AsIntMax);
+ return true;
+ } else if (Identifier->getName() == "uintmax_t") {
+ LM.setKind(LengthModifier::AsIntMax);
+ return true;
+ } else if (Identifier->getName() == "ptrdiff_t") {
+ LM.setKind(LengthModifier::AsPtrDiff);
+ return true;
+ }
+
+ QualType T = Typedef->getUnderlyingType();
+ if (!isa<TypedefType>(T))
+ break;
+
+ Typedef = cast<TypedefType>(T)->getDecl();
+ }
+ return false;
+}
diff --git a/contrib/llvm/tools/clang/lib/Analysis/FormatStringParsing.h b/contrib/llvm/tools/clang/lib/Analysis/FormatStringParsing.h
new file mode 100644
index 0000000..e165296
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/FormatStringParsing.h
@@ -0,0 +1,74 @@
+#ifndef LLVM_CLANG_LIB_ANALYSIS_FORMATSTRINGPARSING_H
+#define LLVM_CLANG_LIB_ANALYSIS_FORMATSTRINGPARSING_H
+
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Type.h"
+#include "clang/Analysis/Analyses/FormatString.h"
+#include "llvm/Support/raw_ostream.h"
+
+namespace clang {
+
+class LangOptions;
+
+template <typename T>
+class UpdateOnReturn {
+ T &ValueToUpdate;
+ const T &ValueToCopy;
+public:
+ UpdateOnReturn(T &valueToUpdate, const T &valueToCopy)
+ : ValueToUpdate(valueToUpdate), ValueToCopy(valueToCopy) {}
+
+ ~UpdateOnReturn() {
+ ValueToUpdate = ValueToCopy;
+ }
+};
+
+namespace analyze_format_string {
+
+OptionalAmount ParseAmount(const char *&Beg, const char *E);
+OptionalAmount ParseNonPositionAmount(const char *&Beg, const char *E,
+ unsigned &argIndex);
+
+OptionalAmount ParsePositionAmount(FormatStringHandler &H,
+ const char *Start, const char *&Beg,
+ const char *E, PositionContext p);
+
+bool ParseFieldWidth(FormatStringHandler &H,
+ FormatSpecifier &CS,
+ const char *Start, const char *&Beg, const char *E,
+ unsigned *argIndex);
+
+bool ParseArgPosition(FormatStringHandler &H,
+ FormatSpecifier &CS, const char *Start,
+ const char *&Beg, const char *E);
+
+/// Returns true if a LengthModifier was parsed and installed in the
+/// FormatSpecifier& argument, and false otherwise.
+bool ParseLengthModifier(FormatSpecifier &FS, const char *&Beg, const char *E,
+ const LangOptions &LO, bool IsScanf = false);
+
+template <typename T> class SpecifierResult {
+ T FS;
+ const char *Start;
+ bool Stop;
+public:
+ SpecifierResult(bool stop = false)
+ : Start(nullptr), Stop(stop) {}
+ SpecifierResult(const char *start,
+ const T &fs)
+ : FS(fs), Start(start), Stop(false) {}
+
+ const char *getStart() const { return Start; }
+ bool shouldStop() const { return Stop; }
+ bool hasValue() const { return Start != nullptr; }
+ const T &getValue() const {
+ assert(hasValue());
+ return FS;
+ }
+ const T &getValue() { return FS; }
+};
+
+} // end analyze_format_string namespace
+} // end clang namespace
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/Analysis/LiveVariables.cpp b/contrib/llvm/tools/clang/lib/Analysis/LiveVariables.cpp
new file mode 100644
index 0000000..0ab1580
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/LiveVariables.cpp
@@ -0,0 +1,612 @@
+//=- LiveVariables.cpp - Live Variable Analysis for Source CFGs ----------*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements Live Variables analysis for source-level CFGs.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/Analyses/LiveVariables.h"
+#include "clang/AST/Stmt.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Analysis/Analyses/PostOrderCFGView.h"
+#include "clang/Analysis/AnalysisContext.h"
+#include "clang/Analysis/CFG.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <vector>
+
+using namespace clang;
+
+namespace {
+
+class DataflowWorklist {
+ SmallVector<const CFGBlock *, 20> worklist;
+ llvm::BitVector enqueuedBlocks;
+ PostOrderCFGView *POV;
+public:
+ DataflowWorklist(const CFG &cfg, AnalysisDeclContext &Ctx)
+ : enqueuedBlocks(cfg.getNumBlockIDs()),
+ POV(Ctx.getAnalysis<PostOrderCFGView>()) {}
+
+ void enqueueBlock(const CFGBlock *block);
+ void enqueuePredecessors(const CFGBlock *block);
+
+ const CFGBlock *dequeue();
+
+ void sortWorklist();
+};
+
+}
+
+void DataflowWorklist::enqueueBlock(const clang::CFGBlock *block) {
+ if (block && !enqueuedBlocks[block->getBlockID()]) {
+ enqueuedBlocks[block->getBlockID()] = true;
+ worklist.push_back(block);
+ }
+}
+
+void DataflowWorklist::enqueuePredecessors(const clang::CFGBlock *block) {
+ const unsigned OldWorklistSize = worklist.size();
+ for (CFGBlock::const_pred_iterator I = block->pred_begin(),
+ E = block->pred_end(); I != E; ++I) {
+ enqueueBlock(*I);
+ }
+
+ if (OldWorklistSize == 0 || OldWorklistSize == worklist.size())
+ return;
+
+ sortWorklist();
+}
+
+void DataflowWorklist::sortWorklist() {
+ std::sort(worklist.begin(), worklist.end(), POV->getComparator());
+}
+
+const CFGBlock *DataflowWorklist::dequeue() {
+ if (worklist.empty())
+ return nullptr;
+ const CFGBlock *b = worklist.pop_back_val();
+ enqueuedBlocks[b->getBlockID()] = false;
+ return b;
+}
+
+namespace {
+class LiveVariablesImpl {
+public:
+ AnalysisDeclContext &analysisContext;
+ llvm::ImmutableSet<const Stmt *>::Factory SSetFact;
+ llvm::ImmutableSet<const VarDecl *>::Factory DSetFact;
+ llvm::DenseMap<const CFGBlock *, LiveVariables::LivenessValues> blocksEndToLiveness;
+ llvm::DenseMap<const CFGBlock *, LiveVariables::LivenessValues> blocksBeginToLiveness;
+ llvm::DenseMap<const Stmt *, LiveVariables::LivenessValues> stmtsToLiveness;
+ llvm::DenseMap<const DeclRefExpr *, unsigned> inAssignment;
+ const bool killAtAssign;
+
+ LiveVariables::LivenessValues
+ merge(LiveVariables::LivenessValues valsA,
+ LiveVariables::LivenessValues valsB);
+
+ LiveVariables::LivenessValues
+ runOnBlock(const CFGBlock *block, LiveVariables::LivenessValues val,
+ LiveVariables::Observer *obs = nullptr);
+
+ void dumpBlockLiveness(const SourceManager& M);
+
+ LiveVariablesImpl(AnalysisDeclContext &ac, bool KillAtAssign)
+ : analysisContext(ac),
+ SSetFact(false), // Do not canonicalize ImmutableSets by default.
+ DSetFact(false), // This is a *major* performance win.
+ killAtAssign(KillAtAssign) {}
+};
+}
+
+static LiveVariablesImpl &getImpl(void *x) {
+ return *((LiveVariablesImpl *) x);
+}
+
+//===----------------------------------------------------------------------===//
+// Operations and queries on LivenessValues.
+//===----------------------------------------------------------------------===//
+
+bool LiveVariables::LivenessValues::isLive(const Stmt *S) const {
+ return liveStmts.contains(S);
+}
+
+bool LiveVariables::LivenessValues::isLive(const VarDecl *D) const {
+ return liveDecls.contains(D);
+}
+
+namespace {
+ template <typename SET>
+ SET mergeSets(SET A, SET B) {
+ if (A.isEmpty())
+ return B;
+
+ for (typename SET::iterator it = B.begin(), ei = B.end(); it != ei; ++it) {
+ A = A.add(*it);
+ }
+ return A;
+ }
+}
+
+void LiveVariables::Observer::anchor() { }
+
+LiveVariables::LivenessValues
+LiveVariablesImpl::merge(LiveVariables::LivenessValues valsA,
+ LiveVariables::LivenessValues valsB) {
+
+ llvm::ImmutableSetRef<const Stmt *>
+ SSetRefA(valsA.liveStmts.getRootWithoutRetain(), SSetFact.getTreeFactory()),
+ SSetRefB(valsB.liveStmts.getRootWithoutRetain(), SSetFact.getTreeFactory());
+
+
+ llvm::ImmutableSetRef<const VarDecl *>
+ DSetRefA(valsA.liveDecls.getRootWithoutRetain(), DSetFact.getTreeFactory()),
+ DSetRefB(valsB.liveDecls.getRootWithoutRetain(), DSetFact.getTreeFactory());
+
+
+ SSetRefA = mergeSets(SSetRefA, SSetRefB);
+ DSetRefA = mergeSets(DSetRefA, DSetRefB);
+
+ // asImmutableSet() canonicalizes the tree, allowing us to do an easy
+ // comparison afterwards.
+ return LiveVariables::LivenessValues(SSetRefA.asImmutableSet(),
+ DSetRefA.asImmutableSet());
+}
+
+bool LiveVariables::LivenessValues::equals(const LivenessValues &V) const {
+ return liveStmts == V.liveStmts && liveDecls == V.liveDecls;
+}
+
+//===----------------------------------------------------------------------===//
+// Query methods.
+//===----------------------------------------------------------------------===//
+
+static bool isAlwaysAlive(const VarDecl *D) {
+ return D->hasGlobalStorage();
+}
+
+bool LiveVariables::isLive(const CFGBlock *B, const VarDecl *D) {
+ return isAlwaysAlive(D) || getImpl(impl).blocksEndToLiveness[B].isLive(D);
+}
+
+bool LiveVariables::isLive(const Stmt *S, const VarDecl *D) {
+ return isAlwaysAlive(D) || getImpl(impl).stmtsToLiveness[S].isLive(D);
+}
+
+bool LiveVariables::isLive(const Stmt *Loc, const Stmt *S) {
+ return getImpl(impl).stmtsToLiveness[Loc].isLive(S);
+}
+
+//===----------------------------------------------------------------------===//
+// Dataflow computation.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class TransferFunctions : public StmtVisitor<TransferFunctions> {
+ LiveVariablesImpl &LV;
+ LiveVariables::LivenessValues &val;
+ LiveVariables::Observer *observer;
+ const CFGBlock *currentBlock;
+public:
+ TransferFunctions(LiveVariablesImpl &im,
+ LiveVariables::LivenessValues &Val,
+ LiveVariables::Observer *Observer,
+ const CFGBlock *CurrentBlock)
+ : LV(im), val(Val), observer(Observer), currentBlock(CurrentBlock) {}
+
+ void VisitBinaryOperator(BinaryOperator *BO);
+ void VisitBlockExpr(BlockExpr *BE);
+ void VisitDeclRefExpr(DeclRefExpr *DR);
+ void VisitDeclStmt(DeclStmt *DS);
+ void VisitObjCForCollectionStmt(ObjCForCollectionStmt *OS);
+ void VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *UE);
+ void VisitUnaryOperator(UnaryOperator *UO);
+ void Visit(Stmt *S);
+};
+}
+
+static const VariableArrayType *FindVA(QualType Ty) {
+ const Type *ty = Ty.getTypePtr();
+ while (const ArrayType *VT = dyn_cast<ArrayType>(ty)) {
+ if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(VT))
+ if (VAT->getSizeExpr())
+ return VAT;
+
+ ty = VT->getElementType().getTypePtr();
+ }
+
+ return nullptr;
+}
+
+static const Stmt *LookThroughStmt(const Stmt *S) {
+ while (S) {
+ if (const Expr *Ex = dyn_cast<Expr>(S))
+ S = Ex->IgnoreParens();
+ if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(S)) {
+ S = EWC->getSubExpr();
+ continue;
+ }
+ if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(S)) {
+ S = OVE->getSourceExpr();
+ continue;
+ }
+ break;
+ }
+ return S;
+}
+
+static void AddLiveStmt(llvm::ImmutableSet<const Stmt *> &Set,
+ llvm::ImmutableSet<const Stmt *>::Factory &F,
+ const Stmt *S) {
+ Set = F.add(Set, LookThroughStmt(S));
+}
+
+void TransferFunctions::Visit(Stmt *S) {
+ if (observer)
+ observer->observeStmt(S, currentBlock, val);
+
+ StmtVisitor<TransferFunctions>::Visit(S);
+
+ if (isa<Expr>(S)) {
+ val.liveStmts = LV.SSetFact.remove(val.liveStmts, S);
+ }
+
+ // Mark all children expressions live.
+
+ switch (S->getStmtClass()) {
+ default:
+ break;
+ case Stmt::StmtExprClass: {
+ // For statement expressions, look through the compound statement.
+ S = cast<StmtExpr>(S)->getSubStmt();
+ break;
+ }
+ case Stmt::CXXMemberCallExprClass: {
+ // Include the implicit "this" pointer as being live.
+ CXXMemberCallExpr *CE = cast<CXXMemberCallExpr>(S);
+ if (Expr *ImplicitObj = CE->getImplicitObjectArgument()) {
+ AddLiveStmt(val.liveStmts, LV.SSetFact, ImplicitObj);
+ }
+ break;
+ }
+ case Stmt::ObjCMessageExprClass: {
+ // In calls to super, include the implicit "self" pointer as being live.
+ ObjCMessageExpr *CE = cast<ObjCMessageExpr>(S);
+ if (CE->getReceiverKind() == ObjCMessageExpr::SuperInstance)
+ val.liveDecls = LV.DSetFact.add(val.liveDecls,
+ LV.analysisContext.getSelfDecl());
+ break;
+ }
+ case Stmt::DeclStmtClass: {
+ const DeclStmt *DS = cast<DeclStmt>(S);
+ if (const VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl())) {
+ for (const VariableArrayType* VA = FindVA(VD->getType());
+ VA != nullptr; VA = FindVA(VA->getElementType())) {
+ AddLiveStmt(val.liveStmts, LV.SSetFact, VA->getSizeExpr());
+ }
+ }
+ break;
+ }
+ case Stmt::PseudoObjectExprClass: {
+ // A pseudo-object operation only directly consumes its result
+ // expression.
+ Expr *child = cast<PseudoObjectExpr>(S)->getResultExpr();
+ if (!child) return;
+ if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(child))
+ child = OV->getSourceExpr();
+ child = child->IgnoreParens();
+ val.liveStmts = LV.SSetFact.add(val.liveStmts, child);
+ return;
+ }
+
+ // FIXME: These cases eventually shouldn't be needed.
+ case Stmt::ExprWithCleanupsClass: {
+ S = cast<ExprWithCleanups>(S)->getSubExpr();
+ break;
+ }
+ case Stmt::CXXBindTemporaryExprClass: {
+ S = cast<CXXBindTemporaryExpr>(S)->getSubExpr();
+ break;
+ }
+ case Stmt::UnaryExprOrTypeTraitExprClass: {
+ // No need to unconditionally visit subexpressions.
+ return;
+ }
+ }
+
+ for (Stmt::child_iterator it = S->child_begin(), ei = S->child_end();
+ it != ei; ++it) {
+ if (Stmt *child = *it)
+ AddLiveStmt(val.liveStmts, LV.SSetFact, child);
+ }
+}
+
+void TransferFunctions::VisitBinaryOperator(BinaryOperator *B) {
+ if (B->isAssignmentOp()) {
+ if (!LV.killAtAssign)
+ return;
+
+ // Assigning to a variable?
+ Expr *LHS = B->getLHS()->IgnoreParens();
+
+ if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(LHS))
+ if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
+ // Assignments to references don't kill the ref's address
+ if (VD->getType()->isReferenceType())
+ return;
+
+ if (!isAlwaysAlive(VD)) {
+ // The variable is now dead.
+ val.liveDecls = LV.DSetFact.remove(val.liveDecls, VD);
+ }
+
+ if (observer)
+ observer->observerKill(DR);
+ }
+ }
+}
+
+void TransferFunctions::VisitBlockExpr(BlockExpr *BE) {
+ for (const VarDecl *VD :
+ LV.analysisContext.getReferencedBlockVars(BE->getBlockDecl())) {
+ if (isAlwaysAlive(VD))
+ continue;
+ val.liveDecls = LV.DSetFact.add(val.liveDecls, VD);
+ }
+}
+
+void TransferFunctions::VisitDeclRefExpr(DeclRefExpr *DR) {
+ if (const VarDecl *D = dyn_cast<VarDecl>(DR->getDecl()))
+ if (!isAlwaysAlive(D) && LV.inAssignment.find(DR) == LV.inAssignment.end())
+ val.liveDecls = LV.DSetFact.add(val.liveDecls, D);
+}
+
+void TransferFunctions::VisitDeclStmt(DeclStmt *DS) {
+ for (const auto *DI : DS->decls())
+ if (const auto *VD = dyn_cast<VarDecl>(DI)) {
+ if (!isAlwaysAlive(VD))
+ val.liveDecls = LV.DSetFact.remove(val.liveDecls, VD);
+ }
+}
+
+void TransferFunctions::VisitObjCForCollectionStmt(ObjCForCollectionStmt *OS) {
+ // Kill the iteration variable.
+ DeclRefExpr *DR = nullptr;
+ const VarDecl *VD = nullptr;
+
+ Stmt *element = OS->getElement();
+ if (DeclStmt *DS = dyn_cast<DeclStmt>(element)) {
+ VD = cast<VarDecl>(DS->getSingleDecl());
+ }
+ else if ((DR = dyn_cast<DeclRefExpr>(cast<Expr>(element)->IgnoreParens()))) {
+ VD = cast<VarDecl>(DR->getDecl());
+ }
+
+ if (VD) {
+ val.liveDecls = LV.DSetFact.remove(val.liveDecls, VD);
+ if (observer && DR)
+ observer->observerKill(DR);
+ }
+}
+
+void TransferFunctions::
+VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *UE)
+{
+ // While sizeof(var) doesn't technically extend the liveness of 'var', it
+ // does extent the liveness of metadata if 'var' is a VariableArrayType.
+ // We handle that special case here.
+ if (UE->getKind() != UETT_SizeOf || UE->isArgumentType())
+ return;
+
+ const Expr *subEx = UE->getArgumentExpr();
+ if (subEx->getType()->isVariableArrayType()) {
+ assert(subEx->isLValue());
+ val.liveStmts = LV.SSetFact.add(val.liveStmts, subEx->IgnoreParens());
+ }
+}
+
+void TransferFunctions::VisitUnaryOperator(UnaryOperator *UO) {
+ // Treat ++/-- as a kill.
+ // Note we don't actually have to do anything if we don't have an observer,
+ // since a ++/-- acts as both a kill and a "use".
+ if (!observer)
+ return;
+
+ switch (UO->getOpcode()) {
+ default:
+ return;
+ case UO_PostInc:
+ case UO_PostDec:
+ case UO_PreInc:
+ case UO_PreDec:
+ break;
+ }
+
+ if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(UO->getSubExpr()->IgnoreParens()))
+ if (isa<VarDecl>(DR->getDecl())) {
+ // Treat ++/-- as a kill.
+ observer->observerKill(DR);
+ }
+}
+
+LiveVariables::LivenessValues
+LiveVariablesImpl::runOnBlock(const CFGBlock *block,
+ LiveVariables::LivenessValues val,
+ LiveVariables::Observer *obs) {
+
+ TransferFunctions TF(*this, val, obs, block);
+
+ // Visit the terminator (if any).
+ if (const Stmt *term = block->getTerminator())
+ TF.Visit(const_cast<Stmt*>(term));
+
+ // Apply the transfer function for all Stmts in the block.
+ for (CFGBlock::const_reverse_iterator it = block->rbegin(),
+ ei = block->rend(); it != ei; ++it) {
+ const CFGElement &elem = *it;
+
+ if (Optional<CFGAutomaticObjDtor> Dtor =
+ elem.getAs<CFGAutomaticObjDtor>()) {
+ val.liveDecls = DSetFact.add(val.liveDecls, Dtor->getVarDecl());
+ continue;
+ }
+
+ if (!elem.getAs<CFGStmt>())
+ continue;
+
+ const Stmt *S = elem.castAs<CFGStmt>().getStmt();
+ TF.Visit(const_cast<Stmt*>(S));
+ stmtsToLiveness[S] = val;
+ }
+ return val;
+}
+
+void LiveVariables::runOnAllBlocks(LiveVariables::Observer &obs) {
+ const CFG *cfg = getImpl(impl).analysisContext.getCFG();
+ for (CFG::const_iterator it = cfg->begin(), ei = cfg->end(); it != ei; ++it)
+ getImpl(impl).runOnBlock(*it, getImpl(impl).blocksEndToLiveness[*it], &obs);
+}
+
+LiveVariables::LiveVariables(void *im) : impl(im) {}
+
+LiveVariables::~LiveVariables() {
+ delete (LiveVariablesImpl*) impl;
+}
+
+LiveVariables *
+LiveVariables::computeLiveness(AnalysisDeclContext &AC,
+ bool killAtAssign) {
+
+ // No CFG? Bail out.
+ CFG *cfg = AC.getCFG();
+ if (!cfg)
+ return nullptr;
+
+ // The analysis currently has scalability issues for very large CFGs.
+ // Bail out if it looks too large.
+ if (cfg->getNumBlockIDs() > 300000)
+ return nullptr;
+
+ LiveVariablesImpl *LV = new LiveVariablesImpl(AC, killAtAssign);
+
+ // Construct the dataflow worklist. Enqueue the exit block as the
+ // start of the analysis.
+ DataflowWorklist worklist(*cfg, AC);
+ llvm::BitVector everAnalyzedBlock(cfg->getNumBlockIDs());
+
+ // FIXME: we should enqueue using post order.
+ for (CFG::const_iterator it = cfg->begin(), ei = cfg->end(); it != ei; ++it) {
+ const CFGBlock *block = *it;
+ worklist.enqueueBlock(block);
+
+ // FIXME: Scan for DeclRefExprs using in the LHS of an assignment.
+ // We need to do this because we lack context in the reverse analysis
+ // to determine if a DeclRefExpr appears in such a context, and thus
+ // doesn't constitute a "use".
+ if (killAtAssign)
+ for (CFGBlock::const_iterator bi = block->begin(), be = block->end();
+ bi != be; ++bi) {
+ if (Optional<CFGStmt> cs = bi->getAs<CFGStmt>()) {
+ if (const BinaryOperator *BO =
+ dyn_cast<BinaryOperator>(cs->getStmt())) {
+ if (BO->getOpcode() == BO_Assign) {
+ if (const DeclRefExpr *DR =
+ dyn_cast<DeclRefExpr>(BO->getLHS()->IgnoreParens())) {
+ LV->inAssignment[DR] = 1;
+ }
+ }
+ }
+ }
+ }
+ }
+
+ worklist.sortWorklist();
+
+ while (const CFGBlock *block = worklist.dequeue()) {
+ // Determine if the block's end value has changed. If not, we
+ // have nothing left to do for this block.
+ LivenessValues &prevVal = LV->blocksEndToLiveness[block];
+
+ // Merge the values of all successor blocks.
+ LivenessValues val;
+ for (CFGBlock::const_succ_iterator it = block->succ_begin(),
+ ei = block->succ_end(); it != ei; ++it) {
+ if (const CFGBlock *succ = *it) {
+ val = LV->merge(val, LV->blocksBeginToLiveness[succ]);
+ }
+ }
+
+ if (!everAnalyzedBlock[block->getBlockID()])
+ everAnalyzedBlock[block->getBlockID()] = true;
+ else if (prevVal.equals(val))
+ continue;
+
+ prevVal = val;
+
+ // Update the dataflow value for the start of this block.
+ LV->blocksBeginToLiveness[block] = LV->runOnBlock(block, val);
+
+ // Enqueue the value to the predecessors.
+ worklist.enqueuePredecessors(block);
+ }
+
+ return new LiveVariables(LV);
+}
+
+void LiveVariables::dumpBlockLiveness(const SourceManager &M) {
+ getImpl(impl).dumpBlockLiveness(M);
+}
+
+void LiveVariablesImpl::dumpBlockLiveness(const SourceManager &M) {
+ std::vector<const CFGBlock *> vec;
+ for (llvm::DenseMap<const CFGBlock *, LiveVariables::LivenessValues>::iterator
+ it = blocksEndToLiveness.begin(), ei = blocksEndToLiveness.end();
+ it != ei; ++it) {
+ vec.push_back(it->first);
+ }
+ std::sort(vec.begin(), vec.end(), [](const CFGBlock *A, const CFGBlock *B) {
+ return A->getBlockID() < B->getBlockID();
+ });
+
+ std::vector<const VarDecl*> declVec;
+
+ for (std::vector<const CFGBlock *>::iterator
+ it = vec.begin(), ei = vec.end(); it != ei; ++it) {
+ llvm::errs() << "\n[ B" << (*it)->getBlockID()
+ << " (live variables at block exit) ]\n";
+
+ LiveVariables::LivenessValues vals = blocksEndToLiveness[*it];
+ declVec.clear();
+
+ for (llvm::ImmutableSet<const VarDecl *>::iterator si =
+ vals.liveDecls.begin(),
+ se = vals.liveDecls.end(); si != se; ++si) {
+ declVec.push_back(*si);
+ }
+
+ std::sort(declVec.begin(), declVec.end(), [](const Decl *A, const Decl *B) {
+ return A->getLocStart() < B->getLocStart();
+ });
+
+ for (std::vector<const VarDecl*>::iterator di = declVec.begin(),
+ de = declVec.end(); di != de; ++di) {
+ llvm::errs() << " " << (*di)->getDeclName().getAsString()
+ << " <";
+ (*di)->getLocation().dump(M);
+ llvm::errs() << ">\n";
+ }
+ }
+ llvm::errs() << "\n";
+}
+
+const void *LiveVariables::getTag() { static int x; return &x; }
+const void *RelaxedLiveVariables::getTag() { static int x; return &x; }
diff --git a/contrib/llvm/tools/clang/lib/Analysis/ObjCNoReturn.cpp b/contrib/llvm/tools/clang/lib/Analysis/ObjCNoReturn.cpp
new file mode 100644
index 0000000..52d844b
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/ObjCNoReturn.cpp
@@ -0,0 +1,67 @@
+//= ObjCNoReturn.cpp - Handling of Cocoa APIs known not to return --*- C++ -*---
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements special handling of recognizing ObjC API hooks that
+// do not return but aren't marked as such in API headers.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/Analysis/DomainSpecific/ObjCNoReturn.h"
+
+using namespace clang;
+
+static bool isSubclass(const ObjCInterfaceDecl *Class, IdentifierInfo *II) {
+ if (!Class)
+ return false;
+ if (Class->getIdentifier() == II)
+ return true;
+ return isSubclass(Class->getSuperClass(), II);
+}
+
+ObjCNoReturn::ObjCNoReturn(ASTContext &C)
+ : RaiseSel(GetNullarySelector("raise", C)),
+ NSExceptionII(&C.Idents.get("NSException"))
+{
+ // Generate selectors.
+ SmallVector<IdentifierInfo*, 3> II;
+
+ // raise:format:
+ II.push_back(&C.Idents.get("raise"));
+ II.push_back(&C.Idents.get("format"));
+ NSExceptionInstanceRaiseSelectors[0] =
+ C.Selectors.getSelector(II.size(), &II[0]);
+
+ // raise:format:arguments:
+ II.push_back(&C.Idents.get("arguments"));
+ NSExceptionInstanceRaiseSelectors[1] =
+ C.Selectors.getSelector(II.size(), &II[0]);
+}
+
+
+bool ObjCNoReturn::isImplicitNoReturn(const ObjCMessageExpr *ME) {
+ Selector S = ME->getSelector();
+
+ if (ME->isInstanceMessage()) {
+ // Check for the "raise" message.
+ return S == RaiseSel;
+ }
+
+ if (const ObjCInterfaceDecl *ID = ME->getReceiverInterface()) {
+ if (isSubclass(ID, NSExceptionII)) {
+ for (unsigned i = 0; i < NUM_RAISE_SELECTORS; ++i) {
+ if (S == NSExceptionInstanceRaiseSelectors[i])
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
diff --git a/contrib/llvm/tools/clang/lib/Analysis/PostOrderCFGView.cpp b/contrib/llvm/tools/clang/lib/Analysis/PostOrderCFGView.cpp
new file mode 100644
index 0000000..5a3c818
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/PostOrderCFGView.cpp
@@ -0,0 +1,49 @@
+//===- PostOrderCFGView.cpp - Post order view of CFG blocks -------*- C++ --*-//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements post order view of the blocks in a CFG.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/Analyses/PostOrderCFGView.h"
+
+using namespace clang;
+
+void PostOrderCFGView::anchor() { }
+
+PostOrderCFGView::PostOrderCFGView(const CFG *cfg) {
+ Blocks.reserve(cfg->getNumBlockIDs());
+ CFGBlockSet BSet(cfg);
+
+ for (po_iterator I = po_iterator::begin(cfg, BSet),
+ E = po_iterator::end(cfg, BSet); I != E; ++I) {
+ BlockOrder[*I] = Blocks.size() + 1;
+ Blocks.push_back(*I);
+ }
+}
+
+PostOrderCFGView *PostOrderCFGView::create(AnalysisDeclContext &ctx) {
+ const CFG *cfg = ctx.getCFG();
+ if (!cfg)
+ return nullptr;
+ return new PostOrderCFGView(cfg);
+}
+
+const void *PostOrderCFGView::getTag() { static int x; return &x; }
+
+bool PostOrderCFGView::BlockOrderCompare::operator()(const CFGBlock *b1,
+ const CFGBlock *b2) const {
+ PostOrderCFGView::BlockOrderTy::const_iterator b1It = POV.BlockOrder.find(b1);
+ PostOrderCFGView::BlockOrderTy::const_iterator b2It = POV.BlockOrder.find(b2);
+
+ unsigned b1V = (b1It == POV.BlockOrder.end()) ? 0 : b1It->second;
+ unsigned b2V = (b2It == POV.BlockOrder.end()) ? 0 : b2It->second;
+ return b1V > b2V;
+}
+
diff --git a/contrib/llvm/tools/clang/lib/Analysis/PrintfFormatString.cpp b/contrib/llvm/tools/clang/lib/Analysis/PrintfFormatString.cpp
new file mode 100644
index 0000000..b8d3ec1
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/PrintfFormatString.cpp
@@ -0,0 +1,872 @@
+//== PrintfFormatString.cpp - Analysis of printf format strings --*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Handling of format string in printf and friends. The structure of format
+// strings for fprintf() are described in C99 7.19.6.1.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/Analyses/FormatString.h"
+#include "FormatStringParsing.h"
+#include "clang/Basic/TargetInfo.h"
+
+using clang::analyze_format_string::ArgType;
+using clang::analyze_format_string::FormatStringHandler;
+using clang::analyze_format_string::LengthModifier;
+using clang::analyze_format_string::OptionalAmount;
+using clang::analyze_format_string::ConversionSpecifier;
+using clang::analyze_printf::PrintfSpecifier;
+
+using namespace clang;
+
+typedef clang::analyze_format_string::SpecifierResult<PrintfSpecifier>
+ PrintfSpecifierResult;
+
+//===----------------------------------------------------------------------===//
+// Methods for parsing format strings.
+//===----------------------------------------------------------------------===//
+
+using analyze_format_string::ParseNonPositionAmount;
+
+static bool ParsePrecision(FormatStringHandler &H, PrintfSpecifier &FS,
+ const char *Start, const char *&Beg, const char *E,
+ unsigned *argIndex) {
+ if (argIndex) {
+ FS.setPrecision(ParseNonPositionAmount(Beg, E, *argIndex));
+ } else {
+ const OptionalAmount Amt = ParsePositionAmount(H, Start, Beg, E,
+ analyze_format_string::PrecisionPos);
+ if (Amt.isInvalid())
+ return true;
+ FS.setPrecision(Amt);
+ }
+ return false;
+}
+
+static PrintfSpecifierResult ParsePrintfSpecifier(FormatStringHandler &H,
+ const char *&Beg,
+ const char *E,
+ unsigned &argIndex,
+ const LangOptions &LO,
+ const TargetInfo &Target,
+ bool Warn,
+ bool isFreeBSDKPrintf) {
+
+ using namespace clang::analyze_format_string;
+ using namespace clang::analyze_printf;
+
+ const char *I = Beg;
+ const char *Start = nullptr;
+ UpdateOnReturn <const char*> UpdateBeg(Beg, I);
+
+ // Look for a '%' character that indicates the start of a format specifier.
+ for ( ; I != E ; ++I) {
+ char c = *I;
+ if (c == '\0') {
+ // Detect spurious null characters, which are likely errors.
+ H.HandleNullChar(I);
+ return true;
+ }
+ if (c == '%') {
+ Start = I++; // Record the start of the format specifier.
+ break;
+ }
+ }
+
+ // No format specifier found?
+ if (!Start)
+ return false;
+
+ if (I == E) {
+ // No more characters left?
+ if (Warn)
+ H.HandleIncompleteSpecifier(Start, E - Start);
+ return true;
+ }
+
+ PrintfSpecifier FS;
+ if (ParseArgPosition(H, FS, Start, I, E))
+ return true;
+
+ if (I == E) {
+ // No more characters left?
+ if (Warn)
+ H.HandleIncompleteSpecifier(Start, E - Start);
+ return true;
+ }
+
+ // Look for flags (if any).
+ bool hasMore = true;
+ for ( ; I != E; ++I) {
+ switch (*I) {
+ default: hasMore = false; break;
+ case '\'':
+ // FIXME: POSIX specific. Always accept?
+ FS.setHasThousandsGrouping(I);
+ break;
+ case '-': FS.setIsLeftJustified(I); break;
+ case '+': FS.setHasPlusPrefix(I); break;
+ case ' ': FS.setHasSpacePrefix(I); break;
+ case '#': FS.setHasAlternativeForm(I); break;
+ case '0': FS.setHasLeadingZeros(I); break;
+ }
+ if (!hasMore)
+ break;
+ }
+
+ if (I == E) {
+ // No more characters left?
+ if (Warn)
+ H.HandleIncompleteSpecifier(Start, E - Start);
+ return true;
+ }
+
+ // Look for the field width (if any).
+ if (ParseFieldWidth(H, FS, Start, I, E,
+ FS.usesPositionalArg() ? nullptr : &argIndex))
+ return true;
+
+ if (I == E) {
+ // No more characters left?
+ if (Warn)
+ H.HandleIncompleteSpecifier(Start, E - Start);
+ return true;
+ }
+
+ // Look for the precision (if any).
+ if (*I == '.') {
+ ++I;
+ if (I == E) {
+ if (Warn)
+ H.HandleIncompleteSpecifier(Start, E - Start);
+ return true;
+ }
+
+ if (ParsePrecision(H, FS, Start, I, E,
+ FS.usesPositionalArg() ? nullptr : &argIndex))
+ return true;
+
+ if (I == E) {
+ // No more characters left?
+ if (Warn)
+ H.HandleIncompleteSpecifier(Start, E - Start);
+ return true;
+ }
+ }
+
+ // Look for the length modifier.
+ if (ParseLengthModifier(FS, I, E, LO) && I == E) {
+ // No more characters left?
+ if (Warn)
+ H.HandleIncompleteSpecifier(Start, E - Start);
+ return true;
+ }
+
+ if (*I == '\0') {
+ // Detect spurious null characters, which are likely errors.
+ H.HandleNullChar(I);
+ return true;
+ }
+
+ // Finally, look for the conversion specifier.
+ const char *conversionPosition = I++;
+ ConversionSpecifier::Kind k = ConversionSpecifier::InvalidSpecifier;
+ switch (*conversionPosition) {
+ default:
+ break;
+ // C99: 7.19.6.1 (section 8).
+ case '%': k = ConversionSpecifier::PercentArg; break;
+ case 'A': k = ConversionSpecifier::AArg; break;
+ case 'E': k = ConversionSpecifier::EArg; break;
+ case 'F': k = ConversionSpecifier::FArg; break;
+ case 'G': k = ConversionSpecifier::GArg; break;
+ case 'X': k = ConversionSpecifier::XArg; break;
+ case 'a': k = ConversionSpecifier::aArg; break;
+ case 'c': k = ConversionSpecifier::cArg; break;
+ case 'd': k = ConversionSpecifier::dArg; break;
+ case 'e': k = ConversionSpecifier::eArg; break;
+ case 'f': k = ConversionSpecifier::fArg; break;
+ case 'g': k = ConversionSpecifier::gArg; break;
+ case 'i': k = ConversionSpecifier::iArg; break;
+ case 'n': k = ConversionSpecifier::nArg; break;
+ case 'o': k = ConversionSpecifier::oArg; break;
+ case 'p': k = ConversionSpecifier::pArg; break;
+ case 's': k = ConversionSpecifier::sArg; break;
+ case 'u': k = ConversionSpecifier::uArg; break;
+ case 'x': k = ConversionSpecifier::xArg; break;
+ // POSIX specific.
+ case 'C': k = ConversionSpecifier::CArg; break;
+ case 'S': k = ConversionSpecifier::SArg; break;
+ // Objective-C.
+ case '@': k = ConversionSpecifier::ObjCObjArg; break;
+ // Glibc specific.
+ case 'm': k = ConversionSpecifier::PrintErrno; break;
+ // FreeBSD kernel specific.
+ case 'b':
+ if (isFreeBSDKPrintf)
+ k = ConversionSpecifier::FreeBSDbArg; // int followed by char *
+ break;
+ case 'r':
+ if (isFreeBSDKPrintf)
+ k = ConversionSpecifier::FreeBSDrArg; // int
+ break;
+ case 'y':
+ if (isFreeBSDKPrintf)
+ k = ConversionSpecifier::FreeBSDyArg; // int
+ break;
+ // Apple-specific.
+ case 'D':
+ if (isFreeBSDKPrintf)
+ k = ConversionSpecifier::FreeBSDDArg; // void * followed by char *
+ else if (Target.getTriple().isOSDarwin())
+ k = ConversionSpecifier::DArg;
+ break;
+ case 'O':
+ if (Target.getTriple().isOSDarwin())
+ k = ConversionSpecifier::OArg;
+ break;
+ case 'U':
+ if (Target.getTriple().isOSDarwin())
+ k = ConversionSpecifier::UArg;
+ break;
+ // MS specific.
+ case 'Z':
+ if (Target.getTriple().isOSMSVCRT())
+ k = ConversionSpecifier::ZArg;
+ }
+ PrintfConversionSpecifier CS(conversionPosition, k);
+ FS.setConversionSpecifier(CS);
+ if (CS.consumesDataArgument() && !FS.usesPositionalArg())
+ FS.setArgIndex(argIndex++);
+ // FreeBSD kernel specific.
+ if (k == ConversionSpecifier::FreeBSDbArg ||
+ k == ConversionSpecifier::FreeBSDDArg)
+ argIndex++;
+
+ if (k == ConversionSpecifier::InvalidSpecifier) {
+ // Assume the conversion takes one argument.
+ return !H.HandleInvalidPrintfConversionSpecifier(FS, Start, I - Start);
+ }
+ return PrintfSpecifierResult(Start, FS);
+}
+
+bool clang::analyze_format_string::ParsePrintfString(FormatStringHandler &H,
+ const char *I,
+ const char *E,
+ const LangOptions &LO,
+ const TargetInfo &Target,
+ bool isFreeBSDKPrintf) {
+
+ unsigned argIndex = 0;
+
+ // Keep looking for a format specifier until we have exhausted the string.
+ while (I != E) {
+ const PrintfSpecifierResult &FSR = ParsePrintfSpecifier(H, I, E, argIndex,
+ LO, Target, true,
+ isFreeBSDKPrintf);
+ // Did a fail-stop error of any kind occur when parsing the specifier?
+ // If so, don't do any more processing.
+ if (FSR.shouldStop())
+ return true;
+ // Did we exhaust the string or encounter an error that
+ // we can recover from?
+ if (!FSR.hasValue())
+ continue;
+ // We have a format specifier. Pass it to the callback.
+ if (!H.HandlePrintfSpecifier(FSR.getValue(), FSR.getStart(),
+ I - FSR.getStart()))
+ return true;
+ }
+ assert(I == E && "Format string not exhausted");
+ return false;
+}
+
+bool clang::analyze_format_string::ParseFormatStringHasSArg(const char *I,
+ const char *E,
+ const LangOptions &LO,
+ const TargetInfo &Target) {
+
+ unsigned argIndex = 0;
+
+ // Keep looking for a %s format specifier until we have exhausted the string.
+ FormatStringHandler H;
+ while (I != E) {
+ const PrintfSpecifierResult &FSR = ParsePrintfSpecifier(H, I, E, argIndex,
+ LO, Target, false,
+ false);
+ // Did a fail-stop error of any kind occur when parsing the specifier?
+ // If so, don't do any more processing.
+ if (FSR.shouldStop())
+ return false;
+ // Did we exhaust the string or encounter an error that
+ // we can recover from?
+ if (!FSR.hasValue())
+ continue;
+ const analyze_printf::PrintfSpecifier &FS = FSR.getValue();
+ // Return true if this a %s format specifier.
+ if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::Kind::sArg)
+ return true;
+ }
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Methods on PrintfSpecifier.
+//===----------------------------------------------------------------------===//
+
+ArgType PrintfSpecifier::getArgType(ASTContext &Ctx,
+ bool IsObjCLiteral) const {
+ const PrintfConversionSpecifier &CS = getConversionSpecifier();
+
+ if (!CS.consumesDataArgument())
+ return ArgType::Invalid();
+
+ if (CS.getKind() == ConversionSpecifier::cArg)
+ switch (LM.getKind()) {
+ case LengthModifier::None:
+ return Ctx.IntTy;
+ case LengthModifier::AsLong:
+ case LengthModifier::AsWide:
+ return ArgType(ArgType::WIntTy, "wint_t");
+ case LengthModifier::AsShort:
+ if (Ctx.getTargetInfo().getTriple().isOSMSVCRT())
+ return Ctx.IntTy;
+ default:
+ return ArgType::Invalid();
+ }
+
+ if (CS.isIntArg())
+ switch (LM.getKind()) {
+ case LengthModifier::AsLongDouble:
+ // GNU extension.
+ return Ctx.LongLongTy;
+ case LengthModifier::None:
+ return Ctx.IntTy;
+ case LengthModifier::AsInt32:
+ return ArgType(Ctx.IntTy, "__int32");
+ case LengthModifier::AsChar: return ArgType::AnyCharTy;
+ case LengthModifier::AsShort: return Ctx.ShortTy;
+ case LengthModifier::AsLong: return Ctx.LongTy;
+ case LengthModifier::AsLongLong:
+ case LengthModifier::AsQuad:
+ return Ctx.LongLongTy;
+ case LengthModifier::AsInt64:
+ return ArgType(Ctx.LongLongTy, "__int64");
+ case LengthModifier::AsIntMax:
+ return ArgType(Ctx.getIntMaxType(), "intmax_t");
+ case LengthModifier::AsSizeT:
+ // FIXME: How to get the corresponding signed version of size_t?
+ return ArgType();
+ case LengthModifier::AsInt3264:
+ return Ctx.getTargetInfo().getTriple().isArch64Bit()
+ ? ArgType(Ctx.LongLongTy, "__int64")
+ : ArgType(Ctx.IntTy, "__int32");
+ case LengthModifier::AsPtrDiff:
+ return ArgType(Ctx.getPointerDiffType(), "ptrdiff_t");
+ case LengthModifier::AsAllocate:
+ case LengthModifier::AsMAllocate:
+ case LengthModifier::AsWide:
+ return ArgType::Invalid();
+ }
+
+ if (CS.isUIntArg())
+ switch (LM.getKind()) {
+ case LengthModifier::AsLongDouble:
+ // GNU extension.
+ return Ctx.UnsignedLongLongTy;
+ case LengthModifier::None:
+ return Ctx.UnsignedIntTy;
+ case LengthModifier::AsInt32:
+ return ArgType(Ctx.UnsignedIntTy, "unsigned __int32");
+ case LengthModifier::AsChar: return Ctx.UnsignedCharTy;
+ case LengthModifier::AsShort: return Ctx.UnsignedShortTy;
+ case LengthModifier::AsLong: return Ctx.UnsignedLongTy;
+ case LengthModifier::AsLongLong:
+ case LengthModifier::AsQuad:
+ return Ctx.UnsignedLongLongTy;
+ case LengthModifier::AsInt64:
+ return ArgType(Ctx.UnsignedLongLongTy, "unsigned __int64");
+ case LengthModifier::AsIntMax:
+ return ArgType(Ctx.getUIntMaxType(), "uintmax_t");
+ case LengthModifier::AsSizeT:
+ return ArgType(Ctx.getSizeType(), "size_t");
+ case LengthModifier::AsInt3264:
+ return Ctx.getTargetInfo().getTriple().isArch64Bit()
+ ? ArgType(Ctx.UnsignedLongLongTy, "unsigned __int64")
+ : ArgType(Ctx.UnsignedIntTy, "unsigned __int32");
+ case LengthModifier::AsPtrDiff:
+ // FIXME: How to get the corresponding unsigned
+ // version of ptrdiff_t?
+ return ArgType();
+ case LengthModifier::AsAllocate:
+ case LengthModifier::AsMAllocate:
+ case LengthModifier::AsWide:
+ return ArgType::Invalid();
+ }
+
+ if (CS.isDoubleArg()) {
+ if (LM.getKind() == LengthModifier::AsLongDouble)
+ return Ctx.LongDoubleTy;
+ return Ctx.DoubleTy;
+ }
+
+ if (CS.getKind() == ConversionSpecifier::nArg) {
+ switch (LM.getKind()) {
+ case LengthModifier::None:
+ return ArgType::PtrTo(Ctx.IntTy);
+ case LengthModifier::AsChar:
+ return ArgType::PtrTo(Ctx.SignedCharTy);
+ case LengthModifier::AsShort:
+ return ArgType::PtrTo(Ctx.ShortTy);
+ case LengthModifier::AsLong:
+ return ArgType::PtrTo(Ctx.LongTy);
+ case LengthModifier::AsLongLong:
+ case LengthModifier::AsQuad:
+ return ArgType::PtrTo(Ctx.LongLongTy);
+ case LengthModifier::AsIntMax:
+ return ArgType::PtrTo(ArgType(Ctx.getIntMaxType(), "intmax_t"));
+ case LengthModifier::AsSizeT:
+ return ArgType(); // FIXME: ssize_t
+ case LengthModifier::AsPtrDiff:
+ return ArgType::PtrTo(ArgType(Ctx.getPointerDiffType(), "ptrdiff_t"));
+ case LengthModifier::AsLongDouble:
+ return ArgType(); // FIXME: Is this a known extension?
+ case LengthModifier::AsAllocate:
+ case LengthModifier::AsMAllocate:
+ case LengthModifier::AsInt32:
+ case LengthModifier::AsInt3264:
+ case LengthModifier::AsInt64:
+ case LengthModifier::AsWide:
+ return ArgType::Invalid();
+ }
+ }
+
+ switch (CS.getKind()) {
+ case ConversionSpecifier::sArg:
+ if (LM.getKind() == LengthModifier::AsWideChar) {
+ if (IsObjCLiteral)
+ return ArgType(Ctx.getPointerType(Ctx.UnsignedShortTy.withConst()),
+ "const unichar *");
+ return ArgType(ArgType::WCStrTy, "wchar_t *");
+ }
+ if (LM.getKind() == LengthModifier::AsWide)
+ return ArgType(ArgType::WCStrTy, "wchar_t *");
+ return ArgType::CStrTy;
+ case ConversionSpecifier::SArg:
+ if (IsObjCLiteral)
+ return ArgType(Ctx.getPointerType(Ctx.UnsignedShortTy.withConst()),
+ "const unichar *");
+ if (Ctx.getTargetInfo().getTriple().isOSMSVCRT() &&
+ LM.getKind() == LengthModifier::AsShort)
+ return ArgType::CStrTy;
+ return ArgType(ArgType::WCStrTy, "wchar_t *");
+ case ConversionSpecifier::CArg:
+ if (IsObjCLiteral)
+ return ArgType(Ctx.UnsignedShortTy, "unichar");
+ if (Ctx.getTargetInfo().getTriple().isOSMSVCRT() &&
+ LM.getKind() == LengthModifier::AsShort)
+ return Ctx.IntTy;
+ return ArgType(Ctx.WideCharTy, "wchar_t");
+ case ConversionSpecifier::pArg:
+ return ArgType::CPointerTy;
+ case ConversionSpecifier::ObjCObjArg:
+ return ArgType::ObjCPointerTy;
+ default:
+ break;
+ }
+
+ // FIXME: Handle other cases.
+ return ArgType();
+}
+
+bool PrintfSpecifier::fixType(QualType QT, const LangOptions &LangOpt,
+ ASTContext &Ctx, bool IsObjCLiteral) {
+ // %n is different from other conversion specifiers; don't try to fix it.
+ if (CS.getKind() == ConversionSpecifier::nArg)
+ return false;
+
+ // Handle Objective-C objects first. Note that while the '%@' specifier will
+ // not warn for structure pointer or void pointer arguments (because that's
+ // how CoreFoundation objects are implemented), we only show a fixit for '%@'
+ // if we know it's an object (block, id, class, or __attribute__((NSObject))).
+ if (QT->isObjCRetainableType()) {
+ if (!IsObjCLiteral)
+ return false;
+
+ CS.setKind(ConversionSpecifier::ObjCObjArg);
+
+ // Disable irrelevant flags
+ HasThousandsGrouping = false;
+ HasPlusPrefix = false;
+ HasSpacePrefix = false;
+ HasAlternativeForm = false;
+ HasLeadingZeroes = false;
+ Precision.setHowSpecified(OptionalAmount::NotSpecified);
+ LM.setKind(LengthModifier::None);
+
+ return true;
+ }
+
+ // Handle strings next (char *, wchar_t *)
+ if (QT->isPointerType() && (QT->getPointeeType()->isAnyCharacterType())) {
+ CS.setKind(ConversionSpecifier::sArg);
+
+ // Disable irrelevant flags
+ HasAlternativeForm = 0;
+ HasLeadingZeroes = 0;
+
+ // Set the long length modifier for wide characters
+ if (QT->getPointeeType()->isWideCharType())
+ LM.setKind(LengthModifier::AsWideChar);
+ else
+ LM.setKind(LengthModifier::None);
+
+ return true;
+ }
+
+ // If it's an enum, get its underlying type.
+ if (const EnumType *ETy = QT->getAs<EnumType>())
+ QT = ETy->getDecl()->getIntegerType();
+
+ // We can only work with builtin types.
+ const BuiltinType *BT = QT->getAs<BuiltinType>();
+ if (!BT)
+ return false;
+
+ // Set length modifier
+ switch (BT->getKind()) {
+ case BuiltinType::Bool:
+ case BuiltinType::WChar_U:
+ case BuiltinType::WChar_S:
+ case BuiltinType::Char16:
+ case BuiltinType::Char32:
+ case BuiltinType::UInt128:
+ case BuiltinType::Int128:
+ case BuiltinType::Half:
+ // Various types which are non-trivial to correct.
+ return false;
+
+#define SIGNED_TYPE(Id, SingletonId)
+#define UNSIGNED_TYPE(Id, SingletonId)
+#define FLOATING_TYPE(Id, SingletonId)
+#define BUILTIN_TYPE(Id, SingletonId) \
+ case BuiltinType::Id:
+#include "clang/AST/BuiltinTypes.def"
+ // Misc other stuff which doesn't make sense here.
+ return false;
+
+ case BuiltinType::UInt:
+ case BuiltinType::Int:
+ case BuiltinType::Float:
+ case BuiltinType::Double:
+ LM.setKind(LengthModifier::None);
+ break;
+
+ case BuiltinType::Char_U:
+ case BuiltinType::UChar:
+ case BuiltinType::Char_S:
+ case BuiltinType::SChar:
+ LM.setKind(LengthModifier::AsChar);
+ break;
+
+ case BuiltinType::Short:
+ case BuiltinType::UShort:
+ LM.setKind(LengthModifier::AsShort);
+ break;
+
+ case BuiltinType::Long:
+ case BuiltinType::ULong:
+ LM.setKind(LengthModifier::AsLong);
+ break;
+
+ case BuiltinType::LongLong:
+ case BuiltinType::ULongLong:
+ LM.setKind(LengthModifier::AsLongLong);
+ break;
+
+ case BuiltinType::LongDouble:
+ LM.setKind(LengthModifier::AsLongDouble);
+ break;
+ }
+
+ // Handle size_t, ptrdiff_t, etc. that have dedicated length modifiers in C99.
+ if (isa<TypedefType>(QT) && (LangOpt.C99 || LangOpt.CPlusPlus11))
+ namedTypeToLengthModifier(QT, LM);
+
+ // If fixing the length modifier was enough, we might be done.
+ if (hasValidLengthModifier(Ctx.getTargetInfo())) {
+ // If we're going to offer a fix anyway, make sure the sign matches.
+ switch (CS.getKind()) {
+ case ConversionSpecifier::uArg:
+ case ConversionSpecifier::UArg:
+ if (QT->isSignedIntegerType())
+ CS.setKind(clang::analyze_format_string::ConversionSpecifier::dArg);
+ break;
+ case ConversionSpecifier::dArg:
+ case ConversionSpecifier::DArg:
+ case ConversionSpecifier::iArg:
+ if (QT->isUnsignedIntegerType() && !HasPlusPrefix)
+ CS.setKind(clang::analyze_format_string::ConversionSpecifier::uArg);
+ break;
+ default:
+ // Other specifiers do not have signed/unsigned variants.
+ break;
+ }
+
+ const analyze_printf::ArgType &ATR = getArgType(Ctx, IsObjCLiteral);
+ if (ATR.isValid() && ATR.matchesType(Ctx, QT))
+ return true;
+ }
+
+ // Set conversion specifier and disable any flags which do not apply to it.
+ // Let typedefs to char fall through to int, as %c is silly for uint8_t.
+ if (!isa<TypedefType>(QT) && QT->isCharType()) {
+ CS.setKind(ConversionSpecifier::cArg);
+ LM.setKind(LengthModifier::None);
+ Precision.setHowSpecified(OptionalAmount::NotSpecified);
+ HasAlternativeForm = 0;
+ HasLeadingZeroes = 0;
+ HasPlusPrefix = 0;
+ }
+ // Test for Floating type first as LongDouble can pass isUnsignedIntegerType
+ else if (QT->isRealFloatingType()) {
+ CS.setKind(ConversionSpecifier::fArg);
+ }
+ else if (QT->isSignedIntegerType()) {
+ CS.setKind(ConversionSpecifier::dArg);
+ HasAlternativeForm = 0;
+ }
+ else if (QT->isUnsignedIntegerType()) {
+ CS.setKind(ConversionSpecifier::uArg);
+ HasAlternativeForm = 0;
+ HasPlusPrefix = 0;
+ } else {
+ llvm_unreachable("Unexpected type");
+ }
+
+ return true;
+}
+
+void PrintfSpecifier::toString(raw_ostream &os) const {
+ // Whilst some features have no defined order, we are using the order
+ // appearing in the C99 standard (ISO/IEC 9899:1999 (E) 7.19.6.1)
+ os << "%";
+
+ // Positional args
+ if (usesPositionalArg()) {
+ os << getPositionalArgIndex() << "$";
+ }
+
+ // Conversion flags
+ if (IsLeftJustified) os << "-";
+ if (HasPlusPrefix) os << "+";
+ if (HasSpacePrefix) os << " ";
+ if (HasAlternativeForm) os << "#";
+ if (HasLeadingZeroes) os << "0";
+
+ // Minimum field width
+ FieldWidth.toString(os);
+ // Precision
+ Precision.toString(os);
+ // Length modifier
+ os << LM.toString();
+ // Conversion specifier
+ os << CS.toString();
+}
+
+bool PrintfSpecifier::hasValidPlusPrefix() const {
+ if (!HasPlusPrefix)
+ return true;
+
+ // The plus prefix only makes sense for signed conversions
+ switch (CS.getKind()) {
+ case ConversionSpecifier::dArg:
+ case ConversionSpecifier::DArg:
+ case ConversionSpecifier::iArg:
+ case ConversionSpecifier::fArg:
+ case ConversionSpecifier::FArg:
+ case ConversionSpecifier::eArg:
+ case ConversionSpecifier::EArg:
+ case ConversionSpecifier::gArg:
+ case ConversionSpecifier::GArg:
+ case ConversionSpecifier::aArg:
+ case ConversionSpecifier::AArg:
+ case ConversionSpecifier::FreeBSDrArg:
+ case ConversionSpecifier::FreeBSDyArg:
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+bool PrintfSpecifier::hasValidAlternativeForm() const {
+ if (!HasAlternativeForm)
+ return true;
+
+ // Alternate form flag only valid with the oxXaAeEfFgG conversions
+ switch (CS.getKind()) {
+ case ConversionSpecifier::oArg:
+ case ConversionSpecifier::OArg:
+ case ConversionSpecifier::xArg:
+ case ConversionSpecifier::XArg:
+ case ConversionSpecifier::aArg:
+ case ConversionSpecifier::AArg:
+ case ConversionSpecifier::eArg:
+ case ConversionSpecifier::EArg:
+ case ConversionSpecifier::fArg:
+ case ConversionSpecifier::FArg:
+ case ConversionSpecifier::gArg:
+ case ConversionSpecifier::GArg:
+ case ConversionSpecifier::FreeBSDrArg:
+ case ConversionSpecifier::FreeBSDyArg:
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+bool PrintfSpecifier::hasValidLeadingZeros() const {
+ if (!HasLeadingZeroes)
+ return true;
+
+ // Leading zeroes flag only valid with the diouxXaAeEfFgG conversions
+ switch (CS.getKind()) {
+ case ConversionSpecifier::dArg:
+ case ConversionSpecifier::DArg:
+ case ConversionSpecifier::iArg:
+ case ConversionSpecifier::oArg:
+ case ConversionSpecifier::OArg:
+ case ConversionSpecifier::uArg:
+ case ConversionSpecifier::UArg:
+ case ConversionSpecifier::xArg:
+ case ConversionSpecifier::XArg:
+ case ConversionSpecifier::aArg:
+ case ConversionSpecifier::AArg:
+ case ConversionSpecifier::eArg:
+ case ConversionSpecifier::EArg:
+ case ConversionSpecifier::fArg:
+ case ConversionSpecifier::FArg:
+ case ConversionSpecifier::gArg:
+ case ConversionSpecifier::GArg:
+ case ConversionSpecifier::FreeBSDrArg:
+ case ConversionSpecifier::FreeBSDyArg:
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+bool PrintfSpecifier::hasValidSpacePrefix() const {
+ if (!HasSpacePrefix)
+ return true;
+
+ // The space prefix only makes sense for signed conversions
+ switch (CS.getKind()) {
+ case ConversionSpecifier::dArg:
+ case ConversionSpecifier::DArg:
+ case ConversionSpecifier::iArg:
+ case ConversionSpecifier::fArg:
+ case ConversionSpecifier::FArg:
+ case ConversionSpecifier::eArg:
+ case ConversionSpecifier::EArg:
+ case ConversionSpecifier::gArg:
+ case ConversionSpecifier::GArg:
+ case ConversionSpecifier::aArg:
+ case ConversionSpecifier::AArg:
+ case ConversionSpecifier::FreeBSDrArg:
+ case ConversionSpecifier::FreeBSDyArg:
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+bool PrintfSpecifier::hasValidLeftJustified() const {
+ if (!IsLeftJustified)
+ return true;
+
+ // The left justified flag is valid for all conversions except n
+ switch (CS.getKind()) {
+ case ConversionSpecifier::nArg:
+ return false;
+
+ default:
+ return true;
+ }
+}
+
+bool PrintfSpecifier::hasValidThousandsGroupingPrefix() const {
+ if (!HasThousandsGrouping)
+ return true;
+
+ switch (CS.getKind()) {
+ case ConversionSpecifier::dArg:
+ case ConversionSpecifier::DArg:
+ case ConversionSpecifier::iArg:
+ case ConversionSpecifier::uArg:
+ case ConversionSpecifier::UArg:
+ case ConversionSpecifier::fArg:
+ case ConversionSpecifier::FArg:
+ case ConversionSpecifier::gArg:
+ case ConversionSpecifier::GArg:
+ return true;
+ default:
+ return false;
+ }
+}
+
+bool PrintfSpecifier::hasValidPrecision() const {
+ if (Precision.getHowSpecified() == OptionalAmount::NotSpecified)
+ return true;
+
+ // Precision is only valid with the diouxXaAeEfFgGs conversions
+ switch (CS.getKind()) {
+ case ConversionSpecifier::dArg:
+ case ConversionSpecifier::DArg:
+ case ConversionSpecifier::iArg:
+ case ConversionSpecifier::oArg:
+ case ConversionSpecifier::OArg:
+ case ConversionSpecifier::uArg:
+ case ConversionSpecifier::UArg:
+ case ConversionSpecifier::xArg:
+ case ConversionSpecifier::XArg:
+ case ConversionSpecifier::aArg:
+ case ConversionSpecifier::AArg:
+ case ConversionSpecifier::eArg:
+ case ConversionSpecifier::EArg:
+ case ConversionSpecifier::fArg:
+ case ConversionSpecifier::FArg:
+ case ConversionSpecifier::gArg:
+ case ConversionSpecifier::GArg:
+ case ConversionSpecifier::sArg:
+ case ConversionSpecifier::FreeBSDrArg:
+ case ConversionSpecifier::FreeBSDyArg:
+ return true;
+
+ default:
+ return false;
+ }
+}
+bool PrintfSpecifier::hasValidFieldWidth() const {
+ if (FieldWidth.getHowSpecified() == OptionalAmount::NotSpecified)
+ return true;
+
+ // The field width is valid for all conversions except n
+ switch (CS.getKind()) {
+ case ConversionSpecifier::nArg:
+ return false;
+
+ default:
+ return true;
+ }
+}
diff --git a/contrib/llvm/tools/clang/lib/Analysis/ProgramPoint.cpp b/contrib/llvm/tools/clang/lib/Analysis/ProgramPoint.cpp
new file mode 100644
index 0000000..26b59bb
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/ProgramPoint.cpp
@@ -0,0 +1,52 @@
+//==- ProgramPoint.cpp - Program Points for Path-Sensitive Analysis -*- C++ -*-/
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the interface ProgramPoint, which identifies a
+// distinct location in a function.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/ProgramPoint.h"
+
+using namespace clang;
+
+ProgramPointTag::~ProgramPointTag() {}
+
+ProgramPoint ProgramPoint::getProgramPoint(const Stmt *S, ProgramPoint::Kind K,
+ const LocationContext *LC,
+ const ProgramPointTag *tag){
+ switch (K) {
+ default:
+ llvm_unreachable("Unhandled ProgramPoint kind");
+ case ProgramPoint::PreStmtKind:
+ return PreStmt(S, LC, tag);
+ case ProgramPoint::PostStmtKind:
+ return PostStmt(S, LC, tag);
+ case ProgramPoint::PreLoadKind:
+ return PreLoad(S, LC, tag);
+ case ProgramPoint::PostLoadKind:
+ return PostLoad(S, LC, tag);
+ case ProgramPoint::PreStoreKind:
+ return PreStore(S, LC, tag);
+ case ProgramPoint::PostLValueKind:
+ return PostLValue(S, LC, tag);
+ case ProgramPoint::PostStmtPurgeDeadSymbolsKind:
+ return PostStmtPurgeDeadSymbols(S, LC, tag);
+ case ProgramPoint::PreStmtPurgeDeadSymbolsKind:
+ return PreStmtPurgeDeadSymbols(S, LC, tag);
+ }
+}
+
+SimpleProgramPointTag::SimpleProgramPointTag(StringRef MsgProvider,
+ StringRef Msg)
+ : Desc((MsgProvider + " : " + Msg).str()) {}
+
+StringRef SimpleProgramPointTag::getTagDescription() const {
+ return Desc;
+}
diff --git a/contrib/llvm/tools/clang/lib/Analysis/PseudoConstantAnalysis.cpp b/contrib/llvm/tools/clang/lib/Analysis/PseudoConstantAnalysis.cpp
new file mode 100644
index 0000000..3f96ca8
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/PseudoConstantAnalysis.cpp
@@ -0,0 +1,227 @@
+//== PseudoConstantAnalysis.cpp - Find Pseudoconstants in the AST-*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file tracks the usage of variables in a Decl body to see if they are
+// never written to, implying that they constant. This is useful in static
+// analysis to see if a developer might have intended a variable to be const.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/Analyses/PseudoConstantAnalysis.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/Stmt.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include <deque>
+
+using namespace clang;
+
+// The number of ValueDecls we want to keep track of by default (per-function)
+#define VARDECL_SET_SIZE 256
+typedef llvm::SmallPtrSet<const VarDecl*, VARDECL_SET_SIZE> VarDeclSet;
+
+PseudoConstantAnalysis::PseudoConstantAnalysis(const Stmt *DeclBody) :
+ DeclBody(DeclBody), Analyzed(false) {
+ NonConstantsImpl = new VarDeclSet;
+ UsedVarsImpl = new VarDeclSet;
+}
+
+PseudoConstantAnalysis::~PseudoConstantAnalysis() {
+ delete (VarDeclSet*)NonConstantsImpl;
+ delete (VarDeclSet*)UsedVarsImpl;
+}
+
+// Returns true if the given ValueDecl is never written to in the given DeclBody
+bool PseudoConstantAnalysis::isPseudoConstant(const VarDecl *VD) {
+ // Only local and static variables can be pseudoconstants
+ if (!VD->hasLocalStorage() && !VD->isStaticLocal())
+ return false;
+
+ if (!Analyzed) {
+ RunAnalysis();
+ Analyzed = true;
+ }
+
+ VarDeclSet *NonConstants = (VarDeclSet*)NonConstantsImpl;
+
+ return !NonConstants->count(VD);
+}
+
+// Returns true if the variable was used (self assignments don't count)
+bool PseudoConstantAnalysis::wasReferenced(const VarDecl *VD) {
+ if (!Analyzed) {
+ RunAnalysis();
+ Analyzed = true;
+ }
+
+ VarDeclSet *UsedVars = (VarDeclSet*)UsedVarsImpl;
+
+ return UsedVars->count(VD);
+}
+
+// Returns a Decl from a (Block)DeclRefExpr (if any)
+const Decl *PseudoConstantAnalysis::getDecl(const Expr *E) {
+ if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E))
+ return DR->getDecl();
+ else
+ return nullptr;
+}
+
+void PseudoConstantAnalysis::RunAnalysis() {
+ std::deque<const Stmt *> WorkList;
+ VarDeclSet *NonConstants = (VarDeclSet*)NonConstantsImpl;
+ VarDeclSet *UsedVars = (VarDeclSet*)UsedVarsImpl;
+
+ // Start with the top level statement of the function
+ WorkList.push_back(DeclBody);
+
+ while (!WorkList.empty()) {
+ const Stmt *Head = WorkList.front();
+ WorkList.pop_front();
+
+ if (const Expr *Ex = dyn_cast<Expr>(Head))
+ Head = Ex->IgnoreParenCasts();
+
+ switch (Head->getStmtClass()) {
+ // Case 1: Assignment operators modifying VarDecls
+ case Stmt::BinaryOperatorClass: {
+ const BinaryOperator *BO = cast<BinaryOperator>(Head);
+ // Look for a Decl on the LHS
+ const Decl *LHSDecl = getDecl(BO->getLHS()->IgnoreParenCasts());
+ if (!LHSDecl)
+ break;
+
+ // We found a binary operator with a DeclRefExpr on the LHS. We now check
+ // for any of the assignment operators, implying that this Decl is being
+ // written to.
+ switch (BO->getOpcode()) {
+ // Self-assignments don't count as use of a variable
+ case BO_Assign: {
+ // Look for a DeclRef on the RHS
+ const Decl *RHSDecl = getDecl(BO->getRHS()->IgnoreParenCasts());
+
+ // If the Decls match, we have self-assignment
+ if (LHSDecl == RHSDecl)
+ // Do not visit the children
+ continue;
+
+ }
+ case BO_AddAssign:
+ case BO_SubAssign:
+ case BO_MulAssign:
+ case BO_DivAssign:
+ case BO_AndAssign:
+ case BO_OrAssign:
+ case BO_XorAssign:
+ case BO_ShlAssign:
+ case BO_ShrAssign: {
+ const VarDecl *VD = dyn_cast<VarDecl>(LHSDecl);
+ // The DeclRefExpr is being assigned to - mark it as non-constant
+ if (VD)
+ NonConstants->insert(VD);
+ break;
+ }
+
+ default:
+ break;
+ }
+ break;
+ }
+
+ // Case 2: Pre/post increment/decrement and address of
+ case Stmt::UnaryOperatorClass: {
+ const UnaryOperator *UO = cast<UnaryOperator>(Head);
+
+ // Look for a DeclRef in the subexpression
+ const Decl *D = getDecl(UO->getSubExpr()->IgnoreParenCasts());
+ if (!D)
+ break;
+
+ // We found a unary operator with a DeclRef as a subexpression. We now
+ // check for any of the increment/decrement operators, as well as
+ // addressOf.
+ switch (UO->getOpcode()) {
+ case UO_PostDec:
+ case UO_PostInc:
+ case UO_PreDec:
+ case UO_PreInc:
+ // The DeclRef is being changed - mark it as non-constant
+ case UO_AddrOf: {
+ // If we are taking the address of the DeclRefExpr, assume it is
+ // non-constant.
+ const VarDecl *VD = dyn_cast<VarDecl>(D);
+ if (VD)
+ NonConstants->insert(VD);
+ break;
+ }
+
+ default:
+ break;
+ }
+ break;
+ }
+
+ // Case 3: Reference Declarations
+ case Stmt::DeclStmtClass: {
+ const DeclStmt *DS = cast<DeclStmt>(Head);
+ // Iterate over each decl and see if any of them contain reference decls
+ for (const auto *I : DS->decls()) {
+ // We only care about VarDecls
+ const VarDecl *VD = dyn_cast<VarDecl>(I);
+ if (!VD)
+ continue;
+
+ // We found a VarDecl; make sure it is a reference type
+ if (!VD->getType().getTypePtr()->isReferenceType())
+ continue;
+
+ // Try to find a Decl in the initializer
+ const Decl *D = getDecl(VD->getInit()->IgnoreParenCasts());
+ if (!D)
+ break;
+
+ // If the reference is to another var, add the var to the non-constant
+ // list
+ if (const VarDecl *RefVD = dyn_cast<VarDecl>(D)) {
+ NonConstants->insert(RefVD);
+ continue;
+ }
+ }
+ break;
+ }
+
+ // Case 4: Variable references
+ case Stmt::DeclRefExprClass: {
+ const DeclRefExpr *DR = cast<DeclRefExpr>(Head);
+ if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
+ // Add the Decl to the used list
+ UsedVars->insert(VD);
+ continue;
+ }
+ break;
+ }
+
+ // Case 5: Block expressions
+ case Stmt::BlockExprClass: {
+ const BlockExpr *B = cast<BlockExpr>(Head);
+ // Add the body of the block to the list
+ WorkList.push_back(B->getBody());
+ continue;
+ }
+
+ default:
+ break;
+ } // switch (head->getStmtClass())
+
+ // Add all substatements to the worklist
+ for (Stmt::const_child_range I = Head->children(); I; ++I)
+ if (*I)
+ WorkList.push_back(*I);
+ } // while (!WorkList.empty())
+}
diff --git a/contrib/llvm/tools/clang/lib/Analysis/ReachableCode.cpp b/contrib/llvm/tools/clang/lib/Analysis/ReachableCode.cpp
new file mode 100644
index 0000000..8165b09
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/ReachableCode.cpp
@@ -0,0 +1,679 @@
+//=- ReachableCodePathInsensitive.cpp ---------------------------*- C++ --*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements a flow-sensitive, path-insensitive analysis of
+// determining reachable blocks within a CFG.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/Analyses/ReachableCode.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/AST/ParentMap.h"
+#include "clang/AST/StmtCXX.h"
+#include "clang/Analysis/AnalysisContext.h"
+#include "clang/Analysis/CFG.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Lex/Preprocessor.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/SmallVector.h"
+
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// Core Reachability Analysis routines.
+//===----------------------------------------------------------------------===//
+
+static bool isEnumConstant(const Expr *Ex) {
+ const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Ex);
+ if (!DR)
+ return false;
+ return isa<EnumConstantDecl>(DR->getDecl());
+}
+
+static bool isTrivialExpression(const Expr *Ex) {
+ Ex = Ex->IgnoreParenCasts();
+ return isa<IntegerLiteral>(Ex) || isa<StringLiteral>(Ex) ||
+ isa<CXXBoolLiteralExpr>(Ex) || isa<ObjCBoolLiteralExpr>(Ex) ||
+ isa<CharacterLiteral>(Ex) ||
+ isEnumConstant(Ex);
+}
+
+static bool isTrivialDoWhile(const CFGBlock *B, const Stmt *S) {
+ // Check if the block ends with a do...while() and see if 'S' is the
+ // condition.
+ if (const Stmt *Term = B->getTerminator()) {
+ if (const DoStmt *DS = dyn_cast<DoStmt>(Term)) {
+ const Expr *Cond = DS->getCond()->IgnoreParenCasts();
+ return Cond == S && isTrivialExpression(Cond);
+ }
+ }
+ return false;
+}
+
+static bool isDeadReturn(const CFGBlock *B, const Stmt *S) {
+ // Look to see if the current control flow ends with a 'return', and see if
+ // 'S' is a substatement. The 'return' may not be the last element in the
+ // block, or may be in a subsequent block because of destructors.
+ const CFGBlock *Current = B;
+ while (true) {
+ for (CFGBlock::const_reverse_iterator I = Current->rbegin(),
+ E = Current->rend();
+ I != E; ++I) {
+ if (Optional<CFGStmt> CS = I->getAs<CFGStmt>()) {
+ if (const ReturnStmt *RS = dyn_cast<ReturnStmt>(CS->getStmt())) {
+ if (RS == S)
+ return true;
+ if (const Expr *RE = RS->getRetValue()) {
+ RE = RE->IgnoreParenCasts();
+ if (RE == S)
+ return true;
+ ParentMap PM(const_cast<Expr *>(RE));
+ // If 'S' is in the ParentMap, it is a subexpression of
+ // the return statement.
+ return PM.getParent(S);
+ }
+ }
+ break;
+ }
+ }
+ // Note also that we are restricting the search for the return statement
+ // to stop at control-flow; only part of a return statement may be dead,
+ // without the whole return statement being dead.
+ if (Current->getTerminator().isTemporaryDtorsBranch()) {
+ // Temporary destructors have a predictable control flow, thus we want to
+ // look into the next block for the return statement.
+ // We look into the false branch, as we know the true branch only contains
+ // the call to the destructor.
+ assert(Current->succ_size() == 2);
+ Current = *(Current->succ_begin() + 1);
+ } else if (!Current->getTerminator() && Current->succ_size() == 1) {
+ // If there is only one successor, we're not dealing with outgoing control
+ // flow. Thus, look into the next block.
+ Current = *Current->succ_begin();
+ if (Current->pred_size() > 1) {
+ // If there is more than one predecessor, we're dealing with incoming
+ // control flow - if the return statement is in that block, it might
+ // well be reachable via a different control flow, thus it's not dead.
+ return false;
+ }
+ } else {
+ // We hit control flow or a dead end. Stop searching.
+ return false;
+ }
+ }
+ llvm_unreachable("Broke out of infinite loop.");
+}
+
+static SourceLocation getTopMostMacro(SourceLocation Loc, SourceManager &SM) {
+ assert(Loc.isMacroID());
+ SourceLocation Last;
+ while (Loc.isMacroID()) {
+ Last = Loc;
+ Loc = SM.getImmediateMacroCallerLoc(Loc);
+ }
+ return Last;
+}
+
+/// Returns true if the statement is expanded from a configuration macro.
+static bool isExpandedFromConfigurationMacro(const Stmt *S,
+ Preprocessor &PP,
+ bool IgnoreYES_NO = false) {
+ // FIXME: This is not very precise. Here we just check to see if the
+ // value comes from a macro, but we can do much better. This is likely
+ // to be over conservative. This logic is factored into a separate function
+ // so that we can refine it later.
+ SourceLocation L = S->getLocStart();
+ if (L.isMacroID()) {
+ if (IgnoreYES_NO) {
+ // The Objective-C constant 'YES' and 'NO'
+ // are defined as macros. Do not treat them
+ // as configuration values.
+ SourceManager &SM = PP.getSourceManager();
+ SourceLocation TopL = getTopMostMacro(L, SM);
+ StringRef MacroName = PP.getImmediateMacroName(TopL);
+ if (MacroName == "YES" || MacroName == "NO")
+ return false;
+ }
+ return true;
+ }
+ return false;
+}
+
+static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP);
+
+/// Returns true if the statement represents a configuration value.
+///
+/// A configuration value is something usually determined at compile-time
+/// to conditionally always execute some branch. Such guards are for
+/// "sometimes unreachable" code. Such code is usually not interesting
+/// to report as unreachable, and may mask truly unreachable code within
+/// those blocks.
+static bool isConfigurationValue(const Stmt *S,
+ Preprocessor &PP,
+ SourceRange *SilenceableCondVal = nullptr,
+ bool IncludeIntegers = true,
+ bool WrappedInParens = false) {
+ if (!S)
+ return false;
+
+ if (const Expr *Ex = dyn_cast<Expr>(S))
+ S = Ex->IgnoreCasts();
+
+ // Special case looking for the sigil '()' around an integer literal.
+ if (const ParenExpr *PE = dyn_cast<ParenExpr>(S))
+ if (!PE->getLocStart().isMacroID())
+ return isConfigurationValue(PE->getSubExpr(), PP, SilenceableCondVal,
+ IncludeIntegers, true);
+
+ if (const Expr *Ex = dyn_cast<Expr>(S))
+ S = Ex->IgnoreCasts();
+
+ bool IgnoreYES_NO = false;
+
+ switch (S->getStmtClass()) {
+ case Stmt::CallExprClass: {
+ const FunctionDecl *Callee =
+ dyn_cast_or_null<FunctionDecl>(cast<CallExpr>(S)->getCalleeDecl());
+ return Callee ? Callee->isConstexpr() : false;
+ }
+ case Stmt::DeclRefExprClass:
+ return isConfigurationValue(cast<DeclRefExpr>(S)->getDecl(), PP);
+ case Stmt::ObjCBoolLiteralExprClass:
+ IgnoreYES_NO = true;
+ // Fallthrough.
+ case Stmt::CXXBoolLiteralExprClass:
+ case Stmt::IntegerLiteralClass: {
+ const Expr *E = cast<Expr>(S);
+ if (IncludeIntegers) {
+ if (SilenceableCondVal && !SilenceableCondVal->getBegin().isValid())
+ *SilenceableCondVal = E->getSourceRange();
+ return WrappedInParens || isExpandedFromConfigurationMacro(E, PP, IgnoreYES_NO);
+ }
+ return false;
+ }
+ case Stmt::MemberExprClass:
+ return isConfigurationValue(cast<MemberExpr>(S)->getMemberDecl(), PP);
+ case Stmt::UnaryExprOrTypeTraitExprClass:
+ return true;
+ case Stmt::BinaryOperatorClass: {
+ const BinaryOperator *B = cast<BinaryOperator>(S);
+ // Only include raw integers (not enums) as configuration
+ // values if they are used in a logical or comparison operator
+ // (not arithmetic).
+ IncludeIntegers &= (B->isLogicalOp() || B->isComparisonOp());
+ return isConfigurationValue(B->getLHS(), PP, SilenceableCondVal,
+ IncludeIntegers) ||
+ isConfigurationValue(B->getRHS(), PP, SilenceableCondVal,
+ IncludeIntegers);
+ }
+ case Stmt::UnaryOperatorClass: {
+ const UnaryOperator *UO = cast<UnaryOperator>(S);
+ if (SilenceableCondVal)
+ *SilenceableCondVal = UO->getSourceRange();
+ return UO->getOpcode() == UO_LNot &&
+ isConfigurationValue(UO->getSubExpr(), PP, SilenceableCondVal,
+ IncludeIntegers, WrappedInParens);
+ }
+ default:
+ return false;
+ }
+}
+
+static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP) {
+ if (const EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D))
+ return isConfigurationValue(ED->getInitExpr(), PP);
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
+ // As a heuristic, treat globals as configuration values. Note
+ // that we only will get here if Sema evaluated this
+ // condition to a constant expression, which means the global
+ // had to be declared in a way to be a truly constant value.
+ // We could generalize this to local variables, but it isn't
+ // clear if those truly represent configuration values that
+ // gate unreachable code.
+ if (!VD->hasLocalStorage())
+ return true;
+
+ // As a heuristic, locals that have been marked 'const' explicitly
+ // can be treated as configuration values as well.
+ return VD->getType().isLocalConstQualified();
+ }
+ return false;
+}
+
+/// Returns true if we should always explore all successors of a block.
+static bool shouldTreatSuccessorsAsReachable(const CFGBlock *B,
+ Preprocessor &PP) {
+ if (const Stmt *Term = B->getTerminator()) {
+ if (isa<SwitchStmt>(Term))
+ return true;
+ // Specially handle '||' and '&&'.
+ if (isa<BinaryOperator>(Term)) {
+ return isConfigurationValue(Term, PP);
+ }
+ }
+
+ const Stmt *Cond = B->getTerminatorCondition(/* stripParens */ false);
+ return isConfigurationValue(Cond, PP);
+}
+
+static unsigned scanFromBlock(const CFGBlock *Start,
+ llvm::BitVector &Reachable,
+ Preprocessor *PP,
+ bool IncludeSometimesUnreachableEdges) {
+ unsigned count = 0;
+
+ // Prep work queue
+ SmallVector<const CFGBlock*, 32> WL;
+
+ // The entry block may have already been marked reachable
+ // by the caller.
+ if (!Reachable[Start->getBlockID()]) {
+ ++count;
+ Reachable[Start->getBlockID()] = true;
+ }
+
+ WL.push_back(Start);
+
+ // Find the reachable blocks from 'Start'.
+ while (!WL.empty()) {
+ const CFGBlock *item = WL.pop_back_val();
+
+ // There are cases where we want to treat all successors as reachable.
+ // The idea is that some "sometimes unreachable" code is not interesting,
+ // and that we should forge ahead and explore those branches anyway.
+ // This allows us to potentially uncover some "always unreachable" code
+ // within the "sometimes unreachable" code.
+ // Look at the successors and mark then reachable.
+ Optional<bool> TreatAllSuccessorsAsReachable;
+ if (!IncludeSometimesUnreachableEdges)
+ TreatAllSuccessorsAsReachable = false;
+
+ for (CFGBlock::const_succ_iterator I = item->succ_begin(),
+ E = item->succ_end(); I != E; ++I) {
+ const CFGBlock *B = *I;
+ if (!B) do {
+ const CFGBlock *UB = I->getPossiblyUnreachableBlock();
+ if (!UB)
+ break;
+
+ if (!TreatAllSuccessorsAsReachable.hasValue()) {
+ assert(PP);
+ TreatAllSuccessorsAsReachable =
+ shouldTreatSuccessorsAsReachable(item, *PP);
+ }
+
+ if (TreatAllSuccessorsAsReachable.getValue()) {
+ B = UB;
+ break;
+ }
+ }
+ while (false);
+
+ if (B) {
+ unsigned blockID = B->getBlockID();
+ if (!Reachable[blockID]) {
+ Reachable.set(blockID);
+ WL.push_back(B);
+ ++count;
+ }
+ }
+ }
+ }
+ return count;
+}
+
+static unsigned scanMaybeReachableFromBlock(const CFGBlock *Start,
+ Preprocessor &PP,
+ llvm::BitVector &Reachable) {
+ return scanFromBlock(Start, Reachable, &PP, true);
+}
+
+//===----------------------------------------------------------------------===//
+// Dead Code Scanner.
+//===----------------------------------------------------------------------===//
+
+namespace {
+ class DeadCodeScan {
+ llvm::BitVector Visited;
+ llvm::BitVector &Reachable;
+ SmallVector<const CFGBlock *, 10> WorkList;
+ Preprocessor &PP;
+
+ typedef SmallVector<std::pair<const CFGBlock *, const Stmt *>, 12>
+ DeferredLocsTy;
+
+ DeferredLocsTy DeferredLocs;
+
+ public:
+ DeadCodeScan(llvm::BitVector &reachable, Preprocessor &PP)
+ : Visited(reachable.size()),
+ Reachable(reachable),
+ PP(PP) {}
+
+ void enqueue(const CFGBlock *block);
+ unsigned scanBackwards(const CFGBlock *Start,
+ clang::reachable_code::Callback &CB);
+
+ bool isDeadCodeRoot(const CFGBlock *Block);
+
+ const Stmt *findDeadCode(const CFGBlock *Block);
+
+ void reportDeadCode(const CFGBlock *B,
+ const Stmt *S,
+ clang::reachable_code::Callback &CB);
+ };
+}
+
+void DeadCodeScan::enqueue(const CFGBlock *block) {
+ unsigned blockID = block->getBlockID();
+ if (Reachable[blockID] || Visited[blockID])
+ return;
+ Visited[blockID] = true;
+ WorkList.push_back(block);
+}
+
+bool DeadCodeScan::isDeadCodeRoot(const clang::CFGBlock *Block) {
+ bool isDeadRoot = true;
+
+ for (CFGBlock::const_pred_iterator I = Block->pred_begin(),
+ E = Block->pred_end(); I != E; ++I) {
+ if (const CFGBlock *PredBlock = *I) {
+ unsigned blockID = PredBlock->getBlockID();
+ if (Visited[blockID]) {
+ isDeadRoot = false;
+ continue;
+ }
+ if (!Reachable[blockID]) {
+ isDeadRoot = false;
+ Visited[blockID] = true;
+ WorkList.push_back(PredBlock);
+ continue;
+ }
+ }
+ }
+
+ return isDeadRoot;
+}
+
+static bool isValidDeadStmt(const Stmt *S) {
+ if (S->getLocStart().isInvalid())
+ return false;
+ if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(S))
+ return BO->getOpcode() != BO_Comma;
+ return true;
+}
+
+const Stmt *DeadCodeScan::findDeadCode(const clang::CFGBlock *Block) {
+ for (CFGBlock::const_iterator I = Block->begin(), E = Block->end(); I!=E; ++I)
+ if (Optional<CFGStmt> CS = I->getAs<CFGStmt>()) {
+ const Stmt *S = CS->getStmt();
+ if (isValidDeadStmt(S))
+ return S;
+ }
+
+ if (CFGTerminator T = Block->getTerminator()) {
+ if (!T.isTemporaryDtorsBranch()) {
+ const Stmt *S = T.getStmt();
+ if (isValidDeadStmt(S))
+ return S;
+ }
+ }
+
+ return nullptr;
+}
+
+static int SrcCmp(const std::pair<const CFGBlock *, const Stmt *> *p1,
+ const std::pair<const CFGBlock *, const Stmt *> *p2) {
+ if (p1->second->getLocStart() < p2->second->getLocStart())
+ return -1;
+ if (p2->second->getLocStart() < p1->second->getLocStart())
+ return 1;
+ return 0;
+}
+
+unsigned DeadCodeScan::scanBackwards(const clang::CFGBlock *Start,
+ clang::reachable_code::Callback &CB) {
+
+ unsigned count = 0;
+ enqueue(Start);
+
+ while (!WorkList.empty()) {
+ const CFGBlock *Block = WorkList.pop_back_val();
+
+ // It is possible that this block has been marked reachable after
+ // it was enqueued.
+ if (Reachable[Block->getBlockID()])
+ continue;
+
+ // Look for any dead code within the block.
+ const Stmt *S = findDeadCode(Block);
+
+ if (!S) {
+ // No dead code. Possibly an empty block. Look at dead predecessors.
+ for (CFGBlock::const_pred_iterator I = Block->pred_begin(),
+ E = Block->pred_end(); I != E; ++I) {
+ if (const CFGBlock *predBlock = *I)
+ enqueue(predBlock);
+ }
+ continue;
+ }
+
+ // Specially handle macro-expanded code.
+ if (S->getLocStart().isMacroID()) {
+ count += scanMaybeReachableFromBlock(Block, PP, Reachable);
+ continue;
+ }
+
+ if (isDeadCodeRoot(Block)) {
+ reportDeadCode(Block, S, CB);
+ count += scanMaybeReachableFromBlock(Block, PP, Reachable);
+ }
+ else {
+ // Record this statement as the possibly best location in a
+ // strongly-connected component of dead code for emitting a
+ // warning.
+ DeferredLocs.push_back(std::make_pair(Block, S));
+ }
+ }
+
+ // If we didn't find a dead root, then report the dead code with the
+ // earliest location.
+ if (!DeferredLocs.empty()) {
+ llvm::array_pod_sort(DeferredLocs.begin(), DeferredLocs.end(), SrcCmp);
+ for (DeferredLocsTy::iterator I = DeferredLocs.begin(),
+ E = DeferredLocs.end(); I != E; ++I) {
+ const CFGBlock *Block = I->first;
+ if (Reachable[Block->getBlockID()])
+ continue;
+ reportDeadCode(Block, I->second, CB);
+ count += scanMaybeReachableFromBlock(Block, PP, Reachable);
+ }
+ }
+
+ return count;
+}
+
+static SourceLocation GetUnreachableLoc(const Stmt *S,
+ SourceRange &R1,
+ SourceRange &R2) {
+ R1 = R2 = SourceRange();
+
+ if (const Expr *Ex = dyn_cast<Expr>(S))
+ S = Ex->IgnoreParenImpCasts();
+
+ switch (S->getStmtClass()) {
+ case Expr::BinaryOperatorClass: {
+ const BinaryOperator *BO = cast<BinaryOperator>(S);
+ return BO->getOperatorLoc();
+ }
+ case Expr::UnaryOperatorClass: {
+ const UnaryOperator *UO = cast<UnaryOperator>(S);
+ R1 = UO->getSubExpr()->getSourceRange();
+ return UO->getOperatorLoc();
+ }
+ case Expr::CompoundAssignOperatorClass: {
+ const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(S);
+ R1 = CAO->getLHS()->getSourceRange();
+ R2 = CAO->getRHS()->getSourceRange();
+ return CAO->getOperatorLoc();
+ }
+ case Expr::BinaryConditionalOperatorClass:
+ case Expr::ConditionalOperatorClass: {
+ const AbstractConditionalOperator *CO =
+ cast<AbstractConditionalOperator>(S);
+ return CO->getQuestionLoc();
+ }
+ case Expr::MemberExprClass: {
+ const MemberExpr *ME = cast<MemberExpr>(S);
+ R1 = ME->getSourceRange();
+ return ME->getMemberLoc();
+ }
+ case Expr::ArraySubscriptExprClass: {
+ const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(S);
+ R1 = ASE->getLHS()->getSourceRange();
+ R2 = ASE->getRHS()->getSourceRange();
+ return ASE->getRBracketLoc();
+ }
+ case Expr::CStyleCastExprClass: {
+ const CStyleCastExpr *CSC = cast<CStyleCastExpr>(S);
+ R1 = CSC->getSubExpr()->getSourceRange();
+ return CSC->getLParenLoc();
+ }
+ case Expr::CXXFunctionalCastExprClass: {
+ const CXXFunctionalCastExpr *CE = cast <CXXFunctionalCastExpr>(S);
+ R1 = CE->getSubExpr()->getSourceRange();
+ return CE->getLocStart();
+ }
+ case Stmt::CXXTryStmtClass: {
+ return cast<CXXTryStmt>(S)->getHandler(0)->getCatchLoc();
+ }
+ case Expr::ObjCBridgedCastExprClass: {
+ const ObjCBridgedCastExpr *CSC = cast<ObjCBridgedCastExpr>(S);
+ R1 = CSC->getSubExpr()->getSourceRange();
+ return CSC->getLParenLoc();
+ }
+ default: ;
+ }
+ R1 = S->getSourceRange();
+ return S->getLocStart();
+}
+
+void DeadCodeScan::reportDeadCode(const CFGBlock *B,
+ const Stmt *S,
+ clang::reachable_code::Callback &CB) {
+ // Classify the unreachable code found, or suppress it in some cases.
+ reachable_code::UnreachableKind UK = reachable_code::UK_Other;
+
+ if (isa<BreakStmt>(S)) {
+ UK = reachable_code::UK_Break;
+ }
+ else if (isTrivialDoWhile(B, S)) {
+ return;
+ }
+ else if (isDeadReturn(B, S)) {
+ UK = reachable_code::UK_Return;
+ }
+
+ SourceRange SilenceableCondVal;
+
+ if (UK == reachable_code::UK_Other) {
+ // Check if the dead code is part of the "loop target" of
+ // a for/for-range loop. This is the block that contains
+ // the increment code.
+ if (const Stmt *LoopTarget = B->getLoopTarget()) {
+ SourceLocation Loc = LoopTarget->getLocStart();
+ SourceRange R1(Loc, Loc), R2;
+
+ if (const ForStmt *FS = dyn_cast<ForStmt>(LoopTarget)) {
+ const Expr *Inc = FS->getInc();
+ Loc = Inc->getLocStart();
+ R2 = Inc->getSourceRange();
+ }
+
+ CB.HandleUnreachable(reachable_code::UK_Loop_Increment,
+ Loc, SourceRange(), SourceRange(Loc, Loc), R2);
+ return;
+ }
+
+ // Check if the dead block has a predecessor whose branch has
+ // a configuration value that *could* be modified to
+ // silence the warning.
+ CFGBlock::const_pred_iterator PI = B->pred_begin();
+ if (PI != B->pred_end()) {
+ if (const CFGBlock *PredBlock = PI->getPossiblyUnreachableBlock()) {
+ const Stmt *TermCond =
+ PredBlock->getTerminatorCondition(/* strip parens */ false);
+ isConfigurationValue(TermCond, PP, &SilenceableCondVal);
+ }
+ }
+ }
+
+ SourceRange R1, R2;
+ SourceLocation Loc = GetUnreachableLoc(S, R1, R2);
+ CB.HandleUnreachable(UK, Loc, SilenceableCondVal, R1, R2);
+}
+
+//===----------------------------------------------------------------------===//
+// Reachability APIs.
+//===----------------------------------------------------------------------===//
+
+namespace clang { namespace reachable_code {
+
+void Callback::anchor() { }
+
+unsigned ScanReachableFromBlock(const CFGBlock *Start,
+ llvm::BitVector &Reachable) {
+ return scanFromBlock(Start, Reachable, /* SourceManager* */ nullptr, false);
+}
+
+void FindUnreachableCode(AnalysisDeclContext &AC, Preprocessor &PP,
+ Callback &CB) {
+
+ CFG *cfg = AC.getCFG();
+ if (!cfg)
+ return;
+
+ // Scan for reachable blocks from the entrance of the CFG.
+ // If there are no unreachable blocks, we're done.
+ llvm::BitVector reachable(cfg->getNumBlockIDs());
+ unsigned numReachable =
+ scanMaybeReachableFromBlock(&cfg->getEntry(), PP, reachable);
+ if (numReachable == cfg->getNumBlockIDs())
+ return;
+
+ // If there aren't explicit EH edges, we should include the 'try' dispatch
+ // blocks as roots.
+ if (!AC.getCFGBuildOptions().AddEHEdges) {
+ for (CFG::try_block_iterator I = cfg->try_blocks_begin(),
+ E = cfg->try_blocks_end() ; I != E; ++I) {
+ numReachable += scanMaybeReachableFromBlock(*I, PP, reachable);
+ }
+ if (numReachable == cfg->getNumBlockIDs())
+ return;
+ }
+
+ // There are some unreachable blocks. We need to find the root blocks that
+ // contain code that should be considered unreachable.
+ for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
+ const CFGBlock *block = *I;
+ // A block may have been marked reachable during this loop.
+ if (reachable[block->getBlockID()])
+ continue;
+
+ DeadCodeScan DS(reachable, PP);
+ numReachable += DS.scanBackwards(block, CB);
+
+ if (numReachable == cfg->getNumBlockIDs())
+ return;
+ }
+}
+
+}} // end namespace clang::reachable_code
diff --git a/contrib/llvm/tools/clang/lib/Analysis/ScanfFormatString.cpp b/contrib/llvm/tools/clang/lib/Analysis/ScanfFormatString.cpp
new file mode 100644
index 0000000..d484d8e
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/ScanfFormatString.cpp
@@ -0,0 +1,553 @@
+//= ScanfFormatString.cpp - Analysis of printf format strings --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Handling of format string in scanf and friends. The structure of format
+// strings for fscanf() are described in C99 7.19.6.2.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/Analyses/FormatString.h"
+#include "FormatStringParsing.h"
+#include "clang/Basic/TargetInfo.h"
+
+using clang::analyze_format_string::ArgType;
+using clang::analyze_format_string::FormatStringHandler;
+using clang::analyze_format_string::LengthModifier;
+using clang::analyze_format_string::OptionalAmount;
+using clang::analyze_format_string::ConversionSpecifier;
+using clang::analyze_scanf::ScanfConversionSpecifier;
+using clang::analyze_scanf::ScanfSpecifier;
+using clang::UpdateOnReturn;
+using namespace clang;
+
+typedef clang::analyze_format_string::SpecifierResult<ScanfSpecifier>
+ ScanfSpecifierResult;
+
+static bool ParseScanList(FormatStringHandler &H,
+ ScanfConversionSpecifier &CS,
+ const char *&Beg, const char *E) {
+ const char *I = Beg;
+ const char *start = I - 1;
+ UpdateOnReturn <const char*> UpdateBeg(Beg, I);
+
+ // No more characters?
+ if (I == E) {
+ H.HandleIncompleteScanList(start, I);
+ return true;
+ }
+
+ // Special case: ']' is the first character.
+ if (*I == ']') {
+ if (++I == E) {
+ H.HandleIncompleteScanList(start, I - 1);
+ return true;
+ }
+ }
+
+ // Special case: "^]" are the first characters.
+ if (I + 1 != E && I[0] == '^' && I[1] == ']') {
+ I += 2;
+ if (I == E) {
+ H.HandleIncompleteScanList(start, I - 1);
+ return true;
+ }
+ }
+
+ // Look for a ']' character which denotes the end of the scan list.
+ while (*I != ']') {
+ if (++I == E) {
+ H.HandleIncompleteScanList(start, I - 1);
+ return true;
+ }
+ }
+
+ CS.setEndScanList(I);
+ return false;
+}
+
+// FIXME: Much of this is copy-paste from ParsePrintfSpecifier.
+// We can possibly refactor.
+static ScanfSpecifierResult ParseScanfSpecifier(FormatStringHandler &H,
+ const char *&Beg,
+ const char *E,
+ unsigned &argIndex,
+ const LangOptions &LO,
+ const TargetInfo &Target) {
+
+ using namespace clang::analyze_scanf;
+ const char *I = Beg;
+ const char *Start = nullptr;
+ UpdateOnReturn <const char*> UpdateBeg(Beg, I);
+
+ // Look for a '%' character that indicates the start of a format specifier.
+ for ( ; I != E ; ++I) {
+ char c = *I;
+ if (c == '\0') {
+ // Detect spurious null characters, which are likely errors.
+ H.HandleNullChar(I);
+ return true;
+ }
+ if (c == '%') {
+ Start = I++; // Record the start of the format specifier.
+ break;
+ }
+ }
+
+ // No format specifier found?
+ if (!Start)
+ return false;
+
+ if (I == E) {
+ // No more characters left?
+ H.HandleIncompleteSpecifier(Start, E - Start);
+ return true;
+ }
+
+ ScanfSpecifier FS;
+ if (ParseArgPosition(H, FS, Start, I, E))
+ return true;
+
+ if (I == E) {
+ // No more characters left?
+ H.HandleIncompleteSpecifier(Start, E - Start);
+ return true;
+ }
+
+ // Look for '*' flag if it is present.
+ if (*I == '*') {
+ FS.setSuppressAssignment(I);
+ if (++I == E) {
+ H.HandleIncompleteSpecifier(Start, E - Start);
+ return true;
+ }
+ }
+
+ // Look for the field width (if any). Unlike printf, this is either
+ // a fixed integer or isn't present.
+ const OptionalAmount &Amt = clang::analyze_format_string::ParseAmount(I, E);
+ if (Amt.getHowSpecified() != OptionalAmount::NotSpecified) {
+ assert(Amt.getHowSpecified() == OptionalAmount::Constant);
+ FS.setFieldWidth(Amt);
+
+ if (I == E) {
+ // No more characters left?
+ H.HandleIncompleteSpecifier(Start, E - Start);
+ return true;
+ }
+ }
+
+ // Look for the length modifier.
+ if (ParseLengthModifier(FS, I, E, LO, /*scanf=*/true) && I == E) {
+ // No more characters left?
+ H.HandleIncompleteSpecifier(Start, E - Start);
+ return true;
+ }
+
+ // Detect spurious null characters, which are likely errors.
+ if (*I == '\0') {
+ H.HandleNullChar(I);
+ return true;
+ }
+
+ // Finally, look for the conversion specifier.
+ const char *conversionPosition = I++;
+ ScanfConversionSpecifier::Kind k = ScanfConversionSpecifier::InvalidSpecifier;
+ switch (*conversionPosition) {
+ default:
+ break;
+ case '%': k = ConversionSpecifier::PercentArg; break;
+ case 'A': k = ConversionSpecifier::AArg; break;
+ case 'E': k = ConversionSpecifier::EArg; break;
+ case 'F': k = ConversionSpecifier::FArg; break;
+ case 'G': k = ConversionSpecifier::GArg; break;
+ case 'X': k = ConversionSpecifier::XArg; break;
+ case 'a': k = ConversionSpecifier::aArg; break;
+ case 'd': k = ConversionSpecifier::dArg; break;
+ case 'e': k = ConversionSpecifier::eArg; break;
+ case 'f': k = ConversionSpecifier::fArg; break;
+ case 'g': k = ConversionSpecifier::gArg; break;
+ case 'i': k = ConversionSpecifier::iArg; break;
+ case 'n': k = ConversionSpecifier::nArg; break;
+ case 'c': k = ConversionSpecifier::cArg; break;
+ case 'C': k = ConversionSpecifier::CArg; break;
+ case 'S': k = ConversionSpecifier::SArg; break;
+ case '[': k = ConversionSpecifier::ScanListArg; break;
+ case 'u': k = ConversionSpecifier::uArg; break;
+ case 'x': k = ConversionSpecifier::xArg; break;
+ case 'o': k = ConversionSpecifier::oArg; break;
+ case 's': k = ConversionSpecifier::sArg; break;
+ case 'p': k = ConversionSpecifier::pArg; break;
+ // Apple extensions
+ // Apple-specific
+ case 'D':
+ if (Target.getTriple().isOSDarwin())
+ k = ConversionSpecifier::DArg;
+ break;
+ case 'O':
+ if (Target.getTriple().isOSDarwin())
+ k = ConversionSpecifier::OArg;
+ break;
+ case 'U':
+ if (Target.getTriple().isOSDarwin())
+ k = ConversionSpecifier::UArg;
+ break;
+ }
+ ScanfConversionSpecifier CS(conversionPosition, k);
+ if (k == ScanfConversionSpecifier::ScanListArg) {
+ if (ParseScanList(H, CS, I, E))
+ return true;
+ }
+ FS.setConversionSpecifier(CS);
+ if (CS.consumesDataArgument() && !FS.getSuppressAssignment()
+ && !FS.usesPositionalArg())
+ FS.setArgIndex(argIndex++);
+
+ // FIXME: '%' and '*' doesn't make sense. Issue a warning.
+ // FIXME: 'ConsumedSoFar' and '*' doesn't make sense.
+
+ if (k == ScanfConversionSpecifier::InvalidSpecifier) {
+ // Assume the conversion takes one argument.
+ return !H.HandleInvalidScanfConversionSpecifier(FS, Beg, I - Beg);
+ }
+ return ScanfSpecifierResult(Start, FS);
+}
+
+ArgType ScanfSpecifier::getArgType(ASTContext &Ctx) const {
+ const ScanfConversionSpecifier &CS = getConversionSpecifier();
+
+ if (!CS.consumesDataArgument())
+ return ArgType::Invalid();
+
+ switch(CS.getKind()) {
+ // Signed int.
+ case ConversionSpecifier::dArg:
+ case ConversionSpecifier::DArg:
+ case ConversionSpecifier::iArg:
+ switch (LM.getKind()) {
+ case LengthModifier::None:
+ return ArgType::PtrTo(Ctx.IntTy);
+ case LengthModifier::AsChar:
+ return ArgType::PtrTo(ArgType::AnyCharTy);
+ case LengthModifier::AsShort:
+ return ArgType::PtrTo(Ctx.ShortTy);
+ case LengthModifier::AsLong:
+ return ArgType::PtrTo(Ctx.LongTy);
+ case LengthModifier::AsLongLong:
+ case LengthModifier::AsQuad:
+ return ArgType::PtrTo(Ctx.LongLongTy);
+ case LengthModifier::AsInt64:
+ return ArgType::PtrTo(ArgType(Ctx.LongLongTy, "__int64"));
+ case LengthModifier::AsIntMax:
+ return ArgType::PtrTo(ArgType(Ctx.getIntMaxType(), "intmax_t"));
+ case LengthModifier::AsSizeT:
+ // FIXME: ssize_t.
+ return ArgType();
+ case LengthModifier::AsPtrDiff:
+ return ArgType::PtrTo(ArgType(Ctx.getPointerDiffType(), "ptrdiff_t"));
+ case LengthModifier::AsLongDouble:
+ // GNU extension.
+ return ArgType::PtrTo(Ctx.LongLongTy);
+ case LengthModifier::AsAllocate:
+ case LengthModifier::AsMAllocate:
+ case LengthModifier::AsInt32:
+ case LengthModifier::AsInt3264:
+ case LengthModifier::AsWide:
+ return ArgType::Invalid();
+ }
+
+ // Unsigned int.
+ case ConversionSpecifier::oArg:
+ case ConversionSpecifier::OArg:
+ case ConversionSpecifier::uArg:
+ case ConversionSpecifier::UArg:
+ case ConversionSpecifier::xArg:
+ case ConversionSpecifier::XArg:
+ switch (LM.getKind()) {
+ case LengthModifier::None:
+ return ArgType::PtrTo(Ctx.UnsignedIntTy);
+ case LengthModifier::AsChar:
+ return ArgType::PtrTo(Ctx.UnsignedCharTy);
+ case LengthModifier::AsShort:
+ return ArgType::PtrTo(Ctx.UnsignedShortTy);
+ case LengthModifier::AsLong:
+ return ArgType::PtrTo(Ctx.UnsignedLongTy);
+ case LengthModifier::AsLongLong:
+ case LengthModifier::AsQuad:
+ return ArgType::PtrTo(Ctx.UnsignedLongLongTy);
+ case LengthModifier::AsInt64:
+ return ArgType::PtrTo(ArgType(Ctx.UnsignedLongLongTy, "unsigned __int64"));
+ case LengthModifier::AsIntMax:
+ return ArgType::PtrTo(ArgType(Ctx.getUIntMaxType(), "uintmax_t"));
+ case LengthModifier::AsSizeT:
+ return ArgType::PtrTo(ArgType(Ctx.getSizeType(), "size_t"));
+ case LengthModifier::AsPtrDiff:
+ // FIXME: Unsigned version of ptrdiff_t?
+ return ArgType();
+ case LengthModifier::AsLongDouble:
+ // GNU extension.
+ return ArgType::PtrTo(Ctx.UnsignedLongLongTy);
+ case LengthModifier::AsAllocate:
+ case LengthModifier::AsMAllocate:
+ case LengthModifier::AsInt32:
+ case LengthModifier::AsInt3264:
+ case LengthModifier::AsWide:
+ return ArgType::Invalid();
+ }
+
+ // Float.
+ case ConversionSpecifier::aArg:
+ case ConversionSpecifier::AArg:
+ case ConversionSpecifier::eArg:
+ case ConversionSpecifier::EArg:
+ case ConversionSpecifier::fArg:
+ case ConversionSpecifier::FArg:
+ case ConversionSpecifier::gArg:
+ case ConversionSpecifier::GArg:
+ switch (LM.getKind()) {
+ case LengthModifier::None:
+ return ArgType::PtrTo(Ctx.FloatTy);
+ case LengthModifier::AsLong:
+ return ArgType::PtrTo(Ctx.DoubleTy);
+ case LengthModifier::AsLongDouble:
+ return ArgType::PtrTo(Ctx.LongDoubleTy);
+ default:
+ return ArgType::Invalid();
+ }
+
+ // Char, string and scanlist.
+ case ConversionSpecifier::cArg:
+ case ConversionSpecifier::sArg:
+ case ConversionSpecifier::ScanListArg:
+ switch (LM.getKind()) {
+ case LengthModifier::None:
+ return ArgType::PtrTo(ArgType::AnyCharTy);
+ case LengthModifier::AsLong:
+ case LengthModifier::AsWide:
+ return ArgType::PtrTo(ArgType(Ctx.getWideCharType(), "wchar_t"));
+ case LengthModifier::AsAllocate:
+ case LengthModifier::AsMAllocate:
+ return ArgType::PtrTo(ArgType::CStrTy);
+ case LengthModifier::AsShort:
+ if (Ctx.getTargetInfo().getTriple().isOSMSVCRT())
+ return ArgType::PtrTo(ArgType::AnyCharTy);
+ default:
+ return ArgType::Invalid();
+ }
+ case ConversionSpecifier::CArg:
+ case ConversionSpecifier::SArg:
+ // FIXME: Mac OS X specific?
+ switch (LM.getKind()) {
+ case LengthModifier::None:
+ case LengthModifier::AsWide:
+ return ArgType::PtrTo(ArgType(Ctx.getWideCharType(), "wchar_t"));
+ case LengthModifier::AsAllocate:
+ case LengthModifier::AsMAllocate:
+ return ArgType::PtrTo(ArgType(ArgType::WCStrTy, "wchar_t *"));
+ case LengthModifier::AsShort:
+ if (Ctx.getTargetInfo().getTriple().isOSMSVCRT())
+ return ArgType::PtrTo(ArgType::AnyCharTy);
+ default:
+ return ArgType::Invalid();
+ }
+
+ // Pointer.
+ case ConversionSpecifier::pArg:
+ return ArgType::PtrTo(ArgType::CPointerTy);
+
+ // Write-back.
+ case ConversionSpecifier::nArg:
+ switch (LM.getKind()) {
+ case LengthModifier::None:
+ return ArgType::PtrTo(Ctx.IntTy);
+ case LengthModifier::AsChar:
+ return ArgType::PtrTo(Ctx.SignedCharTy);
+ case LengthModifier::AsShort:
+ return ArgType::PtrTo(Ctx.ShortTy);
+ case LengthModifier::AsLong:
+ return ArgType::PtrTo(Ctx.LongTy);
+ case LengthModifier::AsLongLong:
+ case LengthModifier::AsQuad:
+ return ArgType::PtrTo(Ctx.LongLongTy);
+ case LengthModifier::AsInt64:
+ return ArgType::PtrTo(ArgType(Ctx.LongLongTy, "__int64"));
+ case LengthModifier::AsIntMax:
+ return ArgType::PtrTo(ArgType(Ctx.getIntMaxType(), "intmax_t"));
+ case LengthModifier::AsSizeT:
+ return ArgType(); // FIXME: ssize_t
+ case LengthModifier::AsPtrDiff:
+ return ArgType::PtrTo(ArgType(Ctx.getPointerDiffType(), "ptrdiff_t"));
+ case LengthModifier::AsLongDouble:
+ return ArgType(); // FIXME: Is this a known extension?
+ case LengthModifier::AsAllocate:
+ case LengthModifier::AsMAllocate:
+ case LengthModifier::AsInt32:
+ case LengthModifier::AsInt3264:
+ case LengthModifier::AsWide:
+ return ArgType::Invalid();
+ }
+
+ default:
+ break;
+ }
+
+ return ArgType();
+}
+
+bool ScanfSpecifier::fixType(QualType QT, QualType RawQT,
+ const LangOptions &LangOpt,
+ ASTContext &Ctx) {
+
+ // %n is different from other conversion specifiers; don't try to fix it.
+ if (CS.getKind() == ConversionSpecifier::nArg)
+ return false;
+
+ if (!QT->isPointerType())
+ return false;
+
+ QualType PT = QT->getPointeeType();
+
+ // If it's an enum, get its underlying type.
+ if (const EnumType *ETy = PT->getAs<EnumType>())
+ PT = ETy->getDecl()->getIntegerType();
+
+ const BuiltinType *BT = PT->getAs<BuiltinType>();
+ if (!BT)
+ return false;
+
+ // Pointer to a character.
+ if (PT->isAnyCharacterType()) {
+ CS.setKind(ConversionSpecifier::sArg);
+ if (PT->isWideCharType())
+ LM.setKind(LengthModifier::AsWideChar);
+ else
+ LM.setKind(LengthModifier::None);
+
+ // If we know the target array length, we can use it as a field width.
+ if (const ConstantArrayType *CAT = Ctx.getAsConstantArrayType(RawQT)) {
+ if (CAT->getSizeModifier() == ArrayType::Normal)
+ FieldWidth = OptionalAmount(OptionalAmount::Constant,
+ CAT->getSize().getZExtValue() - 1,
+ "", 0, false);
+
+ }
+ return true;
+ }
+
+ // Figure out the length modifier.
+ switch (BT->getKind()) {
+ // no modifier
+ case BuiltinType::UInt:
+ case BuiltinType::Int:
+ case BuiltinType::Float:
+ LM.setKind(LengthModifier::None);
+ break;
+
+ // hh
+ case BuiltinType::Char_U:
+ case BuiltinType::UChar:
+ case BuiltinType::Char_S:
+ case BuiltinType::SChar:
+ LM.setKind(LengthModifier::AsChar);
+ break;
+
+ // h
+ case BuiltinType::Short:
+ case BuiltinType::UShort:
+ LM.setKind(LengthModifier::AsShort);
+ break;
+
+ // l
+ case BuiltinType::Long:
+ case BuiltinType::ULong:
+ case BuiltinType::Double:
+ LM.setKind(LengthModifier::AsLong);
+ break;
+
+ // ll
+ case BuiltinType::LongLong:
+ case BuiltinType::ULongLong:
+ LM.setKind(LengthModifier::AsLongLong);
+ break;
+
+ // L
+ case BuiltinType::LongDouble:
+ LM.setKind(LengthModifier::AsLongDouble);
+ break;
+
+ // Don't know.
+ default:
+ return false;
+ }
+
+ // Handle size_t, ptrdiff_t, etc. that have dedicated length modifiers in C99.
+ if (isa<TypedefType>(PT) && (LangOpt.C99 || LangOpt.CPlusPlus11))
+ namedTypeToLengthModifier(PT, LM);
+
+ // If fixing the length modifier was enough, we are done.
+ if (hasValidLengthModifier(Ctx.getTargetInfo())) {
+ const analyze_scanf::ArgType &AT = getArgType(Ctx);
+ if (AT.isValid() && AT.matchesType(Ctx, QT))
+ return true;
+ }
+
+ // Figure out the conversion specifier.
+ if (PT->isRealFloatingType())
+ CS.setKind(ConversionSpecifier::fArg);
+ else if (PT->isSignedIntegerType())
+ CS.setKind(ConversionSpecifier::dArg);
+ else if (PT->isUnsignedIntegerType())
+ CS.setKind(ConversionSpecifier::uArg);
+ else
+ llvm_unreachable("Unexpected type");
+
+ return true;
+}
+
+void ScanfSpecifier::toString(raw_ostream &os) const {
+ os << "%";
+
+ if (usesPositionalArg())
+ os << getPositionalArgIndex() << "$";
+ if (SuppressAssignment)
+ os << "*";
+
+ FieldWidth.toString(os);
+ os << LM.toString();
+ os << CS.toString();
+}
+
+bool clang::analyze_format_string::ParseScanfString(FormatStringHandler &H,
+ const char *I,
+ const char *E,
+ const LangOptions &LO,
+ const TargetInfo &Target) {
+
+ unsigned argIndex = 0;
+
+ // Keep looking for a format specifier until we have exhausted the string.
+ while (I != E) {
+ const ScanfSpecifierResult &FSR = ParseScanfSpecifier(H, I, E, argIndex,
+ LO, Target);
+ // Did a fail-stop error of any kind occur when parsing the specifier?
+ // If so, don't do any more processing.
+ if (FSR.shouldStop())
+ return true;
+ // Did we exhaust the string or encounter an error that
+ // we can recover from?
+ if (!FSR.hasValue())
+ continue;
+ // We have a format specifier. Pass it to the callback.
+ if (!H.HandleScanfSpecifier(FSR.getValue(), FSR.getStart(),
+ I - FSR.getStart())) {
+ return true;
+ }
+ }
+ assert(I == E && "Format string not exhausted");
+ return false;
+}
diff --git a/contrib/llvm/tools/clang/lib/Analysis/ThreadSafety.cpp b/contrib/llvm/tools/clang/lib/Analysis/ThreadSafety.cpp
new file mode 100644
index 0000000..e2c6ab5
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/ThreadSafety.cpp
@@ -0,0 +1,2401 @@
+//===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// A intra-procedural analysis for thread safety (e.g. deadlocks and race
+// conditions), based off of an annotation system.
+//
+// See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html
+// for more information.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/Attr.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/StmtCXX.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Analysis/Analyses/PostOrderCFGView.h"
+#include "clang/Analysis/Analyses/ThreadSafety.h"
+#include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
+#include "clang/Analysis/Analyses/ThreadSafetyLogical.h"
+#include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
+#include "clang/Analysis/Analyses/ThreadSafetyTraverse.h"
+#include "clang/Analysis/AnalysisContext.h"
+#include "clang/Analysis/CFG.h"
+#include "clang/Analysis/CFGStmtMap.h"
+#include "clang/Basic/OperatorKinds.h"
+#include "clang/Basic/SourceLocation.h"
+#include "clang/Basic/SourceManager.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/ADT/ImmutableMap.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <ostream>
+#include <sstream>
+#include <utility>
+#include <vector>
+using namespace clang;
+using namespace threadSafety;
+
+// Key method definition
+ThreadSafetyHandler::~ThreadSafetyHandler() {}
+
+namespace {
+class TILPrinter :
+ public til::PrettyPrinter<TILPrinter, llvm::raw_ostream> {};
+
+
+/// Issue a warning about an invalid lock expression
+static void warnInvalidLock(ThreadSafetyHandler &Handler,
+ const Expr *MutexExp, const NamedDecl *D,
+ const Expr *DeclExp, StringRef Kind) {
+ SourceLocation Loc;
+ if (DeclExp)
+ Loc = DeclExp->getExprLoc();
+
+ // FIXME: add a note about the attribute location in MutexExp or D
+ if (Loc.isValid())
+ Handler.handleInvalidLockExp(Kind, Loc);
+}
+
+/// \brief A set of CapabilityInfo objects, which are compiled from the
+/// requires attributes on a function.
+class CapExprSet : public SmallVector<CapabilityExpr, 4> {
+public:
+ /// \brief Push M onto list, but discard duplicates.
+ void push_back_nodup(const CapabilityExpr &CapE) {
+ iterator It = std::find_if(begin(), end(),
+ [=](const CapabilityExpr &CapE2) {
+ return CapE.equals(CapE2);
+ });
+ if (It == end())
+ push_back(CapE);
+ }
+};
+
+class FactManager;
+class FactSet;
+
+/// \brief This is a helper class that stores a fact that is known at a
+/// particular point in program execution. Currently, a fact is a capability,
+/// along with additional information, such as where it was acquired, whether
+/// it is exclusive or shared, etc.
+///
+/// FIXME: this analysis does not currently support either re-entrant
+/// locking or lock "upgrading" and "downgrading" between exclusive and
+/// shared.
+class FactEntry : public CapabilityExpr {
+private:
+ LockKind LKind; ///< exclusive or shared
+ SourceLocation AcquireLoc; ///< where it was acquired.
+ bool Asserted; ///< true if the lock was asserted
+ bool Declared; ///< true if the lock was declared
+
+public:
+ FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
+ bool Asrt, bool Declrd = false)
+ : CapabilityExpr(CE), LKind(LK), AcquireLoc(Loc), Asserted(Asrt),
+ Declared(Declrd) {}
+
+ virtual ~FactEntry() {}
+
+ LockKind kind() const { return LKind; }
+ SourceLocation loc() const { return AcquireLoc; }
+ bool asserted() const { return Asserted; }
+ bool declared() const { return Declared; }
+
+ void setDeclared(bool D) { Declared = D; }
+
+ virtual void
+ handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
+ SourceLocation JoinLoc, LockErrorKind LEK,
+ ThreadSafetyHandler &Handler) const = 0;
+ virtual void handleUnlock(FactSet &FSet, FactManager &FactMan,
+ const CapabilityExpr &Cp, SourceLocation UnlockLoc,
+ bool FullyRemove, ThreadSafetyHandler &Handler,
+ StringRef DiagKind) const = 0;
+
+ // Return true if LKind >= LK, where exclusive > shared
+ bool isAtLeast(LockKind LK) {
+ return (LKind == LK_Exclusive) || (LK == LK_Shared);
+ }
+};
+
+
+typedef unsigned short FactID;
+
+/// \brief FactManager manages the memory for all facts that are created during
+/// the analysis of a single routine.
+class FactManager {
+private:
+ std::vector<std::unique_ptr<FactEntry>> Facts;
+
+public:
+ FactID newFact(std::unique_ptr<FactEntry> Entry) {
+ Facts.push_back(std::move(Entry));
+ return static_cast<unsigned short>(Facts.size() - 1);
+ }
+
+ const FactEntry &operator[](FactID F) const { return *Facts[F]; }
+ FactEntry &operator[](FactID F) { return *Facts[F]; }
+};
+
+
+/// \brief A FactSet is the set of facts that are known to be true at a
+/// particular program point. FactSets must be small, because they are
+/// frequently copied, and are thus implemented as a set of indices into a
+/// table maintained by a FactManager. A typical FactSet only holds 1 or 2
+/// locks, so we can get away with doing a linear search for lookup. Note
+/// that a hashtable or map is inappropriate in this case, because lookups
+/// may involve partial pattern matches, rather than exact matches.
+class FactSet {
+private:
+ typedef SmallVector<FactID, 4> FactVec;
+
+ FactVec FactIDs;
+
+public:
+ typedef FactVec::iterator iterator;
+ typedef FactVec::const_iterator const_iterator;
+
+ iterator begin() { return FactIDs.begin(); }
+ const_iterator begin() const { return FactIDs.begin(); }
+
+ iterator end() { return FactIDs.end(); }
+ const_iterator end() const { return FactIDs.end(); }
+
+ bool isEmpty() const { return FactIDs.size() == 0; }
+
+ // Return true if the set contains only negative facts
+ bool isEmpty(FactManager &FactMan) const {
+ for (FactID FID : *this) {
+ if (!FactMan[FID].negative())
+ return false;
+ }
+ return true;
+ }
+
+ void addLockByID(FactID ID) { FactIDs.push_back(ID); }
+
+ FactID addLock(FactManager &FM, std::unique_ptr<FactEntry> Entry) {
+ FactID F = FM.newFact(std::move(Entry));
+ FactIDs.push_back(F);
+ return F;
+ }
+
+ bool removeLock(FactManager& FM, const CapabilityExpr &CapE) {
+ unsigned n = FactIDs.size();
+ if (n == 0)
+ return false;
+
+ for (unsigned i = 0; i < n-1; ++i) {
+ if (FM[FactIDs[i]].matches(CapE)) {
+ FactIDs[i] = FactIDs[n-1];
+ FactIDs.pop_back();
+ return true;
+ }
+ }
+ if (FM[FactIDs[n-1]].matches(CapE)) {
+ FactIDs.pop_back();
+ return true;
+ }
+ return false;
+ }
+
+ iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) {
+ return std::find_if(begin(), end(), [&](FactID ID) {
+ return FM[ID].matches(CapE);
+ });
+ }
+
+ FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const {
+ auto I = std::find_if(begin(), end(), [&](FactID ID) {
+ return FM[ID].matches(CapE);
+ });
+ return I != end() ? &FM[*I] : nullptr;
+ }
+
+ FactEntry *findLockUniv(FactManager &FM, const CapabilityExpr &CapE) const {
+ auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
+ return FM[ID].matchesUniv(CapE);
+ });
+ return I != end() ? &FM[*I] : nullptr;
+ }
+
+ FactEntry *findPartialMatch(FactManager &FM,
+ const CapabilityExpr &CapE) const {
+ auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
+ return FM[ID].partiallyMatches(CapE);
+ });
+ return I != end() ? &FM[*I] : nullptr;
+ }
+
+ bool containsMutexDecl(FactManager &FM, const ValueDecl* Vd) const {
+ auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
+ return FM[ID].valueDecl() == Vd;
+ });
+ return I != end();
+ }
+};
+
+class ThreadSafetyAnalyzer;
+} // namespace
+
+namespace clang {
+namespace threadSafety {
+class BeforeSet {
+private:
+ typedef SmallVector<const ValueDecl*, 4> BeforeVect;
+
+ struct BeforeInfo {
+ BeforeInfo() : Vect(nullptr), Visited(false) { }
+ BeforeInfo(BeforeInfo &&O)
+ : Vect(std::move(O.Vect)), Visited(O.Visited)
+ {}
+
+ std::unique_ptr<BeforeVect> Vect;
+ int Visited;
+ };
+
+ typedef llvm::DenseMap<const ValueDecl*, BeforeInfo> BeforeMap;
+ typedef llvm::DenseMap<const ValueDecl*, bool> CycleMap;
+
+public:
+ BeforeSet() { }
+
+ BeforeInfo* insertAttrExprs(const ValueDecl* Vd,
+ ThreadSafetyAnalyzer& Analyzer);
+
+ void checkBeforeAfter(const ValueDecl* Vd,
+ const FactSet& FSet,
+ ThreadSafetyAnalyzer& Analyzer,
+ SourceLocation Loc, StringRef CapKind);
+
+private:
+ BeforeMap BMap;
+ CycleMap CycMap;
+};
+} // end namespace threadSafety
+} // end namespace clang
+
+namespace {
+typedef llvm::ImmutableMap<const NamedDecl*, unsigned> LocalVarContext;
+class LocalVariableMap;
+
+/// A side (entry or exit) of a CFG node.
+enum CFGBlockSide { CBS_Entry, CBS_Exit };
+
+/// CFGBlockInfo is a struct which contains all the information that is
+/// maintained for each block in the CFG. See LocalVariableMap for more
+/// information about the contexts.
+struct CFGBlockInfo {
+ FactSet EntrySet; // Lockset held at entry to block
+ FactSet ExitSet; // Lockset held at exit from block
+ LocalVarContext EntryContext; // Context held at entry to block
+ LocalVarContext ExitContext; // Context held at exit from block
+ SourceLocation EntryLoc; // Location of first statement in block
+ SourceLocation ExitLoc; // Location of last statement in block.
+ unsigned EntryIndex; // Used to replay contexts later
+ bool Reachable; // Is this block reachable?
+
+ const FactSet &getSet(CFGBlockSide Side) const {
+ return Side == CBS_Entry ? EntrySet : ExitSet;
+ }
+ SourceLocation getLocation(CFGBlockSide Side) const {
+ return Side == CBS_Entry ? EntryLoc : ExitLoc;
+ }
+
+private:
+ CFGBlockInfo(LocalVarContext EmptyCtx)
+ : EntryContext(EmptyCtx), ExitContext(EmptyCtx), Reachable(false)
+ { }
+
+public:
+ static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M);
+};
+
+
+
+// A LocalVariableMap maintains a map from local variables to their currently
+// valid definitions. It provides SSA-like functionality when traversing the
+// CFG. Like SSA, each definition or assignment to a variable is assigned a
+// unique name (an integer), which acts as the SSA name for that definition.
+// The total set of names is shared among all CFG basic blocks.
+// Unlike SSA, we do not rewrite expressions to replace local variables declrefs
+// with their SSA-names. Instead, we compute a Context for each point in the
+// code, which maps local variables to the appropriate SSA-name. This map
+// changes with each assignment.
+//
+// The map is computed in a single pass over the CFG. Subsequent analyses can
+// then query the map to find the appropriate Context for a statement, and use
+// that Context to look up the definitions of variables.
+class LocalVariableMap {
+public:
+ typedef LocalVarContext Context;
+
+ /// A VarDefinition consists of an expression, representing the value of the
+ /// variable, along with the context in which that expression should be
+ /// interpreted. A reference VarDefinition does not itself contain this
+ /// information, but instead contains a pointer to a previous VarDefinition.
+ struct VarDefinition {
+ public:
+ friend class LocalVariableMap;
+
+ const NamedDecl *Dec; // The original declaration for this variable.
+ const Expr *Exp; // The expression for this variable, OR
+ unsigned Ref; // Reference to another VarDefinition
+ Context Ctx; // The map with which Exp should be interpreted.
+
+ bool isReference() { return !Exp; }
+
+ private:
+ // Create ordinary variable definition
+ VarDefinition(const NamedDecl *D, const Expr *E, Context C)
+ : Dec(D), Exp(E), Ref(0), Ctx(C)
+ { }
+
+ // Create reference to previous definition
+ VarDefinition(const NamedDecl *D, unsigned R, Context C)
+ : Dec(D), Exp(nullptr), Ref(R), Ctx(C)
+ { }
+ };
+
+private:
+ Context::Factory ContextFactory;
+ std::vector<VarDefinition> VarDefinitions;
+ std::vector<unsigned> CtxIndices;
+ std::vector<std::pair<Stmt*, Context> > SavedContexts;
+
+public:
+ LocalVariableMap() {
+ // index 0 is a placeholder for undefined variables (aka phi-nodes).
+ VarDefinitions.push_back(VarDefinition(nullptr, 0u, getEmptyContext()));
+ }
+
+ /// Look up a definition, within the given context.
+ const VarDefinition* lookup(const NamedDecl *D, Context Ctx) {
+ const unsigned *i = Ctx.lookup(D);
+ if (!i)
+ return nullptr;
+ assert(*i < VarDefinitions.size());
+ return &VarDefinitions[*i];
+ }
+
+ /// Look up the definition for D within the given context. Returns
+ /// NULL if the expression is not statically known. If successful, also
+ /// modifies Ctx to hold the context of the return Expr.
+ const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) {
+ const unsigned *P = Ctx.lookup(D);
+ if (!P)
+ return nullptr;
+
+ unsigned i = *P;
+ while (i > 0) {
+ if (VarDefinitions[i].Exp) {
+ Ctx = VarDefinitions[i].Ctx;
+ return VarDefinitions[i].Exp;
+ }
+ i = VarDefinitions[i].Ref;
+ }
+ return nullptr;
+ }
+
+ Context getEmptyContext() { return ContextFactory.getEmptyMap(); }
+
+ /// Return the next context after processing S. This function is used by
+ /// clients of the class to get the appropriate context when traversing the
+ /// CFG. It must be called for every assignment or DeclStmt.
+ Context getNextContext(unsigned &CtxIndex, Stmt *S, Context C) {
+ if (SavedContexts[CtxIndex+1].first == S) {
+ CtxIndex++;
+ Context Result = SavedContexts[CtxIndex].second;
+ return Result;
+ }
+ return C;
+ }
+
+ void dumpVarDefinitionName(unsigned i) {
+ if (i == 0) {
+ llvm::errs() << "Undefined";
+ return;
+ }
+ const NamedDecl *Dec = VarDefinitions[i].Dec;
+ if (!Dec) {
+ llvm::errs() << "<<NULL>>";
+ return;
+ }
+ Dec->printName(llvm::errs());
+ llvm::errs() << "." << i << " " << ((const void*) Dec);
+ }
+
+ /// Dumps an ASCII representation of the variable map to llvm::errs()
+ void dump() {
+ for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
+ const Expr *Exp = VarDefinitions[i].Exp;
+ unsigned Ref = VarDefinitions[i].Ref;
+
+ dumpVarDefinitionName(i);
+ llvm::errs() << " = ";
+ if (Exp) Exp->dump();
+ else {
+ dumpVarDefinitionName(Ref);
+ llvm::errs() << "\n";
+ }
+ }
+ }
+
+ /// Dumps an ASCII representation of a Context to llvm::errs()
+ void dumpContext(Context C) {
+ for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
+ const NamedDecl *D = I.getKey();
+ D->printName(llvm::errs());
+ const unsigned *i = C.lookup(D);
+ llvm::errs() << " -> ";
+ dumpVarDefinitionName(*i);
+ llvm::errs() << "\n";
+ }
+ }
+
+ /// Builds the variable map.
+ void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph,
+ std::vector<CFGBlockInfo> &BlockInfo);
+
+protected:
+ // Get the current context index
+ unsigned getContextIndex() { return SavedContexts.size()-1; }
+
+ // Save the current context for later replay
+ void saveContext(Stmt *S, Context C) {
+ SavedContexts.push_back(std::make_pair(S,C));
+ }
+
+ // Adds a new definition to the given context, and returns a new context.
+ // This method should be called when declaring a new variable.
+ Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) {
+ assert(!Ctx.contains(D));
+ unsigned newID = VarDefinitions.size();
+ Context NewCtx = ContextFactory.add(Ctx, D, newID);
+ VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
+ return NewCtx;
+ }
+
+ // Add a new reference to an existing definition.
+ Context addReference(const NamedDecl *D, unsigned i, Context Ctx) {
+ unsigned newID = VarDefinitions.size();
+ Context NewCtx = ContextFactory.add(Ctx, D, newID);
+ VarDefinitions.push_back(VarDefinition(D, i, Ctx));
+ return NewCtx;
+ }
+
+ // Updates a definition only if that definition is already in the map.
+ // This method should be called when assigning to an existing variable.
+ Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
+ if (Ctx.contains(D)) {
+ unsigned newID = VarDefinitions.size();
+ Context NewCtx = ContextFactory.remove(Ctx, D);
+ NewCtx = ContextFactory.add(NewCtx, D, newID);
+ VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
+ return NewCtx;
+ }
+ return Ctx;
+ }
+
+ // Removes a definition from the context, but keeps the variable name
+ // as a valid variable. The index 0 is a placeholder for cleared definitions.
+ Context clearDefinition(const NamedDecl *D, Context Ctx) {
+ Context NewCtx = Ctx;
+ if (NewCtx.contains(D)) {
+ NewCtx = ContextFactory.remove(NewCtx, D);
+ NewCtx = ContextFactory.add(NewCtx, D, 0);
+ }
+ return NewCtx;
+ }
+
+ // Remove a definition entirely frmo the context.
+ Context removeDefinition(const NamedDecl *D, Context Ctx) {
+ Context NewCtx = Ctx;
+ if (NewCtx.contains(D)) {
+ NewCtx = ContextFactory.remove(NewCtx, D);
+ }
+ return NewCtx;
+ }
+
+ Context intersectContexts(Context C1, Context C2);
+ Context createReferenceContext(Context C);
+ void intersectBackEdge(Context C1, Context C2);
+
+ friend class VarMapBuilder;
+};
+
+
+// This has to be defined after LocalVariableMap.
+CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) {
+ return CFGBlockInfo(M.getEmptyContext());
+}
+
+
+/// Visitor which builds a LocalVariableMap
+class VarMapBuilder : public StmtVisitor<VarMapBuilder> {
+public:
+ LocalVariableMap* VMap;
+ LocalVariableMap::Context Ctx;
+
+ VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C)
+ : VMap(VM), Ctx(C) {}
+
+ void VisitDeclStmt(DeclStmt *S);
+ void VisitBinaryOperator(BinaryOperator *BO);
+};
+
+
+// Add new local variables to the variable map
+void VarMapBuilder::VisitDeclStmt(DeclStmt *S) {
+ bool modifiedCtx = false;
+ DeclGroupRef DGrp = S->getDeclGroup();
+ for (const auto *D : DGrp) {
+ if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) {
+ const Expr *E = VD->getInit();
+
+ // Add local variables with trivial type to the variable map
+ QualType T = VD->getType();
+ if (T.isTrivialType(VD->getASTContext())) {
+ Ctx = VMap->addDefinition(VD, E, Ctx);
+ modifiedCtx = true;
+ }
+ }
+ }
+ if (modifiedCtx)
+ VMap->saveContext(S, Ctx);
+}
+
+// Update local variable definitions in variable map
+void VarMapBuilder::VisitBinaryOperator(BinaryOperator *BO) {
+ if (!BO->isAssignmentOp())
+ return;
+
+ Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
+
+ // Update the variable map and current context.
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHSExp)) {
+ ValueDecl *VDec = DRE->getDecl();
+ if (Ctx.lookup(VDec)) {
+ if (BO->getOpcode() == BO_Assign)
+ Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx);
+ else
+ // FIXME -- handle compound assignment operators
+ Ctx = VMap->clearDefinition(VDec, Ctx);
+ VMap->saveContext(BO, Ctx);
+ }
+ }
+}
+
+
+// Computes the intersection of two contexts. The intersection is the
+// set of variables which have the same definition in both contexts;
+// variables with different definitions are discarded.
+LocalVariableMap::Context
+LocalVariableMap::intersectContexts(Context C1, Context C2) {
+ Context Result = C1;
+ for (const auto &P : C1) {
+ const NamedDecl *Dec = P.first;
+ const unsigned *i2 = C2.lookup(Dec);
+ if (!i2) // variable doesn't exist on second path
+ Result = removeDefinition(Dec, Result);
+ else if (*i2 != P.second) // variable exists, but has different definition
+ Result = clearDefinition(Dec, Result);
+ }
+ return Result;
+}
+
+// For every variable in C, create a new variable that refers to the
+// definition in C. Return a new context that contains these new variables.
+// (We use this for a naive implementation of SSA on loop back-edges.)
+LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
+ Context Result = getEmptyContext();
+ for (const auto &P : C)
+ Result = addReference(P.first, P.second, Result);
+ return Result;
+}
+
+// This routine also takes the intersection of C1 and C2, but it does so by
+// altering the VarDefinitions. C1 must be the result of an earlier call to
+// createReferenceContext.
+void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
+ for (const auto &P : C1) {
+ unsigned i1 = P.second;
+ VarDefinition *VDef = &VarDefinitions[i1];
+ assert(VDef->isReference());
+
+ const unsigned *i2 = C2.lookup(P.first);
+ if (!i2 || (*i2 != i1))
+ VDef->Ref = 0; // Mark this variable as undefined
+ }
+}
+
+
+// Traverse the CFG in topological order, so all predecessors of a block
+// (excluding back-edges) are visited before the block itself. At
+// each point in the code, we calculate a Context, which holds the set of
+// variable definitions which are visible at that point in execution.
+// Visible variables are mapped to their definitions using an array that
+// contains all definitions.
+//
+// At join points in the CFG, the set is computed as the intersection of
+// the incoming sets along each edge, E.g.
+//
+// { Context | VarDefinitions }
+// int x = 0; { x -> x1 | x1 = 0 }
+// int y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 }
+// if (b) x = 1; { x -> x2, y -> y1 | x2 = 1, y1 = 0, ... }
+// else x = 2; { x -> x3, y -> y1 | x3 = 2, x2 = 1, ... }
+// ... { y -> y1 (x is unknown) | x3 = 2, x2 = 1, ... }
+//
+// This is essentially a simpler and more naive version of the standard SSA
+// algorithm. Those definitions that remain in the intersection are from blocks
+// that strictly dominate the current block. We do not bother to insert proper
+// phi nodes, because they are not used in our analysis; instead, wherever
+// a phi node would be required, we simply remove that definition from the
+// context (E.g. x above).
+//
+// The initial traversal does not capture back-edges, so those need to be
+// handled on a separate pass. Whenever the first pass encounters an
+// incoming back edge, it duplicates the context, creating new definitions
+// that refer back to the originals. (These correspond to places where SSA
+// might have to insert a phi node.) On the second pass, these definitions are
+// set to NULL if the variable has changed on the back-edge (i.e. a phi
+// node was actually required.) E.g.
+//
+// { Context | VarDefinitions }
+// int x = 0, y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 }
+// while (b) { x -> x2, y -> y1 | [1st:] x2=x1; [2nd:] x2=NULL; }
+// x = x+1; { x -> x3, y -> y1 | x3 = x2 + 1, ... }
+// ... { y -> y1 | x3 = 2, x2 = 1, ... }
+//
+void LocalVariableMap::traverseCFG(CFG *CFGraph,
+ const PostOrderCFGView *SortedGraph,
+ std::vector<CFGBlockInfo> &BlockInfo) {
+ PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
+
+ CtxIndices.resize(CFGraph->getNumBlockIDs());
+
+ for (const auto *CurrBlock : *SortedGraph) {
+ int CurrBlockID = CurrBlock->getBlockID();
+ CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
+
+ VisitedBlocks.insert(CurrBlock);
+
+ // Calculate the entry context for the current block
+ bool HasBackEdges = false;
+ bool CtxInit = true;
+ for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
+ PE = CurrBlock->pred_end(); PI != PE; ++PI) {
+ // if *PI -> CurrBlock is a back edge, so skip it
+ if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) {
+ HasBackEdges = true;
+ continue;
+ }
+
+ int PrevBlockID = (*PI)->getBlockID();
+ CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
+
+ if (CtxInit) {
+ CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext;
+ CtxInit = false;
+ }
+ else {
+ CurrBlockInfo->EntryContext =
+ intersectContexts(CurrBlockInfo->EntryContext,
+ PrevBlockInfo->ExitContext);
+ }
+ }
+
+ // Duplicate the context if we have back-edges, so we can call
+ // intersectBackEdges later.
+ if (HasBackEdges)
+ CurrBlockInfo->EntryContext =
+ createReferenceContext(CurrBlockInfo->EntryContext);
+
+ // Create a starting context index for the current block
+ saveContext(nullptr, CurrBlockInfo->EntryContext);
+ CurrBlockInfo->EntryIndex = getContextIndex();
+
+ // Visit all the statements in the basic block.
+ VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext);
+ for (CFGBlock::const_iterator BI = CurrBlock->begin(),
+ BE = CurrBlock->end(); BI != BE; ++BI) {
+ switch (BI->getKind()) {
+ case CFGElement::Statement: {
+ CFGStmt CS = BI->castAs<CFGStmt>();
+ VMapBuilder.Visit(const_cast<Stmt*>(CS.getStmt()));
+ break;
+ }
+ default:
+ break;
+ }
+ }
+ CurrBlockInfo->ExitContext = VMapBuilder.Ctx;
+
+ // Mark variables on back edges as "unknown" if they've been changed.
+ for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
+ SE = CurrBlock->succ_end(); SI != SE; ++SI) {
+ // if CurrBlock -> *SI is *not* a back edge
+ if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
+ continue;
+
+ CFGBlock *FirstLoopBlock = *SI;
+ Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext;
+ Context LoopEnd = CurrBlockInfo->ExitContext;
+ intersectBackEdge(LoopBegin, LoopEnd);
+ }
+ }
+
+ // Put an extra entry at the end of the indexed context array
+ unsigned exitID = CFGraph->getExit().getBlockID();
+ saveContext(nullptr, BlockInfo[exitID].ExitContext);
+}
+
+/// Find the appropriate source locations to use when producing diagnostics for
+/// each block in the CFG.
+static void findBlockLocations(CFG *CFGraph,
+ const PostOrderCFGView *SortedGraph,
+ std::vector<CFGBlockInfo> &BlockInfo) {
+ for (const auto *CurrBlock : *SortedGraph) {
+ CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()];
+
+ // Find the source location of the last statement in the block, if the
+ // block is not empty.
+ if (const Stmt *S = CurrBlock->getTerminator()) {
+ CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getLocStart();
+ } else {
+ for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(),
+ BE = CurrBlock->rend(); BI != BE; ++BI) {
+ // FIXME: Handle other CFGElement kinds.
+ if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) {
+ CurrBlockInfo->ExitLoc = CS->getStmt()->getLocStart();
+ break;
+ }
+ }
+ }
+
+ if (!CurrBlockInfo->ExitLoc.isInvalid()) {
+ // This block contains at least one statement. Find the source location
+ // of the first statement in the block.
+ for (CFGBlock::const_iterator BI = CurrBlock->begin(),
+ BE = CurrBlock->end(); BI != BE; ++BI) {
+ // FIXME: Handle other CFGElement kinds.
+ if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) {
+ CurrBlockInfo->EntryLoc = CS->getStmt()->getLocStart();
+ break;
+ }
+ }
+ } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() &&
+ CurrBlock != &CFGraph->getExit()) {
+ // The block is empty, and has a single predecessor. Use its exit
+ // location.
+ CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
+ BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc;
+ }
+ }
+}
+
+class LockableFactEntry : public FactEntry {
+private:
+ bool Managed; ///< managed by ScopedLockable object
+
+public:
+ LockableFactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
+ bool Mng = false, bool Asrt = false)
+ : FactEntry(CE, LK, Loc, Asrt), Managed(Mng) {}
+
+ void
+ handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
+ SourceLocation JoinLoc, LockErrorKind LEK,
+ ThreadSafetyHandler &Handler) const override {
+ if (!Managed && !asserted() && !negative() && !isUniversal()) {
+ Handler.handleMutexHeldEndOfScope("mutex", toString(), loc(), JoinLoc,
+ LEK);
+ }
+ }
+
+ void handleUnlock(FactSet &FSet, FactManager &FactMan,
+ const CapabilityExpr &Cp, SourceLocation UnlockLoc,
+ bool FullyRemove, ThreadSafetyHandler &Handler,
+ StringRef DiagKind) const override {
+ FSet.removeLock(FactMan, Cp);
+ if (!Cp.negative()) {
+ FSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>(
+ !Cp, LK_Exclusive, UnlockLoc));
+ }
+ }
+};
+
+class ScopedLockableFactEntry : public FactEntry {
+private:
+ SmallVector<const til::SExpr *, 4> UnderlyingMutexes;
+
+public:
+ ScopedLockableFactEntry(const CapabilityExpr &CE, SourceLocation Loc,
+ const CapExprSet &Excl, const CapExprSet &Shrd)
+ : FactEntry(CE, LK_Exclusive, Loc, false) {
+ for (const auto &M : Excl)
+ UnderlyingMutexes.push_back(M.sexpr());
+ for (const auto &M : Shrd)
+ UnderlyingMutexes.push_back(M.sexpr());
+ }
+
+ void
+ handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
+ SourceLocation JoinLoc, LockErrorKind LEK,
+ ThreadSafetyHandler &Handler) const override {
+ for (const til::SExpr *UnderlyingMutex : UnderlyingMutexes) {
+ if (FSet.findLock(FactMan, CapabilityExpr(UnderlyingMutex, false))) {
+ // If this scoped lock manages another mutex, and if the underlying
+ // mutex is still held, then warn about the underlying mutex.
+ Handler.handleMutexHeldEndOfScope(
+ "mutex", sx::toString(UnderlyingMutex), loc(), JoinLoc, LEK);
+ }
+ }
+ }
+
+ void handleUnlock(FactSet &FSet, FactManager &FactMan,
+ const CapabilityExpr &Cp, SourceLocation UnlockLoc,
+ bool FullyRemove, ThreadSafetyHandler &Handler,
+ StringRef DiagKind) const override {
+ assert(!Cp.negative() && "Managing object cannot be negative.");
+ for (const til::SExpr *UnderlyingMutex : UnderlyingMutexes) {
+ CapabilityExpr UnderCp(UnderlyingMutex, false);
+ auto UnderEntry = llvm::make_unique<LockableFactEntry>(
+ !UnderCp, LK_Exclusive, UnlockLoc);
+
+ if (FullyRemove) {
+ // We're destroying the managing object.
+ // Remove the underlying mutex if it exists; but don't warn.
+ if (FSet.findLock(FactMan, UnderCp)) {
+ FSet.removeLock(FactMan, UnderCp);
+ FSet.addLock(FactMan, std::move(UnderEntry));
+ }
+ } else {
+ // We're releasing the underlying mutex, but not destroying the
+ // managing object. Warn on dual release.
+ if (!FSet.findLock(FactMan, UnderCp)) {
+ Handler.handleUnmatchedUnlock(DiagKind, UnderCp.toString(),
+ UnlockLoc);
+ }
+ FSet.removeLock(FactMan, UnderCp);
+ FSet.addLock(FactMan, std::move(UnderEntry));
+ }
+ }
+ if (FullyRemove)
+ FSet.removeLock(FactMan, Cp);
+ }
+};
+
+/// \brief Class which implements the core thread safety analysis routines.
+class ThreadSafetyAnalyzer {
+ friend class BuildLockset;
+ friend class threadSafety::BeforeSet;
+
+ llvm::BumpPtrAllocator Bpa;
+ threadSafety::til::MemRegionRef Arena;
+ threadSafety::SExprBuilder SxBuilder;
+
+ ThreadSafetyHandler &Handler;
+ const CXXMethodDecl *CurrentMethod;
+ LocalVariableMap LocalVarMap;
+ FactManager FactMan;
+ std::vector<CFGBlockInfo> BlockInfo;
+
+ BeforeSet* GlobalBeforeSet;
+
+public:
+ ThreadSafetyAnalyzer(ThreadSafetyHandler &H, BeforeSet* Bset)
+ : Arena(&Bpa), SxBuilder(Arena), Handler(H), GlobalBeforeSet(Bset) {}
+
+ bool inCurrentScope(const CapabilityExpr &CapE);
+
+ void addLock(FactSet &FSet, std::unique_ptr<FactEntry> Entry,
+ StringRef DiagKind, bool ReqAttr = false);
+ void removeLock(FactSet &FSet, const CapabilityExpr &CapE,
+ SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind,
+ StringRef DiagKind);
+
+ template <typename AttrType>
+ void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, Expr *Exp,
+ const NamedDecl *D, VarDecl *SelfDecl = nullptr);
+
+ template <class AttrType>
+ void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, Expr *Exp,
+ const NamedDecl *D,
+ const CFGBlock *PredBlock, const CFGBlock *CurrBlock,
+ Expr *BrE, bool Neg);
+
+ const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C,
+ bool &Negate);
+
+ void getEdgeLockset(FactSet &Result, const FactSet &ExitSet,
+ const CFGBlock* PredBlock,
+ const CFGBlock *CurrBlock);
+
+ void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
+ SourceLocation JoinLoc,
+ LockErrorKind LEK1, LockErrorKind LEK2,
+ bool Modify=true);
+
+ void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
+ SourceLocation JoinLoc, LockErrorKind LEK1,
+ bool Modify=true) {
+ intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1, Modify);
+ }
+
+ void runAnalysis(AnalysisDeclContext &AC);
+};
+} // namespace
+
+/// Process acquired_before and acquired_after attributes on Vd.
+BeforeSet::BeforeInfo* BeforeSet::insertAttrExprs(const ValueDecl* Vd,
+ ThreadSafetyAnalyzer& Analyzer) {
+ // Create a new entry for Vd.
+ auto& Entry = BMap.FindAndConstruct(Vd);
+ BeforeInfo* Info = &Entry.second;
+ BeforeVect* Bv = nullptr;
+
+ for (Attr* At : Vd->attrs()) {
+ switch (At->getKind()) {
+ case attr::AcquiredBefore: {
+ auto *A = cast<AcquiredBeforeAttr>(At);
+
+ // Create a new BeforeVect for Vd if necessary.
+ if (!Bv) {
+ Bv = new BeforeVect;
+ Info->Vect.reset(Bv);
+ }
+ // Read exprs from the attribute, and add them to BeforeVect.
+ for (const auto *Arg : A->args()) {
+ CapabilityExpr Cp =
+ Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
+ if (const ValueDecl *Cpvd = Cp.valueDecl()) {
+ Bv->push_back(Cpvd);
+ auto It = BMap.find(Cpvd);
+ if (It == BMap.end())
+ insertAttrExprs(Cpvd, Analyzer);
+ }
+ }
+ break;
+ }
+ case attr::AcquiredAfter: {
+ auto *A = cast<AcquiredAfterAttr>(At);
+
+ // Read exprs from the attribute, and add them to BeforeVect.
+ for (const auto *Arg : A->args()) {
+ CapabilityExpr Cp =
+ Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
+ if (const ValueDecl *ArgVd = Cp.valueDecl()) {
+ // Get entry for mutex listed in attribute
+ BeforeInfo* ArgInfo;
+ auto It = BMap.find(ArgVd);
+ if (It == BMap.end())
+ ArgInfo = insertAttrExprs(ArgVd, Analyzer);
+ else
+ ArgInfo = &It->second;
+
+ // Create a new BeforeVect if necessary.
+ BeforeVect* ArgBv = ArgInfo->Vect.get();
+ if (!ArgBv) {
+ ArgBv = new BeforeVect;
+ ArgInfo->Vect.reset(ArgBv);
+ }
+ ArgBv->push_back(Vd);
+ }
+ }
+ break;
+ }
+ default:
+ break;
+ }
+ }
+
+ return Info;
+}
+
+
+/// Return true if any mutexes in FSet are in the acquired_before set of Vd.
+void BeforeSet::checkBeforeAfter(const ValueDecl* StartVd,
+ const FactSet& FSet,
+ ThreadSafetyAnalyzer& Analyzer,
+ SourceLocation Loc, StringRef CapKind) {
+ SmallVector<BeforeInfo*, 8> InfoVect;
+
+ // Do a depth-first traversal of Vd.
+ // Return true if there are cycles.
+ std::function<bool (const ValueDecl*)> traverse = [&](const ValueDecl* Vd) {
+ if (!Vd)
+ return false;
+
+ BeforeSet::BeforeInfo* Info;
+ auto It = BMap.find(Vd);
+ if (It == BMap.end())
+ Info = insertAttrExprs(Vd, Analyzer);
+ else
+ Info = &It->second;
+
+ if (Info->Visited == 1)
+ return true;
+
+ if (Info->Visited == 2)
+ return false;
+
+ BeforeVect* Bv = Info->Vect.get();
+ if (!Bv)
+ return false;
+
+ InfoVect.push_back(Info);
+ Info->Visited = 1;
+ for (auto *Vdb : *Bv) {
+ // Exclude mutexes in our immediate before set.
+ if (FSet.containsMutexDecl(Analyzer.FactMan, Vdb)) {
+ StringRef L1 = StartVd->getName();
+ StringRef L2 = Vdb->getName();
+ Analyzer.Handler.handleLockAcquiredBefore(CapKind, L1, L2, Loc);
+ }
+ // Transitively search other before sets, and warn on cycles.
+ if (traverse(Vdb)) {
+ if (CycMap.find(Vd) == CycMap.end()) {
+ CycMap.insert(std::make_pair(Vd, true));
+ StringRef L1 = Vd->getName();
+ Analyzer.Handler.handleBeforeAfterCycle(L1, Vd->getLocation());
+ }
+ }
+ }
+ Info->Visited = 2;
+ return false;
+ };
+
+ traverse(StartVd);
+
+ for (auto* Info : InfoVect)
+ Info->Visited = 0;
+}
+
+
+
+/// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs.
+static const ValueDecl *getValueDecl(const Expr *Exp) {
+ if (const auto *CE = dyn_cast<ImplicitCastExpr>(Exp))
+ return getValueDecl(CE->getSubExpr());
+
+ if (const auto *DR = dyn_cast<DeclRefExpr>(Exp))
+ return DR->getDecl();
+
+ if (const auto *ME = dyn_cast<MemberExpr>(Exp))
+ return ME->getMemberDecl();
+
+ return nullptr;
+}
+
+namespace {
+template <typename Ty>
+class has_arg_iterator_range {
+ typedef char yes[1];
+ typedef char no[2];
+
+ template <typename Inner>
+ static yes& test(Inner *I, decltype(I->args()) * = nullptr);
+
+ template <typename>
+ static no& test(...);
+
+public:
+ static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
+};
+} // namespace
+
+static StringRef ClassifyDiagnostic(const CapabilityAttr *A) {
+ return A->getName();
+}
+
+static StringRef ClassifyDiagnostic(QualType VDT) {
+ // We need to look at the declaration of the type of the value to determine
+ // which it is. The type should either be a record or a typedef, or a pointer
+ // or reference thereof.
+ if (const auto *RT = VDT->getAs<RecordType>()) {
+ if (const auto *RD = RT->getDecl())
+ if (const auto *CA = RD->getAttr<CapabilityAttr>())
+ return ClassifyDiagnostic(CA);
+ } else if (const auto *TT = VDT->getAs<TypedefType>()) {
+ if (const auto *TD = TT->getDecl())
+ if (const auto *CA = TD->getAttr<CapabilityAttr>())
+ return ClassifyDiagnostic(CA);
+ } else if (VDT->isPointerType() || VDT->isReferenceType())
+ return ClassifyDiagnostic(VDT->getPointeeType());
+
+ return "mutex";
+}
+
+static StringRef ClassifyDiagnostic(const ValueDecl *VD) {
+ assert(VD && "No ValueDecl passed");
+
+ // The ValueDecl is the declaration of a mutex or role (hopefully).
+ return ClassifyDiagnostic(VD->getType());
+}
+
+template <typename AttrTy>
+static typename std::enable_if<!has_arg_iterator_range<AttrTy>::value,
+ StringRef>::type
+ClassifyDiagnostic(const AttrTy *A) {
+ if (const ValueDecl *VD = getValueDecl(A->getArg()))
+ return ClassifyDiagnostic(VD);
+ return "mutex";
+}
+
+template <typename AttrTy>
+static typename std::enable_if<has_arg_iterator_range<AttrTy>::value,
+ StringRef>::type
+ClassifyDiagnostic(const AttrTy *A) {
+ for (const auto *Arg : A->args()) {
+ if (const ValueDecl *VD = getValueDecl(Arg))
+ return ClassifyDiagnostic(VD);
+ }
+ return "mutex";
+}
+
+
+inline bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) {
+ if (!CurrentMethod)
+ return false;
+ if (auto *P = dyn_cast_or_null<til::Project>(CapE.sexpr())) {
+ auto *VD = P->clangDecl();
+ if (VD)
+ return VD->getDeclContext() == CurrentMethod->getDeclContext();
+ }
+ return false;
+}
+
+
+/// \brief Add a new lock to the lockset, warning if the lock is already there.
+/// \param ReqAttr -- true if this is part of an initial Requires attribute.
+void ThreadSafetyAnalyzer::addLock(FactSet &FSet,
+ std::unique_ptr<FactEntry> Entry,
+ StringRef DiagKind, bool ReqAttr) {
+ if (Entry->shouldIgnore())
+ return;
+
+ if (!ReqAttr && !Entry->negative()) {
+ // look for the negative capability, and remove it from the fact set.
+ CapabilityExpr NegC = !*Entry;
+ FactEntry *Nen = FSet.findLock(FactMan, NegC);
+ if (Nen) {
+ FSet.removeLock(FactMan, NegC);
+ }
+ else {
+ if (inCurrentScope(*Entry) && !Entry->asserted())
+ Handler.handleNegativeNotHeld(DiagKind, Entry->toString(),
+ NegC.toString(), Entry->loc());
+ }
+ }
+
+ // Check before/after constraints
+ if (Handler.issueBetaWarnings() &&
+ !Entry->asserted() && !Entry->declared()) {
+ GlobalBeforeSet->checkBeforeAfter(Entry->valueDecl(), FSet, *this,
+ Entry->loc(), DiagKind);
+ }
+
+ // FIXME: Don't always warn when we have support for reentrant locks.
+ if (FSet.findLock(FactMan, *Entry)) {
+ if (!Entry->asserted())
+ Handler.handleDoubleLock(DiagKind, Entry->toString(), Entry->loc());
+ } else {
+ FSet.addLock(FactMan, std::move(Entry));
+ }
+}
+
+
+/// \brief Remove a lock from the lockset, warning if the lock is not there.
+/// \param UnlockLoc The source location of the unlock (only used in error msg)
+void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp,
+ SourceLocation UnlockLoc,
+ bool FullyRemove, LockKind ReceivedKind,
+ StringRef DiagKind) {
+ if (Cp.shouldIgnore())
+ return;
+
+ const FactEntry *LDat = FSet.findLock(FactMan, Cp);
+ if (!LDat) {
+ Handler.handleUnmatchedUnlock(DiagKind, Cp.toString(), UnlockLoc);
+ return;
+ }
+
+ // Generic lock removal doesn't care about lock kind mismatches, but
+ // otherwise diagnose when the lock kinds are mismatched.
+ if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) {
+ Handler.handleIncorrectUnlockKind(DiagKind, Cp.toString(),
+ LDat->kind(), ReceivedKind, UnlockLoc);
+ }
+
+ LDat->handleUnlock(FSet, FactMan, Cp, UnlockLoc, FullyRemove, Handler,
+ DiagKind);
+}
+
+
+/// \brief Extract the list of mutexIDs from the attribute on an expression,
+/// and push them onto Mtxs, discarding any duplicates.
+template <typename AttrType>
+void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
+ Expr *Exp, const NamedDecl *D,
+ VarDecl *SelfDecl) {
+ if (Attr->args_size() == 0) {
+ // The mutex held is the "this" object.
+ CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, SelfDecl);
+ if (Cp.isInvalid()) {
+ warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr));
+ return;
+ }
+ //else
+ if (!Cp.shouldIgnore())
+ Mtxs.push_back_nodup(Cp);
+ return;
+ }
+
+ for (const auto *Arg : Attr->args()) {
+ CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, SelfDecl);
+ if (Cp.isInvalid()) {
+ warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr));
+ continue;
+ }
+ //else
+ if (!Cp.shouldIgnore())
+ Mtxs.push_back_nodup(Cp);
+ }
+}
+
+
+/// \brief Extract the list of mutexIDs from a trylock attribute. If the
+/// trylock applies to the given edge, then push them onto Mtxs, discarding
+/// any duplicates.
+template <class AttrType>
+void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
+ Expr *Exp, const NamedDecl *D,
+ const CFGBlock *PredBlock,
+ const CFGBlock *CurrBlock,
+ Expr *BrE, bool Neg) {
+ // Find out which branch has the lock
+ bool branch = false;
+ if (CXXBoolLiteralExpr *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE))
+ branch = BLE->getValue();
+ else if (IntegerLiteral *ILE = dyn_cast_or_null<IntegerLiteral>(BrE))
+ branch = ILE->getValue().getBoolValue();
+
+ int branchnum = branch ? 0 : 1;
+ if (Neg)
+ branchnum = !branchnum;
+
+ // If we've taken the trylock branch, then add the lock
+ int i = 0;
+ for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
+ SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
+ if (*SI == CurrBlock && i == branchnum)
+ getMutexIDs(Mtxs, Attr, Exp, D);
+ }
+}
+
+static bool getStaticBooleanValue(Expr *E, bool &TCond) {
+ if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) {
+ TCond = false;
+ return true;
+ } else if (CXXBoolLiteralExpr *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) {
+ TCond = BLE->getValue();
+ return true;
+ } else if (IntegerLiteral *ILE = dyn_cast<IntegerLiteral>(E)) {
+ TCond = ILE->getValue().getBoolValue();
+ return true;
+ } else if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
+ return getStaticBooleanValue(CE->getSubExpr(), TCond);
+ }
+ return false;
+}
+
+
+// If Cond can be traced back to a function call, return the call expression.
+// The negate variable should be called with false, and will be set to true
+// if the function call is negated, e.g. if (!mu.tryLock(...))
+const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond,
+ LocalVarContext C,
+ bool &Negate) {
+ if (!Cond)
+ return nullptr;
+
+ if (const CallExpr *CallExp = dyn_cast<CallExpr>(Cond)) {
+ return CallExp;
+ }
+ else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) {
+ return getTrylockCallExpr(PE->getSubExpr(), C, Negate);
+ }
+ else if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Cond)) {
+ return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
+ }
+ else if (const ExprWithCleanups* EWC = dyn_cast<ExprWithCleanups>(Cond)) {
+ return getTrylockCallExpr(EWC->getSubExpr(), C, Negate);
+ }
+ else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Cond)) {
+ const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
+ return getTrylockCallExpr(E, C, Negate);
+ }
+ else if (const UnaryOperator *UOP = dyn_cast<UnaryOperator>(Cond)) {
+ if (UOP->getOpcode() == UO_LNot) {
+ Negate = !Negate;
+ return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
+ }
+ return nullptr;
+ }
+ else if (const BinaryOperator *BOP = dyn_cast<BinaryOperator>(Cond)) {
+ if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) {
+ if (BOP->getOpcode() == BO_NE)
+ Negate = !Negate;
+
+ bool TCond = false;
+ if (getStaticBooleanValue(BOP->getRHS(), TCond)) {
+ if (!TCond) Negate = !Negate;
+ return getTrylockCallExpr(BOP->getLHS(), C, Negate);
+ }
+ TCond = false;
+ if (getStaticBooleanValue(BOP->getLHS(), TCond)) {
+ if (!TCond) Negate = !Negate;
+ return getTrylockCallExpr(BOP->getRHS(), C, Negate);
+ }
+ return nullptr;
+ }
+ if (BOP->getOpcode() == BO_LAnd) {
+ // LHS must have been evaluated in a different block.
+ return getTrylockCallExpr(BOP->getRHS(), C, Negate);
+ }
+ if (BOP->getOpcode() == BO_LOr) {
+ return getTrylockCallExpr(BOP->getRHS(), C, Negate);
+ }
+ return nullptr;
+ }
+ return nullptr;
+}
+
+
+/// \brief Find the lockset that holds on the edge between PredBlock
+/// and CurrBlock. The edge set is the exit set of PredBlock (passed
+/// as the ExitSet parameter) plus any trylocks, which are conditionally held.
+void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result,
+ const FactSet &ExitSet,
+ const CFGBlock *PredBlock,
+ const CFGBlock *CurrBlock) {
+ Result = ExitSet;
+
+ const Stmt *Cond = PredBlock->getTerminatorCondition();
+ if (!Cond)
+ return;
+
+ bool Negate = false;
+ const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()];
+ const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext;
+ StringRef CapDiagKind = "mutex";
+
+ CallExpr *Exp =
+ const_cast<CallExpr*>(getTrylockCallExpr(Cond, LVarCtx, Negate));
+ if (!Exp)
+ return;
+
+ NamedDecl *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
+ if(!FunDecl || !FunDecl->hasAttrs())
+ return;
+
+ CapExprSet ExclusiveLocksToAdd;
+ CapExprSet SharedLocksToAdd;
+
+ // If the condition is a call to a Trylock function, then grab the attributes
+ for (auto *Attr : FunDecl->attrs()) {
+ switch (Attr->getKind()) {
+ case attr::ExclusiveTrylockFunction: {
+ ExclusiveTrylockFunctionAttr *A =
+ cast<ExclusiveTrylockFunctionAttr>(Attr);
+ getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl,
+ PredBlock, CurrBlock, A->getSuccessValue(), Negate);
+ CapDiagKind = ClassifyDiagnostic(A);
+ break;
+ }
+ case attr::SharedTrylockFunction: {
+ SharedTrylockFunctionAttr *A =
+ cast<SharedTrylockFunctionAttr>(Attr);
+ getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl,
+ PredBlock, CurrBlock, A->getSuccessValue(), Negate);
+ CapDiagKind = ClassifyDiagnostic(A);
+ break;
+ }
+ default:
+ break;
+ }
+ }
+
+ // Add and remove locks.
+ SourceLocation Loc = Exp->getExprLoc();
+ for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd)
+ addLock(Result, llvm::make_unique<LockableFactEntry>(ExclusiveLockToAdd,
+ LK_Exclusive, Loc),
+ CapDiagKind);
+ for (const auto &SharedLockToAdd : SharedLocksToAdd)
+ addLock(Result, llvm::make_unique<LockableFactEntry>(SharedLockToAdd,
+ LK_Shared, Loc),
+ CapDiagKind);
+}
+
+namespace {
+/// \brief We use this class to visit different types of expressions in
+/// CFGBlocks, and build up the lockset.
+/// An expression may cause us to add or remove locks from the lockset, or else
+/// output error messages related to missing locks.
+/// FIXME: In future, we may be able to not inherit from a visitor.
+class BuildLockset : public StmtVisitor<BuildLockset> {
+ friend class ThreadSafetyAnalyzer;
+
+ ThreadSafetyAnalyzer *Analyzer;
+ FactSet FSet;
+ LocalVariableMap::Context LVarCtx;
+ unsigned CtxIndex;
+
+ // helper functions
+ void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK,
+ Expr *MutexExp, ProtectedOperationKind POK,
+ StringRef DiagKind, SourceLocation Loc);
+ void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp,
+ StringRef DiagKind);
+
+ void checkAccess(const Expr *Exp, AccessKind AK,
+ ProtectedOperationKind POK = POK_VarAccess);
+ void checkPtAccess(const Expr *Exp, AccessKind AK,
+ ProtectedOperationKind POK = POK_VarAccess);
+
+ void handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD = nullptr);
+
+public:
+ BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info)
+ : StmtVisitor<BuildLockset>(),
+ Analyzer(Anlzr),
+ FSet(Info.EntrySet),
+ LVarCtx(Info.EntryContext),
+ CtxIndex(Info.EntryIndex)
+ {}
+
+ void VisitUnaryOperator(UnaryOperator *UO);
+ void VisitBinaryOperator(BinaryOperator *BO);
+ void VisitCastExpr(CastExpr *CE);
+ void VisitCallExpr(CallExpr *Exp);
+ void VisitCXXConstructExpr(CXXConstructExpr *Exp);
+ void VisitDeclStmt(DeclStmt *S);
+};
+} // namespace
+
+/// \brief Warn if the LSet does not contain a lock sufficient to protect access
+/// of at least the passed in AccessKind.
+void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp,
+ AccessKind AK, Expr *MutexExp,
+ ProtectedOperationKind POK,
+ StringRef DiagKind, SourceLocation Loc) {
+ LockKind LK = getLockKindFromAccessKind(AK);
+
+ CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp);
+ if (Cp.isInvalid()) {
+ warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind);
+ return;
+ } else if (Cp.shouldIgnore()) {
+ return;
+ }
+
+ if (Cp.negative()) {
+ // Negative capabilities act like locks excluded
+ FactEntry *LDat = FSet.findLock(Analyzer->FactMan, !Cp);
+ if (LDat) {
+ Analyzer->Handler.handleFunExcludesLock(
+ DiagKind, D->getNameAsString(), (!Cp).toString(), Loc);
+ return;
+ }
+
+ // If this does not refer to a negative capability in the same class,
+ // then stop here.
+ if (!Analyzer->inCurrentScope(Cp))
+ return;
+
+ // Otherwise the negative requirement must be propagated to the caller.
+ LDat = FSet.findLock(Analyzer->FactMan, Cp);
+ if (!LDat) {
+ Analyzer->Handler.handleMutexNotHeld("", D, POK, Cp.toString(),
+ LK_Shared, Loc);
+ }
+ return;
+ }
+
+ FactEntry* LDat = FSet.findLockUniv(Analyzer->FactMan, Cp);
+ bool NoError = true;
+ if (!LDat) {
+ // No exact match found. Look for a partial match.
+ LDat = FSet.findPartialMatch(Analyzer->FactMan, Cp);
+ if (LDat) {
+ // Warn that there's no precise match.
+ std::string PartMatchStr = LDat->toString();
+ StringRef PartMatchName(PartMatchStr);
+ Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
+ LK, Loc, &PartMatchName);
+ } else {
+ // Warn that there's no match at all.
+ Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
+ LK, Loc);
+ }
+ NoError = false;
+ }
+ // Make sure the mutex we found is the right kind.
+ if (NoError && LDat && !LDat->isAtLeast(LK)) {
+ Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
+ LK, Loc);
+ }
+}
+
+/// \brief Warn if the LSet contains the given lock.
+void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr *Exp,
+ Expr *MutexExp, StringRef DiagKind) {
+ CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp);
+ if (Cp.isInvalid()) {
+ warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind);
+ return;
+ } else if (Cp.shouldIgnore()) {
+ return;
+ }
+
+ FactEntry* LDat = FSet.findLock(Analyzer->FactMan, Cp);
+ if (LDat) {
+ Analyzer->Handler.handleFunExcludesLock(
+ DiagKind, D->getNameAsString(), Cp.toString(), Exp->getExprLoc());
+ }
+}
+
+/// \brief Checks guarded_by and pt_guarded_by attributes.
+/// Whenever we identify an access (read or write) to a DeclRefExpr that is
+/// marked with guarded_by, we must ensure the appropriate mutexes are held.
+/// Similarly, we check if the access is to an expression that dereferences
+/// a pointer marked with pt_guarded_by.
+void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK,
+ ProtectedOperationKind POK) {
+ Exp = Exp->IgnoreParenCasts();
+
+ SourceLocation Loc = Exp->getExprLoc();
+
+ // Local variables of reference type cannot be re-assigned;
+ // map them to their initializer.
+ while (const auto *DRE = dyn_cast<DeclRefExpr>(Exp)) {
+ const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()->getCanonicalDecl());
+ if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) {
+ if (const auto *E = VD->getInit()) {
+ Exp = E;
+ continue;
+ }
+ }
+ break;
+ }
+
+ if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp)) {
+ // For dereferences
+ if (UO->getOpcode() == clang::UO_Deref)
+ checkPtAccess(UO->getSubExpr(), AK, POK);
+ return;
+ }
+
+ if (const ArraySubscriptExpr *AE = dyn_cast<ArraySubscriptExpr>(Exp)) {
+ checkPtAccess(AE->getLHS(), AK, POK);
+ return;
+ }
+
+ if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
+ if (ME->isArrow())
+ checkPtAccess(ME->getBase(), AK, POK);
+ else
+ checkAccess(ME->getBase(), AK, POK);
+ }
+
+ const ValueDecl *D = getValueDecl(Exp);
+ if (!D || !D->hasAttrs())
+ return;
+
+ if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) {
+ Analyzer->Handler.handleNoMutexHeld("mutex", D, POK, AK, Loc);
+ }
+
+ for (const auto *I : D->specific_attrs<GuardedByAttr>())
+ warnIfMutexNotHeld(D, Exp, AK, I->getArg(), POK,
+ ClassifyDiagnostic(I), Loc);
+}
+
+
+/// \brief Checks pt_guarded_by and pt_guarded_var attributes.
+/// POK is the same operationKind that was passed to checkAccess.
+void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK,
+ ProtectedOperationKind POK) {
+ while (true) {
+ if (const ParenExpr *PE = dyn_cast<ParenExpr>(Exp)) {
+ Exp = PE->getSubExpr();
+ continue;
+ }
+ if (const CastExpr *CE = dyn_cast<CastExpr>(Exp)) {
+ if (CE->getCastKind() == CK_ArrayToPointerDecay) {
+ // If it's an actual array, and not a pointer, then it's elements
+ // are protected by GUARDED_BY, not PT_GUARDED_BY;
+ checkAccess(CE->getSubExpr(), AK, POK);
+ return;
+ }
+ Exp = CE->getSubExpr();
+ continue;
+ }
+ break;
+ }
+
+ // Pass by reference warnings are under a different flag.
+ ProtectedOperationKind PtPOK = POK_VarDereference;
+ if (POK == POK_PassByRef) PtPOK = POK_PtPassByRef;
+
+ const ValueDecl *D = getValueDecl(Exp);
+ if (!D || !D->hasAttrs())
+ return;
+
+ if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan))
+ Analyzer->Handler.handleNoMutexHeld("mutex", D, PtPOK, AK,
+ Exp->getExprLoc());
+
+ for (auto const *I : D->specific_attrs<PtGuardedByAttr>())
+ warnIfMutexNotHeld(D, Exp, AK, I->getArg(), PtPOK,
+ ClassifyDiagnostic(I), Exp->getExprLoc());
+}
+
+/// \brief Process a function call, method call, constructor call,
+/// or destructor call. This involves looking at the attributes on the
+/// corresponding function/method/constructor/destructor, issuing warnings,
+/// and updating the locksets accordingly.
+///
+/// FIXME: For classes annotated with one of the guarded annotations, we need
+/// to treat const method calls as reads and non-const method calls as writes,
+/// and check that the appropriate locks are held. Non-const method calls with
+/// the same signature as const method calls can be also treated as reads.
+///
+void BuildLockset::handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD) {
+ SourceLocation Loc = Exp->getExprLoc();
+ CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd;
+ CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove;
+ CapExprSet ScopedExclusiveReqs, ScopedSharedReqs;
+ StringRef CapDiagKind = "mutex";
+
+ // Figure out if we're calling the constructor of scoped lockable class
+ bool isScopedVar = false;
+ if (VD) {
+ if (const CXXConstructorDecl *CD = dyn_cast<const CXXConstructorDecl>(D)) {
+ const CXXRecordDecl* PD = CD->getParent();
+ if (PD && PD->hasAttr<ScopedLockableAttr>())
+ isScopedVar = true;
+ }
+ }
+
+ for(Attr *Atconst : D->attrs()) {
+ Attr* At = const_cast<Attr*>(Atconst);
+ switch (At->getKind()) {
+ // When we encounter a lock function, we need to add the lock to our
+ // lockset.
+ case attr::AcquireCapability: {
+ auto *A = cast<AcquireCapabilityAttr>(At);
+ Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd
+ : ExclusiveLocksToAdd,
+ A, Exp, D, VD);
+
+ CapDiagKind = ClassifyDiagnostic(A);
+ break;
+ }
+
+ // An assert will add a lock to the lockset, but will not generate
+ // a warning if it is already there, and will not generate a warning
+ // if it is not removed.
+ case attr::AssertExclusiveLock: {
+ AssertExclusiveLockAttr *A = cast<AssertExclusiveLockAttr>(At);
+
+ CapExprSet AssertLocks;
+ Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
+ for (const auto &AssertLock : AssertLocks)
+ Analyzer->addLock(FSet,
+ llvm::make_unique<LockableFactEntry>(
+ AssertLock, LK_Exclusive, Loc, false, true),
+ ClassifyDiagnostic(A));
+ break;
+ }
+ case attr::AssertSharedLock: {
+ AssertSharedLockAttr *A = cast<AssertSharedLockAttr>(At);
+
+ CapExprSet AssertLocks;
+ Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
+ for (const auto &AssertLock : AssertLocks)
+ Analyzer->addLock(FSet, llvm::make_unique<LockableFactEntry>(
+ AssertLock, LK_Shared, Loc, false, true),
+ ClassifyDiagnostic(A));
+ break;
+ }
+
+ // When we encounter an unlock function, we need to remove unlocked
+ // mutexes from the lockset, and flag a warning if they are not there.
+ case attr::ReleaseCapability: {
+ auto *A = cast<ReleaseCapabilityAttr>(At);
+ if (A->isGeneric())
+ Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, VD);
+ else if (A->isShared())
+ Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, VD);
+ else
+ Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, VD);
+
+ CapDiagKind = ClassifyDiagnostic(A);
+ break;
+ }
+
+ case attr::RequiresCapability: {
+ RequiresCapabilityAttr *A = cast<RequiresCapabilityAttr>(At);
+ for (auto *Arg : A->args()) {
+ warnIfMutexNotHeld(D, Exp, A->isShared() ? AK_Read : AK_Written, Arg,
+ POK_FunctionCall, ClassifyDiagnostic(A),
+ Exp->getExprLoc());
+ // use for adopting a lock
+ if (isScopedVar) {
+ Analyzer->getMutexIDs(A->isShared() ? ScopedSharedReqs
+ : ScopedExclusiveReqs,
+ A, Exp, D, VD);
+ }
+ }
+ break;
+ }
+
+ case attr::LocksExcluded: {
+ LocksExcludedAttr *A = cast<LocksExcludedAttr>(At);
+ for (auto *Arg : A->args())
+ warnIfMutexHeld(D, Exp, Arg, ClassifyDiagnostic(A));
+ break;
+ }
+
+ // Ignore attributes unrelated to thread-safety
+ default:
+ break;
+ }
+ }
+
+ // Add locks.
+ for (const auto &M : ExclusiveLocksToAdd)
+ Analyzer->addLock(FSet, llvm::make_unique<LockableFactEntry>(
+ M, LK_Exclusive, Loc, isScopedVar),
+ CapDiagKind);
+ for (const auto &M : SharedLocksToAdd)
+ Analyzer->addLock(FSet, llvm::make_unique<LockableFactEntry>(
+ M, LK_Shared, Loc, isScopedVar),
+ CapDiagKind);
+
+ if (isScopedVar) {
+ // Add the managing object as a dummy mutex, mapped to the underlying mutex.
+ SourceLocation MLoc = VD->getLocation();
+ DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, VD->getLocation());
+ // FIXME: does this store a pointer to DRE?
+ CapabilityExpr Scp = Analyzer->SxBuilder.translateAttrExpr(&DRE, nullptr);
+
+ std::copy(ScopedExclusiveReqs.begin(), ScopedExclusiveReqs.end(),
+ std::back_inserter(ExclusiveLocksToAdd));
+ std::copy(ScopedSharedReqs.begin(), ScopedSharedReqs.end(),
+ std::back_inserter(SharedLocksToAdd));
+ Analyzer->addLock(FSet,
+ llvm::make_unique<ScopedLockableFactEntry>(
+ Scp, MLoc, ExclusiveLocksToAdd, SharedLocksToAdd),
+ CapDiagKind);
+ }
+
+ // Remove locks.
+ // FIXME -- should only fully remove if the attribute refers to 'this'.
+ bool Dtor = isa<CXXDestructorDecl>(D);
+ for (const auto &M : ExclusiveLocksToRemove)
+ Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Exclusive, CapDiagKind);
+ for (const auto &M : SharedLocksToRemove)
+ Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Shared, CapDiagKind);
+ for (const auto &M : GenericLocksToRemove)
+ Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Generic, CapDiagKind);
+}
+
+
+/// \brief For unary operations which read and write a variable, we need to
+/// check whether we hold any required mutexes. Reads are checked in
+/// VisitCastExpr.
+void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) {
+ switch (UO->getOpcode()) {
+ case clang::UO_PostDec:
+ case clang::UO_PostInc:
+ case clang::UO_PreDec:
+ case clang::UO_PreInc: {
+ checkAccess(UO->getSubExpr(), AK_Written);
+ break;
+ }
+ default:
+ break;
+ }
+}
+
+/// For binary operations which assign to a variable (writes), we need to check
+/// whether we hold any required mutexes.
+/// FIXME: Deal with non-primitive types.
+void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
+ if (!BO->isAssignmentOp())
+ return;
+
+ // adjust the context
+ LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);
+
+ checkAccess(BO->getLHS(), AK_Written);
+}
+
+
+/// Whenever we do an LValue to Rvalue cast, we are reading a variable and
+/// need to ensure we hold any required mutexes.
+/// FIXME: Deal with non-primitive types.
+void BuildLockset::VisitCastExpr(CastExpr *CE) {
+ if (CE->getCastKind() != CK_LValueToRValue)
+ return;
+ checkAccess(CE->getSubExpr(), AK_Read);
+}
+
+
+void BuildLockset::VisitCallExpr(CallExpr *Exp) {
+ bool ExamineArgs = true;
+ bool OperatorFun = false;
+
+ if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Exp)) {
+ MemberExpr *ME = dyn_cast<MemberExpr>(CE->getCallee());
+ // ME can be null when calling a method pointer
+ CXXMethodDecl *MD = CE->getMethodDecl();
+
+ if (ME && MD) {
+ if (ME->isArrow()) {
+ if (MD->isConst()) {
+ checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
+ } else { // FIXME -- should be AK_Written
+ checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
+ }
+ } else {
+ if (MD->isConst())
+ checkAccess(CE->getImplicitObjectArgument(), AK_Read);
+ else // FIXME -- should be AK_Written
+ checkAccess(CE->getImplicitObjectArgument(), AK_Read);
+ }
+ }
+ } else if (CXXOperatorCallExpr *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) {
+ OperatorFun = true;
+
+ auto OEop = OE->getOperator();
+ switch (OEop) {
+ case OO_Equal: {
+ ExamineArgs = false;
+ const Expr *Target = OE->getArg(0);
+ const Expr *Source = OE->getArg(1);
+ checkAccess(Target, AK_Written);
+ checkAccess(Source, AK_Read);
+ break;
+ }
+ case OO_Star:
+ case OO_Arrow:
+ case OO_Subscript: {
+ const Expr *Obj = OE->getArg(0);
+ checkAccess(Obj, AK_Read);
+ if (!(OEop == OO_Star && OE->getNumArgs() > 1)) {
+ // Grrr. operator* can be multiplication...
+ checkPtAccess(Obj, AK_Read);
+ }
+ break;
+ }
+ default: {
+ // TODO: get rid of this, and rely on pass-by-ref instead.
+ const Expr *Obj = OE->getArg(0);
+ checkAccess(Obj, AK_Read);
+ break;
+ }
+ }
+ }
+
+
+ if (ExamineArgs) {
+ if (FunctionDecl *FD = Exp->getDirectCallee()) {
+ unsigned Fn = FD->getNumParams();
+ unsigned Cn = Exp->getNumArgs();
+ unsigned Skip = 0;
+
+ unsigned i = 0;
+ if (OperatorFun) {
+ if (isa<CXXMethodDecl>(FD)) {
+ // First arg in operator call is implicit self argument,
+ // and doesn't appear in the FunctionDecl.
+ Skip = 1;
+ Cn--;
+ } else {
+ // Ignore the first argument of operators; it's been checked above.
+ i = 1;
+ }
+ }
+ // Ignore default arguments
+ unsigned n = (Fn < Cn) ? Fn : Cn;
+
+ for (; i < n; ++i) {
+ ParmVarDecl* Pvd = FD->getParamDecl(i);
+ Expr* Arg = Exp->getArg(i+Skip);
+ QualType Qt = Pvd->getType();
+ if (Qt->isReferenceType())
+ checkAccess(Arg, AK_Read, POK_PassByRef);
+ }
+ }
+ }
+
+ NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
+ if(!D || !D->hasAttrs())
+ return;
+ handleCall(Exp, D);
+}
+
+void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) {
+ const CXXConstructorDecl *D = Exp->getConstructor();
+ if (D && D->isCopyConstructor()) {
+ const Expr* Source = Exp->getArg(0);
+ checkAccess(Source, AK_Read);
+ }
+ // FIXME -- only handles constructors in DeclStmt below.
+}
+
+void BuildLockset::VisitDeclStmt(DeclStmt *S) {
+ // adjust the context
+ LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);
+
+ for (auto *D : S->getDeclGroup()) {
+ if (VarDecl *VD = dyn_cast_or_null<VarDecl>(D)) {
+ Expr *E = VD->getInit();
+ // handle constructors that involve temporaries
+ if (ExprWithCleanups *EWC = dyn_cast_or_null<ExprWithCleanups>(E))
+ E = EWC->getSubExpr();
+
+ if (CXXConstructExpr *CE = dyn_cast_or_null<CXXConstructExpr>(E)) {
+ NamedDecl *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor());
+ if (!CtorD || !CtorD->hasAttrs())
+ return;
+ handleCall(CE, CtorD, VD);
+ }
+ }
+ }
+}
+
+
+
+/// \brief Compute the intersection of two locksets and issue warnings for any
+/// locks in the symmetric difference.
+///
+/// This function is used at a merge point in the CFG when comparing the lockset
+/// of each branch being merged. For example, given the following sequence:
+/// A; if () then B; else C; D; we need to check that the lockset after B and C
+/// are the same. In the event of a difference, we use the intersection of these
+/// two locksets at the start of D.
+///
+/// \param FSet1 The first lockset.
+/// \param FSet2 The second lockset.
+/// \param JoinLoc The location of the join point for error reporting
+/// \param LEK1 The error message to report if a mutex is missing from LSet1
+/// \param LEK2 The error message to report if a mutex is missing from Lset2
+void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1,
+ const FactSet &FSet2,
+ SourceLocation JoinLoc,
+ LockErrorKind LEK1,
+ LockErrorKind LEK2,
+ bool Modify) {
+ FactSet FSet1Orig = FSet1;
+
+ // Find locks in FSet2 that conflict or are not in FSet1, and warn.
+ for (const auto &Fact : FSet2) {
+ const FactEntry *LDat1 = nullptr;
+ const FactEntry *LDat2 = &FactMan[Fact];
+ FactSet::iterator Iter1 = FSet1.findLockIter(FactMan, *LDat2);
+ if (Iter1 != FSet1.end()) LDat1 = &FactMan[*Iter1];
+
+ if (LDat1) {
+ if (LDat1->kind() != LDat2->kind()) {
+ Handler.handleExclusiveAndShared("mutex", LDat2->toString(),
+ LDat2->loc(), LDat1->loc());
+ if (Modify && LDat1->kind() != LK_Exclusive) {
+ // Take the exclusive lock, which is the one in FSet2.
+ *Iter1 = Fact;
+ }
+ }
+ else if (Modify && LDat1->asserted() && !LDat2->asserted()) {
+ // The non-asserted lock in FSet2 is the one we want to track.
+ *Iter1 = Fact;
+ }
+ } else {
+ LDat2->handleRemovalFromIntersection(FSet2, FactMan, JoinLoc, LEK1,
+ Handler);
+ }
+ }
+
+ // Find locks in FSet1 that are not in FSet2, and remove them.
+ for (const auto &Fact : FSet1Orig) {
+ const FactEntry *LDat1 = &FactMan[Fact];
+ const FactEntry *LDat2 = FSet2.findLock(FactMan, *LDat1);
+
+ if (!LDat2) {
+ LDat1->handleRemovalFromIntersection(FSet1Orig, FactMan, JoinLoc, LEK2,
+ Handler);
+ if (Modify)
+ FSet1.removeLock(FactMan, *LDat1);
+ }
+ }
+}
+
+
+// Return true if block B never continues to its successors.
+static bool neverReturns(const CFGBlock *B) {
+ if (B->hasNoReturnElement())
+ return true;
+ if (B->empty())
+ return false;
+
+ CFGElement Last = B->back();
+ if (Optional<CFGStmt> S = Last.getAs<CFGStmt>()) {
+ if (isa<CXXThrowExpr>(S->getStmt()))
+ return true;
+ }
+ return false;
+}
+
+
+/// \brief Check a function's CFG for thread-safety violations.
+///
+/// We traverse the blocks in the CFG, compute the set of mutexes that are held
+/// at the end of each block, and issue warnings for thread safety violations.
+/// Each block in the CFG is traversed exactly once.
+void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
+ // TODO: this whole function needs be rewritten as a visitor for CFGWalker.
+ // For now, we just use the walker to set things up.
+ threadSafety::CFGWalker walker;
+ if (!walker.init(AC))
+ return;
+
+ // AC.dumpCFG(true);
+ // threadSafety::printSCFG(walker);
+
+ CFG *CFGraph = walker.getGraph();
+ const NamedDecl *D = walker.getDecl();
+ const FunctionDecl *CurrentFunction = dyn_cast<FunctionDecl>(D);
+ CurrentMethod = dyn_cast<CXXMethodDecl>(D);
+
+ if (D->hasAttr<NoThreadSafetyAnalysisAttr>())
+ return;
+
+ // FIXME: Do something a bit more intelligent inside constructor and
+ // destructor code. Constructors and destructors must assume unique access
+ // to 'this', so checks on member variable access is disabled, but we should
+ // still enable checks on other objects.
+ if (isa<CXXConstructorDecl>(D))
+ return; // Don't check inside constructors.
+ if (isa<CXXDestructorDecl>(D))
+ return; // Don't check inside destructors.
+
+ Handler.enterFunction(CurrentFunction);
+
+ BlockInfo.resize(CFGraph->getNumBlockIDs(),
+ CFGBlockInfo::getEmptyBlockInfo(LocalVarMap));
+
+ // We need to explore the CFG via a "topological" ordering.
+ // That way, we will be guaranteed to have information about required
+ // predecessor locksets when exploring a new block.
+ const PostOrderCFGView *SortedGraph = walker.getSortedGraph();
+ PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
+
+ // Mark entry block as reachable
+ BlockInfo[CFGraph->getEntry().getBlockID()].Reachable = true;
+
+ // Compute SSA names for local variables
+ LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo);
+
+ // Fill in source locations for all CFGBlocks.
+ findBlockLocations(CFGraph, SortedGraph, BlockInfo);
+
+ CapExprSet ExclusiveLocksAcquired;
+ CapExprSet SharedLocksAcquired;
+ CapExprSet LocksReleased;
+
+ // Add locks from exclusive_locks_required and shared_locks_required
+ // to initial lockset. Also turn off checking for lock and unlock functions.
+ // FIXME: is there a more intelligent way to check lock/unlock functions?
+ if (!SortedGraph->empty() && D->hasAttrs()) {
+ const CFGBlock *FirstBlock = *SortedGraph->begin();
+ FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet;
+
+ CapExprSet ExclusiveLocksToAdd;
+ CapExprSet SharedLocksToAdd;
+ StringRef CapDiagKind = "mutex";
+
+ SourceLocation Loc = D->getLocation();
+ for (const auto *Attr : D->attrs()) {
+ Loc = Attr->getLocation();
+ if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) {
+ getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
+ nullptr, D);
+ CapDiagKind = ClassifyDiagnostic(A);
+ } else if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) {
+ // UNLOCK_FUNCTION() is used to hide the underlying lock implementation.
+ // We must ignore such methods.
+ if (A->args_size() == 0)
+ return;
+ // FIXME -- deal with exclusive vs. shared unlock functions?
+ getMutexIDs(ExclusiveLocksToAdd, A, nullptr, D);
+ getMutexIDs(LocksReleased, A, nullptr, D);
+ CapDiagKind = ClassifyDiagnostic(A);
+ } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) {
+ if (A->args_size() == 0)
+ return;
+ getMutexIDs(A->isShared() ? SharedLocksAcquired
+ : ExclusiveLocksAcquired,
+ A, nullptr, D);
+ CapDiagKind = ClassifyDiagnostic(A);
+ } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) {
+ // Don't try to check trylock functions for now
+ return;
+ } else if (isa<SharedTrylockFunctionAttr>(Attr)) {
+ // Don't try to check trylock functions for now
+ return;
+ }
+ }
+
+ // FIXME -- Loc can be wrong here.
+ for (const auto &Mu : ExclusiveLocksToAdd) {
+ auto Entry = llvm::make_unique<LockableFactEntry>(Mu, LK_Exclusive, Loc);
+ Entry->setDeclared(true);
+ addLock(InitialLockset, std::move(Entry), CapDiagKind, true);
+ }
+ for (const auto &Mu : SharedLocksToAdd) {
+ auto Entry = llvm::make_unique<LockableFactEntry>(Mu, LK_Shared, Loc);
+ Entry->setDeclared(true);
+ addLock(InitialLockset, std::move(Entry), CapDiagKind, true);
+ }
+ }
+
+ for (const auto *CurrBlock : *SortedGraph) {
+ int CurrBlockID = CurrBlock->getBlockID();
+ CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
+
+ // Use the default initial lockset in case there are no predecessors.
+ VisitedBlocks.insert(CurrBlock);
+
+ // Iterate through the predecessor blocks and warn if the lockset for all
+ // predecessors is not the same. We take the entry lockset of the current
+ // block to be the intersection of all previous locksets.
+ // FIXME: By keeping the intersection, we may output more errors in future
+ // for a lock which is not in the intersection, but was in the union. We
+ // may want to also keep the union in future. As an example, let's say
+ // the intersection contains Mutex L, and the union contains L and M.
+ // Later we unlock M. At this point, we would output an error because we
+ // never locked M; although the real error is probably that we forgot to
+ // lock M on all code paths. Conversely, let's say that later we lock M.
+ // In this case, we should compare against the intersection instead of the
+ // union because the real error is probably that we forgot to unlock M on
+ // all code paths.
+ bool LocksetInitialized = false;
+ SmallVector<CFGBlock *, 8> SpecialBlocks;
+ for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
+ PE = CurrBlock->pred_end(); PI != PE; ++PI) {
+
+ // if *PI -> CurrBlock is a back edge
+ if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI))
+ continue;
+
+ int PrevBlockID = (*PI)->getBlockID();
+ CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
+
+ // Ignore edges from blocks that can't return.
+ if (neverReturns(*PI) || !PrevBlockInfo->Reachable)
+ continue;
+
+ // Okay, we can reach this block from the entry.
+ CurrBlockInfo->Reachable = true;
+
+ // If the previous block ended in a 'continue' or 'break' statement, then
+ // a difference in locksets is probably due to a bug in that block, rather
+ // than in some other predecessor. In that case, keep the other
+ // predecessor's lockset.
+ if (const Stmt *Terminator = (*PI)->getTerminator()) {
+ if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) {
+ SpecialBlocks.push_back(*PI);
+ continue;
+ }
+ }
+
+ FactSet PrevLockset;
+ getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock);
+
+ if (!LocksetInitialized) {
+ CurrBlockInfo->EntrySet = PrevLockset;
+ LocksetInitialized = true;
+ } else {
+ intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
+ CurrBlockInfo->EntryLoc,
+ LEK_LockedSomePredecessors);
+ }
+ }
+
+ // Skip rest of block if it's not reachable.
+ if (!CurrBlockInfo->Reachable)
+ continue;
+
+ // Process continue and break blocks. Assume that the lockset for the
+ // resulting block is unaffected by any discrepancies in them.
+ for (const auto *PrevBlock : SpecialBlocks) {
+ int PrevBlockID = PrevBlock->getBlockID();
+ CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
+
+ if (!LocksetInitialized) {
+ CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet;
+ LocksetInitialized = true;
+ } else {
+ // Determine whether this edge is a loop terminator for diagnostic
+ // purposes. FIXME: A 'break' statement might be a loop terminator, but
+ // it might also be part of a switch. Also, a subsequent destructor
+ // might add to the lockset, in which case the real issue might be a
+ // double lock on the other path.
+ const Stmt *Terminator = PrevBlock->getTerminator();
+ bool IsLoop = Terminator && isa<ContinueStmt>(Terminator);
+
+ FactSet PrevLockset;
+ getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet,
+ PrevBlock, CurrBlock);
+
+ // Do not update EntrySet.
+ intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
+ PrevBlockInfo->ExitLoc,
+ IsLoop ? LEK_LockedSomeLoopIterations
+ : LEK_LockedSomePredecessors,
+ false);
+ }
+ }
+
+ BuildLockset LocksetBuilder(this, *CurrBlockInfo);
+
+ // Visit all the statements in the basic block.
+ for (CFGBlock::const_iterator BI = CurrBlock->begin(),
+ BE = CurrBlock->end(); BI != BE; ++BI) {
+ switch (BI->getKind()) {
+ case CFGElement::Statement: {
+ CFGStmt CS = BI->castAs<CFGStmt>();
+ LocksetBuilder.Visit(const_cast<Stmt*>(CS.getStmt()));
+ break;
+ }
+ // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now.
+ case CFGElement::AutomaticObjectDtor: {
+ CFGAutomaticObjDtor AD = BI->castAs<CFGAutomaticObjDtor>();
+ CXXDestructorDecl *DD = const_cast<CXXDestructorDecl *>(
+ AD.getDestructorDecl(AC.getASTContext()));
+ if (!DD->hasAttrs())
+ break;
+
+ // Create a dummy expression,
+ VarDecl *VD = const_cast<VarDecl*>(AD.getVarDecl());
+ DeclRefExpr DRE(VD, false, VD->getType().getNonReferenceType(),
+ VK_LValue, AD.getTriggerStmt()->getLocEnd());
+ LocksetBuilder.handleCall(&DRE, DD);
+ break;
+ }
+ default:
+ break;
+ }
+ }
+ CurrBlockInfo->ExitSet = LocksetBuilder.FSet;
+
+ // For every back edge from CurrBlock (the end of the loop) to another block
+ // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
+ // the one held at the beginning of FirstLoopBlock. We can look up the
+ // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
+ for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
+ SE = CurrBlock->succ_end(); SI != SE; ++SI) {
+
+ // if CurrBlock -> *SI is *not* a back edge
+ if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
+ continue;
+
+ CFGBlock *FirstLoopBlock = *SI;
+ CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()];
+ CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID];
+ intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet,
+ PreLoop->EntryLoc,
+ LEK_LockedSomeLoopIterations,
+ false);
+ }
+ }
+
+ CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()];
+ CFGBlockInfo *Final = &BlockInfo[CFGraph->getExit().getBlockID()];
+
+ // Skip the final check if the exit block is unreachable.
+ if (!Final->Reachable)
+ return;
+
+ // By default, we expect all locks held on entry to be held on exit.
+ FactSet ExpectedExitSet = Initial->EntrySet;
+
+ // Adjust the expected exit set by adding or removing locks, as declared
+ // by *-LOCK_FUNCTION and UNLOCK_FUNCTION. The intersect below will then
+ // issue the appropriate warning.
+ // FIXME: the location here is not quite right.
+ for (const auto &Lock : ExclusiveLocksAcquired)
+ ExpectedExitSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>(
+ Lock, LK_Exclusive, D->getLocation()));
+ for (const auto &Lock : SharedLocksAcquired)
+ ExpectedExitSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>(
+ Lock, LK_Shared, D->getLocation()));
+ for (const auto &Lock : LocksReleased)
+ ExpectedExitSet.removeLock(FactMan, Lock);
+
+ // FIXME: Should we call this function for all blocks which exit the function?
+ intersectAndWarn(ExpectedExitSet, Final->ExitSet,
+ Final->ExitLoc,
+ LEK_LockedAtEndOfFunction,
+ LEK_NotLockedAtEndOfFunction,
+ false);
+
+ Handler.leaveFunction(CurrentFunction);
+}
+
+
+/// \brief Check a function's CFG for thread-safety violations.
+///
+/// We traverse the blocks in the CFG, compute the set of mutexes that are held
+/// at the end of each block, and issue warnings for thread safety violations.
+/// Each block in the CFG is traversed exactly once.
+void threadSafety::runThreadSafetyAnalysis(AnalysisDeclContext &AC,
+ ThreadSafetyHandler &Handler,
+ BeforeSet **BSet) {
+ if (!*BSet)
+ *BSet = new BeforeSet;
+ ThreadSafetyAnalyzer Analyzer(Handler, *BSet);
+ Analyzer.runAnalysis(AC);
+}
+
+void threadSafety::threadSafetyCleanup(BeforeSet *Cache) { delete Cache; }
+
+/// \brief Helper function that returns a LockKind required for the given level
+/// of access.
+LockKind threadSafety::getLockKindFromAccessKind(AccessKind AK) {
+ switch (AK) {
+ case AK_Read :
+ return LK_Shared;
+ case AK_Written :
+ return LK_Exclusive;
+ }
+ llvm_unreachable("Unknown AccessKind");
+}
diff --git a/contrib/llvm/tools/clang/lib/Analysis/ThreadSafetyCommon.cpp b/contrib/llvm/tools/clang/lib/Analysis/ThreadSafetyCommon.cpp
new file mode 100644
index 0000000..d4b1ce2
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/ThreadSafetyCommon.cpp
@@ -0,0 +1,977 @@
+//===- ThreadSafetyCommon.cpp ----------------------------------*- C++ --*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Implementation of the interfaces declared in ThreadSafetyCommon.h
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/StmtCXX.h"
+#include "clang/Analysis/Analyses/PostOrderCFGView.h"
+#include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
+#include "clang/Analysis/Analyses/ThreadSafetyTraverse.h"
+#include "clang/Analysis/AnalysisContext.h"
+#include "clang/Analysis/CFG.h"
+#include "clang/Basic/OperatorKinds.h"
+#include "clang/Basic/SourceLocation.h"
+#include "clang/Basic/SourceManager.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringRef.h"
+#include <algorithm>
+#include <climits>
+#include <vector>
+using namespace clang;
+using namespace threadSafety;
+
+// From ThreadSafetyUtil.h
+std::string threadSafety::getSourceLiteralString(const clang::Expr *CE) {
+ switch (CE->getStmtClass()) {
+ case Stmt::IntegerLiteralClass:
+ return cast<IntegerLiteral>(CE)->getValue().toString(10, true);
+ case Stmt::StringLiteralClass: {
+ std::string ret("\"");
+ ret += cast<StringLiteral>(CE)->getString();
+ ret += "\"";
+ return ret;
+ }
+ case Stmt::CharacterLiteralClass:
+ case Stmt::CXXNullPtrLiteralExprClass:
+ case Stmt::GNUNullExprClass:
+ case Stmt::CXXBoolLiteralExprClass:
+ case Stmt::FloatingLiteralClass:
+ case Stmt::ImaginaryLiteralClass:
+ case Stmt::ObjCStringLiteralClass:
+ default:
+ return "#lit";
+ }
+}
+
+// Return true if E is a variable that points to an incomplete Phi node.
+static bool isIncompletePhi(const til::SExpr *E) {
+ if (const auto *Ph = dyn_cast<til::Phi>(E))
+ return Ph->status() == til::Phi::PH_Incomplete;
+ return false;
+}
+
+typedef SExprBuilder::CallingContext CallingContext;
+
+
+til::SExpr *SExprBuilder::lookupStmt(const Stmt *S) {
+ auto It = SMap.find(S);
+ if (It != SMap.end())
+ return It->second;
+ return nullptr;
+}
+
+
+til::SCFG *SExprBuilder::buildCFG(CFGWalker &Walker) {
+ Walker.walk(*this);
+ return Scfg;
+}
+
+static bool isCalleeArrow(const Expr *E) {
+ const MemberExpr *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts());
+ return ME ? ME->isArrow() : false;
+}
+
+
+/// \brief Translate a clang expression in an attribute to a til::SExpr.
+/// Constructs the context from D, DeclExp, and SelfDecl.
+///
+/// \param AttrExp The expression to translate.
+/// \param D The declaration to which the attribute is attached.
+/// \param DeclExp An expression involving the Decl to which the attribute
+/// is attached. E.g. the call to a function.
+CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp,
+ const NamedDecl *D,
+ const Expr *DeclExp,
+ VarDecl *SelfDecl) {
+ // If we are processing a raw attribute expression, with no substitutions.
+ if (!DeclExp)
+ return translateAttrExpr(AttrExp, nullptr);
+
+ CallingContext Ctx(nullptr, D);
+
+ // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
+ // for formal parameters when we call buildMutexID later.
+ if (const MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) {
+ Ctx.SelfArg = ME->getBase();
+ Ctx.SelfArrow = ME->isArrow();
+ } else if (const CXXMemberCallExpr *CE =
+ dyn_cast<CXXMemberCallExpr>(DeclExp)) {
+ Ctx.SelfArg = CE->getImplicitObjectArgument();
+ Ctx.SelfArrow = isCalleeArrow(CE->getCallee());
+ Ctx.NumArgs = CE->getNumArgs();
+ Ctx.FunArgs = CE->getArgs();
+ } else if (const CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) {
+ Ctx.NumArgs = CE->getNumArgs();
+ Ctx.FunArgs = CE->getArgs();
+ } else if (const CXXConstructExpr *CE =
+ dyn_cast<CXXConstructExpr>(DeclExp)) {
+ Ctx.SelfArg = nullptr; // Will be set below
+ Ctx.NumArgs = CE->getNumArgs();
+ Ctx.FunArgs = CE->getArgs();
+ } else if (D && isa<CXXDestructorDecl>(D)) {
+ // There's no such thing as a "destructor call" in the AST.
+ Ctx.SelfArg = DeclExp;
+ }
+
+ // Hack to handle constructors, where self cannot be recovered from
+ // the expression.
+ if (SelfDecl && !Ctx.SelfArg) {
+ DeclRefExpr SelfDRE(SelfDecl, false, SelfDecl->getType(), VK_LValue,
+ SelfDecl->getLocation());
+ Ctx.SelfArg = &SelfDRE;
+
+ // If the attribute has no arguments, then assume the argument is "this".
+ if (!AttrExp)
+ return translateAttrExpr(Ctx.SelfArg, nullptr);
+ else // For most attributes.
+ return translateAttrExpr(AttrExp, &Ctx);
+ }
+
+ // If the attribute has no arguments, then assume the argument is "this".
+ if (!AttrExp)
+ return translateAttrExpr(Ctx.SelfArg, nullptr);
+ else // For most attributes.
+ return translateAttrExpr(AttrExp, &Ctx);
+}
+
+
+/// \brief Translate a clang expression in an attribute to a til::SExpr.
+// This assumes a CallingContext has already been created.
+CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp,
+ CallingContext *Ctx) {
+ if (!AttrExp)
+ return CapabilityExpr(nullptr, false);
+
+ if (auto* SLit = dyn_cast<StringLiteral>(AttrExp)) {
+ if (SLit->getString() == StringRef("*"))
+ // The "*" expr is a universal lock, which essentially turns off
+ // checks until it is removed from the lockset.
+ return CapabilityExpr(new (Arena) til::Wildcard(), false);
+ else
+ // Ignore other string literals for now.
+ return CapabilityExpr(nullptr, false);
+ }
+
+ bool Neg = false;
+ if (auto *OE = dyn_cast<CXXOperatorCallExpr>(AttrExp)) {
+ if (OE->getOperator() == OO_Exclaim) {
+ Neg = true;
+ AttrExp = OE->getArg(0);
+ }
+ }
+ else if (auto *UO = dyn_cast<UnaryOperator>(AttrExp)) {
+ if (UO->getOpcode() == UO_LNot) {
+ Neg = true;
+ AttrExp = UO->getSubExpr();
+ }
+ }
+
+ til::SExpr *E = translate(AttrExp, Ctx);
+
+ // Trap mutex expressions like nullptr, or 0.
+ // Any literal value is nonsense.
+ if (!E || isa<til::Literal>(E))
+ return CapabilityExpr(nullptr, false);
+
+ // Hack to deal with smart pointers -- strip off top-level pointer casts.
+ if (auto *CE = dyn_cast_or_null<til::Cast>(E)) {
+ if (CE->castOpcode() == til::CAST_objToPtr)
+ return CapabilityExpr(CE->expr(), Neg);
+ }
+ return CapabilityExpr(E, Neg);
+}
+
+
+
+// Translate a clang statement or expression to a TIL expression.
+// Also performs substitution of variables; Ctx provides the context.
+// Dispatches on the type of S.
+til::SExpr *SExprBuilder::translate(const Stmt *S, CallingContext *Ctx) {
+ if (!S)
+ return nullptr;
+
+ // Check if S has already been translated and cached.
+ // This handles the lookup of SSA names for DeclRefExprs here.
+ if (til::SExpr *E = lookupStmt(S))
+ return E;
+
+ switch (S->getStmtClass()) {
+ case Stmt::DeclRefExprClass:
+ return translateDeclRefExpr(cast<DeclRefExpr>(S), Ctx);
+ case Stmt::CXXThisExprClass:
+ return translateCXXThisExpr(cast<CXXThisExpr>(S), Ctx);
+ case Stmt::MemberExprClass:
+ return translateMemberExpr(cast<MemberExpr>(S), Ctx);
+ case Stmt::CallExprClass:
+ return translateCallExpr(cast<CallExpr>(S), Ctx);
+ case Stmt::CXXMemberCallExprClass:
+ return translateCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), Ctx);
+ case Stmt::CXXOperatorCallExprClass:
+ return translateCXXOperatorCallExpr(cast<CXXOperatorCallExpr>(S), Ctx);
+ case Stmt::UnaryOperatorClass:
+ return translateUnaryOperator(cast<UnaryOperator>(S), Ctx);
+ case Stmt::BinaryOperatorClass:
+ case Stmt::CompoundAssignOperatorClass:
+ return translateBinaryOperator(cast<BinaryOperator>(S), Ctx);
+
+ case Stmt::ArraySubscriptExprClass:
+ return translateArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Ctx);
+ case Stmt::ConditionalOperatorClass:
+ return translateAbstractConditionalOperator(
+ cast<ConditionalOperator>(S), Ctx);
+ case Stmt::BinaryConditionalOperatorClass:
+ return translateAbstractConditionalOperator(
+ cast<BinaryConditionalOperator>(S), Ctx);
+
+ // We treat these as no-ops
+ case Stmt::ParenExprClass:
+ return translate(cast<ParenExpr>(S)->getSubExpr(), Ctx);
+ case Stmt::ExprWithCleanupsClass:
+ return translate(cast<ExprWithCleanups>(S)->getSubExpr(), Ctx);
+ case Stmt::CXXBindTemporaryExprClass:
+ return translate(cast<CXXBindTemporaryExpr>(S)->getSubExpr(), Ctx);
+
+ // Collect all literals
+ case Stmt::CharacterLiteralClass:
+ case Stmt::CXXNullPtrLiteralExprClass:
+ case Stmt::GNUNullExprClass:
+ case Stmt::CXXBoolLiteralExprClass:
+ case Stmt::FloatingLiteralClass:
+ case Stmt::ImaginaryLiteralClass:
+ case Stmt::IntegerLiteralClass:
+ case Stmt::StringLiteralClass:
+ case Stmt::ObjCStringLiteralClass:
+ return new (Arena) til::Literal(cast<Expr>(S));
+
+ case Stmt::DeclStmtClass:
+ return translateDeclStmt(cast<DeclStmt>(S), Ctx);
+ default:
+ break;
+ }
+ if (const CastExpr *CE = dyn_cast<CastExpr>(S))
+ return translateCastExpr(CE, Ctx);
+
+ return new (Arena) til::Undefined(S);
+}
+
+
+
+til::SExpr *SExprBuilder::translateDeclRefExpr(const DeclRefExpr *DRE,
+ CallingContext *Ctx) {
+ const ValueDecl *VD = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
+
+ // Function parameters require substitution and/or renaming.
+ if (const ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(VD)) {
+ const FunctionDecl *FD =
+ cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl();
+ unsigned I = PV->getFunctionScopeIndex();
+
+ if (Ctx && Ctx->FunArgs && FD == Ctx->AttrDecl->getCanonicalDecl()) {
+ // Substitute call arguments for references to function parameters
+ assert(I < Ctx->NumArgs);
+ return translate(Ctx->FunArgs[I], Ctx->Prev);
+ }
+ // Map the param back to the param of the original function declaration
+ // for consistent comparisons.
+ VD = FD->getParamDecl(I);
+ }
+
+ // For non-local variables, treat it as a referenced to a named object.
+ return new (Arena) til::LiteralPtr(VD);
+}
+
+
+til::SExpr *SExprBuilder::translateCXXThisExpr(const CXXThisExpr *TE,
+ CallingContext *Ctx) {
+ // Substitute for 'this'
+ if (Ctx && Ctx->SelfArg)
+ return translate(Ctx->SelfArg, Ctx->Prev);
+ assert(SelfVar && "We have no variable for 'this'!");
+ return SelfVar;
+}
+
+static const ValueDecl *getValueDeclFromSExpr(const til::SExpr *E) {
+ if (auto *V = dyn_cast<til::Variable>(E))
+ return V->clangDecl();
+ if (auto *Ph = dyn_cast<til::Phi>(E))
+ return Ph->clangDecl();
+ if (auto *P = dyn_cast<til::Project>(E))
+ return P->clangDecl();
+ if (auto *L = dyn_cast<til::LiteralPtr>(E))
+ return L->clangDecl();
+ return 0;
+}
+
+static bool hasCppPointerType(const til::SExpr *E) {
+ auto *VD = getValueDeclFromSExpr(E);
+ if (VD && VD->getType()->isPointerType())
+ return true;
+ if (auto *C = dyn_cast<til::Cast>(E))
+ return C->castOpcode() == til::CAST_objToPtr;
+
+ return false;
+}
+
+// Grab the very first declaration of virtual method D
+static const CXXMethodDecl *getFirstVirtualDecl(const CXXMethodDecl *D) {
+ while (true) {
+ D = D->getCanonicalDecl();
+ CXXMethodDecl::method_iterator I = D->begin_overridden_methods(),
+ E = D->end_overridden_methods();
+ if (I == E)
+ return D; // Method does not override anything
+ D = *I; // FIXME: this does not work with multiple inheritance.
+ }
+ return nullptr;
+}
+
+til::SExpr *SExprBuilder::translateMemberExpr(const MemberExpr *ME,
+ CallingContext *Ctx) {
+ til::SExpr *BE = translate(ME->getBase(), Ctx);
+ til::SExpr *E = new (Arena) til::SApply(BE);
+
+ const ValueDecl *D = ME->getMemberDecl();
+ if (auto *VD = dyn_cast<CXXMethodDecl>(D))
+ D = getFirstVirtualDecl(VD);
+
+ til::Project *P = new (Arena) til::Project(E, D);
+ if (hasCppPointerType(BE))
+ P->setArrow(true);
+ return P;
+}
+
+
+til::SExpr *SExprBuilder::translateCallExpr(const CallExpr *CE,
+ CallingContext *Ctx,
+ const Expr *SelfE) {
+ if (CapabilityExprMode) {
+ // Handle LOCK_RETURNED
+ const FunctionDecl *FD = CE->getDirectCallee()->getMostRecentDecl();
+ if (LockReturnedAttr* At = FD->getAttr<LockReturnedAttr>()) {
+ CallingContext LRCallCtx(Ctx);
+ LRCallCtx.AttrDecl = CE->getDirectCallee();
+ LRCallCtx.SelfArg = SelfE;
+ LRCallCtx.NumArgs = CE->getNumArgs();
+ LRCallCtx.FunArgs = CE->getArgs();
+ return const_cast<til::SExpr*>(
+ translateAttrExpr(At->getArg(), &LRCallCtx).sexpr());
+ }
+ }
+
+ til::SExpr *E = translate(CE->getCallee(), Ctx);
+ for (const auto *Arg : CE->arguments()) {
+ til::SExpr *A = translate(Arg, Ctx);
+ E = new (Arena) til::Apply(E, A);
+ }
+ return new (Arena) til::Call(E, CE);
+}
+
+
+til::SExpr *SExprBuilder::translateCXXMemberCallExpr(
+ const CXXMemberCallExpr *ME, CallingContext *Ctx) {
+ if (CapabilityExprMode) {
+ // Ignore calls to get() on smart pointers.
+ if (ME->getMethodDecl()->getNameAsString() == "get" &&
+ ME->getNumArgs() == 0) {
+ auto *E = translate(ME->getImplicitObjectArgument(), Ctx);
+ return new (Arena) til::Cast(til::CAST_objToPtr, E);
+ // return E;
+ }
+ }
+ return translateCallExpr(cast<CallExpr>(ME), Ctx,
+ ME->getImplicitObjectArgument());
+}
+
+
+til::SExpr *SExprBuilder::translateCXXOperatorCallExpr(
+ const CXXOperatorCallExpr *OCE, CallingContext *Ctx) {
+ if (CapabilityExprMode) {
+ // Ignore operator * and operator -> on smart pointers.
+ OverloadedOperatorKind k = OCE->getOperator();
+ if (k == OO_Star || k == OO_Arrow) {
+ auto *E = translate(OCE->getArg(0), Ctx);
+ return new (Arena) til::Cast(til::CAST_objToPtr, E);
+ // return E;
+ }
+ }
+ return translateCallExpr(cast<CallExpr>(OCE), Ctx);
+}
+
+
+til::SExpr *SExprBuilder::translateUnaryOperator(const UnaryOperator *UO,
+ CallingContext *Ctx) {
+ switch (UO->getOpcode()) {
+ case UO_PostInc:
+ case UO_PostDec:
+ case UO_PreInc:
+ case UO_PreDec:
+ return new (Arena) til::Undefined(UO);
+
+ case UO_AddrOf: {
+ if (CapabilityExprMode) {
+ // interpret &Graph::mu_ as an existential.
+ if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr())) {
+ if (DRE->getDecl()->isCXXInstanceMember()) {
+ // This is a pointer-to-member expression, e.g. &MyClass::mu_.
+ // We interpret this syntax specially, as a wildcard.
+ auto *W = new (Arena) til::Wildcard();
+ return new (Arena) til::Project(W, DRE->getDecl());
+ }
+ }
+ }
+ // otherwise, & is a no-op
+ return translate(UO->getSubExpr(), Ctx);
+ }
+
+ // We treat these as no-ops
+ case UO_Deref:
+ case UO_Plus:
+ return translate(UO->getSubExpr(), Ctx);
+
+ case UO_Minus:
+ return new (Arena)
+ til::UnaryOp(til::UOP_Minus, translate(UO->getSubExpr(), Ctx));
+ case UO_Not:
+ return new (Arena)
+ til::UnaryOp(til::UOP_BitNot, translate(UO->getSubExpr(), Ctx));
+ case UO_LNot:
+ return new (Arena)
+ til::UnaryOp(til::UOP_LogicNot, translate(UO->getSubExpr(), Ctx));
+
+ // Currently unsupported
+ case UO_Real:
+ case UO_Imag:
+ case UO_Extension:
+ return new (Arena) til::Undefined(UO);
+ }
+ return new (Arena) til::Undefined(UO);
+}
+
+
+til::SExpr *SExprBuilder::translateBinOp(til::TIL_BinaryOpcode Op,
+ const BinaryOperator *BO,
+ CallingContext *Ctx, bool Reverse) {
+ til::SExpr *E0 = translate(BO->getLHS(), Ctx);
+ til::SExpr *E1 = translate(BO->getRHS(), Ctx);
+ if (Reverse)
+ return new (Arena) til::BinaryOp(Op, E1, E0);
+ else
+ return new (Arena) til::BinaryOp(Op, E0, E1);
+}
+
+
+til::SExpr *SExprBuilder::translateBinAssign(til::TIL_BinaryOpcode Op,
+ const BinaryOperator *BO,
+ CallingContext *Ctx,
+ bool Assign) {
+ const Expr *LHS = BO->getLHS();
+ const Expr *RHS = BO->getRHS();
+ til::SExpr *E0 = translate(LHS, Ctx);
+ til::SExpr *E1 = translate(RHS, Ctx);
+
+ const ValueDecl *VD = nullptr;
+ til::SExpr *CV = nullptr;
+ if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHS)) {
+ VD = DRE->getDecl();
+ CV = lookupVarDecl(VD);
+ }
+
+ if (!Assign) {
+ til::SExpr *Arg = CV ? CV : new (Arena) til::Load(E0);
+ E1 = new (Arena) til::BinaryOp(Op, Arg, E1);
+ E1 = addStatement(E1, nullptr, VD);
+ }
+ if (VD && CV)
+ return updateVarDecl(VD, E1);
+ return new (Arena) til::Store(E0, E1);
+}
+
+
+til::SExpr *SExprBuilder::translateBinaryOperator(const BinaryOperator *BO,
+ CallingContext *Ctx) {
+ switch (BO->getOpcode()) {
+ case BO_PtrMemD:
+ case BO_PtrMemI:
+ return new (Arena) til::Undefined(BO);
+
+ case BO_Mul: return translateBinOp(til::BOP_Mul, BO, Ctx);
+ case BO_Div: return translateBinOp(til::BOP_Div, BO, Ctx);
+ case BO_Rem: return translateBinOp(til::BOP_Rem, BO, Ctx);
+ case BO_Add: return translateBinOp(til::BOP_Add, BO, Ctx);
+ case BO_Sub: return translateBinOp(til::BOP_Sub, BO, Ctx);
+ case BO_Shl: return translateBinOp(til::BOP_Shl, BO, Ctx);
+ case BO_Shr: return translateBinOp(til::BOP_Shr, BO, Ctx);
+ case BO_LT: return translateBinOp(til::BOP_Lt, BO, Ctx);
+ case BO_GT: return translateBinOp(til::BOP_Lt, BO, Ctx, true);
+ case BO_LE: return translateBinOp(til::BOP_Leq, BO, Ctx);
+ case BO_GE: return translateBinOp(til::BOP_Leq, BO, Ctx, true);
+ case BO_EQ: return translateBinOp(til::BOP_Eq, BO, Ctx);
+ case BO_NE: return translateBinOp(til::BOP_Neq, BO, Ctx);
+ case BO_And: return translateBinOp(til::BOP_BitAnd, BO, Ctx);
+ case BO_Xor: return translateBinOp(til::BOP_BitXor, BO, Ctx);
+ case BO_Or: return translateBinOp(til::BOP_BitOr, BO, Ctx);
+ case BO_LAnd: return translateBinOp(til::BOP_LogicAnd, BO, Ctx);
+ case BO_LOr: return translateBinOp(til::BOP_LogicOr, BO, Ctx);
+
+ case BO_Assign: return translateBinAssign(til::BOP_Eq, BO, Ctx, true);
+ case BO_MulAssign: return translateBinAssign(til::BOP_Mul, BO, Ctx);
+ case BO_DivAssign: return translateBinAssign(til::BOP_Div, BO, Ctx);
+ case BO_RemAssign: return translateBinAssign(til::BOP_Rem, BO, Ctx);
+ case BO_AddAssign: return translateBinAssign(til::BOP_Add, BO, Ctx);
+ case BO_SubAssign: return translateBinAssign(til::BOP_Sub, BO, Ctx);
+ case BO_ShlAssign: return translateBinAssign(til::BOP_Shl, BO, Ctx);
+ case BO_ShrAssign: return translateBinAssign(til::BOP_Shr, BO, Ctx);
+ case BO_AndAssign: return translateBinAssign(til::BOP_BitAnd, BO, Ctx);
+ case BO_XorAssign: return translateBinAssign(til::BOP_BitXor, BO, Ctx);
+ case BO_OrAssign: return translateBinAssign(til::BOP_BitOr, BO, Ctx);
+
+ case BO_Comma:
+ // The clang CFG should have already processed both sides.
+ return translate(BO->getRHS(), Ctx);
+ }
+ return new (Arena) til::Undefined(BO);
+}
+
+
+til::SExpr *SExprBuilder::translateCastExpr(const CastExpr *CE,
+ CallingContext *Ctx) {
+ clang::CastKind K = CE->getCastKind();
+ switch (K) {
+ case CK_LValueToRValue: {
+ if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) {
+ til::SExpr *E0 = lookupVarDecl(DRE->getDecl());
+ if (E0)
+ return E0;
+ }
+ til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
+ return E0;
+ // FIXME!! -- get Load working properly
+ // return new (Arena) til::Load(E0);
+ }
+ case CK_NoOp:
+ case CK_DerivedToBase:
+ case CK_UncheckedDerivedToBase:
+ case CK_ArrayToPointerDecay:
+ case CK_FunctionToPointerDecay: {
+ til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
+ return E0;
+ }
+ default: {
+ // FIXME: handle different kinds of casts.
+ til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
+ if (CapabilityExprMode)
+ return E0;
+ return new (Arena) til::Cast(til::CAST_none, E0);
+ }
+ }
+}
+
+
+til::SExpr *
+SExprBuilder::translateArraySubscriptExpr(const ArraySubscriptExpr *E,
+ CallingContext *Ctx) {
+ til::SExpr *E0 = translate(E->getBase(), Ctx);
+ til::SExpr *E1 = translate(E->getIdx(), Ctx);
+ return new (Arena) til::ArrayIndex(E0, E1);
+}
+
+
+til::SExpr *
+SExprBuilder::translateAbstractConditionalOperator(
+ const AbstractConditionalOperator *CO, CallingContext *Ctx) {
+ auto *C = translate(CO->getCond(), Ctx);
+ auto *T = translate(CO->getTrueExpr(), Ctx);
+ auto *E = translate(CO->getFalseExpr(), Ctx);
+ return new (Arena) til::IfThenElse(C, T, E);
+}
+
+
+til::SExpr *
+SExprBuilder::translateDeclStmt(const DeclStmt *S, CallingContext *Ctx) {
+ DeclGroupRef DGrp = S->getDeclGroup();
+ for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
+ if (VarDecl *VD = dyn_cast_or_null<VarDecl>(*I)) {
+ Expr *E = VD->getInit();
+ til::SExpr* SE = translate(E, Ctx);
+
+ // Add local variables with trivial type to the variable map
+ QualType T = VD->getType();
+ if (T.isTrivialType(VD->getASTContext())) {
+ return addVarDecl(VD, SE);
+ }
+ else {
+ // TODO: add alloca
+ }
+ }
+ }
+ return nullptr;
+}
+
+
+
+// If (E) is non-trivial, then add it to the current basic block, and
+// update the statement map so that S refers to E. Returns a new variable
+// that refers to E.
+// If E is trivial returns E.
+til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S,
+ const ValueDecl *VD) {
+ if (!E || !CurrentBB || E->block() || til::ThreadSafetyTIL::isTrivial(E))
+ return E;
+ if (VD)
+ E = new (Arena) til::Variable(E, VD);
+ CurrentInstructions.push_back(E);
+ if (S)
+ insertStmt(S, E);
+ return E;
+}
+
+
+// Returns the current value of VD, if known, and nullptr otherwise.
+til::SExpr *SExprBuilder::lookupVarDecl(const ValueDecl *VD) {
+ auto It = LVarIdxMap.find(VD);
+ if (It != LVarIdxMap.end()) {
+ assert(CurrentLVarMap[It->second].first == VD);
+ return CurrentLVarMap[It->second].second;
+ }
+ return nullptr;
+}
+
+
+// if E is a til::Variable, update its clangDecl.
+static void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD) {
+ if (!E)
+ return;
+ if (til::Variable *V = dyn_cast<til::Variable>(E)) {
+ if (!V->clangDecl())
+ V->setClangDecl(VD);
+ }
+}
+
+// Adds a new variable declaration.
+til::SExpr *SExprBuilder::addVarDecl(const ValueDecl *VD, til::SExpr *E) {
+ maybeUpdateVD(E, VD);
+ LVarIdxMap.insert(std::make_pair(VD, CurrentLVarMap.size()));
+ CurrentLVarMap.makeWritable();
+ CurrentLVarMap.push_back(std::make_pair(VD, E));
+ return E;
+}
+
+
+// Updates a current variable declaration. (E.g. by assignment)
+til::SExpr *SExprBuilder::updateVarDecl(const ValueDecl *VD, til::SExpr *E) {
+ maybeUpdateVD(E, VD);
+ auto It = LVarIdxMap.find(VD);
+ if (It == LVarIdxMap.end()) {
+ til::SExpr *Ptr = new (Arena) til::LiteralPtr(VD);
+ til::SExpr *St = new (Arena) til::Store(Ptr, E);
+ return St;
+ }
+ CurrentLVarMap.makeWritable();
+ CurrentLVarMap.elem(It->second).second = E;
+ return E;
+}
+
+
+// Make a Phi node in the current block for the i^th variable in CurrentVarMap.
+// If E != null, sets Phi[CurrentBlockInfo->ArgIndex] = E.
+// If E == null, this is a backedge and will be set later.
+void SExprBuilder::makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E) {
+ unsigned ArgIndex = CurrentBlockInfo->ProcessedPredecessors;
+ assert(ArgIndex > 0 && ArgIndex < NPreds);
+
+ til::SExpr *CurrE = CurrentLVarMap[i].second;
+ if (CurrE->block() == CurrentBB) {
+ // We already have a Phi node in the current block,
+ // so just add the new variable to the Phi node.
+ til::Phi *Ph = dyn_cast<til::Phi>(CurrE);
+ assert(Ph && "Expecting Phi node.");
+ if (E)
+ Ph->values()[ArgIndex] = E;
+ return;
+ }
+
+ // Make a new phi node: phi(..., E)
+ // All phi args up to the current index are set to the current value.
+ til::Phi *Ph = new (Arena) til::Phi(Arena, NPreds);
+ Ph->values().setValues(NPreds, nullptr);
+ for (unsigned PIdx = 0; PIdx < ArgIndex; ++PIdx)
+ Ph->values()[PIdx] = CurrE;
+ if (E)
+ Ph->values()[ArgIndex] = E;
+ Ph->setClangDecl(CurrentLVarMap[i].first);
+ // If E is from a back-edge, or either E or CurrE are incomplete, then
+ // mark this node as incomplete; we may need to remove it later.
+ if (!E || isIncompletePhi(E) || isIncompletePhi(CurrE)) {
+ Ph->setStatus(til::Phi::PH_Incomplete);
+ }
+
+ // Add Phi node to current block, and update CurrentLVarMap[i]
+ CurrentArguments.push_back(Ph);
+ if (Ph->status() == til::Phi::PH_Incomplete)
+ IncompleteArgs.push_back(Ph);
+
+ CurrentLVarMap.makeWritable();
+ CurrentLVarMap.elem(i).second = Ph;
+}
+
+
+// Merge values from Map into the current variable map.
+// This will construct Phi nodes in the current basic block as necessary.
+void SExprBuilder::mergeEntryMap(LVarDefinitionMap Map) {
+ assert(CurrentBlockInfo && "Not processing a block!");
+
+ if (!CurrentLVarMap.valid()) {
+ // Steal Map, using copy-on-write.
+ CurrentLVarMap = std::move(Map);
+ return;
+ }
+ if (CurrentLVarMap.sameAs(Map))
+ return; // Easy merge: maps from different predecessors are unchanged.
+
+ unsigned NPreds = CurrentBB->numPredecessors();
+ unsigned ESz = CurrentLVarMap.size();
+ unsigned MSz = Map.size();
+ unsigned Sz = std::min(ESz, MSz);
+
+ for (unsigned i=0; i<Sz; ++i) {
+ if (CurrentLVarMap[i].first != Map[i].first) {
+ // We've reached the end of variables in common.
+ CurrentLVarMap.makeWritable();
+ CurrentLVarMap.downsize(i);
+ break;
+ }
+ if (CurrentLVarMap[i].second != Map[i].second)
+ makePhiNodeVar(i, NPreds, Map[i].second);
+ }
+ if (ESz > MSz) {
+ CurrentLVarMap.makeWritable();
+ CurrentLVarMap.downsize(Map.size());
+ }
+}
+
+
+// Merge a back edge into the current variable map.
+// This will create phi nodes for all variables in the variable map.
+void SExprBuilder::mergeEntryMapBackEdge() {
+ // We don't have definitions for variables on the backedge, because we
+ // haven't gotten that far in the CFG. Thus, when encountering a back edge,
+ // we conservatively create Phi nodes for all variables. Unnecessary Phi
+ // nodes will be marked as incomplete, and stripped out at the end.
+ //
+ // An Phi node is unnecessary if it only refers to itself and one other
+ // variable, e.g. x = Phi(y, y, x) can be reduced to x = y.
+
+ assert(CurrentBlockInfo && "Not processing a block!");
+
+ if (CurrentBlockInfo->HasBackEdges)
+ return;
+ CurrentBlockInfo->HasBackEdges = true;
+
+ CurrentLVarMap.makeWritable();
+ unsigned Sz = CurrentLVarMap.size();
+ unsigned NPreds = CurrentBB->numPredecessors();
+
+ for (unsigned i=0; i < Sz; ++i) {
+ makePhiNodeVar(i, NPreds, nullptr);
+ }
+}
+
+
+// Update the phi nodes that were initially created for a back edge
+// once the variable definitions have been computed.
+// I.e., merge the current variable map into the phi nodes for Blk.
+void SExprBuilder::mergePhiNodesBackEdge(const CFGBlock *Blk) {
+ til::BasicBlock *BB = lookupBlock(Blk);
+ unsigned ArgIndex = BBInfo[Blk->getBlockID()].ProcessedPredecessors;
+ assert(ArgIndex > 0 && ArgIndex < BB->numPredecessors());
+
+ for (til::SExpr *PE : BB->arguments()) {
+ til::Phi *Ph = dyn_cast_or_null<til::Phi>(PE);
+ assert(Ph && "Expecting Phi Node.");
+ assert(Ph->values()[ArgIndex] == nullptr && "Wrong index for back edge.");
+
+ til::SExpr *E = lookupVarDecl(Ph->clangDecl());
+ assert(E && "Couldn't find local variable for Phi node.");
+ Ph->values()[ArgIndex] = E;
+ }
+}
+
+void SExprBuilder::enterCFG(CFG *Cfg, const NamedDecl *D,
+ const CFGBlock *First) {
+ // Perform initial setup operations.
+ unsigned NBlocks = Cfg->getNumBlockIDs();
+ Scfg = new (Arena) til::SCFG(Arena, NBlocks);
+
+ // allocate all basic blocks immediately, to handle forward references.
+ BBInfo.resize(NBlocks);
+ BlockMap.resize(NBlocks, nullptr);
+ // create map from clang blockID to til::BasicBlocks
+ for (auto *B : *Cfg) {
+ auto *BB = new (Arena) til::BasicBlock(Arena);
+ BB->reserveInstructions(B->size());
+ BlockMap[B->getBlockID()] = BB;
+ }
+
+ CurrentBB = lookupBlock(&Cfg->getEntry());
+ auto Parms = isa<ObjCMethodDecl>(D) ? cast<ObjCMethodDecl>(D)->parameters()
+ : cast<FunctionDecl>(D)->parameters();
+ for (auto *Pm : Parms) {
+ QualType T = Pm->getType();
+ if (!T.isTrivialType(Pm->getASTContext()))
+ continue;
+
+ // Add parameters to local variable map.
+ // FIXME: right now we emulate params with loads; that should be fixed.
+ til::SExpr *Lp = new (Arena) til::LiteralPtr(Pm);
+ til::SExpr *Ld = new (Arena) til::Load(Lp);
+ til::SExpr *V = addStatement(Ld, nullptr, Pm);
+ addVarDecl(Pm, V);
+ }
+}
+
+
+void SExprBuilder::enterCFGBlock(const CFGBlock *B) {
+ // Intialize TIL basic block and add it to the CFG.
+ CurrentBB = lookupBlock(B);
+ CurrentBB->reservePredecessors(B->pred_size());
+ Scfg->add(CurrentBB);
+
+ CurrentBlockInfo = &BBInfo[B->getBlockID()];
+
+ // CurrentLVarMap is moved to ExitMap on block exit.
+ // FIXME: the entry block will hold function parameters.
+ // assert(!CurrentLVarMap.valid() && "CurrentLVarMap already initialized.");
+}
+
+
+void SExprBuilder::handlePredecessor(const CFGBlock *Pred) {
+ // Compute CurrentLVarMap on entry from ExitMaps of predecessors
+
+ CurrentBB->addPredecessor(BlockMap[Pred->getBlockID()]);
+ BlockInfo *PredInfo = &BBInfo[Pred->getBlockID()];
+ assert(PredInfo->UnprocessedSuccessors > 0);
+
+ if (--PredInfo->UnprocessedSuccessors == 0)
+ mergeEntryMap(std::move(PredInfo->ExitMap));
+ else
+ mergeEntryMap(PredInfo->ExitMap.clone());
+
+ ++CurrentBlockInfo->ProcessedPredecessors;
+}
+
+
+void SExprBuilder::handlePredecessorBackEdge(const CFGBlock *Pred) {
+ mergeEntryMapBackEdge();
+}
+
+
+void SExprBuilder::enterCFGBlockBody(const CFGBlock *B) {
+ // The merge*() methods have created arguments.
+ // Push those arguments onto the basic block.
+ CurrentBB->arguments().reserve(
+ static_cast<unsigned>(CurrentArguments.size()), Arena);
+ for (auto *A : CurrentArguments)
+ CurrentBB->addArgument(A);
+}
+
+
+void SExprBuilder::handleStatement(const Stmt *S) {
+ til::SExpr *E = translate(S, nullptr);
+ addStatement(E, S);
+}
+
+
+void SExprBuilder::handleDestructorCall(const VarDecl *VD,
+ const CXXDestructorDecl *DD) {
+ til::SExpr *Sf = new (Arena) til::LiteralPtr(VD);
+ til::SExpr *Dr = new (Arena) til::LiteralPtr(DD);
+ til::SExpr *Ap = new (Arena) til::Apply(Dr, Sf);
+ til::SExpr *E = new (Arena) til::Call(Ap);
+ addStatement(E, nullptr);
+}
+
+
+
+void SExprBuilder::exitCFGBlockBody(const CFGBlock *B) {
+ CurrentBB->instructions().reserve(
+ static_cast<unsigned>(CurrentInstructions.size()), Arena);
+ for (auto *V : CurrentInstructions)
+ CurrentBB->addInstruction(V);
+
+ // Create an appropriate terminator
+ unsigned N = B->succ_size();
+ auto It = B->succ_begin();
+ if (N == 1) {
+ til::BasicBlock *BB = *It ? lookupBlock(*It) : nullptr;
+ // TODO: set index
+ unsigned Idx = BB ? BB->findPredecessorIndex(CurrentBB) : 0;
+ auto *Tm = new (Arena) til::Goto(BB, Idx);
+ CurrentBB->setTerminator(Tm);
+ }
+ else if (N == 2) {
+ til::SExpr *C = translate(B->getTerminatorCondition(true), nullptr);
+ til::BasicBlock *BB1 = *It ? lookupBlock(*It) : nullptr;
+ ++It;
+ til::BasicBlock *BB2 = *It ? lookupBlock(*It) : nullptr;
+ // FIXME: make sure these arent' critical edges.
+ auto *Tm = new (Arena) til::Branch(C, BB1, BB2);
+ CurrentBB->setTerminator(Tm);
+ }
+}
+
+
+void SExprBuilder::handleSuccessor(const CFGBlock *Succ) {
+ ++CurrentBlockInfo->UnprocessedSuccessors;
+}
+
+
+void SExprBuilder::handleSuccessorBackEdge(const CFGBlock *Succ) {
+ mergePhiNodesBackEdge(Succ);
+ ++BBInfo[Succ->getBlockID()].ProcessedPredecessors;
+}
+
+
+void SExprBuilder::exitCFGBlock(const CFGBlock *B) {
+ CurrentArguments.clear();
+ CurrentInstructions.clear();
+ CurrentBlockInfo->ExitMap = std::move(CurrentLVarMap);
+ CurrentBB = nullptr;
+ CurrentBlockInfo = nullptr;
+}
+
+
+void SExprBuilder::exitCFG(const CFGBlock *Last) {
+ for (auto *Ph : IncompleteArgs) {
+ if (Ph->status() == til::Phi::PH_Incomplete)
+ simplifyIncompleteArg(Ph);
+ }
+
+ CurrentArguments.clear();
+ CurrentInstructions.clear();
+ IncompleteArgs.clear();
+}
+
+
+/*
+void printSCFG(CFGWalker &Walker) {
+ llvm::BumpPtrAllocator Bpa;
+ til::MemRegionRef Arena(&Bpa);
+ SExprBuilder SxBuilder(Arena);
+ til::SCFG *Scfg = SxBuilder.buildCFG(Walker);
+ TILPrinter::print(Scfg, llvm::errs());
+}
+*/
diff --git a/contrib/llvm/tools/clang/lib/Analysis/ThreadSafetyLogical.cpp b/contrib/llvm/tools/clang/lib/Analysis/ThreadSafetyLogical.cpp
new file mode 100644
index 0000000..facfa11
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/ThreadSafetyLogical.cpp
@@ -0,0 +1,112 @@
+//===- ThreadSafetyLogical.cpp ---------------------------------*- C++ --*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+// This file defines a representation for logical expressions with SExpr leaves
+// that are used as part of fact-checking capability expressions.
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/Analyses/ThreadSafetyLogical.h"
+
+using namespace llvm;
+using namespace clang::threadSafety::lexpr;
+
+// Implication. We implement De Morgan's Laws by maintaining LNeg and RNeg
+// to keep track of whether LHS and RHS are negated.
+static bool implies(const LExpr *LHS, bool LNeg, const LExpr *RHS, bool RNeg) {
+ // In comments below, we write => for implication.
+
+ // Calculates the logical AND implication operator.
+ const auto LeftAndOperator = [=](const BinOp *A) {
+ return implies(A->left(), LNeg, RHS, RNeg) &&
+ implies(A->right(), LNeg, RHS, RNeg);
+ };
+ const auto RightAndOperator = [=](const BinOp *A) {
+ return implies(LHS, LNeg, A->left(), RNeg) &&
+ implies(LHS, LNeg, A->right(), RNeg);
+ };
+
+ // Calculates the logical OR implication operator.
+ const auto LeftOrOperator = [=](const BinOp *A) {
+ return implies(A->left(), LNeg, RHS, RNeg) ||
+ implies(A->right(), LNeg, RHS, RNeg);
+ };
+ const auto RightOrOperator = [=](const BinOp *A) {
+ return implies(LHS, LNeg, A->left(), RNeg) ||
+ implies(LHS, LNeg, A->right(), RNeg);
+ };
+
+ // Recurse on right.
+ switch (RHS->kind()) {
+ case LExpr::And:
+ // When performing right recursion:
+ // C => A & B [if] C => A and C => B
+ // When performing right recursion (negated):
+ // C => !(A & B) [if] C => !A | !B [===] C => !A or C => !B
+ return RNeg ? RightOrOperator(cast<And>(RHS))
+ : RightAndOperator(cast<And>(RHS));
+ case LExpr::Or:
+ // When performing right recursion:
+ // C => (A | B) [if] C => A or C => B
+ // When performing right recursion (negated):
+ // C => !(A | B) [if] C => !A & !B [===] C => !A and C => !B
+ return RNeg ? RightAndOperator(cast<Or>(RHS))
+ : RightOrOperator(cast<Or>(RHS));
+ case LExpr::Not:
+ // Note that C => !A is very different from !(C => A). It would be incorrect
+ // to return !implies(LHS, RHS).
+ return implies(LHS, LNeg, cast<Not>(RHS)->exp(), !RNeg);
+ case LExpr::Terminal:
+ // After reaching the terminal, it's time to recurse on the left.
+ break;
+ }
+
+ // RHS is now a terminal. Recurse on Left.
+ switch (LHS->kind()) {
+ case LExpr::And:
+ // When performing left recursion:
+ // A & B => C [if] A => C or B => C
+ // When performing left recursion (negated):
+ // !(A & B) => C [if] !A | !B => C [===] !A => C and !B => C
+ return LNeg ? LeftAndOperator(cast<And>(LHS))
+ : LeftOrOperator(cast<And>(LHS));
+ case LExpr::Or:
+ // When performing left recursion:
+ // A | B => C [if] A => C and B => C
+ // When performing left recursion (negated):
+ // !(A | B) => C [if] !A & !B => C [===] !A => C or !B => C
+ return LNeg ? LeftOrOperator(cast<Or>(LHS))
+ : LeftAndOperator(cast<Or>(LHS));
+ case LExpr::Not:
+ // Note that A => !C is very different from !(A => C). It would be incorrect
+ // to return !implies(LHS, RHS).
+ return implies(cast<Not>(LHS)->exp(), !LNeg, RHS, RNeg);
+ case LExpr::Terminal:
+ // After reaching the terminal, it's time to perform identity comparisons.
+ break;
+ }
+
+ // A => A
+ // !A => !A
+ if (LNeg != RNeg)
+ return false;
+
+ // FIXME -- this should compare SExprs for equality, not pointer equality.
+ return cast<Terminal>(LHS)->expr() == cast<Terminal>(RHS)->expr();
+}
+
+namespace clang {
+namespace threadSafety {
+namespace lexpr {
+
+bool implies(const LExpr *LHS, const LExpr *RHS) {
+ // Start out by assuming that LHS and RHS are not negated.
+ return ::implies(LHS, false, RHS, false);
+}
+}
+}
+}
diff --git a/contrib/llvm/tools/clang/lib/Analysis/ThreadSafetyTIL.cpp b/contrib/llvm/tools/clang/lib/Analysis/ThreadSafetyTIL.cpp
new file mode 100644
index 0000000..2923f7e6
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/ThreadSafetyTIL.cpp
@@ -0,0 +1,336 @@
+//===- ThreadSafetyTIL.cpp -------------------------------------*- C++ --*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT in the llvm repository for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
+#include "clang/Analysis/Analyses/ThreadSafetyTraverse.h"
+using namespace clang;
+using namespace threadSafety;
+using namespace til;
+
+StringRef til::getUnaryOpcodeString(TIL_UnaryOpcode Op) {
+ switch (Op) {
+ case UOP_Minus: return "-";
+ case UOP_BitNot: return "~";
+ case UOP_LogicNot: return "!";
+ }
+ return "";
+}
+
+StringRef til::getBinaryOpcodeString(TIL_BinaryOpcode Op) {
+ switch (Op) {
+ case BOP_Mul: return "*";
+ case BOP_Div: return "/";
+ case BOP_Rem: return "%";
+ case BOP_Add: return "+";
+ case BOP_Sub: return "-";
+ case BOP_Shl: return "<<";
+ case BOP_Shr: return ">>";
+ case BOP_BitAnd: return "&";
+ case BOP_BitXor: return "^";
+ case BOP_BitOr: return "|";
+ case BOP_Eq: return "==";
+ case BOP_Neq: return "!=";
+ case BOP_Lt: return "<";
+ case BOP_Leq: return "<=";
+ case BOP_LogicAnd: return "&&";
+ case BOP_LogicOr: return "||";
+ }
+ return "";
+}
+
+
+SExpr* Future::force() {
+ Status = FS_evaluating;
+ Result = compute();
+ Status = FS_done;
+ return Result;
+}
+
+
+unsigned BasicBlock::addPredecessor(BasicBlock *Pred) {
+ unsigned Idx = Predecessors.size();
+ Predecessors.reserveCheck(1, Arena);
+ Predecessors.push_back(Pred);
+ for (SExpr *E : Args) {
+ if (Phi* Ph = dyn_cast<Phi>(E)) {
+ Ph->values().reserveCheck(1, Arena);
+ Ph->values().push_back(nullptr);
+ }
+ }
+ return Idx;
+}
+
+
+void BasicBlock::reservePredecessors(unsigned NumPreds) {
+ Predecessors.reserve(NumPreds, Arena);
+ for (SExpr *E : Args) {
+ if (Phi* Ph = dyn_cast<Phi>(E)) {
+ Ph->values().reserve(NumPreds, Arena);
+ }
+ }
+}
+
+
+// If E is a variable, then trace back through any aliases or redundant
+// Phi nodes to find the canonical definition.
+const SExpr *til::getCanonicalVal(const SExpr *E) {
+ while (true) {
+ if (auto *V = dyn_cast<Variable>(E)) {
+ if (V->kind() == Variable::VK_Let) {
+ E = V->definition();
+ continue;
+ }
+ }
+ if (const Phi *Ph = dyn_cast<Phi>(E)) {
+ if (Ph->status() == Phi::PH_SingleVal) {
+ E = Ph->values()[0];
+ continue;
+ }
+ }
+ break;
+ }
+ return E;
+}
+
+
+// If E is a variable, then trace back through any aliases or redundant
+// Phi nodes to find the canonical definition.
+// The non-const version will simplify incomplete Phi nodes.
+SExpr *til::simplifyToCanonicalVal(SExpr *E) {
+ while (true) {
+ if (auto *V = dyn_cast<Variable>(E)) {
+ if (V->kind() != Variable::VK_Let)
+ return V;
+ // Eliminate redundant variables, e.g. x = y, or x = 5,
+ // but keep anything more complicated.
+ if (til::ThreadSafetyTIL::isTrivial(V->definition())) {
+ E = V->definition();
+ continue;
+ }
+ return V;
+ }
+ if (auto *Ph = dyn_cast<Phi>(E)) {
+ if (Ph->status() == Phi::PH_Incomplete)
+ simplifyIncompleteArg(Ph);
+ // Eliminate redundant Phi nodes.
+ if (Ph->status() == Phi::PH_SingleVal) {
+ E = Ph->values()[0];
+ continue;
+ }
+ }
+ return E;
+ }
+}
+
+
+// Trace the arguments of an incomplete Phi node to see if they have the same
+// canonical definition. If so, mark the Phi node as redundant.
+// getCanonicalVal() will recursively call simplifyIncompletePhi().
+void til::simplifyIncompleteArg(til::Phi *Ph) {
+ assert(Ph && Ph->status() == Phi::PH_Incomplete);
+
+ // eliminate infinite recursion -- assume that this node is not redundant.
+ Ph->setStatus(Phi::PH_MultiVal);
+
+ SExpr *E0 = simplifyToCanonicalVal(Ph->values()[0]);
+ for (unsigned i=1, n=Ph->values().size(); i<n; ++i) {
+ SExpr *Ei = simplifyToCanonicalVal(Ph->values()[i]);
+ if (Ei == Ph)
+ continue; // Recursive reference to itself. Don't count.
+ if (Ei != E0) {
+ return; // Status is already set to MultiVal.
+ }
+ }
+ Ph->setStatus(Phi::PH_SingleVal);
+}
+
+
+// Renumbers the arguments and instructions to have unique, sequential IDs.
+int BasicBlock::renumberInstrs(int ID) {
+ for (auto *Arg : Args)
+ Arg->setID(this, ID++);
+ for (auto *Instr : Instrs)
+ Instr->setID(this, ID++);
+ TermInstr->setID(this, ID++);
+ return ID;
+}
+
+// Sorts the CFGs blocks using a reverse post-order depth-first traversal.
+// Each block will be written into the Blocks array in order, and its BlockID
+// will be set to the index in the array. Sorting should start from the entry
+// block, and ID should be the total number of blocks.
+int BasicBlock::topologicalSort(SimpleArray<BasicBlock*>& Blocks, int ID) {
+ if (Visited) return ID;
+ Visited = true;
+ for (auto *Block : successors())
+ ID = Block->topologicalSort(Blocks, ID);
+ // set ID and update block array in place.
+ // We may lose pointers to unreachable blocks.
+ assert(ID > 0);
+ BlockID = --ID;
+ Blocks[BlockID] = this;
+ return ID;
+}
+
+// Performs a reverse topological traversal, starting from the exit block and
+// following back-edges. The dominator is serialized before any predecessors,
+// which guarantees that all blocks are serialized after their dominator and
+// before their post-dominator (because it's a reverse topological traversal).
+// ID should be initially set to 0.
+//
+// This sort assumes that (1) dominators have been computed, (2) there are no
+// critical edges, and (3) the entry block is reachable from the exit block
+// and no blocks are accessable via traversal of back-edges from the exit that
+// weren't accessable via forward edges from the entry.
+int BasicBlock::topologicalFinalSort(SimpleArray<BasicBlock*>& Blocks, int ID) {
+ // Visited is assumed to have been set by the topologicalSort. This pass
+ // assumes !Visited means that we've visited this node before.
+ if (!Visited) return ID;
+ Visited = false;
+ if (DominatorNode.Parent)
+ ID = DominatorNode.Parent->topologicalFinalSort(Blocks, ID);
+ for (auto *Pred : Predecessors)
+ ID = Pred->topologicalFinalSort(Blocks, ID);
+ assert(static_cast<size_t>(ID) < Blocks.size());
+ BlockID = ID++;
+ Blocks[BlockID] = this;
+ return ID;
+}
+
+// Computes the immediate dominator of the current block. Assumes that all of
+// its predecessors have already computed their dominators. This is achieved
+// by visiting the nodes in topological order.
+void BasicBlock::computeDominator() {
+ BasicBlock *Candidate = nullptr;
+ // Walk backwards from each predecessor to find the common dominator node.
+ for (auto *Pred : Predecessors) {
+ // Skip back-edges
+ if (Pred->BlockID >= BlockID) continue;
+ // If we don't yet have a candidate for dominator yet, take this one.
+ if (Candidate == nullptr) {
+ Candidate = Pred;
+ continue;
+ }
+ // Walk the alternate and current candidate back to find a common ancestor.
+ auto *Alternate = Pred;
+ while (Alternate != Candidate) {
+ if (Candidate->BlockID > Alternate->BlockID)
+ Candidate = Candidate->DominatorNode.Parent;
+ else
+ Alternate = Alternate->DominatorNode.Parent;
+ }
+ }
+ DominatorNode.Parent = Candidate;
+ DominatorNode.SizeOfSubTree = 1;
+}
+
+// Computes the immediate post-dominator of the current block. Assumes that all
+// of its successors have already computed their post-dominators. This is
+// achieved visiting the nodes in reverse topological order.
+void BasicBlock::computePostDominator() {
+ BasicBlock *Candidate = nullptr;
+ // Walk back from each predecessor to find the common post-dominator node.
+ for (auto *Succ : successors()) {
+ // Skip back-edges
+ if (Succ->BlockID <= BlockID) continue;
+ // If we don't yet have a candidate for post-dominator yet, take this one.
+ if (Candidate == nullptr) {
+ Candidate = Succ;
+ continue;
+ }
+ // Walk the alternate and current candidate back to find a common ancestor.
+ auto *Alternate = Succ;
+ while (Alternate != Candidate) {
+ if (Candidate->BlockID < Alternate->BlockID)
+ Candidate = Candidate->PostDominatorNode.Parent;
+ else
+ Alternate = Alternate->PostDominatorNode.Parent;
+ }
+ }
+ PostDominatorNode.Parent = Candidate;
+ PostDominatorNode.SizeOfSubTree = 1;
+}
+
+
+// Renumber instructions in all blocks
+void SCFG::renumberInstrs() {
+ int InstrID = 0;
+ for (auto *Block : Blocks)
+ InstrID = Block->renumberInstrs(InstrID);
+}
+
+
+static inline void computeNodeSize(BasicBlock *B,
+ BasicBlock::TopologyNode BasicBlock::*TN) {
+ BasicBlock::TopologyNode *N = &(B->*TN);
+ if (N->Parent) {
+ BasicBlock::TopologyNode *P = &(N->Parent->*TN);
+ // Initially set ID relative to the (as yet uncomputed) parent ID
+ N->NodeID = P->SizeOfSubTree;
+ P->SizeOfSubTree += N->SizeOfSubTree;
+ }
+}
+
+static inline void computeNodeID(BasicBlock *B,
+ BasicBlock::TopologyNode BasicBlock::*TN) {
+ BasicBlock::TopologyNode *N = &(B->*TN);
+ if (N->Parent) {
+ BasicBlock::TopologyNode *P = &(N->Parent->*TN);
+ N->NodeID += P->NodeID; // Fix NodeIDs relative to starting node.
+ }
+}
+
+
+// Normalizes a CFG. Normalization has a few major components:
+// 1) Removing unreachable blocks.
+// 2) Computing dominators and post-dominators
+// 3) Topologically sorting the blocks into the "Blocks" array.
+void SCFG::computeNormalForm() {
+ // Topologically sort the blocks starting from the entry block.
+ int NumUnreachableBlocks = Entry->topologicalSort(Blocks, Blocks.size());
+ if (NumUnreachableBlocks > 0) {
+ // If there were unreachable blocks shift everything down, and delete them.
+ for (size_t I = NumUnreachableBlocks, E = Blocks.size(); I < E; ++I) {
+ size_t NI = I - NumUnreachableBlocks;
+ Blocks[NI] = Blocks[I];
+ Blocks[NI]->BlockID = NI;
+ // FIXME: clean up predecessor pointers to unreachable blocks?
+ }
+ Blocks.drop(NumUnreachableBlocks);
+ }
+
+ // Compute dominators.
+ for (auto *Block : Blocks)
+ Block->computeDominator();
+
+ // Once dominators have been computed, the final sort may be performed.
+ int NumBlocks = Exit->topologicalFinalSort(Blocks, 0);
+ assert(static_cast<size_t>(NumBlocks) == Blocks.size());
+ (void) NumBlocks;
+
+ // Renumber the instructions now that we have a final sort.
+ renumberInstrs();
+
+ // Compute post-dominators and compute the sizes of each node in the
+ // dominator tree.
+ for (auto *Block : Blocks.reverse()) {
+ Block->computePostDominator();
+ computeNodeSize(Block, &BasicBlock::DominatorNode);
+ }
+ // Compute the sizes of each node in the post-dominator tree and assign IDs in
+ // the dominator tree.
+ for (auto *Block : Blocks) {
+ computeNodeID(Block, &BasicBlock::DominatorNode);
+ computeNodeSize(Block, &BasicBlock::PostDominatorNode);
+ }
+ // Assign IDs in the post-dominator tree.
+ for (auto *Block : Blocks.reverse()) {
+ computeNodeID(Block, &BasicBlock::PostDominatorNode);
+ }
+}
diff --git a/contrib/llvm/tools/clang/lib/Analysis/UninitializedValues.cpp b/contrib/llvm/tools/clang/lib/Analysis/UninitializedValues.cpp
new file mode 100644
index 0000000..f2f7919
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/UninitializedValues.cpp
@@ -0,0 +1,925 @@
+//==- UninitializedValues.cpp - Find Uninitialized Values -------*- C++ --*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements uninitialized values analysis for source-level CFGs.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Analysis/Analyses/PostOrderCFGView.h"
+#include "clang/Analysis/Analyses/UninitializedValues.h"
+#include "clang/Analysis/AnalysisContext.h"
+#include "clang/Analysis/CFG.h"
+#include "clang/Analysis/DomainSpecific/ObjCNoReturn.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/PackedVector.h"
+#include "llvm/ADT/SmallBitVector.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/SaveAndRestore.h"
+#include <utility>
+
+using namespace clang;
+
+#define DEBUG_LOGGING 0
+
+static bool isTrackedVar(const VarDecl *vd, const DeclContext *dc) {
+ if (vd->isLocalVarDecl() && !vd->hasGlobalStorage() &&
+ !vd->isExceptionVariable() && !vd->isInitCapture() &&
+ !vd->isImplicit() && vd->getDeclContext() == dc) {
+ QualType ty = vd->getType();
+ return ty->isScalarType() || ty->isVectorType() || ty->isRecordType();
+ }
+ return false;
+}
+
+//------------------------------------------------------------------------====//
+// DeclToIndex: a mapping from Decls we track to value indices.
+//====------------------------------------------------------------------------//
+
+namespace {
+class DeclToIndex {
+ llvm::DenseMap<const VarDecl *, unsigned> map;
+public:
+ DeclToIndex() {}
+
+ /// Compute the actual mapping from declarations to bits.
+ void computeMap(const DeclContext &dc);
+
+ /// Return the number of declarations in the map.
+ unsigned size() const { return map.size(); }
+
+ /// Returns the bit vector index for a given declaration.
+ Optional<unsigned> getValueIndex(const VarDecl *d) const;
+};
+}
+
+void DeclToIndex::computeMap(const DeclContext &dc) {
+ unsigned count = 0;
+ DeclContext::specific_decl_iterator<VarDecl> I(dc.decls_begin()),
+ E(dc.decls_end());
+ for ( ; I != E; ++I) {
+ const VarDecl *vd = *I;
+ if (isTrackedVar(vd, &dc))
+ map[vd] = count++;
+ }
+}
+
+Optional<unsigned> DeclToIndex::getValueIndex(const VarDecl *d) const {
+ llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I = map.find(d);
+ if (I == map.end())
+ return None;
+ return I->second;
+}
+
+//------------------------------------------------------------------------====//
+// CFGBlockValues: dataflow values for CFG blocks.
+//====------------------------------------------------------------------------//
+
+// These values are defined in such a way that a merge can be done using
+// a bitwise OR.
+enum Value { Unknown = 0x0, /* 00 */
+ Initialized = 0x1, /* 01 */
+ Uninitialized = 0x2, /* 10 */
+ MayUninitialized = 0x3 /* 11 */ };
+
+static bool isUninitialized(const Value v) {
+ return v >= Uninitialized;
+}
+static bool isAlwaysUninit(const Value v) {
+ return v == Uninitialized;
+}
+
+namespace {
+
+typedef llvm::PackedVector<Value, 2, llvm::SmallBitVector> ValueVector;
+
+class CFGBlockValues {
+ const CFG &cfg;
+ SmallVector<ValueVector, 8> vals;
+ ValueVector scratch;
+ DeclToIndex declToIndex;
+public:
+ CFGBlockValues(const CFG &cfg);
+
+ unsigned getNumEntries() const { return declToIndex.size(); }
+
+ void computeSetOfDeclarations(const DeclContext &dc);
+ ValueVector &getValueVector(const CFGBlock *block) {
+ return vals[block->getBlockID()];
+ }
+
+ void setAllScratchValues(Value V);
+ void mergeIntoScratch(ValueVector const &source, bool isFirst);
+ bool updateValueVectorWithScratch(const CFGBlock *block);
+
+ bool hasNoDeclarations() const {
+ return declToIndex.size() == 0;
+ }
+
+ void resetScratch();
+
+ ValueVector::reference operator[](const VarDecl *vd);
+
+ Value getValue(const CFGBlock *block, const CFGBlock *dstBlock,
+ const VarDecl *vd) {
+ const Optional<unsigned> &idx = declToIndex.getValueIndex(vd);
+ assert(idx.hasValue());
+ return getValueVector(block)[idx.getValue()];
+ }
+};
+} // end anonymous namespace
+
+CFGBlockValues::CFGBlockValues(const CFG &c) : cfg(c), vals(0) {}
+
+void CFGBlockValues::computeSetOfDeclarations(const DeclContext &dc) {
+ declToIndex.computeMap(dc);
+ unsigned decls = declToIndex.size();
+ scratch.resize(decls);
+ unsigned n = cfg.getNumBlockIDs();
+ if (!n)
+ return;
+ vals.resize(n);
+ for (unsigned i = 0; i < n; ++i)
+ vals[i].resize(decls);
+}
+
+#if DEBUG_LOGGING
+static void printVector(const CFGBlock *block, ValueVector &bv,
+ unsigned num) {
+ llvm::errs() << block->getBlockID() << " :";
+ for (unsigned i = 0; i < bv.size(); ++i) {
+ llvm::errs() << ' ' << bv[i];
+ }
+ llvm::errs() << " : " << num << '\n';
+}
+#endif
+
+void CFGBlockValues::setAllScratchValues(Value V) {
+ for (unsigned I = 0, E = scratch.size(); I != E; ++I)
+ scratch[I] = V;
+}
+
+void CFGBlockValues::mergeIntoScratch(ValueVector const &source,
+ bool isFirst) {
+ if (isFirst)
+ scratch = source;
+ else
+ scratch |= source;
+}
+
+bool CFGBlockValues::updateValueVectorWithScratch(const CFGBlock *block) {
+ ValueVector &dst = getValueVector(block);
+ bool changed = (dst != scratch);
+ if (changed)
+ dst = scratch;
+#if DEBUG_LOGGING
+ printVector(block, scratch, 0);
+#endif
+ return changed;
+}
+
+void CFGBlockValues::resetScratch() {
+ scratch.reset();
+}
+
+ValueVector::reference CFGBlockValues::operator[](const VarDecl *vd) {
+ const Optional<unsigned> &idx = declToIndex.getValueIndex(vd);
+ assert(idx.hasValue());
+ return scratch[idx.getValue()];
+}
+
+//------------------------------------------------------------------------====//
+// Worklist: worklist for dataflow analysis.
+//====------------------------------------------------------------------------//
+
+namespace {
+class DataflowWorklist {
+ PostOrderCFGView::iterator PO_I, PO_E;
+ SmallVector<const CFGBlock *, 20> worklist;
+ llvm::BitVector enqueuedBlocks;
+public:
+ DataflowWorklist(const CFG &cfg, PostOrderCFGView &view)
+ : PO_I(view.begin()), PO_E(view.end()),
+ enqueuedBlocks(cfg.getNumBlockIDs(), true) {
+ // Treat the first block as already analyzed.
+ if (PO_I != PO_E) {
+ assert(*PO_I == &cfg.getEntry());
+ enqueuedBlocks[(*PO_I)->getBlockID()] = false;
+ ++PO_I;
+ }
+ }
+
+ void enqueueSuccessors(const CFGBlock *block);
+ const CFGBlock *dequeue();
+};
+}
+
+void DataflowWorklist::enqueueSuccessors(const clang::CFGBlock *block) {
+ for (CFGBlock::const_succ_iterator I = block->succ_begin(),
+ E = block->succ_end(); I != E; ++I) {
+ const CFGBlock *Successor = *I;
+ if (!Successor || enqueuedBlocks[Successor->getBlockID()])
+ continue;
+ worklist.push_back(Successor);
+ enqueuedBlocks[Successor->getBlockID()] = true;
+ }
+}
+
+const CFGBlock *DataflowWorklist::dequeue() {
+ const CFGBlock *B = nullptr;
+
+ // First dequeue from the worklist. This can represent
+ // updates along backedges that we want propagated as quickly as possible.
+ if (!worklist.empty())
+ B = worklist.pop_back_val();
+
+ // Next dequeue from the initial reverse post order. This is the
+ // theoretical ideal in the presence of no back edges.
+ else if (PO_I != PO_E) {
+ B = *PO_I;
+ ++PO_I;
+ }
+ else {
+ return nullptr;
+ }
+
+ assert(enqueuedBlocks[B->getBlockID()] == true);
+ enqueuedBlocks[B->getBlockID()] = false;
+ return B;
+}
+
+//------------------------------------------------------------------------====//
+// Classification of DeclRefExprs as use or initialization.
+//====------------------------------------------------------------------------//
+
+namespace {
+class FindVarResult {
+ const VarDecl *vd;
+ const DeclRefExpr *dr;
+public:
+ FindVarResult(const VarDecl *vd, const DeclRefExpr *dr) : vd(vd), dr(dr) {}
+
+ const DeclRefExpr *getDeclRefExpr() const { return dr; }
+ const VarDecl *getDecl() const { return vd; }
+};
+
+static const Expr *stripCasts(ASTContext &C, const Expr *Ex) {
+ while (Ex) {
+ Ex = Ex->IgnoreParenNoopCasts(C);
+ if (const CastExpr *CE = dyn_cast<CastExpr>(Ex)) {
+ if (CE->getCastKind() == CK_LValueBitCast) {
+ Ex = CE->getSubExpr();
+ continue;
+ }
+ }
+ break;
+ }
+ return Ex;
+}
+
+/// If E is an expression comprising a reference to a single variable, find that
+/// variable.
+static FindVarResult findVar(const Expr *E, const DeclContext *DC) {
+ if (const DeclRefExpr *DRE =
+ dyn_cast<DeclRefExpr>(stripCasts(DC->getParentASTContext(), E)))
+ if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
+ if (isTrackedVar(VD, DC))
+ return FindVarResult(VD, DRE);
+ return FindVarResult(nullptr, nullptr);
+}
+
+/// \brief Classify each DeclRefExpr as an initialization or a use. Any
+/// DeclRefExpr which isn't explicitly classified will be assumed to have
+/// escaped the analysis and will be treated as an initialization.
+class ClassifyRefs : public StmtVisitor<ClassifyRefs> {
+public:
+ enum Class {
+ Init,
+ Use,
+ SelfInit,
+ Ignore
+ };
+
+private:
+ const DeclContext *DC;
+ llvm::DenseMap<const DeclRefExpr*, Class> Classification;
+
+ bool isTrackedVar(const VarDecl *VD) const {
+ return ::isTrackedVar(VD, DC);
+ }
+
+ void classify(const Expr *E, Class C);
+
+public:
+ ClassifyRefs(AnalysisDeclContext &AC) : DC(cast<DeclContext>(AC.getDecl())) {}
+
+ void VisitDeclStmt(DeclStmt *DS);
+ void VisitUnaryOperator(UnaryOperator *UO);
+ void VisitBinaryOperator(BinaryOperator *BO);
+ void VisitCallExpr(CallExpr *CE);
+ void VisitCastExpr(CastExpr *CE);
+
+ void operator()(Stmt *S) { Visit(S); }
+
+ Class get(const DeclRefExpr *DRE) const {
+ llvm::DenseMap<const DeclRefExpr*, Class>::const_iterator I
+ = Classification.find(DRE);
+ if (I != Classification.end())
+ return I->second;
+
+ const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
+ if (!VD || !isTrackedVar(VD))
+ return Ignore;
+
+ return Init;
+ }
+};
+}
+
+static const DeclRefExpr *getSelfInitExpr(VarDecl *VD) {
+ if (VD->getType()->isRecordType()) return nullptr;
+ if (Expr *Init = VD->getInit()) {
+ const DeclRefExpr *DRE
+ = dyn_cast<DeclRefExpr>(stripCasts(VD->getASTContext(), Init));
+ if (DRE && DRE->getDecl() == VD)
+ return DRE;
+ }
+ return nullptr;
+}
+
+void ClassifyRefs::classify(const Expr *E, Class C) {
+ // The result of a ?: could also be an lvalue.
+ E = E->IgnoreParens();
+ if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
+ classify(CO->getTrueExpr(), C);
+ classify(CO->getFalseExpr(), C);
+ return;
+ }
+
+ if (const BinaryConditionalOperator *BCO =
+ dyn_cast<BinaryConditionalOperator>(E)) {
+ classify(BCO->getFalseExpr(), C);
+ return;
+ }
+
+ if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
+ classify(OVE->getSourceExpr(), C);
+ return;
+ }
+
+ if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
+ if (VarDecl *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
+ if (!VD->isStaticDataMember())
+ classify(ME->getBase(), C);
+ }
+ return;
+ }
+
+ if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
+ switch (BO->getOpcode()) {
+ case BO_PtrMemD:
+ case BO_PtrMemI:
+ classify(BO->getLHS(), C);
+ return;
+ case BO_Comma:
+ classify(BO->getRHS(), C);
+ return;
+ default:
+ return;
+ }
+ }
+
+ FindVarResult Var = findVar(E, DC);
+ if (const DeclRefExpr *DRE = Var.getDeclRefExpr())
+ Classification[DRE] = std::max(Classification[DRE], C);
+}
+
+void ClassifyRefs::VisitDeclStmt(DeclStmt *DS) {
+ for (auto *DI : DS->decls()) {
+ VarDecl *VD = dyn_cast<VarDecl>(DI);
+ if (VD && isTrackedVar(VD))
+ if (const DeclRefExpr *DRE = getSelfInitExpr(VD))
+ Classification[DRE] = SelfInit;
+ }
+}
+
+void ClassifyRefs::VisitBinaryOperator(BinaryOperator *BO) {
+ // Ignore the evaluation of a DeclRefExpr on the LHS of an assignment. If this
+ // is not a compound-assignment, we will treat it as initializing the variable
+ // when TransferFunctions visits it. A compound-assignment does not affect
+ // whether a variable is uninitialized, and there's no point counting it as a
+ // use.
+ if (BO->isCompoundAssignmentOp())
+ classify(BO->getLHS(), Use);
+ else if (BO->getOpcode() == BO_Assign || BO->getOpcode() == BO_Comma)
+ classify(BO->getLHS(), Ignore);
+}
+
+void ClassifyRefs::VisitUnaryOperator(UnaryOperator *UO) {
+ // Increment and decrement are uses despite there being no lvalue-to-rvalue
+ // conversion.
+ if (UO->isIncrementDecrementOp())
+ classify(UO->getSubExpr(), Use);
+}
+
+static bool isPointerToConst(const QualType &QT) {
+ return QT->isAnyPointerType() && QT->getPointeeType().isConstQualified();
+}
+
+void ClassifyRefs::VisitCallExpr(CallExpr *CE) {
+ // Classify arguments to std::move as used.
+ if (CE->getNumArgs() == 1) {
+ if (FunctionDecl *FD = CE->getDirectCallee()) {
+ if (FD->isInStdNamespace() && FD->getIdentifier() &&
+ FD->getIdentifier()->isStr("move")) {
+ // RecordTypes are handled in SemaDeclCXX.cpp.
+ if (!CE->getArg(0)->getType()->isRecordType())
+ classify(CE->getArg(0), Use);
+ return;
+ }
+ }
+ }
+
+ // If a value is passed by const pointer or by const reference to a function,
+ // we should not assume that it is initialized by the call, and we
+ // conservatively do not assume that it is used.
+ for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end();
+ I != E; ++I) {
+ if ((*I)->isGLValue()) {
+ if ((*I)->getType().isConstQualified())
+ classify((*I), Ignore);
+ } else if (isPointerToConst((*I)->getType())) {
+ const Expr *Ex = stripCasts(DC->getParentASTContext(), *I);
+ const UnaryOperator *UO = dyn_cast<UnaryOperator>(Ex);
+ if (UO && UO->getOpcode() == UO_AddrOf)
+ Ex = UO->getSubExpr();
+ classify(Ex, Ignore);
+ }
+ }
+}
+
+void ClassifyRefs::VisitCastExpr(CastExpr *CE) {
+ if (CE->getCastKind() == CK_LValueToRValue)
+ classify(CE->getSubExpr(), Use);
+ else if (CStyleCastExpr *CSE = dyn_cast<CStyleCastExpr>(CE)) {
+ if (CSE->getType()->isVoidType()) {
+ // Squelch any detected load of an uninitialized value if
+ // we cast it to void.
+ // e.g. (void) x;
+ classify(CSE->getSubExpr(), Ignore);
+ }
+ }
+}
+
+//------------------------------------------------------------------------====//
+// Transfer function for uninitialized values analysis.
+//====------------------------------------------------------------------------//
+
+namespace {
+class TransferFunctions : public StmtVisitor<TransferFunctions> {
+ CFGBlockValues &vals;
+ const CFG &cfg;
+ const CFGBlock *block;
+ AnalysisDeclContext &ac;
+ const ClassifyRefs &classification;
+ ObjCNoReturn objCNoRet;
+ UninitVariablesHandler &handler;
+
+public:
+ TransferFunctions(CFGBlockValues &vals, const CFG &cfg,
+ const CFGBlock *block, AnalysisDeclContext &ac,
+ const ClassifyRefs &classification,
+ UninitVariablesHandler &handler)
+ : vals(vals), cfg(cfg), block(block), ac(ac),
+ classification(classification), objCNoRet(ac.getASTContext()),
+ handler(handler) {}
+
+ void reportUse(const Expr *ex, const VarDecl *vd);
+
+ void VisitBinaryOperator(BinaryOperator *bo);
+ void VisitBlockExpr(BlockExpr *be);
+ void VisitCallExpr(CallExpr *ce);
+ void VisitDeclRefExpr(DeclRefExpr *dr);
+ void VisitDeclStmt(DeclStmt *ds);
+ void VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS);
+ void VisitObjCMessageExpr(ObjCMessageExpr *ME);
+
+ bool isTrackedVar(const VarDecl *vd) {
+ return ::isTrackedVar(vd, cast<DeclContext>(ac.getDecl()));
+ }
+
+ FindVarResult findVar(const Expr *ex) {
+ return ::findVar(ex, cast<DeclContext>(ac.getDecl()));
+ }
+
+ UninitUse getUninitUse(const Expr *ex, const VarDecl *vd, Value v) {
+ UninitUse Use(ex, isAlwaysUninit(v));
+
+ assert(isUninitialized(v));
+ if (Use.getKind() == UninitUse::Always)
+ return Use;
+
+ // If an edge which leads unconditionally to this use did not initialize
+ // the variable, we can say something stronger than 'may be uninitialized':
+ // we can say 'either it's used uninitialized or you have dead code'.
+ //
+ // We track the number of successors of a node which have been visited, and
+ // visit a node once we have visited all of its successors. Only edges where
+ // the variable might still be uninitialized are followed. Since a variable
+ // can't transfer from being initialized to being uninitialized, this will
+ // trace out the subgraph which inevitably leads to the use and does not
+ // initialize the variable. We do not want to skip past loops, since their
+ // non-termination might be correlated with the initialization condition.
+ //
+ // For example:
+ //
+ // void f(bool a, bool b) {
+ // block1: int n;
+ // if (a) {
+ // block2: if (b)
+ // block3: n = 1;
+ // block4: } else if (b) {
+ // block5: while (!a) {
+ // block6: do_work(&a);
+ // n = 2;
+ // }
+ // }
+ // block7: if (a)
+ // block8: g();
+ // block9: return n;
+ // }
+ //
+ // Starting from the maybe-uninitialized use in block 9:
+ // * Block 7 is not visited because we have only visited one of its two
+ // successors.
+ // * Block 8 is visited because we've visited its only successor.
+ // From block 8:
+ // * Block 7 is visited because we've now visited both of its successors.
+ // From block 7:
+ // * Blocks 1, 2, 4, 5, and 6 are not visited because we didn't visit all
+ // of their successors (we didn't visit 4, 3, 5, 6, and 5, respectively).
+ // * Block 3 is not visited because it initializes 'n'.
+ // Now the algorithm terminates, having visited blocks 7 and 8, and having
+ // found the frontier is blocks 2, 4, and 5.
+ //
+ // 'n' is definitely uninitialized for two edges into block 7 (from blocks 2
+ // and 4), so we report that any time either of those edges is taken (in
+ // each case when 'b == false'), 'n' is used uninitialized.
+ SmallVector<const CFGBlock*, 32> Queue;
+ SmallVector<unsigned, 32> SuccsVisited(cfg.getNumBlockIDs(), 0);
+ Queue.push_back(block);
+ // Specify that we've already visited all successors of the starting block.
+ // This has the dual purpose of ensuring we never add it to the queue, and
+ // of marking it as not being a candidate element of the frontier.
+ SuccsVisited[block->getBlockID()] = block->succ_size();
+ while (!Queue.empty()) {
+ const CFGBlock *B = Queue.pop_back_val();
+
+ // If the use is always reached from the entry block, make a note of that.
+ if (B == &cfg.getEntry())
+ Use.setUninitAfterCall();
+
+ for (CFGBlock::const_pred_iterator I = B->pred_begin(), E = B->pred_end();
+ I != E; ++I) {
+ const CFGBlock *Pred = *I;
+ if (!Pred)
+ continue;
+
+ Value AtPredExit = vals.getValue(Pred, B, vd);
+ if (AtPredExit == Initialized)
+ // This block initializes the variable.
+ continue;
+ if (AtPredExit == MayUninitialized &&
+ vals.getValue(B, nullptr, vd) == Uninitialized) {
+ // This block declares the variable (uninitialized), and is reachable
+ // from a block that initializes the variable. We can't guarantee to
+ // give an earlier location for the diagnostic (and it appears that
+ // this code is intended to be reachable) so give a diagnostic here
+ // and go no further down this path.
+ Use.setUninitAfterDecl();
+ continue;
+ }
+
+ unsigned &SV = SuccsVisited[Pred->getBlockID()];
+ if (!SV) {
+ // When visiting the first successor of a block, mark all NULL
+ // successors as having been visited.
+ for (CFGBlock::const_succ_iterator SI = Pred->succ_begin(),
+ SE = Pred->succ_end();
+ SI != SE; ++SI)
+ if (!*SI)
+ ++SV;
+ }
+
+ if (++SV == Pred->succ_size())
+ // All paths from this block lead to the use and don't initialize the
+ // variable.
+ Queue.push_back(Pred);
+ }
+ }
+
+ // Scan the frontier, looking for blocks where the variable was
+ // uninitialized.
+ for (CFG::const_iterator BI = cfg.begin(), BE = cfg.end(); BI != BE; ++BI) {
+ const CFGBlock *Block = *BI;
+ unsigned BlockID = Block->getBlockID();
+ const Stmt *Term = Block->getTerminator();
+ if (SuccsVisited[BlockID] && SuccsVisited[BlockID] < Block->succ_size() &&
+ Term) {
+ // This block inevitably leads to the use. If we have an edge from here
+ // to a post-dominator block, and the variable is uninitialized on that
+ // edge, we have found a bug.
+ for (CFGBlock::const_succ_iterator I = Block->succ_begin(),
+ E = Block->succ_end(); I != E; ++I) {
+ const CFGBlock *Succ = *I;
+ if (Succ && SuccsVisited[Succ->getBlockID()] >= Succ->succ_size() &&
+ vals.getValue(Block, Succ, vd) == Uninitialized) {
+ // Switch cases are a special case: report the label to the caller
+ // as the 'terminator', not the switch statement itself. Suppress
+ // situations where no label matched: we can't be sure that's
+ // possible.
+ if (isa<SwitchStmt>(Term)) {
+ const Stmt *Label = Succ->getLabel();
+ if (!Label || !isa<SwitchCase>(Label))
+ // Might not be possible.
+ continue;
+ UninitUse::Branch Branch;
+ Branch.Terminator = Label;
+ Branch.Output = 0; // Ignored.
+ Use.addUninitBranch(Branch);
+ } else {
+ UninitUse::Branch Branch;
+ Branch.Terminator = Term;
+ Branch.Output = I - Block->succ_begin();
+ Use.addUninitBranch(Branch);
+ }
+ }
+ }
+ }
+ }
+
+ return Use;
+ }
+};
+}
+
+void TransferFunctions::reportUse(const Expr *ex, const VarDecl *vd) {
+ Value v = vals[vd];
+ if (isUninitialized(v))
+ handler.handleUseOfUninitVariable(vd, getUninitUse(ex, vd, v));
+}
+
+void TransferFunctions::VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS) {
+ // This represents an initialization of the 'element' value.
+ if (DeclStmt *DS = dyn_cast<DeclStmt>(FS->getElement())) {
+ const VarDecl *VD = cast<VarDecl>(DS->getSingleDecl());
+ if (isTrackedVar(VD))
+ vals[VD] = Initialized;
+ }
+}
+
+void TransferFunctions::VisitBlockExpr(BlockExpr *be) {
+ const BlockDecl *bd = be->getBlockDecl();
+ for (const auto &I : bd->captures()) {
+ const VarDecl *vd = I.getVariable();
+ if (!isTrackedVar(vd))
+ continue;
+ if (I.isByRef()) {
+ vals[vd] = Initialized;
+ continue;
+ }
+ reportUse(be, vd);
+ }
+}
+
+void TransferFunctions::VisitCallExpr(CallExpr *ce) {
+ if (Decl *Callee = ce->getCalleeDecl()) {
+ if (Callee->hasAttr<ReturnsTwiceAttr>()) {
+ // After a call to a function like setjmp or vfork, any variable which is
+ // initialized anywhere within this function may now be initialized. For
+ // now, just assume such a call initializes all variables. FIXME: Only
+ // mark variables as initialized if they have an initializer which is
+ // reachable from here.
+ vals.setAllScratchValues(Initialized);
+ }
+ else if (Callee->hasAttr<AnalyzerNoReturnAttr>()) {
+ // Functions labeled like "analyzer_noreturn" are often used to denote
+ // "panic" functions that in special debug situations can still return,
+ // but for the most part should not be treated as returning. This is a
+ // useful annotation borrowed from the static analyzer that is useful for
+ // suppressing branch-specific false positives when we call one of these
+ // functions but keep pretending the path continues (when in reality the
+ // user doesn't care).
+ vals.setAllScratchValues(Unknown);
+ }
+ }
+}
+
+void TransferFunctions::VisitDeclRefExpr(DeclRefExpr *dr) {
+ switch (classification.get(dr)) {
+ case ClassifyRefs::Ignore:
+ break;
+ case ClassifyRefs::Use:
+ reportUse(dr, cast<VarDecl>(dr->getDecl()));
+ break;
+ case ClassifyRefs::Init:
+ vals[cast<VarDecl>(dr->getDecl())] = Initialized;
+ break;
+ case ClassifyRefs::SelfInit:
+ handler.handleSelfInit(cast<VarDecl>(dr->getDecl()));
+ break;
+ }
+}
+
+void TransferFunctions::VisitBinaryOperator(BinaryOperator *BO) {
+ if (BO->getOpcode() == BO_Assign) {
+ FindVarResult Var = findVar(BO->getLHS());
+ if (const VarDecl *VD = Var.getDecl())
+ vals[VD] = Initialized;
+ }
+}
+
+void TransferFunctions::VisitDeclStmt(DeclStmt *DS) {
+ for (auto *DI : DS->decls()) {
+ VarDecl *VD = dyn_cast<VarDecl>(DI);
+ if (VD && isTrackedVar(VD)) {
+ if (getSelfInitExpr(VD)) {
+ // If the initializer consists solely of a reference to itself, we
+ // explicitly mark the variable as uninitialized. This allows code
+ // like the following:
+ //
+ // int x = x;
+ //
+ // to deliberately leave a variable uninitialized. Different analysis
+ // clients can detect this pattern and adjust their reporting
+ // appropriately, but we need to continue to analyze subsequent uses
+ // of the variable.
+ vals[VD] = Uninitialized;
+ } else if (VD->getInit()) {
+ // Treat the new variable as initialized.
+ vals[VD] = Initialized;
+ } else {
+ // No initializer: the variable is now uninitialized. This matters
+ // for cases like:
+ // while (...) {
+ // int n;
+ // use(n);
+ // n = 0;
+ // }
+ // FIXME: Mark the variable as uninitialized whenever its scope is
+ // left, since its scope could be re-entered by a jump over the
+ // declaration.
+ vals[VD] = Uninitialized;
+ }
+ }
+ }
+}
+
+void TransferFunctions::VisitObjCMessageExpr(ObjCMessageExpr *ME) {
+ // If the Objective-C message expression is an implicit no-return that
+ // is not modeled in the CFG, set the tracked dataflow values to Unknown.
+ if (objCNoRet.isImplicitNoReturn(ME)) {
+ vals.setAllScratchValues(Unknown);
+ }
+}
+
+//------------------------------------------------------------------------====//
+// High-level "driver" logic for uninitialized values analysis.
+//====------------------------------------------------------------------------//
+
+static bool runOnBlock(const CFGBlock *block, const CFG &cfg,
+ AnalysisDeclContext &ac, CFGBlockValues &vals,
+ const ClassifyRefs &classification,
+ llvm::BitVector &wasAnalyzed,
+ UninitVariablesHandler &handler) {
+ wasAnalyzed[block->getBlockID()] = true;
+ vals.resetScratch();
+ // Merge in values of predecessor blocks.
+ bool isFirst = true;
+ for (CFGBlock::const_pred_iterator I = block->pred_begin(),
+ E = block->pred_end(); I != E; ++I) {
+ const CFGBlock *pred = *I;
+ if (!pred)
+ continue;
+ if (wasAnalyzed[pred->getBlockID()]) {
+ vals.mergeIntoScratch(vals.getValueVector(pred), isFirst);
+ isFirst = false;
+ }
+ }
+ // Apply the transfer function.
+ TransferFunctions tf(vals, cfg, block, ac, classification, handler);
+ for (CFGBlock::const_iterator I = block->begin(), E = block->end();
+ I != E; ++I) {
+ if (Optional<CFGStmt> cs = I->getAs<CFGStmt>())
+ tf.Visit(const_cast<Stmt*>(cs->getStmt()));
+ }
+ return vals.updateValueVectorWithScratch(block);
+}
+
+/// PruneBlocksHandler is a special UninitVariablesHandler that is used
+/// to detect when a CFGBlock has any *potential* use of an uninitialized
+/// variable. It is mainly used to prune out work during the final
+/// reporting pass.
+namespace {
+struct PruneBlocksHandler : public UninitVariablesHandler {
+ PruneBlocksHandler(unsigned numBlocks)
+ : hadUse(numBlocks, false), hadAnyUse(false),
+ currentBlock(0) {}
+
+ ~PruneBlocksHandler() override {}
+
+ /// Records if a CFGBlock had a potential use of an uninitialized variable.
+ llvm::BitVector hadUse;
+
+ /// Records if any CFGBlock had a potential use of an uninitialized variable.
+ bool hadAnyUse;
+
+ /// The current block to scribble use information.
+ unsigned currentBlock;
+
+ void handleUseOfUninitVariable(const VarDecl *vd,
+ const UninitUse &use) override {
+ hadUse[currentBlock] = true;
+ hadAnyUse = true;
+ }
+
+ /// Called when the uninitialized variable analysis detects the
+ /// idiom 'int x = x'. All other uses of 'x' within the initializer
+ /// are handled by handleUseOfUninitVariable.
+ void handleSelfInit(const VarDecl *vd) override {
+ hadUse[currentBlock] = true;
+ hadAnyUse = true;
+ }
+};
+}
+
+void clang::runUninitializedVariablesAnalysis(
+ const DeclContext &dc,
+ const CFG &cfg,
+ AnalysisDeclContext &ac,
+ UninitVariablesHandler &handler,
+ UninitVariablesAnalysisStats &stats) {
+ CFGBlockValues vals(cfg);
+ vals.computeSetOfDeclarations(dc);
+ if (vals.hasNoDeclarations())
+ return;
+
+ stats.NumVariablesAnalyzed = vals.getNumEntries();
+
+ // Precompute which expressions are uses and which are initializations.
+ ClassifyRefs classification(ac);
+ cfg.VisitBlockStmts(classification);
+
+ // Mark all variables uninitialized at the entry.
+ const CFGBlock &entry = cfg.getEntry();
+ ValueVector &vec = vals.getValueVector(&entry);
+ const unsigned n = vals.getNumEntries();
+ for (unsigned j = 0; j < n ; ++j) {
+ vec[j] = Uninitialized;
+ }
+
+ // Proceed with the workist.
+ DataflowWorklist worklist(cfg, *ac.getAnalysis<PostOrderCFGView>());
+ llvm::BitVector previouslyVisited(cfg.getNumBlockIDs());
+ worklist.enqueueSuccessors(&cfg.getEntry());
+ llvm::BitVector wasAnalyzed(cfg.getNumBlockIDs(), false);
+ wasAnalyzed[cfg.getEntry().getBlockID()] = true;
+ PruneBlocksHandler PBH(cfg.getNumBlockIDs());
+
+ while (const CFGBlock *block = worklist.dequeue()) {
+ PBH.currentBlock = block->getBlockID();
+
+ // Did the block change?
+ bool changed = runOnBlock(block, cfg, ac, vals,
+ classification, wasAnalyzed, PBH);
+ ++stats.NumBlockVisits;
+ if (changed || !previouslyVisited[block->getBlockID()])
+ worklist.enqueueSuccessors(block);
+ previouslyVisited[block->getBlockID()] = true;
+ }
+
+ if (!PBH.hadAnyUse)
+ return;
+
+ // Run through the blocks one more time, and report uninitialized variables.
+ for (CFG::const_iterator BI = cfg.begin(), BE = cfg.end(); BI != BE; ++BI) {
+ const CFGBlock *block = *BI;
+ if (PBH.hadUse[block->getBlockID()]) {
+ runOnBlock(block, cfg, ac, vals, classification, wasAnalyzed, handler);
+ ++stats.NumBlockVisits;
+ }
+ }
+}
+
+UninitVariablesHandler::~UninitVariablesHandler() {}
diff --git a/contrib/llvm/tools/clang/lib/Basic/Attributes.cpp b/contrib/llvm/tools/clang/lib/Basic/Attributes.cpp
new file mode 100644
index 0000000..da9ac79
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Basic/Attributes.cpp
@@ -0,0 +1,17 @@
+#include "clang/Basic/Attributes.h"
+#include "clang/Basic/IdentifierTable.h"
+#include "llvm/ADT/StringSwitch.h"
+using namespace clang;
+
+int clang::hasAttribute(AttrSyntax Syntax, const IdentifierInfo *Scope,
+ const IdentifierInfo *Attr, const llvm::Triple &T,
+ const LangOptions &LangOpts) {
+ StringRef Name = Attr->getName();
+ // Normalize the attribute name, __foo__ becomes foo.
+ if (Name.size() >= 4 && Name.startswith("__") && Name.endswith("__"))
+ Name = Name.substr(2, Name.size() - 4);
+
+#include "clang/Basic/AttrHasAttributeImpl.inc"
+
+ return 0;
+}
diff --git a/contrib/llvm/tools/clang/lib/Basic/Builtins.cpp b/contrib/llvm/tools/clang/lib/Basic/Builtins.cpp
new file mode 100644
index 0000000..8efcac6
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Basic/Builtins.cpp
@@ -0,0 +1,131 @@
+//===--- Builtins.cpp - Builtin function implementation -------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements various things for builtin functions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Basic/Builtins.h"
+#include "clang/Basic/IdentifierTable.h"
+#include "clang/Basic/LangOptions.h"
+#include "clang/Basic/TargetInfo.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringRef.h"
+using namespace clang;
+
+static const Builtin::Info BuiltinInfo[] = {
+ { "not a builtin function", nullptr, nullptr, nullptr, ALL_LANGUAGES},
+#define BUILTIN(ID, TYPE, ATTRS) { #ID, TYPE, ATTRS, 0, ALL_LANGUAGES },
+#define LANGBUILTIN(ID, TYPE, ATTRS, BUILTIN_LANG) { #ID, TYPE, ATTRS, 0, BUILTIN_LANG },
+#define LIBBUILTIN(ID, TYPE, ATTRS, HEADER, BUILTIN_LANG) { #ID, TYPE, ATTRS, HEADER,\
+ BUILTIN_LANG },
+#include "clang/Basic/Builtins.def"
+};
+
+const Builtin::Info &Builtin::Context::GetRecord(unsigned ID) const {
+ if (ID < Builtin::FirstTSBuiltin)
+ return BuiltinInfo[ID];
+ assert(ID - Builtin::FirstTSBuiltin < NumTSRecords && "Invalid builtin ID!");
+ return TSRecords[ID - Builtin::FirstTSBuiltin];
+}
+
+Builtin::Context::Context() {
+ // Get the target specific builtins from the target.
+ TSRecords = nullptr;
+ NumTSRecords = 0;
+}
+
+void Builtin::Context::InitializeTarget(const TargetInfo &Target) {
+ assert(NumTSRecords == 0 && "Already initialized target?");
+ Target.getTargetBuiltins(TSRecords, NumTSRecords);
+}
+
+bool Builtin::Context::BuiltinIsSupported(const Builtin::Info &BuiltinInfo,
+ const LangOptions &LangOpts) {
+ bool BuiltinsUnsupported = LangOpts.NoBuiltin &&
+ strchr(BuiltinInfo.Attributes, 'f');
+ bool MathBuiltinsUnsupported =
+ LangOpts.NoMathBuiltin && BuiltinInfo.HeaderName &&
+ llvm::StringRef(BuiltinInfo.HeaderName).equals("math.h");
+ bool GnuModeUnsupported = !LangOpts.GNUMode &&
+ (BuiltinInfo.builtin_lang & GNU_LANG);
+ bool MSModeUnsupported = !LangOpts.MicrosoftExt &&
+ (BuiltinInfo.builtin_lang & MS_LANG);
+ bool ObjCUnsupported = !LangOpts.ObjC1 &&
+ BuiltinInfo.builtin_lang == OBJC_LANG;
+ return !BuiltinsUnsupported && !MathBuiltinsUnsupported &&
+ !GnuModeUnsupported && !MSModeUnsupported && !ObjCUnsupported;
+}
+
+/// InitializeBuiltins - Mark the identifiers for all the builtins with their
+/// appropriate builtin ID # and mark any non-portable builtin identifiers as
+/// such.
+void Builtin::Context::InitializeBuiltins(IdentifierTable &Table,
+ const LangOptions& LangOpts) {
+ // Step #1: mark all target-independent builtins with their ID's.
+ for (unsigned i = Builtin::NotBuiltin+1; i != Builtin::FirstTSBuiltin; ++i)
+ if (BuiltinIsSupported(BuiltinInfo[i], LangOpts)) {
+ Table.get(BuiltinInfo[i].Name).setBuiltinID(i);
+ }
+
+ // Step #2: Register target-specific builtins.
+ for (unsigned i = 0, e = NumTSRecords; i != e; ++i)
+ if (BuiltinIsSupported(TSRecords[i], LangOpts))
+ Table.get(TSRecords[i].Name).setBuiltinID(i+Builtin::FirstTSBuiltin);
+}
+
+void
+Builtin::Context::GetBuiltinNames(SmallVectorImpl<const char *> &Names) {
+ // Final all target-independent names
+ for (unsigned i = Builtin::NotBuiltin+1; i != Builtin::FirstTSBuiltin; ++i)
+ if (!strchr(BuiltinInfo[i].Attributes, 'f'))
+ Names.push_back(BuiltinInfo[i].Name);
+
+ // Find target-specific names.
+ for (unsigned i = 0, e = NumTSRecords; i != e; ++i)
+ if (!strchr(TSRecords[i].Attributes, 'f'))
+ Names.push_back(TSRecords[i].Name);
+}
+
+void Builtin::Context::ForgetBuiltin(unsigned ID, IdentifierTable &Table) {
+ Table.get(GetRecord(ID).Name).setBuiltinID(0);
+}
+
+bool Builtin::Context::isLike(unsigned ID, unsigned &FormatIdx,
+ bool &HasVAListArg, const char *Fmt) const {
+ assert(Fmt && "Not passed a format string");
+ assert(::strlen(Fmt) == 2 &&
+ "Format string needs to be two characters long");
+ assert(::toupper(Fmt[0]) == Fmt[1] &&
+ "Format string is not in the form \"xX\"");
+
+ const char *Like = ::strpbrk(GetRecord(ID).Attributes, Fmt);
+ if (!Like)
+ return false;
+
+ HasVAListArg = (*Like == Fmt[1]);
+
+ ++Like;
+ assert(*Like == ':' && "Format specifier must be followed by a ':'");
+ ++Like;
+
+ assert(::strchr(Like, ':') && "Format specifier must end with a ':'");
+ FormatIdx = ::strtol(Like, nullptr, 10);
+ return true;
+}
+
+bool Builtin::Context::isPrintfLike(unsigned ID, unsigned &FormatIdx,
+ bool &HasVAListArg) {
+ return isLike(ID, FormatIdx, HasVAListArg, "pP");
+}
+
+bool Builtin::Context::isScanfLike(unsigned ID, unsigned &FormatIdx,
+ bool &HasVAListArg) {
+ return isLike(ID, FormatIdx, HasVAListArg, "sS");
+}
diff --git a/contrib/llvm/tools/clang/lib/Basic/CharInfo.cpp b/contrib/llvm/tools/clang/lib/Basic/CharInfo.cpp
new file mode 100644
index 0000000..32b3277
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Basic/CharInfo.cpp
@@ -0,0 +1,81 @@
+//===--- CharInfo.cpp - Static Data for Classifying ASCII Characters ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Basic/CharInfo.h"
+
+using namespace clang::charinfo;
+
+// Statically initialize CharInfo table based on ASCII character set
+// Reference: FreeBSD 7.2 /usr/share/misc/ascii
+const uint16_t clang::charinfo::InfoTable[256] = {
+ // 0 NUL 1 SOH 2 STX 3 ETX
+ // 4 EOT 5 ENQ 6 ACK 7 BEL
+ 0 , 0 , 0 , 0 ,
+ 0 , 0 , 0 , 0 ,
+ // 8 BS 9 HT 10 NL 11 VT
+ //12 NP 13 CR 14 SO 15 SI
+ 0 , CHAR_HORZ_WS, CHAR_VERT_WS, CHAR_HORZ_WS,
+ CHAR_HORZ_WS, CHAR_VERT_WS, 0 , 0 ,
+ //16 DLE 17 DC1 18 DC2 19 DC3
+ //20 DC4 21 NAK 22 SYN 23 ETB
+ 0 , 0 , 0 , 0 ,
+ 0 , 0 , 0 , 0 ,
+ //24 CAN 25 EM 26 SUB 27 ESC
+ //28 FS 29 GS 30 RS 31 US
+ 0 , 0 , 0 , 0 ,
+ 0 , 0 , 0 , 0 ,
+ //32 SP 33 ! 34 " 35 #
+ //36 $ 37 % 38 & 39 '
+ CHAR_SPACE , CHAR_RAWDEL , CHAR_RAWDEL , CHAR_RAWDEL ,
+ CHAR_PUNCT , CHAR_RAWDEL , CHAR_RAWDEL , CHAR_RAWDEL ,
+ //40 ( 41 ) 42 * 43 +
+ //44 , 45 - 46 . 47 /
+ CHAR_PUNCT , CHAR_PUNCT , CHAR_RAWDEL , CHAR_RAWDEL ,
+ CHAR_RAWDEL , CHAR_RAWDEL , CHAR_PERIOD , CHAR_RAWDEL ,
+ //48 0 49 1 50 2 51 3
+ //52 4 53 5 54 6 55 7
+ CHAR_DIGIT , CHAR_DIGIT , CHAR_DIGIT , CHAR_DIGIT ,
+ CHAR_DIGIT , CHAR_DIGIT , CHAR_DIGIT , CHAR_DIGIT ,
+ //56 8 57 9 58 : 59 ;
+ //60 < 61 = 62 > 63 ?
+ CHAR_DIGIT , CHAR_DIGIT , CHAR_RAWDEL , CHAR_RAWDEL ,
+ CHAR_RAWDEL , CHAR_RAWDEL , CHAR_RAWDEL , CHAR_RAWDEL ,
+ //64 @ 65 A 66 B 67 C
+ //68 D 69 E 70 F 71 G
+ CHAR_PUNCT , CHAR_XUPPER , CHAR_XUPPER , CHAR_XUPPER ,
+ CHAR_XUPPER , CHAR_XUPPER , CHAR_XUPPER , CHAR_UPPER ,
+ //72 H 73 I 74 J 75 K
+ //76 L 77 M 78 N 79 O
+ CHAR_UPPER , CHAR_UPPER , CHAR_UPPER , CHAR_UPPER ,
+ CHAR_UPPER , CHAR_UPPER , CHAR_UPPER , CHAR_UPPER ,
+ //80 P 81 Q 82 R 83 S
+ //84 T 85 U 86 V 87 W
+ CHAR_UPPER , CHAR_UPPER , CHAR_UPPER , CHAR_UPPER ,
+ CHAR_UPPER , CHAR_UPPER , CHAR_UPPER , CHAR_UPPER ,
+ //88 X 89 Y 90 Z 91 [
+ //92 \ 93 ] 94 ^ 95 _
+ CHAR_UPPER , CHAR_UPPER , CHAR_UPPER , CHAR_RAWDEL ,
+ CHAR_PUNCT , CHAR_RAWDEL , CHAR_RAWDEL , CHAR_UNDER ,
+ //96 ` 97 a 98 b 99 c
+ //100 d 101 e 102 f 103 g
+ CHAR_PUNCT , CHAR_XLOWER , CHAR_XLOWER , CHAR_XLOWER ,
+ CHAR_XLOWER , CHAR_XLOWER , CHAR_XLOWER , CHAR_LOWER ,
+ //104 h 105 i 106 j 107 k
+ //108 l 109 m 110 n 111 o
+ CHAR_LOWER , CHAR_LOWER , CHAR_LOWER , CHAR_LOWER ,
+ CHAR_LOWER , CHAR_LOWER , CHAR_LOWER , CHAR_LOWER ,
+ //112 p 113 q 114 r 115 s
+ //116 t 117 u 118 v 119 w
+ CHAR_LOWER , CHAR_LOWER , CHAR_LOWER , CHAR_LOWER ,
+ CHAR_LOWER , CHAR_LOWER , CHAR_LOWER , CHAR_LOWER ,
+ //120 x 121 y 122 z 123 {
+ //124 | 125 } 126 ~ 127 DEL
+ CHAR_LOWER , CHAR_LOWER , CHAR_LOWER , CHAR_RAWDEL ,
+ CHAR_RAWDEL , CHAR_RAWDEL , CHAR_RAWDEL , 0
+};
diff --git a/contrib/llvm/tools/clang/lib/Basic/Diagnostic.cpp b/contrib/llvm/tools/clang/lib/Basic/Diagnostic.cpp
new file mode 100644
index 0000000..631b978
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Basic/Diagnostic.cpp
@@ -0,0 +1,1004 @@
+//===--- Diagnostic.cpp - C Language Family Diagnostic Handling -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Diagnostic-related interfaces.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Basic/CharInfo.h"
+#include "clang/Basic/Diagnostic.h"
+#include "clang/Basic/DiagnosticOptions.h"
+#include "clang/Basic/IdentifierTable.h"
+#include "clang/Basic/PartialDiagnostic.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/CrashRecoveryContext.h"
+#include "llvm/Support/Locale.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+
+static void DummyArgToStringFn(DiagnosticsEngine::ArgumentKind AK, intptr_t QT,
+ StringRef Modifier, StringRef Argument,
+ ArrayRef<DiagnosticsEngine::ArgumentValue> PrevArgs,
+ SmallVectorImpl<char> &Output,
+ void *Cookie,
+ ArrayRef<intptr_t> QualTypeVals) {
+ StringRef Str = "<can't format argument>";
+ Output.append(Str.begin(), Str.end());
+}
+
+DiagnosticsEngine::DiagnosticsEngine(
+ const IntrusiveRefCntPtr<DiagnosticIDs> &diags, DiagnosticOptions *DiagOpts,
+ DiagnosticConsumer *client, bool ShouldOwnClient)
+ : Diags(diags), DiagOpts(DiagOpts), Client(nullptr), SourceMgr(nullptr) {
+ setClient(client, ShouldOwnClient);
+ ArgToStringFn = DummyArgToStringFn;
+ ArgToStringCookie = nullptr;
+
+ AllExtensionsSilenced = 0;
+ IgnoreAllWarnings = false;
+ WarningsAsErrors = false;
+ EnableAllWarnings = false;
+ ErrorsAsFatal = false;
+ SuppressSystemWarnings = false;
+ SuppressAllDiagnostics = false;
+ ElideType = true;
+ PrintTemplateTree = false;
+ ShowColors = false;
+ ShowOverloads = Ovl_All;
+ ExtBehavior = diag::Severity::Ignored;
+
+ ErrorLimit = 0;
+ TemplateBacktraceLimit = 0;
+ ConstexprBacktraceLimit = 0;
+
+ Reset();
+}
+
+DiagnosticsEngine::~DiagnosticsEngine() {
+ // If we own the diagnostic client, destroy it first so that it can access the
+ // engine from its destructor.
+ setClient(nullptr);
+}
+
+void DiagnosticsEngine::setClient(DiagnosticConsumer *client,
+ bool ShouldOwnClient) {
+ Owner.reset(ShouldOwnClient ? client : nullptr);
+ Client = client;
+}
+
+void DiagnosticsEngine::pushMappings(SourceLocation Loc) {
+ DiagStateOnPushStack.push_back(GetCurDiagState());
+}
+
+bool DiagnosticsEngine::popMappings(SourceLocation Loc) {
+ if (DiagStateOnPushStack.empty())
+ return false;
+
+ if (DiagStateOnPushStack.back() != GetCurDiagState()) {
+ // State changed at some point between push/pop.
+ PushDiagStatePoint(DiagStateOnPushStack.back(), Loc);
+ }
+ DiagStateOnPushStack.pop_back();
+ return true;
+}
+
+void DiagnosticsEngine::Reset() {
+ ErrorOccurred = false;
+ UncompilableErrorOccurred = false;
+ FatalErrorOccurred = false;
+ UnrecoverableErrorOccurred = false;
+
+ NumWarnings = 0;
+ NumErrors = 0;
+ TrapNumErrorsOccurred = 0;
+ TrapNumUnrecoverableErrorsOccurred = 0;
+
+ CurDiagID = ~0U;
+ LastDiagLevel = DiagnosticIDs::Ignored;
+ DelayedDiagID = 0;
+
+ // Clear state related to #pragma diagnostic.
+ DiagStates.clear();
+ DiagStatePoints.clear();
+ DiagStateOnPushStack.clear();
+
+ // Create a DiagState and DiagStatePoint representing diagnostic changes
+ // through command-line.
+ DiagStates.push_back(DiagState());
+ DiagStatePoints.push_back(DiagStatePoint(&DiagStates.back(), FullSourceLoc()));
+}
+
+void DiagnosticsEngine::SetDelayedDiagnostic(unsigned DiagID, StringRef Arg1,
+ StringRef Arg2) {
+ if (DelayedDiagID)
+ return;
+
+ DelayedDiagID = DiagID;
+ DelayedDiagArg1 = Arg1.str();
+ DelayedDiagArg2 = Arg2.str();
+}
+
+void DiagnosticsEngine::ReportDelayed() {
+ Report(DelayedDiagID) << DelayedDiagArg1 << DelayedDiagArg2;
+ DelayedDiagID = 0;
+ DelayedDiagArg1.clear();
+ DelayedDiagArg2.clear();
+}
+
+DiagnosticsEngine::DiagStatePointsTy::iterator
+DiagnosticsEngine::GetDiagStatePointForLoc(SourceLocation L) const {
+ assert(!DiagStatePoints.empty());
+ assert(DiagStatePoints.front().Loc.isInvalid() &&
+ "Should have created a DiagStatePoint for command-line");
+
+ if (!SourceMgr)
+ return DiagStatePoints.end() - 1;
+
+ FullSourceLoc Loc(L, *SourceMgr);
+ if (Loc.isInvalid())
+ return DiagStatePoints.end() - 1;
+
+ DiagStatePointsTy::iterator Pos = DiagStatePoints.end();
+ FullSourceLoc LastStateChangePos = DiagStatePoints.back().Loc;
+ if (LastStateChangePos.isValid() &&
+ Loc.isBeforeInTranslationUnitThan(LastStateChangePos))
+ Pos = std::upper_bound(DiagStatePoints.begin(), DiagStatePoints.end(),
+ DiagStatePoint(nullptr, Loc));
+ --Pos;
+ return Pos;
+}
+
+void DiagnosticsEngine::setSeverity(diag::kind Diag, diag::Severity Map,
+ SourceLocation L) {
+ assert(Diag < diag::DIAG_UPPER_LIMIT &&
+ "Can only map builtin diagnostics");
+ assert((Diags->isBuiltinWarningOrExtension(Diag) ||
+ (Map == diag::Severity::Fatal || Map == diag::Severity::Error)) &&
+ "Cannot map errors into warnings!");
+ assert(!DiagStatePoints.empty());
+ assert((L.isInvalid() || SourceMgr) && "No SourceMgr for valid location");
+
+ FullSourceLoc Loc = SourceMgr? FullSourceLoc(L, *SourceMgr) : FullSourceLoc();
+ FullSourceLoc LastStateChangePos = DiagStatePoints.back().Loc;
+ // Don't allow a mapping to a warning override an error/fatal mapping.
+ if (Map == diag::Severity::Warning) {
+ DiagnosticMapping &Info = GetCurDiagState()->getOrAddMapping(Diag);
+ if (Info.getSeverity() == diag::Severity::Error ||
+ Info.getSeverity() == diag::Severity::Fatal)
+ Map = Info.getSeverity();
+ }
+ DiagnosticMapping Mapping = makeUserMapping(Map, L);
+
+ // Common case; setting all the diagnostics of a group in one place.
+ if (Loc.isInvalid() || Loc == LastStateChangePos) {
+ GetCurDiagState()->setMapping(Diag, Mapping);
+ return;
+ }
+
+ // Another common case; modifying diagnostic state in a source location
+ // after the previous one.
+ if ((Loc.isValid() && LastStateChangePos.isInvalid()) ||
+ LastStateChangePos.isBeforeInTranslationUnitThan(Loc)) {
+ // A diagnostic pragma occurred, create a new DiagState initialized with
+ // the current one and a new DiagStatePoint to record at which location
+ // the new state became active.
+ DiagStates.push_back(*GetCurDiagState());
+ PushDiagStatePoint(&DiagStates.back(), Loc);
+ GetCurDiagState()->setMapping(Diag, Mapping);
+ return;
+ }
+
+ // We allow setting the diagnostic state in random source order for
+ // completeness but it should not be actually happening in normal practice.
+
+ DiagStatePointsTy::iterator Pos = GetDiagStatePointForLoc(Loc);
+ assert(Pos != DiagStatePoints.end());
+
+ // Update all diagnostic states that are active after the given location.
+ for (DiagStatePointsTy::iterator
+ I = Pos+1, E = DiagStatePoints.end(); I != E; ++I) {
+ GetCurDiagState()->setMapping(Diag, Mapping);
+ }
+
+ // If the location corresponds to an existing point, just update its state.
+ if (Pos->Loc == Loc) {
+ GetCurDiagState()->setMapping(Diag, Mapping);
+ return;
+ }
+
+ // Create a new state/point and fit it into the vector of DiagStatePoints
+ // so that the vector is always ordered according to location.
+ assert(Pos->Loc.isBeforeInTranslationUnitThan(Loc));
+ DiagStates.push_back(*Pos->State);
+ DiagState *NewState = &DiagStates.back();
+ GetCurDiagState()->setMapping(Diag, Mapping);
+ DiagStatePoints.insert(Pos+1, DiagStatePoint(NewState,
+ FullSourceLoc(Loc, *SourceMgr)));
+}
+
+bool DiagnosticsEngine::setSeverityForGroup(diag::Flavor Flavor,
+ StringRef Group, diag::Severity Map,
+ SourceLocation Loc) {
+ // Get the diagnostics in this group.
+ SmallVector<diag::kind, 256> GroupDiags;
+ if (Diags->getDiagnosticsInGroup(Flavor, Group, GroupDiags))
+ return true;
+
+ // Set the mapping.
+ for (diag::kind Diag : GroupDiags)
+ setSeverity(Diag, Map, Loc);
+
+ return false;
+}
+
+bool DiagnosticsEngine::setDiagnosticGroupWarningAsError(StringRef Group,
+ bool Enabled) {
+ // If we are enabling this feature, just set the diagnostic mappings to map to
+ // errors.
+ if (Enabled)
+ return setSeverityForGroup(diag::Flavor::WarningOrError, Group,
+ diag::Severity::Error);
+
+ // Otherwise, we want to set the diagnostic mapping's "no Werror" bit, and
+ // potentially downgrade anything already mapped to be a warning.
+
+ // Get the diagnostics in this group.
+ SmallVector<diag::kind, 8> GroupDiags;
+ if (Diags->getDiagnosticsInGroup(diag::Flavor::WarningOrError, Group,
+ GroupDiags))
+ return true;
+
+ // Perform the mapping change.
+ for (unsigned i = 0, e = GroupDiags.size(); i != e; ++i) {
+ DiagnosticMapping &Info = GetCurDiagState()->getOrAddMapping(GroupDiags[i]);
+
+ if (Info.getSeverity() == diag::Severity::Error ||
+ Info.getSeverity() == diag::Severity::Fatal)
+ Info.setSeverity(diag::Severity::Warning);
+
+ Info.setNoWarningAsError(true);
+ }
+
+ return false;
+}
+
+bool DiagnosticsEngine::setDiagnosticGroupErrorAsFatal(StringRef Group,
+ bool Enabled) {
+ // If we are enabling this feature, just set the diagnostic mappings to map to
+ // fatal errors.
+ if (Enabled)
+ return setSeverityForGroup(diag::Flavor::WarningOrError, Group,
+ diag::Severity::Fatal);
+
+ // Otherwise, we want to set the diagnostic mapping's "no Werror" bit, and
+ // potentially downgrade anything already mapped to be an error.
+
+ // Get the diagnostics in this group.
+ SmallVector<diag::kind, 8> GroupDiags;
+ if (Diags->getDiagnosticsInGroup(diag::Flavor::WarningOrError, Group,
+ GroupDiags))
+ return true;
+
+ // Perform the mapping change.
+ for (unsigned i = 0, e = GroupDiags.size(); i != e; ++i) {
+ DiagnosticMapping &Info = GetCurDiagState()->getOrAddMapping(GroupDiags[i]);
+
+ if (Info.getSeverity() == diag::Severity::Fatal)
+ Info.setSeverity(diag::Severity::Error);
+
+ Info.setNoErrorAsFatal(true);
+ }
+
+ return false;
+}
+
+void DiagnosticsEngine::setSeverityForAll(diag::Flavor Flavor,
+ diag::Severity Map,
+ SourceLocation Loc) {
+ // Get all the diagnostics.
+ SmallVector<diag::kind, 64> AllDiags;
+ Diags->getAllDiagnostics(Flavor, AllDiags);
+
+ // Set the mapping.
+ for (unsigned i = 0, e = AllDiags.size(); i != e; ++i)
+ if (Diags->isBuiltinWarningOrExtension(AllDiags[i]))
+ setSeverity(AllDiags[i], Map, Loc);
+}
+
+void DiagnosticsEngine::Report(const StoredDiagnostic &storedDiag) {
+ assert(CurDiagID == ~0U && "Multiple diagnostics in flight at once!");
+
+ CurDiagLoc = storedDiag.getLocation();
+ CurDiagID = storedDiag.getID();
+ NumDiagArgs = 0;
+
+ DiagRanges.clear();
+ DiagRanges.reserve(storedDiag.range_size());
+ for (StoredDiagnostic::range_iterator
+ RI = storedDiag.range_begin(),
+ RE = storedDiag.range_end(); RI != RE; ++RI)
+ DiagRanges.push_back(*RI);
+
+ DiagFixItHints.clear();
+ DiagFixItHints.reserve(storedDiag.fixit_size());
+ for (StoredDiagnostic::fixit_iterator
+ FI = storedDiag.fixit_begin(),
+ FE = storedDiag.fixit_end(); FI != FE; ++FI)
+ DiagFixItHints.push_back(*FI);
+
+ assert(Client && "DiagnosticConsumer not set!");
+ Level DiagLevel = storedDiag.getLevel();
+ Diagnostic Info(this, storedDiag.getMessage());
+ Client->HandleDiagnostic(DiagLevel, Info);
+ if (Client->IncludeInDiagnosticCounts()) {
+ if (DiagLevel == DiagnosticsEngine::Warning)
+ ++NumWarnings;
+ }
+
+ CurDiagID = ~0U;
+}
+
+bool DiagnosticsEngine::EmitCurrentDiagnostic(bool Force) {
+ assert(getClient() && "DiagnosticClient not set!");
+
+ bool Emitted;
+ if (Force) {
+ Diagnostic Info(this);
+
+ // Figure out the diagnostic level of this message.
+ DiagnosticIDs::Level DiagLevel
+ = Diags->getDiagnosticLevel(Info.getID(), Info.getLocation(), *this);
+
+ Emitted = (DiagLevel != DiagnosticIDs::Ignored);
+ if (Emitted) {
+ // Emit the diagnostic regardless of suppression level.
+ Diags->EmitDiag(*this, DiagLevel);
+ }
+ } else {
+ // Process the diagnostic, sending the accumulated information to the
+ // DiagnosticConsumer.
+ Emitted = ProcessDiag();
+ }
+
+ // Clear out the current diagnostic object.
+ unsigned DiagID = CurDiagID;
+ Clear();
+
+ // If there was a delayed diagnostic, emit it now.
+ if (!Force && DelayedDiagID && DelayedDiagID != DiagID)
+ ReportDelayed();
+
+ return Emitted;
+}
+
+
+DiagnosticConsumer::~DiagnosticConsumer() {}
+
+void DiagnosticConsumer::HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,
+ const Diagnostic &Info) {
+ if (!IncludeInDiagnosticCounts())
+ return;
+
+ if (DiagLevel == DiagnosticsEngine::Warning)
+ ++NumWarnings;
+ else if (DiagLevel >= DiagnosticsEngine::Error)
+ ++NumErrors;
+}
+
+/// ModifierIs - Return true if the specified modifier matches specified string.
+template <std::size_t StrLen>
+static bool ModifierIs(const char *Modifier, unsigned ModifierLen,
+ const char (&Str)[StrLen]) {
+ return StrLen-1 == ModifierLen && !memcmp(Modifier, Str, StrLen-1);
+}
+
+/// ScanForward - Scans forward, looking for the given character, skipping
+/// nested clauses and escaped characters.
+static const char *ScanFormat(const char *I, const char *E, char Target) {
+ unsigned Depth = 0;
+
+ for ( ; I != E; ++I) {
+ if (Depth == 0 && *I == Target) return I;
+ if (Depth != 0 && *I == '}') Depth--;
+
+ if (*I == '%') {
+ I++;
+ if (I == E) break;
+
+ // Escaped characters get implicitly skipped here.
+
+ // Format specifier.
+ if (!isDigit(*I) && !isPunctuation(*I)) {
+ for (I++; I != E && !isDigit(*I) && *I != '{'; I++) ;
+ if (I == E) break;
+ if (*I == '{')
+ Depth++;
+ }
+ }
+ }
+ return E;
+}
+
+/// HandleSelectModifier - Handle the integer 'select' modifier. This is used
+/// like this: %select{foo|bar|baz}2. This means that the integer argument
+/// "%2" has a value from 0-2. If the value is 0, the diagnostic prints 'foo'.
+/// If the value is 1, it prints 'bar'. If it has the value 2, it prints 'baz'.
+/// This is very useful for certain classes of variant diagnostics.
+static void HandleSelectModifier(const Diagnostic &DInfo, unsigned ValNo,
+ const char *Argument, unsigned ArgumentLen,
+ SmallVectorImpl<char> &OutStr) {
+ const char *ArgumentEnd = Argument+ArgumentLen;
+
+ // Skip over 'ValNo' |'s.
+ while (ValNo) {
+ const char *NextVal = ScanFormat(Argument, ArgumentEnd, '|');
+ assert(NextVal != ArgumentEnd && "Value for integer select modifier was"
+ " larger than the number of options in the diagnostic string!");
+ Argument = NextVal+1; // Skip this string.
+ --ValNo;
+ }
+
+ // Get the end of the value. This is either the } or the |.
+ const char *EndPtr = ScanFormat(Argument, ArgumentEnd, '|');
+
+ // Recursively format the result of the select clause into the output string.
+ DInfo.FormatDiagnostic(Argument, EndPtr, OutStr);
+}
+
+/// HandleIntegerSModifier - Handle the integer 's' modifier. This adds the
+/// letter 's' to the string if the value is not 1. This is used in cases like
+/// this: "you idiot, you have %4 parameter%s4!".
+static void HandleIntegerSModifier(unsigned ValNo,
+ SmallVectorImpl<char> &OutStr) {
+ if (ValNo != 1)
+ OutStr.push_back('s');
+}
+
+/// HandleOrdinalModifier - Handle the integer 'ord' modifier. This
+/// prints the ordinal form of the given integer, with 1 corresponding
+/// to the first ordinal. Currently this is hard-coded to use the
+/// English form.
+static void HandleOrdinalModifier(unsigned ValNo,
+ SmallVectorImpl<char> &OutStr) {
+ assert(ValNo != 0 && "ValNo must be strictly positive!");
+
+ llvm::raw_svector_ostream Out(OutStr);
+
+ // We could use text forms for the first N ordinals, but the numeric
+ // forms are actually nicer in diagnostics because they stand out.
+ Out << ValNo << llvm::getOrdinalSuffix(ValNo);
+}
+
+
+/// PluralNumber - Parse an unsigned integer and advance Start.
+static unsigned PluralNumber(const char *&Start, const char *End) {
+ // Programming 101: Parse a decimal number :-)
+ unsigned Val = 0;
+ while (Start != End && *Start >= '0' && *Start <= '9') {
+ Val *= 10;
+ Val += *Start - '0';
+ ++Start;
+ }
+ return Val;
+}
+
+/// TestPluralRange - Test if Val is in the parsed range. Modifies Start.
+static bool TestPluralRange(unsigned Val, const char *&Start, const char *End) {
+ if (*Start != '[') {
+ unsigned Ref = PluralNumber(Start, End);
+ return Ref == Val;
+ }
+
+ ++Start;
+ unsigned Low = PluralNumber(Start, End);
+ assert(*Start == ',' && "Bad plural expression syntax: expected ,");
+ ++Start;
+ unsigned High = PluralNumber(Start, End);
+ assert(*Start == ']' && "Bad plural expression syntax: expected )");
+ ++Start;
+ return Low <= Val && Val <= High;
+}
+
+/// EvalPluralExpr - Actual expression evaluator for HandlePluralModifier.
+static bool EvalPluralExpr(unsigned ValNo, const char *Start, const char *End) {
+ // Empty condition?
+ if (*Start == ':')
+ return true;
+
+ while (1) {
+ char C = *Start;
+ if (C == '%') {
+ // Modulo expression
+ ++Start;
+ unsigned Arg = PluralNumber(Start, End);
+ assert(*Start == '=' && "Bad plural expression syntax: expected =");
+ ++Start;
+ unsigned ValMod = ValNo % Arg;
+ if (TestPluralRange(ValMod, Start, End))
+ return true;
+ } else {
+ assert((C == '[' || (C >= '0' && C <= '9')) &&
+ "Bad plural expression syntax: unexpected character");
+ // Range expression
+ if (TestPluralRange(ValNo, Start, End))
+ return true;
+ }
+
+ // Scan for next or-expr part.
+ Start = std::find(Start, End, ',');
+ if (Start == End)
+ break;
+ ++Start;
+ }
+ return false;
+}
+
+/// HandlePluralModifier - Handle the integer 'plural' modifier. This is used
+/// for complex plural forms, or in languages where all plurals are complex.
+/// The syntax is: %plural{cond1:form1|cond2:form2|:form3}, where condn are
+/// conditions that are tested in order, the form corresponding to the first
+/// that applies being emitted. The empty condition is always true, making the
+/// last form a default case.
+/// Conditions are simple boolean expressions, where n is the number argument.
+/// Here are the rules.
+/// condition := expression | empty
+/// empty := -> always true
+/// expression := numeric [',' expression] -> logical or
+/// numeric := range -> true if n in range
+/// | '%' number '=' range -> true if n % number in range
+/// range := number
+/// | '[' number ',' number ']' -> ranges are inclusive both ends
+///
+/// Here are some examples from the GNU gettext manual written in this form:
+/// English:
+/// {1:form0|:form1}
+/// Latvian:
+/// {0:form2|%100=11,%10=0,%10=[2,9]:form1|:form0}
+/// Gaeilge:
+/// {1:form0|2:form1|:form2}
+/// Romanian:
+/// {1:form0|0,%100=[1,19]:form1|:form2}
+/// Lithuanian:
+/// {%10=0,%100=[10,19]:form2|%10=1:form0|:form1}
+/// Russian (requires repeated form):
+/// {%100=[11,14]:form2|%10=1:form0|%10=[2,4]:form1|:form2}
+/// Slovak
+/// {1:form0|[2,4]:form1|:form2}
+/// Polish (requires repeated form):
+/// {1:form0|%100=[10,20]:form2|%10=[2,4]:form1|:form2}
+static void HandlePluralModifier(const Diagnostic &DInfo, unsigned ValNo,
+ const char *Argument, unsigned ArgumentLen,
+ SmallVectorImpl<char> &OutStr) {
+ const char *ArgumentEnd = Argument + ArgumentLen;
+ while (1) {
+ assert(Argument < ArgumentEnd && "Plural expression didn't match.");
+ const char *ExprEnd = Argument;
+ while (*ExprEnd != ':') {
+ assert(ExprEnd != ArgumentEnd && "Plural missing expression end");
+ ++ExprEnd;
+ }
+ if (EvalPluralExpr(ValNo, Argument, ExprEnd)) {
+ Argument = ExprEnd + 1;
+ ExprEnd = ScanFormat(Argument, ArgumentEnd, '|');
+
+ // Recursively format the result of the plural clause into the
+ // output string.
+ DInfo.FormatDiagnostic(Argument, ExprEnd, OutStr);
+ return;
+ }
+ Argument = ScanFormat(Argument, ArgumentEnd - 1, '|') + 1;
+ }
+}
+
+/// \brief Returns the friendly description for a token kind that will appear
+/// without quotes in diagnostic messages. These strings may be translatable in
+/// future.
+static const char *getTokenDescForDiagnostic(tok::TokenKind Kind) {
+ switch (Kind) {
+ case tok::identifier:
+ return "identifier";
+ default:
+ return nullptr;
+ }
+}
+
+/// FormatDiagnostic - Format this diagnostic into a string, substituting the
+/// formal arguments into the %0 slots. The result is appended onto the Str
+/// array.
+void Diagnostic::
+FormatDiagnostic(SmallVectorImpl<char> &OutStr) const {
+ if (!StoredDiagMessage.empty()) {
+ OutStr.append(StoredDiagMessage.begin(), StoredDiagMessage.end());
+ return;
+ }
+
+ StringRef Diag =
+ getDiags()->getDiagnosticIDs()->getDescription(getID());
+
+ FormatDiagnostic(Diag.begin(), Diag.end(), OutStr);
+}
+
+void Diagnostic::
+FormatDiagnostic(const char *DiagStr, const char *DiagEnd,
+ SmallVectorImpl<char> &OutStr) const {
+
+ // When the diagnostic string is only "%0", the entire string is being given
+ // by an outside source. Remove unprintable characters from this string
+ // and skip all the other string processing.
+ if (DiagEnd - DiagStr == 2 &&
+ StringRef(DiagStr, DiagEnd - DiagStr).equals("%0") &&
+ getArgKind(0) == DiagnosticsEngine::ak_std_string) {
+ const std::string &S = getArgStdStr(0);
+ for (char c : S) {
+ if (llvm::sys::locale::isPrint(c) || c == '\t') {
+ OutStr.push_back(c);
+ }
+ }
+ return;
+ }
+
+ /// FormattedArgs - Keep track of all of the arguments formatted by
+ /// ConvertArgToString and pass them into subsequent calls to
+ /// ConvertArgToString, allowing the implementation to avoid redundancies in
+ /// obvious cases.
+ SmallVector<DiagnosticsEngine::ArgumentValue, 8> FormattedArgs;
+
+ /// QualTypeVals - Pass a vector of arrays so that QualType names can be
+ /// compared to see if more information is needed to be printed.
+ SmallVector<intptr_t, 2> QualTypeVals;
+ SmallVector<char, 64> Tree;
+
+ for (unsigned i = 0, e = getNumArgs(); i < e; ++i)
+ if (getArgKind(i) == DiagnosticsEngine::ak_qualtype)
+ QualTypeVals.push_back(getRawArg(i));
+
+ while (DiagStr != DiagEnd) {
+ if (DiagStr[0] != '%') {
+ // Append non-%0 substrings to Str if we have one.
+ const char *StrEnd = std::find(DiagStr, DiagEnd, '%');
+ OutStr.append(DiagStr, StrEnd);
+ DiagStr = StrEnd;
+ continue;
+ } else if (isPunctuation(DiagStr[1])) {
+ OutStr.push_back(DiagStr[1]); // %% -> %.
+ DiagStr += 2;
+ continue;
+ }
+
+ // Skip the %.
+ ++DiagStr;
+
+ // This must be a placeholder for a diagnostic argument. The format for a
+ // placeholder is one of "%0", "%modifier0", or "%modifier{arguments}0".
+ // The digit is a number from 0-9 indicating which argument this comes from.
+ // The modifier is a string of digits from the set [-a-z]+, arguments is a
+ // brace enclosed string.
+ const char *Modifier = nullptr, *Argument = nullptr;
+ unsigned ModifierLen = 0, ArgumentLen = 0;
+
+ // Check to see if we have a modifier. If so eat it.
+ if (!isDigit(DiagStr[0])) {
+ Modifier = DiagStr;
+ while (DiagStr[0] == '-' ||
+ (DiagStr[0] >= 'a' && DiagStr[0] <= 'z'))
+ ++DiagStr;
+ ModifierLen = DiagStr-Modifier;
+
+ // If we have an argument, get it next.
+ if (DiagStr[0] == '{') {
+ ++DiagStr; // Skip {.
+ Argument = DiagStr;
+
+ DiagStr = ScanFormat(DiagStr, DiagEnd, '}');
+ assert(DiagStr != DiagEnd && "Mismatched {}'s in diagnostic string!");
+ ArgumentLen = DiagStr-Argument;
+ ++DiagStr; // Skip }.
+ }
+ }
+
+ assert(isDigit(*DiagStr) && "Invalid format for argument in diagnostic");
+ unsigned ArgNo = *DiagStr++ - '0';
+
+ // Only used for type diffing.
+ unsigned ArgNo2 = ArgNo;
+
+ DiagnosticsEngine::ArgumentKind Kind = getArgKind(ArgNo);
+ if (ModifierIs(Modifier, ModifierLen, "diff")) {
+ assert(*DiagStr == ',' && isDigit(*(DiagStr + 1)) &&
+ "Invalid format for diff modifier");
+ ++DiagStr; // Comma.
+ ArgNo2 = *DiagStr++ - '0';
+ DiagnosticsEngine::ArgumentKind Kind2 = getArgKind(ArgNo2);
+ if (Kind == DiagnosticsEngine::ak_qualtype &&
+ Kind2 == DiagnosticsEngine::ak_qualtype)
+ Kind = DiagnosticsEngine::ak_qualtype_pair;
+ else {
+ // %diff only supports QualTypes. For other kinds of arguments,
+ // use the default printing. For example, if the modifier is:
+ // "%diff{compare $ to $|other text}1,2"
+ // treat it as:
+ // "compare %1 to %2"
+ const char *Pipe = ScanFormat(Argument, Argument + ArgumentLen, '|');
+ const char *FirstDollar = ScanFormat(Argument, Pipe, '$');
+ const char *SecondDollar = ScanFormat(FirstDollar + 1, Pipe, '$');
+ const char ArgStr1[] = { '%', static_cast<char>('0' + ArgNo) };
+ const char ArgStr2[] = { '%', static_cast<char>('0' + ArgNo2) };
+ FormatDiagnostic(Argument, FirstDollar, OutStr);
+ FormatDiagnostic(ArgStr1, ArgStr1 + 2, OutStr);
+ FormatDiagnostic(FirstDollar + 1, SecondDollar, OutStr);
+ FormatDiagnostic(ArgStr2, ArgStr2 + 2, OutStr);
+ FormatDiagnostic(SecondDollar + 1, Pipe, OutStr);
+ continue;
+ }
+ }
+
+ switch (Kind) {
+ // ---- STRINGS ----
+ case DiagnosticsEngine::ak_std_string: {
+ const std::string &S = getArgStdStr(ArgNo);
+ assert(ModifierLen == 0 && "No modifiers for strings yet");
+ OutStr.append(S.begin(), S.end());
+ break;
+ }
+ case DiagnosticsEngine::ak_c_string: {
+ const char *S = getArgCStr(ArgNo);
+ assert(ModifierLen == 0 && "No modifiers for strings yet");
+
+ // Don't crash if get passed a null pointer by accident.
+ if (!S)
+ S = "(null)";
+
+ OutStr.append(S, S + strlen(S));
+ break;
+ }
+ // ---- INTEGERS ----
+ case DiagnosticsEngine::ak_sint: {
+ int Val = getArgSInt(ArgNo);
+
+ if (ModifierIs(Modifier, ModifierLen, "select")) {
+ HandleSelectModifier(*this, (unsigned)Val, Argument, ArgumentLen,
+ OutStr);
+ } else if (ModifierIs(Modifier, ModifierLen, "s")) {
+ HandleIntegerSModifier(Val, OutStr);
+ } else if (ModifierIs(Modifier, ModifierLen, "plural")) {
+ HandlePluralModifier(*this, (unsigned)Val, Argument, ArgumentLen,
+ OutStr);
+ } else if (ModifierIs(Modifier, ModifierLen, "ordinal")) {
+ HandleOrdinalModifier((unsigned)Val, OutStr);
+ } else {
+ assert(ModifierLen == 0 && "Unknown integer modifier");
+ llvm::raw_svector_ostream(OutStr) << Val;
+ }
+ break;
+ }
+ case DiagnosticsEngine::ak_uint: {
+ unsigned Val = getArgUInt(ArgNo);
+
+ if (ModifierIs(Modifier, ModifierLen, "select")) {
+ HandleSelectModifier(*this, Val, Argument, ArgumentLen, OutStr);
+ } else if (ModifierIs(Modifier, ModifierLen, "s")) {
+ HandleIntegerSModifier(Val, OutStr);
+ } else if (ModifierIs(Modifier, ModifierLen, "plural")) {
+ HandlePluralModifier(*this, (unsigned)Val, Argument, ArgumentLen,
+ OutStr);
+ } else if (ModifierIs(Modifier, ModifierLen, "ordinal")) {
+ HandleOrdinalModifier(Val, OutStr);
+ } else {
+ assert(ModifierLen == 0 && "Unknown integer modifier");
+ llvm::raw_svector_ostream(OutStr) << Val;
+ }
+ break;
+ }
+ // ---- TOKEN SPELLINGS ----
+ case DiagnosticsEngine::ak_tokenkind: {
+ tok::TokenKind Kind = static_cast<tok::TokenKind>(getRawArg(ArgNo));
+ assert(ModifierLen == 0 && "No modifiers for token kinds yet");
+
+ llvm::raw_svector_ostream Out(OutStr);
+ if (const char *S = tok::getPunctuatorSpelling(Kind))
+ // Quoted token spelling for punctuators.
+ Out << '\'' << S << '\'';
+ else if (const char *S = tok::getKeywordSpelling(Kind))
+ // Unquoted token spelling for keywords.
+ Out << S;
+ else if (const char *S = getTokenDescForDiagnostic(Kind))
+ // Unquoted translatable token name.
+ Out << S;
+ else if (const char *S = tok::getTokenName(Kind))
+ // Debug name, shouldn't appear in user-facing diagnostics.
+ Out << '<' << S << '>';
+ else
+ Out << "(null)";
+ break;
+ }
+ // ---- NAMES and TYPES ----
+ case DiagnosticsEngine::ak_identifierinfo: {
+ const IdentifierInfo *II = getArgIdentifier(ArgNo);
+ assert(ModifierLen == 0 && "No modifiers for strings yet");
+
+ // Don't crash if get passed a null pointer by accident.
+ if (!II) {
+ const char *S = "(null)";
+ OutStr.append(S, S + strlen(S));
+ continue;
+ }
+
+ llvm::raw_svector_ostream(OutStr) << '\'' << II->getName() << '\'';
+ break;
+ }
+ case DiagnosticsEngine::ak_qualtype:
+ case DiagnosticsEngine::ak_declarationname:
+ case DiagnosticsEngine::ak_nameddecl:
+ case DiagnosticsEngine::ak_nestednamespec:
+ case DiagnosticsEngine::ak_declcontext:
+ case DiagnosticsEngine::ak_attr:
+ getDiags()->ConvertArgToString(Kind, getRawArg(ArgNo),
+ StringRef(Modifier, ModifierLen),
+ StringRef(Argument, ArgumentLen),
+ FormattedArgs,
+ OutStr, QualTypeVals);
+ break;
+ case DiagnosticsEngine::ak_qualtype_pair:
+ // Create a struct with all the info needed for printing.
+ TemplateDiffTypes TDT;
+ TDT.FromType = getRawArg(ArgNo);
+ TDT.ToType = getRawArg(ArgNo2);
+ TDT.ElideType = getDiags()->ElideType;
+ TDT.ShowColors = getDiags()->ShowColors;
+ TDT.TemplateDiffUsed = false;
+ intptr_t val = reinterpret_cast<intptr_t>(&TDT);
+
+ const char *ArgumentEnd = Argument + ArgumentLen;
+ const char *Pipe = ScanFormat(Argument, ArgumentEnd, '|');
+
+ // Print the tree. If this diagnostic already has a tree, skip the
+ // second tree.
+ if (getDiags()->PrintTemplateTree && Tree.empty()) {
+ TDT.PrintFromType = true;
+ TDT.PrintTree = true;
+ getDiags()->ConvertArgToString(Kind, val,
+ StringRef(Modifier, ModifierLen),
+ StringRef(Argument, ArgumentLen),
+ FormattedArgs,
+ Tree, QualTypeVals);
+ // If there is no tree information, fall back to regular printing.
+ if (!Tree.empty()) {
+ FormatDiagnostic(Pipe + 1, ArgumentEnd, OutStr);
+ break;
+ }
+ }
+
+ // Non-tree printing, also the fall-back when tree printing fails.
+ // The fall-back is triggered when the types compared are not templates.
+ const char *FirstDollar = ScanFormat(Argument, ArgumentEnd, '$');
+ const char *SecondDollar = ScanFormat(FirstDollar + 1, ArgumentEnd, '$');
+
+ // Append before text
+ FormatDiagnostic(Argument, FirstDollar, OutStr);
+
+ // Append first type
+ TDT.PrintTree = false;
+ TDT.PrintFromType = true;
+ getDiags()->ConvertArgToString(Kind, val,
+ StringRef(Modifier, ModifierLen),
+ StringRef(Argument, ArgumentLen),
+ FormattedArgs,
+ OutStr, QualTypeVals);
+ if (!TDT.TemplateDiffUsed)
+ FormattedArgs.push_back(std::make_pair(DiagnosticsEngine::ak_qualtype,
+ TDT.FromType));
+
+ // Append middle text
+ FormatDiagnostic(FirstDollar + 1, SecondDollar, OutStr);
+
+ // Append second type
+ TDT.PrintFromType = false;
+ getDiags()->ConvertArgToString(Kind, val,
+ StringRef(Modifier, ModifierLen),
+ StringRef(Argument, ArgumentLen),
+ FormattedArgs,
+ OutStr, QualTypeVals);
+ if (!TDT.TemplateDiffUsed)
+ FormattedArgs.push_back(std::make_pair(DiagnosticsEngine::ak_qualtype,
+ TDT.ToType));
+
+ // Append end text
+ FormatDiagnostic(SecondDollar + 1, Pipe, OutStr);
+ break;
+ }
+
+ // Remember this argument info for subsequent formatting operations. Turn
+ // std::strings into a null terminated string to make it be the same case as
+ // all the other ones.
+ if (Kind == DiagnosticsEngine::ak_qualtype_pair)
+ continue;
+ else if (Kind != DiagnosticsEngine::ak_std_string)
+ FormattedArgs.push_back(std::make_pair(Kind, getRawArg(ArgNo)));
+ else
+ FormattedArgs.push_back(std::make_pair(DiagnosticsEngine::ak_c_string,
+ (intptr_t)getArgStdStr(ArgNo).c_str()));
+
+ }
+
+ // Append the type tree to the end of the diagnostics.
+ OutStr.append(Tree.begin(), Tree.end());
+}
+
+StoredDiagnostic::StoredDiagnostic() { }
+
+StoredDiagnostic::StoredDiagnostic(DiagnosticsEngine::Level Level, unsigned ID,
+ StringRef Message)
+ : ID(ID), Level(Level), Loc(), Message(Message) { }
+
+StoredDiagnostic::StoredDiagnostic(DiagnosticsEngine::Level Level,
+ const Diagnostic &Info)
+ : ID(Info.getID()), Level(Level)
+{
+ assert((Info.getLocation().isInvalid() || Info.hasSourceManager()) &&
+ "Valid source location without setting a source manager for diagnostic");
+ if (Info.getLocation().isValid())
+ Loc = FullSourceLoc(Info.getLocation(), Info.getSourceManager());
+ SmallString<64> Message;
+ Info.FormatDiagnostic(Message);
+ this->Message.assign(Message.begin(), Message.end());
+ this->Ranges.assign(Info.getRanges().begin(), Info.getRanges().end());
+ this->FixIts.assign(Info.getFixItHints().begin(), Info.getFixItHints().end());
+}
+
+StoredDiagnostic::StoredDiagnostic(DiagnosticsEngine::Level Level, unsigned ID,
+ StringRef Message, FullSourceLoc Loc,
+ ArrayRef<CharSourceRange> Ranges,
+ ArrayRef<FixItHint> FixIts)
+ : ID(ID), Level(Level), Loc(Loc), Message(Message),
+ Ranges(Ranges.begin(), Ranges.end()), FixIts(FixIts.begin(), FixIts.end())
+{
+}
+
+StoredDiagnostic::~StoredDiagnostic() { }
+
+/// IncludeInDiagnosticCounts - This method (whose default implementation
+/// returns true) indicates whether the diagnostics handled by this
+/// DiagnosticConsumer should be included in the number of diagnostics
+/// reported by DiagnosticsEngine.
+bool DiagnosticConsumer::IncludeInDiagnosticCounts() const { return true; }
+
+void IgnoringDiagConsumer::anchor() { }
+
+ForwardingDiagnosticConsumer::~ForwardingDiagnosticConsumer() {}
+
+void ForwardingDiagnosticConsumer::HandleDiagnostic(
+ DiagnosticsEngine::Level DiagLevel,
+ const Diagnostic &Info) {
+ Target.HandleDiagnostic(DiagLevel, Info);
+}
+
+void ForwardingDiagnosticConsumer::clear() {
+ DiagnosticConsumer::clear();
+ Target.clear();
+}
+
+bool ForwardingDiagnosticConsumer::IncludeInDiagnosticCounts() const {
+ return Target.IncludeInDiagnosticCounts();
+}
+
+PartialDiagnostic::StorageAllocator::StorageAllocator() {
+ for (unsigned I = 0; I != NumCached; ++I)
+ FreeList[I] = Cached + I;
+ NumFreeListEntries = NumCached;
+}
+
+PartialDiagnostic::StorageAllocator::~StorageAllocator() {
+ // Don't assert if we are in a CrashRecovery context, as this invariant may
+ // be invalidated during a crash.
+ assert((NumFreeListEntries == NumCached ||
+ llvm::CrashRecoveryContext::isRecoveringFromCrash()) &&
+ "A partial is on the lamb");
+}
diff --git a/contrib/llvm/tools/clang/lib/Basic/DiagnosticIDs.cpp b/contrib/llvm/tools/clang/lib/Basic/DiagnosticIDs.cpp
new file mode 100644
index 0000000..643503b
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Basic/DiagnosticIDs.cpp
@@ -0,0 +1,721 @@
+//===--- DiagnosticIDs.cpp - Diagnostic IDs Handling ----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Diagnostic IDs-related interfaces.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Basic/DiagnosticIDs.h"
+#include "clang/Basic/AllDiagnostics.h"
+#include "clang/Basic/DiagnosticCategories.h"
+#include "clang/Basic/SourceManager.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <map>
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// Builtin Diagnostic information
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+// Diagnostic classes.
+enum {
+ CLASS_NOTE = 0x01,
+ CLASS_REMARK = 0x02,
+ CLASS_WARNING = 0x03,
+ CLASS_EXTENSION = 0x04,
+ CLASS_ERROR = 0x05
+};
+
+struct StaticDiagInfoRec {
+ uint16_t DiagID;
+ unsigned DefaultSeverity : 3;
+ unsigned Class : 3;
+ unsigned SFINAE : 2;
+ unsigned WarnNoWerror : 1;
+ unsigned WarnShowInSystemHeader : 1;
+ unsigned Category : 5;
+
+ uint16_t OptionGroupIndex;
+
+ uint16_t DescriptionLen;
+ const char *DescriptionStr;
+
+ unsigned getOptionGroupIndex() const {
+ return OptionGroupIndex;
+ }
+
+ StringRef getDescription() const {
+ return StringRef(DescriptionStr, DescriptionLen);
+ }
+
+ diag::Flavor getFlavor() const {
+ return Class == CLASS_REMARK ? diag::Flavor::Remark
+ : diag::Flavor::WarningOrError;
+ }
+
+ bool operator<(const StaticDiagInfoRec &RHS) const {
+ return DiagID < RHS.DiagID;
+ }
+};
+
+} // namespace anonymous
+
+static const StaticDiagInfoRec StaticDiagInfo[] = {
+#define DIAG(ENUM, CLASS, DEFAULT_SEVERITY, DESC, GROUP, SFINAE, NOWERROR, \
+ SHOWINSYSHEADER, CATEGORY) \
+ { \
+ diag::ENUM, DEFAULT_SEVERITY, CLASS, DiagnosticIDs::SFINAE, NOWERROR, \
+ SHOWINSYSHEADER, CATEGORY, GROUP, STR_SIZE(DESC, uint16_t), DESC \
+ } \
+ ,
+#include "clang/Basic/DiagnosticCommonKinds.inc"
+#include "clang/Basic/DiagnosticDriverKinds.inc"
+#include "clang/Basic/DiagnosticFrontendKinds.inc"
+#include "clang/Basic/DiagnosticSerializationKinds.inc"
+#include "clang/Basic/DiagnosticLexKinds.inc"
+#include "clang/Basic/DiagnosticParseKinds.inc"
+#include "clang/Basic/DiagnosticASTKinds.inc"
+#include "clang/Basic/DiagnosticCommentKinds.inc"
+#include "clang/Basic/DiagnosticSemaKinds.inc"
+#include "clang/Basic/DiagnosticAnalysisKinds.inc"
+#undef DIAG
+};
+
+static const unsigned StaticDiagInfoSize = llvm::array_lengthof(StaticDiagInfo);
+
+/// GetDiagInfo - Return the StaticDiagInfoRec entry for the specified DiagID,
+/// or null if the ID is invalid.
+static const StaticDiagInfoRec *GetDiagInfo(unsigned DiagID) {
+ // If assertions are enabled, verify that the StaticDiagInfo array is sorted.
+#ifndef NDEBUG
+ static bool IsFirst = true; // So the check is only performed on first call.
+ if (IsFirst) {
+ for (unsigned i = 1; i != StaticDiagInfoSize; ++i) {
+ assert(StaticDiagInfo[i-1].DiagID != StaticDiagInfo[i].DiagID &&
+ "Diag ID conflict, the enums at the start of clang::diag (in "
+ "DiagnosticIDs.h) probably need to be increased");
+
+ assert(StaticDiagInfo[i-1] < StaticDiagInfo[i] &&
+ "Improperly sorted diag info");
+ }
+ IsFirst = false;
+ }
+#endif
+
+ // Out of bounds diag. Can't be in the table.
+ using namespace diag;
+ if (DiagID >= DIAG_UPPER_LIMIT || DiagID <= DIAG_START_COMMON)
+ return nullptr;
+
+ // Compute the index of the requested diagnostic in the static table.
+ // 1. Add the number of diagnostics in each category preceding the
+ // diagnostic and of the category the diagnostic is in. This gives us
+ // the offset of the category in the table.
+ // 2. Subtract the number of IDs in each category from our ID. This gives us
+ // the offset of the diagnostic in the category.
+ // This is cheaper than a binary search on the table as it doesn't touch
+ // memory at all.
+ unsigned Offset = 0;
+ unsigned ID = DiagID - DIAG_START_COMMON - 1;
+#define CATEGORY(NAME, PREV) \
+ if (DiagID > DIAG_START_##NAME) { \
+ Offset += NUM_BUILTIN_##PREV##_DIAGNOSTICS - DIAG_START_##PREV - 1; \
+ ID -= DIAG_START_##NAME - DIAG_START_##PREV; \
+ }
+CATEGORY(DRIVER, COMMON)
+CATEGORY(FRONTEND, DRIVER)
+CATEGORY(SERIALIZATION, FRONTEND)
+CATEGORY(LEX, SERIALIZATION)
+CATEGORY(PARSE, LEX)
+CATEGORY(AST, PARSE)
+CATEGORY(COMMENT, AST)
+CATEGORY(SEMA, COMMENT)
+CATEGORY(ANALYSIS, SEMA)
+#undef CATEGORY
+
+ // Avoid out of bounds reads.
+ if (ID + Offset >= StaticDiagInfoSize)
+ return nullptr;
+
+ assert(ID < StaticDiagInfoSize && Offset < StaticDiagInfoSize);
+
+ const StaticDiagInfoRec *Found = &StaticDiagInfo[ID + Offset];
+ // If the diag id doesn't match we found a different diag, abort. This can
+ // happen when this function is called with an ID that points into a hole in
+ // the diagID space.
+ if (Found->DiagID != DiagID)
+ return nullptr;
+ return Found;
+}
+
+static DiagnosticMapping GetDefaultDiagMapping(unsigned DiagID) {
+ DiagnosticMapping Info = DiagnosticMapping::Make(
+ diag::Severity::Fatal, /*IsUser=*/false, /*IsPragma=*/false);
+
+ if (const StaticDiagInfoRec *StaticInfo = GetDiagInfo(DiagID)) {
+ Info.setSeverity((diag::Severity)StaticInfo->DefaultSeverity);
+
+ if (StaticInfo->WarnNoWerror) {
+ assert(Info.getSeverity() == diag::Severity::Warning &&
+ "Unexpected mapping with no-Werror bit!");
+ Info.setNoWarningAsError(true);
+ }
+ }
+
+ return Info;
+}
+
+/// getCategoryNumberForDiag - Return the category number that a specified
+/// DiagID belongs to, or 0 if no category.
+unsigned DiagnosticIDs::getCategoryNumberForDiag(unsigned DiagID) {
+ if (const StaticDiagInfoRec *Info = GetDiagInfo(DiagID))
+ return Info->Category;
+ return 0;
+}
+
+namespace {
+ // The diagnostic category names.
+ struct StaticDiagCategoryRec {
+ const char *NameStr;
+ uint8_t NameLen;
+
+ StringRef getName() const {
+ return StringRef(NameStr, NameLen);
+ }
+ };
+}
+
+// Unfortunately, the split between DiagnosticIDs and Diagnostic is not
+// particularly clean, but for now we just implement this method here so we can
+// access GetDefaultDiagMapping.
+DiagnosticMapping &
+DiagnosticsEngine::DiagState::getOrAddMapping(diag::kind Diag) {
+ std::pair<iterator, bool> Result =
+ DiagMap.insert(std::make_pair(Diag, DiagnosticMapping()));
+
+ // Initialize the entry if we added it.
+ if (Result.second)
+ Result.first->second = GetDefaultDiagMapping(Diag);
+
+ return Result.first->second;
+}
+
+static const StaticDiagCategoryRec CategoryNameTable[] = {
+#define GET_CATEGORY_TABLE
+#define CATEGORY(X, ENUM) { X, STR_SIZE(X, uint8_t) },
+#include "clang/Basic/DiagnosticGroups.inc"
+#undef GET_CATEGORY_TABLE
+ { nullptr, 0 }
+};
+
+/// getNumberOfCategories - Return the number of categories
+unsigned DiagnosticIDs::getNumberOfCategories() {
+ return llvm::array_lengthof(CategoryNameTable) - 1;
+}
+
+/// getCategoryNameFromID - Given a category ID, return the name of the
+/// category, an empty string if CategoryID is zero, or null if CategoryID is
+/// invalid.
+StringRef DiagnosticIDs::getCategoryNameFromID(unsigned CategoryID) {
+ if (CategoryID >= getNumberOfCategories())
+ return StringRef();
+ return CategoryNameTable[CategoryID].getName();
+}
+
+
+
+DiagnosticIDs::SFINAEResponse
+DiagnosticIDs::getDiagnosticSFINAEResponse(unsigned DiagID) {
+ if (const StaticDiagInfoRec *Info = GetDiagInfo(DiagID))
+ return static_cast<DiagnosticIDs::SFINAEResponse>(Info->SFINAE);
+ return SFINAE_Report;
+}
+
+/// getBuiltinDiagClass - Return the class field of the diagnostic.
+///
+static unsigned getBuiltinDiagClass(unsigned DiagID) {
+ if (const StaticDiagInfoRec *Info = GetDiagInfo(DiagID))
+ return Info->Class;
+ return ~0U;
+}
+
+//===----------------------------------------------------------------------===//
+// Custom Diagnostic information
+//===----------------------------------------------------------------------===//
+
+namespace clang {
+ namespace diag {
+ class CustomDiagInfo {
+ typedef std::pair<DiagnosticIDs::Level, std::string> DiagDesc;
+ std::vector<DiagDesc> DiagInfo;
+ std::map<DiagDesc, unsigned> DiagIDs;
+ public:
+
+ /// getDescription - Return the description of the specified custom
+ /// diagnostic.
+ StringRef getDescription(unsigned DiagID) const {
+ assert(DiagID - DIAG_UPPER_LIMIT < DiagInfo.size() &&
+ "Invalid diagnostic ID");
+ return DiagInfo[DiagID-DIAG_UPPER_LIMIT].second;
+ }
+
+ /// getLevel - Return the level of the specified custom diagnostic.
+ DiagnosticIDs::Level getLevel(unsigned DiagID) const {
+ assert(DiagID - DIAG_UPPER_LIMIT < DiagInfo.size() &&
+ "Invalid diagnostic ID");
+ return DiagInfo[DiagID-DIAG_UPPER_LIMIT].first;
+ }
+
+ unsigned getOrCreateDiagID(DiagnosticIDs::Level L, StringRef Message,
+ DiagnosticIDs &Diags) {
+ DiagDesc D(L, Message);
+ // Check to see if it already exists.
+ std::map<DiagDesc, unsigned>::iterator I = DiagIDs.lower_bound(D);
+ if (I != DiagIDs.end() && I->first == D)
+ return I->second;
+
+ // If not, assign a new ID.
+ unsigned ID = DiagInfo.size()+DIAG_UPPER_LIMIT;
+ DiagIDs.insert(std::make_pair(D, ID));
+ DiagInfo.push_back(D);
+ return ID;
+ }
+ };
+
+ } // end diag namespace
+} // end clang namespace
+
+
+//===----------------------------------------------------------------------===//
+// Common Diagnostic implementation
+//===----------------------------------------------------------------------===//
+
+DiagnosticIDs::DiagnosticIDs() { CustomDiagInfo = nullptr; }
+
+DiagnosticIDs::~DiagnosticIDs() {
+ delete CustomDiagInfo;
+}
+
+/// getCustomDiagID - Return an ID for a diagnostic with the specified message
+/// and level. If this is the first request for this diagnostic, it is
+/// registered and created, otherwise the existing ID is returned.
+///
+/// \param FormatString A fixed diagnostic format string that will be hashed and
+/// mapped to a unique DiagID.
+unsigned DiagnosticIDs::getCustomDiagID(Level L, StringRef FormatString) {
+ if (!CustomDiagInfo)
+ CustomDiagInfo = new diag::CustomDiagInfo();
+ return CustomDiagInfo->getOrCreateDiagID(L, FormatString, *this);
+}
+
+
+/// isBuiltinWarningOrExtension - Return true if the unmapped diagnostic
+/// level of the specified diagnostic ID is a Warning or Extension.
+/// This only works on builtin diagnostics, not custom ones, and is not legal to
+/// call on NOTEs.
+bool DiagnosticIDs::isBuiltinWarningOrExtension(unsigned DiagID) {
+ return DiagID < diag::DIAG_UPPER_LIMIT &&
+ getBuiltinDiagClass(DiagID) != CLASS_ERROR;
+}
+
+/// \brief Determine whether the given built-in diagnostic ID is a
+/// Note.
+bool DiagnosticIDs::isBuiltinNote(unsigned DiagID) {
+ return DiagID < diag::DIAG_UPPER_LIMIT &&
+ getBuiltinDiagClass(DiagID) == CLASS_NOTE;
+}
+
+/// isBuiltinExtensionDiag - Determine whether the given built-in diagnostic
+/// ID is for an extension of some sort. This also returns EnabledByDefault,
+/// which is set to indicate whether the diagnostic is ignored by default (in
+/// which case -pedantic enables it) or treated as a warning/error by default.
+///
+bool DiagnosticIDs::isBuiltinExtensionDiag(unsigned DiagID,
+ bool &EnabledByDefault) {
+ if (DiagID >= diag::DIAG_UPPER_LIMIT ||
+ getBuiltinDiagClass(DiagID) != CLASS_EXTENSION)
+ return false;
+
+ EnabledByDefault =
+ GetDefaultDiagMapping(DiagID).getSeverity() != diag::Severity::Ignored;
+ return true;
+}
+
+bool DiagnosticIDs::isDefaultMappingAsError(unsigned DiagID) {
+ if (DiagID >= diag::DIAG_UPPER_LIMIT)
+ return false;
+
+ return GetDefaultDiagMapping(DiagID).getSeverity() == diag::Severity::Error;
+}
+
+/// getDescription - Given a diagnostic ID, return a description of the
+/// issue.
+StringRef DiagnosticIDs::getDescription(unsigned DiagID) const {
+ if (const StaticDiagInfoRec *Info = GetDiagInfo(DiagID))
+ return Info->getDescription();
+ assert(CustomDiagInfo && "Invalid CustomDiagInfo");
+ return CustomDiagInfo->getDescription(DiagID);
+}
+
+static DiagnosticIDs::Level toLevel(diag::Severity SV) {
+ switch (SV) {
+ case diag::Severity::Ignored:
+ return DiagnosticIDs::Ignored;
+ case diag::Severity::Remark:
+ return DiagnosticIDs::Remark;
+ case diag::Severity::Warning:
+ return DiagnosticIDs::Warning;
+ case diag::Severity::Error:
+ return DiagnosticIDs::Error;
+ case diag::Severity::Fatal:
+ return DiagnosticIDs::Fatal;
+ }
+ llvm_unreachable("unexpected severity");
+}
+
+/// getDiagnosticLevel - Based on the way the client configured the
+/// DiagnosticsEngine object, classify the specified diagnostic ID into a Level,
+/// by consumable the DiagnosticClient.
+DiagnosticIDs::Level
+DiagnosticIDs::getDiagnosticLevel(unsigned DiagID, SourceLocation Loc,
+ const DiagnosticsEngine &Diag) const {
+ // Handle custom diagnostics, which cannot be mapped.
+ if (DiagID >= diag::DIAG_UPPER_LIMIT) {
+ assert(CustomDiagInfo && "Invalid CustomDiagInfo");
+ return CustomDiagInfo->getLevel(DiagID);
+ }
+
+ unsigned DiagClass = getBuiltinDiagClass(DiagID);
+ if (DiagClass == CLASS_NOTE) return DiagnosticIDs::Note;
+ return toLevel(getDiagnosticSeverity(DiagID, Loc, Diag));
+}
+
+/// \brief Based on the way the client configured the Diagnostic
+/// object, classify the specified diagnostic ID into a Level, consumable by
+/// the DiagnosticClient.
+///
+/// \param Loc The source location we are interested in finding out the
+/// diagnostic state. Can be null in order to query the latest state.
+diag::Severity
+DiagnosticIDs::getDiagnosticSeverity(unsigned DiagID, SourceLocation Loc,
+ const DiagnosticsEngine &Diag) const {
+ assert(getBuiltinDiagClass(DiagID) != CLASS_NOTE);
+
+ // Specific non-error diagnostics may be mapped to various levels from ignored
+ // to error. Errors can only be mapped to fatal.
+ diag::Severity Result = diag::Severity::Fatal;
+
+ DiagnosticsEngine::DiagStatePointsTy::iterator
+ Pos = Diag.GetDiagStatePointForLoc(Loc);
+ DiagnosticsEngine::DiagState *State = Pos->State;
+
+ // Get the mapping information, or compute it lazily.
+ DiagnosticMapping &Mapping = State->getOrAddMapping((diag::kind)DiagID);
+
+ // TODO: Can a null severity really get here?
+ if (Mapping.getSeverity() != diag::Severity())
+ Result = Mapping.getSeverity();
+
+ // Upgrade ignored diagnostics if -Weverything is enabled.
+ if (Diag.EnableAllWarnings && Result == diag::Severity::Ignored &&
+ !Mapping.isUser() && getBuiltinDiagClass(DiagID) != CLASS_REMARK)
+ Result = diag::Severity::Warning;
+
+ // Ignore -pedantic diagnostics inside __extension__ blocks.
+ // (The diagnostics controlled by -pedantic are the extension diagnostics
+ // that are not enabled by default.)
+ bool EnabledByDefault = false;
+ bool IsExtensionDiag = isBuiltinExtensionDiag(DiagID, EnabledByDefault);
+ if (Diag.AllExtensionsSilenced && IsExtensionDiag && !EnabledByDefault)
+ return diag::Severity::Ignored;
+
+ // For extension diagnostics that haven't been explicitly mapped, check if we
+ // should upgrade the diagnostic.
+ if (IsExtensionDiag && !Mapping.isUser())
+ Result = std::max(Result, Diag.ExtBehavior);
+
+ // At this point, ignored errors can no longer be upgraded.
+ if (Result == diag::Severity::Ignored)
+ return Result;
+
+ // Honor -w, which is lower in priority than pedantic-errors, but higher than
+ // -Werror.
+ if (Result == diag::Severity::Warning && Diag.IgnoreAllWarnings)
+ return diag::Severity::Ignored;
+
+ // If -Werror is enabled, map warnings to errors unless explicitly disabled.
+ if (Result == diag::Severity::Warning) {
+ if (Diag.WarningsAsErrors && !Mapping.hasNoWarningAsError())
+ Result = diag::Severity::Error;
+ }
+
+ // If -Wfatal-errors is enabled, map errors to fatal unless explicity
+ // disabled.
+ if (Result == diag::Severity::Error) {
+ if (Diag.ErrorsAsFatal && !Mapping.hasNoErrorAsFatal())
+ Result = diag::Severity::Fatal;
+ }
+
+ // Custom diagnostics always are emitted in system headers.
+ bool ShowInSystemHeader =
+ !GetDiagInfo(DiagID) || GetDiagInfo(DiagID)->WarnShowInSystemHeader;
+
+ // If we are in a system header, we ignore it. We look at the diagnostic class
+ // because we also want to ignore extensions and warnings in -Werror and
+ // -pedantic-errors modes, which *map* warnings/extensions to errors.
+ if (Diag.SuppressSystemWarnings && !ShowInSystemHeader && Loc.isValid() &&
+ Diag.getSourceManager().isInSystemHeader(
+ Diag.getSourceManager().getExpansionLoc(Loc)))
+ return diag::Severity::Ignored;
+
+ return Result;
+}
+
+#define GET_DIAG_ARRAYS
+#include "clang/Basic/DiagnosticGroups.inc"
+#undef GET_DIAG_ARRAYS
+
+namespace {
+ struct WarningOption {
+ uint16_t NameOffset;
+ uint16_t Members;
+ uint16_t SubGroups;
+
+ // String is stored with a pascal-style length byte.
+ StringRef getName() const {
+ return StringRef(DiagGroupNames + NameOffset + 1,
+ DiagGroupNames[NameOffset]);
+ }
+ };
+}
+
+// Second the table of options, sorted by name for fast binary lookup.
+static const WarningOption OptionTable[] = {
+#define GET_DIAG_TABLE
+#include "clang/Basic/DiagnosticGroups.inc"
+#undef GET_DIAG_TABLE
+};
+static const size_t OptionTableSize = llvm::array_lengthof(OptionTable);
+
+static bool WarningOptionCompare(const WarningOption &LHS, StringRef RHS) {
+ return LHS.getName() < RHS;
+}
+
+/// getWarningOptionForDiag - Return the lowest-level warning option that
+/// enables the specified diagnostic. If there is no -Wfoo flag that controls
+/// the diagnostic, this returns null.
+StringRef DiagnosticIDs::getWarningOptionForDiag(unsigned DiagID) {
+ if (const StaticDiagInfoRec *Info = GetDiagInfo(DiagID))
+ return OptionTable[Info->getOptionGroupIndex()].getName();
+ return StringRef();
+}
+
+/// Return \c true if any diagnostics were found in this group, even if they
+/// were filtered out due to having the wrong flavor.
+static bool getDiagnosticsInGroup(diag::Flavor Flavor,
+ const WarningOption *Group,
+ SmallVectorImpl<diag::kind> &Diags) {
+ // An empty group is considered to be a warning group: we have empty groups
+ // for GCC compatibility, and GCC does not have remarks.
+ if (!Group->Members && !Group->SubGroups)
+ return Flavor == diag::Flavor::Remark;
+
+ bool NotFound = true;
+
+ // Add the members of the option diagnostic set.
+ const int16_t *Member = DiagArrays + Group->Members;
+ for (; *Member != -1; ++Member) {
+ if (GetDiagInfo(*Member)->getFlavor() == Flavor) {
+ NotFound = false;
+ Diags.push_back(*Member);
+ }
+ }
+
+ // Add the members of the subgroups.
+ const int16_t *SubGroups = DiagSubGroups + Group->SubGroups;
+ for (; *SubGroups != (int16_t)-1; ++SubGroups)
+ NotFound &= getDiagnosticsInGroup(Flavor, &OptionTable[(short)*SubGroups],
+ Diags);
+
+ return NotFound;
+}
+
+bool
+DiagnosticIDs::getDiagnosticsInGroup(diag::Flavor Flavor, StringRef Group,
+ SmallVectorImpl<diag::kind> &Diags) const {
+ const WarningOption *Found = std::lower_bound(
+ OptionTable, OptionTable + OptionTableSize, Group, WarningOptionCompare);
+ if (Found == OptionTable + OptionTableSize ||
+ Found->getName() != Group)
+ return true; // Option not found.
+
+ return ::getDiagnosticsInGroup(Flavor, Found, Diags);
+}
+
+void DiagnosticIDs::getAllDiagnostics(diag::Flavor Flavor,
+ SmallVectorImpl<diag::kind> &Diags) const {
+ for (unsigned i = 0; i != StaticDiagInfoSize; ++i)
+ if (StaticDiagInfo[i].getFlavor() == Flavor)
+ Diags.push_back(StaticDiagInfo[i].DiagID);
+}
+
+StringRef DiagnosticIDs::getNearestOption(diag::Flavor Flavor,
+ StringRef Group) {
+ StringRef Best;
+ unsigned BestDistance = Group.size() + 1; // Sanity threshold.
+ for (const WarningOption *i = OptionTable, *e = OptionTable + OptionTableSize;
+ i != e; ++i) {
+ // Don't suggest ignored warning flags.
+ if (!i->Members && !i->SubGroups)
+ continue;
+
+ unsigned Distance = i->getName().edit_distance(Group, true, BestDistance);
+ if (Distance > BestDistance)
+ continue;
+
+ // Don't suggest groups that are not of this kind.
+ llvm::SmallVector<diag::kind, 8> Diags;
+ if (::getDiagnosticsInGroup(Flavor, i, Diags) || Diags.empty())
+ continue;
+
+ if (Distance == BestDistance) {
+ // Two matches with the same distance, don't prefer one over the other.
+ Best = "";
+ } else if (Distance < BestDistance) {
+ // This is a better match.
+ Best = i->getName();
+ BestDistance = Distance;
+ }
+ }
+
+ return Best;
+}
+
+/// ProcessDiag - This is the method used to report a diagnostic that is
+/// finally fully formed.
+bool DiagnosticIDs::ProcessDiag(DiagnosticsEngine &Diag) const {
+ Diagnostic Info(&Diag);
+
+ assert(Diag.getClient() && "DiagnosticClient not set!");
+
+ // Figure out the diagnostic level of this message.
+ unsigned DiagID = Info.getID();
+ DiagnosticIDs::Level DiagLevel
+ = getDiagnosticLevel(DiagID, Info.getLocation(), Diag);
+
+ // Update counts for DiagnosticErrorTrap even if a fatal error occurred
+ // or diagnostics are suppressed.
+ if (DiagLevel >= DiagnosticIDs::Error) {
+ ++Diag.TrapNumErrorsOccurred;
+ if (isUnrecoverable(DiagID))
+ ++Diag.TrapNumUnrecoverableErrorsOccurred;
+ }
+
+ if (Diag.SuppressAllDiagnostics)
+ return false;
+
+ if (DiagLevel != DiagnosticIDs::Note) {
+ // Record that a fatal error occurred only when we see a second
+ // non-note diagnostic. This allows notes to be attached to the
+ // fatal error, but suppresses any diagnostics that follow those
+ // notes.
+ if (Diag.LastDiagLevel == DiagnosticIDs::Fatal)
+ Diag.FatalErrorOccurred = true;
+
+ Diag.LastDiagLevel = DiagLevel;
+ }
+
+ // If a fatal error has already been emitted, silence all subsequent
+ // diagnostics.
+ if (Diag.FatalErrorOccurred) {
+ if (DiagLevel >= DiagnosticIDs::Error &&
+ Diag.Client->IncludeInDiagnosticCounts()) {
+ ++Diag.NumErrors;
+ }
+
+ return false;
+ }
+
+ // If the client doesn't care about this message, don't issue it. If this is
+ // a note and the last real diagnostic was ignored, ignore it too.
+ if (DiagLevel == DiagnosticIDs::Ignored ||
+ (DiagLevel == DiagnosticIDs::Note &&
+ Diag.LastDiagLevel == DiagnosticIDs::Ignored))
+ return false;
+
+ if (DiagLevel >= DiagnosticIDs::Error) {
+ if (isUnrecoverable(DiagID))
+ Diag.UnrecoverableErrorOccurred = true;
+
+ // Warnings which have been upgraded to errors do not prevent compilation.
+ if (isDefaultMappingAsError(DiagID))
+ Diag.UncompilableErrorOccurred = true;
+
+ Diag.ErrorOccurred = true;
+ if (Diag.Client->IncludeInDiagnosticCounts()) {
+ ++Diag.NumErrors;
+ }
+
+ // If we've emitted a lot of errors, emit a fatal error instead of it to
+ // stop a flood of bogus errors.
+ if (Diag.ErrorLimit && Diag.NumErrors > Diag.ErrorLimit &&
+ DiagLevel == DiagnosticIDs::Error) {
+ Diag.SetDelayedDiagnostic(diag::fatal_too_many_errors);
+ return false;
+ }
+ }
+
+ // Finally, report it.
+ EmitDiag(Diag, DiagLevel);
+ return true;
+}
+
+void DiagnosticIDs::EmitDiag(DiagnosticsEngine &Diag, Level DiagLevel) const {
+ Diagnostic Info(&Diag);
+ assert(DiagLevel != DiagnosticIDs::Ignored && "Cannot emit ignored diagnostics!");
+
+ Diag.Client->HandleDiagnostic((DiagnosticsEngine::Level)DiagLevel, Info);
+ if (Diag.Client->IncludeInDiagnosticCounts()) {
+ if (DiagLevel == DiagnosticIDs::Warning)
+ ++Diag.NumWarnings;
+ }
+
+ Diag.CurDiagID = ~0U;
+}
+
+bool DiagnosticIDs::isUnrecoverable(unsigned DiagID) const {
+ if (DiagID >= diag::DIAG_UPPER_LIMIT) {
+ assert(CustomDiagInfo && "Invalid CustomDiagInfo");
+ // Custom diagnostics.
+ return CustomDiagInfo->getLevel(DiagID) >= DiagnosticIDs::Error;
+ }
+
+ // Only errors may be unrecoverable.
+ if (getBuiltinDiagClass(DiagID) < CLASS_ERROR)
+ return false;
+
+ if (DiagID == diag::err_unavailable ||
+ DiagID == diag::err_unavailable_message)
+ return false;
+
+ // Currently we consider all ARC errors as recoverable.
+ if (isARCDiagnostic(DiagID))
+ return false;
+
+ return true;
+}
+
+bool DiagnosticIDs::isARCDiagnostic(unsigned DiagID) {
+ unsigned cat = getCategoryNumberForDiag(DiagID);
+ return DiagnosticIDs::getCategoryNameFromID(cat).startswith("ARC ");
+}
diff --git a/contrib/llvm/tools/clang/lib/Basic/FileManager.cpp b/contrib/llvm/tools/clang/lib/Basic/FileManager.cpp
new file mode 100644
index 0000000..c46e2c7
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Basic/FileManager.cpp
@@ -0,0 +1,587 @@
+//===--- FileManager.cpp - File System Probing and Caching ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the FileManager interface.
+//
+//===----------------------------------------------------------------------===//
+//
+// TODO: This should index all interesting directories with dirent calls.
+// getdirentries ?
+// opendir/readdir_r/closedir ?
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/FileSystemStatCache.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Config/llvm-config.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/raw_ostream.h"
+#include <map>
+#include <set>
+#include <string>
+#include <system_error>
+
+using namespace clang;
+
+/// NON_EXISTENT_DIR - A special value distinct from null that is used to
+/// represent a dir name that doesn't exist on the disk.
+#define NON_EXISTENT_DIR reinterpret_cast<DirectoryEntry*>((intptr_t)-1)
+
+/// NON_EXISTENT_FILE - A special value distinct from null that is used to
+/// represent a filename that doesn't exist on the disk.
+#define NON_EXISTENT_FILE reinterpret_cast<FileEntry*>((intptr_t)-1)
+
+//===----------------------------------------------------------------------===//
+// Common logic.
+//===----------------------------------------------------------------------===//
+
+FileManager::FileManager(const FileSystemOptions &FSO,
+ IntrusiveRefCntPtr<vfs::FileSystem> FS)
+ : FS(FS), FileSystemOpts(FSO),
+ SeenDirEntries(64), SeenFileEntries(64), NextFileUID(0) {
+ NumDirLookups = NumFileLookups = 0;
+ NumDirCacheMisses = NumFileCacheMisses = 0;
+
+ // If the caller doesn't provide a virtual file system, just grab the real
+ // file system.
+ if (!FS)
+ this->FS = vfs::getRealFileSystem();
+}
+
+FileManager::~FileManager() {
+ for (unsigned i = 0, e = VirtualFileEntries.size(); i != e; ++i)
+ delete VirtualFileEntries[i];
+ for (unsigned i = 0, e = VirtualDirectoryEntries.size(); i != e; ++i)
+ delete VirtualDirectoryEntries[i];
+}
+
+void FileManager::addStatCache(std::unique_ptr<FileSystemStatCache> statCache,
+ bool AtBeginning) {
+ assert(statCache && "No stat cache provided?");
+ if (AtBeginning || !StatCache.get()) {
+ statCache->setNextStatCache(std::move(StatCache));
+ StatCache = std::move(statCache);
+ return;
+ }
+
+ FileSystemStatCache *LastCache = StatCache.get();
+ while (LastCache->getNextStatCache())
+ LastCache = LastCache->getNextStatCache();
+
+ LastCache->setNextStatCache(std::move(statCache));
+}
+
+void FileManager::removeStatCache(FileSystemStatCache *statCache) {
+ if (!statCache)
+ return;
+
+ if (StatCache.get() == statCache) {
+ // This is the first stat cache.
+ StatCache = StatCache->takeNextStatCache();
+ return;
+ }
+
+ // Find the stat cache in the list.
+ FileSystemStatCache *PrevCache = StatCache.get();
+ while (PrevCache && PrevCache->getNextStatCache() != statCache)
+ PrevCache = PrevCache->getNextStatCache();
+
+ assert(PrevCache && "Stat cache not found for removal");
+ PrevCache->setNextStatCache(statCache->takeNextStatCache());
+}
+
+void FileManager::clearStatCaches() {
+ StatCache.reset();
+}
+
+/// \brief Retrieve the directory that the given file name resides in.
+/// Filename can point to either a real file or a virtual file.
+static const DirectoryEntry *getDirectoryFromFile(FileManager &FileMgr,
+ StringRef Filename,
+ bool CacheFailure) {
+ if (Filename.empty())
+ return nullptr;
+
+ if (llvm::sys::path::is_separator(Filename[Filename.size() - 1]))
+ return nullptr; // If Filename is a directory.
+
+ StringRef DirName = llvm::sys::path::parent_path(Filename);
+ // Use the current directory if file has no path component.
+ if (DirName.empty())
+ DirName = ".";
+
+ return FileMgr.getDirectory(DirName, CacheFailure);
+}
+
+/// Add all ancestors of the given path (pointing to either a file or
+/// a directory) as virtual directories.
+void FileManager::addAncestorsAsVirtualDirs(StringRef Path) {
+ StringRef DirName = llvm::sys::path::parent_path(Path);
+ if (DirName.empty())
+ return;
+
+ auto &NamedDirEnt =
+ *SeenDirEntries.insert(std::make_pair(DirName, nullptr)).first;
+
+ // When caching a virtual directory, we always cache its ancestors
+ // at the same time. Therefore, if DirName is already in the cache,
+ // we don't need to recurse as its ancestors must also already be in
+ // the cache.
+ if (NamedDirEnt.second)
+ return;
+
+ // Add the virtual directory to the cache.
+ DirectoryEntry *UDE = new DirectoryEntry;
+ UDE->Name = NamedDirEnt.first().data();
+ NamedDirEnt.second = UDE;
+ VirtualDirectoryEntries.push_back(UDE);
+
+ // Recursively add the other ancestors.
+ addAncestorsAsVirtualDirs(DirName);
+}
+
+const DirectoryEntry *FileManager::getDirectory(StringRef DirName,
+ bool CacheFailure) {
+ // stat doesn't like trailing separators except for root directory.
+ // At least, on Win32 MSVCRT, stat() cannot strip trailing '/'.
+ // (though it can strip '\\')
+ if (DirName.size() > 1 &&
+ DirName != llvm::sys::path::root_path(DirName) &&
+ llvm::sys::path::is_separator(DirName.back()))
+ DirName = DirName.substr(0, DirName.size()-1);
+#ifdef LLVM_ON_WIN32
+ // Fixing a problem with "clang C:test.c" on Windows.
+ // Stat("C:") does not recognize "C:" as a valid directory
+ std::string DirNameStr;
+ if (DirName.size() > 1 && DirName.back() == ':' &&
+ DirName.equals_lower(llvm::sys::path::root_name(DirName))) {
+ DirNameStr = DirName.str() + '.';
+ DirName = DirNameStr;
+ }
+#endif
+
+ ++NumDirLookups;
+ auto &NamedDirEnt =
+ *SeenDirEntries.insert(std::make_pair(DirName, nullptr)).first;
+
+ // See if there was already an entry in the map. Note that the map
+ // contains both virtual and real directories.
+ if (NamedDirEnt.second)
+ return NamedDirEnt.second == NON_EXISTENT_DIR ? nullptr
+ : NamedDirEnt.second;
+
+ ++NumDirCacheMisses;
+
+ // By default, initialize it to invalid.
+ NamedDirEnt.second = NON_EXISTENT_DIR;
+
+ // Get the null-terminated directory name as stored as the key of the
+ // SeenDirEntries map.
+ const char *InterndDirName = NamedDirEnt.first().data();
+
+ // Check to see if the directory exists.
+ FileData Data;
+ if (getStatValue(InterndDirName, Data, false, nullptr /*directory lookup*/)) {
+ // There's no real directory at the given path.
+ if (!CacheFailure)
+ SeenDirEntries.erase(DirName);
+ return nullptr;
+ }
+
+ // It exists. See if we have already opened a directory with the
+ // same inode (this occurs on Unix-like systems when one dir is
+ // symlinked to another, for example) or the same path (on
+ // Windows).
+ DirectoryEntry &UDE = UniqueRealDirs[Data.UniqueID];
+
+ NamedDirEnt.second = &UDE;
+ if (!UDE.getName()) {
+ // We don't have this directory yet, add it. We use the string
+ // key from the SeenDirEntries map as the string.
+ UDE.Name = InterndDirName;
+ }
+
+ return &UDE;
+}
+
+const FileEntry *FileManager::getFile(StringRef Filename, bool openFile,
+ bool CacheFailure) {
+ ++NumFileLookups;
+
+ // See if there is already an entry in the map.
+ auto &NamedFileEnt =
+ *SeenFileEntries.insert(std::make_pair(Filename, nullptr)).first;
+
+ // See if there is already an entry in the map.
+ if (NamedFileEnt.second)
+ return NamedFileEnt.second == NON_EXISTENT_FILE ? nullptr
+ : NamedFileEnt.second;
+
+ ++NumFileCacheMisses;
+
+ // By default, initialize it to invalid.
+ NamedFileEnt.second = NON_EXISTENT_FILE;
+
+ // Get the null-terminated file name as stored as the key of the
+ // SeenFileEntries map.
+ const char *InterndFileName = NamedFileEnt.first().data();
+
+ // Look up the directory for the file. When looking up something like
+ // sys/foo.h we'll discover all of the search directories that have a 'sys'
+ // subdirectory. This will let us avoid having to waste time on known-to-fail
+ // searches when we go to find sys/bar.h, because all the search directories
+ // without a 'sys' subdir will get a cached failure result.
+ const DirectoryEntry *DirInfo = getDirectoryFromFile(*this, Filename,
+ CacheFailure);
+ if (DirInfo == nullptr) { // Directory doesn't exist, file can't exist.
+ if (!CacheFailure)
+ SeenFileEntries.erase(Filename);
+
+ return nullptr;
+ }
+
+ // FIXME: Use the directory info to prune this, before doing the stat syscall.
+ // FIXME: This will reduce the # syscalls.
+
+ // Nope, there isn't. Check to see if the file exists.
+ std::unique_ptr<vfs::File> F;
+ FileData Data;
+ if (getStatValue(InterndFileName, Data, true, openFile ? &F : nullptr)) {
+ // There's no real file at the given path.
+ if (!CacheFailure)
+ SeenFileEntries.erase(Filename);
+
+ return nullptr;
+ }
+
+ assert((openFile || !F) && "undesired open file");
+
+ // It exists. See if we have already opened a file with the same inode.
+ // This occurs when one dir is symlinked to another, for example.
+ FileEntry &UFE = UniqueRealFiles[Data.UniqueID];
+
+ NamedFileEnt.second = &UFE;
+
+ // If the name returned by getStatValue is different than Filename, re-intern
+ // the name.
+ if (Data.Name != Filename) {
+ auto &NamedFileEnt =
+ *SeenFileEntries.insert(std::make_pair(Data.Name, nullptr)).first;
+ if (!NamedFileEnt.second)
+ NamedFileEnt.second = &UFE;
+ else
+ assert(NamedFileEnt.second == &UFE &&
+ "filename from getStatValue() refers to wrong file");
+ InterndFileName = NamedFileEnt.first().data();
+ }
+
+ if (UFE.isValid()) { // Already have an entry with this inode, return it.
+
+ // FIXME: this hack ensures that if we look up a file by a virtual path in
+ // the VFS that the getDir() will have the virtual path, even if we found
+ // the file by a 'real' path first. This is required in order to find a
+ // module's structure when its headers/module map are mapped in the VFS.
+ // We should remove this as soon as we can properly support a file having
+ // multiple names.
+ if (DirInfo != UFE.Dir && Data.IsVFSMapped)
+ UFE.Dir = DirInfo;
+
+ // Always update the name to use the last name by which a file was accessed.
+ // FIXME: Neither this nor always using the first name is correct; we want
+ // to switch towards a design where we return a FileName object that
+ // encapsulates both the name by which the file was accessed and the
+ // corresponding FileEntry.
+ UFE.Name = InterndFileName;
+
+ return &UFE;
+ }
+
+ // Otherwise, we don't have this file yet, add it.
+ UFE.Name = InterndFileName;
+ UFE.Size = Data.Size;
+ UFE.ModTime = Data.ModTime;
+ UFE.Dir = DirInfo;
+ UFE.UID = NextFileUID++;
+ UFE.UniqueID = Data.UniqueID;
+ UFE.IsNamedPipe = Data.IsNamedPipe;
+ UFE.InPCH = Data.InPCH;
+ UFE.File = std::move(F);
+ UFE.IsValid = true;
+ return &UFE;
+}
+
+const FileEntry *
+FileManager::getVirtualFile(StringRef Filename, off_t Size,
+ time_t ModificationTime) {
+ ++NumFileLookups;
+
+ // See if there is already an entry in the map.
+ auto &NamedFileEnt =
+ *SeenFileEntries.insert(std::make_pair(Filename, nullptr)).first;
+
+ // See if there is already an entry in the map.
+ if (NamedFileEnt.second && NamedFileEnt.second != NON_EXISTENT_FILE)
+ return NamedFileEnt.second;
+
+ ++NumFileCacheMisses;
+
+ // By default, initialize it to invalid.
+ NamedFileEnt.second = NON_EXISTENT_FILE;
+
+ addAncestorsAsVirtualDirs(Filename);
+ FileEntry *UFE = nullptr;
+
+ // Now that all ancestors of Filename are in the cache, the
+ // following call is guaranteed to find the DirectoryEntry from the
+ // cache.
+ const DirectoryEntry *DirInfo = getDirectoryFromFile(*this, Filename,
+ /*CacheFailure=*/true);
+ assert(DirInfo &&
+ "The directory of a virtual file should already be in the cache.");
+
+ // Check to see if the file exists. If so, drop the virtual file
+ FileData Data;
+ const char *InterndFileName = NamedFileEnt.first().data();
+ if (getStatValue(InterndFileName, Data, true, nullptr) == 0) {
+ Data.Size = Size;
+ Data.ModTime = ModificationTime;
+ UFE = &UniqueRealFiles[Data.UniqueID];
+
+ NamedFileEnt.second = UFE;
+
+ // If we had already opened this file, close it now so we don't
+ // leak the descriptor. We're not going to use the file
+ // descriptor anyway, since this is a virtual file.
+ if (UFE->File)
+ UFE->closeFile();
+
+ // If we already have an entry with this inode, return it.
+ if (UFE->isValid())
+ return UFE;
+
+ UFE->UniqueID = Data.UniqueID;
+ UFE->IsNamedPipe = Data.IsNamedPipe;
+ UFE->InPCH = Data.InPCH;
+ }
+
+ if (!UFE) {
+ UFE = new FileEntry();
+ VirtualFileEntries.push_back(UFE);
+ NamedFileEnt.second = UFE;
+ }
+
+ UFE->Name = InterndFileName;
+ UFE->Size = Size;
+ UFE->ModTime = ModificationTime;
+ UFE->Dir = DirInfo;
+ UFE->UID = NextFileUID++;
+ UFE->File.reset();
+ return UFE;
+}
+
+void FileManager::FixupRelativePath(SmallVectorImpl<char> &path) const {
+ StringRef pathRef(path.data(), path.size());
+
+ if (FileSystemOpts.WorkingDir.empty()
+ || llvm::sys::path::is_absolute(pathRef))
+ return;
+
+ SmallString<128> NewPath(FileSystemOpts.WorkingDir);
+ llvm::sys::path::append(NewPath, pathRef);
+ path = NewPath;
+}
+
+llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>>
+FileManager::getBufferForFile(const FileEntry *Entry, bool isVolatile,
+ bool ShouldCloseOpenFile) {
+ uint64_t FileSize = Entry->getSize();
+ // If there's a high enough chance that the file have changed since we
+ // got its size, force a stat before opening it.
+ if (isVolatile)
+ FileSize = -1;
+
+ const char *Filename = Entry->getName();
+ // If the file is already open, use the open file descriptor.
+ if (Entry->File) {
+ auto Result =
+ Entry->File->getBuffer(Filename, FileSize,
+ /*RequiresNullTerminator=*/true, isVolatile);
+ // FIXME: we need a set of APIs that can make guarantees about whether a
+ // FileEntry is open or not.
+ if (ShouldCloseOpenFile)
+ Entry->closeFile();
+ return Result;
+ }
+
+ // Otherwise, open the file.
+
+ if (FileSystemOpts.WorkingDir.empty())
+ return FS->getBufferForFile(Filename, FileSize,
+ /*RequiresNullTerminator=*/true, isVolatile);
+
+ SmallString<128> FilePath(Entry->getName());
+ FixupRelativePath(FilePath);
+ return FS->getBufferForFile(FilePath, FileSize,
+ /*RequiresNullTerminator=*/true, isVolatile);
+}
+
+llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>>
+FileManager::getBufferForFile(StringRef Filename) {
+ if (FileSystemOpts.WorkingDir.empty())
+ return FS->getBufferForFile(Filename);
+
+ SmallString<128> FilePath(Filename);
+ FixupRelativePath(FilePath);
+ return FS->getBufferForFile(FilePath.c_str());
+}
+
+/// getStatValue - Get the 'stat' information for the specified path,
+/// using the cache to accelerate it if possible. This returns true
+/// if the path points to a virtual file or does not exist, or returns
+/// false if it's an existent real file. If FileDescriptor is NULL,
+/// do directory look-up instead of file look-up.
+bool FileManager::getStatValue(const char *Path, FileData &Data, bool isFile,
+ std::unique_ptr<vfs::File> *F) {
+ // FIXME: FileSystemOpts shouldn't be passed in here, all paths should be
+ // absolute!
+ if (FileSystemOpts.WorkingDir.empty())
+ return FileSystemStatCache::get(Path, Data, isFile, F,StatCache.get(), *FS);
+
+ SmallString<128> FilePath(Path);
+ FixupRelativePath(FilePath);
+
+ return FileSystemStatCache::get(FilePath.c_str(), Data, isFile, F,
+ StatCache.get(), *FS);
+}
+
+bool FileManager::getNoncachedStatValue(StringRef Path,
+ vfs::Status &Result) {
+ SmallString<128> FilePath(Path);
+ FixupRelativePath(FilePath);
+
+ llvm::ErrorOr<vfs::Status> S = FS->status(FilePath.c_str());
+ if (!S)
+ return true;
+ Result = *S;
+ return false;
+}
+
+void FileManager::invalidateCache(const FileEntry *Entry) {
+ assert(Entry && "Cannot invalidate a NULL FileEntry");
+
+ SeenFileEntries.erase(Entry->getName());
+
+ // FileEntry invalidation should not block future optimizations in the file
+ // caches. Possible alternatives are cache truncation (invalidate last N) or
+ // invalidation of the whole cache.
+ UniqueRealFiles.erase(Entry->getUniqueID());
+}
+
+
+void FileManager::GetUniqueIDMapping(
+ SmallVectorImpl<const FileEntry *> &UIDToFiles) const {
+ UIDToFiles.clear();
+ UIDToFiles.resize(NextFileUID);
+
+ // Map file entries
+ for (llvm::StringMap<FileEntry*, llvm::BumpPtrAllocator>::const_iterator
+ FE = SeenFileEntries.begin(), FEEnd = SeenFileEntries.end();
+ FE != FEEnd; ++FE)
+ if (FE->getValue() && FE->getValue() != NON_EXISTENT_FILE)
+ UIDToFiles[FE->getValue()->getUID()] = FE->getValue();
+
+ // Map virtual file entries
+ for (SmallVectorImpl<FileEntry *>::const_iterator
+ VFE = VirtualFileEntries.begin(), VFEEnd = VirtualFileEntries.end();
+ VFE != VFEEnd; ++VFE)
+ if (*VFE && *VFE != NON_EXISTENT_FILE)
+ UIDToFiles[(*VFE)->getUID()] = *VFE;
+}
+
+void FileManager::modifyFileEntry(FileEntry *File,
+ off_t Size, time_t ModificationTime) {
+ File->Size = Size;
+ File->ModTime = ModificationTime;
+}
+
+/// Remove '.' path components from the given absolute path.
+/// \return \c true if any changes were made.
+// FIXME: Move this to llvm::sys::path.
+bool FileManager::removeDotPaths(SmallVectorImpl<char> &Path) {
+ using namespace llvm::sys;
+
+ SmallVector<StringRef, 16> ComponentStack;
+ StringRef P(Path.data(), Path.size());
+
+ // Skip the root path, then look for traversal in the components.
+ StringRef Rel = path::relative_path(P);
+ bool AnyDots = false;
+ for (StringRef C : llvm::make_range(path::begin(Rel), path::end(Rel))) {
+ if (C == ".") {
+ AnyDots = true;
+ continue;
+ }
+ ComponentStack.push_back(C);
+ }
+
+ if (!AnyDots)
+ return false;
+
+ SmallString<256> Buffer = path::root_path(P);
+ for (StringRef C : ComponentStack)
+ path::append(Buffer, C);
+
+ Path.swap(Buffer);
+ return true;
+}
+
+StringRef FileManager::getCanonicalName(const DirectoryEntry *Dir) {
+ // FIXME: use llvm::sys::fs::canonical() when it gets implemented
+ llvm::DenseMap<const DirectoryEntry *, llvm::StringRef>::iterator Known
+ = CanonicalDirNames.find(Dir);
+ if (Known != CanonicalDirNames.end())
+ return Known->second;
+
+ StringRef CanonicalName(Dir->getName());
+
+#ifdef LLVM_ON_UNIX
+ char CanonicalNameBuf[PATH_MAX];
+ if (realpath(Dir->getName(), CanonicalNameBuf)) {
+ unsigned Len = strlen(CanonicalNameBuf);
+ char *Mem = static_cast<char *>(CanonicalNameStorage.Allocate(Len, 1));
+ memcpy(Mem, CanonicalNameBuf, Len);
+ CanonicalName = StringRef(Mem, Len);
+ }
+#else
+ SmallString<256> CanonicalNameBuf(CanonicalName);
+ llvm::sys::fs::make_absolute(CanonicalNameBuf);
+ llvm::sys::path::native(CanonicalNameBuf);
+ removeDotPaths(CanonicalNameBuf);
+#endif
+
+ CanonicalDirNames.insert(std::make_pair(Dir, CanonicalName));
+ return CanonicalName;
+}
+
+void FileManager::PrintStats() const {
+ llvm::errs() << "\n*** File Manager Stats:\n";
+ llvm::errs() << UniqueRealFiles.size() << " real files found, "
+ << UniqueRealDirs.size() << " real dirs found.\n";
+ llvm::errs() << VirtualFileEntries.size() << " virtual files found, "
+ << VirtualDirectoryEntries.size() << " virtual dirs found.\n";
+ llvm::errs() << NumDirLookups << " dir lookups, "
+ << NumDirCacheMisses << " dir cache misses.\n";
+ llvm::errs() << NumFileLookups << " file lookups, "
+ << NumFileCacheMisses << " file cache misses.\n";
+
+ //llvm::errs() << PagesMapped << BytesOfPagesMapped << FSLookups;
+}
diff --git a/contrib/llvm/tools/clang/lib/Basic/FileSystemStatCache.cpp b/contrib/llvm/tools/clang/lib/Basic/FileSystemStatCache.cpp
new file mode 100644
index 0000000..83e42bd
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Basic/FileSystemStatCache.cpp
@@ -0,0 +1,137 @@
+//===--- FileSystemStatCache.cpp - Caching for 'stat' calls ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the FileSystemStatCache interface.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Basic/FileSystemStatCache.h"
+#include "clang/Basic/VirtualFileSystem.h"
+#include "llvm/Support/Path.h"
+
+// FIXME: This is terrible, we need this for ::close.
+#if !defined(_MSC_VER) && !defined(__MINGW32__)
+#include <unistd.h>
+#include <sys/uio.h>
+#else
+#include <io.h>
+#endif
+using namespace clang;
+
+#if defined(_MSC_VER)
+#define S_ISDIR(s) ((_S_IFDIR & s) !=0)
+#endif
+
+void FileSystemStatCache::anchor() { }
+
+static void copyStatusToFileData(const vfs::Status &Status,
+ FileData &Data) {
+ Data.Name = Status.getName();
+ Data.Size = Status.getSize();
+ Data.ModTime = Status.getLastModificationTime().toEpochTime();
+ Data.UniqueID = Status.getUniqueID();
+ Data.IsDirectory = Status.isDirectory();
+ Data.IsNamedPipe = Status.getType() == llvm::sys::fs::file_type::fifo_file;
+ Data.InPCH = false;
+ Data.IsVFSMapped = Status.IsVFSMapped;
+}
+
+/// FileSystemStatCache::get - Get the 'stat' information for the specified
+/// path, using the cache to accelerate it if possible. This returns true if
+/// the path does not exist or false if it exists.
+///
+/// If isFile is true, then this lookup should only return success for files
+/// (not directories). If it is false this lookup should only return
+/// success for directories (not files). On a successful file lookup, the
+/// implementation can optionally fill in FileDescriptor with a valid
+/// descriptor and the client guarantees that it will close it.
+bool FileSystemStatCache::get(const char *Path, FileData &Data, bool isFile,
+ std::unique_ptr<vfs::File> *F,
+ FileSystemStatCache *Cache, vfs::FileSystem &FS) {
+ LookupResult R;
+ bool isForDir = !isFile;
+
+ // If we have a cache, use it to resolve the stat query.
+ if (Cache)
+ R = Cache->getStat(Path, Data, isFile, F, FS);
+ else if (isForDir || !F) {
+ // If this is a directory or a file descriptor is not needed and we have
+ // no cache, just go to the file system.
+ llvm::ErrorOr<vfs::Status> Status = FS.status(Path);
+ if (!Status) {
+ R = CacheMissing;
+ } else {
+ R = CacheExists;
+ copyStatusToFileData(*Status, Data);
+ }
+ } else {
+ // Otherwise, we have to go to the filesystem. We can always just use
+ // 'stat' here, but (for files) the client is asking whether the file exists
+ // because it wants to turn around and *open* it. It is more efficient to
+ // do "open+fstat" on success than it is to do "stat+open".
+ //
+ // Because of this, check to see if the file exists with 'open'. If the
+ // open succeeds, use fstat to get the stat info.
+ auto OwnedFile = FS.openFileForRead(Path);
+
+ if (!OwnedFile) {
+ // If the open fails, our "stat" fails.
+ R = CacheMissing;
+ } else {
+ // Otherwise, the open succeeded. Do an fstat to get the information
+ // about the file. We'll end up returning the open file descriptor to the
+ // client to do what they please with it.
+ llvm::ErrorOr<vfs::Status> Status = (*OwnedFile)->status();
+ if (Status) {
+ R = CacheExists;
+ copyStatusToFileData(*Status, Data);
+ *F = std::move(*OwnedFile);
+ } else {
+ // fstat rarely fails. If it does, claim the initial open didn't
+ // succeed.
+ R = CacheMissing;
+ *F = nullptr;
+ }
+ }
+ }
+
+ // If the path doesn't exist, return failure.
+ if (R == CacheMissing) return true;
+
+ // If the path exists, make sure that its "directoryness" matches the clients
+ // demands.
+ if (Data.IsDirectory != isForDir) {
+ // If not, close the file if opened.
+ if (F)
+ *F = nullptr;
+
+ return true;
+ }
+
+ return false;
+}
+
+MemorizeStatCalls::LookupResult
+MemorizeStatCalls::getStat(const char *Path, FileData &Data, bool isFile,
+ std::unique_ptr<vfs::File> *F, vfs::FileSystem &FS) {
+ LookupResult Result = statChained(Path, Data, isFile, F, FS);
+
+ // Do not cache failed stats, it is easy to construct common inconsistent
+ // situations if we do, and they are not important for PCH performance (which
+ // currently only needs the stats to construct the initial FileManager
+ // entries).
+ if (Result == CacheMissing)
+ return Result;
+
+ // Cache file 'stat' results and directories with absolutely paths.
+ if (!Data.IsDirectory || llvm::sys::path::is_absolute(Path))
+ StatCalls[Path] = Data;
+
+ return Result;
+}
diff --git a/contrib/llvm/tools/clang/lib/Basic/IdentifierTable.cpp b/contrib/llvm/tools/clang/lib/Basic/IdentifierTable.cpp
new file mode 100644
index 0000000..e830be9
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Basic/IdentifierTable.cpp
@@ -0,0 +1,645 @@
+//===--- IdentifierTable.cpp - Hash table for identifier lookup -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the IdentifierInfo, IdentifierVisitor, and
+// IdentifierTable interfaces.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Basic/CharInfo.h"
+#include "clang/Basic/IdentifierTable.h"
+#include "clang/Basic/LangOptions.h"
+#include "clang/Basic/OperatorKinds.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cstdio>
+
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// IdentifierInfo Implementation
+//===----------------------------------------------------------------------===//
+
+IdentifierInfo::IdentifierInfo() {
+ TokenID = tok::identifier;
+ ObjCOrBuiltinID = 0;
+ HasMacro = false;
+ HadMacro = false;
+ IsExtension = false;
+ IsFutureCompatKeyword = false;
+ IsPoisoned = false;
+ IsCPPOperatorKeyword = false;
+ NeedsHandleIdentifier = false;
+ IsFromAST = false;
+ ChangedAfterLoad = false;
+ RevertedTokenID = false;
+ OutOfDate = false;
+ IsModulesImport = false;
+ FETokenInfo = nullptr;
+ Entry = nullptr;
+}
+
+//===----------------------------------------------------------------------===//
+// IdentifierTable Implementation
+//===----------------------------------------------------------------------===//
+
+IdentifierIterator::~IdentifierIterator() { }
+
+IdentifierInfoLookup::~IdentifierInfoLookup() {}
+
+namespace {
+ /// \brief A simple identifier lookup iterator that represents an
+ /// empty sequence of identifiers.
+ class EmptyLookupIterator : public IdentifierIterator
+ {
+ public:
+ StringRef Next() override { return StringRef(); }
+ };
+}
+
+IdentifierIterator *IdentifierInfoLookup::getIdentifiers() {
+ return new EmptyLookupIterator();
+}
+
+ExternalIdentifierLookup::~ExternalIdentifierLookup() {}
+
+IdentifierTable::IdentifierTable(const LangOptions &LangOpts,
+ IdentifierInfoLookup* externalLookup)
+ : HashTable(8192), // Start with space for 8K identifiers.
+ ExternalLookup(externalLookup) {
+
+ // Populate the identifier table with info about keywords for the current
+ // language.
+ AddKeywords(LangOpts);
+
+
+ // Add the '_experimental_modules_import' contextual keyword.
+ get("import").setModulesImport(true);
+}
+
+//===----------------------------------------------------------------------===//
+// Language Keyword Implementation
+//===----------------------------------------------------------------------===//
+
+// Constants for TokenKinds.def
+namespace {
+ enum {
+ KEYC99 = 0x1,
+ KEYCXX = 0x2,
+ KEYCXX11 = 0x4,
+ KEYGNU = 0x8,
+ KEYMS = 0x10,
+ BOOLSUPPORT = 0x20,
+ KEYALTIVEC = 0x40,
+ KEYNOCXX = 0x80,
+ KEYBORLAND = 0x100,
+ KEYOPENCL = 0x200,
+ KEYC11 = 0x400,
+ KEYARC = 0x800,
+ KEYNOMS18 = 0x01000,
+ KEYNOOPENCL = 0x02000,
+ WCHARSUPPORT = 0x04000,
+ HALFSUPPORT = 0x08000,
+ KEYALL = (0xffff & ~KEYNOMS18 &
+ ~KEYNOOPENCL) // KEYNOMS18 and KEYNOOPENCL are used to exclude.
+ };
+
+ /// \brief How a keyword is treated in the selected standard.
+ enum KeywordStatus {
+ KS_Disabled, // Disabled
+ KS_Extension, // Is an extension
+ KS_Enabled, // Enabled
+ KS_Future // Is a keyword in future standard
+ };
+}
+
+/// \brief Translates flags as specified in TokenKinds.def into keyword status
+/// in the given language standard.
+static KeywordStatus getKeywordStatus(const LangOptions &LangOpts,
+ unsigned Flags) {
+ if (Flags == KEYALL) return KS_Enabled;
+ if (LangOpts.CPlusPlus && (Flags & KEYCXX)) return KS_Enabled;
+ if (LangOpts.CPlusPlus11 && (Flags & KEYCXX11)) return KS_Enabled;
+ if (LangOpts.C99 && (Flags & KEYC99)) return KS_Enabled;
+ if (LangOpts.GNUKeywords && (Flags & KEYGNU)) return KS_Extension;
+ if (LangOpts.MicrosoftExt && (Flags & KEYMS)) return KS_Extension;
+ if (LangOpts.Borland && (Flags & KEYBORLAND)) return KS_Extension;
+ if (LangOpts.Bool && (Flags & BOOLSUPPORT)) return KS_Enabled;
+ if (LangOpts.Half && (Flags & HALFSUPPORT)) return KS_Enabled;
+ if (LangOpts.WChar && (Flags & WCHARSUPPORT)) return KS_Enabled;
+ if (LangOpts.AltiVec && (Flags & KEYALTIVEC)) return KS_Enabled;
+ if (LangOpts.OpenCL && (Flags & KEYOPENCL)) return KS_Enabled;
+ if (!LangOpts.CPlusPlus && (Flags & KEYNOCXX)) return KS_Enabled;
+ if (LangOpts.C11 && (Flags & KEYC11)) return KS_Enabled;
+ // We treat bridge casts as objective-C keywords so we can warn on them
+ // in non-arc mode.
+ if (LangOpts.ObjC2 && (Flags & KEYARC)) return KS_Enabled;
+ if (LangOpts.CPlusPlus && (Flags & KEYCXX11)) return KS_Future;
+ return KS_Disabled;
+}
+
+/// AddKeyword - This method is used to associate a token ID with specific
+/// identifiers because they are language keywords. This causes the lexer to
+/// automatically map matching identifiers to specialized token codes.
+static void AddKeyword(StringRef Keyword,
+ tok::TokenKind TokenCode, unsigned Flags,
+ const LangOptions &LangOpts, IdentifierTable &Table) {
+ KeywordStatus AddResult = getKeywordStatus(LangOpts, Flags);
+
+ // Don't add this keyword under MSVCCompat.
+ if (LangOpts.MSVCCompat && (Flags & KEYNOMS18) &&
+ !LangOpts.isCompatibleWithMSVC(LangOptions::MSVC2015))
+ return;
+
+ // Don't add this keyword under OpenCL.
+ if (LangOpts.OpenCL && (Flags & KEYNOOPENCL))
+ return;
+
+ // Don't add this keyword if disabled in this language.
+ if (AddResult == KS_Disabled) return;
+
+ IdentifierInfo &Info =
+ Table.get(Keyword, AddResult == KS_Future ? tok::identifier : TokenCode);
+ Info.setIsExtensionToken(AddResult == KS_Extension);
+ Info.setIsFutureCompatKeyword(AddResult == KS_Future);
+}
+
+/// AddCXXOperatorKeyword - Register a C++ operator keyword alternative
+/// representations.
+static void AddCXXOperatorKeyword(StringRef Keyword,
+ tok::TokenKind TokenCode,
+ IdentifierTable &Table) {
+ IdentifierInfo &Info = Table.get(Keyword, TokenCode);
+ Info.setIsCPlusPlusOperatorKeyword();
+}
+
+/// AddObjCKeyword - Register an Objective-C \@keyword like "class" "selector"
+/// or "property".
+static void AddObjCKeyword(StringRef Name,
+ tok::ObjCKeywordKind ObjCID,
+ IdentifierTable &Table) {
+ Table.get(Name).setObjCKeywordID(ObjCID);
+}
+
+/// AddKeywords - Add all keywords to the symbol table.
+///
+void IdentifierTable::AddKeywords(const LangOptions &LangOpts) {
+ // Add keywords and tokens for the current language.
+#define KEYWORD(NAME, FLAGS) \
+ AddKeyword(StringRef(#NAME), tok::kw_ ## NAME, \
+ FLAGS, LangOpts, *this);
+#define ALIAS(NAME, TOK, FLAGS) \
+ AddKeyword(StringRef(NAME), tok::kw_ ## TOK, \
+ FLAGS, LangOpts, *this);
+#define CXX_KEYWORD_OPERATOR(NAME, ALIAS) \
+ if (LangOpts.CXXOperatorNames) \
+ AddCXXOperatorKeyword(StringRef(#NAME), tok::ALIAS, *this);
+#define OBJC1_AT_KEYWORD(NAME) \
+ if (LangOpts.ObjC1) \
+ AddObjCKeyword(StringRef(#NAME), tok::objc_##NAME, *this);
+#define OBJC2_AT_KEYWORD(NAME) \
+ if (LangOpts.ObjC2) \
+ AddObjCKeyword(StringRef(#NAME), tok::objc_##NAME, *this);
+#define TESTING_KEYWORD(NAME, FLAGS)
+#include "clang/Basic/TokenKinds.def"
+
+ if (LangOpts.ParseUnknownAnytype)
+ AddKeyword("__unknown_anytype", tok::kw___unknown_anytype, KEYALL,
+ LangOpts, *this);
+
+ // FIXME: __declspec isn't really a CUDA extension, however it is required for
+ // supporting cuda_builtin_vars.h, which uses __declspec(property). Once that
+ // has been rewritten in terms of something more generic, remove this code.
+ if (LangOpts.CUDA)
+ AddKeyword("__declspec", tok::kw___declspec, KEYALL, LangOpts, *this);
+}
+
+/// \brief Checks if the specified token kind represents a keyword in the
+/// specified language.
+/// \returns Status of the keyword in the language.
+static KeywordStatus getTokenKwStatus(const LangOptions &LangOpts,
+ tok::TokenKind K) {
+ switch (K) {
+#define KEYWORD(NAME, FLAGS) \
+ case tok::kw_##NAME: return getKeywordStatus(LangOpts, FLAGS);
+#include "clang/Basic/TokenKinds.def"
+ default: return KS_Disabled;
+ }
+}
+
+/// \brief Returns true if the identifier represents a keyword in the
+/// specified language.
+bool IdentifierInfo::isKeyword(const LangOptions &LangOpts) {
+ switch (getTokenKwStatus(LangOpts, getTokenID())) {
+ case KS_Enabled:
+ case KS_Extension:
+ return true;
+ default:
+ return false;
+ }
+}
+
+tok::PPKeywordKind IdentifierInfo::getPPKeywordID() const {
+ // We use a perfect hash function here involving the length of the keyword,
+ // the first and third character. For preprocessor ID's there are no
+ // collisions (if there were, the switch below would complain about duplicate
+ // case values). Note that this depends on 'if' being null terminated.
+
+#define HASH(LEN, FIRST, THIRD) \
+ (LEN << 5) + (((FIRST-'a') + (THIRD-'a')) & 31)
+#define CASE(LEN, FIRST, THIRD, NAME) \
+ case HASH(LEN, FIRST, THIRD): \
+ return memcmp(Name, #NAME, LEN) ? tok::pp_not_keyword : tok::pp_ ## NAME
+
+ unsigned Len = getLength();
+ if (Len < 2) return tok::pp_not_keyword;
+ const char *Name = getNameStart();
+ switch (HASH(Len, Name[0], Name[2])) {
+ default: return tok::pp_not_keyword;
+ CASE( 2, 'i', '\0', if);
+ CASE( 4, 'e', 'i', elif);
+ CASE( 4, 'e', 's', else);
+ CASE( 4, 'l', 'n', line);
+ CASE( 4, 's', 'c', sccs);
+ CASE( 5, 'e', 'd', endif);
+ CASE( 5, 'e', 'r', error);
+ CASE( 5, 'i', 'e', ident);
+ CASE( 5, 'i', 'd', ifdef);
+ CASE( 5, 'u', 'd', undef);
+
+ CASE( 6, 'a', 's', assert);
+ CASE( 6, 'd', 'f', define);
+ CASE( 6, 'i', 'n', ifndef);
+ CASE( 6, 'i', 'p', import);
+ CASE( 6, 'p', 'a', pragma);
+
+ CASE( 7, 'd', 'f', defined);
+ CASE( 7, 'i', 'c', include);
+ CASE( 7, 'w', 'r', warning);
+
+ CASE( 8, 'u', 'a', unassert);
+ CASE(12, 'i', 'c', include_next);
+
+ CASE(14, '_', 'p', __public_macro);
+
+ CASE(15, '_', 'p', __private_macro);
+
+ CASE(16, '_', 'i', __include_macros);
+#undef CASE
+#undef HASH
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Stats Implementation
+//===----------------------------------------------------------------------===//
+
+/// PrintStats - Print statistics about how well the identifier table is doing
+/// at hashing identifiers.
+void IdentifierTable::PrintStats() const {
+ unsigned NumBuckets = HashTable.getNumBuckets();
+ unsigned NumIdentifiers = HashTable.getNumItems();
+ unsigned NumEmptyBuckets = NumBuckets-NumIdentifiers;
+ unsigned AverageIdentifierSize = 0;
+ unsigned MaxIdentifierLength = 0;
+
+ // TODO: Figure out maximum times an identifier had to probe for -stats.
+ for (llvm::StringMap<IdentifierInfo*, llvm::BumpPtrAllocator>::const_iterator
+ I = HashTable.begin(), E = HashTable.end(); I != E; ++I) {
+ unsigned IdLen = I->getKeyLength();
+ AverageIdentifierSize += IdLen;
+ if (MaxIdentifierLength < IdLen)
+ MaxIdentifierLength = IdLen;
+ }
+
+ fprintf(stderr, "\n*** Identifier Table Stats:\n");
+ fprintf(stderr, "# Identifiers: %d\n", NumIdentifiers);
+ fprintf(stderr, "# Empty Buckets: %d\n", NumEmptyBuckets);
+ fprintf(stderr, "Hash density (#identifiers per bucket): %f\n",
+ NumIdentifiers/(double)NumBuckets);
+ fprintf(stderr, "Ave identifier length: %f\n",
+ (AverageIdentifierSize/(double)NumIdentifiers));
+ fprintf(stderr, "Max identifier length: %d\n", MaxIdentifierLength);
+
+ // Compute statistics about the memory allocated for identifiers.
+ HashTable.getAllocator().PrintStats();
+}
+
+//===----------------------------------------------------------------------===//
+// SelectorTable Implementation
+//===----------------------------------------------------------------------===//
+
+unsigned llvm::DenseMapInfo<clang::Selector>::getHashValue(clang::Selector S) {
+ return DenseMapInfo<void*>::getHashValue(S.getAsOpaquePtr());
+}
+
+namespace clang {
+/// MultiKeywordSelector - One of these variable length records is kept for each
+/// selector containing more than one keyword. We use a folding set
+/// to unique aggregate names (keyword selectors in ObjC parlance). Access to
+/// this class is provided strictly through Selector.
+class MultiKeywordSelector
+ : public DeclarationNameExtra, public llvm::FoldingSetNode {
+ MultiKeywordSelector(unsigned nKeys) {
+ ExtraKindOrNumArgs = NUM_EXTRA_KINDS + nKeys;
+ }
+public:
+ // Constructor for keyword selectors.
+ MultiKeywordSelector(unsigned nKeys, IdentifierInfo **IIV) {
+ assert((nKeys > 1) && "not a multi-keyword selector");
+ ExtraKindOrNumArgs = NUM_EXTRA_KINDS + nKeys;
+
+ // Fill in the trailing keyword array.
+ IdentifierInfo **KeyInfo = reinterpret_cast<IdentifierInfo **>(this+1);
+ for (unsigned i = 0; i != nKeys; ++i)
+ KeyInfo[i] = IIV[i];
+ }
+
+ // getName - Derive the full selector name and return it.
+ std::string getName() const;
+
+ unsigned getNumArgs() const { return ExtraKindOrNumArgs - NUM_EXTRA_KINDS; }
+
+ typedef IdentifierInfo *const *keyword_iterator;
+ keyword_iterator keyword_begin() const {
+ return reinterpret_cast<keyword_iterator>(this+1);
+ }
+ keyword_iterator keyword_end() const {
+ return keyword_begin()+getNumArgs();
+ }
+ IdentifierInfo *getIdentifierInfoForSlot(unsigned i) const {
+ assert(i < getNumArgs() && "getIdentifierInfoForSlot(): illegal index");
+ return keyword_begin()[i];
+ }
+ static void Profile(llvm::FoldingSetNodeID &ID,
+ keyword_iterator ArgTys, unsigned NumArgs) {
+ ID.AddInteger(NumArgs);
+ for (unsigned i = 0; i != NumArgs; ++i)
+ ID.AddPointer(ArgTys[i]);
+ }
+ void Profile(llvm::FoldingSetNodeID &ID) {
+ Profile(ID, keyword_begin(), getNumArgs());
+ }
+};
+} // end namespace clang.
+
+unsigned Selector::getNumArgs() const {
+ unsigned IIF = getIdentifierInfoFlag();
+ if (IIF <= ZeroArg)
+ return 0;
+ if (IIF == OneArg)
+ return 1;
+ // We point to a MultiKeywordSelector.
+ MultiKeywordSelector *SI = getMultiKeywordSelector();
+ return SI->getNumArgs();
+}
+
+IdentifierInfo *Selector::getIdentifierInfoForSlot(unsigned argIndex) const {
+ if (getIdentifierInfoFlag() < MultiArg) {
+ assert(argIndex == 0 && "illegal keyword index");
+ return getAsIdentifierInfo();
+ }
+ // We point to a MultiKeywordSelector.
+ MultiKeywordSelector *SI = getMultiKeywordSelector();
+ return SI->getIdentifierInfoForSlot(argIndex);
+}
+
+StringRef Selector::getNameForSlot(unsigned int argIndex) const {
+ IdentifierInfo *II = getIdentifierInfoForSlot(argIndex);
+ return II? II->getName() : StringRef();
+}
+
+std::string MultiKeywordSelector::getName() const {
+ SmallString<256> Str;
+ llvm::raw_svector_ostream OS(Str);
+ for (keyword_iterator I = keyword_begin(), E = keyword_end(); I != E; ++I) {
+ if (*I)
+ OS << (*I)->getName();
+ OS << ':';
+ }
+
+ return OS.str();
+}
+
+std::string Selector::getAsString() const {
+ if (InfoPtr == 0)
+ return "<null selector>";
+
+ if (getIdentifierInfoFlag() < MultiArg) {
+ IdentifierInfo *II = getAsIdentifierInfo();
+
+ // If the number of arguments is 0 then II is guaranteed to not be null.
+ if (getNumArgs() == 0)
+ return II->getName();
+
+ if (!II)
+ return ":";
+
+ return II->getName().str() + ":";
+ }
+
+ // We have a multiple keyword selector.
+ return getMultiKeywordSelector()->getName();
+}
+
+void Selector::print(llvm::raw_ostream &OS) const {
+ OS << getAsString();
+}
+
+/// Interpreting the given string using the normal CamelCase
+/// conventions, determine whether the given string starts with the
+/// given "word", which is assumed to end in a lowercase letter.
+static bool startsWithWord(StringRef name, StringRef word) {
+ if (name.size() < word.size()) return false;
+ return ((name.size() == word.size() || !isLowercase(name[word.size()])) &&
+ name.startswith(word));
+}
+
+ObjCMethodFamily Selector::getMethodFamilyImpl(Selector sel) {
+ IdentifierInfo *first = sel.getIdentifierInfoForSlot(0);
+ if (!first) return OMF_None;
+
+ StringRef name = first->getName();
+ if (sel.isUnarySelector()) {
+ if (name == "autorelease") return OMF_autorelease;
+ if (name == "dealloc") return OMF_dealloc;
+ if (name == "finalize") return OMF_finalize;
+ if (name == "release") return OMF_release;
+ if (name == "retain") return OMF_retain;
+ if (name == "retainCount") return OMF_retainCount;
+ if (name == "self") return OMF_self;
+ if (name == "initialize") return OMF_initialize;
+ }
+
+ if (name == "performSelector") return OMF_performSelector;
+
+ // The other method families may begin with a prefix of underscores.
+ while (!name.empty() && name.front() == '_')
+ name = name.substr(1);
+
+ if (name.empty()) return OMF_None;
+ switch (name.front()) {
+ case 'a':
+ if (startsWithWord(name, "alloc")) return OMF_alloc;
+ break;
+ case 'c':
+ if (startsWithWord(name, "copy")) return OMF_copy;
+ break;
+ case 'i':
+ if (startsWithWord(name, "init")) return OMF_init;
+ break;
+ case 'm':
+ if (startsWithWord(name, "mutableCopy")) return OMF_mutableCopy;
+ break;
+ case 'n':
+ if (startsWithWord(name, "new")) return OMF_new;
+ break;
+ default:
+ break;
+ }
+
+ return OMF_None;
+}
+
+ObjCInstanceTypeFamily Selector::getInstTypeMethodFamily(Selector sel) {
+ IdentifierInfo *first = sel.getIdentifierInfoForSlot(0);
+ if (!first) return OIT_None;
+
+ StringRef name = first->getName();
+
+ if (name.empty()) return OIT_None;
+ switch (name.front()) {
+ case 'a':
+ if (startsWithWord(name, "array")) return OIT_Array;
+ break;
+ case 'd':
+ if (startsWithWord(name, "default")) return OIT_ReturnsSelf;
+ if (startsWithWord(name, "dictionary")) return OIT_Dictionary;
+ break;
+ case 's':
+ if (startsWithWord(name, "shared")) return OIT_ReturnsSelf;
+ if (startsWithWord(name, "standard")) return OIT_Singleton;
+ case 'i':
+ if (startsWithWord(name, "init")) return OIT_Init;
+ default:
+ break;
+ }
+ return OIT_None;
+}
+
+ObjCStringFormatFamily Selector::getStringFormatFamilyImpl(Selector sel) {
+ IdentifierInfo *first = sel.getIdentifierInfoForSlot(0);
+ if (!first) return SFF_None;
+
+ StringRef name = first->getName();
+
+ switch (name.front()) {
+ case 'a':
+ if (name == "appendFormat") return SFF_NSString;
+ break;
+
+ case 'i':
+ if (name == "initWithFormat") return SFF_NSString;
+ break;
+
+ case 'l':
+ if (name == "localizedStringWithFormat") return SFF_NSString;
+ break;
+
+ case 's':
+ if (name == "stringByAppendingFormat" ||
+ name == "stringWithFormat") return SFF_NSString;
+ break;
+ }
+ return SFF_None;
+}
+
+namespace {
+ struct SelectorTableImpl {
+ llvm::FoldingSet<MultiKeywordSelector> Table;
+ llvm::BumpPtrAllocator Allocator;
+ };
+} // end anonymous namespace.
+
+static SelectorTableImpl &getSelectorTableImpl(void *P) {
+ return *static_cast<SelectorTableImpl*>(P);
+}
+
+SmallString<64>
+SelectorTable::constructSetterName(StringRef Name) {
+ SmallString<64> SetterName("set");
+ SetterName += Name;
+ SetterName[3] = toUppercase(SetterName[3]);
+ return SetterName;
+}
+
+Selector
+SelectorTable::constructSetterSelector(IdentifierTable &Idents,
+ SelectorTable &SelTable,
+ const IdentifierInfo *Name) {
+ IdentifierInfo *SetterName =
+ &Idents.get(constructSetterName(Name->getName()));
+ return SelTable.getUnarySelector(SetterName);
+}
+
+size_t SelectorTable::getTotalMemory() const {
+ SelectorTableImpl &SelTabImpl = getSelectorTableImpl(Impl);
+ return SelTabImpl.Allocator.getTotalMemory();
+}
+
+Selector SelectorTable::getSelector(unsigned nKeys, IdentifierInfo **IIV) {
+ if (nKeys < 2)
+ return Selector(IIV[0], nKeys);
+
+ SelectorTableImpl &SelTabImpl = getSelectorTableImpl(Impl);
+
+ // Unique selector, to guarantee there is one per name.
+ llvm::FoldingSetNodeID ID;
+ MultiKeywordSelector::Profile(ID, IIV, nKeys);
+
+ void *InsertPos = nullptr;
+ if (MultiKeywordSelector *SI =
+ SelTabImpl.Table.FindNodeOrInsertPos(ID, InsertPos))
+ return Selector(SI);
+
+ // MultiKeywordSelector objects are not allocated with new because they have a
+ // variable size array (for parameter types) at the end of them.
+ unsigned Size = sizeof(MultiKeywordSelector) + nKeys*sizeof(IdentifierInfo *);
+ MultiKeywordSelector *SI =
+ (MultiKeywordSelector*)SelTabImpl.Allocator.Allocate(Size,
+ llvm::alignOf<MultiKeywordSelector>());
+ new (SI) MultiKeywordSelector(nKeys, IIV);
+ SelTabImpl.Table.InsertNode(SI, InsertPos);
+ return Selector(SI);
+}
+
+SelectorTable::SelectorTable() {
+ Impl = new SelectorTableImpl();
+}
+
+SelectorTable::~SelectorTable() {
+ delete &getSelectorTableImpl(Impl);
+}
+
+const char *clang::getOperatorSpelling(OverloadedOperatorKind Operator) {
+ switch (Operator) {
+ case OO_None:
+ case NUM_OVERLOADED_OPERATORS:
+ return nullptr;
+
+#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
+ case OO_##Name: return Spelling;
+#include "clang/Basic/OperatorKinds.def"
+ }
+
+ llvm_unreachable("Invalid OverloadedOperatorKind!");
+}
diff --git a/contrib/llvm/tools/clang/lib/Basic/LangOptions.cpp b/contrib/llvm/tools/clang/lib/Basic/LangOptions.cpp
new file mode 100644
index 0000000..2c87845
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Basic/LangOptions.cpp
@@ -0,0 +1,38 @@
+//===--- LangOptions.cpp - C Language Family Language Options ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the LangOptions class.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/Basic/LangOptions.h"
+
+using namespace clang;
+
+LangOptions::LangOptions() {
+#define LANGOPT(Name, Bits, Default, Description) Name = Default;
+#define ENUM_LANGOPT(Name, Type, Bits, Default, Description) set##Name(Default);
+#include "clang/Basic/LangOptions.def"
+}
+
+void LangOptions::resetNonModularOptions() {
+#define LANGOPT(Name, Bits, Default, Description)
+#define BENIGN_LANGOPT(Name, Bits, Default, Description) Name = Default;
+#define BENIGN_ENUM_LANGOPT(Name, Type, Bits, Default, Description) \
+ Name = Default;
+#include "clang/Basic/LangOptions.def"
+
+ // FIXME: This should not be reset; modules can be different with different
+ // sanitizer options (this affects __has_feature(address_sanitizer) etc).
+ Sanitize.clear();
+ SanitizerBlacklistFiles.clear();
+
+ CurrentModule.clear();
+ ImplementationOfModule.clear();
+}
+
diff --git a/contrib/llvm/tools/clang/lib/Basic/Module.cpp b/contrib/llvm/tools/clang/lib/Basic/Module.cpp
new file mode 100644
index 0000000..7308665
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Basic/Module.cpp
@@ -0,0 +1,521 @@
+//===--- Module.cpp - Describe a module -----------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the Module class, which describes a module in the source
+// code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Basic/Module.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/LangOptions.h"
+#include "clang/Basic/TargetInfo.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+
+Module::Module(StringRef Name, SourceLocation DefinitionLoc, Module *Parent,
+ bool IsFramework, bool IsExplicit, unsigned VisibilityID)
+ : Name(Name), DefinitionLoc(DefinitionLoc), Parent(Parent), Directory(),
+ Umbrella(), ASTFile(nullptr), VisibilityID(VisibilityID),
+ IsMissingRequirement(false), IsAvailable(true), IsFromModuleFile(false),
+ IsFramework(IsFramework), IsExplicit(IsExplicit), IsSystem(false),
+ IsExternC(false), IsInferred(false), InferSubmodules(false),
+ InferExplicitSubmodules(false), InferExportWildcard(false),
+ ConfigMacrosExhaustive(false), NameVisibility(Hidden) {
+ if (Parent) {
+ if (!Parent->isAvailable())
+ IsAvailable = false;
+ if (Parent->IsSystem)
+ IsSystem = true;
+ if (Parent->IsExternC)
+ IsExternC = true;
+ IsMissingRequirement = Parent->IsMissingRequirement;
+
+ Parent->SubModuleIndex[Name] = Parent->SubModules.size();
+ Parent->SubModules.push_back(this);
+ }
+}
+
+Module::~Module() {
+ for (submodule_iterator I = submodule_begin(), IEnd = submodule_end();
+ I != IEnd; ++I) {
+ delete *I;
+ }
+}
+
+/// \brief Determine whether a translation unit built using the current
+/// language options has the given feature.
+static bool hasFeature(StringRef Feature, const LangOptions &LangOpts,
+ const TargetInfo &Target) {
+ bool HasFeature = llvm::StringSwitch<bool>(Feature)
+ .Case("altivec", LangOpts.AltiVec)
+ .Case("blocks", LangOpts.Blocks)
+ .Case("cplusplus", LangOpts.CPlusPlus)
+ .Case("cplusplus11", LangOpts.CPlusPlus11)
+ .Case("objc", LangOpts.ObjC1)
+ .Case("objc_arc", LangOpts.ObjCAutoRefCount)
+ .Case("opencl", LangOpts.OpenCL)
+ .Case("tls", Target.isTLSSupported())
+ .Default(Target.hasFeature(Feature));
+ if (!HasFeature)
+ HasFeature = std::find(LangOpts.ModuleFeatures.begin(),
+ LangOpts.ModuleFeatures.end(),
+ Feature) != LangOpts.ModuleFeatures.end();
+ return HasFeature;
+}
+
+bool Module::isAvailable(const LangOptions &LangOpts, const TargetInfo &Target,
+ Requirement &Req,
+ UnresolvedHeaderDirective &MissingHeader) const {
+ if (IsAvailable)
+ return true;
+
+ for (const Module *Current = this; Current; Current = Current->Parent) {
+ if (!Current->MissingHeaders.empty()) {
+ MissingHeader = Current->MissingHeaders.front();
+ return false;
+ }
+ for (unsigned I = 0, N = Current->Requirements.size(); I != N; ++I) {
+ if (hasFeature(Current->Requirements[I].first, LangOpts, Target) !=
+ Current->Requirements[I].second) {
+ Req = Current->Requirements[I];
+ return false;
+ }
+ }
+ }
+
+ llvm_unreachable("could not find a reason why module is unavailable");
+}
+
+bool Module::isSubModuleOf(const Module *Other) const {
+ const Module *This = this;
+ do {
+ if (This == Other)
+ return true;
+
+ This = This->Parent;
+ } while (This);
+
+ return false;
+}
+
+const Module *Module::getTopLevelModule() const {
+ const Module *Result = this;
+ while (Result->Parent)
+ Result = Result->Parent;
+
+ return Result;
+}
+
+std::string Module::getFullModuleName() const {
+ SmallVector<StringRef, 2> Names;
+
+ // Build up the set of module names (from innermost to outermost).
+ for (const Module *M = this; M; M = M->Parent)
+ Names.push_back(M->Name);
+
+ std::string Result;
+ for (SmallVectorImpl<StringRef>::reverse_iterator I = Names.rbegin(),
+ IEnd = Names.rend();
+ I != IEnd; ++I) {
+ if (!Result.empty())
+ Result += '.';
+
+ Result += *I;
+ }
+
+ return Result;
+}
+
+Module::DirectoryName Module::getUmbrellaDir() const {
+ if (Header U = getUmbrellaHeader())
+ return {"", U.Entry->getDir()};
+
+ return {UmbrellaAsWritten, Umbrella.dyn_cast<const DirectoryEntry *>()};
+}
+
+ArrayRef<const FileEntry *> Module::getTopHeaders(FileManager &FileMgr) {
+ if (!TopHeaderNames.empty()) {
+ for (std::vector<std::string>::iterator
+ I = TopHeaderNames.begin(), E = TopHeaderNames.end(); I != E; ++I) {
+ if (const FileEntry *FE = FileMgr.getFile(*I))
+ TopHeaders.insert(FE);
+ }
+ TopHeaderNames.clear();
+ }
+
+ return llvm::makeArrayRef(TopHeaders.begin(), TopHeaders.end());
+}
+
+bool Module::directlyUses(const Module *Requested) const {
+ auto *Top = getTopLevelModule();
+
+ // A top-level module implicitly uses itself.
+ if (Requested->isSubModuleOf(Top))
+ return true;
+
+ for (auto *Use : Top->DirectUses)
+ if (Requested->isSubModuleOf(Use))
+ return true;
+ return false;
+}
+
+void Module::addRequirement(StringRef Feature, bool RequiredState,
+ const LangOptions &LangOpts,
+ const TargetInfo &Target) {
+ Requirements.push_back(Requirement(Feature, RequiredState));
+
+ // If this feature is currently available, we're done.
+ if (hasFeature(Feature, LangOpts, Target) == RequiredState)
+ return;
+
+ markUnavailable(/*MissingRequirement*/true);
+}
+
+void Module::markUnavailable(bool MissingRequirement) {
+ if (!IsAvailable)
+ return;
+
+ SmallVector<Module *, 2> Stack;
+ Stack.push_back(this);
+ while (!Stack.empty()) {
+ Module *Current = Stack.back();
+ Stack.pop_back();
+
+ if (!Current->IsAvailable)
+ continue;
+
+ Current->IsAvailable = false;
+ Current->IsMissingRequirement |= MissingRequirement;
+ for (submodule_iterator Sub = Current->submodule_begin(),
+ SubEnd = Current->submodule_end();
+ Sub != SubEnd; ++Sub) {
+ if ((*Sub)->IsAvailable)
+ Stack.push_back(*Sub);
+ }
+ }
+}
+
+Module *Module::findSubmodule(StringRef Name) const {
+ llvm::StringMap<unsigned>::const_iterator Pos = SubModuleIndex.find(Name);
+ if (Pos == SubModuleIndex.end())
+ return nullptr;
+
+ return SubModules[Pos->getValue()];
+}
+
+static void printModuleId(raw_ostream &OS, const ModuleId &Id) {
+ for (unsigned I = 0, N = Id.size(); I != N; ++I) {
+ if (I)
+ OS << ".";
+ OS << Id[I].first;
+ }
+}
+
+void Module::getExportedModules(SmallVectorImpl<Module *> &Exported) const {
+ // All non-explicit submodules are exported.
+ for (std::vector<Module *>::const_iterator I = SubModules.begin(),
+ E = SubModules.end();
+ I != E; ++I) {
+ Module *Mod = *I;
+ if (!Mod->IsExplicit)
+ Exported.push_back(Mod);
+ }
+
+ // Find re-exported modules by filtering the list of imported modules.
+ bool AnyWildcard = false;
+ bool UnrestrictedWildcard = false;
+ SmallVector<Module *, 4> WildcardRestrictions;
+ for (unsigned I = 0, N = Exports.size(); I != N; ++I) {
+ Module *Mod = Exports[I].getPointer();
+ if (!Exports[I].getInt()) {
+ // Export a named module directly; no wildcards involved.
+ Exported.push_back(Mod);
+
+ continue;
+ }
+
+ // Wildcard export: export all of the imported modules that match
+ // the given pattern.
+ AnyWildcard = true;
+ if (UnrestrictedWildcard)
+ continue;
+
+ if (Module *Restriction = Exports[I].getPointer())
+ WildcardRestrictions.push_back(Restriction);
+ else {
+ WildcardRestrictions.clear();
+ UnrestrictedWildcard = true;
+ }
+ }
+
+ // If there were any wildcards, push any imported modules that were
+ // re-exported by the wildcard restriction.
+ if (!AnyWildcard)
+ return;
+
+ for (unsigned I = 0, N = Imports.size(); I != N; ++I) {
+ Module *Mod = Imports[I];
+ bool Acceptable = UnrestrictedWildcard;
+ if (!Acceptable) {
+ // Check whether this module meets one of the restrictions.
+ for (unsigned R = 0, NR = WildcardRestrictions.size(); R != NR; ++R) {
+ Module *Restriction = WildcardRestrictions[R];
+ if (Mod == Restriction || Mod->isSubModuleOf(Restriction)) {
+ Acceptable = true;
+ break;
+ }
+ }
+ }
+
+ if (!Acceptable)
+ continue;
+
+ Exported.push_back(Mod);
+ }
+}
+
+void Module::buildVisibleModulesCache() const {
+ assert(VisibleModulesCache.empty() && "cache does not need building");
+
+ // This module is visible to itself.
+ VisibleModulesCache.insert(this);
+
+ // Every imported module is visible.
+ SmallVector<Module *, 16> Stack(Imports.begin(), Imports.end());
+ while (!Stack.empty()) {
+ Module *CurrModule = Stack.pop_back_val();
+
+ // Every module transitively exported by an imported module is visible.
+ if (VisibleModulesCache.insert(CurrModule).second)
+ CurrModule->getExportedModules(Stack);
+ }
+}
+
+void Module::print(raw_ostream &OS, unsigned Indent) const {
+ OS.indent(Indent);
+ if (IsFramework)
+ OS << "framework ";
+ if (IsExplicit)
+ OS << "explicit ";
+ OS << "module " << Name;
+
+ if (IsSystem || IsExternC) {
+ OS.indent(Indent + 2);
+ if (IsSystem)
+ OS << " [system]";
+ if (IsExternC)
+ OS << " [extern_c]";
+ }
+
+ OS << " {\n";
+
+ if (!Requirements.empty()) {
+ OS.indent(Indent + 2);
+ OS << "requires ";
+ for (unsigned I = 0, N = Requirements.size(); I != N; ++I) {
+ if (I)
+ OS << ", ";
+ if (!Requirements[I].second)
+ OS << "!";
+ OS << Requirements[I].first;
+ }
+ OS << "\n";
+ }
+
+ if (Header H = getUmbrellaHeader()) {
+ OS.indent(Indent + 2);
+ OS << "umbrella header \"";
+ OS.write_escaped(H.NameAsWritten);
+ OS << "\"\n";
+ } else if (DirectoryName D = getUmbrellaDir()) {
+ OS.indent(Indent + 2);
+ OS << "umbrella \"";
+ OS.write_escaped(D.NameAsWritten);
+ OS << "\"\n";
+ }
+
+ if (!ConfigMacros.empty() || ConfigMacrosExhaustive) {
+ OS.indent(Indent + 2);
+ OS << "config_macros ";
+ if (ConfigMacrosExhaustive)
+ OS << "[exhaustive]";
+ for (unsigned I = 0, N = ConfigMacros.size(); I != N; ++I) {
+ if (I)
+ OS << ", ";
+ OS << ConfigMacros[I];
+ }
+ OS << "\n";
+ }
+
+ struct {
+ StringRef Prefix;
+ HeaderKind Kind;
+ } Kinds[] = {{"", HK_Normal},
+ {"textual ", HK_Textual},
+ {"private ", HK_Private},
+ {"private textual ", HK_PrivateTextual},
+ {"exclude ", HK_Excluded}};
+
+ for (auto &K : Kinds) {
+ for (auto &H : Headers[K.Kind]) {
+ OS.indent(Indent + 2);
+ OS << K.Prefix << "header \"";
+ OS.write_escaped(H.NameAsWritten);
+ OS << "\"\n";
+ }
+ }
+
+ for (submodule_const_iterator MI = submodule_begin(), MIEnd = submodule_end();
+ MI != MIEnd; ++MI)
+ // Print inferred subframework modules so that we don't need to re-infer
+ // them (requires expensive directory iteration + stat calls) when we build
+ // the module. Regular inferred submodules are OK, as we need to look at all
+ // those header files anyway.
+ if (!(*MI)->IsInferred || (*MI)->IsFramework)
+ (*MI)->print(OS, Indent + 2);
+
+ for (unsigned I = 0, N = Exports.size(); I != N; ++I) {
+ OS.indent(Indent + 2);
+ OS << "export ";
+ if (Module *Restriction = Exports[I].getPointer()) {
+ OS << Restriction->getFullModuleName();
+ if (Exports[I].getInt())
+ OS << ".*";
+ } else {
+ OS << "*";
+ }
+ OS << "\n";
+ }
+
+ for (unsigned I = 0, N = UnresolvedExports.size(); I != N; ++I) {
+ OS.indent(Indent + 2);
+ OS << "export ";
+ printModuleId(OS, UnresolvedExports[I].Id);
+ if (UnresolvedExports[I].Wildcard) {
+ if (UnresolvedExports[I].Id.empty())
+ OS << "*";
+ else
+ OS << ".*";
+ }
+ OS << "\n";
+ }
+
+ for (unsigned I = 0, N = DirectUses.size(); I != N; ++I) {
+ OS.indent(Indent + 2);
+ OS << "use ";
+ OS << DirectUses[I]->getFullModuleName();
+ OS << "\n";
+ }
+
+ for (unsigned I = 0, N = UnresolvedDirectUses.size(); I != N; ++I) {
+ OS.indent(Indent + 2);
+ OS << "use ";
+ printModuleId(OS, UnresolvedDirectUses[I]);
+ OS << "\n";
+ }
+
+ for (unsigned I = 0, N = LinkLibraries.size(); I != N; ++I) {
+ OS.indent(Indent + 2);
+ OS << "link ";
+ if (LinkLibraries[I].IsFramework)
+ OS << "framework ";
+ OS << "\"";
+ OS.write_escaped(LinkLibraries[I].Library);
+ OS << "\"";
+ }
+
+ for (unsigned I = 0, N = UnresolvedConflicts.size(); I != N; ++I) {
+ OS.indent(Indent + 2);
+ OS << "conflict ";
+ printModuleId(OS, UnresolvedConflicts[I].Id);
+ OS << ", \"";
+ OS.write_escaped(UnresolvedConflicts[I].Message);
+ OS << "\"\n";
+ }
+
+ for (unsigned I = 0, N = Conflicts.size(); I != N; ++I) {
+ OS.indent(Indent + 2);
+ OS << "conflict ";
+ OS << Conflicts[I].Other->getFullModuleName();
+ OS << ", \"";
+ OS.write_escaped(Conflicts[I].Message);
+ OS << "\"\n";
+ }
+
+ if (InferSubmodules) {
+ OS.indent(Indent + 2);
+ if (InferExplicitSubmodules)
+ OS << "explicit ";
+ OS << "module * {\n";
+ if (InferExportWildcard) {
+ OS.indent(Indent + 4);
+ OS << "export *\n";
+ }
+ OS.indent(Indent + 2);
+ OS << "}\n";
+ }
+
+ OS.indent(Indent);
+ OS << "}\n";
+}
+
+void Module::dump() const {
+ print(llvm::errs());
+}
+
+void VisibleModuleSet::setVisible(Module *M, SourceLocation Loc,
+ VisibleCallback Vis, ConflictCallback Cb) {
+ if (isVisible(M))
+ return;
+
+ ++Generation;
+
+ struct Visiting {
+ Module *M;
+ Visiting *ExportedBy;
+ };
+
+ std::function<void(Visiting)> VisitModule = [&](Visiting V) {
+ // Modules that aren't available cannot be made visible.
+ if (!V.M->isAvailable())
+ return;
+
+ // Nothing to do for a module that's already visible.
+ unsigned ID = V.M->getVisibilityID();
+ if (ImportLocs.size() <= ID)
+ ImportLocs.resize(ID + 1);
+ else if (ImportLocs[ID].isValid())
+ return;
+
+ ImportLocs[ID] = Loc;
+ Vis(M);
+
+ // Make any exported modules visible.
+ SmallVector<Module *, 16> Exports;
+ V.M->getExportedModules(Exports);
+ for (Module *E : Exports)
+ VisitModule({E, &V});
+
+ for (auto &C : V.M->Conflicts) {
+ if (isVisible(C.Other)) {
+ llvm::SmallVector<Module*, 8> Path;
+ for (Visiting *I = &V; I; I = I->ExportedBy)
+ Path.push_back(I->M);
+ Cb(Path, C.Other, C.Message);
+ }
+ }
+ };
+ VisitModule({M, nullptr});
+}
diff --git a/contrib/llvm/tools/clang/lib/Basic/ObjCRuntime.cpp b/contrib/llvm/tools/clang/lib/Basic/ObjCRuntime.cpp
new file mode 100644
index 0000000..be50fc4
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Basic/ObjCRuntime.cpp
@@ -0,0 +1,90 @@
+//===- ObjCRuntime.cpp - Objective-C Runtime Handling -----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the ObjCRuntime class, which represents the
+// target Objective-C runtime.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/Basic/ObjCRuntime.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+
+std::string ObjCRuntime::getAsString() const {
+ std::string Result;
+ {
+ llvm::raw_string_ostream Out(Result);
+ Out << *this;
+ }
+ return Result;
+}
+
+raw_ostream &clang::operator<<(raw_ostream &out, const ObjCRuntime &value) {
+ switch (value.getKind()) {
+ case ObjCRuntime::MacOSX: out << "macosx"; break;
+ case ObjCRuntime::FragileMacOSX: out << "macosx-fragile"; break;
+ case ObjCRuntime::iOS: out << "ios"; break;
+ case ObjCRuntime::GNUstep: out << "gnustep"; break;
+ case ObjCRuntime::GCC: out << "gcc"; break;
+ case ObjCRuntime::ObjFW: out << "objfw"; break;
+ }
+ if (value.getVersion() > VersionTuple(0)) {
+ out << '-' << value.getVersion();
+ }
+ return out;
+}
+
+bool ObjCRuntime::tryParse(StringRef input) {
+ // Look for the last dash.
+ std::size_t dash = input.rfind('-');
+
+ // We permit dashes in the runtime name, and we also permit the
+ // version to be omitted, so if we see a dash not followed by a
+ // digit then we need to ignore it.
+ if (dash != StringRef::npos && dash + 1 != input.size() &&
+ (input[dash+1] < '0' || input[dash+1] > '9')) {
+ dash = StringRef::npos;
+ }
+
+ // Everything prior to that must be a valid string name.
+ Kind kind;
+ StringRef runtimeName = input.substr(0, dash);
+ Version = VersionTuple(0);
+ if (runtimeName == "macosx") {
+ kind = ObjCRuntime::MacOSX;
+ } else if (runtimeName == "macosx-fragile") {
+ kind = ObjCRuntime::FragileMacOSX;
+ } else if (runtimeName == "ios") {
+ kind = ObjCRuntime::iOS;
+ } else if (runtimeName == "gnustep") {
+ // If no version is specified then default to the most recent one that we
+ // know about.
+ Version = VersionTuple(1, 6);
+ kind = ObjCRuntime::GNUstep;
+ } else if (runtimeName == "gcc") {
+ kind = ObjCRuntime::GCC;
+ } else if (runtimeName == "objfw") {
+ kind = ObjCRuntime::ObjFW;
+ Version = VersionTuple(0, 8);
+ } else {
+ return true;
+ }
+ TheKind = kind;
+
+ if (dash != StringRef::npos) {
+ StringRef verString = input.substr(dash + 1);
+ if (Version.tryParse(verString))
+ return true;
+ }
+
+ if (kind == ObjCRuntime::ObjFW && Version > VersionTuple(0, 8))
+ Version = VersionTuple(0, 8);
+
+ return false;
+}
diff --git a/contrib/llvm/tools/clang/lib/Basic/OpenMPKinds.cpp b/contrib/llvm/tools/clang/lib/Basic/OpenMPKinds.cpp
new file mode 100644
index 0000000..b83a069
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Basic/OpenMPKinds.cpp
@@ -0,0 +1,379 @@
+//===--- OpenMPKinds.cpp - Token Kinds Support ----------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// \brief This file implements the OpenMP enum and support functions.
+///
+//===----------------------------------------------------------------------===//
+
+#include "clang/Basic/OpenMPKinds.h"
+#include "clang/Basic/IdentifierTable.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <cassert>
+
+using namespace clang;
+
+OpenMPDirectiveKind clang::getOpenMPDirectiveKind(StringRef Str) {
+ return llvm::StringSwitch<OpenMPDirectiveKind>(Str)
+#define OPENMP_DIRECTIVE(Name) .Case(#Name, OMPD_##Name)
+#define OPENMP_DIRECTIVE_EXT(Name, Str) .Case(Str, OMPD_##Name)
+#include "clang/Basic/OpenMPKinds.def"
+ .Default(OMPD_unknown);
+}
+
+const char *clang::getOpenMPDirectiveName(OpenMPDirectiveKind Kind) {
+ assert(Kind <= OMPD_unknown);
+ switch (Kind) {
+ case OMPD_unknown:
+ return "unknown";
+#define OPENMP_DIRECTIVE(Name) \
+ case OMPD_##Name: \
+ return #Name;
+#define OPENMP_DIRECTIVE_EXT(Name, Str) \
+ case OMPD_##Name: \
+ return Str;
+#include "clang/Basic/OpenMPKinds.def"
+ break;
+ }
+ llvm_unreachable("Invalid OpenMP directive kind");
+}
+
+OpenMPClauseKind clang::getOpenMPClauseKind(StringRef Str) {
+ // 'flush' clause cannot be specified explicitly, because this is an implicit
+ // clause for 'flush' directive. If the 'flush' clause is explicitly specified
+ // the Parser should generate a warning about extra tokens at the end of the
+ // directive.
+ if (Str == "flush")
+ return OMPC_unknown;
+ return llvm::StringSwitch<OpenMPClauseKind>(Str)
+#define OPENMP_CLAUSE(Name, Class) .Case(#Name, OMPC_##Name)
+#include "clang/Basic/OpenMPKinds.def"
+ .Default(OMPC_unknown);
+}
+
+const char *clang::getOpenMPClauseName(OpenMPClauseKind Kind) {
+ assert(Kind <= OMPC_unknown);
+ switch (Kind) {
+ case OMPC_unknown:
+ return "unknown";
+#define OPENMP_CLAUSE(Name, Class) \
+ case OMPC_##Name: \
+ return #Name;
+#include "clang/Basic/OpenMPKinds.def"
+ case OMPC_threadprivate:
+ return "threadprivate or thread local";
+ }
+ llvm_unreachable("Invalid OpenMP clause kind");
+}
+
+unsigned clang::getOpenMPSimpleClauseType(OpenMPClauseKind Kind,
+ StringRef Str) {
+ switch (Kind) {
+ case OMPC_default:
+ return llvm::StringSwitch<OpenMPDefaultClauseKind>(Str)
+#define OPENMP_DEFAULT_KIND(Name) .Case(#Name, OMPC_DEFAULT_##Name)
+#include "clang/Basic/OpenMPKinds.def"
+ .Default(OMPC_DEFAULT_unknown);
+ case OMPC_proc_bind:
+ return llvm::StringSwitch<OpenMPProcBindClauseKind>(Str)
+#define OPENMP_PROC_BIND_KIND(Name) .Case(#Name, OMPC_PROC_BIND_##Name)
+#include "clang/Basic/OpenMPKinds.def"
+ .Default(OMPC_PROC_BIND_unknown);
+ case OMPC_schedule:
+ return llvm::StringSwitch<OpenMPScheduleClauseKind>(Str)
+#define OPENMP_SCHEDULE_KIND(Name) .Case(#Name, OMPC_SCHEDULE_##Name)
+#include "clang/Basic/OpenMPKinds.def"
+ .Default(OMPC_SCHEDULE_unknown);
+ case OMPC_unknown:
+ case OMPC_threadprivate:
+ case OMPC_if:
+ case OMPC_final:
+ case OMPC_num_threads:
+ case OMPC_safelen:
+ case OMPC_collapse:
+ case OMPC_private:
+ case OMPC_firstprivate:
+ case OMPC_lastprivate:
+ case OMPC_shared:
+ case OMPC_reduction:
+ case OMPC_linear:
+ case OMPC_aligned:
+ case OMPC_copyin:
+ case OMPC_copyprivate:
+ case OMPC_ordered:
+ case OMPC_nowait:
+ case OMPC_untied:
+ case OMPC_mergeable:
+ case OMPC_flush:
+ case OMPC_read:
+ case OMPC_write:
+ case OMPC_update:
+ case OMPC_capture:
+ case OMPC_seq_cst:
+ break;
+ }
+ llvm_unreachable("Invalid OpenMP simple clause kind");
+}
+
+const char *clang::getOpenMPSimpleClauseTypeName(OpenMPClauseKind Kind,
+ unsigned Type) {
+ switch (Kind) {
+ case OMPC_default:
+ switch (Type) {
+ case OMPC_DEFAULT_unknown:
+ return "unknown";
+#define OPENMP_DEFAULT_KIND(Name) \
+ case OMPC_DEFAULT_##Name: \
+ return #Name;
+#include "clang/Basic/OpenMPKinds.def"
+ }
+ llvm_unreachable("Invalid OpenMP 'default' clause type");
+ case OMPC_proc_bind:
+ switch (Type) {
+ case OMPC_PROC_BIND_unknown:
+ return "unknown";
+#define OPENMP_PROC_BIND_KIND(Name) \
+ case OMPC_PROC_BIND_##Name: \
+ return #Name;
+#include "clang/Basic/OpenMPKinds.def"
+ }
+ llvm_unreachable("Invalid OpenMP 'proc_bind' clause type");
+ case OMPC_schedule:
+ switch (Type) {
+ case OMPC_SCHEDULE_unknown:
+ return "unknown";
+#define OPENMP_SCHEDULE_KIND(Name) \
+ case OMPC_SCHEDULE_##Name: \
+ return #Name;
+#include "clang/Basic/OpenMPKinds.def"
+ }
+ llvm_unreachable("Invalid OpenMP 'schedule' clause type");
+ case OMPC_unknown:
+ case OMPC_threadprivate:
+ case OMPC_if:
+ case OMPC_final:
+ case OMPC_num_threads:
+ case OMPC_safelen:
+ case OMPC_collapse:
+ case OMPC_private:
+ case OMPC_firstprivate:
+ case OMPC_lastprivate:
+ case OMPC_shared:
+ case OMPC_reduction:
+ case OMPC_linear:
+ case OMPC_aligned:
+ case OMPC_copyin:
+ case OMPC_copyprivate:
+ case OMPC_ordered:
+ case OMPC_nowait:
+ case OMPC_untied:
+ case OMPC_mergeable:
+ case OMPC_flush:
+ case OMPC_read:
+ case OMPC_write:
+ case OMPC_update:
+ case OMPC_capture:
+ case OMPC_seq_cst:
+ break;
+ }
+ llvm_unreachable("Invalid OpenMP simple clause kind");
+}
+
+bool clang::isAllowedClauseForDirective(OpenMPDirectiveKind DKind,
+ OpenMPClauseKind CKind) {
+ assert(DKind <= OMPD_unknown);
+ assert(CKind <= OMPC_unknown);
+ switch (DKind) {
+ case OMPD_parallel:
+ switch (CKind) {
+#define OPENMP_PARALLEL_CLAUSE(Name) \
+ case OMPC_##Name: \
+ return true;
+#include "clang/Basic/OpenMPKinds.def"
+ default:
+ break;
+ }
+ break;
+ case OMPD_simd:
+ switch (CKind) {
+#define OPENMP_SIMD_CLAUSE(Name) \
+ case OMPC_##Name: \
+ return true;
+#include "clang/Basic/OpenMPKinds.def"
+ default:
+ break;
+ }
+ break;
+ case OMPD_for:
+ switch (CKind) {
+#define OPENMP_FOR_CLAUSE(Name) \
+ case OMPC_##Name: \
+ return true;
+#include "clang/Basic/OpenMPKinds.def"
+ default:
+ break;
+ }
+ break;
+ case OMPD_for_simd:
+ switch (CKind) {
+#define OPENMP_FOR_SIMD_CLAUSE(Name) \
+ case OMPC_##Name: \
+ return true;
+#include "clang/Basic/OpenMPKinds.def"
+ default:
+ break;
+ }
+ break;
+ case OMPD_sections:
+ switch (CKind) {
+#define OPENMP_SECTIONS_CLAUSE(Name) \
+ case OMPC_##Name: \
+ return true;
+#include "clang/Basic/OpenMPKinds.def"
+ default:
+ break;
+ }
+ break;
+ case OMPD_single:
+ switch (CKind) {
+#define OPENMP_SINGLE_CLAUSE(Name) \
+ case OMPC_##Name: \
+ return true;
+#include "clang/Basic/OpenMPKinds.def"
+ default:
+ break;
+ }
+ break;
+ case OMPD_parallel_for:
+ switch (CKind) {
+#define OPENMP_PARALLEL_FOR_CLAUSE(Name) \
+ case OMPC_##Name: \
+ return true;
+#include "clang/Basic/OpenMPKinds.def"
+ default:
+ break;
+ }
+ break;
+ case OMPD_parallel_for_simd:
+ switch (CKind) {
+#define OPENMP_PARALLEL_FOR_SIMD_CLAUSE(Name) \
+ case OMPC_##Name: \
+ return true;
+#include "clang/Basic/OpenMPKinds.def"
+ default:
+ break;
+ }
+ break;
+ case OMPD_parallel_sections:
+ switch (CKind) {
+#define OPENMP_PARALLEL_SECTIONS_CLAUSE(Name) \
+ case OMPC_##Name: \
+ return true;
+#include "clang/Basic/OpenMPKinds.def"
+ default:
+ break;
+ }
+ break;
+ case OMPD_task:
+ switch (CKind) {
+#define OPENMP_TASK_CLAUSE(Name) \
+ case OMPC_##Name: \
+ return true;
+#include "clang/Basic/OpenMPKinds.def"
+ default:
+ break;
+ }
+ break;
+ case OMPD_flush:
+ return CKind == OMPC_flush;
+ break;
+ case OMPD_atomic:
+ switch (CKind) {
+#define OPENMP_ATOMIC_CLAUSE(Name) \
+ case OMPC_##Name: \
+ return true;
+#include "clang/Basic/OpenMPKinds.def"
+ default:
+ break;
+ }
+ break;
+ case OMPD_target:
+ switch (CKind) {
+#define OPENMP_TARGET_CLAUSE(Name) \
+ case OMPC_##Name: \
+ return true;
+#include "clang/Basic/OpenMPKinds.def"
+ default:
+ break;
+ }
+ break;
+ case OMPD_teams:
+ switch (CKind) {
+#define OPENMP_TEAMS_CLAUSE(Name) \
+ case OMPC_##Name: \
+ return true;
+#include "clang/Basic/OpenMPKinds.def"
+ default:
+ break;
+ }
+ break;
+ case OMPD_unknown:
+ case OMPD_threadprivate:
+ case OMPD_section:
+ case OMPD_master:
+ case OMPD_critical:
+ case OMPD_taskyield:
+ case OMPD_barrier:
+ case OMPD_taskwait:
+ case OMPD_ordered:
+ break;
+ }
+ return false;
+}
+
+bool clang::isOpenMPLoopDirective(OpenMPDirectiveKind DKind) {
+ return DKind == OMPD_simd || DKind == OMPD_for || DKind == OMPD_for_simd ||
+ DKind == OMPD_parallel_for ||
+ DKind == OMPD_parallel_for_simd; // TODO add next directives.
+}
+
+bool clang::isOpenMPWorksharingDirective(OpenMPDirectiveKind DKind) {
+ return DKind == OMPD_for || DKind == OMPD_for_simd ||
+ DKind == OMPD_sections || DKind == OMPD_section ||
+ DKind == OMPD_single || DKind == OMPD_parallel_for ||
+ DKind == OMPD_parallel_for_simd ||
+ DKind == OMPD_parallel_sections; // TODO add next directives.
+}
+
+bool clang::isOpenMPParallelDirective(OpenMPDirectiveKind DKind) {
+ return DKind == OMPD_parallel || DKind == OMPD_parallel_for ||
+ DKind == OMPD_parallel_for_simd ||
+ DKind == OMPD_parallel_sections; // TODO add next directives.
+}
+
+bool clang::isOpenMPTeamsDirective(OpenMPDirectiveKind DKind) {
+ return DKind == OMPD_teams; // TODO add next directives.
+}
+
+bool clang::isOpenMPSimdDirective(OpenMPDirectiveKind DKind) {
+ return DKind == OMPD_simd || DKind == OMPD_for_simd ||
+ DKind == OMPD_parallel_for_simd; // TODO add next directives.
+}
+
+bool clang::isOpenMPPrivate(OpenMPClauseKind Kind) {
+ return Kind == OMPC_private || Kind == OMPC_firstprivate ||
+ Kind == OMPC_lastprivate || Kind == OMPC_linear ||
+ Kind == OMPC_reduction; // TODO add next clauses like 'reduction'.
+}
+
+bool clang::isOpenMPThreadPrivate(OpenMPClauseKind Kind) {
+ return Kind == OMPC_threadprivate || Kind == OMPC_copyin;
+}
+
diff --git a/contrib/llvm/tools/clang/lib/Basic/OperatorPrecedence.cpp b/contrib/llvm/tools/clang/lib/Basic/OperatorPrecedence.cpp
new file mode 100644
index 0000000..ade8d6d
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Basic/OperatorPrecedence.cpp
@@ -0,0 +1,76 @@
+//===--- OperatorPrecedence.cpp ---------------------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// \brief Defines and computes precedence levels for binary/ternary operators.
+///
+//===----------------------------------------------------------------------===//
+#include "clang/Basic/OperatorPrecedence.h"
+
+namespace clang {
+
+prec::Level getBinOpPrecedence(tok::TokenKind Kind, bool GreaterThanIsOperator,
+ bool CPlusPlus11) {
+ switch (Kind) {
+ case tok::greater:
+ // C++ [temp.names]p3:
+ // [...] When parsing a template-argument-list, the first
+ // non-nested > is taken as the ending delimiter rather than a
+ // greater-than operator. [...]
+ if (GreaterThanIsOperator)
+ return prec::Relational;
+ return prec::Unknown;
+
+ case tok::greatergreater:
+ // C++11 [temp.names]p3:
+ //
+ // [...] Similarly, the first non-nested >> is treated as two
+ // consecutive but distinct > tokens, the first of which is
+ // taken as the end of the template-argument-list and completes
+ // the template-id. [...]
+ if (GreaterThanIsOperator || !CPlusPlus11)
+ return prec::Shift;
+ return prec::Unknown;
+
+ default: return prec::Unknown;
+ case tok::comma: return prec::Comma;
+ case tok::equal:
+ case tok::starequal:
+ case tok::slashequal:
+ case tok::percentequal:
+ case tok::plusequal:
+ case tok::minusequal:
+ case tok::lesslessequal:
+ case tok::greatergreaterequal:
+ case tok::ampequal:
+ case tok::caretequal:
+ case tok::pipeequal: return prec::Assignment;
+ case tok::question: return prec::Conditional;
+ case tok::pipepipe: return prec::LogicalOr;
+ case tok::ampamp: return prec::LogicalAnd;
+ case tok::pipe: return prec::InclusiveOr;
+ case tok::caret: return prec::ExclusiveOr;
+ case tok::amp: return prec::And;
+ case tok::exclaimequal:
+ case tok::equalequal: return prec::Equality;
+ case tok::lessequal:
+ case tok::less:
+ case tok::greaterequal: return prec::Relational;
+ case tok::lessless: return prec::Shift;
+ case tok::plus:
+ case tok::minus: return prec::Additive;
+ case tok::percent:
+ case tok::slash:
+ case tok::star: return prec::Multiplicative;
+ case tok::periodstar:
+ case tok::arrowstar: return prec::PointerToMember;
+ }
+}
+
+} // namespace clang
diff --git a/contrib/llvm/tools/clang/lib/Basic/SanitizerBlacklist.cpp b/contrib/llvm/tools/clang/lib/Basic/SanitizerBlacklist.cpp
new file mode 100644
index 0000000..095fcd6
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Basic/SanitizerBlacklist.cpp
@@ -0,0 +1,46 @@
+//===--- SanitizerBlacklist.cpp - Blacklist for sanitizers ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// User-provided blacklist used to disable/alter instrumentation done in
+// sanitizers.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/Basic/SanitizerBlacklist.h"
+
+using namespace clang;
+
+SanitizerBlacklist::SanitizerBlacklist(
+ const std::vector<std::string> &BlacklistPaths, SourceManager &SM)
+ : SCL(llvm::SpecialCaseList::createOrDie(BlacklistPaths)), SM(SM) {}
+
+bool SanitizerBlacklist::isBlacklistedGlobal(StringRef GlobalName,
+ StringRef Category) const {
+ return SCL->inSection("global", GlobalName, Category);
+}
+
+bool SanitizerBlacklist::isBlacklistedType(StringRef MangledTypeName,
+ StringRef Category) const {
+ return SCL->inSection("type", MangledTypeName, Category);
+}
+
+bool SanitizerBlacklist::isBlacklistedFunction(StringRef FunctionName) const {
+ return SCL->inSection("fun", FunctionName);
+}
+
+bool SanitizerBlacklist::isBlacklistedFile(StringRef FileName,
+ StringRef Category) const {
+ return SCL->inSection("src", FileName, Category);
+}
+
+bool SanitizerBlacklist::isBlacklistedLocation(SourceLocation Loc,
+ StringRef Category) const {
+ return !Loc.isInvalid() &&
+ isBlacklistedFile(SM.getFilename(SM.getFileLoc(Loc)), Category);
+}
+
diff --git a/contrib/llvm/tools/clang/lib/Basic/Sanitizers.cpp b/contrib/llvm/tools/clang/lib/Basic/Sanitizers.cpp
new file mode 100644
index 0000000..8c4884b
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Basic/Sanitizers.cpp
@@ -0,0 +1,58 @@
+//===--- Sanitizers.cpp - C Language Family Language Options ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the classes from Sanitizers.h
+//
+//===----------------------------------------------------------------------===//
+#include "clang/Basic/Sanitizers.h"
+#include "clang/Basic/LLVM.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/Support/MathExtras.h"
+
+using namespace clang;
+
+SanitizerSet::SanitizerSet() : Mask(0) {}
+
+bool SanitizerSet::has(SanitizerMask K) const {
+ assert(llvm::countPopulation(K) == 1);
+ return Mask & K;
+}
+
+void SanitizerSet::set(SanitizerMask K, bool Value) {
+ assert(llvm::countPopulation(K) == 1);
+ Mask = Value ? (Mask | K) : (Mask & ~K);
+}
+
+void SanitizerSet::clear() {
+ Mask = 0;
+}
+
+bool SanitizerSet::empty() const {
+ return Mask == 0;
+}
+
+SanitizerMask clang::parseSanitizerValue(StringRef Value, bool AllowGroups) {
+ SanitizerMask ParsedKind = llvm::StringSwitch<SanitizerMask>(Value)
+#define SANITIZER(NAME, ID) .Case(NAME, SanitizerKind::ID)
+#define SANITIZER_GROUP(NAME, ID, ALIAS) \
+ .Case(NAME, AllowGroups ? SanitizerKind::ID##Group : 0)
+#include "clang/Basic/Sanitizers.def"
+ .Default(0);
+ return ParsedKind;
+}
+
+SanitizerMask clang::expandSanitizerGroups(SanitizerMask Kinds) {
+#define SANITIZER(NAME, ID)
+#define SANITIZER_GROUP(NAME, ID, ALIAS) \
+ if (Kinds & SanitizerKind::ID##Group) \
+ Kinds |= SanitizerKind::ID;
+#include "clang/Basic/Sanitizers.def"
+ return Kinds;
+}
diff --git a/contrib/llvm/tools/clang/lib/Basic/SourceLocation.cpp b/contrib/llvm/tools/clang/lib/Basic/SourceLocation.cpp
new file mode 100644
index 0000000..6b885a7
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Basic/SourceLocation.cpp
@@ -0,0 +1,142 @@
+//==--- SourceLocation.cpp - Compact identifier for Source Files -*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines accessor methods for the FullSourceLoc class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Basic/SourceLocation.h"
+#include "clang/Basic/PrettyStackTrace.h"
+#include "clang/Basic/SourceManager.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cstdio>
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// PrettyStackTraceLoc
+//===----------------------------------------------------------------------===//
+
+void PrettyStackTraceLoc::print(raw_ostream &OS) const {
+ if (Loc.isValid()) {
+ Loc.print(OS, SM);
+ OS << ": ";
+ }
+ OS << Message << '\n';
+}
+
+//===----------------------------------------------------------------------===//
+// SourceLocation
+//===----------------------------------------------------------------------===//
+
+void SourceLocation::print(raw_ostream &OS, const SourceManager &SM)const{
+ if (!isValid()) {
+ OS << "<invalid loc>";
+ return;
+ }
+
+ if (isFileID()) {
+ PresumedLoc PLoc = SM.getPresumedLoc(*this);
+
+ if (PLoc.isInvalid()) {
+ OS << "<invalid>";
+ return;
+ }
+ // The macro expansion and spelling pos is identical for file locs.
+ OS << PLoc.getFilename() << ':' << PLoc.getLine()
+ << ':' << PLoc.getColumn();
+ return;
+ }
+
+ SM.getExpansionLoc(*this).print(OS, SM);
+
+ OS << " <Spelling=";
+ SM.getSpellingLoc(*this).print(OS, SM);
+ OS << '>';
+}
+
+LLVM_DUMP_METHOD std::string
+SourceLocation::printToString(const SourceManager &SM) const {
+ std::string S;
+ llvm::raw_string_ostream OS(S);
+ print(OS, SM);
+ return OS.str();
+}
+
+LLVM_DUMP_METHOD void SourceLocation::dump(const SourceManager &SM) const {
+ print(llvm::errs(), SM);
+}
+
+//===----------------------------------------------------------------------===//
+// FullSourceLoc
+//===----------------------------------------------------------------------===//
+
+FileID FullSourceLoc::getFileID() const {
+ assert(isValid());
+ return SrcMgr->getFileID(*this);
+}
+
+
+FullSourceLoc FullSourceLoc::getExpansionLoc() const {
+ assert(isValid());
+ return FullSourceLoc(SrcMgr->getExpansionLoc(*this), *SrcMgr);
+}
+
+FullSourceLoc FullSourceLoc::getSpellingLoc() const {
+ assert(isValid());
+ return FullSourceLoc(SrcMgr->getSpellingLoc(*this), *SrcMgr);
+}
+
+unsigned FullSourceLoc::getExpansionLineNumber(bool *Invalid) const {
+ assert(isValid());
+ return SrcMgr->getExpansionLineNumber(*this, Invalid);
+}
+
+unsigned FullSourceLoc::getExpansionColumnNumber(bool *Invalid) const {
+ assert(isValid());
+ return SrcMgr->getExpansionColumnNumber(*this, Invalid);
+}
+
+unsigned FullSourceLoc::getSpellingLineNumber(bool *Invalid) const {
+ assert(isValid());
+ return SrcMgr->getSpellingLineNumber(*this, Invalid);
+}
+
+unsigned FullSourceLoc::getSpellingColumnNumber(bool *Invalid) const {
+ assert(isValid());
+ return SrcMgr->getSpellingColumnNumber(*this, Invalid);
+}
+
+bool FullSourceLoc::isInSystemHeader() const {
+ assert(isValid());
+ return SrcMgr->isInSystemHeader(*this);
+}
+
+bool FullSourceLoc::isBeforeInTranslationUnitThan(SourceLocation Loc) const {
+ assert(isValid());
+ return SrcMgr->isBeforeInTranslationUnit(*this, Loc);
+}
+
+LLVM_DUMP_METHOD void FullSourceLoc::dump() const {
+ SourceLocation::dump(*SrcMgr);
+}
+
+const char *FullSourceLoc::getCharacterData(bool *Invalid) const {
+ assert(isValid());
+ return SrcMgr->getCharacterData(*this, Invalid);
+}
+
+StringRef FullSourceLoc::getBufferData(bool *Invalid) const {
+ assert(isValid());
+ return SrcMgr->getBuffer(SrcMgr->getFileID(*this), Invalid)->getBuffer();;
+}
+
+std::pair<FileID, unsigned> FullSourceLoc::getDecomposedLoc() const {
+ return SrcMgr->getDecomposedLoc(*this);
+}
diff --git a/contrib/llvm/tools/clang/lib/Basic/SourceManager.cpp b/contrib/llvm/tools/clang/lib/Basic/SourceManager.cpp
new file mode 100644
index 0000000..c0b0453
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Basic/SourceManager.cpp
@@ -0,0 +1,2169 @@
+//===--- SourceManager.cpp - Track and cache source files -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the SourceManager interface.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/Diagnostic.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/SourceManagerInternals.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/Support/Capacity.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cstring>
+#include <string>
+
+using namespace clang;
+using namespace SrcMgr;
+using llvm::MemoryBuffer;
+
+//===----------------------------------------------------------------------===//
+// SourceManager Helper Classes
+//===----------------------------------------------------------------------===//
+
+ContentCache::~ContentCache() {
+ if (shouldFreeBuffer())
+ delete Buffer.getPointer();
+}
+
+/// getSizeBytesMapped - Returns the number of bytes actually mapped for this
+/// ContentCache. This can be 0 if the MemBuffer was not actually expanded.
+unsigned ContentCache::getSizeBytesMapped() const {
+ return Buffer.getPointer() ? Buffer.getPointer()->getBufferSize() : 0;
+}
+
+/// Returns the kind of memory used to back the memory buffer for
+/// this content cache. This is used for performance analysis.
+llvm::MemoryBuffer::BufferKind ContentCache::getMemoryBufferKind() const {
+ assert(Buffer.getPointer());
+
+ // Should be unreachable, but keep for sanity.
+ if (!Buffer.getPointer())
+ return llvm::MemoryBuffer::MemoryBuffer_Malloc;
+
+ llvm::MemoryBuffer *buf = Buffer.getPointer();
+ return buf->getBufferKind();
+}
+
+/// getSize - Returns the size of the content encapsulated by this ContentCache.
+/// This can be the size of the source file or the size of an arbitrary
+/// scratch buffer. If the ContentCache encapsulates a source file, that
+/// file is not lazily brought in from disk to satisfy this query.
+unsigned ContentCache::getSize() const {
+ return Buffer.getPointer() ? (unsigned) Buffer.getPointer()->getBufferSize()
+ : (unsigned) ContentsEntry->getSize();
+}
+
+void ContentCache::replaceBuffer(llvm::MemoryBuffer *B, bool DoNotFree) {
+ if (B && B == Buffer.getPointer()) {
+ assert(0 && "Replacing with the same buffer");
+ Buffer.setInt(DoNotFree? DoNotFreeFlag : 0);
+ return;
+ }
+
+ if (shouldFreeBuffer())
+ delete Buffer.getPointer();
+ Buffer.setPointer(B);
+ Buffer.setInt(DoNotFree? DoNotFreeFlag : 0);
+}
+
+llvm::MemoryBuffer *ContentCache::getBuffer(DiagnosticsEngine &Diag,
+ const SourceManager &SM,
+ SourceLocation Loc,
+ bool *Invalid) const {
+ // Lazily create the Buffer for ContentCaches that wrap files. If we already
+ // computed it, just return what we have.
+ if (Buffer.getPointer() || !ContentsEntry) {
+ if (Invalid)
+ *Invalid = isBufferInvalid();
+
+ return Buffer.getPointer();
+ }
+
+ bool isVolatile = SM.userFilesAreVolatile() && !IsSystemFile;
+ auto BufferOrError =
+ SM.getFileManager().getBufferForFile(ContentsEntry, isVolatile);
+
+ // If we were unable to open the file, then we are in an inconsistent
+ // situation where the content cache referenced a file which no longer
+ // exists. Most likely, we were using a stat cache with an invalid entry but
+ // the file could also have been removed during processing. Since we can't
+ // really deal with this situation, just create an empty buffer.
+ //
+ // FIXME: This is definitely not ideal, but our immediate clients can't
+ // currently handle returning a null entry here. Ideally we should detect
+ // that we are in an inconsistent situation and error out as quickly as
+ // possible.
+ if (!BufferOrError) {
+ StringRef FillStr("<<<MISSING SOURCE FILE>>>\n");
+ Buffer.setPointer(MemoryBuffer::getNewUninitMemBuffer(
+ ContentsEntry->getSize(), "<invalid>").release());
+ char *Ptr = const_cast<char*>(Buffer.getPointer()->getBufferStart());
+ for (unsigned i = 0, e = ContentsEntry->getSize(); i != e; ++i)
+ Ptr[i] = FillStr[i % FillStr.size()];
+
+ if (Diag.isDiagnosticInFlight())
+ Diag.SetDelayedDiagnostic(diag::err_cannot_open_file,
+ ContentsEntry->getName(),
+ BufferOrError.getError().message());
+ else
+ Diag.Report(Loc, diag::err_cannot_open_file)
+ << ContentsEntry->getName() << BufferOrError.getError().message();
+
+ Buffer.setInt(Buffer.getInt() | InvalidFlag);
+
+ if (Invalid) *Invalid = true;
+ return Buffer.getPointer();
+ }
+
+ Buffer.setPointer(BufferOrError->release());
+
+ // Check that the file's size is the same as in the file entry (which may
+ // have come from a stat cache).
+ if (getRawBuffer()->getBufferSize() != (size_t)ContentsEntry->getSize()) {
+ if (Diag.isDiagnosticInFlight())
+ Diag.SetDelayedDiagnostic(diag::err_file_modified,
+ ContentsEntry->getName());
+ else
+ Diag.Report(Loc, diag::err_file_modified)
+ << ContentsEntry->getName();
+
+ Buffer.setInt(Buffer.getInt() | InvalidFlag);
+ if (Invalid) *Invalid = true;
+ return Buffer.getPointer();
+ }
+
+ // If the buffer is valid, check to see if it has a UTF Byte Order Mark
+ // (BOM). We only support UTF-8 with and without a BOM right now. See
+ // http://en.wikipedia.org/wiki/Byte_order_mark for more information.
+ StringRef BufStr = Buffer.getPointer()->getBuffer();
+ const char *InvalidBOM = llvm::StringSwitch<const char *>(BufStr)
+ .StartsWith("\xFE\xFF", "UTF-16 (BE)")
+ .StartsWith("\xFF\xFE", "UTF-16 (LE)")
+ .StartsWith("\x00\x00\xFE\xFF", "UTF-32 (BE)")
+ .StartsWith("\xFF\xFE\x00\x00", "UTF-32 (LE)")
+ .StartsWith("\x2B\x2F\x76", "UTF-7")
+ .StartsWith("\xF7\x64\x4C", "UTF-1")
+ .StartsWith("\xDD\x73\x66\x73", "UTF-EBCDIC")
+ .StartsWith("\x0E\xFE\xFF", "SDSU")
+ .StartsWith("\xFB\xEE\x28", "BOCU-1")
+ .StartsWith("\x84\x31\x95\x33", "GB-18030")
+ .Default(nullptr);
+
+ if (InvalidBOM) {
+ Diag.Report(Loc, diag::err_unsupported_bom)
+ << InvalidBOM << ContentsEntry->getName();
+ Buffer.setInt(Buffer.getInt() | InvalidFlag);
+ }
+
+ if (Invalid)
+ *Invalid = isBufferInvalid();
+
+ return Buffer.getPointer();
+}
+
+unsigned LineTableInfo::getLineTableFilenameID(StringRef Name) {
+ auto IterBool =
+ FilenameIDs.insert(std::make_pair(Name, FilenamesByID.size()));
+ if (IterBool.second)
+ FilenamesByID.push_back(&*IterBool.first);
+ return IterBool.first->second;
+}
+
+/// AddLineNote - Add a line note to the line table that indicates that there
+/// is a \#line at the specified FID/Offset location which changes the presumed
+/// location to LineNo/FilenameID.
+void LineTableInfo::AddLineNote(FileID FID, unsigned Offset,
+ unsigned LineNo, int FilenameID) {
+ std::vector<LineEntry> &Entries = LineEntries[FID];
+
+ assert((Entries.empty() || Entries.back().FileOffset < Offset) &&
+ "Adding line entries out of order!");
+
+ SrcMgr::CharacteristicKind Kind = SrcMgr::C_User;
+ unsigned IncludeOffset = 0;
+
+ if (!Entries.empty()) {
+ // If this is a '#line 4' after '#line 42 "foo.h"', make sure to remember
+ // that we are still in "foo.h".
+ if (FilenameID == -1)
+ FilenameID = Entries.back().FilenameID;
+
+ // If we are after a line marker that switched us to system header mode, or
+ // that set #include information, preserve it.
+ Kind = Entries.back().FileKind;
+ IncludeOffset = Entries.back().IncludeOffset;
+ }
+
+ Entries.push_back(LineEntry::get(Offset, LineNo, FilenameID, Kind,
+ IncludeOffset));
+}
+
+/// AddLineNote This is the same as the previous version of AddLineNote, but is
+/// used for GNU line markers. If EntryExit is 0, then this doesn't change the
+/// presumed \#include stack. If it is 1, this is a file entry, if it is 2 then
+/// this is a file exit. FileKind specifies whether this is a system header or
+/// extern C system header.
+void LineTableInfo::AddLineNote(FileID FID, unsigned Offset,
+ unsigned LineNo, int FilenameID,
+ unsigned EntryExit,
+ SrcMgr::CharacteristicKind FileKind) {
+ assert(FilenameID != -1 && "Unspecified filename should use other accessor");
+
+ std::vector<LineEntry> &Entries = LineEntries[FID];
+
+ assert((Entries.empty() || Entries.back().FileOffset < Offset) &&
+ "Adding line entries out of order!");
+
+ unsigned IncludeOffset = 0;
+ if (EntryExit == 0) { // No #include stack change.
+ IncludeOffset = Entries.empty() ? 0 : Entries.back().IncludeOffset;
+ } else if (EntryExit == 1) {
+ IncludeOffset = Offset-1;
+ } else if (EntryExit == 2) {
+ assert(!Entries.empty() && Entries.back().IncludeOffset &&
+ "PPDirectives should have caught case when popping empty include stack");
+
+ // Get the include loc of the last entries' include loc as our include loc.
+ IncludeOffset = 0;
+ if (const LineEntry *PrevEntry =
+ FindNearestLineEntry(FID, Entries.back().IncludeOffset))
+ IncludeOffset = PrevEntry->IncludeOffset;
+ }
+
+ Entries.push_back(LineEntry::get(Offset, LineNo, FilenameID, FileKind,
+ IncludeOffset));
+}
+
+
+/// FindNearestLineEntry - Find the line entry nearest to FID that is before
+/// it. If there is no line entry before Offset in FID, return null.
+const LineEntry *LineTableInfo::FindNearestLineEntry(FileID FID,
+ unsigned Offset) {
+ const std::vector<LineEntry> &Entries = LineEntries[FID];
+ assert(!Entries.empty() && "No #line entries for this FID after all!");
+
+ // It is very common for the query to be after the last #line, check this
+ // first.
+ if (Entries.back().FileOffset <= Offset)
+ return &Entries.back();
+
+ // Do a binary search to find the maximal element that is still before Offset.
+ std::vector<LineEntry>::const_iterator I =
+ std::upper_bound(Entries.begin(), Entries.end(), Offset);
+ if (I == Entries.begin()) return nullptr;
+ return &*--I;
+}
+
+/// \brief Add a new line entry that has already been encoded into
+/// the internal representation of the line table.
+void LineTableInfo::AddEntry(FileID FID,
+ const std::vector<LineEntry> &Entries) {
+ LineEntries[FID] = Entries;
+}
+
+/// getLineTableFilenameID - Return the uniqued ID for the specified filename.
+///
+unsigned SourceManager::getLineTableFilenameID(StringRef Name) {
+ if (!LineTable)
+ LineTable = new LineTableInfo();
+ return LineTable->getLineTableFilenameID(Name);
+}
+
+
+/// AddLineNote - Add a line note to the line table for the FileID and offset
+/// specified by Loc. If FilenameID is -1, it is considered to be
+/// unspecified.
+void SourceManager::AddLineNote(SourceLocation Loc, unsigned LineNo,
+ int FilenameID) {
+ std::pair<FileID, unsigned> LocInfo = getDecomposedExpansionLoc(Loc);
+
+ bool Invalid = false;
+ const SLocEntry &Entry = getSLocEntry(LocInfo.first, &Invalid);
+ if (!Entry.isFile() || Invalid)
+ return;
+
+ const SrcMgr::FileInfo &FileInfo = Entry.getFile();
+
+ // Remember that this file has #line directives now if it doesn't already.
+ const_cast<SrcMgr::FileInfo&>(FileInfo).setHasLineDirectives();
+
+ if (!LineTable)
+ LineTable = new LineTableInfo();
+ LineTable->AddLineNote(LocInfo.first, LocInfo.second, LineNo, FilenameID);
+}
+
+/// AddLineNote - Add a GNU line marker to the line table.
+void SourceManager::AddLineNote(SourceLocation Loc, unsigned LineNo,
+ int FilenameID, bool IsFileEntry,
+ bool IsFileExit, bool IsSystemHeader,
+ bool IsExternCHeader) {
+ // If there is no filename and no flags, this is treated just like a #line,
+ // which does not change the flags of the previous line marker.
+ if (FilenameID == -1) {
+ assert(!IsFileEntry && !IsFileExit && !IsSystemHeader && !IsExternCHeader &&
+ "Can't set flags without setting the filename!");
+ return AddLineNote(Loc, LineNo, FilenameID);
+ }
+
+ std::pair<FileID, unsigned> LocInfo = getDecomposedExpansionLoc(Loc);
+
+ bool Invalid = false;
+ const SLocEntry &Entry = getSLocEntry(LocInfo.first, &Invalid);
+ if (!Entry.isFile() || Invalid)
+ return;
+
+ const SrcMgr::FileInfo &FileInfo = Entry.getFile();
+
+ // Remember that this file has #line directives now if it doesn't already.
+ const_cast<SrcMgr::FileInfo&>(FileInfo).setHasLineDirectives();
+
+ if (!LineTable)
+ LineTable = new LineTableInfo();
+
+ SrcMgr::CharacteristicKind FileKind;
+ if (IsExternCHeader)
+ FileKind = SrcMgr::C_ExternCSystem;
+ else if (IsSystemHeader)
+ FileKind = SrcMgr::C_System;
+ else
+ FileKind = SrcMgr::C_User;
+
+ unsigned EntryExit = 0;
+ if (IsFileEntry)
+ EntryExit = 1;
+ else if (IsFileExit)
+ EntryExit = 2;
+
+ LineTable->AddLineNote(LocInfo.first, LocInfo.second, LineNo, FilenameID,
+ EntryExit, FileKind);
+}
+
+LineTableInfo &SourceManager::getLineTable() {
+ if (!LineTable)
+ LineTable = new LineTableInfo();
+ return *LineTable;
+}
+
+//===----------------------------------------------------------------------===//
+// Private 'Create' methods.
+//===----------------------------------------------------------------------===//
+
+SourceManager::SourceManager(DiagnosticsEngine &Diag, FileManager &FileMgr,
+ bool UserFilesAreVolatile)
+ : Diag(Diag), FileMgr(FileMgr), OverridenFilesKeepOriginalName(true),
+ UserFilesAreVolatile(UserFilesAreVolatile),
+ ExternalSLocEntries(nullptr), LineTable(nullptr), NumLinearScans(0),
+ NumBinaryProbes(0) {
+ clearIDTables();
+ Diag.setSourceManager(this);
+}
+
+SourceManager::~SourceManager() {
+ delete LineTable;
+
+ // Delete FileEntry objects corresponding to content caches. Since the actual
+ // content cache objects are bump pointer allocated, we just have to run the
+ // dtors, but we call the deallocate method for completeness.
+ for (unsigned i = 0, e = MemBufferInfos.size(); i != e; ++i) {
+ if (MemBufferInfos[i]) {
+ MemBufferInfos[i]->~ContentCache();
+ ContentCacheAlloc.Deallocate(MemBufferInfos[i]);
+ }
+ }
+ for (llvm::DenseMap<const FileEntry*, SrcMgr::ContentCache*>::iterator
+ I = FileInfos.begin(), E = FileInfos.end(); I != E; ++I) {
+ if (I->second) {
+ I->second->~ContentCache();
+ ContentCacheAlloc.Deallocate(I->second);
+ }
+ }
+
+ llvm::DeleteContainerSeconds(MacroArgsCacheMap);
+}
+
+void SourceManager::clearIDTables() {
+ MainFileID = FileID();
+ LocalSLocEntryTable.clear();
+ LoadedSLocEntryTable.clear();
+ SLocEntryLoaded.clear();
+ LastLineNoFileIDQuery = FileID();
+ LastLineNoContentCache = nullptr;
+ LastFileIDLookup = FileID();
+
+ if (LineTable)
+ LineTable->clear();
+
+ // Use up FileID #0 as an invalid expansion.
+ NextLocalOffset = 0;
+ CurrentLoadedOffset = MaxLoadedOffset;
+ createExpansionLoc(SourceLocation(),SourceLocation(),SourceLocation(), 1);
+}
+
+/// getOrCreateContentCache - Create or return a cached ContentCache for the
+/// specified file.
+const ContentCache *
+SourceManager::getOrCreateContentCache(const FileEntry *FileEnt,
+ bool isSystemFile) {
+ assert(FileEnt && "Didn't specify a file entry to use?");
+
+ // Do we already have information about this file?
+ ContentCache *&Entry = FileInfos[FileEnt];
+ if (Entry) return Entry;
+
+ // Nope, create a new Cache entry.
+ Entry = ContentCacheAlloc.Allocate<ContentCache>();
+
+ if (OverriddenFilesInfo) {
+ // If the file contents are overridden with contents from another file,
+ // pass that file to ContentCache.
+ llvm::DenseMap<const FileEntry *, const FileEntry *>::iterator
+ overI = OverriddenFilesInfo->OverriddenFiles.find(FileEnt);
+ if (overI == OverriddenFilesInfo->OverriddenFiles.end())
+ new (Entry) ContentCache(FileEnt);
+ else
+ new (Entry) ContentCache(OverridenFilesKeepOriginalName ? FileEnt
+ : overI->second,
+ overI->second);
+ } else {
+ new (Entry) ContentCache(FileEnt);
+ }
+
+ Entry->IsSystemFile = isSystemFile;
+
+ return Entry;
+}
+
+
+/// createMemBufferContentCache - Create a new ContentCache for the specified
+/// memory buffer. This does no caching.
+const ContentCache *SourceManager::createMemBufferContentCache(
+ std::unique_ptr<llvm::MemoryBuffer> Buffer) {
+ // Add a new ContentCache to the MemBufferInfos list and return it.
+ ContentCache *Entry = ContentCacheAlloc.Allocate<ContentCache>();
+ new (Entry) ContentCache();
+ MemBufferInfos.push_back(Entry);
+ Entry->setBuffer(std::move(Buffer));
+ return Entry;
+}
+
+const SrcMgr::SLocEntry &SourceManager::loadSLocEntry(unsigned Index,
+ bool *Invalid) const {
+ assert(!SLocEntryLoaded[Index]);
+ if (ExternalSLocEntries->ReadSLocEntry(-(static_cast<int>(Index) + 2))) {
+ if (Invalid)
+ *Invalid = true;
+ // If the file of the SLocEntry changed we could still have loaded it.
+ if (!SLocEntryLoaded[Index]) {
+ // Try to recover; create a SLocEntry so the rest of clang can handle it.
+ LoadedSLocEntryTable[Index] = SLocEntry::get(0,
+ FileInfo::get(SourceLocation(),
+ getFakeContentCacheForRecovery(),
+ SrcMgr::C_User));
+ }
+ }
+
+ return LoadedSLocEntryTable[Index];
+}
+
+std::pair<int, unsigned>
+SourceManager::AllocateLoadedSLocEntries(unsigned NumSLocEntries,
+ unsigned TotalSize) {
+ assert(ExternalSLocEntries && "Don't have an external sloc source");
+ LoadedSLocEntryTable.resize(LoadedSLocEntryTable.size() + NumSLocEntries);
+ SLocEntryLoaded.resize(LoadedSLocEntryTable.size());
+ CurrentLoadedOffset -= TotalSize;
+ assert(CurrentLoadedOffset >= NextLocalOffset && "Out of source locations");
+ int ID = LoadedSLocEntryTable.size();
+ return std::make_pair(-ID - 1, CurrentLoadedOffset);
+}
+
+/// \brief As part of recovering from missing or changed content, produce a
+/// fake, non-empty buffer.
+llvm::MemoryBuffer *SourceManager::getFakeBufferForRecovery() const {
+ if (!FakeBufferForRecovery)
+ FakeBufferForRecovery =
+ llvm::MemoryBuffer::getMemBuffer("<<<INVALID BUFFER>>");
+
+ return FakeBufferForRecovery.get();
+}
+
+/// \brief As part of recovering from missing or changed content, produce a
+/// fake content cache.
+const SrcMgr::ContentCache *
+SourceManager::getFakeContentCacheForRecovery() const {
+ if (!FakeContentCacheForRecovery) {
+ FakeContentCacheForRecovery = llvm::make_unique<SrcMgr::ContentCache>();
+ FakeContentCacheForRecovery->replaceBuffer(getFakeBufferForRecovery(),
+ /*DoNotFree=*/true);
+ }
+ return FakeContentCacheForRecovery.get();
+}
+
+/// \brief Returns the previous in-order FileID or an invalid FileID if there
+/// is no previous one.
+FileID SourceManager::getPreviousFileID(FileID FID) const {
+ if (FID.isInvalid())
+ return FileID();
+
+ int ID = FID.ID;
+ if (ID == -1)
+ return FileID();
+
+ if (ID > 0) {
+ if (ID-1 == 0)
+ return FileID();
+ } else if (unsigned(-(ID-1) - 2) >= LoadedSLocEntryTable.size()) {
+ return FileID();
+ }
+
+ return FileID::get(ID-1);
+}
+
+/// \brief Returns the next in-order FileID or an invalid FileID if there is
+/// no next one.
+FileID SourceManager::getNextFileID(FileID FID) const {
+ if (FID.isInvalid())
+ return FileID();
+
+ int ID = FID.ID;
+ if (ID > 0) {
+ if (unsigned(ID+1) >= local_sloc_entry_size())
+ return FileID();
+ } else if (ID+1 >= -1) {
+ return FileID();
+ }
+
+ return FileID::get(ID+1);
+}
+
+//===----------------------------------------------------------------------===//
+// Methods to create new FileID's and macro expansions.
+//===----------------------------------------------------------------------===//
+
+/// createFileID - Create a new FileID for the specified ContentCache and
+/// include position. This works regardless of whether the ContentCache
+/// corresponds to a file or some other input source.
+FileID SourceManager::createFileID(const ContentCache *File,
+ SourceLocation IncludePos,
+ SrcMgr::CharacteristicKind FileCharacter,
+ int LoadedID, unsigned LoadedOffset) {
+ if (LoadedID < 0) {
+ assert(LoadedID != -1 && "Loading sentinel FileID");
+ unsigned Index = unsigned(-LoadedID) - 2;
+ assert(Index < LoadedSLocEntryTable.size() && "FileID out of range");
+ assert(!SLocEntryLoaded[Index] && "FileID already loaded");
+ LoadedSLocEntryTable[Index] = SLocEntry::get(LoadedOffset,
+ FileInfo::get(IncludePos, File, FileCharacter));
+ SLocEntryLoaded[Index] = true;
+ return FileID::get(LoadedID);
+ }
+ LocalSLocEntryTable.push_back(SLocEntry::get(NextLocalOffset,
+ FileInfo::get(IncludePos, File,
+ FileCharacter)));
+ unsigned FileSize = File->getSize();
+ assert(NextLocalOffset + FileSize + 1 > NextLocalOffset &&
+ NextLocalOffset + FileSize + 1 <= CurrentLoadedOffset &&
+ "Ran out of source locations!");
+ // We do a +1 here because we want a SourceLocation that means "the end of the
+ // file", e.g. for the "no newline at the end of the file" diagnostic.
+ NextLocalOffset += FileSize + 1;
+
+ // Set LastFileIDLookup to the newly created file. The next getFileID call is
+ // almost guaranteed to be from that file.
+ FileID FID = FileID::get(LocalSLocEntryTable.size()-1);
+ return LastFileIDLookup = FID;
+}
+
+SourceLocation
+SourceManager::createMacroArgExpansionLoc(SourceLocation SpellingLoc,
+ SourceLocation ExpansionLoc,
+ unsigned TokLength) {
+ ExpansionInfo Info = ExpansionInfo::createForMacroArg(SpellingLoc,
+ ExpansionLoc);
+ return createExpansionLocImpl(Info, TokLength);
+}
+
+SourceLocation
+SourceManager::createExpansionLoc(SourceLocation SpellingLoc,
+ SourceLocation ExpansionLocStart,
+ SourceLocation ExpansionLocEnd,
+ unsigned TokLength,
+ int LoadedID,
+ unsigned LoadedOffset) {
+ ExpansionInfo Info = ExpansionInfo::create(SpellingLoc, ExpansionLocStart,
+ ExpansionLocEnd);
+ return createExpansionLocImpl(Info, TokLength, LoadedID, LoadedOffset);
+}
+
+SourceLocation
+SourceManager::createExpansionLocImpl(const ExpansionInfo &Info,
+ unsigned TokLength,
+ int LoadedID,
+ unsigned LoadedOffset) {
+ if (LoadedID < 0) {
+ assert(LoadedID != -1 && "Loading sentinel FileID");
+ unsigned Index = unsigned(-LoadedID) - 2;
+ assert(Index < LoadedSLocEntryTable.size() && "FileID out of range");
+ assert(!SLocEntryLoaded[Index] && "FileID already loaded");
+ LoadedSLocEntryTable[Index] = SLocEntry::get(LoadedOffset, Info);
+ SLocEntryLoaded[Index] = true;
+ return SourceLocation::getMacroLoc(LoadedOffset);
+ }
+ LocalSLocEntryTable.push_back(SLocEntry::get(NextLocalOffset, Info));
+ assert(NextLocalOffset + TokLength + 1 > NextLocalOffset &&
+ NextLocalOffset + TokLength + 1 <= CurrentLoadedOffset &&
+ "Ran out of source locations!");
+ // See createFileID for that +1.
+ NextLocalOffset += TokLength + 1;
+ return SourceLocation::getMacroLoc(NextLocalOffset - (TokLength + 1));
+}
+
+llvm::MemoryBuffer *SourceManager::getMemoryBufferForFile(const FileEntry *File,
+ bool *Invalid) {
+ const SrcMgr::ContentCache *IR = getOrCreateContentCache(File);
+ assert(IR && "getOrCreateContentCache() cannot return NULL");
+ return IR->getBuffer(Diag, *this, SourceLocation(), Invalid);
+}
+
+void SourceManager::overrideFileContents(const FileEntry *SourceFile,
+ llvm::MemoryBuffer *Buffer,
+ bool DoNotFree) {
+ const SrcMgr::ContentCache *IR = getOrCreateContentCache(SourceFile);
+ assert(IR && "getOrCreateContentCache() cannot return NULL");
+
+ const_cast<SrcMgr::ContentCache *>(IR)->replaceBuffer(Buffer, DoNotFree);
+ const_cast<SrcMgr::ContentCache *>(IR)->BufferOverridden = true;
+
+ getOverriddenFilesInfo().OverriddenFilesWithBuffer.insert(SourceFile);
+}
+
+void SourceManager::overrideFileContents(const FileEntry *SourceFile,
+ const FileEntry *NewFile) {
+ assert(SourceFile->getSize() == NewFile->getSize() &&
+ "Different sizes, use the FileManager to create a virtual file with "
+ "the correct size");
+ assert(FileInfos.count(SourceFile) == 0 &&
+ "This function should be called at the initialization stage, before "
+ "any parsing occurs.");
+ getOverriddenFilesInfo().OverriddenFiles[SourceFile] = NewFile;
+}
+
+void SourceManager::disableFileContentsOverride(const FileEntry *File) {
+ if (!isFileOverridden(File))
+ return;
+
+ const SrcMgr::ContentCache *IR = getOrCreateContentCache(File);
+ const_cast<SrcMgr::ContentCache *>(IR)->replaceBuffer(nullptr);
+ const_cast<SrcMgr::ContentCache *>(IR)->ContentsEntry = IR->OrigEntry;
+
+ assert(OverriddenFilesInfo);
+ OverriddenFilesInfo->OverriddenFiles.erase(File);
+ OverriddenFilesInfo->OverriddenFilesWithBuffer.erase(File);
+}
+
+StringRef SourceManager::getBufferData(FileID FID, bool *Invalid) const {
+ bool MyInvalid = false;
+ const SLocEntry &SLoc = getSLocEntry(FID, &MyInvalid);
+ if (!SLoc.isFile() || MyInvalid) {
+ if (Invalid)
+ *Invalid = true;
+ return "<<<<<INVALID SOURCE LOCATION>>>>>";
+ }
+
+ llvm::MemoryBuffer *Buf = SLoc.getFile().getContentCache()->getBuffer(
+ Diag, *this, SourceLocation(), &MyInvalid);
+ if (Invalid)
+ *Invalid = MyInvalid;
+
+ if (MyInvalid)
+ return "<<<<<INVALID SOURCE LOCATION>>>>>";
+
+ return Buf->getBuffer();
+}
+
+//===----------------------------------------------------------------------===//
+// SourceLocation manipulation methods.
+//===----------------------------------------------------------------------===//
+
+/// \brief Return the FileID for a SourceLocation.
+///
+/// This is the cache-miss path of getFileID. Not as hot as that function, but
+/// still very important. It is responsible for finding the entry in the
+/// SLocEntry tables that contains the specified location.
+FileID SourceManager::getFileIDSlow(unsigned SLocOffset) const {
+ if (!SLocOffset)
+ return FileID::get(0);
+
+ // Now it is time to search for the correct file. See where the SLocOffset
+ // sits in the global view and consult local or loaded buffers for it.
+ if (SLocOffset < NextLocalOffset)
+ return getFileIDLocal(SLocOffset);
+ return getFileIDLoaded(SLocOffset);
+}
+
+/// \brief Return the FileID for a SourceLocation with a low offset.
+///
+/// This function knows that the SourceLocation is in a local buffer, not a
+/// loaded one.
+FileID SourceManager::getFileIDLocal(unsigned SLocOffset) const {
+ assert(SLocOffset < NextLocalOffset && "Bad function choice");
+
+ // After the first and second level caches, I see two common sorts of
+ // behavior: 1) a lot of searched FileID's are "near" the cached file
+ // location or are "near" the cached expansion location. 2) others are just
+ // completely random and may be a very long way away.
+ //
+ // To handle this, we do a linear search for up to 8 steps to catch #1 quickly
+ // then we fall back to a less cache efficient, but more scalable, binary
+ // search to find the location.
+
+ // See if this is near the file point - worst case we start scanning from the
+ // most newly created FileID.
+ const SrcMgr::SLocEntry *I;
+
+ if (LastFileIDLookup.ID < 0 ||
+ LocalSLocEntryTable[LastFileIDLookup.ID].getOffset() < SLocOffset) {
+ // Neither loc prunes our search.
+ I = LocalSLocEntryTable.end();
+ } else {
+ // Perhaps it is near the file point.
+ I = LocalSLocEntryTable.begin()+LastFileIDLookup.ID;
+ }
+
+ // Find the FileID that contains this. "I" is an iterator that points to a
+ // FileID whose offset is known to be larger than SLocOffset.
+ unsigned NumProbes = 0;
+ while (1) {
+ --I;
+ if (I->getOffset() <= SLocOffset) {
+ FileID Res = FileID::get(int(I - LocalSLocEntryTable.begin()));
+
+ // If this isn't an expansion, remember it. We have good locality across
+ // FileID lookups.
+ if (!I->isExpansion())
+ LastFileIDLookup = Res;
+ NumLinearScans += NumProbes+1;
+ return Res;
+ }
+ if (++NumProbes == 8)
+ break;
+ }
+
+ // Convert "I" back into an index. We know that it is an entry whose index is
+ // larger than the offset we are looking for.
+ unsigned GreaterIndex = I - LocalSLocEntryTable.begin();
+ // LessIndex - This is the lower bound of the range that we're searching.
+ // We know that the offset corresponding to the FileID is is less than
+ // SLocOffset.
+ unsigned LessIndex = 0;
+ NumProbes = 0;
+ while (1) {
+ bool Invalid = false;
+ unsigned MiddleIndex = (GreaterIndex-LessIndex)/2+LessIndex;
+ unsigned MidOffset = getLocalSLocEntry(MiddleIndex, &Invalid).getOffset();
+ if (Invalid)
+ return FileID::get(0);
+
+ ++NumProbes;
+
+ // If the offset of the midpoint is too large, chop the high side of the
+ // range to the midpoint.
+ if (MidOffset > SLocOffset) {
+ GreaterIndex = MiddleIndex;
+ continue;
+ }
+
+ // If the middle index contains the value, succeed and return.
+ // FIXME: This could be made faster by using a function that's aware of
+ // being in the local area.
+ if (isOffsetInFileID(FileID::get(MiddleIndex), SLocOffset)) {
+ FileID Res = FileID::get(MiddleIndex);
+
+ // If this isn't a macro expansion, remember it. We have good locality
+ // across FileID lookups.
+ if (!LocalSLocEntryTable[MiddleIndex].isExpansion())
+ LastFileIDLookup = Res;
+ NumBinaryProbes += NumProbes;
+ return Res;
+ }
+
+ // Otherwise, move the low-side up to the middle index.
+ LessIndex = MiddleIndex;
+ }
+}
+
+/// \brief Return the FileID for a SourceLocation with a high offset.
+///
+/// This function knows that the SourceLocation is in a loaded buffer, not a
+/// local one.
+FileID SourceManager::getFileIDLoaded(unsigned SLocOffset) const {
+ // Sanity checking, otherwise a bug may lead to hanging in release build.
+ if (SLocOffset < CurrentLoadedOffset) {
+ assert(0 && "Invalid SLocOffset or bad function choice");
+ return FileID();
+ }
+
+ // Essentially the same as the local case, but the loaded array is sorted
+ // in the other direction.
+
+ // First do a linear scan from the last lookup position, if possible.
+ unsigned I;
+ int LastID = LastFileIDLookup.ID;
+ if (LastID >= 0 || getLoadedSLocEntryByID(LastID).getOffset() < SLocOffset)
+ I = 0;
+ else
+ I = (-LastID - 2) + 1;
+
+ unsigned NumProbes;
+ for (NumProbes = 0; NumProbes < 8; ++NumProbes, ++I) {
+ // Make sure the entry is loaded!
+ const SrcMgr::SLocEntry &E = getLoadedSLocEntry(I);
+ if (E.getOffset() <= SLocOffset) {
+ FileID Res = FileID::get(-int(I) - 2);
+
+ if (!E.isExpansion())
+ LastFileIDLookup = Res;
+ NumLinearScans += NumProbes + 1;
+ return Res;
+ }
+ }
+
+ // Linear scan failed. Do the binary search. Note the reverse sorting of the
+ // table: GreaterIndex is the one where the offset is greater, which is
+ // actually a lower index!
+ unsigned GreaterIndex = I;
+ unsigned LessIndex = LoadedSLocEntryTable.size();
+ NumProbes = 0;
+ while (1) {
+ ++NumProbes;
+ unsigned MiddleIndex = (LessIndex - GreaterIndex) / 2 + GreaterIndex;
+ const SrcMgr::SLocEntry &E = getLoadedSLocEntry(MiddleIndex);
+ if (E.getOffset() == 0)
+ return FileID(); // invalid entry.
+
+ ++NumProbes;
+
+ if (E.getOffset() > SLocOffset) {
+ // Sanity checking, otherwise a bug may lead to hanging in release build.
+ if (GreaterIndex == MiddleIndex) {
+ assert(0 && "binary search missed the entry");
+ return FileID();
+ }
+ GreaterIndex = MiddleIndex;
+ continue;
+ }
+
+ if (isOffsetInFileID(FileID::get(-int(MiddleIndex) - 2), SLocOffset)) {
+ FileID Res = FileID::get(-int(MiddleIndex) - 2);
+ if (!E.isExpansion())
+ LastFileIDLookup = Res;
+ NumBinaryProbes += NumProbes;
+ return Res;
+ }
+
+ // Sanity checking, otherwise a bug may lead to hanging in release build.
+ if (LessIndex == MiddleIndex) {
+ assert(0 && "binary search missed the entry");
+ return FileID();
+ }
+ LessIndex = MiddleIndex;
+ }
+}
+
+SourceLocation SourceManager::
+getExpansionLocSlowCase(SourceLocation Loc) const {
+ do {
+ // Note: If Loc indicates an offset into a token that came from a macro
+ // expansion (e.g. the 5th character of the token) we do not want to add
+ // this offset when going to the expansion location. The expansion
+ // location is the macro invocation, which the offset has nothing to do
+ // with. This is unlike when we get the spelling loc, because the offset
+ // directly correspond to the token whose spelling we're inspecting.
+ Loc = getSLocEntry(getFileID(Loc)).getExpansion().getExpansionLocStart();
+ } while (!Loc.isFileID());
+
+ return Loc;
+}
+
+SourceLocation SourceManager::getSpellingLocSlowCase(SourceLocation Loc) const {
+ do {
+ std::pair<FileID, unsigned> LocInfo = getDecomposedLoc(Loc);
+ Loc = getSLocEntry(LocInfo.first).getExpansion().getSpellingLoc();
+ Loc = Loc.getLocWithOffset(LocInfo.second);
+ } while (!Loc.isFileID());
+ return Loc;
+}
+
+SourceLocation SourceManager::getFileLocSlowCase(SourceLocation Loc) const {
+ do {
+ if (isMacroArgExpansion(Loc))
+ Loc = getImmediateSpellingLoc(Loc);
+ else
+ Loc = getImmediateExpansionRange(Loc).first;
+ } while (!Loc.isFileID());
+ return Loc;
+}
+
+
+std::pair<FileID, unsigned>
+SourceManager::getDecomposedExpansionLocSlowCase(
+ const SrcMgr::SLocEntry *E) const {
+ // If this is an expansion record, walk through all the expansion points.
+ FileID FID;
+ SourceLocation Loc;
+ unsigned Offset;
+ do {
+ Loc = E->getExpansion().getExpansionLocStart();
+
+ FID = getFileID(Loc);
+ E = &getSLocEntry(FID);
+ Offset = Loc.getOffset()-E->getOffset();
+ } while (!Loc.isFileID());
+
+ return std::make_pair(FID, Offset);
+}
+
+std::pair<FileID, unsigned>
+SourceManager::getDecomposedSpellingLocSlowCase(const SrcMgr::SLocEntry *E,
+ unsigned Offset) const {
+ // If this is an expansion record, walk through all the expansion points.
+ FileID FID;
+ SourceLocation Loc;
+ do {
+ Loc = E->getExpansion().getSpellingLoc();
+ Loc = Loc.getLocWithOffset(Offset);
+
+ FID = getFileID(Loc);
+ E = &getSLocEntry(FID);
+ Offset = Loc.getOffset()-E->getOffset();
+ } while (!Loc.isFileID());
+
+ return std::make_pair(FID, Offset);
+}
+
+/// getImmediateSpellingLoc - Given a SourceLocation object, return the
+/// spelling location referenced by the ID. This is the first level down
+/// towards the place where the characters that make up the lexed token can be
+/// found. This should not generally be used by clients.
+SourceLocation SourceManager::getImmediateSpellingLoc(SourceLocation Loc) const{
+ if (Loc.isFileID()) return Loc;
+ std::pair<FileID, unsigned> LocInfo = getDecomposedLoc(Loc);
+ Loc = getSLocEntry(LocInfo.first).getExpansion().getSpellingLoc();
+ return Loc.getLocWithOffset(LocInfo.second);
+}
+
+
+/// getImmediateExpansionRange - Loc is required to be an expansion location.
+/// Return the start/end of the expansion information.
+std::pair<SourceLocation,SourceLocation>
+SourceManager::getImmediateExpansionRange(SourceLocation Loc) const {
+ assert(Loc.isMacroID() && "Not a macro expansion loc!");
+ const ExpansionInfo &Expansion = getSLocEntry(getFileID(Loc)).getExpansion();
+ return Expansion.getExpansionLocRange();
+}
+
+/// getExpansionRange - Given a SourceLocation object, return the range of
+/// tokens covered by the expansion in the ultimate file.
+std::pair<SourceLocation,SourceLocation>
+SourceManager::getExpansionRange(SourceLocation Loc) const {
+ if (Loc.isFileID()) return std::make_pair(Loc, Loc);
+
+ std::pair<SourceLocation,SourceLocation> Res =
+ getImmediateExpansionRange(Loc);
+
+ // Fully resolve the start and end locations to their ultimate expansion
+ // points.
+ while (!Res.first.isFileID())
+ Res.first = getImmediateExpansionRange(Res.first).first;
+ while (!Res.second.isFileID())
+ Res.second = getImmediateExpansionRange(Res.second).second;
+ return Res;
+}
+
+bool SourceManager::isMacroArgExpansion(SourceLocation Loc) const {
+ if (!Loc.isMacroID()) return false;
+
+ FileID FID = getFileID(Loc);
+ const SrcMgr::ExpansionInfo &Expansion = getSLocEntry(FID).getExpansion();
+ return Expansion.isMacroArgExpansion();
+}
+
+bool SourceManager::isMacroBodyExpansion(SourceLocation Loc) const {
+ if (!Loc.isMacroID()) return false;
+
+ FileID FID = getFileID(Loc);
+ const SrcMgr::ExpansionInfo &Expansion = getSLocEntry(FID).getExpansion();
+ return Expansion.isMacroBodyExpansion();
+}
+
+bool SourceManager::isAtStartOfImmediateMacroExpansion(SourceLocation Loc,
+ SourceLocation *MacroBegin) const {
+ assert(Loc.isValid() && Loc.isMacroID() && "Expected a valid macro loc");
+
+ std::pair<FileID, unsigned> DecompLoc = getDecomposedLoc(Loc);
+ if (DecompLoc.second > 0)
+ return false; // Does not point at the start of expansion range.
+
+ bool Invalid = false;
+ const SrcMgr::ExpansionInfo &ExpInfo =
+ getSLocEntry(DecompLoc.first, &Invalid).getExpansion();
+ if (Invalid)
+ return false;
+ SourceLocation ExpLoc = ExpInfo.getExpansionLocStart();
+
+ if (ExpInfo.isMacroArgExpansion()) {
+ // For macro argument expansions, check if the previous FileID is part of
+ // the same argument expansion, in which case this Loc is not at the
+ // beginning of the expansion.
+ FileID PrevFID = getPreviousFileID(DecompLoc.first);
+ if (!PrevFID.isInvalid()) {
+ const SrcMgr::SLocEntry &PrevEntry = getSLocEntry(PrevFID, &Invalid);
+ if (Invalid)
+ return false;
+ if (PrevEntry.isExpansion() &&
+ PrevEntry.getExpansion().getExpansionLocStart() == ExpLoc)
+ return false;
+ }
+ }
+
+ if (MacroBegin)
+ *MacroBegin = ExpLoc;
+ return true;
+}
+
+bool SourceManager::isAtEndOfImmediateMacroExpansion(SourceLocation Loc,
+ SourceLocation *MacroEnd) const {
+ assert(Loc.isValid() && Loc.isMacroID() && "Expected a valid macro loc");
+
+ FileID FID = getFileID(Loc);
+ SourceLocation NextLoc = Loc.getLocWithOffset(1);
+ if (isInFileID(NextLoc, FID))
+ return false; // Does not point at the end of expansion range.
+
+ bool Invalid = false;
+ const SrcMgr::ExpansionInfo &ExpInfo =
+ getSLocEntry(FID, &Invalid).getExpansion();
+ if (Invalid)
+ return false;
+
+ if (ExpInfo.isMacroArgExpansion()) {
+ // For macro argument expansions, check if the next FileID is part of the
+ // same argument expansion, in which case this Loc is not at the end of the
+ // expansion.
+ FileID NextFID = getNextFileID(FID);
+ if (!NextFID.isInvalid()) {
+ const SrcMgr::SLocEntry &NextEntry = getSLocEntry(NextFID, &Invalid);
+ if (Invalid)
+ return false;
+ if (NextEntry.isExpansion() &&
+ NextEntry.getExpansion().getExpansionLocStart() ==
+ ExpInfo.getExpansionLocStart())
+ return false;
+ }
+ }
+
+ if (MacroEnd)
+ *MacroEnd = ExpInfo.getExpansionLocEnd();
+ return true;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Queries about the code at a SourceLocation.
+//===----------------------------------------------------------------------===//
+
+/// getCharacterData - Return a pointer to the start of the specified location
+/// in the appropriate MemoryBuffer.
+const char *SourceManager::getCharacterData(SourceLocation SL,
+ bool *Invalid) const {
+ // Note that this is a hot function in the getSpelling() path, which is
+ // heavily used by -E mode.
+ std::pair<FileID, unsigned> LocInfo = getDecomposedSpellingLoc(SL);
+
+ // Note that calling 'getBuffer()' may lazily page in a source file.
+ bool CharDataInvalid = false;
+ const SLocEntry &Entry = getSLocEntry(LocInfo.first, &CharDataInvalid);
+ if (CharDataInvalid || !Entry.isFile()) {
+ if (Invalid)
+ *Invalid = true;
+
+ return "<<<<INVALID BUFFER>>>>";
+ }
+ llvm::MemoryBuffer *Buffer = Entry.getFile().getContentCache()->getBuffer(
+ Diag, *this, SourceLocation(), &CharDataInvalid);
+ if (Invalid)
+ *Invalid = CharDataInvalid;
+ return Buffer->getBufferStart() + (CharDataInvalid? 0 : LocInfo.second);
+}
+
+
+/// getColumnNumber - Return the column # for the specified file position.
+/// this is significantly cheaper to compute than the line number.
+unsigned SourceManager::getColumnNumber(FileID FID, unsigned FilePos,
+ bool *Invalid) const {
+ bool MyInvalid = false;
+ llvm::MemoryBuffer *MemBuf = getBuffer(FID, &MyInvalid);
+ if (Invalid)
+ *Invalid = MyInvalid;
+
+ if (MyInvalid)
+ return 1;
+
+ // It is okay to request a position just past the end of the buffer.
+ if (FilePos > MemBuf->getBufferSize()) {
+ if (Invalid)
+ *Invalid = true;
+ return 1;
+ }
+
+ // See if we just calculated the line number for this FilePos and can use
+ // that to lookup the start of the line instead of searching for it.
+ if (LastLineNoFileIDQuery == FID &&
+ LastLineNoContentCache->SourceLineCache != nullptr &&
+ LastLineNoResult < LastLineNoContentCache->NumLines) {
+ unsigned *SourceLineCache = LastLineNoContentCache->SourceLineCache;
+ unsigned LineStart = SourceLineCache[LastLineNoResult - 1];
+ unsigned LineEnd = SourceLineCache[LastLineNoResult];
+ if (FilePos >= LineStart && FilePos < LineEnd)
+ return FilePos - LineStart + 1;
+ }
+
+ const char *Buf = MemBuf->getBufferStart();
+ unsigned LineStart = FilePos;
+ while (LineStart && Buf[LineStart-1] != '\n' && Buf[LineStart-1] != '\r')
+ --LineStart;
+ return FilePos-LineStart+1;
+}
+
+// isInvalid - Return the result of calling loc.isInvalid(), and
+// if Invalid is not null, set its value to same.
+static bool isInvalid(SourceLocation Loc, bool *Invalid) {
+ bool MyInvalid = Loc.isInvalid();
+ if (Invalid)
+ *Invalid = MyInvalid;
+ return MyInvalid;
+}
+
+unsigned SourceManager::getSpellingColumnNumber(SourceLocation Loc,
+ bool *Invalid) const {
+ if (isInvalid(Loc, Invalid)) return 0;
+ std::pair<FileID, unsigned> LocInfo = getDecomposedSpellingLoc(Loc);
+ return getColumnNumber(LocInfo.first, LocInfo.second, Invalid);
+}
+
+unsigned SourceManager::getExpansionColumnNumber(SourceLocation Loc,
+ bool *Invalid) const {
+ if (isInvalid(Loc, Invalid)) return 0;
+ std::pair<FileID, unsigned> LocInfo = getDecomposedExpansionLoc(Loc);
+ return getColumnNumber(LocInfo.first, LocInfo.second, Invalid);
+}
+
+unsigned SourceManager::getPresumedColumnNumber(SourceLocation Loc,
+ bool *Invalid) const {
+ if (isInvalid(Loc, Invalid)) return 0;
+ return getPresumedLoc(Loc).getColumn();
+}
+
+#ifdef __SSE2__
+#include <emmintrin.h>
+#endif
+
+static LLVM_ATTRIBUTE_NOINLINE void
+ComputeLineNumbers(DiagnosticsEngine &Diag, ContentCache *FI,
+ llvm::BumpPtrAllocator &Alloc,
+ const SourceManager &SM, bool &Invalid);
+static void ComputeLineNumbers(DiagnosticsEngine &Diag, ContentCache *FI,
+ llvm::BumpPtrAllocator &Alloc,
+ const SourceManager &SM, bool &Invalid) {
+ // Note that calling 'getBuffer()' may lazily page in the file.
+ MemoryBuffer *Buffer = FI->getBuffer(Diag, SM, SourceLocation(), &Invalid);
+ if (Invalid)
+ return;
+
+ // Find the file offsets of all of the *physical* source lines. This does
+ // not look at trigraphs, escaped newlines, or anything else tricky.
+ SmallVector<unsigned, 256> LineOffsets;
+
+ // Line #1 starts at char 0.
+ LineOffsets.push_back(0);
+
+ const unsigned char *Buf = (const unsigned char *)Buffer->getBufferStart();
+ const unsigned char *End = (const unsigned char *)Buffer->getBufferEnd();
+ unsigned Offs = 0;
+ while (1) {
+ // Skip over the contents of the line.
+ const unsigned char *NextBuf = (const unsigned char *)Buf;
+
+#ifdef __SSE2__
+ // Try to skip to the next newline using SSE instructions. This is very
+ // performance sensitive for programs with lots of diagnostics and in -E
+ // mode.
+ __m128i CRs = _mm_set1_epi8('\r');
+ __m128i LFs = _mm_set1_epi8('\n');
+
+ // First fix up the alignment to 16 bytes.
+ while (((uintptr_t)NextBuf & 0xF) != 0) {
+ if (*NextBuf == '\n' || *NextBuf == '\r' || *NextBuf == '\0')
+ goto FoundSpecialChar;
+ ++NextBuf;
+ }
+
+ // Scan 16 byte chunks for '\r' and '\n'. Ignore '\0'.
+ while (NextBuf+16 <= End) {
+ const __m128i Chunk = *(const __m128i*)NextBuf;
+ __m128i Cmp = _mm_or_si128(_mm_cmpeq_epi8(Chunk, CRs),
+ _mm_cmpeq_epi8(Chunk, LFs));
+ unsigned Mask = _mm_movemask_epi8(Cmp);
+
+ // If we found a newline, adjust the pointer and jump to the handling code.
+ if (Mask != 0) {
+ NextBuf += llvm::countTrailingZeros(Mask);
+ goto FoundSpecialChar;
+ }
+ NextBuf += 16;
+ }
+#endif
+
+ while (*NextBuf != '\n' && *NextBuf != '\r' && *NextBuf != '\0')
+ ++NextBuf;
+
+#ifdef __SSE2__
+FoundSpecialChar:
+#endif
+ Offs += NextBuf-Buf;
+ Buf = NextBuf;
+
+ if (Buf[0] == '\n' || Buf[0] == '\r') {
+ // If this is \n\r or \r\n, skip both characters.
+ if ((Buf[1] == '\n' || Buf[1] == '\r') && Buf[0] != Buf[1])
+ ++Offs, ++Buf;
+ ++Offs, ++Buf;
+ LineOffsets.push_back(Offs);
+ } else {
+ // Otherwise, this is a null. If end of file, exit.
+ if (Buf == End) break;
+ // Otherwise, skip the null.
+ ++Offs, ++Buf;
+ }
+ }
+
+ // Copy the offsets into the FileInfo structure.
+ FI->NumLines = LineOffsets.size();
+ FI->SourceLineCache = Alloc.Allocate<unsigned>(LineOffsets.size());
+ std::copy(LineOffsets.begin(), LineOffsets.end(), FI->SourceLineCache);
+}
+
+/// getLineNumber - Given a SourceLocation, return the spelling line number
+/// for the position indicated. This requires building and caching a table of
+/// line offsets for the MemoryBuffer, so this is not cheap: use only when
+/// about to emit a diagnostic.
+unsigned SourceManager::getLineNumber(FileID FID, unsigned FilePos,
+ bool *Invalid) const {
+ if (FID.isInvalid()) {
+ if (Invalid)
+ *Invalid = true;
+ return 1;
+ }
+
+ ContentCache *Content;
+ if (LastLineNoFileIDQuery == FID)
+ Content = LastLineNoContentCache;
+ else {
+ bool MyInvalid = false;
+ const SLocEntry &Entry = getSLocEntry(FID, &MyInvalid);
+ if (MyInvalid || !Entry.isFile()) {
+ if (Invalid)
+ *Invalid = true;
+ return 1;
+ }
+
+ Content = const_cast<ContentCache*>(Entry.getFile().getContentCache());
+ }
+
+ // If this is the first use of line information for this buffer, compute the
+ /// SourceLineCache for it on demand.
+ if (!Content->SourceLineCache) {
+ bool MyInvalid = false;
+ ComputeLineNumbers(Diag, Content, ContentCacheAlloc, *this, MyInvalid);
+ if (Invalid)
+ *Invalid = MyInvalid;
+ if (MyInvalid)
+ return 1;
+ } else if (Invalid)
+ *Invalid = false;
+
+ // Okay, we know we have a line number table. Do a binary search to find the
+ // line number that this character position lands on.
+ unsigned *SourceLineCache = Content->SourceLineCache;
+ unsigned *SourceLineCacheStart = SourceLineCache;
+ unsigned *SourceLineCacheEnd = SourceLineCache + Content->NumLines;
+
+ unsigned QueriedFilePos = FilePos+1;
+
+ // FIXME: I would like to be convinced that this code is worth being as
+ // complicated as it is, binary search isn't that slow.
+ //
+ // If it is worth being optimized, then in my opinion it could be more
+ // performant, simpler, and more obviously correct by just "galloping" outward
+ // from the queried file position. In fact, this could be incorporated into a
+ // generic algorithm such as lower_bound_with_hint.
+ //
+ // If someone gives me a test case where this matters, and I will do it! - DWD
+
+ // If the previous query was to the same file, we know both the file pos from
+ // that query and the line number returned. This allows us to narrow the
+ // search space from the entire file to something near the match.
+ if (LastLineNoFileIDQuery == FID) {
+ if (QueriedFilePos >= LastLineNoFilePos) {
+ // FIXME: Potential overflow?
+ SourceLineCache = SourceLineCache+LastLineNoResult-1;
+
+ // The query is likely to be nearby the previous one. Here we check to
+ // see if it is within 5, 10 or 20 lines. It can be far away in cases
+ // where big comment blocks and vertical whitespace eat up lines but
+ // contribute no tokens.
+ if (SourceLineCache+5 < SourceLineCacheEnd) {
+ if (SourceLineCache[5] > QueriedFilePos)
+ SourceLineCacheEnd = SourceLineCache+5;
+ else if (SourceLineCache+10 < SourceLineCacheEnd) {
+ if (SourceLineCache[10] > QueriedFilePos)
+ SourceLineCacheEnd = SourceLineCache+10;
+ else if (SourceLineCache+20 < SourceLineCacheEnd) {
+ if (SourceLineCache[20] > QueriedFilePos)
+ SourceLineCacheEnd = SourceLineCache+20;
+ }
+ }
+ }
+ } else {
+ if (LastLineNoResult < Content->NumLines)
+ SourceLineCacheEnd = SourceLineCache+LastLineNoResult+1;
+ }
+ }
+
+ unsigned *Pos
+ = std::lower_bound(SourceLineCache, SourceLineCacheEnd, QueriedFilePos);
+ unsigned LineNo = Pos-SourceLineCacheStart;
+
+ LastLineNoFileIDQuery = FID;
+ LastLineNoContentCache = Content;
+ LastLineNoFilePos = QueriedFilePos;
+ LastLineNoResult = LineNo;
+ return LineNo;
+}
+
+unsigned SourceManager::getSpellingLineNumber(SourceLocation Loc,
+ bool *Invalid) const {
+ if (isInvalid(Loc, Invalid)) return 0;
+ std::pair<FileID, unsigned> LocInfo = getDecomposedSpellingLoc(Loc);
+ return getLineNumber(LocInfo.first, LocInfo.second);
+}
+unsigned SourceManager::getExpansionLineNumber(SourceLocation Loc,
+ bool *Invalid) const {
+ if (isInvalid(Loc, Invalid)) return 0;
+ std::pair<FileID, unsigned> LocInfo = getDecomposedExpansionLoc(Loc);
+ return getLineNumber(LocInfo.first, LocInfo.second);
+}
+unsigned SourceManager::getPresumedLineNumber(SourceLocation Loc,
+ bool *Invalid) const {
+ if (isInvalid(Loc, Invalid)) return 0;
+ return getPresumedLoc(Loc).getLine();
+}
+
+/// getFileCharacteristic - return the file characteristic of the specified
+/// source location, indicating whether this is a normal file, a system
+/// header, or an "implicit extern C" system header.
+///
+/// This state can be modified with flags on GNU linemarker directives like:
+/// # 4 "foo.h" 3
+/// which changes all source locations in the current file after that to be
+/// considered to be from a system header.
+SrcMgr::CharacteristicKind
+SourceManager::getFileCharacteristic(SourceLocation Loc) const {
+ assert(!Loc.isInvalid() && "Can't get file characteristic of invalid loc!");
+ std::pair<FileID, unsigned> LocInfo = getDecomposedExpansionLoc(Loc);
+ bool Invalid = false;
+ const SLocEntry &SEntry = getSLocEntry(LocInfo.first, &Invalid);
+ if (Invalid || !SEntry.isFile())
+ return C_User;
+
+ const SrcMgr::FileInfo &FI = SEntry.getFile();
+
+ // If there are no #line directives in this file, just return the whole-file
+ // state.
+ if (!FI.hasLineDirectives())
+ return FI.getFileCharacteristic();
+
+ assert(LineTable && "Can't have linetable entries without a LineTable!");
+ // See if there is a #line directive before the location.
+ const LineEntry *Entry =
+ LineTable->FindNearestLineEntry(LocInfo.first, LocInfo.second);
+
+ // If this is before the first line marker, use the file characteristic.
+ if (!Entry)
+ return FI.getFileCharacteristic();
+
+ return Entry->FileKind;
+}
+
+/// Return the filename or buffer identifier of the buffer the location is in.
+/// Note that this name does not respect \#line directives. Use getPresumedLoc
+/// for normal clients.
+const char *SourceManager::getBufferName(SourceLocation Loc,
+ bool *Invalid) const {
+ if (isInvalid(Loc, Invalid)) return "<invalid loc>";
+
+ return getBuffer(getFileID(Loc), Invalid)->getBufferIdentifier();
+}
+
+
+/// getPresumedLoc - This method returns the "presumed" location of a
+/// SourceLocation specifies. A "presumed location" can be modified by \#line
+/// or GNU line marker directives. This provides a view on the data that a
+/// user should see in diagnostics, for example.
+///
+/// Note that a presumed location is always given as the expansion point of an
+/// expansion location, not at the spelling location.
+PresumedLoc SourceManager::getPresumedLoc(SourceLocation Loc,
+ bool UseLineDirectives) const {
+ if (Loc.isInvalid()) return PresumedLoc();
+
+ // Presumed locations are always for expansion points.
+ std::pair<FileID, unsigned> LocInfo = getDecomposedExpansionLoc(Loc);
+
+ bool Invalid = false;
+ const SLocEntry &Entry = getSLocEntry(LocInfo.first, &Invalid);
+ if (Invalid || !Entry.isFile())
+ return PresumedLoc();
+
+ const SrcMgr::FileInfo &FI = Entry.getFile();
+ const SrcMgr::ContentCache *C = FI.getContentCache();
+
+ // To get the source name, first consult the FileEntry (if one exists)
+ // before the MemBuffer as this will avoid unnecessarily paging in the
+ // MemBuffer.
+ const char *Filename;
+ if (C->OrigEntry)
+ Filename = C->OrigEntry->getName();
+ else
+ Filename = C->getBuffer(Diag, *this)->getBufferIdentifier();
+
+ unsigned LineNo = getLineNumber(LocInfo.first, LocInfo.second, &Invalid);
+ if (Invalid)
+ return PresumedLoc();
+ unsigned ColNo = getColumnNumber(LocInfo.first, LocInfo.second, &Invalid);
+ if (Invalid)
+ return PresumedLoc();
+
+ SourceLocation IncludeLoc = FI.getIncludeLoc();
+
+ // If we have #line directives in this file, update and overwrite the physical
+ // location info if appropriate.
+ if (UseLineDirectives && FI.hasLineDirectives()) {
+ assert(LineTable && "Can't have linetable entries without a LineTable!");
+ // See if there is a #line directive before this. If so, get it.
+ if (const LineEntry *Entry =
+ LineTable->FindNearestLineEntry(LocInfo.first, LocInfo.second)) {
+ // If the LineEntry indicates a filename, use it.
+ if (Entry->FilenameID != -1)
+ Filename = LineTable->getFilename(Entry->FilenameID);
+
+ // Use the line number specified by the LineEntry. This line number may
+ // be multiple lines down from the line entry. Add the difference in
+ // physical line numbers from the query point and the line marker to the
+ // total.
+ unsigned MarkerLineNo = getLineNumber(LocInfo.first, Entry->FileOffset);
+ LineNo = Entry->LineNo + (LineNo-MarkerLineNo-1);
+
+ // Note that column numbers are not molested by line markers.
+
+ // Handle virtual #include manipulation.
+ if (Entry->IncludeOffset) {
+ IncludeLoc = getLocForStartOfFile(LocInfo.first);
+ IncludeLoc = IncludeLoc.getLocWithOffset(Entry->IncludeOffset);
+ }
+ }
+ }
+
+ return PresumedLoc(Filename, LineNo, ColNo, IncludeLoc);
+}
+
+/// \brief Returns whether the PresumedLoc for a given SourceLocation is
+/// in the main file.
+///
+/// This computes the "presumed" location for a SourceLocation, then checks
+/// whether it came from a file other than the main file. This is different
+/// from isWrittenInMainFile() because it takes line marker directives into
+/// account.
+bool SourceManager::isInMainFile(SourceLocation Loc) const {
+ if (Loc.isInvalid()) return false;
+
+ // Presumed locations are always for expansion points.
+ std::pair<FileID, unsigned> LocInfo = getDecomposedExpansionLoc(Loc);
+
+ bool Invalid = false;
+ const SLocEntry &Entry = getSLocEntry(LocInfo.first, &Invalid);
+ if (Invalid || !Entry.isFile())
+ return false;
+
+ const SrcMgr::FileInfo &FI = Entry.getFile();
+
+ // Check if there is a line directive for this location.
+ if (FI.hasLineDirectives())
+ if (const LineEntry *Entry =
+ LineTable->FindNearestLineEntry(LocInfo.first, LocInfo.second))
+ if (Entry->IncludeOffset)
+ return false;
+
+ return FI.getIncludeLoc().isInvalid();
+}
+
+/// \brief The size of the SLocEntry that \p FID represents.
+unsigned SourceManager::getFileIDSize(FileID FID) const {
+ bool Invalid = false;
+ const SrcMgr::SLocEntry &Entry = getSLocEntry(FID, &Invalid);
+ if (Invalid)
+ return 0;
+
+ int ID = FID.ID;
+ unsigned NextOffset;
+ if ((ID > 0 && unsigned(ID+1) == local_sloc_entry_size()))
+ NextOffset = getNextLocalOffset();
+ else if (ID+1 == -1)
+ NextOffset = MaxLoadedOffset;
+ else
+ NextOffset = getSLocEntry(FileID::get(ID+1)).getOffset();
+
+ return NextOffset - Entry.getOffset() - 1;
+}
+
+//===----------------------------------------------------------------------===//
+// Other miscellaneous methods.
+//===----------------------------------------------------------------------===//
+
+/// \brief Retrieve the inode for the given file entry, if possible.
+///
+/// This routine involves a system call, and therefore should only be used
+/// in non-performance-critical code.
+static Optional<llvm::sys::fs::UniqueID>
+getActualFileUID(const FileEntry *File) {
+ if (!File)
+ return None;
+
+ llvm::sys::fs::UniqueID ID;
+ if (llvm::sys::fs::getUniqueID(File->getName(), ID))
+ return None;
+
+ return ID;
+}
+
+/// \brief Get the source location for the given file:line:col triplet.
+///
+/// If the source file is included multiple times, the source location will
+/// be based upon an arbitrary inclusion.
+SourceLocation SourceManager::translateFileLineCol(const FileEntry *SourceFile,
+ unsigned Line,
+ unsigned Col) const {
+ assert(SourceFile && "Null source file!");
+ assert(Line && Col && "Line and column should start from 1!");
+
+ FileID FirstFID = translateFile(SourceFile);
+ return translateLineCol(FirstFID, Line, Col);
+}
+
+/// \brief Get the FileID for the given file.
+///
+/// If the source file is included multiple times, the FileID will be the
+/// first inclusion.
+FileID SourceManager::translateFile(const FileEntry *SourceFile) const {
+ assert(SourceFile && "Null source file!");
+
+ // Find the first file ID that corresponds to the given file.
+ FileID FirstFID;
+
+ // First, check the main file ID, since it is common to look for a
+ // location in the main file.
+ Optional<llvm::sys::fs::UniqueID> SourceFileUID;
+ Optional<StringRef> SourceFileName;
+ if (!MainFileID.isInvalid()) {
+ bool Invalid = false;
+ const SLocEntry &MainSLoc = getSLocEntry(MainFileID, &Invalid);
+ if (Invalid)
+ return FileID();
+
+ if (MainSLoc.isFile()) {
+ const ContentCache *MainContentCache
+ = MainSLoc.getFile().getContentCache();
+ if (!MainContentCache) {
+ // Can't do anything
+ } else if (MainContentCache->OrigEntry == SourceFile) {
+ FirstFID = MainFileID;
+ } else {
+ // Fall back: check whether we have the same base name and inode
+ // as the main file.
+ const FileEntry *MainFile = MainContentCache->OrigEntry;
+ SourceFileName = llvm::sys::path::filename(SourceFile->getName());
+ if (*SourceFileName == llvm::sys::path::filename(MainFile->getName())) {
+ SourceFileUID = getActualFileUID(SourceFile);
+ if (SourceFileUID) {
+ if (Optional<llvm::sys::fs::UniqueID> MainFileUID =
+ getActualFileUID(MainFile)) {
+ if (*SourceFileUID == *MainFileUID) {
+ FirstFID = MainFileID;
+ SourceFile = MainFile;
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+
+ if (FirstFID.isInvalid()) {
+ // The location we're looking for isn't in the main file; look
+ // through all of the local source locations.
+ for (unsigned I = 0, N = local_sloc_entry_size(); I != N; ++I) {
+ bool Invalid = false;
+ const SLocEntry &SLoc = getLocalSLocEntry(I, &Invalid);
+ if (Invalid)
+ return FileID();
+
+ if (SLoc.isFile() &&
+ SLoc.getFile().getContentCache() &&
+ SLoc.getFile().getContentCache()->OrigEntry == SourceFile) {
+ FirstFID = FileID::get(I);
+ break;
+ }
+ }
+ // If that still didn't help, try the modules.
+ if (FirstFID.isInvalid()) {
+ for (unsigned I = 0, N = loaded_sloc_entry_size(); I != N; ++I) {
+ const SLocEntry &SLoc = getLoadedSLocEntry(I);
+ if (SLoc.isFile() &&
+ SLoc.getFile().getContentCache() &&
+ SLoc.getFile().getContentCache()->OrigEntry == SourceFile) {
+ FirstFID = FileID::get(-int(I) - 2);
+ break;
+ }
+ }
+ }
+ }
+
+ // If we haven't found what we want yet, try again, but this time stat()
+ // each of the files in case the files have changed since we originally
+ // parsed the file.
+ if (FirstFID.isInvalid() &&
+ (SourceFileName ||
+ (SourceFileName = llvm::sys::path::filename(SourceFile->getName()))) &&
+ (SourceFileUID || (SourceFileUID = getActualFileUID(SourceFile)))) {
+ bool Invalid = false;
+ for (unsigned I = 0, N = local_sloc_entry_size(); I != N; ++I) {
+ FileID IFileID;
+ IFileID.ID = I;
+ const SLocEntry &SLoc = getSLocEntry(IFileID, &Invalid);
+ if (Invalid)
+ return FileID();
+
+ if (SLoc.isFile()) {
+ const ContentCache *FileContentCache
+ = SLoc.getFile().getContentCache();
+ const FileEntry *Entry = FileContentCache ? FileContentCache->OrigEntry
+ : nullptr;
+ if (Entry &&
+ *SourceFileName == llvm::sys::path::filename(Entry->getName())) {
+ if (Optional<llvm::sys::fs::UniqueID> EntryUID =
+ getActualFileUID(Entry)) {
+ if (*SourceFileUID == *EntryUID) {
+ FirstFID = FileID::get(I);
+ SourceFile = Entry;
+ break;
+ }
+ }
+ }
+ }
+ }
+ }
+
+ (void) SourceFile;
+ return FirstFID;
+}
+
+/// \brief Get the source location in \arg FID for the given line:col.
+/// Returns null location if \arg FID is not a file SLocEntry.
+SourceLocation SourceManager::translateLineCol(FileID FID,
+ unsigned Line,
+ unsigned Col) const {
+ // Lines are used as a one-based index into a zero-based array. This assert
+ // checks for possible buffer underruns.
+ assert(Line != 0 && "Passed a zero-based line");
+
+ if (FID.isInvalid())
+ return SourceLocation();
+
+ bool Invalid = false;
+ const SLocEntry &Entry = getSLocEntry(FID, &Invalid);
+ if (Invalid)
+ return SourceLocation();
+
+ if (!Entry.isFile())
+ return SourceLocation();
+
+ SourceLocation FileLoc = SourceLocation::getFileLoc(Entry.getOffset());
+
+ if (Line == 1 && Col == 1)
+ return FileLoc;
+
+ ContentCache *Content
+ = const_cast<ContentCache *>(Entry.getFile().getContentCache());
+ if (!Content)
+ return SourceLocation();
+
+ // If this is the first use of line information for this buffer, compute the
+ // SourceLineCache for it on demand.
+ if (!Content->SourceLineCache) {
+ bool MyInvalid = false;
+ ComputeLineNumbers(Diag, Content, ContentCacheAlloc, *this, MyInvalid);
+ if (MyInvalid)
+ return SourceLocation();
+ }
+
+ if (Line > Content->NumLines) {
+ unsigned Size = Content->getBuffer(Diag, *this)->getBufferSize();
+ if (Size > 0)
+ --Size;
+ return FileLoc.getLocWithOffset(Size);
+ }
+
+ llvm::MemoryBuffer *Buffer = Content->getBuffer(Diag, *this);
+ unsigned FilePos = Content->SourceLineCache[Line - 1];
+ const char *Buf = Buffer->getBufferStart() + FilePos;
+ unsigned BufLength = Buffer->getBufferSize() - FilePos;
+ if (BufLength == 0)
+ return FileLoc.getLocWithOffset(FilePos);
+
+ unsigned i = 0;
+
+ // Check that the given column is valid.
+ while (i < BufLength-1 && i < Col-1 && Buf[i] != '\n' && Buf[i] != '\r')
+ ++i;
+ return FileLoc.getLocWithOffset(FilePos + i);
+}
+
+/// \brief Compute a map of macro argument chunks to their expanded source
+/// location. Chunks that are not part of a macro argument will map to an
+/// invalid source location. e.g. if a file contains one macro argument at
+/// offset 100 with length 10, this is how the map will be formed:
+/// 0 -> SourceLocation()
+/// 100 -> Expanded macro arg location
+/// 110 -> SourceLocation()
+void SourceManager::computeMacroArgsCache(MacroArgsMap *&CachePtr,
+ FileID FID) const {
+ assert(!FID.isInvalid());
+ assert(!CachePtr);
+
+ CachePtr = new MacroArgsMap();
+ MacroArgsMap &MacroArgsCache = *CachePtr;
+ // Initially no macro argument chunk is present.
+ MacroArgsCache.insert(std::make_pair(0, SourceLocation()));
+
+ int ID = FID.ID;
+ while (1) {
+ ++ID;
+ // Stop if there are no more FileIDs to check.
+ if (ID > 0) {
+ if (unsigned(ID) >= local_sloc_entry_size())
+ return;
+ } else if (ID == -1) {
+ return;
+ }
+
+ bool Invalid = false;
+ const SrcMgr::SLocEntry &Entry = getSLocEntryByID(ID, &Invalid);
+ if (Invalid)
+ return;
+ if (Entry.isFile()) {
+ SourceLocation IncludeLoc = Entry.getFile().getIncludeLoc();
+ if (IncludeLoc.isInvalid())
+ continue;
+ if (!isInFileID(IncludeLoc, FID))
+ return; // No more files/macros that may be "contained" in this file.
+
+ // Skip the files/macros of the #include'd file, we only care about macros
+ // that lexed macro arguments from our file.
+ if (Entry.getFile().NumCreatedFIDs)
+ ID += Entry.getFile().NumCreatedFIDs - 1/*because of next ++ID*/;
+ continue;
+ }
+
+ const ExpansionInfo &ExpInfo = Entry.getExpansion();
+
+ if (ExpInfo.getExpansionLocStart().isFileID()) {
+ if (!isInFileID(ExpInfo.getExpansionLocStart(), FID))
+ return; // No more files/macros that may be "contained" in this file.
+ }
+
+ if (!ExpInfo.isMacroArgExpansion())
+ continue;
+
+ associateFileChunkWithMacroArgExp(MacroArgsCache, FID,
+ ExpInfo.getSpellingLoc(),
+ SourceLocation::getMacroLoc(Entry.getOffset()),
+ getFileIDSize(FileID::get(ID)));
+ }
+}
+
+void SourceManager::associateFileChunkWithMacroArgExp(
+ MacroArgsMap &MacroArgsCache,
+ FileID FID,
+ SourceLocation SpellLoc,
+ SourceLocation ExpansionLoc,
+ unsigned ExpansionLength) const {
+ if (!SpellLoc.isFileID()) {
+ unsigned SpellBeginOffs = SpellLoc.getOffset();
+ unsigned SpellEndOffs = SpellBeginOffs + ExpansionLength;
+
+ // The spelling range for this macro argument expansion can span multiple
+ // consecutive FileID entries. Go through each entry contained in the
+ // spelling range and if one is itself a macro argument expansion, recurse
+ // and associate the file chunk that it represents.
+
+ FileID SpellFID; // Current FileID in the spelling range.
+ unsigned SpellRelativeOffs;
+ std::tie(SpellFID, SpellRelativeOffs) = getDecomposedLoc(SpellLoc);
+ while (1) {
+ const SLocEntry &Entry = getSLocEntry(SpellFID);
+ unsigned SpellFIDBeginOffs = Entry.getOffset();
+ unsigned SpellFIDSize = getFileIDSize(SpellFID);
+ unsigned SpellFIDEndOffs = SpellFIDBeginOffs + SpellFIDSize;
+ const ExpansionInfo &Info = Entry.getExpansion();
+ if (Info.isMacroArgExpansion()) {
+ unsigned CurrSpellLength;
+ if (SpellFIDEndOffs < SpellEndOffs)
+ CurrSpellLength = SpellFIDSize - SpellRelativeOffs;
+ else
+ CurrSpellLength = ExpansionLength;
+ associateFileChunkWithMacroArgExp(MacroArgsCache, FID,
+ Info.getSpellingLoc().getLocWithOffset(SpellRelativeOffs),
+ ExpansionLoc, CurrSpellLength);
+ }
+
+ if (SpellFIDEndOffs >= SpellEndOffs)
+ return; // we covered all FileID entries in the spelling range.
+
+ // Move to the next FileID entry in the spelling range.
+ unsigned advance = SpellFIDSize - SpellRelativeOffs + 1;
+ ExpansionLoc = ExpansionLoc.getLocWithOffset(advance);
+ ExpansionLength -= advance;
+ ++SpellFID.ID;
+ SpellRelativeOffs = 0;
+ }
+
+ }
+
+ assert(SpellLoc.isFileID());
+
+ unsigned BeginOffs;
+ if (!isInFileID(SpellLoc, FID, &BeginOffs))
+ return;
+
+ unsigned EndOffs = BeginOffs + ExpansionLength;
+
+ // Add a new chunk for this macro argument. A previous macro argument chunk
+ // may have been lexed again, so e.g. if the map is
+ // 0 -> SourceLocation()
+ // 100 -> Expanded loc #1
+ // 110 -> SourceLocation()
+ // and we found a new macro FileID that lexed from offet 105 with length 3,
+ // the new map will be:
+ // 0 -> SourceLocation()
+ // 100 -> Expanded loc #1
+ // 105 -> Expanded loc #2
+ // 108 -> Expanded loc #1
+ // 110 -> SourceLocation()
+ //
+ // Since re-lexed macro chunks will always be the same size or less of
+ // previous chunks, we only need to find where the ending of the new macro
+ // chunk is mapped to and update the map with new begin/end mappings.
+
+ MacroArgsMap::iterator I = MacroArgsCache.upper_bound(EndOffs);
+ --I;
+ SourceLocation EndOffsMappedLoc = I->second;
+ MacroArgsCache[BeginOffs] = ExpansionLoc;
+ MacroArgsCache[EndOffs] = EndOffsMappedLoc;
+}
+
+/// \brief If \arg Loc points inside a function macro argument, the returned
+/// location will be the macro location in which the argument was expanded.
+/// If a macro argument is used multiple times, the expanded location will
+/// be at the first expansion of the argument.
+/// e.g.
+/// MY_MACRO(foo);
+/// ^
+/// Passing a file location pointing at 'foo', will yield a macro location
+/// where 'foo' was expanded into.
+SourceLocation
+SourceManager::getMacroArgExpandedLocation(SourceLocation Loc) const {
+ if (Loc.isInvalid() || !Loc.isFileID())
+ return Loc;
+
+ FileID FID;
+ unsigned Offset;
+ std::tie(FID, Offset) = getDecomposedLoc(Loc);
+ if (FID.isInvalid())
+ return Loc;
+
+ MacroArgsMap *&MacroArgsCache = MacroArgsCacheMap[FID];
+ if (!MacroArgsCache)
+ computeMacroArgsCache(MacroArgsCache, FID);
+
+ assert(!MacroArgsCache->empty());
+ MacroArgsMap::iterator I = MacroArgsCache->upper_bound(Offset);
+ --I;
+
+ unsigned MacroArgBeginOffs = I->first;
+ SourceLocation MacroArgExpandedLoc = I->second;
+ if (MacroArgExpandedLoc.isValid())
+ return MacroArgExpandedLoc.getLocWithOffset(Offset - MacroArgBeginOffs);
+
+ return Loc;
+}
+
+std::pair<FileID, unsigned>
+SourceManager::getDecomposedIncludedLoc(FileID FID) const {
+ if (FID.isInvalid())
+ return std::make_pair(FileID(), 0);
+
+ // Uses IncludedLocMap to retrieve/cache the decomposed loc.
+
+ typedef std::pair<FileID, unsigned> DecompTy;
+ typedef llvm::DenseMap<FileID, DecompTy> MapTy;
+ std::pair<MapTy::iterator, bool>
+ InsertOp = IncludedLocMap.insert(std::make_pair(FID, DecompTy()));
+ DecompTy &DecompLoc = InsertOp.first->second;
+ if (!InsertOp.second)
+ return DecompLoc; // already in map.
+
+ SourceLocation UpperLoc;
+ bool Invalid = false;
+ const SrcMgr::SLocEntry &Entry = getSLocEntry(FID, &Invalid);
+ if (!Invalid) {
+ if (Entry.isExpansion())
+ UpperLoc = Entry.getExpansion().getExpansionLocStart();
+ else
+ UpperLoc = Entry.getFile().getIncludeLoc();
+ }
+
+ if (UpperLoc.isValid())
+ DecompLoc = getDecomposedLoc(UpperLoc);
+
+ return DecompLoc;
+}
+
+/// Given a decomposed source location, move it up the include/expansion stack
+/// to the parent source location. If this is possible, return the decomposed
+/// version of the parent in Loc and return false. If Loc is the top-level
+/// entry, return true and don't modify it.
+static bool MoveUpIncludeHierarchy(std::pair<FileID, unsigned> &Loc,
+ const SourceManager &SM) {
+ std::pair<FileID, unsigned> UpperLoc = SM.getDecomposedIncludedLoc(Loc.first);
+ if (UpperLoc.first.isInvalid())
+ return true; // We reached the top.
+
+ Loc = UpperLoc;
+ return false;
+}
+
+/// Return the cache entry for comparing the given file IDs
+/// for isBeforeInTranslationUnit.
+InBeforeInTUCacheEntry &SourceManager::getInBeforeInTUCache(FileID LFID,
+ FileID RFID) const {
+ // This is a magic number for limiting the cache size. It was experimentally
+ // derived from a small Objective-C project (where the cache filled
+ // out to ~250 items). We can make it larger if necessary.
+ enum { MagicCacheSize = 300 };
+ IsBeforeInTUCacheKey Key(LFID, RFID);
+
+ // If the cache size isn't too large, do a lookup and if necessary default
+ // construct an entry. We can then return it to the caller for direct
+ // use. When they update the value, the cache will get automatically
+ // updated as well.
+ if (IBTUCache.size() < MagicCacheSize)
+ return IBTUCache[Key];
+
+ // Otherwise, do a lookup that will not construct a new value.
+ InBeforeInTUCache::iterator I = IBTUCache.find(Key);
+ if (I != IBTUCache.end())
+ return I->second;
+
+ // Fall back to the overflow value.
+ return IBTUCacheOverflow;
+}
+
+/// \brief Determines the order of 2 source locations in the translation unit.
+///
+/// \returns true if LHS source location comes before RHS, false otherwise.
+bool SourceManager::isBeforeInTranslationUnit(SourceLocation LHS,
+ SourceLocation RHS) const {
+ assert(LHS.isValid() && RHS.isValid() && "Passed invalid source location!");
+ if (LHS == RHS)
+ return false;
+
+ std::pair<FileID, unsigned> LOffs = getDecomposedLoc(LHS);
+ std::pair<FileID, unsigned> ROffs = getDecomposedLoc(RHS);
+
+ // getDecomposedLoc may have failed to return a valid FileID because, e.g. it
+ // is a serialized one referring to a file that was removed after we loaded
+ // the PCH.
+ if (LOffs.first.isInvalid() || ROffs.first.isInvalid())
+ return LOffs.first.isInvalid() && !ROffs.first.isInvalid();
+
+ // If the source locations are in the same file, just compare offsets.
+ if (LOffs.first == ROffs.first)
+ return LOffs.second < ROffs.second;
+
+ // If we are comparing a source location with multiple locations in the same
+ // file, we get a big win by caching the result.
+ InBeforeInTUCacheEntry &IsBeforeInTUCache =
+ getInBeforeInTUCache(LOffs.first, ROffs.first);
+
+ // If we are comparing a source location with multiple locations in the same
+ // file, we get a big win by caching the result.
+ if (IsBeforeInTUCache.isCacheValid(LOffs.first, ROffs.first))
+ return IsBeforeInTUCache.getCachedResult(LOffs.second, ROffs.second);
+
+ // Okay, we missed in the cache, start updating the cache for this query.
+ IsBeforeInTUCache.setQueryFIDs(LOffs.first, ROffs.first,
+ /*isLFIDBeforeRFID=*/LOffs.first.ID < ROffs.first.ID);
+
+ // We need to find the common ancestor. The only way of doing this is to
+ // build the complete include chain for one and then walking up the chain
+ // of the other looking for a match.
+ // We use a map from FileID to Offset to store the chain. Easier than writing
+ // a custom set hash info that only depends on the first part of a pair.
+ typedef llvm::SmallDenseMap<FileID, unsigned, 16> LocSet;
+ LocSet LChain;
+ do {
+ LChain.insert(LOffs);
+ // We catch the case where LOffs is in a file included by ROffs and
+ // quit early. The other way round unfortunately remains suboptimal.
+ } while (LOffs.first != ROffs.first && !MoveUpIncludeHierarchy(LOffs, *this));
+ LocSet::iterator I;
+ while((I = LChain.find(ROffs.first)) == LChain.end()) {
+ if (MoveUpIncludeHierarchy(ROffs, *this))
+ break; // Met at topmost file.
+ }
+ if (I != LChain.end())
+ LOffs = *I;
+
+ // If we exited because we found a nearest common ancestor, compare the
+ // locations within the common file and cache them.
+ if (LOffs.first == ROffs.first) {
+ IsBeforeInTUCache.setCommonLoc(LOffs.first, LOffs.second, ROffs.second);
+ return IsBeforeInTUCache.getCachedResult(LOffs.second, ROffs.second);
+ }
+
+ // If we arrived here, the location is either in a built-ins buffer or
+ // associated with global inline asm. PR5662 and PR22576 are examples.
+
+ // Clear the lookup cache, it depends on a common location.
+ IsBeforeInTUCache.clear();
+ llvm::MemoryBuffer *LBuf = getBuffer(LOffs.first);
+ llvm::MemoryBuffer *RBuf = getBuffer(ROffs.first);
+ bool LIsBuiltins = strcmp("<built-in>", LBuf->getBufferIdentifier()) == 0;
+ bool RIsBuiltins = strcmp("<built-in>", RBuf->getBufferIdentifier()) == 0;
+ // Sort built-in before non-built-in.
+ if (LIsBuiltins || RIsBuiltins) {
+ if (LIsBuiltins != RIsBuiltins)
+ return LIsBuiltins;
+ // Both are in built-in buffers, but from different files. We just claim that
+ // lower IDs come first.
+ return LOffs.first < ROffs.first;
+ }
+ bool LIsAsm = strcmp("<inline asm>", LBuf->getBufferIdentifier()) == 0;
+ bool RIsAsm = strcmp("<inline asm>", RBuf->getBufferIdentifier()) == 0;
+ // Sort assembler after built-ins, but before the rest.
+ if (LIsAsm || RIsAsm) {
+ if (LIsAsm != RIsAsm)
+ return RIsAsm;
+ assert(LOffs.first == ROffs.first);
+ return false;
+ }
+ llvm_unreachable("Unsortable locations found");
+}
+
+void SourceManager::PrintStats() const {
+ llvm::errs() << "\n*** Source Manager Stats:\n";
+ llvm::errs() << FileInfos.size() << " files mapped, " << MemBufferInfos.size()
+ << " mem buffers mapped.\n";
+ llvm::errs() << LocalSLocEntryTable.size() << " local SLocEntry's allocated ("
+ << llvm::capacity_in_bytes(LocalSLocEntryTable)
+ << " bytes of capacity), "
+ << NextLocalOffset << "B of Sloc address space used.\n";
+ llvm::errs() << LoadedSLocEntryTable.size()
+ << " loaded SLocEntries allocated, "
+ << MaxLoadedOffset - CurrentLoadedOffset
+ << "B of Sloc address space used.\n";
+
+ unsigned NumLineNumsComputed = 0;
+ unsigned NumFileBytesMapped = 0;
+ for (fileinfo_iterator I = fileinfo_begin(), E = fileinfo_end(); I != E; ++I){
+ NumLineNumsComputed += I->second->SourceLineCache != nullptr;
+ NumFileBytesMapped += I->second->getSizeBytesMapped();
+ }
+ unsigned NumMacroArgsComputed = MacroArgsCacheMap.size();
+
+ llvm::errs() << NumFileBytesMapped << " bytes of files mapped, "
+ << NumLineNumsComputed << " files with line #'s computed, "
+ << NumMacroArgsComputed << " files with macro args computed.\n";
+ llvm::errs() << "FileID scans: " << NumLinearScans << " linear, "
+ << NumBinaryProbes << " binary.\n";
+}
+
+ExternalSLocEntrySource::~ExternalSLocEntrySource() { }
+
+/// Return the amount of memory used by memory buffers, breaking down
+/// by heap-backed versus mmap'ed memory.
+SourceManager::MemoryBufferSizes SourceManager::getMemoryBufferSizes() const {
+ size_t malloc_bytes = 0;
+ size_t mmap_bytes = 0;
+
+ for (unsigned i = 0, e = MemBufferInfos.size(); i != e; ++i)
+ if (size_t sized_mapped = MemBufferInfos[i]->getSizeBytesMapped())
+ switch (MemBufferInfos[i]->getMemoryBufferKind()) {
+ case llvm::MemoryBuffer::MemoryBuffer_MMap:
+ mmap_bytes += sized_mapped;
+ break;
+ case llvm::MemoryBuffer::MemoryBuffer_Malloc:
+ malloc_bytes += sized_mapped;
+ break;
+ }
+
+ return MemoryBufferSizes(malloc_bytes, mmap_bytes);
+}
+
+size_t SourceManager::getDataStructureSizes() const {
+ size_t size = llvm::capacity_in_bytes(MemBufferInfos)
+ + llvm::capacity_in_bytes(LocalSLocEntryTable)
+ + llvm::capacity_in_bytes(LoadedSLocEntryTable)
+ + llvm::capacity_in_bytes(SLocEntryLoaded)
+ + llvm::capacity_in_bytes(FileInfos);
+
+ if (OverriddenFilesInfo)
+ size += llvm::capacity_in_bytes(OverriddenFilesInfo->OverriddenFiles);
+
+ return size;
+}
diff --git a/contrib/llvm/tools/clang/lib/Basic/TargetInfo.cpp b/contrib/llvm/tools/clang/lib/Basic/TargetInfo.cpp
new file mode 100644
index 0000000..330258b
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Basic/TargetInfo.cpp
@@ -0,0 +1,665 @@
+//===--- TargetInfo.cpp - Information about Target machine ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the TargetInfo and TargetInfoImpl interfaces.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Basic/AddressSpaces.h"
+#include "clang/Basic/CharInfo.h"
+#include "clang/Basic/LangOptions.h"
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <cstdlib>
+using namespace clang;
+
+static const LangAS::Map DefaultAddrSpaceMap = { 0 };
+
+// TargetInfo Constructor.
+TargetInfo::TargetInfo(const llvm::Triple &T) : TargetOpts(), Triple(T) {
+ // Set defaults. Defaults are set for a 32-bit RISC platform, like PPC or
+ // SPARC. These should be overridden by concrete targets as needed.
+ BigEndian = true;
+ TLSSupported = true;
+ NoAsmVariants = false;
+ PointerWidth = PointerAlign = 32;
+ BoolWidth = BoolAlign = 8;
+ IntWidth = IntAlign = 32;
+ LongWidth = LongAlign = 32;
+ LongLongWidth = LongLongAlign = 64;
+ SuitableAlign = 64;
+ DefaultAlignForAttributeAligned = 128;
+ MinGlobalAlign = 0;
+ HalfWidth = 16;
+ HalfAlign = 16;
+ FloatWidth = 32;
+ FloatAlign = 32;
+ DoubleWidth = 64;
+ DoubleAlign = 64;
+ LongDoubleWidth = 64;
+ LongDoubleAlign = 64;
+ LargeArrayMinWidth = 0;
+ LargeArrayAlign = 0;
+ MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 0;
+ MaxVectorAlign = 0;
+ SizeType = UnsignedLong;
+ PtrDiffType = SignedLong;
+ IntMaxType = SignedLongLong;
+ IntPtrType = SignedLong;
+ WCharType = SignedInt;
+ WIntType = SignedInt;
+ Char16Type = UnsignedShort;
+ Char32Type = UnsignedInt;
+ Int64Type = SignedLongLong;
+ SigAtomicType = SignedInt;
+ ProcessIDType = SignedInt;
+ UseSignedCharForObjCBool = true;
+ UseBitFieldTypeAlignment = true;
+ UseZeroLengthBitfieldAlignment = false;
+ ZeroLengthBitfieldBoundary = 0;
+ HalfFormat = &llvm::APFloat::IEEEhalf;
+ FloatFormat = &llvm::APFloat::IEEEsingle;
+ DoubleFormat = &llvm::APFloat::IEEEdouble;
+ LongDoubleFormat = &llvm::APFloat::IEEEdouble;
+ DescriptionString = nullptr;
+ UserLabelPrefix = "_";
+ MCountName = "mcount";
+ RegParmMax = 0;
+ SSERegParmMax = 0;
+ HasAlignMac68kSupport = false;
+
+ // Default to no types using fpret.
+ RealTypeUsesObjCFPRet = 0;
+
+ // Default to not using fp2ret for __Complex long double
+ ComplexLongDoubleUsesFP2Ret = false;
+
+ // Set the C++ ABI based on the triple.
+ TheCXXABI.set(Triple.isKnownWindowsMSVCEnvironment()
+ ? TargetCXXABI::Microsoft
+ : TargetCXXABI::GenericItanium);
+
+ // Default to an empty address space map.
+ AddrSpaceMap = &DefaultAddrSpaceMap;
+ UseAddrSpaceMapMangling = false;
+
+ // Default to an unknown platform name.
+ PlatformName = "unknown";
+ PlatformMinVersion = VersionTuple();
+}
+
+// Out of line virtual dtor for TargetInfo.
+TargetInfo::~TargetInfo() {}
+
+/// getTypeName - Return the user string for the specified integer type enum.
+/// For example, SignedShort -> "short".
+const char *TargetInfo::getTypeName(IntType T) {
+ switch (T) {
+ default: llvm_unreachable("not an integer!");
+ case SignedChar: return "signed char";
+ case UnsignedChar: return "unsigned char";
+ case SignedShort: return "short";
+ case UnsignedShort: return "unsigned short";
+ case SignedInt: return "int";
+ case UnsignedInt: return "unsigned int";
+ case SignedLong: return "long int";
+ case UnsignedLong: return "long unsigned int";
+ case SignedLongLong: return "long long int";
+ case UnsignedLongLong: return "long long unsigned int";
+ }
+}
+
+/// getTypeConstantSuffix - Return the constant suffix for the specified
+/// integer type enum. For example, SignedLong -> "L".
+const char *TargetInfo::getTypeConstantSuffix(IntType T) const {
+ switch (T) {
+ default: llvm_unreachable("not an integer!");
+ case SignedChar:
+ case SignedShort:
+ case SignedInt: return "";
+ case SignedLong: return "L";
+ case SignedLongLong: return "LL";
+ case UnsignedChar:
+ if (getCharWidth() < getIntWidth())
+ return "";
+ case UnsignedShort:
+ if (getShortWidth() < getIntWidth())
+ return "";
+ case UnsignedInt: return "U";
+ case UnsignedLong: return "UL";
+ case UnsignedLongLong: return "ULL";
+ }
+}
+
+/// getTypeFormatModifier - Return the printf format modifier for the
+/// specified integer type enum. For example, SignedLong -> "l".
+
+const char *TargetInfo::getTypeFormatModifier(IntType T) {
+ switch (T) {
+ default: llvm_unreachable("not an integer!");
+ case SignedChar:
+ case UnsignedChar: return "hh";
+ case SignedShort:
+ case UnsignedShort: return "h";
+ case SignedInt:
+ case UnsignedInt: return "";
+ case SignedLong:
+ case UnsignedLong: return "l";
+ case SignedLongLong:
+ case UnsignedLongLong: return "ll";
+ }
+}
+
+/// getTypeWidth - Return the width (in bits) of the specified integer type
+/// enum. For example, SignedInt -> getIntWidth().
+unsigned TargetInfo::getTypeWidth(IntType T) const {
+ switch (T) {
+ default: llvm_unreachable("not an integer!");
+ case SignedChar:
+ case UnsignedChar: return getCharWidth();
+ case SignedShort:
+ case UnsignedShort: return getShortWidth();
+ case SignedInt:
+ case UnsignedInt: return getIntWidth();
+ case SignedLong:
+ case UnsignedLong: return getLongWidth();
+ case SignedLongLong:
+ case UnsignedLongLong: return getLongLongWidth();
+ };
+}
+
+TargetInfo::IntType TargetInfo::getIntTypeByWidth(
+ unsigned BitWidth, bool IsSigned) const {
+ if (getCharWidth() == BitWidth)
+ return IsSigned ? SignedChar : UnsignedChar;
+ if (getShortWidth() == BitWidth)
+ return IsSigned ? SignedShort : UnsignedShort;
+ if (getIntWidth() == BitWidth)
+ return IsSigned ? SignedInt : UnsignedInt;
+ if (getLongWidth() == BitWidth)
+ return IsSigned ? SignedLong : UnsignedLong;
+ if (getLongLongWidth() == BitWidth)
+ return IsSigned ? SignedLongLong : UnsignedLongLong;
+ return NoInt;
+}
+
+TargetInfo::IntType TargetInfo::getLeastIntTypeByWidth(unsigned BitWidth,
+ bool IsSigned) const {
+ if (getCharWidth() >= BitWidth)
+ return IsSigned ? SignedChar : UnsignedChar;
+ if (getShortWidth() >= BitWidth)
+ return IsSigned ? SignedShort : UnsignedShort;
+ if (getIntWidth() >= BitWidth)
+ return IsSigned ? SignedInt : UnsignedInt;
+ if (getLongWidth() >= BitWidth)
+ return IsSigned ? SignedLong : UnsignedLong;
+ if (getLongLongWidth() >= BitWidth)
+ return IsSigned ? SignedLongLong : UnsignedLongLong;
+ return NoInt;
+}
+
+TargetInfo::RealType TargetInfo::getRealTypeByWidth(unsigned BitWidth) const {
+ if (getFloatWidth() == BitWidth)
+ return Float;
+ if (getDoubleWidth() == BitWidth)
+ return Double;
+
+ switch (BitWidth) {
+ case 96:
+ if (&getLongDoubleFormat() == &llvm::APFloat::x87DoubleExtended)
+ return LongDouble;
+ break;
+ case 128:
+ if (&getLongDoubleFormat() == &llvm::APFloat::PPCDoubleDouble ||
+ &getLongDoubleFormat() == &llvm::APFloat::IEEEquad)
+ return LongDouble;
+ break;
+ }
+
+ return NoFloat;
+}
+
+/// getTypeAlign - Return the alignment (in bits) of the specified integer type
+/// enum. For example, SignedInt -> getIntAlign().
+unsigned TargetInfo::getTypeAlign(IntType T) const {
+ switch (T) {
+ default: llvm_unreachable("not an integer!");
+ case SignedChar:
+ case UnsignedChar: return getCharAlign();
+ case SignedShort:
+ case UnsignedShort: return getShortAlign();
+ case SignedInt:
+ case UnsignedInt: return getIntAlign();
+ case SignedLong:
+ case UnsignedLong: return getLongAlign();
+ case SignedLongLong:
+ case UnsignedLongLong: return getLongLongAlign();
+ };
+}
+
+/// isTypeSigned - Return whether an integer types is signed. Returns true if
+/// the type is signed; false otherwise.
+bool TargetInfo::isTypeSigned(IntType T) {
+ switch (T) {
+ default: llvm_unreachable("not an integer!");
+ case SignedChar:
+ case SignedShort:
+ case SignedInt:
+ case SignedLong:
+ case SignedLongLong:
+ return true;
+ case UnsignedChar:
+ case UnsignedShort:
+ case UnsignedInt:
+ case UnsignedLong:
+ case UnsignedLongLong:
+ return false;
+ };
+}
+
+/// adjust - Set forced language options.
+/// Apply changes to the target information with respect to certain
+/// language options which change the target configuration.
+void TargetInfo::adjust(const LangOptions &Opts) {
+ if (Opts.NoBitFieldTypeAlign)
+ UseBitFieldTypeAlignment = false;
+ if (Opts.ShortWChar)
+ WCharType = UnsignedShort;
+
+ if (Opts.OpenCL) {
+ // OpenCL C requires specific widths for types, irrespective of
+ // what these normally are for the target.
+ // We also define long long and long double here, although the
+ // OpenCL standard only mentions these as "reserved".
+ IntWidth = IntAlign = 32;
+ LongWidth = LongAlign = 64;
+ LongLongWidth = LongLongAlign = 128;
+ HalfWidth = HalfAlign = 16;
+ FloatWidth = FloatAlign = 32;
+
+ // Embedded 32-bit targets (OpenCL EP) might have double C type
+ // defined as float. Let's not override this as it might lead
+ // to generating illegal code that uses 64bit doubles.
+ if (DoubleWidth != FloatWidth) {
+ DoubleWidth = DoubleAlign = 64;
+ DoubleFormat = &llvm::APFloat::IEEEdouble;
+ }
+ LongDoubleWidth = LongDoubleAlign = 128;
+
+ assert(PointerWidth == 32 || PointerWidth == 64);
+ bool Is32BitArch = PointerWidth == 32;
+ SizeType = Is32BitArch ? UnsignedInt : UnsignedLong;
+ PtrDiffType = Is32BitArch ? SignedInt : SignedLong;
+ IntPtrType = Is32BitArch ? SignedInt : SignedLong;
+
+ IntMaxType = SignedLongLong;
+ Int64Type = SignedLong;
+
+ HalfFormat = &llvm::APFloat::IEEEhalf;
+ FloatFormat = &llvm::APFloat::IEEEsingle;
+ LongDoubleFormat = &llvm::APFloat::IEEEquad;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+
+
+static StringRef removeGCCRegisterPrefix(StringRef Name) {
+ if (Name[0] == '%' || Name[0] == '#')
+ Name = Name.substr(1);
+
+ return Name;
+}
+
+/// isValidClobber - Returns whether the passed in string is
+/// a valid clobber in an inline asm statement. This is used by
+/// Sema.
+bool TargetInfo::isValidClobber(StringRef Name) const {
+ return (isValidGCCRegisterName(Name) ||
+ Name == "memory" || Name == "cc");
+}
+
+/// isValidGCCRegisterName - Returns whether the passed in string
+/// is a valid register name according to GCC. This is used by Sema for
+/// inline asm statements.
+bool TargetInfo::isValidGCCRegisterName(StringRef Name) const {
+ if (Name.empty())
+ return false;
+
+ const char * const *Names;
+ unsigned NumNames;
+
+ // Get rid of any register prefix.
+ Name = removeGCCRegisterPrefix(Name);
+ if (Name.empty())
+ return false;
+
+ getGCCRegNames(Names, NumNames);
+
+ // If we have a number it maps to an entry in the register name array.
+ if (isDigit(Name[0])) {
+ int n;
+ if (!Name.getAsInteger(0, n))
+ return n >= 0 && (unsigned)n < NumNames;
+ }
+
+ // Check register names.
+ for (unsigned i = 0; i < NumNames; i++) {
+ if (Name == Names[i])
+ return true;
+ }
+
+ // Check any additional names that we have.
+ const AddlRegName *AddlNames;
+ unsigned NumAddlNames;
+ getGCCAddlRegNames(AddlNames, NumAddlNames);
+ for (unsigned i = 0; i < NumAddlNames; i++)
+ for (unsigned j = 0; j < llvm::array_lengthof(AddlNames[i].Names); j++) {
+ if (!AddlNames[i].Names[j])
+ break;
+ // Make sure the register that the additional name is for is within
+ // the bounds of the register names from above.
+ if (AddlNames[i].Names[j] == Name && AddlNames[i].RegNum < NumNames)
+ return true;
+ }
+
+ // Now check aliases.
+ const GCCRegAlias *Aliases;
+ unsigned NumAliases;
+
+ getGCCRegAliases(Aliases, NumAliases);
+ for (unsigned i = 0; i < NumAliases; i++) {
+ for (unsigned j = 0 ; j < llvm::array_lengthof(Aliases[i].Aliases); j++) {
+ if (!Aliases[i].Aliases[j])
+ break;
+ if (Aliases[i].Aliases[j] == Name)
+ return true;
+ }
+ }
+
+ return false;
+}
+
+StringRef
+TargetInfo::getNormalizedGCCRegisterName(StringRef Name) const {
+ assert(isValidGCCRegisterName(Name) && "Invalid register passed in");
+
+ // Get rid of any register prefix.
+ Name = removeGCCRegisterPrefix(Name);
+
+ const char * const *Names;
+ unsigned NumNames;
+
+ getGCCRegNames(Names, NumNames);
+
+ // First, check if we have a number.
+ if (isDigit(Name[0])) {
+ int n;
+ if (!Name.getAsInteger(0, n)) {
+ assert(n >= 0 && (unsigned)n < NumNames &&
+ "Out of bounds register number!");
+ return Names[n];
+ }
+ }
+
+ // Check any additional names that we have.
+ const AddlRegName *AddlNames;
+ unsigned NumAddlNames;
+ getGCCAddlRegNames(AddlNames, NumAddlNames);
+ for (unsigned i = 0; i < NumAddlNames; i++)
+ for (unsigned j = 0; j < llvm::array_lengthof(AddlNames[i].Names); j++) {
+ if (!AddlNames[i].Names[j])
+ break;
+ // Make sure the register that the additional name is for is within
+ // the bounds of the register names from above.
+ if (AddlNames[i].Names[j] == Name && AddlNames[i].RegNum < NumNames)
+ return Name;
+ }
+
+ // Now check aliases.
+ const GCCRegAlias *Aliases;
+ unsigned NumAliases;
+
+ getGCCRegAliases(Aliases, NumAliases);
+ for (unsigned i = 0; i < NumAliases; i++) {
+ for (unsigned j = 0 ; j < llvm::array_lengthof(Aliases[i].Aliases); j++) {
+ if (!Aliases[i].Aliases[j])
+ break;
+ if (Aliases[i].Aliases[j] == Name)
+ return Aliases[i].Register;
+ }
+ }
+
+ return Name;
+}
+
+bool TargetInfo::validateOutputConstraint(ConstraintInfo &Info) const {
+ const char *Name = Info.getConstraintStr().c_str();
+ // An output constraint must start with '=' or '+'
+ if (*Name != '=' && *Name != '+')
+ return false;
+
+ if (*Name == '+')
+ Info.setIsReadWrite();
+
+ Name++;
+ while (*Name) {
+ switch (*Name) {
+ default:
+ if (!validateAsmConstraint(Name, Info)) {
+ // FIXME: We temporarily return false
+ // so we can add more constraints as we hit it.
+ // Eventually, an unknown constraint should just be treated as 'g'.
+ return false;
+ }
+ break;
+ case '&': // early clobber.
+ Info.setEarlyClobber();
+ break;
+ case '%': // commutative.
+ // FIXME: Check that there is a another register after this one.
+ break;
+ case 'r': // general register.
+ Info.setAllowsRegister();
+ break;
+ case 'm': // memory operand.
+ case 'o': // offsetable memory operand.
+ case 'V': // non-offsetable memory operand.
+ case '<': // autodecrement memory operand.
+ case '>': // autoincrement memory operand.
+ Info.setAllowsMemory();
+ break;
+ case 'g': // general register, memory operand or immediate integer.
+ case 'X': // any operand.
+ Info.setAllowsRegister();
+ Info.setAllowsMemory();
+ break;
+ case ',': // multiple alternative constraint. Pass it.
+ // Handle additional optional '=' or '+' modifiers.
+ if (Name[1] == '=' || Name[1] == '+')
+ Name++;
+ break;
+ case '#': // Ignore as constraint.
+ while (Name[1] && Name[1] != ',')
+ Name++;
+ break;
+ case '?': // Disparage slightly code.
+ case '!': // Disparage severely.
+ case '*': // Ignore for choosing register preferences.
+ break; // Pass them.
+ }
+
+ Name++;
+ }
+
+ // Early clobber with a read-write constraint which doesn't permit registers
+ // is invalid.
+ if (Info.earlyClobber() && Info.isReadWrite() && !Info.allowsRegister())
+ return false;
+
+ // If a constraint allows neither memory nor register operands it contains
+ // only modifiers. Reject it.
+ return Info.allowsMemory() || Info.allowsRegister();
+}
+
+bool TargetInfo::resolveSymbolicName(const char *&Name,
+ ConstraintInfo *OutputConstraints,
+ unsigned NumOutputs,
+ unsigned &Index) const {
+ assert(*Name == '[' && "Symbolic name did not start with '['");
+ Name++;
+ const char *Start = Name;
+ while (*Name && *Name != ']')
+ Name++;
+
+ if (!*Name) {
+ // Missing ']'
+ return false;
+ }
+
+ std::string SymbolicName(Start, Name - Start);
+
+ for (Index = 0; Index != NumOutputs; ++Index)
+ if (SymbolicName == OutputConstraints[Index].getName())
+ return true;
+
+ return false;
+}
+
+bool TargetInfo::validateInputConstraint(ConstraintInfo *OutputConstraints,
+ unsigned NumOutputs,
+ ConstraintInfo &Info) const {
+ const char *Name = Info.ConstraintStr.c_str();
+
+ if (!*Name)
+ return false;
+
+ while (*Name) {
+ switch (*Name) {
+ default:
+ // Check if we have a matching constraint
+ if (*Name >= '0' && *Name <= '9') {
+ const char *DigitStart = Name;
+ while (Name[1] >= '0' && Name[1] <= '9')
+ Name++;
+ const char *DigitEnd = Name;
+ unsigned i;
+ if (StringRef(DigitStart, DigitEnd - DigitStart + 1)
+ .getAsInteger(10, i))
+ return false;
+
+ // Check if matching constraint is out of bounds.
+ if (i >= NumOutputs) return false;
+
+ // A number must refer to an output only operand.
+ if (OutputConstraints[i].isReadWrite())
+ return false;
+
+ // If the constraint is already tied, it must be tied to the
+ // same operand referenced to by the number.
+ if (Info.hasTiedOperand() && Info.getTiedOperand() != i)
+ return false;
+
+ // The constraint should have the same info as the respective
+ // output constraint.
+ Info.setTiedOperand(i, OutputConstraints[i]);
+ } else if (!validateAsmConstraint(Name, Info)) {
+ // FIXME: This error return is in place temporarily so we can
+ // add more constraints as we hit it. Eventually, an unknown
+ // constraint should just be treated as 'g'.
+ return false;
+ }
+ break;
+ case '[': {
+ unsigned Index = 0;
+ if (!resolveSymbolicName(Name, OutputConstraints, NumOutputs, Index))
+ return false;
+
+ // If the constraint is already tied, it must be tied to the
+ // same operand referenced to by the number.
+ if (Info.hasTiedOperand() && Info.getTiedOperand() != Index)
+ return false;
+
+ // A number must refer to an output only operand.
+ if (OutputConstraints[Index].isReadWrite())
+ return false;
+
+ Info.setTiedOperand(Index, OutputConstraints[Index]);
+ break;
+ }
+ case '%': // commutative
+ // FIXME: Fail if % is used with the last operand.
+ break;
+ case 'i': // immediate integer.
+ case 'n': // immediate integer with a known value.
+ break;
+ case 'I': // Various constant constraints with target-specific meanings.
+ case 'J':
+ case 'K':
+ case 'L':
+ case 'M':
+ case 'N':
+ case 'O':
+ case 'P':
+ if (!validateAsmConstraint(Name, Info))
+ return false;
+ break;
+ case 'r': // general register.
+ Info.setAllowsRegister();
+ break;
+ case 'm': // memory operand.
+ case 'o': // offsettable memory operand.
+ case 'V': // non-offsettable memory operand.
+ case '<': // autodecrement memory operand.
+ case '>': // autoincrement memory operand.
+ Info.setAllowsMemory();
+ break;
+ case 'g': // general register, memory operand or immediate integer.
+ case 'X': // any operand.
+ Info.setAllowsRegister();
+ Info.setAllowsMemory();
+ break;
+ case 'E': // immediate floating point.
+ case 'F': // immediate floating point.
+ case 'p': // address operand.
+ break;
+ case ',': // multiple alternative constraint. Ignore comma.
+ break;
+ case '#': // Ignore as constraint.
+ while (Name[1] && Name[1] != ',')
+ Name++;
+ break;
+ case '?': // Disparage slightly code.
+ case '!': // Disparage severely.
+ case '*': // Ignore for choosing register preferences.
+ break; // Pass them.
+ }
+
+ Name++;
+ }
+
+ return true;
+}
+
+bool TargetCXXABI::tryParse(llvm::StringRef name) {
+ const Kind unknown = static_cast<Kind>(-1);
+ Kind kind = llvm::StringSwitch<Kind>(name)
+ .Case("arm", GenericARM)
+ .Case("ios", iOS)
+ .Case("itanium", GenericItanium)
+ .Case("microsoft", Microsoft)
+ .Case("mips", GenericMIPS)
+ .Default(unknown);
+ if (kind == unknown) return false;
+
+ set(kind);
+ return true;
+}
diff --git a/contrib/llvm/tools/clang/lib/Basic/Targets.cpp b/contrib/llvm/tools/clang/lib/Basic/Targets.cpp
new file mode 100644
index 0000000..a768081
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Basic/Targets.cpp
@@ -0,0 +1,7251 @@
+//===--- Targets.cpp - Implement -arch option and targets -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements construction of a TargetInfo object from a
+// target triple.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Basic/Builtins.h"
+#include "clang/Basic/Diagnostic.h"
+#include "clang/Basic/LangOptions.h"
+#include "clang/Basic/MacroBuilder.h"
+#include "clang/Basic/TargetBuiltins.h"
+#include "clang/Basic/TargetOptions.h"
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/MC/MCSectionMachO.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/TargetParser.h"
+#include <algorithm>
+#include <memory>
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// Common code shared among targets.
+//===----------------------------------------------------------------------===//
+
+/// DefineStd - Define a macro name and standard variants. For example if
+/// MacroName is "unix", then this will define "__unix", "__unix__", and "unix"
+/// when in GNU mode.
+static void DefineStd(MacroBuilder &Builder, StringRef MacroName,
+ const LangOptions &Opts) {
+ assert(MacroName[0] != '_' && "Identifier should be in the user's namespace");
+
+ // If in GNU mode (e.g. -std=gnu99 but not -std=c99) define the raw identifier
+ // in the user's namespace.
+ if (Opts.GNUMode)
+ Builder.defineMacro(MacroName);
+
+ // Define __unix.
+ Builder.defineMacro("__" + MacroName);
+
+ // Define __unix__.
+ Builder.defineMacro("__" + MacroName + "__");
+}
+
+static void defineCPUMacros(MacroBuilder &Builder, StringRef CPUName,
+ bool Tuning = true) {
+ Builder.defineMacro("__" + CPUName);
+ Builder.defineMacro("__" + CPUName + "__");
+ if (Tuning)
+ Builder.defineMacro("__tune_" + CPUName + "__");
+}
+
+//===----------------------------------------------------------------------===//
+// Defines specific to certain operating systems.
+//===----------------------------------------------------------------------===//
+
+namespace {
+template<typename TgtInfo>
+class OSTargetInfo : public TgtInfo {
+protected:
+ virtual void getOSDefines(const LangOptions &Opts, const llvm::Triple &Triple,
+ MacroBuilder &Builder) const=0;
+public:
+ OSTargetInfo(const llvm::Triple &Triple) : TgtInfo(Triple) {}
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override {
+ TgtInfo::getTargetDefines(Opts, Builder);
+ getOSDefines(Opts, TgtInfo::getTriple(), Builder);
+ }
+
+};
+} // end anonymous namespace
+
+
+static void getDarwinDefines(MacroBuilder &Builder, const LangOptions &Opts,
+ const llvm::Triple &Triple,
+ StringRef &PlatformName,
+ VersionTuple &PlatformMinVersion) {
+ Builder.defineMacro("__APPLE_CC__", "6000");
+ Builder.defineMacro("__APPLE__");
+ Builder.defineMacro("OBJC_NEW_PROPERTIES");
+ // AddressSanitizer doesn't play well with source fortification, which is on
+ // by default on Darwin.
+ if (Opts.Sanitize.has(SanitizerKind::Address))
+ Builder.defineMacro("_FORTIFY_SOURCE", "0");
+
+ if (!Opts.ObjCAutoRefCount) {
+ // __weak is always defined, for use in blocks and with objc pointers.
+ Builder.defineMacro("__weak", "__attribute__((objc_gc(weak)))");
+
+ // Darwin defines __strong even in C mode (just to nothing).
+ if (Opts.getGC() != LangOptions::NonGC)
+ Builder.defineMacro("__strong", "__attribute__((objc_gc(strong)))");
+ else
+ Builder.defineMacro("__strong", "");
+
+ // __unsafe_unretained is defined to nothing in non-ARC mode. We even
+ // allow this in C, since one might have block pointers in structs that
+ // are used in pure C code and in Objective-C ARC.
+ Builder.defineMacro("__unsafe_unretained", "");
+ }
+
+ if (Opts.Static)
+ Builder.defineMacro("__STATIC__");
+ else
+ Builder.defineMacro("__DYNAMIC__");
+
+ if (Opts.POSIXThreads)
+ Builder.defineMacro("_REENTRANT");
+
+ // Get the platform type and version number from the triple.
+ unsigned Maj, Min, Rev;
+ if (Triple.isMacOSX()) {
+ Triple.getMacOSXVersion(Maj, Min, Rev);
+ PlatformName = "macosx";
+ } else {
+ Triple.getOSVersion(Maj, Min, Rev);
+ PlatformName = llvm::Triple::getOSTypeName(Triple.getOS());
+ }
+
+ // If -target arch-pc-win32-macho option specified, we're
+ // generating code for Win32 ABI. No need to emit
+ // __ENVIRONMENT_XX_OS_VERSION_MIN_REQUIRED__.
+ if (PlatformName == "win32") {
+ PlatformMinVersion = VersionTuple(Maj, Min, Rev);
+ return;
+ }
+
+ // Set the appropriate OS version define.
+ if (Triple.isiOS()) {
+ assert(Maj < 10 && Min < 100 && Rev < 100 && "Invalid version!");
+ char Str[6];
+ Str[0] = '0' + Maj;
+ Str[1] = '0' + (Min / 10);
+ Str[2] = '0' + (Min % 10);
+ Str[3] = '0' + (Rev / 10);
+ Str[4] = '0' + (Rev % 10);
+ Str[5] = '\0';
+ Builder.defineMacro("__ENVIRONMENT_IPHONE_OS_VERSION_MIN_REQUIRED__",
+ Str);
+ } else if (Triple.isMacOSX()) {
+ // Note that the Driver allows versions which aren't representable in the
+ // define (because we only get a single digit for the minor and micro
+ // revision numbers). So, we limit them to the maximum representable
+ // version.
+ assert(Maj < 100 && Min < 100 && Rev < 100 && "Invalid version!");
+ char Str[7];
+ if (Maj < 10 || (Maj == 10 && Min < 10)) {
+ Str[0] = '0' + (Maj / 10);
+ Str[1] = '0' + (Maj % 10);
+ Str[2] = '0' + std::min(Min, 9U);
+ Str[3] = '0' + std::min(Rev, 9U);
+ Str[4] = '\0';
+ } else {
+ // Handle versions > 10.9.
+ Str[0] = '0' + (Maj / 10);
+ Str[1] = '0' + (Maj % 10);
+ Str[2] = '0' + (Min / 10);
+ Str[3] = '0' + (Min % 10);
+ Str[4] = '0' + (Rev / 10);
+ Str[5] = '0' + (Rev % 10);
+ Str[6] = '\0';
+ }
+ Builder.defineMacro("__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__", Str);
+ }
+
+ // Tell users about the kernel if there is one.
+ if (Triple.isOSDarwin())
+ Builder.defineMacro("__MACH__");
+
+ PlatformMinVersion = VersionTuple(Maj, Min, Rev);
+}
+
+namespace {
+// CloudABI Target
+template <typename Target>
+class CloudABITargetInfo : public OSTargetInfo<Target> {
+protected:
+ void getOSDefines(const LangOptions &Opts, const llvm::Triple &Triple,
+ MacroBuilder &Builder) const override {
+ Builder.defineMacro("__CloudABI__");
+ Builder.defineMacro("__ELF__");
+
+ // CloudABI uses ISO/IEC 10646:2012 for wchar_t, char16_t and char32_t.
+ Builder.defineMacro("__STDC_ISO_10646__", "201206L");
+ Builder.defineMacro("__STDC_UTF_16__");
+ Builder.defineMacro("__STDC_UTF_32__");
+ }
+
+public:
+ CloudABITargetInfo(const llvm::Triple &Triple)
+ : OSTargetInfo<Target>(Triple) {
+ this->UserLabelPrefix = "";
+ }
+};
+
+template<typename Target>
+class DarwinTargetInfo : public OSTargetInfo<Target> {
+protected:
+ void getOSDefines(const LangOptions &Opts, const llvm::Triple &Triple,
+ MacroBuilder &Builder) const override {
+ getDarwinDefines(Builder, Opts, Triple, this->PlatformName,
+ this->PlatformMinVersion);
+ }
+
+public:
+ DarwinTargetInfo(const llvm::Triple &Triple) : OSTargetInfo<Target>(Triple) {
+ this->TLSSupported = Triple.isMacOSX() && !Triple.isMacOSXVersionLT(10, 7);
+ this->MCountName = "\01mcount";
+ }
+
+ std::string isValidSectionSpecifier(StringRef SR) const override {
+ // Let MCSectionMachO validate this.
+ StringRef Segment, Section;
+ unsigned TAA, StubSize;
+ bool HasTAA;
+ return llvm::MCSectionMachO::ParseSectionSpecifier(SR, Segment, Section,
+ TAA, HasTAA, StubSize);
+ }
+
+ const char *getStaticInitSectionSpecifier() const override {
+ // FIXME: We should return 0 when building kexts.
+ return "__TEXT,__StaticInit,regular,pure_instructions";
+ }
+
+ /// Darwin does not support protected visibility. Darwin's "default"
+ /// is very similar to ELF's "protected"; Darwin requires a "weak"
+ /// attribute on declarations that can be dynamically replaced.
+ bool hasProtectedVisibility() const override {
+ return false;
+ }
+};
+
+
+// DragonFlyBSD Target
+template<typename Target>
+class DragonFlyBSDTargetInfo : public OSTargetInfo<Target> {
+protected:
+ void getOSDefines(const LangOptions &Opts, const llvm::Triple &Triple,
+ MacroBuilder &Builder) const override {
+ // DragonFly defines; list based off of gcc output
+ Builder.defineMacro("__DragonFly__");
+ Builder.defineMacro("__DragonFly_cc_version", "100001");
+ Builder.defineMacro("__ELF__");
+ Builder.defineMacro("__KPRINTF_ATTRIBUTE__");
+ Builder.defineMacro("__tune_i386__");
+ DefineStd(Builder, "unix", Opts);
+ }
+public:
+ DragonFlyBSDTargetInfo(const llvm::Triple &Triple)
+ : OSTargetInfo<Target>(Triple) {
+ this->UserLabelPrefix = "";
+
+ switch (Triple.getArch()) {
+ default:
+ case llvm::Triple::x86:
+ case llvm::Triple::x86_64:
+ this->MCountName = ".mcount";
+ break;
+ }
+ }
+};
+
+// FreeBSD Target
+template<typename Target>
+class FreeBSDTargetInfo : public OSTargetInfo<Target> {
+protected:
+ void getOSDefines(const LangOptions &Opts, const llvm::Triple &Triple,
+ MacroBuilder &Builder) const override {
+ // FreeBSD defines; list based off of gcc output
+
+ unsigned Release = Triple.getOSMajorVersion();
+ if (Release == 0U)
+ Release = 8;
+
+ Builder.defineMacro("__FreeBSD__", Twine(Release));
+ Builder.defineMacro("__FreeBSD_cc_version", Twine(Release * 100000U + 1U));
+ Builder.defineMacro("__KPRINTF_ATTRIBUTE__");
+ DefineStd(Builder, "unix", Opts);
+ Builder.defineMacro("__ELF__");
+
+ // On FreeBSD, wchar_t contains the number of the code point as
+ // used by the character set of the locale. These character sets are
+ // not necessarily a superset of ASCII.
+ //
+ // FIXME: This is wrong; the macro refers to the numerical values
+ // of wchar_t *literals*, which are not locale-dependent. However,
+ // FreeBSD systems apparently depend on us getting this wrong, and
+ // setting this to 1 is conforming even if all the basic source
+ // character literals have the same encoding as char and wchar_t.
+ Builder.defineMacro("__STDC_MB_MIGHT_NEQ_WC__", "1");
+ }
+public:
+ FreeBSDTargetInfo(const llvm::Triple &Triple) : OSTargetInfo<Target>(Triple) {
+ this->UserLabelPrefix = "";
+
+ switch (Triple.getArch()) {
+ default:
+ case llvm::Triple::x86:
+ case llvm::Triple::x86_64:
+ this->MCountName = ".mcount";
+ break;
+ case llvm::Triple::mips:
+ case llvm::Triple::mipsel:
+ case llvm::Triple::ppc:
+ case llvm::Triple::ppc64:
+ case llvm::Triple::ppc64le:
+ this->MCountName = "_mcount";
+ break;
+ case llvm::Triple::arm:
+ this->MCountName = "__mcount";
+ break;
+ }
+ }
+};
+
+// GNU/kFreeBSD Target
+template<typename Target>
+class KFreeBSDTargetInfo : public OSTargetInfo<Target> {
+protected:
+ void getOSDefines(const LangOptions &Opts, const llvm::Triple &Triple,
+ MacroBuilder &Builder) const override {
+ // GNU/kFreeBSD defines; list based off of gcc output
+
+ DefineStd(Builder, "unix", Opts);
+ Builder.defineMacro("__FreeBSD_kernel__");
+ Builder.defineMacro("__GLIBC__");
+ Builder.defineMacro("__ELF__");
+ if (Opts.POSIXThreads)
+ Builder.defineMacro("_REENTRANT");
+ if (Opts.CPlusPlus)
+ Builder.defineMacro("_GNU_SOURCE");
+ }
+public:
+ KFreeBSDTargetInfo(const llvm::Triple &Triple)
+ : OSTargetInfo<Target>(Triple) {
+ this->UserLabelPrefix = "";
+ }
+};
+
+// Minix Target
+template<typename Target>
+class MinixTargetInfo : public OSTargetInfo<Target> {
+protected:
+ void getOSDefines(const LangOptions &Opts, const llvm::Triple &Triple,
+ MacroBuilder &Builder) const override {
+ // Minix defines
+
+ Builder.defineMacro("__minix", "3");
+ Builder.defineMacro("_EM_WSIZE", "4");
+ Builder.defineMacro("_EM_PSIZE", "4");
+ Builder.defineMacro("_EM_SSIZE", "2");
+ Builder.defineMacro("_EM_LSIZE", "4");
+ Builder.defineMacro("_EM_FSIZE", "4");
+ Builder.defineMacro("_EM_DSIZE", "8");
+ Builder.defineMacro("__ELF__");
+ DefineStd(Builder, "unix", Opts);
+ }
+public:
+ MinixTargetInfo(const llvm::Triple &Triple) : OSTargetInfo<Target>(Triple) {
+ this->UserLabelPrefix = "";
+ }
+};
+
+// Linux target
+template<typename Target>
+class LinuxTargetInfo : public OSTargetInfo<Target> {
+protected:
+ void getOSDefines(const LangOptions &Opts, const llvm::Triple &Triple,
+ MacroBuilder &Builder) const override {
+ // Linux defines; list based off of gcc output
+ DefineStd(Builder, "unix", Opts);
+ DefineStd(Builder, "linux", Opts);
+ Builder.defineMacro("__gnu_linux__");
+ Builder.defineMacro("__ELF__");
+ if (Triple.getEnvironment() == llvm::Triple::Android) {
+ Builder.defineMacro("__ANDROID__", "1");
+ unsigned Maj, Min, Rev;
+ Triple.getOSVersion(Maj, Min, Rev);
+ this->PlatformName = "android";
+ this->PlatformMinVersion = VersionTuple(Maj, Min, Rev);
+ }
+ if (Opts.POSIXThreads)
+ Builder.defineMacro("_REENTRANT");
+ if (Opts.CPlusPlus)
+ Builder.defineMacro("_GNU_SOURCE");
+ }
+public:
+ LinuxTargetInfo(const llvm::Triple &Triple) : OSTargetInfo<Target>(Triple) {
+ this->UserLabelPrefix = "";
+ this->WIntType = TargetInfo::UnsignedInt;
+
+ switch (Triple.getArch()) {
+ default:
+ break;
+ case llvm::Triple::ppc:
+ case llvm::Triple::ppc64:
+ case llvm::Triple::ppc64le:
+ this->MCountName = "_mcount";
+ break;
+ }
+ }
+
+ const char *getStaticInitSectionSpecifier() const override {
+ return ".text.startup";
+ }
+};
+
+// NetBSD Target
+template<typename Target>
+class NetBSDTargetInfo : public OSTargetInfo<Target> {
+protected:
+ void getOSDefines(const LangOptions &Opts, const llvm::Triple &Triple,
+ MacroBuilder &Builder) const override {
+ // NetBSD defines; list based off of gcc output
+ Builder.defineMacro("__NetBSD__");
+ Builder.defineMacro("__unix__");
+ Builder.defineMacro("__ELF__");
+ if (Opts.POSIXThreads)
+ Builder.defineMacro("_POSIX_THREADS");
+
+ switch (Triple.getArch()) {
+ default:
+ break;
+ case llvm::Triple::arm:
+ case llvm::Triple::armeb:
+ case llvm::Triple::thumb:
+ case llvm::Triple::thumbeb:
+ Builder.defineMacro("__ARM_DWARF_EH__");
+ break;
+ }
+ }
+public:
+ NetBSDTargetInfo(const llvm::Triple &Triple) : OSTargetInfo<Target>(Triple) {
+ this->UserLabelPrefix = "";
+ this->MCountName = "_mcount";
+ }
+};
+
+// OpenBSD Target
+template<typename Target>
+class OpenBSDTargetInfo : public OSTargetInfo<Target> {
+protected:
+ void getOSDefines(const LangOptions &Opts, const llvm::Triple &Triple,
+ MacroBuilder &Builder) const override {
+ // OpenBSD defines; list based off of gcc output
+
+ Builder.defineMacro("__OpenBSD__");
+ DefineStd(Builder, "unix", Opts);
+ Builder.defineMacro("__ELF__");
+ if (Opts.POSIXThreads)
+ Builder.defineMacro("_REENTRANT");
+ }
+public:
+ OpenBSDTargetInfo(const llvm::Triple &Triple) : OSTargetInfo<Target>(Triple) {
+ this->UserLabelPrefix = "";
+ this->TLSSupported = false;
+
+ switch (Triple.getArch()) {
+ default:
+ case llvm::Triple::x86:
+ case llvm::Triple::x86_64:
+ case llvm::Triple::arm:
+ case llvm::Triple::sparc:
+ this->MCountName = "__mcount";
+ break;
+ case llvm::Triple::mips64:
+ case llvm::Triple::mips64el:
+ case llvm::Triple::ppc:
+ case llvm::Triple::sparcv9:
+ this->MCountName = "_mcount";
+ break;
+ }
+ }
+};
+
+// Bitrig Target
+template<typename Target>
+class BitrigTargetInfo : public OSTargetInfo<Target> {
+protected:
+ void getOSDefines(const LangOptions &Opts, const llvm::Triple &Triple,
+ MacroBuilder &Builder) const override {
+ // Bitrig defines; list based off of gcc output
+
+ Builder.defineMacro("__Bitrig__");
+ DefineStd(Builder, "unix", Opts);
+ Builder.defineMacro("__ELF__");
+ if (Opts.POSIXThreads)
+ Builder.defineMacro("_REENTRANT");
+
+ switch (Triple.getArch()) {
+ default:
+ break;
+ case llvm::Triple::arm:
+ case llvm::Triple::armeb:
+ case llvm::Triple::thumb:
+ case llvm::Triple::thumbeb:
+ Builder.defineMacro("__ARM_DWARF_EH__");
+ break;
+ }
+ }
+public:
+ BitrigTargetInfo(const llvm::Triple &Triple) : OSTargetInfo<Target>(Triple) {
+ this->UserLabelPrefix = "";
+ this->MCountName = "__mcount";
+ }
+};
+
+// PSP Target
+template<typename Target>
+class PSPTargetInfo : public OSTargetInfo<Target> {
+protected:
+ void getOSDefines(const LangOptions &Opts, const llvm::Triple &Triple,
+ MacroBuilder &Builder) const override {
+ // PSP defines; list based on the output of the pspdev gcc toolchain.
+ Builder.defineMacro("PSP");
+ Builder.defineMacro("_PSP");
+ Builder.defineMacro("__psp__");
+ Builder.defineMacro("__ELF__");
+ }
+public:
+ PSPTargetInfo(const llvm::Triple &Triple) : OSTargetInfo<Target>(Triple) {
+ this->UserLabelPrefix = "";
+ }
+};
+
+// PS3 PPU Target
+template<typename Target>
+class PS3PPUTargetInfo : public OSTargetInfo<Target> {
+protected:
+ void getOSDefines(const LangOptions &Opts, const llvm::Triple &Triple,
+ MacroBuilder &Builder) const override {
+ // PS3 PPU defines.
+ Builder.defineMacro("__PPC__");
+ Builder.defineMacro("__PPU__");
+ Builder.defineMacro("__CELLOS_LV2__");
+ Builder.defineMacro("__ELF__");
+ Builder.defineMacro("__LP32__");
+ Builder.defineMacro("_ARCH_PPC64");
+ Builder.defineMacro("__powerpc64__");
+ }
+public:
+ PS3PPUTargetInfo(const llvm::Triple &Triple) : OSTargetInfo<Target>(Triple) {
+ this->UserLabelPrefix = "";
+ this->LongWidth = this->LongAlign = 32;
+ this->PointerWidth = this->PointerAlign = 32;
+ this->IntMaxType = TargetInfo::SignedLongLong;
+ this->Int64Type = TargetInfo::SignedLongLong;
+ this->SizeType = TargetInfo::UnsignedInt;
+ this->DescriptionString = "E-m:e-p:32:32-i64:64-n32:64";
+ }
+};
+
+template <typename Target>
+class PS4OSTargetInfo : public OSTargetInfo<Target> {
+protected:
+ void getOSDefines(const LangOptions &Opts, const llvm::Triple &Triple,
+ MacroBuilder &Builder) const override {
+ Builder.defineMacro("__FreeBSD__", "9");
+ Builder.defineMacro("__FreeBSD_cc_version", "900001");
+ Builder.defineMacro("__KPRINTF_ATTRIBUTE__");
+ DefineStd(Builder, "unix", Opts);
+ Builder.defineMacro("__ELF__");
+ Builder.defineMacro("__PS4__");
+ }
+public:
+ PS4OSTargetInfo(const llvm::Triple &Triple) : OSTargetInfo<Target>(Triple) {
+ this->WCharType = this->UnsignedShort;
+
+ this->UserLabelPrefix = "";
+
+ switch (Triple.getArch()) {
+ default:
+ case llvm::Triple::x86_64:
+ this->MCountName = ".mcount";
+ break;
+ }
+ }
+};
+
+// Solaris target
+template<typename Target>
+class SolarisTargetInfo : public OSTargetInfo<Target> {
+protected:
+ void getOSDefines(const LangOptions &Opts, const llvm::Triple &Triple,
+ MacroBuilder &Builder) const override {
+ DefineStd(Builder, "sun", Opts);
+ DefineStd(Builder, "unix", Opts);
+ Builder.defineMacro("__ELF__");
+ Builder.defineMacro("__svr4__");
+ Builder.defineMacro("__SVR4");
+ // Solaris headers require _XOPEN_SOURCE to be set to 600 for C99 and
+ // newer, but to 500 for everything else. feature_test.h has a check to
+ // ensure that you are not using C99 with an old version of X/Open or C89
+ // with a new version.
+ if (Opts.C99)
+ Builder.defineMacro("_XOPEN_SOURCE", "600");
+ else
+ Builder.defineMacro("_XOPEN_SOURCE", "500");
+ if (Opts.CPlusPlus)
+ Builder.defineMacro("__C99FEATURES__");
+ Builder.defineMacro("_LARGEFILE_SOURCE");
+ Builder.defineMacro("_LARGEFILE64_SOURCE");
+ Builder.defineMacro("__EXTENSIONS__");
+ Builder.defineMacro("_REENTRANT");
+ }
+public:
+ SolarisTargetInfo(const llvm::Triple &Triple) : OSTargetInfo<Target>(Triple) {
+ this->UserLabelPrefix = "";
+ this->WCharType = this->SignedInt;
+ // FIXME: WIntType should be SignedLong
+ }
+};
+
+// Windows target
+template<typename Target>
+class WindowsTargetInfo : public OSTargetInfo<Target> {
+protected:
+ void getOSDefines(const LangOptions &Opts, const llvm::Triple &Triple,
+ MacroBuilder &Builder) const override {
+ Builder.defineMacro("_WIN32");
+ }
+ void getVisualStudioDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const {
+ if (Opts.CPlusPlus) {
+ if (Opts.RTTIData)
+ Builder.defineMacro("_CPPRTTI");
+
+ if (Opts.CXXExceptions)
+ Builder.defineMacro("_CPPUNWIND");
+ }
+
+ if (!Opts.CharIsSigned)
+ Builder.defineMacro("_CHAR_UNSIGNED");
+
+ // FIXME: POSIXThreads isn't exactly the option this should be defined for,
+ // but it works for now.
+ if (Opts.POSIXThreads)
+ Builder.defineMacro("_MT");
+
+ if (Opts.MSCompatibilityVersion) {
+ Builder.defineMacro("_MSC_VER",
+ Twine(Opts.MSCompatibilityVersion / 100000));
+ Builder.defineMacro("_MSC_FULL_VER", Twine(Opts.MSCompatibilityVersion));
+ // FIXME We cannot encode the revision information into 32-bits
+ Builder.defineMacro("_MSC_BUILD", Twine(1));
+
+ if (Opts.CPlusPlus11 && Opts.isCompatibleWithMSVC(LangOptions::MSVC2015))
+ Builder.defineMacro("_HAS_CHAR16_T_LANGUAGE_SUPPORT", Twine(1));
+ }
+
+ if (Opts.MicrosoftExt) {
+ Builder.defineMacro("_MSC_EXTENSIONS");
+
+ if (Opts.CPlusPlus11) {
+ Builder.defineMacro("_RVALUE_REFERENCES_V2_SUPPORTED");
+ Builder.defineMacro("_RVALUE_REFERENCES_SUPPORTED");
+ Builder.defineMacro("_NATIVE_NULLPTR_SUPPORTED");
+ }
+ }
+
+ Builder.defineMacro("_INTEGRAL_MAX_BITS", "64");
+ }
+
+public:
+ WindowsTargetInfo(const llvm::Triple &Triple)
+ : OSTargetInfo<Target>(Triple) {}
+};
+
+template <typename Target>
+class NaClTargetInfo : public OSTargetInfo<Target> {
+protected:
+ void getOSDefines(const LangOptions &Opts, const llvm::Triple &Triple,
+ MacroBuilder &Builder) const override {
+ if (Opts.POSIXThreads)
+ Builder.defineMacro("_REENTRANT");
+ if (Opts.CPlusPlus)
+ Builder.defineMacro("_GNU_SOURCE");
+
+ DefineStd(Builder, "unix", Opts);
+ Builder.defineMacro("__ELF__");
+ Builder.defineMacro("__native_client__");
+ }
+
+public:
+ NaClTargetInfo(const llvm::Triple &Triple) : OSTargetInfo<Target>(Triple) {
+ this->UserLabelPrefix = "";
+ this->LongAlign = 32;
+ this->LongWidth = 32;
+ this->PointerAlign = 32;
+ this->PointerWidth = 32;
+ this->IntMaxType = TargetInfo::SignedLongLong;
+ this->Int64Type = TargetInfo::SignedLongLong;
+ this->DoubleAlign = 64;
+ this->LongDoubleWidth = 64;
+ this->LongDoubleAlign = 64;
+ this->LongLongWidth = 64;
+ this->LongLongAlign = 64;
+ this->SizeType = TargetInfo::UnsignedInt;
+ this->PtrDiffType = TargetInfo::SignedInt;
+ this->IntPtrType = TargetInfo::SignedInt;
+ // RegParmMax is inherited from the underlying architecture
+ this->LongDoubleFormat = &llvm::APFloat::IEEEdouble;
+ if (Triple.getArch() == llvm::Triple::arm) {
+ // Handled in ARM's setABI().
+ } else if (Triple.getArch() == llvm::Triple::x86) {
+ this->DescriptionString = "e-m:e-p:32:32-i64:64-n8:16:32-S128";
+ } else if (Triple.getArch() == llvm::Triple::x86_64) {
+ this->DescriptionString = "e-m:e-p:32:32-i64:64-n8:16:32:64-S128";
+ } else if (Triple.getArch() == llvm::Triple::mipsel) {
+ // Handled on mips' setDescriptionString.
+ } else {
+ assert(Triple.getArch() == llvm::Triple::le32);
+ this->DescriptionString = "e-p:32:32-i64:64";
+ }
+ }
+};
+
+//===----------------------------------------------------------------------===//
+// Specific target implementations.
+//===----------------------------------------------------------------------===//
+
+// PPC abstract base class
+class PPCTargetInfo : public TargetInfo {
+ static const Builtin::Info BuiltinInfo[];
+ static const char * const GCCRegNames[];
+ static const TargetInfo::GCCRegAlias GCCRegAliases[];
+ std::string CPU;
+
+ // Target cpu features.
+ bool HasVSX;
+ bool HasP8Vector;
+ bool HasP8Crypto;
+ bool HasDirectMove;
+ bool HasQPX;
+ bool HasHTM;
+ bool HasBPERMD;
+ bool HasExtDiv;
+
+protected:
+ std::string ABI;
+
+public:
+ PPCTargetInfo(const llvm::Triple &Triple)
+ : TargetInfo(Triple), HasVSX(false), HasP8Vector(false),
+ HasP8Crypto(false), HasDirectMove(false), HasQPX(false), HasHTM(false),
+ HasBPERMD(false), HasExtDiv(false) {
+ BigEndian = (Triple.getArch() != llvm::Triple::ppc64le);
+ LongDoubleWidth = LongDoubleAlign = 128;
+ LongDoubleFormat = &llvm::APFloat::PPCDoubleDouble;
+ }
+
+ /// \brief Flags for architecture specific defines.
+ typedef enum {
+ ArchDefineNone = 0,
+ ArchDefineName = 1 << 0, // <name> is substituted for arch name.
+ ArchDefinePpcgr = 1 << 1,
+ ArchDefinePpcsq = 1 << 2,
+ ArchDefine440 = 1 << 3,
+ ArchDefine603 = 1 << 4,
+ ArchDefine604 = 1 << 5,
+ ArchDefinePwr4 = 1 << 6,
+ ArchDefinePwr5 = 1 << 7,
+ ArchDefinePwr5x = 1 << 8,
+ ArchDefinePwr6 = 1 << 9,
+ ArchDefinePwr6x = 1 << 10,
+ ArchDefinePwr7 = 1 << 11,
+ ArchDefinePwr8 = 1 << 12,
+ ArchDefineA2 = 1 << 13,
+ ArchDefineA2q = 1 << 14
+ } ArchDefineTypes;
+
+ // Note: GCC recognizes the following additional cpus:
+ // 401, 403, 405, 405fp, 440fp, 464, 464fp, 476, 476fp, 505, 740, 801,
+ // 821, 823, 8540, 8548, e300c2, e300c3, e500mc64, e6500, 860, cell,
+ // titan, rs64.
+ bool setCPU(const std::string &Name) override {
+ bool CPUKnown = llvm::StringSwitch<bool>(Name)
+ .Case("generic", true)
+ .Case("440", true)
+ .Case("450", true)
+ .Case("601", true)
+ .Case("602", true)
+ .Case("603", true)
+ .Case("603e", true)
+ .Case("603ev", true)
+ .Case("604", true)
+ .Case("604e", true)
+ .Case("620", true)
+ .Case("630", true)
+ .Case("g3", true)
+ .Case("7400", true)
+ .Case("g4", true)
+ .Case("7450", true)
+ .Case("g4+", true)
+ .Case("750", true)
+ .Case("970", true)
+ .Case("g5", true)
+ .Case("a2", true)
+ .Case("a2q", true)
+ .Case("e500mc", true)
+ .Case("e5500", true)
+ .Case("power3", true)
+ .Case("pwr3", true)
+ .Case("power4", true)
+ .Case("pwr4", true)
+ .Case("power5", true)
+ .Case("pwr5", true)
+ .Case("power5x", true)
+ .Case("pwr5x", true)
+ .Case("power6", true)
+ .Case("pwr6", true)
+ .Case("power6x", true)
+ .Case("pwr6x", true)
+ .Case("power7", true)
+ .Case("pwr7", true)
+ .Case("power8", true)
+ .Case("pwr8", true)
+ .Case("powerpc", true)
+ .Case("ppc", true)
+ .Case("powerpc64", true)
+ .Case("ppc64", true)
+ .Case("powerpc64le", true)
+ .Case("ppc64le", true)
+ .Default(false);
+
+ if (CPUKnown)
+ CPU = Name;
+
+ return CPUKnown;
+ }
+
+
+ StringRef getABI() const override { return ABI; }
+
+ void getTargetBuiltins(const Builtin::Info *&Records,
+ unsigned &NumRecords) const override {
+ Records = BuiltinInfo;
+ NumRecords = clang::PPC::LastTSBuiltin-Builtin::FirstTSBuiltin;
+ }
+
+ bool isCLZForZeroUndef() const override { return false; }
+
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override;
+
+ void getDefaultFeatures(llvm::StringMap<bool> &Features) const override;
+
+ bool handleTargetFeatures(std::vector<std::string> &Features,
+ DiagnosticsEngine &Diags) override;
+ bool hasFeature(StringRef Feature) const override;
+
+ void getGCCRegNames(const char * const *&Names,
+ unsigned &NumNames) const override;
+ void getGCCRegAliases(const GCCRegAlias *&Aliases,
+ unsigned &NumAliases) const override;
+ bool validateAsmConstraint(const char *&Name,
+ TargetInfo::ConstraintInfo &Info) const override {
+ switch (*Name) {
+ default: return false;
+ case 'O': // Zero
+ break;
+ case 'b': // Base register
+ case 'f': // Floating point register
+ Info.setAllowsRegister();
+ break;
+ // FIXME: The following are added to allow parsing.
+ // I just took a guess at what the actions should be.
+ // Also, is more specific checking needed? I.e. specific registers?
+ case 'd': // Floating point register (containing 64-bit value)
+ case 'v': // Altivec vector register
+ Info.setAllowsRegister();
+ break;
+ case 'w':
+ switch (Name[1]) {
+ case 'd':// VSX vector register to hold vector double data
+ case 'f':// VSX vector register to hold vector float data
+ case 's':// VSX vector register to hold scalar float data
+ case 'a':// Any VSX register
+ case 'c':// An individual CR bit
+ break;
+ default:
+ return false;
+ }
+ Info.setAllowsRegister();
+ Name++; // Skip over 'w'.
+ break;
+ case 'h': // `MQ', `CTR', or `LINK' register
+ case 'q': // `MQ' register
+ case 'c': // `CTR' register
+ case 'l': // `LINK' register
+ case 'x': // `CR' register (condition register) number 0
+ case 'y': // `CR' register (condition register)
+ case 'z': // `XER[CA]' carry bit (part of the XER register)
+ Info.setAllowsRegister();
+ break;
+ case 'I': // Signed 16-bit constant
+ case 'J': // Unsigned 16-bit constant shifted left 16 bits
+ // (use `L' instead for SImode constants)
+ case 'K': // Unsigned 16-bit constant
+ case 'L': // Signed 16-bit constant shifted left 16 bits
+ case 'M': // Constant larger than 31
+ case 'N': // Exact power of 2
+ case 'P': // Constant whose negation is a signed 16-bit constant
+ case 'G': // Floating point constant that can be loaded into a
+ // register with one instruction per word
+ case 'H': // Integer/Floating point constant that can be loaded
+ // into a register using three instructions
+ break;
+ case 'm': // Memory operand. Note that on PowerPC targets, m can
+ // include addresses that update the base register. It
+ // is therefore only safe to use `m' in an asm statement
+ // if that asm statement accesses the operand exactly once.
+ // The asm statement must also use `%U<opno>' as a
+ // placeholder for the "update" flag in the corresponding
+ // load or store instruction. For example:
+ // asm ("st%U0 %1,%0" : "=m" (mem) : "r" (val));
+ // is correct but:
+ // asm ("st %1,%0" : "=m" (mem) : "r" (val));
+ // is not. Use es rather than m if you don't want the base
+ // register to be updated.
+ case 'e':
+ if (Name[1] != 's')
+ return false;
+ // es: A "stable" memory operand; that is, one which does not
+ // include any automodification of the base register. Unlike
+ // `m', this constraint can be used in asm statements that
+ // might access the operand several times, or that might not
+ // access it at all.
+ Info.setAllowsMemory();
+ Name++; // Skip over 'e'.
+ break;
+ case 'Q': // Memory operand that is an offset from a register (it is
+ // usually better to use `m' or `es' in asm statements)
+ case 'Z': // Memory operand that is an indexed or indirect from a
+ // register (it is usually better to use `m' or `es' in
+ // asm statements)
+ Info.setAllowsMemory();
+ Info.setAllowsRegister();
+ break;
+ case 'R': // AIX TOC entry
+ case 'a': // Address operand that is an indexed or indirect from a
+ // register (`p' is preferable for asm statements)
+ case 'S': // Constant suitable as a 64-bit mask operand
+ case 'T': // Constant suitable as a 32-bit mask operand
+ case 'U': // System V Release 4 small data area reference
+ case 't': // AND masks that can be performed by two rldic{l, r}
+ // instructions
+ case 'W': // Vector constant that does not require memory
+ case 'j': // Vector constant that is all zeros.
+ break;
+ // End FIXME.
+ }
+ return true;
+ }
+ std::string convertConstraint(const char *&Constraint) const override {
+ std::string R;
+ switch (*Constraint) {
+ case 'e':
+ case 'w':
+ // Two-character constraint; add "^" hint for later parsing.
+ R = std::string("^") + std::string(Constraint, 2);
+ Constraint++;
+ break;
+ default:
+ return TargetInfo::convertConstraint(Constraint);
+ }
+ return R;
+ }
+ const char *getClobbers() const override {
+ return "";
+ }
+ int getEHDataRegisterNumber(unsigned RegNo) const override {
+ if (RegNo == 0) return 3;
+ if (RegNo == 1) return 4;
+ return -1;
+ }
+
+ bool hasSjLjLowering() const override {
+ return true;
+ }
+};
+
+const Builtin::Info PPCTargetInfo::BuiltinInfo[] = {
+#define BUILTIN(ID, TYPE, ATTRS) { #ID, TYPE, ATTRS, 0, ALL_LANGUAGES },
+#define LIBBUILTIN(ID, TYPE, ATTRS, HEADER) { #ID, TYPE, ATTRS, HEADER,\
+ ALL_LANGUAGES },
+#include "clang/Basic/BuiltinsPPC.def"
+};
+
+/// handleTargetFeatures - Perform initialization based on the user
+/// configured set of features.
+bool PPCTargetInfo::handleTargetFeatures(std::vector<std::string> &Features,
+ DiagnosticsEngine &Diags) {
+ for (unsigned i = 0, e = Features.size(); i !=e; ++i) {
+ // Ignore disabled features.
+ if (Features[i][0] == '-')
+ continue;
+
+ StringRef Feature = StringRef(Features[i]).substr(1);
+
+ if (Feature == "vsx") {
+ HasVSX = true;
+ continue;
+ }
+
+ if (Feature == "bpermd") {
+ HasBPERMD = true;
+ continue;
+ }
+
+ if (Feature == "extdiv") {
+ HasExtDiv = true;
+ continue;
+ }
+
+ if (Feature == "power8-vector") {
+ HasP8Vector = true;
+ HasVSX = true;
+ continue;
+ }
+
+ if (Feature == "crypto") {
+ HasP8Crypto = true;
+ continue;
+ }
+
+ if (Feature == "direct-move") {
+ HasDirectMove = true;
+ HasVSX = true;
+ continue;
+ }
+
+ if (Feature == "qpx") {
+ HasQPX = true;
+ continue;
+ }
+
+ if (Feature == "htm") {
+ HasHTM = true;
+ continue;
+ }
+
+ // TODO: Finish this list and add an assert that we've handled them
+ // all.
+ }
+
+ return true;
+}
+
+/// PPCTargetInfo::getTargetDefines - Return a set of the PowerPC-specific
+/// #defines that are not tied to a specific subtarget.
+void PPCTargetInfo::getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const {
+ // Target identification.
+ Builder.defineMacro("__ppc__");
+ Builder.defineMacro("__PPC__");
+ Builder.defineMacro("_ARCH_PPC");
+ Builder.defineMacro("__powerpc__");
+ Builder.defineMacro("__POWERPC__");
+ if (PointerWidth == 64) {
+ Builder.defineMacro("_ARCH_PPC64");
+ Builder.defineMacro("__powerpc64__");
+ Builder.defineMacro("__ppc64__");
+ Builder.defineMacro("__PPC64__");
+ }
+
+ // Target properties.
+ if (getTriple().getArch() == llvm::Triple::ppc64le) {
+ Builder.defineMacro("_LITTLE_ENDIAN");
+ } else {
+ if (getTriple().getOS() != llvm::Triple::NetBSD &&
+ getTriple().getOS() != llvm::Triple::OpenBSD)
+ Builder.defineMacro("_BIG_ENDIAN");
+ }
+
+ // ABI options.
+ if (ABI == "elfv1" || ABI == "elfv1-qpx")
+ Builder.defineMacro("_CALL_ELF", "1");
+ if (ABI == "elfv2")
+ Builder.defineMacro("_CALL_ELF", "2");
+
+ // Subtarget options.
+ Builder.defineMacro("__NATURAL_ALIGNMENT__");
+ Builder.defineMacro("__REGISTER_PREFIX__", "");
+
+ // FIXME: Should be controlled by command line option.
+ if (LongDoubleWidth == 128)
+ Builder.defineMacro("__LONG_DOUBLE_128__");
+
+ if (Opts.AltiVec) {
+ Builder.defineMacro("__VEC__", "10206");
+ Builder.defineMacro("__ALTIVEC__");
+ }
+
+ // CPU identification.
+ ArchDefineTypes defs = (ArchDefineTypes)llvm::StringSwitch<int>(CPU)
+ .Case("440", ArchDefineName)
+ .Case("450", ArchDefineName | ArchDefine440)
+ .Case("601", ArchDefineName)
+ .Case("602", ArchDefineName | ArchDefinePpcgr)
+ .Case("603", ArchDefineName | ArchDefinePpcgr)
+ .Case("603e", ArchDefineName | ArchDefine603 | ArchDefinePpcgr)
+ .Case("603ev", ArchDefineName | ArchDefine603 | ArchDefinePpcgr)
+ .Case("604", ArchDefineName | ArchDefinePpcgr)
+ .Case("604e", ArchDefineName | ArchDefine604 | ArchDefinePpcgr)
+ .Case("620", ArchDefineName | ArchDefinePpcgr)
+ .Case("630", ArchDefineName | ArchDefinePpcgr)
+ .Case("7400", ArchDefineName | ArchDefinePpcgr)
+ .Case("7450", ArchDefineName | ArchDefinePpcgr)
+ .Case("750", ArchDefineName | ArchDefinePpcgr)
+ .Case("970", ArchDefineName | ArchDefinePwr4 | ArchDefinePpcgr
+ | ArchDefinePpcsq)
+ .Case("a2", ArchDefineA2)
+ .Case("a2q", ArchDefineName | ArchDefineA2 | ArchDefineA2q)
+ .Case("pwr3", ArchDefinePpcgr)
+ .Case("pwr4", ArchDefineName | ArchDefinePpcgr | ArchDefinePpcsq)
+ .Case("pwr5", ArchDefineName | ArchDefinePwr4 | ArchDefinePpcgr
+ | ArchDefinePpcsq)
+ .Case("pwr5x", ArchDefineName | ArchDefinePwr5 | ArchDefinePwr4
+ | ArchDefinePpcgr | ArchDefinePpcsq)
+ .Case("pwr6", ArchDefineName | ArchDefinePwr5x | ArchDefinePwr5
+ | ArchDefinePwr4 | ArchDefinePpcgr | ArchDefinePpcsq)
+ .Case("pwr6x", ArchDefineName | ArchDefinePwr6 | ArchDefinePwr5x
+ | ArchDefinePwr5 | ArchDefinePwr4 | ArchDefinePpcgr
+ | ArchDefinePpcsq)
+ .Case("pwr7", ArchDefineName | ArchDefinePwr6x | ArchDefinePwr6
+ | ArchDefinePwr5x | ArchDefinePwr5 | ArchDefinePwr4
+ | ArchDefinePpcgr | ArchDefinePpcsq)
+ .Case("pwr8", ArchDefineName | ArchDefinePwr7 | ArchDefinePwr6x
+ | ArchDefinePwr6 | ArchDefinePwr5x | ArchDefinePwr5
+ | ArchDefinePwr4 | ArchDefinePpcgr | ArchDefinePpcsq)
+ .Case("power3", ArchDefinePpcgr)
+ .Case("power4", ArchDefinePwr4 | ArchDefinePpcgr | ArchDefinePpcsq)
+ .Case("power5", ArchDefinePwr5 | ArchDefinePwr4 | ArchDefinePpcgr
+ | ArchDefinePpcsq)
+ .Case("power5x", ArchDefinePwr5x | ArchDefinePwr5 | ArchDefinePwr4
+ | ArchDefinePpcgr | ArchDefinePpcsq)
+ .Case("power6", ArchDefinePwr6 | ArchDefinePwr5x | ArchDefinePwr5
+ | ArchDefinePwr4 | ArchDefinePpcgr | ArchDefinePpcsq)
+ .Case("power6x", ArchDefinePwr6x | ArchDefinePwr6 | ArchDefinePwr5x
+ | ArchDefinePwr5 | ArchDefinePwr4 | ArchDefinePpcgr
+ | ArchDefinePpcsq)
+ .Case("power7", ArchDefinePwr7 | ArchDefinePwr6x | ArchDefinePwr6
+ | ArchDefinePwr5x | ArchDefinePwr5 | ArchDefinePwr4
+ | ArchDefinePpcgr | ArchDefinePpcsq)
+ .Case("power8", ArchDefinePwr8 | ArchDefinePwr7 | ArchDefinePwr6x
+ | ArchDefinePwr6 | ArchDefinePwr5x | ArchDefinePwr5
+ | ArchDefinePwr4 | ArchDefinePpcgr | ArchDefinePpcsq)
+ .Default(ArchDefineNone);
+
+ if (defs & ArchDefineName)
+ Builder.defineMacro(Twine("_ARCH_", StringRef(CPU).upper()));
+ if (defs & ArchDefinePpcgr)
+ Builder.defineMacro("_ARCH_PPCGR");
+ if (defs & ArchDefinePpcsq)
+ Builder.defineMacro("_ARCH_PPCSQ");
+ if (defs & ArchDefine440)
+ Builder.defineMacro("_ARCH_440");
+ if (defs & ArchDefine603)
+ Builder.defineMacro("_ARCH_603");
+ if (defs & ArchDefine604)
+ Builder.defineMacro("_ARCH_604");
+ if (defs & ArchDefinePwr4)
+ Builder.defineMacro("_ARCH_PWR4");
+ if (defs & ArchDefinePwr5)
+ Builder.defineMacro("_ARCH_PWR5");
+ if (defs & ArchDefinePwr5x)
+ Builder.defineMacro("_ARCH_PWR5X");
+ if (defs & ArchDefinePwr6)
+ Builder.defineMacro("_ARCH_PWR6");
+ if (defs & ArchDefinePwr6x)
+ Builder.defineMacro("_ARCH_PWR6X");
+ if (defs & ArchDefinePwr7)
+ Builder.defineMacro("_ARCH_PWR7");
+ if (defs & ArchDefinePwr8)
+ Builder.defineMacro("_ARCH_PWR8");
+ if (defs & ArchDefineA2)
+ Builder.defineMacro("_ARCH_A2");
+ if (defs & ArchDefineA2q) {
+ Builder.defineMacro("_ARCH_A2Q");
+ Builder.defineMacro("_ARCH_QP");
+ }
+
+ if (getTriple().getVendor() == llvm::Triple::BGQ) {
+ Builder.defineMacro("__bg__");
+ Builder.defineMacro("__THW_BLUEGENE__");
+ Builder.defineMacro("__bgq__");
+ Builder.defineMacro("__TOS_BGQ__");
+ }
+
+ if (HasVSX)
+ Builder.defineMacro("__VSX__");
+ if (HasP8Vector)
+ Builder.defineMacro("__POWER8_VECTOR__");
+ if (HasP8Crypto)
+ Builder.defineMacro("__CRYPTO__");
+ if (HasHTM)
+ Builder.defineMacro("__HTM__");
+ if (getTriple().getArch() == llvm::Triple::ppc64le ||
+ (defs & ArchDefinePwr8) || (CPU == "pwr8")) {
+ Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_1");
+ Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_2");
+ Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4");
+ if (PointerWidth == 64)
+ Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_8");
+ }
+
+ // FIXME: The following are not yet generated here by Clang, but are
+ // generated by GCC:
+ //
+ // _SOFT_FLOAT_
+ // __RECIP_PRECISION__
+ // __APPLE_ALTIVEC__
+ // __RECIP__
+ // __RECIPF__
+ // __RSQRTE__
+ // __RSQRTEF__
+ // _SOFT_DOUBLE_
+ // __NO_LWSYNC__
+ // __HAVE_BSWAP__
+ // __LONGDOUBLE128
+ // __CMODEL_MEDIUM__
+ // __CMODEL_LARGE__
+ // _CALL_SYSV
+ // _CALL_DARWIN
+ // __NO_FPRS__
+}
+
+void PPCTargetInfo::getDefaultFeatures(llvm::StringMap<bool> &Features) const {
+ Features["altivec"] = llvm::StringSwitch<bool>(CPU)
+ .Case("7400", true)
+ .Case("g4", true)
+ .Case("7450", true)
+ .Case("g4+", true)
+ .Case("970", true)
+ .Case("g5", true)
+ .Case("pwr6", true)
+ .Case("pwr7", true)
+ .Case("pwr8", true)
+ .Case("ppc64", true)
+ .Case("ppc64le", true)
+ .Default(false);
+
+ Features["qpx"] = (CPU == "a2q");
+ Features["crypto"] = llvm::StringSwitch<bool>(CPU)
+ .Case("ppc64le", true)
+ .Case("pwr8", true)
+ .Default(false);
+ Features["power8-vector"] = llvm::StringSwitch<bool>(CPU)
+ .Case("ppc64le", true)
+ .Case("pwr8", true)
+ .Default(false);
+ Features["bpermd"] = llvm::StringSwitch<bool>(CPU)
+ .Case("ppc64le", true)
+ .Case("pwr8", true)
+ .Case("pwr7", true)
+ .Default(false);
+ Features["extdiv"] = llvm::StringSwitch<bool>(CPU)
+ .Case("ppc64le", true)
+ .Case("pwr8", true)
+ .Case("pwr7", true)
+ .Default(false);
+ Features["direct-move"] = llvm::StringSwitch<bool>(CPU)
+ .Case("ppc64le", true)
+ .Case("pwr8", true)
+ .Default(false);
+}
+
+bool PPCTargetInfo::hasFeature(StringRef Feature) const {
+ return llvm::StringSwitch<bool>(Feature)
+ .Case("powerpc", true)
+ .Case("vsx", HasVSX)
+ .Case("power8-vector", HasP8Vector)
+ .Case("crypto", HasP8Crypto)
+ .Case("direct-move", HasDirectMove)
+ .Case("qpx", HasQPX)
+ .Case("htm", HasHTM)
+ .Case("bpermd", HasBPERMD)
+ .Case("extdiv", HasExtDiv)
+ .Default(false);
+}
+
+const char * const PPCTargetInfo::GCCRegNames[] = {
+ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
+ "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
+ "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
+ "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
+ "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
+ "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
+ "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
+ "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
+ "mq", "lr", "ctr", "ap",
+ "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
+ "xer",
+ "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
+ "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15",
+ "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",
+ "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31",
+ "vrsave", "vscr",
+ "spe_acc", "spefscr",
+ "sfp"
+};
+
+void PPCTargetInfo::getGCCRegNames(const char * const *&Names,
+ unsigned &NumNames) const {
+ Names = GCCRegNames;
+ NumNames = llvm::array_lengthof(GCCRegNames);
+}
+
+const TargetInfo::GCCRegAlias PPCTargetInfo::GCCRegAliases[] = {
+ // While some of these aliases do map to different registers
+ // they still share the same register name.
+ { { "0" }, "r0" },
+ { { "1"}, "r1" },
+ { { "2" }, "r2" },
+ { { "3" }, "r3" },
+ { { "4" }, "r4" },
+ { { "5" }, "r5" },
+ { { "6" }, "r6" },
+ { { "7" }, "r7" },
+ { { "8" }, "r8" },
+ { { "9" }, "r9" },
+ { { "10" }, "r10" },
+ { { "11" }, "r11" },
+ { { "12" }, "r12" },
+ { { "13" }, "r13" },
+ { { "14" }, "r14" },
+ { { "15" }, "r15" },
+ { { "16" }, "r16" },
+ { { "17" }, "r17" },
+ { { "18" }, "r18" },
+ { { "19" }, "r19" },
+ { { "20" }, "r20" },
+ { { "21" }, "r21" },
+ { { "22" }, "r22" },
+ { { "23" }, "r23" },
+ { { "24" }, "r24" },
+ { { "25" }, "r25" },
+ { { "26" }, "r26" },
+ { { "27" }, "r27" },
+ { { "28" }, "r28" },
+ { { "29" }, "r29" },
+ { { "30" }, "r30" },
+ { { "31" }, "r31" },
+ { { "fr0" }, "f0" },
+ { { "fr1" }, "f1" },
+ { { "fr2" }, "f2" },
+ { { "fr3" }, "f3" },
+ { { "fr4" }, "f4" },
+ { { "fr5" }, "f5" },
+ { { "fr6" }, "f6" },
+ { { "fr7" }, "f7" },
+ { { "fr8" }, "f8" },
+ { { "fr9" }, "f9" },
+ { { "fr10" }, "f10" },
+ { { "fr11" }, "f11" },
+ { { "fr12" }, "f12" },
+ { { "fr13" }, "f13" },
+ { { "fr14" }, "f14" },
+ { { "fr15" }, "f15" },
+ { { "fr16" }, "f16" },
+ { { "fr17" }, "f17" },
+ { { "fr18" }, "f18" },
+ { { "fr19" }, "f19" },
+ { { "fr20" }, "f20" },
+ { { "fr21" }, "f21" },
+ { { "fr22" }, "f22" },
+ { { "fr23" }, "f23" },
+ { { "fr24" }, "f24" },
+ { { "fr25" }, "f25" },
+ { { "fr26" }, "f26" },
+ { { "fr27" }, "f27" },
+ { { "fr28" }, "f28" },
+ { { "fr29" }, "f29" },
+ { { "fr30" }, "f30" },
+ { { "fr31" }, "f31" },
+ { { "cc" }, "cr0" },
+};
+
+void PPCTargetInfo::getGCCRegAliases(const GCCRegAlias *&Aliases,
+ unsigned &NumAliases) const {
+ Aliases = GCCRegAliases;
+ NumAliases = llvm::array_lengthof(GCCRegAliases);
+}
+
+class PPC32TargetInfo : public PPCTargetInfo {
+public:
+ PPC32TargetInfo(const llvm::Triple &Triple) : PPCTargetInfo(Triple) {
+ DescriptionString = "E-m:e-p:32:32-i64:64-n32";
+
+ switch (getTriple().getOS()) {
+ case llvm::Triple::Linux:
+ case llvm::Triple::FreeBSD:
+ case llvm::Triple::NetBSD:
+ SizeType = UnsignedInt;
+ PtrDiffType = SignedInt;
+ IntPtrType = SignedInt;
+ break;
+ default:
+ break;
+ }
+
+ if (getTriple().getOS() == llvm::Triple::FreeBSD) {
+ LongDoubleWidth = LongDoubleAlign = 64;
+ LongDoubleFormat = &llvm::APFloat::IEEEdouble;
+ }
+
+ // PPC32 supports atomics up to 4 bytes.
+ MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 32;
+ }
+
+ BuiltinVaListKind getBuiltinVaListKind() const override {
+ // This is the ELF definition, and is overridden by the Darwin sub-target
+ return TargetInfo::PowerABIBuiltinVaList;
+ }
+};
+
+// Note: ABI differences may eventually require us to have a separate
+// TargetInfo for little endian.
+class PPC64TargetInfo : public PPCTargetInfo {
+public:
+ PPC64TargetInfo(const llvm::Triple &Triple) : PPCTargetInfo(Triple) {
+ LongWidth = LongAlign = PointerWidth = PointerAlign = 64;
+ IntMaxType = SignedLong;
+ Int64Type = SignedLong;
+
+ if ((Triple.getArch() == llvm::Triple::ppc64le)) {
+ DescriptionString = "e-m:e-i64:64-n32:64";
+ ABI = "elfv2";
+ } else {
+ DescriptionString = "E-m:e-i64:64-n32:64";
+ ABI = "elfv1";
+ }
+
+ switch (getTriple().getOS()) {
+ case llvm::Triple::FreeBSD:
+ LongDoubleWidth = LongDoubleAlign = 64;
+ LongDoubleFormat = &llvm::APFloat::IEEEdouble;
+ break;
+ case llvm::Triple::NetBSD:
+ IntMaxType = SignedLongLong;
+ Int64Type = SignedLongLong;
+ break;
+ default:
+ break;
+ }
+
+ // PPC64 supports atomics up to 8 bytes.
+ MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 64;
+ }
+ BuiltinVaListKind getBuiltinVaListKind() const override {
+ return TargetInfo::CharPtrBuiltinVaList;
+ }
+ // PPC64 Linux-specifc ABI options.
+ bool setABI(const std::string &Name) override {
+ if (Name == "elfv1" || Name == "elfv1-qpx" || Name == "elfv2") {
+ ABI = Name;
+ return true;
+ }
+ return false;
+ }
+};
+
+class DarwinPPC32TargetInfo :
+ public DarwinTargetInfo<PPC32TargetInfo> {
+public:
+ DarwinPPC32TargetInfo(const llvm::Triple &Triple)
+ : DarwinTargetInfo<PPC32TargetInfo>(Triple) {
+ HasAlignMac68kSupport = true;
+ BoolWidth = BoolAlign = 32; //XXX support -mone-byte-bool?
+ PtrDiffType = SignedInt; // for http://llvm.org/bugs/show_bug.cgi?id=15726
+ LongLongAlign = 32;
+ SuitableAlign = 128;
+ DescriptionString = "E-m:o-p:32:32-f64:32:64-n32";
+ }
+ BuiltinVaListKind getBuiltinVaListKind() const override {
+ return TargetInfo::CharPtrBuiltinVaList;
+ }
+};
+
+class DarwinPPC64TargetInfo :
+ public DarwinTargetInfo<PPC64TargetInfo> {
+public:
+ DarwinPPC64TargetInfo(const llvm::Triple &Triple)
+ : DarwinTargetInfo<PPC64TargetInfo>(Triple) {
+ HasAlignMac68kSupport = true;
+ SuitableAlign = 128;
+ DescriptionString = "E-m:o-i64:64-n32:64";
+ }
+};
+
+ static const unsigned NVPTXAddrSpaceMap[] = {
+ 1, // opencl_global
+ 3, // opencl_local
+ 4, // opencl_constant
+ // FIXME: generic has to be added to the target
+ 0, // opencl_generic
+ 1, // cuda_device
+ 4, // cuda_constant
+ 3, // cuda_shared
+ };
+ class NVPTXTargetInfo : public TargetInfo {
+ static const char * const GCCRegNames[];
+ static const Builtin::Info BuiltinInfo[];
+
+ // The GPU profiles supported by the NVPTX backend
+ enum GPUKind {
+ GK_NONE,
+ GK_SM20,
+ GK_SM21,
+ GK_SM30,
+ GK_SM35,
+ GK_SM37,
+ } GPU;
+
+ public:
+ NVPTXTargetInfo(const llvm::Triple &Triple) : TargetInfo(Triple) {
+ BigEndian = false;
+ TLSSupported = false;
+ LongWidth = LongAlign = 64;
+ AddrSpaceMap = &NVPTXAddrSpaceMap;
+ UseAddrSpaceMapMangling = true;
+ // Define available target features
+ // These must be defined in sorted order!
+ NoAsmVariants = true;
+ // Set the default GPU to sm20
+ GPU = GK_SM20;
+ }
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override {
+ Builder.defineMacro("__PTX__");
+ Builder.defineMacro("__NVPTX__");
+ if (Opts.CUDAIsDevice) {
+ // Set __CUDA_ARCH__ for the GPU specified.
+ std::string CUDAArchCode;
+ switch (GPU) {
+ case GK_SM20:
+ CUDAArchCode = "200";
+ break;
+ case GK_SM21:
+ CUDAArchCode = "210";
+ break;
+ case GK_SM30:
+ CUDAArchCode = "300";
+ break;
+ case GK_SM35:
+ CUDAArchCode = "350";
+ break;
+ case GK_SM37:
+ CUDAArchCode = "370";
+ break;
+ default:
+ llvm_unreachable("Unhandled target CPU");
+ }
+ Builder.defineMacro("__CUDA_ARCH__", CUDAArchCode);
+ }
+ }
+ void getTargetBuiltins(const Builtin::Info *&Records,
+ unsigned &NumRecords) const override {
+ Records = BuiltinInfo;
+ NumRecords = clang::NVPTX::LastTSBuiltin-Builtin::FirstTSBuiltin;
+ }
+ bool hasFeature(StringRef Feature) const override {
+ return Feature == "ptx" || Feature == "nvptx";
+ }
+
+ void getGCCRegNames(const char * const *&Names,
+ unsigned &NumNames) const override;
+ void getGCCRegAliases(const GCCRegAlias *&Aliases,
+ unsigned &NumAliases) const override {
+ // No aliases.
+ Aliases = nullptr;
+ NumAliases = 0;
+ }
+ bool
+ validateAsmConstraint(const char *&Name,
+ TargetInfo::ConstraintInfo &Info) const override {
+ switch (*Name) {
+ default: return false;
+ case 'c':
+ case 'h':
+ case 'r':
+ case 'l':
+ case 'f':
+ case 'd':
+ Info.setAllowsRegister();
+ return true;
+ }
+ }
+ const char *getClobbers() const override {
+ // FIXME: Is this really right?
+ return "";
+ }
+ BuiltinVaListKind getBuiltinVaListKind() const override {
+ // FIXME: implement
+ return TargetInfo::CharPtrBuiltinVaList;
+ }
+ bool setCPU(const std::string &Name) override {
+ GPU = llvm::StringSwitch<GPUKind>(Name)
+ .Case("sm_20", GK_SM20)
+ .Case("sm_21", GK_SM21)
+ .Case("sm_30", GK_SM30)
+ .Case("sm_35", GK_SM35)
+ .Case("sm_37", GK_SM37)
+ .Default(GK_NONE);
+
+ return GPU != GK_NONE;
+ }
+ };
+
+ const Builtin::Info NVPTXTargetInfo::BuiltinInfo[] = {
+#define BUILTIN(ID, TYPE, ATTRS) { #ID, TYPE, ATTRS, 0, ALL_LANGUAGES },
+#define LIBBUILTIN(ID, TYPE, ATTRS, HEADER) { #ID, TYPE, ATTRS, HEADER,\
+ ALL_LANGUAGES },
+#include "clang/Basic/BuiltinsNVPTX.def"
+ };
+
+ const char * const NVPTXTargetInfo::GCCRegNames[] = {
+ "r0"
+ };
+
+ void NVPTXTargetInfo::getGCCRegNames(const char * const *&Names,
+ unsigned &NumNames) const {
+ Names = GCCRegNames;
+ NumNames = llvm::array_lengthof(GCCRegNames);
+ }
+
+ class NVPTX32TargetInfo : public NVPTXTargetInfo {
+ public:
+ NVPTX32TargetInfo(const llvm::Triple &Triple) : NVPTXTargetInfo(Triple) {
+ PointerWidth = PointerAlign = 32;
+ SizeType = TargetInfo::UnsignedInt;
+ PtrDiffType = TargetInfo::SignedInt;
+ IntPtrType = TargetInfo::SignedInt;
+ DescriptionString = "e-p:32:32-i64:64-v16:16-v32:32-n16:32:64";
+ }
+ };
+
+ class NVPTX64TargetInfo : public NVPTXTargetInfo {
+ public:
+ NVPTX64TargetInfo(const llvm::Triple &Triple) : NVPTXTargetInfo(Triple) {
+ PointerWidth = PointerAlign = 64;
+ SizeType = TargetInfo::UnsignedLong;
+ PtrDiffType = TargetInfo::SignedLong;
+ IntPtrType = TargetInfo::SignedLong;
+ DescriptionString = "e-i64:64-v16:16-v32:32-n16:32:64";
+ }
+ };
+
+static const unsigned R600AddrSpaceMap[] = {
+ 1, // opencl_global
+ 3, // opencl_local
+ 2, // opencl_constant
+ 4, // opencl_generic
+ 1, // cuda_device
+ 2, // cuda_constant
+ 3 // cuda_shared
+};
+
+// If you edit the description strings, make sure you update
+// getPointerWidthV().
+
+static const char *DescriptionStringR600 =
+ "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128"
+ "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64";
+
+static const char *DescriptionStringR600DoubleOps =
+ "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128"
+ "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64";
+
+static const char *DescriptionStringSI =
+ "e-p:32:32-p1:64:64-p2:64:64-p3:32:32-p4:64:64-p5:32:32-p24:64:64"
+ "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128"
+ "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64";
+
+class R600TargetInfo : public TargetInfo {
+ static const Builtin::Info BuiltinInfo[];
+ static const char * const GCCRegNames[];
+
+ /// \brief The GPU profiles supported by the R600 target.
+ enum GPUKind {
+ GK_NONE,
+ GK_R600,
+ GK_R600_DOUBLE_OPS,
+ GK_R700,
+ GK_R700_DOUBLE_OPS,
+ GK_EVERGREEN,
+ GK_EVERGREEN_DOUBLE_OPS,
+ GK_NORTHERN_ISLANDS,
+ GK_CAYMAN,
+ GK_SOUTHERN_ISLANDS,
+ GK_SEA_ISLANDS
+ } GPU;
+
+ bool hasFP64:1;
+ bool hasFMAF:1;
+ bool hasLDEXPF:1;
+
+public:
+ R600TargetInfo(const llvm::Triple &Triple)
+ : TargetInfo(Triple) {
+
+ if (Triple.getArch() == llvm::Triple::amdgcn) {
+ DescriptionString = DescriptionStringSI;
+ GPU = GK_SOUTHERN_ISLANDS;
+ hasFP64 = true;
+ hasFMAF = true;
+ hasLDEXPF = true;
+ } else {
+ DescriptionString = DescriptionStringR600;
+ GPU = GK_R600;
+ hasFP64 = false;
+ hasFMAF = false;
+ hasLDEXPF = false;
+ }
+ AddrSpaceMap = &R600AddrSpaceMap;
+ UseAddrSpaceMapMangling = true;
+ }
+
+ uint64_t getPointerWidthV(unsigned AddrSpace) const override {
+ if (GPU <= GK_CAYMAN)
+ return 32;
+
+ switch(AddrSpace) {
+ default:
+ return 64;
+ case 0:
+ case 3:
+ case 5:
+ return 32;
+ }
+ }
+
+ const char * getClobbers() const override {
+ return "";
+ }
+
+ void getGCCRegNames(const char * const *&Names,
+ unsigned &NumNames) const override;
+
+ void getGCCRegAliases(const GCCRegAlias *&Aliases,
+ unsigned &NumAliases) const override {
+ Aliases = nullptr;
+ NumAliases = 0;
+ }
+
+ bool validateAsmConstraint(const char *&Name,
+ TargetInfo::ConstraintInfo &info) const override {
+ return true;
+ }
+
+ void getTargetBuiltins(const Builtin::Info *&Records,
+ unsigned &NumRecords) const override {
+ Records = BuiltinInfo;
+ NumRecords = clang::R600::LastTSBuiltin - Builtin::FirstTSBuiltin;
+ }
+
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override {
+ Builder.defineMacro("__R600__");
+ if (hasFMAF)
+ Builder.defineMacro("__HAS_FMAF__");
+ if (hasLDEXPF)
+ Builder.defineMacro("__HAS_LDEXPF__");
+ if (hasFP64 && Opts.OpenCL) {
+ Builder.defineMacro("cl_khr_fp64");
+ }
+ }
+
+ BuiltinVaListKind getBuiltinVaListKind() const override {
+ return TargetInfo::CharPtrBuiltinVaList;
+ }
+
+ bool setCPU(const std::string &Name) override {
+ GPU = llvm::StringSwitch<GPUKind>(Name)
+ .Case("r600" , GK_R600)
+ .Case("rv610", GK_R600)
+ .Case("rv620", GK_R600)
+ .Case("rv630", GK_R600)
+ .Case("rv635", GK_R600)
+ .Case("rs780", GK_R600)
+ .Case("rs880", GK_R600)
+ .Case("rv670", GK_R600_DOUBLE_OPS)
+ .Case("rv710", GK_R700)
+ .Case("rv730", GK_R700)
+ .Case("rv740", GK_R700_DOUBLE_OPS)
+ .Case("rv770", GK_R700_DOUBLE_OPS)
+ .Case("palm", GK_EVERGREEN)
+ .Case("cedar", GK_EVERGREEN)
+ .Case("sumo", GK_EVERGREEN)
+ .Case("sumo2", GK_EVERGREEN)
+ .Case("redwood", GK_EVERGREEN)
+ .Case("juniper", GK_EVERGREEN)
+ .Case("hemlock", GK_EVERGREEN_DOUBLE_OPS)
+ .Case("cypress", GK_EVERGREEN_DOUBLE_OPS)
+ .Case("barts", GK_NORTHERN_ISLANDS)
+ .Case("turks", GK_NORTHERN_ISLANDS)
+ .Case("caicos", GK_NORTHERN_ISLANDS)
+ .Case("cayman", GK_CAYMAN)
+ .Case("aruba", GK_CAYMAN)
+ .Case("tahiti", GK_SOUTHERN_ISLANDS)
+ .Case("pitcairn", GK_SOUTHERN_ISLANDS)
+ .Case("verde", GK_SOUTHERN_ISLANDS)
+ .Case("oland", GK_SOUTHERN_ISLANDS)
+ .Case("hainan", GK_SOUTHERN_ISLANDS)
+ .Case("bonaire", GK_SEA_ISLANDS)
+ .Case("kabini", GK_SEA_ISLANDS)
+ .Case("kaveri", GK_SEA_ISLANDS)
+ .Case("hawaii", GK_SEA_ISLANDS)
+ .Case("mullins", GK_SEA_ISLANDS)
+ .Default(GK_NONE);
+
+ if (GPU == GK_NONE) {
+ return false;
+ }
+
+ // Set the correct data layout
+ switch (GPU) {
+ case GK_NONE:
+ case GK_R600:
+ case GK_R700:
+ case GK_EVERGREEN:
+ case GK_NORTHERN_ISLANDS:
+ DescriptionString = DescriptionStringR600;
+ hasFP64 = false;
+ hasFMAF = false;
+ hasLDEXPF = false;
+ break;
+ case GK_R600_DOUBLE_OPS:
+ case GK_R700_DOUBLE_OPS:
+ case GK_EVERGREEN_DOUBLE_OPS:
+ case GK_CAYMAN:
+ DescriptionString = DescriptionStringR600DoubleOps;
+ hasFP64 = true;
+ hasFMAF = true;
+ hasLDEXPF = false;
+ break;
+ case GK_SOUTHERN_ISLANDS:
+ case GK_SEA_ISLANDS:
+ DescriptionString = DescriptionStringSI;
+ hasFP64 = true;
+ hasFMAF = true;
+ hasLDEXPF = true;
+ break;
+ }
+
+ return true;
+ }
+};
+
+const Builtin::Info R600TargetInfo::BuiltinInfo[] = {
+#define BUILTIN(ID, TYPE, ATTRS) \
+ { #ID, TYPE, ATTRS, 0, ALL_LANGUAGES },
+#include "clang/Basic/BuiltinsR600.def"
+};
+const char * const R600TargetInfo::GCCRegNames[] = {
+ "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
+ "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15",
+ "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",
+ "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31",
+ "v32", "v33", "v34", "v35", "v36", "v37", "v38", "v39",
+ "v40", "v41", "v42", "v43", "v44", "v45", "v46", "v47",
+ "v48", "v49", "v50", "v51", "v52", "v53", "v54", "v55",
+ "v56", "v57", "v58", "v59", "v60", "v61", "v62", "v63",
+ "v64", "v65", "v66", "v67", "v68", "v69", "v70", "v71",
+ "v72", "v73", "v74", "v75", "v76", "v77", "v78", "v79",
+ "v80", "v81", "v82", "v83", "v84", "v85", "v86", "v87",
+ "v88", "v89", "v90", "v91", "v92", "v93", "v94", "v95",
+ "v96", "v97", "v98", "v99", "v100", "v101", "v102", "v103",
+ "v104", "v105", "v106", "v107", "v108", "v109", "v110", "v111",
+ "v112", "v113", "v114", "v115", "v116", "v117", "v118", "v119",
+ "v120", "v121", "v122", "v123", "v124", "v125", "v126", "v127",
+ "v128", "v129", "v130", "v131", "v132", "v133", "v134", "v135",
+ "v136", "v137", "v138", "v139", "v140", "v141", "v142", "v143",
+ "v144", "v145", "v146", "v147", "v148", "v149", "v150", "v151",
+ "v152", "v153", "v154", "v155", "v156", "v157", "v158", "v159",
+ "v160", "v161", "v162", "v163", "v164", "v165", "v166", "v167",
+ "v168", "v169", "v170", "v171", "v172", "v173", "v174", "v175",
+ "v176", "v177", "v178", "v179", "v180", "v181", "v182", "v183",
+ "v184", "v185", "v186", "v187", "v188", "v189", "v190", "v191",
+ "v192", "v193", "v194", "v195", "v196", "v197", "v198", "v199",
+ "v200", "v201", "v202", "v203", "v204", "v205", "v206", "v207",
+ "v208", "v209", "v210", "v211", "v212", "v213", "v214", "v215",
+ "v216", "v217", "v218", "v219", "v220", "v221", "v222", "v223",
+ "v224", "v225", "v226", "v227", "v228", "v229", "v230", "v231",
+ "v232", "v233", "v234", "v235", "v236", "v237", "v238", "v239",
+ "v240", "v241", "v242", "v243", "v244", "v245", "v246", "v247",
+ "v248", "v249", "v250", "v251", "v252", "v253", "v254", "v255",
+ "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
+ "s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15",
+ "s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23",
+ "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31",
+ "s32", "s33", "s34", "s35", "s36", "s37", "s38", "s39",
+ "s40", "s41", "s42", "s43", "s44", "s45", "s46", "s47",
+ "s48", "s49", "s50", "s51", "s52", "s53", "s54", "s55",
+ "s56", "s57", "s58", "s59", "s60", "s61", "s62", "s63",
+ "s64", "s65", "s66", "s67", "s68", "s69", "s70", "s71",
+ "s72", "s73", "s74", "s75", "s76", "s77", "s78", "s79",
+ "s80", "s81", "s82", "s83", "s84", "s85", "s86", "s87",
+ "s88", "s89", "s90", "s91", "s92", "s93", "s94", "s95",
+ "s96", "s97", "s98", "s99", "s100", "s101", "s102", "s103",
+ "s104", "s105", "s106", "s107", "s108", "s109", "s110", "s111",
+ "s112", "s113", "s114", "s115", "s116", "s117", "s118", "s119",
+ "s120", "s121", "s122", "s123", "s124", "s125", "s126", "s127"
+ "exec", "vcc", "scc", "m0", "flat_scr", "exec_lo", "exec_hi",
+ "vcc_lo", "vcc_hi", "flat_scr_lo", "flat_scr_hi"
+};
+
+void R600TargetInfo::getGCCRegNames(const char * const *&Names,
+ unsigned &NumNames) const {
+ Names = GCCRegNames;
+ NumNames = llvm::array_lengthof(GCCRegNames);
+}
+
+// Namespace for x86 abstract base class
+const Builtin::Info BuiltinInfo[] = {
+#define BUILTIN(ID, TYPE, ATTRS) { #ID, TYPE, ATTRS, 0, ALL_LANGUAGES },
+#define LIBBUILTIN(ID, TYPE, ATTRS, HEADER) { #ID, TYPE, ATTRS, HEADER,\
+ ALL_LANGUAGES },
+#include "clang/Basic/BuiltinsX86.def"
+};
+
+static const char* const GCCRegNames[] = {
+ "ax", "dx", "cx", "bx", "si", "di", "bp", "sp",
+ "st", "st(1)", "st(2)", "st(3)", "st(4)", "st(5)", "st(6)", "st(7)",
+ "argp", "flags", "fpcr", "fpsr", "dirflag", "frame",
+ "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
+ "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7",
+ "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
+ "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
+ "ymm0", "ymm1", "ymm2", "ymm3", "ymm4", "ymm5", "ymm6", "ymm7",
+ "ymm8", "ymm9", "ymm10", "ymm11", "ymm12", "ymm13", "ymm14", "ymm15",
+};
+
+const TargetInfo::AddlRegName AddlRegNames[] = {
+ { { "al", "ah", "eax", "rax" }, 0 },
+ { { "bl", "bh", "ebx", "rbx" }, 3 },
+ { { "cl", "ch", "ecx", "rcx" }, 2 },
+ { { "dl", "dh", "edx", "rdx" }, 1 },
+ { { "esi", "rsi" }, 4 },
+ { { "edi", "rdi" }, 5 },
+ { { "esp", "rsp" }, 7 },
+ { { "ebp", "rbp" }, 6 },
+};
+
+// X86 target abstract base class; x86-32 and x86-64 are very close, so
+// most of the implementation can be shared.
+class X86TargetInfo : public TargetInfo {
+ enum X86SSEEnum {
+ NoSSE, SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, AVX, AVX2, AVX512F
+ } SSELevel;
+ enum MMX3DNowEnum {
+ NoMMX3DNow, MMX, AMD3DNow, AMD3DNowAthlon
+ } MMX3DNowLevel;
+ enum XOPEnum {
+ NoXOP,
+ SSE4A,
+ FMA4,
+ XOP
+ } XOPLevel;
+
+ bool HasAES;
+ bool HasPCLMUL;
+ bool HasLZCNT;
+ bool HasRDRND;
+ bool HasFSGSBASE;
+ bool HasBMI;
+ bool HasBMI2;
+ bool HasPOPCNT;
+ bool HasRTM;
+ bool HasPRFCHW;
+ bool HasRDSEED;
+ bool HasADX;
+ bool HasTBM;
+ bool HasFMA;
+ bool HasF16C;
+ bool HasAVX512CD, HasAVX512ER, HasAVX512PF, HasAVX512DQ, HasAVX512BW,
+ HasAVX512VL;
+ bool HasSHA;
+ bool HasCX16;
+
+ /// \brief Enumeration of all of the X86 CPUs supported by Clang.
+ ///
+ /// Each enumeration represents a particular CPU supported by Clang. These
+ /// loosely correspond to the options passed to '-march' or '-mtune' flags.
+ enum CPUKind {
+ CK_Generic,
+
+ /// \name i386
+ /// i386-generation processors.
+ //@{
+ CK_i386,
+ //@}
+
+ /// \name i486
+ /// i486-generation processors.
+ //@{
+ CK_i486,
+ CK_WinChipC6,
+ CK_WinChip2,
+ CK_C3,
+ //@}
+
+ /// \name i586
+ /// i586-generation processors, P5 microarchitecture based.
+ //@{
+ CK_i586,
+ CK_Pentium,
+ CK_PentiumMMX,
+ //@}
+
+ /// \name i686
+ /// i686-generation processors, P6 / Pentium M microarchitecture based.
+ //@{
+ CK_i686,
+ CK_PentiumPro,
+ CK_Pentium2,
+ CK_Pentium3,
+ CK_Pentium3M,
+ CK_PentiumM,
+ CK_C3_2,
+
+ /// This enumerator is a bit odd, as GCC no longer accepts -march=yonah.
+ /// Clang however has some logic to suport this.
+ // FIXME: Warn, deprecate, and potentially remove this.
+ CK_Yonah,
+ //@}
+
+ /// \name Netburst
+ /// Netburst microarchitecture based processors.
+ //@{
+ CK_Pentium4,
+ CK_Pentium4M,
+ CK_Prescott,
+ CK_Nocona,
+ //@}
+
+ /// \name Core
+ /// Core microarchitecture based processors.
+ //@{
+ CK_Core2,
+
+ /// This enumerator, like \see CK_Yonah, is a bit odd. It is another
+ /// codename which GCC no longer accepts as an option to -march, but Clang
+ /// has some logic for recognizing it.
+ // FIXME: Warn, deprecate, and potentially remove this.
+ CK_Penryn,
+ //@}
+
+ /// \name Atom
+ /// Atom processors
+ //@{
+ CK_Bonnell,
+ CK_Silvermont,
+ //@}
+
+ /// \name Nehalem
+ /// Nehalem microarchitecture based processors.
+ CK_Nehalem,
+
+ /// \name Westmere
+ /// Westmere microarchitecture based processors.
+ CK_Westmere,
+
+ /// \name Sandy Bridge
+ /// Sandy Bridge microarchitecture based processors.
+ CK_SandyBridge,
+
+ /// \name Ivy Bridge
+ /// Ivy Bridge microarchitecture based processors.
+ CK_IvyBridge,
+
+ /// \name Haswell
+ /// Haswell microarchitecture based processors.
+ CK_Haswell,
+
+ /// \name Broadwell
+ /// Broadwell microarchitecture based processors.
+ CK_Broadwell,
+
+ /// \name Skylake
+ /// Skylake microarchitecture based processors.
+ CK_Skylake,
+
+ /// \name Knights Landing
+ /// Knights Landing processor.
+ CK_KNL,
+
+ /// \name K6
+ /// K6 architecture processors.
+ //@{
+ CK_K6,
+ CK_K6_2,
+ CK_K6_3,
+ //@}
+
+ /// \name K7
+ /// K7 architecture processors.
+ //@{
+ CK_Athlon,
+ CK_AthlonThunderbird,
+ CK_Athlon4,
+ CK_AthlonXP,
+ CK_AthlonMP,
+ //@}
+
+ /// \name K8
+ /// K8 architecture processors.
+ //@{
+ CK_Athlon64,
+ CK_Athlon64SSE3,
+ CK_AthlonFX,
+ CK_K8,
+ CK_K8SSE3,
+ CK_Opteron,
+ CK_OpteronSSE3,
+ CK_AMDFAM10,
+ //@}
+
+ /// \name Bobcat
+ /// Bobcat architecture processors.
+ //@{
+ CK_BTVER1,
+ CK_BTVER2,
+ //@}
+
+ /// \name Bulldozer
+ /// Bulldozer architecture processors.
+ //@{
+ CK_BDVER1,
+ CK_BDVER2,
+ CK_BDVER3,
+ CK_BDVER4,
+ //@}
+
+ /// This specification is deprecated and will be removed in the future.
+ /// Users should prefer \see CK_K8.
+ // FIXME: Warn on this when the CPU is set to it.
+ //@{
+ CK_x86_64,
+ //@}
+
+ /// \name Geode
+ /// Geode processors.
+ //@{
+ CK_Geode
+ //@}
+ } CPU;
+
+ enum FPMathKind {
+ FP_Default,
+ FP_SSE,
+ FP_387
+ } FPMath;
+
+public:
+ X86TargetInfo(const llvm::Triple &Triple)
+ : TargetInfo(Triple), SSELevel(NoSSE), MMX3DNowLevel(NoMMX3DNow),
+ XOPLevel(NoXOP), HasAES(false), HasPCLMUL(false), HasLZCNT(false),
+ HasRDRND(false), HasFSGSBASE(false), HasBMI(false), HasBMI2(false),
+ HasPOPCNT(false), HasRTM(false), HasPRFCHW(false), HasRDSEED(false),
+ HasADX(false), HasTBM(false), HasFMA(false), HasF16C(false),
+ HasAVX512CD(false), HasAVX512ER(false), HasAVX512PF(false),
+ HasAVX512DQ(false), HasAVX512BW(false), HasAVX512VL(false),
+ HasSHA(false), HasCX16(false), CPU(CK_Generic), FPMath(FP_Default) {
+ BigEndian = false;
+ LongDoubleFormat = &llvm::APFloat::x87DoubleExtended;
+ }
+ unsigned getFloatEvalMethod() const override {
+ // X87 evaluates with 80 bits "long double" precision.
+ return SSELevel == NoSSE ? 2 : 0;
+ }
+ void getTargetBuiltins(const Builtin::Info *&Records,
+ unsigned &NumRecords) const override {
+ Records = BuiltinInfo;
+ NumRecords = clang::X86::LastTSBuiltin-Builtin::FirstTSBuiltin;
+ }
+ void getGCCRegNames(const char * const *&Names,
+ unsigned &NumNames) const override {
+ Names = GCCRegNames;
+ NumNames = llvm::array_lengthof(GCCRegNames);
+ }
+ void getGCCRegAliases(const GCCRegAlias *&Aliases,
+ unsigned &NumAliases) const override {
+ Aliases = nullptr;
+ NumAliases = 0;
+ }
+ void getGCCAddlRegNames(const AddlRegName *&Names,
+ unsigned &NumNames) const override {
+ Names = AddlRegNames;
+ NumNames = llvm::array_lengthof(AddlRegNames);
+ }
+ bool validateAsmConstraint(const char *&Name,
+ TargetInfo::ConstraintInfo &info) const override;
+
+ bool validateOutputSize(StringRef Constraint, unsigned Size) const override;
+
+ bool validateInputSize(StringRef Constraint, unsigned Size) const override;
+
+ virtual bool validateOperandSize(StringRef Constraint, unsigned Size) const;
+
+ std::string convertConstraint(const char *&Constraint) const override;
+ const char *getClobbers() const override {
+ return "~{dirflag},~{fpsr},~{flags}";
+ }
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override;
+ static void setSSELevel(llvm::StringMap<bool> &Features, X86SSEEnum Level,
+ bool Enabled);
+ static void setMMXLevel(llvm::StringMap<bool> &Features, MMX3DNowEnum Level,
+ bool Enabled);
+ static void setXOPLevel(llvm::StringMap<bool> &Features, XOPEnum Level,
+ bool Enabled);
+ void setFeatureEnabled(llvm::StringMap<bool> &Features,
+ StringRef Name, bool Enabled) const override {
+ setFeatureEnabledImpl(Features, Name, Enabled);
+ }
+ // This exists purely to cut down on the number of virtual calls in
+ // getDefaultFeatures which calls this repeatedly.
+ static void setFeatureEnabledImpl(llvm::StringMap<bool> &Features,
+ StringRef Name, bool Enabled);
+ void getDefaultFeatures(llvm::StringMap<bool> &Features) const override;
+ bool hasFeature(StringRef Feature) const override;
+ bool handleTargetFeatures(std::vector<std::string> &Features,
+ DiagnosticsEngine &Diags) override;
+ StringRef getABI() const override {
+ if (getTriple().getArch() == llvm::Triple::x86_64 && SSELevel >= AVX)
+ return "avx";
+ else if (getTriple().getArch() == llvm::Triple::x86 &&
+ MMX3DNowLevel == NoMMX3DNow)
+ return "no-mmx";
+ return "";
+ }
+ bool setCPU(const std::string &Name) override {
+ CPU = llvm::StringSwitch<CPUKind>(Name)
+ .Case("i386", CK_i386)
+ .Case("i486", CK_i486)
+ .Case("winchip-c6", CK_WinChipC6)
+ .Case("winchip2", CK_WinChip2)
+ .Case("c3", CK_C3)
+ .Case("i586", CK_i586)
+ .Case("pentium", CK_Pentium)
+ .Case("pentium-mmx", CK_PentiumMMX)
+ .Case("i686", CK_i686)
+ .Case("pentiumpro", CK_PentiumPro)
+ .Case("pentium2", CK_Pentium2)
+ .Case("pentium3", CK_Pentium3)
+ .Case("pentium3m", CK_Pentium3M)
+ .Case("pentium-m", CK_PentiumM)
+ .Case("c3-2", CK_C3_2)
+ .Case("yonah", CK_Yonah)
+ .Case("pentium4", CK_Pentium4)
+ .Case("pentium4m", CK_Pentium4M)
+ .Case("prescott", CK_Prescott)
+ .Case("nocona", CK_Nocona)
+ .Case("core2", CK_Core2)
+ .Case("penryn", CK_Penryn)
+ .Case("bonnell", CK_Bonnell)
+ .Case("atom", CK_Bonnell) // Legacy name.
+ .Case("silvermont", CK_Silvermont)
+ .Case("slm", CK_Silvermont) // Legacy name.
+ .Case("nehalem", CK_Nehalem)
+ .Case("corei7", CK_Nehalem) // Legacy name.
+ .Case("westmere", CK_Westmere)
+ .Case("sandybridge", CK_SandyBridge)
+ .Case("corei7-avx", CK_SandyBridge) // Legacy name.
+ .Case("ivybridge", CK_IvyBridge)
+ .Case("core-avx-i", CK_IvyBridge) // Legacy name.
+ .Case("haswell", CK_Haswell)
+ .Case("core-avx2", CK_Haswell) // Legacy name.
+ .Case("broadwell", CK_Broadwell)
+ .Case("skylake", CK_Skylake)
+ .Case("skx", CK_Skylake) // Legacy name.
+ .Case("knl", CK_KNL)
+ .Case("k6", CK_K6)
+ .Case("k6-2", CK_K6_2)
+ .Case("k6-3", CK_K6_3)
+ .Case("athlon", CK_Athlon)
+ .Case("athlon-tbird", CK_AthlonThunderbird)
+ .Case("athlon-4", CK_Athlon4)
+ .Case("athlon-xp", CK_AthlonXP)
+ .Case("athlon-mp", CK_AthlonMP)
+ .Case("athlon64", CK_Athlon64)
+ .Case("athlon64-sse3", CK_Athlon64SSE3)
+ .Case("athlon-fx", CK_AthlonFX)
+ .Case("k8", CK_K8)
+ .Case("k8-sse3", CK_K8SSE3)
+ .Case("opteron", CK_Opteron)
+ .Case("opteron-sse3", CK_OpteronSSE3)
+ .Case("barcelona", CK_AMDFAM10)
+ .Case("amdfam10", CK_AMDFAM10)
+ .Case("btver1", CK_BTVER1)
+ .Case("btver2", CK_BTVER2)
+ .Case("bdver1", CK_BDVER1)
+ .Case("bdver2", CK_BDVER2)
+ .Case("bdver3", CK_BDVER3)
+ .Case("bdver4", CK_BDVER4)
+ .Case("x86-64", CK_x86_64)
+ .Case("geode", CK_Geode)
+ .Default(CK_Generic);
+
+ // Perform any per-CPU checks necessary to determine if this CPU is
+ // acceptable.
+ // FIXME: This results in terrible diagnostics. Clang just says the CPU is
+ // invalid without explaining *why*.
+ switch (CPU) {
+ case CK_Generic:
+ // No processor selected!
+ return false;
+
+ case CK_i386:
+ case CK_i486:
+ case CK_WinChipC6:
+ case CK_WinChip2:
+ case CK_C3:
+ case CK_i586:
+ case CK_Pentium:
+ case CK_PentiumMMX:
+ case CK_i686:
+ case CK_PentiumPro:
+ case CK_Pentium2:
+ case CK_Pentium3:
+ case CK_Pentium3M:
+ case CK_PentiumM:
+ case CK_Yonah:
+ case CK_C3_2:
+ case CK_Pentium4:
+ case CK_Pentium4M:
+ case CK_Prescott:
+ case CK_K6:
+ case CK_K6_2:
+ case CK_K6_3:
+ case CK_Athlon:
+ case CK_AthlonThunderbird:
+ case CK_Athlon4:
+ case CK_AthlonXP:
+ case CK_AthlonMP:
+ case CK_Geode:
+ // Only accept certain architectures when compiling in 32-bit mode.
+ if (getTriple().getArch() != llvm::Triple::x86)
+ return false;
+
+ // Fallthrough
+ case CK_Nocona:
+ case CK_Core2:
+ case CK_Penryn:
+ case CK_Bonnell:
+ case CK_Silvermont:
+ case CK_Nehalem:
+ case CK_Westmere:
+ case CK_SandyBridge:
+ case CK_IvyBridge:
+ case CK_Haswell:
+ case CK_Broadwell:
+ case CK_Skylake:
+ case CK_KNL:
+ case CK_Athlon64:
+ case CK_Athlon64SSE3:
+ case CK_AthlonFX:
+ case CK_K8:
+ case CK_K8SSE3:
+ case CK_Opteron:
+ case CK_OpteronSSE3:
+ case CK_AMDFAM10:
+ case CK_BTVER1:
+ case CK_BTVER2:
+ case CK_BDVER1:
+ case CK_BDVER2:
+ case CK_BDVER3:
+ case CK_BDVER4:
+ case CK_x86_64:
+ return true;
+ }
+ llvm_unreachable("Unhandled CPU kind");
+ }
+
+ bool setFPMath(StringRef Name) override;
+
+ CallingConvCheckResult checkCallingConvention(CallingConv CC) const override {
+ // We accept all non-ARM calling conventions
+ return (CC == CC_X86ThisCall ||
+ CC == CC_X86FastCall ||
+ CC == CC_X86StdCall ||
+ CC == CC_X86VectorCall ||
+ CC == CC_C ||
+ CC == CC_X86Pascal ||
+ CC == CC_IntelOclBicc) ? CCCR_OK : CCCR_Warning;
+ }
+
+ CallingConv getDefaultCallingConv(CallingConvMethodType MT) const override {
+ return MT == CCMT_Member ? CC_X86ThisCall : CC_C;
+ }
+
+ bool hasSjLjLowering() const override {
+ return true;
+ }
+};
+
+bool X86TargetInfo::setFPMath(StringRef Name) {
+ if (Name == "387") {
+ FPMath = FP_387;
+ return true;
+ }
+ if (Name == "sse") {
+ FPMath = FP_SSE;
+ return true;
+ }
+ return false;
+}
+
+void X86TargetInfo::getDefaultFeatures(llvm::StringMap<bool> &Features) const {
+ // FIXME: This *really* should not be here.
+
+ // X86_64 always has SSE2.
+ if (getTriple().getArch() == llvm::Triple::x86_64)
+ setFeatureEnabledImpl(Features, "sse2", true);
+
+ switch (CPU) {
+ case CK_Generic:
+ case CK_i386:
+ case CK_i486:
+ case CK_i586:
+ case CK_Pentium:
+ case CK_i686:
+ case CK_PentiumPro:
+ break;
+ case CK_PentiumMMX:
+ case CK_Pentium2:
+ case CK_K6:
+ case CK_WinChipC6:
+ setFeatureEnabledImpl(Features, "mmx", true);
+ break;
+ case CK_Pentium3:
+ case CK_Pentium3M:
+ case CK_C3_2:
+ setFeatureEnabledImpl(Features, "sse", true);
+ break;
+ case CK_PentiumM:
+ case CK_Pentium4:
+ case CK_Pentium4M:
+ case CK_x86_64:
+ setFeatureEnabledImpl(Features, "sse2", true);
+ break;
+ case CK_Yonah:
+ case CK_Prescott:
+ case CK_Nocona:
+ setFeatureEnabledImpl(Features, "sse3", true);
+ setFeatureEnabledImpl(Features, "cx16", true);
+ break;
+ case CK_Core2:
+ case CK_Bonnell:
+ setFeatureEnabledImpl(Features, "ssse3", true);
+ setFeatureEnabledImpl(Features, "cx16", true);
+ break;
+ case CK_Penryn:
+ setFeatureEnabledImpl(Features, "sse4.1", true);
+ setFeatureEnabledImpl(Features, "cx16", true);
+ break;
+ case CK_Skylake:
+ setFeatureEnabledImpl(Features, "avx512f", true);
+ setFeatureEnabledImpl(Features, "avx512cd", true);
+ setFeatureEnabledImpl(Features, "avx512dq", true);
+ setFeatureEnabledImpl(Features, "avx512bw", true);
+ setFeatureEnabledImpl(Features, "avx512vl", true);
+ // FALLTHROUGH
+ case CK_Broadwell:
+ setFeatureEnabledImpl(Features, "rdseed", true);
+ setFeatureEnabledImpl(Features, "adx", true);
+ // FALLTHROUGH
+ case CK_Haswell:
+ setFeatureEnabledImpl(Features, "avx2", true);
+ setFeatureEnabledImpl(Features, "lzcnt", true);
+ setFeatureEnabledImpl(Features, "bmi", true);
+ setFeatureEnabledImpl(Features, "bmi2", true);
+ setFeatureEnabledImpl(Features, "rtm", true);
+ setFeatureEnabledImpl(Features, "fma", true);
+ // FALLTHROUGH
+ case CK_IvyBridge:
+ setFeatureEnabledImpl(Features, "rdrnd", true);
+ setFeatureEnabledImpl(Features, "f16c", true);
+ setFeatureEnabledImpl(Features, "fsgsbase", true);
+ // FALLTHROUGH
+ case CK_SandyBridge:
+ setFeatureEnabledImpl(Features, "avx", true);
+ // FALLTHROUGH
+ case CK_Westmere:
+ case CK_Silvermont:
+ setFeatureEnabledImpl(Features, "aes", true);
+ setFeatureEnabledImpl(Features, "pclmul", true);
+ // FALLTHROUGH
+ case CK_Nehalem:
+ setFeatureEnabledImpl(Features, "sse4.2", true);
+ setFeatureEnabledImpl(Features, "cx16", true);
+ break;
+ case CK_KNL:
+ setFeatureEnabledImpl(Features, "avx512f", true);
+ setFeatureEnabledImpl(Features, "avx512cd", true);
+ setFeatureEnabledImpl(Features, "avx512er", true);
+ setFeatureEnabledImpl(Features, "avx512pf", true);
+ setFeatureEnabledImpl(Features, "rdseed", true);
+ setFeatureEnabledImpl(Features, "adx", true);
+ setFeatureEnabledImpl(Features, "lzcnt", true);
+ setFeatureEnabledImpl(Features, "bmi", true);
+ setFeatureEnabledImpl(Features, "bmi2", true);
+ setFeatureEnabledImpl(Features, "rtm", true);
+ setFeatureEnabledImpl(Features, "fma", true);
+ setFeatureEnabledImpl(Features, "rdrnd", true);
+ setFeatureEnabledImpl(Features, "f16c", true);
+ setFeatureEnabledImpl(Features, "fsgsbase", true);
+ setFeatureEnabledImpl(Features, "aes", true);
+ setFeatureEnabledImpl(Features, "pclmul", true);
+ setFeatureEnabledImpl(Features, "cx16", true);
+ break;
+ case CK_K6_2:
+ case CK_K6_3:
+ case CK_WinChip2:
+ case CK_C3:
+ setFeatureEnabledImpl(Features, "3dnow", true);
+ break;
+ case CK_Athlon:
+ case CK_AthlonThunderbird:
+ case CK_Geode:
+ setFeatureEnabledImpl(Features, "3dnowa", true);
+ break;
+ case CK_Athlon4:
+ case CK_AthlonXP:
+ case CK_AthlonMP:
+ setFeatureEnabledImpl(Features, "sse", true);
+ setFeatureEnabledImpl(Features, "3dnowa", true);
+ break;
+ case CK_K8:
+ case CK_Opteron:
+ case CK_Athlon64:
+ case CK_AthlonFX:
+ setFeatureEnabledImpl(Features, "sse2", true);
+ setFeatureEnabledImpl(Features, "3dnowa", true);
+ break;
+ case CK_AMDFAM10:
+ setFeatureEnabledImpl(Features, "sse4a", true);
+ setFeatureEnabledImpl(Features, "lzcnt", true);
+ setFeatureEnabledImpl(Features, "popcnt", true);
+ // FALLTHROUGH
+ case CK_K8SSE3:
+ case CK_OpteronSSE3:
+ case CK_Athlon64SSE3:
+ setFeatureEnabledImpl(Features, "sse3", true);
+ setFeatureEnabledImpl(Features, "3dnowa", true);
+ break;
+ case CK_BTVER2:
+ setFeatureEnabledImpl(Features, "avx", true);
+ setFeatureEnabledImpl(Features, "aes", true);
+ setFeatureEnabledImpl(Features, "pclmul", true);
+ setFeatureEnabledImpl(Features, "bmi", true);
+ setFeatureEnabledImpl(Features, "f16c", true);
+ // FALLTHROUGH
+ case CK_BTVER1:
+ setFeatureEnabledImpl(Features, "ssse3", true);
+ setFeatureEnabledImpl(Features, "sse4a", true);
+ setFeatureEnabledImpl(Features, "lzcnt", true);
+ setFeatureEnabledImpl(Features, "popcnt", true);
+ setFeatureEnabledImpl(Features, "prfchw", true);
+ setFeatureEnabledImpl(Features, "cx16", true);
+ break;
+ case CK_BDVER4:
+ setFeatureEnabledImpl(Features, "avx2", true);
+ setFeatureEnabledImpl(Features, "bmi2", true);
+ // FALLTHROUGH
+ case CK_BDVER3:
+ setFeatureEnabledImpl(Features, "fsgsbase", true);
+ // FALLTHROUGH
+ case CK_BDVER2:
+ setFeatureEnabledImpl(Features, "bmi", true);
+ setFeatureEnabledImpl(Features, "fma", true);
+ setFeatureEnabledImpl(Features, "f16c", true);
+ setFeatureEnabledImpl(Features, "tbm", true);
+ // FALLTHROUGH
+ case CK_BDVER1:
+ // xop implies avx, sse4a and fma4.
+ setFeatureEnabledImpl(Features, "xop", true);
+ setFeatureEnabledImpl(Features, "lzcnt", true);
+ setFeatureEnabledImpl(Features, "aes", true);
+ setFeatureEnabledImpl(Features, "pclmul", true);
+ setFeatureEnabledImpl(Features, "prfchw", true);
+ setFeatureEnabledImpl(Features, "cx16", true);
+ break;
+ }
+}
+
+void X86TargetInfo::setSSELevel(llvm::StringMap<bool> &Features,
+ X86SSEEnum Level, bool Enabled) {
+ if (Enabled) {
+ switch (Level) {
+ case AVX512F:
+ Features["avx512f"] = true;
+ case AVX2:
+ Features["avx2"] = true;
+ case AVX:
+ Features["avx"] = true;
+ case SSE42:
+ Features["sse4.2"] = true;
+ case SSE41:
+ Features["sse4.1"] = true;
+ case SSSE3:
+ Features["ssse3"] = true;
+ case SSE3:
+ Features["sse3"] = true;
+ case SSE2:
+ Features["sse2"] = true;
+ case SSE1:
+ Features["sse"] = true;
+ case NoSSE:
+ break;
+ }
+ return;
+ }
+
+ switch (Level) {
+ case NoSSE:
+ case SSE1:
+ Features["sse"] = false;
+ case SSE2:
+ Features["sse2"] = Features["pclmul"] = Features["aes"] =
+ Features["sha"] = false;
+ case SSE3:
+ Features["sse3"] = false;
+ setXOPLevel(Features, NoXOP, false);
+ case SSSE3:
+ Features["ssse3"] = false;
+ case SSE41:
+ Features["sse4.1"] = false;
+ case SSE42:
+ Features["sse4.2"] = false;
+ case AVX:
+ Features["fma"] = Features["avx"] = Features["f16c"] = false;
+ setXOPLevel(Features, FMA4, false);
+ case AVX2:
+ Features["avx2"] = false;
+ case AVX512F:
+ Features["avx512f"] = Features["avx512cd"] = Features["avx512er"] =
+ Features["avx512pf"] = Features["avx512dq"] = Features["avx512bw"] =
+ Features["avx512vl"] = false;
+ }
+}
+
+void X86TargetInfo::setMMXLevel(llvm::StringMap<bool> &Features,
+ MMX3DNowEnum Level, bool Enabled) {
+ if (Enabled) {
+ switch (Level) {
+ case AMD3DNowAthlon:
+ Features["3dnowa"] = true;
+ case AMD3DNow:
+ Features["3dnow"] = true;
+ case MMX:
+ Features["mmx"] = true;
+ case NoMMX3DNow:
+ break;
+ }
+ return;
+ }
+
+ switch (Level) {
+ case NoMMX3DNow:
+ case MMX:
+ Features["mmx"] = false;
+ case AMD3DNow:
+ Features["3dnow"] = false;
+ case AMD3DNowAthlon:
+ Features["3dnowa"] = false;
+ }
+}
+
+void X86TargetInfo::setXOPLevel(llvm::StringMap<bool> &Features, XOPEnum Level,
+ bool Enabled) {
+ if (Enabled) {
+ switch (Level) {
+ case XOP:
+ Features["xop"] = true;
+ case FMA4:
+ Features["fma4"] = true;
+ setSSELevel(Features, AVX, true);
+ case SSE4A:
+ Features["sse4a"] = true;
+ setSSELevel(Features, SSE3, true);
+ case NoXOP:
+ break;
+ }
+ return;
+ }
+
+ switch (Level) {
+ case NoXOP:
+ case SSE4A:
+ Features["sse4a"] = false;
+ case FMA4:
+ Features["fma4"] = false;
+ case XOP:
+ Features["xop"] = false;
+ }
+}
+
+void X86TargetInfo::setFeatureEnabledImpl(llvm::StringMap<bool> &Features,
+ StringRef Name, bool Enabled) {
+ Features[Name] = Enabled;
+
+ if (Name == "mmx") {
+ setMMXLevel(Features, MMX, Enabled);
+ } else if (Name == "sse") {
+ setSSELevel(Features, SSE1, Enabled);
+ } else if (Name == "sse2") {
+ setSSELevel(Features, SSE2, Enabled);
+ } else if (Name == "sse3") {
+ setSSELevel(Features, SSE3, Enabled);
+ } else if (Name == "ssse3") {
+ setSSELevel(Features, SSSE3, Enabled);
+ } else if (Name == "sse4.2") {
+ setSSELevel(Features, SSE42, Enabled);
+ } else if (Name == "sse4.1") {
+ setSSELevel(Features, SSE41, Enabled);
+ } else if (Name == "3dnow") {
+ setMMXLevel(Features, AMD3DNow, Enabled);
+ } else if (Name == "3dnowa") {
+ setMMXLevel(Features, AMD3DNowAthlon, Enabled);
+ } else if (Name == "aes") {
+ if (Enabled)
+ setSSELevel(Features, SSE2, Enabled);
+ } else if (Name == "pclmul") {
+ if (Enabled)
+ setSSELevel(Features, SSE2, Enabled);
+ } else if (Name == "avx") {
+ setSSELevel(Features, AVX, Enabled);
+ } else if (Name == "avx2") {
+ setSSELevel(Features, AVX2, Enabled);
+ } else if (Name == "avx512f") {
+ setSSELevel(Features, AVX512F, Enabled);
+ } else if (Name == "avx512cd" || Name == "avx512er" || Name == "avx512pf"
+ || Name == "avx512dq" || Name == "avx512bw" || Name == "avx512vl") {
+ if (Enabled)
+ setSSELevel(Features, AVX512F, Enabled);
+ } else if (Name == "fma") {
+ if (Enabled)
+ setSSELevel(Features, AVX, Enabled);
+ } else if (Name == "fma4") {
+ setXOPLevel(Features, FMA4, Enabled);
+ } else if (Name == "xop") {
+ setXOPLevel(Features, XOP, Enabled);
+ } else if (Name == "sse4a") {
+ setXOPLevel(Features, SSE4A, Enabled);
+ } else if (Name == "f16c") {
+ if (Enabled)
+ setSSELevel(Features, AVX, Enabled);
+ } else if (Name == "sha") {
+ if (Enabled)
+ setSSELevel(Features, SSE2, Enabled);
+ }
+}
+
+/// handleTargetFeatures - Perform initialization based on the user
+/// configured set of features.
+bool X86TargetInfo::handleTargetFeatures(std::vector<std::string> &Features,
+ DiagnosticsEngine &Diags) {
+ // Remember the maximum enabled sselevel.
+ for (unsigned i = 0, e = Features.size(); i !=e; ++i) {
+ // Ignore disabled features.
+ if (Features[i][0] == '-')
+ continue;
+
+ StringRef Feature = StringRef(Features[i]).substr(1);
+
+ if (Feature == "aes") {
+ HasAES = true;
+ continue;
+ }
+
+ if (Feature == "pclmul") {
+ HasPCLMUL = true;
+ continue;
+ }
+
+ if (Feature == "lzcnt") {
+ HasLZCNT = true;
+ continue;
+ }
+
+ if (Feature == "rdrnd") {
+ HasRDRND = true;
+ continue;
+ }
+
+ if (Feature == "fsgsbase") {
+ HasFSGSBASE = true;
+ continue;
+ }
+
+ if (Feature == "bmi") {
+ HasBMI = true;
+ continue;
+ }
+
+ if (Feature == "bmi2") {
+ HasBMI2 = true;
+ continue;
+ }
+
+ if (Feature == "popcnt") {
+ HasPOPCNT = true;
+ continue;
+ }
+
+ if (Feature == "rtm") {
+ HasRTM = true;
+ continue;
+ }
+
+ if (Feature == "prfchw") {
+ HasPRFCHW = true;
+ continue;
+ }
+
+ if (Feature == "rdseed") {
+ HasRDSEED = true;
+ continue;
+ }
+
+ if (Feature == "adx") {
+ HasADX = true;
+ continue;
+ }
+
+ if (Feature == "tbm") {
+ HasTBM = true;
+ continue;
+ }
+
+ if (Feature == "fma") {
+ HasFMA = true;
+ continue;
+ }
+
+ if (Feature == "f16c") {
+ HasF16C = true;
+ continue;
+ }
+
+ if (Feature == "avx512cd") {
+ HasAVX512CD = true;
+ continue;
+ }
+
+ if (Feature == "avx512er") {
+ HasAVX512ER = true;
+ continue;
+ }
+
+ if (Feature == "avx512pf") {
+ HasAVX512PF = true;
+ continue;
+ }
+
+ if (Feature == "avx512dq") {
+ HasAVX512DQ = true;
+ continue;
+ }
+
+ if (Feature == "avx512bw") {
+ HasAVX512BW = true;
+ continue;
+ }
+
+ if (Feature == "avx512vl") {
+ HasAVX512VL = true;
+ continue;
+ }
+
+ if (Feature == "sha") {
+ HasSHA = true;
+ continue;
+ }
+
+ if (Feature == "cx16") {
+ HasCX16 = true;
+ continue;
+ }
+
+ assert(Features[i][0] == '+' && "Invalid target feature!");
+ X86SSEEnum Level = llvm::StringSwitch<X86SSEEnum>(Feature)
+ .Case("avx512f", AVX512F)
+ .Case("avx2", AVX2)
+ .Case("avx", AVX)
+ .Case("sse4.2", SSE42)
+ .Case("sse4.1", SSE41)
+ .Case("ssse3", SSSE3)
+ .Case("sse3", SSE3)
+ .Case("sse2", SSE2)
+ .Case("sse", SSE1)
+ .Default(NoSSE);
+ SSELevel = std::max(SSELevel, Level);
+
+ MMX3DNowEnum ThreeDNowLevel =
+ llvm::StringSwitch<MMX3DNowEnum>(Feature)
+ .Case("3dnowa", AMD3DNowAthlon)
+ .Case("3dnow", AMD3DNow)
+ .Case("mmx", MMX)
+ .Default(NoMMX3DNow);
+ MMX3DNowLevel = std::max(MMX3DNowLevel, ThreeDNowLevel);
+
+ XOPEnum XLevel = llvm::StringSwitch<XOPEnum>(Feature)
+ .Case("xop", XOP)
+ .Case("fma4", FMA4)
+ .Case("sse4a", SSE4A)
+ .Default(NoXOP);
+ XOPLevel = std::max(XOPLevel, XLevel);
+ }
+
+ // Enable popcnt if sse4.2 is enabled and popcnt is not explicitly disabled.
+ // Can't do this earlier because we need to be able to explicitly enable
+ // popcnt and still disable sse4.2.
+ if (!HasPOPCNT && SSELevel >= SSE42 &&
+ std::find(Features.begin(), Features.end(), "-popcnt") == Features.end()){
+ HasPOPCNT = true;
+ Features.push_back("+popcnt");
+ }
+
+ // Enable prfchw if 3DNow! is enabled and prfchw is not explicitly disabled.
+ if (!HasPRFCHW && MMX3DNowLevel >= AMD3DNow &&
+ std::find(Features.begin(), Features.end(), "-prfchw") == Features.end()){
+ HasPRFCHW = true;
+ Features.push_back("+prfchw");
+ }
+
+ // LLVM doesn't have a separate switch for fpmath, so only accept it if it
+ // matches the selected sse level.
+ if (FPMath == FP_SSE && SSELevel < SSE1) {
+ Diags.Report(diag::err_target_unsupported_fpmath) << "sse";
+ return false;
+ } else if (FPMath == FP_387 && SSELevel >= SSE1) {
+ Diags.Report(diag::err_target_unsupported_fpmath) << "387";
+ return false;
+ }
+
+ // Don't tell the backend if we're turning off mmx; it will end up disabling
+ // SSE, which we don't want.
+ // Additionally, if SSE is enabled and mmx is not explicitly disabled,
+ // then enable MMX.
+ std::vector<std::string>::iterator it;
+ it = std::find(Features.begin(), Features.end(), "-mmx");
+ if (it != Features.end())
+ Features.erase(it);
+ else if (SSELevel > NoSSE)
+ MMX3DNowLevel = std::max(MMX3DNowLevel, MMX);
+ return true;
+}
+
+/// X86TargetInfo::getTargetDefines - Return the set of the X86-specific macro
+/// definitions for this particular subtarget.
+void X86TargetInfo::getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const {
+ // Target identification.
+ if (getTriple().getArch() == llvm::Triple::x86_64) {
+ Builder.defineMacro("__amd64__");
+ Builder.defineMacro("__amd64");
+ Builder.defineMacro("__x86_64");
+ Builder.defineMacro("__x86_64__");
+ if (getTriple().getArchName() == "x86_64h") {
+ Builder.defineMacro("__x86_64h");
+ Builder.defineMacro("__x86_64h__");
+ }
+ } else {
+ DefineStd(Builder, "i386", Opts);
+ }
+
+ // Subtarget options.
+ // FIXME: We are hard-coding the tune parameters based on the CPU, but they
+ // truly should be based on -mtune options.
+ switch (CPU) {
+ case CK_Generic:
+ break;
+ case CK_i386:
+ // The rest are coming from the i386 define above.
+ Builder.defineMacro("__tune_i386__");
+ break;
+ case CK_i486:
+ case CK_WinChipC6:
+ case CK_WinChip2:
+ case CK_C3:
+ defineCPUMacros(Builder, "i486");
+ break;
+ case CK_PentiumMMX:
+ Builder.defineMacro("__pentium_mmx__");
+ Builder.defineMacro("__tune_pentium_mmx__");
+ // Fallthrough
+ case CK_i586:
+ case CK_Pentium:
+ defineCPUMacros(Builder, "i586");
+ defineCPUMacros(Builder, "pentium");
+ break;
+ case CK_Pentium3:
+ case CK_Pentium3M:
+ case CK_PentiumM:
+ Builder.defineMacro("__tune_pentium3__");
+ // Fallthrough
+ case CK_Pentium2:
+ case CK_C3_2:
+ Builder.defineMacro("__tune_pentium2__");
+ // Fallthrough
+ case CK_PentiumPro:
+ Builder.defineMacro("__tune_i686__");
+ Builder.defineMacro("__tune_pentiumpro__");
+ // Fallthrough
+ case CK_i686:
+ Builder.defineMacro("__i686");
+ Builder.defineMacro("__i686__");
+ // Strangely, __tune_i686__ isn't defined by GCC when CPU == i686.
+ Builder.defineMacro("__pentiumpro");
+ Builder.defineMacro("__pentiumpro__");
+ break;
+ case CK_Pentium4:
+ case CK_Pentium4M:
+ defineCPUMacros(Builder, "pentium4");
+ break;
+ case CK_Yonah:
+ case CK_Prescott:
+ case CK_Nocona:
+ defineCPUMacros(Builder, "nocona");
+ break;
+ case CK_Core2:
+ case CK_Penryn:
+ defineCPUMacros(Builder, "core2");
+ break;
+ case CK_Bonnell:
+ defineCPUMacros(Builder, "atom");
+ break;
+ case CK_Silvermont:
+ defineCPUMacros(Builder, "slm");
+ break;
+ case CK_Nehalem:
+ case CK_Westmere:
+ case CK_SandyBridge:
+ case CK_IvyBridge:
+ case CK_Haswell:
+ case CK_Broadwell:
+ // FIXME: Historically, we defined this legacy name, it would be nice to
+ // remove it at some point. We've never exposed fine-grained names for
+ // recent primary x86 CPUs, and we should keep it that way.
+ defineCPUMacros(Builder, "corei7");
+ break;
+ case CK_Skylake:
+ // FIXME: Historically, we defined this legacy name, it would be nice to
+ // remove it at some point. This is the only fine-grained CPU macro in the
+ // main intel CPU line, and it would be better to not have these and force
+ // people to use ISA macros.
+ defineCPUMacros(Builder, "skx");
+ break;
+ case CK_KNL:
+ defineCPUMacros(Builder, "knl");
+ break;
+ case CK_K6_2:
+ Builder.defineMacro("__k6_2__");
+ Builder.defineMacro("__tune_k6_2__");
+ // Fallthrough
+ case CK_K6_3:
+ if (CPU != CK_K6_2) { // In case of fallthrough
+ // FIXME: GCC may be enabling these in cases where some other k6
+ // architecture is specified but -m3dnow is explicitly provided. The
+ // exact semantics need to be determined and emulated here.
+ Builder.defineMacro("__k6_3__");
+ Builder.defineMacro("__tune_k6_3__");
+ }
+ // Fallthrough
+ case CK_K6:
+ defineCPUMacros(Builder, "k6");
+ break;
+ case CK_Athlon:
+ case CK_AthlonThunderbird:
+ case CK_Athlon4:
+ case CK_AthlonXP:
+ case CK_AthlonMP:
+ defineCPUMacros(Builder, "athlon");
+ if (SSELevel != NoSSE) {
+ Builder.defineMacro("__athlon_sse__");
+ Builder.defineMacro("__tune_athlon_sse__");
+ }
+ break;
+ case CK_K8:
+ case CK_K8SSE3:
+ case CK_x86_64:
+ case CK_Opteron:
+ case CK_OpteronSSE3:
+ case CK_Athlon64:
+ case CK_Athlon64SSE3:
+ case CK_AthlonFX:
+ defineCPUMacros(Builder, "k8");
+ break;
+ case CK_AMDFAM10:
+ defineCPUMacros(Builder, "amdfam10");
+ break;
+ case CK_BTVER1:
+ defineCPUMacros(Builder, "btver1");
+ break;
+ case CK_BTVER2:
+ defineCPUMacros(Builder, "btver2");
+ break;
+ case CK_BDVER1:
+ defineCPUMacros(Builder, "bdver1");
+ break;
+ case CK_BDVER2:
+ defineCPUMacros(Builder, "bdver2");
+ break;
+ case CK_BDVER3:
+ defineCPUMacros(Builder, "bdver3");
+ break;
+ case CK_BDVER4:
+ defineCPUMacros(Builder, "bdver4");
+ break;
+ case CK_Geode:
+ defineCPUMacros(Builder, "geode");
+ break;
+ }
+
+ // Target properties.
+ Builder.defineMacro("__REGISTER_PREFIX__", "");
+
+ // Define __NO_MATH_INLINES on linux/x86 so that we don't get inline
+ // functions in glibc header files that use FP Stack inline asm which the
+ // backend can't deal with (PR879).
+ Builder.defineMacro("__NO_MATH_INLINES");
+
+ if (HasAES)
+ Builder.defineMacro("__AES__");
+
+ if (HasPCLMUL)
+ Builder.defineMacro("__PCLMUL__");
+
+ if (HasLZCNT)
+ Builder.defineMacro("__LZCNT__");
+
+ if (HasRDRND)
+ Builder.defineMacro("__RDRND__");
+
+ if (HasFSGSBASE)
+ Builder.defineMacro("__FSGSBASE__");
+
+ if (HasBMI)
+ Builder.defineMacro("__BMI__");
+
+ if (HasBMI2)
+ Builder.defineMacro("__BMI2__");
+
+ if (HasPOPCNT)
+ Builder.defineMacro("__POPCNT__");
+
+ if (HasRTM)
+ Builder.defineMacro("__RTM__");
+
+ if (HasPRFCHW)
+ Builder.defineMacro("__PRFCHW__");
+
+ if (HasRDSEED)
+ Builder.defineMacro("__RDSEED__");
+
+ if (HasADX)
+ Builder.defineMacro("__ADX__");
+
+ if (HasTBM)
+ Builder.defineMacro("__TBM__");
+
+ switch (XOPLevel) {
+ case XOP:
+ Builder.defineMacro("__XOP__");
+ case FMA4:
+ Builder.defineMacro("__FMA4__");
+ case SSE4A:
+ Builder.defineMacro("__SSE4A__");
+ case NoXOP:
+ break;
+ }
+
+ if (HasFMA)
+ Builder.defineMacro("__FMA__");
+
+ if (HasF16C)
+ Builder.defineMacro("__F16C__");
+
+ if (HasAVX512CD)
+ Builder.defineMacro("__AVX512CD__");
+ if (HasAVX512ER)
+ Builder.defineMacro("__AVX512ER__");
+ if (HasAVX512PF)
+ Builder.defineMacro("__AVX512PF__");
+ if (HasAVX512DQ)
+ Builder.defineMacro("__AVX512DQ__");
+ if (HasAVX512BW)
+ Builder.defineMacro("__AVX512BW__");
+ if (HasAVX512VL)
+ Builder.defineMacro("__AVX512VL__");
+
+ if (HasSHA)
+ Builder.defineMacro("__SHA__");
+
+ if (HasCX16)
+ Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_16");
+
+ // Each case falls through to the previous one here.
+ switch (SSELevel) {
+ case AVX512F:
+ Builder.defineMacro("__AVX512F__");
+ case AVX2:
+ Builder.defineMacro("__AVX2__");
+ case AVX:
+ Builder.defineMacro("__AVX__");
+ case SSE42:
+ Builder.defineMacro("__SSE4_2__");
+ case SSE41:
+ Builder.defineMacro("__SSE4_1__");
+ case SSSE3:
+ Builder.defineMacro("__SSSE3__");
+ case SSE3:
+ Builder.defineMacro("__SSE3__");
+ case SSE2:
+ Builder.defineMacro("__SSE2__");
+ Builder.defineMacro("__SSE2_MATH__"); // -mfp-math=sse always implied.
+ case SSE1:
+ Builder.defineMacro("__SSE__");
+ Builder.defineMacro("__SSE_MATH__"); // -mfp-math=sse always implied.
+ case NoSSE:
+ break;
+ }
+
+ if (Opts.MicrosoftExt && getTriple().getArch() == llvm::Triple::x86) {
+ switch (SSELevel) {
+ case AVX512F:
+ case AVX2:
+ case AVX:
+ case SSE42:
+ case SSE41:
+ case SSSE3:
+ case SSE3:
+ case SSE2:
+ Builder.defineMacro("_M_IX86_FP", Twine(2));
+ break;
+ case SSE1:
+ Builder.defineMacro("_M_IX86_FP", Twine(1));
+ break;
+ default:
+ Builder.defineMacro("_M_IX86_FP", Twine(0));
+ }
+ }
+
+ // Each case falls through to the previous one here.
+ switch (MMX3DNowLevel) {
+ case AMD3DNowAthlon:
+ Builder.defineMacro("__3dNOW_A__");
+ case AMD3DNow:
+ Builder.defineMacro("__3dNOW__");
+ case MMX:
+ Builder.defineMacro("__MMX__");
+ case NoMMX3DNow:
+ break;
+ }
+
+ if (CPU >= CK_i486) {
+ Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_1");
+ Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_2");
+ Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4");
+ }
+ if (CPU >= CK_i586)
+ Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_8");
+}
+
+bool X86TargetInfo::hasFeature(StringRef Feature) const {
+ return llvm::StringSwitch<bool>(Feature)
+ .Case("aes", HasAES)
+ .Case("avx", SSELevel >= AVX)
+ .Case("avx2", SSELevel >= AVX2)
+ .Case("avx512f", SSELevel >= AVX512F)
+ .Case("avx512cd", HasAVX512CD)
+ .Case("avx512er", HasAVX512ER)
+ .Case("avx512pf", HasAVX512PF)
+ .Case("avx512dq", HasAVX512DQ)
+ .Case("avx512bw", HasAVX512BW)
+ .Case("avx512vl", HasAVX512VL)
+ .Case("bmi", HasBMI)
+ .Case("bmi2", HasBMI2)
+ .Case("cx16", HasCX16)
+ .Case("f16c", HasF16C)
+ .Case("fma", HasFMA)
+ .Case("fma4", XOPLevel >= FMA4)
+ .Case("fsgsbase", HasFSGSBASE)
+ .Case("lzcnt", HasLZCNT)
+ .Case("mm3dnow", MMX3DNowLevel >= AMD3DNow)
+ .Case("mm3dnowa", MMX3DNowLevel >= AMD3DNowAthlon)
+ .Case("mmx", MMX3DNowLevel >= MMX)
+ .Case("pclmul", HasPCLMUL)
+ .Case("popcnt", HasPOPCNT)
+ .Case("prfchw", HasPRFCHW)
+ .Case("rdrnd", HasRDRND)
+ .Case("rdseed", HasRDSEED)
+ .Case("rtm", HasRTM)
+ .Case("sha", HasSHA)
+ .Case("sse", SSELevel >= SSE1)
+ .Case("sse2", SSELevel >= SSE2)
+ .Case("sse3", SSELevel >= SSE3)
+ .Case("ssse3", SSELevel >= SSSE3)
+ .Case("sse4.1", SSELevel >= SSE41)
+ .Case("sse4.2", SSELevel >= SSE42)
+ .Case("sse4a", XOPLevel >= SSE4A)
+ .Case("tbm", HasTBM)
+ .Case("x86", true)
+ .Case("x86_32", getTriple().getArch() == llvm::Triple::x86)
+ .Case("x86_64", getTriple().getArch() == llvm::Triple::x86_64)
+ .Case("xop", XOPLevel >= XOP)
+ .Default(false);
+}
+
+bool
+X86TargetInfo::validateAsmConstraint(const char *&Name,
+ TargetInfo::ConstraintInfo &Info) const {
+ switch (*Name) {
+ default: return false;
+ case 'I':
+ Info.setRequiresImmediate(0, 31);
+ return true;
+ case 'J':
+ Info.setRequiresImmediate(0, 63);
+ return true;
+ case 'K':
+ Info.setRequiresImmediate(-128, 127);
+ return true;
+ case 'L':
+ // FIXME: properly analyze this constraint:
+ // must be one of 0xff, 0xffff, or 0xffffffff
+ return true;
+ case 'M':
+ Info.setRequiresImmediate(0, 3);
+ return true;
+ case 'N':
+ Info.setRequiresImmediate(0, 255);
+ return true;
+ case 'O':
+ Info.setRequiresImmediate(0, 127);
+ return true;
+ case 'Y': // first letter of a pair:
+ switch (*(Name+1)) {
+ default: return false;
+ case '0': // First SSE register.
+ case 't': // Any SSE register, when SSE2 is enabled.
+ case 'i': // Any SSE register, when SSE2 and inter-unit moves enabled.
+ case 'm': // any MMX register, when inter-unit moves enabled.
+ break; // falls through to setAllowsRegister.
+ }
+ case 'f': // any x87 floating point stack register.
+ // Constraint 'f' cannot be used for output operands.
+ if (Info.ConstraintStr[0] == '=')
+ return false;
+
+ Info.setAllowsRegister();
+ return true;
+ case 'a': // eax.
+ case 'b': // ebx.
+ case 'c': // ecx.
+ case 'd': // edx.
+ case 'S': // esi.
+ case 'D': // edi.
+ case 'A': // edx:eax.
+ case 't': // top of floating point stack.
+ case 'u': // second from top of floating point stack.
+ case 'q': // Any register accessible as [r]l: a, b, c, and d.
+ case 'y': // Any MMX register.
+ case 'x': // Any SSE register.
+ case 'Q': // Any register accessible as [r]h: a, b, c, and d.
+ case 'R': // "Legacy" registers: ax, bx, cx, dx, di, si, sp, bp.
+ case 'l': // "Index" registers: any general register that can be used as an
+ // index in a base+index memory access.
+ Info.setAllowsRegister();
+ return true;
+ case 'C': // SSE floating point constant.
+ case 'G': // x87 floating point constant.
+ case 'e': // 32-bit signed integer constant for use with zero-extending
+ // x86_64 instructions.
+ case 'Z': // 32-bit unsigned integer constant for use with zero-extending
+ // x86_64 instructions.
+ return true;
+ }
+}
+
+bool X86TargetInfo::validateOutputSize(StringRef Constraint,
+ unsigned Size) const {
+ // Strip off constraint modifiers.
+ while (Constraint[0] == '=' ||
+ Constraint[0] == '+' ||
+ Constraint[0] == '&')
+ Constraint = Constraint.substr(1);
+
+ return validateOperandSize(Constraint, Size);
+}
+
+bool X86TargetInfo::validateInputSize(StringRef Constraint,
+ unsigned Size) const {
+ return validateOperandSize(Constraint, Size);
+}
+
+bool X86TargetInfo::validateOperandSize(StringRef Constraint,
+ unsigned Size) const {
+ switch (Constraint[0]) {
+ default: break;
+ case 'y':
+ return Size <= 64;
+ case 'f':
+ case 't':
+ case 'u':
+ return Size <= 128;
+ case 'x':
+ // 256-bit ymm registers can be used if target supports AVX.
+ return Size <= (SSELevel >= AVX ? 256U : 128U);
+ }
+
+ return true;
+}
+
+std::string
+X86TargetInfo::convertConstraint(const char *&Constraint) const {
+ switch (*Constraint) {
+ case 'a': return std::string("{ax}");
+ case 'b': return std::string("{bx}");
+ case 'c': return std::string("{cx}");
+ case 'd': return std::string("{dx}");
+ case 'S': return std::string("{si}");
+ case 'D': return std::string("{di}");
+ case 'p': // address
+ return std::string("im");
+ case 't': // top of floating point stack.
+ return std::string("{st}");
+ case 'u': // second from top of floating point stack.
+ return std::string("{st(1)}"); // second from top of floating point stack.
+ default:
+ return std::string(1, *Constraint);
+ }
+}
+
+// X86-32 generic target
+class X86_32TargetInfo : public X86TargetInfo {
+public:
+ X86_32TargetInfo(const llvm::Triple &Triple) : X86TargetInfo(Triple) {
+ DoubleAlign = LongLongAlign = 32;
+ LongDoubleWidth = 96;
+ LongDoubleAlign = 32;
+ SuitableAlign = 128;
+ DescriptionString = "e-m:e-p:32:32-f64:32:64-f80:32-n8:16:32-S128";
+ SizeType = UnsignedInt;
+ PtrDiffType = SignedInt;
+ IntPtrType = SignedInt;
+ RegParmMax = 3;
+
+ // Use fpret for all types.
+ RealTypeUsesObjCFPRet = ((1 << TargetInfo::Float) |
+ (1 << TargetInfo::Double) |
+ (1 << TargetInfo::LongDouble));
+
+ // x86-32 has atomics up to 8 bytes
+ // FIXME: Check that we actually have cmpxchg8b before setting
+ // MaxAtomicInlineWidth. (cmpxchg8b is an i586 instruction.)
+ MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 64;
+ }
+ BuiltinVaListKind getBuiltinVaListKind() const override {
+ return TargetInfo::CharPtrBuiltinVaList;
+ }
+
+ int getEHDataRegisterNumber(unsigned RegNo) const override {
+ if (RegNo == 0) return 0;
+ if (RegNo == 1) return 2;
+ return -1;
+ }
+ bool validateOperandSize(StringRef Constraint,
+ unsigned Size) const override {
+ switch (Constraint[0]) {
+ default: break;
+ case 'R':
+ case 'q':
+ case 'Q':
+ case 'a':
+ case 'b':
+ case 'c':
+ case 'd':
+ case 'S':
+ case 'D':
+ return Size <= 32;
+ case 'A':
+ return Size <= 64;
+ }
+
+ return X86TargetInfo::validateOperandSize(Constraint, Size);
+ }
+};
+
+class NetBSDI386TargetInfo : public NetBSDTargetInfo<X86_32TargetInfo> {
+public:
+ NetBSDI386TargetInfo(const llvm::Triple &Triple)
+ : NetBSDTargetInfo<X86_32TargetInfo>(Triple) {}
+
+ unsigned getFloatEvalMethod() const override {
+ unsigned Major, Minor, Micro;
+ getTriple().getOSVersion(Major, Minor, Micro);
+ // New NetBSD uses the default rounding mode.
+ if (Major >= 7 || (Major == 6 && Minor == 99 && Micro >= 26) || Major == 0)
+ return X86_32TargetInfo::getFloatEvalMethod();
+ // NetBSD before 6.99.26 defaults to "double" rounding.
+ return 1;
+ }
+};
+
+class OpenBSDI386TargetInfo : public OpenBSDTargetInfo<X86_32TargetInfo> {
+public:
+ OpenBSDI386TargetInfo(const llvm::Triple &Triple)
+ : OpenBSDTargetInfo<X86_32TargetInfo>(Triple) {
+ SizeType = UnsignedLong;
+ IntPtrType = SignedLong;
+ PtrDiffType = SignedLong;
+ }
+};
+
+class BitrigI386TargetInfo : public BitrigTargetInfo<X86_32TargetInfo> {
+public:
+ BitrigI386TargetInfo(const llvm::Triple &Triple)
+ : BitrigTargetInfo<X86_32TargetInfo>(Triple) {
+ SizeType = UnsignedLong;
+ IntPtrType = SignedLong;
+ PtrDiffType = SignedLong;
+ }
+};
+
+class DarwinI386TargetInfo : public DarwinTargetInfo<X86_32TargetInfo> {
+public:
+ DarwinI386TargetInfo(const llvm::Triple &Triple)
+ : DarwinTargetInfo<X86_32TargetInfo>(Triple) {
+ LongDoubleWidth = 128;
+ LongDoubleAlign = 128;
+ SuitableAlign = 128;
+ MaxVectorAlign = 256;
+ SizeType = UnsignedLong;
+ IntPtrType = SignedLong;
+ DescriptionString = "e-m:o-p:32:32-f64:32:64-f80:128-n8:16:32-S128";
+ HasAlignMac68kSupport = true;
+ }
+
+};
+
+// x86-32 Windows target
+class WindowsX86_32TargetInfo : public WindowsTargetInfo<X86_32TargetInfo> {
+public:
+ WindowsX86_32TargetInfo(const llvm::Triple &Triple)
+ : WindowsTargetInfo<X86_32TargetInfo>(Triple) {
+ WCharType = UnsignedShort;
+ DoubleAlign = LongLongAlign = 64;
+ bool IsWinCOFF =
+ getTriple().isOSWindows() && getTriple().isOSBinFormatCOFF();
+ DescriptionString = IsWinCOFF
+ ? "e-m:x-p:32:32-i64:64-f80:32-n8:16:32-a:0:32-S32"
+ : "e-m:e-p:32:32-i64:64-f80:32-n8:16:32-a:0:32-S32";
+ }
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override {
+ WindowsTargetInfo<X86_32TargetInfo>::getTargetDefines(Opts, Builder);
+ }
+};
+
+// x86-32 Windows Visual Studio target
+class MicrosoftX86_32TargetInfo : public WindowsX86_32TargetInfo {
+public:
+ MicrosoftX86_32TargetInfo(const llvm::Triple &Triple)
+ : WindowsX86_32TargetInfo(Triple) {
+ LongDoubleWidth = LongDoubleAlign = 64;
+ LongDoubleFormat = &llvm::APFloat::IEEEdouble;
+ }
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override {
+ WindowsX86_32TargetInfo::getTargetDefines(Opts, Builder);
+ WindowsX86_32TargetInfo::getVisualStudioDefines(Opts, Builder);
+ // The value of the following reflects processor type.
+ // 300=386, 400=486, 500=Pentium, 600=Blend (default)
+ // We lost the original triple, so we use the default.
+ Builder.defineMacro("_M_IX86", "600");
+ }
+};
+} // end anonymous namespace
+
+static void addMinGWDefines(const LangOptions &Opts, MacroBuilder &Builder) {
+ Builder.defineMacro("__MSVCRT__");
+ Builder.defineMacro("__MINGW32__");
+
+ // Mingw defines __declspec(a) to __attribute__((a)). Clang supports
+ // __declspec natively under -fms-extensions, but we define a no-op __declspec
+ // macro anyway for pre-processor compatibility.
+ if (Opts.MicrosoftExt)
+ Builder.defineMacro("__declspec", "__declspec");
+ else
+ Builder.defineMacro("__declspec(a)", "__attribute__((a))");
+
+ if (!Opts.MicrosoftExt) {
+ // Provide macros for all the calling convention keywords. Provide both
+ // single and double underscore prefixed variants. These are available on
+ // x64 as well as x86, even though they have no effect.
+ const char *CCs[] = {"cdecl", "stdcall", "fastcall", "thiscall", "pascal"};
+ for (const char *CC : CCs) {
+ std::string GCCSpelling = "__attribute__((__";
+ GCCSpelling += CC;
+ GCCSpelling += "__))";
+ Builder.defineMacro(Twine("_") + CC, GCCSpelling);
+ Builder.defineMacro(Twine("__") + CC, GCCSpelling);
+ }
+ }
+}
+
+namespace {
+// x86-32 MinGW target
+class MinGWX86_32TargetInfo : public WindowsX86_32TargetInfo {
+public:
+ MinGWX86_32TargetInfo(const llvm::Triple &Triple)
+ : WindowsX86_32TargetInfo(Triple) {}
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override {
+ WindowsX86_32TargetInfo::getTargetDefines(Opts, Builder);
+ DefineStd(Builder, "WIN32", Opts);
+ DefineStd(Builder, "WINNT", Opts);
+ Builder.defineMacro("_X86_");
+ addMinGWDefines(Opts, Builder);
+ }
+};
+
+// x86-32 Cygwin target
+class CygwinX86_32TargetInfo : public X86_32TargetInfo {
+public:
+ CygwinX86_32TargetInfo(const llvm::Triple &Triple)
+ : X86_32TargetInfo(Triple) {
+ TLSSupported = false;
+ WCharType = UnsignedShort;
+ DoubleAlign = LongLongAlign = 64;
+ DescriptionString = "e-m:x-p:32:32-i64:64-f80:32-n8:16:32-a:0:32-S32";
+ }
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override {
+ X86_32TargetInfo::getTargetDefines(Opts, Builder);
+ Builder.defineMacro("_X86_");
+ Builder.defineMacro("__CYGWIN__");
+ Builder.defineMacro("__CYGWIN32__");
+ DefineStd(Builder, "unix", Opts);
+ if (Opts.CPlusPlus)
+ Builder.defineMacro("_GNU_SOURCE");
+ }
+};
+
+// x86-32 Haiku target
+class HaikuX86_32TargetInfo : public X86_32TargetInfo {
+public:
+ HaikuX86_32TargetInfo(const llvm::Triple &Triple) : X86_32TargetInfo(Triple) {
+ SizeType = UnsignedLong;
+ IntPtrType = SignedLong;
+ PtrDiffType = SignedLong;
+ ProcessIDType = SignedLong;
+ this->UserLabelPrefix = "";
+ this->TLSSupported = false;
+ }
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override {
+ X86_32TargetInfo::getTargetDefines(Opts, Builder);
+ Builder.defineMacro("__INTEL__");
+ Builder.defineMacro("__HAIKU__");
+ }
+};
+
+// RTEMS Target
+template<typename Target>
+class RTEMSTargetInfo : public OSTargetInfo<Target> {
+protected:
+ void getOSDefines(const LangOptions &Opts, const llvm::Triple &Triple,
+ MacroBuilder &Builder) const override {
+ // RTEMS defines; list based off of gcc output
+
+ Builder.defineMacro("__rtems__");
+ Builder.defineMacro("__ELF__");
+ }
+
+public:
+ RTEMSTargetInfo(const llvm::Triple &Triple) : OSTargetInfo<Target>(Triple) {
+ this->UserLabelPrefix = "";
+
+ switch (Triple.getArch()) {
+ default:
+ case llvm::Triple::x86:
+ // this->MCountName = ".mcount";
+ break;
+ case llvm::Triple::mips:
+ case llvm::Triple::mipsel:
+ case llvm::Triple::ppc:
+ case llvm::Triple::ppc64:
+ case llvm::Triple::ppc64le:
+ // this->MCountName = "_mcount";
+ break;
+ case llvm::Triple::arm:
+ // this->MCountName = "__mcount";
+ break;
+ }
+ }
+};
+
+// x86-32 RTEMS target
+class RTEMSX86_32TargetInfo : public X86_32TargetInfo {
+public:
+ RTEMSX86_32TargetInfo(const llvm::Triple &Triple) : X86_32TargetInfo(Triple) {
+ SizeType = UnsignedLong;
+ IntPtrType = SignedLong;
+ PtrDiffType = SignedLong;
+ this->UserLabelPrefix = "";
+ }
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override {
+ X86_32TargetInfo::getTargetDefines(Opts, Builder);
+ Builder.defineMacro("__INTEL__");
+ Builder.defineMacro("__rtems__");
+ }
+};
+
+// x86-64 generic target
+class X86_64TargetInfo : public X86TargetInfo {
+public:
+ X86_64TargetInfo(const llvm::Triple &Triple) : X86TargetInfo(Triple) {
+ const bool IsX32 = getTriple().getEnvironment() == llvm::Triple::GNUX32;
+ bool IsWinCOFF =
+ getTriple().isOSWindows() && getTriple().isOSBinFormatCOFF();
+ LongWidth = LongAlign = PointerWidth = PointerAlign = IsX32 ? 32 : 64;
+ LongDoubleWidth = 128;
+ LongDoubleAlign = 128;
+ LargeArrayMinWidth = 128;
+ LargeArrayAlign = 128;
+ SuitableAlign = 128;
+ SizeType = IsX32 ? UnsignedInt : UnsignedLong;
+ PtrDiffType = IsX32 ? SignedInt : SignedLong;
+ IntPtrType = IsX32 ? SignedInt : SignedLong;
+ IntMaxType = IsX32 ? SignedLongLong : SignedLong;
+ Int64Type = IsX32 ? SignedLongLong : SignedLong;
+ RegParmMax = 6;
+
+ // Pointers are 32-bit in x32.
+ DescriptionString = IsX32 ? "e-m:e-p:32:32-i64:64-f80:128-n8:16:32:64-S128"
+ : IsWinCOFF
+ ? "e-m:w-i64:64-f80:128-n8:16:32:64-S128"
+ : "e-m:e-i64:64-f80:128-n8:16:32:64-S128";
+
+ // Use fpret only for long double.
+ RealTypeUsesObjCFPRet = (1 << TargetInfo::LongDouble);
+
+ // Use fp2ret for _Complex long double.
+ ComplexLongDoubleUsesFP2Ret = true;
+
+ // x86-64 has atomics up to 16 bytes.
+ MaxAtomicPromoteWidth = 128;
+ MaxAtomicInlineWidth = 128;
+ }
+ BuiltinVaListKind getBuiltinVaListKind() const override {
+ return TargetInfo::X86_64ABIBuiltinVaList;
+ }
+
+ int getEHDataRegisterNumber(unsigned RegNo) const override {
+ if (RegNo == 0) return 0;
+ if (RegNo == 1) return 1;
+ return -1;
+ }
+
+ CallingConvCheckResult checkCallingConvention(CallingConv CC) const override {
+ return (CC == CC_C ||
+ CC == CC_X86VectorCall ||
+ CC == CC_IntelOclBicc ||
+ CC == CC_X86_64Win64) ? CCCR_OK : CCCR_Warning;
+ }
+
+ CallingConv getDefaultCallingConv(CallingConvMethodType MT) const override {
+ return CC_C;
+ }
+
+ // for x32 we need it here explicitly
+ bool hasInt128Type() const override { return true; }
+};
+
+// x86-64 Windows target
+class WindowsX86_64TargetInfo : public WindowsTargetInfo<X86_64TargetInfo> {
+public:
+ WindowsX86_64TargetInfo(const llvm::Triple &Triple)
+ : WindowsTargetInfo<X86_64TargetInfo>(Triple) {
+ WCharType = UnsignedShort;
+ LongWidth = LongAlign = 32;
+ DoubleAlign = LongLongAlign = 64;
+ IntMaxType = SignedLongLong;
+ Int64Type = SignedLongLong;
+ SizeType = UnsignedLongLong;
+ PtrDiffType = SignedLongLong;
+ IntPtrType = SignedLongLong;
+ this->UserLabelPrefix = "";
+ }
+
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override {
+ WindowsTargetInfo<X86_64TargetInfo>::getTargetDefines(Opts, Builder);
+ Builder.defineMacro("_WIN64");
+ }
+
+ BuiltinVaListKind getBuiltinVaListKind() const override {
+ return TargetInfo::CharPtrBuiltinVaList;
+ }
+
+ CallingConvCheckResult checkCallingConvention(CallingConv CC) const override {
+ switch (CC) {
+ case CC_X86StdCall:
+ case CC_X86ThisCall:
+ case CC_X86FastCall:
+ return CCCR_Ignore;
+ case CC_C:
+ case CC_X86VectorCall:
+ case CC_IntelOclBicc:
+ case CC_X86_64SysV:
+ return CCCR_OK;
+ default:
+ return CCCR_Warning;
+ }
+ }
+};
+
+// x86-64 Windows Visual Studio target
+class MicrosoftX86_64TargetInfo : public WindowsX86_64TargetInfo {
+public:
+ MicrosoftX86_64TargetInfo(const llvm::Triple &Triple)
+ : WindowsX86_64TargetInfo(Triple) {
+ LongDoubleWidth = LongDoubleAlign = 64;
+ LongDoubleFormat = &llvm::APFloat::IEEEdouble;
+ }
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override {
+ WindowsX86_64TargetInfo::getTargetDefines(Opts, Builder);
+ WindowsX86_64TargetInfo::getVisualStudioDefines(Opts, Builder);
+ Builder.defineMacro("_M_X64");
+ Builder.defineMacro("_M_AMD64");
+ }
+};
+
+// x86-64 MinGW target
+class MinGWX86_64TargetInfo : public WindowsX86_64TargetInfo {
+public:
+ MinGWX86_64TargetInfo(const llvm::Triple &Triple)
+ : WindowsX86_64TargetInfo(Triple) {}
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override {
+ WindowsX86_64TargetInfo::getTargetDefines(Opts, Builder);
+ DefineStd(Builder, "WIN64", Opts);
+ Builder.defineMacro("__MINGW64__");
+ addMinGWDefines(Opts, Builder);
+
+ // GCC defines this macro when it is using __gxx_personality_seh0.
+ if (!Opts.SjLjExceptions)
+ Builder.defineMacro("__SEH__");
+ }
+};
+
+class DarwinX86_64TargetInfo : public DarwinTargetInfo<X86_64TargetInfo> {
+public:
+ DarwinX86_64TargetInfo(const llvm::Triple &Triple)
+ : DarwinTargetInfo<X86_64TargetInfo>(Triple) {
+ Int64Type = SignedLongLong;
+ MaxVectorAlign = 256;
+ // The 64-bit iOS simulator uses the builtin bool type for Objective-C.
+ llvm::Triple T = llvm::Triple(Triple);
+ if (T.isiOS())
+ UseSignedCharForObjCBool = false;
+ DescriptionString = "e-m:o-i64:64-f80:128-n8:16:32:64-S128";
+ }
+};
+
+class OpenBSDX86_64TargetInfo : public OpenBSDTargetInfo<X86_64TargetInfo> {
+public:
+ OpenBSDX86_64TargetInfo(const llvm::Triple &Triple)
+ : OpenBSDTargetInfo<X86_64TargetInfo>(Triple) {
+ IntMaxType = SignedLongLong;
+ Int64Type = SignedLongLong;
+ }
+};
+
+class BitrigX86_64TargetInfo : public BitrigTargetInfo<X86_64TargetInfo> {
+public:
+ BitrigX86_64TargetInfo(const llvm::Triple &Triple)
+ : BitrigTargetInfo<X86_64TargetInfo>(Triple) {
+ IntMaxType = SignedLongLong;
+ Int64Type = SignedLongLong;
+ }
+};
+
+class ARMTargetInfo : public TargetInfo {
+ // Possible FPU choices.
+ enum FPUMode {
+ VFP2FPU = (1 << 0),
+ VFP3FPU = (1 << 1),
+ VFP4FPU = (1 << 2),
+ NeonFPU = (1 << 3),
+ FPARMV8 = (1 << 4)
+ };
+
+ // Possible HWDiv features.
+ enum HWDivMode {
+ HWDivThumb = (1 << 0),
+ HWDivARM = (1 << 1)
+ };
+
+ static bool FPUModeIsVFP(FPUMode Mode) {
+ return Mode & (VFP2FPU | VFP3FPU | VFP4FPU | NeonFPU | FPARMV8);
+ }
+
+ static const TargetInfo::GCCRegAlias GCCRegAliases[];
+ static const char * const GCCRegNames[];
+
+ std::string ABI, CPU;
+
+ enum {
+ FP_Default,
+ FP_VFP,
+ FP_Neon
+ } FPMath;
+
+ unsigned FPU : 5;
+
+ unsigned IsAAPCS : 1;
+ unsigned IsThumb : 1;
+ unsigned HWDiv : 2;
+
+ // Initialized via features.
+ unsigned SoftFloat : 1;
+ unsigned SoftFloatABI : 1;
+
+ unsigned CRC : 1;
+ unsigned Crypto : 1;
+
+ // ACLE 6.5.1 Hardware floating point
+ enum {
+ HW_FP_HP = (1 << 1), /// half (16-bit)
+ HW_FP_SP = (1 << 2), /// single (32-bit)
+ HW_FP_DP = (1 << 3), /// double (64-bit)
+ };
+ uint32_t HW_FP;
+
+ static const Builtin::Info BuiltinInfo[];
+
+ static bool shouldUseInlineAtomic(const llvm::Triple &T) {
+ StringRef ArchName = T.getArchName();
+ if (T.getArch() == llvm::Triple::arm ||
+ T.getArch() == llvm::Triple::armeb) {
+ StringRef VersionStr;
+ if (ArchName.startswith("armv"))
+ VersionStr = ArchName.substr(4, 1);
+ else if (ArchName.startswith("armebv"))
+ VersionStr = ArchName.substr(6, 1);
+ else
+ return false;
+ unsigned Version;
+ if (VersionStr.getAsInteger(10, Version))
+ return false;
+ return Version >= 6;
+ }
+ assert(T.getArch() == llvm::Triple::thumb ||
+ T.getArch() == llvm::Triple::thumbeb);
+ StringRef VersionStr;
+ if (ArchName.startswith("thumbv"))
+ VersionStr = ArchName.substr(6, 1);
+ else if (ArchName.startswith("thumbebv"))
+ VersionStr = ArchName.substr(8, 1);
+ else
+ return false;
+ unsigned Version;
+ if (VersionStr.getAsInteger(10, Version))
+ return false;
+ return Version >= 7;
+ }
+
+ void setABIAAPCS() {
+ IsAAPCS = true;
+
+ DoubleAlign = LongLongAlign = LongDoubleAlign = SuitableAlign = 64;
+ const llvm::Triple &T = getTriple();
+
+ // size_t is unsigned long on MachO-derived environments, NetBSD and Bitrig.
+ if (T.isOSBinFormatMachO() || T.getOS() == llvm::Triple::NetBSD ||
+ T.getOS() == llvm::Triple::Bitrig)
+ SizeType = UnsignedLong;
+ else
+ SizeType = UnsignedInt;
+
+ switch (T.getOS()) {
+ case llvm::Triple::NetBSD:
+ WCharType = SignedInt;
+ break;
+ case llvm::Triple::Win32:
+ WCharType = UnsignedShort;
+ break;
+ case llvm::Triple::Linux:
+ default:
+ // AAPCS 7.1.1, ARM-Linux ABI 2.4: type of wchar_t is unsigned int.
+ WCharType = UnsignedInt;
+ break;
+ }
+
+ UseBitFieldTypeAlignment = true;
+
+ ZeroLengthBitfieldBoundary = 0;
+
+ // Thumb1 add sp, #imm requires the immediate value be multiple of 4,
+ // so set preferred for small types to 32.
+ if (T.isOSBinFormatMachO()) {
+ DescriptionString =
+ BigEndian ? "E-m:o-p:32:32-i64:64-v128:64:128-a:0:32-n32-S64"
+ : "e-m:o-p:32:32-i64:64-v128:64:128-a:0:32-n32-S64";
+ } else if (T.isOSWindows()) {
+ assert(!BigEndian && "Windows on ARM does not support big endian");
+ DescriptionString = "e"
+ "-m:w"
+ "-p:32:32"
+ "-i64:64"
+ "-v128:64:128"
+ "-a:0:32"
+ "-n32"
+ "-S64";
+ } else if (T.isOSNaCl()) {
+ assert(!BigEndian && "NaCl on ARM does not support big endian");
+ DescriptionString = "e-m:e-p:32:32-i64:64-v128:64:128-a:0:32-n32-S128";
+ } else {
+ DescriptionString =
+ BigEndian ? "E-m:e-p:32:32-i64:64-v128:64:128-a:0:32-n32-S64"
+ : "e-m:e-p:32:32-i64:64-v128:64:128-a:0:32-n32-S64";
+ }
+
+ // FIXME: Enumerated types are variable width in straight AAPCS.
+ }
+
+ void setABIAPCS() {
+ const llvm::Triple &T = getTriple();
+
+ IsAAPCS = false;
+
+ DoubleAlign = LongLongAlign = LongDoubleAlign = SuitableAlign = 32;
+
+ // size_t is unsigned int on FreeBSD.
+ if (T.getOS() == llvm::Triple::FreeBSD)
+ SizeType = UnsignedInt;
+ else
+ SizeType = UnsignedLong;
+
+ // Revert to using SignedInt on apcs-gnu to comply with existing behaviour.
+ WCharType = SignedInt;
+
+ // Do not respect the alignment of bit-field types when laying out
+ // structures. This corresponds to PCC_BITFIELD_TYPE_MATTERS in gcc.
+ UseBitFieldTypeAlignment = false;
+
+ /// gcc forces the alignment to 4 bytes, regardless of the type of the
+ /// zero length bitfield. This corresponds to EMPTY_FIELD_BOUNDARY in
+ /// gcc.
+ ZeroLengthBitfieldBoundary = 32;
+
+ if (T.isOSBinFormatMachO())
+ DescriptionString =
+ BigEndian
+ ? "E-m:o-p:32:32-f64:32:64-v64:32:64-v128:32:128-a:0:32-n32-S32"
+ : "e-m:o-p:32:32-f64:32:64-v64:32:64-v128:32:128-a:0:32-n32-S32";
+ else
+ DescriptionString =
+ BigEndian
+ ? "E-m:e-p:32:32-f64:32:64-v64:32:64-v128:32:128-a:0:32-n32-S32"
+ : "e-m:e-p:32:32-f64:32:64-v64:32:64-v128:32:128-a:0:32-n32-S32";
+
+ // FIXME: Override "preferred align" for double and long long.
+ }
+
+public:
+ ARMTargetInfo(const llvm::Triple &Triple, bool IsBigEndian)
+ : TargetInfo(Triple), CPU("arm1136j-s"), FPMath(FP_Default),
+ IsAAPCS(true), HW_FP(0) {
+ BigEndian = IsBigEndian;
+
+ switch (getTriple().getOS()) {
+ case llvm::Triple::NetBSD:
+ PtrDiffType = SignedLong;
+ break;
+ default:
+ PtrDiffType = SignedInt;
+ break;
+ }
+
+ // {} in inline assembly are neon specifiers, not assembly variant
+ // specifiers.
+ NoAsmVariants = true;
+
+ // FIXME: Should we just treat this as a feature?
+ IsThumb = getTriple().getArchName().startswith("thumb");
+
+ // FIXME: This duplicates code from the driver that sets the -target-abi
+ // option - this code is used if -target-abi isn't passed and should
+ // be unified in some way.
+ if (Triple.isOSBinFormatMachO()) {
+ // The backend is hardwired to assume AAPCS for M-class processors, ensure
+ // the frontend matches that.
+ if (Triple.getEnvironment() == llvm::Triple::EABI ||
+ Triple.getOS() == llvm::Triple::UnknownOS ||
+ StringRef(CPU).startswith("cortex-m")) {
+ setABI("aapcs");
+ } else {
+ setABI("apcs-gnu");
+ }
+ } else if (Triple.isOSWindows()) {
+ // FIXME: this is invalid for WindowsCE
+ setABI("aapcs");
+ } else {
+ // Select the default based on the platform.
+ switch (Triple.getEnvironment()) {
+ case llvm::Triple::Android:
+ case llvm::Triple::GNUEABI:
+ case llvm::Triple::GNUEABIHF:
+ setABI("aapcs-linux");
+ break;
+ case llvm::Triple::EABIHF:
+ case llvm::Triple::EABI:
+ setABI("aapcs");
+ break;
+ case llvm::Triple::GNU:
+ setABI("apcs-gnu");
+ break;
+ default:
+ if (Triple.getOS() == llvm::Triple::NetBSD)
+ setABI("apcs-gnu");
+ else
+ setABI("aapcs");
+ break;
+ }
+ }
+
+ // ARM targets default to using the ARM C++ ABI.
+ TheCXXABI.set(TargetCXXABI::GenericARM);
+
+ // ARM has atomics up to 8 bytes
+ MaxAtomicPromoteWidth = 64;
+ if (shouldUseInlineAtomic(getTriple()))
+ MaxAtomicInlineWidth = 64;
+
+ // Do force alignment of members that follow zero length bitfields. If
+ // the alignment of the zero-length bitfield is greater than the member
+ // that follows it, `bar', `bar' will be aligned as the type of the
+ // zero length bitfield.
+ UseZeroLengthBitfieldAlignment = true;
+ }
+ StringRef getABI() const override { return ABI; }
+ bool setABI(const std::string &Name) override {
+ ABI = Name;
+
+ // The defaults (above) are for AAPCS, check if we need to change them.
+ //
+ // FIXME: We need support for -meabi... we could just mangle it into the
+ // name.
+ if (Name == "apcs-gnu") {
+ setABIAPCS();
+ return true;
+ }
+ if (Name == "aapcs" || Name == "aapcs-vfp" || Name == "aapcs-linux") {
+ setABIAAPCS();
+ return true;
+ }
+ return false;
+ }
+
+ // FIXME: This should be based on Arch attributes, not CPU names.
+ void getDefaultFeatures(llvm::StringMap<bool> &Features) const override {
+ StringRef ArchName = getTriple().getArchName();
+ unsigned ArchKind =
+ llvm::ARMTargetParser::parseArch(
+ llvm::ARMTargetParser::getCanonicalArchName(ArchName));
+ bool IsV8 = (ArchKind == llvm::ARM::AK_ARMV8A ||
+ ArchKind == llvm::ARM::AK_ARMV8_1A);
+
+ if (CPU == "arm1136jf-s" || CPU == "arm1176jzf-s" || CPU == "mpcore")
+ Features["vfp2"] = true;
+ else if (CPU == "cortex-a8" || CPU == "cortex-a9") {
+ Features["vfp3"] = true;
+ Features["neon"] = true;
+ }
+ else if (CPU == "cortex-a5") {
+ Features["vfp4"] = true;
+ Features["neon"] = true;
+ } else if (CPU == "swift" || CPU == "cortex-a7" ||
+ CPU == "cortex-a12" || CPU == "cortex-a15" ||
+ CPU == "cortex-a17" || CPU == "krait") {
+ Features["vfp4"] = true;
+ Features["neon"] = true;
+ Features["hwdiv"] = true;
+ Features["hwdiv-arm"] = true;
+ } else if (CPU == "cyclone" || CPU == "cortex-a53" || CPU == "cortex-a57" ||
+ CPU == "cortex-a72") {
+ Features["fp-armv8"] = true;
+ Features["neon"] = true;
+ Features["hwdiv"] = true;
+ Features["hwdiv-arm"] = true;
+ Features["crc"] = true;
+ Features["crypto"] = true;
+ } else if (CPU == "cortex-r5" || CPU == "cortex-r7" || IsV8) {
+ Features["hwdiv"] = true;
+ Features["hwdiv-arm"] = true;
+ } else if (CPU == "cortex-m3" || CPU == "cortex-m4" || CPU == "cortex-m7" ||
+ CPU == "sc300" || CPU == "cortex-r4" || CPU == "cortex-r4f") {
+ Features["hwdiv"] = true;
+ }
+ }
+
+ bool handleTargetFeatures(std::vector<std::string> &Features,
+ DiagnosticsEngine &Diags) override {
+ FPU = 0;
+ CRC = 0;
+ Crypto = 0;
+ SoftFloat = SoftFloatABI = false;
+ HWDiv = 0;
+
+ for (const auto &Feature : Features) {
+ if (Feature == "+soft-float") {
+ SoftFloat = true;
+ } else if (Feature == "+soft-float-abi") {
+ SoftFloatABI = true;
+ } else if (Feature == "+vfp2") {
+ FPU |= VFP2FPU;
+ HW_FP = HW_FP_SP | HW_FP_DP;
+ } else if (Feature == "+vfp3") {
+ FPU |= VFP3FPU;
+ HW_FP = HW_FP_SP | HW_FP_DP;
+ } else if (Feature == "+vfp4") {
+ FPU |= VFP4FPU;
+ HW_FP = HW_FP_SP | HW_FP_DP | HW_FP_HP;
+ } else if (Feature == "+fp-armv8") {
+ FPU |= FPARMV8;
+ HW_FP = HW_FP_SP | HW_FP_DP | HW_FP_HP;
+ } else if (Feature == "+neon") {
+ FPU |= NeonFPU;
+ HW_FP = HW_FP_SP | HW_FP_DP;
+ } else if (Feature == "+hwdiv") {
+ HWDiv |= HWDivThumb;
+ } else if (Feature == "+hwdiv-arm") {
+ HWDiv |= HWDivARM;
+ } else if (Feature == "+crc") {
+ CRC = 1;
+ } else if (Feature == "+crypto") {
+ Crypto = 1;
+ } else if (Feature == "+fp-only-sp") {
+ HW_FP &= ~HW_FP_DP;
+ }
+ }
+
+ if (!(FPU & NeonFPU) && FPMath == FP_Neon) {
+ Diags.Report(diag::err_target_unsupported_fpmath) << "neon";
+ return false;
+ }
+
+ if (FPMath == FP_Neon)
+ Features.push_back("+neonfp");
+ else if (FPMath == FP_VFP)
+ Features.push_back("-neonfp");
+
+ // Remove front-end specific options which the backend handles differently.
+ auto Feature =
+ std::find(Features.begin(), Features.end(), "+soft-float-abi");
+ if (Feature != Features.end())
+ Features.erase(Feature);
+
+ return true;
+ }
+
+ bool hasFeature(StringRef Feature) const override {
+ return llvm::StringSwitch<bool>(Feature)
+ .Case("arm", true)
+ .Case("softfloat", SoftFloat)
+ .Case("thumb", IsThumb)
+ .Case("neon", (FPU & NeonFPU) && !SoftFloat)
+ .Case("hwdiv", HWDiv & HWDivThumb)
+ .Case("hwdiv-arm", HWDiv & HWDivARM)
+ .Default(false);
+ }
+ // FIXME: Should we actually have some table instead of these switches?
+ const char *getCPUDefineSuffix(StringRef Name) const {
+ // FIXME: Use ARMTargetParser
+ if(Name == "generic") {
+ auto subarch = getTriple().getSubArch();
+ switch (subarch) {
+ case llvm::Triple::SubArchType::ARMSubArch_v8_1a:
+ return "8_1A";
+ default:
+ break;
+ }
+ }
+
+ return llvm::StringSwitch<const char *>(Name)
+ .Cases("arm8", "arm810", "4")
+ .Cases("strongarm", "strongarm110", "strongarm1100", "strongarm1110",
+ "4")
+ .Cases("arm7tdmi", "arm7tdmi-s", "arm710t", "arm720t", "arm9", "4T")
+ .Cases("arm9tdmi", "arm920", "arm920t", "arm922t", "arm940t", "4T")
+ .Case("ep9312", "4T")
+ .Cases("arm10tdmi", "arm1020t", "5T")
+ .Cases("arm9e", "arm946e-s", "arm966e-s", "arm968e-s", "5TE")
+ .Case("arm926ej-s", "5TEJ")
+ .Cases("arm10e", "arm1020e", "arm1022e", "5TE")
+ .Cases("xscale", "iwmmxt", "5TE")
+ .Case("arm1136j-s", "6J")
+ .Case("arm1136jf-s", "6")
+ .Cases("mpcorenovfp", "mpcore", "6K")
+ .Cases("arm1176jz-s", "arm1176jzf-s", "6K")
+ .Cases("arm1156t2-s", "arm1156t2f-s", "6T2")
+ .Cases("cortex-a5", "cortex-a7", "cortex-a8", "7A")
+ .Cases("cortex-a9", "cortex-a12", "cortex-a15", "cortex-a17", "krait",
+ "7A")
+ .Cases("cortex-r4", "cortex-r4f", "cortex-r5", "cortex-r7", "7R")
+ .Case("swift", "7S")
+ .Case("cyclone", "8A")
+ .Cases("sc300", "cortex-m3", "7M")
+ .Cases("cortex-m4", "cortex-m7", "7EM")
+ .Cases("sc000", "cortex-m0", "cortex-m0plus", "cortex-m1", "6M")
+ .Cases("cortex-a53", "cortex-a57", "cortex-a72", "8A")
+ .Default(nullptr);
+ }
+ const char *getCPUProfile(StringRef Name) const {
+ if(Name == "generic") {
+ auto subarch = getTriple().getSubArch();
+ switch (subarch) {
+ case llvm::Triple::SubArchType::ARMSubArch_v8_1a:
+ return "A";
+ default:
+ break;
+ }
+ }
+
+ unsigned CPUArch = llvm::ARMTargetParser::parseCPUArch(Name);
+ if (CPUArch == llvm::ARM::AK_INVALID)
+ return "";
+
+ StringRef ArchName = llvm::ARMTargetParser::getArchName(CPUArch);
+ switch(llvm::ARMTargetParser::parseArchProfile(ArchName)) {
+ case llvm::ARM::PK_A:
+ return "A";
+ case llvm::ARM::PK_R:
+ return "R";
+ case llvm::ARM::PK_M:
+ return "M";
+ default:
+ return "";
+ }
+ }
+ bool setCPU(const std::string &Name) override {
+ if (!getCPUDefineSuffix(Name))
+ return false;
+
+ // Cortex M does not support 8 byte atomics, while general Thumb2 does.
+ StringRef Profile = getCPUProfile(Name);
+ if (Profile == "M" && MaxAtomicInlineWidth) {
+ MaxAtomicPromoteWidth = 32;
+ MaxAtomicInlineWidth = 32;
+ }
+
+ CPU = Name;
+ return true;
+ }
+ bool setFPMath(StringRef Name) override;
+ bool supportsThumb(StringRef ArchName, StringRef CPUArch,
+ unsigned CPUArchVer) const {
+ return CPUArchVer >= 7 || (CPUArch.find('T') != StringRef::npos) ||
+ (CPUArch.find('M') != StringRef::npos);
+ }
+ bool supportsThumb2(StringRef ArchName, StringRef CPUArch,
+ unsigned CPUArchVer) const {
+ // We check both CPUArchVer and ArchName because when only triple is
+ // specified, the default CPU is arm1136j-s.
+ return ArchName.endswith("v6t2") || ArchName.endswith("v7") ||
+ ArchName.endswith("v8.1a") ||
+ ArchName.endswith("v8") || CPUArch == "6T2" || CPUArchVer >= 7;
+ }
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override {
+ // Target identification.
+ Builder.defineMacro("__arm");
+ Builder.defineMacro("__arm__");
+
+ // Target properties.
+ Builder.defineMacro("__REGISTER_PREFIX__", "");
+
+ StringRef CPUArch = getCPUDefineSuffix(CPU);
+ unsigned int CPUArchVer;
+ if (CPUArch.substr(0, 1).getAsInteger<unsigned int>(10, CPUArchVer))
+ llvm_unreachable("Invalid char for architecture version number");
+ Builder.defineMacro("__ARM_ARCH_" + CPUArch + "__");
+
+ // ACLE 6.4.1 ARM/Thumb instruction set architecture
+ StringRef CPUProfile = getCPUProfile(CPU);
+ StringRef ArchName = getTriple().getArchName();
+
+ // __ARM_ARCH is defined as an integer value indicating the current ARM ISA
+ Builder.defineMacro("__ARM_ARCH", CPUArch.substr(0, 1));
+ if (CPUArch[0] >= '8') {
+ Builder.defineMacro("__ARM_FEATURE_NUMERIC_MAXMIN");
+ Builder.defineMacro("__ARM_FEATURE_DIRECTED_ROUNDING");
+ }
+
+ // __ARM_ARCH_ISA_ARM is defined to 1 if the core supports the ARM ISA. It
+ // is not defined for the M-profile.
+ // NOTE that the deffault profile is assumed to be 'A'
+ if (CPUProfile.empty() || CPUProfile != "M")
+ Builder.defineMacro("__ARM_ARCH_ISA_ARM", "1");
+
+ // __ARM_ARCH_ISA_THUMB is defined to 1 if the core supporst the original
+ // Thumb ISA (including v6-M). It is set to 2 if the core supports the
+ // Thumb-2 ISA as found in the v6T2 architecture and all v7 architecture.
+ if (supportsThumb2(ArchName, CPUArch, CPUArchVer))
+ Builder.defineMacro("__ARM_ARCH_ISA_THUMB", "2");
+ else if (supportsThumb(ArchName, CPUArch, CPUArchVer))
+ Builder.defineMacro("__ARM_ARCH_ISA_THUMB", "1");
+
+ // __ARM_32BIT_STATE is defined to 1 if code is being generated for a 32-bit
+ // instruction set such as ARM or Thumb.
+ Builder.defineMacro("__ARM_32BIT_STATE", "1");
+
+ // ACLE 6.4.2 Architectural Profile (A, R, M or pre-Cortex)
+
+ // __ARM_ARCH_PROFILE is defined as 'A', 'R', 'M' or 'S', or unset.
+ if (!CPUProfile.empty())
+ Builder.defineMacro("__ARM_ARCH_PROFILE", "'" + CPUProfile + "'");
+
+ // ACLE 6.5.1 Hardware Floating Point
+ if (HW_FP)
+ Builder.defineMacro("__ARM_FP", "0x" + llvm::utohexstr(HW_FP));
+
+ // ACLE predefines.
+ Builder.defineMacro("__ARM_ACLE", "200");
+
+ // Subtarget options.
+
+ // FIXME: It's more complicated than this and we don't really support
+ // interworking.
+ // Windows on ARM does not "support" interworking
+ if (5 <= CPUArchVer && CPUArchVer <= 8 && !getTriple().isOSWindows())
+ Builder.defineMacro("__THUMB_INTERWORK__");
+
+ if (ABI == "aapcs" || ABI == "aapcs-linux" || ABI == "aapcs-vfp") {
+ // Embedded targets on Darwin follow AAPCS, but not EABI.
+ // Windows on ARM follows AAPCS VFP, but does not conform to EABI.
+ if (!getTriple().isOSDarwin() && !getTriple().isOSWindows())
+ Builder.defineMacro("__ARM_EABI__");
+ Builder.defineMacro("__ARM_PCS", "1");
+
+ if ((!SoftFloat && !SoftFloatABI) || ABI == "aapcs-vfp")
+ Builder.defineMacro("__ARM_PCS_VFP", "1");
+ }
+
+ if (SoftFloat)
+ Builder.defineMacro("__SOFTFP__");
+
+ if (CPU == "xscale")
+ Builder.defineMacro("__XSCALE__");
+
+ if (IsThumb) {
+ Builder.defineMacro("__THUMBEL__");
+ Builder.defineMacro("__thumb__");
+ if (supportsThumb2(ArchName, CPUArch, CPUArchVer))
+ Builder.defineMacro("__thumb2__");
+ }
+ if (((HWDiv & HWDivThumb) && IsThumb) || ((HWDiv & HWDivARM) && !IsThumb))
+ Builder.defineMacro("__ARM_ARCH_EXT_IDIV__", "1");
+
+ // Note, this is always on in gcc, even though it doesn't make sense.
+ Builder.defineMacro("__APCS_32__");
+
+ if (FPUModeIsVFP((FPUMode) FPU)) {
+ Builder.defineMacro("__VFP_FP__");
+ if (FPU & VFP2FPU)
+ Builder.defineMacro("__ARM_VFPV2__");
+ if (FPU & VFP3FPU)
+ Builder.defineMacro("__ARM_VFPV3__");
+ if (FPU & VFP4FPU)
+ Builder.defineMacro("__ARM_VFPV4__");
+ }
+
+ // This only gets set when Neon instructions are actually available, unlike
+ // the VFP define, hence the soft float and arch check. This is subtly
+ // different from gcc, we follow the intent which was that it should be set
+ // when Neon instructions are actually available.
+ if ((FPU & NeonFPU) && !SoftFloat && CPUArchVer >= 7) {
+ Builder.defineMacro("__ARM_NEON");
+ Builder.defineMacro("__ARM_NEON__");
+ }
+
+ Builder.defineMacro("__ARM_SIZEOF_WCHAR_T",
+ Opts.ShortWChar ? "2" : "4");
+
+ Builder.defineMacro("__ARM_SIZEOF_MINIMAL_ENUM",
+ Opts.ShortEnums ? "1" : "4");
+
+ if (CRC)
+ Builder.defineMacro("__ARM_FEATURE_CRC32");
+
+ if (Crypto)
+ Builder.defineMacro("__ARM_FEATURE_CRYPTO");
+
+ if (CPUArchVer >= 6 && CPUArch != "6M") {
+ Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_1");
+ Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_2");
+ Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4");
+ Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_8");
+ }
+
+ bool is5EOrAbove = (CPUArchVer >= 6 ||
+ (CPUArchVer == 5 &&
+ CPUArch.find('E') != StringRef::npos));
+ bool is32Bit = (!IsThumb || supportsThumb2(ArchName, CPUArch, CPUArchVer));
+ if (is5EOrAbove && is32Bit && (CPUProfile != "M" || CPUArch == "7EM"))
+ Builder.defineMacro("__ARM_FEATURE_DSP");
+ }
+ void getTargetBuiltins(const Builtin::Info *&Records,
+ unsigned &NumRecords) const override {
+ Records = BuiltinInfo;
+ NumRecords = clang::ARM::LastTSBuiltin-Builtin::FirstTSBuiltin;
+ }
+ bool isCLZForZeroUndef() const override { return false; }
+ BuiltinVaListKind getBuiltinVaListKind() const override {
+ return IsAAPCS ? AAPCSABIBuiltinVaList : TargetInfo::VoidPtrBuiltinVaList;
+ }
+ void getGCCRegNames(const char * const *&Names,
+ unsigned &NumNames) const override;
+ void getGCCRegAliases(const GCCRegAlias *&Aliases,
+ unsigned &NumAliases) const override;
+ bool validateAsmConstraint(const char *&Name,
+ TargetInfo::ConstraintInfo &Info) const override {
+ switch (*Name) {
+ default: break;
+ case 'l': // r0-r7
+ case 'h': // r8-r15
+ case 'w': // VFP Floating point register single precision
+ case 'P': // VFP Floating point register double precision
+ Info.setAllowsRegister();
+ return true;
+ case 'I':
+ case 'J':
+ case 'K':
+ case 'L':
+ case 'M':
+ // FIXME
+ return true;
+ case 'Q': // A memory address that is a single base register.
+ Info.setAllowsMemory();
+ return true;
+ case 'U': // a memory reference...
+ switch (Name[1]) {
+ case 'q': // ...ARMV4 ldrsb
+ case 'v': // ...VFP load/store (reg+constant offset)
+ case 'y': // ...iWMMXt load/store
+ case 't': // address valid for load/store opaque types wider
+ // than 128-bits
+ case 'n': // valid address for Neon doubleword vector load/store
+ case 'm': // valid address for Neon element and structure load/store
+ case 's': // valid address for non-offset loads/stores of quad-word
+ // values in four ARM registers
+ Info.setAllowsMemory();
+ Name++;
+ return true;
+ }
+ }
+ return false;
+ }
+ std::string convertConstraint(const char *&Constraint) const override {
+ std::string R;
+ switch (*Constraint) {
+ case 'U': // Two-character constraint; add "^" hint for later parsing.
+ R = std::string("^") + std::string(Constraint, 2);
+ Constraint++;
+ break;
+ case 'p': // 'p' should be translated to 'r' by default.
+ R = std::string("r");
+ break;
+ default:
+ return std::string(1, *Constraint);
+ }
+ return R;
+ }
+ bool
+ validateConstraintModifier(StringRef Constraint, char Modifier, unsigned Size,
+ std::string &SuggestedModifier) const override {
+ bool isOutput = (Constraint[0] == '=');
+ bool isInOut = (Constraint[0] == '+');
+
+ // Strip off constraint modifiers.
+ while (Constraint[0] == '=' ||
+ Constraint[0] == '+' ||
+ Constraint[0] == '&')
+ Constraint = Constraint.substr(1);
+
+ switch (Constraint[0]) {
+ default: break;
+ case 'r': {
+ switch (Modifier) {
+ default:
+ return (isInOut || isOutput || Size <= 64);
+ case 'q':
+ // A register of size 32 cannot fit a vector type.
+ return false;
+ }
+ }
+ }
+
+ return true;
+ }
+ const char *getClobbers() const override {
+ // FIXME: Is this really right?
+ return "";
+ }
+
+ CallingConvCheckResult checkCallingConvention(CallingConv CC) const override {
+ return (CC == CC_AAPCS || CC == CC_AAPCS_VFP) ? CCCR_OK : CCCR_Warning;
+ }
+
+ int getEHDataRegisterNumber(unsigned RegNo) const override {
+ if (RegNo == 0) return 0;
+ if (RegNo == 1) return 1;
+ return -1;
+ }
+};
+
+bool ARMTargetInfo::setFPMath(StringRef Name) {
+ if (Name == "neon") {
+ FPMath = FP_Neon;
+ return true;
+ } else if (Name == "vfp" || Name == "vfp2" || Name == "vfp3" ||
+ Name == "vfp4") {
+ FPMath = FP_VFP;
+ return true;
+ }
+ return false;
+}
+
+const char * const ARMTargetInfo::GCCRegNames[] = {
+ // Integer registers
+ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
+ "r8", "r9", "r10", "r11", "r12", "sp", "lr", "pc",
+
+ // Float registers
+ "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
+ "s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15",
+ "s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23",
+ "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31",
+
+ // Double registers
+ "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
+ "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15",
+ "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23",
+ "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31",
+
+ // Quad registers
+ "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
+ "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15"
+};
+
+void ARMTargetInfo::getGCCRegNames(const char * const *&Names,
+ unsigned &NumNames) const {
+ Names = GCCRegNames;
+ NumNames = llvm::array_lengthof(GCCRegNames);
+}
+
+const TargetInfo::GCCRegAlias ARMTargetInfo::GCCRegAliases[] = {
+ { { "a1" }, "r0" },
+ { { "a2" }, "r1" },
+ { { "a3" }, "r2" },
+ { { "a4" }, "r3" },
+ { { "v1" }, "r4" },
+ { { "v2" }, "r5" },
+ { { "v3" }, "r6" },
+ { { "v4" }, "r7" },
+ { { "v5" }, "r8" },
+ { { "v6", "rfp" }, "r9" },
+ { { "sl" }, "r10" },
+ { { "fp" }, "r11" },
+ { { "ip" }, "r12" },
+ { { "r13" }, "sp" },
+ { { "r14" }, "lr" },
+ { { "r15" }, "pc" },
+ // The S, D and Q registers overlap, but aren't really aliases; we
+ // don't want to substitute one of these for a different-sized one.
+};
+
+void ARMTargetInfo::getGCCRegAliases(const GCCRegAlias *&Aliases,
+ unsigned &NumAliases) const {
+ Aliases = GCCRegAliases;
+ NumAliases = llvm::array_lengthof(GCCRegAliases);
+}
+
+const Builtin::Info ARMTargetInfo::BuiltinInfo[] = {
+#define BUILTIN(ID, TYPE, ATTRS) { #ID, TYPE, ATTRS, 0, ALL_LANGUAGES },
+#define LIBBUILTIN(ID, TYPE, ATTRS, HEADER) { #ID, TYPE, ATTRS, HEADER,\
+ ALL_LANGUAGES },
+#include "clang/Basic/BuiltinsNEON.def"
+
+#define BUILTIN(ID, TYPE, ATTRS) { #ID, TYPE, ATTRS, 0, ALL_LANGUAGES },
+#define LANGBUILTIN(ID, TYPE, ATTRS, LANG) { #ID, TYPE, ATTRS, 0, LANG },
+#define LIBBUILTIN(ID, TYPE, ATTRS, HEADER) { #ID, TYPE, ATTRS, HEADER,\
+ ALL_LANGUAGES },
+#include "clang/Basic/BuiltinsARM.def"
+};
+
+class ARMleTargetInfo : public ARMTargetInfo {
+public:
+ ARMleTargetInfo(const llvm::Triple &Triple)
+ : ARMTargetInfo(Triple, false) { }
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override {
+ Builder.defineMacro("__ARMEL__");
+ ARMTargetInfo::getTargetDefines(Opts, Builder);
+ }
+};
+
+class ARMbeTargetInfo : public ARMTargetInfo {
+public:
+ ARMbeTargetInfo(const llvm::Triple &Triple)
+ : ARMTargetInfo(Triple, true) { }
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override {
+ Builder.defineMacro("__ARMEB__");
+ Builder.defineMacro("__ARM_BIG_ENDIAN");
+ ARMTargetInfo::getTargetDefines(Opts, Builder);
+ }
+};
+
+class WindowsARMTargetInfo : public WindowsTargetInfo<ARMleTargetInfo> {
+ const llvm::Triple Triple;
+public:
+ WindowsARMTargetInfo(const llvm::Triple &Triple)
+ : WindowsTargetInfo<ARMleTargetInfo>(Triple), Triple(Triple) {
+ TLSSupported = false;
+ WCharType = UnsignedShort;
+ SizeType = UnsignedInt;
+ UserLabelPrefix = "";
+ }
+ void getVisualStudioDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const {
+ WindowsTargetInfo<ARMleTargetInfo>::getVisualStudioDefines(Opts, Builder);
+
+ // FIXME: this is invalid for WindowsCE
+ Builder.defineMacro("_M_ARM_NT", "1");
+ Builder.defineMacro("_M_ARMT", "_M_ARM");
+ Builder.defineMacro("_M_THUMB", "_M_ARM");
+
+ assert((Triple.getArch() == llvm::Triple::arm ||
+ Triple.getArch() == llvm::Triple::thumb) &&
+ "invalid architecture for Windows ARM target info");
+ unsigned Offset = Triple.getArch() == llvm::Triple::arm ? 4 : 6;
+ Builder.defineMacro("_M_ARM", Triple.getArchName().substr(Offset));
+
+ // TODO map the complete set of values
+ // 31: VFPv3 40: VFPv4
+ Builder.defineMacro("_M_ARM_FP", "31");
+ }
+ BuiltinVaListKind getBuiltinVaListKind() const override {
+ return TargetInfo::CharPtrBuiltinVaList;
+ }
+};
+
+// Windows ARM + Itanium C++ ABI Target
+class ItaniumWindowsARMleTargetInfo : public WindowsARMTargetInfo {
+public:
+ ItaniumWindowsARMleTargetInfo(const llvm::Triple &Triple)
+ : WindowsARMTargetInfo(Triple) {
+ TheCXXABI.set(TargetCXXABI::GenericARM);
+ }
+
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override {
+ WindowsARMTargetInfo::getTargetDefines(Opts, Builder);
+
+ if (Opts.MSVCCompat)
+ WindowsARMTargetInfo::getVisualStudioDefines(Opts, Builder);
+ }
+};
+
+// Windows ARM, MS (C++) ABI
+class MicrosoftARMleTargetInfo : public WindowsARMTargetInfo {
+public:
+ MicrosoftARMleTargetInfo(const llvm::Triple &Triple)
+ : WindowsARMTargetInfo(Triple) {
+ TheCXXABI.set(TargetCXXABI::Microsoft);
+ }
+
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override {
+ WindowsARMTargetInfo::getTargetDefines(Opts, Builder);
+ WindowsARMTargetInfo::getVisualStudioDefines(Opts, Builder);
+ }
+};
+
+class DarwinARMTargetInfo :
+ public DarwinTargetInfo<ARMleTargetInfo> {
+protected:
+ void getOSDefines(const LangOptions &Opts, const llvm::Triple &Triple,
+ MacroBuilder &Builder) const override {
+ getDarwinDefines(Builder, Opts, Triple, PlatformName, PlatformMinVersion);
+ }
+
+public:
+ DarwinARMTargetInfo(const llvm::Triple &Triple)
+ : DarwinTargetInfo<ARMleTargetInfo>(Triple) {
+ HasAlignMac68kSupport = true;
+ // iOS always has 64-bit atomic instructions.
+ // FIXME: This should be based off of the target features in
+ // ARMleTargetInfo.
+ MaxAtomicInlineWidth = 64;
+
+ // Darwin on iOS uses a variant of the ARM C++ ABI.
+ TheCXXABI.set(TargetCXXABI::iOS);
+ }
+};
+
+class AArch64TargetInfo : public TargetInfo {
+ virtual void setDescriptionString() = 0;
+ static const TargetInfo::GCCRegAlias GCCRegAliases[];
+ static const char *const GCCRegNames[];
+
+ enum FPUModeEnum {
+ FPUMode,
+ NeonMode
+ };
+
+ unsigned FPU;
+ unsigned CRC;
+ unsigned Crypto;
+
+ static const Builtin::Info BuiltinInfo[];
+
+ std::string ABI;
+
+public:
+ AArch64TargetInfo(const llvm::Triple &Triple)
+ : TargetInfo(Triple), ABI("aapcs") {
+
+ if (getTriple().getOS() == llvm::Triple::NetBSD) {
+ WCharType = SignedInt;
+
+ // NetBSD apparently prefers consistency across ARM targets to consistency
+ // across 64-bit targets.
+ Int64Type = SignedLongLong;
+ IntMaxType = SignedLongLong;
+ } else {
+ WCharType = UnsignedInt;
+ Int64Type = SignedLong;
+ IntMaxType = SignedLong;
+ }
+
+ LongWidth = LongAlign = PointerWidth = PointerAlign = 64;
+ MaxVectorAlign = 128;
+ RegParmMax = 8;
+ MaxAtomicInlineWidth = 128;
+ MaxAtomicPromoteWidth = 128;
+
+ LongDoubleWidth = LongDoubleAlign = SuitableAlign = 128;
+ LongDoubleFormat = &llvm::APFloat::IEEEquad;
+
+ // {} in inline assembly are neon specifiers, not assembly variant
+ // specifiers.
+ NoAsmVariants = true;
+
+ // AAPCS gives rules for bitfields. 7.1.7 says: "The container type
+ // contributes to the alignment of the containing aggregate in the same way
+ // a plain (non bit-field) member of that type would, without exception for
+ // zero-sized or anonymous bit-fields."
+ UseBitFieldTypeAlignment = true;
+ UseZeroLengthBitfieldAlignment = true;
+
+ // AArch64 targets default to using the ARM C++ ABI.
+ TheCXXABI.set(TargetCXXABI::GenericAArch64);
+ }
+
+ StringRef getABI() const override { return ABI; }
+ bool setABI(const std::string &Name) override {
+ if (Name != "aapcs" && Name != "darwinpcs")
+ return false;
+
+ ABI = Name;
+ return true;
+ }
+
+ bool setCPU(const std::string &Name) override {
+ bool CPUKnown = llvm::StringSwitch<bool>(Name)
+ .Case("generic", true)
+ .Cases("cortex-a53", "cortex-a57", "cortex-a72", true)
+ .Case("cyclone", true)
+ .Default(false);
+ return CPUKnown;
+ }
+
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override {
+ // Target identification.
+ Builder.defineMacro("__aarch64__");
+
+ // Target properties.
+ Builder.defineMacro("_LP64");
+ Builder.defineMacro("__LP64__");
+
+ // ACLE predefines. Many can only have one possible value on v8 AArch64.
+ Builder.defineMacro("__ARM_ACLE", "200");
+ Builder.defineMacro("__ARM_ARCH", "8");
+ Builder.defineMacro("__ARM_ARCH_PROFILE", "'A'");
+
+ Builder.defineMacro("__ARM_64BIT_STATE");
+ Builder.defineMacro("__ARM_PCS_AAPCS64");
+ Builder.defineMacro("__ARM_ARCH_ISA_A64");
+
+ Builder.defineMacro("__ARM_FEATURE_UNALIGNED");
+ Builder.defineMacro("__ARM_FEATURE_CLZ");
+ Builder.defineMacro("__ARM_FEATURE_FMA");
+ Builder.defineMacro("__ARM_FEATURE_DIV");
+ Builder.defineMacro("__ARM_FEATURE_IDIV"); // As specified in ACLE
+ Builder.defineMacro("__ARM_FEATURE_DIV"); // For backwards compatibility
+ Builder.defineMacro("__ARM_FEATURE_NUMERIC_MAXMIN");
+ Builder.defineMacro("__ARM_FEATURE_DIRECTED_ROUNDING");
+
+ Builder.defineMacro("__ARM_ALIGN_MAX_STACK_PWR", "4");
+
+ // 0xe implies support for half, single and double precision operations.
+ Builder.defineMacro("__ARM_FP", "0xe");
+
+ // PCS specifies this for SysV variants, which is all we support. Other ABIs
+ // may choose __ARM_FP16_FORMAT_ALTERNATIVE.
+ Builder.defineMacro("__ARM_FP16_FORMAT_IEEE");
+
+ if (Opts.FastMath || Opts.FiniteMathOnly)
+ Builder.defineMacro("__ARM_FP_FAST");
+
+ if (Opts.C99 && !Opts.Freestanding)
+ Builder.defineMacro("__ARM_FP_FENV_ROUNDING");
+
+ Builder.defineMacro("__ARM_SIZEOF_WCHAR_T", Opts.ShortWChar ? "2" : "4");
+
+ Builder.defineMacro("__ARM_SIZEOF_MINIMAL_ENUM",
+ Opts.ShortEnums ? "1" : "4");
+
+ if (FPU == NeonMode) {
+ Builder.defineMacro("__ARM_NEON");
+ // 64-bit NEON supports half, single and double precision operations.
+ Builder.defineMacro("__ARM_NEON_FP", "0xe");
+ }
+
+ if (CRC)
+ Builder.defineMacro("__ARM_FEATURE_CRC32");
+
+ if (Crypto)
+ Builder.defineMacro("__ARM_FEATURE_CRYPTO");
+
+ // All of the __sync_(bool|val)_compare_and_swap_(1|2|4|8) builtins work.
+ Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_1");
+ Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_2");
+ Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4");
+ Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_8");
+ }
+
+ void getTargetBuiltins(const Builtin::Info *&Records,
+ unsigned &NumRecords) const override {
+ Records = BuiltinInfo;
+ NumRecords = clang::AArch64::LastTSBuiltin - Builtin::FirstTSBuiltin;
+ }
+
+ bool hasFeature(StringRef Feature) const override {
+ return Feature == "aarch64" ||
+ Feature == "arm64" ||
+ (Feature == "neon" && FPU == NeonMode);
+ }
+
+ bool handleTargetFeatures(std::vector<std::string> &Features,
+ DiagnosticsEngine &Diags) override {
+ FPU = FPUMode;
+ CRC = 0;
+ Crypto = 0;
+ for (unsigned i = 0, e = Features.size(); i != e; ++i) {
+ if (Features[i] == "+neon")
+ FPU = NeonMode;
+ if (Features[i] == "+crc")
+ CRC = 1;
+ if (Features[i] == "+crypto")
+ Crypto = 1;
+ }
+
+ setDescriptionString();
+
+ return true;
+ }
+
+ bool isCLZForZeroUndef() const override { return false; }
+
+ BuiltinVaListKind getBuiltinVaListKind() const override {
+ return TargetInfo::AArch64ABIBuiltinVaList;
+ }
+
+ void getGCCRegNames(const char *const *&Names,
+ unsigned &NumNames) const override;
+ void getGCCRegAliases(const GCCRegAlias *&Aliases,
+ unsigned &NumAliases) const override;
+
+ bool validateAsmConstraint(const char *&Name,
+ TargetInfo::ConstraintInfo &Info) const override {
+ switch (*Name) {
+ default:
+ return false;
+ case 'w': // Floating point and SIMD registers (V0-V31)
+ Info.setAllowsRegister();
+ return true;
+ case 'I': // Constant that can be used with an ADD instruction
+ case 'J': // Constant that can be used with a SUB instruction
+ case 'K': // Constant that can be used with a 32-bit logical instruction
+ case 'L': // Constant that can be used with a 64-bit logical instruction
+ case 'M': // Constant that can be used as a 32-bit MOV immediate
+ case 'N': // Constant that can be used as a 64-bit MOV immediate
+ case 'Y': // Floating point constant zero
+ case 'Z': // Integer constant zero
+ return true;
+ case 'Q': // A memory reference with base register and no offset
+ Info.setAllowsMemory();
+ return true;
+ case 'S': // A symbolic address
+ Info.setAllowsRegister();
+ return true;
+ case 'U':
+ // Ump: A memory address suitable for ldp/stp in SI, DI, SF and DF modes.
+ // Utf: A memory address suitable for ldp/stp in TF mode.
+ // Usa: An absolute symbolic address.
+ // Ush: The high part (bits 32:12) of a pc-relative symbolic address.
+ llvm_unreachable("FIXME: Unimplemented support for U* constraints.");
+ case 'z': // Zero register, wzr or xzr
+ Info.setAllowsRegister();
+ return true;
+ case 'x': // Floating point and SIMD registers (V0-V15)
+ Info.setAllowsRegister();
+ return true;
+ }
+ return false;
+ }
+
+ bool
+ validateConstraintModifier(StringRef Constraint, char Modifier, unsigned Size,
+ std::string &SuggestedModifier) const override {
+ // Strip off constraint modifiers.
+ while (Constraint[0] == '=' || Constraint[0] == '+' || Constraint[0] == '&')
+ Constraint = Constraint.substr(1);
+
+ switch (Constraint[0]) {
+ default:
+ return true;
+ case 'z':
+ case 'r': {
+ switch (Modifier) {
+ case 'x':
+ case 'w':
+ // For now assume that the person knows what they're
+ // doing with the modifier.
+ return true;
+ default:
+ // By default an 'r' constraint will be in the 'x'
+ // registers.
+ if (Size == 64)
+ return true;
+
+ SuggestedModifier = "w";
+ return false;
+ }
+ }
+ }
+ }
+
+ const char *getClobbers() const override { return ""; }
+
+ int getEHDataRegisterNumber(unsigned RegNo) const override {
+ if (RegNo == 0)
+ return 0;
+ if (RegNo == 1)
+ return 1;
+ return -1;
+ }
+};
+
+const char *const AArch64TargetInfo::GCCRegNames[] = {
+ // 32-bit Integer registers
+ "w0", "w1", "w2", "w3", "w4", "w5", "w6", "w7", "w8", "w9", "w10",
+ "w11", "w12", "w13", "w14", "w15", "w16", "w17", "w18", "w19", "w20", "w21",
+ "w22", "w23", "w24", "w25", "w26", "w27", "w28", "w29", "w30", "wsp",
+
+ // 64-bit Integer registers
+ "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10",
+ "x11", "x12", "x13", "x14", "x15", "x16", "x17", "x18", "x19", "x20", "x21",
+ "x22", "x23", "x24", "x25", "x26", "x27", "x28", "fp", "lr", "sp",
+
+ // 32-bit floating point regsisters
+ "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", "s8", "s9", "s10",
+ "s11", "s12", "s13", "s14", "s15", "s16", "s17", "s18", "s19", "s20", "s21",
+ "s22", "s23", "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31",
+
+ // 64-bit floating point regsisters
+ "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", "d8", "d9", "d10",
+ "d11", "d12", "d13", "d14", "d15", "d16", "d17", "d18", "d19", "d20", "d21",
+ "d22", "d23", "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31",
+
+ // Vector registers
+ "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v8", "v9", "v10",
+ "v11", "v12", "v13", "v14", "v15", "v16", "v17", "v18", "v19", "v20", "v21",
+ "v22", "v23", "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
+};
+
+void AArch64TargetInfo::getGCCRegNames(const char *const *&Names,
+ unsigned &NumNames) const {
+ Names = GCCRegNames;
+ NumNames = llvm::array_lengthof(GCCRegNames);
+}
+
+const TargetInfo::GCCRegAlias AArch64TargetInfo::GCCRegAliases[] = {
+ { { "w31" }, "wsp" },
+ { { "x29" }, "fp" },
+ { { "x30" }, "lr" },
+ { { "x31" }, "sp" },
+ // The S/D/Q and W/X registers overlap, but aren't really aliases; we
+ // don't want to substitute one of these for a different-sized one.
+};
+
+void AArch64TargetInfo::getGCCRegAliases(const GCCRegAlias *&Aliases,
+ unsigned &NumAliases) const {
+ Aliases = GCCRegAliases;
+ NumAliases = llvm::array_lengthof(GCCRegAliases);
+}
+
+const Builtin::Info AArch64TargetInfo::BuiltinInfo[] = {
+#define BUILTIN(ID, TYPE, ATTRS) \
+ { #ID, TYPE, ATTRS, 0, ALL_LANGUAGES },
+#include "clang/Basic/BuiltinsNEON.def"
+
+#define BUILTIN(ID, TYPE, ATTRS) \
+ { #ID, TYPE, ATTRS, 0, ALL_LANGUAGES },
+#include "clang/Basic/BuiltinsAArch64.def"
+};
+
+class AArch64leTargetInfo : public AArch64TargetInfo {
+ void setDescriptionString() override {
+ if (getTriple().isOSBinFormatMachO())
+ DescriptionString = "e-m:o-i64:64-i128:128-n32:64-S128";
+ else
+ DescriptionString = "e-m:e-i64:64-i128:128-n32:64-S128";
+ }
+
+public:
+ AArch64leTargetInfo(const llvm::Triple &Triple)
+ : AArch64TargetInfo(Triple) {
+ BigEndian = false;
+ }
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override {
+ Builder.defineMacro("__AARCH64EL__");
+ AArch64TargetInfo::getTargetDefines(Opts, Builder);
+ }
+};
+
+class AArch64beTargetInfo : public AArch64TargetInfo {
+ void setDescriptionString() override {
+ assert(!getTriple().isOSBinFormatMachO());
+ DescriptionString = "E-m:e-i64:64-i128:128-n32:64-S128";
+ }
+
+public:
+ AArch64beTargetInfo(const llvm::Triple &Triple)
+ : AArch64TargetInfo(Triple) { }
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override {
+ Builder.defineMacro("__AARCH64EB__");
+ Builder.defineMacro("__AARCH_BIG_ENDIAN");
+ Builder.defineMacro("__ARM_BIG_ENDIAN");
+ AArch64TargetInfo::getTargetDefines(Opts, Builder);
+ }
+};
+
+class DarwinAArch64TargetInfo : public DarwinTargetInfo<AArch64leTargetInfo> {
+protected:
+ void getOSDefines(const LangOptions &Opts, const llvm::Triple &Triple,
+ MacroBuilder &Builder) const override {
+ Builder.defineMacro("__AARCH64_SIMD__");
+ Builder.defineMacro("__ARM64_ARCH_8__");
+ Builder.defineMacro("__ARM_NEON__");
+ Builder.defineMacro("__LITTLE_ENDIAN__");
+ Builder.defineMacro("__REGISTER_PREFIX__", "");
+ Builder.defineMacro("__arm64", "1");
+ Builder.defineMacro("__arm64__", "1");
+
+ getDarwinDefines(Builder, Opts, Triple, PlatformName, PlatformMinVersion);
+ }
+
+public:
+ DarwinAArch64TargetInfo(const llvm::Triple &Triple)
+ : DarwinTargetInfo<AArch64leTargetInfo>(Triple) {
+ Int64Type = SignedLongLong;
+ WCharType = SignedInt;
+ UseSignedCharForObjCBool = false;
+
+ LongDoubleWidth = LongDoubleAlign = SuitableAlign = 64;
+ LongDoubleFormat = &llvm::APFloat::IEEEdouble;
+
+ TheCXXABI.set(TargetCXXABI::iOS64);
+ }
+
+ BuiltinVaListKind getBuiltinVaListKind() const override {
+ return TargetInfo::CharPtrBuiltinVaList;
+ }
+};
+
+// Hexagon abstract base class
+class HexagonTargetInfo : public TargetInfo {
+ static const Builtin::Info BuiltinInfo[];
+ static const char * const GCCRegNames[];
+ static const TargetInfo::GCCRegAlias GCCRegAliases[];
+ std::string CPU;
+public:
+ HexagonTargetInfo(const llvm::Triple &Triple) : TargetInfo(Triple) {
+ BigEndian = false;
+ DescriptionString = "e-m:e-p:32:32-i1:32-i64:64-a:0-n32";
+
+ // {} in inline assembly are packet specifiers, not assembly variant
+ // specifiers.
+ NoAsmVariants = true;
+ }
+
+ void getTargetBuiltins(const Builtin::Info *&Records,
+ unsigned &NumRecords) const override {
+ Records = BuiltinInfo;
+ NumRecords = clang::Hexagon::LastTSBuiltin-Builtin::FirstTSBuiltin;
+ }
+
+ bool validateAsmConstraint(const char *&Name,
+ TargetInfo::ConstraintInfo &Info) const override {
+ return true;
+ }
+
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override;
+
+ bool hasFeature(StringRef Feature) const override {
+ return Feature == "hexagon";
+ }
+
+ BuiltinVaListKind getBuiltinVaListKind() const override {
+ return TargetInfo::CharPtrBuiltinVaList;
+ }
+ void getGCCRegNames(const char * const *&Names,
+ unsigned &NumNames) const override;
+ void getGCCRegAliases(const GCCRegAlias *&Aliases,
+ unsigned &NumAliases) const override;
+ const char *getClobbers() const override {
+ return "";
+ }
+
+ static const char *getHexagonCPUSuffix(StringRef Name) {
+ return llvm::StringSwitch<const char*>(Name)
+ .Case("hexagonv4", "4")
+ .Case("hexagonv5", "5")
+ .Default(nullptr);
+ }
+
+ bool setCPU(const std::string &Name) override {
+ if (!getHexagonCPUSuffix(Name))
+ return false;
+
+ CPU = Name;
+ return true;
+ }
+};
+
+void HexagonTargetInfo::getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const {
+ Builder.defineMacro("qdsp6");
+ Builder.defineMacro("__qdsp6", "1");
+ Builder.defineMacro("__qdsp6__", "1");
+
+ Builder.defineMacro("hexagon");
+ Builder.defineMacro("__hexagon", "1");
+ Builder.defineMacro("__hexagon__", "1");
+
+ if(CPU == "hexagonv1") {
+ Builder.defineMacro("__HEXAGON_V1__");
+ Builder.defineMacro("__HEXAGON_ARCH__", "1");
+ if(Opts.HexagonQdsp6Compat) {
+ Builder.defineMacro("__QDSP6_V1__");
+ Builder.defineMacro("__QDSP6_ARCH__", "1");
+ }
+ }
+ else if(CPU == "hexagonv2") {
+ Builder.defineMacro("__HEXAGON_V2__");
+ Builder.defineMacro("__HEXAGON_ARCH__", "2");
+ if(Opts.HexagonQdsp6Compat) {
+ Builder.defineMacro("__QDSP6_V2__");
+ Builder.defineMacro("__QDSP6_ARCH__", "2");
+ }
+ }
+ else if(CPU == "hexagonv3") {
+ Builder.defineMacro("__HEXAGON_V3__");
+ Builder.defineMacro("__HEXAGON_ARCH__", "3");
+ if(Opts.HexagonQdsp6Compat) {
+ Builder.defineMacro("__QDSP6_V3__");
+ Builder.defineMacro("__QDSP6_ARCH__", "3");
+ }
+ }
+ else if(CPU == "hexagonv4") {
+ Builder.defineMacro("__HEXAGON_V4__");
+ Builder.defineMacro("__HEXAGON_ARCH__", "4");
+ if(Opts.HexagonQdsp6Compat) {
+ Builder.defineMacro("__QDSP6_V4__");
+ Builder.defineMacro("__QDSP6_ARCH__", "4");
+ }
+ }
+ else if(CPU == "hexagonv5") {
+ Builder.defineMacro("__HEXAGON_V5__");
+ Builder.defineMacro("__HEXAGON_ARCH__", "5");
+ if(Opts.HexagonQdsp6Compat) {
+ Builder.defineMacro("__QDSP6_V5__");
+ Builder.defineMacro("__QDSP6_ARCH__", "5");
+ }
+ }
+}
+
+const char * const HexagonTargetInfo::GCCRegNames[] = {
+ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
+ "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
+ "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
+ "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
+ "p0", "p1", "p2", "p3",
+ "sa0", "lc0", "sa1", "lc1", "m0", "m1", "usr", "ugp"
+};
+
+void HexagonTargetInfo::getGCCRegNames(const char * const *&Names,
+ unsigned &NumNames) const {
+ Names = GCCRegNames;
+ NumNames = llvm::array_lengthof(GCCRegNames);
+}
+
+
+const TargetInfo::GCCRegAlias HexagonTargetInfo::GCCRegAliases[] = {
+ { { "sp" }, "r29" },
+ { { "fp" }, "r30" },
+ { { "lr" }, "r31" },
+ };
+
+void HexagonTargetInfo::getGCCRegAliases(const GCCRegAlias *&Aliases,
+ unsigned &NumAliases) const {
+ Aliases = GCCRegAliases;
+ NumAliases = llvm::array_lengthof(GCCRegAliases);
+}
+
+
+const Builtin::Info HexagonTargetInfo::BuiltinInfo[] = {
+#define BUILTIN(ID, TYPE, ATTRS) { #ID, TYPE, ATTRS, 0, ALL_LANGUAGES },
+#define LIBBUILTIN(ID, TYPE, ATTRS, HEADER) { #ID, TYPE, ATTRS, HEADER,\
+ ALL_LANGUAGES },
+#include "clang/Basic/BuiltinsHexagon.def"
+};
+
+// Shared base class for SPARC v8 (32-bit) and SPARC v9 (64-bit).
+class SparcTargetInfo : public TargetInfo {
+ static const TargetInfo::GCCRegAlias GCCRegAliases[];
+ static const char * const GCCRegNames[];
+ bool SoftFloat;
+public:
+ SparcTargetInfo(const llvm::Triple &Triple)
+ : TargetInfo(Triple), SoftFloat(false) {}
+
+ bool handleTargetFeatures(std::vector<std::string> &Features,
+ DiagnosticsEngine &Diags) override {
+ // The backend doesn't actually handle soft float yet, but in case someone
+ // is using the support for the front end continue to support it.
+ auto Feature = std::find(Features.begin(), Features.end(), "+soft-float");
+ if (Feature != Features.end()) {
+ SoftFloat = true;
+ Features.erase(Feature);
+ }
+ return true;
+ }
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override {
+ DefineStd(Builder, "sparc", Opts);
+ Builder.defineMacro("__REGISTER_PREFIX__", "");
+
+ if (SoftFloat)
+ Builder.defineMacro("SOFT_FLOAT", "1");
+ }
+
+ bool hasFeature(StringRef Feature) const override {
+ return llvm::StringSwitch<bool>(Feature)
+ .Case("softfloat", SoftFloat)
+ .Case("sparc", true)
+ .Default(false);
+ }
+
+ void getTargetBuiltins(const Builtin::Info *&Records,
+ unsigned &NumRecords) const override {
+ // FIXME: Implement!
+ }
+ BuiltinVaListKind getBuiltinVaListKind() const override {
+ return TargetInfo::VoidPtrBuiltinVaList;
+ }
+ void getGCCRegNames(const char * const *&Names,
+ unsigned &NumNames) const override;
+ void getGCCRegAliases(const GCCRegAlias *&Aliases,
+ unsigned &NumAliases) const override;
+ bool validateAsmConstraint(const char *&Name,
+ TargetInfo::ConstraintInfo &info) const override {
+ // FIXME: Implement!
+ switch (*Name) {
+ case 'I': // Signed 13-bit constant
+ case 'J': // Zero
+ case 'K': // 32-bit constant with the low 12 bits clear
+ case 'L': // A constant in the range supported by movcc (11-bit signed imm)
+ case 'M': // A constant in the range supported by movrcc (19-bit signed imm)
+ case 'N': // Same as 'K' but zext (required for SIMode)
+ case 'O': // The constant 4096
+ return true;
+ }
+ return false;
+ }
+ const char *getClobbers() const override {
+ // FIXME: Implement!
+ return "";
+ }
+};
+
+const char * const SparcTargetInfo::GCCRegNames[] = {
+ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
+ "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
+ "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
+ "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
+};
+
+void SparcTargetInfo::getGCCRegNames(const char * const *&Names,
+ unsigned &NumNames) const {
+ Names = GCCRegNames;
+ NumNames = llvm::array_lengthof(GCCRegNames);
+}
+
+const TargetInfo::GCCRegAlias SparcTargetInfo::GCCRegAliases[] = {
+ { { "g0" }, "r0" },
+ { { "g1" }, "r1" },
+ { { "g2" }, "r2" },
+ { { "g3" }, "r3" },
+ { { "g4" }, "r4" },
+ { { "g5" }, "r5" },
+ { { "g6" }, "r6" },
+ { { "g7" }, "r7" },
+ { { "o0" }, "r8" },
+ { { "o1" }, "r9" },
+ { { "o2" }, "r10" },
+ { { "o3" }, "r11" },
+ { { "o4" }, "r12" },
+ { { "o5" }, "r13" },
+ { { "o6", "sp" }, "r14" },
+ { { "o7" }, "r15" },
+ { { "l0" }, "r16" },
+ { { "l1" }, "r17" },
+ { { "l2" }, "r18" },
+ { { "l3" }, "r19" },
+ { { "l4" }, "r20" },
+ { { "l5" }, "r21" },
+ { { "l6" }, "r22" },
+ { { "l7" }, "r23" },
+ { { "i0" }, "r24" },
+ { { "i1" }, "r25" },
+ { { "i2" }, "r26" },
+ { { "i3" }, "r27" },
+ { { "i4" }, "r28" },
+ { { "i5" }, "r29" },
+ { { "i6", "fp" }, "r30" },
+ { { "i7" }, "r31" },
+};
+
+void SparcTargetInfo::getGCCRegAliases(const GCCRegAlias *&Aliases,
+ unsigned &NumAliases) const {
+ Aliases = GCCRegAliases;
+ NumAliases = llvm::array_lengthof(GCCRegAliases);
+}
+
+// SPARC v8 is the 32-bit mode selected by Triple::sparc.
+class SparcV8TargetInfo : public SparcTargetInfo {
+public:
+ SparcV8TargetInfo(const llvm::Triple &Triple) : SparcTargetInfo(Triple) {
+ DescriptionString = "E-m:e-p:32:32-i64:64-f128:64-n32-S64";
+ }
+
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override {
+ SparcTargetInfo::getTargetDefines(Opts, Builder);
+ Builder.defineMacro("__sparcv8");
+ }
+};
+
+// SPARCV8el is the 32-bit little-endian mode selected by Triple::sparcel.
+class SparcV8elTargetInfo : public SparcV8TargetInfo {
+ public:
+ SparcV8elTargetInfo(const llvm::Triple &Triple) : SparcV8TargetInfo(Triple) {
+ DescriptionString = "e-m:e-p:32:32-i64:64-f128:64-n32-S64";
+ BigEndian = false;
+ }
+};
+
+// SPARC v9 is the 64-bit mode selected by Triple::sparcv9.
+class SparcV9TargetInfo : public SparcTargetInfo {
+public:
+ SparcV9TargetInfo(const llvm::Triple &Triple) : SparcTargetInfo(Triple) {
+ // FIXME: Support Sparc quad-precision long double?
+ DescriptionString = "E-m:e-i64:64-n32:64-S128";
+ // This is an LP64 platform.
+ LongWidth = LongAlign = PointerWidth = PointerAlign = 64;
+
+ // OpenBSD uses long long for int64_t and intmax_t.
+ if (getTriple().getOS() == llvm::Triple::OpenBSD)
+ IntMaxType = SignedLongLong;
+ else
+ IntMaxType = SignedLong;
+ Int64Type = IntMaxType;
+
+ // The SPARCv8 System V ABI has long double 128-bits in size, but 64-bit
+ // aligned. The SPARCv9 SCD 2.4.1 says 16-byte aligned.
+ LongDoubleWidth = 128;
+ LongDoubleAlign = 128;
+ LongDoubleFormat = &llvm::APFloat::IEEEquad;
+ MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 64;
+ }
+
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override {
+ SparcTargetInfo::getTargetDefines(Opts, Builder);
+ Builder.defineMacro("__sparcv9");
+ Builder.defineMacro("__arch64__");
+ // Solaris doesn't need these variants, but the BSDs do.
+ if (getTriple().getOS() != llvm::Triple::Solaris) {
+ Builder.defineMacro("__sparc64__");
+ Builder.defineMacro("__sparc_v9__");
+ Builder.defineMacro("__sparcv9__");
+ }
+ }
+
+ bool setCPU(const std::string &Name) override {
+ bool CPUKnown = llvm::StringSwitch<bool>(Name)
+ .Case("v9", true)
+ .Case("ultrasparc", true)
+ .Case("ultrasparc3", true)
+ .Case("niagara", true)
+ .Case("niagara2", true)
+ .Case("niagara3", true)
+ .Case("niagara4", true)
+ .Default(false);
+
+ // No need to store the CPU yet. There aren't any CPU-specific
+ // macros to define.
+ return CPUKnown;
+ }
+};
+
+class SolarisSparcV8TargetInfo : public SolarisTargetInfo<SparcV8TargetInfo> {
+public:
+ SolarisSparcV8TargetInfo(const llvm::Triple &Triple)
+ : SolarisTargetInfo<SparcV8TargetInfo>(Triple) {
+ SizeType = UnsignedInt;
+ PtrDiffType = SignedInt;
+ }
+};
+
+class SystemZTargetInfo : public TargetInfo {
+ static const Builtin::Info BuiltinInfo[];
+ static const char *const GCCRegNames[];
+ std::string CPU;
+ bool HasTransactionalExecution;
+ bool HasVector;
+
+public:
+ SystemZTargetInfo(const llvm::Triple &Triple)
+ : TargetInfo(Triple), CPU("z10"), HasTransactionalExecution(false), HasVector(false) {
+ IntMaxType = SignedLong;
+ Int64Type = SignedLong;
+ TLSSupported = true;
+ IntWidth = IntAlign = 32;
+ LongWidth = LongLongWidth = LongAlign = LongLongAlign = 64;
+ PointerWidth = PointerAlign = 64;
+ LongDoubleWidth = 128;
+ LongDoubleAlign = 64;
+ LongDoubleFormat = &llvm::APFloat::IEEEquad;
+ DefaultAlignForAttributeAligned = 64;
+ MinGlobalAlign = 16;
+ DescriptionString = "E-m:e-i1:8:16-i8:8:16-i64:64-f128:64-a:8:16-n32:64";
+ MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 64;
+ }
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override {
+ Builder.defineMacro("__s390__");
+ Builder.defineMacro("__s390x__");
+ Builder.defineMacro("__zarch__");
+ Builder.defineMacro("__LONG_DOUBLE_128__");
+ if (HasTransactionalExecution)
+ Builder.defineMacro("__HTM__");
+ }
+ void getTargetBuiltins(const Builtin::Info *&Records,
+ unsigned &NumRecords) const override {
+ Records = BuiltinInfo;
+ NumRecords = clang::SystemZ::LastTSBuiltin-Builtin::FirstTSBuiltin;
+ }
+
+ void getGCCRegNames(const char *const *&Names,
+ unsigned &NumNames) const override;
+ void getGCCRegAliases(const GCCRegAlias *&Aliases,
+ unsigned &NumAliases) const override {
+ // No aliases.
+ Aliases = nullptr;
+ NumAliases = 0;
+ }
+ bool validateAsmConstraint(const char *&Name,
+ TargetInfo::ConstraintInfo &info) const override;
+ const char *getClobbers() const override {
+ // FIXME: Is this really right?
+ return "";
+ }
+ BuiltinVaListKind getBuiltinVaListKind() const override {
+ return TargetInfo::SystemZBuiltinVaList;
+ }
+ bool setCPU(const std::string &Name) override {
+ CPU = Name;
+ bool CPUKnown = llvm::StringSwitch<bool>(Name)
+ .Case("z10", true)
+ .Case("z196", true)
+ .Case("zEC12", true)
+ .Case("z13", true)
+ .Default(false);
+
+ return CPUKnown;
+ }
+ void getDefaultFeatures(llvm::StringMap<bool> &Features) const override {
+ if (CPU == "zEC12")
+ Features["transactional-execution"] = true;
+ if (CPU == "z13") {
+ Features["transactional-execution"] = true;
+ Features["vector"] = true;
+ }
+ }
+
+ bool handleTargetFeatures(std::vector<std::string> &Features,
+ DiagnosticsEngine &Diags) override {
+ HasTransactionalExecution = false;
+ for (unsigned i = 0, e = Features.size(); i != e; ++i) {
+ if (Features[i] == "+transactional-execution")
+ HasTransactionalExecution = true;
+ if (Features[i] == "+vector")
+ HasVector = true;
+ }
+ // If we use the vector ABI, vector types are 64-bit aligned.
+ if (HasVector) {
+ MaxVectorAlign = 64;
+ DescriptionString = "E-m:e-i1:8:16-i8:8:16-i64:64-f128:64"
+ "-v128:64-a:8:16-n32:64";
+ }
+ return true;
+ }
+
+ bool hasFeature(StringRef Feature) const override {
+ return llvm::StringSwitch<bool>(Feature)
+ .Case("systemz", true)
+ .Case("htm", HasTransactionalExecution)
+ .Case("vx", HasVector)
+ .Default(false);
+ }
+
+ StringRef getABI() const override {
+ if (HasVector)
+ return "vector";
+ return "";
+ }
+};
+
+const Builtin::Info SystemZTargetInfo::BuiltinInfo[] = {
+#define BUILTIN(ID, TYPE, ATTRS) \
+ { #ID, TYPE, ATTRS, 0, ALL_LANGUAGES },
+#include "clang/Basic/BuiltinsSystemZ.def"
+};
+
+const char *const SystemZTargetInfo::GCCRegNames[] = {
+ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
+ "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
+ "f0", "f2", "f4", "f6", "f1", "f3", "f5", "f7",
+ "f8", "f10", "f12", "f14", "f9", "f11", "f13", "f15"
+};
+
+void SystemZTargetInfo::getGCCRegNames(const char *const *&Names,
+ unsigned &NumNames) const {
+ Names = GCCRegNames;
+ NumNames = llvm::array_lengthof(GCCRegNames);
+}
+
+bool SystemZTargetInfo::
+validateAsmConstraint(const char *&Name,
+ TargetInfo::ConstraintInfo &Info) const {
+ switch (*Name) {
+ default:
+ return false;
+
+ case 'a': // Address register
+ case 'd': // Data register (equivalent to 'r')
+ case 'f': // Floating-point register
+ Info.setAllowsRegister();
+ return true;
+
+ case 'I': // Unsigned 8-bit constant
+ case 'J': // Unsigned 12-bit constant
+ case 'K': // Signed 16-bit constant
+ case 'L': // Signed 20-bit displacement (on all targets we support)
+ case 'M': // 0x7fffffff
+ return true;
+
+ case 'Q': // Memory with base and unsigned 12-bit displacement
+ case 'R': // Likewise, plus an index
+ case 'S': // Memory with base and signed 20-bit displacement
+ case 'T': // Likewise, plus an index
+ Info.setAllowsMemory();
+ return true;
+ }
+}
+
+ class MSP430TargetInfo : public TargetInfo {
+ static const char * const GCCRegNames[];
+ public:
+ MSP430TargetInfo(const llvm::Triple &Triple) : TargetInfo(Triple) {
+ BigEndian = false;
+ TLSSupported = false;
+ IntWidth = 16; IntAlign = 16;
+ LongWidth = 32; LongLongWidth = 64;
+ LongAlign = LongLongAlign = 16;
+ PointerWidth = 16; PointerAlign = 16;
+ SuitableAlign = 16;
+ SizeType = UnsignedInt;
+ IntMaxType = SignedLongLong;
+ IntPtrType = SignedInt;
+ PtrDiffType = SignedInt;
+ SigAtomicType = SignedLong;
+ DescriptionString = "e-m:e-p:16:16-i32:16:32-a:16-n8:16";
+ }
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override {
+ Builder.defineMacro("MSP430");
+ Builder.defineMacro("__MSP430__");
+ // FIXME: defines for different 'flavours' of MCU
+ }
+ void getTargetBuiltins(const Builtin::Info *&Records,
+ unsigned &NumRecords) const override {
+ // FIXME: Implement.
+ Records = nullptr;
+ NumRecords = 0;
+ }
+ bool hasFeature(StringRef Feature) const override {
+ return Feature == "msp430";
+ }
+ void getGCCRegNames(const char * const *&Names,
+ unsigned &NumNames) const override;
+ void getGCCRegAliases(const GCCRegAlias *&Aliases,
+ unsigned &NumAliases) const override {
+ // No aliases.
+ Aliases = nullptr;
+ NumAliases = 0;
+ }
+ bool
+ validateAsmConstraint(const char *&Name,
+ TargetInfo::ConstraintInfo &info) const override {
+ // FIXME: implement
+ switch (*Name) {
+ case 'K': // the constant 1
+ case 'L': // constant -1^20 .. 1^19
+ case 'M': // constant 1-4:
+ return true;
+ }
+ // No target constraints for now.
+ return false;
+ }
+ const char *getClobbers() const override {
+ // FIXME: Is this really right?
+ return "";
+ }
+ BuiltinVaListKind getBuiltinVaListKind() const override {
+ // FIXME: implement
+ return TargetInfo::CharPtrBuiltinVaList;
+ }
+ };
+
+ const char * const MSP430TargetInfo::GCCRegNames[] = {
+ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
+ "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
+ };
+
+ void MSP430TargetInfo::getGCCRegNames(const char * const *&Names,
+ unsigned &NumNames) const {
+ Names = GCCRegNames;
+ NumNames = llvm::array_lengthof(GCCRegNames);
+ }
+
+ // LLVM and Clang cannot be used directly to output native binaries for
+ // target, but is used to compile C code to llvm bitcode with correct
+ // type and alignment information.
+ //
+ // TCE uses the llvm bitcode as input and uses it for generating customized
+ // target processor and program binary. TCE co-design environment is
+ // publicly available in http://tce.cs.tut.fi
+
+ static const unsigned TCEOpenCLAddrSpaceMap[] = {
+ 3, // opencl_global
+ 4, // opencl_local
+ 5, // opencl_constant
+ // FIXME: generic has to be added to the target
+ 0, // opencl_generic
+ 0, // cuda_device
+ 0, // cuda_constant
+ 0 // cuda_shared
+ };
+
+ class TCETargetInfo : public TargetInfo{
+ public:
+ TCETargetInfo(const llvm::Triple &Triple) : TargetInfo(Triple) {
+ TLSSupported = false;
+ IntWidth = 32;
+ LongWidth = LongLongWidth = 32;
+ PointerWidth = 32;
+ IntAlign = 32;
+ LongAlign = LongLongAlign = 32;
+ PointerAlign = 32;
+ SuitableAlign = 32;
+ SizeType = UnsignedInt;
+ IntMaxType = SignedLong;
+ IntPtrType = SignedInt;
+ PtrDiffType = SignedInt;
+ FloatWidth = 32;
+ FloatAlign = 32;
+ DoubleWidth = 32;
+ DoubleAlign = 32;
+ LongDoubleWidth = 32;
+ LongDoubleAlign = 32;
+ FloatFormat = &llvm::APFloat::IEEEsingle;
+ DoubleFormat = &llvm::APFloat::IEEEsingle;
+ LongDoubleFormat = &llvm::APFloat::IEEEsingle;
+ DescriptionString = "E-p:32:32-i8:8:32-i16:16:32-i64:32"
+ "-f64:32-v64:32-v128:32-a:0:32-n32";
+ AddrSpaceMap = &TCEOpenCLAddrSpaceMap;
+ UseAddrSpaceMapMangling = true;
+ }
+
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override {
+ DefineStd(Builder, "tce", Opts);
+ Builder.defineMacro("__TCE__");
+ Builder.defineMacro("__TCE_V1__");
+ }
+ bool hasFeature(StringRef Feature) const override {
+ return Feature == "tce";
+ }
+
+ void getTargetBuiltins(const Builtin::Info *&Records,
+ unsigned &NumRecords) const override {}
+ const char *getClobbers() const override {
+ return "";
+ }
+ BuiltinVaListKind getBuiltinVaListKind() const override {
+ return TargetInfo::VoidPtrBuiltinVaList;
+ }
+ void getGCCRegNames(const char * const *&Names,
+ unsigned &NumNames) const override {}
+ bool validateAsmConstraint(const char *&Name,
+ TargetInfo::ConstraintInfo &info) const override{
+ return true;
+ }
+ void getGCCRegAliases(const GCCRegAlias *&Aliases,
+ unsigned &NumAliases) const override {}
+ };
+
+class MipsTargetInfoBase : public TargetInfo {
+ virtual void setDescriptionString() = 0;
+
+ static const Builtin::Info BuiltinInfo[];
+ std::string CPU;
+ bool IsMips16;
+ bool IsMicromips;
+ bool IsNan2008;
+ bool IsSingleFloat;
+ enum MipsFloatABI {
+ HardFloat, SoftFloat
+ } FloatABI;
+ enum DspRevEnum {
+ NoDSP, DSP1, DSP2
+ } DspRev;
+ bool HasMSA;
+
+protected:
+ bool HasFP64;
+ std::string ABI;
+
+public:
+ MipsTargetInfoBase(const llvm::Triple &Triple, const std::string &ABIStr,
+ const std::string &CPUStr)
+ : TargetInfo(Triple), CPU(CPUStr), IsMips16(false), IsMicromips(false),
+ IsNan2008(false), IsSingleFloat(false), FloatABI(HardFloat),
+ DspRev(NoDSP), HasMSA(false), HasFP64(false), ABI(ABIStr) {
+ TheCXXABI.set(TargetCXXABI::GenericMIPS);
+ }
+
+ bool isNaN2008Default() const {
+ return CPU == "mips32r6" || CPU == "mips64r6";
+ }
+
+ bool isFP64Default() const {
+ return CPU == "mips32r6" || ABI == "n32" || ABI == "n64" || ABI == "64";
+ }
+
+ bool isNan2008() const override {
+ return IsNan2008;
+ }
+
+ StringRef getABI() const override { return ABI; }
+ bool setCPU(const std::string &Name) override {
+ bool IsMips32 = getTriple().getArch() == llvm::Triple::mips ||
+ getTriple().getArch() == llvm::Triple::mipsel;
+ CPU = Name;
+ return llvm::StringSwitch<bool>(Name)
+ .Case("mips1", IsMips32)
+ .Case("mips2", IsMips32)
+ .Case("mips3", true)
+ .Case("mips4", true)
+ .Case("mips5", true)
+ .Case("mips32", IsMips32)
+ .Case("mips32r2", IsMips32)
+ .Case("mips32r3", IsMips32)
+ .Case("mips32r5", IsMips32)
+ .Case("mips32r6", IsMips32)
+ .Case("mips64", true)
+ .Case("mips64r2", true)
+ .Case("mips64r3", true)
+ .Case("mips64r5", true)
+ .Case("mips64r6", true)
+ .Case("octeon", true)
+ .Default(false);
+ }
+ const std::string& getCPU() const { return CPU; }
+ void getDefaultFeatures(llvm::StringMap<bool> &Features) const override {
+ if (CPU == "octeon")
+ Features["mips64r2"] = Features["cnmips"] = true;
+ else
+ Features[CPU] = true;
+ }
+
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override {
+ Builder.defineMacro("__mips__");
+ Builder.defineMacro("_mips");
+ if (Opts.GNUMode)
+ Builder.defineMacro("mips");
+
+ Builder.defineMacro("__REGISTER_PREFIX__", "");
+
+ switch (FloatABI) {
+ case HardFloat:
+ Builder.defineMacro("__mips_hard_float", Twine(1));
+ break;
+ case SoftFloat:
+ Builder.defineMacro("__mips_soft_float", Twine(1));
+ break;
+ }
+
+ if (IsSingleFloat)
+ Builder.defineMacro("__mips_single_float", Twine(1));
+
+ Builder.defineMacro("__mips_fpr", HasFP64 ? Twine(64) : Twine(32));
+ Builder.defineMacro("_MIPS_FPSET",
+ Twine(32 / (HasFP64 || IsSingleFloat ? 1 : 2)));
+
+ if (IsMips16)
+ Builder.defineMacro("__mips16", Twine(1));
+
+ if (IsMicromips)
+ Builder.defineMacro("__mips_micromips", Twine(1));
+
+ if (IsNan2008)
+ Builder.defineMacro("__mips_nan2008", Twine(1));
+
+ switch (DspRev) {
+ default:
+ break;
+ case DSP1:
+ Builder.defineMacro("__mips_dsp_rev", Twine(1));
+ Builder.defineMacro("__mips_dsp", Twine(1));
+ break;
+ case DSP2:
+ Builder.defineMacro("__mips_dsp_rev", Twine(2));
+ Builder.defineMacro("__mips_dspr2", Twine(1));
+ Builder.defineMacro("__mips_dsp", Twine(1));
+ break;
+ }
+
+ if (HasMSA)
+ Builder.defineMacro("__mips_msa", Twine(1));
+
+ Builder.defineMacro("_MIPS_SZPTR", Twine(getPointerWidth(0)));
+ Builder.defineMacro("_MIPS_SZINT", Twine(getIntWidth()));
+ Builder.defineMacro("_MIPS_SZLONG", Twine(getLongWidth()));
+
+ Builder.defineMacro("_MIPS_ARCH", "\"" + CPU + "\"");
+ Builder.defineMacro("_MIPS_ARCH_" + StringRef(CPU).upper());
+ }
+
+ void getTargetBuiltins(const Builtin::Info *&Records,
+ unsigned &NumRecords) const override {
+ Records = BuiltinInfo;
+ NumRecords = clang::Mips::LastTSBuiltin - Builtin::FirstTSBuiltin;
+ }
+ bool hasFeature(StringRef Feature) const override {
+ return llvm::StringSwitch<bool>(Feature)
+ .Case("mips", true)
+ .Case("fp64", HasFP64)
+ .Default(false);
+ }
+ BuiltinVaListKind getBuiltinVaListKind() const override {
+ return TargetInfo::VoidPtrBuiltinVaList;
+ }
+ void getGCCRegNames(const char * const *&Names,
+ unsigned &NumNames) const override {
+ static const char *const GCCRegNames[] = {
+ // CPU register names
+ // Must match second column of GCCRegAliases
+ "$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7",
+ "$8", "$9", "$10", "$11", "$12", "$13", "$14", "$15",
+ "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23",
+ "$24", "$25", "$26", "$27", "$28", "$29", "$30", "$31",
+ // Floating point register names
+ "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7",
+ "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",
+ "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",
+ "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31",
+ // Hi/lo and condition register names
+ "hi", "lo", "", "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4",
+ "$fcc5","$fcc6","$fcc7",
+ // MSA register names
+ "$w0", "$w1", "$w2", "$w3", "$w4", "$w5", "$w6", "$w7",
+ "$w8", "$w9", "$w10", "$w11", "$w12", "$w13", "$w14", "$w15",
+ "$w16", "$w17", "$w18", "$w19", "$w20", "$w21", "$w22", "$w23",
+ "$w24", "$w25", "$w26", "$w27", "$w28", "$w29", "$w30", "$w31",
+ // MSA control register names
+ "$msair", "$msacsr", "$msaaccess", "$msasave", "$msamodify",
+ "$msarequest", "$msamap", "$msaunmap"
+ };
+ Names = GCCRegNames;
+ NumNames = llvm::array_lengthof(GCCRegNames);
+ }
+ void getGCCRegAliases(const GCCRegAlias *&Aliases,
+ unsigned &NumAliases) const override = 0;
+ bool validateAsmConstraint(const char *&Name,
+ TargetInfo::ConstraintInfo &Info) const override {
+ switch (*Name) {
+ default:
+ return false;
+ case 'r': // CPU registers.
+ case 'd': // Equivalent to "r" unless generating MIPS16 code.
+ case 'y': // Equivalent to "r", backward compatibility only.
+ case 'f': // floating-point registers.
+ case 'c': // $25 for indirect jumps
+ case 'l': // lo register
+ case 'x': // hilo register pair
+ Info.setAllowsRegister();
+ return true;
+ case 'I': // Signed 16-bit constant
+ case 'J': // Integer 0
+ case 'K': // Unsigned 16-bit constant
+ case 'L': // Signed 32-bit constant, lower 16-bit zeros (for lui)
+ case 'M': // Constants not loadable via lui, addiu, or ori
+ case 'N': // Constant -1 to -65535
+ case 'O': // A signed 15-bit constant
+ case 'P': // A constant between 1 go 65535
+ return true;
+ case 'R': // An address that can be used in a non-macro load or store
+ Info.setAllowsMemory();
+ return true;
+ case 'Z':
+ if (Name[1] == 'C') { // An address usable by ll, and sc.
+ Info.setAllowsMemory();
+ Name++; // Skip over 'Z'.
+ return true;
+ }
+ return false;
+ }
+ }
+
+ std::string convertConstraint(const char *&Constraint) const override {
+ std::string R;
+ switch (*Constraint) {
+ case 'Z': // Two-character constraint; add "^" hint for later parsing.
+ if (Constraint[1] == 'C') {
+ R = std::string("^") + std::string(Constraint, 2);
+ Constraint++;
+ return R;
+ }
+ break;
+ }
+ return TargetInfo::convertConstraint(Constraint);
+ }
+
+ const char *getClobbers() const override {
+ // In GCC, $1 is not widely used in generated code (it's used only in a few
+ // specific situations), so there is no real need for users to add it to
+ // the clobbers list if they want to use it in their inline assembly code.
+ //
+ // In LLVM, $1 is treated as a normal GPR and is always allocatable during
+ // code generation, so using it in inline assembly without adding it to the
+ // clobbers list can cause conflicts between the inline assembly code and
+ // the surrounding generated code.
+ //
+ // Another problem is that LLVM is allowed to choose $1 for inline assembly
+ // operands, which will conflict with the ".set at" assembler option (which
+ // we use only for inline assembly, in order to maintain compatibility with
+ // GCC) and will also conflict with the user's usage of $1.
+ //
+ // The easiest way to avoid these conflicts and keep $1 as an allocatable
+ // register for generated code is to automatically clobber $1 for all inline
+ // assembly code.
+ //
+ // FIXME: We should automatically clobber $1 only for inline assembly code
+ // which actually uses it. This would allow LLVM to use $1 for inline
+ // assembly operands if the user's assembly code doesn't use it.
+ return "~{$1}";
+ }
+
+ bool handleTargetFeatures(std::vector<std::string> &Features,
+ DiagnosticsEngine &Diags) override {
+ IsMips16 = false;
+ IsMicromips = false;
+ IsNan2008 = isNaN2008Default();
+ IsSingleFloat = false;
+ FloatABI = HardFloat;
+ DspRev = NoDSP;
+ HasFP64 = isFP64Default();
+
+ for (std::vector<std::string>::iterator it = Features.begin(),
+ ie = Features.end(); it != ie; ++it) {
+ if (*it == "+single-float")
+ IsSingleFloat = true;
+ else if (*it == "+soft-float")
+ FloatABI = SoftFloat;
+ else if (*it == "+mips16")
+ IsMips16 = true;
+ else if (*it == "+micromips")
+ IsMicromips = true;
+ else if (*it == "+dsp")
+ DspRev = std::max(DspRev, DSP1);
+ else if (*it == "+dspr2")
+ DspRev = std::max(DspRev, DSP2);
+ else if (*it == "+msa")
+ HasMSA = true;
+ else if (*it == "+fp64")
+ HasFP64 = true;
+ else if (*it == "-fp64")
+ HasFP64 = false;
+ else if (*it == "+nan2008")
+ IsNan2008 = true;
+ else if (*it == "-nan2008")
+ IsNan2008 = false;
+ }
+
+ setDescriptionString();
+
+ return true;
+ }
+
+ int getEHDataRegisterNumber(unsigned RegNo) const override {
+ if (RegNo == 0) return 4;
+ if (RegNo == 1) return 5;
+ return -1;
+ }
+
+ bool isCLZForZeroUndef() const override { return false; }
+};
+
+const Builtin::Info MipsTargetInfoBase::BuiltinInfo[] = {
+#define BUILTIN(ID, TYPE, ATTRS) { #ID, TYPE, ATTRS, 0, ALL_LANGUAGES },
+#define LIBBUILTIN(ID, TYPE, ATTRS, HEADER) { #ID, TYPE, ATTRS, HEADER,\
+ ALL_LANGUAGES },
+#include "clang/Basic/BuiltinsMips.def"
+};
+
+class Mips32TargetInfoBase : public MipsTargetInfoBase {
+public:
+ Mips32TargetInfoBase(const llvm::Triple &Triple)
+ : MipsTargetInfoBase(Triple, "o32", "mips32r2") {
+ SizeType = UnsignedInt;
+ PtrDiffType = SignedInt;
+ Int64Type = SignedLongLong;
+ IntMaxType = Int64Type;
+ MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 32;
+ }
+ bool setABI(const std::string &Name) override {
+ if (Name == "o32" || Name == "eabi") {
+ ABI = Name;
+ return true;
+ }
+ return false;
+ }
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override {
+ MipsTargetInfoBase::getTargetDefines(Opts, Builder);
+
+ Builder.defineMacro("__mips", "32");
+ Builder.defineMacro("_MIPS_ISA", "_MIPS_ISA_MIPS32");
+
+ const std::string& CPUStr = getCPU();
+ if (CPUStr == "mips32")
+ Builder.defineMacro("__mips_isa_rev", "1");
+ else if (CPUStr == "mips32r2")
+ Builder.defineMacro("__mips_isa_rev", "2");
+ else if (CPUStr == "mips32r3")
+ Builder.defineMacro("__mips_isa_rev", "3");
+ else if (CPUStr == "mips32r5")
+ Builder.defineMacro("__mips_isa_rev", "5");
+ else if (CPUStr == "mips32r6")
+ Builder.defineMacro("__mips_isa_rev", "6");
+
+ if (ABI == "o32") {
+ Builder.defineMacro("__mips_o32");
+ Builder.defineMacro("_ABIO32", "1");
+ Builder.defineMacro("_MIPS_SIM", "_ABIO32");
+ }
+ else if (ABI == "eabi")
+ Builder.defineMacro("__mips_eabi");
+ else
+ llvm_unreachable("Invalid ABI for Mips32.");
+ }
+ void getGCCRegAliases(const GCCRegAlias *&Aliases,
+ unsigned &NumAliases) const override {
+ static const TargetInfo::GCCRegAlias GCCRegAliases[] = {
+ { { "at" }, "$1" },
+ { { "v0" }, "$2" },
+ { { "v1" }, "$3" },
+ { { "a0" }, "$4" },
+ { { "a1" }, "$5" },
+ { { "a2" }, "$6" },
+ { { "a3" }, "$7" },
+ { { "t0" }, "$8" },
+ { { "t1" }, "$9" },
+ { { "t2" }, "$10" },
+ { { "t3" }, "$11" },
+ { { "t4" }, "$12" },
+ { { "t5" }, "$13" },
+ { { "t6" }, "$14" },
+ { { "t7" }, "$15" },
+ { { "s0" }, "$16" },
+ { { "s1" }, "$17" },
+ { { "s2" }, "$18" },
+ { { "s3" }, "$19" },
+ { { "s4" }, "$20" },
+ { { "s5" }, "$21" },
+ { { "s6" }, "$22" },
+ { { "s7" }, "$23" },
+ { { "t8" }, "$24" },
+ { { "t9" }, "$25" },
+ { { "k0" }, "$26" },
+ { { "k1" }, "$27" },
+ { { "gp" }, "$28" },
+ { { "sp","$sp" }, "$29" },
+ { { "fp","$fp" }, "$30" },
+ { { "ra" }, "$31" }
+ };
+ Aliases = GCCRegAliases;
+ NumAliases = llvm::array_lengthof(GCCRegAliases);
+ }
+};
+
+class Mips32EBTargetInfo : public Mips32TargetInfoBase {
+ void setDescriptionString() override {
+ DescriptionString = "E-m:m-p:32:32-i8:8:32-i16:16:32-i64:64-n32-S64";
+ }
+
+public:
+ Mips32EBTargetInfo(const llvm::Triple &Triple)
+ : Mips32TargetInfoBase(Triple) {
+ }
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override {
+ DefineStd(Builder, "MIPSEB", Opts);
+ Builder.defineMacro("_MIPSEB");
+ Mips32TargetInfoBase::getTargetDefines(Opts, Builder);
+ }
+};
+
+class Mips32ELTargetInfo : public Mips32TargetInfoBase {
+ void setDescriptionString() override {
+ DescriptionString = "e-m:m-p:32:32-i8:8:32-i16:16:32-i64:64-n32-S64";
+ }
+
+public:
+ Mips32ELTargetInfo(const llvm::Triple &Triple)
+ : Mips32TargetInfoBase(Triple) {
+ BigEndian = false;
+ }
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override {
+ DefineStd(Builder, "MIPSEL", Opts);
+ Builder.defineMacro("_MIPSEL");
+ Mips32TargetInfoBase::getTargetDefines(Opts, Builder);
+ }
+};
+
+class Mips64TargetInfoBase : public MipsTargetInfoBase {
+public:
+ Mips64TargetInfoBase(const llvm::Triple &Triple)
+ : MipsTargetInfoBase(Triple, "n64", "mips64r2") {
+ LongDoubleWidth = LongDoubleAlign = 128;
+ LongDoubleFormat = &llvm::APFloat::IEEEquad;
+ if (getTriple().getOS() == llvm::Triple::FreeBSD) {
+ LongDoubleWidth = LongDoubleAlign = 64;
+ LongDoubleFormat = &llvm::APFloat::IEEEdouble;
+ }
+ setN64ABITypes();
+ SuitableAlign = 128;
+ MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 64;
+ }
+
+ void setN64ABITypes() {
+ LongWidth = LongAlign = 64;
+ PointerWidth = PointerAlign = 64;
+ SizeType = UnsignedLong;
+ PtrDiffType = SignedLong;
+ Int64Type = SignedLong;
+ IntMaxType = Int64Type;
+ }
+
+ void setN32ABITypes() {
+ LongWidth = LongAlign = 32;
+ PointerWidth = PointerAlign = 32;
+ SizeType = UnsignedInt;
+ PtrDiffType = SignedInt;
+ Int64Type = SignedLongLong;
+ IntMaxType = Int64Type;
+ }
+
+ bool setABI(const std::string &Name) override {
+ if (Name == "n32") {
+ setN32ABITypes();
+ ABI = Name;
+ return true;
+ }
+ if (Name == "n64") {
+ setN64ABITypes();
+ ABI = Name;
+ return true;
+ }
+ return false;
+ }
+
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override {
+ MipsTargetInfoBase::getTargetDefines(Opts, Builder);
+
+ Builder.defineMacro("__mips", "64");
+ Builder.defineMacro("__mips64");
+ Builder.defineMacro("__mips64__");
+ Builder.defineMacro("_MIPS_ISA", "_MIPS_ISA_MIPS64");
+
+ const std::string& CPUStr = getCPU();
+ if (CPUStr == "mips64")
+ Builder.defineMacro("__mips_isa_rev", "1");
+ else if (CPUStr == "mips64r2")
+ Builder.defineMacro("__mips_isa_rev", "2");
+ else if (CPUStr == "mips64r3")
+ Builder.defineMacro("__mips_isa_rev", "3");
+ else if (CPUStr == "mips64r5")
+ Builder.defineMacro("__mips_isa_rev", "5");
+ else if (CPUStr == "mips64r6")
+ Builder.defineMacro("__mips_isa_rev", "6");
+
+ if (ABI == "n32") {
+ Builder.defineMacro("__mips_n32");
+ Builder.defineMacro("_ABIN32", "2");
+ Builder.defineMacro("_MIPS_SIM", "_ABIN32");
+ }
+ else if (ABI == "n64") {
+ Builder.defineMacro("__mips_n64");
+ Builder.defineMacro("_ABI64", "3");
+ Builder.defineMacro("_MIPS_SIM", "_ABI64");
+ }
+ else
+ llvm_unreachable("Invalid ABI for Mips64.");
+ }
+ void getGCCRegAliases(const GCCRegAlias *&Aliases,
+ unsigned &NumAliases) const override {
+ static const TargetInfo::GCCRegAlias GCCRegAliases[] = {
+ { { "at" }, "$1" },
+ { { "v0" }, "$2" },
+ { { "v1" }, "$3" },
+ { { "a0" }, "$4" },
+ { { "a1" }, "$5" },
+ { { "a2" }, "$6" },
+ { { "a3" }, "$7" },
+ { { "a4" }, "$8" },
+ { { "a5" }, "$9" },
+ { { "a6" }, "$10" },
+ { { "a7" }, "$11" },
+ { { "t0" }, "$12" },
+ { { "t1" }, "$13" },
+ { { "t2" }, "$14" },
+ { { "t3" }, "$15" },
+ { { "s0" }, "$16" },
+ { { "s1" }, "$17" },
+ { { "s2" }, "$18" },
+ { { "s3" }, "$19" },
+ { { "s4" }, "$20" },
+ { { "s5" }, "$21" },
+ { { "s6" }, "$22" },
+ { { "s7" }, "$23" },
+ { { "t8" }, "$24" },
+ { { "t9" }, "$25" },
+ { { "k0" }, "$26" },
+ { { "k1" }, "$27" },
+ { { "gp" }, "$28" },
+ { { "sp","$sp" }, "$29" },
+ { { "fp","$fp" }, "$30" },
+ { { "ra" }, "$31" }
+ };
+ Aliases = GCCRegAliases;
+ NumAliases = llvm::array_lengthof(GCCRegAliases);
+ }
+
+ bool hasInt128Type() const override { return true; }
+};
+
+class Mips64EBTargetInfo : public Mips64TargetInfoBase {
+ void setDescriptionString() override {
+ if (ABI == "n32")
+ DescriptionString = "E-m:m-p:32:32-i8:8:32-i16:16:32-i64:64-n32:64-S128";
+ else
+ DescriptionString = "E-m:m-i8:8:32-i16:16:32-i64:64-n32:64-S128";
+
+ }
+
+public:
+ Mips64EBTargetInfo(const llvm::Triple &Triple)
+ : Mips64TargetInfoBase(Triple) {}
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override {
+ DefineStd(Builder, "MIPSEB", Opts);
+ Builder.defineMacro("_MIPSEB");
+ Mips64TargetInfoBase::getTargetDefines(Opts, Builder);
+ }
+};
+
+class Mips64ELTargetInfo : public Mips64TargetInfoBase {
+ void setDescriptionString() override {
+ if (ABI == "n32")
+ DescriptionString = "e-m:m-p:32:32-i8:8:32-i16:16:32-i64:64-n32:64-S128";
+ else
+ DescriptionString = "e-m:m-i8:8:32-i16:16:32-i64:64-n32:64-S128";
+ }
+public:
+ Mips64ELTargetInfo(const llvm::Triple &Triple)
+ : Mips64TargetInfoBase(Triple) {
+ // Default ABI is n64.
+ BigEndian = false;
+ }
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override {
+ DefineStd(Builder, "MIPSEL", Opts);
+ Builder.defineMacro("_MIPSEL");
+ Mips64TargetInfoBase::getTargetDefines(Opts, Builder);
+ }
+};
+
+class PNaClTargetInfo : public TargetInfo {
+public:
+ PNaClTargetInfo(const llvm::Triple &Triple) : TargetInfo(Triple) {
+ BigEndian = false;
+ this->UserLabelPrefix = "";
+ this->LongAlign = 32;
+ this->LongWidth = 32;
+ this->PointerAlign = 32;
+ this->PointerWidth = 32;
+ this->IntMaxType = TargetInfo::SignedLongLong;
+ this->Int64Type = TargetInfo::SignedLongLong;
+ this->DoubleAlign = 64;
+ this->LongDoubleWidth = 64;
+ this->LongDoubleAlign = 64;
+ this->SizeType = TargetInfo::UnsignedInt;
+ this->PtrDiffType = TargetInfo::SignedInt;
+ this->IntPtrType = TargetInfo::SignedInt;
+ this->RegParmMax = 0; // Disallow regparm
+ }
+
+ void getDefaultFeatures(llvm::StringMap<bool> &Features) const override {
+ }
+ void getArchDefines(const LangOptions &Opts, MacroBuilder &Builder) const {
+ Builder.defineMacro("__le32__");
+ Builder.defineMacro("__pnacl__");
+ }
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override {
+ getArchDefines(Opts, Builder);
+ }
+ bool hasFeature(StringRef Feature) const override {
+ return Feature == "pnacl";
+ }
+ void getTargetBuiltins(const Builtin::Info *&Records,
+ unsigned &NumRecords) const override {
+ }
+ BuiltinVaListKind getBuiltinVaListKind() const override {
+ return TargetInfo::PNaClABIBuiltinVaList;
+ }
+ void getGCCRegNames(const char * const *&Names,
+ unsigned &NumNames) const override;
+ void getGCCRegAliases(const GCCRegAlias *&Aliases,
+ unsigned &NumAliases) const override;
+ bool validateAsmConstraint(const char *&Name,
+ TargetInfo::ConstraintInfo &Info) const override {
+ return false;
+ }
+
+ const char *getClobbers() const override {
+ return "";
+ }
+};
+
+void PNaClTargetInfo::getGCCRegNames(const char * const *&Names,
+ unsigned &NumNames) const {
+ Names = nullptr;
+ NumNames = 0;
+}
+
+void PNaClTargetInfo::getGCCRegAliases(const GCCRegAlias *&Aliases,
+ unsigned &NumAliases) const {
+ Aliases = nullptr;
+ NumAliases = 0;
+}
+
+class Le64TargetInfo : public TargetInfo {
+ static const Builtin::Info BuiltinInfo[];
+
+public:
+ Le64TargetInfo(const llvm::Triple &Triple) : TargetInfo(Triple) {
+ BigEndian = false;
+ NoAsmVariants = true;
+ LongWidth = LongAlign = PointerWidth = PointerAlign = 64;
+ MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 64;
+ DescriptionString =
+ "e-m:e-v128:32-v16:16-v32:32-v96:32-n8:16:32:64-S128";
+ }
+
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override {
+ DefineStd(Builder, "unix", Opts);
+ defineCPUMacros(Builder, "le64", /*Tuning=*/false);
+ Builder.defineMacro("__ELF__");
+ }
+ void getTargetBuiltins(const Builtin::Info *&Records,
+ unsigned &NumRecords) const override {
+ Records = BuiltinInfo;
+ NumRecords = clang::Le64::LastTSBuiltin - Builtin::FirstTSBuiltin;
+ }
+ BuiltinVaListKind getBuiltinVaListKind() const override {
+ return TargetInfo::PNaClABIBuiltinVaList;
+ }
+ const char *getClobbers() const override { return ""; }
+ void getGCCRegNames(const char *const *&Names,
+ unsigned &NumNames) const override {
+ Names = nullptr;
+ NumNames = 0;
+ }
+ void getGCCRegAliases(const GCCRegAlias *&Aliases,
+ unsigned &NumAliases) const override {
+ Aliases = nullptr;
+ NumAliases = 0;
+ }
+ bool validateAsmConstraint(const char *&Name,
+ TargetInfo::ConstraintInfo &Info) const override {
+ return false;
+ }
+
+ bool hasProtectedVisibility() const override { return false; }
+};
+} // end anonymous namespace.
+
+const Builtin::Info Le64TargetInfo::BuiltinInfo[] = {
+#define BUILTIN(ID, TYPE, ATTRS) \
+ { #ID, TYPE, ATTRS, 0, ALL_LANGUAGES },
+#include "clang/Basic/BuiltinsLe64.def"
+};
+
+namespace {
+ static const unsigned SPIRAddrSpaceMap[] = {
+ 1, // opencl_global
+ 3, // opencl_local
+ 2, // opencl_constant
+ 4, // opencl_generic
+ 0, // cuda_device
+ 0, // cuda_constant
+ 0 // cuda_shared
+ };
+ class SPIRTargetInfo : public TargetInfo {
+ public:
+ SPIRTargetInfo(const llvm::Triple &Triple) : TargetInfo(Triple) {
+ assert(getTriple().getOS() == llvm::Triple::UnknownOS &&
+ "SPIR target must use unknown OS");
+ assert(getTriple().getEnvironment() == llvm::Triple::UnknownEnvironment &&
+ "SPIR target must use unknown environment type");
+ BigEndian = false;
+ TLSSupported = false;
+ LongWidth = LongAlign = 64;
+ AddrSpaceMap = &SPIRAddrSpaceMap;
+ UseAddrSpaceMapMangling = true;
+ // Define available target features
+ // These must be defined in sorted order!
+ NoAsmVariants = true;
+ }
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override {
+ DefineStd(Builder, "SPIR", Opts);
+ }
+ bool hasFeature(StringRef Feature) const override {
+ return Feature == "spir";
+ }
+
+ void getTargetBuiltins(const Builtin::Info *&Records,
+ unsigned &NumRecords) const override {}
+ const char *getClobbers() const override {
+ return "";
+ }
+ void getGCCRegNames(const char * const *&Names,
+ unsigned &NumNames) const override {}
+ bool
+ validateAsmConstraint(const char *&Name,
+ TargetInfo::ConstraintInfo &info) const override {
+ return true;
+ }
+ void getGCCRegAliases(const GCCRegAlias *&Aliases,
+ unsigned &NumAliases) const override {}
+ BuiltinVaListKind getBuiltinVaListKind() const override {
+ return TargetInfo::VoidPtrBuiltinVaList;
+ }
+
+ CallingConvCheckResult checkCallingConvention(CallingConv CC) const override {
+ return (CC == CC_SpirFunction ||
+ CC == CC_SpirKernel) ? CCCR_OK : CCCR_Warning;
+ }
+
+ CallingConv getDefaultCallingConv(CallingConvMethodType MT) const override {
+ return CC_SpirFunction;
+ }
+ };
+
+
+ class SPIR32TargetInfo : public SPIRTargetInfo {
+ public:
+ SPIR32TargetInfo(const llvm::Triple &Triple) : SPIRTargetInfo(Triple) {
+ PointerWidth = PointerAlign = 32;
+ SizeType = TargetInfo::UnsignedInt;
+ PtrDiffType = IntPtrType = TargetInfo::SignedInt;
+ DescriptionString
+ = "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-"
+ "v96:128-v192:256-v256:256-v512:512-v1024:1024";
+ }
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override {
+ DefineStd(Builder, "SPIR32", Opts);
+ }
+ };
+
+ class SPIR64TargetInfo : public SPIRTargetInfo {
+ public:
+ SPIR64TargetInfo(const llvm::Triple &Triple) : SPIRTargetInfo(Triple) {
+ PointerWidth = PointerAlign = 64;
+ SizeType = TargetInfo::UnsignedLong;
+ PtrDiffType = IntPtrType = TargetInfo::SignedLong;
+ DescriptionString = "e-i64:64-v16:16-v24:32-v32:32-v48:64-"
+ "v96:128-v192:256-v256:256-v512:512-v1024:1024";
+ }
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override {
+ DefineStd(Builder, "SPIR64", Opts);
+ }
+ };
+
+class XCoreTargetInfo : public TargetInfo {
+ static const Builtin::Info BuiltinInfo[];
+public:
+ XCoreTargetInfo(const llvm::Triple &Triple) : TargetInfo(Triple) {
+ BigEndian = false;
+ NoAsmVariants = true;
+ LongLongAlign = 32;
+ SuitableAlign = 32;
+ DoubleAlign = LongDoubleAlign = 32;
+ SizeType = UnsignedInt;
+ PtrDiffType = SignedInt;
+ IntPtrType = SignedInt;
+ WCharType = UnsignedChar;
+ WIntType = UnsignedInt;
+ UseZeroLengthBitfieldAlignment = true;
+ DescriptionString = "e-m:e-p:32:32-i1:8:32-i8:8:32-i16:16:32-i64:32"
+ "-f64:32-a:0:32-n32";
+ }
+ void getTargetDefines(const LangOptions &Opts,
+ MacroBuilder &Builder) const override {
+ Builder.defineMacro("__XS1B__");
+ }
+ void getTargetBuiltins(const Builtin::Info *&Records,
+ unsigned &NumRecords) const override {
+ Records = BuiltinInfo;
+ NumRecords = clang::XCore::LastTSBuiltin-Builtin::FirstTSBuiltin;
+ }
+ BuiltinVaListKind getBuiltinVaListKind() const override {
+ return TargetInfo::VoidPtrBuiltinVaList;
+ }
+ const char *getClobbers() const override {
+ return "";
+ }
+ void getGCCRegNames(const char * const *&Names,
+ unsigned &NumNames) const override {
+ static const char * const GCCRegNames[] = {
+ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
+ "r8", "r9", "r10", "r11", "cp", "dp", "sp", "lr"
+ };
+ Names = GCCRegNames;
+ NumNames = llvm::array_lengthof(GCCRegNames);
+ }
+ void getGCCRegAliases(const GCCRegAlias *&Aliases,
+ unsigned &NumAliases) const override {
+ Aliases = nullptr;
+ NumAliases = 0;
+ }
+ bool validateAsmConstraint(const char *&Name,
+ TargetInfo::ConstraintInfo &Info) const override {
+ return false;
+ }
+ int getEHDataRegisterNumber(unsigned RegNo) const override {
+ // R0=ExceptionPointerRegister R1=ExceptionSelectorRegister
+ return (RegNo < 2)? RegNo : -1;
+ }
+};
+
+const Builtin::Info XCoreTargetInfo::BuiltinInfo[] = {
+#define BUILTIN(ID, TYPE, ATTRS) { #ID, TYPE, ATTRS, 0, ALL_LANGUAGES },
+#define LIBBUILTIN(ID, TYPE, ATTRS, HEADER) { #ID, TYPE, ATTRS, HEADER,\
+ ALL_LANGUAGES },
+#include "clang/Basic/BuiltinsXCore.def"
+};
+} // end anonymous namespace.
+
+namespace {
+// x86_32 Android target
+class AndroidX86_32TargetInfo : public LinuxTargetInfo<X86_32TargetInfo> {
+public:
+ AndroidX86_32TargetInfo(const llvm::Triple &Triple)
+ : LinuxTargetInfo<X86_32TargetInfo>(Triple) {
+ SuitableAlign = 32;
+ LongDoubleWidth = 64;
+ LongDoubleFormat = &llvm::APFloat::IEEEdouble;
+ }
+};
+} // end anonymous namespace
+
+namespace {
+// x86_64 Android target
+class AndroidX86_64TargetInfo : public LinuxTargetInfo<X86_64TargetInfo> {
+public:
+ AndroidX86_64TargetInfo(const llvm::Triple &Triple)
+ : LinuxTargetInfo<X86_64TargetInfo>(Triple) {
+ LongDoubleFormat = &llvm::APFloat::IEEEquad;
+ }
+};
+} // end anonymous namespace
+
+
+//===----------------------------------------------------------------------===//
+// Driver code
+//===----------------------------------------------------------------------===//
+
+static TargetInfo *AllocateTarget(const llvm::Triple &Triple) {
+ llvm::Triple::OSType os = Triple.getOS();
+
+ switch (Triple.getArch()) {
+ default:
+ return nullptr;
+
+ case llvm::Triple::xcore:
+ return new XCoreTargetInfo(Triple);
+
+ case llvm::Triple::hexagon:
+ return new HexagonTargetInfo(Triple);
+
+ case llvm::Triple::aarch64:
+ if (Triple.isOSDarwin())
+ return new DarwinAArch64TargetInfo(Triple);
+
+ switch (os) {
+ case llvm::Triple::FreeBSD:
+ return new FreeBSDTargetInfo<AArch64leTargetInfo>(Triple);
+ case llvm::Triple::Linux:
+ return new LinuxTargetInfo<AArch64leTargetInfo>(Triple);
+ case llvm::Triple::NetBSD:
+ return new NetBSDTargetInfo<AArch64leTargetInfo>(Triple);
+ default:
+ return new AArch64leTargetInfo(Triple);
+ }
+
+ case llvm::Triple::aarch64_be:
+ switch (os) {
+ case llvm::Triple::FreeBSD:
+ return new FreeBSDTargetInfo<AArch64beTargetInfo>(Triple);
+ case llvm::Triple::Linux:
+ return new LinuxTargetInfo<AArch64beTargetInfo>(Triple);
+ case llvm::Triple::NetBSD:
+ return new NetBSDTargetInfo<AArch64beTargetInfo>(Triple);
+ default:
+ return new AArch64beTargetInfo(Triple);
+ }
+
+ case llvm::Triple::arm:
+ case llvm::Triple::thumb:
+ if (Triple.isOSBinFormatMachO())
+ return new DarwinARMTargetInfo(Triple);
+
+ switch (os) {
+ case llvm::Triple::Linux:
+ return new LinuxTargetInfo<ARMleTargetInfo>(Triple);
+ case llvm::Triple::FreeBSD:
+ return new FreeBSDTargetInfo<ARMleTargetInfo>(Triple);
+ case llvm::Triple::NetBSD:
+ return new NetBSDTargetInfo<ARMleTargetInfo>(Triple);
+ case llvm::Triple::OpenBSD:
+ return new OpenBSDTargetInfo<ARMleTargetInfo>(Triple);
+ case llvm::Triple::Bitrig:
+ return new BitrigTargetInfo<ARMleTargetInfo>(Triple);
+ case llvm::Triple::RTEMS:
+ return new RTEMSTargetInfo<ARMleTargetInfo>(Triple);
+ case llvm::Triple::NaCl:
+ return new NaClTargetInfo<ARMleTargetInfo>(Triple);
+ case llvm::Triple::Win32:
+ switch (Triple.getEnvironment()) {
+ default:
+ return new ARMleTargetInfo(Triple);
+ case llvm::Triple::Itanium:
+ return new ItaniumWindowsARMleTargetInfo(Triple);
+ case llvm::Triple::MSVC:
+ return new MicrosoftARMleTargetInfo(Triple);
+ }
+ default:
+ return new ARMleTargetInfo(Triple);
+ }
+
+ case llvm::Triple::armeb:
+ case llvm::Triple::thumbeb:
+ if (Triple.isOSDarwin())
+ return new DarwinARMTargetInfo(Triple);
+
+ switch (os) {
+ case llvm::Triple::Linux:
+ return new LinuxTargetInfo<ARMbeTargetInfo>(Triple);
+ case llvm::Triple::FreeBSD:
+ return new FreeBSDTargetInfo<ARMbeTargetInfo>(Triple);
+ case llvm::Triple::NetBSD:
+ return new NetBSDTargetInfo<ARMbeTargetInfo>(Triple);
+ case llvm::Triple::OpenBSD:
+ return new OpenBSDTargetInfo<ARMbeTargetInfo>(Triple);
+ case llvm::Triple::Bitrig:
+ return new BitrigTargetInfo<ARMbeTargetInfo>(Triple);
+ case llvm::Triple::RTEMS:
+ return new RTEMSTargetInfo<ARMbeTargetInfo>(Triple);
+ case llvm::Triple::NaCl:
+ return new NaClTargetInfo<ARMbeTargetInfo>(Triple);
+ default:
+ return new ARMbeTargetInfo(Triple);
+ }
+
+ case llvm::Triple::msp430:
+ return new MSP430TargetInfo(Triple);
+
+ case llvm::Triple::mips:
+ switch (os) {
+ case llvm::Triple::Linux:
+ return new LinuxTargetInfo<Mips32EBTargetInfo>(Triple);
+ case llvm::Triple::RTEMS:
+ return new RTEMSTargetInfo<Mips32EBTargetInfo>(Triple);
+ case llvm::Triple::FreeBSD:
+ return new FreeBSDTargetInfo<Mips32EBTargetInfo>(Triple);
+ case llvm::Triple::NetBSD:
+ return new NetBSDTargetInfo<Mips32EBTargetInfo>(Triple);
+ default:
+ return new Mips32EBTargetInfo(Triple);
+ }
+
+ case llvm::Triple::mipsel:
+ switch (os) {
+ case llvm::Triple::Linux:
+ return new LinuxTargetInfo<Mips32ELTargetInfo>(Triple);
+ case llvm::Triple::RTEMS:
+ return new RTEMSTargetInfo<Mips32ELTargetInfo>(Triple);
+ case llvm::Triple::FreeBSD:
+ return new FreeBSDTargetInfo<Mips32ELTargetInfo>(Triple);
+ case llvm::Triple::NetBSD:
+ return new NetBSDTargetInfo<Mips32ELTargetInfo>(Triple);
+ case llvm::Triple::NaCl:
+ return new NaClTargetInfo<Mips32ELTargetInfo>(Triple);
+ default:
+ return new Mips32ELTargetInfo(Triple);
+ }
+
+ case llvm::Triple::mips64:
+ switch (os) {
+ case llvm::Triple::Linux:
+ return new LinuxTargetInfo<Mips64EBTargetInfo>(Triple);
+ case llvm::Triple::RTEMS:
+ return new RTEMSTargetInfo<Mips64EBTargetInfo>(Triple);
+ case llvm::Triple::FreeBSD:
+ return new FreeBSDTargetInfo<Mips64EBTargetInfo>(Triple);
+ case llvm::Triple::NetBSD:
+ return new NetBSDTargetInfo<Mips64EBTargetInfo>(Triple);
+ case llvm::Triple::OpenBSD:
+ return new OpenBSDTargetInfo<Mips64EBTargetInfo>(Triple);
+ default:
+ return new Mips64EBTargetInfo(Triple);
+ }
+
+ case llvm::Triple::mips64el:
+ switch (os) {
+ case llvm::Triple::Linux:
+ return new LinuxTargetInfo<Mips64ELTargetInfo>(Triple);
+ case llvm::Triple::RTEMS:
+ return new RTEMSTargetInfo<Mips64ELTargetInfo>(Triple);
+ case llvm::Triple::FreeBSD:
+ return new FreeBSDTargetInfo<Mips64ELTargetInfo>(Triple);
+ case llvm::Triple::NetBSD:
+ return new NetBSDTargetInfo<Mips64ELTargetInfo>(Triple);
+ case llvm::Triple::OpenBSD:
+ return new OpenBSDTargetInfo<Mips64ELTargetInfo>(Triple);
+ default:
+ return new Mips64ELTargetInfo(Triple);
+ }
+
+ case llvm::Triple::le32:
+ switch (os) {
+ case llvm::Triple::NaCl:
+ return new NaClTargetInfo<PNaClTargetInfo>(Triple);
+ default:
+ return nullptr;
+ }
+
+ case llvm::Triple::le64:
+ return new Le64TargetInfo(Triple);
+
+ case llvm::Triple::ppc:
+ if (Triple.isOSDarwin())
+ return new DarwinPPC32TargetInfo(Triple);
+ switch (os) {
+ case llvm::Triple::Linux:
+ return new LinuxTargetInfo<PPC32TargetInfo>(Triple);
+ case llvm::Triple::FreeBSD:
+ return new FreeBSDTargetInfo<PPC32TargetInfo>(Triple);
+ case llvm::Triple::NetBSD:
+ return new NetBSDTargetInfo<PPC32TargetInfo>(Triple);
+ case llvm::Triple::OpenBSD:
+ return new OpenBSDTargetInfo<PPC32TargetInfo>(Triple);
+ case llvm::Triple::RTEMS:
+ return new RTEMSTargetInfo<PPC32TargetInfo>(Triple);
+ default:
+ return new PPC32TargetInfo(Triple);
+ }
+
+ case llvm::Triple::ppc64:
+ if (Triple.isOSDarwin())
+ return new DarwinPPC64TargetInfo(Triple);
+ switch (os) {
+ case llvm::Triple::Linux:
+ return new LinuxTargetInfo<PPC64TargetInfo>(Triple);
+ case llvm::Triple::Lv2:
+ return new PS3PPUTargetInfo<PPC64TargetInfo>(Triple);
+ case llvm::Triple::FreeBSD:
+ return new FreeBSDTargetInfo<PPC64TargetInfo>(Triple);
+ case llvm::Triple::NetBSD:
+ return new NetBSDTargetInfo<PPC64TargetInfo>(Triple);
+ default:
+ return new PPC64TargetInfo(Triple);
+ }
+
+ case llvm::Triple::ppc64le:
+ switch (os) {
+ case llvm::Triple::Linux:
+ return new LinuxTargetInfo<PPC64TargetInfo>(Triple);
+ case llvm::Triple::NetBSD:
+ return new NetBSDTargetInfo<PPC64TargetInfo>(Triple);
+ default:
+ return new PPC64TargetInfo(Triple);
+ }
+
+ case llvm::Triple::nvptx:
+ return new NVPTX32TargetInfo(Triple);
+ case llvm::Triple::nvptx64:
+ return new NVPTX64TargetInfo(Triple);
+
+ case llvm::Triple::amdgcn:
+ case llvm::Triple::r600:
+ return new R600TargetInfo(Triple);
+
+ case llvm::Triple::sparc:
+ switch (os) {
+ case llvm::Triple::Linux:
+ return new LinuxTargetInfo<SparcV8TargetInfo>(Triple);
+ case llvm::Triple::Solaris:
+ return new SolarisSparcV8TargetInfo(Triple);
+ case llvm::Triple::NetBSD:
+ return new NetBSDTargetInfo<SparcV8TargetInfo>(Triple);
+ case llvm::Triple::OpenBSD:
+ return new OpenBSDTargetInfo<SparcV8TargetInfo>(Triple);
+ case llvm::Triple::RTEMS:
+ return new RTEMSTargetInfo<SparcV8TargetInfo>(Triple);
+ default:
+ return new SparcV8TargetInfo(Triple);
+ }
+
+ // The 'sparcel' architecture copies all the above cases except for Solaris.
+ case llvm::Triple::sparcel:
+ switch (os) {
+ case llvm::Triple::Linux:
+ return new LinuxTargetInfo<SparcV8elTargetInfo>(Triple);
+ case llvm::Triple::NetBSD:
+ return new NetBSDTargetInfo<SparcV8elTargetInfo>(Triple);
+ case llvm::Triple::OpenBSD:
+ return new OpenBSDTargetInfo<SparcV8elTargetInfo>(Triple);
+ case llvm::Triple::RTEMS:
+ return new RTEMSTargetInfo<SparcV8elTargetInfo>(Triple);
+ default:
+ return new SparcV8elTargetInfo(Triple);
+ }
+
+ case llvm::Triple::sparcv9:
+ switch (os) {
+ case llvm::Triple::Linux:
+ return new LinuxTargetInfo<SparcV9TargetInfo>(Triple);
+ case llvm::Triple::Solaris:
+ return new SolarisTargetInfo<SparcV9TargetInfo>(Triple);
+ case llvm::Triple::NetBSD:
+ return new NetBSDTargetInfo<SparcV9TargetInfo>(Triple);
+ case llvm::Triple::OpenBSD:
+ return new OpenBSDTargetInfo<SparcV9TargetInfo>(Triple);
+ case llvm::Triple::FreeBSD:
+ return new FreeBSDTargetInfo<SparcV9TargetInfo>(Triple);
+ default:
+ return new SparcV9TargetInfo(Triple);
+ }
+
+ case llvm::Triple::systemz:
+ switch (os) {
+ case llvm::Triple::Linux:
+ return new LinuxTargetInfo<SystemZTargetInfo>(Triple);
+ default:
+ return new SystemZTargetInfo(Triple);
+ }
+
+ case llvm::Triple::tce:
+ return new TCETargetInfo(Triple);
+
+ case llvm::Triple::x86:
+ if (Triple.isOSDarwin())
+ return new DarwinI386TargetInfo(Triple);
+
+ switch (os) {
+ case llvm::Triple::Linux: {
+ switch (Triple.getEnvironment()) {
+ default:
+ return new LinuxTargetInfo<X86_32TargetInfo>(Triple);
+ case llvm::Triple::Android:
+ return new AndroidX86_32TargetInfo(Triple);
+ }
+ }
+ case llvm::Triple::DragonFly:
+ return new DragonFlyBSDTargetInfo<X86_32TargetInfo>(Triple);
+ case llvm::Triple::NetBSD:
+ return new NetBSDI386TargetInfo(Triple);
+ case llvm::Triple::OpenBSD:
+ return new OpenBSDI386TargetInfo(Triple);
+ case llvm::Triple::Bitrig:
+ return new BitrigI386TargetInfo(Triple);
+ case llvm::Triple::FreeBSD:
+ return new FreeBSDTargetInfo<X86_32TargetInfo>(Triple);
+ case llvm::Triple::KFreeBSD:
+ return new KFreeBSDTargetInfo<X86_32TargetInfo>(Triple);
+ case llvm::Triple::Minix:
+ return new MinixTargetInfo<X86_32TargetInfo>(Triple);
+ case llvm::Triple::Solaris:
+ return new SolarisTargetInfo<X86_32TargetInfo>(Triple);
+ case llvm::Triple::Win32: {
+ switch (Triple.getEnvironment()) {
+ default:
+ return new X86_32TargetInfo(Triple);
+ case llvm::Triple::Cygnus:
+ return new CygwinX86_32TargetInfo(Triple);
+ case llvm::Triple::GNU:
+ return new MinGWX86_32TargetInfo(Triple);
+ case llvm::Triple::Itanium:
+ case llvm::Triple::MSVC:
+ return new MicrosoftX86_32TargetInfo(Triple);
+ }
+ }
+ case llvm::Triple::Haiku:
+ return new HaikuX86_32TargetInfo(Triple);
+ case llvm::Triple::RTEMS:
+ return new RTEMSX86_32TargetInfo(Triple);
+ case llvm::Triple::NaCl:
+ return new NaClTargetInfo<X86_32TargetInfo>(Triple);
+ default:
+ return new X86_32TargetInfo(Triple);
+ }
+
+ case llvm::Triple::x86_64:
+ if (Triple.isOSDarwin() || Triple.isOSBinFormatMachO())
+ return new DarwinX86_64TargetInfo(Triple);
+
+ switch (os) {
+ case llvm::Triple::CloudABI:
+ return new CloudABITargetInfo<X86_64TargetInfo>(Triple);
+ case llvm::Triple::Linux: {
+ switch (Triple.getEnvironment()) {
+ default:
+ return new LinuxTargetInfo<X86_64TargetInfo>(Triple);
+ case llvm::Triple::Android:
+ return new AndroidX86_64TargetInfo(Triple);
+ }
+ }
+ case llvm::Triple::DragonFly:
+ return new DragonFlyBSDTargetInfo<X86_64TargetInfo>(Triple);
+ case llvm::Triple::NetBSD:
+ return new NetBSDTargetInfo<X86_64TargetInfo>(Triple);
+ case llvm::Triple::OpenBSD:
+ return new OpenBSDX86_64TargetInfo(Triple);
+ case llvm::Triple::Bitrig:
+ return new BitrigX86_64TargetInfo(Triple);
+ case llvm::Triple::FreeBSD:
+ return new FreeBSDTargetInfo<X86_64TargetInfo>(Triple);
+ case llvm::Triple::KFreeBSD:
+ return new KFreeBSDTargetInfo<X86_64TargetInfo>(Triple);
+ case llvm::Triple::Solaris:
+ return new SolarisTargetInfo<X86_64TargetInfo>(Triple);
+ case llvm::Triple::Win32: {
+ switch (Triple.getEnvironment()) {
+ default:
+ return new X86_64TargetInfo(Triple);
+ case llvm::Triple::GNU:
+ return new MinGWX86_64TargetInfo(Triple);
+ case llvm::Triple::MSVC:
+ return new MicrosoftX86_64TargetInfo(Triple);
+ }
+ }
+ case llvm::Triple::NaCl:
+ return new NaClTargetInfo<X86_64TargetInfo>(Triple);
+ case llvm::Triple::PS4:
+ return new PS4OSTargetInfo<X86_64TargetInfo>(Triple);
+ default:
+ return new X86_64TargetInfo(Triple);
+ }
+
+ case llvm::Triple::spir: {
+ if (Triple.getOS() != llvm::Triple::UnknownOS ||
+ Triple.getEnvironment() != llvm::Triple::UnknownEnvironment)
+ return nullptr;
+ return new SPIR32TargetInfo(Triple);
+ }
+ case llvm::Triple::spir64: {
+ if (Triple.getOS() != llvm::Triple::UnknownOS ||
+ Triple.getEnvironment() != llvm::Triple::UnknownEnvironment)
+ return nullptr;
+ return new SPIR64TargetInfo(Triple);
+ }
+ }
+}
+
+/// CreateTargetInfo - Return the target info object for the specified target
+/// triple.
+TargetInfo *
+TargetInfo::CreateTargetInfo(DiagnosticsEngine &Diags,
+ const std::shared_ptr<TargetOptions> &Opts) {
+ llvm::Triple Triple(Opts->Triple);
+
+ // Construct the target
+ std::unique_ptr<TargetInfo> Target(AllocateTarget(Triple));
+ if (!Target) {
+ Diags.Report(diag::err_target_unknown_triple) << Triple.str();
+ return nullptr;
+ }
+ Target->TargetOpts = Opts;
+
+ // Set the target CPU if specified.
+ if (!Opts->CPU.empty() && !Target->setCPU(Opts->CPU)) {
+ Diags.Report(diag::err_target_unknown_cpu) << Opts->CPU;
+ return nullptr;
+ }
+
+ // Set the target ABI if specified.
+ if (!Opts->ABI.empty() && !Target->setABI(Opts->ABI)) {
+ Diags.Report(diag::err_target_unknown_abi) << Opts->ABI;
+ return nullptr;
+ }
+
+ // Set the fp math unit.
+ if (!Opts->FPMath.empty() && !Target->setFPMath(Opts->FPMath)) {
+ Diags.Report(diag::err_target_unknown_fpmath) << Opts->FPMath;
+ return nullptr;
+ }
+
+ // Compute the default target features, we need the target to handle this
+ // because features may have dependencies on one another.
+ llvm::StringMap<bool> Features;
+ Target->getDefaultFeatures(Features);
+
+ // Apply the user specified deltas.
+ for (unsigned I = 0, N = Opts->FeaturesAsWritten.size();
+ I < N; ++I) {
+ const char *Name = Opts->FeaturesAsWritten[I].c_str();
+ // Apply the feature via the target.
+ bool Enabled = Name[0] == '+';
+ Target->setFeatureEnabled(Features, Name + 1, Enabled);
+ }
+
+ // Add the features to the compile options.
+ //
+ // FIXME: If we are completely confident that we have the right set, we only
+ // need to pass the minuses.
+ Opts->Features.clear();
+ for (llvm::StringMap<bool>::const_iterator it = Features.begin(),
+ ie = Features.end(); it != ie; ++it)
+ Opts->Features.push_back((it->second ? "+" : "-") + it->first().str());
+ if (!Target->handleTargetFeatures(Opts->Features, Diags))
+ return nullptr;
+
+ return Target.release();
+}
diff --git a/contrib/llvm/tools/clang/lib/Basic/TokenKinds.cpp b/contrib/llvm/tools/clang/lib/Basic/TokenKinds.cpp
new file mode 100644
index 0000000..3b1f8fe
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Basic/TokenKinds.cpp
@@ -0,0 +1,48 @@
+//===--- TokenKinds.cpp - Token Kinds Support -----------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the TokenKind enum and support functions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Basic/TokenKinds.h"
+#include "llvm/Support/ErrorHandling.h"
+using namespace clang;
+
+static const char * const TokNames[] = {
+#define TOK(X) #X,
+#define KEYWORD(X,Y) #X,
+#include "clang/Basic/TokenKinds.def"
+ nullptr
+};
+
+const char *tok::getTokenName(TokenKind Kind) {
+ if (Kind < tok::NUM_TOKENS)
+ return TokNames[Kind];
+ llvm_unreachable("unknown TokenKind");
+ return nullptr;
+}
+
+const char *tok::getPunctuatorSpelling(TokenKind Kind) {
+ switch (Kind) {
+#define PUNCTUATOR(X,Y) case X: return Y;
+#include "clang/Basic/TokenKinds.def"
+ default: break;
+ }
+ return nullptr;
+}
+
+const char *tok::getKeywordSpelling(TokenKind Kind) {
+ switch (Kind) {
+#define KEYWORD(X,Y) case kw_ ## X: return #X;
+#include "clang/Basic/TokenKinds.def"
+ default: break;
+ }
+ return nullptr;
+}
diff --git a/contrib/llvm/tools/clang/lib/Basic/Version.cpp b/contrib/llvm/tools/clang/lib/Basic/Version.cpp
new file mode 100644
index 0000000..6accb04
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Basic/Version.cpp
@@ -0,0 +1,153 @@
+//===- Version.cpp - Clang Version Number -----------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines several version-related utility functions for Clang.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Basic/Version.h"
+#include "clang/Basic/LLVM.h"
+#include "clang/Config/config.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cstdlib>
+#include <cstring>
+
+#ifdef HAVE_SVN_VERSION_INC
+# include "SVNVersion.inc"
+#endif
+
+namespace clang {
+
+std::string getClangRepositoryPath() {
+#if defined(CLANG_REPOSITORY_STRING)
+ return CLANG_REPOSITORY_STRING;
+#else
+#ifdef SVN_REPOSITORY
+ StringRef URL(SVN_REPOSITORY);
+#else
+ StringRef URL("");
+#endif
+
+ // If the SVN_REPOSITORY is empty, try to use the SVN keyword. This helps us
+ // pick up a tag in an SVN export, for example.
+ StringRef SVNRepository("$URL: https://llvm.org/svn/llvm-project/cfe/trunk/lib/Basic/Version.cpp $");
+ if (URL.empty()) {
+ URL = SVNRepository.slice(SVNRepository.find(':'),
+ SVNRepository.find("/lib/Basic"));
+ }
+
+ // Strip off version from a build from an integration branch.
+ URL = URL.slice(0, URL.find("/src/tools/clang"));
+
+ // Trim path prefix off, assuming path came from standard cfe path.
+ size_t Start = URL.find("cfe/");
+ if (Start != StringRef::npos)
+ URL = URL.substr(Start + 4);
+
+ return URL;
+#endif
+}
+
+std::string getLLVMRepositoryPath() {
+#ifdef LLVM_REPOSITORY
+ StringRef URL(LLVM_REPOSITORY);
+#else
+ StringRef URL("");
+#endif
+
+ // Trim path prefix off, assuming path came from standard llvm path.
+ // Leave "llvm/" prefix to distinguish the following llvm revision from the
+ // clang revision.
+ size_t Start = URL.find("llvm/");
+ if (Start != StringRef::npos)
+ URL = URL.substr(Start);
+
+ return URL;
+}
+
+std::string getClangRevision() {
+#ifdef SVN_REVISION
+ return SVN_REVISION;
+#else
+ return "";
+#endif
+}
+
+std::string getLLVMRevision() {
+#ifdef LLVM_REVISION
+ return LLVM_REVISION;
+#else
+ return "";
+#endif
+}
+
+std::string getClangFullRepositoryVersion() {
+ std::string buf;
+ llvm::raw_string_ostream OS(buf);
+ std::string Path = getClangRepositoryPath();
+ std::string Revision = getClangRevision();
+ if (!Path.empty() || !Revision.empty()) {
+ OS << '(';
+ if (!Path.empty())
+ OS << Path;
+ if (!Revision.empty()) {
+ if (!Path.empty())
+ OS << ' ';
+ OS << Revision;
+ }
+ OS << ')';
+ }
+ // Support LLVM in a separate repository.
+ std::string LLVMRev = getLLVMRevision();
+ if (!LLVMRev.empty() && LLVMRev != Revision) {
+ OS << " (";
+ std::string LLVMRepo = getLLVMRepositoryPath();
+ if (!LLVMRepo.empty())
+ OS << LLVMRepo << ' ';
+ OS << LLVMRev << ')';
+ }
+ return OS.str();
+}
+
+std::string getClangFullVersion() {
+ return getClangToolFullVersion("clang");
+}
+
+std::string getClangToolFullVersion(StringRef ToolName) {
+ std::string buf;
+ llvm::raw_string_ostream OS(buf);
+#ifdef CLANG_VENDOR
+ OS << CLANG_VENDOR;
+#endif
+ OS << ToolName << " version " CLANG_VERSION_STRING " "
+ << getClangFullRepositoryVersion();
+
+#ifdef CLANG_VENDOR_SUFFIX
+ OS << CLANG_VENDOR_SUFFIX;
+#elif defined(CLANG_VENDOR)
+ // If vendor supplied, include the base LLVM version as well.
+ OS << " (based on " << BACKEND_PACKAGE_STRING << ")";
+#endif
+
+ return OS.str();
+}
+
+std::string getClangFullCPPVersion() {
+ // The version string we report in __VERSION__ is just a compacted version of
+ // the one we report on the command line.
+ std::string buf;
+ llvm::raw_string_ostream OS(buf);
+#ifdef CLANG_VENDOR
+ OS << CLANG_VENDOR;
+#endif
+ OS << "Clang " CLANG_VERSION_STRING " " << getClangFullRepositoryVersion();
+ return OS.str();
+}
+
+} // end namespace clang
diff --git a/contrib/llvm/tools/clang/lib/Basic/VersionTuple.cpp b/contrib/llvm/tools/clang/lib/Basic/VersionTuple.cpp
new file mode 100644
index 0000000..9c73fd9
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Basic/VersionTuple.cpp
@@ -0,0 +1,100 @@
+//===- VersionTuple.cpp - Version Number Handling ---------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the VersionTuple class, which represents a version in
+// the form major[.minor[.subminor]].
+//
+//===----------------------------------------------------------------------===//
+#include "clang/Basic/VersionTuple.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+
+std::string VersionTuple::getAsString() const {
+ std::string Result;
+ {
+ llvm::raw_string_ostream Out(Result);
+ Out << *this;
+ }
+ return Result;
+}
+
+raw_ostream& clang::operator<<(raw_ostream &Out,
+ const VersionTuple &V) {
+ Out << V.getMajor();
+ if (Optional<unsigned> Minor = V.getMinor())
+ Out << (V.usesUnderscores() ? '_' : '.') << *Minor;
+ if (Optional<unsigned> Subminor = V.getSubminor())
+ Out << (V.usesUnderscores() ? '_' : '.') << *Subminor;
+ if (Optional<unsigned> Build = V.getBuild())
+ Out << (V.usesUnderscores() ? '_' : '.') << *Build;
+ return Out;
+}
+
+static bool parseInt(StringRef &input, unsigned &value) {
+ assert(value == 0);
+ if (input.empty()) return true;
+
+ char next = input[0];
+ input = input.substr(1);
+ if (next < '0' || next > '9') return true;
+ value = (unsigned) (next - '0');
+
+ while (!input.empty()) {
+ next = input[0];
+ if (next < '0' || next > '9') return false;
+ input = input.substr(1);
+ value = value * 10 + (unsigned) (next - '0');
+ }
+
+ return false;
+}
+
+bool VersionTuple::tryParse(StringRef input) {
+ unsigned major = 0, minor = 0, micro = 0, build = 0;
+
+ // Parse the major version, [0-9]+
+ if (parseInt(input, major)) return true;
+
+ if (input.empty()) {
+ *this = VersionTuple(major);
+ return false;
+ }
+
+ // If we're not done, parse the minor version, \.[0-9]+
+ if (input[0] != '.') return true;
+ input = input.substr(1);
+ if (parseInt(input, minor)) return true;
+
+ if (input.empty()) {
+ *this = VersionTuple(major, minor);
+ return false;
+ }
+
+ // If we're not done, parse the micro version, \.[0-9]+
+ if (input[0] != '.') return true;
+ input = input.substr(1);
+ if (parseInt(input, micro)) return true;
+
+ if (input.empty()) {
+ *this = VersionTuple(major, minor, micro);
+ return false;
+ }
+
+ // If we're not done, parse the micro version, \.[0-9]+
+ if (input[0] != '.') return true;
+ input = input.substr(1);
+ if (parseInt(input, build)) return true;
+
+ // If we have characters left over, it's an error.
+ if (!input.empty()) return true;
+
+ *this = VersionTuple(major, minor, micro, build);
+ return false;
+}
diff --git a/contrib/llvm/tools/clang/lib/Basic/VirtualFileSystem.cpp b/contrib/llvm/tools/clang/lib/Basic/VirtualFileSystem.cpp
new file mode 100644
index 0000000..8a882e1
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Basic/VirtualFileSystem.cpp
@@ -0,0 +1,1193 @@
+//===- VirtualFileSystem.cpp - Virtual File System Layer --------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+// This file implements the VirtualFileSystem interface.
+//===----------------------------------------------------------------------===//
+
+#include "clang/Basic/VirtualFileSystem.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringSet.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/Support/Errc.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/YAMLParser.h"
+#include <atomic>
+#include <memory>
+
+using namespace clang;
+using namespace clang::vfs;
+using namespace llvm;
+using llvm::sys::fs::file_status;
+using llvm::sys::fs::file_type;
+using llvm::sys::fs::perms;
+using llvm::sys::fs::UniqueID;
+
+Status::Status(const file_status &Status)
+ : UID(Status.getUniqueID()), MTime(Status.getLastModificationTime()),
+ User(Status.getUser()), Group(Status.getGroup()), Size(Status.getSize()),
+ Type(Status.type()), Perms(Status.permissions()), IsVFSMapped(false) {}
+
+Status::Status(StringRef Name, StringRef ExternalName, UniqueID UID,
+ sys::TimeValue MTime, uint32_t User, uint32_t Group,
+ uint64_t Size, file_type Type, perms Perms)
+ : Name(Name), UID(UID), MTime(MTime), User(User), Group(Group), Size(Size),
+ Type(Type), Perms(Perms), IsVFSMapped(false) {}
+
+bool Status::equivalent(const Status &Other) const {
+ return getUniqueID() == Other.getUniqueID();
+}
+bool Status::isDirectory() const {
+ return Type == file_type::directory_file;
+}
+bool Status::isRegularFile() const {
+ return Type == file_type::regular_file;
+}
+bool Status::isOther() const {
+ return exists() && !isRegularFile() && !isDirectory() && !isSymlink();
+}
+bool Status::isSymlink() const {
+ return Type == file_type::symlink_file;
+}
+bool Status::isStatusKnown() const {
+ return Type != file_type::status_error;
+}
+bool Status::exists() const {
+ return isStatusKnown() && Type != file_type::file_not_found;
+}
+
+File::~File() {}
+
+FileSystem::~FileSystem() {}
+
+ErrorOr<std::unique_ptr<MemoryBuffer>>
+FileSystem::getBufferForFile(const llvm::Twine &Name, int64_t FileSize,
+ bool RequiresNullTerminator, bool IsVolatile) {
+ auto F = openFileForRead(Name);
+ if (!F)
+ return F.getError();
+
+ return (*F)->getBuffer(Name, FileSize, RequiresNullTerminator, IsVolatile);
+}
+
+//===-----------------------------------------------------------------------===/
+// RealFileSystem implementation
+//===-----------------------------------------------------------------------===/
+
+namespace {
+/// \brief Wrapper around a raw file descriptor.
+class RealFile : public File {
+ int FD;
+ Status S;
+ friend class RealFileSystem;
+ RealFile(int FD) : FD(FD) {
+ assert(FD >= 0 && "Invalid or inactive file descriptor");
+ }
+
+public:
+ ~RealFile() override;
+ ErrorOr<Status> status() override;
+ ErrorOr<std::unique_ptr<MemoryBuffer>>
+ getBuffer(const Twine &Name, int64_t FileSize = -1,
+ bool RequiresNullTerminator = true,
+ bool IsVolatile = false) override;
+ std::error_code close() override;
+ void setName(StringRef Name) override;
+};
+} // end anonymous namespace
+RealFile::~RealFile() { close(); }
+
+ErrorOr<Status> RealFile::status() {
+ assert(FD != -1 && "cannot stat closed file");
+ if (!S.isStatusKnown()) {
+ file_status RealStatus;
+ if (std::error_code EC = sys::fs::status(FD, RealStatus))
+ return EC;
+ Status NewS(RealStatus);
+ NewS.setName(S.getName());
+ S = std::move(NewS);
+ }
+ return S;
+}
+
+ErrorOr<std::unique_ptr<MemoryBuffer>>
+RealFile::getBuffer(const Twine &Name, int64_t FileSize,
+ bool RequiresNullTerminator, bool IsVolatile) {
+ assert(FD != -1 && "cannot get buffer for closed file");
+ return MemoryBuffer::getOpenFile(FD, Name, FileSize, RequiresNullTerminator,
+ IsVolatile);
+}
+
+// FIXME: This is terrible, we need this for ::close.
+#if !defined(_MSC_VER) && !defined(__MINGW32__)
+#include <unistd.h>
+#include <sys/uio.h>
+#else
+#include <io.h>
+#ifndef S_ISFIFO
+#define S_ISFIFO(x) (0)
+#endif
+#endif
+std::error_code RealFile::close() {
+ if (::close(FD))
+ return std::error_code(errno, std::generic_category());
+ FD = -1;
+ return std::error_code();
+}
+
+void RealFile::setName(StringRef Name) {
+ S.setName(Name);
+}
+
+namespace {
+/// \brief The file system according to your operating system.
+class RealFileSystem : public FileSystem {
+public:
+ ErrorOr<Status> status(const Twine &Path) override;
+ ErrorOr<std::unique_ptr<File>> openFileForRead(const Twine &Path) override;
+ directory_iterator dir_begin(const Twine &Dir, std::error_code &EC) override;
+};
+} // end anonymous namespace
+
+ErrorOr<Status> RealFileSystem::status(const Twine &Path) {
+ sys::fs::file_status RealStatus;
+ if (std::error_code EC = sys::fs::status(Path, RealStatus))
+ return EC;
+ Status Result(RealStatus);
+ Result.setName(Path.str());
+ return Result;
+}
+
+ErrorOr<std::unique_ptr<File>>
+RealFileSystem::openFileForRead(const Twine &Name) {
+ int FD;
+ if (std::error_code EC = sys::fs::openFileForRead(Name, FD))
+ return EC;
+ std::unique_ptr<File> Result(new RealFile(FD));
+ Result->setName(Name.str());
+ return std::move(Result);
+}
+
+IntrusiveRefCntPtr<FileSystem> vfs::getRealFileSystem() {
+ static IntrusiveRefCntPtr<FileSystem> FS = new RealFileSystem();
+ return FS;
+}
+
+namespace {
+class RealFSDirIter : public clang::vfs::detail::DirIterImpl {
+ std::string Path;
+ llvm::sys::fs::directory_iterator Iter;
+public:
+ RealFSDirIter(const Twine &_Path, std::error_code &EC)
+ : Path(_Path.str()), Iter(Path, EC) {
+ if (!EC && Iter != llvm::sys::fs::directory_iterator()) {
+ llvm::sys::fs::file_status S;
+ EC = Iter->status(S);
+ if (!EC) {
+ CurrentEntry = Status(S);
+ CurrentEntry.setName(Iter->path());
+ }
+ }
+ }
+
+ std::error_code increment() override {
+ std::error_code EC;
+ Iter.increment(EC);
+ if (EC) {
+ return EC;
+ } else if (Iter == llvm::sys::fs::directory_iterator()) {
+ CurrentEntry = Status();
+ } else {
+ llvm::sys::fs::file_status S;
+ EC = Iter->status(S);
+ CurrentEntry = Status(S);
+ CurrentEntry.setName(Iter->path());
+ }
+ return EC;
+ }
+};
+}
+
+directory_iterator RealFileSystem::dir_begin(const Twine &Dir,
+ std::error_code &EC) {
+ return directory_iterator(std::make_shared<RealFSDirIter>(Dir, EC));
+}
+
+//===-----------------------------------------------------------------------===/
+// OverlayFileSystem implementation
+//===-----------------------------------------------------------------------===/
+OverlayFileSystem::OverlayFileSystem(IntrusiveRefCntPtr<FileSystem> BaseFS) {
+ pushOverlay(BaseFS);
+}
+
+void OverlayFileSystem::pushOverlay(IntrusiveRefCntPtr<FileSystem> FS) {
+ FSList.push_back(FS);
+}
+
+ErrorOr<Status> OverlayFileSystem::status(const Twine &Path) {
+ // FIXME: handle symlinks that cross file systems
+ for (iterator I = overlays_begin(), E = overlays_end(); I != E; ++I) {
+ ErrorOr<Status> Status = (*I)->status(Path);
+ if (Status || Status.getError() != llvm::errc::no_such_file_or_directory)
+ return Status;
+ }
+ return make_error_code(llvm::errc::no_such_file_or_directory);
+}
+
+ErrorOr<std::unique_ptr<File>>
+OverlayFileSystem::openFileForRead(const llvm::Twine &Path) {
+ // FIXME: handle symlinks that cross file systems
+ for (iterator I = overlays_begin(), E = overlays_end(); I != E; ++I) {
+ auto Result = (*I)->openFileForRead(Path);
+ if (Result || Result.getError() != llvm::errc::no_such_file_or_directory)
+ return Result;
+ }
+ return make_error_code(llvm::errc::no_such_file_or_directory);
+}
+
+clang::vfs::detail::DirIterImpl::~DirIterImpl() { }
+
+namespace {
+class OverlayFSDirIterImpl : public clang::vfs::detail::DirIterImpl {
+ OverlayFileSystem &Overlays;
+ std::string Path;
+ OverlayFileSystem::iterator CurrentFS;
+ directory_iterator CurrentDirIter;
+ llvm::StringSet<> SeenNames;
+
+ std::error_code incrementFS() {
+ assert(CurrentFS != Overlays.overlays_end() && "incrementing past end");
+ ++CurrentFS;
+ for (auto E = Overlays.overlays_end(); CurrentFS != E; ++CurrentFS) {
+ std::error_code EC;
+ CurrentDirIter = (*CurrentFS)->dir_begin(Path, EC);
+ if (EC && EC != errc::no_such_file_or_directory)
+ return EC;
+ if (CurrentDirIter != directory_iterator())
+ break; // found
+ }
+ return std::error_code();
+ }
+
+ std::error_code incrementDirIter(bool IsFirstTime) {
+ assert((IsFirstTime || CurrentDirIter != directory_iterator()) &&
+ "incrementing past end");
+ std::error_code EC;
+ if (!IsFirstTime)
+ CurrentDirIter.increment(EC);
+ if (!EC && CurrentDirIter == directory_iterator())
+ EC = incrementFS();
+ return EC;
+ }
+
+ std::error_code incrementImpl(bool IsFirstTime) {
+ while (true) {
+ std::error_code EC = incrementDirIter(IsFirstTime);
+ if (EC || CurrentDirIter == directory_iterator()) {
+ CurrentEntry = Status();
+ return EC;
+ }
+ CurrentEntry = *CurrentDirIter;
+ StringRef Name = llvm::sys::path::filename(CurrentEntry.getName());
+ if (SeenNames.insert(Name).second)
+ return EC; // name not seen before
+ }
+ llvm_unreachable("returned above");
+ }
+
+public:
+ OverlayFSDirIterImpl(const Twine &Path, OverlayFileSystem &FS,
+ std::error_code &EC)
+ : Overlays(FS), Path(Path.str()), CurrentFS(Overlays.overlays_begin()) {
+ CurrentDirIter = (*CurrentFS)->dir_begin(Path, EC);
+ EC = incrementImpl(true);
+ }
+
+ std::error_code increment() override { return incrementImpl(false); }
+};
+} // end anonymous namespace
+
+directory_iterator OverlayFileSystem::dir_begin(const Twine &Dir,
+ std::error_code &EC) {
+ return directory_iterator(
+ std::make_shared<OverlayFSDirIterImpl>(Dir, *this, EC));
+}
+
+//===-----------------------------------------------------------------------===/
+// VFSFromYAML implementation
+//===-----------------------------------------------------------------------===/
+
+// Allow DenseMap<StringRef, ...>. This is useful below because we know all the
+// strings are literals and will outlive the map, and there is no reason to
+// store them.
+namespace llvm {
+ template<>
+ struct DenseMapInfo<StringRef> {
+ // This assumes that "" will never be a valid key.
+ static inline StringRef getEmptyKey() { return StringRef(""); }
+ static inline StringRef getTombstoneKey() { return StringRef(); }
+ static unsigned getHashValue(StringRef Val) { return HashString(Val); }
+ static bool isEqual(StringRef LHS, StringRef RHS) { return LHS == RHS; }
+ };
+}
+
+namespace {
+
+enum EntryKind {
+ EK_Directory,
+ EK_File
+};
+
+/// \brief A single file or directory in the VFS.
+class Entry {
+ EntryKind Kind;
+ std::string Name;
+
+public:
+ virtual ~Entry();
+ Entry(EntryKind K, StringRef Name) : Kind(K), Name(Name) {}
+ StringRef getName() const { return Name; }
+ EntryKind getKind() const { return Kind; }
+};
+
+class DirectoryEntry : public Entry {
+ std::vector<Entry *> Contents;
+ Status S;
+
+public:
+ ~DirectoryEntry() override;
+ DirectoryEntry(StringRef Name, std::vector<Entry *> Contents, Status S)
+ : Entry(EK_Directory, Name), Contents(std::move(Contents)),
+ S(std::move(S)) {}
+ Status getStatus() { return S; }
+ typedef std::vector<Entry *>::iterator iterator;
+ iterator contents_begin() { return Contents.begin(); }
+ iterator contents_end() { return Contents.end(); }
+ static bool classof(const Entry *E) { return E->getKind() == EK_Directory; }
+};
+
+class FileEntry : public Entry {
+public:
+ enum NameKind {
+ NK_NotSet,
+ NK_External,
+ NK_Virtual
+ };
+private:
+ std::string ExternalContentsPath;
+ NameKind UseName;
+public:
+ FileEntry(StringRef Name, StringRef ExternalContentsPath, NameKind UseName)
+ : Entry(EK_File, Name), ExternalContentsPath(ExternalContentsPath),
+ UseName(UseName) {}
+ StringRef getExternalContentsPath() const { return ExternalContentsPath; }
+ /// \brief whether to use the external path as the name for this file.
+ bool useExternalName(bool GlobalUseExternalName) const {
+ return UseName == NK_NotSet ? GlobalUseExternalName
+ : (UseName == NK_External);
+ }
+ static bool classof(const Entry *E) { return E->getKind() == EK_File; }
+};
+
+class VFSFromYAML;
+
+class VFSFromYamlDirIterImpl : public clang::vfs::detail::DirIterImpl {
+ std::string Dir;
+ VFSFromYAML &FS;
+ DirectoryEntry::iterator Current, End;
+public:
+ VFSFromYamlDirIterImpl(const Twine &Path, VFSFromYAML &FS,
+ DirectoryEntry::iterator Begin,
+ DirectoryEntry::iterator End, std::error_code &EC);
+ std::error_code increment() override;
+};
+
+/// \brief A virtual file system parsed from a YAML file.
+///
+/// Currently, this class allows creating virtual directories and mapping
+/// virtual file paths to existing external files, available in \c ExternalFS.
+///
+/// The basic structure of the parsed file is:
+/// \verbatim
+/// {
+/// 'version': <version number>,
+/// <optional configuration>
+/// 'roots': [
+/// <directory entries>
+/// ]
+/// }
+/// \endverbatim
+///
+/// All configuration options are optional.
+/// 'case-sensitive': <boolean, default=true>
+/// 'use-external-names': <boolean, default=true>
+///
+/// Virtual directories are represented as
+/// \verbatim
+/// {
+/// 'type': 'directory',
+/// 'name': <string>,
+/// 'contents': [ <file or directory entries> ]
+/// }
+/// \endverbatim
+///
+/// The default attributes for virtual directories are:
+/// \verbatim
+/// MTime = now() when created
+/// Perms = 0777
+/// User = Group = 0
+/// Size = 0
+/// UniqueID = unspecified unique value
+/// \endverbatim
+///
+/// Re-mapped files are represented as
+/// \verbatim
+/// {
+/// 'type': 'file',
+/// 'name': <string>,
+/// 'use-external-name': <boolean> # Optional
+/// 'external-contents': <path to external file>)
+/// }
+/// \endverbatim
+///
+/// and inherit their attributes from the external contents.
+///
+/// In both cases, the 'name' field may contain multiple path components (e.g.
+/// /path/to/file). However, any directory that contains more than one child
+/// must be uniquely represented by a directory entry.
+class VFSFromYAML : public vfs::FileSystem {
+ std::vector<Entry *> Roots; ///< The root(s) of the virtual file system.
+ /// \brief The file system to use for external references.
+ IntrusiveRefCntPtr<FileSystem> ExternalFS;
+
+ /// @name Configuration
+ /// @{
+
+ /// \brief Whether to perform case-sensitive comparisons.
+ ///
+ /// Currently, case-insensitive matching only works correctly with ASCII.
+ bool CaseSensitive;
+
+ /// \brief Whether to use to use the value of 'external-contents' for the
+ /// names of files. This global value is overridable on a per-file basis.
+ bool UseExternalNames;
+ /// @}
+
+ friend class VFSFromYAMLParser;
+
+private:
+ VFSFromYAML(IntrusiveRefCntPtr<FileSystem> ExternalFS)
+ : ExternalFS(ExternalFS), CaseSensitive(true), UseExternalNames(true) {}
+
+ /// \brief Looks up \p Path in \c Roots.
+ ErrorOr<Entry *> lookupPath(const Twine &Path);
+
+ /// \brief Looks up the path <tt>[Start, End)</tt> in \p From, possibly
+ /// recursing into the contents of \p From if it is a directory.
+ ErrorOr<Entry *> lookupPath(sys::path::const_iterator Start,
+ sys::path::const_iterator End, Entry *From);
+
+ /// \brief Get the status of a given an \c Entry.
+ ErrorOr<Status> status(const Twine &Path, Entry *E);
+
+public:
+ ~VFSFromYAML() override;
+
+ /// \brief Parses \p Buffer, which is expected to be in YAML format and
+ /// returns a virtual file system representing its contents.
+ static VFSFromYAML *create(std::unique_ptr<MemoryBuffer> Buffer,
+ SourceMgr::DiagHandlerTy DiagHandler,
+ void *DiagContext,
+ IntrusiveRefCntPtr<FileSystem> ExternalFS);
+
+ ErrorOr<Status> status(const Twine &Path) override;
+ ErrorOr<std::unique_ptr<File>> openFileForRead(const Twine &Path) override;
+
+ directory_iterator dir_begin(const Twine &Dir, std::error_code &EC) override{
+ ErrorOr<Entry *> E = lookupPath(Dir);
+ if (!E) {
+ EC = E.getError();
+ return directory_iterator();
+ }
+ ErrorOr<Status> S = status(Dir, *E);
+ if (!S) {
+ EC = S.getError();
+ return directory_iterator();
+ }
+ if (!S->isDirectory()) {
+ EC = std::error_code(static_cast<int>(errc::not_a_directory),
+ std::system_category());
+ return directory_iterator();
+ }
+
+ DirectoryEntry *D = cast<DirectoryEntry>(*E);
+ return directory_iterator(std::make_shared<VFSFromYamlDirIterImpl>(Dir,
+ *this, D->contents_begin(), D->contents_end(), EC));
+ }
+};
+
+/// \brief A helper class to hold the common YAML parsing state.
+class VFSFromYAMLParser {
+ yaml::Stream &Stream;
+
+ void error(yaml::Node *N, const Twine &Msg) {
+ Stream.printError(N, Msg);
+ }
+
+ // false on error
+ bool parseScalarString(yaml::Node *N, StringRef &Result,
+ SmallVectorImpl<char> &Storage) {
+ yaml::ScalarNode *S = dyn_cast<yaml::ScalarNode>(N);
+ if (!S) {
+ error(N, "expected string");
+ return false;
+ }
+ Result = S->getValue(Storage);
+ return true;
+ }
+
+ // false on error
+ bool parseScalarBool(yaml::Node *N, bool &Result) {
+ SmallString<5> Storage;
+ StringRef Value;
+ if (!parseScalarString(N, Value, Storage))
+ return false;
+
+ if (Value.equals_lower("true") || Value.equals_lower("on") ||
+ Value.equals_lower("yes") || Value == "1") {
+ Result = true;
+ return true;
+ } else if (Value.equals_lower("false") || Value.equals_lower("off") ||
+ Value.equals_lower("no") || Value == "0") {
+ Result = false;
+ return true;
+ }
+
+ error(N, "expected boolean value");
+ return false;
+ }
+
+ struct KeyStatus {
+ KeyStatus(bool Required=false) : Required(Required), Seen(false) {}
+ bool Required;
+ bool Seen;
+ };
+ typedef std::pair<StringRef, KeyStatus> KeyStatusPair;
+
+ // false on error
+ bool checkDuplicateOrUnknownKey(yaml::Node *KeyNode, StringRef Key,
+ DenseMap<StringRef, KeyStatus> &Keys) {
+ if (!Keys.count(Key)) {
+ error(KeyNode, "unknown key");
+ return false;
+ }
+ KeyStatus &S = Keys[Key];
+ if (S.Seen) {
+ error(KeyNode, Twine("duplicate key '") + Key + "'");
+ return false;
+ }
+ S.Seen = true;
+ return true;
+ }
+
+ // false on error
+ bool checkMissingKeys(yaml::Node *Obj, DenseMap<StringRef, KeyStatus> &Keys) {
+ for (DenseMap<StringRef, KeyStatus>::iterator I = Keys.begin(),
+ E = Keys.end();
+ I != E; ++I) {
+ if (I->second.Required && !I->second.Seen) {
+ error(Obj, Twine("missing key '") + I->first + "'");
+ return false;
+ }
+ }
+ return true;
+ }
+
+ Entry *parseEntry(yaml::Node *N) {
+ yaml::MappingNode *M = dyn_cast<yaml::MappingNode>(N);
+ if (!M) {
+ error(N, "expected mapping node for file or directory entry");
+ return nullptr;
+ }
+
+ KeyStatusPair Fields[] = {
+ KeyStatusPair("name", true),
+ KeyStatusPair("type", true),
+ KeyStatusPair("contents", false),
+ KeyStatusPair("external-contents", false),
+ KeyStatusPair("use-external-name", false),
+ };
+
+ DenseMap<StringRef, KeyStatus> Keys(
+ &Fields[0], Fields + sizeof(Fields)/sizeof(Fields[0]));
+
+ bool HasContents = false; // external or otherwise
+ std::vector<Entry *> EntryArrayContents;
+ std::string ExternalContentsPath;
+ std::string Name;
+ FileEntry::NameKind UseExternalName = FileEntry::NK_NotSet;
+ EntryKind Kind;
+
+ for (yaml::MappingNode::iterator I = M->begin(), E = M->end(); I != E;
+ ++I) {
+ StringRef Key;
+ // Reuse the buffer for key and value, since we don't look at key after
+ // parsing value.
+ SmallString<256> Buffer;
+ if (!parseScalarString(I->getKey(), Key, Buffer))
+ return nullptr;
+
+ if (!checkDuplicateOrUnknownKey(I->getKey(), Key, Keys))
+ return nullptr;
+
+ StringRef Value;
+ if (Key == "name") {
+ if (!parseScalarString(I->getValue(), Value, Buffer))
+ return nullptr;
+ Name = Value;
+ } else if (Key == "type") {
+ if (!parseScalarString(I->getValue(), Value, Buffer))
+ return nullptr;
+ if (Value == "file")
+ Kind = EK_File;
+ else if (Value == "directory")
+ Kind = EK_Directory;
+ else {
+ error(I->getValue(), "unknown value for 'type'");
+ return nullptr;
+ }
+ } else if (Key == "contents") {
+ if (HasContents) {
+ error(I->getKey(),
+ "entry already has 'contents' or 'external-contents'");
+ return nullptr;
+ }
+ HasContents = true;
+ yaml::SequenceNode *Contents =
+ dyn_cast<yaml::SequenceNode>(I->getValue());
+ if (!Contents) {
+ // FIXME: this is only for directories, what about files?
+ error(I->getValue(), "expected array");
+ return nullptr;
+ }
+
+ for (yaml::SequenceNode::iterator I = Contents->begin(),
+ E = Contents->end();
+ I != E; ++I) {
+ if (Entry *E = parseEntry(&*I))
+ EntryArrayContents.push_back(E);
+ else
+ return nullptr;
+ }
+ } else if (Key == "external-contents") {
+ if (HasContents) {
+ error(I->getKey(),
+ "entry already has 'contents' or 'external-contents'");
+ return nullptr;
+ }
+ HasContents = true;
+ if (!parseScalarString(I->getValue(), Value, Buffer))
+ return nullptr;
+ ExternalContentsPath = Value;
+ } else if (Key == "use-external-name") {
+ bool Val;
+ if (!parseScalarBool(I->getValue(), Val))
+ return nullptr;
+ UseExternalName = Val ? FileEntry::NK_External : FileEntry::NK_Virtual;
+ } else {
+ llvm_unreachable("key missing from Keys");
+ }
+ }
+
+ if (Stream.failed())
+ return nullptr;
+
+ // check for missing keys
+ if (!HasContents) {
+ error(N, "missing key 'contents' or 'external-contents'");
+ return nullptr;
+ }
+ if (!checkMissingKeys(N, Keys))
+ return nullptr;
+
+ // check invalid configuration
+ if (Kind == EK_Directory && UseExternalName != FileEntry::NK_NotSet) {
+ error(N, "'use-external-name' is not supported for directories");
+ return nullptr;
+ }
+
+ // Remove trailing slash(es), being careful not to remove the root path
+ StringRef Trimmed(Name);
+ size_t RootPathLen = sys::path::root_path(Trimmed).size();
+ while (Trimmed.size() > RootPathLen &&
+ sys::path::is_separator(Trimmed.back()))
+ Trimmed = Trimmed.slice(0, Trimmed.size()-1);
+ // Get the last component
+ StringRef LastComponent = sys::path::filename(Trimmed);
+
+ Entry *Result = nullptr;
+ switch (Kind) {
+ case EK_File:
+ Result = new FileEntry(LastComponent, std::move(ExternalContentsPath),
+ UseExternalName);
+ break;
+ case EK_Directory:
+ Result = new DirectoryEntry(LastComponent, std::move(EntryArrayContents),
+ Status("", "", getNextVirtualUniqueID(), sys::TimeValue::now(), 0, 0,
+ 0, file_type::directory_file, sys::fs::all_all));
+ break;
+ }
+
+ StringRef Parent = sys::path::parent_path(Trimmed);
+ if (Parent.empty())
+ return Result;
+
+ // if 'name' contains multiple components, create implicit directory entries
+ for (sys::path::reverse_iterator I = sys::path::rbegin(Parent),
+ E = sys::path::rend(Parent);
+ I != E; ++I) {
+ Result = new DirectoryEntry(*I, llvm::makeArrayRef(Result),
+ Status("", "", getNextVirtualUniqueID(), sys::TimeValue::now(), 0, 0,
+ 0, file_type::directory_file, sys::fs::all_all));
+ }
+ return Result;
+ }
+
+public:
+ VFSFromYAMLParser(yaml::Stream &S) : Stream(S) {}
+
+ // false on error
+ bool parse(yaml::Node *Root, VFSFromYAML *FS) {
+ yaml::MappingNode *Top = dyn_cast<yaml::MappingNode>(Root);
+ if (!Top) {
+ error(Root, "expected mapping node");
+ return false;
+ }
+
+ KeyStatusPair Fields[] = {
+ KeyStatusPair("version", true),
+ KeyStatusPair("case-sensitive", false),
+ KeyStatusPair("use-external-names", false),
+ KeyStatusPair("roots", true),
+ };
+
+ DenseMap<StringRef, KeyStatus> Keys(
+ &Fields[0], Fields + sizeof(Fields)/sizeof(Fields[0]));
+
+ // Parse configuration and 'roots'
+ for (yaml::MappingNode::iterator I = Top->begin(), E = Top->end(); I != E;
+ ++I) {
+ SmallString<10> KeyBuffer;
+ StringRef Key;
+ if (!parseScalarString(I->getKey(), Key, KeyBuffer))
+ return false;
+
+ if (!checkDuplicateOrUnknownKey(I->getKey(), Key, Keys))
+ return false;
+
+ if (Key == "roots") {
+ yaml::SequenceNode *Roots = dyn_cast<yaml::SequenceNode>(I->getValue());
+ if (!Roots) {
+ error(I->getValue(), "expected array");
+ return false;
+ }
+
+ for (yaml::SequenceNode::iterator I = Roots->begin(), E = Roots->end();
+ I != E; ++I) {
+ if (Entry *E = parseEntry(&*I))
+ FS->Roots.push_back(E);
+ else
+ return false;
+ }
+ } else if (Key == "version") {
+ StringRef VersionString;
+ SmallString<4> Storage;
+ if (!parseScalarString(I->getValue(), VersionString, Storage))
+ return false;
+ int Version;
+ if (VersionString.getAsInteger<int>(10, Version)) {
+ error(I->getValue(), "expected integer");
+ return false;
+ }
+ if (Version < 0) {
+ error(I->getValue(), "invalid version number");
+ return false;
+ }
+ if (Version != 0) {
+ error(I->getValue(), "version mismatch, expected 0");
+ return false;
+ }
+ } else if (Key == "case-sensitive") {
+ if (!parseScalarBool(I->getValue(), FS->CaseSensitive))
+ return false;
+ } else if (Key == "use-external-names") {
+ if (!parseScalarBool(I->getValue(), FS->UseExternalNames))
+ return false;
+ } else {
+ llvm_unreachable("key missing from Keys");
+ }
+ }
+
+ if (Stream.failed())
+ return false;
+
+ if (!checkMissingKeys(Top, Keys))
+ return false;
+ return true;
+ }
+};
+} // end of anonymous namespace
+
+Entry::~Entry() {}
+DirectoryEntry::~DirectoryEntry() { llvm::DeleteContainerPointers(Contents); }
+
+VFSFromYAML::~VFSFromYAML() { llvm::DeleteContainerPointers(Roots); }
+
+VFSFromYAML *VFSFromYAML::create(std::unique_ptr<MemoryBuffer> Buffer,
+ SourceMgr::DiagHandlerTy DiagHandler,
+ void *DiagContext,
+ IntrusiveRefCntPtr<FileSystem> ExternalFS) {
+
+ SourceMgr SM;
+ yaml::Stream Stream(Buffer->getMemBufferRef(), SM);
+
+ SM.setDiagHandler(DiagHandler, DiagContext);
+ yaml::document_iterator DI = Stream.begin();
+ yaml::Node *Root = DI->getRoot();
+ if (DI == Stream.end() || !Root) {
+ SM.PrintMessage(SMLoc(), SourceMgr::DK_Error, "expected root node");
+ return nullptr;
+ }
+
+ VFSFromYAMLParser P(Stream);
+
+ std::unique_ptr<VFSFromYAML> FS(new VFSFromYAML(ExternalFS));
+ if (!P.parse(Root, FS.get()))
+ return nullptr;
+
+ return FS.release();
+}
+
+ErrorOr<Entry *> VFSFromYAML::lookupPath(const Twine &Path_) {
+ SmallString<256> Path;
+ Path_.toVector(Path);
+
+ // Handle relative paths
+ if (std::error_code EC = sys::fs::make_absolute(Path))
+ return EC;
+
+ if (Path.empty())
+ return make_error_code(llvm::errc::invalid_argument);
+
+ sys::path::const_iterator Start = sys::path::begin(Path);
+ sys::path::const_iterator End = sys::path::end(Path);
+ for (std::vector<Entry *>::iterator I = Roots.begin(), E = Roots.end();
+ I != E; ++I) {
+ ErrorOr<Entry *> Result = lookupPath(Start, End, *I);
+ if (Result || Result.getError() != llvm::errc::no_such_file_or_directory)
+ return Result;
+ }
+ return make_error_code(llvm::errc::no_such_file_or_directory);
+}
+
+ErrorOr<Entry *> VFSFromYAML::lookupPath(sys::path::const_iterator Start,
+ sys::path::const_iterator End,
+ Entry *From) {
+ if (Start->equals("."))
+ ++Start;
+
+ // FIXME: handle ..
+ if (CaseSensitive ? !Start->equals(From->getName())
+ : !Start->equals_lower(From->getName()))
+ // failure to match
+ return make_error_code(llvm::errc::no_such_file_or_directory);
+
+ ++Start;
+
+ if (Start == End) {
+ // Match!
+ return From;
+ }
+
+ DirectoryEntry *DE = dyn_cast<DirectoryEntry>(From);
+ if (!DE)
+ return make_error_code(llvm::errc::not_a_directory);
+
+ for (DirectoryEntry::iterator I = DE->contents_begin(),
+ E = DE->contents_end();
+ I != E; ++I) {
+ ErrorOr<Entry *> Result = lookupPath(Start, End, *I);
+ if (Result || Result.getError() != llvm::errc::no_such_file_or_directory)
+ return Result;
+ }
+ return make_error_code(llvm::errc::no_such_file_or_directory);
+}
+
+ErrorOr<Status> VFSFromYAML::status(const Twine &Path, Entry *E) {
+ assert(E != nullptr);
+ std::string PathStr(Path.str());
+ if (FileEntry *F = dyn_cast<FileEntry>(E)) {
+ ErrorOr<Status> S = ExternalFS->status(F->getExternalContentsPath());
+ assert(!S || S->getName() == F->getExternalContentsPath());
+ if (S && !F->useExternalName(UseExternalNames))
+ S->setName(PathStr);
+ if (S)
+ S->IsVFSMapped = true;
+ return S;
+ } else { // directory
+ DirectoryEntry *DE = cast<DirectoryEntry>(E);
+ Status S = DE->getStatus();
+ S.setName(PathStr);
+ return S;
+ }
+}
+
+ErrorOr<Status> VFSFromYAML::status(const Twine &Path) {
+ ErrorOr<Entry *> Result = lookupPath(Path);
+ if (!Result)
+ return Result.getError();
+ return status(Path, *Result);
+}
+
+ErrorOr<std::unique_ptr<File>> VFSFromYAML::openFileForRead(const Twine &Path) {
+ ErrorOr<Entry *> E = lookupPath(Path);
+ if (!E)
+ return E.getError();
+
+ FileEntry *F = dyn_cast<FileEntry>(*E);
+ if (!F) // FIXME: errc::not_a_file?
+ return make_error_code(llvm::errc::invalid_argument);
+
+ auto Result = ExternalFS->openFileForRead(F->getExternalContentsPath());
+ if (!Result)
+ return Result;
+
+ if (!F->useExternalName(UseExternalNames))
+ (*Result)->setName(Path.str());
+
+ return Result;
+}
+
+IntrusiveRefCntPtr<FileSystem>
+vfs::getVFSFromYAML(std::unique_ptr<MemoryBuffer> Buffer,
+ SourceMgr::DiagHandlerTy DiagHandler, void *DiagContext,
+ IntrusiveRefCntPtr<FileSystem> ExternalFS) {
+ return VFSFromYAML::create(std::move(Buffer), DiagHandler, DiagContext,
+ ExternalFS);
+}
+
+UniqueID vfs::getNextVirtualUniqueID() {
+ static std::atomic<unsigned> UID;
+ unsigned ID = ++UID;
+ // The following assumes that uint64_t max will never collide with a real
+ // dev_t value from the OS.
+ return UniqueID(std::numeric_limits<uint64_t>::max(), ID);
+}
+
+#ifndef NDEBUG
+static bool pathHasTraversal(StringRef Path) {
+ using namespace llvm::sys;
+ for (StringRef Comp : llvm::make_range(path::begin(Path), path::end(Path)))
+ if (Comp == "." || Comp == "..")
+ return true;
+ return false;
+}
+#endif
+
+void YAMLVFSWriter::addFileMapping(StringRef VirtualPath, StringRef RealPath) {
+ assert(sys::path::is_absolute(VirtualPath) && "virtual path not absolute");
+ assert(sys::path::is_absolute(RealPath) && "real path not absolute");
+ assert(!pathHasTraversal(VirtualPath) && "path traversal is not supported");
+ Mappings.emplace_back(VirtualPath, RealPath);
+}
+
+namespace {
+class JSONWriter {
+ llvm::raw_ostream &OS;
+ SmallVector<StringRef, 16> DirStack;
+ inline unsigned getDirIndent() { return 4 * DirStack.size(); }
+ inline unsigned getFileIndent() { return 4 * (DirStack.size() + 1); }
+ bool containedIn(StringRef Parent, StringRef Path);
+ StringRef containedPart(StringRef Parent, StringRef Path);
+ void startDirectory(StringRef Path);
+ void endDirectory();
+ void writeEntry(StringRef VPath, StringRef RPath);
+
+public:
+ JSONWriter(llvm::raw_ostream &OS) : OS(OS) {}
+ void write(ArrayRef<YAMLVFSEntry> Entries, Optional<bool> IsCaseSensitive);
+};
+}
+
+bool JSONWriter::containedIn(StringRef Parent, StringRef Path) {
+ using namespace llvm::sys;
+ // Compare each path component.
+ auto IParent = path::begin(Parent), EParent = path::end(Parent);
+ for (auto IChild = path::begin(Path), EChild = path::end(Path);
+ IParent != EParent && IChild != EChild; ++IParent, ++IChild) {
+ if (*IParent != *IChild)
+ return false;
+ }
+ // Have we exhausted the parent path?
+ return IParent == EParent;
+}
+
+StringRef JSONWriter::containedPart(StringRef Parent, StringRef Path) {
+ assert(!Parent.empty());
+ assert(containedIn(Parent, Path));
+ return Path.slice(Parent.size() + 1, StringRef::npos);
+}
+
+void JSONWriter::startDirectory(StringRef Path) {
+ StringRef Name =
+ DirStack.empty() ? Path : containedPart(DirStack.back(), Path);
+ DirStack.push_back(Path);
+ unsigned Indent = getDirIndent();
+ OS.indent(Indent) << "{\n";
+ OS.indent(Indent + 2) << "'type': 'directory',\n";
+ OS.indent(Indent + 2) << "'name': \"" << llvm::yaml::escape(Name) << "\",\n";
+ OS.indent(Indent + 2) << "'contents': [\n";
+}
+
+void JSONWriter::endDirectory() {
+ unsigned Indent = getDirIndent();
+ OS.indent(Indent + 2) << "]\n";
+ OS.indent(Indent) << "}";
+
+ DirStack.pop_back();
+}
+
+void JSONWriter::writeEntry(StringRef VPath, StringRef RPath) {
+ unsigned Indent = getFileIndent();
+ OS.indent(Indent) << "{\n";
+ OS.indent(Indent + 2) << "'type': 'file',\n";
+ OS.indent(Indent + 2) << "'name': \"" << llvm::yaml::escape(VPath) << "\",\n";
+ OS.indent(Indent + 2) << "'external-contents': \""
+ << llvm::yaml::escape(RPath) << "\"\n";
+ OS.indent(Indent) << "}";
+}
+
+void JSONWriter::write(ArrayRef<YAMLVFSEntry> Entries,
+ Optional<bool> IsCaseSensitive) {
+ using namespace llvm::sys;
+
+ OS << "{\n"
+ " 'version': 0,\n";
+ if (IsCaseSensitive.hasValue())
+ OS << " 'case-sensitive': '"
+ << (IsCaseSensitive.getValue() ? "true" : "false") << "',\n";
+ OS << " 'roots': [\n";
+
+ if (!Entries.empty()) {
+ const YAMLVFSEntry &Entry = Entries.front();
+ startDirectory(path::parent_path(Entry.VPath));
+ writeEntry(path::filename(Entry.VPath), Entry.RPath);
+
+ for (const auto &Entry : Entries.slice(1)) {
+ StringRef Dir = path::parent_path(Entry.VPath);
+ if (Dir == DirStack.back())
+ OS << ",\n";
+ else {
+ while (!DirStack.empty() && !containedIn(DirStack.back(), Dir)) {
+ OS << "\n";
+ endDirectory();
+ }
+ OS << ",\n";
+ startDirectory(Dir);
+ }
+ writeEntry(path::filename(Entry.VPath), Entry.RPath);
+ }
+
+ while (!DirStack.empty()) {
+ OS << "\n";
+ endDirectory();
+ }
+ OS << "\n";
+ }
+
+ OS << " ]\n"
+ << "}\n";
+}
+
+void YAMLVFSWriter::write(llvm::raw_ostream &OS) {
+ std::sort(Mappings.begin(), Mappings.end(),
+ [](const YAMLVFSEntry &LHS, const YAMLVFSEntry &RHS) {
+ return LHS.VPath < RHS.VPath;
+ });
+
+ JSONWriter(OS).write(Mappings, IsCaseSensitive);
+}
+
+VFSFromYamlDirIterImpl::VFSFromYamlDirIterImpl(const Twine &_Path,
+ VFSFromYAML &FS,
+ DirectoryEntry::iterator Begin,
+ DirectoryEntry::iterator End,
+ std::error_code &EC)
+ : Dir(_Path.str()), FS(FS), Current(Begin), End(End) {
+ if (Current != End) {
+ SmallString<128> PathStr(Dir);
+ llvm::sys::path::append(PathStr, (*Current)->getName());
+ llvm::ErrorOr<vfs::Status> S = FS.status(PathStr);
+ if (S)
+ CurrentEntry = *S;
+ else
+ EC = S.getError();
+ }
+}
+
+std::error_code VFSFromYamlDirIterImpl::increment() {
+ assert(Current != End && "cannot iterate past end");
+ if (++Current != End) {
+ SmallString<128> PathStr(Dir);
+ llvm::sys::path::append(PathStr, (*Current)->getName());
+ llvm::ErrorOr<vfs::Status> S = FS.status(PathStr);
+ if (!S)
+ return S.getError();
+ CurrentEntry = *S;
+ } else {
+ CurrentEntry = Status();
+ }
+ return std::error_code();
+}
+
+vfs::recursive_directory_iterator::recursive_directory_iterator(FileSystem &FS_,
+ const Twine &Path,
+ std::error_code &EC)
+ : FS(&FS_) {
+ directory_iterator I = FS->dir_begin(Path, EC);
+ if (!EC && I != directory_iterator()) {
+ State = std::make_shared<IterState>();
+ State->push(I);
+ }
+}
+
+vfs::recursive_directory_iterator &
+recursive_directory_iterator::increment(std::error_code &EC) {
+ assert(FS && State && !State->empty() && "incrementing past end");
+ assert(State->top()->isStatusKnown() && "non-canonical end iterator");
+ vfs::directory_iterator End;
+ if (State->top()->isDirectory()) {
+ vfs::directory_iterator I = FS->dir_begin(State->top()->getName(), EC);
+ if (EC)
+ return *this;
+ if (I != End) {
+ State->push(I);
+ return *this;
+ }
+ }
+
+ while (!State->empty() && State->top().increment(EC) == End)
+ State->pop();
+
+ if (State->empty())
+ State.reset(); // end iterator
+
+ return *this;
+}
diff --git a/contrib/llvm/tools/clang/lib/Basic/Warnings.cpp b/contrib/llvm/tools/clang/lib/Basic/Warnings.cpp
new file mode 100644
index 0000000..6306cea
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Basic/Warnings.cpp
@@ -0,0 +1,230 @@
+//===--- Warnings.cpp - C-Language Front-end ------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Command line warning options handler.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file is responsible for handling all warning options. This includes
+// a number of -Wfoo options and their variants, which are driven by TableGen-
+// generated data, and the special cases -pedantic, -pedantic-errors, -w,
+// -Werror and -Wfatal-errors.
+//
+// Each warning option controls any number of actual warnings.
+// Given a warning option 'foo', the following are valid:
+// -Wfoo, -Wno-foo, -Werror=foo, -Wfatal-errors=foo
+//
+// Remark options are also handled here, analogously, except that they are much
+// simpler because a remark can't be promoted to an error.
+#include "clang/Basic/AllDiagnostics.h"
+#include "clang/Basic/Diagnostic.h"
+#include "clang/Basic/DiagnosticOptions.h"
+#include <algorithm>
+#include <cstring>
+#include <utility>
+using namespace clang;
+
+// EmitUnknownDiagWarning - Emit a warning and typo hint for unknown warning
+// opts
+static void EmitUnknownDiagWarning(DiagnosticsEngine &Diags,
+ diag::Flavor Flavor, StringRef Prefix,
+ StringRef Opt) {
+ StringRef Suggestion = DiagnosticIDs::getNearestOption(Flavor, Opt);
+ Diags.Report(diag::warn_unknown_diag_option)
+ << (Flavor == diag::Flavor::WarningOrError ? 0 : 1) << (Prefix.str() += Opt)
+ << !Suggestion.empty() << (Prefix.str() += Suggestion);
+}
+
+void clang::ProcessWarningOptions(DiagnosticsEngine &Diags,
+ const DiagnosticOptions &Opts,
+ bool ReportDiags) {
+ Diags.setSuppressSystemWarnings(true); // Default to -Wno-system-headers
+ Diags.setIgnoreAllWarnings(Opts.IgnoreWarnings);
+ Diags.setShowOverloads(Opts.getShowOverloads());
+
+ Diags.setElideType(Opts.ElideType);
+ Diags.setPrintTemplateTree(Opts.ShowTemplateTree);
+ Diags.setShowColors(Opts.ShowColors);
+
+ // Handle -ferror-limit
+ if (Opts.ErrorLimit)
+ Diags.setErrorLimit(Opts.ErrorLimit);
+ if (Opts.TemplateBacktraceLimit)
+ Diags.setTemplateBacktraceLimit(Opts.TemplateBacktraceLimit);
+ if (Opts.ConstexprBacktraceLimit)
+ Diags.setConstexprBacktraceLimit(Opts.ConstexprBacktraceLimit);
+
+ // If -pedantic or -pedantic-errors was specified, then we want to map all
+ // extension diagnostics onto WARNING or ERROR unless the user has futz'd
+ // around with them explicitly.
+ if (Opts.PedanticErrors)
+ Diags.setExtensionHandlingBehavior(diag::Severity::Error);
+ else if (Opts.Pedantic)
+ Diags.setExtensionHandlingBehavior(diag::Severity::Warning);
+ else
+ Diags.setExtensionHandlingBehavior(diag::Severity::Ignored);
+
+ SmallVector<diag::kind, 10> _Diags;
+ const IntrusiveRefCntPtr< DiagnosticIDs > DiagIDs =
+ Diags.getDiagnosticIDs();
+ // We parse the warning options twice. The first pass sets diagnostic state,
+ // while the second pass reports warnings/errors. This has the effect that
+ // we follow the more canonical "last option wins" paradigm when there are
+ // conflicting options.
+ for (unsigned Report = 0, ReportEnd = 2; Report != ReportEnd; ++Report) {
+ bool SetDiagnostic = (Report == 0);
+
+ // If we've set the diagnostic state and are not reporting diagnostics then
+ // we're done.
+ if (!SetDiagnostic && !ReportDiags)
+ break;
+
+ for (unsigned i = 0, e = Opts.Warnings.size(); i != e; ++i) {
+ const auto Flavor = diag::Flavor::WarningOrError;
+ StringRef Opt = Opts.Warnings[i];
+ StringRef OrigOpt = Opts.Warnings[i];
+
+ // Treat -Wformat=0 as an alias for -Wno-format.
+ if (Opt == "format=0")
+ Opt = "no-format";
+
+ // Check to see if this warning starts with "no-", if so, this is a
+ // negative form of the option.
+ bool isPositive = true;
+ if (Opt.startswith("no-")) {
+ isPositive = false;
+ Opt = Opt.substr(3);
+ }
+
+ // Figure out how this option affects the warning. If -Wfoo, map the
+ // diagnostic to a warning, if -Wno-foo, map it to ignore.
+ diag::Severity Mapping =
+ isPositive ? diag::Severity::Warning : diag::Severity::Ignored;
+
+ // -Wsystem-headers is a special case, not driven by the option table. It
+ // cannot be controlled with -Werror.
+ if (Opt == "system-headers") {
+ if (SetDiagnostic)
+ Diags.setSuppressSystemWarnings(!isPositive);
+ continue;
+ }
+
+ // -Weverything is a special case as well. It implicitly enables all
+ // warnings, including ones not explicitly in a warning group.
+ if (Opt == "everything") {
+ if (SetDiagnostic) {
+ if (isPositive) {
+ Diags.setEnableAllWarnings(true);
+ } else {
+ Diags.setEnableAllWarnings(false);
+ Diags.setSeverityForAll(Flavor, diag::Severity::Ignored);
+ }
+ }
+ continue;
+ }
+
+ // -Werror/-Wno-error is a special case, not controlled by the option
+ // table. It also has the "specifier" form of -Werror=foo and -Werror-foo.
+ if (Opt.startswith("error")) {
+ StringRef Specifier;
+ if (Opt.size() > 5) { // Specifier must be present.
+ if ((Opt[5] != '=' && Opt[5] != '-') || Opt.size() == 6) {
+ if (Report)
+ Diags.Report(diag::warn_unknown_warning_specifier)
+ << "-Werror" << ("-W" + OrigOpt.str());
+ continue;
+ }
+ Specifier = Opt.substr(6);
+ }
+
+ if (Specifier.empty()) {
+ if (SetDiagnostic)
+ Diags.setWarningsAsErrors(isPositive);
+ continue;
+ }
+
+ if (SetDiagnostic) {
+ // Set the warning as error flag for this specifier.
+ Diags.setDiagnosticGroupWarningAsError(Specifier, isPositive);
+ } else if (DiagIDs->getDiagnosticsInGroup(Flavor, Specifier, _Diags)) {
+ EmitUnknownDiagWarning(Diags, Flavor, "-Werror=", Specifier);
+ }
+ continue;
+ }
+
+ // -Wfatal-errors is yet another special case.
+ if (Opt.startswith("fatal-errors")) {
+ StringRef Specifier;
+ if (Opt.size() != 12) {
+ if ((Opt[12] != '=' && Opt[12] != '-') || Opt.size() == 13) {
+ if (Report)
+ Diags.Report(diag::warn_unknown_warning_specifier)
+ << "-Wfatal-errors" << ("-W" + OrigOpt.str());
+ continue;
+ }
+ Specifier = Opt.substr(13);
+ }
+
+ if (Specifier.empty()) {
+ if (SetDiagnostic)
+ Diags.setErrorsAsFatal(isPositive);
+ continue;
+ }
+
+ if (SetDiagnostic) {
+ // Set the error as fatal flag for this specifier.
+ Diags.setDiagnosticGroupErrorAsFatal(Specifier, isPositive);
+ } else if (DiagIDs->getDiagnosticsInGroup(Flavor, Specifier, _Diags)) {
+ EmitUnknownDiagWarning(Diags, Flavor, "-Wfatal-errors=", Specifier);
+ }
+ continue;
+ }
+
+ if (Report) {
+ if (DiagIDs->getDiagnosticsInGroup(Flavor, Opt, _Diags))
+ EmitUnknownDiagWarning(Diags, Flavor, isPositive ? "-W" : "-Wno-",
+ Opt);
+ } else {
+ Diags.setSeverityForGroup(Flavor, Opt, Mapping);
+ }
+ }
+
+ for (unsigned i = 0, e = Opts.Remarks.size(); i != e; ++i) {
+ StringRef Opt = Opts.Remarks[i];
+ const auto Flavor = diag::Flavor::Remark;
+
+ // Check to see if this warning starts with "no-", if so, this is a
+ // negative form of the option.
+ bool IsPositive = !Opt.startswith("no-");
+ if (!IsPositive) Opt = Opt.substr(3);
+
+ auto Severity = IsPositive ? diag::Severity::Remark
+ : diag::Severity::Ignored;
+
+ // -Reverything sets the state of all remarks. Note that all remarks are
+ // in remark groups, so we don't need a separate 'all remarks enabled'
+ // flag.
+ if (Opt == "everything") {
+ if (SetDiagnostic)
+ Diags.setSeverityForAll(Flavor, Severity);
+ continue;
+ }
+
+ if (Report) {
+ if (DiagIDs->getDiagnosticsInGroup(Flavor, Opt, _Diags))
+ EmitUnknownDiagWarning(Diags, Flavor, IsPositive ? "-R" : "-Rno-",
+ Opt);
+ } else {
+ Diags.setSeverityForGroup(Flavor, Opt,
+ IsPositive ? diag::Severity::Remark
+ : diag::Severity::Ignored);
+ }
+ }
+ }
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/ABIInfo.h b/contrib/llvm/tools/clang/lib/CodeGen/ABIInfo.h
new file mode 100644
index 0000000..cc8652e
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/ABIInfo.h
@@ -0,0 +1,98 @@
+//===----- ABIInfo.h - ABI information access & encapsulation ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_CODEGEN_ABIINFO_H
+#define LLVM_CLANG_LIB_CODEGEN_ABIINFO_H
+
+#include "clang/AST/Type.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/Type.h"
+
+namespace llvm {
+ class Value;
+ class LLVMContext;
+ class DataLayout;
+}
+
+namespace clang {
+ class ASTContext;
+ class TargetInfo;
+
+ namespace CodeGen {
+ class CGCXXABI;
+ class CGFunctionInfo;
+ class CodeGenFunction;
+ class CodeGenTypes;
+ }
+
+ // FIXME: All of this stuff should be part of the target interface
+ // somehow. It is currently here because it is not clear how to factor
+ // the targets to support this, since the Targets currently live in a
+ // layer below types n'stuff.
+
+
+ /// ABIInfo - Target specific hooks for defining how a type should be
+ /// passed or returned from functions.
+ class ABIInfo {
+ public:
+ CodeGen::CodeGenTypes &CGT;
+ protected:
+ llvm::CallingConv::ID RuntimeCC;
+ llvm::CallingConv::ID BuiltinCC;
+ public:
+ ABIInfo(CodeGen::CodeGenTypes &cgt)
+ : CGT(cgt),
+ RuntimeCC(llvm::CallingConv::C),
+ BuiltinCC(llvm::CallingConv::C) {}
+
+ virtual ~ABIInfo();
+
+ CodeGen::CGCXXABI &getCXXABI() const;
+ ASTContext &getContext() const;
+ llvm::LLVMContext &getVMContext() const;
+ const llvm::DataLayout &getDataLayout() const;
+ const TargetInfo &getTarget() const;
+
+ /// Return the calling convention to use for system runtime
+ /// functions.
+ llvm::CallingConv::ID getRuntimeCC() const {
+ return RuntimeCC;
+ }
+
+ /// Return the calling convention to use for compiler builtins
+ llvm::CallingConv::ID getBuiltinCC() const {
+ return BuiltinCC;
+ }
+
+ virtual void computeInfo(CodeGen::CGFunctionInfo &FI) const = 0;
+
+ /// EmitVAArg - Emit the target dependent code to load a value of
+ /// \arg Ty from the va_list pointed to by \arg VAListAddr.
+
+ // FIXME: This is a gaping layering violation if we wanted to drop
+ // the ABI information any lower than CodeGen. Of course, for
+ // VAArg handling it has to be at this level; there is no way to
+ // abstract this out.
+ virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGen::CodeGenFunction &CGF) const = 0;
+
+ virtual bool isHomogeneousAggregateBaseType(QualType Ty) const;
+
+ virtual bool isHomogeneousAggregateSmallEnough(const Type *Base,
+ uint64_t Members) const;
+
+ virtual bool shouldSignExtUnsignedType(QualType Ty) const;
+
+ bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
+ uint64_t &Members) const;
+
+ };
+} // end namespace clang
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/BackendUtil.cpp b/contrib/llvm/tools/clang/lib/CodeGen/BackendUtil.cpp
new file mode 100644
index 0000000..7f0c7ba
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/BackendUtil.cpp
@@ -0,0 +1,667 @@
+//===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/CodeGen/BackendUtil.h"
+#include "clang/Basic/Diagnostic.h"
+#include "clang/Basic/LangOptions.h"
+#include "clang/Basic/TargetOptions.h"
+#include "clang/Frontend/CodeGenOptions.h"
+#include "clang/Frontend/FrontendDiagnostic.h"
+#include "clang/Frontend/Utils.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Bitcode/BitcodeWriterPass.h"
+#include "llvm/CodeGen/RegAllocRegistry.h"
+#include "llvm/CodeGen/SchedulerRegistry.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/IRPrintingPasses.h"
+#include "llvm/IR/LegacyPassManager.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Verifier.h"
+#include "llvm/MC/SubtargetFeature.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/PrettyStackTrace.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Support/Timer.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+#include "llvm/Transforms/IPO.h"
+#include "llvm/Transforms/IPO/PassManagerBuilder.h"
+#include "llvm/Transforms/Instrumentation.h"
+#include "llvm/Transforms/ObjCARC.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/SymbolRewriter.h"
+#include <memory>
+using namespace clang;
+using namespace llvm;
+
+namespace {
+
+class EmitAssemblyHelper {
+ DiagnosticsEngine &Diags;
+ const CodeGenOptions &CodeGenOpts;
+ const clang::TargetOptions &TargetOpts;
+ const LangOptions &LangOpts;
+ Module *TheModule;
+
+ Timer CodeGenerationTime;
+
+ mutable legacy::PassManager *CodeGenPasses;
+ mutable legacy::PassManager *PerModulePasses;
+ mutable legacy::FunctionPassManager *PerFunctionPasses;
+
+private:
+ TargetIRAnalysis getTargetIRAnalysis() const {
+ if (TM)
+ return TM->getTargetIRAnalysis();
+
+ return TargetIRAnalysis();
+ }
+
+ legacy::PassManager *getCodeGenPasses() const {
+ if (!CodeGenPasses) {
+ CodeGenPasses = new legacy::PassManager();
+ CodeGenPasses->add(
+ createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
+ }
+ return CodeGenPasses;
+ }
+
+ legacy::PassManager *getPerModulePasses() const {
+ if (!PerModulePasses) {
+ PerModulePasses = new legacy::PassManager();
+ PerModulePasses->add(
+ createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
+ }
+ return PerModulePasses;
+ }
+
+ legacy::FunctionPassManager *getPerFunctionPasses() const {
+ if (!PerFunctionPasses) {
+ PerFunctionPasses = new legacy::FunctionPassManager(TheModule);
+ PerFunctionPasses->add(
+ createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
+ }
+ return PerFunctionPasses;
+ }
+
+ void CreatePasses();
+
+ /// Generates the TargetMachine.
+ /// Returns Null if it is unable to create the target machine.
+ /// Some of our clang tests specify triples which are not built
+ /// into clang. This is okay because these tests check the generated
+ /// IR, and they require DataLayout which depends on the triple.
+ /// In this case, we allow this method to fail and not report an error.
+ /// When MustCreateTM is used, we print an error if we are unable to load
+ /// the requested target.
+ TargetMachine *CreateTargetMachine(bool MustCreateTM);
+
+ /// Add passes necessary to emit assembly or LLVM IR.
+ ///
+ /// \return True on success.
+ bool AddEmitPasses(BackendAction Action, raw_pwrite_stream &OS);
+
+public:
+ EmitAssemblyHelper(DiagnosticsEngine &_Diags,
+ const CodeGenOptions &CGOpts,
+ const clang::TargetOptions &TOpts,
+ const LangOptions &LOpts,
+ Module *M)
+ : Diags(_Diags), CodeGenOpts(CGOpts), TargetOpts(TOpts), LangOpts(LOpts),
+ TheModule(M), CodeGenerationTime("Code Generation Time"),
+ CodeGenPasses(nullptr), PerModulePasses(nullptr),
+ PerFunctionPasses(nullptr) {}
+
+ ~EmitAssemblyHelper() {
+ delete CodeGenPasses;
+ delete PerModulePasses;
+ delete PerFunctionPasses;
+ if (CodeGenOpts.DisableFree)
+ BuryPointer(std::move(TM));
+ }
+
+ std::unique_ptr<TargetMachine> TM;
+
+ void EmitAssembly(BackendAction Action, raw_pwrite_stream *OS);
+};
+
+// We need this wrapper to access LangOpts and CGOpts from extension functions
+// that we add to the PassManagerBuilder.
+class PassManagerBuilderWrapper : public PassManagerBuilder {
+public:
+ PassManagerBuilderWrapper(const CodeGenOptions &CGOpts,
+ const LangOptions &LangOpts)
+ : PassManagerBuilder(), CGOpts(CGOpts), LangOpts(LangOpts) {}
+ const CodeGenOptions &getCGOpts() const { return CGOpts; }
+ const LangOptions &getLangOpts() const { return LangOpts; }
+private:
+ const CodeGenOptions &CGOpts;
+ const LangOptions &LangOpts;
+};
+
+}
+
+static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
+ if (Builder.OptLevel > 0)
+ PM.add(createObjCARCAPElimPass());
+}
+
+static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
+ if (Builder.OptLevel > 0)
+ PM.add(createObjCARCExpandPass());
+}
+
+static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
+ if (Builder.OptLevel > 0)
+ PM.add(createObjCARCOptPass());
+}
+
+static void addSampleProfileLoaderPass(const PassManagerBuilder &Builder,
+ legacy::PassManagerBase &PM) {
+ const PassManagerBuilderWrapper &BuilderWrapper =
+ static_cast<const PassManagerBuilderWrapper &>(Builder);
+ const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
+ PM.add(createSampleProfileLoaderPass(CGOpts.SampleProfileFile));
+}
+
+static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder,
+ legacy::PassManagerBase &PM) {
+ PM.add(createAddDiscriminatorsPass());
+}
+
+static void addBoundsCheckingPass(const PassManagerBuilder &Builder,
+ legacy::PassManagerBase &PM) {
+ PM.add(createBoundsCheckingPass());
+}
+
+static void addSanitizerCoveragePass(const PassManagerBuilder &Builder,
+ legacy::PassManagerBase &PM) {
+ const PassManagerBuilderWrapper &BuilderWrapper =
+ static_cast<const PassManagerBuilderWrapper&>(Builder);
+ const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
+ SanitizerCoverageOptions Opts;
+ Opts.CoverageType =
+ static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType);
+ Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls;
+ Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB;
+ Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp;
+ Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters;
+ PM.add(createSanitizerCoverageModulePass(Opts));
+}
+
+static void addAddressSanitizerPasses(const PassManagerBuilder &Builder,
+ legacy::PassManagerBase &PM) {
+ PM.add(createAddressSanitizerFunctionPass());
+ PM.add(createAddressSanitizerModulePass());
+}
+
+static void addMemorySanitizerPass(const PassManagerBuilder &Builder,
+ legacy::PassManagerBase &PM) {
+ const PassManagerBuilderWrapper &BuilderWrapper =
+ static_cast<const PassManagerBuilderWrapper&>(Builder);
+ const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
+ PM.add(createMemorySanitizerPass(CGOpts.SanitizeMemoryTrackOrigins));
+
+ // MemorySanitizer inserts complex instrumentation that mostly follows
+ // the logic of the original code, but operates on "shadow" values.
+ // It can benefit from re-running some general purpose optimization passes.
+ if (Builder.OptLevel > 0) {
+ PM.add(createEarlyCSEPass());
+ PM.add(createReassociatePass());
+ PM.add(createLICMPass());
+ PM.add(createGVNPass());
+ PM.add(createInstructionCombiningPass());
+ PM.add(createDeadStoreEliminationPass());
+ }
+}
+
+static void addThreadSanitizerPass(const PassManagerBuilder &Builder,
+ legacy::PassManagerBase &PM) {
+ PM.add(createThreadSanitizerPass());
+}
+
+static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder,
+ legacy::PassManagerBase &PM) {
+ const PassManagerBuilderWrapper &BuilderWrapper =
+ static_cast<const PassManagerBuilderWrapper&>(Builder);
+ const LangOptions &LangOpts = BuilderWrapper.getLangOpts();
+ PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles));
+}
+
+static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple,
+ const CodeGenOptions &CodeGenOpts) {
+ TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple);
+ if (!CodeGenOpts.SimplifyLibCalls)
+ TLII->disableAllFunctions();
+
+ switch (CodeGenOpts.getVecLib()) {
+ case CodeGenOptions::Accelerate:
+ TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate);
+ break;
+ default:
+ break;
+ }
+ return TLII;
+}
+
+static void addSymbolRewriterPass(const CodeGenOptions &Opts,
+ legacy::PassManager *MPM) {
+ llvm::SymbolRewriter::RewriteDescriptorList DL;
+
+ llvm::SymbolRewriter::RewriteMapParser MapParser;
+ for (const auto &MapFile : Opts.RewriteMapFiles)
+ MapParser.parse(MapFile, &DL);
+
+ MPM->add(createRewriteSymbolsPass(DL));
+}
+
+void EmitAssemblyHelper::CreatePasses() {
+ unsigned OptLevel = CodeGenOpts.OptimizationLevel;
+ CodeGenOptions::InliningMethod Inlining = CodeGenOpts.getInlining();
+
+ // Handle disabling of LLVM optimization, where we want to preserve the
+ // internal module before any optimization.
+ if (CodeGenOpts.DisableLLVMOpts) {
+ OptLevel = 0;
+ Inlining = CodeGenOpts.NoInlining;
+ }
+
+ PassManagerBuilderWrapper PMBuilder(CodeGenOpts, LangOpts);
+ PMBuilder.OptLevel = OptLevel;
+ PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize;
+ PMBuilder.BBVectorize = CodeGenOpts.VectorizeBB;
+ PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP;
+ PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop;
+
+ PMBuilder.DisableTailCalls = CodeGenOpts.DisableTailCalls;
+ PMBuilder.DisableUnitAtATime = !CodeGenOpts.UnitAtATime;
+ PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops;
+ PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions;
+ PMBuilder.RerollLoops = CodeGenOpts.RerollLoops;
+
+ PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible,
+ addAddDiscriminatorsPass);
+
+ if (!CodeGenOpts.SampleProfileFile.empty())
+ PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible,
+ addSampleProfileLoaderPass);
+
+ // In ObjC ARC mode, add the main ARC optimization passes.
+ if (LangOpts.ObjCAutoRefCount) {
+ PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible,
+ addObjCARCExpandPass);
+ PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly,
+ addObjCARCAPElimPass);
+ PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate,
+ addObjCARCOptPass);
+ }
+
+ if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) {
+ PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate,
+ addBoundsCheckingPass);
+ PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
+ addBoundsCheckingPass);
+ }
+
+ if (CodeGenOpts.SanitizeCoverageType ||
+ CodeGenOpts.SanitizeCoverageIndirectCalls ||
+ CodeGenOpts.SanitizeCoverageTraceCmp) {
+ PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
+ addSanitizerCoveragePass);
+ PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
+ addSanitizerCoveragePass);
+ }
+
+ if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
+ PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
+ addAddressSanitizerPasses);
+ PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
+ addAddressSanitizerPasses);
+ }
+
+ if (LangOpts.Sanitize.has(SanitizerKind::Memory)) {
+ PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
+ addMemorySanitizerPass);
+ PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
+ addMemorySanitizerPass);
+ }
+
+ if (LangOpts.Sanitize.has(SanitizerKind::Thread)) {
+ PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
+ addThreadSanitizerPass);
+ PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
+ addThreadSanitizerPass);
+ }
+
+ if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) {
+ PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
+ addDataFlowSanitizerPass);
+ PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
+ addDataFlowSanitizerPass);
+ }
+
+ // Figure out TargetLibraryInfo.
+ Triple TargetTriple(TheModule->getTargetTriple());
+ PMBuilder.LibraryInfo = createTLII(TargetTriple, CodeGenOpts);
+
+ switch (Inlining) {
+ case CodeGenOptions::NoInlining: break;
+ case CodeGenOptions::NormalInlining: {
+ PMBuilder.Inliner =
+ createFunctionInliningPass(OptLevel, CodeGenOpts.OptimizeSize);
+ break;
+ }
+ case CodeGenOptions::OnlyAlwaysInlining:
+ // Respect always_inline.
+ if (OptLevel == 0)
+ // Do not insert lifetime intrinsics at -O0.
+ PMBuilder.Inliner = createAlwaysInlinerPass(false);
+ else
+ PMBuilder.Inliner = createAlwaysInlinerPass();
+ break;
+ }
+
+ // Set up the per-function pass manager.
+ legacy::FunctionPassManager *FPM = getPerFunctionPasses();
+ if (CodeGenOpts.VerifyModule)
+ FPM->add(createVerifierPass());
+ PMBuilder.populateFunctionPassManager(*FPM);
+
+ // Set up the per-module pass manager.
+ legacy::PassManager *MPM = getPerModulePasses();
+ if (!CodeGenOpts.RewriteMapFiles.empty())
+ addSymbolRewriterPass(CodeGenOpts, MPM);
+
+ if (!CodeGenOpts.DisableGCov &&
+ (CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)) {
+ // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if
+ // LLVM's -default-gcov-version flag is set to something invalid.
+ GCOVOptions Options;
+ Options.EmitNotes = CodeGenOpts.EmitGcovNotes;
+ Options.EmitData = CodeGenOpts.EmitGcovArcs;
+ memcpy(Options.Version, CodeGenOpts.CoverageVersion, 4);
+ Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum;
+ Options.NoRedZone = CodeGenOpts.DisableRedZone;
+ Options.FunctionNamesInData =
+ !CodeGenOpts.CoverageNoFunctionNamesInData;
+ Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody;
+ MPM->add(createGCOVProfilerPass(Options));
+ if (CodeGenOpts.getDebugInfo() == CodeGenOptions::NoDebugInfo)
+ MPM->add(createStripSymbolsPass(true));
+ }
+
+ if (CodeGenOpts.ProfileInstrGenerate) {
+ InstrProfOptions Options;
+ Options.NoRedZone = CodeGenOpts.DisableRedZone;
+ Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput;
+ MPM->add(createInstrProfilingPass(Options));
+ }
+
+ PMBuilder.populateModulePassManager(*MPM);
+}
+
+TargetMachine *EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) {
+ // Create the TargetMachine for generating code.
+ std::string Error;
+ std::string Triple = TheModule->getTargetTriple();
+ const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error);
+ if (!TheTarget) {
+ if (MustCreateTM)
+ Diags.Report(diag::err_fe_unable_to_create_target) << Error;
+ return nullptr;
+ }
+
+ unsigned CodeModel =
+ llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel)
+ .Case("small", llvm::CodeModel::Small)
+ .Case("kernel", llvm::CodeModel::Kernel)
+ .Case("medium", llvm::CodeModel::Medium)
+ .Case("large", llvm::CodeModel::Large)
+ .Case("default", llvm::CodeModel::Default)
+ .Default(~0u);
+ assert(CodeModel != ~0u && "invalid code model!");
+ llvm::CodeModel::Model CM = static_cast<llvm::CodeModel::Model>(CodeModel);
+
+ SmallVector<const char *, 16> BackendArgs;
+ BackendArgs.push_back("clang"); // Fake program name.
+ if (!CodeGenOpts.DebugPass.empty()) {
+ BackendArgs.push_back("-debug-pass");
+ BackendArgs.push_back(CodeGenOpts.DebugPass.c_str());
+ }
+ if (!CodeGenOpts.LimitFloatPrecision.empty()) {
+ BackendArgs.push_back("-limit-float-precision");
+ BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str());
+ }
+ if (llvm::TimePassesIsEnabled)
+ BackendArgs.push_back("-time-passes");
+ for (unsigned i = 0, e = CodeGenOpts.BackendOptions.size(); i != e; ++i)
+ BackendArgs.push_back(CodeGenOpts.BackendOptions[i].c_str());
+ BackendArgs.push_back(nullptr);
+ llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1,
+ BackendArgs.data());
+
+ std::string FeaturesStr;
+ if (!TargetOpts.Features.empty()) {
+ SubtargetFeatures Features;
+ for (std::vector<std::string>::const_iterator
+ it = TargetOpts.Features.begin(),
+ ie = TargetOpts.Features.end(); it != ie; ++it)
+ Features.AddFeature(*it);
+ FeaturesStr = Features.getString();
+ }
+
+ llvm::Reloc::Model RM = llvm::Reloc::Default;
+ if (CodeGenOpts.RelocationModel == "static") {
+ RM = llvm::Reloc::Static;
+ } else if (CodeGenOpts.RelocationModel == "pic") {
+ RM = llvm::Reloc::PIC_;
+ } else {
+ assert(CodeGenOpts.RelocationModel == "dynamic-no-pic" &&
+ "Invalid PIC model!");
+ RM = llvm::Reloc::DynamicNoPIC;
+ }
+
+ CodeGenOpt::Level OptLevel = CodeGenOpt::Default;
+ switch (CodeGenOpts.OptimizationLevel) {
+ default: break;
+ case 0: OptLevel = CodeGenOpt::None; break;
+ case 3: OptLevel = CodeGenOpt::Aggressive; break;
+ }
+
+ llvm::TargetOptions Options;
+
+ Options.ThreadModel =
+ llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel)
+ .Case("posix", llvm::ThreadModel::POSIX)
+ .Case("single", llvm::ThreadModel::Single);
+
+ if (CodeGenOpts.DisableIntegratedAS)
+ Options.DisableIntegratedAS = true;
+
+ if (CodeGenOpts.CompressDebugSections)
+ Options.CompressDebugSections = true;
+
+ if (CodeGenOpts.UseInitArray)
+ Options.UseInitArray = true;
+
+ // Set float ABI type.
+ if (CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp")
+ Options.FloatABIType = llvm::FloatABI::Soft;
+ else if (CodeGenOpts.FloatABI == "hard")
+ Options.FloatABIType = llvm::FloatABI::Hard;
+ else {
+ assert(CodeGenOpts.FloatABI.empty() && "Invalid float abi!");
+ Options.FloatABIType = llvm::FloatABI::Default;
+ }
+
+ // Set FP fusion mode.
+ switch (CodeGenOpts.getFPContractMode()) {
+ case CodeGenOptions::FPC_Off:
+ Options.AllowFPOpFusion = llvm::FPOpFusion::Strict;
+ break;
+ case CodeGenOptions::FPC_On:
+ Options.AllowFPOpFusion = llvm::FPOpFusion::Standard;
+ break;
+ case CodeGenOptions::FPC_Fast:
+ Options.AllowFPOpFusion = llvm::FPOpFusion::Fast;
+ break;
+ }
+
+ Options.LessPreciseFPMADOption = CodeGenOpts.LessPreciseFPMAD;
+ Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath;
+ Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath;
+ Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS;
+ Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath;
+ Options.StackAlignmentOverride = CodeGenOpts.StackAlignment;
+ Options.DisableTailCalls = CodeGenOpts.DisableTailCalls;
+ Options.TrapFuncName = CodeGenOpts.TrapFuncName;
+ Options.PositionIndependentExecutable = LangOpts.PIELevel != 0;
+ Options.FunctionSections = CodeGenOpts.FunctionSections;
+ Options.DataSections = CodeGenOpts.DataSections;
+ Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames;
+
+ Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll;
+ Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels;
+ Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm;
+ Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack;
+ Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings;
+ Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose;
+ Options.MCOptions.ABIName = TargetOpts.ABI;
+
+ TargetMachine *TM = TheTarget->createTargetMachine(Triple, TargetOpts.CPU,
+ FeaturesStr, Options,
+ RM, CM, OptLevel);
+
+ return TM;
+}
+
+bool EmitAssemblyHelper::AddEmitPasses(BackendAction Action,
+ raw_pwrite_stream &OS) {
+
+ // Create the code generator passes.
+ legacy::PassManager *PM = getCodeGenPasses();
+
+ // Add LibraryInfo.
+ llvm::Triple TargetTriple(TheModule->getTargetTriple());
+ std::unique_ptr<TargetLibraryInfoImpl> TLII(
+ createTLII(TargetTriple, CodeGenOpts));
+ PM->add(new TargetLibraryInfoWrapperPass(*TLII));
+
+ // Normal mode, emit a .s or .o file by running the code generator. Note,
+ // this also adds codegenerator level optimization passes.
+ TargetMachine::CodeGenFileType CGFT = TargetMachine::CGFT_AssemblyFile;
+ if (Action == Backend_EmitObj)
+ CGFT = TargetMachine::CGFT_ObjectFile;
+ else if (Action == Backend_EmitMCNull)
+ CGFT = TargetMachine::CGFT_Null;
+ else
+ assert(Action == Backend_EmitAssembly && "Invalid action!");
+
+ // Add ObjC ARC final-cleanup optimizations. This is done as part of the
+ // "codegen" passes so that it isn't run multiple times when there is
+ // inlining happening.
+ if (CodeGenOpts.OptimizationLevel > 0)
+ PM->add(createObjCARCContractPass());
+
+ if (TM->addPassesToEmitFile(*PM, OS, CGFT,
+ /*DisableVerify=*/!CodeGenOpts.VerifyModule)) {
+ Diags.Report(diag::err_fe_unable_to_interface_with_target);
+ return false;
+ }
+
+ return true;
+}
+
+void EmitAssemblyHelper::EmitAssembly(BackendAction Action,
+ raw_pwrite_stream *OS) {
+ TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr);
+
+ bool UsesCodeGen = (Action != Backend_EmitNothing &&
+ Action != Backend_EmitBC &&
+ Action != Backend_EmitLL);
+ if (!TM)
+ TM.reset(CreateTargetMachine(UsesCodeGen));
+
+ if (UsesCodeGen && !TM) return;
+ CreatePasses();
+
+ switch (Action) {
+ case Backend_EmitNothing:
+ break;
+
+ case Backend_EmitBC:
+ getPerModulePasses()->add(
+ createBitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists));
+ break;
+
+ case Backend_EmitLL:
+ getPerModulePasses()->add(
+ createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists));
+ break;
+
+ default:
+ if (!AddEmitPasses(Action, *OS))
+ return;
+ }
+
+ // Before executing passes, print the final values of the LLVM options.
+ cl::PrintOptionValues();
+
+ // Run passes. For now we do all passes at once, but eventually we
+ // would like to have the option of streaming code generation.
+
+ if (PerFunctionPasses) {
+ PrettyStackTraceString CrashInfo("Per-function optimization");
+
+ PerFunctionPasses->doInitialization();
+ for (Module::iterator I = TheModule->begin(),
+ E = TheModule->end(); I != E; ++I)
+ if (!I->isDeclaration())
+ PerFunctionPasses->run(*I);
+ PerFunctionPasses->doFinalization();
+ }
+
+ if (PerModulePasses) {
+ PrettyStackTraceString CrashInfo("Per-module optimization passes");
+ PerModulePasses->run(*TheModule);
+ }
+
+ if (CodeGenPasses) {
+ PrettyStackTraceString CrashInfo("Code generation");
+ CodeGenPasses->run(*TheModule);
+ }
+}
+
+void clang::EmitBackendOutput(DiagnosticsEngine &Diags,
+ const CodeGenOptions &CGOpts,
+ const clang::TargetOptions &TOpts,
+ const LangOptions &LOpts, StringRef TDesc,
+ Module *M, BackendAction Action,
+ raw_pwrite_stream *OS) {
+ EmitAssemblyHelper AsmHelper(Diags, CGOpts, TOpts, LOpts, M);
+
+ AsmHelper.EmitAssembly(Action, OS);
+
+ // If an optional clang TargetInfo description string was passed in, use it to
+ // verify the LLVM TargetMachine's DataLayout.
+ if (AsmHelper.TM && !TDesc.empty()) {
+ std::string DLDesc =
+ AsmHelper.TM->getDataLayout()->getStringRepresentation();
+ if (DLDesc != TDesc) {
+ unsigned DiagID = Diags.getCustomDiagID(
+ DiagnosticsEngine::Error, "backend data layout '%0' does not match "
+ "expected target description '%1'");
+ Diags.Report(DiagID) << DLDesc << TDesc;
+ }
+ }
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGAtomic.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGAtomic.cpp
new file mode 100644
index 0000000..da82249
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGAtomic.cpp
@@ -0,0 +1,1787 @@
+//===--- CGAtomic.cpp - Emit LLVM IR for atomic operations ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the code for emitting atomic operations.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenFunction.h"
+#include "CGCall.h"
+#include "CGRecordLayout.h"
+#include "CodeGenModule.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/CodeGen/CGFunctionInfo.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Operator.h"
+
+using namespace clang;
+using namespace CodeGen;
+
+namespace {
+ class AtomicInfo {
+ CodeGenFunction &CGF;
+ QualType AtomicTy;
+ QualType ValueTy;
+ uint64_t AtomicSizeInBits;
+ uint64_t ValueSizeInBits;
+ CharUnits AtomicAlign;
+ CharUnits ValueAlign;
+ CharUnits LValueAlign;
+ TypeEvaluationKind EvaluationKind;
+ bool UseLibcall;
+ LValue LVal;
+ CGBitFieldInfo BFI;
+ public:
+ AtomicInfo(CodeGenFunction &CGF, LValue &lvalue)
+ : CGF(CGF), AtomicSizeInBits(0), ValueSizeInBits(0),
+ EvaluationKind(TEK_Scalar), UseLibcall(true) {
+ assert(!lvalue.isGlobalReg());
+ ASTContext &C = CGF.getContext();
+ if (lvalue.isSimple()) {
+ AtomicTy = lvalue.getType();
+ if (auto *ATy = AtomicTy->getAs<AtomicType>())
+ ValueTy = ATy->getValueType();
+ else
+ ValueTy = AtomicTy;
+ EvaluationKind = CGF.getEvaluationKind(ValueTy);
+
+ uint64_t ValueAlignInBits;
+ uint64_t AtomicAlignInBits;
+ TypeInfo ValueTI = C.getTypeInfo(ValueTy);
+ ValueSizeInBits = ValueTI.Width;
+ ValueAlignInBits = ValueTI.Align;
+
+ TypeInfo AtomicTI = C.getTypeInfo(AtomicTy);
+ AtomicSizeInBits = AtomicTI.Width;
+ AtomicAlignInBits = AtomicTI.Align;
+
+ assert(ValueSizeInBits <= AtomicSizeInBits);
+ assert(ValueAlignInBits <= AtomicAlignInBits);
+
+ AtomicAlign = C.toCharUnitsFromBits(AtomicAlignInBits);
+ ValueAlign = C.toCharUnitsFromBits(ValueAlignInBits);
+ if (lvalue.getAlignment().isZero())
+ lvalue.setAlignment(AtomicAlign);
+
+ LVal = lvalue;
+ } else if (lvalue.isBitField()) {
+ ValueTy = lvalue.getType();
+ ValueSizeInBits = C.getTypeSize(ValueTy);
+ auto &OrigBFI = lvalue.getBitFieldInfo();
+ auto Offset = OrigBFI.Offset % C.toBits(lvalue.getAlignment());
+ AtomicSizeInBits = C.toBits(
+ C.toCharUnitsFromBits(Offset + OrigBFI.Size + C.getCharWidth() - 1)
+ .RoundUpToAlignment(lvalue.getAlignment()));
+ auto VoidPtrAddr = CGF.EmitCastToVoidPtr(lvalue.getBitFieldAddr());
+ auto OffsetInChars =
+ (C.toCharUnitsFromBits(OrigBFI.Offset) / lvalue.getAlignment()) *
+ lvalue.getAlignment();
+ VoidPtrAddr = CGF.Builder.CreateConstGEP1_64(
+ VoidPtrAddr, OffsetInChars.getQuantity());
+ auto Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ VoidPtrAddr,
+ CGF.Builder.getIntNTy(AtomicSizeInBits)->getPointerTo(),
+ "atomic_bitfield_base");
+ BFI = OrigBFI;
+ BFI.Offset = Offset;
+ BFI.StorageSize = AtomicSizeInBits;
+ LVal = LValue::MakeBitfield(Addr, BFI, lvalue.getType(),
+ lvalue.getAlignment());
+ LVal.setTBAAInfo(lvalue.getTBAAInfo());
+ AtomicTy = C.getIntTypeForBitwidth(AtomicSizeInBits, OrigBFI.IsSigned);
+ if (AtomicTy.isNull()) {
+ llvm::APInt Size(
+ /*numBits=*/32,
+ C.toCharUnitsFromBits(AtomicSizeInBits).getQuantity());
+ AtomicTy = C.getConstantArrayType(C.CharTy, Size, ArrayType::Normal,
+ /*IndexTypeQuals=*/0);
+ }
+ AtomicAlign = ValueAlign = lvalue.getAlignment();
+ } else if (lvalue.isVectorElt()) {
+ ValueTy = lvalue.getType()->getAs<VectorType>()->getElementType();
+ ValueSizeInBits = C.getTypeSize(ValueTy);
+ AtomicTy = lvalue.getType();
+ AtomicSizeInBits = C.getTypeSize(AtomicTy);
+ AtomicAlign = ValueAlign = lvalue.getAlignment();
+ LVal = lvalue;
+ } else {
+ assert(lvalue.isExtVectorElt());
+ ValueTy = lvalue.getType();
+ ValueSizeInBits = C.getTypeSize(ValueTy);
+ AtomicTy = ValueTy = CGF.getContext().getExtVectorType(
+ lvalue.getType(), lvalue.getExtVectorAddr()
+ ->getType()
+ ->getPointerElementType()
+ ->getVectorNumElements());
+ AtomicSizeInBits = C.getTypeSize(AtomicTy);
+ AtomicAlign = ValueAlign = lvalue.getAlignment();
+ LVal = lvalue;
+ }
+ UseLibcall = !C.getTargetInfo().hasBuiltinAtomic(
+ AtomicSizeInBits, C.toBits(lvalue.getAlignment()));
+ }
+
+ QualType getAtomicType() const { return AtomicTy; }
+ QualType getValueType() const { return ValueTy; }
+ CharUnits getAtomicAlignment() const { return AtomicAlign; }
+ CharUnits getValueAlignment() const { return ValueAlign; }
+ uint64_t getAtomicSizeInBits() const { return AtomicSizeInBits; }
+ uint64_t getValueSizeInBits() const { return ValueSizeInBits; }
+ TypeEvaluationKind getEvaluationKind() const { return EvaluationKind; }
+ bool shouldUseLibcall() const { return UseLibcall; }
+ const LValue &getAtomicLValue() const { return LVal; }
+ llvm::Value *getAtomicAddress() const {
+ if (LVal.isSimple())
+ return LVal.getAddress();
+ else if (LVal.isBitField())
+ return LVal.getBitFieldAddr();
+ else if (LVal.isVectorElt())
+ return LVal.getVectorAddr();
+ assert(LVal.isExtVectorElt());
+ return LVal.getExtVectorAddr();
+ }
+
+ /// Is the atomic size larger than the underlying value type?
+ ///
+ /// Note that the absence of padding does not mean that atomic
+ /// objects are completely interchangeable with non-atomic
+ /// objects: we might have promoted the alignment of a type
+ /// without making it bigger.
+ bool hasPadding() const {
+ return (ValueSizeInBits != AtomicSizeInBits);
+ }
+
+ bool emitMemSetZeroIfNecessary() const;
+
+ llvm::Value *getAtomicSizeValue() const {
+ CharUnits size = CGF.getContext().toCharUnitsFromBits(AtomicSizeInBits);
+ return CGF.CGM.getSize(size);
+ }
+
+ /// Cast the given pointer to an integer pointer suitable for
+ /// atomic operations.
+ llvm::Value *emitCastToAtomicIntPointer(llvm::Value *addr) const;
+
+ /// Turn an atomic-layout object into an r-value.
+ RValue convertTempToRValue(llvm::Value *addr, AggValueSlot resultSlot,
+ SourceLocation loc, bool AsValue) const;
+
+ /// \brief Converts a rvalue to integer value.
+ llvm::Value *convertRValueToInt(RValue RVal) const;
+
+ RValue ConvertIntToValueOrAtomic(llvm::Value *IntVal,
+ AggValueSlot ResultSlot,
+ SourceLocation Loc, bool AsValue) const;
+
+ /// Copy an atomic r-value into atomic-layout memory.
+ void emitCopyIntoMemory(RValue rvalue) const;
+
+ /// Project an l-value down to the value field.
+ LValue projectValue() const {
+ assert(LVal.isSimple());
+ llvm::Value *addr = getAtomicAddress();
+ if (hasPadding())
+ addr = CGF.Builder.CreateStructGEP(nullptr, addr, 0);
+
+ return LValue::MakeAddr(addr, getValueType(), LVal.getAlignment(),
+ CGF.getContext(), LVal.getTBAAInfo());
+ }
+
+ /// \brief Emits atomic load.
+ /// \returns Loaded value.
+ RValue EmitAtomicLoad(AggValueSlot ResultSlot, SourceLocation Loc,
+ bool AsValue, llvm::AtomicOrdering AO,
+ bool IsVolatile);
+
+ /// \brief Emits atomic compare-and-exchange sequence.
+ /// \param Expected Expected value.
+ /// \param Desired Desired value.
+ /// \param Success Atomic ordering for success operation.
+ /// \param Failure Atomic ordering for failed operation.
+ /// \param IsWeak true if atomic operation is weak, false otherwise.
+ /// \returns Pair of values: previous value from storage (value type) and
+ /// boolean flag (i1 type) with true if success and false otherwise.
+ std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
+ RValue Expected, RValue Desired,
+ llvm::AtomicOrdering Success = llvm::SequentiallyConsistent,
+ llvm::AtomicOrdering Failure = llvm::SequentiallyConsistent,
+ bool IsWeak = false);
+
+ /// \brief Emits atomic update.
+ /// \param AO Atomic ordering.
+ /// \param UpdateOp Update operation for the current lvalue.
+ void EmitAtomicUpdate(llvm::AtomicOrdering AO,
+ const llvm::function_ref<RValue(RValue)> &UpdateOp,
+ bool IsVolatile);
+ /// \brief Emits atomic update.
+ /// \param AO Atomic ordering.
+ void EmitAtomicUpdate(llvm::AtomicOrdering AO, RValue UpdateRVal,
+ bool IsVolatile);
+
+ /// Materialize an atomic r-value in atomic-layout memory.
+ llvm::Value *materializeRValue(RValue rvalue) const;
+
+ /// \brief Translates LLVM atomic ordering to GNU atomic ordering for
+ /// libcalls.
+ static AtomicExpr::AtomicOrderingKind
+ translateAtomicOrdering(const llvm::AtomicOrdering AO);
+
+ private:
+ bool requiresMemSetZero(llvm::Type *type) const;
+
+ /// \brief Creates temp alloca for intermediate operations on atomic value.
+ llvm::Value *CreateTempAlloca() const;
+
+ /// \brief Emits atomic load as a libcall.
+ void EmitAtomicLoadLibcall(llvm::Value *AddForLoaded,
+ llvm::AtomicOrdering AO, bool IsVolatile);
+ /// \brief Emits atomic load as LLVM instruction.
+ llvm::Value *EmitAtomicLoadOp(llvm::AtomicOrdering AO, bool IsVolatile);
+ /// \brief Emits atomic compare-and-exchange op as a libcall.
+ llvm::Value *EmitAtomicCompareExchangeLibcall(
+ llvm::Value *ExpectedAddr, llvm::Value *DesiredAddr,
+ llvm::AtomicOrdering Success = llvm::SequentiallyConsistent,
+ llvm::AtomicOrdering Failure = llvm::SequentiallyConsistent);
+ /// \brief Emits atomic compare-and-exchange op as LLVM instruction.
+ std::pair<llvm::Value *, llvm::Value *> EmitAtomicCompareExchangeOp(
+ llvm::Value *ExpectedVal, llvm::Value *DesiredVal,
+ llvm::AtomicOrdering Success = llvm::SequentiallyConsistent,
+ llvm::AtomicOrdering Failure = llvm::SequentiallyConsistent,
+ bool IsWeak = false);
+ /// \brief Emit atomic update as libcalls.
+ void
+ EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO,
+ const llvm::function_ref<RValue(RValue)> &UpdateOp,
+ bool IsVolatile);
+ /// \brief Emit atomic update as LLVM instructions.
+ void EmitAtomicUpdateOp(llvm::AtomicOrdering AO,
+ const llvm::function_ref<RValue(RValue)> &UpdateOp,
+ bool IsVolatile);
+ /// \brief Emit atomic update as libcalls.
+ void EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO, RValue UpdateRVal,
+ bool IsVolatile);
+ /// \brief Emit atomic update as LLVM instructions.
+ void EmitAtomicUpdateOp(llvm::AtomicOrdering AO, RValue UpdateRal,
+ bool IsVolatile);
+ };
+}
+
+AtomicExpr::AtomicOrderingKind
+AtomicInfo::translateAtomicOrdering(const llvm::AtomicOrdering AO) {
+ switch (AO) {
+ case llvm::Unordered:
+ case llvm::NotAtomic:
+ case llvm::Monotonic:
+ return AtomicExpr::AO_ABI_memory_order_relaxed;
+ case llvm::Acquire:
+ return AtomicExpr::AO_ABI_memory_order_acquire;
+ case llvm::Release:
+ return AtomicExpr::AO_ABI_memory_order_release;
+ case llvm::AcquireRelease:
+ return AtomicExpr::AO_ABI_memory_order_acq_rel;
+ case llvm::SequentiallyConsistent:
+ return AtomicExpr::AO_ABI_memory_order_seq_cst;
+ }
+ llvm_unreachable("Unhandled AtomicOrdering");
+}
+
+llvm::Value *AtomicInfo::CreateTempAlloca() const {
+ auto *TempAlloca = CGF.CreateMemTemp(
+ (LVal.isBitField() && ValueSizeInBits > AtomicSizeInBits) ? ValueTy
+ : AtomicTy,
+ "atomic-temp");
+ TempAlloca->setAlignment(getAtomicAlignment().getQuantity());
+ // Cast to pointer to value type for bitfields.
+ if (LVal.isBitField())
+ return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ TempAlloca, getAtomicAddress()->getType());
+ return TempAlloca;
+}
+
+static RValue emitAtomicLibcall(CodeGenFunction &CGF,
+ StringRef fnName,
+ QualType resultType,
+ CallArgList &args) {
+ const CGFunctionInfo &fnInfo =
+ CGF.CGM.getTypes().arrangeFreeFunctionCall(resultType, args,
+ FunctionType::ExtInfo(), RequiredArgs::All);
+ llvm::FunctionType *fnTy = CGF.CGM.getTypes().GetFunctionType(fnInfo);
+ llvm::Constant *fn = CGF.CGM.CreateRuntimeFunction(fnTy, fnName);
+ return CGF.EmitCall(fnInfo, fn, ReturnValueSlot(), args);
+}
+
+/// Does a store of the given IR type modify the full expected width?
+static bool isFullSizeType(CodeGenModule &CGM, llvm::Type *type,
+ uint64_t expectedSize) {
+ return (CGM.getDataLayout().getTypeStoreSize(type) * 8 == expectedSize);
+}
+
+/// Does the atomic type require memsetting to zero before initialization?
+///
+/// The IR type is provided as a way of making certain queries faster.
+bool AtomicInfo::requiresMemSetZero(llvm::Type *type) const {
+ // If the atomic type has size padding, we definitely need a memset.
+ if (hasPadding()) return true;
+
+ // Otherwise, do some simple heuristics to try to avoid it:
+ switch (getEvaluationKind()) {
+ // For scalars and complexes, check whether the store size of the
+ // type uses the full size.
+ case TEK_Scalar:
+ return !isFullSizeType(CGF.CGM, type, AtomicSizeInBits);
+ case TEK_Complex:
+ return !isFullSizeType(CGF.CGM, type->getStructElementType(0),
+ AtomicSizeInBits / 2);
+
+ // Padding in structs has an undefined bit pattern. User beware.
+ case TEK_Aggregate:
+ return false;
+ }
+ llvm_unreachable("bad evaluation kind");
+}
+
+bool AtomicInfo::emitMemSetZeroIfNecessary() const {
+ assert(LVal.isSimple());
+ llvm::Value *addr = LVal.getAddress();
+ if (!requiresMemSetZero(addr->getType()->getPointerElementType()))
+ return false;
+
+ CGF.Builder.CreateMemSet(
+ addr, llvm::ConstantInt::get(CGF.Int8Ty, 0),
+ CGF.getContext().toCharUnitsFromBits(AtomicSizeInBits).getQuantity(),
+ LVal.getAlignment().getQuantity());
+ return true;
+}
+
+static void emitAtomicCmpXchg(CodeGenFunction &CGF, AtomicExpr *E, bool IsWeak,
+ llvm::Value *Dest, llvm::Value *Ptr,
+ llvm::Value *Val1, llvm::Value *Val2,
+ uint64_t Size, unsigned Align,
+ llvm::AtomicOrdering SuccessOrder,
+ llvm::AtomicOrdering FailureOrder) {
+ // Note that cmpxchg doesn't support weak cmpxchg, at least at the moment.
+ llvm::LoadInst *Expected = CGF.Builder.CreateLoad(Val1);
+ Expected->setAlignment(Align);
+ llvm::LoadInst *Desired = CGF.Builder.CreateLoad(Val2);
+ Desired->setAlignment(Align);
+
+ llvm::AtomicCmpXchgInst *Pair = CGF.Builder.CreateAtomicCmpXchg(
+ Ptr, Expected, Desired, SuccessOrder, FailureOrder);
+ Pair->setVolatile(E->isVolatile());
+ Pair->setWeak(IsWeak);
+
+ // Cmp holds the result of the compare-exchange operation: true on success,
+ // false on failure.
+ llvm::Value *Old = CGF.Builder.CreateExtractValue(Pair, 0);
+ llvm::Value *Cmp = CGF.Builder.CreateExtractValue(Pair, 1);
+
+ // This basic block is used to hold the store instruction if the operation
+ // failed.
+ llvm::BasicBlock *StoreExpectedBB =
+ CGF.createBasicBlock("cmpxchg.store_expected", CGF.CurFn);
+
+ // This basic block is the exit point of the operation, we should end up
+ // here regardless of whether or not the operation succeeded.
+ llvm::BasicBlock *ContinueBB =
+ CGF.createBasicBlock("cmpxchg.continue", CGF.CurFn);
+
+ // Update Expected if Expected isn't equal to Old, otherwise branch to the
+ // exit point.
+ CGF.Builder.CreateCondBr(Cmp, ContinueBB, StoreExpectedBB);
+
+ CGF.Builder.SetInsertPoint(StoreExpectedBB);
+ // Update the memory at Expected with Old's value.
+ llvm::StoreInst *StoreExpected = CGF.Builder.CreateStore(Old, Val1);
+ StoreExpected->setAlignment(Align);
+ // Finally, branch to the exit point.
+ CGF.Builder.CreateBr(ContinueBB);
+
+ CGF.Builder.SetInsertPoint(ContinueBB);
+ // Update the memory at Dest with Cmp's value.
+ CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType()));
+ return;
+}
+
+/// Given an ordering required on success, emit all possible cmpxchg
+/// instructions to cope with the provided (but possibly only dynamically known)
+/// FailureOrder.
+static void emitAtomicCmpXchgFailureSet(CodeGenFunction &CGF, AtomicExpr *E,
+ bool IsWeak, llvm::Value *Dest,
+ llvm::Value *Ptr, llvm::Value *Val1,
+ llvm::Value *Val2,
+ llvm::Value *FailureOrderVal,
+ uint64_t Size, unsigned Align,
+ llvm::AtomicOrdering SuccessOrder) {
+ llvm::AtomicOrdering FailureOrder;
+ if (llvm::ConstantInt *FO = dyn_cast<llvm::ConstantInt>(FailureOrderVal)) {
+ switch (FO->getSExtValue()) {
+ default:
+ FailureOrder = llvm::Monotonic;
+ break;
+ case AtomicExpr::AO_ABI_memory_order_consume:
+ case AtomicExpr::AO_ABI_memory_order_acquire:
+ FailureOrder = llvm::Acquire;
+ break;
+ case AtomicExpr::AO_ABI_memory_order_seq_cst:
+ FailureOrder = llvm::SequentiallyConsistent;
+ break;
+ }
+ if (FailureOrder >= SuccessOrder) {
+ // Don't assert on undefined behaviour.
+ FailureOrder =
+ llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrder);
+ }
+ emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, Size, Align,
+ SuccessOrder, FailureOrder);
+ return;
+ }
+
+ // Create all the relevant BB's
+ llvm::BasicBlock *MonotonicBB = nullptr, *AcquireBB = nullptr,
+ *SeqCstBB = nullptr;
+ MonotonicBB = CGF.createBasicBlock("monotonic_fail", CGF.CurFn);
+ if (SuccessOrder != llvm::Monotonic && SuccessOrder != llvm::Release)
+ AcquireBB = CGF.createBasicBlock("acquire_fail", CGF.CurFn);
+ if (SuccessOrder == llvm::SequentiallyConsistent)
+ SeqCstBB = CGF.createBasicBlock("seqcst_fail", CGF.CurFn);
+
+ llvm::BasicBlock *ContBB = CGF.createBasicBlock("atomic.continue", CGF.CurFn);
+
+ llvm::SwitchInst *SI = CGF.Builder.CreateSwitch(FailureOrderVal, MonotonicBB);
+
+ // Emit all the different atomics
+
+ // MonotonicBB is arbitrarily chosen as the default case; in practice, this
+ // doesn't matter unless someone is crazy enough to use something that
+ // doesn't fold to a constant for the ordering.
+ CGF.Builder.SetInsertPoint(MonotonicBB);
+ emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2,
+ Size, Align, SuccessOrder, llvm::Monotonic);
+ CGF.Builder.CreateBr(ContBB);
+
+ if (AcquireBB) {
+ CGF.Builder.SetInsertPoint(AcquireBB);
+ emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2,
+ Size, Align, SuccessOrder, llvm::Acquire);
+ CGF.Builder.CreateBr(ContBB);
+ SI->addCase(CGF.Builder.getInt32(AtomicExpr::AO_ABI_memory_order_consume),
+ AcquireBB);
+ SI->addCase(CGF.Builder.getInt32(AtomicExpr::AO_ABI_memory_order_acquire),
+ AcquireBB);
+ }
+ if (SeqCstBB) {
+ CGF.Builder.SetInsertPoint(SeqCstBB);
+ emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2,
+ Size, Align, SuccessOrder, llvm::SequentiallyConsistent);
+ CGF.Builder.CreateBr(ContBB);
+ SI->addCase(CGF.Builder.getInt32(AtomicExpr::AO_ABI_memory_order_seq_cst),
+ SeqCstBB);
+ }
+
+ CGF.Builder.SetInsertPoint(ContBB);
+}
+
+static void EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest,
+ llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2,
+ llvm::Value *IsWeak, llvm::Value *FailureOrder,
+ uint64_t Size, unsigned Align,
+ llvm::AtomicOrdering Order) {
+ llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add;
+ llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0;
+
+ switch (E->getOp()) {
+ case AtomicExpr::AO__c11_atomic_init:
+ llvm_unreachable("Already handled!");
+
+ case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
+ emitAtomicCmpXchgFailureSet(CGF, E, false, Dest, Ptr, Val1, Val2,
+ FailureOrder, Size, Align, Order);
+ return;
+ case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
+ emitAtomicCmpXchgFailureSet(CGF, E, true, Dest, Ptr, Val1, Val2,
+ FailureOrder, Size, Align, Order);
+ return;
+ case AtomicExpr::AO__atomic_compare_exchange:
+ case AtomicExpr::AO__atomic_compare_exchange_n: {
+ if (llvm::ConstantInt *IsWeakC = dyn_cast<llvm::ConstantInt>(IsWeak)) {
+ emitAtomicCmpXchgFailureSet(CGF, E, IsWeakC->getZExtValue(), Dest, Ptr,
+ Val1, Val2, FailureOrder, Size, Align, Order);
+ } else {
+ // Create all the relevant BB's
+ llvm::BasicBlock *StrongBB =
+ CGF.createBasicBlock("cmpxchg.strong", CGF.CurFn);
+ llvm::BasicBlock *WeakBB = CGF.createBasicBlock("cmxchg.weak", CGF.CurFn);
+ llvm::BasicBlock *ContBB =
+ CGF.createBasicBlock("cmpxchg.continue", CGF.CurFn);
+
+ llvm::SwitchInst *SI = CGF.Builder.CreateSwitch(IsWeak, WeakBB);
+ SI->addCase(CGF.Builder.getInt1(false), StrongBB);
+
+ CGF.Builder.SetInsertPoint(StrongBB);
+ emitAtomicCmpXchgFailureSet(CGF, E, false, Dest, Ptr, Val1, Val2,
+ FailureOrder, Size, Align, Order);
+ CGF.Builder.CreateBr(ContBB);
+
+ CGF.Builder.SetInsertPoint(WeakBB);
+ emitAtomicCmpXchgFailureSet(CGF, E, true, Dest, Ptr, Val1, Val2,
+ FailureOrder, Size, Align, Order);
+ CGF.Builder.CreateBr(ContBB);
+
+ CGF.Builder.SetInsertPoint(ContBB);
+ }
+ return;
+ }
+ case AtomicExpr::AO__c11_atomic_load:
+ case AtomicExpr::AO__atomic_load_n:
+ case AtomicExpr::AO__atomic_load: {
+ llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr);
+ Load->setAtomic(Order);
+ Load->setAlignment(Size);
+ Load->setVolatile(E->isVolatile());
+ llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest);
+ StoreDest->setAlignment(Align);
+ return;
+ }
+
+ case AtomicExpr::AO__c11_atomic_store:
+ case AtomicExpr::AO__atomic_store:
+ case AtomicExpr::AO__atomic_store_n: {
+ assert(!Dest && "Store does not return a value");
+ llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
+ LoadVal1->setAlignment(Align);
+ llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr);
+ Store->setAtomic(Order);
+ Store->setAlignment(Size);
+ Store->setVolatile(E->isVolatile());
+ return;
+ }
+
+ case AtomicExpr::AO__c11_atomic_exchange:
+ case AtomicExpr::AO__atomic_exchange_n:
+ case AtomicExpr::AO__atomic_exchange:
+ Op = llvm::AtomicRMWInst::Xchg;
+ break;
+
+ case AtomicExpr::AO__atomic_add_fetch:
+ PostOp = llvm::Instruction::Add;
+ // Fall through.
+ case AtomicExpr::AO__c11_atomic_fetch_add:
+ case AtomicExpr::AO__atomic_fetch_add:
+ Op = llvm::AtomicRMWInst::Add;
+ break;
+
+ case AtomicExpr::AO__atomic_sub_fetch:
+ PostOp = llvm::Instruction::Sub;
+ // Fall through.
+ case AtomicExpr::AO__c11_atomic_fetch_sub:
+ case AtomicExpr::AO__atomic_fetch_sub:
+ Op = llvm::AtomicRMWInst::Sub;
+ break;
+
+ case AtomicExpr::AO__atomic_and_fetch:
+ PostOp = llvm::Instruction::And;
+ // Fall through.
+ case AtomicExpr::AO__c11_atomic_fetch_and:
+ case AtomicExpr::AO__atomic_fetch_and:
+ Op = llvm::AtomicRMWInst::And;
+ break;
+
+ case AtomicExpr::AO__atomic_or_fetch:
+ PostOp = llvm::Instruction::Or;
+ // Fall through.
+ case AtomicExpr::AO__c11_atomic_fetch_or:
+ case AtomicExpr::AO__atomic_fetch_or:
+ Op = llvm::AtomicRMWInst::Or;
+ break;
+
+ case AtomicExpr::AO__atomic_xor_fetch:
+ PostOp = llvm::Instruction::Xor;
+ // Fall through.
+ case AtomicExpr::AO__c11_atomic_fetch_xor:
+ case AtomicExpr::AO__atomic_fetch_xor:
+ Op = llvm::AtomicRMWInst::Xor;
+ break;
+
+ case AtomicExpr::AO__atomic_nand_fetch:
+ PostOp = llvm::Instruction::And;
+ // Fall through.
+ case AtomicExpr::AO__atomic_fetch_nand:
+ Op = llvm::AtomicRMWInst::Nand;
+ break;
+ }
+
+ llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
+ LoadVal1->setAlignment(Align);
+ llvm::AtomicRMWInst *RMWI =
+ CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order);
+ RMWI->setVolatile(E->isVolatile());
+
+ // For __atomic_*_fetch operations, perform the operation again to
+ // determine the value which was written.
+ llvm::Value *Result = RMWI;
+ if (PostOp)
+ Result = CGF.Builder.CreateBinOp(PostOp, RMWI, LoadVal1);
+ if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch)
+ Result = CGF.Builder.CreateNot(Result);
+ llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Result, Dest);
+ StoreDest->setAlignment(Align);
+}
+
+// This function emits any expression (scalar, complex, or aggregate)
+// into a temporary alloca.
+static llvm::Value *
+EmitValToTemp(CodeGenFunction &CGF, Expr *E) {
+ llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp");
+ CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(),
+ /*Init*/ true);
+ return DeclPtr;
+}
+
+static void
+AddDirectArgument(CodeGenFunction &CGF, CallArgList &Args,
+ bool UseOptimizedLibcall, llvm::Value *Val, QualType ValTy,
+ SourceLocation Loc, CharUnits SizeInChars) {
+ if (UseOptimizedLibcall) {
+ // Load value and pass it to the function directly.
+ unsigned Align = CGF.getContext().getTypeAlignInChars(ValTy).getQuantity();
+ int64_t SizeInBits = CGF.getContext().toBits(SizeInChars);
+ ValTy =
+ CGF.getContext().getIntTypeForBitwidth(SizeInBits, /*Signed=*/false);
+ llvm::Type *IPtrTy = llvm::IntegerType::get(CGF.getLLVMContext(),
+ SizeInBits)->getPointerTo();
+ Val = CGF.EmitLoadOfScalar(CGF.Builder.CreateBitCast(Val, IPtrTy), false,
+ Align, CGF.getContext().getPointerType(ValTy),
+ Loc);
+ // Coerce the value into an appropriately sized integer type.
+ Args.add(RValue::get(Val), ValTy);
+ } else {
+ // Non-optimized functions always take a reference.
+ Args.add(RValue::get(CGF.EmitCastToVoidPtr(Val)),
+ CGF.getContext().VoidPtrTy);
+ }
+}
+
+RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) {
+ QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
+ QualType MemTy = AtomicTy;
+ if (const AtomicType *AT = AtomicTy->getAs<AtomicType>())
+ MemTy = AT->getValueType();
+ CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy);
+ uint64_t Size = sizeChars.getQuantity();
+ CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy);
+ unsigned Align = alignChars.getQuantity();
+ unsigned MaxInlineWidthInBits =
+ getTarget().getMaxAtomicInlineWidth();
+ bool UseLibcall = (Size != Align ||
+ getContext().toBits(sizeChars) > MaxInlineWidthInBits);
+
+ llvm::Value *IsWeak = nullptr, *OrderFail = nullptr, *Val1 = nullptr,
+ *Val2 = nullptr;
+ llvm::Value *Ptr = EmitScalarExpr(E->getPtr());
+
+ if (E->getOp() == AtomicExpr::AO__c11_atomic_init) {
+ assert(!Dest && "Init does not return a value");
+ LValue lvalue = LValue::MakeAddr(Ptr, AtomicTy, alignChars, getContext());
+ EmitAtomicInit(E->getVal1(), lvalue);
+ return RValue::get(nullptr);
+ }
+
+ llvm::Value *Order = EmitScalarExpr(E->getOrder());
+
+ switch (E->getOp()) {
+ case AtomicExpr::AO__c11_atomic_init:
+ llvm_unreachable("Already handled!");
+
+ case AtomicExpr::AO__c11_atomic_load:
+ case AtomicExpr::AO__atomic_load_n:
+ break;
+
+ case AtomicExpr::AO__atomic_load:
+ Dest = EmitScalarExpr(E->getVal1());
+ break;
+
+ case AtomicExpr::AO__atomic_store:
+ Val1 = EmitScalarExpr(E->getVal1());
+ break;
+
+ case AtomicExpr::AO__atomic_exchange:
+ Val1 = EmitScalarExpr(E->getVal1());
+ Dest = EmitScalarExpr(E->getVal2());
+ break;
+
+ case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
+ case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
+ case AtomicExpr::AO__atomic_compare_exchange_n:
+ case AtomicExpr::AO__atomic_compare_exchange:
+ Val1 = EmitScalarExpr(E->getVal1());
+ if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange)
+ Val2 = EmitScalarExpr(E->getVal2());
+ else
+ Val2 = EmitValToTemp(*this, E->getVal2());
+ OrderFail = EmitScalarExpr(E->getOrderFail());
+ if (E->getNumSubExprs() == 6)
+ IsWeak = EmitScalarExpr(E->getWeak());
+ break;
+
+ case AtomicExpr::AO__c11_atomic_fetch_add:
+ case AtomicExpr::AO__c11_atomic_fetch_sub:
+ if (MemTy->isPointerType()) {
+ // For pointer arithmetic, we're required to do a bit of math:
+ // adding 1 to an int* is not the same as adding 1 to a uintptr_t.
+ // ... but only for the C11 builtins. The GNU builtins expect the
+ // user to multiply by sizeof(T).
+ QualType Val1Ty = E->getVal1()->getType();
+ llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1());
+ CharUnits PointeeIncAmt =
+ getContext().getTypeSizeInChars(MemTy->getPointeeType());
+ Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt));
+ Val1 = CreateMemTemp(Val1Ty, ".atomictmp");
+ EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty));
+ break;
+ }
+ // Fall through.
+ case AtomicExpr::AO__atomic_fetch_add:
+ case AtomicExpr::AO__atomic_fetch_sub:
+ case AtomicExpr::AO__atomic_add_fetch:
+ case AtomicExpr::AO__atomic_sub_fetch:
+ case AtomicExpr::AO__c11_atomic_store:
+ case AtomicExpr::AO__c11_atomic_exchange:
+ case AtomicExpr::AO__atomic_store_n:
+ case AtomicExpr::AO__atomic_exchange_n:
+ case AtomicExpr::AO__c11_atomic_fetch_and:
+ case AtomicExpr::AO__c11_atomic_fetch_or:
+ case AtomicExpr::AO__c11_atomic_fetch_xor:
+ case AtomicExpr::AO__atomic_fetch_and:
+ case AtomicExpr::AO__atomic_fetch_or:
+ case AtomicExpr::AO__atomic_fetch_xor:
+ case AtomicExpr::AO__atomic_fetch_nand:
+ case AtomicExpr::AO__atomic_and_fetch:
+ case AtomicExpr::AO__atomic_or_fetch:
+ case AtomicExpr::AO__atomic_xor_fetch:
+ case AtomicExpr::AO__atomic_nand_fetch:
+ Val1 = EmitValToTemp(*this, E->getVal1());
+ break;
+ }
+
+ QualType RValTy = E->getType().getUnqualifiedType();
+
+ auto GetDest = [&] {
+ if (!RValTy->isVoidType() && !Dest) {
+ Dest = CreateMemTemp(RValTy, ".atomicdst");
+ }
+ return Dest;
+ };
+
+ // Use a library call. See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary .
+ if (UseLibcall) {
+ bool UseOptimizedLibcall = false;
+ switch (E->getOp()) {
+ case AtomicExpr::AO__c11_atomic_fetch_add:
+ case AtomicExpr::AO__atomic_fetch_add:
+ case AtomicExpr::AO__c11_atomic_fetch_and:
+ case AtomicExpr::AO__atomic_fetch_and:
+ case AtomicExpr::AO__c11_atomic_fetch_or:
+ case AtomicExpr::AO__atomic_fetch_or:
+ case AtomicExpr::AO__c11_atomic_fetch_sub:
+ case AtomicExpr::AO__atomic_fetch_sub:
+ case AtomicExpr::AO__c11_atomic_fetch_xor:
+ case AtomicExpr::AO__atomic_fetch_xor:
+ // For these, only library calls for certain sizes exist.
+ UseOptimizedLibcall = true;
+ break;
+ default:
+ // Only use optimized library calls for sizes for which they exist.
+ if (Size == 1 || Size == 2 || Size == 4 || Size == 8)
+ UseOptimizedLibcall = true;
+ break;
+ }
+
+ CallArgList Args;
+ if (!UseOptimizedLibcall) {
+ // For non-optimized library calls, the size is the first parameter
+ Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)),
+ getContext().getSizeType());
+ }
+ // Atomic address is the first or second parameter
+ Args.add(RValue::get(EmitCastToVoidPtr(Ptr)), getContext().VoidPtrTy);
+
+ std::string LibCallName;
+ QualType LoweredMemTy =
+ MemTy->isPointerType() ? getContext().getIntPtrType() : MemTy;
+ QualType RetTy;
+ bool HaveRetTy = false;
+ switch (E->getOp()) {
+ // There is only one libcall for compare an exchange, because there is no
+ // optimisation benefit possible from a libcall version of a weak compare
+ // and exchange.
+ // bool __atomic_compare_exchange(size_t size, void *mem, void *expected,
+ // void *desired, int success, int failure)
+ // bool __atomic_compare_exchange_N(T *mem, T *expected, T desired,
+ // int success, int failure)
+ case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
+ case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
+ case AtomicExpr::AO__atomic_compare_exchange:
+ case AtomicExpr::AO__atomic_compare_exchange_n:
+ LibCallName = "__atomic_compare_exchange";
+ RetTy = getContext().BoolTy;
+ HaveRetTy = true;
+ Args.add(RValue::get(EmitCastToVoidPtr(Val1)), getContext().VoidPtrTy);
+ AddDirectArgument(*this, Args, UseOptimizedLibcall, Val2, MemTy,
+ E->getExprLoc(), sizeChars);
+ Args.add(RValue::get(Order), getContext().IntTy);
+ Order = OrderFail;
+ break;
+ // void __atomic_exchange(size_t size, void *mem, void *val, void *return,
+ // int order)
+ // T __atomic_exchange_N(T *mem, T val, int order)
+ case AtomicExpr::AO__c11_atomic_exchange:
+ case AtomicExpr::AO__atomic_exchange_n:
+ case AtomicExpr::AO__atomic_exchange:
+ LibCallName = "__atomic_exchange";
+ AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy,
+ E->getExprLoc(), sizeChars);
+ break;
+ // void __atomic_store(size_t size, void *mem, void *val, int order)
+ // void __atomic_store_N(T *mem, T val, int order)
+ case AtomicExpr::AO__c11_atomic_store:
+ case AtomicExpr::AO__atomic_store:
+ case AtomicExpr::AO__atomic_store_n:
+ LibCallName = "__atomic_store";
+ RetTy = getContext().VoidTy;
+ HaveRetTy = true;
+ AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy,
+ E->getExprLoc(), sizeChars);
+ break;
+ // void __atomic_load(size_t size, void *mem, void *return, int order)
+ // T __atomic_load_N(T *mem, int order)
+ case AtomicExpr::AO__c11_atomic_load:
+ case AtomicExpr::AO__atomic_load:
+ case AtomicExpr::AO__atomic_load_n:
+ LibCallName = "__atomic_load";
+ break;
+ // T __atomic_fetch_add_N(T *mem, T val, int order)
+ case AtomicExpr::AO__c11_atomic_fetch_add:
+ case AtomicExpr::AO__atomic_fetch_add:
+ LibCallName = "__atomic_fetch_add";
+ AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, LoweredMemTy,
+ E->getExprLoc(), sizeChars);
+ break;
+ // T __atomic_fetch_and_N(T *mem, T val, int order)
+ case AtomicExpr::AO__c11_atomic_fetch_and:
+ case AtomicExpr::AO__atomic_fetch_and:
+ LibCallName = "__atomic_fetch_and";
+ AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy,
+ E->getExprLoc(), sizeChars);
+ break;
+ // T __atomic_fetch_or_N(T *mem, T val, int order)
+ case AtomicExpr::AO__c11_atomic_fetch_or:
+ case AtomicExpr::AO__atomic_fetch_or:
+ LibCallName = "__atomic_fetch_or";
+ AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy,
+ E->getExprLoc(), sizeChars);
+ break;
+ // T __atomic_fetch_sub_N(T *mem, T val, int order)
+ case AtomicExpr::AO__c11_atomic_fetch_sub:
+ case AtomicExpr::AO__atomic_fetch_sub:
+ LibCallName = "__atomic_fetch_sub";
+ AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, LoweredMemTy,
+ E->getExprLoc(), sizeChars);
+ break;
+ // T __atomic_fetch_xor_N(T *mem, T val, int order)
+ case AtomicExpr::AO__c11_atomic_fetch_xor:
+ case AtomicExpr::AO__atomic_fetch_xor:
+ LibCallName = "__atomic_fetch_xor";
+ AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy,
+ E->getExprLoc(), sizeChars);
+ break;
+ default: return EmitUnsupportedRValue(E, "atomic library call");
+ }
+
+ // Optimized functions have the size in their name.
+ if (UseOptimizedLibcall)
+ LibCallName += "_" + llvm::utostr(Size);
+ // By default, assume we return a value of the atomic type.
+ if (!HaveRetTy) {
+ if (UseOptimizedLibcall) {
+ // Value is returned directly.
+ // The function returns an appropriately sized integer type.
+ RetTy = getContext().getIntTypeForBitwidth(
+ getContext().toBits(sizeChars), /*Signed=*/false);
+ } else {
+ // Value is returned through parameter before the order.
+ RetTy = getContext().VoidTy;
+ Args.add(RValue::get(EmitCastToVoidPtr(Dest)), getContext().VoidPtrTy);
+ }
+ }
+ // order is always the last parameter
+ Args.add(RValue::get(Order),
+ getContext().IntTy);
+
+ RValue Res = emitAtomicLibcall(*this, LibCallName, RetTy, Args);
+ // The value is returned directly from the libcall.
+ if (HaveRetTy && !RetTy->isVoidType())
+ return Res;
+ // The value is returned via an explicit out param.
+ if (RetTy->isVoidType())
+ return RValue::get(nullptr);
+ // The value is returned directly for optimized libcalls but the caller is
+ // expected an out-param.
+ if (UseOptimizedLibcall) {
+ llvm::Value *ResVal = Res.getScalarVal();
+ llvm::StoreInst *StoreDest = Builder.CreateStore(
+ ResVal,
+ Builder.CreateBitCast(GetDest(), ResVal->getType()->getPointerTo()));
+ StoreDest->setAlignment(Align);
+ }
+ return convertTempToRValue(Dest, RValTy, E->getExprLoc());
+ }
+
+ bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store ||
+ E->getOp() == AtomicExpr::AO__atomic_store ||
+ E->getOp() == AtomicExpr::AO__atomic_store_n;
+ bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load ||
+ E->getOp() == AtomicExpr::AO__atomic_load ||
+ E->getOp() == AtomicExpr::AO__atomic_load_n;
+
+ llvm::Type *ITy =
+ llvm::IntegerType::get(getLLVMContext(), Size * 8);
+ llvm::Value *OrigDest = GetDest();
+ Ptr = Builder.CreateBitCast(
+ Ptr, ITy->getPointerTo(Ptr->getType()->getPointerAddressSpace()));
+ if (Val1) Val1 = Builder.CreateBitCast(Val1, ITy->getPointerTo());
+ if (Val2) Val2 = Builder.CreateBitCast(Val2, ITy->getPointerTo());
+ if (Dest && !E->isCmpXChg())
+ Dest = Builder.CreateBitCast(Dest, ITy->getPointerTo());
+
+ if (isa<llvm::ConstantInt>(Order)) {
+ int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
+ switch (ord) {
+ case AtomicExpr::AO_ABI_memory_order_relaxed:
+ EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
+ Size, Align, llvm::Monotonic);
+ break;
+ case AtomicExpr::AO_ABI_memory_order_consume:
+ case AtomicExpr::AO_ABI_memory_order_acquire:
+ if (IsStore)
+ break; // Avoid crashing on code with undefined behavior
+ EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
+ Size, Align, llvm::Acquire);
+ break;
+ case AtomicExpr::AO_ABI_memory_order_release:
+ if (IsLoad)
+ break; // Avoid crashing on code with undefined behavior
+ EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
+ Size, Align, llvm::Release);
+ break;
+ case AtomicExpr::AO_ABI_memory_order_acq_rel:
+ if (IsLoad || IsStore)
+ break; // Avoid crashing on code with undefined behavior
+ EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
+ Size, Align, llvm::AcquireRelease);
+ break;
+ case AtomicExpr::AO_ABI_memory_order_seq_cst:
+ EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
+ Size, Align, llvm::SequentiallyConsistent);
+ break;
+ default: // invalid order
+ // We should not ever get here normally, but it's hard to
+ // enforce that in general.
+ break;
+ }
+ if (RValTy->isVoidType())
+ return RValue::get(nullptr);
+ return convertTempToRValue(OrigDest, RValTy, E->getExprLoc());
+ }
+
+ // Long case, when Order isn't obviously constant.
+
+ // Create all the relevant BB's
+ llvm::BasicBlock *MonotonicBB = nullptr, *AcquireBB = nullptr,
+ *ReleaseBB = nullptr, *AcqRelBB = nullptr,
+ *SeqCstBB = nullptr;
+ MonotonicBB = createBasicBlock("monotonic", CurFn);
+ if (!IsStore)
+ AcquireBB = createBasicBlock("acquire", CurFn);
+ if (!IsLoad)
+ ReleaseBB = createBasicBlock("release", CurFn);
+ if (!IsLoad && !IsStore)
+ AcqRelBB = createBasicBlock("acqrel", CurFn);
+ SeqCstBB = createBasicBlock("seqcst", CurFn);
+ llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
+
+ // Create the switch for the split
+ // MonotonicBB is arbitrarily chosen as the default case; in practice, this
+ // doesn't matter unless someone is crazy enough to use something that
+ // doesn't fold to a constant for the ordering.
+ Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
+ llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB);
+
+ // Emit all the different atomics
+ Builder.SetInsertPoint(MonotonicBB);
+ EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
+ Size, Align, llvm::Monotonic);
+ Builder.CreateBr(ContBB);
+ if (!IsStore) {
+ Builder.SetInsertPoint(AcquireBB);
+ EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
+ Size, Align, llvm::Acquire);
+ Builder.CreateBr(ContBB);
+ SI->addCase(Builder.getInt32(AtomicExpr::AO_ABI_memory_order_consume),
+ AcquireBB);
+ SI->addCase(Builder.getInt32(AtomicExpr::AO_ABI_memory_order_acquire),
+ AcquireBB);
+ }
+ if (!IsLoad) {
+ Builder.SetInsertPoint(ReleaseBB);
+ EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
+ Size, Align, llvm::Release);
+ Builder.CreateBr(ContBB);
+ SI->addCase(Builder.getInt32(AtomicExpr::AO_ABI_memory_order_release),
+ ReleaseBB);
+ }
+ if (!IsLoad && !IsStore) {
+ Builder.SetInsertPoint(AcqRelBB);
+ EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
+ Size, Align, llvm::AcquireRelease);
+ Builder.CreateBr(ContBB);
+ SI->addCase(Builder.getInt32(AtomicExpr::AO_ABI_memory_order_acq_rel),
+ AcqRelBB);
+ }
+ Builder.SetInsertPoint(SeqCstBB);
+ EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
+ Size, Align, llvm::SequentiallyConsistent);
+ Builder.CreateBr(ContBB);
+ SI->addCase(Builder.getInt32(AtomicExpr::AO_ABI_memory_order_seq_cst),
+ SeqCstBB);
+
+ // Cleanup and return
+ Builder.SetInsertPoint(ContBB);
+ if (RValTy->isVoidType())
+ return RValue::get(nullptr);
+ return convertTempToRValue(OrigDest, RValTy, E->getExprLoc());
+}
+
+llvm::Value *AtomicInfo::emitCastToAtomicIntPointer(llvm::Value *addr) const {
+ unsigned addrspace =
+ cast<llvm::PointerType>(addr->getType())->getAddressSpace();
+ llvm::IntegerType *ty =
+ llvm::IntegerType::get(CGF.getLLVMContext(), AtomicSizeInBits);
+ return CGF.Builder.CreateBitCast(addr, ty->getPointerTo(addrspace));
+}
+
+RValue AtomicInfo::convertTempToRValue(llvm::Value *addr,
+ AggValueSlot resultSlot,
+ SourceLocation loc, bool AsValue) const {
+ if (LVal.isSimple()) {
+ if (EvaluationKind == TEK_Aggregate)
+ return resultSlot.asRValue();
+
+ // Drill into the padding structure if we have one.
+ if (hasPadding())
+ addr = CGF.Builder.CreateStructGEP(nullptr, addr, 0);
+
+ // Otherwise, just convert the temporary to an r-value using the
+ // normal conversion routine.
+ return CGF.convertTempToRValue(addr, getValueType(), loc);
+ }
+ if (!AsValue)
+ // Get RValue from temp memory as atomic for non-simple lvalues
+ return RValue::get(
+ CGF.Builder.CreateAlignedLoad(addr, AtomicAlign.getQuantity()));
+ if (LVal.isBitField())
+ return CGF.EmitLoadOfBitfieldLValue(LValue::MakeBitfield(
+ addr, LVal.getBitFieldInfo(), LVal.getType(), LVal.getAlignment()));
+ if (LVal.isVectorElt())
+ return CGF.EmitLoadOfLValue(LValue::MakeVectorElt(addr, LVal.getVectorIdx(),
+ LVal.getType(),
+ LVal.getAlignment()),
+ loc);
+ assert(LVal.isExtVectorElt());
+ return CGF.EmitLoadOfExtVectorElementLValue(LValue::MakeExtVectorElt(
+ addr, LVal.getExtVectorElts(), LVal.getType(), LVal.getAlignment()));
+}
+
+RValue AtomicInfo::ConvertIntToValueOrAtomic(llvm::Value *IntVal,
+ AggValueSlot ResultSlot,
+ SourceLocation Loc,
+ bool AsValue) const {
+ // Try not to in some easy cases.
+ assert(IntVal->getType()->isIntegerTy() && "Expected integer value");
+ if (getEvaluationKind() == TEK_Scalar &&
+ (((!LVal.isBitField() ||
+ LVal.getBitFieldInfo().Size == ValueSizeInBits) &&
+ !hasPadding()) ||
+ !AsValue)) {
+ auto *ValTy = AsValue
+ ? CGF.ConvertTypeForMem(ValueTy)
+ : getAtomicAddress()->getType()->getPointerElementType();
+ if (ValTy->isIntegerTy()) {
+ assert(IntVal->getType() == ValTy && "Different integer types.");
+ return RValue::get(CGF.EmitFromMemory(IntVal, ValueTy));
+ } else if (ValTy->isPointerTy())
+ return RValue::get(CGF.Builder.CreateIntToPtr(IntVal, ValTy));
+ else if (llvm::CastInst::isBitCastable(IntVal->getType(), ValTy))
+ return RValue::get(CGF.Builder.CreateBitCast(IntVal, ValTy));
+ }
+
+ // Create a temporary. This needs to be big enough to hold the
+ // atomic integer.
+ llvm::Value *Temp;
+ bool TempIsVolatile = false;
+ CharUnits TempAlignment;
+ if (AsValue && getEvaluationKind() == TEK_Aggregate) {
+ assert(!ResultSlot.isIgnored());
+ Temp = ResultSlot.getAddr();
+ TempAlignment = getValueAlignment();
+ TempIsVolatile = ResultSlot.isVolatile();
+ } else {
+ Temp = CreateTempAlloca();
+ TempAlignment = getAtomicAlignment();
+ }
+
+ // Slam the integer into the temporary.
+ llvm::Value *CastTemp = emitCastToAtomicIntPointer(Temp);
+ CGF.Builder.CreateAlignedStore(IntVal, CastTemp, TempAlignment.getQuantity())
+ ->setVolatile(TempIsVolatile);
+
+ return convertTempToRValue(Temp, ResultSlot, Loc, AsValue);
+}
+
+void AtomicInfo::EmitAtomicLoadLibcall(llvm::Value *AddForLoaded,
+ llvm::AtomicOrdering AO, bool) {
+ // void __atomic_load(size_t size, void *mem, void *return, int order);
+ CallArgList Args;
+ Args.add(RValue::get(getAtomicSizeValue()), CGF.getContext().getSizeType());
+ Args.add(RValue::get(CGF.EmitCastToVoidPtr(getAtomicAddress())),
+ CGF.getContext().VoidPtrTy);
+ Args.add(RValue::get(CGF.EmitCastToVoidPtr(AddForLoaded)),
+ CGF.getContext().VoidPtrTy);
+ Args.add(RValue::get(
+ llvm::ConstantInt::get(CGF.IntTy, translateAtomicOrdering(AO))),
+ CGF.getContext().IntTy);
+ emitAtomicLibcall(CGF, "__atomic_load", CGF.getContext().VoidTy, Args);
+}
+
+llvm::Value *AtomicInfo::EmitAtomicLoadOp(llvm::AtomicOrdering AO,
+ bool IsVolatile) {
+ // Okay, we're doing this natively.
+ llvm::Value *Addr = emitCastToAtomicIntPointer(getAtomicAddress());
+ llvm::LoadInst *Load = CGF.Builder.CreateLoad(Addr, "atomic-load");
+ Load->setAtomic(AO);
+
+ // Other decoration.
+ Load->setAlignment(getAtomicAlignment().getQuantity());
+ if (IsVolatile)
+ Load->setVolatile(true);
+ if (LVal.getTBAAInfo())
+ CGF.CGM.DecorateInstruction(Load, LVal.getTBAAInfo());
+ return Load;
+}
+
+/// An LValue is a candidate for having its loads and stores be made atomic if
+/// we are operating under /volatile:ms *and* the LValue itself is volatile and
+/// performing such an operation can be performed without a libcall.
+bool CodeGenFunction::LValueIsSuitableForInlineAtomic(LValue LV) {
+ AtomicInfo AI(*this, LV);
+ bool IsVolatile = LV.isVolatile() || hasVolatileMember(LV.getType());
+ // An atomic is inline if we don't need to use a libcall.
+ bool AtomicIsInline = !AI.shouldUseLibcall();
+ return CGM.getCodeGenOpts().MSVolatile && IsVolatile && AtomicIsInline;
+}
+
+/// An type is a candidate for having its loads and stores be made atomic if
+/// we are operating under /volatile:ms *and* we know the access is volatile and
+/// performing such an operation can be performed without a libcall.
+bool CodeGenFunction::typeIsSuitableForInlineAtomic(QualType Ty,
+ bool IsVolatile) const {
+ // An atomic is inline if we don't need to use a libcall (e.g. it is builtin).
+ bool AtomicIsInline = getContext().getTargetInfo().hasBuiltinAtomic(
+ getContext().getTypeSize(Ty), getContext().getTypeAlign(Ty));
+ return CGM.getCodeGenOpts().MSVolatile && IsVolatile && AtomicIsInline;
+}
+
+RValue CodeGenFunction::EmitAtomicLoad(LValue LV, SourceLocation SL,
+ AggValueSlot Slot) {
+ llvm::AtomicOrdering AO;
+ bool IsVolatile = LV.isVolatileQualified();
+ if (LV.getType()->isAtomicType()) {
+ AO = llvm::SequentiallyConsistent;
+ } else {
+ AO = llvm::Acquire;
+ IsVolatile = true;
+ }
+ return EmitAtomicLoad(LV, SL, AO, IsVolatile, Slot);
+}
+
+RValue AtomicInfo::EmitAtomicLoad(AggValueSlot ResultSlot, SourceLocation Loc,
+ bool AsValue, llvm::AtomicOrdering AO,
+ bool IsVolatile) {
+ // Check whether we should use a library call.
+ if (shouldUseLibcall()) {
+ llvm::Value *TempAddr;
+ if (LVal.isSimple() && !ResultSlot.isIgnored()) {
+ assert(getEvaluationKind() == TEK_Aggregate);
+ TempAddr = ResultSlot.getAddr();
+ } else
+ TempAddr = CreateTempAlloca();
+
+ EmitAtomicLoadLibcall(TempAddr, AO, IsVolatile);
+
+ // Okay, turn that back into the original value or whole atomic (for
+ // non-simple lvalues) type.
+ return convertTempToRValue(TempAddr, ResultSlot, Loc, AsValue);
+ }
+
+ // Okay, we're doing this natively.
+ auto *Load = EmitAtomicLoadOp(AO, IsVolatile);
+
+ // If we're ignoring an aggregate return, don't do anything.
+ if (getEvaluationKind() == TEK_Aggregate && ResultSlot.isIgnored())
+ return RValue::getAggregate(nullptr, false);
+
+ // Okay, turn that back into the original value or atomic (for non-simple
+ // lvalues) type.
+ return ConvertIntToValueOrAtomic(Load, ResultSlot, Loc, AsValue);
+}
+
+/// Emit a load from an l-value of atomic type. Note that the r-value
+/// we produce is an r-value of the atomic *value* type.
+RValue CodeGenFunction::EmitAtomicLoad(LValue src, SourceLocation loc,
+ llvm::AtomicOrdering AO, bool IsVolatile,
+ AggValueSlot resultSlot) {
+ AtomicInfo Atomics(*this, src);
+ return Atomics.EmitAtomicLoad(resultSlot, loc, /*AsValue=*/true, AO,
+ IsVolatile);
+}
+
+/// Copy an r-value into memory as part of storing to an atomic type.
+/// This needs to create a bit-pattern suitable for atomic operations.
+void AtomicInfo::emitCopyIntoMemory(RValue rvalue) const {
+ assert(LVal.isSimple());
+ // If we have an r-value, the rvalue should be of the atomic type,
+ // which means that the caller is responsible for having zeroed
+ // any padding. Just do an aggregate copy of that type.
+ if (rvalue.isAggregate()) {
+ CGF.EmitAggregateCopy(getAtomicAddress(),
+ rvalue.getAggregateAddr(),
+ getAtomicType(),
+ (rvalue.isVolatileQualified()
+ || LVal.isVolatileQualified()),
+ LVal.getAlignment());
+ return;
+ }
+
+ // Okay, otherwise we're copying stuff.
+
+ // Zero out the buffer if necessary.
+ emitMemSetZeroIfNecessary();
+
+ // Drill past the padding if present.
+ LValue TempLVal = projectValue();
+
+ // Okay, store the rvalue in.
+ if (rvalue.isScalar()) {
+ CGF.EmitStoreOfScalar(rvalue.getScalarVal(), TempLVal, /*init*/ true);
+ } else {
+ CGF.EmitStoreOfComplex(rvalue.getComplexVal(), TempLVal, /*init*/ true);
+ }
+}
+
+
+/// Materialize an r-value into memory for the purposes of storing it
+/// to an atomic type.
+llvm::Value *AtomicInfo::materializeRValue(RValue rvalue) const {
+ // Aggregate r-values are already in memory, and EmitAtomicStore
+ // requires them to be values of the atomic type.
+ if (rvalue.isAggregate())
+ return rvalue.getAggregateAddr();
+
+ // Otherwise, make a temporary and materialize into it.
+ LValue TempLV = CGF.MakeAddrLValue(CreateTempAlloca(), getAtomicType(),
+ getAtomicAlignment());
+ AtomicInfo Atomics(CGF, TempLV);
+ Atomics.emitCopyIntoMemory(rvalue);
+ return TempLV.getAddress();
+}
+
+llvm::Value *AtomicInfo::convertRValueToInt(RValue RVal) const {
+ // If we've got a scalar value of the right size, try to avoid going
+ // through memory.
+ if (RVal.isScalar() && (!hasPadding() || !LVal.isSimple())) {
+ llvm::Value *Value = RVal.getScalarVal();
+ if (isa<llvm::IntegerType>(Value->getType()))
+ return CGF.EmitToMemory(Value, ValueTy);
+ else {
+ llvm::IntegerType *InputIntTy = llvm::IntegerType::get(
+ CGF.getLLVMContext(),
+ LVal.isSimple() ? getValueSizeInBits() : getAtomicSizeInBits());
+ if (isa<llvm::PointerType>(Value->getType()))
+ return CGF.Builder.CreatePtrToInt(Value, InputIntTy);
+ else if (llvm::BitCastInst::isBitCastable(Value->getType(), InputIntTy))
+ return CGF.Builder.CreateBitCast(Value, InputIntTy);
+ }
+ }
+ // Otherwise, we need to go through memory.
+ // Put the r-value in memory.
+ llvm::Value *Addr = materializeRValue(RVal);
+
+ // Cast the temporary to the atomic int type and pull a value out.
+ Addr = emitCastToAtomicIntPointer(Addr);
+ return CGF.Builder.CreateAlignedLoad(Addr,
+ getAtomicAlignment().getQuantity());
+}
+
+std::pair<llvm::Value *, llvm::Value *> AtomicInfo::EmitAtomicCompareExchangeOp(
+ llvm::Value *ExpectedVal, llvm::Value *DesiredVal,
+ llvm::AtomicOrdering Success, llvm::AtomicOrdering Failure, bool IsWeak) {
+ // Do the atomic store.
+ auto *Addr = emitCastToAtomicIntPointer(getAtomicAddress());
+ auto *Inst = CGF.Builder.CreateAtomicCmpXchg(Addr, ExpectedVal, DesiredVal,
+ Success, Failure);
+ // Other decoration.
+ Inst->setVolatile(LVal.isVolatileQualified());
+ Inst->setWeak(IsWeak);
+
+ // Okay, turn that back into the original value type.
+ auto *PreviousVal = CGF.Builder.CreateExtractValue(Inst, /*Idxs=*/0);
+ auto *SuccessFailureVal = CGF.Builder.CreateExtractValue(Inst, /*Idxs=*/1);
+ return std::make_pair(PreviousVal, SuccessFailureVal);
+}
+
+llvm::Value *
+AtomicInfo::EmitAtomicCompareExchangeLibcall(llvm::Value *ExpectedAddr,
+ llvm::Value *DesiredAddr,
+ llvm::AtomicOrdering Success,
+ llvm::AtomicOrdering Failure) {
+ // bool __atomic_compare_exchange(size_t size, void *obj, void *expected,
+ // void *desired, int success, int failure);
+ CallArgList Args;
+ Args.add(RValue::get(getAtomicSizeValue()), CGF.getContext().getSizeType());
+ Args.add(RValue::get(CGF.EmitCastToVoidPtr(getAtomicAddress())),
+ CGF.getContext().VoidPtrTy);
+ Args.add(RValue::get(CGF.EmitCastToVoidPtr(ExpectedAddr)),
+ CGF.getContext().VoidPtrTy);
+ Args.add(RValue::get(CGF.EmitCastToVoidPtr(DesiredAddr)),
+ CGF.getContext().VoidPtrTy);
+ Args.add(RValue::get(llvm::ConstantInt::get(
+ CGF.IntTy, translateAtomicOrdering(Success))),
+ CGF.getContext().IntTy);
+ Args.add(RValue::get(llvm::ConstantInt::get(
+ CGF.IntTy, translateAtomicOrdering(Failure))),
+ CGF.getContext().IntTy);
+ auto SuccessFailureRVal = emitAtomicLibcall(CGF, "__atomic_compare_exchange",
+ CGF.getContext().BoolTy, Args);
+
+ return SuccessFailureRVal.getScalarVal();
+}
+
+std::pair<RValue, llvm::Value *> AtomicInfo::EmitAtomicCompareExchange(
+ RValue Expected, RValue Desired, llvm::AtomicOrdering Success,
+ llvm::AtomicOrdering Failure, bool IsWeak) {
+ if (Failure >= Success)
+ // Don't assert on undefined behavior.
+ Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(Success);
+
+ // Check whether we should use a library call.
+ if (shouldUseLibcall()) {
+ // Produce a source address.
+ auto *ExpectedAddr = materializeRValue(Expected);
+ auto *DesiredAddr = materializeRValue(Desired);
+ auto *Res = EmitAtomicCompareExchangeLibcall(ExpectedAddr, DesiredAddr,
+ Success, Failure);
+ return std::make_pair(
+ convertTempToRValue(ExpectedAddr, AggValueSlot::ignored(),
+ SourceLocation(), /*AsValue=*/false),
+ Res);
+ }
+
+ // If we've got a scalar value of the right size, try to avoid going
+ // through memory.
+ auto *ExpectedVal = convertRValueToInt(Expected);
+ auto *DesiredVal = convertRValueToInt(Desired);
+ auto Res = EmitAtomicCompareExchangeOp(ExpectedVal, DesiredVal, Success,
+ Failure, IsWeak);
+ return std::make_pair(
+ ConvertIntToValueOrAtomic(Res.first, AggValueSlot::ignored(),
+ SourceLocation(), /*AsValue=*/false),
+ Res.second);
+}
+
+static void
+EmitAtomicUpdateValue(CodeGenFunction &CGF, AtomicInfo &Atomics, RValue OldRVal,
+ const llvm::function_ref<RValue(RValue)> &UpdateOp,
+ llvm::Value *DesiredAddr) {
+ llvm::Value *Ptr = nullptr;
+ LValue UpdateLVal;
+ RValue UpRVal;
+ LValue AtomicLVal = Atomics.getAtomicLValue();
+ LValue DesiredLVal;
+ if (AtomicLVal.isSimple()) {
+ UpRVal = OldRVal;
+ DesiredLVal =
+ LValue::MakeAddr(DesiredAddr, AtomicLVal.getType(),
+ AtomicLVal.getAlignment(), CGF.CGM.getContext());
+ } else {
+ // Build new lvalue for temp address
+ Ptr = Atomics.materializeRValue(OldRVal);
+ if (AtomicLVal.isBitField()) {
+ UpdateLVal =
+ LValue::MakeBitfield(Ptr, AtomicLVal.getBitFieldInfo(),
+ AtomicLVal.getType(), AtomicLVal.getAlignment());
+ DesiredLVal =
+ LValue::MakeBitfield(DesiredAddr, AtomicLVal.getBitFieldInfo(),
+ AtomicLVal.getType(), AtomicLVal.getAlignment());
+ } else if (AtomicLVal.isVectorElt()) {
+ UpdateLVal = LValue::MakeVectorElt(Ptr, AtomicLVal.getVectorIdx(),
+ AtomicLVal.getType(),
+ AtomicLVal.getAlignment());
+ DesiredLVal = LValue::MakeVectorElt(
+ DesiredAddr, AtomicLVal.getVectorIdx(), AtomicLVal.getType(),
+ AtomicLVal.getAlignment());
+ } else {
+ assert(AtomicLVal.isExtVectorElt());
+ UpdateLVal = LValue::MakeExtVectorElt(Ptr, AtomicLVal.getExtVectorElts(),
+ AtomicLVal.getType(),
+ AtomicLVal.getAlignment());
+ DesiredLVal = LValue::MakeExtVectorElt(
+ DesiredAddr, AtomicLVal.getExtVectorElts(), AtomicLVal.getType(),
+ AtomicLVal.getAlignment());
+ }
+ UpdateLVal.setTBAAInfo(AtomicLVal.getTBAAInfo());
+ DesiredLVal.setTBAAInfo(AtomicLVal.getTBAAInfo());
+ UpRVal = CGF.EmitLoadOfLValue(UpdateLVal, SourceLocation());
+ }
+ // Store new value in the corresponding memory area
+ RValue NewRVal = UpdateOp(UpRVal);
+ if (NewRVal.isScalar()) {
+ CGF.EmitStoreThroughLValue(NewRVal, DesiredLVal);
+ } else {
+ assert(NewRVal.isComplex());
+ CGF.EmitStoreOfComplex(NewRVal.getComplexVal(), DesiredLVal,
+ /*isInit=*/false);
+ }
+}
+
+void AtomicInfo::EmitAtomicUpdateLibcall(
+ llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp,
+ bool IsVolatile) {
+ auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
+
+ llvm::Value *ExpectedAddr = CreateTempAlloca();
+
+ EmitAtomicLoadLibcall(ExpectedAddr, AO, IsVolatile);
+ auto *ContBB = CGF.createBasicBlock("atomic_cont");
+ auto *ExitBB = CGF.createBasicBlock("atomic_exit");
+ CGF.EmitBlock(ContBB);
+ auto *DesiredAddr = CreateTempAlloca();
+ if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) ||
+ requiresMemSetZero(
+ getAtomicAddress()->getType()->getPointerElementType())) {
+ auto *OldVal = CGF.Builder.CreateAlignedLoad(
+ ExpectedAddr, getAtomicAlignment().getQuantity());
+ CGF.Builder.CreateAlignedStore(OldVal, DesiredAddr,
+ getAtomicAlignment().getQuantity());
+ }
+ auto OldRVal = convertTempToRValue(ExpectedAddr, AggValueSlot::ignored(),
+ SourceLocation(), /*AsValue=*/false);
+ EmitAtomicUpdateValue(CGF, *this, OldRVal, UpdateOp, DesiredAddr);
+ auto *Res =
+ EmitAtomicCompareExchangeLibcall(ExpectedAddr, DesiredAddr, AO, Failure);
+ CGF.Builder.CreateCondBr(Res, ExitBB, ContBB);
+ CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
+}
+
+void AtomicInfo::EmitAtomicUpdateOp(
+ llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp,
+ bool IsVolatile) {
+ auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
+
+ // Do the atomic load.
+ auto *OldVal = EmitAtomicLoadOp(AO, IsVolatile);
+ // For non-simple lvalues perform compare-and-swap procedure.
+ auto *ContBB = CGF.createBasicBlock("atomic_cont");
+ auto *ExitBB = CGF.createBasicBlock("atomic_exit");
+ auto *CurBB = CGF.Builder.GetInsertBlock();
+ CGF.EmitBlock(ContBB);
+ llvm::PHINode *PHI = CGF.Builder.CreatePHI(OldVal->getType(),
+ /*NumReservedValues=*/2);
+ PHI->addIncoming(OldVal, CurBB);
+ auto *NewAtomicAddr = CreateTempAlloca();
+ auto *NewAtomicIntAddr = emitCastToAtomicIntPointer(NewAtomicAddr);
+ if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) ||
+ requiresMemSetZero(
+ getAtomicAddress()->getType()->getPointerElementType())) {
+ CGF.Builder.CreateAlignedStore(PHI, NewAtomicIntAddr,
+ getAtomicAlignment().getQuantity());
+ }
+ auto OldRVal = ConvertIntToValueOrAtomic(PHI, AggValueSlot::ignored(),
+ SourceLocation(), /*AsValue=*/false);
+ EmitAtomicUpdateValue(CGF, *this, OldRVal, UpdateOp, NewAtomicAddr);
+ auto *DesiredVal = CGF.Builder.CreateAlignedLoad(
+ NewAtomicIntAddr, getAtomicAlignment().getQuantity());
+ // Try to write new value using cmpxchg operation
+ auto Res = EmitAtomicCompareExchangeOp(PHI, DesiredVal, AO, Failure);
+ PHI->addIncoming(Res.first, CGF.Builder.GetInsertBlock());
+ CGF.Builder.CreateCondBr(Res.second, ExitBB, ContBB);
+ CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
+}
+
+static void EmitAtomicUpdateValue(CodeGenFunction &CGF, AtomicInfo &Atomics,
+ RValue UpdateRVal, llvm::Value *DesiredAddr) {
+ LValue AtomicLVal = Atomics.getAtomicLValue();
+ LValue DesiredLVal;
+ // Build new lvalue for temp address
+ if (AtomicLVal.isBitField()) {
+ DesiredLVal =
+ LValue::MakeBitfield(DesiredAddr, AtomicLVal.getBitFieldInfo(),
+ AtomicLVal.getType(), AtomicLVal.getAlignment());
+ } else if (AtomicLVal.isVectorElt()) {
+ DesiredLVal =
+ LValue::MakeVectorElt(DesiredAddr, AtomicLVal.getVectorIdx(),
+ AtomicLVal.getType(), AtomicLVal.getAlignment());
+ } else {
+ assert(AtomicLVal.isExtVectorElt());
+ DesiredLVal = LValue::MakeExtVectorElt(
+ DesiredAddr, AtomicLVal.getExtVectorElts(), AtomicLVal.getType(),
+ AtomicLVal.getAlignment());
+ }
+ DesiredLVal.setTBAAInfo(AtomicLVal.getTBAAInfo());
+ // Store new value in the corresponding memory area
+ assert(UpdateRVal.isScalar());
+ CGF.EmitStoreThroughLValue(UpdateRVal, DesiredLVal);
+}
+
+void AtomicInfo::EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO,
+ RValue UpdateRVal, bool IsVolatile) {
+ auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
+
+ llvm::Value *ExpectedAddr = CreateTempAlloca();
+
+ EmitAtomicLoadLibcall(ExpectedAddr, AO, IsVolatile);
+ auto *ContBB = CGF.createBasicBlock("atomic_cont");
+ auto *ExitBB = CGF.createBasicBlock("atomic_exit");
+ CGF.EmitBlock(ContBB);
+ auto *DesiredAddr = CreateTempAlloca();
+ if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) ||
+ requiresMemSetZero(
+ getAtomicAddress()->getType()->getPointerElementType())) {
+ auto *OldVal = CGF.Builder.CreateAlignedLoad(
+ ExpectedAddr, getAtomicAlignment().getQuantity());
+ CGF.Builder.CreateAlignedStore(OldVal, DesiredAddr,
+ getAtomicAlignment().getQuantity());
+ }
+ EmitAtomicUpdateValue(CGF, *this, UpdateRVal, DesiredAddr);
+ auto *Res =
+ EmitAtomicCompareExchangeLibcall(ExpectedAddr, DesiredAddr, AO, Failure);
+ CGF.Builder.CreateCondBr(Res, ExitBB, ContBB);
+ CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
+}
+
+void AtomicInfo::EmitAtomicUpdateOp(llvm::AtomicOrdering AO, RValue UpdateRVal,
+ bool IsVolatile) {
+ auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
+
+ // Do the atomic load.
+ auto *OldVal = EmitAtomicLoadOp(AO, IsVolatile);
+ // For non-simple lvalues perform compare-and-swap procedure.
+ auto *ContBB = CGF.createBasicBlock("atomic_cont");
+ auto *ExitBB = CGF.createBasicBlock("atomic_exit");
+ auto *CurBB = CGF.Builder.GetInsertBlock();
+ CGF.EmitBlock(ContBB);
+ llvm::PHINode *PHI = CGF.Builder.CreatePHI(OldVal->getType(),
+ /*NumReservedValues=*/2);
+ PHI->addIncoming(OldVal, CurBB);
+ auto *NewAtomicAddr = CreateTempAlloca();
+ auto *NewAtomicIntAddr = emitCastToAtomicIntPointer(NewAtomicAddr);
+ if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) ||
+ requiresMemSetZero(
+ getAtomicAddress()->getType()->getPointerElementType())) {
+ CGF.Builder.CreateAlignedStore(PHI, NewAtomicIntAddr,
+ getAtomicAlignment().getQuantity());
+ }
+ EmitAtomicUpdateValue(CGF, *this, UpdateRVal, NewAtomicAddr);
+ auto *DesiredVal = CGF.Builder.CreateAlignedLoad(
+ NewAtomicIntAddr, getAtomicAlignment().getQuantity());
+ // Try to write new value using cmpxchg operation
+ auto Res = EmitAtomicCompareExchangeOp(PHI, DesiredVal, AO, Failure);
+ PHI->addIncoming(Res.first, CGF.Builder.GetInsertBlock());
+ CGF.Builder.CreateCondBr(Res.second, ExitBB, ContBB);
+ CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
+}
+
+void AtomicInfo::EmitAtomicUpdate(
+ llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp,
+ bool IsVolatile) {
+ if (shouldUseLibcall()) {
+ EmitAtomicUpdateLibcall(AO, UpdateOp, IsVolatile);
+ } else {
+ EmitAtomicUpdateOp(AO, UpdateOp, IsVolatile);
+ }
+}
+
+void AtomicInfo::EmitAtomicUpdate(llvm::AtomicOrdering AO, RValue UpdateRVal,
+ bool IsVolatile) {
+ if (shouldUseLibcall()) {
+ EmitAtomicUpdateLibcall(AO, UpdateRVal, IsVolatile);
+ } else {
+ EmitAtomicUpdateOp(AO, UpdateRVal, IsVolatile);
+ }
+}
+
+void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue lvalue,
+ bool isInit) {
+ bool IsVolatile = lvalue.isVolatileQualified();
+ llvm::AtomicOrdering AO;
+ if (lvalue.getType()->isAtomicType()) {
+ AO = llvm::SequentiallyConsistent;
+ } else {
+ AO = llvm::Release;
+ IsVolatile = true;
+ }
+ return EmitAtomicStore(rvalue, lvalue, AO, IsVolatile, isInit);
+}
+
+/// Emit a store to an l-value of atomic type.
+///
+/// Note that the r-value is expected to be an r-value *of the atomic
+/// type*; this means that for aggregate r-values, it should include
+/// storage for any padding that was necessary.
+void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue dest,
+ llvm::AtomicOrdering AO, bool IsVolatile,
+ bool isInit) {
+ // If this is an aggregate r-value, it should agree in type except
+ // maybe for address-space qualification.
+ assert(!rvalue.isAggregate() ||
+ rvalue.getAggregateAddr()->getType()->getPointerElementType()
+ == dest.getAddress()->getType()->getPointerElementType());
+
+ AtomicInfo atomics(*this, dest);
+ LValue LVal = atomics.getAtomicLValue();
+
+ // If this is an initialization, just put the value there normally.
+ if (LVal.isSimple()) {
+ if (isInit) {
+ atomics.emitCopyIntoMemory(rvalue);
+ return;
+ }
+
+ // Check whether we should use a library call.
+ if (atomics.shouldUseLibcall()) {
+ // Produce a source address.
+ llvm::Value *srcAddr = atomics.materializeRValue(rvalue);
+
+ // void __atomic_store(size_t size, void *mem, void *val, int order)
+ CallArgList args;
+ args.add(RValue::get(atomics.getAtomicSizeValue()),
+ getContext().getSizeType());
+ args.add(RValue::get(EmitCastToVoidPtr(atomics.getAtomicAddress())),
+ getContext().VoidPtrTy);
+ args.add(RValue::get(EmitCastToVoidPtr(srcAddr)), getContext().VoidPtrTy);
+ args.add(RValue::get(llvm::ConstantInt::get(
+ IntTy, AtomicInfo::translateAtomicOrdering(AO))),
+ getContext().IntTy);
+ emitAtomicLibcall(*this, "__atomic_store", getContext().VoidTy, args);
+ return;
+ }
+
+ // Okay, we're doing this natively.
+ llvm::Value *intValue = atomics.convertRValueToInt(rvalue);
+
+ // Do the atomic store.
+ llvm::Value *addr =
+ atomics.emitCastToAtomicIntPointer(atomics.getAtomicAddress());
+ intValue = Builder.CreateIntCast(
+ intValue, addr->getType()->getPointerElementType(), /*isSigned=*/false);
+ llvm::StoreInst *store = Builder.CreateStore(intValue, addr);
+
+ // Initializations don't need to be atomic.
+ if (!isInit)
+ store->setAtomic(AO);
+
+ // Other decoration.
+ store->setAlignment(dest.getAlignment().getQuantity());
+ if (IsVolatile)
+ store->setVolatile(true);
+ if (dest.getTBAAInfo())
+ CGM.DecorateInstruction(store, dest.getTBAAInfo());
+ return;
+ }
+
+ // Emit simple atomic update operation.
+ atomics.EmitAtomicUpdate(AO, rvalue, IsVolatile);
+}
+
+/// Emit a compare-and-exchange op for atomic type.
+///
+std::pair<RValue, llvm::Value *> CodeGenFunction::EmitAtomicCompareExchange(
+ LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
+ llvm::AtomicOrdering Success, llvm::AtomicOrdering Failure, bool IsWeak,
+ AggValueSlot Slot) {
+ // If this is an aggregate r-value, it should agree in type except
+ // maybe for address-space qualification.
+ assert(!Expected.isAggregate() ||
+ Expected.getAggregateAddr()->getType()->getPointerElementType() ==
+ Obj.getAddress()->getType()->getPointerElementType());
+ assert(!Desired.isAggregate() ||
+ Desired.getAggregateAddr()->getType()->getPointerElementType() ==
+ Obj.getAddress()->getType()->getPointerElementType());
+ AtomicInfo Atomics(*this, Obj);
+
+ return Atomics.EmitAtomicCompareExchange(Expected, Desired, Success, Failure,
+ IsWeak);
+}
+
+void CodeGenFunction::EmitAtomicUpdate(
+ LValue LVal, llvm::AtomicOrdering AO,
+ const llvm::function_ref<RValue(RValue)> &UpdateOp, bool IsVolatile) {
+ AtomicInfo Atomics(*this, LVal);
+ Atomics.EmitAtomicUpdate(AO, UpdateOp, IsVolatile);
+}
+
+void CodeGenFunction::EmitAtomicInit(Expr *init, LValue dest) {
+ AtomicInfo atomics(*this, dest);
+
+ switch (atomics.getEvaluationKind()) {
+ case TEK_Scalar: {
+ llvm::Value *value = EmitScalarExpr(init);
+ atomics.emitCopyIntoMemory(RValue::get(value));
+ return;
+ }
+
+ case TEK_Complex: {
+ ComplexPairTy value = EmitComplexExpr(init);
+ atomics.emitCopyIntoMemory(RValue::getComplex(value));
+ return;
+ }
+
+ case TEK_Aggregate: {
+ // Fix up the destination if the initializer isn't an expression
+ // of atomic type.
+ bool Zeroed = false;
+ if (!init->getType()->isAtomicType()) {
+ Zeroed = atomics.emitMemSetZeroIfNecessary();
+ dest = atomics.projectValue();
+ }
+
+ // Evaluate the expression directly into the destination.
+ AggValueSlot slot = AggValueSlot::forLValue(dest,
+ AggValueSlot::IsNotDestructed,
+ AggValueSlot::DoesNotNeedGCBarriers,
+ AggValueSlot::IsNotAliased,
+ Zeroed ? AggValueSlot::IsZeroed :
+ AggValueSlot::IsNotZeroed);
+
+ EmitAggExpr(init, slot);
+ return;
+ }
+ }
+ llvm_unreachable("bad evaluation kind");
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGBlocks.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGBlocks.cpp
new file mode 100644
index 0000000..3fd344c
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGBlocks.cpp
@@ -0,0 +1,2320 @@
+//===--- CGBlocks.cpp - Emit LLVM Code for declarations -------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code to emit blocks.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGBlocks.h"
+#include "CGDebugInfo.h"
+#include "CGObjCRuntime.h"
+#include "CodeGenFunction.h"
+#include "CodeGenModule.h"
+#include "clang/AST/DeclObjC.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Module.h"
+#include <algorithm>
+#include <cstdio>
+
+using namespace clang;
+using namespace CodeGen;
+
+CGBlockInfo::CGBlockInfo(const BlockDecl *block, StringRef name)
+ : Name(name), CXXThisIndex(0), CanBeGlobal(false), NeedsCopyDispose(false),
+ HasCXXObject(false), UsesStret(false), HasCapturedVariableLayout(false),
+ StructureType(nullptr), Block(block),
+ DominatingIP(nullptr) {
+
+ // Skip asm prefix, if any. 'name' is usually taken directly from
+ // the mangled name of the enclosing function.
+ if (!name.empty() && name[0] == '\01')
+ name = name.substr(1);
+}
+
+// Anchor the vtable to this translation unit.
+CodeGenModule::ByrefHelpers::~ByrefHelpers() {}
+
+/// Build the given block as a global block.
+static llvm::Constant *buildGlobalBlock(CodeGenModule &CGM,
+ const CGBlockInfo &blockInfo,
+ llvm::Constant *blockFn);
+
+/// Build the helper function to copy a block.
+static llvm::Constant *buildCopyHelper(CodeGenModule &CGM,
+ const CGBlockInfo &blockInfo) {
+ return CodeGenFunction(CGM).GenerateCopyHelperFunction(blockInfo);
+}
+
+/// Build the helper function to dispose of a block.
+static llvm::Constant *buildDisposeHelper(CodeGenModule &CGM,
+ const CGBlockInfo &blockInfo) {
+ return CodeGenFunction(CGM).GenerateDestroyHelperFunction(blockInfo);
+}
+
+/// buildBlockDescriptor - Build the block descriptor meta-data for a block.
+/// buildBlockDescriptor is accessed from 5th field of the Block_literal
+/// meta-data and contains stationary information about the block literal.
+/// Its definition will have 4 (or optinally 6) words.
+/// \code
+/// struct Block_descriptor {
+/// unsigned long reserved;
+/// unsigned long size; // size of Block_literal metadata in bytes.
+/// void *copy_func_helper_decl; // optional copy helper.
+/// void *destroy_func_decl; // optioanl destructor helper.
+/// void *block_method_encoding_address; // @encode for block literal signature.
+/// void *block_layout_info; // encoding of captured block variables.
+/// };
+/// \endcode
+static llvm::Constant *buildBlockDescriptor(CodeGenModule &CGM,
+ const CGBlockInfo &blockInfo) {
+ ASTContext &C = CGM.getContext();
+
+ llvm::Type *ulong = CGM.getTypes().ConvertType(C.UnsignedLongTy);
+ llvm::Type *i8p = NULL;
+ if (CGM.getLangOpts().OpenCL)
+ i8p =
+ llvm::Type::getInt8PtrTy(
+ CGM.getLLVMContext(), C.getTargetAddressSpace(LangAS::opencl_constant));
+ else
+ i8p = CGM.getTypes().ConvertType(C.VoidPtrTy);
+
+ SmallVector<llvm::Constant*, 6> elements;
+
+ // reserved
+ elements.push_back(llvm::ConstantInt::get(ulong, 0));
+
+ // Size
+ // FIXME: What is the right way to say this doesn't fit? We should give
+ // a user diagnostic in that case. Better fix would be to change the
+ // API to size_t.
+ elements.push_back(llvm::ConstantInt::get(ulong,
+ blockInfo.BlockSize.getQuantity()));
+
+ // Optional copy/dispose helpers.
+ if (blockInfo.NeedsCopyDispose) {
+ // copy_func_helper_decl
+ elements.push_back(buildCopyHelper(CGM, blockInfo));
+
+ // destroy_func_decl
+ elements.push_back(buildDisposeHelper(CGM, blockInfo));
+ }
+
+ // Signature. Mandatory ObjC-style method descriptor @encode sequence.
+ std::string typeAtEncoding =
+ CGM.getContext().getObjCEncodingForBlock(blockInfo.getBlockExpr());
+ elements.push_back(llvm::ConstantExpr::getBitCast(
+ CGM.GetAddrOfConstantCString(typeAtEncoding), i8p));
+
+ // GC layout.
+ if (C.getLangOpts().ObjC1) {
+ if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
+ elements.push_back(CGM.getObjCRuntime().BuildGCBlockLayout(CGM, blockInfo));
+ else
+ elements.push_back(CGM.getObjCRuntime().BuildRCBlockLayout(CGM, blockInfo));
+ }
+ else
+ elements.push_back(llvm::Constant::getNullValue(i8p));
+
+ llvm::Constant *init = llvm::ConstantStruct::getAnon(elements);
+
+ llvm::GlobalVariable *global =
+ new llvm::GlobalVariable(CGM.getModule(), init->getType(), true,
+ llvm::GlobalValue::InternalLinkage,
+ init, "__block_descriptor_tmp");
+
+ return llvm::ConstantExpr::getBitCast(global, CGM.getBlockDescriptorType());
+}
+
+/*
+ Purely notional variadic template describing the layout of a block.
+
+ template <class _ResultType, class... _ParamTypes, class... _CaptureTypes>
+ struct Block_literal {
+ /// Initialized to one of:
+ /// extern void *_NSConcreteStackBlock[];
+ /// extern void *_NSConcreteGlobalBlock[];
+ ///
+ /// In theory, we could start one off malloc'ed by setting
+ /// BLOCK_NEEDS_FREE, giving it a refcount of 1, and using
+ /// this isa:
+ /// extern void *_NSConcreteMallocBlock[];
+ struct objc_class *isa;
+
+ /// These are the flags (with corresponding bit number) that the
+ /// compiler is actually supposed to know about.
+ /// 25. BLOCK_HAS_COPY_DISPOSE - indicates that the block
+ /// descriptor provides copy and dispose helper functions
+ /// 26. BLOCK_HAS_CXX_OBJ - indicates that there's a captured
+ /// object with a nontrivial destructor or copy constructor
+ /// 28. BLOCK_IS_GLOBAL - indicates that the block is allocated
+ /// as global memory
+ /// 29. BLOCK_USE_STRET - indicates that the block function
+ /// uses stret, which objc_msgSend needs to know about
+ /// 30. BLOCK_HAS_SIGNATURE - indicates that the block has an
+ /// @encoded signature string
+ /// And we're not supposed to manipulate these:
+ /// 24. BLOCK_NEEDS_FREE - indicates that the block has been moved
+ /// to malloc'ed memory
+ /// 27. BLOCK_IS_GC - indicates that the block has been moved to
+ /// to GC-allocated memory
+ /// Additionally, the bottom 16 bits are a reference count which
+ /// should be zero on the stack.
+ int flags;
+
+ /// Reserved; should be zero-initialized.
+ int reserved;
+
+ /// Function pointer generated from block literal.
+ _ResultType (*invoke)(Block_literal *, _ParamTypes...);
+
+ /// Block description metadata generated from block literal.
+ struct Block_descriptor *block_descriptor;
+
+ /// Captured values follow.
+ _CapturesTypes captures...;
+ };
+ */
+
+/// The number of fields in a block header.
+const unsigned BlockHeaderSize = 5;
+
+namespace {
+ /// A chunk of data that we actually have to capture in the block.
+ struct BlockLayoutChunk {
+ CharUnits Alignment;
+ CharUnits Size;
+ Qualifiers::ObjCLifetime Lifetime;
+ const BlockDecl::Capture *Capture; // null for 'this'
+ llvm::Type *Type;
+
+ BlockLayoutChunk(CharUnits align, CharUnits size,
+ Qualifiers::ObjCLifetime lifetime,
+ const BlockDecl::Capture *capture,
+ llvm::Type *type)
+ : Alignment(align), Size(size), Lifetime(lifetime),
+ Capture(capture), Type(type) {}
+
+ /// Tell the block info that this chunk has the given field index.
+ void setIndex(CGBlockInfo &info, unsigned index) {
+ if (!Capture)
+ info.CXXThisIndex = index;
+ else
+ info.Captures[Capture->getVariable()]
+ = CGBlockInfo::Capture::makeIndex(index);
+ }
+ };
+
+ /// Order by 1) all __strong together 2) next, all byfref together 3) next,
+ /// all __weak together. Preserve descending alignment in all situations.
+ bool operator<(const BlockLayoutChunk &left, const BlockLayoutChunk &right) {
+ CharUnits LeftValue, RightValue;
+ bool LeftByref = left.Capture ? left.Capture->isByRef() : false;
+ bool RightByref = right.Capture ? right.Capture->isByRef() : false;
+
+ if (left.Lifetime == Qualifiers::OCL_Strong &&
+ left.Alignment >= right.Alignment)
+ LeftValue = CharUnits::fromQuantity(64);
+ else if (LeftByref && left.Alignment >= right.Alignment)
+ LeftValue = CharUnits::fromQuantity(32);
+ else if (left.Lifetime == Qualifiers::OCL_Weak &&
+ left.Alignment >= right.Alignment)
+ LeftValue = CharUnits::fromQuantity(16);
+ else
+ LeftValue = left.Alignment;
+ if (right.Lifetime == Qualifiers::OCL_Strong &&
+ right.Alignment >= left.Alignment)
+ RightValue = CharUnits::fromQuantity(64);
+ else if (RightByref && right.Alignment >= left.Alignment)
+ RightValue = CharUnits::fromQuantity(32);
+ else if (right.Lifetime == Qualifiers::OCL_Weak &&
+ right.Alignment >= left.Alignment)
+ RightValue = CharUnits::fromQuantity(16);
+ else
+ RightValue = right.Alignment;
+
+ return LeftValue > RightValue;
+ }
+}
+
+/// Determines if the given type is safe for constant capture in C++.
+static bool isSafeForCXXConstantCapture(QualType type) {
+ const RecordType *recordType =
+ type->getBaseElementTypeUnsafe()->getAs<RecordType>();
+
+ // Only records can be unsafe.
+ if (!recordType) return true;
+
+ const auto *record = cast<CXXRecordDecl>(recordType->getDecl());
+
+ // Maintain semantics for classes with non-trivial dtors or copy ctors.
+ if (!record->hasTrivialDestructor()) return false;
+ if (record->hasNonTrivialCopyConstructor()) return false;
+
+ // Otherwise, we just have to make sure there aren't any mutable
+ // fields that might have changed since initialization.
+ return !record->hasMutableFields();
+}
+
+/// It is illegal to modify a const object after initialization.
+/// Therefore, if a const object has a constant initializer, we don't
+/// actually need to keep storage for it in the block; we'll just
+/// rematerialize it at the start of the block function. This is
+/// acceptable because we make no promises about address stability of
+/// captured variables.
+static llvm::Constant *tryCaptureAsConstant(CodeGenModule &CGM,
+ CodeGenFunction *CGF,
+ const VarDecl *var) {
+ QualType type = var->getType();
+
+ // We can only do this if the variable is const.
+ if (!type.isConstQualified()) return nullptr;
+
+ // Furthermore, in C++ we have to worry about mutable fields:
+ // C++ [dcl.type.cv]p4:
+ // Except that any class member declared mutable can be
+ // modified, any attempt to modify a const object during its
+ // lifetime results in undefined behavior.
+ if (CGM.getLangOpts().CPlusPlus && !isSafeForCXXConstantCapture(type))
+ return nullptr;
+
+ // If the variable doesn't have any initializer (shouldn't this be
+ // invalid?), it's not clear what we should do. Maybe capture as
+ // zero?
+ const Expr *init = var->getInit();
+ if (!init) return nullptr;
+
+ return CGM.EmitConstantInit(*var, CGF);
+}
+
+/// Get the low bit of a nonzero character count. This is the
+/// alignment of the nth byte if the 0th byte is universally aligned.
+static CharUnits getLowBit(CharUnits v) {
+ return CharUnits::fromQuantity(v.getQuantity() & (~v.getQuantity() + 1));
+}
+
+static void initializeForBlockHeader(CodeGenModule &CGM, CGBlockInfo &info,
+ SmallVectorImpl<llvm::Type*> &elementTypes) {
+ ASTContext &C = CGM.getContext();
+
+ // The header is basically a 'struct { void *; int; int; void *; void *; }'.
+ CharUnits ptrSize, ptrAlign, intSize, intAlign;
+ std::tie(ptrSize, ptrAlign) = C.getTypeInfoInChars(C.VoidPtrTy);
+ std::tie(intSize, intAlign) = C.getTypeInfoInChars(C.IntTy);
+
+ // Are there crazy embedded platforms where this isn't true?
+ assert(intSize <= ptrSize && "layout assumptions horribly violated");
+
+ CharUnits headerSize = ptrSize;
+ if (2 * intSize < ptrAlign) headerSize += ptrSize;
+ else headerSize += 2 * intSize;
+ headerSize += 2 * ptrSize;
+
+ info.BlockAlign = ptrAlign;
+ info.BlockSize = headerSize;
+
+ assert(elementTypes.empty());
+ llvm::Type *i8p = CGM.getTypes().ConvertType(C.VoidPtrTy);
+ llvm::Type *intTy = CGM.getTypes().ConvertType(C.IntTy);
+ elementTypes.push_back(i8p);
+ elementTypes.push_back(intTy);
+ elementTypes.push_back(intTy);
+ elementTypes.push_back(i8p);
+ elementTypes.push_back(CGM.getBlockDescriptorType());
+
+ assert(elementTypes.size() == BlockHeaderSize);
+}
+
+/// Compute the layout of the given block. Attempts to lay the block
+/// out with minimal space requirements.
+static void computeBlockInfo(CodeGenModule &CGM, CodeGenFunction *CGF,
+ CGBlockInfo &info) {
+ ASTContext &C = CGM.getContext();
+ const BlockDecl *block = info.getBlockDecl();
+
+ SmallVector<llvm::Type*, 8> elementTypes;
+ initializeForBlockHeader(CGM, info, elementTypes);
+
+ if (!block->hasCaptures()) {
+ info.StructureType =
+ llvm::StructType::get(CGM.getLLVMContext(), elementTypes, true);
+ info.CanBeGlobal = true;
+ return;
+ }
+ else if (C.getLangOpts().ObjC1 &&
+ CGM.getLangOpts().getGC() == LangOptions::NonGC)
+ info.HasCapturedVariableLayout = true;
+
+ // Collect the layout chunks.
+ SmallVector<BlockLayoutChunk, 16> layout;
+ layout.reserve(block->capturesCXXThis() +
+ (block->capture_end() - block->capture_begin()));
+
+ CharUnits maxFieldAlign;
+
+ // First, 'this'.
+ if (block->capturesCXXThis()) {
+ assert(CGF && CGF->CurFuncDecl && isa<CXXMethodDecl>(CGF->CurFuncDecl) &&
+ "Can't capture 'this' outside a method");
+ QualType thisType = cast<CXXMethodDecl>(CGF->CurFuncDecl)->getThisType(C);
+
+ llvm::Type *llvmType = CGM.getTypes().ConvertType(thisType);
+ std::pair<CharUnits,CharUnits> tinfo
+ = CGM.getContext().getTypeInfoInChars(thisType);
+ maxFieldAlign = std::max(maxFieldAlign, tinfo.second);
+
+ layout.push_back(BlockLayoutChunk(tinfo.second, tinfo.first,
+ Qualifiers::OCL_None,
+ nullptr, llvmType));
+ }
+
+ // Next, all the block captures.
+ for (const auto &CI : block->captures()) {
+ const VarDecl *variable = CI.getVariable();
+
+ if (CI.isByRef()) {
+ // We have to copy/dispose of the __block reference.
+ info.NeedsCopyDispose = true;
+
+ // Just use void* instead of a pointer to the byref type.
+ QualType byRefPtrTy = C.VoidPtrTy;
+
+ llvm::Type *llvmType = CGM.getTypes().ConvertType(byRefPtrTy);
+ std::pair<CharUnits,CharUnits> tinfo
+ = CGM.getContext().getTypeInfoInChars(byRefPtrTy);
+ maxFieldAlign = std::max(maxFieldAlign, tinfo.second);
+
+ layout.push_back(BlockLayoutChunk(tinfo.second, tinfo.first,
+ Qualifiers::OCL_None, &CI, llvmType));
+ continue;
+ }
+
+ // Otherwise, build a layout chunk with the size and alignment of
+ // the declaration.
+ if (llvm::Constant *constant = tryCaptureAsConstant(CGM, CGF, variable)) {
+ info.Captures[variable] = CGBlockInfo::Capture::makeConstant(constant);
+ continue;
+ }
+
+ // If we have a lifetime qualifier, honor it for capture purposes.
+ // That includes *not* copying it if it's __unsafe_unretained.
+ Qualifiers::ObjCLifetime lifetime =
+ variable->getType().getObjCLifetime();
+ if (lifetime) {
+ switch (lifetime) {
+ case Qualifiers::OCL_None: llvm_unreachable("impossible");
+ case Qualifiers::OCL_ExplicitNone:
+ case Qualifiers::OCL_Autoreleasing:
+ break;
+
+ case Qualifiers::OCL_Strong:
+ case Qualifiers::OCL_Weak:
+ info.NeedsCopyDispose = true;
+ }
+
+ // Block pointers require copy/dispose. So do Objective-C pointers.
+ } else if (variable->getType()->isObjCRetainableType()) {
+ info.NeedsCopyDispose = true;
+ // used for mrr below.
+ lifetime = Qualifiers::OCL_Strong;
+
+ // So do types that require non-trivial copy construction.
+ } else if (CI.hasCopyExpr()) {
+ info.NeedsCopyDispose = true;
+ info.HasCXXObject = true;
+
+ // And so do types with destructors.
+ } else if (CGM.getLangOpts().CPlusPlus) {
+ if (const CXXRecordDecl *record =
+ variable->getType()->getAsCXXRecordDecl()) {
+ if (!record->hasTrivialDestructor()) {
+ info.HasCXXObject = true;
+ info.NeedsCopyDispose = true;
+ }
+ }
+ }
+
+ QualType VT = variable->getType();
+ CharUnits size = C.getTypeSizeInChars(VT);
+ CharUnits align = C.getDeclAlign(variable);
+
+ maxFieldAlign = std::max(maxFieldAlign, align);
+
+ llvm::Type *llvmType =
+ CGM.getTypes().ConvertTypeForMem(VT);
+
+ layout.push_back(BlockLayoutChunk(align, size, lifetime, &CI, llvmType));
+ }
+
+ // If that was everything, we're done here.
+ if (layout.empty()) {
+ info.StructureType =
+ llvm::StructType::get(CGM.getLLVMContext(), elementTypes, true);
+ info.CanBeGlobal = true;
+ return;
+ }
+
+ // Sort the layout by alignment. We have to use a stable sort here
+ // to get reproducible results. There should probably be an
+ // llvm::array_pod_stable_sort.
+ std::stable_sort(layout.begin(), layout.end());
+
+ // Needed for blocks layout info.
+ info.BlockHeaderForcedGapOffset = info.BlockSize;
+ info.BlockHeaderForcedGapSize = CharUnits::Zero();
+
+ CharUnits &blockSize = info.BlockSize;
+ info.BlockAlign = std::max(maxFieldAlign, info.BlockAlign);
+
+ // Assuming that the first byte in the header is maximally aligned,
+ // get the alignment of the first byte following the header.
+ CharUnits endAlign = getLowBit(blockSize);
+
+ // If the end of the header isn't satisfactorily aligned for the
+ // maximum thing, look for things that are okay with the header-end
+ // alignment, and keep appending them until we get something that's
+ // aligned right. This algorithm is only guaranteed optimal if
+ // that condition is satisfied at some point; otherwise we can get
+ // things like:
+ // header // next byte has alignment 4
+ // something_with_size_5; // next byte has alignment 1
+ // something_with_alignment_8;
+ // which has 7 bytes of padding, as opposed to the naive solution
+ // which might have less (?).
+ if (endAlign < maxFieldAlign) {
+ SmallVectorImpl<BlockLayoutChunk>::iterator
+ li = layout.begin() + 1, le = layout.end();
+
+ // Look for something that the header end is already
+ // satisfactorily aligned for.
+ for (; li != le && endAlign < li->Alignment; ++li)
+ ;
+
+ // If we found something that's naturally aligned for the end of
+ // the header, keep adding things...
+ if (li != le) {
+ SmallVectorImpl<BlockLayoutChunk>::iterator first = li;
+ for (; li != le; ++li) {
+ assert(endAlign >= li->Alignment);
+
+ li->setIndex(info, elementTypes.size());
+ elementTypes.push_back(li->Type);
+ blockSize += li->Size;
+ endAlign = getLowBit(blockSize);
+
+ // ...until we get to the alignment of the maximum field.
+ if (endAlign >= maxFieldAlign) {
+ if (li == first) {
+ // No user field was appended. So, a gap was added.
+ // Save total gap size for use in block layout bit map.
+ info.BlockHeaderForcedGapSize = li->Size;
+ }
+ break;
+ }
+ }
+ // Don't re-append everything we just appended.
+ layout.erase(first, li);
+ }
+ }
+
+ assert(endAlign == getLowBit(blockSize));
+
+ // At this point, we just have to add padding if the end align still
+ // isn't aligned right.
+ if (endAlign < maxFieldAlign) {
+ CharUnits newBlockSize = blockSize.RoundUpToAlignment(maxFieldAlign);
+ CharUnits padding = newBlockSize - blockSize;
+
+ elementTypes.push_back(llvm::ArrayType::get(CGM.Int8Ty,
+ padding.getQuantity()));
+ blockSize = newBlockSize;
+ endAlign = getLowBit(blockSize); // might be > maxFieldAlign
+ }
+
+ assert(endAlign >= maxFieldAlign);
+ assert(endAlign == getLowBit(blockSize));
+ // Slam everything else on now. This works because they have
+ // strictly decreasing alignment and we expect that size is always a
+ // multiple of alignment.
+ for (SmallVectorImpl<BlockLayoutChunk>::iterator
+ li = layout.begin(), le = layout.end(); li != le; ++li) {
+ if (endAlign < li->Alignment) {
+ // size may not be multiple of alignment. This can only happen with
+ // an over-aligned variable. We will be adding a padding field to
+ // make the size be multiple of alignment.
+ CharUnits padding = li->Alignment - endAlign;
+ elementTypes.push_back(llvm::ArrayType::get(CGM.Int8Ty,
+ padding.getQuantity()));
+ blockSize += padding;
+ endAlign = getLowBit(blockSize);
+ }
+ assert(endAlign >= li->Alignment);
+ li->setIndex(info, elementTypes.size());
+ elementTypes.push_back(li->Type);
+ blockSize += li->Size;
+ endAlign = getLowBit(blockSize);
+ }
+
+ info.StructureType =
+ llvm::StructType::get(CGM.getLLVMContext(), elementTypes, true);
+}
+
+/// Enter the scope of a block. This should be run at the entrance to
+/// a full-expression so that the block's cleanups are pushed at the
+/// right place in the stack.
+static void enterBlockScope(CodeGenFunction &CGF, BlockDecl *block) {
+ assert(CGF.HaveInsertPoint());
+
+ // Allocate the block info and place it at the head of the list.
+ CGBlockInfo &blockInfo =
+ *new CGBlockInfo(block, CGF.CurFn->getName());
+ blockInfo.NextBlockInfo = CGF.FirstBlockInfo;
+ CGF.FirstBlockInfo = &blockInfo;
+
+ // Compute information about the layout, etc., of this block,
+ // pushing cleanups as necessary.
+ computeBlockInfo(CGF.CGM, &CGF, blockInfo);
+
+ // Nothing else to do if it can be global.
+ if (blockInfo.CanBeGlobal) return;
+
+ // Make the allocation for the block.
+ blockInfo.Address =
+ CGF.CreateTempAlloca(blockInfo.StructureType, "block");
+ blockInfo.Address->setAlignment(blockInfo.BlockAlign.getQuantity());
+
+ // If there are cleanups to emit, enter them (but inactive).
+ if (!blockInfo.NeedsCopyDispose) return;
+
+ // Walk through the captures (in order) and find the ones not
+ // captured by constant.
+ for (const auto &CI : block->captures()) {
+ // Ignore __block captures; there's nothing special in the
+ // on-stack block that we need to do for them.
+ if (CI.isByRef()) continue;
+
+ // Ignore variables that are constant-captured.
+ const VarDecl *variable = CI.getVariable();
+ CGBlockInfo::Capture &capture = blockInfo.getCapture(variable);
+ if (capture.isConstant()) continue;
+
+ // Ignore objects that aren't destructed.
+ QualType::DestructionKind dtorKind =
+ variable->getType().isDestructedType();
+ if (dtorKind == QualType::DK_none) continue;
+
+ CodeGenFunction::Destroyer *destroyer;
+
+ // Block captures count as local values and have imprecise semantics.
+ // They also can't be arrays, so need to worry about that.
+ if (dtorKind == QualType::DK_objc_strong_lifetime) {
+ destroyer = CodeGenFunction::destroyARCStrongImprecise;
+ } else {
+ destroyer = CGF.getDestroyer(dtorKind);
+ }
+
+ // GEP down to the address.
+ llvm::Value *addr = CGF.Builder.CreateStructGEP(
+ blockInfo.StructureType, blockInfo.Address, capture.getIndex());
+
+ // We can use that GEP as the dominating IP.
+ if (!blockInfo.DominatingIP)
+ blockInfo.DominatingIP = cast<llvm::Instruction>(addr);
+
+ CleanupKind cleanupKind = InactiveNormalCleanup;
+ bool useArrayEHCleanup = CGF.needsEHCleanup(dtorKind);
+ if (useArrayEHCleanup)
+ cleanupKind = InactiveNormalAndEHCleanup;
+
+ CGF.pushDestroy(cleanupKind, addr, variable->getType(),
+ destroyer, useArrayEHCleanup);
+
+ // Remember where that cleanup was.
+ capture.setCleanup(CGF.EHStack.stable_begin());
+ }
+}
+
+/// Enter a full-expression with a non-trivial number of objects to
+/// clean up. This is in this file because, at the moment, the only
+/// kind of cleanup object is a BlockDecl*.
+void CodeGenFunction::enterNonTrivialFullExpression(const ExprWithCleanups *E) {
+ assert(E->getNumObjects() != 0);
+ ArrayRef<ExprWithCleanups::CleanupObject> cleanups = E->getObjects();
+ for (ArrayRef<ExprWithCleanups::CleanupObject>::iterator
+ i = cleanups.begin(), e = cleanups.end(); i != e; ++i) {
+ enterBlockScope(*this, *i);
+ }
+}
+
+/// Find the layout for the given block in a linked list and remove it.
+static CGBlockInfo *findAndRemoveBlockInfo(CGBlockInfo **head,
+ const BlockDecl *block) {
+ while (true) {
+ assert(head && *head);
+ CGBlockInfo *cur = *head;
+
+ // If this is the block we're looking for, splice it out of the list.
+ if (cur->getBlockDecl() == block) {
+ *head = cur->NextBlockInfo;
+ return cur;
+ }
+
+ head = &cur->NextBlockInfo;
+ }
+}
+
+/// Destroy a chain of block layouts.
+void CodeGenFunction::destroyBlockInfos(CGBlockInfo *head) {
+ assert(head && "destroying an empty chain");
+ do {
+ CGBlockInfo *cur = head;
+ head = cur->NextBlockInfo;
+ delete cur;
+ } while (head != nullptr);
+}
+
+/// Emit a block literal expression in the current function.
+llvm::Value *CodeGenFunction::EmitBlockLiteral(const BlockExpr *blockExpr) {
+ // If the block has no captures, we won't have a pre-computed
+ // layout for it.
+ if (!blockExpr->getBlockDecl()->hasCaptures()) {
+ CGBlockInfo blockInfo(blockExpr->getBlockDecl(), CurFn->getName());
+ computeBlockInfo(CGM, this, blockInfo);
+ blockInfo.BlockExpression = blockExpr;
+ return EmitBlockLiteral(blockInfo);
+ }
+
+ // Find the block info for this block and take ownership of it.
+ std::unique_ptr<CGBlockInfo> blockInfo;
+ blockInfo.reset(findAndRemoveBlockInfo(&FirstBlockInfo,
+ blockExpr->getBlockDecl()));
+
+ blockInfo->BlockExpression = blockExpr;
+ return EmitBlockLiteral(*blockInfo);
+}
+
+llvm::Value *CodeGenFunction::EmitBlockLiteral(const CGBlockInfo &blockInfo) {
+ // Using the computed layout, generate the actual block function.
+ bool isLambdaConv = blockInfo.getBlockDecl()->isConversionFromLambda();
+ llvm::Constant *blockFn
+ = CodeGenFunction(CGM, true).GenerateBlockFunction(CurGD, blockInfo,
+ LocalDeclMap,
+ isLambdaConv);
+ blockFn = llvm::ConstantExpr::getBitCast(blockFn, VoidPtrTy);
+
+ // If there is nothing to capture, we can emit this as a global block.
+ if (blockInfo.CanBeGlobal)
+ return buildGlobalBlock(CGM, blockInfo, blockFn);
+
+ // Otherwise, we have to emit this as a local block.
+
+ llvm::Constant *isa = CGM.getNSConcreteStackBlock();
+ isa = llvm::ConstantExpr::getBitCast(isa, VoidPtrTy);
+
+ // Build the block descriptor.
+ llvm::Constant *descriptor = buildBlockDescriptor(CGM, blockInfo);
+
+ llvm::Type *blockTy = blockInfo.StructureType;
+ llvm::AllocaInst *blockAddr = blockInfo.Address;
+ assert(blockAddr && "block has no address!");
+
+ // Compute the initial on-stack block flags.
+ BlockFlags flags = BLOCK_HAS_SIGNATURE;
+ if (blockInfo.HasCapturedVariableLayout) flags |= BLOCK_HAS_EXTENDED_LAYOUT;
+ if (blockInfo.NeedsCopyDispose) flags |= BLOCK_HAS_COPY_DISPOSE;
+ if (blockInfo.HasCXXObject) flags |= BLOCK_HAS_CXX_OBJ;
+ if (blockInfo.UsesStret) flags |= BLOCK_USE_STRET;
+
+ // Initialize the block literal.
+ Builder.CreateStore(
+ isa, Builder.CreateStructGEP(blockTy, blockAddr, 0, "block.isa"));
+ Builder.CreateStore(
+ llvm::ConstantInt::get(IntTy, flags.getBitMask()),
+ Builder.CreateStructGEP(blockTy, blockAddr, 1, "block.flags"));
+ Builder.CreateStore(
+ llvm::ConstantInt::get(IntTy, 0),
+ Builder.CreateStructGEP(blockTy, blockAddr, 2, "block.reserved"));
+ Builder.CreateStore(
+ blockFn, Builder.CreateStructGEP(blockTy, blockAddr, 3, "block.invoke"));
+ Builder.CreateStore(descriptor, Builder.CreateStructGEP(blockTy, blockAddr, 4,
+ "block.descriptor"));
+
+ // Finally, capture all the values into the block.
+ const BlockDecl *blockDecl = blockInfo.getBlockDecl();
+
+ // First, 'this'.
+ if (blockDecl->capturesCXXThis()) {
+ llvm::Value *addr = Builder.CreateStructGEP(
+ blockTy, blockAddr, blockInfo.CXXThisIndex, "block.captured-this.addr");
+ Builder.CreateStore(LoadCXXThis(), addr);
+ }
+
+ // Next, captured variables.
+ for (const auto &CI : blockDecl->captures()) {
+ const VarDecl *variable = CI.getVariable();
+ const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable);
+
+ // Ignore constant captures.
+ if (capture.isConstant()) continue;
+
+ QualType type = variable->getType();
+ CharUnits align = getContext().getDeclAlign(variable);
+
+ // This will be a [[type]]*, except that a byref entry will just be
+ // an i8**.
+ llvm::Value *blockField = Builder.CreateStructGEP(
+ blockTy, blockAddr, capture.getIndex(), "block.captured");
+
+ // Compute the address of the thing we're going to move into the
+ // block literal.
+ llvm::Value *src;
+ if (BlockInfo && CI.isNested()) {
+ // We need to use the capture from the enclosing block.
+ const CGBlockInfo::Capture &enclosingCapture =
+ BlockInfo->getCapture(variable);
+
+ // This is a [[type]]*, except that a byref entry wil just be an i8**.
+ src = Builder.CreateStructGEP(BlockInfo->StructureType, LoadBlockStruct(),
+ enclosingCapture.getIndex(),
+ "block.capture.addr");
+ } else if (blockDecl->isConversionFromLambda()) {
+ // The lambda capture in a lambda's conversion-to-block-pointer is
+ // special; we'll simply emit it directly.
+ src = nullptr;
+ } else {
+ // Just look it up in the locals map, which will give us back a
+ // [[type]]*. If that doesn't work, do the more elaborate DRE
+ // emission.
+ src = LocalDeclMap.lookup(variable);
+ if (!src) {
+ DeclRefExpr declRef(
+ const_cast<VarDecl *>(variable),
+ /*RefersToEnclosingVariableOrCapture*/ CI.isNested(), type,
+ VK_LValue, SourceLocation());
+ src = EmitDeclRefLValue(&declRef).getAddress();
+ }
+ }
+
+ // For byrefs, we just write the pointer to the byref struct into
+ // the block field. There's no need to chase the forwarding
+ // pointer at this point, since we're building something that will
+ // live a shorter life than the stack byref anyway.
+ if (CI.isByRef()) {
+ // Get a void* that points to the byref struct.
+ if (CI.isNested())
+ src = Builder.CreateAlignedLoad(src, align.getQuantity(),
+ "byref.capture");
+ else
+ src = Builder.CreateBitCast(src, VoidPtrTy);
+
+ // Write that void* into the capture field.
+ Builder.CreateAlignedStore(src, blockField, align.getQuantity());
+
+ // If we have a copy constructor, evaluate that into the block field.
+ } else if (const Expr *copyExpr = CI.getCopyExpr()) {
+ if (blockDecl->isConversionFromLambda()) {
+ // If we have a lambda conversion, emit the expression
+ // directly into the block instead.
+ AggValueSlot Slot =
+ AggValueSlot::forAddr(blockField, align, Qualifiers(),
+ AggValueSlot::IsDestructed,
+ AggValueSlot::DoesNotNeedGCBarriers,
+ AggValueSlot::IsNotAliased);
+ EmitAggExpr(copyExpr, Slot);
+ } else {
+ EmitSynthesizedCXXCopyCtor(blockField, src, copyExpr);
+ }
+
+ // If it's a reference variable, copy the reference into the block field.
+ } else if (type->isReferenceType()) {
+ llvm::Value *ref =
+ Builder.CreateAlignedLoad(src, align.getQuantity(), "ref.val");
+ Builder.CreateAlignedStore(ref, blockField, align.getQuantity());
+
+ // If this is an ARC __strong block-pointer variable, don't do a
+ // block copy.
+ //
+ // TODO: this can be generalized into the normal initialization logic:
+ // we should never need to do a block-copy when initializing a local
+ // variable, because the local variable's lifetime should be strictly
+ // contained within the stack block's.
+ } else if (type.getObjCLifetime() == Qualifiers::OCL_Strong &&
+ type->isBlockPointerType()) {
+ // Load the block and do a simple retain.
+ LValue srcLV = MakeAddrLValue(src, type, align);
+ llvm::Value *value = EmitLoadOfScalar(srcLV, SourceLocation());
+ value = EmitARCRetainNonBlock(value);
+
+ // Do a primitive store to the block field.
+ LValue destLV = MakeAddrLValue(blockField, type, align);
+ EmitStoreOfScalar(value, destLV, /*init*/ true);
+
+ // Otherwise, fake up a POD copy into the block field.
+ } else {
+ // Fake up a new variable so that EmitScalarInit doesn't think
+ // we're referring to the variable in its own initializer.
+ ImplicitParamDecl blockFieldPseudoVar(getContext(), /*DC*/ nullptr,
+ SourceLocation(), /*name*/ nullptr,
+ type);
+
+ // We use one of these or the other depending on whether the
+ // reference is nested.
+ DeclRefExpr declRef(const_cast<VarDecl *>(variable),
+ /*RefersToEnclosingVariableOrCapture*/ CI.isNested(),
+ type, VK_LValue, SourceLocation());
+
+ ImplicitCastExpr l2r(ImplicitCastExpr::OnStack, type, CK_LValueToRValue,
+ &declRef, VK_RValue);
+ // FIXME: Pass a specific location for the expr init so that the store is
+ // attributed to a reasonable location - otherwise it may be attributed to
+ // locations of subexpressions in the initialization.
+ EmitExprAsInit(&l2r, &blockFieldPseudoVar,
+ MakeAddrLValue(blockField, type, align),
+ /*captured by init*/ false);
+ }
+
+ // Activate the cleanup if layout pushed one.
+ if (!CI.isByRef()) {
+ EHScopeStack::stable_iterator cleanup = capture.getCleanup();
+ if (cleanup.isValid())
+ ActivateCleanupBlock(cleanup, blockInfo.DominatingIP);
+ }
+ }
+
+ // Cast to the converted block-pointer type, which happens (somewhat
+ // unfortunately) to be a pointer to function type.
+ llvm::Value *result =
+ Builder.CreateBitCast(blockAddr,
+ ConvertType(blockInfo.getBlockExpr()->getType()));
+
+ return result;
+}
+
+
+llvm::Type *CodeGenModule::getBlockDescriptorType() {
+ if (BlockDescriptorType)
+ return BlockDescriptorType;
+
+ llvm::Type *UnsignedLongTy =
+ getTypes().ConvertType(getContext().UnsignedLongTy);
+
+ // struct __block_descriptor {
+ // unsigned long reserved;
+ // unsigned long block_size;
+ //
+ // // later, the following will be added
+ //
+ // struct {
+ // void (*copyHelper)();
+ // void (*copyHelper)();
+ // } helpers; // !!! optional
+ //
+ // const char *signature; // the block signature
+ // const char *layout; // reserved
+ // };
+ BlockDescriptorType =
+ llvm::StructType::create("struct.__block_descriptor",
+ UnsignedLongTy, UnsignedLongTy, nullptr);
+
+ // Now form a pointer to that.
+ BlockDescriptorType = llvm::PointerType::getUnqual(BlockDescriptorType);
+ return BlockDescriptorType;
+}
+
+llvm::Type *CodeGenModule::getGenericBlockLiteralType() {
+ if (GenericBlockLiteralType)
+ return GenericBlockLiteralType;
+
+ llvm::Type *BlockDescPtrTy = getBlockDescriptorType();
+
+ // struct __block_literal_generic {
+ // void *__isa;
+ // int __flags;
+ // int __reserved;
+ // void (*__invoke)(void *);
+ // struct __block_descriptor *__descriptor;
+ // };
+ GenericBlockLiteralType =
+ llvm::StructType::create("struct.__block_literal_generic",
+ VoidPtrTy, IntTy, IntTy, VoidPtrTy,
+ BlockDescPtrTy, nullptr);
+
+ return GenericBlockLiteralType;
+}
+
+
+RValue CodeGenFunction::EmitBlockCallExpr(const CallExpr *E,
+ ReturnValueSlot ReturnValue) {
+ const BlockPointerType *BPT =
+ E->getCallee()->getType()->getAs<BlockPointerType>();
+
+ llvm::Value *Callee = EmitScalarExpr(E->getCallee());
+
+ // Get a pointer to the generic block literal.
+ llvm::Type *BlockLiteralTy =
+ llvm::PointerType::getUnqual(CGM.getGenericBlockLiteralType());
+
+ // Bitcast the callee to a block literal.
+ llvm::Value *BlockLiteral =
+ Builder.CreateBitCast(Callee, BlockLiteralTy, "block.literal");
+
+ // Get the function pointer from the literal.
+ llvm::Value *FuncPtr = Builder.CreateStructGEP(
+ CGM.getGenericBlockLiteralType(), BlockLiteral, 3);
+
+ BlockLiteral = Builder.CreateBitCast(BlockLiteral, VoidPtrTy);
+
+ // Add the block literal.
+ CallArgList Args;
+ Args.add(RValue::get(BlockLiteral), getContext().VoidPtrTy);
+
+ QualType FnType = BPT->getPointeeType();
+
+ // And the rest of the arguments.
+ EmitCallArgs(Args, FnType->getAs<FunctionProtoType>(),
+ E->arg_begin(), E->arg_end());
+
+ // Load the function.
+ llvm::Value *Func = Builder.CreateLoad(FuncPtr);
+
+ const FunctionType *FuncTy = FnType->castAs<FunctionType>();
+ const CGFunctionInfo &FnInfo =
+ CGM.getTypes().arrangeBlockFunctionCall(Args, FuncTy);
+
+ // Cast the function pointer to the right type.
+ llvm::Type *BlockFTy = CGM.getTypes().GetFunctionType(FnInfo);
+
+ llvm::Type *BlockFTyPtr = llvm::PointerType::getUnqual(BlockFTy);
+ Func = Builder.CreateBitCast(Func, BlockFTyPtr);
+
+ // And call the block.
+ return EmitCall(FnInfo, Func, ReturnValue, Args);
+}
+
+llvm::Value *CodeGenFunction::GetAddrOfBlockDecl(const VarDecl *variable,
+ bool isByRef) {
+ assert(BlockInfo && "evaluating block ref without block information?");
+ const CGBlockInfo::Capture &capture = BlockInfo->getCapture(variable);
+
+ // Handle constant captures.
+ if (capture.isConstant()) return LocalDeclMap[variable];
+
+ llvm::Value *addr =
+ Builder.CreateStructGEP(BlockInfo->StructureType, LoadBlockStruct(),
+ capture.getIndex(), "block.capture.addr");
+
+ if (isByRef) {
+ // addr should be a void** right now. Load, then cast the result
+ // to byref*.
+
+ addr = Builder.CreateLoad(addr);
+ auto *byrefType = BuildByRefType(variable);
+ llvm::PointerType *byrefPointerType = llvm::PointerType::get(byrefType, 0);
+ addr = Builder.CreateBitCast(addr, byrefPointerType,
+ "byref.addr");
+
+ // Follow the forwarding pointer.
+ addr = Builder.CreateStructGEP(byrefType, addr, 1, "byref.forwarding");
+ addr = Builder.CreateLoad(addr, "byref.addr.forwarded");
+
+ // Cast back to byref* and GEP over to the actual object.
+ addr = Builder.CreateBitCast(addr, byrefPointerType);
+ addr = Builder.CreateStructGEP(byrefType, addr,
+ getByRefValueLLVMField(variable).second,
+ variable->getNameAsString());
+ }
+
+ if (variable->getType()->isReferenceType())
+ addr = Builder.CreateLoad(addr, "ref.tmp");
+
+ return addr;
+}
+
+llvm::Constant *
+CodeGenModule::GetAddrOfGlobalBlock(const BlockExpr *blockExpr,
+ const char *name) {
+ CGBlockInfo blockInfo(blockExpr->getBlockDecl(), name);
+ blockInfo.BlockExpression = blockExpr;
+
+ // Compute information about the layout, etc., of this block.
+ computeBlockInfo(*this, nullptr, blockInfo);
+
+ // Using that metadata, generate the actual block function.
+ llvm::Constant *blockFn;
+ {
+ llvm::DenseMap<const Decl*, llvm::Value*> LocalDeclMap;
+ blockFn = CodeGenFunction(*this).GenerateBlockFunction(GlobalDecl(),
+ blockInfo,
+ LocalDeclMap,
+ false);
+ }
+ blockFn = llvm::ConstantExpr::getBitCast(blockFn, VoidPtrTy);
+
+ return buildGlobalBlock(*this, blockInfo, blockFn);
+}
+
+static llvm::Constant *buildGlobalBlock(CodeGenModule &CGM,
+ const CGBlockInfo &blockInfo,
+ llvm::Constant *blockFn) {
+ assert(blockInfo.CanBeGlobal);
+
+ // Generate the constants for the block literal initializer.
+ llvm::Constant *fields[BlockHeaderSize];
+
+ // isa
+ fields[0] = CGM.getNSConcreteGlobalBlock();
+
+ // __flags
+ BlockFlags flags = BLOCK_IS_GLOBAL | BLOCK_HAS_SIGNATURE;
+ if (blockInfo.UsesStret) flags |= BLOCK_USE_STRET;
+
+ fields[1] = llvm::ConstantInt::get(CGM.IntTy, flags.getBitMask());
+
+ // Reserved
+ fields[2] = llvm::Constant::getNullValue(CGM.IntTy);
+
+ // Function
+ fields[3] = blockFn;
+
+ // Descriptor
+ fields[4] = buildBlockDescriptor(CGM, blockInfo);
+
+ llvm::Constant *init = llvm::ConstantStruct::getAnon(fields);
+
+ llvm::GlobalVariable *literal =
+ new llvm::GlobalVariable(CGM.getModule(),
+ init->getType(),
+ /*constant*/ true,
+ llvm::GlobalVariable::InternalLinkage,
+ init,
+ "__block_literal_global");
+ literal->setAlignment(blockInfo.BlockAlign.getQuantity());
+
+ // Return a constant of the appropriately-casted type.
+ llvm::Type *requiredType =
+ CGM.getTypes().ConvertType(blockInfo.getBlockExpr()->getType());
+ return llvm::ConstantExpr::getBitCast(literal, requiredType);
+}
+
+llvm::Function *
+CodeGenFunction::GenerateBlockFunction(GlobalDecl GD,
+ const CGBlockInfo &blockInfo,
+ const DeclMapTy &ldm,
+ bool IsLambdaConversionToBlock) {
+ const BlockDecl *blockDecl = blockInfo.getBlockDecl();
+
+ CurGD = GD;
+
+ CurEHLocation = blockInfo.getBlockExpr()->getLocEnd();
+
+ BlockInfo = &blockInfo;
+
+ // Arrange for local static and local extern declarations to appear
+ // to be local to this function as well, in case they're directly
+ // referenced in a block.
+ for (DeclMapTy::const_iterator i = ldm.begin(), e = ldm.end(); i != e; ++i) {
+ const auto *var = dyn_cast<VarDecl>(i->first);
+ if (var && !var->hasLocalStorage())
+ LocalDeclMap[var] = i->second;
+ }
+
+ // Begin building the function declaration.
+
+ // Build the argument list.
+ FunctionArgList args;
+
+ // The first argument is the block pointer. Just take it as a void*
+ // and cast it later.
+ QualType selfTy = getContext().VoidPtrTy;
+ IdentifierInfo *II = &CGM.getContext().Idents.get(".block_descriptor");
+
+ ImplicitParamDecl selfDecl(getContext(), const_cast<BlockDecl*>(blockDecl),
+ SourceLocation(), II, selfTy);
+ args.push_back(&selfDecl);
+
+ // Now add the rest of the parameters.
+ args.append(blockDecl->param_begin(), blockDecl->param_end());
+
+ // Create the function declaration.
+ const FunctionProtoType *fnType = blockInfo.getBlockExpr()->getFunctionType();
+ const CGFunctionInfo &fnInfo = CGM.getTypes().arrangeFreeFunctionDeclaration(
+ fnType->getReturnType(), args, fnType->getExtInfo(),
+ fnType->isVariadic());
+ if (CGM.ReturnSlotInterferesWithArgs(fnInfo))
+ blockInfo.UsesStret = true;
+
+ llvm::FunctionType *fnLLVMType = CGM.getTypes().GetFunctionType(fnInfo);
+
+ StringRef name = CGM.getBlockMangledName(GD, blockDecl);
+ llvm::Function *fn = llvm::Function::Create(
+ fnLLVMType, llvm::GlobalValue::InternalLinkage, name, &CGM.getModule());
+ CGM.SetInternalFunctionAttributes(blockDecl, fn, fnInfo);
+
+ // Begin generating the function.
+ StartFunction(blockDecl, fnType->getReturnType(), fn, fnInfo, args,
+ blockDecl->getLocation(),
+ blockInfo.getBlockExpr()->getBody()->getLocStart());
+
+ // Okay. Undo some of what StartFunction did.
+
+ // Pull the 'self' reference out of the local decl map.
+ llvm::Value *blockAddr = LocalDeclMap[&selfDecl];
+ LocalDeclMap.erase(&selfDecl);
+ BlockPointer = Builder.CreateBitCast(blockAddr,
+ blockInfo.StructureType->getPointerTo(),
+ "block");
+ // At -O0 we generate an explicit alloca for the BlockPointer, so the RA
+ // won't delete the dbg.declare intrinsics for captured variables.
+ llvm::Value *BlockPointerDbgLoc = BlockPointer;
+ if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
+ // Allocate a stack slot for it, so we can point the debugger to it
+ llvm::AllocaInst *Alloca = CreateTempAlloca(BlockPointer->getType(),
+ "block.addr");
+ unsigned Align = getContext().getDeclAlign(&selfDecl).getQuantity();
+ Alloca->setAlignment(Align);
+ // Set the DebugLocation to empty, so the store is recognized as a
+ // frame setup instruction by llvm::DwarfDebug::beginFunction().
+ auto NL = ApplyDebugLocation::CreateEmpty(*this);
+ Builder.CreateAlignedStore(BlockPointer, Alloca, Align);
+ BlockPointerDbgLoc = Alloca;
+ }
+
+ // If we have a C++ 'this' reference, go ahead and force it into
+ // existence now.
+ if (blockDecl->capturesCXXThis()) {
+ llvm::Value *addr =
+ Builder.CreateStructGEP(blockInfo.StructureType, BlockPointer,
+ blockInfo.CXXThisIndex, "block.captured-this");
+ CXXThisValue = Builder.CreateLoad(addr, "this");
+ }
+
+ // Also force all the constant captures.
+ for (const auto &CI : blockDecl->captures()) {
+ const VarDecl *variable = CI.getVariable();
+ const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable);
+ if (!capture.isConstant()) continue;
+
+ unsigned align = getContext().getDeclAlign(variable).getQuantity();
+
+ llvm::AllocaInst *alloca =
+ CreateMemTemp(variable->getType(), "block.captured-const");
+ alloca->setAlignment(align);
+
+ Builder.CreateAlignedStore(capture.getConstant(), alloca, align);
+
+ LocalDeclMap[variable] = alloca;
+ }
+
+ // Save a spot to insert the debug information for all the DeclRefExprs.
+ llvm::BasicBlock *entry = Builder.GetInsertBlock();
+ llvm::BasicBlock::iterator entry_ptr = Builder.GetInsertPoint();
+ --entry_ptr;
+
+ if (IsLambdaConversionToBlock)
+ EmitLambdaBlockInvokeBody();
+ else {
+ PGO.assignRegionCounters(blockDecl, fn);
+ incrementProfileCounter(blockDecl->getBody());
+ EmitStmt(blockDecl->getBody());
+ }
+
+ // Remember where we were...
+ llvm::BasicBlock *resume = Builder.GetInsertBlock();
+
+ // Go back to the entry.
+ ++entry_ptr;
+ Builder.SetInsertPoint(entry, entry_ptr);
+
+ // Emit debug information for all the DeclRefExprs.
+ // FIXME: also for 'this'
+ if (CGDebugInfo *DI = getDebugInfo()) {
+ for (const auto &CI : blockDecl->captures()) {
+ const VarDecl *variable = CI.getVariable();
+ DI->EmitLocation(Builder, variable->getLocation());
+
+ if (CGM.getCodeGenOpts().getDebugInfo()
+ >= CodeGenOptions::LimitedDebugInfo) {
+ const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable);
+ if (capture.isConstant()) {
+ DI->EmitDeclareOfAutoVariable(variable, LocalDeclMap[variable],
+ Builder);
+ continue;
+ }
+
+ DI->EmitDeclareOfBlockDeclRefVariable(variable, BlockPointerDbgLoc,
+ Builder, blockInfo,
+ entry_ptr == entry->end()
+ ? nullptr : entry_ptr);
+ }
+ }
+ // Recover location if it was changed in the above loop.
+ DI->EmitLocation(Builder,
+ cast<CompoundStmt>(blockDecl->getBody())->getRBracLoc());
+ }
+
+ // And resume where we left off.
+ if (resume == nullptr)
+ Builder.ClearInsertionPoint();
+ else
+ Builder.SetInsertPoint(resume);
+
+ FinishFunction(cast<CompoundStmt>(blockDecl->getBody())->getRBracLoc());
+
+ return fn;
+}
+
+/*
+ notes.push_back(HelperInfo());
+ HelperInfo &note = notes.back();
+ note.index = capture.getIndex();
+ note.RequiresCopying = (ci->hasCopyExpr() || BlockRequiresCopying(type));
+ note.cxxbar_import = ci->getCopyExpr();
+
+ if (ci->isByRef()) {
+ note.flag = BLOCK_FIELD_IS_BYREF;
+ if (type.isObjCGCWeak())
+ note.flag |= BLOCK_FIELD_IS_WEAK;
+ } else if (type->isBlockPointerType()) {
+ note.flag = BLOCK_FIELD_IS_BLOCK;
+ } else {
+ note.flag = BLOCK_FIELD_IS_OBJECT;
+ }
+ */
+
+
+/// Generate the copy-helper function for a block closure object:
+/// static void block_copy_helper(block_t *dst, block_t *src);
+/// The runtime will have previously initialized 'dst' by doing a
+/// bit-copy of 'src'.
+///
+/// Note that this copies an entire block closure object to the heap;
+/// it should not be confused with a 'byref copy helper', which moves
+/// the contents of an individual __block variable to the heap.
+llvm::Constant *
+CodeGenFunction::GenerateCopyHelperFunction(const CGBlockInfo &blockInfo) {
+ ASTContext &C = getContext();
+
+ FunctionArgList args;
+ ImplicitParamDecl dstDecl(getContext(), nullptr, SourceLocation(), nullptr,
+ C.VoidPtrTy);
+ args.push_back(&dstDecl);
+ ImplicitParamDecl srcDecl(getContext(), nullptr, SourceLocation(), nullptr,
+ C.VoidPtrTy);
+ args.push_back(&srcDecl);
+
+ const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration(
+ C.VoidTy, args, FunctionType::ExtInfo(), /*variadic=*/false);
+
+ // FIXME: it would be nice if these were mergeable with things with
+ // identical semantics.
+ llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
+
+ llvm::Function *Fn =
+ llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
+ "__copy_helper_block_", &CGM.getModule());
+
+ IdentifierInfo *II
+ = &CGM.getContext().Idents.get("__copy_helper_block_");
+
+ FunctionDecl *FD = FunctionDecl::Create(C,
+ C.getTranslationUnitDecl(),
+ SourceLocation(),
+ SourceLocation(), II, C.VoidTy,
+ nullptr, SC_Static,
+ false,
+ false);
+ auto NL = ApplyDebugLocation::CreateEmpty(*this);
+ StartFunction(FD, C.VoidTy, Fn, FI, args);
+ // Create a scope with an artificial location for the body of this function.
+ auto AL = ApplyDebugLocation::CreateArtificial(*this);
+ llvm::Type *structPtrTy = blockInfo.StructureType->getPointerTo();
+
+ llvm::Value *src = GetAddrOfLocalVar(&srcDecl);
+ src = Builder.CreateLoad(src);
+ src = Builder.CreateBitCast(src, structPtrTy, "block.source");
+
+ llvm::Value *dst = GetAddrOfLocalVar(&dstDecl);
+ dst = Builder.CreateLoad(dst);
+ dst = Builder.CreateBitCast(dst, structPtrTy, "block.dest");
+
+ const BlockDecl *blockDecl = blockInfo.getBlockDecl();
+
+ for (const auto &CI : blockDecl->captures()) {
+ const VarDecl *variable = CI.getVariable();
+ QualType type = variable->getType();
+
+ const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable);
+ if (capture.isConstant()) continue;
+
+ const Expr *copyExpr = CI.getCopyExpr();
+ BlockFieldFlags flags;
+
+ bool useARCWeakCopy = false;
+ bool useARCStrongCopy = false;
+
+ if (copyExpr) {
+ assert(!CI.isByRef());
+ // don't bother computing flags
+
+ } else if (CI.isByRef()) {
+ flags = BLOCK_FIELD_IS_BYREF;
+ if (type.isObjCGCWeak())
+ flags |= BLOCK_FIELD_IS_WEAK;
+
+ } else if (type->isObjCRetainableType()) {
+ flags = BLOCK_FIELD_IS_OBJECT;
+ bool isBlockPointer = type->isBlockPointerType();
+ if (isBlockPointer)
+ flags = BLOCK_FIELD_IS_BLOCK;
+
+ // Special rules for ARC captures:
+ if (getLangOpts().ObjCAutoRefCount) {
+ Qualifiers qs = type.getQualifiers();
+
+ // We need to register __weak direct captures with the runtime.
+ if (qs.getObjCLifetime() == Qualifiers::OCL_Weak) {
+ useARCWeakCopy = true;
+
+ // We need to retain the copied value for __strong direct captures.
+ } else if (qs.getObjCLifetime() == Qualifiers::OCL_Strong) {
+ // If it's a block pointer, we have to copy the block and
+ // assign that to the destination pointer, so we might as
+ // well use _Block_object_assign. Otherwise we can avoid that.
+ if (!isBlockPointer)
+ useARCStrongCopy = true;
+
+ // Otherwise the memcpy is fine.
+ } else {
+ continue;
+ }
+
+ // Non-ARC captures of retainable pointers are strong and
+ // therefore require a call to _Block_object_assign.
+ } else {
+ // fall through
+ }
+ } else {
+ continue;
+ }
+
+ unsigned index = capture.getIndex();
+ llvm::Value *srcField =
+ Builder.CreateStructGEP(blockInfo.StructureType, src, index);
+ llvm::Value *dstField =
+ Builder.CreateStructGEP(blockInfo.StructureType, dst, index);
+
+ // If there's an explicit copy expression, we do that.
+ if (copyExpr) {
+ EmitSynthesizedCXXCopyCtor(dstField, srcField, copyExpr);
+ } else if (useARCWeakCopy) {
+ EmitARCCopyWeak(dstField, srcField);
+ } else {
+ llvm::Value *srcValue = Builder.CreateLoad(srcField, "blockcopy.src");
+ if (useARCStrongCopy) {
+ // At -O0, store null into the destination field (so that the
+ // storeStrong doesn't over-release) and then call storeStrong.
+ // This is a workaround to not having an initStrong call.
+ if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
+ auto *ty = cast<llvm::PointerType>(srcValue->getType());
+ llvm::Value *null = llvm::ConstantPointerNull::get(ty);
+ Builder.CreateStore(null, dstField);
+ EmitARCStoreStrongCall(dstField, srcValue, true);
+
+ // With optimization enabled, take advantage of the fact that
+ // the blocks runtime guarantees a memcpy of the block data, and
+ // just emit a retain of the src field.
+ } else {
+ EmitARCRetainNonBlock(srcValue);
+
+ // We don't need this anymore, so kill it. It's not quite
+ // worth the annoyance to avoid creating it in the first place.
+ cast<llvm::Instruction>(dstField)->eraseFromParent();
+ }
+ } else {
+ srcValue = Builder.CreateBitCast(srcValue, VoidPtrTy);
+ llvm::Value *dstAddr = Builder.CreateBitCast(dstField, VoidPtrTy);
+ llvm::Value *args[] = {
+ dstAddr, srcValue, llvm::ConstantInt::get(Int32Ty, flags.getBitMask())
+ };
+
+ bool copyCanThrow = false;
+ if (CI.isByRef() && variable->getType()->getAsCXXRecordDecl()) {
+ const Expr *copyExpr =
+ CGM.getContext().getBlockVarCopyInits(variable);
+ if (copyExpr) {
+ copyCanThrow = true; // FIXME: reuse the noexcept logic
+ }
+ }
+
+ if (copyCanThrow) {
+ EmitRuntimeCallOrInvoke(CGM.getBlockObjectAssign(), args);
+ } else {
+ EmitNounwindRuntimeCall(CGM.getBlockObjectAssign(), args);
+ }
+ }
+ }
+ }
+
+ FinishFunction();
+
+ return llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
+}
+
+/// Generate the destroy-helper function for a block closure object:
+/// static void block_destroy_helper(block_t *theBlock);
+///
+/// Note that this destroys a heap-allocated block closure object;
+/// it should not be confused with a 'byref destroy helper', which
+/// destroys the heap-allocated contents of an individual __block
+/// variable.
+llvm::Constant *
+CodeGenFunction::GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo) {
+ ASTContext &C = getContext();
+
+ FunctionArgList args;
+ ImplicitParamDecl srcDecl(getContext(), nullptr, SourceLocation(), nullptr,
+ C.VoidPtrTy);
+ args.push_back(&srcDecl);
+
+ const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration(
+ C.VoidTy, args, FunctionType::ExtInfo(), /*variadic=*/false);
+
+ // FIXME: We'd like to put these into a mergable by content, with
+ // internal linkage.
+ llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
+
+ llvm::Function *Fn =
+ llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
+ "__destroy_helper_block_", &CGM.getModule());
+
+ IdentifierInfo *II
+ = &CGM.getContext().Idents.get("__destroy_helper_block_");
+
+ FunctionDecl *FD = FunctionDecl::Create(C, C.getTranslationUnitDecl(),
+ SourceLocation(),
+ SourceLocation(), II, C.VoidTy,
+ nullptr, SC_Static,
+ false, false);
+ // Create a scope with an artificial location for the body of this function.
+ auto NL = ApplyDebugLocation::CreateEmpty(*this);
+ StartFunction(FD, C.VoidTy, Fn, FI, args);
+ auto AL = ApplyDebugLocation::CreateArtificial(*this);
+
+ llvm::Type *structPtrTy = blockInfo.StructureType->getPointerTo();
+
+ llvm::Value *src = GetAddrOfLocalVar(&srcDecl);
+ src = Builder.CreateLoad(src);
+ src = Builder.CreateBitCast(src, structPtrTy, "block");
+
+ const BlockDecl *blockDecl = blockInfo.getBlockDecl();
+
+ CodeGenFunction::RunCleanupsScope cleanups(*this);
+
+ for (const auto &CI : blockDecl->captures()) {
+ const VarDecl *variable = CI.getVariable();
+ QualType type = variable->getType();
+
+ const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable);
+ if (capture.isConstant()) continue;
+
+ BlockFieldFlags flags;
+ const CXXDestructorDecl *dtor = nullptr;
+
+ bool useARCWeakDestroy = false;
+ bool useARCStrongDestroy = false;
+
+ if (CI.isByRef()) {
+ flags = BLOCK_FIELD_IS_BYREF;
+ if (type.isObjCGCWeak())
+ flags |= BLOCK_FIELD_IS_WEAK;
+ } else if (const CXXRecordDecl *record = type->getAsCXXRecordDecl()) {
+ if (record->hasTrivialDestructor())
+ continue;
+ dtor = record->getDestructor();
+ } else if (type->isObjCRetainableType()) {
+ flags = BLOCK_FIELD_IS_OBJECT;
+ if (type->isBlockPointerType())
+ flags = BLOCK_FIELD_IS_BLOCK;
+
+ // Special rules for ARC captures.
+ if (getLangOpts().ObjCAutoRefCount) {
+ Qualifiers qs = type.getQualifiers();
+
+ // Don't generate special dispose logic for a captured object
+ // unless it's __strong or __weak.
+ if (!qs.hasStrongOrWeakObjCLifetime())
+ continue;
+
+ // Support __weak direct captures.
+ if (qs.getObjCLifetime() == Qualifiers::OCL_Weak)
+ useARCWeakDestroy = true;
+
+ // Tools really want us to use objc_storeStrong here.
+ else
+ useARCStrongDestroy = true;
+ }
+ } else {
+ continue;
+ }
+
+ unsigned index = capture.getIndex();
+ llvm::Value *srcField =
+ Builder.CreateStructGEP(blockInfo.StructureType, src, index);
+
+ // If there's an explicit copy expression, we do that.
+ if (dtor) {
+ PushDestructorCleanup(dtor, srcField);
+
+ // If this is a __weak capture, emit the release directly.
+ } else if (useARCWeakDestroy) {
+ EmitARCDestroyWeak(srcField);
+
+ // Destroy strong objects with a call if requested.
+ } else if (useARCStrongDestroy) {
+ EmitARCDestroyStrong(srcField, ARCImpreciseLifetime);
+
+ // Otherwise we call _Block_object_dispose. It wouldn't be too
+ // hard to just emit this as a cleanup if we wanted to make sure
+ // that things were done in reverse.
+ } else {
+ llvm::Value *value = Builder.CreateLoad(srcField);
+ value = Builder.CreateBitCast(value, VoidPtrTy);
+ BuildBlockRelease(value, flags);
+ }
+ }
+
+ cleanups.ForceCleanup();
+
+ FinishFunction();
+
+ return llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
+}
+
+namespace {
+
+/// Emits the copy/dispose helper functions for a __block object of id type.
+class ObjectByrefHelpers : public CodeGenModule::ByrefHelpers {
+ BlockFieldFlags Flags;
+
+public:
+ ObjectByrefHelpers(CharUnits alignment, BlockFieldFlags flags)
+ : ByrefHelpers(alignment), Flags(flags) {}
+
+ void emitCopy(CodeGenFunction &CGF, llvm::Value *destField,
+ llvm::Value *srcField) override {
+ destField = CGF.Builder.CreateBitCast(destField, CGF.VoidPtrTy);
+
+ srcField = CGF.Builder.CreateBitCast(srcField, CGF.VoidPtrPtrTy);
+ llvm::Value *srcValue = CGF.Builder.CreateLoad(srcField);
+
+ unsigned flags = (Flags | BLOCK_BYREF_CALLER).getBitMask();
+
+ llvm::Value *flagsVal = llvm::ConstantInt::get(CGF.Int32Ty, flags);
+ llvm::Value *fn = CGF.CGM.getBlockObjectAssign();
+
+ llvm::Value *args[] = { destField, srcValue, flagsVal };
+ CGF.EmitNounwindRuntimeCall(fn, args);
+ }
+
+ void emitDispose(CodeGenFunction &CGF, llvm::Value *field) override {
+ field = CGF.Builder.CreateBitCast(field, CGF.Int8PtrTy->getPointerTo(0));
+ llvm::Value *value = CGF.Builder.CreateLoad(field);
+
+ CGF.BuildBlockRelease(value, Flags | BLOCK_BYREF_CALLER);
+ }
+
+ void profileImpl(llvm::FoldingSetNodeID &id) const override {
+ id.AddInteger(Flags.getBitMask());
+ }
+};
+
+/// Emits the copy/dispose helpers for an ARC __block __weak variable.
+class ARCWeakByrefHelpers : public CodeGenModule::ByrefHelpers {
+public:
+ ARCWeakByrefHelpers(CharUnits alignment) : ByrefHelpers(alignment) {}
+
+ void emitCopy(CodeGenFunction &CGF, llvm::Value *destField,
+ llvm::Value *srcField) override {
+ CGF.EmitARCMoveWeak(destField, srcField);
+ }
+
+ void emitDispose(CodeGenFunction &CGF, llvm::Value *field) override {
+ CGF.EmitARCDestroyWeak(field);
+ }
+
+ void profileImpl(llvm::FoldingSetNodeID &id) const override {
+ // 0 is distinguishable from all pointers and byref flags
+ id.AddInteger(0);
+ }
+};
+
+/// Emits the copy/dispose helpers for an ARC __block __strong variable
+/// that's not of block-pointer type.
+class ARCStrongByrefHelpers : public CodeGenModule::ByrefHelpers {
+public:
+ ARCStrongByrefHelpers(CharUnits alignment) : ByrefHelpers(alignment) {}
+
+ void emitCopy(CodeGenFunction &CGF, llvm::Value *destField,
+ llvm::Value *srcField) override {
+ // Do a "move" by copying the value and then zeroing out the old
+ // variable.
+
+ llvm::LoadInst *value = CGF.Builder.CreateLoad(srcField);
+ value->setAlignment(Alignment.getQuantity());
+
+ llvm::Value *null =
+ llvm::ConstantPointerNull::get(cast<llvm::PointerType>(value->getType()));
+
+ if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) {
+ llvm::StoreInst *store = CGF.Builder.CreateStore(null, destField);
+ store->setAlignment(Alignment.getQuantity());
+ CGF.EmitARCStoreStrongCall(destField, value, /*ignored*/ true);
+ CGF.EmitARCStoreStrongCall(srcField, null, /*ignored*/ true);
+ return;
+ }
+ llvm::StoreInst *store = CGF.Builder.CreateStore(value, destField);
+ store->setAlignment(Alignment.getQuantity());
+
+ store = CGF.Builder.CreateStore(null, srcField);
+ store->setAlignment(Alignment.getQuantity());
+ }
+
+ void emitDispose(CodeGenFunction &CGF, llvm::Value *field) override {
+ CGF.EmitARCDestroyStrong(field, ARCImpreciseLifetime);
+ }
+
+ void profileImpl(llvm::FoldingSetNodeID &id) const override {
+ // 1 is distinguishable from all pointers and byref flags
+ id.AddInteger(1);
+ }
+};
+
+/// Emits the copy/dispose helpers for an ARC __block __strong
+/// variable that's of block-pointer type.
+class ARCStrongBlockByrefHelpers : public CodeGenModule::ByrefHelpers {
+public:
+ ARCStrongBlockByrefHelpers(CharUnits alignment) : ByrefHelpers(alignment) {}
+
+ void emitCopy(CodeGenFunction &CGF, llvm::Value *destField,
+ llvm::Value *srcField) override {
+ // Do the copy with objc_retainBlock; that's all that
+ // _Block_object_assign would do anyway, and we'd have to pass the
+ // right arguments to make sure it doesn't get no-op'ed.
+ llvm::LoadInst *oldValue = CGF.Builder.CreateLoad(srcField);
+ oldValue->setAlignment(Alignment.getQuantity());
+
+ llvm::Value *copy = CGF.EmitARCRetainBlock(oldValue, /*mandatory*/ true);
+
+ llvm::StoreInst *store = CGF.Builder.CreateStore(copy, destField);
+ store->setAlignment(Alignment.getQuantity());
+ }
+
+ void emitDispose(CodeGenFunction &CGF, llvm::Value *field) override {
+ CGF.EmitARCDestroyStrong(field, ARCImpreciseLifetime);
+ }
+
+ void profileImpl(llvm::FoldingSetNodeID &id) const override {
+ // 2 is distinguishable from all pointers and byref flags
+ id.AddInteger(2);
+ }
+};
+
+/// Emits the copy/dispose helpers for a __block variable with a
+/// nontrivial copy constructor or destructor.
+class CXXByrefHelpers : public CodeGenModule::ByrefHelpers {
+ QualType VarType;
+ const Expr *CopyExpr;
+
+public:
+ CXXByrefHelpers(CharUnits alignment, QualType type,
+ const Expr *copyExpr)
+ : ByrefHelpers(alignment), VarType(type), CopyExpr(copyExpr) {}
+
+ bool needsCopy() const override { return CopyExpr != nullptr; }
+ void emitCopy(CodeGenFunction &CGF, llvm::Value *destField,
+ llvm::Value *srcField) override {
+ if (!CopyExpr) return;
+ CGF.EmitSynthesizedCXXCopyCtor(destField, srcField, CopyExpr);
+ }
+
+ void emitDispose(CodeGenFunction &CGF, llvm::Value *field) override {
+ EHScopeStack::stable_iterator cleanupDepth = CGF.EHStack.stable_begin();
+ CGF.PushDestructorCleanup(VarType, field);
+ CGF.PopCleanupBlocks(cleanupDepth);
+ }
+
+ void profileImpl(llvm::FoldingSetNodeID &id) const override {
+ id.AddPointer(VarType.getCanonicalType().getAsOpaquePtr());
+ }
+};
+} // end anonymous namespace
+
+static llvm::Constant *
+generateByrefCopyHelper(CodeGenFunction &CGF,
+ llvm::StructType &byrefType,
+ unsigned valueFieldIndex,
+ CodeGenModule::ByrefHelpers &byrefInfo) {
+ ASTContext &Context = CGF.getContext();
+
+ QualType R = Context.VoidTy;
+
+ FunctionArgList args;
+ ImplicitParamDecl dst(CGF.getContext(), nullptr, SourceLocation(), nullptr,
+ Context.VoidPtrTy);
+ args.push_back(&dst);
+
+ ImplicitParamDecl src(CGF.getContext(), nullptr, SourceLocation(), nullptr,
+ Context.VoidPtrTy);
+ args.push_back(&src);
+
+ const CGFunctionInfo &FI = CGF.CGM.getTypes().arrangeFreeFunctionDeclaration(
+ R, args, FunctionType::ExtInfo(), /*variadic=*/false);
+
+ CodeGenTypes &Types = CGF.CGM.getTypes();
+ llvm::FunctionType *LTy = Types.GetFunctionType(FI);
+
+ // FIXME: We'd like to put these into a mergable by content, with
+ // internal linkage.
+ llvm::Function *Fn =
+ llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
+ "__Block_byref_object_copy_", &CGF.CGM.getModule());
+
+ IdentifierInfo *II
+ = &Context.Idents.get("__Block_byref_object_copy_");
+
+ FunctionDecl *FD = FunctionDecl::Create(Context,
+ Context.getTranslationUnitDecl(),
+ SourceLocation(),
+ SourceLocation(), II, R, nullptr,
+ SC_Static,
+ false, false);
+
+ CGF.StartFunction(FD, R, Fn, FI, args);
+
+ if (byrefInfo.needsCopy()) {
+ llvm::Type *byrefPtrType = byrefType.getPointerTo(0);
+
+ // dst->x
+ llvm::Value *destField = CGF.GetAddrOfLocalVar(&dst);
+ destField = CGF.Builder.CreateLoad(destField);
+ destField = CGF.Builder.CreateBitCast(destField, byrefPtrType);
+ destField = CGF.Builder.CreateStructGEP(&byrefType, destField,
+ valueFieldIndex, "x");
+
+ // src->x
+ llvm::Value *srcField = CGF.GetAddrOfLocalVar(&src);
+ srcField = CGF.Builder.CreateLoad(srcField);
+ srcField = CGF.Builder.CreateBitCast(srcField, byrefPtrType);
+ srcField =
+ CGF.Builder.CreateStructGEP(&byrefType, srcField, valueFieldIndex, "x");
+
+ byrefInfo.emitCopy(CGF, destField, srcField);
+ }
+
+ CGF.FinishFunction();
+
+ return llvm::ConstantExpr::getBitCast(Fn, CGF.Int8PtrTy);
+}
+
+/// Build the copy helper for a __block variable.
+static llvm::Constant *buildByrefCopyHelper(CodeGenModule &CGM,
+ llvm::StructType &byrefType,
+ unsigned byrefValueIndex,
+ CodeGenModule::ByrefHelpers &info) {
+ CodeGenFunction CGF(CGM);
+ return generateByrefCopyHelper(CGF, byrefType, byrefValueIndex, info);
+}
+
+/// Generate code for a __block variable's dispose helper.
+static llvm::Constant *
+generateByrefDisposeHelper(CodeGenFunction &CGF,
+ llvm::StructType &byrefType,
+ unsigned byrefValueIndex,
+ CodeGenModule::ByrefHelpers &byrefInfo) {
+ ASTContext &Context = CGF.getContext();
+ QualType R = Context.VoidTy;
+
+ FunctionArgList args;
+ ImplicitParamDecl src(CGF.getContext(), nullptr, SourceLocation(), nullptr,
+ Context.VoidPtrTy);
+ args.push_back(&src);
+
+ const CGFunctionInfo &FI = CGF.CGM.getTypes().arrangeFreeFunctionDeclaration(
+ R, args, FunctionType::ExtInfo(), /*variadic=*/false);
+
+ CodeGenTypes &Types = CGF.CGM.getTypes();
+ llvm::FunctionType *LTy = Types.GetFunctionType(FI);
+
+ // FIXME: We'd like to put these into a mergable by content, with
+ // internal linkage.
+ llvm::Function *Fn =
+ llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
+ "__Block_byref_object_dispose_",
+ &CGF.CGM.getModule());
+
+ IdentifierInfo *II
+ = &Context.Idents.get("__Block_byref_object_dispose_");
+
+ FunctionDecl *FD = FunctionDecl::Create(Context,
+ Context.getTranslationUnitDecl(),
+ SourceLocation(),
+ SourceLocation(), II, R, nullptr,
+ SC_Static,
+ false, false);
+ CGF.StartFunction(FD, R, Fn, FI, args);
+
+ if (byrefInfo.needsDispose()) {
+ llvm::Value *V = CGF.GetAddrOfLocalVar(&src);
+ V = CGF.Builder.CreateLoad(V);
+ V = CGF.Builder.CreateBitCast(V, byrefType.getPointerTo(0));
+ V = CGF.Builder.CreateStructGEP(&byrefType, V, byrefValueIndex, "x");
+
+ byrefInfo.emitDispose(CGF, V);
+ }
+
+ CGF.FinishFunction();
+
+ return llvm::ConstantExpr::getBitCast(Fn, CGF.Int8PtrTy);
+}
+
+/// Build the dispose helper for a __block variable.
+static llvm::Constant *buildByrefDisposeHelper(CodeGenModule &CGM,
+ llvm::StructType &byrefType,
+ unsigned byrefValueIndex,
+ CodeGenModule::ByrefHelpers &info) {
+ CodeGenFunction CGF(CGM);
+ return generateByrefDisposeHelper(CGF, byrefType, byrefValueIndex, info);
+}
+
+/// Lazily build the copy and dispose helpers for a __block variable
+/// with the given information.
+template <class T> static T *buildByrefHelpers(CodeGenModule &CGM,
+ llvm::StructType &byrefTy,
+ unsigned byrefValueIndex,
+ T &byrefInfo) {
+ // Increase the field's alignment to be at least pointer alignment,
+ // since the layout of the byref struct will guarantee at least that.
+ byrefInfo.Alignment = std::max(byrefInfo.Alignment,
+ CharUnits::fromQuantity(CGM.PointerAlignInBytes));
+
+ llvm::FoldingSetNodeID id;
+ byrefInfo.Profile(id);
+
+ void *insertPos;
+ CodeGenModule::ByrefHelpers *node
+ = CGM.ByrefHelpersCache.FindNodeOrInsertPos(id, insertPos);
+ if (node) return static_cast<T*>(node);
+
+ byrefInfo.CopyHelper =
+ buildByrefCopyHelper(CGM, byrefTy, byrefValueIndex, byrefInfo);
+ byrefInfo.DisposeHelper =
+ buildByrefDisposeHelper(CGM, byrefTy, byrefValueIndex,byrefInfo);
+
+ T *copy = new (CGM.getContext()) T(byrefInfo);
+ CGM.ByrefHelpersCache.InsertNode(copy, insertPos);
+ return copy;
+}
+
+/// Build the copy and dispose helpers for the given __block variable
+/// emission. Places the helpers in the global cache. Returns null
+/// if no helpers are required.
+CodeGenModule::ByrefHelpers *
+CodeGenFunction::buildByrefHelpers(llvm::StructType &byrefType,
+ const AutoVarEmission &emission) {
+ const VarDecl &var = *emission.Variable;
+ QualType type = var.getType();
+
+ unsigned byrefValueIndex = getByRefValueLLVMField(&var).second;
+
+ if (const CXXRecordDecl *record = type->getAsCXXRecordDecl()) {
+ const Expr *copyExpr = CGM.getContext().getBlockVarCopyInits(&var);
+ if (!copyExpr && record->hasTrivialDestructor()) return nullptr;
+
+ CXXByrefHelpers byrefInfo(emission.Alignment, type, copyExpr);
+ return ::buildByrefHelpers(CGM, byrefType, byrefValueIndex, byrefInfo);
+ }
+
+ // Otherwise, if we don't have a retainable type, there's nothing to do.
+ // that the runtime does extra copies.
+ if (!type->isObjCRetainableType()) return nullptr;
+
+ Qualifiers qs = type.getQualifiers();
+
+ // If we have lifetime, that dominates.
+ if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
+ assert(getLangOpts().ObjCAutoRefCount);
+
+ switch (lifetime) {
+ case Qualifiers::OCL_None: llvm_unreachable("impossible");
+
+ // These are just bits as far as the runtime is concerned.
+ case Qualifiers::OCL_ExplicitNone:
+ case Qualifiers::OCL_Autoreleasing:
+ return nullptr;
+
+ // Tell the runtime that this is ARC __weak, called by the
+ // byref routines.
+ case Qualifiers::OCL_Weak: {
+ ARCWeakByrefHelpers byrefInfo(emission.Alignment);
+ return ::buildByrefHelpers(CGM, byrefType, byrefValueIndex, byrefInfo);
+ }
+
+ // ARC __strong __block variables need to be retained.
+ case Qualifiers::OCL_Strong:
+ // Block pointers need to be copied, and there's no direct
+ // transfer possible.
+ if (type->isBlockPointerType()) {
+ ARCStrongBlockByrefHelpers byrefInfo(emission.Alignment);
+ return ::buildByrefHelpers(CGM, byrefType, byrefValueIndex, byrefInfo);
+
+ // Otherwise, we transfer ownership of the retain from the stack
+ // to the heap.
+ } else {
+ ARCStrongByrefHelpers byrefInfo(emission.Alignment);
+ return ::buildByrefHelpers(CGM, byrefType, byrefValueIndex, byrefInfo);
+ }
+ }
+ llvm_unreachable("fell out of lifetime switch!");
+ }
+
+ BlockFieldFlags flags;
+ if (type->isBlockPointerType()) {
+ flags |= BLOCK_FIELD_IS_BLOCK;
+ } else if (CGM.getContext().isObjCNSObjectType(type) ||
+ type->isObjCObjectPointerType()) {
+ flags |= BLOCK_FIELD_IS_OBJECT;
+ } else {
+ return nullptr;
+ }
+
+ if (type.isObjCGCWeak())
+ flags |= BLOCK_FIELD_IS_WEAK;
+
+ ObjectByrefHelpers byrefInfo(emission.Alignment, flags);
+ return ::buildByrefHelpers(CGM, byrefType, byrefValueIndex, byrefInfo);
+}
+
+std::pair<llvm::Type *, unsigned>
+CodeGenFunction::getByRefValueLLVMField(const ValueDecl *VD) const {
+ assert(ByRefValueInfo.count(VD) && "Did not find value!");
+
+ return ByRefValueInfo.find(VD)->second;
+}
+
+llvm::Value *CodeGenFunction::BuildBlockByrefAddress(llvm::Value *BaseAddr,
+ const VarDecl *V) {
+ auto P = getByRefValueLLVMField(V);
+ llvm::Value *Loc =
+ Builder.CreateStructGEP(P.first, BaseAddr, 1, "forwarding");
+ Loc = Builder.CreateLoad(Loc);
+ Loc = Builder.CreateStructGEP(P.first, Loc, P.second, V->getNameAsString());
+ return Loc;
+}
+
+/// BuildByRefType - This routine changes a __block variable declared as T x
+/// into:
+///
+/// struct {
+/// void *__isa;
+/// void *__forwarding;
+/// int32_t __flags;
+/// int32_t __size;
+/// void *__copy_helper; // only if needed
+/// void *__destroy_helper; // only if needed
+/// void *__byref_variable_layout;// only if needed
+/// char padding[X]; // only if needed
+/// T x;
+/// } x
+///
+llvm::Type *CodeGenFunction::BuildByRefType(const VarDecl *D) {
+ std::pair<llvm::Type *, unsigned> &Info = ByRefValueInfo[D];
+ if (Info.first)
+ return Info.first;
+
+ QualType Ty = D->getType();
+
+ SmallVector<llvm::Type *, 8> types;
+
+ llvm::StructType *ByRefType =
+ llvm::StructType::create(getLLVMContext(),
+ "struct.__block_byref_" + D->getNameAsString());
+
+ // void *__isa;
+ types.push_back(Int8PtrTy);
+
+ // void *__forwarding;
+ types.push_back(llvm::PointerType::getUnqual(ByRefType));
+
+ // int32_t __flags;
+ types.push_back(Int32Ty);
+
+ // int32_t __size;
+ types.push_back(Int32Ty);
+ // Note that this must match *exactly* the logic in buildByrefHelpers.
+ bool HasCopyAndDispose = getContext().BlockRequiresCopying(Ty, D);
+ if (HasCopyAndDispose) {
+ /// void *__copy_helper;
+ types.push_back(Int8PtrTy);
+
+ /// void *__destroy_helper;
+ types.push_back(Int8PtrTy);
+ }
+ bool HasByrefExtendedLayout = false;
+ Qualifiers::ObjCLifetime Lifetime;
+ if (getContext().getByrefLifetime(Ty, Lifetime, HasByrefExtendedLayout) &&
+ HasByrefExtendedLayout)
+ /// void *__byref_variable_layout;
+ types.push_back(Int8PtrTy);
+
+ bool Packed = false;
+ CharUnits Align = getContext().getDeclAlign(D);
+ if (Align >
+ getContext().toCharUnitsFromBits(getTarget().getPointerAlign(0))) {
+ // We have to insert padding.
+
+ // The struct above has 2 32-bit integers.
+ unsigned CurrentOffsetInBytes = 4 * 2;
+
+ // And either 2, 3, 4 or 5 pointers.
+ unsigned noPointers = 2;
+ if (HasCopyAndDispose)
+ noPointers += 2;
+ if (HasByrefExtendedLayout)
+ noPointers += 1;
+
+ CurrentOffsetInBytes += noPointers * CGM.getDataLayout().getTypeAllocSize(Int8PtrTy);
+
+ // Align the offset.
+ unsigned AlignedOffsetInBytes =
+ llvm::RoundUpToAlignment(CurrentOffsetInBytes, Align.getQuantity());
+
+ unsigned NumPaddingBytes = AlignedOffsetInBytes - CurrentOffsetInBytes;
+ if (NumPaddingBytes > 0) {
+ llvm::Type *Ty = Int8Ty;
+ // FIXME: We need a sema error for alignment larger than the minimum of
+ // the maximal stack alignment and the alignment of malloc on the system.
+ if (NumPaddingBytes > 1)
+ Ty = llvm::ArrayType::get(Ty, NumPaddingBytes);
+
+ types.push_back(Ty);
+
+ // We want a packed struct.
+ Packed = true;
+ }
+ }
+
+ // T x;
+ types.push_back(ConvertTypeForMem(Ty));
+
+ ByRefType->setBody(types, Packed);
+
+ Info.first = ByRefType;
+
+ Info.second = types.size() - 1;
+
+ return Info.first;
+}
+
+/// Initialize the structural components of a __block variable, i.e.
+/// everything but the actual object.
+void CodeGenFunction::emitByrefStructureInit(const AutoVarEmission &emission) {
+ // Find the address of the local.
+ llvm::Value *addr = emission.Address;
+
+ // That's an alloca of the byref structure type.
+ llvm::StructType *byrefType = cast<llvm::StructType>(
+ cast<llvm::PointerType>(addr->getType())->getElementType());
+
+ // Build the byref helpers if necessary. This is null if we don't need any.
+ CodeGenModule::ByrefHelpers *helpers =
+ buildByrefHelpers(*byrefType, emission);
+
+ const VarDecl &D = *emission.Variable;
+ QualType type = D.getType();
+
+ bool HasByrefExtendedLayout;
+ Qualifiers::ObjCLifetime ByrefLifetime;
+ bool ByRefHasLifetime =
+ getContext().getByrefLifetime(type, ByrefLifetime, HasByrefExtendedLayout);
+
+ llvm::Value *V;
+
+ // Initialize the 'isa', which is just 0 or 1.
+ int isa = 0;
+ if (type.isObjCGCWeak())
+ isa = 1;
+ V = Builder.CreateIntToPtr(Builder.getInt32(isa), Int8PtrTy, "isa");
+ Builder.CreateStore(V,
+ Builder.CreateStructGEP(nullptr, addr, 0, "byref.isa"));
+
+ // Store the address of the variable into its own forwarding pointer.
+ Builder.CreateStore(
+ addr, Builder.CreateStructGEP(nullptr, addr, 1, "byref.forwarding"));
+
+ // Blocks ABI:
+ // c) the flags field is set to either 0 if no helper functions are
+ // needed or BLOCK_BYREF_HAS_COPY_DISPOSE if they are,
+ BlockFlags flags;
+ if (helpers) flags |= BLOCK_BYREF_HAS_COPY_DISPOSE;
+ if (ByRefHasLifetime) {
+ if (HasByrefExtendedLayout) flags |= BLOCK_BYREF_LAYOUT_EXTENDED;
+ else switch (ByrefLifetime) {
+ case Qualifiers::OCL_Strong:
+ flags |= BLOCK_BYREF_LAYOUT_STRONG;
+ break;
+ case Qualifiers::OCL_Weak:
+ flags |= BLOCK_BYREF_LAYOUT_WEAK;
+ break;
+ case Qualifiers::OCL_ExplicitNone:
+ flags |= BLOCK_BYREF_LAYOUT_UNRETAINED;
+ break;
+ case Qualifiers::OCL_None:
+ if (!type->isObjCObjectPointerType() && !type->isBlockPointerType())
+ flags |= BLOCK_BYREF_LAYOUT_NON_OBJECT;
+ break;
+ default:
+ break;
+ }
+ if (CGM.getLangOpts().ObjCGCBitmapPrint) {
+ printf("\n Inline flag for BYREF variable layout (%d):", flags.getBitMask());
+ if (flags & BLOCK_BYREF_HAS_COPY_DISPOSE)
+ printf(" BLOCK_BYREF_HAS_COPY_DISPOSE");
+ if (flags & BLOCK_BYREF_LAYOUT_MASK) {
+ BlockFlags ThisFlag(flags.getBitMask() & BLOCK_BYREF_LAYOUT_MASK);
+ if (ThisFlag == BLOCK_BYREF_LAYOUT_EXTENDED)
+ printf(" BLOCK_BYREF_LAYOUT_EXTENDED");
+ if (ThisFlag == BLOCK_BYREF_LAYOUT_STRONG)
+ printf(" BLOCK_BYREF_LAYOUT_STRONG");
+ if (ThisFlag == BLOCK_BYREF_LAYOUT_WEAK)
+ printf(" BLOCK_BYREF_LAYOUT_WEAK");
+ if (ThisFlag == BLOCK_BYREF_LAYOUT_UNRETAINED)
+ printf(" BLOCK_BYREF_LAYOUT_UNRETAINED");
+ if (ThisFlag == BLOCK_BYREF_LAYOUT_NON_OBJECT)
+ printf(" BLOCK_BYREF_LAYOUT_NON_OBJECT");
+ }
+ printf("\n");
+ }
+ }
+
+ Builder.CreateStore(llvm::ConstantInt::get(IntTy, flags.getBitMask()),
+ Builder.CreateStructGEP(nullptr, addr, 2, "byref.flags"));
+
+ CharUnits byrefSize = CGM.GetTargetTypeStoreSize(byrefType);
+ V = llvm::ConstantInt::get(IntTy, byrefSize.getQuantity());
+ Builder.CreateStore(V,
+ Builder.CreateStructGEP(nullptr, addr, 3, "byref.size"));
+
+ if (helpers) {
+ llvm::Value *copy_helper = Builder.CreateStructGEP(nullptr, addr, 4);
+ Builder.CreateStore(helpers->CopyHelper, copy_helper);
+
+ llvm::Value *destroy_helper = Builder.CreateStructGEP(nullptr, addr, 5);
+ Builder.CreateStore(helpers->DisposeHelper, destroy_helper);
+ }
+ if (ByRefHasLifetime && HasByrefExtendedLayout) {
+ llvm::Constant* ByrefLayoutInfo = CGM.getObjCRuntime().BuildByrefLayout(CGM, type);
+ llvm::Value *ByrefInfoAddr =
+ Builder.CreateStructGEP(nullptr, addr, helpers ? 6 : 4, "byref.layout");
+ // cast destination to pointer to source type.
+ llvm::Type *DesTy = ByrefLayoutInfo->getType();
+ DesTy = DesTy->getPointerTo();
+ llvm::Value *BC = Builder.CreatePointerCast(ByrefInfoAddr, DesTy);
+ Builder.CreateStore(ByrefLayoutInfo, BC);
+ }
+}
+
+void CodeGenFunction::BuildBlockRelease(llvm::Value *V, BlockFieldFlags flags) {
+ llvm::Value *F = CGM.getBlockObjectDispose();
+ llvm::Value *args[] = {
+ Builder.CreateBitCast(V, Int8PtrTy),
+ llvm::ConstantInt::get(Int32Ty, flags.getBitMask())
+ };
+ EmitNounwindRuntimeCall(F, args); // FIXME: throwing destructors?
+}
+
+namespace {
+ struct CallBlockRelease : EHScopeStack::Cleanup {
+ llvm::Value *Addr;
+ CallBlockRelease(llvm::Value *Addr) : Addr(Addr) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ // Should we be passing FIELD_IS_WEAK here?
+ CGF.BuildBlockRelease(Addr, BLOCK_FIELD_IS_BYREF);
+ }
+ };
+}
+
+/// Enter a cleanup to destroy a __block variable. Note that this
+/// cleanup should be a no-op if the variable hasn't left the stack
+/// yet; if a cleanup is required for the variable itself, that needs
+/// to be done externally.
+void CodeGenFunction::enterByrefCleanup(const AutoVarEmission &emission) {
+ // We don't enter this cleanup if we're in pure-GC mode.
+ if (CGM.getLangOpts().getGC() == LangOptions::GCOnly)
+ return;
+
+ EHStack.pushCleanup<CallBlockRelease>(NormalAndEHCleanup, emission.Address);
+}
+
+/// Adjust the declaration of something from the blocks API.
+static void configureBlocksRuntimeObject(CodeGenModule &CGM,
+ llvm::Constant *C) {
+ if (!CGM.getLangOpts().BlocksRuntimeOptional) return;
+
+ auto *GV = cast<llvm::GlobalValue>(C->stripPointerCasts());
+ if (GV->isDeclaration() && GV->hasExternalLinkage())
+ GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
+}
+
+llvm::Constant *CodeGenModule::getBlockObjectDispose() {
+ if (BlockObjectDispose)
+ return BlockObjectDispose;
+
+ llvm::Type *args[] = { Int8PtrTy, Int32Ty };
+ llvm::FunctionType *fty
+ = llvm::FunctionType::get(VoidTy, args, false);
+ BlockObjectDispose = CreateRuntimeFunction(fty, "_Block_object_dispose");
+ configureBlocksRuntimeObject(*this, BlockObjectDispose);
+ return BlockObjectDispose;
+}
+
+llvm::Constant *CodeGenModule::getBlockObjectAssign() {
+ if (BlockObjectAssign)
+ return BlockObjectAssign;
+
+ llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, Int32Ty };
+ llvm::FunctionType *fty
+ = llvm::FunctionType::get(VoidTy, args, false);
+ BlockObjectAssign = CreateRuntimeFunction(fty, "_Block_object_assign");
+ configureBlocksRuntimeObject(*this, BlockObjectAssign);
+ return BlockObjectAssign;
+}
+
+llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
+ if (NSConcreteGlobalBlock)
+ return NSConcreteGlobalBlock;
+
+ NSConcreteGlobalBlock = GetOrCreateLLVMGlobal("_NSConcreteGlobalBlock",
+ Int8PtrTy->getPointerTo(),
+ nullptr);
+ configureBlocksRuntimeObject(*this, NSConcreteGlobalBlock);
+ return NSConcreteGlobalBlock;
+}
+
+llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
+ if (NSConcreteStackBlock)
+ return NSConcreteStackBlock;
+
+ NSConcreteStackBlock = GetOrCreateLLVMGlobal("_NSConcreteStackBlock",
+ Int8PtrTy->getPointerTo(),
+ nullptr);
+ configureBlocksRuntimeObject(*this, NSConcreteStackBlock);
+ return NSConcreteStackBlock;
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGBlocks.h b/contrib/llvm/tools/clang/lib/CodeGen/CGBlocks.h
new file mode 100644
index 0000000..c4eed0d
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGBlocks.h
@@ -0,0 +1,256 @@
+//===-- CGBlocks.h - state for LLVM CodeGen for blocks ----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This is the internal state used for llvm translation for block literals.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_CODEGEN_CGBLOCKS_H
+#define LLVM_CLANG_LIB_CODEGEN_CGBLOCKS_H
+
+#include "CGBuilder.h"
+#include "CGCall.h"
+#include "CGValue.h"
+#include "CodeGenFunction.h"
+#include "CodeGenTypes.h"
+#include "clang/AST/CharUnits.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/AST/Type.h"
+#include "clang/Basic/TargetInfo.h"
+#include "llvm/IR/Module.h"
+
+namespace llvm {
+class Module;
+class Constant;
+class Function;
+class GlobalValue;
+class DataLayout;
+class FunctionType;
+class PointerType;
+class Value;
+class LLVMContext;
+}
+
+namespace clang {
+
+namespace CodeGen {
+
+class CodeGenModule;
+class CGBlockInfo;
+
+// Flags stored in __block variables.
+enum BlockByrefFlags {
+ BLOCK_BYREF_HAS_COPY_DISPOSE = (1 << 25), // compiler
+ BLOCK_BYREF_LAYOUT_MASK = (0xF << 28), // compiler
+ BLOCK_BYREF_LAYOUT_EXTENDED = (1 << 28),
+ BLOCK_BYREF_LAYOUT_NON_OBJECT = (2 << 28),
+ BLOCK_BYREF_LAYOUT_STRONG = (3 << 28),
+ BLOCK_BYREF_LAYOUT_WEAK = (4 << 28),
+ BLOCK_BYREF_LAYOUT_UNRETAINED = (5 << 28)
+};
+
+enum BlockLiteralFlags {
+ BLOCK_HAS_COPY_DISPOSE = (1 << 25),
+ BLOCK_HAS_CXX_OBJ = (1 << 26),
+ BLOCK_IS_GLOBAL = (1 << 28),
+ BLOCK_USE_STRET = (1 << 29),
+ BLOCK_HAS_SIGNATURE = (1 << 30),
+ BLOCK_HAS_EXTENDED_LAYOUT = (1 << 31)
+};
+class BlockFlags {
+ uint32_t flags;
+
+public:
+ BlockFlags(uint32_t flags) : flags(flags) {}
+ BlockFlags() : flags(0) {}
+ BlockFlags(BlockLiteralFlags flag) : flags(flag) {}
+ BlockFlags(BlockByrefFlags flag) : flags(flag) {}
+
+ uint32_t getBitMask() const { return flags; }
+ bool empty() const { return flags == 0; }
+
+ friend BlockFlags operator|(BlockFlags l, BlockFlags r) {
+ return BlockFlags(l.flags | r.flags);
+ }
+ friend BlockFlags &operator|=(BlockFlags &l, BlockFlags r) {
+ l.flags |= r.flags;
+ return l;
+ }
+ friend bool operator&(BlockFlags l, BlockFlags r) {
+ return (l.flags & r.flags);
+ }
+ bool operator==(BlockFlags r) {
+ return (flags == r.flags);
+ }
+};
+inline BlockFlags operator|(BlockLiteralFlags l, BlockLiteralFlags r) {
+ return BlockFlags(l) | BlockFlags(r);
+}
+
+enum BlockFieldFlag_t {
+ BLOCK_FIELD_IS_OBJECT = 0x03, /* id, NSObject, __attribute__((NSObject)),
+ block, ... */
+ BLOCK_FIELD_IS_BLOCK = 0x07, /* a block variable */
+
+ BLOCK_FIELD_IS_BYREF = 0x08, /* the on stack structure holding the __block
+ variable */
+ BLOCK_FIELD_IS_WEAK = 0x10, /* declared __weak, only used in byref copy
+ helpers */
+ BLOCK_FIELD_IS_ARC = 0x40, /* field has ARC-specific semantics */
+ BLOCK_BYREF_CALLER = 128, /* called from __block (byref) copy/dispose
+ support routines */
+ BLOCK_BYREF_CURRENT_MAX = 256
+};
+
+class BlockFieldFlags {
+ uint32_t flags;
+
+ BlockFieldFlags(uint32_t flags) : flags(flags) {}
+public:
+ BlockFieldFlags() : flags(0) {}
+ BlockFieldFlags(BlockFieldFlag_t flag) : flags(flag) {}
+
+ uint32_t getBitMask() const { return flags; }
+ bool empty() const { return flags == 0; }
+
+ /// Answers whether the flags indicate that this field is an object
+ /// or block pointer that requires _Block_object_assign/dispose.
+ bool isSpecialPointer() const { return flags & BLOCK_FIELD_IS_OBJECT; }
+
+ friend BlockFieldFlags operator|(BlockFieldFlags l, BlockFieldFlags r) {
+ return BlockFieldFlags(l.flags | r.flags);
+ }
+ friend BlockFieldFlags &operator|=(BlockFieldFlags &l, BlockFieldFlags r) {
+ l.flags |= r.flags;
+ return l;
+ }
+ friend bool operator&(BlockFieldFlags l, BlockFieldFlags r) {
+ return (l.flags & r.flags);
+ }
+};
+inline BlockFieldFlags operator|(BlockFieldFlag_t l, BlockFieldFlag_t r) {
+ return BlockFieldFlags(l) | BlockFieldFlags(r);
+}
+
+/// CGBlockInfo - Information to generate a block literal.
+class CGBlockInfo {
+public:
+ /// Name - The name of the block, kindof.
+ StringRef Name;
+
+ /// The field index of 'this' within the block, if there is one.
+ unsigned CXXThisIndex;
+
+ class Capture {
+ uintptr_t Data;
+ EHScopeStack::stable_iterator Cleanup;
+
+ public:
+ bool isIndex() const { return (Data & 1) != 0; }
+ bool isConstant() const { return !isIndex(); }
+ unsigned getIndex() const { assert(isIndex()); return Data >> 1; }
+ llvm::Value *getConstant() const {
+ assert(isConstant());
+ return reinterpret_cast<llvm::Value*>(Data);
+ }
+ EHScopeStack::stable_iterator getCleanup() const {
+ assert(isIndex());
+ return Cleanup;
+ }
+ void setCleanup(EHScopeStack::stable_iterator cleanup) {
+ assert(isIndex());
+ Cleanup = cleanup;
+ }
+
+ static Capture makeIndex(unsigned index) {
+ Capture v;
+ v.Data = (index << 1) | 1;
+ return v;
+ }
+
+ static Capture makeConstant(llvm::Value *value) {
+ Capture v;
+ v.Data = reinterpret_cast<uintptr_t>(value);
+ return v;
+ }
+ };
+
+ /// CanBeGlobal - True if the block can be global, i.e. it has
+ /// no non-constant captures.
+ bool CanBeGlobal : 1;
+
+ /// True if the block needs a custom copy or dispose function.
+ bool NeedsCopyDispose : 1;
+
+ /// HasCXXObject - True if the block's custom copy/dispose functions
+ /// need to be run even in GC mode.
+ bool HasCXXObject : 1;
+
+ /// UsesStret : True if the block uses an stret return. Mutable
+ /// because it gets set later in the block-creation process.
+ mutable bool UsesStret : 1;
+
+ /// HasCapturedVariableLayout : True if block has captured variables
+ /// and their layout meta-data has been generated.
+ bool HasCapturedVariableLayout : 1;
+
+ /// The mapping of allocated indexes within the block.
+ llvm::DenseMap<const VarDecl*, Capture> Captures;
+
+ llvm::AllocaInst *Address;
+ llvm::StructType *StructureType;
+ const BlockDecl *Block;
+ const BlockExpr *BlockExpression;
+ CharUnits BlockSize;
+ CharUnits BlockAlign;
+
+ // Offset of the gap caused by block header having a smaller
+ // alignment than the alignment of the block descriptor. This
+ // is the gap offset before the first capturued field.
+ CharUnits BlockHeaderForcedGapOffset;
+ // Gap size caused by aligning first field after block header.
+ // This could be zero if no forced alignment is required.
+ CharUnits BlockHeaderForcedGapSize;
+
+ /// An instruction which dominates the full-expression that the
+ /// block is inside.
+ llvm::Instruction *DominatingIP;
+
+ /// The next block in the block-info chain. Invalid if this block
+ /// info is not part of the CGF's block-info chain, which is true
+ /// if it corresponds to a global block or a block whose expression
+ /// has been encountered.
+ CGBlockInfo *NextBlockInfo;
+
+ const Capture &getCapture(const VarDecl *var) const {
+ return const_cast<CGBlockInfo*>(this)->getCapture(var);
+ }
+ Capture &getCapture(const VarDecl *var) {
+ llvm::DenseMap<const VarDecl*, Capture>::iterator
+ it = Captures.find(var);
+ assert(it != Captures.end() && "no entry for variable!");
+ return it->second;
+ }
+
+ const BlockDecl *getBlockDecl() const { return Block; }
+ const BlockExpr *getBlockExpr() const {
+ assert(BlockExpression);
+ assert(BlockExpression->getBlockDecl() == Block);
+ return BlockExpression;
+ }
+
+ CGBlockInfo(const BlockDecl *blockDecl, StringRef Name);
+};
+
+} // end namespace CodeGen
+} // end namespace clang
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGBuilder.h b/contrib/llvm/tools/clang/lib/CodeGen/CGBuilder.h
new file mode 100644
index 0000000..6610659
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGBuilder.h
@@ -0,0 +1,55 @@
+//===-- CGBuilder.h - Choose IRBuilder implementation ----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_CODEGEN_CGBUILDER_H
+#define LLVM_CLANG_LIB_CODEGEN_CGBUILDER_H
+
+#include "llvm/IR/IRBuilder.h"
+
+namespace clang {
+namespace CodeGen {
+
+class CodeGenFunction;
+
+/// \brief This is an IRBuilder insertion helper that forwards to
+/// CodeGenFunction::InsertHelper, which adds necessary metadata to
+/// instructions.
+template <bool PreserveNames>
+class CGBuilderInserter
+ : protected llvm::IRBuilderDefaultInserter<PreserveNames> {
+public:
+ CGBuilderInserter() : CGF(nullptr) {}
+ explicit CGBuilderInserter(CodeGenFunction *CGF) : CGF(CGF) {}
+
+protected:
+ /// \brief This forwards to CodeGenFunction::InsertHelper.
+ void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
+ llvm::BasicBlock *BB,
+ llvm::BasicBlock::iterator InsertPt) const;
+private:
+ void operator=(const CGBuilderInserter &) = delete;
+
+ CodeGenFunction *CGF;
+};
+
+// Don't preserve names on values in an optimized build.
+#ifdef NDEBUG
+#define PreserveNames false
+#else
+#define PreserveNames true
+#endif
+typedef CGBuilderInserter<PreserveNames> CGBuilderInserterTy;
+typedef llvm::IRBuilder<PreserveNames, llvm::ConstantFolder,
+ CGBuilderInserterTy> CGBuilderTy;
+#undef PreserveNames
+
+} // end namespace CodeGen
+} // end namespace clang
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGBuiltin.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGBuiltin.cpp
new file mode 100644
index 0000000..272baac
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGBuiltin.cpp
@@ -0,0 +1,6725 @@
+//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code to emit Builtin calls as LLVM code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenFunction.h"
+#include "CGCXXABI.h"
+#include "CGObjCRuntime.h"
+#include "CodeGenModule.h"
+#include "TargetInfo.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Decl.h"
+#include "clang/Basic/TargetBuiltins.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/CodeGen/CGFunctionInfo.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/Intrinsics.h"
+#include <sstream>
+
+using namespace clang;
+using namespace CodeGen;
+using namespace llvm;
+
+/// getBuiltinLibFunction - Given a builtin id for a function like
+/// "__builtin_fabsf", return a Function* for "fabsf".
+llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
+ unsigned BuiltinID) {
+ assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
+
+ // Get the name, skip over the __builtin_ prefix (if necessary).
+ StringRef Name;
+ GlobalDecl D(FD);
+
+ // If the builtin has been declared explicitly with an assembler label,
+ // use the mangled name. This differs from the plain label on platforms
+ // that prefix labels.
+ if (FD->hasAttr<AsmLabelAttr>())
+ Name = getMangledName(D);
+ else
+ Name = Context.BuiltinInfo.GetName(BuiltinID) + 10;
+
+ llvm::FunctionType *Ty =
+ cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
+
+ return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
+}
+
+/// Emit the conversions required to turn the given value into an
+/// integer of the given size.
+static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
+ QualType T, llvm::IntegerType *IntType) {
+ V = CGF.EmitToMemory(V, T);
+
+ if (V->getType()->isPointerTy())
+ return CGF.Builder.CreatePtrToInt(V, IntType);
+
+ assert(V->getType() == IntType);
+ return V;
+}
+
+static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
+ QualType T, llvm::Type *ResultType) {
+ V = CGF.EmitFromMemory(V, T);
+
+ if (ResultType->isPointerTy())
+ return CGF.Builder.CreateIntToPtr(V, ResultType);
+
+ assert(V->getType() == ResultType);
+ return V;
+}
+
+/// Utility to insert an atomic instruction based on Instrinsic::ID
+/// and the expression node.
+static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
+ llvm::AtomicRMWInst::BinOp Kind,
+ const CallExpr *E) {
+ QualType T = E->getType();
+ assert(E->getArg(0)->getType()->isPointerType());
+ assert(CGF.getContext().hasSameUnqualifiedType(T,
+ E->getArg(0)->getType()->getPointeeType()));
+ assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
+
+ llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
+ unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
+
+ llvm::IntegerType *IntType =
+ llvm::IntegerType::get(CGF.getLLVMContext(),
+ CGF.getContext().getTypeSize(T));
+ llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
+
+ llvm::Value *Args[2];
+ Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
+ Args[1] = CGF.EmitScalarExpr(E->getArg(1));
+ llvm::Type *ValueType = Args[1]->getType();
+ Args[1] = EmitToInt(CGF, Args[1], T, IntType);
+
+ llvm::Value *Result =
+ CGF.Builder.CreateAtomicRMW(Kind, Args[0], Args[1],
+ llvm::SequentiallyConsistent);
+ Result = EmitFromInt(CGF, Result, T, ValueType);
+ return RValue::get(Result);
+}
+
+/// Utility to insert an atomic instruction based Instrinsic::ID and
+/// the expression node, where the return value is the result of the
+/// operation.
+static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
+ llvm::AtomicRMWInst::BinOp Kind,
+ const CallExpr *E,
+ Instruction::BinaryOps Op,
+ bool Invert = false) {
+ QualType T = E->getType();
+ assert(E->getArg(0)->getType()->isPointerType());
+ assert(CGF.getContext().hasSameUnqualifiedType(T,
+ E->getArg(0)->getType()->getPointeeType()));
+ assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
+
+ llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
+ unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
+
+ llvm::IntegerType *IntType =
+ llvm::IntegerType::get(CGF.getLLVMContext(),
+ CGF.getContext().getTypeSize(T));
+ llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
+
+ llvm::Value *Args[2];
+ Args[1] = CGF.EmitScalarExpr(E->getArg(1));
+ llvm::Type *ValueType = Args[1]->getType();
+ Args[1] = EmitToInt(CGF, Args[1], T, IntType);
+ Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
+
+ llvm::Value *Result =
+ CGF.Builder.CreateAtomicRMW(Kind, Args[0], Args[1],
+ llvm::SequentiallyConsistent);
+ Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
+ if (Invert)
+ Result = CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
+ llvm::ConstantInt::get(IntType, -1));
+ Result = EmitFromInt(CGF, Result, T, ValueType);
+ return RValue::get(Result);
+}
+
+/// EmitFAbs - Emit a call to @llvm.fabs().
+static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
+ Value *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
+ llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
+ Call->setDoesNotAccessMemory();
+ return Call;
+}
+
+/// Emit the computation of the sign bit for a floating point value. Returns
+/// the i1 sign bit value.
+static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) {
+ LLVMContext &C = CGF.CGM.getLLVMContext();
+
+ llvm::Type *Ty = V->getType();
+ int Width = Ty->getPrimitiveSizeInBits();
+ llvm::Type *IntTy = llvm::IntegerType::get(C, Width);
+ V = CGF.Builder.CreateBitCast(V, IntTy);
+ if (Ty->isPPC_FP128Ty()) {
+ // The higher-order double comes first, and so we need to truncate the
+ // pair to extract the overall sign. The order of the pair is the same
+ // in both little- and big-Endian modes.
+ Width >>= 1;
+ IntTy = llvm::IntegerType::get(C, Width);
+ V = CGF.Builder.CreateTrunc(V, IntTy);
+ }
+ Value *Zero = llvm::Constant::getNullValue(IntTy);
+ return CGF.Builder.CreateICmpSLT(V, Zero);
+}
+
+static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *Fn,
+ const CallExpr *E, llvm::Value *calleeValue) {
+ return CGF.EmitCall(E->getCallee()->getType(), calleeValue, E,
+ ReturnValueSlot(), Fn);
+}
+
+/// \brief Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
+/// depending on IntrinsicID.
+///
+/// \arg CGF The current codegen function.
+/// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
+/// \arg X The first argument to the llvm.*.with.overflow.*.
+/// \arg Y The second argument to the llvm.*.with.overflow.*.
+/// \arg Carry The carry returned by the llvm.*.with.overflow.*.
+/// \returns The result (i.e. sum/product) returned by the intrinsic.
+static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
+ const llvm::Intrinsic::ID IntrinsicID,
+ llvm::Value *X, llvm::Value *Y,
+ llvm::Value *&Carry) {
+ // Make sure we have integers of the same width.
+ assert(X->getType() == Y->getType() &&
+ "Arguments must be the same type. (Did you forget to make sure both "
+ "arguments have the same integer width?)");
+
+ llvm::Value *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
+ llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y});
+ Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
+ return CGF.Builder.CreateExtractValue(Tmp, 0);
+}
+
+RValue CodeGenFunction::EmitBuiltinExpr(const FunctionDecl *FD,
+ unsigned BuiltinID, const CallExpr *E,
+ ReturnValueSlot ReturnValue) {
+ // See if we can constant fold this builtin. If so, don't emit it at all.
+ Expr::EvalResult Result;
+ if (E->EvaluateAsRValue(Result, CGM.getContext()) &&
+ !Result.hasSideEffects()) {
+ if (Result.Val.isInt())
+ return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
+ Result.Val.getInt()));
+ if (Result.Val.isFloat())
+ return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
+ Result.Val.getFloat()));
+ }
+
+ switch (BuiltinID) {
+ default: break; // Handle intrinsics and libm functions below.
+ case Builtin::BI__builtin___CFStringMakeConstantString:
+ case Builtin::BI__builtin___NSStringMakeConstantString:
+ return RValue::get(CGM.EmitConstantExpr(E, E->getType(), nullptr));
+ case Builtin::BI__builtin_stdarg_start:
+ case Builtin::BI__builtin_va_start:
+ case Builtin::BI__va_start:
+ case Builtin::BI__builtin_va_end: {
+ Value *ArgValue = (BuiltinID == Builtin::BI__va_start)
+ ? EmitScalarExpr(E->getArg(0))
+ : EmitVAListRef(E->getArg(0));
+ llvm::Type *DestType = Int8PtrTy;
+ if (ArgValue->getType() != DestType)
+ ArgValue = Builder.CreateBitCast(ArgValue, DestType,
+ ArgValue->getName().data());
+
+ Intrinsic::ID inst = (BuiltinID == Builtin::BI__builtin_va_end) ?
+ Intrinsic::vaend : Intrinsic::vastart;
+ return RValue::get(Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue));
+ }
+ case Builtin::BI__builtin_va_copy: {
+ Value *DstPtr = EmitVAListRef(E->getArg(0));
+ Value *SrcPtr = EmitVAListRef(E->getArg(1));
+
+ llvm::Type *Type = Int8PtrTy;
+
+ DstPtr = Builder.CreateBitCast(DstPtr, Type);
+ SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
+ return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy),
+ {DstPtr, SrcPtr}));
+ }
+ case Builtin::BI__builtin_abs:
+ case Builtin::BI__builtin_labs:
+ case Builtin::BI__builtin_llabs: {
+ Value *ArgValue = EmitScalarExpr(E->getArg(0));
+
+ Value *NegOp = Builder.CreateNeg(ArgValue, "neg");
+ Value *CmpResult =
+ Builder.CreateICmpSGE(ArgValue,
+ llvm::Constant::getNullValue(ArgValue->getType()),
+ "abscond");
+ Value *Result =
+ Builder.CreateSelect(CmpResult, ArgValue, NegOp, "abs");
+
+ return RValue::get(Result);
+ }
+ case Builtin::BI__builtin_fabs:
+ case Builtin::BI__builtin_fabsf:
+ case Builtin::BI__builtin_fabsl: {
+ Value *Arg1 = EmitScalarExpr(E->getArg(0));
+ Value *Result = EmitFAbs(*this, Arg1);
+ return RValue::get(Result);
+ }
+ case Builtin::BI__builtin_fmod:
+ case Builtin::BI__builtin_fmodf:
+ case Builtin::BI__builtin_fmodl: {
+ Value *Arg1 = EmitScalarExpr(E->getArg(0));
+ Value *Arg2 = EmitScalarExpr(E->getArg(1));
+ Value *Result = Builder.CreateFRem(Arg1, Arg2, "fmod");
+ return RValue::get(Result);
+ }
+
+ case Builtin::BI__builtin_conj:
+ case Builtin::BI__builtin_conjf:
+ case Builtin::BI__builtin_conjl: {
+ ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
+ Value *Real = ComplexVal.first;
+ Value *Imag = ComplexVal.second;
+ Value *Zero =
+ Imag->getType()->isFPOrFPVectorTy()
+ ? llvm::ConstantFP::getZeroValueForNegation(Imag->getType())
+ : llvm::Constant::getNullValue(Imag->getType());
+
+ Imag = Builder.CreateFSub(Zero, Imag, "sub");
+ return RValue::getComplex(std::make_pair(Real, Imag));
+ }
+ case Builtin::BI__builtin_creal:
+ case Builtin::BI__builtin_crealf:
+ case Builtin::BI__builtin_creall:
+ case Builtin::BIcreal:
+ case Builtin::BIcrealf:
+ case Builtin::BIcreall: {
+ ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
+ return RValue::get(ComplexVal.first);
+ }
+
+ case Builtin::BI__builtin_cimag:
+ case Builtin::BI__builtin_cimagf:
+ case Builtin::BI__builtin_cimagl:
+ case Builtin::BIcimag:
+ case Builtin::BIcimagf:
+ case Builtin::BIcimagl: {
+ ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
+ return RValue::get(ComplexVal.second);
+ }
+
+ case Builtin::BI__builtin_ctzs:
+ case Builtin::BI__builtin_ctz:
+ case Builtin::BI__builtin_ctzl:
+ case Builtin::BI__builtin_ctzll: {
+ Value *ArgValue = EmitScalarExpr(E->getArg(0));
+
+ llvm::Type *ArgType = ArgValue->getType();
+ Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
+
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
+ Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
+ if (Result->getType() != ResultType)
+ Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
+ "cast");
+ return RValue::get(Result);
+ }
+ case Builtin::BI__builtin_clzs:
+ case Builtin::BI__builtin_clz:
+ case Builtin::BI__builtin_clzl:
+ case Builtin::BI__builtin_clzll: {
+ Value *ArgValue = EmitScalarExpr(E->getArg(0));
+
+ llvm::Type *ArgType = ArgValue->getType();
+ Value *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
+
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
+ Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
+ if (Result->getType() != ResultType)
+ Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
+ "cast");
+ return RValue::get(Result);
+ }
+ case Builtin::BI__builtin_ffs:
+ case Builtin::BI__builtin_ffsl:
+ case Builtin::BI__builtin_ffsll: {
+ // ffs(x) -> x ? cttz(x) + 1 : 0
+ Value *ArgValue = EmitScalarExpr(E->getArg(0));
+
+ llvm::Type *ArgType = ArgValue->getType();
+ Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
+
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *Tmp =
+ Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}),
+ llvm::ConstantInt::get(ArgType, 1));
+ Value *Zero = llvm::Constant::getNullValue(ArgType);
+ Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
+ Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
+ if (Result->getType() != ResultType)
+ Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
+ "cast");
+ return RValue::get(Result);
+ }
+ case Builtin::BI__builtin_parity:
+ case Builtin::BI__builtin_parityl:
+ case Builtin::BI__builtin_parityll: {
+ // parity(x) -> ctpop(x) & 1
+ Value *ArgValue = EmitScalarExpr(E->getArg(0));
+
+ llvm::Type *ArgType = ArgValue->getType();
+ Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
+
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *Tmp = Builder.CreateCall(F, ArgValue);
+ Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
+ if (Result->getType() != ResultType)
+ Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
+ "cast");
+ return RValue::get(Result);
+ }
+ case Builtin::BI__builtin_popcount:
+ case Builtin::BI__builtin_popcountl:
+ case Builtin::BI__builtin_popcountll: {
+ Value *ArgValue = EmitScalarExpr(E->getArg(0));
+
+ llvm::Type *ArgType = ArgValue->getType();
+ Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
+
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *Result = Builder.CreateCall(F, ArgValue);
+ if (Result->getType() != ResultType)
+ Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
+ "cast");
+ return RValue::get(Result);
+ }
+ case Builtin::BI__builtin_expect: {
+ Value *ArgValue = EmitScalarExpr(E->getArg(0));
+ llvm::Type *ArgType = ArgValue->getType();
+
+ Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
+ // Don't generate llvm.expect on -O0 as the backend won't use it for
+ // anything.
+ // Note, we still IRGen ExpectedValue because it could have side-effects.
+ if (CGM.getCodeGenOpts().OptimizationLevel == 0)
+ return RValue::get(ArgValue);
+
+ Value *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
+ Value *Result =
+ Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval");
+ return RValue::get(Result);
+ }
+ case Builtin::BI__builtin_assume_aligned: {
+ Value *PtrValue = EmitScalarExpr(E->getArg(0));
+ Value *OffsetValue =
+ (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
+
+ Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
+ ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
+ unsigned Alignment = (unsigned) AlignmentCI->getZExtValue();
+
+ EmitAlignmentAssumption(PtrValue, Alignment, OffsetValue);
+ return RValue::get(PtrValue);
+ }
+ case Builtin::BI__assume:
+ case Builtin::BI__builtin_assume: {
+ if (E->getArg(0)->HasSideEffects(getContext()))
+ return RValue::get(nullptr);
+
+ Value *ArgValue = EmitScalarExpr(E->getArg(0));
+ Value *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
+ return RValue::get(Builder.CreateCall(FnAssume, ArgValue));
+ }
+ case Builtin::BI__builtin_bswap16:
+ case Builtin::BI__builtin_bswap32:
+ case Builtin::BI__builtin_bswap64: {
+ Value *ArgValue = EmitScalarExpr(E->getArg(0));
+ llvm::Type *ArgType = ArgValue->getType();
+ Value *F = CGM.getIntrinsic(Intrinsic::bswap, ArgType);
+ return RValue::get(Builder.CreateCall(F, ArgValue));
+ }
+ case Builtin::BI__builtin_object_size: {
+ // We rely on constant folding to deal with expressions with side effects.
+ assert(!E->getArg(0)->HasSideEffects(getContext()) &&
+ "should have been constant folded");
+
+ // We pass this builtin onto the optimizer so that it can
+ // figure out the object size in more complex cases.
+ llvm::Type *ResType = ConvertType(E->getType());
+
+ // LLVM only supports 0 and 2, make sure that we pass along that
+ // as a boolean.
+ Value *Ty = EmitScalarExpr(E->getArg(1));
+ ConstantInt *CI = dyn_cast<ConstantInt>(Ty);
+ assert(CI);
+ uint64_t val = CI->getZExtValue();
+ CI = ConstantInt::get(Builder.getInt1Ty(), (val & 0x2) >> 1);
+ // FIXME: Get right address space.
+ llvm::Type *Tys[] = { ResType, Builder.getInt8PtrTy(0) };
+ Value *F = CGM.getIntrinsic(Intrinsic::objectsize, Tys);
+ return RValue::get(
+ Builder.CreateCall(F, {EmitScalarExpr(E->getArg(0)), CI}));
+ }
+ case Builtin::BI__builtin_prefetch: {
+ Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
+ // FIXME: Technically these constants should of type 'int', yes?
+ RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
+ llvm::ConstantInt::get(Int32Ty, 0);
+ Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
+ llvm::ConstantInt::get(Int32Ty, 3);
+ Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
+ Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
+ return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data}));
+ }
+ case Builtin::BI__builtin_readcyclecounter: {
+ Value *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
+ return RValue::get(Builder.CreateCall(F, {}));
+ }
+ case Builtin::BI__builtin___clear_cache: {
+ Value *Begin = EmitScalarExpr(E->getArg(0));
+ Value *End = EmitScalarExpr(E->getArg(1));
+ Value *F = CGM.getIntrinsic(Intrinsic::clear_cache);
+ return RValue::get(Builder.CreateCall(F, {Begin, End}));
+ }
+ case Builtin::BI__builtin_trap: {
+ Value *F = CGM.getIntrinsic(Intrinsic::trap);
+ return RValue::get(Builder.CreateCall(F, {}));
+ }
+ case Builtin::BI__debugbreak: {
+ Value *F = CGM.getIntrinsic(Intrinsic::debugtrap);
+ return RValue::get(Builder.CreateCall(F, {}));
+ }
+ case Builtin::BI__builtin_unreachable: {
+ if (SanOpts.has(SanitizerKind::Unreachable)) {
+ SanitizerScope SanScope(this);
+ EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
+ SanitizerKind::Unreachable),
+ "builtin_unreachable", EmitCheckSourceLocation(E->getExprLoc()),
+ None);
+ } else
+ Builder.CreateUnreachable();
+
+ // We do need to preserve an insertion point.
+ EmitBlock(createBasicBlock("unreachable.cont"));
+
+ return RValue::get(nullptr);
+ }
+
+ case Builtin::BI__builtin_powi:
+ case Builtin::BI__builtin_powif:
+ case Builtin::BI__builtin_powil: {
+ Value *Base = EmitScalarExpr(E->getArg(0));
+ Value *Exponent = EmitScalarExpr(E->getArg(1));
+ llvm::Type *ArgType = Base->getType();
+ Value *F = CGM.getIntrinsic(Intrinsic::powi, ArgType);
+ return RValue::get(Builder.CreateCall(F, {Base, Exponent}));
+ }
+
+ case Builtin::BI__builtin_isgreater:
+ case Builtin::BI__builtin_isgreaterequal:
+ case Builtin::BI__builtin_isless:
+ case Builtin::BI__builtin_islessequal:
+ case Builtin::BI__builtin_islessgreater:
+ case Builtin::BI__builtin_isunordered: {
+ // Ordered comparisons: we know the arguments to these are matching scalar
+ // floating point values.
+ Value *LHS = EmitScalarExpr(E->getArg(0));
+ Value *RHS = EmitScalarExpr(E->getArg(1));
+
+ switch (BuiltinID) {
+ default: llvm_unreachable("Unknown ordered comparison");
+ case Builtin::BI__builtin_isgreater:
+ LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
+ break;
+ case Builtin::BI__builtin_isgreaterequal:
+ LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
+ break;
+ case Builtin::BI__builtin_isless:
+ LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
+ break;
+ case Builtin::BI__builtin_islessequal:
+ LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
+ break;
+ case Builtin::BI__builtin_islessgreater:
+ LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
+ break;
+ case Builtin::BI__builtin_isunordered:
+ LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
+ break;
+ }
+ // ZExt bool to int type.
+ return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
+ }
+ case Builtin::BI__builtin_isnan: {
+ Value *V = EmitScalarExpr(E->getArg(0));
+ V = Builder.CreateFCmpUNO(V, V, "cmp");
+ return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
+ }
+
+ case Builtin::BI__builtin_isinf: {
+ // isinf(x) --> fabs(x) == infinity
+ Value *V = EmitScalarExpr(E->getArg(0));
+ V = EmitFAbs(*this, V);
+
+ V = Builder.CreateFCmpOEQ(V, ConstantFP::getInfinity(V->getType()),"isinf");
+ return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
+ }
+
+ case Builtin::BI__builtin_isinf_sign: {
+ // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
+ Value *Arg = EmitScalarExpr(E->getArg(0));
+ Value *AbsArg = EmitFAbs(*this, Arg);
+ Value *IsInf = Builder.CreateFCmpOEQ(
+ AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf");
+ Value *IsNeg = EmitSignBit(*this, Arg);
+
+ llvm::Type *IntTy = ConvertType(E->getType());
+ Value *Zero = Constant::getNullValue(IntTy);
+ Value *One = ConstantInt::get(IntTy, 1);
+ Value *NegativeOne = ConstantInt::get(IntTy, -1);
+ Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One);
+ Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero);
+ return RValue::get(Result);
+ }
+
+ case Builtin::BI__builtin_isnormal: {
+ // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
+ Value *V = EmitScalarExpr(E->getArg(0));
+ Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
+
+ Value *Abs = EmitFAbs(*this, V);
+ Value *IsLessThanInf =
+ Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
+ APFloat Smallest = APFloat::getSmallestNormalized(
+ getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
+ Value *IsNormal =
+ Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
+ "isnormal");
+ V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
+ V = Builder.CreateAnd(V, IsNormal, "and");
+ return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
+ }
+
+ case Builtin::BI__builtin_isfinite: {
+ // isfinite(x) --> x == x && fabs(x) != infinity;
+ Value *V = EmitScalarExpr(E->getArg(0));
+ Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
+
+ Value *Abs = EmitFAbs(*this, V);
+ Value *IsNotInf =
+ Builder.CreateFCmpUNE(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
+
+ V = Builder.CreateAnd(Eq, IsNotInf, "and");
+ return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
+ }
+
+ case Builtin::BI__builtin_fpclassify: {
+ Value *V = EmitScalarExpr(E->getArg(5));
+ llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
+
+ // Create Result
+ BasicBlock *Begin = Builder.GetInsertBlock();
+ BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
+ Builder.SetInsertPoint(End);
+ PHINode *Result =
+ Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
+ "fpclassify_result");
+
+ // if (V==0) return FP_ZERO
+ Builder.SetInsertPoint(Begin);
+ Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
+ "iszero");
+ Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
+ BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
+ Builder.CreateCondBr(IsZero, End, NotZero);
+ Result->addIncoming(ZeroLiteral, Begin);
+
+ // if (V != V) return FP_NAN
+ Builder.SetInsertPoint(NotZero);
+ Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
+ Value *NanLiteral = EmitScalarExpr(E->getArg(0));
+ BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
+ Builder.CreateCondBr(IsNan, End, NotNan);
+ Result->addIncoming(NanLiteral, NotZero);
+
+ // if (fabs(V) == infinity) return FP_INFINITY
+ Builder.SetInsertPoint(NotNan);
+ Value *VAbs = EmitFAbs(*this, V);
+ Value *IsInf =
+ Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
+ "isinf");
+ Value *InfLiteral = EmitScalarExpr(E->getArg(1));
+ BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
+ Builder.CreateCondBr(IsInf, End, NotInf);
+ Result->addIncoming(InfLiteral, NotNan);
+
+ // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
+ Builder.SetInsertPoint(NotInf);
+ APFloat Smallest = APFloat::getSmallestNormalized(
+ getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
+ Value *IsNormal =
+ Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
+ "isnormal");
+ Value *NormalResult =
+ Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
+ EmitScalarExpr(E->getArg(3)));
+ Builder.CreateBr(End);
+ Result->addIncoming(NormalResult, NotInf);
+
+ // return Result
+ Builder.SetInsertPoint(End);
+ return RValue::get(Result);
+ }
+
+ case Builtin::BIalloca:
+ case Builtin::BI_alloca:
+ case Builtin::BI__builtin_alloca: {
+ Value *Size = EmitScalarExpr(E->getArg(0));
+ return RValue::get(Builder.CreateAlloca(Builder.getInt8Ty(), Size));
+ }
+ case Builtin::BIbzero:
+ case Builtin::BI__builtin_bzero: {
+ std::pair<llvm::Value*, unsigned> Dest =
+ EmitPointerWithAlignment(E->getArg(0));
+ Value *SizeVal = EmitScalarExpr(E->getArg(1));
+ Builder.CreateMemSet(Dest.first, Builder.getInt8(0), SizeVal,
+ Dest.second, false);
+ return RValue::get(Dest.first);
+ }
+ case Builtin::BImemcpy:
+ case Builtin::BI__builtin_memcpy: {
+ std::pair<llvm::Value*, unsigned> Dest =
+ EmitPointerWithAlignment(E->getArg(0));
+ std::pair<llvm::Value*, unsigned> Src =
+ EmitPointerWithAlignment(E->getArg(1));
+ Value *SizeVal = EmitScalarExpr(E->getArg(2));
+ unsigned Align = std::min(Dest.second, Src.second);
+ Builder.CreateMemCpy(Dest.first, Src.first, SizeVal, Align, false);
+ return RValue::get(Dest.first);
+ }
+
+ case Builtin::BI__builtin___memcpy_chk: {
+ // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
+ llvm::APSInt Size, DstSize;
+ if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
+ !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
+ break;
+ if (Size.ugt(DstSize))
+ break;
+ std::pair<llvm::Value*, unsigned> Dest =
+ EmitPointerWithAlignment(E->getArg(0));
+ std::pair<llvm::Value*, unsigned> Src =
+ EmitPointerWithAlignment(E->getArg(1));
+ Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
+ unsigned Align = std::min(Dest.second, Src.second);
+ Builder.CreateMemCpy(Dest.first, Src.first, SizeVal, Align, false);
+ return RValue::get(Dest.first);
+ }
+
+ case Builtin::BI__builtin_objc_memmove_collectable: {
+ Value *Address = EmitScalarExpr(E->getArg(0));
+ Value *SrcAddr = EmitScalarExpr(E->getArg(1));
+ Value *SizeVal = EmitScalarExpr(E->getArg(2));
+ CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
+ Address, SrcAddr, SizeVal);
+ return RValue::get(Address);
+ }
+
+ case Builtin::BI__builtin___memmove_chk: {
+ // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
+ llvm::APSInt Size, DstSize;
+ if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
+ !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
+ break;
+ if (Size.ugt(DstSize))
+ break;
+ std::pair<llvm::Value*, unsigned> Dest =
+ EmitPointerWithAlignment(E->getArg(0));
+ std::pair<llvm::Value*, unsigned> Src =
+ EmitPointerWithAlignment(E->getArg(1));
+ Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
+ unsigned Align = std::min(Dest.second, Src.second);
+ Builder.CreateMemMove(Dest.first, Src.first, SizeVal, Align, false);
+ return RValue::get(Dest.first);
+ }
+
+ case Builtin::BImemmove:
+ case Builtin::BI__builtin_memmove: {
+ std::pair<llvm::Value*, unsigned> Dest =
+ EmitPointerWithAlignment(E->getArg(0));
+ std::pair<llvm::Value*, unsigned> Src =
+ EmitPointerWithAlignment(E->getArg(1));
+ Value *SizeVal = EmitScalarExpr(E->getArg(2));
+ unsigned Align = std::min(Dest.second, Src.second);
+ Builder.CreateMemMove(Dest.first, Src.first, SizeVal, Align, false);
+ return RValue::get(Dest.first);
+ }
+ case Builtin::BImemset:
+ case Builtin::BI__builtin_memset: {
+ std::pair<llvm::Value*, unsigned> Dest =
+ EmitPointerWithAlignment(E->getArg(0));
+ Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
+ Builder.getInt8Ty());
+ Value *SizeVal = EmitScalarExpr(E->getArg(2));
+ Builder.CreateMemSet(Dest.first, ByteVal, SizeVal, Dest.second, false);
+ return RValue::get(Dest.first);
+ }
+ case Builtin::BI__builtin___memset_chk: {
+ // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
+ llvm::APSInt Size, DstSize;
+ if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
+ !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
+ break;
+ if (Size.ugt(DstSize))
+ break;
+ std::pair<llvm::Value*, unsigned> Dest =
+ EmitPointerWithAlignment(E->getArg(0));
+ Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
+ Builder.getInt8Ty());
+ Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
+ Builder.CreateMemSet(Dest.first, ByteVal, SizeVal, Dest.second, false);
+ return RValue::get(Dest.first);
+ }
+ case Builtin::BI__builtin_dwarf_cfa: {
+ // The offset in bytes from the first argument to the CFA.
+ //
+ // Why on earth is this in the frontend? Is there any reason at
+ // all that the backend can't reasonably determine this while
+ // lowering llvm.eh.dwarf.cfa()?
+ //
+ // TODO: If there's a satisfactory reason, add a target hook for
+ // this instead of hard-coding 0, which is correct for most targets.
+ int32_t Offset = 0;
+
+ Value *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
+ return RValue::get(Builder.CreateCall(F,
+ llvm::ConstantInt::get(Int32Ty, Offset)));
+ }
+ case Builtin::BI__builtin_return_address: {
+ Value *Depth = EmitScalarExpr(E->getArg(0));
+ Depth = Builder.CreateIntCast(Depth, Int32Ty, false);
+ Value *F = CGM.getIntrinsic(Intrinsic::returnaddress);
+ return RValue::get(Builder.CreateCall(F, Depth));
+ }
+ case Builtin::BI__builtin_frame_address: {
+ Value *Depth = EmitScalarExpr(E->getArg(0));
+ Depth = Builder.CreateIntCast(Depth, Int32Ty, false);
+ Value *F = CGM.getIntrinsic(Intrinsic::frameaddress);
+ return RValue::get(Builder.CreateCall(F, Depth));
+ }
+ case Builtin::BI__builtin_extract_return_addr: {
+ Value *Address = EmitScalarExpr(E->getArg(0));
+ Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
+ return RValue::get(Result);
+ }
+ case Builtin::BI__builtin_frob_return_addr: {
+ Value *Address = EmitScalarExpr(E->getArg(0));
+ Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
+ return RValue::get(Result);
+ }
+ case Builtin::BI__builtin_dwarf_sp_column: {
+ llvm::IntegerType *Ty
+ = cast<llvm::IntegerType>(ConvertType(E->getType()));
+ int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
+ if (Column == -1) {
+ CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
+ return RValue::get(llvm::UndefValue::get(Ty));
+ }
+ return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
+ }
+ case Builtin::BI__builtin_init_dwarf_reg_size_table: {
+ Value *Address = EmitScalarExpr(E->getArg(0));
+ if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
+ CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
+ return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
+ }
+ case Builtin::BI__builtin_eh_return: {
+ Value *Int = EmitScalarExpr(E->getArg(0));
+ Value *Ptr = EmitScalarExpr(E->getArg(1));
+
+ llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
+ assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
+ "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
+ Value *F = CGM.getIntrinsic(IntTy->getBitWidth() == 32
+ ? Intrinsic::eh_return_i32
+ : Intrinsic::eh_return_i64);
+ Builder.CreateCall(F, {Int, Ptr});
+ Builder.CreateUnreachable();
+
+ // We do need to preserve an insertion point.
+ EmitBlock(createBasicBlock("builtin_eh_return.cont"));
+
+ return RValue::get(nullptr);
+ }
+ case Builtin::BI__builtin_unwind_init: {
+ Value *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
+ return RValue::get(Builder.CreateCall(F, {}));
+ }
+ case Builtin::BI__builtin_extend_pointer: {
+ // Extends a pointer to the size of an _Unwind_Word, which is
+ // uint64_t on all platforms. Generally this gets poked into a
+ // register and eventually used as an address, so if the
+ // addressing registers are wider than pointers and the platform
+ // doesn't implicitly ignore high-order bits when doing
+ // addressing, we need to make sure we zext / sext based on
+ // the platform's expectations.
+ //
+ // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
+
+ // Cast the pointer to intptr_t.
+ Value *Ptr = EmitScalarExpr(E->getArg(0));
+ Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
+
+ // If that's 64 bits, we're done.
+ if (IntPtrTy->getBitWidth() == 64)
+ return RValue::get(Result);
+
+ // Otherwise, ask the codegen data what to do.
+ if (getTargetHooks().extendPointerWithSExt())
+ return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
+ else
+ return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
+ }
+ case Builtin::BI__builtin_setjmp: {
+ // Buffer is a void**.
+ Value *Buf = EmitScalarExpr(E->getArg(0));
+
+ // Store the frame pointer to the setjmp buffer.
+ Value *FrameAddr =
+ Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
+ ConstantInt::get(Int32Ty, 0));
+ Builder.CreateStore(FrameAddr, Buf);
+
+ // Store the stack pointer to the setjmp buffer.
+ Value *StackAddr =
+ Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave), {});
+ Value *StackSaveSlot =
+ Builder.CreateGEP(Buf, ConstantInt::get(Int32Ty, 2));
+ Builder.CreateStore(StackAddr, StackSaveSlot);
+
+ // Call LLVM's EH setjmp, which is lightweight.
+ Value *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
+ Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
+ return RValue::get(Builder.CreateCall(F, Buf));
+ }
+ case Builtin::BI__builtin_longjmp: {
+ Value *Buf = EmitScalarExpr(E->getArg(0));
+ Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
+
+ // Call LLVM's EH longjmp, which is lightweight.
+ Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
+
+ // longjmp doesn't return; mark this as unreachable.
+ Builder.CreateUnreachable();
+
+ // We do need to preserve an insertion point.
+ EmitBlock(createBasicBlock("longjmp.cont"));
+
+ return RValue::get(nullptr);
+ }
+ case Builtin::BI__sync_fetch_and_add:
+ case Builtin::BI__sync_fetch_and_sub:
+ case Builtin::BI__sync_fetch_and_or:
+ case Builtin::BI__sync_fetch_and_and:
+ case Builtin::BI__sync_fetch_and_xor:
+ case Builtin::BI__sync_fetch_and_nand:
+ case Builtin::BI__sync_add_and_fetch:
+ case Builtin::BI__sync_sub_and_fetch:
+ case Builtin::BI__sync_and_and_fetch:
+ case Builtin::BI__sync_or_and_fetch:
+ case Builtin::BI__sync_xor_and_fetch:
+ case Builtin::BI__sync_nand_and_fetch:
+ case Builtin::BI__sync_val_compare_and_swap:
+ case Builtin::BI__sync_bool_compare_and_swap:
+ case Builtin::BI__sync_lock_test_and_set:
+ case Builtin::BI__sync_lock_release:
+ case Builtin::BI__sync_swap:
+ llvm_unreachable("Shouldn't make it through sema");
+ case Builtin::BI__sync_fetch_and_add_1:
+ case Builtin::BI__sync_fetch_and_add_2:
+ case Builtin::BI__sync_fetch_and_add_4:
+ case Builtin::BI__sync_fetch_and_add_8:
+ case Builtin::BI__sync_fetch_and_add_16:
+ return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
+ case Builtin::BI__sync_fetch_and_sub_1:
+ case Builtin::BI__sync_fetch_and_sub_2:
+ case Builtin::BI__sync_fetch_and_sub_4:
+ case Builtin::BI__sync_fetch_and_sub_8:
+ case Builtin::BI__sync_fetch_and_sub_16:
+ return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
+ case Builtin::BI__sync_fetch_and_or_1:
+ case Builtin::BI__sync_fetch_and_or_2:
+ case Builtin::BI__sync_fetch_and_or_4:
+ case Builtin::BI__sync_fetch_and_or_8:
+ case Builtin::BI__sync_fetch_and_or_16:
+ return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
+ case Builtin::BI__sync_fetch_and_and_1:
+ case Builtin::BI__sync_fetch_and_and_2:
+ case Builtin::BI__sync_fetch_and_and_4:
+ case Builtin::BI__sync_fetch_and_and_8:
+ case Builtin::BI__sync_fetch_and_and_16:
+ return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
+ case Builtin::BI__sync_fetch_and_xor_1:
+ case Builtin::BI__sync_fetch_and_xor_2:
+ case Builtin::BI__sync_fetch_and_xor_4:
+ case Builtin::BI__sync_fetch_and_xor_8:
+ case Builtin::BI__sync_fetch_and_xor_16:
+ return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
+ case Builtin::BI__sync_fetch_and_nand_1:
+ case Builtin::BI__sync_fetch_and_nand_2:
+ case Builtin::BI__sync_fetch_and_nand_4:
+ case Builtin::BI__sync_fetch_and_nand_8:
+ case Builtin::BI__sync_fetch_and_nand_16:
+ return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
+
+ // Clang extensions: not overloaded yet.
+ case Builtin::BI__sync_fetch_and_min:
+ return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
+ case Builtin::BI__sync_fetch_and_max:
+ return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
+ case Builtin::BI__sync_fetch_and_umin:
+ return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
+ case Builtin::BI__sync_fetch_and_umax:
+ return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
+
+ case Builtin::BI__sync_add_and_fetch_1:
+ case Builtin::BI__sync_add_and_fetch_2:
+ case Builtin::BI__sync_add_and_fetch_4:
+ case Builtin::BI__sync_add_and_fetch_8:
+ case Builtin::BI__sync_add_and_fetch_16:
+ return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
+ llvm::Instruction::Add);
+ case Builtin::BI__sync_sub_and_fetch_1:
+ case Builtin::BI__sync_sub_and_fetch_2:
+ case Builtin::BI__sync_sub_and_fetch_4:
+ case Builtin::BI__sync_sub_and_fetch_8:
+ case Builtin::BI__sync_sub_and_fetch_16:
+ return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
+ llvm::Instruction::Sub);
+ case Builtin::BI__sync_and_and_fetch_1:
+ case Builtin::BI__sync_and_and_fetch_2:
+ case Builtin::BI__sync_and_and_fetch_4:
+ case Builtin::BI__sync_and_and_fetch_8:
+ case Builtin::BI__sync_and_and_fetch_16:
+ return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
+ llvm::Instruction::And);
+ case Builtin::BI__sync_or_and_fetch_1:
+ case Builtin::BI__sync_or_and_fetch_2:
+ case Builtin::BI__sync_or_and_fetch_4:
+ case Builtin::BI__sync_or_and_fetch_8:
+ case Builtin::BI__sync_or_and_fetch_16:
+ return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
+ llvm::Instruction::Or);
+ case Builtin::BI__sync_xor_and_fetch_1:
+ case Builtin::BI__sync_xor_and_fetch_2:
+ case Builtin::BI__sync_xor_and_fetch_4:
+ case Builtin::BI__sync_xor_and_fetch_8:
+ case Builtin::BI__sync_xor_and_fetch_16:
+ return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
+ llvm::Instruction::Xor);
+ case Builtin::BI__sync_nand_and_fetch_1:
+ case Builtin::BI__sync_nand_and_fetch_2:
+ case Builtin::BI__sync_nand_and_fetch_4:
+ case Builtin::BI__sync_nand_and_fetch_8:
+ case Builtin::BI__sync_nand_and_fetch_16:
+ return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
+ llvm::Instruction::And, true);
+
+ case Builtin::BI__sync_val_compare_and_swap_1:
+ case Builtin::BI__sync_val_compare_and_swap_2:
+ case Builtin::BI__sync_val_compare_and_swap_4:
+ case Builtin::BI__sync_val_compare_and_swap_8:
+ case Builtin::BI__sync_val_compare_and_swap_16: {
+ QualType T = E->getType();
+ llvm::Value *DestPtr = EmitScalarExpr(E->getArg(0));
+ unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
+
+ llvm::IntegerType *IntType =
+ llvm::IntegerType::get(getLLVMContext(),
+ getContext().getTypeSize(T));
+ llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
+
+ Value *Args[3];
+ Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType);
+ Args[1] = EmitScalarExpr(E->getArg(1));
+ llvm::Type *ValueType = Args[1]->getType();
+ Args[1] = EmitToInt(*this, Args[1], T, IntType);
+ Args[2] = EmitToInt(*this, EmitScalarExpr(E->getArg(2)), T, IntType);
+
+ Value *Result = Builder.CreateAtomicCmpXchg(Args[0], Args[1], Args[2],
+ llvm::SequentiallyConsistent,
+ llvm::SequentiallyConsistent);
+ Result = Builder.CreateExtractValue(Result, 0);
+ Result = EmitFromInt(*this, Result, T, ValueType);
+ return RValue::get(Result);
+ }
+
+ case Builtin::BI__sync_bool_compare_and_swap_1:
+ case Builtin::BI__sync_bool_compare_and_swap_2:
+ case Builtin::BI__sync_bool_compare_and_swap_4:
+ case Builtin::BI__sync_bool_compare_and_swap_8:
+ case Builtin::BI__sync_bool_compare_and_swap_16: {
+ QualType T = E->getArg(1)->getType();
+ llvm::Value *DestPtr = EmitScalarExpr(E->getArg(0));
+ unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
+
+ llvm::IntegerType *IntType =
+ llvm::IntegerType::get(getLLVMContext(),
+ getContext().getTypeSize(T));
+ llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
+
+ Value *Args[3];
+ Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType);
+ Args[1] = EmitToInt(*this, EmitScalarExpr(E->getArg(1)), T, IntType);
+ Args[2] = EmitToInt(*this, EmitScalarExpr(E->getArg(2)), T, IntType);
+
+ Value *Pair = Builder.CreateAtomicCmpXchg(Args[0], Args[1], Args[2],
+ llvm::SequentiallyConsistent,
+ llvm::SequentiallyConsistent);
+ Value *Result = Builder.CreateExtractValue(Pair, 1);
+ // zext bool to int.
+ Result = Builder.CreateZExt(Result, ConvertType(E->getType()));
+ return RValue::get(Result);
+ }
+
+ case Builtin::BI__sync_swap_1:
+ case Builtin::BI__sync_swap_2:
+ case Builtin::BI__sync_swap_4:
+ case Builtin::BI__sync_swap_8:
+ case Builtin::BI__sync_swap_16:
+ return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
+
+ case Builtin::BI__sync_lock_test_and_set_1:
+ case Builtin::BI__sync_lock_test_and_set_2:
+ case Builtin::BI__sync_lock_test_and_set_4:
+ case Builtin::BI__sync_lock_test_and_set_8:
+ case Builtin::BI__sync_lock_test_and_set_16:
+ return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
+
+ case Builtin::BI__sync_lock_release_1:
+ case Builtin::BI__sync_lock_release_2:
+ case Builtin::BI__sync_lock_release_4:
+ case Builtin::BI__sync_lock_release_8:
+ case Builtin::BI__sync_lock_release_16: {
+ Value *Ptr = EmitScalarExpr(E->getArg(0));
+ QualType ElTy = E->getArg(0)->getType()->getPointeeType();
+ CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
+ llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
+ StoreSize.getQuantity() * 8);
+ Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
+ llvm::StoreInst *Store =
+ Builder.CreateStore(llvm::Constant::getNullValue(ITy), Ptr);
+ Store->setAlignment(StoreSize.getQuantity());
+ Store->setAtomic(llvm::Release);
+ return RValue::get(nullptr);
+ }
+
+ case Builtin::BI__sync_synchronize: {
+ // We assume this is supposed to correspond to a C++0x-style
+ // sequentially-consistent fence (i.e. this is only usable for
+ // synchonization, not device I/O or anything like that). This intrinsic
+ // is really badly designed in the sense that in theory, there isn't
+ // any way to safely use it... but in practice, it mostly works
+ // to use it with non-atomic loads and stores to get acquire/release
+ // semantics.
+ Builder.CreateFence(llvm::SequentiallyConsistent);
+ return RValue::get(nullptr);
+ }
+
+ case Builtin::BI__c11_atomic_is_lock_free:
+ case Builtin::BI__atomic_is_lock_free: {
+ // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
+ // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
+ // _Atomic(T) is always properly-aligned.
+ const char *LibCallName = "__atomic_is_lock_free";
+ CallArgList Args;
+ Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
+ getContext().getSizeType());
+ if (BuiltinID == Builtin::BI__atomic_is_lock_free)
+ Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
+ getContext().VoidPtrTy);
+ else
+ Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
+ getContext().VoidPtrTy);
+ const CGFunctionInfo &FuncInfo =
+ CGM.getTypes().arrangeFreeFunctionCall(E->getType(), Args,
+ FunctionType::ExtInfo(),
+ RequiredArgs::All);
+ llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
+ llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
+ return EmitCall(FuncInfo, Func, ReturnValueSlot(), Args);
+ }
+
+ case Builtin::BI__atomic_test_and_set: {
+ // Look at the argument type to determine whether this is a volatile
+ // operation. The parameter type is always volatile.
+ QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
+ bool Volatile =
+ PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
+
+ Value *Ptr = EmitScalarExpr(E->getArg(0));
+ unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
+ Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
+ Value *NewVal = Builder.getInt8(1);
+ Value *Order = EmitScalarExpr(E->getArg(1));
+ if (isa<llvm::ConstantInt>(Order)) {
+ int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
+ AtomicRMWInst *Result = nullptr;
+ switch (ord) {
+ case 0: // memory_order_relaxed
+ default: // invalid order
+ Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
+ Ptr, NewVal,
+ llvm::Monotonic);
+ break;
+ case 1: // memory_order_consume
+ case 2: // memory_order_acquire
+ Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
+ Ptr, NewVal,
+ llvm::Acquire);
+ break;
+ case 3: // memory_order_release
+ Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
+ Ptr, NewVal,
+ llvm::Release);
+ break;
+ case 4: // memory_order_acq_rel
+ Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
+ Ptr, NewVal,
+ llvm::AcquireRelease);
+ break;
+ case 5: // memory_order_seq_cst
+ Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
+ Ptr, NewVal,
+ llvm::SequentiallyConsistent);
+ break;
+ }
+ Result->setVolatile(Volatile);
+ return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
+ }
+
+ llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
+
+ llvm::BasicBlock *BBs[5] = {
+ createBasicBlock("monotonic", CurFn),
+ createBasicBlock("acquire", CurFn),
+ createBasicBlock("release", CurFn),
+ createBasicBlock("acqrel", CurFn),
+ createBasicBlock("seqcst", CurFn)
+ };
+ llvm::AtomicOrdering Orders[5] = {
+ llvm::Monotonic, llvm::Acquire, llvm::Release,
+ llvm::AcquireRelease, llvm::SequentiallyConsistent
+ };
+
+ Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
+ llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
+
+ Builder.SetInsertPoint(ContBB);
+ PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
+
+ for (unsigned i = 0; i < 5; ++i) {
+ Builder.SetInsertPoint(BBs[i]);
+ AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
+ Ptr, NewVal, Orders[i]);
+ RMW->setVolatile(Volatile);
+ Result->addIncoming(RMW, BBs[i]);
+ Builder.CreateBr(ContBB);
+ }
+
+ SI->addCase(Builder.getInt32(0), BBs[0]);
+ SI->addCase(Builder.getInt32(1), BBs[1]);
+ SI->addCase(Builder.getInt32(2), BBs[1]);
+ SI->addCase(Builder.getInt32(3), BBs[2]);
+ SI->addCase(Builder.getInt32(4), BBs[3]);
+ SI->addCase(Builder.getInt32(5), BBs[4]);
+
+ Builder.SetInsertPoint(ContBB);
+ return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
+ }
+
+ case Builtin::BI__atomic_clear: {
+ QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
+ bool Volatile =
+ PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
+
+ Value *Ptr = EmitScalarExpr(E->getArg(0));
+ unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
+ Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
+ Value *NewVal = Builder.getInt8(0);
+ Value *Order = EmitScalarExpr(E->getArg(1));
+ if (isa<llvm::ConstantInt>(Order)) {
+ int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
+ StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
+ Store->setAlignment(1);
+ switch (ord) {
+ case 0: // memory_order_relaxed
+ default: // invalid order
+ Store->setOrdering(llvm::Monotonic);
+ break;
+ case 3: // memory_order_release
+ Store->setOrdering(llvm::Release);
+ break;
+ case 5: // memory_order_seq_cst
+ Store->setOrdering(llvm::SequentiallyConsistent);
+ break;
+ }
+ return RValue::get(nullptr);
+ }
+
+ llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
+
+ llvm::BasicBlock *BBs[3] = {
+ createBasicBlock("monotonic", CurFn),
+ createBasicBlock("release", CurFn),
+ createBasicBlock("seqcst", CurFn)
+ };
+ llvm::AtomicOrdering Orders[3] = {
+ llvm::Monotonic, llvm::Release, llvm::SequentiallyConsistent
+ };
+
+ Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
+ llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
+
+ for (unsigned i = 0; i < 3; ++i) {
+ Builder.SetInsertPoint(BBs[i]);
+ StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
+ Store->setAlignment(1);
+ Store->setOrdering(Orders[i]);
+ Builder.CreateBr(ContBB);
+ }
+
+ SI->addCase(Builder.getInt32(0), BBs[0]);
+ SI->addCase(Builder.getInt32(3), BBs[1]);
+ SI->addCase(Builder.getInt32(5), BBs[2]);
+
+ Builder.SetInsertPoint(ContBB);
+ return RValue::get(nullptr);
+ }
+
+ case Builtin::BI__atomic_thread_fence:
+ case Builtin::BI__atomic_signal_fence:
+ case Builtin::BI__c11_atomic_thread_fence:
+ case Builtin::BI__c11_atomic_signal_fence: {
+ llvm::SynchronizationScope Scope;
+ if (BuiltinID == Builtin::BI__atomic_signal_fence ||
+ BuiltinID == Builtin::BI__c11_atomic_signal_fence)
+ Scope = llvm::SingleThread;
+ else
+ Scope = llvm::CrossThread;
+ Value *Order = EmitScalarExpr(E->getArg(0));
+ if (isa<llvm::ConstantInt>(Order)) {
+ int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
+ switch (ord) {
+ case 0: // memory_order_relaxed
+ default: // invalid order
+ break;
+ case 1: // memory_order_consume
+ case 2: // memory_order_acquire
+ Builder.CreateFence(llvm::Acquire, Scope);
+ break;
+ case 3: // memory_order_release
+ Builder.CreateFence(llvm::Release, Scope);
+ break;
+ case 4: // memory_order_acq_rel
+ Builder.CreateFence(llvm::AcquireRelease, Scope);
+ break;
+ case 5: // memory_order_seq_cst
+ Builder.CreateFence(llvm::SequentiallyConsistent, Scope);
+ break;
+ }
+ return RValue::get(nullptr);
+ }
+
+ llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
+ AcquireBB = createBasicBlock("acquire", CurFn);
+ ReleaseBB = createBasicBlock("release", CurFn);
+ AcqRelBB = createBasicBlock("acqrel", CurFn);
+ SeqCstBB = createBasicBlock("seqcst", CurFn);
+ llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
+
+ Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
+ llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
+
+ Builder.SetInsertPoint(AcquireBB);
+ Builder.CreateFence(llvm::Acquire, Scope);
+ Builder.CreateBr(ContBB);
+ SI->addCase(Builder.getInt32(1), AcquireBB);
+ SI->addCase(Builder.getInt32(2), AcquireBB);
+
+ Builder.SetInsertPoint(ReleaseBB);
+ Builder.CreateFence(llvm::Release, Scope);
+ Builder.CreateBr(ContBB);
+ SI->addCase(Builder.getInt32(3), ReleaseBB);
+
+ Builder.SetInsertPoint(AcqRelBB);
+ Builder.CreateFence(llvm::AcquireRelease, Scope);
+ Builder.CreateBr(ContBB);
+ SI->addCase(Builder.getInt32(4), AcqRelBB);
+
+ Builder.SetInsertPoint(SeqCstBB);
+ Builder.CreateFence(llvm::SequentiallyConsistent, Scope);
+ Builder.CreateBr(ContBB);
+ SI->addCase(Builder.getInt32(5), SeqCstBB);
+
+ Builder.SetInsertPoint(ContBB);
+ return RValue::get(nullptr);
+ }
+
+ // Library functions with special handling.
+ case Builtin::BIsqrt:
+ case Builtin::BIsqrtf:
+ case Builtin::BIsqrtl: {
+ // Transform a call to sqrt* into a @llvm.sqrt.* intrinsic call, but only
+ // in finite- or unsafe-math mode (the intrinsic has different semantics
+ // for handling negative numbers compared to the library function, so
+ // -fmath-errno=0 is not enough).
+ if (!FD->hasAttr<ConstAttr>())
+ break;
+ if (!(CGM.getCodeGenOpts().UnsafeFPMath ||
+ CGM.getCodeGenOpts().NoNaNsFPMath))
+ break;
+ Value *Arg0 = EmitScalarExpr(E->getArg(0));
+ llvm::Type *ArgType = Arg0->getType();
+ Value *F = CGM.getIntrinsic(Intrinsic::sqrt, ArgType);
+ return RValue::get(Builder.CreateCall(F, Arg0));
+ }
+
+ case Builtin::BI__builtin_pow:
+ case Builtin::BI__builtin_powf:
+ case Builtin::BI__builtin_powl:
+ case Builtin::BIpow:
+ case Builtin::BIpowf:
+ case Builtin::BIpowl: {
+ // Transform a call to pow* into a @llvm.pow.* intrinsic call.
+ if (!FD->hasAttr<ConstAttr>())
+ break;
+ Value *Base = EmitScalarExpr(E->getArg(0));
+ Value *Exponent = EmitScalarExpr(E->getArg(1));
+ llvm::Type *ArgType = Base->getType();
+ Value *F = CGM.getIntrinsic(Intrinsic::pow, ArgType);
+ return RValue::get(Builder.CreateCall(F, {Base, Exponent}));
+ }
+
+ case Builtin::BIfma:
+ case Builtin::BIfmaf:
+ case Builtin::BIfmal:
+ case Builtin::BI__builtin_fma:
+ case Builtin::BI__builtin_fmaf:
+ case Builtin::BI__builtin_fmal: {
+ // Rewrite fma to intrinsic.
+ Value *FirstArg = EmitScalarExpr(E->getArg(0));
+ llvm::Type *ArgType = FirstArg->getType();
+ Value *F = CGM.getIntrinsic(Intrinsic::fma, ArgType);
+ return RValue::get(
+ Builder.CreateCall(F, {FirstArg, EmitScalarExpr(E->getArg(1)),
+ EmitScalarExpr(E->getArg(2))}));
+ }
+
+ case Builtin::BI__builtin_signbit:
+ case Builtin::BI__builtin_signbitf:
+ case Builtin::BI__builtin_signbitl: {
+ return RValue::get(
+ Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))),
+ ConvertType(E->getType())));
+ }
+ case Builtin::BI__builtin_annotation: {
+ llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
+ llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
+ AnnVal->getType());
+
+ // Get the annotation string, go through casts. Sema requires this to be a
+ // non-wide string literal, potentially casted, so the cast<> is safe.
+ const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
+ StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
+ return RValue::get(EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc()));
+ }
+ case Builtin::BI__builtin_addcb:
+ case Builtin::BI__builtin_addcs:
+ case Builtin::BI__builtin_addc:
+ case Builtin::BI__builtin_addcl:
+ case Builtin::BI__builtin_addcll:
+ case Builtin::BI__builtin_subcb:
+ case Builtin::BI__builtin_subcs:
+ case Builtin::BI__builtin_subc:
+ case Builtin::BI__builtin_subcl:
+ case Builtin::BI__builtin_subcll: {
+
+ // We translate all of these builtins from expressions of the form:
+ // int x = ..., y = ..., carryin = ..., carryout, result;
+ // result = __builtin_addc(x, y, carryin, &carryout);
+ //
+ // to LLVM IR of the form:
+ //
+ // %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
+ // %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
+ // %carry1 = extractvalue {i32, i1} %tmp1, 1
+ // %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
+ // i32 %carryin)
+ // %result = extractvalue {i32, i1} %tmp2, 0
+ // %carry2 = extractvalue {i32, i1} %tmp2, 1
+ // %tmp3 = or i1 %carry1, %carry2
+ // %tmp4 = zext i1 %tmp3 to i32
+ // store i32 %tmp4, i32* %carryout
+
+ // Scalarize our inputs.
+ llvm::Value *X = EmitScalarExpr(E->getArg(0));
+ llvm::Value *Y = EmitScalarExpr(E->getArg(1));
+ llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
+ std::pair<llvm::Value*, unsigned> CarryOutPtr =
+ EmitPointerWithAlignment(E->getArg(3));
+
+ // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
+ llvm::Intrinsic::ID IntrinsicId;
+ switch (BuiltinID) {
+ default: llvm_unreachable("Unknown multiprecision builtin id.");
+ case Builtin::BI__builtin_addcb:
+ case Builtin::BI__builtin_addcs:
+ case Builtin::BI__builtin_addc:
+ case Builtin::BI__builtin_addcl:
+ case Builtin::BI__builtin_addcll:
+ IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
+ break;
+ case Builtin::BI__builtin_subcb:
+ case Builtin::BI__builtin_subcs:
+ case Builtin::BI__builtin_subc:
+ case Builtin::BI__builtin_subcl:
+ case Builtin::BI__builtin_subcll:
+ IntrinsicId = llvm::Intrinsic::usub_with_overflow;
+ break;
+ }
+
+ // Construct our resulting LLVM IR expression.
+ llvm::Value *Carry1;
+ llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
+ X, Y, Carry1);
+ llvm::Value *Carry2;
+ llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
+ Sum1, Carryin, Carry2);
+ llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
+ X->getType());
+ llvm::StoreInst *CarryOutStore = Builder.CreateStore(CarryOut,
+ CarryOutPtr.first);
+ CarryOutStore->setAlignment(CarryOutPtr.second);
+ return RValue::get(Sum2);
+ }
+ case Builtin::BI__builtin_uadd_overflow:
+ case Builtin::BI__builtin_uaddl_overflow:
+ case Builtin::BI__builtin_uaddll_overflow:
+ case Builtin::BI__builtin_usub_overflow:
+ case Builtin::BI__builtin_usubl_overflow:
+ case Builtin::BI__builtin_usubll_overflow:
+ case Builtin::BI__builtin_umul_overflow:
+ case Builtin::BI__builtin_umull_overflow:
+ case Builtin::BI__builtin_umulll_overflow:
+ case Builtin::BI__builtin_sadd_overflow:
+ case Builtin::BI__builtin_saddl_overflow:
+ case Builtin::BI__builtin_saddll_overflow:
+ case Builtin::BI__builtin_ssub_overflow:
+ case Builtin::BI__builtin_ssubl_overflow:
+ case Builtin::BI__builtin_ssubll_overflow:
+ case Builtin::BI__builtin_smul_overflow:
+ case Builtin::BI__builtin_smull_overflow:
+ case Builtin::BI__builtin_smulll_overflow: {
+
+ // We translate all of these builtins directly to the relevant llvm IR node.
+
+ // Scalarize our inputs.
+ llvm::Value *X = EmitScalarExpr(E->getArg(0));
+ llvm::Value *Y = EmitScalarExpr(E->getArg(1));
+ std::pair<llvm::Value *, unsigned> SumOutPtr =
+ EmitPointerWithAlignment(E->getArg(2));
+
+ // Decide which of the overflow intrinsics we are lowering to:
+ llvm::Intrinsic::ID IntrinsicId;
+ switch (BuiltinID) {
+ default: llvm_unreachable("Unknown security overflow builtin id.");
+ case Builtin::BI__builtin_uadd_overflow:
+ case Builtin::BI__builtin_uaddl_overflow:
+ case Builtin::BI__builtin_uaddll_overflow:
+ IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
+ break;
+ case Builtin::BI__builtin_usub_overflow:
+ case Builtin::BI__builtin_usubl_overflow:
+ case Builtin::BI__builtin_usubll_overflow:
+ IntrinsicId = llvm::Intrinsic::usub_with_overflow;
+ break;
+ case Builtin::BI__builtin_umul_overflow:
+ case Builtin::BI__builtin_umull_overflow:
+ case Builtin::BI__builtin_umulll_overflow:
+ IntrinsicId = llvm::Intrinsic::umul_with_overflow;
+ break;
+ case Builtin::BI__builtin_sadd_overflow:
+ case Builtin::BI__builtin_saddl_overflow:
+ case Builtin::BI__builtin_saddll_overflow:
+ IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
+ break;
+ case Builtin::BI__builtin_ssub_overflow:
+ case Builtin::BI__builtin_ssubl_overflow:
+ case Builtin::BI__builtin_ssubll_overflow:
+ IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
+ break;
+ case Builtin::BI__builtin_smul_overflow:
+ case Builtin::BI__builtin_smull_overflow:
+ case Builtin::BI__builtin_smulll_overflow:
+ IntrinsicId = llvm::Intrinsic::smul_with_overflow;
+ break;
+ }
+
+
+ llvm::Value *Carry;
+ llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
+ llvm::StoreInst *SumOutStore = Builder.CreateStore(Sum, SumOutPtr.first);
+ SumOutStore->setAlignment(SumOutPtr.second);
+
+ return RValue::get(Carry);
+ }
+ case Builtin::BI__builtin_addressof:
+ return RValue::get(EmitLValue(E->getArg(0)).getAddress());
+ case Builtin::BI__builtin_operator_new:
+ return EmitBuiltinNewDeleteCall(FD->getType()->castAs<FunctionProtoType>(),
+ E->getArg(0), false);
+ case Builtin::BI__builtin_operator_delete:
+ return EmitBuiltinNewDeleteCall(FD->getType()->castAs<FunctionProtoType>(),
+ E->getArg(0), true);
+ case Builtin::BI__noop:
+ // __noop always evaluates to an integer literal zero.
+ return RValue::get(ConstantInt::get(IntTy, 0));
+ case Builtin::BI__builtin_call_with_static_chain: {
+ const CallExpr *Call = cast<CallExpr>(E->getArg(0));
+ const Expr *Chain = E->getArg(1);
+ return EmitCall(Call->getCallee()->getType(),
+ EmitScalarExpr(Call->getCallee()), Call, ReturnValue,
+ Call->getCalleeDecl(), EmitScalarExpr(Chain));
+ }
+ case Builtin::BI_InterlockedExchange:
+ case Builtin::BI_InterlockedExchangePointer:
+ return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
+ case Builtin::BI_InterlockedCompareExchangePointer: {
+ llvm::Type *RTy;
+ llvm::IntegerType *IntType =
+ IntegerType::get(getLLVMContext(),
+ getContext().getTypeSize(E->getType()));
+ llvm::Type *IntPtrType = IntType->getPointerTo();
+
+ llvm::Value *Destination =
+ Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType);
+
+ llvm::Value *Exchange = EmitScalarExpr(E->getArg(1));
+ RTy = Exchange->getType();
+ Exchange = Builder.CreatePtrToInt(Exchange, IntType);
+
+ llvm::Value *Comparand =
+ Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType);
+
+ auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
+ SequentiallyConsistent,
+ SequentiallyConsistent);
+ Result->setVolatile(true);
+
+ return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result,
+ 0),
+ RTy));
+ }
+ case Builtin::BI_InterlockedCompareExchange: {
+ AtomicCmpXchgInst *CXI = Builder.CreateAtomicCmpXchg(
+ EmitScalarExpr(E->getArg(0)),
+ EmitScalarExpr(E->getArg(2)),
+ EmitScalarExpr(E->getArg(1)),
+ SequentiallyConsistent,
+ SequentiallyConsistent);
+ CXI->setVolatile(true);
+ return RValue::get(Builder.CreateExtractValue(CXI, 0));
+ }
+ case Builtin::BI_InterlockedIncrement: {
+ AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
+ AtomicRMWInst::Add,
+ EmitScalarExpr(E->getArg(0)),
+ ConstantInt::get(Int32Ty, 1),
+ llvm::SequentiallyConsistent);
+ RMWI->setVolatile(true);
+ return RValue::get(Builder.CreateAdd(RMWI, ConstantInt::get(Int32Ty, 1)));
+ }
+ case Builtin::BI_InterlockedDecrement: {
+ AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
+ AtomicRMWInst::Sub,
+ EmitScalarExpr(E->getArg(0)),
+ ConstantInt::get(Int32Ty, 1),
+ llvm::SequentiallyConsistent);
+ RMWI->setVolatile(true);
+ return RValue::get(Builder.CreateSub(RMWI, ConstantInt::get(Int32Ty, 1)));
+ }
+ case Builtin::BI_InterlockedExchangeAdd: {
+ AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
+ AtomicRMWInst::Add,
+ EmitScalarExpr(E->getArg(0)),
+ EmitScalarExpr(E->getArg(1)),
+ llvm::SequentiallyConsistent);
+ RMWI->setVolatile(true);
+ return RValue::get(RMWI);
+ }
+ case Builtin::BI__readfsdword: {
+ Value *IntToPtr =
+ Builder.CreateIntToPtr(EmitScalarExpr(E->getArg(0)),
+ llvm::PointerType::get(CGM.Int32Ty, 257));
+ LoadInst *Load =
+ Builder.CreateAlignedLoad(IntToPtr, /*Align=*/4, /*isVolatile=*/true);
+ return RValue::get(Load);
+ }
+
+ case Builtin::BI__exception_code:
+ case Builtin::BI_exception_code:
+ return RValue::get(EmitSEHExceptionCode());
+ case Builtin::BI__exception_info:
+ case Builtin::BI_exception_info:
+ return RValue::get(EmitSEHExceptionInfo());
+ case Builtin::BI__abnormal_termination:
+ case Builtin::BI_abnormal_termination:
+ return RValue::get(EmitSEHAbnormalTermination());
+ case Builtin::BI_setjmpex: {
+ if (getTarget().getTriple().isOSMSVCRT()) {
+ llvm::Type *ArgTypes[] = {Int8PtrTy, Int8PtrTy};
+ llvm::AttributeSet ReturnsTwiceAttr =
+ AttributeSet::get(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
+ llvm::Attribute::ReturnsTwice);
+ llvm::Constant *SetJmpEx = CGM.CreateRuntimeFunction(
+ llvm::FunctionType::get(IntTy, ArgTypes, /*isVarArg=*/false),
+ "_setjmpex", ReturnsTwiceAttr);
+ llvm::Value *Buf = Builder.CreateBitOrPointerCast(
+ EmitScalarExpr(E->getArg(0)), Int8PtrTy);
+ llvm::Value *FrameAddr =
+ Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
+ ConstantInt::get(Int32Ty, 0));
+ llvm::Value *Args[] = {Buf, FrameAddr};
+ llvm::CallSite CS = EmitRuntimeCallOrInvoke(SetJmpEx, Args);
+ CS.setAttributes(ReturnsTwiceAttr);
+ return RValue::get(CS.getInstruction());
+ }
+ break;
+ }
+ case Builtin::BI_setjmp: {
+ if (getTarget().getTriple().isOSMSVCRT()) {
+ llvm::AttributeSet ReturnsTwiceAttr =
+ AttributeSet::get(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
+ llvm::Attribute::ReturnsTwice);
+ llvm::Value *Buf = Builder.CreateBitOrPointerCast(
+ EmitScalarExpr(E->getArg(0)), Int8PtrTy);
+ llvm::CallSite CS;
+ if (getTarget().getTriple().getArch() == llvm::Triple::x86) {
+ llvm::Type *ArgTypes[] = {Int8PtrTy, IntTy};
+ llvm::Constant *SetJmp3 = CGM.CreateRuntimeFunction(
+ llvm::FunctionType::get(IntTy, ArgTypes, /*isVarArg=*/true),
+ "_setjmp3", ReturnsTwiceAttr);
+ llvm::Value *Count = ConstantInt::get(IntTy, 0);
+ llvm::Value *Args[] = {Buf, Count};
+ CS = EmitRuntimeCallOrInvoke(SetJmp3, Args);
+ } else {
+ llvm::Type *ArgTypes[] = {Int8PtrTy, Int8PtrTy};
+ llvm::Constant *SetJmp = CGM.CreateRuntimeFunction(
+ llvm::FunctionType::get(IntTy, ArgTypes, /*isVarArg=*/false),
+ "_setjmp", ReturnsTwiceAttr);
+ llvm::Value *FrameAddr =
+ Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
+ ConstantInt::get(Int32Ty, 0));
+ llvm::Value *Args[] = {Buf, FrameAddr};
+ CS = EmitRuntimeCallOrInvoke(SetJmp, Args);
+ }
+ CS.setAttributes(ReturnsTwiceAttr);
+ return RValue::get(CS.getInstruction());
+ }
+ break;
+ }
+
+ case Builtin::BI__GetExceptionInfo: {
+ if (llvm::GlobalVariable *GV =
+ CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType()))
+ return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy));
+ break;
+ }
+ }
+
+ // If this is an alias for a lib function (e.g. __builtin_sin), emit
+ // the call using the normal call path, but using the unmangled
+ // version of the function name.
+ if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
+ return emitLibraryCall(*this, FD, E,
+ CGM.getBuiltinLibFunction(FD, BuiltinID));
+
+ // If this is a predefined lib function (e.g. malloc), emit the call
+ // using exactly the normal call path.
+ if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
+ return emitLibraryCall(*this, FD, E, EmitScalarExpr(E->getCallee()));
+
+ // See if we have a target specific intrinsic.
+ const char *Name = getContext().BuiltinInfo.GetName(BuiltinID);
+ Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
+ if (const char *Prefix =
+ llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch())) {
+ IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix, Name);
+ // NOTE we dont need to perform a compatibility flag check here since the
+ // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
+ // MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
+ if (IntrinsicID == Intrinsic::not_intrinsic)
+ IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix, Name);
+ }
+
+ if (IntrinsicID != Intrinsic::not_intrinsic) {
+ SmallVector<Value*, 16> Args;
+
+ // Find out if any arguments are required to be integer constant
+ // expressions.
+ unsigned ICEArguments = 0;
+ ASTContext::GetBuiltinTypeError Error;
+ getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
+ assert(Error == ASTContext::GE_None && "Should not codegen an error");
+
+ Function *F = CGM.getIntrinsic(IntrinsicID);
+ llvm::FunctionType *FTy = F->getFunctionType();
+
+ for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
+ Value *ArgValue;
+ // If this is a normal argument, just emit it as a scalar.
+ if ((ICEArguments & (1 << i)) == 0) {
+ ArgValue = EmitScalarExpr(E->getArg(i));
+ } else {
+ // If this is required to be a constant, constant fold it so that we
+ // know that the generated intrinsic gets a ConstantInt.
+ llvm::APSInt Result;
+ bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext());
+ assert(IsConst && "Constant arg isn't actually constant?");
+ (void)IsConst;
+ ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result);
+ }
+
+ // If the intrinsic arg type is different from the builtin arg type
+ // we need to do a bit cast.
+ llvm::Type *PTy = FTy->getParamType(i);
+ if (PTy != ArgValue->getType()) {
+ assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
+ "Must be able to losslessly bit cast to param");
+ ArgValue = Builder.CreateBitCast(ArgValue, PTy);
+ }
+
+ Args.push_back(ArgValue);
+ }
+
+ Value *V = Builder.CreateCall(F, Args);
+ QualType BuiltinRetType = E->getType();
+
+ llvm::Type *RetTy = VoidTy;
+ if (!BuiltinRetType->isVoidType())
+ RetTy = ConvertType(BuiltinRetType);
+
+ if (RetTy != V->getType()) {
+ assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
+ "Must be able to losslessly bit cast result type");
+ V = Builder.CreateBitCast(V, RetTy);
+ }
+
+ return RValue::get(V);
+ }
+
+ // See if we have a target specific builtin that needs to be lowered.
+ if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E))
+ return RValue::get(V);
+
+ ErrorUnsupported(E, "builtin function");
+
+ // Unknown builtin, for now just dump it out and return undef.
+ return GetUndefRValue(E->getType());
+}
+
+Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
+ const CallExpr *E) {
+ switch (getTarget().getTriple().getArch()) {
+ case llvm::Triple::arm:
+ case llvm::Triple::armeb:
+ case llvm::Triple::thumb:
+ case llvm::Triple::thumbeb:
+ return EmitARMBuiltinExpr(BuiltinID, E);
+ case llvm::Triple::aarch64:
+ case llvm::Triple::aarch64_be:
+ return EmitAArch64BuiltinExpr(BuiltinID, E);
+ case llvm::Triple::x86:
+ case llvm::Triple::x86_64:
+ return EmitX86BuiltinExpr(BuiltinID, E);
+ case llvm::Triple::ppc:
+ case llvm::Triple::ppc64:
+ case llvm::Triple::ppc64le:
+ return EmitPPCBuiltinExpr(BuiltinID, E);
+ case llvm::Triple::r600:
+ case llvm::Triple::amdgcn:
+ return EmitR600BuiltinExpr(BuiltinID, E);
+ case llvm::Triple::systemz:
+ return EmitSystemZBuiltinExpr(BuiltinID, E);
+ default:
+ return nullptr;
+ }
+}
+
+static llvm::VectorType *GetNeonType(CodeGenFunction *CGF,
+ NeonTypeFlags TypeFlags,
+ bool V1Ty=false) {
+ int IsQuad = TypeFlags.isQuad();
+ switch (TypeFlags.getEltType()) {
+ case NeonTypeFlags::Int8:
+ case NeonTypeFlags::Poly8:
+ return llvm::VectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
+ case NeonTypeFlags::Int16:
+ case NeonTypeFlags::Poly16:
+ case NeonTypeFlags::Float16:
+ return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
+ case NeonTypeFlags::Int32:
+ return llvm::VectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
+ case NeonTypeFlags::Int64:
+ case NeonTypeFlags::Poly64:
+ return llvm::VectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
+ case NeonTypeFlags::Poly128:
+ // FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
+ // There is a lot of i128 and f128 API missing.
+ // so we use v16i8 to represent poly128 and get pattern matched.
+ return llvm::VectorType::get(CGF->Int8Ty, 16);
+ case NeonTypeFlags::Float32:
+ return llvm::VectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
+ case NeonTypeFlags::Float64:
+ return llvm::VectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
+ }
+ llvm_unreachable("Unknown vector element type!");
+}
+
+Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
+ unsigned nElts = cast<llvm::VectorType>(V->getType())->getNumElements();
+ Value* SV = llvm::ConstantVector::getSplat(nElts, C);
+ return Builder.CreateShuffleVector(V, V, SV, "lane");
+}
+
+Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
+ const char *name,
+ unsigned shift, bool rightshift) {
+ unsigned j = 0;
+ for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
+ ai != ae; ++ai, ++j)
+ if (shift > 0 && shift == j)
+ Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
+ else
+ Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
+
+ return Builder.CreateCall(F, Ops, name);
+}
+
+Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
+ bool neg) {
+ int SV = cast<ConstantInt>(V)->getSExtValue();
+
+ llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
+ llvm::Constant *C = ConstantInt::get(VTy->getElementType(), neg ? -SV : SV);
+ return llvm::ConstantVector::getSplat(VTy->getNumElements(), C);
+}
+
+// \brief Right-shift a vector by a constant.
+Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
+ llvm::Type *Ty, bool usgn,
+ const char *name) {
+ llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
+
+ int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
+ int EltSize = VTy->getScalarSizeInBits();
+
+ Vec = Builder.CreateBitCast(Vec, Ty);
+
+ // lshr/ashr are undefined when the shift amount is equal to the vector
+ // element size.
+ if (ShiftAmt == EltSize) {
+ if (usgn) {
+ // Right-shifting an unsigned value by its size yields 0.
+ llvm::Constant *Zero = ConstantInt::get(VTy->getElementType(), 0);
+ return llvm::ConstantVector::getSplat(VTy->getNumElements(), Zero);
+ } else {
+ // Right-shifting a signed value by its size is equivalent
+ // to a shift of size-1.
+ --ShiftAmt;
+ Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
+ }
+ }
+
+ Shift = EmitNeonShiftVector(Shift, Ty, false);
+ if (usgn)
+ return Builder.CreateLShr(Vec, Shift, name);
+ else
+ return Builder.CreateAShr(Vec, Shift, name);
+}
+
+/// GetPointeeAlignment - Given an expression with a pointer type, find the
+/// alignment of the type referenced by the pointer. Skip over implicit
+/// casts.
+std::pair<llvm::Value*, unsigned>
+CodeGenFunction::EmitPointerWithAlignment(const Expr *Addr) {
+ assert(Addr->getType()->isPointerType());
+ Addr = Addr->IgnoreParens();
+ if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Addr)) {
+ if ((ICE->getCastKind() == CK_BitCast || ICE->getCastKind() == CK_NoOp) &&
+ ICE->getSubExpr()->getType()->isPointerType()) {
+ std::pair<llvm::Value*, unsigned> Ptr =
+ EmitPointerWithAlignment(ICE->getSubExpr());
+ Ptr.first = Builder.CreateBitCast(Ptr.first,
+ ConvertType(Addr->getType()));
+ return Ptr;
+ } else if (ICE->getCastKind() == CK_ArrayToPointerDecay) {
+ LValue LV = EmitLValue(ICE->getSubExpr());
+ unsigned Align = LV.getAlignment().getQuantity();
+ if (!Align) {
+ // FIXME: Once LValues are fixed to always set alignment,
+ // zap this code.
+ QualType PtTy = ICE->getSubExpr()->getType();
+ if (!PtTy->isIncompleteType())
+ Align = getContext().getTypeAlignInChars(PtTy).getQuantity();
+ else
+ Align = 1;
+ }
+ return std::make_pair(LV.getAddress(), Align);
+ }
+ }
+ if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Addr)) {
+ if (UO->getOpcode() == UO_AddrOf) {
+ LValue LV = EmitLValue(UO->getSubExpr());
+ unsigned Align = LV.getAlignment().getQuantity();
+ if (!Align) {
+ // FIXME: Once LValues are fixed to always set alignment,
+ // zap this code.
+ QualType PtTy = UO->getSubExpr()->getType();
+ if (!PtTy->isIncompleteType())
+ Align = getContext().getTypeAlignInChars(PtTy).getQuantity();
+ else
+ Align = 1;
+ }
+ return std::make_pair(LV.getAddress(), Align);
+ }
+ }
+
+ unsigned Align = 1;
+ QualType PtTy = Addr->getType()->getPointeeType();
+ if (!PtTy->isIncompleteType())
+ Align = getContext().getTypeAlignInChars(PtTy).getQuantity();
+
+ return std::make_pair(EmitScalarExpr(Addr), Align);
+}
+
+enum {
+ AddRetType = (1 << 0),
+ Add1ArgType = (1 << 1),
+ Add2ArgTypes = (1 << 2),
+
+ VectorizeRetType = (1 << 3),
+ VectorizeArgTypes = (1 << 4),
+
+ InventFloatType = (1 << 5),
+ UnsignedAlts = (1 << 6),
+
+ Use64BitVectors = (1 << 7),
+ Use128BitVectors = (1 << 8),
+
+ Vectorize1ArgType = Add1ArgType | VectorizeArgTypes,
+ VectorRet = AddRetType | VectorizeRetType,
+ VectorRetGetArgs01 =
+ AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes,
+ FpCmpzModifiers =
+ AddRetType | VectorizeRetType | Add1ArgType | InventFloatType
+};
+
+ struct NeonIntrinsicInfo {
+ unsigned BuiltinID;
+ unsigned LLVMIntrinsic;
+ unsigned AltLLVMIntrinsic;
+ const char *NameHint;
+ unsigned TypeModifier;
+
+ bool operator<(unsigned RHSBuiltinID) const {
+ return BuiltinID < RHSBuiltinID;
+ }
+};
+
+#define NEONMAP0(NameBase) \
+ { NEON::BI__builtin_neon_ ## NameBase, 0, 0, #NameBase, 0 }
+
+#define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
+ { NEON:: BI__builtin_neon_ ## NameBase, \
+ Intrinsic::LLVMIntrinsic, 0, #NameBase, TypeModifier }
+
+#define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
+ { NEON:: BI__builtin_neon_ ## NameBase, \
+ Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
+ #NameBase, TypeModifier }
+
+static NeonIntrinsicInfo ARMSIMDIntrinsicMap [] = {
+ NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
+ NEONMAP1(vabs_v, arm_neon_vabs, 0),
+ NEONMAP1(vabsq_v, arm_neon_vabs, 0),
+ NEONMAP0(vaddhn_v),
+ NEONMAP1(vaesdq_v, arm_neon_aesd, 0),
+ NEONMAP1(vaeseq_v, arm_neon_aese, 0),
+ NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0),
+ NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0),
+ NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType),
+ NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType),
+ NEONMAP1(vcage_v, arm_neon_vacge, 0),
+ NEONMAP1(vcageq_v, arm_neon_vacge, 0),
+ NEONMAP1(vcagt_v, arm_neon_vacgt, 0),
+ NEONMAP1(vcagtq_v, arm_neon_vacgt, 0),
+ NEONMAP1(vcale_v, arm_neon_vacge, 0),
+ NEONMAP1(vcaleq_v, arm_neon_vacge, 0),
+ NEONMAP1(vcalt_v, arm_neon_vacgt, 0),
+ NEONMAP1(vcaltq_v, arm_neon_vacgt, 0),
+ NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType),
+ NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType),
+ NEONMAP1(vclz_v, ctlz, Add1ArgType),
+ NEONMAP1(vclzq_v, ctlz, Add1ArgType),
+ NEONMAP1(vcnt_v, ctpop, Add1ArgType),
+ NEONMAP1(vcntq_v, ctpop, Add1ArgType),
+ NEONMAP1(vcvt_f16_v, arm_neon_vcvtfp2hf, 0),
+ NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0),
+ NEONMAP0(vcvt_f32_v),
+ NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
+ NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0),
+ NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0),
+ NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0),
+ NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0),
+ NEONMAP0(vcvt_s32_v),
+ NEONMAP0(vcvt_s64_v),
+ NEONMAP0(vcvt_u32_v),
+ NEONMAP0(vcvt_u64_v),
+ NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0),
+ NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0),
+ NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0),
+ NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0),
+ NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0),
+ NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0),
+ NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0),
+ NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0),
+ NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0),
+ NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0),
+ NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0),
+ NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0),
+ NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0),
+ NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0),
+ NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0),
+ NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0),
+ NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0),
+ NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0),
+ NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0),
+ NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0),
+ NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0),
+ NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0),
+ NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0),
+ NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0),
+ NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0),
+ NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0),
+ NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0),
+ NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0),
+ NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0),
+ NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0),
+ NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0),
+ NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0),
+ NEONMAP0(vcvtq_f32_v),
+ NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
+ NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0),
+ NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0),
+ NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0),
+ NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0),
+ NEONMAP0(vcvtq_s32_v),
+ NEONMAP0(vcvtq_s64_v),
+ NEONMAP0(vcvtq_u32_v),
+ NEONMAP0(vcvtq_u64_v),
+ NEONMAP0(vext_v),
+ NEONMAP0(vextq_v),
+ NEONMAP0(vfma_v),
+ NEONMAP0(vfmaq_v),
+ NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
+ NEONMAP0(vld1_dup_v),
+ NEONMAP1(vld1_v, arm_neon_vld1, 0),
+ NEONMAP0(vld1q_dup_v),
+ NEONMAP1(vld1q_v, arm_neon_vld1, 0),
+ NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0),
+ NEONMAP1(vld2_v, arm_neon_vld2, 0),
+ NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0),
+ NEONMAP1(vld2q_v, arm_neon_vld2, 0),
+ NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0),
+ NEONMAP1(vld3_v, arm_neon_vld3, 0),
+ NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0),
+ NEONMAP1(vld3q_v, arm_neon_vld3, 0),
+ NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0),
+ NEONMAP1(vld4_v, arm_neon_vld4, 0),
+ NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0),
+ NEONMAP1(vld4q_v, arm_neon_vld4, 0),
+ NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
+ NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType),
+ NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType),
+ NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
+ NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType),
+ NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType),
+ NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
+ NEONMAP0(vmovl_v),
+ NEONMAP0(vmovn_v),
+ NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType),
+ NEONMAP0(vmull_v),
+ NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType),
+ NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
+ NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
+ NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType),
+ NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
+ NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
+ NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType),
+ NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts),
+ NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType),
+ NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType),
+ NEONMAP2(vqadd_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vqaddq_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vqdmlal_v, arm_neon_vqdmull, arm_neon_vqadds, 0),
+ NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, arm_neon_vqsubs, 0),
+ NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType),
+ NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType),
+ NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType),
+ NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts),
+ NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType),
+ NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType),
+ NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType),
+ NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType),
+ NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType),
+ NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
+ NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
+ NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
+ NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0),
+ NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0),
+ NEONMAP2(vqsub_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vqsubq_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts),
+ NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType),
+ NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
+ NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
+ NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType),
+ NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType),
+ NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
+ NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType),
+ NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType),
+ NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType),
+ NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType),
+ NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType),
+ NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType),
+ NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType),
+ NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType),
+ NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType),
+ NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType),
+ NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType),
+ NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType),
+ NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
+ NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
+ NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
+ NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
+ NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType),
+ NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType),
+ NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType),
+ NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0),
+ NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0),
+ NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0),
+ NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0),
+ NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0),
+ NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0),
+ NEONMAP0(vshl_n_v),
+ NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
+ NEONMAP0(vshll_n_v),
+ NEONMAP0(vshlq_n_v),
+ NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
+ NEONMAP0(vshr_n_v),
+ NEONMAP0(vshrn_n_v),
+ NEONMAP0(vshrq_n_v),
+ NEONMAP1(vst1_v, arm_neon_vst1, 0),
+ NEONMAP1(vst1q_v, arm_neon_vst1, 0),
+ NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0),
+ NEONMAP1(vst2_v, arm_neon_vst2, 0),
+ NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0),
+ NEONMAP1(vst2q_v, arm_neon_vst2, 0),
+ NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0),
+ NEONMAP1(vst3_v, arm_neon_vst3, 0),
+ NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0),
+ NEONMAP1(vst3q_v, arm_neon_vst3, 0),
+ NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0),
+ NEONMAP1(vst4_v, arm_neon_vst4, 0),
+ NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0),
+ NEONMAP1(vst4q_v, arm_neon_vst4, 0),
+ NEONMAP0(vsubhn_v),
+ NEONMAP0(vtrn_v),
+ NEONMAP0(vtrnq_v),
+ NEONMAP0(vtst_v),
+ NEONMAP0(vtstq_v),
+ NEONMAP0(vuzp_v),
+ NEONMAP0(vuzpq_v),
+ NEONMAP0(vzip_v),
+ NEONMAP0(vzipq_v)
+};
+
+static NeonIntrinsicInfo AArch64SIMDIntrinsicMap[] = {
+ NEONMAP1(vabs_v, aarch64_neon_abs, 0),
+ NEONMAP1(vabsq_v, aarch64_neon_abs, 0),
+ NEONMAP0(vaddhn_v),
+ NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0),
+ NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0),
+ NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0),
+ NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0),
+ NEONMAP1(vcage_v, aarch64_neon_facge, 0),
+ NEONMAP1(vcageq_v, aarch64_neon_facge, 0),
+ NEONMAP1(vcagt_v, aarch64_neon_facgt, 0),
+ NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0),
+ NEONMAP1(vcale_v, aarch64_neon_facge, 0),
+ NEONMAP1(vcaleq_v, aarch64_neon_facge, 0),
+ NEONMAP1(vcalt_v, aarch64_neon_facgt, 0),
+ NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0),
+ NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType),
+ NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType),
+ NEONMAP1(vclz_v, ctlz, Add1ArgType),
+ NEONMAP1(vclzq_v, ctlz, Add1ArgType),
+ NEONMAP1(vcnt_v, ctpop, Add1ArgType),
+ NEONMAP1(vcntq_v, ctpop, Add1ArgType),
+ NEONMAP1(vcvt_f16_v, aarch64_neon_vcvtfp2hf, 0),
+ NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0),
+ NEONMAP0(vcvt_f32_v),
+ NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
+ NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
+ NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
+ NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
+ NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
+ NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
+ NEONMAP0(vcvtq_f32_v),
+ NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
+ NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
+ NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
+ NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
+ NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
+ NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
+ NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType),
+ NEONMAP0(vext_v),
+ NEONMAP0(vextq_v),
+ NEONMAP0(vfma_v),
+ NEONMAP0(vfmaq_v),
+ NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
+ NEONMAP0(vmovl_v),
+ NEONMAP0(vmovn_v),
+ NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType),
+ NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType),
+ NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType),
+ NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
+ NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
+ NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType),
+ NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType),
+ NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType),
+ NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0),
+ NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0),
+ NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType),
+ NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType),
+ NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType),
+ NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts),
+ NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType),
+ NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType),
+ NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType),
+ NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType),
+ NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType),
+ NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts),
+ NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts),
+ NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
+ NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0),
+ NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0),
+ NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
+ NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType),
+ NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
+ NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
+ NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType),
+ NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType),
+ NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
+ NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
+ NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
+ NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
+ NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType),
+ NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType),
+ NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType),
+ NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0),
+ NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0),
+ NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0),
+ NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0),
+ NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0),
+ NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0),
+ NEONMAP0(vshl_n_v),
+ NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
+ NEONMAP0(vshll_n_v),
+ NEONMAP0(vshlq_n_v),
+ NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
+ NEONMAP0(vshr_n_v),
+ NEONMAP0(vshrn_n_v),
+ NEONMAP0(vshrq_n_v),
+ NEONMAP0(vsubhn_v),
+ NEONMAP0(vtst_v),
+ NEONMAP0(vtstq_v),
+};
+
+static NeonIntrinsicInfo AArch64SISDIntrinsicMap[] = {
+ NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType),
+ NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType),
+ NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType),
+ NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
+ NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
+ NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
+ NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
+ NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
+ NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
+ NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
+ NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
+ NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType),
+ NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
+ NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType),
+ NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
+ NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
+ NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
+ NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
+ NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
+ NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
+ NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
+ NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
+ NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
+ NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
+ NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
+ NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
+ NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
+ NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0),
+ NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
+ NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
+ NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
+ NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
+ NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
+ NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
+ NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
+ NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
+ NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
+ NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
+ NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
+ NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
+ NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
+ NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
+ NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
+ NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
+ NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
+ NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
+ NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
+ NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
+ NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0),
+ NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType),
+ NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType),
+ NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
+ NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
+ NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
+ NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
+ NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
+ NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
+ NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
+ NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
+ NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
+ NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
+ NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType),
+ NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType),
+ NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType),
+ NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType),
+ NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType),
+ NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType),
+ NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType),
+ NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors),
+ NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0),
+ NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType),
+ NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType),
+ NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
+ NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
+ NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
+ NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
+ NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType),
+ NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
+ NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
+ NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType),
+ NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType),
+ NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType),
+ NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType),
+ NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType),
+ NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType),
+ NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType),
+ NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType),
+ NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType),
+ NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
+ NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
+ NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
+ NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
+ NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType),
+ NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
+ NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
+ NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType),
+ NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType),
+ NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType),
+ NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType),
+ NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType),
+ NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType),
+ NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType),
+ NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType),
+ NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType),
+ NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
+ NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
+ NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
+ NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
+ NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType),
+ NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
+ NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
+ NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType),
+ NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType),
+ NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType),
+ NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType),
+ NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType),
+ NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType),
+ NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType),
+ NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType),
+ NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType),
+ NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType),
+ NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType),
+ NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType),
+ NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType),
+ NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType),
+ NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0),
+ NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0),
+ NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0),
+ NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0),
+ NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType),
+ NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType),
+ NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType),
+ NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType),
+ NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType),
+ NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType),
+ NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType),
+ NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType),
+ NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType),
+ NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType),
+};
+
+#undef NEONMAP0
+#undef NEONMAP1
+#undef NEONMAP2
+
+static bool NEONSIMDIntrinsicsProvenSorted = false;
+
+static bool AArch64SIMDIntrinsicsProvenSorted = false;
+static bool AArch64SISDIntrinsicsProvenSorted = false;
+
+
+static const NeonIntrinsicInfo *
+findNeonIntrinsicInMap(ArrayRef<NeonIntrinsicInfo> IntrinsicMap,
+ unsigned BuiltinID, bool &MapProvenSorted) {
+
+#ifndef NDEBUG
+ if (!MapProvenSorted) {
+ // FIXME: use std::is_sorted once C++11 is allowed
+ for (unsigned i = 0; i < IntrinsicMap.size() - 1; ++i)
+ assert(IntrinsicMap[i].BuiltinID <= IntrinsicMap[i + 1].BuiltinID);
+ MapProvenSorted = true;
+ }
+#endif
+
+ const NeonIntrinsicInfo *Builtin =
+ std::lower_bound(IntrinsicMap.begin(), IntrinsicMap.end(), BuiltinID);
+
+ if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID)
+ return Builtin;
+
+ return nullptr;
+}
+
+Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
+ unsigned Modifier,
+ llvm::Type *ArgType,
+ const CallExpr *E) {
+ int VectorSize = 0;
+ if (Modifier & Use64BitVectors)
+ VectorSize = 64;
+ else if (Modifier & Use128BitVectors)
+ VectorSize = 128;
+
+ // Return type.
+ SmallVector<llvm::Type *, 3> Tys;
+ if (Modifier & AddRetType) {
+ llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
+ if (Modifier & VectorizeRetType)
+ Ty = llvm::VectorType::get(
+ Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1);
+
+ Tys.push_back(Ty);
+ }
+
+ // Arguments.
+ if (Modifier & VectorizeArgTypes) {
+ int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1;
+ ArgType = llvm::VectorType::get(ArgType, Elts);
+ }
+
+ if (Modifier & (Add1ArgType | Add2ArgTypes))
+ Tys.push_back(ArgType);
+
+ if (Modifier & Add2ArgTypes)
+ Tys.push_back(ArgType);
+
+ if (Modifier & InventFloatType)
+ Tys.push_back(FloatTy);
+
+ return CGM.getIntrinsic(IntrinsicID, Tys);
+}
+
+static Value *EmitCommonNeonSISDBuiltinExpr(CodeGenFunction &CGF,
+ const NeonIntrinsicInfo &SISDInfo,
+ SmallVectorImpl<Value *> &Ops,
+ const CallExpr *E) {
+ unsigned BuiltinID = SISDInfo.BuiltinID;
+ unsigned int Int = SISDInfo.LLVMIntrinsic;
+ unsigned Modifier = SISDInfo.TypeModifier;
+ const char *s = SISDInfo.NameHint;
+
+ switch (BuiltinID) {
+ case NEON::BI__builtin_neon_vcled_s64:
+ case NEON::BI__builtin_neon_vcled_u64:
+ case NEON::BI__builtin_neon_vcles_f32:
+ case NEON::BI__builtin_neon_vcled_f64:
+ case NEON::BI__builtin_neon_vcltd_s64:
+ case NEON::BI__builtin_neon_vcltd_u64:
+ case NEON::BI__builtin_neon_vclts_f32:
+ case NEON::BI__builtin_neon_vcltd_f64:
+ case NEON::BI__builtin_neon_vcales_f32:
+ case NEON::BI__builtin_neon_vcaled_f64:
+ case NEON::BI__builtin_neon_vcalts_f32:
+ case NEON::BI__builtin_neon_vcaltd_f64:
+ // Only one direction of comparisons actually exist, cmle is actually a cmge
+ // with swapped operands. The table gives us the right intrinsic but we
+ // still need to do the swap.
+ std::swap(Ops[0], Ops[1]);
+ break;
+ }
+
+ assert(Int && "Generic code assumes a valid intrinsic");
+
+ // Determine the type(s) of this overloaded AArch64 intrinsic.
+ const Expr *Arg = E->getArg(0);
+ llvm::Type *ArgTy = CGF.ConvertType(Arg->getType());
+ Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E);
+
+ int j = 0;
+ ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0);
+ for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
+ ai != ae; ++ai, ++j) {
+ llvm::Type *ArgTy = ai->getType();
+ if (Ops[j]->getType()->getPrimitiveSizeInBits() ==
+ ArgTy->getPrimitiveSizeInBits())
+ continue;
+
+ assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy());
+ // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate
+ // it before inserting.
+ Ops[j] =
+ CGF.Builder.CreateTruncOrBitCast(Ops[j], ArgTy->getVectorElementType());
+ Ops[j] =
+ CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0);
+ }
+
+ Value *Result = CGF.EmitNeonCall(F, Ops, s);
+ llvm::Type *ResultType = CGF.ConvertType(E->getType());
+ if (ResultType->getPrimitiveSizeInBits() <
+ Result->getType()->getPrimitiveSizeInBits())
+ return CGF.Builder.CreateExtractElement(Result, C0);
+
+ return CGF.Builder.CreateBitCast(Result, ResultType, s);
+}
+
+Value *CodeGenFunction::EmitCommonNeonBuiltinExpr(
+ unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic,
+ const char *NameHint, unsigned Modifier, const CallExpr *E,
+ SmallVectorImpl<llvm::Value *> &Ops, llvm::Value *Align) {
+ // Get the last argument, which specifies the vector type.
+ llvm::APSInt NeonTypeConst;
+ const Expr *Arg = E->getArg(E->getNumArgs() - 1);
+ if (!Arg->isIntegerConstantExpr(NeonTypeConst, getContext()))
+ return nullptr;
+
+ // Determine the type of this overloaded NEON intrinsic.
+ NeonTypeFlags Type(NeonTypeConst.getZExtValue());
+ bool Usgn = Type.isUnsigned();
+ bool Quad = Type.isQuad();
+
+ llvm::VectorType *VTy = GetNeonType(this, Type);
+ llvm::Type *Ty = VTy;
+ if (!Ty)
+ return nullptr;
+
+ unsigned Int = LLVMIntrinsic;
+ if ((Modifier & UnsignedAlts) && !Usgn)
+ Int = AltLLVMIntrinsic;
+
+ switch (BuiltinID) {
+ default: break;
+ case NEON::BI__builtin_neon_vabs_v:
+ case NEON::BI__builtin_neon_vabsq_v:
+ if (VTy->getElementType()->isFloatingPointTy())
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
+ return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs");
+ case NEON::BI__builtin_neon_vaddhn_v: {
+ llvm::VectorType *SrcTy =
+ llvm::VectorType::getExtendedElementVectorType(VTy);
+
+ // %sum = add <4 x i32> %lhs, %rhs
+ Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
+ Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
+ Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
+
+ // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
+ Constant *ShiftAmt = ConstantInt::get(SrcTy->getElementType(),
+ SrcTy->getScalarSizeInBits() / 2);
+ ShiftAmt = ConstantVector::getSplat(VTy->getNumElements(), ShiftAmt);
+ Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
+
+ // %res = trunc <4 x i32> %high to <4 x i16>
+ return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
+ }
+ case NEON::BI__builtin_neon_vcale_v:
+ case NEON::BI__builtin_neon_vcaleq_v:
+ case NEON::BI__builtin_neon_vcalt_v:
+ case NEON::BI__builtin_neon_vcaltq_v:
+ std::swap(Ops[0], Ops[1]);
+ case NEON::BI__builtin_neon_vcage_v:
+ case NEON::BI__builtin_neon_vcageq_v:
+ case NEON::BI__builtin_neon_vcagt_v:
+ case NEON::BI__builtin_neon_vcagtq_v: {
+ llvm::Type *VecFlt = llvm::VectorType::get(
+ VTy->getScalarSizeInBits() == 32 ? FloatTy : DoubleTy,
+ VTy->getNumElements());
+ llvm::Type *Tys[] = { VTy, VecFlt };
+ Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
+ return EmitNeonCall(F, Ops, NameHint);
+ }
+ case NEON::BI__builtin_neon_vclz_v:
+ case NEON::BI__builtin_neon_vclzq_v:
+ // We generate target-independent intrinsic, which needs a second argument
+ // for whether or not clz of zero is undefined; on ARM it isn't.
+ Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
+ break;
+ case NEON::BI__builtin_neon_vcvt_f32_v:
+ case NEON::BI__builtin_neon_vcvtq_f32_v:
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad));
+ return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
+ : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
+ case NEON::BI__builtin_neon_vcvt_n_f32_v:
+ case NEON::BI__builtin_neon_vcvt_n_f64_v:
+ case NEON::BI__builtin_neon_vcvtq_n_f32_v:
+ case NEON::BI__builtin_neon_vcvtq_n_f64_v: {
+ bool Double =
+ (cast<llvm::IntegerType>(VTy->getElementType())->getBitWidth() == 64);
+ llvm::Type *FloatTy =
+ GetNeonType(this, NeonTypeFlags(Double ? NeonTypeFlags::Float64
+ : NeonTypeFlags::Float32,
+ false, Quad));
+ llvm::Type *Tys[2] = { FloatTy, Ty };
+ Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
+ Function *F = CGM.getIntrinsic(Int, Tys);
+ return EmitNeonCall(F, Ops, "vcvt_n");
+ }
+ case NEON::BI__builtin_neon_vcvt_n_s32_v:
+ case NEON::BI__builtin_neon_vcvt_n_u32_v:
+ case NEON::BI__builtin_neon_vcvt_n_s64_v:
+ case NEON::BI__builtin_neon_vcvt_n_u64_v:
+ case NEON::BI__builtin_neon_vcvtq_n_s32_v:
+ case NEON::BI__builtin_neon_vcvtq_n_u32_v:
+ case NEON::BI__builtin_neon_vcvtq_n_s64_v:
+ case NEON::BI__builtin_neon_vcvtq_n_u64_v: {
+ bool Double =
+ (cast<llvm::IntegerType>(VTy->getElementType())->getBitWidth() == 64);
+ llvm::Type *FloatTy =
+ GetNeonType(this, NeonTypeFlags(Double ? NeonTypeFlags::Float64
+ : NeonTypeFlags::Float32,
+ false, Quad));
+ llvm::Type *Tys[2] = { Ty, FloatTy };
+ Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
+ return EmitNeonCall(F, Ops, "vcvt_n");
+ }
+ case NEON::BI__builtin_neon_vcvt_s32_v:
+ case NEON::BI__builtin_neon_vcvt_u32_v:
+ case NEON::BI__builtin_neon_vcvt_s64_v:
+ case NEON::BI__builtin_neon_vcvt_u64_v:
+ case NEON::BI__builtin_neon_vcvtq_s32_v:
+ case NEON::BI__builtin_neon_vcvtq_u32_v:
+ case NEON::BI__builtin_neon_vcvtq_s64_v:
+ case NEON::BI__builtin_neon_vcvtq_u64_v: {
+ bool Double =
+ (cast<llvm::IntegerType>(VTy->getElementType())->getBitWidth() == 64);
+ llvm::Type *FloatTy =
+ GetNeonType(this, NeonTypeFlags(Double ? NeonTypeFlags::Float64
+ : NeonTypeFlags::Float32,
+ false, Quad));
+ Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
+ return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
+ : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
+ }
+ case NEON::BI__builtin_neon_vcvta_s32_v:
+ case NEON::BI__builtin_neon_vcvta_s64_v:
+ case NEON::BI__builtin_neon_vcvta_u32_v:
+ case NEON::BI__builtin_neon_vcvta_u64_v:
+ case NEON::BI__builtin_neon_vcvtaq_s32_v:
+ case NEON::BI__builtin_neon_vcvtaq_s64_v:
+ case NEON::BI__builtin_neon_vcvtaq_u32_v:
+ case NEON::BI__builtin_neon_vcvtaq_u64_v:
+ case NEON::BI__builtin_neon_vcvtn_s32_v:
+ case NEON::BI__builtin_neon_vcvtn_s64_v:
+ case NEON::BI__builtin_neon_vcvtn_u32_v:
+ case NEON::BI__builtin_neon_vcvtn_u64_v:
+ case NEON::BI__builtin_neon_vcvtnq_s32_v:
+ case NEON::BI__builtin_neon_vcvtnq_s64_v:
+ case NEON::BI__builtin_neon_vcvtnq_u32_v:
+ case NEON::BI__builtin_neon_vcvtnq_u64_v:
+ case NEON::BI__builtin_neon_vcvtp_s32_v:
+ case NEON::BI__builtin_neon_vcvtp_s64_v:
+ case NEON::BI__builtin_neon_vcvtp_u32_v:
+ case NEON::BI__builtin_neon_vcvtp_u64_v:
+ case NEON::BI__builtin_neon_vcvtpq_s32_v:
+ case NEON::BI__builtin_neon_vcvtpq_s64_v:
+ case NEON::BI__builtin_neon_vcvtpq_u32_v:
+ case NEON::BI__builtin_neon_vcvtpq_u64_v:
+ case NEON::BI__builtin_neon_vcvtm_s32_v:
+ case NEON::BI__builtin_neon_vcvtm_s64_v:
+ case NEON::BI__builtin_neon_vcvtm_u32_v:
+ case NEON::BI__builtin_neon_vcvtm_u64_v:
+ case NEON::BI__builtin_neon_vcvtmq_s32_v:
+ case NEON::BI__builtin_neon_vcvtmq_s64_v:
+ case NEON::BI__builtin_neon_vcvtmq_u32_v:
+ case NEON::BI__builtin_neon_vcvtmq_u64_v: {
+ bool Double =
+ (cast<llvm::IntegerType>(VTy->getElementType())->getBitWidth() == 64);
+ llvm::Type *InTy =
+ GetNeonType(this,
+ NeonTypeFlags(Double ? NeonTypeFlags::Float64
+ : NeonTypeFlags::Float32, false, Quad));
+ llvm::Type *Tys[2] = { Ty, InTy };
+ return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
+ }
+ case NEON::BI__builtin_neon_vext_v:
+ case NEON::BI__builtin_neon_vextq_v: {
+ int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
+ SmallVector<Constant*, 16> Indices;
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
+ Indices.push_back(ConstantInt::get(Int32Ty, i+CV));
+
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+ Value *SV = llvm::ConstantVector::get(Indices);
+ return Builder.CreateShuffleVector(Ops[0], Ops[1], SV, "vext");
+ }
+ case NEON::BI__builtin_neon_vfma_v:
+ case NEON::BI__builtin_neon_vfmaq_v: {
+ Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+ Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
+
+ // NEON intrinsic puts accumulator first, unlike the LLVM fma.
+ return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
+ }
+ case NEON::BI__builtin_neon_vld1_v:
+ case NEON::BI__builtin_neon_vld1q_v:
+ Ops.push_back(Align);
+ return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vld1");
+ case NEON::BI__builtin_neon_vld2_v:
+ case NEON::BI__builtin_neon_vld2q_v:
+ case NEON::BI__builtin_neon_vld3_v:
+ case NEON::BI__builtin_neon_vld3q_v:
+ case NEON::BI__builtin_neon_vld4_v:
+ case NEON::BI__builtin_neon_vld4q_v: {
+ Function *F = CGM.getIntrinsic(LLVMIntrinsic, Ty);
+ Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint);
+ Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ return Builder.CreateStore(Ops[1], Ops[0]);
+ }
+ case NEON::BI__builtin_neon_vld1_dup_v:
+ case NEON::BI__builtin_neon_vld1q_dup_v: {
+ Value *V = UndefValue::get(Ty);
+ Ty = llvm::PointerType::getUnqual(VTy->getElementType());
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ LoadInst *Ld = Builder.CreateLoad(Ops[0]);
+ Ld->setAlignment(cast<ConstantInt>(Align)->getZExtValue());
+ llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
+ Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
+ return EmitNeonSplat(Ops[0], CI);
+ }
+ case NEON::BI__builtin_neon_vld2_lane_v:
+ case NEON::BI__builtin_neon_vld2q_lane_v:
+ case NEON::BI__builtin_neon_vld3_lane_v:
+ case NEON::BI__builtin_neon_vld3q_lane_v:
+ case NEON::BI__builtin_neon_vld4_lane_v:
+ case NEON::BI__builtin_neon_vld4q_lane_v: {
+ Function *F = CGM.getIntrinsic(LLVMIntrinsic, Ty);
+ for (unsigned I = 2; I < Ops.size() - 1; ++I)
+ Ops[I] = Builder.CreateBitCast(Ops[I], Ty);
+ Ops.push_back(Align);
+ Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint);
+ Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ return Builder.CreateStore(Ops[1], Ops[0]);
+ }
+ case NEON::BI__builtin_neon_vmovl_v: {
+ llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy);
+ Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
+ if (Usgn)
+ return Builder.CreateZExt(Ops[0], Ty, "vmovl");
+ return Builder.CreateSExt(Ops[0], Ty, "vmovl");
+ }
+ case NEON::BI__builtin_neon_vmovn_v: {
+ llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy);
+ Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
+ return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
+ }
+ case NEON::BI__builtin_neon_vmull_v:
+ // FIXME: the integer vmull operations could be emitted in terms of pure
+ // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
+ // hoisting the exts outside loops. Until global ISel comes along that can
+ // see through such movement this leads to bad CodeGen. So we need an
+ // intrinsic for now.
+ Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
+ Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
+ case NEON::BI__builtin_neon_vpadal_v:
+ case NEON::BI__builtin_neon_vpadalq_v: {
+ // The source operand type has twice as many elements of half the size.
+ unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
+ llvm::Type *EltTy =
+ llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
+ llvm::Type *NarrowTy =
+ llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
+ llvm::Type *Tys[2] = { Ty, NarrowTy };
+ return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
+ }
+ case NEON::BI__builtin_neon_vpaddl_v:
+ case NEON::BI__builtin_neon_vpaddlq_v: {
+ // The source operand type has twice as many elements of half the size.
+ unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
+ llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
+ llvm::Type *NarrowTy =
+ llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
+ llvm::Type *Tys[2] = { Ty, NarrowTy };
+ return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
+ }
+ case NEON::BI__builtin_neon_vqdmlal_v:
+ case NEON::BI__builtin_neon_vqdmlsl_v: {
+ SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
+ Value *Mul = EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty),
+ MulOps, "vqdmlal");
+
+ SmallVector<Value *, 2> AccumOps;
+ AccumOps.push_back(Ops[0]);
+ AccumOps.push_back(Mul);
+ return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty),
+ AccumOps, NameHint);
+ }
+ case NEON::BI__builtin_neon_vqshl_n_v:
+ case NEON::BI__builtin_neon_vqshlq_n_v:
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
+ 1, false);
+ case NEON::BI__builtin_neon_vqshlu_n_v:
+ case NEON::BI__builtin_neon_vqshluq_n_v:
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n",
+ 1, false);
+ case NEON::BI__builtin_neon_vrecpe_v:
+ case NEON::BI__builtin_neon_vrecpeq_v:
+ case NEON::BI__builtin_neon_vrsqrte_v:
+ case NEON::BI__builtin_neon_vrsqrteq_v:
+ Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
+
+ case NEON::BI__builtin_neon_vrshr_n_v:
+ case NEON::BI__builtin_neon_vrshrq_n_v:
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n",
+ 1, true);
+ case NEON::BI__builtin_neon_vshl_n_v:
+ case NEON::BI__builtin_neon_vshlq_n_v:
+ Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
+ return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
+ "vshl_n");
+ case NEON::BI__builtin_neon_vshll_n_v: {
+ llvm::Type *SrcTy = llvm::VectorType::getTruncatedElementVectorType(VTy);
+ Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
+ if (Usgn)
+ Ops[0] = Builder.CreateZExt(Ops[0], VTy);
+ else
+ Ops[0] = Builder.CreateSExt(Ops[0], VTy);
+ Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
+ return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
+ }
+ case NEON::BI__builtin_neon_vshrn_n_v: {
+ llvm::Type *SrcTy = llvm::VectorType::getExtendedElementVectorType(VTy);
+ Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
+ Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
+ if (Usgn)
+ Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
+ else
+ Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
+ return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
+ }
+ case NEON::BI__builtin_neon_vshr_n_v:
+ case NEON::BI__builtin_neon_vshrq_n_v:
+ return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n");
+ case NEON::BI__builtin_neon_vst1_v:
+ case NEON::BI__builtin_neon_vst1q_v:
+ case NEON::BI__builtin_neon_vst2_v:
+ case NEON::BI__builtin_neon_vst2q_v:
+ case NEON::BI__builtin_neon_vst3_v:
+ case NEON::BI__builtin_neon_vst3q_v:
+ case NEON::BI__builtin_neon_vst4_v:
+ case NEON::BI__builtin_neon_vst4q_v:
+ case NEON::BI__builtin_neon_vst2_lane_v:
+ case NEON::BI__builtin_neon_vst2q_lane_v:
+ case NEON::BI__builtin_neon_vst3_lane_v:
+ case NEON::BI__builtin_neon_vst3q_lane_v:
+ case NEON::BI__builtin_neon_vst4_lane_v:
+ case NEON::BI__builtin_neon_vst4q_lane_v:
+ Ops.push_back(Align);
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "");
+ case NEON::BI__builtin_neon_vsubhn_v: {
+ llvm::VectorType *SrcTy =
+ llvm::VectorType::getExtendedElementVectorType(VTy);
+
+ // %sum = add <4 x i32> %lhs, %rhs
+ Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
+ Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
+ Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
+
+ // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
+ Constant *ShiftAmt = ConstantInt::get(SrcTy->getElementType(),
+ SrcTy->getScalarSizeInBits() / 2);
+ ShiftAmt = ConstantVector::getSplat(VTy->getNumElements(), ShiftAmt);
+ Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
+
+ // %res = trunc <4 x i32> %high to <4 x i16>
+ return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
+ }
+ case NEON::BI__builtin_neon_vtrn_v:
+ case NEON::BI__builtin_neon_vtrnq_v: {
+ Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+ Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
+ Value *SV = nullptr;
+
+ for (unsigned vi = 0; vi != 2; ++vi) {
+ SmallVector<Constant*, 16> Indices;
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
+ Indices.push_back(Builder.getInt32(i+vi));
+ Indices.push_back(Builder.getInt32(i+e+vi));
+ }
+ Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
+ SV = llvm::ConstantVector::get(Indices);
+ SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vtrn");
+ SV = Builder.CreateStore(SV, Addr);
+ }
+ return SV;
+ }
+ case NEON::BI__builtin_neon_vtst_v:
+ case NEON::BI__builtin_neon_vtstq_v: {
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+ Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
+ Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
+ ConstantAggregateZero::get(Ty));
+ return Builder.CreateSExt(Ops[0], Ty, "vtst");
+ }
+ case NEON::BI__builtin_neon_vuzp_v:
+ case NEON::BI__builtin_neon_vuzpq_v: {
+ Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+ Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
+ Value *SV = nullptr;
+
+ for (unsigned vi = 0; vi != 2; ++vi) {
+ SmallVector<Constant*, 16> Indices;
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
+ Indices.push_back(ConstantInt::get(Int32Ty, 2*i+vi));
+
+ Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
+ SV = llvm::ConstantVector::get(Indices);
+ SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vuzp");
+ SV = Builder.CreateStore(SV, Addr);
+ }
+ return SV;
+ }
+ case NEON::BI__builtin_neon_vzip_v:
+ case NEON::BI__builtin_neon_vzipq_v: {
+ Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+ Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
+ Value *SV = nullptr;
+
+ for (unsigned vi = 0; vi != 2; ++vi) {
+ SmallVector<Constant*, 16> Indices;
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
+ Indices.push_back(ConstantInt::get(Int32Ty, (i + vi*e) >> 1));
+ Indices.push_back(ConstantInt::get(Int32Ty, ((i + vi*e) >> 1)+e));
+ }
+ Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
+ SV = llvm::ConstantVector::get(Indices);
+ SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vzip");
+ SV = Builder.CreateStore(SV, Addr);
+ }
+ return SV;
+ }
+ }
+
+ assert(Int && "Expected valid intrinsic number");
+
+ // Determine the type(s) of this overloaded AArch64 intrinsic.
+ Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E);
+
+ Value *Result = EmitNeonCall(F, Ops, NameHint);
+ llvm::Type *ResultType = ConvertType(E->getType());
+ // AArch64 intrinsic one-element vector type cast to
+ // scalar type expected by the builtin
+ return Builder.CreateBitCast(Result, ResultType, NameHint);
+}
+
+Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
+ Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
+ const CmpInst::Predicate Ip, const Twine &Name) {
+ llvm::Type *OTy = Op->getType();
+
+ // FIXME: this is utterly horrific. We should not be looking at previous
+ // codegen context to find out what needs doing. Unfortunately TableGen
+ // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32
+ // (etc).
+ if (BitCastInst *BI = dyn_cast<BitCastInst>(Op))
+ OTy = BI->getOperand(0)->getType();
+
+ Op = Builder.CreateBitCast(Op, OTy);
+ if (OTy->getScalarType()->isFloatingPointTy()) {
+ Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy));
+ } else {
+ Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy));
+ }
+ return Builder.CreateSExt(Op, Ty, Name);
+}
+
+static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
+ Value *ExtOp, Value *IndexOp,
+ llvm::Type *ResTy, unsigned IntID,
+ const char *Name) {
+ SmallVector<Value *, 2> TblOps;
+ if (ExtOp)
+ TblOps.push_back(ExtOp);
+
+ // Build a vector containing sequential number like (0, 1, 2, ..., 15)
+ SmallVector<Constant*, 16> Indices;
+ llvm::VectorType *TblTy = cast<llvm::VectorType>(Ops[0]->getType());
+ for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
+ Indices.push_back(ConstantInt::get(CGF.Int32Ty, 2*i));
+ Indices.push_back(ConstantInt::get(CGF.Int32Ty, 2*i+1));
+ }
+ Value *SV = llvm::ConstantVector::get(Indices);
+
+ int PairPos = 0, End = Ops.size() - 1;
+ while (PairPos < End) {
+ TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
+ Ops[PairPos+1], SV, Name));
+ PairPos += 2;
+ }
+
+ // If there's an odd number of 64-bit lookup table, fill the high 64-bit
+ // of the 128-bit lookup table with zero.
+ if (PairPos == End) {
+ Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
+ TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
+ ZeroTbl, SV, Name));
+ }
+
+ Function *TblF;
+ TblOps.push_back(IndexOp);
+ TblF = CGF.CGM.getIntrinsic(IntID, ResTy);
+
+ return CGF.EmitNeonCall(TblF, TblOps, Name);
+}
+
+Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) {
+ switch (BuiltinID) {
+ default:
+ return nullptr;
+ case ARM::BI__builtin_arm_nop:
+ return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
+ llvm::ConstantInt::get(Int32Ty, 0));
+ case ARM::BI__builtin_arm_yield:
+ case ARM::BI__yield:
+ return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
+ llvm::ConstantInt::get(Int32Ty, 1));
+ case ARM::BI__builtin_arm_wfe:
+ case ARM::BI__wfe:
+ return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
+ llvm::ConstantInt::get(Int32Ty, 2));
+ case ARM::BI__builtin_arm_wfi:
+ case ARM::BI__wfi:
+ return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
+ llvm::ConstantInt::get(Int32Ty, 3));
+ case ARM::BI__builtin_arm_sev:
+ case ARM::BI__sev:
+ return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
+ llvm::ConstantInt::get(Int32Ty, 4));
+ case ARM::BI__builtin_arm_sevl:
+ case ARM::BI__sevl:
+ return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
+ llvm::ConstantInt::get(Int32Ty, 5));
+ }
+}
+
+Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
+ const CallExpr *E) {
+ if (auto Hint = GetValueForARMHint(BuiltinID))
+ return Hint;
+
+ if (BuiltinID == ARM::BI__emit) {
+ bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb;
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(VoidTy, /*Variadic=*/false);
+
+ APSInt Value;
+ if (!E->getArg(0)->EvaluateAsInt(Value, CGM.getContext()))
+ llvm_unreachable("Sema will ensure that the parameter is constant");
+
+ uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue();
+
+ llvm::InlineAsm *Emit =
+ IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "",
+ /*SideEffects=*/true)
+ : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "",
+ /*SideEffects=*/true);
+
+ return Builder.CreateCall(Emit, {});
+ }
+
+ if (BuiltinID == ARM::BI__builtin_arm_dbg) {
+ Value *Option = EmitScalarExpr(E->getArg(0));
+ return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option);
+ }
+
+ if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
+ Value *Address = EmitScalarExpr(E->getArg(0));
+ Value *RW = EmitScalarExpr(E->getArg(1));
+ Value *IsData = EmitScalarExpr(E->getArg(2));
+
+ // Locality is not supported on ARM target
+ Value *Locality = llvm::ConstantInt::get(Int32Ty, 3);
+
+ Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
+ return Builder.CreateCall(F, {Address, RW, Locality, IsData});
+ }
+
+ if (BuiltinID == ARM::BI__builtin_arm_rbit) {
+ return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_rbit),
+ EmitScalarExpr(E->getArg(0)),
+ "rbit");
+ }
+
+ if (BuiltinID == ARM::BI__clear_cache) {
+ assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
+ const FunctionDecl *FD = E->getDirectCallee();
+ SmallVector<Value*, 2> Ops;
+ for (unsigned i = 0; i < 2; i++)
+ Ops.push_back(EmitScalarExpr(E->getArg(i)));
+ llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
+ llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
+ StringRef Name = FD->getName();
+ return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
+ }
+
+ if (BuiltinID == ARM::BI__builtin_arm_ldrexd ||
+ ((BuiltinID == ARM::BI__builtin_arm_ldrex ||
+ BuiltinID == ARM::BI__builtin_arm_ldaex) &&
+ getContext().getTypeSize(E->getType()) == 64) ||
+ BuiltinID == ARM::BI__ldrexd) {
+ Function *F;
+
+ switch (BuiltinID) {
+ default: llvm_unreachable("unexpected builtin");
+ case ARM::BI__builtin_arm_ldaex:
+ F = CGM.getIntrinsic(Intrinsic::arm_ldaexd);
+ break;
+ case ARM::BI__builtin_arm_ldrexd:
+ case ARM::BI__builtin_arm_ldrex:
+ case ARM::BI__ldrexd:
+ F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
+ break;
+ }
+
+ Value *LdPtr = EmitScalarExpr(E->getArg(0));
+ Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
+ "ldrexd");
+
+ Value *Val0 = Builder.CreateExtractValue(Val, 1);
+ Value *Val1 = Builder.CreateExtractValue(Val, 0);
+ Val0 = Builder.CreateZExt(Val0, Int64Ty);
+ Val1 = Builder.CreateZExt(Val1, Int64Ty);
+
+ Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
+ Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
+ Val = Builder.CreateOr(Val, Val1);
+ return Builder.CreateBitCast(Val, ConvertType(E->getType()));
+ }
+
+ if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
+ BuiltinID == ARM::BI__builtin_arm_ldaex) {
+ Value *LoadAddr = EmitScalarExpr(E->getArg(0));
+
+ QualType Ty = E->getType();
+ llvm::Type *RealResTy = ConvertType(Ty);
+ llvm::Type *IntResTy = llvm::IntegerType::get(getLLVMContext(),
+ getContext().getTypeSize(Ty));
+ LoadAddr = Builder.CreateBitCast(LoadAddr, IntResTy->getPointerTo());
+
+ Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex
+ ? Intrinsic::arm_ldaex
+ : Intrinsic::arm_ldrex,
+ LoadAddr->getType());
+ Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
+
+ if (RealResTy->isPointerTy())
+ return Builder.CreateIntToPtr(Val, RealResTy);
+ else {
+ Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
+ return Builder.CreateBitCast(Val, RealResTy);
+ }
+ }
+
+ if (BuiltinID == ARM::BI__builtin_arm_strexd ||
+ ((BuiltinID == ARM::BI__builtin_arm_stlex ||
+ BuiltinID == ARM::BI__builtin_arm_strex) &&
+ getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
+ Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
+ ? Intrinsic::arm_stlexd
+ : Intrinsic::arm_strexd);
+ llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, nullptr);
+
+ Value *Tmp = CreateMemTemp(E->getArg(0)->getType());
+ Value *Val = EmitScalarExpr(E->getArg(0));
+ Builder.CreateStore(Val, Tmp);
+
+ Value *LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
+ Val = Builder.CreateLoad(LdPtr);
+
+ Value *Arg0 = Builder.CreateExtractValue(Val, 0);
+ Value *Arg1 = Builder.CreateExtractValue(Val, 1);
+ Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy);
+ return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd");
+ }
+
+ if (BuiltinID == ARM::BI__builtin_arm_strex ||
+ BuiltinID == ARM::BI__builtin_arm_stlex) {
+ Value *StoreVal = EmitScalarExpr(E->getArg(0));
+ Value *StoreAddr = EmitScalarExpr(E->getArg(1));
+
+ QualType Ty = E->getArg(0)->getType();
+ llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
+ getContext().getTypeSize(Ty));
+ StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
+
+ if (StoreVal->getType()->isPointerTy())
+ StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
+ else {
+ StoreVal = Builder.CreateBitCast(StoreVal, StoreTy);
+ StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
+ }
+
+ Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
+ ? Intrinsic::arm_stlex
+ : Intrinsic::arm_strex,
+ StoreAddr->getType());
+ return Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex");
+ }
+
+ if (BuiltinID == ARM::BI__builtin_arm_clrex) {
+ Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
+ return Builder.CreateCall(F, {});
+ }
+
+ // CRC32
+ Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
+ switch (BuiltinID) {
+ case ARM::BI__builtin_arm_crc32b:
+ CRCIntrinsicID = Intrinsic::arm_crc32b; break;
+ case ARM::BI__builtin_arm_crc32cb:
+ CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
+ case ARM::BI__builtin_arm_crc32h:
+ CRCIntrinsicID = Intrinsic::arm_crc32h; break;
+ case ARM::BI__builtin_arm_crc32ch:
+ CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
+ case ARM::BI__builtin_arm_crc32w:
+ case ARM::BI__builtin_arm_crc32d:
+ CRCIntrinsicID = Intrinsic::arm_crc32w; break;
+ case ARM::BI__builtin_arm_crc32cw:
+ case ARM::BI__builtin_arm_crc32cd:
+ CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
+ }
+
+ if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
+ Value *Arg0 = EmitScalarExpr(E->getArg(0));
+ Value *Arg1 = EmitScalarExpr(E->getArg(1));
+
+ // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w
+ // intrinsics, hence we need different codegen for these cases.
+ if (BuiltinID == ARM::BI__builtin_arm_crc32d ||
+ BuiltinID == ARM::BI__builtin_arm_crc32cd) {
+ Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
+ Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
+ Value *Arg1b = Builder.CreateLShr(Arg1, C1);
+ Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
+
+ Function *F = CGM.getIntrinsic(CRCIntrinsicID);
+ Value *Res = Builder.CreateCall(F, {Arg0, Arg1a});
+ return Builder.CreateCall(F, {Res, Arg1b});
+ } else {
+ Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
+
+ Function *F = CGM.getIntrinsic(CRCIntrinsicID);
+ return Builder.CreateCall(F, {Arg0, Arg1});
+ }
+ }
+
+ SmallVector<Value*, 4> Ops;
+ llvm::Value *Align = nullptr;
+ for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
+ if (i == 0) {
+ switch (BuiltinID) {
+ case NEON::BI__builtin_neon_vld1_v:
+ case NEON::BI__builtin_neon_vld1q_v:
+ case NEON::BI__builtin_neon_vld1q_lane_v:
+ case NEON::BI__builtin_neon_vld1_lane_v:
+ case NEON::BI__builtin_neon_vld1_dup_v:
+ case NEON::BI__builtin_neon_vld1q_dup_v:
+ case NEON::BI__builtin_neon_vst1_v:
+ case NEON::BI__builtin_neon_vst1q_v:
+ case NEON::BI__builtin_neon_vst1q_lane_v:
+ case NEON::BI__builtin_neon_vst1_lane_v:
+ case NEON::BI__builtin_neon_vst2_v:
+ case NEON::BI__builtin_neon_vst2q_v:
+ case NEON::BI__builtin_neon_vst2_lane_v:
+ case NEON::BI__builtin_neon_vst2q_lane_v:
+ case NEON::BI__builtin_neon_vst3_v:
+ case NEON::BI__builtin_neon_vst3q_v:
+ case NEON::BI__builtin_neon_vst3_lane_v:
+ case NEON::BI__builtin_neon_vst3q_lane_v:
+ case NEON::BI__builtin_neon_vst4_v:
+ case NEON::BI__builtin_neon_vst4q_v:
+ case NEON::BI__builtin_neon_vst4_lane_v:
+ case NEON::BI__builtin_neon_vst4q_lane_v:
+ // Get the alignment for the argument in addition to the value;
+ // we'll use it later.
+ std::pair<llvm::Value*, unsigned> Src =
+ EmitPointerWithAlignment(E->getArg(0));
+ Ops.push_back(Src.first);
+ Align = Builder.getInt32(Src.second);
+ continue;
+ }
+ }
+ if (i == 1) {
+ switch (BuiltinID) {
+ case NEON::BI__builtin_neon_vld2_v:
+ case NEON::BI__builtin_neon_vld2q_v:
+ case NEON::BI__builtin_neon_vld3_v:
+ case NEON::BI__builtin_neon_vld3q_v:
+ case NEON::BI__builtin_neon_vld4_v:
+ case NEON::BI__builtin_neon_vld4q_v:
+ case NEON::BI__builtin_neon_vld2_lane_v:
+ case NEON::BI__builtin_neon_vld2q_lane_v:
+ case NEON::BI__builtin_neon_vld3_lane_v:
+ case NEON::BI__builtin_neon_vld3q_lane_v:
+ case NEON::BI__builtin_neon_vld4_lane_v:
+ case NEON::BI__builtin_neon_vld4q_lane_v:
+ case NEON::BI__builtin_neon_vld2_dup_v:
+ case NEON::BI__builtin_neon_vld3_dup_v:
+ case NEON::BI__builtin_neon_vld4_dup_v:
+ // Get the alignment for the argument in addition to the value;
+ // we'll use it later.
+ std::pair<llvm::Value*, unsigned> Src =
+ EmitPointerWithAlignment(E->getArg(1));
+ Ops.push_back(Src.first);
+ Align = Builder.getInt32(Src.second);
+ continue;
+ }
+ }
+ Ops.push_back(EmitScalarExpr(E->getArg(i)));
+ }
+
+ switch (BuiltinID) {
+ default: break;
+ // vget_lane and vset_lane are not overloaded and do not have an extra
+ // argument that specifies the vector type.
+ case NEON::BI__builtin_neon_vget_lane_i8:
+ case NEON::BI__builtin_neon_vget_lane_i16:
+ case NEON::BI__builtin_neon_vget_lane_i32:
+ case NEON::BI__builtin_neon_vget_lane_i64:
+ case NEON::BI__builtin_neon_vget_lane_f32:
+ case NEON::BI__builtin_neon_vgetq_lane_i8:
+ case NEON::BI__builtin_neon_vgetq_lane_i16:
+ case NEON::BI__builtin_neon_vgetq_lane_i32:
+ case NEON::BI__builtin_neon_vgetq_lane_i64:
+ case NEON::BI__builtin_neon_vgetq_lane_f32:
+ return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
+ "vget_lane");
+ case NEON::BI__builtin_neon_vset_lane_i8:
+ case NEON::BI__builtin_neon_vset_lane_i16:
+ case NEON::BI__builtin_neon_vset_lane_i32:
+ case NEON::BI__builtin_neon_vset_lane_i64:
+ case NEON::BI__builtin_neon_vset_lane_f32:
+ case NEON::BI__builtin_neon_vsetq_lane_i8:
+ case NEON::BI__builtin_neon_vsetq_lane_i16:
+ case NEON::BI__builtin_neon_vsetq_lane_i32:
+ case NEON::BI__builtin_neon_vsetq_lane_i64:
+ case NEON::BI__builtin_neon_vsetq_lane_f32:
+ Ops.push_back(EmitScalarExpr(E->getArg(2)));
+ return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
+
+ // Non-polymorphic crypto instructions also not overloaded
+ case NEON::BI__builtin_neon_vsha1h_u32:
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops,
+ "vsha1h");
+ case NEON::BI__builtin_neon_vsha1cq_u32:
+ Ops.push_back(EmitScalarExpr(E->getArg(2)));
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops,
+ "vsha1h");
+ case NEON::BI__builtin_neon_vsha1pq_u32:
+ Ops.push_back(EmitScalarExpr(E->getArg(2)));
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops,
+ "vsha1h");
+ case NEON::BI__builtin_neon_vsha1mq_u32:
+ Ops.push_back(EmitScalarExpr(E->getArg(2)));
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops,
+ "vsha1h");
+ }
+
+ // Get the last argument, which specifies the vector type.
+ llvm::APSInt Result;
+ const Expr *Arg = E->getArg(E->getNumArgs()-1);
+ if (!Arg->isIntegerConstantExpr(Result, getContext()))
+ return nullptr;
+
+ if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
+ BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
+ // Determine the overloaded type of this builtin.
+ llvm::Type *Ty;
+ if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
+ Ty = FloatTy;
+ else
+ Ty = DoubleTy;
+
+ // Determine whether this is an unsigned conversion or not.
+ bool usgn = Result.getZExtValue() == 1;
+ unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
+
+ // Call the appropriate intrinsic.
+ Function *F = CGM.getIntrinsic(Int, Ty);
+ return Builder.CreateCall(F, Ops, "vcvtr");
+ }
+
+ // Determine the type of this overloaded NEON intrinsic.
+ NeonTypeFlags Type(Result.getZExtValue());
+ bool usgn = Type.isUnsigned();
+ bool rightShift = false;
+
+ llvm::VectorType *VTy = GetNeonType(this, Type);
+ llvm::Type *Ty = VTy;
+ if (!Ty)
+ return nullptr;
+
+ // Many NEON builtins have identical semantics and uses in ARM and
+ // AArch64. Emit these in a single function.
+ auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap);
+ const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap(
+ IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted);
+ if (Builtin)
+ return EmitCommonNeonBuiltinExpr(
+ Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
+ Builtin->NameHint, Builtin->TypeModifier, E, Ops, Align);
+
+ unsigned Int;
+ switch (BuiltinID) {
+ default: return nullptr;
+ case NEON::BI__builtin_neon_vld1q_lane_v:
+ // Handle 64-bit integer elements as a special case. Use shuffles of
+ // one-element vectors to avoid poor code for i64 in the backend.
+ if (VTy->getElementType()->isIntegerTy(64)) {
+ // Extract the other lane.
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+ int Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
+ Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
+ Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
+ // Load the value as a one-element vector.
+ Ty = llvm::VectorType::get(VTy->getElementType(), 1);
+ Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Ty);
+ Value *Ld = Builder.CreateCall(F, {Ops[0], Align});
+ // Combine them.
+ SmallVector<Constant*, 2> Indices;
+ Indices.push_back(ConstantInt::get(Int32Ty, 1-Lane));
+ Indices.push_back(ConstantInt::get(Int32Ty, Lane));
+ SV = llvm::ConstantVector::get(Indices);
+ return Builder.CreateShuffleVector(Ops[1], Ld, SV, "vld1q_lane");
+ }
+ // fall through
+ case NEON::BI__builtin_neon_vld1_lane_v: {
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+ Ty = llvm::PointerType::getUnqual(VTy->getElementType());
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ LoadInst *Ld = Builder.CreateLoad(Ops[0]);
+ Ld->setAlignment(cast<ConstantInt>(Align)->getZExtValue());
+ return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
+ }
+ case NEON::BI__builtin_neon_vld2_dup_v:
+ case NEON::BI__builtin_neon_vld3_dup_v:
+ case NEON::BI__builtin_neon_vld4_dup_v: {
+ // Handle 64-bit elements as a special-case. There is no "dup" needed.
+ if (VTy->getElementType()->getPrimitiveSizeInBits() == 64) {
+ switch (BuiltinID) {
+ case NEON::BI__builtin_neon_vld2_dup_v:
+ Int = Intrinsic::arm_neon_vld2;
+ break;
+ case NEON::BI__builtin_neon_vld3_dup_v:
+ Int = Intrinsic::arm_neon_vld3;
+ break;
+ case NEON::BI__builtin_neon_vld4_dup_v:
+ Int = Intrinsic::arm_neon_vld4;
+ break;
+ default: llvm_unreachable("unknown vld_dup intrinsic?");
+ }
+ Function *F = CGM.getIntrinsic(Int, Ty);
+ Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, "vld_dup");
+ Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ return Builder.CreateStore(Ops[1], Ops[0]);
+ }
+ switch (BuiltinID) {
+ case NEON::BI__builtin_neon_vld2_dup_v:
+ Int = Intrinsic::arm_neon_vld2lane;
+ break;
+ case NEON::BI__builtin_neon_vld3_dup_v:
+ Int = Intrinsic::arm_neon_vld3lane;
+ break;
+ case NEON::BI__builtin_neon_vld4_dup_v:
+ Int = Intrinsic::arm_neon_vld4lane;
+ break;
+ default: llvm_unreachable("unknown vld_dup intrinsic?");
+ }
+ Function *F = CGM.getIntrinsic(Int, Ty);
+ llvm::StructType *STy = cast<llvm::StructType>(F->getReturnType());
+
+ SmallVector<Value*, 6> Args;
+ Args.push_back(Ops[1]);
+ Args.append(STy->getNumElements(), UndefValue::get(Ty));
+
+ llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
+ Args.push_back(CI);
+ Args.push_back(Align);
+
+ Ops[1] = Builder.CreateCall(F, Args, "vld_dup");
+ // splat lane 0 to all elts in each vector of the result.
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+ Value *Val = Builder.CreateExtractValue(Ops[1], i);
+ Value *Elt = Builder.CreateBitCast(Val, Ty);
+ Elt = EmitNeonSplat(Elt, CI);
+ Elt = Builder.CreateBitCast(Elt, Val->getType());
+ Ops[1] = Builder.CreateInsertValue(Ops[1], Elt, i);
+ }
+ Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ return Builder.CreateStore(Ops[1], Ops[0]);
+ }
+ case NEON::BI__builtin_neon_vqrshrn_n_v:
+ Int =
+ usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
+ 1, true);
+ case NEON::BI__builtin_neon_vqrshrun_n_v:
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
+ Ops, "vqrshrun_n", 1, true);
+ case NEON::BI__builtin_neon_vqshrn_n_v:
+ Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
+ 1, true);
+ case NEON::BI__builtin_neon_vqshrun_n_v:
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
+ Ops, "vqshrun_n", 1, true);
+ case NEON::BI__builtin_neon_vrecpe_v:
+ case NEON::BI__builtin_neon_vrecpeq_v:
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
+ Ops, "vrecpe");
+ case NEON::BI__builtin_neon_vrshrn_n_v:
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
+ Ops, "vrshrn_n", 1, true);
+ case NEON::BI__builtin_neon_vrsra_n_v:
+ case NEON::BI__builtin_neon_vrsraq_n_v:
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+ Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
+ Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
+ Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]});
+ return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
+ case NEON::BI__builtin_neon_vsri_n_v:
+ case NEON::BI__builtin_neon_vsriq_n_v:
+ rightShift = true;
+ case NEON::BI__builtin_neon_vsli_n_v:
+ case NEON::BI__builtin_neon_vsliq_n_v:
+ Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
+ Ops, "vsli_n");
+ case NEON::BI__builtin_neon_vsra_n_v:
+ case NEON::BI__builtin_neon_vsraq_n_v:
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
+ return Builder.CreateAdd(Ops[0], Ops[1]);
+ case NEON::BI__builtin_neon_vst1q_lane_v:
+ // Handle 64-bit integer elements as a special case. Use a shuffle to get
+ // a one-element vector and avoid poor code for i64 in the backend.
+ if (VTy->getElementType()->isIntegerTy(64)) {
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+ Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
+ Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
+ Ops[2] = Align;
+ return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
+ Ops[1]->getType()), Ops);
+ }
+ // fall through
+ case NEON::BI__builtin_neon_vst1_lane_v: {
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+ Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
+ Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
+ StoreInst *St = Builder.CreateStore(Ops[1],
+ Builder.CreateBitCast(Ops[0], Ty));
+ St->setAlignment(cast<ConstantInt>(Align)->getZExtValue());
+ return St;
+ }
+ case NEON::BI__builtin_neon_vtbl1_v:
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
+ Ops, "vtbl1");
+ case NEON::BI__builtin_neon_vtbl2_v:
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
+ Ops, "vtbl2");
+ case NEON::BI__builtin_neon_vtbl3_v:
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
+ Ops, "vtbl3");
+ case NEON::BI__builtin_neon_vtbl4_v:
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
+ Ops, "vtbl4");
+ case NEON::BI__builtin_neon_vtbx1_v:
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
+ Ops, "vtbx1");
+ case NEON::BI__builtin_neon_vtbx2_v:
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
+ Ops, "vtbx2");
+ case NEON::BI__builtin_neon_vtbx3_v:
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
+ Ops, "vtbx3");
+ case NEON::BI__builtin_neon_vtbx4_v:
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
+ Ops, "vtbx4");
+ }
+}
+
+static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID,
+ const CallExpr *E,
+ SmallVectorImpl<Value *> &Ops) {
+ unsigned int Int = 0;
+ const char *s = nullptr;
+
+ switch (BuiltinID) {
+ default:
+ return nullptr;
+ case NEON::BI__builtin_neon_vtbl1_v:
+ case NEON::BI__builtin_neon_vqtbl1_v:
+ case NEON::BI__builtin_neon_vqtbl1q_v:
+ case NEON::BI__builtin_neon_vtbl2_v:
+ case NEON::BI__builtin_neon_vqtbl2_v:
+ case NEON::BI__builtin_neon_vqtbl2q_v:
+ case NEON::BI__builtin_neon_vtbl3_v:
+ case NEON::BI__builtin_neon_vqtbl3_v:
+ case NEON::BI__builtin_neon_vqtbl3q_v:
+ case NEON::BI__builtin_neon_vtbl4_v:
+ case NEON::BI__builtin_neon_vqtbl4_v:
+ case NEON::BI__builtin_neon_vqtbl4q_v:
+ break;
+ case NEON::BI__builtin_neon_vtbx1_v:
+ case NEON::BI__builtin_neon_vqtbx1_v:
+ case NEON::BI__builtin_neon_vqtbx1q_v:
+ case NEON::BI__builtin_neon_vtbx2_v:
+ case NEON::BI__builtin_neon_vqtbx2_v:
+ case NEON::BI__builtin_neon_vqtbx2q_v:
+ case NEON::BI__builtin_neon_vtbx3_v:
+ case NEON::BI__builtin_neon_vqtbx3_v:
+ case NEON::BI__builtin_neon_vqtbx3q_v:
+ case NEON::BI__builtin_neon_vtbx4_v:
+ case NEON::BI__builtin_neon_vqtbx4_v:
+ case NEON::BI__builtin_neon_vqtbx4q_v:
+ break;
+ }
+
+ assert(E->getNumArgs() >= 3);
+
+ // Get the last argument, which specifies the vector type.
+ llvm::APSInt Result;
+ const Expr *Arg = E->getArg(E->getNumArgs() - 1);
+ if (!Arg->isIntegerConstantExpr(Result, CGF.getContext()))
+ return nullptr;
+
+ // Determine the type of this overloaded NEON intrinsic.
+ NeonTypeFlags Type(Result.getZExtValue());
+ llvm::VectorType *VTy = GetNeonType(&CGF, Type);
+ llvm::Type *Ty = VTy;
+ if (!Ty)
+ return nullptr;
+
+ unsigned nElts = VTy->getNumElements();
+
+ CodeGen::CGBuilderTy &Builder = CGF.Builder;
+
+ // AArch64 scalar builtins are not overloaded, they do not have an extra
+ // argument that specifies the vector type, need to handle each case.
+ SmallVector<Value *, 2> TblOps;
+ switch (BuiltinID) {
+ case NEON::BI__builtin_neon_vtbl1_v: {
+ TblOps.push_back(Ops[0]);
+ return packTBLDVectorList(CGF, TblOps, nullptr, Ops[1], Ty,
+ Intrinsic::aarch64_neon_tbl1, "vtbl1");
+ }
+ case NEON::BI__builtin_neon_vtbl2_v: {
+ TblOps.push_back(Ops[0]);
+ TblOps.push_back(Ops[1]);
+ return packTBLDVectorList(CGF, TblOps, nullptr, Ops[2], Ty,
+ Intrinsic::aarch64_neon_tbl1, "vtbl1");
+ }
+ case NEON::BI__builtin_neon_vtbl3_v: {
+ TblOps.push_back(Ops[0]);
+ TblOps.push_back(Ops[1]);
+ TblOps.push_back(Ops[2]);
+ return packTBLDVectorList(CGF, TblOps, nullptr, Ops[3], Ty,
+ Intrinsic::aarch64_neon_tbl2, "vtbl2");
+ }
+ case NEON::BI__builtin_neon_vtbl4_v: {
+ TblOps.push_back(Ops[0]);
+ TblOps.push_back(Ops[1]);
+ TblOps.push_back(Ops[2]);
+ TblOps.push_back(Ops[3]);
+ return packTBLDVectorList(CGF, TblOps, nullptr, Ops[4], Ty,
+ Intrinsic::aarch64_neon_tbl2, "vtbl2");
+ }
+ case NEON::BI__builtin_neon_vtbx1_v: {
+ TblOps.push_back(Ops[1]);
+ Value *TblRes = packTBLDVectorList(CGF, TblOps, nullptr, Ops[2], Ty,
+ Intrinsic::aarch64_neon_tbl1, "vtbl1");
+
+ llvm::Constant *Eight = ConstantInt::get(VTy->getElementType(), 8);
+ Value* EightV = llvm::ConstantVector::getSplat(nElts, Eight);
+ Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
+ CmpRes = Builder.CreateSExt(CmpRes, Ty);
+
+ Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
+ Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
+ return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
+ }
+ case NEON::BI__builtin_neon_vtbx2_v: {
+ TblOps.push_back(Ops[1]);
+ TblOps.push_back(Ops[2]);
+ return packTBLDVectorList(CGF, TblOps, Ops[0], Ops[3], Ty,
+ Intrinsic::aarch64_neon_tbx1, "vtbx1");
+ }
+ case NEON::BI__builtin_neon_vtbx3_v: {
+ TblOps.push_back(Ops[1]);
+ TblOps.push_back(Ops[2]);
+ TblOps.push_back(Ops[3]);
+ Value *TblRes = packTBLDVectorList(CGF, TblOps, nullptr, Ops[4], Ty,
+ Intrinsic::aarch64_neon_tbl2, "vtbl2");
+
+ llvm::Constant *TwentyFour = ConstantInt::get(VTy->getElementType(), 24);
+ Value* TwentyFourV = llvm::ConstantVector::getSplat(nElts, TwentyFour);
+ Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
+ TwentyFourV);
+ CmpRes = Builder.CreateSExt(CmpRes, Ty);
+
+ Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
+ Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
+ return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
+ }
+ case NEON::BI__builtin_neon_vtbx4_v: {
+ TblOps.push_back(Ops[1]);
+ TblOps.push_back(Ops[2]);
+ TblOps.push_back(Ops[3]);
+ TblOps.push_back(Ops[4]);
+ return packTBLDVectorList(CGF, TblOps, Ops[0], Ops[5], Ty,
+ Intrinsic::aarch64_neon_tbx2, "vtbx2");
+ }
+ case NEON::BI__builtin_neon_vqtbl1_v:
+ case NEON::BI__builtin_neon_vqtbl1q_v:
+ Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break;
+ case NEON::BI__builtin_neon_vqtbl2_v:
+ case NEON::BI__builtin_neon_vqtbl2q_v: {
+ Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break;
+ case NEON::BI__builtin_neon_vqtbl3_v:
+ case NEON::BI__builtin_neon_vqtbl3q_v:
+ Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break;
+ case NEON::BI__builtin_neon_vqtbl4_v:
+ case NEON::BI__builtin_neon_vqtbl4q_v:
+ Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break;
+ case NEON::BI__builtin_neon_vqtbx1_v:
+ case NEON::BI__builtin_neon_vqtbx1q_v:
+ Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break;
+ case NEON::BI__builtin_neon_vqtbx2_v:
+ case NEON::BI__builtin_neon_vqtbx2q_v:
+ Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break;
+ case NEON::BI__builtin_neon_vqtbx3_v:
+ case NEON::BI__builtin_neon_vqtbx3q_v:
+ Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break;
+ case NEON::BI__builtin_neon_vqtbx4_v:
+ case NEON::BI__builtin_neon_vqtbx4q_v:
+ Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break;
+ }
+ }
+
+ if (!Int)
+ return nullptr;
+
+ Function *F = CGF.CGM.getIntrinsic(Int, Ty);
+ return CGF.EmitNeonCall(F, Ops, s);
+}
+
+Value *CodeGenFunction::vectorWrapScalar16(Value *Op) {
+ llvm::Type *VTy = llvm::VectorType::get(Int16Ty, 4);
+ Op = Builder.CreateBitCast(Op, Int16Ty);
+ Value *V = UndefValue::get(VTy);
+ llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
+ Op = Builder.CreateInsertElement(V, Op, CI);
+ return Op;
+}
+
+Value *CodeGenFunction::vectorWrapScalar8(Value *Op) {
+ llvm::Type *VTy = llvm::VectorType::get(Int8Ty, 8);
+ Op = Builder.CreateBitCast(Op, Int8Ty);
+ Value *V = UndefValue::get(VTy);
+ llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
+ Op = Builder.CreateInsertElement(V, Op, CI);
+ return Op;
+}
+
+Value *CodeGenFunction::
+emitVectorWrappedScalar8Intrinsic(unsigned Int, SmallVectorImpl<Value*> &Ops,
+ const char *Name) {
+ // i8 is not a legal types for AArch64, so we can't just use
+ // a normal overloaded intrinsic call for these scalar types. Instead
+ // we'll build 64-bit vectors w/ lane zero being our input values and
+ // perform the operation on that. The back end can pattern match directly
+ // to the scalar instruction.
+ Ops[0] = vectorWrapScalar8(Ops[0]);
+ Ops[1] = vectorWrapScalar8(Ops[1]);
+ llvm::Type *VTy = llvm::VectorType::get(Int8Ty, 8);
+ Value *V = EmitNeonCall(CGM.getIntrinsic(Int, VTy), Ops, Name);
+ Constant *CI = ConstantInt::get(SizeTy, 0);
+ return Builder.CreateExtractElement(V, CI, "lane0");
+}
+
+Value *CodeGenFunction::
+emitVectorWrappedScalar16Intrinsic(unsigned Int, SmallVectorImpl<Value*> &Ops,
+ const char *Name) {
+ // i16 is not a legal types for AArch64, so we can't just use
+ // a normal overloaded intrinsic call for these scalar types. Instead
+ // we'll build 64-bit vectors w/ lane zero being our input values and
+ // perform the operation on that. The back end can pattern match directly
+ // to the scalar instruction.
+ Ops[0] = vectorWrapScalar16(Ops[0]);
+ Ops[1] = vectorWrapScalar16(Ops[1]);
+ llvm::Type *VTy = llvm::VectorType::get(Int16Ty, 4);
+ Value *V = EmitNeonCall(CGM.getIntrinsic(Int, VTy), Ops, Name);
+ Constant *CI = ConstantInt::get(SizeTy, 0);
+ return Builder.CreateExtractElement(V, CI, "lane0");
+}
+
+Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
+ const CallExpr *E) {
+ unsigned HintID = static_cast<unsigned>(-1);
+ switch (BuiltinID) {
+ default: break;
+ case AArch64::BI__builtin_arm_nop:
+ HintID = 0;
+ break;
+ case AArch64::BI__builtin_arm_yield:
+ HintID = 1;
+ break;
+ case AArch64::BI__builtin_arm_wfe:
+ HintID = 2;
+ break;
+ case AArch64::BI__builtin_arm_wfi:
+ HintID = 3;
+ break;
+ case AArch64::BI__builtin_arm_sev:
+ HintID = 4;
+ break;
+ case AArch64::BI__builtin_arm_sevl:
+ HintID = 5;
+ break;
+ }
+
+ if (HintID != static_cast<unsigned>(-1)) {
+ Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint);
+ return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID));
+ }
+
+ if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
+ Value *Address = EmitScalarExpr(E->getArg(0));
+ Value *RW = EmitScalarExpr(E->getArg(1));
+ Value *CacheLevel = EmitScalarExpr(E->getArg(2));
+ Value *RetentionPolicy = EmitScalarExpr(E->getArg(3));
+ Value *IsData = EmitScalarExpr(E->getArg(4));
+
+ Value *Locality = nullptr;
+ if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) {
+ // Temporal fetch, needs to convert cache level to locality.
+ Locality = llvm::ConstantInt::get(Int32Ty,
+ -cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3);
+ } else {
+ // Streaming fetch.
+ Locality = llvm::ConstantInt::get(Int32Ty, 0);
+ }
+
+ // FIXME: We need AArch64 specific LLVM intrinsic if we want to specify
+ // PLDL3STRM or PLDL2STRM.
+ Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
+ return Builder.CreateCall(F, {Address, RW, Locality, IsData});
+ }
+
+ if (BuiltinID == AArch64::BI__builtin_arm_rbit) {
+ assert((getContext().getTypeSize(E->getType()) == 32) &&
+ "rbit of unusual size!");
+ llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
+ return Builder.CreateCall(
+ CGM.getIntrinsic(Intrinsic::aarch64_rbit, Arg->getType()), Arg, "rbit");
+ }
+ if (BuiltinID == AArch64::BI__builtin_arm_rbit64) {
+ assert((getContext().getTypeSize(E->getType()) == 64) &&
+ "rbit of unusual size!");
+ llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
+ return Builder.CreateCall(
+ CGM.getIntrinsic(Intrinsic::aarch64_rbit, Arg->getType()), Arg, "rbit");
+ }
+
+ if (BuiltinID == AArch64::BI__clear_cache) {
+ assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
+ const FunctionDecl *FD = E->getDirectCallee();
+ SmallVector<Value*, 2> Ops;
+ for (unsigned i = 0; i < 2; i++)
+ Ops.push_back(EmitScalarExpr(E->getArg(i)));
+ llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
+ llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
+ StringRef Name = FD->getName();
+ return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
+ }
+
+ if ((BuiltinID == AArch64::BI__builtin_arm_ldrex ||
+ BuiltinID == AArch64::BI__builtin_arm_ldaex) &&
+ getContext().getTypeSize(E->getType()) == 128) {
+ Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
+ ? Intrinsic::aarch64_ldaxp
+ : Intrinsic::aarch64_ldxp);
+
+ Value *LdPtr = EmitScalarExpr(E->getArg(0));
+ Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
+ "ldxp");
+
+ Value *Val0 = Builder.CreateExtractValue(Val, 1);
+ Value *Val1 = Builder.CreateExtractValue(Val, 0);
+ llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
+ Val0 = Builder.CreateZExt(Val0, Int128Ty);
+ Val1 = Builder.CreateZExt(Val1, Int128Ty);
+
+ Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64);
+ Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
+ Val = Builder.CreateOr(Val, Val1);
+ return Builder.CreateBitCast(Val, ConvertType(E->getType()));
+ } else if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
+ BuiltinID == AArch64::BI__builtin_arm_ldaex) {
+ Value *LoadAddr = EmitScalarExpr(E->getArg(0));
+
+ QualType Ty = E->getType();
+ llvm::Type *RealResTy = ConvertType(Ty);
+ llvm::Type *IntResTy = llvm::IntegerType::get(getLLVMContext(),
+ getContext().getTypeSize(Ty));
+ LoadAddr = Builder.CreateBitCast(LoadAddr, IntResTy->getPointerTo());
+
+ Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
+ ? Intrinsic::aarch64_ldaxr
+ : Intrinsic::aarch64_ldxr,
+ LoadAddr->getType());
+ Value *Val = Builder.CreateCall(F, LoadAddr, "ldxr");
+
+ if (RealResTy->isPointerTy())
+ return Builder.CreateIntToPtr(Val, RealResTy);
+
+ Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
+ return Builder.CreateBitCast(Val, RealResTy);
+ }
+
+ if ((BuiltinID == AArch64::BI__builtin_arm_strex ||
+ BuiltinID == AArch64::BI__builtin_arm_stlex) &&
+ getContext().getTypeSize(E->getArg(0)->getType()) == 128) {
+ Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
+ ? Intrinsic::aarch64_stlxp
+ : Intrinsic::aarch64_stxp);
+ llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty, nullptr);
+
+ Value *One = llvm::ConstantInt::get(Int32Ty, 1);
+ Value *Tmp = Builder.CreateAlloca(ConvertType(E->getArg(0)->getType()),
+ One);
+ Value *Val = EmitScalarExpr(E->getArg(0));
+ Builder.CreateStore(Val, Tmp);
+
+ Value *LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
+ Val = Builder.CreateLoad(LdPtr);
+
+ Value *Arg0 = Builder.CreateExtractValue(Val, 0);
+ Value *Arg1 = Builder.CreateExtractValue(Val, 1);
+ Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)),
+ Int8PtrTy);
+ return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp");
+ }
+
+ if (BuiltinID == AArch64::BI__builtin_arm_strex ||
+ BuiltinID == AArch64::BI__builtin_arm_stlex) {
+ Value *StoreVal = EmitScalarExpr(E->getArg(0));
+ Value *StoreAddr = EmitScalarExpr(E->getArg(1));
+
+ QualType Ty = E->getArg(0)->getType();
+ llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
+ getContext().getTypeSize(Ty));
+ StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
+
+ if (StoreVal->getType()->isPointerTy())
+ StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty);
+ else {
+ StoreVal = Builder.CreateBitCast(StoreVal, StoreTy);
+ StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty);
+ }
+
+ Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
+ ? Intrinsic::aarch64_stlxr
+ : Intrinsic::aarch64_stxr,
+ StoreAddr->getType());
+ return Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr");
+ }
+
+ if (BuiltinID == AArch64::BI__builtin_arm_clrex) {
+ Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex);
+ return Builder.CreateCall(F, {});
+ }
+
+ // CRC32
+ Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
+ switch (BuiltinID) {
+ case AArch64::BI__builtin_arm_crc32b:
+ CRCIntrinsicID = Intrinsic::aarch64_crc32b; break;
+ case AArch64::BI__builtin_arm_crc32cb:
+ CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break;
+ case AArch64::BI__builtin_arm_crc32h:
+ CRCIntrinsicID = Intrinsic::aarch64_crc32h; break;
+ case AArch64::BI__builtin_arm_crc32ch:
+ CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break;
+ case AArch64::BI__builtin_arm_crc32w:
+ CRCIntrinsicID = Intrinsic::aarch64_crc32w; break;
+ case AArch64::BI__builtin_arm_crc32cw:
+ CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break;
+ case AArch64::BI__builtin_arm_crc32d:
+ CRCIntrinsicID = Intrinsic::aarch64_crc32x; break;
+ case AArch64::BI__builtin_arm_crc32cd:
+ CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break;
+ }
+
+ if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
+ Value *Arg0 = EmitScalarExpr(E->getArg(0));
+ Value *Arg1 = EmitScalarExpr(E->getArg(1));
+ Function *F = CGM.getIntrinsic(CRCIntrinsicID);
+
+ llvm::Type *DataTy = F->getFunctionType()->getParamType(1);
+ Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy);
+
+ return Builder.CreateCall(F, {Arg0, Arg1});
+ }
+
+ llvm::SmallVector<Value*, 4> Ops;
+ for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++)
+ Ops.push_back(EmitScalarExpr(E->getArg(i)));
+
+ auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap);
+ const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap(
+ SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted);
+
+ if (Builtin) {
+ Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1)));
+ Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E);
+ assert(Result && "SISD intrinsic should have been handled");
+ return Result;
+ }
+
+ llvm::APSInt Result;
+ const Expr *Arg = E->getArg(E->getNumArgs()-1);
+ NeonTypeFlags Type(0);
+ if (Arg->isIntegerConstantExpr(Result, getContext()))
+ // Determine the type of this overloaded NEON intrinsic.
+ Type = NeonTypeFlags(Result.getZExtValue());
+
+ bool usgn = Type.isUnsigned();
+ bool quad = Type.isQuad();
+
+ // Handle non-overloaded intrinsics first.
+ switch (BuiltinID) {
+ default: break;
+ case NEON::BI__builtin_neon_vldrq_p128: {
+ llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
+ Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy);
+ return Builder.CreateLoad(Ptr);
+ }
+ case NEON::BI__builtin_neon_vstrq_p128: {
+ llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
+ Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy);
+ return Builder.CreateStore(EmitScalarExpr(E->getArg(1)), Ptr);
+ }
+ case NEON::BI__builtin_neon_vcvts_u32_f32:
+ case NEON::BI__builtin_neon_vcvtd_u64_f64:
+ usgn = true;
+ // FALL THROUGH
+ case NEON::BI__builtin_neon_vcvts_s32_f32:
+ case NEON::BI__builtin_neon_vcvtd_s64_f64: {
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
+ llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
+ llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
+ Ops[0] = Builder.CreateBitCast(Ops[0], FTy);
+ if (usgn)
+ return Builder.CreateFPToUI(Ops[0], InTy);
+ return Builder.CreateFPToSI(Ops[0], InTy);
+ }
+ case NEON::BI__builtin_neon_vcvts_f32_u32:
+ case NEON::BI__builtin_neon_vcvtd_f64_u64:
+ usgn = true;
+ // FALL THROUGH
+ case NEON::BI__builtin_neon_vcvts_f32_s32:
+ case NEON::BI__builtin_neon_vcvtd_f64_s64: {
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
+ llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
+ llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
+ Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
+ if (usgn)
+ return Builder.CreateUIToFP(Ops[0], FTy);
+ return Builder.CreateSIToFP(Ops[0], FTy);
+ }
+ case NEON::BI__builtin_neon_vpaddd_s64: {
+ llvm::Type *Ty =
+ llvm::VectorType::get(llvm::Type::getInt64Ty(getLLVMContext()), 2);
+ Value *Vec = EmitScalarExpr(E->getArg(0));
+ // The vector is v2f64, so make sure it's bitcast to that.
+ Vec = Builder.CreateBitCast(Vec, Ty, "v2i64");
+ llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
+ llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
+ Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
+ Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
+ // Pairwise addition of a v2f64 into a scalar f64.
+ return Builder.CreateAdd(Op0, Op1, "vpaddd");
+ }
+ case NEON::BI__builtin_neon_vpaddd_f64: {
+ llvm::Type *Ty =
+ llvm::VectorType::get(llvm::Type::getDoubleTy(getLLVMContext()), 2);
+ Value *Vec = EmitScalarExpr(E->getArg(0));
+ // The vector is v2f64, so make sure it's bitcast to that.
+ Vec = Builder.CreateBitCast(Vec, Ty, "v2f64");
+ llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
+ llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
+ Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
+ Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
+ // Pairwise addition of a v2f64 into a scalar f64.
+ return Builder.CreateFAdd(Op0, Op1, "vpaddd");
+ }
+ case NEON::BI__builtin_neon_vpadds_f32: {
+ llvm::Type *Ty =
+ llvm::VectorType::get(llvm::Type::getFloatTy(getLLVMContext()), 2);
+ Value *Vec = EmitScalarExpr(E->getArg(0));
+ // The vector is v2f32, so make sure it's bitcast to that.
+ Vec = Builder.CreateBitCast(Vec, Ty, "v2f32");
+ llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
+ llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
+ Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
+ Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
+ // Pairwise addition of a v2f32 into a scalar f32.
+ return Builder.CreateFAdd(Op0, Op1, "vpaddd");
+ }
+ case NEON::BI__builtin_neon_vceqzd_s64:
+ case NEON::BI__builtin_neon_vceqzd_f64:
+ case NEON::BI__builtin_neon_vceqzs_f32:
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ return EmitAArch64CompareBuiltinExpr(
+ Ops[0], ConvertType(E->getCallReturnType(getContext())),
+ ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz");
+ case NEON::BI__builtin_neon_vcgezd_s64:
+ case NEON::BI__builtin_neon_vcgezd_f64:
+ case NEON::BI__builtin_neon_vcgezs_f32:
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ return EmitAArch64CompareBuiltinExpr(
+ Ops[0], ConvertType(E->getCallReturnType(getContext())),
+ ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez");
+ case NEON::BI__builtin_neon_vclezd_s64:
+ case NEON::BI__builtin_neon_vclezd_f64:
+ case NEON::BI__builtin_neon_vclezs_f32:
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ return EmitAArch64CompareBuiltinExpr(
+ Ops[0], ConvertType(E->getCallReturnType(getContext())),
+ ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez");
+ case NEON::BI__builtin_neon_vcgtzd_s64:
+ case NEON::BI__builtin_neon_vcgtzd_f64:
+ case NEON::BI__builtin_neon_vcgtzs_f32:
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ return EmitAArch64CompareBuiltinExpr(
+ Ops[0], ConvertType(E->getCallReturnType(getContext())),
+ ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz");
+ case NEON::BI__builtin_neon_vcltzd_s64:
+ case NEON::BI__builtin_neon_vcltzd_f64:
+ case NEON::BI__builtin_neon_vcltzs_f32:
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ return EmitAArch64CompareBuiltinExpr(
+ Ops[0], ConvertType(E->getCallReturnType(getContext())),
+ ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz");
+
+ case NEON::BI__builtin_neon_vceqzd_u64: {
+ llvm::Type *Ty = llvm::Type::getInt64Ty(getLLVMContext());
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ Ops[0] = Builder.CreateICmp(llvm::ICmpInst::ICMP_EQ, Ops[0],
+ llvm::Constant::getNullValue(Ty));
+ return Builder.CreateSExt(Ops[0], Ty, "vceqzd");
+ }
+ case NEON::BI__builtin_neon_vceqd_f64:
+ case NEON::BI__builtin_neon_vcled_f64:
+ case NEON::BI__builtin_neon_vcltd_f64:
+ case NEON::BI__builtin_neon_vcged_f64:
+ case NEON::BI__builtin_neon_vcgtd_f64: {
+ llvm::CmpInst::Predicate P;
+ switch (BuiltinID) {
+ default: llvm_unreachable("missing builtin ID in switch!");
+ case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break;
+ case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break;
+ case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break;
+ case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break;
+ case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break;
+ }
+ Ops.push_back(EmitScalarExpr(E->getArg(1)));
+ Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
+ Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
+ Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
+ return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd");
+ }
+ case NEON::BI__builtin_neon_vceqs_f32:
+ case NEON::BI__builtin_neon_vcles_f32:
+ case NEON::BI__builtin_neon_vclts_f32:
+ case NEON::BI__builtin_neon_vcges_f32:
+ case NEON::BI__builtin_neon_vcgts_f32: {
+ llvm::CmpInst::Predicate P;
+ switch (BuiltinID) {
+ default: llvm_unreachable("missing builtin ID in switch!");
+ case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break;
+ case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break;
+ case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break;
+ case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break;
+ case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break;
+ }
+ Ops.push_back(EmitScalarExpr(E->getArg(1)));
+ Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
+ Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy);
+ Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
+ return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd");
+ }
+ case NEON::BI__builtin_neon_vceqd_s64:
+ case NEON::BI__builtin_neon_vceqd_u64:
+ case NEON::BI__builtin_neon_vcgtd_s64:
+ case NEON::BI__builtin_neon_vcgtd_u64:
+ case NEON::BI__builtin_neon_vcltd_s64:
+ case NEON::BI__builtin_neon_vcltd_u64:
+ case NEON::BI__builtin_neon_vcged_u64:
+ case NEON::BI__builtin_neon_vcged_s64:
+ case NEON::BI__builtin_neon_vcled_u64:
+ case NEON::BI__builtin_neon_vcled_s64: {
+ llvm::CmpInst::Predicate P;
+ switch (BuiltinID) {
+ default: llvm_unreachable("missing builtin ID in switch!");
+ case NEON::BI__builtin_neon_vceqd_s64:
+ case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break;
+ case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break;
+ case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break;
+ case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break;
+ case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break;
+ case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break;
+ case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break;
+ case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break;
+ case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break;
+ }
+ Ops.push_back(EmitScalarExpr(E->getArg(1)));
+ Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
+ Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
+ Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]);
+ return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd");
+ }
+ case NEON::BI__builtin_neon_vtstd_s64:
+ case NEON::BI__builtin_neon_vtstd_u64: {
+ llvm::Type *Ty = llvm::Type::getInt64Ty(getLLVMContext());
+ Ops.push_back(EmitScalarExpr(E->getArg(1)));
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+ Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
+ Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
+ llvm::Constant::getNullValue(Ty));
+ return Builder.CreateSExt(Ops[0], Ty, "vtstd");
+ }
+ case NEON::BI__builtin_neon_vset_lane_i8:
+ case NEON::BI__builtin_neon_vset_lane_i16:
+ case NEON::BI__builtin_neon_vset_lane_i32:
+ case NEON::BI__builtin_neon_vset_lane_i64:
+ case NEON::BI__builtin_neon_vset_lane_f32:
+ case NEON::BI__builtin_neon_vsetq_lane_i8:
+ case NEON::BI__builtin_neon_vsetq_lane_i16:
+ case NEON::BI__builtin_neon_vsetq_lane_i32:
+ case NEON::BI__builtin_neon_vsetq_lane_i64:
+ case NEON::BI__builtin_neon_vsetq_lane_f32:
+ Ops.push_back(EmitScalarExpr(E->getArg(2)));
+ return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
+ case NEON::BI__builtin_neon_vset_lane_f64:
+ // The vector type needs a cast for the v1f64 variant.
+ Ops[1] = Builder.CreateBitCast(Ops[1],
+ llvm::VectorType::get(DoubleTy, 1));
+ Ops.push_back(EmitScalarExpr(E->getArg(2)));
+ return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
+ case NEON::BI__builtin_neon_vsetq_lane_f64:
+ // The vector type needs a cast for the v2f64 variant.
+ Ops[1] = Builder.CreateBitCast(Ops[1],
+ llvm::VectorType::get(llvm::Type::getDoubleTy(getLLVMContext()), 2));
+ Ops.push_back(EmitScalarExpr(E->getArg(2)));
+ return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
+
+ case NEON::BI__builtin_neon_vget_lane_i8:
+ case NEON::BI__builtin_neon_vdupb_lane_i8:
+ Ops[0] = Builder.CreateBitCast(Ops[0],
+ llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 8));
+ return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
+ "vget_lane");
+ case NEON::BI__builtin_neon_vgetq_lane_i8:
+ case NEON::BI__builtin_neon_vdupb_laneq_i8:
+ Ops[0] = Builder.CreateBitCast(Ops[0],
+ llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 16));
+ return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
+ "vgetq_lane");
+ case NEON::BI__builtin_neon_vget_lane_i16:
+ case NEON::BI__builtin_neon_vduph_lane_i16:
+ Ops[0] = Builder.CreateBitCast(Ops[0],
+ llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 4));
+ return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
+ "vget_lane");
+ case NEON::BI__builtin_neon_vgetq_lane_i16:
+ case NEON::BI__builtin_neon_vduph_laneq_i16:
+ Ops[0] = Builder.CreateBitCast(Ops[0],
+ llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 8));
+ return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
+ "vgetq_lane");
+ case NEON::BI__builtin_neon_vget_lane_i32:
+ case NEON::BI__builtin_neon_vdups_lane_i32:
+ Ops[0] = Builder.CreateBitCast(
+ Ops[0],
+ llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 32), 2));
+ return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
+ "vget_lane");
+ case NEON::BI__builtin_neon_vdups_lane_f32:
+ Ops[0] = Builder.CreateBitCast(Ops[0],
+ llvm::VectorType::get(llvm::Type::getFloatTy(getLLVMContext()), 2));
+ return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
+ "vdups_lane");
+ case NEON::BI__builtin_neon_vgetq_lane_i32:
+ case NEON::BI__builtin_neon_vdups_laneq_i32:
+ Ops[0] = Builder.CreateBitCast(Ops[0],
+ llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 32), 4));
+ return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
+ "vgetq_lane");
+ case NEON::BI__builtin_neon_vget_lane_i64:
+ case NEON::BI__builtin_neon_vdupd_lane_i64:
+ Ops[0] = Builder.CreateBitCast(Ops[0],
+ llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 64), 1));
+ return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
+ "vget_lane");
+ case NEON::BI__builtin_neon_vdupd_lane_f64:
+ Ops[0] = Builder.CreateBitCast(Ops[0],
+ llvm::VectorType::get(llvm::Type::getDoubleTy(getLLVMContext()), 1));
+ return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
+ "vdupd_lane");
+ case NEON::BI__builtin_neon_vgetq_lane_i64:
+ case NEON::BI__builtin_neon_vdupd_laneq_i64:
+ Ops[0] = Builder.CreateBitCast(Ops[0],
+ llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 64), 2));
+ return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
+ "vgetq_lane");
+ case NEON::BI__builtin_neon_vget_lane_f32:
+ Ops[0] = Builder.CreateBitCast(Ops[0],
+ llvm::VectorType::get(llvm::Type::getFloatTy(getLLVMContext()), 2));
+ return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
+ "vget_lane");
+ case NEON::BI__builtin_neon_vget_lane_f64:
+ Ops[0] = Builder.CreateBitCast(Ops[0],
+ llvm::VectorType::get(llvm::Type::getDoubleTy(getLLVMContext()), 1));
+ return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
+ "vget_lane");
+ case NEON::BI__builtin_neon_vgetq_lane_f32:
+ case NEON::BI__builtin_neon_vdups_laneq_f32:
+ Ops[0] = Builder.CreateBitCast(Ops[0],
+ llvm::VectorType::get(llvm::Type::getFloatTy(getLLVMContext()), 4));
+ return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
+ "vgetq_lane");
+ case NEON::BI__builtin_neon_vgetq_lane_f64:
+ case NEON::BI__builtin_neon_vdupd_laneq_f64:
+ Ops[0] = Builder.CreateBitCast(Ops[0],
+ llvm::VectorType::get(llvm::Type::getDoubleTy(getLLVMContext()), 2));
+ return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
+ "vgetq_lane");
+ case NEON::BI__builtin_neon_vaddd_s64:
+ case NEON::BI__builtin_neon_vaddd_u64:
+ return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd");
+ case NEON::BI__builtin_neon_vsubd_s64:
+ case NEON::BI__builtin_neon_vsubd_u64:
+ return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd");
+ case NEON::BI__builtin_neon_vqdmlalh_s16:
+ case NEON::BI__builtin_neon_vqdmlslh_s16: {
+ SmallVector<Value *, 2> ProductOps;
+ ProductOps.push_back(vectorWrapScalar16(Ops[1]));
+ ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2))));
+ llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4);
+ Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
+ ProductOps, "vqdmlXl");
+ Constant *CI = ConstantInt::get(SizeTy, 0);
+ Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
+
+ unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16
+ ? Intrinsic::aarch64_neon_sqadd
+ : Intrinsic::aarch64_neon_sqsub;
+ return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl");
+ }
+ case NEON::BI__builtin_neon_vqshlud_n_s64: {
+ Ops.push_back(EmitScalarExpr(E->getArg(1)));
+ Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty),
+ Ops, "vqshlu_n");
+ }
+ case NEON::BI__builtin_neon_vqshld_n_u64:
+ case NEON::BI__builtin_neon_vqshld_n_s64: {
+ unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64
+ ? Intrinsic::aarch64_neon_uqshl
+ : Intrinsic::aarch64_neon_sqshl;
+ Ops.push_back(EmitScalarExpr(E->getArg(1)));
+ Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
+ return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n");
+ }
+ case NEON::BI__builtin_neon_vrshrd_n_u64:
+ case NEON::BI__builtin_neon_vrshrd_n_s64: {
+ unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64
+ ? Intrinsic::aarch64_neon_urshl
+ : Intrinsic::aarch64_neon_srshl;
+ Ops.push_back(EmitScalarExpr(E->getArg(1)));
+ int SV = cast<ConstantInt>(Ops[1])->getSExtValue();
+ Ops[1] = ConstantInt::get(Int64Ty, -SV);
+ return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n");
+ }
+ case NEON::BI__builtin_neon_vrsrad_n_u64:
+ case NEON::BI__builtin_neon_vrsrad_n_s64: {
+ unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64
+ ? Intrinsic::aarch64_neon_urshl
+ : Intrinsic::aarch64_neon_srshl;
+ Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
+ Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2))));
+ Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty),
+ {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)});
+ return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty));
+ }
+ case NEON::BI__builtin_neon_vshld_n_s64:
+ case NEON::BI__builtin_neon_vshld_n_u64: {
+ llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
+ return Builder.CreateShl(
+ Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n");
+ }
+ case NEON::BI__builtin_neon_vshrd_n_s64: {
+ llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
+ return Builder.CreateAShr(
+ Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
+ Amt->getZExtValue())),
+ "shrd_n");
+ }
+ case NEON::BI__builtin_neon_vshrd_n_u64: {
+ llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
+ uint64_t ShiftAmt = Amt->getZExtValue();
+ // Right-shifting an unsigned value by its size yields 0.
+ if (ShiftAmt == 64)
+ return ConstantInt::get(Int64Ty, 0);
+ return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt),
+ "shrd_n");
+ }
+ case NEON::BI__builtin_neon_vsrad_n_s64: {
+ llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
+ Ops[1] = Builder.CreateAShr(
+ Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
+ Amt->getZExtValue())),
+ "shrd_n");
+ return Builder.CreateAdd(Ops[0], Ops[1]);
+ }
+ case NEON::BI__builtin_neon_vsrad_n_u64: {
+ llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
+ uint64_t ShiftAmt = Amt->getZExtValue();
+ // Right-shifting an unsigned value by its size yields 0.
+ // As Op + 0 = Op, return Ops[0] directly.
+ if (ShiftAmt == 64)
+ return Ops[0];
+ Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt),
+ "shrd_n");
+ return Builder.CreateAdd(Ops[0], Ops[1]);
+ }
+ case NEON::BI__builtin_neon_vqdmlalh_lane_s16:
+ case NEON::BI__builtin_neon_vqdmlalh_laneq_s16:
+ case NEON::BI__builtin_neon_vqdmlslh_lane_s16:
+ case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: {
+ Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
+ "lane");
+ SmallVector<Value *, 2> ProductOps;
+ ProductOps.push_back(vectorWrapScalar16(Ops[1]));
+ ProductOps.push_back(vectorWrapScalar16(Ops[2]));
+ llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4);
+ Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
+ ProductOps, "vqdmlXl");
+ Constant *CI = ConstantInt::get(SizeTy, 0);
+ Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
+ Ops.pop_back();
+
+ unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 ||
+ BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16)
+ ? Intrinsic::aarch64_neon_sqadd
+ : Intrinsic::aarch64_neon_sqsub;
+ return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl");
+ }
+ case NEON::BI__builtin_neon_vqdmlals_s32:
+ case NEON::BI__builtin_neon_vqdmlsls_s32: {
+ SmallVector<Value *, 2> ProductOps;
+ ProductOps.push_back(Ops[1]);
+ ProductOps.push_back(EmitScalarExpr(E->getArg(2)));
+ Ops[1] =
+ EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
+ ProductOps, "vqdmlXl");
+
+ unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32
+ ? Intrinsic::aarch64_neon_sqadd
+ : Intrinsic::aarch64_neon_sqsub;
+ return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl");
+ }
+ case NEON::BI__builtin_neon_vqdmlals_lane_s32:
+ case NEON::BI__builtin_neon_vqdmlals_laneq_s32:
+ case NEON::BI__builtin_neon_vqdmlsls_lane_s32:
+ case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: {
+ Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
+ "lane");
+ SmallVector<Value *, 2> ProductOps;
+ ProductOps.push_back(Ops[1]);
+ ProductOps.push_back(Ops[2]);
+ Ops[1] =
+ EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
+ ProductOps, "vqdmlXl");
+ Ops.pop_back();
+
+ unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 ||
+ BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32)
+ ? Intrinsic::aarch64_neon_sqadd
+ : Intrinsic::aarch64_neon_sqsub;
+ return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl");
+ }
+ }
+
+ llvm::VectorType *VTy = GetNeonType(this, Type);
+ llvm::Type *Ty = VTy;
+ if (!Ty)
+ return nullptr;
+
+ // Not all intrinsics handled by the common case work for AArch64 yet, so only
+ // defer to common code if it's been added to our special map.
+ Builtin = findNeonIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID,
+ AArch64SIMDIntrinsicsProvenSorted);
+
+ if (Builtin)
+ return EmitCommonNeonBuiltinExpr(
+ Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
+ Builtin->NameHint, Builtin->TypeModifier, E, Ops, nullptr);
+
+ if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops))
+ return V;
+
+ unsigned Int;
+ switch (BuiltinID) {
+ default: return nullptr;
+ case NEON::BI__builtin_neon_vbsl_v:
+ case NEON::BI__builtin_neon_vbslq_v: {
+ llvm::Type *BitTy = llvm::VectorType::getInteger(VTy);
+ Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl");
+ Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl");
+ Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl");
+
+ Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl");
+ Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl");
+ Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl");
+ return Builder.CreateBitCast(Ops[0], Ty);
+ }
+ case NEON::BI__builtin_neon_vfma_lane_v:
+ case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types
+ // The ARM builtins (and instructions) have the addend as the first
+ // operand, but the 'fma' intrinsics have it last. Swap it around here.
+ Value *Addend = Ops[0];
+ Value *Multiplicand = Ops[1];
+ Value *LaneSource = Ops[2];
+ Ops[0] = Multiplicand;
+ Ops[1] = LaneSource;
+ Ops[2] = Addend;
+
+ // Now adjust things to handle the lane access.
+ llvm::Type *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v ?
+ llvm::VectorType::get(VTy->getElementType(), VTy->getNumElements() / 2) :
+ VTy;
+ llvm::Constant *cst = cast<Constant>(Ops[3]);
+ Value *SV = llvm::ConstantVector::getSplat(VTy->getNumElements(), cst);
+ Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy);
+ Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane");
+
+ Ops.pop_back();
+ Int = Intrinsic::fma;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla");
+ }
+ case NEON::BI__builtin_neon_vfma_laneq_v: {
+ llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
+ // v1f64 fma should be mapped to Neon scalar f64 fma
+ if (VTy && VTy->getElementType() == DoubleTy) {
+ Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
+ Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
+ llvm::Type *VTy = GetNeonType(this,
+ NeonTypeFlags(NeonTypeFlags::Float64, false, true));
+ Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
+ Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
+ Value *F = CGM.getIntrinsic(Intrinsic::fma, DoubleTy);
+ Value *Result = Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
+ return Builder.CreateBitCast(Result, Ty);
+ }
+ Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+
+ llvm::Type *STy = llvm::VectorType::get(VTy->getElementType(),
+ VTy->getNumElements() * 2);
+ Ops[2] = Builder.CreateBitCast(Ops[2], STy);
+ Value* SV = llvm::ConstantVector::getSplat(VTy->getNumElements(),
+ cast<ConstantInt>(Ops[3]));
+ Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
+
+ return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]});
+ }
+ case NEON::BI__builtin_neon_vfmaq_laneq_v: {
+ Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+
+ Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
+ Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
+ return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]});
+ }
+ case NEON::BI__builtin_neon_vfmas_lane_f32:
+ case NEON::BI__builtin_neon_vfmas_laneq_f32:
+ case NEON::BI__builtin_neon_vfmad_lane_f64:
+ case NEON::BI__builtin_neon_vfmad_laneq_f64: {
+ Ops.push_back(EmitScalarExpr(E->getArg(3)));
+ llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
+ Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
+ Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
+ return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
+ }
+ case NEON::BI__builtin_neon_vfms_v:
+ case NEON::BI__builtin_neon_vfmsq_v: { // Only used for FP types
+ // FIXME: probably remove when we no longer support aarch64_simd.h
+ // (arm_neon.h delegates to vfma).
+
+ // The ARM builtins (and instructions) have the addend as the first
+ // operand, but the 'fma' intrinsics have it last. Swap it around here.
+ Value *Subtrahend = Ops[0];
+ Value *Multiplicand = Ops[2];
+ Ops[0] = Multiplicand;
+ Ops[2] = Subtrahend;
+ Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
+ Ops[1] = Builder.CreateFNeg(Ops[1]);
+ Int = Intrinsic::fma;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmls");
+ }
+ case NEON::BI__builtin_neon_vmull_v:
+ // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
+ Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull;
+ if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
+ case NEON::BI__builtin_neon_vmax_v:
+ case NEON::BI__builtin_neon_vmaxq_v:
+ // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
+ Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax;
+ if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
+ case NEON::BI__builtin_neon_vmin_v:
+ case NEON::BI__builtin_neon_vminq_v:
+ // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
+ Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin;
+ if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
+ case NEON::BI__builtin_neon_vabd_v:
+ case NEON::BI__builtin_neon_vabdq_v:
+ // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
+ Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd;
+ if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
+ case NEON::BI__builtin_neon_vpadal_v:
+ case NEON::BI__builtin_neon_vpadalq_v: {
+ unsigned ArgElts = VTy->getNumElements();
+ llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType());
+ unsigned BitWidth = EltTy->getBitWidth();
+ llvm::Type *ArgTy = llvm::VectorType::get(
+ llvm::IntegerType::get(getLLVMContext(), BitWidth/2), 2*ArgElts);
+ llvm::Type* Tys[2] = { VTy, ArgTy };
+ Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp;
+ SmallVector<llvm::Value*, 1> TmpOps;
+ TmpOps.push_back(Ops[1]);
+ Function *F = CGM.getIntrinsic(Int, Tys);
+ llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal");
+ llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType());
+ return Builder.CreateAdd(tmp, addend);
+ }
+ case NEON::BI__builtin_neon_vpmin_v:
+ case NEON::BI__builtin_neon_vpminq_v:
+ // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
+ Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp;
+ if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
+ case NEON::BI__builtin_neon_vpmax_v:
+ case NEON::BI__builtin_neon_vpmaxq_v:
+ // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
+ Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp;
+ if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
+ case NEON::BI__builtin_neon_vminnm_v:
+ case NEON::BI__builtin_neon_vminnmq_v:
+ Int = Intrinsic::aarch64_neon_fminnm;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
+ case NEON::BI__builtin_neon_vmaxnm_v:
+ case NEON::BI__builtin_neon_vmaxnmq_v:
+ Int = Intrinsic::aarch64_neon_fmaxnm;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
+ case NEON::BI__builtin_neon_vrecpss_f32: {
+ llvm::Type *f32Type = llvm::Type::getFloatTy(getLLVMContext());
+ Ops.push_back(EmitScalarExpr(E->getArg(1)));
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, f32Type),
+ Ops, "vrecps");
+ }
+ case NEON::BI__builtin_neon_vrecpsd_f64: {
+ llvm::Type *f64Type = llvm::Type::getDoubleTy(getLLVMContext());
+ Ops.push_back(EmitScalarExpr(E->getArg(1)));
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, f64Type),
+ Ops, "vrecps");
+ }
+ case NEON::BI__builtin_neon_vqshrun_n_v:
+ Int = Intrinsic::aarch64_neon_sqshrun;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
+ case NEON::BI__builtin_neon_vqrshrun_n_v:
+ Int = Intrinsic::aarch64_neon_sqrshrun;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
+ case NEON::BI__builtin_neon_vqshrn_n_v:
+ Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
+ case NEON::BI__builtin_neon_vrshrn_n_v:
+ Int = Intrinsic::aarch64_neon_rshrn;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
+ case NEON::BI__builtin_neon_vqrshrn_n_v:
+ Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
+ case NEON::BI__builtin_neon_vrnda_v:
+ case NEON::BI__builtin_neon_vrndaq_v: {
+ Int = Intrinsic::round;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
+ }
+ case NEON::BI__builtin_neon_vrndi_v:
+ case NEON::BI__builtin_neon_vrndiq_v: {
+ Int = Intrinsic::nearbyint;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndi");
+ }
+ case NEON::BI__builtin_neon_vrndm_v:
+ case NEON::BI__builtin_neon_vrndmq_v: {
+ Int = Intrinsic::floor;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
+ }
+ case NEON::BI__builtin_neon_vrndn_v:
+ case NEON::BI__builtin_neon_vrndnq_v: {
+ Int = Intrinsic::aarch64_neon_frintn;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
+ }
+ case NEON::BI__builtin_neon_vrndp_v:
+ case NEON::BI__builtin_neon_vrndpq_v: {
+ Int = Intrinsic::ceil;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
+ }
+ case NEON::BI__builtin_neon_vrndx_v:
+ case NEON::BI__builtin_neon_vrndxq_v: {
+ Int = Intrinsic::rint;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
+ }
+ case NEON::BI__builtin_neon_vrnd_v:
+ case NEON::BI__builtin_neon_vrndq_v: {
+ Int = Intrinsic::trunc;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz");
+ }
+ case NEON::BI__builtin_neon_vceqz_v:
+ case NEON::BI__builtin_neon_vceqzq_v:
+ return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
+ ICmpInst::ICMP_EQ, "vceqz");
+ case NEON::BI__builtin_neon_vcgez_v:
+ case NEON::BI__builtin_neon_vcgezq_v:
+ return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
+ ICmpInst::ICMP_SGE, "vcgez");
+ case NEON::BI__builtin_neon_vclez_v:
+ case NEON::BI__builtin_neon_vclezq_v:
+ return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
+ ICmpInst::ICMP_SLE, "vclez");
+ case NEON::BI__builtin_neon_vcgtz_v:
+ case NEON::BI__builtin_neon_vcgtzq_v:
+ return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
+ ICmpInst::ICMP_SGT, "vcgtz");
+ case NEON::BI__builtin_neon_vcltz_v:
+ case NEON::BI__builtin_neon_vcltzq_v:
+ return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
+ ICmpInst::ICMP_SLT, "vcltz");
+ case NEON::BI__builtin_neon_vcvt_f64_v:
+ case NEON::BI__builtin_neon_vcvtq_f64_v:
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
+ return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
+ : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
+ case NEON::BI__builtin_neon_vcvt_f64_f32: {
+ assert(Type.getEltType() == NeonTypeFlags::Float64 && quad &&
+ "unexpected vcvt_f64_f32 builtin");
+ NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false);
+ Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
+
+ return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
+ }
+ case NEON::BI__builtin_neon_vcvt_f32_f64: {
+ assert(Type.getEltType() == NeonTypeFlags::Float32 &&
+ "unexpected vcvt_f32_f64 builtin");
+ NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true);
+ Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
+
+ return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
+ }
+ case NEON::BI__builtin_neon_vcvt_s32_v:
+ case NEON::BI__builtin_neon_vcvt_u32_v:
+ case NEON::BI__builtin_neon_vcvt_s64_v:
+ case NEON::BI__builtin_neon_vcvt_u64_v:
+ case NEON::BI__builtin_neon_vcvtq_s32_v:
+ case NEON::BI__builtin_neon_vcvtq_u32_v:
+ case NEON::BI__builtin_neon_vcvtq_s64_v:
+ case NEON::BI__builtin_neon_vcvtq_u64_v: {
+ bool Double =
+ (cast<llvm::IntegerType>(VTy->getElementType())->getBitWidth() == 64);
+ llvm::Type *InTy =
+ GetNeonType(this,
+ NeonTypeFlags(Double ? NeonTypeFlags::Float64
+ : NeonTypeFlags::Float32, false, quad));
+ Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
+ if (usgn)
+ return Builder.CreateFPToUI(Ops[0], Ty);
+ return Builder.CreateFPToSI(Ops[0], Ty);
+ }
+ case NEON::BI__builtin_neon_vcvta_s32_v:
+ case NEON::BI__builtin_neon_vcvtaq_s32_v:
+ case NEON::BI__builtin_neon_vcvta_u32_v:
+ case NEON::BI__builtin_neon_vcvtaq_u32_v:
+ case NEON::BI__builtin_neon_vcvta_s64_v:
+ case NEON::BI__builtin_neon_vcvtaq_s64_v:
+ case NEON::BI__builtin_neon_vcvta_u64_v:
+ case NEON::BI__builtin_neon_vcvtaq_u64_v: {
+ Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas;
+ bool Double =
+ (cast<llvm::IntegerType>(VTy->getElementType())->getBitWidth() == 64);
+ llvm::Type *InTy =
+ GetNeonType(this,
+ NeonTypeFlags(Double ? NeonTypeFlags::Float64
+ : NeonTypeFlags::Float32, false, quad));
+ llvm::Type *Tys[2] = { Ty, InTy };
+ return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta");
+ }
+ case NEON::BI__builtin_neon_vcvtm_s32_v:
+ case NEON::BI__builtin_neon_vcvtmq_s32_v:
+ case NEON::BI__builtin_neon_vcvtm_u32_v:
+ case NEON::BI__builtin_neon_vcvtmq_u32_v:
+ case NEON::BI__builtin_neon_vcvtm_s64_v:
+ case NEON::BI__builtin_neon_vcvtmq_s64_v:
+ case NEON::BI__builtin_neon_vcvtm_u64_v:
+ case NEON::BI__builtin_neon_vcvtmq_u64_v: {
+ Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms;
+ bool Double =
+ (cast<llvm::IntegerType>(VTy->getElementType())->getBitWidth() == 64);
+ llvm::Type *InTy =
+ GetNeonType(this,
+ NeonTypeFlags(Double ? NeonTypeFlags::Float64
+ : NeonTypeFlags::Float32, false, quad));
+ llvm::Type *Tys[2] = { Ty, InTy };
+ return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm");
+ }
+ case NEON::BI__builtin_neon_vcvtn_s32_v:
+ case NEON::BI__builtin_neon_vcvtnq_s32_v:
+ case NEON::BI__builtin_neon_vcvtn_u32_v:
+ case NEON::BI__builtin_neon_vcvtnq_u32_v:
+ case NEON::BI__builtin_neon_vcvtn_s64_v:
+ case NEON::BI__builtin_neon_vcvtnq_s64_v:
+ case NEON::BI__builtin_neon_vcvtn_u64_v:
+ case NEON::BI__builtin_neon_vcvtnq_u64_v: {
+ Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns;
+ bool Double =
+ (cast<llvm::IntegerType>(VTy->getElementType())->getBitWidth() == 64);
+ llvm::Type *InTy =
+ GetNeonType(this,
+ NeonTypeFlags(Double ? NeonTypeFlags::Float64
+ : NeonTypeFlags::Float32, false, quad));
+ llvm::Type *Tys[2] = { Ty, InTy };
+ return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn");
+ }
+ case NEON::BI__builtin_neon_vcvtp_s32_v:
+ case NEON::BI__builtin_neon_vcvtpq_s32_v:
+ case NEON::BI__builtin_neon_vcvtp_u32_v:
+ case NEON::BI__builtin_neon_vcvtpq_u32_v:
+ case NEON::BI__builtin_neon_vcvtp_s64_v:
+ case NEON::BI__builtin_neon_vcvtpq_s64_v:
+ case NEON::BI__builtin_neon_vcvtp_u64_v:
+ case NEON::BI__builtin_neon_vcvtpq_u64_v: {
+ Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps;
+ bool Double =
+ (cast<llvm::IntegerType>(VTy->getElementType())->getBitWidth() == 64);
+ llvm::Type *InTy =
+ GetNeonType(this,
+ NeonTypeFlags(Double ? NeonTypeFlags::Float64
+ : NeonTypeFlags::Float32, false, quad));
+ llvm::Type *Tys[2] = { Ty, InTy };
+ return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp");
+ }
+ case NEON::BI__builtin_neon_vmulx_v:
+ case NEON::BI__builtin_neon_vmulxq_v: {
+ Int = Intrinsic::aarch64_neon_fmulx;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
+ }
+ case NEON::BI__builtin_neon_vmul_lane_v:
+ case NEON::BI__builtin_neon_vmul_laneq_v: {
+ // v1f64 vmul_lane should be mapped to Neon scalar mul lane
+ bool Quad = false;
+ if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v)
+ Quad = true;
+ Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
+ llvm::Type *VTy = GetNeonType(this,
+ NeonTypeFlags(NeonTypeFlags::Float64, false, Quad));
+ Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
+ Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
+ Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
+ return Builder.CreateBitCast(Result, Ty);
+ }
+ case NEON::BI__builtin_neon_vnegd_s64:
+ return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd");
+ case NEON::BI__builtin_neon_vpmaxnm_v:
+ case NEON::BI__builtin_neon_vpmaxnmq_v: {
+ Int = Intrinsic::aarch64_neon_fmaxnmp;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
+ }
+ case NEON::BI__builtin_neon_vpminnm_v:
+ case NEON::BI__builtin_neon_vpminnmq_v: {
+ Int = Intrinsic::aarch64_neon_fminnmp;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
+ }
+ case NEON::BI__builtin_neon_vsqrt_v:
+ case NEON::BI__builtin_neon_vsqrtq_v: {
+ Int = Intrinsic::sqrt;
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
+ }
+ case NEON::BI__builtin_neon_vrbit_v:
+ case NEON::BI__builtin_neon_vrbitq_v: {
+ Int = Intrinsic::aarch64_neon_rbit;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
+ }
+ case NEON::BI__builtin_neon_vaddv_u8:
+ // FIXME: These are handled by the AArch64 scalar code.
+ usgn = true;
+ // FALLTHROUGH
+ case NEON::BI__builtin_neon_vaddv_s8: {
+ Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
+ Ty = llvm::IntegerType::get(getLLVMContext(), 32);
+ VTy =
+ llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 8);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
+ return Builder.CreateTrunc(Ops[0],
+ llvm::IntegerType::get(getLLVMContext(), 8));
+ }
+ case NEON::BI__builtin_neon_vaddv_u16:
+ usgn = true;
+ // FALLTHROUGH
+ case NEON::BI__builtin_neon_vaddv_s16: {
+ Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
+ Ty = llvm::IntegerType::get(getLLVMContext(), 32);
+ VTy =
+ llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 4);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
+ return Builder.CreateTrunc(Ops[0],
+ llvm::IntegerType::get(getLLVMContext(), 16));
+ }
+ case NEON::BI__builtin_neon_vaddvq_u8:
+ usgn = true;
+ // FALLTHROUGH
+ case NEON::BI__builtin_neon_vaddvq_s8: {
+ Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
+ Ty = llvm::IntegerType::get(getLLVMContext(), 32);
+ VTy =
+ llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 16);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
+ return Builder.CreateTrunc(Ops[0],
+ llvm::IntegerType::get(getLLVMContext(), 8));
+ }
+ case NEON::BI__builtin_neon_vaddvq_u16:
+ usgn = true;
+ // FALLTHROUGH
+ case NEON::BI__builtin_neon_vaddvq_s16: {
+ Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
+ Ty = llvm::IntegerType::get(getLLVMContext(), 32);
+ VTy =
+ llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 8);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
+ return Builder.CreateTrunc(Ops[0],
+ llvm::IntegerType::get(getLLVMContext(), 16));
+ }
+ case NEON::BI__builtin_neon_vmaxv_u8: {
+ Int = Intrinsic::aarch64_neon_umaxv;
+ Ty = llvm::IntegerType::get(getLLVMContext(), 32);
+ VTy =
+ llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 8);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
+ return Builder.CreateTrunc(Ops[0],
+ llvm::IntegerType::get(getLLVMContext(), 8));
+ }
+ case NEON::BI__builtin_neon_vmaxv_u16: {
+ Int = Intrinsic::aarch64_neon_umaxv;
+ Ty = llvm::IntegerType::get(getLLVMContext(), 32);
+ VTy =
+ llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 4);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
+ return Builder.CreateTrunc(Ops[0],
+ llvm::IntegerType::get(getLLVMContext(), 16));
+ }
+ case NEON::BI__builtin_neon_vmaxvq_u8: {
+ Int = Intrinsic::aarch64_neon_umaxv;
+ Ty = llvm::IntegerType::get(getLLVMContext(), 32);
+ VTy =
+ llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 16);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
+ return Builder.CreateTrunc(Ops[0],
+ llvm::IntegerType::get(getLLVMContext(), 8));
+ }
+ case NEON::BI__builtin_neon_vmaxvq_u16: {
+ Int = Intrinsic::aarch64_neon_umaxv;
+ Ty = llvm::IntegerType::get(getLLVMContext(), 32);
+ VTy =
+ llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 8);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
+ return Builder.CreateTrunc(Ops[0],
+ llvm::IntegerType::get(getLLVMContext(), 16));
+ }
+ case NEON::BI__builtin_neon_vmaxv_s8: {
+ Int = Intrinsic::aarch64_neon_smaxv;
+ Ty = llvm::IntegerType::get(getLLVMContext(), 32);
+ VTy =
+ llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 8);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
+ return Builder.CreateTrunc(Ops[0],
+ llvm::IntegerType::get(getLLVMContext(), 8));
+ }
+ case NEON::BI__builtin_neon_vmaxv_s16: {
+ Int = Intrinsic::aarch64_neon_smaxv;
+ Ty = llvm::IntegerType::get(getLLVMContext(), 32);
+ VTy =
+ llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 4);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
+ return Builder.CreateTrunc(Ops[0],
+ llvm::IntegerType::get(getLLVMContext(), 16));
+ }
+ case NEON::BI__builtin_neon_vmaxvq_s8: {
+ Int = Intrinsic::aarch64_neon_smaxv;
+ Ty = llvm::IntegerType::get(getLLVMContext(), 32);
+ VTy =
+ llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 16);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
+ return Builder.CreateTrunc(Ops[0],
+ llvm::IntegerType::get(getLLVMContext(), 8));
+ }
+ case NEON::BI__builtin_neon_vmaxvq_s16: {
+ Int = Intrinsic::aarch64_neon_smaxv;
+ Ty = llvm::IntegerType::get(getLLVMContext(), 32);
+ VTy =
+ llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 8);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
+ return Builder.CreateTrunc(Ops[0],
+ llvm::IntegerType::get(getLLVMContext(), 16));
+ }
+ case NEON::BI__builtin_neon_vminv_u8: {
+ Int = Intrinsic::aarch64_neon_uminv;
+ Ty = llvm::IntegerType::get(getLLVMContext(), 32);
+ VTy =
+ llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 8);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
+ return Builder.CreateTrunc(Ops[0],
+ llvm::IntegerType::get(getLLVMContext(), 8));
+ }
+ case NEON::BI__builtin_neon_vminv_u16: {
+ Int = Intrinsic::aarch64_neon_uminv;
+ Ty = llvm::IntegerType::get(getLLVMContext(), 32);
+ VTy =
+ llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 4);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
+ return Builder.CreateTrunc(Ops[0],
+ llvm::IntegerType::get(getLLVMContext(), 16));
+ }
+ case NEON::BI__builtin_neon_vminvq_u8: {
+ Int = Intrinsic::aarch64_neon_uminv;
+ Ty = llvm::IntegerType::get(getLLVMContext(), 32);
+ VTy =
+ llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 16);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
+ return Builder.CreateTrunc(Ops[0],
+ llvm::IntegerType::get(getLLVMContext(), 8));
+ }
+ case NEON::BI__builtin_neon_vminvq_u16: {
+ Int = Intrinsic::aarch64_neon_uminv;
+ Ty = llvm::IntegerType::get(getLLVMContext(), 32);
+ VTy =
+ llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 8);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
+ return Builder.CreateTrunc(Ops[0],
+ llvm::IntegerType::get(getLLVMContext(), 16));
+ }
+ case NEON::BI__builtin_neon_vminv_s8: {
+ Int = Intrinsic::aarch64_neon_sminv;
+ Ty = llvm::IntegerType::get(getLLVMContext(), 32);
+ VTy =
+ llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 8);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
+ return Builder.CreateTrunc(Ops[0],
+ llvm::IntegerType::get(getLLVMContext(), 8));
+ }
+ case NEON::BI__builtin_neon_vminv_s16: {
+ Int = Intrinsic::aarch64_neon_sminv;
+ Ty = llvm::IntegerType::get(getLLVMContext(), 32);
+ VTy =
+ llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 4);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
+ return Builder.CreateTrunc(Ops[0],
+ llvm::IntegerType::get(getLLVMContext(), 16));
+ }
+ case NEON::BI__builtin_neon_vminvq_s8: {
+ Int = Intrinsic::aarch64_neon_sminv;
+ Ty = llvm::IntegerType::get(getLLVMContext(), 32);
+ VTy =
+ llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 16);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
+ return Builder.CreateTrunc(Ops[0],
+ llvm::IntegerType::get(getLLVMContext(), 8));
+ }
+ case NEON::BI__builtin_neon_vminvq_s16: {
+ Int = Intrinsic::aarch64_neon_sminv;
+ Ty = llvm::IntegerType::get(getLLVMContext(), 32);
+ VTy =
+ llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 8);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
+ return Builder.CreateTrunc(Ops[0],
+ llvm::IntegerType::get(getLLVMContext(), 16));
+ }
+ case NEON::BI__builtin_neon_vmul_n_f64: {
+ Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
+ Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy);
+ return Builder.CreateFMul(Ops[0], RHS);
+ }
+ case NEON::BI__builtin_neon_vaddlv_u8: {
+ Int = Intrinsic::aarch64_neon_uaddlv;
+ Ty = llvm::IntegerType::get(getLLVMContext(), 32);
+ VTy =
+ llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 8);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
+ return Builder.CreateTrunc(Ops[0],
+ llvm::IntegerType::get(getLLVMContext(), 16));
+ }
+ case NEON::BI__builtin_neon_vaddlv_u16: {
+ Int = Intrinsic::aarch64_neon_uaddlv;
+ Ty = llvm::IntegerType::get(getLLVMContext(), 32);
+ VTy =
+ llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 4);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
+ }
+ case NEON::BI__builtin_neon_vaddlvq_u8: {
+ Int = Intrinsic::aarch64_neon_uaddlv;
+ Ty = llvm::IntegerType::get(getLLVMContext(), 32);
+ VTy =
+ llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 16);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
+ return Builder.CreateTrunc(Ops[0],
+ llvm::IntegerType::get(getLLVMContext(), 16));
+ }
+ case NEON::BI__builtin_neon_vaddlvq_u16: {
+ Int = Intrinsic::aarch64_neon_uaddlv;
+ Ty = llvm::IntegerType::get(getLLVMContext(), 32);
+ VTy =
+ llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 8);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
+ }
+ case NEON::BI__builtin_neon_vaddlv_s8: {
+ Int = Intrinsic::aarch64_neon_saddlv;
+ Ty = llvm::IntegerType::get(getLLVMContext(), 32);
+ VTy =
+ llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 8);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
+ return Builder.CreateTrunc(Ops[0],
+ llvm::IntegerType::get(getLLVMContext(), 16));
+ }
+ case NEON::BI__builtin_neon_vaddlv_s16: {
+ Int = Intrinsic::aarch64_neon_saddlv;
+ Ty = llvm::IntegerType::get(getLLVMContext(), 32);
+ VTy =
+ llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 4);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
+ }
+ case NEON::BI__builtin_neon_vaddlvq_s8: {
+ Int = Intrinsic::aarch64_neon_saddlv;
+ Ty = llvm::IntegerType::get(getLLVMContext(), 32);
+ VTy =
+ llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 16);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
+ return Builder.CreateTrunc(Ops[0],
+ llvm::IntegerType::get(getLLVMContext(), 16));
+ }
+ case NEON::BI__builtin_neon_vaddlvq_s16: {
+ Int = Intrinsic::aarch64_neon_saddlv;
+ Ty = llvm::IntegerType::get(getLLVMContext(), 32);
+ VTy =
+ llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 8);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
+ }
+ case NEON::BI__builtin_neon_vsri_n_v:
+ case NEON::BI__builtin_neon_vsriq_n_v: {
+ Int = Intrinsic::aarch64_neon_vsri;
+ llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
+ return EmitNeonCall(Intrin, Ops, "vsri_n");
+ }
+ case NEON::BI__builtin_neon_vsli_n_v:
+ case NEON::BI__builtin_neon_vsliq_n_v: {
+ Int = Intrinsic::aarch64_neon_vsli;
+ llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
+ return EmitNeonCall(Intrin, Ops, "vsli_n");
+ }
+ case NEON::BI__builtin_neon_vsra_n_v:
+ case NEON::BI__builtin_neon_vsraq_n_v:
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
+ return Builder.CreateAdd(Ops[0], Ops[1]);
+ case NEON::BI__builtin_neon_vrsra_n_v:
+ case NEON::BI__builtin_neon_vrsraq_n_v: {
+ Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl;
+ SmallVector<llvm::Value*,2> TmpOps;
+ TmpOps.push_back(Ops[1]);
+ TmpOps.push_back(Ops[2]);
+ Function* F = CGM.getIntrinsic(Int, Ty);
+ llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true);
+ Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
+ return Builder.CreateAdd(Ops[0], tmp);
+ }
+ // FIXME: Sharing loads & stores with 32-bit is complicated by the absence
+ // of an Align parameter here.
+ case NEON::BI__builtin_neon_vld1_x2_v:
+ case NEON::BI__builtin_neon_vld1q_x2_v:
+ case NEON::BI__builtin_neon_vld1_x3_v:
+ case NEON::BI__builtin_neon_vld1q_x3_v:
+ case NEON::BI__builtin_neon_vld1_x4_v:
+ case NEON::BI__builtin_neon_vld1q_x4_v: {
+ llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType());
+ Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
+ llvm::Type *Tys[2] = { VTy, PTy };
+ unsigned Int;
+ switch (BuiltinID) {
+ case NEON::BI__builtin_neon_vld1_x2_v:
+ case NEON::BI__builtin_neon_vld1q_x2_v:
+ Int = Intrinsic::aarch64_neon_ld1x2;
+ break;
+ case NEON::BI__builtin_neon_vld1_x3_v:
+ case NEON::BI__builtin_neon_vld1q_x3_v:
+ Int = Intrinsic::aarch64_neon_ld1x3;
+ break;
+ case NEON::BI__builtin_neon_vld1_x4_v:
+ case NEON::BI__builtin_neon_vld1q_x4_v:
+ Int = Intrinsic::aarch64_neon_ld1x4;
+ break;
+ }
+ Function *F = CGM.getIntrinsic(Int, Tys);
+ Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN");
+ Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ return Builder.CreateStore(Ops[1], Ops[0]);
+ }
+ case NEON::BI__builtin_neon_vst1_x2_v:
+ case NEON::BI__builtin_neon_vst1q_x2_v:
+ case NEON::BI__builtin_neon_vst1_x3_v:
+ case NEON::BI__builtin_neon_vst1q_x3_v:
+ case NEON::BI__builtin_neon_vst1_x4_v:
+ case NEON::BI__builtin_neon_vst1q_x4_v: {
+ llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType());
+ llvm::Type *Tys[2] = { VTy, PTy };
+ unsigned Int;
+ switch (BuiltinID) {
+ case NEON::BI__builtin_neon_vst1_x2_v:
+ case NEON::BI__builtin_neon_vst1q_x2_v:
+ Int = Intrinsic::aarch64_neon_st1x2;
+ break;
+ case NEON::BI__builtin_neon_vst1_x3_v:
+ case NEON::BI__builtin_neon_vst1q_x3_v:
+ Int = Intrinsic::aarch64_neon_st1x3;
+ break;
+ case NEON::BI__builtin_neon_vst1_x4_v:
+ case NEON::BI__builtin_neon_vst1q_x4_v:
+ Int = Intrinsic::aarch64_neon_st1x4;
+ break;
+ }
+ SmallVector<Value *, 4> IntOps(Ops.begin()+1, Ops.end());
+ IntOps.push_back(Ops[0]);
+ return EmitNeonCall(CGM.getIntrinsic(Int, Tys), IntOps, "");
+ }
+ case NEON::BI__builtin_neon_vld1_v:
+ case NEON::BI__builtin_neon_vld1q_v:
+ Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
+ return Builder.CreateLoad(Ops[0]);
+ case NEON::BI__builtin_neon_vst1_v:
+ case NEON::BI__builtin_neon_vst1q_v:
+ Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
+ Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
+ return Builder.CreateStore(Ops[1], Ops[0]);
+ case NEON::BI__builtin_neon_vld1_lane_v:
+ case NEON::BI__builtin_neon_vld1q_lane_v:
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+ Ty = llvm::PointerType::getUnqual(VTy->getElementType());
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ Ops[0] = Builder.CreateLoad(Ops[0]);
+ return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
+ case NEON::BI__builtin_neon_vld1_dup_v:
+ case NEON::BI__builtin_neon_vld1q_dup_v: {
+ Value *V = UndefValue::get(Ty);
+ Ty = llvm::PointerType::getUnqual(VTy->getElementType());
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ Ops[0] = Builder.CreateLoad(Ops[0]);
+ llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
+ Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
+ return EmitNeonSplat(Ops[0], CI);
+ }
+ case NEON::BI__builtin_neon_vst1_lane_v:
+ case NEON::BI__builtin_neon_vst1q_lane_v:
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+ Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
+ Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
+ return Builder.CreateStore(Ops[1], Builder.CreateBitCast(Ops[0], Ty));
+ case NEON::BI__builtin_neon_vld2_v:
+ case NEON::BI__builtin_neon_vld2q_v: {
+ llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
+ Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
+ llvm::Type *Tys[2] = { VTy, PTy };
+ Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys);
+ Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
+ Ops[0] = Builder.CreateBitCast(Ops[0],
+ llvm::PointerType::getUnqual(Ops[1]->getType()));
+ return Builder.CreateStore(Ops[1], Ops[0]);
+ }
+ case NEON::BI__builtin_neon_vld3_v:
+ case NEON::BI__builtin_neon_vld3q_v: {
+ llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
+ Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
+ llvm::Type *Tys[2] = { VTy, PTy };
+ Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys);
+ Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
+ Ops[0] = Builder.CreateBitCast(Ops[0],
+ llvm::PointerType::getUnqual(Ops[1]->getType()));
+ return Builder.CreateStore(Ops[1], Ops[0]);
+ }
+ case NEON::BI__builtin_neon_vld4_v:
+ case NEON::BI__builtin_neon_vld4q_v: {
+ llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
+ Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
+ llvm::Type *Tys[2] = { VTy, PTy };
+ Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys);
+ Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
+ Ops[0] = Builder.CreateBitCast(Ops[0],
+ llvm::PointerType::getUnqual(Ops[1]->getType()));
+ return Builder.CreateStore(Ops[1], Ops[0]);
+ }
+ case NEON::BI__builtin_neon_vld2_dup_v:
+ case NEON::BI__builtin_neon_vld2q_dup_v: {
+ llvm::Type *PTy =
+ llvm::PointerType::getUnqual(VTy->getElementType());
+ Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
+ llvm::Type *Tys[2] = { VTy, PTy };
+ Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys);
+ Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
+ Ops[0] = Builder.CreateBitCast(Ops[0],
+ llvm::PointerType::getUnqual(Ops[1]->getType()));
+ return Builder.CreateStore(Ops[1], Ops[0]);
+ }
+ case NEON::BI__builtin_neon_vld3_dup_v:
+ case NEON::BI__builtin_neon_vld3q_dup_v: {
+ llvm::Type *PTy =
+ llvm::PointerType::getUnqual(VTy->getElementType());
+ Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
+ llvm::Type *Tys[2] = { VTy, PTy };
+ Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys);
+ Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
+ Ops[0] = Builder.CreateBitCast(Ops[0],
+ llvm::PointerType::getUnqual(Ops[1]->getType()));
+ return Builder.CreateStore(Ops[1], Ops[0]);
+ }
+ case NEON::BI__builtin_neon_vld4_dup_v:
+ case NEON::BI__builtin_neon_vld4q_dup_v: {
+ llvm::Type *PTy =
+ llvm::PointerType::getUnqual(VTy->getElementType());
+ Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
+ llvm::Type *Tys[2] = { VTy, PTy };
+ Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys);
+ Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
+ Ops[0] = Builder.CreateBitCast(Ops[0],
+ llvm::PointerType::getUnqual(Ops[1]->getType()));
+ return Builder.CreateStore(Ops[1], Ops[0]);
+ }
+ case NEON::BI__builtin_neon_vld2_lane_v:
+ case NEON::BI__builtin_neon_vld2q_lane_v: {
+ llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
+ Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys);
+ Ops.push_back(Ops[1]);
+ Ops.erase(Ops.begin()+1);
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+ Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
+ Ops[3] = Builder.CreateZExt(Ops[3],
+ llvm::IntegerType::get(getLLVMContext(), 64));
+ Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
+ Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ return Builder.CreateStore(Ops[1], Ops[0]);
+ }
+ case NEON::BI__builtin_neon_vld3_lane_v:
+ case NEON::BI__builtin_neon_vld3q_lane_v: {
+ llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
+ Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys);
+ Ops.push_back(Ops[1]);
+ Ops.erase(Ops.begin()+1);
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+ Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
+ Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
+ Ops[4] = Builder.CreateZExt(Ops[4],
+ llvm::IntegerType::get(getLLVMContext(), 64));
+ Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
+ Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ return Builder.CreateStore(Ops[1], Ops[0]);
+ }
+ case NEON::BI__builtin_neon_vld4_lane_v:
+ case NEON::BI__builtin_neon_vld4q_lane_v: {
+ llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
+ Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys);
+ Ops.push_back(Ops[1]);
+ Ops.erase(Ops.begin()+1);
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+ Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
+ Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
+ Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
+ Ops[5] = Builder.CreateZExt(Ops[5],
+ llvm::IntegerType::get(getLLVMContext(), 64));
+ Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane");
+ Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ return Builder.CreateStore(Ops[1], Ops[0]);
+ }
+ case NEON::BI__builtin_neon_vst2_v:
+ case NEON::BI__builtin_neon_vst2q_v: {
+ Ops.push_back(Ops[0]);
+ Ops.erase(Ops.begin());
+ llvm::Type *Tys[2] = { VTy, Ops[2]->getType() };
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys),
+ Ops, "");
+ }
+ case NEON::BI__builtin_neon_vst2_lane_v:
+ case NEON::BI__builtin_neon_vst2q_lane_v: {
+ Ops.push_back(Ops[0]);
+ Ops.erase(Ops.begin());
+ Ops[2] = Builder.CreateZExt(Ops[2],
+ llvm::IntegerType::get(getLLVMContext(), 64));
+ llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys),
+ Ops, "");
+ }
+ case NEON::BI__builtin_neon_vst3_v:
+ case NEON::BI__builtin_neon_vst3q_v: {
+ Ops.push_back(Ops[0]);
+ Ops.erase(Ops.begin());
+ llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys),
+ Ops, "");
+ }
+ case NEON::BI__builtin_neon_vst3_lane_v:
+ case NEON::BI__builtin_neon_vst3q_lane_v: {
+ Ops.push_back(Ops[0]);
+ Ops.erase(Ops.begin());
+ Ops[3] = Builder.CreateZExt(Ops[3],
+ llvm::IntegerType::get(getLLVMContext(), 64));
+ llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys),
+ Ops, "");
+ }
+ case NEON::BI__builtin_neon_vst4_v:
+ case NEON::BI__builtin_neon_vst4q_v: {
+ Ops.push_back(Ops[0]);
+ Ops.erase(Ops.begin());
+ llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys),
+ Ops, "");
+ }
+ case NEON::BI__builtin_neon_vst4_lane_v:
+ case NEON::BI__builtin_neon_vst4q_lane_v: {
+ Ops.push_back(Ops[0]);
+ Ops.erase(Ops.begin());
+ Ops[4] = Builder.CreateZExt(Ops[4],
+ llvm::IntegerType::get(getLLVMContext(), 64));
+ llvm::Type *Tys[2] = { VTy, Ops[5]->getType() };
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys),
+ Ops, "");
+ }
+ case NEON::BI__builtin_neon_vtrn_v:
+ case NEON::BI__builtin_neon_vtrnq_v: {
+ Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+ Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
+ Value *SV = nullptr;
+
+ for (unsigned vi = 0; vi != 2; ++vi) {
+ SmallVector<Constant*, 16> Indices;
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
+ Indices.push_back(ConstantInt::get(Int32Ty, i+vi));
+ Indices.push_back(ConstantInt::get(Int32Ty, i+e+vi));
+ }
+ Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
+ SV = llvm::ConstantVector::get(Indices);
+ SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vtrn");
+ SV = Builder.CreateStore(SV, Addr);
+ }
+ return SV;
+ }
+ case NEON::BI__builtin_neon_vuzp_v:
+ case NEON::BI__builtin_neon_vuzpq_v: {
+ Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+ Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
+ Value *SV = nullptr;
+
+ for (unsigned vi = 0; vi != 2; ++vi) {
+ SmallVector<Constant*, 16> Indices;
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
+ Indices.push_back(ConstantInt::get(Int32Ty, 2*i+vi));
+
+ Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
+ SV = llvm::ConstantVector::get(Indices);
+ SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vuzp");
+ SV = Builder.CreateStore(SV, Addr);
+ }
+ return SV;
+ }
+ case NEON::BI__builtin_neon_vzip_v:
+ case NEON::BI__builtin_neon_vzipq_v: {
+ Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+ Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
+ Value *SV = nullptr;
+
+ for (unsigned vi = 0; vi != 2; ++vi) {
+ SmallVector<Constant*, 16> Indices;
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
+ Indices.push_back(ConstantInt::get(Int32Ty, (i + vi*e) >> 1));
+ Indices.push_back(ConstantInt::get(Int32Ty, ((i + vi*e) >> 1)+e));
+ }
+ Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
+ SV = llvm::ConstantVector::get(Indices);
+ SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vzip");
+ SV = Builder.CreateStore(SV, Addr);
+ }
+ return SV;
+ }
+ case NEON::BI__builtin_neon_vqtbl1q_v: {
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty),
+ Ops, "vtbl1");
+ }
+ case NEON::BI__builtin_neon_vqtbl2q_v: {
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty),
+ Ops, "vtbl2");
+ }
+ case NEON::BI__builtin_neon_vqtbl3q_v: {
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty),
+ Ops, "vtbl3");
+ }
+ case NEON::BI__builtin_neon_vqtbl4q_v: {
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty),
+ Ops, "vtbl4");
+ }
+ case NEON::BI__builtin_neon_vqtbx1q_v: {
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty),
+ Ops, "vtbx1");
+ }
+ case NEON::BI__builtin_neon_vqtbx2q_v: {
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty),
+ Ops, "vtbx2");
+ }
+ case NEON::BI__builtin_neon_vqtbx3q_v: {
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty),
+ Ops, "vtbx3");
+ }
+ case NEON::BI__builtin_neon_vqtbx4q_v: {
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty),
+ Ops, "vtbx4");
+ }
+ case NEON::BI__builtin_neon_vsqadd_v:
+ case NEON::BI__builtin_neon_vsqaddq_v: {
+ Int = Intrinsic::aarch64_neon_usqadd;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
+ }
+ case NEON::BI__builtin_neon_vuqadd_v:
+ case NEON::BI__builtin_neon_vuqaddq_v: {
+ Int = Intrinsic::aarch64_neon_suqadd;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
+ }
+ }
+}
+
+llvm::Value *CodeGenFunction::
+BuildVector(ArrayRef<llvm::Value*> Ops) {
+ assert((Ops.size() & (Ops.size() - 1)) == 0 &&
+ "Not a power-of-two sized vector!");
+ bool AllConstants = true;
+ for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
+ AllConstants &= isa<Constant>(Ops[i]);
+
+ // If this is a constant vector, create a ConstantVector.
+ if (AllConstants) {
+ SmallVector<llvm::Constant*, 16> CstOps;
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i)
+ CstOps.push_back(cast<Constant>(Ops[i]));
+ return llvm::ConstantVector::get(CstOps);
+ }
+
+ // Otherwise, insertelement the values to build the vector.
+ Value *Result =
+ llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), Ops.size()));
+
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i)
+ Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
+
+ return Result;
+}
+
+Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
+ const CallExpr *E) {
+ SmallVector<Value*, 4> Ops;
+
+ // Find out if any arguments are required to be integer constant expressions.
+ unsigned ICEArguments = 0;
+ ASTContext::GetBuiltinTypeError Error;
+ getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
+ assert(Error == ASTContext::GE_None && "Should not codegen an error");
+
+ for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
+ // If this is a normal argument, just emit it as a scalar.
+ if ((ICEArguments & (1 << i)) == 0) {
+ Ops.push_back(EmitScalarExpr(E->getArg(i)));
+ continue;
+ }
+
+ // If this is required to be a constant, constant fold it so that we know
+ // that the generated intrinsic gets a ConstantInt.
+ llvm::APSInt Result;
+ bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
+ assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
+ Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
+ }
+
+ switch (BuiltinID) {
+ default: return nullptr;
+ case X86::BI_mm_prefetch: {
+ Value *Address = EmitScalarExpr(E->getArg(0));
+ Value *RW = ConstantInt::get(Int32Ty, 0);
+ Value *Locality = EmitScalarExpr(E->getArg(1));
+ Value *Data = ConstantInt::get(Int32Ty, 1);
+ Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
+ return Builder.CreateCall(F, {Address, RW, Locality, Data});
+ }
+ case X86::BI__builtin_ia32_vec_init_v8qi:
+ case X86::BI__builtin_ia32_vec_init_v4hi:
+ case X86::BI__builtin_ia32_vec_init_v2si:
+ return Builder.CreateBitCast(BuildVector(Ops),
+ llvm::Type::getX86_MMXTy(getLLVMContext()));
+ case X86::BI__builtin_ia32_vec_ext_v2si:
+ return Builder.CreateExtractElement(Ops[0],
+ llvm::ConstantInt::get(Ops[1]->getType(), 0));
+ case X86::BI__builtin_ia32_ldmxcsr: {
+ Value *Tmp = CreateMemTemp(E->getArg(0)->getType());
+ Builder.CreateStore(Ops[0], Tmp);
+ return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
+ Builder.CreateBitCast(Tmp, Int8PtrTy));
+ }
+ case X86::BI__builtin_ia32_stmxcsr: {
+ Value *Tmp = CreateMemTemp(E->getType());
+ Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
+ Builder.CreateBitCast(Tmp, Int8PtrTy));
+ return Builder.CreateLoad(Tmp, "stmxcsr");
+ }
+ case X86::BI__builtin_ia32_storehps:
+ case X86::BI__builtin_ia32_storelps: {
+ llvm::Type *PtrTy = llvm::PointerType::getUnqual(Int64Ty);
+ llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
+
+ // cast val v2i64
+ Ops[1] = Builder.CreateBitCast(Ops[1], VecTy, "cast");
+
+ // extract (0, 1)
+ unsigned Index = BuiltinID == X86::BI__builtin_ia32_storelps ? 0 : 1;
+ llvm::Value *Idx = llvm::ConstantInt::get(SizeTy, Index);
+ Ops[1] = Builder.CreateExtractElement(Ops[1], Idx, "extract");
+
+ // cast pointer to i64 & store
+ Ops[0] = Builder.CreateBitCast(Ops[0], PtrTy);
+ return Builder.CreateStore(Ops[1], Ops[0]);
+ }
+ case X86::BI__builtin_ia32_palignr128:
+ case X86::BI__builtin_ia32_palignr256: {
+ unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
+
+ unsigned NumElts =
+ cast<llvm::VectorType>(Ops[0]->getType())->getNumElements();
+ assert(NumElts % 16 == 0);
+ unsigned NumLanes = NumElts / 16;
+ unsigned NumLaneElts = NumElts / NumLanes;
+
+ // If palignr is shifting the pair of vectors more than the size of two
+ // lanes, emit zero.
+ if (ShiftVal >= (2 * NumLaneElts))
+ return llvm::Constant::getNullValue(ConvertType(E->getType()));
+
+ // If palignr is shifting the pair of input vectors more than one lane,
+ // but less than two lanes, convert to shifting in zeroes.
+ if (ShiftVal > NumLaneElts) {
+ ShiftVal -= NumLaneElts;
+ Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType());
+ }
+
+ SmallVector<llvm::Constant*, 32> Indices;
+ // 256-bit palignr operates on 128-bit lanes so we need to handle that
+ for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
+ for (unsigned i = 0; i != NumLaneElts; ++i) {
+ unsigned Idx = ShiftVal + i;
+ if (Idx >= NumLaneElts)
+ Idx += NumElts - NumLaneElts; // End of lane, switch operand.
+ Indices.push_back(llvm::ConstantInt::get(Int32Ty, Idx + l));
+ }
+ }
+
+ Value* SV = llvm::ConstantVector::get(Indices);
+ return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
+ }
+ case X86::BI__builtin_ia32_pslldqi256: {
+ // Shift value is in bits so divide by 8.
+ unsigned shiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() >> 3;
+
+ // If pslldq is shifting the vector more than 15 bytes, emit zero.
+ if (shiftVal >= 16)
+ return llvm::Constant::getNullValue(ConvertType(E->getType()));
+
+ SmallVector<llvm::Constant*, 32> Indices;
+ // 256-bit pslldq operates on 128-bit lanes so we need to handle that
+ for (unsigned l = 0; l != 32; l += 16) {
+ for (unsigned i = 0; i != 16; ++i) {
+ unsigned Idx = 32 + i - shiftVal;
+ if (Idx < 32) Idx -= 16; // end of lane, switch operand.
+ Indices.push_back(llvm::ConstantInt::get(Int32Ty, Idx + l));
+ }
+ }
+
+ llvm::Type *VecTy = llvm::VectorType::get(Int8Ty, 32);
+ Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
+ Value *Zero = llvm::Constant::getNullValue(VecTy);
+
+ Value *SV = llvm::ConstantVector::get(Indices);
+ SV = Builder.CreateShuffleVector(Zero, Ops[0], SV, "pslldq");
+ llvm::Type *ResultType = ConvertType(E->getType());
+ return Builder.CreateBitCast(SV, ResultType, "cast");
+ }
+ case X86::BI__builtin_ia32_psrldqi256: {
+ // Shift value is in bits so divide by 8.
+ unsigned shiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() >> 3;
+
+ // If psrldq is shifting the vector more than 15 bytes, emit zero.
+ if (shiftVal >= 16)
+ return llvm::Constant::getNullValue(ConvertType(E->getType()));
+
+ SmallVector<llvm::Constant*, 32> Indices;
+ // 256-bit psrldq operates on 128-bit lanes so we need to handle that
+ for (unsigned l = 0; l != 32; l += 16) {
+ for (unsigned i = 0; i != 16; ++i) {
+ unsigned Idx = i + shiftVal;
+ if (Idx >= 16) Idx += 16; // end of lane, switch operand.
+ Indices.push_back(llvm::ConstantInt::get(Int32Ty, Idx + l));
+ }
+ }
+
+ llvm::Type *VecTy = llvm::VectorType::get(Int8Ty, 32);
+ Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
+ Value *Zero = llvm::Constant::getNullValue(VecTy);
+
+ Value *SV = llvm::ConstantVector::get(Indices);
+ SV = Builder.CreateShuffleVector(Ops[0], Zero, SV, "psrldq");
+ llvm::Type *ResultType = ConvertType(E->getType());
+ return Builder.CreateBitCast(SV, ResultType, "cast");
+ }
+ case X86::BI__builtin_ia32_movntps:
+ case X86::BI__builtin_ia32_movntps256:
+ case X86::BI__builtin_ia32_movntpd:
+ case X86::BI__builtin_ia32_movntpd256:
+ case X86::BI__builtin_ia32_movntdq:
+ case X86::BI__builtin_ia32_movntdq256:
+ case X86::BI__builtin_ia32_movnti:
+ case X86::BI__builtin_ia32_movnti64: {
+ llvm::MDNode *Node = llvm::MDNode::get(
+ getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
+
+ // Convert the type of the pointer to a pointer to the stored type.
+ Value *BC = Builder.CreateBitCast(Ops[0],
+ llvm::PointerType::getUnqual(Ops[1]->getType()),
+ "cast");
+ StoreInst *SI = Builder.CreateStore(Ops[1], BC);
+ SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
+
+ // If the operand is an integer, we can't assume alignment. Otherwise,
+ // assume natural alignment.
+ QualType ArgTy = E->getArg(1)->getType();
+ unsigned Align;
+ if (ArgTy->isIntegerType())
+ Align = 1;
+ else
+ Align = getContext().getTypeSizeInChars(ArgTy).getQuantity();
+ SI->setAlignment(Align);
+ return SI;
+ }
+ // 3DNow!
+ case X86::BI__builtin_ia32_pswapdsf:
+ case X86::BI__builtin_ia32_pswapdsi: {
+ llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
+ Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
+ llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd);
+ return Builder.CreateCall(F, Ops, "pswapd");
+ }
+ case X86::BI__builtin_ia32_rdrand16_step:
+ case X86::BI__builtin_ia32_rdrand32_step:
+ case X86::BI__builtin_ia32_rdrand64_step:
+ case X86::BI__builtin_ia32_rdseed16_step:
+ case X86::BI__builtin_ia32_rdseed32_step:
+ case X86::BI__builtin_ia32_rdseed64_step: {
+ Intrinsic::ID ID;
+ switch (BuiltinID) {
+ default: llvm_unreachable("Unsupported intrinsic!");
+ case X86::BI__builtin_ia32_rdrand16_step:
+ ID = Intrinsic::x86_rdrand_16;
+ break;
+ case X86::BI__builtin_ia32_rdrand32_step:
+ ID = Intrinsic::x86_rdrand_32;
+ break;
+ case X86::BI__builtin_ia32_rdrand64_step:
+ ID = Intrinsic::x86_rdrand_64;
+ break;
+ case X86::BI__builtin_ia32_rdseed16_step:
+ ID = Intrinsic::x86_rdseed_16;
+ break;
+ case X86::BI__builtin_ia32_rdseed32_step:
+ ID = Intrinsic::x86_rdseed_32;
+ break;
+ case X86::BI__builtin_ia32_rdseed64_step:
+ ID = Intrinsic::x86_rdseed_64;
+ break;
+ }
+
+ Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID), {});
+ Builder.CreateStore(Builder.CreateExtractValue(Call, 0), Ops[0]);
+ return Builder.CreateExtractValue(Call, 1);
+ }
+ // SSE comparison intrisics
+ case X86::BI__builtin_ia32_cmpeqps:
+ case X86::BI__builtin_ia32_cmpltps:
+ case X86::BI__builtin_ia32_cmpleps:
+ case X86::BI__builtin_ia32_cmpunordps:
+ case X86::BI__builtin_ia32_cmpneqps:
+ case X86::BI__builtin_ia32_cmpnltps:
+ case X86::BI__builtin_ia32_cmpnleps:
+ case X86::BI__builtin_ia32_cmpordps:
+ case X86::BI__builtin_ia32_cmpeqss:
+ case X86::BI__builtin_ia32_cmpltss:
+ case X86::BI__builtin_ia32_cmpless:
+ case X86::BI__builtin_ia32_cmpunordss:
+ case X86::BI__builtin_ia32_cmpneqss:
+ case X86::BI__builtin_ia32_cmpnltss:
+ case X86::BI__builtin_ia32_cmpnless:
+ case X86::BI__builtin_ia32_cmpordss:
+ case X86::BI__builtin_ia32_cmpeqpd:
+ case X86::BI__builtin_ia32_cmpltpd:
+ case X86::BI__builtin_ia32_cmplepd:
+ case X86::BI__builtin_ia32_cmpunordpd:
+ case X86::BI__builtin_ia32_cmpneqpd:
+ case X86::BI__builtin_ia32_cmpnltpd:
+ case X86::BI__builtin_ia32_cmpnlepd:
+ case X86::BI__builtin_ia32_cmpordpd:
+ case X86::BI__builtin_ia32_cmpeqsd:
+ case X86::BI__builtin_ia32_cmpltsd:
+ case X86::BI__builtin_ia32_cmplesd:
+ case X86::BI__builtin_ia32_cmpunordsd:
+ case X86::BI__builtin_ia32_cmpneqsd:
+ case X86::BI__builtin_ia32_cmpnltsd:
+ case X86::BI__builtin_ia32_cmpnlesd:
+ case X86::BI__builtin_ia32_cmpordsd:
+ // These exist so that the builtin that takes an immediate can be bounds
+ // checked by clang to avoid passing bad immediates to the backend. Since
+ // AVX has a larger immediate than SSE we would need separate builtins to
+ // do the different bounds checking. Rather than create a clang specific
+ // SSE only builtin, this implements eight separate builtins to match gcc
+ // implementation.
+
+ // Choose the immediate.
+ unsigned Imm;
+ switch (BuiltinID) {
+ default: llvm_unreachable("Unsupported intrinsic!");
+ case X86::BI__builtin_ia32_cmpeqps:
+ case X86::BI__builtin_ia32_cmpeqss:
+ case X86::BI__builtin_ia32_cmpeqpd:
+ case X86::BI__builtin_ia32_cmpeqsd:
+ Imm = 0;
+ break;
+ case X86::BI__builtin_ia32_cmpltps:
+ case X86::BI__builtin_ia32_cmpltss:
+ case X86::BI__builtin_ia32_cmpltpd:
+ case X86::BI__builtin_ia32_cmpltsd:
+ Imm = 1;
+ break;
+ case X86::BI__builtin_ia32_cmpleps:
+ case X86::BI__builtin_ia32_cmpless:
+ case X86::BI__builtin_ia32_cmplepd:
+ case X86::BI__builtin_ia32_cmplesd:
+ Imm = 2;
+ break;
+ case X86::BI__builtin_ia32_cmpunordps:
+ case X86::BI__builtin_ia32_cmpunordss:
+ case X86::BI__builtin_ia32_cmpunordpd:
+ case X86::BI__builtin_ia32_cmpunordsd:
+ Imm = 3;
+ break;
+ case X86::BI__builtin_ia32_cmpneqps:
+ case X86::BI__builtin_ia32_cmpneqss:
+ case X86::BI__builtin_ia32_cmpneqpd:
+ case X86::BI__builtin_ia32_cmpneqsd:
+ Imm = 4;
+ break;
+ case X86::BI__builtin_ia32_cmpnltps:
+ case X86::BI__builtin_ia32_cmpnltss:
+ case X86::BI__builtin_ia32_cmpnltpd:
+ case X86::BI__builtin_ia32_cmpnltsd:
+ Imm = 5;
+ break;
+ case X86::BI__builtin_ia32_cmpnleps:
+ case X86::BI__builtin_ia32_cmpnless:
+ case X86::BI__builtin_ia32_cmpnlepd:
+ case X86::BI__builtin_ia32_cmpnlesd:
+ Imm = 6;
+ break;
+ case X86::BI__builtin_ia32_cmpordps:
+ case X86::BI__builtin_ia32_cmpordss:
+ case X86::BI__builtin_ia32_cmpordpd:
+ case X86::BI__builtin_ia32_cmpordsd:
+ Imm = 7;
+ break;
+ }
+
+ // Choose the intrinsic ID.
+ const char *name;
+ Intrinsic::ID ID;
+ switch (BuiltinID) {
+ default: llvm_unreachable("Unsupported intrinsic!");
+ case X86::BI__builtin_ia32_cmpeqps:
+ case X86::BI__builtin_ia32_cmpltps:
+ case X86::BI__builtin_ia32_cmpleps:
+ case X86::BI__builtin_ia32_cmpunordps:
+ case X86::BI__builtin_ia32_cmpneqps:
+ case X86::BI__builtin_ia32_cmpnltps:
+ case X86::BI__builtin_ia32_cmpnleps:
+ case X86::BI__builtin_ia32_cmpordps:
+ name = "cmpps";
+ ID = Intrinsic::x86_sse_cmp_ps;
+ break;
+ case X86::BI__builtin_ia32_cmpeqss:
+ case X86::BI__builtin_ia32_cmpltss:
+ case X86::BI__builtin_ia32_cmpless:
+ case X86::BI__builtin_ia32_cmpunordss:
+ case X86::BI__builtin_ia32_cmpneqss:
+ case X86::BI__builtin_ia32_cmpnltss:
+ case X86::BI__builtin_ia32_cmpnless:
+ case X86::BI__builtin_ia32_cmpordss:
+ name = "cmpss";
+ ID = Intrinsic::x86_sse_cmp_ss;
+ break;
+ case X86::BI__builtin_ia32_cmpeqpd:
+ case X86::BI__builtin_ia32_cmpltpd:
+ case X86::BI__builtin_ia32_cmplepd:
+ case X86::BI__builtin_ia32_cmpunordpd:
+ case X86::BI__builtin_ia32_cmpneqpd:
+ case X86::BI__builtin_ia32_cmpnltpd:
+ case X86::BI__builtin_ia32_cmpnlepd:
+ case X86::BI__builtin_ia32_cmpordpd:
+ name = "cmppd";
+ ID = Intrinsic::x86_sse2_cmp_pd;
+ break;
+ case X86::BI__builtin_ia32_cmpeqsd:
+ case X86::BI__builtin_ia32_cmpltsd:
+ case X86::BI__builtin_ia32_cmplesd:
+ case X86::BI__builtin_ia32_cmpunordsd:
+ case X86::BI__builtin_ia32_cmpneqsd:
+ case X86::BI__builtin_ia32_cmpnltsd:
+ case X86::BI__builtin_ia32_cmpnlesd:
+ case X86::BI__builtin_ia32_cmpordsd:
+ name = "cmpsd";
+ ID = Intrinsic::x86_sse2_cmp_sd;
+ break;
+ }
+
+ Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm));
+ llvm::Function *F = CGM.getIntrinsic(ID);
+ return Builder.CreateCall(F, Ops, name);
+ }
+}
+
+
+Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
+ const CallExpr *E) {
+ SmallVector<Value*, 4> Ops;
+
+ for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
+ Ops.push_back(EmitScalarExpr(E->getArg(i)));
+
+ Intrinsic::ID ID = Intrinsic::not_intrinsic;
+
+ switch (BuiltinID) {
+ default: return nullptr;
+
+ // vec_ld, vec_lvsl, vec_lvsr
+ case PPC::BI__builtin_altivec_lvx:
+ case PPC::BI__builtin_altivec_lvxl:
+ case PPC::BI__builtin_altivec_lvebx:
+ case PPC::BI__builtin_altivec_lvehx:
+ case PPC::BI__builtin_altivec_lvewx:
+ case PPC::BI__builtin_altivec_lvsl:
+ case PPC::BI__builtin_altivec_lvsr:
+ case PPC::BI__builtin_vsx_lxvd2x:
+ case PPC::BI__builtin_vsx_lxvw4x:
+ {
+ Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
+
+ Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]);
+ Ops.pop_back();
+
+ switch (BuiltinID) {
+ default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
+ case PPC::BI__builtin_altivec_lvx:
+ ID = Intrinsic::ppc_altivec_lvx;
+ break;
+ case PPC::BI__builtin_altivec_lvxl:
+ ID = Intrinsic::ppc_altivec_lvxl;
+ break;
+ case PPC::BI__builtin_altivec_lvebx:
+ ID = Intrinsic::ppc_altivec_lvebx;
+ break;
+ case PPC::BI__builtin_altivec_lvehx:
+ ID = Intrinsic::ppc_altivec_lvehx;
+ break;
+ case PPC::BI__builtin_altivec_lvewx:
+ ID = Intrinsic::ppc_altivec_lvewx;
+ break;
+ case PPC::BI__builtin_altivec_lvsl:
+ ID = Intrinsic::ppc_altivec_lvsl;
+ break;
+ case PPC::BI__builtin_altivec_lvsr:
+ ID = Intrinsic::ppc_altivec_lvsr;
+ break;
+ case PPC::BI__builtin_vsx_lxvd2x:
+ ID = Intrinsic::ppc_vsx_lxvd2x;
+ break;
+ case PPC::BI__builtin_vsx_lxvw4x:
+ ID = Intrinsic::ppc_vsx_lxvw4x;
+ break;
+ }
+ llvm::Function *F = CGM.getIntrinsic(ID);
+ return Builder.CreateCall(F, Ops, "");
+ }
+
+ // vec_st
+ case PPC::BI__builtin_altivec_stvx:
+ case PPC::BI__builtin_altivec_stvxl:
+ case PPC::BI__builtin_altivec_stvebx:
+ case PPC::BI__builtin_altivec_stvehx:
+ case PPC::BI__builtin_altivec_stvewx:
+ case PPC::BI__builtin_vsx_stxvd2x:
+ case PPC::BI__builtin_vsx_stxvw4x:
+ {
+ Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
+ Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]);
+ Ops.pop_back();
+
+ switch (BuiltinID) {
+ default: llvm_unreachable("Unsupported st intrinsic!");
+ case PPC::BI__builtin_altivec_stvx:
+ ID = Intrinsic::ppc_altivec_stvx;
+ break;
+ case PPC::BI__builtin_altivec_stvxl:
+ ID = Intrinsic::ppc_altivec_stvxl;
+ break;
+ case PPC::BI__builtin_altivec_stvebx:
+ ID = Intrinsic::ppc_altivec_stvebx;
+ break;
+ case PPC::BI__builtin_altivec_stvehx:
+ ID = Intrinsic::ppc_altivec_stvehx;
+ break;
+ case PPC::BI__builtin_altivec_stvewx:
+ ID = Intrinsic::ppc_altivec_stvewx;
+ break;
+ case PPC::BI__builtin_vsx_stxvd2x:
+ ID = Intrinsic::ppc_vsx_stxvd2x;
+ break;
+ case PPC::BI__builtin_vsx_stxvw4x:
+ ID = Intrinsic::ppc_vsx_stxvw4x;
+ break;
+ }
+ llvm::Function *F = CGM.getIntrinsic(ID);
+ return Builder.CreateCall(F, Ops, "");
+ }
+ }
+}
+
+// Emit an intrinsic that has 1 float or double.
+static Value *emitUnaryFPBuiltin(CodeGenFunction &CGF,
+ const CallExpr *E,
+ unsigned IntrinsicID) {
+ llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
+
+ Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
+ return CGF.Builder.CreateCall(F, Src0);
+}
+
+// Emit an intrinsic that has 3 float or double operands.
+static Value *emitTernaryFPBuiltin(CodeGenFunction &CGF,
+ const CallExpr *E,
+ unsigned IntrinsicID) {
+ llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
+ llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
+ llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
+
+ Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
+ return CGF.Builder.CreateCall(F, {Src0, Src1, Src2});
+}
+
+// Emit an intrinsic that has 1 float or double operand, and 1 integer.
+static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
+ const CallExpr *E,
+ unsigned IntrinsicID) {
+ llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
+ llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
+
+ Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
+ return CGF.Builder.CreateCall(F, {Src0, Src1});
+}
+
+Value *CodeGenFunction::EmitR600BuiltinExpr(unsigned BuiltinID,
+ const CallExpr *E) {
+ switch (BuiltinID) {
+ case R600::BI__builtin_amdgpu_div_scale:
+ case R600::BI__builtin_amdgpu_div_scalef: {
+ // Translate from the intrinsics's struct return to the builtin's out
+ // argument.
+
+ std::pair<llvm::Value *, unsigned> FlagOutPtr
+ = EmitPointerWithAlignment(E->getArg(3));
+
+ llvm::Value *X = EmitScalarExpr(E->getArg(0));
+ llvm::Value *Y = EmitScalarExpr(E->getArg(1));
+ llvm::Value *Z = EmitScalarExpr(E->getArg(2));
+
+ llvm::Value *Callee = CGM.getIntrinsic(Intrinsic::AMDGPU_div_scale,
+ X->getType());
+
+ llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z});
+
+ llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0);
+ llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1);
+
+ llvm::Type *RealFlagType
+ = FlagOutPtr.first->getType()->getPointerElementType();
+
+ llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType);
+ llvm::StoreInst *FlagStore = Builder.CreateStore(FlagExt, FlagOutPtr.first);
+ FlagStore->setAlignment(FlagOutPtr.second);
+ return Result;
+ }
+ case R600::BI__builtin_amdgpu_div_fmas:
+ case R600::BI__builtin_amdgpu_div_fmasf: {
+ llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
+ llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
+ llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
+ llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
+
+ llvm::Value *F = CGM.getIntrinsic(Intrinsic::AMDGPU_div_fmas,
+ Src0->getType());
+ llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3);
+ return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool});
+ }
+ case R600::BI__builtin_amdgpu_div_fixup:
+ case R600::BI__builtin_amdgpu_div_fixupf:
+ return emitTernaryFPBuiltin(*this, E, Intrinsic::AMDGPU_div_fixup);
+ case R600::BI__builtin_amdgpu_trig_preop:
+ case R600::BI__builtin_amdgpu_trig_preopf:
+ return emitFPIntBuiltin(*this, E, Intrinsic::AMDGPU_trig_preop);
+ case R600::BI__builtin_amdgpu_rcp:
+ case R600::BI__builtin_amdgpu_rcpf:
+ return emitUnaryFPBuiltin(*this, E, Intrinsic::AMDGPU_rcp);
+ case R600::BI__builtin_amdgpu_rsq:
+ case R600::BI__builtin_amdgpu_rsqf:
+ return emitUnaryFPBuiltin(*this, E, Intrinsic::AMDGPU_rsq);
+ case R600::BI__builtin_amdgpu_rsq_clamped:
+ case R600::BI__builtin_amdgpu_rsq_clampedf:
+ return emitUnaryFPBuiltin(*this, E, Intrinsic::AMDGPU_rsq_clamped);
+ case R600::BI__builtin_amdgpu_ldexp:
+ case R600::BI__builtin_amdgpu_ldexpf:
+ return emitFPIntBuiltin(*this, E, Intrinsic::AMDGPU_ldexp);
+ case R600::BI__builtin_amdgpu_class:
+ case R600::BI__builtin_amdgpu_classf:
+ return emitFPIntBuiltin(*this, E, Intrinsic::AMDGPU_class);
+ default:
+ return nullptr;
+ }
+}
+
+/// Handle a SystemZ function in which the final argument is a pointer
+/// to an int that receives the post-instruction CC value. At the LLVM level
+/// this is represented as a function that returns a {result, cc} pair.
+static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF,
+ unsigned IntrinsicID,
+ const CallExpr *E) {
+ unsigned NumArgs = E->getNumArgs() - 1;
+ SmallVector<Value *, 8> Args(NumArgs);
+ for (unsigned I = 0; I < NumArgs; ++I)
+ Args[I] = CGF.EmitScalarExpr(E->getArg(I));
+ Value *CCPtr = CGF.EmitScalarExpr(E->getArg(NumArgs));
+ Value *F = CGF.CGM.getIntrinsic(IntrinsicID);
+ Value *Call = CGF.Builder.CreateCall(F, Args);
+ Value *CC = CGF.Builder.CreateExtractValue(Call, 1);
+ CGF.Builder.CreateStore(CC, CCPtr);
+ return CGF.Builder.CreateExtractValue(Call, 0);
+}
+
+Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID,
+ const CallExpr *E) {
+ switch (BuiltinID) {
+ case SystemZ::BI__builtin_tbegin: {
+ Value *TDB = EmitScalarExpr(E->getArg(0));
+ Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
+ Value *F = CGM.getIntrinsic(Intrinsic::s390_tbegin);
+ return Builder.CreateCall(F, {TDB, Control});
+ }
+ case SystemZ::BI__builtin_tbegin_nofloat: {
+ Value *TDB = EmitScalarExpr(E->getArg(0));
+ Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
+ Value *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat);
+ return Builder.CreateCall(F, {TDB, Control});
+ }
+ case SystemZ::BI__builtin_tbeginc: {
+ Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy);
+ Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08);
+ Value *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc);
+ return Builder.CreateCall(F, {TDB, Control});
+ }
+ case SystemZ::BI__builtin_tabort: {
+ Value *Data = EmitScalarExpr(E->getArg(0));
+ Value *F = CGM.getIntrinsic(Intrinsic::s390_tabort);
+ return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort"));
+ }
+ case SystemZ::BI__builtin_non_tx_store: {
+ Value *Address = EmitScalarExpr(E->getArg(0));
+ Value *Data = EmitScalarExpr(E->getArg(1));
+ Value *F = CGM.getIntrinsic(Intrinsic::s390_ntstg);
+ return Builder.CreateCall(F, {Data, Address});
+ }
+
+ // Vector builtins. Note that most vector builtins are mapped automatically
+ // to target-specific LLVM intrinsics. The ones handled specially here can
+ // be represented via standard LLVM IR, which is preferable to enable common
+ // LLVM optimizations.
+
+ case SystemZ::BI__builtin_s390_vpopctb:
+ case SystemZ::BI__builtin_s390_vpopcth:
+ case SystemZ::BI__builtin_s390_vpopctf:
+ case SystemZ::BI__builtin_s390_vpopctg: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *X = EmitScalarExpr(E->getArg(0));
+ Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
+ return Builder.CreateCall(F, X);
+ }
+
+ case SystemZ::BI__builtin_s390_vclzb:
+ case SystemZ::BI__builtin_s390_vclzh:
+ case SystemZ::BI__builtin_s390_vclzf:
+ case SystemZ::BI__builtin_s390_vclzg: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *X = EmitScalarExpr(E->getArg(0));
+ Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
+ Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
+ return Builder.CreateCall(F, {X, Undef});
+ }
+
+ case SystemZ::BI__builtin_s390_vctzb:
+ case SystemZ::BI__builtin_s390_vctzh:
+ case SystemZ::BI__builtin_s390_vctzf:
+ case SystemZ::BI__builtin_s390_vctzg: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *X = EmitScalarExpr(E->getArg(0));
+ Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
+ Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
+ return Builder.CreateCall(F, {X, Undef});
+ }
+
+ case SystemZ::BI__builtin_s390_vfsqdb: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *X = EmitScalarExpr(E->getArg(0));
+ Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
+ return Builder.CreateCall(F, X);
+ }
+ case SystemZ::BI__builtin_s390_vfmadb: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *X = EmitScalarExpr(E->getArg(0));
+ Value *Y = EmitScalarExpr(E->getArg(1));
+ Value *Z = EmitScalarExpr(E->getArg(2));
+ Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
+ return Builder.CreateCall(F, {X, Y, Z});
+ }
+ case SystemZ::BI__builtin_s390_vfmsdb: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *X = EmitScalarExpr(E->getArg(0));
+ Value *Y = EmitScalarExpr(E->getArg(1));
+ Value *Z = EmitScalarExpr(E->getArg(2));
+ Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
+ Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
+ return Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
+ }
+ case SystemZ::BI__builtin_s390_vflpdb: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *X = EmitScalarExpr(E->getArg(0));
+ Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
+ return Builder.CreateCall(F, X);
+ }
+ case SystemZ::BI__builtin_s390_vflndb: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *X = EmitScalarExpr(E->getArg(0));
+ Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
+ Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
+ return Builder.CreateFSub(Zero, Builder.CreateCall(F, X), "sub");
+ }
+ case SystemZ::BI__builtin_s390_vfidb: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *X = EmitScalarExpr(E->getArg(0));
+ // Constant-fold the M4 and M5 mask arguments.
+ llvm::APSInt M4, M5;
+ bool IsConstM4 = E->getArg(1)->isIntegerConstantExpr(M4, getContext());
+ bool IsConstM5 = E->getArg(2)->isIntegerConstantExpr(M5, getContext());
+ assert(IsConstM4 && IsConstM5 && "Constant arg isn't actually constant?");
+ (void)IsConstM4; (void)IsConstM5;
+ // Check whether this instance of vfidb can be represented via a LLVM
+ // standard intrinsic. We only support some combinations of M4 and M5.
+ Intrinsic::ID ID = Intrinsic::not_intrinsic;
+ switch (M4.getZExtValue()) {
+ default: break;
+ case 0: // IEEE-inexact exception allowed
+ switch (M5.getZExtValue()) {
+ default: break;
+ case 0: ID = Intrinsic::rint; break;
+ }
+ break;
+ case 4: // IEEE-inexact exception suppressed
+ switch (M5.getZExtValue()) {
+ default: break;
+ case 0: ID = Intrinsic::nearbyint; break;
+ case 1: ID = Intrinsic::round; break;
+ case 5: ID = Intrinsic::trunc; break;
+ case 6: ID = Intrinsic::ceil; break;
+ case 7: ID = Intrinsic::floor; break;
+ }
+ break;
+ }
+ if (ID != Intrinsic::not_intrinsic) {
+ Function *F = CGM.getIntrinsic(ID, ResultType);
+ return Builder.CreateCall(F, X);
+ }
+ Function *F = CGM.getIntrinsic(Intrinsic::s390_vfidb);
+ Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
+ Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5);
+ return Builder.CreateCall(F, {X, M4Value, M5Value});
+ }
+
+ // Vector intrisincs that output the post-instruction CC value.
+
+#define INTRINSIC_WITH_CC(NAME) \
+ case SystemZ::BI__builtin_##NAME: \
+ return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E)
+
+ INTRINSIC_WITH_CC(s390_vpkshs);
+ INTRINSIC_WITH_CC(s390_vpksfs);
+ INTRINSIC_WITH_CC(s390_vpksgs);
+
+ INTRINSIC_WITH_CC(s390_vpklshs);
+ INTRINSIC_WITH_CC(s390_vpklsfs);
+ INTRINSIC_WITH_CC(s390_vpklsgs);
+
+ INTRINSIC_WITH_CC(s390_vceqbs);
+ INTRINSIC_WITH_CC(s390_vceqhs);
+ INTRINSIC_WITH_CC(s390_vceqfs);
+ INTRINSIC_WITH_CC(s390_vceqgs);
+
+ INTRINSIC_WITH_CC(s390_vchbs);
+ INTRINSIC_WITH_CC(s390_vchhs);
+ INTRINSIC_WITH_CC(s390_vchfs);
+ INTRINSIC_WITH_CC(s390_vchgs);
+
+ INTRINSIC_WITH_CC(s390_vchlbs);
+ INTRINSIC_WITH_CC(s390_vchlhs);
+ INTRINSIC_WITH_CC(s390_vchlfs);
+ INTRINSIC_WITH_CC(s390_vchlgs);
+
+ INTRINSIC_WITH_CC(s390_vfaebs);
+ INTRINSIC_WITH_CC(s390_vfaehs);
+ INTRINSIC_WITH_CC(s390_vfaefs);
+
+ INTRINSIC_WITH_CC(s390_vfaezbs);
+ INTRINSIC_WITH_CC(s390_vfaezhs);
+ INTRINSIC_WITH_CC(s390_vfaezfs);
+
+ INTRINSIC_WITH_CC(s390_vfeebs);
+ INTRINSIC_WITH_CC(s390_vfeehs);
+ INTRINSIC_WITH_CC(s390_vfeefs);
+
+ INTRINSIC_WITH_CC(s390_vfeezbs);
+ INTRINSIC_WITH_CC(s390_vfeezhs);
+ INTRINSIC_WITH_CC(s390_vfeezfs);
+
+ INTRINSIC_WITH_CC(s390_vfenebs);
+ INTRINSIC_WITH_CC(s390_vfenehs);
+ INTRINSIC_WITH_CC(s390_vfenefs);
+
+ INTRINSIC_WITH_CC(s390_vfenezbs);
+ INTRINSIC_WITH_CC(s390_vfenezhs);
+ INTRINSIC_WITH_CC(s390_vfenezfs);
+
+ INTRINSIC_WITH_CC(s390_vistrbs);
+ INTRINSIC_WITH_CC(s390_vistrhs);
+ INTRINSIC_WITH_CC(s390_vistrfs);
+
+ INTRINSIC_WITH_CC(s390_vstrcbs);
+ INTRINSIC_WITH_CC(s390_vstrchs);
+ INTRINSIC_WITH_CC(s390_vstrcfs);
+
+ INTRINSIC_WITH_CC(s390_vstrczbs);
+ INTRINSIC_WITH_CC(s390_vstrczhs);
+ INTRINSIC_WITH_CC(s390_vstrczfs);
+
+ INTRINSIC_WITH_CC(s390_vfcedbs);
+ INTRINSIC_WITH_CC(s390_vfchdbs);
+ INTRINSIC_WITH_CC(s390_vfchedbs);
+
+ INTRINSIC_WITH_CC(s390_vftcidb);
+
+#undef INTRINSIC_WITH_CC
+
+ default:
+ return nullptr;
+ }
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGCUDANV.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGCUDANV.cpp
new file mode 100644
index 0000000..67d0ab7
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGCUDANV.cpp
@@ -0,0 +1,317 @@
+//===----- CGCUDANV.cpp - Interface to NVIDIA CUDA Runtime ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This provides a class for CUDA code generation targeting the NVIDIA CUDA
+// runtime library.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGCUDARuntime.h"
+#include "CodeGenFunction.h"
+#include "CodeGenModule.h"
+#include "clang/AST/Decl.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+
+using namespace clang;
+using namespace CodeGen;
+
+namespace {
+
+class CGNVCUDARuntime : public CGCUDARuntime {
+
+private:
+ llvm::Type *IntTy, *SizeTy, *VoidTy;
+ llvm::PointerType *CharPtrTy, *VoidPtrTy, *VoidPtrPtrTy;
+
+ /// Convenience reference to LLVM Context
+ llvm::LLVMContext &Context;
+ /// Convenience reference to the current module
+ llvm::Module &TheModule;
+ /// Keeps track of kernel launch stubs emitted in this module
+ llvm::SmallVector<llvm::Function *, 16> EmittedKernels;
+ /// Keeps track of variables containing handles of GPU binaries. Populated by
+ /// ModuleCtorFunction() and used to create corresponding cleanup calls in
+ /// ModuleDtorFunction()
+ llvm::SmallVector<llvm::GlobalVariable *, 16> GpuBinaryHandles;
+
+ llvm::Constant *getSetupArgumentFn() const;
+ llvm::Constant *getLaunchFn() const;
+
+ /// Creates a function to register all kernel stubs generated in this module.
+ llvm::Function *makeRegisterKernelsFn();
+
+ /// Helper function that generates a constant string and returns a pointer to
+ /// the start of the string. The result of this function can be used anywhere
+ /// where the C code specifies const char*.
+ llvm::Constant *makeConstantString(const std::string &Str,
+ const std::string &Name = "",
+ unsigned Alignment = 0) {
+ llvm::Constant *Zeros[] = {llvm::ConstantInt::get(SizeTy, 0),
+ llvm::ConstantInt::get(SizeTy, 0)};
+ auto *ConstStr = CGM.GetAddrOfConstantCString(Str, Name.c_str());
+ return llvm::ConstantExpr::getGetElementPtr(ConstStr->getValueType(),
+ ConstStr, Zeros);
+ }
+
+ void emitDeviceStubBody(CodeGenFunction &CGF, FunctionArgList &Args);
+
+public:
+ CGNVCUDARuntime(CodeGenModule &CGM);
+
+ void emitDeviceStub(CodeGenFunction &CGF, FunctionArgList &Args) override;
+ /// Creates module constructor function
+ llvm::Function *makeModuleCtorFunction() override;
+ /// Creates module destructor function
+ llvm::Function *makeModuleDtorFunction() override;
+};
+
+}
+
+CGNVCUDARuntime::CGNVCUDARuntime(CodeGenModule &CGM)
+ : CGCUDARuntime(CGM), Context(CGM.getLLVMContext()),
+ TheModule(CGM.getModule()) {
+ CodeGen::CodeGenTypes &Types = CGM.getTypes();
+ ASTContext &Ctx = CGM.getContext();
+
+ IntTy = Types.ConvertType(Ctx.IntTy);
+ SizeTy = Types.ConvertType(Ctx.getSizeType());
+ VoidTy = llvm::Type::getVoidTy(Context);
+
+ CharPtrTy = llvm::PointerType::getUnqual(Types.ConvertType(Ctx.CharTy));
+ VoidPtrTy = cast<llvm::PointerType>(Types.ConvertType(Ctx.VoidPtrTy));
+ VoidPtrPtrTy = VoidPtrTy->getPointerTo();
+}
+
+llvm::Constant *CGNVCUDARuntime::getSetupArgumentFn() const {
+ // cudaError_t cudaSetupArgument(void *, size_t, size_t)
+ std::vector<llvm::Type*> Params;
+ Params.push_back(VoidPtrTy);
+ Params.push_back(SizeTy);
+ Params.push_back(SizeTy);
+ return CGM.CreateRuntimeFunction(llvm::FunctionType::get(IntTy,
+ Params, false),
+ "cudaSetupArgument");
+}
+
+llvm::Constant *CGNVCUDARuntime::getLaunchFn() const {
+ // cudaError_t cudaLaunch(char *)
+ return CGM.CreateRuntimeFunction(
+ llvm::FunctionType::get(IntTy, CharPtrTy, false), "cudaLaunch");
+}
+
+void CGNVCUDARuntime::emitDeviceStub(CodeGenFunction &CGF,
+ FunctionArgList &Args) {
+ EmittedKernels.push_back(CGF.CurFn);
+ emitDeviceStubBody(CGF, Args);
+}
+
+void CGNVCUDARuntime::emitDeviceStubBody(CodeGenFunction &CGF,
+ FunctionArgList &Args) {
+ // Build the argument value list and the argument stack struct type.
+ SmallVector<llvm::Value *, 16> ArgValues;
+ std::vector<llvm::Type *> ArgTypes;
+ for (FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
+ I != E; ++I) {
+ llvm::Value *V = CGF.GetAddrOfLocalVar(*I);
+ ArgValues.push_back(V);
+ assert(isa<llvm::PointerType>(V->getType()) && "Arg type not PointerType");
+ ArgTypes.push_back(cast<llvm::PointerType>(V->getType())->getElementType());
+ }
+ llvm::StructType *ArgStackTy = llvm::StructType::get(Context, ArgTypes);
+
+ llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end");
+
+ // Emit the calls to cudaSetupArgument
+ llvm::Constant *cudaSetupArgFn = getSetupArgumentFn();
+ for (unsigned I = 0, E = Args.size(); I != E; ++I) {
+ llvm::Value *Args[3];
+ llvm::BasicBlock *NextBlock = CGF.createBasicBlock("setup.next");
+ Args[0] = CGF.Builder.CreatePointerCast(ArgValues[I], VoidPtrTy);
+ Args[1] = CGF.Builder.CreateIntCast(
+ llvm::ConstantExpr::getSizeOf(ArgTypes[I]),
+ SizeTy, false);
+ Args[2] = CGF.Builder.CreateIntCast(
+ llvm::ConstantExpr::getOffsetOf(ArgStackTy, I),
+ SizeTy, false);
+ llvm::CallSite CS = CGF.EmitRuntimeCallOrInvoke(cudaSetupArgFn, Args);
+ llvm::Constant *Zero = llvm::ConstantInt::get(IntTy, 0);
+ llvm::Value *CSZero = CGF.Builder.CreateICmpEQ(CS.getInstruction(), Zero);
+ CGF.Builder.CreateCondBr(CSZero, NextBlock, EndBlock);
+ CGF.EmitBlock(NextBlock);
+ }
+
+ // Emit the call to cudaLaunch
+ llvm::Constant *cudaLaunchFn = getLaunchFn();
+ llvm::Value *Arg = CGF.Builder.CreatePointerCast(CGF.CurFn, CharPtrTy);
+ CGF.EmitRuntimeCallOrInvoke(cudaLaunchFn, Arg);
+ CGF.EmitBranch(EndBlock);
+
+ CGF.EmitBlock(EndBlock);
+}
+
+/// Creates internal function to register all kernel stubs generated in this
+/// module with the CUDA runtime.
+/// \code
+/// void __cuda_register_kernels(void** GpuBinaryHandle) {
+/// __cudaRegisterFunction(GpuBinaryHandle,Kernel0,...);
+/// ...
+/// __cudaRegisterFunction(GpuBinaryHandle,KernelM,...);
+/// }
+/// \endcode
+llvm::Function *CGNVCUDARuntime::makeRegisterKernelsFn() {
+ llvm::Function *RegisterKernelsFunc = llvm::Function::Create(
+ llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false),
+ llvm::GlobalValue::InternalLinkage, "__cuda_register_kernels", &TheModule);
+ llvm::BasicBlock *EntryBB =
+ llvm::BasicBlock::Create(Context, "entry", RegisterKernelsFunc);
+ CGBuilderTy Builder(Context);
+ Builder.SetInsertPoint(EntryBB);
+
+ // void __cudaRegisterFunction(void **, const char *, char *, const char *,
+ // int, uint3*, uint3*, dim3*, dim3*, int*)
+ std::vector<llvm::Type *> RegisterFuncParams = {
+ VoidPtrPtrTy, CharPtrTy, CharPtrTy, CharPtrTy, IntTy,
+ VoidPtrTy, VoidPtrTy, VoidPtrTy, VoidPtrTy, IntTy->getPointerTo()};
+ llvm::Constant *RegisterFunc = CGM.CreateRuntimeFunction(
+ llvm::FunctionType::get(IntTy, RegisterFuncParams, false),
+ "__cudaRegisterFunction");
+
+ // Extract GpuBinaryHandle passed as the first argument passed to
+ // __cuda_register_kernels() and generate __cudaRegisterFunction() call for
+ // each emitted kernel.
+ llvm::Argument &GpuBinaryHandlePtr = *RegisterKernelsFunc->arg_begin();
+ for (llvm::Function *Kernel : EmittedKernels) {
+ llvm::Constant *KernelName = makeConstantString(Kernel->getName());
+ llvm::Constant *NullPtr = llvm::ConstantPointerNull::get(VoidPtrTy);
+ llvm::Value *args[] = {
+ &GpuBinaryHandlePtr, Builder.CreateBitCast(Kernel, VoidPtrTy),
+ KernelName, KernelName, llvm::ConstantInt::get(IntTy, -1), NullPtr,
+ NullPtr, NullPtr, NullPtr,
+ llvm::ConstantPointerNull::get(IntTy->getPointerTo())};
+ Builder.CreateCall(RegisterFunc, args);
+ }
+
+ Builder.CreateRetVoid();
+ return RegisterKernelsFunc;
+}
+
+/// Creates a global constructor function for the module:
+/// \code
+/// void __cuda_module_ctor(void*) {
+/// Handle0 = __cudaRegisterFatBinary(GpuBinaryBlob0);
+/// __cuda_register_kernels(Handle0);
+/// ...
+/// HandleN = __cudaRegisterFatBinary(GpuBinaryBlobN);
+/// __cuda_register_kernels(HandleN);
+/// }
+/// \endcode
+llvm::Function *CGNVCUDARuntime::makeModuleCtorFunction() {
+ // void __cuda_register_kernels(void* handle);
+ llvm::Function *RegisterKernelsFunc = makeRegisterKernelsFn();
+ // void ** __cudaRegisterFatBinary(void *);
+ llvm::Constant *RegisterFatbinFunc = CGM.CreateRuntimeFunction(
+ llvm::FunctionType::get(VoidPtrPtrTy, VoidPtrTy, false),
+ "__cudaRegisterFatBinary");
+ // struct { int magic, int version, void * gpu_binary, void * dont_care };
+ llvm::StructType *FatbinWrapperTy =
+ llvm::StructType::get(IntTy, IntTy, VoidPtrTy, VoidPtrTy, nullptr);
+
+ llvm::Function *ModuleCtorFunc = llvm::Function::Create(
+ llvm::FunctionType::get(VoidTy, VoidPtrTy, false),
+ llvm::GlobalValue::InternalLinkage, "__cuda_module_ctor", &TheModule);
+ llvm::BasicBlock *CtorEntryBB =
+ llvm::BasicBlock::Create(Context, "entry", ModuleCtorFunc);
+ CGBuilderTy CtorBuilder(Context);
+
+ CtorBuilder.SetInsertPoint(CtorEntryBB);
+
+ // For each GPU binary, register it with the CUDA runtime and store returned
+ // handle in a global variable and save the handle in GpuBinaryHandles vector
+ // to be cleaned up in destructor on exit. Then associate all known kernels
+ // with the GPU binary handle so CUDA runtime can figure out what to call on
+ // the GPU side.
+ for (const std::string &GpuBinaryFileName :
+ CGM.getCodeGenOpts().CudaGpuBinaryFileNames) {
+ llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> GpuBinaryOrErr =
+ llvm::MemoryBuffer::getFileOrSTDIN(GpuBinaryFileName);
+ if (std::error_code EC = GpuBinaryOrErr.getError()) {
+ CGM.getDiags().Report(diag::err_cannot_open_file) << GpuBinaryFileName
+ << EC.message();
+ continue;
+ }
+
+ // Create initialized wrapper structure that points to the loaded GPU binary
+ llvm::Constant *Values[] = {
+ llvm::ConstantInt::get(IntTy, 0x466243b1), // Fatbin wrapper magic.
+ llvm::ConstantInt::get(IntTy, 1), // Fatbin version.
+ makeConstantString(GpuBinaryOrErr.get()->getBuffer(), "", 16), // Data.
+ llvm::ConstantPointerNull::get(VoidPtrTy)}; // Unused in fatbin v1.
+ llvm::GlobalVariable *FatbinWrapper = new llvm::GlobalVariable(
+ TheModule, FatbinWrapperTy, true, llvm::GlobalValue::InternalLinkage,
+ llvm::ConstantStruct::get(FatbinWrapperTy, Values),
+ "__cuda_fatbin_wrapper");
+
+ // GpuBinaryHandle = __cudaRegisterFatBinary(&FatbinWrapper);
+ llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall(
+ RegisterFatbinFunc,
+ CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy));
+ llvm::GlobalVariable *GpuBinaryHandle = new llvm::GlobalVariable(
+ TheModule, VoidPtrPtrTy, false, llvm::GlobalValue::InternalLinkage,
+ llvm::ConstantPointerNull::get(VoidPtrPtrTy), "__cuda_gpubin_handle");
+ CtorBuilder.CreateStore(RegisterFatbinCall, GpuBinaryHandle, false);
+
+ // Call __cuda_register_kernels(GpuBinaryHandle);
+ CtorBuilder.CreateCall(RegisterKernelsFunc, RegisterFatbinCall);
+
+ // Save GpuBinaryHandle so we can unregister it in destructor.
+ GpuBinaryHandles.push_back(GpuBinaryHandle);
+ }
+
+ CtorBuilder.CreateRetVoid();
+ return ModuleCtorFunc;
+}
+
+/// Creates a global destructor function that unregisters all GPU code blobs
+/// registered by constructor.
+/// \code
+/// void __cuda_module_dtor(void*) {
+/// __cudaUnregisterFatBinary(Handle0);
+/// ...
+/// __cudaUnregisterFatBinary(HandleN);
+/// }
+/// \endcode
+llvm::Function *CGNVCUDARuntime::makeModuleDtorFunction() {
+ // void __cudaUnregisterFatBinary(void ** handle);
+ llvm::Constant *UnregisterFatbinFunc = CGM.CreateRuntimeFunction(
+ llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false),
+ "__cudaUnregisterFatBinary");
+
+ llvm::Function *ModuleDtorFunc = llvm::Function::Create(
+ llvm::FunctionType::get(VoidTy, VoidPtrTy, false),
+ llvm::GlobalValue::InternalLinkage, "__cuda_module_dtor", &TheModule);
+ llvm::BasicBlock *DtorEntryBB =
+ llvm::BasicBlock::Create(Context, "entry", ModuleDtorFunc);
+ CGBuilderTy DtorBuilder(Context);
+ DtorBuilder.SetInsertPoint(DtorEntryBB);
+
+ for (llvm::GlobalVariable *GpuBinaryHandle : GpuBinaryHandles) {
+ DtorBuilder.CreateCall(UnregisterFatbinFunc,
+ DtorBuilder.CreateLoad(GpuBinaryHandle, false));
+ }
+
+ DtorBuilder.CreateRetVoid();
+ return ModuleDtorFunc;
+}
+
+CGCUDARuntime *CodeGen::CreateNVCUDARuntime(CodeGenModule &CGM) {
+ return new CGNVCUDARuntime(CGM);
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGCUDARuntime.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGCUDARuntime.cpp
new file mode 100644
index 0000000..014a5db
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGCUDARuntime.cpp
@@ -0,0 +1,55 @@
+//===----- CGCUDARuntime.cpp - Interface to CUDA Runtimes -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This provides an abstract class for CUDA code generation. Concrete
+// subclasses of this implement code generation for specific CUDA
+// runtime libraries.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGCUDARuntime.h"
+#include "CGCall.h"
+#include "CodeGenFunction.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/ExprCXX.h"
+
+using namespace clang;
+using namespace CodeGen;
+
+CGCUDARuntime::~CGCUDARuntime() {}
+
+RValue CGCUDARuntime::EmitCUDAKernelCallExpr(CodeGenFunction &CGF,
+ const CUDAKernelCallExpr *E,
+ ReturnValueSlot ReturnValue) {
+ llvm::BasicBlock *ConfigOKBlock = CGF.createBasicBlock("kcall.configok");
+ llvm::BasicBlock *ContBlock = CGF.createBasicBlock("kcall.end");
+
+ CodeGenFunction::ConditionalEvaluation eval(CGF);
+ CGF.EmitBranchOnBoolExpr(E->getConfig(), ContBlock, ConfigOKBlock,
+ /*TrueCount=*/0);
+
+ eval.begin(CGF);
+ CGF.EmitBlock(ConfigOKBlock);
+
+ const Decl *TargetDecl = nullptr;
+ if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E->getCallee())) {
+ if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) {
+ TargetDecl = DRE->getDecl();
+ }
+ }
+
+ llvm::Value *Callee = CGF.EmitScalarExpr(E->getCallee());
+ CGF.EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue, TargetDecl);
+ CGF.EmitBranch(ContBlock);
+
+ CGF.EmitBlock(ContBlock);
+ eval.end(CGF);
+
+ return RValue::get(nullptr);
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGCUDARuntime.h b/contrib/llvm/tools/clang/lib/CodeGen/CGCUDARuntime.h
new file mode 100644
index 0000000..dcacf97
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGCUDARuntime.h
@@ -0,0 +1,65 @@
+//===----- CGCUDARuntime.h - Interface to CUDA Runtimes ---------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This provides an abstract class for CUDA code generation. Concrete
+// subclasses of this implement code generation for specific CUDA
+// runtime libraries.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_CODEGEN_CGCUDARUNTIME_H
+#define LLVM_CLANG_LIB_CODEGEN_CGCUDARUNTIME_H
+
+namespace llvm {
+class Function;
+}
+
+namespace clang {
+
+class CUDAKernelCallExpr;
+
+namespace CodeGen {
+
+class CodeGenFunction;
+class CodeGenModule;
+class FunctionArgList;
+class ReturnValueSlot;
+class RValue;
+
+class CGCUDARuntime {
+protected:
+ CodeGenModule &CGM;
+
+public:
+ CGCUDARuntime(CodeGenModule &CGM) : CGM(CGM) {}
+ virtual ~CGCUDARuntime();
+
+ virtual RValue EmitCUDAKernelCallExpr(CodeGenFunction &CGF,
+ const CUDAKernelCallExpr *E,
+ ReturnValueSlot ReturnValue);
+
+ /// Emits a kernel launch stub.
+ virtual void emitDeviceStub(CodeGenFunction &CGF, FunctionArgList &Args) = 0;
+
+ /// Constructs and returns a module initialization function or nullptr if it's
+ /// not needed. Must be called after all kernels have been emitted.
+ virtual llvm::Function *makeModuleCtorFunction() = 0;
+
+ /// Returns a module cleanup function or nullptr if it's not needed.
+ /// Must be called after ModuleCtorFunction
+ virtual llvm::Function *makeModuleDtorFunction() = 0;
+};
+
+/// Creates an instance of a CUDA runtime class.
+CGCUDARuntime *CreateNVCUDARuntime(CodeGenModule &CGM);
+
+}
+}
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGCXX.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGCXX.cpp
new file mode 100644
index 0000000..29a199d
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGCXX.cpp
@@ -0,0 +1,315 @@
+//===--- CGCXX.cpp - Emit LLVM Code for declarations ----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code dealing with C++ code generation.
+//
+//===----------------------------------------------------------------------===//
+
+// We might split this into multiple files if it gets too unwieldy
+
+#include "CodeGenModule.h"
+#include "CGCXXABI.h"
+#include "CodeGenFunction.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/Mangle.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/AST/StmtCXX.h"
+#include "clang/Frontend/CodeGenOptions.h"
+#include "llvm/ADT/StringExtras.h"
+using namespace clang;
+using namespace CodeGen;
+
+/// Try to emit a base destructor as an alias to its primary
+/// base-class destructor.
+bool CodeGenModule::TryEmitBaseDestructorAsAlias(const CXXDestructorDecl *D) {
+ if (!getCodeGenOpts().CXXCtorDtorAliases)
+ return true;
+
+ // Producing an alias to a base class ctor/dtor can degrade debug quality
+ // as the debugger cannot tell them apart.
+ if (getCodeGenOpts().OptimizationLevel == 0)
+ return true;
+
+ // If the destructor doesn't have a trivial body, we have to emit it
+ // separately.
+ if (!D->hasTrivialBody())
+ return true;
+
+ const CXXRecordDecl *Class = D->getParent();
+
+ // We are going to instrument this destructor, so give up even if it is
+ // currently empty.
+ if (Class->mayInsertExtraPadding())
+ return true;
+
+ // If we need to manipulate a VTT parameter, give up.
+ if (Class->getNumVBases()) {
+ // Extra Credit: passing extra parameters is perfectly safe
+ // in many calling conventions, so only bail out if the ctor's
+ // calling convention is nonstandard.
+ return true;
+ }
+
+ // If any field has a non-trivial destructor, we have to emit the
+ // destructor separately.
+ for (const auto *I : Class->fields())
+ if (I->getType().isDestructedType())
+ return true;
+
+ // Try to find a unique base class with a non-trivial destructor.
+ const CXXRecordDecl *UniqueBase = nullptr;
+ for (const auto &I : Class->bases()) {
+
+ // We're in the base destructor, so skip virtual bases.
+ if (I.isVirtual()) continue;
+
+ // Skip base classes with trivial destructors.
+ const auto *Base =
+ cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
+ if (Base->hasTrivialDestructor()) continue;
+
+ // If we've already found a base class with a non-trivial
+ // destructor, give up.
+ if (UniqueBase) return true;
+ UniqueBase = Base;
+ }
+
+ // If we didn't find any bases with a non-trivial destructor, then
+ // the base destructor is actually effectively trivial, which can
+ // happen if it was needlessly user-defined or if there are virtual
+ // bases with non-trivial destructors.
+ if (!UniqueBase)
+ return true;
+
+ // If the base is at a non-zero offset, give up.
+ const ASTRecordLayout &ClassLayout = Context.getASTRecordLayout(Class);
+ if (!ClassLayout.getBaseClassOffset(UniqueBase).isZero())
+ return true;
+
+ // Give up if the calling conventions don't match. We could update the call,
+ // but it is probably not worth it.
+ const CXXDestructorDecl *BaseD = UniqueBase->getDestructor();
+ if (BaseD->getType()->getAs<FunctionType>()->getCallConv() !=
+ D->getType()->getAs<FunctionType>()->getCallConv())
+ return true;
+
+ return TryEmitDefinitionAsAlias(GlobalDecl(D, Dtor_Base),
+ GlobalDecl(BaseD, Dtor_Base),
+ false);
+}
+
+/// Try to emit a definition as a global alias for another definition.
+/// If \p InEveryTU is true, we know that an equivalent alias can be produced
+/// in every translation unit.
+bool CodeGenModule::TryEmitDefinitionAsAlias(GlobalDecl AliasDecl,
+ GlobalDecl TargetDecl,
+ bool InEveryTU) {
+ if (!getCodeGenOpts().CXXCtorDtorAliases)
+ return true;
+
+ // The alias will use the linkage of the referent. If we can't
+ // support aliases with that linkage, fail.
+ llvm::GlobalValue::LinkageTypes Linkage = getFunctionLinkage(AliasDecl);
+
+ // We can't use an alias if the linkage is not valid for one.
+ if (!llvm::GlobalAlias::isValidLinkage(Linkage))
+ return true;
+
+ // Don't create a weak alias for a dllexport'd symbol.
+ if (AliasDecl.getDecl()->hasAttr<DLLExportAttr>() &&
+ llvm::GlobalValue::isWeakForLinker(Linkage))
+ return true;
+
+ llvm::GlobalValue::LinkageTypes TargetLinkage =
+ getFunctionLinkage(TargetDecl);
+
+ // Check if we have it already.
+ StringRef MangledName = getMangledName(AliasDecl);
+ llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
+ if (Entry && !Entry->isDeclaration())
+ return false;
+ if (Replacements.count(MangledName))
+ return false;
+
+ // Derive the type for the alias.
+ llvm::PointerType *AliasType
+ = getTypes().GetFunctionType(AliasDecl)->getPointerTo();
+
+ // Find the referent. Some aliases might require a bitcast, in
+ // which case the caller is responsible for ensuring the soundness
+ // of these semantics.
+ auto *Ref = cast<llvm::GlobalValue>(GetAddrOfGlobal(TargetDecl));
+ llvm::Constant *Aliasee = Ref;
+ if (Ref->getType() != AliasType)
+ Aliasee = llvm::ConstantExpr::getBitCast(Ref, AliasType);
+
+ // Instead of creating as alias to a linkonce_odr, replace all of the uses
+ // of the aliasee.
+ if (llvm::GlobalValue::isDiscardableIfUnused(Linkage) &&
+ (TargetLinkage != llvm::GlobalValue::AvailableExternallyLinkage ||
+ !TargetDecl.getDecl()->hasAttr<AlwaysInlineAttr>())) {
+ // FIXME: An extern template instantiation will create functions with
+ // linkage "AvailableExternally". In libc++, some classes also define
+ // members with attribute "AlwaysInline" and expect no reference to
+ // be generated. It is desirable to reenable this optimisation after
+ // corresponding LLVM changes.
+ Replacements[MangledName] = Aliasee;
+ return false;
+ }
+
+ if (!InEveryTU) {
+ // If we don't have a definition for the destructor yet, don't
+ // emit. We can't emit aliases to declarations; that's just not
+ // how aliases work.
+ if (Ref->isDeclaration())
+ return true;
+ }
+
+ // Don't create an alias to a linker weak symbol. This avoids producing
+ // different COMDATs in different TUs. Another option would be to
+ // output the alias both for weak_odr and linkonce_odr, but that
+ // requires explicit comdat support in the IL.
+ if (llvm::GlobalValue::isWeakForLinker(TargetLinkage))
+ return true;
+
+ // Create the alias with no name.
+ auto *Alias =
+ llvm::GlobalAlias::create(AliasType, Linkage, "", Aliasee, &getModule());
+
+ // Switch any previous uses to the alias.
+ if (Entry) {
+ assert(Entry->getType() == AliasType &&
+ "declaration exists with different type");
+ Alias->takeName(Entry);
+ Entry->replaceAllUsesWith(Alias);
+ Entry->eraseFromParent();
+ } else {
+ Alias->setName(MangledName);
+ }
+
+ // Finally, set up the alias with its proper name and attributes.
+ setAliasAttributes(cast<NamedDecl>(AliasDecl.getDecl()), Alias);
+
+ return false;
+}
+
+llvm::Function *CodeGenModule::codegenCXXStructor(const CXXMethodDecl *MD,
+ StructorType Type) {
+ const CGFunctionInfo &FnInfo =
+ getTypes().arrangeCXXStructorDeclaration(MD, Type);
+ auto *Fn = cast<llvm::Function>(
+ getAddrOfCXXStructor(MD, Type, &FnInfo, nullptr, true));
+
+ GlobalDecl GD;
+ if (const auto *DD = dyn_cast<CXXDestructorDecl>(MD)) {
+ GD = GlobalDecl(DD, toCXXDtorType(Type));
+ } else {
+ const auto *CD = cast<CXXConstructorDecl>(MD);
+ GD = GlobalDecl(CD, toCXXCtorType(Type));
+ }
+
+ setFunctionLinkage(GD, Fn);
+ CodeGenFunction(*this).GenerateCode(GD, Fn, FnInfo);
+ setFunctionDefinitionAttributes(MD, Fn);
+ SetLLVMFunctionAttributesForDefinition(MD, Fn);
+ return Fn;
+}
+
+llvm::GlobalValue *CodeGenModule::getAddrOfCXXStructor(
+ const CXXMethodDecl *MD, StructorType Type, const CGFunctionInfo *FnInfo,
+ llvm::FunctionType *FnType, bool DontDefer) {
+ GlobalDecl GD;
+ if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
+ GD = GlobalDecl(CD, toCXXCtorType(Type));
+ } else {
+ GD = GlobalDecl(cast<CXXDestructorDecl>(MD), toCXXDtorType(Type));
+ }
+
+ StringRef Name = getMangledName(GD);
+ if (llvm::GlobalValue *Existing = GetGlobalValue(Name))
+ return Existing;
+
+ if (!FnType) {
+ if (!FnInfo)
+ FnInfo = &getTypes().arrangeCXXStructorDeclaration(MD, Type);
+ FnType = getTypes().GetFunctionType(*FnInfo);
+ }
+
+ return cast<llvm::Function>(GetOrCreateLLVMFunction(Name, FnType, GD,
+ /*ForVTable=*/false,
+ DontDefer));
+}
+
+static llvm::Value *BuildAppleKextVirtualCall(CodeGenFunction &CGF,
+ GlobalDecl GD,
+ llvm::Type *Ty,
+ const CXXRecordDecl *RD) {
+ assert(!CGF.CGM.getTarget().getCXXABI().isMicrosoft() &&
+ "No kext in Microsoft ABI");
+ GD = GD.getCanonicalDecl();
+ CodeGenModule &CGM = CGF.CGM;
+ llvm::Value *VTable = CGM.getCXXABI().getAddrOfVTable(RD, CharUnits());
+ Ty = Ty->getPointerTo()->getPointerTo();
+ VTable = CGF.Builder.CreateBitCast(VTable, Ty);
+ assert(VTable && "BuildVirtualCall = kext vtbl pointer is null");
+ uint64_t VTableIndex = CGM.getItaniumVTableContext().getMethodVTableIndex(GD);
+ uint64_t AddressPoint =
+ CGM.getItaniumVTableContext().getVTableLayout(RD)
+ .getAddressPoint(BaseSubobject(RD, CharUnits::Zero()));
+ VTableIndex += AddressPoint;
+ llvm::Value *VFuncPtr =
+ CGF.Builder.CreateConstInBoundsGEP1_64(VTable, VTableIndex, "vfnkxt");
+ return CGF.Builder.CreateLoad(VFuncPtr);
+}
+
+/// BuildAppleKextVirtualCall - This routine is to support gcc's kext ABI making
+/// indirect call to virtual functions. It makes the call through indexing
+/// into the vtable.
+llvm::Value *
+CodeGenFunction::BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
+ NestedNameSpecifier *Qual,
+ llvm::Type *Ty) {
+ assert((Qual->getKind() == NestedNameSpecifier::TypeSpec) &&
+ "BuildAppleKextVirtualCall - bad Qual kind");
+
+ const Type *QTy = Qual->getAsType();
+ QualType T = QualType(QTy, 0);
+ const RecordType *RT = T->getAs<RecordType>();
+ assert(RT && "BuildAppleKextVirtualCall - Qual type must be record");
+ const auto *RD = cast<CXXRecordDecl>(RT->getDecl());
+
+ if (const auto *DD = dyn_cast<CXXDestructorDecl>(MD))
+ return BuildAppleKextVirtualDestructorCall(DD, Dtor_Complete, RD);
+
+ return ::BuildAppleKextVirtualCall(*this, MD, Ty, RD);
+}
+
+/// BuildVirtualCall - This routine makes indirect vtable call for
+/// call to virtual destructors. It returns 0 if it could not do it.
+llvm::Value *
+CodeGenFunction::BuildAppleKextVirtualDestructorCall(
+ const CXXDestructorDecl *DD,
+ CXXDtorType Type,
+ const CXXRecordDecl *RD) {
+ const auto *MD = cast<CXXMethodDecl>(DD);
+ // FIXME. Dtor_Base dtor is always direct!!
+ // It need be somehow inline expanded into the caller.
+ // -O does that. But need to support -O0 as well.
+ if (MD->isVirtual() && Type != Dtor_Base) {
+ // Compute the function type we're calling.
+ const CGFunctionInfo &FInfo = CGM.getTypes().arrangeCXXStructorDeclaration(
+ DD, StructorType::Complete);
+ llvm::Type *Ty = CGM.getTypes().GetFunctionType(FInfo);
+ return ::BuildAppleKextVirtualCall(*this, GlobalDecl(DD, Type), Ty, RD);
+ }
+ return nullptr;
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGCXXABI.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGCXXABI.cpp
new file mode 100644
index 0000000..cb7e6df
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGCXXABI.cpp
@@ -0,0 +1,311 @@
+//===----- CGCXXABI.cpp - Interface to C++ ABIs ---------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This provides an abstract class for C++ code generation. Concrete subclasses
+// of this implement code generation for specific C++ ABIs.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGCXXABI.h"
+
+using namespace clang;
+using namespace CodeGen;
+
+CGCXXABI::~CGCXXABI() { }
+
+void CGCXXABI::ErrorUnsupportedABI(CodeGenFunction &CGF, StringRef S) {
+ DiagnosticsEngine &Diags = CGF.CGM.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot yet compile %0 in this ABI");
+ Diags.Report(CGF.getContext().getFullLoc(CGF.CurCodeDecl->getLocation()),
+ DiagID)
+ << S;
+}
+
+bool CGCXXABI::canCopyArgument(const CXXRecordDecl *RD) const {
+ // If RD has a non-trivial move or copy constructor, we cannot copy the
+ // argument.
+ if (RD->hasNonTrivialCopyConstructor() || RD->hasNonTrivialMoveConstructor())
+ return false;
+
+ // If RD has a non-trivial destructor, we cannot copy the argument.
+ if (RD->hasNonTrivialDestructor())
+ return false;
+
+ // We can only copy the argument if there exists at least one trivial,
+ // non-deleted copy or move constructor.
+ // FIXME: This assumes that all lazily declared copy and move constructors are
+ // not deleted. This assumption might not be true in some corner cases.
+ bool CopyDeleted = false;
+ bool MoveDeleted = false;
+ for (const CXXConstructorDecl *CD : RD->ctors()) {
+ if (CD->isCopyConstructor() || CD->isMoveConstructor()) {
+ assert(CD->isTrivial());
+ // We had at least one undeleted trivial copy or move ctor. Return
+ // directly.
+ if (!CD->isDeleted())
+ return true;
+ if (CD->isCopyConstructor())
+ CopyDeleted = true;
+ else
+ MoveDeleted = true;
+ }
+ }
+
+ // If all trivial copy and move constructors are deleted, we cannot copy the
+ // argument.
+ return !(CopyDeleted && MoveDeleted);
+}
+
+llvm::Constant *CGCXXABI::GetBogusMemberPointer(QualType T) {
+ return llvm::Constant::getNullValue(CGM.getTypes().ConvertType(T));
+}
+
+llvm::Type *
+CGCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) {
+ return CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType());
+}
+
+llvm::Value *CGCXXABI::EmitLoadOfMemberFunctionPointer(
+ CodeGenFunction &CGF, const Expr *E, llvm::Value *&This,
+ llvm::Value *MemPtr, const MemberPointerType *MPT) {
+ ErrorUnsupportedABI(CGF, "calls through member pointers");
+
+ const FunctionProtoType *FPT =
+ MPT->getPointeeType()->getAs<FunctionProtoType>();
+ const CXXRecordDecl *RD =
+ cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
+ llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(
+ CGM.getTypes().arrangeCXXMethodType(RD, FPT));
+ return llvm::Constant::getNullValue(FTy->getPointerTo());
+}
+
+llvm::Value *
+CGCXXABI::EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E,
+ llvm::Value *Base, llvm::Value *MemPtr,
+ const MemberPointerType *MPT) {
+ ErrorUnsupportedABI(CGF, "loads of member pointers");
+ llvm::Type *Ty = CGF.ConvertType(MPT->getPointeeType())->getPointerTo();
+ return llvm::Constant::getNullValue(Ty);
+}
+
+llvm::Value *CGCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF,
+ const CastExpr *E,
+ llvm::Value *Src) {
+ ErrorUnsupportedABI(CGF, "member function pointer conversions");
+ return GetBogusMemberPointer(E->getType());
+}
+
+llvm::Constant *CGCXXABI::EmitMemberPointerConversion(const CastExpr *E,
+ llvm::Constant *Src) {
+ return GetBogusMemberPointer(E->getType());
+}
+
+llvm::Value *
+CGCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF,
+ llvm::Value *L,
+ llvm::Value *R,
+ const MemberPointerType *MPT,
+ bool Inequality) {
+ ErrorUnsupportedABI(CGF, "member function pointer comparison");
+ return CGF.Builder.getFalse();
+}
+
+llvm::Value *
+CGCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
+ llvm::Value *MemPtr,
+ const MemberPointerType *MPT) {
+ ErrorUnsupportedABI(CGF, "member function pointer null testing");
+ return CGF.Builder.getFalse();
+}
+
+llvm::Constant *
+CGCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) {
+ return GetBogusMemberPointer(QualType(MPT, 0));
+}
+
+llvm::Constant *CGCXXABI::EmitMemberPointer(const CXXMethodDecl *MD) {
+ return GetBogusMemberPointer(
+ CGM.getContext().getMemberPointerType(MD->getType(),
+ MD->getParent()->getTypeForDecl()));
+}
+
+llvm::Constant *CGCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT,
+ CharUnits offset) {
+ return GetBogusMemberPointer(QualType(MPT, 0));
+}
+
+llvm::Constant *CGCXXABI::EmitMemberPointer(const APValue &MP, QualType MPT) {
+ return GetBogusMemberPointer(MPT);
+}
+
+bool CGCXXABI::isZeroInitializable(const MemberPointerType *MPT) {
+ // Fake answer.
+ return true;
+}
+
+void CGCXXABI::buildThisParam(CodeGenFunction &CGF, FunctionArgList &params) {
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
+
+ // FIXME: I'm not entirely sure I like using a fake decl just for code
+ // generation. Maybe we can come up with a better way?
+ ImplicitParamDecl *ThisDecl
+ = ImplicitParamDecl::Create(CGM.getContext(), nullptr, MD->getLocation(),
+ &CGM.getContext().Idents.get("this"),
+ MD->getThisType(CGM.getContext()));
+ params.push_back(ThisDecl);
+ getThisDecl(CGF) = ThisDecl;
+}
+
+void CGCXXABI::EmitThisParam(CodeGenFunction &CGF) {
+ /// Initialize the 'this' slot.
+ assert(getThisDecl(CGF) && "no 'this' variable for function");
+ getThisValue(CGF)
+ = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(getThisDecl(CGF)),
+ "this");
+}
+
+void CGCXXABI::EmitReturnFromThunk(CodeGenFunction &CGF,
+ RValue RV, QualType ResultType) {
+ CGF.EmitReturnOfRValue(RV, ResultType);
+}
+
+CharUnits CGCXXABI::GetArrayCookieSize(const CXXNewExpr *expr) {
+ if (!requiresArrayCookie(expr))
+ return CharUnits::Zero();
+ return getArrayCookieSizeImpl(expr->getAllocatedType());
+}
+
+CharUnits CGCXXABI::getArrayCookieSizeImpl(QualType elementType) {
+ // BOGUS
+ return CharUnits::Zero();
+}
+
+llvm::Value *CGCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
+ llvm::Value *NewPtr,
+ llvm::Value *NumElements,
+ const CXXNewExpr *expr,
+ QualType ElementType) {
+ // Should never be called.
+ ErrorUnsupportedABI(CGF, "array cookie initialization");
+ return nullptr;
+}
+
+bool CGCXXABI::requiresArrayCookie(const CXXDeleteExpr *expr,
+ QualType elementType) {
+ // If the class's usual deallocation function takes two arguments,
+ // it needs a cookie.
+ if (expr->doesUsualArrayDeleteWantSize())
+ return true;
+
+ return elementType.isDestructedType();
+}
+
+bool CGCXXABI::requiresArrayCookie(const CXXNewExpr *expr) {
+ // If the class's usual deallocation function takes two arguments,
+ // it needs a cookie.
+ if (expr->doesUsualArrayDeleteWantSize())
+ return true;
+
+ return expr->getAllocatedType().isDestructedType();
+}
+
+void CGCXXABI::ReadArrayCookie(CodeGenFunction &CGF, llvm::Value *ptr,
+ const CXXDeleteExpr *expr, QualType eltTy,
+ llvm::Value *&numElements,
+ llvm::Value *&allocPtr, CharUnits &cookieSize) {
+ // Derive a char* in the same address space as the pointer.
+ unsigned AS = ptr->getType()->getPointerAddressSpace();
+ llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS);
+ ptr = CGF.Builder.CreateBitCast(ptr, charPtrTy);
+
+ // If we don't need an array cookie, bail out early.
+ if (!requiresArrayCookie(expr, eltTy)) {
+ allocPtr = ptr;
+ numElements = nullptr;
+ cookieSize = CharUnits::Zero();
+ return;
+ }
+
+ cookieSize = getArrayCookieSizeImpl(eltTy);
+ allocPtr = CGF.Builder.CreateConstInBoundsGEP1_64(ptr,
+ -cookieSize.getQuantity());
+ numElements = readArrayCookieImpl(CGF, allocPtr, cookieSize);
+}
+
+llvm::Value *CGCXXABI::readArrayCookieImpl(CodeGenFunction &CGF,
+ llvm::Value *ptr,
+ CharUnits cookieSize) {
+ ErrorUnsupportedABI(CGF, "reading a new[] cookie");
+ return llvm::ConstantInt::get(CGF.SizeTy, 0);
+}
+
+/// Returns the adjustment, in bytes, required for the given
+/// member-pointer operation. Returns null if no adjustment is
+/// required.
+llvm::Constant *CGCXXABI::getMemberPointerAdjustment(const CastExpr *E) {
+ assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
+ E->getCastKind() == CK_BaseToDerivedMemberPointer);
+
+ QualType derivedType;
+ if (E->getCastKind() == CK_DerivedToBaseMemberPointer)
+ derivedType = E->getSubExpr()->getType();
+ else
+ derivedType = E->getType();
+
+ const CXXRecordDecl *derivedClass =
+ derivedType->castAs<MemberPointerType>()->getClass()->getAsCXXRecordDecl();
+
+ return CGM.GetNonVirtualBaseClassOffset(derivedClass,
+ E->path_begin(),
+ E->path_end());
+}
+
+CharUnits CGCXXABI::getMemberPointerPathAdjustment(const APValue &MP) {
+ // TODO: Store base specifiers in APValue member pointer paths so we can
+ // easily reuse CGM.GetNonVirtualBaseClassOffset().
+ const ValueDecl *MPD = MP.getMemberPointerDecl();
+ CharUnits ThisAdjustment = CharUnits::Zero();
+ ArrayRef<const CXXRecordDecl*> Path = MP.getMemberPointerPath();
+ bool DerivedMember = MP.isMemberPointerToDerivedMember();
+ const CXXRecordDecl *RD = cast<CXXRecordDecl>(MPD->getDeclContext());
+ for (unsigned I = 0, N = Path.size(); I != N; ++I) {
+ const CXXRecordDecl *Base = RD;
+ const CXXRecordDecl *Derived = Path[I];
+ if (DerivedMember)
+ std::swap(Base, Derived);
+ ThisAdjustment +=
+ getContext().getASTRecordLayout(Derived).getBaseClassOffset(Base);
+ RD = Path[I];
+ }
+ if (DerivedMember)
+ ThisAdjustment = -ThisAdjustment;
+ return ThisAdjustment;
+}
+
+llvm::BasicBlock *
+CGCXXABI::EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
+ const CXXRecordDecl *RD) {
+ if (CGM.getTarget().getCXXABI().hasConstructorVariants())
+ llvm_unreachable("shouldn't be called in this ABI");
+
+ ErrorUnsupportedABI(CGF, "complete object detection in ctor");
+ return nullptr;
+}
+
+bool CGCXXABI::NeedsVTTParameter(GlobalDecl GD) {
+ return false;
+}
+
+llvm::CallInst *
+CGCXXABI::emitTerminateForUnexpectedException(CodeGenFunction &CGF,
+ llvm::Value *Exn) {
+ // Just call std::terminate and ignore the violating exception.
+ return CGF.EmitNounwindRuntimeCall(CGF.CGM.getTerminateFn());
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGCXXABI.h b/contrib/llvm/tools/clang/lib/CodeGen/CGCXXABI.h
new file mode 100644
index 0000000..2c73921
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGCXXABI.h
@@ -0,0 +1,547 @@
+//===----- CGCXXABI.h - Interface to C++ ABIs -------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This provides an abstract class for C++ code generation. Concrete subclasses
+// of this implement code generation for specific C++ ABIs.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_CODEGEN_CGCXXABI_H
+#define LLVM_CLANG_LIB_CODEGEN_CGCXXABI_H
+
+#include "CodeGenFunction.h"
+#include "clang/Basic/LLVM.h"
+
+namespace llvm {
+class Constant;
+class Type;
+class Value;
+class CallInst;
+}
+
+namespace clang {
+class CastExpr;
+class CXXConstructorDecl;
+class CXXDestructorDecl;
+class CXXMethodDecl;
+class CXXRecordDecl;
+class FieldDecl;
+class MangleContext;
+
+namespace CodeGen {
+class CodeGenFunction;
+class CodeGenModule;
+
+/// \brief Implements C++ ABI-specific code generation functions.
+class CGCXXABI {
+protected:
+ CodeGenModule &CGM;
+ std::unique_ptr<MangleContext> MangleCtx;
+
+ CGCXXABI(CodeGenModule &CGM)
+ : CGM(CGM), MangleCtx(CGM.getContext().createMangleContext()) {}
+
+protected:
+ ImplicitParamDecl *&getThisDecl(CodeGenFunction &CGF) {
+ return CGF.CXXABIThisDecl;
+ }
+ llvm::Value *&getThisValue(CodeGenFunction &CGF) {
+ return CGF.CXXABIThisValue;
+ }
+
+ /// Issue a diagnostic about unsupported features in the ABI.
+ void ErrorUnsupportedABI(CodeGenFunction &CGF, StringRef S);
+
+ /// Get a null value for unsupported member pointers.
+ llvm::Constant *GetBogusMemberPointer(QualType T);
+
+ ImplicitParamDecl *&getStructorImplicitParamDecl(CodeGenFunction &CGF) {
+ return CGF.CXXStructorImplicitParamDecl;
+ }
+ llvm::Value *&getStructorImplicitParamValue(CodeGenFunction &CGF) {
+ return CGF.CXXStructorImplicitParamValue;
+ }
+
+ /// Perform prolog initialization of the parameter variable suitable
+ /// for 'this' emitted by buildThisParam.
+ void EmitThisParam(CodeGenFunction &CGF);
+
+ ASTContext &getContext() const { return CGM.getContext(); }
+
+ virtual bool requiresArrayCookie(const CXXDeleteExpr *E, QualType eltType);
+ virtual bool requiresArrayCookie(const CXXNewExpr *E);
+
+public:
+
+ virtual ~CGCXXABI();
+
+ /// Gets the mangle context.
+ MangleContext &getMangleContext() {
+ return *MangleCtx;
+ }
+
+ /// Returns true if the given constructor or destructor is one of the
+ /// kinds that the ABI says returns 'this' (only applies when called
+ /// non-virtually for destructors).
+ ///
+ /// There currently is no way to indicate if a destructor returns 'this'
+ /// when called virtually, and code generation does not support the case.
+ virtual bool HasThisReturn(GlobalDecl GD) const { return false; }
+
+ virtual bool hasMostDerivedReturn(GlobalDecl GD) const { return false; }
+
+ /// If the C++ ABI requires the given type be returned in a particular way,
+ /// this method sets RetAI and returns true.
+ virtual bool classifyReturnType(CGFunctionInfo &FI) const = 0;
+
+ /// Specify how one should pass an argument of a record type.
+ enum RecordArgABI {
+ /// Pass it using the normal C aggregate rules for the ABI, potentially
+ /// introducing extra copies and passing some or all of it in registers.
+ RAA_Default = 0,
+
+ /// Pass it on the stack using its defined layout. The argument must be
+ /// evaluated directly into the correct stack position in the arguments area,
+ /// and the call machinery must not move it or introduce extra copies.
+ RAA_DirectInMemory,
+
+ /// Pass it as a pointer to temporary memory.
+ RAA_Indirect
+ };
+
+ /// Returns true if C++ allows us to copy the memory of an object of type RD
+ /// when it is passed as an argument.
+ bool canCopyArgument(const CXXRecordDecl *RD) const;
+
+ /// Returns how an argument of the given record type should be passed.
+ virtual RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const = 0;
+
+ /// Returns true if the implicit 'sret' parameter comes after the implicit
+ /// 'this' parameter of C++ instance methods.
+ virtual bool isSRetParameterAfterThis() const { return false; }
+
+ /// Find the LLVM type used to represent the given member pointer
+ /// type.
+ virtual llvm::Type *
+ ConvertMemberPointerType(const MemberPointerType *MPT);
+
+ /// Load a member function from an object and a member function
+ /// pointer. Apply the this-adjustment and set 'This' to the
+ /// adjusted value.
+ virtual llvm::Value *EmitLoadOfMemberFunctionPointer(
+ CodeGenFunction &CGF, const Expr *E, llvm::Value *&This,
+ llvm::Value *MemPtr, const MemberPointerType *MPT);
+
+ /// Calculate an l-value from an object and a data member pointer.
+ virtual llvm::Value *
+ EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E,
+ llvm::Value *Base, llvm::Value *MemPtr,
+ const MemberPointerType *MPT);
+
+ /// Perform a derived-to-base, base-to-derived, or bitcast member
+ /// pointer conversion.
+ virtual llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF,
+ const CastExpr *E,
+ llvm::Value *Src);
+
+ /// Perform a derived-to-base, base-to-derived, or bitcast member
+ /// pointer conversion on a constant value.
+ virtual llvm::Constant *EmitMemberPointerConversion(const CastExpr *E,
+ llvm::Constant *Src);
+
+ /// Return true if the given member pointer can be zero-initialized
+ /// (in the C++ sense) with an LLVM zeroinitializer.
+ virtual bool isZeroInitializable(const MemberPointerType *MPT);
+
+ /// Return whether or not a member pointers type is convertible to an IR type.
+ virtual bool isMemberPointerConvertible(const MemberPointerType *MPT) const {
+ return true;
+ }
+
+ virtual bool isTypeInfoCalculable(QualType Ty) const {
+ return !Ty->isIncompleteType();
+ }
+
+ /// Create a null member pointer of the given type.
+ virtual llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT);
+
+ /// Create a member pointer for the given method.
+ virtual llvm::Constant *EmitMemberPointer(const CXXMethodDecl *MD);
+
+ /// Create a member pointer for the given field.
+ virtual llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT,
+ CharUnits offset);
+
+ /// Create a member pointer for the given member pointer constant.
+ virtual llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT);
+
+ /// Emit a comparison between two member pointers. Returns an i1.
+ virtual llvm::Value *
+ EmitMemberPointerComparison(CodeGenFunction &CGF,
+ llvm::Value *L,
+ llvm::Value *R,
+ const MemberPointerType *MPT,
+ bool Inequality);
+
+ /// Determine if a member pointer is non-null. Returns an i1.
+ virtual llvm::Value *
+ EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
+ llvm::Value *MemPtr,
+ const MemberPointerType *MPT);
+
+protected:
+ /// A utility method for computing the offset required for the given
+ /// base-to-derived or derived-to-base member-pointer conversion.
+ /// Does not handle virtual conversions (in case we ever fully
+ /// support an ABI that allows this). Returns null if no adjustment
+ /// is required.
+ llvm::Constant *getMemberPointerAdjustment(const CastExpr *E);
+
+ /// \brief Computes the non-virtual adjustment needed for a member pointer
+ /// conversion along an inheritance path stored in an APValue. Unlike
+ /// getMemberPointerAdjustment(), the adjustment can be negative if the path
+ /// is from a derived type to a base type.
+ CharUnits getMemberPointerPathAdjustment(const APValue &MP);
+
+public:
+ virtual void emitVirtualObjectDelete(CodeGenFunction &CGF,
+ const CXXDeleteExpr *DE,
+ llvm::Value *Ptr, QualType ElementType,
+ const CXXDestructorDecl *Dtor) = 0;
+ virtual void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) = 0;
+ virtual void emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) = 0;
+ virtual llvm::GlobalVariable *getThrowInfo(QualType T) { return nullptr; }
+
+ virtual void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) = 0;
+
+ virtual llvm::CallInst *
+ emitTerminateForUnexpectedException(CodeGenFunction &CGF,
+ llvm::Value *Exn);
+
+ virtual llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) = 0;
+ virtual llvm::Constant *
+ getAddrOfCXXCatchHandlerType(QualType Ty, QualType CatchHandlerType) = 0;
+
+ virtual bool shouldTypeidBeNullChecked(bool IsDeref,
+ QualType SrcRecordTy) = 0;
+ virtual void EmitBadTypeidCall(CodeGenFunction &CGF) = 0;
+ virtual llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy,
+ llvm::Value *ThisPtr,
+ llvm::Type *StdTypeInfoPtrTy) = 0;
+
+ virtual bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
+ QualType SrcRecordTy) = 0;
+
+ virtual llvm::Value *
+ EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value,
+ QualType SrcRecordTy, QualType DestTy,
+ QualType DestRecordTy, llvm::BasicBlock *CastEnd) = 0;
+
+ virtual llvm::Value *EmitDynamicCastToVoid(CodeGenFunction &CGF,
+ llvm::Value *Value,
+ QualType SrcRecordTy,
+ QualType DestTy) = 0;
+
+ virtual bool EmitBadCastCall(CodeGenFunction &CGF) = 0;
+
+ virtual llvm::Value *GetVirtualBaseClassOffset(CodeGenFunction &CGF,
+ llvm::Value *This,
+ const CXXRecordDecl *ClassDecl,
+ const CXXRecordDecl *BaseClassDecl) = 0;
+
+ virtual llvm::BasicBlock *EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
+ const CXXRecordDecl *RD);
+
+ /// Emit the code to initialize hidden members required
+ /// to handle virtual inheritance, if needed by the ABI.
+ virtual void
+ initializeHiddenVirtualInheritanceMembers(CodeGenFunction &CGF,
+ const CXXRecordDecl *RD) {}
+
+ /// Emit constructor variants required by this ABI.
+ virtual void EmitCXXConstructors(const CXXConstructorDecl *D) = 0;
+
+ /// Build the signature of the given constructor or destructor variant by
+ /// adding any required parameters. For convenience, ArgTys has been
+ /// initialized with the type of 'this'.
+ virtual void buildStructorSignature(const CXXMethodDecl *MD, StructorType T,
+ SmallVectorImpl<CanQualType> &ArgTys) = 0;
+
+ /// Returns true if the given destructor type should be emitted as a linkonce
+ /// delegating thunk, regardless of whether the dtor is defined in this TU or
+ /// not.
+ virtual bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor,
+ CXXDtorType DT) const = 0;
+
+ /// Emit destructor variants required by this ABI.
+ virtual void EmitCXXDestructors(const CXXDestructorDecl *D) = 0;
+
+ /// Get the type of the implicit "this" parameter used by a method. May return
+ /// zero if no specific type is applicable, e.g. if the ABI expects the "this"
+ /// parameter to point to some artificial offset in a complete object due to
+ /// vbases being reordered.
+ virtual const CXXRecordDecl *
+ getThisArgumentTypeForMethod(const CXXMethodDecl *MD) {
+ return MD->getParent();
+ }
+
+ /// Perform ABI-specific "this" argument adjustment required prior to
+ /// a call of a virtual function.
+ /// The "VirtualCall" argument is true iff the call itself is virtual.
+ virtual llvm::Value *
+ adjustThisArgumentForVirtualFunctionCall(CodeGenFunction &CGF, GlobalDecl GD,
+ llvm::Value *This,
+ bool VirtualCall) {
+ return This;
+ }
+
+ /// Build a parameter variable suitable for 'this'.
+ void buildThisParam(CodeGenFunction &CGF, FunctionArgList &Params);
+
+ /// Insert any ABI-specific implicit parameters into the parameter list for a
+ /// function. This generally involves extra data for constructors and
+ /// destructors.
+ ///
+ /// ABIs may also choose to override the return type, which has been
+ /// initialized with the type of 'this' if HasThisReturn(CGF.CurGD) is true or
+ /// the formal return type of the function otherwise.
+ virtual void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy,
+ FunctionArgList &Params) = 0;
+
+ /// Perform ABI-specific "this" parameter adjustment in a virtual function
+ /// prologue.
+ virtual llvm::Value *adjustThisParameterInVirtualFunctionPrologue(
+ CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This) {
+ return This;
+ }
+
+ /// Emit the ABI-specific prolog for the function.
+ virtual void EmitInstanceFunctionProlog(CodeGenFunction &CGF) = 0;
+
+ /// Add any ABI-specific implicit arguments needed to call a constructor.
+ ///
+ /// \return The number of args added to the call, which is typically zero or
+ /// one.
+ virtual unsigned
+ addImplicitConstructorArgs(CodeGenFunction &CGF, const CXXConstructorDecl *D,
+ CXXCtorType Type, bool ForVirtualBase,
+ bool Delegating, CallArgList &Args) = 0;
+
+ /// Emit the destructor call.
+ virtual void EmitDestructorCall(CodeGenFunction &CGF,
+ const CXXDestructorDecl *DD, CXXDtorType Type,
+ bool ForVirtualBase, bool Delegating,
+ llvm::Value *This) = 0;
+
+ /// Emits the VTable definitions required for the given record type.
+ virtual void emitVTableDefinitions(CodeGenVTables &CGVT,
+ const CXXRecordDecl *RD) = 0;
+
+ /// Get the address point of the vtable for the given base subobject while
+ /// building a constructor or a destructor. On return, NeedsVirtualOffset
+ /// tells if a virtual base adjustment is needed in order to get the offset
+ /// of the base subobject.
+ virtual llvm::Value *getVTableAddressPointInStructor(
+ CodeGenFunction &CGF, const CXXRecordDecl *RD, BaseSubobject Base,
+ const CXXRecordDecl *NearestVBase, bool &NeedsVirtualOffset) = 0;
+
+ /// Get the address point of the vtable for the given base subobject while
+ /// building a constexpr.
+ virtual llvm::Constant *
+ getVTableAddressPointForConstExpr(BaseSubobject Base,
+ const CXXRecordDecl *VTableClass) = 0;
+
+ /// Get the address of the vtable for the given record decl which should be
+ /// used for the vptr at the given offset in RD.
+ virtual llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD,
+ CharUnits VPtrOffset) = 0;
+
+ /// Build a virtual function pointer in the ABI-specific way.
+ virtual llvm::Value *getVirtualFunctionPointer(CodeGenFunction &CGF,
+ GlobalDecl GD,
+ llvm::Value *This,
+ llvm::Type *Ty) = 0;
+
+ /// Emit the ABI-specific virtual destructor call.
+ virtual llvm::Value *
+ EmitVirtualDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *Dtor,
+ CXXDtorType DtorType, llvm::Value *This,
+ const CXXMemberCallExpr *CE) = 0;
+
+ virtual void adjustCallArgsForDestructorThunk(CodeGenFunction &CGF,
+ GlobalDecl GD,
+ CallArgList &CallArgs) {}
+
+ /// Emit any tables needed to implement virtual inheritance. For Itanium,
+ /// this emits virtual table tables. For the MSVC++ ABI, this emits virtual
+ /// base tables.
+ virtual void emitVirtualInheritanceTables(const CXXRecordDecl *RD) = 0;
+
+ virtual void setThunkLinkage(llvm::Function *Thunk, bool ForVTable,
+ GlobalDecl GD, bool ReturnAdjustment) = 0;
+
+ virtual llvm::Value *performThisAdjustment(CodeGenFunction &CGF,
+ llvm::Value *This,
+ const ThisAdjustment &TA) = 0;
+
+ virtual llvm::Value *performReturnAdjustment(CodeGenFunction &CGF,
+ llvm::Value *Ret,
+ const ReturnAdjustment &RA) = 0;
+
+ virtual void EmitReturnFromThunk(CodeGenFunction &CGF,
+ RValue RV, QualType ResultType);
+
+ virtual size_t getSrcArgforCopyCtor(const CXXConstructorDecl *,
+ FunctionArgList &Args) const = 0;
+
+ /// Gets the pure virtual member call function.
+ virtual StringRef GetPureVirtualCallName() = 0;
+
+ /// Gets the deleted virtual member call name.
+ virtual StringRef GetDeletedVirtualCallName() = 0;
+
+ /**************************** Array cookies ******************************/
+
+ /// Returns the extra size required in order to store the array
+ /// cookie for the given new-expression. May return 0 to indicate that no
+ /// array cookie is required.
+ ///
+ /// Several cases are filtered out before this method is called:
+ /// - non-array allocations never need a cookie
+ /// - calls to \::operator new(size_t, void*) never need a cookie
+ ///
+ /// \param expr - the new-expression being allocated.
+ virtual CharUnits GetArrayCookieSize(const CXXNewExpr *expr);
+
+ /// Initialize the array cookie for the given allocation.
+ ///
+ /// \param NewPtr - a char* which is the presumed-non-null
+ /// return value of the allocation function
+ /// \param NumElements - the computed number of elements,
+ /// potentially collapsed from the multidimensional array case;
+ /// always a size_t
+ /// \param ElementType - the base element allocated type,
+ /// i.e. the allocated type after stripping all array types
+ virtual llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF,
+ llvm::Value *NewPtr,
+ llvm::Value *NumElements,
+ const CXXNewExpr *expr,
+ QualType ElementType);
+
+ /// Reads the array cookie associated with the given pointer,
+ /// if it has one.
+ ///
+ /// \param Ptr - a pointer to the first element in the array
+ /// \param ElementType - the base element type of elements of the array
+ /// \param NumElements - an out parameter which will be initialized
+ /// with the number of elements allocated, or zero if there is no
+ /// cookie
+ /// \param AllocPtr - an out parameter which will be initialized
+ /// with a char* pointing to the address returned by the allocation
+ /// function
+ /// \param CookieSize - an out parameter which will be initialized
+ /// with the size of the cookie, or zero if there is no cookie
+ virtual void ReadArrayCookie(CodeGenFunction &CGF, llvm::Value *Ptr,
+ const CXXDeleteExpr *expr,
+ QualType ElementType, llvm::Value *&NumElements,
+ llvm::Value *&AllocPtr, CharUnits &CookieSize);
+
+ /// Return whether the given global decl needs a VTT parameter.
+ virtual bool NeedsVTTParameter(GlobalDecl GD);
+
+protected:
+ /// Returns the extra size required in order to store the array
+ /// cookie for the given type. Assumes that an array cookie is
+ /// required.
+ virtual CharUnits getArrayCookieSizeImpl(QualType elementType);
+
+ /// Reads the array cookie for an allocation which is known to have one.
+ /// This is called by the standard implementation of ReadArrayCookie.
+ ///
+ /// \param ptr - a pointer to the allocation made for an array, as a char*
+ /// \param cookieSize - the computed cookie size of an array
+ ///
+ /// Other parameters are as above.
+ ///
+ /// \return a size_t
+ virtual llvm::Value *readArrayCookieImpl(CodeGenFunction &IGF,
+ llvm::Value *ptr,
+ CharUnits cookieSize);
+
+public:
+
+ /*************************** Static local guards ****************************/
+
+ /// Emits the guarded initializer and destructor setup for the given
+ /// variable, given that it couldn't be emitted as a constant.
+ /// If \p PerformInit is false, the initialization has been folded to a
+ /// constant and should not be performed.
+ ///
+ /// The variable may be:
+ /// - a static local variable
+ /// - a static data member of a class template instantiation
+ virtual void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
+ llvm::GlobalVariable *DeclPtr,
+ bool PerformInit) = 0;
+
+ /// Emit code to force the execution of a destructor during global
+ /// teardown. The default implementation of this uses atexit.
+ ///
+ /// \param Dtor - a function taking a single pointer argument
+ /// \param Addr - a pointer to pass to the destructor function.
+ virtual void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
+ llvm::Constant *Dtor,
+ llvm::Constant *Addr) = 0;
+
+ /*************************** thread_local initialization ********************/
+
+ /// Emits ABI-required functions necessary to initialize thread_local
+ /// variables in this translation unit.
+ ///
+ /// \param CXXThreadLocals - The thread_local declarations in this translation
+ /// unit.
+ /// \param CXXThreadLocalInits - If this translation unit contains any
+ /// non-constant initialization or non-trivial destruction for
+ /// thread_local variables, a list of functions to perform the
+ /// initialization.
+ virtual void EmitThreadLocalInitFuncs(
+ CodeGenModule &CGM,
+ ArrayRef<std::pair<const VarDecl *, llvm::GlobalVariable *>>
+ CXXThreadLocals,
+ ArrayRef<llvm::Function *> CXXThreadLocalInits,
+ ArrayRef<llvm::GlobalVariable *> CXXThreadLocalInitVars) = 0;
+
+ // Determine if references to thread_local global variables can be made
+ // directly or require access through a thread wrapper function.
+ virtual bool usesThreadWrapperFunction() const = 0;
+
+ /// Emit a reference to a non-local thread_local variable (including
+ /// triggering the initialization of all thread_local variables in its
+ /// translation unit).
+ virtual LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF,
+ const VarDecl *VD,
+ QualType LValType) = 0;
+
+ /// Emit a single constructor/destructor with the given type from a C++
+ /// constructor Decl.
+ virtual void emitCXXStructor(const CXXMethodDecl *MD, StructorType Type) = 0;
+};
+
+// Create an instance of a C++ ABI class:
+
+/// Creates an Itanium-family ABI.
+CGCXXABI *CreateItaniumCXXABI(CodeGenModule &CGM);
+
+/// Creates a Microsoft-family ABI.
+CGCXXABI *CreateMicrosoftCXXABI(CodeGenModule &CGM);
+
+}
+}
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGCall.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGCall.cpp
new file mode 100644
index 0000000..f234053
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGCall.cpp
@@ -0,0 +1,3537 @@
+//===--- CGCall.cpp - Encapsulate calling convention details --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// These classes wrap the information about a call or function
+// definition used to handle ABI compliancy.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGCall.h"
+#include "ABIInfo.h"
+#include "CGCXXABI.h"
+#include "CodeGenFunction.h"
+#include "CodeGenModule.h"
+#include "TargetInfo.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/CodeGen/CGFunctionInfo.h"
+#include "clang/Frontend/CodeGenOptions.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include <sstream>
+using namespace clang;
+using namespace CodeGen;
+
+/***/
+
+static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
+ switch (CC) {
+ default: return llvm::CallingConv::C;
+ case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
+ case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
+ case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
+ case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64;
+ case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
+ case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
+ case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
+ case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
+ // TODO: Add support for __pascal to LLVM.
+ case CC_X86Pascal: return llvm::CallingConv::C;
+ // TODO: Add support for __vectorcall to LLVM.
+ case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
+ case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
+ case CC_SpirKernel: return llvm::CallingConv::SPIR_KERNEL;
+ }
+}
+
+/// Derives the 'this' type for codegen purposes, i.e. ignoring method
+/// qualification.
+/// FIXME: address space qualification?
+static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
+ QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
+ return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
+}
+
+/// Returns the canonical formal type of the given C++ method.
+static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
+ return MD->getType()->getCanonicalTypeUnqualified()
+ .getAs<FunctionProtoType>();
+}
+
+/// Returns the "extra-canonicalized" return type, which discards
+/// qualifiers on the return type. Codegen doesn't care about them,
+/// and it makes ABI code a little easier to be able to assume that
+/// all parameter and return types are top-level unqualified.
+static CanQualType GetReturnType(QualType RetTy) {
+ return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
+}
+
+/// Arrange the argument and result information for a value of the given
+/// unprototyped freestanding function type.
+const CGFunctionInfo &
+CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
+ // When translating an unprototyped function type, always use a
+ // variadic type.
+ return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
+ /*instanceMethod=*/false,
+ /*chainCall=*/false, None,
+ FTNP->getExtInfo(), RequiredArgs(0));
+}
+
+/// Arrange the LLVM function layout for a value of the given function
+/// type, on top of any implicit parameters already stored.
+static const CGFunctionInfo &
+arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
+ SmallVectorImpl<CanQualType> &prefix,
+ CanQual<FunctionProtoType> FTP) {
+ RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
+ // FIXME: Kill copy.
+ prefix.append(FTP->param_type_begin(), FTP->param_type_end());
+ CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
+ return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
+ /*chainCall=*/false, prefix,
+ FTP->getExtInfo(), required);
+}
+
+/// Arrange the argument and result information for a value of the
+/// given freestanding function type.
+const CGFunctionInfo &
+CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
+ SmallVector<CanQualType, 16> argTypes;
+ return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
+ FTP);
+}
+
+static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
+ // Set the appropriate calling convention for the Function.
+ if (D->hasAttr<StdCallAttr>())
+ return CC_X86StdCall;
+
+ if (D->hasAttr<FastCallAttr>())
+ return CC_X86FastCall;
+
+ if (D->hasAttr<ThisCallAttr>())
+ return CC_X86ThisCall;
+
+ if (D->hasAttr<VectorCallAttr>())
+ return CC_X86VectorCall;
+
+ if (D->hasAttr<PascalAttr>())
+ return CC_X86Pascal;
+
+ if (PcsAttr *PCS = D->getAttr<PcsAttr>())
+ return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
+
+ if (D->hasAttr<IntelOclBiccAttr>())
+ return CC_IntelOclBicc;
+
+ if (D->hasAttr<MSABIAttr>())
+ return IsWindows ? CC_C : CC_X86_64Win64;
+
+ if (D->hasAttr<SysVABIAttr>())
+ return IsWindows ? CC_X86_64SysV : CC_C;
+
+ return CC_C;
+}
+
+/// Arrange the argument and result information for a call to an
+/// unknown C++ non-static member function of the given abstract type.
+/// (Zero value of RD means we don't have any meaningful "this" argument type,
+/// so fall back to a generic pointer type).
+/// The member function must be an ordinary function, i.e. not a
+/// constructor or destructor.
+const CGFunctionInfo &
+CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
+ const FunctionProtoType *FTP) {
+ SmallVector<CanQualType, 16> argTypes;
+
+ // Add the 'this' pointer.
+ if (RD)
+ argTypes.push_back(GetThisType(Context, RD));
+ else
+ argTypes.push_back(Context.VoidPtrTy);
+
+ return ::arrangeLLVMFunctionInfo(
+ *this, true, argTypes,
+ FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
+}
+
+/// Arrange the argument and result information for a declaration or
+/// definition of the given C++ non-static member function. The
+/// member function must be an ordinary function, i.e. not a
+/// constructor or destructor.
+const CGFunctionInfo &
+CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
+ assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
+ assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
+
+ CanQual<FunctionProtoType> prototype = GetFormalType(MD);
+
+ if (MD->isInstance()) {
+ // The abstract case is perfectly fine.
+ const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
+ return arrangeCXXMethodType(ThisType, prototype.getTypePtr());
+ }
+
+ return arrangeFreeFunctionType(prototype);
+}
+
+const CGFunctionInfo &
+CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
+ StructorType Type) {
+
+ SmallVector<CanQualType, 16> argTypes;
+ argTypes.push_back(GetThisType(Context, MD->getParent()));
+
+ GlobalDecl GD;
+ if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
+ GD = GlobalDecl(CD, toCXXCtorType(Type));
+ } else {
+ auto *DD = dyn_cast<CXXDestructorDecl>(MD);
+ GD = GlobalDecl(DD, toCXXDtorType(Type));
+ }
+
+ CanQual<FunctionProtoType> FTP = GetFormalType(MD);
+
+ // Add the formal parameters.
+ argTypes.append(FTP->param_type_begin(), FTP->param_type_end());
+
+ TheCXXABI.buildStructorSignature(MD, Type, argTypes);
+
+ RequiredArgs required =
+ (MD->isVariadic() ? RequiredArgs(argTypes.size()) : RequiredArgs::All);
+
+ FunctionType::ExtInfo extInfo = FTP->getExtInfo();
+ CanQualType resultType = TheCXXABI.HasThisReturn(GD)
+ ? argTypes.front()
+ : TheCXXABI.hasMostDerivedReturn(GD)
+ ? CGM.getContext().VoidPtrTy
+ : Context.VoidTy;
+ return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
+ /*chainCall=*/false, argTypes, extInfo,
+ required);
+}
+
+/// Arrange a call to a C++ method, passing the given arguments.
+const CGFunctionInfo &
+CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
+ const CXXConstructorDecl *D,
+ CXXCtorType CtorKind,
+ unsigned ExtraArgs) {
+ // FIXME: Kill copy.
+ SmallVector<CanQualType, 16> ArgTypes;
+ for (const auto &Arg : args)
+ ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
+
+ CanQual<FunctionProtoType> FPT = GetFormalType(D);
+ RequiredArgs Required = RequiredArgs::forPrototypePlus(FPT, 1 + ExtraArgs);
+ GlobalDecl GD(D, CtorKind);
+ CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
+ ? ArgTypes.front()
+ : TheCXXABI.hasMostDerivedReturn(GD)
+ ? CGM.getContext().VoidPtrTy
+ : Context.VoidTy;
+
+ FunctionType::ExtInfo Info = FPT->getExtInfo();
+ return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
+ /*chainCall=*/false, ArgTypes, Info,
+ Required);
+}
+
+/// Arrange the argument and result information for the declaration or
+/// definition of the given function.
+const CGFunctionInfo &
+CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
+ if (MD->isInstance())
+ return arrangeCXXMethodDeclaration(MD);
+
+ CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
+
+ assert(isa<FunctionType>(FTy));
+
+ // When declaring a function without a prototype, always use a
+ // non-variadic type.
+ if (isa<FunctionNoProtoType>(FTy)) {
+ CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
+ return arrangeLLVMFunctionInfo(
+ noProto->getReturnType(), /*instanceMethod=*/false,
+ /*chainCall=*/false, None, noProto->getExtInfo(), RequiredArgs::All);
+ }
+
+ assert(isa<FunctionProtoType>(FTy));
+ return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>());
+}
+
+/// Arrange the argument and result information for the declaration or
+/// definition of an Objective-C method.
+const CGFunctionInfo &
+CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
+ // It happens that this is the same as a call with no optional
+ // arguments, except also using the formal 'self' type.
+ return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
+}
+
+/// Arrange the argument and result information for the function type
+/// through which to perform a send to the given Objective-C method,
+/// using the given receiver type. The receiver type is not always
+/// the 'self' type of the method or even an Objective-C pointer type.
+/// This is *not* the right method for actually performing such a
+/// message send, due to the possibility of optional arguments.
+const CGFunctionInfo &
+CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
+ QualType receiverType) {
+ SmallVector<CanQualType, 16> argTys;
+ argTys.push_back(Context.getCanonicalParamType(receiverType));
+ argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
+ // FIXME: Kill copy?
+ for (const auto *I : MD->params()) {
+ argTys.push_back(Context.getCanonicalParamType(I->getType()));
+ }
+
+ FunctionType::ExtInfo einfo;
+ bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
+ einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
+
+ if (getContext().getLangOpts().ObjCAutoRefCount &&
+ MD->hasAttr<NSReturnsRetainedAttr>())
+ einfo = einfo.withProducesResult(true);
+
+ RequiredArgs required =
+ (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
+
+ return arrangeLLVMFunctionInfo(
+ GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
+ /*chainCall=*/false, argTys, einfo, required);
+}
+
+const CGFunctionInfo &
+CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
+ // FIXME: Do we need to handle ObjCMethodDecl?
+ const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
+
+ if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
+ return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType()));
+
+ if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
+ return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType()));
+
+ return arrangeFunctionDeclaration(FD);
+}
+
+/// Arrange a thunk that takes 'this' as the first parameter followed by
+/// varargs. Return a void pointer, regardless of the actual return type.
+/// The body of the thunk will end in a musttail call to a function of the
+/// correct type, and the caller will bitcast the function to the correct
+/// prototype.
+const CGFunctionInfo &
+CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) {
+ assert(MD->isVirtual() && "only virtual memptrs have thunks");
+ CanQual<FunctionProtoType> FTP = GetFormalType(MD);
+ CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) };
+ return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
+ /*chainCall=*/false, ArgTys,
+ FTP->getExtInfo(), RequiredArgs(1));
+}
+
+const CGFunctionInfo &
+CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
+ CXXCtorType CT) {
+ assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
+
+ CanQual<FunctionProtoType> FTP = GetFormalType(CD);
+ SmallVector<CanQualType, 2> ArgTys;
+ const CXXRecordDecl *RD = CD->getParent();
+ ArgTys.push_back(GetThisType(Context, RD));
+ if (CT == Ctor_CopyingClosure)
+ ArgTys.push_back(*FTP->param_type_begin());
+ if (RD->getNumVBases() > 0)
+ ArgTys.push_back(Context.IntTy);
+ CallingConv CC = Context.getDefaultCallingConvention(
+ /*IsVariadic=*/false, /*IsCXXMethod=*/true);
+ return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
+ /*chainCall=*/false, ArgTys,
+ FunctionType::ExtInfo(CC), RequiredArgs::All);
+}
+
+/// Arrange a call as unto a free function, except possibly with an
+/// additional number of formal parameters considered required.
+static const CGFunctionInfo &
+arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
+ CodeGenModule &CGM,
+ const CallArgList &args,
+ const FunctionType *fnType,
+ unsigned numExtraRequiredArgs,
+ bool chainCall) {
+ assert(args.size() >= numExtraRequiredArgs);
+
+ // In most cases, there are no optional arguments.
+ RequiredArgs required = RequiredArgs::All;
+
+ // If we have a variadic prototype, the required arguments are the
+ // extra prefix plus the arguments in the prototype.
+ if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
+ if (proto->isVariadic())
+ required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs);
+
+ // If we don't have a prototype at all, but we're supposed to
+ // explicitly use the variadic convention for unprototyped calls,
+ // treat all of the arguments as required but preserve the nominal
+ // possibility of variadics.
+ } else if (CGM.getTargetCodeGenInfo()
+ .isNoProtoCallVariadic(args,
+ cast<FunctionNoProtoType>(fnType))) {
+ required = RequiredArgs(args.size());
+ }
+
+ // FIXME: Kill copy.
+ SmallVector<CanQualType, 16> argTypes;
+ for (const auto &arg : args)
+ argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
+ return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
+ /*instanceMethod=*/false, chainCall,
+ argTypes, fnType->getExtInfo(), required);
+}
+
+/// Figure out the rules for calling a function with the given formal
+/// type using the given arguments. The arguments are necessary
+/// because the function might be unprototyped, in which case it's
+/// target-dependent in crazy ways.
+const CGFunctionInfo &
+CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
+ const FunctionType *fnType,
+ bool chainCall) {
+ return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
+ chainCall ? 1 : 0, chainCall);
+}
+
+/// A block function call is essentially a free-function call with an
+/// extra implicit argument.
+const CGFunctionInfo &
+CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
+ const FunctionType *fnType) {
+ return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
+ /*chainCall=*/false);
+}
+
+const CGFunctionInfo &
+CodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
+ const CallArgList &args,
+ FunctionType::ExtInfo info,
+ RequiredArgs required) {
+ // FIXME: Kill copy.
+ SmallVector<CanQualType, 16> argTypes;
+ for (const auto &Arg : args)
+ argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
+ return arrangeLLVMFunctionInfo(
+ GetReturnType(resultType), /*instanceMethod=*/false,
+ /*chainCall=*/false, argTypes, info, required);
+}
+
+/// Arrange a call to a C++ method, passing the given arguments.
+const CGFunctionInfo &
+CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
+ const FunctionProtoType *FPT,
+ RequiredArgs required) {
+ // FIXME: Kill copy.
+ SmallVector<CanQualType, 16> argTypes;
+ for (const auto &Arg : args)
+ argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
+
+ FunctionType::ExtInfo info = FPT->getExtInfo();
+ return arrangeLLVMFunctionInfo(
+ GetReturnType(FPT->getReturnType()), /*instanceMethod=*/true,
+ /*chainCall=*/false, argTypes, info, required);
+}
+
+const CGFunctionInfo &CodeGenTypes::arrangeFreeFunctionDeclaration(
+ QualType resultType, const FunctionArgList &args,
+ const FunctionType::ExtInfo &info, bool isVariadic) {
+ // FIXME: Kill copy.
+ SmallVector<CanQualType, 16> argTypes;
+ for (auto Arg : args)
+ argTypes.push_back(Context.getCanonicalParamType(Arg->getType()));
+
+ RequiredArgs required =
+ (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
+ return arrangeLLVMFunctionInfo(
+ GetReturnType(resultType), /*instanceMethod=*/false,
+ /*chainCall=*/false, argTypes, info, required);
+}
+
+const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
+ return arrangeLLVMFunctionInfo(
+ getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
+ None, FunctionType::ExtInfo(), RequiredArgs::All);
+}
+
+/// Arrange the argument and result information for an abstract value
+/// of a given function type. This is the method which all of the
+/// above functions ultimately defer to.
+const CGFunctionInfo &
+CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
+ bool instanceMethod,
+ bool chainCall,
+ ArrayRef<CanQualType> argTypes,
+ FunctionType::ExtInfo info,
+ RequiredArgs required) {
+ assert(std::all_of(argTypes.begin(), argTypes.end(),
+ std::mem_fun_ref(&CanQualType::isCanonicalAsParam)));
+
+ unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
+
+ // Lookup or create unique function info.
+ llvm::FoldingSetNodeID ID;
+ CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, required,
+ resultType, argTypes);
+
+ void *insertPos = nullptr;
+ CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
+ if (FI)
+ return *FI;
+
+ // Construct the function info. We co-allocate the ArgInfos.
+ FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
+ resultType, argTypes, required);
+ FunctionInfos.InsertNode(FI, insertPos);
+
+ bool inserted = FunctionsBeingProcessed.insert(FI).second;
+ (void)inserted;
+ assert(inserted && "Recursively being processed?");
+
+ // Compute ABI information.
+ getABIInfo().computeInfo(*FI);
+
+ // Loop over all of the computed argument and return value info. If any of
+ // them are direct or extend without a specified coerce type, specify the
+ // default now.
+ ABIArgInfo &retInfo = FI->getReturnInfo();
+ if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
+ retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
+
+ for (auto &I : FI->arguments())
+ if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
+ I.info.setCoerceToType(ConvertType(I.type));
+
+ bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
+ assert(erased && "Not in set?");
+
+ return *FI;
+}
+
+CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
+ bool instanceMethod,
+ bool chainCall,
+ const FunctionType::ExtInfo &info,
+ CanQualType resultType,
+ ArrayRef<CanQualType> argTypes,
+ RequiredArgs required) {
+ void *buffer = operator new(sizeof(CGFunctionInfo) +
+ sizeof(ArgInfo) * (argTypes.size() + 1));
+ CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
+ FI->CallingConvention = llvmCC;
+ FI->EffectiveCallingConvention = llvmCC;
+ FI->ASTCallingConvention = info.getCC();
+ FI->InstanceMethod = instanceMethod;
+ FI->ChainCall = chainCall;
+ FI->NoReturn = info.getNoReturn();
+ FI->ReturnsRetained = info.getProducesResult();
+ FI->Required = required;
+ FI->HasRegParm = info.getHasRegParm();
+ FI->RegParm = info.getRegParm();
+ FI->ArgStruct = nullptr;
+ FI->NumArgs = argTypes.size();
+ FI->getArgsBuffer()[0].type = resultType;
+ for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
+ FI->getArgsBuffer()[i + 1].type = argTypes[i];
+ return FI;
+}
+
+/***/
+
+namespace {
+// ABIArgInfo::Expand implementation.
+
+// Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
+struct TypeExpansion {
+ enum TypeExpansionKind {
+ // Elements of constant arrays are expanded recursively.
+ TEK_ConstantArray,
+ // Record fields are expanded recursively (but if record is a union, only
+ // the field with the largest size is expanded).
+ TEK_Record,
+ // For complex types, real and imaginary parts are expanded recursively.
+ TEK_Complex,
+ // All other types are not expandable.
+ TEK_None
+ };
+
+ const TypeExpansionKind Kind;
+
+ TypeExpansion(TypeExpansionKind K) : Kind(K) {}
+ virtual ~TypeExpansion() {}
+};
+
+struct ConstantArrayExpansion : TypeExpansion {
+ QualType EltTy;
+ uint64_t NumElts;
+
+ ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
+ : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
+ static bool classof(const TypeExpansion *TE) {
+ return TE->Kind == TEK_ConstantArray;
+ }
+};
+
+struct RecordExpansion : TypeExpansion {
+ SmallVector<const CXXBaseSpecifier *, 1> Bases;
+
+ SmallVector<const FieldDecl *, 1> Fields;
+
+ RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
+ SmallVector<const FieldDecl *, 1> &&Fields)
+ : TypeExpansion(TEK_Record), Bases(Bases), Fields(Fields) {}
+ static bool classof(const TypeExpansion *TE) {
+ return TE->Kind == TEK_Record;
+ }
+};
+
+struct ComplexExpansion : TypeExpansion {
+ QualType EltTy;
+
+ ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
+ static bool classof(const TypeExpansion *TE) {
+ return TE->Kind == TEK_Complex;
+ }
+};
+
+struct NoExpansion : TypeExpansion {
+ NoExpansion() : TypeExpansion(TEK_None) {}
+ static bool classof(const TypeExpansion *TE) {
+ return TE->Kind == TEK_None;
+ }
+};
+} // namespace
+
+static std::unique_ptr<TypeExpansion>
+getTypeExpansion(QualType Ty, const ASTContext &Context) {
+ if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
+ return llvm::make_unique<ConstantArrayExpansion>(
+ AT->getElementType(), AT->getSize().getZExtValue());
+ }
+ if (const RecordType *RT = Ty->getAs<RecordType>()) {
+ SmallVector<const CXXBaseSpecifier *, 1> Bases;
+ SmallVector<const FieldDecl *, 1> Fields;
+ const RecordDecl *RD = RT->getDecl();
+ assert(!RD->hasFlexibleArrayMember() &&
+ "Cannot expand structure with flexible array.");
+ if (RD->isUnion()) {
+ // Unions can be here only in degenerative cases - all the fields are same
+ // after flattening. Thus we have to use the "largest" field.
+ const FieldDecl *LargestFD = nullptr;
+ CharUnits UnionSize = CharUnits::Zero();
+
+ for (const auto *FD : RD->fields()) {
+ // Skip zero length bitfields.
+ if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
+ continue;
+ assert(!FD->isBitField() &&
+ "Cannot expand structure with bit-field members.");
+ CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
+ if (UnionSize < FieldSize) {
+ UnionSize = FieldSize;
+ LargestFD = FD;
+ }
+ }
+ if (LargestFD)
+ Fields.push_back(LargestFD);
+ } else {
+ if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
+ assert(!CXXRD->isDynamicClass() &&
+ "cannot expand vtable pointers in dynamic classes");
+ for (const CXXBaseSpecifier &BS : CXXRD->bases())
+ Bases.push_back(&BS);
+ }
+
+ for (const auto *FD : RD->fields()) {
+ // Skip zero length bitfields.
+ if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
+ continue;
+ assert(!FD->isBitField() &&
+ "Cannot expand structure with bit-field members.");
+ Fields.push_back(FD);
+ }
+ }
+ return llvm::make_unique<RecordExpansion>(std::move(Bases),
+ std::move(Fields));
+ }
+ if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
+ return llvm::make_unique<ComplexExpansion>(CT->getElementType());
+ }
+ return llvm::make_unique<NoExpansion>();
+}
+
+static int getExpansionSize(QualType Ty, const ASTContext &Context) {
+ auto Exp = getTypeExpansion(Ty, Context);
+ if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
+ return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
+ }
+ if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
+ int Res = 0;
+ for (auto BS : RExp->Bases)
+ Res += getExpansionSize(BS->getType(), Context);
+ for (auto FD : RExp->Fields)
+ Res += getExpansionSize(FD->getType(), Context);
+ return Res;
+ }
+ if (isa<ComplexExpansion>(Exp.get()))
+ return 2;
+ assert(isa<NoExpansion>(Exp.get()));
+ return 1;
+}
+
+void
+CodeGenTypes::getExpandedTypes(QualType Ty,
+ SmallVectorImpl<llvm::Type *>::iterator &TI) {
+ auto Exp = getTypeExpansion(Ty, Context);
+ if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
+ for (int i = 0, n = CAExp->NumElts; i < n; i++) {
+ getExpandedTypes(CAExp->EltTy, TI);
+ }
+ } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
+ for (auto BS : RExp->Bases)
+ getExpandedTypes(BS->getType(), TI);
+ for (auto FD : RExp->Fields)
+ getExpandedTypes(FD->getType(), TI);
+ } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
+ llvm::Type *EltTy = ConvertType(CExp->EltTy);
+ *TI++ = EltTy;
+ *TI++ = EltTy;
+ } else {
+ assert(isa<NoExpansion>(Exp.get()));
+ *TI++ = ConvertType(Ty);
+ }
+}
+
+void CodeGenFunction::ExpandTypeFromArgs(
+ QualType Ty, LValue LV, SmallVectorImpl<llvm::Argument *>::iterator &AI) {
+ assert(LV.isSimple() &&
+ "Unexpected non-simple lvalue during struct expansion.");
+
+ auto Exp = getTypeExpansion(Ty, getContext());
+ if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
+ for (int i = 0, n = CAExp->NumElts; i < n; i++) {
+ llvm::Value *EltAddr =
+ Builder.CreateConstGEP2_32(nullptr, LV.getAddress(), 0, i);
+ LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
+ ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
+ }
+ } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
+ llvm::Value *This = LV.getAddress();
+ for (const CXXBaseSpecifier *BS : RExp->Bases) {
+ // Perform a single step derived-to-base conversion.
+ llvm::Value *Base =
+ GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
+ /*NullCheckValue=*/false, SourceLocation());
+ LValue SubLV = MakeAddrLValue(Base, BS->getType());
+
+ // Recurse onto bases.
+ ExpandTypeFromArgs(BS->getType(), SubLV, AI);
+ }
+ for (auto FD : RExp->Fields) {
+ // FIXME: What are the right qualifiers here?
+ LValue SubLV = EmitLValueForField(LV, FD);
+ ExpandTypeFromArgs(FD->getType(), SubLV, AI);
+ }
+ } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
+ llvm::Value *RealAddr =
+ Builder.CreateStructGEP(nullptr, LV.getAddress(), 0, "real");
+ EmitStoreThroughLValue(RValue::get(*AI++),
+ MakeAddrLValue(RealAddr, CExp->EltTy));
+ llvm::Value *ImagAddr =
+ Builder.CreateStructGEP(nullptr, LV.getAddress(), 1, "imag");
+ EmitStoreThroughLValue(RValue::get(*AI++),
+ MakeAddrLValue(ImagAddr, CExp->EltTy));
+ } else {
+ assert(isa<NoExpansion>(Exp.get()));
+ EmitStoreThroughLValue(RValue::get(*AI++), LV);
+ }
+}
+
+void CodeGenFunction::ExpandTypeToArgs(
+ QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
+ SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
+ auto Exp = getTypeExpansion(Ty, getContext());
+ if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
+ llvm::Value *Addr = RV.getAggregateAddr();
+ for (int i = 0, n = CAExp->NumElts; i < n; i++) {
+ llvm::Value *EltAddr = Builder.CreateConstGEP2_32(nullptr, Addr, 0, i);
+ RValue EltRV =
+ convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation());
+ ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos);
+ }
+ } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
+ llvm::Value *This = RV.getAggregateAddr();
+ for (const CXXBaseSpecifier *BS : RExp->Bases) {
+ // Perform a single step derived-to-base conversion.
+ llvm::Value *Base =
+ GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
+ /*NullCheckValue=*/false, SourceLocation());
+ RValue BaseRV = RValue::getAggregate(Base);
+
+ // Recurse onto bases.
+ ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs,
+ IRCallArgPos);
+ }
+
+ LValue LV = MakeAddrLValue(This, Ty);
+ for (auto FD : RExp->Fields) {
+ RValue FldRV = EmitRValueForField(LV, FD, SourceLocation());
+ ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs,
+ IRCallArgPos);
+ }
+ } else if (isa<ComplexExpansion>(Exp.get())) {
+ ComplexPairTy CV = RV.getComplexVal();
+ IRCallArgs[IRCallArgPos++] = CV.first;
+ IRCallArgs[IRCallArgPos++] = CV.second;
+ } else {
+ assert(isa<NoExpansion>(Exp.get()));
+ assert(RV.isScalar() &&
+ "Unexpected non-scalar rvalue during struct expansion.");
+
+ // Insert a bitcast as needed.
+ llvm::Value *V = RV.getScalarVal();
+ if (IRCallArgPos < IRFuncTy->getNumParams() &&
+ V->getType() != IRFuncTy->getParamType(IRCallArgPos))
+ V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
+
+ IRCallArgs[IRCallArgPos++] = V;
+ }
+}
+
+/// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
+/// accessing some number of bytes out of it, try to gep into the struct to get
+/// at its inner goodness. Dive as deep as possible without entering an element
+/// with an in-memory size smaller than DstSize.
+static llvm::Value *
+EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
+ llvm::StructType *SrcSTy,
+ uint64_t DstSize, CodeGenFunction &CGF) {
+ // We can't dive into a zero-element struct.
+ if (SrcSTy->getNumElements() == 0) return SrcPtr;
+
+ llvm::Type *FirstElt = SrcSTy->getElementType(0);
+
+ // If the first elt is at least as large as what we're looking for, or if the
+ // first element is the same size as the whole struct, we can enter it. The
+ // comparison must be made on the store size and not the alloca size. Using
+ // the alloca size may overstate the size of the load.
+ uint64_t FirstEltSize =
+ CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
+ if (FirstEltSize < DstSize &&
+ FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
+ return SrcPtr;
+
+ // GEP into the first element.
+ SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcSTy, SrcPtr, 0, 0, "coerce.dive");
+
+ // If the first element is a struct, recurse.
+ llvm::Type *SrcTy =
+ cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
+ if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
+ return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
+
+ return SrcPtr;
+}
+
+/// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
+/// are either integers or pointers. This does a truncation of the value if it
+/// is too large or a zero extension if it is too small.
+///
+/// This behaves as if the value were coerced through memory, so on big-endian
+/// targets the high bits are preserved in a truncation, while little-endian
+/// targets preserve the low bits.
+static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
+ llvm::Type *Ty,
+ CodeGenFunction &CGF) {
+ if (Val->getType() == Ty)
+ return Val;
+
+ if (isa<llvm::PointerType>(Val->getType())) {
+ // If this is Pointer->Pointer avoid conversion to and from int.
+ if (isa<llvm::PointerType>(Ty))
+ return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
+
+ // Convert the pointer to an integer so we can play with its width.
+ Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
+ }
+
+ llvm::Type *DestIntTy = Ty;
+ if (isa<llvm::PointerType>(DestIntTy))
+ DestIntTy = CGF.IntPtrTy;
+
+ if (Val->getType() != DestIntTy) {
+ const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
+ if (DL.isBigEndian()) {
+ // Preserve the high bits on big-endian targets.
+ // That is what memory coercion does.
+ uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
+ uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
+
+ if (SrcSize > DstSize) {
+ Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
+ Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
+ } else {
+ Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
+ Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
+ }
+ } else {
+ // Little-endian targets preserve the low bits. No shifts required.
+ Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
+ }
+ }
+
+ if (isa<llvm::PointerType>(Ty))
+ Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
+ return Val;
+}
+
+
+
+/// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
+/// a pointer to an object of type \arg Ty.
+///
+/// This safely handles the case when the src type is smaller than the
+/// destination type; in this situation the values of bits which not
+/// present in the src are undefined.
+static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
+ llvm::Type *Ty,
+ CodeGenFunction &CGF) {
+ llvm::Type *SrcTy =
+ cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
+
+ // If SrcTy and Ty are the same, just do a load.
+ if (SrcTy == Ty)
+ return CGF.Builder.CreateLoad(SrcPtr);
+
+ uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
+
+ if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
+ SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
+ SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
+ }
+
+ uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
+
+ // If the source and destination are integer or pointer types, just do an
+ // extension or truncation to the desired type.
+ if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
+ (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
+ llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
+ return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
+ }
+
+ // If load is legal, just bitcast the src pointer.
+ if (SrcSize >= DstSize) {
+ // Generally SrcSize is never greater than DstSize, since this means we are
+ // losing bits. However, this can happen in cases where the structure has
+ // additional padding, for example due to a user specified alignment.
+ //
+ // FIXME: Assert that we aren't truncating non-padding bits when have access
+ // to that information.
+ llvm::Value *Casted =
+ CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
+ llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
+ // FIXME: Use better alignment / avoid requiring aligned load.
+ Load->setAlignment(1);
+ return Load;
+ }
+
+ // Otherwise do coercion through memory. This is stupid, but
+ // simple.
+ llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
+ llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
+ llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
+ llvm::Value *SrcCasted = CGF.Builder.CreateBitCast(SrcPtr, I8PtrTy);
+ // FIXME: Use better alignment.
+ CGF.Builder.CreateMemCpy(Casted, SrcCasted,
+ llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
+ 1, false);
+ return CGF.Builder.CreateLoad(Tmp);
+}
+
+// Function to store a first-class aggregate into memory. We prefer to
+// store the elements rather than the aggregate to be more friendly to
+// fast-isel.
+// FIXME: Do we need to recurse here?
+static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
+ llvm::Value *DestPtr, bool DestIsVolatile,
+ bool LowAlignment) {
+ // Prefer scalar stores to first-class aggregate stores.
+ if (llvm::StructType *STy =
+ dyn_cast<llvm::StructType>(Val->getType())) {
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+ llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(STy, DestPtr, 0, i);
+ llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
+ llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
+ DestIsVolatile);
+ if (LowAlignment)
+ SI->setAlignment(1);
+ }
+ } else {
+ llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
+ if (LowAlignment)
+ SI->setAlignment(1);
+ }
+}
+
+/// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
+/// where the source and destination may have different types.
+///
+/// This safely handles the case when the src type is larger than the
+/// destination type; the upper bits of the src will be lost.
+static void CreateCoercedStore(llvm::Value *Src,
+ llvm::Value *DstPtr,
+ bool DstIsVolatile,
+ CodeGenFunction &CGF) {
+ llvm::Type *SrcTy = Src->getType();
+ llvm::Type *DstTy =
+ cast<llvm::PointerType>(DstPtr->getType())->getElementType();
+ if (SrcTy == DstTy) {
+ CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
+ return;
+ }
+
+ uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
+
+ if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
+ DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
+ DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
+ }
+
+ // If the source and destination are integer or pointer types, just do an
+ // extension or truncation to the desired type.
+ if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
+ (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
+ Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
+ CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
+ return;
+ }
+
+ uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
+
+ // If store is legal, just bitcast the src pointer.
+ if (SrcSize <= DstSize) {
+ llvm::Value *Casted =
+ CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
+ // FIXME: Use better alignment / avoid requiring aligned store.
+ BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
+ } else {
+ // Otherwise do coercion through memory. This is stupid, but
+ // simple.
+
+ // Generally SrcSize is never greater than DstSize, since this means we are
+ // losing bits. However, this can happen in cases where the structure has
+ // additional padding, for example due to a user specified alignment.
+ //
+ // FIXME: Assert that we aren't truncating non-padding bits when have access
+ // to that information.
+ llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
+ CGF.Builder.CreateStore(Src, Tmp);
+ llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
+ llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
+ llvm::Value *DstCasted = CGF.Builder.CreateBitCast(DstPtr, I8PtrTy);
+ // FIXME: Use better alignment.
+ CGF.Builder.CreateMemCpy(DstCasted, Casted,
+ llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
+ 1, false);
+ }
+}
+
+namespace {
+
+/// Encapsulates information about the way function arguments from
+/// CGFunctionInfo should be passed to actual LLVM IR function.
+class ClangToLLVMArgMapping {
+ static const unsigned InvalidIndex = ~0U;
+ unsigned InallocaArgNo;
+ unsigned SRetArgNo;
+ unsigned TotalIRArgs;
+
+ /// Arguments of LLVM IR function corresponding to single Clang argument.
+ struct IRArgs {
+ unsigned PaddingArgIndex;
+ // Argument is expanded to IR arguments at positions
+ // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
+ unsigned FirstArgIndex;
+ unsigned NumberOfArgs;
+
+ IRArgs()
+ : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
+ NumberOfArgs(0) {}
+ };
+
+ SmallVector<IRArgs, 8> ArgInfo;
+
+public:
+ ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
+ bool OnlyRequiredArgs = false)
+ : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
+ ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
+ construct(Context, FI, OnlyRequiredArgs);
+ }
+
+ bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
+ unsigned getInallocaArgNo() const {
+ assert(hasInallocaArg());
+ return InallocaArgNo;
+ }
+
+ bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
+ unsigned getSRetArgNo() const {
+ assert(hasSRetArg());
+ return SRetArgNo;
+ }
+
+ unsigned totalIRArgs() const { return TotalIRArgs; }
+
+ bool hasPaddingArg(unsigned ArgNo) const {
+ assert(ArgNo < ArgInfo.size());
+ return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
+ }
+ unsigned getPaddingArgNo(unsigned ArgNo) const {
+ assert(hasPaddingArg(ArgNo));
+ return ArgInfo[ArgNo].PaddingArgIndex;
+ }
+
+ /// Returns index of first IR argument corresponding to ArgNo, and their
+ /// quantity.
+ std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
+ assert(ArgNo < ArgInfo.size());
+ return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
+ ArgInfo[ArgNo].NumberOfArgs);
+ }
+
+private:
+ void construct(const ASTContext &Context, const CGFunctionInfo &FI,
+ bool OnlyRequiredArgs);
+};
+
+void ClangToLLVMArgMapping::construct(const ASTContext &Context,
+ const CGFunctionInfo &FI,
+ bool OnlyRequiredArgs) {
+ unsigned IRArgNo = 0;
+ bool SwapThisWithSRet = false;
+ const ABIArgInfo &RetAI = FI.getReturnInfo();
+
+ if (RetAI.getKind() == ABIArgInfo::Indirect) {
+ SwapThisWithSRet = RetAI.isSRetAfterThis();
+ SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
+ }
+
+ unsigned ArgNo = 0;
+ unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
+ for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
+ ++I, ++ArgNo) {
+ assert(I != FI.arg_end());
+ QualType ArgType = I->type;
+ const ABIArgInfo &AI = I->info;
+ // Collect data about IR arguments corresponding to Clang argument ArgNo.
+ auto &IRArgs = ArgInfo[ArgNo];
+
+ if (AI.getPaddingType())
+ IRArgs.PaddingArgIndex = IRArgNo++;
+
+ switch (AI.getKind()) {
+ case ABIArgInfo::Extend:
+ case ABIArgInfo::Direct: {
+ // FIXME: handle sseregparm someday...
+ llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
+ if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
+ IRArgs.NumberOfArgs = STy->getNumElements();
+ } else {
+ IRArgs.NumberOfArgs = 1;
+ }
+ break;
+ }
+ case ABIArgInfo::Indirect:
+ IRArgs.NumberOfArgs = 1;
+ break;
+ case ABIArgInfo::Ignore:
+ case ABIArgInfo::InAlloca:
+ // ignore and inalloca doesn't have matching LLVM parameters.
+ IRArgs.NumberOfArgs = 0;
+ break;
+ case ABIArgInfo::Expand: {
+ IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
+ break;
+ }
+ }
+
+ if (IRArgs.NumberOfArgs > 0) {
+ IRArgs.FirstArgIndex = IRArgNo;
+ IRArgNo += IRArgs.NumberOfArgs;
+ }
+
+ // Skip over the sret parameter when it comes second. We already handled it
+ // above.
+ if (IRArgNo == 1 && SwapThisWithSRet)
+ IRArgNo++;
+ }
+ assert(ArgNo == ArgInfo.size());
+
+ if (FI.usesInAlloca())
+ InallocaArgNo = IRArgNo++;
+
+ TotalIRArgs = IRArgNo;
+}
+} // namespace
+
+/***/
+
+bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
+ return FI.getReturnInfo().isIndirect();
+}
+
+bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
+ return ReturnTypeUsesSRet(FI) &&
+ getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
+}
+
+bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
+ if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
+ switch (BT->getKind()) {
+ default:
+ return false;
+ case BuiltinType::Float:
+ return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
+ case BuiltinType::Double:
+ return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
+ case BuiltinType::LongDouble:
+ return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
+ }
+ }
+
+ return false;
+}
+
+bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
+ if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
+ if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
+ if (BT->getKind() == BuiltinType::LongDouble)
+ return getTarget().useObjCFP2RetForComplexLongDouble();
+ }
+ }
+
+ return false;
+}
+
+llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
+ const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
+ return GetFunctionType(FI);
+}
+
+llvm::FunctionType *
+CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
+
+ bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
+ (void)Inserted;
+ assert(Inserted && "Recursively being processed?");
+
+ llvm::Type *resultType = nullptr;
+ const ABIArgInfo &retAI = FI.getReturnInfo();
+ switch (retAI.getKind()) {
+ case ABIArgInfo::Expand:
+ llvm_unreachable("Invalid ABI kind for return argument");
+
+ case ABIArgInfo::Extend:
+ case ABIArgInfo::Direct:
+ resultType = retAI.getCoerceToType();
+ break;
+
+ case ABIArgInfo::InAlloca:
+ if (retAI.getInAllocaSRet()) {
+ // sret things on win32 aren't void, they return the sret pointer.
+ QualType ret = FI.getReturnType();
+ llvm::Type *ty = ConvertType(ret);
+ unsigned addressSpace = Context.getTargetAddressSpace(ret);
+ resultType = llvm::PointerType::get(ty, addressSpace);
+ } else {
+ resultType = llvm::Type::getVoidTy(getLLVMContext());
+ }
+ break;
+
+ case ABIArgInfo::Indirect: {
+ assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
+ resultType = llvm::Type::getVoidTy(getLLVMContext());
+ break;
+ }
+
+ case ABIArgInfo::Ignore:
+ resultType = llvm::Type::getVoidTy(getLLVMContext());
+ break;
+ }
+
+ ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
+ SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
+
+ // Add type for sret argument.
+ if (IRFunctionArgs.hasSRetArg()) {
+ QualType Ret = FI.getReturnType();
+ llvm::Type *Ty = ConvertType(Ret);
+ unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
+ ArgTypes[IRFunctionArgs.getSRetArgNo()] =
+ llvm::PointerType::get(Ty, AddressSpace);
+ }
+
+ // Add type for inalloca argument.
+ if (IRFunctionArgs.hasInallocaArg()) {
+ auto ArgStruct = FI.getArgStruct();
+ assert(ArgStruct);
+ ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
+ }
+
+ // Add in all of the required arguments.
+ unsigned ArgNo = 0;
+ CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
+ ie = it + FI.getNumRequiredArgs();
+ for (; it != ie; ++it, ++ArgNo) {
+ const ABIArgInfo &ArgInfo = it->info;
+
+ // Insert a padding type to ensure proper alignment.
+ if (IRFunctionArgs.hasPaddingArg(ArgNo))
+ ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
+ ArgInfo.getPaddingType();
+
+ unsigned FirstIRArg, NumIRArgs;
+ std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
+
+ switch (ArgInfo.getKind()) {
+ case ABIArgInfo::Ignore:
+ case ABIArgInfo::InAlloca:
+ assert(NumIRArgs == 0);
+ break;
+
+ case ABIArgInfo::Indirect: {
+ assert(NumIRArgs == 1);
+ // indirect arguments are always on the stack, which is addr space #0.
+ llvm::Type *LTy = ConvertTypeForMem(it->type);
+ ArgTypes[FirstIRArg] = LTy->getPointerTo();
+ break;
+ }
+
+ case ABIArgInfo::Extend:
+ case ABIArgInfo::Direct: {
+ // Fast-isel and the optimizer generally like scalar values better than
+ // FCAs, so we flatten them if this is safe to do for this argument.
+ llvm::Type *argType = ArgInfo.getCoerceToType();
+ llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
+ if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
+ assert(NumIRArgs == st->getNumElements());
+ for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
+ ArgTypes[FirstIRArg + i] = st->getElementType(i);
+ } else {
+ assert(NumIRArgs == 1);
+ ArgTypes[FirstIRArg] = argType;
+ }
+ break;
+ }
+
+ case ABIArgInfo::Expand:
+ auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
+ getExpandedTypes(it->type, ArgTypesIter);
+ assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
+ break;
+ }
+ }
+
+ bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
+ assert(Erased && "Not in set?");
+
+ return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
+}
+
+llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
+ const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
+
+ if (!isFuncTypeConvertible(FPT))
+ return llvm::StructType::get(getLLVMContext());
+
+ const CGFunctionInfo *Info;
+ if (isa<CXXDestructorDecl>(MD))
+ Info =
+ &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType()));
+ else
+ Info = &arrangeCXXMethodDeclaration(MD);
+ return GetFunctionType(*Info);
+}
+
+void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
+ const Decl *TargetDecl,
+ AttributeListType &PAL,
+ unsigned &CallingConv,
+ bool AttrOnCallSite) {
+ llvm::AttrBuilder FuncAttrs;
+ llvm::AttrBuilder RetAttrs;
+ bool HasOptnone = false;
+
+ CallingConv = FI.getEffectiveCallingConvention();
+
+ if (FI.isNoReturn())
+ FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
+
+ // FIXME: handle sseregparm someday...
+ if (TargetDecl) {
+ if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
+ FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
+ if (TargetDecl->hasAttr<NoThrowAttr>())
+ FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
+ if (TargetDecl->hasAttr<NoReturnAttr>())
+ FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
+ if (TargetDecl->hasAttr<NoDuplicateAttr>())
+ FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
+
+ if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
+ const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
+ if (FPT && FPT->isNothrow(getContext()))
+ FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
+ // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
+ // These attributes are not inherited by overloads.
+ const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
+ if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
+ FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
+ }
+
+ // 'const' and 'pure' attribute functions are also nounwind.
+ if (TargetDecl->hasAttr<ConstAttr>()) {
+ FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
+ FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
+ } else if (TargetDecl->hasAttr<PureAttr>()) {
+ FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
+ FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
+ }
+ if (TargetDecl->hasAttr<RestrictAttr>())
+ RetAttrs.addAttribute(llvm::Attribute::NoAlias);
+ if (TargetDecl->hasAttr<ReturnsNonNullAttr>())
+ RetAttrs.addAttribute(llvm::Attribute::NonNull);
+
+ HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
+ }
+
+ // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
+ if (!HasOptnone) {
+ if (CodeGenOpts.OptimizeSize)
+ FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
+ if (CodeGenOpts.OptimizeSize == 2)
+ FuncAttrs.addAttribute(llvm::Attribute::MinSize);
+ }
+
+ if (CodeGenOpts.DisableRedZone)
+ FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
+ if (CodeGenOpts.NoImplicitFloat)
+ FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
+ if (CodeGenOpts.EnableSegmentedStacks &&
+ !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
+ FuncAttrs.addAttribute("split-stack");
+
+ if (AttrOnCallSite) {
+ // Attributes that should go on the call site only.
+ if (!CodeGenOpts.SimplifyLibCalls)
+ FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
+ } else {
+ // Attributes that should go on the function, but not the call site.
+ if (!CodeGenOpts.DisableFPElim) {
+ FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
+ } else if (CodeGenOpts.OmitLeafFramePointer) {
+ FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
+ FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
+ } else {
+ FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
+ FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
+ }
+
+ FuncAttrs.addAttribute("less-precise-fpmad",
+ llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
+ FuncAttrs.addAttribute("no-infs-fp-math",
+ llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
+ FuncAttrs.addAttribute("no-nans-fp-math",
+ llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
+ FuncAttrs.addAttribute("unsafe-fp-math",
+ llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
+ FuncAttrs.addAttribute("use-soft-float",
+ llvm::toStringRef(CodeGenOpts.SoftFloat));
+ FuncAttrs.addAttribute("stack-protector-buffer-size",
+ llvm::utostr(CodeGenOpts.SSPBufferSize));
+
+ if (!CodeGenOpts.StackRealignment)
+ FuncAttrs.addAttribute("no-realign-stack");
+
+ // Add target-cpu and target-features work if they differ from the defaults.
+ std::string &CPU = getTarget().getTargetOpts().CPU;
+ if (CPU != "")
+ FuncAttrs.addAttribute("target-cpu", CPU);
+
+ // TODO: Features gets us the features on the command line including
+ // feature dependencies. For canonicalization purposes we might want to
+ // avoid putting features in the target-features set if we know it'll be one
+ // of the default features in the backend, e.g. corei7-avx and +avx or figure
+ // out non-explicit dependencies.
+ std::vector<std::string> &Features = getTarget().getTargetOpts().Features;
+ if (!Features.empty()) {
+ std::stringstream S;
+ std::copy(Features.begin(), Features.end(),
+ std::ostream_iterator<std::string>(S, ","));
+ // The drop_back gets rid of the trailing space.
+ FuncAttrs.addAttribute("target-features",
+ StringRef(S.str()).drop_back(1));
+ }
+ }
+
+ ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
+
+ QualType RetTy = FI.getReturnType();
+ const ABIArgInfo &RetAI = FI.getReturnInfo();
+ switch (RetAI.getKind()) {
+ case ABIArgInfo::Extend:
+ if (RetTy->hasSignedIntegerRepresentation())
+ RetAttrs.addAttribute(llvm::Attribute::SExt);
+ else if (RetTy->hasUnsignedIntegerRepresentation())
+ RetAttrs.addAttribute(llvm::Attribute::ZExt);
+ // FALL THROUGH
+ case ABIArgInfo::Direct:
+ if (RetAI.getInReg())
+ RetAttrs.addAttribute(llvm::Attribute::InReg);
+ break;
+ case ABIArgInfo::Ignore:
+ break;
+
+ case ABIArgInfo::InAlloca:
+ case ABIArgInfo::Indirect: {
+ // inalloca and sret disable readnone and readonly
+ FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
+ .removeAttribute(llvm::Attribute::ReadNone);
+ break;
+ }
+
+ case ABIArgInfo::Expand:
+ llvm_unreachable("Invalid ABI kind for return argument");
+ }
+
+ if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
+ QualType PTy = RefTy->getPointeeType();
+ if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
+ RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
+ .getQuantity());
+ else if (getContext().getTargetAddressSpace(PTy) == 0)
+ RetAttrs.addAttribute(llvm::Attribute::NonNull);
+ }
+
+ // Attach return attributes.
+ if (RetAttrs.hasAttributes()) {
+ PAL.push_back(llvm::AttributeSet::get(
+ getLLVMContext(), llvm::AttributeSet::ReturnIndex, RetAttrs));
+ }
+
+ // Attach attributes to sret.
+ if (IRFunctionArgs.hasSRetArg()) {
+ llvm::AttrBuilder SRETAttrs;
+ SRETAttrs.addAttribute(llvm::Attribute::StructRet);
+ if (RetAI.getInReg())
+ SRETAttrs.addAttribute(llvm::Attribute::InReg);
+ PAL.push_back(llvm::AttributeSet::get(
+ getLLVMContext(), IRFunctionArgs.getSRetArgNo() + 1, SRETAttrs));
+ }
+
+ // Attach attributes to inalloca argument.
+ if (IRFunctionArgs.hasInallocaArg()) {
+ llvm::AttrBuilder Attrs;
+ Attrs.addAttribute(llvm::Attribute::InAlloca);
+ PAL.push_back(llvm::AttributeSet::get(
+ getLLVMContext(), IRFunctionArgs.getInallocaArgNo() + 1, Attrs));
+ }
+
+ unsigned ArgNo = 0;
+ for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
+ E = FI.arg_end();
+ I != E; ++I, ++ArgNo) {
+ QualType ParamType = I->type;
+ const ABIArgInfo &AI = I->info;
+ llvm::AttrBuilder Attrs;
+
+ // Add attribute for padding argument, if necessary.
+ if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
+ if (AI.getPaddingInReg())
+ PAL.push_back(llvm::AttributeSet::get(
+ getLLVMContext(), IRFunctionArgs.getPaddingArgNo(ArgNo) + 1,
+ llvm::Attribute::InReg));
+ }
+
+ // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
+ // have the corresponding parameter variable. It doesn't make
+ // sense to do it here because parameters are so messed up.
+ switch (AI.getKind()) {
+ case ABIArgInfo::Extend:
+ if (ParamType->isSignedIntegerOrEnumerationType())
+ Attrs.addAttribute(llvm::Attribute::SExt);
+ else if (ParamType->isUnsignedIntegerOrEnumerationType()) {
+ if (getTypes().getABIInfo().shouldSignExtUnsignedType(ParamType))
+ Attrs.addAttribute(llvm::Attribute::SExt);
+ else
+ Attrs.addAttribute(llvm::Attribute::ZExt);
+ }
+ // FALL THROUGH
+ case ABIArgInfo::Direct:
+ if (ArgNo == 0 && FI.isChainCall())
+ Attrs.addAttribute(llvm::Attribute::Nest);
+ else if (AI.getInReg())
+ Attrs.addAttribute(llvm::Attribute::InReg);
+ break;
+
+ case ABIArgInfo::Indirect:
+ if (AI.getInReg())
+ Attrs.addAttribute(llvm::Attribute::InReg);
+
+ if (AI.getIndirectByVal())
+ Attrs.addAttribute(llvm::Attribute::ByVal);
+
+ Attrs.addAlignmentAttr(AI.getIndirectAlign());
+
+ // byval disables readnone and readonly.
+ FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
+ .removeAttribute(llvm::Attribute::ReadNone);
+ break;
+
+ case ABIArgInfo::Ignore:
+ case ABIArgInfo::Expand:
+ continue;
+
+ case ABIArgInfo::InAlloca:
+ // inalloca disables readnone and readonly.
+ FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
+ .removeAttribute(llvm::Attribute::ReadNone);
+ continue;
+ }
+
+ if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
+ QualType PTy = RefTy->getPointeeType();
+ if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
+ Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
+ .getQuantity());
+ else if (getContext().getTargetAddressSpace(PTy) == 0)
+ Attrs.addAttribute(llvm::Attribute::NonNull);
+ }
+
+ if (Attrs.hasAttributes()) {
+ unsigned FirstIRArg, NumIRArgs;
+ std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
+ for (unsigned i = 0; i < NumIRArgs; i++)
+ PAL.push_back(llvm::AttributeSet::get(getLLVMContext(),
+ FirstIRArg + i + 1, Attrs));
+ }
+ }
+ assert(ArgNo == FI.arg_size());
+
+ if (FuncAttrs.hasAttributes())
+ PAL.push_back(llvm::
+ AttributeSet::get(getLLVMContext(),
+ llvm::AttributeSet::FunctionIndex,
+ FuncAttrs));
+}
+
+/// An argument came in as a promoted argument; demote it back to its
+/// declared type.
+static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
+ const VarDecl *var,
+ llvm::Value *value) {
+ llvm::Type *varType = CGF.ConvertType(var->getType());
+
+ // This can happen with promotions that actually don't change the
+ // underlying type, like the enum promotions.
+ if (value->getType() == varType) return value;
+
+ assert((varType->isIntegerTy() || varType->isFloatingPointTy())
+ && "unexpected promotion type");
+
+ if (isa<llvm::IntegerType>(varType))
+ return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
+
+ return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
+}
+
+/// Returns the attribute (either parameter attribute, or function
+/// attribute), which declares argument ArgNo to be non-null.
+static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
+ QualType ArgType, unsigned ArgNo) {
+ // FIXME: __attribute__((nonnull)) can also be applied to:
+ // - references to pointers, where the pointee is known to be
+ // nonnull (apparently a Clang extension)
+ // - transparent unions containing pointers
+ // In the former case, LLVM IR cannot represent the constraint. In
+ // the latter case, we have no guarantee that the transparent union
+ // is in fact passed as a pointer.
+ if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
+ return nullptr;
+ // First, check attribute on parameter itself.
+ if (PVD) {
+ if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
+ return ParmNNAttr;
+ }
+ // Check function attributes.
+ if (!FD)
+ return nullptr;
+ for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
+ if (NNAttr->isNonNull(ArgNo))
+ return NNAttr;
+ }
+ return nullptr;
+}
+
+void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
+ llvm::Function *Fn,
+ const FunctionArgList &Args) {
+ if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
+ // Naked functions don't have prologues.
+ return;
+
+ // If this is an implicit-return-zero function, go ahead and
+ // initialize the return value. TODO: it might be nice to have
+ // a more general mechanism for this that didn't require synthesized
+ // return statements.
+ if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
+ if (FD->hasImplicitReturnZero()) {
+ QualType RetTy = FD->getReturnType().getUnqualifiedType();
+ llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
+ llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
+ Builder.CreateStore(Zero, ReturnValue);
+ }
+ }
+
+ // FIXME: We no longer need the types from FunctionArgList; lift up and
+ // simplify.
+
+ ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
+ // Flattened function arguments.
+ SmallVector<llvm::Argument *, 16> FnArgs;
+ FnArgs.reserve(IRFunctionArgs.totalIRArgs());
+ for (auto &Arg : Fn->args()) {
+ FnArgs.push_back(&Arg);
+ }
+ assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
+
+ // If we're using inalloca, all the memory arguments are GEPs off of the last
+ // parameter, which is a pointer to the complete memory area.
+ llvm::Value *ArgStruct = nullptr;
+ if (IRFunctionArgs.hasInallocaArg()) {
+ ArgStruct = FnArgs[IRFunctionArgs.getInallocaArgNo()];
+ assert(ArgStruct->getType() == FI.getArgStruct()->getPointerTo());
+ }
+
+ // Name the struct return parameter.
+ if (IRFunctionArgs.hasSRetArg()) {
+ auto AI = FnArgs[IRFunctionArgs.getSRetArgNo()];
+ AI->setName("agg.result");
+ AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), AI->getArgNo() + 1,
+ llvm::Attribute::NoAlias));
+ }
+
+ // Track if we received the parameter as a pointer (indirect, byval, or
+ // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it
+ // into a local alloca for us.
+ enum ValOrPointer { HaveValue = 0, HavePointer = 1 };
+ typedef llvm::PointerIntPair<llvm::Value *, 1> ValueAndIsPtr;
+ SmallVector<ValueAndIsPtr, 16> ArgVals;
+ ArgVals.reserve(Args.size());
+
+ // Create a pointer value for every parameter declaration. This usually
+ // entails copying one or more LLVM IR arguments into an alloca. Don't push
+ // any cleanups or do anything that might unwind. We do that separately, so
+ // we can push the cleanups in the correct order for the ABI.
+ assert(FI.arg_size() == Args.size() &&
+ "Mismatch between function signature & arguments.");
+ unsigned ArgNo = 0;
+ CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
+ for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
+ i != e; ++i, ++info_it, ++ArgNo) {
+ const VarDecl *Arg = *i;
+ QualType Ty = info_it->type;
+ const ABIArgInfo &ArgI = info_it->info;
+
+ bool isPromoted =
+ isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
+
+ unsigned FirstIRArg, NumIRArgs;
+ std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
+
+ switch (ArgI.getKind()) {
+ case ABIArgInfo::InAlloca: {
+ assert(NumIRArgs == 0);
+ llvm::Value *V =
+ Builder.CreateStructGEP(FI.getArgStruct(), ArgStruct,
+ ArgI.getInAllocaFieldIndex(), Arg->getName());
+ ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
+ break;
+ }
+
+ case ABIArgInfo::Indirect: {
+ assert(NumIRArgs == 1);
+ llvm::Value *V = FnArgs[FirstIRArg];
+
+ if (!hasScalarEvaluationKind(Ty)) {
+ // Aggregates and complex variables are accessed by reference. All we
+ // need to do is realign the value, if requested
+ if (ArgI.getIndirectRealign()) {
+ llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
+
+ // Copy from the incoming argument pointer to the temporary with the
+ // appropriate alignment.
+ //
+ // FIXME: We should have a common utility for generating an aggregate
+ // copy.
+ llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
+ CharUnits Size = getContext().getTypeSizeInChars(Ty);
+ llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
+ llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
+ Builder.CreateMemCpy(Dst,
+ Src,
+ llvm::ConstantInt::get(IntPtrTy,
+ Size.getQuantity()),
+ ArgI.getIndirectAlign(),
+ false);
+ V = AlignedTemp;
+ }
+ ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
+ } else {
+ // Load scalar value from indirect argument.
+ V = EmitLoadOfScalar(V, false, ArgI.getIndirectAlign(), Ty,
+ Arg->getLocStart());
+
+ if (isPromoted)
+ V = emitArgumentDemotion(*this, Arg, V);
+ ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
+ }
+ break;
+ }
+
+ case ABIArgInfo::Extend:
+ case ABIArgInfo::Direct: {
+
+ // If we have the trivial case, handle it with no muss and fuss.
+ if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
+ ArgI.getCoerceToType() == ConvertType(Ty) &&
+ ArgI.getDirectOffset() == 0) {
+ assert(NumIRArgs == 1);
+ auto AI = FnArgs[FirstIRArg];
+ llvm::Value *V = AI;
+
+ if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
+ if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
+ PVD->getFunctionScopeIndex()))
+ AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
+ AI->getArgNo() + 1,
+ llvm::Attribute::NonNull));
+
+ QualType OTy = PVD->getOriginalType();
+ if (const auto *ArrTy =
+ getContext().getAsConstantArrayType(OTy)) {
+ // A C99 array parameter declaration with the static keyword also
+ // indicates dereferenceability, and if the size is constant we can
+ // use the dereferenceable attribute (which requires the size in
+ // bytes).
+ if (ArrTy->getSizeModifier() == ArrayType::Static) {
+ QualType ETy = ArrTy->getElementType();
+ uint64_t ArrSize = ArrTy->getSize().getZExtValue();
+ if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
+ ArrSize) {
+ llvm::AttrBuilder Attrs;
+ Attrs.addDereferenceableAttr(
+ getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
+ AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
+ AI->getArgNo() + 1, Attrs));
+ } else if (getContext().getTargetAddressSpace(ETy) == 0) {
+ AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
+ AI->getArgNo() + 1,
+ llvm::Attribute::NonNull));
+ }
+ }
+ } else if (const auto *ArrTy =
+ getContext().getAsVariableArrayType(OTy)) {
+ // For C99 VLAs with the static keyword, we don't know the size so
+ // we can't use the dereferenceable attribute, but in addrspace(0)
+ // we know that it must be nonnull.
+ if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
+ !getContext().getTargetAddressSpace(ArrTy->getElementType()))
+ AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
+ AI->getArgNo() + 1,
+ llvm::Attribute::NonNull));
+ }
+
+ const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
+ if (!AVAttr)
+ if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
+ AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
+ if (AVAttr) {
+ llvm::Value *AlignmentValue =
+ EmitScalarExpr(AVAttr->getAlignment());
+ llvm::ConstantInt *AlignmentCI =
+ cast<llvm::ConstantInt>(AlignmentValue);
+ unsigned Alignment =
+ std::min((unsigned) AlignmentCI->getZExtValue(),
+ +llvm::Value::MaximumAlignment);
+
+ llvm::AttrBuilder Attrs;
+ Attrs.addAlignmentAttr(Alignment);
+ AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
+ AI->getArgNo() + 1, Attrs));
+ }
+ }
+
+ if (Arg->getType().isRestrictQualified())
+ AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
+ AI->getArgNo() + 1,
+ llvm::Attribute::NoAlias));
+
+ // Ensure the argument is the correct type.
+ if (V->getType() != ArgI.getCoerceToType())
+ V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
+
+ if (isPromoted)
+ V = emitArgumentDemotion(*this, Arg, V);
+
+ if (const CXXMethodDecl *MD =
+ dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) {
+ if (MD->isVirtual() && Arg == CXXABIThisDecl)
+ V = CGM.getCXXABI().
+ adjustThisParameterInVirtualFunctionPrologue(*this, CurGD, V);
+ }
+
+ // Because of merging of function types from multiple decls it is
+ // possible for the type of an argument to not match the corresponding
+ // type in the function type. Since we are codegening the callee
+ // in here, add a cast to the argument type.
+ llvm::Type *LTy = ConvertType(Arg->getType());
+ if (V->getType() != LTy)
+ V = Builder.CreateBitCast(V, LTy);
+
+ ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
+ break;
+ }
+
+ llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName());
+
+ // The alignment we need to use is the max of the requested alignment for
+ // the argument plus the alignment required by our access code below.
+ unsigned AlignmentToUse =
+ CGM.getDataLayout().getABITypeAlignment(ArgI.getCoerceToType());
+ AlignmentToUse = std::max(AlignmentToUse,
+ (unsigned)getContext().getDeclAlign(Arg).getQuantity());
+
+ Alloca->setAlignment(AlignmentToUse);
+ llvm::Value *V = Alloca;
+ llvm::Value *Ptr = V; // Pointer to store into.
+
+ // If the value is offset in memory, apply the offset now.
+ if (unsigned Offs = ArgI.getDirectOffset()) {
+ Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
+ Ptr = Builder.CreateConstGEP1_32(Builder.getInt8Ty(), Ptr, Offs);
+ Ptr = Builder.CreateBitCast(Ptr,
+ llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
+ }
+
+ // Fast-isel and the optimizer generally like scalar values better than
+ // FCAs, so we flatten them if this is safe to do for this argument.
+ llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
+ if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
+ STy->getNumElements() > 1) {
+ uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
+ llvm::Type *DstTy =
+ cast<llvm::PointerType>(Ptr->getType())->getElementType();
+ uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
+
+ if (SrcSize <= DstSize) {
+ Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
+
+ assert(STy->getNumElements() == NumIRArgs);
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+ auto AI = FnArgs[FirstIRArg + i];
+ AI->setName(Arg->getName() + ".coerce" + Twine(i));
+ llvm::Value *EltPtr = Builder.CreateConstGEP2_32(STy, Ptr, 0, i);
+ Builder.CreateStore(AI, EltPtr);
+ }
+ } else {
+ llvm::AllocaInst *TempAlloca =
+ CreateTempAlloca(ArgI.getCoerceToType(), "coerce");
+ TempAlloca->setAlignment(AlignmentToUse);
+ llvm::Value *TempV = TempAlloca;
+
+ assert(STy->getNumElements() == NumIRArgs);
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+ auto AI = FnArgs[FirstIRArg + i];
+ AI->setName(Arg->getName() + ".coerce" + Twine(i));
+ llvm::Value *EltPtr =
+ Builder.CreateConstGEP2_32(ArgI.getCoerceToType(), TempV, 0, i);
+ Builder.CreateStore(AI, EltPtr);
+ }
+
+ Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse);
+ }
+ } else {
+ // Simple case, just do a coerced store of the argument into the alloca.
+ assert(NumIRArgs == 1);
+ auto AI = FnArgs[FirstIRArg];
+ AI->setName(Arg->getName() + ".coerce");
+ CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this);
+ }
+
+
+ // Match to what EmitParmDecl is expecting for this type.
+ if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
+ V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty, Arg->getLocStart());
+ if (isPromoted)
+ V = emitArgumentDemotion(*this, Arg, V);
+ ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
+ } else {
+ ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
+ }
+ break;
+ }
+
+ case ABIArgInfo::Expand: {
+ // If this structure was expanded into multiple arguments then
+ // we need to create a temporary and reconstruct it from the
+ // arguments.
+ llvm::AllocaInst *Alloca = CreateMemTemp(Ty);
+ CharUnits Align = getContext().getDeclAlign(Arg);
+ Alloca->setAlignment(Align.getQuantity());
+ LValue LV = MakeAddrLValue(Alloca, Ty, Align);
+ ArgVals.push_back(ValueAndIsPtr(Alloca, HavePointer));
+
+ auto FnArgIter = FnArgs.begin() + FirstIRArg;
+ ExpandTypeFromArgs(Ty, LV, FnArgIter);
+ assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
+ for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
+ auto AI = FnArgs[FirstIRArg + i];
+ AI->setName(Arg->getName() + "." + Twine(i));
+ }
+ break;
+ }
+
+ case ABIArgInfo::Ignore:
+ assert(NumIRArgs == 0);
+ // Initialize the local variable appropriately.
+ if (!hasScalarEvaluationKind(Ty)) {
+ ArgVals.push_back(ValueAndIsPtr(CreateMemTemp(Ty), HavePointer));
+ } else {
+ llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
+ ArgVals.push_back(ValueAndIsPtr(U, HaveValue));
+ }
+ break;
+ }
+ }
+
+ if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
+ for (int I = Args.size() - 1; I >= 0; --I)
+ EmitParmDecl(*Args[I], ArgVals[I].getPointer(), ArgVals[I].getInt(),
+ I + 1);
+ } else {
+ for (unsigned I = 0, E = Args.size(); I != E; ++I)
+ EmitParmDecl(*Args[I], ArgVals[I].getPointer(), ArgVals[I].getInt(),
+ I + 1);
+ }
+}
+
+static void eraseUnusedBitCasts(llvm::Instruction *insn) {
+ while (insn->use_empty()) {
+ llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
+ if (!bitcast) return;
+
+ // This is "safe" because we would have used a ConstantExpr otherwise.
+ insn = cast<llvm::Instruction>(bitcast->getOperand(0));
+ bitcast->eraseFromParent();
+ }
+}
+
+/// Try to emit a fused autorelease of a return result.
+static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
+ llvm::Value *result) {
+ // We must be immediately followed the cast.
+ llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
+ if (BB->empty()) return nullptr;
+ if (&BB->back() != result) return nullptr;
+
+ llvm::Type *resultType = result->getType();
+
+ // result is in a BasicBlock and is therefore an Instruction.
+ llvm::Instruction *generator = cast<llvm::Instruction>(result);
+
+ SmallVector<llvm::Instruction*,4> insnsToKill;
+
+ // Look for:
+ // %generator = bitcast %type1* %generator2 to %type2*
+ while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
+ // We would have emitted this as a constant if the operand weren't
+ // an Instruction.
+ generator = cast<llvm::Instruction>(bitcast->getOperand(0));
+
+ // Require the generator to be immediately followed by the cast.
+ if (generator->getNextNode() != bitcast)
+ return nullptr;
+
+ insnsToKill.push_back(bitcast);
+ }
+
+ // Look for:
+ // %generator = call i8* @objc_retain(i8* %originalResult)
+ // or
+ // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
+ llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
+ if (!call) return nullptr;
+
+ bool doRetainAutorelease;
+
+ if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
+ doRetainAutorelease = true;
+ } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
+ .objc_retainAutoreleasedReturnValue) {
+ doRetainAutorelease = false;
+
+ // If we emitted an assembly marker for this call (and the
+ // ARCEntrypoints field should have been set if so), go looking
+ // for that call. If we can't find it, we can't do this
+ // optimization. But it should always be the immediately previous
+ // instruction, unless we needed bitcasts around the call.
+ if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) {
+ llvm::Instruction *prev = call->getPrevNode();
+ assert(prev);
+ if (isa<llvm::BitCastInst>(prev)) {
+ prev = prev->getPrevNode();
+ assert(prev);
+ }
+ assert(isa<llvm::CallInst>(prev));
+ assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
+ CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker);
+ insnsToKill.push_back(prev);
+ }
+ } else {
+ return nullptr;
+ }
+
+ result = call->getArgOperand(0);
+ insnsToKill.push_back(call);
+
+ // Keep killing bitcasts, for sanity. Note that we no longer care
+ // about precise ordering as long as there's exactly one use.
+ while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
+ if (!bitcast->hasOneUse()) break;
+ insnsToKill.push_back(bitcast);
+ result = bitcast->getOperand(0);
+ }
+
+ // Delete all the unnecessary instructions, from latest to earliest.
+ for (SmallVectorImpl<llvm::Instruction*>::iterator
+ i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
+ (*i)->eraseFromParent();
+
+ // Do the fused retain/autorelease if we were asked to.
+ if (doRetainAutorelease)
+ result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
+
+ // Cast back to the result type.
+ return CGF.Builder.CreateBitCast(result, resultType);
+}
+
+/// If this is a +1 of the value of an immutable 'self', remove it.
+static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
+ llvm::Value *result) {
+ // This is only applicable to a method with an immutable 'self'.
+ const ObjCMethodDecl *method =
+ dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
+ if (!method) return nullptr;
+ const VarDecl *self = method->getSelfDecl();
+ if (!self->getType().isConstQualified()) return nullptr;
+
+ // Look for a retain call.
+ llvm::CallInst *retainCall =
+ dyn_cast<llvm::CallInst>(result->stripPointerCasts());
+ if (!retainCall ||
+ retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
+ return nullptr;
+
+ // Look for an ordinary load of 'self'.
+ llvm::Value *retainedValue = retainCall->getArgOperand(0);
+ llvm::LoadInst *load =
+ dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
+ if (!load || load->isAtomic() || load->isVolatile() ||
+ load->getPointerOperand() != CGF.GetAddrOfLocalVar(self))
+ return nullptr;
+
+ // Okay! Burn it all down. This relies for correctness on the
+ // assumption that the retain is emitted as part of the return and
+ // that thereafter everything is used "linearly".
+ llvm::Type *resultType = result->getType();
+ eraseUnusedBitCasts(cast<llvm::Instruction>(result));
+ assert(retainCall->use_empty());
+ retainCall->eraseFromParent();
+ eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
+
+ return CGF.Builder.CreateBitCast(load, resultType);
+}
+
+/// Emit an ARC autorelease of the result of a function.
+///
+/// \return the value to actually return from the function
+static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
+ llvm::Value *result) {
+ // If we're returning 'self', kill the initial retain. This is a
+ // heuristic attempt to "encourage correctness" in the really unfortunate
+ // case where we have a return of self during a dealloc and we desperately
+ // need to avoid the possible autorelease.
+ if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
+ return self;
+
+ // At -O0, try to emit a fused retain/autorelease.
+ if (CGF.shouldUseFusedARCCalls())
+ if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
+ return fused;
+
+ return CGF.EmitARCAutoreleaseReturnValue(result);
+}
+
+/// Heuristically search for a dominating store to the return-value slot.
+static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
+ // If there are multiple uses of the return-value slot, just check
+ // for something immediately preceding the IP. Sometimes this can
+ // happen with how we generate implicit-returns; it can also happen
+ // with noreturn cleanups.
+ if (!CGF.ReturnValue->hasOneUse()) {
+ llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
+ if (IP->empty()) return nullptr;
+ llvm::Instruction *I = &IP->back();
+
+ // Skip lifetime markers
+ for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
+ IE = IP->rend();
+ II != IE; ++II) {
+ if (llvm::IntrinsicInst *Intrinsic =
+ dyn_cast<llvm::IntrinsicInst>(&*II)) {
+ if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
+ const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
+ ++II;
+ if (isa<llvm::BitCastInst>(&*II)) {
+ if (CastAddr == &*II) {
+ continue;
+ }
+ }
+ }
+ }
+ I = &*II;
+ break;
+ }
+
+ llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(I);
+ if (!store) return nullptr;
+ if (store->getPointerOperand() != CGF.ReturnValue) return nullptr;
+ assert(!store->isAtomic() && !store->isVolatile()); // see below
+ return store;
+ }
+
+ llvm::StoreInst *store =
+ dyn_cast<llvm::StoreInst>(CGF.ReturnValue->user_back());
+ if (!store) return nullptr;
+
+ // These aren't actually possible for non-coerced returns, and we
+ // only care about non-coerced returns on this code path.
+ assert(!store->isAtomic() && !store->isVolatile());
+
+ // Now do a first-and-dirty dominance check: just walk up the
+ // single-predecessors chain from the current insertion point.
+ llvm::BasicBlock *StoreBB = store->getParent();
+ llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
+ while (IP != StoreBB) {
+ if (!(IP = IP->getSinglePredecessor()))
+ return nullptr;
+ }
+
+ // Okay, the store's basic block dominates the insertion point; we
+ // can do our thing.
+ return store;
+}
+
+void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
+ bool EmitRetDbgLoc,
+ SourceLocation EndLoc) {
+ if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
+ // Naked functions don't have epilogues.
+ Builder.CreateUnreachable();
+ return;
+ }
+
+ // Functions with no result always return void.
+ if (!ReturnValue) {
+ Builder.CreateRetVoid();
+ return;
+ }
+
+ llvm::DebugLoc RetDbgLoc;
+ llvm::Value *RV = nullptr;
+ QualType RetTy = FI.getReturnType();
+ const ABIArgInfo &RetAI = FI.getReturnInfo();
+
+ switch (RetAI.getKind()) {
+ case ABIArgInfo::InAlloca:
+ // Aggregrates get evaluated directly into the destination. Sometimes we
+ // need to return the sret value in a register, though.
+ assert(hasAggregateEvaluationKind(RetTy));
+ if (RetAI.getInAllocaSRet()) {
+ llvm::Function::arg_iterator EI = CurFn->arg_end();
+ --EI;
+ llvm::Value *ArgStruct = EI;
+ llvm::Value *SRet = Builder.CreateStructGEP(
+ nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
+ RV = Builder.CreateLoad(SRet, "sret");
+ }
+ break;
+
+ case ABIArgInfo::Indirect: {
+ auto AI = CurFn->arg_begin();
+ if (RetAI.isSRetAfterThis())
+ ++AI;
+ switch (getEvaluationKind(RetTy)) {
+ case TEK_Complex: {
+ ComplexPairTy RT =
+ EmitLoadOfComplex(MakeNaturalAlignAddrLValue(ReturnValue, RetTy),
+ EndLoc);
+ EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(AI, RetTy),
+ /*isInit*/ true);
+ break;
+ }
+ case TEK_Aggregate:
+ // Do nothing; aggregrates get evaluated directly into the destination.
+ break;
+ case TEK_Scalar:
+ EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
+ MakeNaturalAlignAddrLValue(AI, RetTy),
+ /*isInit*/ true);
+ break;
+ }
+ break;
+ }
+
+ case ABIArgInfo::Extend:
+ case ABIArgInfo::Direct:
+ if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
+ RetAI.getDirectOffset() == 0) {
+ // The internal return value temp always will have pointer-to-return-type
+ // type, just do a load.
+
+ // If there is a dominating store to ReturnValue, we can elide
+ // the load, zap the store, and usually zap the alloca.
+ if (llvm::StoreInst *SI =
+ findDominatingStoreToReturnValue(*this)) {
+ // Reuse the debug location from the store unless there is
+ // cleanup code to be emitted between the store and return
+ // instruction.
+ if (EmitRetDbgLoc && !AutoreleaseResult)
+ RetDbgLoc = SI->getDebugLoc();
+ // Get the stored value and nuke the now-dead store.
+ RV = SI->getValueOperand();
+ SI->eraseFromParent();
+
+ // If that was the only use of the return value, nuke it as well now.
+ if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
+ cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
+ ReturnValue = nullptr;
+ }
+
+ // Otherwise, we have to do a simple load.
+ } else {
+ RV = Builder.CreateLoad(ReturnValue);
+ }
+ } else {
+ llvm::Value *V = ReturnValue;
+ // If the value is offset in memory, apply the offset now.
+ if (unsigned Offs = RetAI.getDirectOffset()) {
+ V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
+ V = Builder.CreateConstGEP1_32(Builder.getInt8Ty(), V, Offs);
+ V = Builder.CreateBitCast(V,
+ llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
+ }
+
+ RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
+ }
+
+ // In ARC, end functions that return a retainable type with a call
+ // to objc_autoreleaseReturnValue.
+ if (AutoreleaseResult) {
+ assert(getLangOpts().ObjCAutoRefCount &&
+ !FI.isReturnsRetained() &&
+ RetTy->isObjCRetainableType());
+ RV = emitAutoreleaseOfResult(*this, RV);
+ }
+
+ break;
+
+ case ABIArgInfo::Ignore:
+ break;
+
+ case ABIArgInfo::Expand:
+ llvm_unreachable("Invalid ABI kind for return argument");
+ }
+
+ llvm::Instruction *Ret;
+ if (RV) {
+ if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) {
+ if (auto RetNNAttr = CurGD.getDecl()->getAttr<ReturnsNonNullAttr>()) {
+ SanitizerScope SanScope(this);
+ llvm::Value *Cond = Builder.CreateICmpNE(
+ RV, llvm::Constant::getNullValue(RV->getType()));
+ llvm::Constant *StaticData[] = {
+ EmitCheckSourceLocation(EndLoc),
+ EmitCheckSourceLocation(RetNNAttr->getLocation()),
+ };
+ EmitCheck(std::make_pair(Cond, SanitizerKind::ReturnsNonnullAttribute),
+ "nonnull_return", StaticData, None);
+ }
+ }
+ Ret = Builder.CreateRet(RV);
+ } else {
+ Ret = Builder.CreateRetVoid();
+ }
+
+ if (RetDbgLoc)
+ Ret->setDebugLoc(std::move(RetDbgLoc));
+}
+
+static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
+ const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
+ return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
+}
+
+static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, QualType Ty) {
+ // FIXME: Generate IR in one pass, rather than going back and fixing up these
+ // placeholders.
+ llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
+ llvm::Value *Placeholder =
+ llvm::UndefValue::get(IRTy->getPointerTo()->getPointerTo());
+ Placeholder = CGF.Builder.CreateLoad(Placeholder);
+ return AggValueSlot::forAddr(Placeholder, CharUnits::Zero(),
+ Ty.getQualifiers(),
+ AggValueSlot::IsNotDestructed,
+ AggValueSlot::DoesNotNeedGCBarriers,
+ AggValueSlot::IsNotAliased);
+}
+
+void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
+ const VarDecl *param,
+ SourceLocation loc) {
+ // StartFunction converted the ABI-lowered parameter(s) into a
+ // local alloca. We need to turn that into an r-value suitable
+ // for EmitCall.
+ llvm::Value *local = GetAddrOfLocalVar(param);
+
+ QualType type = param->getType();
+
+ // For the most part, we just need to load the alloca, except:
+ // 1) aggregate r-values are actually pointers to temporaries, and
+ // 2) references to non-scalars are pointers directly to the aggregate.
+ // I don't know why references to scalars are different here.
+ if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
+ if (!hasScalarEvaluationKind(ref->getPointeeType()))
+ return args.add(RValue::getAggregate(local), type);
+
+ // Locals which are references to scalars are represented
+ // with allocas holding the pointer.
+ return args.add(RValue::get(Builder.CreateLoad(local)), type);
+ }
+
+ assert(!isInAllocaArgument(CGM.getCXXABI(), type) &&
+ "cannot emit delegate call arguments for inalloca arguments!");
+
+ args.add(convertTempToRValue(local, type, loc), type);
+}
+
+static bool isProvablyNull(llvm::Value *addr) {
+ return isa<llvm::ConstantPointerNull>(addr);
+}
+
+static bool isProvablyNonNull(llvm::Value *addr) {
+ return isa<llvm::AllocaInst>(addr);
+}
+
+/// Emit the actual writing-back of a writeback.
+static void emitWriteback(CodeGenFunction &CGF,
+ const CallArgList::Writeback &writeback) {
+ const LValue &srcLV = writeback.Source;
+ llvm::Value *srcAddr = srcLV.getAddress();
+ assert(!isProvablyNull(srcAddr) &&
+ "shouldn't have writeback for provably null argument");
+
+ llvm::BasicBlock *contBB = nullptr;
+
+ // If the argument wasn't provably non-null, we need to null check
+ // before doing the store.
+ bool provablyNonNull = isProvablyNonNull(srcAddr);
+ if (!provablyNonNull) {
+ llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
+ contBB = CGF.createBasicBlock("icr.done");
+
+ llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
+ CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
+ CGF.EmitBlock(writebackBB);
+ }
+
+ // Load the value to writeback.
+ llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
+
+ // Cast it back, in case we're writing an id to a Foo* or something.
+ value = CGF.Builder.CreateBitCast(value,
+ cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
+ "icr.writeback-cast");
+
+ // Perform the writeback.
+
+ // If we have a "to use" value, it's something we need to emit a use
+ // of. This has to be carefully threaded in: if it's done after the
+ // release it's potentially undefined behavior (and the optimizer
+ // will ignore it), and if it happens before the retain then the
+ // optimizer could move the release there.
+ if (writeback.ToUse) {
+ assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
+
+ // Retain the new value. No need to block-copy here: the block's
+ // being passed up the stack.
+ value = CGF.EmitARCRetainNonBlock(value);
+
+ // Emit the intrinsic use here.
+ CGF.EmitARCIntrinsicUse(writeback.ToUse);
+
+ // Load the old value (primitively).
+ llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
+
+ // Put the new value in place (primitively).
+ CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
+
+ // Release the old value.
+ CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
+
+ // Otherwise, we can just do a normal lvalue store.
+ } else {
+ CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
+ }
+
+ // Jump to the continuation block.
+ if (!provablyNonNull)
+ CGF.EmitBlock(contBB);
+}
+
+static void emitWritebacks(CodeGenFunction &CGF,
+ const CallArgList &args) {
+ for (const auto &I : args.writebacks())
+ emitWriteback(CGF, I);
+}
+
+static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
+ const CallArgList &CallArgs) {
+ assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee());
+ ArrayRef<CallArgList::CallArgCleanup> Cleanups =
+ CallArgs.getCleanupsToDeactivate();
+ // Iterate in reverse to increase the likelihood of popping the cleanup.
+ for (ArrayRef<CallArgList::CallArgCleanup>::reverse_iterator
+ I = Cleanups.rbegin(), E = Cleanups.rend(); I != E; ++I) {
+ CGF.DeactivateCleanupBlock(I->Cleanup, I->IsActiveIP);
+ I->IsActiveIP->eraseFromParent();
+ }
+}
+
+static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
+ if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
+ if (uop->getOpcode() == UO_AddrOf)
+ return uop->getSubExpr();
+ return nullptr;
+}
+
+/// Emit an argument that's being passed call-by-writeback. That is,
+/// we are passing the address of
+static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
+ const ObjCIndirectCopyRestoreExpr *CRE) {
+ LValue srcLV;
+
+ // Make an optimistic effort to emit the address as an l-value.
+ // This can fail if the the argument expression is more complicated.
+ if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
+ srcLV = CGF.EmitLValue(lvExpr);
+
+ // Otherwise, just emit it as a scalar.
+ } else {
+ llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
+
+ QualType srcAddrType =
+ CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
+ srcLV = CGF.MakeNaturalAlignAddrLValue(srcAddr, srcAddrType);
+ }
+ llvm::Value *srcAddr = srcLV.getAddress();
+
+ // The dest and src types don't necessarily match in LLVM terms
+ // because of the crazy ObjC compatibility rules.
+
+ llvm::PointerType *destType =
+ cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
+
+ // If the address is a constant null, just pass the appropriate null.
+ if (isProvablyNull(srcAddr)) {
+ args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
+ CRE->getType());
+ return;
+ }
+
+ // Create the temporary.
+ llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
+ "icr.temp");
+ // Loading an l-value can introduce a cleanup if the l-value is __weak,
+ // and that cleanup will be conditional if we can't prove that the l-value
+ // isn't null, so we need to register a dominating point so that the cleanups
+ // system will make valid IR.
+ CodeGenFunction::ConditionalEvaluation condEval(CGF);
+
+ // Zero-initialize it if we're not doing a copy-initialization.
+ bool shouldCopy = CRE->shouldCopy();
+ if (!shouldCopy) {
+ llvm::Value *null =
+ llvm::ConstantPointerNull::get(
+ cast<llvm::PointerType>(destType->getElementType()));
+ CGF.Builder.CreateStore(null, temp);
+ }
+
+ llvm::BasicBlock *contBB = nullptr;
+ llvm::BasicBlock *originBB = nullptr;
+
+ // If the address is *not* known to be non-null, we need to switch.
+ llvm::Value *finalArgument;
+
+ bool provablyNonNull = isProvablyNonNull(srcAddr);
+ if (provablyNonNull) {
+ finalArgument = temp;
+ } else {
+ llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
+
+ finalArgument = CGF.Builder.CreateSelect(isNull,
+ llvm::ConstantPointerNull::get(destType),
+ temp, "icr.argument");
+
+ // If we need to copy, then the load has to be conditional, which
+ // means we need control flow.
+ if (shouldCopy) {
+ originBB = CGF.Builder.GetInsertBlock();
+ contBB = CGF.createBasicBlock("icr.cont");
+ llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
+ CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
+ CGF.EmitBlock(copyBB);
+ condEval.begin(CGF);
+ }
+ }
+
+ llvm::Value *valueToUse = nullptr;
+
+ // Perform a copy if necessary.
+ if (shouldCopy) {
+ RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
+ assert(srcRV.isScalar());
+
+ llvm::Value *src = srcRV.getScalarVal();
+ src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
+ "icr.cast");
+
+ // Use an ordinary store, not a store-to-lvalue.
+ CGF.Builder.CreateStore(src, temp);
+
+ // If optimization is enabled, and the value was held in a
+ // __strong variable, we need to tell the optimizer that this
+ // value has to stay alive until we're doing the store back.
+ // This is because the temporary is effectively unretained,
+ // and so otherwise we can violate the high-level semantics.
+ if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
+ srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
+ valueToUse = src;
+ }
+ }
+
+ // Finish the control flow if we needed it.
+ if (shouldCopy && !provablyNonNull) {
+ llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
+ CGF.EmitBlock(contBB);
+
+ // Make a phi for the value to intrinsically use.
+ if (valueToUse) {
+ llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
+ "icr.to-use");
+ phiToUse->addIncoming(valueToUse, copyBB);
+ phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
+ originBB);
+ valueToUse = phiToUse;
+ }
+
+ condEval.end(CGF);
+ }
+
+ args.addWriteback(srcLV, temp, valueToUse);
+ args.add(RValue::get(finalArgument), CRE->getType());
+}
+
+void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
+ assert(!StackBase && !StackCleanup.isValid());
+
+ // Save the stack.
+ llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
+ StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
+
+ // Control gets really tied up in landing pads, so we have to spill the
+ // stacksave to an alloca to avoid violating SSA form.
+ // TODO: This is dead if we never emit the cleanup. We should create the
+ // alloca and store lazily on the first cleanup emission.
+ StackBaseMem = CGF.CreateTempAlloca(CGF.Int8PtrTy, "inalloca.spmem");
+ CGF.Builder.CreateStore(StackBase, StackBaseMem);
+ CGF.pushStackRestore(EHCleanup, StackBaseMem);
+ StackCleanup = CGF.EHStack.getInnermostEHScope();
+ assert(StackCleanup.isValid());
+}
+
+void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
+ if (StackBase) {
+ CGF.DeactivateCleanupBlock(StackCleanup, StackBase);
+ llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
+ // We could load StackBase from StackBaseMem, but in the non-exceptional
+ // case we can skip it.
+ CGF.Builder.CreateCall(F, StackBase);
+ }
+}
+
+static void emitNonNullArgCheck(CodeGenFunction &CGF, RValue RV,
+ QualType ArgType, SourceLocation ArgLoc,
+ const FunctionDecl *FD, unsigned ParmNum) {
+ if (!CGF.SanOpts.has(SanitizerKind::NonnullAttribute) || !FD)
+ return;
+ auto PVD = ParmNum < FD->getNumParams() ? FD->getParamDecl(ParmNum) : nullptr;
+ unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
+ auto NNAttr = getNonNullAttr(FD, PVD, ArgType, ArgNo);
+ if (!NNAttr)
+ return;
+ CodeGenFunction::SanitizerScope SanScope(&CGF);
+ assert(RV.isScalar());
+ llvm::Value *V = RV.getScalarVal();
+ llvm::Value *Cond =
+ CGF.Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
+ llvm::Constant *StaticData[] = {
+ CGF.EmitCheckSourceLocation(ArgLoc),
+ CGF.EmitCheckSourceLocation(NNAttr->getLocation()),
+ llvm::ConstantInt::get(CGF.Int32Ty, ArgNo + 1),
+ };
+ CGF.EmitCheck(std::make_pair(Cond, SanitizerKind::NonnullAttribute),
+ "nonnull_arg", StaticData, None);
+}
+
+void CodeGenFunction::EmitCallArgs(CallArgList &Args,
+ ArrayRef<QualType> ArgTypes,
+ CallExpr::const_arg_iterator ArgBeg,
+ CallExpr::const_arg_iterator ArgEnd,
+ const FunctionDecl *CalleeDecl,
+ unsigned ParamsToSkip) {
+ // We *have* to evaluate arguments from right to left in the MS C++ ABI,
+ // because arguments are destroyed left to right in the callee.
+ if (CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
+ // Insert a stack save if we're going to need any inalloca args.
+ bool HasInAllocaArgs = false;
+ for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
+ I != E && !HasInAllocaArgs; ++I)
+ HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
+ if (HasInAllocaArgs) {
+ assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
+ Args.allocateArgumentMemory(*this);
+ }
+
+ // Evaluate each argument.
+ size_t CallArgsStart = Args.size();
+ for (int I = ArgTypes.size() - 1; I >= 0; --I) {
+ CallExpr::const_arg_iterator Arg = ArgBeg + I;
+ EmitCallArg(Args, *Arg, ArgTypes[I]);
+ emitNonNullArgCheck(*this, Args.back().RV, ArgTypes[I], Arg->getExprLoc(),
+ CalleeDecl, ParamsToSkip + I);
+ }
+
+ // Un-reverse the arguments we just evaluated so they match up with the LLVM
+ // IR function.
+ std::reverse(Args.begin() + CallArgsStart, Args.end());
+ return;
+ }
+
+ for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
+ CallExpr::const_arg_iterator Arg = ArgBeg + I;
+ assert(Arg != ArgEnd);
+ EmitCallArg(Args, *Arg, ArgTypes[I]);
+ emitNonNullArgCheck(*this, Args.back().RV, ArgTypes[I], Arg->getExprLoc(),
+ CalleeDecl, ParamsToSkip + I);
+ }
+}
+
+namespace {
+
+struct DestroyUnpassedArg : EHScopeStack::Cleanup {
+ DestroyUnpassedArg(llvm::Value *Addr, QualType Ty)
+ : Addr(Addr), Ty(Ty) {}
+
+ llvm::Value *Addr;
+ QualType Ty;
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
+ assert(!Dtor->isTrivial());
+ CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
+ /*Delegating=*/false, Addr);
+ }
+};
+
+}
+
+struct DisableDebugLocationUpdates {
+ CodeGenFunction &CGF;
+ bool disabledDebugInfo;
+ DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
+ if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
+ CGF.disableDebugInfo();
+ }
+ ~DisableDebugLocationUpdates() {
+ if (disabledDebugInfo)
+ CGF.enableDebugInfo();
+ }
+};
+
+void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
+ QualType type) {
+ DisableDebugLocationUpdates Dis(*this, E);
+ if (const ObjCIndirectCopyRestoreExpr *CRE
+ = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
+ assert(getLangOpts().ObjCAutoRefCount);
+ assert(getContext().hasSameType(E->getType(), type));
+ return emitWritebackArg(*this, args, CRE);
+ }
+
+ assert(type->isReferenceType() == E->isGLValue() &&
+ "reference binding to unmaterialized r-value!");
+
+ if (E->isGLValue()) {
+ assert(E->getObjectKind() == OK_Ordinary);
+ return args.add(EmitReferenceBindingToExpr(E), type);
+ }
+
+ bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
+
+ // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
+ // However, we still have to push an EH-only cleanup in case we unwind before
+ // we make it to the call.
+ if (HasAggregateEvalKind &&
+ CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
+ // If we're using inalloca, use the argument memory. Otherwise, use a
+ // temporary.
+ AggValueSlot Slot;
+ if (args.isUsingInAlloca())
+ Slot = createPlaceholderSlot(*this, type);
+ else
+ Slot = CreateAggTemp(type, "agg.tmp");
+
+ const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
+ bool DestroyedInCallee =
+ RD && RD->hasNonTrivialDestructor() &&
+ CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default;
+ if (DestroyedInCallee)
+ Slot.setExternallyDestructed();
+
+ EmitAggExpr(E, Slot);
+ RValue RV = Slot.asRValue();
+ args.add(RV, type);
+
+ if (DestroyedInCallee) {
+ // Create a no-op GEP between the placeholder and the cleanup so we can
+ // RAUW it successfully. It also serves as a marker of the first
+ // instruction where the cleanup is active.
+ pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddr(), type);
+ // This unreachable is a temporary marker which will be removed later.
+ llvm::Instruction *IsActive = Builder.CreateUnreachable();
+ args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
+ }
+ return;
+ }
+
+ if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
+ cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
+ LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
+ assert(L.isSimple());
+ if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
+ args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
+ } else {
+ // We can't represent a misaligned lvalue in the CallArgList, so copy
+ // to an aligned temporary now.
+ llvm::Value *tmp = CreateMemTemp(type);
+ EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile(),
+ L.getAlignment());
+ args.add(RValue::getAggregate(tmp), type);
+ }
+ return;
+ }
+
+ args.add(EmitAnyExprToTemp(E), type);
+}
+
+QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
+ // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
+ // implicitly widens null pointer constants that are arguments to varargs
+ // functions to pointer-sized ints.
+ if (!getTarget().getTriple().isOSWindows())
+ return Arg->getType();
+
+ if (Arg->getType()->isIntegerType() &&
+ getContext().getTypeSize(Arg->getType()) <
+ getContext().getTargetInfo().getPointerWidth(0) &&
+ Arg->isNullPointerConstant(getContext(),
+ Expr::NPC_ValueDependentIsNotNull)) {
+ return getContext().getIntPtrType();
+ }
+
+ return Arg->getType();
+}
+
+// In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
+// optimizer it can aggressively ignore unwind edges.
+void
+CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
+ if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
+ !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
+ Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
+ CGM.getNoObjCARCExceptionsMetadata());
+}
+
+/// Emits a call to the given no-arguments nounwind runtime function.
+llvm::CallInst *
+CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
+ const llvm::Twine &name) {
+ return EmitNounwindRuntimeCall(callee, None, name);
+}
+
+/// Emits a call to the given nounwind runtime function.
+llvm::CallInst *
+CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
+ ArrayRef<llvm::Value*> args,
+ const llvm::Twine &name) {
+ llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
+ call->setDoesNotThrow();
+ return call;
+}
+
+/// Emits a simple call (never an invoke) to the given no-arguments
+/// runtime function.
+llvm::CallInst *
+CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
+ const llvm::Twine &name) {
+ return EmitRuntimeCall(callee, None, name);
+}
+
+/// Emits a simple call (never an invoke) to the given runtime
+/// function.
+llvm::CallInst *
+CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
+ ArrayRef<llvm::Value*> args,
+ const llvm::Twine &name) {
+ llvm::CallInst *call = Builder.CreateCall(callee, args, name);
+ call->setCallingConv(getRuntimeCC());
+ return call;
+}
+
+/// Emits a call or invoke to the given noreturn runtime function.
+void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
+ ArrayRef<llvm::Value*> args) {
+ if (getInvokeDest()) {
+ llvm::InvokeInst *invoke =
+ Builder.CreateInvoke(callee,
+ getUnreachableBlock(),
+ getInvokeDest(),
+ args);
+ invoke->setDoesNotReturn();
+ invoke->setCallingConv(getRuntimeCC());
+ } else {
+ llvm::CallInst *call = Builder.CreateCall(callee, args);
+ call->setDoesNotReturn();
+ call->setCallingConv(getRuntimeCC());
+ Builder.CreateUnreachable();
+ }
+}
+
+/// Emits a call or invoke instruction to the given nullary runtime
+/// function.
+llvm::CallSite
+CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
+ const Twine &name) {
+ return EmitRuntimeCallOrInvoke(callee, None, name);
+}
+
+/// Emits a call or invoke instruction to the given runtime function.
+llvm::CallSite
+CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
+ ArrayRef<llvm::Value*> args,
+ const Twine &name) {
+ llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
+ callSite.setCallingConv(getRuntimeCC());
+ return callSite;
+}
+
+llvm::CallSite
+CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
+ const Twine &Name) {
+ return EmitCallOrInvoke(Callee, None, Name);
+}
+
+/// Emits a call or invoke instruction to the given function, depending
+/// on the current state of the EH stack.
+llvm::CallSite
+CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
+ ArrayRef<llvm::Value *> Args,
+ const Twine &Name) {
+ llvm::BasicBlock *InvokeDest = getInvokeDest();
+
+ llvm::Instruction *Inst;
+ if (!InvokeDest)
+ Inst = Builder.CreateCall(Callee, Args, Name);
+ else {
+ llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
+ Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
+ EmitBlock(ContBB);
+ }
+
+ // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
+ // optimizer it can aggressively ignore unwind edges.
+ if (CGM.getLangOpts().ObjCAutoRefCount)
+ AddObjCARCExceptionMetadata(Inst);
+
+ return llvm::CallSite(Inst);
+}
+
+/// \brief Store a non-aggregate value to an address to initialize it. For
+/// initialization, a non-atomic store will be used.
+static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src,
+ LValue Dst) {
+ if (Src.isScalar())
+ CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true);
+ else
+ CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true);
+}
+
+void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
+ llvm::Value *New) {
+ DeferredReplacements.push_back(std::make_pair(Old, New));
+}
+
+RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
+ llvm::Value *Callee,
+ ReturnValueSlot ReturnValue,
+ const CallArgList &CallArgs,
+ const Decl *TargetDecl,
+ llvm::Instruction **callOrInvoke) {
+ // FIXME: We no longer need the types from CallArgs; lift up and simplify.
+
+ // Handle struct-return functions by passing a pointer to the
+ // location that we would like to return into.
+ QualType RetTy = CallInfo.getReturnType();
+ const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
+
+ llvm::FunctionType *IRFuncTy =
+ cast<llvm::FunctionType>(
+ cast<llvm::PointerType>(Callee->getType())->getElementType());
+
+ // If we're using inalloca, insert the allocation after the stack save.
+ // FIXME: Do this earlier rather than hacking it in here!
+ llvm::AllocaInst *ArgMemory = nullptr;
+ if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
+ llvm::Instruction *IP = CallArgs.getStackBase();
+ llvm::AllocaInst *AI;
+ if (IP) {
+ IP = IP->getNextNode();
+ AI = new llvm::AllocaInst(ArgStruct, "argmem", IP);
+ } else {
+ AI = CreateTempAlloca(ArgStruct, "argmem");
+ }
+ AI->setUsedWithInAlloca(true);
+ assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
+ ArgMemory = AI;
+ }
+
+ ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
+ SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
+
+ // If the call returns a temporary with struct return, create a temporary
+ // alloca to hold the result, unless one is given to us.
+ llvm::Value *SRetPtr = nullptr;
+ if (RetAI.isIndirect() || RetAI.isInAlloca()) {
+ SRetPtr = ReturnValue.getValue();
+ if (!SRetPtr)
+ SRetPtr = CreateMemTemp(RetTy);
+ if (IRFunctionArgs.hasSRetArg()) {
+ IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr;
+ } else {
+ llvm::Value *Addr =
+ Builder.CreateStructGEP(ArgMemory->getAllocatedType(), ArgMemory,
+ RetAI.getInAllocaFieldIndex());
+ Builder.CreateStore(SRetPtr, Addr);
+ }
+ }
+
+ assert(CallInfo.arg_size() == CallArgs.size() &&
+ "Mismatch between function signature & arguments.");
+ unsigned ArgNo = 0;
+ CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
+ for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
+ I != E; ++I, ++info_it, ++ArgNo) {
+ const ABIArgInfo &ArgInfo = info_it->info;
+ RValue RV = I->RV;
+
+ CharUnits TypeAlign = getContext().getTypeAlignInChars(I->Ty);
+
+ // Insert a padding argument to ensure proper alignment.
+ if (IRFunctionArgs.hasPaddingArg(ArgNo))
+ IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
+ llvm::UndefValue::get(ArgInfo.getPaddingType());
+
+ unsigned FirstIRArg, NumIRArgs;
+ std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
+
+ switch (ArgInfo.getKind()) {
+ case ABIArgInfo::InAlloca: {
+ assert(NumIRArgs == 0);
+ assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
+ if (RV.isAggregate()) {
+ // Replace the placeholder with the appropriate argument slot GEP.
+ llvm::Instruction *Placeholder =
+ cast<llvm::Instruction>(RV.getAggregateAddr());
+ CGBuilderTy::InsertPoint IP = Builder.saveIP();
+ Builder.SetInsertPoint(Placeholder);
+ llvm::Value *Addr =
+ Builder.CreateStructGEP(ArgMemory->getAllocatedType(), ArgMemory,
+ ArgInfo.getInAllocaFieldIndex());
+ Builder.restoreIP(IP);
+ deferPlaceholderReplacement(Placeholder, Addr);
+ } else {
+ // Store the RValue into the argument struct.
+ llvm::Value *Addr =
+ Builder.CreateStructGEP(ArgMemory->getAllocatedType(), ArgMemory,
+ ArgInfo.getInAllocaFieldIndex());
+ unsigned AS = Addr->getType()->getPointerAddressSpace();
+ llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
+ // There are some cases where a trivial bitcast is not avoidable. The
+ // definition of a type later in a translation unit may change it's type
+ // from {}* to (%struct.foo*)*.
+ if (Addr->getType() != MemType)
+ Addr = Builder.CreateBitCast(Addr, MemType);
+ LValue argLV = MakeAddrLValue(Addr, I->Ty, TypeAlign);
+ EmitInitStoreOfNonAggregate(*this, RV, argLV);
+ }
+ break;
+ }
+
+ case ABIArgInfo::Indirect: {
+ assert(NumIRArgs == 1);
+ if (RV.isScalar() || RV.isComplex()) {
+ // Make a temporary alloca to pass the argument.
+ llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
+ if (ArgInfo.getIndirectAlign() > AI->getAlignment())
+ AI->setAlignment(ArgInfo.getIndirectAlign());
+ IRCallArgs[FirstIRArg] = AI;
+
+ LValue argLV = MakeAddrLValue(AI, I->Ty, TypeAlign);
+ EmitInitStoreOfNonAggregate(*this, RV, argLV);
+ } else {
+ // We want to avoid creating an unnecessary temporary+copy here;
+ // however, we need one in three cases:
+ // 1. If the argument is not byval, and we are required to copy the
+ // source. (This case doesn't occur on any common architecture.)
+ // 2. If the argument is byval, RV is not sufficiently aligned, and
+ // we cannot force it to be sufficiently aligned.
+ // 3. If the argument is byval, but RV is located in an address space
+ // different than that of the argument (0).
+ llvm::Value *Addr = RV.getAggregateAddr();
+ unsigned Align = ArgInfo.getIndirectAlign();
+ const llvm::DataLayout *TD = &CGM.getDataLayout();
+ const unsigned RVAddrSpace = Addr->getType()->getPointerAddressSpace();
+ const unsigned ArgAddrSpace =
+ (FirstIRArg < IRFuncTy->getNumParams()
+ ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace()
+ : 0);
+ if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
+ (ArgInfo.getIndirectByVal() && TypeAlign.getQuantity() < Align &&
+ llvm::getOrEnforceKnownAlignment(Addr, Align, *TD) < Align) ||
+ (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
+ // Create an aligned temporary, and copy to it.
+ llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
+ if (Align > AI->getAlignment())
+ AI->setAlignment(Align);
+ IRCallArgs[FirstIRArg] = AI;
+ EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
+ } else {
+ // Skip the extra memcpy call.
+ IRCallArgs[FirstIRArg] = Addr;
+ }
+ }
+ break;
+ }
+
+ case ABIArgInfo::Ignore:
+ assert(NumIRArgs == 0);
+ break;
+
+ case ABIArgInfo::Extend:
+ case ABIArgInfo::Direct: {
+ if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
+ ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
+ ArgInfo.getDirectOffset() == 0) {
+ assert(NumIRArgs == 1);
+ llvm::Value *V;
+ if (RV.isScalar())
+ V = RV.getScalarVal();
+ else
+ V = Builder.CreateLoad(RV.getAggregateAddr());
+
+ // We might have to widen integers, but we should never truncate.
+ if (ArgInfo.getCoerceToType() != V->getType() &&
+ V->getType()->isIntegerTy())
+ V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
+
+ // If the argument doesn't match, perform a bitcast to coerce it. This
+ // can happen due to trivial type mismatches.
+ if (FirstIRArg < IRFuncTy->getNumParams() &&
+ V->getType() != IRFuncTy->getParamType(FirstIRArg))
+ V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
+ IRCallArgs[FirstIRArg] = V;
+ break;
+ }
+
+ // FIXME: Avoid the conversion through memory if possible.
+ llvm::Value *SrcPtr;
+ if (RV.isScalar() || RV.isComplex()) {
+ SrcPtr = CreateMemTemp(I->Ty, "coerce");
+ LValue SrcLV = MakeAddrLValue(SrcPtr, I->Ty, TypeAlign);
+ EmitInitStoreOfNonAggregate(*this, RV, SrcLV);
+ } else
+ SrcPtr = RV.getAggregateAddr();
+
+ // If the value is offset in memory, apply the offset now.
+ if (unsigned Offs = ArgInfo.getDirectOffset()) {
+ SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
+ SrcPtr = Builder.CreateConstGEP1_32(Builder.getInt8Ty(), SrcPtr, Offs);
+ SrcPtr = Builder.CreateBitCast(SrcPtr,
+ llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
+
+ }
+
+ // Fast-isel and the optimizer generally like scalar values better than
+ // FCAs, so we flatten them if this is safe to do for this argument.
+ llvm::StructType *STy =
+ dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
+ if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
+ llvm::Type *SrcTy =
+ cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
+ uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
+ uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
+
+ // If the source type is smaller than the destination type of the
+ // coerce-to logic, copy the source value into a temp alloca the size
+ // of the destination type to allow loading all of it. The bits past
+ // the source value are left undef.
+ if (SrcSize < DstSize) {
+ llvm::AllocaInst *TempAlloca
+ = CreateTempAlloca(STy, SrcPtr->getName() + ".coerce");
+ Builder.CreateMemCpy(TempAlloca, SrcPtr, SrcSize, 0);
+ SrcPtr = TempAlloca;
+ } else {
+ SrcPtr = Builder.CreateBitCast(SrcPtr,
+ llvm::PointerType::getUnqual(STy));
+ }
+
+ assert(NumIRArgs == STy->getNumElements());
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+ llvm::Value *EltPtr = Builder.CreateConstGEP2_32(STy, SrcPtr, 0, i);
+ llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
+ // We don't know what we're loading from.
+ LI->setAlignment(1);
+ IRCallArgs[FirstIRArg + i] = LI;
+ }
+ } else {
+ // In the simple case, just pass the coerced loaded value.
+ assert(NumIRArgs == 1);
+ IRCallArgs[FirstIRArg] =
+ CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(), *this);
+ }
+
+ break;
+ }
+
+ case ABIArgInfo::Expand:
+ unsigned IRArgPos = FirstIRArg;
+ ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos);
+ assert(IRArgPos == FirstIRArg + NumIRArgs);
+ break;
+ }
+ }
+
+ if (ArgMemory) {
+ llvm::Value *Arg = ArgMemory;
+ if (CallInfo.isVariadic()) {
+ // When passing non-POD arguments by value to variadic functions, we will
+ // end up with a variadic prototype and an inalloca call site. In such
+ // cases, we can't do any parameter mismatch checks. Give up and bitcast
+ // the callee.
+ unsigned CalleeAS =
+ cast<llvm::PointerType>(Callee->getType())->getAddressSpace();
+ Callee = Builder.CreateBitCast(
+ Callee, getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS));
+ } else {
+ llvm::Type *LastParamTy =
+ IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
+ if (Arg->getType() != LastParamTy) {
+#ifndef NDEBUG
+ // Assert that these structs have equivalent element types.
+ llvm::StructType *FullTy = CallInfo.getArgStruct();
+ llvm::StructType *DeclaredTy = cast<llvm::StructType>(
+ cast<llvm::PointerType>(LastParamTy)->getElementType());
+ assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
+ for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
+ DE = DeclaredTy->element_end(),
+ FI = FullTy->element_begin();
+ DI != DE; ++DI, ++FI)
+ assert(*DI == *FI);
+#endif
+ Arg = Builder.CreateBitCast(Arg, LastParamTy);
+ }
+ }
+ assert(IRFunctionArgs.hasInallocaArg());
+ IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
+ }
+
+ if (!CallArgs.getCleanupsToDeactivate().empty())
+ deactivateArgCleanupsBeforeCall(*this, CallArgs);
+
+ // If the callee is a bitcast of a function to a varargs pointer to function
+ // type, check to see if we can remove the bitcast. This handles some cases
+ // with unprototyped functions.
+ if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
+ if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
+ llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
+ llvm::FunctionType *CurFT =
+ cast<llvm::FunctionType>(CurPT->getElementType());
+ llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
+
+ if (CE->getOpcode() == llvm::Instruction::BitCast &&
+ ActualFT->getReturnType() == CurFT->getReturnType() &&
+ ActualFT->getNumParams() == CurFT->getNumParams() &&
+ ActualFT->getNumParams() == IRCallArgs.size() &&
+ (CurFT->isVarArg() || !ActualFT->isVarArg())) {
+ bool ArgsMatch = true;
+ for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
+ if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
+ ArgsMatch = false;
+ break;
+ }
+
+ // Strip the cast if we can get away with it. This is a nice cleanup,
+ // but also allows us to inline the function at -O0 if it is marked
+ // always_inline.
+ if (ArgsMatch)
+ Callee = CalleeF;
+ }
+ }
+
+ assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
+ for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
+ // Inalloca argument can have different type.
+ if (IRFunctionArgs.hasInallocaArg() &&
+ i == IRFunctionArgs.getInallocaArgNo())
+ continue;
+ if (i < IRFuncTy->getNumParams())
+ assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
+ }
+
+ unsigned CallingConv;
+ CodeGen::AttributeListType AttributeList;
+ CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList,
+ CallingConv, true);
+ llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(),
+ AttributeList);
+
+ llvm::BasicBlock *InvokeDest = nullptr;
+ if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
+ llvm::Attribute::NoUnwind) ||
+ currentFunctionUsesSEHTry())
+ InvokeDest = getInvokeDest();
+
+ llvm::CallSite CS;
+ if (!InvokeDest) {
+ CS = Builder.CreateCall(Callee, IRCallArgs);
+ } else {
+ llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
+ CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, IRCallArgs);
+ EmitBlock(Cont);
+ }
+ if (callOrInvoke)
+ *callOrInvoke = CS.getInstruction();
+
+ if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
+ !CS.hasFnAttr(llvm::Attribute::NoInline))
+ Attrs =
+ Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
+ llvm::Attribute::AlwaysInline);
+
+ // Disable inlining inside SEH __try blocks.
+ if (isSEHTryScope())
+ Attrs =
+ Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
+ llvm::Attribute::NoInline);
+
+ CS.setAttributes(Attrs);
+ CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
+
+ // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
+ // optimizer it can aggressively ignore unwind edges.
+ if (CGM.getLangOpts().ObjCAutoRefCount)
+ AddObjCARCExceptionMetadata(CS.getInstruction());
+
+ // If the call doesn't return, finish the basic block and clear the
+ // insertion point; this allows the rest of IRgen to discard
+ // unreachable code.
+ if (CS.doesNotReturn()) {
+ Builder.CreateUnreachable();
+ Builder.ClearInsertionPoint();
+
+ // FIXME: For now, emit a dummy basic block because expr emitters in
+ // generally are not ready to handle emitting expressions at unreachable
+ // points.
+ EnsureInsertPoint();
+
+ // Return a reasonable RValue.
+ return GetUndefRValue(RetTy);
+ }
+
+ llvm::Instruction *CI = CS.getInstruction();
+ if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
+ CI->setName("call");
+
+ // Emit any writebacks immediately. Arguably this should happen
+ // after any return-value munging.
+ if (CallArgs.hasWritebacks())
+ emitWritebacks(*this, CallArgs);
+
+ // The stack cleanup for inalloca arguments has to run out of the normal
+ // lexical order, so deactivate it and run it manually here.
+ CallArgs.freeArgumentMemory(*this);
+
+ RValue Ret = [&] {
+ switch (RetAI.getKind()) {
+ case ABIArgInfo::InAlloca:
+ case ABIArgInfo::Indirect:
+ return convertTempToRValue(SRetPtr, RetTy, SourceLocation());
+
+ case ABIArgInfo::Ignore:
+ // If we are ignoring an argument that had a result, make sure to
+ // construct the appropriate return value for our caller.
+ return GetUndefRValue(RetTy);
+
+ case ABIArgInfo::Extend:
+ case ABIArgInfo::Direct: {
+ llvm::Type *RetIRTy = ConvertType(RetTy);
+ if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
+ switch (getEvaluationKind(RetTy)) {
+ case TEK_Complex: {
+ llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
+ llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
+ return RValue::getComplex(std::make_pair(Real, Imag));
+ }
+ case TEK_Aggregate: {
+ llvm::Value *DestPtr = ReturnValue.getValue();
+ bool DestIsVolatile = ReturnValue.isVolatile();
+
+ if (!DestPtr) {
+ DestPtr = CreateMemTemp(RetTy, "agg.tmp");
+ DestIsVolatile = false;
+ }
+ BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
+ return RValue::getAggregate(DestPtr);
+ }
+ case TEK_Scalar: {
+ // If the argument doesn't match, perform a bitcast to coerce it. This
+ // can happen due to trivial type mismatches.
+ llvm::Value *V = CI;
+ if (V->getType() != RetIRTy)
+ V = Builder.CreateBitCast(V, RetIRTy);
+ return RValue::get(V);
+ }
+ }
+ llvm_unreachable("bad evaluation kind");
+ }
+
+ llvm::Value *DestPtr = ReturnValue.getValue();
+ bool DestIsVolatile = ReturnValue.isVolatile();
+
+ if (!DestPtr) {
+ DestPtr = CreateMemTemp(RetTy, "coerce");
+ DestIsVolatile = false;
+ }
+
+ // If the value is offset in memory, apply the offset now.
+ llvm::Value *StorePtr = DestPtr;
+ if (unsigned Offs = RetAI.getDirectOffset()) {
+ StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
+ StorePtr =
+ Builder.CreateConstGEP1_32(Builder.getInt8Ty(), StorePtr, Offs);
+ StorePtr = Builder.CreateBitCast(StorePtr,
+ llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
+ }
+ CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
+
+ return convertTempToRValue(DestPtr, RetTy, SourceLocation());
+ }
+
+ case ABIArgInfo::Expand:
+ llvm_unreachable("Invalid ABI kind for return argument");
+ }
+
+ llvm_unreachable("Unhandled ABIArgInfo::Kind");
+ } ();
+
+ if (Ret.isScalar() && TargetDecl) {
+ if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
+ llvm::Value *OffsetValue = nullptr;
+ if (const auto *Offset = AA->getOffset())
+ OffsetValue = EmitScalarExpr(Offset);
+
+ llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
+ llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
+ EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(),
+ OffsetValue);
+ }
+ }
+
+ return Ret;
+}
+
+/* VarArg handling */
+
+llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
+ return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGCall.h b/contrib/llvm/tools/clang/lib/CodeGen/CGCall.h
new file mode 100644
index 0000000..b228733
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGCall.h
@@ -0,0 +1,174 @@
+//===----- CGCall.h - Encapsulate calling convention details ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// These classes wrap the information about a call or function
+// definition used to handle ABI compliancy.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_CODEGEN_CGCALL_H
+#define LLVM_CLANG_LIB_CODEGEN_CGCALL_H
+
+#include "CGValue.h"
+#include "EHScopeStack.h"
+#include "clang/AST/CanonicalType.h"
+#include "clang/AST/Type.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/IR/Value.h"
+
+// FIXME: Restructure so we don't have to expose so much stuff.
+#include "ABIInfo.h"
+
+namespace llvm {
+ class AttributeSet;
+ class Function;
+ class Type;
+ class Value;
+}
+
+namespace clang {
+ class ASTContext;
+ class Decl;
+ class FunctionDecl;
+ class ObjCMethodDecl;
+ class VarDecl;
+
+namespace CodeGen {
+ typedef SmallVector<llvm::AttributeSet, 8> AttributeListType;
+
+ struct CallArg {
+ RValue RV;
+ QualType Ty;
+ bool NeedsCopy;
+ CallArg(RValue rv, QualType ty, bool needscopy)
+ : RV(rv), Ty(ty), NeedsCopy(needscopy)
+ { }
+ };
+
+ /// CallArgList - Type for representing both the value and type of
+ /// arguments in a call.
+ class CallArgList :
+ public SmallVector<CallArg, 16> {
+ public:
+ CallArgList() : StackBase(nullptr), StackBaseMem(nullptr) {}
+
+ struct Writeback {
+ /// The original argument. Note that the argument l-value
+ /// is potentially null.
+ LValue Source;
+
+ /// The temporary alloca.
+ llvm::Value *Temporary;
+
+ /// A value to "use" after the writeback, or null.
+ llvm::Value *ToUse;
+ };
+
+ struct CallArgCleanup {
+ EHScopeStack::stable_iterator Cleanup;
+
+ /// The "is active" insertion point. This instruction is temporary and
+ /// will be removed after insertion.
+ llvm::Instruction *IsActiveIP;
+ };
+
+ void add(RValue rvalue, QualType type, bool needscopy = false) {
+ push_back(CallArg(rvalue, type, needscopy));
+ }
+
+ void addFrom(const CallArgList &other) {
+ insert(end(), other.begin(), other.end());
+ Writebacks.insert(Writebacks.end(),
+ other.Writebacks.begin(), other.Writebacks.end());
+ }
+
+ void addWriteback(LValue srcLV, llvm::Value *temporary,
+ llvm::Value *toUse) {
+ Writeback writeback;
+ writeback.Source = srcLV;
+ writeback.Temporary = temporary;
+ writeback.ToUse = toUse;
+ Writebacks.push_back(writeback);
+ }
+
+ bool hasWritebacks() const { return !Writebacks.empty(); }
+
+ typedef llvm::iterator_range<SmallVectorImpl<Writeback>::const_iterator>
+ writeback_const_range;
+
+ writeback_const_range writebacks() const {
+ return writeback_const_range(Writebacks.begin(), Writebacks.end());
+ }
+
+ void addArgCleanupDeactivation(EHScopeStack::stable_iterator Cleanup,
+ llvm::Instruction *IsActiveIP) {
+ CallArgCleanup ArgCleanup;
+ ArgCleanup.Cleanup = Cleanup;
+ ArgCleanup.IsActiveIP = IsActiveIP;
+ CleanupsToDeactivate.push_back(ArgCleanup);
+ }
+
+ ArrayRef<CallArgCleanup> getCleanupsToDeactivate() const {
+ return CleanupsToDeactivate;
+ }
+
+ void allocateArgumentMemory(CodeGenFunction &CGF);
+ llvm::Instruction *getStackBase() const { return StackBase; }
+ void freeArgumentMemory(CodeGenFunction &CGF) const;
+
+ /// \brief Returns if we're using an inalloca struct to pass arguments in
+ /// memory.
+ bool isUsingInAlloca() const { return StackBase; }
+
+ private:
+ SmallVector<Writeback, 1> Writebacks;
+
+ /// Deactivate these cleanups immediately before making the call. This
+ /// is used to cleanup objects that are owned by the callee once the call
+ /// occurs.
+ SmallVector<CallArgCleanup, 1> CleanupsToDeactivate;
+
+ /// The stacksave call. It dominates all of the argument evaluation.
+ llvm::CallInst *StackBase;
+
+ /// The alloca holding the stackbase. We need it to maintain SSA form.
+ llvm::AllocaInst *StackBaseMem;
+
+ /// The iterator pointing to the stack restore cleanup. We manually run and
+ /// deactivate this cleanup after the call in the unexceptional case because
+ /// it doesn't run in the normal order.
+ EHScopeStack::stable_iterator StackCleanup;
+ };
+
+ /// FunctionArgList - Type for representing both the decl and type
+ /// of parameters to a function. The decl must be either a
+ /// ParmVarDecl or ImplicitParamDecl.
+ class FunctionArgList : public SmallVector<const VarDecl*, 16> {
+ };
+
+ /// ReturnValueSlot - Contains the address where the return value of a
+ /// function can be stored, and whether the address is volatile or not.
+ class ReturnValueSlot {
+ llvm::PointerIntPair<llvm::Value *, 1, bool> Value;
+
+ public:
+ ReturnValueSlot() {}
+ ReturnValueSlot(llvm::Value *Value, bool IsVolatile)
+ : Value(Value, IsVolatile) {}
+
+ bool isNull() const { return !getValue(); }
+
+ bool isVolatile() const { return Value.getInt(); }
+ llvm::Value *getValue() const { return Value.getPointer(); }
+ };
+
+} // end namespace CodeGen
+} // end namespace clang
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGClass.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGClass.cpp
new file mode 100644
index 0000000..cd75da2
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGClass.cpp
@@ -0,0 +1,2420 @@
+//===--- CGClass.cpp - Emit LLVM Code for C++ classes ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code dealing with C++ code generation of classes
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGBlocks.h"
+#include "CGCXXABI.h"
+#include "CGDebugInfo.h"
+#include "CGRecordLayout.h"
+#include "CodeGenFunction.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/EvaluatedExprVisitor.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/AST/StmtCXX.h"
+#include "clang/Basic/TargetBuiltins.h"
+#include "clang/CodeGen/CGFunctionInfo.h"
+#include "clang/Frontend/CodeGenOptions.h"
+#include "llvm/IR/Intrinsics.h"
+
+using namespace clang;
+using namespace CodeGen;
+
+static CharUnits
+ComputeNonVirtualBaseClassOffset(ASTContext &Context,
+ const CXXRecordDecl *DerivedClass,
+ CastExpr::path_const_iterator Start,
+ CastExpr::path_const_iterator End) {
+ CharUnits Offset = CharUnits::Zero();
+
+ const CXXRecordDecl *RD = DerivedClass;
+
+ for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
+ const CXXBaseSpecifier *Base = *I;
+ assert(!Base->isVirtual() && "Should not see virtual bases here!");
+
+ // Get the layout.
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+
+ const CXXRecordDecl *BaseDecl =
+ cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
+
+ // Add the offset.
+ Offset += Layout.getBaseClassOffset(BaseDecl);
+
+ RD = BaseDecl;
+ }
+
+ return Offset;
+}
+
+llvm::Constant *
+CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
+ CastExpr::path_const_iterator PathBegin,
+ CastExpr::path_const_iterator PathEnd) {
+ assert(PathBegin != PathEnd && "Base path should not be empty!");
+
+ CharUnits Offset =
+ ComputeNonVirtualBaseClassOffset(getContext(), ClassDecl,
+ PathBegin, PathEnd);
+ if (Offset.isZero())
+ return nullptr;
+
+ llvm::Type *PtrDiffTy =
+ Types.ConvertType(getContext().getPointerDiffType());
+
+ return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
+}
+
+/// Gets the address of a direct base class within a complete object.
+/// This should only be used for (1) non-virtual bases or (2) virtual bases
+/// when the type is known to be complete (e.g. in complete destructors).
+///
+/// The object pointed to by 'This' is assumed to be non-null.
+llvm::Value *
+CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(llvm::Value *This,
+ const CXXRecordDecl *Derived,
+ const CXXRecordDecl *Base,
+ bool BaseIsVirtual) {
+ // 'this' must be a pointer (in some address space) to Derived.
+ assert(This->getType()->isPointerTy() &&
+ cast<llvm::PointerType>(This->getType())->getElementType()
+ == ConvertType(Derived));
+
+ // Compute the offset of the virtual base.
+ CharUnits Offset;
+ const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
+ if (BaseIsVirtual)
+ Offset = Layout.getVBaseClassOffset(Base);
+ else
+ Offset = Layout.getBaseClassOffset(Base);
+
+ // Shift and cast down to the base type.
+ // TODO: for complete types, this should be possible with a GEP.
+ llvm::Value *V = This;
+ if (Offset.isPositive()) {
+ V = Builder.CreateBitCast(V, Int8PtrTy);
+ V = Builder.CreateConstInBoundsGEP1_64(V, Offset.getQuantity());
+ }
+ V = Builder.CreateBitCast(V, ConvertType(Base)->getPointerTo());
+
+ return V;
+}
+
+static llvm::Value *
+ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, llvm::Value *ptr,
+ CharUnits nonVirtualOffset,
+ llvm::Value *virtualOffset) {
+ // Assert that we have something to do.
+ assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr);
+
+ // Compute the offset from the static and dynamic components.
+ llvm::Value *baseOffset;
+ if (!nonVirtualOffset.isZero()) {
+ baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy,
+ nonVirtualOffset.getQuantity());
+ if (virtualOffset) {
+ baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
+ }
+ } else {
+ baseOffset = virtualOffset;
+ }
+
+ // Apply the base offset.
+ ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy);
+ ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr");
+ return ptr;
+}
+
+llvm::Value *CodeGenFunction::GetAddressOfBaseClass(
+ llvm::Value *Value, const CXXRecordDecl *Derived,
+ CastExpr::path_const_iterator PathBegin,
+ CastExpr::path_const_iterator PathEnd, bool NullCheckValue,
+ SourceLocation Loc) {
+ assert(PathBegin != PathEnd && "Base path should not be empty!");
+
+ CastExpr::path_const_iterator Start = PathBegin;
+ const CXXRecordDecl *VBase = nullptr;
+
+ // Sema has done some convenient canonicalization here: if the
+ // access path involved any virtual steps, the conversion path will
+ // *start* with a step down to the correct virtual base subobject,
+ // and hence will not require any further steps.
+ if ((*Start)->isVirtual()) {
+ VBase =
+ cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl());
+ ++Start;
+ }
+
+ // Compute the static offset of the ultimate destination within its
+ // allocating subobject (the virtual base, if there is one, or else
+ // the "complete" object that we see).
+ CharUnits NonVirtualOffset =
+ ComputeNonVirtualBaseClassOffset(getContext(), VBase ? VBase : Derived,
+ Start, PathEnd);
+
+ // If there's a virtual step, we can sometimes "devirtualize" it.
+ // For now, that's limited to when the derived type is final.
+ // TODO: "devirtualize" this for accesses to known-complete objects.
+ if (VBase && Derived->hasAttr<FinalAttr>()) {
+ const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
+ CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
+ NonVirtualOffset += vBaseOffset;
+ VBase = nullptr; // we no longer have a virtual step
+ }
+
+ // Get the base pointer type.
+ llvm::Type *BasePtrTy =
+ ConvertType((PathEnd[-1])->getType())->getPointerTo();
+
+ QualType DerivedTy = getContext().getRecordType(Derived);
+ CharUnits DerivedAlign = getContext().getTypeAlignInChars(DerivedTy);
+
+ // If the static offset is zero and we don't have a virtual step,
+ // just do a bitcast; null checks are unnecessary.
+ if (NonVirtualOffset.isZero() && !VBase) {
+ if (sanitizePerformTypeCheck()) {
+ EmitTypeCheck(TCK_Upcast, Loc, Value, DerivedTy, DerivedAlign,
+ !NullCheckValue);
+ }
+ return Builder.CreateBitCast(Value, BasePtrTy);
+ }
+
+ llvm::BasicBlock *origBB = nullptr;
+ llvm::BasicBlock *endBB = nullptr;
+
+ // Skip over the offset (and the vtable load) if we're supposed to
+ // null-check the pointer.
+ if (NullCheckValue) {
+ origBB = Builder.GetInsertBlock();
+ llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
+ endBB = createBasicBlock("cast.end");
+
+ llvm::Value *isNull = Builder.CreateIsNull(Value);
+ Builder.CreateCondBr(isNull, endBB, notNullBB);
+ EmitBlock(notNullBB);
+ }
+
+ if (sanitizePerformTypeCheck()) {
+ EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc, Value,
+ DerivedTy, DerivedAlign, true);
+ }
+
+ // Compute the virtual offset.
+ llvm::Value *VirtualOffset = nullptr;
+ if (VBase) {
+ VirtualOffset =
+ CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
+ }
+
+ // Apply both offsets.
+ Value = ApplyNonVirtualAndVirtualOffset(*this, Value,
+ NonVirtualOffset,
+ VirtualOffset);
+
+ // Cast to the destination type.
+ Value = Builder.CreateBitCast(Value, BasePtrTy);
+
+ // Build a phi if we needed a null check.
+ if (NullCheckValue) {
+ llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
+ Builder.CreateBr(endBB);
+ EmitBlock(endBB);
+
+ llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result");
+ PHI->addIncoming(Value, notNullBB);
+ PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB);
+ Value = PHI;
+ }
+
+ return Value;
+}
+
+llvm::Value *
+CodeGenFunction::GetAddressOfDerivedClass(llvm::Value *Value,
+ const CXXRecordDecl *Derived,
+ CastExpr::path_const_iterator PathBegin,
+ CastExpr::path_const_iterator PathEnd,
+ bool NullCheckValue) {
+ assert(PathBegin != PathEnd && "Base path should not be empty!");
+
+ QualType DerivedTy =
+ getContext().getCanonicalType(getContext().getTagDeclType(Derived));
+ llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo();
+
+ llvm::Value *NonVirtualOffset =
+ CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
+
+ if (!NonVirtualOffset) {
+ // No offset, we can just cast back.
+ return Builder.CreateBitCast(Value, DerivedPtrTy);
+ }
+
+ llvm::BasicBlock *CastNull = nullptr;
+ llvm::BasicBlock *CastNotNull = nullptr;
+ llvm::BasicBlock *CastEnd = nullptr;
+
+ if (NullCheckValue) {
+ CastNull = createBasicBlock("cast.null");
+ CastNotNull = createBasicBlock("cast.notnull");
+ CastEnd = createBasicBlock("cast.end");
+
+ llvm::Value *IsNull = Builder.CreateIsNull(Value);
+ Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
+ EmitBlock(CastNotNull);
+ }
+
+ // Apply the offset.
+ Value = Builder.CreateBitCast(Value, Int8PtrTy);
+ Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset),
+ "sub.ptr");
+
+ // Just cast.
+ Value = Builder.CreateBitCast(Value, DerivedPtrTy);
+
+ if (NullCheckValue) {
+ Builder.CreateBr(CastEnd);
+ EmitBlock(CastNull);
+ Builder.CreateBr(CastEnd);
+ EmitBlock(CastEnd);
+
+ llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
+ PHI->addIncoming(Value, CastNotNull);
+ PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()),
+ CastNull);
+ Value = PHI;
+ }
+
+ return Value;
+}
+
+llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
+ bool ForVirtualBase,
+ bool Delegating) {
+ if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
+ // This constructor/destructor does not need a VTT parameter.
+ return nullptr;
+ }
+
+ const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
+ const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
+
+ llvm::Value *VTT;
+
+ uint64_t SubVTTIndex;
+
+ if (Delegating) {
+ // If this is a delegating constructor call, just load the VTT.
+ return LoadCXXVTT();
+ } else if (RD == Base) {
+ // If the record matches the base, this is the complete ctor/dtor
+ // variant calling the base variant in a class with virtual bases.
+ assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
+ "doing no-op VTT offset in base dtor/ctor?");
+ assert(!ForVirtualBase && "Can't have same class as virtual base!");
+ SubVTTIndex = 0;
+ } else {
+ const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
+ CharUnits BaseOffset = ForVirtualBase ?
+ Layout.getVBaseClassOffset(Base) :
+ Layout.getBaseClassOffset(Base);
+
+ SubVTTIndex =
+ CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
+ assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
+ }
+
+ if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
+ // A VTT parameter was passed to the constructor, use it.
+ VTT = LoadCXXVTT();
+ VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex);
+ } else {
+ // We're the complete constructor, so get the VTT by name.
+ VTT = CGM.getVTables().GetAddrOfVTT(RD);
+ VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex);
+ }
+
+ return VTT;
+}
+
+namespace {
+ /// Call the destructor for a direct base class.
+ struct CallBaseDtor : EHScopeStack::Cleanup {
+ const CXXRecordDecl *BaseClass;
+ bool BaseIsVirtual;
+ CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
+ : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ const CXXRecordDecl *DerivedClass =
+ cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
+
+ const CXXDestructorDecl *D = BaseClass->getDestructor();
+ llvm::Value *Addr =
+ CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThis(),
+ DerivedClass, BaseClass,
+ BaseIsVirtual);
+ CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
+ /*Delegating=*/false, Addr);
+ }
+ };
+
+ /// A visitor which checks whether an initializer uses 'this' in a
+ /// way which requires the vtable to be properly set.
+ struct DynamicThisUseChecker : EvaluatedExprVisitor<DynamicThisUseChecker> {
+ typedef EvaluatedExprVisitor<DynamicThisUseChecker> super;
+
+ bool UsesThis;
+
+ DynamicThisUseChecker(ASTContext &C) : super(C), UsesThis(false) {}
+
+ // Black-list all explicit and implicit references to 'this'.
+ //
+ // Do we need to worry about external references to 'this' derived
+ // from arbitrary code? If so, then anything which runs arbitrary
+ // external code might potentially access the vtable.
+ void VisitCXXThisExpr(CXXThisExpr *E) { UsesThis = true; }
+ };
+}
+
+static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
+ DynamicThisUseChecker Checker(C);
+ Checker.Visit(const_cast<Expr*>(Init));
+ return Checker.UsesThis;
+}
+
+static void EmitBaseInitializer(CodeGenFunction &CGF,
+ const CXXRecordDecl *ClassDecl,
+ CXXCtorInitializer *BaseInit,
+ CXXCtorType CtorType) {
+ assert(BaseInit->isBaseInitializer() &&
+ "Must have base initializer!");
+
+ llvm::Value *ThisPtr = CGF.LoadCXXThis();
+
+ const Type *BaseType = BaseInit->getBaseClass();
+ CXXRecordDecl *BaseClassDecl =
+ cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
+
+ bool isBaseVirtual = BaseInit->isBaseVirtual();
+
+ // The base constructor doesn't construct virtual bases.
+ if (CtorType == Ctor_Base && isBaseVirtual)
+ return;
+
+ // If the initializer for the base (other than the constructor
+ // itself) accesses 'this' in any way, we need to initialize the
+ // vtables.
+ if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
+ CGF.InitializeVTablePointers(ClassDecl);
+
+ // We can pretend to be a complete class because it only matters for
+ // virtual bases, and we only do virtual bases for complete ctors.
+ llvm::Value *V =
+ CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
+ BaseClassDecl,
+ isBaseVirtual);
+ CharUnits Alignment = CGF.getContext().getTypeAlignInChars(BaseType);
+ AggValueSlot AggSlot =
+ AggValueSlot::forAddr(V, Alignment, Qualifiers(),
+ AggValueSlot::IsDestructed,
+ AggValueSlot::DoesNotNeedGCBarriers,
+ AggValueSlot::IsNotAliased);
+
+ CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
+
+ if (CGF.CGM.getLangOpts().Exceptions &&
+ !BaseClassDecl->hasTrivialDestructor())
+ CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
+ isBaseVirtual);
+}
+
+static void EmitAggMemberInitializer(CodeGenFunction &CGF,
+ LValue LHS,
+ Expr *Init,
+ llvm::Value *ArrayIndexVar,
+ QualType T,
+ ArrayRef<VarDecl *> ArrayIndexes,
+ unsigned Index) {
+ if (Index == ArrayIndexes.size()) {
+ LValue LV = LHS;
+
+ if (ArrayIndexVar) {
+ // If we have an array index variable, load it and use it as an offset.
+ // Then, increment the value.
+ llvm::Value *Dest = LHS.getAddress();
+ llvm::Value *ArrayIndex = CGF.Builder.CreateLoad(ArrayIndexVar);
+ Dest = CGF.Builder.CreateInBoundsGEP(Dest, ArrayIndex, "destaddress");
+ llvm::Value *Next = llvm::ConstantInt::get(ArrayIndex->getType(), 1);
+ Next = CGF.Builder.CreateAdd(ArrayIndex, Next, "inc");
+ CGF.Builder.CreateStore(Next, ArrayIndexVar);
+
+ // Update the LValue.
+ LV.setAddress(Dest);
+ CharUnits Align = CGF.getContext().getTypeAlignInChars(T);
+ LV.setAlignment(std::min(Align, LV.getAlignment()));
+ }
+
+ switch (CGF.getEvaluationKind(T)) {
+ case TEK_Scalar:
+ CGF.EmitScalarInit(Init, /*decl*/ nullptr, LV, false);
+ break;
+ case TEK_Complex:
+ CGF.EmitComplexExprIntoLValue(Init, LV, /*isInit*/ true);
+ break;
+ case TEK_Aggregate: {
+ AggValueSlot Slot =
+ AggValueSlot::forLValue(LV,
+ AggValueSlot::IsDestructed,
+ AggValueSlot::DoesNotNeedGCBarriers,
+ AggValueSlot::IsNotAliased);
+
+ CGF.EmitAggExpr(Init, Slot);
+ break;
+ }
+ }
+
+ return;
+ }
+
+ const ConstantArrayType *Array = CGF.getContext().getAsConstantArrayType(T);
+ assert(Array && "Array initialization without the array type?");
+ llvm::Value *IndexVar
+ = CGF.GetAddrOfLocalVar(ArrayIndexes[Index]);
+ assert(IndexVar && "Array index variable not loaded");
+
+ // Initialize this index variable to zero.
+ llvm::Value* Zero
+ = llvm::Constant::getNullValue(
+ CGF.ConvertType(CGF.getContext().getSizeType()));
+ CGF.Builder.CreateStore(Zero, IndexVar);
+
+ // Start the loop with a block that tests the condition.
+ llvm::BasicBlock *CondBlock = CGF.createBasicBlock("for.cond");
+ llvm::BasicBlock *AfterFor = CGF.createBasicBlock("for.end");
+
+ CGF.EmitBlock(CondBlock);
+
+ llvm::BasicBlock *ForBody = CGF.createBasicBlock("for.body");
+ // Generate: if (loop-index < number-of-elements) fall to the loop body,
+ // otherwise, go to the block after the for-loop.
+ uint64_t NumElements = Array->getSize().getZExtValue();
+ llvm::Value *Counter = CGF.Builder.CreateLoad(IndexVar);
+ llvm::Value *NumElementsPtr =
+ llvm::ConstantInt::get(Counter->getType(), NumElements);
+ llvm::Value *IsLess = CGF.Builder.CreateICmpULT(Counter, NumElementsPtr,
+ "isless");
+
+ // If the condition is true, execute the body.
+ CGF.Builder.CreateCondBr(IsLess, ForBody, AfterFor);
+
+ CGF.EmitBlock(ForBody);
+ llvm::BasicBlock *ContinueBlock = CGF.createBasicBlock("for.inc");
+
+ // Inside the loop body recurse to emit the inner loop or, eventually, the
+ // constructor call.
+ EmitAggMemberInitializer(CGF, LHS, Init, ArrayIndexVar,
+ Array->getElementType(), ArrayIndexes, Index + 1);
+
+ CGF.EmitBlock(ContinueBlock);
+
+ // Emit the increment of the loop counter.
+ llvm::Value *NextVal = llvm::ConstantInt::get(Counter->getType(), 1);
+ Counter = CGF.Builder.CreateLoad(IndexVar);
+ NextVal = CGF.Builder.CreateAdd(Counter, NextVal, "inc");
+ CGF.Builder.CreateStore(NextVal, IndexVar);
+
+ // Finally, branch back up to the condition for the next iteration.
+ CGF.EmitBranch(CondBlock);
+
+ // Emit the fall-through block.
+ CGF.EmitBlock(AfterFor, true);
+}
+
+static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) {
+ auto *CD = dyn_cast<CXXConstructorDecl>(D);
+ if (!(CD && CD->isCopyOrMoveConstructor()) &&
+ !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator())
+ return false;
+
+ // We can emit a memcpy for a trivial copy or move constructor/assignment.
+ if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding())
+ return true;
+
+ // We *must* emit a memcpy for a defaulted union copy or move op.
+ if (D->getParent()->isUnion() && D->isDefaulted())
+ return true;
+
+ return false;
+}
+
+static void EmitMemberInitializer(CodeGenFunction &CGF,
+ const CXXRecordDecl *ClassDecl,
+ CXXCtorInitializer *MemberInit,
+ const CXXConstructorDecl *Constructor,
+ FunctionArgList &Args) {
+ ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation());
+ assert(MemberInit->isAnyMemberInitializer() &&
+ "Must have member initializer!");
+ assert(MemberInit->getInit() && "Must have initializer!");
+
+ // non-static data member initializers.
+ FieldDecl *Field = MemberInit->getAnyMember();
+ QualType FieldType = Field->getType();
+
+ llvm::Value *ThisPtr = CGF.LoadCXXThis();
+ QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
+ LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
+
+ if (MemberInit->isIndirectMemberInitializer()) {
+ // If we are initializing an anonymous union field, drill down to
+ // the field.
+ IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
+ for (const auto *I : IndirectField->chain())
+ LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I));
+ FieldType = MemberInit->getIndirectMember()->getAnonField()->getType();
+ } else {
+ LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
+ }
+
+ // Special case: if we are in a copy or move constructor, and we are copying
+ // an array of PODs or classes with trivial copy constructors, ignore the
+ // AST and perform the copy we know is equivalent.
+ // FIXME: This is hacky at best... if we had a bit more explicit information
+ // in the AST, we could generalize it more easily.
+ const ConstantArrayType *Array
+ = CGF.getContext().getAsConstantArrayType(FieldType);
+ if (Array && Constructor->isDefaulted() &&
+ Constructor->isCopyOrMoveConstructor()) {
+ QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
+ CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
+ if (BaseElementTy.isPODType(CGF.getContext()) ||
+ (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) {
+ unsigned SrcArgIndex =
+ CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args);
+ llvm::Value *SrcPtr
+ = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
+ LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
+ LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
+
+ // Copy the aggregate.
+ CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType,
+ LHS.isVolatileQualified());
+ return;
+ }
+ }
+
+ ArrayRef<VarDecl *> ArrayIndexes;
+ if (MemberInit->getNumArrayIndices())
+ ArrayIndexes = MemberInit->getArrayIndexes();
+ CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit(), ArrayIndexes);
+}
+
+void CodeGenFunction::EmitInitializerForField(
+ FieldDecl *Field, LValue LHS, Expr *Init,
+ ArrayRef<VarDecl *> ArrayIndexes) {
+ QualType FieldType = Field->getType();
+ switch (getEvaluationKind(FieldType)) {
+ case TEK_Scalar:
+ if (LHS.isSimple()) {
+ EmitExprAsInit(Init, Field, LHS, false);
+ } else {
+ RValue RHS = RValue::get(EmitScalarExpr(Init));
+ EmitStoreThroughLValue(RHS, LHS);
+ }
+ break;
+ case TEK_Complex:
+ EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
+ break;
+ case TEK_Aggregate: {
+ llvm::Value *ArrayIndexVar = nullptr;
+ if (ArrayIndexes.size()) {
+ llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
+
+ // The LHS is a pointer to the first object we'll be constructing, as
+ // a flat array.
+ QualType BaseElementTy = getContext().getBaseElementType(FieldType);
+ llvm::Type *BasePtr = ConvertType(BaseElementTy);
+ BasePtr = llvm::PointerType::getUnqual(BasePtr);
+ llvm::Value *BaseAddrPtr = Builder.CreateBitCast(LHS.getAddress(),
+ BasePtr);
+ LHS = MakeAddrLValue(BaseAddrPtr, BaseElementTy);
+
+ // Create an array index that will be used to walk over all of the
+ // objects we're constructing.
+ ArrayIndexVar = CreateTempAlloca(SizeTy, "object.index");
+ llvm::Value *Zero = llvm::Constant::getNullValue(SizeTy);
+ Builder.CreateStore(Zero, ArrayIndexVar);
+
+
+ // Emit the block variables for the array indices, if any.
+ for (unsigned I = 0, N = ArrayIndexes.size(); I != N; ++I)
+ EmitAutoVarDecl(*ArrayIndexes[I]);
+ }
+
+ EmitAggMemberInitializer(*this, LHS, Init, ArrayIndexVar, FieldType,
+ ArrayIndexes, 0);
+ }
+ }
+
+ // Ensure that we destroy this object if an exception is thrown
+ // later in the constructor.
+ QualType::DestructionKind dtorKind = FieldType.isDestructedType();
+ if (needsEHCleanup(dtorKind))
+ pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
+}
+
+/// Checks whether the given constructor is a valid subject for the
+/// complete-to-base constructor delegation optimization, i.e.
+/// emitting the complete constructor as a simple call to the base
+/// constructor.
+static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor) {
+
+ // Currently we disable the optimization for classes with virtual
+ // bases because (1) the addresses of parameter variables need to be
+ // consistent across all initializers but (2) the delegate function
+ // call necessarily creates a second copy of the parameter variable.
+ //
+ // The limiting example (purely theoretical AFAIK):
+ // struct A { A(int &c) { c++; } };
+ // struct B : virtual A {
+ // B(int count) : A(count) { printf("%d\n", count); }
+ // };
+ // ...although even this example could in principle be emitted as a
+ // delegation since the address of the parameter doesn't escape.
+ if (Ctor->getParent()->getNumVBases()) {
+ // TODO: white-list trivial vbase initializers. This case wouldn't
+ // be subject to the restrictions below.
+
+ // TODO: white-list cases where:
+ // - there are no non-reference parameters to the constructor
+ // - the initializers don't access any non-reference parameters
+ // - the initializers don't take the address of non-reference
+ // parameters
+ // - etc.
+ // If we ever add any of the above cases, remember that:
+ // - function-try-blocks will always blacklist this optimization
+ // - we need to perform the constructor prologue and cleanup in
+ // EmitConstructorBody.
+
+ return false;
+ }
+
+ // We also disable the optimization for variadic functions because
+ // it's impossible to "re-pass" varargs.
+ if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic())
+ return false;
+
+ // FIXME: Decide if we can do a delegation of a delegating constructor.
+ if (Ctor->isDelegatingConstructor())
+ return false;
+
+ return true;
+}
+
+// Emit code in ctor (Prologue==true) or dtor (Prologue==false)
+// to poison the extra field paddings inserted under
+// -fsanitize-address-field-padding=1|2.
+void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) {
+ ASTContext &Context = getContext();
+ const CXXRecordDecl *ClassDecl =
+ Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent()
+ : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent();
+ if (!ClassDecl->mayInsertExtraPadding()) return;
+
+ struct SizeAndOffset {
+ uint64_t Size;
+ uint64_t Offset;
+ };
+
+ unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits();
+ const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl);
+
+ // Populate sizes and offsets of fields.
+ SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount());
+ for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i)
+ SSV[i].Offset =
+ Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity();
+
+ size_t NumFields = 0;
+ for (const auto *Field : ClassDecl->fields()) {
+ const FieldDecl *D = Field;
+ std::pair<CharUnits, CharUnits> FieldInfo =
+ Context.getTypeInfoInChars(D->getType());
+ CharUnits FieldSize = FieldInfo.first;
+ assert(NumFields < SSV.size());
+ SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity();
+ NumFields++;
+ }
+ assert(NumFields == SSV.size());
+ if (SSV.size() <= 1) return;
+
+ // We will insert calls to __asan_* run-time functions.
+ // LLVM AddressSanitizer pass may decide to inline them later.
+ llvm::Type *Args[2] = {IntPtrTy, IntPtrTy};
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(CGM.VoidTy, Args, false);
+ llvm::Constant *F = CGM.CreateRuntimeFunction(
+ FTy, Prologue ? "__asan_poison_intra_object_redzone"
+ : "__asan_unpoison_intra_object_redzone");
+
+ llvm::Value *ThisPtr = LoadCXXThis();
+ ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy);
+ uint64_t TypeSize = Info.getNonVirtualSize().getQuantity();
+ // For each field check if it has sufficient padding,
+ // if so (un)poison it with a call.
+ for (size_t i = 0; i < SSV.size(); i++) {
+ uint64_t AsanAlignment = 8;
+ uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset;
+ uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size;
+ uint64_t EndOffset = SSV[i].Offset + SSV[i].Size;
+ if (PoisonSize < AsanAlignment || !SSV[i].Size ||
+ (NextField % AsanAlignment) != 0)
+ continue;
+ Builder.CreateCall(
+ F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)),
+ Builder.getIntN(PtrSize, PoisonSize)});
+ }
+}
+
+/// EmitConstructorBody - Emits the body of the current constructor.
+void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
+ EmitAsanPrologueOrEpilogue(true);
+ const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
+ CXXCtorType CtorType = CurGD.getCtorType();
+
+ assert((CGM.getTarget().getCXXABI().hasConstructorVariants() ||
+ CtorType == Ctor_Complete) &&
+ "can only generate complete ctor for this ABI");
+
+ // Before we go any further, try the complete->base constructor
+ // delegation optimization.
+ if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
+ CGM.getTarget().getCXXABI().hasConstructorVariants()) {
+ EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd());
+ return;
+ }
+
+ const FunctionDecl *Definition = 0;
+ Stmt *Body = Ctor->getBody(Definition);
+ assert(Definition == Ctor && "emitting wrong constructor body");
+
+ // Enter the function-try-block before the constructor prologue if
+ // applicable.
+ bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
+ if (IsTryBody)
+ EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
+
+ incrementProfileCounter(Body);
+
+ RunCleanupsScope RunCleanups(*this);
+
+ // TODO: in restricted cases, we can emit the vbase initializers of
+ // a complete ctor and then delegate to the base ctor.
+
+ // Emit the constructor prologue, i.e. the base and member
+ // initializers.
+ EmitCtorPrologue(Ctor, CtorType, Args);
+
+ // Emit the body of the statement.
+ if (IsTryBody)
+ EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
+ else if (Body)
+ EmitStmt(Body);
+
+ // Emit any cleanup blocks associated with the member or base
+ // initializers, which includes (along the exceptional path) the
+ // destructors for those members and bases that were fully
+ // constructed.
+ RunCleanups.ForceCleanup();
+
+ if (IsTryBody)
+ ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
+}
+
+namespace {
+ /// RAII object to indicate that codegen is copying the value representation
+ /// instead of the object representation. Useful when copying a struct or
+ /// class which has uninitialized members and we're only performing
+ /// lvalue-to-rvalue conversion on the object but not its members.
+ class CopyingValueRepresentation {
+ public:
+ explicit CopyingValueRepresentation(CodeGenFunction &CGF)
+ : CGF(CGF), OldSanOpts(CGF.SanOpts) {
+ CGF.SanOpts.set(SanitizerKind::Bool, false);
+ CGF.SanOpts.set(SanitizerKind::Enum, false);
+ }
+ ~CopyingValueRepresentation() {
+ CGF.SanOpts = OldSanOpts;
+ }
+ private:
+ CodeGenFunction &CGF;
+ SanitizerSet OldSanOpts;
+ };
+}
+
+namespace {
+ class FieldMemcpyizer {
+ public:
+ FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
+ const VarDecl *SrcRec)
+ : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
+ RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
+ FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
+ LastFieldOffset(0), LastAddedFieldIndex(0) {}
+
+ bool isMemcpyableField(FieldDecl *F) const {
+ // Never memcpy fields when we are adding poisoned paddings.
+ if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding)
+ return false;
+ Qualifiers Qual = F->getType().getQualifiers();
+ if (Qual.hasVolatile() || Qual.hasObjCLifetime())
+ return false;
+ return true;
+ }
+
+ void addMemcpyableField(FieldDecl *F) {
+ if (!FirstField)
+ addInitialField(F);
+ else
+ addNextField(F);
+ }
+
+ CharUnits getMemcpySize(uint64_t FirstByteOffset) const {
+ unsigned LastFieldSize =
+ LastField->isBitField() ?
+ LastField->getBitWidthValue(CGF.getContext()) :
+ CGF.getContext().getTypeSize(LastField->getType());
+ uint64_t MemcpySizeBits =
+ LastFieldOffset + LastFieldSize - FirstByteOffset +
+ CGF.getContext().getCharWidth() - 1;
+ CharUnits MemcpySize =
+ CGF.getContext().toCharUnitsFromBits(MemcpySizeBits);
+ return MemcpySize;
+ }
+
+ void emitMemcpy() {
+ // Give the subclass a chance to bail out if it feels the memcpy isn't
+ // worth it (e.g. Hasn't aggregated enough data).
+ if (!FirstField) {
+ return;
+ }
+
+ CharUnits Alignment;
+
+ uint64_t FirstByteOffset;
+ if (FirstField->isBitField()) {
+ const CGRecordLayout &RL =
+ CGF.getTypes().getCGRecordLayout(FirstField->getParent());
+ const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
+ Alignment = CharUnits::fromQuantity(BFInfo.StorageAlignment);
+ // FirstFieldOffset is not appropriate for bitfields,
+ // it won't tell us what the storage offset should be and thus might not
+ // be properly aligned.
+ //
+ // Instead calculate the storage offset using the offset of the field in
+ // the struct type.
+ const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
+ FirstByteOffset =
+ DL.getStructLayout(RL.getLLVMType())
+ ->getElementOffsetInBits(RL.getLLVMFieldNo(FirstField));
+ } else {
+ Alignment = CGF.getContext().getDeclAlign(FirstField);
+ FirstByteOffset = FirstFieldOffset;
+ }
+
+ assert((CGF.getContext().toCharUnitsFromBits(FirstByteOffset) %
+ Alignment) == 0 && "Bad field alignment.");
+
+ CharUnits MemcpySize = getMemcpySize(FirstByteOffset);
+ QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
+ llvm::Value *ThisPtr = CGF.LoadCXXThis();
+ LValue DestLV = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
+ LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
+ llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
+ LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
+ LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
+
+ emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddr() : Dest.getAddress(),
+ Src.isBitField() ? Src.getBitFieldAddr() : Src.getAddress(),
+ MemcpySize, Alignment);
+ reset();
+ }
+
+ void reset() {
+ FirstField = nullptr;
+ }
+
+ protected:
+ CodeGenFunction &CGF;
+ const CXXRecordDecl *ClassDecl;
+
+ private:
+
+ void emitMemcpyIR(llvm::Value *DestPtr, llvm::Value *SrcPtr,
+ CharUnits Size, CharUnits Alignment) {
+ llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
+ llvm::Type *DBP =
+ llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace());
+ DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP);
+
+ llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
+ llvm::Type *SBP =
+ llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace());
+ SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP);
+
+ CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity(),
+ Alignment.getQuantity());
+ }
+
+ void addInitialField(FieldDecl *F) {
+ FirstField = F;
+ LastField = F;
+ FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
+ LastFieldOffset = FirstFieldOffset;
+ LastAddedFieldIndex = F->getFieldIndex();
+ return;
+ }
+
+ void addNextField(FieldDecl *F) {
+ // For the most part, the following invariant will hold:
+ // F->getFieldIndex() == LastAddedFieldIndex + 1
+ // The one exception is that Sema won't add a copy-initializer for an
+ // unnamed bitfield, which will show up here as a gap in the sequence.
+ assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
+ "Cannot aggregate fields out of order.");
+ LastAddedFieldIndex = F->getFieldIndex();
+
+ // The 'first' and 'last' fields are chosen by offset, rather than field
+ // index. This allows the code to support bitfields, as well as regular
+ // fields.
+ uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
+ if (FOffset < FirstFieldOffset) {
+ FirstField = F;
+ FirstFieldOffset = FOffset;
+ } else if (FOffset > LastFieldOffset) {
+ LastField = F;
+ LastFieldOffset = FOffset;
+ }
+ }
+
+ const VarDecl *SrcRec;
+ const ASTRecordLayout &RecLayout;
+ FieldDecl *FirstField;
+ FieldDecl *LastField;
+ uint64_t FirstFieldOffset, LastFieldOffset;
+ unsigned LastAddedFieldIndex;
+ };
+
+ class ConstructorMemcpyizer : public FieldMemcpyizer {
+ private:
+
+ /// Get source argument for copy constructor. Returns null if not a copy
+ /// constructor.
+ static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF,
+ const CXXConstructorDecl *CD,
+ FunctionArgList &Args) {
+ if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
+ return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)];
+ return nullptr;
+ }
+
+ // Returns true if a CXXCtorInitializer represents a member initialization
+ // that can be rolled into a memcpy.
+ bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
+ if (!MemcpyableCtor)
+ return false;
+ FieldDecl *Field = MemberInit->getMember();
+ assert(Field && "No field for member init.");
+ QualType FieldType = Field->getType();
+ CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
+
+ // Bail out on non-memcpyable, not-trivially-copyable members.
+ if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) &&
+ !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
+ FieldType->isReferenceType()))
+ return false;
+
+ // Bail out on volatile fields.
+ if (!isMemcpyableField(Field))
+ return false;
+
+ // Otherwise we're good.
+ return true;
+ }
+
+ public:
+ ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
+ FunctionArgList &Args)
+ : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)),
+ ConstructorDecl(CD),
+ MemcpyableCtor(CD->isDefaulted() &&
+ CD->isCopyOrMoveConstructor() &&
+ CGF.getLangOpts().getGC() == LangOptions::NonGC),
+ Args(Args) { }
+
+ void addMemberInitializer(CXXCtorInitializer *MemberInit) {
+ if (isMemberInitMemcpyable(MemberInit)) {
+ AggregatedInits.push_back(MemberInit);
+ addMemcpyableField(MemberInit->getMember());
+ } else {
+ emitAggregatedInits();
+ EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
+ ConstructorDecl, Args);
+ }
+ }
+
+ void emitAggregatedInits() {
+ if (AggregatedInits.size() <= 1) {
+ // This memcpy is too small to be worthwhile. Fall back on default
+ // codegen.
+ if (!AggregatedInits.empty()) {
+ CopyingValueRepresentation CVR(CGF);
+ EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
+ AggregatedInits[0], ConstructorDecl, Args);
+ }
+ reset();
+ return;
+ }
+
+ pushEHDestructors();
+ emitMemcpy();
+ AggregatedInits.clear();
+ }
+
+ void pushEHDestructors() {
+ llvm::Value *ThisPtr = CGF.LoadCXXThis();
+ QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
+ LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
+
+ for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
+ QualType FieldType = AggregatedInits[i]->getMember()->getType();
+ QualType::DestructionKind dtorKind = FieldType.isDestructedType();
+ if (CGF.needsEHCleanup(dtorKind))
+ CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
+ }
+ }
+
+ void finish() {
+ emitAggregatedInits();
+ }
+
+ private:
+ const CXXConstructorDecl *ConstructorDecl;
+ bool MemcpyableCtor;
+ FunctionArgList &Args;
+ SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
+ };
+
+ class AssignmentMemcpyizer : public FieldMemcpyizer {
+ private:
+
+ // Returns the memcpyable field copied by the given statement, if one
+ // exists. Otherwise returns null.
+ FieldDecl *getMemcpyableField(Stmt *S) {
+ if (!AssignmentsMemcpyable)
+ return nullptr;
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
+ // Recognise trivial assignments.
+ if (BO->getOpcode() != BO_Assign)
+ return nullptr;
+ MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
+ if (!ME)
+ return nullptr;
+ FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
+ if (!Field || !isMemcpyableField(Field))
+ return nullptr;
+ Stmt *RHS = BO->getRHS();
+ if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
+ RHS = EC->getSubExpr();
+ if (!RHS)
+ return nullptr;
+ MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS);
+ if (dyn_cast<FieldDecl>(ME2->getMemberDecl()) != Field)
+ return nullptr;
+ return Field;
+ } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
+ CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
+ if (!(MD && isMemcpyEquivalentSpecialMember(MD)))
+ return nullptr;
+ MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
+ if (!IOA)
+ return nullptr;
+ FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
+ if (!Field || !isMemcpyableField(Field))
+ return nullptr;
+ MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
+ if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
+ return nullptr;
+ return Field;
+ } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
+ FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
+ if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
+ return nullptr;
+ Expr *DstPtr = CE->getArg(0);
+ if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
+ DstPtr = DC->getSubExpr();
+ UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
+ if (!DUO || DUO->getOpcode() != UO_AddrOf)
+ return nullptr;
+ MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
+ if (!ME)
+ return nullptr;
+ FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
+ if (!Field || !isMemcpyableField(Field))
+ return nullptr;
+ Expr *SrcPtr = CE->getArg(1);
+ if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
+ SrcPtr = SC->getSubExpr();
+ UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
+ if (!SUO || SUO->getOpcode() != UO_AddrOf)
+ return nullptr;
+ MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
+ if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
+ return nullptr;
+ return Field;
+ }
+
+ return nullptr;
+ }
+
+ bool AssignmentsMemcpyable;
+ SmallVector<Stmt*, 16> AggregatedStmts;
+
+ public:
+
+ AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
+ FunctionArgList &Args)
+ : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
+ AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
+ assert(Args.size() == 2);
+ }
+
+ void emitAssignment(Stmt *S) {
+ FieldDecl *F = getMemcpyableField(S);
+ if (F) {
+ addMemcpyableField(F);
+ AggregatedStmts.push_back(S);
+ } else {
+ emitAggregatedStmts();
+ CGF.EmitStmt(S);
+ }
+ }
+
+ void emitAggregatedStmts() {
+ if (AggregatedStmts.size() <= 1) {
+ if (!AggregatedStmts.empty()) {
+ CopyingValueRepresentation CVR(CGF);
+ CGF.EmitStmt(AggregatedStmts[0]);
+ }
+ reset();
+ }
+
+ emitMemcpy();
+ AggregatedStmts.clear();
+ }
+
+ void finish() {
+ emitAggregatedStmts();
+ }
+ };
+
+}
+
+/// EmitCtorPrologue - This routine generates necessary code to initialize
+/// base classes and non-static data members belonging to this constructor.
+void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
+ CXXCtorType CtorType,
+ FunctionArgList &Args) {
+ if (CD->isDelegatingConstructor())
+ return EmitDelegatingCXXConstructorCall(CD, Args);
+
+ const CXXRecordDecl *ClassDecl = CD->getParent();
+
+ CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
+ E = CD->init_end();
+
+ llvm::BasicBlock *BaseCtorContinueBB = nullptr;
+ if (ClassDecl->getNumVBases() &&
+ !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
+ // The ABIs that don't have constructor variants need to put a branch
+ // before the virtual base initialization code.
+ BaseCtorContinueBB =
+ CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
+ assert(BaseCtorContinueBB);
+ }
+
+ // Virtual base initializers first.
+ for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
+ EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
+ }
+
+ if (BaseCtorContinueBB) {
+ // Complete object handler should continue to the remaining initializers.
+ Builder.CreateBr(BaseCtorContinueBB);
+ EmitBlock(BaseCtorContinueBB);
+ }
+
+ // Then, non-virtual base initializers.
+ for (; B != E && (*B)->isBaseInitializer(); B++) {
+ assert(!(*B)->isBaseVirtual());
+ EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
+ }
+
+ InitializeVTablePointers(ClassDecl);
+
+ // And finally, initialize class members.
+ FieldConstructionScope FCS(*this, CXXThisValue);
+ ConstructorMemcpyizer CM(*this, CD, Args);
+ for (; B != E; B++) {
+ CXXCtorInitializer *Member = (*B);
+ assert(!Member->isBaseInitializer());
+ assert(Member->isAnyMemberInitializer() &&
+ "Delegating initializer on non-delegating constructor");
+ CM.addMemberInitializer(Member);
+ }
+ CM.finish();
+}
+
+static bool
+FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
+
+static bool
+HasTrivialDestructorBody(ASTContext &Context,
+ const CXXRecordDecl *BaseClassDecl,
+ const CXXRecordDecl *MostDerivedClassDecl)
+{
+ // If the destructor is trivial we don't have to check anything else.
+ if (BaseClassDecl->hasTrivialDestructor())
+ return true;
+
+ if (!BaseClassDecl->getDestructor()->hasTrivialBody())
+ return false;
+
+ // Check fields.
+ for (const auto *Field : BaseClassDecl->fields())
+ if (!FieldHasTrivialDestructorBody(Context, Field))
+ return false;
+
+ // Check non-virtual bases.
+ for (const auto &I : BaseClassDecl->bases()) {
+ if (I.isVirtual())
+ continue;
+
+ const CXXRecordDecl *NonVirtualBase =
+ cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
+ if (!HasTrivialDestructorBody(Context, NonVirtualBase,
+ MostDerivedClassDecl))
+ return false;
+ }
+
+ if (BaseClassDecl == MostDerivedClassDecl) {
+ // Check virtual bases.
+ for (const auto &I : BaseClassDecl->vbases()) {
+ const CXXRecordDecl *VirtualBase =
+ cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
+ if (!HasTrivialDestructorBody(Context, VirtualBase,
+ MostDerivedClassDecl))
+ return false;
+ }
+ }
+
+ return true;
+}
+
+static bool
+FieldHasTrivialDestructorBody(ASTContext &Context,
+ const FieldDecl *Field)
+{
+ QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
+
+ const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
+ if (!RT)
+ return true;
+
+ CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
+ return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
+}
+
+/// CanSkipVTablePointerInitialization - Check whether we need to initialize
+/// any vtable pointers before calling this destructor.
+static bool CanSkipVTablePointerInitialization(ASTContext &Context,
+ const CXXDestructorDecl *Dtor) {
+ if (!Dtor->hasTrivialBody())
+ return false;
+
+ // Check the fields.
+ const CXXRecordDecl *ClassDecl = Dtor->getParent();
+ for (const auto *Field : ClassDecl->fields())
+ if (!FieldHasTrivialDestructorBody(Context, Field))
+ return false;
+
+ return true;
+}
+
+/// EmitDestructorBody - Emits the body of the current destructor.
+void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
+ const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
+ CXXDtorType DtorType = CurGD.getDtorType();
+
+ Stmt *Body = Dtor->getBody();
+ if (Body)
+ incrementProfileCounter(Body);
+
+ // The call to operator delete in a deleting destructor happens
+ // outside of the function-try-block, which means it's always
+ // possible to delegate the destructor body to the complete
+ // destructor. Do so.
+ if (DtorType == Dtor_Deleting) {
+ EnterDtorCleanups(Dtor, Dtor_Deleting);
+ EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
+ /*Delegating=*/false, LoadCXXThis());
+ PopCleanupBlock();
+ return;
+ }
+
+ // If the body is a function-try-block, enter the try before
+ // anything else.
+ bool isTryBody = (Body && isa<CXXTryStmt>(Body));
+ if (isTryBody)
+ EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
+ EmitAsanPrologueOrEpilogue(false);
+
+ // Enter the epilogue cleanups.
+ RunCleanupsScope DtorEpilogue(*this);
+
+ // If this is the complete variant, just invoke the base variant;
+ // the epilogue will destruct the virtual bases. But we can't do
+ // this optimization if the body is a function-try-block, because
+ // we'd introduce *two* handler blocks. In the Microsoft ABI, we
+ // always delegate because we might not have a definition in this TU.
+ switch (DtorType) {
+ case Dtor_Comdat:
+ llvm_unreachable("not expecting a COMDAT");
+
+ case Dtor_Deleting: llvm_unreachable("already handled deleting case");
+
+ case Dtor_Complete:
+ assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
+ "can't emit a dtor without a body for non-Microsoft ABIs");
+
+ // Enter the cleanup scopes for virtual bases.
+ EnterDtorCleanups(Dtor, Dtor_Complete);
+
+ if (!isTryBody) {
+ EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
+ /*Delegating=*/false, LoadCXXThis());
+ break;
+ }
+ // Fallthrough: act like we're in the base variant.
+
+ case Dtor_Base:
+ assert(Body);
+
+ // Enter the cleanup scopes for fields and non-virtual bases.
+ EnterDtorCleanups(Dtor, Dtor_Base);
+
+ // Initialize the vtable pointers before entering the body.
+ if (!CanSkipVTablePointerInitialization(getContext(), Dtor))
+ InitializeVTablePointers(Dtor->getParent());
+
+ if (isTryBody)
+ EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
+ else if (Body)
+ EmitStmt(Body);
+ else {
+ assert(Dtor->isImplicit() && "bodyless dtor not implicit");
+ // nothing to do besides what's in the epilogue
+ }
+ // -fapple-kext must inline any call to this dtor into
+ // the caller's body.
+ if (getLangOpts().AppleKext)
+ CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
+ break;
+ }
+
+ // Jump out through the epilogue cleanups.
+ DtorEpilogue.ForceCleanup();
+
+ // Exit the try if applicable.
+ if (isTryBody)
+ ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
+}
+
+void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
+ const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
+ const Stmt *RootS = AssignOp->getBody();
+ assert(isa<CompoundStmt>(RootS) &&
+ "Body of an implicit assignment operator should be compound stmt.");
+ const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
+
+ LexicalScope Scope(*this, RootCS->getSourceRange());
+
+ AssignmentMemcpyizer AM(*this, AssignOp, Args);
+ for (auto *I : RootCS->body())
+ AM.emitAssignment(I);
+ AM.finish();
+}
+
+namespace {
+ /// Call the operator delete associated with the current destructor.
+ struct CallDtorDelete : EHScopeStack::Cleanup {
+ CallDtorDelete() {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
+ const CXXRecordDecl *ClassDecl = Dtor->getParent();
+ CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
+ CGF.getContext().getTagDeclType(ClassDecl));
+ }
+ };
+
+ struct CallDtorDeleteConditional : EHScopeStack::Cleanup {
+ llvm::Value *ShouldDeleteCondition;
+ public:
+ CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
+ : ShouldDeleteCondition(ShouldDeleteCondition) {
+ assert(ShouldDeleteCondition != nullptr);
+ }
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
+ llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
+ llvm::Value *ShouldCallDelete
+ = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
+ CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
+
+ CGF.EmitBlock(callDeleteBB);
+ const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
+ const CXXRecordDecl *ClassDecl = Dtor->getParent();
+ CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
+ CGF.getContext().getTagDeclType(ClassDecl));
+ CGF.Builder.CreateBr(continueBB);
+
+ CGF.EmitBlock(continueBB);
+ }
+ };
+
+ class DestroyField : public EHScopeStack::Cleanup {
+ const FieldDecl *field;
+ CodeGenFunction::Destroyer *destroyer;
+ bool useEHCleanupForArray;
+
+ public:
+ DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
+ bool useEHCleanupForArray)
+ : field(field), destroyer(destroyer),
+ useEHCleanupForArray(useEHCleanupForArray) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ // Find the address of the field.
+ llvm::Value *thisValue = CGF.LoadCXXThis();
+ QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
+ LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
+ LValue LV = CGF.EmitLValueForField(ThisLV, field);
+ assert(LV.isSimple());
+
+ CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer,
+ flags.isForNormalCleanup() && useEHCleanupForArray);
+ }
+ };
+}
+
+/// \brief Emit all code that comes at the end of class's
+/// destructor. This is to call destructors on members and base classes
+/// in reverse order of their construction.
+void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
+ CXXDtorType DtorType) {
+ assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) &&
+ "Should not emit dtor epilogue for non-exported trivial dtor!");
+
+ // The deleting-destructor phase just needs to call the appropriate
+ // operator delete that Sema picked up.
+ if (DtorType == Dtor_Deleting) {
+ assert(DD->getOperatorDelete() &&
+ "operator delete missing - EnterDtorCleanups");
+ if (CXXStructorImplicitParamValue) {
+ // If there is an implicit param to the deleting dtor, it's a boolean
+ // telling whether we should call delete at the end of the dtor.
+ EHStack.pushCleanup<CallDtorDeleteConditional>(
+ NormalAndEHCleanup, CXXStructorImplicitParamValue);
+ } else {
+ EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
+ }
+ return;
+ }
+
+ const CXXRecordDecl *ClassDecl = DD->getParent();
+
+ // Unions have no bases and do not call field destructors.
+ if (ClassDecl->isUnion())
+ return;
+
+ // The complete-destructor phase just destructs all the virtual bases.
+ if (DtorType == Dtor_Complete) {
+
+ // We push them in the forward order so that they'll be popped in
+ // the reverse order.
+ for (const auto &Base : ClassDecl->vbases()) {
+ CXXRecordDecl *BaseClassDecl
+ = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
+
+ // Ignore trivial destructors.
+ if (BaseClassDecl->hasTrivialDestructor())
+ continue;
+
+ EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
+ BaseClassDecl,
+ /*BaseIsVirtual*/ true);
+ }
+
+ return;
+ }
+
+ assert(DtorType == Dtor_Base);
+
+ // Destroy non-virtual bases.
+ for (const auto &Base : ClassDecl->bases()) {
+ // Ignore virtual bases.
+ if (Base.isVirtual())
+ continue;
+
+ CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
+
+ // Ignore trivial destructors.
+ if (BaseClassDecl->hasTrivialDestructor())
+ continue;
+
+ EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
+ BaseClassDecl,
+ /*BaseIsVirtual*/ false);
+ }
+
+ // Destroy direct fields.
+ for (const auto *Field : ClassDecl->fields()) {
+ QualType type = Field->getType();
+ QualType::DestructionKind dtorKind = type.isDestructedType();
+ if (!dtorKind) continue;
+
+ // Anonymous union members do not have their destructors called.
+ const RecordType *RT = type->getAsUnionType();
+ if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue;
+
+ CleanupKind cleanupKind = getCleanupKind(dtorKind);
+ EHStack.pushCleanup<DestroyField>(cleanupKind, Field,
+ getDestroyer(dtorKind),
+ cleanupKind & EHCleanup);
+ }
+}
+
+/// EmitCXXAggrConstructorCall - Emit a loop to call a particular
+/// constructor for each of several members of an array.
+///
+/// \param ctor the constructor to call for each element
+/// \param arrayType the type of the array to initialize
+/// \param arrayBegin an arrayType*
+/// \param zeroInitialize true if each element should be
+/// zero-initialized before it is constructed
+void CodeGenFunction::EmitCXXAggrConstructorCall(
+ const CXXConstructorDecl *ctor, const ConstantArrayType *arrayType,
+ llvm::Value *arrayBegin, const CXXConstructExpr *E, bool zeroInitialize) {
+ QualType elementType;
+ llvm::Value *numElements =
+ emitArrayLength(arrayType, elementType, arrayBegin);
+
+ EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, zeroInitialize);
+}
+
+/// EmitCXXAggrConstructorCall - Emit a loop to call a particular
+/// constructor for each of several members of an array.
+///
+/// \param ctor the constructor to call for each element
+/// \param numElements the number of elements in the array;
+/// may be zero
+/// \param arrayBegin a T*, where T is the type constructed by ctor
+/// \param zeroInitialize true if each element should be
+/// zero-initialized before it is constructed
+void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
+ llvm::Value *numElements,
+ llvm::Value *arrayBegin,
+ const CXXConstructExpr *E,
+ bool zeroInitialize) {
+
+ // It's legal for numElements to be zero. This can happen both
+ // dynamically, because x can be zero in 'new A[x]', and statically,
+ // because of GCC extensions that permit zero-length arrays. There
+ // are probably legitimate places where we could assume that this
+ // doesn't happen, but it's not clear that it's worth it.
+ llvm::BranchInst *zeroCheckBranch = nullptr;
+
+ // Optimize for a constant count.
+ llvm::ConstantInt *constantCount
+ = dyn_cast<llvm::ConstantInt>(numElements);
+ if (constantCount) {
+ // Just skip out if the constant count is zero.
+ if (constantCount->isZero()) return;
+
+ // Otherwise, emit the check.
+ } else {
+ llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
+ llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
+ zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
+ EmitBlock(loopBB);
+ }
+
+ // Find the end of the array.
+ llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements,
+ "arrayctor.end");
+
+ // Enter the loop, setting up a phi for the current location to initialize.
+ llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
+ llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
+ EmitBlock(loopBB);
+ llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
+ "arrayctor.cur");
+ cur->addIncoming(arrayBegin, entryBB);
+
+ // Inside the loop body, emit the constructor call on the array element.
+
+ QualType type = getContext().getTypeDeclType(ctor->getParent());
+
+ // Zero initialize the storage, if requested.
+ if (zeroInitialize)
+ EmitNullInitialization(cur, type);
+
+ // C++ [class.temporary]p4:
+ // There are two contexts in which temporaries are destroyed at a different
+ // point than the end of the full-expression. The first context is when a
+ // default constructor is called to initialize an element of an array.
+ // If the constructor has one or more default arguments, the destruction of
+ // every temporary created in a default argument expression is sequenced
+ // before the construction of the next array element, if any.
+
+ {
+ RunCleanupsScope Scope(*this);
+
+ // Evaluate the constructor and its arguments in a regular
+ // partial-destroy cleanup.
+ if (getLangOpts().Exceptions &&
+ !ctor->getParent()->hasTrivialDestructor()) {
+ Destroyer *destroyer = destroyCXXObject;
+ pushRegularPartialArrayCleanup(arrayBegin, cur, type, *destroyer);
+ }
+
+ EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false,
+ /*Delegating=*/false, cur, E);
+ }
+
+ // Go to the next element.
+ llvm::Value *next =
+ Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1),
+ "arrayctor.next");
+ cur->addIncoming(next, Builder.GetInsertBlock());
+
+ // Check whether that's the end of the loop.
+ llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
+ llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
+ Builder.CreateCondBr(done, contBB, loopBB);
+
+ // Patch the earlier check to skip over the loop.
+ if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
+
+ EmitBlock(contBB);
+}
+
+void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
+ llvm::Value *addr,
+ QualType type) {
+ const RecordType *rtype = type->castAs<RecordType>();
+ const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
+ const CXXDestructorDecl *dtor = record->getDestructor();
+ assert(!dtor->isTrivial());
+ CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
+ /*Delegating=*/false, addr);
+}
+
+void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
+ CXXCtorType Type,
+ bool ForVirtualBase,
+ bool Delegating, llvm::Value *This,
+ const CXXConstructExpr *E) {
+ // C++11 [class.mfct.non-static]p2:
+ // If a non-static member function of a class X is called for an object that
+ // is not of type X, or of a type derived from X, the behavior is undefined.
+ // FIXME: Provide a source location here.
+ EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, SourceLocation(), This,
+ getContext().getRecordType(D->getParent()));
+
+ if (D->isTrivial() && D->isDefaultConstructor()) {
+ assert(E->getNumArgs() == 0 && "trivial default ctor with args");
+ return;
+ }
+
+ // If this is a trivial constructor, just emit what's needed. If this is a
+ // union copy constructor, we must emit a memcpy, because the AST does not
+ // model that copy.
+ if (isMemcpyEquivalentSpecialMember(D)) {
+ assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
+
+ const Expr *Arg = E->getArg(0);
+ QualType SrcTy = Arg->getType();
+ llvm::Value *Src = EmitLValue(Arg).getAddress();
+ QualType DestTy = getContext().getTypeDeclType(D->getParent());
+ EmitAggregateCopyCtor(This, Src, DestTy, SrcTy);
+ return;
+ }
+
+ CallArgList Args;
+
+ // Push the this ptr.
+ Args.add(RValue::get(This), D->getThisType(getContext()));
+
+ // Add the rest of the user-supplied arguments.
+ const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
+ EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end(), E->getConstructor());
+
+ // Insert any ABI-specific implicit constructor arguments.
+ unsigned ExtraArgs = CGM.getCXXABI().addImplicitConstructorArgs(
+ *this, D, Type, ForVirtualBase, Delegating, Args);
+
+ // Emit the call.
+ llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, getFromCtorType(Type));
+ const CGFunctionInfo &Info =
+ CGM.getTypes().arrangeCXXConstructorCall(Args, D, Type, ExtraArgs);
+ EmitCall(Info, Callee, ReturnValueSlot(), Args, D);
+}
+
+void
+CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
+ llvm::Value *This, llvm::Value *Src,
+ const CXXConstructExpr *E) {
+ if (isMemcpyEquivalentSpecialMember(D)) {
+ assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
+ assert(D->isCopyOrMoveConstructor() &&
+ "trivial 1-arg ctor not a copy/move ctor");
+ EmitAggregateCopyCtor(This, Src,
+ getContext().getTypeDeclType(D->getParent()),
+ E->arg_begin()->getType());
+ return;
+ }
+ llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, StructorType::Complete);
+ assert(D->isInstance() &&
+ "Trying to emit a member call expr on a static method!");
+
+ const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
+
+ CallArgList Args;
+
+ // Push the this ptr.
+ Args.add(RValue::get(This), D->getThisType(getContext()));
+
+ // Push the src ptr.
+ QualType QT = *(FPT->param_type_begin());
+ llvm::Type *t = CGM.getTypes().ConvertType(QT);
+ Src = Builder.CreateBitCast(Src, t);
+ Args.add(RValue::get(Src), QT);
+
+ // Skip over first argument (Src).
+ EmitCallArgs(Args, FPT, E->arg_begin() + 1, E->arg_end(), E->getConstructor(),
+ /*ParamsToSkip*/ 1);
+
+ EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, RequiredArgs::All),
+ Callee, ReturnValueSlot(), Args, D);
+}
+
+void
+CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
+ CXXCtorType CtorType,
+ const FunctionArgList &Args,
+ SourceLocation Loc) {
+ CallArgList DelegateArgs;
+
+ FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
+ assert(I != E && "no parameters to constructor");
+
+ // this
+ DelegateArgs.add(RValue::get(LoadCXXThis()), (*I)->getType());
+ ++I;
+
+ // vtt
+ if (llvm::Value *VTT = GetVTTParameter(GlobalDecl(Ctor, CtorType),
+ /*ForVirtualBase=*/false,
+ /*Delegating=*/true)) {
+ QualType VoidPP = getContext().getPointerType(getContext().VoidPtrTy);
+ DelegateArgs.add(RValue::get(VTT), VoidPP);
+
+ if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
+ assert(I != E && "cannot skip vtt parameter, already done with args");
+ assert((*I)->getType() == VoidPP && "skipping parameter not of vtt type");
+ ++I;
+ }
+ }
+
+ // Explicit arguments.
+ for (; I != E; ++I) {
+ const VarDecl *param = *I;
+ // FIXME: per-argument source location
+ EmitDelegateCallArg(DelegateArgs, param, Loc);
+ }
+
+ llvm::Value *Callee =
+ CGM.getAddrOfCXXStructor(Ctor, getFromCtorType(CtorType));
+ EmitCall(CGM.getTypes()
+ .arrangeCXXStructorDeclaration(Ctor, getFromCtorType(CtorType)),
+ Callee, ReturnValueSlot(), DelegateArgs, Ctor);
+}
+
+namespace {
+ struct CallDelegatingCtorDtor : EHScopeStack::Cleanup {
+ const CXXDestructorDecl *Dtor;
+ llvm::Value *Addr;
+ CXXDtorType Type;
+
+ CallDelegatingCtorDtor(const CXXDestructorDecl *D, llvm::Value *Addr,
+ CXXDtorType Type)
+ : Dtor(D), Addr(Addr), Type(Type) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
+ /*Delegating=*/true, Addr);
+ }
+ };
+}
+
+void
+CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
+ const FunctionArgList &Args) {
+ assert(Ctor->isDelegatingConstructor());
+
+ llvm::Value *ThisPtr = LoadCXXThis();
+
+ QualType Ty = getContext().getTagDeclType(Ctor->getParent());
+ CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
+ AggValueSlot AggSlot =
+ AggValueSlot::forAddr(ThisPtr, Alignment, Qualifiers(),
+ AggValueSlot::IsDestructed,
+ AggValueSlot::DoesNotNeedGCBarriers,
+ AggValueSlot::IsNotAliased);
+
+ EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
+
+ const CXXRecordDecl *ClassDecl = Ctor->getParent();
+ if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
+ CXXDtorType Type =
+ CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
+
+ EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
+ ClassDecl->getDestructor(),
+ ThisPtr, Type);
+ }
+}
+
+void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
+ CXXDtorType Type,
+ bool ForVirtualBase,
+ bool Delegating,
+ llvm::Value *This) {
+ CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase,
+ Delegating, This);
+}
+
+namespace {
+ struct CallLocalDtor : EHScopeStack::Cleanup {
+ const CXXDestructorDecl *Dtor;
+ llvm::Value *Addr;
+
+ CallLocalDtor(const CXXDestructorDecl *D, llvm::Value *Addr)
+ : Dtor(D), Addr(Addr) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
+ /*ForVirtualBase=*/false,
+ /*Delegating=*/false, Addr);
+ }
+ };
+}
+
+void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
+ llvm::Value *Addr) {
+ EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr);
+}
+
+void CodeGenFunction::PushDestructorCleanup(QualType T, llvm::Value *Addr) {
+ CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
+ if (!ClassDecl) return;
+ if (ClassDecl->hasTrivialDestructor()) return;
+
+ const CXXDestructorDecl *D = ClassDecl->getDestructor();
+ assert(D && D->isUsed() && "destructor not marked as used!");
+ PushDestructorCleanup(D, Addr);
+}
+
+void
+CodeGenFunction::InitializeVTablePointer(BaseSubobject Base,
+ const CXXRecordDecl *NearestVBase,
+ CharUnits OffsetFromNearestVBase,
+ const CXXRecordDecl *VTableClass) {
+ const CXXRecordDecl *RD = Base.getBase();
+
+ // Don't initialize the vtable pointer if the class is marked with the
+ // 'novtable' attribute.
+ if ((RD == VTableClass || RD == NearestVBase) &&
+ VTableClass->hasAttr<MSNoVTableAttr>())
+ return;
+
+ // Compute the address point.
+ bool NeedsVirtualOffset;
+ llvm::Value *VTableAddressPoint =
+ CGM.getCXXABI().getVTableAddressPointInStructor(
+ *this, VTableClass, Base, NearestVBase, NeedsVirtualOffset);
+ if (!VTableAddressPoint)
+ return;
+
+ // Compute where to store the address point.
+ llvm::Value *VirtualOffset = nullptr;
+ CharUnits NonVirtualOffset = CharUnits::Zero();
+
+ if (NeedsVirtualOffset) {
+ // We need to use the virtual base offset offset because the virtual base
+ // might have a different offset in the most derived class.
+ VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(*this,
+ LoadCXXThis(),
+ VTableClass,
+ NearestVBase);
+ NonVirtualOffset = OffsetFromNearestVBase;
+ } else {
+ // We can just use the base offset in the complete class.
+ NonVirtualOffset = Base.getBaseOffset();
+ }
+
+ // Apply the offsets.
+ llvm::Value *VTableField = LoadCXXThis();
+
+ if (!NonVirtualOffset.isZero() || VirtualOffset)
+ VTableField = ApplyNonVirtualAndVirtualOffset(*this, VTableField,
+ NonVirtualOffset,
+ VirtualOffset);
+
+ // Finally, store the address point. Use the same LLVM types as the field to
+ // support optimization.
+ llvm::Type *VTablePtrTy =
+ llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true)
+ ->getPointerTo()
+ ->getPointerTo();
+ VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo());
+ VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy);
+ llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
+ CGM.DecorateInstruction(Store, CGM.getTBAAInfoForVTablePtr());
+}
+
+void
+CodeGenFunction::InitializeVTablePointers(BaseSubobject Base,
+ const CXXRecordDecl *NearestVBase,
+ CharUnits OffsetFromNearestVBase,
+ bool BaseIsNonVirtualPrimaryBase,
+ const CXXRecordDecl *VTableClass,
+ VisitedVirtualBasesSetTy& VBases) {
+ // If this base is a non-virtual primary base the address point has already
+ // been set.
+ if (!BaseIsNonVirtualPrimaryBase) {
+ // Initialize the vtable pointer for this base.
+ InitializeVTablePointer(Base, NearestVBase, OffsetFromNearestVBase,
+ VTableClass);
+ }
+
+ const CXXRecordDecl *RD = Base.getBase();
+
+ // Traverse bases.
+ for (const auto &I : RD->bases()) {
+ CXXRecordDecl *BaseDecl
+ = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
+
+ // Ignore classes without a vtable.
+ if (!BaseDecl->isDynamicClass())
+ continue;
+
+ CharUnits BaseOffset;
+ CharUnits BaseOffsetFromNearestVBase;
+ bool BaseDeclIsNonVirtualPrimaryBase;
+
+ if (I.isVirtual()) {
+ // Check if we've visited this virtual base before.
+ if (!VBases.insert(BaseDecl).second)
+ continue;
+
+ const ASTRecordLayout &Layout =
+ getContext().getASTRecordLayout(VTableClass);
+
+ BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
+ BaseOffsetFromNearestVBase = CharUnits::Zero();
+ BaseDeclIsNonVirtualPrimaryBase = false;
+ } else {
+ const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
+
+ BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
+ BaseOffsetFromNearestVBase =
+ OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
+ BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
+ }
+
+ InitializeVTablePointers(BaseSubobject(BaseDecl, BaseOffset),
+ I.isVirtual() ? BaseDecl : NearestVBase,
+ BaseOffsetFromNearestVBase,
+ BaseDeclIsNonVirtualPrimaryBase,
+ VTableClass, VBases);
+ }
+}
+
+void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
+ // Ignore classes without a vtable.
+ if (!RD->isDynamicClass())
+ return;
+
+ // Initialize the vtable pointers for this class and all of its bases.
+ VisitedVirtualBasesSetTy VBases;
+ InitializeVTablePointers(BaseSubobject(RD, CharUnits::Zero()),
+ /*NearestVBase=*/nullptr,
+ /*OffsetFromNearestVBase=*/CharUnits::Zero(),
+ /*BaseIsNonVirtualPrimaryBase=*/false, RD, VBases);
+
+ if (RD->getNumVBases())
+ CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD);
+}
+
+llvm::Value *CodeGenFunction::GetVTablePtr(llvm::Value *This,
+ llvm::Type *Ty) {
+ llvm::Value *VTablePtrSrc = Builder.CreateBitCast(This, Ty->getPointerTo());
+ llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
+ CGM.DecorateInstruction(VTable, CGM.getTBAAInfoForVTablePtr());
+ return VTable;
+}
+
+// If a class has a single non-virtual base and does not introduce or override
+// virtual member functions or fields, it will have the same layout as its base.
+// This function returns the least derived such class.
+//
+// Casting an instance of a base class to such a derived class is technically
+// undefined behavior, but it is a relatively common hack for introducing member
+// functions on class instances with specific properties (e.g. llvm::Operator)
+// that works under most compilers and should not have security implications, so
+// we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict.
+static const CXXRecordDecl *
+LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) {
+ if (!RD->field_empty())
+ return RD;
+
+ if (RD->getNumVBases() != 0)
+ return RD;
+
+ if (RD->getNumBases() != 1)
+ return RD;
+
+ for (const CXXMethodDecl *MD : RD->methods()) {
+ if (MD->isVirtual()) {
+ // Virtual member functions are only ok if they are implicit destructors
+ // because the implicit destructor will have the same semantics as the
+ // base class's destructor if no fields are added.
+ if (isa<CXXDestructorDecl>(MD) && MD->isImplicit())
+ continue;
+ return RD;
+ }
+ }
+
+ return LeastDerivedClassWithSameLayout(
+ RD->bases_begin()->getType()->getAsCXXRecordDecl());
+}
+
+void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXMethodDecl *MD,
+ llvm::Value *VTable) {
+ const CXXRecordDecl *ClassDecl = MD->getParent();
+ if (!SanOpts.has(SanitizerKind::CFICastStrict))
+ ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl);
+
+ EmitVTablePtrCheck(ClassDecl, VTable);
+}
+
+void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T,
+ llvm::Value *Derived,
+ bool MayBeNull) {
+ if (!getLangOpts().CPlusPlus)
+ return;
+
+ auto *ClassTy = T->getAs<RecordType>();
+ if (!ClassTy)
+ return;
+
+ const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl());
+
+ if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass())
+ return;
+
+ SmallString<64> MangledName;
+ llvm::raw_svector_ostream Out(MangledName);
+ CGM.getCXXABI().getMangleContext().mangleCXXRTTI(T.getUnqualifiedType(),
+ Out);
+
+ // Blacklist based on the mangled type.
+ if (CGM.getContext().getSanitizerBlacklist().isBlacklistedType(Out.str()))
+ return;
+
+ if (!SanOpts.has(SanitizerKind::CFICastStrict))
+ ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl);
+
+ llvm::BasicBlock *ContBlock = 0;
+
+ if (MayBeNull) {
+ llvm::Value *DerivedNotNull =
+ Builder.CreateIsNotNull(Derived, "cast.nonnull");
+
+ llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check");
+ ContBlock = createBasicBlock("cast.cont");
+
+ Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock);
+
+ EmitBlock(CheckBlock);
+ }
+
+ llvm::Value *VTable = GetVTablePtr(Derived, Int8PtrTy);
+ EmitVTablePtrCheck(ClassDecl, VTable);
+
+ if (MayBeNull) {
+ Builder.CreateBr(ContBlock);
+ EmitBlock(ContBlock);
+ }
+}
+
+void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD,
+ llvm::Value *VTable) {
+ // FIXME: Add blacklisting scheme.
+ if (RD->isInStdNamespace())
+ return;
+
+ std::string OutName;
+ llvm::raw_string_ostream Out(OutName);
+ CGM.getCXXABI().getMangleContext().mangleCXXVTableBitSet(RD, Out);
+
+ llvm::Value *BitSetName = llvm::MetadataAsValue::get(
+ getLLVMContext(), llvm::MDString::get(getLLVMContext(), Out.str()));
+
+ llvm::Value *BitSetTest = Builder.CreateCall(
+ CGM.getIntrinsic(llvm::Intrinsic::bitset_test),
+ {Builder.CreateBitCast(VTable, CGM.Int8PtrTy), BitSetName});
+
+ llvm::BasicBlock *ContBlock = createBasicBlock("vtable.check.cont");
+ llvm::BasicBlock *TrapBlock = createBasicBlock("vtable.check.trap");
+
+ Builder.CreateCondBr(BitSetTest, ContBlock, TrapBlock);
+
+ EmitBlock(TrapBlock);
+ Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap), {});
+ Builder.CreateUnreachable();
+
+ EmitBlock(ContBlock);
+}
+
+// FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
+// quite what we want.
+static const Expr *skipNoOpCastsAndParens(const Expr *E) {
+ while (true) {
+ if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
+ E = PE->getSubExpr();
+ continue;
+ }
+
+ if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
+ if (CE->getCastKind() == CK_NoOp) {
+ E = CE->getSubExpr();
+ continue;
+ }
+ }
+ if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
+ if (UO->getOpcode() == UO_Extension) {
+ E = UO->getSubExpr();
+ continue;
+ }
+ }
+ return E;
+ }
+}
+
+bool
+CodeGenFunction::CanDevirtualizeMemberFunctionCall(const Expr *Base,
+ const CXXMethodDecl *MD) {
+ // When building with -fapple-kext, all calls must go through the vtable since
+ // the kernel linker can do runtime patching of vtables.
+ if (getLangOpts().AppleKext)
+ return false;
+
+ // If the most derived class is marked final, we know that no subclass can
+ // override this member function and so we can devirtualize it. For example:
+ //
+ // struct A { virtual void f(); }
+ // struct B final : A { };
+ //
+ // void f(B *b) {
+ // b->f();
+ // }
+ //
+ const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
+ if (MostDerivedClassDecl->hasAttr<FinalAttr>())
+ return true;
+
+ // If the member function is marked 'final', we know that it can't be
+ // overridden and can therefore devirtualize it.
+ if (MD->hasAttr<FinalAttr>())
+ return true;
+
+ // Similarly, if the class itself is marked 'final' it can't be overridden
+ // and we can therefore devirtualize the member function call.
+ if (MD->getParent()->hasAttr<FinalAttr>())
+ return true;
+
+ Base = skipNoOpCastsAndParens(Base);
+ if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
+ if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
+ // This is a record decl. We know the type and can devirtualize it.
+ return VD->getType()->isRecordType();
+ }
+
+ return false;
+ }
+
+ // We can devirtualize calls on an object accessed by a class member access
+ // expression, since by C++11 [basic.life]p6 we know that it can't refer to
+ // a derived class object constructed in the same location.
+ if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base))
+ if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl()))
+ return VD->getType()->isRecordType();
+
+ // We can always devirtualize calls on temporary object expressions.
+ if (isa<CXXConstructExpr>(Base))
+ return true;
+
+ // And calls on bound temporaries.
+ if (isa<CXXBindTemporaryExpr>(Base))
+ return true;
+
+ // Check if this is a call expr that returns a record type.
+ if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
+ return CE->getCallReturnType(getContext())->isRecordType();
+
+ // We can't devirtualize the call.
+ return false;
+}
+
+void CodeGenFunction::EmitForwardingCallToLambda(
+ const CXXMethodDecl *callOperator,
+ CallArgList &callArgs) {
+ // Get the address of the call operator.
+ const CGFunctionInfo &calleeFnInfo =
+ CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
+ llvm::Value *callee =
+ CGM.GetAddrOfFunction(GlobalDecl(callOperator),
+ CGM.getTypes().GetFunctionType(calleeFnInfo));
+
+ // Prepare the return slot.
+ const FunctionProtoType *FPT =
+ callOperator->getType()->castAs<FunctionProtoType>();
+ QualType resultType = FPT->getReturnType();
+ ReturnValueSlot returnSlot;
+ if (!resultType->isVoidType() &&
+ calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect &&
+ !hasScalarEvaluationKind(calleeFnInfo.getReturnType()))
+ returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified());
+
+ // We don't need to separately arrange the call arguments because
+ // the call can't be variadic anyway --- it's impossible to forward
+ // variadic arguments.
+
+ // Now emit our call.
+ RValue RV = EmitCall(calleeFnInfo, callee, returnSlot,
+ callArgs, callOperator);
+
+ // If necessary, copy the returned value into the slot.
+ if (!resultType->isVoidType() && returnSlot.isNull())
+ EmitReturnOfRValue(RV, resultType);
+ else
+ EmitBranchThroughCleanup(ReturnBlock);
+}
+
+void CodeGenFunction::EmitLambdaBlockInvokeBody() {
+ const BlockDecl *BD = BlockInfo->getBlockDecl();
+ const VarDecl *variable = BD->capture_begin()->getVariable();
+ const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
+
+ // Start building arguments for forwarding call
+ CallArgList CallArgs;
+
+ QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
+ llvm::Value *ThisPtr = GetAddrOfBlockDecl(variable, false);
+ CallArgs.add(RValue::get(ThisPtr), ThisType);
+
+ // Add the rest of the parameters.
+ for (auto param : BD->params())
+ EmitDelegateCallArg(CallArgs, param, param->getLocStart());
+
+ assert(!Lambda->isGenericLambda() &&
+ "generic lambda interconversion to block not implemented");
+ EmitForwardingCallToLambda(Lambda->getLambdaCallOperator(), CallArgs);
+}
+
+void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) {
+ if (cast<CXXMethodDecl>(CurCodeDecl)->isVariadic()) {
+ // FIXME: Making this work correctly is nasty because it requires either
+ // cloning the body of the call operator or making the call operator forward.
+ CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
+ return;
+ }
+
+ EmitFunctionBody(Args, cast<FunctionDecl>(CurGD.getDecl())->getBody());
+}
+
+void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) {
+ const CXXRecordDecl *Lambda = MD->getParent();
+
+ // Start building arguments for forwarding call
+ CallArgList CallArgs;
+
+ QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
+ llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType));
+ CallArgs.add(RValue::get(ThisPtr), ThisType);
+
+ // Add the rest of the parameters.
+ for (auto Param : MD->params())
+ EmitDelegateCallArg(CallArgs, Param, Param->getLocStart());
+
+ const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
+ // For a generic lambda, find the corresponding call operator specialization
+ // to which the call to the static-invoker shall be forwarded.
+ if (Lambda->isGenericLambda()) {
+ assert(MD->isFunctionTemplateSpecialization());
+ const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
+ FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate();
+ void *InsertPos = nullptr;
+ FunctionDecl *CorrespondingCallOpSpecialization =
+ CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
+ assert(CorrespondingCallOpSpecialization);
+ CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
+ }
+ EmitForwardingCallToLambda(CallOp, CallArgs);
+}
+
+void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) {
+ if (MD->isVariadic()) {
+ // FIXME: Making this work correctly is nasty because it requires either
+ // cloning the body of the call operator or making the call operator forward.
+ CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
+ return;
+ }
+
+ EmitLambdaDelegatingInvokeBody(MD);
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGCleanup.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGCleanup.cpp
new file mode 100644
index 0000000..d97e405
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGCleanup.cpp
@@ -0,0 +1,1170 @@
+//===--- CGCleanup.cpp - Bookkeeping and code emission for cleanups -------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains code dealing with the IR generation for cleanups
+// and related information.
+//
+// A "cleanup" is a piece of code which needs to be executed whenever
+// control transfers out of a particular scope. This can be
+// conditionalized to occur only on exceptional control flow, only on
+// normal control flow, or both.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGCleanup.h"
+#include "CodeGenFunction.h"
+
+using namespace clang;
+using namespace CodeGen;
+
+bool DominatingValue<RValue>::saved_type::needsSaving(RValue rv) {
+ if (rv.isScalar())
+ return DominatingLLVMValue::needsSaving(rv.getScalarVal());
+ if (rv.isAggregate())
+ return DominatingLLVMValue::needsSaving(rv.getAggregateAddr());
+ return true;
+}
+
+DominatingValue<RValue>::saved_type
+DominatingValue<RValue>::saved_type::save(CodeGenFunction &CGF, RValue rv) {
+ if (rv.isScalar()) {
+ llvm::Value *V = rv.getScalarVal();
+
+ // These automatically dominate and don't need to be saved.
+ if (!DominatingLLVMValue::needsSaving(V))
+ return saved_type(V, ScalarLiteral);
+
+ // Everything else needs an alloca.
+ llvm::Value *addr = CGF.CreateTempAlloca(V->getType(), "saved-rvalue");
+ CGF.Builder.CreateStore(V, addr);
+ return saved_type(addr, ScalarAddress);
+ }
+
+ if (rv.isComplex()) {
+ CodeGenFunction::ComplexPairTy V = rv.getComplexVal();
+ llvm::Type *ComplexTy =
+ llvm::StructType::get(V.first->getType(), V.second->getType(),
+ (void*) nullptr);
+ llvm::Value *addr = CGF.CreateTempAlloca(ComplexTy, "saved-complex");
+ CGF.Builder.CreateStore(V.first,
+ CGF.Builder.CreateStructGEP(ComplexTy, addr, 0));
+ CGF.Builder.CreateStore(V.second,
+ CGF.Builder.CreateStructGEP(ComplexTy, addr, 1));
+ return saved_type(addr, ComplexAddress);
+ }
+
+ assert(rv.isAggregate());
+ llvm::Value *V = rv.getAggregateAddr(); // TODO: volatile?
+ if (!DominatingLLVMValue::needsSaving(V))
+ return saved_type(V, AggregateLiteral);
+
+ llvm::Value *addr = CGF.CreateTempAlloca(V->getType(), "saved-rvalue");
+ CGF.Builder.CreateStore(V, addr);
+ return saved_type(addr, AggregateAddress);
+}
+
+/// Given a saved r-value produced by SaveRValue, perform the code
+/// necessary to restore it to usability at the current insertion
+/// point.
+RValue DominatingValue<RValue>::saved_type::restore(CodeGenFunction &CGF) {
+ switch (K) {
+ case ScalarLiteral:
+ return RValue::get(Value);
+ case ScalarAddress:
+ return RValue::get(CGF.Builder.CreateLoad(Value));
+ case AggregateLiteral:
+ return RValue::getAggregate(Value);
+ case AggregateAddress:
+ return RValue::getAggregate(CGF.Builder.CreateLoad(Value));
+ case ComplexAddress: {
+ llvm::Value *real =
+ CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(nullptr, Value, 0));
+ llvm::Value *imag =
+ CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(nullptr, Value, 1));
+ return RValue::getComplex(real, imag);
+ }
+ }
+
+ llvm_unreachable("bad saved r-value kind");
+}
+
+/// Push an entry of the given size onto this protected-scope stack.
+char *EHScopeStack::allocate(size_t Size) {
+ if (!StartOfBuffer) {
+ unsigned Capacity = 1024;
+ while (Capacity < Size) Capacity *= 2;
+ StartOfBuffer = new char[Capacity];
+ StartOfData = EndOfBuffer = StartOfBuffer + Capacity;
+ } else if (static_cast<size_t>(StartOfData - StartOfBuffer) < Size) {
+ unsigned CurrentCapacity = EndOfBuffer - StartOfBuffer;
+ unsigned UsedCapacity = CurrentCapacity - (StartOfData - StartOfBuffer);
+
+ unsigned NewCapacity = CurrentCapacity;
+ do {
+ NewCapacity *= 2;
+ } while (NewCapacity < UsedCapacity + Size);
+
+ char *NewStartOfBuffer = new char[NewCapacity];
+ char *NewEndOfBuffer = NewStartOfBuffer + NewCapacity;
+ char *NewStartOfData = NewEndOfBuffer - UsedCapacity;
+ memcpy(NewStartOfData, StartOfData, UsedCapacity);
+ delete [] StartOfBuffer;
+ StartOfBuffer = NewStartOfBuffer;
+ EndOfBuffer = NewEndOfBuffer;
+ StartOfData = NewStartOfData;
+ }
+
+ assert(StartOfBuffer + Size <= StartOfData);
+ StartOfData -= Size;
+ return StartOfData;
+}
+
+bool EHScopeStack::containsOnlyLifetimeMarkers(
+ EHScopeStack::stable_iterator Old) const {
+ for (EHScopeStack::iterator it = begin(); stabilize(it) != Old; it++) {
+ EHCleanupScope *cleanup = dyn_cast<EHCleanupScope>(&*it);
+ if (!cleanup || !cleanup->isLifetimeMarker())
+ return false;
+ }
+
+ return true;
+}
+
+EHScopeStack::stable_iterator
+EHScopeStack::getInnermostActiveNormalCleanup() const {
+ for (stable_iterator si = getInnermostNormalCleanup(), se = stable_end();
+ si != se; ) {
+ EHCleanupScope &cleanup = cast<EHCleanupScope>(*find(si));
+ if (cleanup.isActive()) return si;
+ si = cleanup.getEnclosingNormalCleanup();
+ }
+ return stable_end();
+}
+
+EHScopeStack::stable_iterator EHScopeStack::getInnermostActiveEHScope() const {
+ for (stable_iterator si = getInnermostEHScope(), se = stable_end();
+ si != se; ) {
+ // Skip over inactive cleanups.
+ EHCleanupScope *cleanup = dyn_cast<EHCleanupScope>(&*find(si));
+ if (cleanup && !cleanup->isActive()) {
+ si = cleanup->getEnclosingEHScope();
+ continue;
+ }
+
+ // All other scopes are always active.
+ return si;
+ }
+
+ return stable_end();
+}
+
+
+void *EHScopeStack::pushCleanup(CleanupKind Kind, size_t Size) {
+ assert(((Size % sizeof(void*)) == 0) && "cleanup type is misaligned");
+ char *Buffer = allocate(EHCleanupScope::getSizeForCleanupSize(Size));
+ bool IsNormalCleanup = Kind & NormalCleanup;
+ bool IsEHCleanup = Kind & EHCleanup;
+ bool IsActive = !(Kind & InactiveCleanup);
+ EHCleanupScope *Scope =
+ new (Buffer) EHCleanupScope(IsNormalCleanup,
+ IsEHCleanup,
+ IsActive,
+ Size,
+ BranchFixups.size(),
+ InnermostNormalCleanup,
+ InnermostEHScope);
+ if (IsNormalCleanup)
+ InnermostNormalCleanup = stable_begin();
+ if (IsEHCleanup)
+ InnermostEHScope = stable_begin();
+
+ return Scope->getCleanupBuffer();
+}
+
+void EHScopeStack::popCleanup() {
+ assert(!empty() && "popping exception stack when not empty");
+
+ assert(isa<EHCleanupScope>(*begin()));
+ EHCleanupScope &Cleanup = cast<EHCleanupScope>(*begin());
+ InnermostNormalCleanup = Cleanup.getEnclosingNormalCleanup();
+ InnermostEHScope = Cleanup.getEnclosingEHScope();
+ StartOfData += Cleanup.getAllocatedSize();
+
+ // Destroy the cleanup.
+ Cleanup.Destroy();
+
+ // Check whether we can shrink the branch-fixups stack.
+ if (!BranchFixups.empty()) {
+ // If we no longer have any normal cleanups, all the fixups are
+ // complete.
+ if (!hasNormalCleanups())
+ BranchFixups.clear();
+
+ // Otherwise we can still trim out unnecessary nulls.
+ else
+ popNullFixups();
+ }
+}
+
+EHFilterScope *EHScopeStack::pushFilter(unsigned numFilters) {
+ assert(getInnermostEHScope() == stable_end());
+ char *buffer = allocate(EHFilterScope::getSizeForNumFilters(numFilters));
+ EHFilterScope *filter = new (buffer) EHFilterScope(numFilters);
+ InnermostEHScope = stable_begin();
+ return filter;
+}
+
+void EHScopeStack::popFilter() {
+ assert(!empty() && "popping exception stack when not empty");
+
+ EHFilterScope &filter = cast<EHFilterScope>(*begin());
+ StartOfData += EHFilterScope::getSizeForNumFilters(filter.getNumFilters());
+
+ InnermostEHScope = filter.getEnclosingEHScope();
+}
+
+EHCatchScope *EHScopeStack::pushCatch(unsigned numHandlers) {
+ char *buffer = allocate(EHCatchScope::getSizeForNumHandlers(numHandlers));
+ EHCatchScope *scope =
+ new (buffer) EHCatchScope(numHandlers, InnermostEHScope);
+ InnermostEHScope = stable_begin();
+ return scope;
+}
+
+void EHScopeStack::pushTerminate() {
+ char *Buffer = allocate(EHTerminateScope::getSize());
+ new (Buffer) EHTerminateScope(InnermostEHScope);
+ InnermostEHScope = stable_begin();
+}
+
+/// Remove any 'null' fixups on the stack. However, we can't pop more
+/// fixups than the fixup depth on the innermost normal cleanup, or
+/// else fixups that we try to add to that cleanup will end up in the
+/// wrong place. We *could* try to shrink fixup depths, but that's
+/// actually a lot of work for little benefit.
+void EHScopeStack::popNullFixups() {
+ // We expect this to only be called when there's still an innermost
+ // normal cleanup; otherwise there really shouldn't be any fixups.
+ assert(hasNormalCleanups());
+
+ EHScopeStack::iterator it = find(InnermostNormalCleanup);
+ unsigned MinSize = cast<EHCleanupScope>(*it).getFixupDepth();
+ assert(BranchFixups.size() >= MinSize && "fixup stack out of order");
+
+ while (BranchFixups.size() > MinSize &&
+ BranchFixups.back().Destination == nullptr)
+ BranchFixups.pop_back();
+}
+
+void CodeGenFunction::initFullExprCleanup() {
+ // Create a variable to decide whether the cleanup needs to be run.
+ llvm::AllocaInst *active
+ = CreateTempAlloca(Builder.getInt1Ty(), "cleanup.cond");
+
+ // Initialize it to false at a site that's guaranteed to be run
+ // before each evaluation.
+ setBeforeOutermostConditional(Builder.getFalse(), active);
+
+ // Initialize it to true at the current location.
+ Builder.CreateStore(Builder.getTrue(), active);
+
+ // Set that as the active flag in the cleanup.
+ EHCleanupScope &cleanup = cast<EHCleanupScope>(*EHStack.begin());
+ assert(!cleanup.getActiveFlag() && "cleanup already has active flag?");
+ cleanup.setActiveFlag(active);
+
+ if (cleanup.isNormalCleanup()) cleanup.setTestFlagInNormalCleanup();
+ if (cleanup.isEHCleanup()) cleanup.setTestFlagInEHCleanup();
+}
+
+void EHScopeStack::Cleanup::anchor() {}
+
+/// All the branch fixups on the EH stack have propagated out past the
+/// outermost normal cleanup; resolve them all by adding cases to the
+/// given switch instruction.
+static void ResolveAllBranchFixups(CodeGenFunction &CGF,
+ llvm::SwitchInst *Switch,
+ llvm::BasicBlock *CleanupEntry) {
+ llvm::SmallPtrSet<llvm::BasicBlock*, 4> CasesAdded;
+
+ for (unsigned I = 0, E = CGF.EHStack.getNumBranchFixups(); I != E; ++I) {
+ // Skip this fixup if its destination isn't set.
+ BranchFixup &Fixup = CGF.EHStack.getBranchFixup(I);
+ if (Fixup.Destination == nullptr) continue;
+
+ // If there isn't an OptimisticBranchBlock, then InitialBranch is
+ // still pointing directly to its destination; forward it to the
+ // appropriate cleanup entry. This is required in the specific
+ // case of
+ // { std::string s; goto lbl; }
+ // lbl:
+ // i.e. where there's an unresolved fixup inside a single cleanup
+ // entry which we're currently popping.
+ if (Fixup.OptimisticBranchBlock == nullptr) {
+ new llvm::StoreInst(CGF.Builder.getInt32(Fixup.DestinationIndex),
+ CGF.getNormalCleanupDestSlot(),
+ Fixup.InitialBranch);
+ Fixup.InitialBranch->setSuccessor(0, CleanupEntry);
+ }
+
+ // Don't add this case to the switch statement twice.
+ if (!CasesAdded.insert(Fixup.Destination).second)
+ continue;
+
+ Switch->addCase(CGF.Builder.getInt32(Fixup.DestinationIndex),
+ Fixup.Destination);
+ }
+
+ CGF.EHStack.clearFixups();
+}
+
+/// Transitions the terminator of the given exit-block of a cleanup to
+/// be a cleanup switch.
+static llvm::SwitchInst *TransitionToCleanupSwitch(CodeGenFunction &CGF,
+ llvm::BasicBlock *Block) {
+ // If it's a branch, turn it into a switch whose default
+ // destination is its original target.
+ llvm::TerminatorInst *Term = Block->getTerminator();
+ assert(Term && "can't transition block without terminator");
+
+ if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) {
+ assert(Br->isUnconditional());
+ llvm::LoadInst *Load =
+ new llvm::LoadInst(CGF.getNormalCleanupDestSlot(), "cleanup.dest", Term);
+ llvm::SwitchInst *Switch =
+ llvm::SwitchInst::Create(Load, Br->getSuccessor(0), 4, Block);
+ Br->eraseFromParent();
+ return Switch;
+ } else {
+ return cast<llvm::SwitchInst>(Term);
+ }
+}
+
+void CodeGenFunction::ResolveBranchFixups(llvm::BasicBlock *Block) {
+ assert(Block && "resolving a null target block");
+ if (!EHStack.getNumBranchFixups()) return;
+
+ assert(EHStack.hasNormalCleanups() &&
+ "branch fixups exist with no normal cleanups on stack");
+
+ llvm::SmallPtrSet<llvm::BasicBlock*, 4> ModifiedOptimisticBlocks;
+ bool ResolvedAny = false;
+
+ for (unsigned I = 0, E = EHStack.getNumBranchFixups(); I != E; ++I) {
+ // Skip this fixup if its destination doesn't match.
+ BranchFixup &Fixup = EHStack.getBranchFixup(I);
+ if (Fixup.Destination != Block) continue;
+
+ Fixup.Destination = nullptr;
+ ResolvedAny = true;
+
+ // If it doesn't have an optimistic branch block, LatestBranch is
+ // already pointing to the right place.
+ llvm::BasicBlock *BranchBB = Fixup.OptimisticBranchBlock;
+ if (!BranchBB)
+ continue;
+
+ // Don't process the same optimistic branch block twice.
+ if (!ModifiedOptimisticBlocks.insert(BranchBB).second)
+ continue;
+
+ llvm::SwitchInst *Switch = TransitionToCleanupSwitch(*this, BranchBB);
+
+ // Add a case to the switch.
+ Switch->addCase(Builder.getInt32(Fixup.DestinationIndex), Block);
+ }
+
+ if (ResolvedAny)
+ EHStack.popNullFixups();
+}
+
+/// Pops cleanup blocks until the given savepoint is reached.
+void CodeGenFunction::PopCleanupBlocks(EHScopeStack::stable_iterator Old) {
+ assert(Old.isValid());
+
+ while (EHStack.stable_begin() != Old) {
+ EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin());
+
+ // As long as Old strictly encloses the scope's enclosing normal
+ // cleanup, we're going to emit another normal cleanup which
+ // fallthrough can propagate through.
+ bool FallThroughIsBranchThrough =
+ Old.strictlyEncloses(Scope.getEnclosingNormalCleanup());
+
+ PopCleanupBlock(FallThroughIsBranchThrough);
+ }
+}
+
+/// Pops cleanup blocks until the given savepoint is reached, then add the
+/// cleanups from the given savepoint in the lifetime-extended cleanups stack.
+void
+CodeGenFunction::PopCleanupBlocks(EHScopeStack::stable_iterator Old,
+ size_t OldLifetimeExtendedSize) {
+ PopCleanupBlocks(Old);
+
+ // Move our deferred cleanups onto the EH stack.
+ for (size_t I = OldLifetimeExtendedSize,
+ E = LifetimeExtendedCleanupStack.size(); I != E; /**/) {
+ // Alignment should be guaranteed by the vptrs in the individual cleanups.
+ assert((I % llvm::alignOf<LifetimeExtendedCleanupHeader>() == 0) &&
+ "misaligned cleanup stack entry");
+
+ LifetimeExtendedCleanupHeader &Header =
+ reinterpret_cast<LifetimeExtendedCleanupHeader&>(
+ LifetimeExtendedCleanupStack[I]);
+ I += sizeof(Header);
+
+ EHStack.pushCopyOfCleanup(Header.getKind(),
+ &LifetimeExtendedCleanupStack[I],
+ Header.getSize());
+ I += Header.getSize();
+ }
+ LifetimeExtendedCleanupStack.resize(OldLifetimeExtendedSize);
+}
+
+static llvm::BasicBlock *CreateNormalEntry(CodeGenFunction &CGF,
+ EHCleanupScope &Scope) {
+ assert(Scope.isNormalCleanup());
+ llvm::BasicBlock *Entry = Scope.getNormalBlock();
+ if (!Entry) {
+ Entry = CGF.createBasicBlock("cleanup");
+ Scope.setNormalBlock(Entry);
+ }
+ return Entry;
+}
+
+/// Attempts to reduce a cleanup's entry block to a fallthrough. This
+/// is basically llvm::MergeBlockIntoPredecessor, except
+/// simplified/optimized for the tighter constraints on cleanup blocks.
+///
+/// Returns the new block, whatever it is.
+static llvm::BasicBlock *SimplifyCleanupEntry(CodeGenFunction &CGF,
+ llvm::BasicBlock *Entry) {
+ llvm::BasicBlock *Pred = Entry->getSinglePredecessor();
+ if (!Pred) return Entry;
+
+ llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Pred->getTerminator());
+ if (!Br || Br->isConditional()) return Entry;
+ assert(Br->getSuccessor(0) == Entry);
+
+ // If we were previously inserting at the end of the cleanup entry
+ // block, we'll need to continue inserting at the end of the
+ // predecessor.
+ bool WasInsertBlock = CGF.Builder.GetInsertBlock() == Entry;
+ assert(!WasInsertBlock || CGF.Builder.GetInsertPoint() == Entry->end());
+
+ // Kill the branch.
+ Br->eraseFromParent();
+
+ // Replace all uses of the entry with the predecessor, in case there
+ // are phis in the cleanup.
+ Entry->replaceAllUsesWith(Pred);
+
+ // Merge the blocks.
+ Pred->getInstList().splice(Pred->end(), Entry->getInstList());
+
+ // Kill the entry block.
+ Entry->eraseFromParent();
+
+ if (WasInsertBlock)
+ CGF.Builder.SetInsertPoint(Pred);
+
+ return Pred;
+}
+
+static void EmitCleanup(CodeGenFunction &CGF,
+ EHScopeStack::Cleanup *Fn,
+ EHScopeStack::Cleanup::Flags flags,
+ llvm::Value *ActiveFlag) {
+ // Itanium EH cleanups occur within a terminate scope. Microsoft SEH doesn't
+ // have this behavior, and the Microsoft C++ runtime will call terminate for
+ // us if the cleanup throws.
+ bool PushedTerminate = false;
+ if (flags.isForEHCleanup() && !CGF.getTarget().getCXXABI().isMicrosoft()) {
+ CGF.EHStack.pushTerminate();
+ PushedTerminate = true;
+ }
+
+ // If there's an active flag, load it and skip the cleanup if it's
+ // false.
+ llvm::BasicBlock *ContBB = nullptr;
+ if (ActiveFlag) {
+ ContBB = CGF.createBasicBlock("cleanup.done");
+ llvm::BasicBlock *CleanupBB = CGF.createBasicBlock("cleanup.action");
+ llvm::Value *IsActive
+ = CGF.Builder.CreateLoad(ActiveFlag, "cleanup.is_active");
+ CGF.Builder.CreateCondBr(IsActive, CleanupBB, ContBB);
+ CGF.EmitBlock(CleanupBB);
+ }
+
+ // Ask the cleanup to emit itself.
+ Fn->Emit(CGF, flags);
+ assert(CGF.HaveInsertPoint() && "cleanup ended with no insertion point?");
+
+ // Emit the continuation block if there was an active flag.
+ if (ActiveFlag)
+ CGF.EmitBlock(ContBB);
+
+ // Leave the terminate scope.
+ if (PushedTerminate)
+ CGF.EHStack.popTerminate();
+}
+
+static void ForwardPrebranchedFallthrough(llvm::BasicBlock *Exit,
+ llvm::BasicBlock *From,
+ llvm::BasicBlock *To) {
+ // Exit is the exit block of a cleanup, so it always terminates in
+ // an unconditional branch or a switch.
+ llvm::TerminatorInst *Term = Exit->getTerminator();
+
+ if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) {
+ assert(Br->isUnconditional() && Br->getSuccessor(0) == From);
+ Br->setSuccessor(0, To);
+ } else {
+ llvm::SwitchInst *Switch = cast<llvm::SwitchInst>(Term);
+ for (unsigned I = 0, E = Switch->getNumSuccessors(); I != E; ++I)
+ if (Switch->getSuccessor(I) == From)
+ Switch->setSuccessor(I, To);
+ }
+}
+
+/// We don't need a normal entry block for the given cleanup.
+/// Optimistic fixup branches can cause these blocks to come into
+/// existence anyway; if so, destroy it.
+///
+/// The validity of this transformation is very much specific to the
+/// exact ways in which we form branches to cleanup entries.
+static void destroyOptimisticNormalEntry(CodeGenFunction &CGF,
+ EHCleanupScope &scope) {
+ llvm::BasicBlock *entry = scope.getNormalBlock();
+ if (!entry) return;
+
+ // Replace all the uses with unreachable.
+ llvm::BasicBlock *unreachableBB = CGF.getUnreachableBlock();
+ for (llvm::BasicBlock::use_iterator
+ i = entry->use_begin(), e = entry->use_end(); i != e; ) {
+ llvm::Use &use = *i;
+ ++i;
+
+ use.set(unreachableBB);
+
+ // The only uses should be fixup switches.
+ llvm::SwitchInst *si = cast<llvm::SwitchInst>(use.getUser());
+ if (si->getNumCases() == 1 && si->getDefaultDest() == unreachableBB) {
+ // Replace the switch with a branch.
+ llvm::BranchInst::Create(si->case_begin().getCaseSuccessor(), si);
+
+ // The switch operand is a load from the cleanup-dest alloca.
+ llvm::LoadInst *condition = cast<llvm::LoadInst>(si->getCondition());
+
+ // Destroy the switch.
+ si->eraseFromParent();
+
+ // Destroy the load.
+ assert(condition->getOperand(0) == CGF.NormalCleanupDest);
+ assert(condition->use_empty());
+ condition->eraseFromParent();
+ }
+ }
+
+ assert(entry->use_empty());
+ delete entry;
+}
+
+/// Pops a cleanup block. If the block includes a normal cleanup, the
+/// current insertion point is threaded through the cleanup, as are
+/// any branch fixups on the cleanup.
+void CodeGenFunction::PopCleanupBlock(bool FallthroughIsBranchThrough) {
+ assert(!EHStack.empty() && "cleanup stack is empty!");
+ assert(isa<EHCleanupScope>(*EHStack.begin()) && "top not a cleanup!");
+ EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin());
+ assert(Scope.getFixupDepth() <= EHStack.getNumBranchFixups());
+
+ // Remember activation information.
+ bool IsActive = Scope.isActive();
+ llvm::Value *NormalActiveFlag =
+ Scope.shouldTestFlagInNormalCleanup() ? Scope.getActiveFlag() : nullptr;
+ llvm::Value *EHActiveFlag =
+ Scope.shouldTestFlagInEHCleanup() ? Scope.getActiveFlag() : nullptr;
+
+ // Check whether we need an EH cleanup. This is only true if we've
+ // generated a lazy EH cleanup block.
+ llvm::BasicBlock *EHEntry = Scope.getCachedEHDispatchBlock();
+ assert(Scope.hasEHBranches() == (EHEntry != nullptr));
+ bool RequiresEHCleanup = (EHEntry != nullptr);
+ EHScopeStack::stable_iterator EHParent = Scope.getEnclosingEHScope();
+
+ // Check the three conditions which might require a normal cleanup:
+
+ // - whether there are branch fix-ups through this cleanup
+ unsigned FixupDepth = Scope.getFixupDepth();
+ bool HasFixups = EHStack.getNumBranchFixups() != FixupDepth;
+
+ // - whether there are branch-throughs or branch-afters
+ bool HasExistingBranches = Scope.hasBranches();
+
+ // - whether there's a fallthrough
+ llvm::BasicBlock *FallthroughSource = Builder.GetInsertBlock();
+ bool HasFallthrough = (FallthroughSource != nullptr && IsActive);
+
+ // Branch-through fall-throughs leave the insertion point set to the
+ // end of the last cleanup, which points to the current scope. The
+ // rest of IR gen doesn't need to worry about this; it only happens
+ // during the execution of PopCleanupBlocks().
+ bool HasPrebranchedFallthrough =
+ (FallthroughSource && FallthroughSource->getTerminator());
+
+ // If this is a normal cleanup, then having a prebranched
+ // fallthrough implies that the fallthrough source unconditionally
+ // jumps here.
+ assert(!Scope.isNormalCleanup() || !HasPrebranchedFallthrough ||
+ (Scope.getNormalBlock() &&
+ FallthroughSource->getTerminator()->getSuccessor(0)
+ == Scope.getNormalBlock()));
+
+ bool RequiresNormalCleanup = false;
+ if (Scope.isNormalCleanup() &&
+ (HasFixups || HasExistingBranches || HasFallthrough)) {
+ RequiresNormalCleanup = true;
+ }
+
+ // If we have a prebranched fallthrough into an inactive normal
+ // cleanup, rewrite it so that it leads to the appropriate place.
+ if (Scope.isNormalCleanup() && HasPrebranchedFallthrough && !IsActive) {
+ llvm::BasicBlock *prebranchDest;
+
+ // If the prebranch is semantically branching through the next
+ // cleanup, just forward it to the next block, leaving the
+ // insertion point in the prebranched block.
+ if (FallthroughIsBranchThrough) {
+ EHScope &enclosing = *EHStack.find(Scope.getEnclosingNormalCleanup());
+ prebranchDest = CreateNormalEntry(*this, cast<EHCleanupScope>(enclosing));
+
+ // Otherwise, we need to make a new block. If the normal cleanup
+ // isn't being used at all, we could actually reuse the normal
+ // entry block, but this is simpler, and it avoids conflicts with
+ // dead optimistic fixup branches.
+ } else {
+ prebranchDest = createBasicBlock("forwarded-prebranch");
+ EmitBlock(prebranchDest);
+ }
+
+ llvm::BasicBlock *normalEntry = Scope.getNormalBlock();
+ assert(normalEntry && !normalEntry->use_empty());
+
+ ForwardPrebranchedFallthrough(FallthroughSource,
+ normalEntry, prebranchDest);
+ }
+
+ // If we don't need the cleanup at all, we're done.
+ if (!RequiresNormalCleanup && !RequiresEHCleanup) {
+ destroyOptimisticNormalEntry(*this, Scope);
+ EHStack.popCleanup(); // safe because there are no fixups
+ assert(EHStack.getNumBranchFixups() == 0 ||
+ EHStack.hasNormalCleanups());
+ return;
+ }
+
+ // Copy the cleanup emission data out. Note that SmallVector
+ // guarantees maximal alignment for its buffer regardless of its
+ // type parameter.
+ SmallVector<char, 8*sizeof(void*)> CleanupBuffer;
+ CleanupBuffer.reserve(Scope.getCleanupSize());
+ memcpy(CleanupBuffer.data(),
+ Scope.getCleanupBuffer(), Scope.getCleanupSize());
+ CleanupBuffer.set_size(Scope.getCleanupSize());
+ EHScopeStack::Cleanup *Fn =
+ reinterpret_cast<EHScopeStack::Cleanup*>(CleanupBuffer.data());
+
+ EHScopeStack::Cleanup::Flags cleanupFlags;
+ if (Scope.isNormalCleanup())
+ cleanupFlags.setIsNormalCleanupKind();
+ if (Scope.isEHCleanup())
+ cleanupFlags.setIsEHCleanupKind();
+
+ if (!RequiresNormalCleanup) {
+ destroyOptimisticNormalEntry(*this, Scope);
+ EHStack.popCleanup();
+ } else {
+ // If we have a fallthrough and no other need for the cleanup,
+ // emit it directly.
+ if (HasFallthrough && !HasPrebranchedFallthrough &&
+ !HasFixups && !HasExistingBranches) {
+
+ destroyOptimisticNormalEntry(*this, Scope);
+ EHStack.popCleanup();
+
+ EmitCleanup(*this, Fn, cleanupFlags, NormalActiveFlag);
+
+ // Otherwise, the best approach is to thread everything through
+ // the cleanup block and then try to clean up after ourselves.
+ } else {
+ // Force the entry block to exist.
+ llvm::BasicBlock *NormalEntry = CreateNormalEntry(*this, Scope);
+
+ // I. Set up the fallthrough edge in.
+
+ CGBuilderTy::InsertPoint savedInactiveFallthroughIP;
+
+ // If there's a fallthrough, we need to store the cleanup
+ // destination index. For fall-throughs this is always zero.
+ if (HasFallthrough) {
+ if (!HasPrebranchedFallthrough)
+ Builder.CreateStore(Builder.getInt32(0), getNormalCleanupDestSlot());
+
+ // Otherwise, save and clear the IP if we don't have fallthrough
+ // because the cleanup is inactive.
+ } else if (FallthroughSource) {
+ assert(!IsActive && "source without fallthrough for active cleanup");
+ savedInactiveFallthroughIP = Builder.saveAndClearIP();
+ }
+
+ // II. Emit the entry block. This implicitly branches to it if
+ // we have fallthrough. All the fixups and existing branches
+ // should already be branched to it.
+ EmitBlock(NormalEntry);
+
+ // III. Figure out where we're going and build the cleanup
+ // epilogue.
+
+ bool HasEnclosingCleanups =
+ (Scope.getEnclosingNormalCleanup() != EHStack.stable_end());
+
+ // Compute the branch-through dest if we need it:
+ // - if there are branch-throughs threaded through the scope
+ // - if fall-through is a branch-through
+ // - if there are fixups that will be optimistically forwarded
+ // to the enclosing cleanup
+ llvm::BasicBlock *BranchThroughDest = nullptr;
+ if (Scope.hasBranchThroughs() ||
+ (FallthroughSource && FallthroughIsBranchThrough) ||
+ (HasFixups && HasEnclosingCleanups)) {
+ assert(HasEnclosingCleanups);
+ EHScope &S = *EHStack.find(Scope.getEnclosingNormalCleanup());
+ BranchThroughDest = CreateNormalEntry(*this, cast<EHCleanupScope>(S));
+ }
+
+ llvm::BasicBlock *FallthroughDest = nullptr;
+ SmallVector<llvm::Instruction*, 2> InstsToAppend;
+
+ // If there's exactly one branch-after and no other threads,
+ // we can route it without a switch.
+ if (!Scope.hasBranchThroughs() && !HasFixups && !HasFallthrough &&
+ Scope.getNumBranchAfters() == 1) {
+ assert(!BranchThroughDest || !IsActive);
+
+ // Clean up the possibly dead store to the cleanup dest slot.
+ llvm::Instruction *NormalCleanupDestSlot =
+ cast<llvm::Instruction>(getNormalCleanupDestSlot());
+ if (NormalCleanupDestSlot->hasOneUse()) {
+ NormalCleanupDestSlot->user_back()->eraseFromParent();
+ NormalCleanupDestSlot->eraseFromParent();
+ NormalCleanupDest = nullptr;
+ }
+
+ llvm::BasicBlock *BranchAfter = Scope.getBranchAfterBlock(0);
+ InstsToAppend.push_back(llvm::BranchInst::Create(BranchAfter));
+
+ // Build a switch-out if we need it:
+ // - if there are branch-afters threaded through the scope
+ // - if fall-through is a branch-after
+ // - if there are fixups that have nowhere left to go and
+ // so must be immediately resolved
+ } else if (Scope.getNumBranchAfters() ||
+ (HasFallthrough && !FallthroughIsBranchThrough) ||
+ (HasFixups && !HasEnclosingCleanups)) {
+
+ llvm::BasicBlock *Default =
+ (BranchThroughDest ? BranchThroughDest : getUnreachableBlock());
+
+ // TODO: base this on the number of branch-afters and fixups
+ const unsigned SwitchCapacity = 10;
+
+ llvm::LoadInst *Load =
+ new llvm::LoadInst(getNormalCleanupDestSlot(), "cleanup.dest");
+ llvm::SwitchInst *Switch =
+ llvm::SwitchInst::Create(Load, Default, SwitchCapacity);
+
+ InstsToAppend.push_back(Load);
+ InstsToAppend.push_back(Switch);
+
+ // Branch-after fallthrough.
+ if (FallthroughSource && !FallthroughIsBranchThrough) {
+ FallthroughDest = createBasicBlock("cleanup.cont");
+ if (HasFallthrough)
+ Switch->addCase(Builder.getInt32(0), FallthroughDest);
+ }
+
+ for (unsigned I = 0, E = Scope.getNumBranchAfters(); I != E; ++I) {
+ Switch->addCase(Scope.getBranchAfterIndex(I),
+ Scope.getBranchAfterBlock(I));
+ }
+
+ // If there aren't any enclosing cleanups, we can resolve all
+ // the fixups now.
+ if (HasFixups && !HasEnclosingCleanups)
+ ResolveAllBranchFixups(*this, Switch, NormalEntry);
+ } else {
+ // We should always have a branch-through destination in this case.
+ assert(BranchThroughDest);
+ InstsToAppend.push_back(llvm::BranchInst::Create(BranchThroughDest));
+ }
+
+ // IV. Pop the cleanup and emit it.
+ EHStack.popCleanup();
+ assert(EHStack.hasNormalCleanups() == HasEnclosingCleanups);
+
+ EmitCleanup(*this, Fn, cleanupFlags, NormalActiveFlag);
+
+ // Append the prepared cleanup prologue from above.
+ llvm::BasicBlock *NormalExit = Builder.GetInsertBlock();
+ for (unsigned I = 0, E = InstsToAppend.size(); I != E; ++I)
+ NormalExit->getInstList().push_back(InstsToAppend[I]);
+
+ // Optimistically hope that any fixups will continue falling through.
+ for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups();
+ I < E; ++I) {
+ BranchFixup &Fixup = EHStack.getBranchFixup(I);
+ if (!Fixup.Destination) continue;
+ if (!Fixup.OptimisticBranchBlock) {
+ new llvm::StoreInst(Builder.getInt32(Fixup.DestinationIndex),
+ getNormalCleanupDestSlot(),
+ Fixup.InitialBranch);
+ Fixup.InitialBranch->setSuccessor(0, NormalEntry);
+ }
+ Fixup.OptimisticBranchBlock = NormalExit;
+ }
+
+ // V. Set up the fallthrough edge out.
+
+ // Case 1: a fallthrough source exists but doesn't branch to the
+ // cleanup because the cleanup is inactive.
+ if (!HasFallthrough && FallthroughSource) {
+ // Prebranched fallthrough was forwarded earlier.
+ // Non-prebranched fallthrough doesn't need to be forwarded.
+ // Either way, all we need to do is restore the IP we cleared before.
+ assert(!IsActive);
+ Builder.restoreIP(savedInactiveFallthroughIP);
+
+ // Case 2: a fallthrough source exists and should branch to the
+ // cleanup, but we're not supposed to branch through to the next
+ // cleanup.
+ } else if (HasFallthrough && FallthroughDest) {
+ assert(!FallthroughIsBranchThrough);
+ EmitBlock(FallthroughDest);
+
+ // Case 3: a fallthrough source exists and should branch to the
+ // cleanup and then through to the next.
+ } else if (HasFallthrough) {
+ // Everything is already set up for this.
+
+ // Case 4: no fallthrough source exists.
+ } else {
+ Builder.ClearInsertionPoint();
+ }
+
+ // VI. Assorted cleaning.
+
+ // Check whether we can merge NormalEntry into a single predecessor.
+ // This might invalidate (non-IR) pointers to NormalEntry.
+ llvm::BasicBlock *NewNormalEntry =
+ SimplifyCleanupEntry(*this, NormalEntry);
+
+ // If it did invalidate those pointers, and NormalEntry was the same
+ // as NormalExit, go back and patch up the fixups.
+ if (NewNormalEntry != NormalEntry && NormalEntry == NormalExit)
+ for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups();
+ I < E; ++I)
+ EHStack.getBranchFixup(I).OptimisticBranchBlock = NewNormalEntry;
+ }
+ }
+
+ assert(EHStack.hasNormalCleanups() || EHStack.getNumBranchFixups() == 0);
+
+ // Emit the EH cleanup if required.
+ if (RequiresEHCleanup) {
+ CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
+
+ EmitBlock(EHEntry);
+
+ // We only actually emit the cleanup code if the cleanup is either
+ // active or was used before it was deactivated.
+ if (EHActiveFlag || IsActive) {
+
+ cleanupFlags.setIsForEHCleanup();
+ EmitCleanup(*this, Fn, cleanupFlags, EHActiveFlag);
+ }
+
+ Builder.CreateBr(getEHDispatchBlock(EHParent));
+
+ Builder.restoreIP(SavedIP);
+
+ SimplifyCleanupEntry(*this, EHEntry);
+ }
+}
+
+/// isObviouslyBranchWithoutCleanups - Return true if a branch to the
+/// specified destination obviously has no cleanups to run. 'false' is always
+/// a conservatively correct answer for this method.
+bool CodeGenFunction::isObviouslyBranchWithoutCleanups(JumpDest Dest) const {
+ assert(Dest.getScopeDepth().encloses(EHStack.stable_begin())
+ && "stale jump destination");
+
+ // Calculate the innermost active normal cleanup.
+ EHScopeStack::stable_iterator TopCleanup =
+ EHStack.getInnermostActiveNormalCleanup();
+
+ // If we're not in an active normal cleanup scope, or if the
+ // destination scope is within the innermost active normal cleanup
+ // scope, we don't need to worry about fixups.
+ if (TopCleanup == EHStack.stable_end() ||
+ TopCleanup.encloses(Dest.getScopeDepth())) // works for invalid
+ return true;
+
+ // Otherwise, we might need some cleanups.
+ return false;
+}
+
+
+/// Terminate the current block by emitting a branch which might leave
+/// the current cleanup-protected scope. The target scope may not yet
+/// be known, in which case this will require a fixup.
+///
+/// As a side-effect, this method clears the insertion point.
+void CodeGenFunction::EmitBranchThroughCleanup(JumpDest Dest) {
+ assert(Dest.getScopeDepth().encloses(EHStack.stable_begin())
+ && "stale jump destination");
+
+ if (!HaveInsertPoint())
+ return;
+
+ // Create the branch.
+ llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock());
+
+ // Calculate the innermost active normal cleanup.
+ EHScopeStack::stable_iterator
+ TopCleanup = EHStack.getInnermostActiveNormalCleanup();
+
+ // If we're not in an active normal cleanup scope, or if the
+ // destination scope is within the innermost active normal cleanup
+ // scope, we don't need to worry about fixups.
+ if (TopCleanup == EHStack.stable_end() ||
+ TopCleanup.encloses(Dest.getScopeDepth())) { // works for invalid
+ Builder.ClearInsertionPoint();
+ return;
+ }
+
+ // If we can't resolve the destination cleanup scope, just add this
+ // to the current cleanup scope as a branch fixup.
+ if (!Dest.getScopeDepth().isValid()) {
+ BranchFixup &Fixup = EHStack.addBranchFixup();
+ Fixup.Destination = Dest.getBlock();
+ Fixup.DestinationIndex = Dest.getDestIndex();
+ Fixup.InitialBranch = BI;
+ Fixup.OptimisticBranchBlock = nullptr;
+
+ Builder.ClearInsertionPoint();
+ return;
+ }
+
+ // Otherwise, thread through all the normal cleanups in scope.
+
+ // Store the index at the start.
+ llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex());
+ new llvm::StoreInst(Index, getNormalCleanupDestSlot(), BI);
+
+ // Adjust BI to point to the first cleanup block.
+ {
+ EHCleanupScope &Scope =
+ cast<EHCleanupScope>(*EHStack.find(TopCleanup));
+ BI->setSuccessor(0, CreateNormalEntry(*this, Scope));
+ }
+
+ // Add this destination to all the scopes involved.
+ EHScopeStack::stable_iterator I = TopCleanup;
+ EHScopeStack::stable_iterator E = Dest.getScopeDepth();
+ if (E.strictlyEncloses(I)) {
+ while (true) {
+ EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I));
+ assert(Scope.isNormalCleanup());
+ I = Scope.getEnclosingNormalCleanup();
+
+ // If this is the last cleanup we're propagating through, tell it
+ // that there's a resolved jump moving through it.
+ if (!E.strictlyEncloses(I)) {
+ Scope.addBranchAfter(Index, Dest.getBlock());
+ break;
+ }
+
+ // Otherwise, tell the scope that there's a jump propoagating
+ // through it. If this isn't new information, all the rest of
+ // the work has been done before.
+ if (!Scope.addBranchThrough(Dest.getBlock()))
+ break;
+ }
+ }
+
+ Builder.ClearInsertionPoint();
+}
+
+static bool IsUsedAsNormalCleanup(EHScopeStack &EHStack,
+ EHScopeStack::stable_iterator C) {
+ // If we needed a normal block for any reason, that counts.
+ if (cast<EHCleanupScope>(*EHStack.find(C)).getNormalBlock())
+ return true;
+
+ // Check whether any enclosed cleanups were needed.
+ for (EHScopeStack::stable_iterator
+ I = EHStack.getInnermostNormalCleanup();
+ I != C; ) {
+ assert(C.strictlyEncloses(I));
+ EHCleanupScope &S = cast<EHCleanupScope>(*EHStack.find(I));
+ if (S.getNormalBlock()) return true;
+ I = S.getEnclosingNormalCleanup();
+ }
+
+ return false;
+}
+
+static bool IsUsedAsEHCleanup(EHScopeStack &EHStack,
+ EHScopeStack::stable_iterator cleanup) {
+ // If we needed an EH block for any reason, that counts.
+ if (EHStack.find(cleanup)->hasEHBranches())
+ return true;
+
+ // Check whether any enclosed cleanups were needed.
+ for (EHScopeStack::stable_iterator
+ i = EHStack.getInnermostEHScope(); i != cleanup; ) {
+ assert(cleanup.strictlyEncloses(i));
+
+ EHScope &scope = *EHStack.find(i);
+ if (scope.hasEHBranches())
+ return true;
+
+ i = scope.getEnclosingEHScope();
+ }
+
+ return false;
+}
+
+enum ForActivation_t {
+ ForActivation,
+ ForDeactivation
+};
+
+/// The given cleanup block is changing activation state. Configure a
+/// cleanup variable if necessary.
+///
+/// It would be good if we had some way of determining if there were
+/// extra uses *after* the change-over point.
+static void SetupCleanupBlockActivation(CodeGenFunction &CGF,
+ EHScopeStack::stable_iterator C,
+ ForActivation_t kind,
+ llvm::Instruction *dominatingIP) {
+ EHCleanupScope &Scope = cast<EHCleanupScope>(*CGF.EHStack.find(C));
+
+ // We always need the flag if we're activating the cleanup in a
+ // conditional context, because we have to assume that the current
+ // location doesn't necessarily dominate the cleanup's code.
+ bool isActivatedInConditional =
+ (kind == ForActivation && CGF.isInConditionalBranch());
+
+ bool needFlag = false;
+
+ // Calculate whether the cleanup was used:
+
+ // - as a normal cleanup
+ if (Scope.isNormalCleanup() &&
+ (isActivatedInConditional || IsUsedAsNormalCleanup(CGF.EHStack, C))) {
+ Scope.setTestFlagInNormalCleanup();
+ needFlag = true;
+ }
+
+ // - as an EH cleanup
+ if (Scope.isEHCleanup() &&
+ (isActivatedInConditional || IsUsedAsEHCleanup(CGF.EHStack, C))) {
+ Scope.setTestFlagInEHCleanup();
+ needFlag = true;
+ }
+
+ // If it hasn't yet been used as either, we're done.
+ if (!needFlag) return;
+
+ llvm::AllocaInst *var = Scope.getActiveFlag();
+ if (!var) {
+ var = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), "cleanup.isactive");
+ Scope.setActiveFlag(var);
+
+ assert(dominatingIP && "no existing variable and no dominating IP!");
+
+ // Initialize to true or false depending on whether it was
+ // active up to this point.
+ llvm::Value *value = CGF.Builder.getInt1(kind == ForDeactivation);
+
+ // If we're in a conditional block, ignore the dominating IP and
+ // use the outermost conditional branch.
+ if (CGF.isInConditionalBranch()) {
+ CGF.setBeforeOutermostConditional(value, var);
+ } else {
+ new llvm::StoreInst(value, var, dominatingIP);
+ }
+ }
+
+ CGF.Builder.CreateStore(CGF.Builder.getInt1(kind == ForActivation), var);
+}
+
+/// Activate a cleanup that was created in an inactivated state.
+void CodeGenFunction::ActivateCleanupBlock(EHScopeStack::stable_iterator C,
+ llvm::Instruction *dominatingIP) {
+ assert(C != EHStack.stable_end() && "activating bottom of stack?");
+ EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(C));
+ assert(!Scope.isActive() && "double activation");
+
+ SetupCleanupBlockActivation(*this, C, ForActivation, dominatingIP);
+
+ Scope.setActive(true);
+}
+
+/// Deactive a cleanup that was created in an active state.
+void CodeGenFunction::DeactivateCleanupBlock(EHScopeStack::stable_iterator C,
+ llvm::Instruction *dominatingIP) {
+ assert(C != EHStack.stable_end() && "deactivating bottom of stack?");
+ EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(C));
+ assert(Scope.isActive() && "double deactivation");
+
+ // If it's the top of the stack, just pop it.
+ if (C == EHStack.stable_begin()) {
+ // If it's a normal cleanup, we need to pretend that the
+ // fallthrough is unreachable.
+ CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
+ PopCleanupBlock();
+ Builder.restoreIP(SavedIP);
+ return;
+ }
+
+ // Otherwise, follow the general case.
+ SetupCleanupBlockActivation(*this, C, ForDeactivation, dominatingIP);
+
+ Scope.setActive(false);
+}
+
+llvm::Value *CodeGenFunction::getNormalCleanupDestSlot() {
+ if (!NormalCleanupDest)
+ NormalCleanupDest =
+ CreateTempAlloca(Builder.getInt32Ty(), "cleanup.dest.slot");
+ return NormalCleanupDest;
+}
+
+/// Emits all the code to cause the given temporary to be cleaned up.
+void CodeGenFunction::EmitCXXTemporary(const CXXTemporary *Temporary,
+ QualType TempType,
+ llvm::Value *Ptr) {
+ pushDestroy(NormalAndEHCleanup, Ptr, TempType, destroyCXXObject,
+ /*useEHCleanup*/ true);
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGCleanup.h b/contrib/llvm/tools/clang/lib/CodeGen/CGCleanup.h
new file mode 100644
index 0000000..81c6412
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGCleanup.h
@@ -0,0 +1,557 @@
+//===-- CGCleanup.h - Classes for cleanups IR generation --------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// These classes support the generation of LLVM IR for cleanups.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_CODEGEN_CGCLEANUP_H
+#define LLVM_CLANG_LIB_CODEGEN_CGCLEANUP_H
+
+#include "EHScopeStack.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+
+namespace llvm {
+class BasicBlock;
+class Value;
+class ConstantInt;
+class AllocaInst;
+}
+
+namespace clang {
+namespace CodeGen {
+
+/// A protected scope for zero-cost EH handling.
+class EHScope {
+ llvm::BasicBlock *CachedLandingPad;
+ llvm::BasicBlock *CachedEHDispatchBlock;
+
+ EHScopeStack::stable_iterator EnclosingEHScope;
+
+ class CommonBitFields {
+ friend class EHScope;
+ unsigned Kind : 2;
+ };
+ enum { NumCommonBits = 2 };
+
+protected:
+ class CatchBitFields {
+ friend class EHCatchScope;
+ unsigned : NumCommonBits;
+
+ unsigned NumHandlers : 32 - NumCommonBits;
+ };
+
+ class CleanupBitFields {
+ friend class EHCleanupScope;
+ unsigned : NumCommonBits;
+
+ /// Whether this cleanup needs to be run along normal edges.
+ unsigned IsNormalCleanup : 1;
+
+ /// Whether this cleanup needs to be run along exception edges.
+ unsigned IsEHCleanup : 1;
+
+ /// Whether this cleanup is currently active.
+ unsigned IsActive : 1;
+
+ /// Whether this cleanup is a lifetime marker
+ unsigned IsLifetimeMarker : 1;
+
+ /// Whether the normal cleanup should test the activation flag.
+ unsigned TestFlagInNormalCleanup : 1;
+
+ /// Whether the EH cleanup should test the activation flag.
+ unsigned TestFlagInEHCleanup : 1;
+
+ /// The amount of extra storage needed by the Cleanup.
+ /// Always a multiple of the scope-stack alignment.
+ unsigned CleanupSize : 12;
+
+ /// The number of fixups required by enclosing scopes (not including
+ /// this one). If this is the top cleanup scope, all the fixups
+ /// from this index onwards belong to this scope.
+ unsigned FixupDepth : 32 - 18 - NumCommonBits; // currently 13
+ };
+
+ class FilterBitFields {
+ friend class EHFilterScope;
+ unsigned : NumCommonBits;
+
+ unsigned NumFilters : 32 - NumCommonBits;
+ };
+
+ union {
+ CommonBitFields CommonBits;
+ CatchBitFields CatchBits;
+ CleanupBitFields CleanupBits;
+ FilterBitFields FilterBits;
+ };
+
+public:
+ enum Kind { Cleanup, Catch, Terminate, Filter };
+
+ EHScope(Kind kind, EHScopeStack::stable_iterator enclosingEHScope)
+ : CachedLandingPad(nullptr), CachedEHDispatchBlock(nullptr),
+ EnclosingEHScope(enclosingEHScope) {
+ CommonBits.Kind = kind;
+ }
+
+ Kind getKind() const { return static_cast<Kind>(CommonBits.Kind); }
+
+ llvm::BasicBlock *getCachedLandingPad() const {
+ return CachedLandingPad;
+ }
+
+ void setCachedLandingPad(llvm::BasicBlock *block) {
+ CachedLandingPad = block;
+ }
+
+ llvm::BasicBlock *getCachedEHDispatchBlock() const {
+ return CachedEHDispatchBlock;
+ }
+
+ void setCachedEHDispatchBlock(llvm::BasicBlock *block) {
+ CachedEHDispatchBlock = block;
+ }
+
+ bool hasEHBranches() const {
+ if (llvm::BasicBlock *block = getCachedEHDispatchBlock())
+ return !block->use_empty();
+ return false;
+ }
+
+ EHScopeStack::stable_iterator getEnclosingEHScope() const {
+ return EnclosingEHScope;
+ }
+};
+
+/// A scope which attempts to handle some, possibly all, types of
+/// exceptions.
+///
+/// Objective C \@finally blocks are represented using a cleanup scope
+/// after the catch scope.
+class EHCatchScope : public EHScope {
+ // In effect, we have a flexible array member
+ // Handler Handlers[0];
+ // But that's only standard in C99, not C++, so we have to do
+ // annoying pointer arithmetic instead.
+
+public:
+ struct Handler {
+ /// A type info value, or null (C++ null, not an LLVM null pointer)
+ /// for a catch-all.
+ llvm::Constant *Type;
+
+ /// The catch handler for this type.
+ llvm::BasicBlock *Block;
+
+ bool isCatchAll() const { return Type == nullptr; }
+ };
+
+private:
+ friend class EHScopeStack;
+
+ Handler *getHandlers() {
+ return reinterpret_cast<Handler*>(this+1);
+ }
+
+ const Handler *getHandlers() const {
+ return reinterpret_cast<const Handler*>(this+1);
+ }
+
+public:
+ static size_t getSizeForNumHandlers(unsigned N) {
+ return sizeof(EHCatchScope) + N * sizeof(Handler);
+ }
+
+ EHCatchScope(unsigned numHandlers,
+ EHScopeStack::stable_iterator enclosingEHScope)
+ : EHScope(Catch, enclosingEHScope) {
+ CatchBits.NumHandlers = numHandlers;
+ }
+
+ unsigned getNumHandlers() const {
+ return CatchBits.NumHandlers;
+ }
+
+ void setCatchAllHandler(unsigned I, llvm::BasicBlock *Block) {
+ setHandler(I, /*catchall*/ nullptr, Block);
+ }
+
+ void setHandler(unsigned I, llvm::Constant *Type, llvm::BasicBlock *Block) {
+ assert(I < getNumHandlers());
+ getHandlers()[I].Type = Type;
+ getHandlers()[I].Block = Block;
+ }
+
+ const Handler &getHandler(unsigned I) const {
+ assert(I < getNumHandlers());
+ return getHandlers()[I];
+ }
+
+ // Clear all handler blocks.
+ // FIXME: it's better to always call clearHandlerBlocks in DTOR and have a
+ // 'takeHandler' or some such function which removes ownership from the
+ // EHCatchScope object if the handlers should live longer than EHCatchScope.
+ void clearHandlerBlocks() {
+ for (unsigned I = 0, N = getNumHandlers(); I != N; ++I)
+ delete getHandler(I).Block;
+ }
+
+ typedef const Handler *iterator;
+ iterator begin() const { return getHandlers(); }
+ iterator end() const { return getHandlers() + getNumHandlers(); }
+
+ static bool classof(const EHScope *Scope) {
+ return Scope->getKind() == Catch;
+ }
+};
+
+/// A cleanup scope which generates the cleanup blocks lazily.
+class EHCleanupScope : public EHScope {
+ /// The nearest normal cleanup scope enclosing this one.
+ EHScopeStack::stable_iterator EnclosingNormal;
+
+ /// The nearest EH scope enclosing this one.
+ EHScopeStack::stable_iterator EnclosingEH;
+
+ /// The dual entry/exit block along the normal edge. This is lazily
+ /// created if needed before the cleanup is popped.
+ llvm::BasicBlock *NormalBlock;
+
+ /// An optional i1 variable indicating whether this cleanup has been
+ /// activated yet.
+ llvm::AllocaInst *ActiveFlag;
+
+ /// Extra information required for cleanups that have resolved
+ /// branches through them. This has to be allocated on the side
+ /// because everything on the cleanup stack has be trivially
+ /// movable.
+ struct ExtInfo {
+ /// The destinations of normal branch-afters and branch-throughs.
+ llvm::SmallPtrSet<llvm::BasicBlock*, 4> Branches;
+
+ /// Normal branch-afters.
+ SmallVector<std::pair<llvm::BasicBlock*,llvm::ConstantInt*>, 4>
+ BranchAfters;
+ };
+ mutable struct ExtInfo *ExtInfo;
+
+ struct ExtInfo &getExtInfo() {
+ if (!ExtInfo) ExtInfo = new struct ExtInfo();
+ return *ExtInfo;
+ }
+
+ const struct ExtInfo &getExtInfo() const {
+ if (!ExtInfo) ExtInfo = new struct ExtInfo();
+ return *ExtInfo;
+ }
+
+public:
+ /// Gets the size required for a lazy cleanup scope with the given
+ /// cleanup-data requirements.
+ static size_t getSizeForCleanupSize(size_t Size) {
+ return sizeof(EHCleanupScope) + Size;
+ }
+
+ size_t getAllocatedSize() const {
+ return sizeof(EHCleanupScope) + CleanupBits.CleanupSize;
+ }
+
+ EHCleanupScope(bool isNormal, bool isEH, bool isActive,
+ unsigned cleanupSize, unsigned fixupDepth,
+ EHScopeStack::stable_iterator enclosingNormal,
+ EHScopeStack::stable_iterator enclosingEH)
+ : EHScope(EHScope::Cleanup, enclosingEH), EnclosingNormal(enclosingNormal),
+ NormalBlock(nullptr), ActiveFlag(nullptr), ExtInfo(nullptr) {
+ CleanupBits.IsNormalCleanup = isNormal;
+ CleanupBits.IsEHCleanup = isEH;
+ CleanupBits.IsActive = isActive;
+ CleanupBits.IsLifetimeMarker = false;
+ CleanupBits.TestFlagInNormalCleanup = false;
+ CleanupBits.TestFlagInEHCleanup = false;
+ CleanupBits.CleanupSize = cleanupSize;
+ CleanupBits.FixupDepth = fixupDepth;
+
+ assert(CleanupBits.CleanupSize == cleanupSize && "cleanup size overflow");
+ }
+
+ void Destroy() {
+ delete ExtInfo;
+ }
+ // Objects of EHCleanupScope are not destructed. Use Destroy().
+ ~EHCleanupScope() = delete;
+
+ bool isNormalCleanup() const { return CleanupBits.IsNormalCleanup; }
+ llvm::BasicBlock *getNormalBlock() const { return NormalBlock; }
+ void setNormalBlock(llvm::BasicBlock *BB) { NormalBlock = BB; }
+
+ bool isEHCleanup() const { return CleanupBits.IsEHCleanup; }
+
+ bool isActive() const { return CleanupBits.IsActive; }
+ void setActive(bool A) { CleanupBits.IsActive = A; }
+
+ bool isLifetimeMarker() const { return CleanupBits.IsLifetimeMarker; }
+ void setLifetimeMarker() { CleanupBits.IsLifetimeMarker = true; }
+
+ llvm::AllocaInst *getActiveFlag() const { return ActiveFlag; }
+ void setActiveFlag(llvm::AllocaInst *Var) { ActiveFlag = Var; }
+
+ void setTestFlagInNormalCleanup() {
+ CleanupBits.TestFlagInNormalCleanup = true;
+ }
+ bool shouldTestFlagInNormalCleanup() const {
+ return CleanupBits.TestFlagInNormalCleanup;
+ }
+
+ void setTestFlagInEHCleanup() {
+ CleanupBits.TestFlagInEHCleanup = true;
+ }
+ bool shouldTestFlagInEHCleanup() const {
+ return CleanupBits.TestFlagInEHCleanup;
+ }
+
+ unsigned getFixupDepth() const { return CleanupBits.FixupDepth; }
+ EHScopeStack::stable_iterator getEnclosingNormalCleanup() const {
+ return EnclosingNormal;
+ }
+
+ size_t getCleanupSize() const { return CleanupBits.CleanupSize; }
+ void *getCleanupBuffer() { return this + 1; }
+
+ EHScopeStack::Cleanup *getCleanup() {
+ return reinterpret_cast<EHScopeStack::Cleanup*>(getCleanupBuffer());
+ }
+
+ /// True if this cleanup scope has any branch-afters or branch-throughs.
+ bool hasBranches() const { return ExtInfo && !ExtInfo->Branches.empty(); }
+
+ /// Add a branch-after to this cleanup scope. A branch-after is a
+ /// branch from a point protected by this (normal) cleanup to a
+ /// point in the normal cleanup scope immediately containing it.
+ /// For example,
+ /// for (;;) { A a; break; }
+ /// contains a branch-after.
+ ///
+ /// Branch-afters each have their own destination out of the
+ /// cleanup, guaranteed distinct from anything else threaded through
+ /// it. Therefore branch-afters usually force a switch after the
+ /// cleanup.
+ void addBranchAfter(llvm::ConstantInt *Index,
+ llvm::BasicBlock *Block) {
+ struct ExtInfo &ExtInfo = getExtInfo();
+ if (ExtInfo.Branches.insert(Block).second)
+ ExtInfo.BranchAfters.push_back(std::make_pair(Block, Index));
+ }
+
+ /// Return the number of unique branch-afters on this scope.
+ unsigned getNumBranchAfters() const {
+ return ExtInfo ? ExtInfo->BranchAfters.size() : 0;
+ }
+
+ llvm::BasicBlock *getBranchAfterBlock(unsigned I) const {
+ assert(I < getNumBranchAfters());
+ return ExtInfo->BranchAfters[I].first;
+ }
+
+ llvm::ConstantInt *getBranchAfterIndex(unsigned I) const {
+ assert(I < getNumBranchAfters());
+ return ExtInfo->BranchAfters[I].second;
+ }
+
+ /// Add a branch-through to this cleanup scope. A branch-through is
+ /// a branch from a scope protected by this (normal) cleanup to an
+ /// enclosing scope other than the immediately-enclosing normal
+ /// cleanup scope.
+ ///
+ /// In the following example, the branch through B's scope is a
+ /// branch-through, while the branch through A's scope is a
+ /// branch-after:
+ /// for (;;) { A a; B b; break; }
+ ///
+ /// All branch-throughs have a common destination out of the
+ /// cleanup, one possibly shared with the fall-through. Therefore
+ /// branch-throughs usually don't force a switch after the cleanup.
+ ///
+ /// \return true if the branch-through was new to this scope
+ bool addBranchThrough(llvm::BasicBlock *Block) {
+ return getExtInfo().Branches.insert(Block).second;
+ }
+
+ /// Determines if this cleanup scope has any branch throughs.
+ bool hasBranchThroughs() const {
+ if (!ExtInfo) return false;
+ return (ExtInfo->BranchAfters.size() != ExtInfo->Branches.size());
+ }
+
+ static bool classof(const EHScope *Scope) {
+ return (Scope->getKind() == Cleanup);
+ }
+};
+
+/// An exceptions scope which filters exceptions thrown through it.
+/// Only exceptions matching the filter types will be permitted to be
+/// thrown.
+///
+/// This is used to implement C++ exception specifications.
+class EHFilterScope : public EHScope {
+ // Essentially ends in a flexible array member:
+ // llvm::Value *FilterTypes[0];
+
+ llvm::Value **getFilters() {
+ return reinterpret_cast<llvm::Value**>(this+1);
+ }
+
+ llvm::Value * const *getFilters() const {
+ return reinterpret_cast<llvm::Value* const *>(this+1);
+ }
+
+public:
+ EHFilterScope(unsigned numFilters)
+ : EHScope(Filter, EHScopeStack::stable_end()) {
+ FilterBits.NumFilters = numFilters;
+ }
+
+ static size_t getSizeForNumFilters(unsigned numFilters) {
+ return sizeof(EHFilterScope) + numFilters * sizeof(llvm::Value*);
+ }
+
+ unsigned getNumFilters() const { return FilterBits.NumFilters; }
+
+ void setFilter(unsigned i, llvm::Value *filterValue) {
+ assert(i < getNumFilters());
+ getFilters()[i] = filterValue;
+ }
+
+ llvm::Value *getFilter(unsigned i) const {
+ assert(i < getNumFilters());
+ return getFilters()[i];
+ }
+
+ static bool classof(const EHScope *scope) {
+ return scope->getKind() == Filter;
+ }
+};
+
+/// An exceptions scope which calls std::terminate if any exception
+/// reaches it.
+class EHTerminateScope : public EHScope {
+public:
+ EHTerminateScope(EHScopeStack::stable_iterator enclosingEHScope)
+ : EHScope(Terminate, enclosingEHScope) {}
+ static size_t getSize() { return sizeof(EHTerminateScope); }
+
+ static bool classof(const EHScope *scope) {
+ return scope->getKind() == Terminate;
+ }
+};
+
+/// A non-stable pointer into the scope stack.
+class EHScopeStack::iterator {
+ char *Ptr;
+
+ friend class EHScopeStack;
+ explicit iterator(char *Ptr) : Ptr(Ptr) {}
+
+public:
+ iterator() : Ptr(nullptr) {}
+
+ EHScope *get() const {
+ return reinterpret_cast<EHScope*>(Ptr);
+ }
+
+ EHScope *operator->() const { return get(); }
+ EHScope &operator*() const { return *get(); }
+
+ iterator &operator++() {
+ switch (get()->getKind()) {
+ case EHScope::Catch:
+ Ptr += EHCatchScope::getSizeForNumHandlers(
+ static_cast<const EHCatchScope*>(get())->getNumHandlers());
+ break;
+
+ case EHScope::Filter:
+ Ptr += EHFilterScope::getSizeForNumFilters(
+ static_cast<const EHFilterScope*>(get())->getNumFilters());
+ break;
+
+ case EHScope::Cleanup:
+ Ptr += static_cast<const EHCleanupScope*>(get())
+ ->getAllocatedSize();
+ break;
+
+ case EHScope::Terminate:
+ Ptr += EHTerminateScope::getSize();
+ break;
+ }
+
+ return *this;
+ }
+
+ iterator next() {
+ iterator copy = *this;
+ ++copy;
+ return copy;
+ }
+
+ iterator operator++(int) {
+ iterator copy = *this;
+ operator++();
+ return copy;
+ }
+
+ bool encloses(iterator other) const { return Ptr >= other.Ptr; }
+ bool strictlyEncloses(iterator other) const { return Ptr > other.Ptr; }
+
+ bool operator==(iterator other) const { return Ptr == other.Ptr; }
+ bool operator!=(iterator other) const { return Ptr != other.Ptr; }
+};
+
+inline EHScopeStack::iterator EHScopeStack::begin() const {
+ return iterator(StartOfData);
+}
+
+inline EHScopeStack::iterator EHScopeStack::end() const {
+ return iterator(EndOfBuffer);
+}
+
+inline void EHScopeStack::popCatch() {
+ assert(!empty() && "popping exception stack when not empty");
+
+ EHCatchScope &scope = cast<EHCatchScope>(*begin());
+ InnermostEHScope = scope.getEnclosingEHScope();
+ StartOfData += EHCatchScope::getSizeForNumHandlers(scope.getNumHandlers());
+}
+
+inline void EHScopeStack::popTerminate() {
+ assert(!empty() && "popping exception stack when not empty");
+
+ EHTerminateScope &scope = cast<EHTerminateScope>(*begin());
+ InnermostEHScope = scope.getEnclosingEHScope();
+ StartOfData += EHTerminateScope::getSize();
+}
+
+inline EHScopeStack::iterator EHScopeStack::find(stable_iterator sp) const {
+ assert(sp.isValid() && "finding invalid savepoint");
+ assert(sp.Size <= stable_begin().Size && "finding savepoint after pop");
+ return iterator(EndOfBuffer - sp.Size);
+}
+
+inline EHScopeStack::stable_iterator
+EHScopeStack::stabilize(iterator ir) const {
+ assert(StartOfData <= ir.Ptr && ir.Ptr <= EndOfBuffer);
+ return stable_iterator(EndOfBuffer - ir.Ptr);
+}
+
+}
+}
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGDebugInfo.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGDebugInfo.cpp
new file mode 100644
index 0000000..48458db
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGDebugInfo.cpp
@@ -0,0 +1,3395 @@
+//===--- CGDebugInfo.cpp - Emit Debug Information for a Module ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This coordinates the debug information generation while generating code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGDebugInfo.h"
+#include "CGBlocks.h"
+#include "CGCXXABI.h"
+#include "CGObjCRuntime.h"
+#include "CodeGenFunction.h"
+#include "CodeGenModule.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclFriend.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/Version.h"
+#include "clang/Frontend/CodeGenOptions.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/Dwarf.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/Path.h"
+using namespace clang;
+using namespace clang::CodeGen;
+
+CGDebugInfo::CGDebugInfo(CodeGenModule &CGM)
+ : CGM(CGM), DebugKind(CGM.getCodeGenOpts().getDebugInfo()),
+ DBuilder(CGM.getModule()) {
+ CreateCompileUnit();
+}
+
+CGDebugInfo::~CGDebugInfo() {
+ assert(LexicalBlockStack.empty() &&
+ "Region stack mismatch, stack not empty!");
+}
+
+ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF,
+ SourceLocation TemporaryLocation)
+ : CGF(CGF) {
+ init(TemporaryLocation);
+}
+
+ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF,
+ bool DefaultToEmpty,
+ SourceLocation TemporaryLocation)
+ : CGF(CGF) {
+ init(TemporaryLocation, DefaultToEmpty);
+}
+
+void ApplyDebugLocation::init(SourceLocation TemporaryLocation,
+ bool DefaultToEmpty) {
+ if (auto *DI = CGF.getDebugInfo()) {
+ OriginalLocation = CGF.Builder.getCurrentDebugLocation();
+ if (TemporaryLocation.isInvalid()) {
+ if (DefaultToEmpty)
+ CGF.Builder.SetCurrentDebugLocation(llvm::DebugLoc());
+ else {
+ // Construct a location that has a valid scope, but no line info.
+ assert(!DI->LexicalBlockStack.empty());
+ CGF.Builder.SetCurrentDebugLocation(
+ llvm::DebugLoc::get(0, 0, DI->LexicalBlockStack.back()));
+ }
+ } else
+ DI->EmitLocation(CGF.Builder, TemporaryLocation);
+ }
+}
+
+ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF, const Expr *E)
+ : CGF(CGF) {
+ init(E->getExprLoc());
+}
+
+ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF, llvm::DebugLoc Loc)
+ : CGF(CGF) {
+ if (CGF.getDebugInfo()) {
+ OriginalLocation = CGF.Builder.getCurrentDebugLocation();
+ if (Loc)
+ CGF.Builder.SetCurrentDebugLocation(std::move(Loc));
+ }
+}
+
+ApplyDebugLocation::~ApplyDebugLocation() {
+ // Query CGF so the location isn't overwritten when location updates are
+ // temporarily disabled (for C++ default function arguments)
+ if (CGF.getDebugInfo())
+ CGF.Builder.SetCurrentDebugLocation(std::move(OriginalLocation));
+}
+
+/// ArtificialLocation - An RAII object that temporarily switches to
+/// an artificial debug location that has a valid scope, but no line
+void CGDebugInfo::setLocation(SourceLocation Loc) {
+ // If the new location isn't valid return.
+ if (Loc.isInvalid())
+ return;
+
+ CurLoc = CGM.getContext().getSourceManager().getExpansionLoc(Loc);
+
+ // If we've changed files in the middle of a lexical scope go ahead
+ // and create a new lexical scope with file node if it's different
+ // from the one in the scope.
+ if (LexicalBlockStack.empty())
+ return;
+
+ SourceManager &SM = CGM.getContext().getSourceManager();
+ auto *Scope = cast<llvm::DIScope>(LexicalBlockStack.back());
+ PresumedLoc PCLoc = SM.getPresumedLoc(CurLoc);
+
+ if (PCLoc.isInvalid() || Scope->getFilename() == PCLoc.getFilename())
+ return;
+
+ if (auto *LBF = dyn_cast<llvm::DILexicalBlockFile>(Scope)) {
+ LexicalBlockStack.pop_back();
+ LexicalBlockStack.emplace_back(DBuilder.createLexicalBlockFile(
+ LBF->getScope(), getOrCreateFile(CurLoc)));
+ } else if (isa<llvm::DILexicalBlock>(Scope) ||
+ isa<llvm::DISubprogram>(Scope)) {
+ LexicalBlockStack.pop_back();
+ LexicalBlockStack.emplace_back(
+ DBuilder.createLexicalBlockFile(Scope, getOrCreateFile(CurLoc)));
+ }
+}
+
+/// getContextDescriptor - Get context info for the decl.
+llvm::DIScope *CGDebugInfo::getContextDescriptor(const Decl *Context) {
+ if (!Context)
+ return TheCU;
+
+ auto I = RegionMap.find(Context);
+ if (I != RegionMap.end()) {
+ llvm::Metadata *V = I->second;
+ return dyn_cast_or_null<llvm::DIScope>(V);
+ }
+
+ // Check namespace.
+ if (const NamespaceDecl *NSDecl = dyn_cast<NamespaceDecl>(Context))
+ return getOrCreateNameSpace(NSDecl);
+
+ if (const RecordDecl *RDecl = dyn_cast<RecordDecl>(Context))
+ if (!RDecl->isDependentType())
+ return getOrCreateType(CGM.getContext().getTypeDeclType(RDecl),
+ getOrCreateMainFile());
+ return TheCU;
+}
+
+/// getFunctionName - Get function name for the given FunctionDecl. If the
+/// name is constructed on demand (e.g. C++ destructor) then the name
+/// is stored on the side.
+StringRef CGDebugInfo::getFunctionName(const FunctionDecl *FD) {
+ assert(FD && "Invalid FunctionDecl!");
+ IdentifierInfo *FII = FD->getIdentifier();
+ FunctionTemplateSpecializationInfo *Info =
+ FD->getTemplateSpecializationInfo();
+ if (!Info && FII)
+ return FII->getName();
+
+ // Otherwise construct human readable name for debug info.
+ SmallString<128> NS;
+ llvm::raw_svector_ostream OS(NS);
+ FD->printName(OS);
+
+ // Add any template specialization args.
+ if (Info) {
+ const TemplateArgumentList *TArgs = Info->TemplateArguments;
+ const TemplateArgument *Args = TArgs->data();
+ unsigned NumArgs = TArgs->size();
+ PrintingPolicy Policy(CGM.getLangOpts());
+ TemplateSpecializationType::PrintTemplateArgumentList(OS, Args, NumArgs,
+ Policy);
+ }
+
+ // Copy this name on the side and use its reference.
+ return internString(OS.str());
+}
+
+StringRef CGDebugInfo::getObjCMethodName(const ObjCMethodDecl *OMD) {
+ SmallString<256> MethodName;
+ llvm::raw_svector_ostream OS(MethodName);
+ OS << (OMD->isInstanceMethod() ? '-' : '+') << '[';
+ const DeclContext *DC = OMD->getDeclContext();
+ if (const ObjCImplementationDecl *OID =
+ dyn_cast<const ObjCImplementationDecl>(DC)) {
+ OS << OID->getName();
+ } else if (const ObjCInterfaceDecl *OID =
+ dyn_cast<const ObjCInterfaceDecl>(DC)) {
+ OS << OID->getName();
+ } else if (const ObjCCategoryImplDecl *OCD =
+ dyn_cast<const ObjCCategoryImplDecl>(DC)) {
+ OS << ((const NamedDecl *)OCD)->getIdentifier()->getNameStart() << '('
+ << OCD->getIdentifier()->getNameStart() << ')';
+ } else if (isa<ObjCProtocolDecl>(DC)) {
+ // We can extract the type of the class from the self pointer.
+ if (ImplicitParamDecl *SelfDecl = OMD->getSelfDecl()) {
+ QualType ClassTy =
+ cast<ObjCObjectPointerType>(SelfDecl->getType())->getPointeeType();
+ ClassTy.print(OS, PrintingPolicy(LangOptions()));
+ }
+ }
+ OS << ' ' << OMD->getSelector().getAsString() << ']';
+
+ return internString(OS.str());
+}
+
+/// getSelectorName - Return selector name. This is used for debugging
+/// info.
+StringRef CGDebugInfo::getSelectorName(Selector S) {
+ return internString(S.getAsString());
+}
+
+/// getClassName - Get class name including template argument list.
+StringRef CGDebugInfo::getClassName(const RecordDecl *RD) {
+ // quick optimization to avoid having to intern strings that are already
+ // stored reliably elsewhere
+ if (!isa<ClassTemplateSpecializationDecl>(RD))
+ return RD->getName();
+
+ SmallString<128> Name;
+ {
+ llvm::raw_svector_ostream OS(Name);
+ RD->getNameForDiagnostic(OS, CGM.getContext().getPrintingPolicy(),
+ /*Qualified*/ false);
+ }
+
+ // Copy this name on the side and use its reference.
+ return internString(Name);
+}
+
+/// getOrCreateFile - Get the file debug info descriptor for the input location.
+llvm::DIFile *CGDebugInfo::getOrCreateFile(SourceLocation Loc) {
+ if (!Loc.isValid())
+ // If Location is not valid then use main input file.
+ return DBuilder.createFile(TheCU->getFilename(), TheCU->getDirectory());
+
+ SourceManager &SM = CGM.getContext().getSourceManager();
+ PresumedLoc PLoc = SM.getPresumedLoc(Loc);
+
+ if (PLoc.isInvalid() || StringRef(PLoc.getFilename()).empty())
+ // If the location is not valid then use main input file.
+ return DBuilder.createFile(TheCU->getFilename(), TheCU->getDirectory());
+
+ // Cache the results.
+ const char *fname = PLoc.getFilename();
+ auto it = DIFileCache.find(fname);
+
+ if (it != DIFileCache.end()) {
+ // Verify that the information still exists.
+ if (llvm::Metadata *V = it->second)
+ return cast<llvm::DIFile>(V);
+ }
+
+ llvm::DIFile *F =
+ DBuilder.createFile(PLoc.getFilename(), getCurrentDirname());
+
+ DIFileCache[fname].reset(F);
+ return F;
+}
+
+/// getOrCreateMainFile - Get the file info for main compile unit.
+llvm::DIFile *CGDebugInfo::getOrCreateMainFile() {
+ return DBuilder.createFile(TheCU->getFilename(), TheCU->getDirectory());
+}
+
+/// getLineNumber - Get line number for the location. If location is invalid
+/// then use current location.
+unsigned CGDebugInfo::getLineNumber(SourceLocation Loc) {
+ if (Loc.isInvalid() && CurLoc.isInvalid())
+ return 0;
+ SourceManager &SM = CGM.getContext().getSourceManager();
+ PresumedLoc PLoc = SM.getPresumedLoc(Loc.isValid() ? Loc : CurLoc);
+ return PLoc.isValid() ? PLoc.getLine() : 0;
+}
+
+/// getColumnNumber - Get column number for the location.
+unsigned CGDebugInfo::getColumnNumber(SourceLocation Loc, bool Force) {
+ // We may not want column information at all.
+ if (!Force && !CGM.getCodeGenOpts().DebugColumnInfo)
+ return 0;
+
+ // If the location is invalid then use the current column.
+ if (Loc.isInvalid() && CurLoc.isInvalid())
+ return 0;
+ SourceManager &SM = CGM.getContext().getSourceManager();
+ PresumedLoc PLoc = SM.getPresumedLoc(Loc.isValid() ? Loc : CurLoc);
+ return PLoc.isValid() ? PLoc.getColumn() : 0;
+}
+
+StringRef CGDebugInfo::getCurrentDirname() {
+ if (!CGM.getCodeGenOpts().DebugCompilationDir.empty())
+ return CGM.getCodeGenOpts().DebugCompilationDir;
+
+ if (!CWDName.empty())
+ return CWDName;
+ SmallString<256> CWD;
+ llvm::sys::fs::current_path(CWD);
+ return CWDName = internString(CWD);
+}
+
+/// CreateCompileUnit - Create new compile unit.
+void CGDebugInfo::CreateCompileUnit() {
+
+ // Should we be asking the SourceManager for the main file name, instead of
+ // accepting it as an argument? This just causes the main file name to
+ // mismatch with source locations and create extra lexical scopes or
+ // mismatched debug info (a CU with a DW_AT_file of "-", because that's what
+ // the driver passed, but functions/other things have DW_AT_file of "<stdin>"
+ // because that's what the SourceManager says)
+
+ // Get absolute path name.
+ SourceManager &SM = CGM.getContext().getSourceManager();
+ std::string MainFileName = CGM.getCodeGenOpts().MainFileName;
+ if (MainFileName.empty())
+ MainFileName = "<stdin>";
+
+ // The main file name provided via the "-main-file-name" option contains just
+ // the file name itself with no path information. This file name may have had
+ // a relative path, so we look into the actual file entry for the main
+ // file to determine the real absolute path for the file.
+ std::string MainFileDir;
+ if (const FileEntry *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
+ MainFileDir = MainFile->getDir()->getName();
+ if (MainFileDir != ".") {
+ llvm::SmallString<1024> MainFileDirSS(MainFileDir);
+ llvm::sys::path::append(MainFileDirSS, MainFileName);
+ MainFileName = MainFileDirSS.str();
+ }
+ }
+
+ // Save filename string.
+ StringRef Filename = internString(MainFileName);
+
+ // Save split dwarf file string.
+ std::string SplitDwarfFile = CGM.getCodeGenOpts().SplitDwarfFile;
+ StringRef SplitDwarfFilename = internString(SplitDwarfFile);
+
+ llvm::dwarf::SourceLanguage LangTag;
+ const LangOptions &LO = CGM.getLangOpts();
+ if (LO.CPlusPlus) {
+ if (LO.ObjC1)
+ LangTag = llvm::dwarf::DW_LANG_ObjC_plus_plus;
+ else
+ LangTag = llvm::dwarf::DW_LANG_C_plus_plus;
+ } else if (LO.ObjC1) {
+ LangTag = llvm::dwarf::DW_LANG_ObjC;
+ } else if (LO.C99) {
+ LangTag = llvm::dwarf::DW_LANG_C99;
+ } else {
+ LangTag = llvm::dwarf::DW_LANG_C89;
+ }
+
+ std::string Producer = getClangFullVersion();
+
+ // Figure out which version of the ObjC runtime we have.
+ unsigned RuntimeVers = 0;
+ if (LO.ObjC1)
+ RuntimeVers = LO.ObjCRuntime.isNonFragile() ? 2 : 1;
+
+ // Create new compile unit.
+ // FIXME - Eliminate TheCU.
+ TheCU = DBuilder.createCompileUnit(
+ LangTag, Filename, getCurrentDirname(), Producer, LO.Optimize,
+ CGM.getCodeGenOpts().DwarfDebugFlags, RuntimeVers, SplitDwarfFilename,
+ DebugKind <= CodeGenOptions::DebugLineTablesOnly
+ ? llvm::DIBuilder::LineTablesOnly
+ : llvm::DIBuilder::FullDebug,
+ 0 /* DWOid */,
+ DebugKind != CodeGenOptions::LocTrackingOnly);
+}
+
+/// CreateType - Get the Basic type from the cache or create a new
+/// one if necessary.
+llvm::DIType *CGDebugInfo::CreateType(const BuiltinType *BT) {
+ llvm::dwarf::TypeKind Encoding;
+ StringRef BTName;
+ switch (BT->getKind()) {
+#define BUILTIN_TYPE(Id, SingletonId)
+#define PLACEHOLDER_TYPE(Id, SingletonId) case BuiltinType::Id:
+#include "clang/AST/BuiltinTypes.def"
+ case BuiltinType::Dependent:
+ llvm_unreachable("Unexpected builtin type");
+ case BuiltinType::NullPtr:
+ return DBuilder.createNullPtrType();
+ case BuiltinType::Void:
+ return nullptr;
+ case BuiltinType::ObjCClass:
+ if (!ClassTy)
+ ClassTy = DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type,
+ "objc_class", TheCU,
+ getOrCreateMainFile(), 0);
+ return ClassTy;
+ case BuiltinType::ObjCId: {
+ // typedef struct objc_class *Class;
+ // typedef struct objc_object {
+ // Class isa;
+ // } *id;
+
+ if (ObjTy)
+ return ObjTy;
+
+ if (!ClassTy)
+ ClassTy = DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type,
+ "objc_class", TheCU,
+ getOrCreateMainFile(), 0);
+
+ unsigned Size = CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy);
+
+ auto *ISATy = DBuilder.createPointerType(ClassTy, Size);
+
+ ObjTy =
+ DBuilder.createStructType(TheCU, "objc_object", getOrCreateMainFile(),
+ 0, 0, 0, 0, nullptr, llvm::DINodeArray());
+
+ DBuilder.replaceArrays(
+ ObjTy,
+ DBuilder.getOrCreateArray(&*DBuilder.createMemberType(
+ ObjTy, "isa", getOrCreateMainFile(), 0, Size, 0, 0, 0, ISATy)));
+ return ObjTy;
+ }
+ case BuiltinType::ObjCSel: {
+ if (!SelTy)
+ SelTy = DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type,
+ "objc_selector", TheCU,
+ getOrCreateMainFile(), 0);
+ return SelTy;
+ }
+
+ case BuiltinType::OCLImage1d:
+ return getOrCreateStructPtrType("opencl_image1d_t", OCLImage1dDITy);
+ case BuiltinType::OCLImage1dArray:
+ return getOrCreateStructPtrType("opencl_image1d_array_t",
+ OCLImage1dArrayDITy);
+ case BuiltinType::OCLImage1dBuffer:
+ return getOrCreateStructPtrType("opencl_image1d_buffer_t",
+ OCLImage1dBufferDITy);
+ case BuiltinType::OCLImage2d:
+ return getOrCreateStructPtrType("opencl_image2d_t", OCLImage2dDITy);
+ case BuiltinType::OCLImage2dArray:
+ return getOrCreateStructPtrType("opencl_image2d_array_t",
+ OCLImage2dArrayDITy);
+ case BuiltinType::OCLImage3d:
+ return getOrCreateStructPtrType("opencl_image3d_t", OCLImage3dDITy);
+ case BuiltinType::OCLSampler:
+ return DBuilder.createBasicType(
+ "opencl_sampler_t", CGM.getContext().getTypeSize(BT),
+ CGM.getContext().getTypeAlign(BT), llvm::dwarf::DW_ATE_unsigned);
+ case BuiltinType::OCLEvent:
+ return getOrCreateStructPtrType("opencl_event_t", OCLEventDITy);
+
+ case BuiltinType::UChar:
+ case BuiltinType::Char_U:
+ Encoding = llvm::dwarf::DW_ATE_unsigned_char;
+ break;
+ case BuiltinType::Char_S:
+ case BuiltinType::SChar:
+ Encoding = llvm::dwarf::DW_ATE_signed_char;
+ break;
+ case BuiltinType::Char16:
+ case BuiltinType::Char32:
+ Encoding = llvm::dwarf::DW_ATE_UTF;
+ break;
+ case BuiltinType::UShort:
+ case BuiltinType::UInt:
+ case BuiltinType::UInt128:
+ case BuiltinType::ULong:
+ case BuiltinType::WChar_U:
+ case BuiltinType::ULongLong:
+ Encoding = llvm::dwarf::DW_ATE_unsigned;
+ break;
+ case BuiltinType::Short:
+ case BuiltinType::Int:
+ case BuiltinType::Int128:
+ case BuiltinType::Long:
+ case BuiltinType::WChar_S:
+ case BuiltinType::LongLong:
+ Encoding = llvm::dwarf::DW_ATE_signed;
+ break;
+ case BuiltinType::Bool:
+ Encoding = llvm::dwarf::DW_ATE_boolean;
+ break;
+ case BuiltinType::Half:
+ case BuiltinType::Float:
+ case BuiltinType::LongDouble:
+ case BuiltinType::Double:
+ Encoding = llvm::dwarf::DW_ATE_float;
+ break;
+ }
+
+ switch (BT->getKind()) {
+ case BuiltinType::Long:
+ BTName = "long int";
+ break;
+ case BuiltinType::LongLong:
+ BTName = "long long int";
+ break;
+ case BuiltinType::ULong:
+ BTName = "long unsigned int";
+ break;
+ case BuiltinType::ULongLong:
+ BTName = "long long unsigned int";
+ break;
+ default:
+ BTName = BT->getName(CGM.getLangOpts());
+ break;
+ }
+ // Bit size, align and offset of the type.
+ uint64_t Size = CGM.getContext().getTypeSize(BT);
+ uint64_t Align = CGM.getContext().getTypeAlign(BT);
+ return DBuilder.createBasicType(BTName, Size, Align, Encoding);
+}
+
+llvm::DIType *CGDebugInfo::CreateType(const ComplexType *Ty) {
+ // Bit size, align and offset of the type.
+ llvm::dwarf::TypeKind Encoding = llvm::dwarf::DW_ATE_complex_float;
+ if (Ty->isComplexIntegerType())
+ Encoding = llvm::dwarf::DW_ATE_lo_user;
+
+ uint64_t Size = CGM.getContext().getTypeSize(Ty);
+ uint64_t Align = CGM.getContext().getTypeAlign(Ty);
+ return DBuilder.createBasicType("complex", Size, Align, Encoding);
+}
+
+/// CreateCVRType - Get the qualified type from the cache or create
+/// a new one if necessary.
+llvm::DIType *CGDebugInfo::CreateQualifiedType(QualType Ty,
+ llvm::DIFile *Unit) {
+ QualifierCollector Qc;
+ const Type *T = Qc.strip(Ty);
+
+ // Ignore these qualifiers for now.
+ Qc.removeObjCGCAttr();
+ Qc.removeAddressSpace();
+ Qc.removeObjCLifetime();
+
+ // We will create one Derived type for one qualifier and recurse to handle any
+ // additional ones.
+ llvm::dwarf::Tag Tag;
+ if (Qc.hasConst()) {
+ Tag = llvm::dwarf::DW_TAG_const_type;
+ Qc.removeConst();
+ } else if (Qc.hasVolatile()) {
+ Tag = llvm::dwarf::DW_TAG_volatile_type;
+ Qc.removeVolatile();
+ } else if (Qc.hasRestrict()) {
+ Tag = llvm::dwarf::DW_TAG_restrict_type;
+ Qc.removeRestrict();
+ } else {
+ assert(Qc.empty() && "Unknown type qualifier for debug info");
+ return getOrCreateType(QualType(T, 0), Unit);
+ }
+
+ auto *FromTy = getOrCreateType(Qc.apply(CGM.getContext(), T), Unit);
+
+ // No need to fill in the Name, Line, Size, Alignment, Offset in case of
+ // CVR derived types.
+ return DBuilder.createQualifiedType(Tag, FromTy);
+}
+
+llvm::DIType *CGDebugInfo::CreateType(const ObjCObjectPointerType *Ty,
+ llvm::DIFile *Unit) {
+
+ // The frontend treats 'id' as a typedef to an ObjCObjectType,
+ // whereas 'id<protocol>' is treated as an ObjCPointerType. For the
+ // debug info, we want to emit 'id' in both cases.
+ if (Ty->isObjCQualifiedIdType())
+ return getOrCreateType(CGM.getContext().getObjCIdType(), Unit);
+
+ return CreatePointerLikeType(llvm::dwarf::DW_TAG_pointer_type, Ty,
+ Ty->getPointeeType(), Unit);
+}
+
+llvm::DIType *CGDebugInfo::CreateType(const PointerType *Ty,
+ llvm::DIFile *Unit) {
+ return CreatePointerLikeType(llvm::dwarf::DW_TAG_pointer_type, Ty,
+ Ty->getPointeeType(), Unit);
+}
+
+/// In C++ mode, types have linkage, so we can rely on the ODR and
+/// on their mangled names, if they're external.
+static SmallString<256> getUniqueTagTypeName(const TagType *Ty,
+ CodeGenModule &CGM,
+ llvm::DICompileUnit *TheCU) {
+ SmallString<256> FullName;
+ // FIXME: ODR should apply to ObjC++ exactly the same wasy it does to C++.
+ // For now, only apply ODR with C++.
+ const TagDecl *TD = Ty->getDecl();
+ if (TheCU->getSourceLanguage() != llvm::dwarf::DW_LANG_C_plus_plus ||
+ !TD->isExternallyVisible())
+ return FullName;
+ // Microsoft Mangler does not have support for mangleCXXRTTIName yet.
+ if (CGM.getTarget().getCXXABI().isMicrosoft())
+ return FullName;
+
+ // TODO: This is using the RTTI name. Is there a better way to get
+ // a unique string for a type?
+ llvm::raw_svector_ostream Out(FullName);
+ CGM.getCXXABI().getMangleContext().mangleCXXRTTIName(QualType(Ty, 0), Out);
+ Out.flush();
+ return FullName;
+}
+
+static llvm::dwarf::Tag getTagForRecord(const RecordDecl *RD) {
+ llvm::dwarf::Tag Tag;
+ if (RD->isStruct() || RD->isInterface())
+ Tag = llvm::dwarf::DW_TAG_structure_type;
+ else if (RD->isUnion())
+ Tag = llvm::dwarf::DW_TAG_union_type;
+ else {
+ // FIXME: This could be a struct type giving a default visibility different
+ // than C++ class type, but needs llvm metadata changes first.
+ assert(RD->isClass());
+ Tag = llvm::dwarf::DW_TAG_class_type;
+ }
+ return Tag;
+}
+
+// Creates a forward declaration for a RecordDecl in the given context.
+llvm::DICompositeType *
+CGDebugInfo::getOrCreateRecordFwdDecl(const RecordType *Ty,
+ llvm::DIScope *Ctx) {
+ const RecordDecl *RD = Ty->getDecl();
+ if (llvm::DIType *T = getTypeOrNull(CGM.getContext().getRecordType(RD)))
+ return cast<llvm::DICompositeType>(T);
+ llvm::DIFile *DefUnit = getOrCreateFile(RD->getLocation());
+ unsigned Line = getLineNumber(RD->getLocation());
+ StringRef RDName = getClassName(RD);
+
+ uint64_t Size = 0;
+ uint64_t Align = 0;
+
+ const RecordDecl *D = RD->getDefinition();
+ if (D && D->isCompleteDefinition()) {
+ Size = CGM.getContext().getTypeSize(Ty);
+ Align = CGM.getContext().getTypeAlign(Ty);
+ }
+
+ // Create the type.
+ SmallString<256> FullName = getUniqueTagTypeName(Ty, CGM, TheCU);
+ llvm::DICompositeType *RetTy = DBuilder.createReplaceableCompositeType(
+ getTagForRecord(RD), RDName, Ctx, DefUnit, Line, 0, Size, Align,
+ llvm::DINode::FlagFwdDecl, FullName);
+ ReplaceMap.emplace_back(
+ std::piecewise_construct, std::make_tuple(Ty),
+ std::make_tuple(static_cast<llvm::Metadata *>(RetTy)));
+ return RetTy;
+}
+
+llvm::DIType *CGDebugInfo::CreatePointerLikeType(llvm::dwarf::Tag Tag,
+ const Type *Ty,
+ QualType PointeeTy,
+ llvm::DIFile *Unit) {
+ if (Tag == llvm::dwarf::DW_TAG_reference_type ||
+ Tag == llvm::dwarf::DW_TAG_rvalue_reference_type)
+ return DBuilder.createReferenceType(Tag, getOrCreateType(PointeeTy, Unit));
+
+ // Bit size, align and offset of the type.
+ // Size is always the size of a pointer. We can't use getTypeSize here
+ // because that does not return the correct value for references.
+ unsigned AS = CGM.getContext().getTargetAddressSpace(PointeeTy);
+ uint64_t Size = CGM.getTarget().getPointerWidth(AS);
+ uint64_t Align = CGM.getContext().getTypeAlign(Ty);
+
+ return DBuilder.createPointerType(getOrCreateType(PointeeTy, Unit), Size,
+ Align);
+}
+
+llvm::DIType *CGDebugInfo::getOrCreateStructPtrType(StringRef Name,
+ llvm::DIType *&Cache) {
+ if (Cache)
+ return Cache;
+ Cache = DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type, Name,
+ TheCU, getOrCreateMainFile(), 0);
+ unsigned Size = CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy);
+ Cache = DBuilder.createPointerType(Cache, Size);
+ return Cache;
+}
+
+llvm::DIType *CGDebugInfo::CreateType(const BlockPointerType *Ty,
+ llvm::DIFile *Unit) {
+ if (BlockLiteralGeneric)
+ return BlockLiteralGeneric;
+
+ SmallVector<llvm::Metadata *, 8> EltTys;
+ QualType FType;
+ uint64_t FieldSize, FieldOffset;
+ unsigned FieldAlign;
+ llvm::DINodeArray Elements;
+
+ FieldOffset = 0;
+ FType = CGM.getContext().UnsignedLongTy;
+ EltTys.push_back(CreateMemberType(Unit, FType, "reserved", &FieldOffset));
+ EltTys.push_back(CreateMemberType(Unit, FType, "Size", &FieldOffset));
+
+ Elements = DBuilder.getOrCreateArray(EltTys);
+ EltTys.clear();
+
+ unsigned Flags = llvm::DINode::FlagAppleBlock;
+ unsigned LineNo = getLineNumber(CurLoc);
+
+ auto *EltTy =
+ DBuilder.createStructType(Unit, "__block_descriptor", Unit, LineNo,
+ FieldOffset, 0, Flags, nullptr, Elements);
+
+ // Bit size, align and offset of the type.
+ uint64_t Size = CGM.getContext().getTypeSize(Ty);
+
+ auto *DescTy = DBuilder.createPointerType(EltTy, Size);
+
+ FieldOffset = 0;
+ FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy);
+ EltTys.push_back(CreateMemberType(Unit, FType, "__isa", &FieldOffset));
+ FType = CGM.getContext().IntTy;
+ EltTys.push_back(CreateMemberType(Unit, FType, "__flags", &FieldOffset));
+ EltTys.push_back(CreateMemberType(Unit, FType, "__reserved", &FieldOffset));
+ FType = CGM.getContext().getPointerType(Ty->getPointeeType());
+ EltTys.push_back(CreateMemberType(Unit, FType, "__FuncPtr", &FieldOffset));
+
+ FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy);
+ FieldSize = CGM.getContext().getTypeSize(Ty);
+ FieldAlign = CGM.getContext().getTypeAlign(Ty);
+ EltTys.push_back(DBuilder.createMemberType(Unit, "__descriptor", Unit, LineNo,
+ FieldSize, FieldAlign, FieldOffset,
+ 0, DescTy));
+
+ FieldOffset += FieldSize;
+ Elements = DBuilder.getOrCreateArray(EltTys);
+
+ EltTy =
+ DBuilder.createStructType(Unit, "__block_literal_generic", Unit, LineNo,
+ FieldOffset, 0, Flags, nullptr, Elements);
+
+ BlockLiteralGeneric = DBuilder.createPointerType(EltTy, Size);
+ return BlockLiteralGeneric;
+}
+
+llvm::DIType *CGDebugInfo::CreateType(const TemplateSpecializationType *Ty,
+ llvm::DIFile *Unit) {
+ assert(Ty->isTypeAlias());
+ llvm::DIType *Src = getOrCreateType(Ty->getAliasedType(), Unit);
+
+ SmallString<128> NS;
+ llvm::raw_svector_ostream OS(NS);
+ Ty->getTemplateName().print(OS, CGM.getContext().getPrintingPolicy(),
+ /*qualified*/ false);
+
+ TemplateSpecializationType::PrintTemplateArgumentList(
+ OS, Ty->getArgs(), Ty->getNumArgs(),
+ CGM.getContext().getPrintingPolicy());
+
+ TypeAliasDecl *AliasDecl = cast<TypeAliasTemplateDecl>(
+ Ty->getTemplateName().getAsTemplateDecl())->getTemplatedDecl();
+
+ SourceLocation Loc = AliasDecl->getLocation();
+ return DBuilder.createTypedef(
+ Src, internString(OS.str()), getOrCreateFile(Loc), getLineNumber(Loc),
+ getContextDescriptor(cast<Decl>(AliasDecl->getDeclContext())));
+}
+
+llvm::DIType *CGDebugInfo::CreateType(const TypedefType *Ty,
+ llvm::DIFile *Unit) {
+ // We don't set size information, but do specify where the typedef was
+ // declared.
+ SourceLocation Loc = Ty->getDecl()->getLocation();
+
+ // Typedefs are derived from some other type.
+ return DBuilder.createTypedef(
+ getOrCreateType(Ty->getDecl()->getUnderlyingType(), Unit),
+ Ty->getDecl()->getName(), getOrCreateFile(Loc), getLineNumber(Loc),
+ getContextDescriptor(cast<Decl>(Ty->getDecl()->getDeclContext())));
+}
+
+llvm::DIType *CGDebugInfo::CreateType(const FunctionType *Ty,
+ llvm::DIFile *Unit) {
+ SmallVector<llvm::Metadata *, 16> EltTys;
+
+ // Add the result type at least.
+ EltTys.push_back(getOrCreateType(Ty->getReturnType(), Unit));
+
+ // Set up remainder of arguments if there is a prototype.
+ // otherwise emit it as a variadic function.
+ if (isa<FunctionNoProtoType>(Ty))
+ EltTys.push_back(DBuilder.createUnspecifiedParameter());
+ else if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(Ty)) {
+ for (unsigned i = 0, e = FPT->getNumParams(); i != e; ++i)
+ EltTys.push_back(getOrCreateType(FPT->getParamType(i), Unit));
+ if (FPT->isVariadic())
+ EltTys.push_back(DBuilder.createUnspecifiedParameter());
+ }
+
+ llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(EltTys);
+ return DBuilder.createSubroutineType(Unit, EltTypeArray);
+}
+
+/// Convert an AccessSpecifier into the corresponding DINode flag.
+/// As an optimization, return 0 if the access specifier equals the
+/// default for the containing type.
+static unsigned getAccessFlag(AccessSpecifier Access, const RecordDecl *RD) {
+ AccessSpecifier Default = clang::AS_none;
+ if (RD && RD->isClass())
+ Default = clang::AS_private;
+ else if (RD && (RD->isStruct() || RD->isUnion()))
+ Default = clang::AS_public;
+
+ if (Access == Default)
+ return 0;
+
+ switch (Access) {
+ case clang::AS_private:
+ return llvm::DINode::FlagPrivate;
+ case clang::AS_protected:
+ return llvm::DINode::FlagProtected;
+ case clang::AS_public:
+ return llvm::DINode::FlagPublic;
+ case clang::AS_none:
+ return 0;
+ }
+ llvm_unreachable("unexpected access enumerator");
+}
+
+llvm::DIType *CGDebugInfo::createFieldType(
+ StringRef name, QualType type, uint64_t sizeInBitsOverride,
+ SourceLocation loc, AccessSpecifier AS, uint64_t offsetInBits,
+ llvm::DIFile *tunit, llvm::DIScope *scope, const RecordDecl *RD) {
+ llvm::DIType *debugType = getOrCreateType(type, tunit);
+
+ // Get the location for the field.
+ llvm::DIFile *file = getOrCreateFile(loc);
+ unsigned line = getLineNumber(loc);
+
+ uint64_t SizeInBits = 0;
+ unsigned AlignInBits = 0;
+ if (!type->isIncompleteArrayType()) {
+ TypeInfo TI = CGM.getContext().getTypeInfo(type);
+ SizeInBits = TI.Width;
+ AlignInBits = TI.Align;
+
+ if (sizeInBitsOverride)
+ SizeInBits = sizeInBitsOverride;
+ }
+
+ unsigned flags = getAccessFlag(AS, RD);
+ return DBuilder.createMemberType(scope, name, file, line, SizeInBits,
+ AlignInBits, offsetInBits, flags, debugType);
+}
+
+/// CollectRecordLambdaFields - Helper for CollectRecordFields.
+void CGDebugInfo::CollectRecordLambdaFields(
+ const CXXRecordDecl *CXXDecl, SmallVectorImpl<llvm::Metadata *> &elements,
+ llvm::DIType *RecordTy) {
+ // For C++11 Lambdas a Field will be the same as a Capture, but the Capture
+ // has the name and the location of the variable so we should iterate over
+ // both concurrently.
+ const ASTRecordLayout &layout = CGM.getContext().getASTRecordLayout(CXXDecl);
+ RecordDecl::field_iterator Field = CXXDecl->field_begin();
+ unsigned fieldno = 0;
+ for (CXXRecordDecl::capture_const_iterator I = CXXDecl->captures_begin(),
+ E = CXXDecl->captures_end();
+ I != E; ++I, ++Field, ++fieldno) {
+ const LambdaCapture &C = *I;
+ if (C.capturesVariable()) {
+ VarDecl *V = C.getCapturedVar();
+ llvm::DIFile *VUnit = getOrCreateFile(C.getLocation());
+ StringRef VName = V->getName();
+ uint64_t SizeInBitsOverride = 0;
+ if (Field->isBitField()) {
+ SizeInBitsOverride = Field->getBitWidthValue(CGM.getContext());
+ assert(SizeInBitsOverride && "found named 0-width bitfield");
+ }
+ llvm::DIType *fieldType = createFieldType(
+ VName, Field->getType(), SizeInBitsOverride, C.getLocation(),
+ Field->getAccess(), layout.getFieldOffset(fieldno), VUnit, RecordTy,
+ CXXDecl);
+ elements.push_back(fieldType);
+ } else if (C.capturesThis()) {
+ // TODO: Need to handle 'this' in some way by probably renaming the
+ // this of the lambda class and having a field member of 'this' or
+ // by using AT_object_pointer for the function and having that be
+ // used as 'this' for semantic references.
+ FieldDecl *f = *Field;
+ llvm::DIFile *VUnit = getOrCreateFile(f->getLocation());
+ QualType type = f->getType();
+ llvm::DIType *fieldType = createFieldType(
+ "this", type, 0, f->getLocation(), f->getAccess(),
+ layout.getFieldOffset(fieldno), VUnit, RecordTy, CXXDecl);
+
+ elements.push_back(fieldType);
+ }
+ }
+}
+
+/// Helper for CollectRecordFields.
+llvm::DIDerivedType *
+CGDebugInfo::CreateRecordStaticField(const VarDecl *Var, llvm::DIType *RecordTy,
+ const RecordDecl *RD) {
+ // Create the descriptor for the static variable, with or without
+ // constant initializers.
+ Var = Var->getCanonicalDecl();
+ llvm::DIFile *VUnit = getOrCreateFile(Var->getLocation());
+ llvm::DIType *VTy = getOrCreateType(Var->getType(), VUnit);
+
+ unsigned LineNumber = getLineNumber(Var->getLocation());
+ StringRef VName = Var->getName();
+ llvm::Constant *C = nullptr;
+ if (Var->getInit()) {
+ const APValue *Value = Var->evaluateValue();
+ if (Value) {
+ if (Value->isInt())
+ C = llvm::ConstantInt::get(CGM.getLLVMContext(), Value->getInt());
+ if (Value->isFloat())
+ C = llvm::ConstantFP::get(CGM.getLLVMContext(), Value->getFloat());
+ }
+ }
+
+ unsigned Flags = getAccessFlag(Var->getAccess(), RD);
+ llvm::DIDerivedType *GV = DBuilder.createStaticMemberType(
+ RecordTy, VName, VUnit, LineNumber, VTy, Flags, C);
+ StaticDataMemberCache[Var->getCanonicalDecl()].reset(GV);
+ return GV;
+}
+
+/// CollectRecordNormalField - Helper for CollectRecordFields.
+void CGDebugInfo::CollectRecordNormalField(
+ const FieldDecl *field, uint64_t OffsetInBits, llvm::DIFile *tunit,
+ SmallVectorImpl<llvm::Metadata *> &elements, llvm::DIType *RecordTy,
+ const RecordDecl *RD) {
+ StringRef name = field->getName();
+ QualType type = field->getType();
+
+ // Ignore unnamed fields unless they're anonymous structs/unions.
+ if (name.empty() && !type->isRecordType())
+ return;
+
+ uint64_t SizeInBitsOverride = 0;
+ if (field->isBitField()) {
+ SizeInBitsOverride = field->getBitWidthValue(CGM.getContext());
+ assert(SizeInBitsOverride && "found named 0-width bitfield");
+ }
+
+ llvm::DIType *fieldType =
+ createFieldType(name, type, SizeInBitsOverride, field->getLocation(),
+ field->getAccess(), OffsetInBits, tunit, RecordTy, RD);
+
+ elements.push_back(fieldType);
+}
+
+/// CollectRecordFields - A helper function to collect debug info for
+/// record fields. This is used while creating debug info entry for a Record.
+void CGDebugInfo::CollectRecordFields(
+ const RecordDecl *record, llvm::DIFile *tunit,
+ SmallVectorImpl<llvm::Metadata *> &elements,
+ llvm::DICompositeType *RecordTy) {
+ const CXXRecordDecl *CXXDecl = dyn_cast<CXXRecordDecl>(record);
+
+ if (CXXDecl && CXXDecl->isLambda())
+ CollectRecordLambdaFields(CXXDecl, elements, RecordTy);
+ else {
+ const ASTRecordLayout &layout = CGM.getContext().getASTRecordLayout(record);
+
+ // Field number for non-static fields.
+ unsigned fieldNo = 0;
+
+ // Static and non-static members should appear in the same order as
+ // the corresponding declarations in the source program.
+ for (const auto *I : record->decls())
+ if (const auto *V = dyn_cast<VarDecl>(I)) {
+ // Reuse the existing static member declaration if one exists
+ auto MI = StaticDataMemberCache.find(V->getCanonicalDecl());
+ if (MI != StaticDataMemberCache.end()) {
+ assert(MI->second &&
+ "Static data member declaration should still exist");
+ elements.push_back(cast<llvm::DIDerivedTypeBase>(MI->second));
+ } else {
+ auto Field = CreateRecordStaticField(V, RecordTy, record);
+ elements.push_back(Field);
+ }
+ } else if (const auto *field = dyn_cast<FieldDecl>(I)) {
+ CollectRecordNormalField(field, layout.getFieldOffset(fieldNo), tunit,
+ elements, RecordTy, record);
+
+ // Bump field number for next field.
+ ++fieldNo;
+ }
+ }
+}
+
+/// getOrCreateMethodType - CXXMethodDecl's type is a FunctionType. This
+/// function type is not updated to include implicit "this" pointer. Use this
+/// routine to get a method type which includes "this" pointer.
+llvm::DISubroutineType *
+CGDebugInfo::getOrCreateMethodType(const CXXMethodDecl *Method,
+ llvm::DIFile *Unit) {
+ const FunctionProtoType *Func = Method->getType()->getAs<FunctionProtoType>();
+ if (Method->isStatic())
+ return cast_or_null<llvm::DISubroutineType>(
+ getOrCreateType(QualType(Func, 0), Unit));
+ return getOrCreateInstanceMethodType(Method->getThisType(CGM.getContext()),
+ Func, Unit);
+}
+
+llvm::DISubroutineType *CGDebugInfo::getOrCreateInstanceMethodType(
+ QualType ThisPtr, const FunctionProtoType *Func, llvm::DIFile *Unit) {
+ // Add "this" pointer.
+ llvm::DITypeRefArray Args(
+ cast<llvm::DISubroutineType>(getOrCreateType(QualType(Func, 0), Unit))
+ ->getTypeArray());
+ assert(Args.size() && "Invalid number of arguments!");
+
+ SmallVector<llvm::Metadata *, 16> Elts;
+
+ // First element is always return type. For 'void' functions it is NULL.
+ Elts.push_back(Args[0]);
+
+ // "this" pointer is always first argument.
+ const CXXRecordDecl *RD = ThisPtr->getPointeeCXXRecordDecl();
+ if (isa<ClassTemplateSpecializationDecl>(RD)) {
+ // Create pointer type directly in this case.
+ const PointerType *ThisPtrTy = cast<PointerType>(ThisPtr);
+ QualType PointeeTy = ThisPtrTy->getPointeeType();
+ unsigned AS = CGM.getContext().getTargetAddressSpace(PointeeTy);
+ uint64_t Size = CGM.getTarget().getPointerWidth(AS);
+ uint64_t Align = CGM.getContext().getTypeAlign(ThisPtrTy);
+ llvm::DIType *PointeeType = getOrCreateType(PointeeTy, Unit);
+ llvm::DIType *ThisPtrType =
+ DBuilder.createPointerType(PointeeType, Size, Align);
+ TypeCache[ThisPtr.getAsOpaquePtr()].reset(ThisPtrType);
+ // TODO: This and the artificial type below are misleading, the
+ // types aren't artificial the argument is, but the current
+ // metadata doesn't represent that.
+ ThisPtrType = DBuilder.createObjectPointerType(ThisPtrType);
+ Elts.push_back(ThisPtrType);
+ } else {
+ llvm::DIType *ThisPtrType = getOrCreateType(ThisPtr, Unit);
+ TypeCache[ThisPtr.getAsOpaquePtr()].reset(ThisPtrType);
+ ThisPtrType = DBuilder.createObjectPointerType(ThisPtrType);
+ Elts.push_back(ThisPtrType);
+ }
+
+ // Copy rest of the arguments.
+ for (unsigned i = 1, e = Args.size(); i != e; ++i)
+ Elts.push_back(Args[i]);
+
+ llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(Elts);
+
+ unsigned Flags = 0;
+ if (Func->getExtProtoInfo().RefQualifier == RQ_LValue)
+ Flags |= llvm::DINode::FlagLValueReference;
+ if (Func->getExtProtoInfo().RefQualifier == RQ_RValue)
+ Flags |= llvm::DINode::FlagRValueReference;
+
+ return DBuilder.createSubroutineType(Unit, EltTypeArray, Flags);
+}
+
+/// isFunctionLocalClass - Return true if CXXRecordDecl is defined
+/// inside a function.
+static bool isFunctionLocalClass(const CXXRecordDecl *RD) {
+ if (const CXXRecordDecl *NRD = dyn_cast<CXXRecordDecl>(RD->getDeclContext()))
+ return isFunctionLocalClass(NRD);
+ if (isa<FunctionDecl>(RD->getDeclContext()))
+ return true;
+ return false;
+}
+
+/// CreateCXXMemberFunction - A helper function to create a subprogram for
+/// a single member function GlobalDecl.
+llvm::DISubprogram *CGDebugInfo::CreateCXXMemberFunction(
+ const CXXMethodDecl *Method, llvm::DIFile *Unit, llvm::DIType *RecordTy) {
+ bool IsCtorOrDtor =
+ isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method);
+
+ StringRef MethodName = getFunctionName(Method);
+ llvm::DISubroutineType *MethodTy = getOrCreateMethodType(Method, Unit);
+
+ // Since a single ctor/dtor corresponds to multiple functions, it doesn't
+ // make sense to give a single ctor/dtor a linkage name.
+ StringRef MethodLinkageName;
+ if (!IsCtorOrDtor && !isFunctionLocalClass(Method->getParent()))
+ MethodLinkageName = CGM.getMangledName(Method);
+
+ // Get the location for the method.
+ llvm::DIFile *MethodDefUnit = nullptr;
+ unsigned MethodLine = 0;
+ if (!Method->isImplicit()) {
+ MethodDefUnit = getOrCreateFile(Method->getLocation());
+ MethodLine = getLineNumber(Method->getLocation());
+ }
+
+ // Collect virtual method info.
+ llvm::DIType *ContainingType = nullptr;
+ unsigned Virtuality = 0;
+ unsigned VIndex = 0;
+
+ if (Method->isVirtual()) {
+ if (Method->isPure())
+ Virtuality = llvm::dwarf::DW_VIRTUALITY_pure_virtual;
+ else
+ Virtuality = llvm::dwarf::DW_VIRTUALITY_virtual;
+
+ // It doesn't make sense to give a virtual destructor a vtable index,
+ // since a single destructor has two entries in the vtable.
+ // FIXME: Add proper support for debug info for virtual calls in
+ // the Microsoft ABI, where we may use multiple vptrs to make a vftable
+ // lookup if we have multiple or virtual inheritance.
+ if (!isa<CXXDestructorDecl>(Method) &&
+ !CGM.getTarget().getCXXABI().isMicrosoft())
+ VIndex = CGM.getItaniumVTableContext().getMethodVTableIndex(Method);
+ ContainingType = RecordTy;
+ }
+
+ unsigned Flags = 0;
+ if (Method->isImplicit())
+ Flags |= llvm::DINode::FlagArtificial;
+ Flags |= getAccessFlag(Method->getAccess(), Method->getParent());
+ if (const CXXConstructorDecl *CXXC = dyn_cast<CXXConstructorDecl>(Method)) {
+ if (CXXC->isExplicit())
+ Flags |= llvm::DINode::FlagExplicit;
+ } else if (const CXXConversionDecl *CXXC =
+ dyn_cast<CXXConversionDecl>(Method)) {
+ if (CXXC->isExplicit())
+ Flags |= llvm::DINode::FlagExplicit;
+ }
+ if (Method->hasPrototype())
+ Flags |= llvm::DINode::FlagPrototyped;
+ if (Method->getRefQualifier() == RQ_LValue)
+ Flags |= llvm::DINode::FlagLValueReference;
+ if (Method->getRefQualifier() == RQ_RValue)
+ Flags |= llvm::DINode::FlagRValueReference;
+
+ llvm::DINodeArray TParamsArray = CollectFunctionTemplateParams(Method, Unit);
+ llvm::DISubprogram *SP = DBuilder.createMethod(
+ RecordTy, MethodName, MethodLinkageName, MethodDefUnit, MethodLine,
+ MethodTy, /*isLocalToUnit=*/false,
+ /* isDefinition=*/false, Virtuality, VIndex, ContainingType, Flags,
+ CGM.getLangOpts().Optimize, nullptr, TParamsArray.get());
+
+ SPCache[Method->getCanonicalDecl()].reset(SP);
+
+ return SP;
+}
+
+/// CollectCXXMemberFunctions - A helper function to collect debug info for
+/// C++ member functions. This is used while creating debug info entry for
+/// a Record.
+void CGDebugInfo::CollectCXXMemberFunctions(
+ const CXXRecordDecl *RD, llvm::DIFile *Unit,
+ SmallVectorImpl<llvm::Metadata *> &EltTys, llvm::DIType *RecordTy) {
+
+ // Since we want more than just the individual member decls if we
+ // have templated functions iterate over every declaration to gather
+ // the functions.
+ for (const auto *I : RD->decls()) {
+ const auto *Method = dyn_cast<CXXMethodDecl>(I);
+ // If the member is implicit, don't add it to the member list. This avoids
+ // the member being added to type units by LLVM, while still allowing it
+ // to be emitted into the type declaration/reference inside the compile
+ // unit.
+ // FIXME: Handle Using(Shadow?)Decls here to create
+ // DW_TAG_imported_declarations inside the class for base decls brought into
+ // derived classes. GDB doesn't seem to notice/leverage these when I tried
+ // it, so I'm not rushing to fix this. (GCC seems to produce them, if
+ // referenced)
+ if (!Method || Method->isImplicit())
+ continue;
+
+ if (Method->getType()->getAs<FunctionProtoType>()->getContainedAutoType())
+ continue;
+
+ // Reuse the existing member function declaration if it exists.
+ // It may be associated with the declaration of the type & should be
+ // reused as we're building the definition.
+ //
+ // This situation can arise in the vtable-based debug info reduction where
+ // implicit members are emitted in a non-vtable TU.
+ auto MI = SPCache.find(Method->getCanonicalDecl());
+ EltTys.push_back(MI == SPCache.end()
+ ? CreateCXXMemberFunction(Method, Unit, RecordTy)
+ : static_cast<llvm::Metadata *>(MI->second));
+ }
+}
+
+/// CollectCXXBases - A helper function to collect debug info for
+/// C++ base classes. This is used while creating debug info entry for
+/// a Record.
+void CGDebugInfo::CollectCXXBases(const CXXRecordDecl *RD, llvm::DIFile *Unit,
+ SmallVectorImpl<llvm::Metadata *> &EltTys,
+ llvm::DIType *RecordTy) {
+ const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD);
+ for (const auto &BI : RD->bases()) {
+ unsigned BFlags = 0;
+ uint64_t BaseOffset;
+
+ const CXXRecordDecl *Base =
+ cast<CXXRecordDecl>(BI.getType()->getAs<RecordType>()->getDecl());
+
+ if (BI.isVirtual()) {
+ if (CGM.getTarget().getCXXABI().isItaniumFamily()) {
+ // virtual base offset offset is -ve. The code generator emits dwarf
+ // expression where it expects +ve number.
+ BaseOffset = 0 - CGM.getItaniumVTableContext()
+ .getVirtualBaseOffsetOffset(RD, Base)
+ .getQuantity();
+ } else {
+ // In the MS ABI, store the vbtable offset, which is analogous to the
+ // vbase offset offset in Itanium.
+ BaseOffset =
+ 4 * CGM.getMicrosoftVTableContext().getVBTableIndex(RD, Base);
+ }
+ BFlags = llvm::DINode::FlagVirtual;
+ } else
+ BaseOffset = CGM.getContext().toBits(RL.getBaseClassOffset(Base));
+ // FIXME: Inconsistent units for BaseOffset. It is in bytes when
+ // BI->isVirtual() and bits when not.
+
+ BFlags |= getAccessFlag(BI.getAccessSpecifier(), RD);
+ llvm::DIType *DTy = DBuilder.createInheritance(
+ RecordTy, getOrCreateType(BI.getType(), Unit), BaseOffset, BFlags);
+ EltTys.push_back(DTy);
+ }
+}
+
+/// CollectTemplateParams - A helper function to collect template parameters.
+llvm::DINodeArray
+CGDebugInfo::CollectTemplateParams(const TemplateParameterList *TPList,
+ ArrayRef<TemplateArgument> TAList,
+ llvm::DIFile *Unit) {
+ SmallVector<llvm::Metadata *, 16> TemplateParams;
+ for (unsigned i = 0, e = TAList.size(); i != e; ++i) {
+ const TemplateArgument &TA = TAList[i];
+ StringRef Name;
+ if (TPList)
+ Name = TPList->getParam(i)->getName();
+ switch (TA.getKind()) {
+ case TemplateArgument::Type: {
+ llvm::DIType *TTy = getOrCreateType(TA.getAsType(), Unit);
+ TemplateParams.push_back(
+ DBuilder.createTemplateTypeParameter(TheCU, Name, TTy));
+ } break;
+ case TemplateArgument::Integral: {
+ llvm::DIType *TTy = getOrCreateType(TA.getIntegralType(), Unit);
+ TemplateParams.push_back(DBuilder.createTemplateValueParameter(
+ TheCU, Name, TTy,
+ llvm::ConstantInt::get(CGM.getLLVMContext(), TA.getAsIntegral())));
+ } break;
+ case TemplateArgument::Declaration: {
+ const ValueDecl *D = TA.getAsDecl();
+ QualType T = TA.getParamTypeForDecl().getDesugaredType(CGM.getContext());
+ llvm::DIType *TTy = getOrCreateType(T, Unit);
+ llvm::Constant *V = nullptr;
+ const CXXMethodDecl *MD;
+ // Variable pointer template parameters have a value that is the address
+ // of the variable.
+ if (const auto *VD = dyn_cast<VarDecl>(D))
+ V = CGM.GetAddrOfGlobalVar(VD);
+ // Member function pointers have special support for building them, though
+ // this is currently unsupported in LLVM CodeGen.
+ else if ((MD = dyn_cast<CXXMethodDecl>(D)) && MD->isInstance())
+ V = CGM.getCXXABI().EmitMemberPointer(MD);
+ else if (const auto *FD = dyn_cast<FunctionDecl>(D))
+ V = CGM.GetAddrOfFunction(FD);
+ // Member data pointers have special handling too to compute the fixed
+ // offset within the object.
+ else if (const auto *MPT = dyn_cast<MemberPointerType>(T.getTypePtr())) {
+ // These five lines (& possibly the above member function pointer
+ // handling) might be able to be refactored to use similar code in
+ // CodeGenModule::getMemberPointerConstant
+ uint64_t fieldOffset = CGM.getContext().getFieldOffset(D);
+ CharUnits chars =
+ CGM.getContext().toCharUnitsFromBits((int64_t)fieldOffset);
+ V = CGM.getCXXABI().EmitMemberDataPointer(MPT, chars);
+ }
+ TemplateParams.push_back(DBuilder.createTemplateValueParameter(
+ TheCU, Name, TTy,
+ cast_or_null<llvm::Constant>(V->stripPointerCasts())));
+ } break;
+ case TemplateArgument::NullPtr: {
+ QualType T = TA.getNullPtrType();
+ llvm::DIType *TTy = getOrCreateType(T, Unit);
+ llvm::Constant *V = nullptr;
+ // Special case member data pointer null values since they're actually -1
+ // instead of zero.
+ if (const MemberPointerType *MPT =
+ dyn_cast<MemberPointerType>(T.getTypePtr()))
+ // But treat member function pointers as simple zero integers because
+ // it's easier than having a special case in LLVM's CodeGen. If LLVM
+ // CodeGen grows handling for values of non-null member function
+ // pointers then perhaps we could remove this special case and rely on
+ // EmitNullMemberPointer for member function pointers.
+ if (MPT->isMemberDataPointer())
+ V = CGM.getCXXABI().EmitNullMemberPointer(MPT);
+ if (!V)
+ V = llvm::ConstantInt::get(CGM.Int8Ty, 0);
+ TemplateParams.push_back(DBuilder.createTemplateValueParameter(
+ TheCU, Name, TTy, cast<llvm::Constant>(V)));
+ } break;
+ case TemplateArgument::Template:
+ TemplateParams.push_back(DBuilder.createTemplateTemplateParameter(
+ TheCU, Name, nullptr,
+ TA.getAsTemplate().getAsTemplateDecl()->getQualifiedNameAsString()));
+ break;
+ case TemplateArgument::Pack:
+ TemplateParams.push_back(DBuilder.createTemplateParameterPack(
+ TheCU, Name, nullptr,
+ CollectTemplateParams(nullptr, TA.getPackAsArray(), Unit)));
+ break;
+ case TemplateArgument::Expression: {
+ const Expr *E = TA.getAsExpr();
+ QualType T = E->getType();
+ if (E->isGLValue())
+ T = CGM.getContext().getLValueReferenceType(T);
+ llvm::Constant *V = CGM.EmitConstantExpr(E, T);
+ assert(V && "Expression in template argument isn't constant");
+ llvm::DIType *TTy = getOrCreateType(T, Unit);
+ TemplateParams.push_back(DBuilder.createTemplateValueParameter(
+ TheCU, Name, TTy, cast<llvm::Constant>(V->stripPointerCasts())));
+ } break;
+ // And the following should never occur:
+ case TemplateArgument::TemplateExpansion:
+ case TemplateArgument::Null:
+ llvm_unreachable(
+ "These argument types shouldn't exist in concrete types");
+ }
+ }
+ return DBuilder.getOrCreateArray(TemplateParams);
+}
+
+/// CollectFunctionTemplateParams - A helper function to collect debug
+/// info for function template parameters.
+llvm::DINodeArray
+CGDebugInfo::CollectFunctionTemplateParams(const FunctionDecl *FD,
+ llvm::DIFile *Unit) {
+ if (FD->getTemplatedKind() ==
+ FunctionDecl::TK_FunctionTemplateSpecialization) {
+ const TemplateParameterList *TList = FD->getTemplateSpecializationInfo()
+ ->getTemplate()
+ ->getTemplateParameters();
+ return CollectTemplateParams(
+ TList, FD->getTemplateSpecializationArgs()->asArray(), Unit);
+ }
+ return llvm::DINodeArray();
+}
+
+/// CollectCXXTemplateParams - A helper function to collect debug info for
+/// template parameters.
+llvm::DINodeArray CGDebugInfo::CollectCXXTemplateParams(
+ const ClassTemplateSpecializationDecl *TSpecial, llvm::DIFile *Unit) {
+ // Always get the full list of parameters, not just the ones from
+ // the specialization.
+ TemplateParameterList *TPList =
+ TSpecial->getSpecializedTemplate()->getTemplateParameters();
+ const TemplateArgumentList &TAList = TSpecial->getTemplateArgs();
+ return CollectTemplateParams(TPList, TAList.asArray(), Unit);
+}
+
+/// getOrCreateVTablePtrType - Return debug info descriptor for vtable.
+llvm::DIType *CGDebugInfo::getOrCreateVTablePtrType(llvm::DIFile *Unit) {
+ if (VTablePtrType)
+ return VTablePtrType;
+
+ ASTContext &Context = CGM.getContext();
+
+ /* Function type */
+ llvm::Metadata *STy = getOrCreateType(Context.IntTy, Unit);
+ llvm::DITypeRefArray SElements = DBuilder.getOrCreateTypeArray(STy);
+ llvm::DIType *SubTy = DBuilder.createSubroutineType(Unit, SElements);
+ unsigned Size = Context.getTypeSize(Context.VoidPtrTy);
+ llvm::DIType *vtbl_ptr_type =
+ DBuilder.createPointerType(SubTy, Size, 0, "__vtbl_ptr_type");
+ VTablePtrType = DBuilder.createPointerType(vtbl_ptr_type, Size);
+ return VTablePtrType;
+}
+
+/// getVTableName - Get vtable name for the given Class.
+StringRef CGDebugInfo::getVTableName(const CXXRecordDecl *RD) {
+ // Copy the gdb compatible name on the side and use its reference.
+ return internString("_vptr$", RD->getNameAsString());
+}
+
+/// CollectVTableInfo - If the C++ class has vtable info then insert appropriate
+/// debug info entry in EltTys vector.
+void CGDebugInfo::CollectVTableInfo(const CXXRecordDecl *RD, llvm::DIFile *Unit,
+ SmallVectorImpl<llvm::Metadata *> &EltTys) {
+ const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD);
+
+ // If there is a primary base then it will hold vtable info.
+ if (RL.getPrimaryBase())
+ return;
+
+ // If this class is not dynamic then there is not any vtable info to collect.
+ if (!RD->isDynamicClass())
+ return;
+
+ unsigned Size = CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy);
+ llvm::DIType *VPTR = DBuilder.createMemberType(
+ Unit, getVTableName(RD), Unit, 0, Size, 0, 0,
+ llvm::DINode::FlagArtificial, getOrCreateVTablePtrType(Unit));
+ EltTys.push_back(VPTR);
+}
+
+/// getOrCreateRecordType - Emit record type's standalone debug info.
+llvm::DIType *CGDebugInfo::getOrCreateRecordType(QualType RTy,
+ SourceLocation Loc) {
+ assert(DebugKind >= CodeGenOptions::LimitedDebugInfo);
+ llvm::DIType *T = getOrCreateType(RTy, getOrCreateFile(Loc));
+ return T;
+}
+
+/// getOrCreateInterfaceType - Emit an objective c interface type standalone
+/// debug info.
+llvm::DIType *CGDebugInfo::getOrCreateInterfaceType(QualType D,
+ SourceLocation Loc) {
+ assert(DebugKind >= CodeGenOptions::LimitedDebugInfo);
+ llvm::DIType *T = getOrCreateType(D, getOrCreateFile(Loc));
+ RetainedTypes.push_back(D.getAsOpaquePtr());
+ return T;
+}
+
+void CGDebugInfo::completeType(const EnumDecl *ED) {
+ if (DebugKind <= CodeGenOptions::DebugLineTablesOnly)
+ return;
+ QualType Ty = CGM.getContext().getEnumType(ED);
+ void *TyPtr = Ty.getAsOpaquePtr();
+ auto I = TypeCache.find(TyPtr);
+ if (I == TypeCache.end() || !cast<llvm::DIType>(I->second)->isForwardDecl())
+ return;
+ llvm::DIType *Res = CreateTypeDefinition(Ty->castAs<EnumType>());
+ assert(!Res->isForwardDecl());
+ TypeCache[TyPtr].reset(Res);
+}
+
+void CGDebugInfo::completeType(const RecordDecl *RD) {
+ if (DebugKind > CodeGenOptions::LimitedDebugInfo ||
+ !CGM.getLangOpts().CPlusPlus)
+ completeRequiredType(RD);
+}
+
+void CGDebugInfo::completeRequiredType(const RecordDecl *RD) {
+ if (DebugKind <= CodeGenOptions::DebugLineTablesOnly)
+ return;
+
+ if (const CXXRecordDecl *CXXDecl = dyn_cast<CXXRecordDecl>(RD))
+ if (CXXDecl->isDynamicClass())
+ return;
+
+ QualType Ty = CGM.getContext().getRecordType(RD);
+ llvm::DIType *T = getTypeOrNull(Ty);
+ if (T && T->isForwardDecl())
+ completeClassData(RD);
+}
+
+void CGDebugInfo::completeClassData(const RecordDecl *RD) {
+ if (DebugKind <= CodeGenOptions::DebugLineTablesOnly)
+ return;
+ QualType Ty = CGM.getContext().getRecordType(RD);
+ void *TyPtr = Ty.getAsOpaquePtr();
+ auto I = TypeCache.find(TyPtr);
+ if (I != TypeCache.end() && !cast<llvm::DIType>(I->second)->isForwardDecl())
+ return;
+ llvm::DIType *Res = CreateTypeDefinition(Ty->castAs<RecordType>());
+ assert(!Res->isForwardDecl());
+ TypeCache[TyPtr].reset(Res);
+}
+
+static bool hasExplicitMemberDefinition(CXXRecordDecl::method_iterator I,
+ CXXRecordDecl::method_iterator End) {
+ for (; I != End; ++I)
+ if (FunctionDecl *Tmpl = I->getInstantiatedFromMemberFunction())
+ if (!Tmpl->isImplicit() && Tmpl->isThisDeclarationADefinition() &&
+ !I->getMemberSpecializationInfo()->isExplicitSpecialization())
+ return true;
+ return false;
+}
+
+static bool shouldOmitDefinition(CodeGenOptions::DebugInfoKind DebugKind,
+ const RecordDecl *RD,
+ const LangOptions &LangOpts) {
+ if (DebugKind > CodeGenOptions::LimitedDebugInfo)
+ return false;
+
+ if (!LangOpts.CPlusPlus)
+ return false;
+
+ if (!RD->isCompleteDefinitionRequired())
+ return true;
+
+ const CXXRecordDecl *CXXDecl = dyn_cast<CXXRecordDecl>(RD);
+
+ if (!CXXDecl)
+ return false;
+
+ if (CXXDecl->hasDefinition() && CXXDecl->isDynamicClass())
+ return true;
+
+ TemplateSpecializationKind Spec = TSK_Undeclared;
+ if (const ClassTemplateSpecializationDecl *SD =
+ dyn_cast<ClassTemplateSpecializationDecl>(RD))
+ Spec = SD->getSpecializationKind();
+
+ if (Spec == TSK_ExplicitInstantiationDeclaration &&
+ hasExplicitMemberDefinition(CXXDecl->method_begin(),
+ CXXDecl->method_end()))
+ return true;
+
+ return false;
+}
+
+/// CreateType - get structure or union type.
+llvm::DIType *CGDebugInfo::CreateType(const RecordType *Ty) {
+ RecordDecl *RD = Ty->getDecl();
+ llvm::DIType *T = cast_or_null<llvm::DIType>(getTypeOrNull(QualType(Ty, 0)));
+ if (T || shouldOmitDefinition(DebugKind, RD, CGM.getLangOpts())) {
+ if (!T)
+ T = getOrCreateRecordFwdDecl(
+ Ty, getContextDescriptor(cast<Decl>(RD->getDeclContext())));
+ return T;
+ }
+
+ return CreateTypeDefinition(Ty);
+}
+
+llvm::DIType *CGDebugInfo::CreateTypeDefinition(const RecordType *Ty) {
+ RecordDecl *RD = Ty->getDecl();
+
+ // Get overall information about the record type for the debug info.
+ llvm::DIFile *DefUnit = getOrCreateFile(RD->getLocation());
+
+ // Records and classes and unions can all be recursive. To handle them, we
+ // first generate a debug descriptor for the struct as a forward declaration.
+ // Then (if it is a definition) we go through and get debug info for all of
+ // its members. Finally, we create a descriptor for the complete type (which
+ // may refer to the forward decl if the struct is recursive) and replace all
+ // uses of the forward declaration with the final definition.
+
+ auto *FwdDecl =
+ cast<llvm::DICompositeType>(getOrCreateLimitedType(Ty, DefUnit));
+
+ const RecordDecl *D = RD->getDefinition();
+ if (!D || !D->isCompleteDefinition())
+ return FwdDecl;
+
+ if (const CXXRecordDecl *CXXDecl = dyn_cast<CXXRecordDecl>(RD))
+ CollectContainingType(CXXDecl, FwdDecl);
+
+ // Push the struct on region stack.
+ LexicalBlockStack.emplace_back(&*FwdDecl);
+ RegionMap[Ty->getDecl()].reset(FwdDecl);
+
+ // Convert all the elements.
+ SmallVector<llvm::Metadata *, 16> EltTys;
+ // what about nested types?
+
+ // Note: The split of CXXDecl information here is intentional, the
+ // gdb tests will depend on a certain ordering at printout. The debug
+ // information offsets are still correct if we merge them all together
+ // though.
+ const CXXRecordDecl *CXXDecl = dyn_cast<CXXRecordDecl>(RD);
+ if (CXXDecl) {
+ CollectCXXBases(CXXDecl, DefUnit, EltTys, FwdDecl);
+ CollectVTableInfo(CXXDecl, DefUnit, EltTys);
+ }
+
+ // Collect data fields (including static variables and any initializers).
+ CollectRecordFields(RD, DefUnit, EltTys, FwdDecl);
+ if (CXXDecl)
+ CollectCXXMemberFunctions(CXXDecl, DefUnit, EltTys, FwdDecl);
+
+ LexicalBlockStack.pop_back();
+ RegionMap.erase(Ty->getDecl());
+
+ llvm::DINodeArray Elements = DBuilder.getOrCreateArray(EltTys);
+ DBuilder.replaceArrays(FwdDecl, Elements);
+
+ if (FwdDecl->isTemporary())
+ FwdDecl =
+ llvm::MDNode::replaceWithPermanent(llvm::TempDICompositeType(FwdDecl));
+
+ RegionMap[Ty->getDecl()].reset(FwdDecl);
+ return FwdDecl;
+}
+
+/// CreateType - get objective-c object type.
+llvm::DIType *CGDebugInfo::CreateType(const ObjCObjectType *Ty,
+ llvm::DIFile *Unit) {
+ // Ignore protocols.
+ return getOrCreateType(Ty->getBaseType(), Unit);
+}
+
+/// \return true if Getter has the default name for the property PD.
+static bool hasDefaultGetterName(const ObjCPropertyDecl *PD,
+ const ObjCMethodDecl *Getter) {
+ assert(PD);
+ if (!Getter)
+ return true;
+
+ assert(Getter->getDeclName().isObjCZeroArgSelector());
+ return PD->getName() ==
+ Getter->getDeclName().getObjCSelector().getNameForSlot(0);
+}
+
+/// \return true if Setter has the default name for the property PD.
+static bool hasDefaultSetterName(const ObjCPropertyDecl *PD,
+ const ObjCMethodDecl *Setter) {
+ assert(PD);
+ if (!Setter)
+ return true;
+
+ assert(Setter->getDeclName().isObjCOneArgSelector());
+ return SelectorTable::constructSetterName(PD->getName()) ==
+ Setter->getDeclName().getObjCSelector().getNameForSlot(0);
+}
+
+/// CreateType - get objective-c interface type.
+llvm::DIType *CGDebugInfo::CreateType(const ObjCInterfaceType *Ty,
+ llvm::DIFile *Unit) {
+ ObjCInterfaceDecl *ID = Ty->getDecl();
+ if (!ID)
+ return nullptr;
+
+ // Get overall information about the record type for the debug info.
+ llvm::DIFile *DefUnit = getOrCreateFile(ID->getLocation());
+ unsigned Line = getLineNumber(ID->getLocation());
+ auto RuntimeLang =
+ static_cast<llvm::dwarf::SourceLanguage>(TheCU->getSourceLanguage());
+
+ // If this is just a forward declaration return a special forward-declaration
+ // debug type since we won't be able to lay out the entire type.
+ ObjCInterfaceDecl *Def = ID->getDefinition();
+ if (!Def || !Def->getImplementation()) {
+ llvm::DIType *FwdDecl = DBuilder.createReplaceableCompositeType(
+ llvm::dwarf::DW_TAG_structure_type, ID->getName(), TheCU, DefUnit, Line,
+ RuntimeLang);
+ ObjCInterfaceCache.push_back(ObjCInterfaceCacheEntry(Ty, FwdDecl, Unit));
+ return FwdDecl;
+ }
+
+ return CreateTypeDefinition(Ty, Unit);
+}
+
+llvm::DIType *CGDebugInfo::CreateTypeDefinition(const ObjCInterfaceType *Ty,
+ llvm::DIFile *Unit) {
+ ObjCInterfaceDecl *ID = Ty->getDecl();
+ llvm::DIFile *DefUnit = getOrCreateFile(ID->getLocation());
+ unsigned Line = getLineNumber(ID->getLocation());
+ unsigned RuntimeLang = TheCU->getSourceLanguage();
+
+ // Bit size, align and offset of the type.
+ uint64_t Size = CGM.getContext().getTypeSize(Ty);
+ uint64_t Align = CGM.getContext().getTypeAlign(Ty);
+
+ unsigned Flags = 0;
+ if (ID->getImplementation())
+ Flags |= llvm::DINode::FlagObjcClassComplete;
+
+ llvm::DICompositeType *RealDecl = DBuilder.createStructType(
+ Unit, ID->getName(), DefUnit, Line, Size, Align, Flags, nullptr,
+ llvm::DINodeArray(), RuntimeLang);
+
+ QualType QTy(Ty, 0);
+ TypeCache[QTy.getAsOpaquePtr()].reset(RealDecl);
+
+ // Push the struct on region stack.
+ LexicalBlockStack.emplace_back(RealDecl);
+ RegionMap[Ty->getDecl()].reset(RealDecl);
+
+ // Convert all the elements.
+ SmallVector<llvm::Metadata *, 16> EltTys;
+
+ ObjCInterfaceDecl *SClass = ID->getSuperClass();
+ if (SClass) {
+ llvm::DIType *SClassTy =
+ getOrCreateType(CGM.getContext().getObjCInterfaceType(SClass), Unit);
+ if (!SClassTy)
+ return nullptr;
+
+ llvm::DIType *InhTag = DBuilder.createInheritance(RealDecl, SClassTy, 0, 0);
+ EltTys.push_back(InhTag);
+ }
+
+ // Create entries for all of the properties.
+ for (const auto *PD : ID->properties()) {
+ SourceLocation Loc = PD->getLocation();
+ llvm::DIFile *PUnit = getOrCreateFile(Loc);
+ unsigned PLine = getLineNumber(Loc);
+ ObjCMethodDecl *Getter = PD->getGetterMethodDecl();
+ ObjCMethodDecl *Setter = PD->getSetterMethodDecl();
+ llvm::MDNode *PropertyNode = DBuilder.createObjCProperty(
+ PD->getName(), PUnit, PLine,
+ hasDefaultGetterName(PD, Getter) ? ""
+ : getSelectorName(PD->getGetterName()),
+ hasDefaultSetterName(PD, Setter) ? ""
+ : getSelectorName(PD->getSetterName()),
+ PD->getPropertyAttributes(), getOrCreateType(PD->getType(), PUnit));
+ EltTys.push_back(PropertyNode);
+ }
+
+ const ASTRecordLayout &RL = CGM.getContext().getASTObjCInterfaceLayout(ID);
+ unsigned FieldNo = 0;
+ for (ObjCIvarDecl *Field = ID->all_declared_ivar_begin(); Field;
+ Field = Field->getNextIvar(), ++FieldNo) {
+ llvm::DIType *FieldTy = getOrCreateType(Field->getType(), Unit);
+ if (!FieldTy)
+ return nullptr;
+
+ StringRef FieldName = Field->getName();
+
+ // Ignore unnamed fields.
+ if (FieldName.empty())
+ continue;
+
+ // Get the location for the field.
+ llvm::DIFile *FieldDefUnit = getOrCreateFile(Field->getLocation());
+ unsigned FieldLine = getLineNumber(Field->getLocation());
+ QualType FType = Field->getType();
+ uint64_t FieldSize = 0;
+ unsigned FieldAlign = 0;
+
+ if (!FType->isIncompleteArrayType()) {
+
+ // Bit size, align and offset of the type.
+ FieldSize = Field->isBitField()
+ ? Field->getBitWidthValue(CGM.getContext())
+ : CGM.getContext().getTypeSize(FType);
+ FieldAlign = CGM.getContext().getTypeAlign(FType);
+ }
+
+ uint64_t FieldOffset;
+ if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
+ // We don't know the runtime offset of an ivar if we're using the
+ // non-fragile ABI. For bitfields, use the bit offset into the first
+ // byte of storage of the bitfield. For other fields, use zero.
+ if (Field->isBitField()) {
+ FieldOffset =
+ CGM.getObjCRuntime().ComputeBitfieldBitOffset(CGM, ID, Field);
+ FieldOffset %= CGM.getContext().getCharWidth();
+ } else {
+ FieldOffset = 0;
+ }
+ } else {
+ FieldOffset = RL.getFieldOffset(FieldNo);
+ }
+
+ unsigned Flags = 0;
+ if (Field->getAccessControl() == ObjCIvarDecl::Protected)
+ Flags = llvm::DINode::FlagProtected;
+ else if (Field->getAccessControl() == ObjCIvarDecl::Private)
+ Flags = llvm::DINode::FlagPrivate;
+ else if (Field->getAccessControl() == ObjCIvarDecl::Public)
+ Flags = llvm::DINode::FlagPublic;
+
+ llvm::MDNode *PropertyNode = nullptr;
+ if (ObjCImplementationDecl *ImpD = ID->getImplementation()) {
+ if (ObjCPropertyImplDecl *PImpD =
+ ImpD->FindPropertyImplIvarDecl(Field->getIdentifier())) {
+ if (ObjCPropertyDecl *PD = PImpD->getPropertyDecl()) {
+ SourceLocation Loc = PD->getLocation();
+ llvm::DIFile *PUnit = getOrCreateFile(Loc);
+ unsigned PLine = getLineNumber(Loc);
+ ObjCMethodDecl *Getter = PD->getGetterMethodDecl();
+ ObjCMethodDecl *Setter = PD->getSetterMethodDecl();
+ PropertyNode = DBuilder.createObjCProperty(
+ PD->getName(), PUnit, PLine,
+ hasDefaultGetterName(PD, Getter) ? "" : getSelectorName(
+ PD->getGetterName()),
+ hasDefaultSetterName(PD, Setter) ? "" : getSelectorName(
+ PD->getSetterName()),
+ PD->getPropertyAttributes(),
+ getOrCreateType(PD->getType(), PUnit));
+ }
+ }
+ }
+ FieldTy = DBuilder.createObjCIVar(FieldName, FieldDefUnit, FieldLine,
+ FieldSize, FieldAlign, FieldOffset, Flags,
+ FieldTy, PropertyNode);
+ EltTys.push_back(FieldTy);
+ }
+
+ llvm::DINodeArray Elements = DBuilder.getOrCreateArray(EltTys);
+ DBuilder.replaceArrays(RealDecl, Elements);
+
+ LexicalBlockStack.pop_back();
+ return RealDecl;
+}
+
+llvm::DIType *CGDebugInfo::CreateType(const VectorType *Ty,
+ llvm::DIFile *Unit) {
+ llvm::DIType *ElementTy = getOrCreateType(Ty->getElementType(), Unit);
+ int64_t Count = Ty->getNumElements();
+ if (Count == 0)
+ // If number of elements are not known then this is an unbounded array.
+ // Use Count == -1 to express such arrays.
+ Count = -1;
+
+ llvm::Metadata *Subscript = DBuilder.getOrCreateSubrange(0, Count);
+ llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscript);
+
+ uint64_t Size = CGM.getContext().getTypeSize(Ty);
+ uint64_t Align = CGM.getContext().getTypeAlign(Ty);
+
+ return DBuilder.createVectorType(Size, Align, ElementTy, SubscriptArray);
+}
+
+llvm::DIType *CGDebugInfo::CreateType(const ArrayType *Ty, llvm::DIFile *Unit) {
+ uint64_t Size;
+ uint64_t Align;
+
+ // FIXME: make getTypeAlign() aware of VLAs and incomplete array types
+ if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(Ty)) {
+ Size = 0;
+ Align =
+ CGM.getContext().getTypeAlign(CGM.getContext().getBaseElementType(VAT));
+ } else if (Ty->isIncompleteArrayType()) {
+ Size = 0;
+ if (Ty->getElementType()->isIncompleteType())
+ Align = 0;
+ else
+ Align = CGM.getContext().getTypeAlign(Ty->getElementType());
+ } else if (Ty->isIncompleteType()) {
+ Size = 0;
+ Align = 0;
+ } else {
+ // Size and align of the whole array, not the element type.
+ Size = CGM.getContext().getTypeSize(Ty);
+ Align = CGM.getContext().getTypeAlign(Ty);
+ }
+
+ // Add the dimensions of the array. FIXME: This loses CV qualifiers from
+ // interior arrays, do we care? Why aren't nested arrays represented the
+ // obvious/recursive way?
+ SmallVector<llvm::Metadata *, 8> Subscripts;
+ QualType EltTy(Ty, 0);
+ while ((Ty = dyn_cast<ArrayType>(EltTy))) {
+ // If the number of elements is known, then count is that number. Otherwise,
+ // it's -1. This allows us to represent a subrange with an array of 0
+ // elements, like this:
+ //
+ // struct foo {
+ // int x[0];
+ // };
+ int64_t Count = -1; // Count == -1 is an unbounded array.
+ if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(Ty))
+ Count = CAT->getSize().getZExtValue();
+
+ // FIXME: Verify this is right for VLAs.
+ Subscripts.push_back(DBuilder.getOrCreateSubrange(0, Count));
+ EltTy = Ty->getElementType();
+ }
+
+ llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscripts);
+
+ return DBuilder.createArrayType(Size, Align, getOrCreateType(EltTy, Unit),
+ SubscriptArray);
+}
+
+llvm::DIType *CGDebugInfo::CreateType(const LValueReferenceType *Ty,
+ llvm::DIFile *Unit) {
+ return CreatePointerLikeType(llvm::dwarf::DW_TAG_reference_type, Ty,
+ Ty->getPointeeType(), Unit);
+}
+
+llvm::DIType *CGDebugInfo::CreateType(const RValueReferenceType *Ty,
+ llvm::DIFile *Unit) {
+ return CreatePointerLikeType(llvm::dwarf::DW_TAG_rvalue_reference_type, Ty,
+ Ty->getPointeeType(), Unit);
+}
+
+llvm::DIType *CGDebugInfo::CreateType(const MemberPointerType *Ty,
+ llvm::DIFile *U) {
+ uint64_t Size = CGM.getCXXABI().isTypeInfoCalculable(QualType(Ty, 0))
+ ? CGM.getContext().getTypeSize(Ty)
+ : 0;
+ llvm::DIType *ClassType = getOrCreateType(QualType(Ty->getClass(), 0), U);
+ if (Ty->isMemberDataPointerType())
+ return DBuilder.createMemberPointerType(
+ getOrCreateType(Ty->getPointeeType(), U), ClassType, Size);
+
+ const FunctionProtoType *FPT =
+ Ty->getPointeeType()->getAs<FunctionProtoType>();
+ return DBuilder.createMemberPointerType(
+ getOrCreateInstanceMethodType(CGM.getContext().getPointerType(QualType(
+ Ty->getClass(), FPT->getTypeQuals())),
+ FPT, U),
+ ClassType, Size);
+}
+
+llvm::DIType *CGDebugInfo::CreateType(const AtomicType *Ty, llvm::DIFile *U) {
+ // Ignore the atomic wrapping
+ // FIXME: What is the correct representation?
+ return getOrCreateType(Ty->getValueType(), U);
+}
+
+/// CreateEnumType - get enumeration type.
+llvm::DIType *CGDebugInfo::CreateEnumType(const EnumType *Ty) {
+ const EnumDecl *ED = Ty->getDecl();
+ uint64_t Size = 0;
+ uint64_t Align = 0;
+ if (!ED->getTypeForDecl()->isIncompleteType()) {
+ Size = CGM.getContext().getTypeSize(ED->getTypeForDecl());
+ Align = CGM.getContext().getTypeAlign(ED->getTypeForDecl());
+ }
+
+ SmallString<256> FullName = getUniqueTagTypeName(Ty, CGM, TheCU);
+
+ // If this is just a forward declaration, construct an appropriately
+ // marked node and just return it.
+ if (!ED->getDefinition()) {
+ llvm::DIScope *EDContext =
+ getContextDescriptor(cast<Decl>(ED->getDeclContext()));
+ llvm::DIFile *DefUnit = getOrCreateFile(ED->getLocation());
+ unsigned Line = getLineNumber(ED->getLocation());
+ StringRef EDName = ED->getName();
+ llvm::DIType *RetTy = DBuilder.createReplaceableCompositeType(
+ llvm::dwarf::DW_TAG_enumeration_type, EDName, EDContext, DefUnit, Line,
+ 0, Size, Align, llvm::DINode::FlagFwdDecl, FullName);
+ ReplaceMap.emplace_back(
+ std::piecewise_construct, std::make_tuple(Ty),
+ std::make_tuple(static_cast<llvm::Metadata *>(RetTy)));
+ return RetTy;
+ }
+
+ return CreateTypeDefinition(Ty);
+}
+
+llvm::DIType *CGDebugInfo::CreateTypeDefinition(const EnumType *Ty) {
+ const EnumDecl *ED = Ty->getDecl();
+ uint64_t Size = 0;
+ uint64_t Align = 0;
+ if (!ED->getTypeForDecl()->isIncompleteType()) {
+ Size = CGM.getContext().getTypeSize(ED->getTypeForDecl());
+ Align = CGM.getContext().getTypeAlign(ED->getTypeForDecl());
+ }
+
+ SmallString<256> FullName = getUniqueTagTypeName(Ty, CGM, TheCU);
+
+ // Create elements for each enumerator.
+ SmallVector<llvm::Metadata *, 16> Enumerators;
+ ED = ED->getDefinition();
+ for (const auto *Enum : ED->enumerators()) {
+ Enumerators.push_back(DBuilder.createEnumerator(
+ Enum->getName(), Enum->getInitVal().getSExtValue()));
+ }
+
+ // Return a CompositeType for the enum itself.
+ llvm::DINodeArray EltArray = DBuilder.getOrCreateArray(Enumerators);
+
+ llvm::DIFile *DefUnit = getOrCreateFile(ED->getLocation());
+ unsigned Line = getLineNumber(ED->getLocation());
+ llvm::DIScope *EnumContext =
+ getContextDescriptor(cast<Decl>(ED->getDeclContext()));
+ llvm::DIType *ClassTy =
+ ED->isFixed() ? getOrCreateType(ED->getIntegerType(), DefUnit) : nullptr;
+ return DBuilder.createEnumerationType(EnumContext, ED->getName(), DefUnit,
+ Line, Size, Align, EltArray, ClassTy,
+ FullName);
+}
+
+static QualType UnwrapTypeForDebugInfo(QualType T, const ASTContext &C) {
+ Qualifiers Quals;
+ do {
+ Qualifiers InnerQuals = T.getLocalQualifiers();
+ // Qualifiers::operator+() doesn't like it if you add a Qualifier
+ // that is already there.
+ Quals += Qualifiers::removeCommonQualifiers(Quals, InnerQuals);
+ Quals += InnerQuals;
+ QualType LastT = T;
+ switch (T->getTypeClass()) {
+ default:
+ return C.getQualifiedType(T.getTypePtr(), Quals);
+ case Type::TemplateSpecialization: {
+ const auto *Spec = cast<TemplateSpecializationType>(T);
+ if (Spec->isTypeAlias())
+ return C.getQualifiedType(T.getTypePtr(), Quals);
+ T = Spec->desugar();
+ break;
+ }
+ case Type::TypeOfExpr:
+ T = cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType();
+ break;
+ case Type::TypeOf:
+ T = cast<TypeOfType>(T)->getUnderlyingType();
+ break;
+ case Type::Decltype:
+ T = cast<DecltypeType>(T)->getUnderlyingType();
+ break;
+ case Type::UnaryTransform:
+ T = cast<UnaryTransformType>(T)->getUnderlyingType();
+ break;
+ case Type::Attributed:
+ T = cast<AttributedType>(T)->getEquivalentType();
+ break;
+ case Type::Elaborated:
+ T = cast<ElaboratedType>(T)->getNamedType();
+ break;
+ case Type::Paren:
+ T = cast<ParenType>(T)->getInnerType();
+ break;
+ case Type::SubstTemplateTypeParm:
+ T = cast<SubstTemplateTypeParmType>(T)->getReplacementType();
+ break;
+ case Type::Auto:
+ QualType DT = cast<AutoType>(T)->getDeducedType();
+ assert(!DT.isNull() && "Undeduced types shouldn't reach here.");
+ T = DT;
+ break;
+ }
+
+ assert(T != LastT && "Type unwrapping failed to unwrap!");
+ (void)LastT;
+ } while (true);
+}
+
+/// getType - Get the type from the cache or return null type if it doesn't
+/// exist.
+llvm::DIType *CGDebugInfo::getTypeOrNull(QualType Ty) {
+
+ // Unwrap the type as needed for debug information.
+ Ty = UnwrapTypeForDebugInfo(Ty, CGM.getContext());
+
+ auto it = TypeCache.find(Ty.getAsOpaquePtr());
+ if (it != TypeCache.end()) {
+ // Verify that the debug info still exists.
+ if (llvm::Metadata *V = it->second)
+ return cast<llvm::DIType>(V);
+ }
+
+ return nullptr;
+}
+
+void CGDebugInfo::completeTemplateDefinition(
+ const ClassTemplateSpecializationDecl &SD) {
+ if (DebugKind <= CodeGenOptions::DebugLineTablesOnly)
+ return;
+
+ completeClassData(&SD);
+ // In case this type has no member function definitions being emitted, ensure
+ // it is retained
+ RetainedTypes.push_back(CGM.getContext().getRecordType(&SD).getAsOpaquePtr());
+}
+
+/// getOrCreateType - Get the type from the cache or create a new
+/// one if necessary.
+llvm::DIType *CGDebugInfo::getOrCreateType(QualType Ty, llvm::DIFile *Unit) {
+ if (Ty.isNull())
+ return nullptr;
+
+ // Unwrap the type as needed for debug information.
+ Ty = UnwrapTypeForDebugInfo(Ty, CGM.getContext());
+
+ if (auto *T = getTypeOrNull(Ty))
+ return T;
+
+ // Otherwise create the type.
+ llvm::DIType *Res = CreateTypeNode(Ty, Unit);
+ void *TyPtr = Ty.getAsOpaquePtr();
+
+ // And update the type cache.
+ TypeCache[TyPtr].reset(Res);
+
+ return Res;
+}
+
+/// Currently the checksum of an interface includes the number of
+/// ivars and property accessors.
+unsigned CGDebugInfo::Checksum(const ObjCInterfaceDecl *ID) {
+ // The assumption is that the number of ivars can only increase
+ // monotonically, so it is safe to just use their current number as
+ // a checksum.
+ unsigned Sum = 0;
+ for (const ObjCIvarDecl *Ivar = ID->all_declared_ivar_begin();
+ Ivar != nullptr; Ivar = Ivar->getNextIvar())
+ ++Sum;
+
+ return Sum;
+}
+
+ObjCInterfaceDecl *CGDebugInfo::getObjCInterfaceDecl(QualType Ty) {
+ switch (Ty->getTypeClass()) {
+ case Type::ObjCObjectPointer:
+ return getObjCInterfaceDecl(
+ cast<ObjCObjectPointerType>(Ty)->getPointeeType());
+ case Type::ObjCInterface:
+ return cast<ObjCInterfaceType>(Ty)->getDecl();
+ default:
+ return nullptr;
+ }
+}
+
+/// CreateTypeNode - Create a new debug type node.
+llvm::DIType *CGDebugInfo::CreateTypeNode(QualType Ty, llvm::DIFile *Unit) {
+ // Handle qualifiers, which recursively handles what they refer to.
+ if (Ty.hasLocalQualifiers())
+ return CreateQualifiedType(Ty, Unit);
+
+ // Work out details of type.
+ switch (Ty->getTypeClass()) {
+#define TYPE(Class, Base)
+#define ABSTRACT_TYPE(Class, Base)
+#define NON_CANONICAL_TYPE(Class, Base)
+#define DEPENDENT_TYPE(Class, Base) case Type::Class:
+#include "clang/AST/TypeNodes.def"
+ llvm_unreachable("Dependent types cannot show up in debug information");
+
+ case Type::ExtVector:
+ case Type::Vector:
+ return CreateType(cast<VectorType>(Ty), Unit);
+ case Type::ObjCObjectPointer:
+ return CreateType(cast<ObjCObjectPointerType>(Ty), Unit);
+ case Type::ObjCObject:
+ return CreateType(cast<ObjCObjectType>(Ty), Unit);
+ case Type::ObjCInterface:
+ return CreateType(cast<ObjCInterfaceType>(Ty), Unit);
+ case Type::Builtin:
+ return CreateType(cast<BuiltinType>(Ty));
+ case Type::Complex:
+ return CreateType(cast<ComplexType>(Ty));
+ case Type::Pointer:
+ return CreateType(cast<PointerType>(Ty), Unit);
+ case Type::Adjusted:
+ case Type::Decayed:
+ // Decayed and adjusted types use the adjusted type in LLVM and DWARF.
+ return CreateType(
+ cast<PointerType>(cast<AdjustedType>(Ty)->getAdjustedType()), Unit);
+ case Type::BlockPointer:
+ return CreateType(cast<BlockPointerType>(Ty), Unit);
+ case Type::Typedef:
+ return CreateType(cast<TypedefType>(Ty), Unit);
+ case Type::Record:
+ return CreateType(cast<RecordType>(Ty));
+ case Type::Enum:
+ return CreateEnumType(cast<EnumType>(Ty));
+ case Type::FunctionProto:
+ case Type::FunctionNoProto:
+ return CreateType(cast<FunctionType>(Ty), Unit);
+ case Type::ConstantArray:
+ case Type::VariableArray:
+ case Type::IncompleteArray:
+ return CreateType(cast<ArrayType>(Ty), Unit);
+
+ case Type::LValueReference:
+ return CreateType(cast<LValueReferenceType>(Ty), Unit);
+ case Type::RValueReference:
+ return CreateType(cast<RValueReferenceType>(Ty), Unit);
+
+ case Type::MemberPointer:
+ return CreateType(cast<MemberPointerType>(Ty), Unit);
+
+ case Type::Atomic:
+ return CreateType(cast<AtomicType>(Ty), Unit);
+
+ case Type::TemplateSpecialization:
+ return CreateType(cast<TemplateSpecializationType>(Ty), Unit);
+
+ case Type::Auto:
+ case Type::Attributed:
+ case Type::Elaborated:
+ case Type::Paren:
+ case Type::SubstTemplateTypeParm:
+ case Type::TypeOfExpr:
+ case Type::TypeOf:
+ case Type::Decltype:
+ case Type::UnaryTransform:
+ case Type::PackExpansion:
+ break;
+ }
+
+ llvm_unreachable("type should have been unwrapped!");
+}
+
+/// getOrCreateLimitedType - Get the type from the cache or create a new
+/// limited type if necessary.
+llvm::DIType *CGDebugInfo::getOrCreateLimitedType(const RecordType *Ty,
+ llvm::DIFile *Unit) {
+ QualType QTy(Ty, 0);
+
+ auto *T = cast_or_null<llvm::DICompositeTypeBase>(getTypeOrNull(QTy));
+
+ // We may have cached a forward decl when we could have created
+ // a non-forward decl. Go ahead and create a non-forward decl
+ // now.
+ if (T && !T->isForwardDecl())
+ return T;
+
+ // Otherwise create the type.
+ llvm::DICompositeType *Res = CreateLimitedType(Ty);
+
+ // Propagate members from the declaration to the definition
+ // CreateType(const RecordType*) will overwrite this with the members in the
+ // correct order if the full type is needed.
+ DBuilder.replaceArrays(Res, T ? T->getElements() : llvm::DINodeArray());
+
+ // And update the type cache.
+ TypeCache[QTy.getAsOpaquePtr()].reset(Res);
+ return Res;
+}
+
+// TODO: Currently used for context chains when limiting debug info.
+llvm::DICompositeType *CGDebugInfo::CreateLimitedType(const RecordType *Ty) {
+ RecordDecl *RD = Ty->getDecl();
+
+ // Get overall information about the record type for the debug info.
+ llvm::DIFile *DefUnit = getOrCreateFile(RD->getLocation());
+ unsigned Line = getLineNumber(RD->getLocation());
+ StringRef RDName = getClassName(RD);
+
+ llvm::DIScope *RDContext =
+ getContextDescriptor(cast<Decl>(RD->getDeclContext()));
+
+ // If we ended up creating the type during the context chain construction,
+ // just return that.
+ auto *T = cast_or_null<llvm::DICompositeType>(
+ getTypeOrNull(CGM.getContext().getRecordType(RD)));
+ if (T && (!T->isForwardDecl() || !RD->getDefinition()))
+ return T;
+
+ // If this is just a forward or incomplete declaration, construct an
+ // appropriately marked node and just return it.
+ const RecordDecl *D = RD->getDefinition();
+ if (!D || !D->isCompleteDefinition())
+ return getOrCreateRecordFwdDecl(Ty, RDContext);
+
+ uint64_t Size = CGM.getContext().getTypeSize(Ty);
+ uint64_t Align = CGM.getContext().getTypeAlign(Ty);
+
+ SmallString<256> FullName = getUniqueTagTypeName(Ty, CGM, TheCU);
+
+ llvm::DICompositeType *RealDecl = DBuilder.createReplaceableCompositeType(
+ getTagForRecord(RD), RDName, RDContext, DefUnit, Line, 0, Size, Align, 0,
+ FullName);
+
+ RegionMap[Ty->getDecl()].reset(RealDecl);
+ TypeCache[QualType(Ty, 0).getAsOpaquePtr()].reset(RealDecl);
+
+ if (const ClassTemplateSpecializationDecl *TSpecial =
+ dyn_cast<ClassTemplateSpecializationDecl>(RD))
+ DBuilder.replaceArrays(RealDecl, llvm::DINodeArray(),
+ CollectCXXTemplateParams(TSpecial, DefUnit));
+ return RealDecl;
+}
+
+void CGDebugInfo::CollectContainingType(const CXXRecordDecl *RD,
+ llvm::DICompositeType *RealDecl) {
+ // A class's primary base or the class itself contains the vtable.
+ llvm::DICompositeType *ContainingType = nullptr;
+ const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD);
+ if (const CXXRecordDecl *PBase = RL.getPrimaryBase()) {
+ // Seek non-virtual primary base root.
+ while (1) {
+ const ASTRecordLayout &BRL = CGM.getContext().getASTRecordLayout(PBase);
+ const CXXRecordDecl *PBT = BRL.getPrimaryBase();
+ if (PBT && !BRL.isPrimaryBaseVirtual())
+ PBase = PBT;
+ else
+ break;
+ }
+ ContainingType = cast<llvm::DICompositeType>(
+ getOrCreateType(QualType(PBase->getTypeForDecl(), 0),
+ getOrCreateFile(RD->getLocation())));
+ } else if (RD->isDynamicClass())
+ ContainingType = RealDecl;
+
+ DBuilder.replaceVTableHolder(RealDecl, ContainingType);
+}
+
+/// CreateMemberType - Create new member and increase Offset by FType's size.
+llvm::DIType *CGDebugInfo::CreateMemberType(llvm::DIFile *Unit, QualType FType,
+ StringRef Name, uint64_t *Offset) {
+ llvm::DIType *FieldTy = CGDebugInfo::getOrCreateType(FType, Unit);
+ uint64_t FieldSize = CGM.getContext().getTypeSize(FType);
+ unsigned FieldAlign = CGM.getContext().getTypeAlign(FType);
+ llvm::DIType *Ty = DBuilder.createMemberType(Unit, Name, Unit, 0, FieldSize,
+ FieldAlign, *Offset, 0, FieldTy);
+ *Offset += FieldSize;
+ return Ty;
+}
+
+void CGDebugInfo::collectFunctionDeclProps(GlobalDecl GD, llvm::DIFile *Unit,
+ StringRef &Name,
+ StringRef &LinkageName,
+ llvm::DIScope *&FDContext,
+ llvm::DINodeArray &TParamsArray,
+ unsigned &Flags) {
+ const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
+ Name = getFunctionName(FD);
+ // Use mangled name as linkage name for C/C++ functions.
+ if (FD->hasPrototype()) {
+ LinkageName = CGM.getMangledName(GD);
+ Flags |= llvm::DINode::FlagPrototyped;
+ }
+ // No need to replicate the linkage name if it isn't different from the
+ // subprogram name, no need to have it at all unless coverage is enabled or
+ // debug is set to more than just line tables.
+ if (LinkageName == Name ||
+ (!CGM.getCodeGenOpts().EmitGcovArcs &&
+ !CGM.getCodeGenOpts().EmitGcovNotes &&
+ DebugKind <= CodeGenOptions::DebugLineTablesOnly))
+ LinkageName = StringRef();
+
+ if (DebugKind >= CodeGenOptions::LimitedDebugInfo) {
+ if (const NamespaceDecl *NSDecl =
+ dyn_cast_or_null<NamespaceDecl>(FD->getDeclContext()))
+ FDContext = getOrCreateNameSpace(NSDecl);
+ else if (const RecordDecl *RDecl =
+ dyn_cast_or_null<RecordDecl>(FD->getDeclContext()))
+ FDContext = getContextDescriptor(cast<Decl>(RDecl));
+ // Collect template parameters.
+ TParamsArray = CollectFunctionTemplateParams(FD, Unit);
+ }
+}
+
+void CGDebugInfo::collectVarDeclProps(const VarDecl *VD, llvm::DIFile *&Unit,
+ unsigned &LineNo, QualType &T,
+ StringRef &Name, StringRef &LinkageName,
+ llvm::DIScope *&VDContext) {
+ Unit = getOrCreateFile(VD->getLocation());
+ LineNo = getLineNumber(VD->getLocation());
+
+ setLocation(VD->getLocation());
+
+ T = VD->getType();
+ if (T->isIncompleteArrayType()) {
+ // CodeGen turns int[] into int[1] so we'll do the same here.
+ llvm::APInt ConstVal(32, 1);
+ QualType ET = CGM.getContext().getAsArrayType(T)->getElementType();
+
+ T = CGM.getContext().getConstantArrayType(ET, ConstVal,
+ ArrayType::Normal, 0);
+ }
+
+ Name = VD->getName();
+ if (VD->getDeclContext() && !isa<FunctionDecl>(VD->getDeclContext()) &&
+ !isa<ObjCMethodDecl>(VD->getDeclContext()))
+ LinkageName = CGM.getMangledName(VD);
+ if (LinkageName == Name)
+ LinkageName = StringRef();
+
+ // Since we emit declarations (DW_AT_members) for static members, place the
+ // definition of those static members in the namespace they were declared in
+ // in the source code (the lexical decl context).
+ // FIXME: Generalize this for even non-member global variables where the
+ // declaration and definition may have different lexical decl contexts, once
+ // we have support for emitting declarations of (non-member) global variables.
+ const DeclContext *DC = VD->isStaticDataMember() ? VD->getLexicalDeclContext()
+ : VD->getDeclContext();
+ // When a record type contains an in-line initialization of a static data
+ // member, and the record type is marked as __declspec(dllexport), an implicit
+ // definition of the member will be created in the record context. DWARF
+ // doesn't seem to have a nice way to describe this in a form that consumers
+ // are likely to understand, so fake the "normal" situation of a definition
+ // outside the class by putting it in the global scope.
+ if (DC->isRecord())
+ DC = CGM.getContext().getTranslationUnitDecl();
+ VDContext = getContextDescriptor(dyn_cast<Decl>(DC));
+}
+
+llvm::DISubprogram *
+CGDebugInfo::getFunctionForwardDeclaration(const FunctionDecl *FD) {
+ llvm::DINodeArray TParamsArray;
+ StringRef Name, LinkageName;
+ unsigned Flags = 0;
+ SourceLocation Loc = FD->getLocation();
+ llvm::DIFile *Unit = getOrCreateFile(Loc);
+ llvm::DIScope *DContext = Unit;
+ unsigned Line = getLineNumber(Loc);
+
+ collectFunctionDeclProps(FD, Unit, Name, LinkageName, DContext,
+ TParamsArray, Flags);
+ // Build function type.
+ SmallVector<QualType, 16> ArgTypes;
+ for (const ParmVarDecl *Parm: FD->parameters())
+ ArgTypes.push_back(Parm->getType());
+ QualType FnType =
+ CGM.getContext().getFunctionType(FD->getReturnType(), ArgTypes,
+ FunctionProtoType::ExtProtoInfo());
+ llvm::DISubprogram *SP = DBuilder.createTempFunctionFwdDecl(
+ DContext, Name, LinkageName, Unit, Line,
+ getOrCreateFunctionType(FD, FnType, Unit), !FD->isExternallyVisible(),
+ false /*declaration*/, 0, Flags, CGM.getLangOpts().Optimize, nullptr,
+ TParamsArray.get(), getFunctionDeclaration(FD));
+ const FunctionDecl *CanonDecl = cast<FunctionDecl>(FD->getCanonicalDecl());
+ FwdDeclReplaceMap.emplace_back(std::piecewise_construct,
+ std::make_tuple(CanonDecl),
+ std::make_tuple(SP));
+ return SP;
+}
+
+llvm::DIGlobalVariable *
+CGDebugInfo::getGlobalVariableForwardDeclaration(const VarDecl *VD) {
+ QualType T;
+ StringRef Name, LinkageName;
+ SourceLocation Loc = VD->getLocation();
+ llvm::DIFile *Unit = getOrCreateFile(Loc);
+ llvm::DIScope *DContext = Unit;
+ unsigned Line = getLineNumber(Loc);
+
+ collectVarDeclProps(VD, Unit, Line, T, Name, LinkageName, DContext);
+ auto *GV = DBuilder.createTempGlobalVariableFwdDecl(
+ DContext, Name, LinkageName, Unit, Line, getOrCreateType(T, Unit),
+ !VD->isExternallyVisible(), nullptr, nullptr);
+ FwdDeclReplaceMap.emplace_back(
+ std::piecewise_construct,
+ std::make_tuple(cast<VarDecl>(VD->getCanonicalDecl())),
+ std::make_tuple(static_cast<llvm::Metadata *>(GV)));
+ return GV;
+}
+
+llvm::DINode *CGDebugInfo::getDeclarationOrDefinition(const Decl *D) {
+ // We only need a declaration (not a definition) of the type - so use whatever
+ // we would otherwise do to get a type for a pointee. (forward declarations in
+ // limited debug info, full definitions (if the type definition is available)
+ // in unlimited debug info)
+ if (const TypeDecl *TD = dyn_cast<TypeDecl>(D))
+ return getOrCreateType(CGM.getContext().getTypeDeclType(TD),
+ getOrCreateFile(TD->getLocation()));
+ auto I = DeclCache.find(D->getCanonicalDecl());
+
+ if (I != DeclCache.end())
+ return dyn_cast_or_null<llvm::DINode>(I->second);
+
+ // No definition for now. Emit a forward definition that might be
+ // merged with a potential upcoming definition.
+ if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
+ return getFunctionForwardDeclaration(FD);
+ else if (const auto *VD = dyn_cast<VarDecl>(D))
+ return getGlobalVariableForwardDeclaration(VD);
+
+ return nullptr;
+}
+
+/// getFunctionDeclaration - Return debug info descriptor to describe method
+/// declaration for the given method definition.
+llvm::DISubprogram *CGDebugInfo::getFunctionDeclaration(const Decl *D) {
+ if (!D || DebugKind <= CodeGenOptions::DebugLineTablesOnly)
+ return nullptr;
+
+ const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
+ if (!FD)
+ return nullptr;
+
+ // Setup context.
+ auto *S = getContextDescriptor(cast<Decl>(D->getDeclContext()));
+
+ auto MI = SPCache.find(FD->getCanonicalDecl());
+ if (MI == SPCache.end()) {
+ if (const CXXMethodDecl *MD =
+ dyn_cast<CXXMethodDecl>(FD->getCanonicalDecl())) {
+ return CreateCXXMemberFunction(MD, getOrCreateFile(MD->getLocation()),
+ cast<llvm::DICompositeType>(S));
+ }
+ }
+ if (MI != SPCache.end()) {
+ auto *SP = dyn_cast_or_null<llvm::DISubprogram>(MI->second);
+ if (SP && !SP->isDefinition())
+ return SP;
+ }
+
+ for (auto NextFD : FD->redecls()) {
+ auto MI = SPCache.find(NextFD->getCanonicalDecl());
+ if (MI != SPCache.end()) {
+ auto *SP = dyn_cast_or_null<llvm::DISubprogram>(MI->second);
+ if (SP && !SP->isDefinition())
+ return SP;
+ }
+ }
+ return nullptr;
+}
+
+// getOrCreateFunctionType - Construct type. If it is a c++ method, include
+// implicit parameter "this".
+llvm::DISubroutineType *CGDebugInfo::getOrCreateFunctionType(const Decl *D,
+ QualType FnType,
+ llvm::DIFile *F) {
+ if (!D || DebugKind <= CodeGenOptions::DebugLineTablesOnly)
+ // Create fake but valid subroutine type. Otherwise -verify would fail, and
+ // subprogram DIE will miss DW_AT_decl_file and DW_AT_decl_line fields.
+ return DBuilder.createSubroutineType(F,
+ DBuilder.getOrCreateTypeArray(None));
+
+ if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
+ return getOrCreateMethodType(Method, F);
+ if (const ObjCMethodDecl *OMethod = dyn_cast<ObjCMethodDecl>(D)) {
+ // Add "self" and "_cmd"
+ SmallVector<llvm::Metadata *, 16> Elts;
+
+ // First element is always return type. For 'void' functions it is NULL.
+ QualType ResultTy = OMethod->getReturnType();
+
+ // Replace the instancetype keyword with the actual type.
+ if (ResultTy == CGM.getContext().getObjCInstanceType())
+ ResultTy = CGM.getContext().getPointerType(
+ QualType(OMethod->getClassInterface()->getTypeForDecl(), 0));
+
+ Elts.push_back(getOrCreateType(ResultTy, F));
+ // "self" pointer is always first argument.
+ QualType SelfDeclTy = OMethod->getSelfDecl()->getType();
+ Elts.push_back(CreateSelfType(SelfDeclTy, getOrCreateType(SelfDeclTy, F)));
+ // "_cmd" pointer is always second argument.
+ Elts.push_back(DBuilder.createArtificialType(
+ getOrCreateType(OMethod->getCmdDecl()->getType(), F)));
+ // Get rest of the arguments.
+ for (const auto *PI : OMethod->params())
+ Elts.push_back(getOrCreateType(PI->getType(), F));
+ // Variadic methods need a special marker at the end of the type list.
+ if (OMethod->isVariadic())
+ Elts.push_back(DBuilder.createUnspecifiedParameter());
+
+ llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(Elts);
+ return DBuilder.createSubroutineType(F, EltTypeArray);
+ }
+
+ // Handle variadic function types; they need an additional
+ // unspecified parameter.
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
+ if (FD->isVariadic()) {
+ SmallVector<llvm::Metadata *, 16> EltTys;
+ EltTys.push_back(getOrCreateType(FD->getReturnType(), F));
+ if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FnType))
+ for (unsigned i = 0, e = FPT->getNumParams(); i != e; ++i)
+ EltTys.push_back(getOrCreateType(FPT->getParamType(i), F));
+ EltTys.push_back(DBuilder.createUnspecifiedParameter());
+ llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(EltTys);
+ return DBuilder.createSubroutineType(F, EltTypeArray);
+ }
+
+ return cast<llvm::DISubroutineType>(getOrCreateType(FnType, F));
+}
+
+/// EmitFunctionStart - Constructs the debug code for entering a function.
+void CGDebugInfo::EmitFunctionStart(GlobalDecl GD, SourceLocation Loc,
+ SourceLocation ScopeLoc, QualType FnType,
+ llvm::Function *Fn, CGBuilderTy &Builder) {
+
+ StringRef Name;
+ StringRef LinkageName;
+
+ FnBeginRegionCount.push_back(LexicalBlockStack.size());
+
+ const Decl *D = GD.getDecl();
+ bool HasDecl = (D != nullptr);
+
+ unsigned Flags = 0;
+ llvm::DIFile *Unit = getOrCreateFile(Loc);
+ llvm::DIScope *FDContext = Unit;
+ llvm::DINodeArray TParamsArray;
+ if (!HasDecl) {
+ // Use llvm function name.
+ LinkageName = Fn->getName();
+ } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ // If there is a subprogram for this function available then use it.
+ auto FI = SPCache.find(FD->getCanonicalDecl());
+ if (FI != SPCache.end()) {
+ auto *SP = dyn_cast_or_null<llvm::DISubprogram>(FI->second);
+ if (SP && SP->isDefinition()) {
+ LexicalBlockStack.emplace_back(SP);
+ RegionMap[D].reset(SP);
+ return;
+ }
+ }
+ collectFunctionDeclProps(GD, Unit, Name, LinkageName, FDContext,
+ TParamsArray, Flags);
+ } else if (const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D)) {
+ Name = getObjCMethodName(OMD);
+ Flags |= llvm::DINode::FlagPrototyped;
+ } else {
+ // Use llvm function name.
+ Name = Fn->getName();
+ Flags |= llvm::DINode::FlagPrototyped;
+ }
+ if (!Name.empty() && Name[0] == '\01')
+ Name = Name.substr(1);
+
+ if (!HasDecl || D->isImplicit()) {
+ Flags |= llvm::DINode::FlagArtificial;
+ // Artificial functions without a location should not silently reuse CurLoc.
+ if (Loc.isInvalid())
+ CurLoc = SourceLocation();
+ }
+ unsigned LineNo = getLineNumber(Loc);
+ unsigned ScopeLine = getLineNumber(ScopeLoc);
+
+ // FIXME: The function declaration we're constructing here is mostly reusing
+ // declarations from CXXMethodDecl and not constructing new ones for arbitrary
+ // FunctionDecls. When/if we fix this we can have FDContext be TheCU/null for
+ // all subprograms instead of the actual context since subprogram definitions
+ // are emitted as CU level entities by the backend.
+ llvm::DISubprogram *SP = DBuilder.createFunction(
+ FDContext, Name, LinkageName, Unit, LineNo,
+ getOrCreateFunctionType(D, FnType, Unit), Fn->hasInternalLinkage(),
+ true /*definition*/, ScopeLine, Flags, CGM.getLangOpts().Optimize, Fn,
+ TParamsArray.get(), getFunctionDeclaration(D));
+ // We might get here with a VarDecl in the case we're generating
+ // code for the initialization of globals. Do not record these decls
+ // as they will overwrite the actual VarDecl Decl in the cache.
+ if (HasDecl && isa<FunctionDecl>(D))
+ DeclCache[D->getCanonicalDecl()].reset(static_cast<llvm::Metadata *>(SP));
+
+ // Push the function onto the lexical block stack.
+ LexicalBlockStack.emplace_back(SP);
+
+ if (HasDecl)
+ RegionMap[D].reset(SP);
+}
+
+/// EmitLocation - Emit metadata to indicate a change in line/column
+/// information in the source file. If the location is invalid, the
+/// previous location will be reused.
+void CGDebugInfo::EmitLocation(CGBuilderTy &Builder, SourceLocation Loc) {
+ // Update our current location
+ setLocation(Loc);
+
+ if (CurLoc.isInvalid() || CurLoc.isMacroID())
+ return;
+
+ llvm::MDNode *Scope = LexicalBlockStack.back();
+ Builder.SetCurrentDebugLocation(llvm::DebugLoc::get(
+ getLineNumber(CurLoc), getColumnNumber(CurLoc), Scope));
+}
+
+/// CreateLexicalBlock - Creates a new lexical block node and pushes it on
+/// the stack.
+void CGDebugInfo::CreateLexicalBlock(SourceLocation Loc) {
+ llvm::MDNode *Back = nullptr;
+ if (!LexicalBlockStack.empty())
+ Back = LexicalBlockStack.back().get();
+ LexicalBlockStack.emplace_back(DBuilder.createLexicalBlock(
+ cast<llvm::DIScope>(Back), getOrCreateFile(CurLoc), getLineNumber(CurLoc),
+ getColumnNumber(CurLoc)));
+}
+
+/// EmitLexicalBlockStart - Constructs the debug code for entering a declarative
+/// region - beginning of a DW_TAG_lexical_block.
+void CGDebugInfo::EmitLexicalBlockStart(CGBuilderTy &Builder,
+ SourceLocation Loc) {
+ // Set our current location.
+ setLocation(Loc);
+
+ // Emit a line table change for the current location inside the new scope.
+ Builder.SetCurrentDebugLocation(llvm::DebugLoc::get(
+ getLineNumber(Loc), getColumnNumber(Loc), LexicalBlockStack.back()));
+
+ if (DebugKind <= CodeGenOptions::DebugLineTablesOnly)
+ return;
+
+ // Create a new lexical block and push it on the stack.
+ CreateLexicalBlock(Loc);
+}
+
+/// EmitLexicalBlockEnd - Constructs the debug code for exiting a declarative
+/// region - end of a DW_TAG_lexical_block.
+void CGDebugInfo::EmitLexicalBlockEnd(CGBuilderTy &Builder,
+ SourceLocation Loc) {
+ assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!");
+
+ // Provide an entry in the line table for the end of the block.
+ EmitLocation(Builder, Loc);
+
+ if (DebugKind <= CodeGenOptions::DebugLineTablesOnly)
+ return;
+
+ LexicalBlockStack.pop_back();
+}
+
+/// EmitFunctionEnd - Constructs the debug code for exiting a function.
+void CGDebugInfo::EmitFunctionEnd(CGBuilderTy &Builder) {
+ assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!");
+ unsigned RCount = FnBeginRegionCount.back();
+ assert(RCount <= LexicalBlockStack.size() && "Region stack mismatch");
+
+ // Pop all regions for this function.
+ while (LexicalBlockStack.size() != RCount) {
+ // Provide an entry in the line table for the end of the block.
+ EmitLocation(Builder, CurLoc);
+ LexicalBlockStack.pop_back();
+ }
+ FnBeginRegionCount.pop_back();
+}
+
+// EmitTypeForVarWithBlocksAttr - Build up structure info for the byref.
+// See BuildByRefType.
+llvm::DIType *CGDebugInfo::EmitTypeForVarWithBlocksAttr(const VarDecl *VD,
+ uint64_t *XOffset) {
+
+ SmallVector<llvm::Metadata *, 5> EltTys;
+ QualType FType;
+ uint64_t FieldSize, FieldOffset;
+ unsigned FieldAlign;
+
+ llvm::DIFile *Unit = getOrCreateFile(VD->getLocation());
+ QualType Type = VD->getType();
+
+ FieldOffset = 0;
+ FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy);
+ EltTys.push_back(CreateMemberType(Unit, FType, "__isa", &FieldOffset));
+ EltTys.push_back(CreateMemberType(Unit, FType, "__forwarding", &FieldOffset));
+ FType = CGM.getContext().IntTy;
+ EltTys.push_back(CreateMemberType(Unit, FType, "__flags", &FieldOffset));
+ EltTys.push_back(CreateMemberType(Unit, FType, "__size", &FieldOffset));
+
+ bool HasCopyAndDispose = CGM.getContext().BlockRequiresCopying(Type, VD);
+ if (HasCopyAndDispose) {
+ FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy);
+ EltTys.push_back(
+ CreateMemberType(Unit, FType, "__copy_helper", &FieldOffset));
+ EltTys.push_back(
+ CreateMemberType(Unit, FType, "__destroy_helper", &FieldOffset));
+ }
+ bool HasByrefExtendedLayout;
+ Qualifiers::ObjCLifetime Lifetime;
+ if (CGM.getContext().getByrefLifetime(Type, Lifetime,
+ HasByrefExtendedLayout) &&
+ HasByrefExtendedLayout) {
+ FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy);
+ EltTys.push_back(
+ CreateMemberType(Unit, FType, "__byref_variable_layout", &FieldOffset));
+ }
+
+ CharUnits Align = CGM.getContext().getDeclAlign(VD);
+ if (Align > CGM.getContext().toCharUnitsFromBits(
+ CGM.getTarget().getPointerAlign(0))) {
+ CharUnits FieldOffsetInBytes =
+ CGM.getContext().toCharUnitsFromBits(FieldOffset);
+ CharUnits AlignedOffsetInBytes =
+ FieldOffsetInBytes.RoundUpToAlignment(Align);
+ CharUnits NumPaddingBytes = AlignedOffsetInBytes - FieldOffsetInBytes;
+
+ if (NumPaddingBytes.isPositive()) {
+ llvm::APInt pad(32, NumPaddingBytes.getQuantity());
+ FType = CGM.getContext().getConstantArrayType(CGM.getContext().CharTy,
+ pad, ArrayType::Normal, 0);
+ EltTys.push_back(CreateMemberType(Unit, FType, "", &FieldOffset));
+ }
+ }
+
+ FType = Type;
+ llvm::DIType *FieldTy = getOrCreateType(FType, Unit);
+ FieldSize = CGM.getContext().getTypeSize(FType);
+ FieldAlign = CGM.getContext().toBits(Align);
+
+ *XOffset = FieldOffset;
+ FieldTy = DBuilder.createMemberType(Unit, VD->getName(), Unit, 0, FieldSize,
+ FieldAlign, FieldOffset, 0, FieldTy);
+ EltTys.push_back(FieldTy);
+ FieldOffset += FieldSize;
+
+ llvm::DINodeArray Elements = DBuilder.getOrCreateArray(EltTys);
+
+ unsigned Flags = llvm::DINode::FlagBlockByrefStruct;
+
+ return DBuilder.createStructType(Unit, "", Unit, 0, FieldOffset, 0, Flags,
+ nullptr, Elements);
+}
+
+/// EmitDeclare - Emit local variable declaration debug info.
+void CGDebugInfo::EmitDeclare(const VarDecl *VD, llvm::dwarf::Tag Tag,
+ llvm::Value *Storage, unsigned ArgNo,
+ CGBuilderTy &Builder) {
+ assert(DebugKind >= CodeGenOptions::LimitedDebugInfo);
+ assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!");
+
+ bool Unwritten =
+ VD->isImplicit() || (isa<Decl>(VD->getDeclContext()) &&
+ cast<Decl>(VD->getDeclContext())->isImplicit());
+ llvm::DIFile *Unit = nullptr;
+ if (!Unwritten)
+ Unit = getOrCreateFile(VD->getLocation());
+ llvm::DIType *Ty;
+ uint64_t XOffset = 0;
+ if (VD->hasAttr<BlocksAttr>())
+ Ty = EmitTypeForVarWithBlocksAttr(VD, &XOffset);
+ else
+ Ty = getOrCreateType(VD->getType(), Unit);
+
+ // If there is no debug info for this type then do not emit debug info
+ // for this variable.
+ if (!Ty)
+ return;
+
+ // Get location information.
+ unsigned Line = 0;
+ unsigned Column = 0;
+ if (!Unwritten) {
+ Line = getLineNumber(VD->getLocation());
+ Column = getColumnNumber(VD->getLocation());
+ }
+ SmallVector<int64_t, 9> Expr;
+ unsigned Flags = 0;
+ if (VD->isImplicit())
+ Flags |= llvm::DINode::FlagArtificial;
+ // If this is the first argument and it is implicit then
+ // give it an object pointer flag.
+ // FIXME: There has to be a better way to do this, but for static
+ // functions there won't be an implicit param at arg1 and
+ // otherwise it is 'self' or 'this'.
+ if (isa<ImplicitParamDecl>(VD) && ArgNo == 1)
+ Flags |= llvm::DINode::FlagObjectPointer;
+ if (llvm::Argument *Arg = dyn_cast<llvm::Argument>(Storage))
+ if (Arg->getType()->isPointerTy() && !Arg->hasByValAttr() &&
+ !VD->getType()->isPointerType())
+ Expr.push_back(llvm::dwarf::DW_OP_deref);
+
+ auto *Scope = cast<llvm::DIScope>(LexicalBlockStack.back());
+
+ StringRef Name = VD->getName();
+ if (!Name.empty()) {
+ if (VD->hasAttr<BlocksAttr>()) {
+ CharUnits offset = CharUnits::fromQuantity(32);
+ Expr.push_back(llvm::dwarf::DW_OP_plus);
+ // offset of __forwarding field
+ offset = CGM.getContext().toCharUnitsFromBits(
+ CGM.getTarget().getPointerWidth(0));
+ Expr.push_back(offset.getQuantity());
+ Expr.push_back(llvm::dwarf::DW_OP_deref);
+ Expr.push_back(llvm::dwarf::DW_OP_plus);
+ // offset of x field
+ offset = CGM.getContext().toCharUnitsFromBits(XOffset);
+ Expr.push_back(offset.getQuantity());
+
+ // Create the descriptor for the variable.
+ auto *D = DBuilder.createLocalVariable(Tag, Scope, VD->getName(), Unit,
+ Line, Ty, ArgNo);
+
+ // Insert an llvm.dbg.declare into the current block.
+ DBuilder.insertDeclare(Storage, D, DBuilder.createExpression(Expr),
+ llvm::DebugLoc::get(Line, Column, Scope),
+ Builder.GetInsertBlock());
+ return;
+ } else if (isa<VariableArrayType>(VD->getType()))
+ Expr.push_back(llvm::dwarf::DW_OP_deref);
+ } else if (const RecordType *RT = dyn_cast<RecordType>(VD->getType())) {
+ // If VD is an anonymous union then Storage represents value for
+ // all union fields.
+ const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
+ if (RD->isUnion() && RD->isAnonymousStructOrUnion()) {
+ // GDB has trouble finding local variables in anonymous unions, so we emit
+ // artifical local variables for each of the members.
+ //
+ // FIXME: Remove this code as soon as GDB supports this.
+ // The debug info verifier in LLVM operates based on the assumption that a
+ // variable has the same size as its storage and we had to disable the check
+ // for artificial variables.
+ for (const auto *Field : RD->fields()) {
+ llvm::DIType *FieldTy = getOrCreateType(Field->getType(), Unit);
+ StringRef FieldName = Field->getName();
+
+ // Ignore unnamed fields. Do not ignore unnamed records.
+ if (FieldName.empty() && !isa<RecordType>(Field->getType()))
+ continue;
+
+ // Use VarDecl's Tag, Scope and Line number.
+ auto *D = DBuilder.createLocalVariable(
+ Tag, Scope, FieldName, Unit, Line, FieldTy,
+ CGM.getLangOpts().Optimize, Flags | llvm::DINode::FlagArtificial,
+ ArgNo);
+
+ // Insert an llvm.dbg.declare into the current block.
+ DBuilder.insertDeclare(Storage, D, DBuilder.createExpression(Expr),
+ llvm::DebugLoc::get(Line, Column, Scope),
+ Builder.GetInsertBlock());
+ }
+ }
+ }
+
+ // Create the descriptor for the variable.
+ auto *D =
+ DBuilder.createLocalVariable(Tag, Scope, Name, Unit, Line, Ty,
+ CGM.getLangOpts().Optimize, Flags, ArgNo);
+
+ // Insert an llvm.dbg.declare into the current block.
+ DBuilder.insertDeclare(Storage, D, DBuilder.createExpression(Expr),
+ llvm::DebugLoc::get(Line, Column, Scope),
+ Builder.GetInsertBlock());
+}
+
+void CGDebugInfo::EmitDeclareOfAutoVariable(const VarDecl *VD,
+ llvm::Value *Storage,
+ CGBuilderTy &Builder) {
+ assert(DebugKind >= CodeGenOptions::LimitedDebugInfo);
+ EmitDeclare(VD, llvm::dwarf::DW_TAG_auto_variable, Storage, 0, Builder);
+}
+
+/// Look up the completed type for a self pointer in the TypeCache and
+/// create a copy of it with the ObjectPointer and Artificial flags
+/// set. If the type is not cached, a new one is created. This should
+/// never happen though, since creating a type for the implicit self
+/// argument implies that we already parsed the interface definition
+/// and the ivar declarations in the implementation.
+llvm::DIType *CGDebugInfo::CreateSelfType(const QualType &QualTy,
+ llvm::DIType *Ty) {
+ llvm::DIType *CachedTy = getTypeOrNull(QualTy);
+ if (CachedTy)
+ Ty = CachedTy;
+ return DBuilder.createObjectPointerType(Ty);
+}
+
+void CGDebugInfo::EmitDeclareOfBlockDeclRefVariable(
+ const VarDecl *VD, llvm::Value *Storage, CGBuilderTy &Builder,
+ const CGBlockInfo &blockInfo, llvm::Instruction *InsertPoint) {
+ assert(DebugKind >= CodeGenOptions::LimitedDebugInfo);
+ assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!");
+
+ if (Builder.GetInsertBlock() == nullptr)
+ return;
+
+ bool isByRef = VD->hasAttr<BlocksAttr>();
+
+ uint64_t XOffset = 0;
+ llvm::DIFile *Unit = getOrCreateFile(VD->getLocation());
+ llvm::DIType *Ty;
+ if (isByRef)
+ Ty = EmitTypeForVarWithBlocksAttr(VD, &XOffset);
+ else
+ Ty = getOrCreateType(VD->getType(), Unit);
+
+ // Self is passed along as an implicit non-arg variable in a
+ // block. Mark it as the object pointer.
+ if (isa<ImplicitParamDecl>(VD) && VD->getName() == "self")
+ Ty = CreateSelfType(VD->getType(), Ty);
+
+ // Get location information.
+ unsigned Line = getLineNumber(VD->getLocation());
+ unsigned Column = getColumnNumber(VD->getLocation());
+
+ const llvm::DataLayout &target = CGM.getDataLayout();
+
+ CharUnits offset = CharUnits::fromQuantity(
+ target.getStructLayout(blockInfo.StructureType)
+ ->getElementOffset(blockInfo.getCapture(VD).getIndex()));
+
+ SmallVector<int64_t, 9> addr;
+ if (isa<llvm::AllocaInst>(Storage))
+ addr.push_back(llvm::dwarf::DW_OP_deref);
+ addr.push_back(llvm::dwarf::DW_OP_plus);
+ addr.push_back(offset.getQuantity());
+ if (isByRef) {
+ addr.push_back(llvm::dwarf::DW_OP_deref);
+ addr.push_back(llvm::dwarf::DW_OP_plus);
+ // offset of __forwarding field
+ offset =
+ CGM.getContext().toCharUnitsFromBits(target.getPointerSizeInBits(0));
+ addr.push_back(offset.getQuantity());
+ addr.push_back(llvm::dwarf::DW_OP_deref);
+ addr.push_back(llvm::dwarf::DW_OP_plus);
+ // offset of x field
+ offset = CGM.getContext().toCharUnitsFromBits(XOffset);
+ addr.push_back(offset.getQuantity());
+ }
+
+ // Create the descriptor for the variable.
+ auto *D = DBuilder.createLocalVariable(
+ llvm::dwarf::DW_TAG_auto_variable,
+ cast<llvm::DILocalScope>(LexicalBlockStack.back()), VD->getName(), Unit,
+ Line, Ty);
+
+ // Insert an llvm.dbg.declare into the current block.
+ auto DL = llvm::DebugLoc::get(Line, Column, LexicalBlockStack.back());
+ if (InsertPoint)
+ DBuilder.insertDeclare(Storage, D, DBuilder.createExpression(addr), DL,
+ InsertPoint);
+ else
+ DBuilder.insertDeclare(Storage, D, DBuilder.createExpression(addr), DL,
+ Builder.GetInsertBlock());
+}
+
+/// EmitDeclareOfArgVariable - Emit call to llvm.dbg.declare for an argument
+/// variable declaration.
+void CGDebugInfo::EmitDeclareOfArgVariable(const VarDecl *VD, llvm::Value *AI,
+ unsigned ArgNo,
+ CGBuilderTy &Builder) {
+ assert(DebugKind >= CodeGenOptions::LimitedDebugInfo);
+ EmitDeclare(VD, llvm::dwarf::DW_TAG_arg_variable, AI, ArgNo, Builder);
+}
+
+namespace {
+struct BlockLayoutChunk {
+ uint64_t OffsetInBits;
+ const BlockDecl::Capture *Capture;
+};
+bool operator<(const BlockLayoutChunk &l, const BlockLayoutChunk &r) {
+ return l.OffsetInBits < r.OffsetInBits;
+}
+}
+
+void CGDebugInfo::EmitDeclareOfBlockLiteralArgVariable(const CGBlockInfo &block,
+ llvm::Value *Arg,
+ unsigned ArgNo,
+ llvm::Value *LocalAddr,
+ CGBuilderTy &Builder) {
+ assert(DebugKind >= CodeGenOptions::LimitedDebugInfo);
+ ASTContext &C = CGM.getContext();
+ const BlockDecl *blockDecl = block.getBlockDecl();
+
+ // Collect some general information about the block's location.
+ SourceLocation loc = blockDecl->getCaretLocation();
+ llvm::DIFile *tunit = getOrCreateFile(loc);
+ unsigned line = getLineNumber(loc);
+ unsigned column = getColumnNumber(loc);
+
+ // Build the debug-info type for the block literal.
+ getContextDescriptor(cast<Decl>(blockDecl->getDeclContext()));
+
+ const llvm::StructLayout *blockLayout =
+ CGM.getDataLayout().getStructLayout(block.StructureType);
+
+ SmallVector<llvm::Metadata *, 16> fields;
+ fields.push_back(createFieldType("__isa", C.VoidPtrTy, 0, loc, AS_public,
+ blockLayout->getElementOffsetInBits(0),
+ tunit, tunit));
+ fields.push_back(createFieldType("__flags", C.IntTy, 0, loc, AS_public,
+ blockLayout->getElementOffsetInBits(1),
+ tunit, tunit));
+ fields.push_back(createFieldType("__reserved", C.IntTy, 0, loc, AS_public,
+ blockLayout->getElementOffsetInBits(2),
+ tunit, tunit));
+ auto *FnTy = block.getBlockExpr()->getFunctionType();
+ auto FnPtrType = CGM.getContext().getPointerType(FnTy->desugar());
+ fields.push_back(createFieldType("__FuncPtr", FnPtrType, 0, loc, AS_public,
+ blockLayout->getElementOffsetInBits(3),
+ tunit, tunit));
+ fields.push_back(createFieldType(
+ "__descriptor", C.getPointerType(block.NeedsCopyDispose
+ ? C.getBlockDescriptorExtendedType()
+ : C.getBlockDescriptorType()),
+ 0, loc, AS_public, blockLayout->getElementOffsetInBits(4), tunit, tunit));
+
+ // We want to sort the captures by offset, not because DWARF
+ // requires this, but because we're paranoid about debuggers.
+ SmallVector<BlockLayoutChunk, 8> chunks;
+
+ // 'this' capture.
+ if (blockDecl->capturesCXXThis()) {
+ BlockLayoutChunk chunk;
+ chunk.OffsetInBits =
+ blockLayout->getElementOffsetInBits(block.CXXThisIndex);
+ chunk.Capture = nullptr;
+ chunks.push_back(chunk);
+ }
+
+ // Variable captures.
+ for (const auto &capture : blockDecl->captures()) {
+ const VarDecl *variable = capture.getVariable();
+ const CGBlockInfo::Capture &captureInfo = block.getCapture(variable);
+
+ // Ignore constant captures.
+ if (captureInfo.isConstant())
+ continue;
+
+ BlockLayoutChunk chunk;
+ chunk.OffsetInBits =
+ blockLayout->getElementOffsetInBits(captureInfo.getIndex());
+ chunk.Capture = &capture;
+ chunks.push_back(chunk);
+ }
+
+ // Sort by offset.
+ llvm::array_pod_sort(chunks.begin(), chunks.end());
+
+ for (SmallVectorImpl<BlockLayoutChunk>::iterator i = chunks.begin(),
+ e = chunks.end();
+ i != e; ++i) {
+ uint64_t offsetInBits = i->OffsetInBits;
+ const BlockDecl::Capture *capture = i->Capture;
+
+ // If we have a null capture, this must be the C++ 'this' capture.
+ if (!capture) {
+ const CXXMethodDecl *method =
+ cast<CXXMethodDecl>(blockDecl->getNonClosureContext());
+ QualType type = method->getThisType(C);
+
+ fields.push_back(createFieldType("this", type, 0, loc, AS_public,
+ offsetInBits, tunit, tunit));
+ continue;
+ }
+
+ const VarDecl *variable = capture->getVariable();
+ StringRef name = variable->getName();
+
+ llvm::DIType *fieldType;
+ if (capture->isByRef()) {
+ TypeInfo PtrInfo = C.getTypeInfo(C.VoidPtrTy);
+
+ // FIXME: this creates a second copy of this type!
+ uint64_t xoffset;
+ fieldType = EmitTypeForVarWithBlocksAttr(variable, &xoffset);
+ fieldType = DBuilder.createPointerType(fieldType, PtrInfo.Width);
+ fieldType =
+ DBuilder.createMemberType(tunit, name, tunit, line, PtrInfo.Width,
+ PtrInfo.Align, offsetInBits, 0, fieldType);
+ } else {
+ fieldType = createFieldType(name, variable->getType(), 0, loc, AS_public,
+ offsetInBits, tunit, tunit);
+ }
+ fields.push_back(fieldType);
+ }
+
+ SmallString<36> typeName;
+ llvm::raw_svector_ostream(typeName) << "__block_literal_"
+ << CGM.getUniqueBlockCount();
+
+ llvm::DINodeArray fieldsArray = DBuilder.getOrCreateArray(fields);
+
+ llvm::DIType *type = DBuilder.createStructType(
+ tunit, typeName.str(), tunit, line,
+ CGM.getContext().toBits(block.BlockSize),
+ CGM.getContext().toBits(block.BlockAlign), 0, nullptr, fieldsArray);
+ type = DBuilder.createPointerType(type, CGM.PointerWidthInBits);
+
+ // Get overall information about the block.
+ unsigned flags = llvm::DINode::FlagArtificial;
+ auto *scope = cast<llvm::DILocalScope>(LexicalBlockStack.back());
+
+ // Create the descriptor for the parameter.
+ auto *debugVar = DBuilder.createLocalVariable(
+ llvm::dwarf::DW_TAG_arg_variable, scope, Arg->getName(), tunit, line,
+ type, CGM.getLangOpts().Optimize, flags, ArgNo);
+
+ if (LocalAddr) {
+ // Insert an llvm.dbg.value into the current block.
+ DBuilder.insertDbgValueIntrinsic(
+ LocalAddr, 0, debugVar, DBuilder.createExpression(),
+ llvm::DebugLoc::get(line, column, scope), Builder.GetInsertBlock());
+ }
+
+ // Insert an llvm.dbg.declare into the current block.
+ DBuilder.insertDeclare(Arg, debugVar, DBuilder.createExpression(),
+ llvm::DebugLoc::get(line, column, scope),
+ Builder.GetInsertBlock());
+}
+
+/// If D is an out-of-class definition of a static data member of a class, find
+/// its corresponding in-class declaration.
+llvm::DIDerivedType *
+CGDebugInfo::getOrCreateStaticDataMemberDeclarationOrNull(const VarDecl *D) {
+ if (!D->isStaticDataMember())
+ return nullptr;
+
+ auto MI = StaticDataMemberCache.find(D->getCanonicalDecl());
+ if (MI != StaticDataMemberCache.end()) {
+ assert(MI->second && "Static data member declaration should still exist");
+ return cast<llvm::DIDerivedType>(MI->second);
+ }
+
+ // If the member wasn't found in the cache, lazily construct and add it to the
+ // type (used when a limited form of the type is emitted).
+ auto DC = D->getDeclContext();
+ auto *Ctxt =
+ cast<llvm::DICompositeType>(getContextDescriptor(cast<Decl>(DC)));
+ return CreateRecordStaticField(D, Ctxt, cast<RecordDecl>(DC));
+}
+
+/// Recursively collect all of the member fields of a global anonymous decl and
+/// create static variables for them. The first time this is called it needs
+/// to be on a union and then from there we can have additional unnamed fields.
+llvm::DIGlobalVariable *CGDebugInfo::CollectAnonRecordDecls(
+ const RecordDecl *RD, llvm::DIFile *Unit, unsigned LineNo,
+ StringRef LinkageName, llvm::GlobalVariable *Var, llvm::DIScope *DContext) {
+ llvm::DIGlobalVariable *GV = nullptr;
+
+ for (const auto *Field : RD->fields()) {
+ llvm::DIType *FieldTy = getOrCreateType(Field->getType(), Unit);
+ StringRef FieldName = Field->getName();
+
+ // Ignore unnamed fields, but recurse into anonymous records.
+ if (FieldName.empty()) {
+ const RecordType *RT = dyn_cast<RecordType>(Field->getType());
+ if (RT)
+ GV = CollectAnonRecordDecls(RT->getDecl(), Unit, LineNo, LinkageName,
+ Var, DContext);
+ continue;
+ }
+ // Use VarDecl's Tag, Scope and Line number.
+ GV = DBuilder.createGlobalVariable(DContext, FieldName, LinkageName, Unit,
+ LineNo, FieldTy,
+ Var->hasInternalLinkage(), Var, nullptr);
+ }
+ return GV;
+}
+
+/// EmitGlobalVariable - Emit information about a global variable.
+void CGDebugInfo::EmitGlobalVariable(llvm::GlobalVariable *Var,
+ const VarDecl *D) {
+ assert(DebugKind >= CodeGenOptions::LimitedDebugInfo);
+ // Create global variable debug descriptor.
+ llvm::DIFile *Unit = nullptr;
+ llvm::DIScope *DContext = nullptr;
+ unsigned LineNo;
+ StringRef DeclName, LinkageName;
+ QualType T;
+ collectVarDeclProps(D, Unit, LineNo, T, DeclName, LinkageName, DContext);
+
+ // Attempt to store one global variable for the declaration - even if we
+ // emit a lot of fields.
+ llvm::DIGlobalVariable *GV = nullptr;
+
+ // If this is an anonymous union then we'll want to emit a global
+ // variable for each member of the anonymous union so that it's possible
+ // to find the name of any field in the union.
+ if (T->isUnionType() && DeclName.empty()) {
+ const RecordDecl *RD = cast<RecordType>(T)->getDecl();
+ assert(RD->isAnonymousStructOrUnion() &&
+ "unnamed non-anonymous struct or union?");
+ GV = CollectAnonRecordDecls(RD, Unit, LineNo, LinkageName, Var, DContext);
+ } else {
+ GV = DBuilder.createGlobalVariable(
+ DContext, DeclName, LinkageName, Unit, LineNo, getOrCreateType(T, Unit),
+ Var->hasInternalLinkage(), Var,
+ getOrCreateStaticDataMemberDeclarationOrNull(D));
+ }
+ DeclCache[D->getCanonicalDecl()].reset(static_cast<llvm::Metadata *>(GV));
+}
+
+/// EmitGlobalVariable - Emit global variable's debug info.
+void CGDebugInfo::EmitGlobalVariable(const ValueDecl *VD,
+ llvm::Constant *Init) {
+ assert(DebugKind >= CodeGenOptions::LimitedDebugInfo);
+ // Create the descriptor for the variable.
+ llvm::DIFile *Unit = getOrCreateFile(VD->getLocation());
+ StringRef Name = VD->getName();
+ llvm::DIType *Ty = getOrCreateType(VD->getType(), Unit);
+ if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(VD)) {
+ const EnumDecl *ED = cast<EnumDecl>(ECD->getDeclContext());
+ assert(isa<EnumType>(ED->getTypeForDecl()) && "Enum without EnumType?");
+ Ty = getOrCreateType(QualType(ED->getTypeForDecl(), 0), Unit);
+ }
+ // Do not use global variables for enums.
+ //
+ // FIXME: why not?
+ if (Ty->getTag() == llvm::dwarf::DW_TAG_enumeration_type)
+ return;
+ // Do not emit separate definitions for function local const/statics.
+ if (isa<FunctionDecl>(VD->getDeclContext()))
+ return;
+ VD = cast<ValueDecl>(VD->getCanonicalDecl());
+ auto *VarD = cast<VarDecl>(VD);
+ if (VarD->isStaticDataMember()) {
+ auto *RD = cast<RecordDecl>(VarD->getDeclContext());
+ getContextDescriptor(RD);
+ // Ensure that the type is retained even though it's otherwise unreferenced.
+ RetainedTypes.push_back(
+ CGM.getContext().getRecordType(RD).getAsOpaquePtr());
+ return;
+ }
+
+ llvm::DIScope *DContext =
+ getContextDescriptor(dyn_cast<Decl>(VD->getDeclContext()));
+
+ auto &GV = DeclCache[VD];
+ if (GV)
+ return;
+ GV.reset(DBuilder.createGlobalVariable(
+ DContext, Name, StringRef(), Unit, getLineNumber(VD->getLocation()), Ty,
+ true, Init, getOrCreateStaticDataMemberDeclarationOrNull(VarD)));
+}
+
+llvm::DIScope *CGDebugInfo::getCurrentContextDescriptor(const Decl *D) {
+ if (!LexicalBlockStack.empty())
+ return LexicalBlockStack.back();
+ return getContextDescriptor(D);
+}
+
+void CGDebugInfo::EmitUsingDirective(const UsingDirectiveDecl &UD) {
+ if (CGM.getCodeGenOpts().getDebugInfo() < CodeGenOptions::LimitedDebugInfo)
+ return;
+ DBuilder.createImportedModule(
+ getCurrentContextDescriptor(cast<Decl>(UD.getDeclContext())),
+ getOrCreateNameSpace(UD.getNominatedNamespace()),
+ getLineNumber(UD.getLocation()));
+}
+
+void CGDebugInfo::EmitUsingDecl(const UsingDecl &UD) {
+ if (CGM.getCodeGenOpts().getDebugInfo() < CodeGenOptions::LimitedDebugInfo)
+ return;
+ assert(UD.shadow_size() &&
+ "We shouldn't be codegening an invalid UsingDecl containing no decls");
+ // Emitting one decl is sufficient - debuggers can detect that this is an
+ // overloaded name & provide lookup for all the overloads.
+ const UsingShadowDecl &USD = **UD.shadow_begin();
+ if (llvm::DINode *Target =
+ getDeclarationOrDefinition(USD.getUnderlyingDecl()))
+ DBuilder.createImportedDeclaration(
+ getCurrentContextDescriptor(cast<Decl>(USD.getDeclContext())), Target,
+ getLineNumber(USD.getLocation()));
+}
+
+llvm::DIImportedEntity *
+CGDebugInfo::EmitNamespaceAlias(const NamespaceAliasDecl &NA) {
+ if (CGM.getCodeGenOpts().getDebugInfo() < CodeGenOptions::LimitedDebugInfo)
+ return nullptr;
+ auto &VH = NamespaceAliasCache[&NA];
+ if (VH)
+ return cast<llvm::DIImportedEntity>(VH);
+ llvm::DIImportedEntity *R;
+ if (const NamespaceAliasDecl *Underlying =
+ dyn_cast<NamespaceAliasDecl>(NA.getAliasedNamespace()))
+ // This could cache & dedup here rather than relying on metadata deduping.
+ R = DBuilder.createImportedDeclaration(
+ getCurrentContextDescriptor(cast<Decl>(NA.getDeclContext())),
+ EmitNamespaceAlias(*Underlying), getLineNumber(NA.getLocation()),
+ NA.getName());
+ else
+ R = DBuilder.createImportedDeclaration(
+ getCurrentContextDescriptor(cast<Decl>(NA.getDeclContext())),
+ getOrCreateNameSpace(cast<NamespaceDecl>(NA.getAliasedNamespace())),
+ getLineNumber(NA.getLocation()), NA.getName());
+ VH.reset(R);
+ return R;
+}
+
+/// getOrCreateNamesSpace - Return namespace descriptor for the given
+/// namespace decl.
+llvm::DINamespace *
+CGDebugInfo::getOrCreateNameSpace(const NamespaceDecl *NSDecl) {
+ NSDecl = NSDecl->getCanonicalDecl();
+ auto I = NameSpaceCache.find(NSDecl);
+ if (I != NameSpaceCache.end())
+ return cast<llvm::DINamespace>(I->second);
+
+ unsigned LineNo = getLineNumber(NSDecl->getLocation());
+ llvm::DIFile *FileD = getOrCreateFile(NSDecl->getLocation());
+ llvm::DIScope *Context =
+ getContextDescriptor(dyn_cast<Decl>(NSDecl->getDeclContext()));
+ llvm::DINamespace *NS =
+ DBuilder.createNameSpace(Context, NSDecl->getName(), FileD, LineNo);
+ NameSpaceCache[NSDecl].reset(NS);
+ return NS;
+}
+
+void CGDebugInfo::finalize() {
+ // Creating types might create further types - invalidating the current
+ // element and the size(), so don't cache/reference them.
+ for (size_t i = 0; i != ObjCInterfaceCache.size(); ++i) {
+ ObjCInterfaceCacheEntry E = ObjCInterfaceCache[i];
+ llvm::DIType *Ty = E.Type->getDecl()->getDefinition()
+ ? CreateTypeDefinition(E.Type, E.Unit)
+ : E.Decl;
+ DBuilder.replaceTemporary(llvm::TempDIType(E.Decl), Ty);
+ }
+
+ for (auto p : ReplaceMap) {
+ assert(p.second);
+ auto *Ty = cast<llvm::DIType>(p.second);
+ assert(Ty->isForwardDecl());
+
+ auto it = TypeCache.find(p.first);
+ assert(it != TypeCache.end());
+ assert(it->second);
+
+ DBuilder.replaceTemporary(llvm::TempDIType(Ty),
+ cast<llvm::DIType>(it->second));
+ }
+
+ for (const auto &p : FwdDeclReplaceMap) {
+ assert(p.second);
+ llvm::TempMDNode FwdDecl(cast<llvm::MDNode>(p.second));
+ llvm::Metadata *Repl;
+
+ auto it = DeclCache.find(p.first);
+ // If there has been no definition for the declaration, call RAUW
+ // with ourselves, that will destroy the temporary MDNode and
+ // replace it with a standard one, avoiding leaking memory.
+ if (it == DeclCache.end())
+ Repl = p.second;
+ else
+ Repl = it->second;
+
+ DBuilder.replaceTemporary(std::move(FwdDecl), cast<llvm::MDNode>(Repl));
+ }
+
+ // We keep our own list of retained types, because we need to look
+ // up the final type in the type cache.
+ for (std::vector<void *>::const_iterator RI = RetainedTypes.begin(),
+ RE = RetainedTypes.end(); RI != RE; ++RI)
+ DBuilder.retainType(cast<llvm::DIType>(TypeCache[*RI]));
+
+ DBuilder.finalize();
+}
+
+void CGDebugInfo::EmitExplicitCastType(QualType Ty) {
+ if (CGM.getCodeGenOpts().getDebugInfo() < CodeGenOptions::LimitedDebugInfo)
+ return;
+
+ if (auto *DieTy = getOrCreateType(Ty, getOrCreateMainFile()))
+ // Don't ignore in case of explicit cast where it is referenced indirectly.
+ DBuilder.retainType(DieTy);
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGDebugInfo.h b/contrib/llvm/tools/clang/lib/CodeGen/CGDebugInfo.h
new file mode 100644
index 0000000..8509e07
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGDebugInfo.h
@@ -0,0 +1,504 @@
+//===--- CGDebugInfo.h - DebugInfo for LLVM CodeGen -------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This is the source-level debug info generator for llvm translation.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_CODEGEN_CGDEBUGINFO_H
+#define LLVM_CLANG_LIB_CODEGEN_CGDEBUGINFO_H
+
+#include "CGBuilder.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/Type.h"
+#include "clang/Basic/SourceLocation.h"
+#include "clang/Frontend/CodeGenOptions.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/IR/DIBuilder.h"
+#include "llvm/IR/DebugInfo.h"
+#include "llvm/IR/ValueHandle.h"
+#include "llvm/Support/Allocator.h"
+
+namespace llvm {
+ class MDNode;
+}
+
+namespace clang {
+ class CXXMethodDecl;
+ class VarDecl;
+ class ObjCInterfaceDecl;
+ class ObjCIvarDecl;
+ class ClassTemplateSpecializationDecl;
+ class GlobalDecl;
+ class UsingDecl;
+
+namespace CodeGen {
+ class CodeGenModule;
+ class CodeGenFunction;
+ class CGBlockInfo;
+
+/// \brief This class gathers all debug information during compilation
+/// and is responsible for emitting to llvm globals or pass directly to
+/// the backend.
+class CGDebugInfo {
+ friend class ApplyDebugLocation;
+ friend class SaveAndRestoreLocation;
+ CodeGenModule &CGM;
+ const CodeGenOptions::DebugInfoKind DebugKind;
+ llvm::DIBuilder DBuilder;
+ llvm::DICompileUnit *TheCU = nullptr;
+ SourceLocation CurLoc;
+ llvm::DIType *VTablePtrType = nullptr;
+ llvm::DIType *ClassTy = nullptr;
+ llvm::DICompositeType *ObjTy = nullptr;
+ llvm::DIType *SelTy = nullptr;
+ llvm::DIType *OCLImage1dDITy = nullptr;
+ llvm::DIType *OCLImage1dArrayDITy = nullptr;
+ llvm::DIType *OCLImage1dBufferDITy = nullptr;
+ llvm::DIType *OCLImage2dDITy = nullptr;
+ llvm::DIType *OCLImage2dArrayDITy = nullptr;
+ llvm::DIType *OCLImage3dDITy = nullptr;
+ llvm::DIType *OCLEventDITy = nullptr;
+ llvm::DIType *BlockLiteralGeneric = nullptr;
+
+ /// \brief Cache of previously constructed Types.
+ llvm::DenseMap<const void *, llvm::TrackingMDRef> TypeCache;
+
+ struct ObjCInterfaceCacheEntry {
+ const ObjCInterfaceType *Type;
+ llvm::DIType *Decl;
+ llvm::DIFile *Unit;
+ ObjCInterfaceCacheEntry(const ObjCInterfaceType *Type, llvm::DIType *Decl,
+ llvm::DIFile *Unit)
+ : Type(Type), Decl(Decl), Unit(Unit) {}
+ };
+
+ /// \brief Cache of previously constructed interfaces
+ /// which may change.
+ llvm::SmallVector<ObjCInterfaceCacheEntry, 32> ObjCInterfaceCache;
+
+ /// \brief list of interfaces we want to keep even if orphaned.
+ std::vector<void *> RetainedTypes;
+
+ /// \brief Cache of forward declared types to RAUW at the end of
+ /// compilation.
+ std::vector<std::pair<const TagType *, llvm::TrackingMDRef>> ReplaceMap;
+
+ /// \brief Cache of replaceable forward declarartions (functions and
+ /// variables) to RAUW at the end of compilation.
+ std::vector<std::pair<const DeclaratorDecl *, llvm::TrackingMDRef>>
+ FwdDeclReplaceMap;
+
+ // LexicalBlockStack - Keep track of our current nested lexical block.
+ std::vector<llvm::TypedTrackingMDRef<llvm::DIScope>> LexicalBlockStack;
+ llvm::DenseMap<const Decl *, llvm::TrackingMDRef> RegionMap;
+ // FnBeginRegionCount - Keep track of LexicalBlockStack counter at the
+ // beginning of a function. This is used to pop unbalanced regions at
+ // the end of a function.
+ std::vector<unsigned> FnBeginRegionCount;
+
+ /// \brief This is a storage for names that are
+ /// constructed on demand. For example, C++ destructors, C++ operators etc..
+ llvm::BumpPtrAllocator DebugInfoNames;
+ StringRef CWDName;
+
+ llvm::DenseMap<const char *, llvm::TrackingMDRef> DIFileCache;
+ llvm::DenseMap<const FunctionDecl *, llvm::TrackingMDRef> SPCache;
+ /// \brief Cache declarations relevant to DW_TAG_imported_declarations (C++
+ /// using declarations) that aren't covered by other more specific caches.
+ llvm::DenseMap<const Decl *, llvm::TrackingMDRef> DeclCache;
+ llvm::DenseMap<const NamespaceDecl *, llvm::TrackingMDRef> NameSpaceCache;
+ llvm::DenseMap<const NamespaceAliasDecl *, llvm::TrackingMDRef>
+ NamespaceAliasCache;
+ llvm::DenseMap<const Decl *, llvm::TrackingMDRef> StaticDataMemberCache;
+
+ /// Helper functions for getOrCreateType.
+ unsigned Checksum(const ObjCInterfaceDecl *InterfaceDecl);
+ llvm::DIType *CreateType(const BuiltinType *Ty);
+ llvm::DIType *CreateType(const ComplexType *Ty);
+ llvm::DIType *CreateQualifiedType(QualType Ty, llvm::DIFile *Fg);
+ llvm::DIType *CreateType(const TypedefType *Ty, llvm::DIFile *Fg);
+ llvm::DIType *CreateType(const TemplateSpecializationType *Ty,
+ llvm::DIFile *Fg);
+ llvm::DIType *CreateType(const ObjCObjectPointerType *Ty, llvm::DIFile *F);
+ llvm::DIType *CreateType(const PointerType *Ty, llvm::DIFile *F);
+ llvm::DIType *CreateType(const BlockPointerType *Ty, llvm::DIFile *F);
+ llvm::DIType *CreateType(const FunctionType *Ty, llvm::DIFile *F);
+ llvm::DIType *CreateType(const RecordType *Tyg);
+ llvm::DIType *CreateTypeDefinition(const RecordType *Ty);
+ llvm::DICompositeType *CreateLimitedType(const RecordType *Ty);
+ void CollectContainingType(const CXXRecordDecl *RD,
+ llvm::DICompositeType *CT);
+ llvm::DIType *CreateType(const ObjCInterfaceType *Ty, llvm::DIFile *F);
+ llvm::DIType *CreateTypeDefinition(const ObjCInterfaceType *Ty,
+ llvm::DIFile *F);
+ llvm::DIType *CreateType(const ObjCObjectType *Ty, llvm::DIFile *F);
+ llvm::DIType *CreateType(const VectorType *Ty, llvm::DIFile *F);
+ llvm::DIType *CreateType(const ArrayType *Ty, llvm::DIFile *F);
+ llvm::DIType *CreateType(const LValueReferenceType *Ty, llvm::DIFile *F);
+ llvm::DIType *CreateType(const RValueReferenceType *Ty, llvm::DIFile *Unit);
+ llvm::DIType *CreateType(const MemberPointerType *Ty, llvm::DIFile *F);
+ llvm::DIType *CreateType(const AtomicType *Ty, llvm::DIFile *F);
+ llvm::DIType *CreateEnumType(const EnumType *Ty);
+ llvm::DIType *CreateTypeDefinition(const EnumType *Ty);
+ llvm::DIType *CreateSelfType(const QualType &QualTy, llvm::DIType *Ty);
+ llvm::DIType *getTypeOrNull(const QualType);
+ llvm::DISubroutineType *getOrCreateMethodType(const CXXMethodDecl *Method,
+ llvm::DIFile *F);
+ llvm::DISubroutineType *
+ getOrCreateInstanceMethodType(QualType ThisPtr, const FunctionProtoType *Func,
+ llvm::DIFile *Unit);
+ llvm::DISubroutineType *
+ getOrCreateFunctionType(const Decl *D, QualType FnType, llvm::DIFile *F);
+ llvm::DIType *getOrCreateVTablePtrType(llvm::DIFile *F);
+ llvm::DINamespace *getOrCreateNameSpace(const NamespaceDecl *N);
+ llvm::DIType *getOrCreateTypeDeclaration(QualType PointeeTy, llvm::DIFile *F);
+ llvm::DIType *CreatePointerLikeType(llvm::dwarf::Tag Tag, const Type *Ty,
+ QualType PointeeTy, llvm::DIFile *F);
+
+ llvm::Value *getCachedInterfaceTypeOrNull(const QualType Ty);
+ llvm::DIType *getOrCreateStructPtrType(StringRef Name, llvm::DIType *&Cache);
+
+ llvm::DISubprogram *CreateCXXMemberFunction(const CXXMethodDecl *Method,
+ llvm::DIFile *F,
+ llvm::DIType *RecordTy);
+
+ void CollectCXXMemberFunctions(const CXXRecordDecl *Decl, llvm::DIFile *F,
+ SmallVectorImpl<llvm::Metadata *> &E,
+ llvm::DIType *T);
+
+ void CollectCXXBases(const CXXRecordDecl *Decl, llvm::DIFile *F,
+ SmallVectorImpl<llvm::Metadata *> &EltTys,
+ llvm::DIType *RecordTy);
+
+ llvm::DINodeArray CollectTemplateParams(const TemplateParameterList *TPList,
+ ArrayRef<TemplateArgument> TAList,
+ llvm::DIFile *Unit);
+ llvm::DINodeArray CollectFunctionTemplateParams(const FunctionDecl *FD,
+ llvm::DIFile *Unit);
+ llvm::DINodeArray
+ CollectCXXTemplateParams(const ClassTemplateSpecializationDecl *TS,
+ llvm::DIFile *F);
+
+ llvm::DIType *createFieldType(StringRef name, QualType type,
+ uint64_t sizeInBitsOverride, SourceLocation loc,
+ AccessSpecifier AS, uint64_t offsetInBits,
+ llvm::DIFile *tunit, llvm::DIScope *scope,
+ const RecordDecl *RD = nullptr);
+
+ // Helpers for collecting fields of a record.
+ void CollectRecordLambdaFields(const CXXRecordDecl *CXXDecl,
+ SmallVectorImpl<llvm::Metadata *> &E,
+ llvm::DIType *RecordTy);
+ llvm::DIDerivedType *CreateRecordStaticField(const VarDecl *Var,
+ llvm::DIType *RecordTy,
+ const RecordDecl *RD);
+ void CollectRecordNormalField(const FieldDecl *Field, uint64_t OffsetInBits,
+ llvm::DIFile *F,
+ SmallVectorImpl<llvm::Metadata *> &E,
+ llvm::DIType *RecordTy, const RecordDecl *RD);
+ void CollectRecordFields(const RecordDecl *Decl, llvm::DIFile *F,
+ SmallVectorImpl<llvm::Metadata *> &E,
+ llvm::DICompositeType *RecordTy);
+
+ void CollectVTableInfo(const CXXRecordDecl *Decl, llvm::DIFile *F,
+ SmallVectorImpl<llvm::Metadata *> &EltTys);
+
+ // CreateLexicalBlock - Create a new lexical block node and push it on
+ // the stack.
+ void CreateLexicalBlock(SourceLocation Loc);
+
+public:
+ CGDebugInfo(CodeGenModule &CGM);
+ ~CGDebugInfo();
+
+ void finalize();
+
+ /// \brief Update the current source location. If \arg loc is
+ /// invalid it is ignored.
+ void setLocation(SourceLocation Loc);
+
+ /// \brief Emit metadata to indicate a change in line/column
+ /// information in the source file.
+ void EmitLocation(CGBuilderTy &Builder, SourceLocation Loc);
+
+ /// \brief Emit a call to llvm.dbg.function.start to indicate
+ /// start of a new function.
+ /// \param Loc The location of the function header.
+ /// \param ScopeLoc The location of the function body.
+ void EmitFunctionStart(GlobalDecl GD,
+ SourceLocation Loc, SourceLocation ScopeLoc,
+ QualType FnType, llvm::Function *Fn,
+ CGBuilderTy &Builder);
+
+ /// \brief Constructs the debug code for exiting a function.
+ void EmitFunctionEnd(CGBuilderTy &Builder);
+
+ /// \brief Emit metadata to indicate the beginning of a
+ /// new lexical block and push the block onto the stack.
+ void EmitLexicalBlockStart(CGBuilderTy &Builder, SourceLocation Loc);
+
+ /// \brief Emit metadata to indicate the end of a new lexical
+ /// block and pop the current block.
+ void EmitLexicalBlockEnd(CGBuilderTy &Builder, SourceLocation Loc);
+
+ /// \brief Emit call to llvm.dbg.declare for an automatic
+ /// variable declaration.
+ void EmitDeclareOfAutoVariable(const VarDecl *Decl, llvm::Value *AI,
+ CGBuilderTy &Builder);
+
+ /// \brief Emit call to llvm.dbg.declare for an
+ /// imported variable declaration in a block.
+ void EmitDeclareOfBlockDeclRefVariable(const VarDecl *variable,
+ llvm::Value *storage,
+ CGBuilderTy &Builder,
+ const CGBlockInfo &blockInfo,
+ llvm::Instruction *InsertPoint = 0);
+
+ /// \brief Emit call to llvm.dbg.declare for an argument
+ /// variable declaration.
+ void EmitDeclareOfArgVariable(const VarDecl *Decl, llvm::Value *AI,
+ unsigned ArgNo, CGBuilderTy &Builder);
+
+ /// \brief Emit call to
+ /// llvm.dbg.declare for the block-literal argument to a block
+ /// invocation function.
+ void EmitDeclareOfBlockLiteralArgVariable(const CGBlockInfo &block,
+ llvm::Value *Arg, unsigned ArgNo,
+ llvm::Value *LocalAddr,
+ CGBuilderTy &Builder);
+
+ /// \brief Emit information about a global variable.
+ void EmitGlobalVariable(llvm::GlobalVariable *GV, const VarDecl *Decl);
+
+ /// \brief Emit global variable's debug info.
+ void EmitGlobalVariable(const ValueDecl *VD, llvm::Constant *Init);
+
+ /// \brief Emit C++ using directive.
+ void EmitUsingDirective(const UsingDirectiveDecl &UD);
+
+ /// \brief Emit the type explicitly casted to.
+ void EmitExplicitCastType(QualType Ty);
+
+ /// \brief Emit C++ using declaration.
+ void EmitUsingDecl(const UsingDecl &UD);
+
+ /// \brief Emit C++ namespace alias.
+ llvm::DIImportedEntity *EmitNamespaceAlias(const NamespaceAliasDecl &NA);
+
+ /// \brief Emit record type's standalone debug info.
+ llvm::DIType *getOrCreateRecordType(QualType Ty, SourceLocation L);
+
+ /// \brief Emit an objective c interface type standalone
+ /// debug info.
+ llvm::DIType *getOrCreateInterfaceType(QualType Ty, SourceLocation Loc);
+
+ void completeType(const EnumDecl *ED);
+ void completeType(const RecordDecl *RD);
+ void completeRequiredType(const RecordDecl *RD);
+ void completeClassData(const RecordDecl *RD);
+
+ void completeTemplateDefinition(const ClassTemplateSpecializationDecl &SD);
+
+private:
+ /// \brief Emit call to llvm.dbg.declare for a variable declaration.
+ /// Tag accepts custom types DW_TAG_arg_variable and DW_TAG_auto_variable,
+ /// otherwise would be of type llvm::dwarf::Tag.
+ void EmitDeclare(const VarDecl *decl, llvm::dwarf::Tag Tag, llvm::Value *AI,
+ unsigned ArgNo, CGBuilderTy &Builder);
+
+ // EmitTypeForVarWithBlocksAttr - Build up structure info for the byref.
+ // See BuildByRefType.
+ llvm::DIType *EmitTypeForVarWithBlocksAttr(const VarDecl *VD,
+ uint64_t *OffSet);
+
+ /// \brief Get context info for the decl.
+ llvm::DIScope *getContextDescriptor(const Decl *Decl);
+
+ llvm::DIScope *getCurrentContextDescriptor(const Decl *Decl);
+
+ /// \brief Create a forward decl for a RecordType in a given context.
+ llvm::DICompositeType *getOrCreateRecordFwdDecl(const RecordType *,
+ llvm::DIScope *);
+
+ /// \brief Return current directory name.
+ StringRef getCurrentDirname();
+
+ /// \brief Create new compile unit.
+ void CreateCompileUnit();
+
+ /// \brief Get the file debug info descriptor for the input
+ /// location.
+ llvm::DIFile *getOrCreateFile(SourceLocation Loc);
+
+ /// \brief Get the file info for main compile unit.
+ llvm::DIFile *getOrCreateMainFile();
+
+ /// \brief Get the type from the cache or create a new type if
+ /// necessary.
+ llvm::DIType *getOrCreateType(QualType Ty, llvm::DIFile *Fg);
+
+ /// \brief Get the type from the cache or create a new
+ /// partial type if necessary.
+ llvm::DIType *getOrCreateLimitedType(const RecordType *Ty, llvm::DIFile *F);
+
+ /// \brief Create type metadata for a source language type.
+ llvm::DIType *CreateTypeNode(QualType Ty, llvm::DIFile *Fg);
+
+ /// \brief return the underlying ObjCInterfaceDecl
+ /// if Ty is an ObjCInterface or a pointer to one.
+ ObjCInterfaceDecl* getObjCInterfaceDecl(QualType Ty);
+
+ /// \brief Create new member and increase Offset by FType's size.
+ llvm::DIType *CreateMemberType(llvm::DIFile *Unit, QualType FType,
+ StringRef Name, uint64_t *Offset);
+
+ /// \brief Retrieve the DIDescriptor, if any, for the canonical form of this
+ /// declaration.
+ llvm::DINode *getDeclarationOrDefinition(const Decl *D);
+
+ /// \brief Return debug info descriptor to describe method
+ /// declaration for the given method definition.
+ llvm::DISubprogram *getFunctionDeclaration(const Decl *D);
+
+ /// Return debug info descriptor to describe in-class static data member
+ /// declaration for the given out-of-class definition.
+ llvm::DIDerivedType *
+ getOrCreateStaticDataMemberDeclarationOrNull(const VarDecl *D);
+
+ /// \brief Create a subprogram describing the forward
+ /// decalration represented in the given FunctionDecl.
+ llvm::DISubprogram *getFunctionForwardDeclaration(const FunctionDecl *FD);
+
+ /// \brief Create a global variable describing the forward decalration
+ /// represented in the given VarDecl.
+ llvm::DIGlobalVariable *
+ getGlobalVariableForwardDeclaration(const VarDecl *VD);
+
+ /// Return a global variable that represents one of the collection of
+ /// global variables created for an anonmyous union.
+ llvm::DIGlobalVariable *
+ CollectAnonRecordDecls(const RecordDecl *RD, llvm::DIFile *Unit,
+ unsigned LineNo, StringRef LinkageName,
+ llvm::GlobalVariable *Var, llvm::DIScope *DContext);
+
+ /// \brief Get function name for the given FunctionDecl. If the
+ /// name is constructed on demand (e.g. C++ destructor) then the name
+ /// is stored on the side.
+ StringRef getFunctionName(const FunctionDecl *FD);
+
+ /// \brief Returns the unmangled name of an Objective-C method.
+ /// This is the display name for the debugging info.
+ StringRef getObjCMethodName(const ObjCMethodDecl *FD);
+
+ /// \brief Return selector name. This is used for debugging
+ /// info.
+ StringRef getSelectorName(Selector S);
+
+ /// \brief Get class name including template argument list.
+ StringRef getClassName(const RecordDecl *RD);
+
+ /// \brief Get vtable name for the given Class.
+ StringRef getVTableName(const CXXRecordDecl *Decl);
+
+ /// \brief Get line number for the location. If location is invalid
+ /// then use current location.
+ unsigned getLineNumber(SourceLocation Loc);
+
+ /// \brief Get column number for the location. If location is
+ /// invalid then use current location.
+ /// \param Force Assume DebugColumnInfo option is true.
+ unsigned getColumnNumber(SourceLocation Loc, bool Force=false);
+
+ /// \brief Collect various properties of a FunctionDecl.
+ /// \param GD A GlobalDecl whose getDecl() must return a FunctionDecl.
+ void collectFunctionDeclProps(GlobalDecl GD, llvm::DIFile *Unit,
+ StringRef &Name, StringRef &LinkageName,
+ llvm::DIScope *&FDContext,
+ llvm::DINodeArray &TParamsArray,
+ unsigned &Flags);
+
+ /// \brief Collect various properties of a VarDecl.
+ void collectVarDeclProps(const VarDecl *VD, llvm::DIFile *&Unit,
+ unsigned &LineNo, QualType &T, StringRef &Name,
+ StringRef &LinkageName, llvm::DIScope *&VDContext);
+
+ /// \brief Allocate a copy of \p A using the DebugInfoNames allocator
+ /// and return a reference to it. If multiple arguments are given the strings
+ /// are concatenated.
+ StringRef internString(StringRef A, StringRef B = StringRef()) {
+ char *Data = DebugInfoNames.Allocate<char>(A.size() + B.size());
+ std::memcpy(Data, A.data(), A.size());
+ std::memcpy(Data + A.size(), B.data(), B.size());
+ return StringRef(Data, A.size() + B.size());
+ }
+};
+
+/// \brief A scoped helper to set the current debug location to the specified
+/// location or preferred location of the specified Expr.
+class ApplyDebugLocation {
+private:
+ void init(SourceLocation TemporaryLocation, bool DefaultToEmpty = false);
+ ApplyDebugLocation(CodeGenFunction &CGF, bool DefaultToEmpty,
+ SourceLocation TemporaryLocation);
+
+ llvm::DebugLoc OriginalLocation;
+ CodeGenFunction &CGF;
+public:
+
+ /// \brief Set the location to the (valid) TemporaryLocation.
+ ApplyDebugLocation(CodeGenFunction &CGF, SourceLocation TemporaryLocation);
+ ApplyDebugLocation(CodeGenFunction &CGF, const Expr *E);
+ ApplyDebugLocation(CodeGenFunction &CGF, llvm::DebugLoc Loc);
+
+ ~ApplyDebugLocation();
+
+ /// \brief Apply TemporaryLocation if it is valid. Otherwise switch to an
+ /// artificial debug location that has a valid scope, but no line information.
+ ///
+ /// Artificial locations are useful when emitting compiler-generated helper
+ /// functions that have no source location associated with them. The DWARF
+ /// specification allows the compiler to use the special line number 0 to
+ /// indicate code that can not be attributed to any source location. Note that
+ /// passing an empty SourceLocation to CGDebugInfo::setLocation() will result
+ /// in the last valid location being reused.
+ static ApplyDebugLocation CreateArtificial(CodeGenFunction &CGF) {
+ return ApplyDebugLocation(CGF, false, SourceLocation());
+ }
+ /// \brief Apply TemporaryLocation if it is valid. Otherwise switch to an
+ /// artificial debug location that has a valid scope, but no line information.
+ static ApplyDebugLocation CreateDefaultArtificial(CodeGenFunction &CGF,
+ SourceLocation TemporaryLocation) {
+ return ApplyDebugLocation(CGF, false, TemporaryLocation);
+ }
+
+ /// \brief Set the IRBuilder to not attach debug locations. Note that passing
+ /// an empty SourceLocation to CGDebugInfo::setLocation() will result in the
+ /// last valid location being reused. Note that all instructions that do not
+ /// have a location at the beginning of a function are counted towards to
+ /// funciton prologue.
+ static ApplyDebugLocation CreateEmpty(CodeGenFunction &CGF) {
+ return ApplyDebugLocation(CGF, true, SourceLocation());
+ }
+
+ /// \brief Apply TemporaryLocation if it is valid. Otherwise set the IRBuilder
+ /// to not attach debug locations.
+ static ApplyDebugLocation CreateDefaultEmpty(CodeGenFunction &CGF,
+ SourceLocation TemporaryLocation) {
+ return ApplyDebugLocation(CGF, true, TemporaryLocation);
+ }
+
+};
+
+
+} // namespace CodeGen
+} // namespace clang
+
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGDecl.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGDecl.cpp
new file mode 100644
index 0000000..579a041
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGDecl.cpp
@@ -0,0 +1,1806 @@
+//===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code to emit Decl nodes as LLVM code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenFunction.h"
+#include "CGCleanup.h"
+#include "CGDebugInfo.h"
+#include "CGOpenCLRuntime.h"
+#include "CodeGenModule.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/CharUnits.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/CodeGen/CGFunctionInfo.h"
+#include "clang/Frontend/CodeGenOptions.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Type.h"
+using namespace clang;
+using namespace CodeGen;
+
+
+void CodeGenFunction::EmitDecl(const Decl &D) {
+ switch (D.getKind()) {
+ case Decl::TranslationUnit:
+ case Decl::ExternCContext:
+ case Decl::Namespace:
+ case Decl::UnresolvedUsingTypename:
+ case Decl::ClassTemplateSpecialization:
+ case Decl::ClassTemplatePartialSpecialization:
+ case Decl::VarTemplateSpecialization:
+ case Decl::VarTemplatePartialSpecialization:
+ case Decl::TemplateTypeParm:
+ case Decl::UnresolvedUsingValue:
+ case Decl::NonTypeTemplateParm:
+ case Decl::CXXMethod:
+ case Decl::CXXConstructor:
+ case Decl::CXXDestructor:
+ case Decl::CXXConversion:
+ case Decl::Field:
+ case Decl::MSProperty:
+ case Decl::IndirectField:
+ case Decl::ObjCIvar:
+ case Decl::ObjCAtDefsField:
+ case Decl::ParmVar:
+ case Decl::ImplicitParam:
+ case Decl::ClassTemplate:
+ case Decl::VarTemplate:
+ case Decl::FunctionTemplate:
+ case Decl::TypeAliasTemplate:
+ case Decl::TemplateTemplateParm:
+ case Decl::ObjCMethod:
+ case Decl::ObjCCategory:
+ case Decl::ObjCProtocol:
+ case Decl::ObjCInterface:
+ case Decl::ObjCCategoryImpl:
+ case Decl::ObjCImplementation:
+ case Decl::ObjCProperty:
+ case Decl::ObjCCompatibleAlias:
+ case Decl::AccessSpec:
+ case Decl::LinkageSpec:
+ case Decl::ObjCPropertyImpl:
+ case Decl::FileScopeAsm:
+ case Decl::Friend:
+ case Decl::FriendTemplate:
+ case Decl::Block:
+ case Decl::Captured:
+ case Decl::ClassScopeFunctionSpecialization:
+ case Decl::UsingShadow:
+ llvm_unreachable("Declaration should not be in declstmts!");
+ case Decl::Function: // void X();
+ case Decl::Record: // struct/union/class X;
+ case Decl::Enum: // enum X;
+ case Decl::EnumConstant: // enum ? { X = ? }
+ case Decl::CXXRecord: // struct/union/class X; [C++]
+ case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
+ case Decl::Label: // __label__ x;
+ case Decl::Import:
+ case Decl::OMPThreadPrivate:
+ case Decl::Empty:
+ // None of these decls require codegen support.
+ return;
+
+ case Decl::NamespaceAlias:
+ if (CGDebugInfo *DI = getDebugInfo())
+ DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
+ return;
+ case Decl::Using: // using X; [C++]
+ if (CGDebugInfo *DI = getDebugInfo())
+ DI->EmitUsingDecl(cast<UsingDecl>(D));
+ return;
+ case Decl::UsingDirective: // using namespace X; [C++]
+ if (CGDebugInfo *DI = getDebugInfo())
+ DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
+ return;
+ case Decl::Var: {
+ const VarDecl &VD = cast<VarDecl>(D);
+ assert(VD.isLocalVarDecl() &&
+ "Should not see file-scope variables inside a function!");
+ return EmitVarDecl(VD);
+ }
+
+ case Decl::Typedef: // typedef int X;
+ case Decl::TypeAlias: { // using X = int; [C++0x]
+ const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
+ QualType Ty = TD.getUnderlyingType();
+
+ if (Ty->isVariablyModifiedType())
+ EmitVariablyModifiedType(Ty);
+ }
+ }
+}
+
+/// EmitVarDecl - This method handles emission of any variable declaration
+/// inside a function, including static vars etc.
+void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
+ if (D.isStaticLocal()) {
+ llvm::GlobalValue::LinkageTypes Linkage =
+ CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false);
+
+ // FIXME: We need to force the emission/use of a guard variable for
+ // some variables even if we can constant-evaluate them because
+ // we can't guarantee every translation unit will constant-evaluate them.
+
+ return EmitStaticVarDecl(D, Linkage);
+ }
+
+ if (D.hasExternalStorage())
+ // Don't emit it now, allow it to be emitted lazily on its first use.
+ return;
+
+ if (D.getStorageClass() == SC_OpenCLWorkGroupLocal)
+ return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
+
+ assert(D.hasLocalStorage());
+ return EmitAutoVarDecl(D);
+}
+
+static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
+ if (CGM.getLangOpts().CPlusPlus)
+ return CGM.getMangledName(&D).str();
+
+ // If this isn't C++, we don't need a mangled name, just a pretty one.
+ assert(!D.isExternallyVisible() && "name shouldn't matter");
+ std::string ContextName;
+ const DeclContext *DC = D.getDeclContext();
+ if (auto *CD = dyn_cast<CapturedDecl>(DC))
+ DC = cast<DeclContext>(CD->getNonClosureContext());
+ if (const auto *FD = dyn_cast<FunctionDecl>(DC))
+ ContextName = CGM.getMangledName(FD);
+ else if (const auto *BD = dyn_cast<BlockDecl>(DC))
+ ContextName = CGM.getBlockMangledName(GlobalDecl(), BD);
+ else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
+ ContextName = OMD->getSelector().getAsString();
+ else
+ llvm_unreachable("Unknown context for static var decl");
+
+ ContextName += "." + D.getNameAsString();
+ return ContextName;
+}
+
+llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
+ const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
+ // In general, we don't always emit static var decls once before we reference
+ // them. It is possible to reference them before emitting the function that
+ // contains them, and it is possible to emit the containing function multiple
+ // times.
+ if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
+ return ExistingGV;
+
+ QualType Ty = D.getType();
+ assert(Ty->isConstantSizeType() && "VLAs can't be static");
+
+ // Use the label if the variable is renamed with the asm-label extension.
+ std::string Name;
+ if (D.hasAttr<AsmLabelAttr>())
+ Name = getMangledName(&D);
+ else
+ Name = getStaticDeclName(*this, D);
+
+ llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
+ unsigned AddrSpace =
+ GetGlobalVarAddressSpace(&D, getContext().getTargetAddressSpace(Ty));
+
+ // Local address space cannot have an initializer.
+ llvm::Constant *Init = nullptr;
+ if (Ty.getAddressSpace() != LangAS::opencl_local)
+ Init = EmitNullConstant(Ty);
+ else
+ Init = llvm::UndefValue::get(LTy);
+
+ llvm::GlobalVariable *GV =
+ new llvm::GlobalVariable(getModule(), LTy,
+ Ty.isConstant(getContext()), Linkage,
+ Init, Name, nullptr,
+ llvm::GlobalVariable::NotThreadLocal,
+ AddrSpace);
+ GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
+ setGlobalVisibility(GV, &D);
+
+ if (supportsCOMDAT() && GV->isWeakForLinker())
+ GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
+
+ if (D.getTLSKind())
+ setTLSMode(GV, D);
+
+ if (D.isExternallyVisible()) {
+ if (D.hasAttr<DLLImportAttr>())
+ GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
+ else if (D.hasAttr<DLLExportAttr>())
+ GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
+ }
+
+ // Make sure the result is of the correct type.
+ unsigned ExpectedAddrSpace = getContext().getTargetAddressSpace(Ty);
+ llvm::Constant *Addr = GV;
+ if (AddrSpace != ExpectedAddrSpace) {
+ llvm::PointerType *PTy = llvm::PointerType::get(LTy, ExpectedAddrSpace);
+ Addr = llvm::ConstantExpr::getAddrSpaceCast(GV, PTy);
+ }
+
+ setStaticLocalDeclAddress(&D, Addr);
+
+ // Ensure that the static local gets initialized by making sure the parent
+ // function gets emitted eventually.
+ const Decl *DC = cast<Decl>(D.getDeclContext());
+
+ // We can't name blocks or captured statements directly, so try to emit their
+ // parents.
+ if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
+ DC = DC->getNonClosureContext();
+ // FIXME: Ensure that global blocks get emitted.
+ if (!DC)
+ return Addr;
+ }
+
+ GlobalDecl GD;
+ if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
+ GD = GlobalDecl(CD, Ctor_Base);
+ else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
+ GD = GlobalDecl(DD, Dtor_Base);
+ else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
+ GD = GlobalDecl(FD);
+ else {
+ // Don't do anything for Obj-C method decls or global closures. We should
+ // never defer them.
+ assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
+ }
+ if (GD.getDecl())
+ (void)GetAddrOfGlobal(GD);
+
+ return Addr;
+}
+
+/// hasNontrivialDestruction - Determine whether a type's destruction is
+/// non-trivial. If so, and the variable uses static initialization, we must
+/// register its destructor to run on exit.
+static bool hasNontrivialDestruction(QualType T) {
+ CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
+ return RD && !RD->hasTrivialDestructor();
+}
+
+/// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
+/// global variable that has already been created for it. If the initializer
+/// has a different type than GV does, this may free GV and return a different
+/// one. Otherwise it just returns GV.
+llvm::GlobalVariable *
+CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
+ llvm::GlobalVariable *GV) {
+ llvm::Constant *Init = CGM.EmitConstantInit(D, this);
+
+ // If constant emission failed, then this should be a C++ static
+ // initializer.
+ if (!Init) {
+ if (!getLangOpts().CPlusPlus)
+ CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
+ else if (Builder.GetInsertBlock()) {
+ // Since we have a static initializer, this global variable can't
+ // be constant.
+ GV->setConstant(false);
+
+ EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
+ }
+ return GV;
+ }
+
+ // The initializer may differ in type from the global. Rewrite
+ // the global to match the initializer. (We have to do this
+ // because some types, like unions, can't be completely represented
+ // in the LLVM type system.)
+ if (GV->getType()->getElementType() != Init->getType()) {
+ llvm::GlobalVariable *OldGV = GV;
+
+ GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
+ OldGV->isConstant(),
+ OldGV->getLinkage(), Init, "",
+ /*InsertBefore*/ OldGV,
+ OldGV->getThreadLocalMode(),
+ CGM.getContext().getTargetAddressSpace(D.getType()));
+ GV->setVisibility(OldGV->getVisibility());
+
+ // Steal the name of the old global
+ GV->takeName(OldGV);
+
+ // Replace all uses of the old global with the new global
+ llvm::Constant *NewPtrForOldDecl =
+ llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
+ OldGV->replaceAllUsesWith(NewPtrForOldDecl);
+
+ // Erase the old global, since it is no longer used.
+ OldGV->eraseFromParent();
+ }
+
+ GV->setConstant(CGM.isTypeConstant(D.getType(), true));
+ GV->setInitializer(Init);
+
+ if (hasNontrivialDestruction(D.getType())) {
+ // We have a constant initializer, but a nontrivial destructor. We still
+ // need to perform a guarded "initialization" in order to register the
+ // destructor.
+ EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
+ }
+
+ return GV;
+}
+
+void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
+ llvm::GlobalValue::LinkageTypes Linkage) {
+ llvm::Value *&DMEntry = LocalDeclMap[&D];
+ assert(!DMEntry && "Decl already exists in localdeclmap!");
+
+ // Check to see if we already have a global variable for this
+ // declaration. This can happen when double-emitting function
+ // bodies, e.g. with complete and base constructors.
+ llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
+
+ // Store into LocalDeclMap before generating initializer to handle
+ // circular references.
+ DMEntry = addr;
+
+ // We can't have a VLA here, but we can have a pointer to a VLA,
+ // even though that doesn't really make any sense.
+ // Make sure to evaluate VLA bounds now so that we have them for later.
+ if (D.getType()->isVariablyModifiedType())
+ EmitVariablyModifiedType(D.getType());
+
+ // Save the type in case adding the initializer forces a type change.
+ llvm::Type *expectedType = addr->getType();
+
+ llvm::GlobalVariable *var =
+ cast<llvm::GlobalVariable>(addr->stripPointerCasts());
+ // If this value has an initializer, emit it.
+ if (D.getInit())
+ var = AddInitializerToStaticVarDecl(D, var);
+
+ var->setAlignment(getContext().getDeclAlign(&D).getQuantity());
+
+ if (D.hasAttr<AnnotateAttr>())
+ CGM.AddGlobalAnnotations(&D, var);
+
+ if (const SectionAttr *SA = D.getAttr<SectionAttr>())
+ var->setSection(SA->getName());
+
+ if (D.hasAttr<UsedAttr>())
+ CGM.addUsedGlobal(var);
+
+ // We may have to cast the constant because of the initializer
+ // mismatch above.
+ //
+ // FIXME: It is really dangerous to store this in the map; if anyone
+ // RAUW's the GV uses of this constant will be invalid.
+ llvm::Constant *castedAddr =
+ llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
+ DMEntry = castedAddr;
+ CGM.setStaticLocalDeclAddress(&D, castedAddr);
+
+ CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);
+
+ // Emit global variable debug descriptor for static vars.
+ CGDebugInfo *DI = getDebugInfo();
+ if (DI &&
+ CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
+ DI->setLocation(D.getLocation());
+ DI->EmitGlobalVariable(var, &D);
+ }
+}
+
+namespace {
+ struct DestroyObject : EHScopeStack::Cleanup {
+ DestroyObject(llvm::Value *addr, QualType type,
+ CodeGenFunction::Destroyer *destroyer,
+ bool useEHCleanupForArray)
+ : addr(addr), type(type), destroyer(destroyer),
+ useEHCleanupForArray(useEHCleanupForArray) {}
+
+ llvm::Value *addr;
+ QualType type;
+ CodeGenFunction::Destroyer *destroyer;
+ bool useEHCleanupForArray;
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ // Don't use an EH cleanup recursively from an EH cleanup.
+ bool useEHCleanupForArray =
+ flags.isForNormalCleanup() && this->useEHCleanupForArray;
+
+ CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
+ }
+ };
+
+ struct DestroyNRVOVariable : EHScopeStack::Cleanup {
+ DestroyNRVOVariable(llvm::Value *addr,
+ const CXXDestructorDecl *Dtor,
+ llvm::Value *NRVOFlag)
+ : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {}
+
+ const CXXDestructorDecl *Dtor;
+ llvm::Value *NRVOFlag;
+ llvm::Value *Loc;
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ // Along the exceptions path we always execute the dtor.
+ bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
+
+ llvm::BasicBlock *SkipDtorBB = nullptr;
+ if (NRVO) {
+ // If we exited via NRVO, we skip the destructor call.
+ llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
+ SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
+ llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val");
+ CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
+ CGF.EmitBlock(RunDtorBB);
+ }
+
+ CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
+ /*ForVirtualBase=*/false,
+ /*Delegating=*/false,
+ Loc);
+
+ if (NRVO) CGF.EmitBlock(SkipDtorBB);
+ }
+ };
+
+ struct CallStackRestore : EHScopeStack::Cleanup {
+ llvm::Value *Stack;
+ CallStackRestore(llvm::Value *Stack) : Stack(Stack) {}
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ llvm::Value *V = CGF.Builder.CreateLoad(Stack);
+ llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
+ CGF.Builder.CreateCall(F, V);
+ }
+ };
+
+ struct ExtendGCLifetime : EHScopeStack::Cleanup {
+ const VarDecl &Var;
+ ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ // Compute the address of the local variable, in case it's a
+ // byref or something.
+ DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
+ Var.getType(), VK_LValue, SourceLocation());
+ llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
+ SourceLocation());
+ CGF.EmitExtendGCLifetime(value);
+ }
+ };
+
+ struct CallCleanupFunction : EHScopeStack::Cleanup {
+ llvm::Constant *CleanupFn;
+ const CGFunctionInfo &FnInfo;
+ const VarDecl &Var;
+
+ CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
+ const VarDecl *Var)
+ : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
+ Var.getType(), VK_LValue, SourceLocation());
+ // Compute the address of the local variable, in case it's a byref
+ // or something.
+ llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress();
+
+ // In some cases, the type of the function argument will be different from
+ // the type of the pointer. An example of this is
+ // void f(void* arg);
+ // __attribute__((cleanup(f))) void *g;
+ //
+ // To fix this we insert a bitcast here.
+ QualType ArgTy = FnInfo.arg_begin()->type;
+ llvm::Value *Arg =
+ CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
+
+ CallArgList Args;
+ Args.add(RValue::get(Arg),
+ CGF.getContext().getPointerType(Var.getType()));
+ CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
+ }
+ };
+
+ /// A cleanup to call @llvm.lifetime.end.
+ class CallLifetimeEnd : public EHScopeStack::Cleanup {
+ llvm::Value *Addr;
+ llvm::Value *Size;
+ public:
+ CallLifetimeEnd(llvm::Value *addr, llvm::Value *size)
+ : Addr(addr), Size(size) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ CGF.EmitLifetimeEnd(Size, Addr);
+ }
+ };
+}
+
+/// EmitAutoVarWithLifetime - Does the setup required for an automatic
+/// variable with lifetime.
+static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
+ llvm::Value *addr,
+ Qualifiers::ObjCLifetime lifetime) {
+ switch (lifetime) {
+ case Qualifiers::OCL_None:
+ llvm_unreachable("present but none");
+
+ case Qualifiers::OCL_ExplicitNone:
+ // nothing to do
+ break;
+
+ case Qualifiers::OCL_Strong: {
+ CodeGenFunction::Destroyer *destroyer =
+ (var.hasAttr<ObjCPreciseLifetimeAttr>()
+ ? CodeGenFunction::destroyARCStrongPrecise
+ : CodeGenFunction::destroyARCStrongImprecise);
+
+ CleanupKind cleanupKind = CGF.getARCCleanupKind();
+ CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
+ cleanupKind & EHCleanup);
+ break;
+ }
+ case Qualifiers::OCL_Autoreleasing:
+ // nothing to do
+ break;
+
+ case Qualifiers::OCL_Weak:
+ // __weak objects always get EH cleanups; otherwise, exceptions
+ // could cause really nasty crashes instead of mere leaks.
+ CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
+ CodeGenFunction::destroyARCWeak,
+ /*useEHCleanup*/ true);
+ break;
+ }
+}
+
+static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
+ if (const Expr *e = dyn_cast<Expr>(s)) {
+ // Skip the most common kinds of expressions that make
+ // hierarchy-walking expensive.
+ s = e = e->IgnoreParenCasts();
+
+ if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
+ return (ref->getDecl() == &var);
+ if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
+ const BlockDecl *block = be->getBlockDecl();
+ for (const auto &I : block->captures()) {
+ if (I.getVariable() == &var)
+ return true;
+ }
+ }
+ }
+
+ for (Stmt::const_child_range children = s->children(); children; ++children)
+ // children might be null; as in missing decl or conditional of an if-stmt.
+ if ((*children) && isAccessedBy(var, *children))
+ return true;
+
+ return false;
+}
+
+static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
+ if (!decl) return false;
+ if (!isa<VarDecl>(decl)) return false;
+ const VarDecl *var = cast<VarDecl>(decl);
+ return isAccessedBy(*var, e);
+}
+
+static void drillIntoBlockVariable(CodeGenFunction &CGF,
+ LValue &lvalue,
+ const VarDecl *var) {
+ lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var));
+}
+
+void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
+ LValue lvalue, bool capturedByInit) {
+ Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
+ if (!lifetime) {
+ llvm::Value *value = EmitScalarExpr(init);
+ if (capturedByInit)
+ drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
+ EmitStoreThroughLValue(RValue::get(value), lvalue, true);
+ return;
+ }
+
+ if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
+ init = DIE->getExpr();
+
+ // If we're emitting a value with lifetime, we have to do the
+ // initialization *before* we leave the cleanup scopes.
+ if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) {
+ enterFullExpression(ewc);
+ init = ewc->getSubExpr();
+ }
+ CodeGenFunction::RunCleanupsScope Scope(*this);
+
+ // We have to maintain the illusion that the variable is
+ // zero-initialized. If the variable might be accessed in its
+ // initializer, zero-initialize before running the initializer, then
+ // actually perform the initialization with an assign.
+ bool accessedByInit = false;
+ if (lifetime != Qualifiers::OCL_ExplicitNone)
+ accessedByInit = (capturedByInit || isAccessedBy(D, init));
+ if (accessedByInit) {
+ LValue tempLV = lvalue;
+ // Drill down to the __block object if necessary.
+ if (capturedByInit) {
+ // We can use a simple GEP for this because it can't have been
+ // moved yet.
+ tempLV.setAddress(Builder.CreateStructGEP(
+ nullptr, tempLV.getAddress(),
+ getByRefValueLLVMField(cast<VarDecl>(D)).second));
+ }
+
+ llvm::PointerType *ty
+ = cast<llvm::PointerType>(tempLV.getAddress()->getType());
+ ty = cast<llvm::PointerType>(ty->getElementType());
+
+ llvm::Value *zero = llvm::ConstantPointerNull::get(ty);
+
+ // If __weak, we want to use a barrier under certain conditions.
+ if (lifetime == Qualifiers::OCL_Weak)
+ EmitARCInitWeak(tempLV.getAddress(), zero);
+
+ // Otherwise just do a simple store.
+ else
+ EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
+ }
+
+ // Emit the initializer.
+ llvm::Value *value = nullptr;
+
+ switch (lifetime) {
+ case Qualifiers::OCL_None:
+ llvm_unreachable("present but none");
+
+ case Qualifiers::OCL_ExplicitNone:
+ // nothing to do
+ value = EmitScalarExpr(init);
+ break;
+
+ case Qualifiers::OCL_Strong: {
+ value = EmitARCRetainScalarExpr(init);
+ break;
+ }
+
+ case Qualifiers::OCL_Weak: {
+ // No way to optimize a producing initializer into this. It's not
+ // worth optimizing for, because the value will immediately
+ // disappear in the common case.
+ value = EmitScalarExpr(init);
+
+ if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
+ if (accessedByInit)
+ EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
+ else
+ EmitARCInitWeak(lvalue.getAddress(), value);
+ return;
+ }
+
+ case Qualifiers::OCL_Autoreleasing:
+ value = EmitARCRetainAutoreleaseScalarExpr(init);
+ break;
+ }
+
+ if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
+
+ // If the variable might have been accessed by its initializer, we
+ // might have to initialize with a barrier. We have to do this for
+ // both __weak and __strong, but __weak got filtered out above.
+ if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
+ llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
+ EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
+ EmitARCRelease(oldValue, ARCImpreciseLifetime);
+ return;
+ }
+
+ EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
+}
+
+/// EmitScalarInit - Initialize the given lvalue with the given object.
+void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) {
+ Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
+ if (!lifetime)
+ return EmitStoreThroughLValue(RValue::get(init), lvalue, true);
+
+ switch (lifetime) {
+ case Qualifiers::OCL_None:
+ llvm_unreachable("present but none");
+
+ case Qualifiers::OCL_ExplicitNone:
+ // nothing to do
+ break;
+
+ case Qualifiers::OCL_Strong:
+ init = EmitARCRetain(lvalue.getType(), init);
+ break;
+
+ case Qualifiers::OCL_Weak:
+ // Initialize and then skip the primitive store.
+ EmitARCInitWeak(lvalue.getAddress(), init);
+ return;
+
+ case Qualifiers::OCL_Autoreleasing:
+ init = EmitARCRetainAutorelease(lvalue.getType(), init);
+ break;
+ }
+
+ EmitStoreOfScalar(init, lvalue, /* isInitialization */ true);
+}
+
+/// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
+/// non-zero parts of the specified initializer with equal or fewer than
+/// NumStores scalar stores.
+static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
+ unsigned &NumStores) {
+ // Zero and Undef never requires any extra stores.
+ if (isa<llvm::ConstantAggregateZero>(Init) ||
+ isa<llvm::ConstantPointerNull>(Init) ||
+ isa<llvm::UndefValue>(Init))
+ return true;
+ if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
+ isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
+ isa<llvm::ConstantExpr>(Init))
+ return Init->isNullValue() || NumStores--;
+
+ // See if we can emit each element.
+ if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
+ for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
+ llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
+ if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
+ return false;
+ }
+ return true;
+ }
+
+ if (llvm::ConstantDataSequential *CDS =
+ dyn_cast<llvm::ConstantDataSequential>(Init)) {
+ for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
+ llvm::Constant *Elt = CDS->getElementAsConstant(i);
+ if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
+ return false;
+ }
+ return true;
+ }
+
+ // Anything else is hard and scary.
+ return false;
+}
+
+/// emitStoresForInitAfterMemset - For inits that
+/// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
+/// stores that would be required.
+static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
+ bool isVolatile, CGBuilderTy &Builder) {
+ assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
+ "called emitStoresForInitAfterMemset for zero or undef value.");
+
+ if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
+ isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
+ isa<llvm::ConstantExpr>(Init)) {
+ Builder.CreateStore(Init, Loc, isVolatile);
+ return;
+ }
+
+ if (llvm::ConstantDataSequential *CDS =
+ dyn_cast<llvm::ConstantDataSequential>(Init)) {
+ for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
+ llvm::Constant *Elt = CDS->getElementAsConstant(i);
+
+ // If necessary, get a pointer to the element and emit it.
+ if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
+ emitStoresForInitAfterMemset(
+ Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i),
+ isVolatile, Builder);
+ }
+ return;
+ }
+
+ assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
+ "Unknown value type!");
+
+ for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
+ llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
+
+ // If necessary, get a pointer to the element and emit it.
+ if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
+ emitStoresForInitAfterMemset(
+ Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i),
+ isVolatile, Builder);
+ }
+}
+
+
+/// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
+/// plus some stores to initialize a local variable instead of using a memcpy
+/// from a constant global. It is beneficial to use memset if the global is all
+/// zeros, or mostly zeros and large.
+static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
+ uint64_t GlobalSize) {
+ // If a global is all zeros, always use a memset.
+ if (isa<llvm::ConstantAggregateZero>(Init)) return true;
+
+ // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large,
+ // do it if it will require 6 or fewer scalar stores.
+ // TODO: Should budget depends on the size? Avoiding a large global warrants
+ // plopping in more stores.
+ unsigned StoreBudget = 6;
+ uint64_t SizeLimit = 32;
+
+ return GlobalSize > SizeLimit &&
+ canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
+}
+
+/// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
+/// variable declaration with auto, register, or no storage class specifier.
+/// These turn into simple stack objects, or GlobalValues depending on target.
+void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
+ AutoVarEmission emission = EmitAutoVarAlloca(D);
+ EmitAutoVarInit(emission);
+ EmitAutoVarCleanups(emission);
+}
+
+/// Emit a lifetime.begin marker if some criteria are satisfied.
+/// \return a pointer to the temporary size Value if a marker was emitted, null
+/// otherwise
+llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size,
+ llvm::Value *Addr) {
+ // For now, only in optimized builds.
+ if (CGM.getCodeGenOpts().OptimizationLevel == 0)
+ return nullptr;
+
+ // Disable lifetime markers in msan builds.
+ // FIXME: Remove this when msan works with lifetime markers.
+ if (getLangOpts().Sanitize.has(SanitizerKind::Memory))
+ return nullptr;
+
+ llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size);
+ llvm::Value *Args[] = {
+ SizeV,
+ new llvm::BitCastInst(Addr, Int8PtrTy, "", Builder.GetInsertBlock())};
+ llvm::CallInst *C = llvm::CallInst::Create(CGM.getLLVMLifetimeStartFn(), Args,
+ "", Builder.GetInsertBlock());
+ C->setDoesNotThrow();
+ return SizeV;
+}
+
+void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
+ llvm::Value *Args[] = {Size, new llvm::BitCastInst(Addr, Int8PtrTy, "",
+ Builder.GetInsertBlock())};
+ llvm::CallInst *C = llvm::CallInst::Create(CGM.getLLVMLifetimeEndFn(), Args,
+ "", Builder.GetInsertBlock());
+ C->setDoesNotThrow();
+}
+
+/// EmitAutoVarAlloca - Emit the alloca and debug information for a
+/// local variable. Does not emit initialization or destruction.
+CodeGenFunction::AutoVarEmission
+CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
+ QualType Ty = D.getType();
+
+ AutoVarEmission emission(D);
+
+ bool isByRef = D.hasAttr<BlocksAttr>();
+ emission.IsByRef = isByRef;
+
+ CharUnits alignment = getContext().getDeclAlign(&D);
+ emission.Alignment = alignment;
+
+ // If the type is variably-modified, emit all the VLA sizes for it.
+ if (Ty->isVariablyModifiedType())
+ EmitVariablyModifiedType(Ty);
+
+ llvm::Value *DeclPtr;
+ if (Ty->isConstantSizeType()) {
+ bool NRVO = getLangOpts().ElideConstructors &&
+ D.isNRVOVariable();
+
+ // If this value is an array or struct with a statically determinable
+ // constant initializer, there are optimizations we can do.
+ //
+ // TODO: We should constant-evaluate the initializer of any variable,
+ // as long as it is initialized by a constant expression. Currently,
+ // isConstantInitializer produces wrong answers for structs with
+ // reference or bitfield members, and a few other cases, and checking
+ // for POD-ness protects us from some of these.
+ if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
+ (D.isConstexpr() ||
+ ((Ty.isPODType(getContext()) ||
+ getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
+ D.getInit()->isConstantInitializer(getContext(), false)))) {
+
+ // If the variable's a const type, and it's neither an NRVO
+ // candidate nor a __block variable and has no mutable members,
+ // emit it as a global instead.
+ if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef &&
+ CGM.isTypeConstant(Ty, true)) {
+ EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
+
+ emission.Address = nullptr; // signal this condition to later callbacks
+ assert(emission.wasEmittedAsGlobal());
+ return emission;
+ }
+
+ // Otherwise, tell the initialization code that we're in this case.
+ emission.IsConstantAggregate = true;
+ }
+
+ // A normal fixed sized variable becomes an alloca in the entry block,
+ // unless it's an NRVO variable.
+ llvm::Type *LTy = ConvertTypeForMem(Ty);
+
+ if (NRVO) {
+ // The named return value optimization: allocate this variable in the
+ // return slot, so that we can elide the copy when returning this
+ // variable (C++0x [class.copy]p34).
+ DeclPtr = ReturnValue;
+
+ if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
+ if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
+ // Create a flag that is used to indicate when the NRVO was applied
+ // to this variable. Set it to zero to indicate that NRVO was not
+ // applied.
+ llvm::Value *Zero = Builder.getFalse();
+ llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo");
+ EnsureInsertPoint();
+ Builder.CreateStore(Zero, NRVOFlag);
+
+ // Record the NRVO flag for this variable.
+ NRVOFlags[&D] = NRVOFlag;
+ emission.NRVOFlag = NRVOFlag;
+ }
+ }
+ } else {
+ if (isByRef)
+ LTy = BuildByRefType(&D);
+
+ llvm::AllocaInst *Alloc = CreateTempAlloca(LTy);
+ Alloc->setName(D.getName());
+
+ CharUnits allocaAlignment = alignment;
+ if (isByRef)
+ allocaAlignment = std::max(allocaAlignment,
+ getContext().toCharUnitsFromBits(getTarget().getPointerAlign(0)));
+ Alloc->setAlignment(allocaAlignment.getQuantity());
+ DeclPtr = Alloc;
+
+ // Emit a lifetime intrinsic if meaningful. There's no point
+ // in doing this if we don't have a valid insertion point (?).
+ uint64_t size = CGM.getDataLayout().getTypeAllocSize(LTy);
+ if (HaveInsertPoint()) {
+ emission.SizeForLifetimeMarkers = EmitLifetimeStart(size, Alloc);
+ } else {
+ assert(!emission.useLifetimeMarkers());
+ }
+ }
+ } else {
+ EnsureInsertPoint();
+
+ if (!DidCallStackSave) {
+ // Save the stack.
+ llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack");
+
+ llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
+ llvm::Value *V = Builder.CreateCall(F, {});
+
+ Builder.CreateStore(V, Stack);
+
+ DidCallStackSave = true;
+
+ // Push a cleanup block and restore the stack there.
+ // FIXME: in general circumstances, this should be an EH cleanup.
+ pushStackRestore(NormalCleanup, Stack);
+ }
+
+ llvm::Value *elementCount;
+ QualType elementType;
+ std::tie(elementCount, elementType) = getVLASize(Ty);
+
+ llvm::Type *llvmTy = ConvertTypeForMem(elementType);
+
+ // Allocate memory for the array.
+ llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla");
+ vla->setAlignment(alignment.getQuantity());
+
+ DeclPtr = vla;
+ }
+
+ llvm::Value *&DMEntry = LocalDeclMap[&D];
+ assert(!DMEntry && "Decl already exists in localdeclmap!");
+ DMEntry = DeclPtr;
+ emission.Address = DeclPtr;
+
+ // Emit debug info for local var declaration.
+ if (HaveInsertPoint())
+ if (CGDebugInfo *DI = getDebugInfo()) {
+ if (CGM.getCodeGenOpts().getDebugInfo()
+ >= CodeGenOptions::LimitedDebugInfo) {
+ DI->setLocation(D.getLocation());
+ DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder);
+ }
+ }
+
+ if (D.hasAttr<AnnotateAttr>())
+ EmitVarAnnotations(&D, emission.Address);
+
+ return emission;
+}
+
+/// Determines whether the given __block variable is potentially
+/// captured by the given expression.
+static bool isCapturedBy(const VarDecl &var, const Expr *e) {
+ // Skip the most common kinds of expressions that make
+ // hierarchy-walking expensive.
+ e = e->IgnoreParenCasts();
+
+ if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
+ const BlockDecl *block = be->getBlockDecl();
+ for (const auto &I : block->captures()) {
+ if (I.getVariable() == &var)
+ return true;
+ }
+
+ // No need to walk into the subexpressions.
+ return false;
+ }
+
+ if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) {
+ const CompoundStmt *CS = SE->getSubStmt();
+ for (const auto *BI : CS->body())
+ if (const auto *E = dyn_cast<Expr>(BI)) {
+ if (isCapturedBy(var, E))
+ return true;
+ }
+ else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
+ // special case declarations
+ for (const auto *I : DS->decls()) {
+ if (const auto *VD = dyn_cast<VarDecl>((I))) {
+ const Expr *Init = VD->getInit();
+ if (Init && isCapturedBy(var, Init))
+ return true;
+ }
+ }
+ }
+ else
+ // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
+ // Later, provide code to poke into statements for capture analysis.
+ return true;
+ return false;
+ }
+
+ for (Stmt::const_child_range children = e->children(); children; ++children)
+ if (isCapturedBy(var, cast<Expr>(*children)))
+ return true;
+
+ return false;
+}
+
+/// \brief Determine whether the given initializer is trivial in the sense
+/// that it requires no code to be generated.
+bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
+ if (!Init)
+ return true;
+
+ if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
+ if (CXXConstructorDecl *Constructor = Construct->getConstructor())
+ if (Constructor->isTrivial() &&
+ Constructor->isDefaultConstructor() &&
+ !Construct->requiresZeroInitialization())
+ return true;
+
+ return false;
+}
+void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
+ assert(emission.Variable && "emission was not valid!");
+
+ // If this was emitted as a global constant, we're done.
+ if (emission.wasEmittedAsGlobal()) return;
+
+ const VarDecl &D = *emission.Variable;
+ auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
+ QualType type = D.getType();
+
+ // If this local has an initializer, emit it now.
+ const Expr *Init = D.getInit();
+
+ // If we are at an unreachable point, we don't need to emit the initializer
+ // unless it contains a label.
+ if (!HaveInsertPoint()) {
+ if (!Init || !ContainsLabel(Init)) return;
+ EnsureInsertPoint();
+ }
+
+ // Initialize the structure of a __block variable.
+ if (emission.IsByRef)
+ emitByrefStructureInit(emission);
+
+ if (isTrivialInitializer(Init))
+ return;
+
+ CharUnits alignment = emission.Alignment;
+
+ // Check whether this is a byref variable that's potentially
+ // captured and moved by its own initializer. If so, we'll need to
+ // emit the initializer first, then copy into the variable.
+ bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
+
+ llvm::Value *Loc =
+ capturedByInit ? emission.Address : emission.getObjectAddress(*this);
+
+ llvm::Constant *constant = nullptr;
+ if (emission.IsConstantAggregate || D.isConstexpr()) {
+ assert(!capturedByInit && "constant init contains a capturing block?");
+ constant = CGM.EmitConstantInit(D, this);
+ }
+
+ if (!constant) {
+ LValue lv = MakeAddrLValue(Loc, type, alignment);
+ lv.setNonGC(true);
+ return EmitExprAsInit(Init, &D, lv, capturedByInit);
+ }
+
+ if (!emission.IsConstantAggregate) {
+ // For simple scalar/complex initialization, store the value directly.
+ LValue lv = MakeAddrLValue(Loc, type, alignment);
+ lv.setNonGC(true);
+ return EmitStoreThroughLValue(RValue::get(constant), lv, true);
+ }
+
+ // If this is a simple aggregate initialization, we can optimize it
+ // in various ways.
+ bool isVolatile = type.isVolatileQualified();
+
+ llvm::Value *SizeVal =
+ llvm::ConstantInt::get(IntPtrTy,
+ getContext().getTypeSizeInChars(type).getQuantity());
+
+ llvm::Type *BP = Int8PtrTy;
+ if (Loc->getType() != BP)
+ Loc = Builder.CreateBitCast(Loc, BP);
+
+ // If the initializer is all or mostly zeros, codegen with memset then do
+ // a few stores afterward.
+ if (shouldUseMemSetPlusStoresToInitialize(constant,
+ CGM.getDataLayout().getTypeAllocSize(constant->getType()))) {
+ Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
+ alignment.getQuantity(), isVolatile);
+ // Zero and undef don't require a stores.
+ if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) {
+ Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
+ emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder);
+ }
+ } else {
+ // Otherwise, create a temporary global with the initializer then
+ // memcpy from the global to the alloca.
+ std::string Name = getStaticDeclName(CGM, D);
+ llvm::GlobalVariable *GV =
+ new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
+ llvm::GlobalValue::PrivateLinkage,
+ constant, Name);
+ GV->setAlignment(alignment.getQuantity());
+ GV->setUnnamedAddr(true);
+
+ llvm::Value *SrcPtr = GV;
+ if (SrcPtr->getType() != BP)
+ SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
+
+ Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(),
+ isVolatile);
+ }
+}
+
+/// Emit an expression as an initializer for a variable at the given
+/// location. The expression is not necessarily the normal
+/// initializer for the variable, and the address is not necessarily
+/// its normal location.
+///
+/// \param init the initializing expression
+/// \param var the variable to act as if we're initializing
+/// \param loc the address to initialize; its type is a pointer
+/// to the LLVM mapping of the variable's type
+/// \param alignment the alignment of the address
+/// \param capturedByInit true if the variable is a __block variable
+/// whose address is potentially changed by the initializer
+void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
+ LValue lvalue, bool capturedByInit) {
+ QualType type = D->getType();
+
+ if (type->isReferenceType()) {
+ RValue rvalue = EmitReferenceBindingToExpr(init);
+ if (capturedByInit)
+ drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
+ EmitStoreThroughLValue(rvalue, lvalue, true);
+ return;
+ }
+ switch (getEvaluationKind(type)) {
+ case TEK_Scalar:
+ EmitScalarInit(init, D, lvalue, capturedByInit);
+ return;
+ case TEK_Complex: {
+ ComplexPairTy complex = EmitComplexExpr(init);
+ if (capturedByInit)
+ drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
+ EmitStoreOfComplex(complex, lvalue, /*init*/ true);
+ return;
+ }
+ case TEK_Aggregate:
+ if (type->isAtomicType()) {
+ EmitAtomicInit(const_cast<Expr*>(init), lvalue);
+ } else {
+ // TODO: how can we delay here if D is captured by its initializer?
+ EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
+ AggValueSlot::IsDestructed,
+ AggValueSlot::DoesNotNeedGCBarriers,
+ AggValueSlot::IsNotAliased));
+ }
+ return;
+ }
+ llvm_unreachable("bad evaluation kind");
+}
+
+/// Enter a destroy cleanup for the given local variable.
+void CodeGenFunction::emitAutoVarTypeCleanup(
+ const CodeGenFunction::AutoVarEmission &emission,
+ QualType::DestructionKind dtorKind) {
+ assert(dtorKind != QualType::DK_none);
+
+ // Note that for __block variables, we want to destroy the
+ // original stack object, not the possibly forwarded object.
+ llvm::Value *addr = emission.getObjectAddress(*this);
+
+ const VarDecl *var = emission.Variable;
+ QualType type = var->getType();
+
+ CleanupKind cleanupKind = NormalAndEHCleanup;
+ CodeGenFunction::Destroyer *destroyer = nullptr;
+
+ switch (dtorKind) {
+ case QualType::DK_none:
+ llvm_unreachable("no cleanup for trivially-destructible variable");
+
+ case QualType::DK_cxx_destructor:
+ // If there's an NRVO flag on the emission, we need a different
+ // cleanup.
+ if (emission.NRVOFlag) {
+ assert(!type->isArrayType());
+ CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
+ EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor,
+ emission.NRVOFlag);
+ return;
+ }
+ break;
+
+ case QualType::DK_objc_strong_lifetime:
+ // Suppress cleanups for pseudo-strong variables.
+ if (var->isARCPseudoStrong()) return;
+
+ // Otherwise, consider whether to use an EH cleanup or not.
+ cleanupKind = getARCCleanupKind();
+
+ // Use the imprecise destroyer by default.
+ if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
+ destroyer = CodeGenFunction::destroyARCStrongImprecise;
+ break;
+
+ case QualType::DK_objc_weak_lifetime:
+ break;
+ }
+
+ // If we haven't chosen a more specific destroyer, use the default.
+ if (!destroyer) destroyer = getDestroyer(dtorKind);
+
+ // Use an EH cleanup in array destructors iff the destructor itself
+ // is being pushed as an EH cleanup.
+ bool useEHCleanup = (cleanupKind & EHCleanup);
+ EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
+ useEHCleanup);
+}
+
+void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
+ assert(emission.Variable && "emission was not valid!");
+
+ // If this was emitted as a global constant, we're done.
+ if (emission.wasEmittedAsGlobal()) return;
+
+ // If we don't have an insertion point, we're done. Sema prevents
+ // us from jumping into any of these scopes anyway.
+ if (!HaveInsertPoint()) return;
+
+ const VarDecl &D = *emission.Variable;
+
+ // Make sure we call @llvm.lifetime.end. This needs to happen
+ // *last*, so the cleanup needs to be pushed *first*.
+ if (emission.useLifetimeMarkers()) {
+ EHStack.pushCleanup<CallLifetimeEnd>(NormalCleanup,
+ emission.getAllocatedAddress(),
+ emission.getSizeForLifetimeMarkers());
+ EHCleanupScope &cleanup = cast<EHCleanupScope>(*EHStack.begin());
+ cleanup.setLifetimeMarker();
+ }
+
+ // Check the type for a cleanup.
+ if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
+ emitAutoVarTypeCleanup(emission, dtorKind);
+
+ // In GC mode, honor objc_precise_lifetime.
+ if (getLangOpts().getGC() != LangOptions::NonGC &&
+ D.hasAttr<ObjCPreciseLifetimeAttr>()) {
+ EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
+ }
+
+ // Handle the cleanup attribute.
+ if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
+ const FunctionDecl *FD = CA->getFunctionDecl();
+
+ llvm::Constant *F = CGM.GetAddrOfFunction(FD);
+ assert(F && "Could not find function!");
+
+ const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
+ EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
+ }
+
+ // If this is a block variable, call _Block_object_destroy
+ // (on the unforwarded address).
+ if (emission.IsByRef)
+ enterByrefCleanup(emission);
+}
+
+CodeGenFunction::Destroyer *
+CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
+ switch (kind) {
+ case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
+ case QualType::DK_cxx_destructor:
+ return destroyCXXObject;
+ case QualType::DK_objc_strong_lifetime:
+ return destroyARCStrongPrecise;
+ case QualType::DK_objc_weak_lifetime:
+ return destroyARCWeak;
+ }
+ llvm_unreachable("Unknown DestructionKind");
+}
+
+/// pushEHDestroy - Push the standard destructor for the given type as
+/// an EH-only cleanup.
+void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
+ llvm::Value *addr, QualType type) {
+ assert(dtorKind && "cannot push destructor for trivial type");
+ assert(needsEHCleanup(dtorKind));
+
+ pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
+}
+
+/// pushDestroy - Push the standard destructor for the given type as
+/// at least a normal cleanup.
+void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
+ llvm::Value *addr, QualType type) {
+ assert(dtorKind && "cannot push destructor for trivial type");
+
+ CleanupKind cleanupKind = getCleanupKind(dtorKind);
+ pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
+ cleanupKind & EHCleanup);
+}
+
+void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr,
+ QualType type, Destroyer *destroyer,
+ bool useEHCleanupForArray) {
+ pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
+ destroyer, useEHCleanupForArray);
+}
+
+void CodeGenFunction::pushStackRestore(CleanupKind Kind, llvm::Value *SPMem) {
+ EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
+}
+
+void CodeGenFunction::pushLifetimeExtendedDestroy(
+ CleanupKind cleanupKind, llvm::Value *addr, QualType type,
+ Destroyer *destroyer, bool useEHCleanupForArray) {
+ assert(!isInConditionalBranch() &&
+ "performing lifetime extension from within conditional");
+
+ // Push an EH-only cleanup for the object now.
+ // FIXME: When popping normal cleanups, we need to keep this EH cleanup
+ // around in case a temporary's destructor throws an exception.
+ if (cleanupKind & EHCleanup)
+ EHStack.pushCleanup<DestroyObject>(
+ static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
+ destroyer, useEHCleanupForArray);
+
+ // Remember that we need to push a full cleanup for the object at the
+ // end of the full-expression.
+ pushCleanupAfterFullExpr<DestroyObject>(
+ cleanupKind, addr, type, destroyer, useEHCleanupForArray);
+}
+
+/// emitDestroy - Immediately perform the destruction of the given
+/// object.
+///
+/// \param addr - the address of the object; a type*
+/// \param type - the type of the object; if an array type, all
+/// objects are destroyed in reverse order
+/// \param destroyer - the function to call to destroy individual
+/// elements
+/// \param useEHCleanupForArray - whether an EH cleanup should be
+/// used when destroying array elements, in case one of the
+/// destructions throws an exception
+void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type,
+ Destroyer *destroyer,
+ bool useEHCleanupForArray) {
+ const ArrayType *arrayType = getContext().getAsArrayType(type);
+ if (!arrayType)
+ return destroyer(*this, addr, type);
+
+ llvm::Value *begin = addr;
+ llvm::Value *length = emitArrayLength(arrayType, type, begin);
+
+ // Normally we have to check whether the array is zero-length.
+ bool checkZeroLength = true;
+
+ // But if the array length is constant, we can suppress that.
+ if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
+ // ...and if it's constant zero, we can just skip the entire thing.
+ if (constLength->isZero()) return;
+ checkZeroLength = false;
+ }
+
+ llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
+ emitArrayDestroy(begin, end, type, destroyer,
+ checkZeroLength, useEHCleanupForArray);
+}
+
+/// emitArrayDestroy - Destroys all the elements of the given array,
+/// beginning from last to first. The array cannot be zero-length.
+///
+/// \param begin - a type* denoting the first element of the array
+/// \param end - a type* denoting one past the end of the array
+/// \param type - the element type of the array
+/// \param destroyer - the function to call to destroy elements
+/// \param useEHCleanup - whether to push an EH cleanup to destroy
+/// the remaining elements in case the destruction of a single
+/// element throws
+void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
+ llvm::Value *end,
+ QualType type,
+ Destroyer *destroyer,
+ bool checkZeroLength,
+ bool useEHCleanup) {
+ assert(!type->isArrayType());
+
+ // The basic structure here is a do-while loop, because we don't
+ // need to check for the zero-element case.
+ llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
+ llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
+
+ if (checkZeroLength) {
+ llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
+ "arraydestroy.isempty");
+ Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
+ }
+
+ // Enter the loop body, making that address the current address.
+ llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
+ EmitBlock(bodyBB);
+ llvm::PHINode *elementPast =
+ Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
+ elementPast->addIncoming(end, entryBB);
+
+ // Shift the address back by one element.
+ llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
+ llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
+ "arraydestroy.element");
+
+ if (useEHCleanup)
+ pushRegularPartialArrayCleanup(begin, element, type, destroyer);
+
+ // Perform the actual destruction there.
+ destroyer(*this, element, type);
+
+ if (useEHCleanup)
+ PopCleanupBlock();
+
+ // Check whether we've reached the end.
+ llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
+ Builder.CreateCondBr(done, doneBB, bodyBB);
+ elementPast->addIncoming(element, Builder.GetInsertBlock());
+
+ // Done.
+ EmitBlock(doneBB);
+}
+
+/// Perform partial array destruction as if in an EH cleanup. Unlike
+/// emitArrayDestroy, the element type here may still be an array type.
+static void emitPartialArrayDestroy(CodeGenFunction &CGF,
+ llvm::Value *begin, llvm::Value *end,
+ QualType type,
+ CodeGenFunction::Destroyer *destroyer) {
+ // If the element type is itself an array, drill down.
+ unsigned arrayDepth = 0;
+ while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
+ // VLAs don't require a GEP index to walk into.
+ if (!isa<VariableArrayType>(arrayType))
+ arrayDepth++;
+ type = arrayType->getElementType();
+ }
+
+ if (arrayDepth) {
+ llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1);
+
+ SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero);
+ begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
+ end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
+ }
+
+ // Destroy the array. We don't ever need an EH cleanup because we
+ // assume that we're in an EH cleanup ourselves, so a throwing
+ // destructor causes an immediate terminate.
+ CGF.emitArrayDestroy(begin, end, type, destroyer,
+ /*checkZeroLength*/ true, /*useEHCleanup*/ false);
+}
+
+namespace {
+ /// RegularPartialArrayDestroy - a cleanup which performs a partial
+ /// array destroy where the end pointer is regularly determined and
+ /// does not need to be loaded from a local.
+ class RegularPartialArrayDestroy : public EHScopeStack::Cleanup {
+ llvm::Value *ArrayBegin;
+ llvm::Value *ArrayEnd;
+ QualType ElementType;
+ CodeGenFunction::Destroyer *Destroyer;
+ public:
+ RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
+ QualType elementType,
+ CodeGenFunction::Destroyer *destroyer)
+ : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
+ ElementType(elementType), Destroyer(destroyer) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
+ ElementType, Destroyer);
+ }
+ };
+
+ /// IrregularPartialArrayDestroy - a cleanup which performs a
+ /// partial array destroy where the end pointer is irregularly
+ /// determined and must be loaded from a local.
+ class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup {
+ llvm::Value *ArrayBegin;
+ llvm::Value *ArrayEndPointer;
+ QualType ElementType;
+ CodeGenFunction::Destroyer *Destroyer;
+ public:
+ IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
+ llvm::Value *arrayEndPointer,
+ QualType elementType,
+ CodeGenFunction::Destroyer *destroyer)
+ : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
+ ElementType(elementType), Destroyer(destroyer) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
+ emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
+ ElementType, Destroyer);
+ }
+ };
+}
+
+/// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
+/// already-constructed elements of the given array. The cleanup
+/// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
+///
+/// \param elementType - the immediate element type of the array;
+/// possibly still an array type
+void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
+ llvm::Value *arrayEndPointer,
+ QualType elementType,
+ Destroyer *destroyer) {
+ pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
+ arrayBegin, arrayEndPointer,
+ elementType, destroyer);
+}
+
+/// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
+/// already-constructed elements of the given array. The cleanup
+/// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
+///
+/// \param elementType - the immediate element type of the array;
+/// possibly still an array type
+void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
+ llvm::Value *arrayEnd,
+ QualType elementType,
+ Destroyer *destroyer) {
+ pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
+ arrayBegin, arrayEnd,
+ elementType, destroyer);
+}
+
+/// Lazily declare the @llvm.lifetime.start intrinsic.
+llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() {
+ if (LifetimeStartFn) return LifetimeStartFn;
+ LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
+ llvm::Intrinsic::lifetime_start);
+ return LifetimeStartFn;
+}
+
+/// Lazily declare the @llvm.lifetime.end intrinsic.
+llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() {
+ if (LifetimeEndFn) return LifetimeEndFn;
+ LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
+ llvm::Intrinsic::lifetime_end);
+ return LifetimeEndFn;
+}
+
+namespace {
+ /// A cleanup to perform a release of an object at the end of a
+ /// function. This is used to balance out the incoming +1 of a
+ /// ns_consumed argument when we can't reasonably do that just by
+ /// not doing the initial retain for a __block argument.
+ struct ConsumeARCParameter : EHScopeStack::Cleanup {
+ ConsumeARCParameter(llvm::Value *param,
+ ARCPreciseLifetime_t precise)
+ : Param(param), Precise(precise) {}
+
+ llvm::Value *Param;
+ ARCPreciseLifetime_t Precise;
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ CGF.EmitARCRelease(Param, Precise);
+ }
+ };
+}
+
+/// Emit an alloca (or GlobalValue depending on target)
+/// for the specified parameter and set up LocalDeclMap.
+void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg,
+ bool ArgIsPointer, unsigned ArgNo) {
+ // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
+ assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
+ "Invalid argument to EmitParmDecl");
+
+ Arg->setName(D.getName());
+
+ QualType Ty = D.getType();
+
+ // Use better IR generation for certain implicit parameters.
+ if (isa<ImplicitParamDecl>(D)) {
+ // The only implicit argument a block has is its literal.
+ if (BlockInfo) {
+ LocalDeclMap[&D] = Arg;
+ llvm::Value *LocalAddr = nullptr;
+ if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
+ // Allocate a stack slot to let the debug info survive the RA.
+ llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
+ D.getName() + ".addr");
+ Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity());
+ LValue lv = MakeAddrLValue(Alloc, Ty, getContext().getDeclAlign(&D));
+ EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
+ LocalAddr = Builder.CreateLoad(Alloc);
+ }
+
+ if (CGDebugInfo *DI = getDebugInfo()) {
+ if (CGM.getCodeGenOpts().getDebugInfo()
+ >= CodeGenOptions::LimitedDebugInfo) {
+ DI->setLocation(D.getLocation());
+ DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, ArgNo,
+ LocalAddr, Builder);
+ }
+ }
+
+ return;
+ }
+ }
+
+ llvm::Value *DeclPtr;
+ bool DoStore = false;
+ bool IsScalar = hasScalarEvaluationKind(Ty);
+ CharUnits Align = getContext().getDeclAlign(&D);
+ // If we already have a pointer to the argument, reuse the input pointer.
+ if (ArgIsPointer) {
+ // If we have a prettier pointer type at this point, bitcast to that.
+ unsigned AS = cast<llvm::PointerType>(Arg->getType())->getAddressSpace();
+ llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
+ DeclPtr = Arg->getType() == IRTy ? Arg : Builder.CreateBitCast(Arg, IRTy,
+ D.getName());
+ // Push a destructor cleanup for this parameter if the ABI requires it.
+ // Don't push a cleanup in a thunk for a method that will also emit a
+ // cleanup.
+ if (!IsScalar && !CurFuncIsThunk &&
+ getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
+ const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
+ if (RD && RD->hasNonTrivialDestructor())
+ pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty);
+ }
+ } else {
+ // Otherwise, create a temporary to hold the value.
+ llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
+ D.getName() + ".addr");
+ Alloc->setAlignment(Align.getQuantity());
+ DeclPtr = Alloc;
+ DoStore = true;
+ }
+
+ LValue lv = MakeAddrLValue(DeclPtr, Ty, Align);
+ if (IsScalar) {
+ Qualifiers qs = Ty.getQualifiers();
+ if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
+ // We honor __attribute__((ns_consumed)) for types with lifetime.
+ // For __strong, it's handled by just skipping the initial retain;
+ // otherwise we have to balance out the initial +1 with an extra
+ // cleanup to do the release at the end of the function.
+ bool isConsumed = D.hasAttr<NSConsumedAttr>();
+
+ // 'self' is always formally __strong, but if this is not an
+ // init method then we don't want to retain it.
+ if (D.isARCPseudoStrong()) {
+ const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
+ assert(&D == method->getSelfDecl());
+ assert(lt == Qualifiers::OCL_Strong);
+ assert(qs.hasConst());
+ assert(method->getMethodFamily() != OMF_init);
+ (void) method;
+ lt = Qualifiers::OCL_ExplicitNone;
+ }
+
+ if (lt == Qualifiers::OCL_Strong) {
+ if (!isConsumed) {
+ if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
+ // use objc_storeStrong(&dest, value) for retaining the
+ // object. But first, store a null into 'dest' because
+ // objc_storeStrong attempts to release its old value.
+ llvm::Value *Null = CGM.EmitNullConstant(D.getType());
+ EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
+ EmitARCStoreStrongCall(lv.getAddress(), Arg, true);
+ DoStore = false;
+ }
+ else
+ // Don't use objc_retainBlock for block pointers, because we
+ // don't want to Block_copy something just because we got it
+ // as a parameter.
+ Arg = EmitARCRetainNonBlock(Arg);
+ }
+ } else {
+ // Push the cleanup for a consumed parameter.
+ if (isConsumed) {
+ ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
+ ? ARCPreciseLifetime : ARCImpreciseLifetime);
+ EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg,
+ precise);
+ }
+
+ if (lt == Qualifiers::OCL_Weak) {
+ EmitARCInitWeak(DeclPtr, Arg);
+ DoStore = false; // The weak init is a store, no need to do two.
+ }
+ }
+
+ // Enter the cleanup scope.
+ EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
+ }
+ }
+
+ // Store the initial value into the alloca.
+ if (DoStore)
+ EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
+
+ llvm::Value *&DMEntry = LocalDeclMap[&D];
+ assert(!DMEntry && "Decl already exists in localdeclmap!");
+ DMEntry = DeclPtr;
+
+ // Emit debug info for param declaration.
+ if (CGDebugInfo *DI = getDebugInfo()) {
+ if (CGM.getCodeGenOpts().getDebugInfo()
+ >= CodeGenOptions::LimitedDebugInfo) {
+ DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder);
+ }
+ }
+
+ if (D.hasAttr<AnnotateAttr>())
+ EmitVarAnnotations(&D, DeclPtr);
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGDeclCXX.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGDeclCXX.cpp
new file mode 100644
index 0000000..06d157b
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGDeclCXX.cpp
@@ -0,0 +1,596 @@
+//===--- CGDeclCXX.cpp - Emit LLVM Code for C++ declarations --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code dealing with code generation of C++ declarations
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenFunction.h"
+#include "CGCXXABI.h"
+#include "CGObjCRuntime.h"
+#include "CGOpenMPRuntime.h"
+#include "clang/Frontend/CodeGenOptions.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/Support/Path.h"
+
+using namespace clang;
+using namespace CodeGen;
+
+static void EmitDeclInit(CodeGenFunction &CGF, const VarDecl &D,
+ llvm::Constant *DeclPtr) {
+ assert(D.hasGlobalStorage() && "VarDecl must have global storage!");
+ assert(!D.getType()->isReferenceType() &&
+ "Should not call EmitDeclInit on a reference!");
+
+ ASTContext &Context = CGF.getContext();
+
+ CharUnits alignment = Context.getDeclAlign(&D);
+ QualType type = D.getType();
+ LValue lv = CGF.MakeAddrLValue(DeclPtr, type, alignment);
+
+ const Expr *Init = D.getInit();
+ switch (CGF.getEvaluationKind(type)) {
+ case TEK_Scalar: {
+ CodeGenModule &CGM = CGF.CGM;
+ if (lv.isObjCStrong())
+ CGM.getObjCRuntime().EmitObjCGlobalAssign(CGF, CGF.EmitScalarExpr(Init),
+ DeclPtr, D.getTLSKind());
+ else if (lv.isObjCWeak())
+ CGM.getObjCRuntime().EmitObjCWeakAssign(CGF, CGF.EmitScalarExpr(Init),
+ DeclPtr);
+ else
+ CGF.EmitScalarInit(Init, &D, lv, false);
+ return;
+ }
+ case TEK_Complex:
+ CGF.EmitComplexExprIntoLValue(Init, lv, /*isInit*/ true);
+ return;
+ case TEK_Aggregate:
+ CGF.EmitAggExpr(Init, AggValueSlot::forLValue(lv,AggValueSlot::IsDestructed,
+ AggValueSlot::DoesNotNeedGCBarriers,
+ AggValueSlot::IsNotAliased));
+ return;
+ }
+ llvm_unreachable("bad evaluation kind");
+}
+
+/// Emit code to cause the destruction of the given variable with
+/// static storage duration.
+static void EmitDeclDestroy(CodeGenFunction &CGF, const VarDecl &D,
+ llvm::Constant *addr) {
+ CodeGenModule &CGM = CGF.CGM;
+
+ // FIXME: __attribute__((cleanup)) ?
+
+ QualType type = D.getType();
+ QualType::DestructionKind dtorKind = type.isDestructedType();
+
+ switch (dtorKind) {
+ case QualType::DK_none:
+ return;
+
+ case QualType::DK_cxx_destructor:
+ break;
+
+ case QualType::DK_objc_strong_lifetime:
+ case QualType::DK_objc_weak_lifetime:
+ // We don't care about releasing objects during process teardown.
+ assert(!D.getTLSKind() && "should have rejected this");
+ return;
+ }
+
+ llvm::Constant *function;
+ llvm::Constant *argument;
+
+ // Special-case non-array C++ destructors, where there's a function
+ // with the right signature that we can just call.
+ const CXXRecordDecl *record = nullptr;
+ if (dtorKind == QualType::DK_cxx_destructor &&
+ (record = type->getAsCXXRecordDecl())) {
+ assert(!record->hasTrivialDestructor());
+ CXXDestructorDecl *dtor = record->getDestructor();
+
+ function = CGM.getAddrOfCXXStructor(dtor, StructorType::Complete);
+ argument = llvm::ConstantExpr::getBitCast(
+ addr, CGF.getTypes().ConvertType(type)->getPointerTo());
+
+ // Otherwise, the standard logic requires a helper function.
+ } else {
+ function = CodeGenFunction(CGM)
+ .generateDestroyHelper(addr, type, CGF.getDestroyer(dtorKind),
+ CGF.needsEHCleanup(dtorKind), &D);
+ argument = llvm::Constant::getNullValue(CGF.Int8PtrTy);
+ }
+
+ CGM.getCXXABI().registerGlobalDtor(CGF, D, function, argument);
+}
+
+/// Emit code to cause the variable at the given address to be considered as
+/// constant from this point onwards.
+static void EmitDeclInvariant(CodeGenFunction &CGF, const VarDecl &D,
+ llvm::Constant *Addr) {
+ // Don't emit the intrinsic if we're not optimizing.
+ if (!CGF.CGM.getCodeGenOpts().OptimizationLevel)
+ return;
+
+ // Grab the llvm.invariant.start intrinsic.
+ llvm::Intrinsic::ID InvStartID = llvm::Intrinsic::invariant_start;
+ llvm::Constant *InvariantStart = CGF.CGM.getIntrinsic(InvStartID);
+
+ // Emit a call with the size in bytes of the object.
+ CharUnits WidthChars = CGF.getContext().getTypeSizeInChars(D.getType());
+ uint64_t Width = WidthChars.getQuantity();
+ llvm::Value *Args[2] = { llvm::ConstantInt::getSigned(CGF.Int64Ty, Width),
+ llvm::ConstantExpr::getBitCast(Addr, CGF.Int8PtrTy)};
+ CGF.Builder.CreateCall(InvariantStart, Args);
+}
+
+void CodeGenFunction::EmitCXXGlobalVarDeclInit(const VarDecl &D,
+ llvm::Constant *DeclPtr,
+ bool PerformInit) {
+
+ const Expr *Init = D.getInit();
+ QualType T = D.getType();
+
+ // The address space of a static local variable (DeclPtr) may be different
+ // from the address space of the "this" argument of the constructor. In that
+ // case, we need an addrspacecast before calling the constructor.
+ //
+ // struct StructWithCtor {
+ // __device__ StructWithCtor() {...}
+ // };
+ // __device__ void foo() {
+ // __shared__ StructWithCtor s;
+ // ...
+ // }
+ //
+ // For example, in the above CUDA code, the static local variable s has a
+ // "shared" address space qualifier, but the constructor of StructWithCtor
+ // expects "this" in the "generic" address space.
+ unsigned ExpectedAddrSpace = getContext().getTargetAddressSpace(T);
+ unsigned ActualAddrSpace = DeclPtr->getType()->getPointerAddressSpace();
+ if (ActualAddrSpace != ExpectedAddrSpace) {
+ llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(T);
+ llvm::PointerType *PTy = llvm::PointerType::get(LTy, ExpectedAddrSpace);
+ DeclPtr = llvm::ConstantExpr::getAddrSpaceCast(DeclPtr, PTy);
+ }
+
+ if (!T->isReferenceType()) {
+ if (getLangOpts().OpenMP && D.hasAttr<OMPThreadPrivateDeclAttr>())
+ (void)CGM.getOpenMPRuntime().emitThreadPrivateVarDefinition(
+ &D, DeclPtr, D.getAttr<OMPThreadPrivateDeclAttr>()->getLocation(),
+ PerformInit, this);
+ if (PerformInit)
+ EmitDeclInit(*this, D, DeclPtr);
+ if (CGM.isTypeConstant(D.getType(), true))
+ EmitDeclInvariant(*this, D, DeclPtr);
+ else
+ EmitDeclDestroy(*this, D, DeclPtr);
+ return;
+ }
+
+ assert(PerformInit && "cannot have constant initializer which needs "
+ "destruction for reference");
+ unsigned Alignment = getContext().getDeclAlign(&D).getQuantity();
+ RValue RV = EmitReferenceBindingToExpr(Init);
+ EmitStoreOfScalar(RV.getScalarVal(), DeclPtr, false, Alignment, T);
+}
+
+/// Create a stub function, suitable for being passed to atexit,
+/// which passes the given address to the given destructor function.
+llvm::Constant *CodeGenFunction::createAtExitStub(const VarDecl &VD,
+ llvm::Constant *dtor,
+ llvm::Constant *addr) {
+ // Get the destructor function type, void(*)(void).
+ llvm::FunctionType *ty = llvm::FunctionType::get(CGM.VoidTy, false);
+ SmallString<256> FnName;
+ {
+ llvm::raw_svector_ostream Out(FnName);
+ CGM.getCXXABI().getMangleContext().mangleDynamicAtExitDestructor(&VD, Out);
+ }
+ llvm::Function *fn = CGM.CreateGlobalInitOrDestructFunction(ty, FnName.str(),
+ VD.getLocation());
+
+ CodeGenFunction CGF(CGM);
+
+ CGF.StartFunction(&VD, CGM.getContext().VoidTy, fn,
+ CGM.getTypes().arrangeNullaryFunction(), FunctionArgList());
+
+ llvm::CallInst *call = CGF.Builder.CreateCall(dtor, addr);
+
+ // Make sure the call and the callee agree on calling convention.
+ if (llvm::Function *dtorFn =
+ dyn_cast<llvm::Function>(dtor->stripPointerCasts()))
+ call->setCallingConv(dtorFn->getCallingConv());
+
+ CGF.FinishFunction();
+
+ return fn;
+}
+
+/// Register a global destructor using the C atexit runtime function.
+void CodeGenFunction::registerGlobalDtorWithAtExit(const VarDecl &VD,
+ llvm::Constant *dtor,
+ llvm::Constant *addr) {
+ // Create a function which calls the destructor.
+ llvm::Constant *dtorStub = createAtExitStub(VD, dtor, addr);
+
+ // extern "C" int atexit(void (*f)(void));
+ llvm::FunctionType *atexitTy =
+ llvm::FunctionType::get(IntTy, dtorStub->getType(), false);
+
+ llvm::Constant *atexit =
+ CGM.CreateRuntimeFunction(atexitTy, "atexit");
+ if (llvm::Function *atexitFn = dyn_cast<llvm::Function>(atexit))
+ atexitFn->setDoesNotThrow();
+
+ EmitNounwindRuntimeCall(atexit, dtorStub);
+}
+
+void CodeGenFunction::EmitCXXGuardedInit(const VarDecl &D,
+ llvm::GlobalVariable *DeclPtr,
+ bool PerformInit) {
+ // If we've been asked to forbid guard variables, emit an error now.
+ // This diagnostic is hard-coded for Darwin's use case; we can find
+ // better phrasing if someone else needs it.
+ if (CGM.getCodeGenOpts().ForbidGuardVariables)
+ CGM.Error(D.getLocation(),
+ "this initialization requires a guard variable, which "
+ "the kernel does not support");
+
+ CGM.getCXXABI().EmitGuardedInit(*this, D, DeclPtr, PerformInit);
+}
+
+llvm::Function *CodeGenModule::CreateGlobalInitOrDestructFunction(
+ llvm::FunctionType *FTy, const Twine &Name, SourceLocation Loc, bool TLS) {
+ llvm::Function *Fn =
+ llvm::Function::Create(FTy, llvm::GlobalValue::InternalLinkage,
+ Name, &getModule());
+ if (!getLangOpts().AppleKext && !TLS) {
+ // Set the section if needed.
+ if (const char *Section = getTarget().getStaticInitSectionSpecifier())
+ Fn->setSection(Section);
+ }
+
+ SetLLVMFunctionAttributes(nullptr, getTypes().arrangeNullaryFunction(), Fn);
+
+ Fn->setCallingConv(getRuntimeCC());
+
+ if (!getLangOpts().Exceptions)
+ Fn->setDoesNotThrow();
+
+ if (!isInSanitizerBlacklist(Fn, Loc)) {
+ if (getLangOpts().Sanitize.has(SanitizerKind::Address))
+ Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
+ if (getLangOpts().Sanitize.has(SanitizerKind::Thread))
+ Fn->addFnAttr(llvm::Attribute::SanitizeThread);
+ if (getLangOpts().Sanitize.has(SanitizerKind::Memory))
+ Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
+ }
+
+ return Fn;
+}
+
+/// Create a global pointer to a function that will initialize a global
+/// variable. The user has requested that this pointer be emitted in a specific
+/// section.
+void CodeGenModule::EmitPointerToInitFunc(const VarDecl *D,
+ llvm::GlobalVariable *GV,
+ llvm::Function *InitFunc,
+ InitSegAttr *ISA) {
+ llvm::GlobalVariable *PtrArray = new llvm::GlobalVariable(
+ TheModule, InitFunc->getType(), /*isConstant=*/true,
+ llvm::GlobalValue::PrivateLinkage, InitFunc, "__cxx_init_fn_ptr");
+ PtrArray->setSection(ISA->getSection());
+ addUsedGlobal(PtrArray);
+
+ // If the GV is already in a comdat group, then we have to join it.
+ if (llvm::Comdat *C = GV->getComdat())
+ PtrArray->setComdat(C);
+}
+
+void
+CodeGenModule::EmitCXXGlobalVarDeclInitFunc(const VarDecl *D,
+ llvm::GlobalVariable *Addr,
+ bool PerformInit) {
+ // Check if we've already initialized this decl.
+ auto I = DelayedCXXInitPosition.find(D);
+ if (I != DelayedCXXInitPosition.end() && I->second == ~0U)
+ return;
+
+ llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
+ SmallString<256> FnName;
+ {
+ llvm::raw_svector_ostream Out(FnName);
+ getCXXABI().getMangleContext().mangleDynamicInitializer(D, Out);
+ }
+
+ // Create a variable initialization function.
+ llvm::Function *Fn =
+ CreateGlobalInitOrDestructFunction(FTy, FnName.str(), D->getLocation());
+
+ auto *ISA = D->getAttr<InitSegAttr>();
+ CodeGenFunction(*this).GenerateCXXGlobalVarDeclInitFunc(Fn, D, Addr,
+ PerformInit);
+
+ llvm::GlobalVariable *COMDATKey =
+ supportsCOMDAT() && D->isExternallyVisible() ? Addr : nullptr;
+
+ if (D->getTLSKind()) {
+ // FIXME: Should we support init_priority for thread_local?
+ // FIXME: Ideally, initialization of instantiated thread_local static data
+ // members of class templates should not trigger initialization of other
+ // entities in the TU.
+ // FIXME: We only need to register one __cxa_thread_atexit function for the
+ // entire TU.
+ CXXThreadLocalInits.push_back(Fn);
+ CXXThreadLocalInitVars.push_back(Addr);
+ } else if (PerformInit && ISA) {
+ EmitPointerToInitFunc(D, Addr, Fn, ISA);
+ } else if (auto *IPA = D->getAttr<InitPriorityAttr>()) {
+ OrderGlobalInits Key(IPA->getPriority(), PrioritizedCXXGlobalInits.size());
+ PrioritizedCXXGlobalInits.push_back(std::make_pair(Key, Fn));
+ } else if (isTemplateInstantiation(D->getTemplateSpecializationKind())) {
+ // C++ [basic.start.init]p2:
+ // Definitions of explicitly specialized class template static data
+ // members have ordered initialization. Other class template static data
+ // members (i.e., implicitly or explicitly instantiated specializations)
+ // have unordered initialization.
+ //
+ // As a consequence, we can put them into their own llvm.global_ctors entry.
+ //
+ // If the global is externally visible, put the initializer into a COMDAT
+ // group with the global being initialized. On most platforms, this is a
+ // minor startup time optimization. In the MS C++ ABI, there are no guard
+ // variables, so this COMDAT key is required for correctness.
+ AddGlobalCtor(Fn, 65535, COMDATKey);
+ } else if (D->hasAttr<SelectAnyAttr>()) {
+ // SelectAny globals will be comdat-folded. Put the initializer into a
+ // COMDAT group associated with the global, so the initializers get folded
+ // too.
+ AddGlobalCtor(Fn, 65535, COMDATKey);
+ } else {
+ I = DelayedCXXInitPosition.find(D); // Re-do lookup in case of re-hash.
+ if (I == DelayedCXXInitPosition.end()) {
+ CXXGlobalInits.push_back(Fn);
+ } else if (I->second != ~0U) {
+ assert(I->second < CXXGlobalInits.size() &&
+ CXXGlobalInits[I->second] == nullptr);
+ CXXGlobalInits[I->second] = Fn;
+ }
+ }
+
+ // Remember that we already emitted the initializer for this global.
+ DelayedCXXInitPosition[D] = ~0U;
+}
+
+void CodeGenModule::EmitCXXThreadLocalInitFunc() {
+ getCXXABI().EmitThreadLocalInitFuncs(
+ *this, CXXThreadLocals, CXXThreadLocalInits, CXXThreadLocalInitVars);
+
+ CXXThreadLocalInits.clear();
+ CXXThreadLocalInitVars.clear();
+ CXXThreadLocals.clear();
+}
+
+void
+CodeGenModule::EmitCXXGlobalInitFunc() {
+ while (!CXXGlobalInits.empty() && !CXXGlobalInits.back())
+ CXXGlobalInits.pop_back();
+
+ if (CXXGlobalInits.empty() && PrioritizedCXXGlobalInits.empty())
+ return;
+
+ llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
+
+
+ // Create our global initialization function.
+ if (!PrioritizedCXXGlobalInits.empty()) {
+ SmallVector<llvm::Function *, 8> LocalCXXGlobalInits;
+ llvm::array_pod_sort(PrioritizedCXXGlobalInits.begin(),
+ PrioritizedCXXGlobalInits.end());
+ // Iterate over "chunks" of ctors with same priority and emit each chunk
+ // into separate function. Note - everything is sorted first by priority,
+ // second - by lex order, so we emit ctor functions in proper order.
+ for (SmallVectorImpl<GlobalInitData >::iterator
+ I = PrioritizedCXXGlobalInits.begin(),
+ E = PrioritizedCXXGlobalInits.end(); I != E; ) {
+ SmallVectorImpl<GlobalInitData >::iterator
+ PrioE = std::upper_bound(I + 1, E, *I, GlobalInitPriorityCmp());
+
+ LocalCXXGlobalInits.clear();
+ unsigned Priority = I->first.priority;
+ // Compute the function suffix from priority. Prepend with zeroes to make
+ // sure the function names are also ordered as priorities.
+ std::string PrioritySuffix = llvm::utostr(Priority);
+ // Priority is always <= 65535 (enforced by sema).
+ PrioritySuffix = std::string(6-PrioritySuffix.size(), '0')+PrioritySuffix;
+ llvm::Function *Fn = CreateGlobalInitOrDestructFunction(
+ FTy, "_GLOBAL__I_" + PrioritySuffix);
+
+ for (; I < PrioE; ++I)
+ LocalCXXGlobalInits.push_back(I->second);
+
+ CodeGenFunction(*this).GenerateCXXGlobalInitFunc(Fn, LocalCXXGlobalInits);
+ AddGlobalCtor(Fn, Priority);
+ }
+ }
+
+ SmallString<128> FileName;
+ SourceManager &SM = Context.getSourceManager();
+ if (const FileEntry *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
+ // Include the filename in the symbol name. Including "sub_" matches gcc and
+ // makes sure these symbols appear lexicographically behind the symbols with
+ // priority emitted above.
+ FileName = llvm::sys::path::filename(MainFile->getName());
+ } else {
+ FileName = "<null>";
+ }
+
+ for (size_t i = 0; i < FileName.size(); ++i) {
+ // Replace everything that's not [a-zA-Z0-9._] with a _. This set happens
+ // to be the set of C preprocessing numbers.
+ if (!isPreprocessingNumberBody(FileName[i]))
+ FileName[i] = '_';
+ }
+
+ llvm::Function *Fn = CreateGlobalInitOrDestructFunction(
+ FTy, llvm::Twine("_GLOBAL__sub_I_", FileName));
+
+ CodeGenFunction(*this).GenerateCXXGlobalInitFunc(Fn, CXXGlobalInits);
+ AddGlobalCtor(Fn);
+
+ CXXGlobalInits.clear();
+ PrioritizedCXXGlobalInits.clear();
+}
+
+void CodeGenModule::EmitCXXGlobalDtorFunc() {
+ if (CXXGlobalDtors.empty())
+ return;
+
+ llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
+
+ // Create our global destructor function.
+ llvm::Function *Fn = CreateGlobalInitOrDestructFunction(FTy, "_GLOBAL__D_a");
+
+ CodeGenFunction(*this).GenerateCXXGlobalDtorsFunc(Fn, CXXGlobalDtors);
+ AddGlobalDtor(Fn);
+}
+
+/// Emit the code necessary to initialize the given global variable.
+void CodeGenFunction::GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
+ const VarDecl *D,
+ llvm::GlobalVariable *Addr,
+ bool PerformInit) {
+ // Check if we need to emit debug info for variable initializer.
+ if (D->hasAttr<NoDebugAttr>())
+ DebugInfo = nullptr; // disable debug info indefinitely for this function
+
+ CurEHLocation = D->getLocStart();
+
+ StartFunction(GlobalDecl(D), getContext().VoidTy, Fn,
+ getTypes().arrangeNullaryFunction(),
+ FunctionArgList(), D->getLocation(),
+ D->getInit()->getExprLoc());
+
+ // Use guarded initialization if the global variable is weak. This
+ // occurs for, e.g., instantiated static data members and
+ // definitions explicitly marked weak.
+ if (Addr->hasWeakLinkage() || Addr->hasLinkOnceLinkage()) {
+ EmitCXXGuardedInit(*D, Addr, PerformInit);
+ } else {
+ EmitCXXGlobalVarDeclInit(*D, Addr, PerformInit);
+ }
+
+ FinishFunction();
+}
+
+void
+CodeGenFunction::GenerateCXXGlobalInitFunc(llvm::Function *Fn,
+ ArrayRef<llvm::Function *> Decls,
+ llvm::GlobalVariable *Guard) {
+ {
+ auto NL = ApplyDebugLocation::CreateEmpty(*this);
+ StartFunction(GlobalDecl(), getContext().VoidTy, Fn,
+ getTypes().arrangeNullaryFunction(), FunctionArgList());
+ // Emit an artificial location for this function.
+ auto AL = ApplyDebugLocation::CreateArtificial(*this);
+
+ llvm::BasicBlock *ExitBlock = nullptr;
+ if (Guard) {
+ // If we have a guard variable, check whether we've already performed
+ // these initializations. This happens for TLS initialization functions.
+ llvm::Value *GuardVal = Builder.CreateLoad(Guard);
+ llvm::Value *Uninit = Builder.CreateIsNull(GuardVal,
+ "guard.uninitialized");
+ // Mark as initialized before initializing anything else. If the
+ // initializers use previously-initialized thread_local vars, that's
+ // probably supposed to be OK, but the standard doesn't say.
+ Builder.CreateStore(llvm::ConstantInt::get(GuardVal->getType(),1), Guard);
+ llvm::BasicBlock *InitBlock = createBasicBlock("init");
+ ExitBlock = createBasicBlock("exit");
+ Builder.CreateCondBr(Uninit, InitBlock, ExitBlock);
+ EmitBlock(InitBlock);
+ }
+
+ RunCleanupsScope Scope(*this);
+
+ // When building in Objective-C++ ARC mode, create an autorelease pool
+ // around the global initializers.
+ if (getLangOpts().ObjCAutoRefCount && getLangOpts().CPlusPlus) {
+ llvm::Value *token = EmitObjCAutoreleasePoolPush();
+ EmitObjCAutoreleasePoolCleanup(token);
+ }
+
+ for (unsigned i = 0, e = Decls.size(); i != e; ++i)
+ if (Decls[i])
+ EmitRuntimeCall(Decls[i]);
+
+ Scope.ForceCleanup();
+
+ if (ExitBlock) {
+ Builder.CreateBr(ExitBlock);
+ EmitBlock(ExitBlock);
+ }
+ }
+
+ FinishFunction();
+}
+
+void CodeGenFunction::GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
+ const std::vector<std::pair<llvm::WeakVH, llvm::Constant*> >
+ &DtorsAndObjects) {
+ {
+ auto NL = ApplyDebugLocation::CreateEmpty(*this);
+ StartFunction(GlobalDecl(), getContext().VoidTy, Fn,
+ getTypes().arrangeNullaryFunction(), FunctionArgList());
+ // Emit an artificial location for this function.
+ auto AL = ApplyDebugLocation::CreateArtificial(*this);
+
+ // Emit the dtors, in reverse order from construction.
+ for (unsigned i = 0, e = DtorsAndObjects.size(); i != e; ++i) {
+ llvm::Value *Callee = DtorsAndObjects[e - i - 1].first;
+ llvm::CallInst *CI = Builder.CreateCall(Callee,
+ DtorsAndObjects[e - i - 1].second);
+ // Make sure the call and the callee agree on calling convention.
+ if (llvm::Function *F = dyn_cast<llvm::Function>(Callee))
+ CI->setCallingConv(F->getCallingConv());
+ }
+ }
+
+ FinishFunction();
+}
+
+/// generateDestroyHelper - Generates a helper function which, when
+/// invoked, destroys the given object.
+llvm::Function *CodeGenFunction::generateDestroyHelper(
+ llvm::Constant *addr, QualType type, Destroyer *destroyer,
+ bool useEHCleanupForArray, const VarDecl *VD) {
+ FunctionArgList args;
+ ImplicitParamDecl dst(getContext(), nullptr, SourceLocation(), nullptr,
+ getContext().VoidPtrTy);
+ args.push_back(&dst);
+
+ const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration(
+ getContext().VoidTy, args, FunctionType::ExtInfo(), /*variadic=*/false);
+ llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
+ llvm::Function *fn = CGM.CreateGlobalInitOrDestructFunction(
+ FTy, "__cxx_global_array_dtor", VD->getLocation());
+
+ CurEHLocation = VD->getLocStart();
+
+ StartFunction(VD, getContext().VoidTy, fn, FI, args);
+
+ emitDestroy(addr, type, destroyer, useEHCleanupForArray);
+
+ FinishFunction();
+
+ return fn;
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGException.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGException.cpp
new file mode 100644
index 0000000..d9a3f0b
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGException.cpp
@@ -0,0 +1,1706 @@
+//===--- CGException.cpp - Emit LLVM Code for C++ exceptions --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code dealing with C++ exception related code generation.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenFunction.h"
+#include "CGCXXABI.h"
+#include "CGCleanup.h"
+#include "CGObjCRuntime.h"
+#include "TargetInfo.h"
+#include "clang/AST/Mangle.h"
+#include "clang/AST/StmtCXX.h"
+#include "clang/AST/StmtObjC.h"
+#include "clang/AST/StmtVisitor.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/Support/SaveAndRestore.h"
+
+using namespace clang;
+using namespace CodeGen;
+
+static llvm::Constant *getFreeExceptionFn(CodeGenModule &CGM) {
+ // void __cxa_free_exception(void *thrown_exception);
+
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(CGM.VoidTy, CGM.Int8PtrTy, /*IsVarArgs=*/false);
+
+ return CGM.CreateRuntimeFunction(FTy, "__cxa_free_exception");
+}
+
+static llvm::Constant *getUnexpectedFn(CodeGenModule &CGM) {
+ // void __cxa_call_unexpected(void *thrown_exception);
+
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(CGM.VoidTy, CGM.Int8PtrTy, /*IsVarArgs=*/false);
+
+ return CGM.CreateRuntimeFunction(FTy, "__cxa_call_unexpected");
+}
+
+llvm::Constant *CodeGenModule::getTerminateFn() {
+ // void __terminate();
+
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(VoidTy, /*IsVarArgs=*/false);
+
+ StringRef name;
+
+ // In C++, use std::terminate().
+ if (getLangOpts().CPlusPlus &&
+ getTarget().getCXXABI().isItaniumFamily()) {
+ name = "_ZSt9terminatev";
+ } else if (getLangOpts().CPlusPlus &&
+ getTarget().getCXXABI().isMicrosoft()) {
+ if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015))
+ name = "__std_terminate";
+ else
+ name = "\01?terminate@@YAXXZ";
+ } else if (getLangOpts().ObjC1 &&
+ getLangOpts().ObjCRuntime.hasTerminate())
+ name = "objc_terminate";
+ else
+ name = "abort";
+ return CreateRuntimeFunction(FTy, name);
+}
+
+static llvm::Constant *getCatchallRethrowFn(CodeGenModule &CGM,
+ StringRef Name) {
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(CGM.VoidTy, CGM.Int8PtrTy, /*IsVarArgs=*/false);
+
+ return CGM.CreateRuntimeFunction(FTy, Name);
+}
+
+namespace {
+ /// The exceptions personality for a function.
+ struct EHPersonality {
+ const char *PersonalityFn;
+
+ // If this is non-null, this personality requires a non-standard
+ // function for rethrowing an exception after a catchall cleanup.
+ // This function must have prototype void(void*).
+ const char *CatchallRethrowFn;
+
+ static const EHPersonality &get(CodeGenModule &CGM,
+ const FunctionDecl *FD);
+ static const EHPersonality &get(CodeGenFunction &CGF) {
+ return get(CGF.CGM, dyn_cast_or_null<FunctionDecl>(CGF.CurCodeDecl));
+ }
+
+ static const EHPersonality GNU_C;
+ static const EHPersonality GNU_C_SJLJ;
+ static const EHPersonality GNU_C_SEH;
+ static const EHPersonality GNU_ObjC;
+ static const EHPersonality GNUstep_ObjC;
+ static const EHPersonality GNU_ObjCXX;
+ static const EHPersonality NeXT_ObjC;
+ static const EHPersonality GNU_CPlusPlus;
+ static const EHPersonality GNU_CPlusPlus_SJLJ;
+ static const EHPersonality GNU_CPlusPlus_SEH;
+ static const EHPersonality MSVC_except_handler;
+ static const EHPersonality MSVC_C_specific_handler;
+ static const EHPersonality MSVC_CxxFrameHandler3;
+ };
+}
+
+const EHPersonality EHPersonality::GNU_C = { "__gcc_personality_v0", nullptr };
+const EHPersonality
+EHPersonality::GNU_C_SJLJ = { "__gcc_personality_sj0", nullptr };
+const EHPersonality
+EHPersonality::GNU_C_SEH = { "__gcc_personality_seh0", nullptr };
+const EHPersonality
+EHPersonality::NeXT_ObjC = { "__objc_personality_v0", nullptr };
+const EHPersonality
+EHPersonality::GNU_CPlusPlus = { "__gxx_personality_v0", nullptr };
+const EHPersonality
+EHPersonality::GNU_CPlusPlus_SJLJ = { "__gxx_personality_sj0", nullptr };
+const EHPersonality
+EHPersonality::GNU_CPlusPlus_SEH = { "__gxx_personality_seh0", nullptr };
+const EHPersonality
+EHPersonality::GNU_ObjC = {"__gnu_objc_personality_v0", "objc_exception_throw"};
+const EHPersonality
+EHPersonality::GNU_ObjCXX = { "__gnustep_objcxx_personality_v0", nullptr };
+const EHPersonality
+EHPersonality::GNUstep_ObjC = { "__gnustep_objc_personality_v0", nullptr };
+const EHPersonality
+EHPersonality::MSVC_except_handler = { "_except_handler3", nullptr };
+const EHPersonality
+EHPersonality::MSVC_C_specific_handler = { "__C_specific_handler", nullptr };
+const EHPersonality
+EHPersonality::MSVC_CxxFrameHandler3 = { "__CxxFrameHandler3", nullptr };
+
+/// On Win64, use libgcc's SEH personality function. We fall back to dwarf on
+/// other platforms, unless the user asked for SjLj exceptions.
+static bool useLibGCCSEHPersonality(const llvm::Triple &T) {
+ return T.isOSWindows() && T.getArch() == llvm::Triple::x86_64;
+}
+
+static const EHPersonality &getCPersonality(const llvm::Triple &T,
+ const LangOptions &L) {
+ if (L.SjLjExceptions)
+ return EHPersonality::GNU_C_SJLJ;
+ else if (useLibGCCSEHPersonality(T))
+ return EHPersonality::GNU_C_SEH;
+ return EHPersonality::GNU_C;
+}
+
+static const EHPersonality &getObjCPersonality(const llvm::Triple &T,
+ const LangOptions &L) {
+ switch (L.ObjCRuntime.getKind()) {
+ case ObjCRuntime::FragileMacOSX:
+ return getCPersonality(T, L);
+ case ObjCRuntime::MacOSX:
+ case ObjCRuntime::iOS:
+ return EHPersonality::NeXT_ObjC;
+ case ObjCRuntime::GNUstep:
+ if (L.ObjCRuntime.getVersion() >= VersionTuple(1, 7))
+ return EHPersonality::GNUstep_ObjC;
+ // fallthrough
+ case ObjCRuntime::GCC:
+ case ObjCRuntime::ObjFW:
+ return EHPersonality::GNU_ObjC;
+ }
+ llvm_unreachable("bad runtime kind");
+}
+
+static const EHPersonality &getCXXPersonality(const llvm::Triple &T,
+ const LangOptions &L) {
+ if (L.SjLjExceptions)
+ return EHPersonality::GNU_CPlusPlus_SJLJ;
+ else if (useLibGCCSEHPersonality(T))
+ return EHPersonality::GNU_CPlusPlus_SEH;
+ return EHPersonality::GNU_CPlusPlus;
+}
+
+/// Determines the personality function to use when both C++
+/// and Objective-C exceptions are being caught.
+static const EHPersonality &getObjCXXPersonality(const llvm::Triple &T,
+ const LangOptions &L) {
+ switch (L.ObjCRuntime.getKind()) {
+ // The ObjC personality defers to the C++ personality for non-ObjC
+ // handlers. Unlike the C++ case, we use the same personality
+ // function on targets using (backend-driven) SJLJ EH.
+ case ObjCRuntime::MacOSX:
+ case ObjCRuntime::iOS:
+ return EHPersonality::NeXT_ObjC;
+
+ // In the fragile ABI, just use C++ exception handling and hope
+ // they're not doing crazy exception mixing.
+ case ObjCRuntime::FragileMacOSX:
+ return getCXXPersonality(T, L);
+
+ // The GCC runtime's personality function inherently doesn't support
+ // mixed EH. Use the C++ personality just to avoid returning null.
+ case ObjCRuntime::GCC:
+ case ObjCRuntime::ObjFW: // XXX: this will change soon
+ return EHPersonality::GNU_ObjC;
+ case ObjCRuntime::GNUstep:
+ return EHPersonality::GNU_ObjCXX;
+ }
+ llvm_unreachable("bad runtime kind");
+}
+
+static const EHPersonality &getSEHPersonalityMSVC(const llvm::Triple &T) {
+ if (T.getArch() == llvm::Triple::x86)
+ return EHPersonality::MSVC_except_handler;
+ return EHPersonality::MSVC_C_specific_handler;
+}
+
+const EHPersonality &EHPersonality::get(CodeGenModule &CGM,
+ const FunctionDecl *FD) {
+ const llvm::Triple &T = CGM.getTarget().getTriple();
+ const LangOptions &L = CGM.getLangOpts();
+
+ // Try to pick a personality function that is compatible with MSVC if we're
+ // not compiling Obj-C. Obj-C users better have an Obj-C runtime that supports
+ // the GCC-style personality function.
+ if (T.isWindowsMSVCEnvironment() && !L.ObjC1) {
+ if (L.SjLjExceptions)
+ return EHPersonality::GNU_CPlusPlus_SJLJ;
+ else if (FD && FD->usesSEHTry())
+ return getSEHPersonalityMSVC(T);
+ else
+ return EHPersonality::MSVC_CxxFrameHandler3;
+ }
+
+ if (L.CPlusPlus && L.ObjC1)
+ return getObjCXXPersonality(T, L);
+ else if (L.CPlusPlus)
+ return getCXXPersonality(T, L);
+ else if (L.ObjC1)
+ return getObjCPersonality(T, L);
+ else
+ return getCPersonality(T, L);
+}
+
+static llvm::Constant *getPersonalityFn(CodeGenModule &CGM,
+ const EHPersonality &Personality) {
+ llvm::Constant *Fn =
+ CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.Int32Ty, true),
+ Personality.PersonalityFn);
+ return Fn;
+}
+
+static llvm::Constant *getOpaquePersonalityFn(CodeGenModule &CGM,
+ const EHPersonality &Personality) {
+ llvm::Constant *Fn = getPersonalityFn(CGM, Personality);
+ return llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy);
+}
+
+/// Check whether a personality function could reasonably be swapped
+/// for a C++ personality function.
+static bool PersonalityHasOnlyCXXUses(llvm::Constant *Fn) {
+ for (llvm::User *U : Fn->users()) {
+ // Conditionally white-list bitcasts.
+ if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(U)) {
+ if (CE->getOpcode() != llvm::Instruction::BitCast) return false;
+ if (!PersonalityHasOnlyCXXUses(CE))
+ return false;
+ continue;
+ }
+
+ // Otherwise, it has to be a landingpad instruction.
+ llvm::LandingPadInst *LPI = dyn_cast<llvm::LandingPadInst>(U);
+ if (!LPI) return false;
+
+ for (unsigned I = 0, E = LPI->getNumClauses(); I != E; ++I) {
+ // Look for something that would've been returned by the ObjC
+ // runtime's GetEHType() method.
+ llvm::Value *Val = LPI->getClause(I)->stripPointerCasts();
+ if (LPI->isCatch(I)) {
+ // Check if the catch value has the ObjC prefix.
+ if (llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Val))
+ // ObjC EH selector entries are always global variables with
+ // names starting like this.
+ if (GV->getName().startswith("OBJC_EHTYPE"))
+ return false;
+ } else {
+ // Check if any of the filter values have the ObjC prefix.
+ llvm::Constant *CVal = cast<llvm::Constant>(Val);
+ for (llvm::User::op_iterator
+ II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II) {
+ if (llvm::GlobalVariable *GV =
+ cast<llvm::GlobalVariable>((*II)->stripPointerCasts()))
+ // ObjC EH selector entries are always global variables with
+ // names starting like this.
+ if (GV->getName().startswith("OBJC_EHTYPE"))
+ return false;
+ }
+ }
+ }
+ }
+
+ return true;
+}
+
+/// Try to use the C++ personality function in ObjC++. Not doing this
+/// can cause some incompatibilities with gcc, which is more
+/// aggressive about only using the ObjC++ personality in a function
+/// when it really needs it.
+void CodeGenModule::SimplifyPersonality() {
+ // If we're not in ObjC++ -fexceptions, there's nothing to do.
+ if (!LangOpts.CPlusPlus || !LangOpts.ObjC1 || !LangOpts.Exceptions)
+ return;
+
+ // Both the problem this endeavors to fix and the way the logic
+ // above works is specific to the NeXT runtime.
+ if (!LangOpts.ObjCRuntime.isNeXTFamily())
+ return;
+
+ const EHPersonality &ObjCXX = EHPersonality::get(*this, /*FD=*/nullptr);
+ const EHPersonality &CXX =
+ getCXXPersonality(getTarget().getTriple(), LangOpts);
+ if (&ObjCXX == &CXX)
+ return;
+
+ assert(std::strcmp(ObjCXX.PersonalityFn, CXX.PersonalityFn) != 0 &&
+ "Different EHPersonalities using the same personality function.");
+
+ llvm::Function *Fn = getModule().getFunction(ObjCXX.PersonalityFn);
+
+ // Nothing to do if it's unused.
+ if (!Fn || Fn->use_empty()) return;
+
+ // Can't do the optimization if it has non-C++ uses.
+ if (!PersonalityHasOnlyCXXUses(Fn)) return;
+
+ // Create the C++ personality function and kill off the old
+ // function.
+ llvm::Constant *CXXFn = getPersonalityFn(*this, CXX);
+
+ // This can happen if the user is screwing with us.
+ if (Fn->getType() != CXXFn->getType()) return;
+
+ Fn->replaceAllUsesWith(CXXFn);
+ Fn->eraseFromParent();
+}
+
+/// Returns the value to inject into a selector to indicate the
+/// presence of a catch-all.
+static llvm::Constant *getCatchAllValue(CodeGenFunction &CGF) {
+ // Possibly we should use @llvm.eh.catch.all.value here.
+ return llvm::ConstantPointerNull::get(CGF.Int8PtrTy);
+}
+
+namespace {
+ /// A cleanup to free the exception object if its initialization
+ /// throws.
+ struct FreeException : EHScopeStack::Cleanup {
+ llvm::Value *exn;
+ FreeException(llvm::Value *exn) : exn(exn) {}
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ CGF.EmitNounwindRuntimeCall(getFreeExceptionFn(CGF.CGM), exn);
+ }
+ };
+}
+
+// Emits an exception expression into the given location. This
+// differs from EmitAnyExprToMem only in that, if a final copy-ctor
+// call is required, an exception within that copy ctor causes
+// std::terminate to be invoked.
+void CodeGenFunction::EmitAnyExprToExn(const Expr *e, llvm::Value *addr) {
+ // Make sure the exception object is cleaned up if there's an
+ // exception during initialization.
+ pushFullExprCleanup<FreeException>(EHCleanup, addr);
+ EHScopeStack::stable_iterator cleanup = EHStack.stable_begin();
+
+ // __cxa_allocate_exception returns a void*; we need to cast this
+ // to the appropriate type for the object.
+ llvm::Type *ty = ConvertTypeForMem(e->getType())->getPointerTo();
+ llvm::Value *typedAddr = Builder.CreateBitCast(addr, ty);
+
+ // FIXME: this isn't quite right! If there's a final unelided call
+ // to a copy constructor, then according to [except.terminate]p1 we
+ // must call std::terminate() if that constructor throws, because
+ // technically that copy occurs after the exception expression is
+ // evaluated but before the exception is caught. But the best way
+ // to handle that is to teach EmitAggExpr to do the final copy
+ // differently if it can't be elided.
+ EmitAnyExprToMem(e, typedAddr, e->getType().getQualifiers(),
+ /*IsInit*/ true);
+
+ // Deactivate the cleanup block.
+ DeactivateCleanupBlock(cleanup, cast<llvm::Instruction>(typedAddr));
+}
+
+llvm::Value *CodeGenFunction::getExceptionSlot() {
+ if (!ExceptionSlot)
+ ExceptionSlot = CreateTempAlloca(Int8PtrTy, "exn.slot");
+ return ExceptionSlot;
+}
+
+llvm::Value *CodeGenFunction::getEHSelectorSlot() {
+ if (!EHSelectorSlot)
+ EHSelectorSlot = CreateTempAlloca(Int32Ty, "ehselector.slot");
+ return EHSelectorSlot;
+}
+
+llvm::Value *CodeGenFunction::getExceptionFromSlot() {
+ return Builder.CreateLoad(getExceptionSlot(), "exn");
+}
+
+llvm::Value *CodeGenFunction::getSelectorFromSlot() {
+ return Builder.CreateLoad(getEHSelectorSlot(), "sel");
+}
+
+void CodeGenFunction::EmitCXXThrowExpr(const CXXThrowExpr *E,
+ bool KeepInsertionPoint) {
+ if (const Expr *SubExpr = E->getSubExpr()) {
+ QualType ThrowType = SubExpr->getType();
+ if (ThrowType->isObjCObjectPointerType()) {
+ const Stmt *ThrowStmt = E->getSubExpr();
+ const ObjCAtThrowStmt S(E->getExprLoc(), const_cast<Stmt *>(ThrowStmt));
+ CGM.getObjCRuntime().EmitThrowStmt(*this, S, false);
+ } else {
+ CGM.getCXXABI().emitThrow(*this, E);
+ }
+ } else {
+ CGM.getCXXABI().emitRethrow(*this, /*isNoReturn=*/true);
+ }
+
+ // throw is an expression, and the expression emitters expect us
+ // to leave ourselves at a valid insertion point.
+ if (KeepInsertionPoint)
+ EmitBlock(createBasicBlock("throw.cont"));
+}
+
+void CodeGenFunction::EmitStartEHSpec(const Decl *D) {
+ if (!CGM.getLangOpts().CXXExceptions)
+ return;
+
+ const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D);
+ if (!FD) {
+ // Check if CapturedDecl is nothrow and create terminate scope for it.
+ if (const CapturedDecl* CD = dyn_cast_or_null<CapturedDecl>(D)) {
+ if (CD->isNothrow())
+ EHStack.pushTerminate();
+ }
+ return;
+ }
+ const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>();
+ if (!Proto)
+ return;
+
+ ExceptionSpecificationType EST = Proto->getExceptionSpecType();
+ if (isNoexceptExceptionSpec(EST)) {
+ if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) {
+ // noexcept functions are simple terminate scopes.
+ EHStack.pushTerminate();
+ }
+ } else if (EST == EST_Dynamic || EST == EST_DynamicNone) {
+ // TODO: Revisit exception specifications for the MS ABI. There is a way to
+ // encode these in an object file but MSVC doesn't do anything with it.
+ if (getTarget().getCXXABI().isMicrosoft())
+ return;
+ unsigned NumExceptions = Proto->getNumExceptions();
+ EHFilterScope *Filter = EHStack.pushFilter(NumExceptions);
+
+ for (unsigned I = 0; I != NumExceptions; ++I) {
+ QualType Ty = Proto->getExceptionType(I);
+ QualType ExceptType = Ty.getNonReferenceType().getUnqualifiedType();
+ llvm::Value *EHType = CGM.GetAddrOfRTTIDescriptor(ExceptType,
+ /*ForEH=*/true);
+ Filter->setFilter(I, EHType);
+ }
+ }
+}
+
+/// Emit the dispatch block for a filter scope if necessary.
+static void emitFilterDispatchBlock(CodeGenFunction &CGF,
+ EHFilterScope &filterScope) {
+ llvm::BasicBlock *dispatchBlock = filterScope.getCachedEHDispatchBlock();
+ if (!dispatchBlock) return;
+ if (dispatchBlock->use_empty()) {
+ delete dispatchBlock;
+ return;
+ }
+
+ CGF.EmitBlockAfterUses(dispatchBlock);
+
+ // If this isn't a catch-all filter, we need to check whether we got
+ // here because the filter triggered.
+ if (filterScope.getNumFilters()) {
+ // Load the selector value.
+ llvm::Value *selector = CGF.getSelectorFromSlot();
+ llvm::BasicBlock *unexpectedBB = CGF.createBasicBlock("ehspec.unexpected");
+
+ llvm::Value *zero = CGF.Builder.getInt32(0);
+ llvm::Value *failsFilter =
+ CGF.Builder.CreateICmpSLT(selector, zero, "ehspec.fails");
+ CGF.Builder.CreateCondBr(failsFilter, unexpectedBB,
+ CGF.getEHResumeBlock(false));
+
+ CGF.EmitBlock(unexpectedBB);
+ }
+
+ // Call __cxa_call_unexpected. This doesn't need to be an invoke
+ // because __cxa_call_unexpected magically filters exceptions
+ // according to the last landing pad the exception was thrown
+ // into. Seriously.
+ llvm::Value *exn = CGF.getExceptionFromSlot();
+ CGF.EmitRuntimeCall(getUnexpectedFn(CGF.CGM), exn)
+ ->setDoesNotReturn();
+ CGF.Builder.CreateUnreachable();
+}
+
+void CodeGenFunction::EmitEndEHSpec(const Decl *D) {
+ if (!CGM.getLangOpts().CXXExceptions)
+ return;
+
+ const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D);
+ if (!FD) {
+ // Check if CapturedDecl is nothrow and pop terminate scope for it.
+ if (const CapturedDecl* CD = dyn_cast_or_null<CapturedDecl>(D)) {
+ if (CD->isNothrow())
+ EHStack.popTerminate();
+ }
+ return;
+ }
+ const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>();
+ if (!Proto)
+ return;
+
+ ExceptionSpecificationType EST = Proto->getExceptionSpecType();
+ if (isNoexceptExceptionSpec(EST)) {
+ if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) {
+ EHStack.popTerminate();
+ }
+ } else if (EST == EST_Dynamic || EST == EST_DynamicNone) {
+ // TODO: Revisit exception specifications for the MS ABI. There is a way to
+ // encode these in an object file but MSVC doesn't do anything with it.
+ if (getTarget().getCXXABI().isMicrosoft())
+ return;
+ EHFilterScope &filterScope = cast<EHFilterScope>(*EHStack.begin());
+ emitFilterDispatchBlock(*this, filterScope);
+ EHStack.popFilter();
+ }
+}
+
+void CodeGenFunction::EmitCXXTryStmt(const CXXTryStmt &S) {
+ EnterCXXTryStmt(S);
+ EmitStmt(S.getTryBlock());
+ ExitCXXTryStmt(S);
+}
+
+void CodeGenFunction::EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) {
+ unsigned NumHandlers = S.getNumHandlers();
+ EHCatchScope *CatchScope = EHStack.pushCatch(NumHandlers);
+
+ for (unsigned I = 0; I != NumHandlers; ++I) {
+ const CXXCatchStmt *C = S.getHandler(I);
+
+ llvm::BasicBlock *Handler = createBasicBlock("catch");
+ if (C->getExceptionDecl()) {
+ // FIXME: Dropping the reference type on the type into makes it
+ // impossible to correctly implement catch-by-reference
+ // semantics for pointers. Unfortunately, this is what all
+ // existing compilers do, and it's not clear that the standard
+ // personality routine is capable of doing this right. See C++ DR 388:
+ // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#388
+ Qualifiers CaughtTypeQuals;
+ QualType CaughtType = CGM.getContext().getUnqualifiedArrayType(
+ C->getCaughtType().getNonReferenceType(), CaughtTypeQuals);
+
+ llvm::Constant *TypeInfo = nullptr;
+ if (CaughtType->isObjCObjectPointerType())
+ TypeInfo = CGM.getObjCRuntime().GetEHType(CaughtType);
+ else
+ TypeInfo =
+ CGM.getAddrOfCXXCatchHandlerType(CaughtType, C->getCaughtType());
+ CatchScope->setHandler(I, TypeInfo, Handler);
+ } else {
+ // No exception decl indicates '...', a catch-all.
+ CatchScope->setCatchAllHandler(I, Handler);
+ }
+ }
+}
+
+llvm::BasicBlock *
+CodeGenFunction::getEHDispatchBlock(EHScopeStack::stable_iterator si) {
+ // The dispatch block for the end of the scope chain is a block that
+ // just resumes unwinding.
+ if (si == EHStack.stable_end())
+ return getEHResumeBlock(true);
+
+ // Otherwise, we should look at the actual scope.
+ EHScope &scope = *EHStack.find(si);
+
+ llvm::BasicBlock *dispatchBlock = scope.getCachedEHDispatchBlock();
+ if (!dispatchBlock) {
+ switch (scope.getKind()) {
+ case EHScope::Catch: {
+ // Apply a special case to a single catch-all.
+ EHCatchScope &catchScope = cast<EHCatchScope>(scope);
+ if (catchScope.getNumHandlers() == 1 &&
+ catchScope.getHandler(0).isCatchAll()) {
+ dispatchBlock = catchScope.getHandler(0).Block;
+
+ // Otherwise, make a dispatch block.
+ } else {
+ dispatchBlock = createBasicBlock("catch.dispatch");
+ }
+ break;
+ }
+
+ case EHScope::Cleanup:
+ dispatchBlock = createBasicBlock("ehcleanup");
+ break;
+
+ case EHScope::Filter:
+ dispatchBlock = createBasicBlock("filter.dispatch");
+ break;
+
+ case EHScope::Terminate:
+ dispatchBlock = getTerminateHandler();
+ break;
+ }
+ scope.setCachedEHDispatchBlock(dispatchBlock);
+ }
+ return dispatchBlock;
+}
+
+/// Check whether this is a non-EH scope, i.e. a scope which doesn't
+/// affect exception handling. Currently, the only non-EH scopes are
+/// normal-only cleanup scopes.
+static bool isNonEHScope(const EHScope &S) {
+ switch (S.getKind()) {
+ case EHScope::Cleanup:
+ return !cast<EHCleanupScope>(S).isEHCleanup();
+ case EHScope::Filter:
+ case EHScope::Catch:
+ case EHScope::Terminate:
+ return false;
+ }
+
+ llvm_unreachable("Invalid EHScope Kind!");
+}
+
+llvm::BasicBlock *CodeGenFunction::getInvokeDestImpl() {
+ assert(EHStack.requiresLandingPad());
+ assert(!EHStack.empty());
+
+ // If exceptions are disabled, there are usually no landingpads. However, when
+ // SEH is enabled, functions using SEH still get landingpads.
+ const LangOptions &LO = CGM.getLangOpts();
+ if (!LO.Exceptions) {
+ if (!LO.Borland && !LO.MicrosoftExt)
+ return nullptr;
+ if (!currentFunctionUsesSEHTry())
+ return nullptr;
+ }
+
+ // Check the innermost scope for a cached landing pad. If this is
+ // a non-EH cleanup, we'll check enclosing scopes in EmitLandingPad.
+ llvm::BasicBlock *LP = EHStack.begin()->getCachedLandingPad();
+ if (LP) return LP;
+
+ // Build the landing pad for this scope.
+ LP = EmitLandingPad();
+ assert(LP);
+
+ // Cache the landing pad on the innermost scope. If this is a
+ // non-EH scope, cache the landing pad on the enclosing scope, too.
+ for (EHScopeStack::iterator ir = EHStack.begin(); true; ++ir) {
+ ir->setCachedLandingPad(LP);
+ if (!isNonEHScope(*ir)) break;
+ }
+
+ return LP;
+}
+
+llvm::BasicBlock *CodeGenFunction::EmitLandingPad() {
+ assert(EHStack.requiresLandingPad());
+
+ EHScope &innermostEHScope = *EHStack.find(EHStack.getInnermostEHScope());
+ switch (innermostEHScope.getKind()) {
+ case EHScope::Terminate:
+ return getTerminateLandingPad();
+
+ case EHScope::Catch:
+ case EHScope::Cleanup:
+ case EHScope::Filter:
+ if (llvm::BasicBlock *lpad = innermostEHScope.getCachedLandingPad())
+ return lpad;
+ }
+
+ // Save the current IR generation state.
+ CGBuilderTy::InsertPoint savedIP = Builder.saveAndClearIP();
+ auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, CurEHLocation);
+
+ const EHPersonality &personality = EHPersonality::get(*this);
+
+ // Create and configure the landing pad.
+ llvm::BasicBlock *lpad = createBasicBlock("lpad");
+ EmitBlock(lpad);
+
+ llvm::LandingPadInst *LPadInst =
+ Builder.CreateLandingPad(llvm::StructType::get(Int8PtrTy, Int32Ty, nullptr),
+ getOpaquePersonalityFn(CGM, personality), 0);
+
+ llvm::Value *LPadExn = Builder.CreateExtractValue(LPadInst, 0);
+ Builder.CreateStore(LPadExn, getExceptionSlot());
+ llvm::Value *LPadSel = Builder.CreateExtractValue(LPadInst, 1);
+ Builder.CreateStore(LPadSel, getEHSelectorSlot());
+
+ // Save the exception pointer. It's safe to use a single exception
+ // pointer per function because EH cleanups can never have nested
+ // try/catches.
+ // Build the landingpad instruction.
+
+ // Accumulate all the handlers in scope.
+ bool hasCatchAll = false;
+ bool hasCleanup = false;
+ bool hasFilter = false;
+ SmallVector<llvm::Value*, 4> filterTypes;
+ llvm::SmallPtrSet<llvm::Value*, 4> catchTypes;
+ for (EHScopeStack::iterator I = EHStack.begin(), E = EHStack.end(); I != E;
+ ++I) {
+
+ switch (I->getKind()) {
+ case EHScope::Cleanup:
+ // If we have a cleanup, remember that.
+ hasCleanup = (hasCleanup || cast<EHCleanupScope>(*I).isEHCleanup());
+ continue;
+
+ case EHScope::Filter: {
+ assert(I.next() == EHStack.end() && "EH filter is not end of EH stack");
+ assert(!hasCatchAll && "EH filter reached after catch-all");
+
+ // Filter scopes get added to the landingpad in weird ways.
+ EHFilterScope &filter = cast<EHFilterScope>(*I);
+ hasFilter = true;
+
+ // Add all the filter values.
+ for (unsigned i = 0, e = filter.getNumFilters(); i != e; ++i)
+ filterTypes.push_back(filter.getFilter(i));
+ goto done;
+ }
+
+ case EHScope::Terminate:
+ // Terminate scopes are basically catch-alls.
+ assert(!hasCatchAll);
+ hasCatchAll = true;
+ goto done;
+
+ case EHScope::Catch:
+ break;
+ }
+
+ EHCatchScope &catchScope = cast<EHCatchScope>(*I);
+ for (unsigned hi = 0, he = catchScope.getNumHandlers(); hi != he; ++hi) {
+ EHCatchScope::Handler handler = catchScope.getHandler(hi);
+
+ // If this is a catch-all, register that and abort.
+ if (!handler.Type) {
+ assert(!hasCatchAll);
+ hasCatchAll = true;
+ goto done;
+ }
+
+ // Check whether we already have a handler for this type.
+ if (catchTypes.insert(handler.Type).second)
+ // If not, add it directly to the landingpad.
+ LPadInst->addClause(handler.Type);
+ }
+ }
+
+ done:
+ // If we have a catch-all, add null to the landingpad.
+ assert(!(hasCatchAll && hasFilter));
+ if (hasCatchAll) {
+ LPadInst->addClause(getCatchAllValue(*this));
+
+ // If we have an EH filter, we need to add those handlers in the
+ // right place in the landingpad, which is to say, at the end.
+ } else if (hasFilter) {
+ // Create a filter expression: a constant array indicating which filter
+ // types there are. The personality routine only lands here if the filter
+ // doesn't match.
+ SmallVector<llvm::Constant*, 8> Filters;
+ llvm::ArrayType *AType =
+ llvm::ArrayType::get(!filterTypes.empty() ?
+ filterTypes[0]->getType() : Int8PtrTy,
+ filterTypes.size());
+
+ for (unsigned i = 0, e = filterTypes.size(); i != e; ++i)
+ Filters.push_back(cast<llvm::Constant>(filterTypes[i]));
+ llvm::Constant *FilterArray = llvm::ConstantArray::get(AType, Filters);
+ LPadInst->addClause(FilterArray);
+
+ // Also check whether we need a cleanup.
+ if (hasCleanup)
+ LPadInst->setCleanup(true);
+
+ // Otherwise, signal that we at least have cleanups.
+ } else if (hasCleanup) {
+ LPadInst->setCleanup(true);
+ }
+
+ assert((LPadInst->getNumClauses() > 0 || LPadInst->isCleanup()) &&
+ "landingpad instruction has no clauses!");
+
+ // Tell the backend how to generate the landing pad.
+ Builder.CreateBr(getEHDispatchBlock(EHStack.getInnermostEHScope()));
+
+ // Restore the old IR generation state.
+ Builder.restoreIP(savedIP);
+
+ return lpad;
+}
+
+/// Emit the structure of the dispatch block for the given catch scope.
+/// It is an invariant that the dispatch block already exists.
+static void emitCatchDispatchBlock(CodeGenFunction &CGF,
+ EHCatchScope &catchScope) {
+ llvm::BasicBlock *dispatchBlock = catchScope.getCachedEHDispatchBlock();
+ assert(dispatchBlock);
+
+ // If there's only a single catch-all, getEHDispatchBlock returned
+ // that catch-all as the dispatch block.
+ if (catchScope.getNumHandlers() == 1 &&
+ catchScope.getHandler(0).isCatchAll()) {
+ assert(dispatchBlock == catchScope.getHandler(0).Block);
+ return;
+ }
+
+ CGBuilderTy::InsertPoint savedIP = CGF.Builder.saveIP();
+ CGF.EmitBlockAfterUses(dispatchBlock);
+
+ // Select the right handler.
+ llvm::Value *llvm_eh_typeid_for =
+ CGF.CGM.getIntrinsic(llvm::Intrinsic::eh_typeid_for);
+
+ // Load the selector value.
+ llvm::Value *selector = CGF.getSelectorFromSlot();
+
+ // Test against each of the exception types we claim to catch.
+ for (unsigned i = 0, e = catchScope.getNumHandlers(); ; ++i) {
+ assert(i < e && "ran off end of handlers!");
+ const EHCatchScope::Handler &handler = catchScope.getHandler(i);
+
+ llvm::Value *typeValue = handler.Type;
+ assert(typeValue && "fell into catch-all case!");
+ typeValue = CGF.Builder.CreateBitCast(typeValue, CGF.Int8PtrTy);
+
+ // Figure out the next block.
+ bool nextIsEnd;
+ llvm::BasicBlock *nextBlock;
+
+ // If this is the last handler, we're at the end, and the next
+ // block is the block for the enclosing EH scope.
+ if (i + 1 == e) {
+ nextBlock = CGF.getEHDispatchBlock(catchScope.getEnclosingEHScope());
+ nextIsEnd = true;
+
+ // If the next handler is a catch-all, we're at the end, and the
+ // next block is that handler.
+ } else if (catchScope.getHandler(i+1).isCatchAll()) {
+ nextBlock = catchScope.getHandler(i+1).Block;
+ nextIsEnd = true;
+
+ // Otherwise, we're not at the end and we need a new block.
+ } else {
+ nextBlock = CGF.createBasicBlock("catch.fallthrough");
+ nextIsEnd = false;
+ }
+
+ // Figure out the catch type's index in the LSDA's type table.
+ llvm::CallInst *typeIndex =
+ CGF.Builder.CreateCall(llvm_eh_typeid_for, typeValue);
+ typeIndex->setDoesNotThrow();
+
+ llvm::Value *matchesTypeIndex =
+ CGF.Builder.CreateICmpEQ(selector, typeIndex, "matches");
+ CGF.Builder.CreateCondBr(matchesTypeIndex, handler.Block, nextBlock);
+
+ // If the next handler is a catch-all, we're completely done.
+ if (nextIsEnd) {
+ CGF.Builder.restoreIP(savedIP);
+ return;
+ }
+ // Otherwise we need to emit and continue at that block.
+ CGF.EmitBlock(nextBlock);
+ }
+}
+
+void CodeGenFunction::popCatchScope() {
+ EHCatchScope &catchScope = cast<EHCatchScope>(*EHStack.begin());
+ if (catchScope.hasEHBranches())
+ emitCatchDispatchBlock(*this, catchScope);
+ EHStack.popCatch();
+}
+
+void CodeGenFunction::ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) {
+ unsigned NumHandlers = S.getNumHandlers();
+ EHCatchScope &CatchScope = cast<EHCatchScope>(*EHStack.begin());
+ assert(CatchScope.getNumHandlers() == NumHandlers);
+
+ // If the catch was not required, bail out now.
+ if (!CatchScope.hasEHBranches()) {
+ CatchScope.clearHandlerBlocks();
+ EHStack.popCatch();
+ return;
+ }
+
+ // Emit the structure of the EH dispatch for this catch.
+ emitCatchDispatchBlock(*this, CatchScope);
+
+ // Copy the handler blocks off before we pop the EH stack. Emitting
+ // the handlers might scribble on this memory.
+ SmallVector<EHCatchScope::Handler, 8> Handlers(NumHandlers);
+ memcpy(Handlers.data(), CatchScope.begin(),
+ NumHandlers * sizeof(EHCatchScope::Handler));
+
+ EHStack.popCatch();
+
+ // The fall-through block.
+ llvm::BasicBlock *ContBB = createBasicBlock("try.cont");
+
+ // We just emitted the body of the try; jump to the continue block.
+ if (HaveInsertPoint())
+ Builder.CreateBr(ContBB);
+
+ // Determine if we need an implicit rethrow for all these catch handlers;
+ // see the comment below.
+ bool doImplicitRethrow = false;
+ if (IsFnTryBlock)
+ doImplicitRethrow = isa<CXXDestructorDecl>(CurCodeDecl) ||
+ isa<CXXConstructorDecl>(CurCodeDecl);
+
+ // Perversely, we emit the handlers backwards precisely because we
+ // want them to appear in source order. In all of these cases, the
+ // catch block will have exactly one predecessor, which will be a
+ // particular block in the catch dispatch. However, in the case of
+ // a catch-all, one of the dispatch blocks will branch to two
+ // different handlers, and EmitBlockAfterUses will cause the second
+ // handler to be moved before the first.
+ for (unsigned I = NumHandlers; I != 0; --I) {
+ llvm::BasicBlock *CatchBlock = Handlers[I-1].Block;
+ EmitBlockAfterUses(CatchBlock);
+
+ // Catch the exception if this isn't a catch-all.
+ const CXXCatchStmt *C = S.getHandler(I-1);
+
+ // Enter a cleanup scope, including the catch variable and the
+ // end-catch.
+ RunCleanupsScope CatchScope(*this);
+
+ // Initialize the catch variable and set up the cleanups.
+ CGM.getCXXABI().emitBeginCatch(*this, C);
+
+ // Emit the PGO counter increment.
+ incrementProfileCounter(C);
+
+ // Perform the body of the catch.
+ EmitStmt(C->getHandlerBlock());
+
+ // [except.handle]p11:
+ // The currently handled exception is rethrown if control
+ // reaches the end of a handler of the function-try-block of a
+ // constructor or destructor.
+
+ // It is important that we only do this on fallthrough and not on
+ // return. Note that it's illegal to put a return in a
+ // constructor function-try-block's catch handler (p14), so this
+ // really only applies to destructors.
+ if (doImplicitRethrow && HaveInsertPoint()) {
+ CGM.getCXXABI().emitRethrow(*this, /*isNoReturn*/false);
+ Builder.CreateUnreachable();
+ Builder.ClearInsertionPoint();
+ }
+
+ // Fall out through the catch cleanups.
+ CatchScope.ForceCleanup();
+
+ // Branch out of the try.
+ if (HaveInsertPoint())
+ Builder.CreateBr(ContBB);
+ }
+
+ EmitBlock(ContBB);
+ incrementProfileCounter(&S);
+}
+
+namespace {
+ struct CallEndCatchForFinally : EHScopeStack::Cleanup {
+ llvm::Value *ForEHVar;
+ llvm::Value *EndCatchFn;
+ CallEndCatchForFinally(llvm::Value *ForEHVar, llvm::Value *EndCatchFn)
+ : ForEHVar(ForEHVar), EndCatchFn(EndCatchFn) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ llvm::BasicBlock *EndCatchBB = CGF.createBasicBlock("finally.endcatch");
+ llvm::BasicBlock *CleanupContBB =
+ CGF.createBasicBlock("finally.cleanup.cont");
+
+ llvm::Value *ShouldEndCatch =
+ CGF.Builder.CreateLoad(ForEHVar, "finally.endcatch");
+ CGF.Builder.CreateCondBr(ShouldEndCatch, EndCatchBB, CleanupContBB);
+ CGF.EmitBlock(EndCatchBB);
+ CGF.EmitRuntimeCallOrInvoke(EndCatchFn); // catch-all, so might throw
+ CGF.EmitBlock(CleanupContBB);
+ }
+ };
+
+ struct PerformFinally : EHScopeStack::Cleanup {
+ const Stmt *Body;
+ llvm::Value *ForEHVar;
+ llvm::Value *EndCatchFn;
+ llvm::Value *RethrowFn;
+ llvm::Value *SavedExnVar;
+
+ PerformFinally(const Stmt *Body, llvm::Value *ForEHVar,
+ llvm::Value *EndCatchFn,
+ llvm::Value *RethrowFn, llvm::Value *SavedExnVar)
+ : Body(Body), ForEHVar(ForEHVar), EndCatchFn(EndCatchFn),
+ RethrowFn(RethrowFn), SavedExnVar(SavedExnVar) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ // Enter a cleanup to call the end-catch function if one was provided.
+ if (EndCatchFn)
+ CGF.EHStack.pushCleanup<CallEndCatchForFinally>(NormalAndEHCleanup,
+ ForEHVar, EndCatchFn);
+
+ // Save the current cleanup destination in case there are
+ // cleanups in the finally block.
+ llvm::Value *SavedCleanupDest =
+ CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot(),
+ "cleanup.dest.saved");
+
+ // Emit the finally block.
+ CGF.EmitStmt(Body);
+
+ // If the end of the finally is reachable, check whether this was
+ // for EH. If so, rethrow.
+ if (CGF.HaveInsertPoint()) {
+ llvm::BasicBlock *RethrowBB = CGF.createBasicBlock("finally.rethrow");
+ llvm::BasicBlock *ContBB = CGF.createBasicBlock("finally.cont");
+
+ llvm::Value *ShouldRethrow =
+ CGF.Builder.CreateLoad(ForEHVar, "finally.shouldthrow");
+ CGF.Builder.CreateCondBr(ShouldRethrow, RethrowBB, ContBB);
+
+ CGF.EmitBlock(RethrowBB);
+ if (SavedExnVar) {
+ CGF.EmitRuntimeCallOrInvoke(RethrowFn,
+ CGF.Builder.CreateLoad(SavedExnVar));
+ } else {
+ CGF.EmitRuntimeCallOrInvoke(RethrowFn);
+ }
+ CGF.Builder.CreateUnreachable();
+
+ CGF.EmitBlock(ContBB);
+
+ // Restore the cleanup destination.
+ CGF.Builder.CreateStore(SavedCleanupDest,
+ CGF.getNormalCleanupDestSlot());
+ }
+
+ // Leave the end-catch cleanup. As an optimization, pretend that
+ // the fallthrough path was inaccessible; we've dynamically proven
+ // that we're not in the EH case along that path.
+ if (EndCatchFn) {
+ CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP();
+ CGF.PopCleanupBlock();
+ CGF.Builder.restoreIP(SavedIP);
+ }
+
+ // Now make sure we actually have an insertion point or the
+ // cleanup gods will hate us.
+ CGF.EnsureInsertPoint();
+ }
+ };
+}
+
+/// Enters a finally block for an implementation using zero-cost
+/// exceptions. This is mostly general, but hard-codes some
+/// language/ABI-specific behavior in the catch-all sections.
+void CodeGenFunction::FinallyInfo::enter(CodeGenFunction &CGF,
+ const Stmt *body,
+ llvm::Constant *beginCatchFn,
+ llvm::Constant *endCatchFn,
+ llvm::Constant *rethrowFn) {
+ assert((beginCatchFn != nullptr) == (endCatchFn != nullptr) &&
+ "begin/end catch functions not paired");
+ assert(rethrowFn && "rethrow function is required");
+
+ BeginCatchFn = beginCatchFn;
+
+ // The rethrow function has one of the following two types:
+ // void (*)()
+ // void (*)(void*)
+ // In the latter case we need to pass it the exception object.
+ // But we can't use the exception slot because the @finally might
+ // have a landing pad (which would overwrite the exception slot).
+ llvm::FunctionType *rethrowFnTy =
+ cast<llvm::FunctionType>(
+ cast<llvm::PointerType>(rethrowFn->getType())->getElementType());
+ SavedExnVar = nullptr;
+ if (rethrowFnTy->getNumParams())
+ SavedExnVar = CGF.CreateTempAlloca(CGF.Int8PtrTy, "finally.exn");
+
+ // A finally block is a statement which must be executed on any edge
+ // out of a given scope. Unlike a cleanup, the finally block may
+ // contain arbitrary control flow leading out of itself. In
+ // addition, finally blocks should always be executed, even if there
+ // are no catch handlers higher on the stack. Therefore, we
+ // surround the protected scope with a combination of a normal
+ // cleanup (to catch attempts to break out of the block via normal
+ // control flow) and an EH catch-all (semantically "outside" any try
+ // statement to which the finally block might have been attached).
+ // The finally block itself is generated in the context of a cleanup
+ // which conditionally leaves the catch-all.
+
+ // Jump destination for performing the finally block on an exception
+ // edge. We'll never actually reach this block, so unreachable is
+ // fine.
+ RethrowDest = CGF.getJumpDestInCurrentScope(CGF.getUnreachableBlock());
+
+ // Whether the finally block is being executed for EH purposes.
+ ForEHVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), "finally.for-eh");
+ CGF.Builder.CreateStore(CGF.Builder.getFalse(), ForEHVar);
+
+ // Enter a normal cleanup which will perform the @finally block.
+ CGF.EHStack.pushCleanup<PerformFinally>(NormalCleanup, body,
+ ForEHVar, endCatchFn,
+ rethrowFn, SavedExnVar);
+
+ // Enter a catch-all scope.
+ llvm::BasicBlock *catchBB = CGF.createBasicBlock("finally.catchall");
+ EHCatchScope *catchScope = CGF.EHStack.pushCatch(1);
+ catchScope->setCatchAllHandler(0, catchBB);
+}
+
+void CodeGenFunction::FinallyInfo::exit(CodeGenFunction &CGF) {
+ // Leave the finally catch-all.
+ EHCatchScope &catchScope = cast<EHCatchScope>(*CGF.EHStack.begin());
+ llvm::BasicBlock *catchBB = catchScope.getHandler(0).Block;
+
+ CGF.popCatchScope();
+
+ // If there are any references to the catch-all block, emit it.
+ if (catchBB->use_empty()) {
+ delete catchBB;
+ } else {
+ CGBuilderTy::InsertPoint savedIP = CGF.Builder.saveAndClearIP();
+ CGF.EmitBlock(catchBB);
+
+ llvm::Value *exn = nullptr;
+
+ // If there's a begin-catch function, call it.
+ if (BeginCatchFn) {
+ exn = CGF.getExceptionFromSlot();
+ CGF.EmitNounwindRuntimeCall(BeginCatchFn, exn);
+ }
+
+ // If we need to remember the exception pointer to rethrow later, do so.
+ if (SavedExnVar) {
+ if (!exn) exn = CGF.getExceptionFromSlot();
+ CGF.Builder.CreateStore(exn, SavedExnVar);
+ }
+
+ // Tell the cleanups in the finally block that we're do this for EH.
+ CGF.Builder.CreateStore(CGF.Builder.getTrue(), ForEHVar);
+
+ // Thread a jump through the finally cleanup.
+ CGF.EmitBranchThroughCleanup(RethrowDest);
+
+ CGF.Builder.restoreIP(savedIP);
+ }
+
+ // Finally, leave the @finally cleanup.
+ CGF.PopCleanupBlock();
+}
+
+llvm::BasicBlock *CodeGenFunction::getTerminateLandingPad() {
+ if (TerminateLandingPad)
+ return TerminateLandingPad;
+
+ CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
+
+ // This will get inserted at the end of the function.
+ TerminateLandingPad = createBasicBlock("terminate.lpad");
+ Builder.SetInsertPoint(TerminateLandingPad);
+
+ // Tell the backend that this is a landing pad.
+ const EHPersonality &Personality = EHPersonality::get(*this);
+ llvm::LandingPadInst *LPadInst =
+ Builder.CreateLandingPad(llvm::StructType::get(Int8PtrTy, Int32Ty, nullptr),
+ getOpaquePersonalityFn(CGM, Personality), 0);
+ LPadInst->addClause(getCatchAllValue(*this));
+
+ llvm::Value *Exn = 0;
+ if (getLangOpts().CPlusPlus)
+ Exn = Builder.CreateExtractValue(LPadInst, 0);
+ llvm::CallInst *terminateCall =
+ CGM.getCXXABI().emitTerminateForUnexpectedException(*this, Exn);
+ terminateCall->setDoesNotReturn();
+ Builder.CreateUnreachable();
+
+ // Restore the saved insertion state.
+ Builder.restoreIP(SavedIP);
+
+ return TerminateLandingPad;
+}
+
+llvm::BasicBlock *CodeGenFunction::getTerminateHandler() {
+ if (TerminateHandler)
+ return TerminateHandler;
+
+ CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
+
+ // Set up the terminate handler. This block is inserted at the very
+ // end of the function by FinishFunction.
+ TerminateHandler = createBasicBlock("terminate.handler");
+ Builder.SetInsertPoint(TerminateHandler);
+ llvm::Value *Exn = 0;
+ if (getLangOpts().CPlusPlus)
+ Exn = getExceptionFromSlot();
+ llvm::CallInst *terminateCall =
+ CGM.getCXXABI().emitTerminateForUnexpectedException(*this, Exn);
+ terminateCall->setDoesNotReturn();
+ Builder.CreateUnreachable();
+
+ // Restore the saved insertion state.
+ Builder.restoreIP(SavedIP);
+
+ return TerminateHandler;
+}
+
+llvm::BasicBlock *CodeGenFunction::getEHResumeBlock(bool isCleanup) {
+ if (EHResumeBlock) return EHResumeBlock;
+
+ CGBuilderTy::InsertPoint SavedIP = Builder.saveIP();
+
+ // We emit a jump to a notional label at the outermost unwind state.
+ EHResumeBlock = createBasicBlock("eh.resume");
+ Builder.SetInsertPoint(EHResumeBlock);
+
+ const EHPersonality &Personality = EHPersonality::get(*this);
+
+ // This can always be a call because we necessarily didn't find
+ // anything on the EH stack which needs our help.
+ const char *RethrowName = Personality.CatchallRethrowFn;
+ if (RethrowName != nullptr && !isCleanup) {
+ EmitRuntimeCall(getCatchallRethrowFn(CGM, RethrowName),
+ getExceptionFromSlot())->setDoesNotReturn();
+ Builder.CreateUnreachable();
+ Builder.restoreIP(SavedIP);
+ return EHResumeBlock;
+ }
+
+ // Recreate the landingpad's return value for the 'resume' instruction.
+ llvm::Value *Exn = getExceptionFromSlot();
+ llvm::Value *Sel = getSelectorFromSlot();
+
+ llvm::Type *LPadType = llvm::StructType::get(Exn->getType(),
+ Sel->getType(), nullptr);
+ llvm::Value *LPadVal = llvm::UndefValue::get(LPadType);
+ LPadVal = Builder.CreateInsertValue(LPadVal, Exn, 0, "lpad.val");
+ LPadVal = Builder.CreateInsertValue(LPadVal, Sel, 1, "lpad.val");
+
+ Builder.CreateResume(LPadVal);
+ Builder.restoreIP(SavedIP);
+ return EHResumeBlock;
+}
+
+void CodeGenFunction::EmitSEHTryStmt(const SEHTryStmt &S) {
+ // FIXME: Implement SEH on other architectures.
+ const llvm::Triple &T = CGM.getTarget().getTriple();
+ if (T.getArch() != llvm::Triple::x86_64 ||
+ !T.isKnownWindowsMSVCEnvironment()) {
+ ErrorUnsupported(&S, "__try statement");
+ return;
+ }
+
+ EnterSEHTryStmt(S);
+ {
+ JumpDest TryExit = getJumpDestInCurrentScope("__try.__leave");
+
+ SEHTryEpilogueStack.push_back(&TryExit);
+ EmitStmt(S.getTryBlock());
+ SEHTryEpilogueStack.pop_back();
+
+ if (!TryExit.getBlock()->use_empty())
+ EmitBlock(TryExit.getBlock(), /*IsFinished=*/true);
+ else
+ delete TryExit.getBlock();
+ }
+ ExitSEHTryStmt(S);
+}
+
+namespace {
+struct PerformSEHFinally : EHScopeStack::Cleanup {
+ llvm::Function *OutlinedFinally;
+ PerformSEHFinally(llvm::Function *OutlinedFinally)
+ : OutlinedFinally(OutlinedFinally) {}
+
+ void Emit(CodeGenFunction &CGF, Flags F) override {
+ ASTContext &Context = CGF.getContext();
+ QualType ArgTys[2] = {Context.UnsignedCharTy, Context.VoidPtrTy};
+ FunctionProtoType::ExtProtoInfo EPI;
+ const auto *FTP = cast<FunctionType>(
+ Context.getFunctionType(Context.VoidTy, ArgTys, EPI));
+
+ CallArgList Args;
+ llvm::Value *IsForEH =
+ llvm::ConstantInt::get(CGF.ConvertType(ArgTys[0]), F.isForEHCleanup());
+ Args.add(RValue::get(IsForEH), ArgTys[0]);
+
+ CodeGenModule &CGM = CGF.CGM;
+ llvm::Value *Zero = llvm::ConstantInt::get(CGM.Int32Ty, 0);
+ llvm::Value *FrameAddr = CGM.getIntrinsic(llvm::Intrinsic::frameaddress);
+ llvm::Value *FP = CGF.Builder.CreateCall(FrameAddr, Zero);
+ Args.add(RValue::get(FP), ArgTys[1]);
+
+ const CGFunctionInfo &FnInfo =
+ CGM.getTypes().arrangeFreeFunctionCall(Args, FTP, /*chainCall=*/false);
+ CGF.EmitCall(FnInfo, OutlinedFinally, ReturnValueSlot(), Args);
+ }
+};
+}
+
+namespace {
+/// Find all local variable captures in the statement.
+struct CaptureFinder : ConstStmtVisitor<CaptureFinder> {
+ CodeGenFunction &ParentCGF;
+ const VarDecl *ParentThis;
+ SmallVector<const VarDecl *, 4> Captures;
+ CaptureFinder(CodeGenFunction &ParentCGF, const VarDecl *ParentThis)
+ : ParentCGF(ParentCGF), ParentThis(ParentThis) {}
+
+ void Visit(const Stmt *S) {
+ // See if this is a capture, then recurse.
+ ConstStmtVisitor<CaptureFinder>::Visit(S);
+ for (const Stmt *Child : S->children())
+ if (Child)
+ Visit(Child);
+ }
+
+ void VisitDeclRefExpr(const DeclRefExpr *E) {
+ // If this is already a capture, just make sure we capture 'this'.
+ if (E->refersToEnclosingVariableOrCapture()) {
+ Captures.push_back(ParentThis);
+ return;
+ }
+
+ const auto *D = dyn_cast<VarDecl>(E->getDecl());
+ if (D && D->isLocalVarDeclOrParm() && D->hasLocalStorage())
+ Captures.push_back(D);
+ }
+
+ void VisitCXXThisExpr(const CXXThisExpr *E) {
+ Captures.push_back(ParentThis);
+ }
+};
+}
+
+void CodeGenFunction::EmitCapturedLocals(CodeGenFunction &ParentCGF,
+ const Stmt *OutlinedStmt,
+ llvm::Value *ParentFP) {
+ // Find all captures in the Stmt.
+ CaptureFinder Finder(ParentCGF, ParentCGF.CXXABIThisDecl);
+ Finder.Visit(OutlinedStmt);
+
+ // Typically there are no captures and we can exit early.
+ if (Finder.Captures.empty())
+ return;
+
+ // Prepare the first two arguments to llvm.framerecover.
+ llvm::Function *FrameRecoverFn = llvm::Intrinsic::getDeclaration(
+ &CGM.getModule(), llvm::Intrinsic::framerecover);
+ llvm::Constant *ParentI8Fn =
+ llvm::ConstantExpr::getBitCast(ParentCGF.CurFn, Int8PtrTy);
+
+ // Create llvm.framerecover calls for all captures.
+ for (const VarDecl *VD : Finder.Captures) {
+ if (isa<ImplicitParamDecl>(VD)) {
+ CGM.ErrorUnsupported(VD, "'this' captured by SEH");
+ CXXThisValue = llvm::UndefValue::get(ConvertTypeForMem(VD->getType()));
+ continue;
+ }
+ if (VD->getType()->isVariablyModifiedType()) {
+ CGM.ErrorUnsupported(VD, "VLA captured by SEH");
+ continue;
+ }
+ assert((isa<ImplicitParamDecl>(VD) || VD->isLocalVarDeclOrParm()) &&
+ "captured non-local variable");
+
+ // If this decl hasn't been declared yet, it will be declared in the
+ // OutlinedStmt.
+ auto I = ParentCGF.LocalDeclMap.find(VD);
+ if (I == ParentCGF.LocalDeclMap.end())
+ continue;
+ llvm::Value *ParentVar = I->second;
+
+ llvm::CallInst *RecoverCall = nullptr;
+ CGBuilderTy Builder(AllocaInsertPt);
+ if (auto *ParentAlloca = dyn_cast<llvm::AllocaInst>(ParentVar)) {
+ // Mark the variable escaped if nobody else referenced it and compute the
+ // frameescape index.
+ auto InsertPair =
+ ParentCGF.EscapedLocals.insert(std::make_pair(ParentAlloca, -1));
+ if (InsertPair.second)
+ InsertPair.first->second = ParentCGF.EscapedLocals.size() - 1;
+ int FrameEscapeIdx = InsertPair.first->second;
+ // call i8* @llvm.framerecover(i8* bitcast(@parentFn), i8* %fp, i32 N)
+ RecoverCall = Builder.CreateCall(
+ FrameRecoverFn, {ParentI8Fn, ParentFP,
+ llvm::ConstantInt::get(Int32Ty, FrameEscapeIdx)});
+
+ } else {
+ // If the parent didn't have an alloca, we're doing some nested outlining.
+ // Just clone the existing framerecover call, but tweak the FP argument to
+ // use our FP value. All other arguments are constants.
+ auto *ParentRecover =
+ cast<llvm::IntrinsicInst>(ParentVar->stripPointerCasts());
+ assert(ParentRecover->getIntrinsicID() == llvm::Intrinsic::framerecover &&
+ "expected alloca or framerecover in parent LocalDeclMap");
+ RecoverCall = cast<llvm::CallInst>(ParentRecover->clone());
+ RecoverCall->setArgOperand(1, ParentFP);
+ RecoverCall->insertBefore(AllocaInsertPt);
+ }
+
+ // Bitcast the variable, rename it, and insert it in the local decl map.
+ llvm::Value *ChildVar =
+ Builder.CreateBitCast(RecoverCall, ParentVar->getType());
+ ChildVar->setName(ParentVar->getName());
+ LocalDeclMap[VD] = ChildVar;
+ }
+}
+
+/// Arrange a function prototype that can be called by Windows exception
+/// handling personalities. On Win64, the prototype looks like:
+/// RetTy func(void *EHPtrs, void *ParentFP);
+void CodeGenFunction::startOutlinedSEHHelper(CodeGenFunction &ParentCGF,
+ StringRef Name, QualType RetTy,
+ FunctionArgList &Args,
+ const Stmt *OutlinedStmt) {
+ llvm::Function *ParentFn = ParentCGF.CurFn;
+ const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionDeclaration(
+ RetTy, Args, FunctionType::ExtInfo(), /*isVariadic=*/false);
+
+ llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
+ llvm::Function *Fn = llvm::Function::Create(
+ FnTy, llvm::GlobalValue::InternalLinkage, Name.str(), &CGM.getModule());
+ // The filter is either in the same comdat as the function, or it's internal.
+ if (llvm::Comdat *C = ParentFn->getComdat()) {
+ Fn->setComdat(C);
+ } else if (ParentFn->hasWeakLinkage() || ParentFn->hasLinkOnceLinkage()) {
+ llvm::Comdat *C = CGM.getModule().getOrInsertComdat(ParentFn->getName());
+ ParentFn->setComdat(C);
+ Fn->setComdat(C);
+ } else {
+ Fn->setLinkage(llvm::GlobalValue::InternalLinkage);
+ }
+
+ IsOutlinedSEHHelper = true;
+
+ StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
+ OutlinedStmt->getLocStart(), OutlinedStmt->getLocStart());
+
+ CGM.SetLLVMFunctionAttributes(nullptr, FnInfo, CurFn);
+
+ auto AI = Fn->arg_begin();
+ ++AI;
+ EmitCapturedLocals(ParentCGF, OutlinedStmt, &*AI);
+}
+
+/// Create a stub filter function that will ultimately hold the code of the
+/// filter expression. The EH preparation passes in LLVM will outline the code
+/// from the main function body into this stub.
+llvm::Function *
+CodeGenFunction::GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
+ const SEHExceptStmt &Except) {
+ const Expr *FilterExpr = Except.getFilterExpr();
+ SourceLocation StartLoc = FilterExpr->getLocStart();
+
+ SEHPointersDecl = ImplicitParamDecl::Create(
+ getContext(), nullptr, StartLoc,
+ &getContext().Idents.get("exception_pointers"), getContext().VoidPtrTy);
+ FunctionArgList Args;
+ Args.push_back(SEHPointersDecl);
+ Args.push_back(ImplicitParamDecl::Create(
+ getContext(), nullptr, StartLoc,
+ &getContext().Idents.get("frame_pointer"), getContext().VoidPtrTy));
+
+ // Get the mangled function name.
+ SmallString<128> Name;
+ {
+ llvm::raw_svector_ostream OS(Name);
+ const Decl *ParentCodeDecl = ParentCGF.CurCodeDecl;
+ const NamedDecl *Parent = dyn_cast_or_null<NamedDecl>(ParentCodeDecl);
+ assert(Parent && "FIXME: handle unnamed decls (lambdas, blocks) with SEH");
+ CGM.getCXXABI().getMangleContext().mangleSEHFilterExpression(Parent, OS);
+ }
+
+ startOutlinedSEHHelper(ParentCGF, Name, getContext().LongTy, Args,
+ FilterExpr);
+
+ // Mark finally block calls as nounwind and noinline to make LLVM's job a
+ // little easier.
+ // FIXME: Remove these restrictions in the future.
+ CurFn->addFnAttr(llvm::Attribute::NoUnwind);
+ CurFn->addFnAttr(llvm::Attribute::NoInline);
+
+ EmitSEHExceptionCodeSave();
+
+ // Emit the original filter expression, convert to i32, and return.
+ llvm::Value *R = EmitScalarExpr(FilterExpr);
+ R = Builder.CreateIntCast(R, ConvertType(getContext().LongTy),
+ FilterExpr->getType()->isSignedIntegerType());
+ Builder.CreateStore(R, ReturnValue);
+
+ FinishFunction(FilterExpr->getLocEnd());
+
+ return CurFn;
+}
+
+llvm::Function *
+CodeGenFunction::GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
+ const SEHFinallyStmt &Finally) {
+ const Stmt *FinallyBlock = Finally.getBlock();
+ SourceLocation StartLoc = FinallyBlock->getLocStart();
+
+ FunctionArgList Args;
+ Args.push_back(ImplicitParamDecl::Create(
+ getContext(), nullptr, StartLoc,
+ &getContext().Idents.get("abnormal_termination"),
+ getContext().UnsignedCharTy));
+ Args.push_back(ImplicitParamDecl::Create(
+ getContext(), nullptr, StartLoc,
+ &getContext().Idents.get("frame_pointer"), getContext().VoidPtrTy));
+
+ // Get the mangled function name.
+ SmallString<128> Name;
+ {
+ llvm::raw_svector_ostream OS(Name);
+ const Decl *ParentCodeDecl = ParentCGF.CurCodeDecl;
+ const NamedDecl *Parent = dyn_cast_or_null<NamedDecl>(ParentCodeDecl);
+ assert(Parent && "FIXME: handle unnamed decls (lambdas, blocks) with SEH");
+ CGM.getCXXABI().getMangleContext().mangleSEHFinallyBlock(Parent, OS);
+ }
+
+ startOutlinedSEHHelper(ParentCGF, Name, getContext().VoidTy, Args,
+ FinallyBlock);
+
+ // Emit the original filter expression, convert to i32, and return.
+ EmitStmt(FinallyBlock);
+
+ FinishFunction(FinallyBlock->getLocEnd());
+
+ return CurFn;
+}
+
+void CodeGenFunction::EmitSEHExceptionCodeSave() {
+ // Save the exception code in the exception slot to unify exception access in
+ // the filter function and the landing pad.
+ // struct EXCEPTION_POINTERS {
+ // EXCEPTION_RECORD *ExceptionRecord;
+ // CONTEXT *ContextRecord;
+ // };
+ // void *exn.slot =
+ // (void *)(uintptr_t)exception_pointers->ExceptionRecord->ExceptionCode;
+ llvm::Value *Ptrs = Builder.CreateLoad(GetAddrOfLocalVar(SEHPointersDecl));
+ llvm::Type *RecordTy = CGM.Int32Ty->getPointerTo();
+ llvm::Type *PtrsTy = llvm::StructType::get(RecordTy, CGM.VoidPtrTy, nullptr);
+ Ptrs = Builder.CreateBitCast(Ptrs, PtrsTy->getPointerTo());
+ llvm::Value *Rec = Builder.CreateStructGEP(PtrsTy, Ptrs, 0);
+ Rec = Builder.CreateLoad(Rec);
+ llvm::Value *Code = Builder.CreateLoad(Rec);
+ Code = Builder.CreateZExt(Code, CGM.IntPtrTy);
+ // FIXME: Change landing pads to produce {i32, i32} and make the exception
+ // slot an i32.
+ Code = Builder.CreateIntToPtr(Code, CGM.VoidPtrTy);
+ Builder.CreateStore(Code, getExceptionSlot());
+}
+
+llvm::Value *CodeGenFunction::EmitSEHExceptionInfo() {
+ // Sema should diagnose calling this builtin outside of a filter context, but
+ // don't crash if we screw up.
+ if (!SEHPointersDecl)
+ return llvm::UndefValue::get(Int8PtrTy);
+ return Builder.CreateLoad(GetAddrOfLocalVar(SEHPointersDecl));
+}
+
+llvm::Value *CodeGenFunction::EmitSEHExceptionCode() {
+ // If we're in a landing pad or filter function, the exception slot contains
+ // the code.
+ assert(ExceptionSlot);
+ llvm::Value *Code =
+ Builder.CreatePtrToInt(getExceptionFromSlot(), CGM.IntPtrTy);
+ return Builder.CreateTrunc(Code, CGM.Int32Ty);
+}
+
+llvm::Value *CodeGenFunction::EmitSEHAbnormalTermination() {
+ // Abnormal termination is just the first parameter to the outlined finally
+ // helper.
+ auto AI = CurFn->arg_begin();
+ return Builder.CreateZExt(&*AI, Int32Ty);
+}
+
+void CodeGenFunction::EnterSEHTryStmt(const SEHTryStmt &S) {
+ CodeGenFunction HelperCGF(CGM, /*suppressNewContext=*/true);
+ if (const SEHFinallyStmt *Finally = S.getFinallyHandler()) {
+ // Push a cleanup for __finally blocks.
+ llvm::Function *FinallyFunc =
+ HelperCGF.GenerateSEHFinallyFunction(*this, *Finally);
+ EHStack.pushCleanup<PerformSEHFinally>(NormalAndEHCleanup, FinallyFunc);
+ return;
+ }
+
+ // Otherwise, we must have an __except block.
+ const SEHExceptStmt *Except = S.getExceptHandler();
+ assert(Except);
+ EHCatchScope *CatchScope = EHStack.pushCatch(1);
+
+ // If the filter is known to evaluate to 1, then we can use the clause "catch
+ // i8* null".
+ llvm::Constant *C =
+ CGM.EmitConstantExpr(Except->getFilterExpr(), getContext().IntTy, this);
+ if (C && C->isOneValue()) {
+ CatchScope->setCatchAllHandler(0, createBasicBlock("__except"));
+ return;
+ }
+
+ // In general, we have to emit an outlined filter function. Use the function
+ // in place of the RTTI typeinfo global that C++ EH uses.
+ llvm::Function *FilterFunc =
+ HelperCGF.GenerateSEHFilterFunction(*this, *Except);
+ llvm::Constant *OpaqueFunc =
+ llvm::ConstantExpr::getBitCast(FilterFunc, Int8PtrTy);
+ CatchScope->setHandler(0, OpaqueFunc, createBasicBlock("__except"));
+}
+
+void CodeGenFunction::ExitSEHTryStmt(const SEHTryStmt &S) {
+ // Just pop the cleanup if it's a __finally block.
+ if (S.getFinallyHandler()) {
+ PopCleanupBlock();
+ return;
+ }
+
+ // Otherwise, we must have an __except block.
+ const SEHExceptStmt *Except = S.getExceptHandler();
+ assert(Except && "__try must have __finally xor __except");
+ EHCatchScope &CatchScope = cast<EHCatchScope>(*EHStack.begin());
+
+ // Don't emit the __except block if the __try block lacked invokes.
+ // TODO: Model unwind edges from instructions, either with iload / istore or
+ // a try body function.
+ if (!CatchScope.hasEHBranches()) {
+ CatchScope.clearHandlerBlocks();
+ EHStack.popCatch();
+ return;
+ }
+
+ // The fall-through block.
+ llvm::BasicBlock *ContBB = createBasicBlock("__try.cont");
+
+ // We just emitted the body of the __try; jump to the continue block.
+ if (HaveInsertPoint())
+ Builder.CreateBr(ContBB);
+
+ // Check if our filter function returned true.
+ emitCatchDispatchBlock(*this, CatchScope);
+
+ // Grab the block before we pop the handler.
+ llvm::BasicBlock *ExceptBB = CatchScope.getHandler(0).Block;
+ EHStack.popCatch();
+
+ EmitBlockAfterUses(ExceptBB);
+
+ // Emit the __except body.
+ EmitStmt(Except->getBlock());
+
+ if (HaveInsertPoint())
+ Builder.CreateBr(ContBB);
+
+ EmitBlock(ContBB);
+}
+
+void CodeGenFunction::EmitSEHLeaveStmt(const SEHLeaveStmt &S) {
+ // If this code is reachable then emit a stop point (if generating
+ // debug info). We have to do this ourselves because we are on the
+ // "simple" statement path.
+ if (HaveInsertPoint())
+ EmitStopPoint(&S);
+
+ // This must be a __leave from a __finally block, which we warn on and is UB.
+ // Just emit unreachable.
+ if (!isSEHTryScope()) {
+ Builder.CreateUnreachable();
+ Builder.ClearInsertionPoint();
+ return;
+ }
+
+ EmitBranchThroughCleanup(*SEHTryEpilogueStack.back());
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGExpr.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGExpr.cpp
new file mode 100644
index 0000000..1ed45a3
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGExpr.cpp
@@ -0,0 +1,3564 @@
+//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code to emit Expr nodes as LLVM code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenFunction.h"
+#include "CGCXXABI.h"
+#include "CGCall.h"
+#include "CGDebugInfo.h"
+#include "CGObjCRuntime.h"
+#include "CGOpenMPRuntime.h"
+#include "CGRecordLayout.h"
+#include "CodeGenModule.h"
+#include "TargetInfo.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/Frontend/CodeGenOptions.h"
+#include "llvm/ADT/Hashing.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/Support/ConvertUTF.h"
+#include "llvm/Support/MathExtras.h"
+
+using namespace clang;
+using namespace CodeGen;
+
+//===--------------------------------------------------------------------===//
+// Miscellaneous Helper Methods
+//===--------------------------------------------------------------------===//
+
+llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
+ unsigned addressSpace =
+ cast<llvm::PointerType>(value->getType())->getAddressSpace();
+
+ llvm::PointerType *destType = Int8PtrTy;
+ if (addressSpace)
+ destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
+
+ if (value->getType() == destType) return value;
+ return Builder.CreateBitCast(value, destType);
+}
+
+/// CreateTempAlloca - This creates a alloca and inserts it into the entry
+/// block.
+llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
+ const Twine &Name) {
+ if (!Builder.isNamePreserving())
+ return new llvm::AllocaInst(Ty, nullptr, "", AllocaInsertPt);
+ return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt);
+}
+
+void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
+ llvm::Value *Init) {
+ auto *Store = new llvm::StoreInst(Init, Var);
+ llvm::BasicBlock *Block = AllocaInsertPt->getParent();
+ Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
+}
+
+llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
+ const Twine &Name) {
+ llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
+ // FIXME: Should we prefer the preferred type alignment here?
+ CharUnits Align = getContext().getTypeAlignInChars(Ty);
+ Alloc->setAlignment(Align.getQuantity());
+ return Alloc;
+}
+
+llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
+ const Twine &Name) {
+ llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
+ // FIXME: Should we prefer the preferred type alignment here?
+ CharUnits Align = getContext().getTypeAlignInChars(Ty);
+ Alloc->setAlignment(Align.getQuantity());
+ return Alloc;
+}
+
+/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
+/// expression and compare the result against zero, returning an Int1Ty value.
+llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
+ PGO.setCurrentStmt(E);
+ if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
+ llvm::Value *MemPtr = EmitScalarExpr(E);
+ return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
+ }
+
+ QualType BoolTy = getContext().BoolTy;
+ if (!E->getType()->isAnyComplexType())
+ return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
+
+ return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
+}
+
+/// EmitIgnoredExpr - Emit code to compute the specified expression,
+/// ignoring the result.
+void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
+ if (E->isRValue())
+ return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
+
+ // Just emit it as an l-value and drop the result.
+ EmitLValue(E);
+}
+
+/// EmitAnyExpr - Emit code to compute the specified expression which
+/// can have any type. The result is returned as an RValue struct.
+/// If this is an aggregate expression, AggSlot indicates where the
+/// result should be returned.
+RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
+ AggValueSlot aggSlot,
+ bool ignoreResult) {
+ switch (getEvaluationKind(E->getType())) {
+ case TEK_Scalar:
+ return RValue::get(EmitScalarExpr(E, ignoreResult));
+ case TEK_Complex:
+ return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
+ case TEK_Aggregate:
+ if (!ignoreResult && aggSlot.isIgnored())
+ aggSlot = CreateAggTemp(E->getType(), "agg-temp");
+ EmitAggExpr(E, aggSlot);
+ return aggSlot.asRValue();
+ }
+ llvm_unreachable("bad evaluation kind");
+}
+
+/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
+/// always be accessible even if no aggregate location is provided.
+RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
+ AggValueSlot AggSlot = AggValueSlot::ignored();
+
+ if (hasAggregateEvaluationKind(E->getType()))
+ AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
+ return EmitAnyExpr(E, AggSlot);
+}
+
+/// EmitAnyExprToMem - Evaluate an expression into a given memory
+/// location.
+void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
+ llvm::Value *Location,
+ Qualifiers Quals,
+ bool IsInit) {
+ // FIXME: This function should take an LValue as an argument.
+ switch (getEvaluationKind(E->getType())) {
+ case TEK_Complex:
+ EmitComplexExprIntoLValue(E,
+ MakeNaturalAlignAddrLValue(Location, E->getType()),
+ /*isInit*/ false);
+ return;
+
+ case TEK_Aggregate: {
+ CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
+ EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
+ AggValueSlot::IsDestructed_t(IsInit),
+ AggValueSlot::DoesNotNeedGCBarriers,
+ AggValueSlot::IsAliased_t(!IsInit)));
+ return;
+ }
+
+ case TEK_Scalar: {
+ RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
+ LValue LV = MakeAddrLValue(Location, E->getType());
+ EmitStoreThroughLValue(RV, LV);
+ return;
+ }
+ }
+ llvm_unreachable("bad evaluation kind");
+}
+
+static void
+pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
+ const Expr *E, llvm::Value *ReferenceTemporary) {
+ // Objective-C++ ARC:
+ // If we are binding a reference to a temporary that has ownership, we
+ // need to perform retain/release operations on the temporary.
+ //
+ // FIXME: This should be looking at E, not M.
+ if (CGF.getLangOpts().ObjCAutoRefCount &&
+ M->getType()->isObjCLifetimeType()) {
+ QualType ObjCARCReferenceLifetimeType = M->getType();
+ switch (Qualifiers::ObjCLifetime Lifetime =
+ ObjCARCReferenceLifetimeType.getObjCLifetime()) {
+ case Qualifiers::OCL_None:
+ case Qualifiers::OCL_ExplicitNone:
+ // Carry on to normal cleanup handling.
+ break;
+
+ case Qualifiers::OCL_Autoreleasing:
+ // Nothing to do; cleaned up by an autorelease pool.
+ return;
+
+ case Qualifiers::OCL_Strong:
+ case Qualifiers::OCL_Weak:
+ switch (StorageDuration Duration = M->getStorageDuration()) {
+ case SD_Static:
+ // Note: we intentionally do not register a cleanup to release
+ // the object on program termination.
+ return;
+
+ case SD_Thread:
+ // FIXME: We should probably register a cleanup in this case.
+ return;
+
+ case SD_Automatic:
+ case SD_FullExpression:
+ CodeGenFunction::Destroyer *Destroy;
+ CleanupKind CleanupKind;
+ if (Lifetime == Qualifiers::OCL_Strong) {
+ const ValueDecl *VD = M->getExtendingDecl();
+ bool Precise =
+ VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
+ CleanupKind = CGF.getARCCleanupKind();
+ Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
+ : &CodeGenFunction::destroyARCStrongImprecise;
+ } else {
+ // __weak objects always get EH cleanups; otherwise, exceptions
+ // could cause really nasty crashes instead of mere leaks.
+ CleanupKind = NormalAndEHCleanup;
+ Destroy = &CodeGenFunction::destroyARCWeak;
+ }
+ if (Duration == SD_FullExpression)
+ CGF.pushDestroy(CleanupKind, ReferenceTemporary,
+ ObjCARCReferenceLifetimeType, *Destroy,
+ CleanupKind & EHCleanup);
+ else
+ CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
+ ObjCARCReferenceLifetimeType,
+ *Destroy, CleanupKind & EHCleanup);
+ return;
+
+ case SD_Dynamic:
+ llvm_unreachable("temporary cannot have dynamic storage duration");
+ }
+ llvm_unreachable("unknown storage duration");
+ }
+ }
+
+ CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
+ if (const RecordType *RT =
+ E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
+ // Get the destructor for the reference temporary.
+ auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
+ if (!ClassDecl->hasTrivialDestructor())
+ ReferenceTemporaryDtor = ClassDecl->getDestructor();
+ }
+
+ if (!ReferenceTemporaryDtor)
+ return;
+
+ // Call the destructor for the temporary.
+ switch (M->getStorageDuration()) {
+ case SD_Static:
+ case SD_Thread: {
+ llvm::Constant *CleanupFn;
+ llvm::Constant *CleanupArg;
+ if (E->getType()->isArrayType()) {
+ CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
+ cast<llvm::Constant>(ReferenceTemporary), E->getType(),
+ CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
+ dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
+ CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
+ } else {
+ CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor,
+ StructorType::Complete);
+ CleanupArg = cast<llvm::Constant>(ReferenceTemporary);
+ }
+ CGF.CGM.getCXXABI().registerGlobalDtor(
+ CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
+ break;
+ }
+
+ case SD_FullExpression:
+ CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
+ CodeGenFunction::destroyCXXObject,
+ CGF.getLangOpts().Exceptions);
+ break;
+
+ case SD_Automatic:
+ CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
+ ReferenceTemporary, E->getType(),
+ CodeGenFunction::destroyCXXObject,
+ CGF.getLangOpts().Exceptions);
+ break;
+
+ case SD_Dynamic:
+ llvm_unreachable("temporary cannot have dynamic storage duration");
+ }
+}
+
+static llvm::Value *
+createReferenceTemporary(CodeGenFunction &CGF,
+ const MaterializeTemporaryExpr *M, const Expr *Inner) {
+ switch (M->getStorageDuration()) {
+ case SD_FullExpression:
+ case SD_Automatic: {
+ // If we have a constant temporary array or record try to promote it into a
+ // constant global under the same rules a normal constant would've been
+ // promoted. This is easier on the optimizer and generally emits fewer
+ // instructions.
+ QualType Ty = Inner->getType();
+ if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
+ (Ty->isArrayType() || Ty->isRecordType()) &&
+ CGF.CGM.isTypeConstant(Ty, true))
+ if (llvm::Constant *Init = CGF.CGM.EmitConstantExpr(Inner, Ty, &CGF)) {
+ auto *GV = new llvm::GlobalVariable(
+ CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
+ llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp");
+ GV->setAlignment(
+ CGF.getContext().getTypeAlignInChars(Ty).getQuantity());
+ // FIXME: Should we put the new global into a COMDAT?
+ return GV;
+ }
+ return CGF.CreateMemTemp(Ty, "ref.tmp");
+ }
+ case SD_Thread:
+ case SD_Static:
+ return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
+
+ case SD_Dynamic:
+ llvm_unreachable("temporary can't have dynamic storage duration");
+ }
+ llvm_unreachable("unknown storage duration");
+}
+
+LValue CodeGenFunction::
+EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
+ const Expr *E = M->GetTemporaryExpr();
+
+ // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
+ // as that will cause the lifetime adjustment to be lost for ARC
+ if (getLangOpts().ObjCAutoRefCount &&
+ M->getType()->isObjCLifetimeType() &&
+ M->getType().getObjCLifetime() != Qualifiers::OCL_None &&
+ M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
+ llvm::Value *Object = createReferenceTemporary(*this, M, E);
+ if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
+ Object = llvm::ConstantExpr::getBitCast(
+ Var, ConvertTypeForMem(E->getType())->getPointerTo());
+ // We should not have emitted the initializer for this temporary as a
+ // constant.
+ assert(!Var->hasInitializer());
+ Var->setInitializer(CGM.EmitNullConstant(E->getType()));
+ }
+ LValue RefTempDst = MakeAddrLValue(Object, M->getType());
+
+ switch (getEvaluationKind(E->getType())) {
+ default: llvm_unreachable("expected scalar or aggregate expression");
+ case TEK_Scalar:
+ EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
+ break;
+ case TEK_Aggregate: {
+ CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
+ EmitAggExpr(E, AggValueSlot::forAddr(Object, Alignment,
+ E->getType().getQualifiers(),
+ AggValueSlot::IsDestructed,
+ AggValueSlot::DoesNotNeedGCBarriers,
+ AggValueSlot::IsNotAliased));
+ break;
+ }
+ }
+
+ pushTemporaryCleanup(*this, M, E, Object);
+ return RefTempDst;
+ }
+
+ SmallVector<const Expr *, 2> CommaLHSs;
+ SmallVector<SubobjectAdjustment, 2> Adjustments;
+ E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
+
+ for (const auto &Ignored : CommaLHSs)
+ EmitIgnoredExpr(Ignored);
+
+ if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
+ if (opaque->getType()->isRecordType()) {
+ assert(Adjustments.empty());
+ return EmitOpaqueValueLValue(opaque);
+ }
+ }
+
+ // Create and initialize the reference temporary.
+ llvm::Value *Object = createReferenceTemporary(*this, M, E);
+ if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
+ Object = llvm::ConstantExpr::getBitCast(
+ Var, ConvertTypeForMem(E->getType())->getPointerTo());
+ // If the temporary is a global and has a constant initializer or is a
+ // constant temporary that we promoted to a global, we may have already
+ // initialized it.
+ if (!Var->hasInitializer()) {
+ Var->setInitializer(CGM.EmitNullConstant(E->getType()));
+ EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
+ }
+ } else {
+ EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
+ }
+ pushTemporaryCleanup(*this, M, E, Object);
+
+ // Perform derived-to-base casts and/or field accesses, to get from the
+ // temporary object we created (and, potentially, for which we extended
+ // the lifetime) to the subobject we're binding the reference to.
+ for (unsigned I = Adjustments.size(); I != 0; --I) {
+ SubobjectAdjustment &Adjustment = Adjustments[I-1];
+ switch (Adjustment.Kind) {
+ case SubobjectAdjustment::DerivedToBaseAdjustment:
+ Object =
+ GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
+ Adjustment.DerivedToBase.BasePath->path_begin(),
+ Adjustment.DerivedToBase.BasePath->path_end(),
+ /*NullCheckValue=*/ false, E->getExprLoc());
+ break;
+
+ case SubobjectAdjustment::FieldAdjustment: {
+ LValue LV = MakeAddrLValue(Object, E->getType());
+ LV = EmitLValueForField(LV, Adjustment.Field);
+ assert(LV.isSimple() &&
+ "materialized temporary field is not a simple lvalue");
+ Object = LV.getAddress();
+ break;
+ }
+
+ case SubobjectAdjustment::MemberPointerAdjustment: {
+ llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
+ Object = CGM.getCXXABI().EmitMemberDataPointerAddress(
+ *this, E, Object, Ptr, Adjustment.Ptr.MPT);
+ break;
+ }
+ }
+ }
+
+ return MakeAddrLValue(Object, M->getType());
+}
+
+RValue
+CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
+ // Emit the expression as an lvalue.
+ LValue LV = EmitLValue(E);
+ assert(LV.isSimple());
+ llvm::Value *Value = LV.getAddress();
+
+ if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
+ // C++11 [dcl.ref]p5 (as amended by core issue 453):
+ // If a glvalue to which a reference is directly bound designates neither
+ // an existing object or function of an appropriate type nor a region of
+ // storage of suitable size and alignment to contain an object of the
+ // reference's type, the behavior is undefined.
+ QualType Ty = E->getType();
+ EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
+ }
+
+ return RValue::get(Value);
+}
+
+
+/// getAccessedFieldNo - Given an encoded value and a result number, return the
+/// input field number being accessed.
+unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
+ const llvm::Constant *Elts) {
+ return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
+ ->getZExtValue();
+}
+
+/// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
+static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
+ llvm::Value *High) {
+ llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
+ llvm::Value *K47 = Builder.getInt64(47);
+ llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
+ llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
+ llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
+ llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
+ return Builder.CreateMul(B1, KMul);
+}
+
+bool CodeGenFunction::sanitizePerformTypeCheck() const {
+ return SanOpts.has(SanitizerKind::Null) |
+ SanOpts.has(SanitizerKind::Alignment) |
+ SanOpts.has(SanitizerKind::ObjectSize) |
+ SanOpts.has(SanitizerKind::Vptr);
+}
+
+void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
+ llvm::Value *Address, QualType Ty,
+ CharUnits Alignment, bool SkipNullCheck) {
+ if (!sanitizePerformTypeCheck())
+ return;
+
+ // Don't check pointers outside the default address space. The null check
+ // isn't correct, the object-size check isn't supported by LLVM, and we can't
+ // communicate the addresses to the runtime handler for the vptr check.
+ if (Address->getType()->getPointerAddressSpace())
+ return;
+
+ SanitizerScope SanScope(this);
+
+ SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
+ llvm::BasicBlock *Done = nullptr;
+
+ bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
+ TCK == TCK_UpcastToVirtualBase;
+ if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
+ !SkipNullCheck) {
+ // The glvalue must not be an empty glvalue.
+ llvm::Value *IsNonNull = Builder.CreateICmpNE(
+ Address, llvm::Constant::getNullValue(Address->getType()));
+
+ if (AllowNullPointers) {
+ // When performing pointer casts, it's OK if the value is null.
+ // Skip the remaining checks in that case.
+ Done = createBasicBlock("null");
+ llvm::BasicBlock *Rest = createBasicBlock("not.null");
+ Builder.CreateCondBr(IsNonNull, Rest, Done);
+ EmitBlock(Rest);
+ } else {
+ Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
+ }
+ }
+
+ if (SanOpts.has(SanitizerKind::ObjectSize) && !Ty->isIncompleteType()) {
+ uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
+
+ // The glvalue must refer to a large enough storage region.
+ // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
+ // to check this.
+ // FIXME: Get object address space
+ llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
+ llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
+ llvm::Value *Min = Builder.getFalse();
+ llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy);
+ llvm::Value *LargeEnough =
+ Builder.CreateICmpUGE(Builder.CreateCall(F, {CastAddr, Min}),
+ llvm::ConstantInt::get(IntPtrTy, Size));
+ Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
+ }
+
+ uint64_t AlignVal = 0;
+
+ if (SanOpts.has(SanitizerKind::Alignment)) {
+ AlignVal = Alignment.getQuantity();
+ if (!Ty->isIncompleteType() && !AlignVal)
+ AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
+
+ // The glvalue must be suitably aligned.
+ if (AlignVal) {
+ llvm::Value *Align =
+ Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
+ llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
+ llvm::Value *Aligned =
+ Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
+ Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
+ }
+ }
+
+ if (Checks.size() > 0) {
+ llvm::Constant *StaticData[] = {
+ EmitCheckSourceLocation(Loc),
+ EmitCheckTypeDescriptor(Ty),
+ llvm::ConstantInt::get(SizeTy, AlignVal),
+ llvm::ConstantInt::get(Int8Ty, TCK)
+ };
+ EmitCheck(Checks, "type_mismatch", StaticData, Address);
+ }
+
+ // If possible, check that the vptr indicates that there is a subobject of
+ // type Ty at offset zero within this object.
+ //
+ // C++11 [basic.life]p5,6:
+ // [For storage which does not refer to an object within its lifetime]
+ // The program has undefined behavior if:
+ // -- the [pointer or glvalue] is used to access a non-static data member
+ // or call a non-static member function
+ CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
+ if (SanOpts.has(SanitizerKind::Vptr) &&
+ (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
+ TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
+ TCK == TCK_UpcastToVirtualBase) &&
+ RD && RD->hasDefinition() && RD->isDynamicClass()) {
+ // Compute a hash of the mangled name of the type.
+ //
+ // FIXME: This is not guaranteed to be deterministic! Move to a
+ // fingerprinting mechanism once LLVM provides one. For the time
+ // being the implementation happens to be deterministic.
+ SmallString<64> MangledName;
+ llvm::raw_svector_ostream Out(MangledName);
+ CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
+ Out);
+
+ // Blacklist based on the mangled type.
+ if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
+ Out.str())) {
+ llvm::hash_code TypeHash = hash_value(Out.str());
+
+ // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
+ llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
+ llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
+ llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy);
+ llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
+ llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
+
+ llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
+ Hash = Builder.CreateTrunc(Hash, IntPtrTy);
+
+ // Look the hash up in our cache.
+ const int CacheSize = 128;
+ llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
+ llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
+ "__ubsan_vptr_type_cache");
+ llvm::Value *Slot = Builder.CreateAnd(Hash,
+ llvm::ConstantInt::get(IntPtrTy,
+ CacheSize-1));
+ llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
+ llvm::Value *CacheVal =
+ Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices));
+
+ // If the hash isn't in the cache, call a runtime handler to perform the
+ // hard work of checking whether the vptr is for an object of the right
+ // type. This will either fill in the cache and return, or produce a
+ // diagnostic.
+ llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
+ llvm::Constant *StaticData[] = {
+ EmitCheckSourceLocation(Loc),
+ EmitCheckTypeDescriptor(Ty),
+ CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
+ llvm::ConstantInt::get(Int8Ty, TCK)
+ };
+ llvm::Value *DynamicData[] = { Address, Hash };
+ EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
+ "dynamic_type_cache_miss", StaticData, DynamicData);
+ }
+ }
+
+ if (Done) {
+ Builder.CreateBr(Done);
+ EmitBlock(Done);
+ }
+}
+
+/// Determine whether this expression refers to a flexible array member in a
+/// struct. We disable array bounds checks for such members.
+static bool isFlexibleArrayMemberExpr(const Expr *E) {
+ // For compatibility with existing code, we treat arrays of length 0 or
+ // 1 as flexible array members.
+ const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
+ if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
+ if (CAT->getSize().ugt(1))
+ return false;
+ } else if (!isa<IncompleteArrayType>(AT))
+ return false;
+
+ E = E->IgnoreParens();
+
+ // A flexible array member must be the last member in the class.
+ if (const auto *ME = dyn_cast<MemberExpr>(E)) {
+ // FIXME: If the base type of the member expr is not FD->getParent(),
+ // this should not be treated as a flexible array member access.
+ if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
+ RecordDecl::field_iterator FI(
+ DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
+ return ++FI == FD->getParent()->field_end();
+ }
+ }
+
+ return false;
+}
+
+/// If Base is known to point to the start of an array, return the length of
+/// that array. Return 0 if the length cannot be determined.
+static llvm::Value *getArrayIndexingBound(
+ CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
+ // For the vector indexing extension, the bound is the number of elements.
+ if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
+ IndexedType = Base->getType();
+ return CGF.Builder.getInt32(VT->getNumElements());
+ }
+
+ Base = Base->IgnoreParens();
+
+ if (const auto *CE = dyn_cast<CastExpr>(Base)) {
+ if (CE->getCastKind() == CK_ArrayToPointerDecay &&
+ !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
+ IndexedType = CE->getSubExpr()->getType();
+ const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
+ if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
+ return CGF.Builder.getInt(CAT->getSize());
+ else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
+ return CGF.getVLASize(VAT).first;
+ }
+ }
+
+ return nullptr;
+}
+
+void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
+ llvm::Value *Index, QualType IndexType,
+ bool Accessed) {
+ assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
+ "should not be called unless adding bounds checks");
+ SanitizerScope SanScope(this);
+
+ QualType IndexedType;
+ llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
+ if (!Bound)
+ return;
+
+ bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
+ llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
+ llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
+
+ llvm::Constant *StaticData[] = {
+ EmitCheckSourceLocation(E->getExprLoc()),
+ EmitCheckTypeDescriptor(IndexedType),
+ EmitCheckTypeDescriptor(IndexType)
+ };
+ llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
+ : Builder.CreateICmpULE(IndexVal, BoundVal);
+ EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), "out_of_bounds",
+ StaticData, Index);
+}
+
+
+CodeGenFunction::ComplexPairTy CodeGenFunction::
+EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
+ bool isInc, bool isPre) {
+ ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
+
+ llvm::Value *NextVal;
+ if (isa<llvm::IntegerType>(InVal.first->getType())) {
+ uint64_t AmountVal = isInc ? 1 : -1;
+ NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
+
+ // Add the inc/dec to the real part.
+ NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
+ } else {
+ QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
+ llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
+ if (!isInc)
+ FVal.changeSign();
+ NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
+
+ // Add the inc/dec to the real part.
+ NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
+ }
+
+ ComplexPairTy IncVal(NextVal, InVal.second);
+
+ // Store the updated result through the lvalue.
+ EmitStoreOfComplex(IncVal, LV, /*init*/ false);
+
+ // If this is a postinc, return the value read from memory, otherwise use the
+ // updated value.
+ return isPre ? IncVal : InVal;
+}
+
+//===----------------------------------------------------------------------===//
+// LValue Expression Emission
+//===----------------------------------------------------------------------===//
+
+RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
+ if (Ty->isVoidType())
+ return RValue::get(nullptr);
+
+ switch (getEvaluationKind(Ty)) {
+ case TEK_Complex: {
+ llvm::Type *EltTy =
+ ConvertType(Ty->castAs<ComplexType>()->getElementType());
+ llvm::Value *U = llvm::UndefValue::get(EltTy);
+ return RValue::getComplex(std::make_pair(U, U));
+ }
+
+ // If this is a use of an undefined aggregate type, the aggregate must have an
+ // identifiable address. Just because the contents of the value are undefined
+ // doesn't mean that the address can't be taken and compared.
+ case TEK_Aggregate: {
+ llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
+ return RValue::getAggregate(DestPtr);
+ }
+
+ case TEK_Scalar:
+ return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
+ }
+ llvm_unreachable("bad evaluation kind");
+}
+
+RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
+ const char *Name) {
+ ErrorUnsupported(E, Name);
+ return GetUndefRValue(E->getType());
+}
+
+LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
+ const char *Name) {
+ ErrorUnsupported(E, Name);
+ llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
+ return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
+}
+
+LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
+ LValue LV;
+ if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
+ LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
+ else
+ LV = EmitLValue(E);
+ if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
+ EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(),
+ E->getType(), LV.getAlignment());
+ return LV;
+}
+
+/// EmitLValue - Emit code to compute a designator that specifies the location
+/// of the expression.
+///
+/// This can return one of two things: a simple address or a bitfield reference.
+/// In either case, the LLVM Value* in the LValue structure is guaranteed to be
+/// an LLVM pointer type.
+///
+/// If this returns a bitfield reference, nothing about the pointee type of the
+/// LLVM value is known: For example, it may not be a pointer to an integer.
+///
+/// If this returns a normal address, and if the lvalue's C type is fixed size,
+/// this method guarantees that the returned pointer type will point to an LLVM
+/// type of the same size of the lvalue's type. If the lvalue has a variable
+/// length type, this is not possible.
+///
+LValue CodeGenFunction::EmitLValue(const Expr *E) {
+ ApplyDebugLocation DL(*this, E);
+ switch (E->getStmtClass()) {
+ default: return EmitUnsupportedLValue(E, "l-value expression");
+
+ case Expr::ObjCPropertyRefExprClass:
+ llvm_unreachable("cannot emit a property reference directly");
+
+ case Expr::ObjCSelectorExprClass:
+ return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
+ case Expr::ObjCIsaExprClass:
+ return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
+ case Expr::BinaryOperatorClass:
+ return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
+ case Expr::CompoundAssignOperatorClass: {
+ QualType Ty = E->getType();
+ if (const AtomicType *AT = Ty->getAs<AtomicType>())
+ Ty = AT->getValueType();
+ if (!Ty->isAnyComplexType())
+ return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
+ return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
+ }
+ case Expr::CallExprClass:
+ case Expr::CXXMemberCallExprClass:
+ case Expr::CXXOperatorCallExprClass:
+ case Expr::UserDefinedLiteralClass:
+ return EmitCallExprLValue(cast<CallExpr>(E));
+ case Expr::VAArgExprClass:
+ return EmitVAArgExprLValue(cast<VAArgExpr>(E));
+ case Expr::DeclRefExprClass:
+ return EmitDeclRefLValue(cast<DeclRefExpr>(E));
+ case Expr::ParenExprClass:
+ return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
+ case Expr::GenericSelectionExprClass:
+ return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
+ case Expr::PredefinedExprClass:
+ return EmitPredefinedLValue(cast<PredefinedExpr>(E));
+ case Expr::StringLiteralClass:
+ return EmitStringLiteralLValue(cast<StringLiteral>(E));
+ case Expr::ObjCEncodeExprClass:
+ return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
+ case Expr::PseudoObjectExprClass:
+ return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
+ case Expr::InitListExprClass:
+ return EmitInitListLValue(cast<InitListExpr>(E));
+ case Expr::CXXTemporaryObjectExprClass:
+ case Expr::CXXConstructExprClass:
+ return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
+ case Expr::CXXBindTemporaryExprClass:
+ return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
+ case Expr::CXXUuidofExprClass:
+ return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
+ case Expr::LambdaExprClass:
+ return EmitLambdaLValue(cast<LambdaExpr>(E));
+
+ case Expr::ExprWithCleanupsClass: {
+ const auto *cleanups = cast<ExprWithCleanups>(E);
+ enterFullExpression(cleanups);
+ RunCleanupsScope Scope(*this);
+ return EmitLValue(cleanups->getSubExpr());
+ }
+
+ case Expr::CXXDefaultArgExprClass:
+ return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
+ case Expr::CXXDefaultInitExprClass: {
+ CXXDefaultInitExprScope Scope(*this);
+ return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
+ }
+ case Expr::CXXTypeidExprClass:
+ return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
+
+ case Expr::ObjCMessageExprClass:
+ return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
+ case Expr::ObjCIvarRefExprClass:
+ return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
+ case Expr::StmtExprClass:
+ return EmitStmtExprLValue(cast<StmtExpr>(E));
+ case Expr::UnaryOperatorClass:
+ return EmitUnaryOpLValue(cast<UnaryOperator>(E));
+ case Expr::ArraySubscriptExprClass:
+ return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
+ case Expr::ExtVectorElementExprClass:
+ return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
+ case Expr::MemberExprClass:
+ return EmitMemberExpr(cast<MemberExpr>(E));
+ case Expr::CompoundLiteralExprClass:
+ return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
+ case Expr::ConditionalOperatorClass:
+ return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
+ case Expr::BinaryConditionalOperatorClass:
+ return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
+ case Expr::ChooseExprClass:
+ return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
+ case Expr::OpaqueValueExprClass:
+ return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
+ case Expr::SubstNonTypeTemplateParmExprClass:
+ return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
+ case Expr::ImplicitCastExprClass:
+ case Expr::CStyleCastExprClass:
+ case Expr::CXXFunctionalCastExprClass:
+ case Expr::CXXStaticCastExprClass:
+ case Expr::CXXDynamicCastExprClass:
+ case Expr::CXXReinterpretCastExprClass:
+ case Expr::CXXConstCastExprClass:
+ case Expr::ObjCBridgedCastExprClass:
+ return EmitCastLValue(cast<CastExpr>(E));
+
+ case Expr::MaterializeTemporaryExprClass:
+ return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
+ }
+}
+
+/// Given an object of the given canonical type, can we safely copy a
+/// value out of it based on its initializer?
+static bool isConstantEmittableObjectType(QualType type) {
+ assert(type.isCanonical());
+ assert(!type->isReferenceType());
+
+ // Must be const-qualified but non-volatile.
+ Qualifiers qs = type.getLocalQualifiers();
+ if (!qs.hasConst() || qs.hasVolatile()) return false;
+
+ // Otherwise, all object types satisfy this except C++ classes with
+ // mutable subobjects or non-trivial copy/destroy behavior.
+ if (const auto *RT = dyn_cast<RecordType>(type))
+ if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
+ if (RD->hasMutableFields() || !RD->isTrivial())
+ return false;
+
+ return true;
+}
+
+/// Can we constant-emit a load of a reference to a variable of the
+/// given type? This is different from predicates like
+/// Decl::isUsableInConstantExpressions because we do want it to apply
+/// in situations that don't necessarily satisfy the language's rules
+/// for this (e.g. C++'s ODR-use rules). For example, we want to able
+/// to do this with const float variables even if those variables
+/// aren't marked 'constexpr'.
+enum ConstantEmissionKind {
+ CEK_None,
+ CEK_AsReferenceOnly,
+ CEK_AsValueOrReference,
+ CEK_AsValueOnly
+};
+static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
+ type = type.getCanonicalType();
+ if (const auto *ref = dyn_cast<ReferenceType>(type)) {
+ if (isConstantEmittableObjectType(ref->getPointeeType()))
+ return CEK_AsValueOrReference;
+ return CEK_AsReferenceOnly;
+ }
+ if (isConstantEmittableObjectType(type))
+ return CEK_AsValueOnly;
+ return CEK_None;
+}
+
+/// Try to emit a reference to the given value without producing it as
+/// an l-value. This is actually more than an optimization: we can't
+/// produce an l-value for variables that we never actually captured
+/// in a block or lambda, which means const int variables or constexpr
+/// literals or similar.
+CodeGenFunction::ConstantEmission
+CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
+ ValueDecl *value = refExpr->getDecl();
+
+ // The value needs to be an enum constant or a constant variable.
+ ConstantEmissionKind CEK;
+ if (isa<ParmVarDecl>(value)) {
+ CEK = CEK_None;
+ } else if (auto *var = dyn_cast<VarDecl>(value)) {
+ CEK = checkVarTypeForConstantEmission(var->getType());
+ } else if (isa<EnumConstantDecl>(value)) {
+ CEK = CEK_AsValueOnly;
+ } else {
+ CEK = CEK_None;
+ }
+ if (CEK == CEK_None) return ConstantEmission();
+
+ Expr::EvalResult result;
+ bool resultIsReference;
+ QualType resultType;
+
+ // It's best to evaluate all the way as an r-value if that's permitted.
+ if (CEK != CEK_AsReferenceOnly &&
+ refExpr->EvaluateAsRValue(result, getContext())) {
+ resultIsReference = false;
+ resultType = refExpr->getType();
+
+ // Otherwise, try to evaluate as an l-value.
+ } else if (CEK != CEK_AsValueOnly &&
+ refExpr->EvaluateAsLValue(result, getContext())) {
+ resultIsReference = true;
+ resultType = value->getType();
+
+ // Failure.
+ } else {
+ return ConstantEmission();
+ }
+
+ // In any case, if the initializer has side-effects, abandon ship.
+ if (result.HasSideEffects)
+ return ConstantEmission();
+
+ // Emit as a constant.
+ llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
+
+ // Make sure we emit a debug reference to the global variable.
+ // This should probably fire even for
+ if (isa<VarDecl>(value)) {
+ if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
+ EmitDeclRefExprDbgValue(refExpr, C);
+ } else {
+ assert(isa<EnumConstantDecl>(value));
+ EmitDeclRefExprDbgValue(refExpr, C);
+ }
+
+ // If we emitted a reference constant, we need to dereference that.
+ if (resultIsReference)
+ return ConstantEmission::forReference(C);
+
+ return ConstantEmission::forValue(C);
+}
+
+llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
+ SourceLocation Loc) {
+ return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
+ lvalue.getAlignment().getQuantity(),
+ lvalue.getType(), Loc, lvalue.getTBAAInfo(),
+ lvalue.getTBAABaseType(), lvalue.getTBAAOffset());
+}
+
+static bool hasBooleanRepresentation(QualType Ty) {
+ if (Ty->isBooleanType())
+ return true;
+
+ if (const EnumType *ET = Ty->getAs<EnumType>())
+ return ET->getDecl()->getIntegerType()->isBooleanType();
+
+ if (const AtomicType *AT = Ty->getAs<AtomicType>())
+ return hasBooleanRepresentation(AT->getValueType());
+
+ return false;
+}
+
+static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
+ llvm::APInt &Min, llvm::APInt &End,
+ bool StrictEnums) {
+ const EnumType *ET = Ty->getAs<EnumType>();
+ bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
+ ET && !ET->getDecl()->isFixed();
+ bool IsBool = hasBooleanRepresentation(Ty);
+ if (!IsBool && !IsRegularCPlusPlusEnum)
+ return false;
+
+ if (IsBool) {
+ Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
+ End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
+ } else {
+ const EnumDecl *ED = ET->getDecl();
+ llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
+ unsigned Bitwidth = LTy->getScalarSizeInBits();
+ unsigned NumNegativeBits = ED->getNumNegativeBits();
+ unsigned NumPositiveBits = ED->getNumPositiveBits();
+
+ if (NumNegativeBits) {
+ unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
+ assert(NumBits <= Bitwidth);
+ End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
+ Min = -End;
+ } else {
+ assert(NumPositiveBits <= Bitwidth);
+ End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
+ Min = llvm::APInt(Bitwidth, 0);
+ }
+ }
+ return true;
+}
+
+llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
+ llvm::APInt Min, End;
+ if (!getRangeForType(*this, Ty, Min, End,
+ CGM.getCodeGenOpts().StrictEnums))
+ return nullptr;
+
+ llvm::MDBuilder MDHelper(getLLVMContext());
+ return MDHelper.createRange(Min, End);
+}
+
+llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
+ unsigned Alignment, QualType Ty,
+ SourceLocation Loc,
+ llvm::MDNode *TBAAInfo,
+ QualType TBAABaseType,
+ uint64_t TBAAOffset) {
+ // For better performance, handle vector loads differently.
+ if (Ty->isVectorType()) {
+ llvm::Value *V;
+ const llvm::Type *EltTy =
+ cast<llvm::PointerType>(Addr->getType())->getElementType();
+
+ const auto *VTy = cast<llvm::VectorType>(EltTy);
+
+ // Handle vectors of size 3, like size 4 for better performance.
+ if (VTy->getNumElements() == 3) {
+
+ // Bitcast to vec4 type.
+ llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
+ 4);
+ llvm::PointerType *ptVec4Ty =
+ llvm::PointerType::get(vec4Ty,
+ (cast<llvm::PointerType>(
+ Addr->getType()))->getAddressSpace());
+ llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
+ "castToVec4");
+ // Now load value.
+ llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
+
+ // Shuffle vector to get vec3.
+ llvm::Constant *Mask[] = {
+ llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0),
+ llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1),
+ llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2)
+ };
+
+ llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
+ V = Builder.CreateShuffleVector(LoadVal,
+ llvm::UndefValue::get(vec4Ty),
+ MaskV, "extractVec");
+ return EmitFromMemory(V, Ty);
+ }
+ }
+
+ // Atomic operations have to be done on integral types.
+ if (Ty->isAtomicType() || typeIsSuitableForInlineAtomic(Ty, Volatile)) {
+ LValue lvalue = LValue::MakeAddr(Addr, Ty,
+ CharUnits::fromQuantity(Alignment),
+ getContext(), TBAAInfo);
+ return EmitAtomicLoad(lvalue, Loc).getScalarVal();
+ }
+
+ llvm::LoadInst *Load = Builder.CreateLoad(Addr);
+ if (Volatile)
+ Load->setVolatile(true);
+ if (Alignment)
+ Load->setAlignment(Alignment);
+ if (TBAAInfo) {
+ llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
+ TBAAOffset);
+ if (TBAAPath)
+ CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/);
+ }
+
+ bool NeedsBoolCheck =
+ SanOpts.has(SanitizerKind::Bool) && hasBooleanRepresentation(Ty);
+ bool NeedsEnumCheck =
+ SanOpts.has(SanitizerKind::Enum) && Ty->getAs<EnumType>();
+ if (NeedsBoolCheck || NeedsEnumCheck) {
+ SanitizerScope SanScope(this);
+ llvm::APInt Min, End;
+ if (getRangeForType(*this, Ty, Min, End, true)) {
+ --End;
+ llvm::Value *Check;
+ if (!Min)
+ Check = Builder.CreateICmpULE(
+ Load, llvm::ConstantInt::get(getLLVMContext(), End));
+ else {
+ llvm::Value *Upper = Builder.CreateICmpSLE(
+ Load, llvm::ConstantInt::get(getLLVMContext(), End));
+ llvm::Value *Lower = Builder.CreateICmpSGE(
+ Load, llvm::ConstantInt::get(getLLVMContext(), Min));
+ Check = Builder.CreateAnd(Upper, Lower);
+ }
+ llvm::Constant *StaticArgs[] = {
+ EmitCheckSourceLocation(Loc),
+ EmitCheckTypeDescriptor(Ty)
+ };
+ SanitizerMask Kind = NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
+ EmitCheck(std::make_pair(Check, Kind), "load_invalid_value", StaticArgs,
+ EmitCheckValue(Load));
+ }
+ } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
+ if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
+ Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
+
+ return EmitFromMemory(Load, Ty);
+}
+
+llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
+ // Bool has a different representation in memory than in registers.
+ if (hasBooleanRepresentation(Ty)) {
+ // This should really always be an i1, but sometimes it's already
+ // an i8, and it's awkward to track those cases down.
+ if (Value->getType()->isIntegerTy(1))
+ return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
+ assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
+ "wrong value rep of bool");
+ }
+
+ return Value;
+}
+
+llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
+ // Bool has a different representation in memory than in registers.
+ if (hasBooleanRepresentation(Ty)) {
+ assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
+ "wrong value rep of bool");
+ return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
+ }
+
+ return Value;
+}
+
+void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
+ bool Volatile, unsigned Alignment,
+ QualType Ty, llvm::MDNode *TBAAInfo,
+ bool isInit, QualType TBAABaseType,
+ uint64_t TBAAOffset) {
+
+ // Handle vectors differently to get better performance.
+ if (Ty->isVectorType()) {
+ llvm::Type *SrcTy = Value->getType();
+ auto *VecTy = cast<llvm::VectorType>(SrcTy);
+ // Handle vec3 special.
+ if (VecTy->getNumElements() == 3) {
+ llvm::LLVMContext &VMContext = getLLVMContext();
+
+ // Our source is a vec3, do a shuffle vector to make it a vec4.
+ SmallVector<llvm::Constant*, 4> Mask;
+ Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
+ 0));
+ Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
+ 1));
+ Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
+ 2));
+ Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
+
+ llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
+ Value = Builder.CreateShuffleVector(Value,
+ llvm::UndefValue::get(VecTy),
+ MaskV, "extractVec");
+ SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
+ }
+ auto *DstPtr = cast<llvm::PointerType>(Addr->getType());
+ if (DstPtr->getElementType() != SrcTy) {
+ llvm::Type *MemTy =
+ llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
+ Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
+ }
+ }
+
+ Value = EmitToMemory(Value, Ty);
+
+ if (Ty->isAtomicType() ||
+ (!isInit && typeIsSuitableForInlineAtomic(Ty, Volatile))) {
+ EmitAtomicStore(RValue::get(Value),
+ LValue::MakeAddr(Addr, Ty,
+ CharUnits::fromQuantity(Alignment),
+ getContext(), TBAAInfo),
+ isInit);
+ return;
+ }
+
+ llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
+ if (Alignment)
+ Store->setAlignment(Alignment);
+ if (TBAAInfo) {
+ llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
+ TBAAOffset);
+ if (TBAAPath)
+ CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/);
+ }
+}
+
+void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
+ bool isInit) {
+ EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
+ lvalue.getAlignment().getQuantity(), lvalue.getType(),
+ lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
+ lvalue.getTBAAOffset());
+}
+
+/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
+/// method emits the address of the lvalue, then loads the result as an rvalue,
+/// returning the rvalue.
+RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
+ if (LV.isObjCWeak()) {
+ // load of a __weak object.
+ llvm::Value *AddrWeakObj = LV.getAddress();
+ return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
+ AddrWeakObj));
+ }
+ if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
+ llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
+ Object = EmitObjCConsumeObject(LV.getType(), Object);
+ return RValue::get(Object);
+ }
+
+ if (LV.isSimple()) {
+ assert(!LV.getType()->isFunctionType());
+
+ // Everything needs a load.
+ return RValue::get(EmitLoadOfScalar(LV, Loc));
+ }
+
+ if (LV.isVectorElt()) {
+ llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
+ LV.isVolatileQualified());
+ Load->setAlignment(LV.getAlignment().getQuantity());
+ return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
+ "vecext"));
+ }
+
+ // If this is a reference to a subset of the elements of a vector, either
+ // shuffle the input or extract/insert them as appropriate.
+ if (LV.isExtVectorElt())
+ return EmitLoadOfExtVectorElementLValue(LV);
+
+ // Global Register variables always invoke intrinsics
+ if (LV.isGlobalReg())
+ return EmitLoadOfGlobalRegLValue(LV);
+
+ assert(LV.isBitField() && "Unknown LValue type!");
+ return EmitLoadOfBitfieldLValue(LV);
+}
+
+RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
+ const CGBitFieldInfo &Info = LV.getBitFieldInfo();
+
+ // Get the output type.
+ llvm::Type *ResLTy = ConvertType(LV.getType());
+
+ llvm::Value *Ptr = LV.getBitFieldAddr();
+ llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(),
+ "bf.load");
+ cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
+
+ if (Info.IsSigned) {
+ assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
+ unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
+ if (HighBits)
+ Val = Builder.CreateShl(Val, HighBits, "bf.shl");
+ if (Info.Offset + HighBits)
+ Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
+ } else {
+ if (Info.Offset)
+ Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
+ if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
+ Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
+ Info.Size),
+ "bf.clear");
+ }
+ Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
+
+ return RValue::get(Val);
+}
+
+// If this is a reference to a subset of the elements of a vector, create an
+// appropriate shufflevector.
+RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
+ llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
+ LV.isVolatileQualified());
+ Load->setAlignment(LV.getAlignment().getQuantity());
+ llvm::Value *Vec = Load;
+
+ const llvm::Constant *Elts = LV.getExtVectorElts();
+
+ // If the result of the expression is a non-vector type, we must be extracting
+ // a single element. Just codegen as an extractelement.
+ const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
+ if (!ExprVT) {
+ unsigned InIdx = getAccessedFieldNo(0, Elts);
+ llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
+ return RValue::get(Builder.CreateExtractElement(Vec, Elt));
+ }
+
+ // Always use shuffle vector to try to retain the original program structure
+ unsigned NumResultElts = ExprVT->getNumElements();
+
+ SmallVector<llvm::Constant*, 4> Mask;
+ for (unsigned i = 0; i != NumResultElts; ++i)
+ Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
+
+ llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
+ Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
+ MaskV);
+ return RValue::get(Vec);
+}
+
+/// @brief Generates lvalue for partial ext_vector access.
+llvm::Value *CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
+ llvm::Value *VectorAddress = LV.getExtVectorAddr();
+ const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
+ QualType EQT = ExprVT->getElementType();
+ llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
+ llvm::Type *VectorElementPtrToTy = VectorElementTy->getPointerTo();
+
+ llvm::Value *CastToPointerElement =
+ Builder.CreateBitCast(VectorAddress,
+ VectorElementPtrToTy, "conv.ptr.element");
+
+ const llvm::Constant *Elts = LV.getExtVectorElts();
+ unsigned ix = getAccessedFieldNo(0, Elts);
+
+ llvm::Value *VectorBasePtrPlusIx =
+ Builder.CreateInBoundsGEP(CastToPointerElement,
+ llvm::ConstantInt::get(SizeTy, ix), "add.ptr");
+
+ return VectorBasePtrPlusIx;
+}
+
+/// @brief Load of global gamed gegisters are always calls to intrinsics.
+RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
+ assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
+ "Bad type for register variable");
+ llvm::MDNode *RegName = cast<llvm::MDNode>(
+ cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
+
+ // We accept integer and pointer types only
+ llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
+ llvm::Type *Ty = OrigTy;
+ if (OrigTy->isPointerTy())
+ Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
+ llvm::Type *Types[] = { Ty };
+
+ llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
+ llvm::Value *Call = Builder.CreateCall(
+ F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
+ if (OrigTy->isPointerTy())
+ Call = Builder.CreateIntToPtr(Call, OrigTy);
+ return RValue::get(Call);
+}
+
+
+/// EmitStoreThroughLValue - Store the specified rvalue into the specified
+/// lvalue, where both are guaranteed to the have the same type, and that type
+/// is 'Ty'.
+void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
+ bool isInit) {
+ if (!Dst.isSimple()) {
+ if (Dst.isVectorElt()) {
+ // Read/modify/write the vector, inserting the new element.
+ llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
+ Dst.isVolatileQualified());
+ Load->setAlignment(Dst.getAlignment().getQuantity());
+ llvm::Value *Vec = Load;
+ Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
+ Dst.getVectorIdx(), "vecins");
+ llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
+ Dst.isVolatileQualified());
+ Store->setAlignment(Dst.getAlignment().getQuantity());
+ return;
+ }
+
+ // If this is an update of extended vector elements, insert them as
+ // appropriate.
+ if (Dst.isExtVectorElt())
+ return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
+
+ if (Dst.isGlobalReg())
+ return EmitStoreThroughGlobalRegLValue(Src, Dst);
+
+ assert(Dst.isBitField() && "Unknown LValue type");
+ return EmitStoreThroughBitfieldLValue(Src, Dst);
+ }
+
+ // There's special magic for assigning into an ARC-qualified l-value.
+ if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
+ switch (Lifetime) {
+ case Qualifiers::OCL_None:
+ llvm_unreachable("present but none");
+
+ case Qualifiers::OCL_ExplicitNone:
+ // nothing special
+ break;
+
+ case Qualifiers::OCL_Strong:
+ EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
+ return;
+
+ case Qualifiers::OCL_Weak:
+ EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
+ return;
+
+ case Qualifiers::OCL_Autoreleasing:
+ Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
+ Src.getScalarVal()));
+ // fall into the normal path
+ break;
+ }
+ }
+
+ if (Dst.isObjCWeak() && !Dst.isNonGC()) {
+ // load of a __weak object.
+ llvm::Value *LvalueDst = Dst.getAddress();
+ llvm::Value *src = Src.getScalarVal();
+ CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
+ return;
+ }
+
+ if (Dst.isObjCStrong() && !Dst.isNonGC()) {
+ // load of a __strong object.
+ llvm::Value *LvalueDst = Dst.getAddress();
+ llvm::Value *src = Src.getScalarVal();
+ if (Dst.isObjCIvar()) {
+ assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
+ llvm::Type *ResultType = ConvertType(getContext().LongTy);
+ llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
+ llvm::Value *dst = RHS;
+ RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
+ llvm::Value *LHS =
+ Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
+ llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
+ CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
+ BytesBetween);
+ } else if (Dst.isGlobalObjCRef()) {
+ CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
+ Dst.isThreadLocalRef());
+ }
+ else
+ CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
+ return;
+ }
+
+ assert(Src.isScalar() && "Can't emit an agg store with this method");
+ EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
+}
+
+void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
+ llvm::Value **Result) {
+ const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
+ llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
+ llvm::Value *Ptr = Dst.getBitFieldAddr();
+
+ // Get the source value, truncated to the width of the bit-field.
+ llvm::Value *SrcVal = Src.getScalarVal();
+
+ // Cast the source to the storage type and shift it into place.
+ SrcVal = Builder.CreateIntCast(SrcVal,
+ Ptr->getType()->getPointerElementType(),
+ /*IsSigned=*/false);
+ llvm::Value *MaskedVal = SrcVal;
+
+ // See if there are other bits in the bitfield's storage we'll need to load
+ // and mask together with source before storing.
+ if (Info.StorageSize != Info.Size) {
+ assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
+ llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
+ "bf.load");
+ cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
+
+ // Mask the source value as needed.
+ if (!hasBooleanRepresentation(Dst.getType()))
+ SrcVal = Builder.CreateAnd(SrcVal,
+ llvm::APInt::getLowBitsSet(Info.StorageSize,
+ Info.Size),
+ "bf.value");
+ MaskedVal = SrcVal;
+ if (Info.Offset)
+ SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
+
+ // Mask out the original value.
+ Val = Builder.CreateAnd(Val,
+ ~llvm::APInt::getBitsSet(Info.StorageSize,
+ Info.Offset,
+ Info.Offset + Info.Size),
+ "bf.clear");
+
+ // Or together the unchanged values and the source value.
+ SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
+ } else {
+ assert(Info.Offset == 0);
+ }
+
+ // Write the new value back out.
+ llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr,
+ Dst.isVolatileQualified());
+ Store->setAlignment(Info.StorageAlignment);
+
+ // Return the new value of the bit-field, if requested.
+ if (Result) {
+ llvm::Value *ResultVal = MaskedVal;
+
+ // Sign extend the value if needed.
+ if (Info.IsSigned) {
+ assert(Info.Size <= Info.StorageSize);
+ unsigned HighBits = Info.StorageSize - Info.Size;
+ if (HighBits) {
+ ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
+ ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
+ }
+ }
+
+ ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
+ "bf.result.cast");
+ *Result = EmitFromMemory(ResultVal, Dst.getType());
+ }
+}
+
+void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
+ LValue Dst) {
+ // This access turns into a read/modify/write of the vector. Load the input
+ // value now.
+ llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
+ Dst.isVolatileQualified());
+ Load->setAlignment(Dst.getAlignment().getQuantity());
+ llvm::Value *Vec = Load;
+ const llvm::Constant *Elts = Dst.getExtVectorElts();
+
+ llvm::Value *SrcVal = Src.getScalarVal();
+
+ if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
+ unsigned NumSrcElts = VTy->getNumElements();
+ unsigned NumDstElts =
+ cast<llvm::VectorType>(Vec->getType())->getNumElements();
+ if (NumDstElts == NumSrcElts) {
+ // Use shuffle vector is the src and destination are the same number of
+ // elements and restore the vector mask since it is on the side it will be
+ // stored.
+ SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
+ for (unsigned i = 0; i != NumSrcElts; ++i)
+ Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
+
+ llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
+ Vec = Builder.CreateShuffleVector(SrcVal,
+ llvm::UndefValue::get(Vec->getType()),
+ MaskV);
+ } else if (NumDstElts > NumSrcElts) {
+ // Extended the source vector to the same length and then shuffle it
+ // into the destination.
+ // FIXME: since we're shuffling with undef, can we just use the indices
+ // into that? This could be simpler.
+ SmallVector<llvm::Constant*, 4> ExtMask;
+ for (unsigned i = 0; i != NumSrcElts; ++i)
+ ExtMask.push_back(Builder.getInt32(i));
+ ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
+ llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
+ llvm::Value *ExtSrcVal =
+ Builder.CreateShuffleVector(SrcVal,
+ llvm::UndefValue::get(SrcVal->getType()),
+ ExtMaskV);
+ // build identity
+ SmallVector<llvm::Constant*, 4> Mask;
+ for (unsigned i = 0; i != NumDstElts; ++i)
+ Mask.push_back(Builder.getInt32(i));
+
+ // When the vector size is odd and .odd or .hi is used, the last element
+ // of the Elts constant array will be one past the size of the vector.
+ // Ignore the last element here, if it is greater than the mask size.
+ if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
+ NumSrcElts--;
+
+ // modify when what gets shuffled in
+ for (unsigned i = 0; i != NumSrcElts; ++i)
+ Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
+ llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
+ Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
+ } else {
+ // We should never shorten the vector
+ llvm_unreachable("unexpected shorten vector length");
+ }
+ } else {
+ // If the Src is a scalar (not a vector) it must be updating one element.
+ unsigned InIdx = getAccessedFieldNo(0, Elts);
+ llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
+ Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
+ }
+
+ llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
+ Dst.isVolatileQualified());
+ Store->setAlignment(Dst.getAlignment().getQuantity());
+}
+
+/// @brief Store of global named registers are always calls to intrinsics.
+void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
+ assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
+ "Bad type for register variable");
+ llvm::MDNode *RegName = cast<llvm::MDNode>(
+ cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
+ assert(RegName && "Register LValue is not metadata");
+
+ // We accept integer and pointer types only
+ llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
+ llvm::Type *Ty = OrigTy;
+ if (OrigTy->isPointerTy())
+ Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
+ llvm::Type *Types[] = { Ty };
+
+ llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
+ llvm::Value *Value = Src.getScalarVal();
+ if (OrigTy->isPointerTy())
+ Value = Builder.CreatePtrToInt(Value, Ty);
+ Builder.CreateCall(
+ F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
+}
+
+// setObjCGCLValueClass - sets class of the lvalue for the purpose of
+// generating write-barries API. It is currently a global, ivar,
+// or neither.
+static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
+ LValue &LV,
+ bool IsMemberAccess=false) {
+ if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
+ return;
+
+ if (isa<ObjCIvarRefExpr>(E)) {
+ QualType ExpTy = E->getType();
+ if (IsMemberAccess && ExpTy->isPointerType()) {
+ // If ivar is a structure pointer, assigning to field of
+ // this struct follows gcc's behavior and makes it a non-ivar
+ // writer-barrier conservatively.
+ ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
+ if (ExpTy->isRecordType()) {
+ LV.setObjCIvar(false);
+ return;
+ }
+ }
+ LV.setObjCIvar(true);
+ auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
+ LV.setBaseIvarExp(Exp->getBase());
+ LV.setObjCArray(E->getType()->isArrayType());
+ return;
+ }
+
+ if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
+ if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
+ if (VD->hasGlobalStorage()) {
+ LV.setGlobalObjCRef(true);
+ LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
+ }
+ }
+ LV.setObjCArray(E->getType()->isArrayType());
+ return;
+ }
+
+ if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
+ setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
+ return;
+ }
+
+ if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
+ setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
+ if (LV.isObjCIvar()) {
+ // If cast is to a structure pointer, follow gcc's behavior and make it
+ // a non-ivar write-barrier.
+ QualType ExpTy = E->getType();
+ if (ExpTy->isPointerType())
+ ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
+ if (ExpTy->isRecordType())
+ LV.setObjCIvar(false);
+ }
+ return;
+ }
+
+ if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
+ setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
+ return;
+ }
+
+ if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
+ setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
+ return;
+ }
+
+ if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
+ setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
+ return;
+ }
+
+ if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
+ setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
+ return;
+ }
+
+ if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
+ setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
+ if (LV.isObjCIvar() && !LV.isObjCArray())
+ // Using array syntax to assigning to what an ivar points to is not
+ // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
+ LV.setObjCIvar(false);
+ else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
+ // Using array syntax to assigning to what global points to is not
+ // same as assigning to the global itself. {id *G;} G[i] = 0;
+ LV.setGlobalObjCRef(false);
+ return;
+ }
+
+ if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
+ setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
+ // We don't know if member is an 'ivar', but this flag is looked at
+ // only in the context of LV.isObjCIvar().
+ LV.setObjCArray(E->getType()->isArrayType());
+ return;
+ }
+}
+
+static llvm::Value *
+EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
+ llvm::Value *V, llvm::Type *IRType,
+ StringRef Name = StringRef()) {
+ unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
+ return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
+}
+
+static LValue EmitThreadPrivateVarDeclLValue(
+ CodeGenFunction &CGF, const VarDecl *VD, QualType T, llvm::Value *V,
+ llvm::Type *RealVarTy, CharUnits Alignment, SourceLocation Loc) {
+ V = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, V, Loc);
+ V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
+ return CGF.MakeAddrLValue(V, T, Alignment);
+}
+
+static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
+ const Expr *E, const VarDecl *VD) {
+ QualType T = E->getType();
+
+ // If it's thread_local, emit a call to its wrapper function instead.
+ if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
+ CGF.CGM.getCXXABI().usesThreadWrapperFunction())
+ return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
+
+ llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
+ llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
+ V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
+ CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
+ LValue LV;
+ // Emit reference to the private copy of the variable if it is an OpenMP
+ // threadprivate variable.
+ if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>())
+ return EmitThreadPrivateVarDeclLValue(CGF, VD, T, V, RealVarTy, Alignment,
+ E->getExprLoc());
+ if (VD->getType()->isReferenceType()) {
+ llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
+ LI->setAlignment(Alignment.getQuantity());
+ V = LI;
+ LV = CGF.MakeNaturalAlignAddrLValue(V, T);
+ } else {
+ LV = CGF.MakeAddrLValue(V, T, Alignment);
+ }
+ setObjCGCLValueClass(CGF.getContext(), E, LV);
+ return LV;
+}
+
+static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
+ const Expr *E, const FunctionDecl *FD) {
+ llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
+ if (!FD->hasPrototype()) {
+ if (const FunctionProtoType *Proto =
+ FD->getType()->getAs<FunctionProtoType>()) {
+ // Ugly case: for a K&R-style definition, the type of the definition
+ // isn't the same as the type of a use. Correct for this with a
+ // bitcast.
+ QualType NoProtoType =
+ CGF.getContext().getFunctionNoProtoType(Proto->getReturnType());
+ NoProtoType = CGF.getContext().getPointerType(NoProtoType);
+ V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
+ }
+ }
+ CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
+ return CGF.MakeAddrLValue(V, E->getType(), Alignment);
+}
+
+static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
+ llvm::Value *ThisValue) {
+ QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
+ LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
+ return CGF.EmitLValueForField(LV, FD);
+}
+
+/// Named Registers are named metadata pointing to the register name
+/// which will be read from/written to as an argument to the intrinsic
+/// @llvm.read/write_register.
+/// So far, only the name is being passed down, but other options such as
+/// register type, allocation type or even optimization options could be
+/// passed down via the metadata node.
+static LValue EmitGlobalNamedRegister(const VarDecl *VD,
+ CodeGenModule &CGM,
+ CharUnits Alignment) {
+ SmallString<64> Name("llvm.named.register.");
+ AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
+ assert(Asm->getLabel().size() < 64-Name.size() &&
+ "Register name too big");
+ Name.append(Asm->getLabel());
+ llvm::NamedMDNode *M =
+ CGM.getModule().getOrInsertNamedMetadata(Name);
+ if (M->getNumOperands() == 0) {
+ llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
+ Asm->getLabel());
+ llvm::Metadata *Ops[] = {Str};
+ M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
+ }
+ return LValue::MakeGlobalReg(
+ llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)),
+ VD->getType(), Alignment);
+}
+
+LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
+ const NamedDecl *ND = E->getDecl();
+ CharUnits Alignment = getContext().getDeclAlign(ND);
+ QualType T = E->getType();
+
+ if (const auto *VD = dyn_cast<VarDecl>(ND)) {
+ // Global Named registers access via intrinsics only
+ if (VD->getStorageClass() == SC_Register &&
+ VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
+ return EmitGlobalNamedRegister(VD, CGM, Alignment);
+
+ // A DeclRefExpr for a reference initialized by a constant expression can
+ // appear without being odr-used. Directly emit the constant initializer.
+ const Expr *Init = VD->getAnyInitializer(VD);
+ if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
+ VD->isUsableInConstantExpressions(getContext()) &&
+ VD->checkInitIsICE()) {
+ llvm::Constant *Val =
+ CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
+ assert(Val && "failed to emit reference constant expression");
+ // FIXME: Eventually we will want to emit vector element references.
+ return MakeAddrLValue(Val, T, Alignment);
+ }
+
+ // Check for captured variables.
+ if (E->refersToEnclosingVariableOrCapture()) {
+ if (auto *FD = LambdaCaptureFields.lookup(VD))
+ return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
+ else if (CapturedStmtInfo) {
+ if (auto *V = LocalDeclMap.lookup(VD))
+ return MakeAddrLValue(V, T, Alignment);
+ else
+ return EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
+ CapturedStmtInfo->getContextValue());
+ }
+ assert(isa<BlockDecl>(CurCodeDecl));
+ return MakeAddrLValue(GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>()),
+ T, Alignment);
+ }
+ }
+
+ // FIXME: We should be able to assert this for FunctionDecls as well!
+ // FIXME: We should be able to assert this for all DeclRefExprs, not just
+ // those with a valid source location.
+ assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
+ !E->getLocation().isValid()) &&
+ "Should not use decl without marking it used!");
+
+ if (ND->hasAttr<WeakRefAttr>()) {
+ const auto *VD = cast<ValueDecl>(ND);
+ llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
+ return MakeAddrLValue(Aliasee, T, Alignment);
+ }
+
+ if (const auto *VD = dyn_cast<VarDecl>(ND)) {
+ // Check if this is a global variable.
+ if (VD->hasLinkage() || VD->isStaticDataMember())
+ return EmitGlobalVarDeclLValue(*this, E, VD);
+
+ bool isBlockVariable = VD->hasAttr<BlocksAttr>();
+
+ llvm::Value *V = LocalDeclMap.lookup(VD);
+ if (!V && VD->isStaticLocal())
+ V = CGM.getOrCreateStaticVarDecl(
+ *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false));
+
+ // Check if variable is threadprivate.
+ if (V && getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>())
+ return EmitThreadPrivateVarDeclLValue(
+ *this, VD, T, V, getTypes().ConvertTypeForMem(VD->getType()),
+ Alignment, E->getExprLoc());
+
+ assert(V && "DeclRefExpr not entered in LocalDeclMap?");
+
+ if (isBlockVariable)
+ V = BuildBlockByrefAddress(V, VD);
+
+ LValue LV;
+ if (VD->getType()->isReferenceType()) {
+ llvm::LoadInst *LI = Builder.CreateLoad(V);
+ LI->setAlignment(Alignment.getQuantity());
+ V = LI;
+ LV = MakeNaturalAlignAddrLValue(V, T);
+ } else {
+ LV = MakeAddrLValue(V, T, Alignment);
+ }
+
+ bool isLocalStorage = VD->hasLocalStorage();
+
+ bool NonGCable = isLocalStorage &&
+ !VD->getType()->isReferenceType() &&
+ !isBlockVariable;
+ if (NonGCable) {
+ LV.getQuals().removeObjCGCAttr();
+ LV.setNonGC(true);
+ }
+
+ bool isImpreciseLifetime =
+ (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
+ if (isImpreciseLifetime)
+ LV.setARCPreciseLifetime(ARCImpreciseLifetime);
+ setObjCGCLValueClass(getContext(), E, LV);
+ return LV;
+ }
+
+ if (const auto *FD = dyn_cast<FunctionDecl>(ND))
+ return EmitFunctionDeclLValue(*this, E, FD);
+
+ llvm_unreachable("Unhandled DeclRefExpr");
+}
+
+LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
+ // __extension__ doesn't affect lvalue-ness.
+ if (E->getOpcode() == UO_Extension)
+ return EmitLValue(E->getSubExpr());
+
+ QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
+ switch (E->getOpcode()) {
+ default: llvm_unreachable("Unknown unary operator lvalue!");
+ case UO_Deref: {
+ QualType T = E->getSubExpr()->getType()->getPointeeType();
+ assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
+
+ LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
+ LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
+
+ // We should not generate __weak write barrier on indirect reference
+ // of a pointer to object; as in void foo (__weak id *param); *param = 0;
+ // But, we continue to generate __strong write barrier on indirect write
+ // into a pointer to object.
+ if (getLangOpts().ObjC1 &&
+ getLangOpts().getGC() != LangOptions::NonGC &&
+ LV.isObjCWeak())
+ LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
+ return LV;
+ }
+ case UO_Real:
+ case UO_Imag: {
+ LValue LV = EmitLValue(E->getSubExpr());
+ assert(LV.isSimple() && "real/imag on non-ordinary l-value");
+ llvm::Value *Addr = LV.getAddress();
+
+ // __real is valid on scalars. This is a faster way of testing that.
+ // __imag can only produce an rvalue on scalars.
+ if (E->getOpcode() == UO_Real &&
+ !cast<llvm::PointerType>(Addr->getType())
+ ->getElementType()->isStructTy()) {
+ assert(E->getSubExpr()->getType()->isArithmeticType());
+ return LV;
+ }
+
+ assert(E->getSubExpr()->getType()->isAnyComplexType());
+
+ unsigned Idx = E->getOpcode() == UO_Imag;
+ return MakeAddrLValue(
+ Builder.CreateStructGEP(nullptr, LV.getAddress(), Idx, "idx"), ExprTy);
+ }
+ case UO_PreInc:
+ case UO_PreDec: {
+ LValue LV = EmitLValue(E->getSubExpr());
+ bool isInc = E->getOpcode() == UO_PreInc;
+
+ if (E->getType()->isAnyComplexType())
+ EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
+ else
+ EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
+ return LV;
+ }
+ }
+}
+
+LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
+ return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
+ E->getType());
+}
+
+LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
+ return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
+ E->getType());
+}
+
+LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
+ auto SL = E->getFunctionName();
+ assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
+ StringRef FnName = CurFn->getName();
+ if (FnName.startswith("\01"))
+ FnName = FnName.substr(1);
+ StringRef NameItems[] = {
+ PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName};
+ std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
+ if (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)) {
+ auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str(), 1);
+ return MakeAddrLValue(C, E->getType());
+ }
+ auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
+ return MakeAddrLValue(C, E->getType());
+}
+
+/// Emit a type description suitable for use by a runtime sanitizer library. The
+/// format of a type descriptor is
+///
+/// \code
+/// { i16 TypeKind, i16 TypeInfo }
+/// \endcode
+///
+/// followed by an array of i8 containing the type name. TypeKind is 0 for an
+/// integer, 1 for a floating point value, and -1 for anything else.
+llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
+ // Only emit each type's descriptor once.
+ if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
+ return C;
+
+ uint16_t TypeKind = -1;
+ uint16_t TypeInfo = 0;
+
+ if (T->isIntegerType()) {
+ TypeKind = 0;
+ TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
+ (T->isSignedIntegerType() ? 1 : 0);
+ } else if (T->isFloatingType()) {
+ TypeKind = 1;
+ TypeInfo = getContext().getTypeSize(T);
+ }
+
+ // Format the type name as if for a diagnostic, including quotes and
+ // optionally an 'aka'.
+ SmallString<32> Buffer;
+ CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
+ (intptr_t)T.getAsOpaquePtr(),
+ StringRef(), StringRef(), None, Buffer,
+ None);
+
+ llvm::Constant *Components[] = {
+ Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
+ llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
+ };
+ llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
+
+ auto *GV = new llvm::GlobalVariable(
+ CGM.getModule(), Descriptor->getType(),
+ /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
+ GV->setUnnamedAddr(true);
+ CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
+
+ // Remember the descriptor for this type.
+ CGM.setTypeDescriptorInMap(T, GV);
+
+ return GV;
+}
+
+llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
+ llvm::Type *TargetTy = IntPtrTy;
+
+ // Floating-point types which fit into intptr_t are bitcast to integers
+ // and then passed directly (after zero-extension, if necessary).
+ if (V->getType()->isFloatingPointTy()) {
+ unsigned Bits = V->getType()->getPrimitiveSizeInBits();
+ if (Bits <= TargetTy->getIntegerBitWidth())
+ V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
+ Bits));
+ }
+
+ // Integers which fit in intptr_t are zero-extended and passed directly.
+ if (V->getType()->isIntegerTy() &&
+ V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
+ return Builder.CreateZExt(V, TargetTy);
+
+ // Pointers are passed directly, everything else is passed by address.
+ if (!V->getType()->isPointerTy()) {
+ llvm::Value *Ptr = CreateTempAlloca(V->getType());
+ Builder.CreateStore(V, Ptr);
+ V = Ptr;
+ }
+ return Builder.CreatePtrToInt(V, TargetTy);
+}
+
+/// \brief Emit a representation of a SourceLocation for passing to a handler
+/// in a sanitizer runtime library. The format for this data is:
+/// \code
+/// struct SourceLocation {
+/// const char *Filename;
+/// int32_t Line, Column;
+/// };
+/// \endcode
+/// For an invalid SourceLocation, the Filename pointer is null.
+llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
+ llvm::Constant *Filename;
+ int Line, Column;
+
+ PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
+ if (PLoc.isValid()) {
+ auto FilenameGV = CGM.GetAddrOfConstantCString(PLoc.getFilename(), ".src");
+ CGM.getSanitizerMetadata()->disableSanitizerForGlobal(FilenameGV);
+ Filename = FilenameGV;
+ Line = PLoc.getLine();
+ Column = PLoc.getColumn();
+ } else {
+ Filename = llvm::Constant::getNullValue(Int8PtrTy);
+ Line = Column = 0;
+ }
+
+ llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
+ Builder.getInt32(Column)};
+
+ return llvm::ConstantStruct::getAnon(Data);
+}
+
+namespace {
+/// \brief Specify under what conditions this check can be recovered
+enum class CheckRecoverableKind {
+ /// Always terminate program execution if this check fails.
+ Unrecoverable,
+ /// Check supports recovering, runtime has both fatal (noreturn) and
+ /// non-fatal handlers for this check.
+ Recoverable,
+ /// Runtime conditionally aborts, always need to support recovery.
+ AlwaysRecoverable
+};
+}
+
+static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
+ assert(llvm::countPopulation(Kind) == 1);
+ switch (Kind) {
+ case SanitizerKind::Vptr:
+ return CheckRecoverableKind::AlwaysRecoverable;
+ case SanitizerKind::Return:
+ case SanitizerKind::Unreachable:
+ return CheckRecoverableKind::Unrecoverable;
+ default:
+ return CheckRecoverableKind::Recoverable;
+ }
+}
+
+static void emitCheckHandlerCall(CodeGenFunction &CGF,
+ llvm::FunctionType *FnType,
+ ArrayRef<llvm::Value *> FnArgs,
+ StringRef CheckName,
+ CheckRecoverableKind RecoverKind, bool IsFatal,
+ llvm::BasicBlock *ContBB) {
+ assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
+ bool NeedsAbortSuffix =
+ IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
+ std::string FnName = ("__ubsan_handle_" + CheckName +
+ (NeedsAbortSuffix ? "_abort" : "")).str();
+ bool MayReturn =
+ !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
+
+ llvm::AttrBuilder B;
+ if (!MayReturn) {
+ B.addAttribute(llvm::Attribute::NoReturn)
+ .addAttribute(llvm::Attribute::NoUnwind);
+ }
+ B.addAttribute(llvm::Attribute::UWTable);
+
+ llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(
+ FnType, FnName,
+ llvm::AttributeSet::get(CGF.getLLVMContext(),
+ llvm::AttributeSet::FunctionIndex, B));
+ llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
+ if (!MayReturn) {
+ HandlerCall->setDoesNotReturn();
+ CGF.Builder.CreateUnreachable();
+ } else {
+ CGF.Builder.CreateBr(ContBB);
+ }
+}
+
+void CodeGenFunction::EmitCheck(
+ ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
+ StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs,
+ ArrayRef<llvm::Value *> DynamicArgs) {
+ assert(IsSanitizerScope);
+ assert(Checked.size() > 0);
+
+ llvm::Value *FatalCond = nullptr;
+ llvm::Value *RecoverableCond = nullptr;
+ for (int i = 0, n = Checked.size(); i < n; ++i) {
+ llvm::Value *Check = Checked[i].first;
+ llvm::Value *&Cond =
+ CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
+ ? RecoverableCond
+ : FatalCond;
+ Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
+ }
+
+ llvm::Value *JointCond;
+ if (FatalCond && RecoverableCond)
+ JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
+ else
+ JointCond = FatalCond ? FatalCond : RecoverableCond;
+ assert(JointCond);
+
+ CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
+ assert(SanOpts.has(Checked[0].second));
+#ifndef NDEBUG
+ for (int i = 1, n = Checked.size(); i < n; ++i) {
+ assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
+ "All recoverable kinds in a single check must be same!");
+ assert(SanOpts.has(Checked[i].second));
+ }
+#endif
+
+ if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) {
+ assert(RecoverKind != CheckRecoverableKind::AlwaysRecoverable &&
+ "Runtime call required for AlwaysRecoverable kind!");
+ // Assume that -fsanitize-undefined-trap-on-error overrides
+ // -fsanitize-recover= options, as we can only print meaningful error
+ // message and recover if we have a runtime support.
+ return EmitTrapCheck(JointCond);
+ }
+
+ llvm::BasicBlock *Cont = createBasicBlock("cont");
+ llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
+ llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
+ // Give hint that we very much don't expect to execute the handler
+ // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
+ llvm::MDBuilder MDHelper(getLLVMContext());
+ llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
+ Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
+ EmitBlock(Handlers);
+
+ // Emit handler arguments and create handler function type.
+ llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
+ auto *InfoPtr =
+ new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
+ llvm::GlobalVariable::PrivateLinkage, Info);
+ InfoPtr->setUnnamedAddr(true);
+ CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
+
+ SmallVector<llvm::Value *, 4> Args;
+ SmallVector<llvm::Type *, 4> ArgTypes;
+ Args.reserve(DynamicArgs.size() + 1);
+ ArgTypes.reserve(DynamicArgs.size() + 1);
+
+ // Handler functions take an i8* pointing to the (handler-specific) static
+ // information block, followed by a sequence of intptr_t arguments
+ // representing operand values.
+ Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
+ ArgTypes.push_back(Int8PtrTy);
+ for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
+ Args.push_back(EmitCheckValue(DynamicArgs[i]));
+ ArgTypes.push_back(IntPtrTy);
+ }
+
+ llvm::FunctionType *FnType =
+ llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
+
+ if (!FatalCond || !RecoverableCond) {
+ // Simple case: we need to generate a single handler call, either
+ // fatal, or non-fatal.
+ emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind,
+ (FatalCond != nullptr), Cont);
+ } else {
+ // Emit two handler calls: first one for set of unrecoverable checks,
+ // another one for recoverable.
+ llvm::BasicBlock *NonFatalHandlerBB =
+ createBasicBlock("non_fatal." + CheckName);
+ llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
+ Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
+ EmitBlock(FatalHandlerBB);
+ emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, true,
+ NonFatalHandlerBB);
+ EmitBlock(NonFatalHandlerBB);
+ emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, false,
+ Cont);
+ }
+
+ EmitBlock(Cont);
+}
+
+void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
+ llvm::BasicBlock *Cont = createBasicBlock("cont");
+
+ // If we're optimizing, collapse all calls to trap down to just one per
+ // function to save on code size.
+ if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
+ TrapBB = createBasicBlock("trap");
+ Builder.CreateCondBr(Checked, Cont, TrapBB);
+ EmitBlock(TrapBB);
+ llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
+ llvm::CallInst *TrapCall = Builder.CreateCall(F, {});
+ TrapCall->setDoesNotReturn();
+ TrapCall->setDoesNotThrow();
+ Builder.CreateUnreachable();
+ } else {
+ Builder.CreateCondBr(Checked, Cont, TrapBB);
+ }
+
+ EmitBlock(Cont);
+}
+
+/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
+/// array to pointer, return the array subexpression.
+static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
+ // If this isn't just an array->pointer decay, bail out.
+ const auto *CE = dyn_cast<CastExpr>(E);
+ if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
+ return nullptr;
+
+ // If this is a decay from variable width array, bail out.
+ const Expr *SubExpr = CE->getSubExpr();
+ if (SubExpr->getType()->isVariableArrayType())
+ return nullptr;
+
+ return SubExpr;
+}
+
+LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
+ bool Accessed) {
+ // The index must always be an integer, which is not an aggregate. Emit it.
+ llvm::Value *Idx = EmitScalarExpr(E->getIdx());
+ QualType IdxTy = E->getIdx()->getType();
+ bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
+
+ if (SanOpts.has(SanitizerKind::ArrayBounds))
+ EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
+
+ // If the base is a vector type, then we are forming a vector element lvalue
+ // with this subscript.
+ if (E->getBase()->getType()->isVectorType() &&
+ !isa<ExtVectorElementExpr>(E->getBase())) {
+ // Emit the vector as an lvalue to get its address.
+ LValue LHS = EmitLValue(E->getBase());
+ assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
+ return LValue::MakeVectorElt(LHS.getAddress(), Idx,
+ E->getBase()->getType(), LHS.getAlignment());
+ }
+
+ // Extend or truncate the index type to 32 or 64-bits.
+ if (Idx->getType() != IntPtrTy)
+ Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
+
+ // We know that the pointer points to a type of the correct size, unless the
+ // size is a VLA or Objective-C interface.
+ llvm::Value *Address = nullptr;
+ CharUnits ArrayAlignment;
+ if (isa<ExtVectorElementExpr>(E->getBase())) {
+ LValue LV = EmitLValue(E->getBase());
+ Address = EmitExtVectorElementLValue(LV);
+ Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
+ const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
+ QualType EQT = ExprVT->getElementType();
+ return MakeAddrLValue(Address, EQT,
+ getContext().getTypeAlignInChars(EQT));
+ }
+ else if (const VariableArrayType *vla =
+ getContext().getAsVariableArrayType(E->getType())) {
+ // The base must be a pointer, which is not an aggregate. Emit
+ // it. It needs to be emitted first in case it's what captures
+ // the VLA bounds.
+ Address = EmitScalarExpr(E->getBase());
+
+ // The element count here is the total number of non-VLA elements.
+ llvm::Value *numElements = getVLASize(vla).first;
+
+ // Effectively, the multiply by the VLA size is part of the GEP.
+ // GEP indexes are signed, and scaling an index isn't permitted to
+ // signed-overflow, so we use the same semantics for our explicit
+ // multiply. We suppress this if overflow is not undefined behavior.
+ if (getLangOpts().isSignedOverflowDefined()) {
+ Idx = Builder.CreateMul(Idx, numElements);
+ Address = Builder.CreateGEP(Address, Idx, "arrayidx");
+ } else {
+ Idx = Builder.CreateNSWMul(Idx, numElements);
+ Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
+ }
+ } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
+ // Indexing over an interface, as in "NSString *P; P[4];"
+ llvm::Value *InterfaceSize =
+ llvm::ConstantInt::get(Idx->getType(),
+ getContext().getTypeSizeInChars(OIT).getQuantity());
+
+ Idx = Builder.CreateMul(Idx, InterfaceSize);
+
+ // The base must be a pointer, which is not an aggregate. Emit it.
+ llvm::Value *Base = EmitScalarExpr(E->getBase());
+ Address = EmitCastToVoidPtr(Base);
+ Address = Builder.CreateGEP(Address, Idx, "arrayidx");
+ Address = Builder.CreateBitCast(Address, Base->getType());
+ } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
+ // If this is A[i] where A is an array, the frontend will have decayed the
+ // base to be a ArrayToPointerDecay implicit cast. While correct, it is
+ // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
+ // "gep x, i" here. Emit one "gep A, 0, i".
+ assert(Array->getType()->isArrayType() &&
+ "Array to pointer decay must have array source type!");
+ LValue ArrayLV;
+ // For simple multidimensional array indexing, set the 'accessed' flag for
+ // better bounds-checking of the base expression.
+ if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
+ ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
+ else
+ ArrayLV = EmitLValue(Array);
+ llvm::Value *ArrayPtr = ArrayLV.getAddress();
+ llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
+ llvm::Value *Args[] = { Zero, Idx };
+
+ // Propagate the alignment from the array itself to the result.
+ ArrayAlignment = ArrayLV.getAlignment();
+
+ if (getLangOpts().isSignedOverflowDefined())
+ Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
+ else
+ Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
+ } else {
+ // The base must be a pointer, which is not an aggregate. Emit it.
+ llvm::Value *Base = EmitScalarExpr(E->getBase());
+ if (getLangOpts().isSignedOverflowDefined())
+ Address = Builder.CreateGEP(Base, Idx, "arrayidx");
+ else
+ Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
+ }
+
+ QualType T = E->getBase()->getType()->getPointeeType();
+ assert(!T.isNull() &&
+ "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
+
+
+ // Limit the alignment to that of the result type.
+ LValue LV;
+ if (!ArrayAlignment.isZero()) {
+ CharUnits Align = getContext().getTypeAlignInChars(T);
+ ArrayAlignment = std::min(Align, ArrayAlignment);
+ LV = MakeAddrLValue(Address, T, ArrayAlignment);
+ } else {
+ LV = MakeNaturalAlignAddrLValue(Address, T);
+ }
+
+ LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
+
+ if (getLangOpts().ObjC1 &&
+ getLangOpts().getGC() != LangOptions::NonGC) {
+ LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
+ setObjCGCLValueClass(getContext(), E, LV);
+ }
+ return LV;
+}
+
+static
+llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
+ SmallVectorImpl<unsigned> &Elts) {
+ SmallVector<llvm::Constant*, 4> CElts;
+ for (unsigned i = 0, e = Elts.size(); i != e; ++i)
+ CElts.push_back(Builder.getInt32(Elts[i]));
+
+ return llvm::ConstantVector::get(CElts);
+}
+
+LValue CodeGenFunction::
+EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
+ // Emit the base vector as an l-value.
+ LValue Base;
+
+ // ExtVectorElementExpr's base can either be a vector or pointer to vector.
+ if (E->isArrow()) {
+ // If it is a pointer to a vector, emit the address and form an lvalue with
+ // it.
+ llvm::Value *Ptr = EmitScalarExpr(E->getBase());
+ const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
+ Base = MakeAddrLValue(Ptr, PT->getPointeeType());
+ Base.getQuals().removeObjCGCAttr();
+ } else if (E->getBase()->isGLValue()) {
+ // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
+ // emit the base as an lvalue.
+ assert(E->getBase()->getType()->isVectorType());
+ Base = EmitLValue(E->getBase());
+ } else {
+ // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
+ assert(E->getBase()->getType()->isVectorType() &&
+ "Result must be a vector");
+ llvm::Value *Vec = EmitScalarExpr(E->getBase());
+
+ // Store the vector to memory (because LValue wants an address).
+ llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
+ Builder.CreateStore(Vec, VecMem);
+ Base = MakeAddrLValue(VecMem, E->getBase()->getType());
+ }
+
+ QualType type =
+ E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
+
+ // Encode the element access list into a vector of unsigned indices.
+ SmallVector<unsigned, 4> Indices;
+ E->getEncodedElementAccess(Indices);
+
+ if (Base.isSimple()) {
+ llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
+ return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
+ Base.getAlignment());
+ }
+ assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
+
+ llvm::Constant *BaseElts = Base.getExtVectorElts();
+ SmallVector<llvm::Constant *, 4> CElts;
+
+ for (unsigned i = 0, e = Indices.size(); i != e; ++i)
+ CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
+ llvm::Constant *CV = llvm::ConstantVector::get(CElts);
+ return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
+ Base.getAlignment());
+}
+
+LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
+ Expr *BaseExpr = E->getBase();
+
+ // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
+ LValue BaseLV;
+ if (E->isArrow()) {
+ llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
+ QualType PtrTy = BaseExpr->getType()->getPointeeType();
+ EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy);
+ BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
+ } else
+ BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
+
+ NamedDecl *ND = E->getMemberDecl();
+ if (auto *Field = dyn_cast<FieldDecl>(ND)) {
+ LValue LV = EmitLValueForField(BaseLV, Field);
+ setObjCGCLValueClass(getContext(), E, LV);
+ return LV;
+ }
+
+ if (auto *VD = dyn_cast<VarDecl>(ND))
+ return EmitGlobalVarDeclLValue(*this, E, VD);
+
+ if (const auto *FD = dyn_cast<FunctionDecl>(ND))
+ return EmitFunctionDeclLValue(*this, E, FD);
+
+ llvm_unreachable("Unhandled member declaration!");
+}
+
+/// Given that we are currently emitting a lambda, emit an l-value for
+/// one of its members.
+LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
+ assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
+ assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
+ QualType LambdaTagType =
+ getContext().getTagDeclType(Field->getParent());
+ LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
+ return EmitLValueForField(LambdaLV, Field);
+}
+
+LValue CodeGenFunction::EmitLValueForField(LValue base,
+ const FieldDecl *field) {
+ if (field->isBitField()) {
+ const CGRecordLayout &RL =
+ CGM.getTypes().getCGRecordLayout(field->getParent());
+ const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
+ llvm::Value *Addr = base.getAddress();
+ unsigned Idx = RL.getLLVMFieldNo(field);
+ if (Idx != 0)
+ // For structs, we GEP to the field that the record layout suggests.
+ Addr = Builder.CreateStructGEP(nullptr, Addr, Idx, field->getName());
+ // Get the access type.
+ llvm::Type *PtrTy = llvm::Type::getIntNPtrTy(
+ getLLVMContext(), Info.StorageSize,
+ CGM.getContext().getTargetAddressSpace(base.getType()));
+ if (Addr->getType() != PtrTy)
+ Addr = Builder.CreateBitCast(Addr, PtrTy);
+
+ QualType fieldType =
+ field->getType().withCVRQualifiers(base.getVRQualifiers());
+ return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment());
+ }
+
+ const RecordDecl *rec = field->getParent();
+ QualType type = field->getType();
+ CharUnits alignment = getContext().getDeclAlign(field);
+
+ // FIXME: It should be impossible to have an LValue without alignment for a
+ // complete type.
+ if (!base.getAlignment().isZero())
+ alignment = std::min(alignment, base.getAlignment());
+
+ bool mayAlias = rec->hasAttr<MayAliasAttr>();
+
+ llvm::Value *addr = base.getAddress();
+ unsigned cvr = base.getVRQualifiers();
+ bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
+ if (rec->isUnion()) {
+ // For unions, there is no pointer adjustment.
+ assert(!type->isReferenceType() && "union has reference member");
+ // TODO: handle path-aware TBAA for union.
+ TBAAPath = false;
+ } else {
+ // For structs, we GEP to the field that the record layout suggests.
+ unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
+ addr = Builder.CreateStructGEP(nullptr, addr, idx, field->getName());
+
+ // If this is a reference field, load the reference right now.
+ if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
+ llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
+ if (cvr & Qualifiers::Volatile) load->setVolatile(true);
+ load->setAlignment(alignment.getQuantity());
+
+ // Loading the reference will disable path-aware TBAA.
+ TBAAPath = false;
+ if (CGM.shouldUseTBAA()) {
+ llvm::MDNode *tbaa;
+ if (mayAlias)
+ tbaa = CGM.getTBAAInfo(getContext().CharTy);
+ else
+ tbaa = CGM.getTBAAInfo(type);
+ if (tbaa)
+ CGM.DecorateInstruction(load, tbaa);
+ }
+
+ addr = load;
+ mayAlias = false;
+ type = refType->getPointeeType();
+ if (type->isIncompleteType())
+ alignment = CharUnits();
+ else
+ alignment = getContext().getTypeAlignInChars(type);
+ cvr = 0; // qualifiers don't recursively apply to referencee
+ }
+ }
+
+ // Make sure that the address is pointing to the right type. This is critical
+ // for both unions and structs. A union needs a bitcast, a struct element
+ // will need a bitcast if the LLVM type laid out doesn't match the desired
+ // type.
+ addr = EmitBitCastOfLValueToProperType(*this, addr,
+ CGM.getTypes().ConvertTypeForMem(type),
+ field->getName());
+
+ if (field->hasAttr<AnnotateAttr>())
+ addr = EmitFieldAnnotations(field, addr);
+
+ LValue LV = MakeAddrLValue(addr, type, alignment);
+ LV.getQuals().addCVRQualifiers(cvr);
+ if (TBAAPath) {
+ const ASTRecordLayout &Layout =
+ getContext().getASTRecordLayout(field->getParent());
+ // Set the base type to be the base type of the base LValue and
+ // update offset to be relative to the base type.
+ LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
+ LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
+ Layout.getFieldOffset(field->getFieldIndex()) /
+ getContext().getCharWidth());
+ }
+
+ // __weak attribute on a field is ignored.
+ if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
+ LV.getQuals().removeObjCGCAttr();
+
+ // Fields of may_alias structs act like 'char' for TBAA purposes.
+ // FIXME: this should get propagated down through anonymous structs
+ // and unions.
+ if (mayAlias && LV.getTBAAInfo())
+ LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
+
+ return LV;
+}
+
+LValue
+CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
+ const FieldDecl *Field) {
+ QualType FieldType = Field->getType();
+
+ if (!FieldType->isReferenceType())
+ return EmitLValueForField(Base, Field);
+
+ const CGRecordLayout &RL =
+ CGM.getTypes().getCGRecordLayout(Field->getParent());
+ unsigned idx = RL.getLLVMFieldNo(Field);
+ llvm::Value *V = Builder.CreateStructGEP(nullptr, Base.getAddress(), idx);
+ assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
+
+ // Make sure that the address is pointing to the right type. This is critical
+ // for both unions and structs. A union needs a bitcast, a struct element
+ // will need a bitcast if the LLVM type laid out doesn't match the desired
+ // type.
+ llvm::Type *llvmType = ConvertTypeForMem(FieldType);
+ V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
+
+ CharUnits Alignment = getContext().getDeclAlign(Field);
+
+ // FIXME: It should be impossible to have an LValue without alignment for a
+ // complete type.
+ if (!Base.getAlignment().isZero())
+ Alignment = std::min(Alignment, Base.getAlignment());
+
+ return MakeAddrLValue(V, FieldType, Alignment);
+}
+
+LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
+ if (E->isFileScope()) {
+ llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
+ return MakeAddrLValue(GlobalPtr, E->getType());
+ }
+ if (E->getType()->isVariablyModifiedType())
+ // make sure to emit the VLA size.
+ EmitVariablyModifiedType(E->getType());
+
+ llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
+ const Expr *InitExpr = E->getInitializer();
+ LValue Result = MakeAddrLValue(DeclPtr, E->getType());
+
+ EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
+ /*Init*/ true);
+
+ return Result;
+}
+
+LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
+ if (!E->isGLValue())
+ // Initializing an aggregate temporary in C++11: T{...}.
+ return EmitAggExprToLValue(E);
+
+ // An lvalue initializer list must be initializing a reference.
+ assert(E->getNumInits() == 1 && "reference init with multiple values");
+ return EmitLValue(E->getInit(0));
+}
+
+/// Emit the operand of a glvalue conditional operator. This is either a glvalue
+/// or a (possibly-parenthesized) throw-expression. If this is a throw, no
+/// LValue is returned and the current block has been terminated.
+static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
+ const Expr *Operand) {
+ if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
+ CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
+ return None;
+ }
+
+ return CGF.EmitLValue(Operand);
+}
+
+LValue CodeGenFunction::
+EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
+ if (!expr->isGLValue()) {
+ // ?: here should be an aggregate.
+ assert(hasAggregateEvaluationKind(expr->getType()) &&
+ "Unexpected conditional operator!");
+ return EmitAggExprToLValue(expr);
+ }
+
+ OpaqueValueMapping binding(*this, expr);
+
+ const Expr *condExpr = expr->getCond();
+ bool CondExprBool;
+ if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
+ const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
+ if (!CondExprBool) std::swap(live, dead);
+
+ if (!ContainsLabel(dead)) {
+ // If the true case is live, we need to track its region.
+ if (CondExprBool)
+ incrementProfileCounter(expr);
+ return EmitLValue(live);
+ }
+ }
+
+ llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
+ llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
+ llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
+
+ ConditionalEvaluation eval(*this);
+ EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
+
+ // Any temporaries created here are conditional.
+ EmitBlock(lhsBlock);
+ incrementProfileCounter(expr);
+ eval.begin(*this);
+ Optional<LValue> lhs =
+ EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
+ eval.end(*this);
+
+ if (lhs && !lhs->isSimple())
+ return EmitUnsupportedLValue(expr, "conditional operator");
+
+ lhsBlock = Builder.GetInsertBlock();
+ if (lhs)
+ Builder.CreateBr(contBlock);
+
+ // Any temporaries created here are conditional.
+ EmitBlock(rhsBlock);
+ eval.begin(*this);
+ Optional<LValue> rhs =
+ EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
+ eval.end(*this);
+ if (rhs && !rhs->isSimple())
+ return EmitUnsupportedLValue(expr, "conditional operator");
+ rhsBlock = Builder.GetInsertBlock();
+
+ EmitBlock(contBlock);
+
+ if (lhs && rhs) {
+ llvm::PHINode *phi = Builder.CreatePHI(lhs->getAddress()->getType(),
+ 2, "cond-lvalue");
+ phi->addIncoming(lhs->getAddress(), lhsBlock);
+ phi->addIncoming(rhs->getAddress(), rhsBlock);
+ return MakeAddrLValue(phi, expr->getType());
+ } else {
+ assert((lhs || rhs) &&
+ "both operands of glvalue conditional are throw-expressions?");
+ return lhs ? *lhs : *rhs;
+ }
+}
+
+/// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
+/// type. If the cast is to a reference, we can have the usual lvalue result,
+/// otherwise if a cast is needed by the code generator in an lvalue context,
+/// then it must mean that we need the address of an aggregate in order to
+/// access one of its members. This can happen for all the reasons that casts
+/// are permitted with aggregate result, including noop aggregate casts, and
+/// cast from scalar to union.
+LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
+ switch (E->getCastKind()) {
+ case CK_ToVoid:
+ case CK_BitCast:
+ case CK_ArrayToPointerDecay:
+ case CK_FunctionToPointerDecay:
+ case CK_NullToMemberPointer:
+ case CK_NullToPointer:
+ case CK_IntegralToPointer:
+ case CK_PointerToIntegral:
+ case CK_PointerToBoolean:
+ case CK_VectorSplat:
+ case CK_IntegralCast:
+ case CK_IntegralToBoolean:
+ case CK_IntegralToFloating:
+ case CK_FloatingToIntegral:
+ case CK_FloatingToBoolean:
+ case CK_FloatingCast:
+ case CK_FloatingRealToComplex:
+ case CK_FloatingComplexToReal:
+ case CK_FloatingComplexToBoolean:
+ case CK_FloatingComplexCast:
+ case CK_FloatingComplexToIntegralComplex:
+ case CK_IntegralRealToComplex:
+ case CK_IntegralComplexToReal:
+ case CK_IntegralComplexToBoolean:
+ case CK_IntegralComplexCast:
+ case CK_IntegralComplexToFloatingComplex:
+ case CK_DerivedToBaseMemberPointer:
+ case CK_BaseToDerivedMemberPointer:
+ case CK_MemberPointerToBoolean:
+ case CK_ReinterpretMemberPointer:
+ case CK_AnyPointerToBlockPointerCast:
+ case CK_ARCProduceObject:
+ case CK_ARCConsumeObject:
+ case CK_ARCReclaimReturnedObject:
+ case CK_ARCExtendBlockObject:
+ case CK_CopyAndAutoreleaseBlockObject:
+ case CK_AddressSpaceConversion:
+ return EmitUnsupportedLValue(E, "unexpected cast lvalue");
+
+ case CK_Dependent:
+ llvm_unreachable("dependent cast kind in IR gen!");
+
+ case CK_BuiltinFnToFnPtr:
+ llvm_unreachable("builtin functions are handled elsewhere");
+
+ // These are never l-values; just use the aggregate emission code.
+ case CK_NonAtomicToAtomic:
+ case CK_AtomicToNonAtomic:
+ return EmitAggExprToLValue(E);
+
+ case CK_Dynamic: {
+ LValue LV = EmitLValue(E->getSubExpr());
+ llvm::Value *V = LV.getAddress();
+ const auto *DCE = cast<CXXDynamicCastExpr>(E);
+ return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
+ }
+
+ case CK_ConstructorConversion:
+ case CK_UserDefinedConversion:
+ case CK_CPointerToObjCPointerCast:
+ case CK_BlockPointerToObjCPointerCast:
+ case CK_NoOp:
+ case CK_LValueToRValue:
+ return EmitLValue(E->getSubExpr());
+
+ case CK_UncheckedDerivedToBase:
+ case CK_DerivedToBase: {
+ const RecordType *DerivedClassTy =
+ E->getSubExpr()->getType()->getAs<RecordType>();
+ auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
+
+ LValue LV = EmitLValue(E->getSubExpr());
+ llvm::Value *This = LV.getAddress();
+
+ // Perform the derived-to-base conversion
+ llvm::Value *Base = GetAddressOfBaseClass(
+ This, DerivedClassDecl, E->path_begin(), E->path_end(),
+ /*NullCheckValue=*/false, E->getExprLoc());
+
+ return MakeAddrLValue(Base, E->getType());
+ }
+ case CK_ToUnion:
+ return EmitAggExprToLValue(E);
+ case CK_BaseToDerived: {
+ const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
+ auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
+
+ LValue LV = EmitLValue(E->getSubExpr());
+
+ // Perform the base-to-derived conversion
+ llvm::Value *Derived =
+ GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
+ E->path_begin(), E->path_end(),
+ /*NullCheckValue=*/false);
+
+ // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
+ // performed and the object is not of the derived type.
+ if (sanitizePerformTypeCheck())
+ EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
+ Derived, E->getType());
+
+ if (SanOpts.has(SanitizerKind::CFIDerivedCast))
+ EmitVTablePtrCheckForCast(E->getType(), Derived, /*MayBeNull=*/false);
+
+ return MakeAddrLValue(Derived, E->getType());
+ }
+ case CK_LValueBitCast: {
+ // This must be a reinterpret_cast (or c-style equivalent).
+ const auto *CE = cast<ExplicitCastExpr>(E);
+
+ LValue LV = EmitLValue(E->getSubExpr());
+ llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
+ ConvertType(CE->getTypeAsWritten()));
+
+ if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
+ EmitVTablePtrCheckForCast(E->getType(), V, /*MayBeNull=*/false);
+
+ return MakeAddrLValue(V, E->getType());
+ }
+ case CK_ObjCObjectLValueCast: {
+ LValue LV = EmitLValue(E->getSubExpr());
+ QualType ToType = getContext().getLValueReferenceType(E->getType());
+ llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
+ ConvertType(ToType));
+ return MakeAddrLValue(V, E->getType());
+ }
+ case CK_ZeroToOCLEvent:
+ llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
+ }
+
+ llvm_unreachable("Unhandled lvalue cast kind?");
+}
+
+LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
+ assert(OpaqueValueMappingData::shouldBindAsLValue(e));
+ return getOpaqueLValueMapping(e);
+}
+
+RValue CodeGenFunction::EmitRValueForField(LValue LV,
+ const FieldDecl *FD,
+ SourceLocation Loc) {
+ QualType FT = FD->getType();
+ LValue FieldLV = EmitLValueForField(LV, FD);
+ switch (getEvaluationKind(FT)) {
+ case TEK_Complex:
+ return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
+ case TEK_Aggregate:
+ return FieldLV.asAggregateRValue();
+ case TEK_Scalar:
+ return EmitLoadOfLValue(FieldLV, Loc);
+ }
+ llvm_unreachable("bad evaluation kind");
+}
+
+//===--------------------------------------------------------------------===//
+// Expression Emission
+//===--------------------------------------------------------------------===//
+
+RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
+ ReturnValueSlot ReturnValue) {
+ // Builtins never have block type.
+ if (E->getCallee()->getType()->isBlockPointerType())
+ return EmitBlockCallExpr(E, ReturnValue);
+
+ if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
+ return EmitCXXMemberCallExpr(CE, ReturnValue);
+
+ if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
+ return EmitCUDAKernelCallExpr(CE, ReturnValue);
+
+ const Decl *TargetDecl = E->getCalleeDecl();
+ if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
+ if (unsigned builtinID = FD->getBuiltinID())
+ return EmitBuiltinExpr(FD, builtinID, E, ReturnValue);
+ }
+
+ if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
+ if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
+ return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
+
+ if (const auto *PseudoDtor =
+ dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
+ QualType DestroyedType = PseudoDtor->getDestroyedType();
+ if (getLangOpts().ObjCAutoRefCount &&
+ DestroyedType->isObjCLifetimeType() &&
+ (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
+ DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
+ // Automatic Reference Counting:
+ // If the pseudo-expression names a retainable object with weak or
+ // strong lifetime, the object shall be released.
+ Expr *BaseExpr = PseudoDtor->getBase();
+ llvm::Value *BaseValue = nullptr;
+ Qualifiers BaseQuals;
+
+ // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
+ if (PseudoDtor->isArrow()) {
+ BaseValue = EmitScalarExpr(BaseExpr);
+ const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
+ BaseQuals = PTy->getPointeeType().getQualifiers();
+ } else {
+ LValue BaseLV = EmitLValue(BaseExpr);
+ BaseValue = BaseLV.getAddress();
+ QualType BaseTy = BaseExpr->getType();
+ BaseQuals = BaseTy.getQualifiers();
+ }
+
+ switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
+ case Qualifiers::OCL_None:
+ case Qualifiers::OCL_ExplicitNone:
+ case Qualifiers::OCL_Autoreleasing:
+ break;
+
+ case Qualifiers::OCL_Strong:
+ EmitARCRelease(Builder.CreateLoad(BaseValue,
+ PseudoDtor->getDestroyedType().isVolatileQualified()),
+ ARCPreciseLifetime);
+ break;
+
+ case Qualifiers::OCL_Weak:
+ EmitARCDestroyWeak(BaseValue);
+ break;
+ }
+ } else {
+ // C++ [expr.pseudo]p1:
+ // The result shall only be used as the operand for the function call
+ // operator (), and the result of such a call has type void. The only
+ // effect is the evaluation of the postfix-expression before the dot or
+ // arrow.
+ EmitScalarExpr(E->getCallee());
+ }
+
+ return RValue::get(nullptr);
+ }
+
+ llvm::Value *Callee = EmitScalarExpr(E->getCallee());
+ return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue,
+ TargetDecl);
+}
+
+LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
+ // Comma expressions just emit their LHS then their RHS as an l-value.
+ if (E->getOpcode() == BO_Comma) {
+ EmitIgnoredExpr(E->getLHS());
+ EnsureInsertPoint();
+ return EmitLValue(E->getRHS());
+ }
+
+ if (E->getOpcode() == BO_PtrMemD ||
+ E->getOpcode() == BO_PtrMemI)
+ return EmitPointerToDataMemberBinaryExpr(E);
+
+ assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
+
+ // Note that in all of these cases, __block variables need the RHS
+ // evaluated first just in case the variable gets moved by the RHS.
+
+ switch (getEvaluationKind(E->getType())) {
+ case TEK_Scalar: {
+ switch (E->getLHS()->getType().getObjCLifetime()) {
+ case Qualifiers::OCL_Strong:
+ return EmitARCStoreStrong(E, /*ignored*/ false).first;
+
+ case Qualifiers::OCL_Autoreleasing:
+ return EmitARCStoreAutoreleasing(E).first;
+
+ // No reason to do any of these differently.
+ case Qualifiers::OCL_None:
+ case Qualifiers::OCL_ExplicitNone:
+ case Qualifiers::OCL_Weak:
+ break;
+ }
+
+ RValue RV = EmitAnyExpr(E->getRHS());
+ LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
+ EmitStoreThroughLValue(RV, LV);
+ return LV;
+ }
+
+ case TEK_Complex:
+ return EmitComplexAssignmentLValue(E);
+
+ case TEK_Aggregate:
+ return EmitAggExprToLValue(E);
+ }
+ llvm_unreachable("bad evaluation kind");
+}
+
+LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
+ RValue RV = EmitCallExpr(E);
+
+ if (!RV.isScalar())
+ return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
+
+ assert(E->getCallReturnType(getContext())->isReferenceType() &&
+ "Can't have a scalar return unless the return type is a "
+ "reference type!");
+
+ return MakeAddrLValue(RV.getScalarVal(), E->getType());
+}
+
+LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
+ // FIXME: This shouldn't require another copy.
+ return EmitAggExprToLValue(E);
+}
+
+LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
+ assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
+ && "binding l-value to type which needs a temporary");
+ AggValueSlot Slot = CreateAggTemp(E->getType());
+ EmitCXXConstructExpr(E, Slot);
+ return MakeAddrLValue(Slot.getAddr(), E->getType());
+}
+
+LValue
+CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
+ return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
+}
+
+llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
+ return Builder.CreateBitCast(CGM.GetAddrOfUuidDescriptor(E),
+ ConvertType(E->getType())->getPointerTo());
+}
+
+LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
+ return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType());
+}
+
+LValue
+CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
+ AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
+ Slot.setExternallyDestructed();
+ EmitAggExpr(E->getSubExpr(), Slot);
+ EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
+ return MakeAddrLValue(Slot.getAddr(), E->getType());
+}
+
+LValue
+CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
+ AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
+ EmitLambdaExpr(E, Slot);
+ return MakeAddrLValue(Slot.getAddr(), E->getType());
+}
+
+LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
+ RValue RV = EmitObjCMessageExpr(E);
+
+ if (!RV.isScalar())
+ return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
+
+ assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
+ "Can't have a scalar return unless the return type is a "
+ "reference type!");
+
+ return MakeAddrLValue(RV.getScalarVal(), E->getType());
+}
+
+LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
+ llvm::Value *V =
+ CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true);
+ return MakeAddrLValue(V, E->getType());
+}
+
+llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
+ const ObjCIvarDecl *Ivar) {
+ return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
+}
+
+LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
+ llvm::Value *BaseValue,
+ const ObjCIvarDecl *Ivar,
+ unsigned CVRQualifiers) {
+ return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
+ Ivar, CVRQualifiers);
+}
+
+LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
+ // FIXME: A lot of the code below could be shared with EmitMemberExpr.
+ llvm::Value *BaseValue = nullptr;
+ const Expr *BaseExpr = E->getBase();
+ Qualifiers BaseQuals;
+ QualType ObjectTy;
+ if (E->isArrow()) {
+ BaseValue = EmitScalarExpr(BaseExpr);
+ ObjectTy = BaseExpr->getType()->getPointeeType();
+ BaseQuals = ObjectTy.getQualifiers();
+ } else {
+ LValue BaseLV = EmitLValue(BaseExpr);
+ // FIXME: this isn't right for bitfields.
+ BaseValue = BaseLV.getAddress();
+ ObjectTy = BaseExpr->getType();
+ BaseQuals = ObjectTy.getQualifiers();
+ }
+
+ LValue LV =
+ EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
+ BaseQuals.getCVRQualifiers());
+ setObjCGCLValueClass(getContext(), E, LV);
+ return LV;
+}
+
+LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
+ // Can only get l-value for message expression returning aggregate type
+ RValue RV = EmitAnyExprToTemp(E);
+ return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
+}
+
+RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
+ const CallExpr *E, ReturnValueSlot ReturnValue,
+ const Decl *TargetDecl, llvm::Value *Chain) {
+ // Get the actual function type. The callee type will always be a pointer to
+ // function type or a block pointer type.
+ assert(CalleeType->isFunctionPointerType() &&
+ "Call must have function pointer type!");
+
+ CalleeType = getContext().getCanonicalType(CalleeType);
+
+ const auto *FnType =
+ cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
+
+ if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
+ (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
+ if (llvm::Constant *PrefixSig =
+ CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
+ SanitizerScope SanScope(this);
+ llvm::Constant *FTRTTIConst =
+ CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
+ llvm::Type *PrefixStructTyElems[] = {
+ PrefixSig->getType(),
+ FTRTTIConst->getType()
+ };
+ llvm::StructType *PrefixStructTy = llvm::StructType::get(
+ CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
+
+ llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
+ Callee, llvm::PointerType::getUnqual(PrefixStructTy));
+ llvm::Value *CalleeSigPtr =
+ Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
+ llvm::Value *CalleeSig = Builder.CreateLoad(CalleeSigPtr);
+ llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
+
+ llvm::BasicBlock *Cont = createBasicBlock("cont");
+ llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
+ Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
+
+ EmitBlock(TypeCheck);
+ llvm::Value *CalleeRTTIPtr =
+ Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
+ llvm::Value *CalleeRTTI = Builder.CreateLoad(CalleeRTTIPtr);
+ llvm::Value *CalleeRTTIMatch =
+ Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
+ llvm::Constant *StaticData[] = {
+ EmitCheckSourceLocation(E->getLocStart()),
+ EmitCheckTypeDescriptor(CalleeType)
+ };
+ EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
+ "function_type_mismatch", StaticData, Callee);
+
+ Builder.CreateBr(Cont);
+ EmitBlock(Cont);
+ }
+ }
+
+ CallArgList Args;
+ if (Chain)
+ Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
+ CGM.getContext().VoidPtrTy);
+ EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arg_begin(),
+ E->arg_end(), E->getDirectCallee(), /*ParamsToSkip*/ 0);
+
+ const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
+ Args, FnType, /*isChainCall=*/Chain);
+
+ // C99 6.5.2.2p6:
+ // If the expression that denotes the called function has a type
+ // that does not include a prototype, [the default argument
+ // promotions are performed]. If the number of arguments does not
+ // equal the number of parameters, the behavior is undefined. If
+ // the function is defined with a type that includes a prototype,
+ // and either the prototype ends with an ellipsis (, ...) or the
+ // types of the arguments after promotion are not compatible with
+ // the types of the parameters, the behavior is undefined. If the
+ // function is defined with a type that does not include a
+ // prototype, and the types of the arguments after promotion are
+ // not compatible with those of the parameters after promotion,
+ // the behavior is undefined [except in some trivial cases].
+ // That is, in the general case, we should assume that a call
+ // through an unprototyped function type works like a *non-variadic*
+ // call. The way we make this work is to cast to the exact type
+ // of the promoted arguments.
+ //
+ // Chain calls use this same code path to add the invisible chain parameter
+ // to the function type.
+ if (isa<FunctionNoProtoType>(FnType) || Chain) {
+ llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
+ CalleeTy = CalleeTy->getPointerTo();
+ Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
+ }
+
+ return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
+}
+
+LValue CodeGenFunction::
+EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
+ llvm::Value *BaseV;
+ if (E->getOpcode() == BO_PtrMemI)
+ BaseV = EmitScalarExpr(E->getLHS());
+ else
+ BaseV = EmitLValue(E->getLHS()).getAddress();
+
+ llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
+
+ const MemberPointerType *MPT
+ = E->getRHS()->getType()->getAs<MemberPointerType>();
+
+ llvm::Value *AddV = CGM.getCXXABI().EmitMemberDataPointerAddress(
+ *this, E, BaseV, OffsetV, MPT);
+
+ return MakeAddrLValue(AddV, MPT->getPointeeType());
+}
+
+/// Given the address of a temporary variable, produce an r-value of
+/// its type.
+RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr,
+ QualType type,
+ SourceLocation loc) {
+ LValue lvalue = MakeNaturalAlignAddrLValue(addr, type);
+ switch (getEvaluationKind(type)) {
+ case TEK_Complex:
+ return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
+ case TEK_Aggregate:
+ return lvalue.asAggregateRValue();
+ case TEK_Scalar:
+ return RValue::get(EmitLoadOfScalar(lvalue, loc));
+ }
+ llvm_unreachable("bad evaluation kind");
+}
+
+void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
+ assert(Val->getType()->isFPOrFPVectorTy());
+ if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
+ return;
+
+ llvm::MDBuilder MDHelper(getLLVMContext());
+ llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
+
+ cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
+}
+
+namespace {
+ struct LValueOrRValue {
+ LValue LV;
+ RValue RV;
+ };
+}
+
+static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
+ const PseudoObjectExpr *E,
+ bool forLValue,
+ AggValueSlot slot) {
+ SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
+
+ // Find the result expression, if any.
+ const Expr *resultExpr = E->getResultExpr();
+ LValueOrRValue result;
+
+ for (PseudoObjectExpr::const_semantics_iterator
+ i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
+ const Expr *semantic = *i;
+
+ // If this semantic expression is an opaque value, bind it
+ // to the result of its source expression.
+ if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
+
+ // If this is the result expression, we may need to evaluate
+ // directly into the slot.
+ typedef CodeGenFunction::OpaqueValueMappingData OVMA;
+ OVMA opaqueData;
+ if (ov == resultExpr && ov->isRValue() && !forLValue &&
+ CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
+ CGF.EmitAggExpr(ov->getSourceExpr(), slot);
+
+ LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
+ opaqueData = OVMA::bind(CGF, ov, LV);
+ result.RV = slot.asRValue();
+
+ // Otherwise, emit as normal.
+ } else {
+ opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
+
+ // If this is the result, also evaluate the result now.
+ if (ov == resultExpr) {
+ if (forLValue)
+ result.LV = CGF.EmitLValue(ov);
+ else
+ result.RV = CGF.EmitAnyExpr(ov, slot);
+ }
+ }
+
+ opaques.push_back(opaqueData);
+
+ // Otherwise, if the expression is the result, evaluate it
+ // and remember the result.
+ } else if (semantic == resultExpr) {
+ if (forLValue)
+ result.LV = CGF.EmitLValue(semantic);
+ else
+ result.RV = CGF.EmitAnyExpr(semantic, slot);
+
+ // Otherwise, evaluate the expression in an ignored context.
+ } else {
+ CGF.EmitIgnoredExpr(semantic);
+ }
+ }
+
+ // Unbind all the opaques now.
+ for (unsigned i = 0, e = opaques.size(); i != e; ++i)
+ opaques[i].unbind(CGF);
+
+ return result;
+}
+
+RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
+ AggValueSlot slot) {
+ return emitPseudoObjectExpr(*this, E, false, slot).RV;
+}
+
+LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
+ return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGExprAgg.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGExprAgg.cpp
new file mode 100644
index 0000000..6fedf0e
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGExprAgg.cpp
@@ -0,0 +1,1535 @@
+//===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code to emit Aggregate Expr nodes as LLVM code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenFunction.h"
+#include "CGObjCRuntime.h"
+#include "CodeGenModule.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/StmtVisitor.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Intrinsics.h"
+using namespace clang;
+using namespace CodeGen;
+
+//===----------------------------------------------------------------------===//
+// Aggregate Expression Emitter
+//===----------------------------------------------------------------------===//
+
+namespace {
+class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
+ CodeGenFunction &CGF;
+ CGBuilderTy &Builder;
+ AggValueSlot Dest;
+
+ /// We want to use 'dest' as the return slot except under two
+ /// conditions:
+ /// - The destination slot requires garbage collection, so we
+ /// need to use the GC API.
+ /// - The destination slot is potentially aliased.
+ bool shouldUseDestForReturnSlot() const {
+ return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased());
+ }
+
+ ReturnValueSlot getReturnValueSlot() const {
+ if (!shouldUseDestForReturnSlot())
+ return ReturnValueSlot();
+
+ return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
+ }
+
+ AggValueSlot EnsureSlot(QualType T) {
+ if (!Dest.isIgnored()) return Dest;
+ return CGF.CreateAggTemp(T, "agg.tmp.ensured");
+ }
+ void EnsureDest(QualType T) {
+ if (!Dest.isIgnored()) return;
+ Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
+ }
+
+public:
+ AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest)
+ : CGF(cgf), Builder(CGF.Builder), Dest(Dest) {
+ }
+
+ //===--------------------------------------------------------------------===//
+ // Utilities
+ //===--------------------------------------------------------------------===//
+
+ /// EmitAggLoadOfLValue - Given an expression with aggregate type that
+ /// represents a value lvalue, this method emits the address of the lvalue,
+ /// then loads the result into DestPtr.
+ void EmitAggLoadOfLValue(const Expr *E);
+
+ /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
+ void EmitFinalDestCopy(QualType type, const LValue &src);
+ void EmitFinalDestCopy(QualType type, RValue src,
+ CharUnits srcAlignment = CharUnits::Zero());
+ void EmitCopy(QualType type, const AggValueSlot &dest,
+ const AggValueSlot &src);
+
+ void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
+
+ void EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType,
+ QualType elementType, InitListExpr *E);
+
+ AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
+ if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
+ return AggValueSlot::NeedsGCBarriers;
+ return AggValueSlot::DoesNotNeedGCBarriers;
+ }
+
+ bool TypeRequiresGCollection(QualType T);
+
+ //===--------------------------------------------------------------------===//
+ // Visitor Methods
+ //===--------------------------------------------------------------------===//
+
+ void Visit(Expr *E) {
+ ApplyDebugLocation DL(CGF, E);
+ StmtVisitor<AggExprEmitter>::Visit(E);
+ }
+
+ void VisitStmt(Stmt *S) {
+ CGF.ErrorUnsupported(S, "aggregate expression");
+ }
+ void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
+ void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
+ Visit(GE->getResultExpr());
+ }
+ void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
+ void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
+ return Visit(E->getReplacement());
+ }
+
+ // l-values.
+ void VisitDeclRefExpr(DeclRefExpr *E) {
+ // For aggregates, we should always be able to emit the variable
+ // as an l-value unless it's a reference. This is due to the fact
+ // that we can't actually ever see a normal l2r conversion on an
+ // aggregate in C++, and in C there's no language standard
+ // actively preventing us from listing variables in the captures
+ // list of a block.
+ if (E->getDecl()->getType()->isReferenceType()) {
+ if (CodeGenFunction::ConstantEmission result
+ = CGF.tryEmitAsConstant(E)) {
+ EmitFinalDestCopy(E->getType(), result.getReferenceLValue(CGF, E));
+ return;
+ }
+ }
+
+ EmitAggLoadOfLValue(E);
+ }
+
+ void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
+ void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
+ void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
+ void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
+ void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
+ EmitAggLoadOfLValue(E);
+ }
+ void VisitPredefinedExpr(const PredefinedExpr *E) {
+ EmitAggLoadOfLValue(E);
+ }
+
+ // Operators.
+ void VisitCastExpr(CastExpr *E);
+ void VisitCallExpr(const CallExpr *E);
+ void VisitStmtExpr(const StmtExpr *E);
+ void VisitBinaryOperator(const BinaryOperator *BO);
+ void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
+ void VisitBinAssign(const BinaryOperator *E);
+ void VisitBinComma(const BinaryOperator *E);
+
+ void VisitObjCMessageExpr(ObjCMessageExpr *E);
+ void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
+ EmitAggLoadOfLValue(E);
+ }
+
+ void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
+ void VisitChooseExpr(const ChooseExpr *CE);
+ void VisitInitListExpr(InitListExpr *E);
+ void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
+ void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
+ Visit(DAE->getExpr());
+ }
+ void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
+ CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
+ Visit(DIE->getExpr());
+ }
+ void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
+ void VisitCXXConstructExpr(const CXXConstructExpr *E);
+ void VisitLambdaExpr(LambdaExpr *E);
+ void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
+ void VisitExprWithCleanups(ExprWithCleanups *E);
+ void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
+ void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
+ void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
+ void VisitOpaqueValueExpr(OpaqueValueExpr *E);
+
+ void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
+ if (E->isGLValue()) {
+ LValue LV = CGF.EmitPseudoObjectLValue(E);
+ return EmitFinalDestCopy(E->getType(), LV);
+ }
+
+ CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
+ }
+
+ void VisitVAArgExpr(VAArgExpr *E);
+
+ void EmitInitializationToLValue(Expr *E, LValue Address);
+ void EmitNullInitializationToLValue(LValue Address);
+ // case Expr::ChooseExprClass:
+ void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
+ void VisitAtomicExpr(AtomicExpr *E) {
+ CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr());
+ }
+};
+} // end anonymous namespace.
+
+//===----------------------------------------------------------------------===//
+// Utilities
+//===----------------------------------------------------------------------===//
+
+/// EmitAggLoadOfLValue - Given an expression with aggregate type that
+/// represents a value lvalue, this method emits the address of the lvalue,
+/// then loads the result into DestPtr.
+void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
+ LValue LV = CGF.EmitLValue(E);
+
+ // If the type of the l-value is atomic, then do an atomic load.
+ if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
+ CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
+ return;
+ }
+
+ EmitFinalDestCopy(E->getType(), LV);
+}
+
+/// \brief True if the given aggregate type requires special GC API calls.
+bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
+ // Only record types have members that might require garbage collection.
+ const RecordType *RecordTy = T->getAs<RecordType>();
+ if (!RecordTy) return false;
+
+ // Don't mess with non-trivial C++ types.
+ RecordDecl *Record = RecordTy->getDecl();
+ if (isa<CXXRecordDecl>(Record) &&
+ (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
+ !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
+ return false;
+
+ // Check whether the type has an object member.
+ return Record->hasObjectMember();
+}
+
+/// \brief Perform the final move to DestPtr if for some reason
+/// getReturnValueSlot() didn't use it directly.
+///
+/// The idea is that you do something like this:
+/// RValue Result = EmitSomething(..., getReturnValueSlot());
+/// EmitMoveFromReturnSlot(E, Result);
+///
+/// If nothing interferes, this will cause the result to be emitted
+/// directly into the return value slot. Otherwise, a final move
+/// will be performed.
+void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) {
+ if (shouldUseDestForReturnSlot()) {
+ // Logically, Dest.getAddr() should equal Src.getAggregateAddr().
+ // The possibility of undef rvalues complicates that a lot,
+ // though, so we can't really assert.
+ return;
+ }
+
+ // Otherwise, copy from there to the destination.
+ assert(Dest.getAddr() != src.getAggregateAddr());
+ std::pair<CharUnits, CharUnits> typeInfo =
+ CGF.getContext().getTypeInfoInChars(E->getType());
+ EmitFinalDestCopy(E->getType(), src, typeInfo.second);
+}
+
+/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
+void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src,
+ CharUnits srcAlign) {
+ assert(src.isAggregate() && "value must be aggregate value!");
+ LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddr(), type, srcAlign);
+ EmitFinalDestCopy(type, srcLV);
+}
+
+/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
+void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src) {
+ // If Dest is ignored, then we're evaluating an aggregate expression
+ // in a context that doesn't care about the result. Note that loads
+ // from volatile l-values force the existence of a non-ignored
+ // destination.
+ if (Dest.isIgnored())
+ return;
+
+ AggValueSlot srcAgg =
+ AggValueSlot::forLValue(src, AggValueSlot::IsDestructed,
+ needsGC(type), AggValueSlot::IsAliased);
+ EmitCopy(type, Dest, srcAgg);
+}
+
+/// Perform a copy from the source into the destination.
+///
+/// \param type - the type of the aggregate being copied; qualifiers are
+/// ignored
+void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
+ const AggValueSlot &src) {
+ if (dest.requiresGCollection()) {
+ CharUnits sz = CGF.getContext().getTypeSizeInChars(type);
+ llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
+ CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
+ dest.getAddr(),
+ src.getAddr(),
+ size);
+ return;
+ }
+
+ // If the result of the assignment is used, copy the LHS there also.
+ // It's volatile if either side is. Use the minimum alignment of
+ // the two sides.
+ CGF.EmitAggregateCopy(dest.getAddr(), src.getAddr(), type,
+ dest.isVolatile() || src.isVolatile(),
+ std::min(dest.getAlignment(), src.getAlignment()));
+}
+
+/// \brief Emit the initializer for a std::initializer_list initialized with a
+/// real initializer list.
+void
+AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
+ // Emit an array containing the elements. The array is externally destructed
+ // if the std::initializer_list object is.
+ ASTContext &Ctx = CGF.getContext();
+ LValue Array = CGF.EmitLValue(E->getSubExpr());
+ assert(Array.isSimple() && "initializer_list array not a simple lvalue");
+ llvm::Value *ArrayPtr = Array.getAddress();
+
+ const ConstantArrayType *ArrayType =
+ Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
+ assert(ArrayType && "std::initializer_list constructed from non-array");
+
+ // FIXME: Perform the checks on the field types in SemaInit.
+ RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
+ RecordDecl::field_iterator Field = Record->field_begin();
+ if (Field == Record->field_end()) {
+ CGF.ErrorUnsupported(E, "weird std::initializer_list");
+ return;
+ }
+
+ // Start pointer.
+ if (!Field->getType()->isPointerType() ||
+ !Ctx.hasSameType(Field->getType()->getPointeeType(),
+ ArrayType->getElementType())) {
+ CGF.ErrorUnsupported(E, "weird std::initializer_list");
+ return;
+ }
+
+ AggValueSlot Dest = EnsureSlot(E->getType());
+ LValue DestLV = CGF.MakeAddrLValue(Dest.getAddr(), E->getType(),
+ Dest.getAlignment());
+ LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
+ llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
+ llvm::Value *IdxStart[] = { Zero, Zero };
+ llvm::Value *ArrayStart =
+ Builder.CreateInBoundsGEP(ArrayPtr, IdxStart, "arraystart");
+ CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
+ ++Field;
+
+ if (Field == Record->field_end()) {
+ CGF.ErrorUnsupported(E, "weird std::initializer_list");
+ return;
+ }
+
+ llvm::Value *Size = Builder.getInt(ArrayType->getSize());
+ LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
+ if (Field->getType()->isPointerType() &&
+ Ctx.hasSameType(Field->getType()->getPointeeType(),
+ ArrayType->getElementType())) {
+ // End pointer.
+ llvm::Value *IdxEnd[] = { Zero, Size };
+ llvm::Value *ArrayEnd =
+ Builder.CreateInBoundsGEP(ArrayPtr, IdxEnd, "arrayend");
+ CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
+ } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
+ // Length.
+ CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
+ } else {
+ CGF.ErrorUnsupported(E, "weird std::initializer_list");
+ return;
+ }
+}
+
+/// \brief Determine if E is a trivial array filler, that is, one that is
+/// equivalent to zero-initialization.
+static bool isTrivialFiller(Expr *E) {
+ if (!E)
+ return true;
+
+ if (isa<ImplicitValueInitExpr>(E))
+ return true;
+
+ if (auto *ILE = dyn_cast<InitListExpr>(E)) {
+ if (ILE->getNumInits())
+ return false;
+ return isTrivialFiller(ILE->getArrayFiller());
+ }
+
+ if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
+ return Cons->getConstructor()->isDefaultConstructor() &&
+ Cons->getConstructor()->isTrivial();
+
+ // FIXME: Are there other cases where we can avoid emitting an initializer?
+ return false;
+}
+
+/// \brief Emit initialization of an array from an initializer list.
+void AggExprEmitter::EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType,
+ QualType elementType, InitListExpr *E) {
+ uint64_t NumInitElements = E->getNumInits();
+
+ uint64_t NumArrayElements = AType->getNumElements();
+ assert(NumInitElements <= NumArrayElements);
+
+ // DestPtr is an array*. Construct an elementType* by drilling
+ // down a level.
+ llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
+ llvm::Value *indices[] = { zero, zero };
+ llvm::Value *begin =
+ Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin");
+
+ // Exception safety requires us to destroy all the
+ // already-constructed members if an initializer throws.
+ // For that, we'll need an EH cleanup.
+ QualType::DestructionKind dtorKind = elementType.isDestructedType();
+ llvm::AllocaInst *endOfInit = nullptr;
+ EHScopeStack::stable_iterator cleanup;
+ llvm::Instruction *cleanupDominator = nullptr;
+ if (CGF.needsEHCleanup(dtorKind)) {
+ // In principle we could tell the cleanup where we are more
+ // directly, but the control flow can get so varied here that it
+ // would actually be quite complex. Therefore we go through an
+ // alloca.
+ endOfInit = CGF.CreateTempAlloca(begin->getType(),
+ "arrayinit.endOfInit");
+ cleanupDominator = Builder.CreateStore(begin, endOfInit);
+ CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
+ CGF.getDestroyer(dtorKind));
+ cleanup = CGF.EHStack.stable_begin();
+
+ // Otherwise, remember that we didn't need a cleanup.
+ } else {
+ dtorKind = QualType::DK_none;
+ }
+
+ llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
+
+ // The 'current element to initialize'. The invariants on this
+ // variable are complicated. Essentially, after each iteration of
+ // the loop, it points to the last initialized element, except
+ // that it points to the beginning of the array before any
+ // elements have been initialized.
+ llvm::Value *element = begin;
+
+ // Emit the explicit initializers.
+ for (uint64_t i = 0; i != NumInitElements; ++i) {
+ // Advance to the next element.
+ if (i > 0) {
+ element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
+
+ // Tell the cleanup that it needs to destroy up to this
+ // element. TODO: some of these stores can be trivially
+ // observed to be unnecessary.
+ if (endOfInit) Builder.CreateStore(element, endOfInit);
+ }
+
+ LValue elementLV = CGF.MakeAddrLValue(element, elementType);
+ EmitInitializationToLValue(E->getInit(i), elementLV);
+ }
+
+ // Check whether there's a non-trivial array-fill expression.
+ Expr *filler = E->getArrayFiller();
+ bool hasTrivialFiller = isTrivialFiller(filler);
+
+ // Any remaining elements need to be zero-initialized, possibly
+ // using the filler expression. We can skip this if the we're
+ // emitting to zeroed memory.
+ if (NumInitElements != NumArrayElements &&
+ !(Dest.isZeroed() && hasTrivialFiller &&
+ CGF.getTypes().isZeroInitializable(elementType))) {
+
+ // Use an actual loop. This is basically
+ // do { *array++ = filler; } while (array != end);
+
+ // Advance to the start of the rest of the array.
+ if (NumInitElements) {
+ element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
+ if (endOfInit) Builder.CreateStore(element, endOfInit);
+ }
+
+ // Compute the end of the array.
+ llvm::Value *end = Builder.CreateInBoundsGEP(begin,
+ llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
+ "arrayinit.end");
+
+ llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
+ llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
+
+ // Jump into the body.
+ CGF.EmitBlock(bodyBB);
+ llvm::PHINode *currentElement =
+ Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
+ currentElement->addIncoming(element, entryBB);
+
+ // Emit the actual filler expression.
+ LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType);
+ if (filler)
+ EmitInitializationToLValue(filler, elementLV);
+ else
+ EmitNullInitializationToLValue(elementLV);
+
+ // Move on to the next element.
+ llvm::Value *nextElement =
+ Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
+
+ // Tell the EH cleanup that we finished with the last element.
+ if (endOfInit) Builder.CreateStore(nextElement, endOfInit);
+
+ // Leave the loop if we're done.
+ llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
+ "arrayinit.done");
+ llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
+ Builder.CreateCondBr(done, endBB, bodyBB);
+ currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
+
+ CGF.EmitBlock(endBB);
+ }
+
+ // Leave the partial-array cleanup if we entered one.
+ if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
+}
+
+//===----------------------------------------------------------------------===//
+// Visitor Methods
+//===----------------------------------------------------------------------===//
+
+void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
+ Visit(E->GetTemporaryExpr());
+}
+
+void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
+ EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e));
+}
+
+void
+AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
+ if (Dest.isPotentiallyAliased() &&
+ E->getType().isPODType(CGF.getContext())) {
+ // For a POD type, just emit a load of the lvalue + a copy, because our
+ // compound literal might alias the destination.
+ EmitAggLoadOfLValue(E);
+ return;
+ }
+
+ AggValueSlot Slot = EnsureSlot(E->getType());
+ CGF.EmitAggExpr(E->getInitializer(), Slot);
+}
+
+/// Attempt to look through various unimportant expressions to find a
+/// cast of the given kind.
+static Expr *findPeephole(Expr *op, CastKind kind) {
+ while (true) {
+ op = op->IgnoreParens();
+ if (CastExpr *castE = dyn_cast<CastExpr>(op)) {
+ if (castE->getCastKind() == kind)
+ return castE->getSubExpr();
+ if (castE->getCastKind() == CK_NoOp)
+ continue;
+ }
+ return nullptr;
+ }
+}
+
+void AggExprEmitter::VisitCastExpr(CastExpr *E) {
+ switch (E->getCastKind()) {
+ case CK_Dynamic: {
+ // FIXME: Can this actually happen? We have no test coverage for it.
+ assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
+ LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
+ CodeGenFunction::TCK_Load);
+ // FIXME: Do we also need to handle property references here?
+ if (LV.isSimple())
+ CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
+ else
+ CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
+
+ if (!Dest.isIgnored())
+ CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
+ break;
+ }
+
+ case CK_ToUnion: {
+ // Evaluate even if the destination is ignored.
+ if (Dest.isIgnored()) {
+ CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
+ /*ignoreResult=*/true);
+ break;
+ }
+
+ // GCC union extension
+ QualType Ty = E->getSubExpr()->getType();
+ QualType PtrTy = CGF.getContext().getPointerType(Ty);
+ llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
+ CGF.ConvertType(PtrTy));
+ EmitInitializationToLValue(E->getSubExpr(),
+ CGF.MakeAddrLValue(CastPtr, Ty));
+ break;
+ }
+
+ case CK_DerivedToBase:
+ case CK_BaseToDerived:
+ case CK_UncheckedDerivedToBase: {
+ llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
+ "should have been unpacked before we got here");
+ }
+
+ case CK_NonAtomicToAtomic:
+ case CK_AtomicToNonAtomic: {
+ bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
+
+ // Determine the atomic and value types.
+ QualType atomicType = E->getSubExpr()->getType();
+ QualType valueType = E->getType();
+ if (isToAtomic) std::swap(atomicType, valueType);
+
+ assert(atomicType->isAtomicType());
+ assert(CGF.getContext().hasSameUnqualifiedType(valueType,
+ atomicType->castAs<AtomicType>()->getValueType()));
+
+ // Just recurse normally if we're ignoring the result or the
+ // atomic type doesn't change representation.
+ if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
+ return Visit(E->getSubExpr());
+ }
+
+ CastKind peepholeTarget =
+ (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
+
+ // These two cases are reverses of each other; try to peephole them.
+ if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) {
+ assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
+ E->getType()) &&
+ "peephole significantly changed types?");
+ return Visit(op);
+ }
+
+ // If we're converting an r-value of non-atomic type to an r-value
+ // of atomic type, just emit directly into the relevant sub-object.
+ if (isToAtomic) {
+ AggValueSlot valueDest = Dest;
+ if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
+ // Zero-initialize. (Strictly speaking, we only need to intialize
+ // the padding at the end, but this is simpler.)
+ if (!Dest.isZeroed())
+ CGF.EmitNullInitialization(Dest.getAddr(), atomicType);
+
+ // Build a GEP to refer to the subobject.
+ llvm::Value *valueAddr =
+ CGF.Builder.CreateStructGEP(nullptr, valueDest.getAddr(), 0);
+ valueDest = AggValueSlot::forAddr(valueAddr,
+ valueDest.getAlignment(),
+ valueDest.getQualifiers(),
+ valueDest.isExternallyDestructed(),
+ valueDest.requiresGCollection(),
+ valueDest.isPotentiallyAliased(),
+ AggValueSlot::IsZeroed);
+ }
+
+ CGF.EmitAggExpr(E->getSubExpr(), valueDest);
+ return;
+ }
+
+ // Otherwise, we're converting an atomic type to a non-atomic type.
+ // Make an atomic temporary, emit into that, and then copy the value out.
+ AggValueSlot atomicSlot =
+ CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
+ CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
+
+ llvm::Value *valueAddr =
+ Builder.CreateStructGEP(nullptr, atomicSlot.getAddr(), 0);
+ RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
+ return EmitFinalDestCopy(valueType, rvalue);
+ }
+
+ case CK_LValueToRValue:
+ // If we're loading from a volatile type, force the destination
+ // into existence.
+ if (E->getSubExpr()->getType().isVolatileQualified()) {
+ EnsureDest(E->getType());
+ return Visit(E->getSubExpr());
+ }
+
+ // fallthrough
+
+ case CK_NoOp:
+ case CK_UserDefinedConversion:
+ case CK_ConstructorConversion:
+ assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
+ E->getType()) &&
+ "Implicit cast types must be compatible");
+ Visit(E->getSubExpr());
+ break;
+
+ case CK_LValueBitCast:
+ llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
+
+ case CK_Dependent:
+ case CK_BitCast:
+ case CK_ArrayToPointerDecay:
+ case CK_FunctionToPointerDecay:
+ case CK_NullToPointer:
+ case CK_NullToMemberPointer:
+ case CK_BaseToDerivedMemberPointer:
+ case CK_DerivedToBaseMemberPointer:
+ case CK_MemberPointerToBoolean:
+ case CK_ReinterpretMemberPointer:
+ case CK_IntegralToPointer:
+ case CK_PointerToIntegral:
+ case CK_PointerToBoolean:
+ case CK_ToVoid:
+ case CK_VectorSplat:
+ case CK_IntegralCast:
+ case CK_IntegralToBoolean:
+ case CK_IntegralToFloating:
+ case CK_FloatingToIntegral:
+ case CK_FloatingToBoolean:
+ case CK_FloatingCast:
+ case CK_CPointerToObjCPointerCast:
+ case CK_BlockPointerToObjCPointerCast:
+ case CK_AnyPointerToBlockPointerCast:
+ case CK_ObjCObjectLValueCast:
+ case CK_FloatingRealToComplex:
+ case CK_FloatingComplexToReal:
+ case CK_FloatingComplexToBoolean:
+ case CK_FloatingComplexCast:
+ case CK_FloatingComplexToIntegralComplex:
+ case CK_IntegralRealToComplex:
+ case CK_IntegralComplexToReal:
+ case CK_IntegralComplexToBoolean:
+ case CK_IntegralComplexCast:
+ case CK_IntegralComplexToFloatingComplex:
+ case CK_ARCProduceObject:
+ case CK_ARCConsumeObject:
+ case CK_ARCReclaimReturnedObject:
+ case CK_ARCExtendBlockObject:
+ case CK_CopyAndAutoreleaseBlockObject:
+ case CK_BuiltinFnToFnPtr:
+ case CK_ZeroToOCLEvent:
+ case CK_AddressSpaceConversion:
+ llvm_unreachable("cast kind invalid for aggregate types");
+ }
+}
+
+void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
+ if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
+ EmitAggLoadOfLValue(E);
+ return;
+ }
+
+ RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
+ EmitMoveFromReturnSlot(E, RV);
+}
+
+void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
+ RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
+ EmitMoveFromReturnSlot(E, RV);
+}
+
+void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
+ CGF.EmitIgnoredExpr(E->getLHS());
+ Visit(E->getRHS());
+}
+
+void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
+ CodeGenFunction::StmtExprEvaluation eval(CGF);
+ CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
+}
+
+void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
+ if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
+ VisitPointerToDataMemberBinaryOperator(E);
+ else
+ CGF.ErrorUnsupported(E, "aggregate binary expression");
+}
+
+void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
+ const BinaryOperator *E) {
+ LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
+ EmitFinalDestCopy(E->getType(), LV);
+}
+
+/// Is the value of the given expression possibly a reference to or
+/// into a __block variable?
+static bool isBlockVarRef(const Expr *E) {
+ // Make sure we look through parens.
+ E = E->IgnoreParens();
+
+ // Check for a direct reference to a __block variable.
+ if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
+ const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
+ return (var && var->hasAttr<BlocksAttr>());
+ }
+
+ // More complicated stuff.
+
+ // Binary operators.
+ if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
+ // For an assignment or pointer-to-member operation, just care
+ // about the LHS.
+ if (op->isAssignmentOp() || op->isPtrMemOp())
+ return isBlockVarRef(op->getLHS());
+
+ // For a comma, just care about the RHS.
+ if (op->getOpcode() == BO_Comma)
+ return isBlockVarRef(op->getRHS());
+
+ // FIXME: pointer arithmetic?
+ return false;
+
+ // Check both sides of a conditional operator.
+ } else if (const AbstractConditionalOperator *op
+ = dyn_cast<AbstractConditionalOperator>(E)) {
+ return isBlockVarRef(op->getTrueExpr())
+ || isBlockVarRef(op->getFalseExpr());
+
+ // OVEs are required to support BinaryConditionalOperators.
+ } else if (const OpaqueValueExpr *op
+ = dyn_cast<OpaqueValueExpr>(E)) {
+ if (const Expr *src = op->getSourceExpr())
+ return isBlockVarRef(src);
+
+ // Casts are necessary to get things like (*(int*)&var) = foo().
+ // We don't really care about the kind of cast here, except
+ // we don't want to look through l2r casts, because it's okay
+ // to get the *value* in a __block variable.
+ } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
+ if (cast->getCastKind() == CK_LValueToRValue)
+ return false;
+ return isBlockVarRef(cast->getSubExpr());
+
+ // Handle unary operators. Again, just aggressively look through
+ // it, ignoring the operation.
+ } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
+ return isBlockVarRef(uop->getSubExpr());
+
+ // Look into the base of a field access.
+ } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
+ return isBlockVarRef(mem->getBase());
+
+ // Look into the base of a subscript.
+ } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
+ return isBlockVarRef(sub->getBase());
+ }
+
+ return false;
+}
+
+void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
+ // For an assignment to work, the value on the right has
+ // to be compatible with the value on the left.
+ assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
+ E->getRHS()->getType())
+ && "Invalid assignment");
+
+ // If the LHS might be a __block variable, and the RHS can
+ // potentially cause a block copy, we need to evaluate the RHS first
+ // so that the assignment goes the right place.
+ // This is pretty semantically fragile.
+ if (isBlockVarRef(E->getLHS()) &&
+ E->getRHS()->HasSideEffects(CGF.getContext())) {
+ // Ensure that we have a destination, and evaluate the RHS into that.
+ EnsureDest(E->getRHS()->getType());
+ Visit(E->getRHS());
+
+ // Now emit the LHS and copy into it.
+ LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
+
+ // That copy is an atomic copy if the LHS is atomic.
+ if (LHS.getType()->isAtomicType() ||
+ CGF.LValueIsSuitableForInlineAtomic(LHS)) {
+ CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
+ return;
+ }
+
+ EmitCopy(E->getLHS()->getType(),
+ AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
+ needsGC(E->getLHS()->getType()),
+ AggValueSlot::IsAliased),
+ Dest);
+ return;
+ }
+
+ LValue LHS = CGF.EmitLValue(E->getLHS());
+
+ // If we have an atomic type, evaluate into the destination and then
+ // do an atomic copy.
+ if (LHS.getType()->isAtomicType() ||
+ CGF.LValueIsSuitableForInlineAtomic(LHS)) {
+ EnsureDest(E->getRHS()->getType());
+ Visit(E->getRHS());
+ CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
+ return;
+ }
+
+ // Codegen the RHS so that it stores directly into the LHS.
+ AggValueSlot LHSSlot =
+ AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
+ needsGC(E->getLHS()->getType()),
+ AggValueSlot::IsAliased);
+ // A non-volatile aggregate destination might have volatile member.
+ if (!LHSSlot.isVolatile() &&
+ CGF.hasVolatileMember(E->getLHS()->getType()))
+ LHSSlot.setVolatile(true);
+
+ CGF.EmitAggExpr(E->getRHS(), LHSSlot);
+
+ // Copy into the destination if the assignment isn't ignored.
+ EmitFinalDestCopy(E->getType(), LHS);
+}
+
+void AggExprEmitter::
+VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
+ llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
+ llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
+ llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
+
+ // Bind the common expression if necessary.
+ CodeGenFunction::OpaqueValueMapping binding(CGF, E);
+
+ CodeGenFunction::ConditionalEvaluation eval(CGF);
+ CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
+ CGF.getProfileCount(E));
+
+ // Save whether the destination's lifetime is externally managed.
+ bool isExternallyDestructed = Dest.isExternallyDestructed();
+
+ eval.begin(CGF);
+ CGF.EmitBlock(LHSBlock);
+ CGF.incrementProfileCounter(E);
+ Visit(E->getTrueExpr());
+ eval.end(CGF);
+
+ assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
+ CGF.Builder.CreateBr(ContBlock);
+
+ // If the result of an agg expression is unused, then the emission
+ // of the LHS might need to create a destination slot. That's fine
+ // with us, and we can safely emit the RHS into the same slot, but
+ // we shouldn't claim that it's already being destructed.
+ Dest.setExternallyDestructed(isExternallyDestructed);
+
+ eval.begin(CGF);
+ CGF.EmitBlock(RHSBlock);
+ Visit(E->getFalseExpr());
+ eval.end(CGF);
+
+ CGF.EmitBlock(ContBlock);
+}
+
+void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
+ Visit(CE->getChosenSubExpr());
+}
+
+void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
+ llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
+ llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
+
+ if (!ArgPtr) {
+ // If EmitVAArg fails, we fall back to the LLVM instruction.
+ llvm::Value *Val =
+ Builder.CreateVAArg(ArgValue, CGF.ConvertType(VE->getType()));
+ if (!Dest.isIgnored())
+ Builder.CreateStore(Val, Dest.getAddr());
+ return;
+ }
+
+ EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
+}
+
+void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
+ // Ensure that we have a slot, but if we already do, remember
+ // whether it was externally destructed.
+ bool wasExternallyDestructed = Dest.isExternallyDestructed();
+ EnsureDest(E->getType());
+
+ // We're going to push a destructor if there isn't already one.
+ Dest.setExternallyDestructed();
+
+ Visit(E->getSubExpr());
+
+ // Push that destructor we promised.
+ if (!wasExternallyDestructed)
+ CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddr());
+}
+
+void
+AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
+ AggValueSlot Slot = EnsureSlot(E->getType());
+ CGF.EmitCXXConstructExpr(E, Slot);
+}
+
+void
+AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
+ AggValueSlot Slot = EnsureSlot(E->getType());
+ CGF.EmitLambdaExpr(E, Slot);
+}
+
+void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
+ CGF.enterFullExpression(E);
+ CodeGenFunction::RunCleanupsScope cleanups(CGF);
+ Visit(E->getSubExpr());
+}
+
+void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
+ QualType T = E->getType();
+ AggValueSlot Slot = EnsureSlot(T);
+ EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
+}
+
+void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
+ QualType T = E->getType();
+ AggValueSlot Slot = EnsureSlot(T);
+ EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
+}
+
+/// isSimpleZero - If emitting this value will obviously just cause a store of
+/// zero to memory, return true. This can return false if uncertain, so it just
+/// handles simple cases.
+static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
+ E = E->IgnoreParens();
+
+ // 0
+ if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
+ return IL->getValue() == 0;
+ // +0.0
+ if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
+ return FL->getValue().isPosZero();
+ // int()
+ if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
+ CGF.getTypes().isZeroInitializable(E->getType()))
+ return true;
+ // (int*)0 - Null pointer expressions.
+ if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
+ return ICE->getCastKind() == CK_NullToPointer;
+ // '\0'
+ if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
+ return CL->getValue() == 0;
+
+ // Otherwise, hard case: conservatively return false.
+ return false;
+}
+
+
+void
+AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
+ QualType type = LV.getType();
+ // FIXME: Ignore result?
+ // FIXME: Are initializers affected by volatile?
+ if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
+ // Storing "i32 0" to a zero'd memory location is a noop.
+ return;
+ } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
+ return EmitNullInitializationToLValue(LV);
+ } else if (type->isReferenceType()) {
+ RValue RV = CGF.EmitReferenceBindingToExpr(E);
+ return CGF.EmitStoreThroughLValue(RV, LV);
+ }
+
+ switch (CGF.getEvaluationKind(type)) {
+ case TEK_Complex:
+ CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
+ return;
+ case TEK_Aggregate:
+ CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
+ AggValueSlot::IsDestructed,
+ AggValueSlot::DoesNotNeedGCBarriers,
+ AggValueSlot::IsNotAliased,
+ Dest.isZeroed()));
+ return;
+ case TEK_Scalar:
+ if (LV.isSimple()) {
+ CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
+ } else {
+ CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
+ }
+ return;
+ }
+ llvm_unreachable("bad evaluation kind");
+}
+
+void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
+ QualType type = lv.getType();
+
+ // If the destination slot is already zeroed out before the aggregate is
+ // copied into it, we don't have to emit any zeros here.
+ if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
+ return;
+
+ if (CGF.hasScalarEvaluationKind(type)) {
+ // For non-aggregates, we can store the appropriate null constant.
+ llvm::Value *null = CGF.CGM.EmitNullConstant(type);
+ // Note that the following is not equivalent to
+ // EmitStoreThroughBitfieldLValue for ARC types.
+ if (lv.isBitField()) {
+ CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
+ } else {
+ assert(lv.isSimple());
+ CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
+ }
+ } else {
+ // There's a potential optimization opportunity in combining
+ // memsets; that would be easy for arrays, but relatively
+ // difficult for structures with the current code.
+ CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
+ }
+}
+
+void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
+#if 0
+ // FIXME: Assess perf here? Figure out what cases are worth optimizing here
+ // (Length of globals? Chunks of zeroed-out space?).
+ //
+ // If we can, prefer a copy from a global; this is a lot less code for long
+ // globals, and it's easier for the current optimizers to analyze.
+ if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
+ llvm::GlobalVariable* GV =
+ new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
+ llvm::GlobalValue::InternalLinkage, C, "");
+ EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
+ return;
+ }
+#endif
+ if (E->hadArrayRangeDesignator())
+ CGF.ErrorUnsupported(E, "GNU array range designator extension");
+
+ AggValueSlot Dest = EnsureSlot(E->getType());
+
+ LValue DestLV = CGF.MakeAddrLValue(Dest.getAddr(), E->getType(),
+ Dest.getAlignment());
+
+ // Handle initialization of an array.
+ if (E->getType()->isArrayType()) {
+ if (E->isStringLiteralInit())
+ return Visit(E->getInit(0));
+
+ QualType elementType =
+ CGF.getContext().getAsArrayType(E->getType())->getElementType();
+
+ llvm::PointerType *APType =
+ cast<llvm::PointerType>(Dest.getAddr()->getType());
+ llvm::ArrayType *AType =
+ cast<llvm::ArrayType>(APType->getElementType());
+
+ EmitArrayInit(Dest.getAddr(), AType, elementType, E);
+ return;
+ }
+
+ if (E->getType()->isAtomicType()) {
+ // An _Atomic(T) object can be list-initialized from an expression
+ // of the same type.
+ assert(E->getNumInits() == 1 &&
+ CGF.getContext().hasSameUnqualifiedType(E->getInit(0)->getType(),
+ E->getType()) &&
+ "unexpected list initialization for atomic object");
+ return Visit(E->getInit(0));
+ }
+
+ assert(E->getType()->isRecordType() && "Only support structs/unions here!");
+
+ // Do struct initialization; this code just sets each individual member
+ // to the approprate value. This makes bitfield support automatic;
+ // the disadvantage is that the generated code is more difficult for
+ // the optimizer, especially with bitfields.
+ unsigned NumInitElements = E->getNumInits();
+ RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
+
+ // Prepare a 'this' for CXXDefaultInitExprs.
+ CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddr());
+
+ if (record->isUnion()) {
+ // Only initialize one field of a union. The field itself is
+ // specified by the initializer list.
+ if (!E->getInitializedFieldInUnion()) {
+ // Empty union; we have nothing to do.
+
+#ifndef NDEBUG
+ // Make sure that it's really an empty and not a failure of
+ // semantic analysis.
+ for (const auto *Field : record->fields())
+ assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
+#endif
+ return;
+ }
+
+ // FIXME: volatility
+ FieldDecl *Field = E->getInitializedFieldInUnion();
+
+ LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
+ if (NumInitElements) {
+ // Store the initializer into the field
+ EmitInitializationToLValue(E->getInit(0), FieldLoc);
+ } else {
+ // Default-initialize to null.
+ EmitNullInitializationToLValue(FieldLoc);
+ }
+
+ return;
+ }
+
+ // We'll need to enter cleanup scopes in case any of the member
+ // initializers throw an exception.
+ SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
+ llvm::Instruction *cleanupDominator = nullptr;
+
+ // Here we iterate over the fields; this makes it simpler to both
+ // default-initialize fields and skip over unnamed fields.
+ unsigned curInitIndex = 0;
+ for (const auto *field : record->fields()) {
+ // We're done once we hit the flexible array member.
+ if (field->getType()->isIncompleteArrayType())
+ break;
+
+ // Always skip anonymous bitfields.
+ if (field->isUnnamedBitfield())
+ continue;
+
+ // We're done if we reach the end of the explicit initializers, we
+ // have a zeroed object, and the rest of the fields are
+ // zero-initializable.
+ if (curInitIndex == NumInitElements && Dest.isZeroed() &&
+ CGF.getTypes().isZeroInitializable(E->getType()))
+ break;
+
+
+ LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
+ // We never generate write-barries for initialized fields.
+ LV.setNonGC(true);
+
+ if (curInitIndex < NumInitElements) {
+ // Store the initializer into the field.
+ EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
+ } else {
+ // We're out of initalizers; default-initialize to null
+ EmitNullInitializationToLValue(LV);
+ }
+
+ // Push a destructor if necessary.
+ // FIXME: if we have an array of structures, all explicitly
+ // initialized, we can end up pushing a linear number of cleanups.
+ bool pushedCleanup = false;
+ if (QualType::DestructionKind dtorKind
+ = field->getType().isDestructedType()) {
+ assert(LV.isSimple());
+ if (CGF.needsEHCleanup(dtorKind)) {
+ if (!cleanupDominator)
+ cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder
+
+ CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
+ CGF.getDestroyer(dtorKind), false);
+ cleanups.push_back(CGF.EHStack.stable_begin());
+ pushedCleanup = true;
+ }
+ }
+
+ // If the GEP didn't get used because of a dead zero init or something
+ // else, clean it up for -O0 builds and general tidiness.
+ if (!pushedCleanup && LV.isSimple())
+ if (llvm::GetElementPtrInst *GEP =
+ dyn_cast<llvm::GetElementPtrInst>(LV.getAddress()))
+ if (GEP->use_empty())
+ GEP->eraseFromParent();
+ }
+
+ // Deactivate all the partial cleanups in reverse order, which
+ // generally means popping them.
+ for (unsigned i = cleanups.size(); i != 0; --i)
+ CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
+
+ // Destroy the placeholder if we made one.
+ if (cleanupDominator)
+ cleanupDominator->eraseFromParent();
+}
+
+//===----------------------------------------------------------------------===//
+// Entry Points into this File
+//===----------------------------------------------------------------------===//
+
+/// GetNumNonZeroBytesInInit - Get an approximate count of the number of
+/// non-zero bytes that will be stored when outputting the initializer for the
+/// specified initializer expression.
+static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
+ E = E->IgnoreParens();
+
+ // 0 and 0.0 won't require any non-zero stores!
+ if (isSimpleZero(E, CGF)) return CharUnits::Zero();
+
+ // If this is an initlist expr, sum up the size of sizes of the (present)
+ // elements. If this is something weird, assume the whole thing is non-zero.
+ const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
+ if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
+ return CGF.getContext().getTypeSizeInChars(E->getType());
+
+ // InitListExprs for structs have to be handled carefully. If there are
+ // reference members, we need to consider the size of the reference, not the
+ // referencee. InitListExprs for unions and arrays can't have references.
+ if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
+ if (!RT->isUnionType()) {
+ RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
+ CharUnits NumNonZeroBytes = CharUnits::Zero();
+
+ unsigned ILEElement = 0;
+ for (const auto *Field : SD->fields()) {
+ // We're done once we hit the flexible array member or run out of
+ // InitListExpr elements.
+ if (Field->getType()->isIncompleteArrayType() ||
+ ILEElement == ILE->getNumInits())
+ break;
+ if (Field->isUnnamedBitfield())
+ continue;
+
+ const Expr *E = ILE->getInit(ILEElement++);
+
+ // Reference values are always non-null and have the width of a pointer.
+ if (Field->getType()->isReferenceType())
+ NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
+ CGF.getTarget().getPointerWidth(0));
+ else
+ NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
+ }
+
+ return NumNonZeroBytes;
+ }
+ }
+
+
+ CharUnits NumNonZeroBytes = CharUnits::Zero();
+ for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
+ NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
+ return NumNonZeroBytes;
+}
+
+/// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
+/// zeros in it, emit a memset and avoid storing the individual zeros.
+///
+static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
+ CodeGenFunction &CGF) {
+ // If the slot is already known to be zeroed, nothing to do. Don't mess with
+ // volatile stores.
+ if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == nullptr)
+ return;
+
+ // C++ objects with a user-declared constructor don't need zero'ing.
+ if (CGF.getLangOpts().CPlusPlus)
+ if (const RecordType *RT = CGF.getContext()
+ .getBaseElementType(E->getType())->getAs<RecordType>()) {
+ const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
+ if (RD->hasUserDeclaredConstructor())
+ return;
+ }
+
+ // If the type is 16-bytes or smaller, prefer individual stores over memset.
+ std::pair<CharUnits, CharUnits> TypeInfo =
+ CGF.getContext().getTypeInfoInChars(E->getType());
+ if (TypeInfo.first <= CharUnits::fromQuantity(16))
+ return;
+
+ // Check to see if over 3/4 of the initializer are known to be zero. If so,
+ // we prefer to emit memset + individual stores for the rest.
+ CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
+ if (NumNonZeroBytes*4 > TypeInfo.first)
+ return;
+
+ // Okay, it seems like a good idea to use an initial memset, emit the call.
+ llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity());
+ CharUnits Align = TypeInfo.second;
+
+ llvm::Value *Loc = Slot.getAddr();
+
+ Loc = CGF.Builder.CreateBitCast(Loc, CGF.Int8PtrTy);
+ CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal,
+ Align.getQuantity(), false);
+
+ // Tell the AggExprEmitter that the slot is known zero.
+ Slot.setZeroed();
+}
+
+
+
+
+/// EmitAggExpr - Emit the computation of the specified expression of aggregate
+/// type. The result is computed into DestPtr. Note that if DestPtr is null,
+/// the value of the aggregate expression is not needed. If VolatileDest is
+/// true, DestPtr cannot be 0.
+void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
+ assert(E && hasAggregateEvaluationKind(E->getType()) &&
+ "Invalid aggregate expression to emit");
+ assert((Slot.getAddr() != nullptr || Slot.isIgnored()) &&
+ "slot has bits but no address");
+
+ // Optimize the slot if possible.
+ CheckAggExprForMemSetUse(Slot, E, *this);
+
+ AggExprEmitter(*this, Slot).Visit(const_cast<Expr*>(E));
+}
+
+LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
+ assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
+ llvm::Value *Temp = CreateMemTemp(E->getType());
+ LValue LV = MakeAddrLValue(Temp, E->getType());
+ EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
+ AggValueSlot::DoesNotNeedGCBarriers,
+ AggValueSlot::IsNotAliased));
+ return LV;
+}
+
+void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
+ llvm::Value *SrcPtr, QualType Ty,
+ bool isVolatile,
+ CharUnits alignment,
+ bool isAssignment) {
+ assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
+
+ if (getLangOpts().CPlusPlus) {
+ if (const RecordType *RT = Ty->getAs<RecordType>()) {
+ CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
+ assert((Record->hasTrivialCopyConstructor() ||
+ Record->hasTrivialCopyAssignment() ||
+ Record->hasTrivialMoveConstructor() ||
+ Record->hasTrivialMoveAssignment() ||
+ Record->isUnion()) &&
+ "Trying to aggregate-copy a type without a trivial copy/move "
+ "constructor or assignment operator");
+ // Ignore empty classes in C++.
+ if (Record->isEmpty())
+ return;
+ }
+ }
+
+ // Aggregate assignment turns into llvm.memcpy. This is almost valid per
+ // C99 6.5.16.1p3, which states "If the value being stored in an object is
+ // read from another object that overlaps in anyway the storage of the first
+ // object, then the overlap shall be exact and the two objects shall have
+ // qualified or unqualified versions of a compatible type."
+ //
+ // memcpy is not defined if the source and destination pointers are exactly
+ // equal, but other compilers do this optimization, and almost every memcpy
+ // implementation handles this case safely. If there is a libc that does not
+ // safely handle this, we can add a target hook.
+
+ // Get data size and alignment info for this aggregate. If this is an
+ // assignment don't copy the tail padding. Otherwise copying it is fine.
+ std::pair<CharUnits, CharUnits> TypeInfo;
+ if (isAssignment)
+ TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
+ else
+ TypeInfo = getContext().getTypeInfoInChars(Ty);
+
+ if (alignment.isZero())
+ alignment = TypeInfo.second;
+
+ llvm::Value *SizeVal = nullptr;
+ if (TypeInfo.first.isZero()) {
+ // But note that getTypeInfo returns 0 for a VLA.
+ if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
+ getContext().getAsArrayType(Ty))) {
+ QualType BaseEltTy;
+ SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
+ TypeInfo = getContext().getTypeInfoDataSizeInChars(BaseEltTy);
+ std::pair<CharUnits, CharUnits> LastElementTypeInfo;
+ if (!isAssignment)
+ LastElementTypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
+ assert(!TypeInfo.first.isZero());
+ SizeVal = Builder.CreateNUWMul(
+ SizeVal,
+ llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
+ if (!isAssignment) {
+ SizeVal = Builder.CreateNUWSub(
+ SizeVal,
+ llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
+ SizeVal = Builder.CreateNUWAdd(
+ SizeVal, llvm::ConstantInt::get(
+ SizeTy, LastElementTypeInfo.first.getQuantity()));
+ }
+ }
+ }
+ if (!SizeVal) {
+ SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity());
+ }
+
+ // FIXME: If we have a volatile struct, the optimizer can remove what might
+ // appear to be `extra' memory ops:
+ //
+ // volatile struct { int i; } a, b;
+ //
+ // int main() {
+ // a = b;
+ // a = b;
+ // }
+ //
+ // we need to use a different call here. We use isVolatile to indicate when
+ // either the source or the destination is volatile.
+
+ llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
+ llvm::Type *DBP =
+ llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace());
+ DestPtr = Builder.CreateBitCast(DestPtr, DBP);
+
+ llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
+ llvm::Type *SBP =
+ llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace());
+ SrcPtr = Builder.CreateBitCast(SrcPtr, SBP);
+
+ // Don't do any of the memmove_collectable tests if GC isn't set.
+ if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
+ // fall through
+ } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
+ RecordDecl *Record = RecordTy->getDecl();
+ if (Record->hasObjectMember()) {
+ CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
+ SizeVal);
+ return;
+ }
+ } else if (Ty->isArrayType()) {
+ QualType BaseType = getContext().getBaseElementType(Ty);
+ if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
+ if (RecordTy->getDecl()->hasObjectMember()) {
+ CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
+ SizeVal);
+ return;
+ }
+ }
+ }
+
+ // Determine the metadata to describe the position of any padding in this
+ // memcpy, as well as the TBAA tags for the members of the struct, in case
+ // the optimizer wishes to expand it in to scalar memory operations.
+ llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty);
+
+ Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, alignment.getQuantity(),
+ isVolatile, /*TBAATag=*/nullptr, TBAAStructTag);
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGExprCXX.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGExprCXX.cpp
new file mode 100644
index 0000000..13dfbb3
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGExprCXX.cpp
@@ -0,0 +1,1841 @@
+//===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code dealing with code generation of C++ expressions
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenFunction.h"
+#include "CGCUDARuntime.h"
+#include "CGCXXABI.h"
+#include "CGDebugInfo.h"
+#include "CGObjCRuntime.h"
+#include "clang/CodeGen/CGFunctionInfo.h"
+#include "clang/Frontend/CodeGenOptions.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/Intrinsics.h"
+
+using namespace clang;
+using namespace CodeGen;
+
+static RequiredArgs commonEmitCXXMemberOrOperatorCall(
+ CodeGenFunction &CGF, const CXXMethodDecl *MD, llvm::Value *Callee,
+ ReturnValueSlot ReturnValue, llvm::Value *This, llvm::Value *ImplicitParam,
+ QualType ImplicitParamTy, const CallExpr *CE, CallArgList &Args) {
+ assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
+ isa<CXXOperatorCallExpr>(CE));
+ assert(MD->isInstance() &&
+ "Trying to emit a member or operator call expr on a static method!");
+
+ // C++11 [class.mfct.non-static]p2:
+ // If a non-static member function of a class X is called for an object that
+ // is not of type X, or of a type derived from X, the behavior is undefined.
+ SourceLocation CallLoc;
+ if (CE)
+ CallLoc = CE->getExprLoc();
+ CGF.EmitTypeCheck(
+ isa<CXXConstructorDecl>(MD) ? CodeGenFunction::TCK_ConstructorCall
+ : CodeGenFunction::TCK_MemberCall,
+ CallLoc, This, CGF.getContext().getRecordType(MD->getParent()));
+
+ // Push the this ptr.
+ Args.add(RValue::get(This), MD->getThisType(CGF.getContext()));
+
+ // If there is an implicit parameter (e.g. VTT), emit it.
+ if (ImplicitParam) {
+ Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
+ }
+
+ const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
+ RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
+
+ // And the rest of the call args.
+ if (CE) {
+ // Special case: skip first argument of CXXOperatorCall (it is "this").
+ unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
+ CGF.EmitCallArgs(Args, FPT, CE->arg_begin() + ArgsToSkip, CE->arg_end(),
+ CE->getDirectCallee());
+ } else {
+ assert(
+ FPT->getNumParams() == 0 &&
+ "No CallExpr specified for function with non-zero number of arguments");
+ }
+ return required;
+}
+
+RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
+ const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue,
+ llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
+ const CallExpr *CE) {
+ const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
+ CallArgList Args;
+ RequiredArgs required = commonEmitCXXMemberOrOperatorCall(
+ *this, MD, Callee, ReturnValue, This, ImplicitParam, ImplicitParamTy, CE,
+ Args);
+ return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
+ Callee, ReturnValue, Args, MD);
+}
+
+RValue CodeGenFunction::EmitCXXStructorCall(
+ const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue,
+ llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
+ const CallExpr *CE, StructorType Type) {
+ CallArgList Args;
+ commonEmitCXXMemberOrOperatorCall(*this, MD, Callee, ReturnValue, This,
+ ImplicitParam, ImplicitParamTy, CE, Args);
+ return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(MD, Type),
+ Callee, ReturnValue, Args, MD);
+}
+
+static CXXRecordDecl *getCXXRecord(const Expr *E) {
+ QualType T = E->getType();
+ if (const PointerType *PTy = T->getAs<PointerType>())
+ T = PTy->getPointeeType();
+ const RecordType *Ty = T->castAs<RecordType>();
+ return cast<CXXRecordDecl>(Ty->getDecl());
+}
+
+// Note: This function also emit constructor calls to support a MSVC
+// extensions allowing explicit constructor function call.
+RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
+ ReturnValueSlot ReturnValue) {
+ const Expr *callee = CE->getCallee()->IgnoreParens();
+
+ if (isa<BinaryOperator>(callee))
+ return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
+
+ const MemberExpr *ME = cast<MemberExpr>(callee);
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
+
+ if (MD->isStatic()) {
+ // The method is static, emit it as we would a regular call.
+ llvm::Value *Callee = CGM.GetAddrOfFunction(MD);
+ return EmitCall(getContext().getPointerType(MD->getType()), Callee, CE,
+ ReturnValue);
+ }
+
+ bool HasQualifier = ME->hasQualifier();
+ NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
+ bool IsArrow = ME->isArrow();
+ const Expr *Base = ME->getBase();
+
+ return EmitCXXMemberOrOperatorMemberCallExpr(
+ CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
+}
+
+RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
+ const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
+ bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
+ const Expr *Base) {
+ assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
+
+ // Compute the object pointer.
+ bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
+
+ const CXXMethodDecl *DevirtualizedMethod = nullptr;
+ if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) {
+ const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
+ DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
+ assert(DevirtualizedMethod);
+ const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
+ const Expr *Inner = Base->ignoreParenBaseCasts();
+ if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
+ MD->getReturnType().getCanonicalType())
+ // If the return types are not the same, this might be a case where more
+ // code needs to run to compensate for it. For example, the derived
+ // method might return a type that inherits form from the return
+ // type of MD and has a prefix.
+ // For now we just avoid devirtualizing these covariant cases.
+ DevirtualizedMethod = nullptr;
+ else if (getCXXRecord(Inner) == DevirtualizedClass)
+ // If the class of the Inner expression is where the dynamic method
+ // is defined, build the this pointer from it.
+ Base = Inner;
+ else if (getCXXRecord(Base) != DevirtualizedClass) {
+ // If the method is defined in a class that is not the best dynamic
+ // one or the one of the full expression, we would have to build
+ // a derived-to-base cast to compute the correct this pointer, but
+ // we don't have support for that yet, so do a virtual call.
+ DevirtualizedMethod = nullptr;
+ }
+ }
+
+ llvm::Value *This;
+ if (IsArrow)
+ This = EmitScalarExpr(Base);
+ else
+ This = EmitLValue(Base).getAddress();
+
+
+ if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
+ if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
+ if (isa<CXXConstructorDecl>(MD) &&
+ cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
+ return RValue::get(nullptr);
+
+ if (!MD->getParent()->mayInsertExtraPadding()) {
+ if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
+ // We don't like to generate the trivial copy/move assignment operator
+ // when it isn't necessary; just produce the proper effect here.
+ // Special case: skip first argument of CXXOperatorCall (it is "this").
+ unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
+ llvm::Value *RHS =
+ EmitLValue(*(CE->arg_begin() + ArgsToSkip)).getAddress();
+ EmitAggregateAssign(This, RHS, CE->getType());
+ return RValue::get(This);
+ }
+
+ if (isa<CXXConstructorDecl>(MD) &&
+ cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
+ // Trivial move and copy ctor are the same.
+ assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
+ llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
+ EmitAggregateCopy(This, RHS, CE->arg_begin()->getType());
+ return RValue::get(This);
+ }
+ llvm_unreachable("unknown trivial member function");
+ }
+ }
+
+ // Compute the function type we're calling.
+ const CXXMethodDecl *CalleeDecl =
+ DevirtualizedMethod ? DevirtualizedMethod : MD;
+ const CGFunctionInfo *FInfo = nullptr;
+ if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
+ FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
+ Dtor, StructorType::Complete);
+ else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
+ FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
+ Ctor, StructorType::Complete);
+ else
+ FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
+
+ llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
+
+ // C++ [class.virtual]p12:
+ // Explicit qualification with the scope operator (5.1) suppresses the
+ // virtual call mechanism.
+ //
+ // We also don't emit a virtual call if the base expression has a record type
+ // because then we know what the type is.
+ bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
+ llvm::Value *Callee;
+
+ if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
+ assert(CE->arg_begin() == CE->arg_end() &&
+ "Destructor shouldn't have explicit parameters");
+ assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
+ if (UseVirtualCall) {
+ CGM.getCXXABI().EmitVirtualDestructorCall(
+ *this, Dtor, Dtor_Complete, This, cast<CXXMemberCallExpr>(CE));
+ } else {
+ if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
+ Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
+ else if (!DevirtualizedMethod)
+ Callee =
+ CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty);
+ else {
+ const CXXDestructorDecl *DDtor =
+ cast<CXXDestructorDecl>(DevirtualizedMethod);
+ Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty);
+ }
+ EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This,
+ /*ImplicitParam=*/nullptr, QualType(), CE);
+ }
+ return RValue::get(nullptr);
+ }
+
+ if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
+ Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty);
+ } else if (UseVirtualCall) {
+ Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty);
+ } else {
+ if (SanOpts.has(SanitizerKind::CFINVCall) &&
+ MD->getParent()->isDynamicClass()) {
+ llvm::Value *VTable = GetVTablePtr(This, Int8PtrTy);
+ EmitVTablePtrCheckForCall(MD, VTable);
+ }
+
+ if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
+ Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
+ else if (!DevirtualizedMethod)
+ Callee = CGM.GetAddrOfFunction(MD, Ty);
+ else {
+ Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty);
+ }
+ }
+
+ if (MD->isVirtual()) {
+ This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
+ *this, MD, This, UseVirtualCall);
+ }
+
+ return EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This,
+ /*ImplicitParam=*/nullptr, QualType(), CE);
+}
+
+RValue
+CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
+ ReturnValueSlot ReturnValue) {
+ const BinaryOperator *BO =
+ cast<BinaryOperator>(E->getCallee()->IgnoreParens());
+ const Expr *BaseExpr = BO->getLHS();
+ const Expr *MemFnExpr = BO->getRHS();
+
+ const MemberPointerType *MPT =
+ MemFnExpr->getType()->castAs<MemberPointerType>();
+
+ const FunctionProtoType *FPT =
+ MPT->getPointeeType()->castAs<FunctionProtoType>();
+ const CXXRecordDecl *RD =
+ cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
+
+ // Get the member function pointer.
+ llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
+
+ // Emit the 'this' pointer.
+ llvm::Value *This;
+
+ if (BO->getOpcode() == BO_PtrMemI)
+ This = EmitScalarExpr(BaseExpr);
+ else
+ This = EmitLValue(BaseExpr).getAddress();
+
+ EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This,
+ QualType(MPT->getClass(), 0));
+
+ // Ask the ABI to load the callee. Note that This is modified.
+ llvm::Value *Callee =
+ CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, MemFnPtr, MPT);
+
+ CallArgList Args;
+
+ QualType ThisType =
+ getContext().getPointerType(getContext().getTagDeclType(RD));
+
+ // Push the this ptr.
+ Args.add(RValue::get(This), ThisType);
+
+ RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
+
+ // And the rest of the call args
+ EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end(), E->getDirectCallee());
+ return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
+ Callee, ReturnValue, Args);
+}
+
+RValue
+CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
+ const CXXMethodDecl *MD,
+ ReturnValueSlot ReturnValue) {
+ assert(MD->isInstance() &&
+ "Trying to emit a member call expr on a static method!");
+ return EmitCXXMemberOrOperatorMemberCallExpr(
+ E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
+ /*IsArrow=*/false, E->getArg(0));
+}
+
+RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
+ ReturnValueSlot ReturnValue) {
+ return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
+}
+
+static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
+ llvm::Value *DestPtr,
+ const CXXRecordDecl *Base) {
+ if (Base->isEmpty())
+ return;
+
+ DestPtr = CGF.EmitCastToVoidPtr(DestPtr);
+
+ const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
+ CharUnits Size = Layout.getNonVirtualSize();
+ CharUnits Align = Layout.getNonVirtualAlignment();
+
+ llvm::Value *SizeVal = CGF.CGM.getSize(Size);
+
+ // If the type contains a pointer to data member we can't memset it to zero.
+ // Instead, create a null constant and copy it to the destination.
+ // TODO: there are other patterns besides zero that we can usefully memset,
+ // like -1, which happens to be the pattern used by member-pointers.
+ // TODO: isZeroInitializable can be over-conservative in the case where a
+ // virtual base contains a member pointer.
+ if (!CGF.CGM.getTypes().isZeroInitializable(Base)) {
+ llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base);
+
+ llvm::GlobalVariable *NullVariable =
+ new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(),
+ /*isConstant=*/true,
+ llvm::GlobalVariable::PrivateLinkage,
+ NullConstant, Twine());
+ NullVariable->setAlignment(Align.getQuantity());
+ llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable);
+
+ // Get and call the appropriate llvm.memcpy overload.
+ CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity());
+ return;
+ }
+
+ // Otherwise, just memset the whole thing to zero. This is legal
+ // because in LLVM, all default initializers (other than the ones we just
+ // handled above) are guaranteed to have a bit pattern of all zeros.
+ CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal,
+ Align.getQuantity());
+}
+
+void
+CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
+ AggValueSlot Dest) {
+ assert(!Dest.isIgnored() && "Must have a destination!");
+ const CXXConstructorDecl *CD = E->getConstructor();
+
+ // If we require zero initialization before (or instead of) calling the
+ // constructor, as can be the case with a non-user-provided default
+ // constructor, emit the zero initialization now, unless destination is
+ // already zeroed.
+ if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
+ switch (E->getConstructionKind()) {
+ case CXXConstructExpr::CK_Delegating:
+ case CXXConstructExpr::CK_Complete:
+ EmitNullInitialization(Dest.getAddr(), E->getType());
+ break;
+ case CXXConstructExpr::CK_VirtualBase:
+ case CXXConstructExpr::CK_NonVirtualBase:
+ EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent());
+ break;
+ }
+ }
+
+ // If this is a call to a trivial default constructor, do nothing.
+ if (CD->isTrivial() && CD->isDefaultConstructor())
+ return;
+
+ // Elide the constructor if we're constructing from a temporary.
+ // The temporary check is required because Sema sets this on NRVO
+ // returns.
+ if (getLangOpts().ElideConstructors && E->isElidable()) {
+ assert(getContext().hasSameUnqualifiedType(E->getType(),
+ E->getArg(0)->getType()));
+ if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
+ EmitAggExpr(E->getArg(0), Dest);
+ return;
+ }
+ }
+
+ if (const ConstantArrayType *arrayType
+ = getContext().getAsConstantArrayType(E->getType())) {
+ EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(), E);
+ } else {
+ CXXCtorType Type = Ctor_Complete;
+ bool ForVirtualBase = false;
+ bool Delegating = false;
+
+ switch (E->getConstructionKind()) {
+ case CXXConstructExpr::CK_Delegating:
+ // We should be emitting a constructor; GlobalDecl will assert this
+ Type = CurGD.getCtorType();
+ Delegating = true;
+ break;
+
+ case CXXConstructExpr::CK_Complete:
+ Type = Ctor_Complete;
+ break;
+
+ case CXXConstructExpr::CK_VirtualBase:
+ ForVirtualBase = true;
+ // fall-through
+
+ case CXXConstructExpr::CK_NonVirtualBase:
+ Type = Ctor_Base;
+ }
+
+ // Call the constructor.
+ EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest.getAddr(),
+ E);
+ }
+}
+
+void
+CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest,
+ llvm::Value *Src,
+ const Expr *Exp) {
+ if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
+ Exp = E->getSubExpr();
+ assert(isa<CXXConstructExpr>(Exp) &&
+ "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
+ const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
+ const CXXConstructorDecl *CD = E->getConstructor();
+ RunCleanupsScope Scope(*this);
+
+ // If we require zero initialization before (or instead of) calling the
+ // constructor, as can be the case with a non-user-provided default
+ // constructor, emit the zero initialization now.
+ // FIXME. Do I still need this for a copy ctor synthesis?
+ if (E->requiresZeroInitialization())
+ EmitNullInitialization(Dest, E->getType());
+
+ assert(!getContext().getAsConstantArrayType(E->getType())
+ && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
+ EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
+}
+
+static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
+ const CXXNewExpr *E) {
+ if (!E->isArray())
+ return CharUnits::Zero();
+
+ // No cookie is required if the operator new[] being used is the
+ // reserved placement operator new[].
+ if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
+ return CharUnits::Zero();
+
+ return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
+}
+
+static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
+ const CXXNewExpr *e,
+ unsigned minElements,
+ llvm::Value *&numElements,
+ llvm::Value *&sizeWithoutCookie) {
+ QualType type = e->getAllocatedType();
+
+ if (!e->isArray()) {
+ CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
+ sizeWithoutCookie
+ = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
+ return sizeWithoutCookie;
+ }
+
+ // The width of size_t.
+ unsigned sizeWidth = CGF.SizeTy->getBitWidth();
+
+ // Figure out the cookie size.
+ llvm::APInt cookieSize(sizeWidth,
+ CalculateCookiePadding(CGF, e).getQuantity());
+
+ // Emit the array size expression.
+ // We multiply the size of all dimensions for NumElements.
+ // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
+ numElements = CGF.EmitScalarExpr(e->getArraySize());
+ assert(isa<llvm::IntegerType>(numElements->getType()));
+
+ // The number of elements can be have an arbitrary integer type;
+ // essentially, we need to multiply it by a constant factor, add a
+ // cookie size, and verify that the result is representable as a
+ // size_t. That's just a gloss, though, and it's wrong in one
+ // important way: if the count is negative, it's an error even if
+ // the cookie size would bring the total size >= 0.
+ bool isSigned
+ = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
+ llvm::IntegerType *numElementsType
+ = cast<llvm::IntegerType>(numElements->getType());
+ unsigned numElementsWidth = numElementsType->getBitWidth();
+
+ // Compute the constant factor.
+ llvm::APInt arraySizeMultiplier(sizeWidth, 1);
+ while (const ConstantArrayType *CAT
+ = CGF.getContext().getAsConstantArrayType(type)) {
+ type = CAT->getElementType();
+ arraySizeMultiplier *= CAT->getSize();
+ }
+
+ CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
+ llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
+ typeSizeMultiplier *= arraySizeMultiplier;
+
+ // This will be a size_t.
+ llvm::Value *size;
+
+ // If someone is doing 'new int[42]' there is no need to do a dynamic check.
+ // Don't bloat the -O0 code.
+ if (llvm::ConstantInt *numElementsC =
+ dyn_cast<llvm::ConstantInt>(numElements)) {
+ const llvm::APInt &count = numElementsC->getValue();
+
+ bool hasAnyOverflow = false;
+
+ // If 'count' was a negative number, it's an overflow.
+ if (isSigned && count.isNegative())
+ hasAnyOverflow = true;
+
+ // We want to do all this arithmetic in size_t. If numElements is
+ // wider than that, check whether it's already too big, and if so,
+ // overflow.
+ else if (numElementsWidth > sizeWidth &&
+ numElementsWidth - sizeWidth > count.countLeadingZeros())
+ hasAnyOverflow = true;
+
+ // Okay, compute a count at the right width.
+ llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
+
+ // If there is a brace-initializer, we cannot allocate fewer elements than
+ // there are initializers. If we do, that's treated like an overflow.
+ if (adjustedCount.ult(minElements))
+ hasAnyOverflow = true;
+
+ // Scale numElements by that. This might overflow, but we don't
+ // care because it only overflows if allocationSize does, too, and
+ // if that overflows then we shouldn't use this.
+ numElements = llvm::ConstantInt::get(CGF.SizeTy,
+ adjustedCount * arraySizeMultiplier);
+
+ // Compute the size before cookie, and track whether it overflowed.
+ bool overflow;
+ llvm::APInt allocationSize
+ = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
+ hasAnyOverflow |= overflow;
+
+ // Add in the cookie, and check whether it's overflowed.
+ if (cookieSize != 0) {
+ // Save the current size without a cookie. This shouldn't be
+ // used if there was overflow.
+ sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
+
+ allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
+ hasAnyOverflow |= overflow;
+ }
+
+ // On overflow, produce a -1 so operator new will fail.
+ if (hasAnyOverflow) {
+ size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
+ } else {
+ size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
+ }
+
+ // Otherwise, we might need to use the overflow intrinsics.
+ } else {
+ // There are up to five conditions we need to test for:
+ // 1) if isSigned, we need to check whether numElements is negative;
+ // 2) if numElementsWidth > sizeWidth, we need to check whether
+ // numElements is larger than something representable in size_t;
+ // 3) if minElements > 0, we need to check whether numElements is smaller
+ // than that.
+ // 4) we need to compute
+ // sizeWithoutCookie := numElements * typeSizeMultiplier
+ // and check whether it overflows; and
+ // 5) if we need a cookie, we need to compute
+ // size := sizeWithoutCookie + cookieSize
+ // and check whether it overflows.
+
+ llvm::Value *hasOverflow = nullptr;
+
+ // If numElementsWidth > sizeWidth, then one way or another, we're
+ // going to have to do a comparison for (2), and this happens to
+ // take care of (1), too.
+ if (numElementsWidth > sizeWidth) {
+ llvm::APInt threshold(numElementsWidth, 1);
+ threshold <<= sizeWidth;
+
+ llvm::Value *thresholdV
+ = llvm::ConstantInt::get(numElementsType, threshold);
+
+ hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
+ numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
+
+ // Otherwise, if we're signed, we want to sext up to size_t.
+ } else if (isSigned) {
+ if (numElementsWidth < sizeWidth)
+ numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
+
+ // If there's a non-1 type size multiplier, then we can do the
+ // signedness check at the same time as we do the multiply
+ // because a negative number times anything will cause an
+ // unsigned overflow. Otherwise, we have to do it here. But at least
+ // in this case, we can subsume the >= minElements check.
+ if (typeSizeMultiplier == 1)
+ hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
+ llvm::ConstantInt::get(CGF.SizeTy, minElements));
+
+ // Otherwise, zext up to size_t if necessary.
+ } else if (numElementsWidth < sizeWidth) {
+ numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
+ }
+
+ assert(numElements->getType() == CGF.SizeTy);
+
+ if (minElements) {
+ // Don't allow allocation of fewer elements than we have initializers.
+ if (!hasOverflow) {
+ hasOverflow = CGF.Builder.CreateICmpULT(numElements,
+ llvm::ConstantInt::get(CGF.SizeTy, minElements));
+ } else if (numElementsWidth > sizeWidth) {
+ // The other existing overflow subsumes this check.
+ // We do an unsigned comparison, since any signed value < -1 is
+ // taken care of either above or below.
+ hasOverflow = CGF.Builder.CreateOr(hasOverflow,
+ CGF.Builder.CreateICmpULT(numElements,
+ llvm::ConstantInt::get(CGF.SizeTy, minElements)));
+ }
+ }
+
+ size = numElements;
+
+ // Multiply by the type size if necessary. This multiplier
+ // includes all the factors for nested arrays.
+ //
+ // This step also causes numElements to be scaled up by the
+ // nested-array factor if necessary. Overflow on this computation
+ // can be ignored because the result shouldn't be used if
+ // allocation fails.
+ if (typeSizeMultiplier != 1) {
+ llvm::Value *umul_with_overflow
+ = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
+
+ llvm::Value *tsmV =
+ llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
+ llvm::Value *result =
+ CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
+
+ llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
+ if (hasOverflow)
+ hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
+ else
+ hasOverflow = overflowed;
+
+ size = CGF.Builder.CreateExtractValue(result, 0);
+
+ // Also scale up numElements by the array size multiplier.
+ if (arraySizeMultiplier != 1) {
+ // If the base element type size is 1, then we can re-use the
+ // multiply we just did.
+ if (typeSize.isOne()) {
+ assert(arraySizeMultiplier == typeSizeMultiplier);
+ numElements = size;
+
+ // Otherwise we need a separate multiply.
+ } else {
+ llvm::Value *asmV =
+ llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
+ numElements = CGF.Builder.CreateMul(numElements, asmV);
+ }
+ }
+ } else {
+ // numElements doesn't need to be scaled.
+ assert(arraySizeMultiplier == 1);
+ }
+
+ // Add in the cookie size if necessary.
+ if (cookieSize != 0) {
+ sizeWithoutCookie = size;
+
+ llvm::Value *uadd_with_overflow
+ = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
+
+ llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
+ llvm::Value *result =
+ CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
+
+ llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
+ if (hasOverflow)
+ hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
+ else
+ hasOverflow = overflowed;
+
+ size = CGF.Builder.CreateExtractValue(result, 0);
+ }
+
+ // If we had any possibility of dynamic overflow, make a select to
+ // overwrite 'size' with an all-ones value, which should cause
+ // operator new to throw.
+ if (hasOverflow)
+ size = CGF.Builder.CreateSelect(hasOverflow,
+ llvm::Constant::getAllOnesValue(CGF.SizeTy),
+ size);
+ }
+
+ if (cookieSize == 0)
+ sizeWithoutCookie = size;
+ else
+ assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
+
+ return size;
+}
+
+static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
+ QualType AllocType, llvm::Value *NewPtr) {
+ // FIXME: Refactor with EmitExprAsInit.
+ CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType);
+ switch (CGF.getEvaluationKind(AllocType)) {
+ case TEK_Scalar:
+ CGF.EmitScalarInit(Init, nullptr,
+ CGF.MakeAddrLValue(NewPtr, AllocType, Alignment), false);
+ return;
+ case TEK_Complex:
+ CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType,
+ Alignment),
+ /*isInit*/ true);
+ return;
+ case TEK_Aggregate: {
+ AggValueSlot Slot
+ = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(),
+ AggValueSlot::IsDestructed,
+ AggValueSlot::DoesNotNeedGCBarriers,
+ AggValueSlot::IsNotAliased);
+ CGF.EmitAggExpr(Init, Slot);
+ return;
+ }
+ }
+ llvm_unreachable("bad evaluation kind");
+}
+
+void CodeGenFunction::EmitNewArrayInitializer(
+ const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
+ llvm::Value *BeginPtr, llvm::Value *NumElements,
+ llvm::Value *AllocSizeWithoutCookie) {
+ // If we have a type with trivial initialization and no initializer,
+ // there's nothing to do.
+ if (!E->hasInitializer())
+ return;
+
+ llvm::Value *CurPtr = BeginPtr;
+
+ unsigned InitListElements = 0;
+
+ const Expr *Init = E->getInitializer();
+ llvm::AllocaInst *EndOfInit = nullptr;
+ QualType::DestructionKind DtorKind = ElementType.isDestructedType();
+ EHScopeStack::stable_iterator Cleanup;
+ llvm::Instruction *CleanupDominator = nullptr;
+
+ // If the initializer is an initializer list, first do the explicit elements.
+ if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
+ InitListElements = ILE->getNumInits();
+
+ // If this is a multi-dimensional array new, we will initialize multiple
+ // elements with each init list element.
+ QualType AllocType = E->getAllocatedType();
+ if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
+ AllocType->getAsArrayTypeUnsafe())) {
+ unsigned AS = CurPtr->getType()->getPointerAddressSpace();
+ ElementTy = ConvertTypeForMem(AllocType);
+ llvm::Type *AllocPtrTy = ElementTy->getPointerTo(AS);
+ CurPtr = Builder.CreateBitCast(CurPtr, AllocPtrTy);
+ InitListElements *= getContext().getConstantArrayElementCount(CAT);
+ }
+
+ // Enter a partial-destruction Cleanup if necessary.
+ if (needsEHCleanup(DtorKind)) {
+ // In principle we could tell the Cleanup where we are more
+ // directly, but the control flow can get so varied here that it
+ // would actually be quite complex. Therefore we go through an
+ // alloca.
+ EndOfInit = CreateTempAlloca(BeginPtr->getType(), "array.init.end");
+ CleanupDominator = Builder.CreateStore(BeginPtr, EndOfInit);
+ pushIrregularPartialArrayCleanup(BeginPtr, EndOfInit, ElementType,
+ getDestroyer(DtorKind));
+ Cleanup = EHStack.stable_begin();
+ }
+
+ for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
+ // Tell the cleanup that it needs to destroy up to this
+ // element. TODO: some of these stores can be trivially
+ // observed to be unnecessary.
+ if (EndOfInit)
+ Builder.CreateStore(Builder.CreateBitCast(CurPtr, BeginPtr->getType()),
+ EndOfInit);
+ // FIXME: If the last initializer is an incomplete initializer list for
+ // an array, and we have an array filler, we can fold together the two
+ // initialization loops.
+ StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
+ ILE->getInit(i)->getType(), CurPtr);
+ CurPtr = Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr, 1,
+ "array.exp.next");
+ }
+
+ // The remaining elements are filled with the array filler expression.
+ Init = ILE->getArrayFiller();
+
+ // Extract the initializer for the individual array elements by pulling
+ // out the array filler from all the nested initializer lists. This avoids
+ // generating a nested loop for the initialization.
+ while (Init && Init->getType()->isConstantArrayType()) {
+ auto *SubILE = dyn_cast<InitListExpr>(Init);
+ if (!SubILE)
+ break;
+ assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
+ Init = SubILE->getArrayFiller();
+ }
+
+ // Switch back to initializing one base element at a time.
+ CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr->getType());
+ }
+
+ // Attempt to perform zero-initialization using memset.
+ auto TryMemsetInitialization = [&]() -> bool {
+ // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
+ // we can initialize with a memset to -1.
+ if (!CGM.getTypes().isZeroInitializable(ElementType))
+ return false;
+
+ // Optimization: since zero initialization will just set the memory
+ // to all zeroes, generate a single memset to do it in one shot.
+
+ // Subtract out the size of any elements we've already initialized.
+ auto *RemainingSize = AllocSizeWithoutCookie;
+ if (InitListElements) {
+ // We know this can't overflow; we check this when doing the allocation.
+ auto *InitializedSize = llvm::ConstantInt::get(
+ RemainingSize->getType(),
+ getContext().getTypeSizeInChars(ElementType).getQuantity() *
+ InitListElements);
+ RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
+ }
+
+ // Create the memset.
+ CharUnits Alignment = getContext().getTypeAlignInChars(ElementType);
+ Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize,
+ Alignment.getQuantity(), false);
+ return true;
+ };
+
+ // If all elements have already been initialized, skip any further
+ // initialization.
+ llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
+ if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
+ // If there was a Cleanup, deactivate it.
+ if (CleanupDominator)
+ DeactivateCleanupBlock(Cleanup, CleanupDominator);
+ return;
+ }
+
+ assert(Init && "have trailing elements to initialize but no initializer");
+
+ // If this is a constructor call, try to optimize it out, and failing that
+ // emit a single loop to initialize all remaining elements.
+ if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
+ CXXConstructorDecl *Ctor = CCE->getConstructor();
+ if (Ctor->isTrivial()) {
+ // If new expression did not specify value-initialization, then there
+ // is no initialization.
+ if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
+ return;
+
+ if (TryMemsetInitialization())
+ return;
+ }
+
+ // Store the new Cleanup position for irregular Cleanups.
+ //
+ // FIXME: Share this cleanup with the constructor call emission rather than
+ // having it create a cleanup of its own.
+ if (EndOfInit) Builder.CreateStore(CurPtr, EndOfInit);
+
+ // Emit a constructor call loop to initialize the remaining elements.
+ if (InitListElements)
+ NumElements = Builder.CreateSub(
+ NumElements,
+ llvm::ConstantInt::get(NumElements->getType(), InitListElements));
+ EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
+ CCE->requiresZeroInitialization());
+ return;
+ }
+
+ // If this is value-initialization, we can usually use memset.
+ ImplicitValueInitExpr IVIE(ElementType);
+ if (isa<ImplicitValueInitExpr>(Init)) {
+ if (TryMemsetInitialization())
+ return;
+
+ // Switch to an ImplicitValueInitExpr for the element type. This handles
+ // only one case: multidimensional array new of pointers to members. In
+ // all other cases, we already have an initializer for the array element.
+ Init = &IVIE;
+ }
+
+ // At this point we should have found an initializer for the individual
+ // elements of the array.
+ assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
+ "got wrong type of element to initialize");
+
+ // If we have an empty initializer list, we can usually use memset.
+ if (auto *ILE = dyn_cast<InitListExpr>(Init))
+ if (ILE->getNumInits() == 0 && TryMemsetInitialization())
+ return;
+
+ // Create the loop blocks.
+ llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
+ llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
+ llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
+
+ // Find the end of the array, hoisted out of the loop.
+ llvm::Value *EndPtr =
+ Builder.CreateInBoundsGEP(BeginPtr, NumElements, "array.end");
+
+ // If the number of elements isn't constant, we have to now check if there is
+ // anything left to initialize.
+ if (!ConstNum) {
+ llvm::Value *IsEmpty = Builder.CreateICmpEQ(CurPtr, EndPtr,
+ "array.isempty");
+ Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
+ }
+
+ // Enter the loop.
+ EmitBlock(LoopBB);
+
+ // Set up the current-element phi.
+ llvm::PHINode *CurPtrPhi =
+ Builder.CreatePHI(CurPtr->getType(), 2, "array.cur");
+ CurPtrPhi->addIncoming(CurPtr, EntryBB);
+ CurPtr = CurPtrPhi;
+
+ // Store the new Cleanup position for irregular Cleanups.
+ if (EndOfInit) Builder.CreateStore(CurPtr, EndOfInit);
+
+ // Enter a partial-destruction Cleanup if necessary.
+ if (!CleanupDominator && needsEHCleanup(DtorKind)) {
+ pushRegularPartialArrayCleanup(BeginPtr, CurPtr, ElementType,
+ getDestroyer(DtorKind));
+ Cleanup = EHStack.stable_begin();
+ CleanupDominator = Builder.CreateUnreachable();
+ }
+
+ // Emit the initializer into this element.
+ StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr);
+
+ // Leave the Cleanup if we entered one.
+ if (CleanupDominator) {
+ DeactivateCleanupBlock(Cleanup, CleanupDominator);
+ CleanupDominator->eraseFromParent();
+ }
+
+ // Advance to the next element by adjusting the pointer type as necessary.
+ llvm::Value *NextPtr =
+ Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr, 1, "array.next");
+
+ // Check whether we've gotten to the end of the array and, if so,
+ // exit the loop.
+ llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
+ Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
+ CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
+
+ EmitBlock(ContBB);
+}
+
+static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
+ QualType ElementType, llvm::Type *ElementTy,
+ llvm::Value *NewPtr, llvm::Value *NumElements,
+ llvm::Value *AllocSizeWithoutCookie) {
+ ApplyDebugLocation DL(CGF, E);
+ if (E->isArray())
+ CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
+ AllocSizeWithoutCookie);
+ else if (const Expr *Init = E->getInitializer())
+ StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr);
+}
+
+/// Emit a call to an operator new or operator delete function, as implicitly
+/// created by new-expressions and delete-expressions.
+static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
+ const FunctionDecl *Callee,
+ const FunctionProtoType *CalleeType,
+ const CallArgList &Args) {
+ llvm::Instruction *CallOrInvoke;
+ llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee);
+ RValue RV =
+ CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
+ Args, CalleeType, /*chainCall=*/false),
+ CalleeAddr, ReturnValueSlot(), Args, Callee, &CallOrInvoke);
+
+ /// C++1y [expr.new]p10:
+ /// [In a new-expression,] an implementation is allowed to omit a call
+ /// to a replaceable global allocation function.
+ ///
+ /// We model such elidable calls with the 'builtin' attribute.
+ llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr);
+ if (Callee->isReplaceableGlobalAllocationFunction() &&
+ Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
+ // FIXME: Add addAttribute to CallSite.
+ if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke))
+ CI->addAttribute(llvm::AttributeSet::FunctionIndex,
+ llvm::Attribute::Builtin);
+ else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke))
+ II->addAttribute(llvm::AttributeSet::FunctionIndex,
+ llvm::Attribute::Builtin);
+ else
+ llvm_unreachable("unexpected kind of call instruction");
+ }
+
+ return RV;
+}
+
+RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
+ const Expr *Arg,
+ bool IsDelete) {
+ CallArgList Args;
+ const Stmt *ArgS = Arg;
+ EmitCallArgs(Args, *Type->param_type_begin(),
+ ConstExprIterator(&ArgS), ConstExprIterator(&ArgS + 1));
+ // Find the allocation or deallocation function that we're calling.
+ ASTContext &Ctx = getContext();
+ DeclarationName Name = Ctx.DeclarationNames
+ .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
+ for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
+ if (auto *FD = dyn_cast<FunctionDecl>(Decl))
+ if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
+ return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args);
+ llvm_unreachable("predeclared global operator new/delete is missing");
+}
+
+namespace {
+ /// A cleanup to call the given 'operator delete' function upon
+ /// abnormal exit from a new expression.
+ class CallDeleteDuringNew : public EHScopeStack::Cleanup {
+ size_t NumPlacementArgs;
+ const FunctionDecl *OperatorDelete;
+ llvm::Value *Ptr;
+ llvm::Value *AllocSize;
+
+ RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); }
+
+ public:
+ static size_t getExtraSize(size_t NumPlacementArgs) {
+ return NumPlacementArgs * sizeof(RValue);
+ }
+
+ CallDeleteDuringNew(size_t NumPlacementArgs,
+ const FunctionDecl *OperatorDelete,
+ llvm::Value *Ptr,
+ llvm::Value *AllocSize)
+ : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
+ Ptr(Ptr), AllocSize(AllocSize) {}
+
+ void setPlacementArg(unsigned I, RValue Arg) {
+ assert(I < NumPlacementArgs && "index out of range");
+ getPlacementArgs()[I] = Arg;
+ }
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ const FunctionProtoType *FPT
+ = OperatorDelete->getType()->getAs<FunctionProtoType>();
+ assert(FPT->getNumParams() == NumPlacementArgs + 1 ||
+ (FPT->getNumParams() == 2 && NumPlacementArgs == 0));
+
+ CallArgList DeleteArgs;
+
+ // The first argument is always a void*.
+ FunctionProtoType::param_type_iterator AI = FPT->param_type_begin();
+ DeleteArgs.add(RValue::get(Ptr), *AI++);
+
+ // A member 'operator delete' can take an extra 'size_t' argument.
+ if (FPT->getNumParams() == NumPlacementArgs + 2)
+ DeleteArgs.add(RValue::get(AllocSize), *AI++);
+
+ // Pass the rest of the arguments, which must match exactly.
+ for (unsigned I = 0; I != NumPlacementArgs; ++I)
+ DeleteArgs.add(getPlacementArgs()[I], *AI++);
+
+ // Call 'operator delete'.
+ EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
+ }
+ };
+
+ /// A cleanup to call the given 'operator delete' function upon
+ /// abnormal exit from a new expression when the new expression is
+ /// conditional.
+ class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup {
+ size_t NumPlacementArgs;
+ const FunctionDecl *OperatorDelete;
+ DominatingValue<RValue>::saved_type Ptr;
+ DominatingValue<RValue>::saved_type AllocSize;
+
+ DominatingValue<RValue>::saved_type *getPlacementArgs() {
+ return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1);
+ }
+
+ public:
+ static size_t getExtraSize(size_t NumPlacementArgs) {
+ return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type);
+ }
+
+ CallDeleteDuringConditionalNew(size_t NumPlacementArgs,
+ const FunctionDecl *OperatorDelete,
+ DominatingValue<RValue>::saved_type Ptr,
+ DominatingValue<RValue>::saved_type AllocSize)
+ : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
+ Ptr(Ptr), AllocSize(AllocSize) {}
+
+ void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) {
+ assert(I < NumPlacementArgs && "index out of range");
+ getPlacementArgs()[I] = Arg;
+ }
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ const FunctionProtoType *FPT
+ = OperatorDelete->getType()->getAs<FunctionProtoType>();
+ assert(FPT->getNumParams() == NumPlacementArgs + 1 ||
+ (FPT->getNumParams() == 2 && NumPlacementArgs == 0));
+
+ CallArgList DeleteArgs;
+
+ // The first argument is always a void*.
+ FunctionProtoType::param_type_iterator AI = FPT->param_type_begin();
+ DeleteArgs.add(Ptr.restore(CGF), *AI++);
+
+ // A member 'operator delete' can take an extra 'size_t' argument.
+ if (FPT->getNumParams() == NumPlacementArgs + 2) {
+ RValue RV = AllocSize.restore(CGF);
+ DeleteArgs.add(RV, *AI++);
+ }
+
+ // Pass the rest of the arguments, which must match exactly.
+ for (unsigned I = 0; I != NumPlacementArgs; ++I) {
+ RValue RV = getPlacementArgs()[I].restore(CGF);
+ DeleteArgs.add(RV, *AI++);
+ }
+
+ // Call 'operator delete'.
+ EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
+ }
+ };
+}
+
+/// Enter a cleanup to call 'operator delete' if the initializer in a
+/// new-expression throws.
+static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
+ const CXXNewExpr *E,
+ llvm::Value *NewPtr,
+ llvm::Value *AllocSize,
+ const CallArgList &NewArgs) {
+ // If we're not inside a conditional branch, then the cleanup will
+ // dominate and we can do the easier (and more efficient) thing.
+ if (!CGF.isInConditionalBranch()) {
+ CallDeleteDuringNew *Cleanup = CGF.EHStack
+ .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup,
+ E->getNumPlacementArgs(),
+ E->getOperatorDelete(),
+ NewPtr, AllocSize);
+ for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
+ Cleanup->setPlacementArg(I, NewArgs[I+1].RV);
+
+ return;
+ }
+
+ // Otherwise, we need to save all this stuff.
+ DominatingValue<RValue>::saved_type SavedNewPtr =
+ DominatingValue<RValue>::save(CGF, RValue::get(NewPtr));
+ DominatingValue<RValue>::saved_type SavedAllocSize =
+ DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
+
+ CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack
+ .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup,
+ E->getNumPlacementArgs(),
+ E->getOperatorDelete(),
+ SavedNewPtr,
+ SavedAllocSize);
+ for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
+ Cleanup->setPlacementArg(I,
+ DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV));
+
+ CGF.initFullExprCleanup();
+}
+
+llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
+ // The element type being allocated.
+ QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
+
+ // 1. Build a call to the allocation function.
+ FunctionDecl *allocator = E->getOperatorNew();
+ const FunctionProtoType *allocatorType =
+ allocator->getType()->castAs<FunctionProtoType>();
+
+ CallArgList allocatorArgs;
+
+ // The allocation size is the first argument.
+ QualType sizeType = getContext().getSizeType();
+
+ // If there is a brace-initializer, cannot allocate fewer elements than inits.
+ unsigned minElements = 0;
+ if (E->isArray() && E->hasInitializer()) {
+ if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()))
+ minElements = ILE->getNumInits();
+ }
+
+ llvm::Value *numElements = nullptr;
+ llvm::Value *allocSizeWithoutCookie = nullptr;
+ llvm::Value *allocSize =
+ EmitCXXNewAllocSize(*this, E, minElements, numElements,
+ allocSizeWithoutCookie);
+
+ allocatorArgs.add(RValue::get(allocSize), sizeType);
+
+ // We start at 1 here because the first argument (the allocation size)
+ // has already been emitted.
+ EmitCallArgs(allocatorArgs, allocatorType, E->placement_arg_begin(),
+ E->placement_arg_end(), /* CalleeDecl */ nullptr,
+ /*ParamsToSkip*/ 1);
+
+ // Emit the allocation call. If the allocator is a global placement
+ // operator, just "inline" it directly.
+ RValue RV;
+ if (allocator->isReservedGlobalPlacementOperator()) {
+ assert(allocatorArgs.size() == 2);
+ RV = allocatorArgs[1].RV;
+ // TODO: kill any unnecessary computations done for the size
+ // argument.
+ } else {
+ RV = EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
+ }
+
+ // Emit a null check on the allocation result if the allocation
+ // function is allowed to return null (because it has a non-throwing
+ // exception spec or is the reserved placement new) and we have an
+ // interesting initializer.
+ bool nullCheck = E->shouldNullCheckAllocation(getContext()) &&
+ (!allocType.isPODType(getContext()) || E->hasInitializer());
+
+ llvm::BasicBlock *nullCheckBB = nullptr;
+ llvm::BasicBlock *contBB = nullptr;
+
+ llvm::Value *allocation = RV.getScalarVal();
+ unsigned AS = allocation->getType()->getPointerAddressSpace();
+
+ // The null-check means that the initializer is conditionally
+ // evaluated.
+ ConditionalEvaluation conditional(*this);
+
+ if (nullCheck) {
+ conditional.begin(*this);
+
+ nullCheckBB = Builder.GetInsertBlock();
+ llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
+ contBB = createBasicBlock("new.cont");
+
+ llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull");
+ Builder.CreateCondBr(isNull, contBB, notNullBB);
+ EmitBlock(notNullBB);
+ }
+
+ // If there's an operator delete, enter a cleanup to call it if an
+ // exception is thrown.
+ EHScopeStack::stable_iterator operatorDeleteCleanup;
+ llvm::Instruction *cleanupDominator = nullptr;
+ if (E->getOperatorDelete() &&
+ !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
+ EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs);
+ operatorDeleteCleanup = EHStack.stable_begin();
+ cleanupDominator = Builder.CreateUnreachable();
+ }
+
+ assert((allocSize == allocSizeWithoutCookie) ==
+ CalculateCookiePadding(*this, E).isZero());
+ if (allocSize != allocSizeWithoutCookie) {
+ assert(E->isArray());
+ allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
+ numElements,
+ E, allocType);
+ }
+
+ llvm::Type *elementTy = ConvertTypeForMem(allocType);
+ llvm::Type *elementPtrTy = elementTy->getPointerTo(AS);
+ llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy);
+
+ EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
+ allocSizeWithoutCookie);
+ if (E->isArray()) {
+ // NewPtr is a pointer to the base element type. If we're
+ // allocating an array of arrays, we'll need to cast back to the
+ // array pointer type.
+ llvm::Type *resultType = ConvertTypeForMem(E->getType());
+ if (result->getType() != resultType)
+ result = Builder.CreateBitCast(result, resultType);
+ }
+
+ // Deactivate the 'operator delete' cleanup if we finished
+ // initialization.
+ if (operatorDeleteCleanup.isValid()) {
+ DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
+ cleanupDominator->eraseFromParent();
+ }
+
+ if (nullCheck) {
+ conditional.end(*this);
+
+ llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
+ EmitBlock(contBB);
+
+ llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2);
+ PHI->addIncoming(result, notNullBB);
+ PHI->addIncoming(llvm::Constant::getNullValue(result->getType()),
+ nullCheckBB);
+
+ result = PHI;
+ }
+
+ return result;
+}
+
+void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
+ llvm::Value *Ptr,
+ QualType DeleteTy) {
+ assert(DeleteFD->getOverloadedOperator() == OO_Delete);
+
+ const FunctionProtoType *DeleteFTy =
+ DeleteFD->getType()->getAs<FunctionProtoType>();
+
+ CallArgList DeleteArgs;
+
+ // Check if we need to pass the size to the delete operator.
+ llvm::Value *Size = nullptr;
+ QualType SizeTy;
+ if (DeleteFTy->getNumParams() == 2) {
+ SizeTy = DeleteFTy->getParamType(1);
+ CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
+ Size = llvm::ConstantInt::get(ConvertType(SizeTy),
+ DeleteTypeSize.getQuantity());
+ }
+
+ QualType ArgTy = DeleteFTy->getParamType(0);
+ llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
+ DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
+
+ if (Size)
+ DeleteArgs.add(RValue::get(Size), SizeTy);
+
+ // Emit the call to delete.
+ EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
+}
+
+namespace {
+ /// Calls the given 'operator delete' on a single object.
+ struct CallObjectDelete : EHScopeStack::Cleanup {
+ llvm::Value *Ptr;
+ const FunctionDecl *OperatorDelete;
+ QualType ElementType;
+
+ CallObjectDelete(llvm::Value *Ptr,
+ const FunctionDecl *OperatorDelete,
+ QualType ElementType)
+ : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
+ }
+ };
+}
+
+void
+CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
+ llvm::Value *CompletePtr,
+ QualType ElementType) {
+ EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
+ OperatorDelete, ElementType);
+}
+
+/// Emit the code for deleting a single object.
+static void EmitObjectDelete(CodeGenFunction &CGF,
+ const CXXDeleteExpr *DE,
+ llvm::Value *Ptr,
+ QualType ElementType) {
+ // Find the destructor for the type, if applicable. If the
+ // destructor is virtual, we'll just emit the vcall and return.
+ const CXXDestructorDecl *Dtor = nullptr;
+ if (const RecordType *RT = ElementType->getAs<RecordType>()) {
+ CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
+ if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
+ Dtor = RD->getDestructor();
+
+ if (Dtor->isVirtual()) {
+ CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
+ Dtor);
+ return;
+ }
+ }
+ }
+
+ // Make sure that we call delete even if the dtor throws.
+ // This doesn't have to a conditional cleanup because we're going
+ // to pop it off in a second.
+ const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
+ CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
+ Ptr, OperatorDelete, ElementType);
+
+ if (Dtor)
+ CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
+ /*ForVirtualBase=*/false,
+ /*Delegating=*/false,
+ Ptr);
+ else if (CGF.getLangOpts().ObjCAutoRefCount &&
+ ElementType->isObjCLifetimeType()) {
+ switch (ElementType.getObjCLifetime()) {
+ case Qualifiers::OCL_None:
+ case Qualifiers::OCL_ExplicitNone:
+ case Qualifiers::OCL_Autoreleasing:
+ break;
+
+ case Qualifiers::OCL_Strong: {
+ // Load the pointer value.
+ llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr,
+ ElementType.isVolatileQualified());
+
+ CGF.EmitARCRelease(PtrValue, ARCPreciseLifetime);
+ break;
+ }
+
+ case Qualifiers::OCL_Weak:
+ CGF.EmitARCDestroyWeak(Ptr);
+ break;
+ }
+ }
+
+ CGF.PopCleanupBlock();
+}
+
+namespace {
+ /// Calls the given 'operator delete' on an array of objects.
+ struct CallArrayDelete : EHScopeStack::Cleanup {
+ llvm::Value *Ptr;
+ const FunctionDecl *OperatorDelete;
+ llvm::Value *NumElements;
+ QualType ElementType;
+ CharUnits CookieSize;
+
+ CallArrayDelete(llvm::Value *Ptr,
+ const FunctionDecl *OperatorDelete,
+ llvm::Value *NumElements,
+ QualType ElementType,
+ CharUnits CookieSize)
+ : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
+ ElementType(ElementType), CookieSize(CookieSize) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ const FunctionProtoType *DeleteFTy =
+ OperatorDelete->getType()->getAs<FunctionProtoType>();
+ assert(DeleteFTy->getNumParams() == 1 || DeleteFTy->getNumParams() == 2);
+
+ CallArgList Args;
+
+ // Pass the pointer as the first argument.
+ QualType VoidPtrTy = DeleteFTy->getParamType(0);
+ llvm::Value *DeletePtr
+ = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy));
+ Args.add(RValue::get(DeletePtr), VoidPtrTy);
+
+ // Pass the original requested size as the second argument.
+ if (DeleteFTy->getNumParams() == 2) {
+ QualType size_t = DeleteFTy->getParamType(1);
+ llvm::IntegerType *SizeTy
+ = cast<llvm::IntegerType>(CGF.ConvertType(size_t));
+
+ CharUnits ElementTypeSize =
+ CGF.CGM.getContext().getTypeSizeInChars(ElementType);
+
+ // The size of an element, multiplied by the number of elements.
+ llvm::Value *Size
+ = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity());
+ Size = CGF.Builder.CreateMul(Size, NumElements);
+
+ // Plus the size of the cookie if applicable.
+ if (!CookieSize.isZero()) {
+ llvm::Value *CookieSizeV
+ = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
+ Size = CGF.Builder.CreateAdd(Size, CookieSizeV);
+ }
+
+ Args.add(RValue::get(Size), size_t);
+ }
+
+ // Emit the call to delete.
+ EmitNewDeleteCall(CGF, OperatorDelete, DeleteFTy, Args);
+ }
+ };
+}
+
+/// Emit the code for deleting an array of objects.
+static void EmitArrayDelete(CodeGenFunction &CGF,
+ const CXXDeleteExpr *E,
+ llvm::Value *deletedPtr,
+ QualType elementType) {
+ llvm::Value *numElements = nullptr;
+ llvm::Value *allocatedPtr = nullptr;
+ CharUnits cookieSize;
+ CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
+ numElements, allocatedPtr, cookieSize);
+
+ assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
+
+ // Make sure that we call delete even if one of the dtors throws.
+ const FunctionDecl *operatorDelete = E->getOperatorDelete();
+ CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
+ allocatedPtr, operatorDelete,
+ numElements, elementType,
+ cookieSize);
+
+ // Destroy the elements.
+ if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
+ assert(numElements && "no element count for a type with a destructor!");
+
+ llvm::Value *arrayEnd =
+ CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end");
+
+ // Note that it is legal to allocate a zero-length array, and we
+ // can never fold the check away because the length should always
+ // come from a cookie.
+ CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType,
+ CGF.getDestroyer(dtorKind),
+ /*checkZeroLength*/ true,
+ CGF.needsEHCleanup(dtorKind));
+ }
+
+ // Pop the cleanup block.
+ CGF.PopCleanupBlock();
+}
+
+void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
+ const Expr *Arg = E->getArgument();
+ llvm::Value *Ptr = EmitScalarExpr(Arg);
+
+ // Null check the pointer.
+ llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
+ llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
+
+ llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull");
+
+ Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
+ EmitBlock(DeleteNotNull);
+
+ // We might be deleting a pointer to array. If so, GEP down to the
+ // first non-array element.
+ // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
+ QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
+ if (DeleteTy->isConstantArrayType()) {
+ llvm::Value *Zero = Builder.getInt32(0);
+ SmallVector<llvm::Value*,8> GEP;
+
+ GEP.push_back(Zero); // point at the outermost array
+
+ // For each layer of array type we're pointing at:
+ while (const ConstantArrayType *Arr
+ = getContext().getAsConstantArrayType(DeleteTy)) {
+ // 1. Unpeel the array type.
+ DeleteTy = Arr->getElementType();
+
+ // 2. GEP to the first element of the array.
+ GEP.push_back(Zero);
+ }
+
+ Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first");
+ }
+
+ assert(ConvertTypeForMem(DeleteTy) ==
+ cast<llvm::PointerType>(Ptr->getType())->getElementType());
+
+ if (E->isArrayForm()) {
+ EmitArrayDelete(*this, E, Ptr, DeleteTy);
+ } else {
+ EmitObjectDelete(*this, E, Ptr, DeleteTy);
+ }
+
+ EmitBlock(DeleteEnd);
+}
+
+static bool isGLValueFromPointerDeref(const Expr *E) {
+ E = E->IgnoreParens();
+
+ if (const auto *CE = dyn_cast<CastExpr>(E)) {
+ if (!CE->getSubExpr()->isGLValue())
+ return false;
+ return isGLValueFromPointerDeref(CE->getSubExpr());
+ }
+
+ if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
+ return isGLValueFromPointerDeref(OVE->getSourceExpr());
+
+ if (const auto *BO = dyn_cast<BinaryOperator>(E))
+ if (BO->getOpcode() == BO_Comma)
+ return isGLValueFromPointerDeref(BO->getRHS());
+
+ if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
+ return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
+ isGLValueFromPointerDeref(ACO->getFalseExpr());
+
+ // C++11 [expr.sub]p1:
+ // The expression E1[E2] is identical (by definition) to *((E1)+(E2))
+ if (isa<ArraySubscriptExpr>(E))
+ return true;
+
+ if (const auto *UO = dyn_cast<UnaryOperator>(E))
+ if (UO->getOpcode() == UO_Deref)
+ return true;
+
+ return false;
+}
+
+static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
+ llvm::Type *StdTypeInfoPtrTy) {
+ // Get the vtable pointer.
+ llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress();
+
+ // C++ [expr.typeid]p2:
+ // If the glvalue expression is obtained by applying the unary * operator to
+ // a pointer and the pointer is a null pointer value, the typeid expression
+ // throws the std::bad_typeid exception.
+ //
+ // However, this paragraph's intent is not clear. We choose a very generous
+ // interpretation which implores us to consider comma operators, conditional
+ // operators, parentheses and other such constructs.
+ QualType SrcRecordTy = E->getType();
+ if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
+ isGLValueFromPointerDeref(E), SrcRecordTy)) {
+ llvm::BasicBlock *BadTypeidBlock =
+ CGF.createBasicBlock("typeid.bad_typeid");
+ llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
+
+ llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr);
+ CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
+
+ CGF.EmitBlock(BadTypeidBlock);
+ CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
+ CGF.EmitBlock(EndBlock);
+ }
+
+ return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
+ StdTypeInfoPtrTy);
+}
+
+llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
+ llvm::Type *StdTypeInfoPtrTy =
+ ConvertType(E->getType())->getPointerTo();
+
+ if (E->isTypeOperand()) {
+ llvm::Constant *TypeInfo =
+ CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
+ return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
+ }
+
+ // C++ [expr.typeid]p2:
+ // When typeid is applied to a glvalue expression whose type is a
+ // polymorphic class type, the result refers to a std::type_info object
+ // representing the type of the most derived object (that is, the dynamic
+ // type) to which the glvalue refers.
+ if (E->isPotentiallyEvaluated())
+ return EmitTypeidFromVTable(*this, E->getExprOperand(),
+ StdTypeInfoPtrTy);
+
+ QualType OperandTy = E->getExprOperand()->getType();
+ return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
+ StdTypeInfoPtrTy);
+}
+
+static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
+ QualType DestTy) {
+ llvm::Type *DestLTy = CGF.ConvertType(DestTy);
+ if (DestTy->isPointerType())
+ return llvm::Constant::getNullValue(DestLTy);
+
+ /// C++ [expr.dynamic.cast]p9:
+ /// A failed cast to reference type throws std::bad_cast
+ if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
+ return nullptr;
+
+ CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
+ return llvm::UndefValue::get(DestLTy);
+}
+
+llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value,
+ const CXXDynamicCastExpr *DCE) {
+ QualType DestTy = DCE->getTypeAsWritten();
+
+ if (DCE->isAlwaysNull())
+ if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
+ return T;
+
+ QualType SrcTy = DCE->getSubExpr()->getType();
+
+ // C++ [expr.dynamic.cast]p7:
+ // If T is "pointer to cv void," then the result is a pointer to the most
+ // derived object pointed to by v.
+ const PointerType *DestPTy = DestTy->getAs<PointerType>();
+
+ bool isDynamicCastToVoid;
+ QualType SrcRecordTy;
+ QualType DestRecordTy;
+ if (DestPTy) {
+ isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
+ SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
+ DestRecordTy = DestPTy->getPointeeType();
+ } else {
+ isDynamicCastToVoid = false;
+ SrcRecordTy = SrcTy;
+ DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
+ }
+
+ assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
+
+ // C++ [expr.dynamic.cast]p4:
+ // If the value of v is a null pointer value in the pointer case, the result
+ // is the null pointer value of type T.
+ bool ShouldNullCheckSrcValue =
+ CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
+ SrcRecordTy);
+
+ llvm::BasicBlock *CastNull = nullptr;
+ llvm::BasicBlock *CastNotNull = nullptr;
+ llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
+
+ if (ShouldNullCheckSrcValue) {
+ CastNull = createBasicBlock("dynamic_cast.null");
+ CastNotNull = createBasicBlock("dynamic_cast.notnull");
+
+ llvm::Value *IsNull = Builder.CreateIsNull(Value);
+ Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
+ EmitBlock(CastNotNull);
+ }
+
+ if (isDynamicCastToVoid) {
+ Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, Value, SrcRecordTy,
+ DestTy);
+ } else {
+ assert(DestRecordTy->isRecordType() &&
+ "destination type must be a record type!");
+ Value = CGM.getCXXABI().EmitDynamicCastCall(*this, Value, SrcRecordTy,
+ DestTy, DestRecordTy, CastEnd);
+ }
+
+ if (ShouldNullCheckSrcValue) {
+ EmitBranch(CastEnd);
+
+ EmitBlock(CastNull);
+ EmitBranch(CastEnd);
+ }
+
+ EmitBlock(CastEnd);
+
+ if (ShouldNullCheckSrcValue) {
+ llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
+ PHI->addIncoming(Value, CastNotNull);
+ PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
+
+ Value = PHI;
+ }
+
+ return Value;
+}
+
+void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
+ RunCleanupsScope Scope(*this);
+ LValue SlotLV =
+ MakeAddrLValue(Slot.getAddr(), E->getType(), Slot.getAlignment());
+
+ CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
+ for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(),
+ e = E->capture_init_end();
+ i != e; ++i, ++CurField) {
+ // Emit initialization
+ LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
+ if (CurField->hasCapturedVLAType()) {
+ auto VAT = CurField->getCapturedVLAType();
+ EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
+ } else {
+ ArrayRef<VarDecl *> ArrayIndexes;
+ if (CurField->getType()->isArrayType())
+ ArrayIndexes = E->getCaptureInitIndexVars(i);
+ EmitInitializerForField(*CurField, LV, *i, ArrayIndexes);
+ }
+ }
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGExprComplex.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGExprComplex.cpp
new file mode 100644
index 0000000..27d1c68
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGExprComplex.cpp
@@ -0,0 +1,1100 @@
+//===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code to emit Expr nodes with complex types as LLVM code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenFunction.h"
+#include "CodeGenModule.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/StmtVisitor.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/Metadata.h"
+#include <algorithm>
+using namespace clang;
+using namespace CodeGen;
+
+//===----------------------------------------------------------------------===//
+// Complex Expression Emitter
+//===----------------------------------------------------------------------===//
+
+typedef CodeGenFunction::ComplexPairTy ComplexPairTy;
+
+/// Return the complex type that we are meant to emit.
+static const ComplexType *getComplexType(QualType type) {
+ type = type.getCanonicalType();
+ if (const ComplexType *comp = dyn_cast<ComplexType>(type)) {
+ return comp;
+ } else {
+ return cast<ComplexType>(cast<AtomicType>(type)->getValueType());
+ }
+}
+
+namespace {
+class ComplexExprEmitter
+ : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> {
+ CodeGenFunction &CGF;
+ CGBuilderTy &Builder;
+ bool IgnoreReal;
+ bool IgnoreImag;
+public:
+ ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false)
+ : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) {
+ }
+
+
+ //===--------------------------------------------------------------------===//
+ // Utilities
+ //===--------------------------------------------------------------------===//
+
+ bool TestAndClearIgnoreReal() {
+ bool I = IgnoreReal;
+ IgnoreReal = false;
+ return I;
+ }
+ bool TestAndClearIgnoreImag() {
+ bool I = IgnoreImag;
+ IgnoreImag = false;
+ return I;
+ }
+
+ /// EmitLoadOfLValue - Given an expression with complex type that represents a
+ /// value l-value, this method emits the address of the l-value, then loads
+ /// and returns the result.
+ ComplexPairTy EmitLoadOfLValue(const Expr *E) {
+ return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc());
+ }
+
+ ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc);
+
+ /// EmitStoreOfComplex - Store the specified real/imag parts into the
+ /// specified value pointer.
+ void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit);
+
+ /// EmitComplexToComplexCast - Emit a cast from complex value Val to DestType.
+ ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType,
+ QualType DestType);
+ /// EmitComplexToComplexCast - Emit a cast from scalar value Val to DestType.
+ ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType,
+ QualType DestType);
+
+ //===--------------------------------------------------------------------===//
+ // Visitor Methods
+ //===--------------------------------------------------------------------===//
+
+ ComplexPairTy Visit(Expr *E) {
+ ApplyDebugLocation DL(CGF, E);
+ return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E);
+ }
+
+ ComplexPairTy VisitStmt(Stmt *S) {
+ S->dump(CGF.getContext().getSourceManager());
+ llvm_unreachable("Stmt can't have complex result type!");
+ }
+ ComplexPairTy VisitExpr(Expr *S);
+ ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());}
+ ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
+ return Visit(GE->getResultExpr());
+ }
+ ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL);
+ ComplexPairTy
+ VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) {
+ return Visit(PE->getReplacement());
+ }
+
+ // l-values.
+ ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) {
+ if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
+ if (result.isReference())
+ return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
+ E->getExprLoc());
+
+ llvm::Constant *pair = result.getValue();
+ return ComplexPairTy(pair->getAggregateElement(0U),
+ pair->getAggregateElement(1U));
+ }
+ return EmitLoadOfLValue(E);
+ }
+ ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
+ return EmitLoadOfLValue(E);
+ }
+ ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) {
+ return CGF.EmitObjCMessageExpr(E).getComplexVal();
+ }
+ ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); }
+ ComplexPairTy VisitMemberExpr(const Expr *E) { return EmitLoadOfLValue(E); }
+ ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) {
+ if (E->isGLValue())
+ return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
+ return CGF.getOpaqueRValueMapping(E).getComplexVal();
+ }
+
+ ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) {
+ return CGF.EmitPseudoObjectRValue(E).getComplexVal();
+ }
+
+ // FIXME: CompoundLiteralExpr
+
+ ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy);
+ ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) {
+ // Unlike for scalars, we don't have to worry about function->ptr demotion
+ // here.
+ return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
+ }
+ ComplexPairTy VisitCastExpr(CastExpr *E) {
+ return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
+ }
+ ComplexPairTy VisitCallExpr(const CallExpr *E);
+ ComplexPairTy VisitStmtExpr(const StmtExpr *E);
+
+ // Operators.
+ ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E,
+ bool isInc, bool isPre) {
+ LValue LV = CGF.EmitLValue(E->getSubExpr());
+ return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre);
+ }
+ ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) {
+ return VisitPrePostIncDec(E, false, false);
+ }
+ ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) {
+ return VisitPrePostIncDec(E, true, false);
+ }
+ ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) {
+ return VisitPrePostIncDec(E, false, true);
+ }
+ ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) {
+ return VisitPrePostIncDec(E, true, true);
+ }
+ ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
+ ComplexPairTy VisitUnaryPlus (const UnaryOperator *E) {
+ TestAndClearIgnoreReal();
+ TestAndClearIgnoreImag();
+ return Visit(E->getSubExpr());
+ }
+ ComplexPairTy VisitUnaryMinus (const UnaryOperator *E);
+ ComplexPairTy VisitUnaryNot (const UnaryOperator *E);
+ // LNot,Real,Imag never return complex.
+ ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) {
+ return Visit(E->getSubExpr());
+ }
+ ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
+ return Visit(DAE->getExpr());
+ }
+ ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
+ CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
+ return Visit(DIE->getExpr());
+ }
+ ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) {
+ CGF.enterFullExpression(E);
+ CodeGenFunction::RunCleanupsScope Scope(CGF);
+ return Visit(E->getSubExpr());
+ }
+ ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
+ assert(E->getType()->isAnyComplexType() && "Expected complex type!");
+ QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
+ llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem));
+ return ComplexPairTy(Null, Null);
+ }
+ ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
+ assert(E->getType()->isAnyComplexType() && "Expected complex type!");
+ QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
+ llvm::Constant *Null =
+ llvm::Constant::getNullValue(CGF.ConvertType(Elem));
+ return ComplexPairTy(Null, Null);
+ }
+
+ struct BinOpInfo {
+ ComplexPairTy LHS;
+ ComplexPairTy RHS;
+ QualType Ty; // Computation Type.
+ };
+
+ BinOpInfo EmitBinOps(const BinaryOperator *E);
+ LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
+ ComplexPairTy (ComplexExprEmitter::*Func)
+ (const BinOpInfo &),
+ RValue &Val);
+ ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E,
+ ComplexPairTy (ComplexExprEmitter::*Func)
+ (const BinOpInfo &));
+
+ ComplexPairTy EmitBinAdd(const BinOpInfo &Op);
+ ComplexPairTy EmitBinSub(const BinOpInfo &Op);
+ ComplexPairTy EmitBinMul(const BinOpInfo &Op);
+ ComplexPairTy EmitBinDiv(const BinOpInfo &Op);
+
+ ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName,
+ const BinOpInfo &Op);
+
+ ComplexPairTy VisitBinAdd(const BinaryOperator *E) {
+ return EmitBinAdd(EmitBinOps(E));
+ }
+ ComplexPairTy VisitBinSub(const BinaryOperator *E) {
+ return EmitBinSub(EmitBinOps(E));
+ }
+ ComplexPairTy VisitBinMul(const BinaryOperator *E) {
+ return EmitBinMul(EmitBinOps(E));
+ }
+ ComplexPairTy VisitBinDiv(const BinaryOperator *E) {
+ return EmitBinDiv(EmitBinOps(E));
+ }
+
+ // Compound assignments.
+ ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) {
+ return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd);
+ }
+ ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) {
+ return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub);
+ }
+ ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) {
+ return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul);
+ }
+ ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) {
+ return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv);
+ }
+
+ // GCC rejects rem/and/or/xor for integer complex.
+ // Logical and/or always return int, never complex.
+
+ // No comparisons produce a complex result.
+
+ LValue EmitBinAssignLValue(const BinaryOperator *E,
+ ComplexPairTy &Val);
+ ComplexPairTy VisitBinAssign (const BinaryOperator *E);
+ ComplexPairTy VisitBinComma (const BinaryOperator *E);
+
+
+ ComplexPairTy
+ VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
+ ComplexPairTy VisitChooseExpr(ChooseExpr *CE);
+
+ ComplexPairTy VisitInitListExpr(InitListExpr *E);
+
+ ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
+ return EmitLoadOfLValue(E);
+ }
+
+ ComplexPairTy VisitVAArgExpr(VAArgExpr *E);
+
+ ComplexPairTy VisitAtomicExpr(AtomicExpr *E) {
+ return CGF.EmitAtomicExpr(E).getComplexVal();
+ }
+};
+} // end anonymous namespace.
+
+//===----------------------------------------------------------------------===//
+// Utilities
+//===----------------------------------------------------------------------===//
+
+/// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to
+/// load the real and imaginary pieces, returning them as Real/Imag.
+ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue,
+ SourceLocation loc) {
+ assert(lvalue.isSimple() && "non-simple complex l-value?");
+ if (lvalue.getType()->isAtomicType())
+ return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal();
+
+ llvm::Value *SrcPtr = lvalue.getAddress();
+ bool isVolatile = lvalue.isVolatileQualified();
+ unsigned AlignR = lvalue.getAlignment().getQuantity();
+ ASTContext &C = CGF.getContext();
+ QualType ComplexTy = lvalue.getType();
+ unsigned ComplexAlign = C.getTypeAlignInChars(ComplexTy).getQuantity();
+ unsigned AlignI = std::min(AlignR, ComplexAlign);
+
+ llvm::Value *Real=nullptr, *Imag=nullptr;
+
+ if (!IgnoreReal || isVolatile) {
+ llvm::Value *RealP = Builder.CreateStructGEP(nullptr, SrcPtr, 0,
+ SrcPtr->getName() + ".realp");
+ Real = Builder.CreateAlignedLoad(RealP, AlignR, isVolatile,
+ SrcPtr->getName() + ".real");
+ }
+
+ if (!IgnoreImag || isVolatile) {
+ llvm::Value *ImagP = Builder.CreateStructGEP(nullptr, SrcPtr, 1,
+ SrcPtr->getName() + ".imagp");
+ Imag = Builder.CreateAlignedLoad(ImagP, AlignI, isVolatile,
+ SrcPtr->getName() + ".imag");
+ }
+ return ComplexPairTy(Real, Imag);
+}
+
+/// EmitStoreOfComplex - Store the specified real/imag parts into the
+/// specified value pointer.
+void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue,
+ bool isInit) {
+ if (lvalue.getType()->isAtomicType() ||
+ (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue)))
+ return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit);
+
+ llvm::Value *Ptr = lvalue.getAddress();
+ llvm::Value *RealPtr = Builder.CreateStructGEP(nullptr, Ptr, 0, "real");
+ llvm::Value *ImagPtr = Builder.CreateStructGEP(nullptr, Ptr, 1, "imag");
+ unsigned AlignR = lvalue.getAlignment().getQuantity();
+ ASTContext &C = CGF.getContext();
+ QualType ComplexTy = lvalue.getType();
+ unsigned ComplexAlign = C.getTypeAlignInChars(ComplexTy).getQuantity();
+ unsigned AlignI = std::min(AlignR, ComplexAlign);
+
+ Builder.CreateAlignedStore(Val.first, RealPtr, AlignR,
+ lvalue.isVolatileQualified());
+ Builder.CreateAlignedStore(Val.second, ImagPtr, AlignI,
+ lvalue.isVolatileQualified());
+}
+
+
+
+//===----------------------------------------------------------------------===//
+// Visitor Methods
+//===----------------------------------------------------------------------===//
+
+ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) {
+ CGF.ErrorUnsupported(E, "complex expression");
+ llvm::Type *EltTy =
+ CGF.ConvertType(getComplexType(E->getType())->getElementType());
+ llvm::Value *U = llvm::UndefValue::get(EltTy);
+ return ComplexPairTy(U, U);
+}
+
+ComplexPairTy ComplexExprEmitter::
+VisitImaginaryLiteral(const ImaginaryLiteral *IL) {
+ llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr());
+ return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag);
+}
+
+
+ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) {
+ if (E->getCallReturnType(CGF.getContext())->isReferenceType())
+ return EmitLoadOfLValue(E);
+
+ return CGF.EmitCallExpr(E).getComplexVal();
+}
+
+ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) {
+ CodeGenFunction::StmtExprEvaluation eval(CGF);
+ llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true);
+ assert(RetAlloca && "Expected complex return value");
+ return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()),
+ E->getExprLoc());
+}
+
+/// EmitComplexToComplexCast - Emit a cast from complex value Val to DestType.
+ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val,
+ QualType SrcType,
+ QualType DestType) {
+ // Get the src/dest element type.
+ SrcType = SrcType->castAs<ComplexType>()->getElementType();
+ DestType = DestType->castAs<ComplexType>()->getElementType();
+
+ // C99 6.3.1.6: When a value of complex type is converted to another
+ // complex type, both the real and imaginary parts follow the conversion
+ // rules for the corresponding real types.
+ Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType);
+ Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType);
+ return Val;
+}
+
+ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val,
+ QualType SrcType,
+ QualType DestType) {
+ // Convert the input element to the element type of the complex.
+ DestType = DestType->castAs<ComplexType>()->getElementType();
+ Val = CGF.EmitScalarConversion(Val, SrcType, DestType);
+
+ // Return (realval, 0).
+ return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType()));
+}
+
+ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op,
+ QualType DestTy) {
+ switch (CK) {
+ case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
+
+ // Atomic to non-atomic casts may be more than a no-op for some platforms and
+ // for some types.
+ case CK_AtomicToNonAtomic:
+ case CK_NonAtomicToAtomic:
+ case CK_NoOp:
+ case CK_LValueToRValue:
+ case CK_UserDefinedConversion:
+ return Visit(Op);
+
+ case CK_LValueBitCast: {
+ LValue origLV = CGF.EmitLValue(Op);
+ llvm::Value *V = origLV.getAddress();
+ V = Builder.CreateBitCast(V,
+ CGF.ConvertType(CGF.getContext().getPointerType(DestTy)));
+ return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy,
+ origLV.getAlignment()),
+ Op->getExprLoc());
+ }
+
+ case CK_BitCast:
+ case CK_BaseToDerived:
+ case CK_DerivedToBase:
+ case CK_UncheckedDerivedToBase:
+ case CK_Dynamic:
+ case CK_ToUnion:
+ case CK_ArrayToPointerDecay:
+ case CK_FunctionToPointerDecay:
+ case CK_NullToPointer:
+ case CK_NullToMemberPointer:
+ case CK_BaseToDerivedMemberPointer:
+ case CK_DerivedToBaseMemberPointer:
+ case CK_MemberPointerToBoolean:
+ case CK_ReinterpretMemberPointer:
+ case CK_ConstructorConversion:
+ case CK_IntegralToPointer:
+ case CK_PointerToIntegral:
+ case CK_PointerToBoolean:
+ case CK_ToVoid:
+ case CK_VectorSplat:
+ case CK_IntegralCast:
+ case CK_IntegralToBoolean:
+ case CK_IntegralToFloating:
+ case CK_FloatingToIntegral:
+ case CK_FloatingToBoolean:
+ case CK_FloatingCast:
+ case CK_CPointerToObjCPointerCast:
+ case CK_BlockPointerToObjCPointerCast:
+ case CK_AnyPointerToBlockPointerCast:
+ case CK_ObjCObjectLValueCast:
+ case CK_FloatingComplexToReal:
+ case CK_FloatingComplexToBoolean:
+ case CK_IntegralComplexToReal:
+ case CK_IntegralComplexToBoolean:
+ case CK_ARCProduceObject:
+ case CK_ARCConsumeObject:
+ case CK_ARCReclaimReturnedObject:
+ case CK_ARCExtendBlockObject:
+ case CK_CopyAndAutoreleaseBlockObject:
+ case CK_BuiltinFnToFnPtr:
+ case CK_ZeroToOCLEvent:
+ case CK_AddressSpaceConversion:
+ llvm_unreachable("invalid cast kind for complex value");
+
+ case CK_FloatingRealToComplex:
+ case CK_IntegralRealToComplex:
+ return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op),
+ Op->getType(), DestTy);
+
+ case CK_FloatingComplexCast:
+ case CK_FloatingComplexToIntegralComplex:
+ case CK_IntegralComplexCast:
+ case CK_IntegralComplexToFloatingComplex:
+ return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy);
+ }
+
+ llvm_unreachable("unknown cast resulting in complex value");
+}
+
+ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
+ TestAndClearIgnoreReal();
+ TestAndClearIgnoreImag();
+ ComplexPairTy Op = Visit(E->getSubExpr());
+
+ llvm::Value *ResR, *ResI;
+ if (Op.first->getType()->isFloatingPointTy()) {
+ ResR = Builder.CreateFNeg(Op.first, "neg.r");
+ ResI = Builder.CreateFNeg(Op.second, "neg.i");
+ } else {
+ ResR = Builder.CreateNeg(Op.first, "neg.r");
+ ResI = Builder.CreateNeg(Op.second, "neg.i");
+ }
+ return ComplexPairTy(ResR, ResI);
+}
+
+ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
+ TestAndClearIgnoreReal();
+ TestAndClearIgnoreImag();
+ // ~(a+ib) = a + i*-b
+ ComplexPairTy Op = Visit(E->getSubExpr());
+ llvm::Value *ResI;
+ if (Op.second->getType()->isFloatingPointTy())
+ ResI = Builder.CreateFNeg(Op.second, "conj.i");
+ else
+ ResI = Builder.CreateNeg(Op.second, "conj.i");
+
+ return ComplexPairTy(Op.first, ResI);
+}
+
+ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) {
+ llvm::Value *ResR, *ResI;
+
+ if (Op.LHS.first->getType()->isFloatingPointTy()) {
+ ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r");
+ if (Op.LHS.second && Op.RHS.second)
+ ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i");
+ else
+ ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second;
+ assert(ResI && "Only one operand may be real!");
+ } else {
+ ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r");
+ assert(Op.LHS.second && Op.RHS.second &&
+ "Both operands of integer complex operators must be complex!");
+ ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i");
+ }
+ return ComplexPairTy(ResR, ResI);
+}
+
+ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) {
+ llvm::Value *ResR, *ResI;
+ if (Op.LHS.first->getType()->isFloatingPointTy()) {
+ ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r");
+ if (Op.LHS.second && Op.RHS.second)
+ ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i");
+ else
+ ResI = Op.LHS.second ? Op.LHS.second
+ : Builder.CreateFNeg(Op.RHS.second, "sub.i");
+ assert(ResI && "Only one operand may be real!");
+ } else {
+ ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r");
+ assert(Op.LHS.second && Op.RHS.second &&
+ "Both operands of integer complex operators must be complex!");
+ ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i");
+ }
+ return ComplexPairTy(ResR, ResI);
+}
+
+/// \brief Emit a libcall for a binary operation on complex types.
+ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName,
+ const BinOpInfo &Op) {
+ CallArgList Args;
+ Args.add(RValue::get(Op.LHS.first),
+ Op.Ty->castAs<ComplexType>()->getElementType());
+ Args.add(RValue::get(Op.LHS.second),
+ Op.Ty->castAs<ComplexType>()->getElementType());
+ Args.add(RValue::get(Op.RHS.first),
+ Op.Ty->castAs<ComplexType>()->getElementType());
+ Args.add(RValue::get(Op.RHS.second),
+ Op.Ty->castAs<ComplexType>()->getElementType());
+
+ // We *must* use the full CG function call building logic here because the
+ // complex type has special ABI handling. We also should not forget about
+ // special calling convention which may be used for compiler builtins.
+ const CGFunctionInfo &FuncInfo =
+ CGF.CGM.getTypes().arrangeFreeFunctionCall(
+ Op.Ty, Args, FunctionType::ExtInfo(/* No CC here - will be added later */),
+ RequiredArgs::All);
+ llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo);
+ llvm::Constant *Func = CGF.CGM.CreateBuiltinFunction(FTy, LibCallName);
+ llvm::Instruction *Call;
+
+ RValue Res = CGF.EmitCall(FuncInfo, Func, ReturnValueSlot(), Args,
+ nullptr, &Call);
+ cast<llvm::CallInst>(Call)->setCallingConv(CGF.CGM.getBuiltinCC());
+ cast<llvm::CallInst>(Call)->setDoesNotThrow();
+
+ return Res.getComplexVal();
+}
+
+/// \brief Lookup the libcall name for a given floating point type complex
+/// multiply.
+static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) {
+ switch (Ty->getTypeID()) {
+ default:
+ llvm_unreachable("Unsupported floating point type!");
+ case llvm::Type::HalfTyID:
+ return "__mulhc3";
+ case llvm::Type::FloatTyID:
+ return "__mulsc3";
+ case llvm::Type::DoubleTyID:
+ return "__muldc3";
+ case llvm::Type::PPC_FP128TyID:
+ return "__multc3";
+ case llvm::Type::X86_FP80TyID:
+ return "__mulxc3";
+ case llvm::Type::FP128TyID:
+ return "__multc3";
+ }
+}
+
+// See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
+// typed values.
+ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) {
+ using llvm::Value;
+ Value *ResR, *ResI;
+ llvm::MDBuilder MDHelper(CGF.getLLVMContext());
+
+ if (Op.LHS.first->getType()->isFloatingPointTy()) {
+ // The general formulation is:
+ // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c)
+ //
+ // But we can fold away components which would be zero due to a real
+ // operand according to C11 Annex G.5.1p2.
+ // FIXME: C11 also provides for imaginary types which would allow folding
+ // still more of this within the type system.
+
+ if (Op.LHS.second && Op.RHS.second) {
+ // If both operands are complex, emit the core math directly, and then
+ // test for NaNs. If we find NaNs in the result, we delegate to a libcall
+ // to carefully re-compute the correct infinity representation if
+ // possible. The expectation is that the presence of NaNs here is
+ // *extremely* rare, and so the cost of the libcall is almost irrelevant.
+ // This is good, because the libcall re-computes the core multiplication
+ // exactly the same as we do here and re-tests for NaNs in order to be
+ // a generic complex*complex libcall.
+
+ // First compute the four products.
+ Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac");
+ Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd");
+ Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad");
+ Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc");
+
+ // The real part is the difference of the first two, the imaginary part is
+ // the sum of the second.
+ ResR = Builder.CreateFSub(AC, BD, "mul_r");
+ ResI = Builder.CreateFAdd(AD, BC, "mul_i");
+
+ // Emit the test for the real part becoming NaN and create a branch to
+ // handle it. We test for NaN by comparing the number to itself.
+ Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp");
+ llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont");
+ llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan");
+ llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB);
+ llvm::BasicBlock *OrigBB = Branch->getParent();
+
+ // Give hint that we very much don't expect to see NaNs.
+ // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
+ llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1);
+ Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
+
+ // Now test the imaginary part and create its branch.
+ CGF.EmitBlock(INaNBB);
+ Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp");
+ llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall");
+ Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB);
+ Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
+
+ // Now emit the libcall on this slowest of the slow paths.
+ CGF.EmitBlock(LibCallBB);
+ Value *LibCallR, *LibCallI;
+ std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall(
+ getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op);
+ Builder.CreateBr(ContBB);
+
+ // Finally continue execution by phi-ing together the different
+ // computation paths.
+ CGF.EmitBlock(ContBB);
+ llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi");
+ RealPHI->addIncoming(ResR, OrigBB);
+ RealPHI->addIncoming(ResR, INaNBB);
+ RealPHI->addIncoming(LibCallR, LibCallBB);
+ llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi");
+ ImagPHI->addIncoming(ResI, OrigBB);
+ ImagPHI->addIncoming(ResI, INaNBB);
+ ImagPHI->addIncoming(LibCallI, LibCallBB);
+ return ComplexPairTy(RealPHI, ImagPHI);
+ }
+ assert((Op.LHS.second || Op.RHS.second) &&
+ "At least one operand must be complex!");
+
+ // If either of the operands is a real rather than a complex, the
+ // imaginary component is ignored when computing the real component of the
+ // result.
+ ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl");
+
+ ResI = Op.LHS.second
+ ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il")
+ : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir");
+ } else {
+ assert(Op.LHS.second && Op.RHS.second &&
+ "Both operands of integer complex operators must be complex!");
+ Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl");
+ Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr");
+ ResR = Builder.CreateSub(ResRl, ResRr, "mul.r");
+
+ Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il");
+ Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir");
+ ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i");
+ }
+ return ComplexPairTy(ResR, ResI);
+}
+
+// See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
+// typed values.
+ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) {
+ llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second;
+ llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second;
+
+
+ llvm::Value *DSTr, *DSTi;
+ if (LHSr->getType()->isFloatingPointTy()) {
+ // If we have a complex operand on the RHS, we delegate to a libcall to
+ // handle all of the complexities and minimize underflow/overflow cases.
+ //
+ // FIXME: We would be able to avoid the libcall in many places if we
+ // supported imaginary types in addition to complex types.
+ if (RHSi) {
+ BinOpInfo LibCallOp = Op;
+ // If LHS was a real, supply a null imaginary part.
+ if (!LHSi)
+ LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType());
+
+ StringRef LibCallName;
+ switch (LHSr->getType()->getTypeID()) {
+ default:
+ llvm_unreachable("Unsupported floating point type!");
+ case llvm::Type::HalfTyID:
+ return EmitComplexBinOpLibCall("__divhc3", LibCallOp);
+ case llvm::Type::FloatTyID:
+ return EmitComplexBinOpLibCall("__divsc3", LibCallOp);
+ case llvm::Type::DoubleTyID:
+ return EmitComplexBinOpLibCall("__divdc3", LibCallOp);
+ case llvm::Type::PPC_FP128TyID:
+ return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
+ case llvm::Type::X86_FP80TyID:
+ return EmitComplexBinOpLibCall("__divxc3", LibCallOp);
+ case llvm::Type::FP128TyID:
+ return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
+ }
+ }
+ assert(LHSi && "Can have at most one non-complex operand!");
+
+ DSTr = Builder.CreateFDiv(LHSr, RHSr);
+ DSTi = Builder.CreateFDiv(LHSi, RHSr);
+ } else {
+ assert(Op.LHS.second && Op.RHS.second &&
+ "Both operands of integer complex operators must be complex!");
+ // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
+ llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c
+ llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d
+ llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd
+
+ llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c
+ llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d
+ llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd
+
+ llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c
+ llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d
+ llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad
+
+ if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) {
+ DSTr = Builder.CreateUDiv(Tmp3, Tmp6);
+ DSTi = Builder.CreateUDiv(Tmp9, Tmp6);
+ } else {
+ DSTr = Builder.CreateSDiv(Tmp3, Tmp6);
+ DSTi = Builder.CreateSDiv(Tmp9, Tmp6);
+ }
+ }
+
+ return ComplexPairTy(DSTr, DSTi);
+}
+
+ComplexExprEmitter::BinOpInfo
+ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) {
+ TestAndClearIgnoreReal();
+ TestAndClearIgnoreImag();
+ BinOpInfo Ops;
+ if (E->getLHS()->getType()->isRealFloatingType())
+ Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr);
+ else
+ Ops.LHS = Visit(E->getLHS());
+ if (E->getRHS()->getType()->isRealFloatingType())
+ Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
+ else
+ Ops.RHS = Visit(E->getRHS());
+
+ Ops.Ty = E->getType();
+ return Ops;
+}
+
+
+LValue ComplexExprEmitter::
+EmitCompoundAssignLValue(const CompoundAssignOperator *E,
+ ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&),
+ RValue &Val) {
+ TestAndClearIgnoreReal();
+ TestAndClearIgnoreImag();
+ QualType LHSTy = E->getLHS()->getType();
+ if (const AtomicType *AT = LHSTy->getAs<AtomicType>())
+ LHSTy = AT->getValueType();
+
+ BinOpInfo OpInfo;
+
+ // Load the RHS and LHS operands.
+ // __block variables need to have the rhs evaluated first, plus this should
+ // improve codegen a little.
+ OpInfo.Ty = E->getComputationResultType();
+ QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType();
+
+ // The RHS should have been converted to the computation type.
+ if (E->getRHS()->getType()->isRealFloatingType()) {
+ assert(
+ CGF.getContext()
+ .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType()));
+ OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
+ } else {
+ assert(CGF.getContext()
+ .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType()));
+ OpInfo.RHS = Visit(E->getRHS());
+ }
+
+ LValue LHS = CGF.EmitLValue(E->getLHS());
+
+ // Load from the l-value and convert it.
+ if (LHSTy->isAnyComplexType()) {
+ ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, E->getExprLoc());
+ OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty);
+ } else {
+ llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, E->getExprLoc());
+ // For floating point real operands we can directly pass the scalar form
+ // to the binary operator emission and potentially get more efficient code.
+ if (LHSTy->isRealFloatingType()) {
+ if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy))
+ LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy);
+ OpInfo.LHS = ComplexPairTy(LHSVal, nullptr);
+ } else {
+ OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty);
+ }
+ }
+
+ // Expand the binary operator.
+ ComplexPairTy Result = (this->*Func)(OpInfo);
+
+ // Truncate the result and store it into the LHS lvalue.
+ if (LHSTy->isAnyComplexType()) {
+ ComplexPairTy ResVal = EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy);
+ EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false);
+ Val = RValue::getComplex(ResVal);
+ } else {
+ llvm::Value *ResVal =
+ CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy);
+ CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false);
+ Val = RValue::get(ResVal);
+ }
+
+ return LHS;
+}
+
+// Compound assignments.
+ComplexPairTy ComplexExprEmitter::
+EmitCompoundAssign(const CompoundAssignOperator *E,
+ ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){
+ RValue Val;
+ LValue LV = EmitCompoundAssignLValue(E, Func, Val);
+
+ // The result of an assignment in C is the assigned r-value.
+ if (!CGF.getLangOpts().CPlusPlus)
+ return Val.getComplexVal();
+
+ // If the lvalue is non-volatile, return the computed value of the assignment.
+ if (!LV.isVolatileQualified())
+ return Val.getComplexVal();
+
+ return EmitLoadOfLValue(LV, E->getExprLoc());
+}
+
+LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E,
+ ComplexPairTy &Val) {
+ assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
+ E->getRHS()->getType()) &&
+ "Invalid assignment");
+ TestAndClearIgnoreReal();
+ TestAndClearIgnoreImag();
+
+ // Emit the RHS. __block variables need the RHS evaluated first.
+ Val = Visit(E->getRHS());
+
+ // Compute the address to store into.
+ LValue LHS = CGF.EmitLValue(E->getLHS());
+
+ // Store the result value into the LHS lvalue.
+ EmitStoreOfComplex(Val, LHS, /*isInit*/ false);
+
+ return LHS;
+}
+
+ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) {
+ ComplexPairTy Val;
+ LValue LV = EmitBinAssignLValue(E, Val);
+
+ // The result of an assignment in C is the assigned r-value.
+ if (!CGF.getLangOpts().CPlusPlus)
+ return Val;
+
+ // If the lvalue is non-volatile, return the computed value of the assignment.
+ if (!LV.isVolatileQualified())
+ return Val;
+
+ return EmitLoadOfLValue(LV, E->getExprLoc());
+}
+
+ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) {
+ CGF.EmitIgnoredExpr(E->getLHS());
+ return Visit(E->getRHS());
+}
+
+ComplexPairTy ComplexExprEmitter::
+VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
+ TestAndClearIgnoreReal();
+ TestAndClearIgnoreImag();
+ llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
+ llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
+ llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
+
+ // Bind the common expression if necessary.
+ CodeGenFunction::OpaqueValueMapping binding(CGF, E);
+
+
+ CodeGenFunction::ConditionalEvaluation eval(CGF);
+ CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
+ CGF.getProfileCount(E));
+
+ eval.begin(CGF);
+ CGF.EmitBlock(LHSBlock);
+ CGF.incrementProfileCounter(E);
+ ComplexPairTy LHS = Visit(E->getTrueExpr());
+ LHSBlock = Builder.GetInsertBlock();
+ CGF.EmitBranch(ContBlock);
+ eval.end(CGF);
+
+ eval.begin(CGF);
+ CGF.EmitBlock(RHSBlock);
+ ComplexPairTy RHS = Visit(E->getFalseExpr());
+ RHSBlock = Builder.GetInsertBlock();
+ CGF.EmitBlock(ContBlock);
+ eval.end(CGF);
+
+ // Create a PHI node for the real part.
+ llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r");
+ RealPN->addIncoming(LHS.first, LHSBlock);
+ RealPN->addIncoming(RHS.first, RHSBlock);
+
+ // Create a PHI node for the imaginary part.
+ llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i");
+ ImagPN->addIncoming(LHS.second, LHSBlock);
+ ImagPN->addIncoming(RHS.second, RHSBlock);
+
+ return ComplexPairTy(RealPN, ImagPN);
+}
+
+ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) {
+ return Visit(E->getChosenSubExpr());
+}
+
+ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) {
+ bool Ignore = TestAndClearIgnoreReal();
+ (void)Ignore;
+ assert (Ignore == false && "init list ignored");
+ Ignore = TestAndClearIgnoreImag();
+ (void)Ignore;
+ assert (Ignore == false && "init list ignored");
+
+ if (E->getNumInits() == 2) {
+ llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0));
+ llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1));
+ return ComplexPairTy(Real, Imag);
+ } else if (E->getNumInits() == 1) {
+ return Visit(E->getInit(0));
+ }
+
+ // Empty init list intializes to null
+ assert(E->getNumInits() == 0 && "Unexpected number of inits");
+ QualType Ty = E->getType()->castAs<ComplexType>()->getElementType();
+ llvm::Type* LTy = CGF.ConvertType(Ty);
+ llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy);
+ return ComplexPairTy(zeroConstant, zeroConstant);
+}
+
+ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) {
+ llvm::Value *ArgValue = CGF.EmitVAListRef(E->getSubExpr());
+ llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, E->getType());
+
+ if (!ArgPtr) {
+ CGF.ErrorUnsupported(E, "complex va_arg expression");
+ llvm::Type *EltTy =
+ CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType());
+ llvm::Value *U = llvm::UndefValue::get(EltTy);
+ return ComplexPairTy(U, U);
+ }
+
+ return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(ArgPtr, E->getType()),
+ E->getExprLoc());
+}
+
+//===----------------------------------------------------------------------===//
+// Entry Point into this File
+//===----------------------------------------------------------------------===//
+
+/// EmitComplexExpr - Emit the computation of the specified expression of
+/// complex type, ignoring the result.
+ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal,
+ bool IgnoreImag) {
+ assert(E && getComplexType(E->getType()) &&
+ "Invalid complex expression to emit");
+
+ return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag)
+ .Visit(const_cast<Expr *>(E));
+}
+
+void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest,
+ bool isInit) {
+ assert(E && getComplexType(E->getType()) &&
+ "Invalid complex expression to emit");
+ ComplexExprEmitter Emitter(*this);
+ ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E));
+ Emitter.EmitStoreOfComplex(Val, dest, isInit);
+}
+
+/// EmitStoreOfComplex - Store a complex number into the specified l-value.
+void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest,
+ bool isInit) {
+ ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit);
+}
+
+/// EmitLoadOfComplex - Load a complex number from the specified address.
+ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src,
+ SourceLocation loc) {
+ return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc);
+}
+
+LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) {
+ assert(E->getOpcode() == BO_Assign);
+ ComplexPairTy Val; // ignored
+ return ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val);
+}
+
+typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)(
+ const ComplexExprEmitter::BinOpInfo &);
+
+static CompoundFunc getComplexOp(BinaryOperatorKind Op) {
+ switch (Op) {
+ case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul;
+ case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv;
+ case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub;
+ case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd;
+ default:
+ llvm_unreachable("unexpected complex compound assignment");
+ }
+}
+
+LValue CodeGenFunction::
+EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) {
+ CompoundFunc Op = getComplexOp(E->getOpcode());
+ RValue Val;
+ return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
+}
+
+LValue CodeGenFunction::
+EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
+ llvm::Value *&Result) {
+ CompoundFunc Op = getComplexOp(E->getOpcode());
+ RValue Val;
+ LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
+ Result = Val.getScalarVal();
+ return Ret;
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGExprConstant.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGExprConstant.cpp
new file mode 100644
index 0000000..73ca0cc
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGExprConstant.cpp
@@ -0,0 +1,1429 @@
+//===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code to emit Constant Expr nodes as LLVM code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenFunction.h"
+#include "CGCXXABI.h"
+#include "CGObjCRuntime.h"
+#include "CGRecordLayout.h"
+#include "CodeGenModule.h"
+#include "clang/AST/APValue.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Basic/Builtins.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalVariable.h"
+using namespace clang;
+using namespace CodeGen;
+
+//===----------------------------------------------------------------------===//
+// ConstStructBuilder
+//===----------------------------------------------------------------------===//
+
+namespace {
+class ConstStructBuilder {
+ CodeGenModule &CGM;
+ CodeGenFunction *CGF;
+
+ bool Packed;
+ CharUnits NextFieldOffsetInChars;
+ CharUnits LLVMStructAlignment;
+ SmallVector<llvm::Constant *, 32> Elements;
+public:
+ static llvm::Constant *BuildStruct(CodeGenModule &CGM, CodeGenFunction *CGF,
+ InitListExpr *ILE);
+ static llvm::Constant *BuildStruct(CodeGenModule &CGM, CodeGenFunction *CGF,
+ const APValue &Value, QualType ValTy);
+
+private:
+ ConstStructBuilder(CodeGenModule &CGM, CodeGenFunction *CGF)
+ : CGM(CGM), CGF(CGF), Packed(false),
+ NextFieldOffsetInChars(CharUnits::Zero()),
+ LLVMStructAlignment(CharUnits::One()) { }
+
+ void AppendField(const FieldDecl *Field, uint64_t FieldOffset,
+ llvm::Constant *InitExpr);
+
+ void AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst);
+
+ void AppendBitField(const FieldDecl *Field, uint64_t FieldOffset,
+ llvm::ConstantInt *InitExpr);
+
+ void AppendPadding(CharUnits PadSize);
+
+ void AppendTailPadding(CharUnits RecordSize);
+
+ void ConvertStructToPacked();
+
+ bool Build(InitListExpr *ILE);
+ void Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase,
+ const CXXRecordDecl *VTableClass, CharUnits BaseOffset);
+ llvm::Constant *Finalize(QualType Ty);
+
+ CharUnits getAlignment(const llvm::Constant *C) const {
+ if (Packed) return CharUnits::One();
+ return CharUnits::fromQuantity(
+ CGM.getDataLayout().getABITypeAlignment(C->getType()));
+ }
+
+ CharUnits getSizeInChars(const llvm::Constant *C) const {
+ return CharUnits::fromQuantity(
+ CGM.getDataLayout().getTypeAllocSize(C->getType()));
+ }
+};
+
+void ConstStructBuilder::
+AppendField(const FieldDecl *Field, uint64_t FieldOffset,
+ llvm::Constant *InitCst) {
+ const ASTContext &Context = CGM.getContext();
+
+ CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset);
+
+ AppendBytes(FieldOffsetInChars, InitCst);
+}
+
+void ConstStructBuilder::
+AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst) {
+
+ assert(NextFieldOffsetInChars <= FieldOffsetInChars
+ && "Field offset mismatch!");
+
+ CharUnits FieldAlignment = getAlignment(InitCst);
+
+ // Round up the field offset to the alignment of the field type.
+ CharUnits AlignedNextFieldOffsetInChars =
+ NextFieldOffsetInChars.RoundUpToAlignment(FieldAlignment);
+
+ if (AlignedNextFieldOffsetInChars < FieldOffsetInChars) {
+ // We need to append padding.
+ AppendPadding(FieldOffsetInChars - NextFieldOffsetInChars);
+
+ assert(NextFieldOffsetInChars == FieldOffsetInChars &&
+ "Did not add enough padding!");
+
+ AlignedNextFieldOffsetInChars =
+ NextFieldOffsetInChars.RoundUpToAlignment(FieldAlignment);
+ }
+
+ if (AlignedNextFieldOffsetInChars > FieldOffsetInChars) {
+ assert(!Packed && "Alignment is wrong even with a packed struct!");
+
+ // Convert the struct to a packed struct.
+ ConvertStructToPacked();
+
+ // After we pack the struct, we may need to insert padding.
+ if (NextFieldOffsetInChars < FieldOffsetInChars) {
+ // We need to append padding.
+ AppendPadding(FieldOffsetInChars - NextFieldOffsetInChars);
+
+ assert(NextFieldOffsetInChars == FieldOffsetInChars &&
+ "Did not add enough padding!");
+ }
+ AlignedNextFieldOffsetInChars = NextFieldOffsetInChars;
+ }
+
+ // Add the field.
+ Elements.push_back(InitCst);
+ NextFieldOffsetInChars = AlignedNextFieldOffsetInChars +
+ getSizeInChars(InitCst);
+
+ if (Packed)
+ assert(LLVMStructAlignment == CharUnits::One() &&
+ "Packed struct not byte-aligned!");
+ else
+ LLVMStructAlignment = std::max(LLVMStructAlignment, FieldAlignment);
+}
+
+void ConstStructBuilder::AppendBitField(const FieldDecl *Field,
+ uint64_t FieldOffset,
+ llvm::ConstantInt *CI) {
+ const ASTContext &Context = CGM.getContext();
+ const uint64_t CharWidth = Context.getCharWidth();
+ uint64_t NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars);
+ if (FieldOffset > NextFieldOffsetInBits) {
+ // We need to add padding.
+ CharUnits PadSize = Context.toCharUnitsFromBits(
+ llvm::RoundUpToAlignment(FieldOffset - NextFieldOffsetInBits,
+ Context.getTargetInfo().getCharAlign()));
+
+ AppendPadding(PadSize);
+ }
+
+ uint64_t FieldSize = Field->getBitWidthValue(Context);
+
+ llvm::APInt FieldValue = CI->getValue();
+
+ // Promote the size of FieldValue if necessary
+ // FIXME: This should never occur, but currently it can because initializer
+ // constants are cast to bool, and because clang is not enforcing bitfield
+ // width limits.
+ if (FieldSize > FieldValue.getBitWidth())
+ FieldValue = FieldValue.zext(FieldSize);
+
+ // Truncate the size of FieldValue to the bit field size.
+ if (FieldSize < FieldValue.getBitWidth())
+ FieldValue = FieldValue.trunc(FieldSize);
+
+ NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars);
+ if (FieldOffset < NextFieldOffsetInBits) {
+ // Either part of the field or the entire field can go into the previous
+ // byte.
+ assert(!Elements.empty() && "Elements can't be empty!");
+
+ unsigned BitsInPreviousByte = NextFieldOffsetInBits - FieldOffset;
+
+ bool FitsCompletelyInPreviousByte =
+ BitsInPreviousByte >= FieldValue.getBitWidth();
+
+ llvm::APInt Tmp = FieldValue;
+
+ if (!FitsCompletelyInPreviousByte) {
+ unsigned NewFieldWidth = FieldSize - BitsInPreviousByte;
+
+ if (CGM.getDataLayout().isBigEndian()) {
+ Tmp = Tmp.lshr(NewFieldWidth);
+ Tmp = Tmp.trunc(BitsInPreviousByte);
+
+ // We want the remaining high bits.
+ FieldValue = FieldValue.trunc(NewFieldWidth);
+ } else {
+ Tmp = Tmp.trunc(BitsInPreviousByte);
+
+ // We want the remaining low bits.
+ FieldValue = FieldValue.lshr(BitsInPreviousByte);
+ FieldValue = FieldValue.trunc(NewFieldWidth);
+ }
+ }
+
+ Tmp = Tmp.zext(CharWidth);
+ if (CGM.getDataLayout().isBigEndian()) {
+ if (FitsCompletelyInPreviousByte)
+ Tmp = Tmp.shl(BitsInPreviousByte - FieldValue.getBitWidth());
+ } else {
+ Tmp = Tmp.shl(CharWidth - BitsInPreviousByte);
+ }
+
+ // 'or' in the bits that go into the previous byte.
+ llvm::Value *LastElt = Elements.back();
+ if (llvm::ConstantInt *Val = dyn_cast<llvm::ConstantInt>(LastElt))
+ Tmp |= Val->getValue();
+ else {
+ assert(isa<llvm::UndefValue>(LastElt));
+ // If there is an undef field that we're adding to, it can either be a
+ // scalar undef (in which case, we just replace it with our field) or it
+ // is an array. If it is an array, we have to pull one byte off the
+ // array so that the other undef bytes stay around.
+ if (!isa<llvm::IntegerType>(LastElt->getType())) {
+ // The undef padding will be a multibyte array, create a new smaller
+ // padding and then an hole for our i8 to get plopped into.
+ assert(isa<llvm::ArrayType>(LastElt->getType()) &&
+ "Expected array padding of undefs");
+ llvm::ArrayType *AT = cast<llvm::ArrayType>(LastElt->getType());
+ assert(AT->getElementType()->isIntegerTy(CharWidth) &&
+ AT->getNumElements() != 0 &&
+ "Expected non-empty array padding of undefs");
+
+ // Remove the padding array.
+ NextFieldOffsetInChars -= CharUnits::fromQuantity(AT->getNumElements());
+ Elements.pop_back();
+
+ // Add the padding back in two chunks.
+ AppendPadding(CharUnits::fromQuantity(AT->getNumElements()-1));
+ AppendPadding(CharUnits::One());
+ assert(isa<llvm::UndefValue>(Elements.back()) &&
+ Elements.back()->getType()->isIntegerTy(CharWidth) &&
+ "Padding addition didn't work right");
+ }
+ }
+
+ Elements.back() = llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp);
+
+ if (FitsCompletelyInPreviousByte)
+ return;
+ }
+
+ while (FieldValue.getBitWidth() > CharWidth) {
+ llvm::APInt Tmp;
+
+ if (CGM.getDataLayout().isBigEndian()) {
+ // We want the high bits.
+ Tmp =
+ FieldValue.lshr(FieldValue.getBitWidth() - CharWidth).trunc(CharWidth);
+ } else {
+ // We want the low bits.
+ Tmp = FieldValue.trunc(CharWidth);
+
+ FieldValue = FieldValue.lshr(CharWidth);
+ }
+
+ Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp));
+ ++NextFieldOffsetInChars;
+
+ FieldValue = FieldValue.trunc(FieldValue.getBitWidth() - CharWidth);
+ }
+
+ assert(FieldValue.getBitWidth() > 0 &&
+ "Should have at least one bit left!");
+ assert(FieldValue.getBitWidth() <= CharWidth &&
+ "Should not have more than a byte left!");
+
+ if (FieldValue.getBitWidth() < CharWidth) {
+ if (CGM.getDataLayout().isBigEndian()) {
+ unsigned BitWidth = FieldValue.getBitWidth();
+
+ FieldValue = FieldValue.zext(CharWidth) << (CharWidth - BitWidth);
+ } else
+ FieldValue = FieldValue.zext(CharWidth);
+ }
+
+ // Append the last element.
+ Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(),
+ FieldValue));
+ ++NextFieldOffsetInChars;
+}
+
+void ConstStructBuilder::AppendPadding(CharUnits PadSize) {
+ if (PadSize.isZero())
+ return;
+
+ llvm::Type *Ty = CGM.Int8Ty;
+ if (PadSize > CharUnits::One())
+ Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity());
+
+ llvm::Constant *C = llvm::UndefValue::get(Ty);
+ Elements.push_back(C);
+ assert(getAlignment(C) == CharUnits::One() &&
+ "Padding must have 1 byte alignment!");
+
+ NextFieldOffsetInChars += getSizeInChars(C);
+}
+
+void ConstStructBuilder::AppendTailPadding(CharUnits RecordSize) {
+ assert(NextFieldOffsetInChars <= RecordSize &&
+ "Size mismatch!");
+
+ AppendPadding(RecordSize - NextFieldOffsetInChars);
+}
+
+void ConstStructBuilder::ConvertStructToPacked() {
+ SmallVector<llvm::Constant *, 16> PackedElements;
+ CharUnits ElementOffsetInChars = CharUnits::Zero();
+
+ for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
+ llvm::Constant *C = Elements[i];
+
+ CharUnits ElementAlign = CharUnits::fromQuantity(
+ CGM.getDataLayout().getABITypeAlignment(C->getType()));
+ CharUnits AlignedElementOffsetInChars =
+ ElementOffsetInChars.RoundUpToAlignment(ElementAlign);
+
+ if (AlignedElementOffsetInChars > ElementOffsetInChars) {
+ // We need some padding.
+ CharUnits NumChars =
+ AlignedElementOffsetInChars - ElementOffsetInChars;
+
+ llvm::Type *Ty = CGM.Int8Ty;
+ if (NumChars > CharUnits::One())
+ Ty = llvm::ArrayType::get(Ty, NumChars.getQuantity());
+
+ llvm::Constant *Padding = llvm::UndefValue::get(Ty);
+ PackedElements.push_back(Padding);
+ ElementOffsetInChars += getSizeInChars(Padding);
+ }
+
+ PackedElements.push_back(C);
+ ElementOffsetInChars += getSizeInChars(C);
+ }
+
+ assert(ElementOffsetInChars == NextFieldOffsetInChars &&
+ "Packing the struct changed its size!");
+
+ Elements.swap(PackedElements);
+ LLVMStructAlignment = CharUnits::One();
+ Packed = true;
+}
+
+bool ConstStructBuilder::Build(InitListExpr *ILE) {
+ RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
+ const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
+
+ unsigned FieldNo = 0;
+ unsigned ElementNo = 0;
+
+ for (RecordDecl::field_iterator Field = RD->field_begin(),
+ FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
+ // If this is a union, skip all the fields that aren't being initialized.
+ if (RD->isUnion() && ILE->getInitializedFieldInUnion() != *Field)
+ continue;
+
+ // Don't emit anonymous bitfields, they just affect layout.
+ if (Field->isUnnamedBitfield())
+ continue;
+
+ // Get the initializer. A struct can include fields without initializers,
+ // we just use explicit null values for them.
+ llvm::Constant *EltInit;
+ if (ElementNo < ILE->getNumInits())
+ EltInit = CGM.EmitConstantExpr(ILE->getInit(ElementNo++),
+ Field->getType(), CGF);
+ else
+ EltInit = CGM.EmitNullConstant(Field->getType());
+
+ if (!EltInit)
+ return false;
+
+ if (!Field->isBitField()) {
+ // Handle non-bitfield members.
+ AppendField(*Field, Layout.getFieldOffset(FieldNo), EltInit);
+ } else {
+ // Otherwise we have a bitfield.
+ if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) {
+ AppendBitField(*Field, Layout.getFieldOffset(FieldNo), CI);
+ } else {
+ // We are trying to initialize a bitfield with a non-trivial constant,
+ // this must require run-time code.
+ return false;
+ }
+ }
+ }
+
+ return true;
+}
+
+namespace {
+struct BaseInfo {
+ BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index)
+ : Decl(Decl), Offset(Offset), Index(Index) {
+ }
+
+ const CXXRecordDecl *Decl;
+ CharUnits Offset;
+ unsigned Index;
+
+ bool operator<(const BaseInfo &O) const { return Offset < O.Offset; }
+};
+}
+
+void ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD,
+ bool IsPrimaryBase,
+ const CXXRecordDecl *VTableClass,
+ CharUnits Offset) {
+ const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
+
+ if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
+ // Add a vtable pointer, if we need one and it hasn't already been added.
+ if (CD->isDynamicClass() && !IsPrimaryBase) {
+ llvm::Constant *VTableAddressPoint =
+ CGM.getCXXABI().getVTableAddressPointForConstExpr(
+ BaseSubobject(CD, Offset), VTableClass);
+ AppendBytes(Offset, VTableAddressPoint);
+ }
+
+ // Accumulate and sort bases, in order to visit them in address order, which
+ // may not be the same as declaration order.
+ SmallVector<BaseInfo, 8> Bases;
+ Bases.reserve(CD->getNumBases());
+ unsigned BaseNo = 0;
+ for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(),
+ BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) {
+ assert(!Base->isVirtual() && "should not have virtual bases here");
+ const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl();
+ CharUnits BaseOffset = Layout.getBaseClassOffset(BD);
+ Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo));
+ }
+ std::stable_sort(Bases.begin(), Bases.end());
+
+ for (unsigned I = 0, N = Bases.size(); I != N; ++I) {
+ BaseInfo &Base = Bases[I];
+
+ bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl;
+ Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase,
+ VTableClass, Offset + Base.Offset);
+ }
+ }
+
+ unsigned FieldNo = 0;
+ uint64_t OffsetBits = CGM.getContext().toBits(Offset);
+
+ for (RecordDecl::field_iterator Field = RD->field_begin(),
+ FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
+ // If this is a union, skip all the fields that aren't being initialized.
+ if (RD->isUnion() && Val.getUnionField() != *Field)
+ continue;
+
+ // Don't emit anonymous bitfields, they just affect layout.
+ if (Field->isUnnamedBitfield())
+ continue;
+
+ // Emit the value of the initializer.
+ const APValue &FieldValue =
+ RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo);
+ llvm::Constant *EltInit =
+ CGM.EmitConstantValueForMemory(FieldValue, Field->getType(), CGF);
+ assert(EltInit && "EmitConstantValue can't fail");
+
+ if (!Field->isBitField()) {
+ // Handle non-bitfield members.
+ AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, EltInit);
+ } else {
+ // Otherwise we have a bitfield.
+ AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
+ cast<llvm::ConstantInt>(EltInit));
+ }
+ }
+}
+
+llvm::Constant *ConstStructBuilder::Finalize(QualType Ty) {
+ RecordDecl *RD = Ty->getAs<RecordType>()->getDecl();
+ const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
+
+ CharUnits LayoutSizeInChars = Layout.getSize();
+
+ if (NextFieldOffsetInChars > LayoutSizeInChars) {
+ // If the struct is bigger than the size of the record type,
+ // we must have a flexible array member at the end.
+ assert(RD->hasFlexibleArrayMember() &&
+ "Must have flexible array member if struct is bigger than type!");
+
+ // No tail padding is necessary.
+ } else {
+ // Append tail padding if necessary.
+ CharUnits LLVMSizeInChars =
+ NextFieldOffsetInChars.RoundUpToAlignment(LLVMStructAlignment);
+
+ if (LLVMSizeInChars != LayoutSizeInChars)
+ AppendTailPadding(LayoutSizeInChars);
+
+ LLVMSizeInChars =
+ NextFieldOffsetInChars.RoundUpToAlignment(LLVMStructAlignment);
+
+ // Check if we need to convert the struct to a packed struct.
+ if (NextFieldOffsetInChars <= LayoutSizeInChars &&
+ LLVMSizeInChars > LayoutSizeInChars) {
+ assert(!Packed && "Size mismatch!");
+
+ ConvertStructToPacked();
+ assert(NextFieldOffsetInChars <= LayoutSizeInChars &&
+ "Converting to packed did not help!");
+ }
+
+ LLVMSizeInChars =
+ NextFieldOffsetInChars.RoundUpToAlignment(LLVMStructAlignment);
+
+ assert(LayoutSizeInChars == LLVMSizeInChars &&
+ "Tail padding mismatch!");
+ }
+
+ // Pick the type to use. If the type is layout identical to the ConvertType
+ // type then use it, otherwise use whatever the builder produced for us.
+ llvm::StructType *STy =
+ llvm::ConstantStruct::getTypeForElements(CGM.getLLVMContext(),
+ Elements, Packed);
+ llvm::Type *ValTy = CGM.getTypes().ConvertType(Ty);
+ if (llvm::StructType *ValSTy = dyn_cast<llvm::StructType>(ValTy)) {
+ if (ValSTy->isLayoutIdentical(STy))
+ STy = ValSTy;
+ }
+
+ llvm::Constant *Result = llvm::ConstantStruct::get(STy, Elements);
+
+ assert(NextFieldOffsetInChars.RoundUpToAlignment(getAlignment(Result)) ==
+ getSizeInChars(Result) && "Size mismatch!");
+
+ return Result;
+}
+
+llvm::Constant *ConstStructBuilder::BuildStruct(CodeGenModule &CGM,
+ CodeGenFunction *CGF,
+ InitListExpr *ILE) {
+ ConstStructBuilder Builder(CGM, CGF);
+
+ if (!Builder.Build(ILE))
+ return nullptr;
+
+ return Builder.Finalize(ILE->getType());
+}
+
+llvm::Constant *ConstStructBuilder::BuildStruct(CodeGenModule &CGM,
+ CodeGenFunction *CGF,
+ const APValue &Val,
+ QualType ValTy) {
+ ConstStructBuilder Builder(CGM, CGF);
+
+ const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl();
+ const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
+ Builder.Build(Val, RD, false, CD, CharUnits::Zero());
+
+ return Builder.Finalize(ValTy);
+}
+
+
+//===----------------------------------------------------------------------===//
+// ConstExprEmitter
+//===----------------------------------------------------------------------===//
+
+/// This class only needs to handle two cases:
+/// 1) Literals (this is used by APValue emission to emit literals).
+/// 2) Arrays, structs and unions (outside C++11 mode, we don't currently
+/// constant fold these types).
+class ConstExprEmitter :
+ public StmtVisitor<ConstExprEmitter, llvm::Constant*> {
+ CodeGenModule &CGM;
+ CodeGenFunction *CGF;
+ llvm::LLVMContext &VMContext;
+public:
+ ConstExprEmitter(CodeGenModule &cgm, CodeGenFunction *cgf)
+ : CGM(cgm), CGF(cgf), VMContext(cgm.getLLVMContext()) {
+ }
+
+ //===--------------------------------------------------------------------===//
+ // Visitor Methods
+ //===--------------------------------------------------------------------===//
+
+ llvm::Constant *VisitStmt(Stmt *S) {
+ return nullptr;
+ }
+
+ llvm::Constant *VisitParenExpr(ParenExpr *PE) {
+ return Visit(PE->getSubExpr());
+ }
+
+ llvm::Constant *
+ VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) {
+ return Visit(PE->getReplacement());
+ }
+
+ llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
+ return Visit(GE->getResultExpr());
+ }
+
+ llvm::Constant *VisitChooseExpr(ChooseExpr *CE) {
+ return Visit(CE->getChosenSubExpr());
+ }
+
+ llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
+ return Visit(E->getInitializer());
+ }
+
+ llvm::Constant *VisitCastExpr(CastExpr* E) {
+ Expr *subExpr = E->getSubExpr();
+ llvm::Constant *C = CGM.EmitConstantExpr(subExpr, subExpr->getType(), CGF);
+ if (!C) return nullptr;
+
+ llvm::Type *destType = ConvertType(E->getType());
+
+ switch (E->getCastKind()) {
+ case CK_ToUnion: {
+ // GCC cast to union extension
+ assert(E->getType()->isUnionType() &&
+ "Destination type is not union type!");
+
+ // Build a struct with the union sub-element as the first member,
+ // and padded to the appropriate size
+ SmallVector<llvm::Constant*, 2> Elts;
+ SmallVector<llvm::Type*, 2> Types;
+ Elts.push_back(C);
+ Types.push_back(C->getType());
+ unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType());
+ unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destType);
+
+ assert(CurSize <= TotalSize && "Union size mismatch!");
+ if (unsigned NumPadBytes = TotalSize - CurSize) {
+ llvm::Type *Ty = CGM.Int8Ty;
+ if (NumPadBytes > 1)
+ Ty = llvm::ArrayType::get(Ty, NumPadBytes);
+
+ Elts.push_back(llvm::UndefValue::get(Ty));
+ Types.push_back(Ty);
+ }
+
+ llvm::StructType* STy =
+ llvm::StructType::get(C->getType()->getContext(), Types, false);
+ return llvm::ConstantStruct::get(STy, Elts);
+ }
+
+ case CK_AddressSpaceConversion:
+ return llvm::ConstantExpr::getAddrSpaceCast(C, destType);
+
+ case CK_LValueToRValue:
+ case CK_AtomicToNonAtomic:
+ case CK_NonAtomicToAtomic:
+ case CK_NoOp:
+ case CK_ConstructorConversion:
+ return C;
+
+ case CK_Dependent: llvm_unreachable("saw dependent cast!");
+
+ case CK_BuiltinFnToFnPtr:
+ llvm_unreachable("builtin functions are handled elsewhere");
+
+ case CK_ReinterpretMemberPointer:
+ case CK_DerivedToBaseMemberPointer:
+ case CK_BaseToDerivedMemberPointer:
+ return CGM.getCXXABI().EmitMemberPointerConversion(E, C);
+
+ // These will never be supported.
+ case CK_ObjCObjectLValueCast:
+ case CK_ARCProduceObject:
+ case CK_ARCConsumeObject:
+ case CK_ARCReclaimReturnedObject:
+ case CK_ARCExtendBlockObject:
+ case CK_CopyAndAutoreleaseBlockObject:
+ return nullptr;
+
+ // These don't need to be handled here because Evaluate knows how to
+ // evaluate them in the cases where they can be folded.
+ case CK_BitCast:
+ case CK_ToVoid:
+ case CK_Dynamic:
+ case CK_LValueBitCast:
+ case CK_NullToMemberPointer:
+ case CK_UserDefinedConversion:
+ case CK_CPointerToObjCPointerCast:
+ case CK_BlockPointerToObjCPointerCast:
+ case CK_AnyPointerToBlockPointerCast:
+ case CK_ArrayToPointerDecay:
+ case CK_FunctionToPointerDecay:
+ case CK_BaseToDerived:
+ case CK_DerivedToBase:
+ case CK_UncheckedDerivedToBase:
+ case CK_MemberPointerToBoolean:
+ case CK_VectorSplat:
+ case CK_FloatingRealToComplex:
+ case CK_FloatingComplexToReal:
+ case CK_FloatingComplexToBoolean:
+ case CK_FloatingComplexCast:
+ case CK_FloatingComplexToIntegralComplex:
+ case CK_IntegralRealToComplex:
+ case CK_IntegralComplexToReal:
+ case CK_IntegralComplexToBoolean:
+ case CK_IntegralComplexCast:
+ case CK_IntegralComplexToFloatingComplex:
+ case CK_PointerToIntegral:
+ case CK_PointerToBoolean:
+ case CK_NullToPointer:
+ case CK_IntegralCast:
+ case CK_IntegralToPointer:
+ case CK_IntegralToBoolean:
+ case CK_IntegralToFloating:
+ case CK_FloatingToIntegral:
+ case CK_FloatingToBoolean:
+ case CK_FloatingCast:
+ case CK_ZeroToOCLEvent:
+ return nullptr;
+ }
+ llvm_unreachable("Invalid CastKind");
+ }
+
+ llvm::Constant *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
+ return Visit(DAE->getExpr());
+ }
+
+ llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
+ // No need for a DefaultInitExprScope: we don't handle 'this' in a
+ // constant expression.
+ return Visit(DIE->getExpr());
+ }
+
+ llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E) {
+ return Visit(E->GetTemporaryExpr());
+ }
+
+ llvm::Constant *EmitArrayInitialization(InitListExpr *ILE) {
+ if (ILE->isStringLiteralInit())
+ return Visit(ILE->getInit(0));
+
+ llvm::ArrayType *AType =
+ cast<llvm::ArrayType>(ConvertType(ILE->getType()));
+ llvm::Type *ElemTy = AType->getElementType();
+ unsigned NumInitElements = ILE->getNumInits();
+ unsigned NumElements = AType->getNumElements();
+
+ // Initialising an array requires us to automatically
+ // initialise any elements that have not been initialised explicitly
+ unsigned NumInitableElts = std::min(NumInitElements, NumElements);
+
+ // Initialize remaining array elements.
+ // FIXME: This doesn't handle member pointers correctly!
+ llvm::Constant *fillC;
+ if (Expr *filler = ILE->getArrayFiller())
+ fillC = CGM.EmitConstantExpr(filler, filler->getType(), CGF);
+ else
+ fillC = llvm::Constant::getNullValue(ElemTy);
+ if (!fillC)
+ return nullptr;
+
+ // Try to use a ConstantAggregateZero if we can.
+ if (fillC->isNullValue() && !NumInitableElts)
+ return llvm::ConstantAggregateZero::get(AType);
+
+ // Copy initializer elements.
+ std::vector<llvm::Constant*> Elts;
+ Elts.reserve(NumInitableElts + NumElements);
+
+ bool RewriteType = false;
+ for (unsigned i = 0; i < NumInitableElts; ++i) {
+ Expr *Init = ILE->getInit(i);
+ llvm::Constant *C = CGM.EmitConstantExpr(Init, Init->getType(), CGF);
+ if (!C)
+ return nullptr;
+ RewriteType |= (C->getType() != ElemTy);
+ Elts.push_back(C);
+ }
+
+ RewriteType |= (fillC->getType() != ElemTy);
+ Elts.resize(NumElements, fillC);
+
+ if (RewriteType) {
+ // FIXME: Try to avoid packing the array
+ std::vector<llvm::Type*> Types;
+ Types.reserve(NumInitableElts + NumElements);
+ for (unsigned i = 0, e = Elts.size(); i < e; ++i)
+ Types.push_back(Elts[i]->getType());
+ llvm::StructType *SType = llvm::StructType::get(AType->getContext(),
+ Types, true);
+ return llvm::ConstantStruct::get(SType, Elts);
+ }
+
+ return llvm::ConstantArray::get(AType, Elts);
+ }
+
+ llvm::Constant *EmitRecordInitialization(InitListExpr *ILE) {
+ return ConstStructBuilder::BuildStruct(CGM, CGF, ILE);
+ }
+
+ llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E) {
+ return CGM.EmitNullConstant(E->getType());
+ }
+
+ llvm::Constant *VisitInitListExpr(InitListExpr *ILE) {
+ if (ILE->getType()->isArrayType())
+ return EmitArrayInitialization(ILE);
+
+ if (ILE->getType()->isRecordType())
+ return EmitRecordInitialization(ILE);
+
+ return nullptr;
+ }
+
+ llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E) {
+ if (!E->getConstructor()->isTrivial())
+ return nullptr;
+
+ QualType Ty = E->getType();
+
+ // FIXME: We should not have to call getBaseElementType here.
+ const RecordType *RT =
+ CGM.getContext().getBaseElementType(Ty)->getAs<RecordType>();
+ const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
+
+ // If the class doesn't have a trivial destructor, we can't emit it as a
+ // constant expr.
+ if (!RD->hasTrivialDestructor())
+ return nullptr;
+
+ // Only copy and default constructors can be trivial.
+
+
+ if (E->getNumArgs()) {
+ assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument");
+ assert(E->getConstructor()->isCopyOrMoveConstructor() &&
+ "trivial ctor has argument but isn't a copy/move ctor");
+
+ Expr *Arg = E->getArg(0);
+ assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) &&
+ "argument to copy ctor is of wrong type");
+
+ return Visit(Arg);
+ }
+
+ return CGM.EmitNullConstant(Ty);
+ }
+
+ llvm::Constant *VisitStringLiteral(StringLiteral *E) {
+ return CGM.GetConstantArrayFromStringLiteral(E);
+ }
+
+ llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E) {
+ // This must be an @encode initializing an array in a static initializer.
+ // Don't emit it as the address of the string, emit the string data itself
+ // as an inline array.
+ std::string Str;
+ CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str);
+ QualType T = E->getType();
+ if (T->getTypeClass() == Type::TypeOfExpr)
+ T = cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType();
+ const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
+
+ // Resize the string to the right size, adding zeros at the end, or
+ // truncating as needed.
+ Str.resize(CAT->getSize().getZExtValue(), '\0');
+ return llvm::ConstantDataArray::getString(VMContext, Str, false);
+ }
+
+ llvm::Constant *VisitUnaryExtension(const UnaryOperator *E) {
+ return Visit(E->getSubExpr());
+ }
+
+ // Utility methods
+ llvm::Type *ConvertType(QualType T) {
+ return CGM.getTypes().ConvertType(T);
+ }
+
+public:
+ llvm::Constant *EmitLValue(APValue::LValueBase LVBase) {
+ if (const ValueDecl *Decl = LVBase.dyn_cast<const ValueDecl*>()) {
+ if (Decl->hasAttr<WeakRefAttr>())
+ return CGM.GetWeakRefReference(Decl);
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Decl))
+ return CGM.GetAddrOfFunction(FD);
+ if (const VarDecl* VD = dyn_cast<VarDecl>(Decl)) {
+ // We can never refer to a variable with local storage.
+ if (!VD->hasLocalStorage()) {
+ if (VD->isFileVarDecl() || VD->hasExternalStorage())
+ return CGM.GetAddrOfGlobalVar(VD);
+ else if (VD->isLocalVarDecl())
+ return CGM.getOrCreateStaticVarDecl(
+ *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false));
+ }
+ }
+ return nullptr;
+ }
+
+ Expr *E = const_cast<Expr*>(LVBase.get<const Expr*>());
+ switch (E->getStmtClass()) {
+ default: break;
+ case Expr::CompoundLiteralExprClass: {
+ // Note that due to the nature of compound literals, this is guaranteed
+ // to be the only use of the variable, so we just generate it here.
+ CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
+ llvm::Constant* C = CGM.EmitConstantExpr(CLE->getInitializer(),
+ CLE->getType(), CGF);
+ // FIXME: "Leaked" on failure.
+ if (C)
+ C = new llvm::GlobalVariable(CGM.getModule(), C->getType(),
+ E->getType().isConstant(CGM.getContext()),
+ llvm::GlobalValue::InternalLinkage,
+ C, ".compoundliteral", nullptr,
+ llvm::GlobalVariable::NotThreadLocal,
+ CGM.getContext().getTargetAddressSpace(E->getType()));
+ return C;
+ }
+ case Expr::StringLiteralClass:
+ return CGM.GetAddrOfConstantStringFromLiteral(cast<StringLiteral>(E));
+ case Expr::ObjCEncodeExprClass:
+ return CGM.GetAddrOfConstantStringFromObjCEncode(cast<ObjCEncodeExpr>(E));
+ case Expr::ObjCStringLiteralClass: {
+ ObjCStringLiteral* SL = cast<ObjCStringLiteral>(E);
+ llvm::Constant *C =
+ CGM.getObjCRuntime().GenerateConstantString(SL->getString());
+ return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
+ }
+ case Expr::PredefinedExprClass: {
+ unsigned Type = cast<PredefinedExpr>(E)->getIdentType();
+ if (CGF) {
+ LValue Res = CGF->EmitPredefinedLValue(cast<PredefinedExpr>(E));
+ return cast<llvm::Constant>(Res.getAddress());
+ } else if (Type == PredefinedExpr::PrettyFunction) {
+ return CGM.GetAddrOfConstantCString("top level", ".tmp");
+ }
+
+ return CGM.GetAddrOfConstantCString("", ".tmp");
+ }
+ case Expr::AddrLabelExprClass: {
+ assert(CGF && "Invalid address of label expression outside function.");
+ llvm::Constant *Ptr =
+ CGF->GetAddrOfLabel(cast<AddrLabelExpr>(E)->getLabel());
+ return llvm::ConstantExpr::getBitCast(Ptr, ConvertType(E->getType()));
+ }
+ case Expr::CallExprClass: {
+ CallExpr* CE = cast<CallExpr>(E);
+ unsigned builtin = CE->getBuiltinCallee();
+ if (builtin !=
+ Builtin::BI__builtin___CFStringMakeConstantString &&
+ builtin !=
+ Builtin::BI__builtin___NSStringMakeConstantString)
+ break;
+ const Expr *Arg = CE->getArg(0)->IgnoreParenCasts();
+ const StringLiteral *Literal = cast<StringLiteral>(Arg);
+ if (builtin ==
+ Builtin::BI__builtin___NSStringMakeConstantString) {
+ return CGM.getObjCRuntime().GenerateConstantString(Literal);
+ }
+ // FIXME: need to deal with UCN conversion issues.
+ return CGM.GetAddrOfConstantCFString(Literal);
+ }
+ case Expr::BlockExprClass: {
+ std::string FunctionName;
+ if (CGF)
+ FunctionName = CGF->CurFn->getName();
+ else
+ FunctionName = "global";
+
+ return CGM.GetAddrOfGlobalBlock(cast<BlockExpr>(E), FunctionName.c_str());
+ }
+ case Expr::CXXTypeidExprClass: {
+ CXXTypeidExpr *Typeid = cast<CXXTypeidExpr>(E);
+ QualType T;
+ if (Typeid->isTypeOperand())
+ T = Typeid->getTypeOperand(CGM.getContext());
+ else
+ T = Typeid->getExprOperand()->getType();
+ return CGM.GetAddrOfRTTIDescriptor(T);
+ }
+ case Expr::CXXUuidofExprClass: {
+ return CGM.GetAddrOfUuidDescriptor(cast<CXXUuidofExpr>(E));
+ }
+ case Expr::MaterializeTemporaryExprClass: {
+ MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E);
+ assert(MTE->getStorageDuration() == SD_Static);
+ SmallVector<const Expr *, 2> CommaLHSs;
+ SmallVector<SubobjectAdjustment, 2> Adjustments;
+ const Expr *Inner = MTE->GetTemporaryExpr()
+ ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
+ return CGM.GetAddrOfGlobalTemporary(MTE, Inner);
+ }
+ }
+
+ return nullptr;
+ }
+};
+
+} // end anonymous namespace.
+
+llvm::Constant *CodeGenModule::EmitConstantInit(const VarDecl &D,
+ CodeGenFunction *CGF) {
+ // Make a quick check if variable can be default NULL initialized
+ // and avoid going through rest of code which may do, for c++11,
+ // initialization of memory to all NULLs.
+ if (!D.hasLocalStorage()) {
+ QualType Ty = D.getType();
+ if (Ty->isArrayType())
+ Ty = Context.getBaseElementType(Ty);
+ if (Ty->isRecordType())
+ if (const CXXConstructExpr *E =
+ dyn_cast_or_null<CXXConstructExpr>(D.getInit())) {
+ const CXXConstructorDecl *CD = E->getConstructor();
+ if (CD->isTrivial() && CD->isDefaultConstructor())
+ return EmitNullConstant(D.getType());
+ }
+ }
+
+ if (const APValue *Value = D.evaluateValue())
+ return EmitConstantValueForMemory(*Value, D.getType(), CGF);
+
+ // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a
+ // reference is a constant expression, and the reference binds to a temporary,
+ // then constant initialization is performed. ConstExprEmitter will
+ // incorrectly emit a prvalue constant in this case, and the calling code
+ // interprets that as the (pointer) value of the reference, rather than the
+ // desired value of the referee.
+ if (D.getType()->isReferenceType())
+ return nullptr;
+
+ const Expr *E = D.getInit();
+ assert(E && "No initializer to emit");
+
+ llvm::Constant* C = ConstExprEmitter(*this, CGF).Visit(const_cast<Expr*>(E));
+ if (C && C->getType()->isIntegerTy(1)) {
+ llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType());
+ C = llvm::ConstantExpr::getZExt(C, BoolTy);
+ }
+ return C;
+}
+
+llvm::Constant *CodeGenModule::EmitConstantExpr(const Expr *E,
+ QualType DestType,
+ CodeGenFunction *CGF) {
+ Expr::EvalResult Result;
+
+ bool Success = false;
+
+ if (DestType->isReferenceType())
+ Success = E->EvaluateAsLValue(Result, Context);
+ else
+ Success = E->EvaluateAsRValue(Result, Context);
+
+ llvm::Constant *C = nullptr;
+ if (Success && !Result.HasSideEffects)
+ C = EmitConstantValue(Result.Val, DestType, CGF);
+ else
+ C = ConstExprEmitter(*this, CGF).Visit(const_cast<Expr*>(E));
+
+ if (C && C->getType()->isIntegerTy(1)) {
+ llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType());
+ C = llvm::ConstantExpr::getZExt(C, BoolTy);
+ }
+ return C;
+}
+
+llvm::Constant *CodeGenModule::EmitConstantValue(const APValue &Value,
+ QualType DestType,
+ CodeGenFunction *CGF) {
+ // For an _Atomic-qualified constant, we may need to add tail padding.
+ if (auto *AT = DestType->getAs<AtomicType>()) {
+ QualType InnerType = AT->getValueType();
+ auto *Inner = EmitConstantValue(Value, InnerType, CGF);
+
+ uint64_t InnerSize = Context.getTypeSize(InnerType);
+ uint64_t OuterSize = Context.getTypeSize(DestType);
+ if (InnerSize == OuterSize)
+ return Inner;
+
+ assert(InnerSize < OuterSize && "emitted over-large constant for atomic");
+ llvm::Constant *Elts[] = {
+ Inner,
+ llvm::ConstantAggregateZero::get(
+ llvm::ArrayType::get(Int8Ty, (OuterSize - InnerSize) / 8))
+ };
+ return llvm::ConstantStruct::getAnon(Elts);
+ }
+
+ switch (Value.getKind()) {
+ case APValue::Uninitialized:
+ llvm_unreachable("Constant expressions should be initialized.");
+ case APValue::LValue: {
+ llvm::Type *DestTy = getTypes().ConvertTypeForMem(DestType);
+ llvm::Constant *Offset =
+ llvm::ConstantInt::get(Int64Ty, Value.getLValueOffset().getQuantity());
+
+ llvm::Constant *C;
+ if (APValue::LValueBase LVBase = Value.getLValueBase()) {
+ // An array can be represented as an lvalue referring to the base.
+ if (isa<llvm::ArrayType>(DestTy)) {
+ assert(Offset->isNullValue() && "offset on array initializer");
+ return ConstExprEmitter(*this, CGF).Visit(
+ const_cast<Expr*>(LVBase.get<const Expr*>()));
+ }
+
+ C = ConstExprEmitter(*this, CGF).EmitLValue(LVBase);
+
+ // Apply offset if necessary.
+ if (!Offset->isNullValue()) {
+ unsigned AS = C->getType()->getPointerAddressSpace();
+ llvm::Type *CharPtrTy = Int8Ty->getPointerTo(AS);
+ llvm::Constant *Casted = llvm::ConstantExpr::getBitCast(C, CharPtrTy);
+ Casted = llvm::ConstantExpr::getGetElementPtr(Int8Ty, Casted, Offset);
+ C = llvm::ConstantExpr::getPointerCast(Casted, C->getType());
+ }
+
+ // Convert to the appropriate type; this could be an lvalue for
+ // an integer.
+ if (isa<llvm::PointerType>(DestTy))
+ return llvm::ConstantExpr::getPointerCast(C, DestTy);
+
+ return llvm::ConstantExpr::getPtrToInt(C, DestTy);
+ } else {
+ C = Offset;
+
+ // Convert to the appropriate type; this could be an lvalue for
+ // an integer.
+ if (isa<llvm::PointerType>(DestTy))
+ return llvm::ConstantExpr::getIntToPtr(C, DestTy);
+
+ // If the types don't match this should only be a truncate.
+ if (C->getType() != DestTy)
+ return llvm::ConstantExpr::getTrunc(C, DestTy);
+
+ return C;
+ }
+ }
+ case APValue::Int:
+ return llvm::ConstantInt::get(VMContext, Value.getInt());
+ case APValue::ComplexInt: {
+ llvm::Constant *Complex[2];
+
+ Complex[0] = llvm::ConstantInt::get(VMContext,
+ Value.getComplexIntReal());
+ Complex[1] = llvm::ConstantInt::get(VMContext,
+ Value.getComplexIntImag());
+
+ // FIXME: the target may want to specify that this is packed.
+ llvm::StructType *STy = llvm::StructType::get(Complex[0]->getType(),
+ Complex[1]->getType(),
+ nullptr);
+ return llvm::ConstantStruct::get(STy, Complex);
+ }
+ case APValue::Float: {
+ const llvm::APFloat &Init = Value.getFloat();
+ if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf &&
+ !Context.getLangOpts().NativeHalfType &&
+ !Context.getLangOpts().HalfArgsAndReturns)
+ return llvm::ConstantInt::get(VMContext, Init.bitcastToAPInt());
+ else
+ return llvm::ConstantFP::get(VMContext, Init);
+ }
+ case APValue::ComplexFloat: {
+ llvm::Constant *Complex[2];
+
+ Complex[0] = llvm::ConstantFP::get(VMContext,
+ Value.getComplexFloatReal());
+ Complex[1] = llvm::ConstantFP::get(VMContext,
+ Value.getComplexFloatImag());
+
+ // FIXME: the target may want to specify that this is packed.
+ llvm::StructType *STy = llvm::StructType::get(Complex[0]->getType(),
+ Complex[1]->getType(),
+ nullptr);
+ return llvm::ConstantStruct::get(STy, Complex);
+ }
+ case APValue::Vector: {
+ SmallVector<llvm::Constant *, 4> Inits;
+ unsigned NumElts = Value.getVectorLength();
+
+ for (unsigned i = 0; i != NumElts; ++i) {
+ const APValue &Elt = Value.getVectorElt(i);
+ if (Elt.isInt())
+ Inits.push_back(llvm::ConstantInt::get(VMContext, Elt.getInt()));
+ else
+ Inits.push_back(llvm::ConstantFP::get(VMContext, Elt.getFloat()));
+ }
+ return llvm::ConstantVector::get(Inits);
+ }
+ case APValue::AddrLabelDiff: {
+ const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS();
+ const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS();
+ llvm::Constant *LHS = EmitConstantExpr(LHSExpr, LHSExpr->getType(), CGF);
+ llvm::Constant *RHS = EmitConstantExpr(RHSExpr, RHSExpr->getType(), CGF);
+
+ // Compute difference
+ llvm::Type *ResultType = getTypes().ConvertType(DestType);
+ LHS = llvm::ConstantExpr::getPtrToInt(LHS, IntPtrTy);
+ RHS = llvm::ConstantExpr::getPtrToInt(RHS, IntPtrTy);
+ llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS);
+
+ // LLVM is a bit sensitive about the exact format of the
+ // address-of-label difference; make sure to truncate after
+ // the subtraction.
+ return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType);
+ }
+ case APValue::Struct:
+ case APValue::Union:
+ return ConstStructBuilder::BuildStruct(*this, CGF, Value, DestType);
+ case APValue::Array: {
+ const ArrayType *CAT = Context.getAsArrayType(DestType);
+ unsigned NumElements = Value.getArraySize();
+ unsigned NumInitElts = Value.getArrayInitializedElts();
+
+ // Emit array filler, if there is one.
+ llvm::Constant *Filler = nullptr;
+ if (Value.hasArrayFiller())
+ Filler = EmitConstantValueForMemory(Value.getArrayFiller(),
+ CAT->getElementType(), CGF);
+
+ // Emit initializer elements.
+ llvm::Type *CommonElementType =
+ getTypes().ConvertType(CAT->getElementType());
+
+ // Try to use a ConstantAggregateZero if we can.
+ if (Filler && Filler->isNullValue() && !NumInitElts) {
+ llvm::ArrayType *AType =
+ llvm::ArrayType::get(CommonElementType, NumElements);
+ return llvm::ConstantAggregateZero::get(AType);
+ }
+
+ std::vector<llvm::Constant*> Elts;
+ Elts.reserve(NumElements);
+ for (unsigned I = 0; I < NumElements; ++I) {
+ llvm::Constant *C = Filler;
+ if (I < NumInitElts)
+ C = EmitConstantValueForMemory(Value.getArrayInitializedElt(I),
+ CAT->getElementType(), CGF);
+ else
+ assert(Filler && "Missing filler for implicit elements of initializer");
+ if (I == 0)
+ CommonElementType = C->getType();
+ else if (C->getType() != CommonElementType)
+ CommonElementType = nullptr;
+ Elts.push_back(C);
+ }
+
+ if (!CommonElementType) {
+ // FIXME: Try to avoid packing the array
+ std::vector<llvm::Type*> Types;
+ Types.reserve(NumElements);
+ for (unsigned i = 0, e = Elts.size(); i < e; ++i)
+ Types.push_back(Elts[i]->getType());
+ llvm::StructType *SType = llvm::StructType::get(VMContext, Types, true);
+ return llvm::ConstantStruct::get(SType, Elts);
+ }
+
+ llvm::ArrayType *AType =
+ llvm::ArrayType::get(CommonElementType, NumElements);
+ return llvm::ConstantArray::get(AType, Elts);
+ }
+ case APValue::MemberPointer:
+ return getCXXABI().EmitMemberPointer(Value, DestType);
+ }
+ llvm_unreachable("Unknown APValue kind");
+}
+
+llvm::Constant *
+CodeGenModule::EmitConstantValueForMemory(const APValue &Value,
+ QualType DestType,
+ CodeGenFunction *CGF) {
+ llvm::Constant *C = EmitConstantValue(Value, DestType, CGF);
+ if (C->getType()->isIntegerTy(1)) {
+ llvm::Type *BoolTy = getTypes().ConvertTypeForMem(DestType);
+ C = llvm::ConstantExpr::getZExt(C, BoolTy);
+ }
+ return C;
+}
+
+llvm::Constant *
+CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) {
+ assert(E->isFileScope() && "not a file-scope compound literal expr");
+ return ConstExprEmitter(*this, nullptr).EmitLValue(E);
+}
+
+llvm::Constant *
+CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) {
+ // Member pointer constants always have a very particular form.
+ const MemberPointerType *type = cast<MemberPointerType>(uo->getType());
+ const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl();
+
+ // A member function pointer.
+ if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl))
+ return getCXXABI().EmitMemberPointer(method);
+
+ // Otherwise, a member data pointer.
+ uint64_t fieldOffset = getContext().getFieldOffset(decl);
+ CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset);
+ return getCXXABI().EmitMemberDataPointer(type, chars);
+}
+
+static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
+ llvm::Type *baseType,
+ const CXXRecordDecl *base);
+
+static llvm::Constant *EmitNullConstant(CodeGenModule &CGM,
+ const CXXRecordDecl *record,
+ bool asCompleteObject) {
+ const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record);
+ llvm::StructType *structure =
+ (asCompleteObject ? layout.getLLVMType()
+ : layout.getBaseSubobjectLLVMType());
+
+ unsigned numElements = structure->getNumElements();
+ std::vector<llvm::Constant *> elements(numElements);
+
+ // Fill in all the bases.
+ for (const auto &I : record->bases()) {
+ if (I.isVirtual()) {
+ // Ignore virtual bases; if we're laying out for a complete
+ // object, we'll lay these out later.
+ continue;
+ }
+
+ const CXXRecordDecl *base =
+ cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
+
+ // Ignore empty bases.
+ if (base->isEmpty())
+ continue;
+
+ unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base);
+ llvm::Type *baseType = structure->getElementType(fieldIndex);
+ elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
+ }
+
+ // Fill in all the fields.
+ for (const auto *Field : record->fields()) {
+ // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
+ // will fill in later.)
+ if (!Field->isBitField()) {
+ unsigned fieldIndex = layout.getLLVMFieldNo(Field);
+ elements[fieldIndex] = CGM.EmitNullConstant(Field->getType());
+ }
+
+ // For unions, stop after the first named field.
+ if (record->isUnion() && Field->getDeclName())
+ break;
+ }
+
+ // Fill in the virtual bases, if we're working with the complete object.
+ if (asCompleteObject) {
+ for (const auto &I : record->vbases()) {
+ const CXXRecordDecl *base =
+ cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
+
+ // Ignore empty bases.
+ if (base->isEmpty())
+ continue;
+
+ unsigned fieldIndex = layout.getVirtualBaseIndex(base);
+
+ // We might have already laid this field out.
+ if (elements[fieldIndex]) continue;
+
+ llvm::Type *baseType = structure->getElementType(fieldIndex);
+ elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
+ }
+ }
+
+ // Now go through all other fields and zero them out.
+ for (unsigned i = 0; i != numElements; ++i) {
+ if (!elements[i])
+ elements[i] = llvm::Constant::getNullValue(structure->getElementType(i));
+ }
+
+ return llvm::ConstantStruct::get(structure, elements);
+}
+
+/// Emit the null constant for a base subobject.
+static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
+ llvm::Type *baseType,
+ const CXXRecordDecl *base) {
+ const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base);
+
+ // Just zero out bases that don't have any pointer to data members.
+ if (baseLayout.isZeroInitializableAsBase())
+ return llvm::Constant::getNullValue(baseType);
+
+ // Otherwise, we can just use its null constant.
+ return EmitNullConstant(CGM, base, /*asCompleteObject=*/false);
+}
+
+llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) {
+ if (getTypes().isZeroInitializable(T))
+ return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T));
+
+ if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) {
+ llvm::ArrayType *ATy =
+ cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T));
+
+ QualType ElementTy = CAT->getElementType();
+
+ llvm::Constant *Element = EmitNullConstant(ElementTy);
+ unsigned NumElements = CAT->getSize().getZExtValue();
+ SmallVector<llvm::Constant *, 8> Array(NumElements, Element);
+ return llvm::ConstantArray::get(ATy, Array);
+ }
+
+ if (const RecordType *RT = T->getAs<RecordType>()) {
+ const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
+ return ::EmitNullConstant(*this, RD, /*complete object*/ true);
+ }
+
+ assert(T->isMemberDataPointerType() &&
+ "Should only see pointers to data members here!");
+
+ return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>());
+}
+
+llvm::Constant *
+CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) {
+ return ::EmitNullConstant(*this, Record, false);
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGExprScalar.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGExprScalar.cpp
new file mode 100644
index 0000000..08c81c0
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGExprScalar.cpp
@@ -0,0 +1,3558 @@
+//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenFunction.h"
+#include "CGCXXABI.h"
+#include "CGDebugInfo.h"
+#include "CGObjCRuntime.h"
+#include "CodeGenModule.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Frontend/CodeGenOptions.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Module.h"
+#include <cstdarg>
+
+using namespace clang;
+using namespace CodeGen;
+using llvm::Value;
+
+//===----------------------------------------------------------------------===//
+// Scalar Expression Emitter
+//===----------------------------------------------------------------------===//
+
+namespace {
+struct BinOpInfo {
+ Value *LHS;
+ Value *RHS;
+ QualType Ty; // Computation Type.
+ BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
+ bool FPContractable;
+ const Expr *E; // Entire expr, for error unsupported. May not be binop.
+};
+
+static bool MustVisitNullValue(const Expr *E) {
+ // If a null pointer expression's type is the C++0x nullptr_t, then
+ // it's not necessarily a simple constant and it must be evaluated
+ // for its potential side effects.
+ return E->getType()->isNullPtrType();
+}
+
+class ScalarExprEmitter
+ : public StmtVisitor<ScalarExprEmitter, Value*> {
+ CodeGenFunction &CGF;
+ CGBuilderTy &Builder;
+ bool IgnoreResultAssign;
+ llvm::LLVMContext &VMContext;
+public:
+
+ ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
+ : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
+ VMContext(cgf.getLLVMContext()) {
+ }
+
+ //===--------------------------------------------------------------------===//
+ // Utilities
+ //===--------------------------------------------------------------------===//
+
+ bool TestAndClearIgnoreResultAssign() {
+ bool I = IgnoreResultAssign;
+ IgnoreResultAssign = false;
+ return I;
+ }
+
+ llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
+ LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
+ LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
+ return CGF.EmitCheckedLValue(E, TCK);
+ }
+
+ void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
+ const BinOpInfo &Info);
+
+ Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
+ return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
+ }
+
+ void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
+ const AlignValueAttr *AVAttr = nullptr;
+ if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
+ const ValueDecl *VD = DRE->getDecl();
+
+ if (VD->getType()->isReferenceType()) {
+ if (const auto *TTy =
+ dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
+ AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
+ } else {
+ // Assumptions for function parameters are emitted at the start of the
+ // function, so there is no need to repeat that here.
+ if (isa<ParmVarDecl>(VD))
+ return;
+
+ AVAttr = VD->getAttr<AlignValueAttr>();
+ }
+ }
+
+ if (!AVAttr)
+ if (const auto *TTy =
+ dyn_cast<TypedefType>(E->getType()))
+ AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
+
+ if (!AVAttr)
+ return;
+
+ Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
+ llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
+ CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
+ }
+
+ /// EmitLoadOfLValue - Given an expression with complex type that represents a
+ /// value l-value, this method emits the address of the l-value, then loads
+ /// and returns the result.
+ Value *EmitLoadOfLValue(const Expr *E) {
+ Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
+ E->getExprLoc());
+
+ EmitLValueAlignmentAssumption(E, V);
+ return V;
+ }
+
+ /// EmitConversionToBool - Convert the specified expression value to a
+ /// boolean (i1) truth value. This is equivalent to "Val != 0".
+ Value *EmitConversionToBool(Value *Src, QualType DstTy);
+
+ /// \brief Emit a check that a conversion to or from a floating-point type
+ /// does not overflow.
+ void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
+ Value *Src, QualType SrcType,
+ QualType DstType, llvm::Type *DstTy);
+
+ /// EmitScalarConversion - Emit a conversion from the specified type to the
+ /// specified destination type, both of which are LLVM scalar types.
+ Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
+
+ /// EmitComplexToScalarConversion - Emit a conversion from the specified
+ /// complex type to the specified destination type, where the destination type
+ /// is an LLVM scalar type.
+ Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
+ QualType SrcTy, QualType DstTy);
+
+ /// EmitNullValue - Emit a value that corresponds to null for the given type.
+ Value *EmitNullValue(QualType Ty);
+
+ /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
+ Value *EmitFloatToBoolConversion(Value *V) {
+ // Compare against 0.0 for fp scalars.
+ llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
+ return Builder.CreateFCmpUNE(V, Zero, "tobool");
+ }
+
+ /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
+ Value *EmitPointerToBoolConversion(Value *V) {
+ Value *Zero = llvm::ConstantPointerNull::get(
+ cast<llvm::PointerType>(V->getType()));
+ return Builder.CreateICmpNE(V, Zero, "tobool");
+ }
+
+ Value *EmitIntToBoolConversion(Value *V) {
+ // Because of the type rules of C, we often end up computing a
+ // logical value, then zero extending it to int, then wanting it
+ // as a logical value again. Optimize this common case.
+ if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
+ if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
+ Value *Result = ZI->getOperand(0);
+ // If there aren't any more uses, zap the instruction to save space.
+ // Note that there can be more uses, for example if this
+ // is the result of an assignment.
+ if (ZI->use_empty())
+ ZI->eraseFromParent();
+ return Result;
+ }
+ }
+
+ return Builder.CreateIsNotNull(V, "tobool");
+ }
+
+ //===--------------------------------------------------------------------===//
+ // Visitor Methods
+ //===--------------------------------------------------------------------===//
+
+ Value *Visit(Expr *E) {
+ ApplyDebugLocation DL(CGF, E);
+ return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
+ }
+
+ Value *VisitStmt(Stmt *S) {
+ S->dump(CGF.getContext().getSourceManager());
+ llvm_unreachable("Stmt can't have complex result type!");
+ }
+ Value *VisitExpr(Expr *S);
+
+ Value *VisitParenExpr(ParenExpr *PE) {
+ return Visit(PE->getSubExpr());
+ }
+ Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
+ return Visit(E->getReplacement());
+ }
+ Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
+ return Visit(GE->getResultExpr());
+ }
+
+ // Leaves.
+ Value *VisitIntegerLiteral(const IntegerLiteral *E) {
+ return Builder.getInt(E->getValue());
+ }
+ Value *VisitFloatingLiteral(const FloatingLiteral *E) {
+ return llvm::ConstantFP::get(VMContext, E->getValue());
+ }
+ Value *VisitCharacterLiteral(const CharacterLiteral *E) {
+ return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
+ }
+ Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
+ return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
+ }
+ Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
+ return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
+ }
+ Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
+ return EmitNullValue(E->getType());
+ }
+ Value *VisitGNUNullExpr(const GNUNullExpr *E) {
+ return EmitNullValue(E->getType());
+ }
+ Value *VisitOffsetOfExpr(OffsetOfExpr *E);
+ Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
+ Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
+ llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
+ return Builder.CreateBitCast(V, ConvertType(E->getType()));
+ }
+
+ Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
+ return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
+ }
+
+ Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
+ return CGF.EmitPseudoObjectRValue(E).getScalarVal();
+ }
+
+ Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
+ if (E->isGLValue())
+ return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
+
+ // Otherwise, assume the mapping is the scalar directly.
+ return CGF.getOpaqueRValueMapping(E).getScalarVal();
+ }
+
+ // l-values.
+ Value *VisitDeclRefExpr(DeclRefExpr *E) {
+ if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
+ if (result.isReference())
+ return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
+ E->getExprLoc());
+ return result.getValue();
+ }
+ return EmitLoadOfLValue(E);
+ }
+
+ Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
+ return CGF.EmitObjCSelectorExpr(E);
+ }
+ Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
+ return CGF.EmitObjCProtocolExpr(E);
+ }
+ Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
+ return EmitLoadOfLValue(E);
+ }
+ Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
+ if (E->getMethodDecl() &&
+ E->getMethodDecl()->getReturnType()->isReferenceType())
+ return EmitLoadOfLValue(E);
+ return CGF.EmitObjCMessageExpr(E).getScalarVal();
+ }
+
+ Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
+ LValue LV = CGF.EmitObjCIsaExpr(E);
+ Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
+ return V;
+ }
+
+ Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
+ Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
+ Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
+ Value *VisitMemberExpr(MemberExpr *E);
+ Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
+ Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
+ return EmitLoadOfLValue(E);
+ }
+
+ Value *VisitInitListExpr(InitListExpr *E);
+
+ Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
+ return EmitNullValue(E->getType());
+ }
+ Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
+ if (E->getType()->isVariablyModifiedType())
+ CGF.EmitVariablyModifiedType(E->getType());
+
+ if (CGDebugInfo *DI = CGF.getDebugInfo())
+ DI->EmitExplicitCastType(E->getType());
+
+ return VisitCastExpr(E);
+ }
+ Value *VisitCastExpr(CastExpr *E);
+
+ Value *VisitCallExpr(const CallExpr *E) {
+ if (E->getCallReturnType(CGF.getContext())->isReferenceType())
+ return EmitLoadOfLValue(E);
+
+ Value *V = CGF.EmitCallExpr(E).getScalarVal();
+
+ EmitLValueAlignmentAssumption(E, V);
+ return V;
+ }
+
+ Value *VisitStmtExpr(const StmtExpr *E);
+
+ // Unary Operators.
+ Value *VisitUnaryPostDec(const UnaryOperator *E) {
+ LValue LV = EmitLValue(E->getSubExpr());
+ return EmitScalarPrePostIncDec(E, LV, false, false);
+ }
+ Value *VisitUnaryPostInc(const UnaryOperator *E) {
+ LValue LV = EmitLValue(E->getSubExpr());
+ return EmitScalarPrePostIncDec(E, LV, true, false);
+ }
+ Value *VisitUnaryPreDec(const UnaryOperator *E) {
+ LValue LV = EmitLValue(E->getSubExpr());
+ return EmitScalarPrePostIncDec(E, LV, false, true);
+ }
+ Value *VisitUnaryPreInc(const UnaryOperator *E) {
+ LValue LV = EmitLValue(E->getSubExpr());
+ return EmitScalarPrePostIncDec(E, LV, true, true);
+ }
+
+ llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
+ llvm::Value *InVal,
+ bool IsInc);
+
+ llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
+ bool isInc, bool isPre);
+
+
+ Value *VisitUnaryAddrOf(const UnaryOperator *E) {
+ if (isa<MemberPointerType>(E->getType())) // never sugared
+ return CGF.CGM.getMemberPointerConstant(E);
+
+ return EmitLValue(E->getSubExpr()).getAddress();
+ }
+ Value *VisitUnaryDeref(const UnaryOperator *E) {
+ if (E->getType()->isVoidType())
+ return Visit(E->getSubExpr()); // the actual value should be unused
+ return EmitLoadOfLValue(E);
+ }
+ Value *VisitUnaryPlus(const UnaryOperator *E) {
+ // This differs from gcc, though, most likely due to a bug in gcc.
+ TestAndClearIgnoreResultAssign();
+ return Visit(E->getSubExpr());
+ }
+ Value *VisitUnaryMinus (const UnaryOperator *E);
+ Value *VisitUnaryNot (const UnaryOperator *E);
+ Value *VisitUnaryLNot (const UnaryOperator *E);
+ Value *VisitUnaryReal (const UnaryOperator *E);
+ Value *VisitUnaryImag (const UnaryOperator *E);
+ Value *VisitUnaryExtension(const UnaryOperator *E) {
+ return Visit(E->getSubExpr());
+ }
+
+ // C++
+ Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
+ return EmitLoadOfLValue(E);
+ }
+
+ Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
+ return Visit(DAE->getExpr());
+ }
+ Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
+ CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
+ return Visit(DIE->getExpr());
+ }
+ Value *VisitCXXThisExpr(CXXThisExpr *TE) {
+ return CGF.LoadCXXThis();
+ }
+
+ Value *VisitExprWithCleanups(ExprWithCleanups *E) {
+ CGF.enterFullExpression(E);
+ CodeGenFunction::RunCleanupsScope Scope(CGF);
+ return Visit(E->getSubExpr());
+ }
+ Value *VisitCXXNewExpr(const CXXNewExpr *E) {
+ return CGF.EmitCXXNewExpr(E);
+ }
+ Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
+ CGF.EmitCXXDeleteExpr(E);
+ return nullptr;
+ }
+
+ Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
+ return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
+ }
+
+ Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
+ return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
+ }
+
+ Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
+ return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
+ }
+
+ Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
+ // C++ [expr.pseudo]p1:
+ // The result shall only be used as the operand for the function call
+ // operator (), and the result of such a call has type void. The only
+ // effect is the evaluation of the postfix-expression before the dot or
+ // arrow.
+ CGF.EmitScalarExpr(E->getBase());
+ return nullptr;
+ }
+
+ Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
+ return EmitNullValue(E->getType());
+ }
+
+ Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
+ CGF.EmitCXXThrowExpr(E);
+ return nullptr;
+ }
+
+ Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
+ return Builder.getInt1(E->getValue());
+ }
+
+ // Binary Operators.
+ Value *EmitMul(const BinOpInfo &Ops) {
+ if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
+ switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
+ case LangOptions::SOB_Defined:
+ return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
+ case LangOptions::SOB_Undefined:
+ if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
+ return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
+ // Fall through.
+ case LangOptions::SOB_Trapping:
+ return EmitOverflowCheckedBinOp(Ops);
+ }
+ }
+
+ if (Ops.Ty->isUnsignedIntegerType() &&
+ CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
+ return EmitOverflowCheckedBinOp(Ops);
+
+ if (Ops.LHS->getType()->isFPOrFPVectorTy())
+ return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
+ return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
+ }
+ /// Create a binary op that checks for overflow.
+ /// Currently only supports +, - and *.
+ Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
+
+ // Check for undefined division and modulus behaviors.
+ void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
+ llvm::Value *Zero,bool isDiv);
+ // Common helper for getting how wide LHS of shift is.
+ static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
+ Value *EmitDiv(const BinOpInfo &Ops);
+ Value *EmitRem(const BinOpInfo &Ops);
+ Value *EmitAdd(const BinOpInfo &Ops);
+ Value *EmitSub(const BinOpInfo &Ops);
+ Value *EmitShl(const BinOpInfo &Ops);
+ Value *EmitShr(const BinOpInfo &Ops);
+ Value *EmitAnd(const BinOpInfo &Ops) {
+ return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
+ }
+ Value *EmitXor(const BinOpInfo &Ops) {
+ return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
+ }
+ Value *EmitOr (const BinOpInfo &Ops) {
+ return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
+ }
+
+ BinOpInfo EmitBinOps(const BinaryOperator *E);
+ LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
+ Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
+ Value *&Result);
+
+ Value *EmitCompoundAssign(const CompoundAssignOperator *E,
+ Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
+
+ // Binary operators and binary compound assignment operators.
+#define HANDLEBINOP(OP) \
+ Value *VisitBin ## OP(const BinaryOperator *E) { \
+ return Emit ## OP(EmitBinOps(E)); \
+ } \
+ Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \
+ return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \
+ }
+ HANDLEBINOP(Mul)
+ HANDLEBINOP(Div)
+ HANDLEBINOP(Rem)
+ HANDLEBINOP(Add)
+ HANDLEBINOP(Sub)
+ HANDLEBINOP(Shl)
+ HANDLEBINOP(Shr)
+ HANDLEBINOP(And)
+ HANDLEBINOP(Xor)
+ HANDLEBINOP(Or)
+#undef HANDLEBINOP
+
+ // Comparisons.
+ Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
+ unsigned SICmpOpc, unsigned FCmpOpc);
+#define VISITCOMP(CODE, UI, SI, FP) \
+ Value *VisitBin##CODE(const BinaryOperator *E) { \
+ return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
+ llvm::FCmpInst::FP); }
+ VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
+ VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
+ VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
+ VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
+ VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
+ VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
+#undef VISITCOMP
+
+ Value *VisitBinAssign (const BinaryOperator *E);
+
+ Value *VisitBinLAnd (const BinaryOperator *E);
+ Value *VisitBinLOr (const BinaryOperator *E);
+ Value *VisitBinComma (const BinaryOperator *E);
+
+ Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
+ Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
+
+ // Other Operators.
+ Value *VisitBlockExpr(const BlockExpr *BE);
+ Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
+ Value *VisitChooseExpr(ChooseExpr *CE);
+ Value *VisitVAArgExpr(VAArgExpr *VE);
+ Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
+ return CGF.EmitObjCStringLiteral(E);
+ }
+ Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
+ return CGF.EmitObjCBoxedExpr(E);
+ }
+ Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
+ return CGF.EmitObjCArrayLiteral(E);
+ }
+ Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
+ return CGF.EmitObjCDictionaryLiteral(E);
+ }
+ Value *VisitAsTypeExpr(AsTypeExpr *CE);
+ Value *VisitAtomicExpr(AtomicExpr *AE);
+};
+} // end anonymous namespace.
+
+//===----------------------------------------------------------------------===//
+// Utilities
+//===----------------------------------------------------------------------===//
+
+/// EmitConversionToBool - Convert the specified expression value to a
+/// boolean (i1) truth value. This is equivalent to "Val != 0".
+Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
+ assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
+
+ if (SrcType->isRealFloatingType())
+ return EmitFloatToBoolConversion(Src);
+
+ if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
+ return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
+
+ assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
+ "Unknown scalar type to convert");
+
+ if (isa<llvm::IntegerType>(Src->getType()))
+ return EmitIntToBoolConversion(Src);
+
+ assert(isa<llvm::PointerType>(Src->getType()));
+ return EmitPointerToBoolConversion(Src);
+}
+
+void ScalarExprEmitter::EmitFloatConversionCheck(Value *OrigSrc,
+ QualType OrigSrcType,
+ Value *Src, QualType SrcType,
+ QualType DstType,
+ llvm::Type *DstTy) {
+ CodeGenFunction::SanitizerScope SanScope(&CGF);
+ using llvm::APFloat;
+ using llvm::APSInt;
+
+ llvm::Type *SrcTy = Src->getType();
+
+ llvm::Value *Check = nullptr;
+ if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
+ // Integer to floating-point. This can fail for unsigned short -> __half
+ // or unsigned __int128 -> float.
+ assert(DstType->isFloatingType());
+ bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
+
+ APFloat LargestFloat =
+ APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
+ APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
+
+ bool IsExact;
+ if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
+ &IsExact) != APFloat::opOK)
+ // The range of representable values of this floating point type includes
+ // all values of this integer type. Don't need an overflow check.
+ return;
+
+ llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
+ if (SrcIsUnsigned)
+ Check = Builder.CreateICmpULE(Src, Max);
+ else {
+ llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
+ llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
+ llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
+ Check = Builder.CreateAnd(GE, LE);
+ }
+ } else {
+ const llvm::fltSemantics &SrcSema =
+ CGF.getContext().getFloatTypeSemantics(OrigSrcType);
+ if (isa<llvm::IntegerType>(DstTy)) {
+ // Floating-point to integer. This has undefined behavior if the source is
+ // +-Inf, NaN, or doesn't fit into the destination type (after truncation
+ // to an integer).
+ unsigned Width = CGF.getContext().getIntWidth(DstType);
+ bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
+
+ APSInt Min = APSInt::getMinValue(Width, Unsigned);
+ APFloat MinSrc(SrcSema, APFloat::uninitialized);
+ if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
+ APFloat::opOverflow)
+ // Don't need an overflow check for lower bound. Just check for
+ // -Inf/NaN.
+ MinSrc = APFloat::getInf(SrcSema, true);
+ else
+ // Find the largest value which is too small to represent (before
+ // truncation toward zero).
+ MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
+
+ APSInt Max = APSInt::getMaxValue(Width, Unsigned);
+ APFloat MaxSrc(SrcSema, APFloat::uninitialized);
+ if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
+ APFloat::opOverflow)
+ // Don't need an overflow check for upper bound. Just check for
+ // +Inf/NaN.
+ MaxSrc = APFloat::getInf(SrcSema, false);
+ else
+ // Find the smallest value which is too large to represent (before
+ // truncation toward zero).
+ MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
+
+ // If we're converting from __half, convert the range to float to match
+ // the type of src.
+ if (OrigSrcType->isHalfType()) {
+ const llvm::fltSemantics &Sema =
+ CGF.getContext().getFloatTypeSemantics(SrcType);
+ bool IsInexact;
+ MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
+ MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
+ }
+
+ llvm::Value *GE =
+ Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
+ llvm::Value *LE =
+ Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
+ Check = Builder.CreateAnd(GE, LE);
+ } else {
+ // FIXME: Maybe split this sanitizer out from float-cast-overflow.
+ //
+ // Floating-point to floating-point. This has undefined behavior if the
+ // source is not in the range of representable values of the destination
+ // type. The C and C++ standards are spectacularly unclear here. We
+ // diagnose finite out-of-range conversions, but allow infinities and NaNs
+ // to convert to the corresponding value in the smaller type.
+ //
+ // C11 Annex F gives all such conversions defined behavior for IEC 60559
+ // conforming implementations. Unfortunately, LLVM's fptrunc instruction
+ // does not.
+
+ // Converting from a lower rank to a higher rank can never have
+ // undefined behavior, since higher-rank types must have a superset
+ // of values of lower-rank types.
+ if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
+ return;
+
+ assert(!OrigSrcType->isHalfType() &&
+ "should not check conversion from __half, it has the lowest rank");
+
+ const llvm::fltSemantics &DstSema =
+ CGF.getContext().getFloatTypeSemantics(DstType);
+ APFloat MinBad = APFloat::getLargest(DstSema, false);
+ APFloat MaxBad = APFloat::getInf(DstSema, false);
+
+ bool IsInexact;
+ MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
+ MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
+
+ Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
+ CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
+ llvm::Value *GE =
+ Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
+ llvm::Value *LE =
+ Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
+ Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
+ }
+ }
+
+ // FIXME: Provide a SourceLocation.
+ llvm::Constant *StaticArgs[] = {
+ CGF.EmitCheckTypeDescriptor(OrigSrcType),
+ CGF.EmitCheckTypeDescriptor(DstType)
+ };
+ CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
+ "float_cast_overflow", StaticArgs, OrigSrc);
+}
+
+/// EmitScalarConversion - Emit a conversion from the specified type to the
+/// specified destination type, both of which are LLVM scalar types.
+Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
+ QualType DstType) {
+ SrcType = CGF.getContext().getCanonicalType(SrcType);
+ DstType = CGF.getContext().getCanonicalType(DstType);
+ if (SrcType == DstType) return Src;
+
+ if (DstType->isVoidType()) return nullptr;
+
+ llvm::Value *OrigSrc = Src;
+ QualType OrigSrcType = SrcType;
+ llvm::Type *SrcTy = Src->getType();
+
+ // Handle conversions to bool first, they are special: comparisons against 0.
+ if (DstType->isBooleanType())
+ return EmitConversionToBool(Src, SrcType);
+
+ llvm::Type *DstTy = ConvertType(DstType);
+
+ // Cast from half through float if half isn't a native type.
+ if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
+ // Cast to FP using the intrinsic if the half type itself isn't supported.
+ if (DstTy->isFloatingPointTy()) {
+ if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
+ return Builder.CreateCall(
+ CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
+ Src);
+ } else {
+ // Cast to other types through float, using either the intrinsic or FPExt,
+ // depending on whether the half type itself is supported
+ // (as opposed to operations on half, available with NativeHalfType).
+ if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
+ Src = Builder.CreateCall(
+ CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
+ CGF.CGM.FloatTy),
+ Src);
+ } else {
+ Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
+ }
+ SrcType = CGF.getContext().FloatTy;
+ SrcTy = CGF.FloatTy;
+ }
+ }
+
+ // Ignore conversions like int -> uint.
+ if (SrcTy == DstTy)
+ return Src;
+
+ // Handle pointer conversions next: pointers can only be converted to/from
+ // other pointers and integers. Check for pointer types in terms of LLVM, as
+ // some native types (like Obj-C id) may map to a pointer type.
+ if (isa<llvm::PointerType>(DstTy)) {
+ // The source value may be an integer, or a pointer.
+ if (isa<llvm::PointerType>(SrcTy))
+ return Builder.CreateBitCast(Src, DstTy, "conv");
+
+ assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
+ // First, convert to the correct width so that we control the kind of
+ // extension.
+ llvm::Type *MiddleTy = CGF.IntPtrTy;
+ bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
+ llvm::Value* IntResult =
+ Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
+ // Then, cast to pointer.
+ return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
+ }
+
+ if (isa<llvm::PointerType>(SrcTy)) {
+ // Must be an ptr to int cast.
+ assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
+ return Builder.CreatePtrToInt(Src, DstTy, "conv");
+ }
+
+ // A scalar can be splatted to an extended vector of the same element type
+ if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
+ // Cast the scalar to element type
+ QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
+ llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
+
+ // Splat the element across to all elements
+ unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
+ return Builder.CreateVectorSplat(NumElements, Elt, "splat");
+ }
+
+ // Allow bitcast from vector to integer/fp of the same size.
+ if (isa<llvm::VectorType>(SrcTy) ||
+ isa<llvm::VectorType>(DstTy))
+ return Builder.CreateBitCast(Src, DstTy, "conv");
+
+ // Finally, we have the arithmetic types: real int/float.
+ Value *Res = nullptr;
+ llvm::Type *ResTy = DstTy;
+
+ // An overflowing conversion has undefined behavior if either the source type
+ // or the destination type is a floating-point type.
+ if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
+ (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
+ EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType,
+ DstTy);
+
+ // Cast to half through float if half isn't a native type.
+ if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
+ // Make sure we cast in a single step if from another FP type.
+ if (SrcTy->isFloatingPointTy()) {
+ // Use the intrinsic if the half type itself isn't supported
+ // (as opposed to operations on half, available with NativeHalfType).
+ if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
+ return Builder.CreateCall(
+ CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
+ // If the half type is supported, just use an fptrunc.
+ return Builder.CreateFPTrunc(Src, DstTy);
+ }
+ DstTy = CGF.FloatTy;
+ }
+
+ if (isa<llvm::IntegerType>(SrcTy)) {
+ bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
+ if (isa<llvm::IntegerType>(DstTy))
+ Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
+ else if (InputSigned)
+ Res = Builder.CreateSIToFP(Src, DstTy, "conv");
+ else
+ Res = Builder.CreateUIToFP(Src, DstTy, "conv");
+ } else if (isa<llvm::IntegerType>(DstTy)) {
+ assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
+ if (DstType->isSignedIntegerOrEnumerationType())
+ Res = Builder.CreateFPToSI(Src, DstTy, "conv");
+ else
+ Res = Builder.CreateFPToUI(Src, DstTy, "conv");
+ } else {
+ assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
+ "Unknown real conversion");
+ if (DstTy->getTypeID() < SrcTy->getTypeID())
+ Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
+ else
+ Res = Builder.CreateFPExt(Src, DstTy, "conv");
+ }
+
+ if (DstTy != ResTy) {
+ if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
+ assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
+ Res = Builder.CreateCall(
+ CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
+ Res);
+ } else {
+ Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
+ }
+ }
+
+ return Res;
+}
+
+/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
+/// type to the specified destination type, where the destination type is an
+/// LLVM scalar type.
+Value *ScalarExprEmitter::
+EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
+ QualType SrcTy, QualType DstTy) {
+ // Get the source element type.
+ SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
+
+ // Handle conversions to bool first, they are special: comparisons against 0.
+ if (DstTy->isBooleanType()) {
+ // Complex != 0 -> (Real != 0) | (Imag != 0)
+ Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy);
+ Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
+ return Builder.CreateOr(Src.first, Src.second, "tobool");
+ }
+
+ // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
+ // the imaginary part of the complex value is discarded and the value of the
+ // real part is converted according to the conversion rules for the
+ // corresponding real type.
+ return EmitScalarConversion(Src.first, SrcTy, DstTy);
+}
+
+Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
+ return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
+}
+
+/// \brief Emit a sanitization check for the given "binary" operation (which
+/// might actually be a unary increment which has been lowered to a binary
+/// operation). The check passes if all values in \p Checks (which are \c i1),
+/// are \c true.
+void ScalarExprEmitter::EmitBinOpCheck(
+ ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
+ assert(CGF.IsSanitizerScope);
+ StringRef CheckName;
+ SmallVector<llvm::Constant *, 4> StaticData;
+ SmallVector<llvm::Value *, 2> DynamicData;
+
+ BinaryOperatorKind Opcode = Info.Opcode;
+ if (BinaryOperator::isCompoundAssignmentOp(Opcode))
+ Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
+
+ StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
+ const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
+ if (UO && UO->getOpcode() == UO_Minus) {
+ CheckName = "negate_overflow";
+ StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
+ DynamicData.push_back(Info.RHS);
+ } else {
+ if (BinaryOperator::isShiftOp(Opcode)) {
+ // Shift LHS negative or too large, or RHS out of bounds.
+ CheckName = "shift_out_of_bounds";
+ const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
+ StaticData.push_back(
+ CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
+ StaticData.push_back(
+ CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
+ } else if (Opcode == BO_Div || Opcode == BO_Rem) {
+ // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
+ CheckName = "divrem_overflow";
+ StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
+ } else {
+ // Arithmetic overflow (+, -, *).
+ switch (Opcode) {
+ case BO_Add: CheckName = "add_overflow"; break;
+ case BO_Sub: CheckName = "sub_overflow"; break;
+ case BO_Mul: CheckName = "mul_overflow"; break;
+ default: llvm_unreachable("unexpected opcode for bin op check");
+ }
+ StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
+ }
+ DynamicData.push_back(Info.LHS);
+ DynamicData.push_back(Info.RHS);
+ }
+
+ CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData);
+}
+
+//===----------------------------------------------------------------------===//
+// Visitor Methods
+//===----------------------------------------------------------------------===//
+
+Value *ScalarExprEmitter::VisitExpr(Expr *E) {
+ CGF.ErrorUnsupported(E, "scalar expression");
+ if (E->getType()->isVoidType())
+ return nullptr;
+ return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
+}
+
+Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
+ // Vector Mask Case
+ if (E->getNumSubExprs() == 2 ||
+ (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
+ Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
+ Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
+ Value *Mask;
+
+ llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
+ unsigned LHSElts = LTy->getNumElements();
+
+ if (E->getNumSubExprs() == 3) {
+ Mask = CGF.EmitScalarExpr(E->getExpr(2));
+
+ // Shuffle LHS & RHS into one input vector.
+ SmallVector<llvm::Constant*, 32> concat;
+ for (unsigned i = 0; i != LHSElts; ++i) {
+ concat.push_back(Builder.getInt32(2*i));
+ concat.push_back(Builder.getInt32(2*i+1));
+ }
+
+ Value* CV = llvm::ConstantVector::get(concat);
+ LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
+ LHSElts *= 2;
+ } else {
+ Mask = RHS;
+ }
+
+ llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
+ llvm::Constant* EltMask;
+
+ EltMask = llvm::ConstantInt::get(MTy->getElementType(),
+ llvm::NextPowerOf2(LHSElts-1)-1);
+
+ // Mask off the high bits of each shuffle index.
+ Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(),
+ EltMask);
+ Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
+
+ // newv = undef
+ // mask = mask & maskbits
+ // for each elt
+ // n = extract mask i
+ // x = extract val n
+ // newv = insert newv, x, i
+ llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
+ MTy->getNumElements());
+ Value* NewV = llvm::UndefValue::get(RTy);
+ for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
+ Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
+ Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
+
+ Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
+ NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
+ }
+ return NewV;
+ }
+
+ Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
+ Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
+
+ SmallVector<llvm::Constant*, 32> indices;
+ for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
+ llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
+ // Check for -1 and output it as undef in the IR.
+ if (Idx.isSigned() && Idx.isAllOnesValue())
+ indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
+ else
+ indices.push_back(Builder.getInt32(Idx.getZExtValue()));
+ }
+
+ Value *SV = llvm::ConstantVector::get(indices);
+ return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
+}
+
+Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
+ QualType SrcType = E->getSrcExpr()->getType(),
+ DstType = E->getType();
+
+ Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
+
+ SrcType = CGF.getContext().getCanonicalType(SrcType);
+ DstType = CGF.getContext().getCanonicalType(DstType);
+ if (SrcType == DstType) return Src;
+
+ assert(SrcType->isVectorType() &&
+ "ConvertVector source type must be a vector");
+ assert(DstType->isVectorType() &&
+ "ConvertVector destination type must be a vector");
+
+ llvm::Type *SrcTy = Src->getType();
+ llvm::Type *DstTy = ConvertType(DstType);
+
+ // Ignore conversions like int -> uint.
+ if (SrcTy == DstTy)
+ return Src;
+
+ QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
+ DstEltType = DstType->getAs<VectorType>()->getElementType();
+
+ assert(SrcTy->isVectorTy() &&
+ "ConvertVector source IR type must be a vector");
+ assert(DstTy->isVectorTy() &&
+ "ConvertVector destination IR type must be a vector");
+
+ llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
+ *DstEltTy = DstTy->getVectorElementType();
+
+ if (DstEltType->isBooleanType()) {
+ assert((SrcEltTy->isFloatingPointTy() ||
+ isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
+
+ llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
+ if (SrcEltTy->isFloatingPointTy()) {
+ return Builder.CreateFCmpUNE(Src, Zero, "tobool");
+ } else {
+ return Builder.CreateICmpNE(Src, Zero, "tobool");
+ }
+ }
+
+ // We have the arithmetic types: real int/float.
+ Value *Res = nullptr;
+
+ if (isa<llvm::IntegerType>(SrcEltTy)) {
+ bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
+ if (isa<llvm::IntegerType>(DstEltTy))
+ Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
+ else if (InputSigned)
+ Res = Builder.CreateSIToFP(Src, DstTy, "conv");
+ else
+ Res = Builder.CreateUIToFP(Src, DstTy, "conv");
+ } else if (isa<llvm::IntegerType>(DstEltTy)) {
+ assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
+ if (DstEltType->isSignedIntegerOrEnumerationType())
+ Res = Builder.CreateFPToSI(Src, DstTy, "conv");
+ else
+ Res = Builder.CreateFPToUI(Src, DstTy, "conv");
+ } else {
+ assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
+ "Unknown real conversion");
+ if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
+ Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
+ else
+ Res = Builder.CreateFPExt(Src, DstTy, "conv");
+ }
+
+ return Res;
+}
+
+Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
+ llvm::APSInt Value;
+ if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
+ if (E->isArrow())
+ CGF.EmitScalarExpr(E->getBase());
+ else
+ EmitLValue(E->getBase());
+ return Builder.getInt(Value);
+ }
+
+ return EmitLoadOfLValue(E);
+}
+
+Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
+ TestAndClearIgnoreResultAssign();
+
+ // Emit subscript expressions in rvalue context's. For most cases, this just
+ // loads the lvalue formed by the subscript expr. However, we have to be
+ // careful, because the base of a vector subscript is occasionally an rvalue,
+ // so we can't get it as an lvalue.
+ if (!E->getBase()->getType()->isVectorType())
+ return EmitLoadOfLValue(E);
+
+ // Handle the vector case. The base must be a vector, the index must be an
+ // integer value.
+ Value *Base = Visit(E->getBase());
+ Value *Idx = Visit(E->getIdx());
+ QualType IdxTy = E->getIdx()->getType();
+
+ if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
+ CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
+
+ return Builder.CreateExtractElement(Base, Idx, "vecext");
+}
+
+static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
+ unsigned Off, llvm::Type *I32Ty) {
+ int MV = SVI->getMaskValue(Idx);
+ if (MV == -1)
+ return llvm::UndefValue::get(I32Ty);
+ return llvm::ConstantInt::get(I32Ty, Off+MV);
+}
+
+Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
+ bool Ignore = TestAndClearIgnoreResultAssign();
+ (void)Ignore;
+ assert (Ignore == false && "init list ignored");
+ unsigned NumInitElements = E->getNumInits();
+
+ if (E->hadArrayRangeDesignator())
+ CGF.ErrorUnsupported(E, "GNU array range designator extension");
+
+ llvm::VectorType *VType =
+ dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
+
+ if (!VType) {
+ if (NumInitElements == 0) {
+ // C++11 value-initialization for the scalar.
+ return EmitNullValue(E->getType());
+ }
+ // We have a scalar in braces. Just use the first element.
+ return Visit(E->getInit(0));
+ }
+
+ unsigned ResElts = VType->getNumElements();
+
+ // Loop over initializers collecting the Value for each, and remembering
+ // whether the source was swizzle (ExtVectorElementExpr). This will allow
+ // us to fold the shuffle for the swizzle into the shuffle for the vector
+ // initializer, since LLVM optimizers generally do not want to touch
+ // shuffles.
+ unsigned CurIdx = 0;
+ bool VIsUndefShuffle = false;
+ llvm::Value *V = llvm::UndefValue::get(VType);
+ for (unsigned i = 0; i != NumInitElements; ++i) {
+ Expr *IE = E->getInit(i);
+ Value *Init = Visit(IE);
+ SmallVector<llvm::Constant*, 16> Args;
+
+ llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
+
+ // Handle scalar elements. If the scalar initializer is actually one
+ // element of a different vector of the same width, use shuffle instead of
+ // extract+insert.
+ if (!VVT) {
+ if (isa<ExtVectorElementExpr>(IE)) {
+ llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
+
+ if (EI->getVectorOperandType()->getNumElements() == ResElts) {
+ llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
+ Value *LHS = nullptr, *RHS = nullptr;
+ if (CurIdx == 0) {
+ // insert into undef -> shuffle (src, undef)
+ Args.push_back(C);
+ Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
+
+ LHS = EI->getVectorOperand();
+ RHS = V;
+ VIsUndefShuffle = true;
+ } else if (VIsUndefShuffle) {
+ // insert into undefshuffle && size match -> shuffle (v, src)
+ llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
+ for (unsigned j = 0; j != CurIdx; ++j)
+ Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
+ Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
+ Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
+
+ LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
+ RHS = EI->getVectorOperand();
+ VIsUndefShuffle = false;
+ }
+ if (!Args.empty()) {
+ llvm::Constant *Mask = llvm::ConstantVector::get(Args);
+ V = Builder.CreateShuffleVector(LHS, RHS, Mask);
+ ++CurIdx;
+ continue;
+ }
+ }
+ }
+ V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
+ "vecinit");
+ VIsUndefShuffle = false;
+ ++CurIdx;
+ continue;
+ }
+
+ unsigned InitElts = VVT->getNumElements();
+
+ // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
+ // input is the same width as the vector being constructed, generate an
+ // optimized shuffle of the swizzle input into the result.
+ unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
+ if (isa<ExtVectorElementExpr>(IE)) {
+ llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
+ Value *SVOp = SVI->getOperand(0);
+ llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
+
+ if (OpTy->getNumElements() == ResElts) {
+ for (unsigned j = 0; j != CurIdx; ++j) {
+ // If the current vector initializer is a shuffle with undef, merge
+ // this shuffle directly into it.
+ if (VIsUndefShuffle) {
+ Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
+ CGF.Int32Ty));
+ } else {
+ Args.push_back(Builder.getInt32(j));
+ }
+ }
+ for (unsigned j = 0, je = InitElts; j != je; ++j)
+ Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
+ Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
+
+ if (VIsUndefShuffle)
+ V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
+
+ Init = SVOp;
+ }
+ }
+
+ // Extend init to result vector length, and then shuffle its contribution
+ // to the vector initializer into V.
+ if (Args.empty()) {
+ for (unsigned j = 0; j != InitElts; ++j)
+ Args.push_back(Builder.getInt32(j));
+ Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
+ llvm::Constant *Mask = llvm::ConstantVector::get(Args);
+ Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
+ Mask, "vext");
+
+ Args.clear();
+ for (unsigned j = 0; j != CurIdx; ++j)
+ Args.push_back(Builder.getInt32(j));
+ for (unsigned j = 0; j != InitElts; ++j)
+ Args.push_back(Builder.getInt32(j+Offset));
+ Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
+ }
+
+ // If V is undef, make sure it ends up on the RHS of the shuffle to aid
+ // merging subsequent shuffles into this one.
+ if (CurIdx == 0)
+ std::swap(V, Init);
+ llvm::Constant *Mask = llvm::ConstantVector::get(Args);
+ V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
+ VIsUndefShuffle = isa<llvm::UndefValue>(Init);
+ CurIdx += InitElts;
+ }
+
+ // FIXME: evaluate codegen vs. shuffling against constant null vector.
+ // Emit remaining default initializers.
+ llvm::Type *EltTy = VType->getElementType();
+
+ // Emit remaining default initializers
+ for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
+ Value *Idx = Builder.getInt32(CurIdx);
+ llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
+ V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
+ }
+ return V;
+}
+
+static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
+ const Expr *E = CE->getSubExpr();
+
+ if (CE->getCastKind() == CK_UncheckedDerivedToBase)
+ return false;
+
+ if (isa<CXXThisExpr>(E)) {
+ // We always assume that 'this' is never null.
+ return false;
+ }
+
+ if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
+ // And that glvalue casts are never null.
+ if (ICE->getValueKind() != VK_RValue)
+ return false;
+ }
+
+ return true;
+}
+
+// VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
+// have to handle a more broad range of conversions than explicit casts, as they
+// handle things like function to ptr-to-function decay etc.
+Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
+ Expr *E = CE->getSubExpr();
+ QualType DestTy = CE->getType();
+ CastKind Kind = CE->getCastKind();
+
+ if (!DestTy->isVoidType())
+ TestAndClearIgnoreResultAssign();
+
+ // Since almost all cast kinds apply to scalars, this switch doesn't have
+ // a default case, so the compiler will warn on a missing case. The cases
+ // are in the same order as in the CastKind enum.
+ switch (Kind) {
+ case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
+ case CK_BuiltinFnToFnPtr:
+ llvm_unreachable("builtin functions are handled elsewhere");
+
+ case CK_LValueBitCast:
+ case CK_ObjCObjectLValueCast: {
+ Value *V = EmitLValue(E).getAddress();
+ V = Builder.CreateBitCast(V,
+ ConvertType(CGF.getContext().getPointerType(DestTy)));
+ return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy),
+ CE->getExprLoc());
+ }
+
+ case CK_CPointerToObjCPointerCast:
+ case CK_BlockPointerToObjCPointerCast:
+ case CK_AnyPointerToBlockPointerCast:
+ case CK_BitCast: {
+ Value *Src = Visit(const_cast<Expr*>(E));
+ llvm::Type *SrcTy = Src->getType();
+ llvm::Type *DstTy = ConvertType(DestTy);
+ if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
+ SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
+ llvm_unreachable("wrong cast for pointers in different address spaces"
+ "(must be an address space cast)!");
+ }
+
+ if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
+ if (auto PT = DestTy->getAs<PointerType>())
+ CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
+ /*MayBeNull=*/true);
+ }
+
+ return Builder.CreateBitCast(Src, DstTy);
+ }
+ case CK_AddressSpaceConversion: {
+ Value *Src = Visit(const_cast<Expr*>(E));
+ return Builder.CreateAddrSpaceCast(Src, ConvertType(DestTy));
+ }
+ case CK_AtomicToNonAtomic:
+ case CK_NonAtomicToAtomic:
+ case CK_NoOp:
+ case CK_UserDefinedConversion:
+ return Visit(const_cast<Expr*>(E));
+
+ case CK_BaseToDerived: {
+ const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
+ assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
+
+ llvm::Value *V = Visit(E);
+
+ llvm::Value *Derived =
+ CGF.GetAddressOfDerivedClass(V, DerivedClassDecl,
+ CE->path_begin(), CE->path_end(),
+ ShouldNullCheckClassCastValue(CE));
+
+ // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
+ // performed and the object is not of the derived type.
+ if (CGF.sanitizePerformTypeCheck())
+ CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
+ Derived, DestTy->getPointeeType());
+
+ if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
+ CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), Derived,
+ /*MayBeNull=*/true);
+
+ return Derived;
+ }
+ case CK_UncheckedDerivedToBase:
+ case CK_DerivedToBase: {
+ const CXXRecordDecl *DerivedClassDecl =
+ E->getType()->getPointeeCXXRecordDecl();
+ assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!");
+
+ return CGF.GetAddressOfBaseClass(
+ Visit(E), DerivedClassDecl, CE->path_begin(), CE->path_end(),
+ ShouldNullCheckClassCastValue(CE), CE->getExprLoc());
+ }
+ case CK_Dynamic: {
+ Value *V = Visit(const_cast<Expr*>(E));
+ const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
+ return CGF.EmitDynamicCast(V, DCE);
+ }
+
+ case CK_ArrayToPointerDecay: {
+ assert(E->getType()->isArrayType() &&
+ "Array to pointer decay must have array source type!");
+
+ Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays.
+
+ // Note that VLA pointers are always decayed, so we don't need to do
+ // anything here.
+ if (!E->getType()->isVariableArrayType()) {
+ assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
+ llvm::Type *NewTy = ConvertType(E->getType());
+ V = CGF.Builder.CreatePointerCast(
+ V, NewTy->getPointerTo(V->getType()->getPointerAddressSpace()));
+
+ assert(isa<llvm::ArrayType>(V->getType()->getPointerElementType()) &&
+ "Expected pointer to array");
+ V = Builder.CreateStructGEP(NewTy, V, 0, "arraydecay");
+ }
+
+ // Make sure the array decay ends up being the right type. This matters if
+ // the array type was of an incomplete type.
+ return CGF.Builder.CreatePointerCast(V, ConvertType(CE->getType()));
+ }
+ case CK_FunctionToPointerDecay:
+ return EmitLValue(E).getAddress();
+
+ case CK_NullToPointer:
+ if (MustVisitNullValue(E))
+ (void) Visit(E);
+
+ return llvm::ConstantPointerNull::get(
+ cast<llvm::PointerType>(ConvertType(DestTy)));
+
+ case CK_NullToMemberPointer: {
+ if (MustVisitNullValue(E))
+ (void) Visit(E);
+
+ const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
+ return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
+ }
+
+ case CK_ReinterpretMemberPointer:
+ case CK_BaseToDerivedMemberPointer:
+ case CK_DerivedToBaseMemberPointer: {
+ Value *Src = Visit(E);
+
+ // Note that the AST doesn't distinguish between checked and
+ // unchecked member pointer conversions, so we always have to
+ // implement checked conversions here. This is inefficient when
+ // actual control flow may be required in order to perform the
+ // check, which it is for data member pointers (but not member
+ // function pointers on Itanium and ARM).
+ return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
+ }
+
+ case CK_ARCProduceObject:
+ return CGF.EmitARCRetainScalarExpr(E);
+ case CK_ARCConsumeObject:
+ return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
+ case CK_ARCReclaimReturnedObject: {
+ llvm::Value *value = Visit(E);
+ value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
+ return CGF.EmitObjCConsumeObject(E->getType(), value);
+ }
+ case CK_ARCExtendBlockObject:
+ return CGF.EmitARCExtendBlockObject(E);
+
+ case CK_CopyAndAutoreleaseBlockObject:
+ return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
+
+ case CK_FloatingRealToComplex:
+ case CK_FloatingComplexCast:
+ case CK_IntegralRealToComplex:
+ case CK_IntegralComplexCast:
+ case CK_IntegralComplexToFloatingComplex:
+ case CK_FloatingComplexToIntegralComplex:
+ case CK_ConstructorConversion:
+ case CK_ToUnion:
+ llvm_unreachable("scalar cast to non-scalar value");
+
+ case CK_LValueToRValue:
+ assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
+ assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
+ return Visit(const_cast<Expr*>(E));
+
+ case CK_IntegralToPointer: {
+ Value *Src = Visit(const_cast<Expr*>(E));
+
+ // First, convert to the correct width so that we control the kind of
+ // extension.
+ llvm::Type *MiddleTy = CGF.IntPtrTy;
+ bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
+ llvm::Value* IntResult =
+ Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
+
+ return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
+ }
+ case CK_PointerToIntegral:
+ assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
+ return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
+
+ case CK_ToVoid: {
+ CGF.EmitIgnoredExpr(E);
+ return nullptr;
+ }
+ case CK_VectorSplat: {
+ llvm::Type *DstTy = ConvertType(DestTy);
+ Value *Elt = Visit(const_cast<Expr*>(E));
+ Elt = EmitScalarConversion(Elt, E->getType(),
+ DestTy->getAs<VectorType>()->getElementType());
+
+ // Splat the element across to all elements
+ unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
+ return Builder.CreateVectorSplat(NumElements, Elt, "splat");
+ }
+
+ case CK_IntegralCast:
+ case CK_IntegralToFloating:
+ case CK_FloatingToIntegral:
+ case CK_FloatingCast:
+ return EmitScalarConversion(Visit(E), E->getType(), DestTy);
+ case CK_IntegralToBoolean:
+ return EmitIntToBoolConversion(Visit(E));
+ case CK_PointerToBoolean:
+ return EmitPointerToBoolConversion(Visit(E));
+ case CK_FloatingToBoolean:
+ return EmitFloatToBoolConversion(Visit(E));
+ case CK_MemberPointerToBoolean: {
+ llvm::Value *MemPtr = Visit(E);
+ const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
+ return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
+ }
+
+ case CK_FloatingComplexToReal:
+ case CK_IntegralComplexToReal:
+ return CGF.EmitComplexExpr(E, false, true).first;
+
+ case CK_FloatingComplexToBoolean:
+ case CK_IntegralComplexToBoolean: {
+ CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
+
+ // TODO: kill this function off, inline appropriate case here
+ return EmitComplexToScalarConversion(V, E->getType(), DestTy);
+ }
+
+ case CK_ZeroToOCLEvent: {
+ assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
+ return llvm::Constant::getNullValue(ConvertType(DestTy));
+ }
+
+ }
+
+ llvm_unreachable("unknown scalar cast");
+}
+
+Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
+ CodeGenFunction::StmtExprEvaluation eval(CGF);
+ llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
+ !E->getType()->isVoidType());
+ if (!RetAlloca)
+ return nullptr;
+ return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
+ E->getExprLoc());
+}
+
+//===----------------------------------------------------------------------===//
+// Unary Operators
+//===----------------------------------------------------------------------===//
+
+static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
+ llvm::Value *InVal, bool IsInc) {
+ BinOpInfo BinOp;
+ BinOp.LHS = InVal;
+ BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
+ BinOp.Ty = E->getType();
+ BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
+ BinOp.FPContractable = false;
+ BinOp.E = E;
+ return BinOp;
+}
+
+llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
+ const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
+ llvm::Value *Amount =
+ llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
+ StringRef Name = IsInc ? "inc" : "dec";
+ switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
+ case LangOptions::SOB_Defined:
+ return Builder.CreateAdd(InVal, Amount, Name);
+ case LangOptions::SOB_Undefined:
+ if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
+ return Builder.CreateNSWAdd(InVal, Amount, Name);
+ // Fall through.
+ case LangOptions::SOB_Trapping:
+ return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
+ }
+ llvm_unreachable("Unknown SignedOverflowBehaviorTy");
+}
+
+llvm::Value *
+ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
+ bool isInc, bool isPre) {
+
+ QualType type = E->getSubExpr()->getType();
+ llvm::PHINode *atomicPHI = nullptr;
+ llvm::Value *value;
+ llvm::Value *input;
+
+ int amount = (isInc ? 1 : -1);
+
+ if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
+ type = atomicTy->getValueType();
+ if (isInc && type->isBooleanType()) {
+ llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
+ if (isPre) {
+ Builder.Insert(new llvm::StoreInst(True,
+ LV.getAddress(), LV.isVolatileQualified(),
+ LV.getAlignment().getQuantity(),
+ llvm::SequentiallyConsistent));
+ return Builder.getTrue();
+ }
+ // For atomic bool increment, we just store true and return it for
+ // preincrement, do an atomic swap with true for postincrement
+ return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
+ LV.getAddress(), True, llvm::SequentiallyConsistent);
+ }
+ // Special case for atomic increment / decrement on integers, emit
+ // atomicrmw instructions. We skip this if we want to be doing overflow
+ // checking, and fall into the slow path with the atomic cmpxchg loop.
+ if (!type->isBooleanType() && type->isIntegerType() &&
+ !(type->isUnsignedIntegerType() &&
+ CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
+ CGF.getLangOpts().getSignedOverflowBehavior() !=
+ LangOptions::SOB_Trapping) {
+ llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
+ llvm::AtomicRMWInst::Sub;
+ llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
+ llvm::Instruction::Sub;
+ llvm::Value *amt = CGF.EmitToMemory(
+ llvm::ConstantInt::get(ConvertType(type), 1, true), type);
+ llvm::Value *old = Builder.CreateAtomicRMW(aop,
+ LV.getAddress(), amt, llvm::SequentiallyConsistent);
+ return isPre ? Builder.CreateBinOp(op, old, amt) : old;
+ }
+ value = EmitLoadOfLValue(LV, E->getExprLoc());
+ input = value;
+ // For every other atomic operation, we need to emit a load-op-cmpxchg loop
+ llvm::BasicBlock *startBB = Builder.GetInsertBlock();
+ llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
+ value = CGF.EmitToMemory(value, type);
+ Builder.CreateBr(opBB);
+ Builder.SetInsertPoint(opBB);
+ atomicPHI = Builder.CreatePHI(value->getType(), 2);
+ atomicPHI->addIncoming(value, startBB);
+ value = atomicPHI;
+ } else {
+ value = EmitLoadOfLValue(LV, E->getExprLoc());
+ input = value;
+ }
+
+ // Special case of integer increment that we have to check first: bool++.
+ // Due to promotion rules, we get:
+ // bool++ -> bool = bool + 1
+ // -> bool = (int)bool + 1
+ // -> bool = ((int)bool + 1 != 0)
+ // An interesting aspect of this is that increment is always true.
+ // Decrement does not have this property.
+ if (isInc && type->isBooleanType()) {
+ value = Builder.getTrue();
+
+ // Most common case by far: integer increment.
+ } else if (type->isIntegerType()) {
+ // Note that signed integer inc/dec with width less than int can't
+ // overflow because of promotion rules; we're just eliding a few steps here.
+ bool CanOverflow = value->getType()->getIntegerBitWidth() >=
+ CGF.IntTy->getIntegerBitWidth();
+ if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
+ value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
+ } else if (CanOverflow && type->isUnsignedIntegerType() &&
+ CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
+ value =
+ EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
+ } else {
+ llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
+ value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
+ }
+
+ // Next most common: pointer increment.
+ } else if (const PointerType *ptr = type->getAs<PointerType>()) {
+ QualType type = ptr->getPointeeType();
+
+ // VLA types don't have constant size.
+ if (const VariableArrayType *vla
+ = CGF.getContext().getAsVariableArrayType(type)) {
+ llvm::Value *numElts = CGF.getVLASize(vla).first;
+ if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
+ if (CGF.getLangOpts().isSignedOverflowDefined())
+ value = Builder.CreateGEP(value, numElts, "vla.inc");
+ else
+ value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
+
+ // Arithmetic on function pointers (!) is just +-1.
+ } else if (type->isFunctionType()) {
+ llvm::Value *amt = Builder.getInt32(amount);
+
+ value = CGF.EmitCastToVoidPtr(value);
+ if (CGF.getLangOpts().isSignedOverflowDefined())
+ value = Builder.CreateGEP(value, amt, "incdec.funcptr");
+ else
+ value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
+ value = Builder.CreateBitCast(value, input->getType());
+
+ // For everything else, we can just do a simple increment.
+ } else {
+ llvm::Value *amt = Builder.getInt32(amount);
+ if (CGF.getLangOpts().isSignedOverflowDefined())
+ value = Builder.CreateGEP(value, amt, "incdec.ptr");
+ else
+ value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
+ }
+
+ // Vector increment/decrement.
+ } else if (type->isVectorType()) {
+ if (type->hasIntegerRepresentation()) {
+ llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
+
+ value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
+ } else {
+ value = Builder.CreateFAdd(
+ value,
+ llvm::ConstantFP::get(value->getType(), amount),
+ isInc ? "inc" : "dec");
+ }
+
+ // Floating point.
+ } else if (type->isRealFloatingType()) {
+ // Add the inc/dec to the real part.
+ llvm::Value *amt;
+
+ if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
+ // Another special case: half FP increment should be done via float
+ if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
+ value = Builder.CreateCall(
+ CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
+ CGF.CGM.FloatTy),
+ input, "incdec.conv");
+ } else {
+ value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
+ }
+ }
+
+ if (value->getType()->isFloatTy())
+ amt = llvm::ConstantFP::get(VMContext,
+ llvm::APFloat(static_cast<float>(amount)));
+ else if (value->getType()->isDoubleTy())
+ amt = llvm::ConstantFP::get(VMContext,
+ llvm::APFloat(static_cast<double>(amount)));
+ else {
+ // Remaining types are either Half or LongDouble. Convert from float.
+ llvm::APFloat F(static_cast<float>(amount));
+ bool ignored;
+ // Don't use getFloatTypeSemantics because Half isn't
+ // necessarily represented using the "half" LLVM type.
+ F.convert(value->getType()->isHalfTy()
+ ? CGF.getTarget().getHalfFormat()
+ : CGF.getTarget().getLongDoubleFormat(),
+ llvm::APFloat::rmTowardZero, &ignored);
+ amt = llvm::ConstantFP::get(VMContext, F);
+ }
+ value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
+
+ if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
+ if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
+ value = Builder.CreateCall(
+ CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
+ CGF.CGM.FloatTy),
+ value, "incdec.conv");
+ } else {
+ value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
+ }
+ }
+
+ // Objective-C pointer types.
+ } else {
+ const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
+ value = CGF.EmitCastToVoidPtr(value);
+
+ CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
+ if (!isInc) size = -size;
+ llvm::Value *sizeValue =
+ llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
+
+ if (CGF.getLangOpts().isSignedOverflowDefined())
+ value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
+ else
+ value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
+ value = Builder.CreateBitCast(value, input->getType());
+ }
+
+ if (atomicPHI) {
+ llvm::BasicBlock *opBB = Builder.GetInsertBlock();
+ llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
+ auto Pair = CGF.EmitAtomicCompareExchange(
+ LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
+ llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
+ llvm::Value *success = Pair.second;
+ atomicPHI->addIncoming(old, opBB);
+ Builder.CreateCondBr(success, contBB, opBB);
+ Builder.SetInsertPoint(contBB);
+ return isPre ? value : input;
+ }
+
+ // Store the updated result through the lvalue.
+ if (LV.isBitField())
+ CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
+ else
+ CGF.EmitStoreThroughLValue(RValue::get(value), LV);
+
+ // If this is a postinc, return the value read from memory, otherwise use the
+ // updated value.
+ return isPre ? value : input;
+}
+
+
+
+Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
+ TestAndClearIgnoreResultAssign();
+ // Emit unary minus with EmitSub so we handle overflow cases etc.
+ BinOpInfo BinOp;
+ BinOp.RHS = Visit(E->getSubExpr());
+
+ if (BinOp.RHS->getType()->isFPOrFPVectorTy())
+ BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
+ else
+ BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
+ BinOp.Ty = E->getType();
+ BinOp.Opcode = BO_Sub;
+ BinOp.FPContractable = false;
+ BinOp.E = E;
+ return EmitSub(BinOp);
+}
+
+Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
+ TestAndClearIgnoreResultAssign();
+ Value *Op = Visit(E->getSubExpr());
+ return Builder.CreateNot(Op, "neg");
+}
+
+Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
+ // Perform vector logical not on comparison with zero vector.
+ if (E->getType()->isExtVectorType()) {
+ Value *Oper = Visit(E->getSubExpr());
+ Value *Zero = llvm::Constant::getNullValue(Oper->getType());
+ Value *Result;
+ if (Oper->getType()->isFPOrFPVectorTy())
+ Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
+ else
+ Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
+ return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
+ }
+
+ // Compare operand to zero.
+ Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
+
+ // Invert value.
+ // TODO: Could dynamically modify easy computations here. For example, if
+ // the operand is an icmp ne, turn into icmp eq.
+ BoolVal = Builder.CreateNot(BoolVal, "lnot");
+
+ // ZExt result to the expr type.
+ return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
+}
+
+Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
+ // Try folding the offsetof to a constant.
+ llvm::APSInt Value;
+ if (E->EvaluateAsInt(Value, CGF.getContext()))
+ return Builder.getInt(Value);
+
+ // Loop over the components of the offsetof to compute the value.
+ unsigned n = E->getNumComponents();
+ llvm::Type* ResultType = ConvertType(E->getType());
+ llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
+ QualType CurrentType = E->getTypeSourceInfo()->getType();
+ for (unsigned i = 0; i != n; ++i) {
+ OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
+ llvm::Value *Offset = nullptr;
+ switch (ON.getKind()) {
+ case OffsetOfExpr::OffsetOfNode::Array: {
+ // Compute the index
+ Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
+ llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
+ bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
+ Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
+
+ // Save the element type
+ CurrentType =
+ CGF.getContext().getAsArrayType(CurrentType)->getElementType();
+
+ // Compute the element size
+ llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
+ CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
+
+ // Multiply out to compute the result
+ Offset = Builder.CreateMul(Idx, ElemSize);
+ break;
+ }
+
+ case OffsetOfExpr::OffsetOfNode::Field: {
+ FieldDecl *MemberDecl = ON.getField();
+ RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
+ const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
+
+ // Compute the index of the field in its parent.
+ unsigned i = 0;
+ // FIXME: It would be nice if we didn't have to loop here!
+ for (RecordDecl::field_iterator Field = RD->field_begin(),
+ FieldEnd = RD->field_end();
+ Field != FieldEnd; ++Field, ++i) {
+ if (*Field == MemberDecl)
+ break;
+ }
+ assert(i < RL.getFieldCount() && "offsetof field in wrong type");
+
+ // Compute the offset to the field
+ int64_t OffsetInt = RL.getFieldOffset(i) /
+ CGF.getContext().getCharWidth();
+ Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
+
+ // Save the element type.
+ CurrentType = MemberDecl->getType();
+ break;
+ }
+
+ case OffsetOfExpr::OffsetOfNode::Identifier:
+ llvm_unreachable("dependent __builtin_offsetof");
+
+ case OffsetOfExpr::OffsetOfNode::Base: {
+ if (ON.getBase()->isVirtual()) {
+ CGF.ErrorUnsupported(E, "virtual base in offsetof");
+ continue;
+ }
+
+ RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
+ const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
+
+ // Save the element type.
+ CurrentType = ON.getBase()->getType();
+
+ // Compute the offset to the base.
+ const RecordType *BaseRT = CurrentType->getAs<RecordType>();
+ CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
+ CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
+ Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
+ break;
+ }
+ }
+ Result = Builder.CreateAdd(Result, Offset);
+ }
+ return Result;
+}
+
+/// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
+/// argument of the sizeof expression as an integer.
+Value *
+ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
+ const UnaryExprOrTypeTraitExpr *E) {
+ QualType TypeToSize = E->getTypeOfArgument();
+ if (E->getKind() == UETT_SizeOf) {
+ if (const VariableArrayType *VAT =
+ CGF.getContext().getAsVariableArrayType(TypeToSize)) {
+ if (E->isArgumentType()) {
+ // sizeof(type) - make sure to emit the VLA size.
+ CGF.EmitVariablyModifiedType(TypeToSize);
+ } else {
+ // C99 6.5.3.4p2: If the argument is an expression of type
+ // VLA, it is evaluated.
+ CGF.EmitIgnoredExpr(E->getArgumentExpr());
+ }
+
+ QualType eltType;
+ llvm::Value *numElts;
+ std::tie(numElts, eltType) = CGF.getVLASize(VAT);
+
+ llvm::Value *size = numElts;
+
+ // Scale the number of non-VLA elements by the non-VLA element size.
+ CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
+ if (!eltSize.isOne())
+ size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
+
+ return size;
+ }
+ }
+
+ // If this isn't sizeof(vla), the result must be constant; use the constant
+ // folding logic so we don't have to duplicate it here.
+ return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
+}
+
+Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
+ Expr *Op = E->getSubExpr();
+ if (Op->getType()->isAnyComplexType()) {
+ // If it's an l-value, load through the appropriate subobject l-value.
+ // Note that we have to ask E because Op might be an l-value that
+ // this won't work for, e.g. an Obj-C property.
+ if (E->isGLValue())
+ return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
+ E->getExprLoc()).getScalarVal();
+
+ // Otherwise, calculate and project.
+ return CGF.EmitComplexExpr(Op, false, true).first;
+ }
+
+ return Visit(Op);
+}
+
+Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
+ Expr *Op = E->getSubExpr();
+ if (Op->getType()->isAnyComplexType()) {
+ // If it's an l-value, load through the appropriate subobject l-value.
+ // Note that we have to ask E because Op might be an l-value that
+ // this won't work for, e.g. an Obj-C property.
+ if (Op->isGLValue())
+ return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
+ E->getExprLoc()).getScalarVal();
+
+ // Otherwise, calculate and project.
+ return CGF.EmitComplexExpr(Op, true, false).second;
+ }
+
+ // __imag on a scalar returns zero. Emit the subexpr to ensure side
+ // effects are evaluated, but not the actual value.
+ if (Op->isGLValue())
+ CGF.EmitLValue(Op);
+ else
+ CGF.EmitScalarExpr(Op, true);
+ return llvm::Constant::getNullValue(ConvertType(E->getType()));
+}
+
+//===----------------------------------------------------------------------===//
+// Binary Operators
+//===----------------------------------------------------------------------===//
+
+BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
+ TestAndClearIgnoreResultAssign();
+ BinOpInfo Result;
+ Result.LHS = Visit(E->getLHS());
+ Result.RHS = Visit(E->getRHS());
+ Result.Ty = E->getType();
+ Result.Opcode = E->getOpcode();
+ Result.FPContractable = E->isFPContractable();
+ Result.E = E;
+ return Result;
+}
+
+LValue ScalarExprEmitter::EmitCompoundAssignLValue(
+ const CompoundAssignOperator *E,
+ Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
+ Value *&Result) {
+ QualType LHSTy = E->getLHS()->getType();
+ BinOpInfo OpInfo;
+
+ if (E->getComputationResultType()->isAnyComplexType())
+ return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
+
+ // Emit the RHS first. __block variables need to have the rhs evaluated
+ // first, plus this should improve codegen a little.
+ OpInfo.RHS = Visit(E->getRHS());
+ OpInfo.Ty = E->getComputationResultType();
+ OpInfo.Opcode = E->getOpcode();
+ OpInfo.FPContractable = false;
+ OpInfo.E = E;
+ // Load/convert the LHS.
+ LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
+
+ llvm::PHINode *atomicPHI = nullptr;
+ if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
+ QualType type = atomicTy->getValueType();
+ if (!type->isBooleanType() && type->isIntegerType() &&
+ !(type->isUnsignedIntegerType() &&
+ CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
+ CGF.getLangOpts().getSignedOverflowBehavior() !=
+ LangOptions::SOB_Trapping) {
+ llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
+ switch (OpInfo.Opcode) {
+ // We don't have atomicrmw operands for *, %, /, <<, >>
+ case BO_MulAssign: case BO_DivAssign:
+ case BO_RemAssign:
+ case BO_ShlAssign:
+ case BO_ShrAssign:
+ break;
+ case BO_AddAssign:
+ aop = llvm::AtomicRMWInst::Add;
+ break;
+ case BO_SubAssign:
+ aop = llvm::AtomicRMWInst::Sub;
+ break;
+ case BO_AndAssign:
+ aop = llvm::AtomicRMWInst::And;
+ break;
+ case BO_XorAssign:
+ aop = llvm::AtomicRMWInst::Xor;
+ break;
+ case BO_OrAssign:
+ aop = llvm::AtomicRMWInst::Or;
+ break;
+ default:
+ llvm_unreachable("Invalid compound assignment type");
+ }
+ if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
+ llvm::Value *amt = CGF.EmitToMemory(EmitScalarConversion(OpInfo.RHS,
+ E->getRHS()->getType(), LHSTy), LHSTy);
+ Builder.CreateAtomicRMW(aop, LHSLV.getAddress(), amt,
+ llvm::SequentiallyConsistent);
+ return LHSLV;
+ }
+ }
+ // FIXME: For floating point types, we should be saving and restoring the
+ // floating point environment in the loop.
+ llvm::BasicBlock *startBB = Builder.GetInsertBlock();
+ llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
+ OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
+ OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
+ Builder.CreateBr(opBB);
+ Builder.SetInsertPoint(opBB);
+ atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
+ atomicPHI->addIncoming(OpInfo.LHS, startBB);
+ OpInfo.LHS = atomicPHI;
+ }
+ else
+ OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
+
+ OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
+ E->getComputationLHSType());
+
+ // Expand the binary operator.
+ Result = (this->*Func)(OpInfo);
+
+ // Convert the result back to the LHS type.
+ Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
+
+ if (atomicPHI) {
+ llvm::BasicBlock *opBB = Builder.GetInsertBlock();
+ llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
+ auto Pair = CGF.EmitAtomicCompareExchange(
+ LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
+ llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
+ llvm::Value *success = Pair.second;
+ atomicPHI->addIncoming(old, opBB);
+ Builder.CreateCondBr(success, contBB, opBB);
+ Builder.SetInsertPoint(contBB);
+ return LHSLV;
+ }
+
+ // Store the result value into the LHS lvalue. Bit-fields are handled
+ // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
+ // 'An assignment expression has the value of the left operand after the
+ // assignment...'.
+ if (LHSLV.isBitField())
+ CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
+ else
+ CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
+
+ return LHSLV;
+}
+
+Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
+ Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
+ bool Ignore = TestAndClearIgnoreResultAssign();
+ Value *RHS;
+ LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
+
+ // If the result is clearly ignored, return now.
+ if (Ignore)
+ return nullptr;
+
+ // The result of an assignment in C is the assigned r-value.
+ if (!CGF.getLangOpts().CPlusPlus)
+ return RHS;
+
+ // If the lvalue is non-volatile, return the computed value of the assignment.
+ if (!LHS.isVolatileQualified())
+ return RHS;
+
+ // Otherwise, reload the value.
+ return EmitLoadOfLValue(LHS, E->getExprLoc());
+}
+
+void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
+ const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
+ SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
+
+ if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
+ Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
+ SanitizerKind::IntegerDivideByZero));
+ }
+
+ if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
+ Ops.Ty->hasSignedIntegerRepresentation()) {
+ llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
+
+ llvm::Value *IntMin =
+ Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
+ llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
+
+ llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
+ llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
+ llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
+ Checks.push_back(
+ std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
+ }
+
+ if (Checks.size() > 0)
+ EmitBinOpCheck(Checks, Ops);
+}
+
+Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
+ {
+ CodeGenFunction::SanitizerScope SanScope(&CGF);
+ if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
+ CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
+ Ops.Ty->isIntegerType()) {
+ llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
+ EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
+ } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
+ Ops.Ty->isRealFloatingType()) {
+ llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
+ llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
+ EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
+ Ops);
+ }
+ }
+
+ if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
+ llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
+ if (CGF.getLangOpts().OpenCL) {
+ // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
+ llvm::Type *ValTy = Val->getType();
+ if (ValTy->isFloatTy() ||
+ (isa<llvm::VectorType>(ValTy) &&
+ cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
+ CGF.SetFPAccuracy(Val, 2.5);
+ }
+ return Val;
+ }
+ else if (Ops.Ty->hasUnsignedIntegerRepresentation())
+ return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
+ else
+ return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
+}
+
+Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
+ // Rem in C can't be a floating point type: C99 6.5.5p2.
+ if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
+ CodeGenFunction::SanitizerScope SanScope(&CGF);
+ llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
+
+ if (Ops.Ty->isIntegerType())
+ EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
+ }
+
+ if (Ops.Ty->hasUnsignedIntegerRepresentation())
+ return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
+ else
+ return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
+}
+
+Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
+ unsigned IID;
+ unsigned OpID = 0;
+
+ bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
+ switch (Ops.Opcode) {
+ case BO_Add:
+ case BO_AddAssign:
+ OpID = 1;
+ IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
+ llvm::Intrinsic::uadd_with_overflow;
+ break;
+ case BO_Sub:
+ case BO_SubAssign:
+ OpID = 2;
+ IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
+ llvm::Intrinsic::usub_with_overflow;
+ break;
+ case BO_Mul:
+ case BO_MulAssign:
+ OpID = 3;
+ IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
+ llvm::Intrinsic::umul_with_overflow;
+ break;
+ default:
+ llvm_unreachable("Unsupported operation for overflow detection");
+ }
+ OpID <<= 1;
+ if (isSigned)
+ OpID |= 1;
+
+ llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
+
+ llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
+
+ Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
+ Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
+ Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
+
+ // Handle overflow with llvm.trap if no custom handler has been specified.
+ const std::string *handlerName =
+ &CGF.getLangOpts().OverflowHandler;
+ if (handlerName->empty()) {
+ // If the signed-integer-overflow sanitizer is enabled, emit a call to its
+ // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
+ if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
+ CodeGenFunction::SanitizerScope SanScope(&CGF);
+ llvm::Value *NotOverflow = Builder.CreateNot(overflow);
+ SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
+ : SanitizerKind::UnsignedIntegerOverflow;
+ EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
+ } else
+ CGF.EmitTrapCheck(Builder.CreateNot(overflow));
+ return result;
+ }
+
+ // Branch in case of overflow.
+ llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
+ llvm::Function::iterator insertPt = initialBB;
+ llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
+ std::next(insertPt));
+ llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
+
+ Builder.CreateCondBr(overflow, overflowBB, continueBB);
+
+ // If an overflow handler is set, then we want to call it and then use its
+ // result, if it returns.
+ Builder.SetInsertPoint(overflowBB);
+
+ // Get the overflow handler.
+ llvm::Type *Int8Ty = CGF.Int8Ty;
+ llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
+ llvm::FunctionType *handlerTy =
+ llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
+ llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
+
+ // Sign extend the args to 64-bit, so that we can use the same handler for
+ // all types of overflow.
+ llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
+ llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
+
+ // Call the handler with the two arguments, the operation, and the size of
+ // the result.
+ llvm::Value *handlerArgs[] = {
+ lhs,
+ rhs,
+ Builder.getInt8(OpID),
+ Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
+ };
+ llvm::Value *handlerResult =
+ CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
+
+ // Truncate the result back to the desired size.
+ handlerResult = Builder.CreateTrunc(handlerResult, opTy);
+ Builder.CreateBr(continueBB);
+
+ Builder.SetInsertPoint(continueBB);
+ llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
+ phi->addIncoming(result, initialBB);
+ phi->addIncoming(handlerResult, overflowBB);
+
+ return phi;
+}
+
+/// Emit pointer + index arithmetic.
+static Value *emitPointerArithmetic(CodeGenFunction &CGF,
+ const BinOpInfo &op,
+ bool isSubtraction) {
+ // Must have binary (not unary) expr here. Unary pointer
+ // increment/decrement doesn't use this path.
+ const BinaryOperator *expr = cast<BinaryOperator>(op.E);
+
+ Value *pointer = op.LHS;
+ Expr *pointerOperand = expr->getLHS();
+ Value *index = op.RHS;
+ Expr *indexOperand = expr->getRHS();
+
+ // In a subtraction, the LHS is always the pointer.
+ if (!isSubtraction && !pointer->getType()->isPointerTy()) {
+ std::swap(pointer, index);
+ std::swap(pointerOperand, indexOperand);
+ }
+
+ unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
+ if (width != CGF.PointerWidthInBits) {
+ // Zero-extend or sign-extend the pointer value according to
+ // whether the index is signed or not.
+ bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
+ index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
+ "idx.ext");
+ }
+
+ // If this is subtraction, negate the index.
+ if (isSubtraction)
+ index = CGF.Builder.CreateNeg(index, "idx.neg");
+
+ if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
+ CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
+ /*Accessed*/ false);
+
+ const PointerType *pointerType
+ = pointerOperand->getType()->getAs<PointerType>();
+ if (!pointerType) {
+ QualType objectType = pointerOperand->getType()
+ ->castAs<ObjCObjectPointerType>()
+ ->getPointeeType();
+ llvm::Value *objectSize
+ = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
+
+ index = CGF.Builder.CreateMul(index, objectSize);
+
+ Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
+ result = CGF.Builder.CreateGEP(result, index, "add.ptr");
+ return CGF.Builder.CreateBitCast(result, pointer->getType());
+ }
+
+ QualType elementType = pointerType->getPointeeType();
+ if (const VariableArrayType *vla
+ = CGF.getContext().getAsVariableArrayType(elementType)) {
+ // The element count here is the total number of non-VLA elements.
+ llvm::Value *numElements = CGF.getVLASize(vla).first;
+
+ // Effectively, the multiply by the VLA size is part of the GEP.
+ // GEP indexes are signed, and scaling an index isn't permitted to
+ // signed-overflow, so we use the same semantics for our explicit
+ // multiply. We suppress this if overflow is not undefined behavior.
+ if (CGF.getLangOpts().isSignedOverflowDefined()) {
+ index = CGF.Builder.CreateMul(index, numElements, "vla.index");
+ pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
+ } else {
+ index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
+ pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
+ }
+ return pointer;
+ }
+
+ // Explicitly handle GNU void* and function pointer arithmetic extensions. The
+ // GNU void* casts amount to no-ops since our void* type is i8*, but this is
+ // future proof.
+ if (elementType->isVoidType() || elementType->isFunctionType()) {
+ Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
+ result = CGF.Builder.CreateGEP(result, index, "add.ptr");
+ return CGF.Builder.CreateBitCast(result, pointer->getType());
+ }
+
+ if (CGF.getLangOpts().isSignedOverflowDefined())
+ return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
+
+ return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
+}
+
+// Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
+// Addend. Use negMul and negAdd to negate the first operand of the Mul or
+// the add operand respectively. This allows fmuladd to represent a*b-c, or
+// c-a*b. Patterns in LLVM should catch the negated forms and translate them to
+// efficient operations.
+static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
+ const CodeGenFunction &CGF, CGBuilderTy &Builder,
+ bool negMul, bool negAdd) {
+ assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
+
+ Value *MulOp0 = MulOp->getOperand(0);
+ Value *MulOp1 = MulOp->getOperand(1);
+ if (negMul) {
+ MulOp0 =
+ Builder.CreateFSub(
+ llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
+ "neg");
+ } else if (negAdd) {
+ Addend =
+ Builder.CreateFSub(
+ llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
+ "neg");
+ }
+
+ Value *FMulAdd = Builder.CreateCall(
+ CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
+ {MulOp0, MulOp1, Addend});
+ MulOp->eraseFromParent();
+
+ return FMulAdd;
+}
+
+// Check whether it would be legal to emit an fmuladd intrinsic call to
+// represent op and if so, build the fmuladd.
+//
+// Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
+// Does NOT check the type of the operation - it's assumed that this function
+// will be called from contexts where it's known that the type is contractable.
+static Value* tryEmitFMulAdd(const BinOpInfo &op,
+ const CodeGenFunction &CGF, CGBuilderTy &Builder,
+ bool isSub=false) {
+
+ assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
+ op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
+ "Only fadd/fsub can be the root of an fmuladd.");
+
+ // Check whether this op is marked as fusable.
+ if (!op.FPContractable)
+ return nullptr;
+
+ // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
+ // either disabled, or handled entirely by the LLVM backend).
+ if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
+ return nullptr;
+
+ // We have a potentially fusable op. Look for a mul on one of the operands.
+ if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
+ if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) {
+ assert(LHSBinOp->getNumUses() == 0 &&
+ "Operations with multiple uses shouldn't be contracted.");
+ return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
+ }
+ } else if (llvm::BinaryOperator* RHSBinOp =
+ dyn_cast<llvm::BinaryOperator>(op.RHS)) {
+ if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) {
+ assert(RHSBinOp->getNumUses() == 0 &&
+ "Operations with multiple uses shouldn't be contracted.");
+ return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
+ }
+ }
+
+ return nullptr;
+}
+
+Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
+ if (op.LHS->getType()->isPointerTy() ||
+ op.RHS->getType()->isPointerTy())
+ return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
+
+ if (op.Ty->isSignedIntegerOrEnumerationType()) {
+ switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
+ case LangOptions::SOB_Defined:
+ return Builder.CreateAdd(op.LHS, op.RHS, "add");
+ case LangOptions::SOB_Undefined:
+ if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
+ return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
+ // Fall through.
+ case LangOptions::SOB_Trapping:
+ return EmitOverflowCheckedBinOp(op);
+ }
+ }
+
+ if (op.Ty->isUnsignedIntegerType() &&
+ CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
+ return EmitOverflowCheckedBinOp(op);
+
+ if (op.LHS->getType()->isFPOrFPVectorTy()) {
+ // Try to form an fmuladd.
+ if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
+ return FMulAdd;
+
+ return Builder.CreateFAdd(op.LHS, op.RHS, "add");
+ }
+
+ return Builder.CreateAdd(op.LHS, op.RHS, "add");
+}
+
+Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
+ // The LHS is always a pointer if either side is.
+ if (!op.LHS->getType()->isPointerTy()) {
+ if (op.Ty->isSignedIntegerOrEnumerationType()) {
+ switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
+ case LangOptions::SOB_Defined:
+ return Builder.CreateSub(op.LHS, op.RHS, "sub");
+ case LangOptions::SOB_Undefined:
+ if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
+ return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
+ // Fall through.
+ case LangOptions::SOB_Trapping:
+ return EmitOverflowCheckedBinOp(op);
+ }
+ }
+
+ if (op.Ty->isUnsignedIntegerType() &&
+ CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
+ return EmitOverflowCheckedBinOp(op);
+
+ if (op.LHS->getType()->isFPOrFPVectorTy()) {
+ // Try to form an fmuladd.
+ if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
+ return FMulAdd;
+ return Builder.CreateFSub(op.LHS, op.RHS, "sub");
+ }
+
+ return Builder.CreateSub(op.LHS, op.RHS, "sub");
+ }
+
+ // If the RHS is not a pointer, then we have normal pointer
+ // arithmetic.
+ if (!op.RHS->getType()->isPointerTy())
+ return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
+
+ // Otherwise, this is a pointer subtraction.
+
+ // Do the raw subtraction part.
+ llvm::Value *LHS
+ = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
+ llvm::Value *RHS
+ = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
+ Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
+
+ // Okay, figure out the element size.
+ const BinaryOperator *expr = cast<BinaryOperator>(op.E);
+ QualType elementType = expr->getLHS()->getType()->getPointeeType();
+
+ llvm::Value *divisor = nullptr;
+
+ // For a variable-length array, this is going to be non-constant.
+ if (const VariableArrayType *vla
+ = CGF.getContext().getAsVariableArrayType(elementType)) {
+ llvm::Value *numElements;
+ std::tie(numElements, elementType) = CGF.getVLASize(vla);
+
+ divisor = numElements;
+
+ // Scale the number of non-VLA elements by the non-VLA element size.
+ CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
+ if (!eltSize.isOne())
+ divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
+
+ // For everything elese, we can just compute it, safe in the
+ // assumption that Sema won't let anything through that we can't
+ // safely compute the size of.
+ } else {
+ CharUnits elementSize;
+ // Handle GCC extension for pointer arithmetic on void* and
+ // function pointer types.
+ if (elementType->isVoidType() || elementType->isFunctionType())
+ elementSize = CharUnits::One();
+ else
+ elementSize = CGF.getContext().getTypeSizeInChars(elementType);
+
+ // Don't even emit the divide for element size of 1.
+ if (elementSize.isOne())
+ return diffInChars;
+
+ divisor = CGF.CGM.getSize(elementSize);
+ }
+
+ // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
+ // pointer difference in C is only defined in the case where both operands
+ // are pointing to elements of an array.
+ return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
+}
+
+Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
+ llvm::IntegerType *Ty;
+ if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
+ Ty = cast<llvm::IntegerType>(VT->getElementType());
+ else
+ Ty = cast<llvm::IntegerType>(LHS->getType());
+ return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
+}
+
+Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
+ // LLVM requires the LHS and RHS to be the same type: promote or truncate the
+ // RHS to the same size as the LHS.
+ Value *RHS = Ops.RHS;
+ if (Ops.LHS->getType() != RHS->getType())
+ RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
+
+ bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
+ Ops.Ty->hasSignedIntegerRepresentation();
+ bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
+ // OpenCL 6.3j: shift values are effectively % word size of LHS.
+ if (CGF.getLangOpts().OpenCL)
+ RHS =
+ Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
+ else if ((SanitizeBase || SanitizeExponent) &&
+ isa<llvm::IntegerType>(Ops.LHS->getType())) {
+ CodeGenFunction::SanitizerScope SanScope(&CGF);
+ SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
+ llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
+ llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne);
+
+ if (SanitizeExponent) {
+ Checks.push_back(
+ std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
+ }
+
+ if (SanitizeBase) {
+ // Check whether we are shifting any non-zero bits off the top of the
+ // integer. We only emit this check if exponent is valid - otherwise
+ // instructions below will have undefined behavior themselves.
+ llvm::BasicBlock *Orig = Builder.GetInsertBlock();
+ llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
+ llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
+ Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
+ CGF.EmitBlock(CheckShiftBase);
+ llvm::Value *BitsShiftedOff =
+ Builder.CreateLShr(Ops.LHS,
+ Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
+ /*NUW*/true, /*NSW*/true),
+ "shl.check");
+ if (CGF.getLangOpts().CPlusPlus) {
+ // In C99, we are not permitted to shift a 1 bit into the sign bit.
+ // Under C++11's rules, shifting a 1 bit into the sign bit is
+ // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
+ // define signed left shifts, so we use the C99 and C++11 rules there).
+ llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
+ BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
+ }
+ llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
+ llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
+ CGF.EmitBlock(Cont);
+ llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
+ BaseCheck->addIncoming(Builder.getTrue(), Orig);
+ BaseCheck->addIncoming(ValidBase, CheckShiftBase);
+ Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
+ }
+
+ assert(!Checks.empty());
+ EmitBinOpCheck(Checks, Ops);
+ }
+
+ return Builder.CreateShl(Ops.LHS, RHS, "shl");
+}
+
+Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
+ // LLVM requires the LHS and RHS to be the same type: promote or truncate the
+ // RHS to the same size as the LHS.
+ Value *RHS = Ops.RHS;
+ if (Ops.LHS->getType() != RHS->getType())
+ RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
+
+ // OpenCL 6.3j: shift values are effectively % word size of LHS.
+ if (CGF.getLangOpts().OpenCL)
+ RHS =
+ Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
+ else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
+ isa<llvm::IntegerType>(Ops.LHS->getType())) {
+ CodeGenFunction::SanitizerScope SanScope(&CGF);
+ llvm::Value *Valid =
+ Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
+ EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
+ }
+
+ if (Ops.Ty->hasUnsignedIntegerRepresentation())
+ return Builder.CreateLShr(Ops.LHS, RHS, "shr");
+ return Builder.CreateAShr(Ops.LHS, RHS, "shr");
+}
+
+enum IntrinsicType { VCMPEQ, VCMPGT };
+// return corresponding comparison intrinsic for given vector type
+static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
+ BuiltinType::Kind ElemKind) {
+ switch (ElemKind) {
+ default: llvm_unreachable("unexpected element type");
+ case BuiltinType::Char_U:
+ case BuiltinType::UChar:
+ return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
+ llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
+ case BuiltinType::Char_S:
+ case BuiltinType::SChar:
+ return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
+ llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
+ case BuiltinType::UShort:
+ return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
+ llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
+ case BuiltinType::Short:
+ return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
+ llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
+ case BuiltinType::UInt:
+ case BuiltinType::ULong:
+ return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
+ llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
+ case BuiltinType::Int:
+ case BuiltinType::Long:
+ return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
+ llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
+ case BuiltinType::Float:
+ return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
+ llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
+ }
+}
+
+Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
+ unsigned SICmpOpc, unsigned FCmpOpc) {
+ TestAndClearIgnoreResultAssign();
+ Value *Result;
+ QualType LHSTy = E->getLHS()->getType();
+ QualType RHSTy = E->getRHS()->getType();
+ if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
+ assert(E->getOpcode() == BO_EQ ||
+ E->getOpcode() == BO_NE);
+ Value *LHS = CGF.EmitScalarExpr(E->getLHS());
+ Value *RHS = CGF.EmitScalarExpr(E->getRHS());
+ Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
+ CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
+ } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
+ Value *LHS = Visit(E->getLHS());
+ Value *RHS = Visit(E->getRHS());
+
+ // If AltiVec, the comparison results in a numeric type, so we use
+ // intrinsics comparing vectors and giving 0 or 1 as a result
+ if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
+ // constants for mapping CR6 register bits to predicate result
+ enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
+
+ llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
+
+ // in several cases vector arguments order will be reversed
+ Value *FirstVecArg = LHS,
+ *SecondVecArg = RHS;
+
+ QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
+ const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
+ BuiltinType::Kind ElementKind = BTy->getKind();
+
+ switch(E->getOpcode()) {
+ default: llvm_unreachable("is not a comparison operation");
+ case BO_EQ:
+ CR6 = CR6_LT;
+ ID = GetIntrinsic(VCMPEQ, ElementKind);
+ break;
+ case BO_NE:
+ CR6 = CR6_EQ;
+ ID = GetIntrinsic(VCMPEQ, ElementKind);
+ break;
+ case BO_LT:
+ CR6 = CR6_LT;
+ ID = GetIntrinsic(VCMPGT, ElementKind);
+ std::swap(FirstVecArg, SecondVecArg);
+ break;
+ case BO_GT:
+ CR6 = CR6_LT;
+ ID = GetIntrinsic(VCMPGT, ElementKind);
+ break;
+ case BO_LE:
+ if (ElementKind == BuiltinType::Float) {
+ CR6 = CR6_LT;
+ ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
+ std::swap(FirstVecArg, SecondVecArg);
+ }
+ else {
+ CR6 = CR6_EQ;
+ ID = GetIntrinsic(VCMPGT, ElementKind);
+ }
+ break;
+ case BO_GE:
+ if (ElementKind == BuiltinType::Float) {
+ CR6 = CR6_LT;
+ ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
+ }
+ else {
+ CR6 = CR6_EQ;
+ ID = GetIntrinsic(VCMPGT, ElementKind);
+ std::swap(FirstVecArg, SecondVecArg);
+ }
+ break;
+ }
+
+ Value *CR6Param = Builder.getInt32(CR6);
+ llvm::Function *F = CGF.CGM.getIntrinsic(ID);
+ Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
+ return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
+ }
+
+ if (LHS->getType()->isFPOrFPVectorTy()) {
+ Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
+ LHS, RHS, "cmp");
+ } else if (LHSTy->hasSignedIntegerRepresentation()) {
+ Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
+ LHS, RHS, "cmp");
+ } else {
+ // Unsigned integers and pointers.
+ Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
+ LHS, RHS, "cmp");
+ }
+
+ // If this is a vector comparison, sign extend the result to the appropriate
+ // vector integer type and return it (don't convert to bool).
+ if (LHSTy->isVectorType())
+ return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
+
+ } else {
+ // Complex Comparison: can only be an equality comparison.
+ CodeGenFunction::ComplexPairTy LHS, RHS;
+ QualType CETy;
+ if (auto *CTy = LHSTy->getAs<ComplexType>()) {
+ LHS = CGF.EmitComplexExpr(E->getLHS());
+ CETy = CTy->getElementType();
+ } else {
+ LHS.first = Visit(E->getLHS());
+ LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
+ CETy = LHSTy;
+ }
+ if (auto *CTy = RHSTy->getAs<ComplexType>()) {
+ RHS = CGF.EmitComplexExpr(E->getRHS());
+ assert(CGF.getContext().hasSameUnqualifiedType(CETy,
+ CTy->getElementType()) &&
+ "The element types must always match.");
+ (void)CTy;
+ } else {
+ RHS.first = Visit(E->getRHS());
+ RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
+ assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
+ "The element types must always match.");
+ }
+
+ Value *ResultR, *ResultI;
+ if (CETy->isRealFloatingType()) {
+ ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
+ LHS.first, RHS.first, "cmp.r");
+ ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
+ LHS.second, RHS.second, "cmp.i");
+ } else {
+ // Complex comparisons can only be equality comparisons. As such, signed
+ // and unsigned opcodes are the same.
+ ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
+ LHS.first, RHS.first, "cmp.r");
+ ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
+ LHS.second, RHS.second, "cmp.i");
+ }
+
+ if (E->getOpcode() == BO_EQ) {
+ Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
+ } else {
+ assert(E->getOpcode() == BO_NE &&
+ "Complex comparison other than == or != ?");
+ Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
+ }
+ }
+
+ return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
+}
+
+Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
+ bool Ignore = TestAndClearIgnoreResultAssign();
+
+ Value *RHS;
+ LValue LHS;
+
+ switch (E->getLHS()->getType().getObjCLifetime()) {
+ case Qualifiers::OCL_Strong:
+ std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
+ break;
+
+ case Qualifiers::OCL_Autoreleasing:
+ std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
+ break;
+
+ case Qualifiers::OCL_Weak:
+ RHS = Visit(E->getRHS());
+ LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
+ RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
+ break;
+
+ // No reason to do any of these differently.
+ case Qualifiers::OCL_None:
+ case Qualifiers::OCL_ExplicitNone:
+ // __block variables need to have the rhs evaluated first, plus
+ // this should improve codegen just a little.
+ RHS = Visit(E->getRHS());
+ LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
+
+ // Store the value into the LHS. Bit-fields are handled specially
+ // because the result is altered by the store, i.e., [C99 6.5.16p1]
+ // 'An assignment expression has the value of the left operand after
+ // the assignment...'.
+ if (LHS.isBitField())
+ CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
+ else
+ CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
+ }
+
+ // If the result is clearly ignored, return now.
+ if (Ignore)
+ return nullptr;
+
+ // The result of an assignment in C is the assigned r-value.
+ if (!CGF.getLangOpts().CPlusPlus)
+ return RHS;
+
+ // If the lvalue is non-volatile, return the computed value of the assignment.
+ if (!LHS.isVolatileQualified())
+ return RHS;
+
+ // Otherwise, reload the value.
+ return EmitLoadOfLValue(LHS, E->getExprLoc());
+}
+
+Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
+ // Perform vector logical and on comparisons with zero vectors.
+ if (E->getType()->isVectorType()) {
+ CGF.incrementProfileCounter(E);
+
+ Value *LHS = Visit(E->getLHS());
+ Value *RHS = Visit(E->getRHS());
+ Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
+ if (LHS->getType()->isFPOrFPVectorTy()) {
+ LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
+ RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
+ } else {
+ LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
+ RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
+ }
+ Value *And = Builder.CreateAnd(LHS, RHS);
+ return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
+ }
+
+ llvm::Type *ResTy = ConvertType(E->getType());
+
+ // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
+ // If we have 1 && X, just emit X without inserting the control flow.
+ bool LHSCondVal;
+ if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
+ if (LHSCondVal) { // If we have 1 && X, just emit X.
+ CGF.incrementProfileCounter(E);
+
+ Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
+ // ZExt result to int or bool.
+ return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
+ }
+
+ // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
+ if (!CGF.ContainsLabel(E->getRHS()))
+ return llvm::Constant::getNullValue(ResTy);
+ }
+
+ llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
+ llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
+
+ CodeGenFunction::ConditionalEvaluation eval(CGF);
+
+ // Branch on the LHS first. If it is false, go to the failure (cont) block.
+ CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
+ CGF.getProfileCount(E->getRHS()));
+
+ // Any edges into the ContBlock are now from an (indeterminate number of)
+ // edges from this first condition. All of these values will be false. Start
+ // setting up the PHI node in the Cont Block for this.
+ llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
+ "", ContBlock);
+ for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
+ PI != PE; ++PI)
+ PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
+
+ eval.begin(CGF);
+ CGF.EmitBlock(RHSBlock);
+ CGF.incrementProfileCounter(E);
+ Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
+ eval.end(CGF);
+
+ // Reaquire the RHS block, as there may be subblocks inserted.
+ RHSBlock = Builder.GetInsertBlock();
+
+ // Emit an unconditional branch from this block to ContBlock.
+ {
+ // There is no need to emit line number for unconditional branch.
+ auto NL = ApplyDebugLocation::CreateEmpty(CGF);
+ CGF.EmitBlock(ContBlock);
+ }
+ // Insert an entry into the phi node for the edge with the value of RHSCond.
+ PN->addIncoming(RHSCond, RHSBlock);
+
+ // ZExt result to int.
+ return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
+}
+
+Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
+ // Perform vector logical or on comparisons with zero vectors.
+ if (E->getType()->isVectorType()) {
+ CGF.incrementProfileCounter(E);
+
+ Value *LHS = Visit(E->getLHS());
+ Value *RHS = Visit(E->getRHS());
+ Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
+ if (LHS->getType()->isFPOrFPVectorTy()) {
+ LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
+ RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
+ } else {
+ LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
+ RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
+ }
+ Value *Or = Builder.CreateOr(LHS, RHS);
+ return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
+ }
+
+ llvm::Type *ResTy = ConvertType(E->getType());
+
+ // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
+ // If we have 0 || X, just emit X without inserting the control flow.
+ bool LHSCondVal;
+ if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
+ if (!LHSCondVal) { // If we have 0 || X, just emit X.
+ CGF.incrementProfileCounter(E);
+
+ Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
+ // ZExt result to int or bool.
+ return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
+ }
+
+ // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
+ if (!CGF.ContainsLabel(E->getRHS()))
+ return llvm::ConstantInt::get(ResTy, 1);
+ }
+
+ llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
+ llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
+
+ CodeGenFunction::ConditionalEvaluation eval(CGF);
+
+ // Branch on the LHS first. If it is true, go to the success (cont) block.
+ CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
+ CGF.getCurrentProfileCount() -
+ CGF.getProfileCount(E->getRHS()));
+
+ // Any edges into the ContBlock are now from an (indeterminate number of)
+ // edges from this first condition. All of these values will be true. Start
+ // setting up the PHI node in the Cont Block for this.
+ llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
+ "", ContBlock);
+ for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
+ PI != PE; ++PI)
+ PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
+
+ eval.begin(CGF);
+
+ // Emit the RHS condition as a bool value.
+ CGF.EmitBlock(RHSBlock);
+ CGF.incrementProfileCounter(E);
+ Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
+
+ eval.end(CGF);
+
+ // Reaquire the RHS block, as there may be subblocks inserted.
+ RHSBlock = Builder.GetInsertBlock();
+
+ // Emit an unconditional branch from this block to ContBlock. Insert an entry
+ // into the phi node for the edge with the value of RHSCond.
+ CGF.EmitBlock(ContBlock);
+ PN->addIncoming(RHSCond, RHSBlock);
+
+ // ZExt result to int.
+ return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
+}
+
+Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
+ CGF.EmitIgnoredExpr(E->getLHS());
+ CGF.EnsureInsertPoint();
+ return Visit(E->getRHS());
+}
+
+//===----------------------------------------------------------------------===//
+// Other Operators
+//===----------------------------------------------------------------------===//
+
+/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
+/// expression is cheap enough and side-effect-free enough to evaluate
+/// unconditionally instead of conditionally. This is used to convert control
+/// flow into selects in some cases.
+static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
+ CodeGenFunction &CGF) {
+ // Anything that is an integer or floating point constant is fine.
+ return E->IgnoreParens()->isEvaluatable(CGF.getContext());
+
+ // Even non-volatile automatic variables can't be evaluated unconditionally.
+ // Referencing a thread_local may cause non-trivial initialization work to
+ // occur. If we're inside a lambda and one of the variables is from the scope
+ // outside the lambda, that function may have returned already. Reading its
+ // locals is a bad idea. Also, these reads may introduce races there didn't
+ // exist in the source-level program.
+}
+
+
+Value *ScalarExprEmitter::
+VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
+ TestAndClearIgnoreResultAssign();
+
+ // Bind the common expression if necessary.
+ CodeGenFunction::OpaqueValueMapping binding(CGF, E);
+
+ Expr *condExpr = E->getCond();
+ Expr *lhsExpr = E->getTrueExpr();
+ Expr *rhsExpr = E->getFalseExpr();
+
+ // If the condition constant folds and can be elided, try to avoid emitting
+ // the condition and the dead arm.
+ bool CondExprBool;
+ if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
+ Expr *live = lhsExpr, *dead = rhsExpr;
+ if (!CondExprBool) std::swap(live, dead);
+
+ // If the dead side doesn't have labels we need, just emit the Live part.
+ if (!CGF.ContainsLabel(dead)) {
+ if (CondExprBool)
+ CGF.incrementProfileCounter(E);
+ Value *Result = Visit(live);
+
+ // If the live part is a throw expression, it acts like it has a void
+ // type, so evaluating it returns a null Value*. However, a conditional
+ // with non-void type must return a non-null Value*.
+ if (!Result && !E->getType()->isVoidType())
+ Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
+
+ return Result;
+ }
+ }
+
+ // OpenCL: If the condition is a vector, we can treat this condition like
+ // the select function.
+ if (CGF.getLangOpts().OpenCL
+ && condExpr->getType()->isVectorType()) {
+ CGF.incrementProfileCounter(E);
+
+ llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
+ llvm::Value *LHS = Visit(lhsExpr);
+ llvm::Value *RHS = Visit(rhsExpr);
+
+ llvm::Type *condType = ConvertType(condExpr->getType());
+ llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
+
+ unsigned numElem = vecTy->getNumElements();
+ llvm::Type *elemType = vecTy->getElementType();
+
+ llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
+ llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
+ llvm::Value *tmp = Builder.CreateSExt(TestMSB,
+ llvm::VectorType::get(elemType,
+ numElem),
+ "sext");
+ llvm::Value *tmp2 = Builder.CreateNot(tmp);
+
+ // Cast float to int to perform ANDs if necessary.
+ llvm::Value *RHSTmp = RHS;
+ llvm::Value *LHSTmp = LHS;
+ bool wasCast = false;
+ llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
+ if (rhsVTy->getElementType()->isFloatingPointTy()) {
+ RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
+ LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
+ wasCast = true;
+ }
+
+ llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
+ llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
+ llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
+ if (wasCast)
+ tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
+
+ return tmp5;
+ }
+
+ // If this is a really simple expression (like x ? 4 : 5), emit this as a
+ // select instead of as control flow. We can only do this if it is cheap and
+ // safe to evaluate the LHS and RHS unconditionally.
+ if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
+ isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
+ CGF.incrementProfileCounter(E);
+
+ llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
+ llvm::Value *LHS = Visit(lhsExpr);
+ llvm::Value *RHS = Visit(rhsExpr);
+ if (!LHS) {
+ // If the conditional has void type, make sure we return a null Value*.
+ assert(!RHS && "LHS and RHS types must match");
+ return nullptr;
+ }
+ return Builder.CreateSelect(CondV, LHS, RHS, "cond");
+ }
+
+ llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
+ llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
+ llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
+
+ CodeGenFunction::ConditionalEvaluation eval(CGF);
+ CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
+ CGF.getProfileCount(lhsExpr));
+
+ CGF.EmitBlock(LHSBlock);
+ CGF.incrementProfileCounter(E);
+ eval.begin(CGF);
+ Value *LHS = Visit(lhsExpr);
+ eval.end(CGF);
+
+ LHSBlock = Builder.GetInsertBlock();
+ Builder.CreateBr(ContBlock);
+
+ CGF.EmitBlock(RHSBlock);
+ eval.begin(CGF);
+ Value *RHS = Visit(rhsExpr);
+ eval.end(CGF);
+
+ RHSBlock = Builder.GetInsertBlock();
+ CGF.EmitBlock(ContBlock);
+
+ // If the LHS or RHS is a throw expression, it will be legitimately null.
+ if (!LHS)
+ return RHS;
+ if (!RHS)
+ return LHS;
+
+ // Create a PHI node for the real part.
+ llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
+ PN->addIncoming(LHS, LHSBlock);
+ PN->addIncoming(RHS, RHSBlock);
+ return PN;
+}
+
+Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
+ return Visit(E->getChosenSubExpr());
+}
+
+Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
+ QualType Ty = VE->getType();
+
+ if (Ty->isVariablyModifiedType())
+ CGF.EmitVariablyModifiedType(Ty);
+
+ llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
+ llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
+ llvm::Type *ArgTy = ConvertType(VE->getType());
+
+ // If EmitVAArg fails, we fall back to the LLVM instruction.
+ if (!ArgPtr)
+ return Builder.CreateVAArg(ArgValue, ArgTy);
+
+ // FIXME Volatility.
+ llvm::Value *Val = Builder.CreateLoad(ArgPtr);
+
+ // If EmitVAArg promoted the type, we must truncate it.
+ if (ArgTy != Val->getType()) {
+ if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
+ Val = Builder.CreateIntToPtr(Val, ArgTy);
+ else
+ Val = Builder.CreateTrunc(Val, ArgTy);
+ }
+
+ return Val;
+}
+
+Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
+ return CGF.EmitBlockLiteral(block);
+}
+
+Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
+ Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
+ llvm::Type *DstTy = ConvertType(E->getType());
+
+ // Going from vec4->vec3 or vec3->vec4 is a special case and requires
+ // a shuffle vector instead of a bitcast.
+ llvm::Type *SrcTy = Src->getType();
+ if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
+ unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
+ unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
+ if ((numElementsDst == 3 && numElementsSrc == 4)
+ || (numElementsDst == 4 && numElementsSrc == 3)) {
+
+
+ // In the case of going from int4->float3, a bitcast is needed before
+ // doing a shuffle.
+ llvm::Type *srcElemTy =
+ cast<llvm::VectorType>(SrcTy)->getElementType();
+ llvm::Type *dstElemTy =
+ cast<llvm::VectorType>(DstTy)->getElementType();
+
+ if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
+ || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
+ // Create a float type of the same size as the source or destination.
+ llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
+ numElementsSrc);
+
+ Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
+ }
+
+ llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
+
+ SmallVector<llvm::Constant*, 3> Args;
+ Args.push_back(Builder.getInt32(0));
+ Args.push_back(Builder.getInt32(1));
+ Args.push_back(Builder.getInt32(2));
+
+ if (numElementsDst == 4)
+ Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
+
+ llvm::Constant *Mask = llvm::ConstantVector::get(Args);
+
+ return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
+ }
+ }
+
+ return Builder.CreateBitCast(Src, DstTy, "astype");
+}
+
+Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
+ return CGF.EmitAtomicExpr(E).getScalarVal();
+}
+
+//===----------------------------------------------------------------------===//
+// Entry Point into this File
+//===----------------------------------------------------------------------===//
+
+/// EmitScalarExpr - Emit the computation of the specified expression of scalar
+/// type, ignoring the result.
+Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
+ assert(E && hasScalarEvaluationKind(E->getType()) &&
+ "Invalid scalar expression to emit");
+
+ return ScalarExprEmitter(*this, IgnoreResultAssign)
+ .Visit(const_cast<Expr *>(E));
+}
+
+/// EmitScalarConversion - Emit a conversion from the specified type to the
+/// specified destination type, both of which are LLVM scalar types.
+Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
+ QualType DstTy) {
+ assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
+ "Invalid scalar expression to emit");
+ return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
+}
+
+/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
+/// type to the specified destination type, where the destination type is an
+/// LLVM scalar type.
+Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
+ QualType SrcTy,
+ QualType DstTy) {
+ assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
+ "Invalid complex -> scalar conversion");
+ return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
+ DstTy);
+}
+
+
+llvm::Value *CodeGenFunction::
+EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
+ bool isInc, bool isPre) {
+ return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
+}
+
+LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
+ llvm::Value *V;
+ // object->isa or (*object).isa
+ // Generate code as for: *(Class*)object
+ // build Class* type
+ llvm::Type *ClassPtrTy = ConvertType(E->getType());
+
+ Expr *BaseExpr = E->getBase();
+ if (BaseExpr->isRValue()) {
+ V = CreateMemTemp(E->getType(), "resval");
+ llvm::Value *Src = EmitScalarExpr(BaseExpr);
+ Builder.CreateStore(Src, V);
+ V = ScalarExprEmitter(*this).EmitLoadOfLValue(
+ MakeNaturalAlignAddrLValue(V, E->getType()), E->getExprLoc());
+ } else {
+ if (E->isArrow())
+ V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
+ else
+ V = EmitLValue(BaseExpr).getAddress();
+ }
+
+ // build Class* type
+ ClassPtrTy = ClassPtrTy->getPointerTo();
+ V = Builder.CreateBitCast(V, ClassPtrTy);
+ return MakeNaturalAlignAddrLValue(V, E->getType());
+}
+
+
+LValue CodeGenFunction::EmitCompoundAssignmentLValue(
+ const CompoundAssignOperator *E) {
+ ScalarExprEmitter Scalar(*this);
+ Value *Result = nullptr;
+ switch (E->getOpcode()) {
+#define COMPOUND_OP(Op) \
+ case BO_##Op##Assign: \
+ return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
+ Result)
+ COMPOUND_OP(Mul);
+ COMPOUND_OP(Div);
+ COMPOUND_OP(Rem);
+ COMPOUND_OP(Add);
+ COMPOUND_OP(Sub);
+ COMPOUND_OP(Shl);
+ COMPOUND_OP(Shr);
+ COMPOUND_OP(And);
+ COMPOUND_OP(Xor);
+ COMPOUND_OP(Or);
+#undef COMPOUND_OP
+
+ case BO_PtrMemD:
+ case BO_PtrMemI:
+ case BO_Mul:
+ case BO_Div:
+ case BO_Rem:
+ case BO_Add:
+ case BO_Sub:
+ case BO_Shl:
+ case BO_Shr:
+ case BO_LT:
+ case BO_GT:
+ case BO_LE:
+ case BO_GE:
+ case BO_EQ:
+ case BO_NE:
+ case BO_And:
+ case BO_Xor:
+ case BO_Or:
+ case BO_LAnd:
+ case BO_LOr:
+ case BO_Assign:
+ case BO_Comma:
+ llvm_unreachable("Not valid compound assignment operators");
+ }
+
+ llvm_unreachable("Unhandled compound assignment operator");
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGLoopInfo.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGLoopInfo.cpp
new file mode 100644
index 0000000..011ae7e
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGLoopInfo.cpp
@@ -0,0 +1,110 @@
+//===---- CGLoopInfo.cpp - LLVM CodeGen for loop metadata -*- C++ -*-------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGLoopInfo.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Metadata.h"
+using namespace clang;
+using namespace CodeGen;
+using namespace llvm;
+
+static MDNode *createMetadata(LLVMContext &Ctx, const LoopAttributes &Attrs) {
+
+ if (!Attrs.IsParallel && Attrs.VectorizerWidth == 0 &&
+ Attrs.VectorizerUnroll == 0 &&
+ Attrs.VectorizerEnable == LoopAttributes::VecUnspecified)
+ return nullptr;
+
+ SmallVector<Metadata *, 4> Args;
+ // Reserve operand 0 for loop id self reference.
+ auto TempNode = MDNode::getTemporary(Ctx, None);
+ Args.push_back(TempNode.get());
+
+ // Setting vectorizer.width
+ if (Attrs.VectorizerWidth > 0) {
+ Metadata *Vals[] = {MDString::get(Ctx, "llvm.loop.vectorize.width"),
+ ConstantAsMetadata::get(ConstantInt::get(
+ Type::getInt32Ty(Ctx), Attrs.VectorizerWidth))};
+ Args.push_back(MDNode::get(Ctx, Vals));
+ }
+
+ // Setting vectorizer.unroll
+ if (Attrs.VectorizerUnroll > 0) {
+ Metadata *Vals[] = {MDString::get(Ctx, "llvm.loop.interleave.count"),
+ ConstantAsMetadata::get(ConstantInt::get(
+ Type::getInt32Ty(Ctx), Attrs.VectorizerUnroll))};
+ Args.push_back(MDNode::get(Ctx, Vals));
+ }
+
+ // Setting vectorizer.enable
+ if (Attrs.VectorizerEnable != LoopAttributes::VecUnspecified) {
+ Metadata *Vals[] = {
+ MDString::get(Ctx, "llvm.loop.vectorize.enable"),
+ ConstantAsMetadata::get(ConstantInt::get(
+ Type::getInt1Ty(Ctx),
+ (Attrs.VectorizerEnable == LoopAttributes::VecEnable)))};
+ Args.push_back(MDNode::get(Ctx, Vals));
+ }
+
+ // Set the first operand to itself.
+ MDNode *LoopID = MDNode::get(Ctx, Args);
+ LoopID->replaceOperandWith(0, LoopID);
+ return LoopID;
+}
+
+LoopAttributes::LoopAttributes(bool IsParallel)
+ : IsParallel(IsParallel), VectorizerEnable(LoopAttributes::VecUnspecified),
+ VectorizerWidth(0), VectorizerUnroll(0) {}
+
+void LoopAttributes::clear() {
+ IsParallel = false;
+ VectorizerWidth = 0;
+ VectorizerUnroll = 0;
+ VectorizerEnable = LoopAttributes::VecUnspecified;
+}
+
+LoopInfo::LoopInfo(BasicBlock *Header, const LoopAttributes &Attrs)
+ : LoopID(nullptr), Header(Header), Attrs(Attrs) {
+ LoopID = createMetadata(Header->getContext(), Attrs);
+}
+
+void LoopInfoStack::push(BasicBlock *Header) {
+ Active.push_back(LoopInfo(Header, StagedAttrs));
+ // Clear the attributes so nested loops do not inherit them.
+ StagedAttrs.clear();
+}
+
+void LoopInfoStack::pop() {
+ assert(!Active.empty() && "No active loops to pop");
+ Active.pop_back();
+}
+
+void LoopInfoStack::InsertHelper(Instruction *I) const {
+ if (!hasInfo())
+ return;
+
+ const LoopInfo &L = getInfo();
+ if (!L.getLoopID())
+ return;
+
+ if (TerminatorInst *TI = dyn_cast<TerminatorInst>(I)) {
+ for (unsigned i = 0, ie = TI->getNumSuccessors(); i < ie; ++i)
+ if (TI->getSuccessor(i) == L.getHeader()) {
+ TI->setMetadata("llvm.loop", L.getLoopID());
+ break;
+ }
+ return;
+ }
+
+ if (L.getAttributes().IsParallel && I->mayReadOrWriteMemory())
+ I->setMetadata("llvm.mem.parallel_loop_access", L.getLoopID());
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGLoopInfo.h b/contrib/llvm/tools/clang/lib/CodeGen/CGLoopInfo.h
new file mode 100644
index 0000000..aee1621
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGLoopInfo.h
@@ -0,0 +1,136 @@
+//===---- CGLoopInfo.h - LLVM CodeGen for loop metadata -*- C++ -*---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This is the internal state used for llvm translation for loop statement
+// metadata.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_CODEGEN_CGLOOPINFO_H
+#define LLVM_CLANG_LIB_CODEGEN_CGLOOPINFO_H
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Support/Compiler.h"
+
+namespace llvm {
+class BasicBlock;
+class Instruction;
+class MDNode;
+} // end namespace llvm
+
+namespace clang {
+namespace CodeGen {
+
+/// \brief Attributes that may be specified on loops.
+struct LoopAttributes {
+ explicit LoopAttributes(bool IsParallel = false);
+ void clear();
+
+ /// \brief Generate llvm.loop.parallel metadata for loads and stores.
+ bool IsParallel;
+
+ /// \brief Values of llvm.loop.vectorize.enable metadata.
+ enum LVEnableState { VecUnspecified, VecEnable, VecDisable };
+
+ /// \brief llvm.loop.vectorize.enable
+ LVEnableState VectorizerEnable;
+
+ /// \brief llvm.loop.vectorize.width
+ unsigned VectorizerWidth;
+
+ /// \brief llvm.loop.interleave.count
+ unsigned VectorizerUnroll;
+};
+
+/// \brief Information used when generating a structured loop.
+class LoopInfo {
+public:
+ /// \brief Construct a new LoopInfo for the loop with entry Header.
+ LoopInfo(llvm::BasicBlock *Header, const LoopAttributes &Attrs);
+
+ /// \brief Get the loop id metadata for this loop.
+ llvm::MDNode *getLoopID() const { return LoopID; }
+
+ /// \brief Get the header block of this loop.
+ llvm::BasicBlock *getHeader() const { return Header; }
+
+ /// \brief Get the set of attributes active for this loop.
+ const LoopAttributes &getAttributes() const { return Attrs; }
+
+private:
+ /// \brief Loop ID metadata.
+ llvm::MDNode *LoopID;
+ /// \brief Header block of this loop.
+ llvm::BasicBlock *Header;
+ /// \brief The attributes for this loop.
+ LoopAttributes Attrs;
+};
+
+/// \brief A stack of loop information corresponding to loop nesting levels.
+/// This stack can be used to prepare attributes which are applied when a loop
+/// is emitted.
+class LoopInfoStack {
+ LoopInfoStack(const LoopInfoStack &) = delete;
+ void operator=(const LoopInfoStack &) = delete;
+
+public:
+ LoopInfoStack() {}
+
+ /// \brief Begin a new structured loop. The set of staged attributes will be
+ /// applied to the loop and then cleared.
+ void push(llvm::BasicBlock *Header);
+
+ /// \brief End the current loop.
+ void pop();
+
+ /// \brief Return the top loop id metadata.
+ llvm::MDNode *getCurLoopID() const { return getInfo().getLoopID(); }
+
+ /// \brief Return true if the top loop is parallel.
+ bool getCurLoopParallel() const {
+ return hasInfo() ? getInfo().getAttributes().IsParallel : false;
+ }
+
+ /// \brief Function called by the CodeGenFunction when an instruction is
+ /// created.
+ void InsertHelper(llvm::Instruction *I) const;
+
+ /// \brief Set the next pushed loop as parallel.
+ void setParallel(bool Enable = true) { StagedAttrs.IsParallel = Enable; }
+
+ /// \brief Set the next pushed loop 'vectorizer.enable'
+ void setVectorizerEnable(bool Enable = true) {
+ StagedAttrs.VectorizerEnable =
+ Enable ? LoopAttributes::VecEnable : LoopAttributes::VecDisable;
+ }
+
+ /// \brief Set the vectorizer width for the next loop pushed.
+ void setVectorizerWidth(unsigned W) { StagedAttrs.VectorizerWidth = W; }
+
+ /// \brief Set the vectorizer unroll for the next loop pushed.
+ void setVectorizerUnroll(unsigned U) { StagedAttrs.VectorizerUnroll = U; }
+
+private:
+ /// \brief Returns true if there is LoopInfo on the stack.
+ bool hasInfo() const { return !Active.empty(); }
+ /// \brief Return the LoopInfo for the current loop. HasInfo should be called
+ /// first to ensure LoopInfo is present.
+ const LoopInfo &getInfo() const { return Active.back(); }
+ /// \brief The set of attributes that will be applied to the next pushed loop.
+ LoopAttributes StagedAttrs;
+ /// \brief Stack of active loops.
+ llvm::SmallVector<LoopInfo, 4> Active;
+};
+
+} // end namespace CodeGen
+} // end namespace clang
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGObjC.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGObjC.cpp
new file mode 100644
index 0000000..ef9a92d
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGObjC.cpp
@@ -0,0 +1,3062 @@
+//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code to emit Objective-C code as LLVM code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGDebugInfo.h"
+#include "CGObjCRuntime.h"
+#include "CodeGenFunction.h"
+#include "CodeGenModule.h"
+#include "TargetInfo.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/StmtObjC.h"
+#include "clang/Basic/Diagnostic.h"
+#include "clang/CodeGen/CGFunctionInfo.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/InlineAsm.h"
+using namespace clang;
+using namespace CodeGen;
+
+typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
+static TryEmitResult
+tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
+static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
+ QualType ET,
+ const ObjCMethodDecl *Method,
+ RValue Result);
+
+/// Given the address of a variable of pointer type, find the correct
+/// null to store into it.
+static llvm::Constant *getNullForVariable(llvm::Value *addr) {
+ llvm::Type *type =
+ cast<llvm::PointerType>(addr->getType())->getElementType();
+ return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
+}
+
+/// Emits an instance of NSConstantString representing the object.
+llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
+{
+ llvm::Constant *C =
+ CGM.getObjCRuntime().GenerateConstantString(E->getString());
+ // FIXME: This bitcast should just be made an invariant on the Runtime.
+ return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
+}
+
+/// EmitObjCBoxedExpr - This routine generates code to call
+/// the appropriate expression boxing method. This will either be
+/// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:].
+///
+llvm::Value *
+CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
+ // Generate the correct selector for this literal's concrete type.
+ // Get the method.
+ const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
+ assert(BoxingMethod && "BoxingMethod is null");
+ assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
+ Selector Sel = BoxingMethod->getSelector();
+
+ // Generate a reference to the class pointer, which will be the receiver.
+ // Assumes that the method was introduced in the class that should be
+ // messaged (avoids pulling it out of the result type).
+ CGObjCRuntime &Runtime = CGM.getObjCRuntime();
+ const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
+ llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
+
+ CallArgList Args;
+ EmitCallArgs(Args, BoxingMethod, E->arg_begin(), E->arg_end());
+
+ RValue result = Runtime.GenerateMessageSend(
+ *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
+ Args, ClassDecl, BoxingMethod);
+ return Builder.CreateBitCast(result.getScalarVal(),
+ ConvertType(E->getType()));
+}
+
+llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
+ const ObjCMethodDecl *MethodWithObjects) {
+ ASTContext &Context = CGM.getContext();
+ const ObjCDictionaryLiteral *DLE = nullptr;
+ const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
+ if (!ALE)
+ DLE = cast<ObjCDictionaryLiteral>(E);
+
+ // Compute the type of the array we're initializing.
+ uint64_t NumElements =
+ ALE ? ALE->getNumElements() : DLE->getNumElements();
+ llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
+ NumElements);
+ QualType ElementType = Context.getObjCIdType().withConst();
+ QualType ElementArrayType
+ = Context.getConstantArrayType(ElementType, APNumElements,
+ ArrayType::Normal, /*IndexTypeQuals=*/0);
+
+ // Allocate the temporary array(s).
+ llvm::AllocaInst *Objects = CreateMemTemp(ElementArrayType, "objects");
+ llvm::AllocaInst *Keys = nullptr;
+ if (DLE)
+ Keys = CreateMemTemp(ElementArrayType, "keys");
+
+ // In ARC, we may need to do extra work to keep all the keys and
+ // values alive until after the call.
+ SmallVector<llvm::Value *, 16> NeededObjects;
+ bool TrackNeededObjects =
+ (getLangOpts().ObjCAutoRefCount &&
+ CGM.getCodeGenOpts().OptimizationLevel != 0);
+
+ // Perform the actual initialialization of the array(s).
+ for (uint64_t i = 0; i < NumElements; i++) {
+ if (ALE) {
+ // Emit the element and store it to the appropriate array slot.
+ const Expr *Rhs = ALE->getElement(i);
+ LValue LV = LValue::MakeAddr(
+ Builder.CreateStructGEP(Objects->getAllocatedType(), Objects, i),
+ ElementType, Context.getTypeAlignInChars(Rhs->getType()), Context);
+
+ llvm::Value *value = EmitScalarExpr(Rhs);
+ EmitStoreThroughLValue(RValue::get(value), LV, true);
+ if (TrackNeededObjects) {
+ NeededObjects.push_back(value);
+ }
+ } else {
+ // Emit the key and store it to the appropriate array slot.
+ const Expr *Key = DLE->getKeyValueElement(i).Key;
+ LValue KeyLV = LValue::MakeAddr(
+ Builder.CreateStructGEP(Keys->getAllocatedType(), Keys, i),
+ ElementType, Context.getTypeAlignInChars(Key->getType()), Context);
+ llvm::Value *keyValue = EmitScalarExpr(Key);
+ EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
+
+ // Emit the value and store it to the appropriate array slot.
+ const Expr *Value = DLE->getKeyValueElement(i).Value;
+ LValue ValueLV = LValue::MakeAddr(
+ Builder.CreateStructGEP(Objects->getAllocatedType(), Objects, i),
+ ElementType, Context.getTypeAlignInChars(Value->getType()), Context);
+ llvm::Value *valueValue = EmitScalarExpr(Value);
+ EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
+ if (TrackNeededObjects) {
+ NeededObjects.push_back(keyValue);
+ NeededObjects.push_back(valueValue);
+ }
+ }
+ }
+
+ // Generate the argument list.
+ CallArgList Args;
+ ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
+ const ParmVarDecl *argDecl = *PI++;
+ QualType ArgQT = argDecl->getType().getUnqualifiedType();
+ Args.add(RValue::get(Objects), ArgQT);
+ if (DLE) {
+ argDecl = *PI++;
+ ArgQT = argDecl->getType().getUnqualifiedType();
+ Args.add(RValue::get(Keys), ArgQT);
+ }
+ argDecl = *PI;
+ ArgQT = argDecl->getType().getUnqualifiedType();
+ llvm::Value *Count =
+ llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
+ Args.add(RValue::get(Count), ArgQT);
+
+ // Generate a reference to the class pointer, which will be the receiver.
+ Selector Sel = MethodWithObjects->getSelector();
+ QualType ResultType = E->getType();
+ const ObjCObjectPointerType *InterfacePointerType
+ = ResultType->getAsObjCInterfacePointerType();
+ ObjCInterfaceDecl *Class
+ = InterfacePointerType->getObjectType()->getInterface();
+ CGObjCRuntime &Runtime = CGM.getObjCRuntime();
+ llvm::Value *Receiver = Runtime.GetClass(*this, Class);
+
+ // Generate the message send.
+ RValue result = Runtime.GenerateMessageSend(
+ *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
+ Receiver, Args, Class, MethodWithObjects);
+
+ // The above message send needs these objects, but in ARC they are
+ // passed in a buffer that is essentially __unsafe_unretained.
+ // Therefore we must prevent the optimizer from releasing them until
+ // after the call.
+ if (TrackNeededObjects) {
+ EmitARCIntrinsicUse(NeededObjects);
+ }
+
+ return Builder.CreateBitCast(result.getScalarVal(),
+ ConvertType(E->getType()));
+}
+
+llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
+ return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
+}
+
+llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
+ const ObjCDictionaryLiteral *E) {
+ return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
+}
+
+/// Emit a selector.
+llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
+ // Untyped selector.
+ // Note that this implementation allows for non-constant strings to be passed
+ // as arguments to @selector(). Currently, the only thing preventing this
+ // behaviour is the type checking in the front end.
+ return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
+}
+
+llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
+ // FIXME: This should pass the Decl not the name.
+ return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
+}
+
+/// \brief Adjust the type of the result of an Objective-C message send
+/// expression when the method has a related result type.
+static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
+ QualType ExpT,
+ const ObjCMethodDecl *Method,
+ RValue Result) {
+ if (!Method)
+ return Result;
+
+ if (!Method->hasRelatedResultType() ||
+ CGF.getContext().hasSameType(ExpT, Method->getReturnType()) ||
+ !Result.isScalar())
+ return Result;
+
+ // We have applied a related result type. Cast the rvalue appropriately.
+ return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
+ CGF.ConvertType(ExpT)));
+}
+
+/// Decide whether to extend the lifetime of the receiver of a
+/// returns-inner-pointer message.
+static bool
+shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
+ switch (message->getReceiverKind()) {
+
+ // For a normal instance message, we should extend unless the
+ // receiver is loaded from a variable with precise lifetime.
+ case ObjCMessageExpr::Instance: {
+ const Expr *receiver = message->getInstanceReceiver();
+ const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
+ if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
+ receiver = ice->getSubExpr()->IgnoreParens();
+
+ // Only __strong variables.
+ if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
+ return true;
+
+ // All ivars and fields have precise lifetime.
+ if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
+ return false;
+
+ // Otherwise, check for variables.
+ const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
+ if (!declRef) return true;
+ const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
+ if (!var) return true;
+
+ // All variables have precise lifetime except local variables with
+ // automatic storage duration that aren't specially marked.
+ return (var->hasLocalStorage() &&
+ !var->hasAttr<ObjCPreciseLifetimeAttr>());
+ }
+
+ case ObjCMessageExpr::Class:
+ case ObjCMessageExpr::SuperClass:
+ // It's never necessary for class objects.
+ return false;
+
+ case ObjCMessageExpr::SuperInstance:
+ // We generally assume that 'self' lives throughout a method call.
+ return false;
+ }
+
+ llvm_unreachable("invalid receiver kind");
+}
+
+RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
+ ReturnValueSlot Return) {
+ // Only the lookup mechanism and first two arguments of the method
+ // implementation vary between runtimes. We can get the receiver and
+ // arguments in generic code.
+
+ bool isDelegateInit = E->isDelegateInitCall();
+
+ const ObjCMethodDecl *method = E->getMethodDecl();
+
+ // We don't retain the receiver in delegate init calls, and this is
+ // safe because the receiver value is always loaded from 'self',
+ // which we zero out. We don't want to Block_copy block receivers,
+ // though.
+ bool retainSelf =
+ (!isDelegateInit &&
+ CGM.getLangOpts().ObjCAutoRefCount &&
+ method &&
+ method->hasAttr<NSConsumesSelfAttr>());
+
+ CGObjCRuntime &Runtime = CGM.getObjCRuntime();
+ bool isSuperMessage = false;
+ bool isClassMessage = false;
+ ObjCInterfaceDecl *OID = nullptr;
+ // Find the receiver
+ QualType ReceiverType;
+ llvm::Value *Receiver = nullptr;
+ switch (E->getReceiverKind()) {
+ case ObjCMessageExpr::Instance:
+ ReceiverType = E->getInstanceReceiver()->getType();
+ if (retainSelf) {
+ TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
+ E->getInstanceReceiver());
+ Receiver = ter.getPointer();
+ if (ter.getInt()) retainSelf = false;
+ } else
+ Receiver = EmitScalarExpr(E->getInstanceReceiver());
+ break;
+
+ case ObjCMessageExpr::Class: {
+ ReceiverType = E->getClassReceiver();
+ const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
+ assert(ObjTy && "Invalid Objective-C class message send");
+ OID = ObjTy->getInterface();
+ assert(OID && "Invalid Objective-C class message send");
+ Receiver = Runtime.GetClass(*this, OID);
+ isClassMessage = true;
+ break;
+ }
+
+ case ObjCMessageExpr::SuperInstance:
+ ReceiverType = E->getSuperType();
+ Receiver = LoadObjCSelf();
+ isSuperMessage = true;
+ break;
+
+ case ObjCMessageExpr::SuperClass:
+ ReceiverType = E->getSuperType();
+ Receiver = LoadObjCSelf();
+ isSuperMessage = true;
+ isClassMessage = true;
+ break;
+ }
+
+ if (retainSelf)
+ Receiver = EmitARCRetainNonBlock(Receiver);
+
+ // In ARC, we sometimes want to "extend the lifetime"
+ // (i.e. retain+autorelease) of receivers of returns-inner-pointer
+ // messages.
+ if (getLangOpts().ObjCAutoRefCount && method &&
+ method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
+ shouldExtendReceiverForInnerPointerMessage(E))
+ Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
+
+ QualType ResultType = method ? method->getReturnType() : E->getType();
+
+ CallArgList Args;
+ EmitCallArgs(Args, method, E->arg_begin(), E->arg_end());
+
+ // For delegate init calls in ARC, do an unsafe store of null into
+ // self. This represents the call taking direct ownership of that
+ // value. We have to do this after emitting the other call
+ // arguments because they might also reference self, but we don't
+ // have to worry about any of them modifying self because that would
+ // be an undefined read and write of an object in unordered
+ // expressions.
+ if (isDelegateInit) {
+ assert(getLangOpts().ObjCAutoRefCount &&
+ "delegate init calls should only be marked in ARC");
+
+ // Do an unsafe store of null into self.
+ llvm::Value *selfAddr =
+ LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
+ assert(selfAddr && "no self entry for a delegate init call?");
+
+ Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
+ }
+
+ RValue result;
+ if (isSuperMessage) {
+ // super is only valid in an Objective-C method
+ const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
+ bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
+ result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
+ E->getSelector(),
+ OMD->getClassInterface(),
+ isCategoryImpl,
+ Receiver,
+ isClassMessage,
+ Args,
+ method);
+ } else {
+ result = Runtime.GenerateMessageSend(*this, Return, ResultType,
+ E->getSelector(),
+ Receiver, Args, OID,
+ method);
+ }
+
+ // For delegate init calls in ARC, implicitly store the result of
+ // the call back into self. This takes ownership of the value.
+ if (isDelegateInit) {
+ llvm::Value *selfAddr =
+ LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
+ llvm::Value *newSelf = result.getScalarVal();
+
+ // The delegate return type isn't necessarily a matching type; in
+ // fact, it's quite likely to be 'id'.
+ llvm::Type *selfTy =
+ cast<llvm::PointerType>(selfAddr->getType())->getElementType();
+ newSelf = Builder.CreateBitCast(newSelf, selfTy);
+
+ Builder.CreateStore(newSelf, selfAddr);
+ }
+
+ return AdjustRelatedResultType(*this, E->getType(), method, result);
+}
+
+namespace {
+struct FinishARCDealloc : EHScopeStack::Cleanup {
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
+
+ const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
+ const ObjCInterfaceDecl *iface = impl->getClassInterface();
+ if (!iface->getSuperClass()) return;
+
+ bool isCategory = isa<ObjCCategoryImplDecl>(impl);
+
+ // Call [super dealloc] if we have a superclass.
+ llvm::Value *self = CGF.LoadObjCSelf();
+
+ CallArgList args;
+ CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
+ CGF.getContext().VoidTy,
+ method->getSelector(),
+ iface,
+ isCategory,
+ self,
+ /*is class msg*/ false,
+ args,
+ method);
+ }
+};
+}
+
+/// StartObjCMethod - Begin emission of an ObjCMethod. This generates
+/// the LLVM function and sets the other context used by
+/// CodeGenFunction.
+void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
+ const ObjCContainerDecl *CD) {
+ SourceLocation StartLoc = OMD->getLocStart();
+ FunctionArgList args;
+ // Check if we should generate debug info for this method.
+ if (OMD->hasAttr<NoDebugAttr>())
+ DebugInfo = nullptr; // disable debug info indefinitely for this function
+
+ llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
+
+ const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
+ CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
+
+ args.push_back(OMD->getSelfDecl());
+ args.push_back(OMD->getCmdDecl());
+
+ args.append(OMD->param_begin(), OMD->param_end());
+
+ CurGD = OMD;
+ CurEHLocation = OMD->getLocEnd();
+
+ StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
+ OMD->getLocation(), StartLoc);
+
+ // In ARC, certain methods get an extra cleanup.
+ if (CGM.getLangOpts().ObjCAutoRefCount &&
+ OMD->isInstanceMethod() &&
+ OMD->getSelector().isUnarySelector()) {
+ const IdentifierInfo *ident =
+ OMD->getSelector().getIdentifierInfoForSlot(0);
+ if (ident->isStr("dealloc"))
+ EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
+ }
+}
+
+static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
+ LValue lvalue, QualType type);
+
+/// Generate an Objective-C method. An Objective-C method is a C function with
+/// its pointer, name, and types registered in the class struture.
+void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
+ StartObjCMethod(OMD, OMD->getClassInterface());
+ PGO.assignRegionCounters(OMD, CurFn);
+ assert(isa<CompoundStmt>(OMD->getBody()));
+ incrementProfileCounter(OMD->getBody());
+ EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
+ FinishFunction(OMD->getBodyRBrace());
+}
+
+/// emitStructGetterCall - Call the runtime function to load a property
+/// into the return value slot.
+static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
+ bool isAtomic, bool hasStrong) {
+ ASTContext &Context = CGF.getContext();
+
+ llvm::Value *src =
+ CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(),
+ ivar, 0).getAddress();
+
+ // objc_copyStruct (ReturnValue, &structIvar,
+ // sizeof (Type of Ivar), isAtomic, false);
+ CallArgList args;
+
+ llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
+ args.add(RValue::get(dest), Context.VoidPtrTy);
+
+ src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
+ args.add(RValue::get(src), Context.VoidPtrTy);
+
+ CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
+ args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
+ args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
+ args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
+
+ llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
+ CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Context.VoidTy, args,
+ FunctionType::ExtInfo(),
+ RequiredArgs::All),
+ fn, ReturnValueSlot(), args);
+}
+
+/// Determine whether the given architecture supports unaligned atomic
+/// accesses. They don't have to be fast, just faster than a function
+/// call and a mutex.
+static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
+ // FIXME: Allow unaligned atomic load/store on x86. (It is not
+ // currently supported by the backend.)
+ return 0;
+}
+
+/// Return the maximum size that permits atomic accesses for the given
+/// architecture.
+static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
+ llvm::Triple::ArchType arch) {
+ // ARM has 8-byte atomic accesses, but it's not clear whether we
+ // want to rely on them here.
+
+ // In the default case, just assume that any size up to a pointer is
+ // fine given adequate alignment.
+ return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
+}
+
+namespace {
+ class PropertyImplStrategy {
+ public:
+ enum StrategyKind {
+ /// The 'native' strategy is to use the architecture's provided
+ /// reads and writes.
+ Native,
+
+ /// Use objc_setProperty and objc_getProperty.
+ GetSetProperty,
+
+ /// Use objc_setProperty for the setter, but use expression
+ /// evaluation for the getter.
+ SetPropertyAndExpressionGet,
+
+ /// Use objc_copyStruct.
+ CopyStruct,
+
+ /// The 'expression' strategy is to emit normal assignment or
+ /// lvalue-to-rvalue expressions.
+ Expression
+ };
+
+ StrategyKind getKind() const { return StrategyKind(Kind); }
+
+ bool hasStrongMember() const { return HasStrong; }
+ bool isAtomic() const { return IsAtomic; }
+ bool isCopy() const { return IsCopy; }
+
+ CharUnits getIvarSize() const { return IvarSize; }
+ CharUnits getIvarAlignment() const { return IvarAlignment; }
+
+ PropertyImplStrategy(CodeGenModule &CGM,
+ const ObjCPropertyImplDecl *propImpl);
+
+ private:
+ unsigned Kind : 8;
+ unsigned IsAtomic : 1;
+ unsigned IsCopy : 1;
+ unsigned HasStrong : 1;
+
+ CharUnits IvarSize;
+ CharUnits IvarAlignment;
+ };
+}
+
+/// Pick an implementation strategy for the given property synthesis.
+PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
+ const ObjCPropertyImplDecl *propImpl) {
+ const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
+ ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
+
+ IsCopy = (setterKind == ObjCPropertyDecl::Copy);
+ IsAtomic = prop->isAtomic();
+ HasStrong = false; // doesn't matter here.
+
+ // Evaluate the ivar's size and alignment.
+ ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
+ QualType ivarType = ivar->getType();
+ std::tie(IvarSize, IvarAlignment) =
+ CGM.getContext().getTypeInfoInChars(ivarType);
+
+ // If we have a copy property, we always have to use getProperty/setProperty.
+ // TODO: we could actually use setProperty and an expression for non-atomics.
+ if (IsCopy) {
+ Kind = GetSetProperty;
+ return;
+ }
+
+ // Handle retain.
+ if (setterKind == ObjCPropertyDecl::Retain) {
+ // In GC-only, there's nothing special that needs to be done.
+ if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
+ // fallthrough
+
+ // In ARC, if the property is non-atomic, use expression emission,
+ // which translates to objc_storeStrong. This isn't required, but
+ // it's slightly nicer.
+ } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
+ // Using standard expression emission for the setter is only
+ // acceptable if the ivar is __strong, which won't be true if
+ // the property is annotated with __attribute__((NSObject)).
+ // TODO: falling all the way back to objc_setProperty here is
+ // just laziness, though; we could still use objc_storeStrong
+ // if we hacked it right.
+ if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
+ Kind = Expression;
+ else
+ Kind = SetPropertyAndExpressionGet;
+ return;
+
+ // Otherwise, we need to at least use setProperty. However, if
+ // the property isn't atomic, we can use normal expression
+ // emission for the getter.
+ } else if (!IsAtomic) {
+ Kind = SetPropertyAndExpressionGet;
+ return;
+
+ // Otherwise, we have to use both setProperty and getProperty.
+ } else {
+ Kind = GetSetProperty;
+ return;
+ }
+ }
+
+ // If we're not atomic, just use expression accesses.
+ if (!IsAtomic) {
+ Kind = Expression;
+ return;
+ }
+
+ // Properties on bitfield ivars need to be emitted using expression
+ // accesses even if they're nominally atomic.
+ if (ivar->isBitField()) {
+ Kind = Expression;
+ return;
+ }
+
+ // GC-qualified or ARC-qualified ivars need to be emitted as
+ // expressions. This actually works out to being atomic anyway,
+ // except for ARC __strong, but that should trigger the above code.
+ if (ivarType.hasNonTrivialObjCLifetime() ||
+ (CGM.getLangOpts().getGC() &&
+ CGM.getContext().getObjCGCAttrKind(ivarType))) {
+ Kind = Expression;
+ return;
+ }
+
+ // Compute whether the ivar has strong members.
+ if (CGM.getLangOpts().getGC())
+ if (const RecordType *recordType = ivarType->getAs<RecordType>())
+ HasStrong = recordType->getDecl()->hasObjectMember();
+
+ // We can never access structs with object members with a native
+ // access, because we need to use write barriers. This is what
+ // objc_copyStruct is for.
+ if (HasStrong) {
+ Kind = CopyStruct;
+ return;
+ }
+
+ // Otherwise, this is target-dependent and based on the size and
+ // alignment of the ivar.
+
+ // If the size of the ivar is not a power of two, give up. We don't
+ // want to get into the business of doing compare-and-swaps.
+ if (!IvarSize.isPowerOfTwo()) {
+ Kind = CopyStruct;
+ return;
+ }
+
+ llvm::Triple::ArchType arch =
+ CGM.getTarget().getTriple().getArch();
+
+ // Most architectures require memory to fit within a single cache
+ // line, so the alignment has to be at least the size of the access.
+ // Otherwise we have to grab a lock.
+ if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
+ Kind = CopyStruct;
+ return;
+ }
+
+ // If the ivar's size exceeds the architecture's maximum atomic
+ // access size, we have to use CopyStruct.
+ if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
+ Kind = CopyStruct;
+ return;
+ }
+
+ // Otherwise, we can use native loads and stores.
+ Kind = Native;
+}
+
+/// \brief Generate an Objective-C property getter function.
+///
+/// The given Decl must be an ObjCImplementationDecl. \@synthesize
+/// is illegal within a category.
+void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
+ const ObjCPropertyImplDecl *PID) {
+ llvm::Constant *AtomicHelperFn =
+ CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
+ const ObjCPropertyDecl *PD = PID->getPropertyDecl();
+ ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
+ assert(OMD && "Invalid call to generate getter (empty method)");
+ StartObjCMethod(OMD, IMP->getClassInterface());
+
+ generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
+
+ FinishFunction();
+}
+
+static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
+ const Expr *getter = propImpl->getGetterCXXConstructor();
+ if (!getter) return true;
+
+ // Sema only makes only of these when the ivar has a C++ class type,
+ // so the form is pretty constrained.
+
+ // If the property has a reference type, we might just be binding a
+ // reference, in which case the result will be a gl-value. We should
+ // treat this as a non-trivial operation.
+ if (getter->isGLValue())
+ return false;
+
+ // If we selected a trivial copy-constructor, we're okay.
+ if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
+ return (construct->getConstructor()->isTrivial());
+
+ // The constructor might require cleanups (in which case it's never
+ // trivial).
+ assert(isa<ExprWithCleanups>(getter));
+ return false;
+}
+
+/// emitCPPObjectAtomicGetterCall - Call the runtime function to
+/// copy the ivar into the resturn slot.
+static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
+ llvm::Value *returnAddr,
+ ObjCIvarDecl *ivar,
+ llvm::Constant *AtomicHelperFn) {
+ // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
+ // AtomicHelperFn);
+ CallArgList args;
+
+ // The 1st argument is the return Slot.
+ args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
+
+ // The 2nd argument is the address of the ivar.
+ llvm::Value *ivarAddr =
+ CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
+ CGF.LoadObjCSelf(), ivar, 0).getAddress();
+ ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
+ args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
+
+ // Third argument is the helper function.
+ args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
+
+ llvm::Value *copyCppAtomicObjectFn =
+ CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
+ CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
+ args,
+ FunctionType::ExtInfo(),
+ RequiredArgs::All),
+ copyCppAtomicObjectFn, ReturnValueSlot(), args);
+}
+
+void
+CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
+ const ObjCPropertyImplDecl *propImpl,
+ const ObjCMethodDecl *GetterMethodDecl,
+ llvm::Constant *AtomicHelperFn) {
+ // If there's a non-trivial 'get' expression, we just have to emit that.
+ if (!hasTrivialGetExpr(propImpl)) {
+ if (!AtomicHelperFn) {
+ ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(),
+ /*nrvo*/ nullptr);
+ EmitReturnStmt(ret);
+ }
+ else {
+ ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
+ emitCPPObjectAtomicGetterCall(*this, ReturnValue,
+ ivar, AtomicHelperFn);
+ }
+ return;
+ }
+
+ const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
+ QualType propType = prop->getType();
+ ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
+
+ ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
+
+ // Pick an implementation strategy.
+ PropertyImplStrategy strategy(CGM, propImpl);
+ switch (strategy.getKind()) {
+ case PropertyImplStrategy::Native: {
+ // We don't need to do anything for a zero-size struct.
+ if (strategy.getIvarSize().isZero())
+ return;
+
+ LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
+
+ // Currently, all atomic accesses have to be through integer
+ // types, so there's no point in trying to pick a prettier type.
+ llvm::Type *bitcastType =
+ llvm::Type::getIntNTy(getLLVMContext(),
+ getContext().toBits(strategy.getIvarSize()));
+ bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
+
+ // Perform an atomic load. This does not impose ordering constraints.
+ llvm::Value *ivarAddr = LV.getAddress();
+ ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
+ llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
+ load->setAlignment(strategy.getIvarAlignment().getQuantity());
+ load->setAtomic(llvm::Unordered);
+
+ // Store that value into the return address. Doing this with a
+ // bitcast is likely to produce some pretty ugly IR, but it's not
+ // the *most* terrible thing in the world.
+ Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType));
+
+ // Make sure we don't do an autorelease.
+ AutoreleaseResult = false;
+ return;
+ }
+
+ case PropertyImplStrategy::GetSetProperty: {
+ llvm::Value *getPropertyFn =
+ CGM.getObjCRuntime().GetPropertyGetFunction();
+ if (!getPropertyFn) {
+ CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
+ return;
+ }
+
+ // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
+ // FIXME: Can't this be simpler? This might even be worse than the
+ // corresponding gcc code.
+ llvm::Value *cmd =
+ Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd");
+ llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
+ llvm::Value *ivarOffset =
+ EmitIvarOffset(classImpl->getClassInterface(), ivar);
+
+ CallArgList args;
+ args.add(RValue::get(self), getContext().getObjCIdType());
+ args.add(RValue::get(cmd), getContext().getObjCSelType());
+ args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
+ args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
+ getContext().BoolTy);
+
+ // FIXME: We shouldn't need to get the function info here, the
+ // runtime already should have computed it to build the function.
+ llvm::Instruction *CallInstruction;
+ RValue RV = EmitCall(getTypes().arrangeFreeFunctionCall(propType, args,
+ FunctionType::ExtInfo(),
+ RequiredArgs::All),
+ getPropertyFn, ReturnValueSlot(), args, nullptr,
+ &CallInstruction);
+ if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
+ call->setTailCall();
+
+ // We need to fix the type here. Ivars with copy & retain are
+ // always objects so we don't need to worry about complex or
+ // aggregates.
+ RV = RValue::get(Builder.CreateBitCast(
+ RV.getScalarVal(),
+ getTypes().ConvertType(getterMethod->getReturnType())));
+
+ EmitReturnOfRValue(RV, propType);
+
+ // objc_getProperty does an autorelease, so we should suppress ours.
+ AutoreleaseResult = false;
+
+ return;
+ }
+
+ case PropertyImplStrategy::CopyStruct:
+ emitStructGetterCall(*this, ivar, strategy.isAtomic(),
+ strategy.hasStrongMember());
+ return;
+
+ case PropertyImplStrategy::Expression:
+ case PropertyImplStrategy::SetPropertyAndExpressionGet: {
+ LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
+
+ QualType ivarType = ivar->getType();
+ switch (getEvaluationKind(ivarType)) {
+ case TEK_Complex: {
+ ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
+ EmitStoreOfComplex(pair,
+ MakeNaturalAlignAddrLValue(ReturnValue, ivarType),
+ /*init*/ true);
+ return;
+ }
+ case TEK_Aggregate:
+ // The return value slot is guaranteed to not be aliased, but
+ // that's not necessarily the same as "on the stack", so
+ // we still potentially need objc_memmove_collectable.
+ EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType);
+ return;
+ case TEK_Scalar: {
+ llvm::Value *value;
+ if (propType->isReferenceType()) {
+ value = LV.getAddress();
+ } else {
+ // We want to load and autoreleaseReturnValue ARC __weak ivars.
+ if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
+ value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
+
+ // Otherwise we want to do a simple load, suppressing the
+ // final autorelease.
+ } else {
+ value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
+ AutoreleaseResult = false;
+ }
+
+ value = Builder.CreateBitCast(value, ConvertType(propType));
+ value = Builder.CreateBitCast(
+ value, ConvertType(GetterMethodDecl->getReturnType()));
+ }
+
+ EmitReturnOfRValue(RValue::get(value), propType);
+ return;
+ }
+ }
+ llvm_unreachable("bad evaluation kind");
+ }
+
+ }
+ llvm_unreachable("bad @property implementation strategy!");
+}
+
+/// emitStructSetterCall - Call the runtime function to store the value
+/// from the first formal parameter into the given ivar.
+static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
+ ObjCIvarDecl *ivar) {
+ // objc_copyStruct (&structIvar, &Arg,
+ // sizeof (struct something), true, false);
+ CallArgList args;
+
+ // The first argument is the address of the ivar.
+ llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
+ CGF.LoadObjCSelf(), ivar, 0)
+ .getAddress();
+ ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
+ args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
+
+ // The second argument is the address of the parameter variable.
+ ParmVarDecl *argVar = *OMD->param_begin();
+ DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
+ VK_LValue, SourceLocation());
+ llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
+ argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
+ args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
+
+ // The third argument is the sizeof the type.
+ llvm::Value *size =
+ CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
+ args.add(RValue::get(size), CGF.getContext().getSizeType());
+
+ // The fourth argument is the 'isAtomic' flag.
+ args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
+
+ // The fifth argument is the 'hasStrong' flag.
+ // FIXME: should this really always be false?
+ args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
+
+ llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
+ CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
+ args,
+ FunctionType::ExtInfo(),
+ RequiredArgs::All),
+ copyStructFn, ReturnValueSlot(), args);
+}
+
+/// emitCPPObjectAtomicSetterCall - Call the runtime function to store
+/// the value from the first formal parameter into the given ivar, using
+/// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
+static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
+ ObjCMethodDecl *OMD,
+ ObjCIvarDecl *ivar,
+ llvm::Constant *AtomicHelperFn) {
+ // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
+ // AtomicHelperFn);
+ CallArgList args;
+
+ // The first argument is the address of the ivar.
+ llvm::Value *ivarAddr =
+ CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
+ CGF.LoadObjCSelf(), ivar, 0).getAddress();
+ ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
+ args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
+
+ // The second argument is the address of the parameter variable.
+ ParmVarDecl *argVar = *OMD->param_begin();
+ DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
+ VK_LValue, SourceLocation());
+ llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
+ argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
+ args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
+
+ // Third argument is the helper function.
+ args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
+
+ llvm::Value *copyCppAtomicObjectFn =
+ CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
+ CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
+ args,
+ FunctionType::ExtInfo(),
+ RequiredArgs::All),
+ copyCppAtomicObjectFn, ReturnValueSlot(), args);
+}
+
+
+static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
+ Expr *setter = PID->getSetterCXXAssignment();
+ if (!setter) return true;
+
+ // Sema only makes only of these when the ivar has a C++ class type,
+ // so the form is pretty constrained.
+
+ // An operator call is trivial if the function it calls is trivial.
+ // This also implies that there's nothing non-trivial going on with
+ // the arguments, because operator= can only be trivial if it's a
+ // synthesized assignment operator and therefore both parameters are
+ // references.
+ if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
+ if (const FunctionDecl *callee
+ = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
+ if (callee->isTrivial())
+ return true;
+ return false;
+ }
+
+ assert(isa<ExprWithCleanups>(setter));
+ return false;
+}
+
+static bool UseOptimizedSetter(CodeGenModule &CGM) {
+ if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
+ return false;
+ return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
+}
+
+void
+CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
+ const ObjCPropertyImplDecl *propImpl,
+ llvm::Constant *AtomicHelperFn) {
+ const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
+ ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
+ ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
+
+ // Just use the setter expression if Sema gave us one and it's
+ // non-trivial.
+ if (!hasTrivialSetExpr(propImpl)) {
+ if (!AtomicHelperFn)
+ // If non-atomic, assignment is called directly.
+ EmitStmt(propImpl->getSetterCXXAssignment());
+ else
+ // If atomic, assignment is called via a locking api.
+ emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
+ AtomicHelperFn);
+ return;
+ }
+
+ PropertyImplStrategy strategy(CGM, propImpl);
+ switch (strategy.getKind()) {
+ case PropertyImplStrategy::Native: {
+ // We don't need to do anything for a zero-size struct.
+ if (strategy.getIvarSize().isZero())
+ return;
+
+ llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()];
+
+ LValue ivarLValue =
+ EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
+ llvm::Value *ivarAddr = ivarLValue.getAddress();
+
+ // Currently, all atomic accesses have to be through integer
+ // types, so there's no point in trying to pick a prettier type.
+ llvm::Type *bitcastType =
+ llvm::Type::getIntNTy(getLLVMContext(),
+ getContext().toBits(strategy.getIvarSize()));
+ bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
+
+ // Cast both arguments to the chosen operation type.
+ argAddr = Builder.CreateBitCast(argAddr, bitcastType);
+ ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
+
+ // This bitcast load is likely to cause some nasty IR.
+ llvm::Value *load = Builder.CreateLoad(argAddr);
+
+ // Perform an atomic store. There are no memory ordering requirements.
+ llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
+ store->setAlignment(strategy.getIvarAlignment().getQuantity());
+ store->setAtomic(llvm::Unordered);
+ return;
+ }
+
+ case PropertyImplStrategy::GetSetProperty:
+ case PropertyImplStrategy::SetPropertyAndExpressionGet: {
+
+ llvm::Value *setOptimizedPropertyFn = nullptr;
+ llvm::Value *setPropertyFn = nullptr;
+ if (UseOptimizedSetter(CGM)) {
+ // 10.8 and iOS 6.0 code and GC is off
+ setOptimizedPropertyFn =
+ CGM.getObjCRuntime()
+ .GetOptimizedPropertySetFunction(strategy.isAtomic(),
+ strategy.isCopy());
+ if (!setOptimizedPropertyFn) {
+ CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
+ return;
+ }
+ }
+ else {
+ setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
+ if (!setPropertyFn) {
+ CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
+ return;
+ }
+ }
+
+ // Emit objc_setProperty((id) self, _cmd, offset, arg,
+ // <is-atomic>, <is-copy>).
+ llvm::Value *cmd =
+ Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]);
+ llvm::Value *self =
+ Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
+ llvm::Value *ivarOffset =
+ EmitIvarOffset(classImpl->getClassInterface(), ivar);
+ llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()];
+ arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy);
+
+ CallArgList args;
+ args.add(RValue::get(self), getContext().getObjCIdType());
+ args.add(RValue::get(cmd), getContext().getObjCSelType());
+ if (setOptimizedPropertyFn) {
+ args.add(RValue::get(arg), getContext().getObjCIdType());
+ args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
+ EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
+ FunctionType::ExtInfo(),
+ RequiredArgs::All),
+ setOptimizedPropertyFn, ReturnValueSlot(), args);
+ } else {
+ args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
+ args.add(RValue::get(arg), getContext().getObjCIdType());
+ args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
+ getContext().BoolTy);
+ args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
+ getContext().BoolTy);
+ // FIXME: We shouldn't need to get the function info here, the runtime
+ // already should have computed it to build the function.
+ EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
+ FunctionType::ExtInfo(),
+ RequiredArgs::All),
+ setPropertyFn, ReturnValueSlot(), args);
+ }
+
+ return;
+ }
+
+ case PropertyImplStrategy::CopyStruct:
+ emitStructSetterCall(*this, setterMethod, ivar);
+ return;
+
+ case PropertyImplStrategy::Expression:
+ break;
+ }
+
+ // Otherwise, fake up some ASTs and emit a normal assignment.
+ ValueDecl *selfDecl = setterMethod->getSelfDecl();
+ DeclRefExpr self(selfDecl, false, selfDecl->getType(),
+ VK_LValue, SourceLocation());
+ ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
+ selfDecl->getType(), CK_LValueToRValue, &self,
+ VK_RValue);
+ ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
+ SourceLocation(), SourceLocation(),
+ &selfLoad, true, true);
+
+ ParmVarDecl *argDecl = *setterMethod->param_begin();
+ QualType argType = argDecl->getType().getNonReferenceType();
+ DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation());
+ ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
+ argType.getUnqualifiedType(), CK_LValueToRValue,
+ &arg, VK_RValue);
+
+ // The property type can differ from the ivar type in some situations with
+ // Objective-C pointer types, we can always bit cast the RHS in these cases.
+ // The following absurdity is just to ensure well-formed IR.
+ CastKind argCK = CK_NoOp;
+ if (ivarRef.getType()->isObjCObjectPointerType()) {
+ if (argLoad.getType()->isObjCObjectPointerType())
+ argCK = CK_BitCast;
+ else if (argLoad.getType()->isBlockPointerType())
+ argCK = CK_BlockPointerToObjCPointerCast;
+ else
+ argCK = CK_CPointerToObjCPointerCast;
+ } else if (ivarRef.getType()->isBlockPointerType()) {
+ if (argLoad.getType()->isBlockPointerType())
+ argCK = CK_BitCast;
+ else
+ argCK = CK_AnyPointerToBlockPointerCast;
+ } else if (ivarRef.getType()->isPointerType()) {
+ argCK = CK_BitCast;
+ }
+ ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
+ ivarRef.getType(), argCK, &argLoad,
+ VK_RValue);
+ Expr *finalArg = &argLoad;
+ if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
+ argLoad.getType()))
+ finalArg = &argCast;
+
+
+ BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
+ ivarRef.getType(), VK_RValue, OK_Ordinary,
+ SourceLocation(), false);
+ EmitStmt(&assign);
+}
+
+/// \brief Generate an Objective-C property setter function.
+///
+/// The given Decl must be an ObjCImplementationDecl. \@synthesize
+/// is illegal within a category.
+void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
+ const ObjCPropertyImplDecl *PID) {
+ llvm::Constant *AtomicHelperFn =
+ CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
+ const ObjCPropertyDecl *PD = PID->getPropertyDecl();
+ ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
+ assert(OMD && "Invalid call to generate setter (empty method)");
+ StartObjCMethod(OMD, IMP->getClassInterface());
+
+ generateObjCSetterBody(IMP, PID, AtomicHelperFn);
+
+ FinishFunction();
+}
+
+namespace {
+ struct DestroyIvar : EHScopeStack::Cleanup {
+ private:
+ llvm::Value *addr;
+ const ObjCIvarDecl *ivar;
+ CodeGenFunction::Destroyer *destroyer;
+ bool useEHCleanupForArray;
+ public:
+ DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
+ CodeGenFunction::Destroyer *destroyer,
+ bool useEHCleanupForArray)
+ : addr(addr), ivar(ivar), destroyer(destroyer),
+ useEHCleanupForArray(useEHCleanupForArray) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ LValue lvalue
+ = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
+ CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
+ flags.isForNormalCleanup() && useEHCleanupForArray);
+ }
+ };
+}
+
+/// Like CodeGenFunction::destroyARCStrong, but do it with a call.
+static void destroyARCStrongWithStore(CodeGenFunction &CGF,
+ llvm::Value *addr,
+ QualType type) {
+ llvm::Value *null = getNullForVariable(addr);
+ CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
+}
+
+static void emitCXXDestructMethod(CodeGenFunction &CGF,
+ ObjCImplementationDecl *impl) {
+ CodeGenFunction::RunCleanupsScope scope(CGF);
+
+ llvm::Value *self = CGF.LoadObjCSelf();
+
+ const ObjCInterfaceDecl *iface = impl->getClassInterface();
+ for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
+ ivar; ivar = ivar->getNextIvar()) {
+ QualType type = ivar->getType();
+
+ // Check whether the ivar is a destructible type.
+ QualType::DestructionKind dtorKind = type.isDestructedType();
+ if (!dtorKind) continue;
+
+ CodeGenFunction::Destroyer *destroyer = nullptr;
+
+ // Use a call to objc_storeStrong to destroy strong ivars, for the
+ // general benefit of the tools.
+ if (dtorKind == QualType::DK_objc_strong_lifetime) {
+ destroyer = destroyARCStrongWithStore;
+
+ // Otherwise use the default for the destruction kind.
+ } else {
+ destroyer = CGF.getDestroyer(dtorKind);
+ }
+
+ CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
+
+ CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
+ cleanupKind & EHCleanup);
+ }
+
+ assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
+}
+
+void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
+ ObjCMethodDecl *MD,
+ bool ctor) {
+ MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
+ StartObjCMethod(MD, IMP->getClassInterface());
+
+ // Emit .cxx_construct.
+ if (ctor) {
+ // Suppress the final autorelease in ARC.
+ AutoreleaseResult = false;
+
+ for (const auto *IvarInit : IMP->inits()) {
+ FieldDecl *Field = IvarInit->getAnyMember();
+ ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
+ LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
+ LoadObjCSelf(), Ivar, 0);
+ EmitAggExpr(IvarInit->getInit(),
+ AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
+ AggValueSlot::DoesNotNeedGCBarriers,
+ AggValueSlot::IsNotAliased));
+ }
+ // constructor returns 'self'.
+ CodeGenTypes &Types = CGM.getTypes();
+ QualType IdTy(CGM.getContext().getObjCIdType());
+ llvm::Value *SelfAsId =
+ Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
+ EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
+
+ // Emit .cxx_destruct.
+ } else {
+ emitCXXDestructMethod(*this, IMP);
+ }
+ FinishFunction();
+}
+
+bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) {
+ CGFunctionInfo::const_arg_iterator it = FI.arg_begin();
+ it++; it++;
+ const ABIArgInfo &AI = it->info;
+ // FIXME. Is this sufficient check?
+ return (AI.getKind() == ABIArgInfo::Indirect);
+}
+
+bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) {
+ if (CGM.getLangOpts().getGC() == LangOptions::NonGC)
+ return false;
+ if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>())
+ return FDTTy->getDecl()->hasObjectMember();
+ return false;
+}
+
+llvm::Value *CodeGenFunction::LoadObjCSelf() {
+ VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
+ DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
+ Self->getType(), VK_LValue, SourceLocation());
+ return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
+}
+
+QualType CodeGenFunction::TypeOfSelfObject() {
+ const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
+ ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
+ const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
+ getContext().getCanonicalType(selfDecl->getType()));
+ return PTy->getPointeeType();
+}
+
+void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
+ llvm::Constant *EnumerationMutationFn =
+ CGM.getObjCRuntime().EnumerationMutationFunction();
+
+ if (!EnumerationMutationFn) {
+ CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
+ return;
+ }
+
+ CGDebugInfo *DI = getDebugInfo();
+ if (DI)
+ DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
+
+ // The local variable comes into scope immediately.
+ AutoVarEmission variable = AutoVarEmission::invalid();
+ if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
+ variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
+
+ JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
+
+ // Fast enumeration state.
+ QualType StateTy = CGM.getObjCFastEnumerationStateType();
+ llvm::AllocaInst *StatePtr = CreateMemTemp(StateTy, "state.ptr");
+ EmitNullInitialization(StatePtr, StateTy);
+
+ // Number of elements in the items array.
+ static const unsigned NumItems = 16;
+
+ // Fetch the countByEnumeratingWithState:objects:count: selector.
+ IdentifierInfo *II[] = {
+ &CGM.getContext().Idents.get("countByEnumeratingWithState"),
+ &CGM.getContext().Idents.get("objects"),
+ &CGM.getContext().Idents.get("count")
+ };
+ Selector FastEnumSel =
+ CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
+
+ QualType ItemsTy =
+ getContext().getConstantArrayType(getContext().getObjCIdType(),
+ llvm::APInt(32, NumItems),
+ ArrayType::Normal, 0);
+ llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
+
+ // Emit the collection pointer. In ARC, we do a retain.
+ llvm::Value *Collection;
+ if (getLangOpts().ObjCAutoRefCount) {
+ Collection = EmitARCRetainScalarExpr(S.getCollection());
+
+ // Enter a cleanup to do the release.
+ EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
+ } else {
+ Collection = EmitScalarExpr(S.getCollection());
+ }
+
+ // The 'continue' label needs to appear within the cleanup for the
+ // collection object.
+ JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
+
+ // Send it our message:
+ CallArgList Args;
+
+ // The first argument is a temporary of the enumeration-state type.
+ Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy));
+
+ // The second argument is a temporary array with space for NumItems
+ // pointers. We'll actually be loading elements from the array
+ // pointer written into the control state; this buffer is so that
+ // collections that *aren't* backed by arrays can still queue up
+ // batches of elements.
+ Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy));
+
+ // The third argument is the capacity of that temporary array.
+ llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy);
+ llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems);
+ Args.add(RValue::get(Count), getContext().UnsignedLongTy);
+
+ // Start the enumeration.
+ RValue CountRV =
+ CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
+ getContext().UnsignedLongTy,
+ FastEnumSel,
+ Collection, Args);
+
+ // The initial number of objects that were returned in the buffer.
+ llvm::Value *initialBufferLimit = CountRV.getScalarVal();
+
+ llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
+ llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
+
+ llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy);
+
+ // If the limit pointer was zero to begin with, the collection is
+ // empty; skip all this. Set the branch weight assuming this has the same
+ // probability of exiting the loop as any other loop exit.
+ uint64_t EntryCount = getCurrentProfileCount();
+ Builder.CreateCondBr(
+ Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
+ LoopInitBB,
+ createProfileWeights(EntryCount, getProfileCount(S.getBody())));
+
+ // Otherwise, initialize the loop.
+ EmitBlock(LoopInitBB);
+
+ // Save the initial mutations value. This is the value at an
+ // address that was written into the state object by
+ // countByEnumeratingWithState:objects:count:.
+ llvm::Value *StateMutationsPtrPtr = Builder.CreateStructGEP(
+ StatePtr->getAllocatedType(), StatePtr, 2, "mutationsptr.ptr");
+ llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr,
+ "mutationsptr");
+
+ llvm::Value *initialMutations =
+ Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations");
+
+ // Start looping. This is the point we return to whenever we have a
+ // fresh, non-empty batch of objects.
+ llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
+ EmitBlock(LoopBodyBB);
+
+ // The current index into the buffer.
+ llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index");
+ index->addIncoming(zero, LoopInitBB);
+
+ // The current buffer size.
+ llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count");
+ count->addIncoming(initialBufferLimit, LoopInitBB);
+
+ incrementProfileCounter(&S);
+
+ // Check whether the mutations value has changed from where it was
+ // at start. StateMutationsPtr should actually be invariant between
+ // refreshes.
+ StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
+ llvm::Value *currentMutations
+ = Builder.CreateLoad(StateMutationsPtr, "statemutations");
+
+ llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
+ llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
+
+ Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
+ WasNotMutatedBB, WasMutatedBB);
+
+ // If so, call the enumeration-mutation function.
+ EmitBlock(WasMutatedBB);
+ llvm::Value *V =
+ Builder.CreateBitCast(Collection,
+ ConvertType(getContext().getObjCIdType()));
+ CallArgList Args2;
+ Args2.add(RValue::get(V), getContext().getObjCIdType());
+ // FIXME: We shouldn't need to get the function info here, the runtime already
+ // should have computed it to build the function.
+ EmitCall(CGM.getTypes().arrangeFreeFunctionCall(getContext().VoidTy, Args2,
+ FunctionType::ExtInfo(),
+ RequiredArgs::All),
+ EnumerationMutationFn, ReturnValueSlot(), Args2);
+
+ // Otherwise, or if the mutation function returns, just continue.
+ EmitBlock(WasNotMutatedBB);
+
+ // Initialize the element variable.
+ RunCleanupsScope elementVariableScope(*this);
+ bool elementIsVariable;
+ LValue elementLValue;
+ QualType elementType;
+ if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
+ // Initialize the variable, in case it's a __block variable or something.
+ EmitAutoVarInit(variable);
+
+ const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
+ DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(),
+ VK_LValue, SourceLocation());
+ elementLValue = EmitLValue(&tempDRE);
+ elementType = D->getType();
+ elementIsVariable = true;
+
+ if (D->isARCPseudoStrong())
+ elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
+ } else {
+ elementLValue = LValue(); // suppress warning
+ elementType = cast<Expr>(S.getElement())->getType();
+ elementIsVariable = false;
+ }
+ llvm::Type *convertedElementType = ConvertType(elementType);
+
+ // Fetch the buffer out of the enumeration state.
+ // TODO: this pointer should actually be invariant between
+ // refreshes, which would help us do certain loop optimizations.
+ llvm::Value *StateItemsPtr = Builder.CreateStructGEP(
+ StatePtr->getAllocatedType(), StatePtr, 1, "stateitems.ptr");
+ llvm::Value *EnumStateItems =
+ Builder.CreateLoad(StateItemsPtr, "stateitems");
+
+ // Fetch the value at the current index from the buffer.
+ llvm::Value *CurrentItemPtr =
+ Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
+ llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr);
+
+ // Cast that value to the right type.
+ CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
+ "currentitem");
+
+ // Make sure we have an l-value. Yes, this gets evaluated every
+ // time through the loop.
+ if (!elementIsVariable) {
+ elementLValue = EmitLValue(cast<Expr>(S.getElement()));
+ EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
+ } else {
+ EmitScalarInit(CurrentItem, elementLValue);
+ }
+
+ // If we do have an element variable, this assignment is the end of
+ // its initialization.
+ if (elementIsVariable)
+ EmitAutoVarCleanups(variable);
+
+ // Perform the loop body, setting up break and continue labels.
+ BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
+ {
+ RunCleanupsScope Scope(*this);
+ EmitStmt(S.getBody());
+ }
+ BreakContinueStack.pop_back();
+
+ // Destroy the element variable now.
+ elementVariableScope.ForceCleanup();
+
+ // Check whether there are more elements.
+ EmitBlock(AfterBody.getBlock());
+
+ llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
+
+ // First we check in the local buffer.
+ llvm::Value *indexPlusOne
+ = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1));
+
+ // If we haven't overrun the buffer yet, we can continue.
+ // Set the branch weights based on the simplifying assumption that this is
+ // like a while-loop, i.e., ignoring that the false branch fetches more
+ // elements and then returns to the loop.
+ Builder.CreateCondBr(
+ Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
+ createProfileWeights(getProfileCount(S.getBody()), EntryCount));
+
+ index->addIncoming(indexPlusOne, AfterBody.getBlock());
+ count->addIncoming(count, AfterBody.getBlock());
+
+ // Otherwise, we have to fetch more elements.
+ EmitBlock(FetchMoreBB);
+
+ CountRV =
+ CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
+ getContext().UnsignedLongTy,
+ FastEnumSel,
+ Collection, Args);
+
+ // If we got a zero count, we're done.
+ llvm::Value *refetchCount = CountRV.getScalarVal();
+
+ // (note that the message send might split FetchMoreBB)
+ index->addIncoming(zero, Builder.GetInsertBlock());
+ count->addIncoming(refetchCount, Builder.GetInsertBlock());
+
+ Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
+ EmptyBB, LoopBodyBB);
+
+ // No more elements.
+ EmitBlock(EmptyBB);
+
+ if (!elementIsVariable) {
+ // If the element was not a declaration, set it to be null.
+
+ llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
+ elementLValue = EmitLValue(cast<Expr>(S.getElement()));
+ EmitStoreThroughLValue(RValue::get(null), elementLValue);
+ }
+
+ if (DI)
+ DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
+
+ // Leave the cleanup we entered in ARC.
+ if (getLangOpts().ObjCAutoRefCount)
+ PopCleanupBlock();
+
+ EmitBlock(LoopEnd.getBlock());
+}
+
+void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
+ CGM.getObjCRuntime().EmitTryStmt(*this, S);
+}
+
+void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
+ CGM.getObjCRuntime().EmitThrowStmt(*this, S);
+}
+
+void CodeGenFunction::EmitObjCAtSynchronizedStmt(
+ const ObjCAtSynchronizedStmt &S) {
+ CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
+}
+
+/// Produce the code for a CK_ARCProduceObject. Just does a
+/// primitive retain.
+llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type,
+ llvm::Value *value) {
+ return EmitARCRetain(type, value);
+}
+
+namespace {
+ struct CallObjCRelease : EHScopeStack::Cleanup {
+ CallObjCRelease(llvm::Value *object) : object(object) {}
+ llvm::Value *object;
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ // Releases at the end of the full-expression are imprecise.
+ CGF.EmitARCRelease(object, ARCImpreciseLifetime);
+ }
+ };
+}
+
+/// Produce the code for a CK_ARCConsumeObject. Does a primitive
+/// release at the end of the full-expression.
+llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
+ llvm::Value *object) {
+ // If we're in a conditional branch, we need to make the cleanup
+ // conditional.
+ pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
+ return object;
+}
+
+llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
+ llvm::Value *value) {
+ return EmitARCRetainAutorelease(type, value);
+}
+
+/// Given a number of pointers, inform the optimizer that they're
+/// being intrinsically used up until this point in the program.
+void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
+ llvm::Constant *&fn = CGM.getARCEntrypoints().clang_arc_use;
+ if (!fn) {
+ llvm::FunctionType *fnType =
+ llvm::FunctionType::get(CGM.VoidTy, None, true);
+ fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use");
+ }
+
+ // This isn't really a "runtime" function, but as an intrinsic it
+ // doesn't really matter as long as we align things up.
+ EmitNounwindRuntimeCall(fn, values);
+}
+
+
+static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM,
+ llvm::FunctionType *type,
+ StringRef fnName) {
+ llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName);
+
+ if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) {
+ // If the target runtime doesn't naturally support ARC, emit weak
+ // references to the runtime support library. We don't really
+ // permit this to fail, but we need a particular relocation style.
+ if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
+ f->setLinkage(llvm::Function::ExternalWeakLinkage);
+ } else if (fnName == "objc_retain" || fnName == "objc_release") {
+ // If we have Native ARC, set nonlazybind attribute for these APIs for
+ // performance.
+ f->addFnAttr(llvm::Attribute::NonLazyBind);
+ }
+ }
+
+ return fn;
+}
+
+/// Perform an operation having the signature
+/// i8* (i8*)
+/// where a null input causes a no-op and returns null.
+static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF,
+ llvm::Value *value,
+ llvm::Constant *&fn,
+ StringRef fnName,
+ bool isTailCall = false) {
+ if (isa<llvm::ConstantPointerNull>(value)) return value;
+
+ if (!fn) {
+ llvm::FunctionType *fnType =
+ llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
+ fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
+ }
+
+ // Cast the argument to 'id'.
+ llvm::Type *origType = value->getType();
+ value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
+
+ // Call the function.
+ llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
+ if (isTailCall)
+ call->setTailCall();
+
+ // Cast the result back to the original type.
+ return CGF.Builder.CreateBitCast(call, origType);
+}
+
+/// Perform an operation having the following signature:
+/// i8* (i8**)
+static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF,
+ llvm::Value *addr,
+ llvm::Constant *&fn,
+ StringRef fnName) {
+ if (!fn) {
+ llvm::FunctionType *fnType =
+ llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false);
+ fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
+ }
+
+ // Cast the argument to 'id*'.
+ llvm::Type *origType = addr->getType();
+ addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
+
+ // Call the function.
+ llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr);
+
+ // Cast the result back to a dereference of the original type.
+ if (origType != CGF.Int8PtrPtrTy)
+ result = CGF.Builder.CreateBitCast(result,
+ cast<llvm::PointerType>(origType)->getElementType());
+
+ return result;
+}
+
+/// Perform an operation having the following signature:
+/// i8* (i8**, i8*)
+static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF,
+ llvm::Value *addr,
+ llvm::Value *value,
+ llvm::Constant *&fn,
+ StringRef fnName,
+ bool ignored) {
+ assert(cast<llvm::PointerType>(addr->getType())->getElementType()
+ == value->getType());
+
+ if (!fn) {
+ llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy };
+
+ llvm::FunctionType *fnType
+ = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false);
+ fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
+ }
+
+ llvm::Type *origType = value->getType();
+
+ llvm::Value *args[] = {
+ CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy),
+ CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
+ };
+ llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
+
+ if (ignored) return nullptr;
+
+ return CGF.Builder.CreateBitCast(result, origType);
+}
+
+/// Perform an operation having the following signature:
+/// void (i8**, i8**)
+static void emitARCCopyOperation(CodeGenFunction &CGF,
+ llvm::Value *dst,
+ llvm::Value *src,
+ llvm::Constant *&fn,
+ StringRef fnName) {
+ assert(dst->getType() == src->getType());
+
+ if (!fn) {
+ llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy };
+
+ llvm::FunctionType *fnType
+ = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false);
+ fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
+ }
+
+ llvm::Value *args[] = {
+ CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy),
+ CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy)
+ };
+ CGF.EmitNounwindRuntimeCall(fn, args);
+}
+
+/// Produce the code to do a retain. Based on the type, calls one of:
+/// call i8* \@objc_retain(i8* %value)
+/// call i8* \@objc_retainBlock(i8* %value)
+llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
+ if (type->isBlockPointerType())
+ return EmitARCRetainBlock(value, /*mandatory*/ false);
+ else
+ return EmitARCRetainNonBlock(value);
+}
+
+/// Retain the given object, with normal retain semantics.
+/// call i8* \@objc_retain(i8* %value)
+llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
+ return emitARCValueOperation(*this, value,
+ CGM.getARCEntrypoints().objc_retain,
+ "objc_retain");
+}
+
+/// Retain the given block, with _Block_copy semantics.
+/// call i8* \@objc_retainBlock(i8* %value)
+///
+/// \param mandatory - If false, emit the call with metadata
+/// indicating that it's okay for the optimizer to eliminate this call
+/// if it can prove that the block never escapes except down the stack.
+llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
+ bool mandatory) {
+ llvm::Value *result
+ = emitARCValueOperation(*this, value,
+ CGM.getARCEntrypoints().objc_retainBlock,
+ "objc_retainBlock");
+
+ // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
+ // tell the optimizer that it doesn't need to do this copy if the
+ // block doesn't escape, where being passed as an argument doesn't
+ // count as escaping.
+ if (!mandatory && isa<llvm::Instruction>(result)) {
+ llvm::CallInst *call
+ = cast<llvm::CallInst>(result->stripPointerCasts());
+ assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock);
+
+ call->setMetadata("clang.arc.copy_on_escape",
+ llvm::MDNode::get(Builder.getContext(), None));
+ }
+
+ return result;
+}
+
+/// Retain the given object which is the result of a function call.
+/// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
+///
+/// Yes, this function name is one character away from a different
+/// call with completely different semantics.
+llvm::Value *
+CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
+ // Fetch the void(void) inline asm which marks that we're going to
+ // retain the autoreleased return value.
+ llvm::InlineAsm *&marker
+ = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker;
+ if (!marker) {
+ StringRef assembly
+ = CGM.getTargetCodeGenInfo()
+ .getARCRetainAutoreleasedReturnValueMarker();
+
+ // If we have an empty assembly string, there's nothing to do.
+ if (assembly.empty()) {
+
+ // Otherwise, at -O0, build an inline asm that we're going to call
+ // in a moment.
+ } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
+ llvm::FunctionType *type =
+ llvm::FunctionType::get(VoidTy, /*variadic*/false);
+
+ marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
+
+ // If we're at -O1 and above, we don't want to litter the code
+ // with this marker yet, so leave a breadcrumb for the ARC
+ // optimizer to pick up.
+ } else {
+ llvm::NamedMDNode *metadata =
+ CGM.getModule().getOrInsertNamedMetadata(
+ "clang.arc.retainAutoreleasedReturnValueMarker");
+ assert(metadata->getNumOperands() <= 1);
+ if (metadata->getNumOperands() == 0) {
+ metadata->addOperand(llvm::MDNode::get(
+ getLLVMContext(), llvm::MDString::get(getLLVMContext(), assembly)));
+ }
+ }
+ }
+
+ // Call the marker asm if we made one, which we do only at -O0.
+ if (marker)
+ Builder.CreateCall(marker, {});
+
+ return emitARCValueOperation(*this, value,
+ CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue,
+ "objc_retainAutoreleasedReturnValue");
+}
+
+/// Release the given object.
+/// call void \@objc_release(i8* %value)
+void CodeGenFunction::EmitARCRelease(llvm::Value *value,
+ ARCPreciseLifetime_t precise) {
+ if (isa<llvm::ConstantPointerNull>(value)) return;
+
+ llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release;
+ if (!fn) {
+ llvm::FunctionType *fnType =
+ llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
+ fn = createARCRuntimeFunction(CGM, fnType, "objc_release");
+ }
+
+ // Cast the argument to 'id'.
+ value = Builder.CreateBitCast(value, Int8PtrTy);
+
+ // Call objc_release.
+ llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
+
+ if (precise == ARCImpreciseLifetime) {
+ call->setMetadata("clang.imprecise_release",
+ llvm::MDNode::get(Builder.getContext(), None));
+ }
+}
+
+/// Destroy a __strong variable.
+///
+/// At -O0, emit a call to store 'null' into the address;
+/// instrumenting tools prefer this because the address is exposed,
+/// but it's relatively cumbersome to optimize.
+///
+/// At -O1 and above, just load and call objc_release.
+///
+/// call void \@objc_storeStrong(i8** %addr, i8* null)
+void CodeGenFunction::EmitARCDestroyStrong(llvm::Value *addr,
+ ARCPreciseLifetime_t precise) {
+ if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
+ llvm::PointerType *addrTy = cast<llvm::PointerType>(addr->getType());
+ llvm::Value *null = llvm::ConstantPointerNull::get(
+ cast<llvm::PointerType>(addrTy->getElementType()));
+ EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
+ return;
+ }
+
+ llvm::Value *value = Builder.CreateLoad(addr);
+ EmitARCRelease(value, precise);
+}
+
+/// Store into a strong object. Always calls this:
+/// call void \@objc_storeStrong(i8** %addr, i8* %value)
+llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr,
+ llvm::Value *value,
+ bool ignored) {
+ assert(cast<llvm::PointerType>(addr->getType())->getElementType()
+ == value->getType());
+
+ llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong;
+ if (!fn) {
+ llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy };
+ llvm::FunctionType *fnType
+ = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false);
+ fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong");
+ }
+
+ llvm::Value *args[] = {
+ Builder.CreateBitCast(addr, Int8PtrPtrTy),
+ Builder.CreateBitCast(value, Int8PtrTy)
+ };
+ EmitNounwindRuntimeCall(fn, args);
+
+ if (ignored) return nullptr;
+ return value;
+}
+
+/// Store into a strong object. Sometimes calls this:
+/// call void \@objc_storeStrong(i8** %addr, i8* %value)
+/// Other times, breaks it down into components.
+llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
+ llvm::Value *newValue,
+ bool ignored) {
+ QualType type = dst.getType();
+ bool isBlock = type->isBlockPointerType();
+
+ // Use a store barrier at -O0 unless this is a block type or the
+ // lvalue is inadequately aligned.
+ if (shouldUseFusedARCCalls() &&
+ !isBlock &&
+ (dst.getAlignment().isZero() ||
+ dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
+ return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
+ }
+
+ // Otherwise, split it out.
+
+ // Retain the new value.
+ newValue = EmitARCRetain(type, newValue);
+
+ // Read the old value.
+ llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
+
+ // Store. We do this before the release so that any deallocs won't
+ // see the old value.
+ EmitStoreOfScalar(newValue, dst);
+
+ // Finally, release the old value.
+ EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
+
+ return newValue;
+}
+
+/// Autorelease the given object.
+/// call i8* \@objc_autorelease(i8* %value)
+llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
+ return emitARCValueOperation(*this, value,
+ CGM.getARCEntrypoints().objc_autorelease,
+ "objc_autorelease");
+}
+
+/// Autorelease the given object.
+/// call i8* \@objc_autoreleaseReturnValue(i8* %value)
+llvm::Value *
+CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
+ return emitARCValueOperation(*this, value,
+ CGM.getARCEntrypoints().objc_autoreleaseReturnValue,
+ "objc_autoreleaseReturnValue",
+ /*isTailCall*/ true);
+}
+
+/// Do a fused retain/autorelease of the given object.
+/// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
+llvm::Value *
+CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
+ return emitARCValueOperation(*this, value,
+ CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue,
+ "objc_retainAutoreleaseReturnValue",
+ /*isTailCall*/ true);
+}
+
+/// Do a fused retain/autorelease of the given object.
+/// call i8* \@objc_retainAutorelease(i8* %value)
+/// or
+/// %retain = call i8* \@objc_retainBlock(i8* %value)
+/// call i8* \@objc_autorelease(i8* %retain)
+llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
+ llvm::Value *value) {
+ if (!type->isBlockPointerType())
+ return EmitARCRetainAutoreleaseNonBlock(value);
+
+ if (isa<llvm::ConstantPointerNull>(value)) return value;
+
+ llvm::Type *origType = value->getType();
+ value = Builder.CreateBitCast(value, Int8PtrTy);
+ value = EmitARCRetainBlock(value, /*mandatory*/ true);
+ value = EmitARCAutorelease(value);
+ return Builder.CreateBitCast(value, origType);
+}
+
+/// Do a fused retain/autorelease of the given object.
+/// call i8* \@objc_retainAutorelease(i8* %value)
+llvm::Value *
+CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
+ return emitARCValueOperation(*this, value,
+ CGM.getARCEntrypoints().objc_retainAutorelease,
+ "objc_retainAutorelease");
+}
+
+/// i8* \@objc_loadWeak(i8** %addr)
+/// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
+llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) {
+ return emitARCLoadOperation(*this, addr,
+ CGM.getARCEntrypoints().objc_loadWeak,
+ "objc_loadWeak");
+}
+
+/// i8* \@objc_loadWeakRetained(i8** %addr)
+llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) {
+ return emitARCLoadOperation(*this, addr,
+ CGM.getARCEntrypoints().objc_loadWeakRetained,
+ "objc_loadWeakRetained");
+}
+
+/// i8* \@objc_storeWeak(i8** %addr, i8* %value)
+/// Returns %value.
+llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr,
+ llvm::Value *value,
+ bool ignored) {
+ return emitARCStoreOperation(*this, addr, value,
+ CGM.getARCEntrypoints().objc_storeWeak,
+ "objc_storeWeak", ignored);
+}
+
+/// i8* \@objc_initWeak(i8** %addr, i8* %value)
+/// Returns %value. %addr is known to not have a current weak entry.
+/// Essentially equivalent to:
+/// *addr = nil; objc_storeWeak(addr, value);
+void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) {
+ // If we're initializing to null, just write null to memory; no need
+ // to get the runtime involved. But don't do this if optimization
+ // is enabled, because accounting for this would make the optimizer
+ // much more complicated.
+ if (isa<llvm::ConstantPointerNull>(value) &&
+ CGM.getCodeGenOpts().OptimizationLevel == 0) {
+ Builder.CreateStore(value, addr);
+ return;
+ }
+
+ emitARCStoreOperation(*this, addr, value,
+ CGM.getARCEntrypoints().objc_initWeak,
+ "objc_initWeak", /*ignored*/ true);
+}
+
+/// void \@objc_destroyWeak(i8** %addr)
+/// Essentially objc_storeWeak(addr, nil).
+void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) {
+ llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak;
+ if (!fn) {
+ llvm::FunctionType *fnType =
+ llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false);
+ fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak");
+ }
+
+ // Cast the argument to 'id*'.
+ addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
+
+ EmitNounwindRuntimeCall(fn, addr);
+}
+
+/// void \@objc_moveWeak(i8** %dest, i8** %src)
+/// Disregards the current value in %dest. Leaves %src pointing to nothing.
+/// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
+void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) {
+ emitARCCopyOperation(*this, dst, src,
+ CGM.getARCEntrypoints().objc_moveWeak,
+ "objc_moveWeak");
+}
+
+/// void \@objc_copyWeak(i8** %dest, i8** %src)
+/// Disregards the current value in %dest. Essentially
+/// objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
+void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) {
+ emitARCCopyOperation(*this, dst, src,
+ CGM.getARCEntrypoints().objc_copyWeak,
+ "objc_copyWeak");
+}
+
+/// Produce the code to do a objc_autoreleasepool_push.
+/// call i8* \@objc_autoreleasePoolPush(void)
+llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
+ llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush;
+ if (!fn) {
+ llvm::FunctionType *fnType =
+ llvm::FunctionType::get(Int8PtrTy, false);
+ fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush");
+ }
+
+ return EmitNounwindRuntimeCall(fn);
+}
+
+/// Produce the code to do a primitive release.
+/// call void \@objc_autoreleasePoolPop(i8* %ptr)
+void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
+ assert(value->getType() == Int8PtrTy);
+
+ llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop;
+ if (!fn) {
+ llvm::FunctionType *fnType =
+ llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
+
+ // We don't want to use a weak import here; instead we should not
+ // fall into this path.
+ fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop");
+ }
+
+ // objc_autoreleasePoolPop can throw.
+ EmitRuntimeCallOrInvoke(fn, value);
+}
+
+/// Produce the code to do an MRR version objc_autoreleasepool_push.
+/// Which is: [[NSAutoreleasePool alloc] init];
+/// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
+/// init is declared as: - (id) init; in its NSObject super class.
+///
+llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
+ CGObjCRuntime &Runtime = CGM.getObjCRuntime();
+ llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
+ // [NSAutoreleasePool alloc]
+ IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
+ Selector AllocSel = getContext().Selectors.getSelector(0, &II);
+ CallArgList Args;
+ RValue AllocRV =
+ Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
+ getContext().getObjCIdType(),
+ AllocSel, Receiver, Args);
+
+ // [Receiver init]
+ Receiver = AllocRV.getScalarVal();
+ II = &CGM.getContext().Idents.get("init");
+ Selector InitSel = getContext().Selectors.getSelector(0, &II);
+ RValue InitRV =
+ Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
+ getContext().getObjCIdType(),
+ InitSel, Receiver, Args);
+ return InitRV.getScalarVal();
+}
+
+/// Produce the code to do a primitive release.
+/// [tmp drain];
+void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
+ IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
+ Selector DrainSel = getContext().Selectors.getSelector(0, &II);
+ CallArgList Args;
+ CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
+ getContext().VoidTy, DrainSel, Arg, Args);
+}
+
+void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
+ llvm::Value *addr,
+ QualType type) {
+ CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
+}
+
+void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
+ llvm::Value *addr,
+ QualType type) {
+ CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
+}
+
+void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
+ llvm::Value *addr,
+ QualType type) {
+ CGF.EmitARCDestroyWeak(addr);
+}
+
+namespace {
+ struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup {
+ llvm::Value *Token;
+
+ CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ CGF.EmitObjCAutoreleasePoolPop(Token);
+ }
+ };
+ struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup {
+ llvm::Value *Token;
+
+ CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ CGF.EmitObjCMRRAutoreleasePoolPop(Token);
+ }
+ };
+}
+
+void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
+ if (CGM.getLangOpts().ObjCAutoRefCount)
+ EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
+ else
+ EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
+}
+
+static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
+ LValue lvalue,
+ QualType type) {
+ switch (type.getObjCLifetime()) {
+ case Qualifiers::OCL_None:
+ case Qualifiers::OCL_ExplicitNone:
+ case Qualifiers::OCL_Strong:
+ case Qualifiers::OCL_Autoreleasing:
+ return TryEmitResult(CGF.EmitLoadOfLValue(lvalue,
+ SourceLocation()).getScalarVal(),
+ false);
+
+ case Qualifiers::OCL_Weak:
+ return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()),
+ true);
+ }
+
+ llvm_unreachable("impossible lifetime!");
+}
+
+static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
+ const Expr *e) {
+ e = e->IgnoreParens();
+ QualType type = e->getType();
+
+ // If we're loading retained from a __strong xvalue, we can avoid
+ // an extra retain/release pair by zeroing out the source of this
+ // "move" operation.
+ if (e->isXValue() &&
+ !type.isConstQualified() &&
+ type.getObjCLifetime() == Qualifiers::OCL_Strong) {
+ // Emit the lvalue.
+ LValue lv = CGF.EmitLValue(e);
+
+ // Load the object pointer.
+ llvm::Value *result = CGF.EmitLoadOfLValue(lv,
+ SourceLocation()).getScalarVal();
+
+ // Set the source pointer to NULL.
+ CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
+
+ return TryEmitResult(result, true);
+ }
+
+ // As a very special optimization, in ARC++, if the l-value is the
+ // result of a non-volatile assignment, do a simple retain of the
+ // result of the call to objc_storeWeak instead of reloading.
+ if (CGF.getLangOpts().CPlusPlus &&
+ !type.isVolatileQualified() &&
+ type.getObjCLifetime() == Qualifiers::OCL_Weak &&
+ isa<BinaryOperator>(e) &&
+ cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
+ return TryEmitResult(CGF.EmitScalarExpr(e), false);
+
+ return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
+}
+
+static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
+ llvm::Value *value);
+
+/// Given that the given expression is some sort of call (which does
+/// not return retained), emit a retain following it.
+static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) {
+ llvm::Value *value = CGF.EmitScalarExpr(e);
+ return emitARCRetainAfterCall(CGF, value);
+}
+
+static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
+ llvm::Value *value) {
+ if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
+ CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
+
+ // Place the retain immediately following the call.
+ CGF.Builder.SetInsertPoint(call->getParent(),
+ ++llvm::BasicBlock::iterator(call));
+ value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
+
+ CGF.Builder.restoreIP(ip);
+ return value;
+ } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
+ CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
+
+ // Place the retain at the beginning of the normal destination block.
+ llvm::BasicBlock *BB = invoke->getNormalDest();
+ CGF.Builder.SetInsertPoint(BB, BB->begin());
+ value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
+
+ CGF.Builder.restoreIP(ip);
+ return value;
+
+ // Bitcasts can arise because of related-result returns. Rewrite
+ // the operand.
+ } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
+ llvm::Value *operand = bitcast->getOperand(0);
+ operand = emitARCRetainAfterCall(CGF, operand);
+ bitcast->setOperand(0, operand);
+ return bitcast;
+
+ // Generic fall-back case.
+ } else {
+ // Retain using the non-block variant: we never need to do a copy
+ // of a block that's been returned to us.
+ return CGF.EmitARCRetainNonBlock(value);
+ }
+}
+
+/// Determine whether it might be important to emit a separate
+/// objc_retain_block on the result of the given expression, or
+/// whether it's okay to just emit it in a +1 context.
+static bool shouldEmitSeparateBlockRetain(const Expr *e) {
+ assert(e->getType()->isBlockPointerType());
+ e = e->IgnoreParens();
+
+ // For future goodness, emit block expressions directly in +1
+ // contexts if we can.
+ if (isa<BlockExpr>(e))
+ return false;
+
+ if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
+ switch (cast->getCastKind()) {
+ // Emitting these operations in +1 contexts is goodness.
+ case CK_LValueToRValue:
+ case CK_ARCReclaimReturnedObject:
+ case CK_ARCConsumeObject:
+ case CK_ARCProduceObject:
+ return false;
+
+ // These operations preserve a block type.
+ case CK_NoOp:
+ case CK_BitCast:
+ return shouldEmitSeparateBlockRetain(cast->getSubExpr());
+
+ // These operations are known to be bad (or haven't been considered).
+ case CK_AnyPointerToBlockPointerCast:
+ default:
+ return true;
+ }
+ }
+
+ return true;
+}
+
+/// Try to emit a PseudoObjectExpr at +1.
+///
+/// This massively duplicates emitPseudoObjectRValue.
+static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF,
+ const PseudoObjectExpr *E) {
+ SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
+
+ // Find the result expression.
+ const Expr *resultExpr = E->getResultExpr();
+ assert(resultExpr);
+ TryEmitResult result;
+
+ for (PseudoObjectExpr::const_semantics_iterator
+ i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
+ const Expr *semantic = *i;
+
+ // If this semantic expression is an opaque value, bind it
+ // to the result of its source expression.
+ if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
+ typedef CodeGenFunction::OpaqueValueMappingData OVMA;
+ OVMA opaqueData;
+
+ // If this semantic is the result of the pseudo-object
+ // expression, try to evaluate the source as +1.
+ if (ov == resultExpr) {
+ assert(!OVMA::shouldBindAsLValue(ov));
+ result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr());
+ opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer()));
+
+ // Otherwise, just bind it.
+ } else {
+ opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
+ }
+ opaques.push_back(opaqueData);
+
+ // Otherwise, if the expression is the result, evaluate it
+ // and remember the result.
+ } else if (semantic == resultExpr) {
+ result = tryEmitARCRetainScalarExpr(CGF, semantic);
+
+ // Otherwise, evaluate the expression in an ignored context.
+ } else {
+ CGF.EmitIgnoredExpr(semantic);
+ }
+ }
+
+ // Unbind all the opaques now.
+ for (unsigned i = 0, e = opaques.size(); i != e; ++i)
+ opaques[i].unbind(CGF);
+
+ return result;
+}
+
+static TryEmitResult
+tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
+ // We should *never* see a nested full-expression here, because if
+ // we fail to emit at +1, our caller must not retain after we close
+ // out the full-expression.
+ assert(!isa<ExprWithCleanups>(e));
+
+ // The desired result type, if it differs from the type of the
+ // ultimate opaque expression.
+ llvm::Type *resultType = nullptr;
+
+ while (true) {
+ e = e->IgnoreParens();
+
+ // There's a break at the end of this if-chain; anything
+ // that wants to keep looping has to explicitly continue.
+ if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
+ switch (ce->getCastKind()) {
+ // No-op casts don't change the type, so we just ignore them.
+ case CK_NoOp:
+ e = ce->getSubExpr();
+ continue;
+
+ case CK_LValueToRValue: {
+ TryEmitResult loadResult
+ = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr());
+ if (resultType) {
+ llvm::Value *value = loadResult.getPointer();
+ value = CGF.Builder.CreateBitCast(value, resultType);
+ loadResult.setPointer(value);
+ }
+ return loadResult;
+ }
+
+ // These casts can change the type, so remember that and
+ // soldier on. We only need to remember the outermost such
+ // cast, though.
+ case CK_CPointerToObjCPointerCast:
+ case CK_BlockPointerToObjCPointerCast:
+ case CK_AnyPointerToBlockPointerCast:
+ case CK_BitCast:
+ if (!resultType)
+ resultType = CGF.ConvertType(ce->getType());
+ e = ce->getSubExpr();
+ assert(e->getType()->hasPointerRepresentation());
+ continue;
+
+ // For consumptions, just emit the subexpression and thus elide
+ // the retain/release pair.
+ case CK_ARCConsumeObject: {
+ llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr());
+ if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
+ return TryEmitResult(result, true);
+ }
+
+ // Block extends are net +0. Naively, we could just recurse on
+ // the subexpression, but actually we need to ensure that the
+ // value is copied as a block, so there's a little filter here.
+ case CK_ARCExtendBlockObject: {
+ llvm::Value *result; // will be a +0 value
+
+ // If we can't safely assume the sub-expression will produce a
+ // block-copied value, emit the sub-expression at +0.
+ if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) {
+ result = CGF.EmitScalarExpr(ce->getSubExpr());
+
+ // Otherwise, try to emit the sub-expression at +1 recursively.
+ } else {
+ TryEmitResult subresult
+ = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr());
+ result = subresult.getPointer();
+
+ // If that produced a retained value, just use that,
+ // possibly casting down.
+ if (subresult.getInt()) {
+ if (resultType)
+ result = CGF.Builder.CreateBitCast(result, resultType);
+ return TryEmitResult(result, true);
+ }
+
+ // Otherwise it's +0.
+ }
+
+ // Retain the object as a block, then cast down.
+ result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
+ if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
+ return TryEmitResult(result, true);
+ }
+
+ // For reclaims, emit the subexpression as a retained call and
+ // skip the consumption.
+ case CK_ARCReclaimReturnedObject: {
+ llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr());
+ if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
+ return TryEmitResult(result, true);
+ }
+
+ default:
+ break;
+ }
+
+ // Skip __extension__.
+ } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
+ if (op->getOpcode() == UO_Extension) {
+ e = op->getSubExpr();
+ continue;
+ }
+
+ // For calls and message sends, use the retained-call logic.
+ // Delegate inits are a special case in that they're the only
+ // returns-retained expression that *isn't* surrounded by
+ // a consume.
+ } else if (isa<CallExpr>(e) ||
+ (isa<ObjCMessageExpr>(e) &&
+ !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
+ llvm::Value *result = emitARCRetainCall(CGF, e);
+ if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
+ return TryEmitResult(result, true);
+
+ // Look through pseudo-object expressions.
+ } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
+ TryEmitResult result
+ = tryEmitARCRetainPseudoObject(CGF, pseudo);
+ if (resultType) {
+ llvm::Value *value = result.getPointer();
+ value = CGF.Builder.CreateBitCast(value, resultType);
+ result.setPointer(value);
+ }
+ return result;
+ }
+
+ // Conservatively halt the search at any other expression kind.
+ break;
+ }
+
+ // We didn't find an obvious production, so emit what we've got and
+ // tell the caller that we didn't manage to retain.
+ llvm::Value *result = CGF.EmitScalarExpr(e);
+ if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
+ return TryEmitResult(result, false);
+}
+
+static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
+ LValue lvalue,
+ QualType type) {
+ TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
+ llvm::Value *value = result.getPointer();
+ if (!result.getInt())
+ value = CGF.EmitARCRetain(type, value);
+ return value;
+}
+
+/// EmitARCRetainScalarExpr - Semantically equivalent to
+/// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
+/// best-effort attempt to peephole expressions that naturally produce
+/// retained objects.
+llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
+ // The retain needs to happen within the full-expression.
+ if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
+ enterFullExpression(cleanups);
+ RunCleanupsScope scope(*this);
+ return EmitARCRetainScalarExpr(cleanups->getSubExpr());
+ }
+
+ TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
+ llvm::Value *value = result.getPointer();
+ if (!result.getInt())
+ value = EmitARCRetain(e->getType(), value);
+ return value;
+}
+
+llvm::Value *
+CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
+ // The retain needs to happen within the full-expression.
+ if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
+ enterFullExpression(cleanups);
+ RunCleanupsScope scope(*this);
+ return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
+ }
+
+ TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
+ llvm::Value *value = result.getPointer();
+ if (result.getInt())
+ value = EmitARCAutorelease(value);
+ else
+ value = EmitARCRetainAutorelease(e->getType(), value);
+ return value;
+}
+
+llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
+ llvm::Value *result;
+ bool doRetain;
+
+ if (shouldEmitSeparateBlockRetain(e)) {
+ result = EmitScalarExpr(e);
+ doRetain = true;
+ } else {
+ TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
+ result = subresult.getPointer();
+ doRetain = !subresult.getInt();
+ }
+
+ if (doRetain)
+ result = EmitARCRetainBlock(result, /*mandatory*/ true);
+ return EmitObjCConsumeObject(e->getType(), result);
+}
+
+llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
+ // In ARC, retain and autorelease the expression.
+ if (getLangOpts().ObjCAutoRefCount) {
+ // Do so before running any cleanups for the full-expression.
+ // EmitARCRetainAutoreleaseScalarExpr does this for us.
+ return EmitARCRetainAutoreleaseScalarExpr(expr);
+ }
+
+ // Otherwise, use the normal scalar-expression emission. The
+ // exception machinery doesn't do anything special with the
+ // exception like retaining it, so there's no safety associated with
+ // only running cleanups after the throw has started, and when it
+ // matters it tends to be substantially inferior code.
+ return EmitScalarExpr(expr);
+}
+
+std::pair<LValue,llvm::Value*>
+CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
+ bool ignored) {
+ // Evaluate the RHS first.
+ TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
+ llvm::Value *value = result.getPointer();
+
+ bool hasImmediateRetain = result.getInt();
+
+ // If we didn't emit a retained object, and the l-value is of block
+ // type, then we need to emit the block-retain immediately in case
+ // it invalidates the l-value.
+ if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
+ value = EmitARCRetainBlock(value, /*mandatory*/ false);
+ hasImmediateRetain = true;
+ }
+
+ LValue lvalue = EmitLValue(e->getLHS());
+
+ // If the RHS was emitted retained, expand this.
+ if (hasImmediateRetain) {
+ llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
+ EmitStoreOfScalar(value, lvalue);
+ EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
+ } else {
+ value = EmitARCStoreStrong(lvalue, value, ignored);
+ }
+
+ return std::pair<LValue,llvm::Value*>(lvalue, value);
+}
+
+std::pair<LValue,llvm::Value*>
+CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
+ llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
+ LValue lvalue = EmitLValue(e->getLHS());
+
+ EmitStoreOfScalar(value, lvalue);
+
+ return std::pair<LValue,llvm::Value*>(lvalue, value);
+}
+
+void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
+ const ObjCAutoreleasePoolStmt &ARPS) {
+ const Stmt *subStmt = ARPS.getSubStmt();
+ const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
+
+ CGDebugInfo *DI = getDebugInfo();
+ if (DI)
+ DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
+
+ // Keep track of the current cleanup stack depth.
+ RunCleanupsScope Scope(*this);
+ if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
+ llvm::Value *token = EmitObjCAutoreleasePoolPush();
+ EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
+ } else {
+ llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
+ EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
+ }
+
+ for (const auto *I : S.body())
+ EmitStmt(I);
+
+ if (DI)
+ DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
+}
+
+/// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
+/// make sure it survives garbage collection until this point.
+void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
+ // We just use an inline assembly.
+ llvm::FunctionType *extenderType
+ = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
+ llvm::Value *extender
+ = llvm::InlineAsm::get(extenderType,
+ /* assembly */ "",
+ /* constraints */ "r",
+ /* side effects */ true);
+
+ object = Builder.CreateBitCast(object, VoidPtrTy);
+ EmitNounwindRuntimeCall(extender, object);
+}
+
+/// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
+/// non-trivial copy assignment function, produce following helper function.
+/// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
+///
+llvm::Constant *
+CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
+ const ObjCPropertyImplDecl *PID) {
+ if (!getLangOpts().CPlusPlus ||
+ !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
+ return nullptr;
+ QualType Ty = PID->getPropertyIvarDecl()->getType();
+ if (!Ty->isRecordType())
+ return nullptr;
+ const ObjCPropertyDecl *PD = PID->getPropertyDecl();
+ if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
+ return nullptr;
+ llvm::Constant *HelperFn = nullptr;
+ if (hasTrivialSetExpr(PID))
+ return nullptr;
+ assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
+ if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
+ return HelperFn;
+
+ ASTContext &C = getContext();
+ IdentifierInfo *II
+ = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
+ FunctionDecl *FD = FunctionDecl::Create(C,
+ C.getTranslationUnitDecl(),
+ SourceLocation(),
+ SourceLocation(), II, C.VoidTy,
+ nullptr, SC_Static,
+ false,
+ false);
+
+ QualType DestTy = C.getPointerType(Ty);
+ QualType SrcTy = Ty;
+ SrcTy.addConst();
+ SrcTy = C.getPointerType(SrcTy);
+
+ FunctionArgList args;
+ ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy);
+ args.push_back(&dstDecl);
+ ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy);
+ args.push_back(&srcDecl);
+
+ const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration(
+ C.VoidTy, args, FunctionType::ExtInfo(), RequiredArgs::All);
+
+ llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
+
+ llvm::Function *Fn =
+ llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
+ "__assign_helper_atomic_property_",
+ &CGM.getModule());
+
+ StartFunction(FD, C.VoidTy, Fn, FI, args);
+
+ DeclRefExpr DstExpr(&dstDecl, false, DestTy,
+ VK_RValue, SourceLocation());
+ UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
+ VK_LValue, OK_Ordinary, SourceLocation());
+
+ DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
+ VK_RValue, SourceLocation());
+ UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
+ VK_LValue, OK_Ordinary, SourceLocation());
+
+ Expr *Args[2] = { &DST, &SRC };
+ CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
+ CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(),
+ Args, DestTy->getPointeeType(),
+ VK_LValue, SourceLocation(), false);
+
+ EmitStmt(&TheCall);
+
+ FinishFunction();
+ HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
+ CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
+ return HelperFn;
+}
+
+llvm::Constant *
+CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
+ const ObjCPropertyImplDecl *PID) {
+ if (!getLangOpts().CPlusPlus ||
+ !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
+ return nullptr;
+ const ObjCPropertyDecl *PD = PID->getPropertyDecl();
+ QualType Ty = PD->getType();
+ if (!Ty->isRecordType())
+ return nullptr;
+ if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
+ return nullptr;
+ llvm::Constant *HelperFn = nullptr;
+
+ if (hasTrivialGetExpr(PID))
+ return nullptr;
+ assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
+ if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
+ return HelperFn;
+
+
+ ASTContext &C = getContext();
+ IdentifierInfo *II
+ = &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
+ FunctionDecl *FD = FunctionDecl::Create(C,
+ C.getTranslationUnitDecl(),
+ SourceLocation(),
+ SourceLocation(), II, C.VoidTy,
+ nullptr, SC_Static,
+ false,
+ false);
+
+ QualType DestTy = C.getPointerType(Ty);
+ QualType SrcTy = Ty;
+ SrcTy.addConst();
+ SrcTy = C.getPointerType(SrcTy);
+
+ FunctionArgList args;
+ ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy);
+ args.push_back(&dstDecl);
+ ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy);
+ args.push_back(&srcDecl);
+
+ const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration(
+ C.VoidTy, args, FunctionType::ExtInfo(), RequiredArgs::All);
+
+ llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
+
+ llvm::Function *Fn =
+ llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
+ "__copy_helper_atomic_property_", &CGM.getModule());
+
+ StartFunction(FD, C.VoidTy, Fn, FI, args);
+
+ DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
+ VK_RValue, SourceLocation());
+
+ UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
+ VK_LValue, OK_Ordinary, SourceLocation());
+
+ CXXConstructExpr *CXXConstExpr =
+ cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
+
+ SmallVector<Expr*, 4> ConstructorArgs;
+ ConstructorArgs.push_back(&SRC);
+ CXXConstructExpr::arg_iterator A = CXXConstExpr->arg_begin();
+ ++A;
+
+ for (CXXConstructExpr::arg_iterator AEnd = CXXConstExpr->arg_end();
+ A != AEnd; ++A)
+ ConstructorArgs.push_back(*A);
+
+ CXXConstructExpr *TheCXXConstructExpr =
+ CXXConstructExpr::Create(C, Ty, SourceLocation(),
+ CXXConstExpr->getConstructor(),
+ CXXConstExpr->isElidable(),
+ ConstructorArgs,
+ CXXConstExpr->hadMultipleCandidates(),
+ CXXConstExpr->isListInitialization(),
+ CXXConstExpr->isStdInitListInitialization(),
+ CXXConstExpr->requiresZeroInitialization(),
+ CXXConstExpr->getConstructionKind(),
+ SourceRange());
+
+ DeclRefExpr DstExpr(&dstDecl, false, DestTy,
+ VK_RValue, SourceLocation());
+
+ RValue DV = EmitAnyExpr(&DstExpr);
+ CharUnits Alignment
+ = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
+ EmitAggExpr(TheCXXConstructExpr,
+ AggValueSlot::forAddr(DV.getScalarVal(), Alignment, Qualifiers(),
+ AggValueSlot::IsDestructed,
+ AggValueSlot::DoesNotNeedGCBarriers,
+ AggValueSlot::IsNotAliased));
+
+ FinishFunction();
+ HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
+ CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
+ return HelperFn;
+}
+
+llvm::Value *
+CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
+ // Get selectors for retain/autorelease.
+ IdentifierInfo *CopyID = &getContext().Idents.get("copy");
+ Selector CopySelector =
+ getContext().Selectors.getNullarySelector(CopyID);
+ IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
+ Selector AutoreleaseSelector =
+ getContext().Selectors.getNullarySelector(AutoreleaseID);
+
+ // Emit calls to retain/autorelease.
+ CGObjCRuntime &Runtime = CGM.getObjCRuntime();
+ llvm::Value *Val = Block;
+ RValue Result;
+ Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
+ Ty, CopySelector,
+ Val, CallArgList(), nullptr, nullptr);
+ Val = Result.getScalarVal();
+ Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
+ Ty, AutoreleaseSelector,
+ Val, CallArgList(), nullptr, nullptr);
+ Val = Result.getScalarVal();
+ return Val;
+}
+
+
+CGObjCRuntime::~CGObjCRuntime() {}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGObjCGNU.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGObjCGNU.cpp
new file mode 100644
index 0000000..1580c77
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGObjCGNU.cpp
@@ -0,0 +1,2852 @@
+//===------- CGObjCGNU.cpp - Emit LLVM Code from ASTs for a Module --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This provides Objective-C code generation targeting the GNU runtime. The
+// class in this file generates structures used by the GNU Objective-C runtime
+// library. These structures are defined in objc/objc.h and objc/objc-api.h in
+// the GNU runtime distribution.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGObjCRuntime.h"
+#include "CGCleanup.h"
+#include "CodeGenFunction.h"
+#include "CodeGenModule.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/AST/StmtObjC.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/SourceManager.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringMap.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/Compiler.h"
+#include <cstdarg>
+
+
+using namespace clang;
+using namespace CodeGen;
+
+
+namespace {
+/// Class that lazily initialises the runtime function. Avoids inserting the
+/// types and the function declaration into a module if they're not used, and
+/// avoids constructing the type more than once if it's used more than once.
+class LazyRuntimeFunction {
+ CodeGenModule *CGM;
+ llvm::FunctionType *FTy;
+ const char *FunctionName;
+ llvm::Constant *Function;
+
+public:
+ /// Constructor leaves this class uninitialized, because it is intended to
+ /// be used as a field in another class and not all of the types that are
+ /// used as arguments will necessarily be available at construction time.
+ LazyRuntimeFunction()
+ : CGM(nullptr), FunctionName(nullptr), Function(nullptr) {}
+
+ /// Initialises the lazy function with the name, return type, and the types
+ /// of the arguments.
+ LLVM_END_WITH_NULL
+ void init(CodeGenModule *Mod, const char *name, llvm::Type *RetTy, ...) {
+ CGM = Mod;
+ FunctionName = name;
+ Function = nullptr;
+ std::vector<llvm::Type *> ArgTys;
+ va_list Args;
+ va_start(Args, RetTy);
+ while (llvm::Type *ArgTy = va_arg(Args, llvm::Type *))
+ ArgTys.push_back(ArgTy);
+ va_end(Args);
+ FTy = llvm::FunctionType::get(RetTy, ArgTys, false);
+ }
+
+ llvm::FunctionType *getType() { return FTy; }
+
+ /// Overloaded cast operator, allows the class to be implicitly cast to an
+ /// LLVM constant.
+ operator llvm::Constant *() {
+ if (!Function) {
+ if (!FunctionName)
+ return nullptr;
+ Function =
+ cast<llvm::Constant>(CGM->CreateRuntimeFunction(FTy, FunctionName));
+ }
+ return Function;
+ }
+ operator llvm::Function *() {
+ return cast<llvm::Function>((llvm::Constant *)*this);
+ }
+};
+
+
+/// GNU Objective-C runtime code generation. This class implements the parts of
+/// Objective-C support that are specific to the GNU family of runtimes (GCC,
+/// GNUstep and ObjFW).
+class CGObjCGNU : public CGObjCRuntime {
+protected:
+ /// The LLVM module into which output is inserted
+ llvm::Module &TheModule;
+ /// strut objc_super. Used for sending messages to super. This structure
+ /// contains the receiver (object) and the expected class.
+ llvm::StructType *ObjCSuperTy;
+ /// struct objc_super*. The type of the argument to the superclass message
+ /// lookup functions.
+ llvm::PointerType *PtrToObjCSuperTy;
+ /// LLVM type for selectors. Opaque pointer (i8*) unless a header declaring
+ /// SEL is included in a header somewhere, in which case it will be whatever
+ /// type is declared in that header, most likely {i8*, i8*}.
+ llvm::PointerType *SelectorTy;
+ /// LLVM i8 type. Cached here to avoid repeatedly getting it in all of the
+ /// places where it's used
+ llvm::IntegerType *Int8Ty;
+ /// Pointer to i8 - LLVM type of char*, for all of the places where the
+ /// runtime needs to deal with C strings.
+ llvm::PointerType *PtrToInt8Ty;
+ /// Instance Method Pointer type. This is a pointer to a function that takes,
+ /// at a minimum, an object and a selector, and is the generic type for
+ /// Objective-C methods. Due to differences between variadic / non-variadic
+ /// calling conventions, it must always be cast to the correct type before
+ /// actually being used.
+ llvm::PointerType *IMPTy;
+ /// Type of an untyped Objective-C object. Clang treats id as a built-in type
+ /// when compiling Objective-C code, so this may be an opaque pointer (i8*),
+ /// but if the runtime header declaring it is included then it may be a
+ /// pointer to a structure.
+ llvm::PointerType *IdTy;
+ /// Pointer to a pointer to an Objective-C object. Used in the new ABI
+ /// message lookup function and some GC-related functions.
+ llvm::PointerType *PtrToIdTy;
+ /// The clang type of id. Used when using the clang CGCall infrastructure to
+ /// call Objective-C methods.
+ CanQualType ASTIdTy;
+ /// LLVM type for C int type.
+ llvm::IntegerType *IntTy;
+ /// LLVM type for an opaque pointer. This is identical to PtrToInt8Ty, but is
+ /// used in the code to document the difference between i8* meaning a pointer
+ /// to a C string and i8* meaning a pointer to some opaque type.
+ llvm::PointerType *PtrTy;
+ /// LLVM type for C long type. The runtime uses this in a lot of places where
+ /// it should be using intptr_t, but we can't fix this without breaking
+ /// compatibility with GCC...
+ llvm::IntegerType *LongTy;
+ /// LLVM type for C size_t. Used in various runtime data structures.
+ llvm::IntegerType *SizeTy;
+ /// LLVM type for C intptr_t.
+ llvm::IntegerType *IntPtrTy;
+ /// LLVM type for C ptrdiff_t. Mainly used in property accessor functions.
+ llvm::IntegerType *PtrDiffTy;
+ /// LLVM type for C int*. Used for GCC-ABI-compatible non-fragile instance
+ /// variables.
+ llvm::PointerType *PtrToIntTy;
+ /// LLVM type for Objective-C BOOL type.
+ llvm::Type *BoolTy;
+ /// 32-bit integer type, to save us needing to look it up every time it's used.
+ llvm::IntegerType *Int32Ty;
+ /// 64-bit integer type, to save us needing to look it up every time it's used.
+ llvm::IntegerType *Int64Ty;
+ /// Metadata kind used to tie method lookups to message sends. The GNUstep
+ /// runtime provides some LLVM passes that can use this to do things like
+ /// automatic IMP caching and speculative inlining.
+ unsigned msgSendMDKind;
+ /// Helper function that generates a constant string and returns a pointer to
+ /// the start of the string. The result of this function can be used anywhere
+ /// where the C code specifies const char*.
+ llvm::Constant *MakeConstantString(const std::string &Str,
+ const std::string &Name="") {
+ auto *ConstStr = CGM.GetAddrOfConstantCString(Str, Name.c_str());
+ return llvm::ConstantExpr::getGetElementPtr(ConstStr->getValueType(),
+ ConstStr, Zeros);
+ }
+ /// Emits a linkonce_odr string, whose name is the prefix followed by the
+ /// string value. This allows the linker to combine the strings between
+ /// different modules. Used for EH typeinfo names, selector strings, and a
+ /// few other things.
+ llvm::Constant *ExportUniqueString(const std::string &Str,
+ const std::string prefix) {
+ std::string name = prefix + Str;
+ auto *ConstStr = TheModule.getGlobalVariable(name);
+ if (!ConstStr) {
+ llvm::Constant *value = llvm::ConstantDataArray::getString(VMContext,Str);
+ ConstStr = new llvm::GlobalVariable(TheModule, value->getType(), true,
+ llvm::GlobalValue::LinkOnceODRLinkage, value, prefix + Str);
+ }
+ return llvm::ConstantExpr::getGetElementPtr(ConstStr->getValueType(),
+ ConstStr, Zeros);
+ }
+ /// Generates a global structure, initialized by the elements in the vector.
+ /// The element types must match the types of the structure elements in the
+ /// first argument.
+ llvm::GlobalVariable *MakeGlobal(llvm::StructType *Ty,
+ ArrayRef<llvm::Constant *> V,
+ StringRef Name="",
+ llvm::GlobalValue::LinkageTypes linkage
+ =llvm::GlobalValue::InternalLinkage) {
+ llvm::Constant *C = llvm::ConstantStruct::get(Ty, V);
+ return new llvm::GlobalVariable(TheModule, Ty, false,
+ linkage, C, Name);
+ }
+ /// Generates a global array. The vector must contain the same number of
+ /// elements that the array type declares, of the type specified as the array
+ /// element type.
+ llvm::GlobalVariable *MakeGlobal(llvm::ArrayType *Ty,
+ ArrayRef<llvm::Constant *> V,
+ StringRef Name="",
+ llvm::GlobalValue::LinkageTypes linkage
+ =llvm::GlobalValue::InternalLinkage) {
+ llvm::Constant *C = llvm::ConstantArray::get(Ty, V);
+ return new llvm::GlobalVariable(TheModule, Ty, false,
+ linkage, C, Name);
+ }
+ /// Generates a global array, inferring the array type from the specified
+ /// element type and the size of the initialiser.
+ llvm::GlobalVariable *MakeGlobalArray(llvm::Type *Ty,
+ ArrayRef<llvm::Constant *> V,
+ StringRef Name="",
+ llvm::GlobalValue::LinkageTypes linkage
+ =llvm::GlobalValue::InternalLinkage) {
+ llvm::ArrayType *ArrayTy = llvm::ArrayType::get(Ty, V.size());
+ return MakeGlobal(ArrayTy, V, Name, linkage);
+ }
+ /// Returns a property name and encoding string.
+ llvm::Constant *MakePropertyEncodingString(const ObjCPropertyDecl *PD,
+ const Decl *Container) {
+ const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
+ if ((R.getKind() == ObjCRuntime::GNUstep) &&
+ (R.getVersion() >= VersionTuple(1, 6))) {
+ std::string NameAndAttributes;
+ std::string TypeStr;
+ CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container, TypeStr);
+ NameAndAttributes += '\0';
+ NameAndAttributes += TypeStr.length() + 3;
+ NameAndAttributes += TypeStr;
+ NameAndAttributes += '\0';
+ NameAndAttributes += PD->getNameAsString();
+ auto *ConstStr = CGM.GetAddrOfConstantCString(NameAndAttributes);
+ return llvm::ConstantExpr::getGetElementPtr(ConstStr->getValueType(),
+ ConstStr, Zeros);
+ }
+ return MakeConstantString(PD->getNameAsString());
+ }
+ /// Push the property attributes into two structure fields.
+ void PushPropertyAttributes(std::vector<llvm::Constant*> &Fields,
+ ObjCPropertyDecl *property, bool isSynthesized=true, bool
+ isDynamic=true) {
+ int attrs = property->getPropertyAttributes();
+ // For read-only properties, clear the copy and retain flags
+ if (attrs & ObjCPropertyDecl::OBJC_PR_readonly) {
+ attrs &= ~ObjCPropertyDecl::OBJC_PR_copy;
+ attrs &= ~ObjCPropertyDecl::OBJC_PR_retain;
+ attrs &= ~ObjCPropertyDecl::OBJC_PR_weak;
+ attrs &= ~ObjCPropertyDecl::OBJC_PR_strong;
+ }
+ // The first flags field has the same attribute values as clang uses internally
+ Fields.push_back(llvm::ConstantInt::get(Int8Ty, attrs & 0xff));
+ attrs >>= 8;
+ attrs <<= 2;
+ // For protocol properties, synthesized and dynamic have no meaning, so we
+ // reuse these flags to indicate that this is a protocol property (both set
+ // has no meaning, as a property can't be both synthesized and dynamic)
+ attrs |= isSynthesized ? (1<<0) : 0;
+ attrs |= isDynamic ? (1<<1) : 0;
+ // The second field is the next four fields left shifted by two, with the
+ // low bit set to indicate whether the field is synthesized or dynamic.
+ Fields.push_back(llvm::ConstantInt::get(Int8Ty, attrs & 0xff));
+ // Two padding fields
+ Fields.push_back(llvm::ConstantInt::get(Int8Ty, 0));
+ Fields.push_back(llvm::ConstantInt::get(Int8Ty, 0));
+ }
+ /// Ensures that the value has the required type, by inserting a bitcast if
+ /// required. This function lets us avoid inserting bitcasts that are
+ /// redundant.
+ llvm::Value* EnforceType(CGBuilderTy &B, llvm::Value *V, llvm::Type *Ty) {
+ if (V->getType() == Ty) return V;
+ return B.CreateBitCast(V, Ty);
+ }
+ // Some zeros used for GEPs in lots of places.
+ llvm::Constant *Zeros[2];
+ /// Null pointer value. Mainly used as a terminator in various arrays.
+ llvm::Constant *NULLPtr;
+ /// LLVM context.
+ llvm::LLVMContext &VMContext;
+private:
+ /// Placeholder for the class. Lots of things refer to the class before we've
+ /// actually emitted it. We use this alias as a placeholder, and then replace
+ /// it with a pointer to the class structure before finally emitting the
+ /// module.
+ llvm::GlobalAlias *ClassPtrAlias;
+ /// Placeholder for the metaclass. Lots of things refer to the class before
+ /// we've / actually emitted it. We use this alias as a placeholder, and then
+ /// replace / it with a pointer to the metaclass structure before finally
+ /// emitting the / module.
+ llvm::GlobalAlias *MetaClassPtrAlias;
+ /// All of the classes that have been generated for this compilation units.
+ std::vector<llvm::Constant*> Classes;
+ /// All of the categories that have been generated for this compilation units.
+ std::vector<llvm::Constant*> Categories;
+ /// All of the Objective-C constant strings that have been generated for this
+ /// compilation units.
+ std::vector<llvm::Constant*> ConstantStrings;
+ /// Map from string values to Objective-C constant strings in the output.
+ /// Used to prevent emitting Objective-C strings more than once. This should
+ /// not be required at all - CodeGenModule should manage this list.
+ llvm::StringMap<llvm::Constant*> ObjCStrings;
+ /// All of the protocols that have been declared.
+ llvm::StringMap<llvm::Constant*> ExistingProtocols;
+ /// For each variant of a selector, we store the type encoding and a
+ /// placeholder value. For an untyped selector, the type will be the empty
+ /// string. Selector references are all done via the module's selector table,
+ /// so we create an alias as a placeholder and then replace it with the real
+ /// value later.
+ typedef std::pair<std::string, llvm::GlobalAlias*> TypedSelector;
+ /// Type of the selector map. This is roughly equivalent to the structure
+ /// used in the GNUstep runtime, which maintains a list of all of the valid
+ /// types for a selector in a table.
+ typedef llvm::DenseMap<Selector, SmallVector<TypedSelector, 2> >
+ SelectorMap;
+ /// A map from selectors to selector types. This allows us to emit all
+ /// selectors of the same name and type together.
+ SelectorMap SelectorTable;
+
+ /// Selectors related to memory management. When compiling in GC mode, we
+ /// omit these.
+ Selector RetainSel, ReleaseSel, AutoreleaseSel;
+ /// Runtime functions used for memory management in GC mode. Note that clang
+ /// supports code generation for calling these functions, but neither GNU
+ /// runtime actually supports this API properly yet.
+ LazyRuntimeFunction IvarAssignFn, StrongCastAssignFn, MemMoveFn, WeakReadFn,
+ WeakAssignFn, GlobalAssignFn;
+
+ typedef std::pair<std::string, std::string> ClassAliasPair;
+ /// All classes that have aliases set for them.
+ std::vector<ClassAliasPair> ClassAliases;
+
+protected:
+ /// Function used for throwing Objective-C exceptions.
+ LazyRuntimeFunction ExceptionThrowFn;
+ /// Function used for rethrowing exceptions, used at the end of \@finally or
+ /// \@synchronize blocks.
+ LazyRuntimeFunction ExceptionReThrowFn;
+ /// Function called when entering a catch function. This is required for
+ /// differentiating Objective-C exceptions and foreign exceptions.
+ LazyRuntimeFunction EnterCatchFn;
+ /// Function called when exiting from a catch block. Used to do exception
+ /// cleanup.
+ LazyRuntimeFunction ExitCatchFn;
+ /// Function called when entering an \@synchronize block. Acquires the lock.
+ LazyRuntimeFunction SyncEnterFn;
+ /// Function called when exiting an \@synchronize block. Releases the lock.
+ LazyRuntimeFunction SyncExitFn;
+
+private:
+
+ /// Function called if fast enumeration detects that the collection is
+ /// modified during the update.
+ LazyRuntimeFunction EnumerationMutationFn;
+ /// Function for implementing synthesized property getters that return an
+ /// object.
+ LazyRuntimeFunction GetPropertyFn;
+ /// Function for implementing synthesized property setters that return an
+ /// object.
+ LazyRuntimeFunction SetPropertyFn;
+ /// Function used for non-object declared property getters.
+ LazyRuntimeFunction GetStructPropertyFn;
+ /// Function used for non-object declared property setters.
+ LazyRuntimeFunction SetStructPropertyFn;
+
+ /// The version of the runtime that this class targets. Must match the
+ /// version in the runtime.
+ int RuntimeVersion;
+ /// The version of the protocol class. Used to differentiate between ObjC1
+ /// and ObjC2 protocols. Objective-C 1 protocols can not contain optional
+ /// components and can not contain declared properties. We always emit
+ /// Objective-C 2 property structures, but we have to pretend that they're
+ /// Objective-C 1 property structures when targeting the GCC runtime or it
+ /// will abort.
+ const int ProtocolVersion;
+private:
+ /// Generates an instance variable list structure. This is a structure
+ /// containing a size and an array of structures containing instance variable
+ /// metadata. This is used purely for introspection in the fragile ABI. In
+ /// the non-fragile ABI, it's used for instance variable fixup.
+ llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
+ ArrayRef<llvm::Constant *> IvarTypes,
+ ArrayRef<llvm::Constant *> IvarOffsets);
+ /// Generates a method list structure. This is a structure containing a size
+ /// and an array of structures containing method metadata.
+ ///
+ /// This structure is used by both classes and categories, and contains a next
+ /// pointer allowing them to be chained together in a linked list.
+ llvm::Constant *GenerateMethodList(StringRef ClassName,
+ StringRef CategoryName,
+ ArrayRef<Selector> MethodSels,
+ ArrayRef<llvm::Constant *> MethodTypes,
+ bool isClassMethodList);
+ /// Emits an empty protocol. This is used for \@protocol() where no protocol
+ /// is found. The runtime will (hopefully) fix up the pointer to refer to the
+ /// real protocol.
+ llvm::Constant *GenerateEmptyProtocol(const std::string &ProtocolName);
+ /// Generates a list of property metadata structures. This follows the same
+ /// pattern as method and instance variable metadata lists.
+ llvm::Constant *GeneratePropertyList(const ObjCImplementationDecl *OID,
+ SmallVectorImpl<Selector> &InstanceMethodSels,
+ SmallVectorImpl<llvm::Constant*> &InstanceMethodTypes);
+ /// Generates a list of referenced protocols. Classes, categories, and
+ /// protocols all use this structure.
+ llvm::Constant *GenerateProtocolList(ArrayRef<std::string> Protocols);
+ /// To ensure that all protocols are seen by the runtime, we add a category on
+ /// a class defined in the runtime, declaring no methods, but adopting the
+ /// protocols. This is a horribly ugly hack, but it allows us to collect all
+ /// of the protocols without changing the ABI.
+ void GenerateProtocolHolderCategory();
+ /// Generates a class structure.
+ llvm::Constant *GenerateClassStructure(
+ llvm::Constant *MetaClass,
+ llvm::Constant *SuperClass,
+ unsigned info,
+ const char *Name,
+ llvm::Constant *Version,
+ llvm::Constant *InstanceSize,
+ llvm::Constant *IVars,
+ llvm::Constant *Methods,
+ llvm::Constant *Protocols,
+ llvm::Constant *IvarOffsets,
+ llvm::Constant *Properties,
+ llvm::Constant *StrongIvarBitmap,
+ llvm::Constant *WeakIvarBitmap,
+ bool isMeta=false);
+ /// Generates a method list. This is used by protocols to define the required
+ /// and optional methods.
+ llvm::Constant *GenerateProtocolMethodList(
+ ArrayRef<llvm::Constant *> MethodNames,
+ ArrayRef<llvm::Constant *> MethodTypes);
+ /// Returns a selector with the specified type encoding. An empty string is
+ /// used to return an untyped selector (with the types field set to NULL).
+ llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel,
+ const std::string &TypeEncoding, bool lval);
+ /// Returns the variable used to store the offset of an instance variable.
+ llvm::GlobalVariable *ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID,
+ const ObjCIvarDecl *Ivar);
+ /// Emits a reference to a class. This allows the linker to object if there
+ /// is no class of the matching name.
+protected:
+ void EmitClassRef(const std::string &className);
+ /// Emits a pointer to the named class
+ virtual llvm::Value *GetClassNamed(CodeGenFunction &CGF,
+ const std::string &Name, bool isWeak);
+ /// Looks up the method for sending a message to the specified object. This
+ /// mechanism differs between the GCC and GNU runtimes, so this method must be
+ /// overridden in subclasses.
+ virtual llvm::Value *LookupIMP(CodeGenFunction &CGF,
+ llvm::Value *&Receiver,
+ llvm::Value *cmd,
+ llvm::MDNode *node,
+ MessageSendInfo &MSI) = 0;
+ /// Looks up the method for sending a message to a superclass. This
+ /// mechanism differs between the GCC and GNU runtimes, so this method must
+ /// be overridden in subclasses.
+ virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF,
+ llvm::Value *ObjCSuper,
+ llvm::Value *cmd,
+ MessageSendInfo &MSI) = 0;
+ /// Libobjc2 uses a bitfield representation where small(ish) bitfields are
+ /// stored in a 64-bit value with the low bit set to 1 and the remaining 63
+ /// bits set to their values, LSB first, while larger ones are stored in a
+ /// structure of this / form:
+ ///
+ /// struct { int32_t length; int32_t values[length]; };
+ ///
+ /// The values in the array are stored in host-endian format, with the least
+ /// significant bit being assumed to come first in the bitfield. Therefore,
+ /// a bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] },
+ /// while a bitfield / with the 63rd bit set will be 1<<64.
+ llvm::Constant *MakeBitField(ArrayRef<bool> bits);
+public:
+ CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
+ unsigned protocolClassVersion);
+
+ llvm::Constant *GenerateConstantString(const StringLiteral *) override;
+
+ RValue
+ GenerateMessageSend(CodeGenFunction &CGF, ReturnValueSlot Return,
+ QualType ResultType, Selector Sel,
+ llvm::Value *Receiver, const CallArgList &CallArgs,
+ const ObjCInterfaceDecl *Class,
+ const ObjCMethodDecl *Method) override;
+ RValue
+ GenerateMessageSendSuper(CodeGenFunction &CGF, ReturnValueSlot Return,
+ QualType ResultType, Selector Sel,
+ const ObjCInterfaceDecl *Class,
+ bool isCategoryImpl, llvm::Value *Receiver,
+ bool IsClassMessage, const CallArgList &CallArgs,
+ const ObjCMethodDecl *Method) override;
+ llvm::Value *GetClass(CodeGenFunction &CGF,
+ const ObjCInterfaceDecl *OID) override;
+ llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel,
+ bool lval = false) override;
+ llvm::Value *GetSelector(CodeGenFunction &CGF,
+ const ObjCMethodDecl *Method) override;
+ llvm::Constant *GetEHType(QualType T) override;
+
+ llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD,
+ const ObjCContainerDecl *CD) override;
+ void GenerateCategory(const ObjCCategoryImplDecl *CMD) override;
+ void GenerateClass(const ObjCImplementationDecl *ClassDecl) override;
+ void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override;
+ llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
+ const ObjCProtocolDecl *PD) override;
+ void GenerateProtocol(const ObjCProtocolDecl *PD) override;
+ llvm::Function *ModuleInitFunction() override;
+ llvm::Constant *GetPropertyGetFunction() override;
+ llvm::Constant *GetPropertySetFunction() override;
+ llvm::Constant *GetOptimizedPropertySetFunction(bool atomic,
+ bool copy) override;
+ llvm::Constant *GetSetStructFunction() override;
+ llvm::Constant *GetGetStructFunction() override;
+ llvm::Constant *GetCppAtomicObjectGetFunction() override;
+ llvm::Constant *GetCppAtomicObjectSetFunction() override;
+ llvm::Constant *EnumerationMutationFunction() override;
+
+ void EmitTryStmt(CodeGenFunction &CGF,
+ const ObjCAtTryStmt &S) override;
+ void EmitSynchronizedStmt(CodeGenFunction &CGF,
+ const ObjCAtSynchronizedStmt &S) override;
+ void EmitThrowStmt(CodeGenFunction &CGF,
+ const ObjCAtThrowStmt &S,
+ bool ClearInsertionPoint=true) override;
+ llvm::Value * EmitObjCWeakRead(CodeGenFunction &CGF,
+ llvm::Value *AddrWeakObj) override;
+ void EmitObjCWeakAssign(CodeGenFunction &CGF,
+ llvm::Value *src, llvm::Value *dst) override;
+ void EmitObjCGlobalAssign(CodeGenFunction &CGF,
+ llvm::Value *src, llvm::Value *dest,
+ bool threadlocal=false) override;
+ void EmitObjCIvarAssign(CodeGenFunction &CGF, llvm::Value *src,
+ llvm::Value *dest, llvm::Value *ivarOffset) override;
+ void EmitObjCStrongCastAssign(CodeGenFunction &CGF,
+ llvm::Value *src, llvm::Value *dest) override;
+ void EmitGCMemmoveCollectable(CodeGenFunction &CGF, llvm::Value *DestPtr,
+ llvm::Value *SrcPtr,
+ llvm::Value *Size) override;
+ LValue EmitObjCValueForIvar(CodeGenFunction &CGF, QualType ObjectTy,
+ llvm::Value *BaseValue, const ObjCIvarDecl *Ivar,
+ unsigned CVRQualifiers) override;
+ llvm::Value *EmitIvarOffset(CodeGenFunction &CGF,
+ const ObjCInterfaceDecl *Interface,
+ const ObjCIvarDecl *Ivar) override;
+ llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override;
+ llvm::Constant *BuildGCBlockLayout(CodeGenModule &CGM,
+ const CGBlockInfo &blockInfo) override {
+ return NULLPtr;
+ }
+ llvm::Constant *BuildRCBlockLayout(CodeGenModule &CGM,
+ const CGBlockInfo &blockInfo) override {
+ return NULLPtr;
+ }
+
+ llvm::Constant *BuildByrefLayout(CodeGenModule &CGM, QualType T) override {
+ return NULLPtr;
+ }
+
+ llvm::GlobalVariable *GetClassGlobal(const std::string &Name,
+ bool Weak = false) override {
+ return nullptr;
+ }
+};
+/// Class representing the legacy GCC Objective-C ABI. This is the default when
+/// -fobjc-nonfragile-abi is not specified.
+///
+/// The GCC ABI target actually generates code that is approximately compatible
+/// with the new GNUstep runtime ABI, but refrains from using any features that
+/// would not work with the GCC runtime. For example, clang always generates
+/// the extended form of the class structure, and the extra fields are simply
+/// ignored by GCC libobjc.
+class CGObjCGCC : public CGObjCGNU {
+ /// The GCC ABI message lookup function. Returns an IMP pointing to the
+ /// method implementation for this message.
+ LazyRuntimeFunction MsgLookupFn;
+ /// The GCC ABI superclass message lookup function. Takes a pointer to a
+ /// structure describing the receiver and the class, and a selector as
+ /// arguments. Returns the IMP for the corresponding method.
+ LazyRuntimeFunction MsgLookupSuperFn;
+protected:
+ llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
+ llvm::Value *cmd, llvm::MDNode *node,
+ MessageSendInfo &MSI) override {
+ CGBuilderTy &Builder = CGF.Builder;
+ llvm::Value *args[] = {
+ EnforceType(Builder, Receiver, IdTy),
+ EnforceType(Builder, cmd, SelectorTy) };
+ llvm::CallSite imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
+ imp->setMetadata(msgSendMDKind, node);
+ return imp.getInstruction();
+ }
+ llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, llvm::Value *ObjCSuper,
+ llvm::Value *cmd, MessageSendInfo &MSI) override {
+ CGBuilderTy &Builder = CGF.Builder;
+ llvm::Value *lookupArgs[] = {EnforceType(Builder, ObjCSuper,
+ PtrToObjCSuperTy), cmd};
+ return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
+ }
+ public:
+ CGObjCGCC(CodeGenModule &Mod) : CGObjCGNU(Mod, 8, 2) {
+ // IMP objc_msg_lookup(id, SEL);
+ MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy,
+ nullptr);
+ // IMP objc_msg_lookup_super(struct objc_super*, SEL);
+ MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
+ PtrToObjCSuperTy, SelectorTy, nullptr);
+ }
+};
+/// Class used when targeting the new GNUstep runtime ABI.
+class CGObjCGNUstep : public CGObjCGNU {
+ /// The slot lookup function. Returns a pointer to a cacheable structure
+ /// that contains (among other things) the IMP.
+ LazyRuntimeFunction SlotLookupFn;
+ /// The GNUstep ABI superclass message lookup function. Takes a pointer to
+ /// a structure describing the receiver and the class, and a selector as
+ /// arguments. Returns the slot for the corresponding method. Superclass
+ /// message lookup rarely changes, so this is a good caching opportunity.
+ LazyRuntimeFunction SlotLookupSuperFn;
+ /// Specialised function for setting atomic retain properties
+ LazyRuntimeFunction SetPropertyAtomic;
+ /// Specialised function for setting atomic copy properties
+ LazyRuntimeFunction SetPropertyAtomicCopy;
+ /// Specialised function for setting nonatomic retain properties
+ LazyRuntimeFunction SetPropertyNonAtomic;
+ /// Specialised function for setting nonatomic copy properties
+ LazyRuntimeFunction SetPropertyNonAtomicCopy;
+ /// Function to perform atomic copies of C++ objects with nontrivial copy
+ /// constructors from Objective-C ivars.
+ LazyRuntimeFunction CxxAtomicObjectGetFn;
+ /// Function to perform atomic copies of C++ objects with nontrivial copy
+ /// constructors to Objective-C ivars.
+ LazyRuntimeFunction CxxAtomicObjectSetFn;
+ /// Type of an slot structure pointer. This is returned by the various
+ /// lookup functions.
+ llvm::Type *SlotTy;
+ public:
+ llvm::Constant *GetEHType(QualType T) override;
+ protected:
+ llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
+ llvm::Value *cmd, llvm::MDNode *node,
+ MessageSendInfo &MSI) override {
+ CGBuilderTy &Builder = CGF.Builder;
+ llvm::Function *LookupFn = SlotLookupFn;
+
+ // Store the receiver on the stack so that we can reload it later
+ llvm::Value *ReceiverPtr = CGF.CreateTempAlloca(Receiver->getType());
+ Builder.CreateStore(Receiver, ReceiverPtr);
+
+ llvm::Value *self;
+
+ if (isa<ObjCMethodDecl>(CGF.CurCodeDecl)) {
+ self = CGF.LoadObjCSelf();
+ } else {
+ self = llvm::ConstantPointerNull::get(IdTy);
+ }
+
+ // The lookup function is guaranteed not to capture the receiver pointer.
+ LookupFn->setDoesNotCapture(1);
+
+ llvm::Value *args[] = {
+ EnforceType(Builder, ReceiverPtr, PtrToIdTy),
+ EnforceType(Builder, cmd, SelectorTy),
+ EnforceType(Builder, self, IdTy) };
+ llvm::CallSite slot = CGF.EmitRuntimeCallOrInvoke(LookupFn, args);
+ slot.setOnlyReadsMemory();
+ slot->setMetadata(msgSendMDKind, node);
+
+ // Load the imp from the slot
+ llvm::Value *imp = Builder.CreateLoad(
+ Builder.CreateStructGEP(nullptr, slot.getInstruction(), 4));
+
+ // The lookup function may have changed the receiver, so make sure we use
+ // the new one.
+ Receiver = Builder.CreateLoad(ReceiverPtr, true);
+ return imp;
+ }
+ llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, llvm::Value *ObjCSuper,
+ llvm::Value *cmd,
+ MessageSendInfo &MSI) override {
+ CGBuilderTy &Builder = CGF.Builder;
+ llvm::Value *lookupArgs[] = {ObjCSuper, cmd};
+
+ llvm::CallInst *slot =
+ CGF.EmitNounwindRuntimeCall(SlotLookupSuperFn, lookupArgs);
+ slot->setOnlyReadsMemory();
+
+ return Builder.CreateLoad(Builder.CreateStructGEP(nullptr, slot, 4));
+ }
+ public:
+ CGObjCGNUstep(CodeGenModule &Mod) : CGObjCGNU(Mod, 9, 3) {
+ const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
+
+ llvm::StructType *SlotStructTy = llvm::StructType::get(PtrTy,
+ PtrTy, PtrTy, IntTy, IMPTy, nullptr);
+ SlotTy = llvm::PointerType::getUnqual(SlotStructTy);
+ // Slot_t objc_msg_lookup_sender(id *receiver, SEL selector, id sender);
+ SlotLookupFn.init(&CGM, "objc_msg_lookup_sender", SlotTy, PtrToIdTy,
+ SelectorTy, IdTy, nullptr);
+ // Slot_t objc_msg_lookup_super(struct objc_super*, SEL);
+ SlotLookupSuperFn.init(&CGM, "objc_slot_lookup_super", SlotTy,
+ PtrToObjCSuperTy, SelectorTy, nullptr);
+ // If we're in ObjC++ mode, then we want to make
+ if (CGM.getLangOpts().CPlusPlus) {
+ llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
+ // void *__cxa_begin_catch(void *e)
+ EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy, nullptr);
+ // void __cxa_end_catch(void)
+ ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy, nullptr);
+ // void _Unwind_Resume_or_Rethrow(void*)
+ ExceptionReThrowFn.init(&CGM, "_Unwind_Resume_or_Rethrow", VoidTy,
+ PtrTy, nullptr);
+ } else if (R.getVersion() >= VersionTuple(1, 7)) {
+ llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
+ // id objc_begin_catch(void *e)
+ EnterCatchFn.init(&CGM, "objc_begin_catch", IdTy, PtrTy, nullptr);
+ // void objc_end_catch(void)
+ ExitCatchFn.init(&CGM, "objc_end_catch", VoidTy, nullptr);
+ // void _Unwind_Resume_or_Rethrow(void*)
+ ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy,
+ PtrTy, nullptr);
+ }
+ llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
+ SetPropertyAtomic.init(&CGM, "objc_setProperty_atomic", VoidTy, IdTy,
+ SelectorTy, IdTy, PtrDiffTy, nullptr);
+ SetPropertyAtomicCopy.init(&CGM, "objc_setProperty_atomic_copy", VoidTy,
+ IdTy, SelectorTy, IdTy, PtrDiffTy, nullptr);
+ SetPropertyNonAtomic.init(&CGM, "objc_setProperty_nonatomic", VoidTy,
+ IdTy, SelectorTy, IdTy, PtrDiffTy, nullptr);
+ SetPropertyNonAtomicCopy.init(&CGM, "objc_setProperty_nonatomic_copy",
+ VoidTy, IdTy, SelectorTy, IdTy, PtrDiffTy, nullptr);
+ // void objc_setCppObjectAtomic(void *dest, const void *src, void
+ // *helper);
+ CxxAtomicObjectSetFn.init(&CGM, "objc_setCppObjectAtomic", VoidTy, PtrTy,
+ PtrTy, PtrTy, nullptr);
+ // void objc_getCppObjectAtomic(void *dest, const void *src, void
+ // *helper);
+ CxxAtomicObjectGetFn.init(&CGM, "objc_getCppObjectAtomic", VoidTy, PtrTy,
+ PtrTy, PtrTy, nullptr);
+ }
+ llvm::Constant *GetCppAtomicObjectGetFunction() override {
+ // The optimised functions were added in version 1.7 of the GNUstep
+ // runtime.
+ assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
+ VersionTuple(1, 7));
+ return CxxAtomicObjectGetFn;
+ }
+ llvm::Constant *GetCppAtomicObjectSetFunction() override {
+ // The optimised functions were added in version 1.7 of the GNUstep
+ // runtime.
+ assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
+ VersionTuple(1, 7));
+ return CxxAtomicObjectSetFn;
+ }
+ llvm::Constant *GetOptimizedPropertySetFunction(bool atomic,
+ bool copy) override {
+ // The optimised property functions omit the GC check, and so are not
+ // safe to use in GC mode. The standard functions are fast in GC mode,
+ // so there is less advantage in using them.
+ assert ((CGM.getLangOpts().getGC() == LangOptions::NonGC));
+ // The optimised functions were added in version 1.7 of the GNUstep
+ // runtime.
+ assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
+ VersionTuple(1, 7));
+
+ if (atomic) {
+ if (copy) return SetPropertyAtomicCopy;
+ return SetPropertyAtomic;
+ }
+
+ return copy ? SetPropertyNonAtomicCopy : SetPropertyNonAtomic;
+ }
+};
+
+/// Support for the ObjFW runtime.
+class CGObjCObjFW: public CGObjCGNU {
+protected:
+ /// The GCC ABI message lookup function. Returns an IMP pointing to the
+ /// method implementation for this message.
+ LazyRuntimeFunction MsgLookupFn;
+ /// stret lookup function. While this does not seem to make sense at the
+ /// first look, this is required to call the correct forwarding function.
+ LazyRuntimeFunction MsgLookupFnSRet;
+ /// The GCC ABI superclass message lookup function. Takes a pointer to a
+ /// structure describing the receiver and the class, and a selector as
+ /// arguments. Returns the IMP for the corresponding method.
+ LazyRuntimeFunction MsgLookupSuperFn, MsgLookupSuperFnSRet;
+
+ llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
+ llvm::Value *cmd, llvm::MDNode *node,
+ MessageSendInfo &MSI) override {
+ CGBuilderTy &Builder = CGF.Builder;
+ llvm::Value *args[] = {
+ EnforceType(Builder, Receiver, IdTy),
+ EnforceType(Builder, cmd, SelectorTy) };
+
+ llvm::CallSite imp;
+ if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
+ imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFnSRet, args);
+ else
+ imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
+
+ imp->setMetadata(msgSendMDKind, node);
+ return imp.getInstruction();
+ }
+
+ llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, llvm::Value *ObjCSuper,
+ llvm::Value *cmd, MessageSendInfo &MSI) override {
+ CGBuilderTy &Builder = CGF.Builder;
+ llvm::Value *lookupArgs[] = {EnforceType(Builder, ObjCSuper,
+ PtrToObjCSuperTy), cmd};
+
+ if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
+ return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFnSRet, lookupArgs);
+ else
+ return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
+ }
+
+ llvm::Value *GetClassNamed(CodeGenFunction &CGF,
+ const std::string &Name, bool isWeak) override {
+ if (isWeak)
+ return CGObjCGNU::GetClassNamed(CGF, Name, isWeak);
+
+ EmitClassRef(Name);
+
+ std::string SymbolName = "_OBJC_CLASS_" + Name;
+
+ llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(SymbolName);
+
+ if (!ClassSymbol)
+ ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
+ llvm::GlobalValue::ExternalLinkage,
+ nullptr, SymbolName);
+
+ return ClassSymbol;
+ }
+
+public:
+ CGObjCObjFW(CodeGenModule &Mod): CGObjCGNU(Mod, 9, 3) {
+ // IMP objc_msg_lookup(id, SEL);
+ MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy, nullptr);
+ MsgLookupFnSRet.init(&CGM, "objc_msg_lookup_stret", IMPTy, IdTy,
+ SelectorTy, nullptr);
+ // IMP objc_msg_lookup_super(struct objc_super*, SEL);
+ MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
+ PtrToObjCSuperTy, SelectorTy, nullptr);
+ MsgLookupSuperFnSRet.init(&CGM, "objc_msg_lookup_super_stret", IMPTy,
+ PtrToObjCSuperTy, SelectorTy, nullptr);
+ }
+};
+} // end anonymous namespace
+
+
+/// Emits a reference to a dummy variable which is emitted with each class.
+/// This ensures that a linker error will be generated when trying to link
+/// together modules where a referenced class is not defined.
+void CGObjCGNU::EmitClassRef(const std::string &className) {
+ std::string symbolRef = "__objc_class_ref_" + className;
+ // Don't emit two copies of the same symbol
+ if (TheModule.getGlobalVariable(symbolRef))
+ return;
+ std::string symbolName = "__objc_class_name_" + className;
+ llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(symbolName);
+ if (!ClassSymbol) {
+ ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
+ llvm::GlobalValue::ExternalLinkage,
+ nullptr, symbolName);
+ }
+ new llvm::GlobalVariable(TheModule, ClassSymbol->getType(), true,
+ llvm::GlobalValue::WeakAnyLinkage, ClassSymbol, symbolRef);
+}
+
+static std::string SymbolNameForMethod( StringRef ClassName,
+ StringRef CategoryName, const Selector MethodName,
+ bool isClassMethod) {
+ std::string MethodNameColonStripped = MethodName.getAsString();
+ std::replace(MethodNameColonStripped.begin(), MethodNameColonStripped.end(),
+ ':', '_');
+ return (Twine(isClassMethod ? "_c_" : "_i_") + ClassName + "_" +
+ CategoryName + "_" + MethodNameColonStripped).str();
+}
+
+CGObjCGNU::CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
+ unsigned protocolClassVersion)
+ : CGObjCRuntime(cgm), TheModule(CGM.getModule()),
+ VMContext(cgm.getLLVMContext()), ClassPtrAlias(nullptr),
+ MetaClassPtrAlias(nullptr), RuntimeVersion(runtimeABIVersion),
+ ProtocolVersion(protocolClassVersion) {
+
+ msgSendMDKind = VMContext.getMDKindID("GNUObjCMessageSend");
+
+ CodeGenTypes &Types = CGM.getTypes();
+ IntTy = cast<llvm::IntegerType>(
+ Types.ConvertType(CGM.getContext().IntTy));
+ LongTy = cast<llvm::IntegerType>(
+ Types.ConvertType(CGM.getContext().LongTy));
+ SizeTy = cast<llvm::IntegerType>(
+ Types.ConvertType(CGM.getContext().getSizeType()));
+ PtrDiffTy = cast<llvm::IntegerType>(
+ Types.ConvertType(CGM.getContext().getPointerDiffType()));
+ BoolTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy);
+
+ Int8Ty = llvm::Type::getInt8Ty(VMContext);
+ // C string type. Used in lots of places.
+ PtrToInt8Ty = llvm::PointerType::getUnqual(Int8Ty);
+
+ Zeros[0] = llvm::ConstantInt::get(LongTy, 0);
+ Zeros[1] = Zeros[0];
+ NULLPtr = llvm::ConstantPointerNull::get(PtrToInt8Ty);
+ // Get the selector Type.
+ QualType selTy = CGM.getContext().getObjCSelType();
+ if (QualType() == selTy) {
+ SelectorTy = PtrToInt8Ty;
+ } else {
+ SelectorTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(selTy));
+ }
+
+ PtrToIntTy = llvm::PointerType::getUnqual(IntTy);
+ PtrTy = PtrToInt8Ty;
+
+ Int32Ty = llvm::Type::getInt32Ty(VMContext);
+ Int64Ty = llvm::Type::getInt64Ty(VMContext);
+
+ IntPtrTy =
+ CGM.getDataLayout().getPointerSizeInBits() == 32 ? Int32Ty : Int64Ty;
+
+ // Object type
+ QualType UnqualIdTy = CGM.getContext().getObjCIdType();
+ ASTIdTy = CanQualType();
+ if (UnqualIdTy != QualType()) {
+ ASTIdTy = CGM.getContext().getCanonicalType(UnqualIdTy);
+ IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
+ } else {
+ IdTy = PtrToInt8Ty;
+ }
+ PtrToIdTy = llvm::PointerType::getUnqual(IdTy);
+
+ ObjCSuperTy = llvm::StructType::get(IdTy, IdTy, nullptr);
+ PtrToObjCSuperTy = llvm::PointerType::getUnqual(ObjCSuperTy);
+
+ llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
+
+ // void objc_exception_throw(id);
+ ExceptionThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy, nullptr);
+ ExceptionReThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy, nullptr);
+ // int objc_sync_enter(id);
+ SyncEnterFn.init(&CGM, "objc_sync_enter", IntTy, IdTy, nullptr);
+ // int objc_sync_exit(id);
+ SyncExitFn.init(&CGM, "objc_sync_exit", IntTy, IdTy, nullptr);
+
+ // void objc_enumerationMutation (id)
+ EnumerationMutationFn.init(&CGM, "objc_enumerationMutation", VoidTy,
+ IdTy, nullptr);
+
+ // id objc_getProperty(id, SEL, ptrdiff_t, BOOL)
+ GetPropertyFn.init(&CGM, "objc_getProperty", IdTy, IdTy, SelectorTy,
+ PtrDiffTy, BoolTy, nullptr);
+ // void objc_setProperty(id, SEL, ptrdiff_t, id, BOOL, BOOL)
+ SetPropertyFn.init(&CGM, "objc_setProperty", VoidTy, IdTy, SelectorTy,
+ PtrDiffTy, IdTy, BoolTy, BoolTy, nullptr);
+ // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
+ GetStructPropertyFn.init(&CGM, "objc_getPropertyStruct", VoidTy, PtrTy, PtrTy,
+ PtrDiffTy, BoolTy, BoolTy, nullptr);
+ // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
+ SetStructPropertyFn.init(&CGM, "objc_setPropertyStruct", VoidTy, PtrTy, PtrTy,
+ PtrDiffTy, BoolTy, BoolTy, nullptr);
+
+ // IMP type
+ llvm::Type *IMPArgs[] = { IdTy, SelectorTy };
+ IMPTy = llvm::PointerType::getUnqual(llvm::FunctionType::get(IdTy, IMPArgs,
+ true));
+
+ const LangOptions &Opts = CGM.getLangOpts();
+ if ((Opts.getGC() != LangOptions::NonGC) || Opts.ObjCAutoRefCount)
+ RuntimeVersion = 10;
+
+ // Don't bother initialising the GC stuff unless we're compiling in GC mode
+ if (Opts.getGC() != LangOptions::NonGC) {
+ // This is a bit of an hack. We should sort this out by having a proper
+ // CGObjCGNUstep subclass for GC, but we may want to really support the old
+ // ABI and GC added in ObjectiveC2.framework, so we fudge it a bit for now
+ // Get selectors needed in GC mode
+ RetainSel = GetNullarySelector("retain", CGM.getContext());
+ ReleaseSel = GetNullarySelector("release", CGM.getContext());
+ AutoreleaseSel = GetNullarySelector("autorelease", CGM.getContext());
+
+ // Get functions needed in GC mode
+
+ // id objc_assign_ivar(id, id, ptrdiff_t);
+ IvarAssignFn.init(&CGM, "objc_assign_ivar", IdTy, IdTy, IdTy, PtrDiffTy,
+ nullptr);
+ // id objc_assign_strongCast (id, id*)
+ StrongCastAssignFn.init(&CGM, "objc_assign_strongCast", IdTy, IdTy,
+ PtrToIdTy, nullptr);
+ // id objc_assign_global(id, id*);
+ GlobalAssignFn.init(&CGM, "objc_assign_global", IdTy, IdTy, PtrToIdTy,
+ nullptr);
+ // id objc_assign_weak(id, id*);
+ WeakAssignFn.init(&CGM, "objc_assign_weak", IdTy, IdTy, PtrToIdTy, nullptr);
+ // id objc_read_weak(id*);
+ WeakReadFn.init(&CGM, "objc_read_weak", IdTy, PtrToIdTy, nullptr);
+ // void *objc_memmove_collectable(void*, void *, size_t);
+ MemMoveFn.init(&CGM, "objc_memmove_collectable", PtrTy, PtrTy, PtrTy,
+ SizeTy, nullptr);
+ }
+}
+
+llvm::Value *CGObjCGNU::GetClassNamed(CodeGenFunction &CGF,
+ const std::string &Name,
+ bool isWeak) {
+ llvm::GlobalVariable *ClassNameGV = CGM.GetAddrOfConstantCString(Name);
+ // With the incompatible ABI, this will need to be replaced with a direct
+ // reference to the class symbol. For the compatible nonfragile ABI we are
+ // still performing this lookup at run time but emitting the symbol for the
+ // class externally so that we can make the switch later.
+ //
+ // Libobjc2 contains an LLVM pass that replaces calls to objc_lookup_class
+ // with memoized versions or with static references if it's safe to do so.
+ if (!isWeak)
+ EmitClassRef(Name);
+ llvm::Value *ClassName =
+ CGF.Builder.CreateStructGEP(ClassNameGV->getValueType(), ClassNameGV, 0);
+
+ llvm::Constant *ClassLookupFn =
+ CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, PtrToInt8Ty, true),
+ "objc_lookup_class");
+ return CGF.EmitNounwindRuntimeCall(ClassLookupFn, ClassName);
+}
+
+// This has to perform the lookup every time, since posing and related
+// techniques can modify the name -> class mapping.
+llvm::Value *CGObjCGNU::GetClass(CodeGenFunction &CGF,
+ const ObjCInterfaceDecl *OID) {
+ return GetClassNamed(CGF, OID->getNameAsString(), OID->isWeakImported());
+}
+llvm::Value *CGObjCGNU::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) {
+ return GetClassNamed(CGF, "NSAutoreleasePool", false);
+}
+
+llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel,
+ const std::string &TypeEncoding, bool lval) {
+
+ SmallVectorImpl<TypedSelector> &Types = SelectorTable[Sel];
+ llvm::GlobalAlias *SelValue = nullptr;
+
+ for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(),
+ e = Types.end() ; i!=e ; i++) {
+ if (i->first == TypeEncoding) {
+ SelValue = i->second;
+ break;
+ }
+ }
+ if (!SelValue) {
+ SelValue = llvm::GlobalAlias::create(
+ SelectorTy, llvm::GlobalValue::PrivateLinkage,
+ ".objc_selector_" + Sel.getAsString(), &TheModule);
+ Types.push_back(TypedSelector(TypeEncoding, SelValue));
+ }
+
+ if (lval) {
+ llvm::Value *tmp = CGF.CreateTempAlloca(SelValue->getType());
+ CGF.Builder.CreateStore(SelValue, tmp);
+ return tmp;
+ }
+ return SelValue;
+}
+
+llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel,
+ bool lval) {
+ return GetSelector(CGF, Sel, std::string(), lval);
+}
+
+llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF,
+ const ObjCMethodDecl *Method) {
+ std::string SelTypes;
+ CGM.getContext().getObjCEncodingForMethodDecl(Method, SelTypes);
+ return GetSelector(CGF, Method->getSelector(), SelTypes, false);
+}
+
+llvm::Constant *CGObjCGNU::GetEHType(QualType T) {
+ if (T->isObjCIdType() || T->isObjCQualifiedIdType()) {
+ // With the old ABI, there was only one kind of catchall, which broke
+ // foreign exceptions. With the new ABI, we use __objc_id_typeinfo as
+ // a pointer indicating object catchalls, and NULL to indicate real
+ // catchalls
+ if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
+ return MakeConstantString("@id");
+ } else {
+ return nullptr;
+ }
+ }
+
+ // All other types should be Objective-C interface pointer types.
+ const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>();
+ assert(OPT && "Invalid @catch type.");
+ const ObjCInterfaceDecl *IDecl = OPT->getObjectType()->getInterface();
+ assert(IDecl && "Invalid @catch type.");
+ return MakeConstantString(IDecl->getIdentifier()->getName());
+}
+
+llvm::Constant *CGObjCGNUstep::GetEHType(QualType T) {
+ if (!CGM.getLangOpts().CPlusPlus)
+ return CGObjCGNU::GetEHType(T);
+
+ // For Objective-C++, we want to provide the ability to catch both C++ and
+ // Objective-C objects in the same function.
+
+ // There's a particular fixed type info for 'id'.
+ if (T->isObjCIdType() ||
+ T->isObjCQualifiedIdType()) {
+ llvm::Constant *IDEHType =
+ CGM.getModule().getGlobalVariable("__objc_id_type_info");
+ if (!IDEHType)
+ IDEHType =
+ new llvm::GlobalVariable(CGM.getModule(), PtrToInt8Ty,
+ false,
+ llvm::GlobalValue::ExternalLinkage,
+ nullptr, "__objc_id_type_info");
+ return llvm::ConstantExpr::getBitCast(IDEHType, PtrToInt8Ty);
+ }
+
+ const ObjCObjectPointerType *PT =
+ T->getAs<ObjCObjectPointerType>();
+ assert(PT && "Invalid @catch type.");
+ const ObjCInterfaceType *IT = PT->getInterfaceType();
+ assert(IT && "Invalid @catch type.");
+ std::string className = IT->getDecl()->getIdentifier()->getName();
+
+ std::string typeinfoName = "__objc_eh_typeinfo_" + className;
+
+ // Return the existing typeinfo if it exists
+ llvm::Constant *typeinfo = TheModule.getGlobalVariable(typeinfoName);
+ if (typeinfo)
+ return llvm::ConstantExpr::getBitCast(typeinfo, PtrToInt8Ty);
+
+ // Otherwise create it.
+
+ // vtable for gnustep::libobjc::__objc_class_type_info
+ // It's quite ugly hard-coding this. Ideally we'd generate it using the host
+ // platform's name mangling.
+ const char *vtableName = "_ZTVN7gnustep7libobjc22__objc_class_type_infoE";
+ auto *Vtable = TheModule.getGlobalVariable(vtableName);
+ if (!Vtable) {
+ Vtable = new llvm::GlobalVariable(TheModule, PtrToInt8Ty, true,
+ llvm::GlobalValue::ExternalLinkage,
+ nullptr, vtableName);
+ }
+ llvm::Constant *Two = llvm::ConstantInt::get(IntTy, 2);
+ auto *BVtable = llvm::ConstantExpr::getBitCast(
+ llvm::ConstantExpr::getGetElementPtr(Vtable->getValueType(), Vtable, Two),
+ PtrToInt8Ty);
+
+ llvm::Constant *typeName =
+ ExportUniqueString(className, "__objc_eh_typename_");
+
+ std::vector<llvm::Constant*> fields;
+ fields.push_back(BVtable);
+ fields.push_back(typeName);
+ llvm::Constant *TI =
+ MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty,
+ nullptr), fields, "__objc_eh_typeinfo_" + className,
+ llvm::GlobalValue::LinkOnceODRLinkage);
+ return llvm::ConstantExpr::getBitCast(TI, PtrToInt8Ty);
+}
+
+/// Generate an NSConstantString object.
+llvm::Constant *CGObjCGNU::GenerateConstantString(const StringLiteral *SL) {
+
+ std::string Str = SL->getString().str();
+
+ // Look for an existing one
+ llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str);
+ if (old != ObjCStrings.end())
+ return old->getValue();
+
+ StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
+
+ if (StringClass.empty()) StringClass = "NXConstantString";
+
+ std::string Sym = "_OBJC_CLASS_";
+ Sym += StringClass;
+
+ llvm::Constant *isa = TheModule.getNamedGlobal(Sym);
+
+ if (!isa)
+ isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false,
+ llvm::GlobalValue::ExternalWeakLinkage, nullptr, Sym);
+ else if (isa->getType() != PtrToIdTy)
+ isa = llvm::ConstantExpr::getBitCast(isa, PtrToIdTy);
+
+ std::vector<llvm::Constant*> Ivars;
+ Ivars.push_back(isa);
+ Ivars.push_back(MakeConstantString(Str));
+ Ivars.push_back(llvm::ConstantInt::get(IntTy, Str.size()));
+ llvm::Constant *ObjCStr = MakeGlobal(
+ llvm::StructType::get(PtrToIdTy, PtrToInt8Ty, IntTy, nullptr),
+ Ivars, ".objc_str");
+ ObjCStr = llvm::ConstantExpr::getBitCast(ObjCStr, PtrToInt8Ty);
+ ObjCStrings[Str] = ObjCStr;
+ ConstantStrings.push_back(ObjCStr);
+ return ObjCStr;
+}
+
+///Generates a message send where the super is the receiver. This is a message
+///send to self with special delivery semantics indicating which class's method
+///should be called.
+RValue
+CGObjCGNU::GenerateMessageSendSuper(CodeGenFunction &CGF,
+ ReturnValueSlot Return,
+ QualType ResultType,
+ Selector Sel,
+ const ObjCInterfaceDecl *Class,
+ bool isCategoryImpl,
+ llvm::Value *Receiver,
+ bool IsClassMessage,
+ const CallArgList &CallArgs,
+ const ObjCMethodDecl *Method) {
+ CGBuilderTy &Builder = CGF.Builder;
+ if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
+ if (Sel == RetainSel || Sel == AutoreleaseSel) {
+ return RValue::get(EnforceType(Builder, Receiver,
+ CGM.getTypes().ConvertType(ResultType)));
+ }
+ if (Sel == ReleaseSel) {
+ return RValue::get(nullptr);
+ }
+ }
+
+ llvm::Value *cmd = GetSelector(CGF, Sel);
+
+
+ CallArgList ActualArgs;
+
+ ActualArgs.add(RValue::get(EnforceType(Builder, Receiver, IdTy)), ASTIdTy);
+ ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
+ ActualArgs.addFrom(CallArgs);
+
+ MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
+
+ llvm::Value *ReceiverClass = nullptr;
+ if (isCategoryImpl) {
+ llvm::Constant *classLookupFunction = nullptr;
+ if (IsClassMessage) {
+ classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
+ IdTy, PtrTy, true), "objc_get_meta_class");
+ } else {
+ classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
+ IdTy, PtrTy, true), "objc_get_class");
+ }
+ ReceiverClass = Builder.CreateCall(classLookupFunction,
+ MakeConstantString(Class->getNameAsString()));
+ } else {
+ // Set up global aliases for the metaclass or class pointer if they do not
+ // already exist. These will are forward-references which will be set to
+ // pointers to the class and metaclass structure created for the runtime
+ // load function. To send a message to super, we look up the value of the
+ // super_class pointer from either the class or metaclass structure.
+ if (IsClassMessage) {
+ if (!MetaClassPtrAlias) {
+ MetaClassPtrAlias = llvm::GlobalAlias::create(
+ IdTy, llvm::GlobalValue::InternalLinkage,
+ ".objc_metaclass_ref" + Class->getNameAsString(), &TheModule);
+ }
+ ReceiverClass = MetaClassPtrAlias;
+ } else {
+ if (!ClassPtrAlias) {
+ ClassPtrAlias = llvm::GlobalAlias::create(
+ IdTy, llvm::GlobalValue::InternalLinkage,
+ ".objc_class_ref" + Class->getNameAsString(), &TheModule);
+ }
+ ReceiverClass = ClassPtrAlias;
+ }
+ }
+ // Cast the pointer to a simplified version of the class structure
+ llvm::Type *CastTy = llvm::StructType::get(IdTy, IdTy, nullptr);
+ ReceiverClass = Builder.CreateBitCast(ReceiverClass,
+ llvm::PointerType::getUnqual(CastTy));
+ // Get the superclass pointer
+ ReceiverClass = Builder.CreateStructGEP(CastTy, ReceiverClass, 1);
+ // Load the superclass pointer
+ ReceiverClass = Builder.CreateLoad(ReceiverClass);
+ // Construct the structure used to look up the IMP
+ llvm::StructType *ObjCSuperTy = llvm::StructType::get(
+ Receiver->getType(), IdTy, nullptr);
+ llvm::Value *ObjCSuper = Builder.CreateAlloca(ObjCSuperTy);
+
+ Builder.CreateStore(Receiver,
+ Builder.CreateStructGEP(ObjCSuperTy, ObjCSuper, 0));
+ Builder.CreateStore(ReceiverClass,
+ Builder.CreateStructGEP(ObjCSuperTy, ObjCSuper, 1));
+
+ ObjCSuper = EnforceType(Builder, ObjCSuper, PtrToObjCSuperTy);
+
+ // Get the IMP
+ llvm::Value *imp = LookupIMPSuper(CGF, ObjCSuper, cmd, MSI);
+ imp = EnforceType(Builder, imp, MSI.MessengerType);
+
+ llvm::Metadata *impMD[] = {
+ llvm::MDString::get(VMContext, Sel.getAsString()),
+ llvm::MDString::get(VMContext, Class->getSuperClass()->getNameAsString()),
+ llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
+ llvm::Type::getInt1Ty(VMContext), IsClassMessage))};
+ llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
+
+ llvm::Instruction *call;
+ RValue msgRet = CGF.EmitCall(MSI.CallInfo, imp, Return, ActualArgs, nullptr,
+ &call);
+ call->setMetadata(msgSendMDKind, node);
+ return msgRet;
+}
+
+/// Generate code for a message send expression.
+RValue
+CGObjCGNU::GenerateMessageSend(CodeGenFunction &CGF,
+ ReturnValueSlot Return,
+ QualType ResultType,
+ Selector Sel,
+ llvm::Value *Receiver,
+ const CallArgList &CallArgs,
+ const ObjCInterfaceDecl *Class,
+ const ObjCMethodDecl *Method) {
+ CGBuilderTy &Builder = CGF.Builder;
+
+ // Strip out message sends to retain / release in GC mode
+ if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
+ if (Sel == RetainSel || Sel == AutoreleaseSel) {
+ return RValue::get(EnforceType(Builder, Receiver,
+ CGM.getTypes().ConvertType(ResultType)));
+ }
+ if (Sel == ReleaseSel) {
+ return RValue::get(nullptr);
+ }
+ }
+
+ // If the return type is something that goes in an integer register, the
+ // runtime will handle 0 returns. For other cases, we fill in the 0 value
+ // ourselves.
+ //
+ // The language spec says the result of this kind of message send is
+ // undefined, but lots of people seem to have forgotten to read that
+ // paragraph and insist on sending messages to nil that have structure
+ // returns. With GCC, this generates a random return value (whatever happens
+ // to be on the stack / in those registers at the time) on most platforms,
+ // and generates an illegal instruction trap on SPARC. With LLVM it corrupts
+ // the stack.
+ bool isPointerSizedReturn = (ResultType->isAnyPointerType() ||
+ ResultType->isIntegralOrEnumerationType() || ResultType->isVoidType());
+
+ llvm::BasicBlock *startBB = nullptr;
+ llvm::BasicBlock *messageBB = nullptr;
+ llvm::BasicBlock *continueBB = nullptr;
+
+ if (!isPointerSizedReturn) {
+ startBB = Builder.GetInsertBlock();
+ messageBB = CGF.createBasicBlock("msgSend");
+ continueBB = CGF.createBasicBlock("continue");
+
+ llvm::Value *isNil = Builder.CreateICmpEQ(Receiver,
+ llvm::Constant::getNullValue(Receiver->getType()));
+ Builder.CreateCondBr(isNil, continueBB, messageBB);
+ CGF.EmitBlock(messageBB);
+ }
+
+ IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
+ llvm::Value *cmd;
+ if (Method)
+ cmd = GetSelector(CGF, Method);
+ else
+ cmd = GetSelector(CGF, Sel);
+ cmd = EnforceType(Builder, cmd, SelectorTy);
+ Receiver = EnforceType(Builder, Receiver, IdTy);
+
+ llvm::Metadata *impMD[] = {
+ llvm::MDString::get(VMContext, Sel.getAsString()),
+ llvm::MDString::get(VMContext, Class ? Class->getNameAsString() : ""),
+ llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
+ llvm::Type::getInt1Ty(VMContext), Class != nullptr))};
+ llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
+
+ CallArgList ActualArgs;
+ ActualArgs.add(RValue::get(Receiver), ASTIdTy);
+ ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
+ ActualArgs.addFrom(CallArgs);
+
+ MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
+
+ // Get the IMP to call
+ llvm::Value *imp;
+
+ // If we have non-legacy dispatch specified, we try using the objc_msgSend()
+ // functions. These are not supported on all platforms (or all runtimes on a
+ // given platform), so we
+ switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) {
+ case CodeGenOptions::Legacy:
+ imp = LookupIMP(CGF, Receiver, cmd, node, MSI);
+ break;
+ case CodeGenOptions::Mixed:
+ case CodeGenOptions::NonLegacy:
+ if (CGM.ReturnTypeUsesFPRet(ResultType)) {
+ imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
+ "objc_msgSend_fpret");
+ } else if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) {
+ // The actual types here don't matter - we're going to bitcast the
+ // function anyway
+ imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
+ "objc_msgSend_stret");
+ } else {
+ imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
+ "objc_msgSend");
+ }
+ }
+
+ // Reset the receiver in case the lookup modified it
+ ActualArgs[0] = CallArg(RValue::get(Receiver), ASTIdTy, false);
+
+ imp = EnforceType(Builder, imp, MSI.MessengerType);
+
+ llvm::Instruction *call;
+ RValue msgRet = CGF.EmitCall(MSI.CallInfo, imp, Return, ActualArgs, nullptr,
+ &call);
+ call->setMetadata(msgSendMDKind, node);
+
+
+ if (!isPointerSizedReturn) {
+ messageBB = CGF.Builder.GetInsertBlock();
+ CGF.Builder.CreateBr(continueBB);
+ CGF.EmitBlock(continueBB);
+ if (msgRet.isScalar()) {
+ llvm::Value *v = msgRet.getScalarVal();
+ llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2);
+ phi->addIncoming(v, messageBB);
+ phi->addIncoming(llvm::Constant::getNullValue(v->getType()), startBB);
+ msgRet = RValue::get(phi);
+ } else if (msgRet.isAggregate()) {
+ llvm::Value *v = msgRet.getAggregateAddr();
+ llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2);
+ llvm::PointerType *RetTy = cast<llvm::PointerType>(v->getType());
+ llvm::AllocaInst *NullVal =
+ CGF.CreateTempAlloca(RetTy->getElementType(), "null");
+ CGF.InitTempAlloca(NullVal,
+ llvm::Constant::getNullValue(RetTy->getElementType()));
+ phi->addIncoming(v, messageBB);
+ phi->addIncoming(NullVal, startBB);
+ msgRet = RValue::getAggregate(phi);
+ } else /* isComplex() */ {
+ std::pair<llvm::Value*,llvm::Value*> v = msgRet.getComplexVal();
+ llvm::PHINode *phi = Builder.CreatePHI(v.first->getType(), 2);
+ phi->addIncoming(v.first, messageBB);
+ phi->addIncoming(llvm::Constant::getNullValue(v.first->getType()),
+ startBB);
+ llvm::PHINode *phi2 = Builder.CreatePHI(v.second->getType(), 2);
+ phi2->addIncoming(v.second, messageBB);
+ phi2->addIncoming(llvm::Constant::getNullValue(v.second->getType()),
+ startBB);
+ msgRet = RValue::getComplex(phi, phi2);
+ }
+ }
+ return msgRet;
+}
+
+/// Generates a MethodList. Used in construction of a objc_class and
+/// objc_category structures.
+llvm::Constant *CGObjCGNU::
+GenerateMethodList(StringRef ClassName,
+ StringRef CategoryName,
+ ArrayRef<Selector> MethodSels,
+ ArrayRef<llvm::Constant *> MethodTypes,
+ bool isClassMethodList) {
+ if (MethodSels.empty())
+ return NULLPtr;
+ // Get the method structure type.
+ llvm::StructType *ObjCMethodTy = llvm::StructType::get(
+ PtrToInt8Ty, // Really a selector, but the runtime creates it us.
+ PtrToInt8Ty, // Method types
+ IMPTy, //Method pointer
+ nullptr);
+ std::vector<llvm::Constant*> Methods;
+ std::vector<llvm::Constant*> Elements;
+ for (unsigned int i = 0, e = MethodTypes.size(); i < e; ++i) {
+ Elements.clear();
+ llvm::Constant *Method =
+ TheModule.getFunction(SymbolNameForMethod(ClassName, CategoryName,
+ MethodSels[i],
+ isClassMethodList));
+ assert(Method && "Can't generate metadata for method that doesn't exist");
+ llvm::Constant *C = MakeConstantString(MethodSels[i].getAsString());
+ Elements.push_back(C);
+ Elements.push_back(MethodTypes[i]);
+ Method = llvm::ConstantExpr::getBitCast(Method,
+ IMPTy);
+ Elements.push_back(Method);
+ Methods.push_back(llvm::ConstantStruct::get(ObjCMethodTy, Elements));
+ }
+
+ // Array of method structures
+ llvm::ArrayType *ObjCMethodArrayTy = llvm::ArrayType::get(ObjCMethodTy,
+ Methods.size());
+ llvm::Constant *MethodArray = llvm::ConstantArray::get(ObjCMethodArrayTy,
+ Methods);
+
+ // Structure containing list pointer, array and array count
+ llvm::StructType *ObjCMethodListTy = llvm::StructType::create(VMContext);
+ llvm::Type *NextPtrTy = llvm::PointerType::getUnqual(ObjCMethodListTy);
+ ObjCMethodListTy->setBody(
+ NextPtrTy,
+ IntTy,
+ ObjCMethodArrayTy,
+ nullptr);
+
+ Methods.clear();
+ Methods.push_back(llvm::ConstantPointerNull::get(
+ llvm::PointerType::getUnqual(ObjCMethodListTy)));
+ Methods.push_back(llvm::ConstantInt::get(Int32Ty, MethodTypes.size()));
+ Methods.push_back(MethodArray);
+
+ // Create an instance of the structure
+ return MakeGlobal(ObjCMethodListTy, Methods, ".objc_method_list");
+}
+
+/// Generates an IvarList. Used in construction of a objc_class.
+llvm::Constant *CGObjCGNU::
+GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
+ ArrayRef<llvm::Constant *> IvarTypes,
+ ArrayRef<llvm::Constant *> IvarOffsets) {
+ if (IvarNames.size() == 0)
+ return NULLPtr;
+ // Get the method structure type.
+ llvm::StructType *ObjCIvarTy = llvm::StructType::get(
+ PtrToInt8Ty,
+ PtrToInt8Ty,
+ IntTy,
+ nullptr);
+ std::vector<llvm::Constant*> Ivars;
+ std::vector<llvm::Constant*> Elements;
+ for (unsigned int i = 0, e = IvarNames.size() ; i < e ; i++) {
+ Elements.clear();
+ Elements.push_back(IvarNames[i]);
+ Elements.push_back(IvarTypes[i]);
+ Elements.push_back(IvarOffsets[i]);
+ Ivars.push_back(llvm::ConstantStruct::get(ObjCIvarTy, Elements));
+ }
+
+ // Array of method structures
+ llvm::ArrayType *ObjCIvarArrayTy = llvm::ArrayType::get(ObjCIvarTy,
+ IvarNames.size());
+
+
+ Elements.clear();
+ Elements.push_back(llvm::ConstantInt::get(IntTy, (int)IvarNames.size()));
+ Elements.push_back(llvm::ConstantArray::get(ObjCIvarArrayTy, Ivars));
+ // Structure containing array and array count
+ llvm::StructType *ObjCIvarListTy = llvm::StructType::get(IntTy,
+ ObjCIvarArrayTy,
+ nullptr);
+
+ // Create an instance of the structure
+ return MakeGlobal(ObjCIvarListTy, Elements, ".objc_ivar_list");
+}
+
+/// Generate a class structure
+llvm::Constant *CGObjCGNU::GenerateClassStructure(
+ llvm::Constant *MetaClass,
+ llvm::Constant *SuperClass,
+ unsigned info,
+ const char *Name,
+ llvm::Constant *Version,
+ llvm::Constant *InstanceSize,
+ llvm::Constant *IVars,
+ llvm::Constant *Methods,
+ llvm::Constant *Protocols,
+ llvm::Constant *IvarOffsets,
+ llvm::Constant *Properties,
+ llvm::Constant *StrongIvarBitmap,
+ llvm::Constant *WeakIvarBitmap,
+ bool isMeta) {
+ // Set up the class structure
+ // Note: Several of these are char*s when they should be ids. This is
+ // because the runtime performs this translation on load.
+ //
+ // Fields marked New ABI are part of the GNUstep runtime. We emit them
+ // anyway; the classes will still work with the GNU runtime, they will just
+ // be ignored.
+ llvm::StructType *ClassTy = llvm::StructType::get(
+ PtrToInt8Ty, // isa
+ PtrToInt8Ty, // super_class
+ PtrToInt8Ty, // name
+ LongTy, // version
+ LongTy, // info
+ LongTy, // instance_size
+ IVars->getType(), // ivars
+ Methods->getType(), // methods
+ // These are all filled in by the runtime, so we pretend
+ PtrTy, // dtable
+ PtrTy, // subclass_list
+ PtrTy, // sibling_class
+ PtrTy, // protocols
+ PtrTy, // gc_object_type
+ // New ABI:
+ LongTy, // abi_version
+ IvarOffsets->getType(), // ivar_offsets
+ Properties->getType(), // properties
+ IntPtrTy, // strong_pointers
+ IntPtrTy, // weak_pointers
+ nullptr);
+ llvm::Constant *Zero = llvm::ConstantInt::get(LongTy, 0);
+ // Fill in the structure
+ std::vector<llvm::Constant*> Elements;
+ Elements.push_back(llvm::ConstantExpr::getBitCast(MetaClass, PtrToInt8Ty));
+ Elements.push_back(SuperClass);
+ Elements.push_back(MakeConstantString(Name, ".class_name"));
+ Elements.push_back(Zero);
+ Elements.push_back(llvm::ConstantInt::get(LongTy, info));
+ if (isMeta) {
+ llvm::DataLayout td(&TheModule);
+ Elements.push_back(
+ llvm::ConstantInt::get(LongTy,
+ td.getTypeSizeInBits(ClassTy) /
+ CGM.getContext().getCharWidth()));
+ } else
+ Elements.push_back(InstanceSize);
+ Elements.push_back(IVars);
+ Elements.push_back(Methods);
+ Elements.push_back(NULLPtr);
+ Elements.push_back(NULLPtr);
+ Elements.push_back(NULLPtr);
+ Elements.push_back(llvm::ConstantExpr::getBitCast(Protocols, PtrTy));
+ Elements.push_back(NULLPtr);
+ Elements.push_back(llvm::ConstantInt::get(LongTy, 1));
+ Elements.push_back(IvarOffsets);
+ Elements.push_back(Properties);
+ Elements.push_back(StrongIvarBitmap);
+ Elements.push_back(WeakIvarBitmap);
+ // Create an instance of the structure
+ // This is now an externally visible symbol, so that we can speed up class
+ // messages in the next ABI. We may already have some weak references to
+ // this, so check and fix them properly.
+ std::string ClassSym((isMeta ? "_OBJC_METACLASS_": "_OBJC_CLASS_") +
+ std::string(Name));
+ llvm::GlobalVariable *ClassRef = TheModule.getNamedGlobal(ClassSym);
+ llvm::Constant *Class = MakeGlobal(ClassTy, Elements, ClassSym,
+ llvm::GlobalValue::ExternalLinkage);
+ if (ClassRef) {
+ ClassRef->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(Class,
+ ClassRef->getType()));
+ ClassRef->removeFromParent();
+ Class->setName(ClassSym);
+ }
+ return Class;
+}
+
+llvm::Constant *CGObjCGNU::
+GenerateProtocolMethodList(ArrayRef<llvm::Constant *> MethodNames,
+ ArrayRef<llvm::Constant *> MethodTypes) {
+ // Get the method structure type.
+ llvm::StructType *ObjCMethodDescTy = llvm::StructType::get(
+ PtrToInt8Ty, // Really a selector, but the runtime does the casting for us.
+ PtrToInt8Ty,
+ nullptr);
+ std::vector<llvm::Constant*> Methods;
+ std::vector<llvm::Constant*> Elements;
+ for (unsigned int i = 0, e = MethodTypes.size() ; i < e ; i++) {
+ Elements.clear();
+ Elements.push_back(MethodNames[i]);
+ Elements.push_back(MethodTypes[i]);
+ Methods.push_back(llvm::ConstantStruct::get(ObjCMethodDescTy, Elements));
+ }
+ llvm::ArrayType *ObjCMethodArrayTy = llvm::ArrayType::get(ObjCMethodDescTy,
+ MethodNames.size());
+ llvm::Constant *Array = llvm::ConstantArray::get(ObjCMethodArrayTy,
+ Methods);
+ llvm::StructType *ObjCMethodDescListTy = llvm::StructType::get(
+ IntTy, ObjCMethodArrayTy, nullptr);
+ Methods.clear();
+ Methods.push_back(llvm::ConstantInt::get(IntTy, MethodNames.size()));
+ Methods.push_back(Array);
+ return MakeGlobal(ObjCMethodDescListTy, Methods, ".objc_method_list");
+}
+
+// Create the protocol list structure used in classes, categories and so on
+llvm::Constant *CGObjCGNU::GenerateProtocolList(ArrayRef<std::string>Protocols){
+ llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(PtrToInt8Ty,
+ Protocols.size());
+ llvm::StructType *ProtocolListTy = llvm::StructType::get(
+ PtrTy, //Should be a recurisve pointer, but it's always NULL here.
+ SizeTy,
+ ProtocolArrayTy,
+ nullptr);
+ std::vector<llvm::Constant*> Elements;
+ for (const std::string *iter = Protocols.begin(), *endIter = Protocols.end();
+ iter != endIter ; iter++) {
+ llvm::Constant *protocol = nullptr;
+ llvm::StringMap<llvm::Constant*>::iterator value =
+ ExistingProtocols.find(*iter);
+ if (value == ExistingProtocols.end()) {
+ protocol = GenerateEmptyProtocol(*iter);
+ } else {
+ protocol = value->getValue();
+ }
+ llvm::Constant *Ptr = llvm::ConstantExpr::getBitCast(protocol,
+ PtrToInt8Ty);
+ Elements.push_back(Ptr);
+ }
+ llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy,
+ Elements);
+ Elements.clear();
+ Elements.push_back(NULLPtr);
+ Elements.push_back(llvm::ConstantInt::get(LongTy, Protocols.size()));
+ Elements.push_back(ProtocolArray);
+ return MakeGlobal(ProtocolListTy, Elements, ".objc_protocol_list");
+}
+
+llvm::Value *CGObjCGNU::GenerateProtocolRef(CodeGenFunction &CGF,
+ const ObjCProtocolDecl *PD) {
+ llvm::Value *protocol = ExistingProtocols[PD->getNameAsString()];
+ llvm::Type *T =
+ CGM.getTypes().ConvertType(CGM.getContext().getObjCProtoType());
+ return CGF.Builder.CreateBitCast(protocol, llvm::PointerType::getUnqual(T));
+}
+
+llvm::Constant *CGObjCGNU::GenerateEmptyProtocol(
+ const std::string &ProtocolName) {
+ SmallVector<std::string, 0> EmptyStringVector;
+ SmallVector<llvm::Constant*, 0> EmptyConstantVector;
+
+ llvm::Constant *ProtocolList = GenerateProtocolList(EmptyStringVector);
+ llvm::Constant *MethodList =
+ GenerateProtocolMethodList(EmptyConstantVector, EmptyConstantVector);
+ // Protocols are objects containing lists of the methods implemented and
+ // protocols adopted.
+ llvm::StructType *ProtocolTy = llvm::StructType::get(IdTy,
+ PtrToInt8Ty,
+ ProtocolList->getType(),
+ MethodList->getType(),
+ MethodList->getType(),
+ MethodList->getType(),
+ MethodList->getType(),
+ nullptr);
+ std::vector<llvm::Constant*> Elements;
+ // The isa pointer must be set to a magic number so the runtime knows it's
+ // the correct layout.
+ Elements.push_back(llvm::ConstantExpr::getIntToPtr(
+ llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
+ Elements.push_back(MakeConstantString(ProtocolName, ".objc_protocol_name"));
+ Elements.push_back(ProtocolList);
+ Elements.push_back(MethodList);
+ Elements.push_back(MethodList);
+ Elements.push_back(MethodList);
+ Elements.push_back(MethodList);
+ return MakeGlobal(ProtocolTy, Elements, ".objc_protocol");
+}
+
+void CGObjCGNU::GenerateProtocol(const ObjCProtocolDecl *PD) {
+ ASTContext &Context = CGM.getContext();
+ std::string ProtocolName = PD->getNameAsString();
+
+ // Use the protocol definition, if there is one.
+ if (const ObjCProtocolDecl *Def = PD->getDefinition())
+ PD = Def;
+
+ SmallVector<std::string, 16> Protocols;
+ for (const auto *PI : PD->protocols())
+ Protocols.push_back(PI->getNameAsString());
+ SmallVector<llvm::Constant*, 16> InstanceMethodNames;
+ SmallVector<llvm::Constant*, 16> InstanceMethodTypes;
+ SmallVector<llvm::Constant*, 16> OptionalInstanceMethodNames;
+ SmallVector<llvm::Constant*, 16> OptionalInstanceMethodTypes;
+ for (const auto *I : PD->instance_methods()) {
+ std::string TypeStr;
+ Context.getObjCEncodingForMethodDecl(I, TypeStr);
+ if (I->getImplementationControl() == ObjCMethodDecl::Optional) {
+ OptionalInstanceMethodNames.push_back(
+ MakeConstantString(I->getSelector().getAsString()));
+ OptionalInstanceMethodTypes.push_back(MakeConstantString(TypeStr));
+ } else {
+ InstanceMethodNames.push_back(
+ MakeConstantString(I->getSelector().getAsString()));
+ InstanceMethodTypes.push_back(MakeConstantString(TypeStr));
+ }
+ }
+ // Collect information about class methods:
+ SmallVector<llvm::Constant*, 16> ClassMethodNames;
+ SmallVector<llvm::Constant*, 16> ClassMethodTypes;
+ SmallVector<llvm::Constant*, 16> OptionalClassMethodNames;
+ SmallVector<llvm::Constant*, 16> OptionalClassMethodTypes;
+ for (const auto *I : PD->class_methods()) {
+ std::string TypeStr;
+ Context.getObjCEncodingForMethodDecl(I,TypeStr);
+ if (I->getImplementationControl() == ObjCMethodDecl::Optional) {
+ OptionalClassMethodNames.push_back(
+ MakeConstantString(I->getSelector().getAsString()));
+ OptionalClassMethodTypes.push_back(MakeConstantString(TypeStr));
+ } else {
+ ClassMethodNames.push_back(
+ MakeConstantString(I->getSelector().getAsString()));
+ ClassMethodTypes.push_back(MakeConstantString(TypeStr));
+ }
+ }
+
+ llvm::Constant *ProtocolList = GenerateProtocolList(Protocols);
+ llvm::Constant *InstanceMethodList =
+ GenerateProtocolMethodList(InstanceMethodNames, InstanceMethodTypes);
+ llvm::Constant *ClassMethodList =
+ GenerateProtocolMethodList(ClassMethodNames, ClassMethodTypes);
+ llvm::Constant *OptionalInstanceMethodList =
+ GenerateProtocolMethodList(OptionalInstanceMethodNames,
+ OptionalInstanceMethodTypes);
+ llvm::Constant *OptionalClassMethodList =
+ GenerateProtocolMethodList(OptionalClassMethodNames,
+ OptionalClassMethodTypes);
+
+ // Property metadata: name, attributes, isSynthesized, setter name, setter
+ // types, getter name, getter types.
+ // The isSynthesized value is always set to 0 in a protocol. It exists to
+ // simplify the runtime library by allowing it to use the same data
+ // structures for protocol metadata everywhere.
+ llvm::StructType *PropertyMetadataTy = llvm::StructType::get(
+ PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty,
+ PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, nullptr);
+ std::vector<llvm::Constant*> Properties;
+ std::vector<llvm::Constant*> OptionalProperties;
+
+ // Add all of the property methods need adding to the method list and to the
+ // property metadata list.
+ for (auto *property : PD->properties()) {
+ std::vector<llvm::Constant*> Fields;
+
+ Fields.push_back(MakePropertyEncodingString(property, nullptr));
+ PushPropertyAttributes(Fields, property);
+
+ if (ObjCMethodDecl *getter = property->getGetterMethodDecl()) {
+ std::string TypeStr;
+ Context.getObjCEncodingForMethodDecl(getter,TypeStr);
+ llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
+ InstanceMethodTypes.push_back(TypeEncoding);
+ Fields.push_back(MakeConstantString(getter->getSelector().getAsString()));
+ Fields.push_back(TypeEncoding);
+ } else {
+ Fields.push_back(NULLPtr);
+ Fields.push_back(NULLPtr);
+ }
+ if (ObjCMethodDecl *setter = property->getSetterMethodDecl()) {
+ std::string TypeStr;
+ Context.getObjCEncodingForMethodDecl(setter,TypeStr);
+ llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
+ InstanceMethodTypes.push_back(TypeEncoding);
+ Fields.push_back(MakeConstantString(setter->getSelector().getAsString()));
+ Fields.push_back(TypeEncoding);
+ } else {
+ Fields.push_back(NULLPtr);
+ Fields.push_back(NULLPtr);
+ }
+ if (property->getPropertyImplementation() == ObjCPropertyDecl::Optional) {
+ OptionalProperties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields));
+ } else {
+ Properties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields));
+ }
+ }
+ llvm::Constant *PropertyArray = llvm::ConstantArray::get(
+ llvm::ArrayType::get(PropertyMetadataTy, Properties.size()), Properties);
+ llvm::Constant* PropertyListInitFields[] =
+ {llvm::ConstantInt::get(IntTy, Properties.size()), NULLPtr, PropertyArray};
+
+ llvm::Constant *PropertyListInit =
+ llvm::ConstantStruct::getAnon(PropertyListInitFields);
+ llvm::Constant *PropertyList = new llvm::GlobalVariable(TheModule,
+ PropertyListInit->getType(), false, llvm::GlobalValue::InternalLinkage,
+ PropertyListInit, ".objc_property_list");
+
+ llvm::Constant *OptionalPropertyArray =
+ llvm::ConstantArray::get(llvm::ArrayType::get(PropertyMetadataTy,
+ OptionalProperties.size()) , OptionalProperties);
+ llvm::Constant* OptionalPropertyListInitFields[] = {
+ llvm::ConstantInt::get(IntTy, OptionalProperties.size()), NULLPtr,
+ OptionalPropertyArray };
+
+ llvm::Constant *OptionalPropertyListInit =
+ llvm::ConstantStruct::getAnon(OptionalPropertyListInitFields);
+ llvm::Constant *OptionalPropertyList = new llvm::GlobalVariable(TheModule,
+ OptionalPropertyListInit->getType(), false,
+ llvm::GlobalValue::InternalLinkage, OptionalPropertyListInit,
+ ".objc_property_list");
+
+ // Protocols are objects containing lists of the methods implemented and
+ // protocols adopted.
+ llvm::StructType *ProtocolTy = llvm::StructType::get(IdTy,
+ PtrToInt8Ty,
+ ProtocolList->getType(),
+ InstanceMethodList->getType(),
+ ClassMethodList->getType(),
+ OptionalInstanceMethodList->getType(),
+ OptionalClassMethodList->getType(),
+ PropertyList->getType(),
+ OptionalPropertyList->getType(),
+ nullptr);
+ std::vector<llvm::Constant*> Elements;
+ // The isa pointer must be set to a magic number so the runtime knows it's
+ // the correct layout.
+ Elements.push_back(llvm::ConstantExpr::getIntToPtr(
+ llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
+ Elements.push_back(MakeConstantString(ProtocolName, ".objc_protocol_name"));
+ Elements.push_back(ProtocolList);
+ Elements.push_back(InstanceMethodList);
+ Elements.push_back(ClassMethodList);
+ Elements.push_back(OptionalInstanceMethodList);
+ Elements.push_back(OptionalClassMethodList);
+ Elements.push_back(PropertyList);
+ Elements.push_back(OptionalPropertyList);
+ ExistingProtocols[ProtocolName] =
+ llvm::ConstantExpr::getBitCast(MakeGlobal(ProtocolTy, Elements,
+ ".objc_protocol"), IdTy);
+}
+void CGObjCGNU::GenerateProtocolHolderCategory() {
+ // Collect information about instance methods
+ SmallVector<Selector, 1> MethodSels;
+ SmallVector<llvm::Constant*, 1> MethodTypes;
+
+ std::vector<llvm::Constant*> Elements;
+ const std::string ClassName = "__ObjC_Protocol_Holder_Ugly_Hack";
+ const std::string CategoryName = "AnotherHack";
+ Elements.push_back(MakeConstantString(CategoryName));
+ Elements.push_back(MakeConstantString(ClassName));
+ // Instance method list
+ Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
+ ClassName, CategoryName, MethodSels, MethodTypes, false), PtrTy));
+ // Class method list
+ Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
+ ClassName, CategoryName, MethodSels, MethodTypes, true), PtrTy));
+ // Protocol list
+ llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(PtrTy,
+ ExistingProtocols.size());
+ llvm::StructType *ProtocolListTy = llvm::StructType::get(
+ PtrTy, //Should be a recurisve pointer, but it's always NULL here.
+ SizeTy,
+ ProtocolArrayTy,
+ nullptr);
+ std::vector<llvm::Constant*> ProtocolElements;
+ for (llvm::StringMapIterator<llvm::Constant*> iter =
+ ExistingProtocols.begin(), endIter = ExistingProtocols.end();
+ iter != endIter ; iter++) {
+ llvm::Constant *Ptr = llvm::ConstantExpr::getBitCast(iter->getValue(),
+ PtrTy);
+ ProtocolElements.push_back(Ptr);
+ }
+ llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy,
+ ProtocolElements);
+ ProtocolElements.clear();
+ ProtocolElements.push_back(NULLPtr);
+ ProtocolElements.push_back(llvm::ConstantInt::get(LongTy,
+ ExistingProtocols.size()));
+ ProtocolElements.push_back(ProtocolArray);
+ Elements.push_back(llvm::ConstantExpr::getBitCast(MakeGlobal(ProtocolListTy,
+ ProtocolElements, ".objc_protocol_list"), PtrTy));
+ Categories.push_back(llvm::ConstantExpr::getBitCast(
+ MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty,
+ PtrTy, PtrTy, PtrTy, nullptr), Elements), PtrTy));
+}
+
+/// Libobjc2 uses a bitfield representation where small(ish) bitfields are
+/// stored in a 64-bit value with the low bit set to 1 and the remaining 63
+/// bits set to their values, LSB first, while larger ones are stored in a
+/// structure of this / form:
+///
+/// struct { int32_t length; int32_t values[length]; };
+///
+/// The values in the array are stored in host-endian format, with the least
+/// significant bit being assumed to come first in the bitfield. Therefore, a
+/// bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, while a
+/// bitfield / with the 63rd bit set will be 1<<64.
+llvm::Constant *CGObjCGNU::MakeBitField(ArrayRef<bool> bits) {
+ int bitCount = bits.size();
+ int ptrBits = CGM.getDataLayout().getPointerSizeInBits();
+ if (bitCount < ptrBits) {
+ uint64_t val = 1;
+ for (int i=0 ; i<bitCount ; ++i) {
+ if (bits[i]) val |= 1ULL<<(i+1);
+ }
+ return llvm::ConstantInt::get(IntPtrTy, val);
+ }
+ SmallVector<llvm::Constant *, 8> values;
+ int v=0;
+ while (v < bitCount) {
+ int32_t word = 0;
+ for (int i=0 ; (i<32) && (v<bitCount) ; ++i) {
+ if (bits[v]) word |= 1<<i;
+ v++;
+ }
+ values.push_back(llvm::ConstantInt::get(Int32Ty, word));
+ }
+ llvm::ArrayType *arrayTy = llvm::ArrayType::get(Int32Ty, values.size());
+ llvm::Constant *array = llvm::ConstantArray::get(arrayTy, values);
+ llvm::Constant *fields[2] = {
+ llvm::ConstantInt::get(Int32Ty, values.size()),
+ array };
+ llvm::Constant *GS = MakeGlobal(llvm::StructType::get(Int32Ty, arrayTy,
+ nullptr), fields);
+ llvm::Constant *ptr = llvm::ConstantExpr::getPtrToInt(GS, IntPtrTy);
+ return ptr;
+}
+
+void CGObjCGNU::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
+ std::string ClassName = OCD->getClassInterface()->getNameAsString();
+ std::string CategoryName = OCD->getNameAsString();
+ // Collect information about instance methods
+ SmallVector<Selector, 16> InstanceMethodSels;
+ SmallVector<llvm::Constant*, 16> InstanceMethodTypes;
+ for (const auto *I : OCD->instance_methods()) {
+ InstanceMethodSels.push_back(I->getSelector());
+ std::string TypeStr;
+ CGM.getContext().getObjCEncodingForMethodDecl(I,TypeStr);
+ InstanceMethodTypes.push_back(MakeConstantString(TypeStr));
+ }
+
+ // Collect information about class methods
+ SmallVector<Selector, 16> ClassMethodSels;
+ SmallVector<llvm::Constant*, 16> ClassMethodTypes;
+ for (const auto *I : OCD->class_methods()) {
+ ClassMethodSels.push_back(I->getSelector());
+ std::string TypeStr;
+ CGM.getContext().getObjCEncodingForMethodDecl(I,TypeStr);
+ ClassMethodTypes.push_back(MakeConstantString(TypeStr));
+ }
+
+ // Collect the names of referenced protocols
+ SmallVector<std::string, 16> Protocols;
+ const ObjCCategoryDecl *CatDecl = OCD->getCategoryDecl();
+ const ObjCList<ObjCProtocolDecl> &Protos = CatDecl->getReferencedProtocols();
+ for (ObjCList<ObjCProtocolDecl>::iterator I = Protos.begin(),
+ E = Protos.end(); I != E; ++I)
+ Protocols.push_back((*I)->getNameAsString());
+
+ std::vector<llvm::Constant*> Elements;
+ Elements.push_back(MakeConstantString(CategoryName));
+ Elements.push_back(MakeConstantString(ClassName));
+ // Instance method list
+ Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
+ ClassName, CategoryName, InstanceMethodSels, InstanceMethodTypes,
+ false), PtrTy));
+ // Class method list
+ Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
+ ClassName, CategoryName, ClassMethodSels, ClassMethodTypes, true),
+ PtrTy));
+ // Protocol list
+ Elements.push_back(llvm::ConstantExpr::getBitCast(
+ GenerateProtocolList(Protocols), PtrTy));
+ Categories.push_back(llvm::ConstantExpr::getBitCast(
+ MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty,
+ PtrTy, PtrTy, PtrTy, nullptr), Elements), PtrTy));
+}
+
+llvm::Constant *CGObjCGNU::GeneratePropertyList(const ObjCImplementationDecl *OID,
+ SmallVectorImpl<Selector> &InstanceMethodSels,
+ SmallVectorImpl<llvm::Constant*> &InstanceMethodTypes) {
+ ASTContext &Context = CGM.getContext();
+ // Property metadata: name, attributes, attributes2, padding1, padding2,
+ // setter name, setter types, getter name, getter types.
+ llvm::StructType *PropertyMetadataTy = llvm::StructType::get(
+ PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty,
+ PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, nullptr);
+ std::vector<llvm::Constant*> Properties;
+
+ // Add all of the property methods need adding to the method list and to the
+ // property metadata list.
+ for (auto *propertyImpl : OID->property_impls()) {
+ std::vector<llvm::Constant*> Fields;
+ ObjCPropertyDecl *property = propertyImpl->getPropertyDecl();
+ bool isSynthesized = (propertyImpl->getPropertyImplementation() ==
+ ObjCPropertyImplDecl::Synthesize);
+ bool isDynamic = (propertyImpl->getPropertyImplementation() ==
+ ObjCPropertyImplDecl::Dynamic);
+
+ Fields.push_back(MakePropertyEncodingString(property, OID));
+ PushPropertyAttributes(Fields, property, isSynthesized, isDynamic);
+ if (ObjCMethodDecl *getter = property->getGetterMethodDecl()) {
+ std::string TypeStr;
+ Context.getObjCEncodingForMethodDecl(getter,TypeStr);
+ llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
+ if (isSynthesized) {
+ InstanceMethodTypes.push_back(TypeEncoding);
+ InstanceMethodSels.push_back(getter->getSelector());
+ }
+ Fields.push_back(MakeConstantString(getter->getSelector().getAsString()));
+ Fields.push_back(TypeEncoding);
+ } else {
+ Fields.push_back(NULLPtr);
+ Fields.push_back(NULLPtr);
+ }
+ if (ObjCMethodDecl *setter = property->getSetterMethodDecl()) {
+ std::string TypeStr;
+ Context.getObjCEncodingForMethodDecl(setter,TypeStr);
+ llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
+ if (isSynthesized) {
+ InstanceMethodTypes.push_back(TypeEncoding);
+ InstanceMethodSels.push_back(setter->getSelector());
+ }
+ Fields.push_back(MakeConstantString(setter->getSelector().getAsString()));
+ Fields.push_back(TypeEncoding);
+ } else {
+ Fields.push_back(NULLPtr);
+ Fields.push_back(NULLPtr);
+ }
+ Properties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields));
+ }
+ llvm::ArrayType *PropertyArrayTy =
+ llvm::ArrayType::get(PropertyMetadataTy, Properties.size());
+ llvm::Constant *PropertyArray = llvm::ConstantArray::get(PropertyArrayTy,
+ Properties);
+ llvm::Constant* PropertyListInitFields[] =
+ {llvm::ConstantInt::get(IntTy, Properties.size()), NULLPtr, PropertyArray};
+
+ llvm::Constant *PropertyListInit =
+ llvm::ConstantStruct::getAnon(PropertyListInitFields);
+ return new llvm::GlobalVariable(TheModule, PropertyListInit->getType(), false,
+ llvm::GlobalValue::InternalLinkage, PropertyListInit,
+ ".objc_property_list");
+}
+
+void CGObjCGNU::RegisterAlias(const ObjCCompatibleAliasDecl *OAD) {
+ // Get the class declaration for which the alias is specified.
+ ObjCInterfaceDecl *ClassDecl =
+ const_cast<ObjCInterfaceDecl *>(OAD->getClassInterface());
+ std::string ClassName = ClassDecl->getNameAsString();
+ std::string AliasName = OAD->getNameAsString();
+ ClassAliases.push_back(ClassAliasPair(ClassName,AliasName));
+}
+
+void CGObjCGNU::GenerateClass(const ObjCImplementationDecl *OID) {
+ ASTContext &Context = CGM.getContext();
+
+ // Get the superclass name.
+ const ObjCInterfaceDecl * SuperClassDecl =
+ OID->getClassInterface()->getSuperClass();
+ std::string SuperClassName;
+ if (SuperClassDecl) {
+ SuperClassName = SuperClassDecl->getNameAsString();
+ EmitClassRef(SuperClassName);
+ }
+
+ // Get the class name
+ ObjCInterfaceDecl *ClassDecl =
+ const_cast<ObjCInterfaceDecl *>(OID->getClassInterface());
+ std::string ClassName = ClassDecl->getNameAsString();
+ // Emit the symbol that is used to generate linker errors if this class is
+ // referenced in other modules but not declared.
+ std::string classSymbolName = "__objc_class_name_" + ClassName;
+ if (llvm::GlobalVariable *symbol =
+ TheModule.getGlobalVariable(classSymbolName)) {
+ symbol->setInitializer(llvm::ConstantInt::get(LongTy, 0));
+ } else {
+ new llvm::GlobalVariable(TheModule, LongTy, false,
+ llvm::GlobalValue::ExternalLinkage, llvm::ConstantInt::get(LongTy, 0),
+ classSymbolName);
+ }
+
+ // Get the size of instances.
+ int instanceSize =
+ Context.getASTObjCImplementationLayout(OID).getSize().getQuantity();
+
+ // Collect information about instance variables.
+ SmallVector<llvm::Constant*, 16> IvarNames;
+ SmallVector<llvm::Constant*, 16> IvarTypes;
+ SmallVector<llvm::Constant*, 16> IvarOffsets;
+
+ std::vector<llvm::Constant*> IvarOffsetValues;
+ SmallVector<bool, 16> WeakIvars;
+ SmallVector<bool, 16> StrongIvars;
+
+ int superInstanceSize = !SuperClassDecl ? 0 :
+ Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity();
+ // For non-fragile ivars, set the instance size to 0 - {the size of just this
+ // class}. The runtime will then set this to the correct value on load.
+ if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
+ instanceSize = 0 - (instanceSize - superInstanceSize);
+ }
+
+ for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
+ IVD = IVD->getNextIvar()) {
+ // Store the name
+ IvarNames.push_back(MakeConstantString(IVD->getNameAsString()));
+ // Get the type encoding for this ivar
+ std::string TypeStr;
+ Context.getObjCEncodingForType(IVD->getType(), TypeStr);
+ IvarTypes.push_back(MakeConstantString(TypeStr));
+ // Get the offset
+ uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD);
+ uint64_t Offset = BaseOffset;
+ if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
+ Offset = BaseOffset - superInstanceSize;
+ }
+ llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset);
+ // Create the direct offset value
+ std::string OffsetName = "__objc_ivar_offset_value_" + ClassName +"." +
+ IVD->getNameAsString();
+ llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName);
+ if (OffsetVar) {
+ OffsetVar->setInitializer(OffsetValue);
+ // If this is the real definition, change its linkage type so that
+ // different modules will use this one, rather than their private
+ // copy.
+ OffsetVar->setLinkage(llvm::GlobalValue::ExternalLinkage);
+ } else
+ OffsetVar = new llvm::GlobalVariable(TheModule, IntTy,
+ false, llvm::GlobalValue::ExternalLinkage,
+ OffsetValue,
+ "__objc_ivar_offset_value_" + ClassName +"." +
+ IVD->getNameAsString());
+ IvarOffsets.push_back(OffsetValue);
+ IvarOffsetValues.push_back(OffsetVar);
+ Qualifiers::ObjCLifetime lt = IVD->getType().getQualifiers().getObjCLifetime();
+ switch (lt) {
+ case Qualifiers::OCL_Strong:
+ StrongIvars.push_back(true);
+ WeakIvars.push_back(false);
+ break;
+ case Qualifiers::OCL_Weak:
+ StrongIvars.push_back(false);
+ WeakIvars.push_back(true);
+ break;
+ default:
+ StrongIvars.push_back(false);
+ WeakIvars.push_back(false);
+ }
+ }
+ llvm::Constant *StrongIvarBitmap = MakeBitField(StrongIvars);
+ llvm::Constant *WeakIvarBitmap = MakeBitField(WeakIvars);
+ llvm::GlobalVariable *IvarOffsetArray =
+ MakeGlobalArray(PtrToIntTy, IvarOffsetValues, ".ivar.offsets");
+
+
+ // Collect information about instance methods
+ SmallVector<Selector, 16> InstanceMethodSels;
+ SmallVector<llvm::Constant*, 16> InstanceMethodTypes;
+ for (const auto *I : OID->instance_methods()) {
+ InstanceMethodSels.push_back(I->getSelector());
+ std::string TypeStr;
+ Context.getObjCEncodingForMethodDecl(I,TypeStr);
+ InstanceMethodTypes.push_back(MakeConstantString(TypeStr));
+ }
+
+ llvm::Constant *Properties = GeneratePropertyList(OID, InstanceMethodSels,
+ InstanceMethodTypes);
+
+
+ // Collect information about class methods
+ SmallVector<Selector, 16> ClassMethodSels;
+ SmallVector<llvm::Constant*, 16> ClassMethodTypes;
+ for (const auto *I : OID->class_methods()) {
+ ClassMethodSels.push_back(I->getSelector());
+ std::string TypeStr;
+ Context.getObjCEncodingForMethodDecl(I,TypeStr);
+ ClassMethodTypes.push_back(MakeConstantString(TypeStr));
+ }
+ // Collect the names of referenced protocols
+ SmallVector<std::string, 16> Protocols;
+ for (const auto *I : ClassDecl->protocols())
+ Protocols.push_back(I->getNameAsString());
+
+ // Get the superclass pointer.
+ llvm::Constant *SuperClass;
+ if (!SuperClassName.empty()) {
+ SuperClass = MakeConstantString(SuperClassName, ".super_class_name");
+ } else {
+ SuperClass = llvm::ConstantPointerNull::get(PtrToInt8Ty);
+ }
+ // Empty vector used to construct empty method lists
+ SmallVector<llvm::Constant*, 1> empty;
+ // Generate the method and instance variable lists
+ llvm::Constant *MethodList = GenerateMethodList(ClassName, "",
+ InstanceMethodSels, InstanceMethodTypes, false);
+ llvm::Constant *ClassMethodList = GenerateMethodList(ClassName, "",
+ ClassMethodSels, ClassMethodTypes, true);
+ llvm::Constant *IvarList = GenerateIvarList(IvarNames, IvarTypes,
+ IvarOffsets);
+ // Irrespective of whether we are compiling for a fragile or non-fragile ABI,
+ // we emit a symbol containing the offset for each ivar in the class. This
+ // allows code compiled for the non-Fragile ABI to inherit from code compiled
+ // for the legacy ABI, without causing problems. The converse is also
+ // possible, but causes all ivar accesses to be fragile.
+
+ // Offset pointer for getting at the correct field in the ivar list when
+ // setting up the alias. These are: The base address for the global, the
+ // ivar array (second field), the ivar in this list (set for each ivar), and
+ // the offset (third field in ivar structure)
+ llvm::Type *IndexTy = Int32Ty;
+ llvm::Constant *offsetPointerIndexes[] = {Zeros[0],
+ llvm::ConstantInt::get(IndexTy, 1), nullptr,
+ llvm::ConstantInt::get(IndexTy, 2) };
+
+ unsigned ivarIndex = 0;
+ for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
+ IVD = IVD->getNextIvar()) {
+ const std::string Name = "__objc_ivar_offset_" + ClassName + '.'
+ + IVD->getNameAsString();
+ offsetPointerIndexes[2] = llvm::ConstantInt::get(IndexTy, ivarIndex);
+ // Get the correct ivar field
+ llvm::Constant *offsetValue = llvm::ConstantExpr::getGetElementPtr(
+ cast<llvm::GlobalVariable>(IvarList)->getValueType(), IvarList,
+ offsetPointerIndexes);
+ // Get the existing variable, if one exists.
+ llvm::GlobalVariable *offset = TheModule.getNamedGlobal(Name);
+ if (offset) {
+ offset->setInitializer(offsetValue);
+ // If this is the real definition, change its linkage type so that
+ // different modules will use this one, rather than their private
+ // copy.
+ offset->setLinkage(llvm::GlobalValue::ExternalLinkage);
+ } else {
+ // Add a new alias if there isn't one already.
+ offset = new llvm::GlobalVariable(TheModule, offsetValue->getType(),
+ false, llvm::GlobalValue::ExternalLinkage, offsetValue, Name);
+ (void) offset; // Silence dead store warning.
+ }
+ ++ivarIndex;
+ }
+ llvm::Constant *ZeroPtr = llvm::ConstantInt::get(IntPtrTy, 0);
+ //Generate metaclass for class methods
+ llvm::Constant *MetaClassStruct = GenerateClassStructure(NULLPtr,
+ NULLPtr, 0x12L, ClassName.c_str(), nullptr, Zeros[0], GenerateIvarList(
+ empty, empty, empty), ClassMethodList, NULLPtr,
+ NULLPtr, NULLPtr, ZeroPtr, ZeroPtr, true);
+
+ // Generate the class structure
+ llvm::Constant *ClassStruct =
+ GenerateClassStructure(MetaClassStruct, SuperClass, 0x11L,
+ ClassName.c_str(), nullptr,
+ llvm::ConstantInt::get(LongTy, instanceSize), IvarList,
+ MethodList, GenerateProtocolList(Protocols), IvarOffsetArray,
+ Properties, StrongIvarBitmap, WeakIvarBitmap);
+
+ // Resolve the class aliases, if they exist.
+ if (ClassPtrAlias) {
+ ClassPtrAlias->replaceAllUsesWith(
+ llvm::ConstantExpr::getBitCast(ClassStruct, IdTy));
+ ClassPtrAlias->eraseFromParent();
+ ClassPtrAlias = nullptr;
+ }
+ if (MetaClassPtrAlias) {
+ MetaClassPtrAlias->replaceAllUsesWith(
+ llvm::ConstantExpr::getBitCast(MetaClassStruct, IdTy));
+ MetaClassPtrAlias->eraseFromParent();
+ MetaClassPtrAlias = nullptr;
+ }
+
+ // Add class structure to list to be added to the symtab later
+ ClassStruct = llvm::ConstantExpr::getBitCast(ClassStruct, PtrToInt8Ty);
+ Classes.push_back(ClassStruct);
+}
+
+
+llvm::Function *CGObjCGNU::ModuleInitFunction() {
+ // Only emit an ObjC load function if no Objective-C stuff has been called
+ if (Classes.empty() && Categories.empty() && ConstantStrings.empty() &&
+ ExistingProtocols.empty() && SelectorTable.empty())
+ return nullptr;
+
+ // Add all referenced protocols to a category.
+ GenerateProtocolHolderCategory();
+
+ llvm::StructType *SelStructTy = dyn_cast<llvm::StructType>(
+ SelectorTy->getElementType());
+ llvm::Type *SelStructPtrTy = SelectorTy;
+ if (!SelStructTy) {
+ SelStructTy = llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, nullptr);
+ SelStructPtrTy = llvm::PointerType::getUnqual(SelStructTy);
+ }
+
+ std::vector<llvm::Constant*> Elements;
+ llvm::Constant *Statics = NULLPtr;
+ // Generate statics list:
+ if (!ConstantStrings.empty()) {
+ llvm::ArrayType *StaticsArrayTy = llvm::ArrayType::get(PtrToInt8Ty,
+ ConstantStrings.size() + 1);
+ ConstantStrings.push_back(NULLPtr);
+
+ StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
+
+ if (StringClass.empty()) StringClass = "NXConstantString";
+
+ Elements.push_back(MakeConstantString(StringClass,
+ ".objc_static_class_name"));
+ Elements.push_back(llvm::ConstantArray::get(StaticsArrayTy,
+ ConstantStrings));
+ llvm::StructType *StaticsListTy =
+ llvm::StructType::get(PtrToInt8Ty, StaticsArrayTy, nullptr);
+ llvm::Type *StaticsListPtrTy =
+ llvm::PointerType::getUnqual(StaticsListTy);
+ Statics = MakeGlobal(StaticsListTy, Elements, ".objc_statics");
+ llvm::ArrayType *StaticsListArrayTy =
+ llvm::ArrayType::get(StaticsListPtrTy, 2);
+ Elements.clear();
+ Elements.push_back(Statics);
+ Elements.push_back(llvm::Constant::getNullValue(StaticsListPtrTy));
+ Statics = MakeGlobal(StaticsListArrayTy, Elements, ".objc_statics_ptr");
+ Statics = llvm::ConstantExpr::getBitCast(Statics, PtrTy);
+ }
+ // Array of classes, categories, and constant objects
+ llvm::ArrayType *ClassListTy = llvm::ArrayType::get(PtrToInt8Ty,
+ Classes.size() + Categories.size() + 2);
+ llvm::StructType *SymTabTy = llvm::StructType::get(LongTy, SelStructPtrTy,
+ llvm::Type::getInt16Ty(VMContext),
+ llvm::Type::getInt16Ty(VMContext),
+ ClassListTy, nullptr);
+
+ Elements.clear();
+ // Pointer to an array of selectors used in this module.
+ std::vector<llvm::Constant*> Selectors;
+ std::vector<llvm::GlobalAlias*> SelectorAliases;
+ for (SelectorMap::iterator iter = SelectorTable.begin(),
+ iterEnd = SelectorTable.end(); iter != iterEnd ; ++iter) {
+
+ std::string SelNameStr = iter->first.getAsString();
+ llvm::Constant *SelName = ExportUniqueString(SelNameStr, ".objc_sel_name");
+
+ SmallVectorImpl<TypedSelector> &Types = iter->second;
+ for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(),
+ e = Types.end() ; i!=e ; i++) {
+
+ llvm::Constant *SelectorTypeEncoding = NULLPtr;
+ if (!i->first.empty())
+ SelectorTypeEncoding = MakeConstantString(i->first, ".objc_sel_types");
+
+ Elements.push_back(SelName);
+ Elements.push_back(SelectorTypeEncoding);
+ Selectors.push_back(llvm::ConstantStruct::get(SelStructTy, Elements));
+ Elements.clear();
+
+ // Store the selector alias for later replacement
+ SelectorAliases.push_back(i->second);
+ }
+ }
+ unsigned SelectorCount = Selectors.size();
+ // NULL-terminate the selector list. This should not actually be required,
+ // because the selector list has a length field. Unfortunately, the GCC
+ // runtime decides to ignore the length field and expects a NULL terminator,
+ // and GCC cooperates with this by always setting the length to 0.
+ Elements.push_back(NULLPtr);
+ Elements.push_back(NULLPtr);
+ Selectors.push_back(llvm::ConstantStruct::get(SelStructTy, Elements));
+ Elements.clear();
+
+ // Number of static selectors
+ Elements.push_back(llvm::ConstantInt::get(LongTy, SelectorCount));
+ llvm::GlobalVariable *SelectorList =
+ MakeGlobalArray(SelStructTy, Selectors, ".objc_selector_list");
+ Elements.push_back(llvm::ConstantExpr::getBitCast(SelectorList,
+ SelStructPtrTy));
+
+ // Now that all of the static selectors exist, create pointers to them.
+ for (unsigned int i=0 ; i<SelectorCount ; i++) {
+
+ llvm::Constant *Idxs[] = {Zeros[0],
+ llvm::ConstantInt::get(Int32Ty, i), Zeros[0]};
+ // FIXME: We're generating redundant loads and stores here!
+ llvm::Constant *SelPtr = llvm::ConstantExpr::getGetElementPtr(
+ SelectorList->getValueType(), SelectorList, makeArrayRef(Idxs, 2));
+ // If selectors are defined as an opaque type, cast the pointer to this
+ // type.
+ SelPtr = llvm::ConstantExpr::getBitCast(SelPtr, SelectorTy);
+ SelectorAliases[i]->replaceAllUsesWith(SelPtr);
+ SelectorAliases[i]->eraseFromParent();
+ }
+
+ // Number of classes defined.
+ Elements.push_back(llvm::ConstantInt::get(llvm::Type::getInt16Ty(VMContext),
+ Classes.size()));
+ // Number of categories defined
+ Elements.push_back(llvm::ConstantInt::get(llvm::Type::getInt16Ty(VMContext),
+ Categories.size()));
+ // Create an array of classes, then categories, then static object instances
+ Classes.insert(Classes.end(), Categories.begin(), Categories.end());
+ // NULL-terminated list of static object instances (mainly constant strings)
+ Classes.push_back(Statics);
+ Classes.push_back(NULLPtr);
+ llvm::Constant *ClassList = llvm::ConstantArray::get(ClassListTy, Classes);
+ Elements.push_back(ClassList);
+ // Construct the symbol table
+ llvm::Constant *SymTab= MakeGlobal(SymTabTy, Elements);
+
+ // The symbol table is contained in a module which has some version-checking
+ // constants
+ llvm::StructType * ModuleTy = llvm::StructType::get(LongTy, LongTy,
+ PtrToInt8Ty, llvm::PointerType::getUnqual(SymTabTy),
+ (RuntimeVersion >= 10) ? IntTy : nullptr, nullptr);
+ Elements.clear();
+ // Runtime version, used for ABI compatibility checking.
+ Elements.push_back(llvm::ConstantInt::get(LongTy, RuntimeVersion));
+ // sizeof(ModuleTy)
+ llvm::DataLayout td(&TheModule);
+ Elements.push_back(
+ llvm::ConstantInt::get(LongTy,
+ td.getTypeSizeInBits(ModuleTy) /
+ CGM.getContext().getCharWidth()));
+
+ // The path to the source file where this module was declared
+ SourceManager &SM = CGM.getContext().getSourceManager();
+ const FileEntry *mainFile = SM.getFileEntryForID(SM.getMainFileID());
+ std::string path =
+ std::string(mainFile->getDir()->getName()) + '/' + mainFile->getName();
+ Elements.push_back(MakeConstantString(path, ".objc_source_file_name"));
+ Elements.push_back(SymTab);
+
+ if (RuntimeVersion >= 10)
+ switch (CGM.getLangOpts().getGC()) {
+ case LangOptions::GCOnly:
+ Elements.push_back(llvm::ConstantInt::get(IntTy, 2));
+ break;
+ case LangOptions::NonGC:
+ if (CGM.getLangOpts().ObjCAutoRefCount)
+ Elements.push_back(llvm::ConstantInt::get(IntTy, 1));
+ else
+ Elements.push_back(llvm::ConstantInt::get(IntTy, 0));
+ break;
+ case LangOptions::HybridGC:
+ Elements.push_back(llvm::ConstantInt::get(IntTy, 1));
+ break;
+ }
+
+ llvm::Value *Module = MakeGlobal(ModuleTy, Elements);
+
+ // Create the load function calling the runtime entry point with the module
+ // structure
+ llvm::Function * LoadFunction = llvm::Function::Create(
+ llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false),
+ llvm::GlobalValue::InternalLinkage, ".objc_load_function",
+ &TheModule);
+ llvm::BasicBlock *EntryBB =
+ llvm::BasicBlock::Create(VMContext, "entry", LoadFunction);
+ CGBuilderTy Builder(VMContext);
+ Builder.SetInsertPoint(EntryBB);
+
+ llvm::FunctionType *FT =
+ llvm::FunctionType::get(Builder.getVoidTy(),
+ llvm::PointerType::getUnqual(ModuleTy), true);
+ llvm::Value *Register = CGM.CreateRuntimeFunction(FT, "__objc_exec_class");
+ Builder.CreateCall(Register, Module);
+
+ if (!ClassAliases.empty()) {
+ llvm::Type *ArgTypes[2] = {PtrTy, PtrToInt8Ty};
+ llvm::FunctionType *RegisterAliasTy =
+ llvm::FunctionType::get(Builder.getVoidTy(),
+ ArgTypes, false);
+ llvm::Function *RegisterAlias = llvm::Function::Create(
+ RegisterAliasTy,
+ llvm::GlobalValue::ExternalWeakLinkage, "class_registerAlias_np",
+ &TheModule);
+ llvm::BasicBlock *AliasBB =
+ llvm::BasicBlock::Create(VMContext, "alias", LoadFunction);
+ llvm::BasicBlock *NoAliasBB =
+ llvm::BasicBlock::Create(VMContext, "no_alias", LoadFunction);
+
+ // Branch based on whether the runtime provided class_registerAlias_np()
+ llvm::Value *HasRegisterAlias = Builder.CreateICmpNE(RegisterAlias,
+ llvm::Constant::getNullValue(RegisterAlias->getType()));
+ Builder.CreateCondBr(HasRegisterAlias, AliasBB, NoAliasBB);
+
+ // The true branch (has alias registration function):
+ Builder.SetInsertPoint(AliasBB);
+ // Emit alias registration calls:
+ for (std::vector<ClassAliasPair>::iterator iter = ClassAliases.begin();
+ iter != ClassAliases.end(); ++iter) {
+ llvm::Constant *TheClass =
+ TheModule.getGlobalVariable(("_OBJC_CLASS_" + iter->first).c_str(),
+ true);
+ if (TheClass) {
+ TheClass = llvm::ConstantExpr::getBitCast(TheClass, PtrTy);
+ Builder.CreateCall(RegisterAlias,
+ {TheClass, MakeConstantString(iter->second)});
+ }
+ }
+ // Jump to end:
+ Builder.CreateBr(NoAliasBB);
+
+ // Missing alias registration function, just return from the function:
+ Builder.SetInsertPoint(NoAliasBB);
+ }
+ Builder.CreateRetVoid();
+
+ return LoadFunction;
+}
+
+llvm::Function *CGObjCGNU::GenerateMethod(const ObjCMethodDecl *OMD,
+ const ObjCContainerDecl *CD) {
+ const ObjCCategoryImplDecl *OCD =
+ dyn_cast<ObjCCategoryImplDecl>(OMD->getDeclContext());
+ StringRef CategoryName = OCD ? OCD->getName() : "";
+ StringRef ClassName = CD->getName();
+ Selector MethodName = OMD->getSelector();
+ bool isClassMethod = !OMD->isInstanceMethod();
+
+ CodeGenTypes &Types = CGM.getTypes();
+ llvm::FunctionType *MethodTy =
+ Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD));
+ std::string FunctionName = SymbolNameForMethod(ClassName, CategoryName,
+ MethodName, isClassMethod);
+
+ llvm::Function *Method
+ = llvm::Function::Create(MethodTy,
+ llvm::GlobalValue::InternalLinkage,
+ FunctionName,
+ &TheModule);
+ return Method;
+}
+
+llvm::Constant *CGObjCGNU::GetPropertyGetFunction() {
+ return GetPropertyFn;
+}
+
+llvm::Constant *CGObjCGNU::GetPropertySetFunction() {
+ return SetPropertyFn;
+}
+
+llvm::Constant *CGObjCGNU::GetOptimizedPropertySetFunction(bool atomic,
+ bool copy) {
+ return nullptr;
+}
+
+llvm::Constant *CGObjCGNU::GetGetStructFunction() {
+ return GetStructPropertyFn;
+}
+llvm::Constant *CGObjCGNU::GetSetStructFunction() {
+ return SetStructPropertyFn;
+}
+llvm::Constant *CGObjCGNU::GetCppAtomicObjectGetFunction() {
+ return nullptr;
+}
+llvm::Constant *CGObjCGNU::GetCppAtomicObjectSetFunction() {
+ return nullptr;
+}
+
+llvm::Constant *CGObjCGNU::EnumerationMutationFunction() {
+ return EnumerationMutationFn;
+}
+
+void CGObjCGNU::EmitSynchronizedStmt(CodeGenFunction &CGF,
+ const ObjCAtSynchronizedStmt &S) {
+ EmitAtSynchronizedStmt(CGF, S, SyncEnterFn, SyncExitFn);
+}
+
+
+void CGObjCGNU::EmitTryStmt(CodeGenFunction &CGF,
+ const ObjCAtTryStmt &S) {
+ // Unlike the Apple non-fragile runtimes, which also uses
+ // unwind-based zero cost exceptions, the GNU Objective C runtime's
+ // EH support isn't a veneer over C++ EH. Instead, exception
+ // objects are created by objc_exception_throw and destroyed by
+ // the personality function; this avoids the need for bracketing
+ // catch handlers with calls to __blah_begin_catch/__blah_end_catch
+ // (or even _Unwind_DeleteException), but probably doesn't
+ // interoperate very well with foreign exceptions.
+ //
+ // In Objective-C++ mode, we actually emit something equivalent to the C++
+ // exception handler.
+ EmitTryCatchStmt(CGF, S, EnterCatchFn, ExitCatchFn, ExceptionReThrowFn);
+ return ;
+}
+
+void CGObjCGNU::EmitThrowStmt(CodeGenFunction &CGF,
+ const ObjCAtThrowStmt &S,
+ bool ClearInsertionPoint) {
+ llvm::Value *ExceptionAsObject;
+
+ if (const Expr *ThrowExpr = S.getThrowExpr()) {
+ llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr);
+ ExceptionAsObject = Exception;
+ } else {
+ assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) &&
+ "Unexpected rethrow outside @catch block.");
+ ExceptionAsObject = CGF.ObjCEHValueStack.back();
+ }
+ ExceptionAsObject = CGF.Builder.CreateBitCast(ExceptionAsObject, IdTy);
+ llvm::CallSite Throw =
+ CGF.EmitRuntimeCallOrInvoke(ExceptionThrowFn, ExceptionAsObject);
+ Throw.setDoesNotReturn();
+ CGF.Builder.CreateUnreachable();
+ if (ClearInsertionPoint)
+ CGF.Builder.ClearInsertionPoint();
+}
+
+llvm::Value * CGObjCGNU::EmitObjCWeakRead(CodeGenFunction &CGF,
+ llvm::Value *AddrWeakObj) {
+ CGBuilderTy &B = CGF.Builder;
+ AddrWeakObj = EnforceType(B, AddrWeakObj, PtrToIdTy);
+ return B.CreateCall(WeakReadFn.getType(), WeakReadFn, AddrWeakObj);
+}
+
+void CGObjCGNU::EmitObjCWeakAssign(CodeGenFunction &CGF,
+ llvm::Value *src, llvm::Value *dst) {
+ CGBuilderTy &B = CGF.Builder;
+ src = EnforceType(B, src, IdTy);
+ dst = EnforceType(B, dst, PtrToIdTy);
+ B.CreateCall(WeakAssignFn.getType(), WeakAssignFn, {src, dst});
+}
+
+void CGObjCGNU::EmitObjCGlobalAssign(CodeGenFunction &CGF,
+ llvm::Value *src, llvm::Value *dst,
+ bool threadlocal) {
+ CGBuilderTy &B = CGF.Builder;
+ src = EnforceType(B, src, IdTy);
+ dst = EnforceType(B, dst, PtrToIdTy);
+ // FIXME. Add threadloca assign API
+ assert(!threadlocal && "EmitObjCGlobalAssign - Threal Local API NYI");
+ B.CreateCall(GlobalAssignFn.getType(), GlobalAssignFn, {src, dst});
+}
+
+void CGObjCGNU::EmitObjCIvarAssign(CodeGenFunction &CGF,
+ llvm::Value *src, llvm::Value *dst,
+ llvm::Value *ivarOffset) {
+ CGBuilderTy &B = CGF.Builder;
+ src = EnforceType(B, src, IdTy);
+ dst = EnforceType(B, dst, IdTy);
+ B.CreateCall(IvarAssignFn.getType(), IvarAssignFn, {src, dst, ivarOffset});
+}
+
+void CGObjCGNU::EmitObjCStrongCastAssign(CodeGenFunction &CGF,
+ llvm::Value *src, llvm::Value *dst) {
+ CGBuilderTy &B = CGF.Builder;
+ src = EnforceType(B, src, IdTy);
+ dst = EnforceType(B, dst, PtrToIdTy);
+ B.CreateCall(StrongCastAssignFn.getType(), StrongCastAssignFn, {src, dst});
+}
+
+void CGObjCGNU::EmitGCMemmoveCollectable(CodeGenFunction &CGF,
+ llvm::Value *DestPtr,
+ llvm::Value *SrcPtr,
+ llvm::Value *Size) {
+ CGBuilderTy &B = CGF.Builder;
+ DestPtr = EnforceType(B, DestPtr, PtrTy);
+ SrcPtr = EnforceType(B, SrcPtr, PtrTy);
+
+ B.CreateCall(MemMoveFn.getType(), MemMoveFn, {DestPtr, SrcPtr, Size});
+}
+
+llvm::GlobalVariable *CGObjCGNU::ObjCIvarOffsetVariable(
+ const ObjCInterfaceDecl *ID,
+ const ObjCIvarDecl *Ivar) {
+ const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString()
+ + '.' + Ivar->getNameAsString();
+ // Emit the variable and initialize it with what we think the correct value
+ // is. This allows code compiled with non-fragile ivars to work correctly
+ // when linked against code which isn't (most of the time).
+ llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name);
+ if (!IvarOffsetPointer) {
+ // This will cause a run-time crash if we accidentally use it. A value of
+ // 0 would seem more sensible, but will silently overwrite the isa pointer
+ // causing a great deal of confusion.
+ uint64_t Offset = -1;
+ // We can't call ComputeIvarBaseOffset() here if we have the
+ // implementation, because it will create an invalid ASTRecordLayout object
+ // that we are then stuck with forever, so we only initialize the ivar
+ // offset variable with a guess if we only have the interface. The
+ // initializer will be reset later anyway, when we are generating the class
+ // description.
+ if (!CGM.getContext().getObjCImplementation(
+ const_cast<ObjCInterfaceDecl *>(ID)))
+ Offset = ComputeIvarBaseOffset(CGM, ID, Ivar);
+
+ llvm::ConstantInt *OffsetGuess = llvm::ConstantInt::get(Int32Ty, Offset,
+ /*isSigned*/true);
+ // Don't emit the guess in non-PIC code because the linker will not be able
+ // to replace it with the real version for a library. In non-PIC code you
+ // must compile with the fragile ABI if you want to use ivars from a
+ // GCC-compiled class.
+ if (CGM.getLangOpts().PICLevel || CGM.getLangOpts().PIELevel) {
+ llvm::GlobalVariable *IvarOffsetGV = new llvm::GlobalVariable(TheModule,
+ Int32Ty, false,
+ llvm::GlobalValue::PrivateLinkage, OffsetGuess, Name+".guess");
+ IvarOffsetPointer = new llvm::GlobalVariable(TheModule,
+ IvarOffsetGV->getType(), false, llvm::GlobalValue::LinkOnceAnyLinkage,
+ IvarOffsetGV, Name);
+ } else {
+ IvarOffsetPointer = new llvm::GlobalVariable(TheModule,
+ llvm::Type::getInt32PtrTy(VMContext), false,
+ llvm::GlobalValue::ExternalLinkage, nullptr, Name);
+ }
+ }
+ return IvarOffsetPointer;
+}
+
+LValue CGObjCGNU::EmitObjCValueForIvar(CodeGenFunction &CGF,
+ QualType ObjectTy,
+ llvm::Value *BaseValue,
+ const ObjCIvarDecl *Ivar,
+ unsigned CVRQualifiers) {
+ const ObjCInterfaceDecl *ID =
+ ObjectTy->getAs<ObjCObjectType>()->getInterface();
+ return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
+ EmitIvarOffset(CGF, ID, Ivar));
+}
+
+static const ObjCInterfaceDecl *FindIvarInterface(ASTContext &Context,
+ const ObjCInterfaceDecl *OID,
+ const ObjCIvarDecl *OIVD) {
+ for (const ObjCIvarDecl *next = OID->all_declared_ivar_begin(); next;
+ next = next->getNextIvar()) {
+ if (OIVD == next)
+ return OID;
+ }
+
+ // Otherwise check in the super class.
+ if (const ObjCInterfaceDecl *Super = OID->getSuperClass())
+ return FindIvarInterface(Context, Super, OIVD);
+
+ return nullptr;
+}
+
+llvm::Value *CGObjCGNU::EmitIvarOffset(CodeGenFunction &CGF,
+ const ObjCInterfaceDecl *Interface,
+ const ObjCIvarDecl *Ivar) {
+ if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
+ Interface = FindIvarInterface(CGM.getContext(), Interface, Ivar);
+ if (RuntimeVersion < 10)
+ return CGF.Builder.CreateZExtOrBitCast(
+ CGF.Builder.CreateLoad(CGF.Builder.CreateLoad(
+ ObjCIvarOffsetVariable(Interface, Ivar), false, "ivar")),
+ PtrDiffTy);
+ std::string name = "__objc_ivar_offset_value_" +
+ Interface->getNameAsString() +"." + Ivar->getNameAsString();
+ llvm::Value *Offset = TheModule.getGlobalVariable(name);
+ if (!Offset)
+ Offset = new llvm::GlobalVariable(TheModule, IntTy,
+ false, llvm::GlobalValue::LinkOnceAnyLinkage,
+ llvm::Constant::getNullValue(IntTy), name);
+ Offset = CGF.Builder.CreateLoad(Offset);
+ if (Offset->getType() != PtrDiffTy)
+ Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy);
+ return Offset;
+ }
+ uint64_t Offset = ComputeIvarBaseOffset(CGF.CGM, Interface, Ivar);
+ return llvm::ConstantInt::get(PtrDiffTy, Offset, /*isSigned*/true);
+}
+
+CGObjCRuntime *
+clang::CodeGen::CreateGNUObjCRuntime(CodeGenModule &CGM) {
+ switch (CGM.getLangOpts().ObjCRuntime.getKind()) {
+ case ObjCRuntime::GNUstep:
+ return new CGObjCGNUstep(CGM);
+
+ case ObjCRuntime::GCC:
+ return new CGObjCGCC(CGM);
+
+ case ObjCRuntime::ObjFW:
+ return new CGObjCObjFW(CGM);
+
+ case ObjCRuntime::FragileMacOSX:
+ case ObjCRuntime::MacOSX:
+ case ObjCRuntime::iOS:
+ llvm_unreachable("these runtimes are not GNU runtimes");
+ }
+ llvm_unreachable("bad runtime");
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGObjCMac.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGObjCMac.cpp
new file mode 100644
index 0000000..a45446a
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGObjCMac.cpp
@@ -0,0 +1,7054 @@
+//===------- CGObjCMac.cpp - Interface to Apple Objective-C Runtime -------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This provides Objective-C code generation targeting the Apple runtime.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGObjCRuntime.h"
+#include "CGBlocks.h"
+#include "CGCleanup.h"
+#include "CGRecordLayout.h"
+#include "CodeGenFunction.h"
+#include "CodeGenModule.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/AST/StmtObjC.h"
+#include "clang/Basic/LangOptions.h"
+#include "clang/CodeGen/CGFunctionInfo.h"
+#include "clang/Frontend/CodeGenOptions.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cstdio>
+
+using namespace clang;
+using namespace CodeGen;
+
+namespace {
+
+// FIXME: We should find a nicer way to make the labels for metadata, string
+// concatenation is lame.
+
+class ObjCCommonTypesHelper {
+protected:
+ llvm::LLVMContext &VMContext;
+
+private:
+ // The types of these functions don't really matter because we
+ // should always bitcast before calling them.
+
+ /// id objc_msgSend (id, SEL, ...)
+ ///
+ /// The default messenger, used for sends whose ABI is unchanged from
+ /// the all-integer/pointer case.
+ llvm::Constant *getMessageSendFn() const {
+ // Add the non-lazy-bind attribute, since objc_msgSend is likely to
+ // be called a lot.
+ llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
+ return
+ CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
+ params, true),
+ "objc_msgSend",
+ llvm::AttributeSet::get(CGM.getLLVMContext(),
+ llvm::AttributeSet::FunctionIndex,
+ llvm::Attribute::NonLazyBind));
+ }
+
+ /// void objc_msgSend_stret (id, SEL, ...)
+ ///
+ /// The messenger used when the return value is an aggregate returned
+ /// by indirect reference in the first argument, and therefore the
+ /// self and selector parameters are shifted over by one.
+ llvm::Constant *getMessageSendStretFn() const {
+ llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
+ return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy,
+ params, true),
+ "objc_msgSend_stret");
+
+ }
+
+ /// [double | long double] objc_msgSend_fpret(id self, SEL op, ...)
+ ///
+ /// The messenger used when the return value is returned on the x87
+ /// floating-point stack; without a special entrypoint, the nil case
+ /// would be unbalanced.
+ llvm::Constant *getMessageSendFpretFn() const {
+ llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
+ return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.DoubleTy,
+ params, true),
+ "objc_msgSend_fpret");
+
+ }
+
+ /// _Complex long double objc_msgSend_fp2ret(id self, SEL op, ...)
+ ///
+ /// The messenger used when the return value is returned in two values on the
+ /// x87 floating point stack; without a special entrypoint, the nil case
+ /// would be unbalanced. Only used on 64-bit X86.
+ llvm::Constant *getMessageSendFp2retFn() const {
+ llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
+ llvm::Type *longDoubleType = llvm::Type::getX86_FP80Ty(VMContext);
+ llvm::Type *resultType =
+ llvm::StructType::get(longDoubleType, longDoubleType, nullptr);
+
+ return CGM.CreateRuntimeFunction(llvm::FunctionType::get(resultType,
+ params, true),
+ "objc_msgSend_fp2ret");
+ }
+
+ /// id objc_msgSendSuper(struct objc_super *super, SEL op, ...)
+ ///
+ /// The messenger used for super calls, which have different dispatch
+ /// semantics. The class passed is the superclass of the current
+ /// class.
+ llvm::Constant *getMessageSendSuperFn() const {
+ llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy };
+ return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
+ params, true),
+ "objc_msgSendSuper");
+ }
+
+ /// id objc_msgSendSuper2(struct objc_super *super, SEL op, ...)
+ ///
+ /// A slightly different messenger used for super calls. The class
+ /// passed is the current class.
+ llvm::Constant *getMessageSendSuperFn2() const {
+ llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy };
+ return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
+ params, true),
+ "objc_msgSendSuper2");
+ }
+
+ /// void objc_msgSendSuper_stret(void *stretAddr, struct objc_super *super,
+ /// SEL op, ...)
+ ///
+ /// The messenger used for super calls which return an aggregate indirectly.
+ llvm::Constant *getMessageSendSuperStretFn() const {
+ llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy };
+ return CGM.CreateRuntimeFunction(
+ llvm::FunctionType::get(CGM.VoidTy, params, true),
+ "objc_msgSendSuper_stret");
+ }
+
+ /// void objc_msgSendSuper2_stret(void * stretAddr, struct objc_super *super,
+ /// SEL op, ...)
+ ///
+ /// objc_msgSendSuper_stret with the super2 semantics.
+ llvm::Constant *getMessageSendSuperStretFn2() const {
+ llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy };
+ return CGM.CreateRuntimeFunction(
+ llvm::FunctionType::get(CGM.VoidTy, params, true),
+ "objc_msgSendSuper2_stret");
+ }
+
+ llvm::Constant *getMessageSendSuperFpretFn() const {
+ // There is no objc_msgSendSuper_fpret? How can that work?
+ return getMessageSendSuperFn();
+ }
+
+ llvm::Constant *getMessageSendSuperFpretFn2() const {
+ // There is no objc_msgSendSuper_fpret? How can that work?
+ return getMessageSendSuperFn2();
+ }
+
+protected:
+ CodeGen::CodeGenModule &CGM;
+
+public:
+ llvm::Type *ShortTy, *IntTy, *LongTy, *LongLongTy;
+ llvm::Type *Int8PtrTy, *Int8PtrPtrTy;
+ llvm::Type *IvarOffsetVarTy;
+
+ /// ObjectPtrTy - LLVM type for object handles (typeof(id))
+ llvm::Type *ObjectPtrTy;
+
+ /// PtrObjectPtrTy - LLVM type for id *
+ llvm::Type *PtrObjectPtrTy;
+
+ /// SelectorPtrTy - LLVM type for selector handles (typeof(SEL))
+ llvm::Type *SelectorPtrTy;
+
+private:
+ /// ProtocolPtrTy - LLVM type for external protocol handles
+ /// (typeof(Protocol))
+ llvm::Type *ExternalProtocolPtrTy;
+
+public:
+ llvm::Type *getExternalProtocolPtrTy() {
+ if (!ExternalProtocolPtrTy) {
+ // FIXME: It would be nice to unify this with the opaque type, so that the
+ // IR comes out a bit cleaner.
+ CodeGen::CodeGenTypes &Types = CGM.getTypes();
+ ASTContext &Ctx = CGM.getContext();
+ llvm::Type *T = Types.ConvertType(Ctx.getObjCProtoType());
+ ExternalProtocolPtrTy = llvm::PointerType::getUnqual(T);
+ }
+
+ return ExternalProtocolPtrTy;
+ }
+
+ // SuperCTy - clang type for struct objc_super.
+ QualType SuperCTy;
+ // SuperPtrCTy - clang type for struct objc_super *.
+ QualType SuperPtrCTy;
+
+ /// SuperTy - LLVM type for struct objc_super.
+ llvm::StructType *SuperTy;
+ /// SuperPtrTy - LLVM type for struct objc_super *.
+ llvm::Type *SuperPtrTy;
+
+ /// PropertyTy - LLVM type for struct objc_property (struct _prop_t
+ /// in GCC parlance).
+ llvm::StructType *PropertyTy;
+
+ /// PropertyListTy - LLVM type for struct objc_property_list
+ /// (_prop_list_t in GCC parlance).
+ llvm::StructType *PropertyListTy;
+ /// PropertyListPtrTy - LLVM type for struct objc_property_list*.
+ llvm::Type *PropertyListPtrTy;
+
+ // MethodTy - LLVM type for struct objc_method.
+ llvm::StructType *MethodTy;
+
+ /// CacheTy - LLVM type for struct objc_cache.
+ llvm::Type *CacheTy;
+ /// CachePtrTy - LLVM type for struct objc_cache *.
+ llvm::Type *CachePtrTy;
+
+ llvm::Constant *getGetPropertyFn() {
+ CodeGen::CodeGenTypes &Types = CGM.getTypes();
+ ASTContext &Ctx = CGM.getContext();
+ // id objc_getProperty (id, SEL, ptrdiff_t, bool)
+ SmallVector<CanQualType,4> Params;
+ CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType());
+ CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType());
+ Params.push_back(IdType);
+ Params.push_back(SelType);
+ Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified());
+ Params.push_back(Ctx.BoolTy);
+ llvm::FunctionType *FTy =
+ Types.GetFunctionType(Types.arrangeLLVMFunctionInfo(
+ IdType, false, false, Params, FunctionType::ExtInfo(),
+ RequiredArgs::All));
+ return CGM.CreateRuntimeFunction(FTy, "objc_getProperty");
+ }
+
+ llvm::Constant *getSetPropertyFn() {
+ CodeGen::CodeGenTypes &Types = CGM.getTypes();
+ ASTContext &Ctx = CGM.getContext();
+ // void objc_setProperty (id, SEL, ptrdiff_t, id, bool, bool)
+ SmallVector<CanQualType,6> Params;
+ CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType());
+ CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType());
+ Params.push_back(IdType);
+ Params.push_back(SelType);
+ Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified());
+ Params.push_back(IdType);
+ Params.push_back(Ctx.BoolTy);
+ Params.push_back(Ctx.BoolTy);
+ llvm::FunctionType *FTy =
+ Types.GetFunctionType(Types.arrangeLLVMFunctionInfo(
+ Ctx.VoidTy, false, false, Params, FunctionType::ExtInfo(),
+ RequiredArgs::All));
+ return CGM.CreateRuntimeFunction(FTy, "objc_setProperty");
+ }
+
+ llvm::Constant *getOptimizedSetPropertyFn(bool atomic, bool copy) {
+ CodeGen::CodeGenTypes &Types = CGM.getTypes();
+ ASTContext &Ctx = CGM.getContext();
+ // void objc_setProperty_atomic(id self, SEL _cmd,
+ // id newValue, ptrdiff_t offset);
+ // void objc_setProperty_nonatomic(id self, SEL _cmd,
+ // id newValue, ptrdiff_t offset);
+ // void objc_setProperty_atomic_copy(id self, SEL _cmd,
+ // id newValue, ptrdiff_t offset);
+ // void objc_setProperty_nonatomic_copy(id self, SEL _cmd,
+ // id newValue, ptrdiff_t offset);
+
+ SmallVector<CanQualType,4> Params;
+ CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType());
+ CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType());
+ Params.push_back(IdType);
+ Params.push_back(SelType);
+ Params.push_back(IdType);
+ Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified());
+ llvm::FunctionType *FTy =
+ Types.GetFunctionType(Types.arrangeLLVMFunctionInfo(
+ Ctx.VoidTy, false, false, Params, FunctionType::ExtInfo(),
+ RequiredArgs::All));
+ const char *name;
+ if (atomic && copy)
+ name = "objc_setProperty_atomic_copy";
+ else if (atomic && !copy)
+ name = "objc_setProperty_atomic";
+ else if (!atomic && copy)
+ name = "objc_setProperty_nonatomic_copy";
+ else
+ name = "objc_setProperty_nonatomic";
+
+ return CGM.CreateRuntimeFunction(FTy, name);
+ }
+
+ llvm::Constant *getCopyStructFn() {
+ CodeGen::CodeGenTypes &Types = CGM.getTypes();
+ ASTContext &Ctx = CGM.getContext();
+ // void objc_copyStruct (void *, const void *, size_t, bool, bool)
+ SmallVector<CanQualType,5> Params;
+ Params.push_back(Ctx.VoidPtrTy);
+ Params.push_back(Ctx.VoidPtrTy);
+ Params.push_back(Ctx.LongTy);
+ Params.push_back(Ctx.BoolTy);
+ Params.push_back(Ctx.BoolTy);
+ llvm::FunctionType *FTy =
+ Types.GetFunctionType(Types.arrangeLLVMFunctionInfo(
+ Ctx.VoidTy, false, false, Params, FunctionType::ExtInfo(),
+ RequiredArgs::All));
+ return CGM.CreateRuntimeFunction(FTy, "objc_copyStruct");
+ }
+
+ /// This routine declares and returns address of:
+ /// void objc_copyCppObjectAtomic(
+ /// void *dest, const void *src,
+ /// void (*copyHelper) (void *dest, const void *source));
+ llvm::Constant *getCppAtomicObjectFunction() {
+ CodeGen::CodeGenTypes &Types = CGM.getTypes();
+ ASTContext &Ctx = CGM.getContext();
+ /// void objc_copyCppObjectAtomic(void *dest, const void *src, void *helper);
+ SmallVector<CanQualType,3> Params;
+ Params.push_back(Ctx.VoidPtrTy);
+ Params.push_back(Ctx.VoidPtrTy);
+ Params.push_back(Ctx.VoidPtrTy);
+ llvm::FunctionType *FTy =
+ Types.GetFunctionType(Types.arrangeLLVMFunctionInfo(Ctx.VoidTy, false, false,
+ Params,
+ FunctionType::ExtInfo(),
+ RequiredArgs::All));
+ return CGM.CreateRuntimeFunction(FTy, "objc_copyCppObjectAtomic");
+ }
+
+ llvm::Constant *getEnumerationMutationFn() {
+ CodeGen::CodeGenTypes &Types = CGM.getTypes();
+ ASTContext &Ctx = CGM.getContext();
+ // void objc_enumerationMutation (id)
+ SmallVector<CanQualType,1> Params;
+ Params.push_back(Ctx.getCanonicalParamType(Ctx.getObjCIdType()));
+ llvm::FunctionType *FTy =
+ Types.GetFunctionType(Types.arrangeLLVMFunctionInfo(
+ Ctx.VoidTy, false, false, Params, FunctionType::ExtInfo(),
+ RequiredArgs::All));
+ return CGM.CreateRuntimeFunction(FTy, "objc_enumerationMutation");
+ }
+
+ /// GcReadWeakFn -- LLVM objc_read_weak (id *src) function.
+ llvm::Constant *getGcReadWeakFn() {
+ // id objc_read_weak (id *)
+ llvm::Type *args[] = { ObjectPtrTy->getPointerTo() };
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(ObjectPtrTy, args, false);
+ return CGM.CreateRuntimeFunction(FTy, "objc_read_weak");
+ }
+
+ /// GcAssignWeakFn -- LLVM objc_assign_weak function.
+ llvm::Constant *getGcAssignWeakFn() {
+ // id objc_assign_weak (id, id *)
+ llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() };
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(ObjectPtrTy, args, false);
+ return CGM.CreateRuntimeFunction(FTy, "objc_assign_weak");
+ }
+
+ /// GcAssignGlobalFn -- LLVM objc_assign_global function.
+ llvm::Constant *getGcAssignGlobalFn() {
+ // id objc_assign_global(id, id *)
+ llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() };
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(ObjectPtrTy, args, false);
+ return CGM.CreateRuntimeFunction(FTy, "objc_assign_global");
+ }
+
+ /// GcAssignThreadLocalFn -- LLVM objc_assign_threadlocal function.
+ llvm::Constant *getGcAssignThreadLocalFn() {
+ // id objc_assign_threadlocal(id src, id * dest)
+ llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() };
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(ObjectPtrTy, args, false);
+ return CGM.CreateRuntimeFunction(FTy, "objc_assign_threadlocal");
+ }
+
+ /// GcAssignIvarFn -- LLVM objc_assign_ivar function.
+ llvm::Constant *getGcAssignIvarFn() {
+ // id objc_assign_ivar(id, id *, ptrdiff_t)
+ llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo(),
+ CGM.PtrDiffTy };
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(ObjectPtrTy, args, false);
+ return CGM.CreateRuntimeFunction(FTy, "objc_assign_ivar");
+ }
+
+ /// GcMemmoveCollectableFn -- LLVM objc_memmove_collectable function.
+ llvm::Constant *GcMemmoveCollectableFn() {
+ // void *objc_memmove_collectable(void *dst, const void *src, size_t size)
+ llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, LongTy };
+ llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, args, false);
+ return CGM.CreateRuntimeFunction(FTy, "objc_memmove_collectable");
+ }
+
+ /// GcAssignStrongCastFn -- LLVM objc_assign_strongCast function.
+ llvm::Constant *getGcAssignStrongCastFn() {
+ // id objc_assign_strongCast(id, id *)
+ llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() };
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(ObjectPtrTy, args, false);
+ return CGM.CreateRuntimeFunction(FTy, "objc_assign_strongCast");
+ }
+
+ /// ExceptionThrowFn - LLVM objc_exception_throw function.
+ llvm::Constant *getExceptionThrowFn() {
+ // void objc_exception_throw(id)
+ llvm::Type *args[] = { ObjectPtrTy };
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(CGM.VoidTy, args, false);
+ return CGM.CreateRuntimeFunction(FTy, "objc_exception_throw");
+ }
+
+ /// ExceptionRethrowFn - LLVM objc_exception_rethrow function.
+ llvm::Constant *getExceptionRethrowFn() {
+ // void objc_exception_rethrow(void)
+ llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, false);
+ return CGM.CreateRuntimeFunction(FTy, "objc_exception_rethrow");
+ }
+
+ /// SyncEnterFn - LLVM object_sync_enter function.
+ llvm::Constant *getSyncEnterFn() {
+ // int objc_sync_enter (id)
+ llvm::Type *args[] = { ObjectPtrTy };
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(CGM.IntTy, args, false);
+ return CGM.CreateRuntimeFunction(FTy, "objc_sync_enter");
+ }
+
+ /// SyncExitFn - LLVM object_sync_exit function.
+ llvm::Constant *getSyncExitFn() {
+ // int objc_sync_exit (id)
+ llvm::Type *args[] = { ObjectPtrTy };
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(CGM.IntTy, args, false);
+ return CGM.CreateRuntimeFunction(FTy, "objc_sync_exit");
+ }
+
+ llvm::Constant *getSendFn(bool IsSuper) const {
+ return IsSuper ? getMessageSendSuperFn() : getMessageSendFn();
+ }
+
+ llvm::Constant *getSendFn2(bool IsSuper) const {
+ return IsSuper ? getMessageSendSuperFn2() : getMessageSendFn();
+ }
+
+ llvm::Constant *getSendStretFn(bool IsSuper) const {
+ return IsSuper ? getMessageSendSuperStretFn() : getMessageSendStretFn();
+ }
+
+ llvm::Constant *getSendStretFn2(bool IsSuper) const {
+ return IsSuper ? getMessageSendSuperStretFn2() : getMessageSendStretFn();
+ }
+
+ llvm::Constant *getSendFpretFn(bool IsSuper) const {
+ return IsSuper ? getMessageSendSuperFpretFn() : getMessageSendFpretFn();
+ }
+
+ llvm::Constant *getSendFpretFn2(bool IsSuper) const {
+ return IsSuper ? getMessageSendSuperFpretFn2() : getMessageSendFpretFn();
+ }
+
+ llvm::Constant *getSendFp2retFn(bool IsSuper) const {
+ return IsSuper ? getMessageSendSuperFn() : getMessageSendFp2retFn();
+ }
+
+ llvm::Constant *getSendFp2RetFn2(bool IsSuper) const {
+ return IsSuper ? getMessageSendSuperFn2() : getMessageSendFp2retFn();
+ }
+
+ ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm);
+};
+
+/// ObjCTypesHelper - Helper class that encapsulates lazy
+/// construction of varies types used during ObjC generation.
+class ObjCTypesHelper : public ObjCCommonTypesHelper {
+public:
+ /// SymtabTy - LLVM type for struct objc_symtab.
+ llvm::StructType *SymtabTy;
+ /// SymtabPtrTy - LLVM type for struct objc_symtab *.
+ llvm::Type *SymtabPtrTy;
+ /// ModuleTy - LLVM type for struct objc_module.
+ llvm::StructType *ModuleTy;
+
+ /// ProtocolTy - LLVM type for struct objc_protocol.
+ llvm::StructType *ProtocolTy;
+ /// ProtocolPtrTy - LLVM type for struct objc_protocol *.
+ llvm::Type *ProtocolPtrTy;
+ /// ProtocolExtensionTy - LLVM type for struct
+ /// objc_protocol_extension.
+ llvm::StructType *ProtocolExtensionTy;
+ /// ProtocolExtensionTy - LLVM type for struct
+ /// objc_protocol_extension *.
+ llvm::Type *ProtocolExtensionPtrTy;
+ /// MethodDescriptionTy - LLVM type for struct
+ /// objc_method_description.
+ llvm::StructType *MethodDescriptionTy;
+ /// MethodDescriptionListTy - LLVM type for struct
+ /// objc_method_description_list.
+ llvm::StructType *MethodDescriptionListTy;
+ /// MethodDescriptionListPtrTy - LLVM type for struct
+ /// objc_method_description_list *.
+ llvm::Type *MethodDescriptionListPtrTy;
+ /// ProtocolListTy - LLVM type for struct objc_property_list.
+ llvm::StructType *ProtocolListTy;
+ /// ProtocolListPtrTy - LLVM type for struct objc_property_list*.
+ llvm::Type *ProtocolListPtrTy;
+ /// CategoryTy - LLVM type for struct objc_category.
+ llvm::StructType *CategoryTy;
+ /// ClassTy - LLVM type for struct objc_class.
+ llvm::StructType *ClassTy;
+ /// ClassPtrTy - LLVM type for struct objc_class *.
+ llvm::Type *ClassPtrTy;
+ /// ClassExtensionTy - LLVM type for struct objc_class_ext.
+ llvm::StructType *ClassExtensionTy;
+ /// ClassExtensionPtrTy - LLVM type for struct objc_class_ext *.
+ llvm::Type *ClassExtensionPtrTy;
+ // IvarTy - LLVM type for struct objc_ivar.
+ llvm::StructType *IvarTy;
+ /// IvarListTy - LLVM type for struct objc_ivar_list.
+ llvm::Type *IvarListTy;
+ /// IvarListPtrTy - LLVM type for struct objc_ivar_list *.
+ llvm::Type *IvarListPtrTy;
+ /// MethodListTy - LLVM type for struct objc_method_list.
+ llvm::Type *MethodListTy;
+ /// MethodListPtrTy - LLVM type for struct objc_method_list *.
+ llvm::Type *MethodListPtrTy;
+
+ /// ExceptionDataTy - LLVM type for struct _objc_exception_data.
+ llvm::Type *ExceptionDataTy;
+
+ /// ExceptionTryEnterFn - LLVM objc_exception_try_enter function.
+ llvm::Constant *getExceptionTryEnterFn() {
+ llvm::Type *params[] = { ExceptionDataTy->getPointerTo() };
+ return CGM.CreateRuntimeFunction(
+ llvm::FunctionType::get(CGM.VoidTy, params, false),
+ "objc_exception_try_enter");
+ }
+
+ /// ExceptionTryExitFn - LLVM objc_exception_try_exit function.
+ llvm::Constant *getExceptionTryExitFn() {
+ llvm::Type *params[] = { ExceptionDataTy->getPointerTo() };
+ return CGM.CreateRuntimeFunction(
+ llvm::FunctionType::get(CGM.VoidTy, params, false),
+ "objc_exception_try_exit");
+ }
+
+ /// ExceptionExtractFn - LLVM objc_exception_extract function.
+ llvm::Constant *getExceptionExtractFn() {
+ llvm::Type *params[] = { ExceptionDataTy->getPointerTo() };
+ return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
+ params, false),
+ "objc_exception_extract");
+ }
+
+ /// ExceptionMatchFn - LLVM objc_exception_match function.
+ llvm::Constant *getExceptionMatchFn() {
+ llvm::Type *params[] = { ClassPtrTy, ObjectPtrTy };
+ return CGM.CreateRuntimeFunction(
+ llvm::FunctionType::get(CGM.Int32Ty, params, false),
+ "objc_exception_match");
+
+ }
+
+ /// SetJmpFn - LLVM _setjmp function.
+ llvm::Constant *getSetJmpFn() {
+ // This is specifically the prototype for x86.
+ llvm::Type *params[] = { CGM.Int32Ty->getPointerTo() };
+ return
+ CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.Int32Ty,
+ params, false),
+ "_setjmp",
+ llvm::AttributeSet::get(CGM.getLLVMContext(),
+ llvm::AttributeSet::FunctionIndex,
+ llvm::Attribute::NonLazyBind));
+ }
+
+public:
+ ObjCTypesHelper(CodeGen::CodeGenModule &cgm);
+};
+
+/// ObjCNonFragileABITypesHelper - will have all types needed by objective-c's
+/// modern abi
+class ObjCNonFragileABITypesHelper : public ObjCCommonTypesHelper {
+public:
+
+ // MethodListnfABITy - LLVM for struct _method_list_t
+ llvm::StructType *MethodListnfABITy;
+
+ // MethodListnfABIPtrTy - LLVM for struct _method_list_t*
+ llvm::Type *MethodListnfABIPtrTy;
+
+ // ProtocolnfABITy = LLVM for struct _protocol_t
+ llvm::StructType *ProtocolnfABITy;
+
+ // ProtocolnfABIPtrTy = LLVM for struct _protocol_t*
+ llvm::Type *ProtocolnfABIPtrTy;
+
+ // ProtocolListnfABITy - LLVM for struct _objc_protocol_list
+ llvm::StructType *ProtocolListnfABITy;
+
+ // ProtocolListnfABIPtrTy - LLVM for struct _objc_protocol_list*
+ llvm::Type *ProtocolListnfABIPtrTy;
+
+ // ClassnfABITy - LLVM for struct _class_t
+ llvm::StructType *ClassnfABITy;
+
+ // ClassnfABIPtrTy - LLVM for struct _class_t*
+ llvm::Type *ClassnfABIPtrTy;
+
+ // IvarnfABITy - LLVM for struct _ivar_t
+ llvm::StructType *IvarnfABITy;
+
+ // IvarListnfABITy - LLVM for struct _ivar_list_t
+ llvm::StructType *IvarListnfABITy;
+
+ // IvarListnfABIPtrTy = LLVM for struct _ivar_list_t*
+ llvm::Type *IvarListnfABIPtrTy;
+
+ // ClassRonfABITy - LLVM for struct _class_ro_t
+ llvm::StructType *ClassRonfABITy;
+
+ // ImpnfABITy - LLVM for id (*)(id, SEL, ...)
+ llvm::Type *ImpnfABITy;
+
+ // CategorynfABITy - LLVM for struct _category_t
+ llvm::StructType *CategorynfABITy;
+
+ // New types for nonfragile abi messaging.
+
+ // MessageRefTy - LLVM for:
+ // struct _message_ref_t {
+ // IMP messenger;
+ // SEL name;
+ // };
+ llvm::StructType *MessageRefTy;
+ // MessageRefCTy - clang type for struct _message_ref_t
+ QualType MessageRefCTy;
+
+ // MessageRefPtrTy - LLVM for struct _message_ref_t*
+ llvm::Type *MessageRefPtrTy;
+ // MessageRefCPtrTy - clang type for struct _message_ref_t*
+ QualType MessageRefCPtrTy;
+
+ // MessengerTy - Type of the messenger (shown as IMP above)
+ llvm::FunctionType *MessengerTy;
+
+ // SuperMessageRefTy - LLVM for:
+ // struct _super_message_ref_t {
+ // SUPER_IMP messenger;
+ // SEL name;
+ // };
+ llvm::StructType *SuperMessageRefTy;
+
+ // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t*
+ llvm::Type *SuperMessageRefPtrTy;
+
+ llvm::Constant *getMessageSendFixupFn() {
+ // id objc_msgSend_fixup(id, struct message_ref_t*, ...)
+ llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy };
+ return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
+ params, true),
+ "objc_msgSend_fixup");
+ }
+
+ llvm::Constant *getMessageSendFpretFixupFn() {
+ // id objc_msgSend_fpret_fixup(id, struct message_ref_t*, ...)
+ llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy };
+ return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
+ params, true),
+ "objc_msgSend_fpret_fixup");
+ }
+
+ llvm::Constant *getMessageSendStretFixupFn() {
+ // id objc_msgSend_stret_fixup(id, struct message_ref_t*, ...)
+ llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy };
+ return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
+ params, true),
+ "objc_msgSend_stret_fixup");
+ }
+
+ llvm::Constant *getMessageSendSuper2FixupFn() {
+ // id objc_msgSendSuper2_fixup (struct objc_super *,
+ // struct _super_message_ref_t*, ...)
+ llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy };
+ return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
+ params, true),
+ "objc_msgSendSuper2_fixup");
+ }
+
+ llvm::Constant *getMessageSendSuper2StretFixupFn() {
+ // id objc_msgSendSuper2_stret_fixup(struct objc_super *,
+ // struct _super_message_ref_t*, ...)
+ llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy };
+ return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
+ params, true),
+ "objc_msgSendSuper2_stret_fixup");
+ }
+
+ llvm::Constant *getObjCEndCatchFn() {
+ return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, false),
+ "objc_end_catch");
+
+ }
+
+ llvm::Constant *getObjCBeginCatchFn() {
+ llvm::Type *params[] = { Int8PtrTy };
+ return CGM.CreateRuntimeFunction(llvm::FunctionType::get(Int8PtrTy,
+ params, false),
+ "objc_begin_catch");
+ }
+
+ llvm::StructType *EHTypeTy;
+ llvm::Type *EHTypePtrTy;
+
+ ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm);
+};
+
+class CGObjCCommonMac : public CodeGen::CGObjCRuntime {
+public:
+ // FIXME - accessibility
+ class GC_IVAR {
+ public:
+ unsigned ivar_bytepos;
+ unsigned ivar_size;
+ GC_IVAR(unsigned bytepos = 0, unsigned size = 0)
+ : ivar_bytepos(bytepos), ivar_size(size) {}
+
+ // Allow sorting based on byte pos.
+ bool operator<(const GC_IVAR &b) const {
+ return ivar_bytepos < b.ivar_bytepos;
+ }
+ };
+
+ class SKIP_SCAN {
+ public:
+ unsigned skip;
+ unsigned scan;
+ SKIP_SCAN(unsigned _skip = 0, unsigned _scan = 0)
+ : skip(_skip), scan(_scan) {}
+ };
+
+ /// opcode for captured block variables layout 'instructions'.
+ /// In the following descriptions, 'I' is the value of the immediate field.
+ /// (field following the opcode).
+ ///
+ enum BLOCK_LAYOUT_OPCODE {
+ /// An operator which affects how the following layout should be
+ /// interpreted.
+ /// I == 0: Halt interpretation and treat everything else as
+ /// a non-pointer. Note that this instruction is equal
+ /// to '\0'.
+ /// I != 0: Currently unused.
+ BLOCK_LAYOUT_OPERATOR = 0,
+
+ /// The next I+1 bytes do not contain a value of object pointer type.
+ /// Note that this can leave the stream unaligned, meaning that
+ /// subsequent word-size instructions do not begin at a multiple of
+ /// the pointer size.
+ BLOCK_LAYOUT_NON_OBJECT_BYTES = 1,
+
+ /// The next I+1 words do not contain a value of object pointer type.
+ /// This is simply an optimized version of BLOCK_LAYOUT_BYTES for
+ /// when the required skip quantity is a multiple of the pointer size.
+ BLOCK_LAYOUT_NON_OBJECT_WORDS = 2,
+
+ /// The next I+1 words are __strong pointers to Objective-C
+ /// objects or blocks.
+ BLOCK_LAYOUT_STRONG = 3,
+
+ /// The next I+1 words are pointers to __block variables.
+ BLOCK_LAYOUT_BYREF = 4,
+
+ /// The next I+1 words are __weak pointers to Objective-C
+ /// objects or blocks.
+ BLOCK_LAYOUT_WEAK = 5,
+
+ /// The next I+1 words are __unsafe_unretained pointers to
+ /// Objective-C objects or blocks.
+ BLOCK_LAYOUT_UNRETAINED = 6
+
+ /// The next I+1 words are block or object pointers with some
+ /// as-yet-unspecified ownership semantics. If we add more
+ /// flavors of ownership semantics, values will be taken from
+ /// this range.
+ ///
+ /// This is included so that older tools can at least continue
+ /// processing the layout past such things.
+ //BLOCK_LAYOUT_OWNERSHIP_UNKNOWN = 7..10,
+
+ /// All other opcodes are reserved. Halt interpretation and
+ /// treat everything else as opaque.
+ };
+
+ class RUN_SKIP {
+ public:
+ enum BLOCK_LAYOUT_OPCODE opcode;
+ CharUnits block_var_bytepos;
+ CharUnits block_var_size;
+ RUN_SKIP(enum BLOCK_LAYOUT_OPCODE Opcode = BLOCK_LAYOUT_OPERATOR,
+ CharUnits BytePos = CharUnits::Zero(),
+ CharUnits Size = CharUnits::Zero())
+ : opcode(Opcode), block_var_bytepos(BytePos), block_var_size(Size) {}
+
+ // Allow sorting based on byte pos.
+ bool operator<(const RUN_SKIP &b) const {
+ return block_var_bytepos < b.block_var_bytepos;
+ }
+ };
+
+protected:
+ llvm::LLVMContext &VMContext;
+ // FIXME! May not be needing this after all.
+ unsigned ObjCABI;
+
+ // gc ivar layout bitmap calculation helper caches.
+ SmallVector<GC_IVAR, 16> SkipIvars;
+ SmallVector<GC_IVAR, 16> IvarsInfo;
+
+ // arc/mrr layout of captured block literal variables.
+ SmallVector<RUN_SKIP, 16> RunSkipBlockVars;
+
+ /// LazySymbols - Symbols to generate a lazy reference for. See
+ /// DefinedSymbols and FinishModule().
+ llvm::SetVector<IdentifierInfo*> LazySymbols;
+
+ /// DefinedSymbols - External symbols which are defined by this
+ /// module. The symbols in this list and LazySymbols are used to add
+ /// special linker symbols which ensure that Objective-C modules are
+ /// linked properly.
+ llvm::SetVector<IdentifierInfo*> DefinedSymbols;
+
+ /// ClassNames - uniqued class names.
+ llvm::StringMap<llvm::GlobalVariable*> ClassNames;
+
+ /// MethodVarNames - uniqued method variable names.
+ llvm::DenseMap<Selector, llvm::GlobalVariable*> MethodVarNames;
+
+ /// DefinedCategoryNames - list of category names in form Class_Category.
+ llvm::SetVector<std::string> DefinedCategoryNames;
+
+ /// MethodVarTypes - uniqued method type signatures. We have to use
+ /// a StringMap here because have no other unique reference.
+ llvm::StringMap<llvm::GlobalVariable*> MethodVarTypes;
+
+ /// MethodDefinitions - map of methods which have been defined in
+ /// this translation unit.
+ llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> MethodDefinitions;
+
+ /// PropertyNames - uniqued method variable names.
+ llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> PropertyNames;
+
+ /// ClassReferences - uniqued class references.
+ llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> ClassReferences;
+
+ /// SelectorReferences - uniqued selector references.
+ llvm::DenseMap<Selector, llvm::GlobalVariable*> SelectorReferences;
+
+ /// Protocols - Protocols for which an objc_protocol structure has
+ /// been emitted. Forward declarations are handled by creating an
+ /// empty structure whose initializer is filled in when/if defined.
+ llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> Protocols;
+
+ /// DefinedProtocols - Protocols which have actually been
+ /// defined. We should not need this, see FIXME in GenerateProtocol.
+ llvm::DenseSet<IdentifierInfo*> DefinedProtocols;
+
+ /// DefinedClasses - List of defined classes.
+ SmallVector<llvm::GlobalValue*, 16> DefinedClasses;
+
+ /// ImplementedClasses - List of @implemented classes.
+ SmallVector<const ObjCInterfaceDecl*, 16> ImplementedClasses;
+
+ /// DefinedNonLazyClasses - List of defined "non-lazy" classes.
+ SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyClasses;
+
+ /// DefinedCategories - List of defined categories.
+ SmallVector<llvm::GlobalValue*, 16> DefinedCategories;
+
+ /// DefinedNonLazyCategories - List of defined "non-lazy" categories.
+ SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyCategories;
+
+ /// GetNameForMethod - Return a name for the given method.
+ /// \param[out] NameOut - The return value.
+ void GetNameForMethod(const ObjCMethodDecl *OMD,
+ const ObjCContainerDecl *CD,
+ SmallVectorImpl<char> &NameOut);
+
+ /// GetMethodVarName - Return a unique constant for the given
+ /// selector's name. The return value has type char *.
+ llvm::Constant *GetMethodVarName(Selector Sel);
+ llvm::Constant *GetMethodVarName(IdentifierInfo *Ident);
+
+ /// GetMethodVarType - Return a unique constant for the given
+ /// method's type encoding string. The return value has type char *.
+
+ // FIXME: This is a horrible name.
+ llvm::Constant *GetMethodVarType(const ObjCMethodDecl *D,
+ bool Extended = false);
+ llvm::Constant *GetMethodVarType(const FieldDecl *D);
+
+ /// GetPropertyName - Return a unique constant for the given
+ /// name. The return value has type char *.
+ llvm::Constant *GetPropertyName(IdentifierInfo *Ident);
+
+ // FIXME: This can be dropped once string functions are unified.
+ llvm::Constant *GetPropertyTypeString(const ObjCPropertyDecl *PD,
+ const Decl *Container);
+
+ /// GetClassName - Return a unique constant for the given selector's
+ /// runtime name (which may change via use of objc_runtime_name attribute on
+ /// class or protocol definition. The return value has type char *.
+ llvm::Constant *GetClassName(StringRef RuntimeName);
+
+ llvm::Function *GetMethodDefinition(const ObjCMethodDecl *MD);
+
+ /// BuildIvarLayout - Builds ivar layout bitmap for the class
+ /// implementation for the __strong or __weak case.
+ ///
+ llvm::Constant *BuildIvarLayout(const ObjCImplementationDecl *OI,
+ bool ForStrongLayout);
+
+ llvm::Constant *BuildIvarLayoutBitmap(std::string &BitMap);
+
+ void BuildAggrIvarRecordLayout(const RecordType *RT,
+ unsigned int BytePos, bool ForStrongLayout,
+ bool &HasUnion);
+ void BuildAggrIvarLayout(const ObjCImplementationDecl *OI,
+ const llvm::StructLayout *Layout,
+ const RecordDecl *RD,
+ ArrayRef<const FieldDecl*> RecFields,
+ unsigned int BytePos, bool ForStrongLayout,
+ bool &HasUnion);
+
+ Qualifiers::ObjCLifetime getBlockCaptureLifetime(QualType QT, bool ByrefLayout);
+
+ void UpdateRunSkipBlockVars(bool IsByref,
+ Qualifiers::ObjCLifetime LifeTime,
+ CharUnits FieldOffset,
+ CharUnits FieldSize);
+
+ void BuildRCBlockVarRecordLayout(const RecordType *RT,
+ CharUnits BytePos, bool &HasUnion,
+ bool ByrefLayout=false);
+
+ void BuildRCRecordLayout(const llvm::StructLayout *RecLayout,
+ const RecordDecl *RD,
+ ArrayRef<const FieldDecl*> RecFields,
+ CharUnits BytePos, bool &HasUnion,
+ bool ByrefLayout);
+
+ uint64_t InlineLayoutInstruction(SmallVectorImpl<unsigned char> &Layout);
+
+ llvm::Constant *getBitmapBlockLayout(bool ComputeByrefLayout);
+
+
+ /// GetIvarLayoutName - Returns a unique constant for the given
+ /// ivar layout bitmap.
+ llvm::Constant *GetIvarLayoutName(IdentifierInfo *Ident,
+ const ObjCCommonTypesHelper &ObjCTypes);
+
+ /// EmitPropertyList - Emit the given property list. The return
+ /// value has type PropertyListPtrTy.
+ llvm::Constant *EmitPropertyList(Twine Name,
+ const Decl *Container,
+ const ObjCContainerDecl *OCD,
+ const ObjCCommonTypesHelper &ObjCTypes);
+
+ /// EmitProtocolMethodTypes - Generate the array of extended method type
+ /// strings. The return value has type Int8PtrPtrTy.
+ llvm::Constant *EmitProtocolMethodTypes(Twine Name,
+ ArrayRef<llvm::Constant*> MethodTypes,
+ const ObjCCommonTypesHelper &ObjCTypes);
+
+ /// PushProtocolProperties - Push protocol's property on the input stack.
+ void PushProtocolProperties(
+ llvm::SmallPtrSet<const IdentifierInfo*, 16> &PropertySet,
+ SmallVectorImpl<llvm::Constant*> &Properties,
+ const Decl *Container,
+ const ObjCProtocolDecl *Proto,
+ const ObjCCommonTypesHelper &ObjCTypes);
+
+ /// GetProtocolRef - Return a reference to the internal protocol
+ /// description, creating an empty one if it has not been
+ /// defined. The return value has type ProtocolPtrTy.
+ llvm::Constant *GetProtocolRef(const ObjCProtocolDecl *PD);
+
+ /// CreateMetadataVar - Create a global variable with internal
+ /// linkage for use by the Objective-C runtime.
+ ///
+ /// This is a convenience wrapper which not only creates the
+ /// variable, but also sets the section and alignment and adds the
+ /// global to the "llvm.used" list.
+ ///
+ /// \param Name - The variable name.
+ /// \param Init - The variable initializer; this is also used to
+ /// define the type of the variable.
+ /// \param Section - The section the variable should go into, or empty.
+ /// \param Align - The alignment for the variable, or 0.
+ /// \param AddToUsed - Whether the variable should be added to
+ /// "llvm.used".
+ llvm::GlobalVariable *CreateMetadataVar(Twine Name, llvm::Constant *Init,
+ StringRef Section, unsigned Align,
+ bool AddToUsed);
+
+ CodeGen::RValue EmitMessageSend(CodeGen::CodeGenFunction &CGF,
+ ReturnValueSlot Return,
+ QualType ResultType,
+ llvm::Value *Sel,
+ llvm::Value *Arg0,
+ QualType Arg0Ty,
+ bool IsSuper,
+ const CallArgList &CallArgs,
+ const ObjCMethodDecl *OMD,
+ const ObjCCommonTypesHelper &ObjCTypes);
+
+ /// EmitImageInfo - Emit the image info marker used to encode some module
+ /// level information.
+ void EmitImageInfo();
+
+public:
+ CGObjCCommonMac(CodeGen::CodeGenModule &cgm) :
+ CGObjCRuntime(cgm), VMContext(cgm.getLLVMContext()) { }
+
+ llvm::Constant *GenerateConstantString(const StringLiteral *SL) override;
+
+ llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD,
+ const ObjCContainerDecl *CD=nullptr) override;
+
+ void GenerateProtocol(const ObjCProtocolDecl *PD) override;
+
+ /// GetOrEmitProtocol - Get the protocol object for the given
+ /// declaration, emitting it if necessary. The return value has type
+ /// ProtocolPtrTy.
+ virtual llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD)=0;
+
+ /// GetOrEmitProtocolRef - Get a forward reference to the protocol
+ /// object for the given declaration, emitting it if needed. These
+ /// forward references will be filled in with empty bodies if no
+ /// definition is seen. The return value has type ProtocolPtrTy.
+ virtual llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD)=0;
+ llvm::Constant *BuildGCBlockLayout(CodeGen::CodeGenModule &CGM,
+ const CGBlockInfo &blockInfo) override;
+ llvm::Constant *BuildRCBlockLayout(CodeGen::CodeGenModule &CGM,
+ const CGBlockInfo &blockInfo) override;
+
+ llvm::Constant *BuildByrefLayout(CodeGen::CodeGenModule &CGM,
+ QualType T) override;
+};
+
+class CGObjCMac : public CGObjCCommonMac {
+private:
+ ObjCTypesHelper ObjCTypes;
+
+ /// EmitModuleInfo - Another marker encoding module level
+ /// information.
+ void EmitModuleInfo();
+
+ /// EmitModuleSymols - Emit module symbols, the list of defined
+ /// classes and categories. The result has type SymtabPtrTy.
+ llvm::Constant *EmitModuleSymbols();
+
+ /// FinishModule - Write out global data structures at the end of
+ /// processing a translation unit.
+ void FinishModule();
+
+ /// EmitClassExtension - Generate the class extension structure used
+ /// to store the weak ivar layout and properties. The return value
+ /// has type ClassExtensionPtrTy.
+ llvm::Constant *EmitClassExtension(const ObjCImplementationDecl *ID);
+
+ /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy,
+ /// for the given class.
+ llvm::Value *EmitClassRef(CodeGenFunction &CGF,
+ const ObjCInterfaceDecl *ID);
+
+ llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF,
+ IdentifierInfo *II);
+
+ llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override;
+
+ /// EmitSuperClassRef - Emits reference to class's main metadata class.
+ llvm::Value *EmitSuperClassRef(const ObjCInterfaceDecl *ID);
+
+ /// EmitIvarList - Emit the ivar list for the given
+ /// implementation. If ForClass is true the list of class ivars
+ /// (i.e. metaclass ivars) is emitted, otherwise the list of
+ /// interface ivars will be emitted. The return value has type
+ /// IvarListPtrTy.
+ llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID,
+ bool ForClass);
+
+ /// EmitMetaClass - Emit a forward reference to the class structure
+ /// for the metaclass of the given interface. The return value has
+ /// type ClassPtrTy.
+ llvm::Constant *EmitMetaClassRef(const ObjCInterfaceDecl *ID);
+
+ /// EmitMetaClass - Emit a class structure for the metaclass of the
+ /// given implementation. The return value has type ClassPtrTy.
+ llvm::Constant *EmitMetaClass(const ObjCImplementationDecl *ID,
+ llvm::Constant *Protocols,
+ ArrayRef<llvm::Constant*> Methods);
+
+ llvm::Constant *GetMethodConstant(const ObjCMethodDecl *MD);
+
+ llvm::Constant *GetMethodDescriptionConstant(const ObjCMethodDecl *MD);
+
+ /// EmitMethodList - Emit the method list for the given
+ /// implementation. The return value has type MethodListPtrTy.
+ llvm::Constant *EmitMethodList(Twine Name,
+ const char *Section,
+ ArrayRef<llvm::Constant*> Methods);
+
+ /// EmitMethodDescList - Emit a method description list for a list of
+ /// method declarations.
+ /// - TypeName: The name for the type containing the methods.
+ /// - IsProtocol: True iff these methods are for a protocol.
+ /// - ClassMethds: True iff these are class methods.
+ /// - Required: When true, only "required" methods are
+ /// listed. Similarly, when false only "optional" methods are
+ /// listed. For classes this should always be true.
+ /// - begin, end: The method list to output.
+ ///
+ /// The return value has type MethodDescriptionListPtrTy.
+ llvm::Constant *EmitMethodDescList(Twine Name,
+ const char *Section,
+ ArrayRef<llvm::Constant*> Methods);
+
+ /// GetOrEmitProtocol - Get the protocol object for the given
+ /// declaration, emitting it if necessary. The return value has type
+ /// ProtocolPtrTy.
+ llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override;
+
+ /// GetOrEmitProtocolRef - Get a forward reference to the protocol
+ /// object for the given declaration, emitting it if needed. These
+ /// forward references will be filled in with empty bodies if no
+ /// definition is seen. The return value has type ProtocolPtrTy.
+ llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override;
+
+ /// EmitProtocolExtension - Generate the protocol extension
+ /// structure used to store optional instance and class methods, and
+ /// protocol properties. The return value has type
+ /// ProtocolExtensionPtrTy.
+ llvm::Constant *
+ EmitProtocolExtension(const ObjCProtocolDecl *PD,
+ ArrayRef<llvm::Constant*> OptInstanceMethods,
+ ArrayRef<llvm::Constant*> OptClassMethods,
+ ArrayRef<llvm::Constant*> MethodTypesExt);
+
+ /// EmitProtocolList - Generate the list of referenced
+ /// protocols. The return value has type ProtocolListPtrTy.
+ llvm::Constant *EmitProtocolList(Twine Name,
+ ObjCProtocolDecl::protocol_iterator begin,
+ ObjCProtocolDecl::protocol_iterator end);
+
+ /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy,
+ /// for the given selector.
+ llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel,
+ bool lval=false);
+
+public:
+ CGObjCMac(CodeGen::CodeGenModule &cgm);
+
+ llvm::Function *ModuleInitFunction() override;
+
+ CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF,
+ ReturnValueSlot Return,
+ QualType ResultType,
+ Selector Sel, llvm::Value *Receiver,
+ const CallArgList &CallArgs,
+ const ObjCInterfaceDecl *Class,
+ const ObjCMethodDecl *Method) override;
+
+ CodeGen::RValue
+ GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF,
+ ReturnValueSlot Return, QualType ResultType,
+ Selector Sel, const ObjCInterfaceDecl *Class,
+ bool isCategoryImpl, llvm::Value *Receiver,
+ bool IsClassMessage, const CallArgList &CallArgs,
+ const ObjCMethodDecl *Method) override;
+
+ llvm::Value *GetClass(CodeGenFunction &CGF,
+ const ObjCInterfaceDecl *ID) override;
+
+ llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel,
+ bool lval = false) override;
+
+ /// The NeXT/Apple runtimes do not support typed selectors; just emit an
+ /// untyped one.
+ llvm::Value *GetSelector(CodeGenFunction &CGF,
+ const ObjCMethodDecl *Method) override;
+
+ llvm::Constant *GetEHType(QualType T) override;
+
+ void GenerateCategory(const ObjCCategoryImplDecl *CMD) override;
+
+ void GenerateClass(const ObjCImplementationDecl *ClassDecl) override;
+
+ void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {}
+
+ llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
+ const ObjCProtocolDecl *PD) override;
+
+ llvm::Constant *GetPropertyGetFunction() override;
+ llvm::Constant *GetPropertySetFunction() override;
+ llvm::Constant *GetOptimizedPropertySetFunction(bool atomic,
+ bool copy) override;
+ llvm::Constant *GetGetStructFunction() override;
+ llvm::Constant *GetSetStructFunction() override;
+ llvm::Constant *GetCppAtomicObjectGetFunction() override;
+ llvm::Constant *GetCppAtomicObjectSetFunction() override;
+ llvm::Constant *EnumerationMutationFunction() override;
+
+ void EmitTryStmt(CodeGen::CodeGenFunction &CGF,
+ const ObjCAtTryStmt &S) override;
+ void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
+ const ObjCAtSynchronizedStmt &S) override;
+ void EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, const Stmt &S);
+ void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S,
+ bool ClearInsertionPoint=true) override;
+ llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *AddrWeakObj) override;
+ void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *src, llvm::Value *dst) override;
+ void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *src, llvm::Value *dest,
+ bool threadlocal = false) override;
+ void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *src, llvm::Value *dest,
+ llvm::Value *ivarOffset) override;
+ void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *src, llvm::Value *dest) override;
+ void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *dest, llvm::Value *src,
+ llvm::Value *size) override;
+
+ LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy,
+ llvm::Value *BaseValue, const ObjCIvarDecl *Ivar,
+ unsigned CVRQualifiers) override;
+ llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF,
+ const ObjCInterfaceDecl *Interface,
+ const ObjCIvarDecl *Ivar) override;
+
+ /// GetClassGlobal - Return the global variable for the Objective-C
+ /// class of the given name.
+ llvm::GlobalVariable *GetClassGlobal(const std::string &Name,
+ bool Weak = false) override {
+ llvm_unreachable("CGObjCMac::GetClassGlobal");
+ }
+};
+
+class CGObjCNonFragileABIMac : public CGObjCCommonMac {
+private:
+ ObjCNonFragileABITypesHelper ObjCTypes;
+ llvm::GlobalVariable* ObjCEmptyCacheVar;
+ llvm::GlobalVariable* ObjCEmptyVtableVar;
+
+ /// SuperClassReferences - uniqued super class references.
+ llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> SuperClassReferences;
+
+ /// MetaClassReferences - uniqued meta class references.
+ llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> MetaClassReferences;
+
+ /// EHTypeReferences - uniqued class ehtype references.
+ llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> EHTypeReferences;
+
+ /// VTableDispatchMethods - List of methods for which we generate
+ /// vtable-based message dispatch.
+ llvm::DenseSet<Selector> VTableDispatchMethods;
+
+ /// DefinedMetaClasses - List of defined meta-classes.
+ std::vector<llvm::GlobalValue*> DefinedMetaClasses;
+
+ /// isVTableDispatchedSelector - Returns true if SEL is a
+ /// vtable-based selector.
+ bool isVTableDispatchedSelector(Selector Sel);
+
+ /// FinishNonFragileABIModule - Write out global data structures at the end of
+ /// processing a translation unit.
+ void FinishNonFragileABIModule();
+
+ /// AddModuleClassList - Add the given list of class pointers to the
+ /// module with the provided symbol and section names.
+ void AddModuleClassList(ArrayRef<llvm::GlobalValue*> Container,
+ const char *SymbolName,
+ const char *SectionName);
+
+ llvm::GlobalVariable * BuildClassRoTInitializer(unsigned flags,
+ unsigned InstanceStart,
+ unsigned InstanceSize,
+ const ObjCImplementationDecl *ID);
+ llvm::GlobalVariable * BuildClassMetaData(const std::string &ClassName,
+ llvm::Constant *IsAGV,
+ llvm::Constant *SuperClassGV,
+ llvm::Constant *ClassRoGV,
+ bool HiddenVisibility,
+ bool Weak);
+
+ llvm::Constant *GetMethodConstant(const ObjCMethodDecl *MD);
+
+ llvm::Constant *GetMethodDescriptionConstant(const ObjCMethodDecl *MD);
+
+ /// EmitMethodList - Emit the method list for the given
+ /// implementation. The return value has type MethodListnfABITy.
+ llvm::Constant *EmitMethodList(Twine Name,
+ const char *Section,
+ ArrayRef<llvm::Constant*> Methods);
+ /// EmitIvarList - Emit the ivar list for the given
+ /// implementation. If ForClass is true the list of class ivars
+ /// (i.e. metaclass ivars) is emitted, otherwise the list of
+ /// interface ivars will be emitted. The return value has type
+ /// IvarListnfABIPtrTy.
+ llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID);
+
+ llvm::Constant *EmitIvarOffsetVar(const ObjCInterfaceDecl *ID,
+ const ObjCIvarDecl *Ivar,
+ unsigned long int offset);
+
+ /// GetOrEmitProtocol - Get the protocol object for the given
+ /// declaration, emitting it if necessary. The return value has type
+ /// ProtocolPtrTy.
+ llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override;
+
+ /// GetOrEmitProtocolRef - Get a forward reference to the protocol
+ /// object for the given declaration, emitting it if needed. These
+ /// forward references will be filled in with empty bodies if no
+ /// definition is seen. The return value has type ProtocolPtrTy.
+ llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override;
+
+ /// EmitProtocolList - Generate the list of referenced
+ /// protocols. The return value has type ProtocolListPtrTy.
+ llvm::Constant *EmitProtocolList(Twine Name,
+ ObjCProtocolDecl::protocol_iterator begin,
+ ObjCProtocolDecl::protocol_iterator end);
+
+ CodeGen::RValue EmitVTableMessageSend(CodeGen::CodeGenFunction &CGF,
+ ReturnValueSlot Return,
+ QualType ResultType,
+ Selector Sel,
+ llvm::Value *Receiver,
+ QualType Arg0Ty,
+ bool IsSuper,
+ const CallArgList &CallArgs,
+ const ObjCMethodDecl *Method);
+
+ /// GetClassGlobal - Return the global variable for the Objective-C
+ /// class of the given name.
+ llvm::GlobalVariable *GetClassGlobal(const std::string &Name,
+ bool Weak = false) override;
+
+ /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy,
+ /// for the given class reference.
+ llvm::Value *EmitClassRef(CodeGenFunction &CGF,
+ const ObjCInterfaceDecl *ID);
+
+ llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF,
+ IdentifierInfo *II, bool Weak,
+ const ObjCInterfaceDecl *ID);
+
+ llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override;
+
+ /// EmitSuperClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy,
+ /// for the given super class reference.
+ llvm::Value *EmitSuperClassRef(CodeGenFunction &CGF,
+ const ObjCInterfaceDecl *ID);
+
+ /// EmitMetaClassRef - Return a Value * of the address of _class_t
+ /// meta-data
+ llvm::Value *EmitMetaClassRef(CodeGenFunction &CGF,
+ const ObjCInterfaceDecl *ID, bool Weak);
+
+ /// ObjCIvarOffsetVariable - Returns the ivar offset variable for
+ /// the given ivar.
+ ///
+ llvm::GlobalVariable * ObjCIvarOffsetVariable(
+ const ObjCInterfaceDecl *ID,
+ const ObjCIvarDecl *Ivar);
+
+ /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy,
+ /// for the given selector.
+ llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel,
+ bool lval=false);
+
+ /// GetInterfaceEHType - Get the cached ehtype for the given Objective-C
+ /// interface. The return value has type EHTypePtrTy.
+ llvm::Constant *GetInterfaceEHType(const ObjCInterfaceDecl *ID,
+ bool ForDefinition);
+
+ const char *getMetaclassSymbolPrefix() const {
+ return "OBJC_METACLASS_$_";
+ }
+
+ const char *getClassSymbolPrefix() const {
+ return "OBJC_CLASS_$_";
+ }
+
+ void GetClassSizeInfo(const ObjCImplementationDecl *OID,
+ uint32_t &InstanceStart,
+ uint32_t &InstanceSize);
+
+ // Shamelessly stolen from Analysis/CFRefCount.cpp
+ Selector GetNullarySelector(const char* name) const {
+ IdentifierInfo* II = &CGM.getContext().Idents.get(name);
+ return CGM.getContext().Selectors.getSelector(0, &II);
+ }
+
+ Selector GetUnarySelector(const char* name) const {
+ IdentifierInfo* II = &CGM.getContext().Idents.get(name);
+ return CGM.getContext().Selectors.getSelector(1, &II);
+ }
+
+ /// ImplementationIsNonLazy - Check whether the given category or
+ /// class implementation is "non-lazy".
+ bool ImplementationIsNonLazy(const ObjCImplDecl *OD) const;
+
+ bool IsIvarOffsetKnownIdempotent(const CodeGen::CodeGenFunction &CGF,
+ const ObjCIvarDecl *IV) {
+ // Annotate the load as an invariant load iff inside an instance method
+ // and ivar belongs to instance method's class and one of its super class.
+ // This check is needed because the ivar offset is a lazily
+ // initialised value that may depend on objc_msgSend to perform a fixup on
+ // the first message dispatch.
+ //
+ // An additional opportunity to mark the load as invariant arises when the
+ // base of the ivar access is a parameter to an Objective C method.
+ // However, because the parameters are not available in the current
+ // interface, we cannot perform this check.
+ if (const ObjCMethodDecl *MD =
+ dyn_cast_or_null<ObjCMethodDecl>(CGF.CurFuncDecl))
+ if (MD->isInstanceMethod())
+ if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
+ return IV->getContainingInterface()->isSuperClassOf(ID);
+ return false;
+ }
+
+public:
+ CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm);
+ // FIXME. All stubs for now!
+ llvm::Function *ModuleInitFunction() override;
+
+ CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF,
+ ReturnValueSlot Return,
+ QualType ResultType, Selector Sel,
+ llvm::Value *Receiver,
+ const CallArgList &CallArgs,
+ const ObjCInterfaceDecl *Class,
+ const ObjCMethodDecl *Method) override;
+
+ CodeGen::RValue
+ GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF,
+ ReturnValueSlot Return, QualType ResultType,
+ Selector Sel, const ObjCInterfaceDecl *Class,
+ bool isCategoryImpl, llvm::Value *Receiver,
+ bool IsClassMessage, const CallArgList &CallArgs,
+ const ObjCMethodDecl *Method) override;
+
+ llvm::Value *GetClass(CodeGenFunction &CGF,
+ const ObjCInterfaceDecl *ID) override;
+
+ llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel,
+ bool lvalue = false) override
+ { return EmitSelector(CGF, Sel, lvalue); }
+
+ /// The NeXT/Apple runtimes do not support typed selectors; just emit an
+ /// untyped one.
+ llvm::Value *GetSelector(CodeGenFunction &CGF,
+ const ObjCMethodDecl *Method) override
+ { return EmitSelector(CGF, Method->getSelector()); }
+
+ void GenerateCategory(const ObjCCategoryImplDecl *CMD) override;
+
+ void GenerateClass(const ObjCImplementationDecl *ClassDecl) override;
+
+ void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {}
+
+ llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
+ const ObjCProtocolDecl *PD) override;
+
+ llvm::Constant *GetEHType(QualType T) override;
+
+ llvm::Constant *GetPropertyGetFunction() override {
+ return ObjCTypes.getGetPropertyFn();
+ }
+ llvm::Constant *GetPropertySetFunction() override {
+ return ObjCTypes.getSetPropertyFn();
+ }
+
+ llvm::Constant *GetOptimizedPropertySetFunction(bool atomic,
+ bool copy) override {
+ return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy);
+ }
+
+ llvm::Constant *GetSetStructFunction() override {
+ return ObjCTypes.getCopyStructFn();
+ }
+ llvm::Constant *GetGetStructFunction() override {
+ return ObjCTypes.getCopyStructFn();
+ }
+ llvm::Constant *GetCppAtomicObjectSetFunction() override {
+ return ObjCTypes.getCppAtomicObjectFunction();
+ }
+ llvm::Constant *GetCppAtomicObjectGetFunction() override {
+ return ObjCTypes.getCppAtomicObjectFunction();
+ }
+
+ llvm::Constant *EnumerationMutationFunction() override {
+ return ObjCTypes.getEnumerationMutationFn();
+ }
+
+ void EmitTryStmt(CodeGen::CodeGenFunction &CGF,
+ const ObjCAtTryStmt &S) override;
+ void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
+ const ObjCAtSynchronizedStmt &S) override;
+ void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S,
+ bool ClearInsertionPoint=true) override;
+ llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *AddrWeakObj) override;
+ void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *src, llvm::Value *dst) override;
+ void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *src, llvm::Value *dest,
+ bool threadlocal = false) override;
+ void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *src, llvm::Value *dest,
+ llvm::Value *ivarOffset) override;
+ void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *src, llvm::Value *dest) override;
+ void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *dest, llvm::Value *src,
+ llvm::Value *size) override;
+ LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy,
+ llvm::Value *BaseValue, const ObjCIvarDecl *Ivar,
+ unsigned CVRQualifiers) override;
+ llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF,
+ const ObjCInterfaceDecl *Interface,
+ const ObjCIvarDecl *Ivar) override;
+};
+
+/// A helper class for performing the null-initialization of a return
+/// value.
+struct NullReturnState {
+ llvm::BasicBlock *NullBB;
+ NullReturnState() : NullBB(nullptr) {}
+
+ /// Perform a null-check of the given receiver.
+ void init(CodeGenFunction &CGF, llvm::Value *receiver) {
+ // Make blocks for the null-receiver and call edges.
+ NullBB = CGF.createBasicBlock("msgSend.null-receiver");
+ llvm::BasicBlock *callBB = CGF.createBasicBlock("msgSend.call");
+
+ // Check for a null receiver and, if there is one, jump to the
+ // null-receiver block. There's no point in trying to avoid it:
+ // we're always going to put *something* there, because otherwise
+ // we shouldn't have done this null-check in the first place.
+ llvm::Value *isNull = CGF.Builder.CreateIsNull(receiver);
+ CGF.Builder.CreateCondBr(isNull, NullBB, callBB);
+
+ // Otherwise, start performing the call.
+ CGF.EmitBlock(callBB);
+ }
+
+ /// Complete the null-return operation. It is valid to call this
+ /// regardless of whether 'init' has been called.
+ RValue complete(CodeGenFunction &CGF, RValue result, QualType resultType,
+ const CallArgList &CallArgs,
+ const ObjCMethodDecl *Method) {
+ // If we never had to do a null-check, just use the raw result.
+ if (!NullBB) return result;
+
+ // The continuation block. This will be left null if we don't have an
+ // IP, which can happen if the method we're calling is marked noreturn.
+ llvm::BasicBlock *contBB = nullptr;
+
+ // Finish the call path.
+ llvm::BasicBlock *callBB = CGF.Builder.GetInsertBlock();
+ if (callBB) {
+ contBB = CGF.createBasicBlock("msgSend.cont");
+ CGF.Builder.CreateBr(contBB);
+ }
+
+ // Okay, start emitting the null-receiver block.
+ CGF.EmitBlock(NullBB);
+
+ // Release any consumed arguments we've got.
+ if (Method) {
+ CallArgList::const_iterator I = CallArgs.begin();
+ for (ObjCMethodDecl::param_const_iterator i = Method->param_begin(),
+ e = Method->param_end(); i != e; ++i, ++I) {
+ const ParmVarDecl *ParamDecl = (*i);
+ if (ParamDecl->hasAttr<NSConsumedAttr>()) {
+ RValue RV = I->RV;
+ assert(RV.isScalar() &&
+ "NullReturnState::complete - arg not on object");
+ CGF.EmitARCRelease(RV.getScalarVal(), ARCImpreciseLifetime);
+ }
+ }
+ }
+
+ // The phi code below assumes that we haven't needed any control flow yet.
+ assert(CGF.Builder.GetInsertBlock() == NullBB);
+
+ // If we've got a void return, just jump to the continuation block.
+ if (result.isScalar() && resultType->isVoidType()) {
+ // No jumps required if the message-send was noreturn.
+ if (contBB) CGF.EmitBlock(contBB);
+ return result;
+ }
+
+ // If we've got a scalar return, build a phi.
+ if (result.isScalar()) {
+ // Derive the null-initialization value.
+ llvm::Constant *null = CGF.CGM.EmitNullConstant(resultType);
+
+ // If no join is necessary, just flow out.
+ if (!contBB) return RValue::get(null);
+
+ // Otherwise, build a phi.
+ CGF.EmitBlock(contBB);
+ llvm::PHINode *phi = CGF.Builder.CreatePHI(null->getType(), 2);
+ phi->addIncoming(result.getScalarVal(), callBB);
+ phi->addIncoming(null, NullBB);
+ return RValue::get(phi);
+ }
+
+ // If we've got an aggregate return, null the buffer out.
+ // FIXME: maybe we should be doing things differently for all the
+ // cases where the ABI has us returning (1) non-agg values in
+ // memory or (2) agg values in registers.
+ if (result.isAggregate()) {
+ assert(result.isAggregate() && "null init of non-aggregate result?");
+ CGF.EmitNullInitialization(result.getAggregateAddr(), resultType);
+ if (contBB) CGF.EmitBlock(contBB);
+ return result;
+ }
+
+ // Complex types.
+ CGF.EmitBlock(contBB);
+ CodeGenFunction::ComplexPairTy callResult = result.getComplexVal();
+
+ // Find the scalar type and its zero value.
+ llvm::Type *scalarTy = callResult.first->getType();
+ llvm::Constant *scalarZero = llvm::Constant::getNullValue(scalarTy);
+
+ // Build phis for both coordinates.
+ llvm::PHINode *real = CGF.Builder.CreatePHI(scalarTy, 2);
+ real->addIncoming(callResult.first, callBB);
+ real->addIncoming(scalarZero, NullBB);
+ llvm::PHINode *imag = CGF.Builder.CreatePHI(scalarTy, 2);
+ imag->addIncoming(callResult.second, callBB);
+ imag->addIncoming(scalarZero, NullBB);
+ return RValue::getComplex(real, imag);
+ }
+};
+
+} // end anonymous namespace
+
+/* *** Helper Functions *** */
+
+/// getConstantGEP() - Help routine to construct simple GEPs.
+static llvm::Constant *getConstantGEP(llvm::LLVMContext &VMContext,
+ llvm::GlobalVariable *C, unsigned idx0,
+ unsigned idx1) {
+ llvm::Value *Idxs[] = {
+ llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx0),
+ llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx1)
+ };
+ return llvm::ConstantExpr::getGetElementPtr(C->getValueType(), C, Idxs);
+}
+
+/// hasObjCExceptionAttribute - Return true if this class or any super
+/// class has the __objc_exception__ attribute.
+static bool hasObjCExceptionAttribute(ASTContext &Context,
+ const ObjCInterfaceDecl *OID) {
+ if (OID->hasAttr<ObjCExceptionAttr>())
+ return true;
+ if (const ObjCInterfaceDecl *Super = OID->getSuperClass())
+ return hasObjCExceptionAttribute(Context, Super);
+ return false;
+}
+
+/* *** CGObjCMac Public Interface *** */
+
+CGObjCMac::CGObjCMac(CodeGen::CodeGenModule &cgm) : CGObjCCommonMac(cgm),
+ ObjCTypes(cgm) {
+ ObjCABI = 1;
+ EmitImageInfo();
+}
+
+/// GetClass - Return a reference to the class for the given interface
+/// decl.
+llvm::Value *CGObjCMac::GetClass(CodeGenFunction &CGF,
+ const ObjCInterfaceDecl *ID) {
+ return EmitClassRef(CGF, ID);
+}
+
+/// GetSelector - Return the pointer to the unique'd string for this selector.
+llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, Selector Sel,
+ bool lval) {
+ return EmitSelector(CGF, Sel, lval);
+}
+llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, const ObjCMethodDecl
+ *Method) {
+ return EmitSelector(CGF, Method->getSelector());
+}
+
+llvm::Constant *CGObjCMac::GetEHType(QualType T) {
+ if (T->isObjCIdType() ||
+ T->isObjCQualifiedIdType()) {
+ return CGM.GetAddrOfRTTIDescriptor(
+ CGM.getContext().getObjCIdRedefinitionType(), /*ForEH=*/true);
+ }
+ if (T->isObjCClassType() ||
+ T->isObjCQualifiedClassType()) {
+ return CGM.GetAddrOfRTTIDescriptor(
+ CGM.getContext().getObjCClassRedefinitionType(), /*ForEH=*/true);
+ }
+ if (T->isObjCObjectPointerType())
+ return CGM.GetAddrOfRTTIDescriptor(T, /*ForEH=*/true);
+
+ llvm_unreachable("asking for catch type for ObjC type in fragile runtime");
+}
+
+/// Generate a constant CFString object.
+/*
+ struct __builtin_CFString {
+ const int *isa; // point to __CFConstantStringClassReference
+ int flags;
+ const char *str;
+ long length;
+ };
+*/
+
+/// or Generate a constant NSString object.
+/*
+ struct __builtin_NSString {
+ const int *isa; // point to __NSConstantStringClassReference
+ const char *str;
+ unsigned int length;
+ };
+*/
+
+llvm::Constant *CGObjCCommonMac::GenerateConstantString(
+ const StringLiteral *SL) {
+ return (CGM.getLangOpts().NoConstantCFStrings == 0 ?
+ CGM.GetAddrOfConstantCFString(SL) :
+ CGM.GetAddrOfConstantString(SL));
+}
+
+enum {
+ kCFTaggedObjectID_Integer = (1 << 1) + 1
+};
+
+/// Generates a message send where the super is the receiver. This is
+/// a message send to self with special delivery semantics indicating
+/// which class's method should be called.
+CodeGen::RValue
+CGObjCMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF,
+ ReturnValueSlot Return,
+ QualType ResultType,
+ Selector Sel,
+ const ObjCInterfaceDecl *Class,
+ bool isCategoryImpl,
+ llvm::Value *Receiver,
+ bool IsClassMessage,
+ const CodeGen::CallArgList &CallArgs,
+ const ObjCMethodDecl *Method) {
+ // Create and init a super structure; this is a (receiver, class)
+ // pair we will pass to objc_msgSendSuper.
+ llvm::Value *ObjCSuper =
+ CGF.CreateTempAlloca(ObjCTypes.SuperTy, "objc_super");
+ llvm::Value *ReceiverAsObject =
+ CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy);
+ CGF.Builder.CreateStore(
+ ReceiverAsObject,
+ CGF.Builder.CreateStructGEP(ObjCTypes.SuperTy, ObjCSuper, 0));
+
+ // If this is a class message the metaclass is passed as the target.
+ llvm::Value *Target;
+ if (IsClassMessage) {
+ if (isCategoryImpl) {
+ // Message sent to 'super' in a class method defined in a category
+ // implementation requires an odd treatment.
+ // If we are in a class method, we must retrieve the
+ // _metaclass_ for the current class, pointed at by
+ // the class's "isa" pointer. The following assumes that
+ // isa" is the first ivar in a class (which it must be).
+ Target = EmitClassRef(CGF, Class->getSuperClass());
+ Target = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, Target, 0);
+ Target = CGF.Builder.CreateLoad(Target);
+ } else {
+ llvm::Constant *MetaClassPtr = EmitMetaClassRef(Class);
+ llvm::Value *SuperPtr =
+ CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, MetaClassPtr, 1);
+ llvm::Value *Super = CGF.Builder.CreateLoad(SuperPtr);
+ Target = Super;
+ }
+ } else if (isCategoryImpl)
+ Target = EmitClassRef(CGF, Class->getSuperClass());
+ else {
+ llvm::Value *ClassPtr = EmitSuperClassRef(Class);
+ ClassPtr = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, ClassPtr, 1);
+ Target = CGF.Builder.CreateLoad(ClassPtr);
+ }
+ // FIXME: We shouldn't need to do this cast, rectify the ASTContext and
+ // ObjCTypes types.
+ llvm::Type *ClassTy =
+ CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType());
+ Target = CGF.Builder.CreateBitCast(Target, ClassTy);
+ CGF.Builder.CreateStore(
+ Target, CGF.Builder.CreateStructGEP(ObjCTypes.SuperTy, ObjCSuper, 1));
+ return EmitMessageSend(CGF, Return, ResultType,
+ EmitSelector(CGF, Sel),
+ ObjCSuper, ObjCTypes.SuperPtrCTy,
+ true, CallArgs, Method, ObjCTypes);
+}
+
+/// Generate code for a message send expression.
+CodeGen::RValue CGObjCMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF,
+ ReturnValueSlot Return,
+ QualType ResultType,
+ Selector Sel,
+ llvm::Value *Receiver,
+ const CallArgList &CallArgs,
+ const ObjCInterfaceDecl *Class,
+ const ObjCMethodDecl *Method) {
+ return EmitMessageSend(CGF, Return, ResultType,
+ EmitSelector(CGF, Sel),
+ Receiver, CGF.getContext().getObjCIdType(),
+ false, CallArgs, Method, ObjCTypes);
+}
+
+CodeGen::RValue
+CGObjCCommonMac::EmitMessageSend(CodeGen::CodeGenFunction &CGF,
+ ReturnValueSlot Return,
+ QualType ResultType,
+ llvm::Value *Sel,
+ llvm::Value *Arg0,
+ QualType Arg0Ty,
+ bool IsSuper,
+ const CallArgList &CallArgs,
+ const ObjCMethodDecl *Method,
+ const ObjCCommonTypesHelper &ObjCTypes) {
+ CallArgList ActualArgs;
+ if (!IsSuper)
+ Arg0 = CGF.Builder.CreateBitCast(Arg0, ObjCTypes.ObjectPtrTy);
+ ActualArgs.add(RValue::get(Arg0), Arg0Ty);
+ ActualArgs.add(RValue::get(Sel), CGF.getContext().getObjCSelType());
+ ActualArgs.addFrom(CallArgs);
+
+ // If we're calling a method, use the formal signature.
+ MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
+
+ if (Method)
+ assert(CGM.getContext().getCanonicalType(Method->getReturnType()) ==
+ CGM.getContext().getCanonicalType(ResultType) &&
+ "Result type mismatch!");
+
+ NullReturnState nullReturn;
+
+ llvm::Constant *Fn = nullptr;
+ if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) {
+ if (!IsSuper) nullReturn.init(CGF, Arg0);
+ Fn = (ObjCABI == 2) ? ObjCTypes.getSendStretFn2(IsSuper)
+ : ObjCTypes.getSendStretFn(IsSuper);
+ } else if (CGM.ReturnTypeUsesFPRet(ResultType)) {
+ Fn = (ObjCABI == 2) ? ObjCTypes.getSendFpretFn2(IsSuper)
+ : ObjCTypes.getSendFpretFn(IsSuper);
+ } else if (CGM.ReturnTypeUsesFP2Ret(ResultType)) {
+ Fn = (ObjCABI == 2) ? ObjCTypes.getSendFp2RetFn2(IsSuper)
+ : ObjCTypes.getSendFp2retFn(IsSuper);
+ } else {
+ // arm64 uses objc_msgSend for stret methods and yet null receiver check
+ // must be made for it.
+ if (!IsSuper && CGM.ReturnTypeUsesSRet(MSI.CallInfo))
+ nullReturn.init(CGF, Arg0);
+ Fn = (ObjCABI == 2) ? ObjCTypes.getSendFn2(IsSuper)
+ : ObjCTypes.getSendFn(IsSuper);
+ }
+
+ bool requiresnullCheck = false;
+ if (CGM.getLangOpts().ObjCAutoRefCount && Method)
+ for (const auto *ParamDecl : Method->params()) {
+ if (ParamDecl->hasAttr<NSConsumedAttr>()) {
+ if (!nullReturn.NullBB)
+ nullReturn.init(CGF, Arg0);
+ requiresnullCheck = true;
+ break;
+ }
+ }
+
+ Fn = llvm::ConstantExpr::getBitCast(Fn, MSI.MessengerType);
+ RValue rvalue = CGF.EmitCall(MSI.CallInfo, Fn, Return, ActualArgs);
+ return nullReturn.complete(CGF, rvalue, ResultType, CallArgs,
+ requiresnullCheck ? Method : nullptr);
+}
+
+static Qualifiers::GC GetGCAttrTypeForType(ASTContext &Ctx, QualType FQT) {
+ if (FQT.isObjCGCStrong())
+ return Qualifiers::Strong;
+
+ if (FQT.isObjCGCWeak() || FQT.getObjCLifetime() == Qualifiers::OCL_Weak)
+ return Qualifiers::Weak;
+
+ // check for __unsafe_unretained
+ if (FQT.getObjCLifetime() == Qualifiers::OCL_ExplicitNone)
+ return Qualifiers::GCNone;
+
+ if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType())
+ return Qualifiers::Strong;
+
+ if (const PointerType *PT = FQT->getAs<PointerType>())
+ return GetGCAttrTypeForType(Ctx, PT->getPointeeType());
+
+ return Qualifiers::GCNone;
+}
+
+llvm::Constant *CGObjCCommonMac::BuildGCBlockLayout(CodeGenModule &CGM,
+ const CGBlockInfo &blockInfo) {
+
+ llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy);
+ if (CGM.getLangOpts().getGC() == LangOptions::NonGC &&
+ !CGM.getLangOpts().ObjCAutoRefCount)
+ return nullPtr;
+
+ bool hasUnion = false;
+ SkipIvars.clear();
+ IvarsInfo.clear();
+ unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0);
+ unsigned ByteSizeInBits = CGM.getTarget().getCharWidth();
+
+ // __isa is the first field in block descriptor and must assume by runtime's
+ // convention that it is GC'able.
+ IvarsInfo.push_back(GC_IVAR(0, 1));
+
+ const BlockDecl *blockDecl = blockInfo.getBlockDecl();
+
+ // Calculate the basic layout of the block structure.
+ const llvm::StructLayout *layout =
+ CGM.getDataLayout().getStructLayout(blockInfo.StructureType);
+
+ // Ignore the optional 'this' capture: C++ objects are not assumed
+ // to be GC'ed.
+
+ // Walk the captured variables.
+ for (const auto &CI : blockDecl->captures()) {
+ const VarDecl *variable = CI.getVariable();
+ QualType type = variable->getType();
+
+ const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable);
+
+ // Ignore constant captures.
+ if (capture.isConstant()) continue;
+
+ uint64_t fieldOffset = layout->getElementOffset(capture.getIndex());
+
+ // __block variables are passed by their descriptor address.
+ if (CI.isByRef()) {
+ IvarsInfo.push_back(GC_IVAR(fieldOffset, /*size in words*/ 1));
+ continue;
+ }
+
+ assert(!type->isArrayType() && "array variable should not be caught");
+ if (const RecordType *record = type->getAs<RecordType>()) {
+ BuildAggrIvarRecordLayout(record, fieldOffset, true, hasUnion);
+ continue;
+ }
+
+ Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), type);
+ unsigned fieldSize = CGM.getContext().getTypeSize(type);
+
+ if (GCAttr == Qualifiers::Strong)
+ IvarsInfo.push_back(GC_IVAR(fieldOffset,
+ fieldSize / WordSizeInBits));
+ else if (GCAttr == Qualifiers::GCNone || GCAttr == Qualifiers::Weak)
+ SkipIvars.push_back(GC_IVAR(fieldOffset,
+ fieldSize / ByteSizeInBits));
+ }
+
+ if (IvarsInfo.empty())
+ return nullPtr;
+
+ // Sort on byte position; captures might not be allocated in order,
+ // and unions can do funny things.
+ llvm::array_pod_sort(IvarsInfo.begin(), IvarsInfo.end());
+ llvm::array_pod_sort(SkipIvars.begin(), SkipIvars.end());
+
+ std::string BitMap;
+ llvm::Constant *C = BuildIvarLayoutBitmap(BitMap);
+ if (CGM.getLangOpts().ObjCGCBitmapPrint) {
+ printf("\n block variable layout for block: ");
+ const unsigned char *s = (const unsigned char*)BitMap.c_str();
+ for (unsigned i = 0, e = BitMap.size(); i < e; i++)
+ if (!(s[i] & 0xf0))
+ printf("0x0%x%s", s[i], s[i] != 0 ? ", " : "");
+ else
+ printf("0x%x%s", s[i], s[i] != 0 ? ", " : "");
+ printf("\n");
+ }
+
+ return C;
+}
+
+/// getBlockCaptureLifetime - This routine returns life time of the captured
+/// block variable for the purpose of block layout meta-data generation. FQT is
+/// the type of the variable captured in the block.
+Qualifiers::ObjCLifetime CGObjCCommonMac::getBlockCaptureLifetime(QualType FQT,
+ bool ByrefLayout) {
+ if (CGM.getLangOpts().ObjCAutoRefCount)
+ return FQT.getObjCLifetime();
+
+ // MRR.
+ if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType())
+ return ByrefLayout ? Qualifiers::OCL_ExplicitNone : Qualifiers::OCL_Strong;
+
+ return Qualifiers::OCL_None;
+}
+
+void CGObjCCommonMac::UpdateRunSkipBlockVars(bool IsByref,
+ Qualifiers::ObjCLifetime LifeTime,
+ CharUnits FieldOffset,
+ CharUnits FieldSize) {
+ // __block variables are passed by their descriptor address.
+ if (IsByref)
+ RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_BYREF, FieldOffset,
+ FieldSize));
+ else if (LifeTime == Qualifiers::OCL_Strong)
+ RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_STRONG, FieldOffset,
+ FieldSize));
+ else if (LifeTime == Qualifiers::OCL_Weak)
+ RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_WEAK, FieldOffset,
+ FieldSize));
+ else if (LifeTime == Qualifiers::OCL_ExplicitNone)
+ RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_UNRETAINED, FieldOffset,
+ FieldSize));
+ else
+ RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_NON_OBJECT_BYTES,
+ FieldOffset,
+ FieldSize));
+}
+
+void CGObjCCommonMac::BuildRCRecordLayout(const llvm::StructLayout *RecLayout,
+ const RecordDecl *RD,
+ ArrayRef<const FieldDecl*> RecFields,
+ CharUnits BytePos, bool &HasUnion,
+ bool ByrefLayout) {
+ bool IsUnion = (RD && RD->isUnion());
+ CharUnits MaxUnionSize = CharUnits::Zero();
+ const FieldDecl *MaxField = nullptr;
+ const FieldDecl *LastFieldBitfieldOrUnnamed = nullptr;
+ CharUnits MaxFieldOffset = CharUnits::Zero();
+ CharUnits LastBitfieldOrUnnamedOffset = CharUnits::Zero();
+
+ if (RecFields.empty())
+ return;
+ unsigned ByteSizeInBits = CGM.getTarget().getCharWidth();
+
+ for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
+ const FieldDecl *Field = RecFields[i];
+ // Note that 'i' here is actually the field index inside RD of Field,
+ // although this dependency is hidden.
+ const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD);
+ CharUnits FieldOffset =
+ CGM.getContext().toCharUnitsFromBits(RL.getFieldOffset(i));
+
+ // Skip over unnamed or bitfields
+ if (!Field->getIdentifier() || Field->isBitField()) {
+ LastFieldBitfieldOrUnnamed = Field;
+ LastBitfieldOrUnnamedOffset = FieldOffset;
+ continue;
+ }
+
+ LastFieldBitfieldOrUnnamed = nullptr;
+ QualType FQT = Field->getType();
+ if (FQT->isRecordType() || FQT->isUnionType()) {
+ if (FQT->isUnionType())
+ HasUnion = true;
+
+ BuildRCBlockVarRecordLayout(FQT->getAs<RecordType>(),
+ BytePos + FieldOffset, HasUnion);
+ continue;
+ }
+
+ if (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) {
+ const ConstantArrayType *CArray =
+ dyn_cast_or_null<ConstantArrayType>(Array);
+ uint64_t ElCount = CArray->getSize().getZExtValue();
+ assert(CArray && "only array with known element size is supported");
+ FQT = CArray->getElementType();
+ while (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) {
+ const ConstantArrayType *CArray =
+ dyn_cast_or_null<ConstantArrayType>(Array);
+ ElCount *= CArray->getSize().getZExtValue();
+ FQT = CArray->getElementType();
+ }
+ if (FQT->isRecordType() && ElCount) {
+ int OldIndex = RunSkipBlockVars.size() - 1;
+ const RecordType *RT = FQT->getAs<RecordType>();
+ BuildRCBlockVarRecordLayout(RT, BytePos + FieldOffset,
+ HasUnion);
+
+ // Replicate layout information for each array element. Note that
+ // one element is already done.
+ uint64_t ElIx = 1;
+ for (int FirstIndex = RunSkipBlockVars.size() - 1 ;ElIx < ElCount; ElIx++) {
+ CharUnits Size = CGM.getContext().getTypeSizeInChars(RT);
+ for (int i = OldIndex+1; i <= FirstIndex; ++i)
+ RunSkipBlockVars.push_back(
+ RUN_SKIP(RunSkipBlockVars[i].opcode,
+ RunSkipBlockVars[i].block_var_bytepos + Size*ElIx,
+ RunSkipBlockVars[i].block_var_size));
+ }
+ continue;
+ }
+ }
+ CharUnits FieldSize = CGM.getContext().getTypeSizeInChars(Field->getType());
+ if (IsUnion) {
+ CharUnits UnionIvarSize = FieldSize;
+ if (UnionIvarSize > MaxUnionSize) {
+ MaxUnionSize = UnionIvarSize;
+ MaxField = Field;
+ MaxFieldOffset = FieldOffset;
+ }
+ } else {
+ UpdateRunSkipBlockVars(false,
+ getBlockCaptureLifetime(FQT, ByrefLayout),
+ BytePos + FieldOffset,
+ FieldSize);
+ }
+ }
+
+ if (LastFieldBitfieldOrUnnamed) {
+ if (LastFieldBitfieldOrUnnamed->isBitField()) {
+ // Last field was a bitfield. Must update the info.
+ uint64_t BitFieldSize
+ = LastFieldBitfieldOrUnnamed->getBitWidthValue(CGM.getContext());
+ unsigned UnsSize = (BitFieldSize / ByteSizeInBits) +
+ ((BitFieldSize % ByteSizeInBits) != 0);
+ CharUnits Size = CharUnits::fromQuantity(UnsSize);
+ Size += LastBitfieldOrUnnamedOffset;
+ UpdateRunSkipBlockVars(false,
+ getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(),
+ ByrefLayout),
+ BytePos + LastBitfieldOrUnnamedOffset,
+ Size);
+ } else {
+ assert(!LastFieldBitfieldOrUnnamed->getIdentifier() &&"Expected unnamed");
+ // Last field was unnamed. Must update skip info.
+ CharUnits FieldSize
+ = CGM.getContext().getTypeSizeInChars(LastFieldBitfieldOrUnnamed->getType());
+ UpdateRunSkipBlockVars(false,
+ getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(),
+ ByrefLayout),
+ BytePos + LastBitfieldOrUnnamedOffset,
+ FieldSize);
+ }
+ }
+
+ if (MaxField)
+ UpdateRunSkipBlockVars(false,
+ getBlockCaptureLifetime(MaxField->getType(), ByrefLayout),
+ BytePos + MaxFieldOffset,
+ MaxUnionSize);
+}
+
+void CGObjCCommonMac::BuildRCBlockVarRecordLayout(const RecordType *RT,
+ CharUnits BytePos,
+ bool &HasUnion,
+ bool ByrefLayout) {
+ const RecordDecl *RD = RT->getDecl();
+ SmallVector<const FieldDecl*, 16> Fields(RD->fields());
+ llvm::Type *Ty = CGM.getTypes().ConvertType(QualType(RT, 0));
+ const llvm::StructLayout *RecLayout =
+ CGM.getDataLayout().getStructLayout(cast<llvm::StructType>(Ty));
+
+ BuildRCRecordLayout(RecLayout, RD, Fields, BytePos, HasUnion, ByrefLayout);
+}
+
+/// InlineLayoutInstruction - This routine produce an inline instruction for the
+/// block variable layout if it can. If not, it returns 0. Rules are as follow:
+/// If ((uintptr_t) layout) < (1 << 12), the layout is inline. In the 64bit world,
+/// an inline layout of value 0x0000000000000xyz is interpreted as follows:
+/// x captured object pointers of BLOCK_LAYOUT_STRONG. Followed by
+/// y captured object of BLOCK_LAYOUT_BYREF. Followed by
+/// z captured object of BLOCK_LAYOUT_WEAK. If any of the above is missing, zero
+/// replaces it. For example, 0x00000x00 means x BLOCK_LAYOUT_STRONG and no
+/// BLOCK_LAYOUT_BYREF and no BLOCK_LAYOUT_WEAK objects are captured.
+uint64_t CGObjCCommonMac::InlineLayoutInstruction(
+ SmallVectorImpl<unsigned char> &Layout) {
+ uint64_t Result = 0;
+ if (Layout.size() <= 3) {
+ unsigned size = Layout.size();
+ unsigned strong_word_count = 0, byref_word_count=0, weak_word_count=0;
+ unsigned char inst;
+ enum BLOCK_LAYOUT_OPCODE opcode ;
+ switch (size) {
+ case 3:
+ inst = Layout[0];
+ opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
+ if (opcode == BLOCK_LAYOUT_STRONG)
+ strong_word_count = (inst & 0xF)+1;
+ else
+ return 0;
+ inst = Layout[1];
+ opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
+ if (opcode == BLOCK_LAYOUT_BYREF)
+ byref_word_count = (inst & 0xF)+1;
+ else
+ return 0;
+ inst = Layout[2];
+ opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
+ if (opcode == BLOCK_LAYOUT_WEAK)
+ weak_word_count = (inst & 0xF)+1;
+ else
+ return 0;
+ break;
+
+ case 2:
+ inst = Layout[0];
+ opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
+ if (opcode == BLOCK_LAYOUT_STRONG) {
+ strong_word_count = (inst & 0xF)+1;
+ inst = Layout[1];
+ opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
+ if (opcode == BLOCK_LAYOUT_BYREF)
+ byref_word_count = (inst & 0xF)+1;
+ else if (opcode == BLOCK_LAYOUT_WEAK)
+ weak_word_count = (inst & 0xF)+1;
+ else
+ return 0;
+ }
+ else if (opcode == BLOCK_LAYOUT_BYREF) {
+ byref_word_count = (inst & 0xF)+1;
+ inst = Layout[1];
+ opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
+ if (opcode == BLOCK_LAYOUT_WEAK)
+ weak_word_count = (inst & 0xF)+1;
+ else
+ return 0;
+ }
+ else
+ return 0;
+ break;
+
+ case 1:
+ inst = Layout[0];
+ opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
+ if (opcode == BLOCK_LAYOUT_STRONG)
+ strong_word_count = (inst & 0xF)+1;
+ else if (opcode == BLOCK_LAYOUT_BYREF)
+ byref_word_count = (inst & 0xF)+1;
+ else if (opcode == BLOCK_LAYOUT_WEAK)
+ weak_word_count = (inst & 0xF)+1;
+ else
+ return 0;
+ break;
+
+ default:
+ return 0;
+ }
+
+ // Cannot inline when any of the word counts is 15. Because this is one less
+ // than the actual work count (so 15 means 16 actual word counts),
+ // and we can only display 0 thru 15 word counts.
+ if (strong_word_count == 16 || byref_word_count == 16 || weak_word_count == 16)
+ return 0;
+
+ unsigned count =
+ (strong_word_count != 0) + (byref_word_count != 0) + (weak_word_count != 0);
+
+ if (size == count) {
+ if (strong_word_count)
+ Result = strong_word_count;
+ Result <<= 4;
+ if (byref_word_count)
+ Result += byref_word_count;
+ Result <<= 4;
+ if (weak_word_count)
+ Result += weak_word_count;
+ }
+ }
+ return Result;
+}
+
+llvm::Constant *CGObjCCommonMac::getBitmapBlockLayout(bool ComputeByrefLayout) {
+ llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy);
+ if (RunSkipBlockVars.empty())
+ return nullPtr;
+ unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0);
+ unsigned ByteSizeInBits = CGM.getTarget().getCharWidth();
+ unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits;
+
+ // Sort on byte position; captures might not be allocated in order,
+ // and unions can do funny things.
+ llvm::array_pod_sort(RunSkipBlockVars.begin(), RunSkipBlockVars.end());
+ SmallVector<unsigned char, 16> Layout;
+
+ unsigned size = RunSkipBlockVars.size();
+ for (unsigned i = 0; i < size; i++) {
+ enum BLOCK_LAYOUT_OPCODE opcode = RunSkipBlockVars[i].opcode;
+ CharUnits start_byte_pos = RunSkipBlockVars[i].block_var_bytepos;
+ CharUnits end_byte_pos = start_byte_pos;
+ unsigned j = i+1;
+ while (j < size) {
+ if (opcode == RunSkipBlockVars[j].opcode) {
+ end_byte_pos = RunSkipBlockVars[j++].block_var_bytepos;
+ i++;
+ }
+ else
+ break;
+ }
+ CharUnits size_in_bytes =
+ end_byte_pos - start_byte_pos + RunSkipBlockVars[j-1].block_var_size;
+ if (j < size) {
+ CharUnits gap =
+ RunSkipBlockVars[j].block_var_bytepos -
+ RunSkipBlockVars[j-1].block_var_bytepos - RunSkipBlockVars[j-1].block_var_size;
+ size_in_bytes += gap;
+ }
+ CharUnits residue_in_bytes = CharUnits::Zero();
+ if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES) {
+ residue_in_bytes = size_in_bytes % WordSizeInBytes;
+ size_in_bytes -= residue_in_bytes;
+ opcode = BLOCK_LAYOUT_NON_OBJECT_WORDS;
+ }
+
+ unsigned size_in_words = size_in_bytes.getQuantity() / WordSizeInBytes;
+ while (size_in_words >= 16) {
+ // Note that value in imm. is one less that the actual
+ // value. So, 0xf means 16 words follow!
+ unsigned char inst = (opcode << 4) | 0xf;
+ Layout.push_back(inst);
+ size_in_words -= 16;
+ }
+ if (size_in_words > 0) {
+ // Note that value in imm. is one less that the actual
+ // value. So, we subtract 1 away!
+ unsigned char inst = (opcode << 4) | (size_in_words-1);
+ Layout.push_back(inst);
+ }
+ if (residue_in_bytes > CharUnits::Zero()) {
+ unsigned char inst =
+ (BLOCK_LAYOUT_NON_OBJECT_BYTES << 4) | (residue_in_bytes.getQuantity()-1);
+ Layout.push_back(inst);
+ }
+ }
+
+ int e = Layout.size()-1;
+ while (e >= 0) {
+ unsigned char inst = Layout[e--];
+ enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
+ if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES || opcode == BLOCK_LAYOUT_NON_OBJECT_WORDS)
+ Layout.pop_back();
+ else
+ break;
+ }
+
+ uint64_t Result = InlineLayoutInstruction(Layout);
+ if (Result != 0) {
+ // Block variable layout instruction has been inlined.
+ if (CGM.getLangOpts().ObjCGCBitmapPrint) {
+ if (ComputeByrefLayout)
+ printf("\n Inline instruction for BYREF variable layout: ");
+ else
+ printf("\n Inline instruction for block variable layout: ");
+ printf("0x0%" PRIx64 "\n", Result);
+ }
+ if (WordSizeInBytes == 8) {
+ const llvm::APInt Instruction(64, Result);
+ return llvm::Constant::getIntegerValue(CGM.Int64Ty, Instruction);
+ }
+ else {
+ const llvm::APInt Instruction(32, Result);
+ return llvm::Constant::getIntegerValue(CGM.Int32Ty, Instruction);
+ }
+ }
+
+ unsigned char inst = (BLOCK_LAYOUT_OPERATOR << 4) | 0;
+ Layout.push_back(inst);
+ std::string BitMap;
+ for (unsigned i = 0, e = Layout.size(); i != e; i++)
+ BitMap += Layout[i];
+
+ if (CGM.getLangOpts().ObjCGCBitmapPrint) {
+ if (ComputeByrefLayout)
+ printf("\n BYREF variable layout: ");
+ else
+ printf("\n block variable layout: ");
+ for (unsigned i = 0, e = BitMap.size(); i != e; i++) {
+ unsigned char inst = BitMap[i];
+ enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
+ unsigned delta = 1;
+ switch (opcode) {
+ case BLOCK_LAYOUT_OPERATOR:
+ printf("BL_OPERATOR:");
+ delta = 0;
+ break;
+ case BLOCK_LAYOUT_NON_OBJECT_BYTES:
+ printf("BL_NON_OBJECT_BYTES:");
+ break;
+ case BLOCK_LAYOUT_NON_OBJECT_WORDS:
+ printf("BL_NON_OBJECT_WORD:");
+ break;
+ case BLOCK_LAYOUT_STRONG:
+ printf("BL_STRONG:");
+ break;
+ case BLOCK_LAYOUT_BYREF:
+ printf("BL_BYREF:");
+ break;
+ case BLOCK_LAYOUT_WEAK:
+ printf("BL_WEAK:");
+ break;
+ case BLOCK_LAYOUT_UNRETAINED:
+ printf("BL_UNRETAINED:");
+ break;
+ }
+ // Actual value of word count is one more that what is in the imm.
+ // field of the instruction
+ printf("%d", (inst & 0xf) + delta);
+ if (i < e-1)
+ printf(", ");
+ else
+ printf("\n");
+ }
+ }
+
+ llvm::GlobalVariable *Entry = CreateMetadataVar(
+ "OBJC_CLASS_NAME_",
+ llvm::ConstantDataArray::getString(VMContext, BitMap, false),
+ "__TEXT,__objc_classname,cstring_literals", 1, true);
+ return getConstantGEP(VMContext, Entry, 0, 0);
+}
+
+llvm::Constant *CGObjCCommonMac::BuildRCBlockLayout(CodeGenModule &CGM,
+ const CGBlockInfo &blockInfo) {
+ assert(CGM.getLangOpts().getGC() == LangOptions::NonGC);
+
+ RunSkipBlockVars.clear();
+ bool hasUnion = false;
+
+ unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0);
+ unsigned ByteSizeInBits = CGM.getTarget().getCharWidth();
+ unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits;
+
+ const BlockDecl *blockDecl = blockInfo.getBlockDecl();
+
+ // Calculate the basic layout of the block structure.
+ const llvm::StructLayout *layout =
+ CGM.getDataLayout().getStructLayout(blockInfo.StructureType);
+
+ // Ignore the optional 'this' capture: C++ objects are not assumed
+ // to be GC'ed.
+ if (blockInfo.BlockHeaderForcedGapSize != CharUnits::Zero())
+ UpdateRunSkipBlockVars(false, Qualifiers::OCL_None,
+ blockInfo.BlockHeaderForcedGapOffset,
+ blockInfo.BlockHeaderForcedGapSize);
+ // Walk the captured variables.
+ for (const auto &CI : blockDecl->captures()) {
+ const VarDecl *variable = CI.getVariable();
+ QualType type = variable->getType();
+
+ const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable);
+
+ // Ignore constant captures.
+ if (capture.isConstant()) continue;
+
+ CharUnits fieldOffset =
+ CharUnits::fromQuantity(layout->getElementOffset(capture.getIndex()));
+
+ assert(!type->isArrayType() && "array variable should not be caught");
+ if (!CI.isByRef())
+ if (const RecordType *record = type->getAs<RecordType>()) {
+ BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion);
+ continue;
+ }
+ CharUnits fieldSize;
+ if (CI.isByRef())
+ fieldSize = CharUnits::fromQuantity(WordSizeInBytes);
+ else
+ fieldSize = CGM.getContext().getTypeSizeInChars(type);
+ UpdateRunSkipBlockVars(CI.isByRef(), getBlockCaptureLifetime(type, false),
+ fieldOffset, fieldSize);
+ }
+ return getBitmapBlockLayout(false);
+}
+
+
+llvm::Constant *CGObjCCommonMac::BuildByrefLayout(CodeGen::CodeGenModule &CGM,
+ QualType T) {
+ assert(CGM.getLangOpts().getGC() == LangOptions::NonGC);
+ assert(!T->isArrayType() && "__block array variable should not be caught");
+ CharUnits fieldOffset;
+ RunSkipBlockVars.clear();
+ bool hasUnion = false;
+ if (const RecordType *record = T->getAs<RecordType>()) {
+ BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion, true /*ByrefLayout */);
+ llvm::Constant *Result = getBitmapBlockLayout(true);
+ return Result;
+ }
+ llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy);
+ return nullPtr;
+}
+
+llvm::Value *CGObjCMac::GenerateProtocolRef(CodeGenFunction &CGF,
+ const ObjCProtocolDecl *PD) {
+ // FIXME: I don't understand why gcc generates this, or where it is
+ // resolved. Investigate. Its also wasteful to look this up over and over.
+ LazySymbols.insert(&CGM.getContext().Idents.get("Protocol"));
+
+ return llvm::ConstantExpr::getBitCast(GetProtocolRef(PD),
+ ObjCTypes.getExternalProtocolPtrTy());
+}
+
+void CGObjCCommonMac::GenerateProtocol(const ObjCProtocolDecl *PD) {
+ // FIXME: We shouldn't need this, the protocol decl should contain enough
+ // information to tell us whether this was a declaration or a definition.
+ DefinedProtocols.insert(PD->getIdentifier());
+
+ // If we have generated a forward reference to this protocol, emit
+ // it now. Otherwise do nothing, the protocol objects are lazily
+ // emitted.
+ if (Protocols.count(PD->getIdentifier()))
+ GetOrEmitProtocol(PD);
+}
+
+llvm::Constant *CGObjCCommonMac::GetProtocolRef(const ObjCProtocolDecl *PD) {
+ if (DefinedProtocols.count(PD->getIdentifier()))
+ return GetOrEmitProtocol(PD);
+
+ return GetOrEmitProtocolRef(PD);
+}
+
+/*
+// Objective-C 1.0 extensions
+struct _objc_protocol {
+struct _objc_protocol_extension *isa;
+char *protocol_name;
+struct _objc_protocol_list *protocol_list;
+struct _objc__method_prototype_list *instance_methods;
+struct _objc__method_prototype_list *class_methods
+};
+
+See EmitProtocolExtension().
+*/
+llvm::Constant *CGObjCMac::GetOrEmitProtocol(const ObjCProtocolDecl *PD) {
+ llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()];
+
+ // Early exit if a defining object has already been generated.
+ if (Entry && Entry->hasInitializer())
+ return Entry;
+
+ // Use the protocol definition, if there is one.
+ if (const ObjCProtocolDecl *Def = PD->getDefinition())
+ PD = Def;
+
+ // FIXME: I don't understand why gcc generates this, or where it is
+ // resolved. Investigate. Its also wasteful to look this up over and over.
+ LazySymbols.insert(&CGM.getContext().Idents.get("Protocol"));
+
+ // Construct method lists.
+ std::vector<llvm::Constant*> InstanceMethods, ClassMethods;
+ std::vector<llvm::Constant*> OptInstanceMethods, OptClassMethods;
+ std::vector<llvm::Constant*> MethodTypesExt, OptMethodTypesExt;
+ for (const auto *MD : PD->instance_methods()) {
+ llvm::Constant *C = GetMethodDescriptionConstant(MD);
+ if (!C)
+ return GetOrEmitProtocolRef(PD);
+
+ if (MD->getImplementationControl() == ObjCMethodDecl::Optional) {
+ OptInstanceMethods.push_back(C);
+ OptMethodTypesExt.push_back(GetMethodVarType(MD, true));
+ } else {
+ InstanceMethods.push_back(C);
+ MethodTypesExt.push_back(GetMethodVarType(MD, true));
+ }
+ }
+
+ for (const auto *MD : PD->class_methods()) {
+ llvm::Constant *C = GetMethodDescriptionConstant(MD);
+ if (!C)
+ return GetOrEmitProtocolRef(PD);
+
+ if (MD->getImplementationControl() == ObjCMethodDecl::Optional) {
+ OptClassMethods.push_back(C);
+ OptMethodTypesExt.push_back(GetMethodVarType(MD, true));
+ } else {
+ ClassMethods.push_back(C);
+ MethodTypesExt.push_back(GetMethodVarType(MD, true));
+ }
+ }
+
+ MethodTypesExt.insert(MethodTypesExt.end(),
+ OptMethodTypesExt.begin(), OptMethodTypesExt.end());
+
+ llvm::Constant *Values[] = {
+ EmitProtocolExtension(PD, OptInstanceMethods, OptClassMethods,
+ MethodTypesExt),
+ GetClassName(PD->getObjCRuntimeNameAsString()),
+ EmitProtocolList("OBJC_PROTOCOL_REFS_" + PD->getName(),
+ PD->protocol_begin(), PD->protocol_end()),
+ EmitMethodDescList("OBJC_PROTOCOL_INSTANCE_METHODS_" + PD->getName(),
+ "__OBJC,__cat_inst_meth,regular,no_dead_strip",
+ InstanceMethods),
+ EmitMethodDescList("OBJC_PROTOCOL_CLASS_METHODS_" + PD->getName(),
+ "__OBJC,__cat_cls_meth,regular,no_dead_strip",
+ ClassMethods)};
+ llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ProtocolTy,
+ Values);
+
+ if (Entry) {
+ // Already created, update the initializer.
+ assert(Entry->hasPrivateLinkage());
+ Entry->setInitializer(Init);
+ } else {
+ Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy,
+ false, llvm::GlobalValue::PrivateLinkage,
+ Init, "OBJC_PROTOCOL_" + PD->getName());
+ Entry->setSection("__OBJC,__protocol,regular,no_dead_strip");
+ // FIXME: Is this necessary? Why only for protocol?
+ Entry->setAlignment(4);
+
+ Protocols[PD->getIdentifier()] = Entry;
+ }
+ CGM.addCompilerUsedGlobal(Entry);
+
+ return Entry;
+}
+
+llvm::Constant *CGObjCMac::GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) {
+ llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()];
+
+ if (!Entry) {
+ // We use the initializer as a marker of whether this is a forward
+ // reference or not. At module finalization we add the empty
+ // contents for protocols which were referenced but never defined.
+ Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy,
+ false, llvm::GlobalValue::PrivateLinkage,
+ nullptr, "OBJC_PROTOCOL_" + PD->getName());
+ Entry->setSection("__OBJC,__protocol,regular,no_dead_strip");
+ // FIXME: Is this necessary? Why only for protocol?
+ Entry->setAlignment(4);
+ }
+
+ return Entry;
+}
+
+/*
+ struct _objc_protocol_extension {
+ uint32_t size;
+ struct objc_method_description_list *optional_instance_methods;
+ struct objc_method_description_list *optional_class_methods;
+ struct objc_property_list *instance_properties;
+ const char ** extendedMethodTypes;
+ };
+*/
+llvm::Constant *
+CGObjCMac::EmitProtocolExtension(const ObjCProtocolDecl *PD,
+ ArrayRef<llvm::Constant*> OptInstanceMethods,
+ ArrayRef<llvm::Constant*> OptClassMethods,
+ ArrayRef<llvm::Constant*> MethodTypesExt) {
+ uint64_t Size =
+ CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolExtensionTy);
+ llvm::Constant *Values[] = {
+ llvm::ConstantInt::get(ObjCTypes.IntTy, Size),
+ EmitMethodDescList("OBJC_PROTOCOL_INSTANCE_METHODS_OPT_" + PD->getName(),
+ "__OBJC,__cat_inst_meth,regular,no_dead_strip",
+ OptInstanceMethods),
+ EmitMethodDescList("OBJC_PROTOCOL_CLASS_METHODS_OPT_" + PD->getName(),
+ "__OBJC,__cat_cls_meth,regular,no_dead_strip",
+ OptClassMethods),
+ EmitPropertyList("OBJC_$_PROP_PROTO_LIST_" + PD->getName(), nullptr, PD,
+ ObjCTypes),
+ EmitProtocolMethodTypes("OBJC_PROTOCOL_METHOD_TYPES_" + PD->getName(),
+ MethodTypesExt, ObjCTypes)};
+
+ // Return null if no extension bits are used.
+ if (Values[1]->isNullValue() && Values[2]->isNullValue() &&
+ Values[3]->isNullValue() && Values[4]->isNullValue())
+ return llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy);
+
+ llvm::Constant *Init =
+ llvm::ConstantStruct::get(ObjCTypes.ProtocolExtensionTy, Values);
+
+ // No special section, but goes in llvm.used
+ return CreateMetadataVar("\01l_OBJC_PROTOCOLEXT_" + PD->getName(), Init,
+ StringRef(), 0, true);
+}
+
+/*
+ struct objc_protocol_list {
+ struct objc_protocol_list *next;
+ long count;
+ Protocol *list[];
+ };
+*/
+llvm::Constant *
+CGObjCMac::EmitProtocolList(Twine Name,
+ ObjCProtocolDecl::protocol_iterator begin,
+ ObjCProtocolDecl::protocol_iterator end) {
+ SmallVector<llvm::Constant *, 16> ProtocolRefs;
+
+ for (; begin != end; ++begin)
+ ProtocolRefs.push_back(GetProtocolRef(*begin));
+
+ // Just return null for empty protocol lists
+ if (ProtocolRefs.empty())
+ return llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy);
+
+ // This list is null terminated.
+ ProtocolRefs.push_back(llvm::Constant::getNullValue(ObjCTypes.ProtocolPtrTy));
+
+ llvm::Constant *Values[3];
+ // This field is only used by the runtime.
+ Values[0] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy);
+ Values[1] = llvm::ConstantInt::get(ObjCTypes.LongTy,
+ ProtocolRefs.size() - 1);
+ Values[2] =
+ llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.ProtocolPtrTy,
+ ProtocolRefs.size()),
+ ProtocolRefs);
+
+ llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values);
+ llvm::GlobalVariable *GV =
+ CreateMetadataVar(Name, Init, "__OBJC,__cat_cls_meth,regular,no_dead_strip",
+ 4, false);
+ return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListPtrTy);
+}
+
+void CGObjCCommonMac::
+PushProtocolProperties(llvm::SmallPtrSet<const IdentifierInfo*,16> &PropertySet,
+ SmallVectorImpl<llvm::Constant *> &Properties,
+ const Decl *Container,
+ const ObjCProtocolDecl *Proto,
+ const ObjCCommonTypesHelper &ObjCTypes) {
+ for (const auto *P : Proto->protocols())
+ PushProtocolProperties(PropertySet, Properties, Container, P, ObjCTypes);
+ for (const auto *PD : Proto->properties()) {
+ if (!PropertySet.insert(PD->getIdentifier()).second)
+ continue;
+ llvm::Constant *Prop[] = {
+ GetPropertyName(PD->getIdentifier()),
+ GetPropertyTypeString(PD, Container)
+ };
+ Properties.push_back(llvm::ConstantStruct::get(ObjCTypes.PropertyTy, Prop));
+ }
+}
+
+/*
+ struct _objc_property {
+ const char * const name;
+ const char * const attributes;
+ };
+
+ struct _objc_property_list {
+ uint32_t entsize; // sizeof (struct _objc_property)
+ uint32_t prop_count;
+ struct _objc_property[prop_count];
+ };
+*/
+llvm::Constant *CGObjCCommonMac::EmitPropertyList(Twine Name,
+ const Decl *Container,
+ const ObjCContainerDecl *OCD,
+ const ObjCCommonTypesHelper &ObjCTypes) {
+ SmallVector<llvm::Constant *, 16> Properties;
+ llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet;
+ for (const auto *PD : OCD->properties()) {
+ PropertySet.insert(PD->getIdentifier());
+ llvm::Constant *Prop[] = {
+ GetPropertyName(PD->getIdentifier()),
+ GetPropertyTypeString(PD, Container)
+ };
+ Properties.push_back(llvm::ConstantStruct::get(ObjCTypes.PropertyTy,
+ Prop));
+ }
+ if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) {
+ for (const auto *P : OID->all_referenced_protocols())
+ PushProtocolProperties(PropertySet, Properties, Container, P, ObjCTypes);
+ }
+ else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD)) {
+ for (const auto *P : CD->protocols())
+ PushProtocolProperties(PropertySet, Properties, Container, P, ObjCTypes);
+ }
+
+ // Return null for empty list.
+ if (Properties.empty())
+ return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy);
+
+ unsigned PropertySize =
+ CGM.getDataLayout().getTypeAllocSize(ObjCTypes.PropertyTy);
+ llvm::Constant *Values[3];
+ Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, PropertySize);
+ Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Properties.size());
+ llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.PropertyTy,
+ Properties.size());
+ Values[2] = llvm::ConstantArray::get(AT, Properties);
+ llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values);
+
+ llvm::GlobalVariable *GV =
+ CreateMetadataVar(Name, Init,
+ (ObjCABI == 2) ? "__DATA, __objc_const" :
+ "__OBJC,__property,regular,no_dead_strip",
+ (ObjCABI == 2) ? 8 : 4,
+ true);
+ return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.PropertyListPtrTy);
+}
+
+llvm::Constant *
+CGObjCCommonMac::EmitProtocolMethodTypes(Twine Name,
+ ArrayRef<llvm::Constant*> MethodTypes,
+ const ObjCCommonTypesHelper &ObjCTypes) {
+ // Return null for empty list.
+ if (MethodTypes.empty())
+ return llvm::Constant::getNullValue(ObjCTypes.Int8PtrPtrTy);
+
+ llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.Int8PtrTy,
+ MethodTypes.size());
+ llvm::Constant *Init = llvm::ConstantArray::get(AT, MethodTypes);
+
+ llvm::GlobalVariable *GV = CreateMetadataVar(
+ Name, Init, (ObjCABI == 2) ? "__DATA, __objc_const" : StringRef(),
+ (ObjCABI == 2) ? 8 : 4, true);
+ return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.Int8PtrPtrTy);
+}
+
+/*
+ struct objc_method_description_list {
+ int count;
+ struct objc_method_description list[];
+ };
+*/
+llvm::Constant *
+CGObjCMac::GetMethodDescriptionConstant(const ObjCMethodDecl *MD) {
+ llvm::Constant *Desc[] = {
+ llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()),
+ ObjCTypes.SelectorPtrTy),
+ GetMethodVarType(MD)
+ };
+ if (!Desc[1])
+ return nullptr;
+
+ return llvm::ConstantStruct::get(ObjCTypes.MethodDescriptionTy,
+ Desc);
+}
+
+llvm::Constant *
+CGObjCMac::EmitMethodDescList(Twine Name, const char *Section,
+ ArrayRef<llvm::Constant*> Methods) {
+ // Return null for empty list.
+ if (Methods.empty())
+ return llvm::Constant::getNullValue(ObjCTypes.MethodDescriptionListPtrTy);
+
+ llvm::Constant *Values[2];
+ Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Methods.size());
+ llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.MethodDescriptionTy,
+ Methods.size());
+ Values[1] = llvm::ConstantArray::get(AT, Methods);
+ llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values);
+
+ llvm::GlobalVariable *GV = CreateMetadataVar(Name, Init, Section, 4, true);
+ return llvm::ConstantExpr::getBitCast(GV,
+ ObjCTypes.MethodDescriptionListPtrTy);
+}
+
+/*
+ struct _objc_category {
+ char *category_name;
+ char *class_name;
+ struct _objc_method_list *instance_methods;
+ struct _objc_method_list *class_methods;
+ struct _objc_protocol_list *protocols;
+ uint32_t size; // <rdar://4585769>
+ struct _objc_property_list *instance_properties;
+ };
+*/
+void CGObjCMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
+ unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategoryTy);
+
+ // FIXME: This is poor design, the OCD should have a pointer to the category
+ // decl. Additionally, note that Category can be null for the @implementation
+ // w/o an @interface case. Sema should just create one for us as it does for
+ // @implementation so everyone else can live life under a clear blue sky.
+ const ObjCInterfaceDecl *Interface = OCD->getClassInterface();
+ const ObjCCategoryDecl *Category =
+ Interface->FindCategoryDeclaration(OCD->getIdentifier());
+
+ SmallString<256> ExtName;
+ llvm::raw_svector_ostream(ExtName) << Interface->getName() << '_'
+ << OCD->getName();
+
+ SmallVector<llvm::Constant *, 16> InstanceMethods, ClassMethods;
+ for (const auto *I : OCD->instance_methods())
+ // Instance methods should always be defined.
+ InstanceMethods.push_back(GetMethodConstant(I));
+
+ for (const auto *I : OCD->class_methods())
+ // Class methods should always be defined.
+ ClassMethods.push_back(GetMethodConstant(I));
+
+ llvm::Constant *Values[7];
+ Values[0] = GetClassName(OCD->getName());
+ Values[1] = GetClassName(Interface->getObjCRuntimeNameAsString());
+ LazySymbols.insert(Interface->getIdentifier());
+ Values[2] = EmitMethodList("OBJC_CATEGORY_INSTANCE_METHODS_" + ExtName.str(),
+ "__OBJC,__cat_inst_meth,regular,no_dead_strip",
+ InstanceMethods);
+ Values[3] = EmitMethodList("OBJC_CATEGORY_CLASS_METHODS_" + ExtName.str(),
+ "__OBJC,__cat_cls_meth,regular,no_dead_strip",
+ ClassMethods);
+ if (Category) {
+ Values[4] =
+ EmitProtocolList("OBJC_CATEGORY_PROTOCOLS_" + ExtName.str(),
+ Category->protocol_begin(), Category->protocol_end());
+ } else {
+ Values[4] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy);
+ }
+ Values[5] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size);
+
+ // If there is no category @interface then there can be no properties.
+ if (Category) {
+ Values[6] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ExtName.str(),
+ OCD, Category, ObjCTypes);
+ } else {
+ Values[6] = llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy);
+ }
+
+ llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.CategoryTy,
+ Values);
+
+ llvm::GlobalVariable *GV =
+ CreateMetadataVar("OBJC_CATEGORY_" + ExtName.str(), Init,
+ "__OBJC,__category,regular,no_dead_strip", 4, true);
+ DefinedCategories.push_back(GV);
+ DefinedCategoryNames.insert(ExtName.str());
+ // method definition entries must be clear for next implementation.
+ MethodDefinitions.clear();
+}
+
+enum FragileClassFlags {
+ FragileABI_Class_Factory = 0x00001,
+ FragileABI_Class_Meta = 0x00002,
+ FragileABI_Class_HasCXXStructors = 0x02000,
+ FragileABI_Class_Hidden = 0x20000
+};
+
+enum NonFragileClassFlags {
+ /// Is a meta-class.
+ NonFragileABI_Class_Meta = 0x00001,
+
+ /// Is a root class.
+ NonFragileABI_Class_Root = 0x00002,
+
+ /// Has a C++ constructor and destructor.
+ NonFragileABI_Class_HasCXXStructors = 0x00004,
+
+ /// Has hidden visibility.
+ NonFragileABI_Class_Hidden = 0x00010,
+
+ /// Has the exception attribute.
+ NonFragileABI_Class_Exception = 0x00020,
+
+ /// (Obsolete) ARC-specific: this class has a .release_ivars method
+ NonFragileABI_Class_HasIvarReleaser = 0x00040,
+
+ /// Class implementation was compiled under ARC.
+ NonFragileABI_Class_CompiledByARC = 0x00080,
+
+ /// Class has non-trivial destructors, but zero-initialization is okay.
+ NonFragileABI_Class_HasCXXDestructorOnly = 0x00100
+};
+
+/*
+ struct _objc_class {
+ Class isa;
+ Class super_class;
+ const char *name;
+ long version;
+ long info;
+ long instance_size;
+ struct _objc_ivar_list *ivars;
+ struct _objc_method_list *methods;
+ struct _objc_cache *cache;
+ struct _objc_protocol_list *protocols;
+ // Objective-C 1.0 extensions (<rdr://4585769>)
+ const char *ivar_layout;
+ struct _objc_class_ext *ext;
+ };
+
+ See EmitClassExtension();
+*/
+void CGObjCMac::GenerateClass(const ObjCImplementationDecl *ID) {
+ DefinedSymbols.insert(ID->getIdentifier());
+
+ std::string ClassName = ID->getNameAsString();
+ // FIXME: Gross
+ ObjCInterfaceDecl *Interface =
+ const_cast<ObjCInterfaceDecl*>(ID->getClassInterface());
+ llvm::Constant *Protocols =
+ EmitProtocolList("OBJC_CLASS_PROTOCOLS_" + ID->getName(),
+ Interface->all_referenced_protocol_begin(),
+ Interface->all_referenced_protocol_end());
+ unsigned Flags = FragileABI_Class_Factory;
+ if (ID->hasNonZeroConstructors() || ID->hasDestructors())
+ Flags |= FragileABI_Class_HasCXXStructors;
+ unsigned Size =
+ CGM.getContext().getASTObjCImplementationLayout(ID).getSize().getQuantity();
+
+ // FIXME: Set CXX-structors flag.
+ if (ID->getClassInterface()->getVisibility() == HiddenVisibility)
+ Flags |= FragileABI_Class_Hidden;
+
+ SmallVector<llvm::Constant *, 16> InstanceMethods, ClassMethods;
+ for (const auto *I : ID->instance_methods())
+ // Instance methods should always be defined.
+ InstanceMethods.push_back(GetMethodConstant(I));
+
+ for (const auto *I : ID->class_methods())
+ // Class methods should always be defined.
+ ClassMethods.push_back(GetMethodConstant(I));
+
+ for (const auto *PID : ID->property_impls()) {
+ if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
+ ObjCPropertyDecl *PD = PID->getPropertyDecl();
+
+ if (ObjCMethodDecl *MD = PD->getGetterMethodDecl())
+ if (llvm::Constant *C = GetMethodConstant(MD))
+ InstanceMethods.push_back(C);
+ if (ObjCMethodDecl *MD = PD->getSetterMethodDecl())
+ if (llvm::Constant *C = GetMethodConstant(MD))
+ InstanceMethods.push_back(C);
+ }
+ }
+
+ llvm::Constant *Values[12];
+ Values[ 0] = EmitMetaClass(ID, Protocols, ClassMethods);
+ if (ObjCInterfaceDecl *Super = Interface->getSuperClass()) {
+ // Record a reference to the super class.
+ LazySymbols.insert(Super->getIdentifier());
+
+ Values[ 1] =
+ llvm::ConstantExpr::getBitCast(GetClassName(Super->getObjCRuntimeNameAsString()),
+ ObjCTypes.ClassPtrTy);
+ } else {
+ Values[ 1] = llvm::Constant::getNullValue(ObjCTypes.ClassPtrTy);
+ }
+ Values[ 2] = GetClassName(ID->getObjCRuntimeNameAsString());
+ // Version is always 0.
+ Values[ 3] = llvm::ConstantInt::get(ObjCTypes.LongTy, 0);
+ Values[ 4] = llvm::ConstantInt::get(ObjCTypes.LongTy, Flags);
+ Values[ 5] = llvm::ConstantInt::get(ObjCTypes.LongTy, Size);
+ Values[ 6] = EmitIvarList(ID, false);
+ Values[7] = EmitMethodList("OBJC_INSTANCE_METHODS_" + ID->getName(),
+ "__OBJC,__inst_meth,regular,no_dead_strip",
+ InstanceMethods);
+ // cache is always NULL.
+ Values[ 8] = llvm::Constant::getNullValue(ObjCTypes.CachePtrTy);
+ Values[ 9] = Protocols;
+ Values[10] = BuildIvarLayout(ID, true);
+ Values[11] = EmitClassExtension(ID);
+ llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassTy,
+ Values);
+ std::string Name("OBJC_CLASS_");
+ Name += ClassName;
+ const char *Section = "__OBJC,__class,regular,no_dead_strip";
+ // Check for a forward reference.
+ llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true);
+ if (GV) {
+ assert(GV->getType()->getElementType() == ObjCTypes.ClassTy &&
+ "Forward metaclass reference has incorrect type.");
+ GV->setInitializer(Init);
+ GV->setSection(Section);
+ GV->setAlignment(4);
+ CGM.addCompilerUsedGlobal(GV);
+ } else
+ GV = CreateMetadataVar(Name, Init, Section, 4, true);
+ DefinedClasses.push_back(GV);
+ ImplementedClasses.push_back(Interface);
+ // method definition entries must be clear for next implementation.
+ MethodDefinitions.clear();
+}
+
+llvm::Constant *CGObjCMac::EmitMetaClass(const ObjCImplementationDecl *ID,
+ llvm::Constant *Protocols,
+ ArrayRef<llvm::Constant*> Methods) {
+ unsigned Flags = FragileABI_Class_Meta;
+ unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassTy);
+
+ if (ID->getClassInterface()->getVisibility() == HiddenVisibility)
+ Flags |= FragileABI_Class_Hidden;
+
+ llvm::Constant *Values[12];
+ // The isa for the metaclass is the root of the hierarchy.
+ const ObjCInterfaceDecl *Root = ID->getClassInterface();
+ while (const ObjCInterfaceDecl *Super = Root->getSuperClass())
+ Root = Super;
+ Values[ 0] =
+ llvm::ConstantExpr::getBitCast(GetClassName(Root->getObjCRuntimeNameAsString()),
+ ObjCTypes.ClassPtrTy);
+ // The super class for the metaclass is emitted as the name of the
+ // super class. The runtime fixes this up to point to the
+ // *metaclass* for the super class.
+ if (ObjCInterfaceDecl *Super = ID->getClassInterface()->getSuperClass()) {
+ Values[ 1] =
+ llvm::ConstantExpr::getBitCast(GetClassName(Super->getObjCRuntimeNameAsString()),
+ ObjCTypes.ClassPtrTy);
+ } else {
+ Values[ 1] = llvm::Constant::getNullValue(ObjCTypes.ClassPtrTy);
+ }
+ Values[ 2] = GetClassName(ID->getObjCRuntimeNameAsString());
+ // Version is always 0.
+ Values[ 3] = llvm::ConstantInt::get(ObjCTypes.LongTy, 0);
+ Values[ 4] = llvm::ConstantInt::get(ObjCTypes.LongTy, Flags);
+ Values[ 5] = llvm::ConstantInt::get(ObjCTypes.LongTy, Size);
+ Values[ 6] = EmitIvarList(ID, true);
+ Values[7] =
+ EmitMethodList("OBJC_CLASS_METHODS_" + ID->getNameAsString(),
+ "__OBJC,__cls_meth,regular,no_dead_strip", Methods);
+ // cache is always NULL.
+ Values[ 8] = llvm::Constant::getNullValue(ObjCTypes.CachePtrTy);
+ Values[ 9] = Protocols;
+ // ivar_layout for metaclass is always NULL.
+ Values[10] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy);
+ // The class extension is always unused for metaclasses.
+ Values[11] = llvm::Constant::getNullValue(ObjCTypes.ClassExtensionPtrTy);
+ llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassTy,
+ Values);
+
+ std::string Name("OBJC_METACLASS_");
+ Name += ID->getName();
+
+ // Check for a forward reference.
+ llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true);
+ if (GV) {
+ assert(GV->getType()->getElementType() == ObjCTypes.ClassTy &&
+ "Forward metaclass reference has incorrect type.");
+ GV->setInitializer(Init);
+ } else {
+ GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false,
+ llvm::GlobalValue::PrivateLinkage,
+ Init, Name);
+ }
+ GV->setSection("__OBJC,__meta_class,regular,no_dead_strip");
+ GV->setAlignment(4);
+ CGM.addCompilerUsedGlobal(GV);
+
+ return GV;
+}
+
+llvm::Constant *CGObjCMac::EmitMetaClassRef(const ObjCInterfaceDecl *ID) {
+ std::string Name = "OBJC_METACLASS_" + ID->getNameAsString();
+
+ // FIXME: Should we look these up somewhere other than the module. Its a bit
+ // silly since we only generate these while processing an implementation, so
+ // exactly one pointer would work if know when we entered/exitted an
+ // implementation block.
+
+ // Check for an existing forward reference.
+ // Previously, metaclass with internal linkage may have been defined.
+ // pass 'true' as 2nd argument so it is returned.
+ llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true);
+ if (!GV)
+ GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false,
+ llvm::GlobalValue::PrivateLinkage, nullptr,
+ Name);
+
+ assert(GV->getType()->getElementType() == ObjCTypes.ClassTy &&
+ "Forward metaclass reference has incorrect type.");
+ return GV;
+}
+
+llvm::Value *CGObjCMac::EmitSuperClassRef(const ObjCInterfaceDecl *ID) {
+ std::string Name = "OBJC_CLASS_" + ID->getNameAsString();
+ llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true);
+
+ if (!GV)
+ GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false,
+ llvm::GlobalValue::PrivateLinkage, nullptr,
+ Name);
+
+ assert(GV->getType()->getElementType() == ObjCTypes.ClassTy &&
+ "Forward class metadata reference has incorrect type.");
+ return GV;
+}
+
+/*
+ struct objc_class_ext {
+ uint32_t size;
+ const char *weak_ivar_layout;
+ struct _objc_property_list *properties;
+ };
+*/
+llvm::Constant *
+CGObjCMac::EmitClassExtension(const ObjCImplementationDecl *ID) {
+ uint64_t Size =
+ CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassExtensionTy);
+
+ llvm::Constant *Values[3];
+ Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size);
+ Values[1] = BuildIvarLayout(ID, false);
+ Values[2] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ID->getName(),
+ ID, ID->getClassInterface(), ObjCTypes);
+
+ // Return null if no extension bits are used.
+ if (Values[1]->isNullValue() && Values[2]->isNullValue())
+ return llvm::Constant::getNullValue(ObjCTypes.ClassExtensionPtrTy);
+
+ llvm::Constant *Init =
+ llvm::ConstantStruct::get(ObjCTypes.ClassExtensionTy, Values);
+ return CreateMetadataVar("OBJC_CLASSEXT_" + ID->getName(), Init,
+ "__OBJC,__class_ext,regular,no_dead_strip", 4, true);
+}
+
+/*
+ struct objc_ivar {
+ char *ivar_name;
+ char *ivar_type;
+ int ivar_offset;
+ };
+
+ struct objc_ivar_list {
+ int ivar_count;
+ struct objc_ivar list[count];
+ };
+*/
+llvm::Constant *CGObjCMac::EmitIvarList(const ObjCImplementationDecl *ID,
+ bool ForClass) {
+ std::vector<llvm::Constant*> Ivars;
+
+ // When emitting the root class GCC emits ivar entries for the
+ // actual class structure. It is not clear if we need to follow this
+ // behavior; for now lets try and get away with not doing it. If so,
+ // the cleanest solution would be to make up an ObjCInterfaceDecl
+ // for the class.
+ if (ForClass)
+ return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy);
+
+ const ObjCInterfaceDecl *OID = ID->getClassInterface();
+
+ for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin();
+ IVD; IVD = IVD->getNextIvar()) {
+ // Ignore unnamed bit-fields.
+ if (!IVD->getDeclName())
+ continue;
+ llvm::Constant *Ivar[] = {
+ GetMethodVarName(IVD->getIdentifier()),
+ GetMethodVarType(IVD),
+ llvm::ConstantInt::get(ObjCTypes.IntTy,
+ ComputeIvarBaseOffset(CGM, OID, IVD))
+ };
+ Ivars.push_back(llvm::ConstantStruct::get(ObjCTypes.IvarTy, Ivar));
+ }
+
+ // Return null for empty list.
+ if (Ivars.empty())
+ return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy);
+
+ llvm::Constant *Values[2];
+ Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Ivars.size());
+ llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.IvarTy,
+ Ivars.size());
+ Values[1] = llvm::ConstantArray::get(AT, Ivars);
+ llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values);
+
+ llvm::GlobalVariable *GV;
+ if (ForClass)
+ GV =
+ CreateMetadataVar("OBJC_CLASS_VARIABLES_" + ID->getName(), Init,
+ "__OBJC,__class_vars,regular,no_dead_strip", 4, true);
+ else
+ GV = CreateMetadataVar("OBJC_INSTANCE_VARIABLES_" + ID->getName(), Init,
+ "__OBJC,__instance_vars,regular,no_dead_strip", 4,
+ true);
+ return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListPtrTy);
+}
+
+/*
+ struct objc_method {
+ SEL method_name;
+ char *method_types;
+ void *method;
+ };
+
+ struct objc_method_list {
+ struct objc_method_list *obsolete;
+ int count;
+ struct objc_method methods_list[count];
+ };
+*/
+
+/// GetMethodConstant - Return a struct objc_method constant for the
+/// given method if it has been defined. The result is null if the
+/// method has not been defined. The return value has type MethodPtrTy.
+llvm::Constant *CGObjCMac::GetMethodConstant(const ObjCMethodDecl *MD) {
+ llvm::Function *Fn = GetMethodDefinition(MD);
+ if (!Fn)
+ return nullptr;
+
+ llvm::Constant *Method[] = {
+ llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()),
+ ObjCTypes.SelectorPtrTy),
+ GetMethodVarType(MD),
+ llvm::ConstantExpr::getBitCast(Fn, ObjCTypes.Int8PtrTy)
+ };
+ return llvm::ConstantStruct::get(ObjCTypes.MethodTy, Method);
+}
+
+llvm::Constant *CGObjCMac::EmitMethodList(Twine Name,
+ const char *Section,
+ ArrayRef<llvm::Constant*> Methods) {
+ // Return null for empty list.
+ if (Methods.empty())
+ return llvm::Constant::getNullValue(ObjCTypes.MethodListPtrTy);
+
+ llvm::Constant *Values[3];
+ Values[0] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy);
+ Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Methods.size());
+ llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.MethodTy,
+ Methods.size());
+ Values[2] = llvm::ConstantArray::get(AT, Methods);
+ llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values);
+
+ llvm::GlobalVariable *GV = CreateMetadataVar(Name, Init, Section, 4, true);
+ return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListPtrTy);
+}
+
+llvm::Function *CGObjCCommonMac::GenerateMethod(const ObjCMethodDecl *OMD,
+ const ObjCContainerDecl *CD) {
+ SmallString<256> Name;
+ GetNameForMethod(OMD, CD, Name);
+
+ CodeGenTypes &Types = CGM.getTypes();
+ llvm::FunctionType *MethodTy =
+ Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD));
+ llvm::Function *Method =
+ llvm::Function::Create(MethodTy,
+ llvm::GlobalValue::InternalLinkage,
+ Name.str(),
+ &CGM.getModule());
+ MethodDefinitions.insert(std::make_pair(OMD, Method));
+
+ return Method;
+}
+
+llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name,
+ llvm::Constant *Init,
+ StringRef Section,
+ unsigned Align,
+ bool AddToUsed) {
+ llvm::Type *Ty = Init->getType();
+ llvm::GlobalVariable *GV =
+ new llvm::GlobalVariable(CGM.getModule(), Ty, false,
+ llvm::GlobalValue::PrivateLinkage, Init, Name);
+ if (!Section.empty())
+ GV->setSection(Section);
+ if (Align)
+ GV->setAlignment(Align);
+ if (AddToUsed)
+ CGM.addCompilerUsedGlobal(GV);
+ return GV;
+}
+
+llvm::Function *CGObjCMac::ModuleInitFunction() {
+ // Abuse this interface function as a place to finalize.
+ FinishModule();
+ return nullptr;
+}
+
+llvm::Constant *CGObjCMac::GetPropertyGetFunction() {
+ return ObjCTypes.getGetPropertyFn();
+}
+
+llvm::Constant *CGObjCMac::GetPropertySetFunction() {
+ return ObjCTypes.getSetPropertyFn();
+}
+
+llvm::Constant *CGObjCMac::GetOptimizedPropertySetFunction(bool atomic,
+ bool copy) {
+ return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy);
+}
+
+llvm::Constant *CGObjCMac::GetGetStructFunction() {
+ return ObjCTypes.getCopyStructFn();
+}
+llvm::Constant *CGObjCMac::GetSetStructFunction() {
+ return ObjCTypes.getCopyStructFn();
+}
+
+llvm::Constant *CGObjCMac::GetCppAtomicObjectGetFunction() {
+ return ObjCTypes.getCppAtomicObjectFunction();
+}
+llvm::Constant *CGObjCMac::GetCppAtomicObjectSetFunction() {
+ return ObjCTypes.getCppAtomicObjectFunction();
+}
+
+llvm::Constant *CGObjCMac::EnumerationMutationFunction() {
+ return ObjCTypes.getEnumerationMutationFn();
+}
+
+void CGObjCMac::EmitTryStmt(CodeGenFunction &CGF, const ObjCAtTryStmt &S) {
+ return EmitTryOrSynchronizedStmt(CGF, S);
+}
+
+void CGObjCMac::EmitSynchronizedStmt(CodeGenFunction &CGF,
+ const ObjCAtSynchronizedStmt &S) {
+ return EmitTryOrSynchronizedStmt(CGF, S);
+}
+
+namespace {
+ struct PerformFragileFinally : EHScopeStack::Cleanup {
+ const Stmt &S;
+ llvm::Value *SyncArgSlot;
+ llvm::Value *CallTryExitVar;
+ llvm::Value *ExceptionData;
+ ObjCTypesHelper &ObjCTypes;
+ PerformFragileFinally(const Stmt *S,
+ llvm::Value *SyncArgSlot,
+ llvm::Value *CallTryExitVar,
+ llvm::Value *ExceptionData,
+ ObjCTypesHelper *ObjCTypes)
+ : S(*S), SyncArgSlot(SyncArgSlot), CallTryExitVar(CallTryExitVar),
+ ExceptionData(ExceptionData), ObjCTypes(*ObjCTypes) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ // Check whether we need to call objc_exception_try_exit.
+ // In optimized code, this branch will always be folded.
+ llvm::BasicBlock *FinallyCallExit =
+ CGF.createBasicBlock("finally.call_exit");
+ llvm::BasicBlock *FinallyNoCallExit =
+ CGF.createBasicBlock("finally.no_call_exit");
+ CGF.Builder.CreateCondBr(CGF.Builder.CreateLoad(CallTryExitVar),
+ FinallyCallExit, FinallyNoCallExit);
+
+ CGF.EmitBlock(FinallyCallExit);
+ CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryExitFn(),
+ ExceptionData);
+
+ CGF.EmitBlock(FinallyNoCallExit);
+
+ if (isa<ObjCAtTryStmt>(S)) {
+ if (const ObjCAtFinallyStmt* FinallyStmt =
+ cast<ObjCAtTryStmt>(S).getFinallyStmt()) {
+ // Don't try to do the @finally if this is an EH cleanup.
+ if (flags.isForEHCleanup()) return;
+
+ // Save the current cleanup destination in case there's
+ // control flow inside the finally statement.
+ llvm::Value *CurCleanupDest =
+ CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot());
+
+ CGF.EmitStmt(FinallyStmt->getFinallyBody());
+
+ if (CGF.HaveInsertPoint()) {
+ CGF.Builder.CreateStore(CurCleanupDest,
+ CGF.getNormalCleanupDestSlot());
+ } else {
+ // Currently, the end of the cleanup must always exist.
+ CGF.EnsureInsertPoint();
+ }
+ }
+ } else {
+ // Emit objc_sync_exit(expr); as finally's sole statement for
+ // @synchronized.
+ llvm::Value *SyncArg = CGF.Builder.CreateLoad(SyncArgSlot);
+ CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncExitFn(), SyncArg);
+ }
+ }
+ };
+
+ class FragileHazards {
+ CodeGenFunction &CGF;
+ SmallVector<llvm::Value*, 20> Locals;
+ llvm::DenseSet<llvm::BasicBlock*> BlocksBeforeTry;
+
+ llvm::InlineAsm *ReadHazard;
+ llvm::InlineAsm *WriteHazard;
+
+ llvm::FunctionType *GetAsmFnType();
+
+ void collectLocals();
+ void emitReadHazard(CGBuilderTy &Builder);
+
+ public:
+ FragileHazards(CodeGenFunction &CGF);
+
+ void emitWriteHazard();
+ void emitHazardsInNewBlocks();
+ };
+}
+
+/// Create the fragile-ABI read and write hazards based on the current
+/// state of the function, which is presumed to be immediately prior
+/// to a @try block. These hazards are used to maintain correct
+/// semantics in the face of optimization and the fragile ABI's
+/// cavalier use of setjmp/longjmp.
+FragileHazards::FragileHazards(CodeGenFunction &CGF) : CGF(CGF) {
+ collectLocals();
+
+ if (Locals.empty()) return;
+
+ // Collect all the blocks in the function.
+ for (llvm::Function::iterator
+ I = CGF.CurFn->begin(), E = CGF.CurFn->end(); I != E; ++I)
+ BlocksBeforeTry.insert(&*I);
+
+ llvm::FunctionType *AsmFnTy = GetAsmFnType();
+
+ // Create a read hazard for the allocas. This inhibits dead-store
+ // optimizations and forces the values to memory. This hazard is
+ // inserted before any 'throwing' calls in the protected scope to
+ // reflect the possibility that the variables might be read from the
+ // catch block if the call throws.
+ {
+ std::string Constraint;
+ for (unsigned I = 0, E = Locals.size(); I != E; ++I) {
+ if (I) Constraint += ',';
+ Constraint += "*m";
+ }
+
+ ReadHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false);
+ }
+
+ // Create a write hazard for the allocas. This inhibits folding
+ // loads across the hazard. This hazard is inserted at the
+ // beginning of the catch path to reflect the possibility that the
+ // variables might have been written within the protected scope.
+ {
+ std::string Constraint;
+ for (unsigned I = 0, E = Locals.size(); I != E; ++I) {
+ if (I) Constraint += ',';
+ Constraint += "=*m";
+ }
+
+ WriteHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false);
+ }
+}
+
+/// Emit a write hazard at the current location.
+void FragileHazards::emitWriteHazard() {
+ if (Locals.empty()) return;
+
+ CGF.EmitNounwindRuntimeCall(WriteHazard, Locals);
+}
+
+void FragileHazards::emitReadHazard(CGBuilderTy &Builder) {
+ assert(!Locals.empty());
+ llvm::CallInst *call = Builder.CreateCall(ReadHazard, Locals);
+ call->setDoesNotThrow();
+ call->setCallingConv(CGF.getRuntimeCC());
+}
+
+/// Emit read hazards in all the protected blocks, i.e. all the blocks
+/// which have been inserted since the beginning of the try.
+void FragileHazards::emitHazardsInNewBlocks() {
+ if (Locals.empty()) return;
+
+ CGBuilderTy Builder(CGF.getLLVMContext());
+
+ // Iterate through all blocks, skipping those prior to the try.
+ for (llvm::Function::iterator
+ FI = CGF.CurFn->begin(), FE = CGF.CurFn->end(); FI != FE; ++FI) {
+ llvm::BasicBlock &BB = *FI;
+ if (BlocksBeforeTry.count(&BB)) continue;
+
+ // Walk through all the calls in the block.
+ for (llvm::BasicBlock::iterator
+ BI = BB.begin(), BE = BB.end(); BI != BE; ++BI) {
+ llvm::Instruction &I = *BI;
+
+ // Ignore instructions that aren't non-intrinsic calls.
+ // These are the only calls that can possibly call longjmp.
+ if (!isa<llvm::CallInst>(I) && !isa<llvm::InvokeInst>(I)) continue;
+ if (isa<llvm::IntrinsicInst>(I))
+ continue;
+
+ // Ignore call sites marked nounwind. This may be questionable,
+ // since 'nounwind' doesn't necessarily mean 'does not call longjmp'.
+ llvm::CallSite CS(&I);
+ if (CS.doesNotThrow()) continue;
+
+ // Insert a read hazard before the call. This will ensure that
+ // any writes to the locals are performed before making the
+ // call. If the call throws, then this is sufficient to
+ // guarantee correctness as long as it doesn't also write to any
+ // locals.
+ Builder.SetInsertPoint(&BB, BI);
+ emitReadHazard(Builder);
+ }
+ }
+}
+
+static void addIfPresent(llvm::DenseSet<llvm::Value*> &S, llvm::Value *V) {
+ if (V) S.insert(V);
+}
+
+void FragileHazards::collectLocals() {
+ // Compute a set of allocas to ignore.
+ llvm::DenseSet<llvm::Value*> AllocasToIgnore;
+ addIfPresent(AllocasToIgnore, CGF.ReturnValue);
+ addIfPresent(AllocasToIgnore, CGF.NormalCleanupDest);
+
+ // Collect all the allocas currently in the function. This is
+ // probably way too aggressive.
+ llvm::BasicBlock &Entry = CGF.CurFn->getEntryBlock();
+ for (llvm::BasicBlock::iterator
+ I = Entry.begin(), E = Entry.end(); I != E; ++I)
+ if (isa<llvm::AllocaInst>(*I) && !AllocasToIgnore.count(&*I))
+ Locals.push_back(&*I);
+}
+
+llvm::FunctionType *FragileHazards::GetAsmFnType() {
+ SmallVector<llvm::Type *, 16> tys(Locals.size());
+ for (unsigned i = 0, e = Locals.size(); i != e; ++i)
+ tys[i] = Locals[i]->getType();
+ return llvm::FunctionType::get(CGF.VoidTy, tys, false);
+}
+
+/*
+
+ Objective-C setjmp-longjmp (sjlj) Exception Handling
+ --
+
+ A catch buffer is a setjmp buffer plus:
+ - a pointer to the exception that was caught
+ - a pointer to the previous exception data buffer
+ - two pointers of reserved storage
+ Therefore catch buffers form a stack, with a pointer to the top
+ of the stack kept in thread-local storage.
+
+ objc_exception_try_enter pushes a catch buffer onto the EH stack.
+ objc_exception_try_exit pops the given catch buffer, which is
+ required to be the top of the EH stack.
+ objc_exception_throw pops the top of the EH stack, writes the
+ thrown exception into the appropriate field, and longjmps
+ to the setjmp buffer. It crashes the process (with a printf
+ and an abort()) if there are no catch buffers on the stack.
+ objc_exception_extract just reads the exception pointer out of the
+ catch buffer.
+
+ There's no reason an implementation couldn't use a light-weight
+ setjmp here --- something like __builtin_setjmp, but API-compatible
+ with the heavyweight setjmp. This will be more important if we ever
+ want to implement correct ObjC/C++ exception interactions for the
+ fragile ABI.
+
+ Note that for this use of setjmp/longjmp to be correct, we may need
+ to mark some local variables volatile: if a non-volatile local
+ variable is modified between the setjmp and the longjmp, it has
+ indeterminate value. For the purposes of LLVM IR, it may be
+ sufficient to make loads and stores within the @try (to variables
+ declared outside the @try) volatile. This is necessary for
+ optimized correctness, but is not currently being done; this is
+ being tracked as rdar://problem/8160285
+
+ The basic framework for a @try-catch-finally is as follows:
+ {
+ objc_exception_data d;
+ id _rethrow = null;
+ bool _call_try_exit = true;
+
+ objc_exception_try_enter(&d);
+ if (!setjmp(d.jmp_buf)) {
+ ... try body ...
+ } else {
+ // exception path
+ id _caught = objc_exception_extract(&d);
+
+ // enter new try scope for handlers
+ if (!setjmp(d.jmp_buf)) {
+ ... match exception and execute catch blocks ...
+
+ // fell off end, rethrow.
+ _rethrow = _caught;
+ ... jump-through-finally to finally_rethrow ...
+ } else {
+ // exception in catch block
+ _rethrow = objc_exception_extract(&d);
+ _call_try_exit = false;
+ ... jump-through-finally to finally_rethrow ...
+ }
+ }
+ ... jump-through-finally to finally_end ...
+
+ finally:
+ if (_call_try_exit)
+ objc_exception_try_exit(&d);
+
+ ... finally block ....
+ ... dispatch to finally destination ...
+
+ finally_rethrow:
+ objc_exception_throw(_rethrow);
+
+ finally_end:
+ }
+
+ This framework differs slightly from the one gcc uses, in that gcc
+ uses _rethrow to determine if objc_exception_try_exit should be called
+ and if the object should be rethrown. This breaks in the face of
+ throwing nil and introduces unnecessary branches.
+
+ We specialize this framework for a few particular circumstances:
+
+ - If there are no catch blocks, then we avoid emitting the second
+ exception handling context.
+
+ - If there is a catch-all catch block (i.e. @catch(...) or @catch(id
+ e)) we avoid emitting the code to rethrow an uncaught exception.
+
+ - FIXME: If there is no @finally block we can do a few more
+ simplifications.
+
+ Rethrows and Jumps-Through-Finally
+ --
+
+ '@throw;' is supported by pushing the currently-caught exception
+ onto ObjCEHStack while the @catch blocks are emitted.
+
+ Branches through the @finally block are handled with an ordinary
+ normal cleanup. We do not register an EH cleanup; fragile-ABI ObjC
+ exceptions are not compatible with C++ exceptions, and this is
+ hardly the only place where this will go wrong.
+
+ @synchronized(expr) { stmt; } is emitted as if it were:
+ id synch_value = expr;
+ objc_sync_enter(synch_value);
+ @try { stmt; } @finally { objc_sync_exit(synch_value); }
+*/
+
+void CGObjCMac::EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
+ const Stmt &S) {
+ bool isTry = isa<ObjCAtTryStmt>(S);
+
+ // A destination for the fall-through edges of the catch handlers to
+ // jump to.
+ CodeGenFunction::JumpDest FinallyEnd =
+ CGF.getJumpDestInCurrentScope("finally.end");
+
+ // A destination for the rethrow edge of the catch handlers to jump
+ // to.
+ CodeGenFunction::JumpDest FinallyRethrow =
+ CGF.getJumpDestInCurrentScope("finally.rethrow");
+
+ // For @synchronized, call objc_sync_enter(sync.expr). The
+ // evaluation of the expression must occur before we enter the
+ // @synchronized. We can't avoid a temp here because we need the
+ // value to be preserved. If the backend ever does liveness
+ // correctly after setjmp, this will be unnecessary.
+ llvm::Value *SyncArgSlot = nullptr;
+ if (!isTry) {
+ llvm::Value *SyncArg =
+ CGF.EmitScalarExpr(cast<ObjCAtSynchronizedStmt>(S).getSynchExpr());
+ SyncArg = CGF.Builder.CreateBitCast(SyncArg, ObjCTypes.ObjectPtrTy);
+ CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncEnterFn(), SyncArg);
+
+ SyncArgSlot = CGF.CreateTempAlloca(SyncArg->getType(), "sync.arg");
+ CGF.Builder.CreateStore(SyncArg, SyncArgSlot);
+ }
+
+ // Allocate memory for the setjmp buffer. This needs to be kept
+ // live throughout the try and catch blocks.
+ llvm::Value *ExceptionData = CGF.CreateTempAlloca(ObjCTypes.ExceptionDataTy,
+ "exceptiondata.ptr");
+
+ // Create the fragile hazards. Note that this will not capture any
+ // of the allocas required for exception processing, but will
+ // capture the current basic block (which extends all the way to the
+ // setjmp call) as "before the @try".
+ FragileHazards Hazards(CGF);
+
+ // Create a flag indicating whether the cleanup needs to call
+ // objc_exception_try_exit. This is true except when
+ // - no catches match and we're branching through the cleanup
+ // just to rethrow the exception, or
+ // - a catch matched and we're falling out of the catch handler.
+ // The setjmp-safety rule here is that we should always store to this
+ // variable in a place that dominates the branch through the cleanup
+ // without passing through any setjmps.
+ llvm::Value *CallTryExitVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(),
+ "_call_try_exit");
+
+ // A slot containing the exception to rethrow. Only needed when we
+ // have both a @catch and a @finally.
+ llvm::Value *PropagatingExnVar = nullptr;
+
+ // Push a normal cleanup to leave the try scope.
+ CGF.EHStack.pushCleanup<PerformFragileFinally>(NormalAndEHCleanup, &S,
+ SyncArgSlot,
+ CallTryExitVar,
+ ExceptionData,
+ &ObjCTypes);
+
+ // Enter a try block:
+ // - Call objc_exception_try_enter to push ExceptionData on top of
+ // the EH stack.
+ CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(),
+ ExceptionData);
+
+ // - Call setjmp on the exception data buffer.
+ llvm::Constant *Zero = llvm::ConstantInt::get(CGF.Builder.getInt32Ty(), 0);
+ llvm::Value *GEPIndexes[] = { Zero, Zero, Zero };
+ llvm::Value *SetJmpBuffer = CGF.Builder.CreateGEP(
+ ObjCTypes.ExceptionDataTy, ExceptionData, GEPIndexes, "setjmp_buffer");
+ llvm::CallInst *SetJmpResult = CGF.EmitNounwindRuntimeCall(
+ ObjCTypes.getSetJmpFn(), SetJmpBuffer, "setjmp_result");
+ SetJmpResult->setCanReturnTwice();
+
+ // If setjmp returned 0, enter the protected block; otherwise,
+ // branch to the handler.
+ llvm::BasicBlock *TryBlock = CGF.createBasicBlock("try");
+ llvm::BasicBlock *TryHandler = CGF.createBasicBlock("try.handler");
+ llvm::Value *DidCatch =
+ CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception");
+ CGF.Builder.CreateCondBr(DidCatch, TryHandler, TryBlock);
+
+ // Emit the protected block.
+ CGF.EmitBlock(TryBlock);
+ CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar);
+ CGF.EmitStmt(isTry ? cast<ObjCAtTryStmt>(S).getTryBody()
+ : cast<ObjCAtSynchronizedStmt>(S).getSynchBody());
+
+ CGBuilderTy::InsertPoint TryFallthroughIP = CGF.Builder.saveAndClearIP();
+
+ // Emit the exception handler block.
+ CGF.EmitBlock(TryHandler);
+
+ // Don't optimize loads of the in-scope locals across this point.
+ Hazards.emitWriteHazard();
+
+ // For a @synchronized (or a @try with no catches), just branch
+ // through the cleanup to the rethrow block.
+ if (!isTry || !cast<ObjCAtTryStmt>(S).getNumCatchStmts()) {
+ // Tell the cleanup not to re-pop the exit.
+ CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar);
+ CGF.EmitBranchThroughCleanup(FinallyRethrow);
+
+ // Otherwise, we have to match against the caught exceptions.
+ } else {
+ // Retrieve the exception object. We may emit multiple blocks but
+ // nothing can cross this so the value is already in SSA form.
+ llvm::CallInst *Caught =
+ CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(),
+ ExceptionData, "caught");
+
+ // Push the exception to rethrow onto the EH value stack for the
+ // benefit of any @throws in the handlers.
+ CGF.ObjCEHValueStack.push_back(Caught);
+
+ const ObjCAtTryStmt* AtTryStmt = cast<ObjCAtTryStmt>(&S);
+
+ bool HasFinally = (AtTryStmt->getFinallyStmt() != nullptr);
+
+ llvm::BasicBlock *CatchBlock = nullptr;
+ llvm::BasicBlock *CatchHandler = nullptr;
+ if (HasFinally) {
+ // Save the currently-propagating exception before
+ // objc_exception_try_enter clears the exception slot.
+ PropagatingExnVar = CGF.CreateTempAlloca(Caught->getType(),
+ "propagating_exception");
+ CGF.Builder.CreateStore(Caught, PropagatingExnVar);
+
+ // Enter a new exception try block (in case a @catch block
+ // throws an exception).
+ CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(),
+ ExceptionData);
+
+ llvm::CallInst *SetJmpResult =
+ CGF.EmitNounwindRuntimeCall(ObjCTypes.getSetJmpFn(),
+ SetJmpBuffer, "setjmp.result");
+ SetJmpResult->setCanReturnTwice();
+
+ llvm::Value *Threw =
+ CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception");
+
+ CatchBlock = CGF.createBasicBlock("catch");
+ CatchHandler = CGF.createBasicBlock("catch_for_catch");
+ CGF.Builder.CreateCondBr(Threw, CatchHandler, CatchBlock);
+
+ CGF.EmitBlock(CatchBlock);
+ }
+
+ CGF.Builder.CreateStore(CGF.Builder.getInt1(HasFinally), CallTryExitVar);
+
+ // Handle catch list. As a special case we check if everything is
+ // matched and avoid generating code for falling off the end if
+ // so.
+ bool AllMatched = false;
+ for (unsigned I = 0, N = AtTryStmt->getNumCatchStmts(); I != N; ++I) {
+ const ObjCAtCatchStmt *CatchStmt = AtTryStmt->getCatchStmt(I);
+
+ const VarDecl *CatchParam = CatchStmt->getCatchParamDecl();
+ const ObjCObjectPointerType *OPT = nullptr;
+
+ // catch(...) always matches.
+ if (!CatchParam) {
+ AllMatched = true;
+ } else {
+ OPT = CatchParam->getType()->getAs<ObjCObjectPointerType>();
+
+ // catch(id e) always matches under this ABI, since only
+ // ObjC exceptions end up here in the first place.
+ // FIXME: For the time being we also match id<X>; this should
+ // be rejected by Sema instead.
+ if (OPT && (OPT->isObjCIdType() || OPT->isObjCQualifiedIdType()))
+ AllMatched = true;
+ }
+
+ // If this is a catch-all, we don't need to test anything.
+ if (AllMatched) {
+ CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF);
+
+ if (CatchParam) {
+ CGF.EmitAutoVarDecl(*CatchParam);
+ assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?");
+
+ // These types work out because ConvertType(id) == i8*.
+ CGF.Builder.CreateStore(Caught, CGF.GetAddrOfLocalVar(CatchParam));
+ }
+
+ CGF.EmitStmt(CatchStmt->getCatchBody());
+
+ // The scope of the catch variable ends right here.
+ CatchVarCleanups.ForceCleanup();
+
+ CGF.EmitBranchThroughCleanup(FinallyEnd);
+ break;
+ }
+
+ assert(OPT && "Unexpected non-object pointer type in @catch");
+ const ObjCObjectType *ObjTy = OPT->getObjectType();
+
+ // FIXME: @catch (Class c) ?
+ ObjCInterfaceDecl *IDecl = ObjTy->getInterface();
+ assert(IDecl && "Catch parameter must have Objective-C type!");
+
+ // Check if the @catch block matches the exception object.
+ llvm::Value *Class = EmitClassRef(CGF, IDecl);
+
+ llvm::Value *matchArgs[] = { Class, Caught };
+ llvm::CallInst *Match =
+ CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionMatchFn(),
+ matchArgs, "match");
+
+ llvm::BasicBlock *MatchedBlock = CGF.createBasicBlock("match");
+ llvm::BasicBlock *NextCatchBlock = CGF.createBasicBlock("catch.next");
+
+ CGF.Builder.CreateCondBr(CGF.Builder.CreateIsNotNull(Match, "matched"),
+ MatchedBlock, NextCatchBlock);
+
+ // Emit the @catch block.
+ CGF.EmitBlock(MatchedBlock);
+
+ // Collect any cleanups for the catch variable. The scope lasts until
+ // the end of the catch body.
+ CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF);
+
+ CGF.EmitAutoVarDecl(*CatchParam);
+ assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?");
+
+ // Initialize the catch variable.
+ llvm::Value *Tmp =
+ CGF.Builder.CreateBitCast(Caught,
+ CGF.ConvertType(CatchParam->getType()));
+ CGF.Builder.CreateStore(Tmp, CGF.GetAddrOfLocalVar(CatchParam));
+
+ CGF.EmitStmt(CatchStmt->getCatchBody());
+
+ // We're done with the catch variable.
+ CatchVarCleanups.ForceCleanup();
+
+ CGF.EmitBranchThroughCleanup(FinallyEnd);
+
+ CGF.EmitBlock(NextCatchBlock);
+ }
+
+ CGF.ObjCEHValueStack.pop_back();
+
+ // If nothing wanted anything to do with the caught exception,
+ // kill the extract call.
+ if (Caught->use_empty())
+ Caught->eraseFromParent();
+
+ if (!AllMatched)
+ CGF.EmitBranchThroughCleanup(FinallyRethrow);
+
+ if (HasFinally) {
+ // Emit the exception handler for the @catch blocks.
+ CGF.EmitBlock(CatchHandler);
+
+ // In theory we might now need a write hazard, but actually it's
+ // unnecessary because there's no local-accessing code between
+ // the try's write hazard and here.
+ //Hazards.emitWriteHazard();
+
+ // Extract the new exception and save it to the
+ // propagating-exception slot.
+ assert(PropagatingExnVar);
+ llvm::CallInst *NewCaught =
+ CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(),
+ ExceptionData, "caught");
+ CGF.Builder.CreateStore(NewCaught, PropagatingExnVar);
+
+ // Don't pop the catch handler; the throw already did.
+ CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar);
+ CGF.EmitBranchThroughCleanup(FinallyRethrow);
+ }
+ }
+
+ // Insert read hazards as required in the new blocks.
+ Hazards.emitHazardsInNewBlocks();
+
+ // Pop the cleanup.
+ CGF.Builder.restoreIP(TryFallthroughIP);
+ if (CGF.HaveInsertPoint())
+ CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar);
+ CGF.PopCleanupBlock();
+ CGF.EmitBlock(FinallyEnd.getBlock(), true);
+
+ // Emit the rethrow block.
+ CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP();
+ CGF.EmitBlock(FinallyRethrow.getBlock(), true);
+ if (CGF.HaveInsertPoint()) {
+ // If we have a propagating-exception variable, check it.
+ llvm::Value *PropagatingExn;
+ if (PropagatingExnVar) {
+ PropagatingExn = CGF.Builder.CreateLoad(PropagatingExnVar);
+
+ // Otherwise, just look in the buffer for the exception to throw.
+ } else {
+ llvm::CallInst *Caught =
+ CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(),
+ ExceptionData);
+ PropagatingExn = Caught;
+ }
+
+ CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionThrowFn(),
+ PropagatingExn);
+ CGF.Builder.CreateUnreachable();
+ }
+
+ CGF.Builder.restoreIP(SavedIP);
+}
+
+void CGObjCMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF,
+ const ObjCAtThrowStmt &S,
+ bool ClearInsertionPoint) {
+ llvm::Value *ExceptionAsObject;
+
+ if (const Expr *ThrowExpr = S.getThrowExpr()) {
+ llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr);
+ ExceptionAsObject =
+ CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy);
+ } else {
+ assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) &&
+ "Unexpected rethrow outside @catch block.");
+ ExceptionAsObject = CGF.ObjCEHValueStack.back();
+ }
+
+ CGF.EmitRuntimeCall(ObjCTypes.getExceptionThrowFn(), ExceptionAsObject)
+ ->setDoesNotReturn();
+ CGF.Builder.CreateUnreachable();
+
+ // Clear the insertion point to indicate we are in unreachable code.
+ if (ClearInsertionPoint)
+ CGF.Builder.ClearInsertionPoint();
+}
+
+/// EmitObjCWeakRead - Code gen for loading value of a __weak
+/// object: objc_read_weak (id *src)
+///
+llvm::Value * CGObjCMac::EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *AddrWeakObj) {
+ llvm::Type* DestTy =
+ cast<llvm::PointerType>(AddrWeakObj->getType())->getElementType();
+ AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj,
+ ObjCTypes.PtrObjectPtrTy);
+ llvm::Value *read_weak =
+ CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(),
+ AddrWeakObj, "weakread");
+ read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy);
+ return read_weak;
+}
+
+/// EmitObjCWeakAssign - Code gen for assigning to a __weak object.
+/// objc_assign_weak (id src, id *dst)
+///
+void CGObjCMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *src, llvm::Value *dst) {
+ llvm::Type * SrcTy = src->getType();
+ if (!isa<llvm::PointerType>(SrcTy)) {
+ unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
+ assert(Size <= 8 && "does not support size > 8");
+ src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
+ : CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy);
+ src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
+ }
+ src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
+ dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
+ llvm::Value *args[] = { src, dst };
+ CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(),
+ args, "weakassign");
+ return;
+}
+
+/// EmitObjCGlobalAssign - Code gen for assigning to a __strong object.
+/// objc_assign_global (id src, id *dst)
+///
+void CGObjCMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *src, llvm::Value *dst,
+ bool threadlocal) {
+ llvm::Type * SrcTy = src->getType();
+ if (!isa<llvm::PointerType>(SrcTy)) {
+ unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
+ assert(Size <= 8 && "does not support size > 8");
+ src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
+ : CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy);
+ src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
+ }
+ src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
+ dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
+ llvm::Value *args[] = { src, dst };
+ if (!threadlocal)
+ CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(),
+ args, "globalassign");
+ else
+ CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(),
+ args, "threadlocalassign");
+ return;
+}
+
+/// EmitObjCIvarAssign - Code gen for assigning to a __strong object.
+/// objc_assign_ivar (id src, id *dst, ptrdiff_t ivaroffset)
+///
+void CGObjCMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *src, llvm::Value *dst,
+ llvm::Value *ivarOffset) {
+ assert(ivarOffset && "EmitObjCIvarAssign - ivarOffset is NULL");
+ llvm::Type * SrcTy = src->getType();
+ if (!isa<llvm::PointerType>(SrcTy)) {
+ unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
+ assert(Size <= 8 && "does not support size > 8");
+ src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
+ : CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy);
+ src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
+ }
+ src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
+ dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
+ llvm::Value *args[] = { src, dst, ivarOffset };
+ CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args);
+ return;
+}
+
+/// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object.
+/// objc_assign_strongCast (id src, id *dst)
+///
+void CGObjCMac::EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *src, llvm::Value *dst) {
+ llvm::Type * SrcTy = src->getType();
+ if (!isa<llvm::PointerType>(SrcTy)) {
+ unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
+ assert(Size <= 8 && "does not support size > 8");
+ src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
+ : CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy);
+ src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
+ }
+ src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
+ dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
+ llvm::Value *args[] = { src, dst };
+ CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(),
+ args, "weakassign");
+ return;
+}
+
+void CGObjCMac::EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *DestPtr,
+ llvm::Value *SrcPtr,
+ llvm::Value *size) {
+ SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy);
+ DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy);
+ llvm::Value *args[] = { DestPtr, SrcPtr, size };
+ CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args);
+}
+
+/// EmitObjCValueForIvar - Code Gen for ivar reference.
+///
+LValue CGObjCMac::EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF,
+ QualType ObjectTy,
+ llvm::Value *BaseValue,
+ const ObjCIvarDecl *Ivar,
+ unsigned CVRQualifiers) {
+ const ObjCInterfaceDecl *ID =
+ ObjectTy->getAs<ObjCObjectType>()->getInterface();
+ return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
+ EmitIvarOffset(CGF, ID, Ivar));
+}
+
+llvm::Value *CGObjCMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF,
+ const ObjCInterfaceDecl *Interface,
+ const ObjCIvarDecl *Ivar) {
+ uint64_t Offset = ComputeIvarBaseOffset(CGM, Interface, Ivar);
+ return llvm::ConstantInt::get(
+ CGM.getTypes().ConvertType(CGM.getContext().LongTy),
+ Offset);
+}
+
+/* *** Private Interface *** */
+
+/// EmitImageInfo - Emit the image info marker used to encode some module
+/// level information.
+///
+/// See: <rdr://4810609&4810587&4810587>
+/// struct IMAGE_INFO {
+/// unsigned version;
+/// unsigned flags;
+/// };
+enum ImageInfoFlags {
+ eImageInfo_FixAndContinue = (1 << 0), // This flag is no longer set by clang.
+ eImageInfo_GarbageCollected = (1 << 1),
+ eImageInfo_GCOnly = (1 << 2),
+ eImageInfo_OptimizedByDyld = (1 << 3), // This flag is set by the dyld shared cache.
+
+ // A flag indicating that the module has no instances of a @synthesize of a
+ // superclass variable. <rdar://problem/6803242>
+ eImageInfo_CorrectedSynthesize = (1 << 4), // This flag is no longer set by clang.
+ eImageInfo_ImageIsSimulated = (1 << 5)
+};
+
+void CGObjCCommonMac::EmitImageInfo() {
+ unsigned version = 0; // Version is unused?
+ const char *Section = (ObjCABI == 1) ?
+ "__OBJC, __image_info,regular" :
+ "__DATA, __objc_imageinfo, regular, no_dead_strip";
+
+ // Generate module-level named metadata to convey this information to the
+ // linker and code-gen.
+ llvm::Module &Mod = CGM.getModule();
+
+ // Add the ObjC ABI version to the module flags.
+ Mod.addModuleFlag(llvm::Module::Error, "Objective-C Version", ObjCABI);
+ Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Version",
+ version);
+ Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Section",
+ llvm::MDString::get(VMContext,Section));
+
+ if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
+ // Non-GC overrides those files which specify GC.
+ Mod.addModuleFlag(llvm::Module::Override,
+ "Objective-C Garbage Collection", (uint32_t)0);
+ } else {
+ // Add the ObjC garbage collection value.
+ Mod.addModuleFlag(llvm::Module::Error,
+ "Objective-C Garbage Collection",
+ eImageInfo_GarbageCollected);
+
+ if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
+ // Add the ObjC GC Only value.
+ Mod.addModuleFlag(llvm::Module::Error, "Objective-C GC Only",
+ eImageInfo_GCOnly);
+
+ // Require that GC be specified and set to eImageInfo_GarbageCollected.
+ llvm::Metadata *Ops[2] = {
+ llvm::MDString::get(VMContext, "Objective-C Garbage Collection"),
+ llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
+ llvm::Type::getInt32Ty(VMContext), eImageInfo_GarbageCollected))};
+ Mod.addModuleFlag(llvm::Module::Require, "Objective-C GC Only",
+ llvm::MDNode::get(VMContext, Ops));
+ }
+ }
+
+ // Indicate whether we're compiling this to run on a simulator.
+ const llvm::Triple &Triple = CGM.getTarget().getTriple();
+ if (Triple.isiOS() &&
+ (Triple.getArch() == llvm::Triple::x86 ||
+ Triple.getArch() == llvm::Triple::x86_64))
+ Mod.addModuleFlag(llvm::Module::Error, "Objective-C Is Simulated",
+ eImageInfo_ImageIsSimulated);
+}
+
+// struct objc_module {
+// unsigned long version;
+// unsigned long size;
+// const char *name;
+// Symtab symtab;
+// };
+
+// FIXME: Get from somewhere
+static const int ModuleVersion = 7;
+
+void CGObjCMac::EmitModuleInfo() {
+ uint64_t Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ModuleTy);
+
+ llvm::Constant *Values[] = {
+ llvm::ConstantInt::get(ObjCTypes.LongTy, ModuleVersion),
+ llvm::ConstantInt::get(ObjCTypes.LongTy, Size),
+ // This used to be the filename, now it is unused. <rdr://4327263>
+ GetClassName(StringRef("")),
+ EmitModuleSymbols()
+ };
+ CreateMetadataVar("OBJC_MODULES",
+ llvm::ConstantStruct::get(ObjCTypes.ModuleTy, Values),
+ "__OBJC,__module_info,regular,no_dead_strip", 4, true);
+}
+
+llvm::Constant *CGObjCMac::EmitModuleSymbols() {
+ unsigned NumClasses = DefinedClasses.size();
+ unsigned NumCategories = DefinedCategories.size();
+
+ // Return null if no symbols were defined.
+ if (!NumClasses && !NumCategories)
+ return llvm::Constant::getNullValue(ObjCTypes.SymtabPtrTy);
+
+ llvm::Constant *Values[5];
+ Values[0] = llvm::ConstantInt::get(ObjCTypes.LongTy, 0);
+ Values[1] = llvm::Constant::getNullValue(ObjCTypes.SelectorPtrTy);
+ Values[2] = llvm::ConstantInt::get(ObjCTypes.ShortTy, NumClasses);
+ Values[3] = llvm::ConstantInt::get(ObjCTypes.ShortTy, NumCategories);
+
+ // The runtime expects exactly the list of defined classes followed
+ // by the list of defined categories, in a single array.
+ SmallVector<llvm::Constant*, 8> Symbols(NumClasses + NumCategories);
+ for (unsigned i=0; i<NumClasses; i++) {
+ const ObjCInterfaceDecl *ID = ImplementedClasses[i];
+ assert(ID);
+ if (ObjCImplementationDecl *IMP = ID->getImplementation())
+ // We are implementing a weak imported interface. Give it external linkage
+ if (ID->isWeakImported() && !IMP->isWeakImported())
+ DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage);
+
+ Symbols[i] = llvm::ConstantExpr::getBitCast(DefinedClasses[i],
+ ObjCTypes.Int8PtrTy);
+ }
+ for (unsigned i=0; i<NumCategories; i++)
+ Symbols[NumClasses + i] =
+ llvm::ConstantExpr::getBitCast(DefinedCategories[i],
+ ObjCTypes.Int8PtrTy);
+
+ Values[4] =
+ llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy,
+ Symbols.size()),
+ Symbols);
+
+ llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values);
+
+ llvm::GlobalVariable *GV = CreateMetadataVar(
+ "OBJC_SYMBOLS", Init, "__OBJC,__symbols,regular,no_dead_strip", 4, true);
+ return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.SymtabPtrTy);
+}
+
+llvm::Value *CGObjCMac::EmitClassRefFromId(CodeGenFunction &CGF,
+ IdentifierInfo *II) {
+ LazySymbols.insert(II);
+
+ llvm::GlobalVariable *&Entry = ClassReferences[II];
+
+ if (!Entry) {
+ llvm::Constant *Casted =
+ llvm::ConstantExpr::getBitCast(GetClassName(II->getName()),
+ ObjCTypes.ClassPtrTy);
+ Entry = CreateMetadataVar(
+ "OBJC_CLASS_REFERENCES_", Casted,
+ "__OBJC,__cls_refs,literal_pointers,no_dead_strip", 4, true);
+ }
+
+ return CGF.Builder.CreateLoad(Entry);
+}
+
+llvm::Value *CGObjCMac::EmitClassRef(CodeGenFunction &CGF,
+ const ObjCInterfaceDecl *ID) {
+ return EmitClassRefFromId(CGF, ID->getIdentifier());
+}
+
+llvm::Value *CGObjCMac::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) {
+ IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool");
+ return EmitClassRefFromId(CGF, II);
+}
+
+llvm::Value *CGObjCMac::EmitSelector(CodeGenFunction &CGF, Selector Sel,
+ bool lvalue) {
+ llvm::GlobalVariable *&Entry = SelectorReferences[Sel];
+
+ if (!Entry) {
+ llvm::Constant *Casted =
+ llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel),
+ ObjCTypes.SelectorPtrTy);
+ Entry = CreateMetadataVar(
+ "OBJC_SELECTOR_REFERENCES_", Casted,
+ "__OBJC,__message_refs,literal_pointers,no_dead_strip", 4, true);
+ Entry->setExternallyInitialized(true);
+ }
+
+ if (lvalue)
+ return Entry;
+ return CGF.Builder.CreateLoad(Entry);
+}
+
+llvm::Constant *CGObjCCommonMac::GetClassName(StringRef RuntimeName) {
+ llvm::GlobalVariable *&Entry = ClassNames[RuntimeName];
+ if (!Entry)
+ Entry = CreateMetadataVar(
+ "OBJC_CLASS_NAME_",
+ llvm::ConstantDataArray::getString(VMContext, RuntimeName),
+ ((ObjCABI == 2) ? "__TEXT,__objc_classname,cstring_literals"
+ : "__TEXT,__cstring,cstring_literals"),
+ 1, true);
+ return getConstantGEP(VMContext, Entry, 0, 0);
+}
+
+llvm::Function *CGObjCCommonMac::GetMethodDefinition(const ObjCMethodDecl *MD) {
+ llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*>::iterator
+ I = MethodDefinitions.find(MD);
+ if (I != MethodDefinitions.end())
+ return I->second;
+
+ return nullptr;
+}
+
+/// GetIvarLayoutName - Returns a unique constant for the given
+/// ivar layout bitmap.
+llvm::Constant *CGObjCCommonMac::GetIvarLayoutName(IdentifierInfo *Ident,
+ const ObjCCommonTypesHelper &ObjCTypes) {
+ return llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy);
+}
+
+void CGObjCCommonMac::BuildAggrIvarRecordLayout(const RecordType *RT,
+ unsigned int BytePos,
+ bool ForStrongLayout,
+ bool &HasUnion) {
+ const RecordDecl *RD = RT->getDecl();
+ // FIXME - Use iterator.
+ SmallVector<const FieldDecl*, 16> Fields(RD->fields());
+ llvm::Type *Ty = CGM.getTypes().ConvertType(QualType(RT, 0));
+ const llvm::StructLayout *RecLayout =
+ CGM.getDataLayout().getStructLayout(cast<llvm::StructType>(Ty));
+
+ BuildAggrIvarLayout(nullptr, RecLayout, RD, Fields, BytePos, ForStrongLayout,
+ HasUnion);
+}
+
+void CGObjCCommonMac::BuildAggrIvarLayout(const ObjCImplementationDecl *OI,
+ const llvm::StructLayout *Layout,
+ const RecordDecl *RD,
+ ArrayRef<const FieldDecl*> RecFields,
+ unsigned int BytePos, bool ForStrongLayout,
+ bool &HasUnion) {
+ bool IsUnion = (RD && RD->isUnion());
+ uint64_t MaxUnionIvarSize = 0;
+ uint64_t MaxSkippedUnionIvarSize = 0;
+ const FieldDecl *MaxField = nullptr;
+ const FieldDecl *MaxSkippedField = nullptr;
+ const FieldDecl *LastFieldBitfieldOrUnnamed = nullptr;
+ uint64_t MaxFieldOffset = 0;
+ uint64_t MaxSkippedFieldOffset = 0;
+ uint64_t LastBitfieldOrUnnamedOffset = 0;
+ uint64_t FirstFieldDelta = 0;
+
+ if (RecFields.empty())
+ return;
+ unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0);
+ unsigned ByteSizeInBits = CGM.getTarget().getCharWidth();
+ if (!RD && CGM.getLangOpts().ObjCAutoRefCount) {
+ const FieldDecl *FirstField = RecFields[0];
+ FirstFieldDelta =
+ ComputeIvarBaseOffset(CGM, OI, cast<ObjCIvarDecl>(FirstField));
+ }
+
+ for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
+ const FieldDecl *Field = RecFields[i];
+ uint64_t FieldOffset;
+ if (RD) {
+ // Note that 'i' here is actually the field index inside RD of Field,
+ // although this dependency is hidden.
+ const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD);
+ FieldOffset = (RL.getFieldOffset(i) / ByteSizeInBits) - FirstFieldDelta;
+ } else
+ FieldOffset =
+ ComputeIvarBaseOffset(CGM, OI, cast<ObjCIvarDecl>(Field)) - FirstFieldDelta;
+
+ // Skip over unnamed or bitfields
+ if (!Field->getIdentifier() || Field->isBitField()) {
+ LastFieldBitfieldOrUnnamed = Field;
+ LastBitfieldOrUnnamedOffset = FieldOffset;
+ continue;
+ }
+
+ LastFieldBitfieldOrUnnamed = nullptr;
+ QualType FQT = Field->getType();
+ if (FQT->isRecordType() || FQT->isUnionType()) {
+ if (FQT->isUnionType())
+ HasUnion = true;
+
+ BuildAggrIvarRecordLayout(FQT->getAs<RecordType>(),
+ BytePos + FieldOffset,
+ ForStrongLayout, HasUnion);
+ continue;
+ }
+
+ if (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) {
+ const ConstantArrayType *CArray =
+ dyn_cast_or_null<ConstantArrayType>(Array);
+ uint64_t ElCount = CArray->getSize().getZExtValue();
+ assert(CArray && "only array with known element size is supported");
+ FQT = CArray->getElementType();
+ while (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) {
+ const ConstantArrayType *CArray =
+ dyn_cast_or_null<ConstantArrayType>(Array);
+ ElCount *= CArray->getSize().getZExtValue();
+ FQT = CArray->getElementType();
+ }
+ if (FQT->isRecordType() && ElCount) {
+ int OldIndex = IvarsInfo.size() - 1;
+ int OldSkIndex = SkipIvars.size() -1;
+
+ const RecordType *RT = FQT->getAs<RecordType>();
+ BuildAggrIvarRecordLayout(RT, BytePos + FieldOffset,
+ ForStrongLayout, HasUnion);
+
+ // Replicate layout information for each array element. Note that
+ // one element is already done.
+ uint64_t ElIx = 1;
+ for (int FirstIndex = IvarsInfo.size() - 1,
+ FirstSkIndex = SkipIvars.size() - 1 ;ElIx < ElCount; ElIx++) {
+ uint64_t Size = CGM.getContext().getTypeSize(RT)/ByteSizeInBits;
+ for (int i = OldIndex+1; i <= FirstIndex; ++i)
+ IvarsInfo.push_back(GC_IVAR(IvarsInfo[i].ivar_bytepos + Size*ElIx,
+ IvarsInfo[i].ivar_size));
+ for (int i = OldSkIndex+1; i <= FirstSkIndex; ++i)
+ SkipIvars.push_back(GC_IVAR(SkipIvars[i].ivar_bytepos + Size*ElIx,
+ SkipIvars[i].ivar_size));
+ }
+ continue;
+ }
+ }
+ // At this point, we are done with Record/Union and array there of.
+ // For other arrays we are down to its element type.
+ Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), FQT);
+
+ unsigned FieldSize = CGM.getContext().getTypeSize(Field->getType());
+ if ((ForStrongLayout && GCAttr == Qualifiers::Strong)
+ || (!ForStrongLayout && GCAttr == Qualifiers::Weak)) {
+ if (IsUnion) {
+ uint64_t UnionIvarSize = FieldSize / WordSizeInBits;
+ if (UnionIvarSize > MaxUnionIvarSize) {
+ MaxUnionIvarSize = UnionIvarSize;
+ MaxField = Field;
+ MaxFieldOffset = FieldOffset;
+ }
+ } else {
+ IvarsInfo.push_back(GC_IVAR(BytePos + FieldOffset,
+ FieldSize / WordSizeInBits));
+ }
+ } else if ((ForStrongLayout &&
+ (GCAttr == Qualifiers::GCNone || GCAttr == Qualifiers::Weak))
+ || (!ForStrongLayout && GCAttr != Qualifiers::Weak)) {
+ if (IsUnion) {
+ // FIXME: Why the asymmetry? We divide by word size in bits on other
+ // side.
+ uint64_t UnionIvarSize = FieldSize / ByteSizeInBits;
+ if (UnionIvarSize > MaxSkippedUnionIvarSize) {
+ MaxSkippedUnionIvarSize = UnionIvarSize;
+ MaxSkippedField = Field;
+ MaxSkippedFieldOffset = FieldOffset;
+ }
+ } else {
+ // FIXME: Why the asymmetry, we divide by byte size in bits here?
+ SkipIvars.push_back(GC_IVAR(BytePos + FieldOffset,
+ FieldSize / ByteSizeInBits));
+ }
+ }
+ }
+
+ if (LastFieldBitfieldOrUnnamed) {
+ if (LastFieldBitfieldOrUnnamed->isBitField()) {
+ // Last field was a bitfield. Must update skip info.
+ uint64_t BitFieldSize
+ = LastFieldBitfieldOrUnnamed->getBitWidthValue(CGM.getContext());
+ GC_IVAR skivar;
+ skivar.ivar_bytepos = BytePos + LastBitfieldOrUnnamedOffset;
+ skivar.ivar_size = (BitFieldSize / ByteSizeInBits)
+ + ((BitFieldSize % ByteSizeInBits) != 0);
+ SkipIvars.push_back(skivar);
+ } else {
+ assert(!LastFieldBitfieldOrUnnamed->getIdentifier() &&"Expected unnamed");
+ // Last field was unnamed. Must update skip info.
+ unsigned FieldSize
+ = CGM.getContext().getTypeSize(LastFieldBitfieldOrUnnamed->getType());
+ SkipIvars.push_back(GC_IVAR(BytePos + LastBitfieldOrUnnamedOffset,
+ FieldSize / ByteSizeInBits));
+ }
+ }
+
+ if (MaxField)
+ IvarsInfo.push_back(GC_IVAR(BytePos + MaxFieldOffset,
+ MaxUnionIvarSize));
+ if (MaxSkippedField)
+ SkipIvars.push_back(GC_IVAR(BytePos + MaxSkippedFieldOffset,
+ MaxSkippedUnionIvarSize));
+}
+
+/// BuildIvarLayoutBitmap - This routine is the horsework for doing all
+/// the computations and returning the layout bitmap (for ivar or blocks) in
+/// the given argument BitMap string container. Routine reads
+/// two containers, IvarsInfo and SkipIvars which are assumed to be
+/// filled already by the caller.
+llvm::Constant *CGObjCCommonMac::BuildIvarLayoutBitmap(std::string &BitMap) {
+ unsigned int WordsToScan, WordsToSkip;
+ llvm::Type *PtrTy = CGM.Int8PtrTy;
+
+ // Build the string of skip/scan nibbles
+ SmallVector<SKIP_SCAN, 32> SkipScanIvars;
+ unsigned int WordSize =
+ CGM.getTypes().getDataLayout().getTypeAllocSize(PtrTy);
+ if (IvarsInfo[0].ivar_bytepos == 0) {
+ WordsToSkip = 0;
+ WordsToScan = IvarsInfo[0].ivar_size;
+ } else {
+ WordsToSkip = IvarsInfo[0].ivar_bytepos/WordSize;
+ WordsToScan = IvarsInfo[0].ivar_size;
+ }
+ for (unsigned int i=1, Last=IvarsInfo.size(); i != Last; i++) {
+ unsigned int TailPrevGCObjC =
+ IvarsInfo[i-1].ivar_bytepos + IvarsInfo[i-1].ivar_size * WordSize;
+ if (IvarsInfo[i].ivar_bytepos == TailPrevGCObjC) {
+ // consecutive 'scanned' object pointers.
+ WordsToScan += IvarsInfo[i].ivar_size;
+ } else {
+ // Skip over 'gc'able object pointer which lay over each other.
+ if (TailPrevGCObjC > IvarsInfo[i].ivar_bytepos)
+ continue;
+ // Must skip over 1 or more words. We save current skip/scan values
+ // and start a new pair.
+ SKIP_SCAN SkScan;
+ SkScan.skip = WordsToSkip;
+ SkScan.scan = WordsToScan;
+ SkipScanIvars.push_back(SkScan);
+
+ // Skip the hole.
+ SkScan.skip = (IvarsInfo[i].ivar_bytepos - TailPrevGCObjC) / WordSize;
+ SkScan.scan = 0;
+ SkipScanIvars.push_back(SkScan);
+ WordsToSkip = 0;
+ WordsToScan = IvarsInfo[i].ivar_size;
+ }
+ }
+ if (WordsToScan > 0) {
+ SKIP_SCAN SkScan;
+ SkScan.skip = WordsToSkip;
+ SkScan.scan = WordsToScan;
+ SkipScanIvars.push_back(SkScan);
+ }
+
+ if (!SkipIvars.empty()) {
+ unsigned int LastIndex = SkipIvars.size()-1;
+ int LastByteSkipped =
+ SkipIvars[LastIndex].ivar_bytepos + SkipIvars[LastIndex].ivar_size;
+ LastIndex = IvarsInfo.size()-1;
+ int LastByteScanned =
+ IvarsInfo[LastIndex].ivar_bytepos +
+ IvarsInfo[LastIndex].ivar_size * WordSize;
+ // Compute number of bytes to skip at the tail end of the last ivar scanned.
+ if (LastByteSkipped > LastByteScanned) {
+ unsigned int TotalWords = (LastByteSkipped + (WordSize -1)) / WordSize;
+ SKIP_SCAN SkScan;
+ SkScan.skip = TotalWords - (LastByteScanned/WordSize);
+ SkScan.scan = 0;
+ SkipScanIvars.push_back(SkScan);
+ }
+ }
+ // Mini optimization of nibbles such that an 0xM0 followed by 0x0N is produced
+ // as 0xMN.
+ int SkipScan = SkipScanIvars.size()-1;
+ for (int i = 0; i <= SkipScan; i++) {
+ if ((i < SkipScan) && SkipScanIvars[i].skip && SkipScanIvars[i].scan == 0
+ && SkipScanIvars[i+1].skip == 0 && SkipScanIvars[i+1].scan) {
+ // 0xM0 followed by 0x0N detected.
+ SkipScanIvars[i].scan = SkipScanIvars[i+1].scan;
+ for (int j = i+1; j < SkipScan; j++)
+ SkipScanIvars[j] = SkipScanIvars[j+1];
+ --SkipScan;
+ }
+ }
+
+ // Generate the string.
+ for (int i = 0; i <= SkipScan; i++) {
+ unsigned char byte;
+ unsigned int skip_small = SkipScanIvars[i].skip % 0xf;
+ unsigned int scan_small = SkipScanIvars[i].scan % 0xf;
+ unsigned int skip_big = SkipScanIvars[i].skip / 0xf;
+ unsigned int scan_big = SkipScanIvars[i].scan / 0xf;
+
+ // first skip big.
+ for (unsigned int ix = 0; ix < skip_big; ix++)
+ BitMap += (unsigned char)(0xf0);
+
+ // next (skip small, scan)
+ if (skip_small) {
+ byte = skip_small << 4;
+ if (scan_big > 0) {
+ byte |= 0xf;
+ --scan_big;
+ } else if (scan_small) {
+ byte |= scan_small;
+ scan_small = 0;
+ }
+ BitMap += byte;
+ }
+ // next scan big
+ for (unsigned int ix = 0; ix < scan_big; ix++)
+ BitMap += (unsigned char)(0x0f);
+ // last scan small
+ if (scan_small) {
+ byte = scan_small;
+ BitMap += byte;
+ }
+ }
+ // null terminate string.
+ unsigned char zero = 0;
+ BitMap += zero;
+
+ llvm::GlobalVariable *Entry = CreateMetadataVar(
+ "OBJC_CLASS_NAME_",
+ llvm::ConstantDataArray::getString(VMContext, BitMap, false),
+ ((ObjCABI == 2) ? "__TEXT,__objc_classname,cstring_literals"
+ : "__TEXT,__cstring,cstring_literals"),
+ 1, true);
+ return getConstantGEP(VMContext, Entry, 0, 0);
+}
+
+/// BuildIvarLayout - Builds ivar layout bitmap for the class
+/// implementation for the __strong or __weak case.
+/// The layout map displays which words in ivar list must be skipped
+/// and which must be scanned by GC (see below). String is built of bytes.
+/// Each byte is divided up in two nibbles (4-bit each). Left nibble is count
+/// of words to skip and right nibble is count of words to scan. So, each
+/// nibble represents up to 15 workds to skip or scan. Skipping the rest is
+/// represented by a 0x00 byte which also ends the string.
+/// 1. when ForStrongLayout is true, following ivars are scanned:
+/// - id, Class
+/// - object *
+/// - __strong anything
+///
+/// 2. When ForStrongLayout is false, following ivars are scanned:
+/// - __weak anything
+///
+llvm::Constant *CGObjCCommonMac::BuildIvarLayout(
+ const ObjCImplementationDecl *OMD,
+ bool ForStrongLayout) {
+ bool hasUnion = false;
+
+ llvm::Type *PtrTy = CGM.Int8PtrTy;
+ if (CGM.getLangOpts().getGC() == LangOptions::NonGC &&
+ !CGM.getLangOpts().ObjCAutoRefCount)
+ return llvm::Constant::getNullValue(PtrTy);
+
+ const ObjCInterfaceDecl *OI = OMD->getClassInterface();
+ SmallVector<const FieldDecl*, 32> RecFields;
+ if (CGM.getLangOpts().ObjCAutoRefCount) {
+ for (const ObjCIvarDecl *IVD = OI->all_declared_ivar_begin();
+ IVD; IVD = IVD->getNextIvar())
+ RecFields.push_back(cast<FieldDecl>(IVD));
+ }
+ else {
+ SmallVector<const ObjCIvarDecl*, 32> Ivars;
+ CGM.getContext().DeepCollectObjCIvars(OI, true, Ivars);
+
+ // FIXME: This is not ideal; we shouldn't have to do this copy.
+ RecFields.append(Ivars.begin(), Ivars.end());
+ }
+
+ if (RecFields.empty())
+ return llvm::Constant::getNullValue(PtrTy);
+
+ SkipIvars.clear();
+ IvarsInfo.clear();
+
+ BuildAggrIvarLayout(OMD, nullptr, nullptr, RecFields, 0, ForStrongLayout,
+ hasUnion);
+ if (IvarsInfo.empty())
+ return llvm::Constant::getNullValue(PtrTy);
+ // Sort on byte position in case we encounterred a union nested in
+ // the ivar list.
+ if (hasUnion && !IvarsInfo.empty())
+ std::sort(IvarsInfo.begin(), IvarsInfo.end());
+ if (hasUnion && !SkipIvars.empty())
+ std::sort(SkipIvars.begin(), SkipIvars.end());
+
+ std::string BitMap;
+ llvm::Constant *C = BuildIvarLayoutBitmap(BitMap);
+
+ if (CGM.getLangOpts().ObjCGCBitmapPrint) {
+ printf("\n%s ivar layout for class '%s': ",
+ ForStrongLayout ? "strong" : "weak",
+ OMD->getClassInterface()->getName().str().c_str());
+ const unsigned char *s = (const unsigned char*)BitMap.c_str();
+ for (unsigned i = 0, e = BitMap.size(); i < e; i++)
+ if (!(s[i] & 0xf0))
+ printf("0x0%x%s", s[i], s[i] != 0 ? ", " : "");
+ else
+ printf("0x%x%s", s[i], s[i] != 0 ? ", " : "");
+ printf("\n");
+ }
+ return C;
+}
+
+llvm::Constant *CGObjCCommonMac::GetMethodVarName(Selector Sel) {
+ llvm::GlobalVariable *&Entry = MethodVarNames[Sel];
+
+ // FIXME: Avoid std::string in "Sel.getAsString()"
+ if (!Entry)
+ Entry = CreateMetadataVar(
+ "OBJC_METH_VAR_NAME_",
+ llvm::ConstantDataArray::getString(VMContext, Sel.getAsString()),
+ ((ObjCABI == 2) ? "__TEXT,__objc_methname,cstring_literals"
+ : "__TEXT,__cstring,cstring_literals"),
+ 1, true);
+
+ return getConstantGEP(VMContext, Entry, 0, 0);
+}
+
+// FIXME: Merge into a single cstring creation function.
+llvm::Constant *CGObjCCommonMac::GetMethodVarName(IdentifierInfo *ID) {
+ return GetMethodVarName(CGM.getContext().Selectors.getNullarySelector(ID));
+}
+
+llvm::Constant *CGObjCCommonMac::GetMethodVarType(const FieldDecl *Field) {
+ std::string TypeStr;
+ CGM.getContext().getObjCEncodingForType(Field->getType(), TypeStr, Field);
+
+ llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr];
+
+ if (!Entry)
+ Entry = CreateMetadataVar(
+ "OBJC_METH_VAR_TYPE_",
+ llvm::ConstantDataArray::getString(VMContext, TypeStr),
+ ((ObjCABI == 2) ? "__TEXT,__objc_methtype,cstring_literals"
+ : "__TEXT,__cstring,cstring_literals"),
+ 1, true);
+
+ return getConstantGEP(VMContext, Entry, 0, 0);
+}
+
+llvm::Constant *CGObjCCommonMac::GetMethodVarType(const ObjCMethodDecl *D,
+ bool Extended) {
+ std::string TypeStr;
+ if (CGM.getContext().getObjCEncodingForMethodDecl(D, TypeStr, Extended))
+ return nullptr;
+
+ llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr];
+
+ if (!Entry)
+ Entry = CreateMetadataVar(
+ "OBJC_METH_VAR_TYPE_",
+ llvm::ConstantDataArray::getString(VMContext, TypeStr),
+ ((ObjCABI == 2) ? "__TEXT,__objc_methtype,cstring_literals"
+ : "__TEXT,__cstring,cstring_literals"),
+ 1, true);
+
+ return getConstantGEP(VMContext, Entry, 0, 0);
+}
+
+// FIXME: Merge into a single cstring creation function.
+llvm::Constant *CGObjCCommonMac::GetPropertyName(IdentifierInfo *Ident) {
+ llvm::GlobalVariable *&Entry = PropertyNames[Ident];
+
+ if (!Entry)
+ Entry = CreateMetadataVar(
+ "OBJC_PROP_NAME_ATTR_",
+ llvm::ConstantDataArray::getString(VMContext, Ident->getName()),
+ "__TEXT,__cstring,cstring_literals", 1, true);
+
+ return getConstantGEP(VMContext, Entry, 0, 0);
+}
+
+// FIXME: Merge into a single cstring creation function.
+// FIXME: This Decl should be more precise.
+llvm::Constant *
+CGObjCCommonMac::GetPropertyTypeString(const ObjCPropertyDecl *PD,
+ const Decl *Container) {
+ std::string TypeStr;
+ CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container, TypeStr);
+ return GetPropertyName(&CGM.getContext().Idents.get(TypeStr));
+}
+
+void CGObjCCommonMac::GetNameForMethod(const ObjCMethodDecl *D,
+ const ObjCContainerDecl *CD,
+ SmallVectorImpl<char> &Name) {
+ llvm::raw_svector_ostream OS(Name);
+ assert (CD && "Missing container decl in GetNameForMethod");
+ OS << '\01' << (D->isInstanceMethod() ? '-' : '+')
+ << '[' << CD->getName();
+ if (const ObjCCategoryImplDecl *CID =
+ dyn_cast<ObjCCategoryImplDecl>(D->getDeclContext()))
+ OS << '(' << *CID << ')';
+ OS << ' ' << D->getSelector().getAsString() << ']';
+}
+
+void CGObjCMac::FinishModule() {
+ EmitModuleInfo();
+
+ // Emit the dummy bodies for any protocols which were referenced but
+ // never defined.
+ for (llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*>::iterator
+ I = Protocols.begin(), e = Protocols.end(); I != e; ++I) {
+ if (I->second->hasInitializer())
+ continue;
+
+ llvm::Constant *Values[5];
+ Values[0] = llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy);
+ Values[1] = GetClassName(I->first->getName());
+ Values[2] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy);
+ Values[3] = Values[4] =
+ llvm::Constant::getNullValue(ObjCTypes.MethodDescriptionListPtrTy);
+ I->second->setInitializer(llvm::ConstantStruct::get(ObjCTypes.ProtocolTy,
+ Values));
+ CGM.addCompilerUsedGlobal(I->second);
+ }
+
+ // Add assembler directives to add lazy undefined symbol references
+ // for classes which are referenced but not defined. This is
+ // important for correct linker interaction.
+ //
+ // FIXME: It would be nice if we had an LLVM construct for this.
+ if (!LazySymbols.empty() || !DefinedSymbols.empty()) {
+ SmallString<256> Asm;
+ Asm += CGM.getModule().getModuleInlineAsm();
+ if (!Asm.empty() && Asm.back() != '\n')
+ Asm += '\n';
+
+ llvm::raw_svector_ostream OS(Asm);
+ for (llvm::SetVector<IdentifierInfo*>::iterator I = DefinedSymbols.begin(),
+ e = DefinedSymbols.end(); I != e; ++I)
+ OS << "\t.objc_class_name_" << (*I)->getName() << "=0\n"
+ << "\t.globl .objc_class_name_" << (*I)->getName() << "\n";
+ for (llvm::SetVector<IdentifierInfo*>::iterator I = LazySymbols.begin(),
+ e = LazySymbols.end(); I != e; ++I) {
+ OS << "\t.lazy_reference .objc_class_name_" << (*I)->getName() << "\n";
+ }
+
+ for (size_t i = 0, e = DefinedCategoryNames.size(); i < e; ++i) {
+ OS << "\t.objc_category_name_" << DefinedCategoryNames[i] << "=0\n"
+ << "\t.globl .objc_category_name_" << DefinedCategoryNames[i] << "\n";
+ }
+
+ CGM.getModule().setModuleInlineAsm(OS.str());
+ }
+}
+
+CGObjCNonFragileABIMac::CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm)
+ : CGObjCCommonMac(cgm),
+ ObjCTypes(cgm) {
+ ObjCEmptyCacheVar = ObjCEmptyVtableVar = nullptr;
+ ObjCABI = 2;
+}
+
+/* *** */
+
+ObjCCommonTypesHelper::ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm)
+ : VMContext(cgm.getLLVMContext()), CGM(cgm), ExternalProtocolPtrTy(nullptr)
+{
+ CodeGen::CodeGenTypes &Types = CGM.getTypes();
+ ASTContext &Ctx = CGM.getContext();
+
+ ShortTy = Types.ConvertType(Ctx.ShortTy);
+ IntTy = Types.ConvertType(Ctx.IntTy);
+ LongTy = Types.ConvertType(Ctx.LongTy);
+ LongLongTy = Types.ConvertType(Ctx.LongLongTy);
+ Int8PtrTy = CGM.Int8PtrTy;
+ Int8PtrPtrTy = CGM.Int8PtrPtrTy;
+
+ // arm64 targets use "int" ivar offset variables. All others,
+ // including OS X x86_64 and Windows x86_64, use "long" ivar offsets.
+ if (CGM.getTarget().getTriple().getArch() == llvm::Triple::aarch64)
+ IvarOffsetVarTy = IntTy;
+ else
+ IvarOffsetVarTy = LongTy;
+
+ ObjectPtrTy = Types.ConvertType(Ctx.getObjCIdType());
+ PtrObjectPtrTy = llvm::PointerType::getUnqual(ObjectPtrTy);
+ SelectorPtrTy = Types.ConvertType(Ctx.getObjCSelType());
+
+ // I'm not sure I like this. The implicit coordination is a bit
+ // gross. We should solve this in a reasonable fashion because this
+ // is a pretty common task (match some runtime data structure with
+ // an LLVM data structure).
+
+ // FIXME: This is leaked.
+ // FIXME: Merge with rewriter code?
+
+ // struct _objc_super {
+ // id self;
+ // Class cls;
+ // }
+ RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct,
+ Ctx.getTranslationUnitDecl(),
+ SourceLocation(), SourceLocation(),
+ &Ctx.Idents.get("_objc_super"));
+ RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(),
+ nullptr, Ctx.getObjCIdType(), nullptr, nullptr,
+ false, ICIS_NoInit));
+ RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(),
+ nullptr, Ctx.getObjCClassType(), nullptr,
+ nullptr, false, ICIS_NoInit));
+ RD->completeDefinition();
+
+ SuperCTy = Ctx.getTagDeclType(RD);
+ SuperPtrCTy = Ctx.getPointerType(SuperCTy);
+
+ SuperTy = cast<llvm::StructType>(Types.ConvertType(SuperCTy));
+ SuperPtrTy = llvm::PointerType::getUnqual(SuperTy);
+
+ // struct _prop_t {
+ // char *name;
+ // char *attributes;
+ // }
+ PropertyTy = llvm::StructType::create("struct._prop_t",
+ Int8PtrTy, Int8PtrTy, nullptr);
+
+ // struct _prop_list_t {
+ // uint32_t entsize; // sizeof(struct _prop_t)
+ // uint32_t count_of_properties;
+ // struct _prop_t prop_list[count_of_properties];
+ // }
+ PropertyListTy =
+ llvm::StructType::create("struct._prop_list_t", IntTy, IntTy,
+ llvm::ArrayType::get(PropertyTy, 0), nullptr);
+ // struct _prop_list_t *
+ PropertyListPtrTy = llvm::PointerType::getUnqual(PropertyListTy);
+
+ // struct _objc_method {
+ // SEL _cmd;
+ // char *method_type;
+ // char *_imp;
+ // }
+ MethodTy = llvm::StructType::create("struct._objc_method",
+ SelectorPtrTy, Int8PtrTy, Int8PtrTy,
+ nullptr);
+
+ // struct _objc_cache *
+ CacheTy = llvm::StructType::create(VMContext, "struct._objc_cache");
+ CachePtrTy = llvm::PointerType::getUnqual(CacheTy);
+
+}
+
+ObjCTypesHelper::ObjCTypesHelper(CodeGen::CodeGenModule &cgm)
+ : ObjCCommonTypesHelper(cgm) {
+ // struct _objc_method_description {
+ // SEL name;
+ // char *types;
+ // }
+ MethodDescriptionTy =
+ llvm::StructType::create("struct._objc_method_description",
+ SelectorPtrTy, Int8PtrTy, nullptr);
+
+ // struct _objc_method_description_list {
+ // int count;
+ // struct _objc_method_description[1];
+ // }
+ MethodDescriptionListTy = llvm::StructType::create(
+ "struct._objc_method_description_list", IntTy,
+ llvm::ArrayType::get(MethodDescriptionTy, 0), nullptr);
+
+ // struct _objc_method_description_list *
+ MethodDescriptionListPtrTy =
+ llvm::PointerType::getUnqual(MethodDescriptionListTy);
+
+ // Protocol description structures
+
+ // struct _objc_protocol_extension {
+ // uint32_t size; // sizeof(struct _objc_protocol_extension)
+ // struct _objc_method_description_list *optional_instance_methods;
+ // struct _objc_method_description_list *optional_class_methods;
+ // struct _objc_property_list *instance_properties;
+ // const char ** extendedMethodTypes;
+ // }
+ ProtocolExtensionTy =
+ llvm::StructType::create("struct._objc_protocol_extension",
+ IntTy, MethodDescriptionListPtrTy,
+ MethodDescriptionListPtrTy, PropertyListPtrTy,
+ Int8PtrPtrTy, nullptr);
+
+ // struct _objc_protocol_extension *
+ ProtocolExtensionPtrTy = llvm::PointerType::getUnqual(ProtocolExtensionTy);
+
+ // Handle recursive construction of Protocol and ProtocolList types
+
+ ProtocolTy =
+ llvm::StructType::create(VMContext, "struct._objc_protocol");
+
+ ProtocolListTy =
+ llvm::StructType::create(VMContext, "struct._objc_protocol_list");
+ ProtocolListTy->setBody(llvm::PointerType::getUnqual(ProtocolListTy),
+ LongTy,
+ llvm::ArrayType::get(ProtocolTy, 0),
+ nullptr);
+
+ // struct _objc_protocol {
+ // struct _objc_protocol_extension *isa;
+ // char *protocol_name;
+ // struct _objc_protocol **_objc_protocol_list;
+ // struct _objc_method_description_list *instance_methods;
+ // struct _objc_method_description_list *class_methods;
+ // }
+ ProtocolTy->setBody(ProtocolExtensionPtrTy, Int8PtrTy,
+ llvm::PointerType::getUnqual(ProtocolListTy),
+ MethodDescriptionListPtrTy,
+ MethodDescriptionListPtrTy,
+ nullptr);
+
+ // struct _objc_protocol_list *
+ ProtocolListPtrTy = llvm::PointerType::getUnqual(ProtocolListTy);
+
+ ProtocolPtrTy = llvm::PointerType::getUnqual(ProtocolTy);
+
+ // Class description structures
+
+ // struct _objc_ivar {
+ // char *ivar_name;
+ // char *ivar_type;
+ // int ivar_offset;
+ // }
+ IvarTy = llvm::StructType::create("struct._objc_ivar",
+ Int8PtrTy, Int8PtrTy, IntTy, nullptr);
+
+ // struct _objc_ivar_list *
+ IvarListTy =
+ llvm::StructType::create(VMContext, "struct._objc_ivar_list");
+ IvarListPtrTy = llvm::PointerType::getUnqual(IvarListTy);
+
+ // struct _objc_method_list *
+ MethodListTy =
+ llvm::StructType::create(VMContext, "struct._objc_method_list");
+ MethodListPtrTy = llvm::PointerType::getUnqual(MethodListTy);
+
+ // struct _objc_class_extension *
+ ClassExtensionTy =
+ llvm::StructType::create("struct._objc_class_extension",
+ IntTy, Int8PtrTy, PropertyListPtrTy, nullptr);
+ ClassExtensionPtrTy = llvm::PointerType::getUnqual(ClassExtensionTy);
+
+ ClassTy = llvm::StructType::create(VMContext, "struct._objc_class");
+
+ // struct _objc_class {
+ // Class isa;
+ // Class super_class;
+ // char *name;
+ // long version;
+ // long info;
+ // long instance_size;
+ // struct _objc_ivar_list *ivars;
+ // struct _objc_method_list *methods;
+ // struct _objc_cache *cache;
+ // struct _objc_protocol_list *protocols;
+ // char *ivar_layout;
+ // struct _objc_class_ext *ext;
+ // };
+ ClassTy->setBody(llvm::PointerType::getUnqual(ClassTy),
+ llvm::PointerType::getUnqual(ClassTy),
+ Int8PtrTy,
+ LongTy,
+ LongTy,
+ LongTy,
+ IvarListPtrTy,
+ MethodListPtrTy,
+ CachePtrTy,
+ ProtocolListPtrTy,
+ Int8PtrTy,
+ ClassExtensionPtrTy,
+ nullptr);
+
+ ClassPtrTy = llvm::PointerType::getUnqual(ClassTy);
+
+ // struct _objc_category {
+ // char *category_name;
+ // char *class_name;
+ // struct _objc_method_list *instance_method;
+ // struct _objc_method_list *class_method;
+ // uint32_t size; // sizeof(struct _objc_category)
+ // struct _objc_property_list *instance_properties;// category's @property
+ // }
+ CategoryTy =
+ llvm::StructType::create("struct._objc_category",
+ Int8PtrTy, Int8PtrTy, MethodListPtrTy,
+ MethodListPtrTy, ProtocolListPtrTy,
+ IntTy, PropertyListPtrTy, nullptr);
+
+ // Global metadata structures
+
+ // struct _objc_symtab {
+ // long sel_ref_cnt;
+ // SEL *refs;
+ // short cls_def_cnt;
+ // short cat_def_cnt;
+ // char *defs[cls_def_cnt + cat_def_cnt];
+ // }
+ SymtabTy =
+ llvm::StructType::create("struct._objc_symtab",
+ LongTy, SelectorPtrTy, ShortTy, ShortTy,
+ llvm::ArrayType::get(Int8PtrTy, 0), nullptr);
+ SymtabPtrTy = llvm::PointerType::getUnqual(SymtabTy);
+
+ // struct _objc_module {
+ // long version;
+ // long size; // sizeof(struct _objc_module)
+ // char *name;
+ // struct _objc_symtab* symtab;
+ // }
+ ModuleTy =
+ llvm::StructType::create("struct._objc_module",
+ LongTy, LongTy, Int8PtrTy, SymtabPtrTy, nullptr);
+
+
+ // FIXME: This is the size of the setjmp buffer and should be target
+ // specific. 18 is what's used on 32-bit X86.
+ uint64_t SetJmpBufferSize = 18;
+
+ // Exceptions
+ llvm::Type *StackPtrTy = llvm::ArrayType::get(CGM.Int8PtrTy, 4);
+
+ ExceptionDataTy =
+ llvm::StructType::create("struct._objc_exception_data",
+ llvm::ArrayType::get(CGM.Int32Ty,SetJmpBufferSize),
+ StackPtrTy, nullptr);
+
+}
+
+ObjCNonFragileABITypesHelper::ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm)
+ : ObjCCommonTypesHelper(cgm) {
+ // struct _method_list_t {
+ // uint32_t entsize; // sizeof(struct _objc_method)
+ // uint32_t method_count;
+ // struct _objc_method method_list[method_count];
+ // }
+ MethodListnfABITy =
+ llvm::StructType::create("struct.__method_list_t", IntTy, IntTy,
+ llvm::ArrayType::get(MethodTy, 0), nullptr);
+ // struct method_list_t *
+ MethodListnfABIPtrTy = llvm::PointerType::getUnqual(MethodListnfABITy);
+
+ // struct _protocol_t {
+ // id isa; // NULL
+ // const char * const protocol_name;
+ // const struct _protocol_list_t * protocol_list; // super protocols
+ // const struct method_list_t * const instance_methods;
+ // const struct method_list_t * const class_methods;
+ // const struct method_list_t *optionalInstanceMethods;
+ // const struct method_list_t *optionalClassMethods;
+ // const struct _prop_list_t * properties;
+ // const uint32_t size; // sizeof(struct _protocol_t)
+ // const uint32_t flags; // = 0
+ // const char ** extendedMethodTypes;
+ // const char *demangledName;
+ // }
+
+ // Holder for struct _protocol_list_t *
+ ProtocolListnfABITy =
+ llvm::StructType::create(VMContext, "struct._objc_protocol_list");
+
+ ProtocolnfABITy =
+ llvm::StructType::create("struct._protocol_t", ObjectPtrTy, Int8PtrTy,
+ llvm::PointerType::getUnqual(ProtocolListnfABITy),
+ MethodListnfABIPtrTy, MethodListnfABIPtrTy,
+ MethodListnfABIPtrTy, MethodListnfABIPtrTy,
+ PropertyListPtrTy, IntTy, IntTy, Int8PtrPtrTy,
+ Int8PtrTy,
+ nullptr);
+
+ // struct _protocol_t*
+ ProtocolnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolnfABITy);
+
+ // struct _protocol_list_t {
+ // long protocol_count; // Note, this is 32/64 bit
+ // struct _protocol_t *[protocol_count];
+ // }
+ ProtocolListnfABITy->setBody(LongTy,
+ llvm::ArrayType::get(ProtocolnfABIPtrTy, 0),
+ nullptr);
+
+ // struct _objc_protocol_list*
+ ProtocolListnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolListnfABITy);
+
+ // struct _ivar_t {
+ // unsigned [long] int *offset; // pointer to ivar offset location
+ // char *name;
+ // char *type;
+ // uint32_t alignment;
+ // uint32_t size;
+ // }
+ IvarnfABITy = llvm::StructType::create(
+ "struct._ivar_t", llvm::PointerType::getUnqual(IvarOffsetVarTy),
+ Int8PtrTy, Int8PtrTy, IntTy, IntTy, nullptr);
+
+ // struct _ivar_list_t {
+ // uint32 entsize; // sizeof(struct _ivar_t)
+ // uint32 count;
+ // struct _iver_t list[count];
+ // }
+ IvarListnfABITy =
+ llvm::StructType::create("struct._ivar_list_t", IntTy, IntTy,
+ llvm::ArrayType::get(IvarnfABITy, 0), nullptr);
+
+ IvarListnfABIPtrTy = llvm::PointerType::getUnqual(IvarListnfABITy);
+
+ // struct _class_ro_t {
+ // uint32_t const flags;
+ // uint32_t const instanceStart;
+ // uint32_t const instanceSize;
+ // uint32_t const reserved; // only when building for 64bit targets
+ // const uint8_t * const ivarLayout;
+ // const char *const name;
+ // const struct _method_list_t * const baseMethods;
+ // const struct _objc_protocol_list *const baseProtocols;
+ // const struct _ivar_list_t *const ivars;
+ // const uint8_t * const weakIvarLayout;
+ // const struct _prop_list_t * const properties;
+ // }
+
+ // FIXME. Add 'reserved' field in 64bit abi mode!
+ ClassRonfABITy = llvm::StructType::create("struct._class_ro_t",
+ IntTy, IntTy, IntTy, Int8PtrTy,
+ Int8PtrTy, MethodListnfABIPtrTy,
+ ProtocolListnfABIPtrTy,
+ IvarListnfABIPtrTy,
+ Int8PtrTy, PropertyListPtrTy,
+ nullptr);
+
+ // ImpnfABITy - LLVM for id (*)(id, SEL, ...)
+ llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
+ ImpnfABITy = llvm::FunctionType::get(ObjectPtrTy, params, false)
+ ->getPointerTo();
+
+ // struct _class_t {
+ // struct _class_t *isa;
+ // struct _class_t * const superclass;
+ // void *cache;
+ // IMP *vtable;
+ // struct class_ro_t *ro;
+ // }
+
+ ClassnfABITy = llvm::StructType::create(VMContext, "struct._class_t");
+ ClassnfABITy->setBody(llvm::PointerType::getUnqual(ClassnfABITy),
+ llvm::PointerType::getUnqual(ClassnfABITy),
+ CachePtrTy,
+ llvm::PointerType::getUnqual(ImpnfABITy),
+ llvm::PointerType::getUnqual(ClassRonfABITy),
+ nullptr);
+
+ // LLVM for struct _class_t *
+ ClassnfABIPtrTy = llvm::PointerType::getUnqual(ClassnfABITy);
+
+ // struct _category_t {
+ // const char * const name;
+ // struct _class_t *const cls;
+ // const struct _method_list_t * const instance_methods;
+ // const struct _method_list_t * const class_methods;
+ // const struct _protocol_list_t * const protocols;
+ // const struct _prop_list_t * const properties;
+ // }
+ CategorynfABITy = llvm::StructType::create("struct._category_t",
+ Int8PtrTy, ClassnfABIPtrTy,
+ MethodListnfABIPtrTy,
+ MethodListnfABIPtrTy,
+ ProtocolListnfABIPtrTy,
+ PropertyListPtrTy,
+ nullptr);
+
+ // New types for nonfragile abi messaging.
+ CodeGen::CodeGenTypes &Types = CGM.getTypes();
+ ASTContext &Ctx = CGM.getContext();
+
+ // MessageRefTy - LLVM for:
+ // struct _message_ref_t {
+ // IMP messenger;
+ // SEL name;
+ // };
+
+ // First the clang type for struct _message_ref_t
+ RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct,
+ Ctx.getTranslationUnitDecl(),
+ SourceLocation(), SourceLocation(),
+ &Ctx.Idents.get("_message_ref_t"));
+ RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(),
+ nullptr, Ctx.VoidPtrTy, nullptr, nullptr, false,
+ ICIS_NoInit));
+ RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(),
+ nullptr, Ctx.getObjCSelType(), nullptr, nullptr,
+ false, ICIS_NoInit));
+ RD->completeDefinition();
+
+ MessageRefCTy = Ctx.getTagDeclType(RD);
+ MessageRefCPtrTy = Ctx.getPointerType(MessageRefCTy);
+ MessageRefTy = cast<llvm::StructType>(Types.ConvertType(MessageRefCTy));
+
+ // MessageRefPtrTy - LLVM for struct _message_ref_t*
+ MessageRefPtrTy = llvm::PointerType::getUnqual(MessageRefTy);
+
+ // SuperMessageRefTy - LLVM for:
+ // struct _super_message_ref_t {
+ // SUPER_IMP messenger;
+ // SEL name;
+ // };
+ SuperMessageRefTy =
+ llvm::StructType::create("struct._super_message_ref_t",
+ ImpnfABITy, SelectorPtrTy, nullptr);
+
+ // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t*
+ SuperMessageRefPtrTy = llvm::PointerType::getUnqual(SuperMessageRefTy);
+
+
+ // struct objc_typeinfo {
+ // const void** vtable; // objc_ehtype_vtable + 2
+ // const char* name; // c++ typeinfo string
+ // Class cls;
+ // };
+ EHTypeTy =
+ llvm::StructType::create("struct._objc_typeinfo",
+ llvm::PointerType::getUnqual(Int8PtrTy),
+ Int8PtrTy, ClassnfABIPtrTy, nullptr);
+ EHTypePtrTy = llvm::PointerType::getUnqual(EHTypeTy);
+}
+
+llvm::Function *CGObjCNonFragileABIMac::ModuleInitFunction() {
+ FinishNonFragileABIModule();
+
+ return nullptr;
+}
+
+void CGObjCNonFragileABIMac::
+AddModuleClassList(ArrayRef<llvm::GlobalValue*> Container,
+ const char *SymbolName,
+ const char *SectionName) {
+ unsigned NumClasses = Container.size();
+
+ if (!NumClasses)
+ return;
+
+ SmallVector<llvm::Constant*, 8> Symbols(NumClasses);
+ for (unsigned i=0; i<NumClasses; i++)
+ Symbols[i] = llvm::ConstantExpr::getBitCast(Container[i],
+ ObjCTypes.Int8PtrTy);
+ llvm::Constant *Init =
+ llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy,
+ Symbols.size()),
+ Symbols);
+
+ llvm::GlobalVariable *GV =
+ new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false,
+ llvm::GlobalValue::PrivateLinkage,
+ Init,
+ SymbolName);
+ GV->setAlignment(CGM.getDataLayout().getABITypeAlignment(Init->getType()));
+ GV->setSection(SectionName);
+ CGM.addCompilerUsedGlobal(GV);
+}
+
+void CGObjCNonFragileABIMac::FinishNonFragileABIModule() {
+ // nonfragile abi has no module definition.
+
+ // Build list of all implemented class addresses in array
+ // L_OBJC_LABEL_CLASS_$.
+
+ for (unsigned i=0, NumClasses=ImplementedClasses.size(); i<NumClasses; i++) {
+ const ObjCInterfaceDecl *ID = ImplementedClasses[i];
+ assert(ID);
+ if (ObjCImplementationDecl *IMP = ID->getImplementation())
+ // We are implementing a weak imported interface. Give it external linkage
+ if (ID->isWeakImported() && !IMP->isWeakImported()) {
+ DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage);
+ DefinedMetaClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage);
+ }
+ }
+
+ AddModuleClassList(DefinedClasses, "OBJC_LABEL_CLASS_$",
+ "__DATA, __objc_classlist, regular, no_dead_strip");
+
+ AddModuleClassList(DefinedNonLazyClasses, "OBJC_LABEL_NONLAZY_CLASS_$",
+ "__DATA, __objc_nlclslist, regular, no_dead_strip");
+
+ // Build list of all implemented category addresses in array
+ // L_OBJC_LABEL_CATEGORY_$.
+ AddModuleClassList(DefinedCategories, "OBJC_LABEL_CATEGORY_$",
+ "__DATA, __objc_catlist, regular, no_dead_strip");
+ AddModuleClassList(DefinedNonLazyCategories, "OBJC_LABEL_NONLAZY_CATEGORY_$",
+ "__DATA, __objc_nlcatlist, regular, no_dead_strip");
+
+ EmitImageInfo();
+}
+
+/// isVTableDispatchedSelector - Returns true if SEL is not in the list of
+/// VTableDispatchMethods; false otherwise. What this means is that
+/// except for the 19 selectors in the list, we generate 32bit-style
+/// message dispatch call for all the rest.
+bool CGObjCNonFragileABIMac::isVTableDispatchedSelector(Selector Sel) {
+ // At various points we've experimented with using vtable-based
+ // dispatch for all methods.
+ switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) {
+ case CodeGenOptions::Legacy:
+ return false;
+ case CodeGenOptions::NonLegacy:
+ return true;
+ case CodeGenOptions::Mixed:
+ break;
+ }
+
+ // If so, see whether this selector is in the white-list of things which must
+ // use the new dispatch convention. We lazily build a dense set for this.
+ if (VTableDispatchMethods.empty()) {
+ VTableDispatchMethods.insert(GetNullarySelector("alloc"));
+ VTableDispatchMethods.insert(GetNullarySelector("class"));
+ VTableDispatchMethods.insert(GetNullarySelector("self"));
+ VTableDispatchMethods.insert(GetNullarySelector("isFlipped"));
+ VTableDispatchMethods.insert(GetNullarySelector("length"));
+ VTableDispatchMethods.insert(GetNullarySelector("count"));
+
+ // These are vtable-based if GC is disabled.
+ // Optimistically use vtable dispatch for hybrid compiles.
+ if (CGM.getLangOpts().getGC() != LangOptions::GCOnly) {
+ VTableDispatchMethods.insert(GetNullarySelector("retain"));
+ VTableDispatchMethods.insert(GetNullarySelector("release"));
+ VTableDispatchMethods.insert(GetNullarySelector("autorelease"));
+ }
+
+ VTableDispatchMethods.insert(GetUnarySelector("allocWithZone"));
+ VTableDispatchMethods.insert(GetUnarySelector("isKindOfClass"));
+ VTableDispatchMethods.insert(GetUnarySelector("respondsToSelector"));
+ VTableDispatchMethods.insert(GetUnarySelector("objectForKey"));
+ VTableDispatchMethods.insert(GetUnarySelector("objectAtIndex"));
+ VTableDispatchMethods.insert(GetUnarySelector("isEqualToString"));
+ VTableDispatchMethods.insert(GetUnarySelector("isEqual"));
+
+ // These are vtable-based if GC is enabled.
+ // Optimistically use vtable dispatch for hybrid compiles.
+ if (CGM.getLangOpts().getGC() != LangOptions::NonGC) {
+ VTableDispatchMethods.insert(GetNullarySelector("hash"));
+ VTableDispatchMethods.insert(GetUnarySelector("addObject"));
+
+ // "countByEnumeratingWithState:objects:count"
+ IdentifierInfo *KeyIdents[] = {
+ &CGM.getContext().Idents.get("countByEnumeratingWithState"),
+ &CGM.getContext().Idents.get("objects"),
+ &CGM.getContext().Idents.get("count")
+ };
+ VTableDispatchMethods.insert(
+ CGM.getContext().Selectors.getSelector(3, KeyIdents));
+ }
+ }
+
+ return VTableDispatchMethods.count(Sel);
+}
+
+/// BuildClassRoTInitializer - generate meta-data for:
+/// struct _class_ro_t {
+/// uint32_t const flags;
+/// uint32_t const instanceStart;
+/// uint32_t const instanceSize;
+/// uint32_t const reserved; // only when building for 64bit targets
+/// const uint8_t * const ivarLayout;
+/// const char *const name;
+/// const struct _method_list_t * const baseMethods;
+/// const struct _protocol_list_t *const baseProtocols;
+/// const struct _ivar_list_t *const ivars;
+/// const uint8_t * const weakIvarLayout;
+/// const struct _prop_list_t * const properties;
+/// }
+///
+llvm::GlobalVariable * CGObjCNonFragileABIMac::BuildClassRoTInitializer(
+ unsigned flags,
+ unsigned InstanceStart,
+ unsigned InstanceSize,
+ const ObjCImplementationDecl *ID) {
+ std::string ClassName = ID->getObjCRuntimeNameAsString();
+ llvm::Constant *Values[10]; // 11 for 64bit targets!
+
+ if (CGM.getLangOpts().ObjCAutoRefCount)
+ flags |= NonFragileABI_Class_CompiledByARC;
+
+ Values[ 0] = llvm::ConstantInt::get(ObjCTypes.IntTy, flags);
+ Values[ 1] = llvm::ConstantInt::get(ObjCTypes.IntTy, InstanceStart);
+ Values[ 2] = llvm::ConstantInt::get(ObjCTypes.IntTy, InstanceSize);
+ // FIXME. For 64bit targets add 0 here.
+ Values[ 3] = (flags & NonFragileABI_Class_Meta)
+ ? GetIvarLayoutName(nullptr, ObjCTypes)
+ : BuildIvarLayout(ID, true);
+ Values[ 4] = GetClassName(ID->getObjCRuntimeNameAsString());
+ // const struct _method_list_t * const baseMethods;
+ std::vector<llvm::Constant*> Methods;
+ std::string MethodListName("\01l_OBJC_$_");
+ if (flags & NonFragileABI_Class_Meta) {
+ MethodListName += "CLASS_METHODS_";
+ MethodListName += ID->getObjCRuntimeNameAsString();
+ for (const auto *I : ID->class_methods())
+ // Class methods should always be defined.
+ Methods.push_back(GetMethodConstant(I));
+ } else {
+ MethodListName += "INSTANCE_METHODS_";
+ MethodListName += ID->getObjCRuntimeNameAsString();
+ for (const auto *I : ID->instance_methods())
+ // Instance methods should always be defined.
+ Methods.push_back(GetMethodConstant(I));
+
+ for (const auto *PID : ID->property_impls()) {
+ if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize){
+ ObjCPropertyDecl *PD = PID->getPropertyDecl();
+
+ if (ObjCMethodDecl *MD = PD->getGetterMethodDecl())
+ if (llvm::Constant *C = GetMethodConstant(MD))
+ Methods.push_back(C);
+ if (ObjCMethodDecl *MD = PD->getSetterMethodDecl())
+ if (llvm::Constant *C = GetMethodConstant(MD))
+ Methods.push_back(C);
+ }
+ }
+ }
+ Values[ 5] = EmitMethodList(MethodListName,
+ "__DATA, __objc_const", Methods);
+
+ const ObjCInterfaceDecl *OID = ID->getClassInterface();
+ assert(OID && "CGObjCNonFragileABIMac::BuildClassRoTInitializer");
+ Values[ 6] = EmitProtocolList("\01l_OBJC_CLASS_PROTOCOLS_$_"
+ + OID->getObjCRuntimeNameAsString(),
+ OID->all_referenced_protocol_begin(),
+ OID->all_referenced_protocol_end());
+
+ if (flags & NonFragileABI_Class_Meta) {
+ Values[ 7] = llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy);
+ Values[ 8] = GetIvarLayoutName(nullptr, ObjCTypes);
+ Values[ 9] = llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy);
+ } else {
+ Values[ 7] = EmitIvarList(ID);
+ Values[ 8] = BuildIvarLayout(ID, false);
+ Values[ 9] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ID->getObjCRuntimeNameAsString(),
+ ID, ID->getClassInterface(), ObjCTypes);
+ }
+ llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassRonfABITy,
+ Values);
+ llvm::GlobalVariable *CLASS_RO_GV =
+ new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassRonfABITy, false,
+ llvm::GlobalValue::PrivateLinkage,
+ Init,
+ (flags & NonFragileABI_Class_Meta) ?
+ std::string("\01l_OBJC_METACLASS_RO_$_")+ClassName :
+ std::string("\01l_OBJC_CLASS_RO_$_")+ClassName);
+ CLASS_RO_GV->setAlignment(
+ CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ClassRonfABITy));
+ CLASS_RO_GV->setSection("__DATA, __objc_const");
+ return CLASS_RO_GV;
+
+}
+
+/// BuildClassMetaData - This routine defines that to-level meta-data
+/// for the given ClassName for:
+/// struct _class_t {
+/// struct _class_t *isa;
+/// struct _class_t * const superclass;
+/// void *cache;
+/// IMP *vtable;
+/// struct class_ro_t *ro;
+/// }
+///
+llvm::GlobalVariable *CGObjCNonFragileABIMac::BuildClassMetaData(
+ const std::string &ClassName, llvm::Constant *IsAGV, llvm::Constant *SuperClassGV,
+ llvm::Constant *ClassRoGV, bool HiddenVisibility, bool Weak) {
+ llvm::Constant *Values[] = {
+ IsAGV,
+ SuperClassGV,
+ ObjCEmptyCacheVar, // &ObjCEmptyCacheVar
+ ObjCEmptyVtableVar, // &ObjCEmptyVtableVar
+ ClassRoGV // &CLASS_RO_GV
+ };
+ if (!Values[1])
+ Values[1] = llvm::Constant::getNullValue(ObjCTypes.ClassnfABIPtrTy);
+ if (!Values[3])
+ Values[3] = llvm::Constant::getNullValue(
+ llvm::PointerType::getUnqual(ObjCTypes.ImpnfABITy));
+ llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassnfABITy,
+ Values);
+ llvm::GlobalVariable *GV = GetClassGlobal(ClassName, Weak);
+ GV->setInitializer(Init);
+ GV->setSection("__DATA, __objc_data");
+ GV->setAlignment(
+ CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ClassnfABITy));
+ if (HiddenVisibility)
+ GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
+ return GV;
+}
+
+bool
+CGObjCNonFragileABIMac::ImplementationIsNonLazy(const ObjCImplDecl *OD) const {
+ return OD->getClassMethod(GetNullarySelector("load")) != nullptr;
+}
+
+void CGObjCNonFragileABIMac::GetClassSizeInfo(const ObjCImplementationDecl *OID,
+ uint32_t &InstanceStart,
+ uint32_t &InstanceSize) {
+ const ASTRecordLayout &RL =
+ CGM.getContext().getASTObjCImplementationLayout(OID);
+
+ // InstanceSize is really instance end.
+ InstanceSize = RL.getDataSize().getQuantity();
+
+ // If there are no fields, the start is the same as the end.
+ if (!RL.getFieldCount())
+ InstanceStart = InstanceSize;
+ else
+ InstanceStart = RL.getFieldOffset(0) / CGM.getContext().getCharWidth();
+}
+
+void CGObjCNonFragileABIMac::GenerateClass(const ObjCImplementationDecl *ID) {
+ std::string ClassName = ID->getObjCRuntimeNameAsString();
+ if (!ObjCEmptyCacheVar) {
+ ObjCEmptyCacheVar = new llvm::GlobalVariable(
+ CGM.getModule(),
+ ObjCTypes.CacheTy,
+ false,
+ llvm::GlobalValue::ExternalLinkage,
+ nullptr,
+ "_objc_empty_cache");
+
+ // Make this entry NULL for any iOS device target, any iOS simulator target,
+ // OS X with deployment target 10.9 or later.
+ const llvm::Triple &Triple = CGM.getTarget().getTriple();
+ if (Triple.isiOS() || (Triple.isMacOSX() && !Triple.isMacOSXVersionLT(10, 9)))
+ // This entry will be null.
+ ObjCEmptyVtableVar = nullptr;
+ else
+ ObjCEmptyVtableVar = new llvm::GlobalVariable(
+ CGM.getModule(),
+ ObjCTypes.ImpnfABITy,
+ false,
+ llvm::GlobalValue::ExternalLinkage,
+ nullptr,
+ "_objc_empty_vtable");
+ }
+ assert(ID->getClassInterface() &&
+ "CGObjCNonFragileABIMac::GenerateClass - class is 0");
+ // FIXME: Is this correct (that meta class size is never computed)?
+ uint32_t InstanceStart =
+ CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassnfABITy);
+ uint32_t InstanceSize = InstanceStart;
+ uint32_t flags = NonFragileABI_Class_Meta;
+ llvm::SmallString<64> ObjCMetaClassName(getMetaclassSymbolPrefix());
+ llvm::SmallString<64> ObjCClassName(getClassSymbolPrefix());
+ llvm::SmallString<64> TClassName;
+
+ llvm::GlobalVariable *SuperClassGV, *IsAGV;
+
+ // Build the flags for the metaclass.
+ bool classIsHidden =
+ ID->getClassInterface()->getVisibility() == HiddenVisibility;
+ if (classIsHidden)
+ flags |= NonFragileABI_Class_Hidden;
+
+ // FIXME: why is this flag set on the metaclass?
+ // ObjC metaclasses have no fields and don't really get constructed.
+ if (ID->hasNonZeroConstructors() || ID->hasDestructors()) {
+ flags |= NonFragileABI_Class_HasCXXStructors;
+ if (!ID->hasNonZeroConstructors())
+ flags |= NonFragileABI_Class_HasCXXDestructorOnly;
+ }
+
+ if (!ID->getClassInterface()->getSuperClass()) {
+ // class is root
+ flags |= NonFragileABI_Class_Root;
+ TClassName = ObjCClassName;
+ TClassName += ClassName;
+ SuperClassGV = GetClassGlobal(TClassName.str(),
+ ID->getClassInterface()->isWeakImported());
+ TClassName = ObjCMetaClassName;
+ TClassName += ClassName;
+ IsAGV = GetClassGlobal(TClassName.str(),
+ ID->getClassInterface()->isWeakImported());
+ } else {
+ // Has a root. Current class is not a root.
+ const ObjCInterfaceDecl *Root = ID->getClassInterface();
+ while (const ObjCInterfaceDecl *Super = Root->getSuperClass())
+ Root = Super;
+ TClassName = ObjCMetaClassName ;
+ TClassName += Root->getObjCRuntimeNameAsString();
+ IsAGV = GetClassGlobal(TClassName.str(),
+ Root->isWeakImported());
+
+ // work on super class metadata symbol.
+ TClassName = ObjCMetaClassName;
+ TClassName += ID->getClassInterface()->getSuperClass()->getObjCRuntimeNameAsString();
+ SuperClassGV = GetClassGlobal(
+ TClassName.str(),
+ ID->getClassInterface()->getSuperClass()->isWeakImported());
+ }
+ llvm::GlobalVariable *CLASS_RO_GV = BuildClassRoTInitializer(flags,
+ InstanceStart,
+ InstanceSize,ID);
+ TClassName = ObjCMetaClassName;
+ TClassName += ClassName;
+ llvm::GlobalVariable *MetaTClass = BuildClassMetaData(
+ TClassName.str(), IsAGV, SuperClassGV, CLASS_RO_GV, classIsHidden,
+ ID->getClassInterface()->isWeakImported());
+ DefinedMetaClasses.push_back(MetaTClass);
+
+ // Metadata for the class
+ flags = 0;
+ if (classIsHidden)
+ flags |= NonFragileABI_Class_Hidden;
+
+ if (ID->hasNonZeroConstructors() || ID->hasDestructors()) {
+ flags |= NonFragileABI_Class_HasCXXStructors;
+
+ // Set a flag to enable a runtime optimization when a class has
+ // fields that require destruction but which don't require
+ // anything except zero-initialization during construction. This
+ // is most notably true of __strong and __weak types, but you can
+ // also imagine there being C++ types with non-trivial default
+ // constructors that merely set all fields to null.
+ if (!ID->hasNonZeroConstructors())
+ flags |= NonFragileABI_Class_HasCXXDestructorOnly;
+ }
+
+ if (hasObjCExceptionAttribute(CGM.getContext(), ID->getClassInterface()))
+ flags |= NonFragileABI_Class_Exception;
+
+ if (!ID->getClassInterface()->getSuperClass()) {
+ flags |= NonFragileABI_Class_Root;
+ SuperClassGV = nullptr;
+ } else {
+ // Has a root. Current class is not a root.
+ TClassName = ObjCClassName;
+ TClassName += ID->getClassInterface()->getSuperClass()->getObjCRuntimeNameAsString();
+ SuperClassGV = GetClassGlobal(
+ TClassName.str(),
+ ID->getClassInterface()->getSuperClass()->isWeakImported());
+ }
+ GetClassSizeInfo(ID, InstanceStart, InstanceSize);
+ CLASS_RO_GV = BuildClassRoTInitializer(flags,
+ InstanceStart,
+ InstanceSize,
+ ID);
+
+ TClassName = ObjCClassName;
+ TClassName += ClassName;
+ llvm::GlobalVariable *ClassMD =
+ BuildClassMetaData(TClassName.str(), MetaTClass, SuperClassGV, CLASS_RO_GV,
+ classIsHidden,
+ ID->getClassInterface()->isWeakImported());
+ DefinedClasses.push_back(ClassMD);
+ ImplementedClasses.push_back(ID->getClassInterface());
+
+ // Determine if this class is also "non-lazy".
+ if (ImplementationIsNonLazy(ID))
+ DefinedNonLazyClasses.push_back(ClassMD);
+
+ // Force the definition of the EHType if necessary.
+ if (flags & NonFragileABI_Class_Exception)
+ GetInterfaceEHType(ID->getClassInterface(), true);
+ // Make sure method definition entries are all clear for next implementation.
+ MethodDefinitions.clear();
+}
+
+/// GenerateProtocolRef - This routine is called to generate code for
+/// a protocol reference expression; as in:
+/// @code
+/// @protocol(Proto1);
+/// @endcode
+/// It generates a weak reference to l_OBJC_PROTOCOL_REFERENCE_$_Proto1
+/// which will hold address of the protocol meta-data.
+///
+llvm::Value *CGObjCNonFragileABIMac::GenerateProtocolRef(CodeGenFunction &CGF,
+ const ObjCProtocolDecl *PD) {
+
+ // This routine is called for @protocol only. So, we must build definition
+ // of protocol's meta-data (not a reference to it!)
+ //
+ llvm::Constant *Init =
+ llvm::ConstantExpr::getBitCast(GetOrEmitProtocol(PD),
+ ObjCTypes.getExternalProtocolPtrTy());
+
+ std::string ProtocolName("\01l_OBJC_PROTOCOL_REFERENCE_$_");
+ ProtocolName += PD->getObjCRuntimeNameAsString();
+
+ llvm::GlobalVariable *PTGV = CGM.getModule().getGlobalVariable(ProtocolName);
+ if (PTGV)
+ return CGF.Builder.CreateLoad(PTGV);
+ PTGV = new llvm::GlobalVariable(
+ CGM.getModule(),
+ Init->getType(), false,
+ llvm::GlobalValue::WeakAnyLinkage,
+ Init,
+ ProtocolName);
+ PTGV->setSection("__DATA, __objc_protorefs, coalesced, no_dead_strip");
+ PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
+ CGM.addCompilerUsedGlobal(PTGV);
+ return CGF.Builder.CreateLoad(PTGV);
+}
+
+/// GenerateCategory - Build metadata for a category implementation.
+/// struct _category_t {
+/// const char * const name;
+/// struct _class_t *const cls;
+/// const struct _method_list_t * const instance_methods;
+/// const struct _method_list_t * const class_methods;
+/// const struct _protocol_list_t * const protocols;
+/// const struct _prop_list_t * const properties;
+/// }
+///
+void CGObjCNonFragileABIMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
+ const ObjCInterfaceDecl *Interface = OCD->getClassInterface();
+ const char *Prefix = "\01l_OBJC_$_CATEGORY_";
+
+ llvm::SmallString<64> ExtCatName(Prefix);
+ ExtCatName += Interface->getObjCRuntimeNameAsString();
+ ExtCatName += "_$_";
+ ExtCatName += OCD->getNameAsString();
+
+ llvm::SmallString<64> ExtClassName(getClassSymbolPrefix());
+ ExtClassName += Interface->getObjCRuntimeNameAsString();
+
+ llvm::Constant *Values[6];
+ Values[0] = GetClassName(OCD->getIdentifier()->getName());
+ // meta-class entry symbol
+ llvm::GlobalVariable *ClassGV =
+ GetClassGlobal(ExtClassName.str(), Interface->isWeakImported());
+
+ Values[1] = ClassGV;
+ std::vector<llvm::Constant*> Methods;
+ llvm::SmallString<64> MethodListName(Prefix);
+
+ MethodListName += "INSTANCE_METHODS_";
+ MethodListName += Interface->getObjCRuntimeNameAsString();
+ MethodListName += "_$_";
+ MethodListName += OCD->getName();
+
+ for (const auto *I : OCD->instance_methods())
+ // Instance methods should always be defined.
+ Methods.push_back(GetMethodConstant(I));
+
+ Values[2] = EmitMethodList(MethodListName.str(),
+ "__DATA, __objc_const",
+ Methods);
+
+ MethodListName = Prefix;
+ MethodListName += "CLASS_METHODS_";
+ MethodListName += Interface->getObjCRuntimeNameAsString();
+ MethodListName += "_$_";
+ MethodListName += OCD->getNameAsString();
+
+ Methods.clear();
+ for (const auto *I : OCD->class_methods())
+ // Class methods should always be defined.
+ Methods.push_back(GetMethodConstant(I));
+
+ Values[3] = EmitMethodList(MethodListName.str(),
+ "__DATA, __objc_const",
+ Methods);
+ const ObjCCategoryDecl *Category =
+ Interface->FindCategoryDeclaration(OCD->getIdentifier());
+ if (Category) {
+ SmallString<256> ExtName;
+ llvm::raw_svector_ostream(ExtName) << Interface->getObjCRuntimeNameAsString() << "_$_"
+ << OCD->getName();
+ Values[4] = EmitProtocolList("\01l_OBJC_CATEGORY_PROTOCOLS_$_"
+ + Interface->getObjCRuntimeNameAsString() + "_$_"
+ + Category->getName(),
+ Category->protocol_begin(),
+ Category->protocol_end());
+ Values[5] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ExtName.str(),
+ OCD, Category, ObjCTypes);
+ } else {
+ Values[4] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy);
+ Values[5] = llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy);
+ }
+
+ llvm::Constant *Init =
+ llvm::ConstantStruct::get(ObjCTypes.CategorynfABITy,
+ Values);
+ llvm::GlobalVariable *GCATV
+ = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.CategorynfABITy,
+ false,
+ llvm::GlobalValue::PrivateLinkage,
+ Init,
+ ExtCatName.str());
+ GCATV->setAlignment(
+ CGM.getDataLayout().getABITypeAlignment(ObjCTypes.CategorynfABITy));
+ GCATV->setSection("__DATA, __objc_const");
+ CGM.addCompilerUsedGlobal(GCATV);
+ DefinedCategories.push_back(GCATV);
+
+ // Determine if this category is also "non-lazy".
+ if (ImplementationIsNonLazy(OCD))
+ DefinedNonLazyCategories.push_back(GCATV);
+ // method definition entries must be clear for next implementation.
+ MethodDefinitions.clear();
+}
+
+/// GetMethodConstant - Return a struct objc_method constant for the
+/// given method if it has been defined. The result is null if the
+/// method has not been defined. The return value has type MethodPtrTy.
+llvm::Constant *CGObjCNonFragileABIMac::GetMethodConstant(
+ const ObjCMethodDecl *MD) {
+ llvm::Function *Fn = GetMethodDefinition(MD);
+ if (!Fn)
+ return nullptr;
+
+ llvm::Constant *Method[] = {
+ llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()),
+ ObjCTypes.SelectorPtrTy),
+ GetMethodVarType(MD),
+ llvm::ConstantExpr::getBitCast(Fn, ObjCTypes.Int8PtrTy)
+ };
+ return llvm::ConstantStruct::get(ObjCTypes.MethodTy, Method);
+}
+
+/// EmitMethodList - Build meta-data for method declarations
+/// struct _method_list_t {
+/// uint32_t entsize; // sizeof(struct _objc_method)
+/// uint32_t method_count;
+/// struct _objc_method method_list[method_count];
+/// }
+///
+llvm::Constant *
+CGObjCNonFragileABIMac::EmitMethodList(Twine Name,
+ const char *Section,
+ ArrayRef<llvm::Constant*> Methods) {
+ // Return null for empty list.
+ if (Methods.empty())
+ return llvm::Constant::getNullValue(ObjCTypes.MethodListnfABIPtrTy);
+
+ llvm::Constant *Values[3];
+ // sizeof(struct _objc_method)
+ unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.MethodTy);
+ Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size);
+ // method_count
+ Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Methods.size());
+ llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.MethodTy,
+ Methods.size());
+ Values[2] = llvm::ConstantArray::get(AT, Methods);
+ llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values);
+
+ llvm::GlobalVariable *GV =
+ new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false,
+ llvm::GlobalValue::PrivateLinkage, Init, Name);
+ GV->setAlignment(CGM.getDataLayout().getABITypeAlignment(Init->getType()));
+ GV->setSection(Section);
+ CGM.addCompilerUsedGlobal(GV);
+ return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListnfABIPtrTy);
+}
+
+/// ObjCIvarOffsetVariable - Returns the ivar offset variable for
+/// the given ivar.
+llvm::GlobalVariable *
+CGObjCNonFragileABIMac::ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID,
+ const ObjCIvarDecl *Ivar) {
+
+ const ObjCInterfaceDecl *Container = Ivar->getContainingInterface();
+ llvm::SmallString<64> Name("OBJC_IVAR_$_");
+ Name += Container->getObjCRuntimeNameAsString();
+ Name += ".";
+ Name += Ivar->getName();
+ llvm::GlobalVariable *IvarOffsetGV =
+ CGM.getModule().getGlobalVariable(Name);
+ if (!IvarOffsetGV)
+ IvarOffsetGV = new llvm::GlobalVariable(
+ CGM.getModule(), ObjCTypes.IvarOffsetVarTy, false,
+ llvm::GlobalValue::ExternalLinkage, nullptr, Name.str());
+ return IvarOffsetGV;
+}
+
+llvm::Constant *
+CGObjCNonFragileABIMac::EmitIvarOffsetVar(const ObjCInterfaceDecl *ID,
+ const ObjCIvarDecl *Ivar,
+ unsigned long int Offset) {
+ llvm::GlobalVariable *IvarOffsetGV = ObjCIvarOffsetVariable(ID, Ivar);
+ IvarOffsetGV->setInitializer(
+ llvm::ConstantInt::get(ObjCTypes.IvarOffsetVarTy, Offset));
+ IvarOffsetGV->setAlignment(
+ CGM.getDataLayout().getABITypeAlignment(ObjCTypes.IvarOffsetVarTy));
+
+ // FIXME: This matches gcc, but shouldn't the visibility be set on the use as
+ // well (i.e., in ObjCIvarOffsetVariable).
+ if (Ivar->getAccessControl() == ObjCIvarDecl::Private ||
+ Ivar->getAccessControl() == ObjCIvarDecl::Package ||
+ ID->getVisibility() == HiddenVisibility)
+ IvarOffsetGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
+ else
+ IvarOffsetGV->setVisibility(llvm::GlobalValue::DefaultVisibility);
+ IvarOffsetGV->setSection("__DATA, __objc_ivar");
+ return IvarOffsetGV;
+}
+
+/// EmitIvarList - Emit the ivar list for the given
+/// implementation. The return value has type
+/// IvarListnfABIPtrTy.
+/// struct _ivar_t {
+/// unsigned [long] int *offset; // pointer to ivar offset location
+/// char *name;
+/// char *type;
+/// uint32_t alignment;
+/// uint32_t size;
+/// }
+/// struct _ivar_list_t {
+/// uint32 entsize; // sizeof(struct _ivar_t)
+/// uint32 count;
+/// struct _iver_t list[count];
+/// }
+///
+
+llvm::Constant *CGObjCNonFragileABIMac::EmitIvarList(
+ const ObjCImplementationDecl *ID) {
+
+ std::vector<llvm::Constant*> Ivars;
+
+ const ObjCInterfaceDecl *OID = ID->getClassInterface();
+ assert(OID && "CGObjCNonFragileABIMac::EmitIvarList - null interface");
+
+ // FIXME. Consolidate this with similar code in GenerateClass.
+
+ for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin();
+ IVD; IVD = IVD->getNextIvar()) {
+ // Ignore unnamed bit-fields.
+ if (!IVD->getDeclName())
+ continue;
+ llvm::Constant *Ivar[5];
+ Ivar[0] = EmitIvarOffsetVar(ID->getClassInterface(), IVD,
+ ComputeIvarBaseOffset(CGM, ID, IVD));
+ Ivar[1] = GetMethodVarName(IVD->getIdentifier());
+ Ivar[2] = GetMethodVarType(IVD);
+ llvm::Type *FieldTy =
+ CGM.getTypes().ConvertTypeForMem(IVD->getType());
+ unsigned Size = CGM.getDataLayout().getTypeAllocSize(FieldTy);
+ unsigned Align = CGM.getContext().getPreferredTypeAlign(
+ IVD->getType().getTypePtr()) >> 3;
+ Align = llvm::Log2_32(Align);
+ Ivar[3] = llvm::ConstantInt::get(ObjCTypes.IntTy, Align);
+ // NOTE. Size of a bitfield does not match gcc's, because of the
+ // way bitfields are treated special in each. But I am told that
+ // 'size' for bitfield ivars is ignored by the runtime so it does
+ // not matter. If it matters, there is enough info to get the
+ // bitfield right!
+ Ivar[4] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size);
+ Ivars.push_back(llvm::ConstantStruct::get(ObjCTypes.IvarnfABITy, Ivar));
+ }
+ // Return null for empty list.
+ if (Ivars.empty())
+ return llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy);
+
+ llvm::Constant *Values[3];
+ unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.IvarnfABITy);
+ Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size);
+ Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Ivars.size());
+ llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.IvarnfABITy,
+ Ivars.size());
+ Values[2] = llvm::ConstantArray::get(AT, Ivars);
+ llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values);
+ const char *Prefix = "\01l_OBJC_$_INSTANCE_VARIABLES_";
+ llvm::GlobalVariable *GV =
+ new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false,
+ llvm::GlobalValue::PrivateLinkage,
+ Init,
+ Prefix + OID->getObjCRuntimeNameAsString());
+ GV->setAlignment(
+ CGM.getDataLayout().getABITypeAlignment(Init->getType()));
+ GV->setSection("__DATA, __objc_const");
+
+ CGM.addCompilerUsedGlobal(GV);
+ return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListnfABIPtrTy);
+}
+
+llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocolRef(
+ const ObjCProtocolDecl *PD) {
+ llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()];
+
+ if (!Entry) {
+ // We use the initializer as a marker of whether this is a forward
+ // reference or not. At module finalization we add the empty
+ // contents for protocols which were referenced but never defined.
+ Entry =
+ new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy,
+ false, llvm::GlobalValue::ExternalLinkage,
+ nullptr,
+ "\01l_OBJC_PROTOCOL_$_" + PD->getObjCRuntimeNameAsString());
+ Entry->setSection("__DATA,__datacoal_nt,coalesced");
+ }
+
+ return Entry;
+}
+
+/// GetOrEmitProtocol - Generate the protocol meta-data:
+/// @code
+/// struct _protocol_t {
+/// id isa; // NULL
+/// const char * const protocol_name;
+/// const struct _protocol_list_t * protocol_list; // super protocols
+/// const struct method_list_t * const instance_methods;
+/// const struct method_list_t * const class_methods;
+/// const struct method_list_t *optionalInstanceMethods;
+/// const struct method_list_t *optionalClassMethods;
+/// const struct _prop_list_t * properties;
+/// const uint32_t size; // sizeof(struct _protocol_t)
+/// const uint32_t flags; // = 0
+/// const char ** extendedMethodTypes;
+/// const char *demangledName;
+/// }
+/// @endcode
+///
+
+llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocol(
+ const ObjCProtocolDecl *PD) {
+ llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()];
+
+ // Early exit if a defining object has already been generated.
+ if (Entry && Entry->hasInitializer())
+ return Entry;
+
+ // Use the protocol definition, if there is one.
+ if (const ObjCProtocolDecl *Def = PD->getDefinition())
+ PD = Def;
+
+ // Construct method lists.
+ std::vector<llvm::Constant*> InstanceMethods, ClassMethods;
+ std::vector<llvm::Constant*> OptInstanceMethods, OptClassMethods;
+ std::vector<llvm::Constant*> MethodTypesExt, OptMethodTypesExt;
+ for (const auto *MD : PD->instance_methods()) {
+ llvm::Constant *C = GetMethodDescriptionConstant(MD);
+ if (!C)
+ return GetOrEmitProtocolRef(PD);
+
+ if (MD->getImplementationControl() == ObjCMethodDecl::Optional) {
+ OptInstanceMethods.push_back(C);
+ OptMethodTypesExt.push_back(GetMethodVarType(MD, true));
+ } else {
+ InstanceMethods.push_back(C);
+ MethodTypesExt.push_back(GetMethodVarType(MD, true));
+ }
+ }
+
+ for (const auto *MD : PD->class_methods()) {
+ llvm::Constant *C = GetMethodDescriptionConstant(MD);
+ if (!C)
+ return GetOrEmitProtocolRef(PD);
+
+ if (MD->getImplementationControl() == ObjCMethodDecl::Optional) {
+ OptClassMethods.push_back(C);
+ OptMethodTypesExt.push_back(GetMethodVarType(MD, true));
+ } else {
+ ClassMethods.push_back(C);
+ MethodTypesExt.push_back(GetMethodVarType(MD, true));
+ }
+ }
+
+ MethodTypesExt.insert(MethodTypesExt.end(),
+ OptMethodTypesExt.begin(), OptMethodTypesExt.end());
+
+ llvm::Constant *Values[12];
+ // isa is NULL
+ Values[0] = llvm::Constant::getNullValue(ObjCTypes.ObjectPtrTy);
+ Values[1] = GetClassName(PD->getObjCRuntimeNameAsString());
+ Values[2] = EmitProtocolList("\01l_OBJC_$_PROTOCOL_REFS_" + PD->getObjCRuntimeNameAsString(),
+ PD->protocol_begin(),
+ PD->protocol_end());
+
+ Values[3] = EmitMethodList("\01l_OBJC_$_PROTOCOL_INSTANCE_METHODS_"
+ + PD->getObjCRuntimeNameAsString(),
+ "__DATA, __objc_const",
+ InstanceMethods);
+ Values[4] = EmitMethodList("\01l_OBJC_$_PROTOCOL_CLASS_METHODS_"
+ + PD->getObjCRuntimeNameAsString(),
+ "__DATA, __objc_const",
+ ClassMethods);
+ Values[5] = EmitMethodList("\01l_OBJC_$_PROTOCOL_INSTANCE_METHODS_OPT_"
+ + PD->getObjCRuntimeNameAsString(),
+ "__DATA, __objc_const",
+ OptInstanceMethods);
+ Values[6] = EmitMethodList("\01l_OBJC_$_PROTOCOL_CLASS_METHODS_OPT_"
+ + PD->getObjCRuntimeNameAsString(),
+ "__DATA, __objc_const",
+ OptClassMethods);
+ Values[7] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + PD->getObjCRuntimeNameAsString(),
+ nullptr, PD, ObjCTypes);
+ uint32_t Size =
+ CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolnfABITy);
+ Values[8] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size);
+ Values[9] = llvm::Constant::getNullValue(ObjCTypes.IntTy);
+ Values[10] = EmitProtocolMethodTypes("\01l_OBJC_$_PROTOCOL_METHOD_TYPES_"
+ + PD->getObjCRuntimeNameAsString(),
+ MethodTypesExt, ObjCTypes);
+ // const char *demangledName;
+ Values[11] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy);
+
+ llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ProtocolnfABITy,
+ Values);
+
+ if (Entry) {
+ // Already created, fix the linkage and update the initializer.
+ Entry->setLinkage(llvm::GlobalValue::WeakAnyLinkage);
+ Entry->setInitializer(Init);
+ } else {
+ Entry =
+ new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy,
+ false, llvm::GlobalValue::WeakAnyLinkage, Init,
+ "\01l_OBJC_PROTOCOL_$_" + PD->getObjCRuntimeNameAsString());
+ Entry->setAlignment(
+ CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ProtocolnfABITy));
+ Entry->setSection("__DATA,__datacoal_nt,coalesced");
+
+ Protocols[PD->getIdentifier()] = Entry;
+ }
+ Entry->setVisibility(llvm::GlobalValue::HiddenVisibility);
+ CGM.addCompilerUsedGlobal(Entry);
+
+ // Use this protocol meta-data to build protocol list table in section
+ // __DATA, __objc_protolist
+ llvm::GlobalVariable *PTGV =
+ new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABIPtrTy,
+ false, llvm::GlobalValue::WeakAnyLinkage, Entry,
+ "\01l_OBJC_LABEL_PROTOCOL_$_" + PD->getObjCRuntimeNameAsString());
+ PTGV->setAlignment(
+ CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ProtocolnfABIPtrTy));
+ PTGV->setSection("__DATA, __objc_protolist, coalesced, no_dead_strip");
+ PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
+ CGM.addCompilerUsedGlobal(PTGV);
+ return Entry;
+}
+
+/// EmitProtocolList - Generate protocol list meta-data:
+/// @code
+/// struct _protocol_list_t {
+/// long protocol_count; // Note, this is 32/64 bit
+/// struct _protocol_t[protocol_count];
+/// }
+/// @endcode
+///
+llvm::Constant *
+CGObjCNonFragileABIMac::EmitProtocolList(Twine Name,
+ ObjCProtocolDecl::protocol_iterator begin,
+ ObjCProtocolDecl::protocol_iterator end) {
+ SmallVector<llvm::Constant *, 16> ProtocolRefs;
+
+ // Just return null for empty protocol lists
+ if (begin == end)
+ return llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy);
+
+ // FIXME: We shouldn't need to do this lookup here, should we?
+ SmallString<256> TmpName;
+ Name.toVector(TmpName);
+ llvm::GlobalVariable *GV =
+ CGM.getModule().getGlobalVariable(TmpName.str(), true);
+ if (GV)
+ return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListnfABIPtrTy);
+
+ for (; begin != end; ++begin)
+ ProtocolRefs.push_back(GetProtocolRef(*begin)); // Implemented???
+
+ // This list is null terminated.
+ ProtocolRefs.push_back(llvm::Constant::getNullValue(
+ ObjCTypes.ProtocolnfABIPtrTy));
+
+ llvm::Constant *Values[2];
+ Values[0] =
+ llvm::ConstantInt::get(ObjCTypes.LongTy, ProtocolRefs.size() - 1);
+ Values[1] =
+ llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.ProtocolnfABIPtrTy,
+ ProtocolRefs.size()),
+ ProtocolRefs);
+
+ llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values);
+ GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false,
+ llvm::GlobalValue::PrivateLinkage,
+ Init, Name);
+ GV->setSection("__DATA, __objc_const");
+ GV->setAlignment(
+ CGM.getDataLayout().getABITypeAlignment(Init->getType()));
+ CGM.addCompilerUsedGlobal(GV);
+ return llvm::ConstantExpr::getBitCast(GV,
+ ObjCTypes.ProtocolListnfABIPtrTy);
+}
+
+/// GetMethodDescriptionConstant - This routine build following meta-data:
+/// struct _objc_method {
+/// SEL _cmd;
+/// char *method_type;
+/// char *_imp;
+/// }
+
+llvm::Constant *
+CGObjCNonFragileABIMac::GetMethodDescriptionConstant(const ObjCMethodDecl *MD) {
+ llvm::Constant *Desc[3];
+ Desc[0] =
+ llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()),
+ ObjCTypes.SelectorPtrTy);
+ Desc[1] = GetMethodVarType(MD);
+ if (!Desc[1])
+ return nullptr;
+
+ // Protocol methods have no implementation. So, this entry is always NULL.
+ Desc[2] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy);
+ return llvm::ConstantStruct::get(ObjCTypes.MethodTy, Desc);
+}
+
+/// EmitObjCValueForIvar - Code Gen for nonfragile ivar reference.
+/// This code gen. amounts to generating code for:
+/// @code
+/// (type *)((char *)base + _OBJC_IVAR_$_.ivar;
+/// @encode
+///
+LValue CGObjCNonFragileABIMac::EmitObjCValueForIvar(
+ CodeGen::CodeGenFunction &CGF,
+ QualType ObjectTy,
+ llvm::Value *BaseValue,
+ const ObjCIvarDecl *Ivar,
+ unsigned CVRQualifiers) {
+ ObjCInterfaceDecl *ID = ObjectTy->getAs<ObjCObjectType>()->getInterface();
+ llvm::Value *Offset = EmitIvarOffset(CGF, ID, Ivar);
+ return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
+ Offset);
+}
+
+llvm::Value *CGObjCNonFragileABIMac::EmitIvarOffset(
+ CodeGen::CodeGenFunction &CGF,
+ const ObjCInterfaceDecl *Interface,
+ const ObjCIvarDecl *Ivar) {
+ llvm::Value *IvarOffsetValue = ObjCIvarOffsetVariable(Interface, Ivar);
+ IvarOffsetValue = CGF.Builder.CreateLoad(IvarOffsetValue, "ivar");
+ if (IsIvarOffsetKnownIdempotent(CGF, Ivar))
+ cast<llvm::LoadInst>(IvarOffsetValue)
+ ->setMetadata(CGM.getModule().getMDKindID("invariant.load"),
+ llvm::MDNode::get(VMContext, None));
+
+ // This could be 32bit int or 64bit integer depending on the architecture.
+ // Cast it to 64bit integer value, if it is a 32bit integer ivar offset value
+ // as this is what caller always expectes.
+ if (ObjCTypes.IvarOffsetVarTy == ObjCTypes.IntTy)
+ IvarOffsetValue = CGF.Builder.CreateIntCast(
+ IvarOffsetValue, ObjCTypes.LongTy, true, "ivar.conv");
+ return IvarOffsetValue;
+}
+
+static void appendSelectorForMessageRefTable(std::string &buffer,
+ Selector selector) {
+ if (selector.isUnarySelector()) {
+ buffer += selector.getNameForSlot(0);
+ return;
+ }
+
+ for (unsigned i = 0, e = selector.getNumArgs(); i != e; ++i) {
+ buffer += selector.getNameForSlot(i);
+ buffer += '_';
+ }
+}
+
+/// Emit a "v-table" message send. We emit a weak hidden-visibility
+/// struct, initially containing the selector pointer and a pointer to
+/// a "fixup" variant of the appropriate objc_msgSend. To call, we
+/// load and call the function pointer, passing the address of the
+/// struct as the second parameter. The runtime determines whether
+/// the selector is currently emitted using vtable dispatch; if so, it
+/// substitutes a stub function which simply tail-calls through the
+/// appropriate vtable slot, and if not, it substitues a stub function
+/// which tail-calls objc_msgSend. Both stubs adjust the selector
+/// argument to correctly point to the selector.
+RValue
+CGObjCNonFragileABIMac::EmitVTableMessageSend(CodeGenFunction &CGF,
+ ReturnValueSlot returnSlot,
+ QualType resultType,
+ Selector selector,
+ llvm::Value *arg0,
+ QualType arg0Type,
+ bool isSuper,
+ const CallArgList &formalArgs,
+ const ObjCMethodDecl *method) {
+ // Compute the actual arguments.
+ CallArgList args;
+
+ // First argument: the receiver / super-call structure.
+ if (!isSuper)
+ arg0 = CGF.Builder.CreateBitCast(arg0, ObjCTypes.ObjectPtrTy);
+ args.add(RValue::get(arg0), arg0Type);
+
+ // Second argument: a pointer to the message ref structure. Leave
+ // the actual argument value blank for now.
+ args.add(RValue::get(nullptr), ObjCTypes.MessageRefCPtrTy);
+
+ args.insert(args.end(), formalArgs.begin(), formalArgs.end());
+
+ MessageSendInfo MSI = getMessageSendInfo(method, resultType, args);
+
+ NullReturnState nullReturn;
+
+ // Find the function to call and the mangled name for the message
+ // ref structure. Using a different mangled name wouldn't actually
+ // be a problem; it would just be a waste.
+ //
+ // The runtime currently never uses vtable dispatch for anything
+ // except normal, non-super message-sends.
+ // FIXME: don't use this for that.
+ llvm::Constant *fn = nullptr;
+ std::string messageRefName("\01l_");
+ if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) {
+ if (isSuper) {
+ fn = ObjCTypes.getMessageSendSuper2StretFixupFn();
+ messageRefName += "objc_msgSendSuper2_stret_fixup";
+ } else {
+ nullReturn.init(CGF, arg0);
+ fn = ObjCTypes.getMessageSendStretFixupFn();
+ messageRefName += "objc_msgSend_stret_fixup";
+ }
+ } else if (!isSuper && CGM.ReturnTypeUsesFPRet(resultType)) {
+ fn = ObjCTypes.getMessageSendFpretFixupFn();
+ messageRefName += "objc_msgSend_fpret_fixup";
+ } else {
+ if (isSuper) {
+ fn = ObjCTypes.getMessageSendSuper2FixupFn();
+ messageRefName += "objc_msgSendSuper2_fixup";
+ } else {
+ fn = ObjCTypes.getMessageSendFixupFn();
+ messageRefName += "objc_msgSend_fixup";
+ }
+ }
+ assert(fn && "CGObjCNonFragileABIMac::EmitMessageSend");
+ messageRefName += '_';
+
+ // Append the selector name, except use underscores anywhere we
+ // would have used colons.
+ appendSelectorForMessageRefTable(messageRefName, selector);
+
+ llvm::GlobalVariable *messageRef
+ = CGM.getModule().getGlobalVariable(messageRefName);
+ if (!messageRef) {
+ // Build the message ref structure.
+ llvm::Constant *values[] = { fn, GetMethodVarName(selector) };
+ llvm::Constant *init = llvm::ConstantStruct::getAnon(values);
+ messageRef = new llvm::GlobalVariable(CGM.getModule(),
+ init->getType(),
+ /*constant*/ false,
+ llvm::GlobalValue::WeakAnyLinkage,
+ init,
+ messageRefName);
+ messageRef->setVisibility(llvm::GlobalValue::HiddenVisibility);
+ messageRef->setAlignment(16);
+ messageRef->setSection("__DATA, __objc_msgrefs, coalesced");
+ }
+
+ bool requiresnullCheck = false;
+ if (CGM.getLangOpts().ObjCAutoRefCount && method)
+ for (const auto *ParamDecl : method->params()) {
+ if (ParamDecl->hasAttr<NSConsumedAttr>()) {
+ if (!nullReturn.NullBB)
+ nullReturn.init(CGF, arg0);
+ requiresnullCheck = true;
+ break;
+ }
+ }
+
+ llvm::Value *mref =
+ CGF.Builder.CreateBitCast(messageRef, ObjCTypes.MessageRefPtrTy);
+
+ // Update the message ref argument.
+ args[1].RV = RValue::get(mref);
+
+ // Load the function to call from the message ref table.
+ llvm::Value *callee =
+ CGF.Builder.CreateStructGEP(ObjCTypes.MessageRefTy, mref, 0);
+ callee = CGF.Builder.CreateLoad(callee, "msgSend_fn");
+
+ callee = CGF.Builder.CreateBitCast(callee, MSI.MessengerType);
+
+ RValue result = CGF.EmitCall(MSI.CallInfo, callee, returnSlot, args);
+ return nullReturn.complete(CGF, result, resultType, formalArgs,
+ requiresnullCheck ? method : nullptr);
+}
+
+/// Generate code for a message send expression in the nonfragile abi.
+CodeGen::RValue
+CGObjCNonFragileABIMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF,
+ ReturnValueSlot Return,
+ QualType ResultType,
+ Selector Sel,
+ llvm::Value *Receiver,
+ const CallArgList &CallArgs,
+ const ObjCInterfaceDecl *Class,
+ const ObjCMethodDecl *Method) {
+ return isVTableDispatchedSelector(Sel)
+ ? EmitVTableMessageSend(CGF, Return, ResultType, Sel,
+ Receiver, CGF.getContext().getObjCIdType(),
+ false, CallArgs, Method)
+ : EmitMessageSend(CGF, Return, ResultType,
+ EmitSelector(CGF, Sel),
+ Receiver, CGF.getContext().getObjCIdType(),
+ false, CallArgs, Method, ObjCTypes);
+}
+
+llvm::GlobalVariable *
+CGObjCNonFragileABIMac::GetClassGlobal(const std::string &Name, bool Weak) {
+ llvm::GlobalValue::LinkageTypes L =
+ Weak ? llvm::GlobalValue::ExternalWeakLinkage
+ : llvm::GlobalValue::ExternalLinkage;
+
+ llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name);
+
+ if (!GV)
+ GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABITy,
+ false, L, nullptr, Name);
+
+ assert(GV->getLinkage() == L);
+ return GV;
+}
+
+llvm::Value *CGObjCNonFragileABIMac::EmitClassRefFromId(CodeGenFunction &CGF,
+ IdentifierInfo *II,
+ bool Weak,
+ const ObjCInterfaceDecl *ID) {
+ llvm::GlobalVariable *&Entry = ClassReferences[II];
+
+ if (!Entry) {
+ std::string ClassName(
+ getClassSymbolPrefix() +
+ (ID ? ID->getObjCRuntimeNameAsString() : II->getName()).str());
+ llvm::GlobalVariable *ClassGV = GetClassGlobal(ClassName, Weak);
+ Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy,
+ false, llvm::GlobalValue::PrivateLinkage,
+ ClassGV, "OBJC_CLASSLIST_REFERENCES_$_");
+ Entry->setAlignment(
+ CGM.getDataLayout().getABITypeAlignment(
+ ObjCTypes.ClassnfABIPtrTy));
+ Entry->setSection("__DATA, __objc_classrefs, regular, no_dead_strip");
+ CGM.addCompilerUsedGlobal(Entry);
+ }
+ return CGF.Builder.CreateLoad(Entry);
+}
+
+llvm::Value *CGObjCNonFragileABIMac::EmitClassRef(CodeGenFunction &CGF,
+ const ObjCInterfaceDecl *ID) {
+ return EmitClassRefFromId(CGF, ID->getIdentifier(), ID->isWeakImported(), ID);
+}
+
+llvm::Value *CGObjCNonFragileABIMac::EmitNSAutoreleasePoolClassRef(
+ CodeGenFunction &CGF) {
+ IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool");
+ return EmitClassRefFromId(CGF, II, false, 0);
+}
+
+llvm::Value *
+CGObjCNonFragileABIMac::EmitSuperClassRef(CodeGenFunction &CGF,
+ const ObjCInterfaceDecl *ID) {
+ llvm::GlobalVariable *&Entry = SuperClassReferences[ID->getIdentifier()];
+
+ if (!Entry) {
+ llvm::SmallString<64> ClassName(getClassSymbolPrefix());
+ ClassName += ID->getObjCRuntimeNameAsString();
+ llvm::GlobalVariable *ClassGV = GetClassGlobal(ClassName.str(),
+ ID->isWeakImported());
+ Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy,
+ false, llvm::GlobalValue::PrivateLinkage,
+ ClassGV, "OBJC_CLASSLIST_SUP_REFS_$_");
+ Entry->setAlignment(
+ CGM.getDataLayout().getABITypeAlignment(
+ ObjCTypes.ClassnfABIPtrTy));
+ Entry->setSection("__DATA, __objc_superrefs, regular, no_dead_strip");
+ CGM.addCompilerUsedGlobal(Entry);
+ }
+ return CGF.Builder.CreateLoad(Entry);
+}
+
+/// EmitMetaClassRef - Return a Value * of the address of _class_t
+/// meta-data
+///
+llvm::Value *CGObjCNonFragileABIMac::EmitMetaClassRef(CodeGenFunction &CGF,
+ const ObjCInterfaceDecl *ID,
+ bool Weak) {
+ llvm::GlobalVariable * &Entry = MetaClassReferences[ID->getIdentifier()];
+ if (!Entry) {
+ llvm::SmallString<64> MetaClassName(getMetaclassSymbolPrefix());
+ MetaClassName += ID->getObjCRuntimeNameAsString();
+ llvm::GlobalVariable *MetaClassGV =
+ GetClassGlobal(MetaClassName.str(), Weak);
+
+ Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy,
+ false, llvm::GlobalValue::PrivateLinkage,
+ MetaClassGV, "OBJC_CLASSLIST_SUP_REFS_$_");
+ Entry->setAlignment(
+ CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ClassnfABIPtrTy));
+
+ Entry->setSection("__DATA, __objc_superrefs, regular, no_dead_strip");
+ CGM.addCompilerUsedGlobal(Entry);
+ }
+
+ return CGF.Builder.CreateLoad(Entry);
+}
+
+/// GetClass - Return a reference to the class for the given interface
+/// decl.
+llvm::Value *CGObjCNonFragileABIMac::GetClass(CodeGenFunction &CGF,
+ const ObjCInterfaceDecl *ID) {
+ if (ID->isWeakImported()) {
+ llvm::SmallString<64> ClassName(getClassSymbolPrefix());
+ ClassName += ID->getObjCRuntimeNameAsString();
+ llvm::GlobalVariable *ClassGV = GetClassGlobal(ClassName.str(), true);
+ (void)ClassGV;
+ assert(ClassGV->hasExternalWeakLinkage());
+ }
+
+ return EmitClassRef(CGF, ID);
+}
+
+/// Generates a message send where the super is the receiver. This is
+/// a message send to self with special delivery semantics indicating
+/// which class's method should be called.
+CodeGen::RValue
+CGObjCNonFragileABIMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF,
+ ReturnValueSlot Return,
+ QualType ResultType,
+ Selector Sel,
+ const ObjCInterfaceDecl *Class,
+ bool isCategoryImpl,
+ llvm::Value *Receiver,
+ bool IsClassMessage,
+ const CodeGen::CallArgList &CallArgs,
+ const ObjCMethodDecl *Method) {
+ // ...
+ // Create and init a super structure; this is a (receiver, class)
+ // pair we will pass to objc_msgSendSuper.
+ llvm::Value *ObjCSuper =
+ CGF.CreateTempAlloca(ObjCTypes.SuperTy, "objc_super");
+
+ llvm::Value *ReceiverAsObject =
+ CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy);
+ CGF.Builder.CreateStore(
+ ReceiverAsObject,
+ CGF.Builder.CreateStructGEP(ObjCTypes.SuperTy, ObjCSuper, 0));
+
+ // If this is a class message the metaclass is passed as the target.
+ llvm::Value *Target;
+ if (IsClassMessage)
+ Target = EmitMetaClassRef(CGF, Class, Class->isWeakImported());
+ else
+ Target = EmitSuperClassRef(CGF, Class);
+
+ // FIXME: We shouldn't need to do this cast, rectify the ASTContext and
+ // ObjCTypes types.
+ llvm::Type *ClassTy =
+ CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType());
+ Target = CGF.Builder.CreateBitCast(Target, ClassTy);
+ CGF.Builder.CreateStore(
+ Target, CGF.Builder.CreateStructGEP(ObjCTypes.SuperTy, ObjCSuper, 1));
+
+ return (isVTableDispatchedSelector(Sel))
+ ? EmitVTableMessageSend(CGF, Return, ResultType, Sel,
+ ObjCSuper, ObjCTypes.SuperPtrCTy,
+ true, CallArgs, Method)
+ : EmitMessageSend(CGF, Return, ResultType,
+ EmitSelector(CGF, Sel),
+ ObjCSuper, ObjCTypes.SuperPtrCTy,
+ true, CallArgs, Method, ObjCTypes);
+}
+
+llvm::Value *CGObjCNonFragileABIMac::EmitSelector(CodeGenFunction &CGF,
+ Selector Sel, bool lval) {
+ llvm::GlobalVariable *&Entry = SelectorReferences[Sel];
+
+ if (!Entry) {
+ llvm::Constant *Casted =
+ llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel),
+ ObjCTypes.SelectorPtrTy);
+ Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.SelectorPtrTy,
+ false, llvm::GlobalValue::PrivateLinkage,
+ Casted, "OBJC_SELECTOR_REFERENCES_");
+ Entry->setExternallyInitialized(true);
+ Entry->setSection("__DATA, __objc_selrefs, literal_pointers, no_dead_strip");
+ CGM.addCompilerUsedGlobal(Entry);
+ }
+
+ if (lval)
+ return Entry;
+ llvm::LoadInst* LI = CGF.Builder.CreateLoad(Entry);
+
+ LI->setMetadata(CGM.getModule().getMDKindID("invariant.load"),
+ llvm::MDNode::get(VMContext, None));
+ return LI;
+}
+/// EmitObjCIvarAssign - Code gen for assigning to a __strong object.
+/// objc_assign_ivar (id src, id *dst, ptrdiff_t)
+///
+void CGObjCNonFragileABIMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *src,
+ llvm::Value *dst,
+ llvm::Value *ivarOffset) {
+ llvm::Type * SrcTy = src->getType();
+ if (!isa<llvm::PointerType>(SrcTy)) {
+ unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
+ assert(Size <= 8 && "does not support size > 8");
+ src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
+ : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy));
+ src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
+ }
+ src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
+ dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
+ llvm::Value *args[] = { src, dst, ivarOffset };
+ CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args);
+}
+
+/// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object.
+/// objc_assign_strongCast (id src, id *dst)
+///
+void CGObjCNonFragileABIMac::EmitObjCStrongCastAssign(
+ CodeGen::CodeGenFunction &CGF,
+ llvm::Value *src, llvm::Value *dst) {
+ llvm::Type * SrcTy = src->getType();
+ if (!isa<llvm::PointerType>(SrcTy)) {
+ unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
+ assert(Size <= 8 && "does not support size > 8");
+ src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
+ : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy));
+ src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
+ }
+ src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
+ dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
+ llvm::Value *args[] = { src, dst };
+ CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(),
+ args, "weakassign");
+}
+
+void CGObjCNonFragileABIMac::EmitGCMemmoveCollectable(
+ CodeGen::CodeGenFunction &CGF,
+ llvm::Value *DestPtr,
+ llvm::Value *SrcPtr,
+ llvm::Value *Size) {
+ SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy);
+ DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy);
+ llvm::Value *args[] = { DestPtr, SrcPtr, Size };
+ CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args);
+}
+
+/// EmitObjCWeakRead - Code gen for loading value of a __weak
+/// object: objc_read_weak (id *src)
+///
+llvm::Value * CGObjCNonFragileABIMac::EmitObjCWeakRead(
+ CodeGen::CodeGenFunction &CGF,
+ llvm::Value *AddrWeakObj) {
+ llvm::Type* DestTy =
+ cast<llvm::PointerType>(AddrWeakObj->getType())->getElementType();
+ AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, ObjCTypes.PtrObjectPtrTy);
+ llvm::Value *read_weak =
+ CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(),
+ AddrWeakObj, "weakread");
+ read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy);
+ return read_weak;
+}
+
+/// EmitObjCWeakAssign - Code gen for assigning to a __weak object.
+/// objc_assign_weak (id src, id *dst)
+///
+void CGObjCNonFragileABIMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *src, llvm::Value *dst) {
+ llvm::Type * SrcTy = src->getType();
+ if (!isa<llvm::PointerType>(SrcTy)) {
+ unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
+ assert(Size <= 8 && "does not support size > 8");
+ src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
+ : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy));
+ src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
+ }
+ src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
+ dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
+ llvm::Value *args[] = { src, dst };
+ CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(),
+ args, "weakassign");
+}
+
+/// EmitObjCGlobalAssign - Code gen for assigning to a __strong object.
+/// objc_assign_global (id src, id *dst)
+///
+void CGObjCNonFragileABIMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *src, llvm::Value *dst,
+ bool threadlocal) {
+ llvm::Type * SrcTy = src->getType();
+ if (!isa<llvm::PointerType>(SrcTy)) {
+ unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
+ assert(Size <= 8 && "does not support size > 8");
+ src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
+ : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy));
+ src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
+ }
+ src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
+ dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
+ llvm::Value *args[] = { src, dst };
+ if (!threadlocal)
+ CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(),
+ args, "globalassign");
+ else
+ CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(),
+ args, "threadlocalassign");
+}
+
+void
+CGObjCNonFragileABIMac::EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
+ const ObjCAtSynchronizedStmt &S) {
+ EmitAtSynchronizedStmt(CGF, S,
+ cast<llvm::Function>(ObjCTypes.getSyncEnterFn()),
+ cast<llvm::Function>(ObjCTypes.getSyncExitFn()));
+}
+
+llvm::Constant *
+CGObjCNonFragileABIMac::GetEHType(QualType T) {
+ // There's a particular fixed type info for 'id'.
+ if (T->isObjCIdType() ||
+ T->isObjCQualifiedIdType()) {
+ llvm::Constant *IDEHType =
+ CGM.getModule().getGlobalVariable("OBJC_EHTYPE_id");
+ if (!IDEHType)
+ IDEHType =
+ new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy,
+ false,
+ llvm::GlobalValue::ExternalLinkage,
+ nullptr, "OBJC_EHTYPE_id");
+ return IDEHType;
+ }
+
+ // All other types should be Objective-C interface pointer types.
+ const ObjCObjectPointerType *PT =
+ T->getAs<ObjCObjectPointerType>();
+ assert(PT && "Invalid @catch type.");
+ const ObjCInterfaceType *IT = PT->getInterfaceType();
+ assert(IT && "Invalid @catch type.");
+ return GetInterfaceEHType(IT->getDecl(), false);
+}
+
+void CGObjCNonFragileABIMac::EmitTryStmt(CodeGen::CodeGenFunction &CGF,
+ const ObjCAtTryStmt &S) {
+ EmitTryCatchStmt(CGF, S,
+ cast<llvm::Function>(ObjCTypes.getObjCBeginCatchFn()),
+ cast<llvm::Function>(ObjCTypes.getObjCEndCatchFn()),
+ cast<llvm::Function>(ObjCTypes.getExceptionRethrowFn()));
+}
+
+/// EmitThrowStmt - Generate code for a throw statement.
+void CGObjCNonFragileABIMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF,
+ const ObjCAtThrowStmt &S,
+ bool ClearInsertionPoint) {
+ if (const Expr *ThrowExpr = S.getThrowExpr()) {
+ llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr);
+ Exception = CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy);
+ CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionThrowFn(), Exception)
+ .setDoesNotReturn();
+ } else {
+ CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionRethrowFn())
+ .setDoesNotReturn();
+ }
+
+ CGF.Builder.CreateUnreachable();
+ if (ClearInsertionPoint)
+ CGF.Builder.ClearInsertionPoint();
+}
+
+llvm::Constant *
+CGObjCNonFragileABIMac::GetInterfaceEHType(const ObjCInterfaceDecl *ID,
+ bool ForDefinition) {
+ llvm::GlobalVariable * &Entry = EHTypeReferences[ID->getIdentifier()];
+
+ // If we don't need a definition, return the entry if found or check
+ // if we use an external reference.
+ if (!ForDefinition) {
+ if (Entry)
+ return Entry;
+
+ // If this type (or a super class) has the __objc_exception__
+ // attribute, emit an external reference.
+ if (hasObjCExceptionAttribute(CGM.getContext(), ID))
+ return Entry =
+ new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false,
+ llvm::GlobalValue::ExternalLinkage,
+ nullptr,
+ ("OBJC_EHTYPE_$_" +
+ ID->getObjCRuntimeNameAsString()));
+ }
+
+ // Otherwise we need to either make a new entry or fill in the
+ // initializer.
+ assert((!Entry || !Entry->hasInitializer()) && "Duplicate EHType definition");
+ llvm::SmallString<64> ClassName(getClassSymbolPrefix());
+ ClassName += ID->getObjCRuntimeNameAsString();
+ std::string VTableName = "objc_ehtype_vtable";
+ llvm::GlobalVariable *VTableGV =
+ CGM.getModule().getGlobalVariable(VTableName);
+ if (!VTableGV)
+ VTableGV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.Int8PtrTy,
+ false,
+ llvm::GlobalValue::ExternalLinkage,
+ nullptr, VTableName);
+
+ llvm::Value *VTableIdx = llvm::ConstantInt::get(CGM.Int32Ty, 2);
+
+ llvm::Constant *Values[] = {
+ llvm::ConstantExpr::getGetElementPtr(VTableGV->getValueType(), VTableGV,
+ VTableIdx),
+ GetClassName(ID->getObjCRuntimeNameAsString()),
+ GetClassGlobal(ClassName.str())};
+ llvm::Constant *Init =
+ llvm::ConstantStruct::get(ObjCTypes.EHTypeTy, Values);
+
+ llvm::GlobalValue::LinkageTypes L = ForDefinition
+ ? llvm::GlobalValue::ExternalLinkage
+ : llvm::GlobalValue::WeakAnyLinkage;
+ if (Entry) {
+ Entry->setInitializer(Init);
+ } else {
+ llvm::SmallString<64> EHTYPEName("OBJC_EHTYPE_$_");
+ EHTYPEName += ID->getObjCRuntimeNameAsString();
+ Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false,
+ L,
+ Init,
+ EHTYPEName.str());
+ }
+ assert(Entry->getLinkage() == L);
+
+ if (ID->getVisibility() == HiddenVisibility)
+ Entry->setVisibility(llvm::GlobalValue::HiddenVisibility);
+ Entry->setAlignment(CGM.getDataLayout().getABITypeAlignment(
+ ObjCTypes.EHTypeTy));
+
+ if (ForDefinition)
+ Entry->setSection("__DATA,__objc_const");
+ else
+ Entry->setSection("__DATA,__datacoal_nt,coalesced");
+
+ return Entry;
+}
+
+/* *** */
+
+CodeGen::CGObjCRuntime *
+CodeGen::CreateMacObjCRuntime(CodeGen::CodeGenModule &CGM) {
+ switch (CGM.getLangOpts().ObjCRuntime.getKind()) {
+ case ObjCRuntime::FragileMacOSX:
+ return new CGObjCMac(CGM);
+
+ case ObjCRuntime::MacOSX:
+ case ObjCRuntime::iOS:
+ return new CGObjCNonFragileABIMac(CGM);
+
+ case ObjCRuntime::GNUstep:
+ case ObjCRuntime::GCC:
+ case ObjCRuntime::ObjFW:
+ llvm_unreachable("these runtimes are not Mac runtimes");
+ }
+ llvm_unreachable("bad runtime");
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGObjCRuntime.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGObjCRuntime.cpp
new file mode 100644
index 0000000..5290a87
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGObjCRuntime.cpp
@@ -0,0 +1,383 @@
+//==- CGObjCRuntime.cpp - Interface to Shared Objective-C Runtime Features ==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This abstract class defines the interface for Objective-C runtime-specific
+// code generation. It provides some concrete helper methods for functionality
+// shared between all (or most) of the Objective-C runtimes supported by clang.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGObjCRuntime.h"
+#include "CGCleanup.h"
+#include "CGRecordLayout.h"
+#include "CodeGenFunction.h"
+#include "CodeGenModule.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/AST/StmtObjC.h"
+#include "clang/CodeGen/CGFunctionInfo.h"
+#include "llvm/IR/CallSite.h"
+
+using namespace clang;
+using namespace CodeGen;
+
+static uint64_t LookupFieldBitOffset(CodeGen::CodeGenModule &CGM,
+ const ObjCInterfaceDecl *OID,
+ const ObjCImplementationDecl *ID,
+ const ObjCIvarDecl *Ivar) {
+ const ObjCInterfaceDecl *Container = Ivar->getContainingInterface();
+
+ // FIXME: We should eliminate the need to have ObjCImplementationDecl passed
+ // in here; it should never be necessary because that should be the lexical
+ // decl context for the ivar.
+
+ // If we know have an implementation (and the ivar is in it) then
+ // look up in the implementation layout.
+ const ASTRecordLayout *RL;
+ if (ID && declaresSameEntity(ID->getClassInterface(), Container))
+ RL = &CGM.getContext().getASTObjCImplementationLayout(ID);
+ else
+ RL = &CGM.getContext().getASTObjCInterfaceLayout(Container);
+
+ // Compute field index.
+ //
+ // FIXME: The index here is closely tied to how ASTContext::getObjCLayout is
+ // implemented. This should be fixed to get the information from the layout
+ // directly.
+ unsigned Index = 0;
+
+ for (const ObjCIvarDecl *IVD = Container->all_declared_ivar_begin();
+ IVD; IVD = IVD->getNextIvar()) {
+ if (Ivar == IVD)
+ break;
+ ++Index;
+ }
+ assert(Index < RL->getFieldCount() && "Ivar is not inside record layout!");
+
+ return RL->getFieldOffset(Index);
+}
+
+uint64_t CGObjCRuntime::ComputeIvarBaseOffset(CodeGen::CodeGenModule &CGM,
+ const ObjCInterfaceDecl *OID,
+ const ObjCIvarDecl *Ivar) {
+ return LookupFieldBitOffset(CGM, OID, nullptr, Ivar) /
+ CGM.getContext().getCharWidth();
+}
+
+uint64_t CGObjCRuntime::ComputeIvarBaseOffset(CodeGen::CodeGenModule &CGM,
+ const ObjCImplementationDecl *OID,
+ const ObjCIvarDecl *Ivar) {
+ return LookupFieldBitOffset(CGM, OID->getClassInterface(), OID, Ivar) /
+ CGM.getContext().getCharWidth();
+}
+
+unsigned CGObjCRuntime::ComputeBitfieldBitOffset(
+ CodeGen::CodeGenModule &CGM,
+ const ObjCInterfaceDecl *ID,
+ const ObjCIvarDecl *Ivar) {
+ return LookupFieldBitOffset(CGM, ID, ID->getImplementation(), Ivar);
+}
+
+LValue CGObjCRuntime::EmitValueForIvarAtOffset(CodeGen::CodeGenFunction &CGF,
+ const ObjCInterfaceDecl *OID,
+ llvm::Value *BaseValue,
+ const ObjCIvarDecl *Ivar,
+ unsigned CVRQualifiers,
+ llvm::Value *Offset) {
+ // Compute (type*) ( (char *) BaseValue + Offset)
+ QualType IvarTy = Ivar->getType();
+ llvm::Type *LTy = CGF.CGM.getTypes().ConvertTypeForMem(IvarTy);
+ llvm::Value *V = CGF.Builder.CreateBitCast(BaseValue, CGF.Int8PtrTy);
+ V = CGF.Builder.CreateInBoundsGEP(V, Offset, "add.ptr");
+
+ if (!Ivar->isBitField()) {
+ V = CGF.Builder.CreateBitCast(V, llvm::PointerType::getUnqual(LTy));
+ LValue LV = CGF.MakeNaturalAlignAddrLValue(V, IvarTy);
+ LV.getQuals().addCVRQualifiers(CVRQualifiers);
+ return LV;
+ }
+
+ // We need to compute an access strategy for this bit-field. We are given the
+ // offset to the first byte in the bit-field, the sub-byte offset is taken
+ // from the original layout. We reuse the normal bit-field access strategy by
+ // treating this as an access to a struct where the bit-field is in byte 0,
+ // and adjust the containing type size as appropriate.
+ //
+ // FIXME: Note that currently we make a very conservative estimate of the
+ // alignment of the bit-field, because (a) it is not clear what guarantees the
+ // runtime makes us, and (b) we don't have a way to specify that the struct is
+ // at an alignment plus offset.
+ //
+ // Note, there is a subtle invariant here: we can only call this routine on
+ // non-synthesized ivars but we may be called for synthesized ivars. However,
+ // a synthesized ivar can never be a bit-field, so this is safe.
+ uint64_t FieldBitOffset = LookupFieldBitOffset(CGF.CGM, OID, nullptr, Ivar);
+ uint64_t BitOffset = FieldBitOffset % CGF.CGM.getContext().getCharWidth();
+ uint64_t AlignmentBits = CGF.CGM.getTarget().getCharAlign();
+ uint64_t BitFieldSize = Ivar->getBitWidthValue(CGF.getContext());
+ CharUnits StorageSize =
+ CGF.CGM.getContext().toCharUnitsFromBits(
+ llvm::RoundUpToAlignment(BitOffset + BitFieldSize, AlignmentBits));
+ CharUnits Alignment = CGF.CGM.getContext().toCharUnitsFromBits(AlignmentBits);
+
+ // Allocate a new CGBitFieldInfo object to describe this access.
+ //
+ // FIXME: This is incredibly wasteful, these should be uniqued or part of some
+ // layout object. However, this is blocked on other cleanups to the
+ // Objective-C code, so for now we just live with allocating a bunch of these
+ // objects.
+ CGBitFieldInfo *Info = new (CGF.CGM.getContext()) CGBitFieldInfo(
+ CGBitFieldInfo::MakeInfo(CGF.CGM.getTypes(), Ivar, BitOffset, BitFieldSize,
+ CGF.CGM.getContext().toBits(StorageSize),
+ Alignment.getQuantity()));
+
+ V = CGF.Builder.CreateBitCast(V,
+ llvm::Type::getIntNPtrTy(CGF.getLLVMContext(),
+ Info->StorageSize));
+ return LValue::MakeBitfield(V, *Info,
+ IvarTy.withCVRQualifiers(CVRQualifiers),
+ Alignment);
+}
+
+namespace {
+ struct CatchHandler {
+ const VarDecl *Variable;
+ const Stmt *Body;
+ llvm::BasicBlock *Block;
+ llvm::Constant *TypeInfo;
+ };
+
+ struct CallObjCEndCatch : EHScopeStack::Cleanup {
+ CallObjCEndCatch(bool MightThrow, llvm::Value *Fn) :
+ MightThrow(MightThrow), Fn(Fn) {}
+ bool MightThrow;
+ llvm::Value *Fn;
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ if (!MightThrow) {
+ CGF.Builder.CreateCall(Fn, {})->setDoesNotThrow();
+ return;
+ }
+
+ CGF.EmitRuntimeCallOrInvoke(Fn);
+ }
+ };
+}
+
+
+void CGObjCRuntime::EmitTryCatchStmt(CodeGenFunction &CGF,
+ const ObjCAtTryStmt &S,
+ llvm::Constant *beginCatchFn,
+ llvm::Constant *endCatchFn,
+ llvm::Constant *exceptionRethrowFn) {
+ // Jump destination for falling out of catch bodies.
+ CodeGenFunction::JumpDest Cont;
+ if (S.getNumCatchStmts())
+ Cont = CGF.getJumpDestInCurrentScope("eh.cont");
+
+ CodeGenFunction::FinallyInfo FinallyInfo;
+ if (const ObjCAtFinallyStmt *Finally = S.getFinallyStmt())
+ FinallyInfo.enter(CGF, Finally->getFinallyBody(),
+ beginCatchFn, endCatchFn, exceptionRethrowFn);
+
+ SmallVector<CatchHandler, 8> Handlers;
+
+ // Enter the catch, if there is one.
+ if (S.getNumCatchStmts()) {
+ for (unsigned I = 0, N = S.getNumCatchStmts(); I != N; ++I) {
+ const ObjCAtCatchStmt *CatchStmt = S.getCatchStmt(I);
+ const VarDecl *CatchDecl = CatchStmt->getCatchParamDecl();
+
+ Handlers.push_back(CatchHandler());
+ CatchHandler &Handler = Handlers.back();
+ Handler.Variable = CatchDecl;
+ Handler.Body = CatchStmt->getCatchBody();
+ Handler.Block = CGF.createBasicBlock("catch");
+
+ // @catch(...) always matches.
+ if (!CatchDecl) {
+ Handler.TypeInfo = nullptr; // catch-all
+ // Don't consider any other catches.
+ break;
+ }
+
+ Handler.TypeInfo = GetEHType(CatchDecl->getType());
+ }
+
+ EHCatchScope *Catch = CGF.EHStack.pushCatch(Handlers.size());
+ for (unsigned I = 0, E = Handlers.size(); I != E; ++I)
+ Catch->setHandler(I, Handlers[I].TypeInfo, Handlers[I].Block);
+ }
+
+ // Emit the try body.
+ CGF.EmitStmt(S.getTryBody());
+
+ // Leave the try.
+ if (S.getNumCatchStmts())
+ CGF.popCatchScope();
+
+ // Remember where we were.
+ CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP();
+
+ // Emit the handlers.
+ for (unsigned I = 0, E = Handlers.size(); I != E; ++I) {
+ CatchHandler &Handler = Handlers[I];
+
+ CGF.EmitBlock(Handler.Block);
+ llvm::Value *RawExn = CGF.getExceptionFromSlot();
+
+ // Enter the catch.
+ llvm::Value *Exn = RawExn;
+ if (beginCatchFn) {
+ Exn = CGF.Builder.CreateCall(beginCatchFn, RawExn, "exn.adjusted");
+ cast<llvm::CallInst>(Exn)->setDoesNotThrow();
+ }
+
+ CodeGenFunction::LexicalScope cleanups(CGF, Handler.Body->getSourceRange());
+
+ if (endCatchFn) {
+ // Add a cleanup to leave the catch.
+ bool EndCatchMightThrow = (Handler.Variable == nullptr);
+
+ CGF.EHStack.pushCleanup<CallObjCEndCatch>(NormalAndEHCleanup,
+ EndCatchMightThrow,
+ endCatchFn);
+ }
+
+ // Bind the catch parameter if it exists.
+ if (const VarDecl *CatchParam = Handler.Variable) {
+ llvm::Type *CatchType = CGF.ConvertType(CatchParam->getType());
+ llvm::Value *CastExn = CGF.Builder.CreateBitCast(Exn, CatchType);
+
+ CGF.EmitAutoVarDecl(*CatchParam);
+
+ llvm::Value *CatchParamAddr = CGF.GetAddrOfLocalVar(CatchParam);
+
+ switch (CatchParam->getType().getQualifiers().getObjCLifetime()) {
+ case Qualifiers::OCL_Strong:
+ CastExn = CGF.EmitARCRetainNonBlock(CastExn);
+ // fallthrough
+
+ case Qualifiers::OCL_None:
+ case Qualifiers::OCL_ExplicitNone:
+ case Qualifiers::OCL_Autoreleasing:
+ CGF.Builder.CreateStore(CastExn, CatchParamAddr);
+ break;
+
+ case Qualifiers::OCL_Weak:
+ CGF.EmitARCInitWeak(CatchParamAddr, CastExn);
+ break;
+ }
+ }
+
+ CGF.ObjCEHValueStack.push_back(Exn);
+ CGF.EmitStmt(Handler.Body);
+ CGF.ObjCEHValueStack.pop_back();
+
+ // Leave any cleanups associated with the catch.
+ cleanups.ForceCleanup();
+
+ CGF.EmitBranchThroughCleanup(Cont);
+ }
+
+ // Go back to the try-statement fallthrough.
+ CGF.Builder.restoreIP(SavedIP);
+
+ // Pop out of the finally.
+ if (S.getFinallyStmt())
+ FinallyInfo.exit(CGF);
+
+ if (Cont.isValid())
+ CGF.EmitBlock(Cont.getBlock());
+}
+
+namespace {
+ struct CallSyncExit : EHScopeStack::Cleanup {
+ llvm::Value *SyncExitFn;
+ llvm::Value *SyncArg;
+ CallSyncExit(llvm::Value *SyncExitFn, llvm::Value *SyncArg)
+ : SyncExitFn(SyncExitFn), SyncArg(SyncArg) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ CGF.Builder.CreateCall(SyncExitFn, SyncArg)->setDoesNotThrow();
+ }
+ };
+}
+
+void CGObjCRuntime::EmitAtSynchronizedStmt(CodeGenFunction &CGF,
+ const ObjCAtSynchronizedStmt &S,
+ llvm::Function *syncEnterFn,
+ llvm::Function *syncExitFn) {
+ CodeGenFunction::RunCleanupsScope cleanups(CGF);
+
+ // Evaluate the lock operand. This is guaranteed to dominate the
+ // ARC release and lock-release cleanups.
+ const Expr *lockExpr = S.getSynchExpr();
+ llvm::Value *lock;
+ if (CGF.getLangOpts().ObjCAutoRefCount) {
+ lock = CGF.EmitARCRetainScalarExpr(lockExpr);
+ lock = CGF.EmitObjCConsumeObject(lockExpr->getType(), lock);
+ } else {
+ lock = CGF.EmitScalarExpr(lockExpr);
+ }
+ lock = CGF.Builder.CreateBitCast(lock, CGF.VoidPtrTy);
+
+ // Acquire the lock.
+ CGF.Builder.CreateCall(syncEnterFn, lock)->setDoesNotThrow();
+
+ // Register an all-paths cleanup to release the lock.
+ CGF.EHStack.pushCleanup<CallSyncExit>(NormalAndEHCleanup, syncExitFn, lock);
+
+ // Emit the body of the statement.
+ CGF.EmitStmt(S.getSynchBody());
+}
+
+/// Compute the pointer-to-function type to which a message send
+/// should be casted in order to correctly call the given method
+/// with the given arguments.
+///
+/// \param method - may be null
+/// \param resultType - the result type to use if there's no method
+/// \param callArgs - the actual arguments, including implicit ones
+CGObjCRuntime::MessageSendInfo
+CGObjCRuntime::getMessageSendInfo(const ObjCMethodDecl *method,
+ QualType resultType,
+ CallArgList &callArgs) {
+ // If there's a method, use information from that.
+ if (method) {
+ const CGFunctionInfo &signature =
+ CGM.getTypes().arrangeObjCMessageSendSignature(method, callArgs[0].Ty);
+
+ llvm::PointerType *signatureType =
+ CGM.getTypes().GetFunctionType(signature)->getPointerTo();
+
+ // If that's not variadic, there's no need to recompute the ABI
+ // arrangement.
+ if (!signature.isVariadic())
+ return MessageSendInfo(signature, signatureType);
+
+ // Otherwise, there is.
+ FunctionType::ExtInfo einfo = signature.getExtInfo();
+ const CGFunctionInfo &argsInfo =
+ CGM.getTypes().arrangeFreeFunctionCall(resultType, callArgs, einfo,
+ signature.getRequiredArgs());
+
+ return MessageSendInfo(argsInfo, signatureType);
+ }
+
+ // There's no method; just use a default CC.
+ const CGFunctionInfo &argsInfo =
+ CGM.getTypes().arrangeFreeFunctionCall(resultType, callArgs,
+ FunctionType::ExtInfo(),
+ RequiredArgs::All);
+
+ // Derive the signature to call from that.
+ llvm::PointerType *signatureType =
+ CGM.getTypes().GetFunctionType(argsInfo)->getPointerTo();
+ return MessageSendInfo(argsInfo, signatureType);
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGObjCRuntime.h b/contrib/llvm/tools/clang/lib/CodeGen/CGObjCRuntime.h
new file mode 100644
index 0000000..4752546
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGObjCRuntime.h
@@ -0,0 +1,300 @@
+//===----- CGObjCRuntime.h - Interface to ObjC Runtimes ---------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This provides an abstract class for Objective-C code generation. Concrete
+// subclasses of this implement code generation for specific Objective-C
+// runtime libraries.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_CODEGEN_CGOBJCRUNTIME_H
+#define LLVM_CLANG_LIB_CODEGEN_CGOBJCRUNTIME_H
+#include "CGBuilder.h"
+#include "CGCall.h"
+#include "CGValue.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/Basic/IdentifierTable.h" // Selector
+
+namespace llvm {
+ class Constant;
+ class Function;
+ class Module;
+ class StructLayout;
+ class StructType;
+ class Type;
+ class Value;
+}
+
+namespace clang {
+namespace CodeGen {
+ class CodeGenFunction;
+}
+
+ class FieldDecl;
+ class ObjCAtTryStmt;
+ class ObjCAtThrowStmt;
+ class ObjCAtSynchronizedStmt;
+ class ObjCContainerDecl;
+ class ObjCCategoryImplDecl;
+ class ObjCImplementationDecl;
+ class ObjCInterfaceDecl;
+ class ObjCMessageExpr;
+ class ObjCMethodDecl;
+ class ObjCProtocolDecl;
+ class Selector;
+ class ObjCIvarDecl;
+ class ObjCStringLiteral;
+ class BlockDeclRefExpr;
+
+namespace CodeGen {
+ class CodeGenModule;
+ class CGBlockInfo;
+
+// FIXME: Several methods should be pure virtual but aren't to avoid the
+// partially-implemented subclass breaking.
+
+/// Implements runtime-specific code generation functions.
+class CGObjCRuntime {
+protected:
+ CodeGen::CodeGenModule &CGM;
+ CGObjCRuntime(CodeGen::CodeGenModule &CGM) : CGM(CGM) {}
+
+ // Utility functions for unified ivar access. These need to
+ // eventually be folded into other places (the structure layout
+ // code).
+
+ /// Compute an offset to the given ivar, suitable for passing to
+ /// EmitValueForIvarAtOffset. Note that the correct handling of
+ /// bit-fields is carefully coordinated by these two, use caution!
+ ///
+ /// The latter overload is suitable for computing the offset of a
+ /// sythesized ivar.
+ uint64_t ComputeIvarBaseOffset(CodeGen::CodeGenModule &CGM,
+ const ObjCInterfaceDecl *OID,
+ const ObjCIvarDecl *Ivar);
+ uint64_t ComputeIvarBaseOffset(CodeGen::CodeGenModule &CGM,
+ const ObjCImplementationDecl *OID,
+ const ObjCIvarDecl *Ivar);
+
+ LValue EmitValueForIvarAtOffset(CodeGen::CodeGenFunction &CGF,
+ const ObjCInterfaceDecl *OID,
+ llvm::Value *BaseValue,
+ const ObjCIvarDecl *Ivar,
+ unsigned CVRQualifiers,
+ llvm::Value *Offset);
+ /// Emits a try / catch statement. This function is intended to be called by
+ /// subclasses, and provides a generic mechanism for generating these, which
+ /// should be usable by all runtimes. The caller must provide the functions
+ /// to call when entering and exiting a \@catch() block, and the function
+ /// used to rethrow exceptions. If the begin and end catch functions are
+ /// NULL, then the function assumes that the EH personality function provides
+ /// the thrown object directly.
+ void EmitTryCatchStmt(CodeGenFunction &CGF,
+ const ObjCAtTryStmt &S,
+ llvm::Constant *beginCatchFn,
+ llvm::Constant *endCatchFn,
+ llvm::Constant *exceptionRethrowFn);
+ /// Emits an \@synchronize() statement, using the \p syncEnterFn and
+ /// \p syncExitFn arguments as the functions called to lock and unlock
+ /// the object. This function can be called by subclasses that use
+ /// zero-cost exception handling.
+ void EmitAtSynchronizedStmt(CodeGenFunction &CGF,
+ const ObjCAtSynchronizedStmt &S,
+ llvm::Function *syncEnterFn,
+ llvm::Function *syncExitFn);
+
+public:
+ virtual ~CGObjCRuntime();
+
+ /// Generate the function required to register all Objective-C components in
+ /// this compilation unit with the runtime library.
+ virtual llvm::Function *ModuleInitFunction() = 0;
+
+ /// Get a selector for the specified name and type values. The
+ /// return value should have the LLVM type for pointer-to
+ /// ASTContext::getObjCSelType().
+ virtual llvm::Value *GetSelector(CodeGenFunction &CGF,
+ Selector Sel, bool lval=false) = 0;
+
+ /// Get a typed selector.
+ virtual llvm::Value *GetSelector(CodeGenFunction &CGF,
+ const ObjCMethodDecl *Method) = 0;
+
+ /// Get the type constant to catch for the given ObjC pointer type.
+ /// This is used externally to implement catching ObjC types in C++.
+ /// Runtimes which don't support this should add the appropriate
+ /// error to Sema.
+ virtual llvm::Constant *GetEHType(QualType T) = 0;
+
+ /// Generate a constant string object.
+ virtual llvm::Constant *GenerateConstantString(const StringLiteral *) = 0;
+
+ /// Generate a category. A category contains a list of methods (and
+ /// accompanying metadata) and a list of protocols.
+ virtual void GenerateCategory(const ObjCCategoryImplDecl *OCD) = 0;
+
+ /// Generate a class structure for this class.
+ virtual void GenerateClass(const ObjCImplementationDecl *OID) = 0;
+
+ /// Register an class alias.
+ virtual void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) = 0;
+
+ /// Generate an Objective-C message send operation.
+ ///
+ /// \param Method - The method being called, this may be null if synthesizing
+ /// a property setter or getter.
+ virtual CodeGen::RValue
+ GenerateMessageSend(CodeGen::CodeGenFunction &CGF,
+ ReturnValueSlot ReturnSlot,
+ QualType ResultType,
+ Selector Sel,
+ llvm::Value *Receiver,
+ const CallArgList &CallArgs,
+ const ObjCInterfaceDecl *Class = nullptr,
+ const ObjCMethodDecl *Method = nullptr) = 0;
+
+ /// Generate an Objective-C message send operation to the super
+ /// class initiated in a method for Class and with the given Self
+ /// object.
+ ///
+ /// \param Method - The method being called, this may be null if synthesizing
+ /// a property setter or getter.
+ virtual CodeGen::RValue
+ GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF,
+ ReturnValueSlot ReturnSlot,
+ QualType ResultType,
+ Selector Sel,
+ const ObjCInterfaceDecl *Class,
+ bool isCategoryImpl,
+ llvm::Value *Self,
+ bool IsClassMessage,
+ const CallArgList &CallArgs,
+ const ObjCMethodDecl *Method = nullptr) = 0;
+
+ /// Emit the code to return the named protocol as an object, as in a
+ /// \@protocol expression.
+ virtual llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
+ const ObjCProtocolDecl *OPD) = 0;
+
+ /// Generate the named protocol. Protocols contain method metadata but no
+ /// implementations.
+ virtual void GenerateProtocol(const ObjCProtocolDecl *OPD) = 0;
+
+ /// Generate a function preamble for a method with the specified
+ /// types.
+
+ // FIXME: Current this just generates the Function definition, but really this
+ // should also be generating the loads of the parameters, as the runtime
+ // should have full control over how parameters are passed.
+ virtual llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD,
+ const ObjCContainerDecl *CD) = 0;
+
+ /// Return the runtime function for getting properties.
+ virtual llvm::Constant *GetPropertyGetFunction() = 0;
+
+ /// Return the runtime function for setting properties.
+ virtual llvm::Constant *GetPropertySetFunction() = 0;
+
+ /// Return the runtime function for optimized setting properties.
+ virtual llvm::Constant *GetOptimizedPropertySetFunction(bool atomic,
+ bool copy) = 0;
+
+ // API for atomic copying of qualified aggregates in getter.
+ virtual llvm::Constant *GetGetStructFunction() = 0;
+ // API for atomic copying of qualified aggregates in setter.
+ virtual llvm::Constant *GetSetStructFunction() = 0;
+ /// API for atomic copying of qualified aggregates with non-trivial copy
+ /// assignment (c++) in setter.
+ virtual llvm::Constant *GetCppAtomicObjectSetFunction() = 0;
+ /// API for atomic copying of qualified aggregates with non-trivial copy
+ /// assignment (c++) in getter.
+ virtual llvm::Constant *GetCppAtomicObjectGetFunction() = 0;
+
+ /// GetClass - Return a reference to the class for the given
+ /// interface decl.
+ virtual llvm::Value *GetClass(CodeGenFunction &CGF,
+ const ObjCInterfaceDecl *OID) = 0;
+
+
+ virtual llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) {
+ llvm_unreachable("autoreleasepool unsupported in this ABI");
+ }
+
+ /// EnumerationMutationFunction - Return the function that's called by the
+ /// compiler when a mutation is detected during foreach iteration.
+ virtual llvm::Constant *EnumerationMutationFunction() = 0;
+
+ virtual void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
+ const ObjCAtSynchronizedStmt &S) = 0;
+ virtual void EmitTryStmt(CodeGen::CodeGenFunction &CGF,
+ const ObjCAtTryStmt &S) = 0;
+ virtual void EmitThrowStmt(CodeGen::CodeGenFunction &CGF,
+ const ObjCAtThrowStmt &S,
+ bool ClearInsertionPoint=true) = 0;
+ virtual llvm::Value *EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *AddrWeakObj) = 0;
+ virtual void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *src, llvm::Value *dest) = 0;
+ virtual void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *src, llvm::Value *dest,
+ bool threadlocal=false) = 0;
+ virtual void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *src, llvm::Value *dest,
+ llvm::Value *ivarOffset) = 0;
+ virtual void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *src, llvm::Value *dest) = 0;
+
+ virtual LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF,
+ QualType ObjectTy,
+ llvm::Value *BaseValue,
+ const ObjCIvarDecl *Ivar,
+ unsigned CVRQualifiers) = 0;
+ virtual llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF,
+ const ObjCInterfaceDecl *Interface,
+ const ObjCIvarDecl *Ivar) = 0;
+ virtual void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *DestPtr,
+ llvm::Value *SrcPtr,
+ llvm::Value *Size) = 0;
+ virtual llvm::Constant *BuildGCBlockLayout(CodeGen::CodeGenModule &CGM,
+ const CodeGen::CGBlockInfo &blockInfo) = 0;
+ virtual llvm::Constant *BuildRCBlockLayout(CodeGen::CodeGenModule &CGM,
+ const CodeGen::CGBlockInfo &blockInfo) = 0;
+ virtual llvm::Constant *BuildByrefLayout(CodeGen::CodeGenModule &CGM,
+ QualType T) = 0;
+ virtual llvm::GlobalVariable *GetClassGlobal(const std::string &Name,
+ bool Weak = false) = 0;
+
+ struct MessageSendInfo {
+ const CGFunctionInfo &CallInfo;
+ llvm::PointerType *MessengerType;
+
+ MessageSendInfo(const CGFunctionInfo &callInfo,
+ llvm::PointerType *messengerType)
+ : CallInfo(callInfo), MessengerType(messengerType) {}
+ };
+
+ MessageSendInfo getMessageSendInfo(const ObjCMethodDecl *method,
+ QualType resultType,
+ CallArgList &callArgs);
+
+ // FIXME: This probably shouldn't be here, but the code to compute
+ // it is here.
+ unsigned ComputeBitfieldBitOffset(CodeGen::CodeGenModule &CGM,
+ const ObjCInterfaceDecl *ID,
+ const ObjCIvarDecl *Ivar);
+};
+
+/// Creates an instance of an Objective-C runtime class.
+//TODO: This should include some way of selecting which runtime to target.
+CGObjCRuntime *CreateGNUObjCRuntime(CodeGenModule &CGM);
+CGObjCRuntime *CreateMacObjCRuntime(CodeGenModule &CGM);
+}
+}
+#endif
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGOpenCLRuntime.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGOpenCLRuntime.cpp
new file mode 100644
index 0000000..079ef72
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGOpenCLRuntime.cpp
@@ -0,0 +1,67 @@
+//===----- CGOpenCLRuntime.cpp - Interface to OpenCL Runtimes -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This provides an abstract class for OpenCL code generation. Concrete
+// subclasses of this implement code generation for specific OpenCL
+// runtime libraries.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGOpenCLRuntime.h"
+#include "CodeGenFunction.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/GlobalValue.h"
+#include <assert.h>
+
+using namespace clang;
+using namespace CodeGen;
+
+CGOpenCLRuntime::~CGOpenCLRuntime() {}
+
+void CGOpenCLRuntime::EmitWorkGroupLocalVarDecl(CodeGenFunction &CGF,
+ const VarDecl &D) {
+ return CGF.EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
+}
+
+llvm::Type *CGOpenCLRuntime::convertOpenCLSpecificType(const Type *T) {
+ assert(T->isOpenCLSpecificType() &&
+ "Not an OpenCL specific type!");
+
+ llvm::LLVMContext& Ctx = CGM.getLLVMContext();
+ uint32_t ImgAddrSpc =
+ CGM.getContext().getTargetAddressSpace(LangAS::opencl_global);
+ switch (cast<BuiltinType>(T)->getKind()) {
+ default:
+ llvm_unreachable("Unexpected opencl builtin type!");
+ return nullptr;
+ case BuiltinType::OCLImage1d:
+ return llvm::PointerType::get(llvm::StructType::create(
+ Ctx, "opencl.image1d_t"), ImgAddrSpc);
+ case BuiltinType::OCLImage1dArray:
+ return llvm::PointerType::get(llvm::StructType::create(
+ Ctx, "opencl.image1d_array_t"), ImgAddrSpc);
+ case BuiltinType::OCLImage1dBuffer:
+ return llvm::PointerType::get(llvm::StructType::create(
+ Ctx, "opencl.image1d_buffer_t"), ImgAddrSpc);
+ case BuiltinType::OCLImage2d:
+ return llvm::PointerType::get(llvm::StructType::create(
+ Ctx, "opencl.image2d_t"), ImgAddrSpc);
+ case BuiltinType::OCLImage2dArray:
+ return llvm::PointerType::get(llvm::StructType::create(
+ Ctx, "opencl.image2d_array_t"), ImgAddrSpc);
+ case BuiltinType::OCLImage3d:
+ return llvm::PointerType::get(llvm::StructType::create(
+ Ctx, "opencl.image3d_t"), ImgAddrSpc);
+ case BuiltinType::OCLSampler:
+ return llvm::IntegerType::get(Ctx, 32);
+ case BuiltinType::OCLEvent:
+ return llvm::PointerType::get(llvm::StructType::create(
+ Ctx, "opencl.event_t"), 0);
+ }
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGOpenCLRuntime.h b/contrib/llvm/tools/clang/lib/CodeGen/CGOpenCLRuntime.h
new file mode 100644
index 0000000..0c50b92
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGOpenCLRuntime.h
@@ -0,0 +1,52 @@
+//===----- CGOpenCLRuntime.h - Interface to OpenCL Runtimes -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This provides an abstract class for OpenCL code generation. Concrete
+// subclasses of this implement code generation for specific OpenCL
+// runtime libraries.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_CODEGEN_CGOPENCLRUNTIME_H
+#define LLVM_CLANG_LIB_CODEGEN_CGOPENCLRUNTIME_H
+
+#include "clang/AST/Type.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Value.h"
+
+namespace clang {
+
+class VarDecl;
+
+namespace CodeGen {
+
+class CodeGenFunction;
+class CodeGenModule;
+
+class CGOpenCLRuntime {
+protected:
+ CodeGenModule &CGM;
+
+public:
+ CGOpenCLRuntime(CodeGenModule &CGM) : CGM(CGM) {}
+ virtual ~CGOpenCLRuntime();
+
+ /// Emit the IR required for a work-group-local variable declaration, and add
+ /// an entry to CGF's LocalDeclMap for D. The base class does this using
+ /// CodeGenFunction::EmitStaticVarDecl to emit an internal global for D.
+ virtual void EmitWorkGroupLocalVarDecl(CodeGenFunction &CGF,
+ const VarDecl &D);
+
+ virtual llvm::Type *convertOpenCLSpecificType(const Type *T);
+};
+
+}
+}
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp
new file mode 100644
index 0000000..1238acc
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp
@@ -0,0 +1,2462 @@
+//===----- CGOpenMPRuntime.cpp - Interface to OpenMP Runtimes -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This provides a class for OpenMP runtime code generation.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGOpenMPRuntime.h"
+#include "CodeGenFunction.h"
+#include "CGCleanup.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/StmtOpenMP.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cassert>
+
+using namespace clang;
+using namespace CodeGen;
+
+namespace {
+/// \brief Base class for handling code generation inside OpenMP regions.
+class CGOpenMPRegionInfo : public CodeGenFunction::CGCapturedStmtInfo {
+public:
+ /// \brief Kinds of OpenMP regions used in codegen.
+ enum CGOpenMPRegionKind {
+ /// \brief Region with outlined function for standalone 'parallel'
+ /// directive.
+ ParallelOutlinedRegion,
+ /// \brief Region with outlined function for standalone 'task' directive.
+ TaskOutlinedRegion,
+ /// \brief Region for constructs that do not require function outlining,
+ /// like 'for', 'sections', 'atomic' etc. directives.
+ InlinedRegion,
+ };
+
+ CGOpenMPRegionInfo(const CapturedStmt &CS,
+ const CGOpenMPRegionKind RegionKind,
+ const RegionCodeGenTy &CodeGen)
+ : CGCapturedStmtInfo(CS, CR_OpenMP), RegionKind(RegionKind),
+ CodeGen(CodeGen) {}
+
+ CGOpenMPRegionInfo(const CGOpenMPRegionKind RegionKind,
+ const RegionCodeGenTy &CodeGen)
+ : CGCapturedStmtInfo(CR_OpenMP), RegionKind(RegionKind),
+ CodeGen(CodeGen) {}
+
+ /// \brief Get a variable or parameter for storing global thread id
+ /// inside OpenMP construct.
+ virtual const VarDecl *getThreadIDVariable() const = 0;
+
+ /// \brief Emit the captured statement body.
+ virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) override;
+
+ /// \brief Get an LValue for the current ThreadID variable.
+ /// \return LValue for thread id variable. This LValue always has type int32*.
+ virtual LValue getThreadIDVariableLValue(CodeGenFunction &CGF);
+
+ CGOpenMPRegionKind getRegionKind() const { return RegionKind; }
+
+ static bool classof(const CGCapturedStmtInfo *Info) {
+ return Info->getKind() == CR_OpenMP;
+ }
+
+protected:
+ CGOpenMPRegionKind RegionKind;
+ const RegionCodeGenTy &CodeGen;
+};
+
+/// \brief API for captured statement code generation in OpenMP constructs.
+class CGOpenMPOutlinedRegionInfo : public CGOpenMPRegionInfo {
+public:
+ CGOpenMPOutlinedRegionInfo(const CapturedStmt &CS, const VarDecl *ThreadIDVar,
+ const RegionCodeGenTy &CodeGen)
+ : CGOpenMPRegionInfo(CS, ParallelOutlinedRegion, CodeGen),
+ ThreadIDVar(ThreadIDVar) {
+ assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.");
+ }
+ /// \brief Get a variable or parameter for storing global thread id
+ /// inside OpenMP construct.
+ const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
+
+ /// \brief Get the name of the capture helper.
+ StringRef getHelperName() const override { return ".omp_outlined."; }
+
+ static bool classof(const CGCapturedStmtInfo *Info) {
+ return CGOpenMPRegionInfo::classof(Info) &&
+ cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
+ ParallelOutlinedRegion;
+ }
+
+private:
+ /// \brief A variable or parameter storing global thread id for OpenMP
+ /// constructs.
+ const VarDecl *ThreadIDVar;
+};
+
+/// \brief API for captured statement code generation in OpenMP constructs.
+class CGOpenMPTaskOutlinedRegionInfo : public CGOpenMPRegionInfo {
+public:
+ CGOpenMPTaskOutlinedRegionInfo(const CapturedStmt &CS,
+ const VarDecl *ThreadIDVar,
+ const RegionCodeGenTy &CodeGen)
+ : CGOpenMPRegionInfo(CS, TaskOutlinedRegion, CodeGen),
+ ThreadIDVar(ThreadIDVar) {
+ assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.");
+ }
+ /// \brief Get a variable or parameter for storing global thread id
+ /// inside OpenMP construct.
+ const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
+
+ /// \brief Get an LValue for the current ThreadID variable.
+ LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override;
+
+ /// \brief Get the name of the capture helper.
+ StringRef getHelperName() const override { return ".omp_outlined."; }
+
+ static bool classof(const CGCapturedStmtInfo *Info) {
+ return CGOpenMPRegionInfo::classof(Info) &&
+ cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
+ TaskOutlinedRegion;
+ }
+
+private:
+ /// \brief A variable or parameter storing global thread id for OpenMP
+ /// constructs.
+ const VarDecl *ThreadIDVar;
+};
+
+/// \brief API for inlined captured statement code generation in OpenMP
+/// constructs.
+class CGOpenMPInlinedRegionInfo : public CGOpenMPRegionInfo {
+public:
+ CGOpenMPInlinedRegionInfo(CodeGenFunction::CGCapturedStmtInfo *OldCSI,
+ const RegionCodeGenTy &CodeGen)
+ : CGOpenMPRegionInfo(InlinedRegion, CodeGen), OldCSI(OldCSI),
+ OuterRegionInfo(dyn_cast_or_null<CGOpenMPRegionInfo>(OldCSI)) {}
+ // \brief Retrieve the value of the context parameter.
+ llvm::Value *getContextValue() const override {
+ if (OuterRegionInfo)
+ return OuterRegionInfo->getContextValue();
+ llvm_unreachable("No context value for inlined OpenMP region");
+ }
+ virtual void setContextValue(llvm::Value *V) override {
+ if (OuterRegionInfo) {
+ OuterRegionInfo->setContextValue(V);
+ return;
+ }
+ llvm_unreachable("No context value for inlined OpenMP region");
+ }
+ /// \brief Lookup the captured field decl for a variable.
+ const FieldDecl *lookup(const VarDecl *VD) const override {
+ if (OuterRegionInfo)
+ return OuterRegionInfo->lookup(VD);
+ // If there is no outer outlined region,no need to lookup in a list of
+ // captured variables, we can use the original one.
+ return nullptr;
+ }
+ FieldDecl *getThisFieldDecl() const override {
+ if (OuterRegionInfo)
+ return OuterRegionInfo->getThisFieldDecl();
+ return nullptr;
+ }
+ /// \brief Get a variable or parameter for storing global thread id
+ /// inside OpenMP construct.
+ const VarDecl *getThreadIDVariable() const override {
+ if (OuterRegionInfo)
+ return OuterRegionInfo->getThreadIDVariable();
+ return nullptr;
+ }
+
+ /// \brief Get the name of the capture helper.
+ StringRef getHelperName() const override {
+ if (auto *OuterRegionInfo = getOldCSI())
+ return OuterRegionInfo->getHelperName();
+ llvm_unreachable("No helper name for inlined OpenMP construct");
+ }
+
+ CodeGenFunction::CGCapturedStmtInfo *getOldCSI() const { return OldCSI; }
+
+ static bool classof(const CGCapturedStmtInfo *Info) {
+ return CGOpenMPRegionInfo::classof(Info) &&
+ cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == InlinedRegion;
+ }
+
+private:
+ /// \brief CodeGen info about outer OpenMP region.
+ CodeGenFunction::CGCapturedStmtInfo *OldCSI;
+ CGOpenMPRegionInfo *OuterRegionInfo;
+};
+
+/// \brief RAII for emitting code of OpenMP constructs.
+class InlinedOpenMPRegionRAII {
+ CodeGenFunction &CGF;
+
+public:
+ /// \brief Constructs region for combined constructs.
+ /// \param CodeGen Code generation sequence for combined directives. Includes
+ /// a list of functions used for code generation of implicitly inlined
+ /// regions.
+ InlinedOpenMPRegionRAII(CodeGenFunction &CGF, const RegionCodeGenTy &CodeGen)
+ : CGF(CGF) {
+ // Start emission for the construct.
+ CGF.CapturedStmtInfo =
+ new CGOpenMPInlinedRegionInfo(CGF.CapturedStmtInfo, CodeGen);
+ }
+ ~InlinedOpenMPRegionRAII() {
+ // Restore original CapturedStmtInfo only if we're done with code emission.
+ auto *OldCSI =
+ cast<CGOpenMPInlinedRegionInfo>(CGF.CapturedStmtInfo)->getOldCSI();
+ delete CGF.CapturedStmtInfo;
+ CGF.CapturedStmtInfo = OldCSI;
+ }
+};
+
+} // namespace
+
+LValue CGOpenMPRegionInfo::getThreadIDVariableLValue(CodeGenFunction &CGF) {
+ return CGF.MakeNaturalAlignAddrLValue(
+ CGF.Builder.CreateAlignedLoad(
+ CGF.GetAddrOfLocalVar(getThreadIDVariable()),
+ CGF.PointerAlignInBytes),
+ getThreadIDVariable()
+ ->getType()
+ ->castAs<PointerType>()
+ ->getPointeeType());
+}
+
+void CGOpenMPRegionInfo::EmitBody(CodeGenFunction &CGF, const Stmt * /*S*/) {
+ // 1.2.2 OpenMP Language Terminology
+ // Structured block - An executable statement with a single entry at the
+ // top and a single exit at the bottom.
+ // The point of exit cannot be a branch out of the structured block.
+ // longjmp() and throw() must not violate the entry/exit criteria.
+ CGF.EHStack.pushTerminate();
+ {
+ CodeGenFunction::RunCleanupsScope Scope(CGF);
+ CodeGen(CGF);
+ }
+ CGF.EHStack.popTerminate();
+}
+
+LValue CGOpenMPTaskOutlinedRegionInfo::getThreadIDVariableLValue(
+ CodeGenFunction &CGF) {
+ return CGF.MakeNaturalAlignAddrLValue(
+ CGF.GetAddrOfLocalVar(getThreadIDVariable()),
+ getThreadIDVariable()->getType());
+}
+
+CGOpenMPRuntime::CGOpenMPRuntime(CodeGenModule &CGM)
+ : CGM(CGM), DefaultOpenMPPSource(nullptr), KmpRoutineEntryPtrTy(nullptr) {
+ IdentTy = llvm::StructType::create(
+ "ident_t", CGM.Int32Ty /* reserved_1 */, CGM.Int32Ty /* flags */,
+ CGM.Int32Ty /* reserved_2 */, CGM.Int32Ty /* reserved_3 */,
+ CGM.Int8PtrTy /* psource */, nullptr);
+ // Build void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...)
+ llvm::Type *MicroParams[] = {llvm::PointerType::getUnqual(CGM.Int32Ty),
+ llvm::PointerType::getUnqual(CGM.Int32Ty)};
+ Kmpc_MicroTy = llvm::FunctionType::get(CGM.VoidTy, MicroParams, true);
+ KmpCriticalNameTy = llvm::ArrayType::get(CGM.Int32Ty, /*NumElements*/ 8);
+}
+
+void CGOpenMPRuntime::clear() {
+ InternalVars.clear();
+}
+
+llvm::Value *
+CGOpenMPRuntime::emitParallelOutlinedFunction(const OMPExecutableDirective &D,
+ const VarDecl *ThreadIDVar,
+ const RegionCodeGenTy &CodeGen) {
+ assert(ThreadIDVar->getType()->isPointerType() &&
+ "thread id variable must be of type kmp_int32 *");
+ const CapturedStmt *CS = cast<CapturedStmt>(D.getAssociatedStmt());
+ CodeGenFunction CGF(CGM, true);
+ CGOpenMPOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen);
+ CGF.CapturedStmtInfo = &CGInfo;
+ return CGF.GenerateCapturedStmtFunction(*CS);
+}
+
+llvm::Value *
+CGOpenMPRuntime::emitTaskOutlinedFunction(const OMPExecutableDirective &D,
+ const VarDecl *ThreadIDVar,
+ const RegionCodeGenTy &CodeGen) {
+ assert(!ThreadIDVar->getType()->isPointerType() &&
+ "thread id variable must be of type kmp_int32 for tasks");
+ auto *CS = cast<CapturedStmt>(D.getAssociatedStmt());
+ CodeGenFunction CGF(CGM, true);
+ CGOpenMPTaskOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen);
+ CGF.CapturedStmtInfo = &CGInfo;
+ return CGF.GenerateCapturedStmtFunction(*CS);
+}
+
+llvm::Value *
+CGOpenMPRuntime::getOrCreateDefaultLocation(OpenMPLocationFlags Flags) {
+ llvm::Value *Entry = OpenMPDefaultLocMap.lookup(Flags);
+ if (!Entry) {
+ if (!DefaultOpenMPPSource) {
+ // Initialize default location for psource field of ident_t structure of
+ // all ident_t objects. Format is ";file;function;line;column;;".
+ // Taken from
+ // http://llvm.org/svn/llvm-project/openmp/trunk/runtime/src/kmp_str.c
+ DefaultOpenMPPSource =
+ CGM.GetAddrOfConstantCString(";unknown;unknown;0;0;;");
+ DefaultOpenMPPSource =
+ llvm::ConstantExpr::getBitCast(DefaultOpenMPPSource, CGM.Int8PtrTy);
+ }
+ auto DefaultOpenMPLocation = new llvm::GlobalVariable(
+ CGM.getModule(), IdentTy, /*isConstant*/ true,
+ llvm::GlobalValue::PrivateLinkage, /*Initializer*/ nullptr);
+ DefaultOpenMPLocation->setUnnamedAddr(true);
+
+ llvm::Constant *Zero = llvm::ConstantInt::get(CGM.Int32Ty, 0, true);
+ llvm::Constant *Values[] = {Zero,
+ llvm::ConstantInt::get(CGM.Int32Ty, Flags),
+ Zero, Zero, DefaultOpenMPPSource};
+ llvm::Constant *Init = llvm::ConstantStruct::get(IdentTy, Values);
+ DefaultOpenMPLocation->setInitializer(Init);
+ OpenMPDefaultLocMap[Flags] = DefaultOpenMPLocation;
+ return DefaultOpenMPLocation;
+ }
+ return Entry;
+}
+
+llvm::Value *CGOpenMPRuntime::emitUpdateLocation(CodeGenFunction &CGF,
+ SourceLocation Loc,
+ OpenMPLocationFlags Flags) {
+ // If no debug info is generated - return global default location.
+ if (CGM.getCodeGenOpts().getDebugInfo() == CodeGenOptions::NoDebugInfo ||
+ Loc.isInvalid())
+ return getOrCreateDefaultLocation(Flags);
+
+ assert(CGF.CurFn && "No function in current CodeGenFunction.");
+
+ llvm::Value *LocValue = nullptr;
+ auto I = OpenMPLocThreadIDMap.find(CGF.CurFn);
+ if (I != OpenMPLocThreadIDMap.end())
+ LocValue = I->second.DebugLoc;
+ // OpenMPLocThreadIDMap may have null DebugLoc and non-null ThreadID, if
+ // GetOpenMPThreadID was called before this routine.
+ if (LocValue == nullptr) {
+ // Generate "ident_t .kmpc_loc.addr;"
+ llvm::AllocaInst *AI = CGF.CreateTempAlloca(IdentTy, ".kmpc_loc.addr");
+ AI->setAlignment(CGM.getDataLayout().getPrefTypeAlignment(IdentTy));
+ auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
+ Elem.second.DebugLoc = AI;
+ LocValue = AI;
+
+ CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
+ CGF.Builder.SetInsertPoint(CGF.AllocaInsertPt);
+ CGF.Builder.CreateMemCpy(LocValue, getOrCreateDefaultLocation(Flags),
+ llvm::ConstantExpr::getSizeOf(IdentTy),
+ CGM.PointerAlignInBytes);
+ }
+
+ // char **psource = &.kmpc_loc_<flags>.addr.psource;
+ auto *PSource = CGF.Builder.CreateConstInBoundsGEP2_32(IdentTy, LocValue, 0,
+ IdentField_PSource);
+
+ auto OMPDebugLoc = OpenMPDebugLocMap.lookup(Loc.getRawEncoding());
+ if (OMPDebugLoc == nullptr) {
+ SmallString<128> Buffer2;
+ llvm::raw_svector_ostream OS2(Buffer2);
+ // Build debug location
+ PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc);
+ OS2 << ";" << PLoc.getFilename() << ";";
+ if (const FunctionDecl *FD =
+ dyn_cast_or_null<FunctionDecl>(CGF.CurFuncDecl)) {
+ OS2 << FD->getQualifiedNameAsString();
+ }
+ OS2 << ";" << PLoc.getLine() << ";" << PLoc.getColumn() << ";;";
+ OMPDebugLoc = CGF.Builder.CreateGlobalStringPtr(OS2.str());
+ OpenMPDebugLocMap[Loc.getRawEncoding()] = OMPDebugLoc;
+ }
+ // *psource = ";<File>;<Function>;<Line>;<Column>;;";
+ CGF.Builder.CreateStore(OMPDebugLoc, PSource);
+
+ return LocValue;
+}
+
+llvm::Value *CGOpenMPRuntime::getThreadID(CodeGenFunction &CGF,
+ SourceLocation Loc) {
+ assert(CGF.CurFn && "No function in current CodeGenFunction.");
+
+ llvm::Value *ThreadID = nullptr;
+ // Check whether we've already cached a load of the thread id in this
+ // function.
+ auto I = OpenMPLocThreadIDMap.find(CGF.CurFn);
+ if (I != OpenMPLocThreadIDMap.end()) {
+ ThreadID = I->second.ThreadID;
+ if (ThreadID != nullptr)
+ return ThreadID;
+ }
+ if (auto OMPRegionInfo =
+ dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
+ if (OMPRegionInfo->getThreadIDVariable()) {
+ // Check if this an outlined function with thread id passed as argument.
+ auto LVal = OMPRegionInfo->getThreadIDVariableLValue(CGF);
+ ThreadID = CGF.EmitLoadOfLValue(LVal, Loc).getScalarVal();
+ // If value loaded in entry block, cache it and use it everywhere in
+ // function.
+ if (CGF.Builder.GetInsertBlock() == CGF.AllocaInsertPt->getParent()) {
+ auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
+ Elem.second.ThreadID = ThreadID;
+ }
+ return ThreadID;
+ }
+ }
+
+ // This is not an outlined function region - need to call __kmpc_int32
+ // kmpc_global_thread_num(ident_t *loc).
+ // Generate thread id value and cache this value for use across the
+ // function.
+ CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
+ CGF.Builder.SetInsertPoint(CGF.AllocaInsertPt);
+ ThreadID =
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_global_thread_num),
+ emitUpdateLocation(CGF, Loc));
+ auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
+ Elem.second.ThreadID = ThreadID;
+ return ThreadID;
+}
+
+void CGOpenMPRuntime::functionFinished(CodeGenFunction &CGF) {
+ assert(CGF.CurFn && "No function in current CodeGenFunction.");
+ if (OpenMPLocThreadIDMap.count(CGF.CurFn))
+ OpenMPLocThreadIDMap.erase(CGF.CurFn);
+}
+
+llvm::Type *CGOpenMPRuntime::getIdentTyPointerTy() {
+ return llvm::PointerType::getUnqual(IdentTy);
+}
+
+llvm::Type *CGOpenMPRuntime::getKmpc_MicroPointerTy() {
+ return llvm::PointerType::getUnqual(Kmpc_MicroTy);
+}
+
+llvm::Constant *
+CGOpenMPRuntime::createRuntimeFunction(OpenMPRTLFunction Function) {
+ llvm::Constant *RTLFn = nullptr;
+ switch (Function) {
+ case OMPRTL__kmpc_fork_call: {
+ // Build void __kmpc_fork_call(ident_t *loc, kmp_int32 argc, kmpc_micro
+ // microtask, ...);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
+ getKmpc_MicroPointerTy()};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ true);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_fork_call");
+ break;
+ }
+ case OMPRTL__kmpc_global_thread_num: {
+ // Build kmp_int32 __kmpc_global_thread_num(ident_t *loc);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy()};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_global_thread_num");
+ break;
+ }
+ case OMPRTL__kmpc_threadprivate_cached: {
+ // Build void *__kmpc_threadprivate_cached(ident_t *loc,
+ // kmp_int32 global_tid, void *data, size_t size, void ***cache);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
+ CGM.VoidPtrTy, CGM.SizeTy,
+ CGM.VoidPtrTy->getPointerTo()->getPointerTo()};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_threadprivate_cached");
+ break;
+ }
+ case OMPRTL__kmpc_critical: {
+ // Build void __kmpc_critical(ident_t *loc, kmp_int32 global_tid,
+ // kmp_critical_name *crit);
+ llvm::Type *TypeParams[] = {
+ getIdentTyPointerTy(), CGM.Int32Ty,
+ llvm::PointerType::getUnqual(KmpCriticalNameTy)};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_critical");
+ break;
+ }
+ case OMPRTL__kmpc_threadprivate_register: {
+ // Build void __kmpc_threadprivate_register(ident_t *, void *data,
+ // kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor);
+ // typedef void *(*kmpc_ctor)(void *);
+ auto KmpcCtorTy =
+ llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy,
+ /*isVarArg*/ false)->getPointerTo();
+ // typedef void *(*kmpc_cctor)(void *, void *);
+ llvm::Type *KmpcCopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
+ auto KmpcCopyCtorTy =
+ llvm::FunctionType::get(CGM.VoidPtrTy, KmpcCopyCtorTyArgs,
+ /*isVarArg*/ false)->getPointerTo();
+ // typedef void (*kmpc_dtor)(void *);
+ auto KmpcDtorTy =
+ llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy, /*isVarArg*/ false)
+ ->getPointerTo();
+ llvm::Type *FnTyArgs[] = {getIdentTyPointerTy(), CGM.VoidPtrTy, KmpcCtorTy,
+ KmpcCopyCtorTy, KmpcDtorTy};
+ auto FnTy = llvm::FunctionType::get(CGM.VoidTy, FnTyArgs,
+ /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_threadprivate_register");
+ break;
+ }
+ case OMPRTL__kmpc_end_critical: {
+ // Build void __kmpc_end_critical(ident_t *loc, kmp_int32 global_tid,
+ // kmp_critical_name *crit);
+ llvm::Type *TypeParams[] = {
+ getIdentTyPointerTy(), CGM.Int32Ty,
+ llvm::PointerType::getUnqual(KmpCriticalNameTy)};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_critical");
+ break;
+ }
+ case OMPRTL__kmpc_cancel_barrier: {
+ // Build kmp_int32 __kmpc_cancel_barrier(ident_t *loc, kmp_int32
+ // global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name*/ "__kmpc_cancel_barrier");
+ break;
+ }
+ case OMPRTL__kmpc_for_static_fini: {
+ // Build void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_for_static_fini");
+ break;
+ }
+ case OMPRTL__kmpc_push_num_threads: {
+ // Build void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
+ // kmp_int32 num_threads)
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
+ CGM.Int32Ty};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_num_threads");
+ break;
+ }
+ case OMPRTL__kmpc_serialized_parallel: {
+ // Build void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
+ // global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_serialized_parallel");
+ break;
+ }
+ case OMPRTL__kmpc_end_serialized_parallel: {
+ // Build void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
+ // global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_serialized_parallel");
+ break;
+ }
+ case OMPRTL__kmpc_flush: {
+ // Build void __kmpc_flush(ident_t *loc);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy()};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_flush");
+ break;
+ }
+ case OMPRTL__kmpc_master: {
+ // Build kmp_int32 __kmpc_master(ident_t *loc, kmp_int32 global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_master");
+ break;
+ }
+ case OMPRTL__kmpc_end_master: {
+ // Build void __kmpc_end_master(ident_t *loc, kmp_int32 global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_master");
+ break;
+ }
+ case OMPRTL__kmpc_omp_taskyield: {
+ // Build kmp_int32 __kmpc_omp_taskyield(ident_t *, kmp_int32 global_tid,
+ // int end_part);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_taskyield");
+ break;
+ }
+ case OMPRTL__kmpc_single: {
+ // Build kmp_int32 __kmpc_single(ident_t *loc, kmp_int32 global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_single");
+ break;
+ }
+ case OMPRTL__kmpc_end_single: {
+ // Build void __kmpc_end_single(ident_t *loc, kmp_int32 global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_single");
+ break;
+ }
+ case OMPRTL__kmpc_omp_task_alloc: {
+ // Build kmp_task_t *__kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
+ // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
+ // kmp_routine_entry_t *task_entry);
+ assert(KmpRoutineEntryPtrTy != nullptr &&
+ "Type kmp_routine_entry_t must be created.");
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty,
+ CGM.SizeTy, CGM.SizeTy, KmpRoutineEntryPtrTy};
+ // Return void * and then cast to particular kmp_task_t type.
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_alloc");
+ break;
+ }
+ case OMPRTL__kmpc_omp_task: {
+ // Build kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
+ // *new_task);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
+ CGM.VoidPtrTy};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task");
+ break;
+ }
+ case OMPRTL__kmpc_copyprivate: {
+ // Build void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
+ // size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *),
+ // kmp_int32 didit);
+ llvm::Type *CpyTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
+ auto *CpyFnTy =
+ llvm::FunctionType::get(CGM.VoidTy, CpyTypeParams, /*isVarArg=*/false);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.SizeTy,
+ CGM.VoidPtrTy, CpyFnTy->getPointerTo(),
+ CGM.Int32Ty};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_copyprivate");
+ break;
+ }
+ case OMPRTL__kmpc_reduce: {
+ // Build kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid,
+ // kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void
+ // (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck);
+ llvm::Type *ReduceTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
+ auto *ReduceFnTy = llvm::FunctionType::get(CGM.VoidTy, ReduceTypeParams,
+ /*isVarArg=*/false);
+ llvm::Type *TypeParams[] = {
+ getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.SizeTy,
+ CGM.VoidPtrTy, ReduceFnTy->getPointerTo(),
+ llvm::PointerType::getUnqual(KmpCriticalNameTy)};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_reduce");
+ break;
+ }
+ case OMPRTL__kmpc_reduce_nowait: {
+ // Build kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32
+ // global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data,
+ // void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name
+ // *lck);
+ llvm::Type *ReduceTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
+ auto *ReduceFnTy = llvm::FunctionType::get(CGM.VoidTy, ReduceTypeParams,
+ /*isVarArg=*/false);
+ llvm::Type *TypeParams[] = {
+ getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.SizeTy,
+ CGM.VoidPtrTy, ReduceFnTy->getPointerTo(),
+ llvm::PointerType::getUnqual(KmpCriticalNameTy)};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_reduce_nowait");
+ break;
+ }
+ case OMPRTL__kmpc_end_reduce: {
+ // Build void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
+ // kmp_critical_name *lck);
+ llvm::Type *TypeParams[] = {
+ getIdentTyPointerTy(), CGM.Int32Ty,
+ llvm::PointerType::getUnqual(KmpCriticalNameTy)};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_reduce");
+ break;
+ }
+ case OMPRTL__kmpc_end_reduce_nowait: {
+ // Build __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
+ // kmp_critical_name *lck);
+ llvm::Type *TypeParams[] = {
+ getIdentTyPointerTy(), CGM.Int32Ty,
+ llvm::PointerType::getUnqual(KmpCriticalNameTy)};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn =
+ CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_reduce_nowait");
+ break;
+ }
+ case OMPRTL__kmpc_omp_task_begin_if0: {
+ // Build void __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
+ // *new_task);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
+ CGM.VoidPtrTy};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn =
+ CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_begin_if0");
+ break;
+ }
+ case OMPRTL__kmpc_omp_task_complete_if0: {
+ // Build void __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
+ // *new_task);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
+ CGM.VoidPtrTy};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy,
+ /*Name=*/"__kmpc_omp_task_complete_if0");
+ break;
+ }
+ case OMPRTL__kmpc_ordered: {
+ // Build void __kmpc_ordered(ident_t *loc, kmp_int32 global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_ordered");
+ break;
+ }
+ case OMPRTL__kmpc_end_ordered: {
+ // Build void __kmpc_ordered(ident_t *loc, kmp_int32 global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_ordered");
+ break;
+ }
+ case OMPRTL__kmpc_omp_taskwait: {
+ // Build kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32 global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_omp_taskwait");
+ break;
+ }
+ }
+ return RTLFn;
+}
+
+llvm::Constant *CGOpenMPRuntime::createForStaticInitFunction(unsigned IVSize,
+ bool IVSigned) {
+ assert((IVSize == 32 || IVSize == 64) &&
+ "IV size is not compatible with the omp runtime");
+ auto Name = IVSize == 32 ? (IVSigned ? "__kmpc_for_static_init_4"
+ : "__kmpc_for_static_init_4u")
+ : (IVSigned ? "__kmpc_for_static_init_8"
+ : "__kmpc_for_static_init_8u");
+ auto ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
+ auto PtrTy = llvm::PointerType::getUnqual(ITy);
+ llvm::Type *TypeParams[] = {
+ getIdentTyPointerTy(), // loc
+ CGM.Int32Ty, // tid
+ CGM.Int32Ty, // schedtype
+ llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter
+ PtrTy, // p_lower
+ PtrTy, // p_upper
+ PtrTy, // p_stride
+ ITy, // incr
+ ITy // chunk
+ };
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ return CGM.CreateRuntimeFunction(FnTy, Name);
+}
+
+llvm::Constant *CGOpenMPRuntime::createDispatchInitFunction(unsigned IVSize,
+ bool IVSigned) {
+ assert((IVSize == 32 || IVSize == 64) &&
+ "IV size is not compatible with the omp runtime");
+ auto Name =
+ IVSize == 32
+ ? (IVSigned ? "__kmpc_dispatch_init_4" : "__kmpc_dispatch_init_4u")
+ : (IVSigned ? "__kmpc_dispatch_init_8" : "__kmpc_dispatch_init_8u");
+ auto ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
+ llvm::Type *TypeParams[] = { getIdentTyPointerTy(), // loc
+ CGM.Int32Ty, // tid
+ CGM.Int32Ty, // schedtype
+ ITy, // lower
+ ITy, // upper
+ ITy, // stride
+ ITy // chunk
+ };
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ return CGM.CreateRuntimeFunction(FnTy, Name);
+}
+
+llvm::Constant *CGOpenMPRuntime::createDispatchFiniFunction(unsigned IVSize,
+ bool IVSigned) {
+ assert((IVSize == 32 || IVSize == 64) &&
+ "IV size is not compatible with the omp runtime");
+ auto Name =
+ IVSize == 32
+ ? (IVSigned ? "__kmpc_dispatch_fini_4" : "__kmpc_dispatch_fini_4u")
+ : (IVSigned ? "__kmpc_dispatch_fini_8" : "__kmpc_dispatch_fini_8u");
+ llvm::Type *TypeParams[] = {
+ getIdentTyPointerTy(), // loc
+ CGM.Int32Ty, // tid
+ };
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ return CGM.CreateRuntimeFunction(FnTy, Name);
+}
+
+llvm::Constant *CGOpenMPRuntime::createDispatchNextFunction(unsigned IVSize,
+ bool IVSigned) {
+ assert((IVSize == 32 || IVSize == 64) &&
+ "IV size is not compatible with the omp runtime");
+ auto Name =
+ IVSize == 32
+ ? (IVSigned ? "__kmpc_dispatch_next_4" : "__kmpc_dispatch_next_4u")
+ : (IVSigned ? "__kmpc_dispatch_next_8" : "__kmpc_dispatch_next_8u");
+ auto ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
+ auto PtrTy = llvm::PointerType::getUnqual(ITy);
+ llvm::Type *TypeParams[] = {
+ getIdentTyPointerTy(), // loc
+ CGM.Int32Ty, // tid
+ llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter
+ PtrTy, // p_lower
+ PtrTy, // p_upper
+ PtrTy // p_stride
+ };
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
+ return CGM.CreateRuntimeFunction(FnTy, Name);
+}
+
+llvm::Constant *
+CGOpenMPRuntime::getOrCreateThreadPrivateCache(const VarDecl *VD) {
+ // Lookup the entry, lazily creating it if necessary.
+ return getOrCreateInternalVariable(CGM.Int8PtrPtrTy,
+ Twine(CGM.getMangledName(VD)) + ".cache.");
+}
+
+llvm::Value *CGOpenMPRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF,
+ const VarDecl *VD,
+ llvm::Value *VDAddr,
+ SourceLocation Loc) {
+ auto VarTy = VDAddr->getType()->getPointerElementType();
+ llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
+ CGF.Builder.CreatePointerCast(VDAddr, CGM.Int8PtrTy),
+ CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)),
+ getOrCreateThreadPrivateCache(VD)};
+ return CGF.EmitRuntimeCall(
+ createRuntimeFunction(OMPRTL__kmpc_threadprivate_cached), Args);
+}
+
+void CGOpenMPRuntime::emitThreadPrivateVarInit(
+ CodeGenFunction &CGF, llvm::Value *VDAddr, llvm::Value *Ctor,
+ llvm::Value *CopyCtor, llvm::Value *Dtor, SourceLocation Loc) {
+ // Call kmp_int32 __kmpc_global_thread_num(&loc) to init OpenMP runtime
+ // library.
+ auto OMPLoc = emitUpdateLocation(CGF, Loc);
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_global_thread_num),
+ OMPLoc);
+ // Call __kmpc_threadprivate_register(&loc, &var, ctor, cctor/*NULL*/, dtor)
+ // to register constructor/destructor for variable.
+ llvm::Value *Args[] = {OMPLoc,
+ CGF.Builder.CreatePointerCast(VDAddr, CGM.VoidPtrTy),
+ Ctor, CopyCtor, Dtor};
+ CGF.EmitRuntimeCall(
+ createRuntimeFunction(OMPRTL__kmpc_threadprivate_register), Args);
+}
+
+llvm::Function *CGOpenMPRuntime::emitThreadPrivateVarDefinition(
+ const VarDecl *VD, llvm::Value *VDAddr, SourceLocation Loc,
+ bool PerformInit, CodeGenFunction *CGF) {
+ VD = VD->getDefinition(CGM.getContext());
+ if (VD && ThreadPrivateWithDefinition.count(VD) == 0) {
+ ThreadPrivateWithDefinition.insert(VD);
+ QualType ASTTy = VD->getType();
+
+ llvm::Value *Ctor = nullptr, *CopyCtor = nullptr, *Dtor = nullptr;
+ auto Init = VD->getAnyInitializer();
+ if (CGM.getLangOpts().CPlusPlus && PerformInit) {
+ // Generate function that re-emits the declaration's initializer into the
+ // threadprivate copy of the variable VD
+ CodeGenFunction CtorCGF(CGM);
+ FunctionArgList Args;
+ ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, SourceLocation(),
+ /*Id=*/nullptr, CGM.getContext().VoidPtrTy);
+ Args.push_back(&Dst);
+
+ auto &FI = CGM.getTypes().arrangeFreeFunctionDeclaration(
+ CGM.getContext().VoidPtrTy, Args, FunctionType::ExtInfo(),
+ /*isVariadic=*/false);
+ auto FTy = CGM.getTypes().GetFunctionType(FI);
+ auto Fn = CGM.CreateGlobalInitOrDestructFunction(
+ FTy, ".__kmpc_global_ctor_.", Loc);
+ CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidPtrTy, Fn, FI,
+ Args, SourceLocation());
+ auto ArgVal = CtorCGF.EmitLoadOfScalar(
+ CtorCGF.GetAddrOfLocalVar(&Dst),
+ /*Volatile=*/false, CGM.PointerAlignInBytes,
+ CGM.getContext().VoidPtrTy, Dst.getLocation());
+ auto Arg = CtorCGF.Builder.CreatePointerCast(
+ ArgVal,
+ CtorCGF.ConvertTypeForMem(CGM.getContext().getPointerType(ASTTy)));
+ CtorCGF.EmitAnyExprToMem(Init, Arg, Init->getType().getQualifiers(),
+ /*IsInitializer=*/true);
+ ArgVal = CtorCGF.EmitLoadOfScalar(
+ CtorCGF.GetAddrOfLocalVar(&Dst),
+ /*Volatile=*/false, CGM.PointerAlignInBytes,
+ CGM.getContext().VoidPtrTy, Dst.getLocation());
+ CtorCGF.Builder.CreateStore(ArgVal, CtorCGF.ReturnValue);
+ CtorCGF.FinishFunction();
+ Ctor = Fn;
+ }
+ if (VD->getType().isDestructedType() != QualType::DK_none) {
+ // Generate function that emits destructor call for the threadprivate copy
+ // of the variable VD
+ CodeGenFunction DtorCGF(CGM);
+ FunctionArgList Args;
+ ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, SourceLocation(),
+ /*Id=*/nullptr, CGM.getContext().VoidPtrTy);
+ Args.push_back(&Dst);
+
+ auto &FI = CGM.getTypes().arrangeFreeFunctionDeclaration(
+ CGM.getContext().VoidTy, Args, FunctionType::ExtInfo(),
+ /*isVariadic=*/false);
+ auto FTy = CGM.getTypes().GetFunctionType(FI);
+ auto Fn = CGM.CreateGlobalInitOrDestructFunction(
+ FTy, ".__kmpc_global_dtor_.", Loc);
+ DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI, Args,
+ SourceLocation());
+ auto ArgVal = DtorCGF.EmitLoadOfScalar(
+ DtorCGF.GetAddrOfLocalVar(&Dst),
+ /*Volatile=*/false, CGM.PointerAlignInBytes,
+ CGM.getContext().VoidPtrTy, Dst.getLocation());
+ DtorCGF.emitDestroy(ArgVal, ASTTy,
+ DtorCGF.getDestroyer(ASTTy.isDestructedType()),
+ DtorCGF.needsEHCleanup(ASTTy.isDestructedType()));
+ DtorCGF.FinishFunction();
+ Dtor = Fn;
+ }
+ // Do not emit init function if it is not required.
+ if (!Ctor && !Dtor)
+ return nullptr;
+
+ llvm::Type *CopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
+ auto CopyCtorTy =
+ llvm::FunctionType::get(CGM.VoidPtrTy, CopyCtorTyArgs,
+ /*isVarArg=*/false)->getPointerTo();
+ // Copying constructor for the threadprivate variable.
+ // Must be NULL - reserved by runtime, but currently it requires that this
+ // parameter is always NULL. Otherwise it fires assertion.
+ CopyCtor = llvm::Constant::getNullValue(CopyCtorTy);
+ if (Ctor == nullptr) {
+ auto CtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy,
+ /*isVarArg=*/false)->getPointerTo();
+ Ctor = llvm::Constant::getNullValue(CtorTy);
+ }
+ if (Dtor == nullptr) {
+ auto DtorTy = llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy,
+ /*isVarArg=*/false)->getPointerTo();
+ Dtor = llvm::Constant::getNullValue(DtorTy);
+ }
+ if (!CGF) {
+ auto InitFunctionTy =
+ llvm::FunctionType::get(CGM.VoidTy, /*isVarArg*/ false);
+ auto InitFunction = CGM.CreateGlobalInitOrDestructFunction(
+ InitFunctionTy, ".__omp_threadprivate_init_.");
+ CodeGenFunction InitCGF(CGM);
+ FunctionArgList ArgList;
+ InitCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, InitFunction,
+ CGM.getTypes().arrangeNullaryFunction(), ArgList,
+ Loc);
+ emitThreadPrivateVarInit(InitCGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
+ InitCGF.FinishFunction();
+ return InitFunction;
+ }
+ emitThreadPrivateVarInit(*CGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
+ }
+ return nullptr;
+}
+
+/// \brief Emits code for OpenMP 'if' clause using specified \a CodeGen
+/// function. Here is the logic:
+/// if (Cond) {
+/// ThenGen();
+/// } else {
+/// ElseGen();
+/// }
+static void emitOMPIfClause(CodeGenFunction &CGF, const Expr *Cond,
+ const RegionCodeGenTy &ThenGen,
+ const RegionCodeGenTy &ElseGen) {
+ CodeGenFunction::LexicalScope ConditionScope(CGF, Cond->getSourceRange());
+
+ // If the condition constant folds and can be elided, try to avoid emitting
+ // the condition and the dead arm of the if/else.
+ bool CondConstant;
+ if (CGF.ConstantFoldsToSimpleInteger(Cond, CondConstant)) {
+ CodeGenFunction::RunCleanupsScope Scope(CGF);
+ if (CondConstant) {
+ ThenGen(CGF);
+ } else {
+ ElseGen(CGF);
+ }
+ return;
+ }
+
+ // Otherwise, the condition did not fold, or we couldn't elide it. Just
+ // emit the conditional branch.
+ auto ThenBlock = CGF.createBasicBlock("omp_if.then");
+ auto ElseBlock = CGF.createBasicBlock("omp_if.else");
+ auto ContBlock = CGF.createBasicBlock("omp_if.end");
+ CGF.EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, /*TrueCount=*/0);
+
+ // Emit the 'then' code.
+ CGF.EmitBlock(ThenBlock);
+ {
+ CodeGenFunction::RunCleanupsScope ThenScope(CGF);
+ ThenGen(CGF);
+ }
+ CGF.EmitBranch(ContBlock);
+ // Emit the 'else' code if present.
+ {
+ // There is no need to emit line number for unconditional branch.
+ auto NL = ApplyDebugLocation::CreateEmpty(CGF);
+ CGF.EmitBlock(ElseBlock);
+ }
+ {
+ CodeGenFunction::RunCleanupsScope ThenScope(CGF);
+ ElseGen(CGF);
+ }
+ {
+ // There is no need to emit line number for unconditional branch.
+ auto NL = ApplyDebugLocation::CreateEmpty(CGF);
+ CGF.EmitBranch(ContBlock);
+ }
+ // Emit the continuation block for code after the if.
+ CGF.EmitBlock(ContBlock, /*IsFinished=*/true);
+}
+
+void CGOpenMPRuntime::emitParallelCall(CodeGenFunction &CGF, SourceLocation Loc,
+ llvm::Value *OutlinedFn,
+ llvm::Value *CapturedStruct,
+ const Expr *IfCond) {
+ auto *RTLoc = emitUpdateLocation(CGF, Loc);
+ auto &&ThenGen =
+ [this, OutlinedFn, CapturedStruct, RTLoc](CodeGenFunction &CGF) {
+ // Build call __kmpc_fork_call(loc, 1, microtask,
+ // captured_struct/*context*/)
+ llvm::Value *Args[] = {
+ RTLoc,
+ CGF.Builder.getInt32(
+ 1), // Number of arguments after 'microtask' argument
+ // (there is only one additional argument - 'context')
+ CGF.Builder.CreateBitCast(OutlinedFn, getKmpc_MicroPointerTy()),
+ CGF.EmitCastToVoidPtr(CapturedStruct)};
+ auto RTLFn = createRuntimeFunction(OMPRTL__kmpc_fork_call);
+ CGF.EmitRuntimeCall(RTLFn, Args);
+ };
+ auto &&ElseGen = [this, OutlinedFn, CapturedStruct, RTLoc, Loc](
+ CodeGenFunction &CGF) {
+ auto ThreadID = getThreadID(CGF, Loc);
+ // Build calls:
+ // __kmpc_serialized_parallel(&Loc, GTid);
+ llvm::Value *Args[] = {RTLoc, ThreadID};
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_serialized_parallel),
+ Args);
+
+ // OutlinedFn(&GTid, &zero, CapturedStruct);
+ auto ThreadIDAddr = emitThreadIDAddress(CGF, Loc);
+ auto Int32Ty = CGF.getContext().getIntTypeForBitwidth(/*DestWidth*/ 32,
+ /*Signed*/ true);
+ auto ZeroAddr = CGF.CreateMemTemp(Int32Ty, /*Name*/ ".zero.addr");
+ CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
+ llvm::Value *OutlinedFnArgs[] = {ThreadIDAddr, ZeroAddr, CapturedStruct};
+ CGF.EmitCallOrInvoke(OutlinedFn, OutlinedFnArgs);
+
+ // __kmpc_end_serialized_parallel(&Loc, GTid);
+ llvm::Value *EndArgs[] = {emitUpdateLocation(CGF, Loc), ThreadID};
+ CGF.EmitRuntimeCall(
+ createRuntimeFunction(OMPRTL__kmpc_end_serialized_parallel), EndArgs);
+ };
+ if (IfCond) {
+ emitOMPIfClause(CGF, IfCond, ThenGen, ElseGen);
+ } else {
+ CodeGenFunction::RunCleanupsScope Scope(CGF);
+ ThenGen(CGF);
+ }
+}
+
+// If we're inside an (outlined) parallel region, use the region info's
+// thread-ID variable (it is passed in a first argument of the outlined function
+// as "kmp_int32 *gtid"). Otherwise, if we're not inside parallel region, but in
+// regular serial code region, get thread ID by calling kmp_int32
+// kmpc_global_thread_num(ident_t *loc), stash this thread ID in a temporary and
+// return the address of that temp.
+llvm::Value *CGOpenMPRuntime::emitThreadIDAddress(CodeGenFunction &CGF,
+ SourceLocation Loc) {
+ if (auto OMPRegionInfo =
+ dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
+ if (OMPRegionInfo->getThreadIDVariable())
+ return OMPRegionInfo->getThreadIDVariableLValue(CGF).getAddress();
+
+ auto ThreadID = getThreadID(CGF, Loc);
+ auto Int32Ty =
+ CGF.getContext().getIntTypeForBitwidth(/*DestWidth*/ 32, /*Signed*/ true);
+ auto ThreadIDTemp = CGF.CreateMemTemp(Int32Ty, /*Name*/ ".threadid_temp.");
+ CGF.EmitStoreOfScalar(ThreadID,
+ CGF.MakeNaturalAlignAddrLValue(ThreadIDTemp, Int32Ty));
+
+ return ThreadIDTemp;
+}
+
+llvm::Constant *
+CGOpenMPRuntime::getOrCreateInternalVariable(llvm::Type *Ty,
+ const llvm::Twine &Name) {
+ SmallString<256> Buffer;
+ llvm::raw_svector_ostream Out(Buffer);
+ Out << Name;
+ auto RuntimeName = Out.str();
+ auto &Elem = *InternalVars.insert(std::make_pair(RuntimeName, nullptr)).first;
+ if (Elem.second) {
+ assert(Elem.second->getType()->getPointerElementType() == Ty &&
+ "OMP internal variable has different type than requested");
+ return &*Elem.second;
+ }
+
+ return Elem.second = new llvm::GlobalVariable(
+ CGM.getModule(), Ty, /*IsConstant*/ false,
+ llvm::GlobalValue::CommonLinkage, llvm::Constant::getNullValue(Ty),
+ Elem.first());
+}
+
+llvm::Value *CGOpenMPRuntime::getCriticalRegionLock(StringRef CriticalName) {
+ llvm::Twine Name(".gomp_critical_user_", CriticalName);
+ return getOrCreateInternalVariable(KmpCriticalNameTy, Name.concat(".var"));
+}
+
+namespace {
+template <size_t N> class CallEndCleanup : public EHScopeStack::Cleanup {
+ llvm::Value *Callee;
+ llvm::Value *Args[N];
+
+public:
+ CallEndCleanup(llvm::Value *Callee, ArrayRef<llvm::Value *> CleanupArgs)
+ : Callee(Callee) {
+ assert(CleanupArgs.size() == N);
+ std::copy(CleanupArgs.begin(), CleanupArgs.end(), std::begin(Args));
+ }
+ void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
+ CGF.EmitRuntimeCall(Callee, Args);
+ }
+};
+} // namespace
+
+void CGOpenMPRuntime::emitCriticalRegion(CodeGenFunction &CGF,
+ StringRef CriticalName,
+ const RegionCodeGenTy &CriticalOpGen,
+ SourceLocation Loc) {
+ // __kmpc_critical(ident_t *, gtid, Lock);
+ // CriticalOpGen();
+ // __kmpc_end_critical(ident_t *, gtid, Lock);
+ // Prepare arguments and build a call to __kmpc_critical
+ {
+ CodeGenFunction::RunCleanupsScope Scope(CGF);
+ llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
+ getCriticalRegionLock(CriticalName)};
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_critical), Args);
+ // Build a call to __kmpc_end_critical
+ CGF.EHStack.pushCleanup<CallEndCleanup<std::extent<decltype(Args)>::value>>(
+ NormalAndEHCleanup, createRuntimeFunction(OMPRTL__kmpc_end_critical),
+ llvm::makeArrayRef(Args));
+ emitInlinedDirective(CGF, CriticalOpGen);
+ }
+}
+
+static void emitIfStmt(CodeGenFunction &CGF, llvm::Value *IfCond,
+ const RegionCodeGenTy &BodyOpGen) {
+ llvm::Value *CallBool = CGF.EmitScalarConversion(
+ IfCond,
+ CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true),
+ CGF.getContext().BoolTy);
+
+ auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
+ auto *ContBlock = CGF.createBasicBlock("omp_if.end");
+ // Generate the branch (If-stmt)
+ CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
+ CGF.EmitBlock(ThenBlock);
+ CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, BodyOpGen);
+ // Emit the rest of bblocks/branches
+ CGF.EmitBranch(ContBlock);
+ CGF.EmitBlock(ContBlock, true);
+}
+
+void CGOpenMPRuntime::emitMasterRegion(CodeGenFunction &CGF,
+ const RegionCodeGenTy &MasterOpGen,
+ SourceLocation Loc) {
+ // if(__kmpc_master(ident_t *, gtid)) {
+ // MasterOpGen();
+ // __kmpc_end_master(ident_t *, gtid);
+ // }
+ // Prepare arguments and build a call to __kmpc_master
+ llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
+ auto *IsMaster =
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_master), Args);
+ typedef CallEndCleanup<std::extent<decltype(Args)>::value>
+ MasterCallEndCleanup;
+ emitIfStmt(CGF, IsMaster, [&](CodeGenFunction &CGF) -> void {
+ CodeGenFunction::RunCleanupsScope Scope(CGF);
+ CGF.EHStack.pushCleanup<MasterCallEndCleanup>(
+ NormalAndEHCleanup, createRuntimeFunction(OMPRTL__kmpc_end_master),
+ llvm::makeArrayRef(Args));
+ MasterOpGen(CGF);
+ });
+}
+
+void CGOpenMPRuntime::emitTaskyieldCall(CodeGenFunction &CGF,
+ SourceLocation Loc) {
+ // Build call __kmpc_omp_taskyield(loc, thread_id, 0);
+ llvm::Value *Args[] = {
+ emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
+ llvm::ConstantInt::get(CGM.IntTy, /*V=*/0, /*isSigned=*/true)};
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_taskyield), Args);
+}
+
+static llvm::Value *emitCopyprivateCopyFunction(
+ CodeGenModule &CGM, llvm::Type *ArgsType,
+ ArrayRef<const Expr *> CopyprivateVars, ArrayRef<const Expr *> DestExprs,
+ ArrayRef<const Expr *> SrcExprs, ArrayRef<const Expr *> AssignmentOps) {
+ auto &C = CGM.getContext();
+ // void copy_func(void *LHSArg, void *RHSArg);
+ FunctionArgList Args;
+ ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, SourceLocation(), /*Id=*/nullptr,
+ C.VoidPtrTy);
+ ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, SourceLocation(), /*Id=*/nullptr,
+ C.VoidPtrTy);
+ Args.push_back(&LHSArg);
+ Args.push_back(&RHSArg);
+ FunctionType::ExtInfo EI;
+ auto &CGFI = CGM.getTypes().arrangeFreeFunctionDeclaration(
+ C.VoidTy, Args, EI, /*isVariadic=*/false);
+ auto *Fn = llvm::Function::Create(
+ CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
+ ".omp.copyprivate.copy_func", &CGM.getModule());
+ CGM.SetLLVMFunctionAttributes(/*D=*/nullptr, CGFI, Fn);
+ CodeGenFunction CGF(CGM);
+ CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args);
+ // Dest = (void*[n])(LHSArg);
+ // Src = (void*[n])(RHSArg);
+ auto *LHS = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.Builder.CreateAlignedLoad(CGF.GetAddrOfLocalVar(&LHSArg),
+ CGF.PointerAlignInBytes),
+ ArgsType);
+ auto *RHS = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.Builder.CreateAlignedLoad(CGF.GetAddrOfLocalVar(&RHSArg),
+ CGF.PointerAlignInBytes),
+ ArgsType);
+ // *(Type0*)Dst[0] = *(Type0*)Src[0];
+ // *(Type1*)Dst[1] = *(Type1*)Src[1];
+ // ...
+ // *(Typen*)Dst[n] = *(Typen*)Src[n];
+ for (unsigned I = 0, E = AssignmentOps.size(); I < E; ++I) {
+ auto *DestAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.Builder.CreateAlignedLoad(
+ CGF.Builder.CreateStructGEP(nullptr, LHS, I),
+ CGM.PointerAlignInBytes),
+ CGF.ConvertTypeForMem(C.getPointerType(SrcExprs[I]->getType())));
+ auto *SrcAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.Builder.CreateAlignedLoad(
+ CGF.Builder.CreateStructGEP(nullptr, RHS, I),
+ CGM.PointerAlignInBytes),
+ CGF.ConvertTypeForMem(C.getPointerType(SrcExprs[I]->getType())));
+ auto *VD = cast<DeclRefExpr>(CopyprivateVars[I])->getDecl();
+ QualType Type = VD->getType();
+ CGF.EmitOMPCopy(CGF, Type, DestAddr, SrcAddr,
+ cast<VarDecl>(cast<DeclRefExpr>(DestExprs[I])->getDecl()),
+ cast<VarDecl>(cast<DeclRefExpr>(SrcExprs[I])->getDecl()),
+ AssignmentOps[I]);
+ }
+ CGF.FinishFunction();
+ return Fn;
+}
+
+void CGOpenMPRuntime::emitSingleRegion(CodeGenFunction &CGF,
+ const RegionCodeGenTy &SingleOpGen,
+ SourceLocation Loc,
+ ArrayRef<const Expr *> CopyprivateVars,
+ ArrayRef<const Expr *> SrcExprs,
+ ArrayRef<const Expr *> DstExprs,
+ ArrayRef<const Expr *> AssignmentOps) {
+ assert(CopyprivateVars.size() == SrcExprs.size() &&
+ CopyprivateVars.size() == DstExprs.size() &&
+ CopyprivateVars.size() == AssignmentOps.size());
+ auto &C = CGM.getContext();
+ // int32 did_it = 0;
+ // if(__kmpc_single(ident_t *, gtid)) {
+ // SingleOpGen();
+ // __kmpc_end_single(ident_t *, gtid);
+ // did_it = 1;
+ // }
+ // call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
+ // <copy_func>, did_it);
+
+ llvm::AllocaInst *DidIt = nullptr;
+ if (!CopyprivateVars.empty()) {
+ // int32 did_it = 0;
+ auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
+ DidIt = CGF.CreateMemTemp(KmpInt32Ty, ".omp.copyprivate.did_it");
+ CGF.Builder.CreateAlignedStore(CGF.Builder.getInt32(0), DidIt,
+ DidIt->getAlignment());
+ }
+ // Prepare arguments and build a call to __kmpc_single
+ llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
+ auto *IsSingle =
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_single), Args);
+ typedef CallEndCleanup<std::extent<decltype(Args)>::value>
+ SingleCallEndCleanup;
+ emitIfStmt(CGF, IsSingle, [&](CodeGenFunction &CGF) -> void {
+ CodeGenFunction::RunCleanupsScope Scope(CGF);
+ CGF.EHStack.pushCleanup<SingleCallEndCleanup>(
+ NormalAndEHCleanup, createRuntimeFunction(OMPRTL__kmpc_end_single),
+ llvm::makeArrayRef(Args));
+ SingleOpGen(CGF);
+ if (DidIt) {
+ // did_it = 1;
+ CGF.Builder.CreateAlignedStore(CGF.Builder.getInt32(1), DidIt,
+ DidIt->getAlignment());
+ }
+ });
+ // call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
+ // <copy_func>, did_it);
+ if (DidIt) {
+ llvm::APInt ArraySize(/*unsigned int numBits=*/32, CopyprivateVars.size());
+ auto CopyprivateArrayTy =
+ C.getConstantArrayType(C.VoidPtrTy, ArraySize, ArrayType::Normal,
+ /*IndexTypeQuals=*/0);
+ // Create a list of all private variables for copyprivate.
+ auto *CopyprivateList =
+ CGF.CreateMemTemp(CopyprivateArrayTy, ".omp.copyprivate.cpr_list");
+ for (unsigned I = 0, E = CopyprivateVars.size(); I < E; ++I) {
+ auto *Elem = CGF.Builder.CreateStructGEP(
+ CopyprivateList->getAllocatedType(), CopyprivateList, I);
+ CGF.Builder.CreateAlignedStore(
+ CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.EmitLValue(CopyprivateVars[I]).getAddress(), CGF.VoidPtrTy),
+ Elem, CGM.PointerAlignInBytes);
+ }
+ // Build function that copies private values from single region to all other
+ // threads in the corresponding parallel region.
+ auto *CpyFn = emitCopyprivateCopyFunction(
+ CGM, CGF.ConvertTypeForMem(CopyprivateArrayTy)->getPointerTo(),
+ CopyprivateVars, SrcExprs, DstExprs, AssignmentOps);
+ auto *BufSize = llvm::ConstantInt::get(
+ CGM.SizeTy, C.getTypeSizeInChars(CopyprivateArrayTy).getQuantity());
+ auto *CL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(CopyprivateList,
+ CGF.VoidPtrTy);
+ auto *DidItVal =
+ CGF.Builder.CreateAlignedLoad(DidIt, CGF.PointerAlignInBytes);
+ llvm::Value *Args[] = {
+ emitUpdateLocation(CGF, Loc), // ident_t *<loc>
+ getThreadID(CGF, Loc), // i32 <gtid>
+ BufSize, // size_t <buf_size>
+ CL, // void *<copyprivate list>
+ CpyFn, // void (*) (void *, void *) <copy_func>
+ DidItVal // i32 did_it
+ };
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_copyprivate), Args);
+ }
+}
+
+void CGOpenMPRuntime::emitOrderedRegion(CodeGenFunction &CGF,
+ const RegionCodeGenTy &OrderedOpGen,
+ SourceLocation Loc) {
+ // __kmpc_ordered(ident_t *, gtid);
+ // OrderedOpGen();
+ // __kmpc_end_ordered(ident_t *, gtid);
+ // Prepare arguments and build a call to __kmpc_ordered
+ {
+ CodeGenFunction::RunCleanupsScope Scope(CGF);
+ llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_ordered), Args);
+ // Build a call to __kmpc_end_ordered
+ CGF.EHStack.pushCleanup<CallEndCleanup<std::extent<decltype(Args)>::value>>(
+ NormalAndEHCleanup, createRuntimeFunction(OMPRTL__kmpc_end_ordered),
+ llvm::makeArrayRef(Args));
+ emitInlinedDirective(CGF, OrderedOpGen);
+ }
+}
+
+void CGOpenMPRuntime::emitBarrierCall(CodeGenFunction &CGF, SourceLocation Loc,
+ OpenMPDirectiveKind Kind) {
+ // Build call __kmpc_cancel_barrier(loc, thread_id);
+ OpenMPLocationFlags Flags = OMP_IDENT_KMPC;
+ if (Kind == OMPD_for) {
+ Flags =
+ static_cast<OpenMPLocationFlags>(Flags | OMP_IDENT_BARRIER_IMPL_FOR);
+ } else if (Kind == OMPD_sections) {
+ Flags = static_cast<OpenMPLocationFlags>(Flags |
+ OMP_IDENT_BARRIER_IMPL_SECTIONS);
+ } else if (Kind == OMPD_single) {
+ Flags =
+ static_cast<OpenMPLocationFlags>(Flags | OMP_IDENT_BARRIER_IMPL_SINGLE);
+ } else if (Kind == OMPD_barrier) {
+ Flags = static_cast<OpenMPLocationFlags>(Flags | OMP_IDENT_BARRIER_EXPL);
+ } else {
+ Flags = static_cast<OpenMPLocationFlags>(Flags | OMP_IDENT_BARRIER_IMPL);
+ }
+ // Build call __kmpc_cancel_barrier(loc, thread_id);
+ // Replace __kmpc_barrier() function by __kmpc_cancel_barrier() because this
+ // one provides the same functionality and adds initial support for
+ // cancellation constructs introduced in OpenMP 4.0. __kmpc_cancel_barrier()
+ // is provided default by the runtime library so it safe to make such
+ // replacement.
+ llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
+ getThreadID(CGF, Loc)};
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_cancel_barrier), Args);
+}
+
+/// \brief Schedule types for 'omp for' loops (these enumerators are taken from
+/// the enum sched_type in kmp.h).
+enum OpenMPSchedType {
+ /// \brief Lower bound for default (unordered) versions.
+ OMP_sch_lower = 32,
+ OMP_sch_static_chunked = 33,
+ OMP_sch_static = 34,
+ OMP_sch_dynamic_chunked = 35,
+ OMP_sch_guided_chunked = 36,
+ OMP_sch_runtime = 37,
+ OMP_sch_auto = 38,
+ /// \brief Lower bound for 'ordered' versions.
+ OMP_ord_lower = 64,
+ OMP_ord_static_chunked = 65,
+ OMP_ord_static = 66,
+ OMP_ord_dynamic_chunked = 67,
+ OMP_ord_guided_chunked = 68,
+ OMP_ord_runtime = 69,
+ OMP_ord_auto = 70,
+ OMP_sch_default = OMP_sch_static,
+};
+
+/// \brief Map the OpenMP loop schedule to the runtime enumeration.
+static OpenMPSchedType getRuntimeSchedule(OpenMPScheduleClauseKind ScheduleKind,
+ bool Chunked, bool Ordered) {
+ switch (ScheduleKind) {
+ case OMPC_SCHEDULE_static:
+ return Chunked ? (Ordered ? OMP_ord_static_chunked : OMP_sch_static_chunked)
+ : (Ordered ? OMP_ord_static : OMP_sch_static);
+ case OMPC_SCHEDULE_dynamic:
+ return Ordered ? OMP_ord_dynamic_chunked : OMP_sch_dynamic_chunked;
+ case OMPC_SCHEDULE_guided:
+ return Ordered ? OMP_ord_guided_chunked : OMP_sch_guided_chunked;
+ case OMPC_SCHEDULE_runtime:
+ return Ordered ? OMP_ord_runtime : OMP_sch_runtime;
+ case OMPC_SCHEDULE_auto:
+ return Ordered ? OMP_ord_auto : OMP_sch_auto;
+ case OMPC_SCHEDULE_unknown:
+ assert(!Chunked && "chunk was specified but schedule kind not known");
+ return Ordered ? OMP_ord_static : OMP_sch_static;
+ }
+ llvm_unreachable("Unexpected runtime schedule");
+}
+
+bool CGOpenMPRuntime::isStaticNonchunked(OpenMPScheduleClauseKind ScheduleKind,
+ bool Chunked) const {
+ auto Schedule = getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false);
+ return Schedule == OMP_sch_static;
+}
+
+bool CGOpenMPRuntime::isDynamic(OpenMPScheduleClauseKind ScheduleKind) const {
+ auto Schedule =
+ getRuntimeSchedule(ScheduleKind, /*Chunked=*/false, /*Ordered=*/false);
+ assert(Schedule != OMP_sch_static_chunked && "cannot be chunked here");
+ return Schedule != OMP_sch_static;
+}
+
+void CGOpenMPRuntime::emitForInit(CodeGenFunction &CGF, SourceLocation Loc,
+ OpenMPScheduleClauseKind ScheduleKind,
+ unsigned IVSize, bool IVSigned, bool Ordered,
+ llvm::Value *IL, llvm::Value *LB,
+ llvm::Value *UB, llvm::Value *ST,
+ llvm::Value *Chunk) {
+ OpenMPSchedType Schedule =
+ getRuntimeSchedule(ScheduleKind, Chunk != nullptr, Ordered);
+ if (Ordered ||
+ (Schedule != OMP_sch_static && Schedule != OMP_sch_static_chunked &&
+ Schedule != OMP_ord_static && Schedule != OMP_ord_static_chunked)) {
+ // Call __kmpc_dispatch_init(
+ // ident_t *loc, kmp_int32 tid, kmp_int32 schedule,
+ // kmp_int[32|64] lower, kmp_int[32|64] upper,
+ // kmp_int[32|64] stride, kmp_int[32|64] chunk);
+
+ // If the Chunk was not specified in the clause - use default value 1.
+ if (Chunk == nullptr)
+ Chunk = CGF.Builder.getIntN(IVSize, 1);
+ llvm::Value *Args[] = { emitUpdateLocation(CGF, Loc, OMP_IDENT_KMPC),
+ getThreadID(CGF, Loc),
+ CGF.Builder.getInt32(Schedule), // Schedule type
+ CGF.Builder.getIntN(IVSize, 0), // Lower
+ UB, // Upper
+ CGF.Builder.getIntN(IVSize, 1), // Stride
+ Chunk // Chunk
+ };
+ CGF.EmitRuntimeCall(createDispatchInitFunction(IVSize, IVSigned), Args);
+ } else {
+ // Call __kmpc_for_static_init(
+ // ident_t *loc, kmp_int32 tid, kmp_int32 schedtype,
+ // kmp_int32 *p_lastiter, kmp_int[32|64] *p_lower,
+ // kmp_int[32|64] *p_upper, kmp_int[32|64] *p_stride,
+ // kmp_int[32|64] incr, kmp_int[32|64] chunk);
+ if (Chunk == nullptr) {
+ assert((Schedule == OMP_sch_static || Schedule == OMP_ord_static) &&
+ "expected static non-chunked schedule");
+ // If the Chunk was not specified in the clause - use default value 1.
+ Chunk = CGF.Builder.getIntN(IVSize, 1);
+ } else
+ assert((Schedule == OMP_sch_static_chunked ||
+ Schedule == OMP_ord_static_chunked) &&
+ "expected static chunked schedule");
+ llvm::Value *Args[] = { emitUpdateLocation(CGF, Loc, OMP_IDENT_KMPC),
+ getThreadID(CGF, Loc),
+ CGF.Builder.getInt32(Schedule), // Schedule type
+ IL, // &isLastIter
+ LB, // &LB
+ UB, // &UB
+ ST, // &Stride
+ CGF.Builder.getIntN(IVSize, 1), // Incr
+ Chunk // Chunk
+ };
+ CGF.EmitRuntimeCall(createForStaticInitFunction(IVSize, IVSigned), Args);
+ }
+}
+
+void CGOpenMPRuntime::emitForStaticFinish(CodeGenFunction &CGF,
+ SourceLocation Loc) {
+ // Call __kmpc_for_static_fini(ident_t *loc, kmp_int32 tid);
+ llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, OMP_IDENT_KMPC),
+ getThreadID(CGF, Loc)};
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_for_static_fini),
+ Args);
+}
+
+void CGOpenMPRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF,
+ SourceLocation Loc,
+ unsigned IVSize,
+ bool IVSigned) {
+ // Call __kmpc_for_dynamic_fini_(4|8)[u](ident_t *loc, kmp_int32 tid);
+ llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, OMP_IDENT_KMPC),
+ getThreadID(CGF, Loc)};
+ CGF.EmitRuntimeCall(createDispatchFiniFunction(IVSize, IVSigned), Args);
+}
+
+llvm::Value *CGOpenMPRuntime::emitForNext(CodeGenFunction &CGF,
+ SourceLocation Loc, unsigned IVSize,
+ bool IVSigned, llvm::Value *IL,
+ llvm::Value *LB, llvm::Value *UB,
+ llvm::Value *ST) {
+ // Call __kmpc_dispatch_next(
+ // ident_t *loc, kmp_int32 tid, kmp_int32 *p_lastiter,
+ // kmp_int[32|64] *p_lower, kmp_int[32|64] *p_upper,
+ // kmp_int[32|64] *p_stride);
+ llvm::Value *Args[] = {
+ emitUpdateLocation(CGF, Loc, OMP_IDENT_KMPC), getThreadID(CGF, Loc),
+ IL, // &isLastIter
+ LB, // &Lower
+ UB, // &Upper
+ ST // &Stride
+ };
+ llvm::Value *Call =
+ CGF.EmitRuntimeCall(createDispatchNextFunction(IVSize, IVSigned), Args);
+ return CGF.EmitScalarConversion(
+ Call, CGF.getContext().getIntTypeForBitwidth(32, /* Signed */ true),
+ CGF.getContext().BoolTy);
+}
+
+void CGOpenMPRuntime::emitNumThreadsClause(CodeGenFunction &CGF,
+ llvm::Value *NumThreads,
+ SourceLocation Loc) {
+ // Build call __kmpc_push_num_threads(&loc, global_tid, num_threads)
+ llvm::Value *Args[] = {
+ emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
+ CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned*/ true)};
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_num_threads),
+ Args);
+}
+
+void CGOpenMPRuntime::emitFlush(CodeGenFunction &CGF, ArrayRef<const Expr *>,
+ SourceLocation Loc) {
+ // Build call void __kmpc_flush(ident_t *loc)
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_flush),
+ emitUpdateLocation(CGF, Loc));
+}
+
+namespace {
+/// \brief Indexes of fields for type kmp_task_t.
+enum KmpTaskTFields {
+ /// \brief List of shared variables.
+ KmpTaskTShareds,
+ /// \brief Task routine.
+ KmpTaskTRoutine,
+ /// \brief Partition id for the untied tasks.
+ KmpTaskTPartId,
+ /// \brief Function with call of destructors for private variables.
+ KmpTaskTDestructors,
+};
+} // namespace
+
+void CGOpenMPRuntime::emitKmpRoutineEntryT(QualType KmpInt32Ty) {
+ if (!KmpRoutineEntryPtrTy) {
+ // Build typedef kmp_int32 (* kmp_routine_entry_t)(kmp_int32, void *); type.
+ auto &C = CGM.getContext();
+ QualType KmpRoutineEntryTyArgs[] = {KmpInt32Ty, C.VoidPtrTy};
+ FunctionProtoType::ExtProtoInfo EPI;
+ KmpRoutineEntryPtrQTy = C.getPointerType(
+ C.getFunctionType(KmpInt32Ty, KmpRoutineEntryTyArgs, EPI));
+ KmpRoutineEntryPtrTy = CGM.getTypes().ConvertType(KmpRoutineEntryPtrQTy);
+ }
+}
+
+static void addFieldToRecordDecl(ASTContext &C, DeclContext *DC,
+ QualType FieldTy) {
+ auto *Field = FieldDecl::Create(
+ C, DC, SourceLocation(), SourceLocation(), /*Id=*/nullptr, FieldTy,
+ C.getTrivialTypeSourceInfo(FieldTy, SourceLocation()),
+ /*BW=*/nullptr, /*Mutable=*/false, /*InitStyle=*/ICIS_NoInit);
+ Field->setAccess(AS_public);
+ DC->addDecl(Field);
+}
+
+namespace {
+struct PrivateHelpersTy {
+ PrivateHelpersTy(const VarDecl *Original, const VarDecl *PrivateCopy,
+ const VarDecl *PrivateElemInit)
+ : Original(Original), PrivateCopy(PrivateCopy),
+ PrivateElemInit(PrivateElemInit) {}
+ const VarDecl *Original;
+ const VarDecl *PrivateCopy;
+ const VarDecl *PrivateElemInit;
+};
+typedef std::pair<CharUnits /*Align*/, PrivateHelpersTy> PrivateDataTy;
+} // namespace
+
+static RecordDecl *
+createPrivatesRecordDecl(CodeGenModule &CGM,
+ const ArrayRef<PrivateDataTy> Privates) {
+ if (!Privates.empty()) {
+ auto &C = CGM.getContext();
+ // Build struct .kmp_privates_t. {
+ // /* private vars */
+ // };
+ auto *RD = C.buildImplicitRecord(".kmp_privates.t");
+ RD->startDefinition();
+ for (auto &&Pair : Privates) {
+ auto Type = Pair.second.Original->getType();
+ Type = Type.getNonReferenceType();
+ addFieldToRecordDecl(C, RD, Type);
+ }
+ RD->completeDefinition();
+ return RD;
+ }
+ return nullptr;
+}
+
+static RecordDecl *
+createKmpTaskTRecordDecl(CodeGenModule &CGM, QualType KmpInt32Ty,
+ QualType KmpRoutineEntryPointerQTy) {
+ auto &C = CGM.getContext();
+ // Build struct kmp_task_t {
+ // void * shareds;
+ // kmp_routine_entry_t routine;
+ // kmp_int32 part_id;
+ // kmp_routine_entry_t destructors;
+ // };
+ auto *RD = C.buildImplicitRecord("kmp_task_t");
+ RD->startDefinition();
+ addFieldToRecordDecl(C, RD, C.VoidPtrTy);
+ addFieldToRecordDecl(C, RD, KmpRoutineEntryPointerQTy);
+ addFieldToRecordDecl(C, RD, KmpInt32Ty);
+ addFieldToRecordDecl(C, RD, KmpRoutineEntryPointerQTy);
+ RD->completeDefinition();
+ return RD;
+}
+
+static RecordDecl *
+createKmpTaskTWithPrivatesRecordDecl(CodeGenModule &CGM, QualType KmpTaskTQTy,
+ const ArrayRef<PrivateDataTy> Privates) {
+ auto &C = CGM.getContext();
+ // Build struct kmp_task_t_with_privates {
+ // kmp_task_t task_data;
+ // .kmp_privates_t. privates;
+ // };
+ auto *RD = C.buildImplicitRecord("kmp_task_t_with_privates");
+ RD->startDefinition();
+ addFieldToRecordDecl(C, RD, KmpTaskTQTy);
+ if (auto *PrivateRD = createPrivatesRecordDecl(CGM, Privates)) {
+ addFieldToRecordDecl(C, RD, C.getRecordType(PrivateRD));
+ }
+ RD->completeDefinition();
+ return RD;
+}
+
+/// \brief Emit a proxy function which accepts kmp_task_t as the second
+/// argument.
+/// \code
+/// kmp_int32 .omp_task_entry.(kmp_int32 gtid, kmp_task_t *tt) {
+/// TaskFunction(gtid, tt->part_id, &tt->privates, task_privates_map,
+/// tt->shareds);
+/// return 0;
+/// }
+/// \endcode
+static llvm::Value *
+emitProxyTaskFunction(CodeGenModule &CGM, SourceLocation Loc,
+ QualType KmpInt32Ty, QualType KmpTaskTWithPrivatesPtrQTy,
+ QualType KmpTaskTWithPrivatesQTy, QualType KmpTaskTQTy,
+ QualType SharedsPtrTy, llvm::Value *TaskFunction,
+ llvm::Value *TaskPrivatesMap) {
+ auto &C = CGM.getContext();
+ FunctionArgList Args;
+ ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty);
+ ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc,
+ /*Id=*/nullptr, KmpTaskTWithPrivatesPtrQTy);
+ Args.push_back(&GtidArg);
+ Args.push_back(&TaskTypeArg);
+ FunctionType::ExtInfo Info;
+ auto &TaskEntryFnInfo =
+ CGM.getTypes().arrangeFreeFunctionDeclaration(KmpInt32Ty, Args, Info,
+ /*isVariadic=*/false);
+ auto *TaskEntryTy = CGM.getTypes().GetFunctionType(TaskEntryFnInfo);
+ auto *TaskEntry =
+ llvm::Function::Create(TaskEntryTy, llvm::GlobalValue::InternalLinkage,
+ ".omp_task_entry.", &CGM.getModule());
+ CGM.SetLLVMFunctionAttributes(/*D=*/nullptr, TaskEntryFnInfo, TaskEntry);
+ CodeGenFunction CGF(CGM);
+ CGF.disableDebugInfo();
+ CGF.StartFunction(GlobalDecl(), KmpInt32Ty, TaskEntry, TaskEntryFnInfo, Args);
+
+ // TaskFunction(gtid, tt->task_data.part_id, &tt->privates, task_privates_map,
+ // tt->task_data.shareds);
+ auto *GtidParam = CGF.EmitLoadOfScalar(
+ CGF.GetAddrOfLocalVar(&GtidArg), /*Volatile=*/false,
+ C.getTypeAlignInChars(KmpInt32Ty).getQuantity(), KmpInt32Ty, Loc);
+ auto *TaskTypeArgAddr = CGF.Builder.CreateAlignedLoad(
+ CGF.GetAddrOfLocalVar(&TaskTypeArg), CGM.PointerAlignInBytes);
+ LValue TDBase =
+ CGF.MakeNaturalAlignAddrLValue(TaskTypeArgAddr, KmpTaskTWithPrivatesQTy);
+ auto *KmpTaskTWithPrivatesQTyRD =
+ cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
+ LValue Base =
+ CGF.EmitLValueForField(TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
+ auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
+ auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId);
+ auto PartIdLVal = CGF.EmitLValueForField(Base, *PartIdFI);
+ auto *PartidParam = CGF.EmitLoadOfLValue(PartIdLVal, Loc).getScalarVal();
+
+ auto SharedsFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTShareds);
+ auto SharedsLVal = CGF.EmitLValueForField(Base, *SharedsFI);
+ auto *SharedsParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.EmitLoadOfLValue(SharedsLVal, Loc).getScalarVal(),
+ CGF.ConvertTypeForMem(SharedsPtrTy));
+
+ auto PrivatesFI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin(), 1);
+ llvm::Value *PrivatesParam;
+ if (PrivatesFI != KmpTaskTWithPrivatesQTyRD->field_end()) {
+ auto PrivatesLVal = CGF.EmitLValueForField(TDBase, *PrivatesFI);
+ PrivatesParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ PrivatesLVal.getAddress(), CGF.VoidPtrTy);
+ } else {
+ PrivatesParam = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
+ }
+
+ llvm::Value *CallArgs[] = {GtidParam, PartidParam, PrivatesParam,
+ TaskPrivatesMap, SharedsParam};
+ CGF.EmitCallOrInvoke(TaskFunction, CallArgs);
+ CGF.EmitStoreThroughLValue(
+ RValue::get(CGF.Builder.getInt32(/*C=*/0)),
+ CGF.MakeNaturalAlignAddrLValue(CGF.ReturnValue, KmpInt32Ty));
+ CGF.FinishFunction();
+ return TaskEntry;
+}
+
+static llvm::Value *emitDestructorsFunction(CodeGenModule &CGM,
+ SourceLocation Loc,
+ QualType KmpInt32Ty,
+ QualType KmpTaskTWithPrivatesPtrQTy,
+ QualType KmpTaskTWithPrivatesQTy) {
+ auto &C = CGM.getContext();
+ FunctionArgList Args;
+ ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty);
+ ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc,
+ /*Id=*/nullptr, KmpTaskTWithPrivatesPtrQTy);
+ Args.push_back(&GtidArg);
+ Args.push_back(&TaskTypeArg);
+ FunctionType::ExtInfo Info;
+ auto &DestructorFnInfo =
+ CGM.getTypes().arrangeFreeFunctionDeclaration(KmpInt32Ty, Args, Info,
+ /*isVariadic=*/false);
+ auto *DestructorFnTy = CGM.getTypes().GetFunctionType(DestructorFnInfo);
+ auto *DestructorFn =
+ llvm::Function::Create(DestructorFnTy, llvm::GlobalValue::InternalLinkage,
+ ".omp_task_destructor.", &CGM.getModule());
+ CGM.SetLLVMFunctionAttributes(/*D=*/nullptr, DestructorFnInfo, DestructorFn);
+ CodeGenFunction CGF(CGM);
+ CGF.disableDebugInfo();
+ CGF.StartFunction(GlobalDecl(), KmpInt32Ty, DestructorFn, DestructorFnInfo,
+ Args);
+
+ auto *TaskTypeArgAddr = CGF.Builder.CreateAlignedLoad(
+ CGF.GetAddrOfLocalVar(&TaskTypeArg), CGM.PointerAlignInBytes);
+ LValue Base =
+ CGF.MakeNaturalAlignAddrLValue(TaskTypeArgAddr, KmpTaskTWithPrivatesQTy);
+ auto *KmpTaskTWithPrivatesQTyRD =
+ cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
+ auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
+ Base = CGF.EmitLValueForField(Base, *FI);
+ for (auto *Field :
+ cast<RecordDecl>(FI->getType()->getAsTagDecl())->fields()) {
+ if (auto DtorKind = Field->getType().isDestructedType()) {
+ auto FieldLValue = CGF.EmitLValueForField(Base, Field);
+ CGF.pushDestroy(DtorKind, FieldLValue.getAddress(), Field->getType());
+ }
+ }
+ CGF.FinishFunction();
+ return DestructorFn;
+}
+
+/// \brief Emit a privates mapping function for correct handling of private and
+/// firstprivate variables.
+/// \code
+/// void .omp_task_privates_map.(const .privates. *noalias privs, <ty1>
+/// **noalias priv1,..., <tyn> **noalias privn) {
+/// *priv1 = &.privates.priv1;
+/// ...;
+/// *privn = &.privates.privn;
+/// }
+/// \endcode
+static llvm::Value *
+emitTaskPrivateMappingFunction(CodeGenModule &CGM, SourceLocation Loc,
+ const ArrayRef<const Expr *> PrivateVars,
+ const ArrayRef<const Expr *> FirstprivateVars,
+ QualType PrivatesQTy,
+ const ArrayRef<PrivateDataTy> Privates) {
+ auto &C = CGM.getContext();
+ FunctionArgList Args;
+ ImplicitParamDecl TaskPrivatesArg(
+ C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+ C.getPointerType(PrivatesQTy).withConst().withRestrict());
+ Args.push_back(&TaskPrivatesArg);
+ llvm::DenseMap<const VarDecl *, unsigned> PrivateVarsPos;
+ unsigned Counter = 1;
+ for (auto *E: PrivateVars) {
+ Args.push_back(ImplicitParamDecl::Create(
+ C, /*DC=*/nullptr, Loc,
+ /*Id=*/nullptr, C.getPointerType(C.getPointerType(E->getType()))
+ .withConst()
+ .withRestrict()));
+ auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
+ PrivateVarsPos[VD] = Counter;
+ ++Counter;
+ }
+ for (auto *E : FirstprivateVars) {
+ Args.push_back(ImplicitParamDecl::Create(
+ C, /*DC=*/nullptr, Loc,
+ /*Id=*/nullptr, C.getPointerType(C.getPointerType(E->getType()))
+ .withConst()
+ .withRestrict()));
+ auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
+ PrivateVarsPos[VD] = Counter;
+ ++Counter;
+ }
+ FunctionType::ExtInfo Info;
+ auto &TaskPrivatesMapFnInfo =
+ CGM.getTypes().arrangeFreeFunctionDeclaration(C.VoidTy, Args, Info,
+ /*isVariadic=*/false);
+ auto *TaskPrivatesMapTy =
+ CGM.getTypes().GetFunctionType(TaskPrivatesMapFnInfo);
+ auto *TaskPrivatesMap = llvm::Function::Create(
+ TaskPrivatesMapTy, llvm::GlobalValue::InternalLinkage,
+ ".omp_task_privates_map.", &CGM.getModule());
+ CGM.SetLLVMFunctionAttributes(/*D=*/nullptr, TaskPrivatesMapFnInfo,
+ TaskPrivatesMap);
+ TaskPrivatesMap->addFnAttr(llvm::Attribute::AlwaysInline);
+ CodeGenFunction CGF(CGM);
+ CGF.disableDebugInfo();
+ CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskPrivatesMap,
+ TaskPrivatesMapFnInfo, Args);
+
+ // *privi = &.privates.privi;
+ auto *TaskPrivatesArgAddr = CGF.Builder.CreateAlignedLoad(
+ CGF.GetAddrOfLocalVar(&TaskPrivatesArg), CGM.PointerAlignInBytes);
+ LValue Base =
+ CGF.MakeNaturalAlignAddrLValue(TaskPrivatesArgAddr, PrivatesQTy);
+ auto *PrivatesQTyRD = cast<RecordDecl>(PrivatesQTy->getAsTagDecl());
+ Counter = 0;
+ for (auto *Field : PrivatesQTyRD->fields()) {
+ auto FieldLVal = CGF.EmitLValueForField(Base, Field);
+ auto *VD = Args[PrivateVarsPos[Privates[Counter].second.Original]];
+ auto RefLVal = CGF.MakeNaturalAlignAddrLValue(CGF.GetAddrOfLocalVar(VD),
+ VD->getType());
+ auto RefLoadRVal = CGF.EmitLoadOfLValue(RefLVal, Loc);
+ CGF.EmitStoreOfScalar(
+ FieldLVal.getAddress(),
+ CGF.MakeNaturalAlignAddrLValue(RefLoadRVal.getScalarVal(),
+ RefLVal.getType()->getPointeeType()));
+ ++Counter;
+ }
+ CGF.FinishFunction();
+ return TaskPrivatesMap;
+}
+
+static int array_pod_sort_comparator(const PrivateDataTy *P1,
+ const PrivateDataTy *P2) {
+ return P1->first < P2->first ? 1 : (P2->first < P1->first ? -1 : 0);
+}
+
+void CGOpenMPRuntime::emitTaskCall(
+ CodeGenFunction &CGF, SourceLocation Loc, const OMPExecutableDirective &D,
+ bool Tied, llvm::PointerIntPair<llvm::Value *, 1, bool> Final,
+ llvm::Value *TaskFunction, QualType SharedsTy, llvm::Value *Shareds,
+ const Expr *IfCond, const ArrayRef<const Expr *> PrivateVars,
+ const ArrayRef<const Expr *> PrivateCopies,
+ const ArrayRef<const Expr *> FirstprivateVars,
+ const ArrayRef<const Expr *> FirstprivateCopies,
+ const ArrayRef<const Expr *> FirstprivateInits) {
+ auto &C = CGM.getContext();
+ llvm::SmallVector<PrivateDataTy, 8> Privates;
+ // Aggregate privates and sort them by the alignment.
+ auto I = PrivateCopies.begin();
+ for (auto *E : PrivateVars) {
+ auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
+ Privates.push_back(std::make_pair(
+ C.getTypeAlignInChars(VD->getType()),
+ PrivateHelpersTy(VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
+ /*PrivateElemInit=*/nullptr)));
+ ++I;
+ }
+ I = FirstprivateCopies.begin();
+ auto IElemInitRef = FirstprivateInits.begin();
+ for (auto *E : FirstprivateVars) {
+ auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
+ Privates.push_back(std::make_pair(
+ C.getTypeAlignInChars(VD->getType()),
+ PrivateHelpersTy(
+ VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
+ cast<VarDecl>(cast<DeclRefExpr>(*IElemInitRef)->getDecl()))));
+ ++I, ++IElemInitRef;
+ }
+ llvm::array_pod_sort(Privates.begin(), Privates.end(),
+ array_pod_sort_comparator);
+ auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
+ // Build type kmp_routine_entry_t (if not built yet).
+ emitKmpRoutineEntryT(KmpInt32Ty);
+ // Build type kmp_task_t (if not built yet).
+ if (KmpTaskTQTy.isNull()) {
+ KmpTaskTQTy = C.getRecordType(
+ createKmpTaskTRecordDecl(CGM, KmpInt32Ty, KmpRoutineEntryPtrQTy));
+ }
+ auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
+ // Build particular struct kmp_task_t for the given task.
+ auto *KmpTaskTWithPrivatesQTyRD =
+ createKmpTaskTWithPrivatesRecordDecl(CGM, KmpTaskTQTy, Privates);
+ auto KmpTaskTWithPrivatesQTy = C.getRecordType(KmpTaskTWithPrivatesQTyRD);
+ QualType KmpTaskTWithPrivatesPtrQTy =
+ C.getPointerType(KmpTaskTWithPrivatesQTy);
+ auto *KmpTaskTWithPrivatesTy = CGF.ConvertType(KmpTaskTWithPrivatesQTy);
+ auto *KmpTaskTWithPrivatesPtrTy = KmpTaskTWithPrivatesTy->getPointerTo();
+ auto KmpTaskTWithPrivatesTySize =
+ CGM.getSize(C.getTypeSizeInChars(KmpTaskTWithPrivatesQTy));
+ QualType SharedsPtrTy = C.getPointerType(SharedsTy);
+
+ // Emit initial values for private copies (if any).
+ llvm::Value *TaskPrivatesMap = nullptr;
+ auto *TaskPrivatesMapTy =
+ std::next(cast<llvm::Function>(TaskFunction)->getArgumentList().begin(),
+ 3)
+ ->getType();
+ if (!Privates.empty()) {
+ auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
+ TaskPrivatesMap = emitTaskPrivateMappingFunction(
+ CGM, Loc, PrivateVars, FirstprivateVars, FI->getType(), Privates);
+ TaskPrivatesMap = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ TaskPrivatesMap, TaskPrivatesMapTy);
+ } else {
+ TaskPrivatesMap = llvm::ConstantPointerNull::get(
+ cast<llvm::PointerType>(TaskPrivatesMapTy));
+ }
+ // Build a proxy function kmp_int32 .omp_task_entry.(kmp_int32 gtid,
+ // kmp_task_t *tt);
+ auto *TaskEntry = emitProxyTaskFunction(
+ CGM, Loc, KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy, KmpTaskTWithPrivatesQTy,
+ KmpTaskTQTy, SharedsPtrTy, TaskFunction, TaskPrivatesMap);
+
+ // Build call kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
+ // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
+ // kmp_routine_entry_t *task_entry);
+ // Task flags. Format is taken from
+ // http://llvm.org/svn/llvm-project/openmp/trunk/runtime/src/kmp.h,
+ // description of kmp_tasking_flags struct.
+ const unsigned TiedFlag = 0x1;
+ const unsigned FinalFlag = 0x2;
+ unsigned Flags = Tied ? TiedFlag : 0;
+ auto *TaskFlags =
+ Final.getPointer()
+ ? CGF.Builder.CreateSelect(Final.getPointer(),
+ CGF.Builder.getInt32(FinalFlag),
+ CGF.Builder.getInt32(/*C=*/0))
+ : CGF.Builder.getInt32(Final.getInt() ? FinalFlag : 0);
+ TaskFlags = CGF.Builder.CreateOr(TaskFlags, CGF.Builder.getInt32(Flags));
+ auto SharedsSize = C.getTypeSizeInChars(SharedsTy);
+ llvm::Value *AllocArgs[] = {
+ emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), TaskFlags,
+ KmpTaskTWithPrivatesTySize, CGM.getSize(SharedsSize),
+ CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TaskEntry,
+ KmpRoutineEntryPtrTy)};
+ auto *NewTask = CGF.EmitRuntimeCall(
+ createRuntimeFunction(OMPRTL__kmpc_omp_task_alloc), AllocArgs);
+ auto *NewTaskNewTaskTTy = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ NewTask, KmpTaskTWithPrivatesPtrTy);
+ LValue Base = CGF.MakeNaturalAlignAddrLValue(NewTaskNewTaskTTy,
+ KmpTaskTWithPrivatesQTy);
+ LValue TDBase =
+ CGF.EmitLValueForField(Base, *KmpTaskTWithPrivatesQTyRD->field_begin());
+ // Fill the data in the resulting kmp_task_t record.
+ // Copy shareds if there are any.
+ llvm::Value *KmpTaskSharedsPtr = nullptr;
+ if (!SharedsTy->getAsStructureType()->getDecl()->field_empty()) {
+ KmpTaskSharedsPtr = CGF.EmitLoadOfScalar(
+ CGF.EmitLValueForField(
+ TDBase, *std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTShareds)),
+ Loc);
+ CGF.EmitAggregateCopy(KmpTaskSharedsPtr, Shareds, SharedsTy);
+ }
+ // Emit initial values for private copies (if any).
+ bool NeedsCleanup = false;
+ if (!Privates.empty()) {
+ auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
+ auto PrivatesBase = CGF.EmitLValueForField(Base, *FI);
+ FI = cast<RecordDecl>(FI->getType()->getAsTagDecl())->field_begin();
+ LValue SharedsBase;
+ if (!FirstprivateVars.empty()) {
+ SharedsBase = CGF.MakeNaturalAlignAddrLValue(
+ CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ KmpTaskSharedsPtr, CGF.ConvertTypeForMem(SharedsPtrTy)),
+ SharedsTy);
+ }
+ CodeGenFunction::CGCapturedStmtInfo CapturesInfo(
+ cast<CapturedStmt>(*D.getAssociatedStmt()));
+ for (auto &&Pair : Privates) {
+ auto *VD = Pair.second.PrivateCopy;
+ auto *Init = VD->getAnyInitializer();
+ LValue PrivateLValue = CGF.EmitLValueForField(PrivatesBase, *FI);
+ if (Init) {
+ if (auto *Elem = Pair.second.PrivateElemInit) {
+ auto *OriginalVD = Pair.second.Original;
+ auto *SharedField = CapturesInfo.lookup(OriginalVD);
+ auto SharedRefLValue =
+ CGF.EmitLValueForField(SharedsBase, SharedField);
+ QualType Type = OriginalVD->getType();
+ if (Type->isArrayType()) {
+ // Initialize firstprivate array.
+ if (!isa<CXXConstructExpr>(Init) ||
+ CGF.isTrivialInitializer(Init)) {
+ // Perform simple memcpy.
+ CGF.EmitAggregateAssign(PrivateLValue.getAddress(),
+ SharedRefLValue.getAddress(), Type);
+ } else {
+ // Initialize firstprivate array using element-by-element
+ // intialization.
+ CGF.EmitOMPAggregateAssign(
+ PrivateLValue.getAddress(), SharedRefLValue.getAddress(),
+ Type, [&CGF, Elem, Init, &CapturesInfo](
+ llvm::Value *DestElement, llvm::Value *SrcElement) {
+ // Clean up any temporaries needed by the initialization.
+ CodeGenFunction::OMPPrivateScope InitScope(CGF);
+ InitScope.addPrivate(Elem, [SrcElement]() -> llvm::Value *{
+ return SrcElement;
+ });
+ (void)InitScope.Privatize();
+ // Emit initialization for single element.
+ auto *OldCapturedStmtInfo = CGF.CapturedStmtInfo;
+ CGF.CapturedStmtInfo = &CapturesInfo;
+ CGF.EmitAnyExprToMem(Init, DestElement,
+ Init->getType().getQualifiers(),
+ /*IsInitializer=*/false);
+ CGF.CapturedStmtInfo = OldCapturedStmtInfo;
+ });
+ }
+ } else {
+ CodeGenFunction::OMPPrivateScope InitScope(CGF);
+ InitScope.addPrivate(Elem, [SharedRefLValue]() -> llvm::Value *{
+ return SharedRefLValue.getAddress();
+ });
+ (void)InitScope.Privatize();
+ auto *OldCapturedStmtInfo = CGF.CapturedStmtInfo;
+ CGF.CapturedStmtInfo = &CapturesInfo;
+ CGF.EmitExprAsInit(Init, VD, PrivateLValue,
+ /*capturedByInit=*/false);
+ CGF.CapturedStmtInfo = OldCapturedStmtInfo;
+ }
+ } else {
+ CGF.EmitExprAsInit(Init, VD, PrivateLValue, /*capturedByInit=*/false);
+ }
+ }
+ NeedsCleanup = NeedsCleanup || FI->getType().isDestructedType();
+ ++FI;
+ }
+ }
+ // Provide pointer to function with destructors for privates.
+ llvm::Value *DestructorFn =
+ NeedsCleanup ? emitDestructorsFunction(CGM, Loc, KmpInt32Ty,
+ KmpTaskTWithPrivatesPtrQTy,
+ KmpTaskTWithPrivatesQTy)
+ : llvm::ConstantPointerNull::get(
+ cast<llvm::PointerType>(KmpRoutineEntryPtrTy));
+ LValue Destructor = CGF.EmitLValueForField(
+ TDBase, *std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTDestructors));
+ CGF.EmitStoreOfScalar(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ DestructorFn, KmpRoutineEntryPtrTy),
+ Destructor);
+ // NOTE: routine and part_id fields are intialized by __kmpc_omp_task_alloc()
+ // libcall.
+ // Build kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
+ // *new_task);
+ auto *ThreadID = getThreadID(CGF, Loc);
+ llvm::Value *TaskArgs[] = {emitUpdateLocation(CGF, Loc), ThreadID, NewTask};
+ auto &&ThenCodeGen = [this, &TaskArgs](CodeGenFunction &CGF) {
+ // TODO: add check for untied tasks.
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_task), TaskArgs);
+ };
+ typedef CallEndCleanup<std::extent<decltype(TaskArgs)>::value>
+ IfCallEndCleanup;
+ auto &&ElseCodeGen =
+ [this, &TaskArgs, ThreadID, NewTaskNewTaskTTy, TaskEntry](
+ CodeGenFunction &CGF) {
+ CodeGenFunction::RunCleanupsScope LocalScope(CGF);
+ CGF.EmitRuntimeCall(
+ createRuntimeFunction(OMPRTL__kmpc_omp_task_begin_if0), TaskArgs);
+ // Build void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid,
+ // kmp_task_t *new_task);
+ CGF.EHStack.pushCleanup<IfCallEndCleanup>(
+ NormalAndEHCleanup,
+ createRuntimeFunction(OMPRTL__kmpc_omp_task_complete_if0),
+ llvm::makeArrayRef(TaskArgs));
+
+ // Call proxy_task_entry(gtid, new_task);
+ llvm::Value *OutlinedFnArgs[] = {ThreadID, NewTaskNewTaskTTy};
+ CGF.EmitCallOrInvoke(TaskEntry, OutlinedFnArgs);
+ };
+ if (IfCond) {
+ emitOMPIfClause(CGF, IfCond, ThenCodeGen, ElseCodeGen);
+ } else {
+ CodeGenFunction::RunCleanupsScope Scope(CGF);
+ ThenCodeGen(CGF);
+ }
+}
+
+static llvm::Value *emitReductionFunction(CodeGenModule &CGM,
+ llvm::Type *ArgsType,
+ ArrayRef<const Expr *> LHSExprs,
+ ArrayRef<const Expr *> RHSExprs,
+ ArrayRef<const Expr *> ReductionOps) {
+ auto &C = CGM.getContext();
+
+ // void reduction_func(void *LHSArg, void *RHSArg);
+ FunctionArgList Args;
+ ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, SourceLocation(), /*Id=*/nullptr,
+ C.VoidPtrTy);
+ ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, SourceLocation(), /*Id=*/nullptr,
+ C.VoidPtrTy);
+ Args.push_back(&LHSArg);
+ Args.push_back(&RHSArg);
+ FunctionType::ExtInfo EI;
+ auto &CGFI = CGM.getTypes().arrangeFreeFunctionDeclaration(
+ C.VoidTy, Args, EI, /*isVariadic=*/false);
+ auto *Fn = llvm::Function::Create(
+ CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
+ ".omp.reduction.reduction_func", &CGM.getModule());
+ CGM.SetLLVMFunctionAttributes(/*D=*/nullptr, CGFI, Fn);
+ CodeGenFunction CGF(CGM);
+ CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args);
+
+ // Dst = (void*[n])(LHSArg);
+ // Src = (void*[n])(RHSArg);
+ auto *LHS = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.Builder.CreateAlignedLoad(CGF.GetAddrOfLocalVar(&LHSArg),
+ CGF.PointerAlignInBytes),
+ ArgsType);
+ auto *RHS = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.Builder.CreateAlignedLoad(CGF.GetAddrOfLocalVar(&RHSArg),
+ CGF.PointerAlignInBytes),
+ ArgsType);
+
+ // ...
+ // *(Type<i>*)lhs[i] = RedOp<i>(*(Type<i>*)lhs[i], *(Type<i>*)rhs[i]);
+ // ...
+ CodeGenFunction::OMPPrivateScope Scope(CGF);
+ for (unsigned I = 0, E = ReductionOps.size(); I < E; ++I) {
+ Scope.addPrivate(
+ cast<VarDecl>(cast<DeclRefExpr>(RHSExprs[I])->getDecl()),
+ [&]() -> llvm::Value *{
+ return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.Builder.CreateAlignedLoad(
+ CGF.Builder.CreateStructGEP(/*Ty=*/nullptr, RHS, I),
+ CGM.PointerAlignInBytes),
+ CGF.ConvertTypeForMem(C.getPointerType(RHSExprs[I]->getType())));
+ });
+ Scope.addPrivate(
+ cast<VarDecl>(cast<DeclRefExpr>(LHSExprs[I])->getDecl()),
+ [&]() -> llvm::Value *{
+ return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.Builder.CreateAlignedLoad(
+ CGF.Builder.CreateStructGEP(/*Ty=*/nullptr, LHS, I),
+ CGM.PointerAlignInBytes),
+ CGF.ConvertTypeForMem(C.getPointerType(LHSExprs[I]->getType())));
+ });
+ }
+ Scope.Privatize();
+ for (auto *E : ReductionOps) {
+ CGF.EmitIgnoredExpr(E);
+ }
+ Scope.ForceCleanup();
+ CGF.FinishFunction();
+ return Fn;
+}
+
+void CGOpenMPRuntime::emitReduction(CodeGenFunction &CGF, SourceLocation Loc,
+ ArrayRef<const Expr *> LHSExprs,
+ ArrayRef<const Expr *> RHSExprs,
+ ArrayRef<const Expr *> ReductionOps,
+ bool WithNowait) {
+ // Next code should be emitted for reduction:
+ //
+ // static kmp_critical_name lock = { 0 };
+ //
+ // void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
+ // *(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
+ // ...
+ // *(Type<n>-1*)lhs[<n>-1] = ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
+ // *(Type<n>-1*)rhs[<n>-1]);
+ // }
+ //
+ // ...
+ // void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
+ // switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
+ // RedList, reduce_func, &<lock>)) {
+ // case 1:
+ // ...
+ // <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
+ // ...
+ // __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
+ // break;
+ // case 2:
+ // ...
+ // Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
+ // ...
+ // [__kmpc_end_reduce(<loc>, <gtid>, &<lock>);]
+ // break;
+ // default:;
+ // }
+
+ auto &C = CGM.getContext();
+
+ // 1. Build a list of reduction variables.
+ // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
+ llvm::APInt ArraySize(/*unsigned int numBits=*/32, RHSExprs.size());
+ QualType ReductionArrayTy =
+ C.getConstantArrayType(C.VoidPtrTy, ArraySize, ArrayType::Normal,
+ /*IndexTypeQuals=*/0);
+ auto *ReductionList =
+ CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
+ for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I) {
+ auto *Elem = CGF.Builder.CreateStructGEP(/*Ty=*/nullptr, ReductionList, I);
+ CGF.Builder.CreateAlignedStore(
+ CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.EmitLValue(RHSExprs[I]).getAddress(), CGF.VoidPtrTy),
+ Elem, CGM.PointerAlignInBytes);
+ }
+
+ // 2. Emit reduce_func().
+ auto *ReductionFn = emitReductionFunction(
+ CGM, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), LHSExprs,
+ RHSExprs, ReductionOps);
+
+ // 3. Create static kmp_critical_name lock = { 0 };
+ auto *Lock = getCriticalRegionLock(".reduction");
+
+ // 4. Build res = __kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
+ // RedList, reduce_func, &<lock>);
+ auto *IdentTLoc = emitUpdateLocation(
+ CGF, Loc,
+ static_cast<OpenMPLocationFlags>(OMP_IDENT_KMPC | OMP_ATOMIC_REDUCE));
+ auto *ThreadId = getThreadID(CGF, Loc);
+ auto *ReductionArrayTySize = llvm::ConstantInt::get(
+ CGM.SizeTy, C.getTypeSizeInChars(ReductionArrayTy).getQuantity());
+ auto *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(ReductionList,
+ CGF.VoidPtrTy);
+ llvm::Value *Args[] = {
+ IdentTLoc, // ident_t *<loc>
+ ThreadId, // i32 <gtid>
+ CGF.Builder.getInt32(RHSExprs.size()), // i32 <n>
+ ReductionArrayTySize, // size_type sizeof(RedList)
+ RL, // void *RedList
+ ReductionFn, // void (*) (void *, void *) <reduce_func>
+ Lock // kmp_critical_name *&<lock>
+ };
+ auto Res = CGF.EmitRuntimeCall(
+ createRuntimeFunction(WithNowait ? OMPRTL__kmpc_reduce_nowait
+ : OMPRTL__kmpc_reduce),
+ Args);
+
+ // 5. Build switch(res)
+ auto *DefaultBB = CGF.createBasicBlock(".omp.reduction.default");
+ auto *SwInst = CGF.Builder.CreateSwitch(Res, DefaultBB, /*NumCases=*/2);
+
+ // 6. Build case 1:
+ // ...
+ // <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
+ // ...
+ // __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
+ // break;
+ auto *Case1BB = CGF.createBasicBlock(".omp.reduction.case1");
+ SwInst->addCase(CGF.Builder.getInt32(1), Case1BB);
+ CGF.EmitBlock(Case1BB);
+
+ {
+ CodeGenFunction::RunCleanupsScope Scope(CGF);
+ // Add emission of __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
+ llvm::Value *EndArgs[] = {
+ IdentTLoc, // ident_t *<loc>
+ ThreadId, // i32 <gtid>
+ Lock // kmp_critical_name *&<lock>
+ };
+ CGF.EHStack
+ .pushCleanup<CallEndCleanup<std::extent<decltype(EndArgs)>::value>>(
+ NormalAndEHCleanup,
+ createRuntimeFunction(WithNowait ? OMPRTL__kmpc_end_reduce_nowait
+ : OMPRTL__kmpc_end_reduce),
+ llvm::makeArrayRef(EndArgs));
+ for (auto *E : ReductionOps) {
+ CGF.EmitIgnoredExpr(E);
+ }
+ }
+
+ CGF.EmitBranch(DefaultBB);
+
+ // 7. Build case 2:
+ // ...
+ // Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
+ // ...
+ // break;
+ auto *Case2BB = CGF.createBasicBlock(".omp.reduction.case2");
+ SwInst->addCase(CGF.Builder.getInt32(2), Case2BB);
+ CGF.EmitBlock(Case2BB);
+
+ {
+ CodeGenFunction::RunCleanupsScope Scope(CGF);
+ if (!WithNowait) {
+ // Add emission of __kmpc_end_reduce(<loc>, <gtid>, &<lock>);
+ llvm::Value *EndArgs[] = {
+ IdentTLoc, // ident_t *<loc>
+ ThreadId, // i32 <gtid>
+ Lock // kmp_critical_name *&<lock>
+ };
+ CGF.EHStack
+ .pushCleanup<CallEndCleanup<std::extent<decltype(EndArgs)>::value>>(
+ NormalAndEHCleanup,
+ createRuntimeFunction(OMPRTL__kmpc_end_reduce),
+ llvm::makeArrayRef(EndArgs));
+ }
+ auto I = LHSExprs.begin();
+ for (auto *E : ReductionOps) {
+ const Expr *XExpr = nullptr;
+ const Expr *EExpr = nullptr;
+ const Expr *UpExpr = nullptr;
+ BinaryOperatorKind BO = BO_Comma;
+ if (auto *BO = dyn_cast<BinaryOperator>(E)) {
+ if (BO->getOpcode() == BO_Assign) {
+ XExpr = BO->getLHS();
+ UpExpr = BO->getRHS();
+ }
+ }
+ // Try to emit update expression as a simple atomic.
+ auto *RHSExpr = UpExpr;
+ if (RHSExpr) {
+ // Analyze RHS part of the whole expression.
+ if (auto *ACO = dyn_cast<AbstractConditionalOperator>(
+ RHSExpr->IgnoreParenImpCasts())) {
+ // If this is a conditional operator, analyze its condition for
+ // min/max reduction operator.
+ RHSExpr = ACO->getCond();
+ }
+ if (auto *BORHS =
+ dyn_cast<BinaryOperator>(RHSExpr->IgnoreParenImpCasts())) {
+ EExpr = BORHS->getRHS();
+ BO = BORHS->getOpcode();
+ }
+ }
+ if (XExpr) {
+ auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl());
+ LValue X = CGF.EmitLValue(XExpr);
+ RValue E;
+ if (EExpr)
+ E = CGF.EmitAnyExpr(EExpr);
+ CGF.EmitOMPAtomicSimpleUpdateExpr(
+ X, E, BO, /*IsXLHSInRHSPart=*/true, llvm::Monotonic, Loc,
+ [&CGF, UpExpr, VD](RValue XRValue) {
+ CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
+ PrivateScope.addPrivate(
+ VD, [&CGF, VD, XRValue]() -> llvm::Value *{
+ auto *LHSTemp = CGF.CreateMemTemp(VD->getType());
+ CGF.EmitStoreThroughLValue(
+ XRValue,
+ CGF.MakeNaturalAlignAddrLValue(LHSTemp, VD->getType()));
+ return LHSTemp;
+ });
+ (void)PrivateScope.Privatize();
+ return CGF.EmitAnyExpr(UpExpr);
+ });
+ } else {
+ // Emit as a critical region.
+ emitCriticalRegion(CGF, ".atomic_reduction", [E](CodeGenFunction &CGF) {
+ CGF.EmitIgnoredExpr(E);
+ }, Loc);
+ }
+ ++I;
+ }
+ }
+
+ CGF.EmitBranch(DefaultBB);
+ CGF.EmitBlock(DefaultBB, /*IsFinished=*/true);
+}
+
+void CGOpenMPRuntime::emitTaskwaitCall(CodeGenFunction &CGF,
+ SourceLocation Loc) {
+ // Build call kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32
+ // global_tid);
+ llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
+ // Ignore return result until untied tasks are supported.
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_taskwait), Args);
+}
+
+void CGOpenMPRuntime::emitInlinedDirective(CodeGenFunction &CGF,
+ const RegionCodeGenTy &CodeGen) {
+ InlinedOpenMPRegionRAII Region(CGF, CodeGen);
+ CGF.CapturedStmtInfo->EmitBody(CGF, /*S=*/nullptr);
+}
+
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGOpenMPRuntime.h b/contrib/llvm/tools/clang/lib/CodeGen/CGOpenMPRuntime.h
new file mode 100644
index 0000000..f5aa4a5
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGOpenMPRuntime.h
@@ -0,0 +1,644 @@
+//===----- CGOpenMPRuntime.h - Interface to OpenMP Runtimes -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This provides a class for OpenMP runtime code generation.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_CODEGEN_CGOPENMPRUNTIME_H
+#define LLVM_CLANG_LIB_CODEGEN_CGOPENMPRUNTIME_H
+
+#include "clang/AST/Type.h"
+#include "clang/Basic/OpenMPKinds.h"
+#include "clang/Basic/SourceLocation.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/StringMap.h"
+#include "llvm/IR/ValueHandle.h"
+
+namespace llvm {
+class ArrayType;
+class Constant;
+class Function;
+class FunctionType;
+class GlobalVariable;
+class StructType;
+class Type;
+class Value;
+} // namespace llvm
+
+namespace clang {
+class Expr;
+class OMPExecutableDirective;
+class VarDecl;
+
+namespace CodeGen {
+
+class CodeGenFunction;
+class CodeGenModule;
+
+typedef llvm::function_ref<void(CodeGenFunction &)> RegionCodeGenTy;
+
+class CGOpenMPRuntime {
+private:
+ enum OpenMPRTLFunction {
+ /// \brief Call to void __kmpc_fork_call(ident_t *loc, kmp_int32 argc,
+ /// kmpc_micro microtask, ...);
+ OMPRTL__kmpc_fork_call,
+ /// \brief Call to void *__kmpc_threadprivate_cached(ident_t *loc,
+ /// kmp_int32 global_tid, void *data, size_t size, void ***cache);
+ OMPRTL__kmpc_threadprivate_cached,
+ /// \brief Call to void __kmpc_threadprivate_register( ident_t *,
+ /// void *data, kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor);
+ OMPRTL__kmpc_threadprivate_register,
+ // Call to __kmpc_int32 kmpc_global_thread_num(ident_t *loc);
+ OMPRTL__kmpc_global_thread_num,
+ // Call to void __kmpc_critical(ident_t *loc, kmp_int32 global_tid,
+ // kmp_critical_name *crit);
+ OMPRTL__kmpc_critical,
+ // Call to void __kmpc_end_critical(ident_t *loc, kmp_int32 global_tid,
+ // kmp_critical_name *crit);
+ OMPRTL__kmpc_end_critical,
+ // Call to kmp_int32 __kmpc_cancel_barrier(ident_t *loc, kmp_int32
+ // global_tid);
+ OMPRTL__kmpc_cancel_barrier,
+ // Call to void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
+ OMPRTL__kmpc_for_static_fini,
+ // Call to void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
+ // global_tid);
+ OMPRTL__kmpc_serialized_parallel,
+ // Call to void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
+ // global_tid);
+ OMPRTL__kmpc_end_serialized_parallel,
+ // Call to void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
+ // kmp_int32 num_threads);
+ OMPRTL__kmpc_push_num_threads,
+ // Call to void __kmpc_flush(ident_t *loc);
+ OMPRTL__kmpc_flush,
+ // Call to kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid);
+ OMPRTL__kmpc_master,
+ // Call to void __kmpc_end_master(ident_t *, kmp_int32 global_tid);
+ OMPRTL__kmpc_end_master,
+ // Call to kmp_int32 __kmpc_omp_taskyield(ident_t *, kmp_int32 global_tid,
+ // int end_part);
+ OMPRTL__kmpc_omp_taskyield,
+ // Call to kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid);
+ OMPRTL__kmpc_single,
+ // Call to void __kmpc_end_single(ident_t *, kmp_int32 global_tid);
+ OMPRTL__kmpc_end_single,
+ // Call to kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
+ // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
+ // kmp_routine_entry_t *task_entry);
+ OMPRTL__kmpc_omp_task_alloc,
+ // Call to kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t *
+ // new_task);
+ OMPRTL__kmpc_omp_task,
+ // Call to void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
+ // size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *),
+ // kmp_int32 didit);
+ OMPRTL__kmpc_copyprivate,
+ // Call to kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid,
+ // kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void
+ // (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck);
+ OMPRTL__kmpc_reduce,
+ // Call to kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32
+ // global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data,
+ // void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name
+ // *lck);
+ OMPRTL__kmpc_reduce_nowait,
+ // Call to void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
+ // kmp_critical_name *lck);
+ OMPRTL__kmpc_end_reduce,
+ // Call to void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
+ // kmp_critical_name *lck);
+ OMPRTL__kmpc_end_reduce_nowait,
+ // Call to void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid,
+ // kmp_task_t * new_task);
+ OMPRTL__kmpc_omp_task_begin_if0,
+ // Call to void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid,
+ // kmp_task_t * new_task);
+ OMPRTL__kmpc_omp_task_complete_if0,
+ // Call to void __kmpc_ordered(ident_t *loc, kmp_int32 global_tid);
+ OMPRTL__kmpc_ordered,
+ // Call to void __kmpc_end_ordered(ident_t *loc, kmp_int32 global_tid);
+ OMPRTL__kmpc_end_ordered,
+ // Call to kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32
+ // global_tid);
+ OMPRTL__kmpc_omp_taskwait,
+ };
+
+ /// \brief Values for bit flags used in the ident_t to describe the fields.
+ /// All enumeric elements are named and described in accordance with the code
+ /// from http://llvm.org/svn/llvm-project/openmp/trunk/runtime/src/kmp.h
+ enum OpenMPLocationFlags {
+ /// \brief Use trampoline for internal microtask.
+ OMP_IDENT_IMD = 0x01,
+ /// \brief Use c-style ident structure.
+ OMP_IDENT_KMPC = 0x02,
+ /// \brief Atomic reduction option for kmpc_reduce.
+ OMP_ATOMIC_REDUCE = 0x10,
+ /// \brief Explicit 'barrier' directive.
+ OMP_IDENT_BARRIER_EXPL = 0x20,
+ /// \brief Implicit barrier in code.
+ OMP_IDENT_BARRIER_IMPL = 0x40,
+ /// \brief Implicit barrier in 'for' directive.
+ OMP_IDENT_BARRIER_IMPL_FOR = 0x40,
+ /// \brief Implicit barrier in 'sections' directive.
+ OMP_IDENT_BARRIER_IMPL_SECTIONS = 0xC0,
+ /// \brief Implicit barrier in 'single' directive.
+ OMP_IDENT_BARRIER_IMPL_SINGLE = 0x140
+ };
+ CodeGenModule &CGM;
+ /// \brief Default const ident_t object used for initialization of all other
+ /// ident_t objects.
+ llvm::Constant *DefaultOpenMPPSource;
+ /// \brief Map of flags and corresponding default locations.
+ typedef llvm::DenseMap<unsigned, llvm::Value *> OpenMPDefaultLocMapTy;
+ OpenMPDefaultLocMapTy OpenMPDefaultLocMap;
+ llvm::Value *getOrCreateDefaultLocation(OpenMPLocationFlags Flags);
+ /// \brief Describes ident structure that describes a source location.
+ /// All descriptions are taken from
+ /// http://llvm.org/svn/llvm-project/openmp/trunk/runtime/src/kmp.h
+ /// Original structure:
+ /// typedef struct ident {
+ /// kmp_int32 reserved_1; /**< might be used in Fortran;
+ /// see above */
+ /// kmp_int32 flags; /**< also f.flags; KMP_IDENT_xxx flags;
+ /// KMP_IDENT_KMPC identifies this union
+ /// member */
+ /// kmp_int32 reserved_2; /**< not really used in Fortran any more;
+ /// see above */
+ ///#if USE_ITT_BUILD
+ /// /* but currently used for storing
+ /// region-specific ITT */
+ /// /* contextual information. */
+ ///#endif /* USE_ITT_BUILD */
+ /// kmp_int32 reserved_3; /**< source[4] in Fortran, do not use for
+ /// C++ */
+ /// char const *psource; /**< String describing the source location.
+ /// The string is composed of semi-colon separated
+ // fields which describe the source file,
+ /// the function and a pair of line numbers that
+ /// delimit the construct.
+ /// */
+ /// } ident_t;
+ enum IdentFieldIndex {
+ /// \brief might be used in Fortran
+ IdentField_Reserved_1,
+ /// \brief OMP_IDENT_xxx flags; OMP_IDENT_KMPC identifies this union member.
+ IdentField_Flags,
+ /// \brief Not really used in Fortran any more
+ IdentField_Reserved_2,
+ /// \brief Source[4] in Fortran, do not use for C++
+ IdentField_Reserved_3,
+ /// \brief String describing the source location. The string is composed of
+ /// semi-colon separated fields which describe the source file, the function
+ /// and a pair of line numbers that delimit the construct.
+ IdentField_PSource
+ };
+ llvm::StructType *IdentTy;
+ /// \brief Map for SourceLocation and OpenMP runtime library debug locations.
+ typedef llvm::DenseMap<unsigned, llvm::Value *> OpenMPDebugLocMapTy;
+ OpenMPDebugLocMapTy OpenMPDebugLocMap;
+ /// \brief The type for a microtask which gets passed to __kmpc_fork_call().
+ /// Original representation is:
+ /// typedef void (kmpc_micro)(kmp_int32 global_tid, kmp_int32 bound_tid,...);
+ llvm::FunctionType *Kmpc_MicroTy;
+ /// \brief Stores debug location and ThreadID for the function.
+ struct DebugLocThreadIdTy {
+ llvm::Value *DebugLoc;
+ llvm::Value *ThreadID;
+ };
+ /// \brief Map of local debug location, ThreadId and functions.
+ typedef llvm::DenseMap<llvm::Function *, DebugLocThreadIdTy>
+ OpenMPLocThreadIDMapTy;
+ OpenMPLocThreadIDMapTy OpenMPLocThreadIDMap;
+ /// \brief Type kmp_critical_name, originally defined as typedef kmp_int32
+ /// kmp_critical_name[8];
+ llvm::ArrayType *KmpCriticalNameTy;
+ /// \brief An ordered map of auto-generated variables to their unique names.
+ /// It stores variables with the following names: 1) ".gomp_critical_user_" +
+ /// <critical_section_name> + ".var" for "omp critical" directives; 2)
+ /// <mangled_name_for_global_var> + ".cache." for cache for threadprivate
+ /// variables.
+ llvm::StringMap<llvm::AssertingVH<llvm::Constant>, llvm::BumpPtrAllocator>
+ InternalVars;
+ /// \brief Type typedef kmp_int32 (* kmp_routine_entry_t)(kmp_int32, void *);
+ llvm::Type *KmpRoutineEntryPtrTy;
+ QualType KmpRoutineEntryPtrQTy;
+ /// \brief Type typedef struct kmp_task {
+ /// void * shareds; /**< pointer to block of pointers to
+ /// shared vars */
+ /// kmp_routine_entry_t routine; /**< pointer to routine to call for
+ /// executing task */
+ /// kmp_int32 part_id; /**< part id for the task */
+ /// kmp_routine_entry_t destructors; /* pointer to function to invoke
+ /// deconstructors of firstprivate C++ objects */
+ /// } kmp_task_t;
+ QualType KmpTaskTQTy;
+
+ /// \brief Build type kmp_routine_entry_t (if not built yet).
+ void emitKmpRoutineEntryT(QualType KmpInt32Ty);
+
+ /// \brief Emits object of ident_t type with info for source location.
+ /// \param Flags Flags for OpenMP location.
+ ///
+ llvm::Value *emitUpdateLocation(CodeGenFunction &CGF, SourceLocation Loc,
+ OpenMPLocationFlags Flags = OMP_IDENT_KMPC);
+
+ /// \brief Returns pointer to ident_t type.
+ llvm::Type *getIdentTyPointerTy();
+
+ /// \brief Returns pointer to kmpc_micro type.
+ llvm::Type *getKmpc_MicroPointerTy();
+
+ /// \brief Returns specified OpenMP runtime function.
+ /// \param Function OpenMP runtime function.
+ /// \return Specified function.
+ llvm::Constant *createRuntimeFunction(OpenMPRTLFunction Function);
+
+ /// \brief Returns __kmpc_for_static_init_* runtime function for the specified
+ /// size \a IVSize and sign \a IVSigned.
+ llvm::Constant *createForStaticInitFunction(unsigned IVSize, bool IVSigned);
+
+ /// \brief Returns __kmpc_dispatch_init_* runtime function for the specified
+ /// size \a IVSize and sign \a IVSigned.
+ llvm::Constant *createDispatchInitFunction(unsigned IVSize, bool IVSigned);
+
+ /// \brief Returns __kmpc_dispatch_next_* runtime function for the specified
+ /// size \a IVSize and sign \a IVSigned.
+ llvm::Constant *createDispatchNextFunction(unsigned IVSize, bool IVSigned);
+
+ /// \brief Returns __kmpc_dispatch_fini_* runtime function for the specified
+ /// size \a IVSize and sign \a IVSigned.
+ llvm::Constant *createDispatchFiniFunction(unsigned IVSize, bool IVSigned);
+
+ /// \brief If the specified mangled name is not in the module, create and
+ /// return threadprivate cache object. This object is a pointer's worth of
+ /// storage that's reserved for use by the OpenMP runtime.
+ /// \param VD Threadprivate variable.
+ /// \return Cache variable for the specified threadprivate.
+ llvm::Constant *getOrCreateThreadPrivateCache(const VarDecl *VD);
+
+ /// \brief Emits address of the word in a memory where current thread id is
+ /// stored.
+ virtual llvm::Value *emitThreadIDAddress(CodeGenFunction &CGF,
+ SourceLocation Loc);
+
+ /// \brief Gets thread id value for the current thread.
+ ///
+ llvm::Value *getThreadID(CodeGenFunction &CGF, SourceLocation Loc);
+
+ /// \brief Gets (if variable with the given name already exist) or creates
+ /// internal global variable with the specified Name. The created variable has
+ /// linkage CommonLinkage by default and is initialized by null value.
+ /// \param Ty Type of the global variable. If it is exist already the type
+ /// must be the same.
+ /// \param Name Name of the variable.
+ llvm::Constant *getOrCreateInternalVariable(llvm::Type *Ty,
+ const llvm::Twine &Name);
+
+ /// \brief Set of threadprivate variables with the generated initializer.
+ llvm::DenseSet<const VarDecl *> ThreadPrivateWithDefinition;
+
+ /// \brief Emits initialization code for the threadprivate variables.
+ /// \param VDAddr Address of the global variable \a VD.
+ /// \param Ctor Pointer to a global init function for \a VD.
+ /// \param CopyCtor Pointer to a global copy function for \a VD.
+ /// \param Dtor Pointer to a global destructor function for \a VD.
+ /// \param Loc Location of threadprivate declaration.
+ void emitThreadPrivateVarInit(CodeGenFunction &CGF, llvm::Value *VDAddr,
+ llvm::Value *Ctor, llvm::Value *CopyCtor,
+ llvm::Value *Dtor, SourceLocation Loc);
+
+ /// \brief Returns corresponding lock object for the specified critical region
+ /// name. If the lock object does not exist it is created, otherwise the
+ /// reference to the existing copy is returned.
+ /// \param CriticalName Name of the critical region.
+ ///
+ llvm::Value *getCriticalRegionLock(StringRef CriticalName);
+
+public:
+ explicit CGOpenMPRuntime(CodeGenModule &CGM);
+ virtual ~CGOpenMPRuntime() {}
+ virtual void clear();
+
+ /// \brief Emits outlined function for the specified OpenMP parallel directive
+ /// \a D. This outlined function has type void(*)(kmp_int32 *ThreadID,
+ /// kmp_int32 BoundID, struct context_vars*).
+ /// \param D OpenMP directive.
+ /// \param ThreadIDVar Variable for thread id in the current OpenMP region.
+ /// \param CodeGen Code generation sequence for the \a D directive.
+ virtual llvm::Value *
+ emitParallelOutlinedFunction(const OMPExecutableDirective &D,
+ const VarDecl *ThreadIDVar,
+ const RegionCodeGenTy &CodeGen);
+
+ /// \brief Emits outlined function for the OpenMP task directive \a D. This
+ /// outlined function has type void(*)(kmp_int32 ThreadID, kmp_int32
+ /// PartID, struct context_vars*).
+ /// \param D OpenMP directive.
+ /// \param ThreadIDVar Variable for thread id in the current OpenMP region.
+ /// \param CodeGen Code generation sequence for the \a D directive.
+ ///
+ virtual llvm::Value *emitTaskOutlinedFunction(const OMPExecutableDirective &D,
+ const VarDecl *ThreadIDVar,
+ const RegionCodeGenTy &CodeGen);
+
+ /// \brief Cleans up references to the objects in finished function.
+ ///
+ void functionFinished(CodeGenFunction &CGF);
+
+ /// \brief Emits code for parallel or serial call of the \a OutlinedFn with
+ /// variables captured in a record which address is stored in \a
+ /// CapturedStruct.
+ /// \param OutlinedFn Outlined function to be run in parallel threads. Type of
+ /// this function is void(*)(kmp_int32 *, kmp_int32, struct context_vars*).
+ /// \param CapturedStruct A pointer to the record with the references to
+ /// variables used in \a OutlinedFn function.
+ /// \param IfCond Condition in the associated 'if' clause, if it was
+ /// specified, nullptr otherwise.
+ ///
+ virtual void emitParallelCall(CodeGenFunction &CGF, SourceLocation Loc,
+ llvm::Value *OutlinedFn,
+ llvm::Value *CapturedStruct,
+ const Expr *IfCond);
+
+ /// \brief Emits a critical region.
+ /// \param CriticalName Name of the critical region.
+ /// \param CriticalOpGen Generator for the statement associated with the given
+ /// critical region.
+ virtual void emitCriticalRegion(CodeGenFunction &CGF, StringRef CriticalName,
+ const RegionCodeGenTy &CriticalOpGen,
+ SourceLocation Loc);
+
+ /// \brief Emits a master region.
+ /// \param MasterOpGen Generator for the statement associated with the given
+ /// master region.
+ virtual void emitMasterRegion(CodeGenFunction &CGF,
+ const RegionCodeGenTy &MasterOpGen,
+ SourceLocation Loc);
+
+ /// \brief Emits code for a taskyield directive.
+ virtual void emitTaskyieldCall(CodeGenFunction &CGF, SourceLocation Loc);
+
+ /// \brief Emits a single region.
+ /// \param SingleOpGen Generator for the statement associated with the given
+ /// single region.
+ virtual void emitSingleRegion(CodeGenFunction &CGF,
+ const RegionCodeGenTy &SingleOpGen,
+ SourceLocation Loc,
+ ArrayRef<const Expr *> CopyprivateVars,
+ ArrayRef<const Expr *> DestExprs,
+ ArrayRef<const Expr *> SrcExprs,
+ ArrayRef<const Expr *> AssignmentOps);
+
+ /// \brief Emit an ordered region.
+ /// \param OrderedOpGen Generator for the statement associated with the given
+ /// critical region.
+ virtual void emitOrderedRegion(CodeGenFunction &CGF,
+ const RegionCodeGenTy &OrderedOpGen,
+ SourceLocation Loc);
+
+ /// \brief Emit an implicit/explicit barrier for OpenMP threads.
+ /// \param Kind Directive for which this implicit barrier call must be
+ /// generated. Must be OMPD_barrier for explicit barrier generation.
+ ///
+ virtual void emitBarrierCall(CodeGenFunction &CGF, SourceLocation Loc,
+ OpenMPDirectiveKind Kind);
+
+ /// \brief Check if the specified \a ScheduleKind is static non-chunked.
+ /// This kind of worksharing directive is emitted without outer loop.
+ /// \param ScheduleKind Schedule kind specified in the 'schedule' clause.
+ /// \param Chunked True if chunk is specified in the clause.
+ ///
+ virtual bool isStaticNonchunked(OpenMPScheduleClauseKind ScheduleKind,
+ bool Chunked) const;
+
+ /// \brief Check if the specified \a ScheduleKind is dynamic.
+ /// This kind of worksharing directive is emitted without outer loop.
+ /// \param ScheduleKind Schedule Kind specified in the 'schedule' clause.
+ ///
+ virtual bool isDynamic(OpenMPScheduleClauseKind ScheduleKind) const;
+
+ /// \brief Call the appropriate runtime routine to initialize it before start
+ /// of loop.
+ ///
+ /// Depending on the loop schedule, it is nesessary to call some runtime
+ /// routine before start of the OpenMP loop to get the loop upper / lower
+ /// bounds \a LB and \a UB and stride \a ST.
+ ///
+ /// \param CGF Reference to current CodeGenFunction.
+ /// \param Loc Clang source location.
+ /// \param SchedKind Schedule kind, specified by the 'schedule' clause.
+ /// \param IVSize Size of the iteration variable in bits.
+ /// \param IVSigned Sign of the interation variable.
+ /// \param Ordered true if loop is ordered, false otherwise.
+ /// \param IL Address of the output variable in which the flag of the
+ /// last iteration is returned.
+ /// \param LB Address of the output variable in which the lower iteration
+ /// number is returned.
+ /// \param UB Address of the output variable in which the upper iteration
+ /// number is returned.
+ /// \param ST Address of the output variable in which the stride value is
+ /// returned nesessary to generated the static_chunked scheduled loop.
+ /// \param Chunk Value of the chunk for the static_chunked scheduled loop.
+ /// For the default (nullptr) value, the chunk 1 will be used.
+ ///
+ virtual void emitForInit(CodeGenFunction &CGF, SourceLocation Loc,
+ OpenMPScheduleClauseKind SchedKind, unsigned IVSize,
+ bool IVSigned, bool Ordered, llvm::Value *IL,
+ llvm::Value *LB, llvm::Value *UB, llvm::Value *ST,
+ llvm::Value *Chunk = nullptr);
+
+ /// \brief Call the appropriate runtime routine to notify that we finished
+ /// iteration of the ordered loop with the dynamic scheduling.
+ ///
+ /// \param CGF Reference to current CodeGenFunction.
+ /// \param Loc Clang source location.
+ /// \param IVSize Size of the iteration variable in bits.
+ /// \param IVSigned Sign of the interation variable.
+ ///
+ virtual void emitForOrderedIterationEnd(CodeGenFunction &CGF,
+ SourceLocation Loc, unsigned IVSize,
+ bool IVSigned);
+
+ /// \brief Call the appropriate runtime routine to notify that we finished
+ /// all the work with current loop.
+ ///
+ /// \param CGF Reference to current CodeGenFunction.
+ /// \param Loc Clang source location.
+ ///
+ virtual void emitForStaticFinish(CodeGenFunction &CGF, SourceLocation Loc);
+
+ /// Call __kmpc_dispatch_next(
+ /// ident_t *loc, kmp_int32 tid, kmp_int32 *p_lastiter,
+ /// kmp_int[32|64] *p_lower, kmp_int[32|64] *p_upper,
+ /// kmp_int[32|64] *p_stride);
+ /// \param IVSize Size of the iteration variable in bits.
+ /// \param IVSigned Sign of the interation variable.
+ /// \param IL Address of the output variable in which the flag of the
+ /// last iteration is returned.
+ /// \param LB Address of the output variable in which the lower iteration
+ /// number is returned.
+ /// \param UB Address of the output variable in which the upper iteration
+ /// number is returned.
+ /// \param ST Address of the output variable in which the stride value is
+ /// returned.
+ virtual llvm::Value *emitForNext(CodeGenFunction &CGF, SourceLocation Loc,
+ unsigned IVSize, bool IVSigned,
+ llvm::Value *IL, llvm::Value *LB,
+ llvm::Value *UB, llvm::Value *ST);
+
+ /// \brief Emits call to void __kmpc_push_num_threads(ident_t *loc, kmp_int32
+ /// global_tid, kmp_int32 num_threads) to generate code for 'num_threads'
+ /// clause.
+ /// \param NumThreads An integer value of threads.
+ virtual void emitNumThreadsClause(CodeGenFunction &CGF,
+ llvm::Value *NumThreads,
+ SourceLocation Loc);
+
+ /// \brief Returns address of the threadprivate variable for the current
+ /// thread.
+ /// \param VD Threadprivate variable.
+ /// \param VDAddr Address of the global variable \a VD.
+ /// \param Loc Location of the reference to threadprivate var.
+ /// \return Address of the threadprivate variable for the current thread.
+ virtual llvm::Value *getAddrOfThreadPrivate(CodeGenFunction &CGF,
+ const VarDecl *VD,
+ llvm::Value *VDAddr,
+ SourceLocation Loc);
+
+ /// \brief Emit a code for initialization of threadprivate variable. It emits
+ /// a call to runtime library which adds initial value to the newly created
+ /// threadprivate variable (if it is not constant) and registers destructor
+ /// for the variable (if any).
+ /// \param VD Threadprivate variable.
+ /// \param VDAddr Address of the global variable \a VD.
+ /// \param Loc Location of threadprivate declaration.
+ /// \param PerformInit true if initialization expression is not constant.
+ virtual llvm::Function *
+ emitThreadPrivateVarDefinition(const VarDecl *VD, llvm::Value *VDAddr,
+ SourceLocation Loc, bool PerformInit,
+ CodeGenFunction *CGF = nullptr);
+
+ /// \brief Emit flush of the variables specified in 'omp flush' directive.
+ /// \param Vars List of variables to flush.
+ virtual void emitFlush(CodeGenFunction &CGF, ArrayRef<const Expr *> Vars,
+ SourceLocation Loc);
+
+ /// \brief Emit task region for the task directive. The task region is
+ /// emitted in several steps:
+ /// 1. Emit a call to kmp_task_t *__kmpc_omp_task_alloc(ident_t *, kmp_int32
+ /// gtid, kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
+ /// kmp_routine_entry_t *task_entry). Here task_entry is a pointer to the
+ /// function:
+ /// kmp_int32 .omp_task_entry.(kmp_int32 gtid, kmp_task_t *tt) {
+ /// TaskFunction(gtid, tt->part_id, tt->shareds);
+ /// return 0;
+ /// }
+ /// 2. Copy a list of shared variables to field shareds of the resulting
+ /// structure kmp_task_t returned by the previous call (if any).
+ /// 3. Copy a pointer to destructions function to field destructions of the
+ /// resulting structure kmp_task_t.
+ /// 4. Emit a call to kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid,
+ /// kmp_task_t *new_task), where new_task is a resulting structure from
+ /// previous items.
+ /// \param D Current task directive.
+ /// \param Tied true if the task is tied (the task is tied to the thread that
+ /// can suspend its task region), false - untied (the task is not tied to any
+ /// thread).
+ /// \param Final Contains either constant bool value, or llvm::Value * of i1
+ /// type for final clause. If the value is true, the task forces all of its
+ /// child tasks to become final and included tasks.
+ /// \param TaskFunction An LLVM function with type void (*)(i32 /*gtid*/, i32
+ /// /*part_id*/, captured_struct */*__context*/);
+ /// \param SharedsTy A type which contains references the shared variables.
+ /// \param Shareds Context with the list of shared variables from the \a
+ /// TaskFunction.
+ /// \param IfCond Not a nullptr if 'if' clause was specified, nullptr
+ /// otherwise.
+ /// \param PrivateVars List of references to private variables for the task
+ /// directive.
+ /// \param PrivateCopies List of private copies for each private variable in
+ /// \p PrivateVars.
+ /// \param FirstprivateVars List of references to private variables for the
+ /// task directive.
+ /// \param FirstprivateCopies List of private copies for each private variable
+ /// in \p FirstprivateVars.
+ /// \param FirstprivateInits List of references to auto generated variables
+ /// used for initialization of a single array element. Used if firstprivate
+ /// variable is of array type.
+ virtual void emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc,
+ const OMPExecutableDirective &D, bool Tied,
+ llvm::PointerIntPair<llvm::Value *, 1, bool> Final,
+ llvm::Value *TaskFunction, QualType SharedsTy,
+ llvm::Value *Shareds, const Expr *IfCond,
+ const ArrayRef<const Expr *> PrivateVars,
+ const ArrayRef<const Expr *> PrivateCopies,
+ const ArrayRef<const Expr *> FirstprivateVars,
+ const ArrayRef<const Expr *> FirstprivateCopies,
+ const ArrayRef<const Expr *> FirstprivateInits);
+
+ /// \brief Emit code for the directive that does not require outlining.
+ ///
+ /// \param CodeGen Code generation sequence for the \a D directive.
+ virtual void emitInlinedDirective(CodeGenFunction &CGF,
+ const RegionCodeGenTy &CodeGen);
+ /// \brief Emit a code for reduction clause. Next code should be emitted for
+ /// reduction:
+ /// \code
+ ///
+ /// static kmp_critical_name lock = { 0 };
+ ///
+ /// void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
+ /// ...
+ /// *(Type<i>*)lhs[i] = RedOp<i>(*(Type<i>*)lhs[i], *(Type<i>*)rhs[i]);
+ /// ...
+ /// }
+ ///
+ /// ...
+ /// void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
+ /// switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
+ /// RedList, reduce_func, &<lock>)) {
+ /// case 1:
+ /// ...
+ /// <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
+ /// ...
+ /// __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
+ /// break;
+ /// case 2:
+ /// ...
+ /// Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
+ /// ...
+ /// break;
+ /// default:;
+ /// }
+ /// \endcode
+ ///
+ /// \param LHSExprs List of LHS in \a ReductionOps reduction operations.
+ /// \param RHSExprs List of RHS in \a ReductionOps reduction operations.
+ /// \param ReductionOps List of reduction operations in form 'LHS binop RHS'
+ /// or 'operator binop(LHS, RHS)'.
+ /// \param WithNowait true if parent directive has also nowait clause, false
+ /// otherwise.
+ virtual void emitReduction(CodeGenFunction &CGF, SourceLocation Loc,
+ ArrayRef<const Expr *> LHSExprs,
+ ArrayRef<const Expr *> RHSExprs,
+ ArrayRef<const Expr *> ReductionOps,
+ bool WithNowait);
+
+ /// \brief Emit code for 'taskwait' directive.
+ virtual void emitTaskwaitCall(CodeGenFunction &CGF, SourceLocation Loc);
+};
+
+} // namespace CodeGen
+} // namespace clang
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGRecordLayout.h b/contrib/llvm/tools/clang/lib/CodeGen/CGRecordLayout.h
new file mode 100644
index 0000000..c15f9fd
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGRecordLayout.h
@@ -0,0 +1,220 @@
+//===--- CGRecordLayout.h - LLVM Record Layout Information ------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_CODEGEN_CGRECORDLAYOUT_H
+#define LLVM_CLANG_LIB_CODEGEN_CGRECORDLAYOUT_H
+
+#include "clang/AST/CharUnits.h"
+#include "clang/AST/Decl.h"
+#include "clang/Basic/LLVM.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/IR/DerivedTypes.h"
+
+namespace llvm {
+ class StructType;
+}
+
+namespace clang {
+namespace CodeGen {
+
+/// \brief Structure with information about how a bitfield should be accessed.
+///
+/// Often we layout a sequence of bitfields as a contiguous sequence of bits.
+/// When the AST record layout does this, we represent it in the LLVM IR's type
+/// as either a sequence of i8 members or a byte array to reserve the number of
+/// bytes touched without forcing any particular alignment beyond the basic
+/// character alignment.
+///
+/// Then accessing a particular bitfield involves converting this byte array
+/// into a single integer of that size (i24 or i40 -- may not be power-of-two
+/// size), loading it, and shifting and masking to extract the particular
+/// subsequence of bits which make up that particular bitfield. This structure
+/// encodes the information used to construct the extraction code sequences.
+/// The CGRecordLayout also has a field index which encodes which byte-sequence
+/// this bitfield falls within. Let's assume the following C struct:
+///
+/// struct S {
+/// char a, b, c;
+/// unsigned bits : 3;
+/// unsigned more_bits : 4;
+/// unsigned still_more_bits : 7;
+/// };
+///
+/// This will end up as the following LLVM type. The first array is the
+/// bitfield, and the second is the padding out to a 4-byte alignmnet.
+///
+/// %t = type { i8, i8, i8, i8, i8, [3 x i8] }
+///
+/// When generating code to access more_bits, we'll generate something
+/// essentially like this:
+///
+/// define i32 @foo(%t* %base) {
+/// %0 = gep %t* %base, i32 0, i32 3
+/// %2 = load i8* %1
+/// %3 = lshr i8 %2, 3
+/// %4 = and i8 %3, 15
+/// %5 = zext i8 %4 to i32
+/// ret i32 %i
+/// }
+///
+struct CGBitFieldInfo {
+ /// The offset within a contiguous run of bitfields that are represented as
+ /// a single "field" within the LLVM struct type. This offset is in bits.
+ unsigned Offset : 16;
+
+ /// The total size of the bit-field, in bits.
+ unsigned Size : 15;
+
+ /// Whether the bit-field is signed.
+ unsigned IsSigned : 1;
+
+ /// The storage size in bits which should be used when accessing this
+ /// bitfield.
+ unsigned StorageSize;
+
+ /// The alignment which should be used when accessing the bitfield.
+ unsigned StorageAlignment;
+
+ CGBitFieldInfo()
+ : Offset(), Size(), IsSigned(), StorageSize(), StorageAlignment() {}
+
+ CGBitFieldInfo(unsigned Offset, unsigned Size, bool IsSigned,
+ unsigned StorageSize, unsigned StorageAlignment)
+ : Offset(Offset), Size(Size), IsSigned(IsSigned),
+ StorageSize(StorageSize), StorageAlignment(StorageAlignment) {}
+
+ void print(raw_ostream &OS) const;
+ void dump() const;
+
+ /// \brief Given a bit-field decl, build an appropriate helper object for
+ /// accessing that field (which is expected to have the given offset and
+ /// size).
+ static CGBitFieldInfo MakeInfo(class CodeGenTypes &Types,
+ const FieldDecl *FD,
+ uint64_t Offset, uint64_t Size,
+ uint64_t StorageSize,
+ uint64_t StorageAlignment);
+};
+
+/// CGRecordLayout - This class handles struct and union layout info while
+/// lowering AST types to LLVM types.
+///
+/// These layout objects are only created on demand as IR generation requires.
+class CGRecordLayout {
+ friend class CodeGenTypes;
+
+ CGRecordLayout(const CGRecordLayout &) = delete;
+ void operator=(const CGRecordLayout &) = delete;
+
+private:
+ /// The LLVM type corresponding to this record layout; used when
+ /// laying it out as a complete object.
+ llvm::StructType *CompleteObjectType;
+
+ /// The LLVM type for the non-virtual part of this record layout;
+ /// used when laying it out as a base subobject.
+ llvm::StructType *BaseSubobjectType;
+
+ /// Map from (non-bit-field) struct field to the corresponding llvm struct
+ /// type field no. This info is populated by record builder.
+ llvm::DenseMap<const FieldDecl *, unsigned> FieldInfo;
+
+ /// Map from (bit-field) struct field to the corresponding llvm struct type
+ /// field no. This info is populated by record builder.
+ llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields;
+
+ // FIXME: Maybe we could use a CXXBaseSpecifier as the key and use a single
+ // map for both virtual and non-virtual bases.
+ llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases;
+
+ /// Map from virtual bases to their field index in the complete object.
+ llvm::DenseMap<const CXXRecordDecl *, unsigned> CompleteObjectVirtualBases;
+
+ /// False if any direct or indirect subobject of this class, when
+ /// considered as a complete object, requires a non-zero bitpattern
+ /// when zero-initialized.
+ bool IsZeroInitializable : 1;
+
+ /// False if any direct or indirect subobject of this class, when
+ /// considered as a base subobject, requires a non-zero bitpattern
+ /// when zero-initialized.
+ bool IsZeroInitializableAsBase : 1;
+
+public:
+ CGRecordLayout(llvm::StructType *CompleteObjectType,
+ llvm::StructType *BaseSubobjectType,
+ bool IsZeroInitializable,
+ bool IsZeroInitializableAsBase)
+ : CompleteObjectType(CompleteObjectType),
+ BaseSubobjectType(BaseSubobjectType),
+ IsZeroInitializable(IsZeroInitializable),
+ IsZeroInitializableAsBase(IsZeroInitializableAsBase) {}
+
+ /// \brief Return the "complete object" LLVM type associated with
+ /// this record.
+ llvm::StructType *getLLVMType() const {
+ return CompleteObjectType;
+ }
+
+ /// \brief Return the "base subobject" LLVM type associated with
+ /// this record.
+ llvm::StructType *getBaseSubobjectLLVMType() const {
+ return BaseSubobjectType;
+ }
+
+ /// \brief Check whether this struct can be C++ zero-initialized
+ /// with a zeroinitializer.
+ bool isZeroInitializable() const {
+ return IsZeroInitializable;
+ }
+
+ /// \brief Check whether this struct can be C++ zero-initialized
+ /// with a zeroinitializer when considered as a base subobject.
+ bool isZeroInitializableAsBase() const {
+ return IsZeroInitializableAsBase;
+ }
+
+ /// \brief Return llvm::StructType element number that corresponds to the
+ /// field FD.
+ unsigned getLLVMFieldNo(const FieldDecl *FD) const {
+ FD = FD->getCanonicalDecl();
+ assert(FieldInfo.count(FD) && "Invalid field for record!");
+ return FieldInfo.lookup(FD);
+ }
+
+ unsigned getNonVirtualBaseLLVMFieldNo(const CXXRecordDecl *RD) const {
+ assert(NonVirtualBases.count(RD) && "Invalid non-virtual base!");
+ return NonVirtualBases.lookup(RD);
+ }
+
+ /// \brief Return the LLVM field index corresponding to the given
+ /// virtual base. Only valid when operating on the complete object.
+ unsigned getVirtualBaseIndex(const CXXRecordDecl *base) const {
+ assert(CompleteObjectVirtualBases.count(base) && "Invalid virtual base!");
+ return CompleteObjectVirtualBases.lookup(base);
+ }
+
+ /// \brief Return the BitFieldInfo that corresponds to the field FD.
+ const CGBitFieldInfo &getBitFieldInfo(const FieldDecl *FD) const {
+ FD = FD->getCanonicalDecl();
+ assert(FD->isBitField() && "Invalid call for non-bit-field decl!");
+ llvm::DenseMap<const FieldDecl *, CGBitFieldInfo>::const_iterator
+ it = BitFields.find(FD);
+ assert(it != BitFields.end() && "Unable to find bitfield info");
+ return it->second;
+ }
+
+ void print(raw_ostream &OS) const;
+ void dump() const;
+};
+
+} // end namespace CodeGen
+} // end namespace clang
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGRecordLayoutBuilder.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGRecordLayoutBuilder.cpp
new file mode 100644
index 0000000..72ecd65
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGRecordLayoutBuilder.cpp
@@ -0,0 +1,860 @@
+//===--- CGRecordLayoutBuilder.cpp - CGRecordLayout builder ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Builder implementation for CGRecordLayout objects.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGRecordLayout.h"
+#include "CGCXXABI.h"
+#include "CodeGenTypes.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/Frontend/CodeGenOptions.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace clang;
+using namespace CodeGen;
+
+namespace {
+/// The CGRecordLowering is responsible for lowering an ASTRecordLayout to an
+/// llvm::Type. Some of the lowering is straightforward, some is not. Here we
+/// detail some of the complexities and weirdnesses here.
+/// * LLVM does not have unions - Unions can, in theory be represented by any
+/// llvm::Type with correct size. We choose a field via a specific heuristic
+/// and add padding if necessary.
+/// * LLVM does not have bitfields - Bitfields are collected into contiguous
+/// runs and allocated as a single storage type for the run. ASTRecordLayout
+/// contains enough information to determine where the runs break. Microsoft
+/// and Itanium follow different rules and use different codepaths.
+/// * It is desired that, when possible, bitfields use the appropriate iN type
+/// when lowered to llvm types. For example unsigned x : 24 gets lowered to
+/// i24. This isn't always possible because i24 has storage size of 32 bit
+/// and if it is possible to use that extra byte of padding we must use
+/// [i8 x 3] instead of i24. The function clipTailPadding does this.
+/// C++ examples that require clipping:
+/// struct { int a : 24; char b; }; // a must be clipped, b goes at offset 3
+/// struct A { int a : 24; }; // a must be clipped because a struct like B
+// could exist: struct B : A { char b; }; // b goes at offset 3
+/// * Clang ignores 0 sized bitfields and 0 sized bases but *not* zero sized
+/// fields. The existing asserts suggest that LLVM assumes that *every* field
+/// has an underlying storage type. Therefore empty structures containing
+/// zero sized subobjects such as empty records or zero sized arrays still get
+/// a zero sized (empty struct) storage type.
+/// * Clang reads the complete type rather than the base type when generating
+/// code to access fields. Bitfields in tail position with tail padding may
+/// be clipped in the base class but not the complete class (we may discover
+/// that the tail padding is not used in the complete class.) However,
+/// because LLVM reads from the complete type it can generate incorrect code
+/// if we do not clip the tail padding off of the bitfield in the complete
+/// layout. This introduces a somewhat awkward extra unnecessary clip stage.
+/// The location of the clip is stored internally as a sentinal of type
+/// SCISSOR. If LLVM were updated to read base types (which it probably
+/// should because locations of things such as VBases are bogus in the llvm
+/// type anyway) then we could eliminate the SCISSOR.
+/// * Itanium allows nearly empty primary virtual bases. These bases don't get
+/// get their own storage because they're laid out as part of another base
+/// or at the beginning of the structure. Determining if a VBase actually
+/// gets storage awkwardly involves a walk of all bases.
+/// * VFPtrs and VBPtrs do *not* make a record NotZeroInitializable.
+struct CGRecordLowering {
+ // MemberInfo is a helper structure that contains information about a record
+ // member. In additional to the standard member types, there exists a
+ // sentinal member type that ensures correct rounding.
+ struct MemberInfo {
+ CharUnits Offset;
+ enum InfoKind { VFPtr, VBPtr, Field, Base, VBase, Scissor } Kind;
+ llvm::Type *Data;
+ union {
+ const FieldDecl *FD;
+ const CXXRecordDecl *RD;
+ };
+ MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data,
+ const FieldDecl *FD = nullptr)
+ : Offset(Offset), Kind(Kind), Data(Data), FD(FD) {}
+ MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data,
+ const CXXRecordDecl *RD)
+ : Offset(Offset), Kind(Kind), Data(Data), RD(RD) {}
+ // MemberInfos are sorted so we define a < operator.
+ bool operator <(const MemberInfo& a) const { return Offset < a.Offset; }
+ };
+ // The constructor.
+ CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D, bool Packed);
+ // Short helper routines.
+ /// \brief Constructs a MemberInfo instance from an offset and llvm::Type *.
+ MemberInfo StorageInfo(CharUnits Offset, llvm::Type *Data) {
+ return MemberInfo(Offset, MemberInfo::Field, Data);
+ }
+
+ /// The Microsoft bitfield layout rule allocates discrete storage
+ /// units of the field's formal type and only combines adjacent
+ /// fields of the same formal type. We want to emit a layout with
+ /// these discrete storage units instead of combining them into a
+ /// continuous run.
+ bool isDiscreteBitFieldABI() {
+ return Context.getTargetInfo().getCXXABI().isMicrosoft() ||
+ D->isMsStruct(Context);
+ }
+
+ /// The Itanium base layout rule allows virtual bases to overlap
+ /// other bases, which complicates layout in specific ways.
+ ///
+ /// Note specifically that the ms_struct attribute doesn't change this.
+ bool isOverlappingVBaseABI() {
+ return !Context.getTargetInfo().getCXXABI().isMicrosoft();
+ }
+
+ /// \brief Wraps llvm::Type::getIntNTy with some implicit arguments.
+ llvm::Type *getIntNType(uint64_t NumBits) {
+ return llvm::Type::getIntNTy(Types.getLLVMContext(),
+ (unsigned)llvm::RoundUpToAlignment(NumBits, 8));
+ }
+ /// \brief Gets an llvm type of size NumBytes and alignment 1.
+ llvm::Type *getByteArrayType(CharUnits NumBytes) {
+ assert(!NumBytes.isZero() && "Empty byte arrays aren't allowed.");
+ llvm::Type *Type = llvm::Type::getInt8Ty(Types.getLLVMContext());
+ return NumBytes == CharUnits::One() ? Type :
+ (llvm::Type *)llvm::ArrayType::get(Type, NumBytes.getQuantity());
+ }
+ /// \brief Gets the storage type for a field decl and handles storage
+ /// for itanium bitfields that are smaller than their declared type.
+ llvm::Type *getStorageType(const FieldDecl *FD) {
+ llvm::Type *Type = Types.ConvertTypeForMem(FD->getType());
+ if (!FD->isBitField()) return Type;
+ if (isDiscreteBitFieldABI()) return Type;
+ return getIntNType(std::min(FD->getBitWidthValue(Context),
+ (unsigned)Context.toBits(getSize(Type))));
+ }
+ /// \brief Gets the llvm Basesubobject type from a CXXRecordDecl.
+ llvm::Type *getStorageType(const CXXRecordDecl *RD) {
+ return Types.getCGRecordLayout(RD).getBaseSubobjectLLVMType();
+ }
+ CharUnits bitsToCharUnits(uint64_t BitOffset) {
+ return Context.toCharUnitsFromBits(BitOffset);
+ }
+ CharUnits getSize(llvm::Type *Type) {
+ return CharUnits::fromQuantity(DataLayout.getTypeAllocSize(Type));
+ }
+ CharUnits getAlignment(llvm::Type *Type) {
+ return CharUnits::fromQuantity(DataLayout.getABITypeAlignment(Type));
+ }
+ bool isZeroInitializable(const FieldDecl *FD) {
+ return Types.isZeroInitializable(FD->getType());
+ }
+ bool isZeroInitializable(const RecordDecl *RD) {
+ return Types.isZeroInitializable(RD);
+ }
+ void appendPaddingBytes(CharUnits Size) {
+ if (!Size.isZero())
+ FieldTypes.push_back(getByteArrayType(Size));
+ }
+ uint64_t getFieldBitOffset(const FieldDecl *FD) {
+ return Layout.getFieldOffset(FD->getFieldIndex());
+ }
+ // Layout routines.
+ void setBitFieldInfo(const FieldDecl *FD, CharUnits StartOffset,
+ llvm::Type *StorageType);
+ /// \brief Lowers an ASTRecordLayout to a llvm type.
+ void lower(bool NonVirtualBaseType);
+ void lowerUnion();
+ void accumulateFields();
+ void accumulateBitFields(RecordDecl::field_iterator Field,
+ RecordDecl::field_iterator FieldEnd);
+ void accumulateBases();
+ void accumulateVPtrs();
+ void accumulateVBases();
+ /// \brief Recursively searches all of the bases to find out if a vbase is
+ /// not the primary vbase of some base class.
+ bool hasOwnStorage(const CXXRecordDecl *Decl, const CXXRecordDecl *Query);
+ void calculateZeroInit();
+ /// \brief Lowers bitfield storage types to I8 arrays for bitfields with tail
+ /// padding that is or can potentially be used.
+ void clipTailPadding();
+ /// \brief Determines if we need a packed llvm struct.
+ void determinePacked(bool NVBaseType);
+ /// \brief Inserts padding everwhere it's needed.
+ void insertPadding();
+ /// \brief Fills out the structures that are ultimately consumed.
+ void fillOutputFields();
+ // Input memoization fields.
+ CodeGenTypes &Types;
+ const ASTContext &Context;
+ const RecordDecl *D;
+ const CXXRecordDecl *RD;
+ const ASTRecordLayout &Layout;
+ const llvm::DataLayout &DataLayout;
+ // Helpful intermediate data-structures.
+ std::vector<MemberInfo> Members;
+ // Output fields, consumed by CodeGenTypes::ComputeRecordLayout.
+ SmallVector<llvm::Type *, 16> FieldTypes;
+ llvm::DenseMap<const FieldDecl *, unsigned> Fields;
+ llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields;
+ llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases;
+ llvm::DenseMap<const CXXRecordDecl *, unsigned> VirtualBases;
+ bool IsZeroInitializable : 1;
+ bool IsZeroInitializableAsBase : 1;
+ bool Packed : 1;
+private:
+ CGRecordLowering(const CGRecordLowering &) = delete;
+ void operator =(const CGRecordLowering &) = delete;
+};
+} // namespace {
+
+CGRecordLowering::CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D, bool Packed)
+ : Types(Types), Context(Types.getContext()), D(D),
+ RD(dyn_cast<CXXRecordDecl>(D)),
+ Layout(Types.getContext().getASTRecordLayout(D)),
+ DataLayout(Types.getDataLayout()), IsZeroInitializable(true),
+ IsZeroInitializableAsBase(true), Packed(Packed) {}
+
+void CGRecordLowering::setBitFieldInfo(
+ const FieldDecl *FD, CharUnits StartOffset, llvm::Type *StorageType) {
+ CGBitFieldInfo &Info = BitFields[FD->getCanonicalDecl()];
+ Info.IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();
+ Info.Offset = (unsigned)(getFieldBitOffset(FD) - Context.toBits(StartOffset));
+ Info.Size = FD->getBitWidthValue(Context);
+ Info.StorageSize = (unsigned)DataLayout.getTypeAllocSizeInBits(StorageType);
+ // Here we calculate the actual storage alignment of the bits. E.g if we've
+ // got an alignment >= 2 and the bitfield starts at offset 6 we've got an
+ // alignment of 2.
+ Info.StorageAlignment =
+ Layout.getAlignment().alignmentAtOffset(StartOffset).getQuantity();
+ if (Info.Size > Info.StorageSize)
+ Info.Size = Info.StorageSize;
+ // Reverse the bit offsets for big endian machines. Because we represent
+ // a bitfield as a single large integer load, we can imagine the bits
+ // counting from the most-significant-bit instead of the
+ // least-significant-bit.
+ if (DataLayout.isBigEndian())
+ Info.Offset = Info.StorageSize - (Info.Offset + Info.Size);
+}
+
+void CGRecordLowering::lower(bool NVBaseType) {
+ // The lowering process implemented in this function takes a variety of
+ // carefully ordered phases.
+ // 1) Store all members (fields and bases) in a list and sort them by offset.
+ // 2) Add a 1-byte capstone member at the Size of the structure.
+ // 3) Clip bitfield storages members if their tail padding is or might be
+ // used by another field or base. The clipping process uses the capstone
+ // by treating it as another object that occurs after the record.
+ // 4) Determine if the llvm-struct requires packing. It's important that this
+ // phase occur after clipping, because clipping changes the llvm type.
+ // This phase reads the offset of the capstone when determining packedness
+ // and updates the alignment of the capstone to be equal of the alignment
+ // of the record after doing so.
+ // 5) Insert padding everywhere it is needed. This phase requires 'Packed' to
+ // have been computed and needs to know the alignment of the record in
+ // order to understand if explicit tail padding is needed.
+ // 6) Remove the capstone, we don't need it anymore.
+ // 7) Determine if this record can be zero-initialized. This phase could have
+ // been placed anywhere after phase 1.
+ // 8) Format the complete list of members in a way that can be consumed by
+ // CodeGenTypes::ComputeRecordLayout.
+ CharUnits Size = NVBaseType ? Layout.getNonVirtualSize() : Layout.getSize();
+ if (D->isUnion())
+ return lowerUnion();
+ accumulateFields();
+ // RD implies C++.
+ if (RD) {
+ accumulateVPtrs();
+ accumulateBases();
+ if (Members.empty())
+ return appendPaddingBytes(Size);
+ if (!NVBaseType)
+ accumulateVBases();
+ }
+ std::stable_sort(Members.begin(), Members.end());
+ Members.push_back(StorageInfo(Size, getIntNType(8)));
+ clipTailPadding();
+ determinePacked(NVBaseType);
+ insertPadding();
+ Members.pop_back();
+ calculateZeroInit();
+ fillOutputFields();
+}
+
+void CGRecordLowering::lowerUnion() {
+ CharUnits LayoutSize = Layout.getSize();
+ llvm::Type *StorageType = nullptr;
+ bool SeenNamedMember = false;
+ // Iterate through the fields setting bitFieldInfo and the Fields array. Also
+ // locate the "most appropriate" storage type. The heuristic for finding the
+ // storage type isn't necessary, the first (non-0-length-bitfield) field's
+ // type would work fine and be simpler but would be different than what we've
+ // been doing and cause lit tests to change.
+ for (const auto *Field : D->fields()) {
+ if (Field->isBitField()) {
+ // Skip 0 sized bitfields.
+ if (Field->getBitWidthValue(Context) == 0)
+ continue;
+ llvm::Type *FieldType = getStorageType(Field);
+ if (LayoutSize < getSize(FieldType))
+ FieldType = getByteArrayType(LayoutSize);
+ setBitFieldInfo(Field, CharUnits::Zero(), FieldType);
+ }
+ Fields[Field->getCanonicalDecl()] = 0;
+ llvm::Type *FieldType = getStorageType(Field);
+ // Compute zero-initializable status.
+ // This union might not be zero initialized: it may contain a pointer to
+ // data member which might have some exotic initialization sequence.
+ // If this is the case, then we aught not to try and come up with a "better"
+ // type, it might not be very easy to come up with a Constant which
+ // correctly initializes it.
+ if (!SeenNamedMember && Field->getDeclName()) {
+ SeenNamedMember = true;
+ if (!isZeroInitializable(Field)) {
+ IsZeroInitializable = IsZeroInitializableAsBase = false;
+ StorageType = FieldType;
+ }
+ }
+ // Because our union isn't zero initializable, we won't be getting a better
+ // storage type.
+ if (!IsZeroInitializable)
+ continue;
+ // Conditionally update our storage type if we've got a new "better" one.
+ if (!StorageType ||
+ getAlignment(FieldType) > getAlignment(StorageType) ||
+ (getAlignment(FieldType) == getAlignment(StorageType) &&
+ getSize(FieldType) > getSize(StorageType)))
+ StorageType = FieldType;
+ }
+ // If we have no storage type just pad to the appropriate size and return.
+ if (!StorageType)
+ return appendPaddingBytes(LayoutSize);
+ // If our storage size was bigger than our required size (can happen in the
+ // case of packed bitfields on Itanium) then just use an I8 array.
+ if (LayoutSize < getSize(StorageType))
+ StorageType = getByteArrayType(LayoutSize);
+ FieldTypes.push_back(StorageType);
+ appendPaddingBytes(LayoutSize - getSize(StorageType));
+ // Set packed if we need it.
+ if (LayoutSize % getAlignment(StorageType))
+ Packed = true;
+}
+
+void CGRecordLowering::accumulateFields() {
+ for (RecordDecl::field_iterator Field = D->field_begin(),
+ FieldEnd = D->field_end();
+ Field != FieldEnd;)
+ if (Field->isBitField()) {
+ RecordDecl::field_iterator Start = Field;
+ // Iterate to gather the list of bitfields.
+ for (++Field; Field != FieldEnd && Field->isBitField(); ++Field);
+ accumulateBitFields(Start, Field);
+ } else {
+ Members.push_back(MemberInfo(
+ bitsToCharUnits(getFieldBitOffset(*Field)), MemberInfo::Field,
+ getStorageType(*Field), *Field));
+ ++Field;
+ }
+}
+
+void
+CGRecordLowering::accumulateBitFields(RecordDecl::field_iterator Field,
+ RecordDecl::field_iterator FieldEnd) {
+ // Run stores the first element of the current run of bitfields. FieldEnd is
+ // used as a special value to note that we don't have a current run. A
+ // bitfield run is a contiguous collection of bitfields that can be stored in
+ // the same storage block. Zero-sized bitfields and bitfields that would
+ // cross an alignment boundary break a run and start a new one.
+ RecordDecl::field_iterator Run = FieldEnd;
+ // Tail is the offset of the first bit off the end of the current run. It's
+ // used to determine if the ASTRecordLayout is treating these two bitfields as
+ // contiguous. StartBitOffset is offset of the beginning of the Run.
+ uint64_t StartBitOffset, Tail = 0;
+ if (isDiscreteBitFieldABI()) {
+ for (; Field != FieldEnd; ++Field) {
+ uint64_t BitOffset = getFieldBitOffset(*Field);
+ // Zero-width bitfields end runs.
+ if (Field->getBitWidthValue(Context) == 0) {
+ Run = FieldEnd;
+ continue;
+ }
+ llvm::Type *Type = Types.ConvertTypeForMem(Field->getType());
+ // If we don't have a run yet, or don't live within the previous run's
+ // allocated storage then we allocate some storage and start a new run.
+ if (Run == FieldEnd || BitOffset >= Tail) {
+ Run = Field;
+ StartBitOffset = BitOffset;
+ Tail = StartBitOffset + DataLayout.getTypeAllocSizeInBits(Type);
+ // Add the storage member to the record. This must be added to the
+ // record before the bitfield members so that it gets laid out before
+ // the bitfields it contains get laid out.
+ Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type));
+ }
+ // Bitfields get the offset of their storage but come afterward and remain
+ // there after a stable sort.
+ Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset),
+ MemberInfo::Field, nullptr, *Field));
+ }
+ return;
+ }
+ for (;;) {
+ // Check to see if we need to start a new run.
+ if (Run == FieldEnd) {
+ // If we're out of fields, return.
+ if (Field == FieldEnd)
+ break;
+ // Any non-zero-length bitfield can start a new run.
+ if (Field->getBitWidthValue(Context) != 0) {
+ Run = Field;
+ StartBitOffset = getFieldBitOffset(*Field);
+ Tail = StartBitOffset + Field->getBitWidthValue(Context);
+ }
+ ++Field;
+ continue;
+ }
+ // Add bitfields to the run as long as they qualify.
+ if (Field != FieldEnd && Field->getBitWidthValue(Context) != 0 &&
+ Tail == getFieldBitOffset(*Field)) {
+ Tail += Field->getBitWidthValue(Context);
+ ++Field;
+ continue;
+ }
+ // We've hit a break-point in the run and need to emit a storage field.
+ llvm::Type *Type = getIntNType(Tail - StartBitOffset);
+ // Add the storage member to the record and set the bitfield info for all of
+ // the bitfields in the run. Bitfields get the offset of their storage but
+ // come afterward and remain there after a stable sort.
+ Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type));
+ for (; Run != Field; ++Run)
+ Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset),
+ MemberInfo::Field, nullptr, *Run));
+ Run = FieldEnd;
+ }
+}
+
+void CGRecordLowering::accumulateBases() {
+ // If we've got a primary virtual base, we need to add it with the bases.
+ if (Layout.isPrimaryBaseVirtual()) {
+ const CXXRecordDecl *BaseDecl = Layout.getPrimaryBase();
+ Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::Base,
+ getStorageType(BaseDecl), BaseDecl));
+ }
+ // Accumulate the non-virtual bases.
+ for (const auto &Base : RD->bases()) {
+ if (Base.isVirtual())
+ continue;
+
+ // Bases can be zero-sized even if not technically empty if they
+ // contain only a trailing array member.
+ const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
+ if (!BaseDecl->isEmpty() &&
+ !Context.getASTRecordLayout(BaseDecl).getSize().isZero())
+ Members.push_back(MemberInfo(Layout.getBaseClassOffset(BaseDecl),
+ MemberInfo::Base, getStorageType(BaseDecl), BaseDecl));
+ }
+}
+
+void CGRecordLowering::accumulateVPtrs() {
+ if (Layout.hasOwnVFPtr())
+ Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::VFPtr,
+ llvm::FunctionType::get(getIntNType(32), /*isVarArg=*/true)->
+ getPointerTo()->getPointerTo()));
+ if (Layout.hasOwnVBPtr())
+ Members.push_back(MemberInfo(Layout.getVBPtrOffset(), MemberInfo::VBPtr,
+ llvm::Type::getInt32PtrTy(Types.getLLVMContext())));
+}
+
+void CGRecordLowering::accumulateVBases() {
+ CharUnits ScissorOffset = Layout.getNonVirtualSize();
+ // In the itanium ABI, it's possible to place a vbase at a dsize that is
+ // smaller than the nvsize. Here we check to see if such a base is placed
+ // before the nvsize and set the scissor offset to that, instead of the
+ // nvsize.
+ if (isOverlappingVBaseABI())
+ for (const auto &Base : RD->vbases()) {
+ const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
+ if (BaseDecl->isEmpty())
+ continue;
+ // If the vbase is a primary virtual base of some base, then it doesn't
+ // get its own storage location but instead lives inside of that base.
+ if (Context.isNearlyEmpty(BaseDecl) && !hasOwnStorage(RD, BaseDecl))
+ continue;
+ ScissorOffset = std::min(ScissorOffset,
+ Layout.getVBaseClassOffset(BaseDecl));
+ }
+ Members.push_back(MemberInfo(ScissorOffset, MemberInfo::Scissor, nullptr,
+ RD));
+ for (const auto &Base : RD->vbases()) {
+ const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
+ if (BaseDecl->isEmpty())
+ continue;
+ CharUnits Offset = Layout.getVBaseClassOffset(BaseDecl);
+ // If the vbase is a primary virtual base of some base, then it doesn't
+ // get its own storage location but instead lives inside of that base.
+ if (isOverlappingVBaseABI() &&
+ Context.isNearlyEmpty(BaseDecl) &&
+ !hasOwnStorage(RD, BaseDecl)) {
+ Members.push_back(MemberInfo(Offset, MemberInfo::VBase, nullptr,
+ BaseDecl));
+ continue;
+ }
+ // If we've got a vtordisp, add it as a storage type.
+ if (Layout.getVBaseOffsetsMap().find(BaseDecl)->second.hasVtorDisp())
+ Members.push_back(StorageInfo(Offset - CharUnits::fromQuantity(4),
+ getIntNType(32)));
+ Members.push_back(MemberInfo(Offset, MemberInfo::VBase,
+ getStorageType(BaseDecl), BaseDecl));
+ }
+}
+
+bool CGRecordLowering::hasOwnStorage(const CXXRecordDecl *Decl,
+ const CXXRecordDecl *Query) {
+ const ASTRecordLayout &DeclLayout = Context.getASTRecordLayout(Decl);
+ if (DeclLayout.isPrimaryBaseVirtual() && DeclLayout.getPrimaryBase() == Query)
+ return false;
+ for (const auto &Base : Decl->bases())
+ if (!hasOwnStorage(Base.getType()->getAsCXXRecordDecl(), Query))
+ return false;
+ return true;
+}
+
+void CGRecordLowering::calculateZeroInit() {
+ for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
+ MemberEnd = Members.end();
+ IsZeroInitializableAsBase && Member != MemberEnd; ++Member) {
+ if (Member->Kind == MemberInfo::Field) {
+ if (!Member->FD || isZeroInitializable(Member->FD))
+ continue;
+ IsZeroInitializable = IsZeroInitializableAsBase = false;
+ } else if (Member->Kind == MemberInfo::Base ||
+ Member->Kind == MemberInfo::VBase) {
+ if (isZeroInitializable(Member->RD))
+ continue;
+ IsZeroInitializable = false;
+ if (Member->Kind == MemberInfo::Base)
+ IsZeroInitializableAsBase = false;
+ }
+ }
+}
+
+void CGRecordLowering::clipTailPadding() {
+ std::vector<MemberInfo>::iterator Prior = Members.begin();
+ CharUnits Tail = getSize(Prior->Data);
+ for (std::vector<MemberInfo>::iterator Member = Prior + 1,
+ MemberEnd = Members.end();
+ Member != MemberEnd; ++Member) {
+ // Only members with data and the scissor can cut into tail padding.
+ if (!Member->Data && Member->Kind != MemberInfo::Scissor)
+ continue;
+ if (Member->Offset < Tail) {
+ assert(Prior->Kind == MemberInfo::Field && !Prior->FD &&
+ "Only storage fields have tail padding!");
+ Prior->Data = getByteArrayType(bitsToCharUnits(llvm::RoundUpToAlignment(
+ cast<llvm::IntegerType>(Prior->Data)->getIntegerBitWidth(), 8)));
+ }
+ if (Member->Data)
+ Prior = Member;
+ Tail = Prior->Offset + getSize(Prior->Data);
+ }
+}
+
+void CGRecordLowering::determinePacked(bool NVBaseType) {
+ if (Packed)
+ return;
+ CharUnits Alignment = CharUnits::One();
+ CharUnits NVAlignment = CharUnits::One();
+ CharUnits NVSize =
+ !NVBaseType && RD ? Layout.getNonVirtualSize() : CharUnits::Zero();
+ for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
+ MemberEnd = Members.end();
+ Member != MemberEnd; ++Member) {
+ if (!Member->Data)
+ continue;
+ // If any member falls at an offset that it not a multiple of its alignment,
+ // then the entire record must be packed.
+ if (Member->Offset % getAlignment(Member->Data))
+ Packed = true;
+ if (Member->Offset < NVSize)
+ NVAlignment = std::max(NVAlignment, getAlignment(Member->Data));
+ Alignment = std::max(Alignment, getAlignment(Member->Data));
+ }
+ // If the size of the record (the capstone's offset) is not a multiple of the
+ // record's alignment, it must be packed.
+ if (Members.back().Offset % Alignment)
+ Packed = true;
+ // If the non-virtual sub-object is not a multiple of the non-virtual
+ // sub-object's alignment, it must be packed. We cannot have a packed
+ // non-virtual sub-object and an unpacked complete object or vise versa.
+ if (NVSize % NVAlignment)
+ Packed = true;
+ // Update the alignment of the sentinal.
+ if (!Packed)
+ Members.back().Data = getIntNType(Context.toBits(Alignment));
+}
+
+void CGRecordLowering::insertPadding() {
+ std::vector<std::pair<CharUnits, CharUnits> > Padding;
+ CharUnits Size = CharUnits::Zero();
+ for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
+ MemberEnd = Members.end();
+ Member != MemberEnd; ++Member) {
+ if (!Member->Data)
+ continue;
+ CharUnits Offset = Member->Offset;
+ assert(Offset >= Size);
+ // Insert padding if we need to.
+ if (Offset != Size.RoundUpToAlignment(Packed ? CharUnits::One() :
+ getAlignment(Member->Data)))
+ Padding.push_back(std::make_pair(Size, Offset - Size));
+ Size = Offset + getSize(Member->Data);
+ }
+ if (Padding.empty())
+ return;
+ // Add the padding to the Members list and sort it.
+ for (std::vector<std::pair<CharUnits, CharUnits> >::const_iterator
+ Pad = Padding.begin(), PadEnd = Padding.end();
+ Pad != PadEnd; ++Pad)
+ Members.push_back(StorageInfo(Pad->first, getByteArrayType(Pad->second)));
+ std::stable_sort(Members.begin(), Members.end());
+}
+
+void CGRecordLowering::fillOutputFields() {
+ for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
+ MemberEnd = Members.end();
+ Member != MemberEnd; ++Member) {
+ if (Member->Data)
+ FieldTypes.push_back(Member->Data);
+ if (Member->Kind == MemberInfo::Field) {
+ if (Member->FD)
+ Fields[Member->FD->getCanonicalDecl()] = FieldTypes.size() - 1;
+ // A field without storage must be a bitfield.
+ if (!Member->Data)
+ setBitFieldInfo(Member->FD, Member->Offset, FieldTypes.back());
+ } else if (Member->Kind == MemberInfo::Base)
+ NonVirtualBases[Member->RD] = FieldTypes.size() - 1;
+ else if (Member->Kind == MemberInfo::VBase)
+ VirtualBases[Member->RD] = FieldTypes.size() - 1;
+ }
+}
+
+CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types,
+ const FieldDecl *FD,
+ uint64_t Offset, uint64_t Size,
+ uint64_t StorageSize,
+ uint64_t StorageAlignment) {
+ // This function is vestigial from CGRecordLayoutBuilder days but is still
+ // used in GCObjCRuntime.cpp. That usage has a "fixme" attached to it that
+ // when addressed will allow for the removal of this function.
+ llvm::Type *Ty = Types.ConvertTypeForMem(FD->getType());
+ CharUnits TypeSizeInBytes =
+ CharUnits::fromQuantity(Types.getDataLayout().getTypeAllocSize(Ty));
+ uint64_t TypeSizeInBits = Types.getContext().toBits(TypeSizeInBytes);
+
+ bool IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();
+
+ if (Size > TypeSizeInBits) {
+ // We have a wide bit-field. The extra bits are only used for padding, so
+ // if we have a bitfield of type T, with size N:
+ //
+ // T t : N;
+ //
+ // We can just assume that it's:
+ //
+ // T t : sizeof(T);
+ //
+ Size = TypeSizeInBits;
+ }
+
+ // Reverse the bit offsets for big endian machines. Because we represent
+ // a bitfield as a single large integer load, we can imagine the bits
+ // counting from the most-significant-bit instead of the
+ // least-significant-bit.
+ if (Types.getDataLayout().isBigEndian()) {
+ Offset = StorageSize - (Offset + Size);
+ }
+
+ return CGBitFieldInfo(Offset, Size, IsSigned, StorageSize, StorageAlignment);
+}
+
+CGRecordLayout *CodeGenTypes::ComputeRecordLayout(const RecordDecl *D,
+ llvm::StructType *Ty) {
+ CGRecordLowering Builder(*this, D, /*Packed=*/false);
+
+ Builder.lower(/*NonVirtualBaseType=*/false);
+
+ // If we're in C++, compute the base subobject type.
+ llvm::StructType *BaseTy = nullptr;
+ if (isa<CXXRecordDecl>(D) && !D->isUnion() && !D->hasAttr<FinalAttr>()) {
+ BaseTy = Ty;
+ if (Builder.Layout.getNonVirtualSize() != Builder.Layout.getSize()) {
+ CGRecordLowering BaseBuilder(*this, D, /*Packed=*/Builder.Packed);
+ BaseBuilder.lower(/*NonVirtualBaseType=*/true);
+ BaseTy = llvm::StructType::create(
+ getLLVMContext(), BaseBuilder.FieldTypes, "", BaseBuilder.Packed);
+ addRecordTypeName(D, BaseTy, ".base");
+ // BaseTy and Ty must agree on their packedness for getLLVMFieldNo to work
+ // on both of them with the same index.
+ assert(Builder.Packed == BaseBuilder.Packed &&
+ "Non-virtual and complete types must agree on packedness");
+ }
+ }
+
+ // Fill in the struct *after* computing the base type. Filling in the body
+ // signifies that the type is no longer opaque and record layout is complete,
+ // but we may need to recursively layout D while laying D out as a base type.
+ Ty->setBody(Builder.FieldTypes, Builder.Packed);
+
+ CGRecordLayout *RL =
+ new CGRecordLayout(Ty, BaseTy, Builder.IsZeroInitializable,
+ Builder.IsZeroInitializableAsBase);
+
+ RL->NonVirtualBases.swap(Builder.NonVirtualBases);
+ RL->CompleteObjectVirtualBases.swap(Builder.VirtualBases);
+
+ // Add all the field numbers.
+ RL->FieldInfo.swap(Builder.Fields);
+
+ // Add bitfield info.
+ RL->BitFields.swap(Builder.BitFields);
+
+ // Dump the layout, if requested.
+ if (getContext().getLangOpts().DumpRecordLayouts) {
+ llvm::outs() << "\n*** Dumping IRgen Record Layout\n";
+ llvm::outs() << "Record: ";
+ D->dump(llvm::outs());
+ llvm::outs() << "\nLayout: ";
+ RL->print(llvm::outs());
+ }
+
+#ifndef NDEBUG
+ // Verify that the computed LLVM struct size matches the AST layout size.
+ const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D);
+
+ uint64_t TypeSizeInBits = getContext().toBits(Layout.getSize());
+ assert(TypeSizeInBits == getDataLayout().getTypeAllocSizeInBits(Ty) &&
+ "Type size mismatch!");
+
+ if (BaseTy) {
+ CharUnits NonVirtualSize = Layout.getNonVirtualSize();
+
+ uint64_t AlignedNonVirtualTypeSizeInBits =
+ getContext().toBits(NonVirtualSize);
+
+ assert(AlignedNonVirtualTypeSizeInBits ==
+ getDataLayout().getTypeAllocSizeInBits(BaseTy) &&
+ "Type size mismatch!");
+ }
+
+ // Verify that the LLVM and AST field offsets agree.
+ llvm::StructType *ST =
+ dyn_cast<llvm::StructType>(RL->getLLVMType());
+ const llvm::StructLayout *SL = getDataLayout().getStructLayout(ST);
+
+ const ASTRecordLayout &AST_RL = getContext().getASTRecordLayout(D);
+ RecordDecl::field_iterator it = D->field_begin();
+ for (unsigned i = 0, e = AST_RL.getFieldCount(); i != e; ++i, ++it) {
+ const FieldDecl *FD = *it;
+
+ // For non-bit-fields, just check that the LLVM struct offset matches the
+ // AST offset.
+ if (!FD->isBitField()) {
+ unsigned FieldNo = RL->getLLVMFieldNo(FD);
+ assert(AST_RL.getFieldOffset(i) == SL->getElementOffsetInBits(FieldNo) &&
+ "Invalid field offset!");
+ continue;
+ }
+
+ // Ignore unnamed bit-fields.
+ if (!FD->getDeclName())
+ continue;
+
+ // Don't inspect zero-length bitfields.
+ if (FD->getBitWidthValue(getContext()) == 0)
+ continue;
+
+ const CGBitFieldInfo &Info = RL->getBitFieldInfo(FD);
+ llvm::Type *ElementTy = ST->getTypeAtIndex(RL->getLLVMFieldNo(FD));
+
+ // Unions have overlapping elements dictating their layout, but for
+ // non-unions we can verify that this section of the layout is the exact
+ // expected size.
+ if (D->isUnion()) {
+ // For unions we verify that the start is zero and the size
+ // is in-bounds. However, on BE systems, the offset may be non-zero, but
+ // the size + offset should match the storage size in that case as it
+ // "starts" at the back.
+ if (getDataLayout().isBigEndian())
+ assert(static_cast<unsigned>(Info.Offset + Info.Size) ==
+ Info.StorageSize &&
+ "Big endian union bitfield does not end at the back");
+ else
+ assert(Info.Offset == 0 &&
+ "Little endian union bitfield with a non-zero offset");
+ assert(Info.StorageSize <= SL->getSizeInBits() &&
+ "Union not large enough for bitfield storage");
+ } else {
+ assert(Info.StorageSize ==
+ getDataLayout().getTypeAllocSizeInBits(ElementTy) &&
+ "Storage size does not match the element type size");
+ }
+ assert(Info.Size > 0 && "Empty bitfield!");
+ assert(static_cast<unsigned>(Info.Offset) + Info.Size <= Info.StorageSize &&
+ "Bitfield outside of its allocated storage");
+ }
+#endif
+
+ return RL;
+}
+
+void CGRecordLayout::print(raw_ostream &OS) const {
+ OS << "<CGRecordLayout\n";
+ OS << " LLVMType:" << *CompleteObjectType << "\n";
+ if (BaseSubobjectType)
+ OS << " NonVirtualBaseLLVMType:" << *BaseSubobjectType << "\n";
+ OS << " IsZeroInitializable:" << IsZeroInitializable << "\n";
+ OS << " BitFields:[\n";
+
+ // Print bit-field infos in declaration order.
+ std::vector<std::pair<unsigned, const CGBitFieldInfo*> > BFIs;
+ for (llvm::DenseMap<const FieldDecl*, CGBitFieldInfo>::const_iterator
+ it = BitFields.begin(), ie = BitFields.end();
+ it != ie; ++it) {
+ const RecordDecl *RD = it->first->getParent();
+ unsigned Index = 0;
+ for (RecordDecl::field_iterator
+ it2 = RD->field_begin(); *it2 != it->first; ++it2)
+ ++Index;
+ BFIs.push_back(std::make_pair(Index, &it->second));
+ }
+ llvm::array_pod_sort(BFIs.begin(), BFIs.end());
+ for (unsigned i = 0, e = BFIs.size(); i != e; ++i) {
+ OS.indent(4);
+ BFIs[i].second->print(OS);
+ OS << "\n";
+ }
+
+ OS << "]>\n";
+}
+
+void CGRecordLayout::dump() const {
+ print(llvm::errs());
+}
+
+void CGBitFieldInfo::print(raw_ostream &OS) const {
+ OS << "<CGBitFieldInfo"
+ << " Offset:" << Offset
+ << " Size:" << Size
+ << " IsSigned:" << IsSigned
+ << " StorageSize:" << StorageSize
+ << " StorageAlignment:" << StorageAlignment << ">";
+}
+
+void CGBitFieldInfo::dump() const {
+ print(llvm::errs());
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGStmt.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGStmt.cpp
new file mode 100644
index 0000000..c879750
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGStmt.cpp
@@ -0,0 +1,2217 @@
+//===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code to emit Stmt nodes as LLVM code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenFunction.h"
+#include "CGDebugInfo.h"
+#include "CodeGenModule.h"
+#include "TargetInfo.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Basic/PrettyStackTrace.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Sema/LoopHint.h"
+#include "clang/Sema/SemaDiagnostic.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/Intrinsics.h"
+using namespace clang;
+using namespace CodeGen;
+
+//===----------------------------------------------------------------------===//
+// Statement Emission
+//===----------------------------------------------------------------------===//
+
+void CodeGenFunction::EmitStopPoint(const Stmt *S) {
+ if (CGDebugInfo *DI = getDebugInfo()) {
+ SourceLocation Loc;
+ Loc = S->getLocStart();
+ DI->EmitLocation(Builder, Loc);
+
+ LastStopPoint = Loc;
+ }
+}
+
+void CodeGenFunction::EmitStmt(const Stmt *S) {
+ assert(S && "Null statement?");
+ PGO.setCurrentStmt(S);
+
+ // These statements have their own debug info handling.
+ if (EmitSimpleStmt(S))
+ return;
+
+ // Check if we are generating unreachable code.
+ if (!HaveInsertPoint()) {
+ // If so, and the statement doesn't contain a label, then we do not need to
+ // generate actual code. This is safe because (1) the current point is
+ // unreachable, so we don't need to execute the code, and (2) we've already
+ // handled the statements which update internal data structures (like the
+ // local variable map) which could be used by subsequent statements.
+ if (!ContainsLabel(S)) {
+ // Verify that any decl statements were handled as simple, they may be in
+ // scope of subsequent reachable statements.
+ assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
+ return;
+ }
+
+ // Otherwise, make a new block to hold the code.
+ EnsureInsertPoint();
+ }
+
+ // Generate a stoppoint if we are emitting debug info.
+ EmitStopPoint(S);
+
+ switch (S->getStmtClass()) {
+ case Stmt::NoStmtClass:
+ case Stmt::CXXCatchStmtClass:
+ case Stmt::SEHExceptStmtClass:
+ case Stmt::SEHFinallyStmtClass:
+ case Stmt::MSDependentExistsStmtClass:
+ llvm_unreachable("invalid statement class to emit generically");
+ case Stmt::NullStmtClass:
+ case Stmt::CompoundStmtClass:
+ case Stmt::DeclStmtClass:
+ case Stmt::LabelStmtClass:
+ case Stmt::AttributedStmtClass:
+ case Stmt::GotoStmtClass:
+ case Stmt::BreakStmtClass:
+ case Stmt::ContinueStmtClass:
+ case Stmt::DefaultStmtClass:
+ case Stmt::CaseStmtClass:
+ case Stmt::SEHLeaveStmtClass:
+ llvm_unreachable("should have emitted these statements as simple");
+
+#define STMT(Type, Base)
+#define ABSTRACT_STMT(Op)
+#define EXPR(Type, Base) \
+ case Stmt::Type##Class:
+#include "clang/AST/StmtNodes.inc"
+ {
+ // Remember the block we came in on.
+ llvm::BasicBlock *incoming = Builder.GetInsertBlock();
+ assert(incoming && "expression emission must have an insertion point");
+
+ EmitIgnoredExpr(cast<Expr>(S));
+
+ llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
+ assert(outgoing && "expression emission cleared block!");
+
+ // The expression emitters assume (reasonably!) that the insertion
+ // point is always set. To maintain that, the call-emission code
+ // for noreturn functions has to enter a new block with no
+ // predecessors. We want to kill that block and mark the current
+ // insertion point unreachable in the common case of a call like
+ // "exit();". Since expression emission doesn't otherwise create
+ // blocks with no predecessors, we can just test for that.
+ // However, we must be careful not to do this to our incoming
+ // block, because *statement* emission does sometimes create
+ // reachable blocks which will have no predecessors until later in
+ // the function. This occurs with, e.g., labels that are not
+ // reachable by fallthrough.
+ if (incoming != outgoing && outgoing->use_empty()) {
+ outgoing->eraseFromParent();
+ Builder.ClearInsertionPoint();
+ }
+ break;
+ }
+
+ case Stmt::IndirectGotoStmtClass:
+ EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
+
+ case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break;
+ case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S)); break;
+ case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S)); break;
+ case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S)); break;
+
+ case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break;
+
+ case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break;
+ case Stmt::GCCAsmStmtClass: // Intentional fall-through.
+ case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break;
+ case Stmt::CapturedStmtClass: {
+ const CapturedStmt *CS = cast<CapturedStmt>(S);
+ EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
+ }
+ break;
+ case Stmt::ObjCAtTryStmtClass:
+ EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
+ break;
+ case Stmt::ObjCAtCatchStmtClass:
+ llvm_unreachable(
+ "@catch statements should be handled by EmitObjCAtTryStmt");
+ case Stmt::ObjCAtFinallyStmtClass:
+ llvm_unreachable(
+ "@finally statements should be handled by EmitObjCAtTryStmt");
+ case Stmt::ObjCAtThrowStmtClass:
+ EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
+ break;
+ case Stmt::ObjCAtSynchronizedStmtClass:
+ EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
+ break;
+ case Stmt::ObjCForCollectionStmtClass:
+ EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
+ break;
+ case Stmt::ObjCAutoreleasePoolStmtClass:
+ EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
+ break;
+
+ case Stmt::CXXTryStmtClass:
+ EmitCXXTryStmt(cast<CXXTryStmt>(*S));
+ break;
+ case Stmt::CXXForRangeStmtClass:
+ EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
+ break;
+ case Stmt::SEHTryStmtClass:
+ EmitSEHTryStmt(cast<SEHTryStmt>(*S));
+ break;
+ case Stmt::OMPParallelDirectiveClass:
+ EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
+ break;
+ case Stmt::OMPSimdDirectiveClass:
+ EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
+ break;
+ case Stmt::OMPForDirectiveClass:
+ EmitOMPForDirective(cast<OMPForDirective>(*S));
+ break;
+ case Stmt::OMPForSimdDirectiveClass:
+ EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
+ break;
+ case Stmt::OMPSectionsDirectiveClass:
+ EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
+ break;
+ case Stmt::OMPSectionDirectiveClass:
+ EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
+ break;
+ case Stmt::OMPSingleDirectiveClass:
+ EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
+ break;
+ case Stmt::OMPMasterDirectiveClass:
+ EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
+ break;
+ case Stmt::OMPCriticalDirectiveClass:
+ EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
+ break;
+ case Stmt::OMPParallelForDirectiveClass:
+ EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
+ break;
+ case Stmt::OMPParallelForSimdDirectiveClass:
+ EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
+ break;
+ case Stmt::OMPParallelSectionsDirectiveClass:
+ EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
+ break;
+ case Stmt::OMPTaskDirectiveClass:
+ EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
+ break;
+ case Stmt::OMPTaskyieldDirectiveClass:
+ EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
+ break;
+ case Stmt::OMPBarrierDirectiveClass:
+ EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
+ break;
+ case Stmt::OMPTaskwaitDirectiveClass:
+ EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
+ break;
+ case Stmt::OMPFlushDirectiveClass:
+ EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
+ break;
+ case Stmt::OMPOrderedDirectiveClass:
+ EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
+ break;
+ case Stmt::OMPAtomicDirectiveClass:
+ EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
+ break;
+ case Stmt::OMPTargetDirectiveClass:
+ EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
+ break;
+ case Stmt::OMPTeamsDirectiveClass:
+ EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
+ break;
+ }
+}
+
+bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
+ switch (S->getStmtClass()) {
+ default: return false;
+ case Stmt::NullStmtClass: break;
+ case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
+ case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break;
+ case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break;
+ case Stmt::AttributedStmtClass:
+ EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
+ case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break;
+ case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break;
+ case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
+ case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break;
+ case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break;
+ case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break;
+ }
+
+ return true;
+}
+
+/// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true,
+/// this captures the expression result of the last sub-statement and returns it
+/// (for use by the statement expression extension).
+llvm::Value* CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
+ AggValueSlot AggSlot) {
+ PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
+ "LLVM IR generation of compound statement ('{}')");
+
+ // Keep track of the current cleanup stack depth, including debug scopes.
+ LexicalScope Scope(*this, S.getSourceRange());
+
+ return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
+}
+
+llvm::Value*
+CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
+ bool GetLast,
+ AggValueSlot AggSlot) {
+
+ for (CompoundStmt::const_body_iterator I = S.body_begin(),
+ E = S.body_end()-GetLast; I != E; ++I)
+ EmitStmt(*I);
+
+ llvm::Value *RetAlloca = nullptr;
+ if (GetLast) {
+ // We have to special case labels here. They are statements, but when put
+ // at the end of a statement expression, they yield the value of their
+ // subexpression. Handle this by walking through all labels we encounter,
+ // emitting them before we evaluate the subexpr.
+ const Stmt *LastStmt = S.body_back();
+ while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
+ EmitLabel(LS->getDecl());
+ LastStmt = LS->getSubStmt();
+ }
+
+ EnsureInsertPoint();
+
+ QualType ExprTy = cast<Expr>(LastStmt)->getType();
+ if (hasAggregateEvaluationKind(ExprTy)) {
+ EmitAggExpr(cast<Expr>(LastStmt), AggSlot);
+ } else {
+ // We can't return an RValue here because there might be cleanups at
+ // the end of the StmtExpr. Because of that, we have to emit the result
+ // here into a temporary alloca.
+ RetAlloca = CreateMemTemp(ExprTy);
+ EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(),
+ /*IsInit*/false);
+ }
+
+ }
+
+ return RetAlloca;
+}
+
+void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
+ llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
+
+ // If there is a cleanup stack, then we it isn't worth trying to
+ // simplify this block (we would need to remove it from the scope map
+ // and cleanup entry).
+ if (!EHStack.empty())
+ return;
+
+ // Can only simplify direct branches.
+ if (!BI || !BI->isUnconditional())
+ return;
+
+ // Can only simplify empty blocks.
+ if (BI != BB->begin())
+ return;
+
+ BB->replaceAllUsesWith(BI->getSuccessor(0));
+ BI->eraseFromParent();
+ BB->eraseFromParent();
+}
+
+void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
+ llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
+
+ // Fall out of the current block (if necessary).
+ EmitBranch(BB);
+
+ if (IsFinished && BB->use_empty()) {
+ delete BB;
+ return;
+ }
+
+ // Place the block after the current block, if possible, or else at
+ // the end of the function.
+ if (CurBB && CurBB->getParent())
+ CurFn->getBasicBlockList().insertAfter(CurBB, BB);
+ else
+ CurFn->getBasicBlockList().push_back(BB);
+ Builder.SetInsertPoint(BB);
+}
+
+void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
+ // Emit a branch from the current block to the target one if this
+ // was a real block. If this was just a fall-through block after a
+ // terminator, don't emit it.
+ llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
+
+ if (!CurBB || CurBB->getTerminator()) {
+ // If there is no insert point or the previous block is already
+ // terminated, don't touch it.
+ } else {
+ // Otherwise, create a fall-through branch.
+ Builder.CreateBr(Target);
+ }
+
+ Builder.ClearInsertionPoint();
+}
+
+void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
+ bool inserted = false;
+ for (llvm::User *u : block->users()) {
+ if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
+ CurFn->getBasicBlockList().insertAfter(insn->getParent(), block);
+ inserted = true;
+ break;
+ }
+ }
+
+ if (!inserted)
+ CurFn->getBasicBlockList().push_back(block);
+
+ Builder.SetInsertPoint(block);
+}
+
+CodeGenFunction::JumpDest
+CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
+ JumpDest &Dest = LabelMap[D];
+ if (Dest.isValid()) return Dest;
+
+ // Create, but don't insert, the new block.
+ Dest = JumpDest(createBasicBlock(D->getName()),
+ EHScopeStack::stable_iterator::invalid(),
+ NextCleanupDestIndex++);
+ return Dest;
+}
+
+void CodeGenFunction::EmitLabel(const LabelDecl *D) {
+ // Add this label to the current lexical scope if we're within any
+ // normal cleanups. Jumps "in" to this label --- when permitted by
+ // the language --- may need to be routed around such cleanups.
+ if (EHStack.hasNormalCleanups() && CurLexicalScope)
+ CurLexicalScope->addLabel(D);
+
+ JumpDest &Dest = LabelMap[D];
+
+ // If we didn't need a forward reference to this label, just go
+ // ahead and create a destination at the current scope.
+ if (!Dest.isValid()) {
+ Dest = getJumpDestInCurrentScope(D->getName());
+
+ // Otherwise, we need to give this label a target depth and remove
+ // it from the branch-fixups list.
+ } else {
+ assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
+ Dest.setScopeDepth(EHStack.stable_begin());
+ ResolveBranchFixups(Dest.getBlock());
+ }
+
+ EmitBlock(Dest.getBlock());
+ incrementProfileCounter(D->getStmt());
+}
+
+/// Change the cleanup scope of the labels in this lexical scope to
+/// match the scope of the enclosing context.
+void CodeGenFunction::LexicalScope::rescopeLabels() {
+ assert(!Labels.empty());
+ EHScopeStack::stable_iterator innermostScope
+ = CGF.EHStack.getInnermostNormalCleanup();
+
+ // Change the scope depth of all the labels.
+ for (SmallVectorImpl<const LabelDecl*>::const_iterator
+ i = Labels.begin(), e = Labels.end(); i != e; ++i) {
+ assert(CGF.LabelMap.count(*i));
+ JumpDest &dest = CGF.LabelMap.find(*i)->second;
+ assert(dest.getScopeDepth().isValid());
+ assert(innermostScope.encloses(dest.getScopeDepth()));
+ dest.setScopeDepth(innermostScope);
+ }
+
+ // Reparent the labels if the new scope also has cleanups.
+ if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
+ ParentScope->Labels.append(Labels.begin(), Labels.end());
+ }
+}
+
+
+void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
+ EmitLabel(S.getDecl());
+ EmitStmt(S.getSubStmt());
+}
+
+void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
+ const Stmt *SubStmt = S.getSubStmt();
+ switch (SubStmt->getStmtClass()) {
+ case Stmt::DoStmtClass:
+ EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs());
+ break;
+ case Stmt::ForStmtClass:
+ EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs());
+ break;
+ case Stmt::WhileStmtClass:
+ EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs());
+ break;
+ case Stmt::CXXForRangeStmtClass:
+ EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs());
+ break;
+ default:
+ EmitStmt(SubStmt);
+ }
+}
+
+void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
+ // If this code is reachable then emit a stop point (if generating
+ // debug info). We have to do this ourselves because we are on the
+ // "simple" statement path.
+ if (HaveInsertPoint())
+ EmitStopPoint(&S);
+
+ EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
+}
+
+
+void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
+ if (const LabelDecl *Target = S.getConstantTarget()) {
+ EmitBranchThroughCleanup(getJumpDestForLabel(Target));
+ return;
+ }
+
+ // Ensure that we have an i8* for our PHI node.
+ llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
+ Int8PtrTy, "addr");
+ llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
+
+ // Get the basic block for the indirect goto.
+ llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
+
+ // The first instruction in the block has to be the PHI for the switch dest,
+ // add an entry for this branch.
+ cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
+
+ EmitBranch(IndGotoBB);
+}
+
+void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
+ // C99 6.8.4.1: The first substatement is executed if the expression compares
+ // unequal to 0. The condition must be a scalar type.
+ LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
+
+ if (S.getConditionVariable())
+ EmitAutoVarDecl(*S.getConditionVariable());
+
+ // If the condition constant folds and can be elided, try to avoid emitting
+ // the condition and the dead arm of the if/else.
+ bool CondConstant;
+ if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
+ // Figure out which block (then or else) is executed.
+ const Stmt *Executed = S.getThen();
+ const Stmt *Skipped = S.getElse();
+ if (!CondConstant) // Condition false?
+ std::swap(Executed, Skipped);
+
+ // If the skipped block has no labels in it, just emit the executed block.
+ // This avoids emitting dead code and simplifies the CFG substantially.
+ if (!ContainsLabel(Skipped)) {
+ if (CondConstant)
+ incrementProfileCounter(&S);
+ if (Executed) {
+ RunCleanupsScope ExecutedScope(*this);
+ EmitStmt(Executed);
+ }
+ return;
+ }
+ }
+
+ // Otherwise, the condition did not fold, or we couldn't elide it. Just emit
+ // the conditional branch.
+ llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
+ llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
+ llvm::BasicBlock *ElseBlock = ContBlock;
+ if (S.getElse())
+ ElseBlock = createBasicBlock("if.else");
+
+ EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock,
+ getProfileCount(S.getThen()));
+
+ // Emit the 'then' code.
+ EmitBlock(ThenBlock);
+ incrementProfileCounter(&S);
+ {
+ RunCleanupsScope ThenScope(*this);
+ EmitStmt(S.getThen());
+ }
+ EmitBranch(ContBlock);
+
+ // Emit the 'else' code if present.
+ if (const Stmt *Else = S.getElse()) {
+ {
+ // There is no need to emit line number for an unconditional branch.
+ auto NL = ApplyDebugLocation::CreateEmpty(*this);
+ EmitBlock(ElseBlock);
+ }
+ {
+ RunCleanupsScope ElseScope(*this);
+ EmitStmt(Else);
+ }
+ {
+ // There is no need to emit line number for an unconditional branch.
+ auto NL = ApplyDebugLocation::CreateEmpty(*this);
+ EmitBranch(ContBlock);
+ }
+ }
+
+ // Emit the continuation block for code after the if.
+ EmitBlock(ContBlock, true);
+}
+
+void CodeGenFunction::EmitCondBrHints(llvm::LLVMContext &Context,
+ llvm::BranchInst *CondBr,
+ ArrayRef<const Attr *> Attrs) {
+ // Return if there are no hints.
+ if (Attrs.empty())
+ return;
+
+ // Add vectorize and unroll hints to the metadata on the conditional branch.
+ //
+ // FIXME: Should this really start with a size of 1?
+ SmallVector<llvm::Metadata *, 2> Metadata(1);
+ for (const auto *Attr : Attrs) {
+ const LoopHintAttr *LH = dyn_cast<LoopHintAttr>(Attr);
+
+ // Skip non loop hint attributes
+ if (!LH)
+ continue;
+
+ LoopHintAttr::OptionType Option = LH->getOption();
+ LoopHintAttr::LoopHintState State = LH->getState();
+ const char *MetadataName;
+ switch (Option) {
+ case LoopHintAttr::Vectorize:
+ case LoopHintAttr::VectorizeWidth:
+ MetadataName = "llvm.loop.vectorize.width";
+ break;
+ case LoopHintAttr::Interleave:
+ case LoopHintAttr::InterleaveCount:
+ MetadataName = "llvm.loop.interleave.count";
+ break;
+ case LoopHintAttr::Unroll:
+ // With the unroll loop hint, a non-zero value indicates full unrolling.
+ MetadataName = State == LoopHintAttr::Disable ? "llvm.loop.unroll.disable"
+ : "llvm.loop.unroll.full";
+ break;
+ case LoopHintAttr::UnrollCount:
+ MetadataName = "llvm.loop.unroll.count";
+ break;
+ }
+
+ Expr *ValueExpr = LH->getValue();
+ int ValueInt = 1;
+ if (ValueExpr) {
+ llvm::APSInt ValueAPS =
+ ValueExpr->EvaluateKnownConstInt(CGM.getContext());
+ ValueInt = static_cast<int>(ValueAPS.getSExtValue());
+ }
+
+ llvm::Constant *Value;
+ llvm::MDString *Name;
+ switch (Option) {
+ case LoopHintAttr::Vectorize:
+ case LoopHintAttr::Interleave:
+ if (State != LoopHintAttr::Disable) {
+ // FIXME: In the future I will modifiy the behavior of the metadata
+ // so we can enable/disable vectorization and interleaving separately.
+ Name = llvm::MDString::get(Context, "llvm.loop.vectorize.enable");
+ Value = Builder.getTrue();
+ break;
+ }
+ // Vectorization/interleaving is disabled, set width/count to 1.
+ ValueInt = 1;
+ // Fallthrough.
+ case LoopHintAttr::VectorizeWidth:
+ case LoopHintAttr::InterleaveCount:
+ case LoopHintAttr::UnrollCount:
+ Name = llvm::MDString::get(Context, MetadataName);
+ Value = llvm::ConstantInt::get(Int32Ty, ValueInt);
+ break;
+ case LoopHintAttr::Unroll:
+ Name = llvm::MDString::get(Context, MetadataName);
+ Value = nullptr;
+ break;
+ }
+
+ SmallVector<llvm::Metadata *, 2> OpValues;
+ OpValues.push_back(Name);
+ if (Value)
+ OpValues.push_back(llvm::ConstantAsMetadata::get(Value));
+
+ // Set or overwrite metadata indicated by Name.
+ Metadata.push_back(llvm::MDNode::get(Context, OpValues));
+ }
+
+ // FIXME: This condition is never false. Should it be an assert?
+ if (!Metadata.empty()) {
+ // Add llvm.loop MDNode to CondBr.
+ llvm::MDNode *LoopID = llvm::MDNode::get(Context, Metadata);
+ LoopID->replaceOperandWith(0, LoopID); // First op points to itself.
+
+ CondBr->setMetadata("llvm.loop", LoopID);
+ }
+}
+
+void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
+ ArrayRef<const Attr *> WhileAttrs) {
+ // Emit the header for the loop, which will also become
+ // the continue target.
+ JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
+ EmitBlock(LoopHeader.getBlock());
+
+ LoopStack.push(LoopHeader.getBlock());
+
+ // Create an exit block for when the condition fails, which will
+ // also become the break target.
+ JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
+
+ // Store the blocks to use for break and continue.
+ BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
+
+ // C++ [stmt.while]p2:
+ // When the condition of a while statement is a declaration, the
+ // scope of the variable that is declared extends from its point
+ // of declaration (3.3.2) to the end of the while statement.
+ // [...]
+ // The object created in a condition is destroyed and created
+ // with each iteration of the loop.
+ RunCleanupsScope ConditionScope(*this);
+
+ if (S.getConditionVariable())
+ EmitAutoVarDecl(*S.getConditionVariable());
+
+ // Evaluate the conditional in the while header. C99 6.8.5.1: The
+ // evaluation of the controlling expression takes place before each
+ // execution of the loop body.
+ llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
+
+ // while(1) is common, avoid extra exit blocks. Be sure
+ // to correctly handle break/continue though.
+ bool EmitBoolCondBranch = true;
+ if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
+ if (C->isOne())
+ EmitBoolCondBranch = false;
+
+ // As long as the condition is true, go to the loop body.
+ llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
+ if (EmitBoolCondBranch) {
+ llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
+ if (ConditionScope.requiresCleanups())
+ ExitBlock = createBasicBlock("while.exit");
+ llvm::BranchInst *CondBr = Builder.CreateCondBr(
+ BoolCondVal, LoopBody, ExitBlock,
+ createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
+
+ if (ExitBlock != LoopExit.getBlock()) {
+ EmitBlock(ExitBlock);
+ EmitBranchThroughCleanup(LoopExit);
+ }
+
+ // Attach metadata to loop body conditional branch.
+ EmitCondBrHints(LoopBody->getContext(), CondBr, WhileAttrs);
+ }
+
+ // Emit the loop body. We have to emit this in a cleanup scope
+ // because it might be a singleton DeclStmt.
+ {
+ RunCleanupsScope BodyScope(*this);
+ EmitBlock(LoopBody);
+ incrementProfileCounter(&S);
+ EmitStmt(S.getBody());
+ }
+
+ BreakContinueStack.pop_back();
+
+ // Immediately force cleanup.
+ ConditionScope.ForceCleanup();
+
+ EmitStopPoint(&S);
+ // Branch to the loop header again.
+ EmitBranch(LoopHeader.getBlock());
+
+ LoopStack.pop();
+
+ // Emit the exit block.
+ EmitBlock(LoopExit.getBlock(), true);
+
+ // The LoopHeader typically is just a branch if we skipped emitting
+ // a branch, try to erase it.
+ if (!EmitBoolCondBranch)
+ SimplifyForwardingBlocks(LoopHeader.getBlock());
+}
+
+void CodeGenFunction::EmitDoStmt(const DoStmt &S,
+ ArrayRef<const Attr *> DoAttrs) {
+ JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
+ JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
+
+ uint64_t ParentCount = getCurrentProfileCount();
+
+ // Store the blocks to use for break and continue.
+ BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
+
+ // Emit the body of the loop.
+ llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
+
+ LoopStack.push(LoopBody);
+
+ EmitBlockWithFallThrough(LoopBody, &S);
+ {
+ RunCleanupsScope BodyScope(*this);
+ EmitStmt(S.getBody());
+ }
+
+ EmitBlock(LoopCond.getBlock());
+
+ // C99 6.8.5.2: "The evaluation of the controlling expression takes place
+ // after each execution of the loop body."
+
+ // Evaluate the conditional in the while header.
+ // C99 6.8.5p2/p4: The first substatement is executed if the expression
+ // compares unequal to 0. The condition must be a scalar type.
+ llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
+
+ BreakContinueStack.pop_back();
+
+ // "do {} while (0)" is common in macros, avoid extra blocks. Be sure
+ // to correctly handle break/continue though.
+ bool EmitBoolCondBranch = true;
+ if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
+ if (C->isZero())
+ EmitBoolCondBranch = false;
+
+ // As long as the condition is true, iterate the loop.
+ if (EmitBoolCondBranch) {
+ uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount;
+ llvm::BranchInst *CondBr = Builder.CreateCondBr(
+ BoolCondVal, LoopBody, LoopExit.getBlock(),
+ createProfileWeightsForLoop(S.getCond(), BackedgeCount));
+
+ // Attach metadata to loop body conditional branch.
+ EmitCondBrHints(LoopBody->getContext(), CondBr, DoAttrs);
+ }
+
+ LoopStack.pop();
+
+ // Emit the exit block.
+ EmitBlock(LoopExit.getBlock());
+
+ // The DoCond block typically is just a branch if we skipped
+ // emitting a branch, try to erase it.
+ if (!EmitBoolCondBranch)
+ SimplifyForwardingBlocks(LoopCond.getBlock());
+}
+
+void CodeGenFunction::EmitForStmt(const ForStmt &S,
+ ArrayRef<const Attr *> ForAttrs) {
+ JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
+
+ LexicalScope ForScope(*this, S.getSourceRange());
+
+ // Evaluate the first part before the loop.
+ if (S.getInit())
+ EmitStmt(S.getInit());
+
+ // Start the loop with a block that tests the condition.
+ // If there's an increment, the continue scope will be overwritten
+ // later.
+ JumpDest Continue = getJumpDestInCurrentScope("for.cond");
+ llvm::BasicBlock *CondBlock = Continue.getBlock();
+ EmitBlock(CondBlock);
+
+ LoopStack.push(CondBlock);
+
+ // If the for loop doesn't have an increment we can just use the
+ // condition as the continue block. Otherwise we'll need to create
+ // a block for it (in the current scope, i.e. in the scope of the
+ // condition), and that we will become our continue block.
+ if (S.getInc())
+ Continue = getJumpDestInCurrentScope("for.inc");
+
+ // Store the blocks to use for break and continue.
+ BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
+
+ // Create a cleanup scope for the condition variable cleanups.
+ LexicalScope ConditionScope(*this, S.getSourceRange());
+
+ if (S.getCond()) {
+ // If the for statement has a condition scope, emit the local variable
+ // declaration.
+ if (S.getConditionVariable()) {
+ EmitAutoVarDecl(*S.getConditionVariable());
+ }
+
+ llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
+ // If there are any cleanups between here and the loop-exit scope,
+ // create a block to stage a loop exit along.
+ if (ForScope.requiresCleanups())
+ ExitBlock = createBasicBlock("for.cond.cleanup");
+
+ // As long as the condition is true, iterate the loop.
+ llvm::BasicBlock *ForBody = createBasicBlock("for.body");
+
+ // C99 6.8.5p2/p4: The first substatement is executed if the expression
+ // compares unequal to 0. The condition must be a scalar type.
+ llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
+ llvm::BranchInst *CondBr = Builder.CreateCondBr(
+ BoolCondVal, ForBody, ExitBlock,
+ createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
+
+ // Attach metadata to loop body conditional branch.
+ EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs);
+
+ if (ExitBlock != LoopExit.getBlock()) {
+ EmitBlock(ExitBlock);
+ EmitBranchThroughCleanup(LoopExit);
+ }
+
+ EmitBlock(ForBody);
+ } else {
+ // Treat it as a non-zero constant. Don't even create a new block for the
+ // body, just fall into it.
+ }
+ incrementProfileCounter(&S);
+
+ {
+ // Create a separate cleanup scope for the body, in case it is not
+ // a compound statement.
+ RunCleanupsScope BodyScope(*this);
+ EmitStmt(S.getBody());
+ }
+
+ // If there is an increment, emit it next.
+ if (S.getInc()) {
+ EmitBlock(Continue.getBlock());
+ EmitStmt(S.getInc());
+ }
+
+ BreakContinueStack.pop_back();
+
+ ConditionScope.ForceCleanup();
+
+ EmitStopPoint(&S);
+ EmitBranch(CondBlock);
+
+ ForScope.ForceCleanup();
+
+ LoopStack.pop();
+
+ // Emit the fall-through block.
+ EmitBlock(LoopExit.getBlock(), true);
+}
+
+void
+CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
+ ArrayRef<const Attr *> ForAttrs) {
+ JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
+
+ LexicalScope ForScope(*this, S.getSourceRange());
+
+ // Evaluate the first pieces before the loop.
+ EmitStmt(S.getRangeStmt());
+ EmitStmt(S.getBeginEndStmt());
+
+ // Start the loop with a block that tests the condition.
+ // If there's an increment, the continue scope will be overwritten
+ // later.
+ llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
+ EmitBlock(CondBlock);
+
+ LoopStack.push(CondBlock);
+
+ // If there are any cleanups between here and the loop-exit scope,
+ // create a block to stage a loop exit along.
+ llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
+ if (ForScope.requiresCleanups())
+ ExitBlock = createBasicBlock("for.cond.cleanup");
+
+ // The loop body, consisting of the specified body and the loop variable.
+ llvm::BasicBlock *ForBody = createBasicBlock("for.body");
+
+ // The body is executed if the expression, contextually converted
+ // to bool, is true.
+ llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
+ llvm::BranchInst *CondBr = Builder.CreateCondBr(
+ BoolCondVal, ForBody, ExitBlock,
+ createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
+
+ // Attach metadata to loop body conditional branch.
+ EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs);
+
+ if (ExitBlock != LoopExit.getBlock()) {
+ EmitBlock(ExitBlock);
+ EmitBranchThroughCleanup(LoopExit);
+ }
+
+ EmitBlock(ForBody);
+ incrementProfileCounter(&S);
+
+ // Create a block for the increment. In case of a 'continue', we jump there.
+ JumpDest Continue = getJumpDestInCurrentScope("for.inc");
+
+ // Store the blocks to use for break and continue.
+ BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
+
+ {
+ // Create a separate cleanup scope for the loop variable and body.
+ LexicalScope BodyScope(*this, S.getSourceRange());
+ EmitStmt(S.getLoopVarStmt());
+ EmitStmt(S.getBody());
+ }
+
+ EmitStopPoint(&S);
+ // If there is an increment, emit it next.
+ EmitBlock(Continue.getBlock());
+ EmitStmt(S.getInc());
+
+ BreakContinueStack.pop_back();
+
+ EmitBranch(CondBlock);
+
+ ForScope.ForceCleanup();
+
+ LoopStack.pop();
+
+ // Emit the fall-through block.
+ EmitBlock(LoopExit.getBlock(), true);
+}
+
+void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
+ if (RV.isScalar()) {
+ Builder.CreateStore(RV.getScalarVal(), ReturnValue);
+ } else if (RV.isAggregate()) {
+ EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
+ } else {
+ EmitStoreOfComplex(RV.getComplexVal(),
+ MakeNaturalAlignAddrLValue(ReturnValue, Ty),
+ /*init*/ true);
+ }
+ EmitBranchThroughCleanup(ReturnBlock);
+}
+
+/// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
+/// if the function returns void, or may be missing one if the function returns
+/// non-void. Fun stuff :).
+void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
+ // Returning from an outlined SEH helper is UB, and we already warn on it.
+ if (IsOutlinedSEHHelper) {
+ Builder.CreateUnreachable();
+ Builder.ClearInsertionPoint();
+ }
+
+ // Emit the result value, even if unused, to evalute the side effects.
+ const Expr *RV = S.getRetValue();
+
+ // Treat block literals in a return expression as if they appeared
+ // in their own scope. This permits a small, easily-implemented
+ // exception to our over-conservative rules about not jumping to
+ // statements following block literals with non-trivial cleanups.
+ RunCleanupsScope cleanupScope(*this);
+ if (const ExprWithCleanups *cleanups =
+ dyn_cast_or_null<ExprWithCleanups>(RV)) {
+ enterFullExpression(cleanups);
+ RV = cleanups->getSubExpr();
+ }
+
+ // FIXME: Clean this up by using an LValue for ReturnTemp,
+ // EmitStoreThroughLValue, and EmitAnyExpr.
+ if (getLangOpts().ElideConstructors &&
+ S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) {
+ // Apply the named return value optimization for this return statement,
+ // which means doing nothing: the appropriate result has already been
+ // constructed into the NRVO variable.
+
+ // If there is an NRVO flag for this variable, set it to 1 into indicate
+ // that the cleanup code should not destroy the variable.
+ if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
+ Builder.CreateStore(Builder.getTrue(), NRVOFlag);
+ } else if (!ReturnValue || (RV && RV->getType()->isVoidType())) {
+ // Make sure not to return anything, but evaluate the expression
+ // for side effects.
+ if (RV)
+ EmitAnyExpr(RV);
+ } else if (!RV) {
+ // Do nothing (return value is left uninitialized)
+ } else if (FnRetTy->isReferenceType()) {
+ // If this function returns a reference, take the address of the expression
+ // rather than the value.
+ RValue Result = EmitReferenceBindingToExpr(RV);
+ Builder.CreateStore(Result.getScalarVal(), ReturnValue);
+ } else {
+ switch (getEvaluationKind(RV->getType())) {
+ case TEK_Scalar:
+ Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
+ break;
+ case TEK_Complex:
+ EmitComplexExprIntoLValue(RV,
+ MakeNaturalAlignAddrLValue(ReturnValue, RV->getType()),
+ /*isInit*/ true);
+ break;
+ case TEK_Aggregate: {
+ CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType());
+ EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment,
+ Qualifiers(),
+ AggValueSlot::IsDestructed,
+ AggValueSlot::DoesNotNeedGCBarriers,
+ AggValueSlot::IsNotAliased));
+ break;
+ }
+ }
+ }
+
+ ++NumReturnExprs;
+ if (!RV || RV->isEvaluatable(getContext()))
+ ++NumSimpleReturnExprs;
+
+ cleanupScope.ForceCleanup();
+ EmitBranchThroughCleanup(ReturnBlock);
+}
+
+void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
+ // As long as debug info is modeled with instructions, we have to ensure we
+ // have a place to insert here and write the stop point here.
+ if (HaveInsertPoint())
+ EmitStopPoint(&S);
+
+ for (const auto *I : S.decls())
+ EmitDecl(*I);
+}
+
+void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
+ assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
+
+ // If this code is reachable then emit a stop point (if generating
+ // debug info). We have to do this ourselves because we are on the
+ // "simple" statement path.
+ if (HaveInsertPoint())
+ EmitStopPoint(&S);
+
+ EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
+}
+
+void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
+ assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
+
+ // If this code is reachable then emit a stop point (if generating
+ // debug info). We have to do this ourselves because we are on the
+ // "simple" statement path.
+ if (HaveInsertPoint())
+ EmitStopPoint(&S);
+
+ EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
+}
+
+/// EmitCaseStmtRange - If case statement range is not too big then
+/// add multiple cases to switch instruction, one for each value within
+/// the range. If range is too big then emit "if" condition check.
+void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
+ assert(S.getRHS() && "Expected RHS value in CaseStmt");
+
+ llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
+ llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
+
+ // Emit the code for this case. We do this first to make sure it is
+ // properly chained from our predecessor before generating the
+ // switch machinery to enter this block.
+ llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
+ EmitBlockWithFallThrough(CaseDest, &S);
+ EmitStmt(S.getSubStmt());
+
+ // If range is empty, do nothing.
+ if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
+ return;
+
+ llvm::APInt Range = RHS - LHS;
+ // FIXME: parameters such as this should not be hardcoded.
+ if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
+ // Range is small enough to add multiple switch instruction cases.
+ uint64_t Total = getProfileCount(&S);
+ unsigned NCases = Range.getZExtValue() + 1;
+ // We only have one region counter for the entire set of cases here, so we
+ // need to divide the weights evenly between the generated cases, ensuring
+ // that the total weight is preserved. E.g., a weight of 5 over three cases
+ // will be distributed as weights of 2, 2, and 1.
+ uint64_t Weight = Total / NCases, Rem = Total % NCases;
+ for (unsigned I = 0; I != NCases; ++I) {
+ if (SwitchWeights)
+ SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
+ if (Rem)
+ Rem--;
+ SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
+ LHS++;
+ }
+ return;
+ }
+
+ // The range is too big. Emit "if" condition into a new block,
+ // making sure to save and restore the current insertion point.
+ llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
+
+ // Push this test onto the chain of range checks (which terminates
+ // in the default basic block). The switch's default will be changed
+ // to the top of this chain after switch emission is complete.
+ llvm::BasicBlock *FalseDest = CaseRangeBlock;
+ CaseRangeBlock = createBasicBlock("sw.caserange");
+
+ CurFn->getBasicBlockList().push_back(CaseRangeBlock);
+ Builder.SetInsertPoint(CaseRangeBlock);
+
+ // Emit range check.
+ llvm::Value *Diff =
+ Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
+ llvm::Value *Cond =
+ Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
+
+ llvm::MDNode *Weights = nullptr;
+ if (SwitchWeights) {
+ uint64_t ThisCount = getProfileCount(&S);
+ uint64_t DefaultCount = (*SwitchWeights)[0];
+ Weights = createProfileWeights(ThisCount, DefaultCount);
+
+ // Since we're chaining the switch default through each large case range, we
+ // need to update the weight for the default, ie, the first case, to include
+ // this case.
+ (*SwitchWeights)[0] += ThisCount;
+ }
+ Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
+
+ // Restore the appropriate insertion point.
+ if (RestoreBB)
+ Builder.SetInsertPoint(RestoreBB);
+ else
+ Builder.ClearInsertionPoint();
+}
+
+void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
+ // If there is no enclosing switch instance that we're aware of, then this
+ // case statement and its block can be elided. This situation only happens
+ // when we've constant-folded the switch, are emitting the constant case,
+ // and part of the constant case includes another case statement. For
+ // instance: switch (4) { case 4: do { case 5: } while (1); }
+ if (!SwitchInsn) {
+ EmitStmt(S.getSubStmt());
+ return;
+ }
+
+ // Handle case ranges.
+ if (S.getRHS()) {
+ EmitCaseStmtRange(S);
+ return;
+ }
+
+ llvm::ConstantInt *CaseVal =
+ Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
+
+ // If the body of the case is just a 'break', try to not emit an empty block.
+ // If we're profiling or we're not optimizing, leave the block in for better
+ // debug and coverage analysis.
+ if (!CGM.getCodeGenOpts().ProfileInstrGenerate &&
+ CGM.getCodeGenOpts().OptimizationLevel > 0 &&
+ isa<BreakStmt>(S.getSubStmt())) {
+ JumpDest Block = BreakContinueStack.back().BreakBlock;
+
+ // Only do this optimization if there are no cleanups that need emitting.
+ if (isObviouslyBranchWithoutCleanups(Block)) {
+ if (SwitchWeights)
+ SwitchWeights->push_back(getProfileCount(&S));
+ SwitchInsn->addCase(CaseVal, Block.getBlock());
+
+ // If there was a fallthrough into this case, make sure to redirect it to
+ // the end of the switch as well.
+ if (Builder.GetInsertBlock()) {
+ Builder.CreateBr(Block.getBlock());
+ Builder.ClearInsertionPoint();
+ }
+ return;
+ }
+ }
+
+ llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
+ EmitBlockWithFallThrough(CaseDest, &S);
+ if (SwitchWeights)
+ SwitchWeights->push_back(getProfileCount(&S));
+ SwitchInsn->addCase(CaseVal, CaseDest);
+
+ // Recursively emitting the statement is acceptable, but is not wonderful for
+ // code where we have many case statements nested together, i.e.:
+ // case 1:
+ // case 2:
+ // case 3: etc.
+ // Handling this recursively will create a new block for each case statement
+ // that falls through to the next case which is IR intensive. It also causes
+ // deep recursion which can run into stack depth limitations. Handle
+ // sequential non-range case statements specially.
+ const CaseStmt *CurCase = &S;
+ const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
+
+ // Otherwise, iteratively add consecutive cases to this switch stmt.
+ while (NextCase && NextCase->getRHS() == nullptr) {
+ CurCase = NextCase;
+ llvm::ConstantInt *CaseVal =
+ Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
+
+ if (SwitchWeights)
+ SwitchWeights->push_back(getProfileCount(NextCase));
+ if (CGM.getCodeGenOpts().ProfileInstrGenerate) {
+ CaseDest = createBasicBlock("sw.bb");
+ EmitBlockWithFallThrough(CaseDest, &S);
+ }
+
+ SwitchInsn->addCase(CaseVal, CaseDest);
+ NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
+ }
+
+ // Normal default recursion for non-cases.
+ EmitStmt(CurCase->getSubStmt());
+}
+
+void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
+ llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
+ assert(DefaultBlock->empty() &&
+ "EmitDefaultStmt: Default block already defined?");
+
+ EmitBlockWithFallThrough(DefaultBlock, &S);
+
+ EmitStmt(S.getSubStmt());
+}
+
+/// CollectStatementsForCase - Given the body of a 'switch' statement and a
+/// constant value that is being switched on, see if we can dead code eliminate
+/// the body of the switch to a simple series of statements to emit. Basically,
+/// on a switch (5) we want to find these statements:
+/// case 5:
+/// printf(...); <--
+/// ++i; <--
+/// break;
+///
+/// and add them to the ResultStmts vector. If it is unsafe to do this
+/// transformation (for example, one of the elided statements contains a label
+/// that might be jumped to), return CSFC_Failure. If we handled it and 'S'
+/// should include statements after it (e.g. the printf() line is a substmt of
+/// the case) then return CSFC_FallThrough. If we handled it and found a break
+/// statement, then return CSFC_Success.
+///
+/// If Case is non-null, then we are looking for the specified case, checking
+/// that nothing we jump over contains labels. If Case is null, then we found
+/// the case and are looking for the break.
+///
+/// If the recursive walk actually finds our Case, then we set FoundCase to
+/// true.
+///
+enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
+static CSFC_Result CollectStatementsForCase(const Stmt *S,
+ const SwitchCase *Case,
+ bool &FoundCase,
+ SmallVectorImpl<const Stmt*> &ResultStmts) {
+ // If this is a null statement, just succeed.
+ if (!S)
+ return Case ? CSFC_Success : CSFC_FallThrough;
+
+ // If this is the switchcase (case 4: or default) that we're looking for, then
+ // we're in business. Just add the substatement.
+ if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
+ if (S == Case) {
+ FoundCase = true;
+ return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
+ ResultStmts);
+ }
+
+ // Otherwise, this is some other case or default statement, just ignore it.
+ return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
+ ResultStmts);
+ }
+
+ // If we are in the live part of the code and we found our break statement,
+ // return a success!
+ if (!Case && isa<BreakStmt>(S))
+ return CSFC_Success;
+
+ // If this is a switch statement, then it might contain the SwitchCase, the
+ // break, or neither.
+ if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
+ // Handle this as two cases: we might be looking for the SwitchCase (if so
+ // the skipped statements must be skippable) or we might already have it.
+ CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
+ if (Case) {
+ // Keep track of whether we see a skipped declaration. The code could be
+ // using the declaration even if it is skipped, so we can't optimize out
+ // the decl if the kept statements might refer to it.
+ bool HadSkippedDecl = false;
+
+ // If we're looking for the case, just see if we can skip each of the
+ // substatements.
+ for (; Case && I != E; ++I) {
+ HadSkippedDecl |= isa<DeclStmt>(*I);
+
+ switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
+ case CSFC_Failure: return CSFC_Failure;
+ case CSFC_Success:
+ // A successful result means that either 1) that the statement doesn't
+ // have the case and is skippable, or 2) does contain the case value
+ // and also contains the break to exit the switch. In the later case,
+ // we just verify the rest of the statements are elidable.
+ if (FoundCase) {
+ // If we found the case and skipped declarations, we can't do the
+ // optimization.
+ if (HadSkippedDecl)
+ return CSFC_Failure;
+
+ for (++I; I != E; ++I)
+ if (CodeGenFunction::ContainsLabel(*I, true))
+ return CSFC_Failure;
+ return CSFC_Success;
+ }
+ break;
+ case CSFC_FallThrough:
+ // If we have a fallthrough condition, then we must have found the
+ // case started to include statements. Consider the rest of the
+ // statements in the compound statement as candidates for inclusion.
+ assert(FoundCase && "Didn't find case but returned fallthrough?");
+ // We recursively found Case, so we're not looking for it anymore.
+ Case = nullptr;
+
+ // If we found the case and skipped declarations, we can't do the
+ // optimization.
+ if (HadSkippedDecl)
+ return CSFC_Failure;
+ break;
+ }
+ }
+ }
+
+ // If we have statements in our range, then we know that the statements are
+ // live and need to be added to the set of statements we're tracking.
+ for (; I != E; ++I) {
+ switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
+ case CSFC_Failure: return CSFC_Failure;
+ case CSFC_FallThrough:
+ // A fallthrough result means that the statement was simple and just
+ // included in ResultStmt, keep adding them afterwards.
+ break;
+ case CSFC_Success:
+ // A successful result means that we found the break statement and
+ // stopped statement inclusion. We just ensure that any leftover stmts
+ // are skippable and return success ourselves.
+ for (++I; I != E; ++I)
+ if (CodeGenFunction::ContainsLabel(*I, true))
+ return CSFC_Failure;
+ return CSFC_Success;
+ }
+ }
+
+ return Case ? CSFC_Success : CSFC_FallThrough;
+ }
+
+ // Okay, this is some other statement that we don't handle explicitly, like a
+ // for statement or increment etc. If we are skipping over this statement,
+ // just verify it doesn't have labels, which would make it invalid to elide.
+ if (Case) {
+ if (CodeGenFunction::ContainsLabel(S, true))
+ return CSFC_Failure;
+ return CSFC_Success;
+ }
+
+ // Otherwise, we want to include this statement. Everything is cool with that
+ // so long as it doesn't contain a break out of the switch we're in.
+ if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
+
+ // Otherwise, everything is great. Include the statement and tell the caller
+ // that we fall through and include the next statement as well.
+ ResultStmts.push_back(S);
+ return CSFC_FallThrough;
+}
+
+/// FindCaseStatementsForValue - Find the case statement being jumped to and
+/// then invoke CollectStatementsForCase to find the list of statements to emit
+/// for a switch on constant. See the comment above CollectStatementsForCase
+/// for more details.
+static bool FindCaseStatementsForValue(const SwitchStmt &S,
+ const llvm::APSInt &ConstantCondValue,
+ SmallVectorImpl<const Stmt*> &ResultStmts,
+ ASTContext &C,
+ const SwitchCase *&ResultCase) {
+ // First step, find the switch case that is being branched to. We can do this
+ // efficiently by scanning the SwitchCase list.
+ const SwitchCase *Case = S.getSwitchCaseList();
+ const DefaultStmt *DefaultCase = nullptr;
+
+ for (; Case; Case = Case->getNextSwitchCase()) {
+ // It's either a default or case. Just remember the default statement in
+ // case we're not jumping to any numbered cases.
+ if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
+ DefaultCase = DS;
+ continue;
+ }
+
+ // Check to see if this case is the one we're looking for.
+ const CaseStmt *CS = cast<CaseStmt>(Case);
+ // Don't handle case ranges yet.
+ if (CS->getRHS()) return false;
+
+ // If we found our case, remember it as 'case'.
+ if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
+ break;
+ }
+
+ // If we didn't find a matching case, we use a default if it exists, or we
+ // elide the whole switch body!
+ if (!Case) {
+ // It is safe to elide the body of the switch if it doesn't contain labels
+ // etc. If it is safe, return successfully with an empty ResultStmts list.
+ if (!DefaultCase)
+ return !CodeGenFunction::ContainsLabel(&S);
+ Case = DefaultCase;
+ }
+
+ // Ok, we know which case is being jumped to, try to collect all the
+ // statements that follow it. This can fail for a variety of reasons. Also,
+ // check to see that the recursive walk actually found our case statement.
+ // Insane cases like this can fail to find it in the recursive walk since we
+ // don't handle every stmt kind:
+ // switch (4) {
+ // while (1) {
+ // case 4: ...
+ bool FoundCase = false;
+ ResultCase = Case;
+ return CollectStatementsForCase(S.getBody(), Case, FoundCase,
+ ResultStmts) != CSFC_Failure &&
+ FoundCase;
+}
+
+void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
+ // Handle nested switch statements.
+ llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
+ SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
+ llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
+
+ // See if we can constant fold the condition of the switch and therefore only
+ // emit the live case statement (if any) of the switch.
+ llvm::APSInt ConstantCondValue;
+ if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
+ SmallVector<const Stmt*, 4> CaseStmts;
+ const SwitchCase *Case = nullptr;
+ if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
+ getContext(), Case)) {
+ if (Case)
+ incrementProfileCounter(Case);
+ RunCleanupsScope ExecutedScope(*this);
+
+ // Emit the condition variable if needed inside the entire cleanup scope
+ // used by this special case for constant folded switches.
+ if (S.getConditionVariable())
+ EmitAutoVarDecl(*S.getConditionVariable());
+
+ // At this point, we are no longer "within" a switch instance, so
+ // we can temporarily enforce this to ensure that any embedded case
+ // statements are not emitted.
+ SwitchInsn = nullptr;
+
+ // Okay, we can dead code eliminate everything except this case. Emit the
+ // specified series of statements and we're good.
+ for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
+ EmitStmt(CaseStmts[i]);
+ incrementProfileCounter(&S);
+
+ // Now we want to restore the saved switch instance so that nested
+ // switches continue to function properly
+ SwitchInsn = SavedSwitchInsn;
+
+ return;
+ }
+ }
+
+ JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
+
+ RunCleanupsScope ConditionScope(*this);
+ if (S.getConditionVariable())
+ EmitAutoVarDecl(*S.getConditionVariable());
+ llvm::Value *CondV = EmitScalarExpr(S.getCond());
+
+ // Create basic block to hold stuff that comes after switch
+ // statement. We also need to create a default block now so that
+ // explicit case ranges tests can have a place to jump to on
+ // failure.
+ llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
+ SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
+ if (PGO.haveRegionCounts()) {
+ // Walk the SwitchCase list to find how many there are.
+ uint64_t DefaultCount = 0;
+ unsigned NumCases = 0;
+ for (const SwitchCase *Case = S.getSwitchCaseList();
+ Case;
+ Case = Case->getNextSwitchCase()) {
+ if (isa<DefaultStmt>(Case))
+ DefaultCount = getProfileCount(Case);
+ NumCases += 1;
+ }
+ SwitchWeights = new SmallVector<uint64_t, 16>();
+ SwitchWeights->reserve(NumCases);
+ // The default needs to be first. We store the edge count, so we already
+ // know the right weight.
+ SwitchWeights->push_back(DefaultCount);
+ }
+ CaseRangeBlock = DefaultBlock;
+
+ // Clear the insertion point to indicate we are in unreachable code.
+ Builder.ClearInsertionPoint();
+
+ // All break statements jump to NextBlock. If BreakContinueStack is non-empty
+ // then reuse last ContinueBlock.
+ JumpDest OuterContinue;
+ if (!BreakContinueStack.empty())
+ OuterContinue = BreakContinueStack.back().ContinueBlock;
+
+ BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
+
+ // Emit switch body.
+ EmitStmt(S.getBody());
+
+ BreakContinueStack.pop_back();
+
+ // Update the default block in case explicit case range tests have
+ // been chained on top.
+ SwitchInsn->setDefaultDest(CaseRangeBlock);
+
+ // If a default was never emitted:
+ if (!DefaultBlock->getParent()) {
+ // If we have cleanups, emit the default block so that there's a
+ // place to jump through the cleanups from.
+ if (ConditionScope.requiresCleanups()) {
+ EmitBlock(DefaultBlock);
+
+ // Otherwise, just forward the default block to the switch end.
+ } else {
+ DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
+ delete DefaultBlock;
+ }
+ }
+
+ ConditionScope.ForceCleanup();
+
+ // Emit continuation.
+ EmitBlock(SwitchExit.getBlock(), true);
+ incrementProfileCounter(&S);
+
+ if (SwitchWeights) {
+ assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
+ "switch weights do not match switch cases");
+ // If there's only one jump destination there's no sense weighting it.
+ if (SwitchWeights->size() > 1)
+ SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
+ createProfileWeights(*SwitchWeights));
+ delete SwitchWeights;
+ }
+ SwitchInsn = SavedSwitchInsn;
+ SwitchWeights = SavedSwitchWeights;
+ CaseRangeBlock = SavedCRBlock;
+}
+
+static std::string
+SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
+ SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
+ std::string Result;
+
+ while (*Constraint) {
+ switch (*Constraint) {
+ default:
+ Result += Target.convertConstraint(Constraint);
+ break;
+ // Ignore these
+ case '*':
+ case '?':
+ case '!':
+ case '=': // Will see this and the following in mult-alt constraints.
+ case '+':
+ break;
+ case '#': // Ignore the rest of the constraint alternative.
+ while (Constraint[1] && Constraint[1] != ',')
+ Constraint++;
+ break;
+ case '&':
+ case '%':
+ Result += *Constraint;
+ while (Constraint[1] && Constraint[1] == *Constraint)
+ Constraint++;
+ break;
+ case ',':
+ Result += "|";
+ break;
+ case 'g':
+ Result += "imr";
+ break;
+ case '[': {
+ assert(OutCons &&
+ "Must pass output names to constraints with a symbolic name");
+ unsigned Index;
+ bool result = Target.resolveSymbolicName(Constraint,
+ &(*OutCons)[0],
+ OutCons->size(), Index);
+ assert(result && "Could not resolve symbolic name"); (void)result;
+ Result += llvm::utostr(Index);
+ break;
+ }
+ }
+
+ Constraint++;
+ }
+
+ return Result;
+}
+
+/// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
+/// as using a particular register add that as a constraint that will be used
+/// in this asm stmt.
+static std::string
+AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
+ const TargetInfo &Target, CodeGenModule &CGM,
+ const AsmStmt &Stmt, const bool EarlyClobber) {
+ const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
+ if (!AsmDeclRef)
+ return Constraint;
+ const ValueDecl &Value = *AsmDeclRef->getDecl();
+ const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
+ if (!Variable)
+ return Constraint;
+ if (Variable->getStorageClass() != SC_Register)
+ return Constraint;
+ AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
+ if (!Attr)
+ return Constraint;
+ StringRef Register = Attr->getLabel();
+ assert(Target.isValidGCCRegisterName(Register));
+ // We're using validateOutputConstraint here because we only care if
+ // this is a register constraint.
+ TargetInfo::ConstraintInfo Info(Constraint, "");
+ if (Target.validateOutputConstraint(Info) &&
+ !Info.allowsRegister()) {
+ CGM.ErrorUnsupported(&Stmt, "__asm__");
+ return Constraint;
+ }
+ // Canonicalize the register here before returning it.
+ Register = Target.getNormalizedGCCRegisterName(Register);
+ return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
+}
+
+llvm::Value*
+CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
+ LValue InputValue, QualType InputType,
+ std::string &ConstraintStr,
+ SourceLocation Loc) {
+ llvm::Value *Arg;
+ if (Info.allowsRegister() || !Info.allowsMemory()) {
+ if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
+ Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
+ } else {
+ llvm::Type *Ty = ConvertType(InputType);
+ uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
+ if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
+ Ty = llvm::IntegerType::get(getLLVMContext(), Size);
+ Ty = llvm::PointerType::getUnqual(Ty);
+
+ Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
+ Ty));
+ } else {
+ Arg = InputValue.getAddress();
+ ConstraintStr += '*';
+ }
+ }
+ } else {
+ Arg = InputValue.getAddress();
+ ConstraintStr += '*';
+ }
+
+ return Arg;
+}
+
+llvm::Value* CodeGenFunction::EmitAsmInput(
+ const TargetInfo::ConstraintInfo &Info,
+ const Expr *InputExpr,
+ std::string &ConstraintStr) {
+ if (Info.allowsRegister() || !Info.allowsMemory())
+ if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
+ return EmitScalarExpr(InputExpr);
+
+ InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
+ LValue Dest = EmitLValue(InputExpr);
+ return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
+ InputExpr->getExprLoc());
+}
+
+/// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
+/// asm call instruction. The !srcloc MDNode contains a list of constant
+/// integers which are the source locations of the start of each line in the
+/// asm.
+static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
+ CodeGenFunction &CGF) {
+ SmallVector<llvm::Metadata *, 8> Locs;
+ // Add the location of the first line to the MDNode.
+ Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
+ CGF.Int32Ty, Str->getLocStart().getRawEncoding())));
+ StringRef StrVal = Str->getString();
+ if (!StrVal.empty()) {
+ const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
+ const LangOptions &LangOpts = CGF.CGM.getLangOpts();
+
+ // Add the location of the start of each subsequent line of the asm to the
+ // MDNode.
+ for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) {
+ if (StrVal[i] != '\n') continue;
+ SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts,
+ CGF.getTarget());
+ Locs.push_back(llvm::ConstantAsMetadata::get(
+ llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding())));
+ }
+ }
+
+ return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
+}
+
+void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
+ // Assemble the final asm string.
+ std::string AsmString = S.generateAsmString(getContext());
+
+ // Get all the output and input constraints together.
+ SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
+ SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
+
+ for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
+ StringRef Name;
+ if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
+ Name = GAS->getOutputName(i);
+ TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
+ bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
+ assert(IsValid && "Failed to parse output constraint");
+ OutputConstraintInfos.push_back(Info);
+ }
+
+ for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
+ StringRef Name;
+ if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
+ Name = GAS->getInputName(i);
+ TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
+ bool IsValid =
+ getTarget().validateInputConstraint(OutputConstraintInfos.data(),
+ S.getNumOutputs(), Info);
+ assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
+ InputConstraintInfos.push_back(Info);
+ }
+
+ std::string Constraints;
+
+ std::vector<LValue> ResultRegDests;
+ std::vector<QualType> ResultRegQualTys;
+ std::vector<llvm::Type *> ResultRegTypes;
+ std::vector<llvm::Type *> ResultTruncRegTypes;
+ std::vector<llvm::Type *> ArgTypes;
+ std::vector<llvm::Value*> Args;
+
+ // Keep track of inout constraints.
+ std::string InOutConstraints;
+ std::vector<llvm::Value*> InOutArgs;
+ std::vector<llvm::Type*> InOutArgTypes;
+
+ for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
+ TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
+
+ // Simplify the output constraint.
+ std::string OutputConstraint(S.getOutputConstraint(i));
+ OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
+ getTarget());
+
+ const Expr *OutExpr = S.getOutputExpr(i);
+ OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
+
+ OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
+ getTarget(), CGM, S,
+ Info.earlyClobber());
+
+ LValue Dest = EmitLValue(OutExpr);
+ if (!Constraints.empty())
+ Constraints += ',';
+
+ // If this is a register output, then make the inline asm return it
+ // by-value. If this is a memory result, return the value by-reference.
+ if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) {
+ Constraints += "=" + OutputConstraint;
+ ResultRegQualTys.push_back(OutExpr->getType());
+ ResultRegDests.push_back(Dest);
+ ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
+ ResultTruncRegTypes.push_back(ResultRegTypes.back());
+
+ // If this output is tied to an input, and if the input is larger, then
+ // we need to set the actual result type of the inline asm node to be the
+ // same as the input type.
+ if (Info.hasMatchingInput()) {
+ unsigned InputNo;
+ for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
+ TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
+ if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
+ break;
+ }
+ assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
+
+ QualType InputTy = S.getInputExpr(InputNo)->getType();
+ QualType OutputType = OutExpr->getType();
+
+ uint64_t InputSize = getContext().getTypeSize(InputTy);
+ if (getContext().getTypeSize(OutputType) < InputSize) {
+ // Form the asm to return the value as a larger integer or fp type.
+ ResultRegTypes.back() = ConvertType(InputTy);
+ }
+ }
+ if (llvm::Type* AdjTy =
+ getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
+ ResultRegTypes.back()))
+ ResultRegTypes.back() = AdjTy;
+ else {
+ CGM.getDiags().Report(S.getAsmLoc(),
+ diag::err_asm_invalid_type_in_input)
+ << OutExpr->getType() << OutputConstraint;
+ }
+ } else {
+ ArgTypes.push_back(Dest.getAddress()->getType());
+ Args.push_back(Dest.getAddress());
+ Constraints += "=*";
+ Constraints += OutputConstraint;
+ }
+
+ if (Info.isReadWrite()) {
+ InOutConstraints += ',';
+
+ const Expr *InputExpr = S.getOutputExpr(i);
+ llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
+ InOutConstraints,
+ InputExpr->getExprLoc());
+
+ if (llvm::Type* AdjTy =
+ getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
+ Arg->getType()))
+ Arg = Builder.CreateBitCast(Arg, AdjTy);
+
+ if (Info.allowsRegister())
+ InOutConstraints += llvm::utostr(i);
+ else
+ InOutConstraints += OutputConstraint;
+
+ InOutArgTypes.push_back(Arg->getType());
+ InOutArgs.push_back(Arg);
+ }
+ }
+
+ // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
+ // to the return value slot. Only do this when returning in registers.
+ if (isa<MSAsmStmt>(&S)) {
+ const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
+ if (RetAI.isDirect() || RetAI.isExtend()) {
+ // Make a fake lvalue for the return value slot.
+ LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy);
+ CGM.getTargetCodeGenInfo().addReturnRegisterOutputs(
+ *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
+ ResultRegDests, AsmString, S.getNumOutputs());
+ SawAsmBlock = true;
+ }
+ }
+
+ for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
+ const Expr *InputExpr = S.getInputExpr(i);
+
+ TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
+
+ if (!Constraints.empty())
+ Constraints += ',';
+
+ // Simplify the input constraint.
+ std::string InputConstraint(S.getInputConstraint(i));
+ InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
+ &OutputConstraintInfos);
+
+ InputConstraint = AddVariableConstraints(
+ InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
+ getTarget(), CGM, S, false /* No EarlyClobber */);
+
+ llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
+
+ // If this input argument is tied to a larger output result, extend the
+ // input to be the same size as the output. The LLVM backend wants to see
+ // the input and output of a matching constraint be the same size. Note
+ // that GCC does not define what the top bits are here. We use zext because
+ // that is usually cheaper, but LLVM IR should really get an anyext someday.
+ if (Info.hasTiedOperand()) {
+ unsigned Output = Info.getTiedOperand();
+ QualType OutputType = S.getOutputExpr(Output)->getType();
+ QualType InputTy = InputExpr->getType();
+
+ if (getContext().getTypeSize(OutputType) >
+ getContext().getTypeSize(InputTy)) {
+ // Use ptrtoint as appropriate so that we can do our extension.
+ if (isa<llvm::PointerType>(Arg->getType()))
+ Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
+ llvm::Type *OutputTy = ConvertType(OutputType);
+ if (isa<llvm::IntegerType>(OutputTy))
+ Arg = Builder.CreateZExt(Arg, OutputTy);
+ else if (isa<llvm::PointerType>(OutputTy))
+ Arg = Builder.CreateZExt(Arg, IntPtrTy);
+ else {
+ assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
+ Arg = Builder.CreateFPExt(Arg, OutputTy);
+ }
+ }
+ }
+ if (llvm::Type* AdjTy =
+ getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
+ Arg->getType()))
+ Arg = Builder.CreateBitCast(Arg, AdjTy);
+ else
+ CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
+ << InputExpr->getType() << InputConstraint;
+
+ ArgTypes.push_back(Arg->getType());
+ Args.push_back(Arg);
+ Constraints += InputConstraint;
+ }
+
+ // Append the "input" part of inout constraints last.
+ for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
+ ArgTypes.push_back(InOutArgTypes[i]);
+ Args.push_back(InOutArgs[i]);
+ }
+ Constraints += InOutConstraints;
+
+ // Clobbers
+ for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
+ StringRef Clobber = S.getClobber(i);
+
+ if (Clobber != "memory" && Clobber != "cc")
+ Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
+
+ if (!Constraints.empty())
+ Constraints += ',';
+
+ Constraints += "~{";
+ Constraints += Clobber;
+ Constraints += '}';
+ }
+
+ // Add machine specific clobbers
+ std::string MachineClobbers = getTarget().getClobbers();
+ if (!MachineClobbers.empty()) {
+ if (!Constraints.empty())
+ Constraints += ',';
+ Constraints += MachineClobbers;
+ }
+
+ llvm::Type *ResultType;
+ if (ResultRegTypes.empty())
+ ResultType = VoidTy;
+ else if (ResultRegTypes.size() == 1)
+ ResultType = ResultRegTypes[0];
+ else
+ ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
+
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(ResultType, ArgTypes, false);
+
+ bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
+ llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
+ llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
+ llvm::InlineAsm *IA =
+ llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
+ /* IsAlignStack */ false, AsmDialect);
+ llvm::CallInst *Result = Builder.CreateCall(IA, Args);
+ Result->addAttribute(llvm::AttributeSet::FunctionIndex,
+ llvm::Attribute::NoUnwind);
+
+ // Slap the source location of the inline asm into a !srcloc metadata on the
+ // call.
+ if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) {
+ Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(),
+ *this));
+ } else {
+ // At least put the line number on MS inline asm blobs.
+ auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding());
+ Result->setMetadata("srcloc",
+ llvm::MDNode::get(getLLVMContext(),
+ llvm::ConstantAsMetadata::get(Loc)));
+ }
+
+ // Extract all of the register value results from the asm.
+ std::vector<llvm::Value*> RegResults;
+ if (ResultRegTypes.size() == 1) {
+ RegResults.push_back(Result);
+ } else {
+ for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
+ llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
+ RegResults.push_back(Tmp);
+ }
+ }
+
+ assert(RegResults.size() == ResultRegTypes.size());
+ assert(RegResults.size() == ResultTruncRegTypes.size());
+ assert(RegResults.size() == ResultRegDests.size());
+ for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
+ llvm::Value *Tmp = RegResults[i];
+
+ // If the result type of the LLVM IR asm doesn't match the result type of
+ // the expression, do the conversion.
+ if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
+ llvm::Type *TruncTy = ResultTruncRegTypes[i];
+
+ // Truncate the integer result to the right size, note that TruncTy can be
+ // a pointer.
+ if (TruncTy->isFloatingPointTy())
+ Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
+ else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
+ uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
+ Tmp = Builder.CreateTrunc(Tmp,
+ llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
+ Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
+ } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
+ uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
+ Tmp = Builder.CreatePtrToInt(Tmp,
+ llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
+ Tmp = Builder.CreateTrunc(Tmp, TruncTy);
+ } else if (TruncTy->isIntegerTy()) {
+ Tmp = Builder.CreateTrunc(Tmp, TruncTy);
+ } else if (TruncTy->isVectorTy()) {
+ Tmp = Builder.CreateBitCast(Tmp, TruncTy);
+ }
+ }
+
+ EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
+ }
+}
+
+LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) {
+ const RecordDecl *RD = S.getCapturedRecordDecl();
+ QualType RecordTy = getContext().getRecordType(RD);
+
+ // Initialize the captured struct.
+ LValue SlotLV = MakeNaturalAlignAddrLValue(
+ CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
+
+ RecordDecl::field_iterator CurField = RD->field_begin();
+ for (CapturedStmt::capture_init_iterator I = S.capture_init_begin(),
+ E = S.capture_init_end();
+ I != E; ++I, ++CurField) {
+ LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
+ if (CurField->hasCapturedVLAType()) {
+ auto VAT = CurField->getCapturedVLAType();
+ EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
+ } else {
+ EmitInitializerForField(*CurField, LV, *I, None);
+ }
+ }
+
+ return SlotLV;
+}
+
+/// Generate an outlined function for the body of a CapturedStmt, store any
+/// captured variables into the captured struct, and call the outlined function.
+llvm::Function *
+CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
+ LValue CapStruct = InitCapturedStruct(S);
+
+ // Emit the CapturedDecl
+ CodeGenFunction CGF(CGM, true);
+ CGF.CapturedStmtInfo = new CGCapturedStmtInfo(S, K);
+ llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
+ delete CGF.CapturedStmtInfo;
+
+ // Emit call to the helper function.
+ EmitCallOrInvoke(F, CapStruct.getAddress());
+
+ return F;
+}
+
+llvm::Value *
+CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
+ LValue CapStruct = InitCapturedStruct(S);
+ return CapStruct.getAddress();
+}
+
+/// Creates the outlined function for a CapturedStmt.
+llvm::Function *
+CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
+ assert(CapturedStmtInfo &&
+ "CapturedStmtInfo should be set when generating the captured function");
+ const CapturedDecl *CD = S.getCapturedDecl();
+ const RecordDecl *RD = S.getCapturedRecordDecl();
+ SourceLocation Loc = S.getLocStart();
+ assert(CD->hasBody() && "missing CapturedDecl body");
+
+ // Build the argument list.
+ ASTContext &Ctx = CGM.getContext();
+ FunctionArgList Args;
+ Args.append(CD->param_begin(), CD->param_end());
+
+ // Create the function declaration.
+ FunctionType::ExtInfo ExtInfo;
+ const CGFunctionInfo &FuncInfo =
+ CGM.getTypes().arrangeFreeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo,
+ /*IsVariadic=*/false);
+ llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
+
+ llvm::Function *F =
+ llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
+ CapturedStmtInfo->getHelperName(), &CGM.getModule());
+ CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
+ if (CD->isNothrow())
+ F->addFnAttr(llvm::Attribute::NoUnwind);
+
+ // Generate the function.
+ StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args,
+ CD->getLocation(),
+ CD->getBody()->getLocStart());
+ // Set the context parameter in CapturedStmtInfo.
+ llvm::Value *DeclPtr = LocalDeclMap[CD->getContextParam()];
+ assert(DeclPtr && "missing context parameter for CapturedStmt");
+ CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
+
+ // Initialize variable-length arrays.
+ LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
+ Ctx.getTagDeclType(RD));
+ for (auto *FD : RD->fields()) {
+ if (FD->hasCapturedVLAType()) {
+ auto *ExprArg = EmitLoadOfLValue(EmitLValueForField(Base, FD),
+ S.getLocStart()).getScalarVal();
+ auto VAT = FD->getCapturedVLAType();
+ VLASizeMap[VAT->getSizeExpr()] = ExprArg;
+ }
+ }
+
+ // If 'this' is captured, load it into CXXThisValue.
+ if (CapturedStmtInfo->isCXXThisExprCaptured()) {
+ FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
+ LValue ThisLValue = EmitLValueForField(Base, FD);
+ CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
+ }
+
+ PGO.assignRegionCounters(CD, F);
+ CapturedStmtInfo->EmitBody(*this, CD->getBody());
+ FinishFunction(CD->getBodyRBrace());
+
+ return F;
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGStmtOpenMP.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGStmtOpenMP.cpp
new file mode 100644
index 0000000..07fc6e9
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGStmtOpenMP.cpp
@@ -0,0 +1,2017 @@
+//===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code to emit OpenMP nodes as LLVM code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGOpenMPRuntime.h"
+#include "CodeGenFunction.h"
+#include "CodeGenModule.h"
+#include "TargetInfo.h"
+#include "clang/AST/Stmt.h"
+#include "clang/AST/StmtOpenMP.h"
+using namespace clang;
+using namespace CodeGen;
+
+//===----------------------------------------------------------------------===//
+// OpenMP Directive Emission
+//===----------------------------------------------------------------------===//
+void CodeGenFunction::EmitOMPAggregateAssign(
+ llvm::Value *DestAddr, llvm::Value *SrcAddr, QualType OriginalType,
+ const llvm::function_ref<void(llvm::Value *, llvm::Value *)> &CopyGen) {
+ // Perform element-by-element initialization.
+ QualType ElementTy;
+ auto SrcBegin = SrcAddr;
+ auto DestBegin = DestAddr;
+ auto ArrayTy = OriginalType->getAsArrayTypeUnsafe();
+ auto NumElements = emitArrayLength(ArrayTy, ElementTy, DestBegin);
+ // Cast from pointer to array type to pointer to single element.
+ SrcBegin = Builder.CreatePointerBitCastOrAddrSpaceCast(SrcBegin,
+ DestBegin->getType());
+ auto DestEnd = Builder.CreateGEP(DestBegin, NumElements);
+ // The basic structure here is a while-do loop.
+ auto BodyBB = createBasicBlock("omp.arraycpy.body");
+ auto DoneBB = createBasicBlock("omp.arraycpy.done");
+ auto IsEmpty =
+ Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty");
+ Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
+
+ // Enter the loop body, making that address the current address.
+ auto EntryBB = Builder.GetInsertBlock();
+ EmitBlock(BodyBB);
+ auto SrcElementCurrent =
+ Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast");
+ SrcElementCurrent->addIncoming(SrcBegin, EntryBB);
+ auto DestElementCurrent = Builder.CreatePHI(DestBegin->getType(), 2,
+ "omp.arraycpy.destElementPast");
+ DestElementCurrent->addIncoming(DestBegin, EntryBB);
+
+ // Emit copy.
+ CopyGen(DestElementCurrent, SrcElementCurrent);
+
+ // Shift the address forward by one element.
+ auto DestElementNext = Builder.CreateConstGEP1_32(
+ DestElementCurrent, /*Idx0=*/1, "omp.arraycpy.dest.element");
+ auto SrcElementNext = Builder.CreateConstGEP1_32(
+ SrcElementCurrent, /*Idx0=*/1, "omp.arraycpy.src.element");
+ // Check whether we've reached the end.
+ auto Done =
+ Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
+ Builder.CreateCondBr(Done, DoneBB, BodyBB);
+ DestElementCurrent->addIncoming(DestElementNext, Builder.GetInsertBlock());
+ SrcElementCurrent->addIncoming(SrcElementNext, Builder.GetInsertBlock());
+
+ // Done.
+ EmitBlock(DoneBB, /*IsFinished=*/true);
+}
+
+void CodeGenFunction::EmitOMPCopy(CodeGenFunction &CGF,
+ QualType OriginalType, llvm::Value *DestAddr,
+ llvm::Value *SrcAddr, const VarDecl *DestVD,
+ const VarDecl *SrcVD, const Expr *Copy) {
+ if (OriginalType->isArrayType()) {
+ auto *BO = dyn_cast<BinaryOperator>(Copy);
+ if (BO && BO->getOpcode() == BO_Assign) {
+ // Perform simple memcpy for simple copying.
+ CGF.EmitAggregateAssign(DestAddr, SrcAddr, OriginalType);
+ } else {
+ // For arrays with complex element types perform element by element
+ // copying.
+ CGF.EmitOMPAggregateAssign(
+ DestAddr, SrcAddr, OriginalType,
+ [&CGF, Copy, SrcVD, DestVD](llvm::Value *DestElement,
+ llvm::Value *SrcElement) {
+ // Working with the single array element, so have to remap
+ // destination and source variables to corresponding array
+ // elements.
+ CodeGenFunction::OMPPrivateScope Remap(CGF);
+ Remap.addPrivate(DestVD, [DestElement]() -> llvm::Value *{
+ return DestElement;
+ });
+ Remap.addPrivate(
+ SrcVD, [SrcElement]() -> llvm::Value *{ return SrcElement; });
+ (void)Remap.Privatize();
+ CGF.EmitIgnoredExpr(Copy);
+ });
+ }
+ } else {
+ // Remap pseudo source variable to private copy.
+ CodeGenFunction::OMPPrivateScope Remap(CGF);
+ Remap.addPrivate(SrcVD, [SrcAddr]() -> llvm::Value *{ return SrcAddr; });
+ Remap.addPrivate(DestVD, [DestAddr]() -> llvm::Value *{ return DestAddr; });
+ (void)Remap.Privatize();
+ // Emit copying of the whole variable.
+ CGF.EmitIgnoredExpr(Copy);
+ }
+}
+
+bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
+ OMPPrivateScope &PrivateScope) {
+ llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate;
+ for (auto &&I = D.getClausesOfKind(OMPC_firstprivate); I; ++I) {
+ auto *C = cast<OMPFirstprivateClause>(*I);
+ auto IRef = C->varlist_begin();
+ auto InitsRef = C->inits().begin();
+ for (auto IInit : C->private_copies()) {
+ auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
+ if (EmittedAsFirstprivate.count(OrigVD) == 0) {
+ EmittedAsFirstprivate.insert(OrigVD);
+ auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
+ auto *VDInit = cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl());
+ bool IsRegistered;
+ DeclRefExpr DRE(
+ const_cast<VarDecl *>(OrigVD),
+ /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup(
+ OrigVD) != nullptr,
+ (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
+ auto *OriginalAddr = EmitLValue(&DRE).getAddress();
+ QualType Type = OrigVD->getType();
+ if (Type->isArrayType()) {
+ // Emit VarDecl with copy init for arrays.
+ // Get the address of the original variable captured in current
+ // captured region.
+ IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> llvm::Value *{
+ auto Emission = EmitAutoVarAlloca(*VD);
+ auto *Init = VD->getInit();
+ if (!isa<CXXConstructExpr>(Init) || isTrivialInitializer(Init)) {
+ // Perform simple memcpy.
+ EmitAggregateAssign(Emission.getAllocatedAddress(), OriginalAddr,
+ Type);
+ } else {
+ EmitOMPAggregateAssign(
+ Emission.getAllocatedAddress(), OriginalAddr, Type,
+ [this, VDInit, Init](llvm::Value *DestElement,
+ llvm::Value *SrcElement) {
+ // Clean up any temporaries needed by the initialization.
+ RunCleanupsScope InitScope(*this);
+ // Emit initialization for single element.
+ LocalDeclMap[VDInit] = SrcElement;
+ EmitAnyExprToMem(Init, DestElement,
+ Init->getType().getQualifiers(),
+ /*IsInitializer*/ false);
+ LocalDeclMap.erase(VDInit);
+ });
+ }
+ EmitAutoVarCleanups(Emission);
+ return Emission.getAllocatedAddress();
+ });
+ } else {
+ IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> llvm::Value *{
+ // Emit private VarDecl with copy init.
+ // Remap temp VDInit variable to the address of the original
+ // variable
+ // (for proper handling of captured global variables).
+ LocalDeclMap[VDInit] = OriginalAddr;
+ EmitDecl(*VD);
+ LocalDeclMap.erase(VDInit);
+ return GetAddrOfLocalVar(VD);
+ });
+ }
+ assert(IsRegistered &&
+ "firstprivate var already registered as private");
+ // Silence the warning about unused variable.
+ (void)IsRegistered;
+ }
+ ++IRef, ++InitsRef;
+ }
+ }
+ return !EmittedAsFirstprivate.empty();
+}
+
+void CodeGenFunction::EmitOMPPrivateClause(
+ const OMPExecutableDirective &D,
+ CodeGenFunction::OMPPrivateScope &PrivateScope) {
+ llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
+ for (auto &&I = D.getClausesOfKind(OMPC_private); I; ++I) {
+ auto *C = cast<OMPPrivateClause>(*I);
+ auto IRef = C->varlist_begin();
+ for (auto IInit : C->private_copies()) {
+ auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
+ if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
+ auto VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
+ bool IsRegistered =
+ PrivateScope.addPrivate(OrigVD, [&]() -> llvm::Value *{
+ // Emit private VarDecl with copy init.
+ EmitDecl(*VD);
+ return GetAddrOfLocalVar(VD);
+ });
+ assert(IsRegistered && "private var already registered as private");
+ // Silence the warning about unused variable.
+ (void)IsRegistered;
+ }
+ ++IRef;
+ }
+ }
+}
+
+bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) {
+ // threadprivate_var1 = master_threadprivate_var1;
+ // operator=(threadprivate_var2, master_threadprivate_var2);
+ // ...
+ // __kmpc_barrier(&loc, global_tid);
+ llvm::DenseSet<const VarDecl *> CopiedVars;
+ llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr;
+ for (auto &&I = D.getClausesOfKind(OMPC_copyin); I; ++I) {
+ auto *C = cast<OMPCopyinClause>(*I);
+ auto IRef = C->varlist_begin();
+ auto ISrcRef = C->source_exprs().begin();
+ auto IDestRef = C->destination_exprs().begin();
+ for (auto *AssignOp : C->assignment_ops()) {
+ auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
+ QualType Type = VD->getType();
+ if (CopiedVars.insert(VD->getCanonicalDecl()).second) {
+ // Get the address of the master variable.
+ auto *MasterAddr = VD->isStaticLocal()
+ ? CGM.getStaticLocalDeclAddress(VD)
+ : CGM.GetAddrOfGlobal(VD);
+ // Get the address of the threadprivate variable.
+ auto *PrivateAddr = EmitLValue(*IRef).getAddress();
+ if (CopiedVars.size() == 1) {
+ // At first check if current thread is a master thread. If it is, no
+ // need to copy data.
+ CopyBegin = createBasicBlock("copyin.not.master");
+ CopyEnd = createBasicBlock("copyin.not.master.end");
+ Builder.CreateCondBr(
+ Builder.CreateICmpNE(
+ Builder.CreatePtrToInt(MasterAddr, CGM.IntPtrTy),
+ Builder.CreatePtrToInt(PrivateAddr, CGM.IntPtrTy)),
+ CopyBegin, CopyEnd);
+ EmitBlock(CopyBegin);
+ }
+ auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
+ auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
+ EmitOMPCopy(*this, Type, PrivateAddr, MasterAddr, DestVD, SrcVD,
+ AssignOp);
+ }
+ ++IRef;
+ ++ISrcRef;
+ ++IDestRef;
+ }
+ }
+ if (CopyEnd) {
+ // Exit out of copying procedure for non-master thread.
+ EmitBlock(CopyEnd, /*IsFinished=*/true);
+ return true;
+ }
+ return false;
+}
+
+bool CodeGenFunction::EmitOMPLastprivateClauseInit(
+ const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) {
+ bool HasAtLeastOneLastprivate = false;
+ llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
+ for (auto &&I = D.getClausesOfKind(OMPC_lastprivate); I; ++I) {
+ HasAtLeastOneLastprivate = true;
+ auto *C = cast<OMPLastprivateClause>(*I);
+ auto IRef = C->varlist_begin();
+ auto IDestRef = C->destination_exprs().begin();
+ for (auto *IInit : C->private_copies()) {
+ // Keep the address of the original variable for future update at the end
+ // of the loop.
+ auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
+ if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) {
+ auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
+ PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() -> llvm::Value *{
+ DeclRefExpr DRE(
+ const_cast<VarDecl *>(OrigVD),
+ /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup(
+ OrigVD) != nullptr,
+ (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
+ return EmitLValue(&DRE).getAddress();
+ });
+ // Check if the variable is also a firstprivate: in this case IInit is
+ // not generated. Initialization of this variable will happen in codegen
+ // for 'firstprivate' clause.
+ if (IInit) {
+ auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
+ bool IsRegistered =
+ PrivateScope.addPrivate(OrigVD, [&]() -> llvm::Value *{
+ // Emit private VarDecl with copy init.
+ EmitDecl(*VD);
+ return GetAddrOfLocalVar(VD);
+ });
+ assert(IsRegistered &&
+ "lastprivate var already registered as private");
+ (void)IsRegistered;
+ }
+ }
+ ++IRef, ++IDestRef;
+ }
+ }
+ return HasAtLeastOneLastprivate;
+}
+
+void CodeGenFunction::EmitOMPLastprivateClauseFinal(
+ const OMPExecutableDirective &D, llvm::Value *IsLastIterCond) {
+ // Emit following code:
+ // if (<IsLastIterCond>) {
+ // orig_var1 = private_orig_var1;
+ // ...
+ // orig_varn = private_orig_varn;
+ // }
+ auto *ThenBB = createBasicBlock(".omp.lastprivate.then");
+ auto *DoneBB = createBasicBlock(".omp.lastprivate.done");
+ Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB);
+ EmitBlock(ThenBB);
+ llvm::DenseMap<const Decl *, const Expr *> LoopCountersAndUpdates;
+ const Expr *LastIterVal = nullptr;
+ const Expr *IVExpr = nullptr;
+ const Expr *IncExpr = nullptr;
+ if (auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) {
+ LastIterVal =
+ cast<VarDecl>(cast<DeclRefExpr>(LoopDirective->getUpperBoundVariable())
+ ->getDecl())
+ ->getAnyInitializer();
+ IVExpr = LoopDirective->getIterationVariable();
+ IncExpr = LoopDirective->getInc();
+ auto IUpdate = LoopDirective->updates().begin();
+ for (auto *E : LoopDirective->counters()) {
+ auto *D = cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl();
+ LoopCountersAndUpdates[D] = *IUpdate;
+ ++IUpdate;
+ }
+ }
+ {
+ llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
+ bool FirstLCV = true;
+ for (auto &&I = D.getClausesOfKind(OMPC_lastprivate); I; ++I) {
+ auto *C = cast<OMPLastprivateClause>(*I);
+ auto IRef = C->varlist_begin();
+ auto ISrcRef = C->source_exprs().begin();
+ auto IDestRef = C->destination_exprs().begin();
+ for (auto *AssignOp : C->assignment_ops()) {
+ auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
+ QualType Type = PrivateVD->getType();
+ auto *CanonicalVD = PrivateVD->getCanonicalDecl();
+ if (AlreadyEmittedVars.insert(CanonicalVD).second) {
+ // If lastprivate variable is a loop control variable for loop-based
+ // directive, update its value before copyin back to original
+ // variable.
+ if (auto *UpExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) {
+ if (FirstLCV) {
+ EmitAnyExprToMem(LastIterVal, EmitLValue(IVExpr).getAddress(),
+ IVExpr->getType().getQualifiers(),
+ /*IsInitializer=*/false);
+ EmitIgnoredExpr(IncExpr);
+ FirstLCV = false;
+ }
+ EmitIgnoredExpr(UpExpr);
+ }
+ auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
+ auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
+ // Get the address of the original variable.
+ auto *OriginalAddr = GetAddrOfLocalVar(DestVD);
+ // Get the address of the private variable.
+ auto *PrivateAddr = GetAddrOfLocalVar(PrivateVD);
+ EmitOMPCopy(*this, Type, OriginalAddr, PrivateAddr, DestVD, SrcVD,
+ AssignOp);
+ }
+ ++IRef;
+ ++ISrcRef;
+ ++IDestRef;
+ }
+ }
+ }
+ EmitBlock(DoneBB, /*IsFinished=*/true);
+}
+
+void CodeGenFunction::EmitOMPReductionClauseInit(
+ const OMPExecutableDirective &D,
+ CodeGenFunction::OMPPrivateScope &PrivateScope) {
+ for (auto &&I = D.getClausesOfKind(OMPC_reduction); I; ++I) {
+ auto *C = cast<OMPReductionClause>(*I);
+ auto ILHS = C->lhs_exprs().begin();
+ auto IRHS = C->rhs_exprs().begin();
+ for (auto IRef : C->varlists()) {
+ auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl());
+ auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
+ auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
+ // Store the address of the original variable associated with the LHS
+ // implicit variable.
+ PrivateScope.addPrivate(LHSVD, [this, OrigVD, IRef]() -> llvm::Value *{
+ DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
+ CapturedStmtInfo->lookup(OrigVD) != nullptr,
+ IRef->getType(), VK_LValue, IRef->getExprLoc());
+ return EmitLValue(&DRE).getAddress();
+ });
+ // Emit reduction copy.
+ bool IsRegistered =
+ PrivateScope.addPrivate(OrigVD, [this, PrivateVD]() -> llvm::Value *{
+ // Emit private VarDecl with reduction init.
+ EmitDecl(*PrivateVD);
+ return GetAddrOfLocalVar(PrivateVD);
+ });
+ assert(IsRegistered && "private var already registered as private");
+ // Silence the warning about unused variable.
+ (void)IsRegistered;
+ ++ILHS, ++IRHS;
+ }
+ }
+}
+
+void CodeGenFunction::EmitOMPReductionClauseFinal(
+ const OMPExecutableDirective &D) {
+ llvm::SmallVector<const Expr *, 8> LHSExprs;
+ llvm::SmallVector<const Expr *, 8> RHSExprs;
+ llvm::SmallVector<const Expr *, 8> ReductionOps;
+ bool HasAtLeastOneReduction = false;
+ for (auto &&I = D.getClausesOfKind(OMPC_reduction); I; ++I) {
+ HasAtLeastOneReduction = true;
+ auto *C = cast<OMPReductionClause>(*I);
+ LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
+ RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
+ ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
+ }
+ if (HasAtLeastOneReduction) {
+ // Emit nowait reduction if nowait clause is present or directive is a
+ // parallel directive (it always has implicit barrier).
+ CGM.getOpenMPRuntime().emitReduction(
+ *this, D.getLocEnd(), LHSExprs, RHSExprs, ReductionOps,
+ D.getSingleClause(OMPC_nowait) ||
+ isOpenMPParallelDirective(D.getDirectiveKind()));
+ }
+}
+
+static void emitCommonOMPParallelDirective(CodeGenFunction &CGF,
+ const OMPExecutableDirective &S,
+ const RegionCodeGenTy &CodeGen) {
+ auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
+ auto CapturedStruct = CGF.GenerateCapturedStmtArgument(*CS);
+ auto OutlinedFn = CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction(
+ S, *CS->getCapturedDecl()->param_begin(), CodeGen);
+ if (auto C = S.getSingleClause(OMPC_num_threads)) {
+ CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
+ auto NumThreadsClause = cast<OMPNumThreadsClause>(C);
+ auto NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(),
+ /*IgnoreResultAssign*/ true);
+ CGF.CGM.getOpenMPRuntime().emitNumThreadsClause(
+ CGF, NumThreads, NumThreadsClause->getLocStart());
+ }
+ const Expr *IfCond = nullptr;
+ if (auto C = S.getSingleClause(OMPC_if)) {
+ IfCond = cast<OMPIfClause>(C)->getCondition();
+ }
+ CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getLocStart(), OutlinedFn,
+ CapturedStruct, IfCond);
+}
+
+void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) {
+ LexicalScope Scope(*this, S.getSourceRange());
+ // Emit parallel region as a standalone region.
+ auto &&CodeGen = [&S](CodeGenFunction &CGF) {
+ OMPPrivateScope PrivateScope(CGF);
+ bool Copyins = CGF.EmitOMPCopyinClause(S);
+ bool Firstprivates = CGF.EmitOMPFirstprivateClause(S, PrivateScope);
+ if (Copyins || Firstprivates) {
+ // Emit implicit barrier to synchronize threads and avoid data races on
+ // initialization of firstprivate variables or propagation master's thread
+ // values of threadprivate variables to local instances of that variables
+ // of all other implicit threads.
+ CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(),
+ OMPD_unknown);
+ }
+ CGF.EmitOMPPrivateClause(S, PrivateScope);
+ CGF.EmitOMPReductionClauseInit(S, PrivateScope);
+ (void)PrivateScope.Privatize();
+ CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
+ CGF.EmitOMPReductionClauseFinal(S);
+ // Emit implicit barrier at the end of the 'parallel' directive.
+ CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(),
+ OMPD_unknown);
+ };
+ emitCommonOMPParallelDirective(*this, S, CodeGen);
+}
+
+void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &S,
+ bool SeparateIter) {
+ RunCleanupsScope BodyScope(*this);
+ // Update counters values on current iteration.
+ for (auto I : S.updates()) {
+ EmitIgnoredExpr(I);
+ }
+ // Update the linear variables.
+ for (auto &&I = S.getClausesOfKind(OMPC_linear); I; ++I) {
+ auto *C = cast<OMPLinearClause>(*I);
+ for (auto U : C->updates()) {
+ EmitIgnoredExpr(U);
+ }
+ }
+
+ // On a continue in the body, jump to the end.
+ auto Continue = getJumpDestInCurrentScope("omp.body.continue");
+ BreakContinueStack.push_back(BreakContinue(JumpDest(), Continue));
+ // Emit loop body.
+ EmitStmt(S.getBody());
+ // The end (updates/cleanups).
+ EmitBlock(Continue.getBlock());
+ BreakContinueStack.pop_back();
+ if (SeparateIter) {
+ // TODO: Update lastprivates if the SeparateIter flag is true.
+ // This will be implemented in a follow-up OMPLastprivateClause patch, but
+ // result should be still correct without it, as we do not make these
+ // variables private yet.
+ }
+}
+
+void CodeGenFunction::EmitOMPInnerLoop(
+ const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
+ const Expr *IncExpr,
+ const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
+ const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen) {
+ auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end");
+
+ // Start the loop with a block that tests the condition.
+ auto CondBlock = createBasicBlock("omp.inner.for.cond");
+ EmitBlock(CondBlock);
+ LoopStack.push(CondBlock);
+
+ // If there are any cleanups between here and the loop-exit scope,
+ // create a block to stage a loop exit along.
+ auto ExitBlock = LoopExit.getBlock();
+ if (RequiresCleanup)
+ ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup");
+
+ auto LoopBody = createBasicBlock("omp.inner.for.body");
+
+ // Emit condition.
+ EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S));
+ if (ExitBlock != LoopExit.getBlock()) {
+ EmitBlock(ExitBlock);
+ EmitBranchThroughCleanup(LoopExit);
+ }
+
+ EmitBlock(LoopBody);
+ incrementProfileCounter(&S);
+
+ // Create a block for the increment.
+ auto Continue = getJumpDestInCurrentScope("omp.inner.for.inc");
+ BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
+
+ BodyGen(*this);
+
+ // Emit "IV = IV + 1" and a back-edge to the condition block.
+ EmitBlock(Continue.getBlock());
+ EmitIgnoredExpr(IncExpr);
+ PostIncGen(*this);
+ BreakContinueStack.pop_back();
+ EmitBranch(CondBlock);
+ LoopStack.pop();
+ // Emit the fall-through block.
+ EmitBlock(LoopExit.getBlock());
+}
+
+void CodeGenFunction::EmitOMPSimdFinal(const OMPLoopDirective &S) {
+ auto IC = S.counters().begin();
+ for (auto F : S.finals()) {
+ auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl());
+ if (LocalDeclMap.lookup(OrigVD)) {
+ DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
+ CapturedStmtInfo->lookup(OrigVD) != nullptr,
+ (*IC)->getType(), VK_LValue, (*IC)->getExprLoc());
+ auto *OrigAddr = EmitLValue(&DRE).getAddress();
+ OMPPrivateScope VarScope(*this);
+ VarScope.addPrivate(OrigVD,
+ [OrigAddr]() -> llvm::Value *{ return OrigAddr; });
+ (void)VarScope.Privatize();
+ EmitIgnoredExpr(F);
+ }
+ ++IC;
+ }
+ // Emit the final values of the linear variables.
+ for (auto &&I = S.getClausesOfKind(OMPC_linear); I; ++I) {
+ auto *C = cast<OMPLinearClause>(*I);
+ auto IC = C->varlist_begin();
+ for (auto F : C->finals()) {
+ auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl());
+ DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
+ CapturedStmtInfo->lookup(OrigVD) != nullptr,
+ (*IC)->getType(), VK_LValue, (*IC)->getExprLoc());
+ auto *OrigAddr = EmitLValue(&DRE).getAddress();
+ OMPPrivateScope VarScope(*this);
+ VarScope.addPrivate(OrigVD,
+ [OrigAddr]() -> llvm::Value *{ return OrigAddr; });
+ (void)VarScope.Privatize();
+ EmitIgnoredExpr(F);
+ ++IC;
+ }
+ }
+}
+
+static void EmitOMPAlignedClause(CodeGenFunction &CGF, CodeGenModule &CGM,
+ const OMPAlignedClause &Clause) {
+ unsigned ClauseAlignment = 0;
+ if (auto AlignmentExpr = Clause.getAlignment()) {
+ auto AlignmentCI =
+ cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr));
+ ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue());
+ }
+ for (auto E : Clause.varlists()) {
+ unsigned Alignment = ClauseAlignment;
+ if (Alignment == 0) {
+ // OpenMP [2.8.1, Description]
+ // If no optional parameter is specified, implementation-defined default
+ // alignments for SIMD instructions on the target platforms are assumed.
+ Alignment = CGM.getTargetCodeGenInfo().getOpenMPSimdDefaultAlignment(
+ E->getType());
+ }
+ assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) &&
+ "alignment is not power of 2");
+ if (Alignment != 0) {
+ llvm::Value *PtrValue = CGF.EmitScalarExpr(E);
+ CGF.EmitAlignmentAssumption(PtrValue, Alignment);
+ }
+ }
+}
+
+static void EmitPrivateLoopCounters(CodeGenFunction &CGF,
+ CodeGenFunction::OMPPrivateScope &LoopScope,
+ ArrayRef<Expr *> Counters) {
+ for (auto *E : Counters) {
+ auto VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
+ (void)LoopScope.addPrivate(VD, [&]() -> llvm::Value *{
+ // Emit var without initialization.
+ auto VarEmission = CGF.EmitAutoVarAlloca(*VD);
+ CGF.EmitAutoVarCleanups(VarEmission);
+ return VarEmission.getAllocatedAddress();
+ });
+ }
+}
+
+static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S,
+ const Expr *Cond, llvm::BasicBlock *TrueBlock,
+ llvm::BasicBlock *FalseBlock, uint64_t TrueCount) {
+ CodeGenFunction::OMPPrivateScope PreCondScope(CGF);
+ EmitPrivateLoopCounters(CGF, PreCondScope, S.counters());
+ const VarDecl *IVDecl =
+ cast<VarDecl>(cast<DeclRefExpr>(S.getIterationVariable())->getDecl());
+ bool IsRegistered = PreCondScope.addPrivate(IVDecl, [&]() -> llvm::Value *{
+ // Emit var without initialization.
+ auto VarEmission = CGF.EmitAutoVarAlloca(*IVDecl);
+ CGF.EmitAutoVarCleanups(VarEmission);
+ return VarEmission.getAllocatedAddress();
+ });
+ assert(IsRegistered && "counter already registered as private");
+ // Silence the warning about unused variable.
+ (void)IsRegistered;
+ (void)PreCondScope.Privatize();
+ // Initialize internal counter to 0 to calculate initial values of real
+ // counters.
+ LValue IV = CGF.EmitLValue(S.getIterationVariable());
+ CGF.EmitStoreOfScalar(
+ llvm::ConstantInt::getNullValue(
+ IV.getAddress()->getType()->getPointerElementType()),
+ CGF.EmitLValue(S.getIterationVariable()), /*isInit=*/true);
+ // Get initial values of real counters.
+ for (auto I : S.updates()) {
+ CGF.EmitIgnoredExpr(I);
+ }
+ // Check that loop is executed at least one time.
+ CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount);
+}
+
+static void
+EmitPrivateLinearVars(CodeGenFunction &CGF, const OMPExecutableDirective &D,
+ CodeGenFunction::OMPPrivateScope &PrivateScope) {
+ for (auto &&I = D.getClausesOfKind(OMPC_linear); I; ++I) {
+ auto *C = cast<OMPLinearClause>(*I);
+ for (auto *E : C->varlists()) {
+ auto VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
+ bool IsRegistered = PrivateScope.addPrivate(VD, [&]()->llvm::Value * {
+ // Emit var without initialization.
+ auto VarEmission = CGF.EmitAutoVarAlloca(*VD);
+ CGF.EmitAutoVarCleanups(VarEmission);
+ return VarEmission.getAllocatedAddress();
+ });
+ assert(IsRegistered && "linear var already registered as private");
+ // Silence the warning about unused variable.
+ (void)IsRegistered;
+ }
+ }
+}
+
+void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) {
+ auto &&CodeGen = [&S](CodeGenFunction &CGF) {
+ // Pragma 'simd' code depends on presence of 'lastprivate'.
+ // If present, we have to separate last iteration of the loop:
+ //
+ // if (PreCond) {
+ // for (IV in 0..LastIteration-1) BODY;
+ // BODY with updates of lastprivate vars;
+ // <Final counter/linear vars updates>;
+ // }
+ //
+ // otherwise (when there's no lastprivate):
+ //
+ // if (PreCond) {
+ // for (IV in 0..LastIteration) BODY;
+ // <Final counter/linear vars updates>;
+ // }
+ //
+
+ // Emit: if (PreCond) - begin.
+ // If the condition constant folds and can be elided, avoid emitting the
+ // whole loop.
+ bool CondConstant;
+ llvm::BasicBlock *ContBlock = nullptr;
+ if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
+ if (!CondConstant)
+ return;
+ } else {
+ auto *ThenBlock = CGF.createBasicBlock("simd.if.then");
+ ContBlock = CGF.createBasicBlock("simd.if.end");
+ emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
+ CGF.getProfileCount(&S));
+ CGF.EmitBlock(ThenBlock);
+ CGF.incrementProfileCounter(&S);
+ }
+ // Walk clauses and process safelen/lastprivate.
+ bool SeparateIter = false;
+ CGF.LoopStack.setParallel();
+ CGF.LoopStack.setVectorizerEnable(true);
+ for (auto C : S.clauses()) {
+ switch (C->getClauseKind()) {
+ case OMPC_safelen: {
+ RValue Len = CGF.EmitAnyExpr(cast<OMPSafelenClause>(C)->getSafelen(),
+ AggValueSlot::ignored(), true);
+ llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
+ CGF.LoopStack.setVectorizerWidth(Val->getZExtValue());
+ // In presence of finite 'safelen', it may be unsafe to mark all
+ // the memory instructions parallel, because loop-carried
+ // dependences of 'safelen' iterations are possible.
+ CGF.LoopStack.setParallel(false);
+ break;
+ }
+ case OMPC_aligned:
+ EmitOMPAlignedClause(CGF, CGF.CGM, cast<OMPAlignedClause>(*C));
+ break;
+ case OMPC_lastprivate:
+ SeparateIter = true;
+ break;
+ default:
+ // Not handled yet
+ ;
+ }
+ }
+
+ // Emit inits for the linear variables.
+ for (auto &&I = S.getClausesOfKind(OMPC_linear); I; ++I) {
+ auto *C = cast<OMPLinearClause>(*I);
+ for (auto Init : C->inits()) {
+ auto *D = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl());
+ CGF.EmitVarDecl(*D);
+ }
+ }
+
+ // Emit the loop iteration variable.
+ const Expr *IVExpr = S.getIterationVariable();
+ const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
+ CGF.EmitVarDecl(*IVDecl);
+ CGF.EmitIgnoredExpr(S.getInit());
+
+ // Emit the iterations count variable.
+ // If it is not a variable, Sema decided to calculate iterations count on
+ // each iteration (e.g., it is foldable into a constant).
+ if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
+ CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
+ // Emit calculation of the iterations count.
+ CGF.EmitIgnoredExpr(S.getCalcLastIteration());
+ }
+
+ // Emit the linear steps for the linear clauses.
+ // If a step is not constant, it is pre-calculated before the loop.
+ for (auto &&I = S.getClausesOfKind(OMPC_linear); I; ++I) {
+ auto *C = cast<OMPLinearClause>(*I);
+ if (auto CS = cast_or_null<BinaryOperator>(C->getCalcStep()))
+ if (auto SaveRef = cast<DeclRefExpr>(CS->getLHS())) {
+ CGF.EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl()));
+ // Emit calculation of the linear step.
+ CGF.EmitIgnoredExpr(CS);
+ }
+ }
+
+ {
+ OMPPrivateScope LoopScope(CGF);
+ EmitPrivateLoopCounters(CGF, LoopScope, S.counters());
+ EmitPrivateLinearVars(CGF, S, LoopScope);
+ CGF.EmitOMPPrivateClause(S, LoopScope);
+ (void)LoopScope.Privatize();
+ CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(),
+ S.getCond(SeparateIter), S.getInc(),
+ [&S](CodeGenFunction &CGF) {
+ CGF.EmitOMPLoopBody(S);
+ CGF.EmitStopPoint(&S);
+ },
+ [](CodeGenFunction &) {});
+ if (SeparateIter) {
+ CGF.EmitOMPLoopBody(S, /*SeparateIter=*/true);
+ }
+ }
+ CGF.EmitOMPSimdFinal(S);
+ // Emit: if (PreCond) - end.
+ if (ContBlock) {
+ CGF.EmitBranch(ContBlock);
+ CGF.EmitBlock(ContBlock, true);
+ }
+ };
+ CGM.getOpenMPRuntime().emitInlinedDirective(*this, CodeGen);
+}
+
+void CodeGenFunction::EmitOMPForOuterLoop(OpenMPScheduleClauseKind ScheduleKind,
+ const OMPLoopDirective &S,
+ OMPPrivateScope &LoopScope,
+ bool Ordered, llvm::Value *LB,
+ llvm::Value *UB, llvm::Value *ST,
+ llvm::Value *IL, llvm::Value *Chunk) {
+ auto &RT = CGM.getOpenMPRuntime();
+
+ // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime).
+ const bool DynamicOrOrdered = Ordered || RT.isDynamic(ScheduleKind);
+
+ assert((Ordered ||
+ !RT.isStaticNonchunked(ScheduleKind, /*Chunked=*/Chunk != nullptr)) &&
+ "static non-chunked schedule does not need outer loop");
+
+ // Emit outer loop.
+ //
+ // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
+ // When schedule(dynamic,chunk_size) is specified, the iterations are
+ // distributed to threads in the team in chunks as the threads request them.
+ // Each thread executes a chunk of iterations, then requests another chunk,
+ // until no chunks remain to be distributed. Each chunk contains chunk_size
+ // iterations, except for the last chunk to be distributed, which may have
+ // fewer iterations. When no chunk_size is specified, it defaults to 1.
+ //
+ // When schedule(guided,chunk_size) is specified, the iterations are assigned
+ // to threads in the team in chunks as the executing threads request them.
+ // Each thread executes a chunk of iterations, then requests another chunk,
+ // until no chunks remain to be assigned. For a chunk_size of 1, the size of
+ // each chunk is proportional to the number of unassigned iterations divided
+ // by the number of threads in the team, decreasing to 1. For a chunk_size
+ // with value k (greater than 1), the size of each chunk is determined in the
+ // same way, with the restriction that the chunks do not contain fewer than k
+ // iterations (except for the last chunk to be assigned, which may have fewer
+ // than k iterations).
+ //
+ // When schedule(auto) is specified, the decision regarding scheduling is
+ // delegated to the compiler and/or runtime system. The programmer gives the
+ // implementation the freedom to choose any possible mapping of iterations to
+ // threads in the team.
+ //
+ // When schedule(runtime) is specified, the decision regarding scheduling is
+ // deferred until run time, and the schedule and chunk size are taken from the
+ // run-sched-var ICV. If the ICV is set to auto, the schedule is
+ // implementation defined
+ //
+ // while(__kmpc_dispatch_next(&LB, &UB)) {
+ // idx = LB;
+ // while (idx <= UB) { BODY; ++idx;
+ // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only.
+ // } // inner loop
+ // }
+ //
+ // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
+ // When schedule(static, chunk_size) is specified, iterations are divided into
+ // chunks of size chunk_size, and the chunks are assigned to the threads in
+ // the team in a round-robin fashion in the order of the thread number.
+ //
+ // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) {
+ // while (idx <= UB) { BODY; ++idx; } // inner loop
+ // LB = LB + ST;
+ // UB = UB + ST;
+ // }
+ //
+
+ const Expr *IVExpr = S.getIterationVariable();
+ const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
+ const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
+
+ RT.emitForInit(
+ *this, S.getLocStart(), ScheduleKind, IVSize, IVSigned, Ordered, IL, LB,
+ (DynamicOrOrdered ? EmitAnyExpr(S.getLastIteration()).getScalarVal()
+ : UB),
+ ST, Chunk);
+
+ auto LoopExit = getJumpDestInCurrentScope("omp.dispatch.end");
+
+ // Start the loop with a block that tests the condition.
+ auto CondBlock = createBasicBlock("omp.dispatch.cond");
+ EmitBlock(CondBlock);
+ LoopStack.push(CondBlock);
+
+ llvm::Value *BoolCondVal = nullptr;
+ if (!DynamicOrOrdered) {
+ // UB = min(UB, GlobalUB)
+ EmitIgnoredExpr(S.getEnsureUpperBound());
+ // IV = LB
+ EmitIgnoredExpr(S.getInit());
+ // IV < UB
+ BoolCondVal = EvaluateExprAsBool(S.getCond(false));
+ } else {
+ BoolCondVal = RT.emitForNext(*this, S.getLocStart(), IVSize, IVSigned,
+ IL, LB, UB, ST);
+ }
+
+ // If there are any cleanups between here and the loop-exit scope,
+ // create a block to stage a loop exit along.
+ auto ExitBlock = LoopExit.getBlock();
+ if (LoopScope.requiresCleanups())
+ ExitBlock = createBasicBlock("omp.dispatch.cleanup");
+
+ auto LoopBody = createBasicBlock("omp.dispatch.body");
+ Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
+ if (ExitBlock != LoopExit.getBlock()) {
+ EmitBlock(ExitBlock);
+ EmitBranchThroughCleanup(LoopExit);
+ }
+ EmitBlock(LoopBody);
+
+ // Emit "IV = LB" (in case of static schedule, we have already calculated new
+ // LB for loop condition and emitted it above).
+ if (DynamicOrOrdered)
+ EmitIgnoredExpr(S.getInit());
+
+ // Create a block for the increment.
+ auto Continue = getJumpDestInCurrentScope("omp.dispatch.inc");
+ BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
+
+ SourceLocation Loc = S.getLocStart();
+ // Generate !llvm.loop.parallel metadata for loads and stores for loops with
+ // dynamic/guided scheduling and without ordered clause.
+ LoopStack.setParallel((ScheduleKind == OMPC_SCHEDULE_dynamic ||
+ ScheduleKind == OMPC_SCHEDULE_guided) &&
+ !Ordered);
+ EmitOMPInnerLoop(
+ S, LoopScope.requiresCleanups(), S.getCond(/*SeparateIter=*/false),
+ S.getInc(),
+ [&S](CodeGenFunction &CGF) {
+ CGF.EmitOMPLoopBody(S);
+ CGF.EmitStopPoint(&S);
+ },
+ [Ordered, IVSize, IVSigned, Loc](CodeGenFunction &CGF) {
+ if (Ordered) {
+ CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(
+ CGF, Loc, IVSize, IVSigned);
+ }
+ });
+
+ EmitBlock(Continue.getBlock());
+ BreakContinueStack.pop_back();
+ if (!DynamicOrOrdered) {
+ // Emit "LB = LB + Stride", "UB = UB + Stride".
+ EmitIgnoredExpr(S.getNextLowerBound());
+ EmitIgnoredExpr(S.getNextUpperBound());
+ }
+
+ EmitBranch(CondBlock);
+ LoopStack.pop();
+ // Emit the fall-through block.
+ EmitBlock(LoopExit.getBlock());
+
+ // Tell the runtime we are done.
+ if (!DynamicOrOrdered)
+ RT.emitForStaticFinish(*this, S.getLocEnd());
+}
+
+/// \brief Emit a helper variable and return corresponding lvalue.
+static LValue EmitOMPHelperVar(CodeGenFunction &CGF,
+ const DeclRefExpr *Helper) {
+ auto VDecl = cast<VarDecl>(Helper->getDecl());
+ CGF.EmitVarDecl(*VDecl);
+ return CGF.EmitLValue(Helper);
+}
+
+static std::pair<llvm::Value * /*Chunk*/, OpenMPScheduleClauseKind>
+emitScheduleClause(CodeGenFunction &CGF, const OMPLoopDirective &S,
+ bool OuterRegion) {
+ // Detect the loop schedule kind and chunk.
+ auto ScheduleKind = OMPC_SCHEDULE_unknown;
+ llvm::Value *Chunk = nullptr;
+ if (auto *C =
+ cast_or_null<OMPScheduleClause>(S.getSingleClause(OMPC_schedule))) {
+ ScheduleKind = C->getScheduleKind();
+ if (const auto *Ch = C->getChunkSize()) {
+ if (auto *ImpRef = cast_or_null<DeclRefExpr>(C->getHelperChunkSize())) {
+ if (OuterRegion) {
+ const VarDecl *ImpVar = cast<VarDecl>(ImpRef->getDecl());
+ CGF.EmitVarDecl(*ImpVar);
+ CGF.EmitStoreThroughLValue(
+ CGF.EmitAnyExpr(Ch),
+ CGF.MakeNaturalAlignAddrLValue(CGF.GetAddrOfLocalVar(ImpVar),
+ ImpVar->getType()));
+ } else {
+ Ch = ImpRef;
+ }
+ }
+ if (!C->getHelperChunkSize() || !OuterRegion) {
+ Chunk = CGF.EmitScalarExpr(Ch);
+ Chunk = CGF.EmitScalarConversion(Chunk, Ch->getType(),
+ S.getIterationVariable()->getType());
+ }
+ }
+ }
+ return std::make_pair(Chunk, ScheduleKind);
+}
+
+bool CodeGenFunction::EmitOMPWorksharingLoop(const OMPLoopDirective &S) {
+ // Emit the loop iteration variable.
+ auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
+ auto IVDecl = cast<VarDecl>(IVExpr->getDecl());
+ EmitVarDecl(*IVDecl);
+
+ // Emit the iterations count variable.
+ // If it is not a variable, Sema decided to calculate iterations count on each
+ // iteration (e.g., it is foldable into a constant).
+ if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
+ EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
+ // Emit calculation of the iterations count.
+ EmitIgnoredExpr(S.getCalcLastIteration());
+ }
+
+ auto &RT = CGM.getOpenMPRuntime();
+
+ bool HasLastprivateClause;
+ // Check pre-condition.
+ {
+ // Skip the entire loop if we don't meet the precondition.
+ // If the condition constant folds and can be elided, avoid emitting the
+ // whole loop.
+ bool CondConstant;
+ llvm::BasicBlock *ContBlock = nullptr;
+ if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
+ if (!CondConstant)
+ return false;
+ } else {
+ auto *ThenBlock = createBasicBlock("omp.precond.then");
+ ContBlock = createBasicBlock("omp.precond.end");
+ emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
+ getProfileCount(&S));
+ EmitBlock(ThenBlock);
+ incrementProfileCounter(&S);
+ }
+ // Emit 'then' code.
+ {
+ // Emit helper vars inits.
+ LValue LB =
+ EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable()));
+ LValue UB =
+ EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable()));
+ LValue ST =
+ EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
+ LValue IL =
+ EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
+
+ OMPPrivateScope LoopScope(*this);
+ if (EmitOMPFirstprivateClause(S, LoopScope)) {
+ // Emit implicit barrier to synchronize threads and avoid data races on
+ // initialization of firstprivate variables.
+ CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(),
+ OMPD_unknown);
+ }
+ EmitOMPPrivateClause(S, LoopScope);
+ HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
+ EmitOMPReductionClauseInit(S, LoopScope);
+ EmitPrivateLoopCounters(*this, LoopScope, S.counters());
+ (void)LoopScope.Privatize();
+
+ // Detect the loop schedule kind and chunk.
+ llvm::Value *Chunk;
+ OpenMPScheduleClauseKind ScheduleKind;
+ auto ScheduleInfo =
+ emitScheduleClause(*this, S, /*OuterRegion=*/false);
+ Chunk = ScheduleInfo.first;
+ ScheduleKind = ScheduleInfo.second;
+ const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
+ const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
+ const bool Ordered = S.getSingleClause(OMPC_ordered) != nullptr;
+ if (RT.isStaticNonchunked(ScheduleKind,
+ /* Chunked */ Chunk != nullptr) &&
+ !Ordered) {
+ // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
+ // When no chunk_size is specified, the iteration space is divided into
+ // chunks that are approximately equal in size, and at most one chunk is
+ // distributed to each thread. Note that the size of the chunks is
+ // unspecified in this case.
+ RT.emitForInit(*this, S.getLocStart(), ScheduleKind, IVSize, IVSigned,
+ Ordered, IL.getAddress(), LB.getAddress(),
+ UB.getAddress(), ST.getAddress());
+ // UB = min(UB, GlobalUB);
+ EmitIgnoredExpr(S.getEnsureUpperBound());
+ // IV = LB;
+ EmitIgnoredExpr(S.getInit());
+ // while (idx <= UB) { BODY; ++idx; }
+ EmitOMPInnerLoop(S, LoopScope.requiresCleanups(),
+ S.getCond(/*SeparateIter=*/false), S.getInc(),
+ [&S](CodeGenFunction &CGF) {
+ CGF.EmitOMPLoopBody(S);
+ CGF.EmitStopPoint(&S);
+ },
+ [](CodeGenFunction &) {});
+ // Tell the runtime we are done.
+ RT.emitForStaticFinish(*this, S.getLocStart());
+ } else {
+ // Emit the outer loop, which requests its work chunk [LB..UB] from
+ // runtime and runs the inner loop to process it.
+ EmitOMPForOuterLoop(ScheduleKind, S, LoopScope, Ordered,
+ LB.getAddress(), UB.getAddress(), ST.getAddress(),
+ IL.getAddress(), Chunk);
+ }
+ EmitOMPReductionClauseFinal(S);
+ // Emit final copy of the lastprivate variables if IsLastIter != 0.
+ if (HasLastprivateClause)
+ EmitOMPLastprivateClauseFinal(
+ S, Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart())));
+ }
+ // We're now done with the loop, so jump to the continuation block.
+ if (ContBlock) {
+ EmitBranch(ContBlock);
+ EmitBlock(ContBlock, true);
+ }
+ }
+ return HasLastprivateClause;
+}
+
+void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) {
+ LexicalScope Scope(*this, S.getSourceRange());
+ bool HasLastprivates = false;
+ auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF) {
+ HasLastprivates = CGF.EmitOMPWorksharingLoop(S);
+ };
+ CGM.getOpenMPRuntime().emitInlinedDirective(*this, CodeGen);
+
+ // Emit an implicit barrier at the end.
+ if (!S.getSingleClause(OMPC_nowait) || HasLastprivates) {
+ CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for);
+ }
+}
+
+void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &) {
+ llvm_unreachable("CodeGen for 'omp for simd' is not supported yet.");
+}
+
+static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty,
+ const Twine &Name,
+ llvm::Value *Init = nullptr) {
+ auto LVal = CGF.MakeNaturalAlignAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty);
+ if (Init)
+ CGF.EmitScalarInit(Init, LVal);
+ return LVal;
+}
+
+static OpenMPDirectiveKind emitSections(CodeGenFunction &CGF,
+ const OMPExecutableDirective &S) {
+ auto *Stmt = cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt();
+ auto *CS = dyn_cast<CompoundStmt>(Stmt);
+ if (CS && CS->size() > 1) {
+ bool HasLastprivates = false;
+ auto &&CodeGen = [&S, CS, &HasLastprivates](CodeGenFunction &CGF) {
+ auto &C = CGF.CGM.getContext();
+ auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
+ // Emit helper vars inits.
+ LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.",
+ CGF.Builder.getInt32(0));
+ auto *GlobalUBVal = CGF.Builder.getInt32(CS->size() - 1);
+ LValue UB =
+ createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal);
+ LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.",
+ CGF.Builder.getInt32(1));
+ LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.",
+ CGF.Builder.getInt32(0));
+ // Loop counter.
+ LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv.");
+ OpaqueValueExpr IVRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue);
+ CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV);
+ OpaqueValueExpr UBRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue);
+ CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB);
+ // Generate condition for loop.
+ BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue,
+ OK_Ordinary, S.getLocStart(),
+ /*fpContractable=*/false);
+ // Increment for loop counter.
+ UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue,
+ OK_Ordinary, S.getLocStart());
+ auto BodyGen = [CS, &S, &IV](CodeGenFunction &CGF) {
+ // Iterate through all sections and emit a switch construct:
+ // switch (IV) {
+ // case 0:
+ // <SectionStmt[0]>;
+ // break;
+ // ...
+ // case <NumSection> - 1:
+ // <SectionStmt[<NumSection> - 1]>;
+ // break;
+ // }
+ // .omp.sections.exit:
+ auto *ExitBB = CGF.createBasicBlock(".omp.sections.exit");
+ auto *SwitchStmt = CGF.Builder.CreateSwitch(
+ CGF.EmitLoadOfLValue(IV, S.getLocStart()).getScalarVal(), ExitBB,
+ CS->size());
+ unsigned CaseNumber = 0;
+ for (auto C = CS->children(); C; ++C, ++CaseNumber) {
+ auto CaseBB = CGF.createBasicBlock(".omp.sections.case");
+ CGF.EmitBlock(CaseBB);
+ SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB);
+ CGF.EmitStmt(*C);
+ CGF.EmitBranch(ExitBB);
+ }
+ CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
+ };
+
+ CodeGenFunction::OMPPrivateScope LoopScope(CGF);
+ if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) {
+ // Emit implicit barrier to synchronize threads and avoid data races on
+ // initialization of firstprivate variables.
+ CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(),
+ OMPD_unknown);
+ }
+ CGF.EmitOMPPrivateClause(S, LoopScope);
+ HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
+ CGF.EmitOMPReductionClauseInit(S, LoopScope);
+ (void)LoopScope.Privatize();
+
+ // Emit static non-chunked loop.
+ CGF.CGM.getOpenMPRuntime().emitForInit(
+ CGF, S.getLocStart(), OMPC_SCHEDULE_static, /*IVSize=*/32,
+ /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(),
+ LB.getAddress(), UB.getAddress(), ST.getAddress());
+ // UB = min(UB, GlobalUB);
+ auto *UBVal = CGF.EmitLoadOfScalar(UB, S.getLocStart());
+ auto *MinUBGlobalUB = CGF.Builder.CreateSelect(
+ CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal);
+ CGF.EmitStoreOfScalar(MinUBGlobalUB, UB);
+ // IV = LB;
+ CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getLocStart()), IV);
+ // while (idx <= UB) { BODY; ++idx; }
+ CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen,
+ [](CodeGenFunction &) {});
+ // Tell the runtime we are done.
+ CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocStart());
+ CGF.EmitOMPReductionClauseFinal(S);
+
+ // Emit final copy of the lastprivate variables if IsLastIter != 0.
+ if (HasLastprivates)
+ CGF.EmitOMPLastprivateClauseFinal(
+ S, CGF.Builder.CreateIsNotNull(
+ CGF.EmitLoadOfScalar(IL, S.getLocStart())));
+ };
+
+ CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, CodeGen);
+ // Emit barrier for lastprivates only if 'sections' directive has 'nowait'
+ // clause. Otherwise the barrier will be generated by the codegen for the
+ // directive.
+ if (HasLastprivates && S.getSingleClause(OMPC_nowait)) {
+ // Emit implicit barrier to synchronize threads and avoid data races on
+ // initialization of firstprivate variables.
+ CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(),
+ OMPD_unknown);
+ }
+ return OMPD_sections;
+ }
+ // If only one section is found - no need to generate loop, emit as a single
+ // region.
+ bool HasFirstprivates;
+ // No need to generate reductions for sections with single section region, we
+ // can use original shared variables for all operations.
+ bool HasReductions = !S.getClausesOfKind(OMPC_reduction).empty();
+ // No need to generate lastprivates for sections with single section region,
+ // we can use original shared variable for all calculations with barrier at
+ // the end of the sections.
+ bool HasLastprivates = !S.getClausesOfKind(OMPC_lastprivate).empty();
+ auto &&CodeGen = [Stmt, &S, &HasFirstprivates](CodeGenFunction &CGF) {
+ CodeGenFunction::OMPPrivateScope SingleScope(CGF);
+ HasFirstprivates = CGF.EmitOMPFirstprivateClause(S, SingleScope);
+ CGF.EmitOMPPrivateClause(S, SingleScope);
+ (void)SingleScope.Privatize();
+
+ CGF.EmitStmt(Stmt);
+ CGF.EnsureInsertPoint();
+ };
+ CGF.CGM.getOpenMPRuntime().emitSingleRegion(CGF, CodeGen, S.getLocStart(),
+ llvm::None, llvm::None,
+ llvm::None, llvm::None);
+ // Emit barrier for firstprivates, lastprivates or reductions only if
+ // 'sections' directive has 'nowait' clause. Otherwise the barrier will be
+ // generated by the codegen for the directive.
+ if ((HasFirstprivates || HasLastprivates || HasReductions) &&
+ S.getSingleClause(OMPC_nowait)) {
+ // Emit implicit barrier to synchronize threads and avoid data races on
+ // initialization of firstprivate variables.
+ CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(),
+ OMPD_unknown);
+ }
+ return OMPD_single;
+}
+
+void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) {
+ LexicalScope Scope(*this, S.getSourceRange());
+ OpenMPDirectiveKind EmittedAs = emitSections(*this, S);
+ // Emit an implicit barrier at the end.
+ if (!S.getSingleClause(OMPC_nowait)) {
+ CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), EmittedAs);
+ }
+}
+
+void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) {
+ LexicalScope Scope(*this, S.getSourceRange());
+ auto &&CodeGen = [&S](CodeGenFunction &CGF) {
+ CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
+ CGF.EnsureInsertPoint();
+ };
+ CGM.getOpenMPRuntime().emitInlinedDirective(*this, CodeGen);
+}
+
+void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) {
+ llvm::SmallVector<const Expr *, 8> CopyprivateVars;
+ llvm::SmallVector<const Expr *, 8> DestExprs;
+ llvm::SmallVector<const Expr *, 8> SrcExprs;
+ llvm::SmallVector<const Expr *, 8> AssignmentOps;
+ // Check if there are any 'copyprivate' clauses associated with this
+ // 'single'
+ // construct.
+ // Build a list of copyprivate variables along with helper expressions
+ // (<source>, <destination>, <destination>=<source> expressions)
+ for (auto &&I = S.getClausesOfKind(OMPC_copyprivate); I; ++I) {
+ auto *C = cast<OMPCopyprivateClause>(*I);
+ CopyprivateVars.append(C->varlists().begin(), C->varlists().end());
+ DestExprs.append(C->destination_exprs().begin(),
+ C->destination_exprs().end());
+ SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end());
+ AssignmentOps.append(C->assignment_ops().begin(),
+ C->assignment_ops().end());
+ }
+ LexicalScope Scope(*this, S.getSourceRange());
+ // Emit code for 'single' region along with 'copyprivate' clauses
+ bool HasFirstprivates;
+ auto &&CodeGen = [&S, &HasFirstprivates](CodeGenFunction &CGF) {
+ CodeGenFunction::OMPPrivateScope SingleScope(CGF);
+ HasFirstprivates = CGF.EmitOMPFirstprivateClause(S, SingleScope);
+ CGF.EmitOMPPrivateClause(S, SingleScope);
+ (void)SingleScope.Privatize();
+
+ CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
+ CGF.EnsureInsertPoint();
+ };
+ CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(),
+ CopyprivateVars, DestExprs, SrcExprs,
+ AssignmentOps);
+ // Emit an implicit barrier at the end (to avoid data race on firstprivate
+ // init or if no 'nowait' clause was specified and no 'copyprivate' clause).
+ if ((!S.getSingleClause(OMPC_nowait) || HasFirstprivates) &&
+ CopyprivateVars.empty()) {
+ CGM.getOpenMPRuntime().emitBarrierCall(
+ *this, S.getLocStart(),
+ S.getSingleClause(OMPC_nowait) ? OMPD_unknown : OMPD_single);
+ }
+}
+
+void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) {
+ LexicalScope Scope(*this, S.getSourceRange());
+ auto &&CodeGen = [&S](CodeGenFunction &CGF) {
+ CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
+ CGF.EnsureInsertPoint();
+ };
+ CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getLocStart());
+}
+
+void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) {
+ LexicalScope Scope(*this, S.getSourceRange());
+ auto &&CodeGen = [&S](CodeGenFunction &CGF) {
+ CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
+ CGF.EnsureInsertPoint();
+ };
+ CGM.getOpenMPRuntime().emitCriticalRegion(
+ *this, S.getDirectiveName().getAsString(), CodeGen, S.getLocStart());
+}
+
+void CodeGenFunction::EmitOMPParallelForDirective(
+ const OMPParallelForDirective &S) {
+ // Emit directive as a combined directive that consists of two implicit
+ // directives: 'parallel' with 'for' directive.
+ LexicalScope Scope(*this, S.getSourceRange());
+ (void)emitScheduleClause(*this, S, /*OuterRegion=*/true);
+ auto &&CodeGen = [&S](CodeGenFunction &CGF) {
+ CGF.EmitOMPWorksharingLoop(S);
+ // Emit implicit barrier at the end of parallel region, but this barrier
+ // is at the end of 'for' directive, so emit it as the implicit barrier for
+ // this 'for' directive.
+ CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(),
+ OMPD_parallel);
+ };
+ emitCommonOMPParallelDirective(*this, S, CodeGen);
+}
+
+void CodeGenFunction::EmitOMPParallelForSimdDirective(
+ const OMPParallelForSimdDirective &) {
+ llvm_unreachable("CodeGen for 'omp parallel for simd' is not supported yet.");
+}
+
+void CodeGenFunction::EmitOMPParallelSectionsDirective(
+ const OMPParallelSectionsDirective &S) {
+ // Emit directive as a combined directive that consists of two implicit
+ // directives: 'parallel' with 'sections' directive.
+ LexicalScope Scope(*this, S.getSourceRange());
+ auto &&CodeGen = [&S](CodeGenFunction &CGF) {
+ (void)emitSections(CGF, S);
+ // Emit implicit barrier at the end of parallel region.
+ CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(),
+ OMPD_parallel);
+ };
+ emitCommonOMPParallelDirective(*this, S, CodeGen);
+}
+
+void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) {
+ // Emit outlined function for task construct.
+ LexicalScope Scope(*this, S.getSourceRange());
+ auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
+ auto CapturedStruct = GenerateCapturedStmtArgument(*CS);
+ auto *I = CS->getCapturedDecl()->param_begin();
+ auto *PartId = std::next(I);
+ // The first function argument for tasks is a thread id, the second one is a
+ // part id (0 for tied tasks, >=0 for untied task).
+ llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
+ // Get list of private variables.
+ llvm::SmallVector<const Expr *, 8> PrivateVars;
+ llvm::SmallVector<const Expr *, 8> PrivateCopies;
+ for (auto &&I = S.getClausesOfKind(OMPC_private); I; ++I) {
+ auto *C = cast<OMPPrivateClause>(*I);
+ auto IRef = C->varlist_begin();
+ for (auto *IInit : C->private_copies()) {
+ auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
+ if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
+ PrivateVars.push_back(*IRef);
+ PrivateCopies.push_back(IInit);
+ }
+ ++IRef;
+ }
+ }
+ EmittedAsPrivate.clear();
+ // Get list of firstprivate variables.
+ llvm::SmallVector<const Expr *, 8> FirstprivateVars;
+ llvm::SmallVector<const Expr *, 8> FirstprivateCopies;
+ llvm::SmallVector<const Expr *, 8> FirstprivateInits;
+ for (auto &&I = S.getClausesOfKind(OMPC_firstprivate); I; ++I) {
+ auto *C = cast<OMPFirstprivateClause>(*I);
+ auto IRef = C->varlist_begin();
+ auto IElemInitRef = C->inits().begin();
+ for (auto *IInit : C->private_copies()) {
+ auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
+ if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
+ FirstprivateVars.push_back(*IRef);
+ FirstprivateCopies.push_back(IInit);
+ FirstprivateInits.push_back(*IElemInitRef);
+ }
+ ++IRef, ++IElemInitRef;
+ }
+ }
+ auto &&CodeGen = [PartId, &S, &PrivateVars, &FirstprivateVars](
+ CodeGenFunction &CGF) {
+ // Set proper addresses for generated private copies.
+ auto *CS = cast<CapturedStmt>(S.getAssociatedStmt());
+ OMPPrivateScope Scope(CGF);
+ if (!PrivateVars.empty() || !FirstprivateVars.empty()) {
+ auto *CopyFn = CGF.Builder.CreateAlignedLoad(
+ CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(3)),
+ CGF.PointerAlignInBytes);
+ auto *PrivatesPtr = CGF.Builder.CreateAlignedLoad(
+ CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(2)),
+ CGF.PointerAlignInBytes);
+ // Map privates.
+ llvm::SmallVector<std::pair<const VarDecl *, llvm::Value *>, 16>
+ PrivatePtrs;
+ llvm::SmallVector<llvm::Value *, 16> CallArgs;
+ CallArgs.push_back(PrivatesPtr);
+ for (auto *E : PrivateVars) {
+ auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
+ auto *PrivatePtr =
+ CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()));
+ PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr));
+ CallArgs.push_back(PrivatePtr);
+ }
+ for (auto *E : FirstprivateVars) {
+ auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
+ auto *PrivatePtr =
+ CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()));
+ PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr));
+ CallArgs.push_back(PrivatePtr);
+ }
+ CGF.EmitRuntimeCall(CopyFn, CallArgs);
+ for (auto &&Pair : PrivatePtrs) {
+ auto *Replacement =
+ CGF.Builder.CreateAlignedLoad(Pair.second, CGF.PointerAlignInBytes);
+ Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; });
+ }
+ }
+ (void)Scope.Privatize();
+ if (*PartId) {
+ // TODO: emit code for untied tasks.
+ }
+ CGF.EmitStmt(CS->getCapturedStmt());
+ };
+ auto OutlinedFn =
+ CGM.getOpenMPRuntime().emitTaskOutlinedFunction(S, *I, CodeGen);
+ // Check if we should emit tied or untied task.
+ bool Tied = !S.getSingleClause(OMPC_untied);
+ // Check if the task is final
+ llvm::PointerIntPair<llvm::Value *, 1, bool> Final;
+ if (auto *Clause = S.getSingleClause(OMPC_final)) {
+ // If the condition constant folds and can be elided, try to avoid emitting
+ // the condition and the dead arm of the if/else.
+ auto *Cond = cast<OMPFinalClause>(Clause)->getCondition();
+ bool CondConstant;
+ if (ConstantFoldsToSimpleInteger(Cond, CondConstant))
+ Final.setInt(CondConstant);
+ else
+ Final.setPointer(EvaluateExprAsBool(Cond));
+ } else {
+ // By default the task is not final.
+ Final.setInt(/*IntVal=*/false);
+ }
+ auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
+ const Expr *IfCond = nullptr;
+ if (auto C = S.getSingleClause(OMPC_if)) {
+ IfCond = cast<OMPIfClause>(C)->getCondition();
+ }
+ CGM.getOpenMPRuntime().emitTaskCall(
+ *this, S.getLocStart(), S, Tied, Final, OutlinedFn, SharedsTy,
+ CapturedStruct, IfCond, PrivateVars, PrivateCopies, FirstprivateVars,
+ FirstprivateCopies, FirstprivateInits);
+}
+
+void CodeGenFunction::EmitOMPTaskyieldDirective(
+ const OMPTaskyieldDirective &S) {
+ CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getLocStart());
+}
+
+void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) {
+ CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_barrier);
+}
+
+void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) {
+ CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getLocStart());
+}
+
+void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) {
+ CGM.getOpenMPRuntime().emitFlush(*this, [&]() -> ArrayRef<const Expr *> {
+ if (auto C = S.getSingleClause(/*K*/ OMPC_flush)) {
+ auto FlushClause = cast<OMPFlushClause>(C);
+ return llvm::makeArrayRef(FlushClause->varlist_begin(),
+ FlushClause->varlist_end());
+ }
+ return llvm::None;
+ }(), S.getLocStart());
+}
+
+void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) {
+ LexicalScope Scope(*this, S.getSourceRange());
+ auto &&CodeGen = [&S](CodeGenFunction &CGF) {
+ CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
+ CGF.EnsureInsertPoint();
+ };
+ CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getLocStart());
+}
+
+static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val,
+ QualType SrcType, QualType DestType) {
+ assert(CGF.hasScalarEvaluationKind(DestType) &&
+ "DestType must have scalar evaluation kind.");
+ assert(!Val.isAggregate() && "Must be a scalar or complex.");
+ return Val.isScalar()
+ ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestType)
+ : CGF.EmitComplexToScalarConversion(Val.getComplexVal(), SrcType,
+ DestType);
+}
+
+static CodeGenFunction::ComplexPairTy
+convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType,
+ QualType DestType) {
+ assert(CGF.getEvaluationKind(DestType) == TEK_Complex &&
+ "DestType must have complex evaluation kind.");
+ CodeGenFunction::ComplexPairTy ComplexVal;
+ if (Val.isScalar()) {
+ // Convert the input element to the element type of the complex.
+ auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
+ auto ScalarVal =
+ CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestElementType);
+ ComplexVal = CodeGenFunction::ComplexPairTy(
+ ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType()));
+ } else {
+ assert(Val.isComplex() && "Must be a scalar or complex.");
+ auto SrcElementType = SrcType->castAs<ComplexType>()->getElementType();
+ auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
+ ComplexVal.first = CGF.EmitScalarConversion(
+ Val.getComplexVal().first, SrcElementType, DestElementType);
+ ComplexVal.second = CGF.EmitScalarConversion(
+ Val.getComplexVal().second, SrcElementType, DestElementType);
+ }
+ return ComplexVal;
+}
+
+static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst,
+ LValue LVal, RValue RVal) {
+ if (LVal.isGlobalReg()) {
+ CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal);
+ } else {
+ CGF.EmitAtomicStore(RVal, LVal, IsSeqCst ? llvm::SequentiallyConsistent
+ : llvm::Monotonic,
+ LVal.isVolatile(), /*IsInit=*/false);
+ }
+}
+
+static void emitSimpleStore(CodeGenFunction &CGF, LValue LVal, RValue RVal,
+ QualType RValTy) {
+ switch (CGF.getEvaluationKind(LVal.getType())) {
+ case TEK_Scalar:
+ CGF.EmitStoreThroughLValue(
+ RValue::get(convertToScalarValue(CGF, RVal, RValTy, LVal.getType())),
+ LVal);
+ break;
+ case TEK_Complex:
+ CGF.EmitStoreOfComplex(
+ convertToComplexValue(CGF, RVal, RValTy, LVal.getType()), LVal,
+ /*isInit=*/false);
+ break;
+ case TEK_Aggregate:
+ llvm_unreachable("Must be a scalar or complex.");
+ }
+}
+
+static void EmitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst,
+ const Expr *X, const Expr *V,
+ SourceLocation Loc) {
+ // v = x;
+ assert(V->isLValue() && "V of 'omp atomic read' is not lvalue");
+ assert(X->isLValue() && "X of 'omp atomic read' is not lvalue");
+ LValue XLValue = CGF.EmitLValue(X);
+ LValue VLValue = CGF.EmitLValue(V);
+ RValue Res = XLValue.isGlobalReg()
+ ? CGF.EmitLoadOfLValue(XLValue, Loc)
+ : CGF.EmitAtomicLoad(XLValue, Loc,
+ IsSeqCst ? llvm::SequentiallyConsistent
+ : llvm::Monotonic,
+ XLValue.isVolatile());
+ // OpenMP, 2.12.6, atomic Construct
+ // Any atomic construct with a seq_cst clause forces the atomically
+ // performed operation to include an implicit flush operation without a
+ // list.
+ if (IsSeqCst)
+ CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
+ emitSimpleStore(CGF,VLValue, Res, X->getType().getNonReferenceType());
+}
+
+static void EmitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst,
+ const Expr *X, const Expr *E,
+ SourceLocation Loc) {
+ // x = expr;
+ assert(X->isLValue() && "X of 'omp atomic write' is not lvalue");
+ emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E));
+ // OpenMP, 2.12.6, atomic Construct
+ // Any atomic construct with a seq_cst clause forces the atomically
+ // performed operation to include an implicit flush operation without a
+ // list.
+ if (IsSeqCst)
+ CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
+}
+
+static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X,
+ RValue Update,
+ BinaryOperatorKind BO,
+ llvm::AtomicOrdering AO,
+ bool IsXLHSInRHSPart) {
+ auto &Context = CGF.CGM.getContext();
+ // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x'
+ // expression is simple and atomic is allowed for the given type for the
+ // target platform.
+ if (BO == BO_Comma || !Update.isScalar() ||
+ !Update.getScalarVal()->getType()->isIntegerTy() ||
+ !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) &&
+ (Update.getScalarVal()->getType() !=
+ X.getAddress()->getType()->getPointerElementType())) ||
+ !X.getAddress()->getType()->getPointerElementType()->isIntegerTy() ||
+ !Context.getTargetInfo().hasBuiltinAtomic(
+ Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment())))
+ return std::make_pair(false, RValue::get(nullptr));
+
+ llvm::AtomicRMWInst::BinOp RMWOp;
+ switch (BO) {
+ case BO_Add:
+ RMWOp = llvm::AtomicRMWInst::Add;
+ break;
+ case BO_Sub:
+ if (!IsXLHSInRHSPart)
+ return std::make_pair(false, RValue::get(nullptr));
+ RMWOp = llvm::AtomicRMWInst::Sub;
+ break;
+ case BO_And:
+ RMWOp = llvm::AtomicRMWInst::And;
+ break;
+ case BO_Or:
+ RMWOp = llvm::AtomicRMWInst::Or;
+ break;
+ case BO_Xor:
+ RMWOp = llvm::AtomicRMWInst::Xor;
+ break;
+ case BO_LT:
+ RMWOp = X.getType()->hasSignedIntegerRepresentation()
+ ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min
+ : llvm::AtomicRMWInst::Max)
+ : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin
+ : llvm::AtomicRMWInst::UMax);
+ break;
+ case BO_GT:
+ RMWOp = X.getType()->hasSignedIntegerRepresentation()
+ ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max
+ : llvm::AtomicRMWInst::Min)
+ : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax
+ : llvm::AtomicRMWInst::UMin);
+ break;
+ case BO_Assign:
+ RMWOp = llvm::AtomicRMWInst::Xchg;
+ break;
+ case BO_Mul:
+ case BO_Div:
+ case BO_Rem:
+ case BO_Shl:
+ case BO_Shr:
+ case BO_LAnd:
+ case BO_LOr:
+ return std::make_pair(false, RValue::get(nullptr));
+ case BO_PtrMemD:
+ case BO_PtrMemI:
+ case BO_LE:
+ case BO_GE:
+ case BO_EQ:
+ case BO_NE:
+ case BO_AddAssign:
+ case BO_SubAssign:
+ case BO_AndAssign:
+ case BO_OrAssign:
+ case BO_XorAssign:
+ case BO_MulAssign:
+ case BO_DivAssign:
+ case BO_RemAssign:
+ case BO_ShlAssign:
+ case BO_ShrAssign:
+ case BO_Comma:
+ llvm_unreachable("Unsupported atomic update operation");
+ }
+ auto *UpdateVal = Update.getScalarVal();
+ if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) {
+ UpdateVal = CGF.Builder.CreateIntCast(
+ IC, X.getAddress()->getType()->getPointerElementType(),
+ X.getType()->hasSignedIntegerRepresentation());
+ }
+ auto *Res = CGF.Builder.CreateAtomicRMW(RMWOp, X.getAddress(), UpdateVal, AO);
+ return std::make_pair(true, RValue::get(Res));
+}
+
+std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr(
+ LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
+ llvm::AtomicOrdering AO, SourceLocation Loc,
+ const llvm::function_ref<RValue(RValue)> &CommonGen) {
+ // Update expressions are allowed to have the following forms:
+ // x binop= expr; -> xrval + expr;
+ // x++, ++x -> xrval + 1;
+ // x--, --x -> xrval - 1;
+ // x = x binop expr; -> xrval binop expr
+ // x = expr Op x; - > expr binop xrval;
+ auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart);
+ if (!Res.first) {
+ if (X.isGlobalReg()) {
+ // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop
+ // 'xrval'.
+ EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X);
+ } else {
+ // Perform compare-and-swap procedure.
+ EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified());
+ }
+ }
+ return Res;
+}
+
+static void EmitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst,
+ const Expr *X, const Expr *E,
+ const Expr *UE, bool IsXLHSInRHSPart,
+ SourceLocation Loc) {
+ assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
+ "Update expr in 'atomic update' must be a binary operator.");
+ auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
+ // Update expressions are allowed to have the following forms:
+ // x binop= expr; -> xrval + expr;
+ // x++, ++x -> xrval + 1;
+ // x--, --x -> xrval - 1;
+ // x = x binop expr; -> xrval binop expr
+ // x = expr Op x; - > expr binop xrval;
+ assert(X->isLValue() && "X of 'omp atomic update' is not lvalue");
+ LValue XLValue = CGF.EmitLValue(X);
+ RValue ExprRValue = CGF.EmitAnyExpr(E);
+ auto AO = IsSeqCst ? llvm::SequentiallyConsistent : llvm::Monotonic;
+ auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
+ auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
+ auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
+ auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
+ auto Gen =
+ [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) -> RValue {
+ CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
+ CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
+ return CGF.EmitAnyExpr(UE);
+ };
+ (void)CGF.EmitOMPAtomicSimpleUpdateExpr(
+ XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
+ // OpenMP, 2.12.6, atomic Construct
+ // Any atomic construct with a seq_cst clause forces the atomically
+ // performed operation to include an implicit flush operation without a
+ // list.
+ if (IsSeqCst)
+ CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
+}
+
+static RValue convertToType(CodeGenFunction &CGF, RValue Value,
+ QualType SourceType, QualType ResType) {
+ switch (CGF.getEvaluationKind(ResType)) {
+ case TEK_Scalar:
+ return RValue::get(convertToScalarValue(CGF, Value, SourceType, ResType));
+ case TEK_Complex: {
+ auto Res = convertToComplexValue(CGF, Value, SourceType, ResType);
+ return RValue::getComplex(Res.first, Res.second);
+ }
+ case TEK_Aggregate:
+ break;
+ }
+ llvm_unreachable("Must be a scalar or complex.");
+}
+
+static void EmitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst,
+ bool IsPostfixUpdate, const Expr *V,
+ const Expr *X, const Expr *E,
+ const Expr *UE, bool IsXLHSInRHSPart,
+ SourceLocation Loc) {
+ assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue");
+ assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue");
+ RValue NewVVal;
+ LValue VLValue = CGF.EmitLValue(V);
+ LValue XLValue = CGF.EmitLValue(X);
+ RValue ExprRValue = CGF.EmitAnyExpr(E);
+ auto AO = IsSeqCst ? llvm::SequentiallyConsistent : llvm::Monotonic;
+ QualType NewVValType;
+ if (UE) {
+ // 'x' is updated with some additional value.
+ assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
+ "Update expr in 'atomic capture' must be a binary operator.");
+ auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
+ // Update expressions are allowed to have the following forms:
+ // x binop= expr; -> xrval + expr;
+ // x++, ++x -> xrval + 1;
+ // x--, --x -> xrval - 1;
+ // x = x binop expr; -> xrval binop expr
+ // x = expr Op x; - > expr binop xrval;
+ auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
+ auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
+ auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
+ NewVValType = XRValExpr->getType();
+ auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
+ auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr,
+ IsSeqCst, IsPostfixUpdate](RValue XRValue) -> RValue {
+ CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
+ CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
+ RValue Res = CGF.EmitAnyExpr(UE);
+ NewVVal = IsPostfixUpdate ? XRValue : Res;
+ return Res;
+ };
+ auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
+ XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
+ if (Res.first) {
+ // 'atomicrmw' instruction was generated.
+ if (IsPostfixUpdate) {
+ // Use old value from 'atomicrmw'.
+ NewVVal = Res.second;
+ } else {
+ // 'atomicrmw' does not provide new value, so evaluate it using old
+ // value of 'x'.
+ CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
+ CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second);
+ NewVVal = CGF.EmitAnyExpr(UE);
+ }
+ }
+ } else {
+ // 'x' is simply rewritten with some 'expr'.
+ NewVValType = X->getType().getNonReferenceType();
+ ExprRValue = convertToType(CGF, ExprRValue, E->getType(),
+ X->getType().getNonReferenceType());
+ auto &&Gen = [&CGF, &NewVVal, ExprRValue](RValue XRValue) -> RValue {
+ NewVVal = XRValue;
+ return ExprRValue;
+ };
+ // Try to perform atomicrmw xchg, otherwise simple exchange.
+ auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
+ XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO,
+ Loc, Gen);
+ if (Res.first) {
+ // 'atomicrmw' instruction was generated.
+ NewVVal = IsPostfixUpdate ? Res.second : ExprRValue;
+ }
+ }
+ // Emit post-update store to 'v' of old/new 'x' value.
+ emitSimpleStore(CGF, VLValue, NewVVal, NewVValType);
+ // OpenMP, 2.12.6, atomic Construct
+ // Any atomic construct with a seq_cst clause forces the atomically
+ // performed operation to include an implicit flush operation without a
+ // list.
+ if (IsSeqCst)
+ CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
+}
+
+static void EmitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind,
+ bool IsSeqCst, bool IsPostfixUpdate,
+ const Expr *X, const Expr *V, const Expr *E,
+ const Expr *UE, bool IsXLHSInRHSPart,
+ SourceLocation Loc) {
+ switch (Kind) {
+ case OMPC_read:
+ EmitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc);
+ break;
+ case OMPC_write:
+ EmitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc);
+ break;
+ case OMPC_unknown:
+ case OMPC_update:
+ EmitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc);
+ break;
+ case OMPC_capture:
+ EmitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE,
+ IsXLHSInRHSPart, Loc);
+ break;
+ case OMPC_if:
+ case OMPC_final:
+ case OMPC_num_threads:
+ case OMPC_private:
+ case OMPC_firstprivate:
+ case OMPC_lastprivate:
+ case OMPC_reduction:
+ case OMPC_safelen:
+ case OMPC_collapse:
+ case OMPC_default:
+ case OMPC_seq_cst:
+ case OMPC_shared:
+ case OMPC_linear:
+ case OMPC_aligned:
+ case OMPC_copyin:
+ case OMPC_copyprivate:
+ case OMPC_flush:
+ case OMPC_proc_bind:
+ case OMPC_schedule:
+ case OMPC_ordered:
+ case OMPC_nowait:
+ case OMPC_untied:
+ case OMPC_threadprivate:
+ case OMPC_mergeable:
+ llvm_unreachable("Clause is not allowed in 'omp atomic'.");
+ }
+}
+
+void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) {
+ bool IsSeqCst = S.getSingleClause(/*K=*/OMPC_seq_cst);
+ OpenMPClauseKind Kind = OMPC_unknown;
+ for (auto *C : S.clauses()) {
+ // Find first clause (skip seq_cst clause, if it is first).
+ if (C->getClauseKind() != OMPC_seq_cst) {
+ Kind = C->getClauseKind();
+ break;
+ }
+ }
+
+ const auto *CS =
+ S.getAssociatedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
+ if (const auto *EWC = dyn_cast<ExprWithCleanups>(CS)) {
+ enterFullExpression(EWC);
+ }
+ // Processing for statements under 'atomic capture'.
+ if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) {
+ for (const auto *C : Compound->body()) {
+ if (const auto *EWC = dyn_cast<ExprWithCleanups>(C)) {
+ enterFullExpression(EWC);
+ }
+ }
+ }
+
+ LexicalScope Scope(*this, S.getSourceRange());
+ auto &&CodeGen = [&S, Kind, IsSeqCst](CodeGenFunction &CGF) {
+ EmitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(),
+ S.getV(), S.getExpr(), S.getUpdateExpr(),
+ S.isXLHSInRHSPart(), S.getLocStart());
+ };
+ CGM.getOpenMPRuntime().emitInlinedDirective(*this, CodeGen);
+}
+
+void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &) {
+ llvm_unreachable("CodeGen for 'omp target' is not supported yet.");
+}
+
+void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &) {
+ llvm_unreachable("CodeGen for 'omp teams' is not supported yet.");
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGVTT.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGVTT.cpp
new file mode 100644
index 0000000..e3df5a4
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGVTT.cpp
@@ -0,0 +1,179 @@
+//===--- CGVTT.cpp - Emit LLVM Code for C++ VTTs --------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code dealing with C++ code generation of VTTs (vtable tables).
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenModule.h"
+#include "CGCXXABI.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/AST/VTTBuilder.h"
+using namespace clang;
+using namespace CodeGen;
+
+static llvm::GlobalVariable *
+GetAddrOfVTTVTable(CodeGenVTables &CGVT, CodeGenModule &CGM,
+ const CXXRecordDecl *MostDerivedClass,
+ const VTTVTable &VTable,
+ llvm::GlobalVariable::LinkageTypes Linkage,
+ llvm::DenseMap<BaseSubobject, uint64_t> &AddressPoints) {
+ if (VTable.getBase() == MostDerivedClass) {
+ assert(VTable.getBaseOffset().isZero() &&
+ "Most derived class vtable must have a zero offset!");
+ // This is a regular vtable.
+ return CGM.getCXXABI().getAddrOfVTable(MostDerivedClass, CharUnits());
+ }
+
+ return CGVT.GenerateConstructionVTable(MostDerivedClass,
+ VTable.getBaseSubobject(),
+ VTable.isVirtual(),
+ Linkage,
+ AddressPoints);
+}
+
+void
+CodeGenVTables::EmitVTTDefinition(llvm::GlobalVariable *VTT,
+ llvm::GlobalVariable::LinkageTypes Linkage,
+ const CXXRecordDecl *RD) {
+ VTTBuilder Builder(CGM.getContext(), RD, /*GenerateDefinition=*/true);
+
+ llvm::Type *Int8PtrTy = CGM.Int8PtrTy, *Int64Ty = CGM.Int64Ty;
+ llvm::ArrayType *ArrayType =
+ llvm::ArrayType::get(Int8PtrTy, Builder.getVTTComponents().size());
+
+ SmallVector<llvm::GlobalVariable *, 8> VTables;
+ SmallVector<VTableAddressPointsMapTy, 8> VTableAddressPoints;
+ for (const VTTVTable *i = Builder.getVTTVTables().begin(),
+ *e = Builder.getVTTVTables().end(); i != e; ++i) {
+ VTableAddressPoints.push_back(VTableAddressPointsMapTy());
+ VTables.push_back(GetAddrOfVTTVTable(*this, CGM, RD, *i, Linkage,
+ VTableAddressPoints.back()));
+ }
+
+ SmallVector<llvm::Constant *, 8> VTTComponents;
+ for (const VTTComponent *i = Builder.getVTTComponents().begin(),
+ *e = Builder.getVTTComponents().end(); i != e; ++i) {
+ const VTTVTable &VTTVT = Builder.getVTTVTables()[i->VTableIndex];
+ llvm::GlobalVariable *VTable = VTables[i->VTableIndex];
+ uint64_t AddressPoint;
+ if (VTTVT.getBase() == RD) {
+ // Just get the address point for the regular vtable.
+ AddressPoint =
+ getItaniumVTableContext().getVTableLayout(RD).getAddressPoint(
+ i->VTableBase);
+ assert(AddressPoint != 0 && "Did not find vtable address point!");
+ } else {
+ AddressPoint = VTableAddressPoints[i->VTableIndex].lookup(i->VTableBase);
+ assert(AddressPoint != 0 && "Did not find ctor vtable address point!");
+ }
+
+ llvm::Value *Idxs[] = {
+ llvm::ConstantInt::get(Int64Ty, 0),
+ llvm::ConstantInt::get(Int64Ty, AddressPoint)
+ };
+
+ llvm::Constant *Init = llvm::ConstantExpr::getInBoundsGetElementPtr(
+ VTable->getValueType(), VTable, Idxs);
+
+ Init = llvm::ConstantExpr::getBitCast(Init, Int8PtrTy);
+
+ VTTComponents.push_back(Init);
+ }
+
+ llvm::Constant *Init = llvm::ConstantArray::get(ArrayType, VTTComponents);
+
+ VTT->setInitializer(Init);
+
+ // Set the correct linkage.
+ VTT->setLinkage(Linkage);
+
+ if (CGM.supportsCOMDAT() && VTT->isWeakForLinker())
+ VTT->setComdat(CGM.getModule().getOrInsertComdat(VTT->getName()));
+
+ // Set the right visibility.
+ CGM.setGlobalVisibility(VTT, RD);
+}
+
+llvm::GlobalVariable *CodeGenVTables::GetAddrOfVTT(const CXXRecordDecl *RD) {
+ assert(RD->getNumVBases() && "Only classes with virtual bases need a VTT");
+
+ SmallString<256> OutName;
+ llvm::raw_svector_ostream Out(OutName);
+ cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext())
+ .mangleCXXVTT(RD, Out);
+ Out.flush();
+ StringRef Name = OutName.str();
+
+ // This will also defer the definition of the VTT.
+ (void) CGM.getCXXABI().getAddrOfVTable(RD, CharUnits());
+
+ VTTBuilder Builder(CGM.getContext(), RD, /*GenerateDefinition=*/false);
+
+ llvm::ArrayType *ArrayType =
+ llvm::ArrayType::get(CGM.Int8PtrTy, Builder.getVTTComponents().size());
+
+ llvm::GlobalVariable *GV =
+ CGM.CreateOrReplaceCXXRuntimeVariable(Name, ArrayType,
+ llvm::GlobalValue::ExternalLinkage);
+ GV->setUnnamedAddr(true);
+ return GV;
+}
+
+uint64_t CodeGenVTables::getSubVTTIndex(const CXXRecordDecl *RD,
+ BaseSubobject Base) {
+ BaseSubobjectPairTy ClassSubobjectPair(RD, Base);
+
+ SubVTTIndiciesMapTy::iterator I = SubVTTIndicies.find(ClassSubobjectPair);
+ if (I != SubVTTIndicies.end())
+ return I->second;
+
+ VTTBuilder Builder(CGM.getContext(), RD, /*GenerateDefinition=*/false);
+
+ for (llvm::DenseMap<BaseSubobject, uint64_t>::const_iterator I =
+ Builder.getSubVTTIndicies().begin(),
+ E = Builder.getSubVTTIndicies().end(); I != E; ++I) {
+ // Insert all indices.
+ BaseSubobjectPairTy ClassSubobjectPair(RD, I->first);
+
+ SubVTTIndicies.insert(std::make_pair(ClassSubobjectPair, I->second));
+ }
+
+ I = SubVTTIndicies.find(ClassSubobjectPair);
+ assert(I != SubVTTIndicies.end() && "Did not find index!");
+
+ return I->second;
+}
+
+uint64_t
+CodeGenVTables::getSecondaryVirtualPointerIndex(const CXXRecordDecl *RD,
+ BaseSubobject Base) {
+ SecondaryVirtualPointerIndicesMapTy::iterator I =
+ SecondaryVirtualPointerIndices.find(std::make_pair(RD, Base));
+
+ if (I != SecondaryVirtualPointerIndices.end())
+ return I->second;
+
+ VTTBuilder Builder(CGM.getContext(), RD, /*GenerateDefinition=*/false);
+
+ // Insert all secondary vpointer indices.
+ for (llvm::DenseMap<BaseSubobject, uint64_t>::const_iterator I =
+ Builder.getSecondaryVirtualPointerIndices().begin(),
+ E = Builder.getSecondaryVirtualPointerIndices().end(); I != E; ++I) {
+ std::pair<const CXXRecordDecl *, BaseSubobject> Pair =
+ std::make_pair(RD, I->first);
+
+ SecondaryVirtualPointerIndices.insert(std::make_pair(Pair, I->second));
+ }
+
+ I = SecondaryVirtualPointerIndices.find(std::make_pair(RD, Base));
+ assert(I != SecondaryVirtualPointerIndices.end() && "Did not find index!");
+
+ return I->second;
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGVTables.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGVTables.cpp
new file mode 100644
index 0000000..57370a6
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGVTables.cpp
@@ -0,0 +1,906 @@
+//===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code dealing with C++ code generation of virtual tables.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenFunction.h"
+#include "CGCXXABI.h"
+#include "CodeGenModule.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/CodeGen/CGFunctionInfo.h"
+#include "clang/Frontend/CodeGenOptions.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include <algorithm>
+#include <cstdio>
+
+using namespace clang;
+using namespace CodeGen;
+
+CodeGenVTables::CodeGenVTables(CodeGenModule &CGM)
+ : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {}
+
+llvm::Constant *CodeGenModule::GetAddrOfThunk(GlobalDecl GD,
+ const ThunkInfo &Thunk) {
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
+
+ // Compute the mangled name.
+ SmallString<256> Name;
+ llvm::raw_svector_ostream Out(Name);
+ if (const CXXDestructorDecl* DD = dyn_cast<CXXDestructorDecl>(MD))
+ getCXXABI().getMangleContext().mangleCXXDtorThunk(DD, GD.getDtorType(),
+ Thunk.This, Out);
+ else
+ getCXXABI().getMangleContext().mangleThunk(MD, Thunk, Out);
+ Out.flush();
+
+ llvm::Type *Ty = getTypes().GetFunctionTypeForVTable(GD);
+ return GetOrCreateLLVMFunction(Name, Ty, GD, /*ForVTable=*/true,
+ /*DontDefer=*/true, /*IsThunk=*/true);
+}
+
+static void setThunkVisibility(CodeGenModule &CGM, const CXXMethodDecl *MD,
+ const ThunkInfo &Thunk, llvm::Function *Fn) {
+ CGM.setGlobalVisibility(Fn, MD);
+}
+
+#ifndef NDEBUG
+static bool similar(const ABIArgInfo &infoL, CanQualType typeL,
+ const ABIArgInfo &infoR, CanQualType typeR) {
+ return (infoL.getKind() == infoR.getKind() &&
+ (typeL == typeR ||
+ (isa<PointerType>(typeL) && isa<PointerType>(typeR)) ||
+ (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR))));
+}
+#endif
+
+static RValue PerformReturnAdjustment(CodeGenFunction &CGF,
+ QualType ResultType, RValue RV,
+ const ThunkInfo &Thunk) {
+ // Emit the return adjustment.
+ bool NullCheckValue = !ResultType->isReferenceType();
+
+ llvm::BasicBlock *AdjustNull = nullptr;
+ llvm::BasicBlock *AdjustNotNull = nullptr;
+ llvm::BasicBlock *AdjustEnd = nullptr;
+
+ llvm::Value *ReturnValue = RV.getScalarVal();
+
+ if (NullCheckValue) {
+ AdjustNull = CGF.createBasicBlock("adjust.null");
+ AdjustNotNull = CGF.createBasicBlock("adjust.notnull");
+ AdjustEnd = CGF.createBasicBlock("adjust.end");
+
+ llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue);
+ CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull);
+ CGF.EmitBlock(AdjustNotNull);
+ }
+
+ ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(CGF, ReturnValue,
+ Thunk.Return);
+
+ if (NullCheckValue) {
+ CGF.Builder.CreateBr(AdjustEnd);
+ CGF.EmitBlock(AdjustNull);
+ CGF.Builder.CreateBr(AdjustEnd);
+ CGF.EmitBlock(AdjustEnd);
+
+ llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2);
+ PHI->addIncoming(ReturnValue, AdjustNotNull);
+ PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()),
+ AdjustNull);
+ ReturnValue = PHI;
+ }
+
+ return RValue::get(ReturnValue);
+}
+
+// This function does roughly the same thing as GenerateThunk, but in a
+// very different way, so that va_start and va_end work correctly.
+// FIXME: This function assumes "this" is the first non-sret LLVM argument of
+// a function, and that there is an alloca built in the entry block
+// for all accesses to "this".
+// FIXME: This function assumes there is only one "ret" statement per function.
+// FIXME: Cloning isn't correct in the presence of indirect goto!
+// FIXME: This implementation of thunks bloats codesize by duplicating the
+// function definition. There are alternatives:
+// 1. Add some sort of stub support to LLVM for cases where we can
+// do a this adjustment, then a sibcall.
+// 2. We could transform the definition to take a va_list instead of an
+// actual variable argument list, then have the thunks (including a
+// no-op thunk for the regular definition) call va_start/va_end.
+// There's a bit of per-call overhead for this solution, but it's
+// better for codesize if the definition is long.
+void CodeGenFunction::GenerateVarArgsThunk(
+ llvm::Function *Fn,
+ const CGFunctionInfo &FnInfo,
+ GlobalDecl GD, const ThunkInfo &Thunk) {
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
+ const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
+ QualType ResultType = FPT->getReturnType();
+
+ // Get the original function
+ assert(FnInfo.isVariadic());
+ llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo);
+ llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
+ llvm::Function *BaseFn = cast<llvm::Function>(Callee);
+
+ // Clone to thunk.
+ llvm::ValueToValueMapTy VMap;
+ llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap,
+ /*ModuleLevelChanges=*/false);
+ CGM.getModule().getFunctionList().push_back(NewFn);
+ Fn->replaceAllUsesWith(NewFn);
+ NewFn->takeName(Fn);
+ Fn->eraseFromParent();
+ Fn = NewFn;
+
+ // "Initialize" CGF (minimally).
+ CurFn = Fn;
+
+ // Get the "this" value
+ llvm::Function::arg_iterator AI = Fn->arg_begin();
+ if (CGM.ReturnTypeUsesSRet(FnInfo))
+ ++AI;
+
+ // Find the first store of "this", which will be to the alloca associated
+ // with "this".
+ llvm::Value *ThisPtr = &*AI;
+ llvm::BasicBlock *EntryBB = Fn->begin();
+ llvm::Instruction *ThisStore =
+ std::find_if(EntryBB->begin(), EntryBB->end(), [&](llvm::Instruction &I) {
+ return isa<llvm::StoreInst>(I) && I.getOperand(0) == ThisPtr;
+ });
+ assert(ThisStore && "Store of this should be in entry block?");
+ // Adjust "this", if necessary.
+ Builder.SetInsertPoint(ThisStore);
+ llvm::Value *AdjustedThisPtr =
+ CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This);
+ ThisStore->setOperand(0, AdjustedThisPtr);
+
+ if (!Thunk.Return.isEmpty()) {
+ // Fix up the returned value, if necessary.
+ for (llvm::Function::iterator I = Fn->begin(), E = Fn->end(); I != E; I++) {
+ llvm::Instruction *T = I->getTerminator();
+ if (isa<llvm::ReturnInst>(T)) {
+ RValue RV = RValue::get(T->getOperand(0));
+ T->eraseFromParent();
+ Builder.SetInsertPoint(&*I);
+ RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk);
+ Builder.CreateRet(RV.getScalarVal());
+ break;
+ }
+ }
+ }
+}
+
+void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD,
+ const CGFunctionInfo &FnInfo) {
+ assert(!CurGD.getDecl() && "CurGD was already set!");
+ CurGD = GD;
+ CurFuncIsThunk = true;
+
+ // Build FunctionArgs.
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
+ QualType ThisType = MD->getThisType(getContext());
+ const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
+ QualType ResultType = CGM.getCXXABI().HasThisReturn(GD)
+ ? ThisType
+ : CGM.getCXXABI().hasMostDerivedReturn(GD)
+ ? CGM.getContext().VoidPtrTy
+ : FPT->getReturnType();
+ FunctionArgList FunctionArgs;
+
+ // Create the implicit 'this' parameter declaration.
+ CGM.getCXXABI().buildThisParam(*this, FunctionArgs);
+
+ // Add the rest of the parameters.
+ FunctionArgs.append(MD->param_begin(), MD->param_end());
+
+ if (isa<CXXDestructorDecl>(MD))
+ CGM.getCXXABI().addImplicitStructorParams(*this, ResultType, FunctionArgs);
+
+ // Start defining the function.
+ StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs,
+ MD->getLocation(), MD->getLocation());
+
+ // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves.
+ CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
+ CXXThisValue = CXXABIThisValue;
+}
+
+void CodeGenFunction::EmitCallAndReturnForThunk(llvm::Value *Callee,
+ const ThunkInfo *Thunk) {
+ assert(isa<CXXMethodDecl>(CurGD.getDecl()) &&
+ "Please use a new CGF for this thunk");
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl());
+
+ // Adjust the 'this' pointer if necessary
+ llvm::Value *AdjustedThisPtr = Thunk ? CGM.getCXXABI().performThisAdjustment(
+ *this, LoadCXXThis(), Thunk->This)
+ : LoadCXXThis();
+
+ if (CurFnInfo->usesInAlloca()) {
+ // We don't handle return adjusting thunks, because they require us to call
+ // the copy constructor. For now, fall through and pretend the return
+ // adjustment was empty so we don't crash.
+ if (Thunk && !Thunk->Return.isEmpty()) {
+ CGM.ErrorUnsupported(
+ MD, "non-trivial argument copy for return-adjusting thunk");
+ }
+ EmitMustTailThunk(MD, AdjustedThisPtr, Callee);
+ return;
+ }
+
+ // Start building CallArgs.
+ CallArgList CallArgs;
+ QualType ThisType = MD->getThisType(getContext());
+ CallArgs.add(RValue::get(AdjustedThisPtr), ThisType);
+
+ if (isa<CXXDestructorDecl>(MD))
+ CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs);
+
+ // Add the rest of the arguments.
+ for (const ParmVarDecl *PD : MD->params())
+ EmitDelegateCallArg(CallArgs, PD, PD->getLocStart());
+
+ const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
+
+#ifndef NDEBUG
+ const CGFunctionInfo &CallFnInfo =
+ CGM.getTypes().arrangeCXXMethodCall(CallArgs, FPT,
+ RequiredArgs::forPrototypePlus(FPT, 1));
+ assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() &&
+ CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() &&
+ CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention());
+ assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types
+ similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(),
+ CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType()));
+ assert(CallFnInfo.arg_size() == CurFnInfo->arg_size());
+ for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i)
+ assert(similar(CallFnInfo.arg_begin()[i].info,
+ CallFnInfo.arg_begin()[i].type,
+ CurFnInfo->arg_begin()[i].info,
+ CurFnInfo->arg_begin()[i].type));
+#endif
+
+ // Determine whether we have a return value slot to use.
+ QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD)
+ ? ThisType
+ : CGM.getCXXABI().hasMostDerivedReturn(CurGD)
+ ? CGM.getContext().VoidPtrTy
+ : FPT->getReturnType();
+ ReturnValueSlot Slot;
+ if (!ResultType->isVoidType() &&
+ CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
+ !hasScalarEvaluationKind(CurFnInfo->getReturnType()))
+ Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified());
+
+ // Now emit our call.
+ llvm::Instruction *CallOrInvoke;
+ RValue RV = EmitCall(*CurFnInfo, Callee, Slot, CallArgs, MD, &CallOrInvoke);
+
+ // Consider return adjustment if we have ThunkInfo.
+ if (Thunk && !Thunk->Return.isEmpty())
+ RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk);
+
+ // Emit return.
+ if (!ResultType->isVoidType() && Slot.isNull())
+ CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType);
+
+ // Disable the final ARC autorelease.
+ AutoreleaseResult = false;
+
+ FinishFunction();
+}
+
+void CodeGenFunction::EmitMustTailThunk(const CXXMethodDecl *MD,
+ llvm::Value *AdjustedThisPtr,
+ llvm::Value *Callee) {
+ // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery
+ // to translate AST arguments into LLVM IR arguments. For thunks, we know
+ // that the caller prototype more or less matches the callee prototype with
+ // the exception of 'this'.
+ SmallVector<llvm::Value *, 8> Args;
+ for (llvm::Argument &A : CurFn->args())
+ Args.push_back(&A);
+
+ // Set the adjusted 'this' pointer.
+ const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info;
+ if (ThisAI.isDirect()) {
+ const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
+ int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0;
+ llvm::Type *ThisType = Args[ThisArgNo]->getType();
+ if (ThisType != AdjustedThisPtr->getType())
+ AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType);
+ Args[ThisArgNo] = AdjustedThisPtr;
+ } else {
+ assert(ThisAI.isInAlloca() && "this is passed directly or inalloca");
+ llvm::Value *ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl);
+ llvm::Type *ThisType =
+ cast<llvm::PointerType>(ThisAddr->getType())->getElementType();
+ if (ThisType != AdjustedThisPtr->getType())
+ AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType);
+ Builder.CreateStore(AdjustedThisPtr, ThisAddr);
+ }
+
+ // Emit the musttail call manually. Even if the prologue pushed cleanups, we
+ // don't actually want to run them.
+ llvm::CallInst *Call = Builder.CreateCall(Callee, Args);
+ Call->setTailCallKind(llvm::CallInst::TCK_MustTail);
+
+ // Apply the standard set of call attributes.
+ unsigned CallingConv;
+ CodeGen::AttributeListType AttributeList;
+ CGM.ConstructAttributeList(*CurFnInfo, MD, AttributeList, CallingConv,
+ /*AttrOnCallSite=*/true);
+ llvm::AttributeSet Attrs =
+ llvm::AttributeSet::get(getLLVMContext(), AttributeList);
+ Call->setAttributes(Attrs);
+ Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
+
+ if (Call->getType()->isVoidTy())
+ Builder.CreateRetVoid();
+ else
+ Builder.CreateRet(Call);
+
+ // Finish the function to maintain CodeGenFunction invariants.
+ // FIXME: Don't emit unreachable code.
+ EmitBlock(createBasicBlock());
+ FinishFunction();
+}
+
+void CodeGenFunction::GenerateThunk(llvm::Function *Fn,
+ const CGFunctionInfo &FnInfo,
+ GlobalDecl GD, const ThunkInfo &Thunk) {
+ StartThunk(Fn, GD, FnInfo);
+
+ // Get our callee.
+ llvm::Type *Ty =
+ CGM.getTypes().GetFunctionType(CGM.getTypes().arrangeGlobalDeclaration(GD));
+ llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
+
+ // Make the call and return the result.
+ EmitCallAndReturnForThunk(Callee, &Thunk);
+
+ // Set the right linkage.
+ CGM.setFunctionLinkage(GD, Fn);
+
+ if (CGM.supportsCOMDAT() && Fn->isWeakForLinker())
+ Fn->setComdat(CGM.getModule().getOrInsertComdat(Fn->getName()));
+
+ // Set the right visibility.
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
+ setThunkVisibility(CGM, MD, Thunk, Fn);
+}
+
+void CodeGenVTables::emitThunk(GlobalDecl GD, const ThunkInfo &Thunk,
+ bool ForVTable) {
+ const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeGlobalDeclaration(GD);
+
+ // FIXME: re-use FnInfo in this computation.
+ llvm::Constant *C = CGM.GetAddrOfThunk(GD, Thunk);
+ llvm::GlobalValue *Entry;
+
+ // Strip off a bitcast if we got one back.
+ if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(C)) {
+ assert(CE->getOpcode() == llvm::Instruction::BitCast);
+ Entry = cast<llvm::GlobalValue>(CE->getOperand(0));
+ } else {
+ Entry = cast<llvm::GlobalValue>(C);
+ }
+
+ // There's already a declaration with the same name, check if it has the same
+ // type or if we need to replace it.
+ if (Entry->getType()->getElementType() !=
+ CGM.getTypes().GetFunctionTypeForVTable(GD)) {
+ llvm::GlobalValue *OldThunkFn = Entry;
+
+ // If the types mismatch then we have to rewrite the definition.
+ assert(OldThunkFn->isDeclaration() &&
+ "Shouldn't replace non-declaration");
+
+ // Remove the name from the old thunk function and get a new thunk.
+ OldThunkFn->setName(StringRef());
+ Entry = cast<llvm::GlobalValue>(CGM.GetAddrOfThunk(GD, Thunk));
+
+ // If needed, replace the old thunk with a bitcast.
+ if (!OldThunkFn->use_empty()) {
+ llvm::Constant *NewPtrForOldDecl =
+ llvm::ConstantExpr::getBitCast(Entry, OldThunkFn->getType());
+ OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl);
+ }
+
+ // Remove the old thunk.
+ OldThunkFn->eraseFromParent();
+ }
+
+ llvm::Function *ThunkFn = cast<llvm::Function>(Entry);
+ bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions();
+ bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions;
+
+ if (!ThunkFn->isDeclaration()) {
+ if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) {
+ // There is already a thunk emitted for this function, do nothing.
+ return;
+ }
+
+ // Change the linkage.
+ CGM.setFunctionLinkage(GD, ThunkFn);
+ return;
+ }
+
+ CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn);
+
+ if (ThunkFn->isVarArg()) {
+ // Varargs thunks are special; we can't just generate a call because
+ // we can't copy the varargs. Our implementation is rather
+ // expensive/sucky at the moment, so don't generate the thunk unless
+ // we have to.
+ // FIXME: Do something better here; GenerateVarArgsThunk is extremely ugly.
+ if (!UseAvailableExternallyLinkage) {
+ CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, Thunk);
+ CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD,
+ !Thunk.Return.isEmpty());
+ }
+ } else {
+ // Normal thunk body generation.
+ CodeGenFunction(CGM).GenerateThunk(ThunkFn, FnInfo, GD, Thunk);
+ CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD,
+ !Thunk.Return.isEmpty());
+ }
+}
+
+void CodeGenVTables::maybeEmitThunkForVTable(GlobalDecl GD,
+ const ThunkInfo &Thunk) {
+ // If the ABI has key functions, only the TU with the key function should emit
+ // the thunk. However, we can allow inlining of thunks if we emit them with
+ // available_externally linkage together with vtables when optimizations are
+ // enabled.
+ if (CGM.getTarget().getCXXABI().hasKeyFunctions() &&
+ !CGM.getCodeGenOpts().OptimizationLevel)
+ return;
+
+ // We can't emit thunks for member functions with incomplete types.
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
+ if (!CGM.getTypes().isFuncTypeConvertible(
+ MD->getType()->castAs<FunctionType>()))
+ return;
+
+ emitThunk(GD, Thunk, /*ForVTable=*/true);
+}
+
+void CodeGenVTables::EmitThunks(GlobalDecl GD)
+{
+ const CXXMethodDecl *MD =
+ cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl();
+
+ // We don't need to generate thunks for the base destructor.
+ if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
+ return;
+
+ const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector =
+ VTContext->getThunkInfo(GD);
+
+ if (!ThunkInfoVector)
+ return;
+
+ for (unsigned I = 0, E = ThunkInfoVector->size(); I != E; ++I)
+ emitThunk(GD, (*ThunkInfoVector)[I], /*ForVTable=*/false);
+}
+
+llvm::Constant *CodeGenVTables::CreateVTableInitializer(
+ const CXXRecordDecl *RD, const VTableComponent *Components,
+ unsigned NumComponents, const VTableLayout::VTableThunkTy *VTableThunks,
+ unsigned NumVTableThunks, llvm::Constant *RTTI) {
+ SmallVector<llvm::Constant *, 64> Inits;
+
+ llvm::Type *Int8PtrTy = CGM.Int8PtrTy;
+
+ llvm::Type *PtrDiffTy =
+ CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType());
+
+ unsigned NextVTableThunkIndex = 0;
+
+ llvm::Constant *PureVirtualFn = nullptr, *DeletedVirtualFn = nullptr;
+
+ for (unsigned I = 0; I != NumComponents; ++I) {
+ VTableComponent Component = Components[I];
+
+ llvm::Constant *Init = nullptr;
+
+ switch (Component.getKind()) {
+ case VTableComponent::CK_VCallOffset:
+ Init = llvm::ConstantInt::get(PtrDiffTy,
+ Component.getVCallOffset().getQuantity());
+ Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy);
+ break;
+ case VTableComponent::CK_VBaseOffset:
+ Init = llvm::ConstantInt::get(PtrDiffTy,
+ Component.getVBaseOffset().getQuantity());
+ Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy);
+ break;
+ case VTableComponent::CK_OffsetToTop:
+ Init = llvm::ConstantInt::get(PtrDiffTy,
+ Component.getOffsetToTop().getQuantity());
+ Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy);
+ break;
+ case VTableComponent::CK_RTTI:
+ Init = llvm::ConstantExpr::getBitCast(RTTI, Int8PtrTy);
+ break;
+ case VTableComponent::CK_FunctionPointer:
+ case VTableComponent::CK_CompleteDtorPointer:
+ case VTableComponent::CK_DeletingDtorPointer: {
+ GlobalDecl GD;
+
+ // Get the right global decl.
+ switch (Component.getKind()) {
+ default:
+ llvm_unreachable("Unexpected vtable component kind");
+ case VTableComponent::CK_FunctionPointer:
+ GD = Component.getFunctionDecl();
+ break;
+ case VTableComponent::CK_CompleteDtorPointer:
+ GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Complete);
+ break;
+ case VTableComponent::CK_DeletingDtorPointer:
+ GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Deleting);
+ break;
+ }
+
+ if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) {
+ // We have a pure virtual member function.
+ if (!PureVirtualFn) {
+ llvm::FunctionType *Ty =
+ llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
+ StringRef PureCallName = CGM.getCXXABI().GetPureVirtualCallName();
+ PureVirtualFn = CGM.CreateRuntimeFunction(Ty, PureCallName);
+ PureVirtualFn = llvm::ConstantExpr::getBitCast(PureVirtualFn,
+ CGM.Int8PtrTy);
+ }
+ Init = PureVirtualFn;
+ } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) {
+ if (!DeletedVirtualFn) {
+ llvm::FunctionType *Ty =
+ llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
+ StringRef DeletedCallName =
+ CGM.getCXXABI().GetDeletedVirtualCallName();
+ DeletedVirtualFn = CGM.CreateRuntimeFunction(Ty, DeletedCallName);
+ DeletedVirtualFn = llvm::ConstantExpr::getBitCast(DeletedVirtualFn,
+ CGM.Int8PtrTy);
+ }
+ Init = DeletedVirtualFn;
+ } else {
+ // Check if we should use a thunk.
+ if (NextVTableThunkIndex < NumVTableThunks &&
+ VTableThunks[NextVTableThunkIndex].first == I) {
+ const ThunkInfo &Thunk = VTableThunks[NextVTableThunkIndex].second;
+
+ maybeEmitThunkForVTable(GD, Thunk);
+ Init = CGM.GetAddrOfThunk(GD, Thunk);
+
+ NextVTableThunkIndex++;
+ } else {
+ llvm::Type *Ty = CGM.getTypes().GetFunctionTypeForVTable(GD);
+
+ Init = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
+ }
+
+ Init = llvm::ConstantExpr::getBitCast(Init, Int8PtrTy);
+ }
+ break;
+ }
+
+ case VTableComponent::CK_UnusedFunctionPointer:
+ Init = llvm::ConstantExpr::getNullValue(Int8PtrTy);
+ break;
+ };
+
+ Inits.push_back(Init);
+ }
+
+ llvm::ArrayType *ArrayType = llvm::ArrayType::get(Int8PtrTy, NumComponents);
+ return llvm::ConstantArray::get(ArrayType, Inits);
+}
+
+llvm::GlobalVariable *
+CodeGenVTables::GenerateConstructionVTable(const CXXRecordDecl *RD,
+ const BaseSubobject &Base,
+ bool BaseIsVirtual,
+ llvm::GlobalVariable::LinkageTypes Linkage,
+ VTableAddressPointsMapTy& AddressPoints) {
+ if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
+ DI->completeClassData(Base.getBase());
+
+ std::unique_ptr<VTableLayout> VTLayout(
+ getItaniumVTableContext().createConstructionVTableLayout(
+ Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD));
+
+ // Add the address points.
+ AddressPoints = VTLayout->getAddressPoints();
+
+ // Get the mangled construction vtable name.
+ SmallString<256> OutName;
+ llvm::raw_svector_ostream Out(OutName);
+ cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext())
+ .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(),
+ Base.getBase(), Out);
+ Out.flush();
+ StringRef Name = OutName.str();
+
+ llvm::ArrayType *ArrayType =
+ llvm::ArrayType::get(CGM.Int8PtrTy, VTLayout->getNumVTableComponents());
+
+ // Construction vtable symbols are not part of the Itanium ABI, so we cannot
+ // guarantee that they actually will be available externally. Instead, when
+ // emitting an available_externally VTT, we provide references to an internal
+ // linkage construction vtable. The ABI only requires complete-object vtables
+ // to be the same for all instances of a type, not construction vtables.
+ if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage)
+ Linkage = llvm::GlobalVariable::InternalLinkage;
+
+ // Create the variable that will hold the construction vtable.
+ llvm::GlobalVariable *VTable =
+ CGM.CreateOrReplaceCXXRuntimeVariable(Name, ArrayType, Linkage);
+ CGM.setGlobalVisibility(VTable, RD);
+
+ // V-tables are always unnamed_addr.
+ VTable->setUnnamedAddr(true);
+
+ llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor(
+ CGM.getContext().getTagDeclType(Base.getBase()));
+
+ // Create and set the initializer.
+ llvm::Constant *Init = CreateVTableInitializer(
+ Base.getBase(), VTLayout->vtable_component_begin(),
+ VTLayout->getNumVTableComponents(), VTLayout->vtable_thunk_begin(),
+ VTLayout->getNumVTableThunks(), RTTI);
+ VTable->setInitializer(Init);
+
+ CGM.EmitVTableBitSetEntries(VTable, *VTLayout.get());
+
+ return VTable;
+}
+
+/// Compute the required linkage of the v-table for the given class.
+///
+/// Note that we only call this at the end of the translation unit.
+llvm::GlobalVariable::LinkageTypes
+CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
+ if (!RD->isExternallyVisible())
+ return llvm::GlobalVariable::InternalLinkage;
+
+ // We're at the end of the translation unit, so the current key
+ // function is fully correct.
+ const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD);
+ if (keyFunction && !RD->hasAttr<DLLImportAttr>()) {
+ // If this class has a key function, use that to determine the
+ // linkage of the vtable.
+ const FunctionDecl *def = nullptr;
+ if (keyFunction->hasBody(def))
+ keyFunction = cast<CXXMethodDecl>(def);
+
+ switch (keyFunction->getTemplateSpecializationKind()) {
+ case TSK_Undeclared:
+ case TSK_ExplicitSpecialization:
+ assert(def && "Should not have been asked to emit this");
+ if (keyFunction->isInlined())
+ return !Context.getLangOpts().AppleKext ?
+ llvm::GlobalVariable::LinkOnceODRLinkage :
+ llvm::Function::InternalLinkage;
+
+ return llvm::GlobalVariable::ExternalLinkage;
+
+ case TSK_ImplicitInstantiation:
+ return !Context.getLangOpts().AppleKext ?
+ llvm::GlobalVariable::LinkOnceODRLinkage :
+ llvm::Function::InternalLinkage;
+
+ case TSK_ExplicitInstantiationDefinition:
+ return !Context.getLangOpts().AppleKext ?
+ llvm::GlobalVariable::WeakODRLinkage :
+ llvm::Function::InternalLinkage;
+
+ case TSK_ExplicitInstantiationDeclaration:
+ llvm_unreachable("Should not have been asked to emit this");
+ }
+ }
+
+ // -fapple-kext mode does not support weak linkage, so we must use
+ // internal linkage.
+ if (Context.getLangOpts().AppleKext)
+ return llvm::Function::InternalLinkage;
+
+ llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage =
+ llvm::GlobalValue::LinkOnceODRLinkage;
+ llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage =
+ llvm::GlobalValue::WeakODRLinkage;
+ if (RD->hasAttr<DLLExportAttr>()) {
+ // Cannot discard exported vtables.
+ DiscardableODRLinkage = NonDiscardableODRLinkage;
+ } else if (RD->hasAttr<DLLImportAttr>()) {
+ // Imported vtables are available externally.
+ DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage;
+ NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage;
+ }
+
+ switch (RD->getTemplateSpecializationKind()) {
+ case TSK_Undeclared:
+ case TSK_ExplicitSpecialization:
+ case TSK_ImplicitInstantiation:
+ return DiscardableODRLinkage;
+
+ case TSK_ExplicitInstantiationDeclaration:
+ return llvm::GlobalVariable::ExternalLinkage;
+
+ case TSK_ExplicitInstantiationDefinition:
+ return NonDiscardableODRLinkage;
+ }
+
+ llvm_unreachable("Invalid TemplateSpecializationKind!");
+}
+
+/// This is a callback from Sema to tell us that that a particular v-table is
+/// required to be emitted in this translation unit.
+///
+/// This is only called for vtables that _must_ be emitted (mainly due to key
+/// functions). For weak vtables, CodeGen tracks when they are needed and
+/// emits them as-needed.
+void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) {
+ VTables.GenerateClassData(theClass);
+}
+
+void
+CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) {
+ if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
+ DI->completeClassData(RD);
+
+ if (RD->getNumVBases())
+ CGM.getCXXABI().emitVirtualInheritanceTables(RD);
+
+ CGM.getCXXABI().emitVTableDefinitions(*this, RD);
+}
+
+/// At this point in the translation unit, does it appear that can we
+/// rely on the vtable being defined elsewhere in the program?
+///
+/// The response is really only definitive when called at the end of
+/// the translation unit.
+///
+/// The only semantic restriction here is that the object file should
+/// not contain a v-table definition when that v-table is defined
+/// strongly elsewhere. Otherwise, we'd just like to avoid emitting
+/// v-tables when unnecessary.
+bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) {
+ assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable.");
+
+ // If we have an explicit instantiation declaration (and not a
+ // definition), the v-table is defined elsewhere.
+ TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
+ if (TSK == TSK_ExplicitInstantiationDeclaration)
+ return true;
+
+ // Otherwise, if the class is an instantiated template, the
+ // v-table must be defined here.
+ if (TSK == TSK_ImplicitInstantiation ||
+ TSK == TSK_ExplicitInstantiationDefinition)
+ return false;
+
+ // Otherwise, if the class doesn't have a key function (possibly
+ // anymore), the v-table must be defined here.
+ const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD);
+ if (!keyFunction)
+ return false;
+
+ // Otherwise, if we don't have a definition of the key function, the
+ // v-table must be defined somewhere else.
+ return !keyFunction->hasBody();
+}
+
+/// Given that we're currently at the end of the translation unit, and
+/// we've emitted a reference to the v-table for this class, should
+/// we define that v-table?
+static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM,
+ const CXXRecordDecl *RD) {
+ return !CGM.getVTables().isVTableExternal(RD);
+}
+
+/// Given that at some point we emitted a reference to one or more
+/// v-tables, and that we are now at the end of the translation unit,
+/// decide whether we should emit them.
+void CodeGenModule::EmitDeferredVTables() {
+#ifndef NDEBUG
+ // Remember the size of DeferredVTables, because we're going to assume
+ // that this entire operation doesn't modify it.
+ size_t savedSize = DeferredVTables.size();
+#endif
+
+ typedef std::vector<const CXXRecordDecl *>::const_iterator const_iterator;
+ for (const_iterator i = DeferredVTables.begin(),
+ e = DeferredVTables.end(); i != e; ++i) {
+ const CXXRecordDecl *RD = *i;
+ if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD))
+ VTables.GenerateClassData(RD);
+ }
+
+ assert(savedSize == DeferredVTables.size() &&
+ "deferred extra v-tables during v-table emission?");
+ DeferredVTables.clear();
+}
+
+void CodeGenModule::EmitVTableBitSetEntries(llvm::GlobalVariable *VTable,
+ const VTableLayout &VTLayout) {
+ if (!LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
+ !LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
+ !LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
+ !LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast))
+ return;
+
+ llvm::Metadata *VTableMD = llvm::ConstantAsMetadata::get(VTable);
+
+ std::vector<llvm::MDTuple *> BitsetEntries;
+ // Create a bit set entry for each address point.
+ for (auto &&AP : VTLayout.getAddressPoints()) {
+ // FIXME: Add blacklisting scheme.
+ if (AP.first.getBase()->isInStdNamespace())
+ continue;
+
+ std::string OutName;
+ llvm::raw_string_ostream Out(OutName);
+ getCXXABI().getMangleContext().mangleCXXVTableBitSet(AP.first.getBase(),
+ Out);
+
+ CharUnits PointerWidth =
+ Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
+ uint64_t AddrPointOffset = AP.second * PointerWidth.getQuantity();
+
+ llvm::Metadata *BitsetOps[] = {
+ llvm::MDString::get(getLLVMContext(), Out.str()),
+ VTableMD,
+ llvm::ConstantAsMetadata::get(
+ llvm::ConstantInt::get(Int64Ty, AddrPointOffset))};
+ llvm::MDTuple *BitsetEntry =
+ llvm::MDTuple::get(getLLVMContext(), BitsetOps);
+ BitsetEntries.push_back(BitsetEntry);
+ }
+
+ // Sort the bit set entries for determinism.
+ std::sort(BitsetEntries.begin(), BitsetEntries.end(), [](llvm::MDTuple *T1,
+ llvm::MDTuple *T2) {
+ if (T1 == T2)
+ return false;
+
+ StringRef S1 = cast<llvm::MDString>(T1->getOperand(0))->getString();
+ StringRef S2 = cast<llvm::MDString>(T2->getOperand(0))->getString();
+ if (S1 < S2)
+ return true;
+ if (S1 != S2)
+ return false;
+
+ uint64_t Offset1 = cast<llvm::ConstantInt>(
+ cast<llvm::ConstantAsMetadata>(T1->getOperand(2))
+ ->getValue())->getZExtValue();
+ uint64_t Offset2 = cast<llvm::ConstantInt>(
+ cast<llvm::ConstantAsMetadata>(T2->getOperand(2))
+ ->getValue())->getZExtValue();
+ assert(Offset1 != Offset2);
+ return Offset1 < Offset2;
+ });
+
+ llvm::NamedMDNode *BitsetsMD =
+ getModule().getOrInsertNamedMetadata("llvm.bitsets");
+ for (auto BitsetEntry : BitsetEntries)
+ BitsetsMD->addOperand(BitsetEntry);
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGVTables.h b/contrib/llvm/tools/clang/lib/CodeGen/CGVTables.h
new file mode 100644
index 0000000..e0195a2
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGVTables.h
@@ -0,0 +1,123 @@
+//===--- CGVTables.h - Emit LLVM Code for C++ vtables -----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code dealing with C++ code generation of virtual tables.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_CODEGEN_CGVTABLES_H
+#define LLVM_CLANG_LIB_CODEGEN_CGVTABLES_H
+
+#include "clang/AST/BaseSubobject.h"
+#include "clang/AST/CharUnits.h"
+#include "clang/AST/GlobalDecl.h"
+#include "clang/AST/VTableBuilder.h"
+#include "clang/Basic/ABI.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/IR/GlobalVariable.h"
+
+namespace clang {
+ class CXXRecordDecl;
+
+namespace CodeGen {
+ class CodeGenModule;
+
+class CodeGenVTables {
+ CodeGenModule &CGM;
+
+ VTableContextBase *VTContext;
+
+ /// VTableAddressPointsMapTy - Address points for a single vtable.
+ typedef llvm::DenseMap<BaseSubobject, uint64_t> VTableAddressPointsMapTy;
+
+ typedef std::pair<const CXXRecordDecl *, BaseSubobject> BaseSubobjectPairTy;
+ typedef llvm::DenseMap<BaseSubobjectPairTy, uint64_t> SubVTTIndiciesMapTy;
+
+ /// SubVTTIndicies - Contains indices into the various sub-VTTs.
+ SubVTTIndiciesMapTy SubVTTIndicies;
+
+ typedef llvm::DenseMap<BaseSubobjectPairTy, uint64_t>
+ SecondaryVirtualPointerIndicesMapTy;
+
+ /// SecondaryVirtualPointerIndices - Contains the secondary virtual pointer
+ /// indices.
+ SecondaryVirtualPointerIndicesMapTy SecondaryVirtualPointerIndices;
+
+ /// emitThunk - Emit a single thunk.
+ void emitThunk(GlobalDecl GD, const ThunkInfo &Thunk, bool ForVTable);
+
+ /// maybeEmitThunkForVTable - Emit the given thunk for the vtable if needed by
+ /// the ABI.
+ void maybeEmitThunkForVTable(GlobalDecl GD, const ThunkInfo &Thunk);
+
+public:
+ /// CreateVTableInitializer - Create a vtable initializer for the given record
+ /// decl.
+ /// \param Components - The vtable components; this is really an array of
+ /// VTableComponents.
+ llvm::Constant *CreateVTableInitializer(
+ const CXXRecordDecl *RD, const VTableComponent *Components,
+ unsigned NumComponents, const VTableLayout::VTableThunkTy *VTableThunks,
+ unsigned NumVTableThunks, llvm::Constant *RTTI);
+
+ CodeGenVTables(CodeGenModule &CGM);
+
+ ItaniumVTableContext &getItaniumVTableContext() {
+ return *cast<ItaniumVTableContext>(VTContext);
+ }
+
+ MicrosoftVTableContext &getMicrosoftVTableContext() {
+ return *cast<MicrosoftVTableContext>(VTContext);
+ }
+
+ /// getSubVTTIndex - Return the index of the sub-VTT for the base class of the
+ /// given record decl.
+ uint64_t getSubVTTIndex(const CXXRecordDecl *RD, BaseSubobject Base);
+
+ /// getSecondaryVirtualPointerIndex - Return the index in the VTT where the
+ /// virtual pointer for the given subobject is located.
+ uint64_t getSecondaryVirtualPointerIndex(const CXXRecordDecl *RD,
+ BaseSubobject Base);
+
+ /// getAddressPoint - Get the address point of the given subobject in the
+ /// class decl.
+ uint64_t getAddressPoint(BaseSubobject Base, const CXXRecordDecl *RD);
+
+ /// GenerateConstructionVTable - Generate a construction vtable for the given
+ /// base subobject.
+ llvm::GlobalVariable *
+ GenerateConstructionVTable(const CXXRecordDecl *RD, const BaseSubobject &Base,
+ bool BaseIsVirtual,
+ llvm::GlobalVariable::LinkageTypes Linkage,
+ VTableAddressPointsMapTy& AddressPoints);
+
+
+ /// GetAddrOfVTT - Get the address of the VTT for the given record decl.
+ llvm::GlobalVariable *GetAddrOfVTT(const CXXRecordDecl *RD);
+
+ /// EmitVTTDefinition - Emit the definition of the given vtable.
+ void EmitVTTDefinition(llvm::GlobalVariable *VTT,
+ llvm::GlobalVariable::LinkageTypes Linkage,
+ const CXXRecordDecl *RD);
+
+ /// EmitThunks - Emit the associated thunks for the given global decl.
+ void EmitThunks(GlobalDecl GD);
+
+ /// GenerateClassData - Generate all the class data required to be
+ /// generated upon definition of a KeyFunction. This includes the
+ /// vtable, the RTTI data structure (if RTTI is enabled) and the VTT
+ /// (if the class has virtual bases).
+ void GenerateClassData(const CXXRecordDecl *RD);
+
+ bool isVTableExternal(const CXXRecordDecl *RD);
+};
+
+} // end namespace CodeGen
+} // end namespace clang
+#endif
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGValue.h b/contrib/llvm/tools/clang/lib/CodeGen/CGValue.h
new file mode 100644
index 0000000..9205591
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGValue.h
@@ -0,0 +1,505 @@
+//===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// These classes implement wrappers around llvm::Value in order to
+// fully represent the range of values for C L- and R- values.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_CODEGEN_CGVALUE_H
+#define LLVM_CLANG_LIB_CODEGEN_CGVALUE_H
+
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/CharUnits.h"
+#include "clang/AST/Type.h"
+#include "llvm/IR/Value.h"
+#include "llvm/IR/Type.h"
+
+namespace llvm {
+ class Constant;
+ class MDNode;
+}
+
+namespace clang {
+namespace CodeGen {
+ class AggValueSlot;
+ struct CGBitFieldInfo;
+
+/// RValue - This trivial value class is used to represent the result of an
+/// expression that is evaluated. It can be one of three things: either a
+/// simple LLVM SSA value, a pair of SSA values for complex numbers, or the
+/// address of an aggregate value in memory.
+class RValue {
+ enum Flavor { Scalar, Complex, Aggregate };
+
+ // Stores first value and flavor.
+ llvm::PointerIntPair<llvm::Value *, 2, Flavor> V1;
+ // Stores second value and volatility.
+ llvm::PointerIntPair<llvm::Value *, 1, bool> V2;
+
+public:
+ bool isScalar() const { return V1.getInt() == Scalar; }
+ bool isComplex() const { return V1.getInt() == Complex; }
+ bool isAggregate() const { return V1.getInt() == Aggregate; }
+
+ bool isVolatileQualified() const { return V2.getInt(); }
+
+ /// getScalarVal() - Return the Value* of this scalar value.
+ llvm::Value *getScalarVal() const {
+ assert(isScalar() && "Not a scalar!");
+ return V1.getPointer();
+ }
+
+ /// getComplexVal - Return the real/imag components of this complex value.
+ ///
+ std::pair<llvm::Value *, llvm::Value *> getComplexVal() const {
+ return std::make_pair(V1.getPointer(), V2.getPointer());
+ }
+
+ /// getAggregateAddr() - Return the Value* of the address of the aggregate.
+ llvm::Value *getAggregateAddr() const {
+ assert(isAggregate() && "Not an aggregate!");
+ return V1.getPointer();
+ }
+
+ static RValue get(llvm::Value *V) {
+ RValue ER;
+ ER.V1.setPointer(V);
+ ER.V1.setInt(Scalar);
+ ER.V2.setInt(false);
+ return ER;
+ }
+ static RValue getComplex(llvm::Value *V1, llvm::Value *V2) {
+ RValue ER;
+ ER.V1.setPointer(V1);
+ ER.V2.setPointer(V2);
+ ER.V1.setInt(Complex);
+ ER.V2.setInt(false);
+ return ER;
+ }
+ static RValue getComplex(const std::pair<llvm::Value *, llvm::Value *> &C) {
+ return getComplex(C.first, C.second);
+ }
+ // FIXME: Aggregate rvalues need to retain information about whether they are
+ // volatile or not. Remove default to find all places that probably get this
+ // wrong.
+ static RValue getAggregate(llvm::Value *V, bool Volatile = false) {
+ RValue ER;
+ ER.V1.setPointer(V);
+ ER.V1.setInt(Aggregate);
+ ER.V2.setInt(Volatile);
+ return ER;
+ }
+};
+
+/// Does an ARC strong l-value have precise lifetime?
+enum ARCPreciseLifetime_t {
+ ARCImpreciseLifetime, ARCPreciseLifetime
+};
+
+/// LValue - This represents an lvalue references. Because C/C++ allow
+/// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a
+/// bitrange.
+class LValue {
+ enum {
+ Simple, // This is a normal l-value, use getAddress().
+ VectorElt, // This is a vector element l-value (V[i]), use getVector*
+ BitField, // This is a bitfield l-value, use getBitfield*.
+ ExtVectorElt, // This is an extended vector subset, use getExtVectorComp
+ GlobalReg // This is a register l-value, use getGlobalReg()
+ } LVType;
+
+ llvm::Value *V;
+
+ union {
+ // Index into a vector subscript: V[i]
+ llvm::Value *VectorIdx;
+
+ // ExtVector element subset: V.xyx
+ llvm::Constant *VectorElts;
+
+ // BitField start bit and size
+ const CGBitFieldInfo *BitFieldInfo;
+ };
+
+ QualType Type;
+
+ // 'const' is unused here
+ Qualifiers Quals;
+
+ // The alignment to use when accessing this lvalue. (For vector elements,
+ // this is the alignment of the whole vector.)
+ int64_t Alignment;
+
+ // objective-c's ivar
+ bool Ivar:1;
+
+ // objective-c's ivar is an array
+ bool ObjIsArray:1;
+
+ // LValue is non-gc'able for any reason, including being a parameter or local
+ // variable.
+ bool NonGC: 1;
+
+ // Lvalue is a global reference of an objective-c object
+ bool GlobalObjCRef : 1;
+
+ // Lvalue is a thread local reference
+ bool ThreadLocalRef : 1;
+
+ // Lvalue has ARC imprecise lifetime. We store this inverted to try
+ // to make the default bitfield pattern all-zeroes.
+ bool ImpreciseLifetime : 1;
+
+ Expr *BaseIvarExp;
+
+ /// Used by struct-path-aware TBAA.
+ QualType TBAABaseType;
+ /// Offset relative to the base type.
+ uint64_t TBAAOffset;
+
+ /// TBAAInfo - TBAA information to attach to dereferences of this LValue.
+ llvm::MDNode *TBAAInfo;
+
+private:
+ void Initialize(QualType Type, Qualifiers Quals,
+ CharUnits Alignment,
+ llvm::MDNode *TBAAInfo = nullptr) {
+ this->Type = Type;
+ this->Quals = Quals;
+ this->Alignment = Alignment.getQuantity();
+ assert(this->Alignment == Alignment.getQuantity() &&
+ "Alignment exceeds allowed max!");
+
+ // Initialize Objective-C flags.
+ this->Ivar = this->ObjIsArray = this->NonGC = this->GlobalObjCRef = false;
+ this->ImpreciseLifetime = false;
+ this->ThreadLocalRef = false;
+ this->BaseIvarExp = nullptr;
+
+ // Initialize fields for TBAA.
+ this->TBAABaseType = Type;
+ this->TBAAOffset = 0;
+ this->TBAAInfo = TBAAInfo;
+ }
+
+public:
+ bool isSimple() const { return LVType == Simple; }
+ bool isVectorElt() const { return LVType == VectorElt; }
+ bool isBitField() const { return LVType == BitField; }
+ bool isExtVectorElt() const { return LVType == ExtVectorElt; }
+ bool isGlobalReg() const { return LVType == GlobalReg; }
+
+ bool isVolatileQualified() const { return Quals.hasVolatile(); }
+ bool isRestrictQualified() const { return Quals.hasRestrict(); }
+ unsigned getVRQualifiers() const {
+ return Quals.getCVRQualifiers() & ~Qualifiers::Const;
+ }
+
+ QualType getType() const { return Type; }
+
+ Qualifiers::ObjCLifetime getObjCLifetime() const {
+ return Quals.getObjCLifetime();
+ }
+
+ bool isObjCIvar() const { return Ivar; }
+ void setObjCIvar(bool Value) { Ivar = Value; }
+
+ bool isObjCArray() const { return ObjIsArray; }
+ void setObjCArray(bool Value) { ObjIsArray = Value; }
+
+ bool isNonGC () const { return NonGC; }
+ void setNonGC(bool Value) { NonGC = Value; }
+
+ bool isGlobalObjCRef() const { return GlobalObjCRef; }
+ void setGlobalObjCRef(bool Value) { GlobalObjCRef = Value; }
+
+ bool isThreadLocalRef() const { return ThreadLocalRef; }
+ void setThreadLocalRef(bool Value) { ThreadLocalRef = Value;}
+
+ ARCPreciseLifetime_t isARCPreciseLifetime() const {
+ return ARCPreciseLifetime_t(!ImpreciseLifetime);
+ }
+ void setARCPreciseLifetime(ARCPreciseLifetime_t value) {
+ ImpreciseLifetime = (value == ARCImpreciseLifetime);
+ }
+
+ bool isObjCWeak() const {
+ return Quals.getObjCGCAttr() == Qualifiers::Weak;
+ }
+ bool isObjCStrong() const {
+ return Quals.getObjCGCAttr() == Qualifiers::Strong;
+ }
+
+ bool isVolatile() const {
+ return Quals.hasVolatile();
+ }
+
+ Expr *getBaseIvarExp() const { return BaseIvarExp; }
+ void setBaseIvarExp(Expr *V) { BaseIvarExp = V; }
+
+ QualType getTBAABaseType() const { return TBAABaseType; }
+ void setTBAABaseType(QualType T) { TBAABaseType = T; }
+
+ uint64_t getTBAAOffset() const { return TBAAOffset; }
+ void setTBAAOffset(uint64_t O) { TBAAOffset = O; }
+
+ llvm::MDNode *getTBAAInfo() const { return TBAAInfo; }
+ void setTBAAInfo(llvm::MDNode *N) { TBAAInfo = N; }
+
+ const Qualifiers &getQuals() const { return Quals; }
+ Qualifiers &getQuals() { return Quals; }
+
+ unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
+
+ CharUnits getAlignment() const { return CharUnits::fromQuantity(Alignment); }
+ void setAlignment(CharUnits A) { Alignment = A.getQuantity(); }
+
+ // simple lvalue
+ llvm::Value *getAddress() const { assert(isSimple()); return V; }
+ void setAddress(llvm::Value *address) {
+ assert(isSimple());
+ V = address;
+ }
+
+ // vector elt lvalue
+ llvm::Value *getVectorAddr() const { assert(isVectorElt()); return V; }
+ llvm::Value *getVectorIdx() const { assert(isVectorElt()); return VectorIdx; }
+
+ // extended vector elements.
+ llvm::Value *getExtVectorAddr() const { assert(isExtVectorElt()); return V; }
+ llvm::Constant *getExtVectorElts() const {
+ assert(isExtVectorElt());
+ return VectorElts;
+ }
+
+ // bitfield lvalue
+ llvm::Value *getBitFieldAddr() const {
+ assert(isBitField());
+ return V;
+ }
+ const CGBitFieldInfo &getBitFieldInfo() const {
+ assert(isBitField());
+ return *BitFieldInfo;
+ }
+
+ // global register lvalue
+ llvm::Value *getGlobalReg() const { assert(isGlobalReg()); return V; }
+
+ static LValue MakeAddr(llvm::Value *address, QualType type,
+ CharUnits alignment, ASTContext &Context,
+ llvm::MDNode *TBAAInfo = nullptr) {
+ Qualifiers qs = type.getQualifiers();
+ qs.setObjCGCAttr(Context.getObjCGCAttrKind(type));
+
+ LValue R;
+ R.LVType = Simple;
+ assert(address->getType()->isPointerTy());
+ R.V = address;
+ R.Initialize(type, qs, alignment, TBAAInfo);
+ return R;
+ }
+
+ static LValue MakeVectorElt(llvm::Value *Vec, llvm::Value *Idx,
+ QualType type, CharUnits Alignment) {
+ LValue R;
+ R.LVType = VectorElt;
+ R.V = Vec;
+ R.VectorIdx = Idx;
+ R.Initialize(type, type.getQualifiers(), Alignment);
+ return R;
+ }
+
+ static LValue MakeExtVectorElt(llvm::Value *Vec, llvm::Constant *Elts,
+ QualType type, CharUnits Alignment) {
+ LValue R;
+ R.LVType = ExtVectorElt;
+ R.V = Vec;
+ R.VectorElts = Elts;
+ R.Initialize(type, type.getQualifiers(), Alignment);
+ return R;
+ }
+
+ /// \brief Create a new object to represent a bit-field access.
+ ///
+ /// \param Addr - The base address of the bit-field sequence this
+ /// bit-field refers to.
+ /// \param Info - The information describing how to perform the bit-field
+ /// access.
+ static LValue MakeBitfield(llvm::Value *Addr,
+ const CGBitFieldInfo &Info,
+ QualType type, CharUnits Alignment) {
+ LValue R;
+ R.LVType = BitField;
+ R.V = Addr;
+ R.BitFieldInfo = &Info;
+ R.Initialize(type, type.getQualifiers(), Alignment);
+ return R;
+ }
+
+ static LValue MakeGlobalReg(llvm::Value *Reg,
+ QualType type,
+ CharUnits Alignment) {
+ LValue R;
+ R.LVType = GlobalReg;
+ R.V = Reg;
+ R.Initialize(type, type.getQualifiers(), Alignment);
+ return R;
+ }
+
+ RValue asAggregateRValue() const {
+ // FIMXE: Alignment
+ return RValue::getAggregate(getAddress(), isVolatileQualified());
+ }
+};
+
+/// An aggregate value slot.
+class AggValueSlot {
+ /// The address.
+ llvm::Value *Addr;
+
+ // Qualifiers
+ Qualifiers Quals;
+
+ unsigned short Alignment;
+
+ /// DestructedFlag - This is set to true if some external code is
+ /// responsible for setting up a destructor for the slot. Otherwise
+ /// the code which constructs it should push the appropriate cleanup.
+ bool DestructedFlag : 1;
+
+ /// ObjCGCFlag - This is set to true if writing to the memory in the
+ /// slot might require calling an appropriate Objective-C GC
+ /// barrier. The exact interaction here is unnecessarily mysterious.
+ bool ObjCGCFlag : 1;
+
+ /// ZeroedFlag - This is set to true if the memory in the slot is
+ /// known to be zero before the assignment into it. This means that
+ /// zero fields don't need to be set.
+ bool ZeroedFlag : 1;
+
+ /// AliasedFlag - This is set to true if the slot might be aliased
+ /// and it's not undefined behavior to access it through such an
+ /// alias. Note that it's always undefined behavior to access a C++
+ /// object that's under construction through an alias derived from
+ /// outside the construction process.
+ ///
+ /// This flag controls whether calls that produce the aggregate
+ /// value may be evaluated directly into the slot, or whether they
+ /// must be evaluated into an unaliased temporary and then memcpy'ed
+ /// over. Since it's invalid in general to memcpy a non-POD C++
+ /// object, it's important that this flag never be set when
+ /// evaluating an expression which constructs such an object.
+ bool AliasedFlag : 1;
+
+public:
+ enum IsAliased_t { IsNotAliased, IsAliased };
+ enum IsDestructed_t { IsNotDestructed, IsDestructed };
+ enum IsZeroed_t { IsNotZeroed, IsZeroed };
+ enum NeedsGCBarriers_t { DoesNotNeedGCBarriers, NeedsGCBarriers };
+
+ /// ignored - Returns an aggregate value slot indicating that the
+ /// aggregate value is being ignored.
+ static AggValueSlot ignored() {
+ return forAddr(nullptr, CharUnits(), Qualifiers(), IsNotDestructed,
+ DoesNotNeedGCBarriers, IsNotAliased);
+ }
+
+ /// forAddr - Make a slot for an aggregate value.
+ ///
+ /// \param quals - The qualifiers that dictate how the slot should
+ /// be initialied. Only 'volatile' and the Objective-C lifetime
+ /// qualifiers matter.
+ ///
+ /// \param isDestructed - true if something else is responsible
+ /// for calling destructors on this object
+ /// \param needsGC - true if the slot is potentially located
+ /// somewhere that ObjC GC calls should be emitted for
+ static AggValueSlot forAddr(llvm::Value *addr, CharUnits align,
+ Qualifiers quals,
+ IsDestructed_t isDestructed,
+ NeedsGCBarriers_t needsGC,
+ IsAliased_t isAliased,
+ IsZeroed_t isZeroed = IsNotZeroed) {
+ AggValueSlot AV;
+ AV.Addr = addr;
+ AV.Alignment = align.getQuantity();
+ AV.Quals = quals;
+ AV.DestructedFlag = isDestructed;
+ AV.ObjCGCFlag = needsGC;
+ AV.ZeroedFlag = isZeroed;
+ AV.AliasedFlag = isAliased;
+ return AV;
+ }
+
+ static AggValueSlot forLValue(const LValue &LV,
+ IsDestructed_t isDestructed,
+ NeedsGCBarriers_t needsGC,
+ IsAliased_t isAliased,
+ IsZeroed_t isZeroed = IsNotZeroed) {
+ return forAddr(LV.getAddress(), LV.getAlignment(),
+ LV.getQuals(), isDestructed, needsGC, isAliased, isZeroed);
+ }
+
+ IsDestructed_t isExternallyDestructed() const {
+ return IsDestructed_t(DestructedFlag);
+ }
+ void setExternallyDestructed(bool destructed = true) {
+ DestructedFlag = destructed;
+ }
+
+ Qualifiers getQualifiers() const { return Quals; }
+
+ bool isVolatile() const {
+ return Quals.hasVolatile();
+ }
+
+ void setVolatile(bool flag) {
+ Quals.setVolatile(flag);
+ }
+
+ Qualifiers::ObjCLifetime getObjCLifetime() const {
+ return Quals.getObjCLifetime();
+ }
+
+ NeedsGCBarriers_t requiresGCollection() const {
+ return NeedsGCBarriers_t(ObjCGCFlag);
+ }
+
+ llvm::Value *getAddr() const {
+ return Addr;
+ }
+
+ bool isIgnored() const {
+ return Addr == nullptr;
+ }
+
+ CharUnits getAlignment() const {
+ return CharUnits::fromQuantity(Alignment);
+ }
+
+ IsAliased_t isPotentiallyAliased() const {
+ return IsAliased_t(AliasedFlag);
+ }
+
+ // FIXME: Alignment?
+ RValue asRValue() const {
+ return RValue::getAggregate(getAddr(), isVolatile());
+ }
+
+ void setZeroed(bool V = true) { ZeroedFlag = V; }
+ IsZeroed_t isZeroed() const {
+ return IsZeroed_t(ZeroedFlag);
+ }
+};
+
+} // end namespace CodeGen
+} // end namespace clang
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CodeGenABITypes.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CodeGenABITypes.cpp
new file mode 100644
index 0000000..12189ae
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CodeGenABITypes.cpp
@@ -0,0 +1,72 @@
+//==--- CodeGenABITypes.cpp - Convert Clang types to LLVM types for ABI ----==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// CodeGenABITypes is a simple interface for getting LLVM types for
+// the parameters and the return value of a function given the Clang
+// types.
+//
+// The class is implemented as a public wrapper around the private
+// CodeGenTypes class in lib/CodeGen.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/CodeGen/CodeGenABITypes.h"
+#include "CodeGenModule.h"
+#include "clang/CodeGen/CGFunctionInfo.h"
+#include "clang/Frontend/CodeGenOptions.h"
+
+using namespace clang;
+using namespace CodeGen;
+
+CodeGenABITypes::CodeGenABITypes(ASTContext &C,
+ llvm::Module &M,
+ const llvm::DataLayout &TD,
+ CoverageSourceInfo *CoverageInfo)
+ : CGO(new CodeGenOptions),
+ CGM(new CodeGen::CodeGenModule(C, *CGO, M, TD, C.getDiagnostics(),
+ CoverageInfo)) {
+}
+
+CodeGenABITypes::~CodeGenABITypes()
+{
+ delete CGO;
+ delete CGM;
+}
+
+const CGFunctionInfo &
+CodeGenABITypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
+ QualType receiverType) {
+ return CGM->getTypes().arrangeObjCMessageSendSignature(MD, receiverType);
+}
+
+const CGFunctionInfo &
+CodeGenABITypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> Ty) {
+ return CGM->getTypes().arrangeFreeFunctionType(Ty);
+}
+
+const CGFunctionInfo &
+CodeGenABITypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> Ty) {
+ return CGM->getTypes().arrangeFreeFunctionType(Ty);
+}
+
+const CGFunctionInfo &
+CodeGenABITypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
+ const FunctionProtoType *FTP) {
+ return CGM->getTypes().arrangeCXXMethodType(RD, FTP);
+}
+
+const CGFunctionInfo &
+CodeGenABITypes::arrangeFreeFunctionCall(CanQualType returnType,
+ ArrayRef<CanQualType> argTypes,
+ FunctionType::ExtInfo info,
+ RequiredArgs args) {
+ return CGM->getTypes().arrangeLLVMFunctionInfo(
+ returnType, /*IsInstanceMethod=*/false, /*IsChainCall=*/false, argTypes,
+ info, args);
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CodeGenAction.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CodeGenAction.cpp
new file mode 100644
index 0000000..7e82fcc
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CodeGenAction.cpp
@@ -0,0 +1,767 @@
+//===--- CodeGenAction.cpp - LLVM Code Generation Frontend Action ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CoverageMappingGen.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclGroup.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/CodeGen/BackendUtil.h"
+#include "clang/CodeGen/CodeGenAction.h"
+#include "clang/CodeGen/ModuleBuilder.h"
+#include "clang/Frontend/CompilerInstance.h"
+#include "clang/Frontend/FrontendDiagnostic.h"
+#include "clang/Lex/Preprocessor.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Bitcode/ReaderWriter.h"
+#include "llvm/IR/DebugInfo.h"
+#include "llvm/IR/DiagnosticInfo.h"
+#include "llvm/IR/DiagnosticPrinter.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IRReader/IRReader.h"
+#include "llvm/Linker/Linker.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/SourceMgr.h"
+#include "llvm/Support/Timer.h"
+#include <memory>
+using namespace clang;
+using namespace llvm;
+
+namespace clang {
+ class BackendConsumer : public ASTConsumer {
+ virtual void anchor();
+ DiagnosticsEngine &Diags;
+ BackendAction Action;
+ const CodeGenOptions &CodeGenOpts;
+ const TargetOptions &TargetOpts;
+ const LangOptions &LangOpts;
+ raw_pwrite_stream *AsmOutStream;
+ ASTContext *Context;
+
+ Timer LLVMIRGeneration;
+
+ std::unique_ptr<CodeGenerator> Gen;
+
+ std::unique_ptr<llvm::Module> TheModule, LinkModule;
+
+ public:
+ BackendConsumer(BackendAction Action, DiagnosticsEngine &Diags,
+ const CodeGenOptions &CodeGenOpts,
+ const TargetOptions &TargetOpts,
+ const LangOptions &LangOpts, bool TimePasses,
+ const std::string &InFile, llvm::Module *LinkModule,
+ raw_pwrite_stream *OS, LLVMContext &C,
+ CoverageSourceInfo *CoverageInfo = nullptr)
+ : Diags(Diags), Action(Action), CodeGenOpts(CodeGenOpts),
+ TargetOpts(TargetOpts), LangOpts(LangOpts), AsmOutStream(OS),
+ Context(nullptr), LLVMIRGeneration("LLVM IR Generation Time"),
+ Gen(CreateLLVMCodeGen(Diags, InFile, CodeGenOpts, C, CoverageInfo)),
+ LinkModule(LinkModule) {
+ llvm::TimePassesIsEnabled = TimePasses;
+ }
+
+ std::unique_ptr<llvm::Module> takeModule() { return std::move(TheModule); }
+ llvm::Module *takeLinkModule() { return LinkModule.release(); }
+
+ void HandleCXXStaticMemberVarInstantiation(VarDecl *VD) override {
+ Gen->HandleCXXStaticMemberVarInstantiation(VD);
+ }
+
+ void Initialize(ASTContext &Ctx) override {
+ if (Context) {
+ assert(Context == &Ctx);
+ return;
+ }
+
+ Context = &Ctx;
+
+ if (llvm::TimePassesIsEnabled)
+ LLVMIRGeneration.startTimer();
+
+ Gen->Initialize(Ctx);
+
+ TheModule.reset(Gen->GetModule());
+
+ if (llvm::TimePassesIsEnabled)
+ LLVMIRGeneration.stopTimer();
+ }
+
+ bool HandleTopLevelDecl(DeclGroupRef D) override {
+ PrettyStackTraceDecl CrashInfo(*D.begin(), SourceLocation(),
+ Context->getSourceManager(),
+ "LLVM IR generation of declaration");
+
+ if (llvm::TimePassesIsEnabled)
+ LLVMIRGeneration.startTimer();
+
+ Gen->HandleTopLevelDecl(D);
+
+ if (llvm::TimePassesIsEnabled)
+ LLVMIRGeneration.stopTimer();
+
+ return true;
+ }
+
+ void HandleInlineMethodDefinition(CXXMethodDecl *D) override {
+ PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
+ Context->getSourceManager(),
+ "LLVM IR generation of inline method");
+ if (llvm::TimePassesIsEnabled)
+ LLVMIRGeneration.startTimer();
+
+ Gen->HandleInlineMethodDefinition(D);
+
+ if (llvm::TimePassesIsEnabled)
+ LLVMIRGeneration.stopTimer();
+ }
+
+ void HandleTranslationUnit(ASTContext &C) override {
+ {
+ PrettyStackTraceString CrashInfo("Per-file LLVM IR generation");
+ if (llvm::TimePassesIsEnabled)
+ LLVMIRGeneration.startTimer();
+
+ Gen->HandleTranslationUnit(C);
+
+ if (llvm::TimePassesIsEnabled)
+ LLVMIRGeneration.stopTimer();
+ }
+
+ // Silently ignore if we weren't initialized for some reason.
+ if (!TheModule)
+ return;
+
+ // Make sure IR generation is happy with the module. This is released by
+ // the module provider.
+ llvm::Module *M = Gen->ReleaseModule();
+ if (!M) {
+ // The module has been released by IR gen on failures, do not double
+ // free.
+ TheModule.release();
+ return;
+ }
+
+ assert(TheModule.get() == M &&
+ "Unexpected module change during IR generation");
+
+ // Link LinkModule into this module if present, preserving its validity.
+ if (LinkModule) {
+ if (Linker::LinkModules(
+ M, LinkModule.get(),
+ [=](const DiagnosticInfo &DI) { linkerDiagnosticHandler(DI); }))
+ return;
+ }
+
+ // Install an inline asm handler so that diagnostics get printed through
+ // our diagnostics hooks.
+ LLVMContext &Ctx = TheModule->getContext();
+ LLVMContext::InlineAsmDiagHandlerTy OldHandler =
+ Ctx.getInlineAsmDiagnosticHandler();
+ void *OldContext = Ctx.getInlineAsmDiagnosticContext();
+ Ctx.setInlineAsmDiagnosticHandler(InlineAsmDiagHandler, this);
+
+ LLVMContext::DiagnosticHandlerTy OldDiagnosticHandler =
+ Ctx.getDiagnosticHandler();
+ void *OldDiagnosticContext = Ctx.getDiagnosticContext();
+ Ctx.setDiagnosticHandler(DiagnosticHandler, this);
+
+ EmitBackendOutput(Diags, CodeGenOpts, TargetOpts, LangOpts,
+ C.getTargetInfo().getTargetDescription(),
+ TheModule.get(), Action, AsmOutStream);
+
+ Ctx.setInlineAsmDiagnosticHandler(OldHandler, OldContext);
+
+ Ctx.setDiagnosticHandler(OldDiagnosticHandler, OldDiagnosticContext);
+ }
+
+ void HandleTagDeclDefinition(TagDecl *D) override {
+ PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
+ Context->getSourceManager(),
+ "LLVM IR generation of declaration");
+ Gen->HandleTagDeclDefinition(D);
+ }
+
+ void HandleTagDeclRequiredDefinition(const TagDecl *D) override {
+ Gen->HandleTagDeclRequiredDefinition(D);
+ }
+
+ void CompleteTentativeDefinition(VarDecl *D) override {
+ Gen->CompleteTentativeDefinition(D);
+ }
+
+ void HandleVTable(CXXRecordDecl *RD) override {
+ Gen->HandleVTable(RD);
+ }
+
+ void HandleLinkerOptionPragma(llvm::StringRef Opts) override {
+ Gen->HandleLinkerOptionPragma(Opts);
+ }
+
+ void HandleDetectMismatch(llvm::StringRef Name,
+ llvm::StringRef Value) override {
+ Gen->HandleDetectMismatch(Name, Value);
+ }
+
+ void HandleDependentLibrary(llvm::StringRef Opts) override {
+ Gen->HandleDependentLibrary(Opts);
+ }
+
+ static void InlineAsmDiagHandler(const llvm::SMDiagnostic &SM,void *Context,
+ unsigned LocCookie) {
+ SourceLocation Loc = SourceLocation::getFromRawEncoding(LocCookie);
+ ((BackendConsumer*)Context)->InlineAsmDiagHandler2(SM, Loc);
+ }
+
+ void linkerDiagnosticHandler(const llvm::DiagnosticInfo &DI);
+
+ static void DiagnosticHandler(const llvm::DiagnosticInfo &DI,
+ void *Context) {
+ ((BackendConsumer *)Context)->DiagnosticHandlerImpl(DI);
+ }
+
+ void InlineAsmDiagHandler2(const llvm::SMDiagnostic &,
+ SourceLocation LocCookie);
+
+ void DiagnosticHandlerImpl(const llvm::DiagnosticInfo &DI);
+ /// \brief Specialized handler for InlineAsm diagnostic.
+ /// \return True if the diagnostic has been successfully reported, false
+ /// otherwise.
+ bool InlineAsmDiagHandler(const llvm::DiagnosticInfoInlineAsm &D);
+ /// \brief Specialized handler for StackSize diagnostic.
+ /// \return True if the diagnostic has been successfully reported, false
+ /// otherwise.
+ bool StackSizeDiagHandler(const llvm::DiagnosticInfoStackSize &D);
+ /// \brief Specialized handlers for optimization remarks.
+ /// Note that these handlers only accept remarks and they always handle
+ /// them.
+ void EmitOptimizationMessage(const llvm::DiagnosticInfoOptimizationBase &D,
+ unsigned DiagID);
+ void
+ OptimizationRemarkHandler(const llvm::DiagnosticInfoOptimizationRemark &D);
+ void OptimizationRemarkHandler(
+ const llvm::DiagnosticInfoOptimizationRemarkMissed &D);
+ void OptimizationRemarkHandler(
+ const llvm::DiagnosticInfoOptimizationRemarkAnalysis &D);
+ void OptimizationFailureHandler(
+ const llvm::DiagnosticInfoOptimizationFailure &D);
+ };
+
+ void BackendConsumer::anchor() {}
+}
+
+/// ConvertBackendLocation - Convert a location in a temporary llvm::SourceMgr
+/// buffer to be a valid FullSourceLoc.
+static FullSourceLoc ConvertBackendLocation(const llvm::SMDiagnostic &D,
+ SourceManager &CSM) {
+ // Get both the clang and llvm source managers. The location is relative to
+ // a memory buffer that the LLVM Source Manager is handling, we need to add
+ // a copy to the Clang source manager.
+ const llvm::SourceMgr &LSM = *D.getSourceMgr();
+
+ // We need to copy the underlying LLVM memory buffer because llvm::SourceMgr
+ // already owns its one and clang::SourceManager wants to own its one.
+ const MemoryBuffer *LBuf =
+ LSM.getMemoryBuffer(LSM.FindBufferContainingLoc(D.getLoc()));
+
+ // Create the copy and transfer ownership to clang::SourceManager.
+ // TODO: Avoid copying files into memory.
+ std::unique_ptr<llvm::MemoryBuffer> CBuf =
+ llvm::MemoryBuffer::getMemBufferCopy(LBuf->getBuffer(),
+ LBuf->getBufferIdentifier());
+ // FIXME: Keep a file ID map instead of creating new IDs for each location.
+ FileID FID = CSM.createFileID(std::move(CBuf));
+
+ // Translate the offset into the file.
+ unsigned Offset = D.getLoc().getPointer() - LBuf->getBufferStart();
+ SourceLocation NewLoc =
+ CSM.getLocForStartOfFile(FID).getLocWithOffset(Offset);
+ return FullSourceLoc(NewLoc, CSM);
+}
+
+
+/// InlineAsmDiagHandler2 - This function is invoked when the backend hits an
+/// error parsing inline asm. The SMDiagnostic indicates the error relative to
+/// the temporary memory buffer that the inline asm parser has set up.
+void BackendConsumer::InlineAsmDiagHandler2(const llvm::SMDiagnostic &D,
+ SourceLocation LocCookie) {
+ // There are a couple of different kinds of errors we could get here. First,
+ // we re-format the SMDiagnostic in terms of a clang diagnostic.
+
+ // Strip "error: " off the start of the message string.
+ StringRef Message = D.getMessage();
+ if (Message.startswith("error: "))
+ Message = Message.substr(7);
+
+ // If the SMDiagnostic has an inline asm source location, translate it.
+ FullSourceLoc Loc;
+ if (D.getLoc() != SMLoc())
+ Loc = ConvertBackendLocation(D, Context->getSourceManager());
+
+ unsigned DiagID;
+ switch (D.getKind()) {
+ case llvm::SourceMgr::DK_Error:
+ DiagID = diag::err_fe_inline_asm;
+ break;
+ case llvm::SourceMgr::DK_Warning:
+ DiagID = diag::warn_fe_inline_asm;
+ break;
+ case llvm::SourceMgr::DK_Note:
+ DiagID = diag::note_fe_inline_asm;
+ break;
+ }
+ // If this problem has clang-level source location information, report the
+ // issue in the source with a note showing the instantiated
+ // code.
+ if (LocCookie.isValid()) {
+ Diags.Report(LocCookie, DiagID).AddString(Message);
+
+ if (D.getLoc().isValid()) {
+ DiagnosticBuilder B = Diags.Report(Loc, diag::note_fe_inline_asm_here);
+ // Convert the SMDiagnostic ranges into SourceRange and attach them
+ // to the diagnostic.
+ for (unsigned i = 0, e = D.getRanges().size(); i != e; ++i) {
+ std::pair<unsigned, unsigned> Range = D.getRanges()[i];
+ unsigned Column = D.getColumnNo();
+ B << SourceRange(Loc.getLocWithOffset(Range.first - Column),
+ Loc.getLocWithOffset(Range.second - Column));
+ }
+ }
+ return;
+ }
+
+ // Otherwise, report the backend issue as occurring in the generated .s file.
+ // If Loc is invalid, we still need to report the issue, it just gets no
+ // location info.
+ Diags.Report(Loc, DiagID).AddString(Message);
+}
+
+#define ComputeDiagID(Severity, GroupName, DiagID) \
+ do { \
+ switch (Severity) { \
+ case llvm::DS_Error: \
+ DiagID = diag::err_fe_##GroupName; \
+ break; \
+ case llvm::DS_Warning: \
+ DiagID = diag::warn_fe_##GroupName; \
+ break; \
+ case llvm::DS_Remark: \
+ llvm_unreachable("'remark' severity not expected"); \
+ break; \
+ case llvm::DS_Note: \
+ DiagID = diag::note_fe_##GroupName; \
+ break; \
+ } \
+ } while (false)
+
+#define ComputeDiagRemarkID(Severity, GroupName, DiagID) \
+ do { \
+ switch (Severity) { \
+ case llvm::DS_Error: \
+ DiagID = diag::err_fe_##GroupName; \
+ break; \
+ case llvm::DS_Warning: \
+ DiagID = diag::warn_fe_##GroupName; \
+ break; \
+ case llvm::DS_Remark: \
+ DiagID = diag::remark_fe_##GroupName; \
+ break; \
+ case llvm::DS_Note: \
+ DiagID = diag::note_fe_##GroupName; \
+ break; \
+ } \
+ } while (false)
+
+bool
+BackendConsumer::InlineAsmDiagHandler(const llvm::DiagnosticInfoInlineAsm &D) {
+ unsigned DiagID;
+ ComputeDiagID(D.getSeverity(), inline_asm, DiagID);
+ std::string Message = D.getMsgStr().str();
+
+ // If this problem has clang-level source location information, report the
+ // issue as being a problem in the source with a note showing the instantiated
+ // code.
+ SourceLocation LocCookie =
+ SourceLocation::getFromRawEncoding(D.getLocCookie());
+ if (LocCookie.isValid())
+ Diags.Report(LocCookie, DiagID).AddString(Message);
+ else {
+ // Otherwise, report the backend diagnostic as occurring in the generated
+ // .s file.
+ // If Loc is invalid, we still need to report the diagnostic, it just gets
+ // no location info.
+ FullSourceLoc Loc;
+ Diags.Report(Loc, DiagID).AddString(Message);
+ }
+ // We handled all the possible severities.
+ return true;
+}
+
+bool
+BackendConsumer::StackSizeDiagHandler(const llvm::DiagnosticInfoStackSize &D) {
+ if (D.getSeverity() != llvm::DS_Warning)
+ // For now, the only support we have for StackSize diagnostic is warning.
+ // We do not know how to format other severities.
+ return false;
+
+ if (const Decl *ND = Gen->GetDeclForMangledName(D.getFunction().getName())) {
+ Diags.Report(ND->getASTContext().getFullLoc(ND->getLocation()),
+ diag::warn_fe_frame_larger_than)
+ << D.getStackSize() << Decl::castToDeclContext(ND);
+ return true;
+ }
+
+ return false;
+}
+
+void BackendConsumer::EmitOptimizationMessage(
+ const llvm::DiagnosticInfoOptimizationBase &D, unsigned DiagID) {
+ // We only support warnings and remarks.
+ assert(D.getSeverity() == llvm::DS_Remark ||
+ D.getSeverity() == llvm::DS_Warning);
+
+ SourceManager &SourceMgr = Context->getSourceManager();
+ FileManager &FileMgr = SourceMgr.getFileManager();
+ StringRef Filename;
+ unsigned Line, Column;
+ SourceLocation DILoc;
+
+ if (D.isLocationAvailable()) {
+ D.getLocation(&Filename, &Line, &Column);
+ const FileEntry *FE = FileMgr.getFile(Filename);
+ if (FE && Line > 0) {
+ // If -gcolumn-info was not used, Column will be 0. This upsets the
+ // source manager, so pass 1 if Column is not set.
+ DILoc = SourceMgr.translateFileLineCol(FE, Line, Column ? Column : 1);
+ }
+ }
+
+ // If a location isn't available, try to approximate it using the associated
+ // function definition. We use the definition's right brace to differentiate
+ // from diagnostics that genuinely relate to the function itself.
+ FullSourceLoc Loc(DILoc, SourceMgr);
+ if (Loc.isInvalid())
+ if (const Decl *FD = Gen->GetDeclForMangledName(D.getFunction().getName()))
+ Loc = FD->getASTContext().getFullLoc(FD->getBodyRBrace());
+
+ Diags.Report(Loc, DiagID)
+ << AddFlagValue(D.getPassName() ? D.getPassName() : "")
+ << D.getMsg().str();
+
+ if (DILoc.isInvalid() && D.isLocationAvailable())
+ // If we were not able to translate the file:line:col information
+ // back to a SourceLocation, at least emit a note stating that
+ // we could not translate this location. This can happen in the
+ // case of #line directives.
+ Diags.Report(Loc, diag::note_fe_backend_optimization_remark_invalid_loc)
+ << Filename << Line << Column;
+}
+
+void BackendConsumer::OptimizationRemarkHandler(
+ const llvm::DiagnosticInfoOptimizationRemark &D) {
+ // Optimization remarks are active only if the -Rpass flag has a regular
+ // expression that matches the name of the pass name in \p D.
+ if (CodeGenOpts.OptimizationRemarkPattern &&
+ CodeGenOpts.OptimizationRemarkPattern->match(D.getPassName()))
+ EmitOptimizationMessage(D, diag::remark_fe_backend_optimization_remark);
+}
+
+void BackendConsumer::OptimizationRemarkHandler(
+ const llvm::DiagnosticInfoOptimizationRemarkMissed &D) {
+ // Missed optimization remarks are active only if the -Rpass-missed
+ // flag has a regular expression that matches the name of the pass
+ // name in \p D.
+ if (CodeGenOpts.OptimizationRemarkMissedPattern &&
+ CodeGenOpts.OptimizationRemarkMissedPattern->match(D.getPassName()))
+ EmitOptimizationMessage(D,
+ diag::remark_fe_backend_optimization_remark_missed);
+}
+
+void BackendConsumer::OptimizationRemarkHandler(
+ const llvm::DiagnosticInfoOptimizationRemarkAnalysis &D) {
+ // Optimization analysis remarks are active only if the -Rpass-analysis
+ // flag has a regular expression that matches the name of the pass
+ // name in \p D.
+ if (CodeGenOpts.OptimizationRemarkAnalysisPattern &&
+ CodeGenOpts.OptimizationRemarkAnalysisPattern->match(D.getPassName()))
+ EmitOptimizationMessage(
+ D, diag::remark_fe_backend_optimization_remark_analysis);
+}
+
+void BackendConsumer::OptimizationFailureHandler(
+ const llvm::DiagnosticInfoOptimizationFailure &D) {
+ EmitOptimizationMessage(D, diag::warn_fe_backend_optimization_failure);
+}
+
+void BackendConsumer::linkerDiagnosticHandler(const DiagnosticInfo &DI) {
+ if (DI.getSeverity() != DS_Error)
+ return;
+
+ std::string MsgStorage;
+ {
+ raw_string_ostream Stream(MsgStorage);
+ DiagnosticPrinterRawOStream DP(Stream);
+ DI.print(DP);
+ }
+
+ Diags.Report(diag::err_fe_cannot_link_module)
+ << LinkModule->getModuleIdentifier() << MsgStorage;
+}
+
+/// \brief This function is invoked when the backend needs
+/// to report something to the user.
+void BackendConsumer::DiagnosticHandlerImpl(const DiagnosticInfo &DI) {
+ unsigned DiagID = diag::err_fe_inline_asm;
+ llvm::DiagnosticSeverity Severity = DI.getSeverity();
+ // Get the diagnostic ID based.
+ switch (DI.getKind()) {
+ case llvm::DK_InlineAsm:
+ if (InlineAsmDiagHandler(cast<DiagnosticInfoInlineAsm>(DI)))
+ return;
+ ComputeDiagID(Severity, inline_asm, DiagID);
+ break;
+ case llvm::DK_StackSize:
+ if (StackSizeDiagHandler(cast<DiagnosticInfoStackSize>(DI)))
+ return;
+ ComputeDiagID(Severity, backend_frame_larger_than, DiagID);
+ break;
+ case llvm::DK_OptimizationRemark:
+ // Optimization remarks are always handled completely by this
+ // handler. There is no generic way of emitting them.
+ OptimizationRemarkHandler(cast<DiagnosticInfoOptimizationRemark>(DI));
+ return;
+ case llvm::DK_OptimizationRemarkMissed:
+ // Optimization remarks are always handled completely by this
+ // handler. There is no generic way of emitting them.
+ OptimizationRemarkHandler(cast<DiagnosticInfoOptimizationRemarkMissed>(DI));
+ return;
+ case llvm::DK_OptimizationRemarkAnalysis:
+ // Optimization remarks are always handled completely by this
+ // handler. There is no generic way of emitting them.
+ OptimizationRemarkHandler(
+ cast<DiagnosticInfoOptimizationRemarkAnalysis>(DI));
+ return;
+ case llvm::DK_OptimizationFailure:
+ // Optimization failures are always handled completely by this
+ // handler.
+ OptimizationFailureHandler(cast<DiagnosticInfoOptimizationFailure>(DI));
+ return;
+ default:
+ // Plugin IDs are not bound to any value as they are set dynamically.
+ ComputeDiagRemarkID(Severity, backend_plugin, DiagID);
+ break;
+ }
+ std::string MsgStorage;
+ {
+ raw_string_ostream Stream(MsgStorage);
+ DiagnosticPrinterRawOStream DP(Stream);
+ DI.print(DP);
+ }
+
+ // Report the backend message using the usual diagnostic mechanism.
+ FullSourceLoc Loc;
+ Diags.Report(Loc, DiagID).AddString(MsgStorage);
+}
+#undef ComputeDiagID
+
+CodeGenAction::CodeGenAction(unsigned _Act, LLVMContext *_VMContext)
+ : Act(_Act), LinkModule(nullptr),
+ VMContext(_VMContext ? _VMContext : new LLVMContext),
+ OwnsVMContext(!_VMContext) {}
+
+CodeGenAction::~CodeGenAction() {
+ TheModule.reset();
+ if (OwnsVMContext)
+ delete VMContext;
+}
+
+bool CodeGenAction::hasIRSupport() const { return true; }
+
+void CodeGenAction::EndSourceFileAction() {
+ // If the consumer creation failed, do nothing.
+ if (!getCompilerInstance().hasASTConsumer())
+ return;
+
+ // If we were given a link module, release consumer's ownership of it.
+ if (LinkModule)
+ BEConsumer->takeLinkModule();
+
+ // Steal the module from the consumer.
+ TheModule = BEConsumer->takeModule();
+}
+
+std::unique_ptr<llvm::Module> CodeGenAction::takeModule() {
+ return std::move(TheModule);
+}
+
+llvm::LLVMContext *CodeGenAction::takeLLVMContext() {
+ OwnsVMContext = false;
+ return VMContext;
+}
+
+static raw_pwrite_stream *
+GetOutputStream(CompilerInstance &CI, StringRef InFile, BackendAction Action) {
+ switch (Action) {
+ case Backend_EmitAssembly:
+ return CI.createDefaultOutputFile(false, InFile, "s");
+ case Backend_EmitLL:
+ return CI.createDefaultOutputFile(false, InFile, "ll");
+ case Backend_EmitBC:
+ return CI.createDefaultOutputFile(true, InFile, "bc");
+ case Backend_EmitNothing:
+ return nullptr;
+ case Backend_EmitMCNull:
+ return CI.createNullOutputFile();
+ case Backend_EmitObj:
+ return CI.createDefaultOutputFile(true, InFile, "o");
+ }
+
+ llvm_unreachable("Invalid action!");
+}
+
+std::unique_ptr<ASTConsumer>
+CodeGenAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) {
+ BackendAction BA = static_cast<BackendAction>(Act);
+ raw_pwrite_stream *OS = GetOutputStream(CI, InFile, BA);
+ if (BA != Backend_EmitNothing && !OS)
+ return nullptr;
+
+ llvm::Module *LinkModuleToUse = LinkModule;
+
+ // If we were not given a link module, and the user requested that one be
+ // loaded from bitcode, do so now.
+ const std::string &LinkBCFile = CI.getCodeGenOpts().LinkBitcodeFile;
+ if (!LinkModuleToUse && !LinkBCFile.empty()) {
+ auto BCBuf = CI.getFileManager().getBufferForFile(LinkBCFile);
+ if (!BCBuf) {
+ CI.getDiagnostics().Report(diag::err_cannot_open_file)
+ << LinkBCFile << BCBuf.getError().message();
+ return nullptr;
+ }
+
+ ErrorOr<llvm::Module *> ModuleOrErr =
+ getLazyBitcodeModule(std::move(*BCBuf), *VMContext);
+ if (std::error_code EC = ModuleOrErr.getError()) {
+ CI.getDiagnostics().Report(diag::err_cannot_open_file)
+ << LinkBCFile << EC.message();
+ return nullptr;
+ }
+ LinkModuleToUse = ModuleOrErr.get();
+ }
+
+ CoverageSourceInfo *CoverageInfo = nullptr;
+ // Add the preprocessor callback only when the coverage mapping is generated.
+ if (CI.getCodeGenOpts().CoverageMapping) {
+ CoverageInfo = new CoverageSourceInfo;
+ CI.getPreprocessor().addPPCallbacks(
+ std::unique_ptr<PPCallbacks>(CoverageInfo));
+ }
+ std::unique_ptr<BackendConsumer> Result(new BackendConsumer(
+ BA, CI.getDiagnostics(), CI.getCodeGenOpts(), CI.getTargetOpts(),
+ CI.getLangOpts(), CI.getFrontendOpts().ShowTimers, InFile,
+ LinkModuleToUse, OS, *VMContext, CoverageInfo));
+ BEConsumer = Result.get();
+ return std::move(Result);
+}
+
+static void BitcodeInlineAsmDiagHandler(const llvm::SMDiagnostic &SM,
+ void *Context,
+ unsigned LocCookie) {
+ SM.print(nullptr, llvm::errs());
+}
+
+void CodeGenAction::ExecuteAction() {
+ // If this is an IR file, we have to treat it specially.
+ if (getCurrentFileKind() == IK_LLVM_IR) {
+ BackendAction BA = static_cast<BackendAction>(Act);
+ CompilerInstance &CI = getCompilerInstance();
+ raw_pwrite_stream *OS = GetOutputStream(CI, getCurrentFile(), BA);
+ if (BA != Backend_EmitNothing && !OS)
+ return;
+
+ bool Invalid;
+ SourceManager &SM = CI.getSourceManager();
+ FileID FID = SM.getMainFileID();
+ llvm::MemoryBuffer *MainFile = SM.getBuffer(FID, &Invalid);
+ if (Invalid)
+ return;
+
+ llvm::SMDiagnostic Err;
+ TheModule = parseIR(MainFile->getMemBufferRef(), Err, *VMContext);
+ if (!TheModule) {
+ // Translate from the diagnostic info to the SourceManager location if
+ // available.
+ // TODO: Unify this with ConvertBackendLocation()
+ SourceLocation Loc;
+ if (Err.getLineNo() > 0) {
+ assert(Err.getColumnNo() >= 0);
+ Loc = SM.translateFileLineCol(SM.getFileEntryForID(FID),
+ Err.getLineNo(), Err.getColumnNo() + 1);
+ }
+
+ // Strip off a leading diagnostic code if there is one.
+ StringRef Msg = Err.getMessage();
+ if (Msg.startswith("error: "))
+ Msg = Msg.substr(7);
+
+ unsigned DiagID =
+ CI.getDiagnostics().getCustomDiagID(DiagnosticsEngine::Error, "%0");
+
+ CI.getDiagnostics().Report(Loc, DiagID) << Msg;
+ return;
+ }
+ const TargetOptions &TargetOpts = CI.getTargetOpts();
+ if (TheModule->getTargetTriple() != TargetOpts.Triple) {
+ CI.getDiagnostics().Report(SourceLocation(),
+ diag::warn_fe_override_module)
+ << TargetOpts.Triple;
+ TheModule->setTargetTriple(TargetOpts.Triple);
+ }
+
+ LLVMContext &Ctx = TheModule->getContext();
+ Ctx.setInlineAsmDiagnosticHandler(BitcodeInlineAsmDiagHandler);
+ EmitBackendOutput(CI.getDiagnostics(), CI.getCodeGenOpts(), TargetOpts,
+ CI.getLangOpts(), CI.getTarget().getTargetDescription(),
+ TheModule.get(), BA, OS);
+ return;
+ }
+
+ // Otherwise follow the normal AST path.
+ this->ASTFrontendAction::ExecuteAction();
+}
+
+//
+
+void EmitAssemblyAction::anchor() { }
+EmitAssemblyAction::EmitAssemblyAction(llvm::LLVMContext *_VMContext)
+ : CodeGenAction(Backend_EmitAssembly, _VMContext) {}
+
+void EmitBCAction::anchor() { }
+EmitBCAction::EmitBCAction(llvm::LLVMContext *_VMContext)
+ : CodeGenAction(Backend_EmitBC, _VMContext) {}
+
+void EmitLLVMAction::anchor() { }
+EmitLLVMAction::EmitLLVMAction(llvm::LLVMContext *_VMContext)
+ : CodeGenAction(Backend_EmitLL, _VMContext) {}
+
+void EmitLLVMOnlyAction::anchor() { }
+EmitLLVMOnlyAction::EmitLLVMOnlyAction(llvm::LLVMContext *_VMContext)
+ : CodeGenAction(Backend_EmitNothing, _VMContext) {}
+
+void EmitCodeGenOnlyAction::anchor() { }
+EmitCodeGenOnlyAction::EmitCodeGenOnlyAction(llvm::LLVMContext *_VMContext)
+ : CodeGenAction(Backend_EmitMCNull, _VMContext) {}
+
+void EmitObjAction::anchor() { }
+EmitObjAction::EmitObjAction(llvm::LLVMContext *_VMContext)
+ : CodeGenAction(Backend_EmitObj, _VMContext) {}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CodeGenFunction.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CodeGenFunction.cpp
new file mode 100644
index 0000000..01da750
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CodeGenFunction.cpp
@@ -0,0 +1,1772 @@
+//===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This coordinates the per-function state used while generating code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenFunction.h"
+#include "CGCleanup.h"
+#include "CGCUDARuntime.h"
+#include "CGCXXABI.h"
+#include "CGDebugInfo.h"
+#include "CGOpenMPRuntime.h"
+#include "CodeGenModule.h"
+#include "CodeGenPGO.h"
+#include "TargetInfo.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/StmtCXX.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/CodeGen/CGFunctionInfo.h"
+#include "clang/Frontend/CodeGenOptions.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/Operator.h"
+using namespace clang;
+using namespace CodeGen;
+
+CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
+ : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
+ Builder(cgm.getModule().getContext(), llvm::ConstantFolder(),
+ CGBuilderInserterTy(this)),
+ CurFn(nullptr), CapturedStmtInfo(nullptr),
+ SanOpts(CGM.getLangOpts().Sanitize), IsSanitizerScope(false),
+ CurFuncIsThunk(false), AutoreleaseResult(false), SawAsmBlock(false),
+ IsOutlinedSEHHelper(false), BlockInfo(nullptr), BlockPointer(nullptr),
+ LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr),
+ NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr),
+ ExceptionSlot(nullptr), EHSelectorSlot(nullptr),
+ AbnormalTerminationSlot(nullptr), SEHPointersDecl(nullptr),
+ DebugInfo(CGM.getModuleDebugInfo()), DisableDebugInfo(false),
+ DidCallStackSave(false), IndirectBranch(nullptr), PGO(cgm),
+ SwitchInsn(nullptr), SwitchWeights(nullptr), CaseRangeBlock(nullptr),
+ UnreachableBlock(nullptr), NumReturnExprs(0), NumSimpleReturnExprs(0),
+ CXXABIThisDecl(nullptr), CXXABIThisValue(nullptr), CXXThisValue(nullptr),
+ CXXDefaultInitExprThis(nullptr), CXXStructorImplicitParamDecl(nullptr),
+ CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
+ CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
+ TerminateHandler(nullptr), TrapBB(nullptr) {
+ if (!suppressNewContext)
+ CGM.getCXXABI().getMangleContext().startNewFunction();
+
+ llvm::FastMathFlags FMF;
+ if (CGM.getLangOpts().FastMath)
+ FMF.setUnsafeAlgebra();
+ if (CGM.getLangOpts().FiniteMathOnly) {
+ FMF.setNoNaNs();
+ FMF.setNoInfs();
+ }
+ if (CGM.getCodeGenOpts().NoNaNsFPMath) {
+ FMF.setNoNaNs();
+ }
+ if (CGM.getCodeGenOpts().NoSignedZeros) {
+ FMF.setNoSignedZeros();
+ }
+ if (CGM.getCodeGenOpts().ReciprocalMath) {
+ FMF.setAllowReciprocal();
+ }
+ Builder.SetFastMathFlags(FMF);
+}
+
+CodeGenFunction::~CodeGenFunction() {
+ assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
+
+ // If there are any unclaimed block infos, go ahead and destroy them
+ // now. This can happen if IR-gen gets clever and skips evaluating
+ // something.
+ if (FirstBlockInfo)
+ destroyBlockInfos(FirstBlockInfo);
+
+ if (getLangOpts().OpenMP) {
+ CGM.getOpenMPRuntime().functionFinished(*this);
+ }
+}
+
+LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
+ CharUnits Alignment;
+ if (CGM.getCXXABI().isTypeInfoCalculable(T)) {
+ Alignment = getContext().getTypeAlignInChars(T);
+ unsigned MaxAlign = getContext().getLangOpts().MaxTypeAlign;
+ if (MaxAlign && Alignment.getQuantity() > MaxAlign &&
+ !getContext().isAlignmentRequired(T))
+ Alignment = CharUnits::fromQuantity(MaxAlign);
+ }
+ return LValue::MakeAddr(V, T, Alignment, getContext(), CGM.getTBAAInfo(T));
+}
+
+llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
+ return CGM.getTypes().ConvertTypeForMem(T);
+}
+
+llvm::Type *CodeGenFunction::ConvertType(QualType T) {
+ return CGM.getTypes().ConvertType(T);
+}
+
+TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
+ type = type.getCanonicalType();
+ while (true) {
+ switch (type->getTypeClass()) {
+#define TYPE(name, parent)
+#define ABSTRACT_TYPE(name, parent)
+#define NON_CANONICAL_TYPE(name, parent) case Type::name:
+#define DEPENDENT_TYPE(name, parent) case Type::name:
+#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
+#include "clang/AST/TypeNodes.def"
+ llvm_unreachable("non-canonical or dependent type in IR-generation");
+
+ case Type::Auto:
+ llvm_unreachable("undeduced auto type in IR-generation");
+
+ // Various scalar types.
+ case Type::Builtin:
+ case Type::Pointer:
+ case Type::BlockPointer:
+ case Type::LValueReference:
+ case Type::RValueReference:
+ case Type::MemberPointer:
+ case Type::Vector:
+ case Type::ExtVector:
+ case Type::FunctionProto:
+ case Type::FunctionNoProto:
+ case Type::Enum:
+ case Type::ObjCObjectPointer:
+ return TEK_Scalar;
+
+ // Complexes.
+ case Type::Complex:
+ return TEK_Complex;
+
+ // Arrays, records, and Objective-C objects.
+ case Type::ConstantArray:
+ case Type::IncompleteArray:
+ case Type::VariableArray:
+ case Type::Record:
+ case Type::ObjCObject:
+ case Type::ObjCInterface:
+ return TEK_Aggregate;
+
+ // We operate on atomic values according to their underlying type.
+ case Type::Atomic:
+ type = cast<AtomicType>(type)->getValueType();
+ continue;
+ }
+ llvm_unreachable("unknown type kind!");
+ }
+}
+
+llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
+ // For cleanliness, we try to avoid emitting the return block for
+ // simple cases.
+ llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
+
+ if (CurBB) {
+ assert(!CurBB->getTerminator() && "Unexpected terminated block.");
+
+ // We have a valid insert point, reuse it if it is empty or there are no
+ // explicit jumps to the return block.
+ if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
+ ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
+ delete ReturnBlock.getBlock();
+ } else
+ EmitBlock(ReturnBlock.getBlock());
+ return llvm::DebugLoc();
+ }
+
+ // Otherwise, if the return block is the target of a single direct
+ // branch then we can just put the code in that block instead. This
+ // cleans up functions which started with a unified return block.
+ if (ReturnBlock.getBlock()->hasOneUse()) {
+ llvm::BranchInst *BI =
+ dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
+ if (BI && BI->isUnconditional() &&
+ BI->getSuccessor(0) == ReturnBlock.getBlock()) {
+ // Record/return the DebugLoc of the simple 'return' expression to be used
+ // later by the actual 'ret' instruction.
+ llvm::DebugLoc Loc = BI->getDebugLoc();
+ Builder.SetInsertPoint(BI->getParent());
+ BI->eraseFromParent();
+ delete ReturnBlock.getBlock();
+ return Loc;
+ }
+ }
+
+ // FIXME: We are at an unreachable point, there is no reason to emit the block
+ // unless it has uses. However, we still need a place to put the debug
+ // region.end for now.
+
+ EmitBlock(ReturnBlock.getBlock());
+ return llvm::DebugLoc();
+}
+
+static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
+ if (!BB) return;
+ if (!BB->use_empty())
+ return CGF.CurFn->getBasicBlockList().push_back(BB);
+ delete BB;
+}
+
+void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
+ assert(BreakContinueStack.empty() &&
+ "mismatched push/pop in break/continue stack!");
+
+ bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
+ && NumSimpleReturnExprs == NumReturnExprs
+ && ReturnBlock.getBlock()->use_empty();
+ // Usually the return expression is evaluated before the cleanup
+ // code. If the function contains only a simple return statement,
+ // such as a constant, the location before the cleanup code becomes
+ // the last useful breakpoint in the function, because the simple
+ // return expression will be evaluated after the cleanup code. To be
+ // safe, set the debug location for cleanup code to the location of
+ // the return statement. Otherwise the cleanup code should be at the
+ // end of the function's lexical scope.
+ //
+ // If there are multiple branches to the return block, the branch
+ // instructions will get the location of the return statements and
+ // all will be fine.
+ if (CGDebugInfo *DI = getDebugInfo()) {
+ if (OnlySimpleReturnStmts)
+ DI->EmitLocation(Builder, LastStopPoint);
+ else
+ DI->EmitLocation(Builder, EndLoc);
+ }
+
+ // Pop any cleanups that might have been associated with the
+ // parameters. Do this in whatever block we're currently in; it's
+ // important to do this before we enter the return block or return
+ // edges will be *really* confused.
+ bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
+ bool HasOnlyLifetimeMarkers =
+ HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
+ bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
+ if (HasCleanups) {
+ // Make sure the line table doesn't jump back into the body for
+ // the ret after it's been at EndLoc.
+ if (CGDebugInfo *DI = getDebugInfo())
+ if (OnlySimpleReturnStmts)
+ DI->EmitLocation(Builder, EndLoc);
+
+ PopCleanupBlocks(PrologueCleanupDepth);
+ }
+
+ // Emit function epilog (to return).
+ llvm::DebugLoc Loc = EmitReturnBlock();
+
+ if (ShouldInstrumentFunction())
+ EmitFunctionInstrumentation("__cyg_profile_func_exit");
+
+ // Emit debug descriptor for function end.
+ if (CGDebugInfo *DI = getDebugInfo())
+ DI->EmitFunctionEnd(Builder);
+
+ // Reset the debug location to that of the simple 'return' expression, if any
+ // rather than that of the end of the function's scope '}'.
+ ApplyDebugLocation AL(*this, Loc);
+ EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
+ EmitEndEHSpec(CurCodeDecl);
+
+ assert(EHStack.empty() &&
+ "did not remove all scopes from cleanup stack!");
+
+ // If someone did an indirect goto, emit the indirect goto block at the end of
+ // the function.
+ if (IndirectBranch) {
+ EmitBlock(IndirectBranch->getParent());
+ Builder.ClearInsertionPoint();
+ }
+
+ // If some of our locals escaped, insert a call to llvm.frameescape in the
+ // entry block.
+ if (!EscapedLocals.empty()) {
+ // Invert the map from local to index into a simple vector. There should be
+ // no holes.
+ SmallVector<llvm::Value *, 4> EscapeArgs;
+ EscapeArgs.resize(EscapedLocals.size());
+ for (auto &Pair : EscapedLocals)
+ EscapeArgs[Pair.second] = Pair.first;
+ llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
+ &CGM.getModule(), llvm::Intrinsic::frameescape);
+ CGBuilderTy(AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
+ }
+
+ // Remove the AllocaInsertPt instruction, which is just a convenience for us.
+ llvm::Instruction *Ptr = AllocaInsertPt;
+ AllocaInsertPt = nullptr;
+ Ptr->eraseFromParent();
+
+ // If someone took the address of a label but never did an indirect goto, we
+ // made a zero entry PHI node, which is illegal, zap it now.
+ if (IndirectBranch) {
+ llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
+ if (PN->getNumIncomingValues() == 0) {
+ PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
+ PN->eraseFromParent();
+ }
+ }
+
+ EmitIfUsed(*this, EHResumeBlock);
+ EmitIfUsed(*this, TerminateLandingPad);
+ EmitIfUsed(*this, TerminateHandler);
+ EmitIfUsed(*this, UnreachableBlock);
+
+ if (CGM.getCodeGenOpts().EmitDeclMetadata)
+ EmitDeclMetadata();
+
+ for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
+ I = DeferredReplacements.begin(),
+ E = DeferredReplacements.end();
+ I != E; ++I) {
+ I->first->replaceAllUsesWith(I->second);
+ I->first->eraseFromParent();
+ }
+}
+
+/// ShouldInstrumentFunction - Return true if the current function should be
+/// instrumented with __cyg_profile_func_* calls
+bool CodeGenFunction::ShouldInstrumentFunction() {
+ if (!CGM.getCodeGenOpts().InstrumentFunctions)
+ return false;
+ if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
+ return false;
+ return true;
+}
+
+/// EmitFunctionInstrumentation - Emit LLVM code to call the specified
+/// instrumentation function with the current function and the call site, if
+/// function instrumentation is enabled.
+void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
+ // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
+ llvm::PointerType *PointerTy = Int8PtrTy;
+ llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
+ llvm::FunctionType *FunctionTy =
+ llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
+
+ llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
+ llvm::CallInst *CallSite = Builder.CreateCall(
+ CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
+ llvm::ConstantInt::get(Int32Ty, 0),
+ "callsite");
+
+ llvm::Value *args[] = {
+ llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
+ CallSite
+ };
+
+ EmitNounwindRuntimeCall(F, args);
+}
+
+void CodeGenFunction::EmitMCountInstrumentation() {
+ llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
+
+ llvm::Constant *MCountFn =
+ CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
+ EmitNounwindRuntimeCall(MCountFn);
+}
+
+// OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
+// information in the program executable. The argument information stored
+// includes the argument name, its type, the address and access qualifiers used.
+static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
+ CodeGenModule &CGM, llvm::LLVMContext &Context,
+ SmallVector<llvm::Metadata *, 5> &kernelMDArgs,
+ CGBuilderTy &Builder, ASTContext &ASTCtx) {
+ // Create MDNodes that represent the kernel arg metadata.
+ // Each MDNode is a list in the form of "key", N number of values which is
+ // the same number of values as their are kernel arguments.
+
+ const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
+
+ // MDNode for the kernel argument address space qualifiers.
+ SmallVector<llvm::Metadata *, 8> addressQuals;
+ addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space"));
+
+ // MDNode for the kernel argument access qualifiers (images only).
+ SmallVector<llvm::Metadata *, 8> accessQuals;
+ accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual"));
+
+ // MDNode for the kernel argument type names.
+ SmallVector<llvm::Metadata *, 8> argTypeNames;
+ argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type"));
+
+ // MDNode for the kernel argument base type names.
+ SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
+ argBaseTypeNames.push_back(
+ llvm::MDString::get(Context, "kernel_arg_base_type"));
+
+ // MDNode for the kernel argument type qualifiers.
+ SmallVector<llvm::Metadata *, 8> argTypeQuals;
+ argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual"));
+
+ // MDNode for the kernel argument names.
+ SmallVector<llvm::Metadata *, 8> argNames;
+ argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
+
+ for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
+ const ParmVarDecl *parm = FD->getParamDecl(i);
+ QualType ty = parm->getType();
+ std::string typeQuals;
+
+ if (ty->isPointerType()) {
+ QualType pointeeTy = ty->getPointeeType();
+
+ // Get address qualifier.
+ addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
+ ASTCtx.getTargetAddressSpace(pointeeTy.getAddressSpace()))));
+
+ // Get argument type name.
+ std::string typeName =
+ pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
+
+ // Turn "unsigned type" to "utype"
+ std::string::size_type pos = typeName.find("unsigned");
+ if (pointeeTy.isCanonical() && pos != std::string::npos)
+ typeName.erase(pos+1, 8);
+
+ argTypeNames.push_back(llvm::MDString::get(Context, typeName));
+
+ std::string baseTypeName =
+ pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
+ Policy) +
+ "*";
+
+ // Turn "unsigned type" to "utype"
+ pos = baseTypeName.find("unsigned");
+ if (pos != std::string::npos)
+ baseTypeName.erase(pos+1, 8);
+
+ argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
+
+ // Get argument type qualifiers:
+ if (ty.isRestrictQualified())
+ typeQuals = "restrict";
+ if (pointeeTy.isConstQualified() ||
+ (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
+ typeQuals += typeQuals.empty() ? "const" : " const";
+ if (pointeeTy.isVolatileQualified())
+ typeQuals += typeQuals.empty() ? "volatile" : " volatile";
+ } else {
+ uint32_t AddrSpc = 0;
+ if (ty->isImageType())
+ AddrSpc =
+ CGM.getContext().getTargetAddressSpace(LangAS::opencl_global);
+
+ addressQuals.push_back(
+ llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
+
+ // Get argument type name.
+ std::string typeName = ty.getUnqualifiedType().getAsString(Policy);
+
+ // Turn "unsigned type" to "utype"
+ std::string::size_type pos = typeName.find("unsigned");
+ if (ty.isCanonical() && pos != std::string::npos)
+ typeName.erase(pos+1, 8);
+
+ argTypeNames.push_back(llvm::MDString::get(Context, typeName));
+
+ std::string baseTypeName =
+ ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
+
+ // Turn "unsigned type" to "utype"
+ pos = baseTypeName.find("unsigned");
+ if (pos != std::string::npos)
+ baseTypeName.erase(pos+1, 8);
+
+ argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
+
+ // Get argument type qualifiers:
+ if (ty.isConstQualified())
+ typeQuals = "const";
+ if (ty.isVolatileQualified())
+ typeQuals += typeQuals.empty() ? "volatile" : " volatile";
+ }
+
+ argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
+
+ // Get image access qualifier:
+ if (ty->isImageType()) {
+ const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>();
+ if (A && A->isWriteOnly())
+ accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
+ else
+ accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
+ // FIXME: what about read_write?
+ } else
+ accessQuals.push_back(llvm::MDString::get(Context, "none"));
+
+ // Get argument name.
+ argNames.push_back(llvm::MDString::get(Context, parm->getName()));
+ }
+
+ kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals));
+ kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals));
+ kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames));
+ kernelMDArgs.push_back(llvm::MDNode::get(Context, argBaseTypeNames));
+ kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals));
+ if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
+ kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
+}
+
+void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
+ llvm::Function *Fn)
+{
+ if (!FD->hasAttr<OpenCLKernelAttr>())
+ return;
+
+ llvm::LLVMContext &Context = getLLVMContext();
+
+ SmallVector<llvm::Metadata *, 5> kernelMDArgs;
+ kernelMDArgs.push_back(llvm::ConstantAsMetadata::get(Fn));
+
+ GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, Builder,
+ getContext());
+
+ if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
+ QualType hintQTy = A->getTypeHint();
+ const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
+ bool isSignedInteger =
+ hintQTy->isSignedIntegerType() ||
+ (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
+ llvm::Metadata *attrMDArgs[] = {
+ llvm::MDString::get(Context, "vec_type_hint"),
+ llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
+ CGM.getTypes().ConvertType(A->getTypeHint()))),
+ llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
+ llvm::IntegerType::get(Context, 32),
+ llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))};
+ kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
+ }
+
+ if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
+ llvm::Metadata *attrMDArgs[] = {
+ llvm::MDString::get(Context, "work_group_size_hint"),
+ llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
+ llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
+ llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
+ kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
+ }
+
+ if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
+ llvm::Metadata *attrMDArgs[] = {
+ llvm::MDString::get(Context, "reqd_work_group_size"),
+ llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
+ llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
+ llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
+ kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
+ }
+
+ llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
+ llvm::NamedMDNode *OpenCLKernelMetadata =
+ CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
+ OpenCLKernelMetadata->addOperand(kernelMDNode);
+}
+
+/// Determine whether the function F ends with a return stmt.
+static bool endsWithReturn(const Decl* F) {
+ const Stmt *Body = nullptr;
+ if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
+ Body = FD->getBody();
+ else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
+ Body = OMD->getBody();
+
+ if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
+ auto LastStmt = CS->body_rbegin();
+ if (LastStmt != CS->body_rend())
+ return isa<ReturnStmt>(*LastStmt);
+ }
+ return false;
+}
+
+void CodeGenFunction::StartFunction(GlobalDecl GD,
+ QualType RetTy,
+ llvm::Function *Fn,
+ const CGFunctionInfo &FnInfo,
+ const FunctionArgList &Args,
+ SourceLocation Loc,
+ SourceLocation StartLoc) {
+ assert(!CurFn &&
+ "Do not use a CodeGenFunction object for more than one function");
+
+ const Decl *D = GD.getDecl();
+
+ DidCallStackSave = false;
+ CurCodeDecl = D;
+ CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
+ FnRetTy = RetTy;
+ CurFn = Fn;
+ CurFnInfo = &FnInfo;
+ assert(CurFn->isDeclaration() && "Function already has body?");
+
+ if (CGM.isInSanitizerBlacklist(Fn, Loc))
+ SanOpts.clear();
+
+ if (D) {
+ // Apply the no_sanitize* attributes to SanOpts.
+ for (auto Attr : D->specific_attrs<NoSanitizeAttr>())
+ SanOpts.Mask &= ~Attr->getMask();
+ }
+
+ // Apply sanitizer attributes to the function.
+ if (SanOpts.has(SanitizerKind::Address))
+ Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
+ if (SanOpts.has(SanitizerKind::Thread))
+ Fn->addFnAttr(llvm::Attribute::SanitizeThread);
+ if (SanOpts.has(SanitizerKind::Memory))
+ Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
+
+ // Pass inline keyword to optimizer if it appears explicitly on any
+ // declaration. Also, in the case of -fno-inline attach NoInline
+ // attribute to all function that are not marked AlwaysInline.
+ if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
+ if (!CGM.getCodeGenOpts().NoInline) {
+ for (auto RI : FD->redecls())
+ if (RI->isInlineSpecified()) {
+ Fn->addFnAttr(llvm::Attribute::InlineHint);
+ break;
+ }
+ } else if (!FD->hasAttr<AlwaysInlineAttr>())
+ Fn->addFnAttr(llvm::Attribute::NoInline);
+ }
+
+ if (getLangOpts().OpenCL) {
+ // Add metadata for a kernel function.
+ if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
+ EmitOpenCLKernelMetadata(FD, Fn);
+ }
+
+ // If we are checking function types, emit a function type signature as
+ // prologue data.
+ if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
+ if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
+ if (llvm::Constant *PrologueSig =
+ CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
+ llvm::Constant *FTRTTIConst =
+ CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
+ llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst };
+ llvm::Constant *PrologueStructConst =
+ llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
+ Fn->setPrologueData(PrologueStructConst);
+ }
+ }
+ }
+
+ llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
+
+ // Create a marker to make it easy to insert allocas into the entryblock
+ // later. Don't create this with the builder, because we don't want it
+ // folded.
+ llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
+ AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
+ if (Builder.isNamePreserving())
+ AllocaInsertPt->setName("allocapt");
+
+ ReturnBlock = getJumpDestInCurrentScope("return");
+
+ Builder.SetInsertPoint(EntryBB);
+
+ // Emit subprogram debug descriptor.
+ if (CGDebugInfo *DI = getDebugInfo()) {
+ SmallVector<QualType, 16> ArgTypes;
+ for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
+ i != e; ++i) {
+ ArgTypes.push_back((*i)->getType());
+ }
+
+ QualType FnType =
+ getContext().getFunctionType(RetTy, ArgTypes,
+ FunctionProtoType::ExtProtoInfo());
+ DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
+ }
+
+ if (ShouldInstrumentFunction())
+ EmitFunctionInstrumentation("__cyg_profile_func_enter");
+
+ if (CGM.getCodeGenOpts().InstrumentForProfiling)
+ EmitMCountInstrumentation();
+
+ if (RetTy->isVoidType()) {
+ // Void type; nothing to return.
+ ReturnValue = nullptr;
+
+ // Count the implicit return.
+ if (!endsWithReturn(D))
+ ++NumReturnExprs;
+ } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
+ !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
+ // Indirect aggregate return; emit returned value directly into sret slot.
+ // This reduces code size, and affects correctness in C++.
+ auto AI = CurFn->arg_begin();
+ if (CurFnInfo->getReturnInfo().isSRetAfterThis())
+ ++AI;
+ ReturnValue = AI;
+ } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
+ !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
+ // Load the sret pointer from the argument struct and return into that.
+ unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
+ llvm::Function::arg_iterator EI = CurFn->arg_end();
+ --EI;
+ llvm::Value *Addr = Builder.CreateStructGEP(nullptr, EI, Idx);
+ ReturnValue = Builder.CreateLoad(Addr, "agg.result");
+ } else {
+ ReturnValue = CreateIRTemp(RetTy, "retval");
+
+ // Tell the epilog emitter to autorelease the result. We do this
+ // now so that various specialized functions can suppress it
+ // during their IR-generation.
+ if (getLangOpts().ObjCAutoRefCount &&
+ !CurFnInfo->isReturnsRetained() &&
+ RetTy->isObjCRetainableType())
+ AutoreleaseResult = true;
+ }
+
+ EmitStartEHSpec(CurCodeDecl);
+
+ PrologueCleanupDepth = EHStack.stable_begin();
+ EmitFunctionProlog(*CurFnInfo, CurFn, Args);
+
+ if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
+ CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
+ if (MD->getParent()->isLambda() &&
+ MD->getOverloadedOperator() == OO_Call) {
+ // We're in a lambda; figure out the captures.
+ MD->getParent()->getCaptureFields(LambdaCaptureFields,
+ LambdaThisCaptureField);
+ if (LambdaThisCaptureField) {
+ // If this lambda captures this, load it.
+ LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
+ CXXThisValue = EmitLoadOfLValue(ThisLValue,
+ SourceLocation()).getScalarVal();
+ }
+ for (auto *FD : MD->getParent()->fields()) {
+ if (FD->hasCapturedVLAType()) {
+ auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
+ SourceLocation()).getScalarVal();
+ auto VAT = FD->getCapturedVLAType();
+ VLASizeMap[VAT->getSizeExpr()] = ExprArg;
+ }
+ }
+ } else {
+ // Not in a lambda; just use 'this' from the method.
+ // FIXME: Should we generate a new load for each use of 'this'? The
+ // fast register allocator would be happier...
+ CXXThisValue = CXXABIThisValue;
+ }
+ }
+
+ // If any of the arguments have a variably modified type, make sure to
+ // emit the type size.
+ for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
+ i != e; ++i) {
+ const VarDecl *VD = *i;
+
+ // Dig out the type as written from ParmVarDecls; it's unclear whether
+ // the standard (C99 6.9.1p10) requires this, but we're following the
+ // precedent set by gcc.
+ QualType Ty;
+ if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
+ Ty = PVD->getOriginalType();
+ else
+ Ty = VD->getType();
+
+ if (Ty->isVariablyModifiedType())
+ EmitVariablyModifiedType(Ty);
+ }
+ // Emit a location at the end of the prologue.
+ if (CGDebugInfo *DI = getDebugInfo())
+ DI->EmitLocation(Builder, StartLoc);
+}
+
+void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
+ const Stmt *Body) {
+ incrementProfileCounter(Body);
+ if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
+ EmitCompoundStmtWithoutScope(*S);
+ else
+ EmitStmt(Body);
+}
+
+/// When instrumenting to collect profile data, the counts for some blocks
+/// such as switch cases need to not include the fall-through counts, so
+/// emit a branch around the instrumentation code. When not instrumenting,
+/// this just calls EmitBlock().
+void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
+ const Stmt *S) {
+ llvm::BasicBlock *SkipCountBB = nullptr;
+ if (HaveInsertPoint() && CGM.getCodeGenOpts().ProfileInstrGenerate) {
+ // When instrumenting for profiling, the fallthrough to certain
+ // statements needs to skip over the instrumentation code so that we
+ // get an accurate count.
+ SkipCountBB = createBasicBlock("skipcount");
+ EmitBranch(SkipCountBB);
+ }
+ EmitBlock(BB);
+ uint64_t CurrentCount = getCurrentProfileCount();
+ incrementProfileCounter(S);
+ setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
+ if (SkipCountBB)
+ EmitBlock(SkipCountBB);
+}
+
+/// Tries to mark the given function nounwind based on the
+/// non-existence of any throwing calls within it. We believe this is
+/// lightweight enough to do at -O0.
+static void TryMarkNoThrow(llvm::Function *F) {
+ // LLVM treats 'nounwind' on a function as part of the type, so we
+ // can't do this on functions that can be overwritten.
+ if (F->mayBeOverridden()) return;
+
+ for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
+ for (llvm::BasicBlock::iterator
+ BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
+ if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
+ if (!Call->doesNotThrow())
+ return;
+ } else if (isa<llvm::ResumeInst>(&*BI)) {
+ return;
+ }
+ F->setDoesNotThrow();
+}
+
+void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
+ const CGFunctionInfo &FnInfo) {
+ const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
+
+ // Check if we should generate debug info for this function.
+ if (FD->hasAttr<NoDebugAttr>())
+ DebugInfo = nullptr; // disable debug info indefinitely for this function
+
+ FunctionArgList Args;
+ QualType ResTy = FD->getReturnType();
+
+ CurGD = GD;
+ const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
+ if (MD && MD->isInstance()) {
+ if (CGM.getCXXABI().HasThisReturn(GD))
+ ResTy = MD->getThisType(getContext());
+ else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
+ ResTy = CGM.getContext().VoidPtrTy;
+ CGM.getCXXABI().buildThisParam(*this, Args);
+ }
+
+ Args.append(FD->param_begin(), FD->param_end());
+
+ if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
+ CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
+
+ SourceRange BodyRange;
+ if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
+ CurEHLocation = BodyRange.getEnd();
+
+ // Use the location of the start of the function to determine where
+ // the function definition is located. By default use the location
+ // of the declaration as the location for the subprogram. A function
+ // may lack a declaration in the source code if it is created by code
+ // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
+ SourceLocation Loc = FD->getLocation();
+
+ // If this is a function specialization then use the pattern body
+ // as the location for the function.
+ if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
+ if (SpecDecl->hasBody(SpecDecl))
+ Loc = SpecDecl->getLocation();
+
+ // Emit the standard function prologue.
+ StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
+
+ // Generate the body of the function.
+ PGO.checkGlobalDecl(GD);
+ PGO.assignRegionCounters(GD.getDecl(), CurFn);
+ if (isa<CXXDestructorDecl>(FD))
+ EmitDestructorBody(Args);
+ else if (isa<CXXConstructorDecl>(FD))
+ EmitConstructorBody(Args);
+ else if (getLangOpts().CUDA &&
+ !getLangOpts().CUDAIsDevice &&
+ FD->hasAttr<CUDAGlobalAttr>())
+ CGM.getCUDARuntime().emitDeviceStub(*this, Args);
+ else if (isa<CXXConversionDecl>(FD) &&
+ cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
+ // The lambda conversion to block pointer is special; the semantics can't be
+ // expressed in the AST, so IRGen needs to special-case it.
+ EmitLambdaToBlockPointerBody(Args);
+ } else if (isa<CXXMethodDecl>(FD) &&
+ cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
+ // The lambda static invoker function is special, because it forwards or
+ // clones the body of the function call operator (but is actually static).
+ EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
+ } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
+ (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
+ cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
+ // Implicit copy-assignment gets the same special treatment as implicit
+ // copy-constructors.
+ emitImplicitAssignmentOperatorBody(Args);
+ } else if (Stmt *Body = FD->getBody()) {
+ EmitFunctionBody(Args, Body);
+ } else
+ llvm_unreachable("no definition for emitted function");
+
+ // C++11 [stmt.return]p2:
+ // Flowing off the end of a function [...] results in undefined behavior in
+ // a value-returning function.
+ // C11 6.9.1p12:
+ // If the '}' that terminates a function is reached, and the value of the
+ // function call is used by the caller, the behavior is undefined.
+ if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
+ !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
+ if (SanOpts.has(SanitizerKind::Return)) {
+ SanitizerScope SanScope(this);
+ llvm::Value *IsFalse = Builder.getFalse();
+ EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
+ "missing_return", EmitCheckSourceLocation(FD->getLocation()),
+ None);
+ } else if (CGM.getCodeGenOpts().OptimizationLevel == 0)
+ Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap), {});
+ Builder.CreateUnreachable();
+ Builder.ClearInsertionPoint();
+ }
+
+ // Emit the standard function epilogue.
+ FinishFunction(BodyRange.getEnd());
+
+ // If we haven't marked the function nothrow through other means, do
+ // a quick pass now to see if we can.
+ if (!CurFn->doesNotThrow())
+ TryMarkNoThrow(CurFn);
+}
+
+/// ContainsLabel - Return true if the statement contains a label in it. If
+/// this statement is not executed normally, it not containing a label means
+/// that we can just remove the code.
+bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
+ // Null statement, not a label!
+ if (!S) return false;
+
+ // If this is a label, we have to emit the code, consider something like:
+ // if (0) { ... foo: bar(); } goto foo;
+ //
+ // TODO: If anyone cared, we could track __label__'s, since we know that you
+ // can't jump to one from outside their declared region.
+ if (isa<LabelStmt>(S))
+ return true;
+
+ // If this is a case/default statement, and we haven't seen a switch, we have
+ // to emit the code.
+ if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
+ return true;
+
+ // If this is a switch statement, we want to ignore cases below it.
+ if (isa<SwitchStmt>(S))
+ IgnoreCaseStmts = true;
+
+ // Scan subexpressions for verboten labels.
+ for (Stmt::const_child_range I = S->children(); I; ++I)
+ if (ContainsLabel(*I, IgnoreCaseStmts))
+ return true;
+
+ return false;
+}
+
+/// containsBreak - Return true if the statement contains a break out of it.
+/// If the statement (recursively) contains a switch or loop with a break
+/// inside of it, this is fine.
+bool CodeGenFunction::containsBreak(const Stmt *S) {
+ // Null statement, not a label!
+ if (!S) return false;
+
+ // If this is a switch or loop that defines its own break scope, then we can
+ // include it and anything inside of it.
+ if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
+ isa<ForStmt>(S))
+ return false;
+
+ if (isa<BreakStmt>(S))
+ return true;
+
+ // Scan subexpressions for verboten breaks.
+ for (Stmt::const_child_range I = S->children(); I; ++I)
+ if (containsBreak(*I))
+ return true;
+
+ return false;
+}
+
+
+/// ConstantFoldsToSimpleInteger - If the specified expression does not fold
+/// to a constant, or if it does but contains a label, return false. If it
+/// constant folds return true and set the boolean result in Result.
+bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
+ bool &ResultBool) {
+ llvm::APSInt ResultInt;
+ if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
+ return false;
+
+ ResultBool = ResultInt.getBoolValue();
+ return true;
+}
+
+/// ConstantFoldsToSimpleInteger - If the specified expression does not fold
+/// to a constant, or if it does but contains a label, return false. If it
+/// constant folds return true and set the folded value.
+bool CodeGenFunction::
+ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
+ // FIXME: Rename and handle conversion of other evaluatable things
+ // to bool.
+ llvm::APSInt Int;
+ if (!Cond->EvaluateAsInt(Int, getContext()))
+ return false; // Not foldable, not integer or not fully evaluatable.
+
+ if (CodeGenFunction::ContainsLabel(Cond))
+ return false; // Contains a label.
+
+ ResultInt = Int;
+ return true;
+}
+
+
+
+/// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
+/// statement) to the specified blocks. Based on the condition, this might try
+/// to simplify the codegen of the conditional based on the branch.
+///
+void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
+ llvm::BasicBlock *TrueBlock,
+ llvm::BasicBlock *FalseBlock,
+ uint64_t TrueCount) {
+ Cond = Cond->IgnoreParens();
+
+ if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
+
+ // Handle X && Y in a condition.
+ if (CondBOp->getOpcode() == BO_LAnd) {
+ // If we have "1 && X", simplify the code. "0 && X" would have constant
+ // folded if the case was simple enough.
+ bool ConstantBool = false;
+ if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
+ ConstantBool) {
+ // br(1 && X) -> br(X).
+ incrementProfileCounter(CondBOp);
+ return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
+ TrueCount);
+ }
+
+ // If we have "X && 1", simplify the code to use an uncond branch.
+ // "X && 0" would have been constant folded to 0.
+ if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
+ ConstantBool) {
+ // br(X && 1) -> br(X).
+ return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
+ TrueCount);
+ }
+
+ // Emit the LHS as a conditional. If the LHS conditional is false, we
+ // want to jump to the FalseBlock.
+ llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
+ // The counter tells us how often we evaluate RHS, and all of TrueCount
+ // can be propagated to that branch.
+ uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
+
+ ConditionalEvaluation eval(*this);
+ {
+ ApplyDebugLocation DL(*this, Cond);
+ EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
+ EmitBlock(LHSTrue);
+ }
+
+ incrementProfileCounter(CondBOp);
+ setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
+
+ // Any temporaries created here are conditional.
+ eval.begin(*this);
+ EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
+ eval.end(*this);
+
+ return;
+ }
+
+ if (CondBOp->getOpcode() == BO_LOr) {
+ // If we have "0 || X", simplify the code. "1 || X" would have constant
+ // folded if the case was simple enough.
+ bool ConstantBool = false;
+ if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
+ !ConstantBool) {
+ // br(0 || X) -> br(X).
+ incrementProfileCounter(CondBOp);
+ return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
+ TrueCount);
+ }
+
+ // If we have "X || 0", simplify the code to use an uncond branch.
+ // "X || 1" would have been constant folded to 1.
+ if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
+ !ConstantBool) {
+ // br(X || 0) -> br(X).
+ return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
+ TrueCount);
+ }
+
+ // Emit the LHS as a conditional. If the LHS conditional is true, we
+ // want to jump to the TrueBlock.
+ llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
+ // We have the count for entry to the RHS and for the whole expression
+ // being true, so we can divy up True count between the short circuit and
+ // the RHS.
+ uint64_t LHSCount =
+ getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
+ uint64_t RHSCount = TrueCount - LHSCount;
+
+ ConditionalEvaluation eval(*this);
+ {
+ ApplyDebugLocation DL(*this, Cond);
+ EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
+ EmitBlock(LHSFalse);
+ }
+
+ incrementProfileCounter(CondBOp);
+ setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
+
+ // Any temporaries created here are conditional.
+ eval.begin(*this);
+ EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
+
+ eval.end(*this);
+
+ return;
+ }
+ }
+
+ if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
+ // br(!x, t, f) -> br(x, f, t)
+ if (CondUOp->getOpcode() == UO_LNot) {
+ // Negate the count.
+ uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
+ // Negate the condition and swap the destination blocks.
+ return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
+ FalseCount);
+ }
+ }
+
+ if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
+ // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
+ llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
+ llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
+
+ ConditionalEvaluation cond(*this);
+ EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
+ getProfileCount(CondOp));
+
+ // When computing PGO branch weights, we only know the overall count for
+ // the true block. This code is essentially doing tail duplication of the
+ // naive code-gen, introducing new edges for which counts are not
+ // available. Divide the counts proportionally between the LHS and RHS of
+ // the conditional operator.
+ uint64_t LHSScaledTrueCount = 0;
+ if (TrueCount) {
+ double LHSRatio =
+ getProfileCount(CondOp) / (double)getCurrentProfileCount();
+ LHSScaledTrueCount = TrueCount * LHSRatio;
+ }
+
+ cond.begin(*this);
+ EmitBlock(LHSBlock);
+ incrementProfileCounter(CondOp);
+ {
+ ApplyDebugLocation DL(*this, Cond);
+ EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
+ LHSScaledTrueCount);
+ }
+ cond.end(*this);
+
+ cond.begin(*this);
+ EmitBlock(RHSBlock);
+ EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
+ TrueCount - LHSScaledTrueCount);
+ cond.end(*this);
+
+ return;
+ }
+
+ if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
+ // Conditional operator handling can give us a throw expression as a
+ // condition for a case like:
+ // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
+ // Fold this to:
+ // br(c, throw x, br(y, t, f))
+ EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
+ return;
+ }
+
+ // Create branch weights based on the number of times we get here and the
+ // number of times the condition should be true.
+ uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
+ llvm::MDNode *Weights =
+ createProfileWeights(TrueCount, CurrentCount - TrueCount);
+
+ // Emit the code with the fully general case.
+ llvm::Value *CondV;
+ {
+ ApplyDebugLocation DL(*this, Cond);
+ CondV = EvaluateExprAsBool(Cond);
+ }
+ Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights);
+}
+
+/// ErrorUnsupported - Print out an error that codegen doesn't support the
+/// specified stmt yet.
+void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
+ CGM.ErrorUnsupported(S, Type);
+}
+
+/// emitNonZeroVLAInit - Emit the "zero" initialization of a
+/// variable-length array whose elements have a non-zero bit-pattern.
+///
+/// \param baseType the inner-most element type of the array
+/// \param src - a char* pointing to the bit-pattern for a single
+/// base element of the array
+/// \param sizeInChars - the total size of the VLA, in chars
+static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
+ llvm::Value *dest, llvm::Value *src,
+ llvm::Value *sizeInChars) {
+ std::pair<CharUnits,CharUnits> baseSizeAndAlign
+ = CGF.getContext().getTypeInfoInChars(baseType);
+
+ CGBuilderTy &Builder = CGF.Builder;
+
+ llvm::Value *baseSizeInChars
+ = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
+
+ llvm::Type *i8p = Builder.getInt8PtrTy();
+
+ llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
+ llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
+
+ llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
+ llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
+ llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
+
+ // Make a loop over the VLA. C99 guarantees that the VLA element
+ // count must be nonzero.
+ CGF.EmitBlock(loopBB);
+
+ llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
+ cur->addIncoming(begin, originBB);
+
+ // memcpy the individual element bit-pattern.
+ Builder.CreateMemCpy(cur, src, baseSizeInChars,
+ baseSizeAndAlign.second.getQuantity(),
+ /*volatile*/ false);
+
+ // Go to the next element.
+ llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(),
+ cur, 1, "vla.next");
+
+ // Leave if that's the end of the VLA.
+ llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
+ Builder.CreateCondBr(done, contBB, loopBB);
+ cur->addIncoming(next, loopBB);
+
+ CGF.EmitBlock(contBB);
+}
+
+void
+CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
+ // Ignore empty classes in C++.
+ if (getLangOpts().CPlusPlus) {
+ if (const RecordType *RT = Ty->getAs<RecordType>()) {
+ if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
+ return;
+ }
+ }
+
+ // Cast the dest ptr to the appropriate i8 pointer type.
+ unsigned DestAS =
+ cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
+ llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
+ if (DestPtr->getType() != BP)
+ DestPtr = Builder.CreateBitCast(DestPtr, BP);
+
+ // Get size and alignment info for this aggregate.
+ std::pair<CharUnits, CharUnits> TypeInfo =
+ getContext().getTypeInfoInChars(Ty);
+ CharUnits Size = TypeInfo.first;
+ CharUnits Align = TypeInfo.second;
+
+ llvm::Value *SizeVal;
+ const VariableArrayType *vla;
+
+ // Don't bother emitting a zero-byte memset.
+ if (Size.isZero()) {
+ // But note that getTypeInfo returns 0 for a VLA.
+ if (const VariableArrayType *vlaType =
+ dyn_cast_or_null<VariableArrayType>(
+ getContext().getAsArrayType(Ty))) {
+ QualType eltType;
+ llvm::Value *numElts;
+ std::tie(numElts, eltType) = getVLASize(vlaType);
+
+ SizeVal = numElts;
+ CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
+ if (!eltSize.isOne())
+ SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
+ vla = vlaType;
+ } else {
+ return;
+ }
+ } else {
+ SizeVal = CGM.getSize(Size);
+ vla = nullptr;
+ }
+
+ // If the type contains a pointer to data member we can't memset it to zero.
+ // Instead, create a null constant and copy it to the destination.
+ // TODO: there are other patterns besides zero that we can usefully memset,
+ // like -1, which happens to be the pattern used by member-pointers.
+ if (!CGM.getTypes().isZeroInitializable(Ty)) {
+ // For a VLA, emit a single element, then splat that over the VLA.
+ if (vla) Ty = getContext().getBaseElementType(vla);
+
+ llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
+
+ llvm::GlobalVariable *NullVariable =
+ new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
+ /*isConstant=*/true,
+ llvm::GlobalVariable::PrivateLinkage,
+ NullConstant, Twine());
+ llvm::Value *SrcPtr =
+ Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
+
+ if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
+
+ // Get and call the appropriate llvm.memcpy overload.
+ Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
+ return;
+ }
+
+ // Otherwise, just memset the whole thing to zero. This is legal
+ // because in LLVM, all default initializers (other than the ones we just
+ // handled above) are guaranteed to have a bit pattern of all zeros.
+ Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
+ Align.getQuantity(), false);
+}
+
+llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
+ // Make sure that there is a block for the indirect goto.
+ if (!IndirectBranch)
+ GetIndirectGotoBlock();
+
+ llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
+
+ // Make sure the indirect branch includes all of the address-taken blocks.
+ IndirectBranch->addDestination(BB);
+ return llvm::BlockAddress::get(CurFn, BB);
+}
+
+llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
+ // If we already made the indirect branch for indirect goto, return its block.
+ if (IndirectBranch) return IndirectBranch->getParent();
+
+ CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
+
+ // Create the PHI node that indirect gotos will add entries to.
+ llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
+ "indirect.goto.dest");
+
+ // Create the indirect branch instruction.
+ IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
+ return IndirectBranch->getParent();
+}
+
+/// Computes the length of an array in elements, as well as the base
+/// element type and a properly-typed first element pointer.
+llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
+ QualType &baseType,
+ llvm::Value *&addr) {
+ const ArrayType *arrayType = origArrayType;
+
+ // If it's a VLA, we have to load the stored size. Note that
+ // this is the size of the VLA in bytes, not its size in elements.
+ llvm::Value *numVLAElements = nullptr;
+ if (isa<VariableArrayType>(arrayType)) {
+ numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
+
+ // Walk into all VLAs. This doesn't require changes to addr,
+ // which has type T* where T is the first non-VLA element type.
+ do {
+ QualType elementType = arrayType->getElementType();
+ arrayType = getContext().getAsArrayType(elementType);
+
+ // If we only have VLA components, 'addr' requires no adjustment.
+ if (!arrayType) {
+ baseType = elementType;
+ return numVLAElements;
+ }
+ } while (isa<VariableArrayType>(arrayType));
+
+ // We get out here only if we find a constant array type
+ // inside the VLA.
+ }
+
+ // We have some number of constant-length arrays, so addr should
+ // have LLVM type [M x [N x [...]]]*. Build a GEP that walks
+ // down to the first element of addr.
+ SmallVector<llvm::Value*, 8> gepIndices;
+
+ // GEP down to the array type.
+ llvm::ConstantInt *zero = Builder.getInt32(0);
+ gepIndices.push_back(zero);
+
+ uint64_t countFromCLAs = 1;
+ QualType eltType;
+
+ llvm::ArrayType *llvmArrayType =
+ dyn_cast<llvm::ArrayType>(
+ cast<llvm::PointerType>(addr->getType())->getElementType());
+ while (llvmArrayType) {
+ assert(isa<ConstantArrayType>(arrayType));
+ assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
+ == llvmArrayType->getNumElements());
+
+ gepIndices.push_back(zero);
+ countFromCLAs *= llvmArrayType->getNumElements();
+ eltType = arrayType->getElementType();
+
+ llvmArrayType =
+ dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
+ arrayType = getContext().getAsArrayType(arrayType->getElementType());
+ assert((!llvmArrayType || arrayType) &&
+ "LLVM and Clang types are out-of-synch");
+ }
+
+ if (arrayType) {
+ // From this point onwards, the Clang array type has been emitted
+ // as some other type (probably a packed struct). Compute the array
+ // size, and just emit the 'begin' expression as a bitcast.
+ while (arrayType) {
+ countFromCLAs *=
+ cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
+ eltType = arrayType->getElementType();
+ arrayType = getContext().getAsArrayType(eltType);
+ }
+
+ unsigned AddressSpace = addr->getType()->getPointerAddressSpace();
+ llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
+ addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
+ } else {
+ // Create the actual GEP.
+ addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
+ }
+
+ baseType = eltType;
+
+ llvm::Value *numElements
+ = llvm::ConstantInt::get(SizeTy, countFromCLAs);
+
+ // If we had any VLA dimensions, factor them in.
+ if (numVLAElements)
+ numElements = Builder.CreateNUWMul(numVLAElements, numElements);
+
+ return numElements;
+}
+
+std::pair<llvm::Value*, QualType>
+CodeGenFunction::getVLASize(QualType type) {
+ const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
+ assert(vla && "type was not a variable array type!");
+ return getVLASize(vla);
+}
+
+std::pair<llvm::Value*, QualType>
+CodeGenFunction::getVLASize(const VariableArrayType *type) {
+ // The number of elements so far; always size_t.
+ llvm::Value *numElements = nullptr;
+
+ QualType elementType;
+ do {
+ elementType = type->getElementType();
+ llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
+ assert(vlaSize && "no size for VLA!");
+ assert(vlaSize->getType() == SizeTy);
+
+ if (!numElements) {
+ numElements = vlaSize;
+ } else {
+ // It's undefined behavior if this wraps around, so mark it that way.
+ // FIXME: Teach -fsanitize=undefined to trap this.
+ numElements = Builder.CreateNUWMul(numElements, vlaSize);
+ }
+ } while ((type = getContext().getAsVariableArrayType(elementType)));
+
+ return std::pair<llvm::Value*,QualType>(numElements, elementType);
+}
+
+void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
+ assert(type->isVariablyModifiedType() &&
+ "Must pass variably modified type to EmitVLASizes!");
+
+ EnsureInsertPoint();
+
+ // We're going to walk down into the type and look for VLA
+ // expressions.
+ do {
+ assert(type->isVariablyModifiedType());
+
+ const Type *ty = type.getTypePtr();
+ switch (ty->getTypeClass()) {
+
+#define TYPE(Class, Base)
+#define ABSTRACT_TYPE(Class, Base)
+#define NON_CANONICAL_TYPE(Class, Base)
+#define DEPENDENT_TYPE(Class, Base) case Type::Class:
+#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
+#include "clang/AST/TypeNodes.def"
+ llvm_unreachable("unexpected dependent type!");
+
+ // These types are never variably-modified.
+ case Type::Builtin:
+ case Type::Complex:
+ case Type::Vector:
+ case Type::ExtVector:
+ case Type::Record:
+ case Type::Enum:
+ case Type::Elaborated:
+ case Type::TemplateSpecialization:
+ case Type::ObjCObject:
+ case Type::ObjCInterface:
+ case Type::ObjCObjectPointer:
+ llvm_unreachable("type class is never variably-modified!");
+
+ case Type::Adjusted:
+ type = cast<AdjustedType>(ty)->getAdjustedType();
+ break;
+
+ case Type::Decayed:
+ type = cast<DecayedType>(ty)->getPointeeType();
+ break;
+
+ case Type::Pointer:
+ type = cast<PointerType>(ty)->getPointeeType();
+ break;
+
+ case Type::BlockPointer:
+ type = cast<BlockPointerType>(ty)->getPointeeType();
+ break;
+
+ case Type::LValueReference:
+ case Type::RValueReference:
+ type = cast<ReferenceType>(ty)->getPointeeType();
+ break;
+
+ case Type::MemberPointer:
+ type = cast<MemberPointerType>(ty)->getPointeeType();
+ break;
+
+ case Type::ConstantArray:
+ case Type::IncompleteArray:
+ // Losing element qualification here is fine.
+ type = cast<ArrayType>(ty)->getElementType();
+ break;
+
+ case Type::VariableArray: {
+ // Losing element qualification here is fine.
+ const VariableArrayType *vat = cast<VariableArrayType>(ty);
+
+ // Unknown size indication requires no size computation.
+ // Otherwise, evaluate and record it.
+ if (const Expr *size = vat->getSizeExpr()) {
+ // It's possible that we might have emitted this already,
+ // e.g. with a typedef and a pointer to it.
+ llvm::Value *&entry = VLASizeMap[size];
+ if (!entry) {
+ llvm::Value *Size = EmitScalarExpr(size);
+
+ // C11 6.7.6.2p5:
+ // If the size is an expression that is not an integer constant
+ // expression [...] each time it is evaluated it shall have a value
+ // greater than zero.
+ if (SanOpts.has(SanitizerKind::VLABound) &&
+ size->getType()->isSignedIntegerType()) {
+ SanitizerScope SanScope(this);
+ llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
+ llvm::Constant *StaticArgs[] = {
+ EmitCheckSourceLocation(size->getLocStart()),
+ EmitCheckTypeDescriptor(size->getType())
+ };
+ EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
+ SanitizerKind::VLABound),
+ "vla_bound_not_positive", StaticArgs, Size);
+ }
+
+ // Always zexting here would be wrong if it weren't
+ // undefined behavior to have a negative bound.
+ entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
+ }
+ }
+ type = vat->getElementType();
+ break;
+ }
+
+ case Type::FunctionProto:
+ case Type::FunctionNoProto:
+ type = cast<FunctionType>(ty)->getReturnType();
+ break;
+
+ case Type::Paren:
+ case Type::TypeOf:
+ case Type::UnaryTransform:
+ case Type::Attributed:
+ case Type::SubstTemplateTypeParm:
+ case Type::PackExpansion:
+ // Keep walking after single level desugaring.
+ type = type.getSingleStepDesugaredType(getContext());
+ break;
+
+ case Type::Typedef:
+ case Type::Decltype:
+ case Type::Auto:
+ // Stop walking: nothing to do.
+ return;
+
+ case Type::TypeOfExpr:
+ // Stop walking: emit typeof expression.
+ EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
+ return;
+
+ case Type::Atomic:
+ type = cast<AtomicType>(ty)->getValueType();
+ break;
+ }
+ } while (type->isVariablyModifiedType());
+}
+
+llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
+ if (getContext().getBuiltinVaListType()->isArrayType())
+ return EmitScalarExpr(E);
+ return EmitLValue(E).getAddress();
+}
+
+void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
+ llvm::Constant *Init) {
+ assert (Init && "Invalid DeclRefExpr initializer!");
+ if (CGDebugInfo *Dbg = getDebugInfo())
+ if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
+ Dbg->EmitGlobalVariable(E->getDecl(), Init);
+}
+
+CodeGenFunction::PeepholeProtection
+CodeGenFunction::protectFromPeepholes(RValue rvalue) {
+ // At the moment, the only aggressive peephole we do in IR gen
+ // is trunc(zext) folding, but if we add more, we can easily
+ // extend this protection.
+
+ if (!rvalue.isScalar()) return PeepholeProtection();
+ llvm::Value *value = rvalue.getScalarVal();
+ if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
+
+ // Just make an extra bitcast.
+ assert(HaveInsertPoint());
+ llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
+ Builder.GetInsertBlock());
+
+ PeepholeProtection protection;
+ protection.Inst = inst;
+ return protection;
+}
+
+void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
+ if (!protection.Inst) return;
+
+ // In theory, we could try to duplicate the peepholes now, but whatever.
+ protection.Inst->eraseFromParent();
+}
+
+llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
+ llvm::Value *AnnotatedVal,
+ StringRef AnnotationStr,
+ SourceLocation Location) {
+ llvm::Value *Args[4] = {
+ AnnotatedVal,
+ Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
+ Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
+ CGM.EmitAnnotationLineNo(Location)
+ };
+ return Builder.CreateCall(AnnotationFn, Args);
+}
+
+void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
+ assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
+ // FIXME We create a new bitcast for every annotation because that's what
+ // llvm-gcc was doing.
+ for (const auto *I : D->specific_attrs<AnnotateAttr>())
+ EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
+ Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
+ I->getAnnotation(), D->getLocation());
+}
+
+llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
+ llvm::Value *V) {
+ assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
+ llvm::Type *VTy = V->getType();
+ llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
+ CGM.Int8PtrTy);
+
+ for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
+ // FIXME Always emit the cast inst so we can differentiate between
+ // annotation on the first field of a struct and annotation on the struct
+ // itself.
+ if (VTy != CGM.Int8PtrTy)
+ V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
+ V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
+ V = Builder.CreateBitCast(V, VTy);
+ }
+
+ return V;
+}
+
+CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
+
+CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
+ : CGF(CGF) {
+ assert(!CGF->IsSanitizerScope);
+ CGF->IsSanitizerScope = true;
+}
+
+CodeGenFunction::SanitizerScope::~SanitizerScope() {
+ CGF->IsSanitizerScope = false;
+}
+
+void CodeGenFunction::InsertHelper(llvm::Instruction *I,
+ const llvm::Twine &Name,
+ llvm::BasicBlock *BB,
+ llvm::BasicBlock::iterator InsertPt) const {
+ LoopStack.InsertHelper(I);
+ if (IsSanitizerScope)
+ CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
+}
+
+template <bool PreserveNames>
+void CGBuilderInserter<PreserveNames>::InsertHelper(
+ llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
+ llvm::BasicBlock::iterator InsertPt) const {
+ llvm::IRBuilderDefaultInserter<PreserveNames>::InsertHelper(I, Name, BB,
+ InsertPt);
+ if (CGF)
+ CGF->InsertHelper(I, Name, BB, InsertPt);
+}
+
+#ifdef NDEBUG
+#define PreserveNames false
+#else
+#define PreserveNames true
+#endif
+template void CGBuilderInserter<PreserveNames>::InsertHelper(
+ llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
+ llvm::BasicBlock::iterator InsertPt) const;
+#undef PreserveNames
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CodeGenFunction.h b/contrib/llvm/tools/clang/lib/CodeGen/CodeGenFunction.h
new file mode 100644
index 0000000..650ad7b
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CodeGenFunction.h
@@ -0,0 +1,3036 @@
+//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This is the internal per-function state used for llvm translation.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
+#define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
+
+#include "CGBuilder.h"
+#include "CGDebugInfo.h"
+#include "CGLoopInfo.h"
+#include "CGValue.h"
+#include "CodeGenModule.h"
+#include "CodeGenPGO.h"
+#include "EHScopeStack.h"
+#include "clang/AST/CharUnits.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/AST/Type.h"
+#include "clang/Basic/ABI.h"
+#include "clang/Basic/CapturedStmt.h"
+#include "clang/Basic/OpenMPKinds.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Frontend/CodeGenOptions.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/IR/ValueHandle.h"
+#include "llvm/Support/Debug.h"
+
+namespace llvm {
+class BasicBlock;
+class LLVMContext;
+class MDNode;
+class Module;
+class SwitchInst;
+class Twine;
+class Value;
+class CallSite;
+}
+
+namespace clang {
+class ASTContext;
+class BlockDecl;
+class CXXDestructorDecl;
+class CXXForRangeStmt;
+class CXXTryStmt;
+class Decl;
+class LabelDecl;
+class EnumConstantDecl;
+class FunctionDecl;
+class FunctionProtoType;
+class LabelStmt;
+class ObjCContainerDecl;
+class ObjCInterfaceDecl;
+class ObjCIvarDecl;
+class ObjCMethodDecl;
+class ObjCImplementationDecl;
+class ObjCPropertyImplDecl;
+class TargetInfo;
+class TargetCodeGenInfo;
+class VarDecl;
+class ObjCForCollectionStmt;
+class ObjCAtTryStmt;
+class ObjCAtThrowStmt;
+class ObjCAtSynchronizedStmt;
+class ObjCAutoreleasePoolStmt;
+
+namespace CodeGen {
+class CodeGenTypes;
+class CGFunctionInfo;
+class CGRecordLayout;
+class CGBlockInfo;
+class CGCXXABI;
+class BlockFlags;
+class BlockFieldFlags;
+
+/// The kind of evaluation to perform on values of a particular
+/// type. Basically, is the code in CGExprScalar, CGExprComplex, or
+/// CGExprAgg?
+///
+/// TODO: should vectors maybe be split out into their own thing?
+enum TypeEvaluationKind {
+ TEK_Scalar,
+ TEK_Complex,
+ TEK_Aggregate
+};
+
+/// CodeGenFunction - This class organizes the per-function state that is used
+/// while generating LLVM code.
+class CodeGenFunction : public CodeGenTypeCache {
+ CodeGenFunction(const CodeGenFunction &) = delete;
+ void operator=(const CodeGenFunction &) = delete;
+
+ friend class CGCXXABI;
+public:
+ /// A jump destination is an abstract label, branching to which may
+ /// require a jump out through normal cleanups.
+ struct JumpDest {
+ JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
+ JumpDest(llvm::BasicBlock *Block,
+ EHScopeStack::stable_iterator Depth,
+ unsigned Index)
+ : Block(Block), ScopeDepth(Depth), Index(Index) {}
+
+ bool isValid() const { return Block != nullptr; }
+ llvm::BasicBlock *getBlock() const { return Block; }
+ EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
+ unsigned getDestIndex() const { return Index; }
+
+ // This should be used cautiously.
+ void setScopeDepth(EHScopeStack::stable_iterator depth) {
+ ScopeDepth = depth;
+ }
+
+ private:
+ llvm::BasicBlock *Block;
+ EHScopeStack::stable_iterator ScopeDepth;
+ unsigned Index;
+ };
+
+ CodeGenModule &CGM; // Per-module state.
+ const TargetInfo &Target;
+
+ typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
+ LoopInfoStack LoopStack;
+ CGBuilderTy Builder;
+
+ /// \brief CGBuilder insert helper. This function is called after an
+ /// instruction is created using Builder.
+ void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
+ llvm::BasicBlock *BB,
+ llvm::BasicBlock::iterator InsertPt) const;
+
+ /// CurFuncDecl - Holds the Decl for the current outermost
+ /// non-closure context.
+ const Decl *CurFuncDecl;
+ /// CurCodeDecl - This is the inner-most code context, which includes blocks.
+ const Decl *CurCodeDecl;
+ const CGFunctionInfo *CurFnInfo;
+ QualType FnRetTy;
+ llvm::Function *CurFn;
+
+ /// CurGD - The GlobalDecl for the current function being compiled.
+ GlobalDecl CurGD;
+
+ /// PrologueCleanupDepth - The cleanup depth enclosing all the
+ /// cleanups associated with the parameters.
+ EHScopeStack::stable_iterator PrologueCleanupDepth;
+
+ /// ReturnBlock - Unified return block.
+ JumpDest ReturnBlock;
+
+ /// ReturnValue - The temporary alloca to hold the return value. This is null
+ /// iff the function has no return value.
+ llvm::Value *ReturnValue;
+
+ /// AllocaInsertPoint - This is an instruction in the entry block before which
+ /// we prefer to insert allocas.
+ llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
+
+ /// \brief API for captured statement code generation.
+ class CGCapturedStmtInfo {
+ public:
+ explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
+ : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
+ explicit CGCapturedStmtInfo(const CapturedStmt &S,
+ CapturedRegionKind K = CR_Default)
+ : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
+
+ RecordDecl::field_iterator Field =
+ S.getCapturedRecordDecl()->field_begin();
+ for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
+ E = S.capture_end();
+ I != E; ++I, ++Field) {
+ if (I->capturesThis())
+ CXXThisFieldDecl = *Field;
+ else if (I->capturesVariable())
+ CaptureFields[I->getCapturedVar()] = *Field;
+ }
+ }
+
+ virtual ~CGCapturedStmtInfo();
+
+ CapturedRegionKind getKind() const { return Kind; }
+
+ virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
+ // \brief Retrieve the value of the context parameter.
+ virtual llvm::Value *getContextValue() const { return ThisValue; }
+
+ /// \brief Lookup the captured field decl for a variable.
+ virtual const FieldDecl *lookup(const VarDecl *VD) const {
+ return CaptureFields.lookup(VD);
+ }
+
+ bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
+ virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
+
+ static bool classof(const CGCapturedStmtInfo *) {
+ return true;
+ }
+
+ /// \brief Emit the captured statement body.
+ virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
+ CGF.incrementProfileCounter(S);
+ CGF.EmitStmt(S);
+ }
+
+ /// \brief Get the name of the capture helper.
+ virtual StringRef getHelperName() const { return "__captured_stmt"; }
+
+ private:
+ /// \brief The kind of captured statement being generated.
+ CapturedRegionKind Kind;
+
+ /// \brief Keep the map between VarDecl and FieldDecl.
+ llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
+
+ /// \brief The base address of the captured record, passed in as the first
+ /// argument of the parallel region function.
+ llvm::Value *ThisValue;
+
+ /// \brief Captured 'this' type.
+ FieldDecl *CXXThisFieldDecl;
+ };
+ CGCapturedStmtInfo *CapturedStmtInfo;
+
+ /// BoundsChecking - Emit run-time bounds checks. Higher values mean
+ /// potentially higher performance penalties.
+ unsigned char BoundsChecking;
+
+ /// \brief Sanitizers enabled for this function.
+ SanitizerSet SanOpts;
+
+ /// \brief True if CodeGen currently emits code implementing sanitizer checks.
+ bool IsSanitizerScope;
+
+ /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope.
+ class SanitizerScope {
+ CodeGenFunction *CGF;
+ public:
+ SanitizerScope(CodeGenFunction *CGF);
+ ~SanitizerScope();
+ };
+
+ /// In C++, whether we are code generating a thunk. This controls whether we
+ /// should emit cleanups.
+ bool CurFuncIsThunk;
+
+ /// In ARC, whether we should autorelease the return value.
+ bool AutoreleaseResult;
+
+ /// Whether we processed a Microsoft-style asm block during CodeGen. These can
+ /// potentially set the return value.
+ bool SawAsmBlock;
+
+ /// True if the current function is an outlined SEH helper. This can be a
+ /// finally block or filter expression.
+ bool IsOutlinedSEHHelper;
+
+ const CodeGen::CGBlockInfo *BlockInfo;
+ llvm::Value *BlockPointer;
+
+ llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
+ FieldDecl *LambdaThisCaptureField;
+
+ /// \brief A mapping from NRVO variables to the flags used to indicate
+ /// when the NRVO has been applied to this variable.
+ llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
+
+ EHScopeStack EHStack;
+ llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
+ llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
+
+ /// Header for data within LifetimeExtendedCleanupStack.
+ struct LifetimeExtendedCleanupHeader {
+ /// The size of the following cleanup object.
+ unsigned Size : 29;
+ /// The kind of cleanup to push: a value from the CleanupKind enumeration.
+ unsigned Kind : 3;
+
+ size_t getSize() const { return size_t(Size); }
+ CleanupKind getKind() const { return static_cast<CleanupKind>(Kind); }
+ };
+
+ /// i32s containing the indexes of the cleanup destinations.
+ llvm::AllocaInst *NormalCleanupDest;
+
+ unsigned NextCleanupDestIndex;
+
+ /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
+ CGBlockInfo *FirstBlockInfo;
+
+ /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
+ llvm::BasicBlock *EHResumeBlock;
+
+ /// The exception slot. All landing pads write the current exception pointer
+ /// into this alloca.
+ llvm::Value *ExceptionSlot;
+
+ /// The selector slot. Under the MandatoryCleanup model, all landing pads
+ /// write the current selector value into this alloca.
+ llvm::AllocaInst *EHSelectorSlot;
+
+ llvm::AllocaInst *AbnormalTerminationSlot;
+
+ /// The implicit parameter to SEH filter functions of type
+ /// 'EXCEPTION_POINTERS*'.
+ ImplicitParamDecl *SEHPointersDecl;
+
+ /// Emits a landing pad for the current EH stack.
+ llvm::BasicBlock *EmitLandingPad();
+
+ llvm::BasicBlock *getInvokeDestImpl();
+
+ template <class T>
+ typename DominatingValue<T>::saved_type saveValueInCond(T value) {
+ return DominatingValue<T>::save(*this, value);
+ }
+
+public:
+ /// ObjCEHValueStack - Stack of Objective-C exception values, used for
+ /// rethrows.
+ SmallVector<llvm::Value*, 8> ObjCEHValueStack;
+
+ /// A class controlling the emission of a finally block.
+ class FinallyInfo {
+ /// Where the catchall's edge through the cleanup should go.
+ JumpDest RethrowDest;
+
+ /// A function to call to enter the catch.
+ llvm::Constant *BeginCatchFn;
+
+ /// An i1 variable indicating whether or not the @finally is
+ /// running for an exception.
+ llvm::AllocaInst *ForEHVar;
+
+ /// An i8* variable into which the exception pointer to rethrow
+ /// has been saved.
+ llvm::AllocaInst *SavedExnVar;
+
+ public:
+ void enter(CodeGenFunction &CGF, const Stmt *Finally,
+ llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
+ llvm::Constant *rethrowFn);
+ void exit(CodeGenFunction &CGF);
+ };
+
+ /// Returns true inside SEH __try blocks.
+ bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
+
+ /// pushFullExprCleanup - Push a cleanup to be run at the end of the
+ /// current full-expression. Safe against the possibility that
+ /// we're currently inside a conditionally-evaluated expression.
+ template <class T, class... As>
+ void pushFullExprCleanup(CleanupKind kind, As... A) {
+ // If we're not in a conditional branch, or if none of the
+ // arguments requires saving, then use the unconditional cleanup.
+ if (!isInConditionalBranch())
+ return EHStack.pushCleanup<T>(kind, A...);
+
+ // Stash values in a tuple so we can guarantee the order of saves.
+ typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
+ SavedTuple Saved{saveValueInCond(A)...};
+
+ typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
+ EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
+ initFullExprCleanup();
+ }
+
+ /// \brief Queue a cleanup to be pushed after finishing the current
+ /// full-expression.
+ template <class T, class... As>
+ void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
+ assert(!isInConditionalBranch() && "can't defer conditional cleanup");
+
+ LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
+
+ size_t OldSize = LifetimeExtendedCleanupStack.size();
+ LifetimeExtendedCleanupStack.resize(
+ LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
+
+ char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
+ new (Buffer) LifetimeExtendedCleanupHeader(Header);
+ new (Buffer + sizeof(Header)) T(A...);
+ }
+
+ /// Set up the last cleaup that was pushed as a conditional
+ /// full-expression cleanup.
+ void initFullExprCleanup();
+
+ /// PushDestructorCleanup - Push a cleanup to call the
+ /// complete-object destructor of an object of the given type at the
+ /// given address. Does nothing if T is not a C++ class type with a
+ /// non-trivial destructor.
+ void PushDestructorCleanup(QualType T, llvm::Value *Addr);
+
+ /// PushDestructorCleanup - Push a cleanup to call the
+ /// complete-object variant of the given destructor on the object at
+ /// the given address.
+ void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
+ llvm::Value *Addr);
+
+ /// PopCleanupBlock - Will pop the cleanup entry on the stack and
+ /// process all branch fixups.
+ void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
+
+ /// DeactivateCleanupBlock - Deactivates the given cleanup block.
+ /// The block cannot be reactivated. Pops it if it's the top of the
+ /// stack.
+ ///
+ /// \param DominatingIP - An instruction which is known to
+ /// dominate the current IP (if set) and which lies along
+ /// all paths of execution between the current IP and the
+ /// the point at which the cleanup comes into scope.
+ void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
+ llvm::Instruction *DominatingIP);
+
+ /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
+ /// Cannot be used to resurrect a deactivated cleanup.
+ ///
+ /// \param DominatingIP - An instruction which is known to
+ /// dominate the current IP (if set) and which lies along
+ /// all paths of execution between the current IP and the
+ /// the point at which the cleanup comes into scope.
+ void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
+ llvm::Instruction *DominatingIP);
+
+ /// \brief Enters a new scope for capturing cleanups, all of which
+ /// will be executed once the scope is exited.
+ class RunCleanupsScope {
+ EHScopeStack::stable_iterator CleanupStackDepth;
+ size_t LifetimeExtendedCleanupStackSize;
+ bool OldDidCallStackSave;
+ protected:
+ bool PerformCleanup;
+ private:
+
+ RunCleanupsScope(const RunCleanupsScope &) = delete;
+ void operator=(const RunCleanupsScope &) = delete;
+
+ protected:
+ CodeGenFunction& CGF;
+
+ public:
+ /// \brief Enter a new cleanup scope.
+ explicit RunCleanupsScope(CodeGenFunction &CGF)
+ : PerformCleanup(true), CGF(CGF)
+ {
+ CleanupStackDepth = CGF.EHStack.stable_begin();
+ LifetimeExtendedCleanupStackSize =
+ CGF.LifetimeExtendedCleanupStack.size();
+ OldDidCallStackSave = CGF.DidCallStackSave;
+ CGF.DidCallStackSave = false;
+ }
+
+ /// \brief Exit this cleanup scope, emitting any accumulated
+ /// cleanups.
+ ~RunCleanupsScope() {
+ if (PerformCleanup) {
+ CGF.DidCallStackSave = OldDidCallStackSave;
+ CGF.PopCleanupBlocks(CleanupStackDepth,
+ LifetimeExtendedCleanupStackSize);
+ }
+ }
+
+ /// \brief Determine whether this scope requires any cleanups.
+ bool requiresCleanups() const {
+ return CGF.EHStack.stable_begin() != CleanupStackDepth;
+ }
+
+ /// \brief Force the emission of cleanups now, instead of waiting
+ /// until this object is destroyed.
+ void ForceCleanup() {
+ assert(PerformCleanup && "Already forced cleanup");
+ CGF.DidCallStackSave = OldDidCallStackSave;
+ CGF.PopCleanupBlocks(CleanupStackDepth,
+ LifetimeExtendedCleanupStackSize);
+ PerformCleanup = false;
+ }
+ };
+
+ class LexicalScope : public RunCleanupsScope {
+ SourceRange Range;
+ SmallVector<const LabelDecl*, 4> Labels;
+ LexicalScope *ParentScope;
+
+ LexicalScope(const LexicalScope &) = delete;
+ void operator=(const LexicalScope &) = delete;
+
+ public:
+ /// \brief Enter a new cleanup scope.
+ explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
+ : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
+ CGF.CurLexicalScope = this;
+ if (CGDebugInfo *DI = CGF.getDebugInfo())
+ DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
+ }
+
+ void addLabel(const LabelDecl *label) {
+ assert(PerformCleanup && "adding label to dead scope?");
+ Labels.push_back(label);
+ }
+
+ /// \brief Exit this cleanup scope, emitting any accumulated
+ /// cleanups.
+ ~LexicalScope() {
+ if (CGDebugInfo *DI = CGF.getDebugInfo())
+ DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
+
+ // If we should perform a cleanup, force them now. Note that
+ // this ends the cleanup scope before rescoping any labels.
+ if (PerformCleanup) {
+ ApplyDebugLocation DL(CGF, Range.getEnd());
+ ForceCleanup();
+ }
+ }
+
+ /// \brief Force the emission of cleanups now, instead of waiting
+ /// until this object is destroyed.
+ void ForceCleanup() {
+ CGF.CurLexicalScope = ParentScope;
+ RunCleanupsScope::ForceCleanup();
+
+ if (!Labels.empty())
+ rescopeLabels();
+ }
+
+ void rescopeLabels();
+ };
+
+ /// \brief The scope used to remap some variables as private in the OpenMP
+ /// loop body (or other captured region emitted without outlining), and to
+ /// restore old vars back on exit.
+ class OMPPrivateScope : public RunCleanupsScope {
+ typedef llvm::DenseMap<const VarDecl *, llvm::Value *> VarDeclMapTy;
+ VarDeclMapTy SavedLocals;
+ VarDeclMapTy SavedPrivates;
+
+ private:
+ OMPPrivateScope(const OMPPrivateScope &) = delete;
+ void operator=(const OMPPrivateScope &) = delete;
+
+ public:
+ /// \brief Enter a new OpenMP private scope.
+ explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
+
+ /// \brief Registers \a LocalVD variable as a private and apply \a
+ /// PrivateGen function for it to generate corresponding private variable.
+ /// \a PrivateGen returns an address of the generated private variable.
+ /// \return true if the variable is registered as private, false if it has
+ /// been privatized already.
+ bool
+ addPrivate(const VarDecl *LocalVD,
+ const std::function<llvm::Value *()> &PrivateGen) {
+ assert(PerformCleanup && "adding private to dead scope");
+ if (SavedLocals.count(LocalVD) > 0) return false;
+ SavedLocals[LocalVD] = CGF.LocalDeclMap.lookup(LocalVD);
+ CGF.LocalDeclMap.erase(LocalVD);
+ SavedPrivates[LocalVD] = PrivateGen();
+ CGF.LocalDeclMap[LocalVD] = SavedLocals[LocalVD];
+ return true;
+ }
+
+ /// \brief Privatizes local variables previously registered as private.
+ /// Registration is separate from the actual privatization to allow
+ /// initializers use values of the original variables, not the private one.
+ /// This is important, for example, if the private variable is a class
+ /// variable initialized by a constructor that references other private
+ /// variables. But at initialization original variables must be used, not
+ /// private copies.
+ /// \return true if at least one variable was privatized, false otherwise.
+ bool Privatize() {
+ for (auto VDPair : SavedPrivates) {
+ CGF.LocalDeclMap[VDPair.first] = VDPair.second;
+ }
+ SavedPrivates.clear();
+ return !SavedLocals.empty();
+ }
+
+ void ForceCleanup() {
+ RunCleanupsScope::ForceCleanup();
+ // Remap vars back to the original values.
+ for (auto I : SavedLocals) {
+ CGF.LocalDeclMap[I.first] = I.second;
+ }
+ SavedLocals.clear();
+ }
+
+ /// \brief Exit scope - all the mapped variables are restored.
+ ~OMPPrivateScope() {
+ if (PerformCleanup)
+ ForceCleanup();
+ }
+ };
+
+ /// \brief Takes the old cleanup stack size and emits the cleanup blocks
+ /// that have been added.
+ void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
+
+ /// \brief Takes the old cleanup stack size and emits the cleanup blocks
+ /// that have been added, then adds all lifetime-extended cleanups from
+ /// the given position to the stack.
+ void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
+ size_t OldLifetimeExtendedStackSize);
+
+ void ResolveBranchFixups(llvm::BasicBlock *Target);
+
+ /// The given basic block lies in the current EH scope, but may be a
+ /// target of a potentially scope-crossing jump; get a stable handle
+ /// to which we can perform this jump later.
+ JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
+ return JumpDest(Target,
+ EHStack.getInnermostNormalCleanup(),
+ NextCleanupDestIndex++);
+ }
+
+ /// The given basic block lies in the current EH scope, but may be a
+ /// target of a potentially scope-crossing jump; get a stable handle
+ /// to which we can perform this jump later.
+ JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
+ return getJumpDestInCurrentScope(createBasicBlock(Name));
+ }
+
+ /// EmitBranchThroughCleanup - Emit a branch from the current insert
+ /// block through the normal cleanup handling code (if any) and then
+ /// on to \arg Dest.
+ void EmitBranchThroughCleanup(JumpDest Dest);
+
+ /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
+ /// specified destination obviously has no cleanups to run. 'false' is always
+ /// a conservatively correct answer for this method.
+ bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
+
+ /// popCatchScope - Pops the catch scope at the top of the EHScope
+ /// stack, emitting any required code (other than the catch handlers
+ /// themselves).
+ void popCatchScope();
+
+ llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
+ llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
+
+ /// An object to manage conditionally-evaluated expressions.
+ class ConditionalEvaluation {
+ llvm::BasicBlock *StartBB;
+
+ public:
+ ConditionalEvaluation(CodeGenFunction &CGF)
+ : StartBB(CGF.Builder.GetInsertBlock()) {}
+
+ void begin(CodeGenFunction &CGF) {
+ assert(CGF.OutermostConditional != this);
+ if (!CGF.OutermostConditional)
+ CGF.OutermostConditional = this;
+ }
+
+ void end(CodeGenFunction &CGF) {
+ assert(CGF.OutermostConditional != nullptr);
+ if (CGF.OutermostConditional == this)
+ CGF.OutermostConditional = nullptr;
+ }
+
+ /// Returns a block which will be executed prior to each
+ /// evaluation of the conditional code.
+ llvm::BasicBlock *getStartingBlock() const {
+ return StartBB;
+ }
+ };
+
+ /// isInConditionalBranch - Return true if we're currently emitting
+ /// one branch or the other of a conditional expression.
+ bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
+
+ void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
+ assert(isInConditionalBranch());
+ llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
+ new llvm::StoreInst(value, addr, &block->back());
+ }
+
+ /// An RAII object to record that we're evaluating a statement
+ /// expression.
+ class StmtExprEvaluation {
+ CodeGenFunction &CGF;
+
+ /// We have to save the outermost conditional: cleanups in a
+ /// statement expression aren't conditional just because the
+ /// StmtExpr is.
+ ConditionalEvaluation *SavedOutermostConditional;
+
+ public:
+ StmtExprEvaluation(CodeGenFunction &CGF)
+ : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
+ CGF.OutermostConditional = nullptr;
+ }
+
+ ~StmtExprEvaluation() {
+ CGF.OutermostConditional = SavedOutermostConditional;
+ CGF.EnsureInsertPoint();
+ }
+ };
+
+ /// An object which temporarily prevents a value from being
+ /// destroyed by aggressive peephole optimizations that assume that
+ /// all uses of a value have been realized in the IR.
+ class PeepholeProtection {
+ llvm::Instruction *Inst;
+ friend class CodeGenFunction;
+
+ public:
+ PeepholeProtection() : Inst(nullptr) {}
+ };
+
+ /// A non-RAII class containing all the information about a bound
+ /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for
+ /// this which makes individual mappings very simple; using this
+ /// class directly is useful when you have a variable number of
+ /// opaque values or don't want the RAII functionality for some
+ /// reason.
+ class OpaqueValueMappingData {
+ const OpaqueValueExpr *OpaqueValue;
+ bool BoundLValue;
+ CodeGenFunction::PeepholeProtection Protection;
+
+ OpaqueValueMappingData(const OpaqueValueExpr *ov,
+ bool boundLValue)
+ : OpaqueValue(ov), BoundLValue(boundLValue) {}
+ public:
+ OpaqueValueMappingData() : OpaqueValue(nullptr) {}
+
+ static bool shouldBindAsLValue(const Expr *expr) {
+ // gl-values should be bound as l-values for obvious reasons.
+ // Records should be bound as l-values because IR generation
+ // always keeps them in memory. Expressions of function type
+ // act exactly like l-values but are formally required to be
+ // r-values in C.
+ return expr->isGLValue() ||
+ expr->getType()->isFunctionType() ||
+ hasAggregateEvaluationKind(expr->getType());
+ }
+
+ static OpaqueValueMappingData bind(CodeGenFunction &CGF,
+ const OpaqueValueExpr *ov,
+ const Expr *e) {
+ if (shouldBindAsLValue(ov))
+ return bind(CGF, ov, CGF.EmitLValue(e));
+ return bind(CGF, ov, CGF.EmitAnyExpr(e));
+ }
+
+ static OpaqueValueMappingData bind(CodeGenFunction &CGF,
+ const OpaqueValueExpr *ov,
+ const LValue &lv) {
+ assert(shouldBindAsLValue(ov));
+ CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
+ return OpaqueValueMappingData(ov, true);
+ }
+
+ static OpaqueValueMappingData bind(CodeGenFunction &CGF,
+ const OpaqueValueExpr *ov,
+ const RValue &rv) {
+ assert(!shouldBindAsLValue(ov));
+ CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
+
+ OpaqueValueMappingData data(ov, false);
+
+ // Work around an extremely aggressive peephole optimization in
+ // EmitScalarConversion which assumes that all other uses of a
+ // value are extant.
+ data.Protection = CGF.protectFromPeepholes(rv);
+
+ return data;
+ }
+
+ bool isValid() const { return OpaqueValue != nullptr; }
+ void clear() { OpaqueValue = nullptr; }
+
+ void unbind(CodeGenFunction &CGF) {
+ assert(OpaqueValue && "no data to unbind!");
+
+ if (BoundLValue) {
+ CGF.OpaqueLValues.erase(OpaqueValue);
+ } else {
+ CGF.OpaqueRValues.erase(OpaqueValue);
+ CGF.unprotectFromPeepholes(Protection);
+ }
+ }
+ };
+
+ /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
+ class OpaqueValueMapping {
+ CodeGenFunction &CGF;
+ OpaqueValueMappingData Data;
+
+ public:
+ static bool shouldBindAsLValue(const Expr *expr) {
+ return OpaqueValueMappingData::shouldBindAsLValue(expr);
+ }
+
+ /// Build the opaque value mapping for the given conditional
+ /// operator if it's the GNU ?: extension. This is a common
+ /// enough pattern that the convenience operator is really
+ /// helpful.
+ ///
+ OpaqueValueMapping(CodeGenFunction &CGF,
+ const AbstractConditionalOperator *op) : CGF(CGF) {
+ if (isa<ConditionalOperator>(op))
+ // Leave Data empty.
+ return;
+
+ const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
+ Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
+ e->getCommon());
+ }
+
+ OpaqueValueMapping(CodeGenFunction &CGF,
+ const OpaqueValueExpr *opaqueValue,
+ LValue lvalue)
+ : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
+ }
+
+ OpaqueValueMapping(CodeGenFunction &CGF,
+ const OpaqueValueExpr *opaqueValue,
+ RValue rvalue)
+ : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
+ }
+
+ void pop() {
+ Data.unbind(CGF);
+ Data.clear();
+ }
+
+ ~OpaqueValueMapping() {
+ if (Data.isValid()) Data.unbind(CGF);
+ }
+ };
+
+ /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
+ /// number that holds the value.
+ std::pair<llvm::Type *, unsigned>
+ getByRefValueLLVMField(const ValueDecl *VD) const;
+
+ /// BuildBlockByrefAddress - Computes address location of the
+ /// variable which is declared as __block.
+ llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
+ const VarDecl *V);
+private:
+ CGDebugInfo *DebugInfo;
+ bool DisableDebugInfo;
+
+ /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
+ /// calling llvm.stacksave for multiple VLAs in the same scope.
+ bool DidCallStackSave;
+
+ /// IndirectBranch - The first time an indirect goto is seen we create a block
+ /// with an indirect branch. Every time we see the address of a label taken,
+ /// we add the label to the indirect goto. Every subsequent indirect goto is
+ /// codegen'd as a jump to the IndirectBranch's basic block.
+ llvm::IndirectBrInst *IndirectBranch;
+
+ /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
+ /// decls.
+ typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
+ DeclMapTy LocalDeclMap;
+
+ /// Track escaped local variables with auto storage. Used during SEH
+ /// outlining to produce a call to llvm.frameescape.
+ llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
+
+ /// LabelMap - This keeps track of the LLVM basic block for each C label.
+ llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
+
+ // BreakContinueStack - This keeps track of where break and continue
+ // statements should jump to.
+ struct BreakContinue {
+ BreakContinue(JumpDest Break, JumpDest Continue)
+ : BreakBlock(Break), ContinueBlock(Continue) {}
+
+ JumpDest BreakBlock;
+ JumpDest ContinueBlock;
+ };
+ SmallVector<BreakContinue, 8> BreakContinueStack;
+
+ CodeGenPGO PGO;
+
+ /// Calculate branch weights appropriate for PGO data
+ llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
+ llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
+ llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
+ uint64_t LoopCount);
+
+public:
+ /// Increment the profiler's counter for the given statement.
+ void incrementProfileCounter(const Stmt *S) {
+ if (CGM.getCodeGenOpts().ProfileInstrGenerate)
+ PGO.emitCounterIncrement(Builder, S);
+ PGO.setCurrentStmt(S);
+ }
+
+ /// Get the profiler's count for the given statement.
+ uint64_t getProfileCount(const Stmt *S) {
+ Optional<uint64_t> Count = PGO.getStmtCount(S);
+ if (!Count.hasValue())
+ return 0;
+ return *Count;
+ }
+
+ /// Set the profiler's current count.
+ void setCurrentProfileCount(uint64_t Count) {
+ PGO.setCurrentRegionCount(Count);
+ }
+
+ /// Get the profiler's current count. This is generally the count for the most
+ /// recently incremented counter.
+ uint64_t getCurrentProfileCount() {
+ return PGO.getCurrentRegionCount();
+ }
+
+private:
+
+ /// SwitchInsn - This is nearest current switch instruction. It is null if
+ /// current context is not in a switch.
+ llvm::SwitchInst *SwitchInsn;
+ /// The branch weights of SwitchInsn when doing instrumentation based PGO.
+ SmallVector<uint64_t, 16> *SwitchWeights;
+
+ /// CaseRangeBlock - This block holds if condition check for last case
+ /// statement range in current switch instruction.
+ llvm::BasicBlock *CaseRangeBlock;
+
+ /// OpaqueLValues - Keeps track of the current set of opaque value
+ /// expressions.
+ llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
+ llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
+
+ // VLASizeMap - This keeps track of the associated size for each VLA type.
+ // We track this by the size expression rather than the type itself because
+ // in certain situations, like a const qualifier applied to an VLA typedef,
+ // multiple VLA types can share the same size expression.
+ // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
+ // enter/leave scopes.
+ llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
+
+ /// A block containing a single 'unreachable' instruction. Created
+ /// lazily by getUnreachableBlock().
+ llvm::BasicBlock *UnreachableBlock;
+
+ /// Counts of the number return expressions in the function.
+ unsigned NumReturnExprs;
+
+ /// Count the number of simple (constant) return expressions in the function.
+ unsigned NumSimpleReturnExprs;
+
+ /// The last regular (non-return) debug location (breakpoint) in the function.
+ SourceLocation LastStopPoint;
+
+public:
+ /// A scope within which we are constructing the fields of an object which
+ /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
+ /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
+ class FieldConstructionScope {
+ public:
+ FieldConstructionScope(CodeGenFunction &CGF, llvm::Value *This)
+ : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
+ CGF.CXXDefaultInitExprThis = This;
+ }
+ ~FieldConstructionScope() {
+ CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
+ }
+
+ private:
+ CodeGenFunction &CGF;
+ llvm::Value *OldCXXDefaultInitExprThis;
+ };
+
+ /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
+ /// is overridden to be the object under construction.
+ class CXXDefaultInitExprScope {
+ public:
+ CXXDefaultInitExprScope(CodeGenFunction &CGF)
+ : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue) {
+ CGF.CXXThisValue = CGF.CXXDefaultInitExprThis;
+ }
+ ~CXXDefaultInitExprScope() {
+ CGF.CXXThisValue = OldCXXThisValue;
+ }
+
+ public:
+ CodeGenFunction &CGF;
+ llvm::Value *OldCXXThisValue;
+ };
+
+private:
+ /// CXXThisDecl - When generating code for a C++ member function,
+ /// this will hold the implicit 'this' declaration.
+ ImplicitParamDecl *CXXABIThisDecl;
+ llvm::Value *CXXABIThisValue;
+ llvm::Value *CXXThisValue;
+
+ /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
+ /// this expression.
+ llvm::Value *CXXDefaultInitExprThis;
+
+ /// CXXStructorImplicitParamDecl - When generating code for a constructor or
+ /// destructor, this will hold the implicit argument (e.g. VTT).
+ ImplicitParamDecl *CXXStructorImplicitParamDecl;
+ llvm::Value *CXXStructorImplicitParamValue;
+
+ /// OutermostConditional - Points to the outermost active
+ /// conditional control. This is used so that we know if a
+ /// temporary should be destroyed conditionally.
+ ConditionalEvaluation *OutermostConditional;
+
+ /// The current lexical scope.
+ LexicalScope *CurLexicalScope;
+
+ /// The current source location that should be used for exception
+ /// handling code.
+ SourceLocation CurEHLocation;
+
+ /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
+ /// type as well as the field number that contains the actual data.
+ llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
+ unsigned> > ByRefValueInfo;
+
+ llvm::BasicBlock *TerminateLandingPad;
+ llvm::BasicBlock *TerminateHandler;
+ llvm::BasicBlock *TrapBB;
+
+ /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
+ /// In the kernel metadata node, reference the kernel function and metadata
+ /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
+ /// - A node for the vec_type_hint(<type>) qualifier contains string
+ /// "vec_type_hint", an undefined value of the <type> data type,
+ /// and a Boolean that is true if the <type> is integer and signed.
+ /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
+ /// "work_group_size_hint", and three 32-bit integers X, Y and Z.
+ /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
+ /// "reqd_work_group_size", and three 32-bit integers X, Y and Z.
+ void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
+ llvm::Function *Fn);
+
+public:
+ CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
+ ~CodeGenFunction();
+
+ CodeGenTypes &getTypes() const { return CGM.getTypes(); }
+ ASTContext &getContext() const { return CGM.getContext(); }
+ CGDebugInfo *getDebugInfo() {
+ if (DisableDebugInfo)
+ return nullptr;
+ return DebugInfo;
+ }
+ void disableDebugInfo() { DisableDebugInfo = true; }
+ void enableDebugInfo() { DisableDebugInfo = false; }
+
+ bool shouldUseFusedARCCalls() {
+ return CGM.getCodeGenOpts().OptimizationLevel == 0;
+ }
+
+ const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
+
+ /// Returns a pointer to the function's exception object and selector slot,
+ /// which is assigned in every landing pad.
+ llvm::Value *getExceptionSlot();
+ llvm::Value *getEHSelectorSlot();
+
+ /// Returns the contents of the function's exception object and selector
+ /// slots.
+ llvm::Value *getExceptionFromSlot();
+ llvm::Value *getSelectorFromSlot();
+
+ llvm::Value *getNormalCleanupDestSlot();
+
+ llvm::BasicBlock *getUnreachableBlock() {
+ if (!UnreachableBlock) {
+ UnreachableBlock = createBasicBlock("unreachable");
+ new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
+ }
+ return UnreachableBlock;
+ }
+
+ llvm::BasicBlock *getInvokeDest() {
+ if (!EHStack.requiresLandingPad()) return nullptr;
+ return getInvokeDestImpl();
+ }
+
+ bool currentFunctionUsesSEHTry() const {
+ const auto *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
+ return FD && FD->usesSEHTry();
+ }
+
+ const TargetInfo &getTarget() const { return Target; }
+ llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
+
+ //===--------------------------------------------------------------------===//
+ // Cleanups
+ //===--------------------------------------------------------------------===//
+
+ typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
+
+ void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
+ llvm::Value *arrayEndPointer,
+ QualType elementType,
+ Destroyer *destroyer);
+ void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
+ llvm::Value *arrayEnd,
+ QualType elementType,
+ Destroyer *destroyer);
+
+ void pushDestroy(QualType::DestructionKind dtorKind,
+ llvm::Value *addr, QualType type);
+ void pushEHDestroy(QualType::DestructionKind dtorKind,
+ llvm::Value *addr, QualType type);
+ void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
+ Destroyer *destroyer, bool useEHCleanupForArray);
+ void pushLifetimeExtendedDestroy(CleanupKind kind, llvm::Value *addr,
+ QualType type, Destroyer *destroyer,
+ bool useEHCleanupForArray);
+ void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
+ llvm::Value *CompletePtr,
+ QualType ElementType);
+ void pushStackRestore(CleanupKind kind, llvm::Value *SPMem);
+ void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer,
+ bool useEHCleanupForArray);
+ llvm::Function *generateDestroyHelper(llvm::Constant *addr, QualType type,
+ Destroyer *destroyer,
+ bool useEHCleanupForArray,
+ const VarDecl *VD);
+ void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
+ QualType type, Destroyer *destroyer,
+ bool checkZeroLength, bool useEHCleanup);
+
+ Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
+
+ /// Determines whether an EH cleanup is required to destroy a type
+ /// with the given destruction kind.
+ bool needsEHCleanup(QualType::DestructionKind kind) {
+ switch (kind) {
+ case QualType::DK_none:
+ return false;
+ case QualType::DK_cxx_destructor:
+ case QualType::DK_objc_weak_lifetime:
+ return getLangOpts().Exceptions;
+ case QualType::DK_objc_strong_lifetime:
+ return getLangOpts().Exceptions &&
+ CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
+ }
+ llvm_unreachable("bad destruction kind");
+ }
+
+ CleanupKind getCleanupKind(QualType::DestructionKind kind) {
+ return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
+ }
+
+ //===--------------------------------------------------------------------===//
+ // Objective-C
+ //===--------------------------------------------------------------------===//
+
+ void GenerateObjCMethod(const ObjCMethodDecl *OMD);
+
+ void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
+
+ /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
+ void GenerateObjCGetter(ObjCImplementationDecl *IMP,
+ const ObjCPropertyImplDecl *PID);
+ void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
+ const ObjCPropertyImplDecl *propImpl,
+ const ObjCMethodDecl *GetterMothodDecl,
+ llvm::Constant *AtomicHelperFn);
+
+ void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
+ ObjCMethodDecl *MD, bool ctor);
+
+ /// GenerateObjCSetter - Synthesize an Objective-C property setter function
+ /// for the given property.
+ void GenerateObjCSetter(ObjCImplementationDecl *IMP,
+ const ObjCPropertyImplDecl *PID);
+ void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
+ const ObjCPropertyImplDecl *propImpl,
+ llvm::Constant *AtomicHelperFn);
+ bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
+ bool IvarTypeWithAggrGCObjects(QualType Ty);
+
+ //===--------------------------------------------------------------------===//
+ // Block Bits
+ //===--------------------------------------------------------------------===//
+
+ llvm::Value *EmitBlockLiteral(const BlockExpr *);
+ llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
+ static void destroyBlockInfos(CGBlockInfo *info);
+ llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
+ const CGBlockInfo &Info,
+ llvm::StructType *,
+ llvm::Constant *BlockVarLayout);
+
+ llvm::Function *GenerateBlockFunction(GlobalDecl GD,
+ const CGBlockInfo &Info,
+ const DeclMapTy &ldm,
+ bool IsLambdaConversionToBlock);
+
+ llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
+ llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
+ llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
+ const ObjCPropertyImplDecl *PID);
+ llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
+ const ObjCPropertyImplDecl *PID);
+ llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
+
+ void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
+
+ class AutoVarEmission;
+
+ void emitByrefStructureInit(const AutoVarEmission &emission);
+ void enterByrefCleanup(const AutoVarEmission &emission);
+
+ llvm::Value *LoadBlockStruct() {
+ assert(BlockPointer && "no block pointer set!");
+ return BlockPointer;
+ }
+
+ void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
+ void AllocateBlockDecl(const DeclRefExpr *E);
+ llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
+ llvm::Type *BuildByRefType(const VarDecl *var);
+
+ void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
+ const CGFunctionInfo &FnInfo);
+ /// \brief Emit code for the start of a function.
+ /// \param Loc The location to be associated with the function.
+ /// \param StartLoc The location of the function body.
+ void StartFunction(GlobalDecl GD,
+ QualType RetTy,
+ llvm::Function *Fn,
+ const CGFunctionInfo &FnInfo,
+ const FunctionArgList &Args,
+ SourceLocation Loc = SourceLocation(),
+ SourceLocation StartLoc = SourceLocation());
+
+ void EmitConstructorBody(FunctionArgList &Args);
+ void EmitDestructorBody(FunctionArgList &Args);
+ void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
+ void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
+ void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
+
+ void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
+ CallArgList &CallArgs);
+ void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
+ void EmitLambdaBlockInvokeBody();
+ void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
+ void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
+ void EmitAsanPrologueOrEpilogue(bool Prologue);
+
+ /// \brief Emit the unified return block, trying to avoid its emission when
+ /// possible.
+ /// \return The debug location of the user written return statement if the
+ /// return block is is avoided.
+ llvm::DebugLoc EmitReturnBlock();
+
+ /// FinishFunction - Complete IR generation of the current function. It is
+ /// legal to call this function even if there is no current insertion point.
+ void FinishFunction(SourceLocation EndLoc=SourceLocation());
+
+ void StartThunk(llvm::Function *Fn, GlobalDecl GD,
+ const CGFunctionInfo &FnInfo);
+
+ void EmitCallAndReturnForThunk(llvm::Value *Callee, const ThunkInfo *Thunk);
+
+ /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
+ void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
+ llvm::Value *Callee);
+
+ /// GenerateThunk - Generate a thunk for the given method.
+ void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
+ GlobalDecl GD, const ThunkInfo &Thunk);
+
+ void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
+ GlobalDecl GD, const ThunkInfo &Thunk);
+
+ void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
+ FunctionArgList &Args);
+
+ void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
+ ArrayRef<VarDecl *> ArrayIndexes);
+
+ /// InitializeVTablePointer - Initialize the vtable pointer of the given
+ /// subobject.
+ ///
+ void InitializeVTablePointer(BaseSubobject Base,
+ const CXXRecordDecl *NearestVBase,
+ CharUnits OffsetFromNearestVBase,
+ const CXXRecordDecl *VTableClass);
+
+ typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
+ void InitializeVTablePointers(BaseSubobject Base,
+ const CXXRecordDecl *NearestVBase,
+ CharUnits OffsetFromNearestVBase,
+ bool BaseIsNonVirtualPrimaryBase,
+ const CXXRecordDecl *VTableClass,
+ VisitedVirtualBasesSetTy& VBases);
+
+ void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
+
+ /// GetVTablePtr - Return the Value of the vtable pointer member pointed
+ /// to by This.
+ llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
+
+ /// \brief Derived is the presumed address of an object of type T after a
+ /// cast. If T is a polymorphic class type, emit a check that the virtual
+ /// table for Derived belongs to a class derived from T.
+ void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
+ bool MayBeNull);
+
+ /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
+ /// If vptr CFI is enabled, emit a check that VTable is valid.
+ void EmitVTablePtrCheckForCall(const CXXMethodDecl *MD, llvm::Value *VTable);
+
+ /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
+ /// RD using llvm.bitset.test.
+ void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable);
+
+ /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
+ /// expr can be devirtualized.
+ bool CanDevirtualizeMemberFunctionCall(const Expr *Base,
+ const CXXMethodDecl *MD);
+
+ /// EnterDtorCleanups - Enter the cleanups necessary to complete the
+ /// given phase of destruction for a destructor. The end result
+ /// should call destructors on members and base classes in reverse
+ /// order of their construction.
+ void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
+
+ /// ShouldInstrumentFunction - Return true if the current function should be
+ /// instrumented with __cyg_profile_func_* calls
+ bool ShouldInstrumentFunction();
+
+ /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
+ /// instrumentation function with the current function and the call site, if
+ /// function instrumentation is enabled.
+ void EmitFunctionInstrumentation(const char *Fn);
+
+ /// EmitMCountInstrumentation - Emit call to .mcount.
+ void EmitMCountInstrumentation();
+
+ /// EmitFunctionProlog - Emit the target specific LLVM code to load the
+ /// arguments for the given function. This is also responsible for naming the
+ /// LLVM function arguments.
+ void EmitFunctionProlog(const CGFunctionInfo &FI,
+ llvm::Function *Fn,
+ const FunctionArgList &Args);
+
+ /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
+ /// given temporary.
+ void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
+ SourceLocation EndLoc);
+
+ /// EmitStartEHSpec - Emit the start of the exception spec.
+ void EmitStartEHSpec(const Decl *D);
+
+ /// EmitEndEHSpec - Emit the end of the exception spec.
+ void EmitEndEHSpec(const Decl *D);
+
+ /// getTerminateLandingPad - Return a landing pad that just calls terminate.
+ llvm::BasicBlock *getTerminateLandingPad();
+
+ /// getTerminateHandler - Return a handler (not a landing pad, just
+ /// a catch handler) that just calls terminate. This is used when
+ /// a terminate scope encloses a try.
+ llvm::BasicBlock *getTerminateHandler();
+
+ llvm::Type *ConvertTypeForMem(QualType T);
+ llvm::Type *ConvertType(QualType T);
+ llvm::Type *ConvertType(const TypeDecl *T) {
+ return ConvertType(getContext().getTypeDeclType(T));
+ }
+
+ /// LoadObjCSelf - Load the value of self. This function is only valid while
+ /// generating code for an Objective-C method.
+ llvm::Value *LoadObjCSelf();
+
+ /// TypeOfSelfObject - Return type of object that this self represents.
+ QualType TypeOfSelfObject();
+
+ /// hasAggregateLLVMType - Return true if the specified AST type will map into
+ /// an aggregate LLVM type or is void.
+ static TypeEvaluationKind getEvaluationKind(QualType T);
+
+ static bool hasScalarEvaluationKind(QualType T) {
+ return getEvaluationKind(T) == TEK_Scalar;
+ }
+
+ static bool hasAggregateEvaluationKind(QualType T) {
+ return getEvaluationKind(T) == TEK_Aggregate;
+ }
+
+ /// createBasicBlock - Create an LLVM basic block.
+ llvm::BasicBlock *createBasicBlock(const Twine &name = "",
+ llvm::Function *parent = nullptr,
+ llvm::BasicBlock *before = nullptr) {
+#ifdef NDEBUG
+ return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
+#else
+ return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
+#endif
+ }
+
+ /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
+ /// label maps to.
+ JumpDest getJumpDestForLabel(const LabelDecl *S);
+
+ /// SimplifyForwardingBlocks - If the given basic block is only a branch to
+ /// another basic block, simplify it. This assumes that no other code could
+ /// potentially reference the basic block.
+ void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
+
+ /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
+ /// adding a fall-through branch from the current insert block if
+ /// necessary. It is legal to call this function even if there is no current
+ /// insertion point.
+ ///
+ /// IsFinished - If true, indicates that the caller has finished emitting
+ /// branches to the given block and does not expect to emit code into it. This
+ /// means the block can be ignored if it is unreachable.
+ void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
+
+ /// EmitBlockAfterUses - Emit the given block somewhere hopefully
+ /// near its uses, and leave the insertion point in it.
+ void EmitBlockAfterUses(llvm::BasicBlock *BB);
+
+ /// EmitBranch - Emit a branch to the specified basic block from the current
+ /// insert block, taking care to avoid creation of branches from dummy
+ /// blocks. It is legal to call this function even if there is no current
+ /// insertion point.
+ ///
+ /// This function clears the current insertion point. The caller should follow
+ /// calls to this function with calls to Emit*Block prior to generation new
+ /// code.
+ void EmitBranch(llvm::BasicBlock *Block);
+
+ /// HaveInsertPoint - True if an insertion point is defined. If not, this
+ /// indicates that the current code being emitted is unreachable.
+ bool HaveInsertPoint() const {
+ return Builder.GetInsertBlock() != nullptr;
+ }
+
+ /// EnsureInsertPoint - Ensure that an insertion point is defined so that
+ /// emitted IR has a place to go. Note that by definition, if this function
+ /// creates a block then that block is unreachable; callers may do better to
+ /// detect when no insertion point is defined and simply skip IR generation.
+ void EnsureInsertPoint() {
+ if (!HaveInsertPoint())
+ EmitBlock(createBasicBlock());
+ }
+
+ /// ErrorUnsupported - Print out an error that codegen doesn't support the
+ /// specified stmt yet.
+ void ErrorUnsupported(const Stmt *S, const char *Type);
+
+ //===--------------------------------------------------------------------===//
+ // Helpers
+ //===--------------------------------------------------------------------===//
+
+ LValue MakeAddrLValue(llvm::Value *V, QualType T,
+ CharUnits Alignment = CharUnits()) {
+ return LValue::MakeAddr(V, T, Alignment, getContext(),
+ CGM.getTBAAInfo(T));
+ }
+
+ LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
+
+ /// CreateTempAlloca - This creates a alloca and inserts it into the entry
+ /// block. The caller is responsible for setting an appropriate alignment on
+ /// the alloca.
+ llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
+ const Twine &Name = "tmp");
+
+ /// InitTempAlloca - Provide an initial value for the given alloca.
+ void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
+
+ /// CreateIRTemp - Create a temporary IR object of the given type, with
+ /// appropriate alignment. This routine should only be used when an temporary
+ /// value needs to be stored into an alloca (for example, to avoid explicit
+ /// PHI construction), but the type is the IR type, not the type appropriate
+ /// for storing in memory.
+ llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
+
+ /// CreateMemTemp - Create a temporary memory object of the given type, with
+ /// appropriate alignment.
+ llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
+
+ /// CreateAggTemp - Create a temporary memory object for the given
+ /// aggregate type.
+ AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
+ CharUnits Alignment = getContext().getTypeAlignInChars(T);
+ return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
+ T.getQualifiers(),
+ AggValueSlot::IsNotDestructed,
+ AggValueSlot::DoesNotNeedGCBarriers,
+ AggValueSlot::IsNotAliased);
+ }
+
+ /// CreateInAllocaTmp - Create a temporary memory object for the given
+ /// aggregate type.
+ AggValueSlot CreateInAllocaTmp(QualType T, const Twine &Name = "inalloca");
+
+ /// Emit a cast to void* in the appropriate address space.
+ llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
+
+ /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
+ /// expression and compare the result against zero, returning an Int1Ty value.
+ llvm::Value *EvaluateExprAsBool(const Expr *E);
+
+ /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
+ void EmitIgnoredExpr(const Expr *E);
+
+ /// EmitAnyExpr - Emit code to compute the specified expression which can have
+ /// any type. The result is returned as an RValue struct. If this is an
+ /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
+ /// the result should be returned.
+ ///
+ /// \param ignoreResult True if the resulting value isn't used.
+ RValue EmitAnyExpr(const Expr *E,
+ AggValueSlot aggSlot = AggValueSlot::ignored(),
+ bool ignoreResult = false);
+
+ // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
+ // or the value of the expression, depending on how va_list is defined.
+ llvm::Value *EmitVAListRef(const Expr *E);
+
+ /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
+ /// always be accessible even if no aggregate location is provided.
+ RValue EmitAnyExprToTemp(const Expr *E);
+
+ /// EmitAnyExprToMem - Emits the code necessary to evaluate an
+ /// arbitrary expression into the given memory location.
+ void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
+ Qualifiers Quals, bool IsInitializer);
+
+ void EmitAnyExprToExn(const Expr *E, llvm::Value *Addr);
+
+ /// EmitExprAsInit - Emits the code necessary to initialize a
+ /// location in memory with the given initializer.
+ void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
+ bool capturedByInit);
+
+ /// hasVolatileMember - returns true if aggregate type has a volatile
+ /// member.
+ bool hasVolatileMember(QualType T) {
+ if (const RecordType *RT = T->getAs<RecordType>()) {
+ const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
+ return RD->hasVolatileMember();
+ }
+ return false;
+ }
+ /// EmitAggregateCopy - Emit an aggregate assignment.
+ ///
+ /// The difference to EmitAggregateCopy is that tail padding is not copied.
+ /// This is required for correctness when assigning non-POD structures in C++.
+ void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr,
+ QualType EltTy) {
+ bool IsVolatile = hasVolatileMember(EltTy);
+ EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(),
+ true);
+ }
+
+ void EmitAggregateCopyCtor(llvm::Value *DestPtr, llvm::Value *SrcPtr,
+ QualType DestTy, QualType SrcTy) {
+ CharUnits DestTypeAlign = getContext().getTypeAlignInChars(DestTy);
+ CharUnits SrcTypeAlign = getContext().getTypeAlignInChars(SrcTy);
+ EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false,
+ std::min(DestTypeAlign, SrcTypeAlign),
+ /*IsAssignment=*/false);
+ }
+
+ /// EmitAggregateCopy - Emit an aggregate copy.
+ ///
+ /// \param isVolatile - True iff either the source or the destination is
+ /// volatile.
+ /// \param isAssignment - If false, allow padding to be copied. This often
+ /// yields more efficient.
+ void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
+ QualType EltTy, bool isVolatile=false,
+ CharUnits Alignment = CharUnits::Zero(),
+ bool isAssignment = false);
+
+ /// StartBlock - Start new block named N. If insert block is a dummy block
+ /// then reuse it.
+ void StartBlock(const char *N);
+
+ /// GetAddrOfLocalVar - Return the address of a local variable.
+ llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
+ llvm::Value *Res = LocalDeclMap[VD];
+ assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
+ return Res;
+ }
+
+ /// getOpaqueLValueMapping - Given an opaque value expression (which
+ /// must be mapped to an l-value), return its mapping.
+ const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
+ assert(OpaqueValueMapping::shouldBindAsLValue(e));
+
+ llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
+ it = OpaqueLValues.find(e);
+ assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
+ return it->second;
+ }
+
+ /// getOpaqueRValueMapping - Given an opaque value expression (which
+ /// must be mapped to an r-value), return its mapping.
+ const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
+ assert(!OpaqueValueMapping::shouldBindAsLValue(e));
+
+ llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
+ it = OpaqueRValues.find(e);
+ assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
+ return it->second;
+ }
+
+ /// getAccessedFieldNo - Given an encoded value and a result number, return
+ /// the input field number being accessed.
+ static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
+
+ llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
+ llvm::BasicBlock *GetIndirectGotoBlock();
+
+ /// EmitNullInitialization - Generate code to set a value of the given type to
+ /// null, If the type contains data member pointers, they will be initialized
+ /// to -1 in accordance with the Itanium C++ ABI.
+ void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
+
+ // EmitVAArg - Generate code to get an argument from the passed in pointer
+ // and update it accordingly. The return value is a pointer to the argument.
+ // FIXME: We should be able to get rid of this method and use the va_arg
+ // instruction in LLVM instead once it works well enough.
+ llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
+
+ /// emitArrayLength - Compute the length of an array, even if it's a
+ /// VLA, and drill down to the base element type.
+ llvm::Value *emitArrayLength(const ArrayType *arrayType,
+ QualType &baseType,
+ llvm::Value *&addr);
+
+ /// EmitVLASize - Capture all the sizes for the VLA expressions in
+ /// the given variably-modified type and store them in the VLASizeMap.
+ ///
+ /// This function can be called with a null (unreachable) insert point.
+ void EmitVariablyModifiedType(QualType Ty);
+
+ /// getVLASize - Returns an LLVM value that corresponds to the size,
+ /// in non-variably-sized elements, of a variable length array type,
+ /// plus that largest non-variably-sized element type. Assumes that
+ /// the type has already been emitted with EmitVariablyModifiedType.
+ std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
+ std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
+
+ /// LoadCXXThis - Load the value of 'this'. This function is only valid while
+ /// generating code for an C++ member function.
+ llvm::Value *LoadCXXThis() {
+ assert(CXXThisValue && "no 'this' value for this function");
+ return CXXThisValue;
+ }
+
+ /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
+ /// virtual bases.
+ // FIXME: Every place that calls LoadCXXVTT is something
+ // that needs to be abstracted properly.
+ llvm::Value *LoadCXXVTT() {
+ assert(CXXStructorImplicitParamValue && "no VTT value for this function");
+ return CXXStructorImplicitParamValue;
+ }
+
+ /// LoadCXXStructorImplicitParam - Load the implicit parameter
+ /// for a constructor/destructor.
+ llvm::Value *LoadCXXStructorImplicitParam() {
+ assert(CXXStructorImplicitParamValue &&
+ "no implicit argument value for this function");
+ return CXXStructorImplicitParamValue;
+ }
+
+ /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
+ /// complete class to the given direct base.
+ llvm::Value *
+ GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
+ const CXXRecordDecl *Derived,
+ const CXXRecordDecl *Base,
+ bool BaseIsVirtual);
+
+ /// GetAddressOfBaseClass - This function will add the necessary delta to the
+ /// load of 'this' and returns address of the base class.
+ llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
+ const CXXRecordDecl *Derived,
+ CastExpr::path_const_iterator PathBegin,
+ CastExpr::path_const_iterator PathEnd,
+ bool NullCheckValue, SourceLocation Loc);
+
+ llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
+ const CXXRecordDecl *Derived,
+ CastExpr::path_const_iterator PathBegin,
+ CastExpr::path_const_iterator PathEnd,
+ bool NullCheckValue);
+
+ /// GetVTTParameter - Return the VTT parameter that should be passed to a
+ /// base constructor/destructor with virtual bases.
+ /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
+ /// to ItaniumCXXABI.cpp together with all the references to VTT.
+ llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
+ bool Delegating);
+
+ void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
+ CXXCtorType CtorType,
+ const FunctionArgList &Args,
+ SourceLocation Loc);
+ // It's important not to confuse this and the previous function. Delegating
+ // constructors are the C++0x feature. The constructor delegate optimization
+ // is used to reduce duplication in the base and complete consturctors where
+ // they are substantially the same.
+ void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
+ const FunctionArgList &Args);
+ void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
+ bool ForVirtualBase, bool Delegating,
+ llvm::Value *This, const CXXConstructExpr *E);
+
+ void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
+ llvm::Value *This, llvm::Value *Src,
+ const CXXConstructExpr *E);
+
+ void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
+ const ConstantArrayType *ArrayTy,
+ llvm::Value *ArrayPtr,
+ const CXXConstructExpr *E,
+ bool ZeroInitialization = false);
+
+ void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
+ llvm::Value *NumElements,
+ llvm::Value *ArrayPtr,
+ const CXXConstructExpr *E,
+ bool ZeroInitialization = false);
+
+ static Destroyer destroyCXXObject;
+
+ void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
+ bool ForVirtualBase, bool Delegating,
+ llvm::Value *This);
+
+ void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
+ llvm::Type *ElementTy, llvm::Value *NewPtr,
+ llvm::Value *NumElements,
+ llvm::Value *AllocSizeWithoutCookie);
+
+ void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
+ llvm::Value *Ptr);
+
+ llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
+ void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
+
+ llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
+ void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
+
+ void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
+ QualType DeleteTy);
+
+ RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
+ const Expr *Arg, bool IsDelete);
+
+ llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
+ llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
+ llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E);
+
+ /// \brief Situations in which we might emit a check for the suitability of a
+ /// pointer or glvalue.
+ enum TypeCheckKind {
+ /// Checking the operand of a load. Must be suitably sized and aligned.
+ TCK_Load,
+ /// Checking the destination of a store. Must be suitably sized and aligned.
+ TCK_Store,
+ /// Checking the bound value in a reference binding. Must be suitably sized
+ /// and aligned, but is not required to refer to an object (until the
+ /// reference is used), per core issue 453.
+ TCK_ReferenceBinding,
+ /// Checking the object expression in a non-static data member access. Must
+ /// be an object within its lifetime.
+ TCK_MemberAccess,
+ /// Checking the 'this' pointer for a call to a non-static member function.
+ /// Must be an object within its lifetime.
+ TCK_MemberCall,
+ /// Checking the 'this' pointer for a constructor call.
+ TCK_ConstructorCall,
+ /// Checking the operand of a static_cast to a derived pointer type. Must be
+ /// null or an object within its lifetime.
+ TCK_DowncastPointer,
+ /// Checking the operand of a static_cast to a derived reference type. Must
+ /// be an object within its lifetime.
+ TCK_DowncastReference,
+ /// Checking the operand of a cast to a base object. Must be suitably sized
+ /// and aligned.
+ TCK_Upcast,
+ /// Checking the operand of a cast to a virtual base object. Must be an
+ /// object within its lifetime.
+ TCK_UpcastToVirtualBase
+ };
+
+ /// \brief Whether any type-checking sanitizers are enabled. If \c false,
+ /// calls to EmitTypeCheck can be skipped.
+ bool sanitizePerformTypeCheck() const;
+
+ /// \brief Emit a check that \p V is the address of storage of the
+ /// appropriate size and alignment for an object of type \p Type.
+ void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
+ QualType Type, CharUnits Alignment = CharUnits::Zero(),
+ bool SkipNullCheck = false);
+
+ /// \brief Emit a check that \p Base points into an array object, which
+ /// we can access at index \p Index. \p Accessed should be \c false if we
+ /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
+ void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
+ QualType IndexType, bool Accessed);
+
+ llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
+ bool isInc, bool isPre);
+ ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
+ bool isInc, bool isPre);
+
+ void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
+ llvm::Value *OffsetValue = nullptr) {
+ Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
+ OffsetValue);
+ }
+
+ //===--------------------------------------------------------------------===//
+ // Declaration Emission
+ //===--------------------------------------------------------------------===//
+
+ /// EmitDecl - Emit a declaration.
+ ///
+ /// This function can be called with a null (unreachable) insert point.
+ void EmitDecl(const Decl &D);
+
+ /// EmitVarDecl - Emit a local variable declaration.
+ ///
+ /// This function can be called with a null (unreachable) insert point.
+ void EmitVarDecl(const VarDecl &D);
+
+ void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
+ bool capturedByInit);
+ void EmitScalarInit(llvm::Value *init, LValue lvalue);
+
+ typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
+ llvm::Value *Address);
+
+ /// \brief Determine whether the given initializer is trivial in the sense
+ /// that it requires no code to be generated.
+ bool isTrivialInitializer(const Expr *Init);
+
+ /// EmitAutoVarDecl - Emit an auto variable declaration.
+ ///
+ /// This function can be called with a null (unreachable) insert point.
+ void EmitAutoVarDecl(const VarDecl &D);
+
+ class AutoVarEmission {
+ friend class CodeGenFunction;
+
+ const VarDecl *Variable;
+
+ /// The alignment of the variable.
+ CharUnits Alignment;
+
+ /// The address of the alloca. Null if the variable was emitted
+ /// as a global constant.
+ llvm::Value *Address;
+
+ llvm::Value *NRVOFlag;
+
+ /// True if the variable is a __block variable.
+ bool IsByRef;
+
+ /// True if the variable is of aggregate type and has a constant
+ /// initializer.
+ bool IsConstantAggregate;
+
+ /// Non-null if we should use lifetime annotations.
+ llvm::Value *SizeForLifetimeMarkers;
+
+ struct Invalid {};
+ AutoVarEmission(Invalid) : Variable(nullptr) {}
+
+ AutoVarEmission(const VarDecl &variable)
+ : Variable(&variable), Address(nullptr), NRVOFlag(nullptr),
+ IsByRef(false), IsConstantAggregate(false),
+ SizeForLifetimeMarkers(nullptr) {}
+
+ bool wasEmittedAsGlobal() const { return Address == nullptr; }
+
+ public:
+ static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
+
+ bool useLifetimeMarkers() const {
+ return SizeForLifetimeMarkers != nullptr;
+ }
+ llvm::Value *getSizeForLifetimeMarkers() const {
+ assert(useLifetimeMarkers());
+ return SizeForLifetimeMarkers;
+ }
+
+ /// Returns the raw, allocated address, which is not necessarily
+ /// the address of the object itself.
+ llvm::Value *getAllocatedAddress() const {
+ return Address;
+ }
+
+ /// Returns the address of the object within this declaration.
+ /// Note that this does not chase the forwarding pointer for
+ /// __block decls.
+ llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
+ if (!IsByRef) return Address;
+
+ auto F = CGF.getByRefValueLLVMField(Variable);
+ return CGF.Builder.CreateStructGEP(F.first, Address, F.second,
+ Variable->getNameAsString());
+ }
+ };
+ AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
+ void EmitAutoVarInit(const AutoVarEmission &emission);
+ void EmitAutoVarCleanups(const AutoVarEmission &emission);
+ void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
+ QualType::DestructionKind dtorKind);
+
+ void EmitStaticVarDecl(const VarDecl &D,
+ llvm::GlobalValue::LinkageTypes Linkage);
+
+ /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
+ void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, bool ArgIsPointer,
+ unsigned ArgNo);
+
+ /// protectFromPeepholes - Protect a value that we're intending to
+ /// store to the side, but which will probably be used later, from
+ /// aggressive peepholing optimizations that might delete it.
+ ///
+ /// Pass the result to unprotectFromPeepholes to declare that
+ /// protection is no longer required.
+ ///
+ /// There's no particular reason why this shouldn't apply to
+ /// l-values, it's just that no existing peepholes work on pointers.
+ PeepholeProtection protectFromPeepholes(RValue rvalue);
+ void unprotectFromPeepholes(PeepholeProtection protection);
+
+ //===--------------------------------------------------------------------===//
+ // Statement Emission
+ //===--------------------------------------------------------------------===//
+
+ /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
+ void EmitStopPoint(const Stmt *S);
+
+ /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
+ /// this function even if there is no current insertion point.
+ ///
+ /// This function may clear the current insertion point; callers should use
+ /// EnsureInsertPoint if they wish to subsequently generate code without first
+ /// calling EmitBlock, EmitBranch, or EmitStmt.
+ void EmitStmt(const Stmt *S);
+
+ /// EmitSimpleStmt - Try to emit a "simple" statement which does not
+ /// necessarily require an insertion point or debug information; typically
+ /// because the statement amounts to a jump or a container of other
+ /// statements.
+ ///
+ /// \return True if the statement was handled.
+ bool EmitSimpleStmt(const Stmt *S);
+
+ llvm::Value *EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
+ AggValueSlot AVS = AggValueSlot::ignored());
+ llvm::Value *EmitCompoundStmtWithoutScope(const CompoundStmt &S,
+ bool GetLast = false,
+ AggValueSlot AVS =
+ AggValueSlot::ignored());
+
+ /// EmitLabel - Emit the block for the given label. It is legal to call this
+ /// function even if there is no current insertion point.
+ void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
+
+ void EmitLabelStmt(const LabelStmt &S);
+ void EmitAttributedStmt(const AttributedStmt &S);
+ void EmitGotoStmt(const GotoStmt &S);
+ void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
+ void EmitIfStmt(const IfStmt &S);
+
+ void EmitCondBrHints(llvm::LLVMContext &Context, llvm::BranchInst *CondBr,
+ ArrayRef<const Attr *> Attrs);
+ void EmitWhileStmt(const WhileStmt &S,
+ ArrayRef<const Attr *> Attrs = None);
+ void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
+ void EmitForStmt(const ForStmt &S,
+ ArrayRef<const Attr *> Attrs = None);
+ void EmitReturnStmt(const ReturnStmt &S);
+ void EmitDeclStmt(const DeclStmt &S);
+ void EmitBreakStmt(const BreakStmt &S);
+ void EmitContinueStmt(const ContinueStmt &S);
+ void EmitSwitchStmt(const SwitchStmt &S);
+ void EmitDefaultStmt(const DefaultStmt &S);
+ void EmitCaseStmt(const CaseStmt &S);
+ void EmitCaseStmtRange(const CaseStmt &S);
+ void EmitAsmStmt(const AsmStmt &S);
+
+ void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
+ void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
+ void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
+ void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
+ void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
+
+ void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
+ void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
+
+ void EmitCXXTryStmt(const CXXTryStmt &S);
+ void EmitSEHTryStmt(const SEHTryStmt &S);
+ void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
+ void EnterSEHTryStmt(const SEHTryStmt &S);
+ void ExitSEHTryStmt(const SEHTryStmt &S);
+
+ void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, StringRef Name,
+ QualType RetTy, FunctionArgList &Args,
+ const Stmt *OutlinedStmt);
+
+ llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
+ const SEHExceptStmt &Except);
+
+ llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
+ const SEHFinallyStmt &Finally);
+
+ void EmitSEHExceptionCodeSave();
+ llvm::Value *EmitSEHExceptionCode();
+ llvm::Value *EmitSEHExceptionInfo();
+ llvm::Value *EmitSEHAbnormalTermination();
+
+ /// Scan the outlined statement for captures from the parent function. For
+ /// each capture, mark the capture as escaped and emit a call to
+ /// llvm.framerecover. Insert the framerecover result into the LocalDeclMap.
+ void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
+ llvm::Value *ParentFP);
+
+ void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
+ ArrayRef<const Attr *> Attrs = None);
+
+ LValue InitCapturedStruct(const CapturedStmt &S);
+ llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
+ void GenerateCapturedStmtFunctionProlog(const CapturedStmt &S);
+ llvm::Function *GenerateCapturedStmtFunctionEpilog(const CapturedStmt &S);
+ llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
+ llvm::Value *GenerateCapturedStmtArgument(const CapturedStmt &S);
+ /// \brief Perform element by element copying of arrays with type \a
+ /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
+ /// generated by \a CopyGen.
+ ///
+ /// \param DestAddr Address of the destination array.
+ /// \param SrcAddr Address of the source array.
+ /// \param OriginalType Type of destination and source arrays.
+ /// \param CopyGen Copying procedure that copies value of single array element
+ /// to another single array element.
+ void EmitOMPAggregateAssign(
+ llvm::Value *DestAddr, llvm::Value *SrcAddr, QualType OriginalType,
+ const llvm::function_ref<void(llvm::Value *, llvm::Value *)> &CopyGen);
+ /// \brief Emit proper copying of data from one variable to another.
+ ///
+ /// \param OriginalType Original type of the copied variables.
+ /// \param DestAddr Destination address.
+ /// \param SrcAddr Source address.
+ /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
+ /// type of the base array element).
+ /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
+ /// the base array element).
+ /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
+ /// DestVD.
+ void EmitOMPCopy(CodeGenFunction &CGF, QualType OriginalType,
+ llvm::Value *DestAddr, llvm::Value *SrcAddr,
+ const VarDecl *DestVD, const VarDecl *SrcVD,
+ const Expr *Copy);
+ /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or
+ /// \a X = \a E \a BO \a E.
+ ///
+ /// \param X Value to be updated.
+ /// \param E Update value.
+ /// \param BO Binary operation for update operation.
+ /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
+ /// expression, false otherwise.
+ /// \param AO Atomic ordering of the generated atomic instructions.
+ /// \param CommonGen Code generator for complex expressions that cannot be
+ /// expressed through atomicrmw instruction.
+ /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
+ /// generated, <false, RValue::get(nullptr)> otherwise.
+ std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
+ LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
+ llvm::AtomicOrdering AO, SourceLocation Loc,
+ const llvm::function_ref<RValue(RValue)> &CommonGen);
+ bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
+ OMPPrivateScope &PrivateScope);
+ void EmitOMPPrivateClause(const OMPExecutableDirective &D,
+ OMPPrivateScope &PrivateScope);
+ /// \brief Emit code for copyin clause in \a D directive. The next code is
+ /// generated at the start of outlined functions for directives:
+ /// \code
+ /// threadprivate_var1 = master_threadprivate_var1;
+ /// operator=(threadprivate_var2, master_threadprivate_var2);
+ /// ...
+ /// __kmpc_barrier(&loc, global_tid);
+ /// \endcode
+ ///
+ /// \param D OpenMP directive possibly with 'copyin' clause(s).
+ /// \returns true if at least one copyin variable is found, false otherwise.
+ bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
+ /// \brief Emit initial code for lastprivate variables. If some variable is
+ /// not also firstprivate, then the default initialization is used. Otherwise
+ /// initialization of this variable is performed by EmitOMPFirstprivateClause
+ /// method.
+ ///
+ /// \param D Directive that may have 'lastprivate' directives.
+ /// \param PrivateScope Private scope for capturing lastprivate variables for
+ /// proper codegen in internal captured statement.
+ ///
+ /// \returns true if there is at least one lastprivate variable, false
+ /// otherwise.
+ bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
+ OMPPrivateScope &PrivateScope);
+ /// \brief Emit final copying of lastprivate values to original variables at
+ /// the end of the worksharing or simd directive.
+ ///
+ /// \param D Directive that has at least one 'lastprivate' directives.
+ /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
+ /// it is the last iteration of the loop code in associated directive, or to
+ /// 'i1 false' otherwise.
+ void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
+ llvm::Value *IsLastIterCond);
+ /// \brief Emit initial code for reduction variables. Creates reduction copies
+ /// and initializes them with the values according to OpenMP standard.
+ ///
+ /// \param D Directive (possibly) with the 'reduction' clause.
+ /// \param PrivateScope Private scope for capturing reduction variables for
+ /// proper codegen in internal captured statement.
+ ///
+ void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
+ OMPPrivateScope &PrivateScope);
+ /// \brief Emit final update of reduction values to original variables at
+ /// the end of the directive.
+ ///
+ /// \param D Directive that has at least one 'reduction' directives.
+ void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D);
+
+ void EmitOMPParallelDirective(const OMPParallelDirective &S);
+ void EmitOMPSimdDirective(const OMPSimdDirective &S);
+ void EmitOMPForDirective(const OMPForDirective &S);
+ void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
+ void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
+ void EmitOMPSectionDirective(const OMPSectionDirective &S);
+ void EmitOMPSingleDirective(const OMPSingleDirective &S);
+ void EmitOMPMasterDirective(const OMPMasterDirective &S);
+ void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
+ void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
+ void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
+ void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
+ void EmitOMPTaskDirective(const OMPTaskDirective &S);
+ void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
+ void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
+ void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
+ void EmitOMPFlushDirective(const OMPFlushDirective &S);
+ void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
+ void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
+ void EmitOMPTargetDirective(const OMPTargetDirective &S);
+ void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
+
+ /// \brief Emit inner loop of the worksharing/simd construct.
+ ///
+ /// \param S Directive, for which the inner loop must be emitted.
+ /// \param RequiresCleanup true, if directive has some associated private
+ /// variables.
+ /// \param LoopCond Bollean condition for loop continuation.
+ /// \param IncExpr Increment expression for loop control variable.
+ /// \param BodyGen Generator for the inner body of the inner loop.
+ /// \param PostIncGen Genrator for post-increment code (required for ordered
+ /// loop directvies).
+ void EmitOMPInnerLoop(
+ const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
+ const Expr *IncExpr,
+ const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
+ const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen);
+
+private:
+
+ /// Helpers for the OpenMP loop directives.
+ void EmitOMPLoopBody(const OMPLoopDirective &Directive,
+ bool SeparateIter = false);
+ void EmitOMPSimdFinal(const OMPLoopDirective &S);
+ /// \brief Emit code for the worksharing loop-based directive.
+ /// \return true, if this construct has any lastprivate clause, false -
+ /// otherwise.
+ bool EmitOMPWorksharingLoop(const OMPLoopDirective &S);
+ void EmitOMPForOuterLoop(OpenMPScheduleClauseKind ScheduleKind,
+ const OMPLoopDirective &S,
+ OMPPrivateScope &LoopScope, bool Ordered,
+ llvm::Value *LB, llvm::Value *UB, llvm::Value *ST,
+ llvm::Value *IL, llvm::Value *Chunk);
+
+public:
+
+ //===--------------------------------------------------------------------===//
+ // LValue Expression Emission
+ //===--------------------------------------------------------------------===//
+
+ /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
+ RValue GetUndefRValue(QualType Ty);
+
+ /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
+ /// and issue an ErrorUnsupported style diagnostic (using the
+ /// provided Name).
+ RValue EmitUnsupportedRValue(const Expr *E,
+ const char *Name);
+
+ /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
+ /// an ErrorUnsupported style diagnostic (using the provided Name).
+ LValue EmitUnsupportedLValue(const Expr *E,
+ const char *Name);
+
+ /// EmitLValue - Emit code to compute a designator that specifies the location
+ /// of the expression.
+ ///
+ /// This can return one of two things: a simple address or a bitfield
+ /// reference. In either case, the LLVM Value* in the LValue structure is
+ /// guaranteed to be an LLVM pointer type.
+ ///
+ /// If this returns a bitfield reference, nothing about the pointee type of
+ /// the LLVM value is known: For example, it may not be a pointer to an
+ /// integer.
+ ///
+ /// If this returns a normal address, and if the lvalue's C type is fixed
+ /// size, this method guarantees that the returned pointer type will point to
+ /// an LLVM type of the same size of the lvalue's type. If the lvalue has a
+ /// variable length type, this is not possible.
+ ///
+ LValue EmitLValue(const Expr *E);
+
+ /// \brief Same as EmitLValue but additionally we generate checking code to
+ /// guard against undefined behavior. This is only suitable when we know
+ /// that the address will be used to access the object.
+ LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
+
+ RValue convertTempToRValue(llvm::Value *addr, QualType type,
+ SourceLocation Loc);
+
+ void EmitAtomicInit(Expr *E, LValue lvalue);
+
+ bool LValueIsSuitableForInlineAtomic(LValue Src);
+ bool typeIsSuitableForInlineAtomic(QualType Ty, bool IsVolatile) const;
+
+ RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
+ AggValueSlot Slot = AggValueSlot::ignored());
+
+ RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
+ llvm::AtomicOrdering AO, bool IsVolatile = false,
+ AggValueSlot slot = AggValueSlot::ignored());
+
+ void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
+
+ void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
+ bool IsVolatile, bool isInit);
+
+ std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
+ LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
+ llvm::AtomicOrdering Success = llvm::SequentiallyConsistent,
+ llvm::AtomicOrdering Failure = llvm::SequentiallyConsistent,
+ bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
+
+ void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
+ const llvm::function_ref<RValue(RValue)> &UpdateOp,
+ bool IsVolatile);
+
+ /// EmitToMemory - Change a scalar value from its value
+ /// representation to its in-memory representation.
+ llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
+
+ /// EmitFromMemory - Change a scalar value from its memory
+ /// representation to its value representation.
+ llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
+
+ /// EmitLoadOfScalar - Load a scalar value from an address, taking
+ /// care to appropriately convert from the memory representation to
+ /// the LLVM value representation.
+ llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
+ unsigned Alignment, QualType Ty,
+ SourceLocation Loc,
+ llvm::MDNode *TBAAInfo = nullptr,
+ QualType TBAABaseTy = QualType(),
+ uint64_t TBAAOffset = 0);
+
+ /// EmitLoadOfScalar - Load a scalar value from an address, taking
+ /// care to appropriately convert from the memory representation to
+ /// the LLVM value representation. The l-value must be a simple
+ /// l-value.
+ llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
+
+ /// EmitStoreOfScalar - Store a scalar value to an address, taking
+ /// care to appropriately convert from the memory representation to
+ /// the LLVM value representation.
+ void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
+ bool Volatile, unsigned Alignment, QualType Ty,
+ llvm::MDNode *TBAAInfo = nullptr, bool isInit = false,
+ QualType TBAABaseTy = QualType(),
+ uint64_t TBAAOffset = 0);
+
+ /// EmitStoreOfScalar - Store a scalar value to an address, taking
+ /// care to appropriately convert from the memory representation to
+ /// the LLVM value representation. The l-value must be a simple
+ /// l-value. The isInit flag indicates whether this is an initialization.
+ /// If so, atomic qualifiers are ignored and the store is always non-atomic.
+ void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
+
+ /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
+ /// this method emits the address of the lvalue, then loads the result as an
+ /// rvalue, returning the rvalue.
+ RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
+ RValue EmitLoadOfExtVectorElementLValue(LValue V);
+ RValue EmitLoadOfBitfieldLValue(LValue LV);
+ RValue EmitLoadOfGlobalRegLValue(LValue LV);
+
+ /// EmitStoreThroughLValue - Store the specified rvalue into the specified
+ /// lvalue, where both are guaranteed to the have the same type, and that type
+ /// is 'Ty'.
+ void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
+ void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
+ void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
+
+ /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
+ /// as EmitStoreThroughLValue.
+ ///
+ /// \param Result [out] - If non-null, this will be set to a Value* for the
+ /// bit-field contents after the store, appropriate for use as the result of
+ /// an assignment to the bit-field.
+ void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
+ llvm::Value **Result=nullptr);
+
+ /// Emit an l-value for an assignment (simple or compound) of complex type.
+ LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
+ LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
+ LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
+ llvm::Value *&Result);
+
+ // Note: only available for agg return types
+ LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
+ LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
+ // Note: only available for agg return types
+ LValue EmitCallExprLValue(const CallExpr *E);
+ // Note: only available for agg return types
+ LValue EmitVAArgExprLValue(const VAArgExpr *E);
+ LValue EmitDeclRefLValue(const DeclRefExpr *E);
+ LValue EmitReadRegister(const VarDecl *VD);
+ LValue EmitStringLiteralLValue(const StringLiteral *E);
+ LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
+ LValue EmitPredefinedLValue(const PredefinedExpr *E);
+ LValue EmitUnaryOpLValue(const UnaryOperator *E);
+ LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
+ bool Accessed = false);
+ LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
+ LValue EmitMemberExpr(const MemberExpr *E);
+ LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
+ LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
+ LValue EmitInitListLValue(const InitListExpr *E);
+ LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
+ LValue EmitCastLValue(const CastExpr *E);
+ LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
+ LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
+
+ llvm::Value *EmitExtVectorElementLValue(LValue V);
+
+ RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
+
+ class ConstantEmission {
+ llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
+ ConstantEmission(llvm::Constant *C, bool isReference)
+ : ValueAndIsReference(C, isReference) {}
+ public:
+ ConstantEmission() {}
+ static ConstantEmission forReference(llvm::Constant *C) {
+ return ConstantEmission(C, true);
+ }
+ static ConstantEmission forValue(llvm::Constant *C) {
+ return ConstantEmission(C, false);
+ }
+
+ explicit operator bool() const {
+ return ValueAndIsReference.getOpaqueValue() != nullptr;
+ }
+
+ bool isReference() const { return ValueAndIsReference.getInt(); }
+ LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
+ assert(isReference());
+ return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
+ refExpr->getType());
+ }
+
+ llvm::Constant *getValue() const {
+ assert(!isReference());
+ return ValueAndIsReference.getPointer();
+ }
+ };
+
+ ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
+
+ RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
+ AggValueSlot slot = AggValueSlot::ignored());
+ LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
+
+ llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
+ const ObjCIvarDecl *Ivar);
+ LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
+ LValue EmitLValueForLambdaField(const FieldDecl *Field);
+
+ /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
+ /// if the Field is a reference, this will return the address of the reference
+ /// and not the address of the value stored in the reference.
+ LValue EmitLValueForFieldInitialization(LValue Base,
+ const FieldDecl* Field);
+
+ LValue EmitLValueForIvar(QualType ObjectTy,
+ llvm::Value* Base, const ObjCIvarDecl *Ivar,
+ unsigned CVRQualifiers);
+
+ LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
+ LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
+ LValue EmitLambdaLValue(const LambdaExpr *E);
+ LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
+ LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
+
+ LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
+ LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
+ LValue EmitStmtExprLValue(const StmtExpr *E);
+ LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
+ LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
+ void EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
+
+ //===--------------------------------------------------------------------===//
+ // Scalar Expression Emission
+ //===--------------------------------------------------------------------===//
+
+ /// EmitCall - Generate a call of the given function, expecting the given
+ /// result type, and using the given argument list which specifies both the
+ /// LLVM arguments and the types they were derived from.
+ ///
+ /// \param TargetDecl - If given, the decl of the function in a direct call;
+ /// used to set attributes on the call (noreturn, etc.).
+ RValue EmitCall(const CGFunctionInfo &FnInfo,
+ llvm::Value *Callee,
+ ReturnValueSlot ReturnValue,
+ const CallArgList &Args,
+ const Decl *TargetDecl = nullptr,
+ llvm::Instruction **callOrInvoke = nullptr);
+
+ RValue EmitCall(QualType FnType, llvm::Value *Callee, const CallExpr *E,
+ ReturnValueSlot ReturnValue,
+ const Decl *TargetDecl = nullptr,
+ llvm::Value *Chain = nullptr);
+ RValue EmitCallExpr(const CallExpr *E,
+ ReturnValueSlot ReturnValue = ReturnValueSlot());
+
+ llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
+ const Twine &name = "");
+ llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
+ ArrayRef<llvm::Value*> args,
+ const Twine &name = "");
+ llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
+ const Twine &name = "");
+ llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
+ ArrayRef<llvm::Value*> args,
+ const Twine &name = "");
+
+ llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
+ ArrayRef<llvm::Value *> Args,
+ const Twine &Name = "");
+ llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
+ const Twine &Name = "");
+ llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
+ ArrayRef<llvm::Value*> args,
+ const Twine &name = "");
+ llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
+ const Twine &name = "");
+ void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
+ ArrayRef<llvm::Value*> args);
+
+ llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
+ NestedNameSpecifier *Qual,
+ llvm::Type *Ty);
+
+ llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
+ CXXDtorType Type,
+ const CXXRecordDecl *RD);
+
+ RValue
+ EmitCXXMemberOrOperatorCall(const CXXMethodDecl *MD, llvm::Value *Callee,
+ ReturnValueSlot ReturnValue, llvm::Value *This,
+ llvm::Value *ImplicitParam,
+ QualType ImplicitParamTy, const CallExpr *E);
+ RValue EmitCXXStructorCall(const CXXMethodDecl *MD, llvm::Value *Callee,
+ ReturnValueSlot ReturnValue, llvm::Value *This,
+ llvm::Value *ImplicitParam,
+ QualType ImplicitParamTy, const CallExpr *E,
+ StructorType Type);
+ RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
+ ReturnValueSlot ReturnValue);
+ RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
+ const CXXMethodDecl *MD,
+ ReturnValueSlot ReturnValue,
+ bool HasQualifier,
+ NestedNameSpecifier *Qualifier,
+ bool IsArrow, const Expr *Base);
+ // Compute the object pointer.
+ RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
+ ReturnValueSlot ReturnValue);
+
+ RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
+ const CXXMethodDecl *MD,
+ ReturnValueSlot ReturnValue);
+
+ RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
+ ReturnValueSlot ReturnValue);
+
+
+ RValue EmitBuiltinExpr(const FunctionDecl *FD,
+ unsigned BuiltinID, const CallExpr *E,
+ ReturnValueSlot ReturnValue);
+
+ RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
+
+ /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
+ /// is unhandled by the current target.
+ llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
+
+ llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
+ const llvm::CmpInst::Predicate Fp,
+ const llvm::CmpInst::Predicate Ip,
+ const llvm::Twine &Name = "");
+ llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
+
+ llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
+ unsigned LLVMIntrinsic,
+ unsigned AltLLVMIntrinsic,
+ const char *NameHint,
+ unsigned Modifier,
+ const CallExpr *E,
+ SmallVectorImpl<llvm::Value *> &Ops,
+ llvm::Value *Align = nullptr);
+ llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
+ unsigned Modifier, llvm::Type *ArgTy,
+ const CallExpr *E);
+ llvm::Value *EmitNeonCall(llvm::Function *F,
+ SmallVectorImpl<llvm::Value*> &O,
+ const char *name,
+ unsigned shift = 0, bool rightshift = false);
+ llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
+ llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
+ bool negateForRightShift);
+ llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
+ llvm::Type *Ty, bool usgn, const char *name);
+ // Helper functions for EmitAArch64BuiltinExpr.
+ llvm::Value *vectorWrapScalar8(llvm::Value *Op);
+ llvm::Value *vectorWrapScalar16(llvm::Value *Op);
+ llvm::Value *emitVectorWrappedScalar8Intrinsic(
+ unsigned Int, SmallVectorImpl<llvm::Value *> &Ops, const char *Name);
+ llvm::Value *emitVectorWrappedScalar16Intrinsic(
+ unsigned Int, SmallVectorImpl<llvm::Value *> &Ops, const char *Name);
+ llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
+ llvm::Value *EmitNeon64Call(llvm::Function *F,
+ llvm::SmallVectorImpl<llvm::Value *> &O,
+ const char *name);
+
+ llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
+ llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
+ llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
+ llvm::Value *EmitR600BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
+ llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
+
+ llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
+ llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
+ llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
+ llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
+ llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
+ llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
+ const ObjCMethodDecl *MethodWithObjects);
+ llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
+ RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
+ ReturnValueSlot Return = ReturnValueSlot());
+
+ /// Retrieves the default cleanup kind for an ARC cleanup.
+ /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
+ CleanupKind getARCCleanupKind() {
+ return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
+ ? NormalAndEHCleanup : NormalCleanup;
+ }
+
+ // ARC primitives.
+ void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
+ void EmitARCDestroyWeak(llvm::Value *addr);
+ llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
+ llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
+ llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
+ bool ignored);
+ void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
+ void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
+ llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
+ llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
+ llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
+ bool resultIgnored);
+ llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
+ bool resultIgnored);
+ llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
+ llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
+ llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
+ void EmitARCDestroyStrong(llvm::Value *addr, ARCPreciseLifetime_t precise);
+ void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
+ llvm::Value *EmitARCAutorelease(llvm::Value *value);
+ llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
+ llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
+ llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
+
+ std::pair<LValue,llvm::Value*>
+ EmitARCStoreAutoreleasing(const BinaryOperator *e);
+ std::pair<LValue,llvm::Value*>
+ EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
+
+ llvm::Value *EmitObjCThrowOperand(const Expr *expr);
+
+ llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
+ llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
+ llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
+
+ llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
+ llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
+ llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
+
+ void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
+
+ static Destroyer destroyARCStrongImprecise;
+ static Destroyer destroyARCStrongPrecise;
+ static Destroyer destroyARCWeak;
+
+ void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
+ llvm::Value *EmitObjCAutoreleasePoolPush();
+ llvm::Value *EmitObjCMRRAutoreleasePoolPush();
+ void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
+ void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
+
+ /// \brief Emits a reference binding to the passed in expression.
+ RValue EmitReferenceBindingToExpr(const Expr *E);
+
+ //===--------------------------------------------------------------------===//
+ // Expression Emission
+ //===--------------------------------------------------------------------===//
+
+ // Expressions are broken into three classes: scalar, complex, aggregate.
+
+ /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
+ /// scalar type, returning the result.
+ llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
+
+ /// EmitScalarConversion - Emit a conversion from the specified type to the
+ /// specified destination type, both of which are LLVM scalar types.
+ llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
+ QualType DstTy);
+
+ /// EmitComplexToScalarConversion - Emit a conversion from the specified
+ /// complex type to the specified destination type, where the destination type
+ /// is an LLVM scalar type.
+ llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
+ QualType DstTy);
+
+
+ /// EmitAggExpr - Emit the computation of the specified expression
+ /// of aggregate type. The result is computed into the given slot,
+ /// which may be null to indicate that the value is not needed.
+ void EmitAggExpr(const Expr *E, AggValueSlot AS);
+
+ /// EmitAggExprToLValue - Emit the computation of the specified expression of
+ /// aggregate type into a temporary LValue.
+ LValue EmitAggExprToLValue(const Expr *E);
+
+ /// EmitGCMemmoveCollectable - Emit special API for structs with object
+ /// pointers.
+ void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
+ QualType Ty);
+
+ /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
+ /// make sure it survives garbage collection until this point.
+ void EmitExtendGCLifetime(llvm::Value *object);
+
+ /// EmitComplexExpr - Emit the computation of the specified expression of
+ /// complex type, returning the result.
+ ComplexPairTy EmitComplexExpr(const Expr *E,
+ bool IgnoreReal = false,
+ bool IgnoreImag = false);
+
+ /// EmitComplexExprIntoLValue - Emit the given expression of complex
+ /// type and place its result into the specified l-value.
+ void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
+
+ /// EmitStoreOfComplex - Store a complex number into the specified l-value.
+ void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
+
+ /// EmitLoadOfComplex - Load a complex number from the specified l-value.
+ ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
+
+ /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
+ /// global variable that has already been created for it. If the initializer
+ /// has a different type than GV does, this may free GV and return a different
+ /// one. Otherwise it just returns GV.
+ llvm::GlobalVariable *
+ AddInitializerToStaticVarDecl(const VarDecl &D,
+ llvm::GlobalVariable *GV);
+
+
+ /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
+ /// variable with global storage.
+ void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
+ bool PerformInit);
+
+ llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
+ llvm::Constant *Addr);
+
+ /// Call atexit() with a function that passes the given argument to
+ /// the given function.
+ void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
+ llvm::Constant *addr);
+
+ /// Emit code in this function to perform a guarded variable
+ /// initialization. Guarded initializations are used when it's not
+ /// possible to prove that an initialization will be done exactly
+ /// once, e.g. with a static local variable or a static data member
+ /// of a class template.
+ void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
+ bool PerformInit);
+
+ /// GenerateCXXGlobalInitFunc - Generates code for initializing global
+ /// variables.
+ void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
+ ArrayRef<llvm::Function *> CXXThreadLocals,
+ llvm::GlobalVariable *Guard = nullptr);
+
+ /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
+ /// variables.
+ void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
+ const std::vector<std::pair<llvm::WeakVH,
+ llvm::Constant*> > &DtorsAndObjects);
+
+ void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
+ const VarDecl *D,
+ llvm::GlobalVariable *Addr,
+ bool PerformInit);
+
+ void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
+
+ void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
+ const Expr *Exp);
+
+ void enterFullExpression(const ExprWithCleanups *E) {
+ if (E->getNumObjects() == 0) return;
+ enterNonTrivialFullExpression(E);
+ }
+ void enterNonTrivialFullExpression(const ExprWithCleanups *E);
+
+ void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
+
+ void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
+
+ RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = nullptr);
+
+ //===--------------------------------------------------------------------===//
+ // Annotations Emission
+ //===--------------------------------------------------------------------===//
+
+ /// Emit an annotation call (intrinsic or builtin).
+ llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
+ llvm::Value *AnnotatedVal,
+ StringRef AnnotationStr,
+ SourceLocation Location);
+
+ /// Emit local annotations for the local variable V, declared by D.
+ void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
+
+ /// Emit field annotations for the given field & value. Returns the
+ /// annotation result.
+ llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
+
+ //===--------------------------------------------------------------------===//
+ // Internal Helpers
+ //===--------------------------------------------------------------------===//
+
+ /// ContainsLabel - Return true if the statement contains a label in it. If
+ /// this statement is not executed normally, it not containing a label means
+ /// that we can just remove the code.
+ static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
+
+ /// containsBreak - Return true if the statement contains a break out of it.
+ /// If the statement (recursively) contains a switch or loop with a break
+ /// inside of it, this is fine.
+ static bool containsBreak(const Stmt *S);
+
+ /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
+ /// to a constant, or if it does but contains a label, return false. If it
+ /// constant folds return true and set the boolean result in Result.
+ bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
+
+ /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
+ /// to a constant, or if it does but contains a label, return false. If it
+ /// constant folds return true and set the folded value.
+ bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
+
+ /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
+ /// if statement) to the specified blocks. Based on the condition, this might
+ /// try to simplify the codegen of the conditional based on the branch.
+ /// TrueCount should be the number of times we expect the condition to
+ /// evaluate to true based on PGO data.
+ void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
+ llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
+
+ /// \brief Emit a description of a type in a format suitable for passing to
+ /// a runtime sanitizer handler.
+ llvm::Constant *EmitCheckTypeDescriptor(QualType T);
+
+ /// \brief Convert a value into a format suitable for passing to a runtime
+ /// sanitizer handler.
+ llvm::Value *EmitCheckValue(llvm::Value *V);
+
+ /// \brief Emit a description of a source location in a format suitable for
+ /// passing to a runtime sanitizer handler.
+ llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
+
+ /// \brief Create a basic block that will call a handler function in a
+ /// sanitizer runtime with the provided arguments, and create a conditional
+ /// branch to it.
+ void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
+ StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs,
+ ArrayRef<llvm::Value *> DynamicArgs);
+
+ /// \brief Create a basic block that will call the trap intrinsic, and emit a
+ /// conditional branch to it, for the -ftrapv checks.
+ void EmitTrapCheck(llvm::Value *Checked);
+
+ /// EmitCallArg - Emit a single call argument.
+ void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
+
+ /// EmitDelegateCallArg - We are performing a delegate call; that
+ /// is, the current function is delegating to another one. Produce
+ /// a r-value suitable for passing the given parameter.
+ void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
+ SourceLocation loc);
+
+ /// SetFPAccuracy - Set the minimum required accuracy of the given floating
+ /// point operation, expressed as the maximum relative error in ulp.
+ void SetFPAccuracy(llvm::Value *Val, float Accuracy);
+
+private:
+ llvm::MDNode *getRangeForLoadFromType(QualType Ty);
+ void EmitReturnOfRValue(RValue RV, QualType Ty);
+
+ void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
+
+ llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
+ DeferredReplacements;
+
+ /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
+ /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
+ ///
+ /// \param AI - The first function argument of the expansion.
+ void ExpandTypeFromArgs(QualType Ty, LValue Dst,
+ SmallVectorImpl<llvm::Argument *>::iterator &AI);
+
+ /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg
+ /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
+ /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
+ void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
+ SmallVectorImpl<llvm::Value *> &IRCallArgs,
+ unsigned &IRCallArgPos);
+
+ llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
+ const Expr *InputExpr, std::string &ConstraintStr);
+
+ llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
+ LValue InputValue, QualType InputType,
+ std::string &ConstraintStr,
+ SourceLocation Loc);
+
+public:
+ /// EmitCallArgs - Emit call arguments for a function.
+ template <typename T>
+ void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
+ CallExpr::const_arg_iterator ArgBeg,
+ CallExpr::const_arg_iterator ArgEnd,
+ const FunctionDecl *CalleeDecl = nullptr,
+ unsigned ParamsToSkip = 0) {
+ SmallVector<QualType, 16> ArgTypes;
+ CallExpr::const_arg_iterator Arg = ArgBeg;
+
+ assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
+ "Can't skip parameters if type info is not provided");
+ if (CallArgTypeInfo) {
+ // First, use the argument types that the type info knows about
+ for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
+ E = CallArgTypeInfo->param_type_end();
+ I != E; ++I, ++Arg) {
+ assert(Arg != ArgEnd && "Running over edge of argument list!");
+ assert(
+ ((*I)->isVariablyModifiedType() ||
+ getContext()
+ .getCanonicalType((*I).getNonReferenceType())
+ .getTypePtr() ==
+ getContext().getCanonicalType(Arg->getType()).getTypePtr()) &&
+ "type mismatch in call argument!");
+ ArgTypes.push_back(*I);
+ }
+ }
+
+ // Either we've emitted all the call args, or we have a call to variadic
+ // function.
+ assert(
+ (Arg == ArgEnd || !CallArgTypeInfo || CallArgTypeInfo->isVariadic()) &&
+ "Extra arguments in non-variadic function!");
+
+ // If we still have any arguments, emit them using the type of the argument.
+ for (; Arg != ArgEnd; ++Arg)
+ ArgTypes.push_back(getVarArgType(*Arg));
+
+ EmitCallArgs(Args, ArgTypes, ArgBeg, ArgEnd, CalleeDecl, ParamsToSkip);
+ }
+
+ void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
+ CallExpr::const_arg_iterator ArgBeg,
+ CallExpr::const_arg_iterator ArgEnd,
+ const FunctionDecl *CalleeDecl = nullptr,
+ unsigned ParamsToSkip = 0);
+
+private:
+ QualType getVarArgType(const Expr *Arg);
+
+ const TargetCodeGenInfo &getTargetHooks() const {
+ return CGM.getTargetCodeGenInfo();
+ }
+
+ void EmitDeclMetadata();
+
+ CodeGenModule::ByrefHelpers *
+ buildByrefHelpers(llvm::StructType &byrefType,
+ const AutoVarEmission &emission);
+
+ void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
+
+ /// GetPointeeAlignment - Given an expression with a pointer type, emit the
+ /// value and compute our best estimate of the alignment of the pointee.
+ std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr);
+
+ llvm::Value *GetValueForARMHint(unsigned BuiltinID);
+};
+
+/// Helper class with most of the code for saving a value for a
+/// conditional expression cleanup.
+struct DominatingLLVMValue {
+ typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
+
+ /// Answer whether the given value needs extra work to be saved.
+ static bool needsSaving(llvm::Value *value) {
+ // If it's not an instruction, we don't need to save.
+ if (!isa<llvm::Instruction>(value)) return false;
+
+ // If it's an instruction in the entry block, we don't need to save.
+ llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
+ return (block != &block->getParent()->getEntryBlock());
+ }
+
+ /// Try to save the given value.
+ static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
+ if (!needsSaving(value)) return saved_type(value, false);
+
+ // Otherwise we need an alloca.
+ llvm::Value *alloca =
+ CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
+ CGF.Builder.CreateStore(value, alloca);
+
+ return saved_type(alloca, true);
+ }
+
+ static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
+ if (!value.getInt()) return value.getPointer();
+ return CGF.Builder.CreateLoad(value.getPointer());
+ }
+};
+
+/// A partial specialization of DominatingValue for llvm::Values that
+/// might be llvm::Instructions.
+template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
+ typedef T *type;
+ static type restore(CodeGenFunction &CGF, saved_type value) {
+ return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
+ }
+};
+
+/// A specialization of DominatingValue for RValue.
+template <> struct DominatingValue<RValue> {
+ typedef RValue type;
+ class saved_type {
+ enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
+ AggregateAddress, ComplexAddress };
+
+ llvm::Value *Value;
+ Kind K;
+ saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
+
+ public:
+ static bool needsSaving(RValue value);
+ static saved_type save(CodeGenFunction &CGF, RValue value);
+ RValue restore(CodeGenFunction &CGF);
+
+ // implementations in CGExprCXX.cpp
+ };
+
+ static bool needsSaving(type value) {
+ return saved_type::needsSaving(value);
+ }
+ static saved_type save(CodeGenFunction &CGF, type value) {
+ return saved_type::save(CGF, value);
+ }
+ static type restore(CodeGenFunction &CGF, saved_type value) {
+ return value.restore(CGF);
+ }
+};
+
+} // end namespace CodeGen
+} // end namespace clang
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CodeGenModule.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CodeGenModule.cpp
new file mode 100644
index 0000000..4005061
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CodeGenModule.cpp
@@ -0,0 +1,3669 @@
+//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This coordinates the per-module state used while generating code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenModule.h"
+#include "CGCUDARuntime.h"
+#include "CGCXXABI.h"
+#include "CGCall.h"
+#include "CGDebugInfo.h"
+#include "CGObjCRuntime.h"
+#include "CGOpenCLRuntime.h"
+#include "CGOpenMPRuntime.h"
+#include "CodeGenFunction.h"
+#include "CodeGenPGO.h"
+#include "CodeGenTBAA.h"
+#include "CoverageMappingGen.h"
+#include "TargetInfo.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/CharUnits.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/Mangle.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/AST/RecursiveASTVisitor.h"
+#include "clang/Basic/Builtins.h"
+#include "clang/Basic/CharInfo.h"
+#include "clang/Basic/Diagnostic.h"
+#include "clang/Basic/Module.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Basic/Version.h"
+#include "clang/Frontend/CodeGenOptions.h"
+#include "clang/Sema/SemaDiagnostic.h"
+#include "llvm/ADT/APSInt.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/ProfileData/InstrProfReader.h"
+#include "llvm/Support/ConvertUTF.h"
+#include "llvm/Support/ErrorHandling.h"
+
+using namespace clang;
+using namespace CodeGen;
+
+static const char AnnotationSection[] = "llvm.metadata";
+
+static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
+ switch (CGM.getTarget().getCXXABI().getKind()) {
+ case TargetCXXABI::GenericAArch64:
+ case TargetCXXABI::GenericARM:
+ case TargetCXXABI::iOS:
+ case TargetCXXABI::iOS64:
+ case TargetCXXABI::GenericMIPS:
+ case TargetCXXABI::GenericItanium:
+ return CreateItaniumCXXABI(CGM);
+ case TargetCXXABI::Microsoft:
+ return CreateMicrosoftCXXABI(CGM);
+ }
+
+ llvm_unreachable("invalid C++ ABI kind");
+}
+
+CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
+ llvm::Module &M, const llvm::DataLayout &TD,
+ DiagnosticsEngine &diags,
+ CoverageSourceInfo *CoverageInfo)
+ : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
+ Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
+ ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(nullptr),
+ TheTargetCodeGenInfo(nullptr), Types(*this), VTables(*this),
+ ObjCRuntime(nullptr), OpenCLRuntime(nullptr), OpenMPRuntime(nullptr),
+ CUDARuntime(nullptr), DebugInfo(nullptr), ARCData(nullptr),
+ NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr),
+ CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr),
+ NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr),
+ NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr),
+ BlockObjectDispose(nullptr), BlockDescriptorType(nullptr),
+ GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr),
+ LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) {
+
+ // Initialize the type cache.
+ llvm::LLVMContext &LLVMContext = M.getContext();
+ VoidTy = llvm::Type::getVoidTy(LLVMContext);
+ Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
+ Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
+ Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
+ Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
+ FloatTy = llvm::Type::getFloatTy(LLVMContext);
+ DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
+ PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
+ PointerAlignInBytes =
+ C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
+ IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
+ IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
+ Int8PtrTy = Int8Ty->getPointerTo(0);
+ Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
+
+ RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
+ BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
+
+ if (LangOpts.ObjC1)
+ createObjCRuntime();
+ if (LangOpts.OpenCL)
+ createOpenCLRuntime();
+ if (LangOpts.OpenMP)
+ createOpenMPRuntime();
+ if (LangOpts.CUDA)
+ createCUDARuntime();
+
+ // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
+ if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
+ (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
+ TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
+ getCXXABI().getMangleContext());
+
+ // If debug info or coverage generation is enabled, create the CGDebugInfo
+ // object.
+ if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
+ CodeGenOpts.EmitGcovArcs ||
+ CodeGenOpts.EmitGcovNotes)
+ DebugInfo = new CGDebugInfo(*this);
+
+ Block.GlobalUniqueCount = 0;
+
+ if (C.getLangOpts().ObjCAutoRefCount)
+ ARCData = new ARCEntrypoints();
+ RRData = new RREntrypoints();
+
+ if (!CodeGenOpts.InstrProfileInput.empty()) {
+ auto ReaderOrErr =
+ llvm::IndexedInstrProfReader::create(CodeGenOpts.InstrProfileInput);
+ if (std::error_code EC = ReaderOrErr.getError()) {
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "Could not read profile: %0");
+ getDiags().Report(DiagID) << EC.message();
+ } else
+ PGOReader = std::move(ReaderOrErr.get());
+ }
+
+ // If coverage mapping generation is enabled, create the
+ // CoverageMappingModuleGen object.
+ if (CodeGenOpts.CoverageMapping)
+ CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
+}
+
+CodeGenModule::~CodeGenModule() {
+ delete ObjCRuntime;
+ delete OpenCLRuntime;
+ delete OpenMPRuntime;
+ delete CUDARuntime;
+ delete TheTargetCodeGenInfo;
+ delete TBAA;
+ delete DebugInfo;
+ delete ARCData;
+ delete RRData;
+}
+
+void CodeGenModule::createObjCRuntime() {
+ // This is just isGNUFamily(), but we want to force implementors of
+ // new ABIs to decide how best to do this.
+ switch (LangOpts.ObjCRuntime.getKind()) {
+ case ObjCRuntime::GNUstep:
+ case ObjCRuntime::GCC:
+ case ObjCRuntime::ObjFW:
+ ObjCRuntime = CreateGNUObjCRuntime(*this);
+ return;
+
+ case ObjCRuntime::FragileMacOSX:
+ case ObjCRuntime::MacOSX:
+ case ObjCRuntime::iOS:
+ ObjCRuntime = CreateMacObjCRuntime(*this);
+ return;
+ }
+ llvm_unreachable("bad runtime kind");
+}
+
+void CodeGenModule::createOpenCLRuntime() {
+ OpenCLRuntime = new CGOpenCLRuntime(*this);
+}
+
+void CodeGenModule::createOpenMPRuntime() {
+ OpenMPRuntime = new CGOpenMPRuntime(*this);
+}
+
+void CodeGenModule::createCUDARuntime() {
+ CUDARuntime = CreateNVCUDARuntime(*this);
+}
+
+void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
+ Replacements[Name] = C;
+}
+
+void CodeGenModule::applyReplacements() {
+ for (ReplacementsTy::iterator I = Replacements.begin(),
+ E = Replacements.end();
+ I != E; ++I) {
+ StringRef MangledName = I->first();
+ llvm::Constant *Replacement = I->second;
+ llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
+ if (!Entry)
+ continue;
+ auto *OldF = cast<llvm::Function>(Entry);
+ auto *NewF = dyn_cast<llvm::Function>(Replacement);
+ if (!NewF) {
+ if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
+ NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
+ } else {
+ auto *CE = cast<llvm::ConstantExpr>(Replacement);
+ assert(CE->getOpcode() == llvm::Instruction::BitCast ||
+ CE->getOpcode() == llvm::Instruction::GetElementPtr);
+ NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
+ }
+ }
+
+ // Replace old with new, but keep the old order.
+ OldF->replaceAllUsesWith(Replacement);
+ if (NewF) {
+ NewF->removeFromParent();
+ OldF->getParent()->getFunctionList().insertAfter(OldF, NewF);
+ }
+ OldF->eraseFromParent();
+ }
+}
+
+// This is only used in aliases that we created and we know they have a
+// linear structure.
+static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) {
+ llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited;
+ const llvm::Constant *C = &GA;
+ for (;;) {
+ C = C->stripPointerCasts();
+ if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
+ return GO;
+ // stripPointerCasts will not walk over weak aliases.
+ auto *GA2 = dyn_cast<llvm::GlobalAlias>(C);
+ if (!GA2)
+ return nullptr;
+ if (!Visited.insert(GA2).second)
+ return nullptr;
+ C = GA2->getAliasee();
+ }
+}
+
+void CodeGenModule::checkAliases() {
+ // Check if the constructed aliases are well formed. It is really unfortunate
+ // that we have to do this in CodeGen, but we only construct mangled names
+ // and aliases during codegen.
+ bool Error = false;
+ DiagnosticsEngine &Diags = getDiags();
+ for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
+ E = Aliases.end(); I != E; ++I) {
+ const GlobalDecl &GD = *I;
+ const auto *D = cast<ValueDecl>(GD.getDecl());
+ const AliasAttr *AA = D->getAttr<AliasAttr>();
+ StringRef MangledName = getMangledName(GD);
+ llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
+ auto *Alias = cast<llvm::GlobalAlias>(Entry);
+ const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
+ if (!GV) {
+ Error = true;
+ Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
+ } else if (GV->isDeclaration()) {
+ Error = true;
+ Diags.Report(AA->getLocation(), diag::err_alias_to_undefined);
+ }
+
+ llvm::Constant *Aliasee = Alias->getAliasee();
+ llvm::GlobalValue *AliaseeGV;
+ if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
+ AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
+ else
+ AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
+
+ if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
+ StringRef AliasSection = SA->getName();
+ if (AliasSection != AliaseeGV->getSection())
+ Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
+ << AliasSection;
+ }
+
+ // We have to handle alias to weak aliases in here. LLVM itself disallows
+ // this since the object semantics would not match the IL one. For
+ // compatibility with gcc we implement it by just pointing the alias
+ // to its aliasee's aliasee. We also warn, since the user is probably
+ // expecting the link to be weak.
+ if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
+ if (GA->mayBeOverridden()) {
+ Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias)
+ << GV->getName() << GA->getName();
+ Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
+ GA->getAliasee(), Alias->getType());
+ Alias->setAliasee(Aliasee);
+ }
+ }
+ }
+ if (!Error)
+ return;
+
+ for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
+ E = Aliases.end(); I != E; ++I) {
+ const GlobalDecl &GD = *I;
+ StringRef MangledName = getMangledName(GD);
+ llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
+ auto *Alias = cast<llvm::GlobalAlias>(Entry);
+ Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
+ Alias->eraseFromParent();
+ }
+}
+
+void CodeGenModule::clear() {
+ DeferredDeclsToEmit.clear();
+ if (OpenMPRuntime)
+ OpenMPRuntime->clear();
+}
+
+void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
+ StringRef MainFile) {
+ if (!hasDiagnostics())
+ return;
+ if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
+ if (MainFile.empty())
+ MainFile = "<stdin>";
+ Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
+ } else
+ Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing
+ << Mismatched;
+}
+
+void CodeGenModule::Release() {
+ EmitDeferred();
+ applyReplacements();
+ checkAliases();
+ EmitCXXGlobalInitFunc();
+ EmitCXXGlobalDtorFunc();
+ EmitCXXThreadLocalInitFunc();
+ if (ObjCRuntime)
+ if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
+ AddGlobalCtor(ObjCInitFunction);
+ if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
+ CUDARuntime) {
+ if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
+ AddGlobalCtor(CudaCtorFunction);
+ if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
+ AddGlobalDtor(CudaDtorFunction);
+ }
+ if (PGOReader && PGOStats.hasDiagnostics())
+ PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
+ EmitCtorList(GlobalCtors, "llvm.global_ctors");
+ EmitCtorList(GlobalDtors, "llvm.global_dtors");
+ EmitGlobalAnnotations();
+ EmitStaticExternCAliases();
+ EmitDeferredUnusedCoverageMappings();
+ if (CoverageMapping)
+ CoverageMapping->emit();
+ emitLLVMUsed();
+
+ if (CodeGenOpts.Autolink &&
+ (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
+ EmitModuleLinkOptions();
+ }
+ if (CodeGenOpts.DwarfVersion)
+ // We actually want the latest version when there are conflicts.
+ // We can change from Warning to Latest if such mode is supported.
+ getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
+ CodeGenOpts.DwarfVersion);
+ if (DebugInfo)
+ // We support a single version in the linked module. The LLVM
+ // parser will drop debug info with a different version number
+ // (and warn about it, too).
+ getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
+ llvm::DEBUG_METADATA_VERSION);
+
+ // We need to record the widths of enums and wchar_t, so that we can generate
+ // the correct build attributes in the ARM backend.
+ llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
+ if ( Arch == llvm::Triple::arm
+ || Arch == llvm::Triple::armeb
+ || Arch == llvm::Triple::thumb
+ || Arch == llvm::Triple::thumbeb) {
+ // Width of wchar_t in bytes
+ uint64_t WCharWidth =
+ Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
+ getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
+
+ // The minimum width of an enum in bytes
+ uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
+ getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
+ }
+
+ if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
+ llvm::PICLevel::Level PL = llvm::PICLevel::Default;
+ switch (PLevel) {
+ case 0: break;
+ case 1: PL = llvm::PICLevel::Small; break;
+ case 2: PL = llvm::PICLevel::Large; break;
+ default: llvm_unreachable("Invalid PIC Level");
+ }
+
+ getModule().setPICLevel(PL);
+ }
+
+ SimplifyPersonality();
+
+ if (getCodeGenOpts().EmitDeclMetadata)
+ EmitDeclMetadata();
+
+ if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
+ EmitCoverageFile();
+
+ if (DebugInfo)
+ DebugInfo->finalize();
+
+ EmitVersionIdentMetadata();
+
+ EmitTargetMetadata();
+}
+
+void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
+ // Make sure that this type is translated.
+ Types.UpdateCompletedType(TD);
+}
+
+llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
+ if (!TBAA)
+ return nullptr;
+ return TBAA->getTBAAInfo(QTy);
+}
+
+llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
+ if (!TBAA)
+ return nullptr;
+ return TBAA->getTBAAInfoForVTablePtr();
+}
+
+llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
+ if (!TBAA)
+ return nullptr;
+ return TBAA->getTBAAStructInfo(QTy);
+}
+
+llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
+ if (!TBAA)
+ return nullptr;
+ return TBAA->getTBAAStructTypeInfo(QTy);
+}
+
+llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
+ llvm::MDNode *AccessN,
+ uint64_t O) {
+ if (!TBAA)
+ return nullptr;
+ return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
+}
+
+/// Decorate the instruction with a TBAA tag. For both scalar TBAA
+/// and struct-path aware TBAA, the tag has the same format:
+/// base type, access type and offset.
+/// When ConvertTypeToTag is true, we create a tag based on the scalar type.
+void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
+ llvm::MDNode *TBAAInfo,
+ bool ConvertTypeToTag) {
+ if (ConvertTypeToTag && TBAA)
+ Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
+ TBAA->getTBAAScalarTagInfo(TBAAInfo));
+ else
+ Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
+}
+
+void CodeGenModule::Error(SourceLocation loc, StringRef message) {
+ unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
+ getDiags().Report(Context.getFullLoc(loc), diagID) << message;
+}
+
+/// ErrorUnsupported - Print out an error that codegen doesn't support the
+/// specified stmt yet.
+void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
+ unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot compile this %0 yet");
+ std::string Msg = Type;
+ getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
+ << Msg << S->getSourceRange();
+}
+
+/// ErrorUnsupported - Print out an error that codegen doesn't support the
+/// specified decl yet.
+void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
+ unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot compile this %0 yet");
+ std::string Msg = Type;
+ getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
+}
+
+llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
+ return llvm::ConstantInt::get(SizeTy, size.getQuantity());
+}
+
+void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
+ const NamedDecl *D) const {
+ // Internal definitions always have default visibility.
+ if (GV->hasLocalLinkage()) {
+ GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
+ return;
+ }
+
+ // Set visibility for definitions.
+ LinkageInfo LV = D->getLinkageAndVisibility();
+ if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
+ GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
+}
+
+static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
+ return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
+ .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
+ .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
+ .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
+ .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
+}
+
+static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
+ CodeGenOptions::TLSModel M) {
+ switch (M) {
+ case CodeGenOptions::GeneralDynamicTLSModel:
+ return llvm::GlobalVariable::GeneralDynamicTLSModel;
+ case CodeGenOptions::LocalDynamicTLSModel:
+ return llvm::GlobalVariable::LocalDynamicTLSModel;
+ case CodeGenOptions::InitialExecTLSModel:
+ return llvm::GlobalVariable::InitialExecTLSModel;
+ case CodeGenOptions::LocalExecTLSModel:
+ return llvm::GlobalVariable::LocalExecTLSModel;
+ }
+ llvm_unreachable("Invalid TLS model!");
+}
+
+void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
+ assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
+
+ llvm::GlobalValue::ThreadLocalMode TLM;
+ TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
+
+ // Override the TLS model if it is explicitly specified.
+ if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
+ TLM = GetLLVMTLSModel(Attr->getModel());
+ }
+
+ GV->setThreadLocalMode(TLM);
+}
+
+StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
+ StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()];
+ if (!FoundStr.empty())
+ return FoundStr;
+
+ const auto *ND = cast<NamedDecl>(GD.getDecl());
+ SmallString<256> Buffer;
+ StringRef Str;
+ if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
+ llvm::raw_svector_ostream Out(Buffer);
+ if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
+ getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
+ else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
+ getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
+ else
+ getCXXABI().getMangleContext().mangleName(ND, Out);
+ Str = Out.str();
+ } else {
+ IdentifierInfo *II = ND->getIdentifier();
+ assert(II && "Attempt to mangle unnamed decl.");
+ Str = II->getName();
+ }
+
+ // Keep the first result in the case of a mangling collision.
+ auto Result = Manglings.insert(std::make_pair(Str, GD));
+ return FoundStr = Result.first->first();
+}
+
+StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
+ const BlockDecl *BD) {
+ MangleContext &MangleCtx = getCXXABI().getMangleContext();
+ const Decl *D = GD.getDecl();
+
+ SmallString<256> Buffer;
+ llvm::raw_svector_ostream Out(Buffer);
+ if (!D)
+ MangleCtx.mangleGlobalBlock(BD,
+ dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
+ else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
+ MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
+ else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
+ MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
+ else
+ MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
+
+ auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
+ return Result.first->first();
+}
+
+llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
+ return getModule().getNamedValue(Name);
+}
+
+/// AddGlobalCtor - Add a function to the list that will be called before
+/// main() runs.
+void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
+ llvm::Constant *AssociatedData) {
+ // FIXME: Type coercion of void()* types.
+ GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
+}
+
+/// AddGlobalDtor - Add a function to the list that will be called
+/// when the module is unloaded.
+void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
+ // FIXME: Type coercion of void()* types.
+ GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
+}
+
+void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
+ // Ctor function type is void()*.
+ llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
+ llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
+
+ // Get the type of a ctor entry, { i32, void ()*, i8* }.
+ llvm::StructType *CtorStructTy = llvm::StructType::get(
+ Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr);
+
+ // Construct the constructor and destructor arrays.
+ SmallVector<llvm::Constant*, 8> Ctors;
+ for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
+ llvm::Constant *S[] = {
+ llvm::ConstantInt::get(Int32Ty, I->Priority, false),
+ llvm::ConstantExpr::getBitCast(I->Initializer, CtorPFTy),
+ (I->AssociatedData
+ ? llvm::ConstantExpr::getBitCast(I->AssociatedData, VoidPtrTy)
+ : llvm::Constant::getNullValue(VoidPtrTy))
+ };
+ Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
+ }
+
+ if (!Ctors.empty()) {
+ llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
+ new llvm::GlobalVariable(TheModule, AT, false,
+ llvm::GlobalValue::AppendingLinkage,
+ llvm::ConstantArray::get(AT, Ctors),
+ GlobalName);
+ }
+}
+
+llvm::GlobalValue::LinkageTypes
+CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
+ const auto *D = cast<FunctionDecl>(GD.getDecl());
+
+ GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
+
+ if (isa<CXXDestructorDecl>(D) &&
+ getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
+ GD.getDtorType())) {
+ // Destructor variants in the Microsoft C++ ABI are always internal or
+ // linkonce_odr thunks emitted on an as-needed basis.
+ return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
+ : llvm::GlobalValue::LinkOnceODRLinkage;
+ }
+
+ return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
+}
+
+void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
+ llvm::Function *F) {
+ setNonAliasAttributes(D, F);
+}
+
+void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
+ const CGFunctionInfo &Info,
+ llvm::Function *F) {
+ unsigned CallingConv;
+ AttributeListType AttributeList;
+ ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
+ F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
+ F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
+}
+
+/// Determines whether the language options require us to model
+/// unwind exceptions. We treat -fexceptions as mandating this
+/// except under the fragile ObjC ABI with only ObjC exceptions
+/// enabled. This means, for example, that C with -fexceptions
+/// enables this.
+static bool hasUnwindExceptions(const LangOptions &LangOpts) {
+ // If exceptions are completely disabled, obviously this is false.
+ if (!LangOpts.Exceptions) return false;
+
+ // If C++ exceptions are enabled, this is true.
+ if (LangOpts.CXXExceptions) return true;
+
+ // If ObjC exceptions are enabled, this depends on the ABI.
+ if (LangOpts.ObjCExceptions) {
+ return LangOpts.ObjCRuntime.hasUnwindExceptions();
+ }
+
+ return true;
+}
+
+void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
+ llvm::Function *F) {
+ llvm::AttrBuilder B;
+
+ if (CodeGenOpts.UnwindTables)
+ B.addAttribute(llvm::Attribute::UWTable);
+
+ if (!hasUnwindExceptions(LangOpts))
+ B.addAttribute(llvm::Attribute::NoUnwind);
+
+ if (D->hasAttr<NakedAttr>()) {
+ // Naked implies noinline: we should not be inlining such functions.
+ B.addAttribute(llvm::Attribute::Naked);
+ B.addAttribute(llvm::Attribute::NoInline);
+ } else if (D->hasAttr<NoDuplicateAttr>()) {
+ B.addAttribute(llvm::Attribute::NoDuplicate);
+ } else if (D->hasAttr<NoInlineAttr>()) {
+ B.addAttribute(llvm::Attribute::NoInline);
+ } else if (D->hasAttr<AlwaysInlineAttr>() &&
+ !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
+ llvm::Attribute::NoInline)) {
+ // (noinline wins over always_inline, and we can't specify both in IR)
+ B.addAttribute(llvm::Attribute::AlwaysInline);
+ }
+
+ if (D->hasAttr<ColdAttr>()) {
+ if (!D->hasAttr<OptimizeNoneAttr>())
+ B.addAttribute(llvm::Attribute::OptimizeForSize);
+ B.addAttribute(llvm::Attribute::Cold);
+ }
+
+ if (D->hasAttr<MinSizeAttr>())
+ B.addAttribute(llvm::Attribute::MinSize);
+
+ if (LangOpts.getStackProtector() == LangOptions::SSPOn)
+ B.addAttribute(llvm::Attribute::StackProtect);
+ else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
+ B.addAttribute(llvm::Attribute::StackProtectStrong);
+ else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
+ B.addAttribute(llvm::Attribute::StackProtectReq);
+
+ F->addAttributes(llvm::AttributeSet::FunctionIndex,
+ llvm::AttributeSet::get(
+ F->getContext(), llvm::AttributeSet::FunctionIndex, B));
+
+ if (D->hasAttr<OptimizeNoneAttr>()) {
+ // OptimizeNone implies noinline; we should not be inlining such functions.
+ F->addFnAttr(llvm::Attribute::OptimizeNone);
+ F->addFnAttr(llvm::Attribute::NoInline);
+
+ // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline.
+ assert(!F->hasFnAttribute(llvm::Attribute::OptimizeForSize) &&
+ "OptimizeNone and OptimizeForSize on same function!");
+ assert(!F->hasFnAttribute(llvm::Attribute::MinSize) &&
+ "OptimizeNone and MinSize on same function!");
+ assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
+ "OptimizeNone and AlwaysInline on same function!");
+
+ // Attribute 'inlinehint' has no effect on 'optnone' functions.
+ // Explicitly remove it from the set of function attributes.
+ F->removeFnAttr(llvm::Attribute::InlineHint);
+ }
+
+ if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
+ F->setUnnamedAddr(true);
+ else if (const auto *MD = dyn_cast<CXXMethodDecl>(D))
+ if (MD->isVirtual())
+ F->setUnnamedAddr(true);
+
+ unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
+ if (alignment)
+ F->setAlignment(alignment);
+
+ // C++ ABI requires 2-byte alignment for member functions.
+ if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
+ F->setAlignment(2);
+}
+
+void CodeGenModule::SetCommonAttributes(const Decl *D,
+ llvm::GlobalValue *GV) {
+ if (const auto *ND = dyn_cast<NamedDecl>(D))
+ setGlobalVisibility(GV, ND);
+ else
+ GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
+
+ if (D->hasAttr<UsedAttr>())
+ addUsedGlobal(GV);
+}
+
+void CodeGenModule::setAliasAttributes(const Decl *D,
+ llvm::GlobalValue *GV) {
+ SetCommonAttributes(D, GV);
+
+ // Process the dllexport attribute based on whether the original definition
+ // (not necessarily the aliasee) was exported.
+ if (D->hasAttr<DLLExportAttr>())
+ GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
+}
+
+void CodeGenModule::setNonAliasAttributes(const Decl *D,
+ llvm::GlobalObject *GO) {
+ SetCommonAttributes(D, GO);
+
+ if (const SectionAttr *SA = D->getAttr<SectionAttr>())
+ GO->setSection(SA->getName());
+
+ getTargetCodeGenInfo().SetTargetAttributes(D, GO, *this);
+}
+
+void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
+ llvm::Function *F,
+ const CGFunctionInfo &FI) {
+ SetLLVMFunctionAttributes(D, FI, F);
+ SetLLVMFunctionAttributesForDefinition(D, F);
+
+ F->setLinkage(llvm::Function::InternalLinkage);
+
+ setNonAliasAttributes(D, F);
+}
+
+static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
+ const NamedDecl *ND) {
+ // Set linkage and visibility in case we never see a definition.
+ LinkageInfo LV = ND->getLinkageAndVisibility();
+ if (LV.getLinkage() != ExternalLinkage) {
+ // Don't set internal linkage on declarations.
+ } else {
+ if (ND->hasAttr<DLLImportAttr>()) {
+ GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
+ GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
+ } else if (ND->hasAttr<DLLExportAttr>()) {
+ GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
+ GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
+ } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
+ // "extern_weak" is overloaded in LLVM; we probably should have
+ // separate linkage types for this.
+ GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
+ }
+
+ // Set visibility on a declaration only if it's explicit.
+ if (LV.isVisibilityExplicit())
+ GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
+ }
+}
+
+void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
+ bool IsIncompleteFunction,
+ bool IsThunk) {
+ if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
+ // If this is an intrinsic function, set the function's attributes
+ // to the intrinsic's attributes.
+ F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
+ return;
+ }
+
+ const auto *FD = cast<FunctionDecl>(GD.getDecl());
+
+ if (!IsIncompleteFunction)
+ SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
+
+ // Add the Returned attribute for "this", except for iOS 5 and earlier
+ // where substantial code, including the libstdc++ dylib, was compiled with
+ // GCC and does not actually return "this".
+ if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
+ !(getTarget().getTriple().isiOS() &&
+ getTarget().getTriple().isOSVersionLT(6))) {
+ assert(!F->arg_empty() &&
+ F->arg_begin()->getType()
+ ->canLosslesslyBitCastTo(F->getReturnType()) &&
+ "unexpected this return");
+ F->addAttribute(1, llvm::Attribute::Returned);
+ }
+
+ // Only a few attributes are set on declarations; these may later be
+ // overridden by a definition.
+
+ setLinkageAndVisibilityForGV(F, FD);
+
+ if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
+ if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
+ // Don't dllexport/import destructor thunks.
+ F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
+ }
+ }
+
+ if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
+ F->setSection(SA->getName());
+
+ // A replaceable global allocation function does not act like a builtin by
+ // default, only if it is invoked by a new-expression or delete-expression.
+ if (FD->isReplaceableGlobalAllocationFunction())
+ F->addAttribute(llvm::AttributeSet::FunctionIndex,
+ llvm::Attribute::NoBuiltin);
+}
+
+void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
+ assert(!GV->isDeclaration() &&
+ "Only globals with definition can force usage.");
+ LLVMUsed.push_back(GV);
+}
+
+void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
+ assert(!GV->isDeclaration() &&
+ "Only globals with definition can force usage.");
+ LLVMCompilerUsed.push_back(GV);
+}
+
+static void emitUsed(CodeGenModule &CGM, StringRef Name,
+ std::vector<llvm::WeakVH> &List) {
+ // Don't create llvm.used if there is no need.
+ if (List.empty())
+ return;
+
+ // Convert List to what ConstantArray needs.
+ SmallVector<llvm::Constant*, 8> UsedArray;
+ UsedArray.resize(List.size());
+ for (unsigned i = 0, e = List.size(); i != e; ++i) {
+ UsedArray[i] =
+ llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
+ cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
+ }
+
+ if (UsedArray.empty())
+ return;
+ llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
+
+ auto *GV = new llvm::GlobalVariable(
+ CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
+ llvm::ConstantArray::get(ATy, UsedArray), Name);
+
+ GV->setSection("llvm.metadata");
+}
+
+void CodeGenModule::emitLLVMUsed() {
+ emitUsed(*this, "llvm.used", LLVMUsed);
+ emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
+}
+
+void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
+ auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
+ LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
+}
+
+void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
+ llvm::SmallString<32> Opt;
+ getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
+ auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
+ LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
+}
+
+void CodeGenModule::AddDependentLib(StringRef Lib) {
+ llvm::SmallString<24> Opt;
+ getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
+ auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
+ LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
+}
+
+/// \brief Add link options implied by the given module, including modules
+/// it depends on, using a postorder walk.
+static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
+ SmallVectorImpl<llvm::Metadata *> &Metadata,
+ llvm::SmallPtrSet<Module *, 16> &Visited) {
+ // Import this module's parent.
+ if (Mod->Parent && Visited.insert(Mod->Parent).second) {
+ addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
+ }
+
+ // Import this module's dependencies.
+ for (unsigned I = Mod->Imports.size(); I > 0; --I) {
+ if (Visited.insert(Mod->Imports[I - 1]).second)
+ addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
+ }
+
+ // Add linker options to link against the libraries/frameworks
+ // described by this module.
+ llvm::LLVMContext &Context = CGM.getLLVMContext();
+ for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
+ // Link against a framework. Frameworks are currently Darwin only, so we
+ // don't to ask TargetCodeGenInfo for the spelling of the linker option.
+ if (Mod->LinkLibraries[I-1].IsFramework) {
+ llvm::Metadata *Args[2] = {
+ llvm::MDString::get(Context, "-framework"),
+ llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
+
+ Metadata.push_back(llvm::MDNode::get(Context, Args));
+ continue;
+ }
+
+ // Link against a library.
+ llvm::SmallString<24> Opt;
+ CGM.getTargetCodeGenInfo().getDependentLibraryOption(
+ Mod->LinkLibraries[I-1].Library, Opt);
+ auto *OptString = llvm::MDString::get(Context, Opt);
+ Metadata.push_back(llvm::MDNode::get(Context, OptString));
+ }
+}
+
+void CodeGenModule::EmitModuleLinkOptions() {
+ // Collect the set of all of the modules we want to visit to emit link
+ // options, which is essentially the imported modules and all of their
+ // non-explicit child modules.
+ llvm::SetVector<clang::Module *> LinkModules;
+ llvm::SmallPtrSet<clang::Module *, 16> Visited;
+ SmallVector<clang::Module *, 16> Stack;
+
+ // Seed the stack with imported modules.
+ for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
+ MEnd = ImportedModules.end();
+ M != MEnd; ++M) {
+ if (Visited.insert(*M).second)
+ Stack.push_back(*M);
+ }
+
+ // Find all of the modules to import, making a little effort to prune
+ // non-leaf modules.
+ while (!Stack.empty()) {
+ clang::Module *Mod = Stack.pop_back_val();
+
+ bool AnyChildren = false;
+
+ // Visit the submodules of this module.
+ for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
+ SubEnd = Mod->submodule_end();
+ Sub != SubEnd; ++Sub) {
+ // Skip explicit children; they need to be explicitly imported to be
+ // linked against.
+ if ((*Sub)->IsExplicit)
+ continue;
+
+ if (Visited.insert(*Sub).second) {
+ Stack.push_back(*Sub);
+ AnyChildren = true;
+ }
+ }
+
+ // We didn't find any children, so add this module to the list of
+ // modules to link against.
+ if (!AnyChildren) {
+ LinkModules.insert(Mod);
+ }
+ }
+
+ // Add link options for all of the imported modules in reverse topological
+ // order. We don't do anything to try to order import link flags with respect
+ // to linker options inserted by things like #pragma comment().
+ SmallVector<llvm::Metadata *, 16> MetadataArgs;
+ Visited.clear();
+ for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
+ MEnd = LinkModules.end();
+ M != MEnd; ++M) {
+ if (Visited.insert(*M).second)
+ addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
+ }
+ std::reverse(MetadataArgs.begin(), MetadataArgs.end());
+ LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
+
+ // Add the linker options metadata flag.
+ getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
+ llvm::MDNode::get(getLLVMContext(),
+ LinkerOptionsMetadata));
+}
+
+void CodeGenModule::EmitDeferred() {
+ // Emit code for any potentially referenced deferred decls. Since a
+ // previously unused static decl may become used during the generation of code
+ // for a static function, iterate until no changes are made.
+
+ if (!DeferredVTables.empty()) {
+ EmitDeferredVTables();
+
+ // Emitting a v-table doesn't directly cause more v-tables to
+ // become deferred, although it can cause functions to be
+ // emitted that then need those v-tables.
+ assert(DeferredVTables.empty());
+ }
+
+ // Stop if we're out of both deferred v-tables and deferred declarations.
+ if (DeferredDeclsToEmit.empty())
+ return;
+
+ // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
+ // work, it will not interfere with this.
+ std::vector<DeferredGlobal> CurDeclsToEmit;
+ CurDeclsToEmit.swap(DeferredDeclsToEmit);
+
+ for (DeferredGlobal &G : CurDeclsToEmit) {
+ GlobalDecl D = G.GD;
+ llvm::GlobalValue *GV = G.GV;
+ G.GV = nullptr;
+
+ assert(!GV || GV == GetGlobalValue(getMangledName(D)));
+ if (!GV)
+ GV = GetGlobalValue(getMangledName(D));
+
+ // Check to see if we've already emitted this. This is necessary
+ // for a couple of reasons: first, decls can end up in the
+ // deferred-decls queue multiple times, and second, decls can end
+ // up with definitions in unusual ways (e.g. by an extern inline
+ // function acquiring a strong function redefinition). Just
+ // ignore these cases.
+ if (GV && !GV->isDeclaration())
+ continue;
+
+ // Otherwise, emit the definition and move on to the next one.
+ EmitGlobalDefinition(D, GV);
+
+ // If we found out that we need to emit more decls, do that recursively.
+ // This has the advantage that the decls are emitted in a DFS and related
+ // ones are close together, which is convenient for testing.
+ if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
+ EmitDeferred();
+ assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
+ }
+ }
+}
+
+void CodeGenModule::EmitGlobalAnnotations() {
+ if (Annotations.empty())
+ return;
+
+ // Create a new global variable for the ConstantStruct in the Module.
+ llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
+ Annotations[0]->getType(), Annotations.size()), Annotations);
+ auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
+ llvm::GlobalValue::AppendingLinkage,
+ Array, "llvm.global.annotations");
+ gv->setSection(AnnotationSection);
+}
+
+llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
+ llvm::Constant *&AStr = AnnotationStrings[Str];
+ if (AStr)
+ return AStr;
+
+ // Not found yet, create a new global.
+ llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
+ auto *gv =
+ new llvm::GlobalVariable(getModule(), s->getType(), true,
+ llvm::GlobalValue::PrivateLinkage, s, ".str");
+ gv->setSection(AnnotationSection);
+ gv->setUnnamedAddr(true);
+ AStr = gv;
+ return gv;
+}
+
+llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
+ SourceManager &SM = getContext().getSourceManager();
+ PresumedLoc PLoc = SM.getPresumedLoc(Loc);
+ if (PLoc.isValid())
+ return EmitAnnotationString(PLoc.getFilename());
+ return EmitAnnotationString(SM.getBufferName(Loc));
+}
+
+llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
+ SourceManager &SM = getContext().getSourceManager();
+ PresumedLoc PLoc = SM.getPresumedLoc(L);
+ unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
+ SM.getExpansionLineNumber(L);
+ return llvm::ConstantInt::get(Int32Ty, LineNo);
+}
+
+llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
+ const AnnotateAttr *AA,
+ SourceLocation L) {
+ // Get the globals for file name, annotation, and the line number.
+ llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
+ *UnitGV = EmitAnnotationUnit(L),
+ *LineNoCst = EmitAnnotationLineNo(L);
+
+ // Create the ConstantStruct for the global annotation.
+ llvm::Constant *Fields[4] = {
+ llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
+ llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
+ llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
+ LineNoCst
+ };
+ return llvm::ConstantStruct::getAnon(Fields);
+}
+
+void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
+ llvm::GlobalValue *GV) {
+ assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
+ // Get the struct elements for these annotations.
+ for (const auto *I : D->specific_attrs<AnnotateAttr>())
+ Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
+}
+
+bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn,
+ SourceLocation Loc) const {
+ const auto &SanitizerBL = getContext().getSanitizerBlacklist();
+ // Blacklist by function name.
+ if (SanitizerBL.isBlacklistedFunction(Fn->getName()))
+ return true;
+ // Blacklist by location.
+ if (!Loc.isInvalid())
+ return SanitizerBL.isBlacklistedLocation(Loc);
+ // If location is unknown, this may be a compiler-generated function. Assume
+ // it's located in the main file.
+ auto &SM = Context.getSourceManager();
+ if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
+ return SanitizerBL.isBlacklistedFile(MainFile->getName());
+ }
+ return false;
+}
+
+bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
+ SourceLocation Loc, QualType Ty,
+ StringRef Category) const {
+ // For now globals can be blacklisted only in ASan.
+ if (!LangOpts.Sanitize.has(SanitizerKind::Address))
+ return false;
+ const auto &SanitizerBL = getContext().getSanitizerBlacklist();
+ if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category))
+ return true;
+ if (SanitizerBL.isBlacklistedLocation(Loc, Category))
+ return true;
+ // Check global type.
+ if (!Ty.isNull()) {
+ // Drill down the array types: if global variable of a fixed type is
+ // blacklisted, we also don't instrument arrays of them.
+ while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
+ Ty = AT->getElementType();
+ Ty = Ty.getCanonicalType().getUnqualifiedType();
+ // We allow to blacklist only record types (classes, structs etc.)
+ if (Ty->isRecordType()) {
+ std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
+ if (SanitizerBL.isBlacklistedType(TypeStr, Category))
+ return true;
+ }
+ }
+ return false;
+}
+
+bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
+ // Never defer when EmitAllDecls is specified.
+ if (LangOpts.EmitAllDecls)
+ return true;
+
+ return getContext().DeclMustBeEmitted(Global);
+}
+
+bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
+ if (const auto *FD = dyn_cast<FunctionDecl>(Global))
+ if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
+ // Implicit template instantiations may change linkage if they are later
+ // explicitly instantiated, so they should not be emitted eagerly.
+ return false;
+
+ return true;
+}
+
+llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
+ const CXXUuidofExpr* E) {
+ // Sema has verified that IIDSource has a __declspec(uuid()), and that its
+ // well-formed.
+ StringRef Uuid = E->getUuidAsStringRef(Context);
+ std::string Name = "_GUID_" + Uuid.lower();
+ std::replace(Name.begin(), Name.end(), '-', '_');
+
+ // Look for an existing global.
+ if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
+ return GV;
+
+ llvm::Constant *Init = EmitUuidofInitializer(Uuid);
+ assert(Init && "failed to initialize as constant");
+
+ auto *GV = new llvm::GlobalVariable(
+ getModule(), Init->getType(),
+ /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
+ if (supportsCOMDAT())
+ GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
+ return GV;
+}
+
+llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
+ const AliasAttr *AA = VD->getAttr<AliasAttr>();
+ assert(AA && "No alias?");
+
+ llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
+
+ // See if there is already something with the target's name in the module.
+ llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
+ if (Entry) {
+ unsigned AS = getContext().getTargetAddressSpace(VD->getType());
+ return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
+ }
+
+ llvm::Constant *Aliasee;
+ if (isa<llvm::FunctionType>(DeclTy))
+ Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
+ GlobalDecl(cast<FunctionDecl>(VD)),
+ /*ForVTable=*/false);
+ else
+ Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
+ llvm::PointerType::getUnqual(DeclTy),
+ nullptr);
+
+ auto *F = cast<llvm::GlobalValue>(Aliasee);
+ F->setLinkage(llvm::Function::ExternalWeakLinkage);
+ WeakRefReferences.insert(F);
+
+ return Aliasee;
+}
+
+void CodeGenModule::EmitGlobal(GlobalDecl GD) {
+ const auto *Global = cast<ValueDecl>(GD.getDecl());
+
+ // Weak references don't produce any output by themselves.
+ if (Global->hasAttr<WeakRefAttr>())
+ return;
+
+ // If this is an alias definition (which otherwise looks like a declaration)
+ // emit it now.
+ if (Global->hasAttr<AliasAttr>())
+ return EmitAliasDefinition(GD);
+
+ // If this is CUDA, be selective about which declarations we emit.
+ if (LangOpts.CUDA) {
+ if (LangOpts.CUDAIsDevice) {
+ if (!Global->hasAttr<CUDADeviceAttr>() &&
+ !Global->hasAttr<CUDAGlobalAttr>() &&
+ !Global->hasAttr<CUDAConstantAttr>() &&
+ !Global->hasAttr<CUDASharedAttr>())
+ return;
+ } else {
+ if (!Global->hasAttr<CUDAHostAttr>() && (
+ Global->hasAttr<CUDADeviceAttr>() ||
+ Global->hasAttr<CUDAConstantAttr>() ||
+ Global->hasAttr<CUDASharedAttr>()))
+ return;
+ }
+ }
+
+ // Ignore declarations, they will be emitted on their first use.
+ if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
+ // Forward declarations are emitted lazily on first use.
+ if (!FD->doesThisDeclarationHaveABody()) {
+ if (!FD->doesDeclarationForceExternallyVisibleDefinition())
+ return;
+
+ StringRef MangledName = getMangledName(GD);
+
+ // Compute the function info and LLVM type.
+ const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
+ llvm::Type *Ty = getTypes().GetFunctionType(FI);
+
+ GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
+ /*DontDefer=*/false);
+ return;
+ }
+ } else {
+ const auto *VD = cast<VarDecl>(Global);
+ assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
+
+ if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
+ !Context.isMSStaticDataMemberInlineDefinition(VD))
+ return;
+ }
+
+ // Defer code generation to first use when possible, e.g. if this is an inline
+ // function. If the global must always be emitted, do it eagerly if possible
+ // to benefit from cache locality.
+ if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
+ // Emit the definition if it can't be deferred.
+ EmitGlobalDefinition(GD);
+ return;
+ }
+
+ // If we're deferring emission of a C++ variable with an
+ // initializer, remember the order in which it appeared in the file.
+ if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
+ cast<VarDecl>(Global)->hasInit()) {
+ DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
+ CXXGlobalInits.push_back(nullptr);
+ }
+
+ StringRef MangledName = getMangledName(GD);
+ if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) {
+ // The value has already been used and should therefore be emitted.
+ addDeferredDeclToEmit(GV, GD);
+ } else if (MustBeEmitted(Global)) {
+ // The value must be emitted, but cannot be emitted eagerly.
+ assert(!MayBeEmittedEagerly(Global));
+ addDeferredDeclToEmit(/*GV=*/nullptr, GD);
+ } else {
+ // Otherwise, remember that we saw a deferred decl with this name. The
+ // first use of the mangled name will cause it to move into
+ // DeferredDeclsToEmit.
+ DeferredDecls[MangledName] = GD;
+ }
+}
+
+namespace {
+ struct FunctionIsDirectlyRecursive :
+ public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
+ const StringRef Name;
+ const Builtin::Context &BI;
+ bool Result;
+ FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
+ Name(N), BI(C), Result(false) {
+ }
+ typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
+
+ bool TraverseCallExpr(CallExpr *E) {
+ const FunctionDecl *FD = E->getDirectCallee();
+ if (!FD)
+ return true;
+ AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
+ if (Attr && Name == Attr->getLabel()) {
+ Result = true;
+ return false;
+ }
+ unsigned BuiltinID = FD->getBuiltinID();
+ if (!BuiltinID)
+ return true;
+ StringRef BuiltinName = BI.GetName(BuiltinID);
+ if (BuiltinName.startswith("__builtin_") &&
+ Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
+ Result = true;
+ return false;
+ }
+ return true;
+ }
+ };
+}
+
+// isTriviallyRecursive - Check if this function calls another
+// decl that, because of the asm attribute or the other decl being a builtin,
+// ends up pointing to itself.
+bool
+CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
+ StringRef Name;
+ if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
+ // asm labels are a special kind of mangling we have to support.
+ AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
+ if (!Attr)
+ return false;
+ Name = Attr->getLabel();
+ } else {
+ Name = FD->getName();
+ }
+
+ FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
+ Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
+ return Walker.Result;
+}
+
+bool
+CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
+ if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
+ return true;
+ const auto *F = cast<FunctionDecl>(GD.getDecl());
+ if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
+ return false;
+ // PR9614. Avoid cases where the source code is lying to us. An available
+ // externally function should have an equivalent function somewhere else,
+ // but a function that calls itself is clearly not equivalent to the real
+ // implementation.
+ // This happens in glibc's btowc and in some configure checks.
+ return !isTriviallyRecursive(F);
+}
+
+/// If the type for the method's class was generated by
+/// CGDebugInfo::createContextChain(), the cache contains only a
+/// limited DIType without any declarations. Since EmitFunctionStart()
+/// needs to find the canonical declaration for each method, we need
+/// to construct the complete type prior to emitting the method.
+void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
+ if (!D->isInstance())
+ return;
+
+ if (CGDebugInfo *DI = getModuleDebugInfo())
+ if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
+ const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext()));
+ DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
+ }
+}
+
+void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
+ const auto *D = cast<ValueDecl>(GD.getDecl());
+
+ PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
+ Context.getSourceManager(),
+ "Generating code for declaration");
+
+ if (isa<FunctionDecl>(D)) {
+ // At -O0, don't generate IR for functions with available_externally
+ // linkage.
+ if (!shouldEmitFunction(GD))
+ return;
+
+ if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
+ CompleteDIClassType(Method);
+ // Make sure to emit the definition(s) before we emit the thunks.
+ // This is necessary for the generation of certain thunks.
+ if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
+ ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
+ else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
+ ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
+ else
+ EmitGlobalFunctionDefinition(GD, GV);
+
+ if (Method->isVirtual())
+ getVTables().EmitThunks(GD);
+
+ return;
+ }
+
+ return EmitGlobalFunctionDefinition(GD, GV);
+ }
+
+ if (const auto *VD = dyn_cast<VarDecl>(D))
+ return EmitGlobalVarDefinition(VD);
+
+ llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
+}
+
+/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
+/// module, create and return an llvm Function with the specified type. If there
+/// is something in the module with the specified name, return it potentially
+/// bitcasted to the right type.
+///
+/// If D is non-null, it specifies a decl that correspond to this. This is used
+/// to set the attributes on the function when it is first created.
+llvm::Constant *
+CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
+ llvm::Type *Ty,
+ GlobalDecl GD, bool ForVTable,
+ bool DontDefer, bool IsThunk,
+ llvm::AttributeSet ExtraAttrs) {
+ const Decl *D = GD.getDecl();
+
+ // Lookup the entry, lazily creating it if necessary.
+ llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
+ if (Entry) {
+ if (WeakRefReferences.erase(Entry)) {
+ const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
+ if (FD && !FD->hasAttr<WeakAttr>())
+ Entry->setLinkage(llvm::Function::ExternalLinkage);
+ }
+
+ // Handle dropped DLL attributes.
+ if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
+ Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
+
+ if (Entry->getType()->getElementType() == Ty)
+ return Entry;
+
+ // Make sure the result is of the correct type.
+ return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
+ }
+
+ // This function doesn't have a complete type (for example, the return
+ // type is an incomplete struct). Use a fake type instead, and make
+ // sure not to try to set attributes.
+ bool IsIncompleteFunction = false;
+
+ llvm::FunctionType *FTy;
+ if (isa<llvm::FunctionType>(Ty)) {
+ FTy = cast<llvm::FunctionType>(Ty);
+ } else {
+ FTy = llvm::FunctionType::get(VoidTy, false);
+ IsIncompleteFunction = true;
+ }
+
+ llvm::Function *F = llvm::Function::Create(FTy,
+ llvm::Function::ExternalLinkage,
+ MangledName, &getModule());
+ assert(F->getName() == MangledName && "name was uniqued!");
+ if (D)
+ SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
+ if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
+ llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
+ F->addAttributes(llvm::AttributeSet::FunctionIndex,
+ llvm::AttributeSet::get(VMContext,
+ llvm::AttributeSet::FunctionIndex,
+ B));
+ }
+
+ if (!DontDefer) {
+ // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
+ // each other bottoming out with the base dtor. Therefore we emit non-base
+ // dtors on usage, even if there is no dtor definition in the TU.
+ if (D && isa<CXXDestructorDecl>(D) &&
+ getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
+ GD.getDtorType()))
+ addDeferredDeclToEmit(F, GD);
+
+ // This is the first use or definition of a mangled name. If there is a
+ // deferred decl with this name, remember that we need to emit it at the end
+ // of the file.
+ auto DDI = DeferredDecls.find(MangledName);
+ if (DDI != DeferredDecls.end()) {
+ // Move the potentially referenced deferred decl to the
+ // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
+ // don't need it anymore).
+ addDeferredDeclToEmit(F, DDI->second);
+ DeferredDecls.erase(DDI);
+
+ // Otherwise, there are cases we have to worry about where we're
+ // using a declaration for which we must emit a definition but where
+ // we might not find a top-level definition:
+ // - member functions defined inline in their classes
+ // - friend functions defined inline in some class
+ // - special member functions with implicit definitions
+ // If we ever change our AST traversal to walk into class methods,
+ // this will be unnecessary.
+ //
+ // We also don't emit a definition for a function if it's going to be an
+ // entry in a vtable, unless it's already marked as used.
+ } else if (getLangOpts().CPlusPlus && D) {
+ // Look for a declaration that's lexically in a record.
+ for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
+ FD = FD->getPreviousDecl()) {
+ if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
+ if (FD->doesThisDeclarationHaveABody()) {
+ addDeferredDeclToEmit(F, GD.getWithDecl(FD));
+ break;
+ }
+ }
+ }
+ }
+ }
+
+ // Make sure the result is of the requested type.
+ if (!IsIncompleteFunction) {
+ assert(F->getType()->getElementType() == Ty);
+ return F;
+ }
+
+ llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
+ return llvm::ConstantExpr::getBitCast(F, PTy);
+}
+
+/// GetAddrOfFunction - Return the address of the given function. If Ty is
+/// non-null, then this function will use the specified type if it has to
+/// create it (this occurs when we see a definition of the function).
+llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
+ llvm::Type *Ty,
+ bool ForVTable,
+ bool DontDefer) {
+ // If there was no specific requested type, just convert it now.
+ if (!Ty)
+ Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
+
+ StringRef MangledName = getMangledName(GD);
+ return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer);
+}
+
+/// CreateRuntimeFunction - Create a new runtime function with the specified
+/// type and name.
+llvm::Constant *
+CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
+ StringRef Name,
+ llvm::AttributeSet ExtraAttrs) {
+ llvm::Constant *C =
+ GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
+ /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
+ if (auto *F = dyn_cast<llvm::Function>(C))
+ if (F->empty())
+ F->setCallingConv(getRuntimeCC());
+ return C;
+}
+
+/// CreateBuiltinFunction - Create a new builtin function with the specified
+/// type and name.
+llvm::Constant *
+CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy,
+ StringRef Name,
+ llvm::AttributeSet ExtraAttrs) {
+ llvm::Constant *C =
+ GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
+ /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
+ if (auto *F = dyn_cast<llvm::Function>(C))
+ if (F->empty())
+ F->setCallingConv(getBuiltinCC());
+ return C;
+}
+
+/// isTypeConstant - Determine whether an object of this type can be emitted
+/// as a constant.
+///
+/// If ExcludeCtor is true, the duration when the object's constructor runs
+/// will not be considered. The caller will need to verify that the object is
+/// not written to during its construction.
+bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
+ if (!Ty.isConstant(Context) && !Ty->isReferenceType())
+ return false;
+
+ if (Context.getLangOpts().CPlusPlus) {
+ if (const CXXRecordDecl *Record
+ = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
+ return ExcludeCtor && !Record->hasMutableFields() &&
+ Record->hasTrivialDestructor();
+ }
+
+ return true;
+}
+
+/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
+/// create and return an llvm GlobalVariable with the specified type. If there
+/// is something in the module with the specified name, return it potentially
+/// bitcasted to the right type.
+///
+/// If D is non-null, it specifies a decl that correspond to this. This is used
+/// to set the attributes on the global when it is first created.
+llvm::Constant *
+CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
+ llvm::PointerType *Ty,
+ const VarDecl *D) {
+ // Lookup the entry, lazily creating it if necessary.
+ llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
+ if (Entry) {
+ if (WeakRefReferences.erase(Entry)) {
+ if (D && !D->hasAttr<WeakAttr>())
+ Entry->setLinkage(llvm::Function::ExternalLinkage);
+ }
+
+ // Handle dropped DLL attributes.
+ if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
+ Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
+
+ if (Entry->getType() == Ty)
+ return Entry;
+
+ // Make sure the result is of the correct type.
+ if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
+ return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
+
+ return llvm::ConstantExpr::getBitCast(Entry, Ty);
+ }
+
+ unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
+ auto *GV = new llvm::GlobalVariable(
+ getModule(), Ty->getElementType(), false,
+ llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
+ llvm::GlobalVariable::NotThreadLocal, AddrSpace);
+
+ // This is the first use or definition of a mangled name. If there is a
+ // deferred decl with this name, remember that we need to emit it at the end
+ // of the file.
+ auto DDI = DeferredDecls.find(MangledName);
+ if (DDI != DeferredDecls.end()) {
+ // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
+ // list, and remove it from DeferredDecls (since we don't need it anymore).
+ addDeferredDeclToEmit(GV, DDI->second);
+ DeferredDecls.erase(DDI);
+ }
+
+ // Handle things which are present even on external declarations.
+ if (D) {
+ // FIXME: This code is overly simple and should be merged with other global
+ // handling.
+ GV->setConstant(isTypeConstant(D->getType(), false));
+
+ GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
+
+ setLinkageAndVisibilityForGV(GV, D);
+
+ if (D->getTLSKind()) {
+ if (D->getTLSKind() == VarDecl::TLS_Dynamic)
+ CXXThreadLocals.push_back(std::make_pair(D, GV));
+ setTLSMode(GV, *D);
+ }
+
+ // If required by the ABI, treat declarations of static data members with
+ // inline initializers as definitions.
+ if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
+ EmitGlobalVarDefinition(D);
+ }
+
+ // Handle XCore specific ABI requirements.
+ if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
+ D->getLanguageLinkage() == CLanguageLinkage &&
+ D->getType().isConstant(Context) &&
+ isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
+ GV->setSection(".cp.rodata");
+ }
+
+ if (AddrSpace != Ty->getAddressSpace())
+ return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
+
+ return GV;
+}
+
+
+llvm::GlobalVariable *
+CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
+ llvm::Type *Ty,
+ llvm::GlobalValue::LinkageTypes Linkage) {
+ llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
+ llvm::GlobalVariable *OldGV = nullptr;
+
+ if (GV) {
+ // Check if the variable has the right type.
+ if (GV->getType()->getElementType() == Ty)
+ return GV;
+
+ // Because C++ name mangling, the only way we can end up with an already
+ // existing global with the same name is if it has been declared extern "C".
+ assert(GV->isDeclaration() && "Declaration has wrong type!");
+ OldGV = GV;
+ }
+
+ // Create a new variable.
+ GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
+ Linkage, nullptr, Name);
+
+ if (OldGV) {
+ // Replace occurrences of the old variable if needed.
+ GV->takeName(OldGV);
+
+ if (!OldGV->use_empty()) {
+ llvm::Constant *NewPtrForOldDecl =
+ llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
+ OldGV->replaceAllUsesWith(NewPtrForOldDecl);
+ }
+
+ OldGV->eraseFromParent();
+ }
+
+ if (supportsCOMDAT() && GV->isWeakForLinker() &&
+ !GV->hasAvailableExternallyLinkage())
+ GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
+
+ return GV;
+}
+
+/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
+/// given global variable. If Ty is non-null and if the global doesn't exist,
+/// then it will be created with the specified type instead of whatever the
+/// normal requested type would be.
+llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
+ llvm::Type *Ty) {
+ assert(D->hasGlobalStorage() && "Not a global variable");
+ QualType ASTTy = D->getType();
+ if (!Ty)
+ Ty = getTypes().ConvertTypeForMem(ASTTy);
+
+ llvm::PointerType *PTy =
+ llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
+
+ StringRef MangledName = getMangledName(D);
+ return GetOrCreateLLVMGlobal(MangledName, PTy, D);
+}
+
+/// CreateRuntimeVariable - Create a new runtime global variable with the
+/// specified type and name.
+llvm::Constant *
+CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
+ StringRef Name) {
+ return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
+}
+
+void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
+ assert(!D->getInit() && "Cannot emit definite definitions here!");
+
+ if (!MustBeEmitted(D)) {
+ // If we have not seen a reference to this variable yet, place it
+ // into the deferred declarations table to be emitted if needed
+ // later.
+ StringRef MangledName = getMangledName(D);
+ if (!GetGlobalValue(MangledName)) {
+ DeferredDecls[MangledName] = D;
+ return;
+ }
+ }
+
+ // The tentative definition is the only definition.
+ EmitGlobalVarDefinition(D);
+}
+
+CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
+ return Context.toCharUnitsFromBits(
+ TheDataLayout.getTypeStoreSizeInBits(Ty));
+}
+
+unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
+ unsigned AddrSpace) {
+ if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
+ if (D->hasAttr<CUDAConstantAttr>())
+ AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
+ else if (D->hasAttr<CUDASharedAttr>())
+ AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
+ else
+ AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
+ }
+
+ return AddrSpace;
+}
+
+template<typename SomeDecl>
+void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
+ llvm::GlobalValue *GV) {
+ if (!getLangOpts().CPlusPlus)
+ return;
+
+ // Must have 'used' attribute, or else inline assembly can't rely on
+ // the name existing.
+ if (!D->template hasAttr<UsedAttr>())
+ return;
+
+ // Must have internal linkage and an ordinary name.
+ if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
+ return;
+
+ // Must be in an extern "C" context. Entities declared directly within
+ // a record are not extern "C" even if the record is in such a context.
+ const SomeDecl *First = D->getFirstDecl();
+ if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
+ return;
+
+ // OK, this is an internal linkage entity inside an extern "C" linkage
+ // specification. Make a note of that so we can give it the "expected"
+ // mangled name if nothing else is using that name.
+ std::pair<StaticExternCMap::iterator, bool> R =
+ StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
+
+ // If we have multiple internal linkage entities with the same name
+ // in extern "C" regions, none of them gets that name.
+ if (!R.second)
+ R.first->second = nullptr;
+}
+
+static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
+ if (!CGM.supportsCOMDAT())
+ return false;
+
+ if (D.hasAttr<SelectAnyAttr>())
+ return true;
+
+ GVALinkage Linkage;
+ if (auto *VD = dyn_cast<VarDecl>(&D))
+ Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
+ else
+ Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
+
+ switch (Linkage) {
+ case GVA_Internal:
+ case GVA_AvailableExternally:
+ case GVA_StrongExternal:
+ return false;
+ case GVA_DiscardableODR:
+ case GVA_StrongODR:
+ return true;
+ }
+ llvm_unreachable("No such linkage");
+}
+
+void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
+ llvm::GlobalObject &GO) {
+ if (!shouldBeInCOMDAT(*this, D))
+ return;
+ GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
+}
+
+void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
+ llvm::Constant *Init = nullptr;
+ QualType ASTTy = D->getType();
+ CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
+ bool NeedsGlobalCtor = false;
+ bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
+
+ const VarDecl *InitDecl;
+ const Expr *InitExpr = D->getAnyInitializer(InitDecl);
+
+ if (!InitExpr) {
+ // This is a tentative definition; tentative definitions are
+ // implicitly initialized with { 0 }.
+ //
+ // Note that tentative definitions are only emitted at the end of
+ // a translation unit, so they should never have incomplete
+ // type. In addition, EmitTentativeDefinition makes sure that we
+ // never attempt to emit a tentative definition if a real one
+ // exists. A use may still exists, however, so we still may need
+ // to do a RAUW.
+ assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
+ Init = EmitNullConstant(D->getType());
+ } else {
+ initializedGlobalDecl = GlobalDecl(D);
+ Init = EmitConstantInit(*InitDecl);
+
+ if (!Init) {
+ QualType T = InitExpr->getType();
+ if (D->getType()->isReferenceType())
+ T = D->getType();
+
+ if (getLangOpts().CPlusPlus) {
+ Init = EmitNullConstant(T);
+ NeedsGlobalCtor = true;
+ } else {
+ ErrorUnsupported(D, "static initializer");
+ Init = llvm::UndefValue::get(getTypes().ConvertType(T));
+ }
+ } else {
+ // We don't need an initializer, so remove the entry for the delayed
+ // initializer position (just in case this entry was delayed) if we
+ // also don't need to register a destructor.
+ if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
+ DelayedCXXInitPosition.erase(D);
+ }
+ }
+
+ llvm::Type* InitType = Init->getType();
+ llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
+
+ // Strip off a bitcast if we got one back.
+ if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
+ assert(CE->getOpcode() == llvm::Instruction::BitCast ||
+ CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
+ // All zero index gep.
+ CE->getOpcode() == llvm::Instruction::GetElementPtr);
+ Entry = CE->getOperand(0);
+ }
+
+ // Entry is now either a Function or GlobalVariable.
+ auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
+
+ // We have a definition after a declaration with the wrong type.
+ // We must make a new GlobalVariable* and update everything that used OldGV
+ // (a declaration or tentative definition) with the new GlobalVariable*
+ // (which will be a definition).
+ //
+ // This happens if there is a prototype for a global (e.g.
+ // "extern int x[];") and then a definition of a different type (e.g.
+ // "int x[10];"). This also happens when an initializer has a different type
+ // from the type of the global (this happens with unions).
+ if (!GV ||
+ GV->getType()->getElementType() != InitType ||
+ GV->getType()->getAddressSpace() !=
+ GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
+
+ // Move the old entry aside so that we'll create a new one.
+ Entry->setName(StringRef());
+
+ // Make a new global with the correct type, this is now guaranteed to work.
+ GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
+
+ // Replace all uses of the old global with the new global
+ llvm::Constant *NewPtrForOldDecl =
+ llvm::ConstantExpr::getBitCast(GV, Entry->getType());
+ Entry->replaceAllUsesWith(NewPtrForOldDecl);
+
+ // Erase the old global, since it is no longer used.
+ cast<llvm::GlobalValue>(Entry)->eraseFromParent();
+ }
+
+ MaybeHandleStaticInExternC(D, GV);
+
+ if (D->hasAttr<AnnotateAttr>())
+ AddGlobalAnnotations(D, GV);
+
+ GV->setInitializer(Init);
+
+ // If it is safe to mark the global 'constant', do so now.
+ GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
+ isTypeConstant(D->getType(), true));
+
+ // If it is in a read-only section, mark it 'constant'.
+ if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
+ const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
+ if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
+ GV->setConstant(true);
+ }
+
+ GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
+
+ // Set the llvm linkage type as appropriate.
+ llvm::GlobalValue::LinkageTypes Linkage =
+ getLLVMLinkageVarDefinition(D, GV->isConstant());
+
+ // On Darwin, the backing variable for a C++11 thread_local variable always
+ // has internal linkage; all accesses should just be calls to the
+ // Itanium-specified entry point, which has the normal linkage of the
+ // variable.
+ if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
+ Context.getTargetInfo().getTriple().isMacOSX())
+ Linkage = llvm::GlobalValue::InternalLinkage;
+
+ GV->setLinkage(Linkage);
+ if (D->hasAttr<DLLImportAttr>())
+ GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
+ else if (D->hasAttr<DLLExportAttr>())
+ GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
+ else
+ GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
+
+ if (Linkage == llvm::GlobalVariable::CommonLinkage)
+ // common vars aren't constant even if declared const.
+ GV->setConstant(false);
+
+ setNonAliasAttributes(D, GV);
+
+ if (D->getTLSKind() && !GV->isThreadLocal()) {
+ if (D->getTLSKind() == VarDecl::TLS_Dynamic)
+ CXXThreadLocals.push_back(std::make_pair(D, GV));
+ setTLSMode(GV, *D);
+ }
+
+ maybeSetTrivialComdat(*D, *GV);
+
+ // Emit the initializer function if necessary.
+ if (NeedsGlobalCtor || NeedsGlobalDtor)
+ EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
+
+ SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
+
+ // Emit global variable debug information.
+ if (CGDebugInfo *DI = getModuleDebugInfo())
+ if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
+ DI->EmitGlobalVariable(GV, D);
+}
+
+static bool isVarDeclStrongDefinition(const ASTContext &Context,
+ CodeGenModule &CGM, const VarDecl *D,
+ bool NoCommon) {
+ // Don't give variables common linkage if -fno-common was specified unless it
+ // was overridden by a NoCommon attribute.
+ if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
+ return true;
+
+ // C11 6.9.2/2:
+ // A declaration of an identifier for an object that has file scope without
+ // an initializer, and without a storage-class specifier or with the
+ // storage-class specifier static, constitutes a tentative definition.
+ if (D->getInit() || D->hasExternalStorage())
+ return true;
+
+ // A variable cannot be both common and exist in a section.
+ if (D->hasAttr<SectionAttr>())
+ return true;
+
+ // Thread local vars aren't considered common linkage.
+ if (D->getTLSKind())
+ return true;
+
+ // Tentative definitions marked with WeakImportAttr are true definitions.
+ if (D->hasAttr<WeakImportAttr>())
+ return true;
+
+ // A variable cannot be both common and exist in a comdat.
+ if (shouldBeInCOMDAT(CGM, *D))
+ return true;
+
+ // Declarations with a required alignment do not have common linakge in MSVC
+ // mode.
+ if (Context.getLangOpts().MSVCCompat) {
+ if (D->hasAttr<AlignedAttr>())
+ return true;
+ QualType VarType = D->getType();
+ if (Context.isAlignmentRequired(VarType))
+ return true;
+
+ if (const auto *RT = VarType->getAs<RecordType>()) {
+ const RecordDecl *RD = RT->getDecl();
+ for (const FieldDecl *FD : RD->fields()) {
+ if (FD->isBitField())
+ continue;
+ if (FD->hasAttr<AlignedAttr>())
+ return true;
+ if (Context.isAlignmentRequired(FD->getType()))
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
+ const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
+ if (Linkage == GVA_Internal)
+ return llvm::Function::InternalLinkage;
+
+ if (D->hasAttr<WeakAttr>()) {
+ if (IsConstantVariable)
+ return llvm::GlobalVariable::WeakODRLinkage;
+ else
+ return llvm::GlobalVariable::WeakAnyLinkage;
+ }
+
+ // We are guaranteed to have a strong definition somewhere else,
+ // so we can use available_externally linkage.
+ if (Linkage == GVA_AvailableExternally)
+ return llvm::Function::AvailableExternallyLinkage;
+
+ // Note that Apple's kernel linker doesn't support symbol
+ // coalescing, so we need to avoid linkonce and weak linkages there.
+ // Normally, this means we just map to internal, but for explicit
+ // instantiations we'll map to external.
+
+ // In C++, the compiler has to emit a definition in every translation unit
+ // that references the function. We should use linkonce_odr because
+ // a) if all references in this translation unit are optimized away, we
+ // don't need to codegen it. b) if the function persists, it needs to be
+ // merged with other definitions. c) C++ has the ODR, so we know the
+ // definition is dependable.
+ if (Linkage == GVA_DiscardableODR)
+ return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
+ : llvm::Function::InternalLinkage;
+
+ // An explicit instantiation of a template has weak linkage, since
+ // explicit instantiations can occur in multiple translation units
+ // and must all be equivalent. However, we are not allowed to
+ // throw away these explicit instantiations.
+ if (Linkage == GVA_StrongODR)
+ return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage
+ : llvm::Function::ExternalLinkage;
+
+ // C++ doesn't have tentative definitions and thus cannot have common
+ // linkage.
+ if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
+ !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
+ CodeGenOpts.NoCommon))
+ return llvm::GlobalVariable::CommonLinkage;
+
+ // selectany symbols are externally visible, so use weak instead of
+ // linkonce. MSVC optimizes away references to const selectany globals, so
+ // all definitions should be the same and ODR linkage should be used.
+ // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
+ if (D->hasAttr<SelectAnyAttr>())
+ return llvm::GlobalVariable::WeakODRLinkage;
+
+ // Otherwise, we have strong external linkage.
+ assert(Linkage == GVA_StrongExternal);
+ return llvm::GlobalVariable::ExternalLinkage;
+}
+
+llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
+ const VarDecl *VD, bool IsConstant) {
+ GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
+ return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
+}
+
+/// Replace the uses of a function that was declared with a non-proto type.
+/// We want to silently drop extra arguments from call sites
+static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
+ llvm::Function *newFn) {
+ // Fast path.
+ if (old->use_empty()) return;
+
+ llvm::Type *newRetTy = newFn->getReturnType();
+ SmallVector<llvm::Value*, 4> newArgs;
+
+ for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
+ ui != ue; ) {
+ llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
+ llvm::User *user = use->getUser();
+
+ // Recognize and replace uses of bitcasts. Most calls to
+ // unprototyped functions will use bitcasts.
+ if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
+ if (bitcast->getOpcode() == llvm::Instruction::BitCast)
+ replaceUsesOfNonProtoConstant(bitcast, newFn);
+ continue;
+ }
+
+ // Recognize calls to the function.
+ llvm::CallSite callSite(user);
+ if (!callSite) continue;
+ if (!callSite.isCallee(&*use)) continue;
+
+ // If the return types don't match exactly, then we can't
+ // transform this call unless it's dead.
+ if (callSite->getType() != newRetTy && !callSite->use_empty())
+ continue;
+
+ // Get the call site's attribute list.
+ SmallVector<llvm::AttributeSet, 8> newAttrs;
+ llvm::AttributeSet oldAttrs = callSite.getAttributes();
+
+ // Collect any return attributes from the call.
+ if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
+ newAttrs.push_back(
+ llvm::AttributeSet::get(newFn->getContext(),
+ oldAttrs.getRetAttributes()));
+
+ // If the function was passed too few arguments, don't transform.
+ unsigned newNumArgs = newFn->arg_size();
+ if (callSite.arg_size() < newNumArgs) continue;
+
+ // If extra arguments were passed, we silently drop them.
+ // If any of the types mismatch, we don't transform.
+ unsigned argNo = 0;
+ bool dontTransform = false;
+ for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
+ ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
+ if (callSite.getArgument(argNo)->getType() != ai->getType()) {
+ dontTransform = true;
+ break;
+ }
+
+ // Add any parameter attributes.
+ if (oldAttrs.hasAttributes(argNo + 1))
+ newAttrs.
+ push_back(llvm::
+ AttributeSet::get(newFn->getContext(),
+ oldAttrs.getParamAttributes(argNo + 1)));
+ }
+ if (dontTransform)
+ continue;
+
+ if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
+ newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
+ oldAttrs.getFnAttributes()));
+
+ // Okay, we can transform this. Create the new call instruction and copy
+ // over the required information.
+ newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
+
+ llvm::CallSite newCall;
+ if (callSite.isCall()) {
+ newCall = llvm::CallInst::Create(newFn, newArgs, "",
+ callSite.getInstruction());
+ } else {
+ auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
+ newCall = llvm::InvokeInst::Create(newFn,
+ oldInvoke->getNormalDest(),
+ oldInvoke->getUnwindDest(),
+ newArgs, "",
+ callSite.getInstruction());
+ }
+ newArgs.clear(); // for the next iteration
+
+ if (!newCall->getType()->isVoidTy())
+ newCall->takeName(callSite.getInstruction());
+ newCall.setAttributes(
+ llvm::AttributeSet::get(newFn->getContext(), newAttrs));
+ newCall.setCallingConv(callSite.getCallingConv());
+
+ // Finally, remove the old call, replacing any uses with the new one.
+ if (!callSite->use_empty())
+ callSite->replaceAllUsesWith(newCall.getInstruction());
+
+ // Copy debug location attached to CI.
+ if (callSite->getDebugLoc())
+ newCall->setDebugLoc(callSite->getDebugLoc());
+ callSite->eraseFromParent();
+ }
+}
+
+/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
+/// implement a function with no prototype, e.g. "int foo() {}". If there are
+/// existing call uses of the old function in the module, this adjusts them to
+/// call the new function directly.
+///
+/// This is not just a cleanup: the always_inline pass requires direct calls to
+/// functions to be able to inline them. If there is a bitcast in the way, it
+/// won't inline them. Instcombine normally deletes these calls, but it isn't
+/// run at -O0.
+static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
+ llvm::Function *NewFn) {
+ // If we're redefining a global as a function, don't transform it.
+ if (!isa<llvm::Function>(Old)) return;
+
+ replaceUsesOfNonProtoConstant(Old, NewFn);
+}
+
+void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
+ TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
+ // If we have a definition, this might be a deferred decl. If the
+ // instantiation is explicit, make sure we emit it at the end.
+ if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
+ GetAddrOfGlobalVar(VD);
+
+ EmitTopLevelDecl(VD);
+}
+
+void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
+ llvm::GlobalValue *GV) {
+ const auto *D = cast<FunctionDecl>(GD.getDecl());
+
+ // Compute the function info and LLVM type.
+ const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
+ llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
+
+ // Get or create the prototype for the function.
+ if (!GV) {
+ llvm::Constant *C =
+ GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true);
+
+ // Strip off a bitcast if we got one back.
+ if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) {
+ assert(CE->getOpcode() == llvm::Instruction::BitCast);
+ GV = cast<llvm::GlobalValue>(CE->getOperand(0));
+ } else {
+ GV = cast<llvm::GlobalValue>(C);
+ }
+ }
+
+ if (!GV->isDeclaration()) {
+ getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name);
+ GlobalDecl OldGD = Manglings.lookup(GV->getName());
+ if (auto *Prev = OldGD.getDecl())
+ getDiags().Report(Prev->getLocation(), diag::note_previous_definition);
+ return;
+ }
+
+ if (GV->getType()->getElementType() != Ty) {
+ // If the types mismatch then we have to rewrite the definition.
+ assert(GV->isDeclaration() && "Shouldn't replace non-declaration");
+
+ // F is the Function* for the one with the wrong type, we must make a new
+ // Function* and update everything that used F (a declaration) with the new
+ // Function* (which will be a definition).
+ //
+ // This happens if there is a prototype for a function
+ // (e.g. "int f()") and then a definition of a different type
+ // (e.g. "int f(int x)"). Move the old function aside so that it
+ // doesn't interfere with GetAddrOfFunction.
+ GV->setName(StringRef());
+ auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
+
+ // This might be an implementation of a function without a
+ // prototype, in which case, try to do special replacement of
+ // calls which match the new prototype. The really key thing here
+ // is that we also potentially drop arguments from the call site
+ // so as to make a direct call, which makes the inliner happier
+ // and suppresses a number of optimizer warnings (!) about
+ // dropping arguments.
+ if (!GV->use_empty()) {
+ ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn);
+ GV->removeDeadConstantUsers();
+ }
+
+ // Replace uses of F with the Function we will endow with a body.
+ if (!GV->use_empty()) {
+ llvm::Constant *NewPtrForOldDecl =
+ llvm::ConstantExpr::getBitCast(NewFn, GV->getType());
+ GV->replaceAllUsesWith(NewPtrForOldDecl);
+ }
+
+ // Ok, delete the old function now, which is dead.
+ GV->eraseFromParent();
+
+ GV = NewFn;
+ }
+
+ // We need to set linkage and visibility on the function before
+ // generating code for it because various parts of IR generation
+ // want to propagate this information down (e.g. to local static
+ // declarations).
+ auto *Fn = cast<llvm::Function>(GV);
+ setFunctionLinkage(GD, Fn);
+ if (D->hasAttr<DLLImportAttr>())
+ GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
+ else if (D->hasAttr<DLLExportAttr>())
+ GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
+ else
+ GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
+
+ // FIXME: this is redundant with part of setFunctionDefinitionAttributes
+ setGlobalVisibility(Fn, D);
+
+ MaybeHandleStaticInExternC(D, Fn);
+
+ maybeSetTrivialComdat(*D, *Fn);
+
+ CodeGenFunction(*this).GenerateCode(D, Fn, FI);
+
+ setFunctionDefinitionAttributes(D, Fn);
+ SetLLVMFunctionAttributesForDefinition(D, Fn);
+
+ if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
+ AddGlobalCtor(Fn, CA->getPriority());
+ if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
+ AddGlobalDtor(Fn, DA->getPriority());
+ if (D->hasAttr<AnnotateAttr>())
+ AddGlobalAnnotations(D, Fn);
+}
+
+void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
+ const auto *D = cast<ValueDecl>(GD.getDecl());
+ const AliasAttr *AA = D->getAttr<AliasAttr>();
+ assert(AA && "Not an alias?");
+
+ StringRef MangledName = getMangledName(GD);
+
+ // If there is a definition in the module, then it wins over the alias.
+ // This is dubious, but allow it to be safe. Just ignore the alias.
+ llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
+ if (Entry && !Entry->isDeclaration())
+ return;
+
+ Aliases.push_back(GD);
+
+ llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
+
+ // Create a reference to the named value. This ensures that it is emitted
+ // if a deferred decl.
+ llvm::Constant *Aliasee;
+ if (isa<llvm::FunctionType>(DeclTy))
+ Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
+ /*ForVTable=*/false);
+ else
+ Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
+ llvm::PointerType::getUnqual(DeclTy),
+ /*D=*/nullptr);
+
+ // Create the new alias itself, but don't set a name yet.
+ auto *GA = llvm::GlobalAlias::create(
+ cast<llvm::PointerType>(Aliasee->getType()),
+ llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
+
+ if (Entry) {
+ if (GA->getAliasee() == Entry) {
+ Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
+ return;
+ }
+
+ assert(Entry->isDeclaration());
+
+ // If there is a declaration in the module, then we had an extern followed
+ // by the alias, as in:
+ // extern int test6();
+ // ...
+ // int test6() __attribute__((alias("test7")));
+ //
+ // Remove it and replace uses of it with the alias.
+ GA->takeName(Entry);
+
+ Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
+ Entry->getType()));
+ Entry->eraseFromParent();
+ } else {
+ GA->setName(MangledName);
+ }
+
+ // Set attributes which are particular to an alias; this is a
+ // specialization of the attributes which may be set on a global
+ // variable/function.
+ if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
+ D->isWeakImported()) {
+ GA->setLinkage(llvm::Function::WeakAnyLinkage);
+ }
+
+ if (const auto *VD = dyn_cast<VarDecl>(D))
+ if (VD->getTLSKind())
+ setTLSMode(GA, *VD);
+
+ setAliasAttributes(D, GA);
+}
+
+llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
+ ArrayRef<llvm::Type*> Tys) {
+ return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
+ Tys);
+}
+
+static llvm::StringMapEntry<llvm::GlobalVariable *> &
+GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
+ const StringLiteral *Literal, bool TargetIsLSB,
+ bool &IsUTF16, unsigned &StringLength) {
+ StringRef String = Literal->getString();
+ unsigned NumBytes = String.size();
+
+ // Check for simple case.
+ if (!Literal->containsNonAsciiOrNull()) {
+ StringLength = NumBytes;
+ return *Map.insert(std::make_pair(String, nullptr)).first;
+ }
+
+ // Otherwise, convert the UTF8 literals into a string of shorts.
+ IsUTF16 = true;
+
+ SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
+ const UTF8 *FromPtr = (const UTF8 *)String.data();
+ UTF16 *ToPtr = &ToBuf[0];
+
+ (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
+ &ToPtr, ToPtr + NumBytes,
+ strictConversion);
+
+ // ConvertUTF8toUTF16 returns the length in ToPtr.
+ StringLength = ToPtr - &ToBuf[0];
+
+ // Add an explicit null.
+ *ToPtr = 0;
+ return *Map.insert(std::make_pair(
+ StringRef(reinterpret_cast<const char *>(ToBuf.data()),
+ (StringLength + 1) * 2),
+ nullptr)).first;
+}
+
+static llvm::StringMapEntry<llvm::GlobalVariable *> &
+GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
+ const StringLiteral *Literal, unsigned &StringLength) {
+ StringRef String = Literal->getString();
+ StringLength = String.size();
+ return *Map.insert(std::make_pair(String, nullptr)).first;
+}
+
+llvm::Constant *
+CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
+ unsigned StringLength = 0;
+ bool isUTF16 = false;
+ llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
+ GetConstantCFStringEntry(CFConstantStringMap, Literal,
+ getDataLayout().isLittleEndian(), isUTF16,
+ StringLength);
+
+ if (auto *C = Entry.second)
+ return C;
+
+ llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
+ llvm::Constant *Zeros[] = { Zero, Zero };
+ llvm::Value *V;
+
+ // If we don't already have it, get __CFConstantStringClassReference.
+ if (!CFConstantStringClassRef) {
+ llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
+ Ty = llvm::ArrayType::get(Ty, 0);
+ llvm::Constant *GV = CreateRuntimeVariable(Ty,
+ "__CFConstantStringClassReference");
+ // Decay array -> ptr
+ V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
+ CFConstantStringClassRef = V;
+ }
+ else
+ V = CFConstantStringClassRef;
+
+ QualType CFTy = getContext().getCFConstantStringType();
+
+ auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
+
+ llvm::Constant *Fields[4];
+
+ // Class pointer.
+ Fields[0] = cast<llvm::ConstantExpr>(V);
+
+ // Flags.
+ llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
+ Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
+ llvm::ConstantInt::get(Ty, 0x07C8);
+
+ // String pointer.
+ llvm::Constant *C = nullptr;
+ if (isUTF16) {
+ ArrayRef<uint16_t> Arr = llvm::makeArrayRef<uint16_t>(
+ reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
+ Entry.first().size() / 2);
+ C = llvm::ConstantDataArray::get(VMContext, Arr);
+ } else {
+ C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
+ }
+
+ // Note: -fwritable-strings doesn't make the backing store strings of
+ // CFStrings writable. (See <rdar://problem/10657500>)
+ auto *GV =
+ new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
+ llvm::GlobalValue::PrivateLinkage, C, ".str");
+ GV->setUnnamedAddr(true);
+ // Don't enforce the target's minimum global alignment, since the only use
+ // of the string is via this class initializer.
+ // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
+ // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
+ // that changes the section it ends in, which surprises ld64.
+ if (isUTF16) {
+ CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
+ GV->setAlignment(Align.getQuantity());
+ GV->setSection("__TEXT,__ustring");
+ } else {
+ CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
+ GV->setAlignment(Align.getQuantity());
+ GV->setSection("__TEXT,__cstring,cstring_literals");
+ }
+
+ // String.
+ Fields[2] =
+ llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
+
+ if (isUTF16)
+ // Cast the UTF16 string to the correct type.
+ Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
+
+ // String length.
+ Ty = getTypes().ConvertType(getContext().LongTy);
+ Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
+
+ // The struct.
+ C = llvm::ConstantStruct::get(STy, Fields);
+ GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
+ llvm::GlobalVariable::PrivateLinkage, C,
+ "_unnamed_cfstring_");
+ GV->setSection("__DATA,__cfstring");
+ Entry.second = GV;
+
+ return GV;
+}
+
+llvm::GlobalVariable *
+CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
+ unsigned StringLength = 0;
+ llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
+ GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
+
+ if (auto *C = Entry.second)
+ return C;
+
+ llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
+ llvm::Constant *Zeros[] = { Zero, Zero };
+ llvm::Value *V;
+ // If we don't already have it, get _NSConstantStringClassReference.
+ if (!ConstantStringClassRef) {
+ std::string StringClass(getLangOpts().ObjCConstantStringClass);
+ llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
+ llvm::Constant *GV;
+ if (LangOpts.ObjCRuntime.isNonFragile()) {
+ std::string str =
+ StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
+ : "OBJC_CLASS_$_" + StringClass;
+ GV = getObjCRuntime().GetClassGlobal(str);
+ // Make sure the result is of the correct type.
+ llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
+ V = llvm::ConstantExpr::getBitCast(GV, PTy);
+ ConstantStringClassRef = V;
+ } else {
+ std::string str =
+ StringClass.empty() ? "_NSConstantStringClassReference"
+ : "_" + StringClass + "ClassReference";
+ llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
+ GV = CreateRuntimeVariable(PTy, str);
+ // Decay array -> ptr
+ V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros);
+ ConstantStringClassRef = V;
+ }
+ } else
+ V = ConstantStringClassRef;
+
+ if (!NSConstantStringType) {
+ // Construct the type for a constant NSString.
+ RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
+ D->startDefinition();
+
+ QualType FieldTypes[3];
+
+ // const int *isa;
+ FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
+ // const char *str;
+ FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
+ // unsigned int length;
+ FieldTypes[2] = Context.UnsignedIntTy;
+
+ // Create fields
+ for (unsigned i = 0; i < 3; ++i) {
+ FieldDecl *Field = FieldDecl::Create(Context, D,
+ SourceLocation(),
+ SourceLocation(), nullptr,
+ FieldTypes[i], /*TInfo=*/nullptr,
+ /*BitWidth=*/nullptr,
+ /*Mutable=*/false,
+ ICIS_NoInit);
+ Field->setAccess(AS_public);
+ D->addDecl(Field);
+ }
+
+ D->completeDefinition();
+ QualType NSTy = Context.getTagDeclType(D);
+ NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
+ }
+
+ llvm::Constant *Fields[3];
+
+ // Class pointer.
+ Fields[0] = cast<llvm::ConstantExpr>(V);
+
+ // String pointer.
+ llvm::Constant *C =
+ llvm::ConstantDataArray::getString(VMContext, Entry.first());
+
+ llvm::GlobalValue::LinkageTypes Linkage;
+ bool isConstant;
+ Linkage = llvm::GlobalValue::PrivateLinkage;
+ isConstant = !LangOpts.WritableStrings;
+
+ auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
+ Linkage, C, ".str");
+ GV->setUnnamedAddr(true);
+ // Don't enforce the target's minimum global alignment, since the only use
+ // of the string is via this class initializer.
+ CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
+ GV->setAlignment(Align.getQuantity());
+ Fields[1] =
+ llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
+
+ // String length.
+ llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
+ Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
+
+ // The struct.
+ C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
+ GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
+ llvm::GlobalVariable::PrivateLinkage, C,
+ "_unnamed_nsstring_");
+ const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
+ const char *NSStringNonFragileABISection =
+ "__DATA,__objc_stringobj,regular,no_dead_strip";
+ // FIXME. Fix section.
+ GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
+ ? NSStringNonFragileABISection
+ : NSStringSection);
+ Entry.second = GV;
+
+ return GV;
+}
+
+QualType CodeGenModule::getObjCFastEnumerationStateType() {
+ if (ObjCFastEnumerationStateType.isNull()) {
+ RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
+ D->startDefinition();
+
+ QualType FieldTypes[] = {
+ Context.UnsignedLongTy,
+ Context.getPointerType(Context.getObjCIdType()),
+ Context.getPointerType(Context.UnsignedLongTy),
+ Context.getConstantArrayType(Context.UnsignedLongTy,
+ llvm::APInt(32, 5), ArrayType::Normal, 0)
+ };
+
+ for (size_t i = 0; i < 4; ++i) {
+ FieldDecl *Field = FieldDecl::Create(Context,
+ D,
+ SourceLocation(),
+ SourceLocation(), nullptr,
+ FieldTypes[i], /*TInfo=*/nullptr,
+ /*BitWidth=*/nullptr,
+ /*Mutable=*/false,
+ ICIS_NoInit);
+ Field->setAccess(AS_public);
+ D->addDecl(Field);
+ }
+
+ D->completeDefinition();
+ ObjCFastEnumerationStateType = Context.getTagDeclType(D);
+ }
+
+ return ObjCFastEnumerationStateType;
+}
+
+llvm::Constant *
+CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
+ assert(!E->getType()->isPointerType() && "Strings are always arrays");
+
+ // Don't emit it as the address of the string, emit the string data itself
+ // as an inline array.
+ if (E->getCharByteWidth() == 1) {
+ SmallString<64> Str(E->getString());
+
+ // Resize the string to the right size, which is indicated by its type.
+ const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
+ Str.resize(CAT->getSize().getZExtValue());
+ return llvm::ConstantDataArray::getString(VMContext, Str, false);
+ }
+
+ auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
+ llvm::Type *ElemTy = AType->getElementType();
+ unsigned NumElements = AType->getNumElements();
+
+ // Wide strings have either 2-byte or 4-byte elements.
+ if (ElemTy->getPrimitiveSizeInBits() == 16) {
+ SmallVector<uint16_t, 32> Elements;
+ Elements.reserve(NumElements);
+
+ for(unsigned i = 0, e = E->getLength(); i != e; ++i)
+ Elements.push_back(E->getCodeUnit(i));
+ Elements.resize(NumElements);
+ return llvm::ConstantDataArray::get(VMContext, Elements);
+ }
+
+ assert(ElemTy->getPrimitiveSizeInBits() == 32);
+ SmallVector<uint32_t, 32> Elements;
+ Elements.reserve(NumElements);
+
+ for(unsigned i = 0, e = E->getLength(); i != e; ++i)
+ Elements.push_back(E->getCodeUnit(i));
+ Elements.resize(NumElements);
+ return llvm::ConstantDataArray::get(VMContext, Elements);
+}
+
+static llvm::GlobalVariable *
+GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
+ CodeGenModule &CGM, StringRef GlobalName,
+ unsigned Alignment) {
+ // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
+ unsigned AddrSpace = 0;
+ if (CGM.getLangOpts().OpenCL)
+ AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
+
+ llvm::Module &M = CGM.getModule();
+ // Create a global variable for this string
+ auto *GV = new llvm::GlobalVariable(
+ M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
+ nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
+ GV->setAlignment(Alignment);
+ GV->setUnnamedAddr(true);
+ if (GV->isWeakForLinker()) {
+ assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
+ GV->setComdat(M.getOrInsertComdat(GV->getName()));
+ }
+
+ return GV;
+}
+
+/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
+/// constant array for the given string literal.
+llvm::GlobalVariable *
+CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
+ StringRef Name) {
+ auto Alignment =
+ getContext().getAlignOfGlobalVarInChars(S->getType()).getQuantity();
+
+ llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
+ llvm::GlobalVariable **Entry = nullptr;
+ if (!LangOpts.WritableStrings) {
+ Entry = &ConstantStringMap[C];
+ if (auto GV = *Entry) {
+ if (Alignment > GV->getAlignment())
+ GV->setAlignment(Alignment);
+ return GV;
+ }
+ }
+
+ SmallString<256> MangledNameBuffer;
+ StringRef GlobalVariableName;
+ llvm::GlobalValue::LinkageTypes LT;
+
+ // Mangle the string literal if the ABI allows for it. However, we cannot
+ // do this if we are compiling with ASan or -fwritable-strings because they
+ // rely on strings having normal linkage.
+ if (!LangOpts.WritableStrings &&
+ !LangOpts.Sanitize.has(SanitizerKind::Address) &&
+ getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
+ llvm::raw_svector_ostream Out(MangledNameBuffer);
+ getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
+ Out.flush();
+
+ LT = llvm::GlobalValue::LinkOnceODRLinkage;
+ GlobalVariableName = MangledNameBuffer;
+ } else {
+ LT = llvm::GlobalValue::PrivateLinkage;
+ GlobalVariableName = Name;
+ }
+
+ auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
+ if (Entry)
+ *Entry = GV;
+
+ SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
+ QualType());
+ return GV;
+}
+
+/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
+/// array for the given ObjCEncodeExpr node.
+llvm::GlobalVariable *
+CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
+ std::string Str;
+ getContext().getObjCEncodingForType(E->getEncodedType(), Str);
+
+ return GetAddrOfConstantCString(Str);
+}
+
+/// GetAddrOfConstantCString - Returns a pointer to a character array containing
+/// the literal and a terminating '\0' character.
+/// The result has pointer to array type.
+llvm::GlobalVariable *CodeGenModule::GetAddrOfConstantCString(
+ const std::string &Str, const char *GlobalName, unsigned Alignment) {
+ StringRef StrWithNull(Str.c_str(), Str.size() + 1);
+ if (Alignment == 0) {
+ Alignment = getContext()
+ .getAlignOfGlobalVarInChars(getContext().CharTy)
+ .getQuantity();
+ }
+
+ llvm::Constant *C =
+ llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
+
+ // Don't share any string literals if strings aren't constant.
+ llvm::GlobalVariable **Entry = nullptr;
+ if (!LangOpts.WritableStrings) {
+ Entry = &ConstantStringMap[C];
+ if (auto GV = *Entry) {
+ if (Alignment > GV->getAlignment())
+ GV->setAlignment(Alignment);
+ return GV;
+ }
+ }
+
+ // Get the default prefix if a name wasn't specified.
+ if (!GlobalName)
+ GlobalName = ".str";
+ // Create a global variable for this.
+ auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
+ GlobalName, Alignment);
+ if (Entry)
+ *Entry = GV;
+ return GV;
+}
+
+llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
+ const MaterializeTemporaryExpr *E, const Expr *Init) {
+ assert((E->getStorageDuration() == SD_Static ||
+ E->getStorageDuration() == SD_Thread) && "not a global temporary");
+ const auto *VD = cast<VarDecl>(E->getExtendingDecl());
+
+ // If we're not materializing a subobject of the temporary, keep the
+ // cv-qualifiers from the type of the MaterializeTemporaryExpr.
+ QualType MaterializedType = Init->getType();
+ if (Init == E->GetTemporaryExpr())
+ MaterializedType = E->getType();
+
+ llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
+ if (Slot)
+ return Slot;
+
+ // FIXME: If an externally-visible declaration extends multiple temporaries,
+ // we need to give each temporary the same name in every translation unit (and
+ // we also need to make the temporaries externally-visible).
+ SmallString<256> Name;
+ llvm::raw_svector_ostream Out(Name);
+ getCXXABI().getMangleContext().mangleReferenceTemporary(
+ VD, E->getManglingNumber(), Out);
+ Out.flush();
+
+ APValue *Value = nullptr;
+ if (E->getStorageDuration() == SD_Static) {
+ // We might have a cached constant initializer for this temporary. Note
+ // that this might have a different value from the value computed by
+ // evaluating the initializer if the surrounding constant expression
+ // modifies the temporary.
+ Value = getContext().getMaterializedTemporaryValue(E, false);
+ if (Value && Value->isUninit())
+ Value = nullptr;
+ }
+
+ // Try evaluating it now, it might have a constant initializer.
+ Expr::EvalResult EvalResult;
+ if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
+ !EvalResult.hasSideEffects())
+ Value = &EvalResult.Val;
+
+ llvm::Constant *InitialValue = nullptr;
+ bool Constant = false;
+ llvm::Type *Type;
+ if (Value) {
+ // The temporary has a constant initializer, use it.
+ InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
+ Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
+ Type = InitialValue->getType();
+ } else {
+ // No initializer, the initialization will be provided when we
+ // initialize the declaration which performed lifetime extension.
+ Type = getTypes().ConvertTypeForMem(MaterializedType);
+ }
+
+ // Create a global variable for this lifetime-extended temporary.
+ llvm::GlobalValue::LinkageTypes Linkage =
+ getLLVMLinkageVarDefinition(VD, Constant);
+ if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
+ const VarDecl *InitVD;
+ if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
+ isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
+ // Temporaries defined inside a class get linkonce_odr linkage because the
+ // class can be defined in multipe translation units.
+ Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
+ } else {
+ // There is no need for this temporary to have external linkage if the
+ // VarDecl has external linkage.
+ Linkage = llvm::GlobalVariable::InternalLinkage;
+ }
+ }
+ unsigned AddrSpace = GetGlobalVarAddressSpace(
+ VD, getContext().getTargetAddressSpace(MaterializedType));
+ auto *GV = new llvm::GlobalVariable(
+ getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
+ /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
+ AddrSpace);
+ setGlobalVisibility(GV, VD);
+ GV->setAlignment(
+ getContext().getTypeAlignInChars(MaterializedType).getQuantity());
+ if (supportsCOMDAT() && GV->isWeakForLinker())
+ GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
+ if (VD->getTLSKind())
+ setTLSMode(GV, *VD);
+ Slot = GV;
+ return GV;
+}
+
+/// EmitObjCPropertyImplementations - Emit information for synthesized
+/// properties for an implementation.
+void CodeGenModule::EmitObjCPropertyImplementations(const
+ ObjCImplementationDecl *D) {
+ for (const auto *PID : D->property_impls()) {
+ // Dynamic is just for type-checking.
+ if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
+ ObjCPropertyDecl *PD = PID->getPropertyDecl();
+
+ // Determine which methods need to be implemented, some may have
+ // been overridden. Note that ::isPropertyAccessor is not the method
+ // we want, that just indicates if the decl came from a
+ // property. What we want to know is if the method is defined in
+ // this implementation.
+ if (!D->getInstanceMethod(PD->getGetterName()))
+ CodeGenFunction(*this).GenerateObjCGetter(
+ const_cast<ObjCImplementationDecl *>(D), PID);
+ if (!PD->isReadOnly() &&
+ !D->getInstanceMethod(PD->getSetterName()))
+ CodeGenFunction(*this).GenerateObjCSetter(
+ const_cast<ObjCImplementationDecl *>(D), PID);
+ }
+ }
+}
+
+static bool needsDestructMethod(ObjCImplementationDecl *impl) {
+ const ObjCInterfaceDecl *iface = impl->getClassInterface();
+ for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
+ ivar; ivar = ivar->getNextIvar())
+ if (ivar->getType().isDestructedType())
+ return true;
+
+ return false;
+}
+
+static bool AllTrivialInitializers(CodeGenModule &CGM,
+ ObjCImplementationDecl *D) {
+ CodeGenFunction CGF(CGM);
+ for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
+ E = D->init_end(); B != E; ++B) {
+ CXXCtorInitializer *CtorInitExp = *B;
+ Expr *Init = CtorInitExp->getInit();
+ if (!CGF.isTrivialInitializer(Init))
+ return false;
+ }
+ return true;
+}
+
+/// EmitObjCIvarInitializations - Emit information for ivar initialization
+/// for an implementation.
+void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
+ // We might need a .cxx_destruct even if we don't have any ivar initializers.
+ if (needsDestructMethod(D)) {
+ IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
+ Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
+ ObjCMethodDecl *DTORMethod =
+ ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
+ cxxSelector, getContext().VoidTy, nullptr, D,
+ /*isInstance=*/true, /*isVariadic=*/false,
+ /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
+ /*isDefined=*/false, ObjCMethodDecl::Required);
+ D->addInstanceMethod(DTORMethod);
+ CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
+ D->setHasDestructors(true);
+ }
+
+ // If the implementation doesn't have any ivar initializers, we don't need
+ // a .cxx_construct.
+ if (D->getNumIvarInitializers() == 0 ||
+ AllTrivialInitializers(*this, D))
+ return;
+
+ IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
+ Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
+ // The constructor returns 'self'.
+ ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
+ D->getLocation(),
+ D->getLocation(),
+ cxxSelector,
+ getContext().getObjCIdType(),
+ nullptr, D, /*isInstance=*/true,
+ /*isVariadic=*/false,
+ /*isPropertyAccessor=*/true,
+ /*isImplicitlyDeclared=*/true,
+ /*isDefined=*/false,
+ ObjCMethodDecl::Required);
+ D->addInstanceMethod(CTORMethod);
+ CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
+ D->setHasNonZeroConstructors(true);
+}
+
+/// EmitNamespace - Emit all declarations in a namespace.
+void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
+ for (auto *I : ND->decls()) {
+ if (const auto *VD = dyn_cast<VarDecl>(I))
+ if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
+ VD->getTemplateSpecializationKind() != TSK_Undeclared)
+ continue;
+ EmitTopLevelDecl(I);
+ }
+}
+
+// EmitLinkageSpec - Emit all declarations in a linkage spec.
+void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
+ if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
+ LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
+ ErrorUnsupported(LSD, "linkage spec");
+ return;
+ }
+
+ for (auto *I : LSD->decls()) {
+ // Meta-data for ObjC class includes references to implemented methods.
+ // Generate class's method definitions first.
+ if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
+ for (auto *M : OID->methods())
+ EmitTopLevelDecl(M);
+ }
+ EmitTopLevelDecl(I);
+ }
+}
+
+/// EmitTopLevelDecl - Emit code for a single top level declaration.
+void CodeGenModule::EmitTopLevelDecl(Decl *D) {
+ // Ignore dependent declarations.
+ if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
+ return;
+
+ switch (D->getKind()) {
+ case Decl::CXXConversion:
+ case Decl::CXXMethod:
+ case Decl::Function:
+ // Skip function templates
+ if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
+ cast<FunctionDecl>(D)->isLateTemplateParsed())
+ return;
+
+ EmitGlobal(cast<FunctionDecl>(D));
+ // Always provide some coverage mapping
+ // even for the functions that aren't emitted.
+ AddDeferredUnusedCoverageMapping(D);
+ break;
+
+ case Decl::Var:
+ // Skip variable templates
+ if (cast<VarDecl>(D)->getDescribedVarTemplate())
+ return;
+ case Decl::VarTemplateSpecialization:
+ EmitGlobal(cast<VarDecl>(D));
+ break;
+
+ // Indirect fields from global anonymous structs and unions can be
+ // ignored; only the actual variable requires IR gen support.
+ case Decl::IndirectField:
+ break;
+
+ // C++ Decls
+ case Decl::Namespace:
+ EmitNamespace(cast<NamespaceDecl>(D));
+ break;
+ // No code generation needed.
+ case Decl::UsingShadow:
+ case Decl::ClassTemplate:
+ case Decl::VarTemplate:
+ case Decl::VarTemplatePartialSpecialization:
+ case Decl::FunctionTemplate:
+ case Decl::TypeAliasTemplate:
+ case Decl::Block:
+ case Decl::Empty:
+ break;
+ case Decl::Using: // using X; [C++]
+ if (CGDebugInfo *DI = getModuleDebugInfo())
+ DI->EmitUsingDecl(cast<UsingDecl>(*D));
+ return;
+ case Decl::NamespaceAlias:
+ if (CGDebugInfo *DI = getModuleDebugInfo())
+ DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
+ return;
+ case Decl::UsingDirective: // using namespace X; [C++]
+ if (CGDebugInfo *DI = getModuleDebugInfo())
+ DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
+ return;
+ case Decl::CXXConstructor:
+ // Skip function templates
+ if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
+ cast<FunctionDecl>(D)->isLateTemplateParsed())
+ return;
+
+ getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
+ break;
+ case Decl::CXXDestructor:
+ if (cast<FunctionDecl>(D)->isLateTemplateParsed())
+ return;
+ getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
+ break;
+
+ case Decl::StaticAssert:
+ // Nothing to do.
+ break;
+
+ // Objective-C Decls
+
+ // Forward declarations, no (immediate) code generation.
+ case Decl::ObjCInterface:
+ case Decl::ObjCCategory:
+ break;
+
+ case Decl::ObjCProtocol: {
+ auto *Proto = cast<ObjCProtocolDecl>(D);
+ if (Proto->isThisDeclarationADefinition())
+ ObjCRuntime->GenerateProtocol(Proto);
+ break;
+ }
+
+ case Decl::ObjCCategoryImpl:
+ // Categories have properties but don't support synthesize so we
+ // can ignore them here.
+ ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
+ break;
+
+ case Decl::ObjCImplementation: {
+ auto *OMD = cast<ObjCImplementationDecl>(D);
+ EmitObjCPropertyImplementations(OMD);
+ EmitObjCIvarInitializations(OMD);
+ ObjCRuntime->GenerateClass(OMD);
+ // Emit global variable debug information.
+ if (CGDebugInfo *DI = getModuleDebugInfo())
+ if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
+ DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
+ OMD->getClassInterface()), OMD->getLocation());
+ break;
+ }
+ case Decl::ObjCMethod: {
+ auto *OMD = cast<ObjCMethodDecl>(D);
+ // If this is not a prototype, emit the body.
+ if (OMD->getBody())
+ CodeGenFunction(*this).GenerateObjCMethod(OMD);
+ break;
+ }
+ case Decl::ObjCCompatibleAlias:
+ ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
+ break;
+
+ case Decl::LinkageSpec:
+ EmitLinkageSpec(cast<LinkageSpecDecl>(D));
+ break;
+
+ case Decl::FileScopeAsm: {
+ // File-scope asm is ignored during device-side CUDA compilation.
+ if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
+ break;
+ auto *AD = cast<FileScopeAsmDecl>(D);
+ getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
+ break;
+ }
+
+ case Decl::Import: {
+ auto *Import = cast<ImportDecl>(D);
+
+ // Ignore import declarations that come from imported modules.
+ if (clang::Module *Owner = Import->getImportedOwningModule()) {
+ if (getLangOpts().CurrentModule.empty() ||
+ Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
+ break;
+ }
+
+ ImportedModules.insert(Import->getImportedModule());
+ break;
+ }
+
+ case Decl::OMPThreadPrivate:
+ EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
+ break;
+
+ case Decl::ClassTemplateSpecialization: {
+ const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
+ if (DebugInfo &&
+ Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
+ Spec->hasDefinition())
+ DebugInfo->completeTemplateDefinition(*Spec);
+ break;
+ }
+
+ default:
+ // Make sure we handled everything we should, every other kind is a
+ // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind
+ // function. Need to recode Decl::Kind to do that easily.
+ assert(isa<TypeDecl>(D) && "Unsupported decl kind");
+ break;
+ }
+}
+
+void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
+ // Do we need to generate coverage mapping?
+ if (!CodeGenOpts.CoverageMapping)
+ return;
+ switch (D->getKind()) {
+ case Decl::CXXConversion:
+ case Decl::CXXMethod:
+ case Decl::Function:
+ case Decl::ObjCMethod:
+ case Decl::CXXConstructor:
+ case Decl::CXXDestructor: {
+ if (!cast<FunctionDecl>(D)->hasBody())
+ return;
+ auto I = DeferredEmptyCoverageMappingDecls.find(D);
+ if (I == DeferredEmptyCoverageMappingDecls.end())
+ DeferredEmptyCoverageMappingDecls[D] = true;
+ break;
+ }
+ default:
+ break;
+ };
+}
+
+void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
+ // Do we need to generate coverage mapping?
+ if (!CodeGenOpts.CoverageMapping)
+ return;
+ if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
+ if (Fn->isTemplateInstantiation())
+ ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
+ }
+ auto I = DeferredEmptyCoverageMappingDecls.find(D);
+ if (I == DeferredEmptyCoverageMappingDecls.end())
+ DeferredEmptyCoverageMappingDecls[D] = false;
+ else
+ I->second = false;
+}
+
+void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
+ std::vector<const Decl *> DeferredDecls;
+ for (const auto &I : DeferredEmptyCoverageMappingDecls) {
+ if (!I.second)
+ continue;
+ DeferredDecls.push_back(I.first);
+ }
+ // Sort the declarations by their location to make sure that the tests get a
+ // predictable order for the coverage mapping for the unused declarations.
+ if (CodeGenOpts.DumpCoverageMapping)
+ std::sort(DeferredDecls.begin(), DeferredDecls.end(),
+ [] (const Decl *LHS, const Decl *RHS) {
+ return LHS->getLocStart() < RHS->getLocStart();
+ });
+ for (const auto *D : DeferredDecls) {
+ switch (D->getKind()) {
+ case Decl::CXXConversion:
+ case Decl::CXXMethod:
+ case Decl::Function:
+ case Decl::ObjCMethod: {
+ CodeGenPGO PGO(*this);
+ GlobalDecl GD(cast<FunctionDecl>(D));
+ PGO.emitEmptyCounterMapping(D, getMangledName(GD),
+ getFunctionLinkage(GD));
+ break;
+ }
+ case Decl::CXXConstructor: {
+ CodeGenPGO PGO(*this);
+ GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
+ PGO.emitEmptyCounterMapping(D, getMangledName(GD),
+ getFunctionLinkage(GD));
+ break;
+ }
+ case Decl::CXXDestructor: {
+ CodeGenPGO PGO(*this);
+ GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
+ PGO.emitEmptyCounterMapping(D, getMangledName(GD),
+ getFunctionLinkage(GD));
+ break;
+ }
+ default:
+ break;
+ };
+ }
+}
+
+/// Turns the given pointer into a constant.
+static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
+ const void *Ptr) {
+ uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
+ llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
+ return llvm::ConstantInt::get(i64, PtrInt);
+}
+
+static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
+ llvm::NamedMDNode *&GlobalMetadata,
+ GlobalDecl D,
+ llvm::GlobalValue *Addr) {
+ if (!GlobalMetadata)
+ GlobalMetadata =
+ CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
+
+ // TODO: should we report variant information for ctors/dtors?
+ llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
+ llvm::ConstantAsMetadata::get(GetPointerConstant(
+ CGM.getLLVMContext(), D.getDecl()))};
+ GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
+}
+
+/// For each function which is declared within an extern "C" region and marked
+/// as 'used', but has internal linkage, create an alias from the unmangled
+/// name to the mangled name if possible. People expect to be able to refer
+/// to such functions with an unmangled name from inline assembly within the
+/// same translation unit.
+void CodeGenModule::EmitStaticExternCAliases() {
+ for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
+ E = StaticExternCValues.end();
+ I != E; ++I) {
+ IdentifierInfo *Name = I->first;
+ llvm::GlobalValue *Val = I->second;
+ if (Val && !getModule().getNamedValue(Name->getName()))
+ addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
+ }
+}
+
+bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
+ GlobalDecl &Result) const {
+ auto Res = Manglings.find(MangledName);
+ if (Res == Manglings.end())
+ return false;
+ Result = Res->getValue();
+ return true;
+}
+
+/// Emits metadata nodes associating all the global values in the
+/// current module with the Decls they came from. This is useful for
+/// projects using IR gen as a subroutine.
+///
+/// Since there's currently no way to associate an MDNode directly
+/// with an llvm::GlobalValue, we create a global named metadata
+/// with the name 'clang.global.decl.ptrs'.
+void CodeGenModule::EmitDeclMetadata() {
+ llvm::NamedMDNode *GlobalMetadata = nullptr;
+
+ // StaticLocalDeclMap
+ for (auto &I : MangledDeclNames) {
+ llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
+ EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
+ }
+}
+
+/// Emits metadata nodes for all the local variables in the current
+/// function.
+void CodeGenFunction::EmitDeclMetadata() {
+ if (LocalDeclMap.empty()) return;
+
+ llvm::LLVMContext &Context = getLLVMContext();
+
+ // Find the unique metadata ID for this name.
+ unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
+
+ llvm::NamedMDNode *GlobalMetadata = nullptr;
+
+ for (auto &I : LocalDeclMap) {
+ const Decl *D = I.first;
+ llvm::Value *Addr = I.second;
+ if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
+ llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
+ Alloca->setMetadata(
+ DeclPtrKind, llvm::MDNode::get(
+ Context, llvm::ValueAsMetadata::getConstant(DAddr)));
+ } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
+ GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
+ EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
+ }
+ }
+}
+
+void CodeGenModule::EmitVersionIdentMetadata() {
+ llvm::NamedMDNode *IdentMetadata =
+ TheModule.getOrInsertNamedMetadata("llvm.ident");
+ std::string Version = getClangFullVersion();
+ llvm::LLVMContext &Ctx = TheModule.getContext();
+
+ llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
+ IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
+}
+
+void CodeGenModule::EmitTargetMetadata() {
+ // Warning, new MangledDeclNames may be appended within this loop.
+ // We rely on MapVector insertions adding new elements to the end
+ // of the container.
+ // FIXME: Move this loop into the one target that needs it, and only
+ // loop over those declarations for which we couldn't emit the target
+ // metadata when we emitted the declaration.
+ for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
+ auto Val = *(MangledDeclNames.begin() + I);
+ const Decl *D = Val.first.getDecl()->getMostRecentDecl();
+ llvm::GlobalValue *GV = GetGlobalValue(Val.second);
+ getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
+ }
+}
+
+void CodeGenModule::EmitCoverageFile() {
+ if (!getCodeGenOpts().CoverageFile.empty()) {
+ if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
+ llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
+ llvm::LLVMContext &Ctx = TheModule.getContext();
+ llvm::MDString *CoverageFile =
+ llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
+ for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
+ llvm::MDNode *CU = CUNode->getOperand(i);
+ llvm::Metadata *Elts[] = {CoverageFile, CU};
+ GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
+ }
+ }
+ }
+}
+
+llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
+ // Sema has checked that all uuid strings are of the form
+ // "12345678-1234-1234-1234-1234567890ab".
+ assert(Uuid.size() == 36);
+ for (unsigned i = 0; i < 36; ++i) {
+ if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
+ else assert(isHexDigit(Uuid[i]));
+ }
+
+ // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
+ const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
+
+ llvm::Constant *Field3[8];
+ for (unsigned Idx = 0; Idx < 8; ++Idx)
+ Field3[Idx] = llvm::ConstantInt::get(
+ Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
+
+ llvm::Constant *Fields[4] = {
+ llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16),
+ llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16),
+ llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
+ llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
+ };
+
+ return llvm::ConstantStruct::getAnon(Fields);
+}
+
+llvm::Constant *
+CodeGenModule::getAddrOfCXXCatchHandlerType(QualType Ty,
+ QualType CatchHandlerType) {
+ return getCXXABI().getAddrOfCXXCatchHandlerType(Ty, CatchHandlerType);
+}
+
+llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
+ bool ForEH) {
+ // Return a bogus pointer if RTTI is disabled, unless it's for EH.
+ // FIXME: should we even be calling this method if RTTI is disabled
+ // and it's not for EH?
+ if (!ForEH && !getLangOpts().RTTI)
+ return llvm::Constant::getNullValue(Int8PtrTy);
+
+ if (ForEH && Ty->isObjCObjectPointerType() &&
+ LangOpts.ObjCRuntime.isGNUFamily())
+ return ObjCRuntime->GetEHType(Ty);
+
+ return getCXXABI().getAddrOfRTTIDescriptor(Ty);
+}
+
+void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
+ for (auto RefExpr : D->varlists()) {
+ auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
+ bool PerformInit =
+ VD->getAnyInitializer() &&
+ !VD->getAnyInitializer()->isConstantInitializer(getContext(),
+ /*ForRef=*/false);
+ if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
+ VD, GetAddrOfGlobalVar(VD), RefExpr->getLocStart(), PerformInit))
+ CXXGlobalInits.push_back(InitFunction);
+ }
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CodeGenModule.h b/contrib/llvm/tools/clang/lib/CodeGen/CodeGenModule.h
new file mode 100644
index 0000000..feef6c2
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CodeGenModule.h
@@ -0,0 +1,1233 @@
+//===--- CodeGenModule.h - Per-Module state for LLVM CodeGen ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This is the internal per-translation-unit state used for llvm translation.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENMODULE_H
+#define LLVM_CLANG_LIB_CODEGEN_CODEGENMODULE_H
+
+#include "CGVTables.h"
+#include "CodeGenTypes.h"
+#include "SanitizerMetadata.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/GlobalDecl.h"
+#include "clang/AST/Mangle.h"
+#include "clang/Basic/ABI.h"
+#include "clang/Basic/LangOptions.h"
+#include "clang/Basic/Module.h"
+#include "clang/Basic/SanitizerBlacklist.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/StringMap.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/ValueHandle.h"
+
+namespace llvm {
+class Module;
+class Constant;
+class ConstantInt;
+class Function;
+class GlobalValue;
+class DataLayout;
+class FunctionType;
+class LLVMContext;
+class IndexedInstrProfReader;
+}
+
+namespace clang {
+class TargetCodeGenInfo;
+class ASTContext;
+class AtomicType;
+class FunctionDecl;
+class IdentifierInfo;
+class ObjCMethodDecl;
+class ObjCImplementationDecl;
+class ObjCCategoryImplDecl;
+class ObjCProtocolDecl;
+class ObjCEncodeExpr;
+class BlockExpr;
+class CharUnits;
+class Decl;
+class Expr;
+class Stmt;
+class InitListExpr;
+class StringLiteral;
+class NamedDecl;
+class ValueDecl;
+class VarDecl;
+class LangOptions;
+class CodeGenOptions;
+class DiagnosticsEngine;
+class AnnotateAttr;
+class CXXDestructorDecl;
+class Module;
+class CoverageSourceInfo;
+
+namespace CodeGen {
+
+class CallArgList;
+class CodeGenFunction;
+class CodeGenTBAA;
+class CGCXXABI;
+class CGDebugInfo;
+class CGObjCRuntime;
+class CGOpenCLRuntime;
+class CGOpenMPRuntime;
+class CGCUDARuntime;
+class BlockFieldFlags;
+class FunctionArgList;
+class CoverageMappingModuleGen;
+
+struct OrderGlobalInits {
+ unsigned int priority;
+ unsigned int lex_order;
+ OrderGlobalInits(unsigned int p, unsigned int l)
+ : priority(p), lex_order(l) {}
+
+ bool operator==(const OrderGlobalInits &RHS) const {
+ return priority == RHS.priority && lex_order == RHS.lex_order;
+ }
+
+ bool operator<(const OrderGlobalInits &RHS) const {
+ return std::tie(priority, lex_order) <
+ std::tie(RHS.priority, RHS.lex_order);
+ }
+};
+
+struct CodeGenTypeCache {
+ /// void
+ llvm::Type *VoidTy;
+
+ /// i8, i16, i32, and i64
+ llvm::IntegerType *Int8Ty, *Int16Ty, *Int32Ty, *Int64Ty;
+ /// float, double
+ llvm::Type *FloatTy, *DoubleTy;
+
+ /// int
+ llvm::IntegerType *IntTy;
+
+ /// intptr_t, size_t, and ptrdiff_t, which we assume are the same size.
+ union {
+ llvm::IntegerType *IntPtrTy;
+ llvm::IntegerType *SizeTy;
+ llvm::IntegerType *PtrDiffTy;
+ };
+
+ /// void* in address space 0
+ union {
+ llvm::PointerType *VoidPtrTy;
+ llvm::PointerType *Int8PtrTy;
+ };
+
+ /// void** in address space 0
+ union {
+ llvm::PointerType *VoidPtrPtrTy;
+ llvm::PointerType *Int8PtrPtrTy;
+ };
+
+ /// The width of a pointer into the generic address space.
+ unsigned char PointerWidthInBits;
+
+ /// The size and alignment of a pointer into the generic address
+ /// space.
+ union {
+ unsigned char PointerAlignInBytes;
+ unsigned char PointerSizeInBytes;
+ unsigned char SizeSizeInBytes; // sizeof(size_t)
+ };
+
+ llvm::CallingConv::ID RuntimeCC;
+ llvm::CallingConv::ID getRuntimeCC() const { return RuntimeCC; }
+ llvm::CallingConv::ID BuiltinCC;
+ llvm::CallingConv::ID getBuiltinCC() const { return BuiltinCC; }
+};
+
+struct RREntrypoints {
+ RREntrypoints() { memset(this, 0, sizeof(*this)); }
+ /// void objc_autoreleasePoolPop(void*);
+ llvm::Constant *objc_autoreleasePoolPop;
+
+ /// void *objc_autoreleasePoolPush(void);
+ llvm::Constant *objc_autoreleasePoolPush;
+};
+
+struct ARCEntrypoints {
+ ARCEntrypoints() { memset(this, 0, sizeof(*this)); }
+
+ /// id objc_autorelease(id);
+ llvm::Constant *objc_autorelease;
+
+ /// id objc_autoreleaseReturnValue(id);
+ llvm::Constant *objc_autoreleaseReturnValue;
+
+ /// void objc_copyWeak(id *dest, id *src);
+ llvm::Constant *objc_copyWeak;
+
+ /// void objc_destroyWeak(id*);
+ llvm::Constant *objc_destroyWeak;
+
+ /// id objc_initWeak(id*, id);
+ llvm::Constant *objc_initWeak;
+
+ /// id objc_loadWeak(id*);
+ llvm::Constant *objc_loadWeak;
+
+ /// id objc_loadWeakRetained(id*);
+ llvm::Constant *objc_loadWeakRetained;
+
+ /// void objc_moveWeak(id *dest, id *src);
+ llvm::Constant *objc_moveWeak;
+
+ /// id objc_retain(id);
+ llvm::Constant *objc_retain;
+
+ /// id objc_retainAutorelease(id);
+ llvm::Constant *objc_retainAutorelease;
+
+ /// id objc_retainAutoreleaseReturnValue(id);
+ llvm::Constant *objc_retainAutoreleaseReturnValue;
+
+ /// id objc_retainAutoreleasedReturnValue(id);
+ llvm::Constant *objc_retainAutoreleasedReturnValue;
+
+ /// id objc_retainBlock(id);
+ llvm::Constant *objc_retainBlock;
+
+ /// void objc_release(id);
+ llvm::Constant *objc_release;
+
+ /// id objc_storeStrong(id*, id);
+ llvm::Constant *objc_storeStrong;
+
+ /// id objc_storeWeak(id*, id);
+ llvm::Constant *objc_storeWeak;
+
+ /// A void(void) inline asm to use to mark that the return value of
+ /// a call will be immediately retain.
+ llvm::InlineAsm *retainAutoreleasedReturnValueMarker;
+
+ /// void clang.arc.use(...);
+ llvm::Constant *clang_arc_use;
+};
+
+/// This class records statistics on instrumentation based profiling.
+class InstrProfStats {
+ uint32_t VisitedInMainFile;
+ uint32_t MissingInMainFile;
+ uint32_t Visited;
+ uint32_t Missing;
+ uint32_t Mismatched;
+
+public:
+ InstrProfStats()
+ : VisitedInMainFile(0), MissingInMainFile(0), Visited(0), Missing(0),
+ Mismatched(0) {}
+ /// Record that we've visited a function and whether or not that function was
+ /// in the main source file.
+ void addVisited(bool MainFile) {
+ if (MainFile)
+ ++VisitedInMainFile;
+ ++Visited;
+ }
+ /// Record that a function we've visited has no profile data.
+ void addMissing(bool MainFile) {
+ if (MainFile)
+ ++MissingInMainFile;
+ ++Missing;
+ }
+ /// Record that a function we've visited has mismatched profile data.
+ void addMismatched(bool MainFile) { ++Mismatched; }
+ /// Whether or not the stats we've gathered indicate any potential problems.
+ bool hasDiagnostics() { return Missing || Mismatched; }
+ /// Report potential problems we've found to \c Diags.
+ void reportDiagnostics(DiagnosticsEngine &Diags, StringRef MainFile);
+};
+
+/// This class organizes the cross-function state that is used while generating
+/// LLVM code.
+class CodeGenModule : public CodeGenTypeCache {
+ CodeGenModule(const CodeGenModule &) = delete;
+ void operator=(const CodeGenModule &) = delete;
+
+public:
+ struct Structor {
+ Structor() : Priority(0), Initializer(nullptr), AssociatedData(nullptr) {}
+ Structor(int Priority, llvm::Constant *Initializer,
+ llvm::Constant *AssociatedData)
+ : Priority(Priority), Initializer(Initializer),
+ AssociatedData(AssociatedData) {}
+ int Priority;
+ llvm::Constant *Initializer;
+ llvm::Constant *AssociatedData;
+ };
+
+ typedef std::vector<Structor> CtorList;
+
+private:
+ ASTContext &Context;
+ const LangOptions &LangOpts;
+ const CodeGenOptions &CodeGenOpts;
+ llvm::Module &TheModule;
+ DiagnosticsEngine &Diags;
+ const llvm::DataLayout &TheDataLayout;
+ const TargetInfo &Target;
+ std::unique_ptr<CGCXXABI> ABI;
+ llvm::LLVMContext &VMContext;
+
+ CodeGenTBAA *TBAA;
+
+ mutable const TargetCodeGenInfo *TheTargetCodeGenInfo;
+
+ // This should not be moved earlier, since its initialization depends on some
+ // of the previous reference members being already initialized and also checks
+ // if TheTargetCodeGenInfo is NULL
+ CodeGenTypes Types;
+
+ /// Holds information about C++ vtables.
+ CodeGenVTables VTables;
+
+ CGObjCRuntime* ObjCRuntime;
+ CGOpenCLRuntime* OpenCLRuntime;
+ CGOpenMPRuntime* OpenMPRuntime;
+ CGCUDARuntime* CUDARuntime;
+ CGDebugInfo* DebugInfo;
+ ARCEntrypoints *ARCData;
+ llvm::MDNode *NoObjCARCExceptionsMetadata;
+ RREntrypoints *RRData;
+ std::unique_ptr<llvm::IndexedInstrProfReader> PGOReader;
+ InstrProfStats PGOStats;
+
+ // A set of references that have only been seen via a weakref so far. This is
+ // used to remove the weak of the reference if we ever see a direct reference
+ // or a definition.
+ llvm::SmallPtrSet<llvm::GlobalValue*, 10> WeakRefReferences;
+
+ /// This contains all the decls which have definitions but/ which are deferred
+ /// for emission and therefore should only be output if they are actually
+ /// used. If a decl is in this, then it is known to have not been referenced
+ /// yet.
+ std::map<StringRef, GlobalDecl> DeferredDecls;
+
+ /// This is a list of deferred decls which we have seen that *are* actually
+ /// referenced. These get code generated when the module is done.
+ struct DeferredGlobal {
+ DeferredGlobal(llvm::GlobalValue *GV, GlobalDecl GD) : GV(GV), GD(GD) {}
+ llvm::TrackingVH<llvm::GlobalValue> GV;
+ GlobalDecl GD;
+ };
+ std::vector<DeferredGlobal> DeferredDeclsToEmit;
+ void addDeferredDeclToEmit(llvm::GlobalValue *GV, GlobalDecl GD) {
+ DeferredDeclsToEmit.push_back(DeferredGlobal(GV, GD));
+ }
+
+ /// List of alias we have emitted. Used to make sure that what they point to
+ /// is defined once we get to the end of the of the translation unit.
+ std::vector<GlobalDecl> Aliases;
+
+ typedef llvm::StringMap<llvm::TrackingVH<llvm::Constant> > ReplacementsTy;
+ ReplacementsTy Replacements;
+
+ /// A queue of (optional) vtables to consider emitting.
+ std::vector<const CXXRecordDecl*> DeferredVTables;
+
+ /// List of global values which are required to be present in the object file;
+ /// bitcast to i8*. This is used for forcing visibility of symbols which may
+ /// otherwise be optimized out.
+ std::vector<llvm::WeakVH> LLVMUsed;
+ std::vector<llvm::WeakVH> LLVMCompilerUsed;
+
+ /// Store the list of global constructors and their respective priorities to
+ /// be emitted when the translation unit is complete.
+ CtorList GlobalCtors;
+
+ /// Store the list of global destructors and their respective priorities to be
+ /// emitted when the translation unit is complete.
+ CtorList GlobalDtors;
+
+ /// An ordered map of canonical GlobalDecls to their mangled names.
+ llvm::MapVector<GlobalDecl, StringRef> MangledDeclNames;
+ llvm::StringMap<GlobalDecl, llvm::BumpPtrAllocator> Manglings;
+
+ /// Global annotations.
+ std::vector<llvm::Constant*> Annotations;
+
+ /// Map used to get unique annotation strings.
+ llvm::StringMap<llvm::Constant*> AnnotationStrings;
+
+ llvm::StringMap<llvm::GlobalVariable *> CFConstantStringMap;
+
+ llvm::DenseMap<llvm::Constant *, llvm::GlobalVariable *> ConstantStringMap;
+ llvm::DenseMap<const Decl*, llvm::Constant *> StaticLocalDeclMap;
+ llvm::DenseMap<const Decl*, llvm::GlobalVariable*> StaticLocalDeclGuardMap;
+ llvm::DenseMap<const Expr*, llvm::Constant *> MaterializedGlobalTemporaryMap;
+
+ llvm::DenseMap<QualType, llvm::Constant *> AtomicSetterHelperFnMap;
+ llvm::DenseMap<QualType, llvm::Constant *> AtomicGetterHelperFnMap;
+
+ /// Map used to get unique type descriptor constants for sanitizers.
+ llvm::DenseMap<QualType, llvm::Constant *> TypeDescriptorMap;
+
+ /// Map used to track internal linkage functions declared within
+ /// extern "C" regions.
+ typedef llvm::MapVector<IdentifierInfo *,
+ llvm::GlobalValue *> StaticExternCMap;
+ StaticExternCMap StaticExternCValues;
+
+ /// \brief thread_local variables defined or used in this TU.
+ std::vector<std::pair<const VarDecl *, llvm::GlobalVariable *> >
+ CXXThreadLocals;
+
+ /// \brief thread_local variables with initializers that need to run
+ /// before any thread_local variable in this TU is odr-used.
+ std::vector<llvm::Function *> CXXThreadLocalInits;
+ std::vector<llvm::GlobalVariable *> CXXThreadLocalInitVars;
+
+ /// Global variables with initializers that need to run before main.
+ std::vector<llvm::Function *> CXXGlobalInits;
+
+ /// When a C++ decl with an initializer is deferred, null is
+ /// appended to CXXGlobalInits, and the index of that null is placed
+ /// here so that the initializer will be performed in the correct
+ /// order. Once the decl is emitted, the index is replaced with ~0U to ensure
+ /// that we don't re-emit the initializer.
+ llvm::DenseMap<const Decl*, unsigned> DelayedCXXInitPosition;
+
+ typedef std::pair<OrderGlobalInits, llvm::Function*> GlobalInitData;
+
+ struct GlobalInitPriorityCmp {
+ bool operator()(const GlobalInitData &LHS,
+ const GlobalInitData &RHS) const {
+ return LHS.first.priority < RHS.first.priority;
+ }
+ };
+
+ /// Global variables with initializers whose order of initialization is set by
+ /// init_priority attribute.
+ SmallVector<GlobalInitData, 8> PrioritizedCXXGlobalInits;
+
+ /// Global destructor functions and arguments that need to run on termination.
+ std::vector<std::pair<llvm::WeakVH,llvm::Constant*> > CXXGlobalDtors;
+
+ /// \brief The complete set of modules that has been imported.
+ llvm::SetVector<clang::Module *> ImportedModules;
+
+ /// \brief A vector of metadata strings.
+ SmallVector<llvm::Metadata *, 16> LinkerOptionsMetadata;
+
+ /// @name Cache for Objective-C runtime types
+ /// @{
+
+ /// Cached reference to the class for constant strings. This value has type
+ /// int * but is actually an Obj-C class pointer.
+ llvm::WeakVH CFConstantStringClassRef;
+
+ /// Cached reference to the class for constant strings. This value has type
+ /// int * but is actually an Obj-C class pointer.
+ llvm::WeakVH ConstantStringClassRef;
+
+ /// \brief The LLVM type corresponding to NSConstantString.
+ llvm::StructType *NSConstantStringType;
+
+ /// \brief The type used to describe the state of a fast enumeration in
+ /// Objective-C's for..in loop.
+ QualType ObjCFastEnumerationStateType;
+
+ /// @}
+
+ /// Lazily create the Objective-C runtime
+ void createObjCRuntime();
+
+ void createOpenCLRuntime();
+ void createOpenMPRuntime();
+ void createCUDARuntime();
+
+ bool isTriviallyRecursive(const FunctionDecl *F);
+ bool shouldEmitFunction(GlobalDecl GD);
+
+ /// @name Cache for Blocks Runtime Globals
+ /// @{
+
+ llvm::Constant *NSConcreteGlobalBlock;
+ llvm::Constant *NSConcreteStackBlock;
+
+ llvm::Constant *BlockObjectAssign;
+ llvm::Constant *BlockObjectDispose;
+
+ llvm::Type *BlockDescriptorType;
+ llvm::Type *GenericBlockLiteralType;
+
+ struct {
+ int GlobalUniqueCount;
+ } Block;
+
+ /// void @llvm.lifetime.start(i64 %size, i8* nocapture <ptr>)
+ llvm::Constant *LifetimeStartFn;
+
+ /// void @llvm.lifetime.end(i64 %size, i8* nocapture <ptr>)
+ llvm::Constant *LifetimeEndFn;
+
+ GlobalDecl initializedGlobalDecl;
+
+ std::unique_ptr<SanitizerMetadata> SanitizerMD;
+
+ /// @}
+
+ llvm::DenseMap<const Decl *, bool> DeferredEmptyCoverageMappingDecls;
+
+ std::unique_ptr<CoverageMappingModuleGen> CoverageMapping;
+public:
+ CodeGenModule(ASTContext &C, const CodeGenOptions &CodeGenOpts,
+ llvm::Module &M, const llvm::DataLayout &TD,
+ DiagnosticsEngine &Diags,
+ CoverageSourceInfo *CoverageInfo = nullptr);
+
+ ~CodeGenModule();
+
+ void clear();
+
+ /// Finalize LLVM code generation.
+ void Release();
+
+ /// Return a reference to the configured Objective-C runtime.
+ CGObjCRuntime &getObjCRuntime() {
+ if (!ObjCRuntime) createObjCRuntime();
+ return *ObjCRuntime;
+ }
+
+ /// Return true iff an Objective-C runtime has been configured.
+ bool hasObjCRuntime() { return !!ObjCRuntime; }
+
+ /// Return a reference to the configured OpenCL runtime.
+ CGOpenCLRuntime &getOpenCLRuntime() {
+ assert(OpenCLRuntime != nullptr);
+ return *OpenCLRuntime;
+ }
+
+ /// Return a reference to the configured OpenMP runtime.
+ CGOpenMPRuntime &getOpenMPRuntime() {
+ assert(OpenMPRuntime != nullptr);
+ return *OpenMPRuntime;
+ }
+
+ /// Return a reference to the configured CUDA runtime.
+ CGCUDARuntime &getCUDARuntime() {
+ assert(CUDARuntime != nullptr);
+ return *CUDARuntime;
+ }
+
+ ARCEntrypoints &getARCEntrypoints() const {
+ assert(getLangOpts().ObjCAutoRefCount && ARCData != nullptr);
+ return *ARCData;
+ }
+
+ RREntrypoints &getRREntrypoints() const {
+ assert(RRData != nullptr);
+ return *RRData;
+ }
+
+ InstrProfStats &getPGOStats() { return PGOStats; }
+ llvm::IndexedInstrProfReader *getPGOReader() const { return PGOReader.get(); }
+
+ CoverageMappingModuleGen *getCoverageMapping() const {
+ return CoverageMapping.get();
+ }
+
+ llvm::Constant *getStaticLocalDeclAddress(const VarDecl *D) {
+ return StaticLocalDeclMap[D];
+ }
+ void setStaticLocalDeclAddress(const VarDecl *D,
+ llvm::Constant *C) {
+ StaticLocalDeclMap[D] = C;
+ }
+
+ llvm::Constant *
+ getOrCreateStaticVarDecl(const VarDecl &D,
+ llvm::GlobalValue::LinkageTypes Linkage);
+
+ llvm::GlobalVariable *getStaticLocalDeclGuardAddress(const VarDecl *D) {
+ return StaticLocalDeclGuardMap[D];
+ }
+ void setStaticLocalDeclGuardAddress(const VarDecl *D,
+ llvm::GlobalVariable *C) {
+ StaticLocalDeclGuardMap[D] = C;
+ }
+
+ bool lookupRepresentativeDecl(StringRef MangledName,
+ GlobalDecl &Result) const;
+
+ llvm::Constant *getAtomicSetterHelperFnMap(QualType Ty) {
+ return AtomicSetterHelperFnMap[Ty];
+ }
+ void setAtomicSetterHelperFnMap(QualType Ty,
+ llvm::Constant *Fn) {
+ AtomicSetterHelperFnMap[Ty] = Fn;
+ }
+
+ llvm::Constant *getAtomicGetterHelperFnMap(QualType Ty) {
+ return AtomicGetterHelperFnMap[Ty];
+ }
+ void setAtomicGetterHelperFnMap(QualType Ty,
+ llvm::Constant *Fn) {
+ AtomicGetterHelperFnMap[Ty] = Fn;
+ }
+
+ llvm::Constant *getTypeDescriptorFromMap(QualType Ty) {
+ return TypeDescriptorMap[Ty];
+ }
+ void setTypeDescriptorInMap(QualType Ty, llvm::Constant *C) {
+ TypeDescriptorMap[Ty] = C;
+ }
+
+ CGDebugInfo *getModuleDebugInfo() { return DebugInfo; }
+
+ llvm::MDNode *getNoObjCARCExceptionsMetadata() {
+ if (!NoObjCARCExceptionsMetadata)
+ NoObjCARCExceptionsMetadata = llvm::MDNode::get(getLLVMContext(), None);
+ return NoObjCARCExceptionsMetadata;
+ }
+
+ ASTContext &getContext() const { return Context; }
+ const LangOptions &getLangOpts() const { return LangOpts; }
+ const CodeGenOptions &getCodeGenOpts() const { return CodeGenOpts; }
+ llvm::Module &getModule() const { return TheModule; }
+ DiagnosticsEngine &getDiags() const { return Diags; }
+ const llvm::DataLayout &getDataLayout() const { return TheDataLayout; }
+ const TargetInfo &getTarget() const { return Target; }
+ const llvm::Triple &getTriple() const;
+ bool supportsCOMDAT() const;
+ void maybeSetTrivialComdat(const Decl &D, llvm::GlobalObject &GO);
+
+ CGCXXABI &getCXXABI() const { return *ABI; }
+ llvm::LLVMContext &getLLVMContext() { return VMContext; }
+
+ bool shouldUseTBAA() const { return TBAA != nullptr; }
+
+ const TargetCodeGenInfo &getTargetCodeGenInfo();
+
+ CodeGenTypes &getTypes() { return Types; }
+
+ CodeGenVTables &getVTables() { return VTables; }
+
+ ItaniumVTableContext &getItaniumVTableContext() {
+ return VTables.getItaniumVTableContext();
+ }
+
+ MicrosoftVTableContext &getMicrosoftVTableContext() {
+ return VTables.getMicrosoftVTableContext();
+ }
+
+ CtorList &getGlobalCtors() { return GlobalCtors; }
+ CtorList &getGlobalDtors() { return GlobalDtors; }
+
+ llvm::MDNode *getTBAAInfo(QualType QTy);
+ llvm::MDNode *getTBAAInfoForVTablePtr();
+ llvm::MDNode *getTBAAStructInfo(QualType QTy);
+ /// Return the MDNode in the type DAG for the given struct type.
+ llvm::MDNode *getTBAAStructTypeInfo(QualType QTy);
+ /// Return the path-aware tag for given base type, access node and offset.
+ llvm::MDNode *getTBAAStructTagInfo(QualType BaseTy, llvm::MDNode *AccessN,
+ uint64_t O);
+
+ bool isTypeConstant(QualType QTy, bool ExcludeCtorDtor);
+
+ bool isPaddedAtomicType(QualType type);
+ bool isPaddedAtomicType(const AtomicType *type);
+
+ /// Decorate the instruction with a TBAA tag. For scalar TBAA, the tag
+ /// is the same as the type. For struct-path aware TBAA, the tag
+ /// is different from the type: base type, access type and offset.
+ /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
+ void DecorateInstruction(llvm::Instruction *Inst,
+ llvm::MDNode *TBAAInfo,
+ bool ConvertTypeToTag = true);
+
+ /// Emit the given number of characters as a value of type size_t.
+ llvm::ConstantInt *getSize(CharUnits numChars);
+
+ /// Set the visibility for the given LLVM GlobalValue.
+ void setGlobalVisibility(llvm::GlobalValue *GV, const NamedDecl *D) const;
+
+ /// Set the TLS mode for the given LLVM GlobalValue for the thread-local
+ /// variable declaration D.
+ void setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const;
+
+ static llvm::GlobalValue::VisibilityTypes GetLLVMVisibility(Visibility V) {
+ switch (V) {
+ case DefaultVisibility: return llvm::GlobalValue::DefaultVisibility;
+ case HiddenVisibility: return llvm::GlobalValue::HiddenVisibility;
+ case ProtectedVisibility: return llvm::GlobalValue::ProtectedVisibility;
+ }
+ llvm_unreachable("unknown visibility!");
+ }
+
+ llvm::Constant *GetAddrOfGlobal(GlobalDecl GD) {
+ if (isa<CXXConstructorDecl>(GD.getDecl()))
+ return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()),
+ getFromCtorType(GD.getCtorType()));
+ else if (isa<CXXDestructorDecl>(GD.getDecl()))
+ return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()),
+ getFromDtorType(GD.getDtorType()));
+ else if (isa<FunctionDecl>(GD.getDecl()))
+ return GetAddrOfFunction(GD);
+ else
+ return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl()));
+ }
+
+ /// Will return a global variable of the given type. If a variable with a
+ /// different type already exists then a new variable with the right type
+ /// will be created and all uses of the old variable will be replaced with a
+ /// bitcast to the new variable.
+ llvm::GlobalVariable *
+ CreateOrReplaceCXXRuntimeVariable(StringRef Name, llvm::Type *Ty,
+ llvm::GlobalValue::LinkageTypes Linkage);
+
+ llvm::Function *
+ CreateGlobalInitOrDestructFunction(llvm::FunctionType *ty, const Twine &name,
+ SourceLocation Loc = SourceLocation(),
+ bool TLS = false);
+
+ /// Return the address space of the underlying global variable for D, as
+ /// determined by its declaration. Normally this is the same as the address
+ /// space of D's type, but in CUDA, address spaces are associated with
+ /// declarations, not types.
+ unsigned GetGlobalVarAddressSpace(const VarDecl *D, unsigned AddrSpace);
+
+ /// Return the llvm::Constant for the address of the given global variable.
+ /// If Ty is non-null and if the global doesn't exist, then it will be greated
+ /// with the specified type instead of whatever the normal requested type
+ /// would be.
+ llvm::Constant *GetAddrOfGlobalVar(const VarDecl *D,
+ llvm::Type *Ty = nullptr);
+
+ /// Return the address of the given function. If Ty is non-null, then this
+ /// function will use the specified type if it has to create it.
+ llvm::Constant *GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty = 0,
+ bool ForVTable = false,
+ bool DontDefer = false);
+
+ /// Get the address of the RTTI descriptor for the given type.
+ llvm::Constant *GetAddrOfRTTIDescriptor(QualType Ty, bool ForEH = false);
+
+ llvm::Constant *getAddrOfCXXCatchHandlerType(QualType Ty,
+ QualType CatchHandlerType);
+
+ /// Get the address of a uuid descriptor .
+ llvm::Constant *GetAddrOfUuidDescriptor(const CXXUuidofExpr* E);
+
+ /// Get the address of the thunk for the given global decl.
+ llvm::Constant *GetAddrOfThunk(GlobalDecl GD, const ThunkInfo &Thunk);
+
+ /// Get a reference to the target of VD.
+ llvm::Constant *GetWeakRefReference(const ValueDecl *VD);
+
+ /// Returns the offset from a derived class to a class. Returns null if the
+ /// offset is 0.
+ llvm::Constant *
+ GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
+ CastExpr::path_const_iterator PathBegin,
+ CastExpr::path_const_iterator PathEnd);
+
+ /// A pair of helper functions for a __block variable.
+ class ByrefHelpers : public llvm::FoldingSetNode {
+ public:
+ llvm::Constant *CopyHelper;
+ llvm::Constant *DisposeHelper;
+
+ /// The alignment of the field. This is important because
+ /// different offsets to the field within the byref struct need to
+ /// have different helper functions.
+ CharUnits Alignment;
+
+ ByrefHelpers(CharUnits alignment) : Alignment(alignment) {}
+ virtual ~ByrefHelpers();
+
+ void Profile(llvm::FoldingSetNodeID &id) const {
+ id.AddInteger(Alignment.getQuantity());
+ profileImpl(id);
+ }
+ virtual void profileImpl(llvm::FoldingSetNodeID &id) const = 0;
+
+ virtual bool needsCopy() const { return true; }
+ virtual void emitCopy(CodeGenFunction &CGF,
+ llvm::Value *dest, llvm::Value *src) = 0;
+
+ virtual bool needsDispose() const { return true; }
+ virtual void emitDispose(CodeGenFunction &CGF, llvm::Value *field) = 0;
+ };
+
+ llvm::FoldingSet<ByrefHelpers> ByrefHelpersCache;
+
+ /// Fetches the global unique block count.
+ int getUniqueBlockCount() { return ++Block.GlobalUniqueCount; }
+
+ /// Fetches the type of a generic block descriptor.
+ llvm::Type *getBlockDescriptorType();
+
+ /// The type of a generic block literal.
+ llvm::Type *getGenericBlockLiteralType();
+
+ /// Gets the address of a block which requires no captures.
+ llvm::Constant *GetAddrOfGlobalBlock(const BlockExpr *BE, const char *);
+
+ /// Return a pointer to a constant CFString object for the given string.
+ llvm::Constant *GetAddrOfConstantCFString(const StringLiteral *Literal);
+
+ /// Return a pointer to a constant NSString object for the given string. Or a
+ /// user defined String object as defined via
+ /// -fconstant-string-class=class_name option.
+ llvm::GlobalVariable *GetAddrOfConstantString(const StringLiteral *Literal);
+
+ /// Return a constant array for the given string.
+ llvm::Constant *GetConstantArrayFromStringLiteral(const StringLiteral *E);
+
+ /// Return a pointer to a constant array for the given string literal.
+ llvm::GlobalVariable *
+ GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
+ StringRef Name = ".str");
+
+ /// Return a pointer to a constant array for the given ObjCEncodeExpr node.
+ llvm::GlobalVariable *
+ GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *);
+
+ /// Returns a pointer to a character array containing the literal and a
+ /// terminating '\0' character. The result has pointer to array type.
+ ///
+ /// \param GlobalName If provided, the name to use for the global (if one is
+ /// created).
+ llvm::GlobalVariable *
+ GetAddrOfConstantCString(const std::string &Str,
+ const char *GlobalName = nullptr,
+ unsigned Alignment = 0);
+
+ /// Returns a pointer to a constant global variable for the given file-scope
+ /// compound literal expression.
+ llvm::Constant *GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr*E);
+
+ /// \brief Returns a pointer to a global variable representing a temporary
+ /// with static or thread storage duration.
+ llvm::Constant *GetAddrOfGlobalTemporary(const MaterializeTemporaryExpr *E,
+ const Expr *Inner);
+
+ /// \brief Retrieve the record type that describes the state of an
+ /// Objective-C fast enumeration loop (for..in).
+ QualType getObjCFastEnumerationStateType();
+
+ // Produce code for this constructor/destructor. This method doesn't try
+ // to apply any ABI rules about which other constructors/destructors
+ // are needed or if they are alias to each other.
+ llvm::Function *codegenCXXStructor(const CXXMethodDecl *MD,
+ StructorType Type);
+
+ /// Return the address of the constructor/destructor of the given type.
+ llvm::GlobalValue *
+ getAddrOfCXXStructor(const CXXMethodDecl *MD, StructorType Type,
+ const CGFunctionInfo *FnInfo = nullptr,
+ llvm::FunctionType *FnType = nullptr,
+ bool DontDefer = false);
+
+ /// Given a builtin id for a function like "__builtin_fabsf", return a
+ /// Function* for "fabsf".
+ llvm::Value *getBuiltinLibFunction(const FunctionDecl *FD,
+ unsigned BuiltinID);
+
+ llvm::Function *getIntrinsic(unsigned IID, ArrayRef<llvm::Type*> Tys = None);
+
+ /// Emit code for a single top level declaration.
+ void EmitTopLevelDecl(Decl *D);
+
+ /// \brief Stored a deferred empty coverage mapping for an unused
+ /// and thus uninstrumented top level declaration.
+ void AddDeferredUnusedCoverageMapping(Decl *D);
+
+ /// \brief Remove the deferred empty coverage mapping as this
+ /// declaration is actually instrumented.
+ void ClearUnusedCoverageMapping(const Decl *D);
+
+ /// \brief Emit all the deferred coverage mappings
+ /// for the uninstrumented functions.
+ void EmitDeferredUnusedCoverageMappings();
+
+ /// Tell the consumer that this variable has been instantiated.
+ void HandleCXXStaticMemberVarInstantiation(VarDecl *VD);
+
+ /// \brief If the declaration has internal linkage but is inside an
+ /// extern "C" linkage specification, prepare to emit an alias for it
+ /// to the expected name.
+ template<typename SomeDecl>
+ void MaybeHandleStaticInExternC(const SomeDecl *D, llvm::GlobalValue *GV);
+
+ /// Add a global to a list to be added to the llvm.used metadata.
+ void addUsedGlobal(llvm::GlobalValue *GV);
+
+ /// Add a global to a list to be added to the llvm.compiler.used metadata.
+ void addCompilerUsedGlobal(llvm::GlobalValue *GV);
+
+ /// Add a destructor and object to add to the C++ global destructor function.
+ void AddCXXDtorEntry(llvm::Constant *DtorFn, llvm::Constant *Object) {
+ CXXGlobalDtors.push_back(std::make_pair(DtorFn, Object));
+ }
+
+ /// Create a new runtime function with the specified type and name.
+ llvm::Constant *CreateRuntimeFunction(llvm::FunctionType *Ty,
+ StringRef Name,
+ llvm::AttributeSet ExtraAttrs =
+ llvm::AttributeSet());
+ /// Create a new compiler builtin function with the specified type and name.
+ llvm::Constant *CreateBuiltinFunction(llvm::FunctionType *Ty,
+ StringRef Name,
+ llvm::AttributeSet ExtraAttrs =
+ llvm::AttributeSet());
+ /// Create a new runtime global variable with the specified type and name.
+ llvm::Constant *CreateRuntimeVariable(llvm::Type *Ty,
+ StringRef Name);
+
+ ///@name Custom Blocks Runtime Interfaces
+ ///@{
+
+ llvm::Constant *getNSConcreteGlobalBlock();
+ llvm::Constant *getNSConcreteStackBlock();
+ llvm::Constant *getBlockObjectAssign();
+ llvm::Constant *getBlockObjectDispose();
+
+ ///@}
+
+ llvm::Constant *getLLVMLifetimeStartFn();
+ llvm::Constant *getLLVMLifetimeEndFn();
+
+ // Make sure that this type is translated.
+ void UpdateCompletedType(const TagDecl *TD);
+
+ llvm::Constant *getMemberPointerConstant(const UnaryOperator *e);
+
+ /// Try to emit the initializer for the given declaration as a constant;
+ /// returns 0 if the expression cannot be emitted as a constant.
+ llvm::Constant *EmitConstantInit(const VarDecl &D,
+ CodeGenFunction *CGF = nullptr);
+
+ /// Try to emit the given expression as a constant; returns 0 if the
+ /// expression cannot be emitted as a constant.
+ llvm::Constant *EmitConstantExpr(const Expr *E, QualType DestType,
+ CodeGenFunction *CGF = nullptr);
+
+ /// Emit the given constant value as a constant, in the type's scalar
+ /// representation.
+ llvm::Constant *EmitConstantValue(const APValue &Value, QualType DestType,
+ CodeGenFunction *CGF = nullptr);
+
+ /// Emit the given constant value as a constant, in the type's memory
+ /// representation.
+ llvm::Constant *EmitConstantValueForMemory(const APValue &Value,
+ QualType DestType,
+ CodeGenFunction *CGF = nullptr);
+
+ /// Return the result of value-initializing the given type, i.e. a null
+ /// expression of the given type. This is usually, but not always, an LLVM
+ /// null constant.
+ llvm::Constant *EmitNullConstant(QualType T);
+
+ /// Return a null constant appropriate for zero-initializing a base class with
+ /// the given type. This is usually, but not always, an LLVM null constant.
+ llvm::Constant *EmitNullConstantForBase(const CXXRecordDecl *Record);
+
+ /// Emit a general error that something can't be done.
+ void Error(SourceLocation loc, StringRef error);
+
+ /// Print out an error that codegen doesn't support the specified stmt yet.
+ void ErrorUnsupported(const Stmt *S, const char *Type);
+
+ /// Print out an error that codegen doesn't support the specified decl yet.
+ void ErrorUnsupported(const Decl *D, const char *Type);
+
+ /// Set the attributes on the LLVM function for the given decl and function
+ /// info. This applies attributes necessary for handling the ABI as well as
+ /// user specified attributes like section.
+ void SetInternalFunctionAttributes(const Decl *D, llvm::Function *F,
+ const CGFunctionInfo &FI);
+
+ /// Set the LLVM function attributes (sext, zext, etc).
+ void SetLLVMFunctionAttributes(const Decl *D,
+ const CGFunctionInfo &Info,
+ llvm::Function *F);
+
+ /// Set the LLVM function attributes which only apply to a function
+ /// definition.
+ void SetLLVMFunctionAttributesForDefinition(const Decl *D, llvm::Function *F);
+
+ /// Return true iff the given type uses 'sret' when used as a return type.
+ bool ReturnTypeUsesSRet(const CGFunctionInfo &FI);
+
+ /// Return true iff the given type uses an argument slot when 'sret' is used
+ /// as a return type.
+ bool ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI);
+
+ /// Return true iff the given type uses 'fpret' when used as a return type.
+ bool ReturnTypeUsesFPRet(QualType ResultType);
+
+ /// Return true iff the given type uses 'fp2ret' when used as a return type.
+ bool ReturnTypeUsesFP2Ret(QualType ResultType);
+
+ /// Get the LLVM attributes and calling convention to use for a particular
+ /// function type.
+ ///
+ /// \param Info - The function type information.
+ /// \param TargetDecl - The decl these attributes are being constructed
+ /// for. If supplied the attributes applied to this decl may contribute to the
+ /// function attributes and calling convention.
+ /// \param PAL [out] - On return, the attribute list to use.
+ /// \param CallingConv [out] - On return, the LLVM calling convention to use.
+ void ConstructAttributeList(const CGFunctionInfo &Info,
+ const Decl *TargetDecl,
+ AttributeListType &PAL,
+ unsigned &CallingConv,
+ bool AttrOnCallSite);
+
+ StringRef getMangledName(GlobalDecl GD);
+ StringRef getBlockMangledName(GlobalDecl GD, const BlockDecl *BD);
+
+ void EmitTentativeDefinition(const VarDecl *D);
+
+ void EmitVTable(CXXRecordDecl *Class);
+
+ /// Emit the RTTI descriptors for the builtin types.
+ void EmitFundamentalRTTIDescriptors();
+
+ /// \brief Appends Opts to the "Linker Options" metadata value.
+ void AppendLinkerOptions(StringRef Opts);
+
+ /// \brief Appends a detect mismatch command to the linker options.
+ void AddDetectMismatch(StringRef Name, StringRef Value);
+
+ /// \brief Appends a dependent lib to the "Linker Options" metadata value.
+ void AddDependentLib(StringRef Lib);
+
+ llvm::GlobalVariable::LinkageTypes getFunctionLinkage(GlobalDecl GD);
+
+ void setFunctionLinkage(GlobalDecl GD, llvm::Function *F) {
+ F->setLinkage(getFunctionLinkage(GD));
+ }
+
+ /// Return the appropriate linkage for the vtable, VTT, and type information
+ /// of the given class.
+ llvm::GlobalVariable::LinkageTypes getVTableLinkage(const CXXRecordDecl *RD);
+
+ /// Return the store size, in character units, of the given LLVM type.
+ CharUnits GetTargetTypeStoreSize(llvm::Type *Ty) const;
+
+ /// Returns LLVM linkage for a declarator.
+ llvm::GlobalValue::LinkageTypes
+ getLLVMLinkageForDeclarator(const DeclaratorDecl *D, GVALinkage Linkage,
+ bool IsConstantVariable);
+
+ /// Returns LLVM linkage for a declarator.
+ llvm::GlobalValue::LinkageTypes
+ getLLVMLinkageVarDefinition(const VarDecl *VD, bool IsConstant);
+
+ /// Emit all the global annotations.
+ void EmitGlobalAnnotations();
+
+ /// Emit an annotation string.
+ llvm::Constant *EmitAnnotationString(StringRef Str);
+
+ /// Emit the annotation's translation unit.
+ llvm::Constant *EmitAnnotationUnit(SourceLocation Loc);
+
+ /// Emit the annotation line number.
+ llvm::Constant *EmitAnnotationLineNo(SourceLocation L);
+
+ /// Generate the llvm::ConstantStruct which contains the annotation
+ /// information for a given GlobalValue. The annotation struct is
+ /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the
+ /// GlobalValue being annotated. The second field is the constant string
+ /// created from the AnnotateAttr's annotation. The third field is a constant
+ /// string containing the name of the translation unit. The fourth field is
+ /// the line number in the file of the annotated value declaration.
+ llvm::Constant *EmitAnnotateAttr(llvm::GlobalValue *GV,
+ const AnnotateAttr *AA,
+ SourceLocation L);
+
+ /// Add global annotations that are set on D, for the global GV. Those
+ /// annotations are emitted during finalization of the LLVM code.
+ void AddGlobalAnnotations(const ValueDecl *D, llvm::GlobalValue *GV);
+
+ bool isInSanitizerBlacklist(llvm::Function *Fn, SourceLocation Loc) const;
+
+ bool isInSanitizerBlacklist(llvm::GlobalVariable *GV, SourceLocation Loc,
+ QualType Ty,
+ StringRef Category = StringRef()) const;
+
+ SanitizerMetadata *getSanitizerMetadata() {
+ return SanitizerMD.get();
+ }
+
+ void addDeferredVTable(const CXXRecordDecl *RD) {
+ DeferredVTables.push_back(RD);
+ }
+
+ /// Emit code for a singal global function or var decl. Forward declarations
+ /// are emitted lazily.
+ void EmitGlobal(GlobalDecl D);
+
+ bool TryEmitDefinitionAsAlias(GlobalDecl Alias, GlobalDecl Target,
+ bool InEveryTU);
+ bool TryEmitBaseDestructorAsAlias(const CXXDestructorDecl *D);
+
+ /// Set attributes for a global definition.
+ void setFunctionDefinitionAttributes(const FunctionDecl *D,
+ llvm::Function *F);
+
+ llvm::GlobalValue *GetGlobalValue(StringRef Ref);
+
+ /// Set attributes which are common to any form of a global definition (alias,
+ /// Objective-C method, function, global variable).
+ ///
+ /// NOTE: This should only be called for definitions.
+ void SetCommonAttributes(const Decl *D, llvm::GlobalValue *GV);
+
+ /// Set attributes which must be preserved by an alias. This includes common
+ /// attributes (i.e. it includes a call to SetCommonAttributes).
+ ///
+ /// NOTE: This should only be called for definitions.
+ void setAliasAttributes(const Decl *D, llvm::GlobalValue *GV);
+
+ void addReplacement(StringRef Name, llvm::Constant *C);
+
+ /// \brief Emit a code for threadprivate directive.
+ /// \param D Threadprivate declaration.
+ void EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D);
+
+ /// Emit bit set entries for the given vtable using the given layout if
+ /// vptr CFI is enabled.
+ void EmitVTableBitSetEntries(llvm::GlobalVariable *VTable,
+ const VTableLayout &VTLayout);
+
+ /// \breif Get the declaration of std::terminate for the platform.
+ llvm::Constant *getTerminateFn();
+
+private:
+ llvm::Constant *
+ GetOrCreateLLVMFunction(StringRef MangledName, llvm::Type *Ty, GlobalDecl D,
+ bool ForVTable, bool DontDefer = false,
+ bool IsThunk = false,
+ llvm::AttributeSet ExtraAttrs = llvm::AttributeSet());
+
+ llvm::Constant *GetOrCreateLLVMGlobal(StringRef MangledName,
+ llvm::PointerType *PTy,
+ const VarDecl *D);
+
+ void setNonAliasAttributes(const Decl *D, llvm::GlobalObject *GO);
+
+ /// Set function attributes for a function declaration.
+ void SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
+ bool IsIncompleteFunction, bool IsThunk);
+
+ void EmitGlobalDefinition(GlobalDecl D, llvm::GlobalValue *GV = nullptr);
+
+ void EmitGlobalFunctionDefinition(GlobalDecl GD, llvm::GlobalValue *GV);
+ void EmitGlobalVarDefinition(const VarDecl *D);
+ void EmitAliasDefinition(GlobalDecl GD);
+ void EmitObjCPropertyImplementations(const ObjCImplementationDecl *D);
+ void EmitObjCIvarInitializations(ObjCImplementationDecl *D);
+
+ // C++ related functions.
+
+ void EmitNamespace(const NamespaceDecl *D);
+ void EmitLinkageSpec(const LinkageSpecDecl *D);
+ void CompleteDIClassType(const CXXMethodDecl* D);
+
+ /// \brief Emit the function that initializes C++ thread_local variables.
+ void EmitCXXThreadLocalInitFunc();
+
+ /// Emit the function that initializes C++ globals.
+ void EmitCXXGlobalInitFunc();
+
+ /// Emit the function that destroys C++ globals.
+ void EmitCXXGlobalDtorFunc();
+
+ /// Emit the function that initializes the specified global (if PerformInit is
+ /// true) and registers its destructor.
+ void EmitCXXGlobalVarDeclInitFunc(const VarDecl *D,
+ llvm::GlobalVariable *Addr,
+ bool PerformInit);
+
+ void EmitPointerToInitFunc(const VarDecl *VD, llvm::GlobalVariable *Addr,
+ llvm::Function *InitFunc, InitSegAttr *ISA);
+
+ // FIXME: Hardcoding priority here is gross.
+ void AddGlobalCtor(llvm::Function *Ctor, int Priority = 65535,
+ llvm::Constant *AssociatedData = 0);
+ void AddGlobalDtor(llvm::Function *Dtor, int Priority = 65535);
+
+ /// Generates a global array of functions and priorities using the given list
+ /// and name. This array will have appending linkage and is suitable for use
+ /// as a LLVM constructor or destructor array.
+ void EmitCtorList(const CtorList &Fns, const char *GlobalName);
+
+ /// Emit the RTTI descriptors for the given type.
+ void EmitFundamentalRTTIDescriptor(QualType Type);
+
+ /// Emit any needed decls for which code generation was deferred.
+ void EmitDeferred();
+
+ /// Call replaceAllUsesWith on all pairs in Replacements.
+ void applyReplacements();
+
+ void checkAliases();
+
+ /// Emit any vtables which we deferred and still have a use for.
+ void EmitDeferredVTables();
+
+ /// Emit the llvm.used and llvm.compiler.used metadata.
+ void emitLLVMUsed();
+
+ /// \brief Emit the link options introduced by imported modules.
+ void EmitModuleLinkOptions();
+
+ /// \brief Emit aliases for internal-linkage declarations inside "C" language
+ /// linkage specifications, giving them the "expected" name where possible.
+ void EmitStaticExternCAliases();
+
+ void EmitDeclMetadata();
+
+ /// \brief Emit the Clang version as llvm.ident metadata.
+ void EmitVersionIdentMetadata();
+
+ /// Emits target specific Metadata for global declarations.
+ void EmitTargetMetadata();
+
+ /// Emit the llvm.gcov metadata used to tell LLVM where to emit the .gcno and
+ /// .gcda files in a way that persists in .bc files.
+ void EmitCoverageFile();
+
+ /// Emits the initializer for a uuidof string.
+ llvm::Constant *EmitUuidofInitializer(StringRef uuidstr);
+
+ /// Determine whether the definition must be emitted; if this returns \c
+ /// false, the definition can be emitted lazily if it's used.
+ bool MustBeEmitted(const ValueDecl *D);
+
+ /// Determine whether the definition can be emitted eagerly, or should be
+ /// delayed until the end of the translation unit. This is relevant for
+ /// definitions whose linkage can change, e.g. implicit function instantions
+ /// which may later be explicitly instantiated.
+ bool MayBeEmittedEagerly(const ValueDecl *D);
+
+ /// Check whether we can use a "simpler", more core exceptions personality
+ /// function.
+ void SimplifyPersonality();
+};
+} // end namespace CodeGen
+} // end namespace clang
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CodeGenPGO.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CodeGenPGO.cpp
new file mode 100644
index 0000000..c972443
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CodeGenPGO.cpp
@@ -0,0 +1,881 @@
+//===--- CodeGenPGO.cpp - PGO Instrumentation for LLVM CodeGen --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Instrumentation-based profile-guided optimization
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenPGO.h"
+#include "CodeGenFunction.h"
+#include "CoverageMappingGen.h"
+#include "clang/AST/RecursiveASTVisitor.h"
+#include "clang/AST/StmtVisitor.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/ProfileData/InstrProfReader.h"
+#include "llvm/Support/Endian.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/MD5.h"
+
+using namespace clang;
+using namespace CodeGen;
+
+void CodeGenPGO::setFuncName(StringRef Name,
+ llvm::GlobalValue::LinkageTypes Linkage) {
+ StringRef RawFuncName = Name;
+
+ // Function names may be prefixed with a binary '1' to indicate
+ // that the backend should not modify the symbols due to any platform
+ // naming convention. Do not include that '1' in the PGO profile name.
+ if (RawFuncName[0] == '\1')
+ RawFuncName = RawFuncName.substr(1);
+
+ FuncName = RawFuncName;
+ if (llvm::GlobalValue::isLocalLinkage(Linkage)) {
+ // For local symbols, prepend the main file name to distinguish them.
+ // Do not include the full path in the file name since there's no guarantee
+ // that it will stay the same, e.g., if the files are checked out from
+ // version control in different locations.
+ if (CGM.getCodeGenOpts().MainFileName.empty())
+ FuncName = FuncName.insert(0, "<unknown>:");
+ else
+ FuncName = FuncName.insert(0, CGM.getCodeGenOpts().MainFileName + ":");
+ }
+
+ // If we're generating a profile, create a variable for the name.
+ if (CGM.getCodeGenOpts().ProfileInstrGenerate)
+ createFuncNameVar(Linkage);
+}
+
+void CodeGenPGO::setFuncName(llvm::Function *Fn) {
+ setFuncName(Fn->getName(), Fn->getLinkage());
+}
+
+void CodeGenPGO::createFuncNameVar(llvm::GlobalValue::LinkageTypes Linkage) {
+ // We generally want to match the function's linkage, but available_externally
+ // and extern_weak both have the wrong semantics, and anything that doesn't
+ // need to link across compilation units doesn't need to be visible at all.
+ if (Linkage == llvm::GlobalValue::ExternalWeakLinkage)
+ Linkage = llvm::GlobalValue::LinkOnceAnyLinkage;
+ else if (Linkage == llvm::GlobalValue::AvailableExternallyLinkage)
+ Linkage = llvm::GlobalValue::LinkOnceODRLinkage;
+ else if (Linkage == llvm::GlobalValue::InternalLinkage ||
+ Linkage == llvm::GlobalValue::ExternalLinkage)
+ Linkage = llvm::GlobalValue::PrivateLinkage;
+
+ auto *Value =
+ llvm::ConstantDataArray::getString(CGM.getLLVMContext(), FuncName, false);
+ FuncNameVar =
+ new llvm::GlobalVariable(CGM.getModule(), Value->getType(), true, Linkage,
+ Value, "__llvm_profile_name_" + FuncName);
+
+ // Hide the symbol so that we correctly get a copy for each executable.
+ if (!llvm::GlobalValue::isLocalLinkage(FuncNameVar->getLinkage()))
+ FuncNameVar->setVisibility(llvm::GlobalValue::HiddenVisibility);
+}
+
+namespace {
+/// \brief Stable hasher for PGO region counters.
+///
+/// PGOHash produces a stable hash of a given function's control flow.
+///
+/// Changing the output of this hash will invalidate all previously generated
+/// profiles -- i.e., don't do it.
+///
+/// \note When this hash does eventually change (years?), we still need to
+/// support old hashes. We'll need to pull in the version number from the
+/// profile data format and use the matching hash function.
+class PGOHash {
+ uint64_t Working;
+ unsigned Count;
+ llvm::MD5 MD5;
+
+ static const int NumBitsPerType = 6;
+ static const unsigned NumTypesPerWord = sizeof(uint64_t) * 8 / NumBitsPerType;
+ static const unsigned TooBig = 1u << NumBitsPerType;
+
+public:
+ /// \brief Hash values for AST nodes.
+ ///
+ /// Distinct values for AST nodes that have region counters attached.
+ ///
+ /// These values must be stable. All new members must be added at the end,
+ /// and no members should be removed. Changing the enumeration value for an
+ /// AST node will affect the hash of every function that contains that node.
+ enum HashType : unsigned char {
+ None = 0,
+ LabelStmt = 1,
+ WhileStmt,
+ DoStmt,
+ ForStmt,
+ CXXForRangeStmt,
+ ObjCForCollectionStmt,
+ SwitchStmt,
+ CaseStmt,
+ DefaultStmt,
+ IfStmt,
+ CXXTryStmt,
+ CXXCatchStmt,
+ ConditionalOperator,
+ BinaryOperatorLAnd,
+ BinaryOperatorLOr,
+ BinaryConditionalOperator,
+
+ // Keep this last. It's for the static assert that follows.
+ LastHashType
+ };
+ static_assert(LastHashType <= TooBig, "Too many types in HashType");
+
+ // TODO: When this format changes, take in a version number here, and use the
+ // old hash calculation for file formats that used the old hash.
+ PGOHash() : Working(0), Count(0) {}
+ void combine(HashType Type);
+ uint64_t finalize();
+};
+const int PGOHash::NumBitsPerType;
+const unsigned PGOHash::NumTypesPerWord;
+const unsigned PGOHash::TooBig;
+
+/// A RecursiveASTVisitor that fills a map of statements to PGO counters.
+struct MapRegionCounters : public RecursiveASTVisitor<MapRegionCounters> {
+ /// The next counter value to assign.
+ unsigned NextCounter;
+ /// The function hash.
+ PGOHash Hash;
+ /// The map of statements to counters.
+ llvm::DenseMap<const Stmt *, unsigned> &CounterMap;
+
+ MapRegionCounters(llvm::DenseMap<const Stmt *, unsigned> &CounterMap)
+ : NextCounter(0), CounterMap(CounterMap) {}
+
+ // Blocks and lambdas are handled as separate functions, so we need not
+ // traverse them in the parent context.
+ bool TraverseBlockExpr(BlockExpr *BE) { return true; }
+ bool TraverseLambdaBody(LambdaExpr *LE) { return true; }
+ bool TraverseCapturedStmt(CapturedStmt *CS) { return true; }
+
+ bool VisitDecl(const Decl *D) {
+ switch (D->getKind()) {
+ default:
+ break;
+ case Decl::Function:
+ case Decl::CXXMethod:
+ case Decl::CXXConstructor:
+ case Decl::CXXDestructor:
+ case Decl::CXXConversion:
+ case Decl::ObjCMethod:
+ case Decl::Block:
+ case Decl::Captured:
+ CounterMap[D->getBody()] = NextCounter++;
+ break;
+ }
+ return true;
+ }
+
+ bool VisitStmt(const Stmt *S) {
+ auto Type = getHashType(S);
+ if (Type == PGOHash::None)
+ return true;
+
+ CounterMap[S] = NextCounter++;
+ Hash.combine(Type);
+ return true;
+ }
+ PGOHash::HashType getHashType(const Stmt *S) {
+ switch (S->getStmtClass()) {
+ default:
+ break;
+ case Stmt::LabelStmtClass:
+ return PGOHash::LabelStmt;
+ case Stmt::WhileStmtClass:
+ return PGOHash::WhileStmt;
+ case Stmt::DoStmtClass:
+ return PGOHash::DoStmt;
+ case Stmt::ForStmtClass:
+ return PGOHash::ForStmt;
+ case Stmt::CXXForRangeStmtClass:
+ return PGOHash::CXXForRangeStmt;
+ case Stmt::ObjCForCollectionStmtClass:
+ return PGOHash::ObjCForCollectionStmt;
+ case Stmt::SwitchStmtClass:
+ return PGOHash::SwitchStmt;
+ case Stmt::CaseStmtClass:
+ return PGOHash::CaseStmt;
+ case Stmt::DefaultStmtClass:
+ return PGOHash::DefaultStmt;
+ case Stmt::IfStmtClass:
+ return PGOHash::IfStmt;
+ case Stmt::CXXTryStmtClass:
+ return PGOHash::CXXTryStmt;
+ case Stmt::CXXCatchStmtClass:
+ return PGOHash::CXXCatchStmt;
+ case Stmt::ConditionalOperatorClass:
+ return PGOHash::ConditionalOperator;
+ case Stmt::BinaryConditionalOperatorClass:
+ return PGOHash::BinaryConditionalOperator;
+ case Stmt::BinaryOperatorClass: {
+ const BinaryOperator *BO = cast<BinaryOperator>(S);
+ if (BO->getOpcode() == BO_LAnd)
+ return PGOHash::BinaryOperatorLAnd;
+ if (BO->getOpcode() == BO_LOr)
+ return PGOHash::BinaryOperatorLOr;
+ break;
+ }
+ }
+ return PGOHash::None;
+ }
+};
+
+/// A StmtVisitor that propagates the raw counts through the AST and
+/// records the count at statements where the value may change.
+struct ComputeRegionCounts : public ConstStmtVisitor<ComputeRegionCounts> {
+ /// PGO state.
+ CodeGenPGO &PGO;
+
+ /// A flag that is set when the current count should be recorded on the
+ /// next statement, such as at the exit of a loop.
+ bool RecordNextStmtCount;
+
+ /// The count at the current location in the traversal.
+ uint64_t CurrentCount;
+
+ /// The map of statements to count values.
+ llvm::DenseMap<const Stmt *, uint64_t> &CountMap;
+
+ /// BreakContinueStack - Keep counts of breaks and continues inside loops.
+ struct BreakContinue {
+ uint64_t BreakCount;
+ uint64_t ContinueCount;
+ BreakContinue() : BreakCount(0), ContinueCount(0) {}
+ };
+ SmallVector<BreakContinue, 8> BreakContinueStack;
+
+ ComputeRegionCounts(llvm::DenseMap<const Stmt *, uint64_t> &CountMap,
+ CodeGenPGO &PGO)
+ : PGO(PGO), RecordNextStmtCount(false), CountMap(CountMap) {}
+
+ void RecordStmtCount(const Stmt *S) {
+ if (RecordNextStmtCount) {
+ CountMap[S] = CurrentCount;
+ RecordNextStmtCount = false;
+ }
+ }
+
+ /// Set and return the current count.
+ uint64_t setCount(uint64_t Count) {
+ CurrentCount = Count;
+ return Count;
+ }
+
+ void VisitStmt(const Stmt *S) {
+ RecordStmtCount(S);
+ for (Stmt::const_child_range I = S->children(); I; ++I) {
+ if (*I)
+ this->Visit(*I);
+ }
+ }
+
+ void VisitFunctionDecl(const FunctionDecl *D) {
+ // Counter tracks entry to the function body.
+ uint64_t BodyCount = setCount(PGO.getRegionCount(D->getBody()));
+ CountMap[D->getBody()] = BodyCount;
+ Visit(D->getBody());
+ }
+
+ // Skip lambda expressions. We visit these as FunctionDecls when we're
+ // generating them and aren't interested in the body when generating a
+ // parent context.
+ void VisitLambdaExpr(const LambdaExpr *LE) {}
+
+ void VisitCapturedDecl(const CapturedDecl *D) {
+ // Counter tracks entry to the capture body.
+ uint64_t BodyCount = setCount(PGO.getRegionCount(D->getBody()));
+ CountMap[D->getBody()] = BodyCount;
+ Visit(D->getBody());
+ }
+
+ void VisitObjCMethodDecl(const ObjCMethodDecl *D) {
+ // Counter tracks entry to the method body.
+ uint64_t BodyCount = setCount(PGO.getRegionCount(D->getBody()));
+ CountMap[D->getBody()] = BodyCount;
+ Visit(D->getBody());
+ }
+
+ void VisitBlockDecl(const BlockDecl *D) {
+ // Counter tracks entry to the block body.
+ uint64_t BodyCount = setCount(PGO.getRegionCount(D->getBody()));
+ CountMap[D->getBody()] = BodyCount;
+ Visit(D->getBody());
+ }
+
+ void VisitReturnStmt(const ReturnStmt *S) {
+ RecordStmtCount(S);
+ if (S->getRetValue())
+ Visit(S->getRetValue());
+ CurrentCount = 0;
+ RecordNextStmtCount = true;
+ }
+
+ void VisitCXXThrowExpr(const CXXThrowExpr *E) {
+ RecordStmtCount(E);
+ if (E->getSubExpr())
+ Visit(E->getSubExpr());
+ CurrentCount = 0;
+ RecordNextStmtCount = true;
+ }
+
+ void VisitGotoStmt(const GotoStmt *S) {
+ RecordStmtCount(S);
+ CurrentCount = 0;
+ RecordNextStmtCount = true;
+ }
+
+ void VisitLabelStmt(const LabelStmt *S) {
+ RecordNextStmtCount = false;
+ // Counter tracks the block following the label.
+ uint64_t BlockCount = setCount(PGO.getRegionCount(S));
+ CountMap[S] = BlockCount;
+ Visit(S->getSubStmt());
+ }
+
+ void VisitBreakStmt(const BreakStmt *S) {
+ RecordStmtCount(S);
+ assert(!BreakContinueStack.empty() && "break not in a loop or switch!");
+ BreakContinueStack.back().BreakCount += CurrentCount;
+ CurrentCount = 0;
+ RecordNextStmtCount = true;
+ }
+
+ void VisitContinueStmt(const ContinueStmt *S) {
+ RecordStmtCount(S);
+ assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
+ BreakContinueStack.back().ContinueCount += CurrentCount;
+ CurrentCount = 0;
+ RecordNextStmtCount = true;
+ }
+
+ void VisitWhileStmt(const WhileStmt *S) {
+ RecordStmtCount(S);
+ uint64_t ParentCount = CurrentCount;
+
+ BreakContinueStack.push_back(BreakContinue());
+ // Visit the body region first so the break/continue adjustments can be
+ // included when visiting the condition.
+ uint64_t BodyCount = setCount(PGO.getRegionCount(S));
+ CountMap[S->getBody()] = CurrentCount;
+ Visit(S->getBody());
+ uint64_t BackedgeCount = CurrentCount;
+
+ // ...then go back and propagate counts through the condition. The count
+ // at the start of the condition is the sum of the incoming edges,
+ // the backedge from the end of the loop body, and the edges from
+ // continue statements.
+ BreakContinue BC = BreakContinueStack.pop_back_val();
+ uint64_t CondCount =
+ setCount(ParentCount + BackedgeCount + BC.ContinueCount);
+ CountMap[S->getCond()] = CondCount;
+ Visit(S->getCond());
+ setCount(BC.BreakCount + CondCount - BodyCount);
+ RecordNextStmtCount = true;
+ }
+
+ void VisitDoStmt(const DoStmt *S) {
+ RecordStmtCount(S);
+ uint64_t LoopCount = PGO.getRegionCount(S);
+
+ BreakContinueStack.push_back(BreakContinue());
+ // The count doesn't include the fallthrough from the parent scope. Add it.
+ uint64_t BodyCount = setCount(LoopCount + CurrentCount);
+ CountMap[S->getBody()] = BodyCount;
+ Visit(S->getBody());
+ uint64_t BackedgeCount = CurrentCount;
+
+ BreakContinue BC = BreakContinueStack.pop_back_val();
+ // The count at the start of the condition is equal to the count at the
+ // end of the body, plus any continues.
+ uint64_t CondCount = setCount(BackedgeCount + BC.ContinueCount);
+ CountMap[S->getCond()] = CondCount;
+ Visit(S->getCond());
+ setCount(BC.BreakCount + CondCount - LoopCount);
+ RecordNextStmtCount = true;
+ }
+
+ void VisitForStmt(const ForStmt *S) {
+ RecordStmtCount(S);
+ if (S->getInit())
+ Visit(S->getInit());
+
+ uint64_t ParentCount = CurrentCount;
+
+ BreakContinueStack.push_back(BreakContinue());
+ // Visit the body region first. (This is basically the same as a while
+ // loop; see further comments in VisitWhileStmt.)
+ uint64_t BodyCount = setCount(PGO.getRegionCount(S));
+ CountMap[S->getBody()] = BodyCount;
+ Visit(S->getBody());
+ uint64_t BackedgeCount = CurrentCount;
+ BreakContinue BC = BreakContinueStack.pop_back_val();
+
+ // The increment is essentially part of the body but it needs to include
+ // the count for all the continue statements.
+ if (S->getInc()) {
+ uint64_t IncCount = setCount(BackedgeCount + BC.ContinueCount);
+ CountMap[S->getInc()] = IncCount;
+ Visit(S->getInc());
+ }
+
+ // ...then go back and propagate counts through the condition.
+ uint64_t CondCount =
+ setCount(ParentCount + BackedgeCount + BC.ContinueCount);
+ if (S->getCond()) {
+ CountMap[S->getCond()] = CondCount;
+ Visit(S->getCond());
+ }
+ setCount(BC.BreakCount + CondCount - BodyCount);
+ RecordNextStmtCount = true;
+ }
+
+ void VisitCXXForRangeStmt(const CXXForRangeStmt *S) {
+ RecordStmtCount(S);
+ Visit(S->getLoopVarStmt());
+ Visit(S->getRangeStmt());
+ Visit(S->getBeginEndStmt());
+
+ uint64_t ParentCount = CurrentCount;
+ BreakContinueStack.push_back(BreakContinue());
+ // Visit the body region first. (This is basically the same as a while
+ // loop; see further comments in VisitWhileStmt.)
+ uint64_t BodyCount = setCount(PGO.getRegionCount(S));
+ CountMap[S->getBody()] = BodyCount;
+ Visit(S->getBody());
+ uint64_t BackedgeCount = CurrentCount;
+ BreakContinue BC = BreakContinueStack.pop_back_val();
+
+ // The increment is essentially part of the body but it needs to include
+ // the count for all the continue statements.
+ uint64_t IncCount = setCount(BackedgeCount + BC.ContinueCount);
+ CountMap[S->getInc()] = IncCount;
+ Visit(S->getInc());
+
+ // ...then go back and propagate counts through the condition.
+ uint64_t CondCount =
+ setCount(ParentCount + BackedgeCount + BC.ContinueCount);
+ CountMap[S->getCond()] = CondCount;
+ Visit(S->getCond());
+ setCount(BC.BreakCount + CondCount - BodyCount);
+ RecordNextStmtCount = true;
+ }
+
+ void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) {
+ RecordStmtCount(S);
+ Visit(S->getElement());
+ uint64_t ParentCount = CurrentCount;
+ BreakContinueStack.push_back(BreakContinue());
+ // Counter tracks the body of the loop.
+ uint64_t BodyCount = setCount(PGO.getRegionCount(S));
+ CountMap[S->getBody()] = BodyCount;
+ Visit(S->getBody());
+ uint64_t BackedgeCount = CurrentCount;
+ BreakContinue BC = BreakContinueStack.pop_back_val();
+
+ setCount(BC.BreakCount + ParentCount + BackedgeCount + BC.ContinueCount -
+ BodyCount);
+ RecordNextStmtCount = true;
+ }
+
+ void VisitSwitchStmt(const SwitchStmt *S) {
+ RecordStmtCount(S);
+ Visit(S->getCond());
+ CurrentCount = 0;
+ BreakContinueStack.push_back(BreakContinue());
+ Visit(S->getBody());
+ // If the switch is inside a loop, add the continue counts.
+ BreakContinue BC = BreakContinueStack.pop_back_val();
+ if (!BreakContinueStack.empty())
+ BreakContinueStack.back().ContinueCount += BC.ContinueCount;
+ // Counter tracks the exit block of the switch.
+ setCount(PGO.getRegionCount(S));
+ RecordNextStmtCount = true;
+ }
+
+ void VisitSwitchCase(const SwitchCase *S) {
+ RecordNextStmtCount = false;
+ // Counter for this particular case. This counts only jumps from the
+ // switch header and does not include fallthrough from the case before
+ // this one.
+ uint64_t CaseCount = PGO.getRegionCount(S);
+ setCount(CurrentCount + CaseCount);
+ // We need the count without fallthrough in the mapping, so it's more useful
+ // for branch probabilities.
+ CountMap[S] = CaseCount;
+ RecordNextStmtCount = true;
+ Visit(S->getSubStmt());
+ }
+
+ void VisitIfStmt(const IfStmt *S) {
+ RecordStmtCount(S);
+ uint64_t ParentCount = CurrentCount;
+ Visit(S->getCond());
+
+ // Counter tracks the "then" part of an if statement. The count for
+ // the "else" part, if it exists, will be calculated from this counter.
+ uint64_t ThenCount = setCount(PGO.getRegionCount(S));
+ CountMap[S->getThen()] = ThenCount;
+ Visit(S->getThen());
+ uint64_t OutCount = CurrentCount;
+
+ uint64_t ElseCount = ParentCount - ThenCount;
+ if (S->getElse()) {
+ setCount(ElseCount);
+ CountMap[S->getElse()] = ElseCount;
+ Visit(S->getElse());
+ OutCount += CurrentCount;
+ } else
+ OutCount += ElseCount;
+ setCount(OutCount);
+ RecordNextStmtCount = true;
+ }
+
+ void VisitCXXTryStmt(const CXXTryStmt *S) {
+ RecordStmtCount(S);
+ Visit(S->getTryBlock());
+ for (unsigned I = 0, E = S->getNumHandlers(); I < E; ++I)
+ Visit(S->getHandler(I));
+ // Counter tracks the continuation block of the try statement.
+ setCount(PGO.getRegionCount(S));
+ RecordNextStmtCount = true;
+ }
+
+ void VisitCXXCatchStmt(const CXXCatchStmt *S) {
+ RecordNextStmtCount = false;
+ // Counter tracks the catch statement's handler block.
+ uint64_t CatchCount = setCount(PGO.getRegionCount(S));
+ CountMap[S] = CatchCount;
+ Visit(S->getHandlerBlock());
+ }
+
+ void VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
+ RecordStmtCount(E);
+ uint64_t ParentCount = CurrentCount;
+ Visit(E->getCond());
+
+ // Counter tracks the "true" part of a conditional operator. The
+ // count in the "false" part will be calculated from this counter.
+ uint64_t TrueCount = setCount(PGO.getRegionCount(E));
+ CountMap[E->getTrueExpr()] = TrueCount;
+ Visit(E->getTrueExpr());
+ uint64_t OutCount = CurrentCount;
+
+ uint64_t FalseCount = setCount(ParentCount - TrueCount);
+ CountMap[E->getFalseExpr()] = FalseCount;
+ Visit(E->getFalseExpr());
+ OutCount += CurrentCount;
+
+ setCount(OutCount);
+ RecordNextStmtCount = true;
+ }
+
+ void VisitBinLAnd(const BinaryOperator *E) {
+ RecordStmtCount(E);
+ uint64_t ParentCount = CurrentCount;
+ Visit(E->getLHS());
+ // Counter tracks the right hand side of a logical and operator.
+ uint64_t RHSCount = setCount(PGO.getRegionCount(E));
+ CountMap[E->getRHS()] = RHSCount;
+ Visit(E->getRHS());
+ setCount(ParentCount + RHSCount - CurrentCount);
+ RecordNextStmtCount = true;
+ }
+
+ void VisitBinLOr(const BinaryOperator *E) {
+ RecordStmtCount(E);
+ uint64_t ParentCount = CurrentCount;
+ Visit(E->getLHS());
+ // Counter tracks the right hand side of a logical or operator.
+ uint64_t RHSCount = setCount(PGO.getRegionCount(E));
+ CountMap[E->getRHS()] = RHSCount;
+ Visit(E->getRHS());
+ setCount(ParentCount + RHSCount - CurrentCount);
+ RecordNextStmtCount = true;
+ }
+};
+}
+
+void PGOHash::combine(HashType Type) {
+ // Check that we never combine 0 and only have six bits.
+ assert(Type && "Hash is invalid: unexpected type 0");
+ assert(unsigned(Type) < TooBig && "Hash is invalid: too many types");
+
+ // Pass through MD5 if enough work has built up.
+ if (Count && Count % NumTypesPerWord == 0) {
+ using namespace llvm::support;
+ uint64_t Swapped = endian::byte_swap<uint64_t, little>(Working);
+ MD5.update(llvm::makeArrayRef((uint8_t *)&Swapped, sizeof(Swapped)));
+ Working = 0;
+ }
+
+ // Accumulate the current type.
+ ++Count;
+ Working = Working << NumBitsPerType | Type;
+}
+
+uint64_t PGOHash::finalize() {
+ // Use Working as the hash directly if we never used MD5.
+ if (Count <= NumTypesPerWord)
+ // No need to byte swap here, since none of the math was endian-dependent.
+ // This number will be byte-swapped as required on endianness transitions,
+ // so we will see the same value on the other side.
+ return Working;
+
+ // Check for remaining work in Working.
+ if (Working)
+ MD5.update(Working);
+
+ // Finalize the MD5 and return the hash.
+ llvm::MD5::MD5Result Result;
+ MD5.final(Result);
+ using namespace llvm::support;
+ return endian::read<uint64_t, little, unaligned>(Result);
+}
+
+void CodeGenPGO::checkGlobalDecl(GlobalDecl GD) {
+ // Make sure we only emit coverage mapping for one constructor/destructor.
+ // Clang emits several functions for the constructor and the destructor of
+ // a class. Every function is instrumented, but we only want to provide
+ // coverage for one of them. Because of that we only emit the coverage mapping
+ // for the base constructor/destructor.
+ if ((isa<CXXConstructorDecl>(GD.getDecl()) &&
+ GD.getCtorType() != Ctor_Base) ||
+ (isa<CXXDestructorDecl>(GD.getDecl()) &&
+ GD.getDtorType() != Dtor_Base)) {
+ SkipCoverageMapping = true;
+ }
+}
+
+void CodeGenPGO::assignRegionCounters(const Decl *D, llvm::Function *Fn) {
+ bool InstrumentRegions = CGM.getCodeGenOpts().ProfileInstrGenerate;
+ llvm::IndexedInstrProfReader *PGOReader = CGM.getPGOReader();
+ if (!InstrumentRegions && !PGOReader)
+ return;
+ if (D->isImplicit())
+ return;
+ CGM.ClearUnusedCoverageMapping(D);
+ setFuncName(Fn);
+
+ mapRegionCounters(D);
+ if (CGM.getCodeGenOpts().CoverageMapping)
+ emitCounterRegionMapping(D);
+ if (PGOReader) {
+ SourceManager &SM = CGM.getContext().getSourceManager();
+ loadRegionCounts(PGOReader, SM.isInMainFile(D->getLocation()));
+ computeRegionCounts(D);
+ applyFunctionAttributes(PGOReader, Fn);
+ }
+}
+
+void CodeGenPGO::mapRegionCounters(const Decl *D) {
+ RegionCounterMap.reset(new llvm::DenseMap<const Stmt *, unsigned>);
+ MapRegionCounters Walker(*RegionCounterMap);
+ if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
+ Walker.TraverseDecl(const_cast<FunctionDecl *>(FD));
+ else if (const ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(D))
+ Walker.TraverseDecl(const_cast<ObjCMethodDecl *>(MD));
+ else if (const BlockDecl *BD = dyn_cast_or_null<BlockDecl>(D))
+ Walker.TraverseDecl(const_cast<BlockDecl *>(BD));
+ else if (const CapturedDecl *CD = dyn_cast_or_null<CapturedDecl>(D))
+ Walker.TraverseDecl(const_cast<CapturedDecl *>(CD));
+ assert(Walker.NextCounter > 0 && "no entry counter mapped for decl");
+ NumRegionCounters = Walker.NextCounter;
+ FunctionHash = Walker.Hash.finalize();
+}
+
+void CodeGenPGO::emitCounterRegionMapping(const Decl *D) {
+ if (SkipCoverageMapping)
+ return;
+ // Don't map the functions inside the system headers
+ auto Loc = D->getBody()->getLocStart();
+ if (CGM.getContext().getSourceManager().isInSystemHeader(Loc))
+ return;
+
+ std::string CoverageMapping;
+ llvm::raw_string_ostream OS(CoverageMapping);
+ CoverageMappingGen MappingGen(*CGM.getCoverageMapping(),
+ CGM.getContext().getSourceManager(),
+ CGM.getLangOpts(), RegionCounterMap.get());
+ MappingGen.emitCounterMapping(D, OS);
+ OS.flush();
+
+ if (CoverageMapping.empty())
+ return;
+
+ CGM.getCoverageMapping()->addFunctionMappingRecord(
+ FuncNameVar, FuncName, FunctionHash, CoverageMapping);
+}
+
+void
+CodeGenPGO::emitEmptyCounterMapping(const Decl *D, StringRef Name,
+ llvm::GlobalValue::LinkageTypes Linkage) {
+ if (SkipCoverageMapping)
+ return;
+ // Don't map the functions inside the system headers
+ auto Loc = D->getBody()->getLocStart();
+ if (CGM.getContext().getSourceManager().isInSystemHeader(Loc))
+ return;
+
+ std::string CoverageMapping;
+ llvm::raw_string_ostream OS(CoverageMapping);
+ CoverageMappingGen MappingGen(*CGM.getCoverageMapping(),
+ CGM.getContext().getSourceManager(),
+ CGM.getLangOpts());
+ MappingGen.emitEmptyMapping(D, OS);
+ OS.flush();
+
+ if (CoverageMapping.empty())
+ return;
+
+ setFuncName(Name, Linkage);
+ CGM.getCoverageMapping()->addFunctionMappingRecord(
+ FuncNameVar, FuncName, FunctionHash, CoverageMapping);
+}
+
+void CodeGenPGO::computeRegionCounts(const Decl *D) {
+ StmtCountMap.reset(new llvm::DenseMap<const Stmt *, uint64_t>);
+ ComputeRegionCounts Walker(*StmtCountMap, *this);
+ if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
+ Walker.VisitFunctionDecl(FD);
+ else if (const ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(D))
+ Walker.VisitObjCMethodDecl(MD);
+ else if (const BlockDecl *BD = dyn_cast_or_null<BlockDecl>(D))
+ Walker.VisitBlockDecl(BD);
+ else if (const CapturedDecl *CD = dyn_cast_or_null<CapturedDecl>(D))
+ Walker.VisitCapturedDecl(const_cast<CapturedDecl *>(CD));
+}
+
+void
+CodeGenPGO::applyFunctionAttributes(llvm::IndexedInstrProfReader *PGOReader,
+ llvm::Function *Fn) {
+ if (!haveRegionCounts())
+ return;
+
+ uint64_t MaxFunctionCount = PGOReader->getMaximumFunctionCount();
+ uint64_t FunctionCount = getRegionCount(0);
+ if (FunctionCount >= (uint64_t)(0.3 * (double)MaxFunctionCount))
+ // Turn on InlineHint attribute for hot functions.
+ // FIXME: 30% is from preliminary tuning on SPEC, it may not be optimal.
+ Fn->addFnAttr(llvm::Attribute::InlineHint);
+ else if (FunctionCount <= (uint64_t)(0.01 * (double)MaxFunctionCount))
+ // Turn on Cold attribute for cold functions.
+ // FIXME: 1% is from preliminary tuning on SPEC, it may not be optimal.
+ Fn->addFnAttr(llvm::Attribute::Cold);
+}
+
+void CodeGenPGO::emitCounterIncrement(CGBuilderTy &Builder, const Stmt *S) {
+ if (!CGM.getCodeGenOpts().ProfileInstrGenerate || !RegionCounterMap)
+ return;
+ if (!Builder.GetInsertPoint())
+ return;
+
+ unsigned Counter = (*RegionCounterMap)[S];
+ auto *I8PtrTy = llvm::Type::getInt8PtrTy(CGM.getLLVMContext());
+ Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::instrprof_increment),
+ {llvm::ConstantExpr::getBitCast(FuncNameVar, I8PtrTy),
+ Builder.getInt64(FunctionHash),
+ Builder.getInt32(NumRegionCounters),
+ Builder.getInt32(Counter)});
+}
+
+void CodeGenPGO::loadRegionCounts(llvm::IndexedInstrProfReader *PGOReader,
+ bool IsInMainFile) {
+ CGM.getPGOStats().addVisited(IsInMainFile);
+ RegionCounts.clear();
+ if (std::error_code EC =
+ PGOReader->getFunctionCounts(FuncName, FunctionHash, RegionCounts)) {
+ if (EC == llvm::instrprof_error::unknown_function)
+ CGM.getPGOStats().addMissing(IsInMainFile);
+ else if (EC == llvm::instrprof_error::hash_mismatch)
+ CGM.getPGOStats().addMismatched(IsInMainFile);
+ else if (EC == llvm::instrprof_error::malformed)
+ // TODO: Consider a more specific warning for this case.
+ CGM.getPGOStats().addMismatched(IsInMainFile);
+ RegionCounts.clear();
+ }
+}
+
+/// \brief Calculate what to divide by to scale weights.
+///
+/// Given the maximum weight, calculate a divisor that will scale all the
+/// weights to strictly less than UINT32_MAX.
+static uint64_t calculateWeightScale(uint64_t MaxWeight) {
+ return MaxWeight < UINT32_MAX ? 1 : MaxWeight / UINT32_MAX + 1;
+}
+
+/// \brief Scale an individual branch weight (and add 1).
+///
+/// Scale a 64-bit weight down to 32-bits using \c Scale.
+///
+/// According to Laplace's Rule of Succession, it is better to compute the
+/// weight based on the count plus 1, so universally add 1 to the value.
+///
+/// \pre \c Scale was calculated by \a calculateWeightScale() with a weight no
+/// greater than \c Weight.
+static uint32_t scaleBranchWeight(uint64_t Weight, uint64_t Scale) {
+ assert(Scale && "scale by 0?");
+ uint64_t Scaled = Weight / Scale + 1;
+ assert(Scaled <= UINT32_MAX && "overflow 32-bits");
+ return Scaled;
+}
+
+llvm::MDNode *CodeGenFunction::createProfileWeights(uint64_t TrueCount,
+ uint64_t FalseCount) {
+ // Check for empty weights.
+ if (!TrueCount && !FalseCount)
+ return nullptr;
+
+ // Calculate how to scale down to 32-bits.
+ uint64_t Scale = calculateWeightScale(std::max(TrueCount, FalseCount));
+
+ llvm::MDBuilder MDHelper(CGM.getLLVMContext());
+ return MDHelper.createBranchWeights(scaleBranchWeight(TrueCount, Scale),
+ scaleBranchWeight(FalseCount, Scale));
+}
+
+llvm::MDNode *
+CodeGenFunction::createProfileWeights(ArrayRef<uint64_t> Weights) {
+ // We need at least two elements to create meaningful weights.
+ if (Weights.size() < 2)
+ return nullptr;
+
+ // Check for empty weights.
+ uint64_t MaxWeight = *std::max_element(Weights.begin(), Weights.end());
+ if (MaxWeight == 0)
+ return nullptr;
+
+ // Calculate how to scale down to 32-bits.
+ uint64_t Scale = calculateWeightScale(MaxWeight);
+
+ SmallVector<uint32_t, 16> ScaledWeights;
+ ScaledWeights.reserve(Weights.size());
+ for (uint64_t W : Weights)
+ ScaledWeights.push_back(scaleBranchWeight(W, Scale));
+
+ llvm::MDBuilder MDHelper(CGM.getLLVMContext());
+ return MDHelper.createBranchWeights(ScaledWeights);
+}
+
+llvm::MDNode *CodeGenFunction::createProfileWeightsForLoop(const Stmt *Cond,
+ uint64_t LoopCount) {
+ if (!PGO.haveRegionCounts())
+ return nullptr;
+ Optional<uint64_t> CondCount = PGO.getStmtCount(Cond);
+ assert(CondCount.hasValue() && "missing expected loop condition count");
+ if (*CondCount == 0)
+ return nullptr;
+ return createProfileWeights(LoopCount,
+ std::max(*CondCount, LoopCount) - LoopCount);
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CodeGenPGO.h b/contrib/llvm/tools/clang/lib/CodeGen/CodeGenPGO.h
new file mode 100644
index 0000000..de6f369
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CodeGenPGO.h
@@ -0,0 +1,121 @@
+//===--- CodeGenPGO.h - PGO Instrumentation for LLVM CodeGen ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Instrumentation-based profile-guided optimization
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENPGO_H
+#define LLVM_CLANG_LIB_CODEGEN_CODEGENPGO_H
+
+#include "CGBuilder.h"
+#include "CodeGenModule.h"
+#include "CodeGenTypes.h"
+#include "clang/Frontend/CodeGenOptions.h"
+#include "llvm/ADT/StringMap.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include <memory>
+
+namespace clang {
+namespace CodeGen {
+
+/// Per-function PGO state.
+class CodeGenPGO {
+private:
+ CodeGenModule &CGM;
+ std::string FuncName;
+ llvm::GlobalVariable *FuncNameVar;
+
+ unsigned NumRegionCounters;
+ uint64_t FunctionHash;
+ std::unique_ptr<llvm::DenseMap<const Stmt *, unsigned>> RegionCounterMap;
+ std::unique_ptr<llvm::DenseMap<const Stmt *, uint64_t>> StmtCountMap;
+ std::vector<uint64_t> RegionCounts;
+ uint64_t CurrentRegionCount;
+ /// \brief A flag that is set to true when this function doesn't need
+ /// to have coverage mapping data.
+ bool SkipCoverageMapping;
+
+public:
+ CodeGenPGO(CodeGenModule &CGM)
+ : CGM(CGM), NumRegionCounters(0), FunctionHash(0), CurrentRegionCount(0),
+ SkipCoverageMapping(false) {}
+
+ /// Whether or not we have PGO region data for the current function. This is
+ /// false both when we have no data at all and when our data has been
+ /// discarded.
+ bool haveRegionCounts() const { return !RegionCounts.empty(); }
+
+ /// Return the counter value of the current region.
+ uint64_t getCurrentRegionCount() const { return CurrentRegionCount; }
+
+ /// Set the counter value for the current region. This is used to keep track
+ /// of changes to the most recent counter from control flow and non-local
+ /// exits.
+ void setCurrentRegionCount(uint64_t Count) { CurrentRegionCount = Count; }
+
+ /// Check if an execution count is known for a given statement. If so, return
+ /// true and put the value in Count; else return false.
+ Optional<uint64_t> getStmtCount(const Stmt *S) {
+ if (!StmtCountMap)
+ return None;
+ auto I = StmtCountMap->find(S);
+ if (I == StmtCountMap->end())
+ return None;
+ return I->second;
+ }
+
+ /// If the execution count for the current statement is known, record that
+ /// as the current count.
+ void setCurrentStmt(const Stmt *S) {
+ if (auto Count = getStmtCount(S))
+ setCurrentRegionCount(*Count);
+ }
+
+ /// Check if we need to emit coverage mapping for a given declaration
+ void checkGlobalDecl(GlobalDecl GD);
+ /// Assign counters to regions and configure them for PGO of a given
+ /// function. Does nothing if instrumentation is not enabled and either
+ /// generates global variables or associates PGO data with each of the
+ /// counters depending on whether we are generating or using instrumentation.
+ void assignRegionCounters(const Decl *D, llvm::Function *Fn);
+ /// Emit a coverage mapping range with a counter zero
+ /// for an unused declaration.
+ void emitEmptyCounterMapping(const Decl *D, StringRef FuncName,
+ llvm::GlobalValue::LinkageTypes Linkage);
+private:
+ void setFuncName(llvm::Function *Fn);
+ void setFuncName(StringRef Name, llvm::GlobalValue::LinkageTypes Linkage);
+ void createFuncNameVar(llvm::GlobalValue::LinkageTypes Linkage);
+ void mapRegionCounters(const Decl *D);
+ void computeRegionCounts(const Decl *D);
+ void applyFunctionAttributes(llvm::IndexedInstrProfReader *PGOReader,
+ llvm::Function *Fn);
+ void loadRegionCounts(llvm::IndexedInstrProfReader *PGOReader,
+ bool IsInMainFile);
+ void emitCounterVariables();
+ void emitCounterRegionMapping(const Decl *D);
+
+public:
+ void emitCounterIncrement(CGBuilderTy &Builder, const Stmt *S);
+
+ /// Return the region count for the counter at the given index.
+ uint64_t getRegionCount(const Stmt *S) {
+ if (!RegionCounterMap)
+ return 0;
+ if (!haveRegionCounts())
+ return 0;
+ return RegionCounts[(*RegionCounterMap)[S]];
+ }
+};
+
+} // end namespace CodeGen
+} // end namespace clang
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CodeGenTBAA.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CodeGenTBAA.cpp
new file mode 100644
index 0000000..53ba02a
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CodeGenTBAA.cpp
@@ -0,0 +1,321 @@
+//===--- CodeGenTypes.cpp - TBAA information for LLVM CodeGen -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This is the code that manages TBAA information and defines the TBAA policy
+// for the optimizer to use. Relevant standards text includes:
+//
+// C99 6.5p7
+// C++ [basic.lval] (p10 in n3126, p15 in some earlier versions)
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenTBAA.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/Mangle.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/Frontend/CodeGenOptions.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Type.h"
+using namespace clang;
+using namespace CodeGen;
+
+CodeGenTBAA::CodeGenTBAA(ASTContext &Ctx, llvm::LLVMContext& VMContext,
+ const CodeGenOptions &CGO,
+ const LangOptions &Features, MangleContext &MContext)
+ : Context(Ctx), CodeGenOpts(CGO), Features(Features), MContext(MContext),
+ MDHelper(VMContext), Root(nullptr), Char(nullptr) {
+}
+
+CodeGenTBAA::~CodeGenTBAA() {
+}
+
+llvm::MDNode *CodeGenTBAA::getRoot() {
+ // Define the root of the tree. This identifies the tree, so that
+ // if our LLVM IR is linked with LLVM IR from a different front-end
+ // (or a different version of this front-end), their TBAA trees will
+ // remain distinct, and the optimizer will treat them conservatively.
+ if (!Root)
+ Root = MDHelper.createTBAARoot("Simple C/C++ TBAA");
+
+ return Root;
+}
+
+// For both scalar TBAA and struct-path aware TBAA, the scalar type has the
+// same format: name, parent node, and offset.
+llvm::MDNode *CodeGenTBAA::createTBAAScalarType(StringRef Name,
+ llvm::MDNode *Parent) {
+ return MDHelper.createTBAAScalarTypeNode(Name, Parent);
+}
+
+llvm::MDNode *CodeGenTBAA::getChar() {
+ // Define the root of the tree for user-accessible memory. C and C++
+ // give special powers to char and certain similar types. However,
+ // these special powers only cover user-accessible memory, and doesn't
+ // include things like vtables.
+ if (!Char)
+ Char = createTBAAScalarType("omnipotent char", getRoot());
+
+ return Char;
+}
+
+static bool TypeHasMayAlias(QualType QTy) {
+ // Tagged types have declarations, and therefore may have attributes.
+ if (const TagType *TTy = dyn_cast<TagType>(QTy))
+ return TTy->getDecl()->hasAttr<MayAliasAttr>();
+
+ // Typedef types have declarations, and therefore may have attributes.
+ if (const TypedefType *TTy = dyn_cast<TypedefType>(QTy)) {
+ if (TTy->getDecl()->hasAttr<MayAliasAttr>())
+ return true;
+ // Also, their underlying types may have relevant attributes.
+ return TypeHasMayAlias(TTy->desugar());
+ }
+
+ return false;
+}
+
+llvm::MDNode *
+CodeGenTBAA::getTBAAInfo(QualType QTy) {
+ // At -O0 or relaxed aliasing, TBAA is not emitted for regular types.
+ if (CodeGenOpts.OptimizationLevel == 0 || CodeGenOpts.RelaxedAliasing)
+ return nullptr;
+
+ // If the type has the may_alias attribute (even on a typedef), it is
+ // effectively in the general char alias class.
+ if (TypeHasMayAlias(QTy))
+ return getChar();
+
+ const Type *Ty = Context.getCanonicalType(QTy).getTypePtr();
+
+ if (llvm::MDNode *N = MetadataCache[Ty])
+ return N;
+
+ // Handle builtin types.
+ if (const BuiltinType *BTy = dyn_cast<BuiltinType>(Ty)) {
+ switch (BTy->getKind()) {
+ // Character types are special and can alias anything.
+ // In C++, this technically only includes "char" and "unsigned char",
+ // and not "signed char". In C, it includes all three. For now,
+ // the risk of exploiting this detail in C++ seems likely to outweigh
+ // the benefit.
+ case BuiltinType::Char_U:
+ case BuiltinType::Char_S:
+ case BuiltinType::UChar:
+ case BuiltinType::SChar:
+ return getChar();
+
+ // Unsigned types can alias their corresponding signed types.
+ case BuiltinType::UShort:
+ return getTBAAInfo(Context.ShortTy);
+ case BuiltinType::UInt:
+ return getTBAAInfo(Context.IntTy);
+ case BuiltinType::ULong:
+ return getTBAAInfo(Context.LongTy);
+ case BuiltinType::ULongLong:
+ return getTBAAInfo(Context.LongLongTy);
+ case BuiltinType::UInt128:
+ return getTBAAInfo(Context.Int128Ty);
+
+ // Treat all other builtin types as distinct types. This includes
+ // treating wchar_t, char16_t, and char32_t as distinct from their
+ // "underlying types".
+ default:
+ return MetadataCache[Ty] =
+ createTBAAScalarType(BTy->getName(Features), getChar());
+ }
+ }
+
+ // Handle pointers.
+ // TODO: Implement C++'s type "similarity" and consider dis-"similar"
+ // pointers distinct.
+ if (Ty->isPointerType())
+ return MetadataCache[Ty] = createTBAAScalarType("any pointer",
+ getChar());
+
+ // Enum types are distinct types. In C++ they have "underlying types",
+ // however they aren't related for TBAA.
+ if (const EnumType *ETy = dyn_cast<EnumType>(Ty)) {
+ // In C++ mode, types have linkage, so we can rely on the ODR and
+ // on their mangled names, if they're external.
+ // TODO: Is there a way to get a program-wide unique name for a
+ // decl with local linkage or no linkage?
+ if (!Features.CPlusPlus || !ETy->getDecl()->isExternallyVisible())
+ return MetadataCache[Ty] = getChar();
+
+ SmallString<256> OutName;
+ llvm::raw_svector_ostream Out(OutName);
+ MContext.mangleTypeName(QualType(ETy, 0), Out);
+ Out.flush();
+ return MetadataCache[Ty] = createTBAAScalarType(OutName, getChar());
+ }
+
+ // For now, handle any other kind of type conservatively.
+ return MetadataCache[Ty] = getChar();
+}
+
+llvm::MDNode *CodeGenTBAA::getTBAAInfoForVTablePtr() {
+ return createTBAAScalarType("vtable pointer", getRoot());
+}
+
+bool
+CodeGenTBAA::CollectFields(uint64_t BaseOffset,
+ QualType QTy,
+ SmallVectorImpl<llvm::MDBuilder::TBAAStructField> &
+ Fields,
+ bool MayAlias) {
+ /* Things not handled yet include: C++ base classes, bitfields, */
+
+ if (const RecordType *TTy = QTy->getAs<RecordType>()) {
+ const RecordDecl *RD = TTy->getDecl()->getDefinition();
+ if (RD->hasFlexibleArrayMember())
+ return false;
+
+ // TODO: Handle C++ base classes.
+ if (const CXXRecordDecl *Decl = dyn_cast<CXXRecordDecl>(RD))
+ if (Decl->bases_begin() != Decl->bases_end())
+ return false;
+
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+
+ unsigned idx = 0;
+ for (RecordDecl::field_iterator i = RD->field_begin(),
+ e = RD->field_end(); i != e; ++i, ++idx) {
+ uint64_t Offset = BaseOffset +
+ Layout.getFieldOffset(idx) / Context.getCharWidth();
+ QualType FieldQTy = i->getType();
+ if (!CollectFields(Offset, FieldQTy, Fields,
+ MayAlias || TypeHasMayAlias(FieldQTy)))
+ return false;
+ }
+ return true;
+ }
+
+ /* Otherwise, treat whatever it is as a field. */
+ uint64_t Offset = BaseOffset;
+ uint64_t Size = Context.getTypeSizeInChars(QTy).getQuantity();
+ llvm::MDNode *TBAAInfo = MayAlias ? getChar() : getTBAAInfo(QTy);
+ llvm::MDNode *TBAATag = getTBAAScalarTagInfo(TBAAInfo);
+ Fields.push_back(llvm::MDBuilder::TBAAStructField(Offset, Size, TBAATag));
+ return true;
+}
+
+llvm::MDNode *
+CodeGenTBAA::getTBAAStructInfo(QualType QTy) {
+ const Type *Ty = Context.getCanonicalType(QTy).getTypePtr();
+
+ if (llvm::MDNode *N = StructMetadataCache[Ty])
+ return N;
+
+ SmallVector<llvm::MDBuilder::TBAAStructField, 4> Fields;
+ if (CollectFields(0, QTy, Fields, TypeHasMayAlias(QTy)))
+ return MDHelper.createTBAAStructNode(Fields);
+
+ // For now, handle any other kind of type conservatively.
+ return StructMetadataCache[Ty] = nullptr;
+}
+
+/// Check if the given type can be handled by path-aware TBAA.
+static bool isTBAAPathStruct(QualType QTy) {
+ if (const RecordType *TTy = QTy->getAs<RecordType>()) {
+ const RecordDecl *RD = TTy->getDecl()->getDefinition();
+ if (RD->hasFlexibleArrayMember())
+ return false;
+ // RD can be struct, union, class, interface or enum.
+ // For now, we only handle struct and class.
+ if (RD->isStruct() || RD->isClass())
+ return true;
+ }
+ return false;
+}
+
+llvm::MDNode *
+CodeGenTBAA::getTBAAStructTypeInfo(QualType QTy) {
+ const Type *Ty = Context.getCanonicalType(QTy).getTypePtr();
+ assert(isTBAAPathStruct(QTy));
+
+ if (llvm::MDNode *N = StructTypeMetadataCache[Ty])
+ return N;
+
+ if (const RecordType *TTy = QTy->getAs<RecordType>()) {
+ const RecordDecl *RD = TTy->getDecl()->getDefinition();
+
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+ SmallVector <std::pair<llvm::MDNode*, uint64_t>, 4> Fields;
+ unsigned idx = 0;
+ for (RecordDecl::field_iterator i = RD->field_begin(),
+ e = RD->field_end(); i != e; ++i, ++idx) {
+ QualType FieldQTy = i->getType();
+ llvm::MDNode *FieldNode;
+ if (isTBAAPathStruct(FieldQTy))
+ FieldNode = getTBAAStructTypeInfo(FieldQTy);
+ else
+ FieldNode = getTBAAInfo(FieldQTy);
+ if (!FieldNode)
+ return StructTypeMetadataCache[Ty] = nullptr;
+ Fields.push_back(std::make_pair(
+ FieldNode, Layout.getFieldOffset(idx) / Context.getCharWidth()));
+ }
+
+ SmallString<256> OutName;
+ if (Features.CPlusPlus) {
+ // Don't use the mangler for C code.
+ llvm::raw_svector_ostream Out(OutName);
+ MContext.mangleTypeName(QualType(Ty, 0), Out);
+ Out.flush();
+ } else {
+ OutName = RD->getName();
+ }
+ // Create the struct type node with a vector of pairs (offset, type).
+ return StructTypeMetadataCache[Ty] =
+ MDHelper.createTBAAStructTypeNode(OutName, Fields);
+ }
+
+ return StructMetadataCache[Ty] = nullptr;
+}
+
+/// Return a TBAA tag node for both scalar TBAA and struct-path aware TBAA.
+llvm::MDNode *
+CodeGenTBAA::getTBAAStructTagInfo(QualType BaseQTy, llvm::MDNode *AccessNode,
+ uint64_t Offset) {
+ if (!AccessNode)
+ return nullptr;
+
+ if (!CodeGenOpts.StructPathTBAA)
+ return getTBAAScalarTagInfo(AccessNode);
+
+ const Type *BTy = Context.getCanonicalType(BaseQTy).getTypePtr();
+ TBAAPathTag PathTag = TBAAPathTag(BTy, AccessNode, Offset);
+ if (llvm::MDNode *N = StructTagMetadataCache[PathTag])
+ return N;
+
+ llvm::MDNode *BNode = nullptr;
+ if (isTBAAPathStruct(BaseQTy))
+ BNode = getTBAAStructTypeInfo(BaseQTy);
+ if (!BNode)
+ return StructTagMetadataCache[PathTag] =
+ MDHelper.createTBAAStructTagNode(AccessNode, AccessNode, 0);
+
+ return StructTagMetadataCache[PathTag] =
+ MDHelper.createTBAAStructTagNode(BNode, AccessNode, Offset);
+}
+
+llvm::MDNode *
+CodeGenTBAA::getTBAAScalarTagInfo(llvm::MDNode *AccessNode) {
+ if (!AccessNode)
+ return nullptr;
+ if (llvm::MDNode *N = ScalarTagMetadataCache[AccessNode])
+ return N;
+
+ return ScalarTagMetadataCache[AccessNode] =
+ MDHelper.createTBAAStructTagNode(AccessNode, AccessNode, 0);
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CodeGenTBAA.h b/contrib/llvm/tools/clang/lib/CodeGen/CodeGenTBAA.h
new file mode 100644
index 0000000..632cadd
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CodeGenTBAA.h
@@ -0,0 +1,160 @@
+//===--- CodeGenTBAA.h - TBAA information for LLVM CodeGen ------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This is the code that manages TBAA information and defines the TBAA policy
+// for the optimizer to use.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENTBAA_H
+#define LLVM_CLANG_LIB_CODEGEN_CODEGENTBAA_H
+
+#include "clang/Basic/LLVM.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/IR/MDBuilder.h"
+
+namespace llvm {
+ class LLVMContext;
+ class MDNode;
+}
+
+namespace clang {
+ class ASTContext;
+ class CodeGenOptions;
+ class LangOptions;
+ class MangleContext;
+ class QualType;
+ class Type;
+
+namespace CodeGen {
+ class CGRecordLayout;
+
+ struct TBAAPathTag {
+ TBAAPathTag(const Type *B, const llvm::MDNode *A, uint64_t O)
+ : BaseT(B), AccessN(A), Offset(O) {}
+ const Type *BaseT;
+ const llvm::MDNode *AccessN;
+ uint64_t Offset;
+ };
+
+/// CodeGenTBAA - This class organizes the cross-module state that is used
+/// while lowering AST types to LLVM types.
+class CodeGenTBAA {
+ ASTContext &Context;
+ const CodeGenOptions &CodeGenOpts;
+ const LangOptions &Features;
+ MangleContext &MContext;
+
+ // MDHelper - Helper for creating metadata.
+ llvm::MDBuilder MDHelper;
+
+ /// MetadataCache - This maps clang::Types to scalar llvm::MDNodes describing
+ /// them.
+ llvm::DenseMap<const Type *, llvm::MDNode *> MetadataCache;
+ /// This maps clang::Types to a struct node in the type DAG.
+ llvm::DenseMap<const Type *, llvm::MDNode *> StructTypeMetadataCache;
+ /// This maps TBAAPathTags to a tag node.
+ llvm::DenseMap<TBAAPathTag, llvm::MDNode *> StructTagMetadataCache;
+ /// This maps a scalar type to a scalar tag node.
+ llvm::DenseMap<const llvm::MDNode *, llvm::MDNode *> ScalarTagMetadataCache;
+
+ /// StructMetadataCache - This maps clang::Types to llvm::MDNodes describing
+ /// them for struct assignments.
+ llvm::DenseMap<const Type *, llvm::MDNode *> StructMetadataCache;
+
+ llvm::MDNode *Root;
+ llvm::MDNode *Char;
+
+ /// getRoot - This is the mdnode for the root of the metadata type graph
+ /// for this translation unit.
+ llvm::MDNode *getRoot();
+
+ /// getChar - This is the mdnode for "char", which is special, and any types
+ /// considered to be equivalent to it.
+ llvm::MDNode *getChar();
+
+ /// CollectFields - Collect information about the fields of a type for
+ /// !tbaa.struct metadata formation. Return false for an unsupported type.
+ bool CollectFields(uint64_t BaseOffset,
+ QualType Ty,
+ SmallVectorImpl<llvm::MDBuilder::TBAAStructField> &Fields,
+ bool MayAlias);
+
+ /// A wrapper function to create a scalar type. For struct-path aware TBAA,
+ /// the scalar type has the same format as the struct type: name, offset,
+ /// pointer to another node in the type DAG.
+ llvm::MDNode *createTBAAScalarType(StringRef Name, llvm::MDNode *Parent);
+
+public:
+ CodeGenTBAA(ASTContext &Ctx, llvm::LLVMContext &VMContext,
+ const CodeGenOptions &CGO,
+ const LangOptions &Features,
+ MangleContext &MContext);
+ ~CodeGenTBAA();
+
+ /// getTBAAInfo - Get the TBAA MDNode to be used for a dereference
+ /// of the given type.
+ llvm::MDNode *getTBAAInfo(QualType QTy);
+
+ /// getTBAAInfoForVTablePtr - Get the TBAA MDNode to be used for a
+ /// dereference of a vtable pointer.
+ llvm::MDNode *getTBAAInfoForVTablePtr();
+
+ /// getTBAAStructInfo - Get the TBAAStruct MDNode to be used for a memcpy of
+ /// the given type.
+ llvm::MDNode *getTBAAStructInfo(QualType QTy);
+
+ /// Get the MDNode in the type DAG for given struct type QType.
+ llvm::MDNode *getTBAAStructTypeInfo(QualType QType);
+ /// Get the tag MDNode for a given base type, the actual scalar access MDNode
+ /// and offset into the base type.
+ llvm::MDNode *getTBAAStructTagInfo(QualType BaseQType,
+ llvm::MDNode *AccessNode, uint64_t Offset);
+
+ /// Get the scalar tag MDNode for a given scalar type.
+ llvm::MDNode *getTBAAScalarTagInfo(llvm::MDNode *AccessNode);
+};
+
+} // end namespace CodeGen
+} // end namespace clang
+
+namespace llvm {
+
+template<> struct DenseMapInfo<clang::CodeGen::TBAAPathTag> {
+ static clang::CodeGen::TBAAPathTag getEmptyKey() {
+ return clang::CodeGen::TBAAPathTag(
+ DenseMapInfo<const clang::Type *>::getEmptyKey(),
+ DenseMapInfo<const MDNode *>::getEmptyKey(),
+ DenseMapInfo<uint64_t>::getEmptyKey());
+ }
+
+ static clang::CodeGen::TBAAPathTag getTombstoneKey() {
+ return clang::CodeGen::TBAAPathTag(
+ DenseMapInfo<const clang::Type *>::getTombstoneKey(),
+ DenseMapInfo<const MDNode *>::getTombstoneKey(),
+ DenseMapInfo<uint64_t>::getTombstoneKey());
+ }
+
+ static unsigned getHashValue(const clang::CodeGen::TBAAPathTag &Val) {
+ return DenseMapInfo<const clang::Type *>::getHashValue(Val.BaseT) ^
+ DenseMapInfo<const MDNode *>::getHashValue(Val.AccessN) ^
+ DenseMapInfo<uint64_t>::getHashValue(Val.Offset);
+ }
+
+ static bool isEqual(const clang::CodeGen::TBAAPathTag &LHS,
+ const clang::CodeGen::TBAAPathTag &RHS) {
+ return LHS.BaseT == RHS.BaseT &&
+ LHS.AccessN == RHS.AccessN &&
+ LHS.Offset == RHS.Offset;
+ }
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CodeGenTypes.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CodeGenTypes.cpp
new file mode 100644
index 0000000..e0f926c
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CodeGenTypes.cpp
@@ -0,0 +1,745 @@
+//===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This is the code that handles AST -> LLVM type lowering.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenTypes.h"
+#include "CGCXXABI.h"
+#include "CGCall.h"
+#include "CGOpenCLRuntime.h"
+#include "CGRecordLayout.h"
+#include "TargetInfo.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/CodeGen/CGFunctionInfo.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Module.h"
+using namespace clang;
+using namespace CodeGen;
+
+CodeGenTypes::CodeGenTypes(CodeGenModule &cgm)
+ : CGM(cgm), Context(cgm.getContext()), TheModule(cgm.getModule()),
+ TheDataLayout(cgm.getDataLayout()),
+ Target(cgm.getTarget()), TheCXXABI(cgm.getCXXABI()),
+ TheABIInfo(cgm.getTargetCodeGenInfo().getABIInfo()) {
+ SkippedLayout = false;
+}
+
+CodeGenTypes::~CodeGenTypes() {
+ llvm::DeleteContainerSeconds(CGRecordLayouts);
+
+ for (llvm::FoldingSet<CGFunctionInfo>::iterator
+ I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
+ delete &*I++;
+}
+
+void CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
+ llvm::StructType *Ty,
+ StringRef suffix) {
+ SmallString<256> TypeName;
+ llvm::raw_svector_ostream OS(TypeName);
+ OS << RD->getKindName() << '.';
+
+ // Name the codegen type after the typedef name
+ // if there is no tag type name available
+ if (RD->getIdentifier()) {
+ // FIXME: We should not have to check for a null decl context here.
+ // Right now we do it because the implicit Obj-C decls don't have one.
+ if (RD->getDeclContext())
+ RD->printQualifiedName(OS);
+ else
+ RD->printName(OS);
+ } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
+ // FIXME: We should not have to check for a null decl context here.
+ // Right now we do it because the implicit Obj-C decls don't have one.
+ if (TDD->getDeclContext())
+ TDD->printQualifiedName(OS);
+ else
+ TDD->printName(OS);
+ } else
+ OS << "anon";
+
+ if (!suffix.empty())
+ OS << suffix;
+
+ Ty->setName(OS.str());
+}
+
+/// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from
+/// ConvertType in that it is used to convert to the memory representation for
+/// a type. For example, the scalar representation for _Bool is i1, but the
+/// memory representation is usually i8 or i32, depending on the target.
+llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T) {
+ llvm::Type *R = ConvertType(T);
+
+ // If this is a non-bool type, don't map it.
+ if (!R->isIntegerTy(1))
+ return R;
+
+ // Otherwise, return an integer of the target-specified size.
+ return llvm::IntegerType::get(getLLVMContext(),
+ (unsigned)Context.getTypeSize(T));
+}
+
+
+/// isRecordLayoutComplete - Return true if the specified type is already
+/// completely laid out.
+bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const {
+ llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I =
+ RecordDeclTypes.find(Ty);
+ return I != RecordDeclTypes.end() && !I->second->isOpaque();
+}
+
+static bool
+isSafeToConvert(QualType T, CodeGenTypes &CGT,
+ llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked);
+
+
+/// isSafeToConvert - Return true if it is safe to convert the specified record
+/// decl to IR and lay it out, false if doing so would cause us to get into a
+/// recursive compilation mess.
+static bool
+isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT,
+ llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
+ // If we have already checked this type (maybe the same type is used by-value
+ // multiple times in multiple structure fields, don't check again.
+ if (!AlreadyChecked.insert(RD).second)
+ return true;
+
+ const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr();
+
+ // If this type is already laid out, converting it is a noop.
+ if (CGT.isRecordLayoutComplete(Key)) return true;
+
+ // If this type is currently being laid out, we can't recursively compile it.
+ if (CGT.isRecordBeingLaidOut(Key))
+ return false;
+
+ // If this type would require laying out bases that are currently being laid
+ // out, don't do it. This includes virtual base classes which get laid out
+ // when a class is translated, even though they aren't embedded by-value into
+ // the class.
+ if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
+ for (const auto &I : CRD->bases())
+ if (!isSafeToConvert(I.getType()->getAs<RecordType>()->getDecl(),
+ CGT, AlreadyChecked))
+ return false;
+ }
+
+ // If this type would require laying out members that are currently being laid
+ // out, don't do it.
+ for (const auto *I : RD->fields())
+ if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked))
+ return false;
+
+ // If there are no problems, lets do it.
+ return true;
+}
+
+/// isSafeToConvert - Return true if it is safe to convert this field type,
+/// which requires the structure elements contained by-value to all be
+/// recursively safe to convert.
+static bool
+isSafeToConvert(QualType T, CodeGenTypes &CGT,
+ llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
+ T = T.getCanonicalType();
+
+ // If this is a record, check it.
+ if (const RecordType *RT = dyn_cast<RecordType>(T))
+ return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked);
+
+ // If this is an array, check the elements, which are embedded inline.
+ if (const ArrayType *AT = dyn_cast<ArrayType>(T))
+ return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked);
+
+ // Otherwise, there is no concern about transforming this. We only care about
+ // things that are contained by-value in a structure that can have another
+ // structure as a member.
+ return true;
+}
+
+
+/// isSafeToConvert - Return true if it is safe to convert the specified record
+/// decl to IR and lay it out, false if doing so would cause us to get into a
+/// recursive compilation mess.
+static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) {
+ // If no structs are being laid out, we can certainly do this one.
+ if (CGT.noRecordsBeingLaidOut()) return true;
+
+ llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked;
+ return isSafeToConvert(RD, CGT, AlreadyChecked);
+}
+
+/// isFuncParamTypeConvertible - Return true if the specified type in a
+/// function parameter or result position can be converted to an IR type at this
+/// point. This boils down to being whether it is complete, as well as whether
+/// we've temporarily deferred expanding the type because we're in a recursive
+/// context.
+bool CodeGenTypes::isFuncParamTypeConvertible(QualType Ty) {
+ // Some ABIs cannot have their member pointers represented in IR unless
+ // certain circumstances have been reached.
+ if (const auto *MPT = Ty->getAs<MemberPointerType>())
+ return getCXXABI().isMemberPointerConvertible(MPT);
+
+ // If this isn't a tagged type, we can convert it!
+ const TagType *TT = Ty->getAs<TagType>();
+ if (!TT) return true;
+
+ // Incomplete types cannot be converted.
+ if (TT->isIncompleteType())
+ return false;
+
+ // If this is an enum, then it is always safe to convert.
+ const RecordType *RT = dyn_cast<RecordType>(TT);
+ if (!RT) return true;
+
+ // Otherwise, we have to be careful. If it is a struct that we're in the
+ // process of expanding, then we can't convert the function type. That's ok
+ // though because we must be in a pointer context under the struct, so we can
+ // just convert it to a dummy type.
+ //
+ // We decide this by checking whether ConvertRecordDeclType returns us an
+ // opaque type for a struct that we know is defined.
+ return isSafeToConvert(RT->getDecl(), *this);
+}
+
+
+/// Code to verify a given function type is complete, i.e. the return type
+/// and all of the parameter types are complete. Also check to see if we are in
+/// a RS_StructPointer context, and if so whether any struct types have been
+/// pended. If so, we don't want to ask the ABI lowering code to handle a type
+/// that cannot be converted to an IR type.
+bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) {
+ if (!isFuncParamTypeConvertible(FT->getReturnType()))
+ return false;
+
+ if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
+ for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
+ if (!isFuncParamTypeConvertible(FPT->getParamType(i)))
+ return false;
+
+ return true;
+}
+
+/// UpdateCompletedType - When we find the full definition for a TagDecl,
+/// replace the 'opaque' type we previously made for it if applicable.
+void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
+ // If this is an enum being completed, then we flush all non-struct types from
+ // the cache. This allows function types and other things that may be derived
+ // from the enum to be recomputed.
+ if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) {
+ // Only flush the cache if we've actually already converted this type.
+ if (TypeCache.count(ED->getTypeForDecl())) {
+ // Okay, we formed some types based on this. We speculated that the enum
+ // would be lowered to i32, so we only need to flush the cache if this
+ // didn't happen.
+ if (!ConvertType(ED->getIntegerType())->isIntegerTy(32))
+ TypeCache.clear();
+ }
+ // If necessary, provide the full definition of a type only used with a
+ // declaration so far.
+ if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
+ DI->completeType(ED);
+ return;
+ }
+
+ // If we completed a RecordDecl that we previously used and converted to an
+ // anonymous type, then go ahead and complete it now.
+ const RecordDecl *RD = cast<RecordDecl>(TD);
+ if (RD->isDependentType()) return;
+
+ // Only complete it if we converted it already. If we haven't converted it
+ // yet, we'll just do it lazily.
+ if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr()))
+ ConvertRecordDeclType(RD);
+
+ // If necessary, provide the full definition of a type only used with a
+ // declaration so far.
+ if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
+ DI->completeType(RD);
+}
+
+static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
+ const llvm::fltSemantics &format,
+ bool UseNativeHalf = false) {
+ if (&format == &llvm::APFloat::IEEEhalf) {
+ if (UseNativeHalf)
+ return llvm::Type::getHalfTy(VMContext);
+ else
+ return llvm::Type::getInt16Ty(VMContext);
+ }
+ if (&format == &llvm::APFloat::IEEEsingle)
+ return llvm::Type::getFloatTy(VMContext);
+ if (&format == &llvm::APFloat::IEEEdouble)
+ return llvm::Type::getDoubleTy(VMContext);
+ if (&format == &llvm::APFloat::IEEEquad)
+ return llvm::Type::getFP128Ty(VMContext);
+ if (&format == &llvm::APFloat::PPCDoubleDouble)
+ return llvm::Type::getPPC_FP128Ty(VMContext);
+ if (&format == &llvm::APFloat::x87DoubleExtended)
+ return llvm::Type::getX86_FP80Ty(VMContext);
+ llvm_unreachable("Unknown float format!");
+}
+
+/// ConvertType - Convert the specified type to its LLVM form.
+llvm::Type *CodeGenTypes::ConvertType(QualType T) {
+ T = Context.getCanonicalType(T);
+
+ const Type *Ty = T.getTypePtr();
+
+ // RecordTypes are cached and processed specially.
+ if (const RecordType *RT = dyn_cast<RecordType>(Ty))
+ return ConvertRecordDeclType(RT->getDecl());
+
+ // See if type is already cached.
+ llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty);
+ // If type is found in map then use it. Otherwise, convert type T.
+ if (TCI != TypeCache.end())
+ return TCI->second;
+
+ // If we don't have it in the cache, convert it now.
+ llvm::Type *ResultType = nullptr;
+ switch (Ty->getTypeClass()) {
+ case Type::Record: // Handled above.
+#define TYPE(Class, Base)
+#define ABSTRACT_TYPE(Class, Base)
+#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
+#define DEPENDENT_TYPE(Class, Base) case Type::Class:
+#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
+#include "clang/AST/TypeNodes.def"
+ llvm_unreachable("Non-canonical or dependent types aren't possible.");
+
+ case Type::Builtin: {
+ switch (cast<BuiltinType>(Ty)->getKind()) {
+ case BuiltinType::Void:
+ case BuiltinType::ObjCId:
+ case BuiltinType::ObjCClass:
+ case BuiltinType::ObjCSel:
+ // LLVM void type can only be used as the result of a function call. Just
+ // map to the same as char.
+ ResultType = llvm::Type::getInt8Ty(getLLVMContext());
+ break;
+
+ case BuiltinType::Bool:
+ // Note that we always return bool as i1 for use as a scalar type.
+ ResultType = llvm::Type::getInt1Ty(getLLVMContext());
+ break;
+
+ case BuiltinType::Char_S:
+ case BuiltinType::Char_U:
+ case BuiltinType::SChar:
+ case BuiltinType::UChar:
+ case BuiltinType::Short:
+ case BuiltinType::UShort:
+ case BuiltinType::Int:
+ case BuiltinType::UInt:
+ case BuiltinType::Long:
+ case BuiltinType::ULong:
+ case BuiltinType::LongLong:
+ case BuiltinType::ULongLong:
+ case BuiltinType::WChar_S:
+ case BuiltinType::WChar_U:
+ case BuiltinType::Char16:
+ case BuiltinType::Char32:
+ ResultType = llvm::IntegerType::get(getLLVMContext(),
+ static_cast<unsigned>(Context.getTypeSize(T)));
+ break;
+
+ case BuiltinType::Half:
+ // Half FP can either be storage-only (lowered to i16) or native.
+ ResultType =
+ getTypeForFormat(getLLVMContext(), Context.getFloatTypeSemantics(T),
+ Context.getLangOpts().NativeHalfType ||
+ Context.getLangOpts().HalfArgsAndReturns);
+ break;
+ case BuiltinType::Float:
+ case BuiltinType::Double:
+ case BuiltinType::LongDouble:
+ ResultType = getTypeForFormat(getLLVMContext(),
+ Context.getFloatTypeSemantics(T),
+ /* UseNativeHalf = */ false);
+ break;
+
+ case BuiltinType::NullPtr:
+ // Model std::nullptr_t as i8*
+ ResultType = llvm::Type::getInt8PtrTy(getLLVMContext());
+ break;
+
+ case BuiltinType::UInt128:
+ case BuiltinType::Int128:
+ ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
+ break;
+
+ case BuiltinType::OCLImage1d:
+ case BuiltinType::OCLImage1dArray:
+ case BuiltinType::OCLImage1dBuffer:
+ case BuiltinType::OCLImage2d:
+ case BuiltinType::OCLImage2dArray:
+ case BuiltinType::OCLImage3d:
+ case BuiltinType::OCLSampler:
+ case BuiltinType::OCLEvent:
+ ResultType = CGM.getOpenCLRuntime().convertOpenCLSpecificType(Ty);
+ break;
+
+ case BuiltinType::Dependent:
+#define BUILTIN_TYPE(Id, SingletonId)
+#define PLACEHOLDER_TYPE(Id, SingletonId) \
+ case BuiltinType::Id:
+#include "clang/AST/BuiltinTypes.def"
+ llvm_unreachable("Unexpected placeholder builtin type!");
+ }
+ break;
+ }
+ case Type::Auto:
+ llvm_unreachable("Unexpected undeduced auto type!");
+ case Type::Complex: {
+ llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
+ ResultType = llvm::StructType::get(EltTy, EltTy, nullptr);
+ break;
+ }
+ case Type::LValueReference:
+ case Type::RValueReference: {
+ const ReferenceType *RTy = cast<ReferenceType>(Ty);
+ QualType ETy = RTy->getPointeeType();
+ llvm::Type *PointeeType = ConvertTypeForMem(ETy);
+ unsigned AS = Context.getTargetAddressSpace(ETy);
+ ResultType = llvm::PointerType::get(PointeeType, AS);
+ break;
+ }
+ case Type::Pointer: {
+ const PointerType *PTy = cast<PointerType>(Ty);
+ QualType ETy = PTy->getPointeeType();
+ llvm::Type *PointeeType = ConvertTypeForMem(ETy);
+ if (PointeeType->isVoidTy())
+ PointeeType = llvm::Type::getInt8Ty(getLLVMContext());
+ unsigned AS = Context.getTargetAddressSpace(ETy);
+ ResultType = llvm::PointerType::get(PointeeType, AS);
+ break;
+ }
+
+ case Type::VariableArray: {
+ const VariableArrayType *A = cast<VariableArrayType>(Ty);
+ assert(A->getIndexTypeCVRQualifiers() == 0 &&
+ "FIXME: We only handle trivial array types so far!");
+ // VLAs resolve to the innermost element type; this matches
+ // the return of alloca, and there isn't any obviously better choice.
+ ResultType = ConvertTypeForMem(A->getElementType());
+ break;
+ }
+ case Type::IncompleteArray: {
+ const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
+ assert(A->getIndexTypeCVRQualifiers() == 0 &&
+ "FIXME: We only handle trivial array types so far!");
+ // int X[] -> [0 x int], unless the element type is not sized. If it is
+ // unsized (e.g. an incomplete struct) just use [0 x i8].
+ ResultType = ConvertTypeForMem(A->getElementType());
+ if (!ResultType->isSized()) {
+ SkippedLayout = true;
+ ResultType = llvm::Type::getInt8Ty(getLLVMContext());
+ }
+ ResultType = llvm::ArrayType::get(ResultType, 0);
+ break;
+ }
+ case Type::ConstantArray: {
+ const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
+ llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
+
+ // Lower arrays of undefined struct type to arrays of i8 just to have a
+ // concrete type.
+ if (!EltTy->isSized()) {
+ SkippedLayout = true;
+ EltTy = llvm::Type::getInt8Ty(getLLVMContext());
+ }
+
+ ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue());
+ break;
+ }
+ case Type::ExtVector:
+ case Type::Vector: {
+ const VectorType *VT = cast<VectorType>(Ty);
+ ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()),
+ VT->getNumElements());
+ break;
+ }
+ case Type::FunctionNoProto:
+ case Type::FunctionProto: {
+ const FunctionType *FT = cast<FunctionType>(Ty);
+ // First, check whether we can build the full function type. If the
+ // function type depends on an incomplete type (e.g. a struct or enum), we
+ // cannot lower the function type.
+ if (!isFuncTypeConvertible(FT)) {
+ // This function's type depends on an incomplete tag type.
+
+ // Force conversion of all the relevant record types, to make sure
+ // we re-convert the FunctionType when appropriate.
+ if (const RecordType *RT = FT->getReturnType()->getAs<RecordType>())
+ ConvertRecordDeclType(RT->getDecl());
+ if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
+ for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
+ if (const RecordType *RT = FPT->getParamType(i)->getAs<RecordType>())
+ ConvertRecordDeclType(RT->getDecl());
+
+ // Return a placeholder type.
+ ResultType = llvm::StructType::get(getLLVMContext());
+
+ SkippedLayout = true;
+ break;
+ }
+
+ // While we're converting the parameter types for a function, we don't want
+ // to recursively convert any pointed-to structs. Converting directly-used
+ // structs is ok though.
+ if (!RecordsBeingLaidOut.insert(Ty).second) {
+ ResultType = llvm::StructType::get(getLLVMContext());
+
+ SkippedLayout = true;
+ break;
+ }
+
+ // The function type can be built; call the appropriate routines to
+ // build it.
+ const CGFunctionInfo *FI;
+ if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
+ FI = &arrangeFreeFunctionType(
+ CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)));
+ } else {
+ const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT);
+ FI = &arrangeFreeFunctionType(
+ CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
+ }
+
+ // If there is something higher level prodding our CGFunctionInfo, then
+ // don't recurse into it again.
+ if (FunctionsBeingProcessed.count(FI)) {
+
+ ResultType = llvm::StructType::get(getLLVMContext());
+ SkippedLayout = true;
+ } else {
+
+ // Otherwise, we're good to go, go ahead and convert it.
+ ResultType = GetFunctionType(*FI);
+ }
+
+ RecordsBeingLaidOut.erase(Ty);
+
+ if (SkippedLayout)
+ TypeCache.clear();
+
+ if (RecordsBeingLaidOut.empty())
+ while (!DeferredRecords.empty())
+ ConvertRecordDeclType(DeferredRecords.pop_back_val());
+ break;
+ }
+
+ case Type::ObjCObject:
+ ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
+ break;
+
+ case Type::ObjCInterface: {
+ // Objective-C interfaces are always opaque (outside of the
+ // runtime, which can do whatever it likes); we never refine
+ // these.
+ llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
+ if (!T)
+ T = llvm::StructType::create(getLLVMContext());
+ ResultType = T;
+ break;
+ }
+
+ case Type::ObjCObjectPointer: {
+ // Protocol qualifications do not influence the LLVM type, we just return a
+ // pointer to the underlying interface type. We don't need to worry about
+ // recursive conversion.
+ llvm::Type *T =
+ ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
+ ResultType = T->getPointerTo();
+ break;
+ }
+
+ case Type::Enum: {
+ const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
+ if (ED->isCompleteDefinition() || ED->isFixed())
+ return ConvertType(ED->getIntegerType());
+ // Return a placeholder 'i32' type. This can be changed later when the
+ // type is defined (see UpdateCompletedType), but is likely to be the
+ // "right" answer.
+ ResultType = llvm::Type::getInt32Ty(getLLVMContext());
+ break;
+ }
+
+ case Type::BlockPointer: {
+ const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
+ llvm::Type *PointeeType = ConvertTypeForMem(FTy);
+ unsigned AS = Context.getTargetAddressSpace(FTy);
+ ResultType = llvm::PointerType::get(PointeeType, AS);
+ break;
+ }
+
+ case Type::MemberPointer: {
+ if (!getCXXABI().isMemberPointerConvertible(cast<MemberPointerType>(Ty)))
+ return llvm::StructType::create(getLLVMContext());
+ ResultType =
+ getCXXABI().ConvertMemberPointerType(cast<MemberPointerType>(Ty));
+ break;
+ }
+
+ case Type::Atomic: {
+ QualType valueType = cast<AtomicType>(Ty)->getValueType();
+ ResultType = ConvertTypeForMem(valueType);
+
+ // Pad out to the inflated size if necessary.
+ uint64_t valueSize = Context.getTypeSize(valueType);
+ uint64_t atomicSize = Context.getTypeSize(Ty);
+ if (valueSize != atomicSize) {
+ assert(valueSize < atomicSize);
+ llvm::Type *elts[] = {
+ ResultType,
+ llvm::ArrayType::get(CGM.Int8Ty, (atomicSize - valueSize) / 8)
+ };
+ ResultType = llvm::StructType::get(getLLVMContext(),
+ llvm::makeArrayRef(elts));
+ }
+ break;
+ }
+ }
+
+ assert(ResultType && "Didn't convert a type?");
+
+ TypeCache[Ty] = ResultType;
+ return ResultType;
+}
+
+bool CodeGenModule::isPaddedAtomicType(QualType type) {
+ return isPaddedAtomicType(type->castAs<AtomicType>());
+}
+
+bool CodeGenModule::isPaddedAtomicType(const AtomicType *type) {
+ return Context.getTypeSize(type) != Context.getTypeSize(type->getValueType());
+}
+
+/// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
+llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
+ // TagDecl's are not necessarily unique, instead use the (clang)
+ // type connected to the decl.
+ const Type *Key = Context.getTagDeclType(RD).getTypePtr();
+
+ llvm::StructType *&Entry = RecordDeclTypes[Key];
+
+ // If we don't have a StructType at all yet, create the forward declaration.
+ if (!Entry) {
+ Entry = llvm::StructType::create(getLLVMContext());
+ addRecordTypeName(RD, Entry, "");
+ }
+ llvm::StructType *Ty = Entry;
+
+ // If this is still a forward declaration, or the LLVM type is already
+ // complete, there's nothing more to do.
+ RD = RD->getDefinition();
+ if (!RD || !RD->isCompleteDefinition() || !Ty->isOpaque())
+ return Ty;
+
+ // If converting this type would cause us to infinitely loop, don't do it!
+ if (!isSafeToConvert(RD, *this)) {
+ DeferredRecords.push_back(RD);
+ return Ty;
+ }
+
+ // Okay, this is a definition of a type. Compile the implementation now.
+ bool InsertResult = RecordsBeingLaidOut.insert(Key).second;
+ (void)InsertResult;
+ assert(InsertResult && "Recursively compiling a struct?");
+
+ // Force conversion of non-virtual base classes recursively.
+ if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
+ for (const auto &I : CRD->bases()) {
+ if (I.isVirtual()) continue;
+
+ ConvertRecordDeclType(I.getType()->getAs<RecordType>()->getDecl());
+ }
+ }
+
+ // Layout fields.
+ CGRecordLayout *Layout = ComputeRecordLayout(RD, Ty);
+ CGRecordLayouts[Key] = Layout;
+
+ // We're done laying out this struct.
+ bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult;
+ assert(EraseResult && "struct not in RecordsBeingLaidOut set?");
+
+ // If this struct blocked a FunctionType conversion, then recompute whatever
+ // was derived from that.
+ // FIXME: This is hugely overconservative.
+ if (SkippedLayout)
+ TypeCache.clear();
+
+ // If we're done converting the outer-most record, then convert any deferred
+ // structs as well.
+ if (RecordsBeingLaidOut.empty())
+ while (!DeferredRecords.empty())
+ ConvertRecordDeclType(DeferredRecords.pop_back_val());
+
+ return Ty;
+}
+
+/// getCGRecordLayout - Return record layout info for the given record decl.
+const CGRecordLayout &
+CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
+ const Type *Key = Context.getTagDeclType(RD).getTypePtr();
+
+ const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key);
+ if (!Layout) {
+ // Compute the type information.
+ ConvertRecordDeclType(RD);
+
+ // Now try again.
+ Layout = CGRecordLayouts.lookup(Key);
+ }
+
+ assert(Layout && "Unable to find record layout information for type");
+ return *Layout;
+}
+
+bool CodeGenTypes::isZeroInitializable(QualType T) {
+ // No need to check for member pointers when not compiling C++.
+ if (!Context.getLangOpts().CPlusPlus)
+ return true;
+
+ if (const auto *AT = Context.getAsArrayType(T)) {
+ if (isa<IncompleteArrayType>(AT))
+ return true;
+ if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
+ if (Context.getConstantArrayElementCount(CAT) == 0)
+ return true;
+ T = Context.getBaseElementType(T);
+ }
+
+ // Records are non-zero-initializable if they contain any
+ // non-zero-initializable subobjects.
+ if (const RecordType *RT = T->getAs<RecordType>()) {
+ const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
+ return isZeroInitializable(RD);
+ }
+
+ // We have to ask the ABI about member pointers.
+ if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
+ return getCXXABI().isZeroInitializable(MPT);
+
+ // Everything else is okay.
+ return true;
+}
+
+bool CodeGenTypes::isZeroInitializable(const RecordDecl *RD) {
+ return getCGRecordLayout(RD).isZeroInitializable();
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CodeGenTypes.h b/contrib/llvm/tools/clang/lib/CodeGen/CodeGenTypes.h
new file mode 100644
index 0000000..1580e21
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CodeGenTypes.h
@@ -0,0 +1,326 @@
+//===--- CodeGenTypes.h - Type translation for LLVM CodeGen -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This is the code that handles AST -> LLVM type lowering.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENTYPES_H
+#define LLVM_CLANG_LIB_CODEGEN_CODEGENTYPES_H
+
+#include "CGCall.h"
+#include "clang/AST/GlobalDecl.h"
+#include "clang/CodeGen/CGFunctionInfo.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/IR/Module.h"
+#include <vector>
+
+namespace llvm {
+class FunctionType;
+class Module;
+class DataLayout;
+class Type;
+class LLVMContext;
+class StructType;
+}
+
+namespace clang {
+class ABIInfo;
+class ASTContext;
+template <typename> class CanQual;
+class CXXConstructorDecl;
+class CXXDestructorDecl;
+class CXXMethodDecl;
+class CodeGenOptions;
+class FieldDecl;
+class FunctionProtoType;
+class ObjCInterfaceDecl;
+class ObjCIvarDecl;
+class PointerType;
+class QualType;
+class RecordDecl;
+class TagDecl;
+class TargetInfo;
+class Type;
+typedef CanQual<Type> CanQualType;
+
+namespace CodeGen {
+class CGCXXABI;
+class CGRecordLayout;
+class CodeGenModule;
+class RequiredArgs;
+
+enum class StructorType {
+ Complete, // constructor or destructor
+ Base, // constructor or destructor
+ Deleting // destructor only
+};
+
+inline CXXCtorType toCXXCtorType(StructorType T) {
+ switch (T) {
+ case StructorType::Complete:
+ return Ctor_Complete;
+ case StructorType::Base:
+ return Ctor_Base;
+ case StructorType::Deleting:
+ llvm_unreachable("cannot have a deleting ctor");
+ }
+ llvm_unreachable("not a StructorType");
+}
+
+inline StructorType getFromCtorType(CXXCtorType T) {
+ switch (T) {
+ case Ctor_Complete:
+ return StructorType::Complete;
+ case Ctor_Base:
+ return StructorType::Base;
+ case Ctor_Comdat:
+ llvm_unreachable("not expecting a COMDAT");
+ case Ctor_CopyingClosure:
+ case Ctor_DefaultClosure:
+ llvm_unreachable("not expecting a closure");
+ }
+ llvm_unreachable("not a CXXCtorType");
+}
+
+inline CXXDtorType toCXXDtorType(StructorType T) {
+ switch (T) {
+ case StructorType::Complete:
+ return Dtor_Complete;
+ case StructorType::Base:
+ return Dtor_Base;
+ case StructorType::Deleting:
+ return Dtor_Deleting;
+ }
+ llvm_unreachable("not a StructorType");
+}
+
+inline StructorType getFromDtorType(CXXDtorType T) {
+ switch (T) {
+ case Dtor_Deleting:
+ return StructorType::Deleting;
+ case Dtor_Complete:
+ return StructorType::Complete;
+ case Dtor_Base:
+ return StructorType::Base;
+ case Dtor_Comdat:
+ llvm_unreachable("not expecting a COMDAT");
+ }
+ llvm_unreachable("not a CXXDtorType");
+}
+
+/// This class organizes the cross-module state that is used while lowering
+/// AST types to LLVM types.
+class CodeGenTypes {
+ CodeGenModule &CGM;
+ // Some of this stuff should probably be left on the CGM.
+ ASTContext &Context;
+ llvm::Module &TheModule;
+ const llvm::DataLayout &TheDataLayout;
+ const TargetInfo &Target;
+ CGCXXABI &TheCXXABI;
+
+ // This should not be moved earlier, since its initialization depends on some
+ // of the previous reference members being already initialized
+ const ABIInfo &TheABIInfo;
+
+ /// The opaque type map for Objective-C interfaces. All direct
+ /// manipulation is done by the runtime interfaces, which are
+ /// responsible for coercing to the appropriate type; these opaque
+ /// types are never refined.
+ llvm::DenseMap<const ObjCInterfaceType*, llvm::Type *> InterfaceTypes;
+
+ /// Maps clang struct type with corresponding record layout info.
+ llvm::DenseMap<const Type*, CGRecordLayout *> CGRecordLayouts;
+
+ /// Contains the LLVM IR type for any converted RecordDecl.
+ llvm::DenseMap<const Type*, llvm::StructType *> RecordDeclTypes;
+
+ /// Hold memoized CGFunctionInfo results.
+ llvm::FoldingSet<CGFunctionInfo> FunctionInfos;
+
+ /// This set keeps track of records that we're currently converting
+ /// to an IR type. For example, when converting:
+ /// struct A { struct B { int x; } } when processing 'x', the 'A' and 'B'
+ /// types will be in this set.
+ llvm::SmallPtrSet<const Type*, 4> RecordsBeingLaidOut;
+
+ llvm::SmallPtrSet<const CGFunctionInfo*, 4> FunctionsBeingProcessed;
+
+ /// True if we didn't layout a function due to a being inside
+ /// a recursive struct conversion, set this to true.
+ bool SkippedLayout;
+
+ SmallVector<const RecordDecl *, 8> DeferredRecords;
+
+private:
+ /// This map keeps cache of llvm::Types and maps clang::Type to
+ /// corresponding llvm::Type.
+ llvm::DenseMap<const Type *, llvm::Type *> TypeCache;
+
+public:
+ CodeGenTypes(CodeGenModule &cgm);
+ ~CodeGenTypes();
+
+ const llvm::DataLayout &getDataLayout() const { return TheDataLayout; }
+ ASTContext &getContext() const { return Context; }
+ const ABIInfo &getABIInfo() const { return TheABIInfo; }
+ const TargetInfo &getTarget() const { return Target; }
+ CGCXXABI &getCXXABI() const { return TheCXXABI; }
+ llvm::LLVMContext &getLLVMContext() { return TheModule.getContext(); }
+
+ /// ConvertType - Convert type T into a llvm::Type.
+ llvm::Type *ConvertType(QualType T);
+
+ /// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from
+ /// ConvertType in that it is used to convert to the memory representation for
+ /// a type. For example, the scalar representation for _Bool is i1, but the
+ /// memory representation is usually i8 or i32, depending on the target.
+ llvm::Type *ConvertTypeForMem(QualType T);
+
+ /// GetFunctionType - Get the LLVM function type for \arg Info.
+ llvm::FunctionType *GetFunctionType(const CGFunctionInfo &Info);
+
+ llvm::FunctionType *GetFunctionType(GlobalDecl GD);
+
+ /// isFuncTypeConvertible - Utility to check whether a function type can
+ /// be converted to an LLVM type (i.e. doesn't depend on an incomplete tag
+ /// type).
+ bool isFuncTypeConvertible(const FunctionType *FT);
+ bool isFuncParamTypeConvertible(QualType Ty);
+
+ /// GetFunctionTypeForVTable - Get the LLVM function type for use in a vtable,
+ /// given a CXXMethodDecl. If the method to has an incomplete return type,
+ /// and/or incomplete argument types, this will return the opaque type.
+ llvm::Type *GetFunctionTypeForVTable(GlobalDecl GD);
+
+ const CGRecordLayout &getCGRecordLayout(const RecordDecl*);
+
+ /// UpdateCompletedType - When we find the full definition for a TagDecl,
+ /// replace the 'opaque' type we previously made for it if applicable.
+ void UpdateCompletedType(const TagDecl *TD);
+
+ /// getNullaryFunctionInfo - Get the function info for a void()
+ /// function with standard CC.
+ const CGFunctionInfo &arrangeNullaryFunction();
+
+ // The arrangement methods are split into three families:
+ // - those meant to drive the signature and prologue/epilogue
+ // of a function declaration or definition,
+ // - those meant for the computation of the LLVM type for an abstract
+ // appearance of a function, and
+ // - those meant for performing the IR-generation of a call.
+ // They differ mainly in how they deal with optional (i.e. variadic)
+ // arguments, as well as unprototyped functions.
+ //
+ // Key points:
+ // - The CGFunctionInfo for emitting a specific call site must include
+ // entries for the optional arguments.
+ // - The function type used at the call site must reflect the formal
+ // signature of the declaration being called, or else the call will
+ // go awry.
+ // - For the most part, unprototyped functions are called by casting to
+ // a formal signature inferred from the specific argument types used
+ // at the call-site. However, some targets (e.g. x86-64) screw with
+ // this for compatibility reasons.
+
+ const CGFunctionInfo &arrangeGlobalDeclaration(GlobalDecl GD);
+ const CGFunctionInfo &arrangeFunctionDeclaration(const FunctionDecl *FD);
+ const CGFunctionInfo &
+ arrangeFreeFunctionDeclaration(QualType ResTy, const FunctionArgList &Args,
+ const FunctionType::ExtInfo &Info,
+ bool isVariadic);
+
+ const CGFunctionInfo &arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD);
+ const CGFunctionInfo &arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
+ QualType receiverType);
+
+ const CGFunctionInfo &arrangeCXXMethodDeclaration(const CXXMethodDecl *MD);
+ const CGFunctionInfo &arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
+ StructorType Type);
+ const CGFunctionInfo &arrangeCXXConstructorCall(const CallArgList &Args,
+ const CXXConstructorDecl *D,
+ CXXCtorType CtorKind,
+ unsigned ExtraArgs);
+ const CGFunctionInfo &arrangeFreeFunctionCall(const CallArgList &Args,
+ const FunctionType *Ty,
+ bool ChainCall);
+ const CGFunctionInfo &arrangeFreeFunctionCall(QualType ResTy,
+ const CallArgList &args,
+ FunctionType::ExtInfo info,
+ RequiredArgs required);
+ const CGFunctionInfo &arrangeBlockFunctionCall(const CallArgList &args,
+ const FunctionType *type);
+
+ const CGFunctionInfo &arrangeCXXMethodCall(const CallArgList &args,
+ const FunctionProtoType *type,
+ RequiredArgs required);
+ const CGFunctionInfo &arrangeMSMemberPointerThunk(const CXXMethodDecl *MD);
+ const CGFunctionInfo &arrangeMSCtorClosure(const CXXConstructorDecl *CD,
+ CXXCtorType CT);
+
+ const CGFunctionInfo &arrangeFreeFunctionType(CanQual<FunctionProtoType> Ty);
+ const CGFunctionInfo &arrangeFreeFunctionType(CanQual<FunctionNoProtoType> Ty);
+ const CGFunctionInfo &arrangeCXXMethodType(const CXXRecordDecl *RD,
+ const FunctionProtoType *FTP);
+
+ /// "Arrange" the LLVM information for a call or type with the given
+ /// signature. This is largely an internal method; other clients
+ /// should use one of the above routines, which ultimately defer to
+ /// this.
+ ///
+ /// \param argTypes - must all actually be canonical as params
+ const CGFunctionInfo &arrangeLLVMFunctionInfo(CanQualType returnType,
+ bool instanceMethod,
+ bool chainCall,
+ ArrayRef<CanQualType> argTypes,
+ FunctionType::ExtInfo info,
+ RequiredArgs args);
+
+ /// \brief Compute a new LLVM record layout object for the given record.
+ CGRecordLayout *ComputeRecordLayout(const RecordDecl *D,
+ llvm::StructType *Ty);
+
+ /// addRecordTypeName - Compute a name from the given record decl with an
+ /// optional suffix and name the given LLVM type using it.
+ void addRecordTypeName(const RecordDecl *RD, llvm::StructType *Ty,
+ StringRef suffix);
+
+
+public: // These are internal details of CGT that shouldn't be used externally.
+ /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
+ llvm::StructType *ConvertRecordDeclType(const RecordDecl *TD);
+
+ /// getExpandedTypes - Expand the type \arg Ty into the LLVM
+ /// argument types it would be passed as. See ABIArgInfo::Expand.
+ void getExpandedTypes(QualType Ty,
+ SmallVectorImpl<llvm::Type *>::iterator &TI);
+
+ /// IsZeroInitializable - Return whether a type can be
+ /// zero-initialized (in the C++ sense) with an LLVM zeroinitializer.
+ bool isZeroInitializable(QualType T);
+
+ /// IsZeroInitializable - Return whether a record type can be
+ /// zero-initialized (in the C++ sense) with an LLVM zeroinitializer.
+ bool isZeroInitializable(const RecordDecl *RD);
+
+ bool isRecordLayoutComplete(const Type *Ty) const;
+ bool noRecordsBeingLaidOut() const {
+ return RecordsBeingLaidOut.empty();
+ }
+ bool isRecordBeingLaidOut(const Type *Ty) const {
+ return RecordsBeingLaidOut.count(Ty);
+ }
+
+};
+
+} // end namespace CodeGen
+} // end namespace clang
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CoverageMappingGen.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CoverageMappingGen.cpp
new file mode 100644
index 0000000..024a45d
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CoverageMappingGen.cpp
@@ -0,0 +1,1053 @@
+//===--- CoverageMappingGen.cpp - Coverage mapping generation ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Instrumentation-based code coverage mapping generator
+//
+//===----------------------------------------------------------------------===//
+
+#include "CoverageMappingGen.h"
+#include "CodeGenFunction.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Lex/Lexer.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ProfileData/CoverageMapping.h"
+#include "llvm/ProfileData/CoverageMappingReader.h"
+#include "llvm/ProfileData/CoverageMappingWriter.h"
+#include "llvm/ProfileData/InstrProfReader.h"
+#include "llvm/Support/FileSystem.h"
+
+using namespace clang;
+using namespace CodeGen;
+using namespace llvm::coverage;
+
+void CoverageSourceInfo::SourceRangeSkipped(SourceRange Range) {
+ SkippedRanges.push_back(Range);
+}
+
+namespace {
+
+/// \brief A region of source code that can be mapped to a counter.
+class SourceMappingRegion {
+ Counter Count;
+
+ /// \brief The region's starting location.
+ Optional<SourceLocation> LocStart;
+
+ /// \brief The region's ending location.
+ Optional<SourceLocation> LocEnd;
+
+public:
+ SourceMappingRegion(Counter Count, Optional<SourceLocation> LocStart,
+ Optional<SourceLocation> LocEnd)
+ : Count(Count), LocStart(LocStart), LocEnd(LocEnd) {}
+
+ SourceMappingRegion(SourceMappingRegion &&Region)
+ : Count(std::move(Region.Count)), LocStart(std::move(Region.LocStart)),
+ LocEnd(std::move(Region.LocEnd)) {}
+
+ SourceMappingRegion &operator=(SourceMappingRegion &&RHS) {
+ Count = std::move(RHS.Count);
+ LocStart = std::move(RHS.LocStart);
+ LocEnd = std::move(RHS.LocEnd);
+ return *this;
+ }
+
+ const Counter &getCounter() const { return Count; }
+
+ void setCounter(Counter C) { Count = C; }
+
+ bool hasStartLoc() const { return LocStart.hasValue(); }
+
+ void setStartLoc(SourceLocation Loc) { LocStart = Loc; }
+
+ const SourceLocation &getStartLoc() const {
+ assert(LocStart && "Region has no start location");
+ return *LocStart;
+ }
+
+ bool hasEndLoc() const { return LocEnd.hasValue(); }
+
+ void setEndLoc(SourceLocation Loc) { LocEnd = Loc; }
+
+ const SourceLocation &getEndLoc() const {
+ assert(LocEnd && "Region has no end location");
+ return *LocEnd;
+ }
+};
+
+/// \brief Provides the common functionality for the different
+/// coverage mapping region builders.
+class CoverageMappingBuilder {
+public:
+ CoverageMappingModuleGen &CVM;
+ SourceManager &SM;
+ const LangOptions &LangOpts;
+
+private:
+ /// \brief Map of clang's FileIDs to IDs used for coverage mapping.
+ llvm::SmallDenseMap<FileID, std::pair<unsigned, SourceLocation>, 8>
+ FileIDMapping;
+
+public:
+ /// \brief The coverage mapping regions for this function
+ llvm::SmallVector<CounterMappingRegion, 32> MappingRegions;
+ /// \brief The source mapping regions for this function.
+ std::vector<SourceMappingRegion> SourceRegions;
+
+ CoverageMappingBuilder(CoverageMappingModuleGen &CVM, SourceManager &SM,
+ const LangOptions &LangOpts)
+ : CVM(CVM), SM(SM), LangOpts(LangOpts) {}
+
+ /// \brief Return the precise end location for the given token.
+ SourceLocation getPreciseTokenLocEnd(SourceLocation Loc) {
+ // We avoid getLocForEndOfToken here, because it doesn't do what we want for
+ // macro locations, which we just treat as expanded files.
+ unsigned TokLen =
+ Lexer::MeasureTokenLength(SM.getSpellingLoc(Loc), SM, LangOpts);
+ return Loc.getLocWithOffset(TokLen);
+ }
+
+ /// \brief Return the start location of an included file or expanded macro.
+ SourceLocation getStartOfFileOrMacro(SourceLocation Loc) {
+ if (Loc.isMacroID())
+ return Loc.getLocWithOffset(-SM.getFileOffset(Loc));
+ return SM.getLocForStartOfFile(SM.getFileID(Loc));
+ }
+
+ /// \brief Return the end location of an included file or expanded macro.
+ SourceLocation getEndOfFileOrMacro(SourceLocation Loc) {
+ if (Loc.isMacroID())
+ return Loc.getLocWithOffset(SM.getFileIDSize(SM.getFileID(Loc)) -
+ SM.getFileOffset(Loc));
+ return SM.getLocForEndOfFile(SM.getFileID(Loc));
+ }
+
+ /// \brief Find out where the current file is included or macro is expanded.
+ SourceLocation getIncludeOrExpansionLoc(SourceLocation Loc) {
+ return Loc.isMacroID() ? SM.getImmediateExpansionRange(Loc).first
+ : SM.getIncludeLoc(SM.getFileID(Loc));
+ }
+
+ /// \brief Return true if \c Loc is a location in a built-in macro.
+ bool isInBuiltin(SourceLocation Loc) {
+ return strcmp(SM.getBufferName(SM.getSpellingLoc(Loc)), "<built-in>") == 0;
+ }
+
+ /// \brief Get the start of \c S ignoring macro arguments and builtin macros.
+ SourceLocation getStart(const Stmt *S) {
+ SourceLocation Loc = S->getLocStart();
+ while (SM.isMacroArgExpansion(Loc) || isInBuiltin(Loc))
+ Loc = SM.getImmediateExpansionRange(Loc).first;
+ return Loc;
+ }
+
+ /// \brief Get the end of \c S ignoring macro arguments and builtin macros.
+ SourceLocation getEnd(const Stmt *S) {
+ SourceLocation Loc = S->getLocEnd();
+ while (SM.isMacroArgExpansion(Loc) || isInBuiltin(Loc))
+ Loc = SM.getImmediateExpansionRange(Loc).first;
+ return getPreciseTokenLocEnd(Loc);
+ }
+
+ /// \brief Find the set of files we have regions for and assign IDs
+ ///
+ /// Fills \c Mapping with the virtual file mapping needed to write out
+ /// coverage and collects the necessary file information to emit source and
+ /// expansion regions.
+ void gatherFileIDs(SmallVectorImpl<unsigned> &Mapping) {
+ FileIDMapping.clear();
+
+ SmallVector<FileID, 8> Visited;
+ SmallVector<std::pair<SourceLocation, unsigned>, 8> FileLocs;
+ for (const auto &Region : SourceRegions) {
+ SourceLocation Loc = Region.getStartLoc();
+ FileID File = SM.getFileID(Loc);
+ if (std::find(Visited.begin(), Visited.end(), File) != Visited.end())
+ continue;
+ Visited.push_back(File);
+
+ unsigned Depth = 0;
+ for (SourceLocation Parent = getIncludeOrExpansionLoc(Loc);
+ !Parent.isInvalid(); Parent = getIncludeOrExpansionLoc(Parent))
+ ++Depth;
+ FileLocs.push_back(std::make_pair(Loc, Depth));
+ }
+ std::stable_sort(FileLocs.begin(), FileLocs.end(), llvm::less_second());
+
+ for (const auto &FL : FileLocs) {
+ SourceLocation Loc = FL.first;
+ FileID SpellingFile = SM.getDecomposedSpellingLoc(Loc).first;
+ auto Entry = SM.getFileEntryForID(SpellingFile);
+ if (!Entry)
+ continue;
+
+ FileIDMapping[SM.getFileID(Loc)] = std::make_pair(Mapping.size(), Loc);
+ Mapping.push_back(CVM.getFileID(Entry));
+ }
+ }
+
+ /// \brief Get the coverage mapping file ID for \c Loc.
+ ///
+ /// If such file id doesn't exist, return None.
+ Optional<unsigned> getCoverageFileID(SourceLocation Loc) {
+ auto Mapping = FileIDMapping.find(SM.getFileID(Loc));
+ if (Mapping != FileIDMapping.end())
+ return Mapping->second.first;
+ return None;
+ }
+
+ /// \brief Return true if the given clang's file id has a corresponding
+ /// coverage file id.
+ bool hasExistingCoverageFileID(FileID File) const {
+ return FileIDMapping.count(File);
+ }
+
+ /// \brief Gather all the regions that were skipped by the preprocessor
+ /// using the constructs like #if.
+ void gatherSkippedRegions() {
+ /// An array of the minimum lineStarts and the maximum lineEnds
+ /// for mapping regions from the appropriate source files.
+ llvm::SmallVector<std::pair<unsigned, unsigned>, 8> FileLineRanges;
+ FileLineRanges.resize(
+ FileIDMapping.size(),
+ std::make_pair(std::numeric_limits<unsigned>::max(), 0));
+ for (const auto &R : MappingRegions) {
+ FileLineRanges[R.FileID].first =
+ std::min(FileLineRanges[R.FileID].first, R.LineStart);
+ FileLineRanges[R.FileID].second =
+ std::max(FileLineRanges[R.FileID].second, R.LineEnd);
+ }
+
+ auto SkippedRanges = CVM.getSourceInfo().getSkippedRanges();
+ for (const auto &I : SkippedRanges) {
+ auto LocStart = I.getBegin();
+ auto LocEnd = I.getEnd();
+ assert(SM.isWrittenInSameFile(LocStart, LocEnd) &&
+ "region spans multiple files");
+
+ auto CovFileID = getCoverageFileID(LocStart);
+ if (!CovFileID)
+ continue;
+ unsigned LineStart = SM.getSpellingLineNumber(LocStart);
+ unsigned ColumnStart = SM.getSpellingColumnNumber(LocStart);
+ unsigned LineEnd = SM.getSpellingLineNumber(LocEnd);
+ unsigned ColumnEnd = SM.getSpellingColumnNumber(LocEnd);
+ auto Region = CounterMappingRegion::makeSkipped(
+ *CovFileID, LineStart, ColumnStart, LineEnd, ColumnEnd);
+ // Make sure that we only collect the regions that are inside
+ // the souce code of this function.
+ if (Region.LineStart >= FileLineRanges[*CovFileID].first &&
+ Region.LineEnd <= FileLineRanges[*CovFileID].second)
+ MappingRegions.push_back(Region);
+ }
+ }
+
+ /// \brief Generate the coverage counter mapping regions from collected
+ /// source regions.
+ void emitSourceRegions() {
+ for (const auto &Region : SourceRegions) {
+ assert(Region.hasEndLoc() && "incomplete region");
+
+ SourceLocation LocStart = Region.getStartLoc();
+ assert(!SM.getFileID(LocStart).isInvalid() && "region in invalid file");
+
+ auto CovFileID = getCoverageFileID(LocStart);
+ // Ignore regions that don't have a file, such as builtin macros.
+ if (!CovFileID)
+ continue;
+
+ SourceLocation LocEnd = Region.getEndLoc();
+ assert(SM.isWrittenInSameFile(LocStart, LocEnd) &&
+ "region spans multiple files");
+
+ // Find the spilling locations for the mapping region.
+ unsigned LineStart = SM.getSpellingLineNumber(LocStart);
+ unsigned ColumnStart = SM.getSpellingColumnNumber(LocStart);
+ unsigned LineEnd = SM.getSpellingLineNumber(LocEnd);
+ unsigned ColumnEnd = SM.getSpellingColumnNumber(LocEnd);
+
+ assert(LineStart <= LineEnd && "region start and end out of order");
+ MappingRegions.push_back(CounterMappingRegion::makeRegion(
+ Region.getCounter(), *CovFileID, LineStart, ColumnStart, LineEnd,
+ ColumnEnd));
+ }
+ }
+
+ /// \brief Generate expansion regions for each virtual file we've seen.
+ void emitExpansionRegions() {
+ for (const auto &FM : FileIDMapping) {
+ SourceLocation ExpandedLoc = FM.second.second;
+ SourceLocation ParentLoc = getIncludeOrExpansionLoc(ExpandedLoc);
+ if (ParentLoc.isInvalid())
+ continue;
+
+ auto ParentFileID = getCoverageFileID(ParentLoc);
+ if (!ParentFileID)
+ continue;
+ auto ExpandedFileID = getCoverageFileID(ExpandedLoc);
+ assert(ExpandedFileID && "expansion in uncovered file");
+
+ SourceLocation LocEnd = getPreciseTokenLocEnd(ParentLoc);
+ assert(SM.isWrittenInSameFile(ParentLoc, LocEnd) &&
+ "region spans multiple files");
+
+ unsigned LineStart = SM.getSpellingLineNumber(ParentLoc);
+ unsigned ColumnStart = SM.getSpellingColumnNumber(ParentLoc);
+ unsigned LineEnd = SM.getSpellingLineNumber(LocEnd);
+ unsigned ColumnEnd = SM.getSpellingColumnNumber(LocEnd);
+
+ MappingRegions.push_back(CounterMappingRegion::makeExpansion(
+ *ParentFileID, *ExpandedFileID, LineStart, ColumnStart, LineEnd,
+ ColumnEnd));
+ }
+ }
+};
+
+/// \brief Creates unreachable coverage regions for the functions that
+/// are not emitted.
+struct EmptyCoverageMappingBuilder : public CoverageMappingBuilder {
+ EmptyCoverageMappingBuilder(CoverageMappingModuleGen &CVM, SourceManager &SM,
+ const LangOptions &LangOpts)
+ : CoverageMappingBuilder(CVM, SM, LangOpts) {}
+
+ void VisitDecl(const Decl *D) {
+ if (!D->hasBody())
+ return;
+ auto Body = D->getBody();
+ SourceRegions.emplace_back(Counter(), getStart(Body), getEnd(Body));
+ }
+
+ /// \brief Write the mapping data to the output stream
+ void write(llvm::raw_ostream &OS) {
+ SmallVector<unsigned, 16> FileIDMapping;
+ gatherFileIDs(FileIDMapping);
+ emitSourceRegions();
+
+ CoverageMappingWriter Writer(FileIDMapping, None, MappingRegions);
+ Writer.write(OS);
+ }
+};
+
+/// \brief A StmtVisitor that creates coverage mapping regions which map
+/// from the source code locations to the PGO counters.
+struct CounterCoverageMappingBuilder
+ : public CoverageMappingBuilder,
+ public ConstStmtVisitor<CounterCoverageMappingBuilder> {
+ /// \brief The map of statements to count values.
+ llvm::DenseMap<const Stmt *, unsigned> &CounterMap;
+
+ /// \brief A stack of currently live regions.
+ std::vector<SourceMappingRegion> RegionStack;
+
+ CounterExpressionBuilder Builder;
+
+ /// \brief A location in the most recently visited file or macro.
+ ///
+ /// This is used to adjust the active source regions appropriately when
+ /// expressions cross file or macro boundaries.
+ SourceLocation MostRecentLocation;
+
+ /// \brief Return a counter for the subtraction of \c RHS from \c LHS
+ Counter subtractCounters(Counter LHS, Counter RHS) {
+ return Builder.subtract(LHS, RHS);
+ }
+
+ /// \brief Return a counter for the sum of \c LHS and \c RHS.
+ Counter addCounters(Counter LHS, Counter RHS) {
+ return Builder.add(LHS, RHS);
+ }
+
+ Counter addCounters(Counter C1, Counter C2, Counter C3) {
+ return addCounters(addCounters(C1, C2), C3);
+ }
+
+ Counter addCounters(Counter C1, Counter C2, Counter C3, Counter C4) {
+ return addCounters(addCounters(C1, C2, C3), C4);
+ }
+
+ /// \brief Return the region counter for the given statement.
+ ///
+ /// This should only be called on statements that have a dedicated counter.
+ Counter getRegionCounter(const Stmt *S) {
+ return Counter::getCounter(CounterMap[S]);
+ }
+
+ /// \brief Push a region onto the stack.
+ ///
+ /// Returns the index on the stack where the region was pushed. This can be
+ /// used with popRegions to exit a "scope", ending the region that was pushed.
+ size_t pushRegion(Counter Count, Optional<SourceLocation> StartLoc = None,
+ Optional<SourceLocation> EndLoc = None) {
+ if (StartLoc)
+ MostRecentLocation = *StartLoc;
+ RegionStack.emplace_back(Count, StartLoc, EndLoc);
+
+ return RegionStack.size() - 1;
+ }
+
+ /// \brief Pop regions from the stack into the function's list of regions.
+ ///
+ /// Adds all regions from \c ParentIndex to the top of the stack to the
+ /// function's \c SourceRegions.
+ void popRegions(size_t ParentIndex) {
+ assert(RegionStack.size() >= ParentIndex && "parent not in stack");
+ while (RegionStack.size() > ParentIndex) {
+ SourceMappingRegion &Region = RegionStack.back();
+ if (Region.hasStartLoc()) {
+ SourceLocation StartLoc = Region.getStartLoc();
+ SourceLocation EndLoc = Region.hasEndLoc()
+ ? Region.getEndLoc()
+ : RegionStack[ParentIndex].getEndLoc();
+ while (!SM.isWrittenInSameFile(StartLoc, EndLoc)) {
+ // The region ends in a nested file or macro expansion. Create a
+ // separate region for each expansion.
+ SourceLocation NestedLoc = getStartOfFileOrMacro(EndLoc);
+ assert(SM.isWrittenInSameFile(NestedLoc, EndLoc));
+
+ SourceRegions.emplace_back(Region.getCounter(), NestedLoc, EndLoc);
+
+ EndLoc = getPreciseTokenLocEnd(getIncludeOrExpansionLoc(EndLoc));
+ assert(!EndLoc.isInvalid() &&
+ "File exit was not handled before popRegions");
+ }
+ Region.setEndLoc(EndLoc);
+
+ MostRecentLocation = EndLoc;
+ // If this region happens to span an entire expansion, we need to make
+ // sure we don't overlap the parent region with it.
+ if (StartLoc == getStartOfFileOrMacro(StartLoc) &&
+ EndLoc == getEndOfFileOrMacro(EndLoc))
+ MostRecentLocation = getIncludeOrExpansionLoc(EndLoc);
+
+ assert(SM.isWrittenInSameFile(Region.getStartLoc(), EndLoc));
+ SourceRegions.push_back(std::move(Region));
+ }
+ RegionStack.pop_back();
+ }
+ }
+
+ /// \brief Return the currently active region.
+ SourceMappingRegion &getRegion() {
+ assert(!RegionStack.empty() && "statement has no region");
+ return RegionStack.back();
+ }
+
+ /// \brief Propagate counts through the children of \c S.
+ Counter propagateCounts(Counter TopCount, const Stmt *S) {
+ size_t Index = pushRegion(TopCount, getStart(S), getEnd(S));
+ Visit(S);
+ Counter ExitCount = getRegion().getCounter();
+ popRegions(Index);
+ return ExitCount;
+ }
+
+ /// \brief Adjust the most recently visited location to \c EndLoc.
+ ///
+ /// This should be used after visiting any statements in non-source order.
+ void adjustForOutOfOrderTraversal(SourceLocation EndLoc) {
+ MostRecentLocation = EndLoc;
+ // Avoid adding duplicate regions if we have a completed region on the top
+ // of the stack and are adjusting to the end of a virtual file.
+ if (getRegion().hasEndLoc() &&
+ MostRecentLocation == getEndOfFileOrMacro(MostRecentLocation))
+ MostRecentLocation = getIncludeOrExpansionLoc(MostRecentLocation);
+ }
+
+ /// \brief Check whether \c Loc is included or expanded from \c Parent.
+ bool isNestedIn(SourceLocation Loc, FileID Parent) {
+ do {
+ Loc = getIncludeOrExpansionLoc(Loc);
+ if (Loc.isInvalid())
+ return false;
+ } while (!SM.isInFileID(Loc, Parent));
+ return true;
+ }
+
+ /// \brief Adjust regions and state when \c NewLoc exits a file.
+ ///
+ /// If moving from our most recently tracked location to \c NewLoc exits any
+ /// files, this adjusts our current region stack and creates the file regions
+ /// for the exited file.
+ void handleFileExit(SourceLocation NewLoc) {
+ if (SM.isWrittenInSameFile(MostRecentLocation, NewLoc))
+ return;
+
+ // If NewLoc is not in a file that contains MostRecentLocation, walk up to
+ // find the common ancestor.
+ SourceLocation LCA = NewLoc;
+ FileID ParentFile = SM.getFileID(LCA);
+ while (!isNestedIn(MostRecentLocation, ParentFile)) {
+ LCA = getIncludeOrExpansionLoc(LCA);
+ if (LCA.isInvalid() || SM.isWrittenInSameFile(LCA, MostRecentLocation)) {
+ // Since there isn't a common ancestor, no file was exited. We just need
+ // to adjust our location to the new file.
+ MostRecentLocation = NewLoc;
+ return;
+ }
+ ParentFile = SM.getFileID(LCA);
+ }
+
+ llvm::SmallSet<SourceLocation, 8> StartLocs;
+ Optional<Counter> ParentCounter;
+ for (auto I = RegionStack.rbegin(), E = RegionStack.rend(); I != E; ++I) {
+ if (!I->hasStartLoc())
+ continue;
+ SourceLocation Loc = I->getStartLoc();
+ if (!isNestedIn(Loc, ParentFile)) {
+ ParentCounter = I->getCounter();
+ break;
+ }
+
+ while (!SM.isInFileID(Loc, ParentFile)) {
+ // The most nested region for each start location is the one with the
+ // correct count. We avoid creating redundant regions by stopping once
+ // we've seen this region.
+ if (StartLocs.insert(Loc).second)
+ SourceRegions.emplace_back(I->getCounter(), Loc,
+ getEndOfFileOrMacro(Loc));
+ Loc = getIncludeOrExpansionLoc(Loc);
+ }
+ I->setStartLoc(getPreciseTokenLocEnd(Loc));
+ }
+
+ if (ParentCounter) {
+ // If the file is contained completely by another region and doesn't
+ // immediately start its own region, the whole file gets a region
+ // corresponding to the parent.
+ SourceLocation Loc = MostRecentLocation;
+ while (isNestedIn(Loc, ParentFile)) {
+ SourceLocation FileStart = getStartOfFileOrMacro(Loc);
+ if (StartLocs.insert(FileStart).second)
+ SourceRegions.emplace_back(*ParentCounter, FileStart,
+ getEndOfFileOrMacro(Loc));
+ Loc = getIncludeOrExpansionLoc(Loc);
+ }
+ }
+
+ MostRecentLocation = NewLoc;
+ }
+
+ /// \brief Ensure that \c S is included in the current region.
+ void extendRegion(const Stmt *S) {
+ SourceMappingRegion &Region = getRegion();
+ SourceLocation StartLoc = getStart(S);
+
+ handleFileExit(StartLoc);
+ if (!Region.hasStartLoc())
+ Region.setStartLoc(StartLoc);
+ }
+
+ /// \brief Mark \c S as a terminator, starting a zero region.
+ void terminateRegion(const Stmt *S) {
+ extendRegion(S);
+ SourceMappingRegion &Region = getRegion();
+ if (!Region.hasEndLoc())
+ Region.setEndLoc(getEnd(S));
+ pushRegion(Counter::getZero());
+ }
+
+ /// \brief Keep counts of breaks and continues inside loops.
+ struct BreakContinue {
+ Counter BreakCount;
+ Counter ContinueCount;
+ };
+ SmallVector<BreakContinue, 8> BreakContinueStack;
+
+ CounterCoverageMappingBuilder(
+ CoverageMappingModuleGen &CVM,
+ llvm::DenseMap<const Stmt *, unsigned> &CounterMap, SourceManager &SM,
+ const LangOptions &LangOpts)
+ : CoverageMappingBuilder(CVM, SM, LangOpts), CounterMap(CounterMap) {}
+
+ /// \brief Write the mapping data to the output stream
+ void write(llvm::raw_ostream &OS) {
+ llvm::SmallVector<unsigned, 8> VirtualFileMapping;
+ gatherFileIDs(VirtualFileMapping);
+ emitSourceRegions();
+ emitExpansionRegions();
+ gatherSkippedRegions();
+
+ CoverageMappingWriter Writer(VirtualFileMapping, Builder.getExpressions(),
+ MappingRegions);
+ Writer.write(OS);
+ }
+
+ void VisitStmt(const Stmt *S) {
+ if (!S->getLocStart().isInvalid())
+ extendRegion(S);
+ for (Stmt::const_child_range I = S->children(); I; ++I) {
+ if (*I)
+ this->Visit(*I);
+ }
+ handleFileExit(getEnd(S));
+ }
+
+ void VisitDecl(const Decl *D) {
+ Stmt *Body = D->getBody();
+ propagateCounts(getRegionCounter(Body), Body);
+ }
+
+ void VisitReturnStmt(const ReturnStmt *S) {
+ extendRegion(S);
+ if (S->getRetValue())
+ Visit(S->getRetValue());
+ terminateRegion(S);
+ }
+
+ void VisitCXXThrowExpr(const CXXThrowExpr *E) {
+ extendRegion(E);
+ if (E->getSubExpr())
+ Visit(E->getSubExpr());
+ terminateRegion(E);
+ }
+
+ void VisitGotoStmt(const GotoStmt *S) { terminateRegion(S); }
+
+ void VisitLabelStmt(const LabelStmt *S) {
+ SourceLocation Start = getStart(S);
+ // We can't extendRegion here or we risk overlapping with our new region.
+ handleFileExit(Start);
+ pushRegion(getRegionCounter(S), Start);
+ Visit(S->getSubStmt());
+ }
+
+ void VisitBreakStmt(const BreakStmt *S) {
+ assert(!BreakContinueStack.empty() && "break not in a loop or switch!");
+ BreakContinueStack.back().BreakCount = addCounters(
+ BreakContinueStack.back().BreakCount, getRegion().getCounter());
+ terminateRegion(S);
+ }
+
+ void VisitContinueStmt(const ContinueStmt *S) {
+ assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
+ BreakContinueStack.back().ContinueCount = addCounters(
+ BreakContinueStack.back().ContinueCount, getRegion().getCounter());
+ terminateRegion(S);
+ }
+
+ void VisitWhileStmt(const WhileStmt *S) {
+ extendRegion(S);
+
+ Counter ParentCount = getRegion().getCounter();
+ Counter BodyCount = getRegionCounter(S);
+
+ // Handle the body first so that we can get the backedge count.
+ BreakContinueStack.push_back(BreakContinue());
+ extendRegion(S->getBody());
+ Counter BackedgeCount = propagateCounts(BodyCount, S->getBody());
+ BreakContinue BC = BreakContinueStack.pop_back_val();
+
+ // Go back to handle the condition.
+ Counter CondCount =
+ addCounters(ParentCount, BackedgeCount, BC.ContinueCount);
+ propagateCounts(CondCount, S->getCond());
+ adjustForOutOfOrderTraversal(getEnd(S));
+
+ Counter OutCount =
+ addCounters(BC.BreakCount, subtractCounters(CondCount, BodyCount));
+ if (OutCount != ParentCount)
+ pushRegion(OutCount);
+ }
+
+ void VisitDoStmt(const DoStmt *S) {
+ extendRegion(S);
+
+ Counter ParentCount = getRegion().getCounter();
+ Counter BodyCount = getRegionCounter(S);
+
+ BreakContinueStack.push_back(BreakContinue());
+ extendRegion(S->getBody());
+ Counter BackedgeCount =
+ propagateCounts(addCounters(ParentCount, BodyCount), S->getBody());
+ BreakContinue BC = BreakContinueStack.pop_back_val();
+
+ Counter CondCount = addCounters(BackedgeCount, BC.ContinueCount);
+ propagateCounts(CondCount, S->getCond());
+
+ Counter OutCount =
+ addCounters(BC.BreakCount, subtractCounters(CondCount, BodyCount));
+ if (OutCount != ParentCount)
+ pushRegion(OutCount);
+ }
+
+ void VisitForStmt(const ForStmt *S) {
+ extendRegion(S);
+ if (S->getInit())
+ Visit(S->getInit());
+
+ Counter ParentCount = getRegion().getCounter();
+ Counter BodyCount = getRegionCounter(S);
+
+ // Handle the body first so that we can get the backedge count.
+ BreakContinueStack.push_back(BreakContinue());
+ extendRegion(S->getBody());
+ Counter BackedgeCount = propagateCounts(BodyCount, S->getBody());
+ BreakContinue BC = BreakContinueStack.pop_back_val();
+
+ // The increment is essentially part of the body but it needs to include
+ // the count for all the continue statements.
+ if (const Stmt *Inc = S->getInc())
+ propagateCounts(addCounters(BackedgeCount, BC.ContinueCount), Inc);
+
+ // Go back to handle the condition.
+ Counter CondCount =
+ addCounters(ParentCount, BackedgeCount, BC.ContinueCount);
+ if (const Expr *Cond = S->getCond()) {
+ propagateCounts(CondCount, Cond);
+ adjustForOutOfOrderTraversal(getEnd(S));
+ }
+
+ Counter OutCount =
+ addCounters(BC.BreakCount, subtractCounters(CondCount, BodyCount));
+ if (OutCount != ParentCount)
+ pushRegion(OutCount);
+ }
+
+ void VisitCXXForRangeStmt(const CXXForRangeStmt *S) {
+ extendRegion(S);
+ Visit(S->getLoopVarStmt());
+ Visit(S->getRangeStmt());
+
+ Counter ParentCount = getRegion().getCounter();
+ Counter BodyCount = getRegionCounter(S);
+
+ BreakContinueStack.push_back(BreakContinue());
+ extendRegion(S->getBody());
+ Counter BackedgeCount = propagateCounts(BodyCount, S->getBody());
+ BreakContinue BC = BreakContinueStack.pop_back_val();
+
+ Counter LoopCount =
+ addCounters(ParentCount, BackedgeCount, BC.ContinueCount);
+ Counter OutCount =
+ addCounters(BC.BreakCount, subtractCounters(LoopCount, BodyCount));
+ if (OutCount != ParentCount)
+ pushRegion(OutCount);
+ }
+
+ void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) {
+ extendRegion(S);
+ Visit(S->getElement());
+
+ Counter ParentCount = getRegion().getCounter();
+ Counter BodyCount = getRegionCounter(S);
+
+ BreakContinueStack.push_back(BreakContinue());
+ extendRegion(S->getBody());
+ Counter BackedgeCount = propagateCounts(BodyCount, S->getBody());
+ BreakContinue BC = BreakContinueStack.pop_back_val();
+
+ Counter LoopCount =
+ addCounters(ParentCount, BackedgeCount, BC.ContinueCount);
+ Counter OutCount =
+ addCounters(BC.BreakCount, subtractCounters(LoopCount, BodyCount));
+ if (OutCount != ParentCount)
+ pushRegion(OutCount);
+ }
+
+ void VisitSwitchStmt(const SwitchStmt *S) {
+ extendRegion(S);
+ Visit(S->getCond());
+
+ BreakContinueStack.push_back(BreakContinue());
+
+ const Stmt *Body = S->getBody();
+ extendRegion(Body);
+ if (const auto *CS = dyn_cast<CompoundStmt>(Body)) {
+ if (!CS->body_empty()) {
+ // The body of the switch needs a zero region so that fallthrough counts
+ // behave correctly, but it would be misleading to include the braces of
+ // the compound statement in the zeroed area, so we need to handle this
+ // specially.
+ size_t Index =
+ pushRegion(Counter::getZero(), getStart(CS->body_front()),
+ getEnd(CS->body_back()));
+ for (const auto *Child : CS->children())
+ Visit(Child);
+ popRegions(Index);
+ }
+ } else
+ propagateCounts(Counter::getZero(), Body);
+ BreakContinue BC = BreakContinueStack.pop_back_val();
+
+ if (!BreakContinueStack.empty())
+ BreakContinueStack.back().ContinueCount = addCounters(
+ BreakContinueStack.back().ContinueCount, BC.ContinueCount);
+
+ Counter ExitCount = getRegionCounter(S);
+ pushRegion(ExitCount);
+ }
+
+ void VisitSwitchCase(const SwitchCase *S) {
+ extendRegion(S);
+
+ SourceMappingRegion &Parent = getRegion();
+
+ Counter Count = addCounters(Parent.getCounter(), getRegionCounter(S));
+ // Reuse the existing region if it starts at our label. This is typical of
+ // the first case in a switch.
+ if (Parent.hasStartLoc() && Parent.getStartLoc() == getStart(S))
+ Parent.setCounter(Count);
+ else
+ pushRegion(Count, getStart(S));
+
+ if (const CaseStmt *CS = dyn_cast<CaseStmt>(S)) {
+ Visit(CS->getLHS());
+ if (const Expr *RHS = CS->getRHS())
+ Visit(RHS);
+ }
+ Visit(S->getSubStmt());
+ }
+
+ void VisitIfStmt(const IfStmt *S) {
+ extendRegion(S);
+
+ Counter ParentCount = getRegion().getCounter();
+ Counter ThenCount = getRegionCounter(S);
+
+ // Emitting a counter for the condition makes it easier to interpret the
+ // counter for the body when looking at the coverage.
+ propagateCounts(ParentCount, S->getCond());
+
+ extendRegion(S->getThen());
+ Counter OutCount = propagateCounts(ThenCount, S->getThen());
+
+ Counter ElseCount = subtractCounters(ParentCount, ThenCount);
+ if (const Stmt *Else = S->getElse()) {
+ extendRegion(S->getElse());
+ OutCount = addCounters(OutCount, propagateCounts(ElseCount, Else));
+ } else
+ OutCount = addCounters(OutCount, ElseCount);
+
+ if (OutCount != ParentCount)
+ pushRegion(OutCount);
+ }
+
+ void VisitCXXTryStmt(const CXXTryStmt *S) {
+ extendRegion(S);
+ Visit(S->getTryBlock());
+ for (unsigned I = 0, E = S->getNumHandlers(); I < E; ++I)
+ Visit(S->getHandler(I));
+
+ Counter ExitCount = getRegionCounter(S);
+ pushRegion(ExitCount);
+ }
+
+ void VisitCXXCatchStmt(const CXXCatchStmt *S) {
+ extendRegion(S);
+ propagateCounts(getRegionCounter(S), S->getHandlerBlock());
+ }
+
+ void VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
+ extendRegion(E);
+
+ Counter ParentCount = getRegion().getCounter();
+ Counter TrueCount = getRegionCounter(E);
+
+ Visit(E->getCond());
+
+ if (!isa<BinaryConditionalOperator>(E)) {
+ extendRegion(E->getTrueExpr());
+ propagateCounts(TrueCount, E->getTrueExpr());
+ }
+ extendRegion(E->getFalseExpr());
+ propagateCounts(subtractCounters(ParentCount, TrueCount),
+ E->getFalseExpr());
+ }
+
+ void VisitBinLAnd(const BinaryOperator *E) {
+ extendRegion(E);
+ Visit(E->getLHS());
+
+ extendRegion(E->getRHS());
+ propagateCounts(getRegionCounter(E), E->getRHS());
+ }
+
+ void VisitBinLOr(const BinaryOperator *E) {
+ extendRegion(E);
+ Visit(E->getLHS());
+
+ extendRegion(E->getRHS());
+ propagateCounts(getRegionCounter(E), E->getRHS());
+ }
+
+ void VisitLambdaExpr(const LambdaExpr *LE) {
+ // Lambdas are treated as their own functions for now, so we shouldn't
+ // propagate counts into them.
+ }
+};
+}
+
+static bool isMachO(const CodeGenModule &CGM) {
+ return CGM.getTarget().getTriple().isOSBinFormatMachO();
+}
+
+static StringRef getCoverageSection(const CodeGenModule &CGM) {
+ return isMachO(CGM) ? "__DATA,__llvm_covmap" : "__llvm_covmap";
+}
+
+static void dump(llvm::raw_ostream &OS, StringRef FunctionName,
+ ArrayRef<CounterExpression> Expressions,
+ ArrayRef<CounterMappingRegion> Regions) {
+ OS << FunctionName << ":\n";
+ CounterMappingContext Ctx(Expressions);
+ for (const auto &R : Regions) {
+ OS.indent(2);
+ switch (R.Kind) {
+ case CounterMappingRegion::CodeRegion:
+ break;
+ case CounterMappingRegion::ExpansionRegion:
+ OS << "Expansion,";
+ break;
+ case CounterMappingRegion::SkippedRegion:
+ OS << "Skipped,";
+ break;
+ }
+
+ OS << "File " << R.FileID << ", " << R.LineStart << ":" << R.ColumnStart
+ << " -> " << R.LineEnd << ":" << R.ColumnEnd << " = ";
+ Ctx.dump(R.Count, OS);
+ if (R.Kind == CounterMappingRegion::ExpansionRegion)
+ OS << " (Expanded file = " << R.ExpandedFileID << ")";
+ OS << "\n";
+ }
+}
+
+void CoverageMappingModuleGen::addFunctionMappingRecord(
+ llvm::GlobalVariable *FunctionName, StringRef FunctionNameValue,
+ uint64_t FunctionHash, const std::string &CoverageMapping) {
+ llvm::LLVMContext &Ctx = CGM.getLLVMContext();
+ auto *Int32Ty = llvm::Type::getInt32Ty(Ctx);
+ auto *Int64Ty = llvm::Type::getInt64Ty(Ctx);
+ auto *Int8PtrTy = llvm::Type::getInt8PtrTy(Ctx);
+ if (!FunctionRecordTy) {
+ llvm::Type *FunctionRecordTypes[] = {Int8PtrTy, Int32Ty, Int32Ty, Int64Ty};
+ FunctionRecordTy =
+ llvm::StructType::get(Ctx, makeArrayRef(FunctionRecordTypes));
+ }
+
+ llvm::Constant *FunctionRecordVals[] = {
+ llvm::ConstantExpr::getBitCast(FunctionName, Int8PtrTy),
+ llvm::ConstantInt::get(Int32Ty, FunctionNameValue.size()),
+ llvm::ConstantInt::get(Int32Ty, CoverageMapping.size()),
+ llvm::ConstantInt::get(Int64Ty, FunctionHash)};
+ FunctionRecords.push_back(llvm::ConstantStruct::get(
+ FunctionRecordTy, makeArrayRef(FunctionRecordVals)));
+ CoverageMappings += CoverageMapping;
+
+ if (CGM.getCodeGenOpts().DumpCoverageMapping) {
+ // Dump the coverage mapping data for this function by decoding the
+ // encoded data. This allows us to dump the mapping regions which were
+ // also processed by the CoverageMappingWriter which performs
+ // additional minimization operations such as reducing the number of
+ // expressions.
+ std::vector<StringRef> Filenames;
+ std::vector<CounterExpression> Expressions;
+ std::vector<CounterMappingRegion> Regions;
+ llvm::SmallVector<StringRef, 16> FilenameRefs;
+ FilenameRefs.resize(FileEntries.size());
+ for (const auto &Entry : FileEntries)
+ FilenameRefs[Entry.second] = Entry.first->getName();
+ RawCoverageMappingReader Reader(CoverageMapping, FilenameRefs, Filenames,
+ Expressions, Regions);
+ if (Reader.read())
+ return;
+ dump(llvm::outs(), FunctionNameValue, Expressions, Regions);
+ }
+}
+
+void CoverageMappingModuleGen::emit() {
+ if (FunctionRecords.empty())
+ return;
+ llvm::LLVMContext &Ctx = CGM.getLLVMContext();
+ auto *Int32Ty = llvm::Type::getInt32Ty(Ctx);
+
+ // Create the filenames and merge them with coverage mappings
+ llvm::SmallVector<std::string, 16> FilenameStrs;
+ llvm::SmallVector<StringRef, 16> FilenameRefs;
+ FilenameStrs.resize(FileEntries.size());
+ FilenameRefs.resize(FileEntries.size());
+ for (const auto &Entry : FileEntries) {
+ llvm::SmallString<256> Path(Entry.first->getName());
+ llvm::sys::fs::make_absolute(Path);
+
+ auto I = Entry.second;
+ FilenameStrs[I] = std::string(Path.begin(), Path.end());
+ FilenameRefs[I] = FilenameStrs[I];
+ }
+
+ std::string FilenamesAndCoverageMappings;
+ llvm::raw_string_ostream OS(FilenamesAndCoverageMappings);
+ CoverageFilenamesSectionWriter(FilenameRefs).write(OS);
+ OS << CoverageMappings;
+ size_t CoverageMappingSize = CoverageMappings.size();
+ size_t FilenamesSize = OS.str().size() - CoverageMappingSize;
+ // Append extra zeroes if necessary to ensure that the size of the filenames
+ // and coverage mappings is a multiple of 8.
+ if (size_t Rem = OS.str().size() % 8) {
+ CoverageMappingSize += 8 - Rem;
+ for (size_t I = 0, S = 8 - Rem; I < S; ++I)
+ OS << '\0';
+ }
+ auto *FilenamesAndMappingsVal =
+ llvm::ConstantDataArray::getString(Ctx, OS.str(), false);
+
+ // Create the deferred function records array
+ auto RecordsTy =
+ llvm::ArrayType::get(FunctionRecordTy, FunctionRecords.size());
+ auto RecordsVal = llvm::ConstantArray::get(RecordsTy, FunctionRecords);
+
+ // Create the coverage data record
+ llvm::Type *CovDataTypes[] = {Int32Ty, Int32Ty,
+ Int32Ty, Int32Ty,
+ RecordsTy, FilenamesAndMappingsVal->getType()};
+ auto CovDataTy = llvm::StructType::get(Ctx, makeArrayRef(CovDataTypes));
+ llvm::Constant *TUDataVals[] = {
+ llvm::ConstantInt::get(Int32Ty, FunctionRecords.size()),
+ llvm::ConstantInt::get(Int32Ty, FilenamesSize),
+ llvm::ConstantInt::get(Int32Ty, CoverageMappingSize),
+ llvm::ConstantInt::get(Int32Ty,
+ /*Version=*/CoverageMappingVersion1),
+ RecordsVal, FilenamesAndMappingsVal};
+ auto CovDataVal =
+ llvm::ConstantStruct::get(CovDataTy, makeArrayRef(TUDataVals));
+ auto CovData = new llvm::GlobalVariable(CGM.getModule(), CovDataTy, true,
+ llvm::GlobalValue::InternalLinkage,
+ CovDataVal,
+ "__llvm_coverage_mapping");
+
+ CovData->setSection(getCoverageSection(CGM));
+ CovData->setAlignment(8);
+
+ // Make sure the data doesn't get deleted.
+ CGM.addUsedGlobal(CovData);
+}
+
+unsigned CoverageMappingModuleGen::getFileID(const FileEntry *File) {
+ auto It = FileEntries.find(File);
+ if (It != FileEntries.end())
+ return It->second;
+ unsigned FileID = FileEntries.size();
+ FileEntries.insert(std::make_pair(File, FileID));
+ return FileID;
+}
+
+void CoverageMappingGen::emitCounterMapping(const Decl *D,
+ llvm::raw_ostream &OS) {
+ assert(CounterMap);
+ CounterCoverageMappingBuilder Walker(CVM, *CounterMap, SM, LangOpts);
+ Walker.VisitDecl(D);
+ Walker.write(OS);
+}
+
+void CoverageMappingGen::emitEmptyMapping(const Decl *D,
+ llvm::raw_ostream &OS) {
+ EmptyCoverageMappingBuilder Walker(CVM, SM, LangOpts);
+ Walker.VisitDecl(D);
+ Walker.write(OS);
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CoverageMappingGen.h b/contrib/llvm/tools/clang/lib/CodeGen/CoverageMappingGen.h
new file mode 100644
index 0000000..0d1bf6d
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CoverageMappingGen.h
@@ -0,0 +1,114 @@
+//===---- CoverageMappingGen.h - Coverage mapping generation ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Instrumentation-based code coverage mapping generator
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_CODEGEN_COVERAGEMAPPINGGEN_H
+#define LLVM_CLANG_LIB_CODEGEN_COVERAGEMAPPINGGEN_H
+
+#include "clang/Basic/LLVM.h"
+#include "clang/Basic/SourceLocation.h"
+#include "clang/Frontend/CodeGenOptions.h"
+#include "clang/Lex/PPCallbacks.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/StringMap.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/Support/raw_ostream.h"
+
+namespace clang {
+
+class LangOptions;
+class SourceManager;
+class FileEntry;
+class Preprocessor;
+class Decl;
+class Stmt;
+
+/// \brief Stores additional source code information like skipped ranges which
+/// is required by the coverage mapping generator and is obtained from
+/// the preprocessor.
+class CoverageSourceInfo : public PPCallbacks {
+ std::vector<SourceRange> SkippedRanges;
+public:
+ ArrayRef<SourceRange> getSkippedRanges() const { return SkippedRanges; }
+
+ void SourceRangeSkipped(SourceRange Range) override;
+};
+
+namespace CodeGen {
+
+class CodeGenModule;
+
+/// \brief Organizes the cross-function state that is used while generating
+/// code coverage mapping data.
+class CoverageMappingModuleGen {
+ CodeGenModule &CGM;
+ CoverageSourceInfo &SourceInfo;
+ llvm::SmallDenseMap<const FileEntry *, unsigned, 8> FileEntries;
+ std::vector<llvm::Constant *> FunctionRecords;
+ llvm::StructType *FunctionRecordTy;
+ std::string CoverageMappings;
+
+public:
+ CoverageMappingModuleGen(CodeGenModule &CGM, CoverageSourceInfo &SourceInfo)
+ : CGM(CGM), SourceInfo(SourceInfo), FunctionRecordTy(nullptr) {}
+
+ CoverageSourceInfo &getSourceInfo() const {
+ return SourceInfo;
+ }
+
+ /// \brief Add a function's coverage mapping record to the collection of the
+ /// function mapping records.
+ void addFunctionMappingRecord(llvm::GlobalVariable *FunctionName,
+ StringRef FunctionNameValue,
+ uint64_t FunctionHash,
+ const std::string &CoverageMapping);
+
+ /// \brief Emit the coverage mapping data for a translation unit.
+ void emit();
+
+ /// \brief Return the coverage mapping translation unit file id
+ /// for the given file.
+ unsigned getFileID(const FileEntry *File);
+};
+
+/// \brief Organizes the per-function state that is used while generating
+/// code coverage mapping data.
+class CoverageMappingGen {
+ CoverageMappingModuleGen &CVM;
+ SourceManager &SM;
+ const LangOptions &LangOpts;
+ llvm::DenseMap<const Stmt *, unsigned> *CounterMap;
+
+public:
+ CoverageMappingGen(CoverageMappingModuleGen &CVM, SourceManager &SM,
+ const LangOptions &LangOpts)
+ : CVM(CVM), SM(SM), LangOpts(LangOpts), CounterMap(nullptr) {}
+
+ CoverageMappingGen(CoverageMappingModuleGen &CVM, SourceManager &SM,
+ const LangOptions &LangOpts,
+ llvm::DenseMap<const Stmt *, unsigned> *CounterMap)
+ : CVM(CVM), SM(SM), LangOpts(LangOpts), CounterMap(CounterMap) {}
+
+ /// \brief Emit the coverage mapping data which maps the regions of
+ /// code to counters that will be used to find the execution
+ /// counts for those regions.
+ void emitCounterMapping(const Decl *D, llvm::raw_ostream &OS);
+
+ /// \brief Emit the coverage mapping data for an unused function.
+ /// It creates mapping regions with the counter of zero.
+ void emitEmptyMapping(const Decl *D, llvm::raw_ostream &OS);
+};
+
+} // end namespace CodeGen
+} // end namespace clang
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/EHScopeStack.h b/contrib/llvm/tools/clang/lib/CodeGen/EHScopeStack.h
new file mode 100644
index 0000000..a795188
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/EHScopeStack.h
@@ -0,0 +1,409 @@
+//===-- EHScopeStack.h - Stack for cleanup IR generation --------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// These classes should be the minimum interface required for other parts of
+// CodeGen to emit cleanups. The implementation is in CGCleanup.cpp and other
+// implemenentation details that are not widely needed are in CGCleanup.h.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_CODEGEN_EHSCOPESTACK_H
+#define LLVM_CLANG_LIB_CODEGEN_EHSCOPESTACK_H
+
+#include "clang/Basic/LLVM.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Value.h"
+
+namespace clang {
+namespace CodeGen {
+
+class CodeGenFunction;
+
+/// A branch fixup. These are required when emitting a goto to a
+/// label which hasn't been emitted yet. The goto is optimistically
+/// emitted as a branch to the basic block for the label, and (if it
+/// occurs in a scope with non-trivial cleanups) a fixup is added to
+/// the innermost cleanup. When a (normal) cleanup is popped, any
+/// unresolved fixups in that scope are threaded through the cleanup.
+struct BranchFixup {
+ /// The block containing the terminator which needs to be modified
+ /// into a switch if this fixup is resolved into the current scope.
+ /// If null, LatestBranch points directly to the destination.
+ llvm::BasicBlock *OptimisticBranchBlock;
+
+ /// The ultimate destination of the branch.
+ ///
+ /// This can be set to null to indicate that this fixup was
+ /// successfully resolved.
+ llvm::BasicBlock *Destination;
+
+ /// The destination index value.
+ unsigned DestinationIndex;
+
+ /// The initial branch of the fixup.
+ llvm::BranchInst *InitialBranch;
+};
+
+template <class T> struct InvariantValue {
+ typedef T type;
+ typedef T saved_type;
+ static bool needsSaving(type value) { return false; }
+ static saved_type save(CodeGenFunction &CGF, type value) { return value; }
+ static type restore(CodeGenFunction &CGF, saved_type value) { return value; }
+};
+
+/// A metaprogramming class for ensuring that a value will dominate an
+/// arbitrary position in a function.
+template <class T> struct DominatingValue : InvariantValue<T> {};
+
+template <class T, bool mightBeInstruction =
+ std::is_base_of<llvm::Value, T>::value &&
+ !std::is_base_of<llvm::Constant, T>::value &&
+ !std::is_base_of<llvm::BasicBlock, T>::value>
+struct DominatingPointer;
+template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {};
+// template <class T> struct DominatingPointer<T,true> at end of file
+
+template <class T> struct DominatingValue<T*> : DominatingPointer<T> {};
+
+enum CleanupKind : unsigned {
+ /// Denotes a cleanup that should run when a scope is exited using exceptional
+ /// control flow (a throw statement leading to stack unwinding, ).
+ EHCleanup = 0x1,
+
+ /// Denotes a cleanup that should run when a scope is exited using normal
+ /// control flow (falling off the end of the scope, return, goto, ...).
+ NormalCleanup = 0x2,
+
+ NormalAndEHCleanup = EHCleanup | NormalCleanup,
+
+ InactiveCleanup = 0x4,
+ InactiveEHCleanup = EHCleanup | InactiveCleanup,
+ InactiveNormalCleanup = NormalCleanup | InactiveCleanup,
+ InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup
+};
+
+/// A stack of scopes which respond to exceptions, including cleanups
+/// and catch blocks.
+class EHScopeStack {
+public:
+ /// A saved depth on the scope stack. This is necessary because
+ /// pushing scopes onto the stack invalidates iterators.
+ class stable_iterator {
+ friend class EHScopeStack;
+
+ /// Offset from StartOfData to EndOfBuffer.
+ ptrdiff_t Size;
+
+ stable_iterator(ptrdiff_t Size) : Size(Size) {}
+
+ public:
+ static stable_iterator invalid() { return stable_iterator(-1); }
+ stable_iterator() : Size(-1) {}
+
+ bool isValid() const { return Size >= 0; }
+
+ /// Returns true if this scope encloses I.
+ /// Returns false if I is invalid.
+ /// This scope must be valid.
+ bool encloses(stable_iterator I) const { return Size <= I.Size; }
+
+ /// Returns true if this scope strictly encloses I: that is,
+ /// if it encloses I and is not I.
+ /// Returns false is I is invalid.
+ /// This scope must be valid.
+ bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; }
+
+ friend bool operator==(stable_iterator A, stable_iterator B) {
+ return A.Size == B.Size;
+ }
+ friend bool operator!=(stable_iterator A, stable_iterator B) {
+ return A.Size != B.Size;
+ }
+ };
+
+ /// Information for lazily generating a cleanup. Subclasses must be
+ /// POD-like: cleanups will not be destructed, and they will be
+ /// allocated on the cleanup stack and freely copied and moved
+ /// around.
+ ///
+ /// Cleanup implementations should generally be declared in an
+ /// anonymous namespace.
+ class Cleanup {
+ // Anchor the construction vtable.
+ virtual void anchor();
+ public:
+ /// Generation flags.
+ class Flags {
+ enum {
+ F_IsForEH = 0x1,
+ F_IsNormalCleanupKind = 0x2,
+ F_IsEHCleanupKind = 0x4
+ };
+ unsigned flags;
+
+ public:
+ Flags() : flags(0) {}
+
+ /// isForEH - true if the current emission is for an EH cleanup.
+ bool isForEHCleanup() const { return flags & F_IsForEH; }
+ bool isForNormalCleanup() const { return !isForEHCleanup(); }
+ void setIsForEHCleanup() { flags |= F_IsForEH; }
+
+ bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; }
+ void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; }
+
+ /// isEHCleanupKind - true if the cleanup was pushed as an EH
+ /// cleanup.
+ bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; }
+ void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; }
+ };
+
+ // Provide a virtual destructor to suppress a very common warning
+ // that unfortunately cannot be suppressed without this. Cleanups
+ // should not rely on this destructor ever being called.
+ virtual ~Cleanup() {}
+
+ /// Emit the cleanup. For normal cleanups, this is run in the
+ /// same EH context as when the cleanup was pushed, i.e. the
+ /// immediately-enclosing context of the cleanup scope. For
+ /// EH cleanups, this is run in a terminate context.
+ ///
+ // \param flags cleanup kind.
+ virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0;
+ };
+
+ /// ConditionalCleanup stores the saved form of its parameters,
+ /// then restores them and performs the cleanup.
+ template <class T, class... As> class ConditionalCleanup : public Cleanup {
+ typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
+ SavedTuple Saved;
+
+ template <std::size_t... Is>
+ T restore(CodeGenFunction &CGF, llvm::index_sequence<Is...>) {
+ // It's important that the restores are emitted in order. The braced init
+ // list guarentees that.
+ return T{DominatingValue<As>::restore(CGF, std::get<Is>(Saved))...};
+ }
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ restore(CGF, llvm::index_sequence_for<As...>()).Emit(CGF, flags);
+ }
+
+ public:
+ ConditionalCleanup(typename DominatingValue<As>::saved_type... A)
+ : Saved(A...) {}
+
+ ConditionalCleanup(SavedTuple Tuple) : Saved(std::move(Tuple)) {}
+ };
+
+private:
+ // The implementation for this class is in CGException.h and
+ // CGException.cpp; the definition is here because it's used as a
+ // member of CodeGenFunction.
+
+ /// The start of the scope-stack buffer, i.e. the allocated pointer
+ /// for the buffer. All of these pointers are either simultaneously
+ /// null or simultaneously valid.
+ char *StartOfBuffer;
+
+ /// The end of the buffer.
+ char *EndOfBuffer;
+
+ /// The first valid entry in the buffer.
+ char *StartOfData;
+
+ /// The innermost normal cleanup on the stack.
+ stable_iterator InnermostNormalCleanup;
+
+ /// The innermost EH scope on the stack.
+ stable_iterator InnermostEHScope;
+
+ /// The current set of branch fixups. A branch fixup is a jump to
+ /// an as-yet unemitted label, i.e. a label for which we don't yet
+ /// know the EH stack depth. Whenever we pop a cleanup, we have
+ /// to thread all the current branch fixups through it.
+ ///
+ /// Fixups are recorded as the Use of the respective branch or
+ /// switch statement. The use points to the final destination.
+ /// When popping out of a cleanup, these uses are threaded through
+ /// the cleanup and adjusted to point to the new cleanup.
+ ///
+ /// Note that branches are allowed to jump into protected scopes
+ /// in certain situations; e.g. the following code is legal:
+ /// struct A { ~A(); }; // trivial ctor, non-trivial dtor
+ /// goto foo;
+ /// A a;
+ /// foo:
+ /// bar();
+ SmallVector<BranchFixup, 8> BranchFixups;
+
+ char *allocate(size_t Size);
+
+ void *pushCleanup(CleanupKind K, size_t DataSize);
+
+public:
+ EHScopeStack() : StartOfBuffer(nullptr), EndOfBuffer(nullptr),
+ StartOfData(nullptr), InnermostNormalCleanup(stable_end()),
+ InnermostEHScope(stable_end()) {}
+ ~EHScopeStack() { delete[] StartOfBuffer; }
+
+ /// Push a lazily-created cleanup on the stack.
+ template <class T, class... As> void pushCleanup(CleanupKind Kind, As... A) {
+ void *Buffer = pushCleanup(Kind, sizeof(T));
+ Cleanup *Obj = new (Buffer) T(A...);
+ (void) Obj;
+ }
+
+ /// Push a lazily-created cleanup on the stack. Tuple version.
+ template <class T, class... As>
+ void pushCleanupTuple(CleanupKind Kind, std::tuple<As...> A) {
+ void *Buffer = pushCleanup(Kind, sizeof(T));
+ Cleanup *Obj = new (Buffer) T(std::move(A));
+ (void) Obj;
+ }
+
+ // Feel free to add more variants of the following:
+
+ /// Push a cleanup with non-constant storage requirements on the
+ /// stack. The cleanup type must provide an additional static method:
+ /// static size_t getExtraSize(size_t);
+ /// The argument to this method will be the value N, which will also
+ /// be passed as the first argument to the constructor.
+ ///
+ /// The data stored in the extra storage must obey the same
+ /// restrictions as normal cleanup member data.
+ ///
+ /// The pointer returned from this method is valid until the cleanup
+ /// stack is modified.
+ template <class T, class... As>
+ T *pushCleanupWithExtra(CleanupKind Kind, size_t N, As... A) {
+ void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N));
+ return new (Buffer) T(N, A...);
+ }
+
+ void pushCopyOfCleanup(CleanupKind Kind, const void *Cleanup, size_t Size) {
+ void *Buffer = pushCleanup(Kind, Size);
+ std::memcpy(Buffer, Cleanup, Size);
+ }
+
+ /// Pops a cleanup scope off the stack. This is private to CGCleanup.cpp.
+ void popCleanup();
+
+ /// Push a set of catch handlers on the stack. The catch is
+ /// uninitialized and will need to have the given number of handlers
+ /// set on it.
+ class EHCatchScope *pushCatch(unsigned NumHandlers);
+
+ /// Pops a catch scope off the stack. This is private to CGException.cpp.
+ void popCatch();
+
+ /// Push an exceptions filter on the stack.
+ class EHFilterScope *pushFilter(unsigned NumFilters);
+
+ /// Pops an exceptions filter off the stack.
+ void popFilter();
+
+ /// Push a terminate handler on the stack.
+ void pushTerminate();
+
+ /// Pops a terminate handler off the stack.
+ void popTerminate();
+
+ // Returns true iff the current scope is either empty or contains only
+ // lifetime markers, i.e. no real cleanup code
+ bool containsOnlyLifetimeMarkers(stable_iterator Old) const;
+
+ /// Determines whether the exception-scopes stack is empty.
+ bool empty() const { return StartOfData == EndOfBuffer; }
+
+ bool requiresLandingPad() const {
+ return InnermostEHScope != stable_end();
+ }
+
+ /// Determines whether there are any normal cleanups on the stack.
+ bool hasNormalCleanups() const {
+ return InnermostNormalCleanup != stable_end();
+ }
+
+ /// Returns the innermost normal cleanup on the stack, or
+ /// stable_end() if there are no normal cleanups.
+ stable_iterator getInnermostNormalCleanup() const {
+ return InnermostNormalCleanup;
+ }
+ stable_iterator getInnermostActiveNormalCleanup() const;
+
+ stable_iterator getInnermostEHScope() const {
+ return InnermostEHScope;
+ }
+
+ stable_iterator getInnermostActiveEHScope() const;
+
+ /// An unstable reference to a scope-stack depth. Invalidated by
+ /// pushes but not pops.
+ class iterator;
+
+ /// Returns an iterator pointing to the innermost EH scope.
+ iterator begin() const;
+
+ /// Returns an iterator pointing to the outermost EH scope.
+ iterator end() const;
+
+ /// Create a stable reference to the top of the EH stack. The
+ /// returned reference is valid until that scope is popped off the
+ /// stack.
+ stable_iterator stable_begin() const {
+ return stable_iterator(EndOfBuffer - StartOfData);
+ }
+
+ /// Create a stable reference to the bottom of the EH stack.
+ static stable_iterator stable_end() {
+ return stable_iterator(0);
+ }
+
+ /// Translates an iterator into a stable_iterator.
+ stable_iterator stabilize(iterator it) const;
+
+ /// Turn a stable reference to a scope depth into a unstable pointer
+ /// to the EH stack.
+ iterator find(stable_iterator save) const;
+
+ /// Removes the cleanup pointed to by the given stable_iterator.
+ void removeCleanup(stable_iterator save);
+
+ /// Add a branch fixup to the current cleanup scope.
+ BranchFixup &addBranchFixup() {
+ assert(hasNormalCleanups() && "adding fixup in scope without cleanups");
+ BranchFixups.push_back(BranchFixup());
+ return BranchFixups.back();
+ }
+
+ unsigned getNumBranchFixups() const { return BranchFixups.size(); }
+ BranchFixup &getBranchFixup(unsigned I) {
+ assert(I < getNumBranchFixups());
+ return BranchFixups[I];
+ }
+
+ /// Pops lazily-removed fixups from the end of the list. This
+ /// should only be called by procedures which have just popped a
+ /// cleanup or resolved one or more fixups.
+ void popNullFixups();
+
+ /// Clears the branch-fixups list. This should only be called by
+ /// ResolveAllBranchFixups.
+ void clearFixups() { BranchFixups.clear(); }
+};
+
+} // namespace CodeGen
+} // namespace clang
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/ItaniumCXXABI.cpp b/contrib/llvm/tools/clang/lib/CodeGen/ItaniumCXXABI.cpp
new file mode 100644
index 0000000..0a1a4ce
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/ItaniumCXXABI.cpp
@@ -0,0 +1,3639 @@
+//===------- ItaniumCXXABI.cpp - Emit LLVM Code from ASTs for a Module ----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This provides C++ code generation targeting the Itanium C++ ABI. The class
+// in this file generates structures that follow the Itanium C++ ABI, which is
+// documented at:
+// http://www.codesourcery.com/public/cxx-abi/abi.html
+// http://www.codesourcery.com/public/cxx-abi/abi-eh.html
+//
+// It also supports the closely-related ARM ABI, documented at:
+// http://infocenter.arm.com/help/topic/com.arm.doc.ihi0041c/IHI0041C_cppabi.pdf
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGCXXABI.h"
+#include "CGCleanup.h"
+#include "CGRecordLayout.h"
+#include "CGVTables.h"
+#include "CodeGenFunction.h"
+#include "CodeGenModule.h"
+#include "TargetInfo.h"
+#include "clang/AST/Mangle.h"
+#include "clang/AST/Type.h"
+#include "clang/AST/StmtCXX.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Value.h"
+
+using namespace clang;
+using namespace CodeGen;
+
+namespace {
+class ItaniumCXXABI : public CodeGen::CGCXXABI {
+ /// VTables - All the vtables which have been defined.
+ llvm::DenseMap<const CXXRecordDecl *, llvm::GlobalVariable *> VTables;
+
+protected:
+ bool UseARMMethodPtrABI;
+ bool UseARMGuardVarABI;
+
+ ItaniumMangleContext &getMangleContext() {
+ return cast<ItaniumMangleContext>(CodeGen::CGCXXABI::getMangleContext());
+ }
+
+public:
+ ItaniumCXXABI(CodeGen::CodeGenModule &CGM,
+ bool UseARMMethodPtrABI = false,
+ bool UseARMGuardVarABI = false) :
+ CGCXXABI(CGM), UseARMMethodPtrABI(UseARMMethodPtrABI),
+ UseARMGuardVarABI(UseARMGuardVarABI) { }
+
+ bool classifyReturnType(CGFunctionInfo &FI) const override;
+
+ RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override {
+ // Structures with either a non-trivial destructor or a non-trivial
+ // copy constructor are always indirect.
+ // FIXME: Use canCopyArgument() when it is fixed to handle lazily declared
+ // special members.
+ if (RD->hasNonTrivialDestructor() || RD->hasNonTrivialCopyConstructor())
+ return RAA_Indirect;
+ return RAA_Default;
+ }
+
+ bool isZeroInitializable(const MemberPointerType *MPT) override;
+
+ llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override;
+
+ llvm::Value *
+ EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF,
+ const Expr *E,
+ llvm::Value *&This,
+ llvm::Value *MemFnPtr,
+ const MemberPointerType *MPT) override;
+
+ llvm::Value *
+ EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E,
+ llvm::Value *Base,
+ llvm::Value *MemPtr,
+ const MemberPointerType *MPT) override;
+
+ llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF,
+ const CastExpr *E,
+ llvm::Value *Src) override;
+ llvm::Constant *EmitMemberPointerConversion(const CastExpr *E,
+ llvm::Constant *Src) override;
+
+ llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override;
+
+ llvm::Constant *EmitMemberPointer(const CXXMethodDecl *MD) override;
+ llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT,
+ CharUnits offset) override;
+ llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override;
+ llvm::Constant *BuildMemberPointer(const CXXMethodDecl *MD,
+ CharUnits ThisAdjustment);
+
+ llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF,
+ llvm::Value *L, llvm::Value *R,
+ const MemberPointerType *MPT,
+ bool Inequality) override;
+
+ llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
+ llvm::Value *Addr,
+ const MemberPointerType *MPT) override;
+
+ void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE,
+ llvm::Value *Ptr, QualType ElementType,
+ const CXXDestructorDecl *Dtor) override;
+
+ void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override;
+ void emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) override;
+
+ void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override;
+
+ llvm::CallInst *
+ emitTerminateForUnexpectedException(CodeGenFunction &CGF,
+ llvm::Value *Exn) override;
+
+ void EmitFundamentalRTTIDescriptor(QualType Type);
+ void EmitFundamentalRTTIDescriptors();
+ llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override;
+ llvm::Constant *
+ getAddrOfCXXCatchHandlerType(QualType Ty,
+ QualType CatchHandlerType) override {
+ return getAddrOfRTTIDescriptor(Ty);
+ }
+
+ bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override;
+ void EmitBadTypeidCall(CodeGenFunction &CGF) override;
+ llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy,
+ llvm::Value *ThisPtr,
+ llvm::Type *StdTypeInfoPtrTy) override;
+
+ bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
+ QualType SrcRecordTy) override;
+
+ llvm::Value *EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value,
+ QualType SrcRecordTy, QualType DestTy,
+ QualType DestRecordTy,
+ llvm::BasicBlock *CastEnd) override;
+
+ llvm::Value *EmitDynamicCastToVoid(CodeGenFunction &CGF, llvm::Value *Value,
+ QualType SrcRecordTy,
+ QualType DestTy) override;
+
+ bool EmitBadCastCall(CodeGenFunction &CGF) override;
+
+ llvm::Value *
+ GetVirtualBaseClassOffset(CodeGenFunction &CGF, llvm::Value *This,
+ const CXXRecordDecl *ClassDecl,
+ const CXXRecordDecl *BaseClassDecl) override;
+
+ void EmitCXXConstructors(const CXXConstructorDecl *D) override;
+
+ void buildStructorSignature(const CXXMethodDecl *MD, StructorType T,
+ SmallVectorImpl<CanQualType> &ArgTys) override;
+
+ bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor,
+ CXXDtorType DT) const override {
+ // Itanium does not emit any destructor variant as an inline thunk.
+ // Delegating may occur as an optimization, but all variants are either
+ // emitted with external linkage or as linkonce if they are inline and used.
+ return false;
+ }
+
+ void EmitCXXDestructors(const CXXDestructorDecl *D) override;
+
+ void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy,
+ FunctionArgList &Params) override;
+
+ void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override;
+
+ unsigned addImplicitConstructorArgs(CodeGenFunction &CGF,
+ const CXXConstructorDecl *D,
+ CXXCtorType Type, bool ForVirtualBase,
+ bool Delegating,
+ CallArgList &Args) override;
+
+ void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD,
+ CXXDtorType Type, bool ForVirtualBase,
+ bool Delegating, llvm::Value *This) override;
+
+ void emitVTableDefinitions(CodeGenVTables &CGVT,
+ const CXXRecordDecl *RD) override;
+
+ llvm::Value *getVTableAddressPointInStructor(
+ CodeGenFunction &CGF, const CXXRecordDecl *VTableClass,
+ BaseSubobject Base, const CXXRecordDecl *NearestVBase,
+ bool &NeedsVirtualOffset) override;
+
+ llvm::Constant *
+ getVTableAddressPointForConstExpr(BaseSubobject Base,
+ const CXXRecordDecl *VTableClass) override;
+
+ llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD,
+ CharUnits VPtrOffset) override;
+
+ llvm::Value *getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD,
+ llvm::Value *This,
+ llvm::Type *Ty) override;
+
+ llvm::Value *EmitVirtualDestructorCall(CodeGenFunction &CGF,
+ const CXXDestructorDecl *Dtor,
+ CXXDtorType DtorType,
+ llvm::Value *This,
+ const CXXMemberCallExpr *CE) override;
+
+ void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override;
+
+ void setThunkLinkage(llvm::Function *Thunk, bool ForVTable, GlobalDecl GD,
+ bool ReturnAdjustment) override {
+ // Allow inlining of thunks by emitting them with available_externally
+ // linkage together with vtables when needed.
+ if (ForVTable)
+ Thunk->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
+ }
+
+ llvm::Value *performThisAdjustment(CodeGenFunction &CGF, llvm::Value *This,
+ const ThisAdjustment &TA) override;
+
+ llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, llvm::Value *Ret,
+ const ReturnAdjustment &RA) override;
+
+ size_t getSrcArgforCopyCtor(const CXXConstructorDecl *,
+ FunctionArgList &Args) const override {
+ assert(!Args.empty() && "expected the arglist to not be empty!");
+ return Args.size() - 1;
+ }
+
+ StringRef GetPureVirtualCallName() override { return "__cxa_pure_virtual"; }
+ StringRef GetDeletedVirtualCallName() override
+ { return "__cxa_deleted_virtual"; }
+
+ CharUnits getArrayCookieSizeImpl(QualType elementType) override;
+ llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF,
+ llvm::Value *NewPtr,
+ llvm::Value *NumElements,
+ const CXXNewExpr *expr,
+ QualType ElementType) override;
+ llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF,
+ llvm::Value *allocPtr,
+ CharUnits cookieSize) override;
+
+ void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
+ llvm::GlobalVariable *DeclPtr,
+ bool PerformInit) override;
+ void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
+ llvm::Constant *dtor, llvm::Constant *addr) override;
+
+ llvm::Function *getOrCreateThreadLocalWrapper(const VarDecl *VD,
+ llvm::Value *Val);
+ void EmitThreadLocalInitFuncs(
+ CodeGenModule &CGM,
+ ArrayRef<std::pair<const VarDecl *, llvm::GlobalVariable *>>
+ CXXThreadLocals,
+ ArrayRef<llvm::Function *> CXXThreadLocalInits,
+ ArrayRef<llvm::GlobalVariable *> CXXThreadLocalInitVars) override;
+
+ bool usesThreadWrapperFunction() const override { return true; }
+ LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD,
+ QualType LValType) override;
+
+ bool NeedsVTTParameter(GlobalDecl GD) override;
+
+ /**************************** RTTI Uniqueness ******************************/
+
+protected:
+ /// Returns true if the ABI requires RTTI type_info objects to be unique
+ /// across a program.
+ virtual bool shouldRTTIBeUnique() const { return true; }
+
+public:
+ /// What sort of unique-RTTI behavior should we use?
+ enum RTTIUniquenessKind {
+ /// We are guaranteeing, or need to guarantee, that the RTTI string
+ /// is unique.
+ RUK_Unique,
+
+ /// We are not guaranteeing uniqueness for the RTTI string, so we
+ /// can demote to hidden visibility but must use string comparisons.
+ RUK_NonUniqueHidden,
+
+ /// We are not guaranteeing uniqueness for the RTTI string, so we
+ /// have to use string comparisons, but we also have to emit it with
+ /// non-hidden visibility.
+ RUK_NonUniqueVisible
+ };
+
+ /// Return the required visibility status for the given type and linkage in
+ /// the current ABI.
+ RTTIUniquenessKind
+ classifyRTTIUniqueness(QualType CanTy,
+ llvm::GlobalValue::LinkageTypes Linkage) const;
+ friend class ItaniumRTTIBuilder;
+
+ void emitCXXStructor(const CXXMethodDecl *MD, StructorType Type) override;
+};
+
+class ARMCXXABI : public ItaniumCXXABI {
+public:
+ ARMCXXABI(CodeGen::CodeGenModule &CGM) :
+ ItaniumCXXABI(CGM, /* UseARMMethodPtrABI = */ true,
+ /* UseARMGuardVarABI = */ true) {}
+
+ bool HasThisReturn(GlobalDecl GD) const override {
+ return (isa<CXXConstructorDecl>(GD.getDecl()) || (
+ isa<CXXDestructorDecl>(GD.getDecl()) &&
+ GD.getDtorType() != Dtor_Deleting));
+ }
+
+ void EmitReturnFromThunk(CodeGenFunction &CGF, RValue RV,
+ QualType ResTy) override;
+
+ CharUnits getArrayCookieSizeImpl(QualType elementType) override;
+ llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF,
+ llvm::Value *NewPtr,
+ llvm::Value *NumElements,
+ const CXXNewExpr *expr,
+ QualType ElementType) override;
+ llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, llvm::Value *allocPtr,
+ CharUnits cookieSize) override;
+};
+
+class iOS64CXXABI : public ARMCXXABI {
+public:
+ iOS64CXXABI(CodeGen::CodeGenModule &CGM) : ARMCXXABI(CGM) {}
+
+ // ARM64 libraries are prepared for non-unique RTTI.
+ bool shouldRTTIBeUnique() const override { return false; }
+};
+}
+
+CodeGen::CGCXXABI *CodeGen::CreateItaniumCXXABI(CodeGenModule &CGM) {
+ switch (CGM.getTarget().getCXXABI().getKind()) {
+ // For IR-generation purposes, there's no significant difference
+ // between the ARM and iOS ABIs.
+ case TargetCXXABI::GenericARM:
+ case TargetCXXABI::iOS:
+ return new ARMCXXABI(CGM);
+
+ case TargetCXXABI::iOS64:
+ return new iOS64CXXABI(CGM);
+
+ // Note that AArch64 uses the generic ItaniumCXXABI class since it doesn't
+ // include the other 32-bit ARM oddities: constructor/destructor return values
+ // and array cookies.
+ case TargetCXXABI::GenericAArch64:
+ return new ItaniumCXXABI(CGM, /* UseARMMethodPtrABI = */ true,
+ /* UseARMGuardVarABI = */ true);
+
+ case TargetCXXABI::GenericMIPS:
+ return new ItaniumCXXABI(CGM, /* UseARMMethodPtrABI = */ true);
+
+ case TargetCXXABI::GenericItanium:
+ if (CGM.getContext().getTargetInfo().getTriple().getArch()
+ == llvm::Triple::le32) {
+ // For PNaCl, use ARM-style method pointers so that PNaCl code
+ // does not assume anything about the alignment of function
+ // pointers.
+ return new ItaniumCXXABI(CGM, /* UseARMMethodPtrABI = */ true,
+ /* UseARMGuardVarABI = */ false);
+ }
+ return new ItaniumCXXABI(CGM);
+
+ case TargetCXXABI::Microsoft:
+ llvm_unreachable("Microsoft ABI is not Itanium-based");
+ }
+ llvm_unreachable("bad ABI kind");
+}
+
+llvm::Type *
+ItaniumCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) {
+ if (MPT->isMemberDataPointer())
+ return CGM.PtrDiffTy;
+ return llvm::StructType::get(CGM.PtrDiffTy, CGM.PtrDiffTy, nullptr);
+}
+
+/// In the Itanium and ARM ABIs, method pointers have the form:
+/// struct { ptrdiff_t ptr; ptrdiff_t adj; } memptr;
+///
+/// In the Itanium ABI:
+/// - method pointers are virtual if (memptr.ptr & 1) is nonzero
+/// - the this-adjustment is (memptr.adj)
+/// - the virtual offset is (memptr.ptr - 1)
+///
+/// In the ARM ABI:
+/// - method pointers are virtual if (memptr.adj & 1) is nonzero
+/// - the this-adjustment is (memptr.adj >> 1)
+/// - the virtual offset is (memptr.ptr)
+/// ARM uses 'adj' for the virtual flag because Thumb functions
+/// may be only single-byte aligned.
+///
+/// If the member is virtual, the adjusted 'this' pointer points
+/// to a vtable pointer from which the virtual offset is applied.
+///
+/// If the member is non-virtual, memptr.ptr is the address of
+/// the function to call.
+llvm::Value *ItaniumCXXABI::EmitLoadOfMemberFunctionPointer(
+ CodeGenFunction &CGF, const Expr *E, llvm::Value *&This,
+ llvm::Value *MemFnPtr, const MemberPointerType *MPT) {
+ CGBuilderTy &Builder = CGF.Builder;
+
+ const FunctionProtoType *FPT =
+ MPT->getPointeeType()->getAs<FunctionProtoType>();
+ const CXXRecordDecl *RD =
+ cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
+
+ llvm::FunctionType *FTy =
+ CGM.getTypes().GetFunctionType(
+ CGM.getTypes().arrangeCXXMethodType(RD, FPT));
+
+ llvm::Constant *ptrdiff_1 = llvm::ConstantInt::get(CGM.PtrDiffTy, 1);
+
+ llvm::BasicBlock *FnVirtual = CGF.createBasicBlock("memptr.virtual");
+ llvm::BasicBlock *FnNonVirtual = CGF.createBasicBlock("memptr.nonvirtual");
+ llvm::BasicBlock *FnEnd = CGF.createBasicBlock("memptr.end");
+
+ // Extract memptr.adj, which is in the second field.
+ llvm::Value *RawAdj = Builder.CreateExtractValue(MemFnPtr, 1, "memptr.adj");
+
+ // Compute the true adjustment.
+ llvm::Value *Adj = RawAdj;
+ if (UseARMMethodPtrABI)
+ Adj = Builder.CreateAShr(Adj, ptrdiff_1, "memptr.adj.shifted");
+
+ // Apply the adjustment and cast back to the original struct type
+ // for consistency.
+ llvm::Value *Ptr = Builder.CreateBitCast(This, Builder.getInt8PtrTy());
+ Ptr = Builder.CreateInBoundsGEP(Ptr, Adj);
+ This = Builder.CreateBitCast(Ptr, This->getType(), "this.adjusted");
+
+ // Load the function pointer.
+ llvm::Value *FnAsInt = Builder.CreateExtractValue(MemFnPtr, 0, "memptr.ptr");
+
+ // If the LSB in the function pointer is 1, the function pointer points to
+ // a virtual function.
+ llvm::Value *IsVirtual;
+ if (UseARMMethodPtrABI)
+ IsVirtual = Builder.CreateAnd(RawAdj, ptrdiff_1);
+ else
+ IsVirtual = Builder.CreateAnd(FnAsInt, ptrdiff_1);
+ IsVirtual = Builder.CreateIsNotNull(IsVirtual, "memptr.isvirtual");
+ Builder.CreateCondBr(IsVirtual, FnVirtual, FnNonVirtual);
+
+ // In the virtual path, the adjustment left 'This' pointing to the
+ // vtable of the correct base subobject. The "function pointer" is an
+ // offset within the vtable (+1 for the virtual flag on non-ARM).
+ CGF.EmitBlock(FnVirtual);
+
+ // Cast the adjusted this to a pointer to vtable pointer and load.
+ llvm::Type *VTableTy = Builder.getInt8PtrTy();
+ llvm::Value *VTable = CGF.GetVTablePtr(This, VTableTy);
+
+ // Apply the offset.
+ llvm::Value *VTableOffset = FnAsInt;
+ if (!UseARMMethodPtrABI)
+ VTableOffset = Builder.CreateSub(VTableOffset, ptrdiff_1);
+ VTable = Builder.CreateGEP(VTable, VTableOffset);
+
+ // Load the virtual function to call.
+ VTable = Builder.CreateBitCast(VTable, FTy->getPointerTo()->getPointerTo());
+ llvm::Value *VirtualFn = Builder.CreateLoad(VTable, "memptr.virtualfn");
+ CGF.EmitBranch(FnEnd);
+
+ // In the non-virtual path, the function pointer is actually a
+ // function pointer.
+ CGF.EmitBlock(FnNonVirtual);
+ llvm::Value *NonVirtualFn =
+ Builder.CreateIntToPtr(FnAsInt, FTy->getPointerTo(), "memptr.nonvirtualfn");
+
+ // We're done.
+ CGF.EmitBlock(FnEnd);
+ llvm::PHINode *Callee = Builder.CreatePHI(FTy->getPointerTo(), 2);
+ Callee->addIncoming(VirtualFn, FnVirtual);
+ Callee->addIncoming(NonVirtualFn, FnNonVirtual);
+ return Callee;
+}
+
+/// Compute an l-value by applying the given pointer-to-member to a
+/// base object.
+llvm::Value *ItaniumCXXABI::EmitMemberDataPointerAddress(
+ CodeGenFunction &CGF, const Expr *E, llvm::Value *Base, llvm::Value *MemPtr,
+ const MemberPointerType *MPT) {
+ assert(MemPtr->getType() == CGM.PtrDiffTy);
+
+ CGBuilderTy &Builder = CGF.Builder;
+
+ unsigned AS = Base->getType()->getPointerAddressSpace();
+
+ // Cast to char*.
+ Base = Builder.CreateBitCast(Base, Builder.getInt8Ty()->getPointerTo(AS));
+
+ // Apply the offset, which we assume is non-null.
+ llvm::Value *Addr = Builder.CreateInBoundsGEP(Base, MemPtr, "memptr.offset");
+
+ // Cast the address to the appropriate pointer type, adopting the
+ // address space of the base pointer.
+ llvm::Type *PType
+ = CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS);
+ return Builder.CreateBitCast(Addr, PType);
+}
+
+/// Perform a bitcast, derived-to-base, or base-to-derived member pointer
+/// conversion.
+///
+/// Bitcast conversions are always a no-op under Itanium.
+///
+/// Obligatory offset/adjustment diagram:
+/// <-- offset --> <-- adjustment -->
+/// |--------------------------|----------------------|--------------------|
+/// ^Derived address point ^Base address point ^Member address point
+///
+/// So when converting a base member pointer to a derived member pointer,
+/// we add the offset to the adjustment because the address point has
+/// decreased; and conversely, when converting a derived MP to a base MP
+/// we subtract the offset from the adjustment because the address point
+/// has increased.
+///
+/// The standard forbids (at compile time) conversion to and from
+/// virtual bases, which is why we don't have to consider them here.
+///
+/// The standard forbids (at run time) casting a derived MP to a base
+/// MP when the derived MP does not point to a member of the base.
+/// This is why -1 is a reasonable choice for null data member
+/// pointers.
+llvm::Value *
+ItaniumCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF,
+ const CastExpr *E,
+ llvm::Value *src) {
+ assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
+ E->getCastKind() == CK_BaseToDerivedMemberPointer ||
+ E->getCastKind() == CK_ReinterpretMemberPointer);
+
+ // Under Itanium, reinterprets don't require any additional processing.
+ if (E->getCastKind() == CK_ReinterpretMemberPointer) return src;
+
+ // Use constant emission if we can.
+ if (isa<llvm::Constant>(src))
+ return EmitMemberPointerConversion(E, cast<llvm::Constant>(src));
+
+ llvm::Constant *adj = getMemberPointerAdjustment(E);
+ if (!adj) return src;
+
+ CGBuilderTy &Builder = CGF.Builder;
+ bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer);
+
+ const MemberPointerType *destTy =
+ E->getType()->castAs<MemberPointerType>();
+
+ // For member data pointers, this is just a matter of adding the
+ // offset if the source is non-null.
+ if (destTy->isMemberDataPointer()) {
+ llvm::Value *dst;
+ if (isDerivedToBase)
+ dst = Builder.CreateNSWSub(src, adj, "adj");
+ else
+ dst = Builder.CreateNSWAdd(src, adj, "adj");
+
+ // Null check.
+ llvm::Value *null = llvm::Constant::getAllOnesValue(src->getType());
+ llvm::Value *isNull = Builder.CreateICmpEQ(src, null, "memptr.isnull");
+ return Builder.CreateSelect(isNull, src, dst);
+ }
+
+ // The this-adjustment is left-shifted by 1 on ARM.
+ if (UseARMMethodPtrABI) {
+ uint64_t offset = cast<llvm::ConstantInt>(adj)->getZExtValue();
+ offset <<= 1;
+ adj = llvm::ConstantInt::get(adj->getType(), offset);
+ }
+
+ llvm::Value *srcAdj = Builder.CreateExtractValue(src, 1, "src.adj");
+ llvm::Value *dstAdj;
+ if (isDerivedToBase)
+ dstAdj = Builder.CreateNSWSub(srcAdj, adj, "adj");
+ else
+ dstAdj = Builder.CreateNSWAdd(srcAdj, adj, "adj");
+
+ return Builder.CreateInsertValue(src, dstAdj, 1);
+}
+
+llvm::Constant *
+ItaniumCXXABI::EmitMemberPointerConversion(const CastExpr *E,
+ llvm::Constant *src) {
+ assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
+ E->getCastKind() == CK_BaseToDerivedMemberPointer ||
+ E->getCastKind() == CK_ReinterpretMemberPointer);
+
+ // Under Itanium, reinterprets don't require any additional processing.
+ if (E->getCastKind() == CK_ReinterpretMemberPointer) return src;
+
+ // If the adjustment is trivial, we don't need to do anything.
+ llvm::Constant *adj = getMemberPointerAdjustment(E);
+ if (!adj) return src;
+
+ bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer);
+
+ const MemberPointerType *destTy =
+ E->getType()->castAs<MemberPointerType>();
+
+ // For member data pointers, this is just a matter of adding the
+ // offset if the source is non-null.
+ if (destTy->isMemberDataPointer()) {
+ // null maps to null.
+ if (src->isAllOnesValue()) return src;
+
+ if (isDerivedToBase)
+ return llvm::ConstantExpr::getNSWSub(src, adj);
+ else
+ return llvm::ConstantExpr::getNSWAdd(src, adj);
+ }
+
+ // The this-adjustment is left-shifted by 1 on ARM.
+ if (UseARMMethodPtrABI) {
+ uint64_t offset = cast<llvm::ConstantInt>(adj)->getZExtValue();
+ offset <<= 1;
+ adj = llvm::ConstantInt::get(adj->getType(), offset);
+ }
+
+ llvm::Constant *srcAdj = llvm::ConstantExpr::getExtractValue(src, 1);
+ llvm::Constant *dstAdj;
+ if (isDerivedToBase)
+ dstAdj = llvm::ConstantExpr::getNSWSub(srcAdj, adj);
+ else
+ dstAdj = llvm::ConstantExpr::getNSWAdd(srcAdj, adj);
+
+ return llvm::ConstantExpr::getInsertValue(src, dstAdj, 1);
+}
+
+llvm::Constant *
+ItaniumCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) {
+ // Itanium C++ ABI 2.3:
+ // A NULL pointer is represented as -1.
+ if (MPT->isMemberDataPointer())
+ return llvm::ConstantInt::get(CGM.PtrDiffTy, -1ULL, /*isSigned=*/true);
+
+ llvm::Constant *Zero = llvm::ConstantInt::get(CGM.PtrDiffTy, 0);
+ llvm::Constant *Values[2] = { Zero, Zero };
+ return llvm::ConstantStruct::getAnon(Values);
+}
+
+llvm::Constant *
+ItaniumCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT,
+ CharUnits offset) {
+ // Itanium C++ ABI 2.3:
+ // A pointer to data member is an offset from the base address of
+ // the class object containing it, represented as a ptrdiff_t
+ return llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity());
+}
+
+llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const CXXMethodDecl *MD) {
+ return BuildMemberPointer(MD, CharUnits::Zero());
+}
+
+llvm::Constant *ItaniumCXXABI::BuildMemberPointer(const CXXMethodDecl *MD,
+ CharUnits ThisAdjustment) {
+ assert(MD->isInstance() && "Member function must not be static!");
+ MD = MD->getCanonicalDecl();
+
+ CodeGenTypes &Types = CGM.getTypes();
+
+ // Get the function pointer (or index if this is a virtual function).
+ llvm::Constant *MemPtr[2];
+ if (MD->isVirtual()) {
+ uint64_t Index = CGM.getItaniumVTableContext().getMethodVTableIndex(MD);
+
+ const ASTContext &Context = getContext();
+ CharUnits PointerWidth =
+ Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
+ uint64_t VTableOffset = (Index * PointerWidth.getQuantity());
+
+ if (UseARMMethodPtrABI) {
+ // ARM C++ ABI 3.2.1:
+ // This ABI specifies that adj contains twice the this
+ // adjustment, plus 1 if the member function is virtual. The
+ // least significant bit of adj then makes exactly the same
+ // discrimination as the least significant bit of ptr does for
+ // Itanium.
+ MemPtr[0] = llvm::ConstantInt::get(CGM.PtrDiffTy, VTableOffset);
+ MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy,
+ 2 * ThisAdjustment.getQuantity() + 1);
+ } else {
+ // Itanium C++ ABI 2.3:
+ // For a virtual function, [the pointer field] is 1 plus the
+ // virtual table offset (in bytes) of the function,
+ // represented as a ptrdiff_t.
+ MemPtr[0] = llvm::ConstantInt::get(CGM.PtrDiffTy, VTableOffset + 1);
+ MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy,
+ ThisAdjustment.getQuantity());
+ }
+ } else {
+ const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
+ llvm::Type *Ty;
+ // Check whether the function has a computable LLVM signature.
+ if (Types.isFuncTypeConvertible(FPT)) {
+ // The function has a computable LLVM signature; use the correct type.
+ Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD));
+ } else {
+ // Use an arbitrary non-function type to tell GetAddrOfFunction that the
+ // function type is incomplete.
+ Ty = CGM.PtrDiffTy;
+ }
+ llvm::Constant *addr = CGM.GetAddrOfFunction(MD, Ty);
+
+ MemPtr[0] = llvm::ConstantExpr::getPtrToInt(addr, CGM.PtrDiffTy);
+ MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy,
+ (UseARMMethodPtrABI ? 2 : 1) *
+ ThisAdjustment.getQuantity());
+ }
+
+ return llvm::ConstantStruct::getAnon(MemPtr);
+}
+
+llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const APValue &MP,
+ QualType MPType) {
+ const MemberPointerType *MPT = MPType->castAs<MemberPointerType>();
+ const ValueDecl *MPD = MP.getMemberPointerDecl();
+ if (!MPD)
+ return EmitNullMemberPointer(MPT);
+
+ CharUnits ThisAdjustment = getMemberPointerPathAdjustment(MP);
+
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD))
+ return BuildMemberPointer(MD, ThisAdjustment);
+
+ CharUnits FieldOffset =
+ getContext().toCharUnitsFromBits(getContext().getFieldOffset(MPD));
+ return EmitMemberDataPointer(MPT, ThisAdjustment + FieldOffset);
+}
+
+/// The comparison algorithm is pretty easy: the member pointers are
+/// the same if they're either bitwise identical *or* both null.
+///
+/// ARM is different here only because null-ness is more complicated.
+llvm::Value *
+ItaniumCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF,
+ llvm::Value *L,
+ llvm::Value *R,
+ const MemberPointerType *MPT,
+ bool Inequality) {
+ CGBuilderTy &Builder = CGF.Builder;
+
+ llvm::ICmpInst::Predicate Eq;
+ llvm::Instruction::BinaryOps And, Or;
+ if (Inequality) {
+ Eq = llvm::ICmpInst::ICMP_NE;
+ And = llvm::Instruction::Or;
+ Or = llvm::Instruction::And;
+ } else {
+ Eq = llvm::ICmpInst::ICMP_EQ;
+ And = llvm::Instruction::And;
+ Or = llvm::Instruction::Or;
+ }
+
+ // Member data pointers are easy because there's a unique null
+ // value, so it just comes down to bitwise equality.
+ if (MPT->isMemberDataPointer())
+ return Builder.CreateICmp(Eq, L, R);
+
+ // For member function pointers, the tautologies are more complex.
+ // The Itanium tautology is:
+ // (L == R) <==> (L.ptr == R.ptr && (L.ptr == 0 || L.adj == R.adj))
+ // The ARM tautology is:
+ // (L == R) <==> (L.ptr == R.ptr &&
+ // (L.adj == R.adj ||
+ // (L.ptr == 0 && ((L.adj|R.adj) & 1) == 0)))
+ // The inequality tautologies have exactly the same structure, except
+ // applying De Morgan's laws.
+
+ llvm::Value *LPtr = Builder.CreateExtractValue(L, 0, "lhs.memptr.ptr");
+ llvm::Value *RPtr = Builder.CreateExtractValue(R, 0, "rhs.memptr.ptr");
+
+ // This condition tests whether L.ptr == R.ptr. This must always be
+ // true for equality to hold.
+ llvm::Value *PtrEq = Builder.CreateICmp(Eq, LPtr, RPtr, "cmp.ptr");
+
+ // This condition, together with the assumption that L.ptr == R.ptr,
+ // tests whether the pointers are both null. ARM imposes an extra
+ // condition.
+ llvm::Value *Zero = llvm::Constant::getNullValue(LPtr->getType());
+ llvm::Value *EqZero = Builder.CreateICmp(Eq, LPtr, Zero, "cmp.ptr.null");
+
+ // This condition tests whether L.adj == R.adj. If this isn't
+ // true, the pointers are unequal unless they're both null.
+ llvm::Value *LAdj = Builder.CreateExtractValue(L, 1, "lhs.memptr.adj");
+ llvm::Value *RAdj = Builder.CreateExtractValue(R, 1, "rhs.memptr.adj");
+ llvm::Value *AdjEq = Builder.CreateICmp(Eq, LAdj, RAdj, "cmp.adj");
+
+ // Null member function pointers on ARM clear the low bit of Adj,
+ // so the zero condition has to check that neither low bit is set.
+ if (UseARMMethodPtrABI) {
+ llvm::Value *One = llvm::ConstantInt::get(LPtr->getType(), 1);
+
+ // Compute (l.adj | r.adj) & 1 and test it against zero.
+ llvm::Value *OrAdj = Builder.CreateOr(LAdj, RAdj, "or.adj");
+ llvm::Value *OrAdjAnd1 = Builder.CreateAnd(OrAdj, One);
+ llvm::Value *OrAdjAnd1EqZero = Builder.CreateICmp(Eq, OrAdjAnd1, Zero,
+ "cmp.or.adj");
+ EqZero = Builder.CreateBinOp(And, EqZero, OrAdjAnd1EqZero);
+ }
+
+ // Tie together all our conditions.
+ llvm::Value *Result = Builder.CreateBinOp(Or, EqZero, AdjEq);
+ Result = Builder.CreateBinOp(And, PtrEq, Result,
+ Inequality ? "memptr.ne" : "memptr.eq");
+ return Result;
+}
+
+llvm::Value *
+ItaniumCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
+ llvm::Value *MemPtr,
+ const MemberPointerType *MPT) {
+ CGBuilderTy &Builder = CGF.Builder;
+
+ /// For member data pointers, this is just a check against -1.
+ if (MPT->isMemberDataPointer()) {
+ assert(MemPtr->getType() == CGM.PtrDiffTy);
+ llvm::Value *NegativeOne =
+ llvm::Constant::getAllOnesValue(MemPtr->getType());
+ return Builder.CreateICmpNE(MemPtr, NegativeOne, "memptr.tobool");
+ }
+
+ // In Itanium, a member function pointer is not null if 'ptr' is not null.
+ llvm::Value *Ptr = Builder.CreateExtractValue(MemPtr, 0, "memptr.ptr");
+
+ llvm::Constant *Zero = llvm::ConstantInt::get(Ptr->getType(), 0);
+ llvm::Value *Result = Builder.CreateICmpNE(Ptr, Zero, "memptr.tobool");
+
+ // On ARM, a member function pointer is also non-null if the low bit of 'adj'
+ // (the virtual bit) is set.
+ if (UseARMMethodPtrABI) {
+ llvm::Constant *One = llvm::ConstantInt::get(Ptr->getType(), 1);
+ llvm::Value *Adj = Builder.CreateExtractValue(MemPtr, 1, "memptr.adj");
+ llvm::Value *VirtualBit = Builder.CreateAnd(Adj, One, "memptr.virtualbit");
+ llvm::Value *IsVirtual = Builder.CreateICmpNE(VirtualBit, Zero,
+ "memptr.isvirtual");
+ Result = Builder.CreateOr(Result, IsVirtual);
+ }
+
+ return Result;
+}
+
+bool ItaniumCXXABI::classifyReturnType(CGFunctionInfo &FI) const {
+ const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl();
+ if (!RD)
+ return false;
+
+ // Return indirectly if we have a non-trivial copy ctor or non-trivial dtor.
+ // FIXME: Use canCopyArgument() when it is fixed to handle lazily declared
+ // special members.
+ if (RD->hasNonTrivialDestructor() || RD->hasNonTrivialCopyConstructor()) {
+ FI.getReturnInfo() = ABIArgInfo::getIndirect(0, /*ByVal=*/false);
+ return true;
+ }
+ return false;
+}
+
+/// The Itanium ABI requires non-zero initialization only for data
+/// member pointers, for which '0' is a valid offset.
+bool ItaniumCXXABI::isZeroInitializable(const MemberPointerType *MPT) {
+ return MPT->isMemberFunctionPointer();
+}
+
+/// The Itanium ABI always places an offset to the complete object
+/// at entry -2 in the vtable.
+void ItaniumCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF,
+ const CXXDeleteExpr *DE,
+ llvm::Value *Ptr,
+ QualType ElementType,
+ const CXXDestructorDecl *Dtor) {
+ bool UseGlobalDelete = DE->isGlobalDelete();
+ if (UseGlobalDelete) {
+ // Derive the complete-object pointer, which is what we need
+ // to pass to the deallocation function.
+
+ // Grab the vtable pointer as an intptr_t*.
+ llvm::Value *VTable = CGF.GetVTablePtr(Ptr, CGF.IntPtrTy->getPointerTo());
+
+ // Track back to entry -2 and pull out the offset there.
+ llvm::Value *OffsetPtr = CGF.Builder.CreateConstInBoundsGEP1_64(
+ VTable, -2, "complete-offset.ptr");
+ llvm::LoadInst *Offset = CGF.Builder.CreateLoad(OffsetPtr);
+ Offset->setAlignment(CGF.PointerAlignInBytes);
+
+ // Apply the offset.
+ llvm::Value *CompletePtr = CGF.Builder.CreateBitCast(Ptr, CGF.Int8PtrTy);
+ CompletePtr = CGF.Builder.CreateInBoundsGEP(CompletePtr, Offset);
+
+ // If we're supposed to call the global delete, make sure we do so
+ // even if the destructor throws.
+ CGF.pushCallObjectDeleteCleanup(DE->getOperatorDelete(), CompletePtr,
+ ElementType);
+ }
+
+ // FIXME: Provide a source location here even though there's no
+ // CXXMemberCallExpr for dtor call.
+ CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting;
+ EmitVirtualDestructorCall(CGF, Dtor, DtorType, Ptr, /*CE=*/nullptr);
+
+ if (UseGlobalDelete)
+ CGF.PopCleanupBlock();
+}
+
+void ItaniumCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) {
+ // void __cxa_rethrow();
+
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(CGM.VoidTy, /*IsVarArgs=*/false);
+
+ llvm::Constant *Fn = CGM.CreateRuntimeFunction(FTy, "__cxa_rethrow");
+
+ if (isNoReturn)
+ CGF.EmitNoreturnRuntimeCallOrInvoke(Fn, None);
+ else
+ CGF.EmitRuntimeCallOrInvoke(Fn);
+}
+
+static llvm::Constant *getAllocateExceptionFn(CodeGenModule &CGM) {
+ // void *__cxa_allocate_exception(size_t thrown_size);
+
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(CGM.Int8PtrTy, CGM.SizeTy, /*IsVarArgs=*/false);
+
+ return CGM.CreateRuntimeFunction(FTy, "__cxa_allocate_exception");
+}
+
+static llvm::Constant *getThrowFn(CodeGenModule &CGM) {
+ // void __cxa_throw(void *thrown_exception, std::type_info *tinfo,
+ // void (*dest) (void *));
+
+ llvm::Type *Args[3] = { CGM.Int8PtrTy, CGM.Int8PtrTy, CGM.Int8PtrTy };
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(CGM.VoidTy, Args, /*IsVarArgs=*/false);
+
+ return CGM.CreateRuntimeFunction(FTy, "__cxa_throw");
+}
+
+void ItaniumCXXABI::emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) {
+ QualType ThrowType = E->getSubExpr()->getType();
+ // Now allocate the exception object.
+ llvm::Type *SizeTy = CGF.ConvertType(getContext().getSizeType());
+ uint64_t TypeSize = getContext().getTypeSizeInChars(ThrowType).getQuantity();
+
+ llvm::Constant *AllocExceptionFn = getAllocateExceptionFn(CGM);
+ llvm::CallInst *ExceptionPtr = CGF.EmitNounwindRuntimeCall(
+ AllocExceptionFn, llvm::ConstantInt::get(SizeTy, TypeSize), "exception");
+
+ CGF.EmitAnyExprToExn(E->getSubExpr(), ExceptionPtr);
+
+ // Now throw the exception.
+ llvm::Constant *TypeInfo = CGM.GetAddrOfRTTIDescriptor(ThrowType,
+ /*ForEH=*/true);
+
+ // The address of the destructor. If the exception type has a
+ // trivial destructor (or isn't a record), we just pass null.
+ llvm::Constant *Dtor = nullptr;
+ if (const RecordType *RecordTy = ThrowType->getAs<RecordType>()) {
+ CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
+ if (!Record->hasTrivialDestructor()) {
+ CXXDestructorDecl *DtorD = Record->getDestructor();
+ Dtor = CGM.getAddrOfCXXStructor(DtorD, StructorType::Complete);
+ Dtor = llvm::ConstantExpr::getBitCast(Dtor, CGM.Int8PtrTy);
+ }
+ }
+ if (!Dtor) Dtor = llvm::Constant::getNullValue(CGM.Int8PtrTy);
+
+ llvm::Value *args[] = { ExceptionPtr, TypeInfo, Dtor };
+ CGF.EmitNoreturnRuntimeCallOrInvoke(getThrowFn(CGM), args);
+}
+
+static llvm::Constant *getItaniumDynamicCastFn(CodeGenFunction &CGF) {
+ // void *__dynamic_cast(const void *sub,
+ // const abi::__class_type_info *src,
+ // const abi::__class_type_info *dst,
+ // std::ptrdiff_t src2dst_offset);
+
+ llvm::Type *Int8PtrTy = CGF.Int8PtrTy;
+ llvm::Type *PtrDiffTy =
+ CGF.ConvertType(CGF.getContext().getPointerDiffType());
+
+ llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy };
+
+ llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, Args, false);
+
+ // Mark the function as nounwind readonly.
+ llvm::Attribute::AttrKind FuncAttrs[] = { llvm::Attribute::NoUnwind,
+ llvm::Attribute::ReadOnly };
+ llvm::AttributeSet Attrs = llvm::AttributeSet::get(
+ CGF.getLLVMContext(), llvm::AttributeSet::FunctionIndex, FuncAttrs);
+
+ return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast", Attrs);
+}
+
+static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) {
+ // void __cxa_bad_cast();
+ llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false);
+ return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast");
+}
+
+/// \brief Compute the src2dst_offset hint as described in the
+/// Itanium C++ ABI [2.9.7]
+static CharUnits computeOffsetHint(ASTContext &Context,
+ const CXXRecordDecl *Src,
+ const CXXRecordDecl *Dst) {
+ CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
+ /*DetectVirtual=*/false);
+
+ // If Dst is not derived from Src we can skip the whole computation below and
+ // return that Src is not a public base of Dst. Record all inheritance paths.
+ if (!Dst->isDerivedFrom(Src, Paths))
+ return CharUnits::fromQuantity(-2ULL);
+
+ unsigned NumPublicPaths = 0;
+ CharUnits Offset;
+
+ // Now walk all possible inheritance paths.
+ for (CXXBasePaths::paths_iterator I = Paths.begin(), E = Paths.end(); I != E;
+ ++I) {
+ if (I->Access != AS_public) // Ignore non-public inheritance.
+ continue;
+
+ ++NumPublicPaths;
+
+ for (CXXBasePath::iterator J = I->begin(), JE = I->end(); J != JE; ++J) {
+ // If the path contains a virtual base class we can't give any hint.
+ // -1: no hint.
+ if (J->Base->isVirtual())
+ return CharUnits::fromQuantity(-1ULL);
+
+ if (NumPublicPaths > 1) // Won't use offsets, skip computation.
+ continue;
+
+ // Accumulate the base class offsets.
+ const ASTRecordLayout &L = Context.getASTRecordLayout(J->Class);
+ Offset += L.getBaseClassOffset(J->Base->getType()->getAsCXXRecordDecl());
+ }
+ }
+
+ // -2: Src is not a public base of Dst.
+ if (NumPublicPaths == 0)
+ return CharUnits::fromQuantity(-2ULL);
+
+ // -3: Src is a multiple public base type but never a virtual base type.
+ if (NumPublicPaths > 1)
+ return CharUnits::fromQuantity(-3ULL);
+
+ // Otherwise, the Src type is a unique public nonvirtual base type of Dst.
+ // Return the offset of Src from the origin of Dst.
+ return Offset;
+}
+
+static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) {
+ // void __cxa_bad_typeid();
+ llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false);
+
+ return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid");
+}
+
+bool ItaniumCXXABI::shouldTypeidBeNullChecked(bool IsDeref,
+ QualType SrcRecordTy) {
+ return IsDeref;
+}
+
+void ItaniumCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) {
+ llvm::Value *Fn = getBadTypeidFn(CGF);
+ CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn();
+ CGF.Builder.CreateUnreachable();
+}
+
+llvm::Value *ItaniumCXXABI::EmitTypeid(CodeGenFunction &CGF,
+ QualType SrcRecordTy,
+ llvm::Value *ThisPtr,
+ llvm::Type *StdTypeInfoPtrTy) {
+ llvm::Value *Value =
+ CGF.GetVTablePtr(ThisPtr, StdTypeInfoPtrTy->getPointerTo());
+
+ // Load the type info.
+ Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL);
+ return CGF.Builder.CreateLoad(Value);
+}
+
+bool ItaniumCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
+ QualType SrcRecordTy) {
+ return SrcIsPtr;
+}
+
+llvm::Value *ItaniumCXXABI::EmitDynamicCastCall(
+ CodeGenFunction &CGF, llvm::Value *Value, QualType SrcRecordTy,
+ QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) {
+ llvm::Type *PtrDiffLTy =
+ CGF.ConvertType(CGF.getContext().getPointerDiffType());
+ llvm::Type *DestLTy = CGF.ConvertType(DestTy);
+
+ llvm::Value *SrcRTTI =
+ CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
+ llvm::Value *DestRTTI =
+ CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());
+
+ // Compute the offset hint.
+ const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
+ const CXXRecordDecl *DestDecl = DestRecordTy->getAsCXXRecordDecl();
+ llvm::Value *OffsetHint = llvm::ConstantInt::get(
+ PtrDiffLTy,
+ computeOffsetHint(CGF.getContext(), SrcDecl, DestDecl).getQuantity());
+
+ // Emit the call to __dynamic_cast.
+ Value = CGF.EmitCastToVoidPtr(Value);
+
+ llvm::Value *args[] = {Value, SrcRTTI, DestRTTI, OffsetHint};
+ Value = CGF.EmitNounwindRuntimeCall(getItaniumDynamicCastFn(CGF), args);
+ Value = CGF.Builder.CreateBitCast(Value, DestLTy);
+
+ /// C++ [expr.dynamic.cast]p9:
+ /// A failed cast to reference type throws std::bad_cast
+ if (DestTy->isReferenceType()) {
+ llvm::BasicBlock *BadCastBlock =
+ CGF.createBasicBlock("dynamic_cast.bad_cast");
+
+ llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value);
+ CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd);
+
+ CGF.EmitBlock(BadCastBlock);
+ EmitBadCastCall(CGF);
+ }
+
+ return Value;
+}
+
+llvm::Value *ItaniumCXXABI::EmitDynamicCastToVoid(CodeGenFunction &CGF,
+ llvm::Value *Value,
+ QualType SrcRecordTy,
+ QualType DestTy) {
+ llvm::Type *PtrDiffLTy =
+ CGF.ConvertType(CGF.getContext().getPointerDiffType());
+ llvm::Type *DestLTy = CGF.ConvertType(DestTy);
+
+ // Get the vtable pointer.
+ llvm::Value *VTable = CGF.GetVTablePtr(Value, PtrDiffLTy->getPointerTo());
+
+ // Get the offset-to-top from the vtable.
+ llvm::Value *OffsetToTop =
+ CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL);
+ OffsetToTop = CGF.Builder.CreateLoad(OffsetToTop, "offset.to.top");
+
+ // Finally, add the offset to the pointer.
+ Value = CGF.EmitCastToVoidPtr(Value);
+ Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop);
+
+ return CGF.Builder.CreateBitCast(Value, DestLTy);
+}
+
+bool ItaniumCXXABI::EmitBadCastCall(CodeGenFunction &CGF) {
+ llvm::Value *Fn = getBadCastFn(CGF);
+ CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn();
+ CGF.Builder.CreateUnreachable();
+ return true;
+}
+
+llvm::Value *
+ItaniumCXXABI::GetVirtualBaseClassOffset(CodeGenFunction &CGF,
+ llvm::Value *This,
+ const CXXRecordDecl *ClassDecl,
+ const CXXRecordDecl *BaseClassDecl) {
+ llvm::Value *VTablePtr = CGF.GetVTablePtr(This, CGM.Int8PtrTy);
+ CharUnits VBaseOffsetOffset =
+ CGM.getItaniumVTableContext().getVirtualBaseOffsetOffset(ClassDecl,
+ BaseClassDecl);
+
+ llvm::Value *VBaseOffsetPtr =
+ CGF.Builder.CreateConstGEP1_64(VTablePtr, VBaseOffsetOffset.getQuantity(),
+ "vbase.offset.ptr");
+ VBaseOffsetPtr = CGF.Builder.CreateBitCast(VBaseOffsetPtr,
+ CGM.PtrDiffTy->getPointerTo());
+
+ llvm::Value *VBaseOffset =
+ CGF.Builder.CreateLoad(VBaseOffsetPtr, "vbase.offset");
+
+ return VBaseOffset;
+}
+
+void ItaniumCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) {
+ // Just make sure we're in sync with TargetCXXABI.
+ assert(CGM.getTarget().getCXXABI().hasConstructorVariants());
+
+ // The constructor used for constructing this as a base class;
+ // ignores virtual bases.
+ CGM.EmitGlobal(GlobalDecl(D, Ctor_Base));
+
+ // The constructor used for constructing this as a complete class;
+ // constructs the virtual bases, then calls the base constructor.
+ if (!D->getParent()->isAbstract()) {
+ // We don't need to emit the complete ctor if the class is abstract.
+ CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete));
+ }
+}
+
+void
+ItaniumCXXABI::buildStructorSignature(const CXXMethodDecl *MD, StructorType T,
+ SmallVectorImpl<CanQualType> &ArgTys) {
+ ASTContext &Context = getContext();
+
+ // All parameters are already in place except VTT, which goes after 'this'.
+ // These are Clang types, so we don't need to worry about sret yet.
+
+ // Check if we need to add a VTT parameter (which has type void **).
+ if (T == StructorType::Base && MD->getParent()->getNumVBases() != 0)
+ ArgTys.insert(ArgTys.begin() + 1,
+ Context.getPointerType(Context.VoidPtrTy));
+}
+
+void ItaniumCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) {
+ // The destructor used for destructing this as a base class; ignores
+ // virtual bases.
+ CGM.EmitGlobal(GlobalDecl(D, Dtor_Base));
+
+ // The destructor used for destructing this as a most-derived class;
+ // call the base destructor and then destructs any virtual bases.
+ CGM.EmitGlobal(GlobalDecl(D, Dtor_Complete));
+
+ // The destructor in a virtual table is always a 'deleting'
+ // destructor, which calls the complete destructor and then uses the
+ // appropriate operator delete.
+ if (D->isVirtual())
+ CGM.EmitGlobal(GlobalDecl(D, Dtor_Deleting));
+}
+
+void ItaniumCXXABI::addImplicitStructorParams(CodeGenFunction &CGF,
+ QualType &ResTy,
+ FunctionArgList &Params) {
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
+ assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD));
+
+ // Check if we need a VTT parameter as well.
+ if (NeedsVTTParameter(CGF.CurGD)) {
+ ASTContext &Context = getContext();
+
+ // FIXME: avoid the fake decl
+ QualType T = Context.getPointerType(Context.VoidPtrTy);
+ ImplicitParamDecl *VTTDecl
+ = ImplicitParamDecl::Create(Context, nullptr, MD->getLocation(),
+ &Context.Idents.get("vtt"), T);
+ Params.insert(Params.begin() + 1, VTTDecl);
+ getStructorImplicitParamDecl(CGF) = VTTDecl;
+ }
+}
+
+void ItaniumCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
+ /// Initialize the 'this' slot.
+ EmitThisParam(CGF);
+
+ /// Initialize the 'vtt' slot if needed.
+ if (getStructorImplicitParamDecl(CGF)) {
+ getStructorImplicitParamValue(CGF) = CGF.Builder.CreateLoad(
+ CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), "vtt");
+ }
+
+ /// If this is a function that the ABI specifies returns 'this', initialize
+ /// the return slot to 'this' at the start of the function.
+ ///
+ /// Unlike the setting of return types, this is done within the ABI
+ /// implementation instead of by clients of CGCXXABI because:
+ /// 1) getThisValue is currently protected
+ /// 2) in theory, an ABI could implement 'this' returns some other way;
+ /// HasThisReturn only specifies a contract, not the implementation
+ if (HasThisReturn(CGF.CurGD))
+ CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue);
+}
+
+unsigned ItaniumCXXABI::addImplicitConstructorArgs(
+ CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type,
+ bool ForVirtualBase, bool Delegating, CallArgList &Args) {
+ if (!NeedsVTTParameter(GlobalDecl(D, Type)))
+ return 0;
+
+ // Insert the implicit 'vtt' argument as the second argument.
+ llvm::Value *VTT =
+ CGF.GetVTTParameter(GlobalDecl(D, Type), ForVirtualBase, Delegating);
+ QualType VTTTy = getContext().getPointerType(getContext().VoidPtrTy);
+ Args.insert(Args.begin() + 1,
+ CallArg(RValue::get(VTT), VTTTy, /*needscopy=*/false));
+ return 1; // Added one arg.
+}
+
+void ItaniumCXXABI::EmitDestructorCall(CodeGenFunction &CGF,
+ const CXXDestructorDecl *DD,
+ CXXDtorType Type, bool ForVirtualBase,
+ bool Delegating, llvm::Value *This) {
+ GlobalDecl GD(DD, Type);
+ llvm::Value *VTT = CGF.GetVTTParameter(GD, ForVirtualBase, Delegating);
+ QualType VTTTy = getContext().getPointerType(getContext().VoidPtrTy);
+
+ llvm::Value *Callee = nullptr;
+ if (getContext().getLangOpts().AppleKext)
+ Callee = CGF.BuildAppleKextVirtualDestructorCall(DD, Type, DD->getParent());
+
+ if (!Callee)
+ Callee = CGM.getAddrOfCXXStructor(DD, getFromDtorType(Type));
+
+ CGF.EmitCXXMemberOrOperatorCall(DD, Callee, ReturnValueSlot(), This, VTT,
+ VTTTy, nullptr);
+}
+
+void ItaniumCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT,
+ const CXXRecordDecl *RD) {
+ llvm::GlobalVariable *VTable = getAddrOfVTable(RD, CharUnits());
+ if (VTable->hasInitializer())
+ return;
+
+ ItaniumVTableContext &VTContext = CGM.getItaniumVTableContext();
+ const VTableLayout &VTLayout = VTContext.getVTableLayout(RD);
+ llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD);
+ llvm::Constant *RTTI =
+ CGM.GetAddrOfRTTIDescriptor(CGM.getContext().getTagDeclType(RD));
+
+ // Create and set the initializer.
+ llvm::Constant *Init = CGVT.CreateVTableInitializer(
+ RD, VTLayout.vtable_component_begin(), VTLayout.getNumVTableComponents(),
+ VTLayout.vtable_thunk_begin(), VTLayout.getNumVTableThunks(), RTTI);
+ VTable->setInitializer(Init);
+
+ // Set the correct linkage.
+ VTable->setLinkage(Linkage);
+
+ if (CGM.supportsCOMDAT() && VTable->isWeakForLinker())
+ VTable->setComdat(CGM.getModule().getOrInsertComdat(VTable->getName()));
+
+ // Set the right visibility.
+ CGM.setGlobalVisibility(VTable, RD);
+
+ // Use pointer alignment for the vtable. Otherwise we would align them based
+ // on the size of the initializer which doesn't make sense as only single
+ // values are read.
+ unsigned PAlign = CGM.getTarget().getPointerAlign(0);
+ VTable->setAlignment(getContext().toCharUnitsFromBits(PAlign).getQuantity());
+
+ // If this is the magic class __cxxabiv1::__fundamental_type_info,
+ // we will emit the typeinfo for the fundamental types. This is the
+ // same behaviour as GCC.
+ const DeclContext *DC = RD->getDeclContext();
+ if (RD->getIdentifier() &&
+ RD->getIdentifier()->isStr("__fundamental_type_info") &&
+ isa<NamespaceDecl>(DC) && cast<NamespaceDecl>(DC)->getIdentifier() &&
+ cast<NamespaceDecl>(DC)->getIdentifier()->isStr("__cxxabiv1") &&
+ DC->getParent()->isTranslationUnit())
+ EmitFundamentalRTTIDescriptors();
+
+ CGM.EmitVTableBitSetEntries(VTable, VTLayout);
+}
+
+llvm::Value *ItaniumCXXABI::getVTableAddressPointInStructor(
+ CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base,
+ const CXXRecordDecl *NearestVBase, bool &NeedsVirtualOffset) {
+ bool NeedsVTTParam = CGM.getCXXABI().NeedsVTTParameter(CGF.CurGD);
+ NeedsVirtualOffset = (NeedsVTTParam && NearestVBase);
+
+ llvm::Value *VTableAddressPoint;
+ if (NeedsVTTParam && (Base.getBase()->getNumVBases() || NearestVBase)) {
+ // Get the secondary vpointer index.
+ uint64_t VirtualPointerIndex =
+ CGM.getVTables().getSecondaryVirtualPointerIndex(VTableClass, Base);
+
+ /// Load the VTT.
+ llvm::Value *VTT = CGF.LoadCXXVTT();
+ if (VirtualPointerIndex)
+ VTT = CGF.Builder.CreateConstInBoundsGEP1_64(VTT, VirtualPointerIndex);
+
+ // And load the address point from the VTT.
+ VTableAddressPoint = CGF.Builder.CreateLoad(VTT);
+ } else {
+ llvm::Constant *VTable =
+ CGM.getCXXABI().getAddrOfVTable(VTableClass, CharUnits());
+ uint64_t AddressPoint = CGM.getItaniumVTableContext()
+ .getVTableLayout(VTableClass)
+ .getAddressPoint(Base);
+ VTableAddressPoint =
+ CGF.Builder.CreateConstInBoundsGEP2_64(VTable, 0, AddressPoint);
+ }
+
+ return VTableAddressPoint;
+}
+
+llvm::Constant *ItaniumCXXABI::getVTableAddressPointForConstExpr(
+ BaseSubobject Base, const CXXRecordDecl *VTableClass) {
+ auto *VTable = getAddrOfVTable(VTableClass, CharUnits());
+
+ // Find the appropriate vtable within the vtable group.
+ uint64_t AddressPoint = CGM.getItaniumVTableContext()
+ .getVTableLayout(VTableClass)
+ .getAddressPoint(Base);
+ llvm::Value *Indices[] = {
+ llvm::ConstantInt::get(CGM.Int64Ty, 0),
+ llvm::ConstantInt::get(CGM.Int64Ty, AddressPoint)
+ };
+
+ return llvm::ConstantExpr::getInBoundsGetElementPtr(VTable->getValueType(),
+ VTable, Indices);
+}
+
+llvm::GlobalVariable *ItaniumCXXABI::getAddrOfVTable(const CXXRecordDecl *RD,
+ CharUnits VPtrOffset) {
+ assert(VPtrOffset.isZero() && "Itanium ABI only supports zero vptr offsets");
+
+ llvm::GlobalVariable *&VTable = VTables[RD];
+ if (VTable)
+ return VTable;
+
+ // Queue up this v-table for possible deferred emission.
+ CGM.addDeferredVTable(RD);
+
+ SmallString<256> OutName;
+ llvm::raw_svector_ostream Out(OutName);
+ getMangleContext().mangleCXXVTable(RD, Out);
+ Out.flush();
+ StringRef Name = OutName.str();
+
+ ItaniumVTableContext &VTContext = CGM.getItaniumVTableContext();
+ llvm::ArrayType *ArrayType = llvm::ArrayType::get(
+ CGM.Int8PtrTy, VTContext.getVTableLayout(RD).getNumVTableComponents());
+
+ VTable = CGM.CreateOrReplaceCXXRuntimeVariable(
+ Name, ArrayType, llvm::GlobalValue::ExternalLinkage);
+ VTable->setUnnamedAddr(true);
+
+ if (RD->hasAttr<DLLImportAttr>())
+ VTable->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
+ else if (RD->hasAttr<DLLExportAttr>())
+ VTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
+
+ return VTable;
+}
+
+llvm::Value *ItaniumCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF,
+ GlobalDecl GD,
+ llvm::Value *This,
+ llvm::Type *Ty) {
+ GD = GD.getCanonicalDecl();
+ Ty = Ty->getPointerTo()->getPointerTo();
+ llvm::Value *VTable = CGF.GetVTablePtr(This, Ty);
+
+ if (CGF.SanOpts.has(SanitizerKind::CFIVCall))
+ CGF.EmitVTablePtrCheckForCall(cast<CXXMethodDecl>(GD.getDecl()), VTable);
+
+ uint64_t VTableIndex = CGM.getItaniumVTableContext().getMethodVTableIndex(GD);
+ llvm::Value *VFuncPtr =
+ CGF.Builder.CreateConstInBoundsGEP1_64(VTable, VTableIndex, "vfn");
+ return CGF.Builder.CreateLoad(VFuncPtr);
+}
+
+llvm::Value *ItaniumCXXABI::EmitVirtualDestructorCall(
+ CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType,
+ llvm::Value *This, const CXXMemberCallExpr *CE) {
+ assert(CE == nullptr || CE->arg_begin() == CE->arg_end());
+ assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete);
+
+ const CGFunctionInfo *FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
+ Dtor, getFromDtorType(DtorType));
+ llvm::Type *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo);
+ llvm::Value *Callee =
+ getVirtualFunctionPointer(CGF, GlobalDecl(Dtor, DtorType), This, Ty);
+
+ CGF.EmitCXXMemberOrOperatorCall(Dtor, Callee, ReturnValueSlot(), This,
+ /*ImplicitParam=*/nullptr, QualType(), CE);
+ return nullptr;
+}
+
+void ItaniumCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) {
+ CodeGenVTables &VTables = CGM.getVTables();
+ llvm::GlobalVariable *VTT = VTables.GetAddrOfVTT(RD);
+ VTables.EmitVTTDefinition(VTT, CGM.getVTableLinkage(RD), RD);
+}
+
+static llvm::Value *performTypeAdjustment(CodeGenFunction &CGF,
+ llvm::Value *Ptr,
+ int64_t NonVirtualAdjustment,
+ int64_t VirtualAdjustment,
+ bool IsReturnAdjustment) {
+ if (!NonVirtualAdjustment && !VirtualAdjustment)
+ return Ptr;
+
+ llvm::Type *Int8PtrTy = CGF.Int8PtrTy;
+ llvm::Value *V = CGF.Builder.CreateBitCast(Ptr, Int8PtrTy);
+
+ if (NonVirtualAdjustment && !IsReturnAdjustment) {
+ // Perform the non-virtual adjustment for a base-to-derived cast.
+ V = CGF.Builder.CreateConstInBoundsGEP1_64(V, NonVirtualAdjustment);
+ }
+
+ if (VirtualAdjustment) {
+ llvm::Type *PtrDiffTy =
+ CGF.ConvertType(CGF.getContext().getPointerDiffType());
+
+ // Perform the virtual adjustment.
+ llvm::Value *VTablePtrPtr =
+ CGF.Builder.CreateBitCast(V, Int8PtrTy->getPointerTo());
+
+ llvm::Value *VTablePtr = CGF.Builder.CreateLoad(VTablePtrPtr);
+
+ llvm::Value *OffsetPtr =
+ CGF.Builder.CreateConstInBoundsGEP1_64(VTablePtr, VirtualAdjustment);
+
+ OffsetPtr = CGF.Builder.CreateBitCast(OffsetPtr, PtrDiffTy->getPointerTo());
+
+ // Load the adjustment offset from the vtable.
+ llvm::Value *Offset = CGF.Builder.CreateLoad(OffsetPtr);
+
+ // Adjust our pointer.
+ V = CGF.Builder.CreateInBoundsGEP(V, Offset);
+ }
+
+ if (NonVirtualAdjustment && IsReturnAdjustment) {
+ // Perform the non-virtual adjustment for a derived-to-base cast.
+ V = CGF.Builder.CreateConstInBoundsGEP1_64(V, NonVirtualAdjustment);
+ }
+
+ // Cast back to the original type.
+ return CGF.Builder.CreateBitCast(V, Ptr->getType());
+}
+
+llvm::Value *ItaniumCXXABI::performThisAdjustment(CodeGenFunction &CGF,
+ llvm::Value *This,
+ const ThisAdjustment &TA) {
+ return performTypeAdjustment(CGF, This, TA.NonVirtual,
+ TA.Virtual.Itanium.VCallOffsetOffset,
+ /*IsReturnAdjustment=*/false);
+}
+
+llvm::Value *
+ItaniumCXXABI::performReturnAdjustment(CodeGenFunction &CGF, llvm::Value *Ret,
+ const ReturnAdjustment &RA) {
+ return performTypeAdjustment(CGF, Ret, RA.NonVirtual,
+ RA.Virtual.Itanium.VBaseOffsetOffset,
+ /*IsReturnAdjustment=*/true);
+}
+
+void ARMCXXABI::EmitReturnFromThunk(CodeGenFunction &CGF,
+ RValue RV, QualType ResultType) {
+ if (!isa<CXXDestructorDecl>(CGF.CurGD.getDecl()))
+ return ItaniumCXXABI::EmitReturnFromThunk(CGF, RV, ResultType);
+
+ // Destructor thunks in the ARM ABI have indeterminate results.
+ llvm::Type *T =
+ cast<llvm::PointerType>(CGF.ReturnValue->getType())->getElementType();
+ RValue Undef = RValue::get(llvm::UndefValue::get(T));
+ return ItaniumCXXABI::EmitReturnFromThunk(CGF, Undef, ResultType);
+}
+
+/************************** Array allocation cookies **************************/
+
+CharUnits ItaniumCXXABI::getArrayCookieSizeImpl(QualType elementType) {
+ // The array cookie is a size_t; pad that up to the element alignment.
+ // The cookie is actually right-justified in that space.
+ return std::max(CharUnits::fromQuantity(CGM.SizeSizeInBytes),
+ CGM.getContext().getTypeAlignInChars(elementType));
+}
+
+llvm::Value *ItaniumCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
+ llvm::Value *NewPtr,
+ llvm::Value *NumElements,
+ const CXXNewExpr *expr,
+ QualType ElementType) {
+ assert(requiresArrayCookie(expr));
+
+ unsigned AS = NewPtr->getType()->getPointerAddressSpace();
+
+ ASTContext &Ctx = getContext();
+ QualType SizeTy = Ctx.getSizeType();
+ CharUnits SizeSize = Ctx.getTypeSizeInChars(SizeTy);
+
+ // The size of the cookie.
+ CharUnits CookieSize =
+ std::max(SizeSize, Ctx.getTypeAlignInChars(ElementType));
+ assert(CookieSize == getArrayCookieSizeImpl(ElementType));
+
+ // Compute an offset to the cookie.
+ llvm::Value *CookiePtr = NewPtr;
+ CharUnits CookieOffset = CookieSize - SizeSize;
+ if (!CookieOffset.isZero())
+ CookiePtr = CGF.Builder.CreateConstInBoundsGEP1_64(CookiePtr,
+ CookieOffset.getQuantity());
+
+ // Write the number of elements into the appropriate slot.
+ llvm::Type *NumElementsTy = CGF.ConvertType(SizeTy)->getPointerTo(AS);
+ llvm::Value *NumElementsPtr =
+ CGF.Builder.CreateBitCast(CookiePtr, NumElementsTy);
+ llvm::Instruction *SI = CGF.Builder.CreateStore(NumElements, NumElementsPtr);
+ if (CGM.getLangOpts().Sanitize.has(SanitizerKind::Address) && AS == 0 &&
+ expr->getOperatorNew()->isReplaceableGlobalAllocationFunction()) {
+ // The store to the CookiePtr does not need to be instrumented.
+ CGM.getSanitizerMetadata()->disableSanitizerForInstruction(SI);
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(CGM.VoidTy, NumElementsTy, false);
+ llvm::Constant *F =
+ CGM.CreateRuntimeFunction(FTy, "__asan_poison_cxx_array_cookie");
+ CGF.Builder.CreateCall(F, NumElementsPtr);
+ }
+
+ // Finally, compute a pointer to the actual data buffer by skipping
+ // over the cookie completely.
+ return CGF.Builder.CreateConstInBoundsGEP1_64(NewPtr,
+ CookieSize.getQuantity());
+}
+
+llvm::Value *ItaniumCXXABI::readArrayCookieImpl(CodeGenFunction &CGF,
+ llvm::Value *allocPtr,
+ CharUnits cookieSize) {
+ // The element size is right-justified in the cookie.
+ llvm::Value *numElementsPtr = allocPtr;
+ CharUnits numElementsOffset =
+ cookieSize - CharUnits::fromQuantity(CGF.SizeSizeInBytes);
+ if (!numElementsOffset.isZero())
+ numElementsPtr =
+ CGF.Builder.CreateConstInBoundsGEP1_64(numElementsPtr,
+ numElementsOffset.getQuantity());
+
+ unsigned AS = allocPtr->getType()->getPointerAddressSpace();
+ numElementsPtr =
+ CGF.Builder.CreateBitCast(numElementsPtr, CGF.SizeTy->getPointerTo(AS));
+ if (!CGM.getLangOpts().Sanitize.has(SanitizerKind::Address) || AS != 0)
+ return CGF.Builder.CreateLoad(numElementsPtr);
+ // In asan mode emit a function call instead of a regular load and let the
+ // run-time deal with it: if the shadow is properly poisoned return the
+ // cookie, otherwise return 0 to avoid an infinite loop calling DTORs.
+ // We can't simply ignore this load using nosanitize metadata because
+ // the metadata may be lost.
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(CGF.SizeTy, CGF.SizeTy->getPointerTo(0), false);
+ llvm::Constant *F =
+ CGM.CreateRuntimeFunction(FTy, "__asan_load_cxx_array_cookie");
+ return CGF.Builder.CreateCall(F, numElementsPtr);
+}
+
+CharUnits ARMCXXABI::getArrayCookieSizeImpl(QualType elementType) {
+ // ARM says that the cookie is always:
+ // struct array_cookie {
+ // std::size_t element_size; // element_size != 0
+ // std::size_t element_count;
+ // };
+ // But the base ABI doesn't give anything an alignment greater than
+ // 8, so we can dismiss this as typical ABI-author blindness to
+ // actual language complexity and round up to the element alignment.
+ return std::max(CharUnits::fromQuantity(2 * CGM.SizeSizeInBytes),
+ CGM.getContext().getTypeAlignInChars(elementType));
+}
+
+llvm::Value *ARMCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
+ llvm::Value *newPtr,
+ llvm::Value *numElements,
+ const CXXNewExpr *expr,
+ QualType elementType) {
+ assert(requiresArrayCookie(expr));
+
+ // NewPtr is a char*, but we generalize to arbitrary addrspaces.
+ unsigned AS = newPtr->getType()->getPointerAddressSpace();
+
+ // The cookie is always at the start of the buffer.
+ llvm::Value *cookie = newPtr;
+
+ // The first element is the element size.
+ cookie = CGF.Builder.CreateBitCast(cookie, CGF.SizeTy->getPointerTo(AS));
+ llvm::Value *elementSize = llvm::ConstantInt::get(CGF.SizeTy,
+ getContext().getTypeSizeInChars(elementType).getQuantity());
+ CGF.Builder.CreateStore(elementSize, cookie);
+
+ // The second element is the element count.
+ cookie = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.SizeTy, cookie, 1);
+ CGF.Builder.CreateStore(numElements, cookie);
+
+ // Finally, compute a pointer to the actual data buffer by skipping
+ // over the cookie completely.
+ CharUnits cookieSize = ARMCXXABI::getArrayCookieSizeImpl(elementType);
+ return CGF.Builder.CreateConstInBoundsGEP1_64(newPtr,
+ cookieSize.getQuantity());
+}
+
+llvm::Value *ARMCXXABI::readArrayCookieImpl(CodeGenFunction &CGF,
+ llvm::Value *allocPtr,
+ CharUnits cookieSize) {
+ // The number of elements is at offset sizeof(size_t) relative to
+ // the allocated pointer.
+ llvm::Value *numElementsPtr
+ = CGF.Builder.CreateConstInBoundsGEP1_64(allocPtr, CGF.SizeSizeInBytes);
+
+ unsigned AS = allocPtr->getType()->getPointerAddressSpace();
+ numElementsPtr =
+ CGF.Builder.CreateBitCast(numElementsPtr, CGF.SizeTy->getPointerTo(AS));
+ return CGF.Builder.CreateLoad(numElementsPtr);
+}
+
+/*********************** Static local initialization **************************/
+
+static llvm::Constant *getGuardAcquireFn(CodeGenModule &CGM,
+ llvm::PointerType *GuardPtrTy) {
+ // int __cxa_guard_acquire(__guard *guard_object);
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(CGM.getTypes().ConvertType(CGM.getContext().IntTy),
+ GuardPtrTy, /*isVarArg=*/false);
+ return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_acquire",
+ llvm::AttributeSet::get(CGM.getLLVMContext(),
+ llvm::AttributeSet::FunctionIndex,
+ llvm::Attribute::NoUnwind));
+}
+
+static llvm::Constant *getGuardReleaseFn(CodeGenModule &CGM,
+ llvm::PointerType *GuardPtrTy) {
+ // void __cxa_guard_release(__guard *guard_object);
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false);
+ return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_release",
+ llvm::AttributeSet::get(CGM.getLLVMContext(),
+ llvm::AttributeSet::FunctionIndex,
+ llvm::Attribute::NoUnwind));
+}
+
+static llvm::Constant *getGuardAbortFn(CodeGenModule &CGM,
+ llvm::PointerType *GuardPtrTy) {
+ // void __cxa_guard_abort(__guard *guard_object);
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false);
+ return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_abort",
+ llvm::AttributeSet::get(CGM.getLLVMContext(),
+ llvm::AttributeSet::FunctionIndex,
+ llvm::Attribute::NoUnwind));
+}
+
+namespace {
+ struct CallGuardAbort : EHScopeStack::Cleanup {
+ llvm::GlobalVariable *Guard;
+ CallGuardAbort(llvm::GlobalVariable *Guard) : Guard(Guard) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ CGF.EmitNounwindRuntimeCall(getGuardAbortFn(CGF.CGM, Guard->getType()),
+ Guard);
+ }
+ };
+}
+
+/// The ARM code here follows the Itanium code closely enough that we
+/// just special-case it at particular places.
+void ItaniumCXXABI::EmitGuardedInit(CodeGenFunction &CGF,
+ const VarDecl &D,
+ llvm::GlobalVariable *var,
+ bool shouldPerformInit) {
+ CGBuilderTy &Builder = CGF.Builder;
+
+ // We only need to use thread-safe statics for local non-TLS variables;
+ // global initialization is always single-threaded.
+ bool threadsafe = getContext().getLangOpts().ThreadsafeStatics &&
+ D.isLocalVarDecl() && !D.getTLSKind();
+
+ // If we have a global variable with internal linkage and thread-safe statics
+ // are disabled, we can just let the guard variable be of type i8.
+ bool useInt8GuardVariable = !threadsafe && var->hasInternalLinkage();
+
+ llvm::IntegerType *guardTy;
+ if (useInt8GuardVariable) {
+ guardTy = CGF.Int8Ty;
+ } else {
+ // Guard variables are 64 bits in the generic ABI and size width on ARM
+ // (i.e. 32-bit on AArch32, 64-bit on AArch64).
+ guardTy = (UseARMGuardVarABI ? CGF.SizeTy : CGF.Int64Ty);
+ }
+ llvm::PointerType *guardPtrTy = guardTy->getPointerTo();
+
+ // Create the guard variable if we don't already have it (as we
+ // might if we're double-emitting this function body).
+ llvm::GlobalVariable *guard = CGM.getStaticLocalDeclGuardAddress(&D);
+ if (!guard) {
+ // Mangle the name for the guard.
+ SmallString<256> guardName;
+ {
+ llvm::raw_svector_ostream out(guardName);
+ getMangleContext().mangleStaticGuardVariable(&D, out);
+ out.flush();
+ }
+
+ // Create the guard variable with a zero-initializer.
+ // Just absorb linkage and visibility from the guarded variable.
+ guard = new llvm::GlobalVariable(CGM.getModule(), guardTy,
+ false, var->getLinkage(),
+ llvm::ConstantInt::get(guardTy, 0),
+ guardName.str());
+ guard->setVisibility(var->getVisibility());
+ // If the variable is thread-local, so is its guard variable.
+ guard->setThreadLocalMode(var->getThreadLocalMode());
+
+ // The ABI says: It is suggested that it be emitted in the same COMDAT group
+ // as the associated data object
+ llvm::Comdat *C = var->getComdat();
+ if (!D.isLocalVarDecl() && C) {
+ guard->setComdat(C);
+ CGF.CurFn->setComdat(C);
+ } else if (CGM.supportsCOMDAT() && guard->isWeakForLinker()) {
+ guard->setComdat(CGM.getModule().getOrInsertComdat(guard->getName()));
+ }
+
+ CGM.setStaticLocalDeclGuardAddress(&D, guard);
+ }
+
+ // Test whether the variable has completed initialization.
+ //
+ // Itanium C++ ABI 3.3.2:
+ // The following is pseudo-code showing how these functions can be used:
+ // if (obj_guard.first_byte == 0) {
+ // if ( __cxa_guard_acquire (&obj_guard) ) {
+ // try {
+ // ... initialize the object ...;
+ // } catch (...) {
+ // __cxa_guard_abort (&obj_guard);
+ // throw;
+ // }
+ // ... queue object destructor with __cxa_atexit() ...;
+ // __cxa_guard_release (&obj_guard);
+ // }
+ // }
+
+ // Load the first byte of the guard variable.
+ llvm::LoadInst *LI =
+ Builder.CreateLoad(Builder.CreateBitCast(guard, CGM.Int8PtrTy));
+ LI->setAlignment(1);
+
+ // Itanium ABI:
+ // An implementation supporting thread-safety on multiprocessor
+ // systems must also guarantee that references to the initialized
+ // object do not occur before the load of the initialization flag.
+ //
+ // In LLVM, we do this by marking the load Acquire.
+ if (threadsafe)
+ LI->setAtomic(llvm::Acquire);
+
+ // For ARM, we should only check the first bit, rather than the entire byte:
+ //
+ // ARM C++ ABI 3.2.3.1:
+ // To support the potential use of initialization guard variables
+ // as semaphores that are the target of ARM SWP and LDREX/STREX
+ // synchronizing instructions we define a static initialization
+ // guard variable to be a 4-byte aligned, 4-byte word with the
+ // following inline access protocol.
+ // #define INITIALIZED 1
+ // if ((obj_guard & INITIALIZED) != INITIALIZED) {
+ // if (__cxa_guard_acquire(&obj_guard))
+ // ...
+ // }
+ //
+ // and similarly for ARM64:
+ //
+ // ARM64 C++ ABI 3.2.2:
+ // This ABI instead only specifies the value bit 0 of the static guard
+ // variable; all other bits are platform defined. Bit 0 shall be 0 when the
+ // variable is not initialized and 1 when it is.
+ llvm::Value *V =
+ (UseARMGuardVarABI && !useInt8GuardVariable)
+ ? Builder.CreateAnd(LI, llvm::ConstantInt::get(CGM.Int8Ty, 1))
+ : LI;
+ llvm::Value *isInitialized = Builder.CreateIsNull(V, "guard.uninitialized");
+
+ llvm::BasicBlock *InitCheckBlock = CGF.createBasicBlock("init.check");
+ llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
+
+ // Check if the first byte of the guard variable is zero.
+ Builder.CreateCondBr(isInitialized, InitCheckBlock, EndBlock);
+
+ CGF.EmitBlock(InitCheckBlock);
+
+ // Variables used when coping with thread-safe statics and exceptions.
+ if (threadsafe) {
+ // Call __cxa_guard_acquire.
+ llvm::Value *V
+ = CGF.EmitNounwindRuntimeCall(getGuardAcquireFn(CGM, guardPtrTy), guard);
+
+ llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
+
+ Builder.CreateCondBr(Builder.CreateIsNotNull(V, "tobool"),
+ InitBlock, EndBlock);
+
+ // Call __cxa_guard_abort along the exceptional edge.
+ CGF.EHStack.pushCleanup<CallGuardAbort>(EHCleanup, guard);
+
+ CGF.EmitBlock(InitBlock);
+ }
+
+ // Emit the initializer and add a global destructor if appropriate.
+ CGF.EmitCXXGlobalVarDeclInit(D, var, shouldPerformInit);
+
+ if (threadsafe) {
+ // Pop the guard-abort cleanup if we pushed one.
+ CGF.PopCleanupBlock();
+
+ // Call __cxa_guard_release. This cannot throw.
+ CGF.EmitNounwindRuntimeCall(getGuardReleaseFn(CGM, guardPtrTy), guard);
+ } else {
+ Builder.CreateStore(llvm::ConstantInt::get(guardTy, 1), guard);
+ }
+
+ CGF.EmitBlock(EndBlock);
+}
+
+/// Register a global destructor using __cxa_atexit.
+static void emitGlobalDtorWithCXAAtExit(CodeGenFunction &CGF,
+ llvm::Constant *dtor,
+ llvm::Constant *addr,
+ bool TLS) {
+ const char *Name = "__cxa_atexit";
+ if (TLS) {
+ const llvm::Triple &T = CGF.getTarget().getTriple();
+ Name = T.isMacOSX() ? "_tlv_atexit" : "__cxa_thread_atexit";
+ }
+
+ // We're assuming that the destructor function is something we can
+ // reasonably call with the default CC. Go ahead and cast it to the
+ // right prototype.
+ llvm::Type *dtorTy =
+ llvm::FunctionType::get(CGF.VoidTy, CGF.Int8PtrTy, false)->getPointerTo();
+
+ // extern "C" int __cxa_atexit(void (*f)(void *), void *p, void *d);
+ llvm::Type *paramTys[] = { dtorTy, CGF.Int8PtrTy, CGF.Int8PtrTy };
+ llvm::FunctionType *atexitTy =
+ llvm::FunctionType::get(CGF.IntTy, paramTys, false);
+
+ // Fetch the actual function.
+ llvm::Constant *atexit = CGF.CGM.CreateRuntimeFunction(atexitTy, Name);
+ if (llvm::Function *fn = dyn_cast<llvm::Function>(atexit))
+ fn->setDoesNotThrow();
+
+ // Create a variable that binds the atexit to this shared object.
+ llvm::Constant *handle =
+ CGF.CGM.CreateRuntimeVariable(CGF.Int8Ty, "__dso_handle");
+
+ llvm::Value *args[] = {
+ llvm::ConstantExpr::getBitCast(dtor, dtorTy),
+ llvm::ConstantExpr::getBitCast(addr, CGF.Int8PtrTy),
+ handle
+ };
+ CGF.EmitNounwindRuntimeCall(atexit, args);
+}
+
+/// Register a global destructor as best as we know how.
+void ItaniumCXXABI::registerGlobalDtor(CodeGenFunction &CGF,
+ const VarDecl &D,
+ llvm::Constant *dtor,
+ llvm::Constant *addr) {
+ // Use __cxa_atexit if available.
+ if (CGM.getCodeGenOpts().CXAAtExit)
+ return emitGlobalDtorWithCXAAtExit(CGF, dtor, addr, D.getTLSKind());
+
+ if (D.getTLSKind())
+ CGM.ErrorUnsupported(&D, "non-trivial TLS destruction");
+
+ // In Apple kexts, we want to add a global destructor entry.
+ // FIXME: shouldn't this be guarded by some variable?
+ if (CGM.getLangOpts().AppleKext) {
+ // Generate a global destructor entry.
+ return CGM.AddCXXDtorEntry(dtor, addr);
+ }
+
+ CGF.registerGlobalDtorWithAtExit(D, dtor, addr);
+}
+
+static bool isThreadWrapperReplaceable(const VarDecl *VD,
+ CodeGen::CodeGenModule &CGM) {
+ assert(!VD->isStaticLocal() && "static local VarDecls don't need wrappers!");
+ // OS X prefers to have references to thread local variables to go through
+ // the thread wrapper instead of directly referencing the backing variable.
+ return VD->getTLSKind() == VarDecl::TLS_Dynamic &&
+ CGM.getTarget().getTriple().isMacOSX();
+}
+
+/// Get the appropriate linkage for the wrapper function. This is essentially
+/// the weak form of the variable's linkage; every translation unit which needs
+/// the wrapper emits a copy, and we want the linker to merge them.
+static llvm::GlobalValue::LinkageTypes
+getThreadLocalWrapperLinkage(const VarDecl *VD, CodeGen::CodeGenModule &CGM) {
+ llvm::GlobalValue::LinkageTypes VarLinkage =
+ CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false);
+
+ // For internal linkage variables, we don't need an external or weak wrapper.
+ if (llvm::GlobalValue::isLocalLinkage(VarLinkage))
+ return VarLinkage;
+
+ // If the thread wrapper is replaceable, give it appropriate linkage.
+ if (isThreadWrapperReplaceable(VD, CGM)) {
+ if (llvm::GlobalVariable::isLinkOnceLinkage(VarLinkage) ||
+ llvm::GlobalVariable::isWeakODRLinkage(VarLinkage))
+ return llvm::GlobalVariable::WeakAnyLinkage;
+ return VarLinkage;
+ }
+ return llvm::GlobalValue::WeakODRLinkage;
+}
+
+llvm::Function *
+ItaniumCXXABI::getOrCreateThreadLocalWrapper(const VarDecl *VD,
+ llvm::Value *Val) {
+ // Mangle the name for the thread_local wrapper function.
+ SmallString<256> WrapperName;
+ {
+ llvm::raw_svector_ostream Out(WrapperName);
+ getMangleContext().mangleItaniumThreadLocalWrapper(VD, Out);
+ Out.flush();
+ }
+
+ if (llvm::Value *V = CGM.getModule().getNamedValue(WrapperName))
+ return cast<llvm::Function>(V);
+
+ llvm::Type *RetTy = Val->getType();
+ if (VD->getType()->isReferenceType())
+ RetTy = RetTy->getPointerElementType();
+
+ llvm::FunctionType *FnTy = llvm::FunctionType::get(RetTy, false);
+ llvm::Function *Wrapper =
+ llvm::Function::Create(FnTy, getThreadLocalWrapperLinkage(VD, CGM),
+ WrapperName.str(), &CGM.getModule());
+ // Always resolve references to the wrapper at link time.
+ if (!Wrapper->hasLocalLinkage() && !isThreadWrapperReplaceable(VD, CGM))
+ Wrapper->setVisibility(llvm::GlobalValue::HiddenVisibility);
+ return Wrapper;
+}
+
+void ItaniumCXXABI::EmitThreadLocalInitFuncs(
+ CodeGenModule &CGM,
+ ArrayRef<std::pair<const VarDecl *, llvm::GlobalVariable *>>
+ CXXThreadLocals, ArrayRef<llvm::Function *> CXXThreadLocalInits,
+ ArrayRef<llvm::GlobalVariable *> CXXThreadLocalInitVars) {
+ llvm::Function *InitFunc = nullptr;
+ if (!CXXThreadLocalInits.empty()) {
+ // Generate a guarded initialization function.
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
+ InitFunc = CGM.CreateGlobalInitOrDestructFunction(FTy, "__tls_init",
+ SourceLocation(),
+ /*TLS=*/true);
+ llvm::GlobalVariable *Guard = new llvm::GlobalVariable(
+ CGM.getModule(), CGM.Int8Ty, /*isConstant=*/false,
+ llvm::GlobalVariable::InternalLinkage,
+ llvm::ConstantInt::get(CGM.Int8Ty, 0), "__tls_guard");
+ Guard->setThreadLocal(true);
+ CodeGenFunction(CGM)
+ .GenerateCXXGlobalInitFunc(InitFunc, CXXThreadLocalInits, Guard);
+ }
+ for (unsigned I = 0, N = CXXThreadLocals.size(); I != N; ++I) {
+ const VarDecl *VD = CXXThreadLocals[I].first;
+ llvm::GlobalVariable *Var = CXXThreadLocals[I].second;
+
+ // Some targets require that all access to thread local variables go through
+ // the thread wrapper. This means that we cannot attempt to create a thread
+ // wrapper or a thread helper.
+ if (isThreadWrapperReplaceable(VD, CGM) && !VD->hasDefinition())
+ continue;
+
+ // Mangle the name for the thread_local initialization function.
+ SmallString<256> InitFnName;
+ {
+ llvm::raw_svector_ostream Out(InitFnName);
+ getMangleContext().mangleItaniumThreadLocalInit(VD, Out);
+ Out.flush();
+ }
+
+ // If we have a definition for the variable, emit the initialization
+ // function as an alias to the global Init function (if any). Otherwise,
+ // produce a declaration of the initialization function.
+ llvm::GlobalValue *Init = nullptr;
+ bool InitIsInitFunc = false;
+ if (VD->hasDefinition()) {
+ InitIsInitFunc = true;
+ if (InitFunc)
+ Init = llvm::GlobalAlias::create(Var->getLinkage(), InitFnName.str(),
+ InitFunc);
+ } else {
+ // Emit a weak global function referring to the initialization function.
+ // This function will not exist if the TU defining the thread_local
+ // variable in question does not need any dynamic initialization for
+ // its thread_local variables.
+ llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, false);
+ Init = llvm::Function::Create(
+ FnTy, llvm::GlobalVariable::ExternalWeakLinkage, InitFnName.str(),
+ &CGM.getModule());
+ }
+
+ if (Init)
+ Init->setVisibility(Var->getVisibility());
+
+ llvm::Function *Wrapper = getOrCreateThreadLocalWrapper(VD, Var);
+ llvm::LLVMContext &Context = CGM.getModule().getContext();
+ llvm::BasicBlock *Entry = llvm::BasicBlock::Create(Context, "", Wrapper);
+ CGBuilderTy Builder(Entry);
+ if (InitIsInitFunc) {
+ if (Init)
+ Builder.CreateCall(Init, {});
+ } else {
+ // Don't know whether we have an init function. Call it if it exists.
+ llvm::Value *Have = Builder.CreateIsNotNull(Init);
+ llvm::BasicBlock *InitBB = llvm::BasicBlock::Create(Context, "", Wrapper);
+ llvm::BasicBlock *ExitBB = llvm::BasicBlock::Create(Context, "", Wrapper);
+ Builder.CreateCondBr(Have, InitBB, ExitBB);
+
+ Builder.SetInsertPoint(InitBB);
+ Builder.CreateCall(Init, {});
+ Builder.CreateBr(ExitBB);
+
+ Builder.SetInsertPoint(ExitBB);
+ }
+
+ // For a reference, the result of the wrapper function is a pointer to
+ // the referenced object.
+ llvm::Value *Val = Var;
+ if (VD->getType()->isReferenceType()) {
+ llvm::LoadInst *LI = Builder.CreateLoad(Val);
+ LI->setAlignment(CGM.getContext().getDeclAlign(VD).getQuantity());
+ Val = LI;
+ }
+ if (Val->getType() != Wrapper->getReturnType())
+ Val = Builder.CreatePointerBitCastOrAddrSpaceCast(
+ Val, Wrapper->getReturnType(), "");
+ Builder.CreateRet(Val);
+ }
+}
+
+LValue ItaniumCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF,
+ const VarDecl *VD,
+ QualType LValType) {
+ QualType T = VD->getType();
+ llvm::Type *Ty = CGF.getTypes().ConvertTypeForMem(T);
+ llvm::Value *Val = CGF.CGM.GetAddrOfGlobalVar(VD, Ty);
+ llvm::Function *Wrapper = getOrCreateThreadLocalWrapper(VD, Val);
+
+ Val = CGF.Builder.CreateCall(Wrapper, {});
+
+ LValue LV;
+ if (VD->getType()->isReferenceType())
+ LV = CGF.MakeNaturalAlignAddrLValue(Val, LValType);
+ else
+ LV = CGF.MakeAddrLValue(Val, LValType, CGF.getContext().getDeclAlign(VD));
+ // FIXME: need setObjCGCLValueClass?
+ return LV;
+}
+
+/// Return whether the given global decl needs a VTT parameter, which it does
+/// if it's a base constructor or destructor with virtual bases.
+bool ItaniumCXXABI::NeedsVTTParameter(GlobalDecl GD) {
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
+
+ // We don't have any virtual bases, just return early.
+ if (!MD->getParent()->getNumVBases())
+ return false;
+
+ // Check if we have a base constructor.
+ if (isa<CXXConstructorDecl>(MD) && GD.getCtorType() == Ctor_Base)
+ return true;
+
+ // Check if we have a base destructor.
+ if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
+ return true;
+
+ return false;
+}
+
+namespace {
+class ItaniumRTTIBuilder {
+ CodeGenModule &CGM; // Per-module state.
+ llvm::LLVMContext &VMContext;
+ const ItaniumCXXABI &CXXABI; // Per-module state.
+
+ /// Fields - The fields of the RTTI descriptor currently being built.
+ SmallVector<llvm::Constant *, 16> Fields;
+
+ /// GetAddrOfTypeName - Returns the mangled type name of the given type.
+ llvm::GlobalVariable *
+ GetAddrOfTypeName(QualType Ty, llvm::GlobalVariable::LinkageTypes Linkage);
+
+ /// GetAddrOfExternalRTTIDescriptor - Returns the constant for the RTTI
+ /// descriptor of the given type.
+ llvm::Constant *GetAddrOfExternalRTTIDescriptor(QualType Ty);
+
+ /// BuildVTablePointer - Build the vtable pointer for the given type.
+ void BuildVTablePointer(const Type *Ty);
+
+ /// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single
+ /// inheritance, according to the Itanium C++ ABI, 2.9.5p6b.
+ void BuildSIClassTypeInfo(const CXXRecordDecl *RD);
+
+ /// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for
+ /// classes with bases that do not satisfy the abi::__si_class_type_info
+ /// constraints, according ti the Itanium C++ ABI, 2.9.5p5c.
+ void BuildVMIClassTypeInfo(const CXXRecordDecl *RD);
+
+ /// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct, used
+ /// for pointer types.
+ void BuildPointerTypeInfo(QualType PointeeTy);
+
+ /// BuildObjCObjectTypeInfo - Build the appropriate kind of
+ /// type_info for an object type.
+ void BuildObjCObjectTypeInfo(const ObjCObjectType *Ty);
+
+ /// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info
+ /// struct, used for member pointer types.
+ void BuildPointerToMemberTypeInfo(const MemberPointerType *Ty);
+
+public:
+ ItaniumRTTIBuilder(const ItaniumCXXABI &ABI)
+ : CGM(ABI.CGM), VMContext(CGM.getModule().getContext()), CXXABI(ABI) {}
+
+ // Pointer type info flags.
+ enum {
+ /// PTI_Const - Type has const qualifier.
+ PTI_Const = 0x1,
+
+ /// PTI_Volatile - Type has volatile qualifier.
+ PTI_Volatile = 0x2,
+
+ /// PTI_Restrict - Type has restrict qualifier.
+ PTI_Restrict = 0x4,
+
+ /// PTI_Incomplete - Type is incomplete.
+ PTI_Incomplete = 0x8,
+
+ /// PTI_ContainingClassIncomplete - Containing class is incomplete.
+ /// (in pointer to member).
+ PTI_ContainingClassIncomplete = 0x10
+ };
+
+ // VMI type info flags.
+ enum {
+ /// VMI_NonDiamondRepeat - Class has non-diamond repeated inheritance.
+ VMI_NonDiamondRepeat = 0x1,
+
+ /// VMI_DiamondShaped - Class is diamond shaped.
+ VMI_DiamondShaped = 0x2
+ };
+
+ // Base class type info flags.
+ enum {
+ /// BCTI_Virtual - Base class is virtual.
+ BCTI_Virtual = 0x1,
+
+ /// BCTI_Public - Base class is public.
+ BCTI_Public = 0x2
+ };
+
+ /// BuildTypeInfo - Build the RTTI type info struct for the given type.
+ ///
+ /// \param Force - true to force the creation of this RTTI value
+ llvm::Constant *BuildTypeInfo(QualType Ty, bool Force = false);
+};
+}
+
+llvm::GlobalVariable *ItaniumRTTIBuilder::GetAddrOfTypeName(
+ QualType Ty, llvm::GlobalVariable::LinkageTypes Linkage) {
+ SmallString<256> OutName;
+ llvm::raw_svector_ostream Out(OutName);
+ CGM.getCXXABI().getMangleContext().mangleCXXRTTIName(Ty, Out);
+ Out.flush();
+ StringRef Name = OutName.str();
+
+ // We know that the mangled name of the type starts at index 4 of the
+ // mangled name of the typename, so we can just index into it in order to
+ // get the mangled name of the type.
+ llvm::Constant *Init = llvm::ConstantDataArray::getString(VMContext,
+ Name.substr(4));
+
+ llvm::GlobalVariable *GV =
+ CGM.CreateOrReplaceCXXRuntimeVariable(Name, Init->getType(), Linkage);
+
+ GV->setInitializer(Init);
+
+ return GV;
+}
+
+llvm::Constant *
+ItaniumRTTIBuilder::GetAddrOfExternalRTTIDescriptor(QualType Ty) {
+ // Mangle the RTTI name.
+ SmallString<256> OutName;
+ llvm::raw_svector_ostream Out(OutName);
+ CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty, Out);
+ Out.flush();
+ StringRef Name = OutName.str();
+
+ // Look for an existing global.
+ llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name);
+
+ if (!GV) {
+ // Create a new global variable.
+ GV = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy,
+ /*Constant=*/true,
+ llvm::GlobalValue::ExternalLinkage, nullptr,
+ Name);
+ if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
+ const CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
+ if (RD->hasAttr<DLLImportAttr>())
+ GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
+ }
+ }
+
+ return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy);
+}
+
+/// TypeInfoIsInStandardLibrary - Given a builtin type, returns whether the type
+/// info for that type is defined in the standard library.
+static bool TypeInfoIsInStandardLibrary(const BuiltinType *Ty) {
+ // Itanium C++ ABI 2.9.2:
+ // Basic type information (e.g. for "int", "bool", etc.) will be kept in
+ // the run-time support library. Specifically, the run-time support
+ // library should contain type_info objects for the types X, X* and
+ // X const*, for every X in: void, std::nullptr_t, bool, wchar_t, char,
+ // unsigned char, signed char, short, unsigned short, int, unsigned int,
+ // long, unsigned long, long long, unsigned long long, float, double,
+ // long double, char16_t, char32_t, and the IEEE 754r decimal and
+ // half-precision floating point types.
+ switch (Ty->getKind()) {
+ case BuiltinType::Void:
+ case BuiltinType::NullPtr:
+ case BuiltinType::Bool:
+ case BuiltinType::WChar_S:
+ case BuiltinType::WChar_U:
+ case BuiltinType::Char_U:
+ case BuiltinType::Char_S:
+ case BuiltinType::UChar:
+ case BuiltinType::SChar:
+ case BuiltinType::Short:
+ case BuiltinType::UShort:
+ case BuiltinType::Int:
+ case BuiltinType::UInt:
+ case BuiltinType::Long:
+ case BuiltinType::ULong:
+ case BuiltinType::LongLong:
+ case BuiltinType::ULongLong:
+ case BuiltinType::Half:
+ case BuiltinType::Float:
+ case BuiltinType::Double:
+ case BuiltinType::LongDouble:
+ case BuiltinType::Char16:
+ case BuiltinType::Char32:
+ case BuiltinType::Int128:
+ case BuiltinType::UInt128:
+ case BuiltinType::OCLImage1d:
+ case BuiltinType::OCLImage1dArray:
+ case BuiltinType::OCLImage1dBuffer:
+ case BuiltinType::OCLImage2d:
+ case BuiltinType::OCLImage2dArray:
+ case BuiltinType::OCLImage3d:
+ case BuiltinType::OCLSampler:
+ case BuiltinType::OCLEvent:
+ return true;
+
+ case BuiltinType::Dependent:
+#define BUILTIN_TYPE(Id, SingletonId)
+#define PLACEHOLDER_TYPE(Id, SingletonId) \
+ case BuiltinType::Id:
+#include "clang/AST/BuiltinTypes.def"
+ llvm_unreachable("asking for RRTI for a placeholder type!");
+
+ case BuiltinType::ObjCId:
+ case BuiltinType::ObjCClass:
+ case BuiltinType::ObjCSel:
+ llvm_unreachable("FIXME: Objective-C types are unsupported!");
+ }
+
+ llvm_unreachable("Invalid BuiltinType Kind!");
+}
+
+static bool TypeInfoIsInStandardLibrary(const PointerType *PointerTy) {
+ QualType PointeeTy = PointerTy->getPointeeType();
+ const BuiltinType *BuiltinTy = dyn_cast<BuiltinType>(PointeeTy);
+ if (!BuiltinTy)
+ return false;
+
+ // Check the qualifiers.
+ Qualifiers Quals = PointeeTy.getQualifiers();
+ Quals.removeConst();
+
+ if (!Quals.empty())
+ return false;
+
+ return TypeInfoIsInStandardLibrary(BuiltinTy);
+}
+
+/// IsStandardLibraryRTTIDescriptor - Returns whether the type
+/// information for the given type exists in the standard library.
+static bool IsStandardLibraryRTTIDescriptor(QualType Ty) {
+ // Type info for builtin types is defined in the standard library.
+ if (const BuiltinType *BuiltinTy = dyn_cast<BuiltinType>(Ty))
+ return TypeInfoIsInStandardLibrary(BuiltinTy);
+
+ // Type info for some pointer types to builtin types is defined in the
+ // standard library.
+ if (const PointerType *PointerTy = dyn_cast<PointerType>(Ty))
+ return TypeInfoIsInStandardLibrary(PointerTy);
+
+ return false;
+}
+
+/// ShouldUseExternalRTTIDescriptor - Returns whether the type information for
+/// the given type exists somewhere else, and that we should not emit the type
+/// information in this translation unit. Assumes that it is not a
+/// standard-library type.
+static bool ShouldUseExternalRTTIDescriptor(CodeGenModule &CGM,
+ QualType Ty) {
+ ASTContext &Context = CGM.getContext();
+
+ // If RTTI is disabled, assume it might be disabled in the
+ // translation unit that defines any potential key function, too.
+ if (!Context.getLangOpts().RTTI) return false;
+
+ if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
+ const CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
+ if (!RD->hasDefinition())
+ return false;
+
+ if (!RD->isDynamicClass())
+ return false;
+
+ // FIXME: this may need to be reconsidered if the key function
+ // changes.
+ if (CGM.getVTables().isVTableExternal(RD))
+ return true;
+
+ if (RD->hasAttr<DLLImportAttr>())
+ return true;
+ }
+
+ return false;
+}
+
+/// IsIncompleteClassType - Returns whether the given record type is incomplete.
+static bool IsIncompleteClassType(const RecordType *RecordTy) {
+ return !RecordTy->getDecl()->isCompleteDefinition();
+}
+
+/// ContainsIncompleteClassType - Returns whether the given type contains an
+/// incomplete class type. This is true if
+///
+/// * The given type is an incomplete class type.
+/// * The given type is a pointer type whose pointee type contains an
+/// incomplete class type.
+/// * The given type is a member pointer type whose class is an incomplete
+/// class type.
+/// * The given type is a member pointer type whoise pointee type contains an
+/// incomplete class type.
+/// is an indirect or direct pointer to an incomplete class type.
+static bool ContainsIncompleteClassType(QualType Ty) {
+ if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
+ if (IsIncompleteClassType(RecordTy))
+ return true;
+ }
+
+ if (const PointerType *PointerTy = dyn_cast<PointerType>(Ty))
+ return ContainsIncompleteClassType(PointerTy->getPointeeType());
+
+ if (const MemberPointerType *MemberPointerTy =
+ dyn_cast<MemberPointerType>(Ty)) {
+ // Check if the class type is incomplete.
+ const RecordType *ClassType = cast<RecordType>(MemberPointerTy->getClass());
+ if (IsIncompleteClassType(ClassType))
+ return true;
+
+ return ContainsIncompleteClassType(MemberPointerTy->getPointeeType());
+ }
+
+ return false;
+}
+
+// CanUseSingleInheritance - Return whether the given record decl has a "single,
+// public, non-virtual base at offset zero (i.e. the derived class is dynamic
+// iff the base is)", according to Itanium C++ ABI, 2.95p6b.
+static bool CanUseSingleInheritance(const CXXRecordDecl *RD) {
+ // Check the number of bases.
+ if (RD->getNumBases() != 1)
+ return false;
+
+ // Get the base.
+ CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin();
+
+ // Check that the base is not virtual.
+ if (Base->isVirtual())
+ return false;
+
+ // Check that the base is public.
+ if (Base->getAccessSpecifier() != AS_public)
+ return false;
+
+ // Check that the class is dynamic iff the base is.
+ const CXXRecordDecl *BaseDecl =
+ cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
+ if (!BaseDecl->isEmpty() &&
+ BaseDecl->isDynamicClass() != RD->isDynamicClass())
+ return false;
+
+ return true;
+}
+
+void ItaniumRTTIBuilder::BuildVTablePointer(const Type *Ty) {
+ // abi::__class_type_info.
+ static const char * const ClassTypeInfo =
+ "_ZTVN10__cxxabiv117__class_type_infoE";
+ // abi::__si_class_type_info.
+ static const char * const SIClassTypeInfo =
+ "_ZTVN10__cxxabiv120__si_class_type_infoE";
+ // abi::__vmi_class_type_info.
+ static const char * const VMIClassTypeInfo =
+ "_ZTVN10__cxxabiv121__vmi_class_type_infoE";
+
+ const char *VTableName = nullptr;
+
+ switch (Ty->getTypeClass()) {
+#define TYPE(Class, Base)
+#define ABSTRACT_TYPE(Class, Base)
+#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
+#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
+#define DEPENDENT_TYPE(Class, Base) case Type::Class:
+#include "clang/AST/TypeNodes.def"
+ llvm_unreachable("Non-canonical and dependent types shouldn't get here");
+
+ case Type::LValueReference:
+ case Type::RValueReference:
+ llvm_unreachable("References shouldn't get here");
+
+ case Type::Auto:
+ llvm_unreachable("Undeduced auto type shouldn't get here");
+
+ case Type::Builtin:
+ // GCC treats vector and complex types as fundamental types.
+ case Type::Vector:
+ case Type::ExtVector:
+ case Type::Complex:
+ case Type::Atomic:
+ // FIXME: GCC treats block pointers as fundamental types?!
+ case Type::BlockPointer:
+ // abi::__fundamental_type_info.
+ VTableName = "_ZTVN10__cxxabiv123__fundamental_type_infoE";
+ break;
+
+ case Type::ConstantArray:
+ case Type::IncompleteArray:
+ case Type::VariableArray:
+ // abi::__array_type_info.
+ VTableName = "_ZTVN10__cxxabiv117__array_type_infoE";
+ break;
+
+ case Type::FunctionNoProto:
+ case Type::FunctionProto:
+ // abi::__function_type_info.
+ VTableName = "_ZTVN10__cxxabiv120__function_type_infoE";
+ break;
+
+ case Type::Enum:
+ // abi::__enum_type_info.
+ VTableName = "_ZTVN10__cxxabiv116__enum_type_infoE";
+ break;
+
+ case Type::Record: {
+ const CXXRecordDecl *RD =
+ cast<CXXRecordDecl>(cast<RecordType>(Ty)->getDecl());
+
+ if (!RD->hasDefinition() || !RD->getNumBases()) {
+ VTableName = ClassTypeInfo;
+ } else if (CanUseSingleInheritance(RD)) {
+ VTableName = SIClassTypeInfo;
+ } else {
+ VTableName = VMIClassTypeInfo;
+ }
+
+ break;
+ }
+
+ case Type::ObjCObject:
+ // Ignore protocol qualifiers.
+ Ty = cast<ObjCObjectType>(Ty)->getBaseType().getTypePtr();
+
+ // Handle id and Class.
+ if (isa<BuiltinType>(Ty)) {
+ VTableName = ClassTypeInfo;
+ break;
+ }
+
+ assert(isa<ObjCInterfaceType>(Ty));
+ // Fall through.
+
+ case Type::ObjCInterface:
+ if (cast<ObjCInterfaceType>(Ty)->getDecl()->getSuperClass()) {
+ VTableName = SIClassTypeInfo;
+ } else {
+ VTableName = ClassTypeInfo;
+ }
+ break;
+
+ case Type::ObjCObjectPointer:
+ case Type::Pointer:
+ // abi::__pointer_type_info.
+ VTableName = "_ZTVN10__cxxabiv119__pointer_type_infoE";
+ break;
+
+ case Type::MemberPointer:
+ // abi::__pointer_to_member_type_info.
+ VTableName = "_ZTVN10__cxxabiv129__pointer_to_member_type_infoE";
+ break;
+ }
+
+ llvm::Constant *VTable =
+ CGM.getModule().getOrInsertGlobal(VTableName, CGM.Int8PtrTy);
+
+ llvm::Type *PtrDiffTy =
+ CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType());
+
+ // The vtable address point is 2.
+ llvm::Constant *Two = llvm::ConstantInt::get(PtrDiffTy, 2);
+ VTable =
+ llvm::ConstantExpr::getInBoundsGetElementPtr(CGM.Int8PtrTy, VTable, Two);
+ VTable = llvm::ConstantExpr::getBitCast(VTable, CGM.Int8PtrTy);
+
+ Fields.push_back(VTable);
+}
+
+/// \brief Return the linkage that the type info and type info name constants
+/// should have for the given type.
+static llvm::GlobalVariable::LinkageTypes getTypeInfoLinkage(CodeGenModule &CGM,
+ QualType Ty) {
+ // Itanium C++ ABI 2.9.5p7:
+ // In addition, it and all of the intermediate abi::__pointer_type_info
+ // structs in the chain down to the abi::__class_type_info for the
+ // incomplete class type must be prevented from resolving to the
+ // corresponding type_info structs for the complete class type, possibly
+ // by making them local static objects. Finally, a dummy class RTTI is
+ // generated for the incomplete type that will not resolve to the final
+ // complete class RTTI (because the latter need not exist), possibly by
+ // making it a local static object.
+ if (ContainsIncompleteClassType(Ty))
+ return llvm::GlobalValue::InternalLinkage;
+
+ switch (Ty->getLinkage()) {
+ case NoLinkage:
+ case InternalLinkage:
+ case UniqueExternalLinkage:
+ return llvm::GlobalValue::InternalLinkage;
+
+ case VisibleNoLinkage:
+ case ExternalLinkage:
+ if (!CGM.getLangOpts().RTTI) {
+ // RTTI is not enabled, which means that this type info struct is going
+ // to be used for exception handling. Give it linkonce_odr linkage.
+ return llvm::GlobalValue::LinkOnceODRLinkage;
+ }
+
+ if (const RecordType *Record = dyn_cast<RecordType>(Ty)) {
+ const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
+ if (RD->hasAttr<WeakAttr>())
+ return llvm::GlobalValue::WeakODRLinkage;
+ if (RD->isDynamicClass())
+ return CGM.getVTableLinkage(RD);
+ }
+
+ return llvm::GlobalValue::LinkOnceODRLinkage;
+ }
+
+ llvm_unreachable("Invalid linkage!");
+}
+
+llvm::Constant *ItaniumRTTIBuilder::BuildTypeInfo(QualType Ty, bool Force) {
+ // We want to operate on the canonical type.
+ Ty = CGM.getContext().getCanonicalType(Ty);
+
+ // Check if we've already emitted an RTTI descriptor for this type.
+ SmallString<256> OutName;
+ llvm::raw_svector_ostream Out(OutName);
+ CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty, Out);
+ Out.flush();
+ StringRef Name = OutName.str();
+
+ llvm::GlobalVariable *OldGV = CGM.getModule().getNamedGlobal(Name);
+ if (OldGV && !OldGV->isDeclaration()) {
+ assert(!OldGV->hasAvailableExternallyLinkage() &&
+ "available_externally typeinfos not yet implemented");
+
+ return llvm::ConstantExpr::getBitCast(OldGV, CGM.Int8PtrTy);
+ }
+
+ // Check if there is already an external RTTI descriptor for this type.
+ bool IsStdLib = IsStandardLibraryRTTIDescriptor(Ty);
+ if (!Force && (IsStdLib || ShouldUseExternalRTTIDescriptor(CGM, Ty)))
+ return GetAddrOfExternalRTTIDescriptor(Ty);
+
+ // Emit the standard library with external linkage.
+ llvm::GlobalVariable::LinkageTypes Linkage;
+ if (IsStdLib)
+ Linkage = llvm::GlobalValue::ExternalLinkage;
+ else
+ Linkage = getTypeInfoLinkage(CGM, Ty);
+
+ // Add the vtable pointer.
+ BuildVTablePointer(cast<Type>(Ty));
+
+ // And the name.
+ llvm::GlobalVariable *TypeName = GetAddrOfTypeName(Ty, Linkage);
+ llvm::Constant *TypeNameField;
+
+ // If we're supposed to demote the visibility, be sure to set a flag
+ // to use a string comparison for type_info comparisons.
+ ItaniumCXXABI::RTTIUniquenessKind RTTIUniqueness =
+ CXXABI.classifyRTTIUniqueness(Ty, Linkage);
+ if (RTTIUniqueness != ItaniumCXXABI::RUK_Unique) {
+ // The flag is the sign bit, which on ARM64 is defined to be clear
+ // for global pointers. This is very ARM64-specific.
+ TypeNameField = llvm::ConstantExpr::getPtrToInt(TypeName, CGM.Int64Ty);
+ llvm::Constant *flag =
+ llvm::ConstantInt::get(CGM.Int64Ty, ((uint64_t)1) << 63);
+ TypeNameField = llvm::ConstantExpr::getAdd(TypeNameField, flag);
+ TypeNameField =
+ llvm::ConstantExpr::getIntToPtr(TypeNameField, CGM.Int8PtrTy);
+ } else {
+ TypeNameField = llvm::ConstantExpr::getBitCast(TypeName, CGM.Int8PtrTy);
+ }
+ Fields.push_back(TypeNameField);
+
+ switch (Ty->getTypeClass()) {
+#define TYPE(Class, Base)
+#define ABSTRACT_TYPE(Class, Base)
+#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
+#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
+#define DEPENDENT_TYPE(Class, Base) case Type::Class:
+#include "clang/AST/TypeNodes.def"
+ llvm_unreachable("Non-canonical and dependent types shouldn't get here");
+
+ // GCC treats vector types as fundamental types.
+ case Type::Builtin:
+ case Type::Vector:
+ case Type::ExtVector:
+ case Type::Complex:
+ case Type::BlockPointer:
+ // Itanium C++ ABI 2.9.5p4:
+ // abi::__fundamental_type_info adds no data members to std::type_info.
+ break;
+
+ case Type::LValueReference:
+ case Type::RValueReference:
+ llvm_unreachable("References shouldn't get here");
+
+ case Type::Auto:
+ llvm_unreachable("Undeduced auto type shouldn't get here");
+
+ case Type::ConstantArray:
+ case Type::IncompleteArray:
+ case Type::VariableArray:
+ // Itanium C++ ABI 2.9.5p5:
+ // abi::__array_type_info adds no data members to std::type_info.
+ break;
+
+ case Type::FunctionNoProto:
+ case Type::FunctionProto:
+ // Itanium C++ ABI 2.9.5p5:
+ // abi::__function_type_info adds no data members to std::type_info.
+ break;
+
+ case Type::Enum:
+ // Itanium C++ ABI 2.9.5p5:
+ // abi::__enum_type_info adds no data members to std::type_info.
+ break;
+
+ case Type::Record: {
+ const CXXRecordDecl *RD =
+ cast<CXXRecordDecl>(cast<RecordType>(Ty)->getDecl());
+ if (!RD->hasDefinition() || !RD->getNumBases()) {
+ // We don't need to emit any fields.
+ break;
+ }
+
+ if (CanUseSingleInheritance(RD))
+ BuildSIClassTypeInfo(RD);
+ else
+ BuildVMIClassTypeInfo(RD);
+
+ break;
+ }
+
+ case Type::ObjCObject:
+ case Type::ObjCInterface:
+ BuildObjCObjectTypeInfo(cast<ObjCObjectType>(Ty));
+ break;
+
+ case Type::ObjCObjectPointer:
+ BuildPointerTypeInfo(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
+ break;
+
+ case Type::Pointer:
+ BuildPointerTypeInfo(cast<PointerType>(Ty)->getPointeeType());
+ break;
+
+ case Type::MemberPointer:
+ BuildPointerToMemberTypeInfo(cast<MemberPointerType>(Ty));
+ break;
+
+ case Type::Atomic:
+ // No fields, at least for the moment.
+ break;
+ }
+
+ llvm::Constant *Init = llvm::ConstantStruct::getAnon(Fields);
+
+ llvm::Module &M = CGM.getModule();
+ llvm::GlobalVariable *GV =
+ new llvm::GlobalVariable(M, Init->getType(),
+ /*Constant=*/true, Linkage, Init, Name);
+
+ if (CGM.supportsCOMDAT() && GV->isWeakForLinker())
+ GV->setComdat(M.getOrInsertComdat(GV->getName()));
+
+ // If there's already an old global variable, replace it with the new one.
+ if (OldGV) {
+ GV->takeName(OldGV);
+ llvm::Constant *NewPtr =
+ llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
+ OldGV->replaceAllUsesWith(NewPtr);
+ OldGV->eraseFromParent();
+ }
+
+ // The Itanium ABI specifies that type_info objects must be globally
+ // unique, with one exception: if the type is an incomplete class
+ // type or a (possibly indirect) pointer to one. That exception
+ // affects the general case of comparing type_info objects produced
+ // by the typeid operator, which is why the comparison operators on
+ // std::type_info generally use the type_info name pointers instead
+ // of the object addresses. However, the language's built-in uses
+ // of RTTI generally require class types to be complete, even when
+ // manipulating pointers to those class types. This allows the
+ // implementation of dynamic_cast to rely on address equality tests,
+ // which is much faster.
+
+ // All of this is to say that it's important that both the type_info
+ // object and the type_info name be uniqued when weakly emitted.
+
+ // Give the type_info object and name the formal visibility of the
+ // type itself.
+ llvm::GlobalValue::VisibilityTypes llvmVisibility;
+ if (llvm::GlobalValue::isLocalLinkage(Linkage))
+ // If the linkage is local, only default visibility makes sense.
+ llvmVisibility = llvm::GlobalValue::DefaultVisibility;
+ else if (RTTIUniqueness == ItaniumCXXABI::RUK_NonUniqueHidden)
+ llvmVisibility = llvm::GlobalValue::HiddenVisibility;
+ else
+ llvmVisibility = CodeGenModule::GetLLVMVisibility(Ty->getVisibility());
+ TypeName->setVisibility(llvmVisibility);
+ GV->setVisibility(llvmVisibility);
+
+ return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy);
+}
+
+/// ComputeQualifierFlags - Compute the pointer type info flags from the
+/// given qualifier.
+static unsigned ComputeQualifierFlags(Qualifiers Quals) {
+ unsigned Flags = 0;
+
+ if (Quals.hasConst())
+ Flags |= ItaniumRTTIBuilder::PTI_Const;
+ if (Quals.hasVolatile())
+ Flags |= ItaniumRTTIBuilder::PTI_Volatile;
+ if (Quals.hasRestrict())
+ Flags |= ItaniumRTTIBuilder::PTI_Restrict;
+
+ return Flags;
+}
+
+/// BuildObjCObjectTypeInfo - Build the appropriate kind of type_info
+/// for the given Objective-C object type.
+void ItaniumRTTIBuilder::BuildObjCObjectTypeInfo(const ObjCObjectType *OT) {
+ // Drop qualifiers.
+ const Type *T = OT->getBaseType().getTypePtr();
+ assert(isa<BuiltinType>(T) || isa<ObjCInterfaceType>(T));
+
+ // The builtin types are abi::__class_type_infos and don't require
+ // extra fields.
+ if (isa<BuiltinType>(T)) return;
+
+ ObjCInterfaceDecl *Class = cast<ObjCInterfaceType>(T)->getDecl();
+ ObjCInterfaceDecl *Super = Class->getSuperClass();
+
+ // Root classes are also __class_type_info.
+ if (!Super) return;
+
+ QualType SuperTy = CGM.getContext().getObjCInterfaceType(Super);
+
+ // Everything else is single inheritance.
+ llvm::Constant *BaseTypeInfo =
+ ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(SuperTy);
+ Fields.push_back(BaseTypeInfo);
+}
+
+/// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single
+/// inheritance, according to the Itanium C++ ABI, 2.95p6b.
+void ItaniumRTTIBuilder::BuildSIClassTypeInfo(const CXXRecordDecl *RD) {
+ // Itanium C++ ABI 2.9.5p6b:
+ // It adds to abi::__class_type_info a single member pointing to the
+ // type_info structure for the base type,
+ llvm::Constant *BaseTypeInfo =
+ ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(RD->bases_begin()->getType());
+ Fields.push_back(BaseTypeInfo);
+}
+
+namespace {
+ /// SeenBases - Contains virtual and non-virtual bases seen when traversing
+ /// a class hierarchy.
+ struct SeenBases {
+ llvm::SmallPtrSet<const CXXRecordDecl *, 16> NonVirtualBases;
+ llvm::SmallPtrSet<const CXXRecordDecl *, 16> VirtualBases;
+ };
+}
+
+/// ComputeVMIClassTypeInfoFlags - Compute the value of the flags member in
+/// abi::__vmi_class_type_info.
+///
+static unsigned ComputeVMIClassTypeInfoFlags(const CXXBaseSpecifier *Base,
+ SeenBases &Bases) {
+
+ unsigned Flags = 0;
+
+ const CXXRecordDecl *BaseDecl =
+ cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
+
+ if (Base->isVirtual()) {
+ // Mark the virtual base as seen.
+ if (!Bases.VirtualBases.insert(BaseDecl).second) {
+ // If this virtual base has been seen before, then the class is diamond
+ // shaped.
+ Flags |= ItaniumRTTIBuilder::VMI_DiamondShaped;
+ } else {
+ if (Bases.NonVirtualBases.count(BaseDecl))
+ Flags |= ItaniumRTTIBuilder::VMI_NonDiamondRepeat;
+ }
+ } else {
+ // Mark the non-virtual base as seen.
+ if (!Bases.NonVirtualBases.insert(BaseDecl).second) {
+ // If this non-virtual base has been seen before, then the class has non-
+ // diamond shaped repeated inheritance.
+ Flags |= ItaniumRTTIBuilder::VMI_NonDiamondRepeat;
+ } else {
+ if (Bases.VirtualBases.count(BaseDecl))
+ Flags |= ItaniumRTTIBuilder::VMI_NonDiamondRepeat;
+ }
+ }
+
+ // Walk all bases.
+ for (const auto &I : BaseDecl->bases())
+ Flags |= ComputeVMIClassTypeInfoFlags(&I, Bases);
+
+ return Flags;
+}
+
+static unsigned ComputeVMIClassTypeInfoFlags(const CXXRecordDecl *RD) {
+ unsigned Flags = 0;
+ SeenBases Bases;
+
+ // Walk all bases.
+ for (const auto &I : RD->bases())
+ Flags |= ComputeVMIClassTypeInfoFlags(&I, Bases);
+
+ return Flags;
+}
+
+/// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for
+/// classes with bases that do not satisfy the abi::__si_class_type_info
+/// constraints, according ti the Itanium C++ ABI, 2.9.5p5c.
+void ItaniumRTTIBuilder::BuildVMIClassTypeInfo(const CXXRecordDecl *RD) {
+ llvm::Type *UnsignedIntLTy =
+ CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy);
+
+ // Itanium C++ ABI 2.9.5p6c:
+ // __flags is a word with flags describing details about the class
+ // structure, which may be referenced by using the __flags_masks
+ // enumeration. These flags refer to both direct and indirect bases.
+ unsigned Flags = ComputeVMIClassTypeInfoFlags(RD);
+ Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags));
+
+ // Itanium C++ ABI 2.9.5p6c:
+ // __base_count is a word with the number of direct proper base class
+ // descriptions that follow.
+ Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, RD->getNumBases()));
+
+ if (!RD->getNumBases())
+ return;
+
+ llvm::Type *LongLTy =
+ CGM.getTypes().ConvertType(CGM.getContext().LongTy);
+
+ // Now add the base class descriptions.
+
+ // Itanium C++ ABI 2.9.5p6c:
+ // __base_info[] is an array of base class descriptions -- one for every
+ // direct proper base. Each description is of the type:
+ //
+ // struct abi::__base_class_type_info {
+ // public:
+ // const __class_type_info *__base_type;
+ // long __offset_flags;
+ //
+ // enum __offset_flags_masks {
+ // __virtual_mask = 0x1,
+ // __public_mask = 0x2,
+ // __offset_shift = 8
+ // };
+ // };
+ for (const auto &Base : RD->bases()) {
+ // The __base_type member points to the RTTI for the base type.
+ Fields.push_back(ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(Base.getType()));
+
+ const CXXRecordDecl *BaseDecl =
+ cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
+
+ int64_t OffsetFlags = 0;
+
+ // All but the lower 8 bits of __offset_flags are a signed offset.
+ // For a non-virtual base, this is the offset in the object of the base
+ // subobject. For a virtual base, this is the offset in the virtual table of
+ // the virtual base offset for the virtual base referenced (negative).
+ CharUnits Offset;
+ if (Base.isVirtual())
+ Offset =
+ CGM.getItaniumVTableContext().getVirtualBaseOffsetOffset(RD, BaseDecl);
+ else {
+ const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
+ Offset = Layout.getBaseClassOffset(BaseDecl);
+ };
+
+ OffsetFlags = uint64_t(Offset.getQuantity()) << 8;
+
+ // The low-order byte of __offset_flags contains flags, as given by the
+ // masks from the enumeration __offset_flags_masks.
+ if (Base.isVirtual())
+ OffsetFlags |= BCTI_Virtual;
+ if (Base.getAccessSpecifier() == AS_public)
+ OffsetFlags |= BCTI_Public;
+
+ Fields.push_back(llvm::ConstantInt::get(LongLTy, OffsetFlags));
+ }
+}
+
+/// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct,
+/// used for pointer types.
+void ItaniumRTTIBuilder::BuildPointerTypeInfo(QualType PointeeTy) {
+ Qualifiers Quals;
+ QualType UnqualifiedPointeeTy =
+ CGM.getContext().getUnqualifiedArrayType(PointeeTy, Quals);
+
+ // Itanium C++ ABI 2.9.5p7:
+ // __flags is a flag word describing the cv-qualification and other
+ // attributes of the type pointed to
+ unsigned Flags = ComputeQualifierFlags(Quals);
+
+ // Itanium C++ ABI 2.9.5p7:
+ // When the abi::__pbase_type_info is for a direct or indirect pointer to an
+ // incomplete class type, the incomplete target type flag is set.
+ if (ContainsIncompleteClassType(UnqualifiedPointeeTy))
+ Flags |= PTI_Incomplete;
+
+ llvm::Type *UnsignedIntLTy =
+ CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy);
+ Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags));
+
+ // Itanium C++ ABI 2.9.5p7:
+ // __pointee is a pointer to the std::type_info derivation for the
+ // unqualified type being pointed to.
+ llvm::Constant *PointeeTypeInfo =
+ ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(UnqualifiedPointeeTy);
+ Fields.push_back(PointeeTypeInfo);
+}
+
+/// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info
+/// struct, used for member pointer types.
+void
+ItaniumRTTIBuilder::BuildPointerToMemberTypeInfo(const MemberPointerType *Ty) {
+ QualType PointeeTy = Ty->getPointeeType();
+
+ Qualifiers Quals;
+ QualType UnqualifiedPointeeTy =
+ CGM.getContext().getUnqualifiedArrayType(PointeeTy, Quals);
+
+ // Itanium C++ ABI 2.9.5p7:
+ // __flags is a flag word describing the cv-qualification and other
+ // attributes of the type pointed to.
+ unsigned Flags = ComputeQualifierFlags(Quals);
+
+ const RecordType *ClassType = cast<RecordType>(Ty->getClass());
+
+ // Itanium C++ ABI 2.9.5p7:
+ // When the abi::__pbase_type_info is for a direct or indirect pointer to an
+ // incomplete class type, the incomplete target type flag is set.
+ if (ContainsIncompleteClassType(UnqualifiedPointeeTy))
+ Flags |= PTI_Incomplete;
+
+ if (IsIncompleteClassType(ClassType))
+ Flags |= PTI_ContainingClassIncomplete;
+
+ llvm::Type *UnsignedIntLTy =
+ CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy);
+ Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags));
+
+ // Itanium C++ ABI 2.9.5p7:
+ // __pointee is a pointer to the std::type_info derivation for the
+ // unqualified type being pointed to.
+ llvm::Constant *PointeeTypeInfo =
+ ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(UnqualifiedPointeeTy);
+ Fields.push_back(PointeeTypeInfo);
+
+ // Itanium C++ ABI 2.9.5p9:
+ // __context is a pointer to an abi::__class_type_info corresponding to the
+ // class type containing the member pointed to
+ // (e.g., the "A" in "int A::*").
+ Fields.push_back(
+ ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(QualType(ClassType, 0)));
+}
+
+llvm::Constant *ItaniumCXXABI::getAddrOfRTTIDescriptor(QualType Ty) {
+ return ItaniumRTTIBuilder(*this).BuildTypeInfo(Ty);
+}
+
+void ItaniumCXXABI::EmitFundamentalRTTIDescriptor(QualType Type) {
+ QualType PointerType = getContext().getPointerType(Type);
+ QualType PointerTypeConst = getContext().getPointerType(Type.withConst());
+ ItaniumRTTIBuilder(*this).BuildTypeInfo(Type, true);
+ ItaniumRTTIBuilder(*this).BuildTypeInfo(PointerType, true);
+ ItaniumRTTIBuilder(*this).BuildTypeInfo(PointerTypeConst, true);
+}
+
+void ItaniumCXXABI::EmitFundamentalRTTIDescriptors() {
+ QualType FundamentalTypes[] = {
+ getContext().VoidTy, getContext().NullPtrTy,
+ getContext().BoolTy, getContext().WCharTy,
+ getContext().CharTy, getContext().UnsignedCharTy,
+ getContext().SignedCharTy, getContext().ShortTy,
+ getContext().UnsignedShortTy, getContext().IntTy,
+ getContext().UnsignedIntTy, getContext().LongTy,
+ getContext().UnsignedLongTy, getContext().LongLongTy,
+ getContext().UnsignedLongLongTy, getContext().HalfTy,
+ getContext().FloatTy, getContext().DoubleTy,
+ getContext().LongDoubleTy, getContext().Char16Ty,
+ getContext().Char32Ty,
+ };
+ for (const QualType &FundamentalType : FundamentalTypes)
+ EmitFundamentalRTTIDescriptor(FundamentalType);
+}
+
+/// What sort of uniqueness rules should we use for the RTTI for the
+/// given type?
+ItaniumCXXABI::RTTIUniquenessKind ItaniumCXXABI::classifyRTTIUniqueness(
+ QualType CanTy, llvm::GlobalValue::LinkageTypes Linkage) const {
+ if (shouldRTTIBeUnique())
+ return RUK_Unique;
+
+ // It's only necessary for linkonce_odr or weak_odr linkage.
+ if (Linkage != llvm::GlobalValue::LinkOnceODRLinkage &&
+ Linkage != llvm::GlobalValue::WeakODRLinkage)
+ return RUK_Unique;
+
+ // It's only necessary with default visibility.
+ if (CanTy->getVisibility() != DefaultVisibility)
+ return RUK_Unique;
+
+ // If we're not required to publish this symbol, hide it.
+ if (Linkage == llvm::GlobalValue::LinkOnceODRLinkage)
+ return RUK_NonUniqueHidden;
+
+ // If we're required to publish this symbol, as we might be under an
+ // explicit instantiation, leave it with default visibility but
+ // enable string-comparisons.
+ assert(Linkage == llvm::GlobalValue::WeakODRLinkage);
+ return RUK_NonUniqueVisible;
+}
+
+// Find out how to codegen the complete destructor and constructor
+namespace {
+enum class StructorCodegen { Emit, RAUW, Alias, COMDAT };
+}
+static StructorCodegen getCodegenToUse(CodeGenModule &CGM,
+ const CXXMethodDecl *MD) {
+ if (!CGM.getCodeGenOpts().CXXCtorDtorAliases)
+ return StructorCodegen::Emit;
+
+ // The complete and base structors are not equivalent if there are any virtual
+ // bases, so emit separate functions.
+ if (MD->getParent()->getNumVBases())
+ return StructorCodegen::Emit;
+
+ GlobalDecl AliasDecl;
+ if (const auto *DD = dyn_cast<CXXDestructorDecl>(MD)) {
+ AliasDecl = GlobalDecl(DD, Dtor_Complete);
+ } else {
+ const auto *CD = cast<CXXConstructorDecl>(MD);
+ AliasDecl = GlobalDecl(CD, Ctor_Complete);
+ }
+ llvm::GlobalValue::LinkageTypes Linkage = CGM.getFunctionLinkage(AliasDecl);
+
+ if (llvm::GlobalValue::isDiscardableIfUnused(Linkage))
+ return StructorCodegen::RAUW;
+
+ // FIXME: Should we allow available_externally aliases?
+ if (!llvm::GlobalAlias::isValidLinkage(Linkage))
+ return StructorCodegen::RAUW;
+
+ if (llvm::GlobalValue::isWeakForLinker(Linkage)) {
+ // Only ELF supports COMDATs with arbitrary names (C5/D5).
+ if (CGM.getTarget().getTriple().isOSBinFormatELF())
+ return StructorCodegen::COMDAT;
+ return StructorCodegen::Emit;
+ }
+
+ return StructorCodegen::Alias;
+}
+
+static void emitConstructorDestructorAlias(CodeGenModule &CGM,
+ GlobalDecl AliasDecl,
+ GlobalDecl TargetDecl) {
+ llvm::GlobalValue::LinkageTypes Linkage = CGM.getFunctionLinkage(AliasDecl);
+
+ StringRef MangledName = CGM.getMangledName(AliasDecl);
+ llvm::GlobalValue *Entry = CGM.GetGlobalValue(MangledName);
+ if (Entry && !Entry->isDeclaration())
+ return;
+
+ auto *Aliasee = cast<llvm::GlobalValue>(CGM.GetAddrOfGlobal(TargetDecl));
+ llvm::PointerType *AliasType = Aliasee->getType();
+
+ // Create the alias with no name.
+ auto *Alias = llvm::GlobalAlias::create(AliasType, Linkage, "", Aliasee,
+ &CGM.getModule());
+
+ // Switch any previous uses to the alias.
+ if (Entry) {
+ assert(Entry->getType() == AliasType &&
+ "declaration exists with different type");
+ Alias->takeName(Entry);
+ Entry->replaceAllUsesWith(Alias);
+ Entry->eraseFromParent();
+ } else {
+ Alias->setName(MangledName);
+ }
+
+ // Finally, set up the alias with its proper name and attributes.
+ CGM.setAliasAttributes(cast<NamedDecl>(AliasDecl.getDecl()), Alias);
+}
+
+void ItaniumCXXABI::emitCXXStructor(const CXXMethodDecl *MD,
+ StructorType Type) {
+ auto *CD = dyn_cast<CXXConstructorDecl>(MD);
+ const CXXDestructorDecl *DD = CD ? nullptr : cast<CXXDestructorDecl>(MD);
+
+ StructorCodegen CGType = getCodegenToUse(CGM, MD);
+
+ if (Type == StructorType::Complete) {
+ GlobalDecl CompleteDecl;
+ GlobalDecl BaseDecl;
+ if (CD) {
+ CompleteDecl = GlobalDecl(CD, Ctor_Complete);
+ BaseDecl = GlobalDecl(CD, Ctor_Base);
+ } else {
+ CompleteDecl = GlobalDecl(DD, Dtor_Complete);
+ BaseDecl = GlobalDecl(DD, Dtor_Base);
+ }
+
+ if (CGType == StructorCodegen::Alias || CGType == StructorCodegen::COMDAT) {
+ emitConstructorDestructorAlias(CGM, CompleteDecl, BaseDecl);
+ return;
+ }
+
+ if (CGType == StructorCodegen::RAUW) {
+ StringRef MangledName = CGM.getMangledName(CompleteDecl);
+ auto *Aliasee = cast<llvm::GlobalValue>(CGM.GetAddrOfGlobal(BaseDecl));
+ CGM.addReplacement(MangledName, Aliasee);
+ return;
+ }
+ }
+
+ // The base destructor is equivalent to the base destructor of its
+ // base class if there is exactly one non-virtual base class with a
+ // non-trivial destructor, there are no fields with a non-trivial
+ // destructor, and the body of the destructor is trivial.
+ if (DD && Type == StructorType::Base && CGType != StructorCodegen::COMDAT &&
+ !CGM.TryEmitBaseDestructorAsAlias(DD))
+ return;
+
+ llvm::Function *Fn = CGM.codegenCXXStructor(MD, Type);
+
+ if (CGType == StructorCodegen::COMDAT) {
+ SmallString<256> Buffer;
+ llvm::raw_svector_ostream Out(Buffer);
+ if (DD)
+ getMangleContext().mangleCXXDtorComdat(DD, Out);
+ else
+ getMangleContext().mangleCXXCtorComdat(CD, Out);
+ llvm::Comdat *C = CGM.getModule().getOrInsertComdat(Out.str());
+ Fn->setComdat(C);
+ } else {
+ CGM.maybeSetTrivialComdat(*MD, *Fn);
+ }
+}
+
+static llvm::Constant *getBeginCatchFn(CodeGenModule &CGM) {
+ // void *__cxa_begin_catch(void*);
+ llvm::FunctionType *FTy = llvm::FunctionType::get(
+ CGM.Int8PtrTy, CGM.Int8PtrTy, /*IsVarArgs=*/false);
+
+ return CGM.CreateRuntimeFunction(FTy, "__cxa_begin_catch");
+}
+
+static llvm::Constant *getEndCatchFn(CodeGenModule &CGM) {
+ // void __cxa_end_catch();
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(CGM.VoidTy, /*IsVarArgs=*/false);
+
+ return CGM.CreateRuntimeFunction(FTy, "__cxa_end_catch");
+}
+
+static llvm::Constant *getGetExceptionPtrFn(CodeGenModule &CGM) {
+ // void *__cxa_get_exception_ptr(void*);
+ llvm::FunctionType *FTy = llvm::FunctionType::get(
+ CGM.Int8PtrTy, CGM.Int8PtrTy, /*IsVarArgs=*/false);
+
+ return CGM.CreateRuntimeFunction(FTy, "__cxa_get_exception_ptr");
+}
+
+namespace {
+ /// A cleanup to call __cxa_end_catch. In many cases, the caught
+ /// exception type lets us state definitively that the thrown exception
+ /// type does not have a destructor. In particular:
+ /// - Catch-alls tell us nothing, so we have to conservatively
+ /// assume that the thrown exception might have a destructor.
+ /// - Catches by reference behave according to their base types.
+ /// - Catches of non-record types will only trigger for exceptions
+ /// of non-record types, which never have destructors.
+ /// - Catches of record types can trigger for arbitrary subclasses
+ /// of the caught type, so we have to assume the actual thrown
+ /// exception type might have a throwing destructor, even if the
+ /// caught type's destructor is trivial or nothrow.
+ struct CallEndCatch : EHScopeStack::Cleanup {
+ CallEndCatch(bool MightThrow) : MightThrow(MightThrow) {}
+ bool MightThrow;
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ if (!MightThrow) {
+ CGF.EmitNounwindRuntimeCall(getEndCatchFn(CGF.CGM));
+ return;
+ }
+
+ CGF.EmitRuntimeCallOrInvoke(getEndCatchFn(CGF.CGM));
+ }
+ };
+}
+
+/// Emits a call to __cxa_begin_catch and enters a cleanup to call
+/// __cxa_end_catch.
+///
+/// \param EndMightThrow - true if __cxa_end_catch might throw
+static llvm::Value *CallBeginCatch(CodeGenFunction &CGF,
+ llvm::Value *Exn,
+ bool EndMightThrow) {
+ llvm::CallInst *call =
+ CGF.EmitNounwindRuntimeCall(getBeginCatchFn(CGF.CGM), Exn);
+
+ CGF.EHStack.pushCleanup<CallEndCatch>(NormalAndEHCleanup, EndMightThrow);
+
+ return call;
+}
+
+/// A "special initializer" callback for initializing a catch
+/// parameter during catch initialization.
+static void InitCatchParam(CodeGenFunction &CGF,
+ const VarDecl &CatchParam,
+ llvm::Value *ParamAddr,
+ SourceLocation Loc) {
+ // Load the exception from where the landing pad saved it.
+ llvm::Value *Exn = CGF.getExceptionFromSlot();
+
+ CanQualType CatchType =
+ CGF.CGM.getContext().getCanonicalType(CatchParam.getType());
+ llvm::Type *LLVMCatchTy = CGF.ConvertTypeForMem(CatchType);
+
+ // If we're catching by reference, we can just cast the object
+ // pointer to the appropriate pointer.
+ if (isa<ReferenceType>(CatchType)) {
+ QualType CaughtType = cast<ReferenceType>(CatchType)->getPointeeType();
+ bool EndCatchMightThrow = CaughtType->isRecordType();
+
+ // __cxa_begin_catch returns the adjusted object pointer.
+ llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, EndCatchMightThrow);
+
+ // We have no way to tell the personality function that we're
+ // catching by reference, so if we're catching a pointer,
+ // __cxa_begin_catch will actually return that pointer by value.
+ if (const PointerType *PT = dyn_cast<PointerType>(CaughtType)) {
+ QualType PointeeType = PT->getPointeeType();
+
+ // When catching by reference, generally we should just ignore
+ // this by-value pointer and use the exception object instead.
+ if (!PointeeType->isRecordType()) {
+
+ // Exn points to the struct _Unwind_Exception header, which
+ // we have to skip past in order to reach the exception data.
+ unsigned HeaderSize =
+ CGF.CGM.getTargetCodeGenInfo().getSizeOfUnwindException();
+ AdjustedExn = CGF.Builder.CreateConstGEP1_32(Exn, HeaderSize);
+
+ // However, if we're catching a pointer-to-record type that won't
+ // work, because the personality function might have adjusted
+ // the pointer. There's actually no way for us to fully satisfy
+ // the language/ABI contract here: we can't use Exn because it
+ // might have the wrong adjustment, but we can't use the by-value
+ // pointer because it's off by a level of abstraction.
+ //
+ // The current solution is to dump the adjusted pointer into an
+ // alloca, which breaks language semantics (because changing the
+ // pointer doesn't change the exception) but at least works.
+ // The better solution would be to filter out non-exact matches
+ // and rethrow them, but this is tricky because the rethrow
+ // really needs to be catchable by other sites at this landing
+ // pad. The best solution is to fix the personality function.
+ } else {
+ // Pull the pointer for the reference type off.
+ llvm::Type *PtrTy =
+ cast<llvm::PointerType>(LLVMCatchTy)->getElementType();
+
+ // Create the temporary and write the adjusted pointer into it.
+ llvm::Value *ExnPtrTmp = CGF.CreateTempAlloca(PtrTy, "exn.byref.tmp");
+ llvm::Value *Casted = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy);
+ CGF.Builder.CreateStore(Casted, ExnPtrTmp);
+
+ // Bind the reference to the temporary.
+ AdjustedExn = ExnPtrTmp;
+ }
+ }
+
+ llvm::Value *ExnCast =
+ CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.byref");
+ CGF.Builder.CreateStore(ExnCast, ParamAddr);
+ return;
+ }
+
+ // Scalars and complexes.
+ TypeEvaluationKind TEK = CGF.getEvaluationKind(CatchType);
+ if (TEK != TEK_Aggregate) {
+ llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, false);
+
+ // If the catch type is a pointer type, __cxa_begin_catch returns
+ // the pointer by value.
+ if (CatchType->hasPointerRepresentation()) {
+ llvm::Value *CastExn =
+ CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.casted");
+
+ switch (CatchType.getQualifiers().getObjCLifetime()) {
+ case Qualifiers::OCL_Strong:
+ CastExn = CGF.EmitARCRetainNonBlock(CastExn);
+ // fallthrough
+
+ case Qualifiers::OCL_None:
+ case Qualifiers::OCL_ExplicitNone:
+ case Qualifiers::OCL_Autoreleasing:
+ CGF.Builder.CreateStore(CastExn, ParamAddr);
+ return;
+
+ case Qualifiers::OCL_Weak:
+ CGF.EmitARCInitWeak(ParamAddr, CastExn);
+ return;
+ }
+ llvm_unreachable("bad ownership qualifier!");
+ }
+
+ // Otherwise, it returns a pointer into the exception object.
+
+ llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok
+ llvm::Value *Cast = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy);
+
+ LValue srcLV = CGF.MakeNaturalAlignAddrLValue(Cast, CatchType);
+ LValue destLV = CGF.MakeAddrLValue(ParamAddr, CatchType,
+ CGF.getContext().getDeclAlign(&CatchParam));
+ switch (TEK) {
+ case TEK_Complex:
+ CGF.EmitStoreOfComplex(CGF.EmitLoadOfComplex(srcLV, Loc), destLV,
+ /*init*/ true);
+ return;
+ case TEK_Scalar: {
+ llvm::Value *ExnLoad = CGF.EmitLoadOfScalar(srcLV, Loc);
+ CGF.EmitStoreOfScalar(ExnLoad, destLV, /*init*/ true);
+ return;
+ }
+ case TEK_Aggregate:
+ llvm_unreachable("evaluation kind filtered out!");
+ }
+ llvm_unreachable("bad evaluation kind");
+ }
+
+ assert(isa<RecordType>(CatchType) && "unexpected catch type!");
+
+ llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok
+
+ // Check for a copy expression. If we don't have a copy expression,
+ // that means a trivial copy is okay.
+ const Expr *copyExpr = CatchParam.getInit();
+ if (!copyExpr) {
+ llvm::Value *rawAdjustedExn = CallBeginCatch(CGF, Exn, true);
+ llvm::Value *adjustedExn = CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy);
+ CGF.EmitAggregateCopy(ParamAddr, adjustedExn, CatchType);
+ return;
+ }
+
+ // We have to call __cxa_get_exception_ptr to get the adjusted
+ // pointer before copying.
+ llvm::CallInst *rawAdjustedExn =
+ CGF.EmitNounwindRuntimeCall(getGetExceptionPtrFn(CGF.CGM), Exn);
+
+ // Cast that to the appropriate type.
+ llvm::Value *adjustedExn = CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy);
+
+ // The copy expression is defined in terms of an OpaqueValueExpr.
+ // Find it and map it to the adjusted expression.
+ CodeGenFunction::OpaqueValueMapping
+ opaque(CGF, OpaqueValueExpr::findInCopyConstruct(copyExpr),
+ CGF.MakeAddrLValue(adjustedExn, CatchParam.getType()));
+
+ // Call the copy ctor in a terminate scope.
+ CGF.EHStack.pushTerminate();
+
+ // Perform the copy construction.
+ CharUnits Alignment = CGF.getContext().getDeclAlign(&CatchParam);
+ CGF.EmitAggExpr(copyExpr,
+ AggValueSlot::forAddr(ParamAddr, Alignment, Qualifiers(),
+ AggValueSlot::IsNotDestructed,
+ AggValueSlot::DoesNotNeedGCBarriers,
+ AggValueSlot::IsNotAliased));
+
+ // Leave the terminate scope.
+ CGF.EHStack.popTerminate();
+
+ // Undo the opaque value mapping.
+ opaque.pop();
+
+ // Finally we can call __cxa_begin_catch.
+ CallBeginCatch(CGF, Exn, true);
+}
+
+/// Begins a catch statement by initializing the catch variable and
+/// calling __cxa_begin_catch.
+void ItaniumCXXABI::emitBeginCatch(CodeGenFunction &CGF,
+ const CXXCatchStmt *S) {
+ // We have to be very careful with the ordering of cleanups here:
+ // C++ [except.throw]p4:
+ // The destruction [of the exception temporary] occurs
+ // immediately after the destruction of the object declared in
+ // the exception-declaration in the handler.
+ //
+ // So the precise ordering is:
+ // 1. Construct catch variable.
+ // 2. __cxa_begin_catch
+ // 3. Enter __cxa_end_catch cleanup
+ // 4. Enter dtor cleanup
+ //
+ // We do this by using a slightly abnormal initialization process.
+ // Delegation sequence:
+ // - ExitCXXTryStmt opens a RunCleanupsScope
+ // - EmitAutoVarAlloca creates the variable and debug info
+ // - InitCatchParam initializes the variable from the exception
+ // - CallBeginCatch calls __cxa_begin_catch
+ // - CallBeginCatch enters the __cxa_end_catch cleanup
+ // - EmitAutoVarCleanups enters the variable destructor cleanup
+ // - EmitCXXTryStmt emits the code for the catch body
+ // - EmitCXXTryStmt close the RunCleanupsScope
+
+ VarDecl *CatchParam = S->getExceptionDecl();
+ if (!CatchParam) {
+ llvm::Value *Exn = CGF.getExceptionFromSlot();
+ CallBeginCatch(CGF, Exn, true);
+ return;
+ }
+
+ // Emit the local.
+ CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam);
+ InitCatchParam(CGF, *CatchParam, var.getObjectAddress(CGF), S->getLocStart());
+ CGF.EmitAutoVarCleanups(var);
+}
+
+/// Get or define the following function:
+/// void @__clang_call_terminate(i8* %exn) nounwind noreturn
+/// This code is used only in C++.
+static llvm::Constant *getClangCallTerminateFn(CodeGenModule &CGM) {
+ llvm::FunctionType *fnTy =
+ llvm::FunctionType::get(CGM.VoidTy, CGM.Int8PtrTy, /*IsVarArgs=*/false);
+ llvm::Constant *fnRef =
+ CGM.CreateRuntimeFunction(fnTy, "__clang_call_terminate");
+
+ llvm::Function *fn = dyn_cast<llvm::Function>(fnRef);
+ if (fn && fn->empty()) {
+ fn->setDoesNotThrow();
+ fn->setDoesNotReturn();
+
+ // What we really want is to massively penalize inlining without
+ // forbidding it completely. The difference between that and
+ // 'noinline' is negligible.
+ fn->addFnAttr(llvm::Attribute::NoInline);
+
+ // Allow this function to be shared across translation units, but
+ // we don't want it to turn into an exported symbol.
+ fn->setLinkage(llvm::Function::LinkOnceODRLinkage);
+ fn->setVisibility(llvm::Function::HiddenVisibility);
+ if (CGM.supportsCOMDAT())
+ fn->setComdat(CGM.getModule().getOrInsertComdat(fn->getName()));
+
+ // Set up the function.
+ llvm::BasicBlock *entry =
+ llvm::BasicBlock::Create(CGM.getLLVMContext(), "", fn);
+ CGBuilderTy builder(entry);
+
+ // Pull the exception pointer out of the parameter list.
+ llvm::Value *exn = &*fn->arg_begin();
+
+ // Call __cxa_begin_catch(exn).
+ llvm::CallInst *catchCall = builder.CreateCall(getBeginCatchFn(CGM), exn);
+ catchCall->setDoesNotThrow();
+ catchCall->setCallingConv(CGM.getRuntimeCC());
+
+ // Call std::terminate().
+ llvm::CallInst *termCall = builder.CreateCall(CGM.getTerminateFn(), {});
+ termCall->setDoesNotThrow();
+ termCall->setDoesNotReturn();
+ termCall->setCallingConv(CGM.getRuntimeCC());
+
+ // std::terminate cannot return.
+ builder.CreateUnreachable();
+ }
+
+ return fnRef;
+}
+
+llvm::CallInst *
+ItaniumCXXABI::emitTerminateForUnexpectedException(CodeGenFunction &CGF,
+ llvm::Value *Exn) {
+ // In C++, we want to call __cxa_begin_catch() before terminating.
+ if (Exn) {
+ assert(CGF.CGM.getLangOpts().CPlusPlus);
+ return CGF.EmitNounwindRuntimeCall(getClangCallTerminateFn(CGF.CGM), Exn);
+ }
+ return CGF.EmitNounwindRuntimeCall(CGF.CGM.getTerminateFn());
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/MicrosoftCXXABI.cpp b/contrib/llvm/tools/clang/lib/CodeGen/MicrosoftCXXABI.cpp
new file mode 100644
index 0000000..de30883
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/MicrosoftCXXABI.cpp
@@ -0,0 +1,3870 @@
+//===--- MicrosoftCXXABI.cpp - Emit LLVM Code from ASTs for a Module ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This provides C++ code generation targeting the Microsoft Visual C++ ABI.
+// The class in this file generates structures that follow the Microsoft
+// Visual C++ ABI, which is actually not very well documented at all outside
+// of Microsoft.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGCXXABI.h"
+#include "CGVTables.h"
+#include "CodeGenModule.h"
+#include "CodeGenTypes.h"
+#include "TargetInfo.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/StmtCXX.h"
+#include "clang/AST/VTableBuilder.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringSet.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/Intrinsics.h"
+
+using namespace clang;
+using namespace CodeGen;
+
+namespace {
+
+/// Holds all the vbtable globals for a given class.
+struct VBTableGlobals {
+ const VPtrInfoVector *VBTables;
+ SmallVector<llvm::GlobalVariable *, 2> Globals;
+};
+
+class MicrosoftCXXABI : public CGCXXABI {
+public:
+ MicrosoftCXXABI(CodeGenModule &CGM)
+ : CGCXXABI(CGM), BaseClassDescriptorType(nullptr),
+ ClassHierarchyDescriptorType(nullptr),
+ CompleteObjectLocatorType(nullptr), CatchableTypeType(nullptr),
+ ThrowInfoType(nullptr), CatchHandlerTypeType(nullptr) {}
+
+ bool HasThisReturn(GlobalDecl GD) const override;
+ bool hasMostDerivedReturn(GlobalDecl GD) const override;
+
+ bool classifyReturnType(CGFunctionInfo &FI) const override;
+
+ RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override;
+
+ bool isSRetParameterAfterThis() const override { return true; }
+
+ size_t getSrcArgforCopyCtor(const CXXConstructorDecl *CD,
+ FunctionArgList &Args) const override {
+ assert(Args.size() >= 2 &&
+ "expected the arglist to have at least two args!");
+ // The 'most_derived' parameter goes second if the ctor is variadic and
+ // has v-bases.
+ if (CD->getParent()->getNumVBases() > 0 &&
+ CD->getType()->castAs<FunctionProtoType>()->isVariadic())
+ return 2;
+ return 1;
+ }
+
+ StringRef GetPureVirtualCallName() override { return "_purecall"; }
+ StringRef GetDeletedVirtualCallName() override { return "_purecall"; }
+
+ void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE,
+ llvm::Value *Ptr, QualType ElementType,
+ const CXXDestructorDecl *Dtor) override;
+
+ void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override;
+ void emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) override;
+
+ void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override;
+
+ llvm::GlobalVariable *getMSCompleteObjectLocator(const CXXRecordDecl *RD,
+ const VPtrInfo *Info);
+
+ llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override;
+ llvm::Constant *
+ getAddrOfCXXCatchHandlerType(QualType Ty, QualType CatchHandlerType) override;
+
+ bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override;
+ void EmitBadTypeidCall(CodeGenFunction &CGF) override;
+ llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy,
+ llvm::Value *ThisPtr,
+ llvm::Type *StdTypeInfoPtrTy) override;
+
+ bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
+ QualType SrcRecordTy) override;
+
+ llvm::Value *EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value,
+ QualType SrcRecordTy, QualType DestTy,
+ QualType DestRecordTy,
+ llvm::BasicBlock *CastEnd) override;
+
+ llvm::Value *EmitDynamicCastToVoid(CodeGenFunction &CGF, llvm::Value *Value,
+ QualType SrcRecordTy,
+ QualType DestTy) override;
+
+ bool EmitBadCastCall(CodeGenFunction &CGF) override;
+
+ llvm::Value *
+ GetVirtualBaseClassOffset(CodeGenFunction &CGF, llvm::Value *This,
+ const CXXRecordDecl *ClassDecl,
+ const CXXRecordDecl *BaseClassDecl) override;
+
+ llvm::BasicBlock *
+ EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
+ const CXXRecordDecl *RD) override;
+
+ void initializeHiddenVirtualInheritanceMembers(CodeGenFunction &CGF,
+ const CXXRecordDecl *RD) override;
+
+ void EmitCXXConstructors(const CXXConstructorDecl *D) override;
+
+ // Background on MSVC destructors
+ // ==============================
+ //
+ // Both Itanium and MSVC ABIs have destructor variants. The variant names
+ // roughly correspond in the following way:
+ // Itanium Microsoft
+ // Base -> no name, just ~Class
+ // Complete -> vbase destructor
+ // Deleting -> scalar deleting destructor
+ // vector deleting destructor
+ //
+ // The base and complete destructors are the same as in Itanium, although the
+ // complete destructor does not accept a VTT parameter when there are virtual
+ // bases. A separate mechanism involving vtordisps is used to ensure that
+ // virtual methods of destroyed subobjects are not called.
+ //
+ // The deleting destructors accept an i32 bitfield as a second parameter. Bit
+ // 1 indicates if the memory should be deleted. Bit 2 indicates if the this
+ // pointer points to an array. The scalar deleting destructor assumes that
+ // bit 2 is zero, and therefore does not contain a loop.
+ //
+ // For virtual destructors, only one entry is reserved in the vftable, and it
+ // always points to the vector deleting destructor. The vector deleting
+ // destructor is the most general, so it can be used to destroy objects in
+ // place, delete single heap objects, or delete arrays.
+ //
+ // A TU defining a non-inline destructor is only guaranteed to emit a base
+ // destructor, and all of the other variants are emitted on an as-needed basis
+ // in COMDATs. Because a non-base destructor can be emitted in a TU that
+ // lacks a definition for the destructor, non-base destructors must always
+ // delegate to or alias the base destructor.
+
+ void buildStructorSignature(const CXXMethodDecl *MD, StructorType T,
+ SmallVectorImpl<CanQualType> &ArgTys) override;
+
+ /// Non-base dtors should be emitted as delegating thunks in this ABI.
+ bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor,
+ CXXDtorType DT) const override {
+ return DT != Dtor_Base;
+ }
+
+ void EmitCXXDestructors(const CXXDestructorDecl *D) override;
+
+ const CXXRecordDecl *
+ getThisArgumentTypeForMethod(const CXXMethodDecl *MD) override {
+ MD = MD->getCanonicalDecl();
+ if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD)) {
+ MicrosoftVTableContext::MethodVFTableLocation ML =
+ CGM.getMicrosoftVTableContext().getMethodVFTableLocation(MD);
+ // The vbases might be ordered differently in the final overrider object
+ // and the complete object, so the "this" argument may sometimes point to
+ // memory that has no particular type (e.g. past the complete object).
+ // In this case, we just use a generic pointer type.
+ // FIXME: might want to have a more precise type in the non-virtual
+ // multiple inheritance case.
+ if (ML.VBase || !ML.VFPtrOffset.isZero())
+ return nullptr;
+ }
+ return MD->getParent();
+ }
+
+ llvm::Value *
+ adjustThisArgumentForVirtualFunctionCall(CodeGenFunction &CGF, GlobalDecl GD,
+ llvm::Value *This,
+ bool VirtualCall) override;
+
+ void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy,
+ FunctionArgList &Params) override;
+
+ llvm::Value *adjustThisParameterInVirtualFunctionPrologue(
+ CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This) override;
+
+ void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override;
+
+ unsigned addImplicitConstructorArgs(CodeGenFunction &CGF,
+ const CXXConstructorDecl *D,
+ CXXCtorType Type, bool ForVirtualBase,
+ bool Delegating,
+ CallArgList &Args) override;
+
+ void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD,
+ CXXDtorType Type, bool ForVirtualBase,
+ bool Delegating, llvm::Value *This) override;
+
+ void emitVTableDefinitions(CodeGenVTables &CGVT,
+ const CXXRecordDecl *RD) override;
+
+ llvm::Value *getVTableAddressPointInStructor(
+ CodeGenFunction &CGF, const CXXRecordDecl *VTableClass,
+ BaseSubobject Base, const CXXRecordDecl *NearestVBase,
+ bool &NeedsVirtualOffset) override;
+
+ llvm::Constant *
+ getVTableAddressPointForConstExpr(BaseSubobject Base,
+ const CXXRecordDecl *VTableClass) override;
+
+ llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD,
+ CharUnits VPtrOffset) override;
+
+ llvm::Value *getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD,
+ llvm::Value *This,
+ llvm::Type *Ty) override;
+
+ llvm::Value *EmitVirtualDestructorCall(CodeGenFunction &CGF,
+ const CXXDestructorDecl *Dtor,
+ CXXDtorType DtorType,
+ llvm::Value *This,
+ const CXXMemberCallExpr *CE) override;
+
+ void adjustCallArgsForDestructorThunk(CodeGenFunction &CGF, GlobalDecl GD,
+ CallArgList &CallArgs) override {
+ assert(GD.getDtorType() == Dtor_Deleting &&
+ "Only deleting destructor thunks are available in this ABI");
+ CallArgs.add(RValue::get(getStructorImplicitParamValue(CGF)),
+ getContext().IntTy);
+ }
+
+ void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override;
+
+ llvm::GlobalVariable *
+ getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD,
+ llvm::GlobalVariable::LinkageTypes Linkage);
+
+ void emitVBTableDefinition(const VPtrInfo &VBT, const CXXRecordDecl *RD,
+ llvm::GlobalVariable *GV) const;
+
+ void setThunkLinkage(llvm::Function *Thunk, bool ForVTable,
+ GlobalDecl GD, bool ReturnAdjustment) override {
+ // Never dllimport/dllexport thunks.
+ Thunk->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
+
+ GVALinkage Linkage =
+ getContext().GetGVALinkageForFunction(cast<FunctionDecl>(GD.getDecl()));
+
+ if (Linkage == GVA_Internal)
+ Thunk->setLinkage(llvm::GlobalValue::InternalLinkage);
+ else if (ReturnAdjustment)
+ Thunk->setLinkage(llvm::GlobalValue::WeakODRLinkage);
+ else
+ Thunk->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
+ }
+
+ llvm::Value *performThisAdjustment(CodeGenFunction &CGF, llvm::Value *This,
+ const ThisAdjustment &TA) override;
+
+ llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, llvm::Value *Ret,
+ const ReturnAdjustment &RA) override;
+
+ void EmitThreadLocalInitFuncs(
+ CodeGenModule &CGM,
+ ArrayRef<std::pair<const VarDecl *, llvm::GlobalVariable *>>
+ CXXThreadLocals,
+ ArrayRef<llvm::Function *> CXXThreadLocalInits,
+ ArrayRef<llvm::GlobalVariable *> CXXThreadLocalInitVars) override;
+
+ bool usesThreadWrapperFunction() const override { return false; }
+ LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD,
+ QualType LValType) override;
+
+ void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
+ llvm::GlobalVariable *DeclPtr,
+ bool PerformInit) override;
+ void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
+ llvm::Constant *Dtor, llvm::Constant *Addr) override;
+
+ // ==== Notes on array cookies =========
+ //
+ // MSVC seems to only use cookies when the class has a destructor; a
+ // two-argument usual array deallocation function isn't sufficient.
+ //
+ // For example, this code prints "100" and "1":
+ // struct A {
+ // char x;
+ // void *operator new[](size_t sz) {
+ // printf("%u\n", sz);
+ // return malloc(sz);
+ // }
+ // void operator delete[](void *p, size_t sz) {
+ // printf("%u\n", sz);
+ // free(p);
+ // }
+ // };
+ // int main() {
+ // A *p = new A[100];
+ // delete[] p;
+ // }
+ // Whereas it prints "104" and "104" if you give A a destructor.
+
+ bool requiresArrayCookie(const CXXDeleteExpr *expr,
+ QualType elementType) override;
+ bool requiresArrayCookie(const CXXNewExpr *expr) override;
+ CharUnits getArrayCookieSizeImpl(QualType type) override;
+ llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF,
+ llvm::Value *NewPtr,
+ llvm::Value *NumElements,
+ const CXXNewExpr *expr,
+ QualType ElementType) override;
+ llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF,
+ llvm::Value *allocPtr,
+ CharUnits cookieSize) override;
+
+ friend struct MSRTTIBuilder;
+
+ bool isImageRelative() const {
+ return CGM.getTarget().getPointerWidth(/*AddressSpace=*/0) == 64;
+ }
+
+ // 5 routines for constructing the llvm types for MS RTTI structs.
+ llvm::StructType *getTypeDescriptorType(StringRef TypeInfoString) {
+ llvm::SmallString<32> TDTypeName("rtti.TypeDescriptor");
+ TDTypeName += llvm::utostr(TypeInfoString.size());
+ llvm::StructType *&TypeDescriptorType =
+ TypeDescriptorTypeMap[TypeInfoString.size()];
+ if (TypeDescriptorType)
+ return TypeDescriptorType;
+ llvm::Type *FieldTypes[] = {
+ CGM.Int8PtrPtrTy,
+ CGM.Int8PtrTy,
+ llvm::ArrayType::get(CGM.Int8Ty, TypeInfoString.size() + 1)};
+ TypeDescriptorType =
+ llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, TDTypeName);
+ return TypeDescriptorType;
+ }
+
+ llvm::Type *getImageRelativeType(llvm::Type *PtrType) {
+ if (!isImageRelative())
+ return PtrType;
+ return CGM.IntTy;
+ }
+
+ llvm::StructType *getBaseClassDescriptorType() {
+ if (BaseClassDescriptorType)
+ return BaseClassDescriptorType;
+ llvm::Type *FieldTypes[] = {
+ getImageRelativeType(CGM.Int8PtrTy),
+ CGM.IntTy,
+ CGM.IntTy,
+ CGM.IntTy,
+ CGM.IntTy,
+ CGM.IntTy,
+ getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()),
+ };
+ BaseClassDescriptorType = llvm::StructType::create(
+ CGM.getLLVMContext(), FieldTypes, "rtti.BaseClassDescriptor");
+ return BaseClassDescriptorType;
+ }
+
+ llvm::StructType *getClassHierarchyDescriptorType() {
+ if (ClassHierarchyDescriptorType)
+ return ClassHierarchyDescriptorType;
+ // Forward-declare RTTIClassHierarchyDescriptor to break a cycle.
+ ClassHierarchyDescriptorType = llvm::StructType::create(
+ CGM.getLLVMContext(), "rtti.ClassHierarchyDescriptor");
+ llvm::Type *FieldTypes[] = {
+ CGM.IntTy,
+ CGM.IntTy,
+ CGM.IntTy,
+ getImageRelativeType(
+ getBaseClassDescriptorType()->getPointerTo()->getPointerTo()),
+ };
+ ClassHierarchyDescriptorType->setBody(FieldTypes);
+ return ClassHierarchyDescriptorType;
+ }
+
+ llvm::StructType *getCompleteObjectLocatorType() {
+ if (CompleteObjectLocatorType)
+ return CompleteObjectLocatorType;
+ CompleteObjectLocatorType = llvm::StructType::create(
+ CGM.getLLVMContext(), "rtti.CompleteObjectLocator");
+ llvm::Type *FieldTypes[] = {
+ CGM.IntTy,
+ CGM.IntTy,
+ CGM.IntTy,
+ getImageRelativeType(CGM.Int8PtrTy),
+ getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()),
+ getImageRelativeType(CompleteObjectLocatorType),
+ };
+ llvm::ArrayRef<llvm::Type *> FieldTypesRef(FieldTypes);
+ if (!isImageRelative())
+ FieldTypesRef = FieldTypesRef.drop_back();
+ CompleteObjectLocatorType->setBody(FieldTypesRef);
+ return CompleteObjectLocatorType;
+ }
+
+ llvm::GlobalVariable *getImageBase() {
+ StringRef Name = "__ImageBase";
+ if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name))
+ return GV;
+
+ return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty,
+ /*isConstant=*/true,
+ llvm::GlobalValue::ExternalLinkage,
+ /*Initializer=*/nullptr, Name);
+ }
+
+ llvm::Constant *getImageRelativeConstant(llvm::Constant *PtrVal) {
+ if (!isImageRelative())
+ return PtrVal;
+
+ if (PtrVal->isNullValue())
+ return llvm::Constant::getNullValue(CGM.IntTy);
+
+ llvm::Constant *ImageBaseAsInt =
+ llvm::ConstantExpr::getPtrToInt(getImageBase(), CGM.IntPtrTy);
+ llvm::Constant *PtrValAsInt =
+ llvm::ConstantExpr::getPtrToInt(PtrVal, CGM.IntPtrTy);
+ llvm::Constant *Diff =
+ llvm::ConstantExpr::getSub(PtrValAsInt, ImageBaseAsInt,
+ /*HasNUW=*/true, /*HasNSW=*/true);
+ return llvm::ConstantExpr::getTrunc(Diff, CGM.IntTy);
+ }
+
+private:
+ MicrosoftMangleContext &getMangleContext() {
+ return cast<MicrosoftMangleContext>(CodeGen::CGCXXABI::getMangleContext());
+ }
+
+ llvm::Constant *getZeroInt() {
+ return llvm::ConstantInt::get(CGM.IntTy, 0);
+ }
+
+ llvm::Constant *getAllOnesInt() {
+ return llvm::Constant::getAllOnesValue(CGM.IntTy);
+ }
+
+ llvm::Constant *getConstantOrZeroInt(llvm::Constant *C) {
+ return C ? C : getZeroInt();
+ }
+
+ llvm::Value *getValueOrZeroInt(llvm::Value *C) {
+ return C ? C : getZeroInt();
+ }
+
+ CharUnits getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD);
+
+ void
+ GetNullMemberPointerFields(const MemberPointerType *MPT,
+ llvm::SmallVectorImpl<llvm::Constant *> &fields);
+
+ /// \brief Shared code for virtual base adjustment. Returns the offset from
+ /// the vbptr to the virtual base. Optionally returns the address of the
+ /// vbptr itself.
+ llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
+ llvm::Value *Base,
+ llvm::Value *VBPtrOffset,
+ llvm::Value *VBTableOffset,
+ llvm::Value **VBPtr = nullptr);
+
+ llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
+ llvm::Value *Base,
+ int32_t VBPtrOffset,
+ int32_t VBTableOffset,
+ llvm::Value **VBPtr = nullptr) {
+ assert(VBTableOffset % 4 == 0 && "should be byte offset into table of i32s");
+ llvm::Value *VBPOffset = llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset),
+ *VBTOffset = llvm::ConstantInt::get(CGM.IntTy, VBTableOffset);
+ return GetVBaseOffsetFromVBPtr(CGF, Base, VBPOffset, VBTOffset, VBPtr);
+ }
+
+ std::pair<llvm::Value *, llvm::Value *>
+ performBaseAdjustment(CodeGenFunction &CGF, llvm::Value *Value,
+ QualType SrcRecordTy);
+
+ /// \brief Performs a full virtual base adjustment. Used to dereference
+ /// pointers to members of virtual bases.
+ llvm::Value *AdjustVirtualBase(CodeGenFunction &CGF, const Expr *E,
+ const CXXRecordDecl *RD, llvm::Value *Base,
+ llvm::Value *VirtualBaseAdjustmentOffset,
+ llvm::Value *VBPtrOffset /* optional */);
+
+ /// \brief Emits a full member pointer with the fields common to data and
+ /// function member pointers.
+ llvm::Constant *EmitFullMemberPointer(llvm::Constant *FirstField,
+ bool IsMemberFunction,
+ const CXXRecordDecl *RD,
+ CharUnits NonVirtualBaseAdjustment,
+ unsigned VBTableIndex);
+
+ llvm::Constant *BuildMemberPointer(const CXXRecordDecl *RD,
+ const CXXMethodDecl *MD,
+ CharUnits NonVirtualBaseAdjustment);
+
+ bool MemberPointerConstantIsNull(const MemberPointerType *MPT,
+ llvm::Constant *MP);
+
+ /// \brief - Initialize all vbptrs of 'this' with RD as the complete type.
+ void EmitVBPtrStores(CodeGenFunction &CGF, const CXXRecordDecl *RD);
+
+ /// \brief Caching wrapper around VBTableBuilder::enumerateVBTables().
+ const VBTableGlobals &enumerateVBTables(const CXXRecordDecl *RD);
+
+ /// \brief Generate a thunk for calling a virtual member function MD.
+ llvm::Function *EmitVirtualMemPtrThunk(
+ const CXXMethodDecl *MD,
+ const MicrosoftVTableContext::MethodVFTableLocation &ML);
+
+public:
+ llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override;
+
+ bool isZeroInitializable(const MemberPointerType *MPT) override;
+
+ bool isMemberPointerConvertible(const MemberPointerType *MPT) const override {
+ const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
+ return RD->hasAttr<MSInheritanceAttr>();
+ }
+
+ bool isTypeInfoCalculable(QualType Ty) const override {
+ if (!CGCXXABI::isTypeInfoCalculable(Ty))
+ return false;
+ if (const auto *MPT = Ty->getAs<MemberPointerType>()) {
+ const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
+ if (!RD->hasAttr<MSInheritanceAttr>())
+ return false;
+ }
+ return true;
+ }
+
+ llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override;
+
+ llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT,
+ CharUnits offset) override;
+ llvm::Constant *EmitMemberPointer(const CXXMethodDecl *MD) override;
+ llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override;
+
+ llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF,
+ llvm::Value *L,
+ llvm::Value *R,
+ const MemberPointerType *MPT,
+ bool Inequality) override;
+
+ llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
+ llvm::Value *MemPtr,
+ const MemberPointerType *MPT) override;
+
+ llvm::Value *
+ EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E,
+ llvm::Value *Base, llvm::Value *MemPtr,
+ const MemberPointerType *MPT) override;
+
+ llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF,
+ const CastExpr *E,
+ llvm::Value *Src) override;
+
+ llvm::Constant *EmitMemberPointerConversion(const CastExpr *E,
+ llvm::Constant *Src) override;
+
+ llvm::Value *
+ EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, const Expr *E,
+ llvm::Value *&This, llvm::Value *MemPtr,
+ const MemberPointerType *MPT) override;
+
+ void emitCXXStructor(const CXXMethodDecl *MD, StructorType Type) override;
+
+ llvm::StructType *getCatchHandlerTypeType() {
+ if (!CatchHandlerTypeType) {
+ llvm::Type *FieldTypes[] = {
+ CGM.IntTy, // Flags
+ CGM.Int8PtrTy, // TypeDescriptor
+ };
+ CatchHandlerTypeType = llvm::StructType::create(
+ CGM.getLLVMContext(), FieldTypes, "eh.CatchHandlerType");
+ }
+ return CatchHandlerTypeType;
+ }
+
+ llvm::StructType *getCatchableTypeType() {
+ if (CatchableTypeType)
+ return CatchableTypeType;
+ llvm::Type *FieldTypes[] = {
+ CGM.IntTy, // Flags
+ getImageRelativeType(CGM.Int8PtrTy), // TypeDescriptor
+ CGM.IntTy, // NonVirtualAdjustment
+ CGM.IntTy, // OffsetToVBPtr
+ CGM.IntTy, // VBTableIndex
+ CGM.IntTy, // Size
+ getImageRelativeType(CGM.Int8PtrTy) // CopyCtor
+ };
+ CatchableTypeType = llvm::StructType::create(
+ CGM.getLLVMContext(), FieldTypes, "eh.CatchableType");
+ return CatchableTypeType;
+ }
+
+ llvm::StructType *getCatchableTypeArrayType(uint32_t NumEntries) {
+ llvm::StructType *&CatchableTypeArrayType =
+ CatchableTypeArrayTypeMap[NumEntries];
+ if (CatchableTypeArrayType)
+ return CatchableTypeArrayType;
+
+ llvm::SmallString<23> CTATypeName("eh.CatchableTypeArray.");
+ CTATypeName += llvm::utostr(NumEntries);
+ llvm::Type *CTType =
+ getImageRelativeType(getCatchableTypeType()->getPointerTo());
+ llvm::Type *FieldTypes[] = {
+ CGM.IntTy, // NumEntries
+ llvm::ArrayType::get(CTType, NumEntries) // CatchableTypes
+ };
+ CatchableTypeArrayType =
+ llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, CTATypeName);
+ return CatchableTypeArrayType;
+ }
+
+ llvm::StructType *getThrowInfoType() {
+ if (ThrowInfoType)
+ return ThrowInfoType;
+ llvm::Type *FieldTypes[] = {
+ CGM.IntTy, // Flags
+ getImageRelativeType(CGM.Int8PtrTy), // CleanupFn
+ getImageRelativeType(CGM.Int8PtrTy), // ForwardCompat
+ getImageRelativeType(CGM.Int8PtrTy) // CatchableTypeArray
+ };
+ ThrowInfoType = llvm::StructType::create(CGM.getLLVMContext(), FieldTypes,
+ "eh.ThrowInfo");
+ return ThrowInfoType;
+ }
+
+ llvm::Constant *getThrowFn() {
+ // _CxxThrowException is passed an exception object and a ThrowInfo object
+ // which describes the exception.
+ llvm::Type *Args[] = {CGM.Int8PtrTy, getThrowInfoType()->getPointerTo()};
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(CGM.VoidTy, Args, /*IsVarArgs=*/false);
+ auto *Fn = cast<llvm::Function>(
+ CGM.CreateRuntimeFunction(FTy, "_CxxThrowException"));
+ // _CxxThrowException is stdcall on 32-bit x86 platforms.
+ if (CGM.getTarget().getTriple().getArch() == llvm::Triple::x86)
+ Fn->setCallingConv(llvm::CallingConv::X86_StdCall);
+ return Fn;
+ }
+
+ llvm::Function *getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD,
+ CXXCtorType CT);
+
+ llvm::Constant *getCatchableType(QualType T,
+ uint32_t NVOffset = 0,
+ int32_t VBPtrOffset = -1,
+ uint32_t VBIndex = 0);
+
+ llvm::GlobalVariable *getCatchableTypeArray(QualType T);
+
+ llvm::GlobalVariable *getThrowInfo(QualType T) override;
+
+private:
+ typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy;
+ typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalVariable *> VTablesMapTy;
+ typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalValue *> VFTablesMapTy;
+ /// \brief All the vftables that have been referenced.
+ VFTablesMapTy VFTablesMap;
+ VTablesMapTy VTablesMap;
+
+ /// \brief This set holds the record decls we've deferred vtable emission for.
+ llvm::SmallPtrSet<const CXXRecordDecl *, 4> DeferredVFTables;
+
+
+ /// \brief All the vbtables which have been referenced.
+ llvm::DenseMap<const CXXRecordDecl *, VBTableGlobals> VBTablesMap;
+
+ /// Info on the global variable used to guard initialization of static locals.
+ /// The BitIndex field is only used for externally invisible declarations.
+ struct GuardInfo {
+ GuardInfo() : Guard(nullptr), BitIndex(0) {}
+ llvm::GlobalVariable *Guard;
+ unsigned BitIndex;
+ };
+
+ /// Map from DeclContext to the current guard variable. We assume that the
+ /// AST is visited in source code order.
+ llvm::DenseMap<const DeclContext *, GuardInfo> GuardVariableMap;
+ llvm::DenseMap<const DeclContext *, GuardInfo> ThreadLocalGuardVariableMap;
+ llvm::DenseMap<const DeclContext *, unsigned> ThreadSafeGuardNumMap;
+
+ llvm::DenseMap<size_t, llvm::StructType *> TypeDescriptorTypeMap;
+ llvm::StructType *BaseClassDescriptorType;
+ llvm::StructType *ClassHierarchyDescriptorType;
+ llvm::StructType *CompleteObjectLocatorType;
+
+ llvm::DenseMap<QualType, llvm::GlobalVariable *> CatchableTypeArrays;
+
+ llvm::StructType *CatchableTypeType;
+ llvm::DenseMap<uint32_t, llvm::StructType *> CatchableTypeArrayTypeMap;
+ llvm::StructType *ThrowInfoType;
+ llvm::StructType *CatchHandlerTypeType;
+};
+
+}
+
+CGCXXABI::RecordArgABI
+MicrosoftCXXABI::getRecordArgABI(const CXXRecordDecl *RD) const {
+ switch (CGM.getTarget().getTriple().getArch()) {
+ default:
+ // FIXME: Implement for other architectures.
+ return RAA_Default;
+
+ case llvm::Triple::x86:
+ // All record arguments are passed in memory on x86. Decide whether to
+ // construct the object directly in argument memory, or to construct the
+ // argument elsewhere and copy the bytes during the call.
+
+ // If C++ prohibits us from making a copy, construct the arguments directly
+ // into argument memory.
+ if (!canCopyArgument(RD))
+ return RAA_DirectInMemory;
+
+ // Otherwise, construct the argument into a temporary and copy the bytes
+ // into the outgoing argument memory.
+ return RAA_Default;
+
+ case llvm::Triple::x86_64:
+ // Win64 passes objects with non-trivial copy ctors indirectly.
+ if (RD->hasNonTrivialCopyConstructor())
+ return RAA_Indirect;
+
+ // If an object has a destructor, we'd really like to pass it indirectly
+ // because it allows us to elide copies. Unfortunately, MSVC makes that
+ // impossible for small types, which it will pass in a single register or
+ // stack slot. Most objects with dtors are large-ish, so handle that early.
+ // We can't call out all large objects as being indirect because there are
+ // multiple x64 calling conventions and the C++ ABI code shouldn't dictate
+ // how we pass large POD types.
+ if (RD->hasNonTrivialDestructor() &&
+ getContext().getTypeSize(RD->getTypeForDecl()) > 64)
+ return RAA_Indirect;
+
+ // We have a trivial copy constructor or no copy constructors, but we have
+ // to make sure it isn't deleted.
+ bool CopyDeleted = false;
+ for (const CXXConstructorDecl *CD : RD->ctors()) {
+ if (CD->isCopyConstructor()) {
+ assert(CD->isTrivial());
+ // We had at least one undeleted trivial copy ctor. Return directly.
+ if (!CD->isDeleted())
+ return RAA_Default;
+ CopyDeleted = true;
+ }
+ }
+
+ // The trivial copy constructor was deleted. Return indirectly.
+ if (CopyDeleted)
+ return RAA_Indirect;
+
+ // There were no copy ctors. Return in RAX.
+ return RAA_Default;
+ }
+
+ llvm_unreachable("invalid enum");
+}
+
+void MicrosoftCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF,
+ const CXXDeleteExpr *DE,
+ llvm::Value *Ptr,
+ QualType ElementType,
+ const CXXDestructorDecl *Dtor) {
+ // FIXME: Provide a source location here even though there's no
+ // CXXMemberCallExpr for dtor call.
+ bool UseGlobalDelete = DE->isGlobalDelete();
+ CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting;
+ llvm::Value *MDThis =
+ EmitVirtualDestructorCall(CGF, Dtor, DtorType, Ptr, /*CE=*/nullptr);
+ if (UseGlobalDelete)
+ CGF.EmitDeleteCall(DE->getOperatorDelete(), MDThis, ElementType);
+}
+
+void MicrosoftCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) {
+ llvm::Value *Args[] = {
+ llvm::ConstantPointerNull::get(CGM.Int8PtrTy),
+ llvm::ConstantPointerNull::get(getThrowInfoType()->getPointerTo())};
+ auto *Fn = getThrowFn();
+ if (isNoReturn)
+ CGF.EmitNoreturnRuntimeCallOrInvoke(Fn, Args);
+ else
+ CGF.EmitRuntimeCallOrInvoke(Fn, Args);
+}
+
+namespace {
+struct CallEndCatchMSVC : EHScopeStack::Cleanup {
+ CallEndCatchMSVC() {}
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ CGF.EmitNounwindRuntimeCall(
+ CGF.CGM.getIntrinsic(llvm::Intrinsic::eh_endcatch));
+ }
+};
+}
+
+void MicrosoftCXXABI::emitBeginCatch(CodeGenFunction &CGF,
+ const CXXCatchStmt *S) {
+ // In the MS ABI, the runtime handles the copy, and the catch handler is
+ // responsible for destruction.
+ VarDecl *CatchParam = S->getExceptionDecl();
+ llvm::Value *Exn = CGF.getExceptionFromSlot();
+ llvm::Function *BeginCatch =
+ CGF.CGM.getIntrinsic(llvm::Intrinsic::eh_begincatch);
+
+ // If this is a catch-all or the catch parameter is unnamed, we don't need to
+ // emit an alloca to the object.
+ if (!CatchParam || !CatchParam->getDeclName()) {
+ llvm::Value *Args[2] = {Exn, llvm::Constant::getNullValue(CGF.Int8PtrTy)};
+ CGF.EmitNounwindRuntimeCall(BeginCatch, Args);
+ CGF.EHStack.pushCleanup<CallEndCatchMSVC>(NormalCleanup);
+ return;
+ }
+
+ CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam);
+ llvm::Value *ParamAddr =
+ CGF.Builder.CreateBitCast(var.getObjectAddress(CGF), CGF.Int8PtrTy);
+ llvm::Value *Args[2] = {Exn, ParamAddr};
+ CGF.EmitNounwindRuntimeCall(BeginCatch, Args);
+ CGF.EHStack.pushCleanup<CallEndCatchMSVC>(NormalCleanup);
+ CGF.EmitAutoVarCleanups(var);
+}
+
+std::pair<llvm::Value *, llvm::Value *>
+MicrosoftCXXABI::performBaseAdjustment(CodeGenFunction &CGF, llvm::Value *Value,
+ QualType SrcRecordTy) {
+ Value = CGF.Builder.CreateBitCast(Value, CGF.Int8PtrTy);
+ const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
+ const ASTContext &Context = getContext();
+
+ if (Context.getASTRecordLayout(SrcDecl).hasExtendableVFPtr())
+ return std::make_pair(Value, llvm::ConstantInt::get(CGF.Int32Ty, 0));
+
+ // Perform a base adjustment.
+ const CXXBaseSpecifier *PolymorphicBase = std::find_if(
+ SrcDecl->vbases_begin(), SrcDecl->vbases_end(),
+ [&](const CXXBaseSpecifier &Base) {
+ const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
+ return Context.getASTRecordLayout(BaseDecl).hasExtendableVFPtr();
+ });
+ llvm::Value *Offset = GetVirtualBaseClassOffset(
+ CGF, Value, SrcDecl, PolymorphicBase->getType()->getAsCXXRecordDecl());
+ Value = CGF.Builder.CreateInBoundsGEP(Value, Offset);
+ Offset = CGF.Builder.CreateTrunc(Offset, CGF.Int32Ty);
+ return std::make_pair(Value, Offset);
+}
+
+bool MicrosoftCXXABI::shouldTypeidBeNullChecked(bool IsDeref,
+ QualType SrcRecordTy) {
+ const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
+ return IsDeref &&
+ !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr();
+}
+
+static llvm::CallSite emitRTtypeidCall(CodeGenFunction &CGF,
+ llvm::Value *Argument) {
+ llvm::Type *ArgTypes[] = {CGF.Int8PtrTy};
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false);
+ llvm::Value *Args[] = {Argument};
+ llvm::Constant *Fn = CGF.CGM.CreateRuntimeFunction(FTy, "__RTtypeid");
+ return CGF.EmitRuntimeCallOrInvoke(Fn, Args);
+}
+
+void MicrosoftCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) {
+ llvm::CallSite Call =
+ emitRTtypeidCall(CGF, llvm::Constant::getNullValue(CGM.VoidPtrTy));
+ Call.setDoesNotReturn();
+ CGF.Builder.CreateUnreachable();
+}
+
+llvm::Value *MicrosoftCXXABI::EmitTypeid(CodeGenFunction &CGF,
+ QualType SrcRecordTy,
+ llvm::Value *ThisPtr,
+ llvm::Type *StdTypeInfoPtrTy) {
+ llvm::Value *Offset;
+ std::tie(ThisPtr, Offset) = performBaseAdjustment(CGF, ThisPtr, SrcRecordTy);
+ return CGF.Builder.CreateBitCast(
+ emitRTtypeidCall(CGF, ThisPtr).getInstruction(), StdTypeInfoPtrTy);
+}
+
+bool MicrosoftCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
+ QualType SrcRecordTy) {
+ const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
+ return SrcIsPtr &&
+ !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr();
+}
+
+llvm::Value *MicrosoftCXXABI::EmitDynamicCastCall(
+ CodeGenFunction &CGF, llvm::Value *Value, QualType SrcRecordTy,
+ QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) {
+ llvm::Type *DestLTy = CGF.ConvertType(DestTy);
+
+ llvm::Value *SrcRTTI =
+ CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
+ llvm::Value *DestRTTI =
+ CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());
+
+ llvm::Value *Offset;
+ std::tie(Value, Offset) = performBaseAdjustment(CGF, Value, SrcRecordTy);
+
+ // PVOID __RTDynamicCast(
+ // PVOID inptr,
+ // LONG VfDelta,
+ // PVOID SrcType,
+ // PVOID TargetType,
+ // BOOL isReference)
+ llvm::Type *ArgTypes[] = {CGF.Int8PtrTy, CGF.Int32Ty, CGF.Int8PtrTy,
+ CGF.Int8PtrTy, CGF.Int32Ty};
+ llvm::Constant *Function = CGF.CGM.CreateRuntimeFunction(
+ llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false),
+ "__RTDynamicCast");
+ llvm::Value *Args[] = {
+ Value, Offset, SrcRTTI, DestRTTI,
+ llvm::ConstantInt::get(CGF.Int32Ty, DestTy->isReferenceType())};
+ Value = CGF.EmitRuntimeCallOrInvoke(Function, Args).getInstruction();
+ return CGF.Builder.CreateBitCast(Value, DestLTy);
+}
+
+llvm::Value *
+MicrosoftCXXABI::EmitDynamicCastToVoid(CodeGenFunction &CGF, llvm::Value *Value,
+ QualType SrcRecordTy,
+ QualType DestTy) {
+ llvm::Value *Offset;
+ std::tie(Value, Offset) = performBaseAdjustment(CGF, Value, SrcRecordTy);
+
+ // PVOID __RTCastToVoid(
+ // PVOID inptr)
+ llvm::Type *ArgTypes[] = {CGF.Int8PtrTy};
+ llvm::Constant *Function = CGF.CGM.CreateRuntimeFunction(
+ llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false),
+ "__RTCastToVoid");
+ llvm::Value *Args[] = {Value};
+ return CGF.EmitRuntimeCall(Function, Args);
+}
+
+bool MicrosoftCXXABI::EmitBadCastCall(CodeGenFunction &CGF) {
+ return false;
+}
+
+llvm::Value *MicrosoftCXXABI::GetVirtualBaseClassOffset(
+ CodeGenFunction &CGF, llvm::Value *This, const CXXRecordDecl *ClassDecl,
+ const CXXRecordDecl *BaseClassDecl) {
+ const ASTContext &Context = getContext();
+ int64_t VBPtrChars =
+ Context.getASTRecordLayout(ClassDecl).getVBPtrOffset().getQuantity();
+ llvm::Value *VBPtrOffset = llvm::ConstantInt::get(CGM.PtrDiffTy, VBPtrChars);
+ CharUnits IntSize = Context.getTypeSizeInChars(Context.IntTy);
+ CharUnits VBTableChars =
+ IntSize *
+ CGM.getMicrosoftVTableContext().getVBTableIndex(ClassDecl, BaseClassDecl);
+ llvm::Value *VBTableOffset =
+ llvm::ConstantInt::get(CGM.IntTy, VBTableChars.getQuantity());
+
+ llvm::Value *VBPtrToNewBase =
+ GetVBaseOffsetFromVBPtr(CGF, This, VBPtrOffset, VBTableOffset);
+ VBPtrToNewBase =
+ CGF.Builder.CreateSExtOrBitCast(VBPtrToNewBase, CGM.PtrDiffTy);
+ return CGF.Builder.CreateNSWAdd(VBPtrOffset, VBPtrToNewBase);
+}
+
+bool MicrosoftCXXABI::HasThisReturn(GlobalDecl GD) const {
+ return isa<CXXConstructorDecl>(GD.getDecl());
+}
+
+static bool isDeletingDtor(GlobalDecl GD) {
+ return isa<CXXDestructorDecl>(GD.getDecl()) &&
+ GD.getDtorType() == Dtor_Deleting;
+}
+
+bool MicrosoftCXXABI::hasMostDerivedReturn(GlobalDecl GD) const {
+ return isDeletingDtor(GD);
+}
+
+bool MicrosoftCXXABI::classifyReturnType(CGFunctionInfo &FI) const {
+ const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl();
+ if (!RD)
+ return false;
+
+ if (FI.isInstanceMethod()) {
+ // If it's an instance method, aggregates are always returned indirectly via
+ // the second parameter.
+ FI.getReturnInfo() = ABIArgInfo::getIndirect(0, /*ByVal=*/false);
+ FI.getReturnInfo().setSRetAfterThis(FI.isInstanceMethod());
+ return true;
+ } else if (!RD->isPOD()) {
+ // If it's a free function, non-POD types are returned indirectly.
+ FI.getReturnInfo() = ABIArgInfo::getIndirect(0, /*ByVal=*/false);
+ return true;
+ }
+
+ // Otherwise, use the C ABI rules.
+ return false;
+}
+
+llvm::BasicBlock *
+MicrosoftCXXABI::EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
+ const CXXRecordDecl *RD) {
+ llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF);
+ assert(IsMostDerivedClass &&
+ "ctor for a class with virtual bases must have an implicit parameter");
+ llvm::Value *IsCompleteObject =
+ CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object");
+
+ llvm::BasicBlock *CallVbaseCtorsBB = CGF.createBasicBlock("ctor.init_vbases");
+ llvm::BasicBlock *SkipVbaseCtorsBB = CGF.createBasicBlock("ctor.skip_vbases");
+ CGF.Builder.CreateCondBr(IsCompleteObject,
+ CallVbaseCtorsBB, SkipVbaseCtorsBB);
+
+ CGF.EmitBlock(CallVbaseCtorsBB);
+
+ // Fill in the vbtable pointers here.
+ EmitVBPtrStores(CGF, RD);
+
+ // CGF will put the base ctor calls in this basic block for us later.
+
+ return SkipVbaseCtorsBB;
+}
+
+void MicrosoftCXXABI::initializeHiddenVirtualInheritanceMembers(
+ CodeGenFunction &CGF, const CXXRecordDecl *RD) {
+ // In most cases, an override for a vbase virtual method can adjust
+ // the "this" parameter by applying a constant offset.
+ // However, this is not enough while a constructor or a destructor of some
+ // class X is being executed if all the following conditions are met:
+ // - X has virtual bases, (1)
+ // - X overrides a virtual method M of a vbase Y, (2)
+ // - X itself is a vbase of the most derived class.
+ //
+ // If (1) and (2) are true, the vtorDisp for vbase Y is a hidden member of X
+ // which holds the extra amount of "this" adjustment we must do when we use
+ // the X vftables (i.e. during X ctor or dtor).
+ // Outside the ctors and dtors, the values of vtorDisps are zero.
+
+ const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
+ typedef ASTRecordLayout::VBaseOffsetsMapTy VBOffsets;
+ const VBOffsets &VBaseMap = Layout.getVBaseOffsetsMap();
+ CGBuilderTy &Builder = CGF.Builder;
+
+ unsigned AS =
+ cast<llvm::PointerType>(getThisValue(CGF)->getType())->getAddressSpace();
+ llvm::Value *Int8This = nullptr; // Initialize lazily.
+
+ for (VBOffsets::const_iterator I = VBaseMap.begin(), E = VBaseMap.end();
+ I != E; ++I) {
+ if (!I->second.hasVtorDisp())
+ continue;
+
+ llvm::Value *VBaseOffset =
+ GetVirtualBaseClassOffset(CGF, getThisValue(CGF), RD, I->first);
+ // FIXME: it doesn't look right that we SExt in GetVirtualBaseClassOffset()
+ // just to Trunc back immediately.
+ VBaseOffset = Builder.CreateTruncOrBitCast(VBaseOffset, CGF.Int32Ty);
+ uint64_t ConstantVBaseOffset =
+ Layout.getVBaseClassOffset(I->first).getQuantity();
+
+ // vtorDisp_for_vbase = vbptr[vbase_idx] - offsetof(RD, vbase).
+ llvm::Value *VtorDispValue = Builder.CreateSub(
+ VBaseOffset, llvm::ConstantInt::get(CGM.Int32Ty, ConstantVBaseOffset),
+ "vtordisp.value");
+
+ if (!Int8This)
+ Int8This = Builder.CreateBitCast(getThisValue(CGF),
+ CGF.Int8Ty->getPointerTo(AS));
+ llvm::Value *VtorDispPtr = Builder.CreateInBoundsGEP(Int8This, VBaseOffset);
+ // vtorDisp is always the 32-bits before the vbase in the class layout.
+ VtorDispPtr = Builder.CreateConstGEP1_32(VtorDispPtr, -4);
+ VtorDispPtr = Builder.CreateBitCast(
+ VtorDispPtr, CGF.Int32Ty->getPointerTo(AS), "vtordisp.ptr");
+
+ Builder.CreateStore(VtorDispValue, VtorDispPtr);
+ }
+}
+
+static bool hasDefaultCXXMethodCC(ASTContext &Context,
+ const CXXMethodDecl *MD) {
+ CallingConv ExpectedCallingConv = Context.getDefaultCallingConvention(
+ /*IsVariadic=*/false, /*IsCXXMethod=*/true);
+ CallingConv ActualCallingConv =
+ MD->getType()->getAs<FunctionProtoType>()->getCallConv();
+ return ExpectedCallingConv == ActualCallingConv;
+}
+
+void MicrosoftCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) {
+ // There's only one constructor type in this ABI.
+ CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete));
+
+ // Exported default constructors either have a simple call-site where they use
+ // the typical calling convention and have a single 'this' pointer for an
+ // argument -or- they get a wrapper function which appropriately thunks to the
+ // real default constructor. This thunk is the default constructor closure.
+ if (D->hasAttr<DLLExportAttr>() && D->isDefaultConstructor())
+ if (!hasDefaultCXXMethodCC(getContext(), D) || D->getNumParams() != 0) {
+ llvm::Function *Fn = getAddrOfCXXCtorClosure(D, Ctor_DefaultClosure);
+ Fn->setLinkage(llvm::GlobalValue::WeakODRLinkage);
+ Fn->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
+ }
+}
+
+void MicrosoftCXXABI::EmitVBPtrStores(CodeGenFunction &CGF,
+ const CXXRecordDecl *RD) {
+ llvm::Value *ThisInt8Ptr =
+ CGF.Builder.CreateBitCast(getThisValue(CGF), CGM.Int8PtrTy, "this.int8");
+ const ASTContext &Context = getContext();
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+
+ const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
+ for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) {
+ const VPtrInfo *VBT = (*VBGlobals.VBTables)[I];
+ llvm::GlobalVariable *GV = VBGlobals.Globals[I];
+ const ASTRecordLayout &SubobjectLayout =
+ Context.getASTRecordLayout(VBT->BaseWithVPtr);
+ CharUnits Offs = VBT->NonVirtualOffset;
+ Offs += SubobjectLayout.getVBPtrOffset();
+ if (VBT->getVBaseWithVPtr())
+ Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr());
+ llvm::Value *VBPtr =
+ CGF.Builder.CreateConstInBoundsGEP1_64(ThisInt8Ptr, Offs.getQuantity());
+ llvm::Value *GVPtr =
+ CGF.Builder.CreateConstInBoundsGEP2_32(GV->getValueType(), GV, 0, 0);
+ VBPtr = CGF.Builder.CreateBitCast(VBPtr, GVPtr->getType()->getPointerTo(0),
+ "vbptr." + VBT->ReusingBase->getName());
+ CGF.Builder.CreateStore(GVPtr, VBPtr);
+ }
+}
+
+void
+MicrosoftCXXABI::buildStructorSignature(const CXXMethodDecl *MD, StructorType T,
+ SmallVectorImpl<CanQualType> &ArgTys) {
+ // TODO: 'for base' flag
+ if (T == StructorType::Deleting) {
+ // The scalar deleting destructor takes an implicit int parameter.
+ ArgTys.push_back(getContext().IntTy);
+ }
+ auto *CD = dyn_cast<CXXConstructorDecl>(MD);
+ if (!CD)
+ return;
+
+ // All parameters are already in place except is_most_derived, which goes
+ // after 'this' if it's variadic and last if it's not.
+
+ const CXXRecordDecl *Class = CD->getParent();
+ const FunctionProtoType *FPT = CD->getType()->castAs<FunctionProtoType>();
+ if (Class->getNumVBases()) {
+ if (FPT->isVariadic())
+ ArgTys.insert(ArgTys.begin() + 1, getContext().IntTy);
+ else
+ ArgTys.push_back(getContext().IntTy);
+ }
+}
+
+void MicrosoftCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) {
+ // The TU defining a dtor is only guaranteed to emit a base destructor. All
+ // other destructor variants are delegating thunks.
+ CGM.EmitGlobal(GlobalDecl(D, Dtor_Base));
+}
+
+CharUnits
+MicrosoftCXXABI::getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) {
+ GD = GD.getCanonicalDecl();
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
+
+ GlobalDecl LookupGD = GD;
+ if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
+ // Complete destructors take a pointer to the complete object as a
+ // parameter, thus don't need this adjustment.
+ if (GD.getDtorType() == Dtor_Complete)
+ return CharUnits();
+
+ // There's no Dtor_Base in vftable but it shares the this adjustment with
+ // the deleting one, so look it up instead.
+ LookupGD = GlobalDecl(DD, Dtor_Deleting);
+ }
+
+ MicrosoftVTableContext::MethodVFTableLocation ML =
+ CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD);
+ CharUnits Adjustment = ML.VFPtrOffset;
+
+ // Normal virtual instance methods need to adjust from the vfptr that first
+ // defined the virtual method to the virtual base subobject, but destructors
+ // do not. The vector deleting destructor thunk applies this adjustment for
+ // us if necessary.
+ if (isa<CXXDestructorDecl>(MD))
+ Adjustment = CharUnits::Zero();
+
+ if (ML.VBase) {
+ const ASTRecordLayout &DerivedLayout =
+ getContext().getASTRecordLayout(MD->getParent());
+ Adjustment += DerivedLayout.getVBaseClassOffset(ML.VBase);
+ }
+
+ return Adjustment;
+}
+
+llvm::Value *MicrosoftCXXABI::adjustThisArgumentForVirtualFunctionCall(
+ CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This, bool VirtualCall) {
+ if (!VirtualCall) {
+ // If the call of a virtual function is not virtual, we just have to
+ // compensate for the adjustment the virtual function does in its prologue.
+ CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD);
+ if (Adjustment.isZero())
+ return This;
+
+ unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace();
+ llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS);
+ This = CGF.Builder.CreateBitCast(This, charPtrTy);
+ assert(Adjustment.isPositive());
+ return CGF.Builder.CreateConstGEP1_32(This, Adjustment.getQuantity());
+ }
+
+ GD = GD.getCanonicalDecl();
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
+
+ GlobalDecl LookupGD = GD;
+ if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
+ // Complete dtors take a pointer to the complete object,
+ // thus don't need adjustment.
+ if (GD.getDtorType() == Dtor_Complete)
+ return This;
+
+ // There's only Dtor_Deleting in vftable but it shares the this adjustment
+ // with the base one, so look up the deleting one instead.
+ LookupGD = GlobalDecl(DD, Dtor_Deleting);
+ }
+ MicrosoftVTableContext::MethodVFTableLocation ML =
+ CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD);
+
+ unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace();
+ llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS);
+ CharUnits StaticOffset = ML.VFPtrOffset;
+
+ // Base destructors expect 'this' to point to the beginning of the base
+ // subobject, not the first vfptr that happens to contain the virtual dtor.
+ // However, we still need to apply the virtual base adjustment.
+ if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
+ StaticOffset = CharUnits::Zero();
+
+ if (ML.VBase) {
+ This = CGF.Builder.CreateBitCast(This, charPtrTy);
+ llvm::Value *VBaseOffset =
+ GetVirtualBaseClassOffset(CGF, This, MD->getParent(), ML.VBase);
+ This = CGF.Builder.CreateInBoundsGEP(This, VBaseOffset);
+ }
+ if (!StaticOffset.isZero()) {
+ assert(StaticOffset.isPositive());
+ This = CGF.Builder.CreateBitCast(This, charPtrTy);
+ if (ML.VBase) {
+ // Non-virtual adjustment might result in a pointer outside the allocated
+ // object, e.g. if the final overrider class is laid out after the virtual
+ // base that declares a method in the most derived class.
+ // FIXME: Update the code that emits this adjustment in thunks prologues.
+ This = CGF.Builder.CreateConstGEP1_32(This, StaticOffset.getQuantity());
+ } else {
+ This = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, This,
+ StaticOffset.getQuantity());
+ }
+ }
+ return This;
+}
+
+void MicrosoftCXXABI::addImplicitStructorParams(CodeGenFunction &CGF,
+ QualType &ResTy,
+ FunctionArgList &Params) {
+ ASTContext &Context = getContext();
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
+ assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD));
+ if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) {
+ ImplicitParamDecl *IsMostDerived
+ = ImplicitParamDecl::Create(Context, nullptr,
+ CGF.CurGD.getDecl()->getLocation(),
+ &Context.Idents.get("is_most_derived"),
+ Context.IntTy);
+ // The 'most_derived' parameter goes second if the ctor is variadic and last
+ // if it's not. Dtors can't be variadic.
+ const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
+ if (FPT->isVariadic())
+ Params.insert(Params.begin() + 1, IsMostDerived);
+ else
+ Params.push_back(IsMostDerived);
+ getStructorImplicitParamDecl(CGF) = IsMostDerived;
+ } else if (isDeletingDtor(CGF.CurGD)) {
+ ImplicitParamDecl *ShouldDelete
+ = ImplicitParamDecl::Create(Context, nullptr,
+ CGF.CurGD.getDecl()->getLocation(),
+ &Context.Idents.get("should_call_delete"),
+ Context.IntTy);
+ Params.push_back(ShouldDelete);
+ getStructorImplicitParamDecl(CGF) = ShouldDelete;
+ }
+}
+
+llvm::Value *MicrosoftCXXABI::adjustThisParameterInVirtualFunctionPrologue(
+ CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This) {
+ // In this ABI, every virtual function takes a pointer to one of the
+ // subobjects that first defines it as the 'this' parameter, rather than a
+ // pointer to the final overrider subobject. Thus, we need to adjust it back
+ // to the final overrider subobject before use.
+ // See comments in the MicrosoftVFTableContext implementation for the details.
+ CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD);
+ if (Adjustment.isZero())
+ return This;
+
+ unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace();
+ llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS),
+ *thisTy = This->getType();
+
+ This = CGF.Builder.CreateBitCast(This, charPtrTy);
+ assert(Adjustment.isPositive());
+ This = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, This,
+ -Adjustment.getQuantity());
+ return CGF.Builder.CreateBitCast(This, thisTy);
+}
+
+void MicrosoftCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
+ EmitThisParam(CGF);
+
+ /// If this is a function that the ABI specifies returns 'this', initialize
+ /// the return slot to 'this' at the start of the function.
+ ///
+ /// Unlike the setting of return types, this is done within the ABI
+ /// implementation instead of by clients of CGCXXABI because:
+ /// 1) getThisValue is currently protected
+ /// 2) in theory, an ABI could implement 'this' returns some other way;
+ /// HasThisReturn only specifies a contract, not the implementation
+ if (HasThisReturn(CGF.CurGD))
+ CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue);
+ else if (hasMostDerivedReturn(CGF.CurGD))
+ CGF.Builder.CreateStore(CGF.EmitCastToVoidPtr(getThisValue(CGF)),
+ CGF.ReturnValue);
+
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
+ if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) {
+ assert(getStructorImplicitParamDecl(CGF) &&
+ "no implicit parameter for a constructor with virtual bases?");
+ getStructorImplicitParamValue(CGF)
+ = CGF.Builder.CreateLoad(
+ CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)),
+ "is_most_derived");
+ }
+
+ if (isDeletingDtor(CGF.CurGD)) {
+ assert(getStructorImplicitParamDecl(CGF) &&
+ "no implicit parameter for a deleting destructor?");
+ getStructorImplicitParamValue(CGF)
+ = CGF.Builder.CreateLoad(
+ CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)),
+ "should_call_delete");
+ }
+}
+
+unsigned MicrosoftCXXABI::addImplicitConstructorArgs(
+ CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type,
+ bool ForVirtualBase, bool Delegating, CallArgList &Args) {
+ assert(Type == Ctor_Complete || Type == Ctor_Base);
+
+ // Check if we need a 'most_derived' parameter.
+ if (!D->getParent()->getNumVBases())
+ return 0;
+
+ // Add the 'most_derived' argument second if we are variadic or last if not.
+ const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
+ llvm::Value *MostDerivedArg =
+ llvm::ConstantInt::get(CGM.Int32Ty, Type == Ctor_Complete);
+ RValue RV = RValue::get(MostDerivedArg);
+ if (MostDerivedArg) {
+ if (FPT->isVariadic())
+ Args.insert(Args.begin() + 1,
+ CallArg(RV, getContext().IntTy, /*needscopy=*/false));
+ else
+ Args.add(RV, getContext().IntTy);
+ }
+
+ return 1; // Added one arg.
+}
+
+void MicrosoftCXXABI::EmitDestructorCall(CodeGenFunction &CGF,
+ const CXXDestructorDecl *DD,
+ CXXDtorType Type, bool ForVirtualBase,
+ bool Delegating, llvm::Value *This) {
+ llvm::Value *Callee = CGM.getAddrOfCXXStructor(DD, getFromDtorType(Type));
+
+ if (DD->isVirtual()) {
+ assert(Type != CXXDtorType::Dtor_Deleting &&
+ "The deleting destructor should only be called via a virtual call");
+ This = adjustThisArgumentForVirtualFunctionCall(CGF, GlobalDecl(DD, Type),
+ This, false);
+ }
+
+ CGF.EmitCXXStructorCall(DD, Callee, ReturnValueSlot(), This,
+ /*ImplicitParam=*/nullptr,
+ /*ImplicitParamTy=*/QualType(), nullptr,
+ getFromDtorType(Type));
+}
+
+void MicrosoftCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT,
+ const CXXRecordDecl *RD) {
+ MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext();
+ const VPtrInfoVector &VFPtrs = VFTContext.getVFPtrOffsets(RD);
+
+ for (VPtrInfo *Info : VFPtrs) {
+ llvm::GlobalVariable *VTable = getAddrOfVTable(RD, Info->FullOffsetInMDC);
+ if (VTable->hasInitializer())
+ continue;
+
+ llvm::Constant *RTTI = getContext().getLangOpts().RTTIData
+ ? getMSCompleteObjectLocator(RD, Info)
+ : nullptr;
+
+ const VTableLayout &VTLayout =
+ VFTContext.getVFTableLayout(RD, Info->FullOffsetInMDC);
+ llvm::Constant *Init = CGVT.CreateVTableInitializer(
+ RD, VTLayout.vtable_component_begin(),
+ VTLayout.getNumVTableComponents(), VTLayout.vtable_thunk_begin(),
+ VTLayout.getNumVTableThunks(), RTTI);
+
+ VTable->setInitializer(Init);
+ }
+}
+
+llvm::Value *MicrosoftCXXABI::getVTableAddressPointInStructor(
+ CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base,
+ const CXXRecordDecl *NearestVBase, bool &NeedsVirtualOffset) {
+ NeedsVirtualOffset = (NearestVBase != nullptr);
+
+ (void)getAddrOfVTable(VTableClass, Base.getBaseOffset());
+ VFTableIdTy ID(VTableClass, Base.getBaseOffset());
+ llvm::GlobalValue *VTableAddressPoint = VFTablesMap[ID];
+ if (!VTableAddressPoint) {
+ assert(Base.getBase()->getNumVBases() &&
+ !getContext().getASTRecordLayout(Base.getBase()).hasOwnVFPtr());
+ }
+ return VTableAddressPoint;
+}
+
+static void mangleVFTableName(MicrosoftMangleContext &MangleContext,
+ const CXXRecordDecl *RD, const VPtrInfo *VFPtr,
+ SmallString<256> &Name) {
+ llvm::raw_svector_ostream Out(Name);
+ MangleContext.mangleCXXVFTable(RD, VFPtr->MangledPath, Out);
+}
+
+llvm::Constant *MicrosoftCXXABI::getVTableAddressPointForConstExpr(
+ BaseSubobject Base, const CXXRecordDecl *VTableClass) {
+ (void)getAddrOfVTable(VTableClass, Base.getBaseOffset());
+ VFTableIdTy ID(VTableClass, Base.getBaseOffset());
+ llvm::GlobalValue *VFTable = VFTablesMap[ID];
+ assert(VFTable && "Couldn't find a vftable for the given base?");
+ return VFTable;
+}
+
+llvm::GlobalVariable *MicrosoftCXXABI::getAddrOfVTable(const CXXRecordDecl *RD,
+ CharUnits VPtrOffset) {
+ // getAddrOfVTable may return 0 if asked to get an address of a vtable which
+ // shouldn't be used in the given record type. We want to cache this result in
+ // VFTablesMap, thus a simple zero check is not sufficient.
+ VFTableIdTy ID(RD, VPtrOffset);
+ VTablesMapTy::iterator I;
+ bool Inserted;
+ std::tie(I, Inserted) = VTablesMap.insert(std::make_pair(ID, nullptr));
+ if (!Inserted)
+ return I->second;
+
+ llvm::GlobalVariable *&VTable = I->second;
+
+ MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext();
+ const VPtrInfoVector &VFPtrs = VTContext.getVFPtrOffsets(RD);
+
+ if (DeferredVFTables.insert(RD).second) {
+ // We haven't processed this record type before.
+ // Queue up this v-table for possible deferred emission.
+ CGM.addDeferredVTable(RD);
+
+#ifndef NDEBUG
+ // Create all the vftables at once in order to make sure each vftable has
+ // a unique mangled name.
+ llvm::StringSet<> ObservedMangledNames;
+ for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) {
+ SmallString<256> Name;
+ mangleVFTableName(getMangleContext(), RD, VFPtrs[J], Name);
+ if (!ObservedMangledNames.insert(Name.str()).second)
+ llvm_unreachable("Already saw this mangling before?");
+ }
+#endif
+ }
+
+ VPtrInfo *const *VFPtrI =
+ std::find_if(VFPtrs.begin(), VFPtrs.end(), [&](VPtrInfo *VPI) {
+ return VPI->FullOffsetInMDC == VPtrOffset;
+ });
+ if (VFPtrI == VFPtrs.end()) {
+ VFTablesMap[ID] = nullptr;
+ return nullptr;
+ }
+ VPtrInfo *VFPtr = *VFPtrI;
+
+ SmallString<256> VFTableName;
+ mangleVFTableName(getMangleContext(), RD, VFPtr, VFTableName);
+
+ llvm::GlobalValue::LinkageTypes VFTableLinkage = CGM.getVTableLinkage(RD);
+ bool VFTableComesFromAnotherTU =
+ llvm::GlobalValue::isAvailableExternallyLinkage(VFTableLinkage) ||
+ llvm::GlobalValue::isExternalLinkage(VFTableLinkage);
+ bool VTableAliasIsRequred =
+ !VFTableComesFromAnotherTU && getContext().getLangOpts().RTTIData;
+
+ if (llvm::GlobalValue *VFTable =
+ CGM.getModule().getNamedGlobal(VFTableName)) {
+ VFTablesMap[ID] = VFTable;
+ return VTableAliasIsRequred
+ ? cast<llvm::GlobalVariable>(
+ cast<llvm::GlobalAlias>(VFTable)->getBaseObject())
+ : cast<llvm::GlobalVariable>(VFTable);
+ }
+
+ uint64_t NumVTableSlots =
+ VTContext.getVFTableLayout(RD, VFPtr->FullOffsetInMDC)
+ .getNumVTableComponents();
+ llvm::GlobalValue::LinkageTypes VTableLinkage =
+ VTableAliasIsRequred ? llvm::GlobalValue::PrivateLinkage : VFTableLinkage;
+
+ StringRef VTableName = VTableAliasIsRequred ? StringRef() : VFTableName.str();
+
+ llvm::ArrayType *VTableType =
+ llvm::ArrayType::get(CGM.Int8PtrTy, NumVTableSlots);
+
+ // Create a backing variable for the contents of VTable. The VTable may
+ // or may not include space for a pointer to RTTI data.
+ llvm::GlobalValue *VFTable;
+ VTable = new llvm::GlobalVariable(CGM.getModule(), VTableType,
+ /*isConstant=*/true, VTableLinkage,
+ /*Initializer=*/nullptr, VTableName);
+ VTable->setUnnamedAddr(true);
+
+ llvm::Comdat *C = nullptr;
+ if (!VFTableComesFromAnotherTU &&
+ (llvm::GlobalValue::isWeakForLinker(VFTableLinkage) ||
+ (llvm::GlobalValue::isLocalLinkage(VFTableLinkage) &&
+ VTableAliasIsRequred)))
+ C = CGM.getModule().getOrInsertComdat(VFTableName.str());
+
+ // Only insert a pointer into the VFTable for RTTI data if we are not
+ // importing it. We never reference the RTTI data directly so there is no
+ // need to make room for it.
+ if (VTableAliasIsRequred) {
+ llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0),
+ llvm::ConstantInt::get(CGM.IntTy, 1)};
+ // Create a GEP which points just after the first entry in the VFTable,
+ // this should be the location of the first virtual method.
+ llvm::Constant *VTableGEP = llvm::ConstantExpr::getInBoundsGetElementPtr(
+ VTable->getValueType(), VTable, GEPIndices);
+ if (llvm::GlobalValue::isWeakForLinker(VFTableLinkage)) {
+ VFTableLinkage = llvm::GlobalValue::ExternalLinkage;
+ if (C)
+ C->setSelectionKind(llvm::Comdat::Largest);
+ }
+ VFTable = llvm::GlobalAlias::create(
+ cast<llvm::PointerType>(VTableGEP->getType()), VFTableLinkage,
+ VFTableName.str(), VTableGEP, &CGM.getModule());
+ VFTable->setUnnamedAddr(true);
+ } else {
+ // We don't need a GlobalAlias to be a symbol for the VTable if we won't
+ // be referencing any RTTI data.
+ // The GlobalVariable will end up being an appropriate definition of the
+ // VFTable.
+ VFTable = VTable;
+ }
+ if (C)
+ VTable->setComdat(C);
+
+ if (RD->hasAttr<DLLImportAttr>())
+ VFTable->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
+ else if (RD->hasAttr<DLLExportAttr>())
+ VFTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
+
+ VFTablesMap[ID] = VFTable;
+ return VTable;
+}
+
+llvm::Value *MicrosoftCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF,
+ GlobalDecl GD,
+ llvm::Value *This,
+ llvm::Type *Ty) {
+ GD = GD.getCanonicalDecl();
+ CGBuilderTy &Builder = CGF.Builder;
+
+ Ty = Ty->getPointerTo()->getPointerTo();
+ llvm::Value *VPtr =
+ adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true);
+ llvm::Value *VTable = CGF.GetVTablePtr(VPtr, Ty);
+
+ MicrosoftVTableContext::MethodVFTableLocation ML =
+ CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD);
+ llvm::Value *VFuncPtr =
+ Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn");
+ return Builder.CreateLoad(VFuncPtr);
+}
+
+llvm::Value *MicrosoftCXXABI::EmitVirtualDestructorCall(
+ CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType,
+ llvm::Value *This, const CXXMemberCallExpr *CE) {
+ assert(CE == nullptr || CE->arg_begin() == CE->arg_end());
+ assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete);
+
+ // We have only one destructor in the vftable but can get both behaviors
+ // by passing an implicit int parameter.
+ GlobalDecl GD(Dtor, Dtor_Deleting);
+ const CGFunctionInfo *FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
+ Dtor, StructorType::Deleting);
+ llvm::Type *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo);
+ llvm::Value *Callee = getVirtualFunctionPointer(CGF, GD, This, Ty);
+
+ ASTContext &Context = getContext();
+ llvm::Value *ImplicitParam = llvm::ConstantInt::get(
+ llvm::IntegerType::getInt32Ty(CGF.getLLVMContext()),
+ DtorType == Dtor_Deleting);
+
+ This = adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true);
+ RValue RV = CGF.EmitCXXStructorCall(Dtor, Callee, ReturnValueSlot(), This,
+ ImplicitParam, Context.IntTy, CE,
+ StructorType::Deleting);
+ return RV.getScalarVal();
+}
+
+const VBTableGlobals &
+MicrosoftCXXABI::enumerateVBTables(const CXXRecordDecl *RD) {
+ // At this layer, we can key the cache off of a single class, which is much
+ // easier than caching each vbtable individually.
+ llvm::DenseMap<const CXXRecordDecl*, VBTableGlobals>::iterator Entry;
+ bool Added;
+ std::tie(Entry, Added) =
+ VBTablesMap.insert(std::make_pair(RD, VBTableGlobals()));
+ VBTableGlobals &VBGlobals = Entry->second;
+ if (!Added)
+ return VBGlobals;
+
+ MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext();
+ VBGlobals.VBTables = &Context.enumerateVBTables(RD);
+
+ // Cache the globals for all vbtables so we don't have to recompute the
+ // mangled names.
+ llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD);
+ for (VPtrInfoVector::const_iterator I = VBGlobals.VBTables->begin(),
+ E = VBGlobals.VBTables->end();
+ I != E; ++I) {
+ VBGlobals.Globals.push_back(getAddrOfVBTable(**I, RD, Linkage));
+ }
+
+ return VBGlobals;
+}
+
+llvm::Function *MicrosoftCXXABI::EmitVirtualMemPtrThunk(
+ const CXXMethodDecl *MD,
+ const MicrosoftVTableContext::MethodVFTableLocation &ML) {
+ assert(!isa<CXXConstructorDecl>(MD) && !isa<CXXDestructorDecl>(MD) &&
+ "can't form pointers to ctors or virtual dtors");
+
+ // Calculate the mangled name.
+ SmallString<256> ThunkName;
+ llvm::raw_svector_ostream Out(ThunkName);
+ getMangleContext().mangleVirtualMemPtrThunk(MD, Out);
+ Out.flush();
+
+ // If the thunk has been generated previously, just return it.
+ if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName))
+ return cast<llvm::Function>(GV);
+
+ // Create the llvm::Function.
+ const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeMSMemberPointerThunk(MD);
+ llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo);
+ llvm::Function *ThunkFn =
+ llvm::Function::Create(ThunkTy, llvm::Function::ExternalLinkage,
+ ThunkName.str(), &CGM.getModule());
+ assert(ThunkFn->getName() == ThunkName && "name was uniqued!");
+
+ ThunkFn->setLinkage(MD->isExternallyVisible()
+ ? llvm::GlobalValue::LinkOnceODRLinkage
+ : llvm::GlobalValue::InternalLinkage);
+ if (MD->isExternallyVisible())
+ ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
+
+ CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn);
+ CGM.SetLLVMFunctionAttributesForDefinition(MD, ThunkFn);
+
+ // Add the "thunk" attribute so that LLVM knows that the return type is
+ // meaningless. These thunks can be used to call functions with differing
+ // return types, and the caller is required to cast the prototype
+ // appropriately to extract the correct value.
+ ThunkFn->addFnAttr("thunk");
+
+ // These thunks can be compared, so they are not unnamed.
+ ThunkFn->setUnnamedAddr(false);
+
+ // Start codegen.
+ CodeGenFunction CGF(CGM);
+ CGF.CurGD = GlobalDecl(MD);
+ CGF.CurFuncIsThunk = true;
+
+ // Build FunctionArgs, but only include the implicit 'this' parameter
+ // declaration.
+ FunctionArgList FunctionArgs;
+ buildThisParam(CGF, FunctionArgs);
+
+ // Start defining the function.
+ CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo,
+ FunctionArgs, MD->getLocation(), SourceLocation());
+ EmitThisParam(CGF);
+
+ // Load the vfptr and then callee from the vftable. The callee should have
+ // adjusted 'this' so that the vfptr is at offset zero.
+ llvm::Value *VTable = CGF.GetVTablePtr(
+ getThisValue(CGF), ThunkTy->getPointerTo()->getPointerTo());
+ llvm::Value *VFuncPtr =
+ CGF.Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn");
+ llvm::Value *Callee = CGF.Builder.CreateLoad(VFuncPtr);
+
+ CGF.EmitMustTailThunk(MD, getThisValue(CGF), Callee);
+
+ return ThunkFn;
+}
+
+void MicrosoftCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) {
+ const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
+ for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) {
+ const VPtrInfo *VBT = (*VBGlobals.VBTables)[I];
+ llvm::GlobalVariable *GV = VBGlobals.Globals[I];
+ if (GV->isDeclaration())
+ emitVBTableDefinition(*VBT, RD, GV);
+ }
+}
+
+llvm::GlobalVariable *
+MicrosoftCXXABI::getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD,
+ llvm::GlobalVariable::LinkageTypes Linkage) {
+ SmallString<256> OutName;
+ llvm::raw_svector_ostream Out(OutName);
+ getMangleContext().mangleCXXVBTable(RD, VBT.MangledPath, Out);
+ Out.flush();
+ StringRef Name = OutName.str();
+
+ llvm::ArrayType *VBTableType =
+ llvm::ArrayType::get(CGM.IntTy, 1 + VBT.ReusingBase->getNumVBases());
+
+ assert(!CGM.getModule().getNamedGlobal(Name) &&
+ "vbtable with this name already exists: mangling bug?");
+ llvm::GlobalVariable *GV =
+ CGM.CreateOrReplaceCXXRuntimeVariable(Name, VBTableType, Linkage);
+ GV->setUnnamedAddr(true);
+
+ if (RD->hasAttr<DLLImportAttr>())
+ GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
+ else if (RD->hasAttr<DLLExportAttr>())
+ GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
+
+ if (!GV->hasExternalLinkage())
+ emitVBTableDefinition(VBT, RD, GV);
+
+ return GV;
+}
+
+void MicrosoftCXXABI::emitVBTableDefinition(const VPtrInfo &VBT,
+ const CXXRecordDecl *RD,
+ llvm::GlobalVariable *GV) const {
+ const CXXRecordDecl *ReusingBase = VBT.ReusingBase;
+
+ assert(RD->getNumVBases() && ReusingBase->getNumVBases() &&
+ "should only emit vbtables for classes with vbtables");
+
+ const ASTRecordLayout &BaseLayout =
+ getContext().getASTRecordLayout(VBT.BaseWithVPtr);
+ const ASTRecordLayout &DerivedLayout = getContext().getASTRecordLayout(RD);
+
+ SmallVector<llvm::Constant *, 4> Offsets(1 + ReusingBase->getNumVBases(),
+ nullptr);
+
+ // The offset from ReusingBase's vbptr to itself always leads.
+ CharUnits VBPtrOffset = BaseLayout.getVBPtrOffset();
+ Offsets[0] = llvm::ConstantInt::get(CGM.IntTy, -VBPtrOffset.getQuantity());
+
+ MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext();
+ for (const auto &I : ReusingBase->vbases()) {
+ const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl();
+ CharUnits Offset = DerivedLayout.getVBaseClassOffset(VBase);
+ assert(!Offset.isNegative());
+
+ // Make it relative to the subobject vbptr.
+ CharUnits CompleteVBPtrOffset = VBT.NonVirtualOffset + VBPtrOffset;
+ if (VBT.getVBaseWithVPtr())
+ CompleteVBPtrOffset +=
+ DerivedLayout.getVBaseClassOffset(VBT.getVBaseWithVPtr());
+ Offset -= CompleteVBPtrOffset;
+
+ unsigned VBIndex = Context.getVBTableIndex(ReusingBase, VBase);
+ assert(Offsets[VBIndex] == nullptr && "The same vbindex seen twice?");
+ Offsets[VBIndex] = llvm::ConstantInt::get(CGM.IntTy, Offset.getQuantity());
+ }
+
+ assert(Offsets.size() ==
+ cast<llvm::ArrayType>(cast<llvm::PointerType>(GV->getType())
+ ->getElementType())->getNumElements());
+ llvm::ArrayType *VBTableType =
+ llvm::ArrayType::get(CGM.IntTy, Offsets.size());
+ llvm::Constant *Init = llvm::ConstantArray::get(VBTableType, Offsets);
+ GV->setInitializer(Init);
+}
+
+llvm::Value *MicrosoftCXXABI::performThisAdjustment(CodeGenFunction &CGF,
+ llvm::Value *This,
+ const ThisAdjustment &TA) {
+ if (TA.isEmpty())
+ return This;
+
+ llvm::Value *V = CGF.Builder.CreateBitCast(This, CGF.Int8PtrTy);
+
+ if (!TA.Virtual.isEmpty()) {
+ assert(TA.Virtual.Microsoft.VtordispOffset < 0);
+ // Adjust the this argument based on the vtordisp value.
+ llvm::Value *VtorDispPtr =
+ CGF.Builder.CreateConstGEP1_32(V, TA.Virtual.Microsoft.VtordispOffset);
+ VtorDispPtr =
+ CGF.Builder.CreateBitCast(VtorDispPtr, CGF.Int32Ty->getPointerTo());
+ llvm::Value *VtorDisp = CGF.Builder.CreateLoad(VtorDispPtr, "vtordisp");
+ V = CGF.Builder.CreateGEP(V, CGF.Builder.CreateNeg(VtorDisp));
+
+ if (TA.Virtual.Microsoft.VBPtrOffset) {
+ // If the final overrider is defined in a virtual base other than the one
+ // that holds the vfptr, we have to use a vtordispex thunk which looks up
+ // the vbtable of the derived class.
+ assert(TA.Virtual.Microsoft.VBPtrOffset > 0);
+ assert(TA.Virtual.Microsoft.VBOffsetOffset >= 0);
+ llvm::Value *VBPtr;
+ llvm::Value *VBaseOffset =
+ GetVBaseOffsetFromVBPtr(CGF, V, -TA.Virtual.Microsoft.VBPtrOffset,
+ TA.Virtual.Microsoft.VBOffsetOffset, &VBPtr);
+ V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset);
+ }
+ }
+
+ if (TA.NonVirtual) {
+ // Non-virtual adjustment might result in a pointer outside the allocated
+ // object, e.g. if the final overrider class is laid out after the virtual
+ // base that declares a method in the most derived class.
+ V = CGF.Builder.CreateConstGEP1_32(V, TA.NonVirtual);
+ }
+
+ // Don't need to bitcast back, the call CodeGen will handle this.
+ return V;
+}
+
+llvm::Value *
+MicrosoftCXXABI::performReturnAdjustment(CodeGenFunction &CGF, llvm::Value *Ret,
+ const ReturnAdjustment &RA) {
+ if (RA.isEmpty())
+ return Ret;
+
+ llvm::Value *V = CGF.Builder.CreateBitCast(Ret, CGF.Int8PtrTy);
+
+ if (RA.Virtual.Microsoft.VBIndex) {
+ assert(RA.Virtual.Microsoft.VBIndex > 0);
+ const ASTContext &Context = getContext();
+ int32_t IntSize = Context.getTypeSizeInChars(Context.IntTy).getQuantity();
+ llvm::Value *VBPtr;
+ llvm::Value *VBaseOffset =
+ GetVBaseOffsetFromVBPtr(CGF, V, RA.Virtual.Microsoft.VBPtrOffset,
+ IntSize * RA.Virtual.Microsoft.VBIndex, &VBPtr);
+ V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset);
+ }
+
+ if (RA.NonVirtual)
+ V = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, V, RA.NonVirtual);
+
+ // Cast back to the original type.
+ return CGF.Builder.CreateBitCast(V, Ret->getType());
+}
+
+bool MicrosoftCXXABI::requiresArrayCookie(const CXXDeleteExpr *expr,
+ QualType elementType) {
+ // Microsoft seems to completely ignore the possibility of a
+ // two-argument usual deallocation function.
+ return elementType.isDestructedType();
+}
+
+bool MicrosoftCXXABI::requiresArrayCookie(const CXXNewExpr *expr) {
+ // Microsoft seems to completely ignore the possibility of a
+ // two-argument usual deallocation function.
+ return expr->getAllocatedType().isDestructedType();
+}
+
+CharUnits MicrosoftCXXABI::getArrayCookieSizeImpl(QualType type) {
+ // The array cookie is always a size_t; we then pad that out to the
+ // alignment of the element type.
+ ASTContext &Ctx = getContext();
+ return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()),
+ Ctx.getTypeAlignInChars(type));
+}
+
+llvm::Value *MicrosoftCXXABI::readArrayCookieImpl(CodeGenFunction &CGF,
+ llvm::Value *allocPtr,
+ CharUnits cookieSize) {
+ unsigned AS = allocPtr->getType()->getPointerAddressSpace();
+ llvm::Value *numElementsPtr =
+ CGF.Builder.CreateBitCast(allocPtr, CGF.SizeTy->getPointerTo(AS));
+ return CGF.Builder.CreateLoad(numElementsPtr);
+}
+
+llvm::Value* MicrosoftCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
+ llvm::Value *newPtr,
+ llvm::Value *numElements,
+ const CXXNewExpr *expr,
+ QualType elementType) {
+ assert(requiresArrayCookie(expr));
+
+ // The size of the cookie.
+ CharUnits cookieSize = getArrayCookieSizeImpl(elementType);
+
+ // Compute an offset to the cookie.
+ llvm::Value *cookiePtr = newPtr;
+
+ // Write the number of elements into the appropriate slot.
+ unsigned AS = newPtr->getType()->getPointerAddressSpace();
+ llvm::Value *numElementsPtr
+ = CGF.Builder.CreateBitCast(cookiePtr, CGF.SizeTy->getPointerTo(AS));
+ CGF.Builder.CreateStore(numElements, numElementsPtr);
+
+ // Finally, compute a pointer to the actual data buffer by skipping
+ // over the cookie completely.
+ return CGF.Builder.CreateConstInBoundsGEP1_64(newPtr,
+ cookieSize.getQuantity());
+}
+
+static void emitGlobalDtorWithTLRegDtor(CodeGenFunction &CGF, const VarDecl &VD,
+ llvm::Constant *Dtor,
+ llvm::Constant *Addr) {
+ // Create a function which calls the destructor.
+ llvm::Constant *DtorStub = CGF.createAtExitStub(VD, Dtor, Addr);
+
+ // extern "C" int __tlregdtor(void (*f)(void));
+ llvm::FunctionType *TLRegDtorTy = llvm::FunctionType::get(
+ CGF.IntTy, DtorStub->getType(), /*IsVarArg=*/false);
+
+ llvm::Constant *TLRegDtor =
+ CGF.CGM.CreateRuntimeFunction(TLRegDtorTy, "__tlregdtor");
+ if (llvm::Function *TLRegDtorFn = dyn_cast<llvm::Function>(TLRegDtor))
+ TLRegDtorFn->setDoesNotThrow();
+
+ CGF.EmitNounwindRuntimeCall(TLRegDtor, DtorStub);
+}
+
+void MicrosoftCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
+ llvm::Constant *Dtor,
+ llvm::Constant *Addr) {
+ if (D.getTLSKind())
+ return emitGlobalDtorWithTLRegDtor(CGF, D, Dtor, Addr);
+
+ // The default behavior is to use atexit.
+ CGF.registerGlobalDtorWithAtExit(D, Dtor, Addr);
+}
+
+void MicrosoftCXXABI::EmitThreadLocalInitFuncs(
+ CodeGenModule &CGM,
+ ArrayRef<std::pair<const VarDecl *, llvm::GlobalVariable *>>
+ CXXThreadLocals,
+ ArrayRef<llvm::Function *> CXXThreadLocalInits,
+ ArrayRef<llvm::GlobalVariable *> CXXThreadLocalInitVars) {
+ // This will create a GV in the .CRT$XDU section. It will point to our
+ // initialization function. The CRT will call all of these function
+ // pointers at start-up time and, eventually, at thread-creation time.
+ auto AddToXDU = [&CGM](llvm::Function *InitFunc) {
+ llvm::GlobalVariable *InitFuncPtr = new llvm::GlobalVariable(
+ CGM.getModule(), InitFunc->getType(), /*IsConstant=*/true,
+ llvm::GlobalVariable::InternalLinkage, InitFunc,
+ Twine(InitFunc->getName(), "$initializer$"));
+ InitFuncPtr->setSection(".CRT$XDU");
+ // This variable has discardable linkage, we have to add it to @llvm.used to
+ // ensure it won't get discarded.
+ CGM.addUsedGlobal(InitFuncPtr);
+ return InitFuncPtr;
+ };
+
+ std::vector<llvm::Function *> NonComdatInits;
+ for (size_t I = 0, E = CXXThreadLocalInitVars.size(); I != E; ++I) {
+ llvm::GlobalVariable *GV = CXXThreadLocalInitVars[I];
+ llvm::Function *F = CXXThreadLocalInits[I];
+
+ // If the GV is already in a comdat group, then we have to join it.
+ if (llvm::Comdat *C = GV->getComdat())
+ AddToXDU(F)->setComdat(C);
+ else
+ NonComdatInits.push_back(F);
+ }
+
+ if (!NonComdatInits.empty()) {
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
+ llvm::Function *InitFunc = CGM.CreateGlobalInitOrDestructFunction(
+ FTy, "__tls_init", SourceLocation(),
+ /*TLS=*/true);
+ CodeGenFunction(CGM).GenerateCXXGlobalInitFunc(InitFunc, NonComdatInits);
+
+ AddToXDU(InitFunc);
+ }
+}
+
+LValue MicrosoftCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF,
+ const VarDecl *VD,
+ QualType LValType) {
+ CGF.CGM.ErrorUnsupported(VD, "thread wrappers");
+ return LValue();
+}
+
+static llvm::GlobalVariable *getInitThreadEpochPtr(CodeGenModule &CGM) {
+ StringRef VarName("_Init_thread_epoch");
+ if (auto *GV = CGM.getModule().getNamedGlobal(VarName))
+ return GV;
+ auto *GV = new llvm::GlobalVariable(
+ CGM.getModule(), CGM.IntTy,
+ /*Constant=*/false, llvm::GlobalVariable::ExternalLinkage,
+ /*Initializer=*/nullptr, VarName,
+ /*InsertBefore=*/nullptr, llvm::GlobalVariable::GeneralDynamicTLSModel);
+ GV->setAlignment(CGM.getTarget().getIntAlign() / 8);
+ return GV;
+}
+
+static llvm::Constant *getInitThreadHeaderFn(CodeGenModule &CGM) {
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
+ CGM.IntTy->getPointerTo(), /*isVarArg=*/false);
+ return CGM.CreateRuntimeFunction(
+ FTy, "_Init_thread_header",
+ llvm::AttributeSet::get(CGM.getLLVMContext(),
+ llvm::AttributeSet::FunctionIndex,
+ llvm::Attribute::NoUnwind));
+}
+
+static llvm::Constant *getInitThreadFooterFn(CodeGenModule &CGM) {
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
+ CGM.IntTy->getPointerTo(), /*isVarArg=*/false);
+ return CGM.CreateRuntimeFunction(
+ FTy, "_Init_thread_footer",
+ llvm::AttributeSet::get(CGM.getLLVMContext(),
+ llvm::AttributeSet::FunctionIndex,
+ llvm::Attribute::NoUnwind));
+}
+
+static llvm::Constant *getInitThreadAbortFn(CodeGenModule &CGM) {
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
+ CGM.IntTy->getPointerTo(), /*isVarArg=*/false);
+ return CGM.CreateRuntimeFunction(
+ FTy, "_Init_thread_abort",
+ llvm::AttributeSet::get(CGM.getLLVMContext(),
+ llvm::AttributeSet::FunctionIndex,
+ llvm::Attribute::NoUnwind));
+}
+
+namespace {
+struct ResetGuardBit : EHScopeStack::Cleanup {
+ llvm::GlobalVariable *Guard;
+ unsigned GuardNum;
+ ResetGuardBit(llvm::GlobalVariable *Guard, unsigned GuardNum)
+ : Guard(Guard), GuardNum(GuardNum) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ // Reset the bit in the mask so that the static variable may be
+ // reinitialized.
+ CGBuilderTy &Builder = CGF.Builder;
+ llvm::LoadInst *LI = Builder.CreateLoad(Guard);
+ llvm::ConstantInt *Mask =
+ llvm::ConstantInt::get(CGF.IntTy, ~(1U << GuardNum));
+ Builder.CreateStore(Builder.CreateAnd(LI, Mask), Guard);
+ }
+};
+
+struct CallInitThreadAbort : EHScopeStack::Cleanup {
+ llvm::GlobalVariable *Guard;
+ CallInitThreadAbort(llvm::GlobalVariable *Guard) : Guard(Guard) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ // Calling _Init_thread_abort will reset the guard's state.
+ CGF.EmitNounwindRuntimeCall(getInitThreadAbortFn(CGF.CGM), Guard);
+ }
+};
+}
+
+void MicrosoftCXXABI::EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
+ llvm::GlobalVariable *GV,
+ bool PerformInit) {
+ // MSVC only uses guards for static locals.
+ if (!D.isStaticLocal()) {
+ assert(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage());
+ // GlobalOpt is allowed to discard the initializer, so use linkonce_odr.
+ llvm::Function *F = CGF.CurFn;
+ F->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
+ F->setComdat(CGM.getModule().getOrInsertComdat(F->getName()));
+ CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
+ return;
+ }
+
+ bool ThreadlocalStatic = D.getTLSKind();
+ bool ThreadsafeStatic = getContext().getLangOpts().ThreadsafeStatics;
+
+ // Thread-safe static variables which aren't thread-specific have a
+ // per-variable guard.
+ bool HasPerVariableGuard = ThreadsafeStatic && !ThreadlocalStatic;
+
+ CGBuilderTy &Builder = CGF.Builder;
+ llvm::IntegerType *GuardTy = CGF.Int32Ty;
+ llvm::ConstantInt *Zero = llvm::ConstantInt::get(GuardTy, 0);
+
+ // Get the guard variable for this function if we have one already.
+ GuardInfo *GI = nullptr;
+ if (ThreadlocalStatic)
+ GI = &ThreadLocalGuardVariableMap[D.getDeclContext()];
+ else if (!ThreadsafeStatic)
+ GI = &GuardVariableMap[D.getDeclContext()];
+
+ llvm::GlobalVariable *GuardVar = GI ? GI->Guard : nullptr;
+ unsigned GuardNum;
+ if (D.isExternallyVisible()) {
+ // Externally visible variables have to be numbered in Sema to properly
+ // handle unreachable VarDecls.
+ GuardNum = getContext().getStaticLocalNumber(&D);
+ assert(GuardNum > 0);
+ GuardNum--;
+ } else if (HasPerVariableGuard) {
+ GuardNum = ThreadSafeGuardNumMap[D.getDeclContext()]++;
+ } else {
+ // Non-externally visible variables are numbered here in CodeGen.
+ GuardNum = GI->BitIndex++;
+ }
+
+ if (!HasPerVariableGuard && GuardNum >= 32) {
+ if (D.isExternallyVisible())
+ ErrorUnsupportedABI(CGF, "more than 32 guarded initializations");
+ GuardNum %= 32;
+ GuardVar = nullptr;
+ }
+
+ if (!GuardVar) {
+ // Mangle the name for the guard.
+ SmallString<256> GuardName;
+ {
+ llvm::raw_svector_ostream Out(GuardName);
+ if (HasPerVariableGuard)
+ getMangleContext().mangleThreadSafeStaticGuardVariable(&D, GuardNum,
+ Out);
+ else
+ getMangleContext().mangleStaticGuardVariable(&D, Out);
+ Out.flush();
+ }
+
+ // Create the guard variable with a zero-initializer. Just absorb linkage,
+ // visibility and dll storage class from the guarded variable.
+ GuardVar =
+ new llvm::GlobalVariable(CGM.getModule(), GuardTy, /*isConstant=*/false,
+ GV->getLinkage(), Zero, GuardName.str());
+ GuardVar->setVisibility(GV->getVisibility());
+ GuardVar->setDLLStorageClass(GV->getDLLStorageClass());
+ if (GuardVar->isWeakForLinker())
+ GuardVar->setComdat(
+ CGM.getModule().getOrInsertComdat(GuardVar->getName()));
+ if (D.getTLSKind())
+ GuardVar->setThreadLocal(true);
+ if (GI && !HasPerVariableGuard)
+ GI->Guard = GuardVar;
+ }
+
+ assert(GuardVar->getLinkage() == GV->getLinkage() &&
+ "static local from the same function had different linkage");
+
+ if (!HasPerVariableGuard) {
+ // Pseudo code for the test:
+ // if (!(GuardVar & MyGuardBit)) {
+ // GuardVar |= MyGuardBit;
+ // ... initialize the object ...;
+ // }
+
+ // Test our bit from the guard variable.
+ llvm::ConstantInt *Bit = llvm::ConstantInt::get(GuardTy, 1U << GuardNum);
+ llvm::LoadInst *LI = Builder.CreateLoad(GuardVar);
+ llvm::Value *IsInitialized =
+ Builder.CreateICmpNE(Builder.CreateAnd(LI, Bit), Zero);
+ llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
+ llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
+ Builder.CreateCondBr(IsInitialized, EndBlock, InitBlock);
+
+ // Set our bit in the guard variable and emit the initializer and add a global
+ // destructor if appropriate.
+ CGF.EmitBlock(InitBlock);
+ Builder.CreateStore(Builder.CreateOr(LI, Bit), GuardVar);
+ CGF.EHStack.pushCleanup<ResetGuardBit>(EHCleanup, GuardVar, GuardNum);
+ CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
+ CGF.PopCleanupBlock();
+ Builder.CreateBr(EndBlock);
+
+ // Continue.
+ CGF.EmitBlock(EndBlock);
+ } else {
+ // Pseudo code for the test:
+ // if (TSS > _Init_thread_epoch) {
+ // _Init_thread_header(&TSS);
+ // if (TSS == -1) {
+ // ... initialize the object ...;
+ // _Init_thread_footer(&TSS);
+ // }
+ // }
+ //
+ // The algorithm is almost identical to what can be found in the appendix
+ // found in N2325.
+
+ unsigned IntAlign = CGM.getTarget().getIntAlign() / 8;
+
+ // This BasicBLock determines whether or not we have any work to do.
+ llvm::LoadInst *FirstGuardLoad =
+ Builder.CreateAlignedLoad(GuardVar, IntAlign);
+ FirstGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered);
+ llvm::LoadInst *InitThreadEpoch =
+ Builder.CreateLoad(getInitThreadEpochPtr(CGM));
+ llvm::Value *IsUninitialized =
+ Builder.CreateICmpSGT(FirstGuardLoad, InitThreadEpoch);
+ llvm::BasicBlock *AttemptInitBlock = CGF.createBasicBlock("init.attempt");
+ llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
+ Builder.CreateCondBr(IsUninitialized, AttemptInitBlock, EndBlock);
+
+ // This BasicBlock attempts to determine whether or not this thread is
+ // responsible for doing the initialization.
+ CGF.EmitBlock(AttemptInitBlock);
+ CGF.EmitNounwindRuntimeCall(getInitThreadHeaderFn(CGM), GuardVar);
+ llvm::LoadInst *SecondGuardLoad =
+ Builder.CreateAlignedLoad(GuardVar, IntAlign);
+ SecondGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered);
+ llvm::Value *ShouldDoInit =
+ Builder.CreateICmpEQ(SecondGuardLoad, getAllOnesInt());
+ llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
+ Builder.CreateCondBr(ShouldDoInit, InitBlock, EndBlock);
+
+ // Ok, we ended up getting selected as the initializing thread.
+ CGF.EmitBlock(InitBlock);
+ CGF.EHStack.pushCleanup<CallInitThreadAbort>(EHCleanup, GuardVar);
+ CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
+ CGF.PopCleanupBlock();
+ CGF.EmitNounwindRuntimeCall(getInitThreadFooterFn(CGM), GuardVar);
+ Builder.CreateBr(EndBlock);
+
+ CGF.EmitBlock(EndBlock);
+ }
+}
+
+bool MicrosoftCXXABI::isZeroInitializable(const MemberPointerType *MPT) {
+ // Null-ness for function memptrs only depends on the first field, which is
+ // the function pointer. The rest don't matter, so we can zero initialize.
+ if (MPT->isMemberFunctionPointer())
+ return true;
+
+ // The virtual base adjustment field is always -1 for null, so if we have one
+ // we can't zero initialize. The field offset is sometimes also -1 if 0 is a
+ // valid field offset.
+ const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
+ MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
+ return (!MSInheritanceAttr::hasVBTableOffsetField(Inheritance) &&
+ RD->nullFieldOffsetIsZero());
+}
+
+llvm::Type *
+MicrosoftCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) {
+ const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
+ MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
+ llvm::SmallVector<llvm::Type *, 4> fields;
+ if (MPT->isMemberFunctionPointer())
+ fields.push_back(CGM.VoidPtrTy); // FunctionPointerOrVirtualThunk
+ else
+ fields.push_back(CGM.IntTy); // FieldOffset
+
+ if (MSInheritanceAttr::hasNVOffsetField(MPT->isMemberFunctionPointer(),
+ Inheritance))
+ fields.push_back(CGM.IntTy);
+ if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
+ fields.push_back(CGM.IntTy);
+ if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
+ fields.push_back(CGM.IntTy); // VirtualBaseAdjustmentOffset
+
+ if (fields.size() == 1)
+ return fields[0];
+ return llvm::StructType::get(CGM.getLLVMContext(), fields);
+}
+
+void MicrosoftCXXABI::
+GetNullMemberPointerFields(const MemberPointerType *MPT,
+ llvm::SmallVectorImpl<llvm::Constant *> &fields) {
+ assert(fields.empty());
+ const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
+ MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
+ if (MPT->isMemberFunctionPointer()) {
+ // FunctionPointerOrVirtualThunk
+ fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy));
+ } else {
+ if (RD->nullFieldOffsetIsZero())
+ fields.push_back(getZeroInt()); // FieldOffset
+ else
+ fields.push_back(getAllOnesInt()); // FieldOffset
+ }
+
+ if (MSInheritanceAttr::hasNVOffsetField(MPT->isMemberFunctionPointer(),
+ Inheritance))
+ fields.push_back(getZeroInt());
+ if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
+ fields.push_back(getZeroInt());
+ if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
+ fields.push_back(getAllOnesInt());
+}
+
+llvm::Constant *
+MicrosoftCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) {
+ llvm::SmallVector<llvm::Constant *, 4> fields;
+ GetNullMemberPointerFields(MPT, fields);
+ if (fields.size() == 1)
+ return fields[0];
+ llvm::Constant *Res = llvm::ConstantStruct::getAnon(fields);
+ assert(Res->getType() == ConvertMemberPointerType(MPT));
+ return Res;
+}
+
+llvm::Constant *
+MicrosoftCXXABI::EmitFullMemberPointer(llvm::Constant *FirstField,
+ bool IsMemberFunction,
+ const CXXRecordDecl *RD,
+ CharUnits NonVirtualBaseAdjustment,
+ unsigned VBTableIndex) {
+ MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
+
+ // Single inheritance class member pointer are represented as scalars instead
+ // of aggregates.
+ if (MSInheritanceAttr::hasOnlyOneField(IsMemberFunction, Inheritance))
+ return FirstField;
+
+ llvm::SmallVector<llvm::Constant *, 4> fields;
+ fields.push_back(FirstField);
+
+ if (MSInheritanceAttr::hasNVOffsetField(IsMemberFunction, Inheritance))
+ fields.push_back(llvm::ConstantInt::get(
+ CGM.IntTy, NonVirtualBaseAdjustment.getQuantity()));
+
+ if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance)) {
+ CharUnits Offs = CharUnits::Zero();
+ if (RD->getNumVBases())
+ Offs = getContext().getASTRecordLayout(RD).getVBPtrOffset();
+ fields.push_back(llvm::ConstantInt::get(CGM.IntTy, Offs.getQuantity()));
+ }
+
+ // The rest of the fields are adjusted by conversions to a more derived class.
+ if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
+ fields.push_back(llvm::ConstantInt::get(CGM.IntTy, VBTableIndex));
+
+ return llvm::ConstantStruct::getAnon(fields);
+}
+
+llvm::Constant *
+MicrosoftCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT,
+ CharUnits offset) {
+ const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
+ llvm::Constant *FirstField =
+ llvm::ConstantInt::get(CGM.IntTy, offset.getQuantity());
+ return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/false, RD,
+ CharUnits::Zero(), /*VBTableIndex=*/0);
+}
+
+llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const CXXMethodDecl *MD) {
+ return BuildMemberPointer(MD->getParent(), MD, CharUnits::Zero());
+}
+
+llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const APValue &MP,
+ QualType MPType) {
+ const MemberPointerType *MPT = MPType->castAs<MemberPointerType>();
+ const ValueDecl *MPD = MP.getMemberPointerDecl();
+ if (!MPD)
+ return EmitNullMemberPointer(MPT);
+
+ CharUnits ThisAdjustment = getMemberPointerPathAdjustment(MP);
+
+ // FIXME PR15713: Support virtual inheritance paths.
+
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD))
+ return BuildMemberPointer(MPT->getMostRecentCXXRecordDecl(), MD,
+ ThisAdjustment);
+
+ CharUnits FieldOffset =
+ getContext().toCharUnitsFromBits(getContext().getFieldOffset(MPD));
+ return EmitMemberDataPointer(MPT, ThisAdjustment + FieldOffset);
+}
+
+llvm::Constant *
+MicrosoftCXXABI::BuildMemberPointer(const CXXRecordDecl *RD,
+ const CXXMethodDecl *MD,
+ CharUnits NonVirtualBaseAdjustment) {
+ assert(MD->isInstance() && "Member function must not be static!");
+ MD = MD->getCanonicalDecl();
+ RD = RD->getMostRecentDecl();
+ CodeGenTypes &Types = CGM.getTypes();
+
+ unsigned VBTableIndex = 0;
+ llvm::Constant *FirstField;
+ const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
+ if (!MD->isVirtual()) {
+ llvm::Type *Ty;
+ // Check whether the function has a computable LLVM signature.
+ if (Types.isFuncTypeConvertible(FPT)) {
+ // The function has a computable LLVM signature; use the correct type.
+ Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD));
+ } else {
+ // Use an arbitrary non-function type to tell GetAddrOfFunction that the
+ // function type is incomplete.
+ Ty = CGM.PtrDiffTy;
+ }
+ FirstField = CGM.GetAddrOfFunction(MD, Ty);
+ FirstField = llvm::ConstantExpr::getBitCast(FirstField, CGM.VoidPtrTy);
+ } else {
+ if (!CGM.getTypes().isFuncTypeConvertible(
+ MD->getType()->castAs<FunctionType>())) {
+ CGM.ErrorUnsupported(MD, "pointer to virtual member function with "
+ "incomplete return or parameter type");
+ FirstField = llvm::Constant::getNullValue(CGM.VoidPtrTy);
+ } else if (FPT->getCallConv() == CC_X86FastCall) {
+ CGM.ErrorUnsupported(MD, "pointer to fastcall virtual member function");
+ FirstField = llvm::Constant::getNullValue(CGM.VoidPtrTy);
+ } else {
+ auto &VTableContext = CGM.getMicrosoftVTableContext();
+ MicrosoftVTableContext::MethodVFTableLocation ML =
+ VTableContext.getMethodVFTableLocation(MD);
+ llvm::Function *Thunk = EmitVirtualMemPtrThunk(MD, ML);
+ FirstField = llvm::ConstantExpr::getBitCast(Thunk, CGM.VoidPtrTy);
+ // Include the vfptr adjustment if the method is in a non-primary vftable.
+ NonVirtualBaseAdjustment += ML.VFPtrOffset;
+ if (ML.VBase)
+ VBTableIndex = VTableContext.getVBTableIndex(RD, ML.VBase) * 4;
+ }
+ }
+
+ // The rest of the fields are common with data member pointers.
+ return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/true, RD,
+ NonVirtualBaseAdjustment, VBTableIndex);
+}
+
+/// Member pointers are the same if they're either bitwise identical *or* both
+/// null. Null-ness for function members is determined by the first field,
+/// while for data member pointers we must compare all fields.
+llvm::Value *
+MicrosoftCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF,
+ llvm::Value *L,
+ llvm::Value *R,
+ const MemberPointerType *MPT,
+ bool Inequality) {
+ CGBuilderTy &Builder = CGF.Builder;
+
+ // Handle != comparisons by switching the sense of all boolean operations.
+ llvm::ICmpInst::Predicate Eq;
+ llvm::Instruction::BinaryOps And, Or;
+ if (Inequality) {
+ Eq = llvm::ICmpInst::ICMP_NE;
+ And = llvm::Instruction::Or;
+ Or = llvm::Instruction::And;
+ } else {
+ Eq = llvm::ICmpInst::ICMP_EQ;
+ And = llvm::Instruction::And;
+ Or = llvm::Instruction::Or;
+ }
+
+ // If this is a single field member pointer (single inheritance), this is a
+ // single icmp.
+ const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
+ MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
+ if (MSInheritanceAttr::hasOnlyOneField(MPT->isMemberFunctionPointer(),
+ Inheritance))
+ return Builder.CreateICmp(Eq, L, R);
+
+ // Compare the first field.
+ llvm::Value *L0 = Builder.CreateExtractValue(L, 0, "lhs.0");
+ llvm::Value *R0 = Builder.CreateExtractValue(R, 0, "rhs.0");
+ llvm::Value *Cmp0 = Builder.CreateICmp(Eq, L0, R0, "memptr.cmp.first");
+
+ // Compare everything other than the first field.
+ llvm::Value *Res = nullptr;
+ llvm::StructType *LType = cast<llvm::StructType>(L->getType());
+ for (unsigned I = 1, E = LType->getNumElements(); I != E; ++I) {
+ llvm::Value *LF = Builder.CreateExtractValue(L, I);
+ llvm::Value *RF = Builder.CreateExtractValue(R, I);
+ llvm::Value *Cmp = Builder.CreateICmp(Eq, LF, RF, "memptr.cmp.rest");
+ if (Res)
+ Res = Builder.CreateBinOp(And, Res, Cmp);
+ else
+ Res = Cmp;
+ }
+
+ // Check if the first field is 0 if this is a function pointer.
+ if (MPT->isMemberFunctionPointer()) {
+ // (l1 == r1 && ...) || l0 == 0
+ llvm::Value *Zero = llvm::Constant::getNullValue(L0->getType());
+ llvm::Value *IsZero = Builder.CreateICmp(Eq, L0, Zero, "memptr.cmp.iszero");
+ Res = Builder.CreateBinOp(Or, Res, IsZero);
+ }
+
+ // Combine the comparison of the first field, which must always be true for
+ // this comparison to succeeed.
+ return Builder.CreateBinOp(And, Res, Cmp0, "memptr.cmp");
+}
+
+llvm::Value *
+MicrosoftCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
+ llvm::Value *MemPtr,
+ const MemberPointerType *MPT) {
+ CGBuilderTy &Builder = CGF.Builder;
+ llvm::SmallVector<llvm::Constant *, 4> fields;
+ // We only need one field for member functions.
+ if (MPT->isMemberFunctionPointer())
+ fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy));
+ else
+ GetNullMemberPointerFields(MPT, fields);
+ assert(!fields.empty());
+ llvm::Value *FirstField = MemPtr;
+ if (MemPtr->getType()->isStructTy())
+ FirstField = Builder.CreateExtractValue(MemPtr, 0);
+ llvm::Value *Res = Builder.CreateICmpNE(FirstField, fields[0], "memptr.cmp0");
+
+ // For function member pointers, we only need to test the function pointer
+ // field. The other fields if any can be garbage.
+ if (MPT->isMemberFunctionPointer())
+ return Res;
+
+ // Otherwise, emit a series of compares and combine the results.
+ for (int I = 1, E = fields.size(); I < E; ++I) {
+ llvm::Value *Field = Builder.CreateExtractValue(MemPtr, I);
+ llvm::Value *Next = Builder.CreateICmpNE(Field, fields[I], "memptr.cmp");
+ Res = Builder.CreateOr(Res, Next, "memptr.tobool");
+ }
+ return Res;
+}
+
+bool MicrosoftCXXABI::MemberPointerConstantIsNull(const MemberPointerType *MPT,
+ llvm::Constant *Val) {
+ // Function pointers are null if the pointer in the first field is null.
+ if (MPT->isMemberFunctionPointer()) {
+ llvm::Constant *FirstField = Val->getType()->isStructTy() ?
+ Val->getAggregateElement(0U) : Val;
+ return FirstField->isNullValue();
+ }
+
+ // If it's not a function pointer and it's zero initializable, we can easily
+ // check zero.
+ if (isZeroInitializable(MPT) && Val->isNullValue())
+ return true;
+
+ // Otherwise, break down all the fields for comparison. Hopefully these
+ // little Constants are reused, while a big null struct might not be.
+ llvm::SmallVector<llvm::Constant *, 4> Fields;
+ GetNullMemberPointerFields(MPT, Fields);
+ if (Fields.size() == 1) {
+ assert(Val->getType()->isIntegerTy());
+ return Val == Fields[0];
+ }
+
+ unsigned I, E;
+ for (I = 0, E = Fields.size(); I != E; ++I) {
+ if (Val->getAggregateElement(I) != Fields[I])
+ break;
+ }
+ return I == E;
+}
+
+llvm::Value *
+MicrosoftCXXABI::GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
+ llvm::Value *This,
+ llvm::Value *VBPtrOffset,
+ llvm::Value *VBTableOffset,
+ llvm::Value **VBPtrOut) {
+ CGBuilderTy &Builder = CGF.Builder;
+ // Load the vbtable pointer from the vbptr in the instance.
+ This = Builder.CreateBitCast(This, CGM.Int8PtrTy);
+ llvm::Value *VBPtr =
+ Builder.CreateInBoundsGEP(This, VBPtrOffset, "vbptr");
+ if (VBPtrOut) *VBPtrOut = VBPtr;
+ VBPtr = Builder.CreateBitCast(VBPtr,
+ CGM.Int32Ty->getPointerTo(0)->getPointerTo(0));
+ llvm::Value *VBTable = Builder.CreateLoad(VBPtr, "vbtable");
+
+ // Translate from byte offset to table index. It improves analyzability.
+ llvm::Value *VBTableIndex = Builder.CreateAShr(
+ VBTableOffset, llvm::ConstantInt::get(VBTableOffset->getType(), 2),
+ "vbtindex", /*isExact=*/true);
+
+ // Load an i32 offset from the vb-table.
+ llvm::Value *VBaseOffs = Builder.CreateInBoundsGEP(VBTable, VBTableIndex);
+ VBaseOffs = Builder.CreateBitCast(VBaseOffs, CGM.Int32Ty->getPointerTo(0));
+ return Builder.CreateLoad(VBaseOffs, "vbase_offs");
+}
+
+// Returns an adjusted base cast to i8*, since we do more address arithmetic on
+// it.
+llvm::Value *MicrosoftCXXABI::AdjustVirtualBase(
+ CodeGenFunction &CGF, const Expr *E, const CXXRecordDecl *RD,
+ llvm::Value *Base, llvm::Value *VBTableOffset, llvm::Value *VBPtrOffset) {
+ CGBuilderTy &Builder = CGF.Builder;
+ Base = Builder.CreateBitCast(Base, CGM.Int8PtrTy);
+ llvm::BasicBlock *OriginalBB = nullptr;
+ llvm::BasicBlock *SkipAdjustBB = nullptr;
+ llvm::BasicBlock *VBaseAdjustBB = nullptr;
+
+ // In the unspecified inheritance model, there might not be a vbtable at all,
+ // in which case we need to skip the virtual base lookup. If there is a
+ // vbtable, the first entry is a no-op entry that gives back the original
+ // base, so look for a virtual base adjustment offset of zero.
+ if (VBPtrOffset) {
+ OriginalBB = Builder.GetInsertBlock();
+ VBaseAdjustBB = CGF.createBasicBlock("memptr.vadjust");
+ SkipAdjustBB = CGF.createBasicBlock("memptr.skip_vadjust");
+ llvm::Value *IsVirtual =
+ Builder.CreateICmpNE(VBTableOffset, getZeroInt(),
+ "memptr.is_vbase");
+ Builder.CreateCondBr(IsVirtual, VBaseAdjustBB, SkipAdjustBB);
+ CGF.EmitBlock(VBaseAdjustBB);
+ }
+
+ // If we weren't given a dynamic vbptr offset, RD should be complete and we'll
+ // know the vbptr offset.
+ if (!VBPtrOffset) {
+ CharUnits offs = CharUnits::Zero();
+ if (!RD->hasDefinition()) {
+ DiagnosticsEngine &Diags = CGF.CGM.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(
+ DiagnosticsEngine::Error,
+ "member pointer representation requires a "
+ "complete class type for %0 to perform this expression");
+ Diags.Report(E->getExprLoc(), DiagID) << RD << E->getSourceRange();
+ } else if (RD->getNumVBases())
+ offs = getContext().getASTRecordLayout(RD).getVBPtrOffset();
+ VBPtrOffset = llvm::ConstantInt::get(CGM.IntTy, offs.getQuantity());
+ }
+ llvm::Value *VBPtr = nullptr;
+ llvm::Value *VBaseOffs =
+ GetVBaseOffsetFromVBPtr(CGF, Base, VBPtrOffset, VBTableOffset, &VBPtr);
+ llvm::Value *AdjustedBase = Builder.CreateInBoundsGEP(VBPtr, VBaseOffs);
+
+ // Merge control flow with the case where we didn't have to adjust.
+ if (VBaseAdjustBB) {
+ Builder.CreateBr(SkipAdjustBB);
+ CGF.EmitBlock(SkipAdjustBB);
+ llvm::PHINode *Phi = Builder.CreatePHI(CGM.Int8PtrTy, 2, "memptr.base");
+ Phi->addIncoming(Base, OriginalBB);
+ Phi->addIncoming(AdjustedBase, VBaseAdjustBB);
+ return Phi;
+ }
+ return AdjustedBase;
+}
+
+llvm::Value *MicrosoftCXXABI::EmitMemberDataPointerAddress(
+ CodeGenFunction &CGF, const Expr *E, llvm::Value *Base, llvm::Value *MemPtr,
+ const MemberPointerType *MPT) {
+ assert(MPT->isMemberDataPointer());
+ unsigned AS = Base->getType()->getPointerAddressSpace();
+ llvm::Type *PType =
+ CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS);
+ CGBuilderTy &Builder = CGF.Builder;
+ const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
+ MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
+
+ // Extract the fields we need, regardless of model. We'll apply them if we
+ // have them.
+ llvm::Value *FieldOffset = MemPtr;
+ llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
+ llvm::Value *VBPtrOffset = nullptr;
+ if (MemPtr->getType()->isStructTy()) {
+ // We need to extract values.
+ unsigned I = 0;
+ FieldOffset = Builder.CreateExtractValue(MemPtr, I++);
+ if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
+ VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++);
+ if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
+ VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++);
+ }
+
+ if (VirtualBaseAdjustmentOffset) {
+ Base = AdjustVirtualBase(CGF, E, RD, Base, VirtualBaseAdjustmentOffset,
+ VBPtrOffset);
+ }
+
+ // Cast to char*.
+ Base = Builder.CreateBitCast(Base, Builder.getInt8Ty()->getPointerTo(AS));
+
+ // Apply the offset, which we assume is non-null.
+ llvm::Value *Addr =
+ Builder.CreateInBoundsGEP(Base, FieldOffset, "memptr.offset");
+
+ // Cast the address to the appropriate pointer type, adopting the address
+ // space of the base pointer.
+ return Builder.CreateBitCast(Addr, PType);
+}
+
+static MSInheritanceAttr::Spelling
+getInheritanceFromMemptr(const MemberPointerType *MPT) {
+ return MPT->getMostRecentCXXRecordDecl()->getMSInheritanceModel();
+}
+
+llvm::Value *
+MicrosoftCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF,
+ const CastExpr *E,
+ llvm::Value *Src) {
+ assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
+ E->getCastKind() == CK_BaseToDerivedMemberPointer ||
+ E->getCastKind() == CK_ReinterpretMemberPointer);
+
+ // Use constant emission if we can.
+ if (isa<llvm::Constant>(Src))
+ return EmitMemberPointerConversion(E, cast<llvm::Constant>(Src));
+
+ // We may be adding or dropping fields from the member pointer, so we need
+ // both types and the inheritance models of both records.
+ const MemberPointerType *SrcTy =
+ E->getSubExpr()->getType()->castAs<MemberPointerType>();
+ const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>();
+ bool IsFunc = SrcTy->isMemberFunctionPointer();
+
+ // If the classes use the same null representation, reinterpret_cast is a nop.
+ bool IsReinterpret = E->getCastKind() == CK_ReinterpretMemberPointer;
+ if (IsReinterpret && IsFunc)
+ return Src;
+
+ CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl();
+ CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl();
+ if (IsReinterpret &&
+ SrcRD->nullFieldOffsetIsZero() == DstRD->nullFieldOffsetIsZero())
+ return Src;
+
+ CGBuilderTy &Builder = CGF.Builder;
+
+ // Branch past the conversion if Src is null.
+ llvm::Value *IsNotNull = EmitMemberPointerIsNotNull(CGF, Src, SrcTy);
+ llvm::Constant *DstNull = EmitNullMemberPointer(DstTy);
+
+ // C++ 5.2.10p9: The null member pointer value is converted to the null member
+ // pointer value of the destination type.
+ if (IsReinterpret) {
+ // For reinterpret casts, sema ensures that src and dst are both functions
+ // or data and have the same size, which means the LLVM types should match.
+ assert(Src->getType() == DstNull->getType());
+ return Builder.CreateSelect(IsNotNull, Src, DstNull);
+ }
+
+ llvm::BasicBlock *OriginalBB = Builder.GetInsertBlock();
+ llvm::BasicBlock *ConvertBB = CGF.createBasicBlock("memptr.convert");
+ llvm::BasicBlock *ContinueBB = CGF.createBasicBlock("memptr.converted");
+ Builder.CreateCondBr(IsNotNull, ConvertBB, ContinueBB);
+ CGF.EmitBlock(ConvertBB);
+
+ // Decompose src.
+ llvm::Value *FirstField = Src;
+ llvm::Value *NonVirtualBaseAdjustment = nullptr;
+ llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
+ llvm::Value *VBPtrOffset = nullptr;
+ MSInheritanceAttr::Spelling SrcInheritance = SrcRD->getMSInheritanceModel();
+ if (!MSInheritanceAttr::hasOnlyOneField(IsFunc, SrcInheritance)) {
+ // We need to extract values.
+ unsigned I = 0;
+ FirstField = Builder.CreateExtractValue(Src, I++);
+ if (MSInheritanceAttr::hasNVOffsetField(IsFunc, SrcInheritance))
+ NonVirtualBaseAdjustment = Builder.CreateExtractValue(Src, I++);
+ if (MSInheritanceAttr::hasVBPtrOffsetField(SrcInheritance))
+ VBPtrOffset = Builder.CreateExtractValue(Src, I++);
+ if (MSInheritanceAttr::hasVBTableOffsetField(SrcInheritance))
+ VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Src, I++);
+ }
+
+ // For data pointers, we adjust the field offset directly. For functions, we
+ // have a separate field.
+ llvm::Constant *Adj = getMemberPointerAdjustment(E);
+ if (Adj) {
+ Adj = llvm::ConstantExpr::getTruncOrBitCast(Adj, CGM.IntTy);
+ llvm::Value *&NVAdjustField = IsFunc ? NonVirtualBaseAdjustment : FirstField;
+ bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer);
+ if (!NVAdjustField) // If this field didn't exist in src, it's zero.
+ NVAdjustField = getZeroInt();
+ if (isDerivedToBase)
+ NVAdjustField = Builder.CreateNSWSub(NVAdjustField, Adj, "adj");
+ else
+ NVAdjustField = Builder.CreateNSWAdd(NVAdjustField, Adj, "adj");
+ }
+
+ // FIXME PR15713: Support conversions through virtually derived classes.
+
+ // Recompose dst from the null struct and the adjusted fields from src.
+ MSInheritanceAttr::Spelling DstInheritance = DstRD->getMSInheritanceModel();
+ llvm::Value *Dst;
+ if (MSInheritanceAttr::hasOnlyOneField(IsFunc, DstInheritance)) {
+ Dst = FirstField;
+ } else {
+ Dst = llvm::UndefValue::get(DstNull->getType());
+ unsigned Idx = 0;
+ Dst = Builder.CreateInsertValue(Dst, FirstField, Idx++);
+ if (MSInheritanceAttr::hasNVOffsetField(IsFunc, DstInheritance))
+ Dst = Builder.CreateInsertValue(
+ Dst, getValueOrZeroInt(NonVirtualBaseAdjustment), Idx++);
+ if (MSInheritanceAttr::hasVBPtrOffsetField(DstInheritance))
+ Dst = Builder.CreateInsertValue(
+ Dst, getValueOrZeroInt(VBPtrOffset), Idx++);
+ if (MSInheritanceAttr::hasVBTableOffsetField(DstInheritance))
+ Dst = Builder.CreateInsertValue(
+ Dst, getValueOrZeroInt(VirtualBaseAdjustmentOffset), Idx++);
+ }
+ Builder.CreateBr(ContinueBB);
+
+ // In the continuation, choose between DstNull and Dst.
+ CGF.EmitBlock(ContinueBB);
+ llvm::PHINode *Phi = Builder.CreatePHI(DstNull->getType(), 2, "memptr.converted");
+ Phi->addIncoming(DstNull, OriginalBB);
+ Phi->addIncoming(Dst, ConvertBB);
+ return Phi;
+}
+
+llvm::Constant *
+MicrosoftCXXABI::EmitMemberPointerConversion(const CastExpr *E,
+ llvm::Constant *Src) {
+ const MemberPointerType *SrcTy =
+ E->getSubExpr()->getType()->castAs<MemberPointerType>();
+ const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>();
+
+ // If src is null, emit a new null for dst. We can't return src because dst
+ // might have a new representation.
+ if (MemberPointerConstantIsNull(SrcTy, Src))
+ return EmitNullMemberPointer(DstTy);
+
+ // We don't need to do anything for reinterpret_casts of non-null member
+ // pointers. We should only get here when the two type representations have
+ // the same size.
+ if (E->getCastKind() == CK_ReinterpretMemberPointer)
+ return Src;
+
+ MSInheritanceAttr::Spelling SrcInheritance = getInheritanceFromMemptr(SrcTy);
+ MSInheritanceAttr::Spelling DstInheritance = getInheritanceFromMemptr(DstTy);
+
+ // Decompose src.
+ llvm::Constant *FirstField = Src;
+ llvm::Constant *NonVirtualBaseAdjustment = nullptr;
+ llvm::Constant *VirtualBaseAdjustmentOffset = nullptr;
+ llvm::Constant *VBPtrOffset = nullptr;
+ bool IsFunc = SrcTy->isMemberFunctionPointer();
+ if (!MSInheritanceAttr::hasOnlyOneField(IsFunc, SrcInheritance)) {
+ // We need to extract values.
+ unsigned I = 0;
+ FirstField = Src->getAggregateElement(I++);
+ if (MSInheritanceAttr::hasNVOffsetField(IsFunc, SrcInheritance))
+ NonVirtualBaseAdjustment = Src->getAggregateElement(I++);
+ if (MSInheritanceAttr::hasVBPtrOffsetField(SrcInheritance))
+ VBPtrOffset = Src->getAggregateElement(I++);
+ if (MSInheritanceAttr::hasVBTableOffsetField(SrcInheritance))
+ VirtualBaseAdjustmentOffset = Src->getAggregateElement(I++);
+ }
+
+ // For data pointers, we adjust the field offset directly. For functions, we
+ // have a separate field.
+ llvm::Constant *Adj = getMemberPointerAdjustment(E);
+ if (Adj) {
+ Adj = llvm::ConstantExpr::getTruncOrBitCast(Adj, CGM.IntTy);
+ llvm::Constant *&NVAdjustField =
+ IsFunc ? NonVirtualBaseAdjustment : FirstField;
+ bool IsDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer);
+ if (!NVAdjustField) // If this field didn't exist in src, it's zero.
+ NVAdjustField = getZeroInt();
+ if (IsDerivedToBase)
+ NVAdjustField = llvm::ConstantExpr::getNSWSub(NVAdjustField, Adj);
+ else
+ NVAdjustField = llvm::ConstantExpr::getNSWAdd(NVAdjustField, Adj);
+ }
+
+ // FIXME PR15713: Support conversions through virtually derived classes.
+
+ // Recompose dst from the null struct and the adjusted fields from src.
+ if (MSInheritanceAttr::hasOnlyOneField(IsFunc, DstInheritance))
+ return FirstField;
+
+ llvm::SmallVector<llvm::Constant *, 4> Fields;
+ Fields.push_back(FirstField);
+ if (MSInheritanceAttr::hasNVOffsetField(IsFunc, DstInheritance))
+ Fields.push_back(getConstantOrZeroInt(NonVirtualBaseAdjustment));
+ if (MSInheritanceAttr::hasVBPtrOffsetField(DstInheritance))
+ Fields.push_back(getConstantOrZeroInt(VBPtrOffset));
+ if (MSInheritanceAttr::hasVBTableOffsetField(DstInheritance))
+ Fields.push_back(getConstantOrZeroInt(VirtualBaseAdjustmentOffset));
+ return llvm::ConstantStruct::getAnon(Fields);
+}
+
+llvm::Value *MicrosoftCXXABI::EmitLoadOfMemberFunctionPointer(
+ CodeGenFunction &CGF, const Expr *E, llvm::Value *&This,
+ llvm::Value *MemPtr, const MemberPointerType *MPT) {
+ assert(MPT->isMemberFunctionPointer());
+ const FunctionProtoType *FPT =
+ MPT->getPointeeType()->castAs<FunctionProtoType>();
+ const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
+ llvm::FunctionType *FTy =
+ CGM.getTypes().GetFunctionType(
+ CGM.getTypes().arrangeCXXMethodType(RD, FPT));
+ CGBuilderTy &Builder = CGF.Builder;
+
+ MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
+
+ // Extract the fields we need, regardless of model. We'll apply them if we
+ // have them.
+ llvm::Value *FunctionPointer = MemPtr;
+ llvm::Value *NonVirtualBaseAdjustment = nullptr;
+ llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
+ llvm::Value *VBPtrOffset = nullptr;
+ if (MemPtr->getType()->isStructTy()) {
+ // We need to extract values.
+ unsigned I = 0;
+ FunctionPointer = Builder.CreateExtractValue(MemPtr, I++);
+ if (MSInheritanceAttr::hasNVOffsetField(MPT, Inheritance))
+ NonVirtualBaseAdjustment = Builder.CreateExtractValue(MemPtr, I++);
+ if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
+ VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++);
+ if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
+ VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++);
+ }
+
+ if (VirtualBaseAdjustmentOffset) {
+ This = AdjustVirtualBase(CGF, E, RD, This, VirtualBaseAdjustmentOffset,
+ VBPtrOffset);
+ }
+
+ if (NonVirtualBaseAdjustment) {
+ // Apply the adjustment and cast back to the original struct type.
+ llvm::Value *Ptr = Builder.CreateBitCast(This, Builder.getInt8PtrTy());
+ Ptr = Builder.CreateInBoundsGEP(Ptr, NonVirtualBaseAdjustment);
+ This = Builder.CreateBitCast(Ptr, This->getType(), "this.adjusted");
+ }
+
+ return Builder.CreateBitCast(FunctionPointer, FTy->getPointerTo());
+}
+
+CGCXXABI *clang::CodeGen::CreateMicrosoftCXXABI(CodeGenModule &CGM) {
+ return new MicrosoftCXXABI(CGM);
+}
+
+// MS RTTI Overview:
+// The run time type information emitted by cl.exe contains 5 distinct types of
+// structures. Many of them reference each other.
+//
+// TypeInfo: Static classes that are returned by typeid.
+//
+// CompleteObjectLocator: Referenced by vftables. They contain information
+// required for dynamic casting, including OffsetFromTop. They also contain
+// a reference to the TypeInfo for the type and a reference to the
+// CompleteHierarchyDescriptor for the type.
+//
+// ClassHieararchyDescriptor: Contains information about a class hierarchy.
+// Used during dynamic_cast to walk a class hierarchy. References a base
+// class array and the size of said array.
+//
+// BaseClassArray: Contains a list of classes in a hierarchy. BaseClassArray is
+// somewhat of a misnomer because the most derived class is also in the list
+// as well as multiple copies of virtual bases (if they occur multiple times
+// in the hiearchy.) The BaseClassArray contains one BaseClassDescriptor for
+// every path in the hierarchy, in pre-order depth first order. Note, we do
+// not declare a specific llvm type for BaseClassArray, it's merely an array
+// of BaseClassDescriptor pointers.
+//
+// BaseClassDescriptor: Contains information about a class in a class hierarchy.
+// BaseClassDescriptor is also somewhat of a misnomer for the same reason that
+// BaseClassArray is. It contains information about a class within a
+// hierarchy such as: is this base is ambiguous and what is its offset in the
+// vbtable. The names of the BaseClassDescriptors have all of their fields
+// mangled into them so they can be aggressively deduplicated by the linker.
+
+static llvm::GlobalVariable *getTypeInfoVTable(CodeGenModule &CGM) {
+ StringRef MangledName("\01??_7type_info@@6B@");
+ if (auto VTable = CGM.getModule().getNamedGlobal(MangledName))
+ return VTable;
+ return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy,
+ /*Constant=*/true,
+ llvm::GlobalVariable::ExternalLinkage,
+ /*Initializer=*/nullptr, MangledName);
+}
+
+namespace {
+
+/// \brief A Helper struct that stores information about a class in a class
+/// hierarchy. The information stored in these structs struct is used during
+/// the generation of ClassHierarchyDescriptors and BaseClassDescriptors.
+// During RTTI creation, MSRTTIClasses are stored in a contiguous array with
+// implicit depth first pre-order tree connectivity. getFirstChild and
+// getNextSibling allow us to walk the tree efficiently.
+struct MSRTTIClass {
+ enum {
+ IsPrivateOnPath = 1 | 8,
+ IsAmbiguous = 2,
+ IsPrivate = 4,
+ IsVirtual = 16,
+ HasHierarchyDescriptor = 64
+ };
+ MSRTTIClass(const CXXRecordDecl *RD) : RD(RD) {}
+ uint32_t initialize(const MSRTTIClass *Parent,
+ const CXXBaseSpecifier *Specifier);
+
+ MSRTTIClass *getFirstChild() { return this + 1; }
+ static MSRTTIClass *getNextChild(MSRTTIClass *Child) {
+ return Child + 1 + Child->NumBases;
+ }
+
+ const CXXRecordDecl *RD, *VirtualRoot;
+ uint32_t Flags, NumBases, OffsetInVBase;
+};
+
+/// \brief Recursively initialize the base class array.
+uint32_t MSRTTIClass::initialize(const MSRTTIClass *Parent,
+ const CXXBaseSpecifier *Specifier) {
+ Flags = HasHierarchyDescriptor;
+ if (!Parent) {
+ VirtualRoot = nullptr;
+ OffsetInVBase = 0;
+ } else {
+ if (Specifier->getAccessSpecifier() != AS_public)
+ Flags |= IsPrivate | IsPrivateOnPath;
+ if (Specifier->isVirtual()) {
+ Flags |= IsVirtual;
+ VirtualRoot = RD;
+ OffsetInVBase = 0;
+ } else {
+ if (Parent->Flags & IsPrivateOnPath)
+ Flags |= IsPrivateOnPath;
+ VirtualRoot = Parent->VirtualRoot;
+ OffsetInVBase = Parent->OffsetInVBase + RD->getASTContext()
+ .getASTRecordLayout(Parent->RD).getBaseClassOffset(RD).getQuantity();
+ }
+ }
+ NumBases = 0;
+ MSRTTIClass *Child = getFirstChild();
+ for (const CXXBaseSpecifier &Base : RD->bases()) {
+ NumBases += Child->initialize(this, &Base) + 1;
+ Child = getNextChild(Child);
+ }
+ return NumBases;
+}
+
+static llvm::GlobalValue::LinkageTypes getLinkageForRTTI(QualType Ty) {
+ switch (Ty->getLinkage()) {
+ case NoLinkage:
+ case InternalLinkage:
+ case UniqueExternalLinkage:
+ return llvm::GlobalValue::InternalLinkage;
+
+ case VisibleNoLinkage:
+ case ExternalLinkage:
+ return llvm::GlobalValue::LinkOnceODRLinkage;
+ }
+ llvm_unreachable("Invalid linkage!");
+}
+
+/// \brief An ephemeral helper class for building MS RTTI types. It caches some
+/// calls to the module and information about the most derived class in a
+/// hierarchy.
+struct MSRTTIBuilder {
+ enum {
+ HasBranchingHierarchy = 1,
+ HasVirtualBranchingHierarchy = 2,
+ HasAmbiguousBases = 4
+ };
+
+ MSRTTIBuilder(MicrosoftCXXABI &ABI, const CXXRecordDecl *RD)
+ : CGM(ABI.CGM), Context(CGM.getContext()),
+ VMContext(CGM.getLLVMContext()), Module(CGM.getModule()), RD(RD),
+ Linkage(getLinkageForRTTI(CGM.getContext().getTagDeclType(RD))),
+ ABI(ABI) {}
+
+ llvm::GlobalVariable *getBaseClassDescriptor(const MSRTTIClass &Classes);
+ llvm::GlobalVariable *
+ getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes);
+ llvm::GlobalVariable *getClassHierarchyDescriptor();
+ llvm::GlobalVariable *getCompleteObjectLocator(const VPtrInfo *Info);
+
+ CodeGenModule &CGM;
+ ASTContext &Context;
+ llvm::LLVMContext &VMContext;
+ llvm::Module &Module;
+ const CXXRecordDecl *RD;
+ llvm::GlobalVariable::LinkageTypes Linkage;
+ MicrosoftCXXABI &ABI;
+};
+
+} // namespace
+
+/// \brief Recursively serializes a class hierarchy in pre-order depth first
+/// order.
+static void serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> &Classes,
+ const CXXRecordDecl *RD) {
+ Classes.push_back(MSRTTIClass(RD));
+ for (const CXXBaseSpecifier &Base : RD->bases())
+ serializeClassHierarchy(Classes, Base.getType()->getAsCXXRecordDecl());
+}
+
+/// \brief Find ambiguity among base classes.
+static void
+detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> &Classes) {
+ llvm::SmallPtrSet<const CXXRecordDecl *, 8> VirtualBases;
+ llvm::SmallPtrSet<const CXXRecordDecl *, 8> UniqueBases;
+ llvm::SmallPtrSet<const CXXRecordDecl *, 8> AmbiguousBases;
+ for (MSRTTIClass *Class = &Classes.front(); Class <= &Classes.back();) {
+ if ((Class->Flags & MSRTTIClass::IsVirtual) &&
+ !VirtualBases.insert(Class->RD).second) {
+ Class = MSRTTIClass::getNextChild(Class);
+ continue;
+ }
+ if (!UniqueBases.insert(Class->RD).second)
+ AmbiguousBases.insert(Class->RD);
+ Class++;
+ }
+ if (AmbiguousBases.empty())
+ return;
+ for (MSRTTIClass &Class : Classes)
+ if (AmbiguousBases.count(Class.RD))
+ Class.Flags |= MSRTTIClass::IsAmbiguous;
+}
+
+llvm::GlobalVariable *MSRTTIBuilder::getClassHierarchyDescriptor() {
+ SmallString<256> MangledName;
+ {
+ llvm::raw_svector_ostream Out(MangledName);
+ ABI.getMangleContext().mangleCXXRTTIClassHierarchyDescriptor(RD, Out);
+ }
+
+ // Check to see if we've already declared this ClassHierarchyDescriptor.
+ if (auto CHD = Module.getNamedGlobal(MangledName))
+ return CHD;
+
+ // Serialize the class hierarchy and initialize the CHD Fields.
+ SmallVector<MSRTTIClass, 8> Classes;
+ serializeClassHierarchy(Classes, RD);
+ Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr);
+ detectAmbiguousBases(Classes);
+ int Flags = 0;
+ for (auto Class : Classes) {
+ if (Class.RD->getNumBases() > 1)
+ Flags |= HasBranchingHierarchy;
+ // Note: cl.exe does not calculate "HasAmbiguousBases" correctly. We
+ // believe the field isn't actually used.
+ if (Class.Flags & MSRTTIClass::IsAmbiguous)
+ Flags |= HasAmbiguousBases;
+ }
+ if ((Flags & HasBranchingHierarchy) && RD->getNumVBases() != 0)
+ Flags |= HasVirtualBranchingHierarchy;
+ // These gep indices are used to get the address of the first element of the
+ // base class array.
+ llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0),
+ llvm::ConstantInt::get(CGM.IntTy, 0)};
+
+ // Forward-declare the class hierarchy descriptor
+ auto Type = ABI.getClassHierarchyDescriptorType();
+ auto CHD = new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage,
+ /*Initializer=*/nullptr,
+ StringRef(MangledName));
+ if (CHD->isWeakForLinker())
+ CHD->setComdat(CGM.getModule().getOrInsertComdat(CHD->getName()));
+
+ auto *Bases = getBaseClassArray(Classes);
+
+ // Initialize the base class ClassHierarchyDescriptor.
+ llvm::Constant *Fields[] = {
+ llvm::ConstantInt::get(CGM.IntTy, 0), // Unknown
+ llvm::ConstantInt::get(CGM.IntTy, Flags),
+ llvm::ConstantInt::get(CGM.IntTy, Classes.size()),
+ ABI.getImageRelativeConstant(llvm::ConstantExpr::getInBoundsGetElementPtr(
+ Bases->getValueType(), Bases,
+ llvm::ArrayRef<llvm::Value *>(GEPIndices))),
+ };
+ CHD->setInitializer(llvm::ConstantStruct::get(Type, Fields));
+ return CHD;
+}
+
+llvm::GlobalVariable *
+MSRTTIBuilder::getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes) {
+ SmallString<256> MangledName;
+ {
+ llvm::raw_svector_ostream Out(MangledName);
+ ABI.getMangleContext().mangleCXXRTTIBaseClassArray(RD, Out);
+ }
+
+ // Forward-declare the base class array.
+ // cl.exe pads the base class array with 1 (in 32 bit mode) or 4 (in 64 bit
+ // mode) bytes of padding. We provide a pointer sized amount of padding by
+ // adding +1 to Classes.size(). The sections have pointer alignment and are
+ // marked pick-any so it shouldn't matter.
+ llvm::Type *PtrType = ABI.getImageRelativeType(
+ ABI.getBaseClassDescriptorType()->getPointerTo());
+ auto *ArrType = llvm::ArrayType::get(PtrType, Classes.size() + 1);
+ auto *BCA =
+ new llvm::GlobalVariable(Module, ArrType,
+ /*Constant=*/true, Linkage,
+ /*Initializer=*/nullptr, StringRef(MangledName));
+ if (BCA->isWeakForLinker())
+ BCA->setComdat(CGM.getModule().getOrInsertComdat(BCA->getName()));
+
+ // Initialize the BaseClassArray.
+ SmallVector<llvm::Constant *, 8> BaseClassArrayData;
+ for (MSRTTIClass &Class : Classes)
+ BaseClassArrayData.push_back(
+ ABI.getImageRelativeConstant(getBaseClassDescriptor(Class)));
+ BaseClassArrayData.push_back(llvm::Constant::getNullValue(PtrType));
+ BCA->setInitializer(llvm::ConstantArray::get(ArrType, BaseClassArrayData));
+ return BCA;
+}
+
+llvm::GlobalVariable *
+MSRTTIBuilder::getBaseClassDescriptor(const MSRTTIClass &Class) {
+ // Compute the fields for the BaseClassDescriptor. They are computed up front
+ // because they are mangled into the name of the object.
+ uint32_t OffsetInVBTable = 0;
+ int32_t VBPtrOffset = -1;
+ if (Class.VirtualRoot) {
+ auto &VTableContext = CGM.getMicrosoftVTableContext();
+ OffsetInVBTable = VTableContext.getVBTableIndex(RD, Class.VirtualRoot) * 4;
+ VBPtrOffset = Context.getASTRecordLayout(RD).getVBPtrOffset().getQuantity();
+ }
+
+ SmallString<256> MangledName;
+ {
+ llvm::raw_svector_ostream Out(MangledName);
+ ABI.getMangleContext().mangleCXXRTTIBaseClassDescriptor(
+ Class.RD, Class.OffsetInVBase, VBPtrOffset, OffsetInVBTable,
+ Class.Flags, Out);
+ }
+
+ // Check to see if we've already declared this object.
+ if (auto BCD = Module.getNamedGlobal(MangledName))
+ return BCD;
+
+ // Forward-declare the base class descriptor.
+ auto Type = ABI.getBaseClassDescriptorType();
+ auto BCD =
+ new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage,
+ /*Initializer=*/nullptr, StringRef(MangledName));
+ if (BCD->isWeakForLinker())
+ BCD->setComdat(CGM.getModule().getOrInsertComdat(BCD->getName()));
+
+ // Initialize the BaseClassDescriptor.
+ llvm::Constant *Fields[] = {
+ ABI.getImageRelativeConstant(
+ ABI.getAddrOfRTTIDescriptor(Context.getTypeDeclType(Class.RD))),
+ llvm::ConstantInt::get(CGM.IntTy, Class.NumBases),
+ llvm::ConstantInt::get(CGM.IntTy, Class.OffsetInVBase),
+ llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset),
+ llvm::ConstantInt::get(CGM.IntTy, OffsetInVBTable),
+ llvm::ConstantInt::get(CGM.IntTy, Class.Flags),
+ ABI.getImageRelativeConstant(
+ MSRTTIBuilder(ABI, Class.RD).getClassHierarchyDescriptor()),
+ };
+ BCD->setInitializer(llvm::ConstantStruct::get(Type, Fields));
+ return BCD;
+}
+
+llvm::GlobalVariable *
+MSRTTIBuilder::getCompleteObjectLocator(const VPtrInfo *Info) {
+ SmallString<256> MangledName;
+ {
+ llvm::raw_svector_ostream Out(MangledName);
+ ABI.getMangleContext().mangleCXXRTTICompleteObjectLocator(RD, Info->MangledPath, Out);
+ }
+
+ // Check to see if we've already computed this complete object locator.
+ if (auto COL = Module.getNamedGlobal(MangledName))
+ return COL;
+
+ // Compute the fields of the complete object locator.
+ int OffsetToTop = Info->FullOffsetInMDC.getQuantity();
+ int VFPtrOffset = 0;
+ // The offset includes the vtordisp if one exists.
+ if (const CXXRecordDecl *VBase = Info->getVBaseWithVPtr())
+ if (Context.getASTRecordLayout(RD)
+ .getVBaseOffsetsMap()
+ .find(VBase)
+ ->second.hasVtorDisp())
+ VFPtrOffset = Info->NonVirtualOffset.getQuantity() + 4;
+
+ // Forward-declare the complete object locator.
+ llvm::StructType *Type = ABI.getCompleteObjectLocatorType();
+ auto COL = new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage,
+ /*Initializer=*/nullptr, StringRef(MangledName));
+
+ // Initialize the CompleteObjectLocator.
+ llvm::Constant *Fields[] = {
+ llvm::ConstantInt::get(CGM.IntTy, ABI.isImageRelative()),
+ llvm::ConstantInt::get(CGM.IntTy, OffsetToTop),
+ llvm::ConstantInt::get(CGM.IntTy, VFPtrOffset),
+ ABI.getImageRelativeConstant(
+ CGM.GetAddrOfRTTIDescriptor(Context.getTypeDeclType(RD))),
+ ABI.getImageRelativeConstant(getClassHierarchyDescriptor()),
+ ABI.getImageRelativeConstant(COL),
+ };
+ llvm::ArrayRef<llvm::Constant *> FieldsRef(Fields);
+ if (!ABI.isImageRelative())
+ FieldsRef = FieldsRef.drop_back();
+ COL->setInitializer(llvm::ConstantStruct::get(Type, FieldsRef));
+ if (COL->isWeakForLinker())
+ COL->setComdat(CGM.getModule().getOrInsertComdat(COL->getName()));
+ return COL;
+}
+
+static QualType decomposeTypeForEH(ASTContext &Context, QualType T,
+ bool &IsConst, bool &IsVolatile) {
+ T = Context.getExceptionObjectType(T);
+
+ // C++14 [except.handle]p3:
+ // A handler is a match for an exception object of type E if [...]
+ // - the handler is of type cv T or const T& where T is a pointer type and
+ // E is a pointer type that can be converted to T by [...]
+ // - a qualification conversion
+ IsConst = false;
+ IsVolatile = false;
+ QualType PointeeType = T->getPointeeType();
+ if (!PointeeType.isNull()) {
+ IsConst = PointeeType.isConstQualified();
+ IsVolatile = PointeeType.isVolatileQualified();
+ }
+
+ // Member pointer types like "const int A::*" are represented by having RTTI
+ // for "int A::*" and separately storing the const qualifier.
+ if (const auto *MPTy = T->getAs<MemberPointerType>())
+ T = Context.getMemberPointerType(PointeeType.getUnqualifiedType(),
+ MPTy->getClass());
+
+ // Pointer types like "const int * const *" are represented by having RTTI
+ // for "const int **" and separately storing the const qualifier.
+ if (T->isPointerType())
+ T = Context.getPointerType(PointeeType.getUnqualifiedType());
+
+ return T;
+}
+
+llvm::Constant *
+MicrosoftCXXABI::getAddrOfCXXCatchHandlerType(QualType Type,
+ QualType CatchHandlerType) {
+ // TypeDescriptors for exceptions never have qualified pointer types,
+ // qualifiers are stored seperately in order to support qualification
+ // conversions.
+ bool IsConst, IsVolatile;
+ Type = decomposeTypeForEH(getContext(), Type, IsConst, IsVolatile);
+
+ bool IsReference = CatchHandlerType->isReferenceType();
+
+ uint32_t Flags = 0;
+ if (IsConst)
+ Flags |= 1;
+ if (IsVolatile)
+ Flags |= 2;
+ if (IsReference)
+ Flags |= 8;
+
+ SmallString<256> MangledName;
+ {
+ llvm::raw_svector_ostream Out(MangledName);
+ getMangleContext().mangleCXXCatchHandlerType(Type, Flags, Out);
+ }
+
+ if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
+ return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy);
+
+ llvm::Constant *Fields[] = {
+ llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags
+ getAddrOfRTTIDescriptor(Type), // TypeDescriptor
+ };
+ llvm::StructType *CatchHandlerTypeType = getCatchHandlerTypeType();
+ auto *Var = new llvm::GlobalVariable(
+ CGM.getModule(), CatchHandlerTypeType, /*Constant=*/true,
+ llvm::GlobalValue::PrivateLinkage,
+ llvm::ConstantStruct::get(CatchHandlerTypeType, Fields),
+ StringRef(MangledName));
+ Var->setUnnamedAddr(true);
+ Var->setSection("llvm.metadata");
+ return Var;
+}
+
+/// \brief Gets a TypeDescriptor. Returns a llvm::Constant * rather than a
+/// llvm::GlobalVariable * because different type descriptors have different
+/// types, and need to be abstracted. They are abstracting by casting the
+/// address to an Int8PtrTy.
+llvm::Constant *MicrosoftCXXABI::getAddrOfRTTIDescriptor(QualType Type) {
+ SmallString<256> MangledName;
+ {
+ llvm::raw_svector_ostream Out(MangledName);
+ getMangleContext().mangleCXXRTTI(Type, Out);
+ }
+
+ // Check to see if we've already declared this TypeDescriptor.
+ if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
+ return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy);
+
+ // Compute the fields for the TypeDescriptor.
+ SmallString<256> TypeInfoString;
+ {
+ llvm::raw_svector_ostream Out(TypeInfoString);
+ getMangleContext().mangleCXXRTTIName(Type, Out);
+ }
+
+ // Declare and initialize the TypeDescriptor.
+ llvm::Constant *Fields[] = {
+ getTypeInfoVTable(CGM), // VFPtr
+ llvm::ConstantPointerNull::get(CGM.Int8PtrTy), // Runtime data
+ llvm::ConstantDataArray::getString(CGM.getLLVMContext(), TypeInfoString)};
+ llvm::StructType *TypeDescriptorType =
+ getTypeDescriptorType(TypeInfoString);
+ auto *Var = new llvm::GlobalVariable(
+ CGM.getModule(), TypeDescriptorType, /*Constant=*/false,
+ getLinkageForRTTI(Type),
+ llvm::ConstantStruct::get(TypeDescriptorType, Fields),
+ StringRef(MangledName));
+ if (Var->isWeakForLinker())
+ Var->setComdat(CGM.getModule().getOrInsertComdat(Var->getName()));
+ return llvm::ConstantExpr::getBitCast(Var, CGM.Int8PtrTy);
+}
+
+/// \brief Gets or a creates a Microsoft CompleteObjectLocator.
+llvm::GlobalVariable *
+MicrosoftCXXABI::getMSCompleteObjectLocator(const CXXRecordDecl *RD,
+ const VPtrInfo *Info) {
+ return MSRTTIBuilder(*this, RD).getCompleteObjectLocator(Info);
+}
+
+static void emitCXXConstructor(CodeGenModule &CGM,
+ const CXXConstructorDecl *ctor,
+ StructorType ctorType) {
+ // There are no constructor variants, always emit the complete destructor.
+ llvm::Function *Fn = CGM.codegenCXXStructor(ctor, StructorType::Complete);
+ CGM.maybeSetTrivialComdat(*ctor, *Fn);
+}
+
+static void emitCXXDestructor(CodeGenModule &CGM, const CXXDestructorDecl *dtor,
+ StructorType dtorType) {
+ // The complete destructor is equivalent to the base destructor for
+ // classes with no virtual bases, so try to emit it as an alias.
+ if (!dtor->getParent()->getNumVBases() &&
+ (dtorType == StructorType::Complete || dtorType == StructorType::Base)) {
+ bool ProducedAlias = !CGM.TryEmitDefinitionAsAlias(
+ GlobalDecl(dtor, Dtor_Complete), GlobalDecl(dtor, Dtor_Base), true);
+ if (ProducedAlias) {
+ if (dtorType == StructorType::Complete)
+ return;
+ if (dtor->isVirtual())
+ CGM.getVTables().EmitThunks(GlobalDecl(dtor, Dtor_Complete));
+ }
+ }
+
+ // The base destructor is equivalent to the base destructor of its
+ // base class if there is exactly one non-virtual base class with a
+ // non-trivial destructor, there are no fields with a non-trivial
+ // destructor, and the body of the destructor is trivial.
+ if (dtorType == StructorType::Base && !CGM.TryEmitBaseDestructorAsAlias(dtor))
+ return;
+
+ llvm::Function *Fn = CGM.codegenCXXStructor(dtor, dtorType);
+ if (Fn->isWeakForLinker())
+ Fn->setComdat(CGM.getModule().getOrInsertComdat(Fn->getName()));
+}
+
+void MicrosoftCXXABI::emitCXXStructor(const CXXMethodDecl *MD,
+ StructorType Type) {
+ if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
+ emitCXXConstructor(CGM, CD, Type);
+ return;
+ }
+ emitCXXDestructor(CGM, cast<CXXDestructorDecl>(MD), Type);
+}
+
+llvm::Function *
+MicrosoftCXXABI::getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD,
+ CXXCtorType CT) {
+ assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
+
+ // Calculate the mangled name.
+ SmallString<256> ThunkName;
+ llvm::raw_svector_ostream Out(ThunkName);
+ getMangleContext().mangleCXXCtor(CD, CT, Out);
+ Out.flush();
+
+ // If the thunk has been generated previously, just return it.
+ if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName))
+ return cast<llvm::Function>(GV);
+
+ // Create the llvm::Function.
+ const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeMSCtorClosure(CD, CT);
+ llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo);
+ const CXXRecordDecl *RD = CD->getParent();
+ QualType RecordTy = getContext().getRecordType(RD);
+ llvm::Function *ThunkFn = llvm::Function::Create(
+ ThunkTy, getLinkageForRTTI(RecordTy), ThunkName.str(), &CGM.getModule());
+ ThunkFn->setCallingConv(static_cast<llvm::CallingConv::ID>(
+ FnInfo.getEffectiveCallingConvention()));
+ bool IsCopy = CT == Ctor_CopyingClosure;
+
+ // Start codegen.
+ CodeGenFunction CGF(CGM);
+ CGF.CurGD = GlobalDecl(CD, Ctor_Complete);
+
+ // Build FunctionArgs.
+ FunctionArgList FunctionArgs;
+
+ // A constructor always starts with a 'this' pointer as its first argument.
+ buildThisParam(CGF, FunctionArgs);
+
+ // Following the 'this' pointer is a reference to the source object that we
+ // are copying from.
+ ImplicitParamDecl SrcParam(
+ getContext(), nullptr, SourceLocation(), &getContext().Idents.get("src"),
+ getContext().getLValueReferenceType(RecordTy,
+ /*SpelledAsLValue=*/true));
+ if (IsCopy)
+ FunctionArgs.push_back(&SrcParam);
+
+ // Constructors for classes which utilize virtual bases have an additional
+ // parameter which indicates whether or not it is being delegated to by a more
+ // derived constructor.
+ ImplicitParamDecl IsMostDerived(getContext(), nullptr, SourceLocation(),
+ &getContext().Idents.get("is_most_derived"),
+ getContext().IntTy);
+ // Only add the parameter to the list if thie class has virtual bases.
+ if (RD->getNumVBases() > 0)
+ FunctionArgs.push_back(&IsMostDerived);
+
+ // Start defining the function.
+ CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo,
+ FunctionArgs, CD->getLocation(), SourceLocation());
+ EmitThisParam(CGF);
+ llvm::Value *This = getThisValue(CGF);
+
+ llvm::Value *SrcVal =
+ IsCopy ? CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&SrcParam), "src")
+ : nullptr;
+
+ CallArgList Args;
+
+ // Push the this ptr.
+ Args.add(RValue::get(This), CD->getThisType(getContext()));
+
+ // Push the src ptr.
+ if (SrcVal)
+ Args.add(RValue::get(SrcVal), SrcParam.getType());
+
+ // Add the rest of the default arguments.
+ std::vector<Stmt *> ArgVec;
+ for (unsigned I = IsCopy ? 1 : 0, E = CD->getNumParams(); I != E; ++I) {
+ Stmt *DefaultArg = getContext().getDefaultArgExprForConstructor(CD, I);
+ assert(DefaultArg && "sema forgot to instantiate default args");
+ ArgVec.push_back(DefaultArg);
+ }
+
+ CodeGenFunction::RunCleanupsScope Cleanups(CGF);
+
+ const auto *FPT = CD->getType()->castAs<FunctionProtoType>();
+ ConstExprIterator ArgBegin(ArgVec.data()),
+ ArgEnd(ArgVec.data() + ArgVec.size());
+ CGF.EmitCallArgs(Args, FPT, ArgBegin, ArgEnd, CD, IsCopy ? 1 : 0);
+
+ // Insert any ABI-specific implicit constructor arguments.
+ unsigned ExtraArgs = addImplicitConstructorArgs(CGF, CD, Ctor_Complete,
+ /*ForVirtualBase=*/false,
+ /*Delegating=*/false, Args);
+
+ // Call the destructor with our arguments.
+ llvm::Value *CalleeFn = CGM.getAddrOfCXXStructor(CD, StructorType::Complete);
+ const CGFunctionInfo &CalleeInfo = CGM.getTypes().arrangeCXXConstructorCall(
+ Args, CD, Ctor_Complete, ExtraArgs);
+ CGF.EmitCall(CalleeInfo, CalleeFn, ReturnValueSlot(), Args, CD);
+
+ Cleanups.ForceCleanup();
+
+ // Emit the ret instruction, remove any temporary instructions created for the
+ // aid of CodeGen.
+ CGF.FinishFunction(SourceLocation());
+
+ return ThunkFn;
+}
+
+llvm::Constant *MicrosoftCXXABI::getCatchableType(QualType T,
+ uint32_t NVOffset,
+ int32_t VBPtrOffset,
+ uint32_t VBIndex) {
+ assert(!T->isReferenceType());
+
+ CXXRecordDecl *RD = T->getAsCXXRecordDecl();
+ const CXXConstructorDecl *CD =
+ RD ? CGM.getContext().getCopyConstructorForExceptionObject(RD) : nullptr;
+ CXXCtorType CT = Ctor_Complete;
+ if (CD)
+ if (!hasDefaultCXXMethodCC(getContext(), CD) || CD->getNumParams() != 1)
+ CT = Ctor_CopyingClosure;
+
+ uint32_t Size = getContext().getTypeSizeInChars(T).getQuantity();
+ SmallString<256> MangledName;
+ {
+ llvm::raw_svector_ostream Out(MangledName);
+ getMangleContext().mangleCXXCatchableType(T, CD, CT, Size, NVOffset,
+ VBPtrOffset, VBIndex, Out);
+ }
+ if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
+ return getImageRelativeConstant(GV);
+
+ // The TypeDescriptor is used by the runtime to determine if a catch handler
+ // is appropriate for the exception object.
+ llvm::Constant *TD = getImageRelativeConstant(getAddrOfRTTIDescriptor(T));
+
+ // The runtime is responsible for calling the copy constructor if the
+ // exception is caught by value.
+ llvm::Constant *CopyCtor;
+ if (CD) {
+ if (CT == Ctor_CopyingClosure)
+ CopyCtor = getAddrOfCXXCtorClosure(CD, Ctor_CopyingClosure);
+ else
+ CopyCtor = CGM.getAddrOfCXXStructor(CD, StructorType::Complete);
+
+ CopyCtor = llvm::ConstantExpr::getBitCast(CopyCtor, CGM.Int8PtrTy);
+ } else {
+ CopyCtor = llvm::Constant::getNullValue(CGM.Int8PtrTy);
+ }
+ CopyCtor = getImageRelativeConstant(CopyCtor);
+
+ bool IsScalar = !RD;
+ bool HasVirtualBases = false;
+ bool IsStdBadAlloc = false; // std::bad_alloc is special for some reason.
+ QualType PointeeType = T;
+ if (T->isPointerType())
+ PointeeType = T->getPointeeType();
+ if (const CXXRecordDecl *RD = PointeeType->getAsCXXRecordDecl()) {
+ HasVirtualBases = RD->getNumVBases() > 0;
+ if (IdentifierInfo *II = RD->getIdentifier())
+ IsStdBadAlloc = II->isStr("bad_alloc") && RD->isInStdNamespace();
+ }
+
+ // Encode the relevant CatchableType properties into the Flags bitfield.
+ // FIXME: Figure out how bits 2 or 8 can get set.
+ uint32_t Flags = 0;
+ if (IsScalar)
+ Flags |= 1;
+ if (HasVirtualBases)
+ Flags |= 4;
+ if (IsStdBadAlloc)
+ Flags |= 16;
+
+ llvm::Constant *Fields[] = {
+ llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags
+ TD, // TypeDescriptor
+ llvm::ConstantInt::get(CGM.IntTy, NVOffset), // NonVirtualAdjustment
+ llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), // OffsetToVBPtr
+ llvm::ConstantInt::get(CGM.IntTy, VBIndex), // VBTableIndex
+ llvm::ConstantInt::get(CGM.IntTy, Size), // Size
+ CopyCtor // CopyCtor
+ };
+ llvm::StructType *CTType = getCatchableTypeType();
+ auto *GV = new llvm::GlobalVariable(
+ CGM.getModule(), CTType, /*Constant=*/true, getLinkageForRTTI(T),
+ llvm::ConstantStruct::get(CTType, Fields), StringRef(MangledName));
+ GV->setUnnamedAddr(true);
+ GV->setSection(".xdata");
+ if (GV->isWeakForLinker())
+ GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName()));
+ return getImageRelativeConstant(GV);
+}
+
+llvm::GlobalVariable *MicrosoftCXXABI::getCatchableTypeArray(QualType T) {
+ assert(!T->isReferenceType());
+
+ // See if we've already generated a CatchableTypeArray for this type before.
+ llvm::GlobalVariable *&CTA = CatchableTypeArrays[T];
+ if (CTA)
+ return CTA;
+
+ // Ensure that we don't have duplicate entries in our CatchableTypeArray by
+ // using a SmallSetVector. Duplicates may arise due to virtual bases
+ // occurring more than once in the hierarchy.
+ llvm::SmallSetVector<llvm::Constant *, 2> CatchableTypes;
+
+ // C++14 [except.handle]p3:
+ // A handler is a match for an exception object of type E if [...]
+ // - the handler is of type cv T or cv T& and T is an unambiguous public
+ // base class of E, or
+ // - the handler is of type cv T or const T& where T is a pointer type and
+ // E is a pointer type that can be converted to T by [...]
+ // - a standard pointer conversion (4.10) not involving conversions to
+ // pointers to private or protected or ambiguous classes
+ const CXXRecordDecl *MostDerivedClass = nullptr;
+ bool IsPointer = T->isPointerType();
+ if (IsPointer)
+ MostDerivedClass = T->getPointeeType()->getAsCXXRecordDecl();
+ else
+ MostDerivedClass = T->getAsCXXRecordDecl();
+
+ // Collect all the unambiguous public bases of the MostDerivedClass.
+ if (MostDerivedClass) {
+ const ASTContext &Context = getContext();
+ const ASTRecordLayout &MostDerivedLayout =
+ Context.getASTRecordLayout(MostDerivedClass);
+ MicrosoftVTableContext &VTableContext = CGM.getMicrosoftVTableContext();
+ SmallVector<MSRTTIClass, 8> Classes;
+ serializeClassHierarchy(Classes, MostDerivedClass);
+ Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr);
+ detectAmbiguousBases(Classes);
+ for (const MSRTTIClass &Class : Classes) {
+ // Skip any ambiguous or private bases.
+ if (Class.Flags &
+ (MSRTTIClass::IsPrivateOnPath | MSRTTIClass::IsAmbiguous))
+ continue;
+ // Write down how to convert from a derived pointer to a base pointer.
+ uint32_t OffsetInVBTable = 0;
+ int32_t VBPtrOffset = -1;
+ if (Class.VirtualRoot) {
+ OffsetInVBTable =
+ VTableContext.getVBTableIndex(MostDerivedClass, Class.VirtualRoot)*4;
+ VBPtrOffset = MostDerivedLayout.getVBPtrOffset().getQuantity();
+ }
+
+ // Turn our record back into a pointer if the exception object is a
+ // pointer.
+ QualType RTTITy = QualType(Class.RD->getTypeForDecl(), 0);
+ if (IsPointer)
+ RTTITy = Context.getPointerType(RTTITy);
+ CatchableTypes.insert(getCatchableType(RTTITy, Class.OffsetInVBase,
+ VBPtrOffset, OffsetInVBTable));
+ }
+ }
+
+ // C++14 [except.handle]p3:
+ // A handler is a match for an exception object of type E if
+ // - The handler is of type cv T or cv T& and E and T are the same type
+ // (ignoring the top-level cv-qualifiers)
+ CatchableTypes.insert(getCatchableType(T));
+
+ // C++14 [except.handle]p3:
+ // A handler is a match for an exception object of type E if
+ // - the handler is of type cv T or const T& where T is a pointer type and
+ // E is a pointer type that can be converted to T by [...]
+ // - a standard pointer conversion (4.10) not involving conversions to
+ // pointers to private or protected or ambiguous classes
+ //
+ // C++14 [conv.ptr]p2:
+ // A prvalue of type "pointer to cv T," where T is an object type, can be
+ // converted to a prvalue of type "pointer to cv void".
+ if (IsPointer && T->getPointeeType()->isObjectType())
+ CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy));
+
+ // C++14 [except.handle]p3:
+ // A handler is a match for an exception object of type E if [...]
+ // - the handler is of type cv T or const T& where T is a pointer or
+ // pointer to member type and E is std::nullptr_t.
+ //
+ // We cannot possibly list all possible pointer types here, making this
+ // implementation incompatible with the standard. However, MSVC includes an
+ // entry for pointer-to-void in this case. Let's do the same.
+ if (T->isNullPtrType())
+ CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy));
+
+ uint32_t NumEntries = CatchableTypes.size();
+ llvm::Type *CTType =
+ getImageRelativeType(getCatchableTypeType()->getPointerTo());
+ llvm::ArrayType *AT = llvm::ArrayType::get(CTType, NumEntries);
+ llvm::StructType *CTAType = getCatchableTypeArrayType(NumEntries);
+ llvm::Constant *Fields[] = {
+ llvm::ConstantInt::get(CGM.IntTy, NumEntries), // NumEntries
+ llvm::ConstantArray::get(
+ AT, llvm::makeArrayRef(CatchableTypes.begin(),
+ CatchableTypes.end())) // CatchableTypes
+ };
+ SmallString<256> MangledName;
+ {
+ llvm::raw_svector_ostream Out(MangledName);
+ getMangleContext().mangleCXXCatchableTypeArray(T, NumEntries, Out);
+ }
+ CTA = new llvm::GlobalVariable(
+ CGM.getModule(), CTAType, /*Constant=*/true, getLinkageForRTTI(T),
+ llvm::ConstantStruct::get(CTAType, Fields), StringRef(MangledName));
+ CTA->setUnnamedAddr(true);
+ CTA->setSection(".xdata");
+ if (CTA->isWeakForLinker())
+ CTA->setComdat(CGM.getModule().getOrInsertComdat(CTA->getName()));
+ return CTA;
+}
+
+llvm::GlobalVariable *MicrosoftCXXABI::getThrowInfo(QualType T) {
+ bool IsConst, IsVolatile;
+ T = decomposeTypeForEH(getContext(), T, IsConst, IsVolatile);
+
+ // The CatchableTypeArray enumerates the various (CV-unqualified) types that
+ // the exception object may be caught as.
+ llvm::GlobalVariable *CTA = getCatchableTypeArray(T);
+ // The first field in a CatchableTypeArray is the number of CatchableTypes.
+ // This is used as a component of the mangled name which means that we need to
+ // know what it is in order to see if we have previously generated the
+ // ThrowInfo.
+ uint32_t NumEntries =
+ cast<llvm::ConstantInt>(CTA->getInitializer()->getAggregateElement(0U))
+ ->getLimitedValue();
+
+ SmallString<256> MangledName;
+ {
+ llvm::raw_svector_ostream Out(MangledName);
+ getMangleContext().mangleCXXThrowInfo(T, IsConst, IsVolatile, NumEntries,
+ Out);
+ }
+
+ // Reuse a previously generated ThrowInfo if we have generated an appropriate
+ // one before.
+ if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
+ return GV;
+
+ // The RTTI TypeDescriptor uses an unqualified type but catch clauses must
+ // be at least as CV qualified. Encode this requirement into the Flags
+ // bitfield.
+ uint32_t Flags = 0;
+ if (IsConst)
+ Flags |= 1;
+ if (IsVolatile)
+ Flags |= 2;
+
+ // The cleanup-function (a destructor) must be called when the exception
+ // object's lifetime ends.
+ llvm::Constant *CleanupFn = llvm::Constant::getNullValue(CGM.Int8PtrTy);
+ if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
+ if (CXXDestructorDecl *DtorD = RD->getDestructor())
+ if (!DtorD->isTrivial())
+ CleanupFn = llvm::ConstantExpr::getBitCast(
+ CGM.getAddrOfCXXStructor(DtorD, StructorType::Complete),
+ CGM.Int8PtrTy);
+ // This is unused as far as we can tell, initialize it to null.
+ llvm::Constant *ForwardCompat =
+ getImageRelativeConstant(llvm::Constant::getNullValue(CGM.Int8PtrTy));
+ llvm::Constant *PointerToCatchableTypes = getImageRelativeConstant(
+ llvm::ConstantExpr::getBitCast(CTA, CGM.Int8PtrTy));
+ llvm::StructType *TIType = getThrowInfoType();
+ llvm::Constant *Fields[] = {
+ llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags
+ getImageRelativeConstant(CleanupFn), // CleanupFn
+ ForwardCompat, // ForwardCompat
+ PointerToCatchableTypes // CatchableTypeArray
+ };
+ auto *GV = new llvm::GlobalVariable(
+ CGM.getModule(), TIType, /*Constant=*/true, getLinkageForRTTI(T),
+ llvm::ConstantStruct::get(TIType, Fields), StringRef(MangledName));
+ GV->setUnnamedAddr(true);
+ GV->setSection(".xdata");
+ if (GV->isWeakForLinker())
+ GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName()));
+ return GV;
+}
+
+void MicrosoftCXXABI::emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) {
+ const Expr *SubExpr = E->getSubExpr();
+ QualType ThrowType = SubExpr->getType();
+ // The exception object lives on the stack and it's address is passed to the
+ // runtime function.
+ llvm::AllocaInst *AI = CGF.CreateMemTemp(ThrowType);
+ CGF.EmitAnyExprToMem(SubExpr, AI, ThrowType.getQualifiers(),
+ /*IsInit=*/true);
+
+ // The so-called ThrowInfo is used to describe how the exception object may be
+ // caught.
+ llvm::GlobalVariable *TI = getThrowInfo(ThrowType);
+
+ // Call into the runtime to throw the exception.
+ llvm::Value *Args[] = {CGF.Builder.CreateBitCast(AI, CGM.Int8PtrTy), TI};
+ CGF.EmitNoreturnRuntimeCallOrInvoke(getThrowFn(), Args);
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/ModuleBuilder.cpp b/contrib/llvm/tools/clang/lib/CodeGen/ModuleBuilder.cpp
new file mode 100644
index 0000000..25e5740
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/ModuleBuilder.cpp
@@ -0,0 +1,245 @@
+//===--- ModuleBuilder.cpp - Emit LLVM Code from ASTs ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This builds an AST and converts it to LLVM Code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/CodeGen/ModuleBuilder.h"
+#include "CGDebugInfo.h"
+#include "CodeGenModule.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/Expr.h"
+#include "clang/Basic/Diagnostic.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Frontend/CodeGenOptions.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include <memory>
+using namespace clang;
+
+namespace {
+ class CodeGeneratorImpl : public CodeGenerator {
+ DiagnosticsEngine &Diags;
+ std::unique_ptr<const llvm::DataLayout> TD;
+ ASTContext *Ctx;
+ const CodeGenOptions CodeGenOpts; // Intentionally copied in.
+
+ unsigned HandlingTopLevelDecls;
+ struct HandlingTopLevelDeclRAII {
+ CodeGeneratorImpl &Self;
+ HandlingTopLevelDeclRAII(CodeGeneratorImpl &Self) : Self(Self) {
+ ++Self.HandlingTopLevelDecls;
+ }
+ ~HandlingTopLevelDeclRAII() {
+ if (--Self.HandlingTopLevelDecls == 0)
+ Self.EmitDeferredDecls();
+ }
+ };
+
+ CoverageSourceInfo *CoverageInfo;
+
+ protected:
+ std::unique_ptr<llvm::Module> M;
+ std::unique_ptr<CodeGen::CodeGenModule> Builder;
+
+ private:
+ SmallVector<CXXMethodDecl *, 8> DeferredInlineMethodDefinitions;
+
+ public:
+ CodeGeneratorImpl(DiagnosticsEngine &diags, const std::string& ModuleName,
+ const CodeGenOptions &CGO, llvm::LLVMContext& C,
+ CoverageSourceInfo *CoverageInfo = nullptr)
+ : Diags(diags), Ctx(nullptr), CodeGenOpts(CGO), HandlingTopLevelDecls(0),
+ CoverageInfo(CoverageInfo),
+ M(new llvm::Module(ModuleName, C)) {}
+
+ ~CodeGeneratorImpl() override {
+ // There should normally not be any leftover inline method definitions.
+ assert(DeferredInlineMethodDefinitions.empty() ||
+ Diags.hasErrorOccurred());
+ }
+
+ llvm::Module* GetModule() override {
+ return M.get();
+ }
+
+ const Decl *GetDeclForMangledName(StringRef MangledName) override {
+ GlobalDecl Result;
+ if (!Builder->lookupRepresentativeDecl(MangledName, Result))
+ return nullptr;
+ const Decl *D = Result.getCanonicalDecl().getDecl();
+ if (auto FD = dyn_cast<FunctionDecl>(D)) {
+ if (FD->hasBody(FD))
+ return FD;
+ } else if (auto TD = dyn_cast<TagDecl>(D)) {
+ if (auto Def = TD->getDefinition())
+ return Def;
+ }
+ return D;
+ }
+
+ llvm::Module *ReleaseModule() override { return M.release(); }
+
+ void Initialize(ASTContext &Context) override {
+ Ctx = &Context;
+
+ M->setTargetTriple(Ctx->getTargetInfo().getTriple().getTriple());
+ M->setDataLayout(Ctx->getTargetInfo().getTargetDescription());
+ TD.reset(
+ new llvm::DataLayout(Ctx->getTargetInfo().getTargetDescription()));
+ Builder.reset(new CodeGen::CodeGenModule(Context, CodeGenOpts, *M, *TD,
+ Diags, CoverageInfo));
+
+ for (size_t i = 0, e = CodeGenOpts.DependentLibraries.size(); i < e; ++i)
+ HandleDependentLibrary(CodeGenOpts.DependentLibraries[i]);
+ }
+
+ void HandleCXXStaticMemberVarInstantiation(VarDecl *VD) override {
+ if (Diags.hasErrorOccurred())
+ return;
+
+ Builder->HandleCXXStaticMemberVarInstantiation(VD);
+ }
+
+ bool HandleTopLevelDecl(DeclGroupRef DG) override {
+ if (Diags.hasErrorOccurred())
+ return true;
+
+ HandlingTopLevelDeclRAII HandlingDecl(*this);
+
+ // Make sure to emit all elements of a Decl.
+ for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
+ Builder->EmitTopLevelDecl(*I);
+
+ return true;
+ }
+
+ void EmitDeferredDecls() {
+ if (DeferredInlineMethodDefinitions.empty())
+ return;
+
+ // Emit any deferred inline method definitions. Note that more deferred
+ // methods may be added during this loop, since ASTConsumer callbacks
+ // can be invoked if AST inspection results in declarations being added.
+ HandlingTopLevelDeclRAII HandlingDecl(*this);
+ for (unsigned I = 0; I != DeferredInlineMethodDefinitions.size(); ++I)
+ Builder->EmitTopLevelDecl(DeferredInlineMethodDefinitions[I]);
+ DeferredInlineMethodDefinitions.clear();
+ }
+
+ void HandleInlineMethodDefinition(CXXMethodDecl *D) override {
+ if (Diags.hasErrorOccurred())
+ return;
+
+ assert(D->doesThisDeclarationHaveABody());
+
+ // We may want to emit this definition. However, that decision might be
+ // based on computing the linkage, and we have to defer that in case we
+ // are inside of something that will change the method's final linkage,
+ // e.g.
+ // typedef struct {
+ // void bar();
+ // void foo() { bar(); }
+ // } A;
+ DeferredInlineMethodDefinitions.push_back(D);
+
+ // Provide some coverage mapping even for methods that aren't emitted.
+ // Don't do this for templated classes though, as they may not be
+ // instantiable.
+ if (!D->getParent()->getDescribedClassTemplate())
+ Builder->AddDeferredUnusedCoverageMapping(D);
+ }
+
+ /// HandleTagDeclDefinition - This callback is invoked each time a TagDecl
+ /// to (e.g. struct, union, enum, class) is completed. This allows the
+ /// client hack on the type, which can occur at any point in the file
+ /// (because these can be defined in declspecs).
+ void HandleTagDeclDefinition(TagDecl *D) override {
+ if (Diags.hasErrorOccurred())
+ return;
+
+ Builder->UpdateCompletedType(D);
+
+ // For MSVC compatibility, treat declarations of static data members with
+ // inline initializers as definitions.
+ if (Ctx->getLangOpts().MSVCCompat) {
+ for (Decl *Member : D->decls()) {
+ if (VarDecl *VD = dyn_cast<VarDecl>(Member)) {
+ if (Ctx->isMSStaticDataMemberInlineDefinition(VD) &&
+ Ctx->DeclMustBeEmitted(VD)) {
+ Builder->EmitGlobal(VD);
+ }
+ }
+ }
+ }
+ }
+
+ void HandleTagDeclRequiredDefinition(const TagDecl *D) override {
+ if (Diags.hasErrorOccurred())
+ return;
+
+ if (CodeGen::CGDebugInfo *DI = Builder->getModuleDebugInfo())
+ if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
+ DI->completeRequiredType(RD);
+ }
+
+ void HandleTranslationUnit(ASTContext &Ctx) override {
+ if (Diags.hasErrorOccurred()) {
+ if (Builder)
+ Builder->clear();
+ M.reset();
+ return;
+ }
+
+ if (Builder)
+ Builder->Release();
+ }
+
+ void CompleteTentativeDefinition(VarDecl *D) override {
+ if (Diags.hasErrorOccurred())
+ return;
+
+ Builder->EmitTentativeDefinition(D);
+ }
+
+ void HandleVTable(CXXRecordDecl *RD) override {
+ if (Diags.hasErrorOccurred())
+ return;
+
+ Builder->EmitVTable(RD);
+ }
+
+ void HandleLinkerOptionPragma(llvm::StringRef Opts) override {
+ Builder->AppendLinkerOptions(Opts);
+ }
+
+ void HandleDetectMismatch(llvm::StringRef Name,
+ llvm::StringRef Value) override {
+ Builder->AddDetectMismatch(Name, Value);
+ }
+
+ void HandleDependentLibrary(llvm::StringRef Lib) override {
+ Builder->AddDependentLib(Lib);
+ }
+ };
+}
+
+void CodeGenerator::anchor() { }
+
+CodeGenerator *clang::CreateLLVMCodeGen(DiagnosticsEngine &Diags,
+ const std::string& ModuleName,
+ const CodeGenOptions &CGO,
+ llvm::LLVMContext& C,
+ CoverageSourceInfo *CoverageInfo) {
+ return new CodeGeneratorImpl(Diags, ModuleName, CGO, C, CoverageInfo);
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/SanitizerMetadata.cpp b/contrib/llvm/tools/clang/lib/CodeGen/SanitizerMetadata.cpp
new file mode 100644
index 0000000..7c38b28
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/SanitizerMetadata.cpp
@@ -0,0 +1,92 @@
+//===--- SanitizerMetadata.cpp - Blacklist for sanitizers -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Class which emits metadata consumed by sanitizer instrumentation passes.
+//
+//===----------------------------------------------------------------------===//
+#include "SanitizerMetadata.h"
+#include "CodeGenModule.h"
+#include "clang/AST/Type.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/IR/Constants.h"
+
+using namespace clang;
+using namespace CodeGen;
+
+SanitizerMetadata::SanitizerMetadata(CodeGenModule &CGM) : CGM(CGM) {}
+
+void SanitizerMetadata::reportGlobalToASan(llvm::GlobalVariable *GV,
+ SourceLocation Loc, StringRef Name,
+ QualType Ty, bool IsDynInit,
+ bool IsBlacklisted) {
+ if (!CGM.getLangOpts().Sanitize.has(SanitizerKind::Address))
+ return;
+ IsDynInit &= !CGM.isInSanitizerBlacklist(GV, Loc, Ty, "init");
+ IsBlacklisted |= CGM.isInSanitizerBlacklist(GV, Loc, Ty);
+
+ llvm::Metadata *LocDescr = nullptr;
+ llvm::Metadata *GlobalName = nullptr;
+ llvm::LLVMContext &VMContext = CGM.getLLVMContext();
+ if (!IsBlacklisted) {
+ // Don't generate source location and global name if it is blacklisted -
+ // it won't be instrumented anyway.
+ LocDescr = getLocationMetadata(Loc);
+ if (!Name.empty())
+ GlobalName = llvm::MDString::get(VMContext, Name);
+ }
+
+ llvm::Metadata *GlobalMetadata[] = {
+ llvm::ConstantAsMetadata::get(GV), LocDescr, GlobalName,
+ llvm::ConstantAsMetadata::get(
+ llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext), IsDynInit)),
+ llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
+ llvm::Type::getInt1Ty(VMContext), IsBlacklisted))};
+
+ llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalMetadata);
+ llvm::NamedMDNode *AsanGlobals =
+ CGM.getModule().getOrInsertNamedMetadata("llvm.asan.globals");
+ AsanGlobals->addOperand(ThisGlobal);
+}
+
+void SanitizerMetadata::reportGlobalToASan(llvm::GlobalVariable *GV,
+ const VarDecl &D, bool IsDynInit) {
+ if (!CGM.getLangOpts().Sanitize.has(SanitizerKind::Address))
+ return;
+ std::string QualName;
+ llvm::raw_string_ostream OS(QualName);
+ D.printQualifiedName(OS);
+ reportGlobalToASan(GV, D.getLocation(), OS.str(), D.getType(), IsDynInit);
+}
+
+void SanitizerMetadata::disableSanitizerForGlobal(llvm::GlobalVariable *GV) {
+ // For now, just make sure the global is not modified by the ASan
+ // instrumentation.
+ if (CGM.getLangOpts().Sanitize.has(SanitizerKind::Address))
+ reportGlobalToASan(GV, SourceLocation(), "", QualType(), false, true);
+}
+
+void SanitizerMetadata::disableSanitizerForInstruction(llvm::Instruction *I) {
+ I->setMetadata(CGM.getModule().getMDKindID("nosanitize"),
+ llvm::MDNode::get(CGM.getLLVMContext(), None));
+}
+
+llvm::MDNode *SanitizerMetadata::getLocationMetadata(SourceLocation Loc) {
+ PresumedLoc PLoc = CGM.getContext().getSourceManager().getPresumedLoc(Loc);
+ if (!PLoc.isValid())
+ return nullptr;
+ llvm::LLVMContext &VMContext = CGM.getLLVMContext();
+ llvm::Metadata *LocMetadata[] = {
+ llvm::MDString::get(VMContext, PLoc.getFilename()),
+ llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
+ llvm::Type::getInt32Ty(VMContext), PLoc.getLine())),
+ llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
+ llvm::Type::getInt32Ty(VMContext), PLoc.getColumn())),
+ };
+ return llvm::MDNode::get(VMContext, LocMetadata);
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/SanitizerMetadata.h b/contrib/llvm/tools/clang/lib/CodeGen/SanitizerMetadata.h
new file mode 100644
index 0000000..166f0e6
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/SanitizerMetadata.h
@@ -0,0 +1,53 @@
+//===--- SanitizerMetadata.h - Metadata for sanitizers ----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Class which emits metadata consumed by sanitizer instrumentation passes.
+//
+//===----------------------------------------------------------------------===//
+#ifndef LLVM_CLANG_LIB_CODEGEN_SANITIZERMETADATA_H
+#define LLVM_CLANG_LIB_CODEGEN_SANITIZERMETADATA_H
+
+#include "clang/AST/Type.h"
+#include "clang/Basic/LLVM.h"
+#include "clang/Basic/SourceLocation.h"
+
+namespace llvm {
+class GlobalVariable;
+class Instruction;
+class MDNode;
+}
+
+namespace clang {
+class VarDecl;
+
+namespace CodeGen {
+
+class CodeGenModule;
+
+class SanitizerMetadata {
+ SanitizerMetadata(const SanitizerMetadata &) = delete;
+ void operator=(const SanitizerMetadata &) = delete;
+
+ CodeGenModule &CGM;
+public:
+ SanitizerMetadata(CodeGenModule &CGM);
+ void reportGlobalToASan(llvm::GlobalVariable *GV, const VarDecl &D,
+ bool IsDynInit = false);
+ void reportGlobalToASan(llvm::GlobalVariable *GV, SourceLocation Loc,
+ StringRef Name, QualType Ty, bool IsDynInit = false,
+ bool IsBlacklisted = false);
+ void disableSanitizerForGlobal(llvm::GlobalVariable *GV);
+ void disableSanitizerForInstruction(llvm::Instruction *I);
+private:
+ llvm::MDNode *getLocationMetadata(SourceLocation Loc);
+};
+} // end namespace CodeGen
+} // end namespace clang
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/TargetInfo.cpp b/contrib/llvm/tools/clang/lib/CodeGen/TargetInfo.cpp
new file mode 100644
index 0000000..53154b5
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/TargetInfo.cpp
@@ -0,0 +1,7193 @@
+//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// These classes wrap the information about a call or function
+// definition used to handle ABI compliancy.
+//
+//===----------------------------------------------------------------------===//
+
+#include "TargetInfo.h"
+#include "ABIInfo.h"
+#include "CGCXXABI.h"
+#include "CGValue.h"
+#include "CodeGenFunction.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/CodeGen/CGFunctionInfo.h"
+#include "clang/Frontend/CodeGenOptions.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm> // std::sort
+
+using namespace clang;
+using namespace CodeGen;
+
+static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
+ llvm::Value *Array,
+ llvm::Value *Value,
+ unsigned FirstIndex,
+ unsigned LastIndex) {
+ // Alternatively, we could emit this as a loop in the source.
+ for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
+ llvm::Value *Cell =
+ Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
+ Builder.CreateStore(Value, Cell);
+ }
+}
+
+static bool isAggregateTypeForABI(QualType T) {
+ return !CodeGenFunction::hasScalarEvaluationKind(T) ||
+ T->isMemberFunctionPointerType();
+}
+
+ABIInfo::~ABIInfo() {}
+
+static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
+ CGCXXABI &CXXABI) {
+ const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
+ if (!RD)
+ return CGCXXABI::RAA_Default;
+ return CXXABI.getRecordArgABI(RD);
+}
+
+static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
+ CGCXXABI &CXXABI) {
+ const RecordType *RT = T->getAs<RecordType>();
+ if (!RT)
+ return CGCXXABI::RAA_Default;
+ return getRecordArgABI(RT, CXXABI);
+}
+
+/// Pass transparent unions as if they were the type of the first element. Sema
+/// should ensure that all elements of the union have the same "machine type".
+static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
+ if (const RecordType *UT = Ty->getAsUnionType()) {
+ const RecordDecl *UD = UT->getDecl();
+ if (UD->hasAttr<TransparentUnionAttr>()) {
+ assert(!UD->field_empty() && "sema created an empty transparent union");
+ return UD->field_begin()->getType();
+ }
+ }
+ return Ty;
+}
+
+CGCXXABI &ABIInfo::getCXXABI() const {
+ return CGT.getCXXABI();
+}
+
+ASTContext &ABIInfo::getContext() const {
+ return CGT.getContext();
+}
+
+llvm::LLVMContext &ABIInfo::getVMContext() const {
+ return CGT.getLLVMContext();
+}
+
+const llvm::DataLayout &ABIInfo::getDataLayout() const {
+ return CGT.getDataLayout();
+}
+
+const TargetInfo &ABIInfo::getTarget() const {
+ return CGT.getTarget();
+}
+
+bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
+ return false;
+}
+
+bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
+ uint64_t Members) const {
+ return false;
+}
+
+bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
+ return false;
+}
+
+void ABIArgInfo::dump() const {
+ raw_ostream &OS = llvm::errs();
+ OS << "(ABIArgInfo Kind=";
+ switch (TheKind) {
+ case Direct:
+ OS << "Direct Type=";
+ if (llvm::Type *Ty = getCoerceToType())
+ Ty->print(OS);
+ else
+ OS << "null";
+ break;
+ case Extend:
+ OS << "Extend";
+ break;
+ case Ignore:
+ OS << "Ignore";
+ break;
+ case InAlloca:
+ OS << "InAlloca Offset=" << getInAllocaFieldIndex();
+ break;
+ case Indirect:
+ OS << "Indirect Align=" << getIndirectAlign()
+ << " ByVal=" << getIndirectByVal()
+ << " Realign=" << getIndirectRealign();
+ break;
+ case Expand:
+ OS << "Expand";
+ break;
+ }
+ OS << ")\n";
+}
+
+TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
+
+// If someone can figure out a general rule for this, that would be great.
+// It's probably just doomed to be platform-dependent, though.
+unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
+ // Verified for:
+ // x86-64 FreeBSD, Linux, Darwin
+ // x86-32 FreeBSD, Linux, Darwin
+ // PowerPC Linux, Darwin
+ // ARM Darwin (*not* EABI)
+ // AArch64 Linux
+ return 32;
+}
+
+bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
+ const FunctionNoProtoType *fnType) const {
+ // The following conventions are known to require this to be false:
+ // x86_stdcall
+ // MIPS
+ // For everything else, we just prefer false unless we opt out.
+ return false;
+}
+
+void
+TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
+ llvm::SmallString<24> &Opt) const {
+ // This assumes the user is passing a library name like "rt" instead of a
+ // filename like "librt.a/so", and that they don't care whether it's static or
+ // dynamic.
+ Opt = "-l";
+ Opt += Lib;
+}
+
+static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
+
+/// isEmptyField - Return true iff a the field is "empty", that is it
+/// is an unnamed bit-field or an (array of) empty record(s).
+static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
+ bool AllowArrays) {
+ if (FD->isUnnamedBitfield())
+ return true;
+
+ QualType FT = FD->getType();
+
+ // Constant arrays of empty records count as empty, strip them off.
+ // Constant arrays of zero length always count as empty.
+ if (AllowArrays)
+ while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
+ if (AT->getSize() == 0)
+ return true;
+ FT = AT->getElementType();
+ }
+
+ const RecordType *RT = FT->getAs<RecordType>();
+ if (!RT)
+ return false;
+
+ // C++ record fields are never empty, at least in the Itanium ABI.
+ //
+ // FIXME: We should use a predicate for whether this behavior is true in the
+ // current ABI.
+ if (isa<CXXRecordDecl>(RT->getDecl()))
+ return false;
+
+ return isEmptyRecord(Context, FT, AllowArrays);
+}
+
+/// isEmptyRecord - Return true iff a structure contains only empty
+/// fields. Note that a structure with a flexible array member is not
+/// considered empty.
+static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
+ const RecordType *RT = T->getAs<RecordType>();
+ if (!RT)
+ return 0;
+ const RecordDecl *RD = RT->getDecl();
+ if (RD->hasFlexibleArrayMember())
+ return false;
+
+ // If this is a C++ record, check the bases first.
+ if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
+ for (const auto &I : CXXRD->bases())
+ if (!isEmptyRecord(Context, I.getType(), true))
+ return false;
+
+ for (const auto *I : RD->fields())
+ if (!isEmptyField(Context, I, AllowArrays))
+ return false;
+ return true;
+}
+
+/// isSingleElementStruct - Determine if a structure is a "single
+/// element struct", i.e. it has exactly one non-empty field or
+/// exactly one field which is itself a single element
+/// struct. Structures with flexible array members are never
+/// considered single element structs.
+///
+/// \return The field declaration for the single non-empty field, if
+/// it exists.
+static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
+ const RecordType *RT = T->getAs<RecordType>();
+ if (!RT)
+ return nullptr;
+
+ const RecordDecl *RD = RT->getDecl();
+ if (RD->hasFlexibleArrayMember())
+ return nullptr;
+
+ const Type *Found = nullptr;
+
+ // If this is a C++ record, check the bases first.
+ if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
+ for (const auto &I : CXXRD->bases()) {
+ // Ignore empty records.
+ if (isEmptyRecord(Context, I.getType(), true))
+ continue;
+
+ // If we already found an element then this isn't a single-element struct.
+ if (Found)
+ return nullptr;
+
+ // If this is non-empty and not a single element struct, the composite
+ // cannot be a single element struct.
+ Found = isSingleElementStruct(I.getType(), Context);
+ if (!Found)
+ return nullptr;
+ }
+ }
+
+ // Check for single element.
+ for (const auto *FD : RD->fields()) {
+ QualType FT = FD->getType();
+
+ // Ignore empty fields.
+ if (isEmptyField(Context, FD, true))
+ continue;
+
+ // If we already found an element then this isn't a single-element
+ // struct.
+ if (Found)
+ return nullptr;
+
+ // Treat single element arrays as the element.
+ while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
+ if (AT->getSize().getZExtValue() != 1)
+ break;
+ FT = AT->getElementType();
+ }
+
+ if (!isAggregateTypeForABI(FT)) {
+ Found = FT.getTypePtr();
+ } else {
+ Found = isSingleElementStruct(FT, Context);
+ if (!Found)
+ return nullptr;
+ }
+ }
+
+ // We don't consider a struct a single-element struct if it has
+ // padding beyond the element type.
+ if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
+ return nullptr;
+
+ return Found;
+}
+
+static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
+ // Treat complex types as the element type.
+ if (const ComplexType *CTy = Ty->getAs<ComplexType>())
+ Ty = CTy->getElementType();
+
+ // Check for a type which we know has a simple scalar argument-passing
+ // convention without any padding. (We're specifically looking for 32
+ // and 64-bit integer and integer-equivalents, float, and double.)
+ if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
+ !Ty->isEnumeralType() && !Ty->isBlockPointerType())
+ return false;
+
+ uint64_t Size = Context.getTypeSize(Ty);
+ return Size == 32 || Size == 64;
+}
+
+/// canExpandIndirectArgument - Test whether an argument type which is to be
+/// passed indirectly (on the stack) would have the equivalent layout if it was
+/// expanded into separate arguments. If so, we prefer to do the latter to avoid
+/// inhibiting optimizations.
+///
+// FIXME: This predicate is missing many cases, currently it just follows
+// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
+// should probably make this smarter, or better yet make the LLVM backend
+// capable of handling it.
+static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
+ // We can only expand structure types.
+ const RecordType *RT = Ty->getAs<RecordType>();
+ if (!RT)
+ return false;
+
+ // We can only expand (C) structures.
+ //
+ // FIXME: This needs to be generalized to handle classes as well.
+ const RecordDecl *RD = RT->getDecl();
+ if (!RD->isStruct())
+ return false;
+
+ // We try to expand CLike CXXRecordDecl.
+ if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
+ if (!CXXRD->isCLike())
+ return false;
+ }
+
+ uint64_t Size = 0;
+
+ for (const auto *FD : RD->fields()) {
+ if (!is32Or64BitBasicType(FD->getType(), Context))
+ return false;
+
+ // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
+ // how to expand them yet, and the predicate for telling if a bitfield still
+ // counts as "basic" is more complicated than what we were doing previously.
+ if (FD->isBitField())
+ return false;
+
+ Size += Context.getTypeSize(FD->getType());
+ }
+
+ // Make sure there are not any holes in the struct.
+ if (Size != Context.getTypeSize(Ty))
+ return false;
+
+ return true;
+}
+
+namespace {
+/// DefaultABIInfo - The default implementation for ABI specific
+/// details. This implementation provides information which results in
+/// self-consistent and sensible LLVM IR generation, but does not
+/// conform to any particular ABI.
+class DefaultABIInfo : public ABIInfo {
+public:
+ DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
+
+ ABIArgInfo classifyReturnType(QualType RetTy) const;
+ ABIArgInfo classifyArgumentType(QualType RetTy) const;
+
+ void computeInfo(CGFunctionInfo &FI) const override {
+ if (!getCXXABI().classifyReturnType(FI))
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+ for (auto &I : FI.arguments())
+ I.info = classifyArgumentType(I.type);
+ }
+
+ llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const override;
+};
+
+class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
+ : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
+};
+
+llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const {
+ return nullptr;
+}
+
+ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
+ Ty = useFirstFieldIfTransparentUnion(Ty);
+
+ if (isAggregateTypeForABI(Ty)) {
+ // Records with non-trivial destructors/copy-constructors should not be
+ // passed by value.
+ if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
+ return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
+
+ return ABIArgInfo::getIndirect(0);
+ }
+
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ return (Ty->isPromotableIntegerType() ?
+ ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
+}
+
+ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
+ if (RetTy->isVoidType())
+ return ABIArgInfo::getIgnore();
+
+ if (isAggregateTypeForABI(RetTy))
+ return ABIArgInfo::getIndirect(0);
+
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
+ RetTy = EnumTy->getDecl()->getIntegerType();
+
+ return (RetTy->isPromotableIntegerType() ?
+ ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
+}
+
+//===----------------------------------------------------------------------===//
+// le32/PNaCl bitcode ABI Implementation
+//
+// This is a simplified version of the x86_32 ABI. Arguments and return values
+// are always passed on the stack.
+//===----------------------------------------------------------------------===//
+
+class PNaClABIInfo : public ABIInfo {
+ public:
+ PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
+
+ ABIArgInfo classifyReturnType(QualType RetTy) const;
+ ABIArgInfo classifyArgumentType(QualType RetTy) const;
+
+ void computeInfo(CGFunctionInfo &FI) const override;
+ llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const override;
+};
+
+class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
+ public:
+ PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
+ : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
+};
+
+void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
+ if (!getCXXABI().classifyReturnType(FI))
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+
+ for (auto &I : FI.arguments())
+ I.info = classifyArgumentType(I.type);
+}
+
+llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const {
+ return nullptr;
+}
+
+/// \brief Classify argument of given type \p Ty.
+ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
+ if (isAggregateTypeForABI(Ty)) {
+ if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
+ return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
+ return ABIArgInfo::getIndirect(0);
+ } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
+ // Treat an enum type as its underlying type.
+ Ty = EnumTy->getDecl()->getIntegerType();
+ } else if (Ty->isFloatingType()) {
+ // Floating-point types don't go inreg.
+ return ABIArgInfo::getDirect();
+ }
+
+ return (Ty->isPromotableIntegerType() ?
+ ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
+}
+
+ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
+ if (RetTy->isVoidType())
+ return ABIArgInfo::getIgnore();
+
+ // In the PNaCl ABI we always return records/structures on the stack.
+ if (isAggregateTypeForABI(RetTy))
+ return ABIArgInfo::getIndirect(0);
+
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
+ RetTy = EnumTy->getDecl()->getIntegerType();
+
+ return (RetTy->isPromotableIntegerType() ?
+ ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
+}
+
+/// IsX86_MMXType - Return true if this is an MMX type.
+bool IsX86_MMXType(llvm::Type *IRType) {
+ // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
+ return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
+ cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
+ IRType->getScalarSizeInBits() != 64;
+}
+
+static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
+ StringRef Constraint,
+ llvm::Type* Ty) {
+ if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
+ if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
+ // Invalid MMX constraint
+ return nullptr;
+ }
+
+ return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
+ }
+
+ // No operation needed
+ return Ty;
+}
+
+/// Returns true if this type can be passed in SSE registers with the
+/// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
+static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
+ if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
+ if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half)
+ return true;
+ } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
+ // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
+ // registers specially.
+ unsigned VecSize = Context.getTypeSize(VT);
+ if (VecSize == 128 || VecSize == 256 || VecSize == 512)
+ return true;
+ }
+ return false;
+}
+
+/// Returns true if this aggregate is small enough to be passed in SSE registers
+/// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
+static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
+ return NumMembers <= 4;
+}
+
+//===----------------------------------------------------------------------===//
+// X86-32 ABI Implementation
+//===----------------------------------------------------------------------===//
+
+/// \brief Similar to llvm::CCState, but for Clang.
+struct CCState {
+ CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
+
+ unsigned CC;
+ unsigned FreeRegs;
+ unsigned FreeSSERegs;
+};
+
+/// X86_32ABIInfo - The X86-32 ABI information.
+class X86_32ABIInfo : public ABIInfo {
+ enum Class {
+ Integer,
+ Float
+ };
+
+ static const unsigned MinABIStackAlignInBytes = 4;
+
+ bool IsDarwinVectorABI;
+ bool IsSmallStructInRegABI;
+ bool IsWin32StructABI;
+ unsigned DefaultNumRegisterParameters;
+
+ static bool isRegisterSize(unsigned Size) {
+ return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
+ }
+
+ bool isHomogeneousAggregateBaseType(QualType Ty) const override {
+ // FIXME: Assumes vectorcall is in use.
+ return isX86VectorTypeForVectorCall(getContext(), Ty);
+ }
+
+ bool isHomogeneousAggregateSmallEnough(const Type *Ty,
+ uint64_t NumMembers) const override {
+ // FIXME: Assumes vectorcall is in use.
+ return isX86VectorCallAggregateSmallEnough(NumMembers);
+ }
+
+ bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
+
+ /// getIndirectResult - Give a source type \arg Ty, return a suitable result
+ /// such that the argument will be passed in memory.
+ ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
+
+ ABIArgInfo getIndirectReturnResult(CCState &State) const;
+
+ /// \brief Return the alignment to use for the given type on the stack.
+ unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
+
+ Class classify(QualType Ty) const;
+ ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
+ ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
+ bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const;
+
+ /// \brief Rewrite the function info so that all memory arguments use
+ /// inalloca.
+ void rewriteWithInAlloca(CGFunctionInfo &FI) const;
+
+ void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
+ unsigned &StackOffset, ABIArgInfo &Info,
+ QualType Type) const;
+
+public:
+
+ void computeInfo(CGFunctionInfo &FI) const override;
+ llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const override;
+
+ X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w,
+ unsigned r)
+ : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
+ IsWin32StructABI(w), DefaultNumRegisterParameters(r) {}
+};
+
+class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
+ bool d, bool p, bool w, unsigned r)
+ :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {}
+
+ static bool isStructReturnInRegABI(
+ const llvm::Triple &Triple, const CodeGenOptions &Opts);
+
+ void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &CGM) const override;
+
+ int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
+ // Darwin uses different dwarf register numbers for EH.
+ if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
+ return 4;
+ }
+
+ bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const override;
+
+ llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
+ StringRef Constraint,
+ llvm::Type* Ty) const override {
+ return X86AdjustInlineAsmType(CGF, Constraint, Ty);
+ }
+
+ void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
+ std::string &Constraints,
+ std::vector<llvm::Type *> &ResultRegTypes,
+ std::vector<llvm::Type *> &ResultTruncRegTypes,
+ std::vector<LValue> &ResultRegDests,
+ std::string &AsmString,
+ unsigned NumOutputs) const override;
+
+ llvm::Constant *
+ getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
+ unsigned Sig = (0xeb << 0) | // jmp rel8
+ (0x06 << 8) | // .+0x08
+ ('F' << 16) |
+ ('T' << 24);
+ return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
+ }
+};
+
+}
+
+/// Rewrite input constraint references after adding some output constraints.
+/// In the case where there is one output and one input and we add one output,
+/// we need to replace all operand references greater than or equal to 1:
+/// mov $0, $1
+/// mov eax, $1
+/// The result will be:
+/// mov $0, $2
+/// mov eax, $2
+static void rewriteInputConstraintReferences(unsigned FirstIn,
+ unsigned NumNewOuts,
+ std::string &AsmString) {
+ std::string Buf;
+ llvm::raw_string_ostream OS(Buf);
+ size_t Pos = 0;
+ while (Pos < AsmString.size()) {
+ size_t DollarStart = AsmString.find('$', Pos);
+ if (DollarStart == std::string::npos)
+ DollarStart = AsmString.size();
+ size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
+ if (DollarEnd == std::string::npos)
+ DollarEnd = AsmString.size();
+ OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
+ Pos = DollarEnd;
+ size_t NumDollars = DollarEnd - DollarStart;
+ if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
+ // We have an operand reference.
+ size_t DigitStart = Pos;
+ size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
+ if (DigitEnd == std::string::npos)
+ DigitEnd = AsmString.size();
+ StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
+ unsigned OperandIndex;
+ if (!OperandStr.getAsInteger(10, OperandIndex)) {
+ if (OperandIndex >= FirstIn)
+ OperandIndex += NumNewOuts;
+ OS << OperandIndex;
+ } else {
+ OS << OperandStr;
+ }
+ Pos = DigitEnd;
+ }
+ }
+ AsmString = std::move(OS.str());
+}
+
+/// Add output constraints for EAX:EDX because they are return registers.
+void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
+ CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
+ std::vector<llvm::Type *> &ResultRegTypes,
+ std::vector<llvm::Type *> &ResultTruncRegTypes,
+ std::vector<LValue> &ResultRegDests, std::string &AsmString,
+ unsigned NumOutputs) const {
+ uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
+
+ // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
+ // larger.
+ if (!Constraints.empty())
+ Constraints += ',';
+ if (RetWidth <= 32) {
+ Constraints += "={eax}";
+ ResultRegTypes.push_back(CGF.Int32Ty);
+ } else {
+ // Use the 'A' constraint for EAX:EDX.
+ Constraints += "=A";
+ ResultRegTypes.push_back(CGF.Int64Ty);
+ }
+
+ // Truncate EAX or EAX:EDX to an integer of the appropriate size.
+ llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
+ ResultTruncRegTypes.push_back(CoerceTy);
+
+ // Coerce the integer by bitcasting the return slot pointer.
+ ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
+ CoerceTy->getPointerTo()));
+ ResultRegDests.push_back(ReturnSlot);
+
+ rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
+}
+
+/// shouldReturnTypeInRegister - Determine if the given type should be
+/// passed in a register (for the Darwin ABI).
+bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
+ ASTContext &Context) const {
+ uint64_t Size = Context.getTypeSize(Ty);
+
+ // Type must be register sized.
+ if (!isRegisterSize(Size))
+ return false;
+
+ if (Ty->isVectorType()) {
+ // 64- and 128- bit vectors inside structures are not returned in
+ // registers.
+ if (Size == 64 || Size == 128)
+ return false;
+
+ return true;
+ }
+
+ // If this is a builtin, pointer, enum, complex type, member pointer, or
+ // member function pointer it is ok.
+ if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
+ Ty->isAnyComplexType() || Ty->isEnumeralType() ||
+ Ty->isBlockPointerType() || Ty->isMemberPointerType())
+ return true;
+
+ // Arrays are treated like records.
+ if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
+ return shouldReturnTypeInRegister(AT->getElementType(), Context);
+
+ // Otherwise, it must be a record type.
+ const RecordType *RT = Ty->getAs<RecordType>();
+ if (!RT) return false;
+
+ // FIXME: Traverse bases here too.
+
+ // Structure types are passed in register if all fields would be
+ // passed in a register.
+ for (const auto *FD : RT->getDecl()->fields()) {
+ // Empty fields are ignored.
+ if (isEmptyField(Context, FD, true))
+ continue;
+
+ // Check fields recursively.
+ if (!shouldReturnTypeInRegister(FD->getType(), Context))
+ return false;
+ }
+ return true;
+}
+
+ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(CCState &State) const {
+ // If the return value is indirect, then the hidden argument is consuming one
+ // integer register.
+ if (State.FreeRegs) {
+ --State.FreeRegs;
+ return ABIArgInfo::getIndirectInReg(/*Align=*/0, /*ByVal=*/false);
+ }
+ return ABIArgInfo::getIndirect(/*Align=*/0, /*ByVal=*/false);
+}
+
+ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, CCState &State) const {
+ if (RetTy->isVoidType())
+ return ABIArgInfo::getIgnore();
+
+ const Type *Base = nullptr;
+ uint64_t NumElts = 0;
+ if (State.CC == llvm::CallingConv::X86_VectorCall &&
+ isHomogeneousAggregate(RetTy, Base, NumElts)) {
+ // The LLVM struct type for such an aggregate should lower properly.
+ return ABIArgInfo::getDirect();
+ }
+
+ if (const VectorType *VT = RetTy->getAs<VectorType>()) {
+ // On Darwin, some vectors are returned in registers.
+ if (IsDarwinVectorABI) {
+ uint64_t Size = getContext().getTypeSize(RetTy);
+
+ // 128-bit vectors are a special case; they are returned in
+ // registers and we need to make sure to pick a type the LLVM
+ // backend will like.
+ if (Size == 128)
+ return ABIArgInfo::getDirect(llvm::VectorType::get(
+ llvm::Type::getInt64Ty(getVMContext()), 2));
+
+ // Always return in register if it fits in a general purpose
+ // register, or if it is 64 bits and has a single element.
+ if ((Size == 8 || Size == 16 || Size == 32) ||
+ (Size == 64 && VT->getNumElements() == 1))
+ return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
+ Size));
+
+ return getIndirectReturnResult(State);
+ }
+
+ return ABIArgInfo::getDirect();
+ }
+
+ if (isAggregateTypeForABI(RetTy)) {
+ if (const RecordType *RT = RetTy->getAs<RecordType>()) {
+ // Structures with flexible arrays are always indirect.
+ if (RT->getDecl()->hasFlexibleArrayMember())
+ return getIndirectReturnResult(State);
+ }
+
+ // If specified, structs and unions are always indirect.
+ if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
+ return getIndirectReturnResult(State);
+
+ // Small structures which are register sized are generally returned
+ // in a register.
+ if (shouldReturnTypeInRegister(RetTy, getContext())) {
+ uint64_t Size = getContext().getTypeSize(RetTy);
+
+ // As a special-case, if the struct is a "single-element" struct, and
+ // the field is of type "float" or "double", return it in a
+ // floating-point register. (MSVC does not apply this special case.)
+ // We apply a similar transformation for pointer types to improve the
+ // quality of the generated IR.
+ if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
+ if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
+ || SeltTy->hasPointerRepresentation())
+ return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
+
+ // FIXME: We should be able to narrow this integer in cases with dead
+ // padding.
+ return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
+ }
+
+ return getIndirectReturnResult(State);
+ }
+
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
+ RetTy = EnumTy->getDecl()->getIntegerType();
+
+ return (RetTy->isPromotableIntegerType() ?
+ ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
+}
+
+static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
+ return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
+}
+
+static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
+ const RecordType *RT = Ty->getAs<RecordType>();
+ if (!RT)
+ return 0;
+ const RecordDecl *RD = RT->getDecl();
+
+ // If this is a C++ record, check the bases first.
+ if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
+ for (const auto &I : CXXRD->bases())
+ if (!isRecordWithSSEVectorType(Context, I.getType()))
+ return false;
+
+ for (const auto *i : RD->fields()) {
+ QualType FT = i->getType();
+
+ if (isSSEVectorType(Context, FT))
+ return true;
+
+ if (isRecordWithSSEVectorType(Context, FT))
+ return true;
+ }
+
+ return false;
+}
+
+unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
+ unsigned Align) const {
+ // Otherwise, if the alignment is less than or equal to the minimum ABI
+ // alignment, just use the default; the backend will handle this.
+ if (Align <= MinABIStackAlignInBytes)
+ return 0; // Use default alignment.
+
+ // On non-Darwin, the stack type alignment is always 4.
+ if (!IsDarwinVectorABI) {
+ // Set explicit alignment, since we may need to realign the top.
+ return MinABIStackAlignInBytes;
+ }
+
+ // Otherwise, if the type contains an SSE vector type, the alignment is 16.
+ if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
+ isRecordWithSSEVectorType(getContext(), Ty)))
+ return 16;
+
+ return MinABIStackAlignInBytes;
+}
+
+ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
+ CCState &State) const {
+ if (!ByVal) {
+ if (State.FreeRegs) {
+ --State.FreeRegs; // Non-byval indirects just use one pointer.
+ return ABIArgInfo::getIndirectInReg(0, false);
+ }
+ return ABIArgInfo::getIndirect(0, false);
+ }
+
+ // Compute the byval alignment.
+ unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
+ unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
+ if (StackAlign == 0)
+ return ABIArgInfo::getIndirect(4, /*ByVal=*/true);
+
+ // If the stack alignment is less than the type alignment, realign the
+ // argument.
+ bool Realign = TypeAlign > StackAlign;
+ return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, Realign);
+}
+
+X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
+ const Type *T = isSingleElementStruct(Ty, getContext());
+ if (!T)
+ T = Ty.getTypePtr();
+
+ if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
+ BuiltinType::Kind K = BT->getKind();
+ if (K == BuiltinType::Float || K == BuiltinType::Double)
+ return Float;
+ }
+ return Integer;
+}
+
+bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State,
+ bool &NeedsPadding) const {
+ NeedsPadding = false;
+ Class C = classify(Ty);
+ if (C == Float)
+ return false;
+
+ unsigned Size = getContext().getTypeSize(Ty);
+ unsigned SizeInRegs = (Size + 31) / 32;
+
+ if (SizeInRegs == 0)
+ return false;
+
+ if (SizeInRegs > State.FreeRegs) {
+ State.FreeRegs = 0;
+ return false;
+ }
+
+ State.FreeRegs -= SizeInRegs;
+
+ if (State.CC == llvm::CallingConv::X86_FastCall ||
+ State.CC == llvm::CallingConv::X86_VectorCall) {
+ if (Size > 32)
+ return false;
+
+ if (Ty->isIntegralOrEnumerationType())
+ return true;
+
+ if (Ty->isPointerType())
+ return true;
+
+ if (Ty->isReferenceType())
+ return true;
+
+ if (State.FreeRegs)
+ NeedsPadding = true;
+
+ return false;
+ }
+
+ return true;
+}
+
+ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
+ CCState &State) const {
+ // FIXME: Set alignment on indirect arguments.
+
+ Ty = useFirstFieldIfTransparentUnion(Ty);
+
+ // Check with the C++ ABI first.
+ const RecordType *RT = Ty->getAs<RecordType>();
+ if (RT) {
+ CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
+ if (RAA == CGCXXABI::RAA_Indirect) {
+ return getIndirectResult(Ty, false, State);
+ } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
+ // The field index doesn't matter, we'll fix it up later.
+ return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
+ }
+ }
+
+ // vectorcall adds the concept of a homogenous vector aggregate, similar
+ // to other targets.
+ const Type *Base = nullptr;
+ uint64_t NumElts = 0;
+ if (State.CC == llvm::CallingConv::X86_VectorCall &&
+ isHomogeneousAggregate(Ty, Base, NumElts)) {
+ if (State.FreeSSERegs >= NumElts) {
+ State.FreeSSERegs -= NumElts;
+ if (Ty->isBuiltinType() || Ty->isVectorType())
+ return ABIArgInfo::getDirect();
+ return ABIArgInfo::getExpand();
+ }
+ return getIndirectResult(Ty, /*ByVal=*/false, State);
+ }
+
+ if (isAggregateTypeForABI(Ty)) {
+ if (RT) {
+ // Structs are always byval on win32, regardless of what they contain.
+ if (IsWin32StructABI)
+ return getIndirectResult(Ty, true, State);
+
+ // Structures with flexible arrays are always indirect.
+ if (RT->getDecl()->hasFlexibleArrayMember())
+ return getIndirectResult(Ty, true, State);
+ }
+
+ // Ignore empty structs/unions.
+ if (isEmptyRecord(getContext(), Ty, true))
+ return ABIArgInfo::getIgnore();
+
+ llvm::LLVMContext &LLVMContext = getVMContext();
+ llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
+ bool NeedsPadding;
+ if (shouldUseInReg(Ty, State, NeedsPadding)) {
+ unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
+ SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
+ llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
+ return ABIArgInfo::getDirectInReg(Result);
+ }
+ llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
+
+ // Expand small (<= 128-bit) record types when we know that the stack layout
+ // of those arguments will match the struct. This is important because the
+ // LLVM backend isn't smart enough to remove byval, which inhibits many
+ // optimizations.
+ if (getContext().getTypeSize(Ty) <= 4*32 &&
+ canExpandIndirectArgument(Ty, getContext()))
+ return ABIArgInfo::getExpandWithPadding(
+ State.CC == llvm::CallingConv::X86_FastCall ||
+ State.CC == llvm::CallingConv::X86_VectorCall,
+ PaddingType);
+
+ return getIndirectResult(Ty, true, State);
+ }
+
+ if (const VectorType *VT = Ty->getAs<VectorType>()) {
+ // On Darwin, some vectors are passed in memory, we handle this by passing
+ // it as an i8/i16/i32/i64.
+ if (IsDarwinVectorABI) {
+ uint64_t Size = getContext().getTypeSize(Ty);
+ if ((Size == 8 || Size == 16 || Size == 32) ||
+ (Size == 64 && VT->getNumElements() == 1))
+ return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
+ Size));
+ }
+
+ if (IsX86_MMXType(CGT.ConvertType(Ty)))
+ return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
+
+ return ABIArgInfo::getDirect();
+ }
+
+
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ bool NeedsPadding;
+ bool InReg = shouldUseInReg(Ty, State, NeedsPadding);
+
+ if (Ty->isPromotableIntegerType()) {
+ if (InReg)
+ return ABIArgInfo::getExtendInReg();
+ return ABIArgInfo::getExtend();
+ }
+ if (InReg)
+ return ABIArgInfo::getDirectInReg();
+ return ABIArgInfo::getDirect();
+}
+
+void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
+ CCState State(FI.getCallingConvention());
+ if (State.CC == llvm::CallingConv::X86_FastCall)
+ State.FreeRegs = 2;
+ else if (State.CC == llvm::CallingConv::X86_VectorCall) {
+ State.FreeRegs = 2;
+ State.FreeSSERegs = 6;
+ } else if (FI.getHasRegParm())
+ State.FreeRegs = FI.getRegParm();
+ else
+ State.FreeRegs = DefaultNumRegisterParameters;
+
+ if (!getCXXABI().classifyReturnType(FI)) {
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
+ } else if (FI.getReturnInfo().isIndirect()) {
+ // The C++ ABI is not aware of register usage, so we have to check if the
+ // return value was sret and put it in a register ourselves if appropriate.
+ if (State.FreeRegs) {
+ --State.FreeRegs; // The sret parameter consumes a register.
+ FI.getReturnInfo().setInReg(true);
+ }
+ }
+
+ // The chain argument effectively gives us another free register.
+ if (FI.isChainCall())
+ ++State.FreeRegs;
+
+ bool UsedInAlloca = false;
+ for (auto &I : FI.arguments()) {
+ I.info = classifyArgumentType(I.type, State);
+ UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
+ }
+
+ // If we needed to use inalloca for any argument, do a second pass and rewrite
+ // all the memory arguments to use inalloca.
+ if (UsedInAlloca)
+ rewriteWithInAlloca(FI);
+}
+
+void
+X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
+ unsigned &StackOffset,
+ ABIArgInfo &Info, QualType Type) const {
+ assert(StackOffset % 4U == 0 && "unaligned inalloca struct");
+ Info = ABIArgInfo::getInAlloca(FrameFields.size());
+ FrameFields.push_back(CGT.ConvertTypeForMem(Type));
+ StackOffset += getContext().getTypeSizeInChars(Type).getQuantity();
+
+ // Insert padding bytes to respect alignment. For x86_32, each argument is 4
+ // byte aligned.
+ if (StackOffset % 4U) {
+ unsigned OldOffset = StackOffset;
+ StackOffset = llvm::RoundUpToAlignment(StackOffset, 4U);
+ unsigned NumBytes = StackOffset - OldOffset;
+ assert(NumBytes);
+ llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
+ Ty = llvm::ArrayType::get(Ty, NumBytes);
+ FrameFields.push_back(Ty);
+ }
+}
+
+static bool isArgInAlloca(const ABIArgInfo &Info) {
+ // Leave ignored and inreg arguments alone.
+ switch (Info.getKind()) {
+ case ABIArgInfo::InAlloca:
+ return true;
+ case ABIArgInfo::Indirect:
+ assert(Info.getIndirectByVal());
+ return true;
+ case ABIArgInfo::Ignore:
+ return false;
+ case ABIArgInfo::Direct:
+ case ABIArgInfo::Extend:
+ case ABIArgInfo::Expand:
+ if (Info.getInReg())
+ return false;
+ return true;
+ }
+ llvm_unreachable("invalid enum");
+}
+
+void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
+ assert(IsWin32StructABI && "inalloca only supported on win32");
+
+ // Build a packed struct type for all of the arguments in memory.
+ SmallVector<llvm::Type *, 6> FrameFields;
+
+ unsigned StackOffset = 0;
+ CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
+
+ // Put 'this' into the struct before 'sret', if necessary.
+ bool IsThisCall =
+ FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
+ ABIArgInfo &Ret = FI.getReturnInfo();
+ if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
+ isArgInAlloca(I->info)) {
+ addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
+ ++I;
+ }
+
+ // Put the sret parameter into the inalloca struct if it's in memory.
+ if (Ret.isIndirect() && !Ret.getInReg()) {
+ CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
+ addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
+ // On Windows, the hidden sret parameter is always returned in eax.
+ Ret.setInAllocaSRet(IsWin32StructABI);
+ }
+
+ // Skip the 'this' parameter in ecx.
+ if (IsThisCall)
+ ++I;
+
+ // Put arguments passed in memory into the struct.
+ for (; I != E; ++I) {
+ if (isArgInAlloca(I->info))
+ addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
+ }
+
+ FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
+ /*isPacked=*/true));
+}
+
+llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const {
+ llvm::Type *BPP = CGF.Int8PtrPtrTy;
+
+ CGBuilderTy &Builder = CGF.Builder;
+ llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
+ "ap");
+ llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
+
+ // Compute if the address needs to be aligned
+ unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
+ Align = getTypeStackAlignInBytes(Ty, Align);
+ Align = std::max(Align, 4U);
+ if (Align > 4) {
+ // addr = (addr + align - 1) & -align;
+ llvm::Value *Offset =
+ llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
+ Addr = CGF.Builder.CreateGEP(Addr, Offset);
+ llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
+ CGF.Int32Ty);
+ llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
+ Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
+ Addr->getType(),
+ "ap.cur.aligned");
+ }
+
+ llvm::Type *PTy =
+ llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
+ llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
+
+ uint64_t Offset =
+ llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
+ llvm::Value *NextAddr =
+ Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
+ "ap.next");
+ Builder.CreateStore(NextAddr, VAListAddrAsBPP);
+
+ return AddrTyped;
+}
+
+bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
+ const llvm::Triple &Triple, const CodeGenOptions &Opts) {
+ assert(Triple.getArch() == llvm::Triple::x86);
+
+ switch (Opts.getStructReturnConvention()) {
+ case CodeGenOptions::SRCK_Default:
+ break;
+ case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return
+ return false;
+ case CodeGenOptions::SRCK_InRegs: // -freg-struct-return
+ return true;
+ }
+
+ if (Triple.isOSDarwin())
+ return true;
+
+ switch (Triple.getOS()) {
+ case llvm::Triple::DragonFly:
+ case llvm::Triple::FreeBSD:
+ case llvm::Triple::OpenBSD:
+ case llvm::Triple::Bitrig:
+ case llvm::Triple::Win32:
+ return true;
+ default:
+ return false;
+ }
+}
+
+void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
+ llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &CGM) const {
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
+ // Get the LLVM function.
+ llvm::Function *Fn = cast<llvm::Function>(GV);
+
+ // Now add the 'alignstack' attribute with a value of 16.
+ llvm::AttrBuilder B;
+ B.addStackAlignmentAttr(16);
+ Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
+ llvm::AttributeSet::get(CGM.getLLVMContext(),
+ llvm::AttributeSet::FunctionIndex,
+ B));
+ }
+ }
+}
+
+bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
+ CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const {
+ CodeGen::CGBuilderTy &Builder = CGF.Builder;
+
+ llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
+
+ // 0-7 are the eight integer registers; the order is different
+ // on Darwin (for EH), but the range is the same.
+ // 8 is %eip.
+ AssignToArrayRange(Builder, Address, Four8, 0, 8);
+
+ if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
+ // 12-16 are st(0..4). Not sure why we stop at 4.
+ // These have size 16, which is sizeof(long double) on
+ // platforms with 8-byte alignment for that type.
+ llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
+ AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
+
+ } else {
+ // 9 is %eflags, which doesn't get a size on Darwin for some
+ // reason.
+ Builder.CreateStore(
+ Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9));
+
+ // 11-16 are st(0..5). Not sure why we stop at 5.
+ // These have size 12, which is sizeof(long double) on
+ // platforms with 4-byte alignment for that type.
+ llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
+ AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
+ }
+
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// X86-64 ABI Implementation
+//===----------------------------------------------------------------------===//
+
+
+namespace {
+/// X86_64ABIInfo - The X86_64 ABI information.
+class X86_64ABIInfo : public ABIInfo {
+ enum Class {
+ Integer = 0,
+ SSE,
+ SSEUp,
+ X87,
+ X87Up,
+ ComplexX87,
+ NoClass,
+ Memory
+ };
+
+ /// merge - Implement the X86_64 ABI merging algorithm.
+ ///
+ /// Merge an accumulating classification \arg Accum with a field
+ /// classification \arg Field.
+ ///
+ /// \param Accum - The accumulating classification. This should
+ /// always be either NoClass or the result of a previous merge
+ /// call. In addition, this should never be Memory (the caller
+ /// should just return Memory for the aggregate).
+ static Class merge(Class Accum, Class Field);
+
+ /// postMerge - Implement the X86_64 ABI post merging algorithm.
+ ///
+ /// Post merger cleanup, reduces a malformed Hi and Lo pair to
+ /// final MEMORY or SSE classes when necessary.
+ ///
+ /// \param AggregateSize - The size of the current aggregate in
+ /// the classification process.
+ ///
+ /// \param Lo - The classification for the parts of the type
+ /// residing in the low word of the containing object.
+ ///
+ /// \param Hi - The classification for the parts of the type
+ /// residing in the higher words of the containing object.
+ ///
+ void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
+
+ /// classify - Determine the x86_64 register classes in which the
+ /// given type T should be passed.
+ ///
+ /// \param Lo - The classification for the parts of the type
+ /// residing in the low word of the containing object.
+ ///
+ /// \param Hi - The classification for the parts of the type
+ /// residing in the high word of the containing object.
+ ///
+ /// \param OffsetBase - The bit offset of this type in the
+ /// containing object. Some parameters are classified different
+ /// depending on whether they straddle an eightbyte boundary.
+ ///
+ /// \param isNamedArg - Whether the argument in question is a "named"
+ /// argument, as used in AMD64-ABI 3.5.7.
+ ///
+ /// If a word is unused its result will be NoClass; if a type should
+ /// be passed in Memory then at least the classification of \arg Lo
+ /// will be Memory.
+ ///
+ /// The \arg Lo class will be NoClass iff the argument is ignored.
+ ///
+ /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
+ /// also be ComplexX87.
+ void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
+ bool isNamedArg) const;
+
+ llvm::Type *GetByteVectorType(QualType Ty) const;
+ llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
+ unsigned IROffset, QualType SourceTy,
+ unsigned SourceOffset) const;
+ llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
+ unsigned IROffset, QualType SourceTy,
+ unsigned SourceOffset) const;
+
+ /// getIndirectResult - Give a source type \arg Ty, return a suitable result
+ /// such that the argument will be returned in memory.
+ ABIArgInfo getIndirectReturnResult(QualType Ty) const;
+
+ /// getIndirectResult - Give a source type \arg Ty, return a suitable result
+ /// such that the argument will be passed in memory.
+ ///
+ /// \param freeIntRegs - The number of free integer registers remaining
+ /// available.
+ ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
+
+ ABIArgInfo classifyReturnType(QualType RetTy) const;
+
+ ABIArgInfo classifyArgumentType(QualType Ty,
+ unsigned freeIntRegs,
+ unsigned &neededInt,
+ unsigned &neededSSE,
+ bool isNamedArg) const;
+
+ bool IsIllegalVectorType(QualType Ty) const;
+
+ /// The 0.98 ABI revision clarified a lot of ambiguities,
+ /// unfortunately in ways that were not always consistent with
+ /// certain previous compilers. In particular, platforms which
+ /// required strict binary compatibility with older versions of GCC
+ /// may need to exempt themselves.
+ bool honorsRevision0_98() const {
+ return !getTarget().getTriple().isOSDarwin();
+ }
+
+ // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
+ // 64-bit hardware.
+ bool Has64BitPointers;
+
+public:
+ X86_64ABIInfo(CodeGen::CodeGenTypes &CGT) :
+ ABIInfo(CGT),
+ Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
+ }
+
+ bool isPassedUsingAVXType(QualType type) const {
+ unsigned neededInt, neededSSE;
+ // The freeIntRegs argument doesn't matter here.
+ ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
+ /*isNamedArg*/true);
+ if (info.isDirect()) {
+ llvm::Type *ty = info.getCoerceToType();
+ if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
+ return (vectorTy->getBitWidth() > 128);
+ }
+ return false;
+ }
+
+ void computeInfo(CGFunctionInfo &FI) const override;
+
+ llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const override;
+
+ bool has64BitPointers() const {
+ return Has64BitPointers;
+ }
+
+ bool hasAVX() const {
+ return getTarget().getABI() == "avx";
+ }
+};
+
+/// WinX86_64ABIInfo - The Windows X86_64 ABI information.
+class WinX86_64ABIInfo : public ABIInfo {
+
+ ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs,
+ bool IsReturnType) const;
+
+public:
+ WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
+
+ void computeInfo(CGFunctionInfo &FI) const override;
+
+ llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const override;
+
+ bool isHomogeneousAggregateBaseType(QualType Ty) const override {
+ // FIXME: Assumes vectorcall is in use.
+ return isX86VectorTypeForVectorCall(getContext(), Ty);
+ }
+
+ bool isHomogeneousAggregateSmallEnough(const Type *Ty,
+ uint64_t NumMembers) const override {
+ // FIXME: Assumes vectorcall is in use.
+ return isX86VectorCallAggregateSmallEnough(NumMembers);
+ }
+};
+
+class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
+ : TargetCodeGenInfo(new X86_64ABIInfo(CGT)) {}
+
+ const X86_64ABIInfo &getABIInfo() const {
+ return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
+ }
+
+ int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
+ return 7;
+ }
+
+ bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const override {
+ llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
+
+ // 0-15 are the 16 integer registers.
+ // 16 is %rip.
+ AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
+ return false;
+ }
+
+ llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
+ StringRef Constraint,
+ llvm::Type* Ty) const override {
+ return X86AdjustInlineAsmType(CGF, Constraint, Ty);
+ }
+
+ bool isNoProtoCallVariadic(const CallArgList &args,
+ const FunctionNoProtoType *fnType) const override {
+ // The default CC on x86-64 sets %al to the number of SSA
+ // registers used, and GCC sets this when calling an unprototyped
+ // function, so we override the default behavior. However, don't do
+ // that when AVX types are involved: the ABI explicitly states it is
+ // undefined, and it doesn't work in practice because of how the ABI
+ // defines varargs anyway.
+ if (fnType->getCallConv() == CC_C) {
+ bool HasAVXType = false;
+ for (CallArgList::const_iterator
+ it = args.begin(), ie = args.end(); it != ie; ++it) {
+ if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
+ HasAVXType = true;
+ break;
+ }
+ }
+
+ if (!HasAVXType)
+ return true;
+ }
+
+ return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
+ }
+
+ llvm::Constant *
+ getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
+ unsigned Sig;
+ if (getABIInfo().has64BitPointers())
+ Sig = (0xeb << 0) | // jmp rel8
+ (0x0a << 8) | // .+0x0c
+ ('F' << 16) |
+ ('T' << 24);
+ else
+ Sig = (0xeb << 0) | // jmp rel8
+ (0x06 << 8) | // .+0x08
+ ('F' << 16) |
+ ('T' << 24);
+ return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
+ }
+
+ unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
+ return getABIInfo().hasAVX() ? 32 : 16;
+ }
+};
+
+class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo {
+public:
+ PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
+ : X86_64TargetCodeGenInfo(CGT) {}
+
+ void getDependentLibraryOption(llvm::StringRef Lib,
+ llvm::SmallString<24> &Opt) const override {
+ Opt = "\01";
+ Opt += Lib;
+ }
+};
+
+static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
+ // If the argument does not end in .lib, automatically add the suffix.
+ // If the argument contains a space, enclose it in quotes.
+ // This matches the behavior of MSVC.
+ bool Quote = (Lib.find(" ") != StringRef::npos);
+ std::string ArgStr = Quote ? "\"" : "";
+ ArgStr += Lib;
+ if (!Lib.endswith_lower(".lib"))
+ ArgStr += ".lib";
+ ArgStr += Quote ? "\"" : "";
+ return ArgStr;
+}
+
+class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
+public:
+ WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
+ bool d, bool p, bool w, unsigned RegParms)
+ : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {}
+
+ void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &CGM) const override;
+
+ void getDependentLibraryOption(llvm::StringRef Lib,
+ llvm::SmallString<24> &Opt) const override {
+ Opt = "/DEFAULTLIB:";
+ Opt += qualifyWindowsLibrary(Lib);
+ }
+
+ void getDetectMismatchOption(llvm::StringRef Name,
+ llvm::StringRef Value,
+ llvm::SmallString<32> &Opt) const override {
+ Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
+ }
+};
+
+static void addStackProbeSizeTargetAttribute(const Decl *D,
+ llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &CGM) {
+ if (isa<FunctionDecl>(D)) {
+ if (CGM.getCodeGenOpts().StackProbeSize != 4096) {
+ llvm::Function *Fn = cast<llvm::Function>(GV);
+
+ Fn->addFnAttr("stack-probe-size", llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
+ }
+ }
+}
+
+void WinX86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
+ llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &CGM) const {
+ X86_32TargetCodeGenInfo::SetTargetAttributes(D, GV, CGM);
+
+ addStackProbeSizeTargetAttribute(D, GV, CGM);
+}
+
+class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
+ bool hasAVX() const { return getABIInfo().getTarget().getABI() == "avx"; }
+
+public:
+ WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
+ : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
+
+ void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &CGM) const override;
+
+ int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
+ return 7;
+ }
+
+ bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const override {
+ llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
+
+ // 0-15 are the 16 integer registers.
+ // 16 is %rip.
+ AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
+ return false;
+ }
+
+ void getDependentLibraryOption(llvm::StringRef Lib,
+ llvm::SmallString<24> &Opt) const override {
+ Opt = "/DEFAULTLIB:";
+ Opt += qualifyWindowsLibrary(Lib);
+ }
+
+ void getDetectMismatchOption(llvm::StringRef Name,
+ llvm::StringRef Value,
+ llvm::SmallString<32> &Opt) const override {
+ Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
+ }
+
+ unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
+ return hasAVX() ? 32 : 16;
+ }
+};
+
+void WinX86_64TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
+ llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &CGM) const {
+ TargetCodeGenInfo::SetTargetAttributes(D, GV, CGM);
+
+ addStackProbeSizeTargetAttribute(D, GV, CGM);
+}
+}
+
+void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
+ Class &Hi) const {
+ // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
+ //
+ // (a) If one of the classes is Memory, the whole argument is passed in
+ // memory.
+ //
+ // (b) If X87UP is not preceded by X87, the whole argument is passed in
+ // memory.
+ //
+ // (c) If the size of the aggregate exceeds two eightbytes and the first
+ // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
+ // argument is passed in memory. NOTE: This is necessary to keep the
+ // ABI working for processors that don't support the __m256 type.
+ //
+ // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
+ //
+ // Some of these are enforced by the merging logic. Others can arise
+ // only with unions; for example:
+ // union { _Complex double; unsigned; }
+ //
+ // Note that clauses (b) and (c) were added in 0.98.
+ //
+ if (Hi == Memory)
+ Lo = Memory;
+ if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
+ Lo = Memory;
+ if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
+ Lo = Memory;
+ if (Hi == SSEUp && Lo != SSE)
+ Hi = SSE;
+}
+
+X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
+ // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
+ // classified recursively so that always two fields are
+ // considered. The resulting class is calculated according to
+ // the classes of the fields in the eightbyte:
+ //
+ // (a) If both classes are equal, this is the resulting class.
+ //
+ // (b) If one of the classes is NO_CLASS, the resulting class is
+ // the other class.
+ //
+ // (c) If one of the classes is MEMORY, the result is the MEMORY
+ // class.
+ //
+ // (d) If one of the classes is INTEGER, the result is the
+ // INTEGER.
+ //
+ // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
+ // MEMORY is used as class.
+ //
+ // (f) Otherwise class SSE is used.
+
+ // Accum should never be memory (we should have returned) or
+ // ComplexX87 (because this cannot be passed in a structure).
+ assert((Accum != Memory && Accum != ComplexX87) &&
+ "Invalid accumulated classification during merge.");
+ if (Accum == Field || Field == NoClass)
+ return Accum;
+ if (Field == Memory)
+ return Memory;
+ if (Accum == NoClass)
+ return Field;
+ if (Accum == Integer || Field == Integer)
+ return Integer;
+ if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
+ Accum == X87 || Accum == X87Up)
+ return Memory;
+ return SSE;
+}
+
+void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
+ Class &Lo, Class &Hi, bool isNamedArg) const {
+ // FIXME: This code can be simplified by introducing a simple value class for
+ // Class pairs with appropriate constructor methods for the various
+ // situations.
+
+ // FIXME: Some of the split computations are wrong; unaligned vectors
+ // shouldn't be passed in registers for example, so there is no chance they
+ // can straddle an eightbyte. Verify & simplify.
+
+ Lo = Hi = NoClass;
+
+ Class &Current = OffsetBase < 64 ? Lo : Hi;
+ Current = Memory;
+
+ if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
+ BuiltinType::Kind k = BT->getKind();
+
+ if (k == BuiltinType::Void) {
+ Current = NoClass;
+ } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
+ Lo = Integer;
+ Hi = Integer;
+ } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
+ Current = Integer;
+ } else if ((k == BuiltinType::Float || k == BuiltinType::Double) ||
+ (k == BuiltinType::LongDouble &&
+ getTarget().getTriple().isOSNaCl())) {
+ Current = SSE;
+ } else if (k == BuiltinType::LongDouble) {
+ Lo = X87;
+ Hi = X87Up;
+ }
+ // FIXME: _Decimal32 and _Decimal64 are SSE.
+ // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
+ return;
+ }
+
+ if (const EnumType *ET = Ty->getAs<EnumType>()) {
+ // Classify the underlying integer type.
+ classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
+ return;
+ }
+
+ if (Ty->hasPointerRepresentation()) {
+ Current = Integer;
+ return;
+ }
+
+ if (Ty->isMemberPointerType()) {
+ if (Ty->isMemberFunctionPointerType()) {
+ if (Has64BitPointers) {
+ // If Has64BitPointers, this is an {i64, i64}, so classify both
+ // Lo and Hi now.
+ Lo = Hi = Integer;
+ } else {
+ // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
+ // straddles an eightbyte boundary, Hi should be classified as well.
+ uint64_t EB_FuncPtr = (OffsetBase) / 64;
+ uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
+ if (EB_FuncPtr != EB_ThisAdj) {
+ Lo = Hi = Integer;
+ } else {
+ Current = Integer;
+ }
+ }
+ } else {
+ Current = Integer;
+ }
+ return;
+ }
+
+ if (const VectorType *VT = Ty->getAs<VectorType>()) {
+ uint64_t Size = getContext().getTypeSize(VT);
+ if (Size == 32) {
+ // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
+ // float> as integer.
+ Current = Integer;
+
+ // If this type crosses an eightbyte boundary, it should be
+ // split.
+ uint64_t EB_Real = (OffsetBase) / 64;
+ uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
+ if (EB_Real != EB_Imag)
+ Hi = Lo;
+ } else if (Size == 64) {
+ // gcc passes <1 x double> in memory. :(
+ if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
+ return;
+
+ // gcc passes <1 x long long> as INTEGER.
+ if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
+ VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
+ VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
+ VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
+ Current = Integer;
+ else
+ Current = SSE;
+
+ // If this type crosses an eightbyte boundary, it should be
+ // split.
+ if (OffsetBase && OffsetBase != 64)
+ Hi = Lo;
+ } else if (Size == 128 || (hasAVX() && isNamedArg && Size == 256)) {
+ // Arguments of 256-bits are split into four eightbyte chunks. The
+ // least significant one belongs to class SSE and all the others to class
+ // SSEUP. The original Lo and Hi design considers that types can't be
+ // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
+ // This design isn't correct for 256-bits, but since there're no cases
+ // where the upper parts would need to be inspected, avoid adding
+ // complexity and just consider Hi to match the 64-256 part.
+ //
+ // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
+ // registers if they are "named", i.e. not part of the "..." of a
+ // variadic function.
+ Lo = SSE;
+ Hi = SSEUp;
+ }
+ return;
+ }
+
+ if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
+ QualType ET = getContext().getCanonicalType(CT->getElementType());
+
+ uint64_t Size = getContext().getTypeSize(Ty);
+ if (ET->isIntegralOrEnumerationType()) {
+ if (Size <= 64)
+ Current = Integer;
+ else if (Size <= 128)
+ Lo = Hi = Integer;
+ } else if (ET == getContext().FloatTy)
+ Current = SSE;
+ else if (ET == getContext().DoubleTy ||
+ (ET == getContext().LongDoubleTy &&
+ getTarget().getTriple().isOSNaCl()))
+ Lo = Hi = SSE;
+ else if (ET == getContext().LongDoubleTy)
+ Current = ComplexX87;
+
+ // If this complex type crosses an eightbyte boundary then it
+ // should be split.
+ uint64_t EB_Real = (OffsetBase) / 64;
+ uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
+ if (Hi == NoClass && EB_Real != EB_Imag)
+ Hi = Lo;
+
+ return;
+ }
+
+ if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
+ // Arrays are treated like structures.
+
+ uint64_t Size = getContext().getTypeSize(Ty);
+
+ // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
+ // than four eightbytes, ..., it has class MEMORY.
+ if (Size > 256)
+ return;
+
+ // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
+ // fields, it has class MEMORY.
+ //
+ // Only need to check alignment of array base.
+ if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
+ return;
+
+ // Otherwise implement simplified merge. We could be smarter about
+ // this, but it isn't worth it and would be harder to verify.
+ Current = NoClass;
+ uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
+ uint64_t ArraySize = AT->getSize().getZExtValue();
+
+ // The only case a 256-bit wide vector could be used is when the array
+ // contains a single 256-bit element. Since Lo and Hi logic isn't extended
+ // to work for sizes wider than 128, early check and fallback to memory.
+ if (Size > 128 && EltSize != 256)
+ return;
+
+ for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
+ Class FieldLo, FieldHi;
+ classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
+ Lo = merge(Lo, FieldLo);
+ Hi = merge(Hi, FieldHi);
+ if (Lo == Memory || Hi == Memory)
+ break;
+ }
+
+ postMerge(Size, Lo, Hi);
+ assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
+ return;
+ }
+
+ if (const RecordType *RT = Ty->getAs<RecordType>()) {
+ uint64_t Size = getContext().getTypeSize(Ty);
+
+ // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
+ // than four eightbytes, ..., it has class MEMORY.
+ if (Size > 256)
+ return;
+
+ // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
+ // copy constructor or a non-trivial destructor, it is passed by invisible
+ // reference.
+ if (getRecordArgABI(RT, getCXXABI()))
+ return;
+
+ const RecordDecl *RD = RT->getDecl();
+
+ // Assume variable sized types are passed in memory.
+ if (RD->hasFlexibleArrayMember())
+ return;
+
+ const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
+
+ // Reset Lo class, this will be recomputed.
+ Current = NoClass;
+
+ // If this is a C++ record, classify the bases first.
+ if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
+ for (const auto &I : CXXRD->bases()) {
+ assert(!I.isVirtual() && !I.getType()->isDependentType() &&
+ "Unexpected base class!");
+ const CXXRecordDecl *Base =
+ cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
+
+ // Classify this field.
+ //
+ // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
+ // single eightbyte, each is classified separately. Each eightbyte gets
+ // initialized to class NO_CLASS.
+ Class FieldLo, FieldHi;
+ uint64_t Offset =
+ OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
+ classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
+ Lo = merge(Lo, FieldLo);
+ Hi = merge(Hi, FieldHi);
+ if (Lo == Memory || Hi == Memory)
+ break;
+ }
+ }
+
+ // Classify the fields one at a time, merging the results.
+ unsigned idx = 0;
+ for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
+ i != e; ++i, ++idx) {
+ uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
+ bool BitField = i->isBitField();
+
+ // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
+ // four eightbytes, or it contains unaligned fields, it has class MEMORY.
+ //
+ // The only case a 256-bit wide vector could be used is when the struct
+ // contains a single 256-bit element. Since Lo and Hi logic isn't extended
+ // to work for sizes wider than 128, early check and fallback to memory.
+ //
+ if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
+ Lo = Memory;
+ return;
+ }
+ // Note, skip this test for bit-fields, see below.
+ if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
+ Lo = Memory;
+ return;
+ }
+
+ // Classify this field.
+ //
+ // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
+ // exceeds a single eightbyte, each is classified
+ // separately. Each eightbyte gets initialized to class
+ // NO_CLASS.
+ Class FieldLo, FieldHi;
+
+ // Bit-fields require special handling, they do not force the
+ // structure to be passed in memory even if unaligned, and
+ // therefore they can straddle an eightbyte.
+ if (BitField) {
+ // Ignore padding bit-fields.
+ if (i->isUnnamedBitfield())
+ continue;
+
+ uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
+ uint64_t Size = i->getBitWidthValue(getContext());
+
+ uint64_t EB_Lo = Offset / 64;
+ uint64_t EB_Hi = (Offset + Size - 1) / 64;
+
+ if (EB_Lo) {
+ assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
+ FieldLo = NoClass;
+ FieldHi = Integer;
+ } else {
+ FieldLo = Integer;
+ FieldHi = EB_Hi ? Integer : NoClass;
+ }
+ } else
+ classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
+ Lo = merge(Lo, FieldLo);
+ Hi = merge(Hi, FieldHi);
+ if (Lo == Memory || Hi == Memory)
+ break;
+ }
+
+ postMerge(Size, Lo, Hi);
+ }
+}
+
+ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
+ // If this is a scalar LLVM value then assume LLVM will pass it in the right
+ // place naturally.
+ if (!isAggregateTypeForABI(Ty)) {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ return (Ty->isPromotableIntegerType() ?
+ ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
+ }
+
+ return ABIArgInfo::getIndirect(0);
+}
+
+bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
+ if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
+ uint64_t Size = getContext().getTypeSize(VecTy);
+ unsigned LargestVector = hasAVX() ? 256 : 128;
+ if (Size <= 64 || Size > LargestVector)
+ return true;
+ }
+
+ return false;
+}
+
+ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
+ unsigned freeIntRegs) const {
+ // If this is a scalar LLVM value then assume LLVM will pass it in the right
+ // place naturally.
+ //
+ // This assumption is optimistic, as there could be free registers available
+ // when we need to pass this argument in memory, and LLVM could try to pass
+ // the argument in the free register. This does not seem to happen currently,
+ // but this code would be much safer if we could mark the argument with
+ // 'onstack'. See PR12193.
+ if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ return (Ty->isPromotableIntegerType() ?
+ ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
+ }
+
+ if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
+ return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
+
+ // Compute the byval alignment. We specify the alignment of the byval in all
+ // cases so that the mid-level optimizer knows the alignment of the byval.
+ unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
+
+ // Attempt to avoid passing indirect results using byval when possible. This
+ // is important for good codegen.
+ //
+ // We do this by coercing the value into a scalar type which the backend can
+ // handle naturally (i.e., without using byval).
+ //
+ // For simplicity, we currently only do this when we have exhausted all of the
+ // free integer registers. Doing this when there are free integer registers
+ // would require more care, as we would have to ensure that the coerced value
+ // did not claim the unused register. That would require either reording the
+ // arguments to the function (so that any subsequent inreg values came first),
+ // or only doing this optimization when there were no following arguments that
+ // might be inreg.
+ //
+ // We currently expect it to be rare (particularly in well written code) for
+ // arguments to be passed on the stack when there are still free integer
+ // registers available (this would typically imply large structs being passed
+ // by value), so this seems like a fair tradeoff for now.
+ //
+ // We can revisit this if the backend grows support for 'onstack' parameter
+ // attributes. See PR12193.
+ if (freeIntRegs == 0) {
+ uint64_t Size = getContext().getTypeSize(Ty);
+
+ // If this type fits in an eightbyte, coerce it into the matching integral
+ // type, which will end up on the stack (with alignment 8).
+ if (Align == 8 && Size <= 64)
+ return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
+ Size));
+ }
+
+ return ABIArgInfo::getIndirect(Align);
+}
+
+/// The ABI specifies that a value should be passed in a full vector XMM/YMM
+/// register. Pick an LLVM IR type that will be passed as a vector register.
+llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
+ // Wrapper structs/arrays that only contain vectors are passed just like
+ // vectors; strip them off if present.
+ if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
+ Ty = QualType(InnerTy, 0);
+
+ llvm::Type *IRType = CGT.ConvertType(Ty);
+ assert(isa<llvm::VectorType>(IRType) &&
+ "Trying to return a non-vector type in a vector register!");
+ return IRType;
+}
+
+/// BitsContainNoUserData - Return true if the specified [start,end) bit range
+/// is known to either be off the end of the specified type or being in
+/// alignment padding. The user type specified is known to be at most 128 bits
+/// in size, and have passed through X86_64ABIInfo::classify with a successful
+/// classification that put one of the two halves in the INTEGER class.
+///
+/// It is conservatively correct to return false.
+static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
+ unsigned EndBit, ASTContext &Context) {
+ // If the bytes being queried are off the end of the type, there is no user
+ // data hiding here. This handles analysis of builtins, vectors and other
+ // types that don't contain interesting padding.
+ unsigned TySize = (unsigned)Context.getTypeSize(Ty);
+ if (TySize <= StartBit)
+ return true;
+
+ if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
+ unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
+ unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
+
+ // Check each element to see if the element overlaps with the queried range.
+ for (unsigned i = 0; i != NumElts; ++i) {
+ // If the element is after the span we care about, then we're done..
+ unsigned EltOffset = i*EltSize;
+ if (EltOffset >= EndBit) break;
+
+ unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
+ if (!BitsContainNoUserData(AT->getElementType(), EltStart,
+ EndBit-EltOffset, Context))
+ return false;
+ }
+ // If it overlaps no elements, then it is safe to process as padding.
+ return true;
+ }
+
+ if (const RecordType *RT = Ty->getAs<RecordType>()) {
+ const RecordDecl *RD = RT->getDecl();
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+
+ // If this is a C++ record, check the bases first.
+ if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
+ for (const auto &I : CXXRD->bases()) {
+ assert(!I.isVirtual() && !I.getType()->isDependentType() &&
+ "Unexpected base class!");
+ const CXXRecordDecl *Base =
+ cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
+
+ // If the base is after the span we care about, ignore it.
+ unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
+ if (BaseOffset >= EndBit) continue;
+
+ unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
+ if (!BitsContainNoUserData(I.getType(), BaseStart,
+ EndBit-BaseOffset, Context))
+ return false;
+ }
+ }
+
+ // Verify that no field has data that overlaps the region of interest. Yes
+ // this could be sped up a lot by being smarter about queried fields,
+ // however we're only looking at structs up to 16 bytes, so we don't care
+ // much.
+ unsigned idx = 0;
+ for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
+ i != e; ++i, ++idx) {
+ unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
+
+ // If we found a field after the region we care about, then we're done.
+ if (FieldOffset >= EndBit) break;
+
+ unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
+ if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
+ Context))
+ return false;
+ }
+
+ // If nothing in this record overlapped the area of interest, then we're
+ // clean.
+ return true;
+ }
+
+ return false;
+}
+
+/// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
+/// float member at the specified offset. For example, {int,{float}} has a
+/// float at offset 4. It is conservatively correct for this routine to return
+/// false.
+static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
+ const llvm::DataLayout &TD) {
+ // Base case if we find a float.
+ if (IROffset == 0 && IRType->isFloatTy())
+ return true;
+
+ // If this is a struct, recurse into the field at the specified offset.
+ if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
+ const llvm::StructLayout *SL = TD.getStructLayout(STy);
+ unsigned Elt = SL->getElementContainingOffset(IROffset);
+ IROffset -= SL->getElementOffset(Elt);
+ return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
+ }
+
+ // If this is an array, recurse into the field at the specified offset.
+ if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
+ llvm::Type *EltTy = ATy->getElementType();
+ unsigned EltSize = TD.getTypeAllocSize(EltTy);
+ IROffset -= IROffset/EltSize*EltSize;
+ return ContainsFloatAtOffset(EltTy, IROffset, TD);
+ }
+
+ return false;
+}
+
+
+/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
+/// low 8 bytes of an XMM register, corresponding to the SSE class.
+llvm::Type *X86_64ABIInfo::
+GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
+ QualType SourceTy, unsigned SourceOffset) const {
+ // The only three choices we have are either double, <2 x float>, or float. We
+ // pass as float if the last 4 bytes is just padding. This happens for
+ // structs that contain 3 floats.
+ if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
+ SourceOffset*8+64, getContext()))
+ return llvm::Type::getFloatTy(getVMContext());
+
+ // We want to pass as <2 x float> if the LLVM IR type contains a float at
+ // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the
+ // case.
+ if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
+ ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
+ return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
+
+ return llvm::Type::getDoubleTy(getVMContext());
+}
+
+
+/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
+/// an 8-byte GPR. This means that we either have a scalar or we are talking
+/// about the high or low part of an up-to-16-byte struct. This routine picks
+/// the best LLVM IR type to represent this, which may be i64 or may be anything
+/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
+/// etc).
+///
+/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
+/// the source type. IROffset is an offset in bytes into the LLVM IR type that
+/// the 8-byte value references. PrefType may be null.
+///
+/// SourceTy is the source-level type for the entire argument. SourceOffset is
+/// an offset into this that we're processing (which is always either 0 or 8).
+///
+llvm::Type *X86_64ABIInfo::
+GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
+ QualType SourceTy, unsigned SourceOffset) const {
+ // If we're dealing with an un-offset LLVM IR type, then it means that we're
+ // returning an 8-byte unit starting with it. See if we can safely use it.
+ if (IROffset == 0) {
+ // Pointers and int64's always fill the 8-byte unit.
+ if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
+ IRType->isIntegerTy(64))
+ return IRType;
+
+ // If we have a 1/2/4-byte integer, we can use it only if the rest of the
+ // goodness in the source type is just tail padding. This is allowed to
+ // kick in for struct {double,int} on the int, but not on
+ // struct{double,int,int} because we wouldn't return the second int. We
+ // have to do this analysis on the source type because we can't depend on
+ // unions being lowered a specific way etc.
+ if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
+ IRType->isIntegerTy(32) ||
+ (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
+ unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
+ cast<llvm::IntegerType>(IRType)->getBitWidth();
+
+ if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
+ SourceOffset*8+64, getContext()))
+ return IRType;
+ }
+ }
+
+ if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
+ // If this is a struct, recurse into the field at the specified offset.
+ const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
+ if (IROffset < SL->getSizeInBytes()) {
+ unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
+ IROffset -= SL->getElementOffset(FieldIdx);
+
+ return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
+ SourceTy, SourceOffset);
+ }
+ }
+
+ if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
+ llvm::Type *EltTy = ATy->getElementType();
+ unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
+ unsigned EltOffset = IROffset/EltSize*EltSize;
+ return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
+ SourceOffset);
+ }
+
+ // Okay, we don't have any better idea of what to pass, so we pass this in an
+ // integer register that isn't too big to fit the rest of the struct.
+ unsigned TySizeInBytes =
+ (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
+
+ assert(TySizeInBytes != SourceOffset && "Empty field?");
+
+ // It is always safe to classify this as an integer type up to i64 that
+ // isn't larger than the structure.
+ return llvm::IntegerType::get(getVMContext(),
+ std::min(TySizeInBytes-SourceOffset, 8U)*8);
+}
+
+
+/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
+/// be used as elements of a two register pair to pass or return, return a
+/// first class aggregate to represent them. For example, if the low part of
+/// a by-value argument should be passed as i32* and the high part as float,
+/// return {i32*, float}.
+static llvm::Type *
+GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
+ const llvm::DataLayout &TD) {
+ // In order to correctly satisfy the ABI, we need to the high part to start
+ // at offset 8. If the high and low parts we inferred are both 4-byte types
+ // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
+ // the second element at offset 8. Check for this:
+ unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
+ unsigned HiAlign = TD.getABITypeAlignment(Hi);
+ unsigned HiStart = llvm::RoundUpToAlignment(LoSize, HiAlign);
+ assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
+
+ // To handle this, we have to increase the size of the low part so that the
+ // second element will start at an 8 byte offset. We can't increase the size
+ // of the second element because it might make us access off the end of the
+ // struct.
+ if (HiStart != 8) {
+ // There are only two sorts of types the ABI generation code can produce for
+ // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
+ // Promote these to a larger type.
+ if (Lo->isFloatTy())
+ Lo = llvm::Type::getDoubleTy(Lo->getContext());
+ else {
+ assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
+ Lo = llvm::Type::getInt64Ty(Lo->getContext());
+ }
+ }
+
+ llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr);
+
+
+ // Verify that the second element is at an 8-byte offset.
+ assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
+ "Invalid x86-64 argument pair!");
+ return Result;
+}
+
+ABIArgInfo X86_64ABIInfo::
+classifyReturnType(QualType RetTy) const {
+ // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
+ // classification algorithm.
+ X86_64ABIInfo::Class Lo, Hi;
+ classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
+
+ // Check some invariants.
+ assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
+ assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
+
+ llvm::Type *ResType = nullptr;
+ switch (Lo) {
+ case NoClass:
+ if (Hi == NoClass)
+ return ABIArgInfo::getIgnore();
+ // If the low part is just padding, it takes no register, leave ResType
+ // null.
+ assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
+ "Unknown missing lo part");
+ break;
+
+ case SSEUp:
+ case X87Up:
+ llvm_unreachable("Invalid classification for lo word.");
+
+ // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
+ // hidden argument.
+ case Memory:
+ return getIndirectReturnResult(RetTy);
+
+ // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
+ // available register of the sequence %rax, %rdx is used.
+ case Integer:
+ ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
+
+ // If we have a sign or zero extended integer, make sure to return Extend
+ // so that the parameter gets the right LLVM IR attributes.
+ if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
+ RetTy = EnumTy->getDecl()->getIntegerType();
+
+ if (RetTy->isIntegralOrEnumerationType() &&
+ RetTy->isPromotableIntegerType())
+ return ABIArgInfo::getExtend();
+ }
+ break;
+
+ // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
+ // available SSE register of the sequence %xmm0, %xmm1 is used.
+ case SSE:
+ ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
+ break;
+
+ // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
+ // returned on the X87 stack in %st0 as 80-bit x87 number.
+ case X87:
+ ResType = llvm::Type::getX86_FP80Ty(getVMContext());
+ break;
+
+ // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
+ // part of the value is returned in %st0 and the imaginary part in
+ // %st1.
+ case ComplexX87:
+ assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
+ ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
+ llvm::Type::getX86_FP80Ty(getVMContext()),
+ nullptr);
+ break;
+ }
+
+ llvm::Type *HighPart = nullptr;
+ switch (Hi) {
+ // Memory was handled previously and X87 should
+ // never occur as a hi class.
+ case Memory:
+ case X87:
+ llvm_unreachable("Invalid classification for hi word.");
+
+ case ComplexX87: // Previously handled.
+ case NoClass:
+ break;
+
+ case Integer:
+ HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
+ if (Lo == NoClass) // Return HighPart at offset 8 in memory.
+ return ABIArgInfo::getDirect(HighPart, 8);
+ break;
+ case SSE:
+ HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
+ if (Lo == NoClass) // Return HighPart at offset 8 in memory.
+ return ABIArgInfo::getDirect(HighPart, 8);
+ break;
+
+ // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
+ // is passed in the next available eightbyte chunk if the last used
+ // vector register.
+ //
+ // SSEUP should always be preceded by SSE, just widen.
+ case SSEUp:
+ assert(Lo == SSE && "Unexpected SSEUp classification.");
+ ResType = GetByteVectorType(RetTy);
+ break;
+
+ // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
+ // returned together with the previous X87 value in %st0.
+ case X87Up:
+ // If X87Up is preceded by X87, we don't need to do
+ // anything. However, in some cases with unions it may not be
+ // preceded by X87. In such situations we follow gcc and pass the
+ // extra bits in an SSE reg.
+ if (Lo != X87) {
+ HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
+ if (Lo == NoClass) // Return HighPart at offset 8 in memory.
+ return ABIArgInfo::getDirect(HighPart, 8);
+ }
+ break;
+ }
+
+ // If a high part was specified, merge it together with the low part. It is
+ // known to pass in the high eightbyte of the result. We do this by forming a
+ // first class struct aggregate with the high and low part: {low, high}
+ if (HighPart)
+ ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
+
+ return ABIArgInfo::getDirect(ResType);
+}
+
+ABIArgInfo X86_64ABIInfo::classifyArgumentType(
+ QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
+ bool isNamedArg)
+ const
+{
+ Ty = useFirstFieldIfTransparentUnion(Ty);
+
+ X86_64ABIInfo::Class Lo, Hi;
+ classify(Ty, 0, Lo, Hi, isNamedArg);
+
+ // Check some invariants.
+ // FIXME: Enforce these by construction.
+ assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
+ assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
+
+ neededInt = 0;
+ neededSSE = 0;
+ llvm::Type *ResType = nullptr;
+ switch (Lo) {
+ case NoClass:
+ if (Hi == NoClass)
+ return ABIArgInfo::getIgnore();
+ // If the low part is just padding, it takes no register, leave ResType
+ // null.
+ assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
+ "Unknown missing lo part");
+ break;
+
+ // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
+ // on the stack.
+ case Memory:
+
+ // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
+ // COMPLEX_X87, it is passed in memory.
+ case X87:
+ case ComplexX87:
+ if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
+ ++neededInt;
+ return getIndirectResult(Ty, freeIntRegs);
+
+ case SSEUp:
+ case X87Up:
+ llvm_unreachable("Invalid classification for lo word.");
+
+ // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
+ // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
+ // and %r9 is used.
+ case Integer:
+ ++neededInt;
+
+ // Pick an 8-byte type based on the preferred type.
+ ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
+
+ // If we have a sign or zero extended integer, make sure to return Extend
+ // so that the parameter gets the right LLVM IR attributes.
+ if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ if (Ty->isIntegralOrEnumerationType() &&
+ Ty->isPromotableIntegerType())
+ return ABIArgInfo::getExtend();
+ }
+
+ break;
+
+ // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
+ // available SSE register is used, the registers are taken in the
+ // order from %xmm0 to %xmm7.
+ case SSE: {
+ llvm::Type *IRType = CGT.ConvertType(Ty);
+ ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
+ ++neededSSE;
+ break;
+ }
+ }
+
+ llvm::Type *HighPart = nullptr;
+ switch (Hi) {
+ // Memory was handled previously, ComplexX87 and X87 should
+ // never occur as hi classes, and X87Up must be preceded by X87,
+ // which is passed in memory.
+ case Memory:
+ case X87:
+ case ComplexX87:
+ llvm_unreachable("Invalid classification for hi word.");
+
+ case NoClass: break;
+
+ case Integer:
+ ++neededInt;
+ // Pick an 8-byte type based on the preferred type.
+ HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
+
+ if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
+ return ABIArgInfo::getDirect(HighPart, 8);
+ break;
+
+ // X87Up generally doesn't occur here (long double is passed in
+ // memory), except in situations involving unions.
+ case X87Up:
+ case SSE:
+ HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
+
+ if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
+ return ABIArgInfo::getDirect(HighPart, 8);
+
+ ++neededSSE;
+ break;
+
+ // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
+ // eightbyte is passed in the upper half of the last used SSE
+ // register. This only happens when 128-bit vectors are passed.
+ case SSEUp:
+ assert(Lo == SSE && "Unexpected SSEUp classification");
+ ResType = GetByteVectorType(Ty);
+ break;
+ }
+
+ // If a high part was specified, merge it together with the low part. It is
+ // known to pass in the high eightbyte of the result. We do this by forming a
+ // first class struct aggregate with the high and low part: {low, high}
+ if (HighPart)
+ ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
+
+ return ABIArgInfo::getDirect(ResType);
+}
+
+void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
+
+ if (!getCXXABI().classifyReturnType(FI))
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+
+ // Keep track of the number of assigned registers.
+ unsigned freeIntRegs = 6, freeSSERegs = 8;
+
+ // If the return value is indirect, then the hidden argument is consuming one
+ // integer register.
+ if (FI.getReturnInfo().isIndirect())
+ --freeIntRegs;
+
+ // The chain argument effectively gives us another free register.
+ if (FI.isChainCall())
+ ++freeIntRegs;
+
+ unsigned NumRequiredArgs = FI.getNumRequiredArgs();
+ // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
+ // get assigned (in left-to-right order) for passing as follows...
+ unsigned ArgNo = 0;
+ for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
+ it != ie; ++it, ++ArgNo) {
+ bool IsNamedArg = ArgNo < NumRequiredArgs;
+
+ unsigned neededInt, neededSSE;
+ it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
+ neededSSE, IsNamedArg);
+
+ // AMD64-ABI 3.2.3p3: If there are no registers available for any
+ // eightbyte of an argument, the whole argument is passed on the
+ // stack. If registers have already been assigned for some
+ // eightbytes of such an argument, the assignments get reverted.
+ if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
+ freeIntRegs -= neededInt;
+ freeSSERegs -= neededSSE;
+ } else {
+ it->info = getIndirectResult(it->type, freeIntRegs);
+ }
+ }
+}
+
+static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
+ QualType Ty,
+ CodeGenFunction &CGF) {
+ llvm::Value *overflow_arg_area_p = CGF.Builder.CreateStructGEP(
+ nullptr, VAListAddr, 2, "overflow_arg_area_p");
+ llvm::Value *overflow_arg_area =
+ CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
+
+ // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
+ // byte boundary if alignment needed by type exceeds 8 byte boundary.
+ // It isn't stated explicitly in the standard, but in practice we use
+ // alignment greater than 16 where necessary.
+ uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
+ if (Align > 8) {
+ // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
+ llvm::Value *Offset =
+ llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
+ overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
+ llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
+ CGF.Int64Ty);
+ llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
+ overflow_arg_area =
+ CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
+ overflow_arg_area->getType(),
+ "overflow_arg_area.align");
+ }
+
+ // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
+ llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
+ llvm::Value *Res =
+ CGF.Builder.CreateBitCast(overflow_arg_area,
+ llvm::PointerType::getUnqual(LTy));
+
+ // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
+ // l->overflow_arg_area + sizeof(type).
+ // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
+ // an 8 byte boundary.
+
+ uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
+ llvm::Value *Offset =
+ llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7);
+ overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
+ "overflow_arg_area.next");
+ CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
+
+ // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
+ return Res;
+}
+
+llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const {
+ // Assume that va_list type is correct; should be pointer to LLVM type:
+ // struct {
+ // i32 gp_offset;
+ // i32 fp_offset;
+ // i8* overflow_arg_area;
+ // i8* reg_save_area;
+ // };
+ unsigned neededInt, neededSSE;
+
+ Ty = CGF.getContext().getCanonicalType(Ty);
+ ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
+ /*isNamedArg*/false);
+
+ // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
+ // in the registers. If not go to step 7.
+ if (!neededInt && !neededSSE)
+ return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
+
+ // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
+ // general purpose registers needed to pass type and num_fp to hold
+ // the number of floating point registers needed.
+
+ // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
+ // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
+ // l->fp_offset > 304 - num_fp * 16 go to step 7.
+ //
+ // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
+ // register save space).
+
+ llvm::Value *InRegs = nullptr;
+ llvm::Value *gp_offset_p = nullptr, *gp_offset = nullptr;
+ llvm::Value *fp_offset_p = nullptr, *fp_offset = nullptr;
+ if (neededInt) {
+ gp_offset_p =
+ CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 0, "gp_offset_p");
+ gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
+ InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
+ InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
+ }
+
+ if (neededSSE) {
+ fp_offset_p =
+ CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 1, "fp_offset_p");
+ fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
+ llvm::Value *FitsInFP =
+ llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
+ FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
+ InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
+ }
+
+ llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
+ llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
+ llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
+ CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
+
+ // Emit code to load the value if it was passed in registers.
+
+ CGF.EmitBlock(InRegBlock);
+
+ // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
+ // an offset of l->gp_offset and/or l->fp_offset. This may require
+ // copying to a temporary location in case the parameter is passed
+ // in different register classes or requires an alignment greater
+ // than 8 for general purpose registers and 16 for XMM registers.
+ //
+ // FIXME: This really results in shameful code when we end up needing to
+ // collect arguments from different places; often what should result in a
+ // simple assembling of a structure from scattered addresses has many more
+ // loads than necessary. Can we clean this up?
+ llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
+ llvm::Value *RegAddr = CGF.Builder.CreateLoad(
+ CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 3), "reg_save_area");
+ if (neededInt && neededSSE) {
+ // FIXME: Cleanup.
+ assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
+ llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
+ llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
+ Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
+ assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
+ llvm::Type *TyLo = ST->getElementType(0);
+ llvm::Type *TyHi = ST->getElementType(1);
+ assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
+ "Unexpected ABI info for mixed regs");
+ llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
+ llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
+ llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
+ llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
+ llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
+ llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
+ llvm::Value *V =
+ CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
+ CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 0));
+ V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
+ CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 1));
+
+ RegAddr = CGF.Builder.CreateBitCast(Tmp,
+ llvm::PointerType::getUnqual(LTy));
+ } else if (neededInt) {
+ RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
+ RegAddr = CGF.Builder.CreateBitCast(RegAddr,
+ llvm::PointerType::getUnqual(LTy));
+
+ // Copy to a temporary if necessary to ensure the appropriate alignment.
+ std::pair<CharUnits, CharUnits> SizeAlign =
+ CGF.getContext().getTypeInfoInChars(Ty);
+ uint64_t TySize = SizeAlign.first.getQuantity();
+ unsigned TyAlign = SizeAlign.second.getQuantity();
+ if (TyAlign > 8) {
+ llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
+ CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false);
+ RegAddr = Tmp;
+ }
+ } else if (neededSSE == 1) {
+ RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
+ RegAddr = CGF.Builder.CreateBitCast(RegAddr,
+ llvm::PointerType::getUnqual(LTy));
+ } else {
+ assert(neededSSE == 2 && "Invalid number of needed registers!");
+ // SSE registers are spaced 16 bytes apart in the register save
+ // area, we need to collect the two eightbytes together.
+ llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
+ llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
+ llvm::Type *DoubleTy = CGF.DoubleTy;
+ llvm::Type *DblPtrTy =
+ llvm::PointerType::getUnqual(DoubleTy);
+ llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr);
+ llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty);
+ Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
+ V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
+ DblPtrTy));
+ CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 0));
+ V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
+ DblPtrTy));
+ CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 1));
+ RegAddr = CGF.Builder.CreateBitCast(Tmp,
+ llvm::PointerType::getUnqual(LTy));
+ }
+
+ // AMD64-ABI 3.5.7p5: Step 5. Set:
+ // l->gp_offset = l->gp_offset + num_gp * 8
+ // l->fp_offset = l->fp_offset + num_fp * 16.
+ if (neededInt) {
+ llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
+ CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
+ gp_offset_p);
+ }
+ if (neededSSE) {
+ llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
+ CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
+ fp_offset_p);
+ }
+ CGF.EmitBranch(ContBlock);
+
+ // Emit code to load the value if it was passed in memory.
+
+ CGF.EmitBlock(InMemBlock);
+ llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
+
+ // Return the appropriate result.
+
+ CGF.EmitBlock(ContBlock);
+ llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
+ "vaarg.addr");
+ ResAddr->addIncoming(RegAddr, InRegBlock);
+ ResAddr->addIncoming(MemAddr, InMemBlock);
+ return ResAddr;
+}
+
+ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
+ bool IsReturnType) const {
+
+ if (Ty->isVoidType())
+ return ABIArgInfo::getIgnore();
+
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ TypeInfo Info = getContext().getTypeInfo(Ty);
+ uint64_t Width = Info.Width;
+ unsigned Align = getContext().toCharUnitsFromBits(Info.Align).getQuantity();
+
+ const RecordType *RT = Ty->getAs<RecordType>();
+ if (RT) {
+ if (!IsReturnType) {
+ if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
+ return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
+ }
+
+ if (RT->getDecl()->hasFlexibleArrayMember())
+ return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
+
+ // FIXME: mingw-w64-gcc emits 128-bit struct as i128
+ if (Width == 128 && getTarget().getTriple().isWindowsGNUEnvironment())
+ return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
+ Width));
+ }
+
+ // vectorcall adds the concept of a homogenous vector aggregate, similar to
+ // other targets.
+ const Type *Base = nullptr;
+ uint64_t NumElts = 0;
+ if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) {
+ if (FreeSSERegs >= NumElts) {
+ FreeSSERegs -= NumElts;
+ if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
+ return ABIArgInfo::getDirect();
+ return ABIArgInfo::getExpand();
+ }
+ return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
+ }
+
+
+ if (Ty->isMemberPointerType()) {
+ // If the member pointer is represented by an LLVM int or ptr, pass it
+ // directly.
+ llvm::Type *LLTy = CGT.ConvertType(Ty);
+ if (LLTy->isPointerTy() || LLTy->isIntegerTy())
+ return ABIArgInfo::getDirect();
+ }
+
+ if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
+ // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
+ // not 1, 2, 4, or 8 bytes, must be passed by reference."
+ if (Width > 64 || !llvm::isPowerOf2_64(Width))
+ return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
+
+ // Otherwise, coerce it to a small integer.
+ return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
+ }
+
+ // Bool type is always extended to the ABI, other builtin types are not
+ // extended.
+ const BuiltinType *BT = Ty->getAs<BuiltinType>();
+ if (BT && BT->getKind() == BuiltinType::Bool)
+ return ABIArgInfo::getExtend();
+
+ return ABIArgInfo::getDirect();
+}
+
+void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
+ bool IsVectorCall =
+ FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
+
+ // We can use up to 4 SSE return registers with vectorcall.
+ unsigned FreeSSERegs = IsVectorCall ? 4 : 0;
+ if (!getCXXABI().classifyReturnType(FI))
+ FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true);
+
+ // We can use up to 6 SSE register parameters with vectorcall.
+ FreeSSERegs = IsVectorCall ? 6 : 0;
+ for (auto &I : FI.arguments())
+ I.info = classify(I.type, FreeSSERegs, false);
+}
+
+llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const {
+ llvm::Type *BPP = CGF.Int8PtrPtrTy;
+
+ CGBuilderTy &Builder = CGF.Builder;
+ llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
+ "ap");
+ llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
+ llvm::Type *PTy =
+ llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
+ llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
+
+ uint64_t Offset =
+ llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
+ llvm::Value *NextAddr =
+ Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
+ "ap.next");
+ Builder.CreateStore(NextAddr, VAListAddrAsBPP);
+
+ return AddrTyped;
+}
+
+// PowerPC-32
+namespace {
+/// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
+class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
+public:
+ PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
+
+ llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const override;
+};
+
+class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT)) {}
+
+ int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
+ // This is recovered from gcc output.
+ return 1; // r1 is the dedicated stack pointer
+ }
+
+ bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const override;
+
+ unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
+ return 16; // Natural alignment for Altivec vectors.
+ }
+};
+
+}
+
+llvm::Value *PPC32_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
+ QualType Ty,
+ CodeGenFunction &CGF) const {
+ if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
+ // TODO: Implement this. For now ignore.
+ (void)CTy;
+ return nullptr;
+ }
+
+ bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
+ bool isInt = Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
+ llvm::Type *CharPtr = CGF.Int8PtrTy;
+ llvm::Type *CharPtrPtr = CGF.Int8PtrPtrTy;
+
+ CGBuilderTy &Builder = CGF.Builder;
+ llvm::Value *GPRPtr = Builder.CreateBitCast(VAListAddr, CharPtr, "gprptr");
+ llvm::Value *GPRPtrAsInt = Builder.CreatePtrToInt(GPRPtr, CGF.Int32Ty);
+ llvm::Value *FPRPtrAsInt = Builder.CreateAdd(GPRPtrAsInt, Builder.getInt32(1));
+ llvm::Value *FPRPtr = Builder.CreateIntToPtr(FPRPtrAsInt, CharPtr);
+ llvm::Value *OverflowAreaPtrAsInt = Builder.CreateAdd(FPRPtrAsInt, Builder.getInt32(3));
+ llvm::Value *OverflowAreaPtr = Builder.CreateIntToPtr(OverflowAreaPtrAsInt, CharPtrPtr);
+ llvm::Value *RegsaveAreaPtrAsInt = Builder.CreateAdd(OverflowAreaPtrAsInt, Builder.getInt32(4));
+ llvm::Value *RegsaveAreaPtr = Builder.CreateIntToPtr(RegsaveAreaPtrAsInt, CharPtrPtr);
+ llvm::Value *GPR = Builder.CreateLoad(GPRPtr, false, "gpr");
+ // Align GPR when TY is i64.
+ if (isI64) {
+ llvm::Value *GPRAnd = Builder.CreateAnd(GPR, Builder.getInt8(1));
+ llvm::Value *CC64 = Builder.CreateICmpEQ(GPRAnd, Builder.getInt8(1));
+ llvm::Value *GPRPlusOne = Builder.CreateAdd(GPR, Builder.getInt8(1));
+ GPR = Builder.CreateSelect(CC64, GPRPlusOne, GPR);
+ }
+ llvm::Value *FPR = Builder.CreateLoad(FPRPtr, false, "fpr");
+ llvm::Value *OverflowArea = Builder.CreateLoad(OverflowAreaPtr, false, "overflow_area");
+ llvm::Value *OverflowAreaAsInt = Builder.CreatePtrToInt(OverflowArea, CGF.Int32Ty);
+ llvm::Value *RegsaveArea = Builder.CreateLoad(RegsaveAreaPtr, false, "regsave_area");
+ llvm::Value *RegsaveAreaAsInt = Builder.CreatePtrToInt(RegsaveArea, CGF.Int32Ty);
+
+ llvm::Value *CC = Builder.CreateICmpULT(isInt ? GPR : FPR,
+ Builder.getInt8(8), "cond");
+
+ llvm::Value *RegConstant = Builder.CreateMul(isInt ? GPR : FPR,
+ Builder.getInt8(isInt ? 4 : 8));
+
+ llvm::Value *OurReg = Builder.CreateAdd(RegsaveAreaAsInt, Builder.CreateSExt(RegConstant, CGF.Int32Ty));
+
+ if (Ty->isFloatingType())
+ OurReg = Builder.CreateAdd(OurReg, Builder.getInt32(32));
+
+ llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
+ llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
+ llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
+
+ Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
+
+ CGF.EmitBlock(UsingRegs);
+
+ llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
+ llvm::Value *Result1 = Builder.CreateIntToPtr(OurReg, PTy);
+ // Increase the GPR/FPR indexes.
+ if (isInt) {
+ GPR = Builder.CreateAdd(GPR, Builder.getInt8(isI64 ? 2 : 1));
+ Builder.CreateStore(GPR, GPRPtr);
+ } else {
+ FPR = Builder.CreateAdd(FPR, Builder.getInt8(1));
+ Builder.CreateStore(FPR, FPRPtr);
+ }
+ CGF.EmitBranch(Cont);
+
+ CGF.EmitBlock(UsingOverflow);
+
+ // Increase the overflow area.
+ llvm::Value *Result2 = Builder.CreateIntToPtr(OverflowAreaAsInt, PTy);
+ OverflowAreaAsInt = Builder.CreateAdd(OverflowAreaAsInt, Builder.getInt32(isInt ? 4 : 8));
+ Builder.CreateStore(Builder.CreateIntToPtr(OverflowAreaAsInt, CharPtr), OverflowAreaPtr);
+ CGF.EmitBranch(Cont);
+
+ CGF.EmitBlock(Cont);
+
+ llvm::PHINode *Result = CGF.Builder.CreatePHI(PTy, 2, "vaarg.addr");
+ Result->addIncoming(Result1, UsingRegs);
+ Result->addIncoming(Result2, UsingOverflow);
+
+ if (Ty->isAggregateType()) {
+ llvm::Value *AGGPtr = Builder.CreateBitCast(Result, CharPtrPtr, "aggrptr") ;
+ return Builder.CreateLoad(AGGPtr, false, "aggr");
+ }
+
+ return Result;
+}
+
+bool
+PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const {
+ // This is calculated from the LLVM and GCC tables and verified
+ // against gcc output. AFAIK all ABIs use the same encoding.
+
+ CodeGen::CGBuilderTy &Builder = CGF.Builder;
+
+ llvm::IntegerType *i8 = CGF.Int8Ty;
+ llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
+ llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
+ llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
+
+ // 0-31: r0-31, the 4-byte general-purpose registers
+ AssignToArrayRange(Builder, Address, Four8, 0, 31);
+
+ // 32-63: fp0-31, the 8-byte floating-point registers
+ AssignToArrayRange(Builder, Address, Eight8, 32, 63);
+
+ // 64-76 are various 4-byte special-purpose registers:
+ // 64: mq
+ // 65: lr
+ // 66: ctr
+ // 67: ap
+ // 68-75 cr0-7
+ // 76: xer
+ AssignToArrayRange(Builder, Address, Four8, 64, 76);
+
+ // 77-108: v0-31, the 16-byte vector registers
+ AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
+
+ // 109: vrsave
+ // 110: vscr
+ // 111: spe_acc
+ // 112: spefscr
+ // 113: sfp
+ AssignToArrayRange(Builder, Address, Four8, 109, 113);
+
+ return false;
+}
+
+// PowerPC-64
+
+namespace {
+/// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
+class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
+public:
+ enum ABIKind {
+ ELFv1 = 0,
+ ELFv2
+ };
+
+private:
+ static const unsigned GPRBits = 64;
+ ABIKind Kind;
+ bool HasQPX;
+
+ // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
+ // will be passed in a QPX register.
+ bool IsQPXVectorTy(const Type *Ty) const {
+ if (!HasQPX)
+ return false;
+
+ if (const VectorType *VT = Ty->getAs<VectorType>()) {
+ unsigned NumElements = VT->getNumElements();
+ if (NumElements == 1)
+ return false;
+
+ if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
+ if (getContext().getTypeSize(Ty) <= 256)
+ return true;
+ } else if (VT->getElementType()->
+ isSpecificBuiltinType(BuiltinType::Float)) {
+ if (getContext().getTypeSize(Ty) <= 128)
+ return true;
+ }
+ }
+
+ return false;
+ }
+
+ bool IsQPXVectorTy(QualType Ty) const {
+ return IsQPXVectorTy(Ty.getTypePtr());
+ }
+
+public:
+ PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX)
+ : DefaultABIInfo(CGT), Kind(Kind), HasQPX(HasQPX) {}
+
+ bool isPromotableTypeForABI(QualType Ty) const;
+ bool isAlignedParamType(QualType Ty, bool &Align32) const;
+
+ ABIArgInfo classifyReturnType(QualType RetTy) const;
+ ABIArgInfo classifyArgumentType(QualType Ty) const;
+
+ bool isHomogeneousAggregateBaseType(QualType Ty) const override;
+ bool isHomogeneousAggregateSmallEnough(const Type *Ty,
+ uint64_t Members) const override;
+
+ // TODO: We can add more logic to computeInfo to improve performance.
+ // Example: For aggregate arguments that fit in a register, we could
+ // use getDirectInReg (as is done below for structs containing a single
+ // floating-point value) to avoid pushing them to memory on function
+ // entry. This would require changing the logic in PPCISelLowering
+ // when lowering the parameters in the caller and args in the callee.
+ void computeInfo(CGFunctionInfo &FI) const override {
+ if (!getCXXABI().classifyReturnType(FI))
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+ for (auto &I : FI.arguments()) {
+ // We rely on the default argument classification for the most part.
+ // One exception: An aggregate containing a single floating-point
+ // or vector item must be passed in a register if one is available.
+ const Type *T = isSingleElementStruct(I.type, getContext());
+ if (T) {
+ const BuiltinType *BT = T->getAs<BuiltinType>();
+ if (IsQPXVectorTy(T) ||
+ (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
+ (BT && BT->isFloatingPoint())) {
+ QualType QT(T, 0);
+ I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
+ continue;
+ }
+ }
+ I.info = classifyArgumentType(I.type);
+ }
+ }
+
+ llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const override;
+};
+
+class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
+ bool HasQPX;
+
+public:
+ PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
+ PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX)
+ : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX)),
+ HasQPX(HasQPX) {}
+
+ int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
+ // This is recovered from gcc output.
+ return 1; // r1 is the dedicated stack pointer
+ }
+
+ bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const override;
+
+ unsigned getOpenMPSimdDefaultAlignment(QualType QT) const override {
+ if (HasQPX)
+ if (const PointerType *PT = QT->getAs<PointerType>())
+ if (PT->getPointeeType()->isSpecificBuiltinType(BuiltinType::Double))
+ return 32; // Natural alignment for QPX doubles.
+
+ return 16; // Natural alignment for Altivec and VSX vectors.
+ }
+};
+
+class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
+public:
+ PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
+
+ int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
+ // This is recovered from gcc output.
+ return 1; // r1 is the dedicated stack pointer
+ }
+
+ bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const override;
+
+ unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
+ return 16; // Natural alignment for Altivec vectors.
+ }
+};
+
+}
+
+// Return true if the ABI requires Ty to be passed sign- or zero-
+// extended to 64 bits.
+bool
+PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ // Promotable integer types are required to be promoted by the ABI.
+ if (Ty->isPromotableIntegerType())
+ return true;
+
+ // In addition to the usual promotable integer types, we also need to
+ // extend all 32-bit types, since the ABI requires promotion to 64 bits.
+ if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
+ switch (BT->getKind()) {
+ case BuiltinType::Int:
+ case BuiltinType::UInt:
+ return true;
+ default:
+ break;
+ }
+
+ return false;
+}
+
+/// isAlignedParamType - Determine whether a type requires 16-byte
+/// alignment in the parameter area.
+bool
+PPC64_SVR4_ABIInfo::isAlignedParamType(QualType Ty, bool &Align32) const {
+ Align32 = false;
+
+ // Complex types are passed just like their elements.
+ if (const ComplexType *CTy = Ty->getAs<ComplexType>())
+ Ty = CTy->getElementType();
+
+ // Only vector types of size 16 bytes need alignment (larger types are
+ // passed via reference, smaller types are not aligned).
+ if (IsQPXVectorTy(Ty)) {
+ if (getContext().getTypeSize(Ty) > 128)
+ Align32 = true;
+
+ return true;
+ } else if (Ty->isVectorType()) {
+ return getContext().getTypeSize(Ty) == 128;
+ }
+
+ // For single-element float/vector structs, we consider the whole type
+ // to have the same alignment requirements as its single element.
+ const Type *AlignAsType = nullptr;
+ const Type *EltType = isSingleElementStruct(Ty, getContext());
+ if (EltType) {
+ const BuiltinType *BT = EltType->getAs<BuiltinType>();
+ if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
+ getContext().getTypeSize(EltType) == 128) ||
+ (BT && BT->isFloatingPoint()))
+ AlignAsType = EltType;
+ }
+
+ // Likewise for ELFv2 homogeneous aggregates.
+ const Type *Base = nullptr;
+ uint64_t Members = 0;
+ if (!AlignAsType && Kind == ELFv2 &&
+ isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
+ AlignAsType = Base;
+
+ // With special case aggregates, only vector base types need alignment.
+ if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
+ if (getContext().getTypeSize(AlignAsType) > 128)
+ Align32 = true;
+
+ return true;
+ } else if (AlignAsType) {
+ return AlignAsType->isVectorType();
+ }
+
+ // Otherwise, we only need alignment for any aggregate type that
+ // has an alignment requirement of >= 16 bytes.
+ if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
+ if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
+ Align32 = true;
+ return true;
+ }
+
+ return false;
+}
+
+/// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
+/// aggregate. Base is set to the base element type, and Members is set
+/// to the number of base elements.
+bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
+ uint64_t &Members) const {
+ if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
+ uint64_t NElements = AT->getSize().getZExtValue();
+ if (NElements == 0)
+ return false;
+ if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
+ return false;
+ Members *= NElements;
+ } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
+ const RecordDecl *RD = RT->getDecl();
+ if (RD->hasFlexibleArrayMember())
+ return false;
+
+ Members = 0;
+
+ // If this is a C++ record, check the bases first.
+ if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
+ for (const auto &I : CXXRD->bases()) {
+ // Ignore empty records.
+ if (isEmptyRecord(getContext(), I.getType(), true))
+ continue;
+
+ uint64_t FldMembers;
+ if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
+ return false;
+
+ Members += FldMembers;
+ }
+ }
+
+ for (const auto *FD : RD->fields()) {
+ // Ignore (non-zero arrays of) empty records.
+ QualType FT = FD->getType();
+ while (const ConstantArrayType *AT =
+ getContext().getAsConstantArrayType(FT)) {
+ if (AT->getSize().getZExtValue() == 0)
+ return false;
+ FT = AT->getElementType();
+ }
+ if (isEmptyRecord(getContext(), FT, true))
+ continue;
+
+ // For compatibility with GCC, ignore empty bitfields in C++ mode.
+ if (getContext().getLangOpts().CPlusPlus &&
+ FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
+ continue;
+
+ uint64_t FldMembers;
+ if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
+ return false;
+
+ Members = (RD->isUnion() ?
+ std::max(Members, FldMembers) : Members + FldMembers);
+ }
+
+ if (!Base)
+ return false;
+
+ // Ensure there is no padding.
+ if (getContext().getTypeSize(Base) * Members !=
+ getContext().getTypeSize(Ty))
+ return false;
+ } else {
+ Members = 1;
+ if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
+ Members = 2;
+ Ty = CT->getElementType();
+ }
+
+ // Most ABIs only support float, double, and some vector type widths.
+ if (!isHomogeneousAggregateBaseType(Ty))
+ return false;
+
+ // The base type must be the same for all members. Types that
+ // agree in both total size and mode (float vs. vector) are
+ // treated as being equivalent here.
+ const Type *TyPtr = Ty.getTypePtr();
+ if (!Base)
+ Base = TyPtr;
+
+ if (Base->isVectorType() != TyPtr->isVectorType() ||
+ getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
+ return false;
+ }
+ return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
+}
+
+bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
+ // Homogeneous aggregates for ELFv2 must have base types of float,
+ // double, long double, or 128-bit vectors.
+ if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
+ if (BT->getKind() == BuiltinType::Float ||
+ BT->getKind() == BuiltinType::Double ||
+ BT->getKind() == BuiltinType::LongDouble)
+ return true;
+ }
+ if (const VectorType *VT = Ty->getAs<VectorType>()) {
+ if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
+ return true;
+ }
+ return false;
+}
+
+bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
+ const Type *Base, uint64_t Members) const {
+ // Vector types require one register, floating point types require one
+ // or two registers depending on their size.
+ uint32_t NumRegs =
+ Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64;
+
+ // Homogeneous Aggregates may occupy at most 8 registers.
+ return Members * NumRegs <= 8;
+}
+
+ABIArgInfo
+PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
+ Ty = useFirstFieldIfTransparentUnion(Ty);
+
+ if (Ty->isAnyComplexType())
+ return ABIArgInfo::getDirect();
+
+ // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
+ // or via reference (larger than 16 bytes).
+ if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
+ uint64_t Size = getContext().getTypeSize(Ty);
+ if (Size > 128)
+ return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
+ else if (Size < 128) {
+ llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
+ return ABIArgInfo::getDirect(CoerceTy);
+ }
+ }
+
+ if (isAggregateTypeForABI(Ty)) {
+ if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
+ return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
+
+ bool Align32;
+ uint64_t ABIAlign = isAlignedParamType(Ty, Align32) ?
+ (Align32 ? 32 : 16) : 8;
+ uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
+
+ // ELFv2 homogeneous aggregates are passed as array types.
+ const Type *Base = nullptr;
+ uint64_t Members = 0;
+ if (Kind == ELFv2 &&
+ isHomogeneousAggregate(Ty, Base, Members)) {
+ llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
+ llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
+ return ABIArgInfo::getDirect(CoerceTy);
+ }
+
+ // If an aggregate may end up fully in registers, we do not
+ // use the ByVal method, but pass the aggregate as array.
+ // This is usually beneficial since we avoid forcing the
+ // back-end to store the argument to memory.
+ uint64_t Bits = getContext().getTypeSize(Ty);
+ if (Bits > 0 && Bits <= 8 * GPRBits) {
+ llvm::Type *CoerceTy;
+
+ // Types up to 8 bytes are passed as integer type (which will be
+ // properly aligned in the argument save area doubleword).
+ if (Bits <= GPRBits)
+ CoerceTy = llvm::IntegerType::get(getVMContext(),
+ llvm::RoundUpToAlignment(Bits, 8));
+ // Larger types are passed as arrays, with the base type selected
+ // according to the required alignment in the save area.
+ else {
+ uint64_t RegBits = ABIAlign * 8;
+ uint64_t NumRegs = llvm::RoundUpToAlignment(Bits, RegBits) / RegBits;
+ llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
+ CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
+ }
+
+ return ABIArgInfo::getDirect(CoerceTy);
+ }
+
+ // All other aggregates are passed ByVal.
+ return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true,
+ /*Realign=*/TyAlign > ABIAlign);
+ }
+
+ return (isPromotableTypeForABI(Ty) ?
+ ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
+}
+
+ABIArgInfo
+PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
+ if (RetTy->isVoidType())
+ return ABIArgInfo::getIgnore();
+
+ if (RetTy->isAnyComplexType())
+ return ABIArgInfo::getDirect();
+
+ // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
+ // or via reference (larger than 16 bytes).
+ if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
+ uint64_t Size = getContext().getTypeSize(RetTy);
+ if (Size > 128)
+ return ABIArgInfo::getIndirect(0);
+ else if (Size < 128) {
+ llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
+ return ABIArgInfo::getDirect(CoerceTy);
+ }
+ }
+
+ if (isAggregateTypeForABI(RetTy)) {
+ // ELFv2 homogeneous aggregates are returned as array types.
+ const Type *Base = nullptr;
+ uint64_t Members = 0;
+ if (Kind == ELFv2 &&
+ isHomogeneousAggregate(RetTy, Base, Members)) {
+ llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
+ llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
+ return ABIArgInfo::getDirect(CoerceTy);
+ }
+
+ // ELFv2 small aggregates are returned in up to two registers.
+ uint64_t Bits = getContext().getTypeSize(RetTy);
+ if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
+ if (Bits == 0)
+ return ABIArgInfo::getIgnore();
+
+ llvm::Type *CoerceTy;
+ if (Bits > GPRBits) {
+ CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
+ CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr);
+ } else
+ CoerceTy = llvm::IntegerType::get(getVMContext(),
+ llvm::RoundUpToAlignment(Bits, 8));
+ return ABIArgInfo::getDirect(CoerceTy);
+ }
+
+ // All other aggregates are returned indirectly.
+ return ABIArgInfo::getIndirect(0);
+ }
+
+ return (isPromotableTypeForABI(RetTy) ?
+ ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
+}
+
+// Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
+llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
+ QualType Ty,
+ CodeGenFunction &CGF) const {
+ llvm::Type *BP = CGF.Int8PtrTy;
+ llvm::Type *BPP = CGF.Int8PtrPtrTy;
+
+ CGBuilderTy &Builder = CGF.Builder;
+ llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
+ llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
+
+ // Handle types that require 16-byte alignment in the parameter save area.
+ bool Align32;
+ if (isAlignedParamType(Ty, Align32)) {
+ llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
+ AddrAsInt = Builder.CreateAdd(AddrAsInt,
+ Builder.getInt64(Align32 ? 31 : 15));
+ AddrAsInt = Builder.CreateAnd(AddrAsInt,
+ Builder.getInt64(Align32 ? -32 : -16));
+ Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
+ }
+
+ // Update the va_list pointer. The pointer should be bumped by the
+ // size of the object. We can trust getTypeSize() except for a complex
+ // type whose base type is smaller than a doubleword. For these, the
+ // size of the object is 16 bytes; see below for further explanation.
+ unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8;
+ QualType BaseTy;
+ unsigned CplxBaseSize = 0;
+
+ if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
+ BaseTy = CTy->getElementType();
+ CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8;
+ if (CplxBaseSize < 8)
+ SizeInBytes = 16;
+ }
+
+ unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8);
+ llvm::Value *NextAddr =
+ Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset),
+ "ap.next");
+ Builder.CreateStore(NextAddr, VAListAddrAsBPP);
+
+ // If we have a complex type and the base type is smaller than 8 bytes,
+ // the ABI calls for the real and imaginary parts to be right-adjusted
+ // in separate doublewords. However, Clang expects us to produce a
+ // pointer to a structure with the two parts packed tightly. So generate
+ // loads of the real and imaginary parts relative to the va_list pointer,
+ // and store them to a temporary structure.
+ if (CplxBaseSize && CplxBaseSize < 8) {
+ llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
+ llvm::Value *ImagAddr = RealAddr;
+ if (CGF.CGM.getDataLayout().isBigEndian()) {
+ RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize));
+ ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize));
+ } else {
+ ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(8));
+ }
+ llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy));
+ RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy);
+ ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy);
+ llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal");
+ llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag");
+ llvm::AllocaInst *Ptr =
+ CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty), "vacplx");
+ llvm::Value *RealPtr =
+ Builder.CreateStructGEP(Ptr->getAllocatedType(), Ptr, 0, ".real");
+ llvm::Value *ImagPtr =
+ Builder.CreateStructGEP(Ptr->getAllocatedType(), Ptr, 1, ".imag");
+ Builder.CreateStore(Real, RealPtr, false);
+ Builder.CreateStore(Imag, ImagPtr, false);
+ return Ptr;
+ }
+
+ // If the argument is smaller than 8 bytes, it is right-adjusted in
+ // its doubleword slot. Adjust the pointer to pick it up from the
+ // correct offset.
+ if (SizeInBytes < 8 && CGF.CGM.getDataLayout().isBigEndian()) {
+ llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
+ AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes));
+ Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
+ }
+
+ llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
+ return Builder.CreateBitCast(Addr, PTy);
+}
+
+static bool
+PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) {
+ // This is calculated from the LLVM and GCC tables and verified
+ // against gcc output. AFAIK all ABIs use the same encoding.
+
+ CodeGen::CGBuilderTy &Builder = CGF.Builder;
+
+ llvm::IntegerType *i8 = CGF.Int8Ty;
+ llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
+ llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
+ llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
+
+ // 0-31: r0-31, the 8-byte general-purpose registers
+ AssignToArrayRange(Builder, Address, Eight8, 0, 31);
+
+ // 32-63: fp0-31, the 8-byte floating-point registers
+ AssignToArrayRange(Builder, Address, Eight8, 32, 63);
+
+ // 64-76 are various 4-byte special-purpose registers:
+ // 64: mq
+ // 65: lr
+ // 66: ctr
+ // 67: ap
+ // 68-75 cr0-7
+ // 76: xer
+ AssignToArrayRange(Builder, Address, Four8, 64, 76);
+
+ // 77-108: v0-31, the 16-byte vector registers
+ AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
+
+ // 109: vrsave
+ // 110: vscr
+ // 111: spe_acc
+ // 112: spefscr
+ // 113: sfp
+ AssignToArrayRange(Builder, Address, Four8, 109, 113);
+
+ return false;
+}
+
+bool
+PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
+ CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const {
+
+ return PPC64_initDwarfEHRegSizeTable(CGF, Address);
+}
+
+bool
+PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const {
+
+ return PPC64_initDwarfEHRegSizeTable(CGF, Address);
+}
+
+//===----------------------------------------------------------------------===//
+// AArch64 ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class AArch64ABIInfo : public ABIInfo {
+public:
+ enum ABIKind {
+ AAPCS = 0,
+ DarwinPCS
+ };
+
+private:
+ ABIKind Kind;
+
+public:
+ AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {}
+
+private:
+ ABIKind getABIKind() const { return Kind; }
+ bool isDarwinPCS() const { return Kind == DarwinPCS; }
+
+ ABIArgInfo classifyReturnType(QualType RetTy) const;
+ ABIArgInfo classifyArgumentType(QualType RetTy) const;
+ bool isHomogeneousAggregateBaseType(QualType Ty) const override;
+ bool isHomogeneousAggregateSmallEnough(const Type *Ty,
+ uint64_t Members) const override;
+
+ bool isIllegalVectorType(QualType Ty) const;
+
+ void computeInfo(CGFunctionInfo &FI) const override {
+ if (!getCXXABI().classifyReturnType(FI))
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+
+ for (auto &it : FI.arguments())
+ it.info = classifyArgumentType(it.type);
+ }
+
+ llvm::Value *EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const;
+
+ llvm::Value *EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const;
+
+ llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const override {
+ return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
+ : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
+ }
+};
+
+class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
+ : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
+
+ StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
+ return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue";
+ }
+
+ int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
+ return 31;
+ }
+
+ bool doesReturnSlotInterfereWithArgs() const override { return false; }
+};
+}
+
+ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
+ Ty = useFirstFieldIfTransparentUnion(Ty);
+
+ // Handle illegal vector types here.
+ if (isIllegalVectorType(Ty)) {
+ uint64_t Size = getContext().getTypeSize(Ty);
+ if (Size <= 32) {
+ llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
+ return ABIArgInfo::getDirect(ResType);
+ }
+ if (Size == 64) {
+ llvm::Type *ResType =
+ llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
+ return ABIArgInfo::getDirect(ResType);
+ }
+ if (Size == 128) {
+ llvm::Type *ResType =
+ llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
+ return ABIArgInfo::getDirect(ResType);
+ }
+ return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
+ }
+
+ if (!isAggregateTypeForABI(Ty)) {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ return (Ty->isPromotableIntegerType() && isDarwinPCS()
+ ? ABIArgInfo::getExtend()
+ : ABIArgInfo::getDirect());
+ }
+
+ // Structures with either a non-trivial destructor or a non-trivial
+ // copy constructor are always indirect.
+ if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
+ return ABIArgInfo::getIndirect(0, /*ByVal=*/RAA ==
+ CGCXXABI::RAA_DirectInMemory);
+ }
+
+ // Empty records are always ignored on Darwin, but actually passed in C++ mode
+ // elsewhere for GNU compatibility.
+ if (isEmptyRecord(getContext(), Ty, true)) {
+ if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
+ return ABIArgInfo::getIgnore();
+
+ return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
+ }
+
+ // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
+ const Type *Base = nullptr;
+ uint64_t Members = 0;
+ if (isHomogeneousAggregate(Ty, Base, Members)) {
+ return ABIArgInfo::getDirect(
+ llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
+ }
+
+ // Aggregates <= 16 bytes are passed directly in registers or on the stack.
+ uint64_t Size = getContext().getTypeSize(Ty);
+ if (Size <= 128) {
+ unsigned Alignment = getContext().getTypeAlign(Ty);
+ Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
+
+ // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
+ // For aggregates with 16-byte alignment, we use i128.
+ if (Alignment < 128 && Size == 128) {
+ llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
+ return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
+ }
+ return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
+ }
+
+ return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
+}
+
+ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
+ if (RetTy->isVoidType())
+ return ABIArgInfo::getIgnore();
+
+ // Large vector types should be returned via memory.
+ if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
+ return ABIArgInfo::getIndirect(0);
+
+ if (!isAggregateTypeForABI(RetTy)) {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
+ RetTy = EnumTy->getDecl()->getIntegerType();
+
+ return (RetTy->isPromotableIntegerType() && isDarwinPCS()
+ ? ABIArgInfo::getExtend()
+ : ABIArgInfo::getDirect());
+ }
+
+ if (isEmptyRecord(getContext(), RetTy, true))
+ return ABIArgInfo::getIgnore();
+
+ const Type *Base = nullptr;
+ uint64_t Members = 0;
+ if (isHomogeneousAggregate(RetTy, Base, Members))
+ // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
+ return ABIArgInfo::getDirect();
+
+ // Aggregates <= 16 bytes are returned directly in registers or on the stack.
+ uint64_t Size = getContext().getTypeSize(RetTy);
+ if (Size <= 128) {
+ unsigned Alignment = getContext().getTypeAlign(RetTy);
+ Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
+
+ // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
+ // For aggregates with 16-byte alignment, we use i128.
+ if (Alignment < 128 && Size == 128) {
+ llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
+ return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
+ }
+ return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
+ }
+
+ return ABIArgInfo::getIndirect(0);
+}
+
+/// isIllegalVectorType - check whether the vector type is legal for AArch64.
+bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
+ if (const VectorType *VT = Ty->getAs<VectorType>()) {
+ // Check whether VT is legal.
+ unsigned NumElements = VT->getNumElements();
+ uint64_t Size = getContext().getTypeSize(VT);
+ // NumElements should be power of 2 between 1 and 16.
+ if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16)
+ return true;
+ return Size != 64 && (Size != 128 || NumElements == 1);
+ }
+ return false;
+}
+
+bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
+ // Homogeneous aggregates for AAPCS64 must have base types of a floating
+ // point type or a short-vector type. This is the same as the 32-bit ABI,
+ // but with the difference that any floating-point type is allowed,
+ // including __fp16.
+ if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
+ if (BT->isFloatingPoint())
+ return true;
+ } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
+ unsigned VecSize = getContext().getTypeSize(VT);
+ if (VecSize == 64 || VecSize == 128)
+ return true;
+ }
+ return false;
+}
+
+bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
+ uint64_t Members) const {
+ return Members <= 4;
+}
+
+llvm::Value *AArch64ABIInfo::EmitAAPCSVAArg(llvm::Value *VAListAddr,
+ QualType Ty,
+ CodeGenFunction &CGF) const {
+ ABIArgInfo AI = classifyArgumentType(Ty);
+ bool IsIndirect = AI.isIndirect();
+
+ llvm::Type *BaseTy = CGF.ConvertType(Ty);
+ if (IsIndirect)
+ BaseTy = llvm::PointerType::getUnqual(BaseTy);
+ else if (AI.getCoerceToType())
+ BaseTy = AI.getCoerceToType();
+
+ unsigned NumRegs = 1;
+ if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
+ BaseTy = ArrTy->getElementType();
+ NumRegs = ArrTy->getNumElements();
+ }
+ bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
+
+ // The AArch64 va_list type and handling is specified in the Procedure Call
+ // Standard, section B.4:
+ //
+ // struct {
+ // void *__stack;
+ // void *__gr_top;
+ // void *__vr_top;
+ // int __gr_offs;
+ // int __vr_offs;
+ // };
+
+ llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
+ llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
+ llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
+ llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
+ auto &Ctx = CGF.getContext();
+
+ llvm::Value *reg_offs_p = nullptr, *reg_offs = nullptr;
+ int reg_top_index;
+ int RegSize = IsIndirect ? 8 : getContext().getTypeSize(Ty) / 8;
+ if (!IsFPR) {
+ // 3 is the field number of __gr_offs
+ reg_offs_p =
+ CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 3, "gr_offs_p");
+ reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
+ reg_top_index = 1; // field number for __gr_top
+ RegSize = llvm::RoundUpToAlignment(RegSize, 8);
+ } else {
+ // 4 is the field number of __vr_offs.
+ reg_offs_p =
+ CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 4, "vr_offs_p");
+ reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
+ reg_top_index = 2; // field number for __vr_top
+ RegSize = 16 * NumRegs;
+ }
+
+ //=======================================
+ // Find out where argument was passed
+ //=======================================
+
+ // If reg_offs >= 0 we're already using the stack for this type of
+ // argument. We don't want to keep updating reg_offs (in case it overflows,
+ // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
+ // whatever they get).
+ llvm::Value *UsingStack = nullptr;
+ UsingStack = CGF.Builder.CreateICmpSGE(
+ reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
+
+ CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
+
+ // Otherwise, at least some kind of argument could go in these registers, the
+ // question is whether this particular type is too big.
+ CGF.EmitBlock(MaybeRegBlock);
+
+ // Integer arguments may need to correct register alignment (for example a
+ // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
+ // align __gr_offs to calculate the potential address.
+ if (!IsFPR && !IsIndirect && Ctx.getTypeAlign(Ty) > 64) {
+ int Align = Ctx.getTypeAlign(Ty) / 8;
+
+ reg_offs = CGF.Builder.CreateAdd(
+ reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
+ "align_regoffs");
+ reg_offs = CGF.Builder.CreateAnd(
+ reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
+ "aligned_regoffs");
+ }
+
+ // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
+ llvm::Value *NewOffset = nullptr;
+ NewOffset = CGF.Builder.CreateAdd(
+ reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
+ CGF.Builder.CreateStore(NewOffset, reg_offs_p);
+
+ // Now we're in a position to decide whether this argument really was in
+ // registers or not.
+ llvm::Value *InRegs = nullptr;
+ InRegs = CGF.Builder.CreateICmpSLE(
+ NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
+
+ CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
+
+ //=======================================
+ // Argument was in registers
+ //=======================================
+
+ // Now we emit the code for if the argument was originally passed in
+ // registers. First start the appropriate block:
+ CGF.EmitBlock(InRegBlock);
+
+ llvm::Value *reg_top_p = nullptr, *reg_top = nullptr;
+ reg_top_p = CGF.Builder.CreateStructGEP(nullptr, VAListAddr, reg_top_index,
+ "reg_top_p");
+ reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
+ llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs);
+ llvm::Value *RegAddr = nullptr;
+ llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
+
+ if (IsIndirect) {
+ // If it's been passed indirectly (actually a struct), whatever we find from
+ // stored registers or on the stack will actually be a struct **.
+ MemTy = llvm::PointerType::getUnqual(MemTy);
+ }
+
+ const Type *Base = nullptr;
+ uint64_t NumMembers = 0;
+ bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
+ if (IsHFA && NumMembers > 1) {
+ // Homogeneous aggregates passed in registers will have their elements split
+ // and stored 16-bytes apart regardless of size (they're notionally in qN,
+ // qN+1, ...). We reload and store into a temporary local variable
+ // contiguously.
+ assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
+ llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
+ llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
+ llvm::AllocaInst *Tmp = CGF.CreateTempAlloca(HFATy);
+ int Offset = 0;
+
+ if (CGF.CGM.getDataLayout().isBigEndian() && Ctx.getTypeSize(Base) < 128)
+ Offset = 16 - Ctx.getTypeSize(Base) / 8;
+ for (unsigned i = 0; i < NumMembers; ++i) {
+ llvm::Value *BaseOffset =
+ llvm::ConstantInt::get(CGF.Int32Ty, 16 * i + Offset);
+ llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset);
+ LoadAddr = CGF.Builder.CreateBitCast(
+ LoadAddr, llvm::PointerType::getUnqual(BaseTy));
+ llvm::Value *StoreAddr =
+ CGF.Builder.CreateStructGEP(Tmp->getAllocatedType(), Tmp, i);
+
+ llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
+ CGF.Builder.CreateStore(Elem, StoreAddr);
+ }
+
+ RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy);
+ } else {
+ // Otherwise the object is contiguous in memory
+ unsigned BeAlign = reg_top_index == 2 ? 16 : 8;
+ if (CGF.CGM.getDataLayout().isBigEndian() &&
+ (IsHFA || !isAggregateTypeForABI(Ty)) &&
+ Ctx.getTypeSize(Ty) < (BeAlign * 8)) {
+ int Offset = BeAlign - Ctx.getTypeSize(Ty) / 8;
+ BaseAddr = CGF.Builder.CreatePtrToInt(BaseAddr, CGF.Int64Ty);
+
+ BaseAddr = CGF.Builder.CreateAdd(
+ BaseAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be");
+
+ BaseAddr = CGF.Builder.CreateIntToPtr(BaseAddr, CGF.Int8PtrTy);
+ }
+
+ RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy);
+ }
+
+ CGF.EmitBranch(ContBlock);
+
+ //=======================================
+ // Argument was on the stack
+ //=======================================
+ CGF.EmitBlock(OnStackBlock);
+
+ llvm::Value *stack_p = nullptr, *OnStackAddr = nullptr;
+ stack_p = CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 0, "stack_p");
+ OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack");
+
+ // Again, stack arguments may need realigmnent. In this case both integer and
+ // floating-point ones might be affected.
+ if (!IsIndirect && Ctx.getTypeAlign(Ty) > 64) {
+ int Align = Ctx.getTypeAlign(Ty) / 8;
+
+ OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
+
+ OnStackAddr = CGF.Builder.CreateAdd(
+ OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
+ "align_stack");
+ OnStackAddr = CGF.Builder.CreateAnd(
+ OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
+ "align_stack");
+
+ OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
+ }
+
+ uint64_t StackSize;
+ if (IsIndirect)
+ StackSize = 8;
+ else
+ StackSize = Ctx.getTypeSize(Ty) / 8;
+
+ // All stack slots are 8 bytes
+ StackSize = llvm::RoundUpToAlignment(StackSize, 8);
+
+ llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize);
+ llvm::Value *NewStack =
+ CGF.Builder.CreateGEP(OnStackAddr, StackSizeC, "new_stack");
+
+ // Write the new value of __stack for the next call to va_arg
+ CGF.Builder.CreateStore(NewStack, stack_p);
+
+ if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
+ Ctx.getTypeSize(Ty) < 64) {
+ int Offset = 8 - Ctx.getTypeSize(Ty) / 8;
+ OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
+
+ OnStackAddr = CGF.Builder.CreateAdd(
+ OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be");
+
+ OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
+ }
+
+ OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy);
+
+ CGF.EmitBranch(ContBlock);
+
+ //=======================================
+ // Tidy up
+ //=======================================
+ CGF.EmitBlock(ContBlock);
+
+ llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr");
+ ResAddr->addIncoming(RegAddr, InRegBlock);
+ ResAddr->addIncoming(OnStackAddr, OnStackBlock);
+
+ if (IsIndirect)
+ return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr");
+
+ return ResAddr;
+}
+
+llvm::Value *AArch64ABIInfo::EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const {
+ // We do not support va_arg for aggregates or illegal vector types.
+ // Lower VAArg here for these cases and use the LLVM va_arg instruction for
+ // other cases.
+ if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
+ return nullptr;
+
+ uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
+ uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
+
+ const Type *Base = nullptr;
+ uint64_t Members = 0;
+ bool isHA = isHomogeneousAggregate(Ty, Base, Members);
+
+ bool isIndirect = false;
+ // Arguments bigger than 16 bytes which aren't homogeneous aggregates should
+ // be passed indirectly.
+ if (Size > 16 && !isHA) {
+ isIndirect = true;
+ Size = 8;
+ Align = 8;
+ }
+
+ llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
+ llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
+
+ CGBuilderTy &Builder = CGF.Builder;
+ llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
+ llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
+
+ if (isEmptyRecord(getContext(), Ty, true)) {
+ // These are ignored for parameter passing purposes.
+ llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
+ return Builder.CreateBitCast(Addr, PTy);
+ }
+
+ const uint64_t MinABIAlign = 8;
+ if (Align > MinABIAlign) {
+ llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
+ Addr = Builder.CreateGEP(Addr, Offset);
+ llvm::Value *AsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
+ llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~(Align - 1));
+ llvm::Value *Aligned = Builder.CreateAnd(AsInt, Mask);
+ Addr = Builder.CreateIntToPtr(Aligned, BP, "ap.align");
+ }
+
+ uint64_t Offset = llvm::RoundUpToAlignment(Size, MinABIAlign);
+ llvm::Value *NextAddr = Builder.CreateGEP(
+ Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
+ Builder.CreateStore(NextAddr, VAListAddrAsBPP);
+
+ if (isIndirect)
+ Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
+ llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
+ llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
+
+ return AddrTyped;
+}
+
+//===----------------------------------------------------------------------===//
+// ARM ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class ARMABIInfo : public ABIInfo {
+public:
+ enum ABIKind {
+ APCS = 0,
+ AAPCS = 1,
+ AAPCS_VFP
+ };
+
+private:
+ ABIKind Kind;
+
+public:
+ ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {
+ setCCs();
+ }
+
+ bool isEABI() const {
+ switch (getTarget().getTriple().getEnvironment()) {
+ case llvm::Triple::Android:
+ case llvm::Triple::EABI:
+ case llvm::Triple::EABIHF:
+ case llvm::Triple::GNUEABI:
+ case llvm::Triple::GNUEABIHF:
+ return true;
+ default:
+ return false;
+ }
+ }
+
+ bool isEABIHF() const {
+ switch (getTarget().getTriple().getEnvironment()) {
+ case llvm::Triple::EABIHF:
+ case llvm::Triple::GNUEABIHF:
+ return true;
+ default:
+ return false;
+ }
+ }
+
+ ABIKind getABIKind() const { return Kind; }
+
+private:
+ ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
+ ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const;
+ bool isIllegalVectorType(QualType Ty) const;
+
+ bool isHomogeneousAggregateBaseType(QualType Ty) const override;
+ bool isHomogeneousAggregateSmallEnough(const Type *Ty,
+ uint64_t Members) const override;
+
+ void computeInfo(CGFunctionInfo &FI) const override;
+
+ llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const override;
+
+ llvm::CallingConv::ID getLLVMDefaultCC() const;
+ llvm::CallingConv::ID getABIDefaultCC() const;
+ void setCCs();
+};
+
+class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
+ :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
+
+ const ARMABIInfo &getABIInfo() const {
+ return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
+ }
+
+ int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
+ return 13;
+ }
+
+ StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
+ return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
+ }
+
+ bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const override {
+ llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
+
+ // 0-15 are the 16 integer registers.
+ AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
+ return false;
+ }
+
+ unsigned getSizeOfUnwindException() const override {
+ if (getABIInfo().isEABI()) return 88;
+ return TargetCodeGenInfo::getSizeOfUnwindException();
+ }
+
+ void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &CGM) const override {
+ const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
+ if (!FD)
+ return;
+
+ const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
+ if (!Attr)
+ return;
+
+ const char *Kind;
+ switch (Attr->getInterrupt()) {
+ case ARMInterruptAttr::Generic: Kind = ""; break;
+ case ARMInterruptAttr::IRQ: Kind = "IRQ"; break;
+ case ARMInterruptAttr::FIQ: Kind = "FIQ"; break;
+ case ARMInterruptAttr::SWI: Kind = "SWI"; break;
+ case ARMInterruptAttr::ABORT: Kind = "ABORT"; break;
+ case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break;
+ }
+
+ llvm::Function *Fn = cast<llvm::Function>(GV);
+
+ Fn->addFnAttr("interrupt", Kind);
+
+ if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS)
+ return;
+
+ // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
+ // however this is not necessarily true on taking any interrupt. Instruct
+ // the backend to perform a realignment as part of the function prologue.
+ llvm::AttrBuilder B;
+ B.addStackAlignmentAttr(8);
+ Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
+ llvm::AttributeSet::get(CGM.getLLVMContext(),
+ llvm::AttributeSet::FunctionIndex,
+ B));
+ }
+};
+
+class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
+ void addStackProbeSizeTargetAttribute(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &CGM) const;
+
+public:
+ WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
+ : ARMTargetCodeGenInfo(CGT, K) {}
+
+ void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &CGM) const override;
+};
+
+void WindowsARMTargetCodeGenInfo::addStackProbeSizeTargetAttribute(
+ const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
+ if (!isa<FunctionDecl>(D))
+ return;
+ if (CGM.getCodeGenOpts().StackProbeSize == 4096)
+ return;
+
+ llvm::Function *F = cast<llvm::Function>(GV);
+ F->addFnAttr("stack-probe-size",
+ llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
+}
+
+void WindowsARMTargetCodeGenInfo::SetTargetAttributes(
+ const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
+ ARMTargetCodeGenInfo::SetTargetAttributes(D, GV, CGM);
+ addStackProbeSizeTargetAttribute(D, GV, CGM);
+}
+}
+
+void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
+ if (!getCXXABI().classifyReturnType(FI))
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic());
+
+ for (auto &I : FI.arguments())
+ I.info = classifyArgumentType(I.type, FI.isVariadic());
+
+ // Always honor user-specified calling convention.
+ if (FI.getCallingConvention() != llvm::CallingConv::C)
+ return;
+
+ llvm::CallingConv::ID cc = getRuntimeCC();
+ if (cc != llvm::CallingConv::C)
+ FI.setEffectiveCallingConvention(cc);
+}
+
+/// Return the default calling convention that LLVM will use.
+llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
+ // The default calling convention that LLVM will infer.
+ if (isEABIHF())
+ return llvm::CallingConv::ARM_AAPCS_VFP;
+ else if (isEABI())
+ return llvm::CallingConv::ARM_AAPCS;
+ else
+ return llvm::CallingConv::ARM_APCS;
+}
+
+/// Return the calling convention that our ABI would like us to use
+/// as the C calling convention.
+llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
+ switch (getABIKind()) {
+ case APCS: return llvm::CallingConv::ARM_APCS;
+ case AAPCS: return llvm::CallingConv::ARM_AAPCS;
+ case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
+ }
+ llvm_unreachable("bad ABI kind");
+}
+
+void ARMABIInfo::setCCs() {
+ assert(getRuntimeCC() == llvm::CallingConv::C);
+
+ // Don't muddy up the IR with a ton of explicit annotations if
+ // they'd just match what LLVM will infer from the triple.
+ llvm::CallingConv::ID abiCC = getABIDefaultCC();
+ if (abiCC != getLLVMDefaultCC())
+ RuntimeCC = abiCC;
+
+ BuiltinCC = (getABIKind() == APCS ?
+ llvm::CallingConv::ARM_APCS : llvm::CallingConv::ARM_AAPCS);
+}
+
+ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
+ bool isVariadic) const {
+ // 6.1.2.1 The following argument types are VFP CPRCs:
+ // A single-precision floating-point type (including promoted
+ // half-precision types); A double-precision floating-point type;
+ // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
+ // with a Base Type of a single- or double-precision floating-point type,
+ // 64-bit containerized vectors or 128-bit containerized vectors with one
+ // to four Elements.
+ bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
+
+ Ty = useFirstFieldIfTransparentUnion(Ty);
+
+ // Handle illegal vector types here.
+ if (isIllegalVectorType(Ty)) {
+ uint64_t Size = getContext().getTypeSize(Ty);
+ if (Size <= 32) {
+ llvm::Type *ResType =
+ llvm::Type::getInt32Ty(getVMContext());
+ return ABIArgInfo::getDirect(ResType);
+ }
+ if (Size == 64) {
+ llvm::Type *ResType = llvm::VectorType::get(
+ llvm::Type::getInt32Ty(getVMContext()), 2);
+ return ABIArgInfo::getDirect(ResType);
+ }
+ if (Size == 128) {
+ llvm::Type *ResType = llvm::VectorType::get(
+ llvm::Type::getInt32Ty(getVMContext()), 4);
+ return ABIArgInfo::getDirect(ResType);
+ }
+ return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
+ }
+
+ if (!isAggregateTypeForABI(Ty)) {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
+ Ty = EnumTy->getDecl()->getIntegerType();
+ }
+
+ return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend()
+ : ABIArgInfo::getDirect());
+ }
+
+ if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
+ return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
+ }
+
+ // Ignore empty records.
+ if (isEmptyRecord(getContext(), Ty, true))
+ return ABIArgInfo::getIgnore();
+
+ if (IsEffectivelyAAPCS_VFP) {
+ // Homogeneous Aggregates need to be expanded when we can fit the aggregate
+ // into VFP registers.
+ const Type *Base = nullptr;
+ uint64_t Members = 0;
+ if (isHomogeneousAggregate(Ty, Base, Members)) {
+ assert(Base && "Base class should be set for homogeneous aggregate");
+ // Base can be a floating-point or a vector.
+ return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
+ }
+ }
+
+ // Support byval for ARM.
+ // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
+ // most 8-byte. We realign the indirect argument if type alignment is bigger
+ // than ABI alignment.
+ uint64_t ABIAlign = 4;
+ uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
+ if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
+ getABIKind() == ARMABIInfo::AAPCS)
+ ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
+
+ if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
+ return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true,
+ /*Realign=*/TyAlign > ABIAlign);
+ }
+
+ // Otherwise, pass by coercing to a structure of the appropriate size.
+ llvm::Type* ElemTy;
+ unsigned SizeRegs;
+ // FIXME: Try to match the types of the arguments more accurately where
+ // we can.
+ if (getContext().getTypeAlign(Ty) <= 32) {
+ ElemTy = llvm::Type::getInt32Ty(getVMContext());
+ SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
+ } else {
+ ElemTy = llvm::Type::getInt64Ty(getVMContext());
+ SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
+ }
+
+ return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
+}
+
+static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
+ llvm::LLVMContext &VMContext) {
+ // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
+ // is called integer-like if its size is less than or equal to one word, and
+ // the offset of each of its addressable sub-fields is zero.
+
+ uint64_t Size = Context.getTypeSize(Ty);
+
+ // Check that the type fits in a word.
+ if (Size > 32)
+ return false;
+
+ // FIXME: Handle vector types!
+ if (Ty->isVectorType())
+ return false;
+
+ // Float types are never treated as "integer like".
+ if (Ty->isRealFloatingType())
+ return false;
+
+ // If this is a builtin or pointer type then it is ok.
+ if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
+ return true;
+
+ // Small complex integer types are "integer like".
+ if (const ComplexType *CT = Ty->getAs<ComplexType>())
+ return isIntegerLikeType(CT->getElementType(), Context, VMContext);
+
+ // Single element and zero sized arrays should be allowed, by the definition
+ // above, but they are not.
+
+ // Otherwise, it must be a record type.
+ const RecordType *RT = Ty->getAs<RecordType>();
+ if (!RT) return false;
+
+ // Ignore records with flexible arrays.
+ const RecordDecl *RD = RT->getDecl();
+ if (RD->hasFlexibleArrayMember())
+ return false;
+
+ // Check that all sub-fields are at offset 0, and are themselves "integer
+ // like".
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+
+ bool HadField = false;
+ unsigned idx = 0;
+ for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
+ i != e; ++i, ++idx) {
+ const FieldDecl *FD = *i;
+
+ // Bit-fields are not addressable, we only need to verify they are "integer
+ // like". We still have to disallow a subsequent non-bitfield, for example:
+ // struct { int : 0; int x }
+ // is non-integer like according to gcc.
+ if (FD->isBitField()) {
+ if (!RD->isUnion())
+ HadField = true;
+
+ if (!isIntegerLikeType(FD->getType(), Context, VMContext))
+ return false;
+
+ continue;
+ }
+
+ // Check if this field is at offset 0.
+ if (Layout.getFieldOffset(idx) != 0)
+ return false;
+
+ if (!isIntegerLikeType(FD->getType(), Context, VMContext))
+ return false;
+
+ // Only allow at most one field in a structure. This doesn't match the
+ // wording above, but follows gcc in situations with a field following an
+ // empty structure.
+ if (!RD->isUnion()) {
+ if (HadField)
+ return false;
+
+ HadField = true;
+ }
+ }
+
+ return true;
+}
+
+ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
+ bool isVariadic) const {
+ bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
+
+ if (RetTy->isVoidType())
+ return ABIArgInfo::getIgnore();
+
+ // Large vector types should be returned via memory.
+ if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
+ return ABIArgInfo::getIndirect(0);
+ }
+
+ if (!isAggregateTypeForABI(RetTy)) {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
+ RetTy = EnumTy->getDecl()->getIntegerType();
+
+ return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend()
+ : ABIArgInfo::getDirect();
+ }
+
+ // Are we following APCS?
+ if (getABIKind() == APCS) {
+ if (isEmptyRecord(getContext(), RetTy, false))
+ return ABIArgInfo::getIgnore();
+
+ // Complex types are all returned as packed integers.
+ //
+ // FIXME: Consider using 2 x vector types if the back end handles them
+ // correctly.
+ if (RetTy->isAnyComplexType())
+ return ABIArgInfo::getDirect(llvm::IntegerType::get(
+ getVMContext(), getContext().getTypeSize(RetTy)));
+
+ // Integer like structures are returned in r0.
+ if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
+ // Return in the smallest viable integer type.
+ uint64_t Size = getContext().getTypeSize(RetTy);
+ if (Size <= 8)
+ return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
+ if (Size <= 16)
+ return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
+ return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
+ }
+
+ // Otherwise return in memory.
+ return ABIArgInfo::getIndirect(0);
+ }
+
+ // Otherwise this is an AAPCS variant.
+
+ if (isEmptyRecord(getContext(), RetTy, true))
+ return ABIArgInfo::getIgnore();
+
+ // Check for homogeneous aggregates with AAPCS-VFP.
+ if (IsEffectivelyAAPCS_VFP) {
+ const Type *Base = nullptr;
+ uint64_t Members;
+ if (isHomogeneousAggregate(RetTy, Base, Members)) {
+ assert(Base && "Base class should be set for homogeneous aggregate");
+ // Homogeneous Aggregates are returned directly.
+ return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
+ }
+ }
+
+ // Aggregates <= 4 bytes are returned in r0; other aggregates
+ // are returned indirectly.
+ uint64_t Size = getContext().getTypeSize(RetTy);
+ if (Size <= 32) {
+ if (getDataLayout().isBigEndian())
+ // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
+ return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
+
+ // Return in the smallest viable integer type.
+ if (Size <= 8)
+ return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
+ if (Size <= 16)
+ return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
+ return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
+ }
+
+ return ABIArgInfo::getIndirect(0);
+}
+
+/// isIllegalVector - check whether Ty is an illegal vector type.
+bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
+ if (const VectorType *VT = Ty->getAs<VectorType>()) {
+ // Check whether VT is legal.
+ unsigned NumElements = VT->getNumElements();
+ uint64_t Size = getContext().getTypeSize(VT);
+ // NumElements should be power of 2.
+ if ((NumElements & (NumElements - 1)) != 0)
+ return true;
+ // Size should be greater than 32 bits.
+ return Size <= 32;
+ }
+ return false;
+}
+
+bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
+ // Homogeneous aggregates for AAPCS-VFP must have base types of float,
+ // double, or 64-bit or 128-bit vectors.
+ if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
+ if (BT->getKind() == BuiltinType::Float ||
+ BT->getKind() == BuiltinType::Double ||
+ BT->getKind() == BuiltinType::LongDouble)
+ return true;
+ } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
+ unsigned VecSize = getContext().getTypeSize(VT);
+ if (VecSize == 64 || VecSize == 128)
+ return true;
+ }
+ return false;
+}
+
+bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
+ uint64_t Members) const {
+ return Members <= 4;
+}
+
+llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const {
+ llvm::Type *BP = CGF.Int8PtrTy;
+ llvm::Type *BPP = CGF.Int8PtrPtrTy;
+
+ CGBuilderTy &Builder = CGF.Builder;
+ llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
+ llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
+
+ if (isEmptyRecord(getContext(), Ty, true)) {
+ // These are ignored for parameter passing purposes.
+ llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
+ return Builder.CreateBitCast(Addr, PTy);
+ }
+
+ uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
+ uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
+ bool IsIndirect = false;
+
+ // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
+ // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
+ if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
+ getABIKind() == ARMABIInfo::AAPCS)
+ TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
+ else
+ TyAlign = 4;
+ // Use indirect if size of the illegal vector is bigger than 16 bytes.
+ if (isIllegalVectorType(Ty) && Size > 16) {
+ IsIndirect = true;
+ Size = 4;
+ TyAlign = 4;
+ }
+
+ // Handle address alignment for ABI alignment > 4 bytes.
+ if (TyAlign > 4) {
+ assert((TyAlign & (TyAlign - 1)) == 0 &&
+ "Alignment is not power of 2!");
+ llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
+ AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
+ AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
+ Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
+ }
+
+ uint64_t Offset =
+ llvm::RoundUpToAlignment(Size, 4);
+ llvm::Value *NextAddr =
+ Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
+ "ap.next");
+ Builder.CreateStore(NextAddr, VAListAddrAsBPP);
+
+ if (IsIndirect)
+ Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
+ else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) {
+ // We can't directly cast ap.cur to pointer to a vector type, since ap.cur
+ // may not be correctly aligned for the vector type. We create an aligned
+ // temporary space and copy the content over from ap.cur to the temporary
+ // space. This is necessary if the natural alignment of the type is greater
+ // than the ABI alignment.
+ llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
+ CharUnits CharSize = getContext().getTypeSizeInChars(Ty);
+ llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty),
+ "var.align");
+ llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
+ llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy);
+ Builder.CreateMemCpy(Dst, Src,
+ llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()),
+ TyAlign, false);
+ Addr = AlignedTemp; //The content is in aligned location.
+ }
+ llvm::Type *PTy =
+ llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
+ llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
+
+ return AddrTyped;
+}
+
+//===----------------------------------------------------------------------===//
+// NVPTX ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class NVPTXABIInfo : public ABIInfo {
+public:
+ NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
+
+ ABIArgInfo classifyReturnType(QualType RetTy) const;
+ ABIArgInfo classifyArgumentType(QualType Ty) const;
+
+ void computeInfo(CGFunctionInfo &FI) const override;
+ llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CFG) const override;
+};
+
+class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
+ : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
+
+ void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &M) const override;
+private:
+ // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
+ // resulting MDNode to the nvvm.annotations MDNode.
+ static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
+};
+
+ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
+ if (RetTy->isVoidType())
+ return ABIArgInfo::getIgnore();
+
+ // note: this is different from default ABI
+ if (!RetTy->isScalarType())
+ return ABIArgInfo::getDirect();
+
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
+ RetTy = EnumTy->getDecl()->getIntegerType();
+
+ return (RetTy->isPromotableIntegerType() ?
+ ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
+}
+
+ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ // Return aggregates type as indirect by value
+ if (isAggregateTypeForABI(Ty))
+ return ABIArgInfo::getIndirect(0, /* byval */ true);
+
+ return (Ty->isPromotableIntegerType() ?
+ ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
+}
+
+void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
+ if (!getCXXABI().classifyReturnType(FI))
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+ for (auto &I : FI.arguments())
+ I.info = classifyArgumentType(I.type);
+
+ // Always honor user-specified calling convention.
+ if (FI.getCallingConvention() != llvm::CallingConv::C)
+ return;
+
+ FI.setEffectiveCallingConvention(getRuntimeCC());
+}
+
+llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CFG) const {
+ llvm_unreachable("NVPTX does not support varargs");
+}
+
+void NVPTXTargetCodeGenInfo::
+SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &M) const{
+ const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
+ if (!FD) return;
+
+ llvm::Function *F = cast<llvm::Function>(GV);
+
+ // Perform special handling in OpenCL mode
+ if (M.getLangOpts().OpenCL) {
+ // Use OpenCL function attributes to check for kernel functions
+ // By default, all functions are device functions
+ if (FD->hasAttr<OpenCLKernelAttr>()) {
+ // OpenCL __kernel functions get kernel metadata
+ // Create !{<func-ref>, metadata !"kernel", i32 1} node
+ addNVVMMetadata(F, "kernel", 1);
+ // And kernel functions are not subject to inlining
+ F->addFnAttr(llvm::Attribute::NoInline);
+ }
+ }
+
+ // Perform special handling in CUDA mode.
+ if (M.getLangOpts().CUDA) {
+ // CUDA __global__ functions get a kernel metadata entry. Since
+ // __global__ functions cannot be called from the device, we do not
+ // need to set the noinline attribute.
+ if (FD->hasAttr<CUDAGlobalAttr>()) {
+ // Create !{<func-ref>, metadata !"kernel", i32 1} node
+ addNVVMMetadata(F, "kernel", 1);
+ }
+ if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
+ // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
+ llvm::APSInt MaxThreads(32);
+ MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
+ if (MaxThreads > 0)
+ addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
+
+ // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
+ // not specified in __launch_bounds__ or if the user specified a 0 value,
+ // we don't have to add a PTX directive.
+ if (Attr->getMinBlocks()) {
+ llvm::APSInt MinBlocks(32);
+ MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
+ if (MinBlocks > 0)
+ // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
+ addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
+ }
+ }
+ }
+}
+
+void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
+ int Operand) {
+ llvm::Module *M = F->getParent();
+ llvm::LLVMContext &Ctx = M->getContext();
+
+ // Get "nvvm.annotations" metadata node
+ llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
+
+ llvm::Metadata *MDVals[] = {
+ llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
+ llvm::ConstantAsMetadata::get(
+ llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
+ // Append metadata to nvvm.annotations
+ MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
+}
+}
+
+//===----------------------------------------------------------------------===//
+// SystemZ ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class SystemZABIInfo : public ABIInfo {
+ bool HasVector;
+
+public:
+ SystemZABIInfo(CodeGenTypes &CGT, bool HV)
+ : ABIInfo(CGT), HasVector(HV) {}
+
+ bool isPromotableIntegerType(QualType Ty) const;
+ bool isCompoundType(QualType Ty) const;
+ bool isVectorArgumentType(QualType Ty) const;
+ bool isFPArgumentType(QualType Ty) const;
+ QualType GetSingleElementType(QualType Ty) const;
+
+ ABIArgInfo classifyReturnType(QualType RetTy) const;
+ ABIArgInfo classifyArgumentType(QualType ArgTy) const;
+
+ void computeInfo(CGFunctionInfo &FI) const override {
+ if (!getCXXABI().classifyReturnType(FI))
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+ for (auto &I : FI.arguments())
+ I.info = classifyArgumentType(I.type);
+ }
+
+ llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const override;
+};
+
+class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
+ : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
+};
+
+}
+
+bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ // Promotable integer types are required to be promoted by the ABI.
+ if (Ty->isPromotableIntegerType())
+ return true;
+
+ // 32-bit values must also be promoted.
+ if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
+ switch (BT->getKind()) {
+ case BuiltinType::Int:
+ case BuiltinType::UInt:
+ return true;
+ default:
+ return false;
+ }
+ return false;
+}
+
+bool SystemZABIInfo::isCompoundType(QualType Ty) const {
+ return (Ty->isAnyComplexType() ||
+ Ty->isVectorType() ||
+ isAggregateTypeForABI(Ty));
+}
+
+bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
+ return (HasVector &&
+ Ty->isVectorType() &&
+ getContext().getTypeSize(Ty) <= 128);
+}
+
+bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
+ if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
+ switch (BT->getKind()) {
+ case BuiltinType::Float:
+ case BuiltinType::Double:
+ return true;
+ default:
+ return false;
+ }
+
+ return false;
+}
+
+QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
+ if (const RecordType *RT = Ty->getAsStructureType()) {
+ const RecordDecl *RD = RT->getDecl();
+ QualType Found;
+
+ // If this is a C++ record, check the bases first.
+ if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
+ for (const auto &I : CXXRD->bases()) {
+ QualType Base = I.getType();
+
+ // Empty bases don't affect things either way.
+ if (isEmptyRecord(getContext(), Base, true))
+ continue;
+
+ if (!Found.isNull())
+ return Ty;
+ Found = GetSingleElementType(Base);
+ }
+
+ // Check the fields.
+ for (const auto *FD : RD->fields()) {
+ // For compatibility with GCC, ignore empty bitfields in C++ mode.
+ // Unlike isSingleElementStruct(), empty structure and array fields
+ // do count. So do anonymous bitfields that aren't zero-sized.
+ if (getContext().getLangOpts().CPlusPlus &&
+ FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
+ continue;
+
+ // Unlike isSingleElementStruct(), arrays do not count.
+ // Nested structures still do though.
+ if (!Found.isNull())
+ return Ty;
+ Found = GetSingleElementType(FD->getType());
+ }
+
+ // Unlike isSingleElementStruct(), trailing padding is allowed.
+ // An 8-byte aligned struct s { float f; } is passed as a double.
+ if (!Found.isNull())
+ return Found;
+ }
+
+ return Ty;
+}
+
+llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const {
+ // Assume that va_list type is correct; should be pointer to LLVM type:
+ // struct {
+ // i64 __gpr;
+ // i64 __fpr;
+ // i8 *__overflow_arg_area;
+ // i8 *__reg_save_area;
+ // };
+
+ // Every non-vector argument occupies 8 bytes and is passed by preference
+ // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are
+ // always passed on the stack.
+ Ty = CGF.getContext().getCanonicalType(Ty);
+ llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
+ llvm::Type *APTy = llvm::PointerType::getUnqual(ArgTy);
+ ABIArgInfo AI = classifyArgumentType(Ty);
+ bool IsIndirect = AI.isIndirect();
+ bool InFPRs = false;
+ bool IsVector = false;
+ unsigned UnpaddedBitSize;
+ if (IsIndirect) {
+ APTy = llvm::PointerType::getUnqual(APTy);
+ UnpaddedBitSize = 64;
+ } else {
+ if (AI.getCoerceToType())
+ ArgTy = AI.getCoerceToType();
+ InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
+ IsVector = ArgTy->isVectorTy();
+ UnpaddedBitSize = getContext().getTypeSize(Ty);
+ }
+ unsigned PaddedBitSize = (IsVector && UnpaddedBitSize > 64) ? 128 : 64;
+ assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size.");
+
+ unsigned PaddedSize = PaddedBitSize / 8;
+ unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8;
+
+ llvm::Type *IndexTy = CGF.Int64Ty;
+ llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize);
+
+ if (IsVector) {
+ // Work out the address of a vector argument on the stack.
+ // Vector arguments are always passed in the high bits of a
+ // single (8 byte) or double (16 byte) stack slot.
+ llvm::Value *OverflowArgAreaPtr =
+ CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 2,
+ "overflow_arg_area_ptr");
+ llvm::Value *OverflowArgArea =
+ CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area");
+ llvm::Value *MemAddr =
+ CGF.Builder.CreateBitCast(OverflowArgArea, APTy, "mem_addr");
+
+ // Update overflow_arg_area_ptr pointer
+ llvm::Value *NewOverflowArgArea =
+ CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area");
+ CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
+
+ return MemAddr;
+ }
+
+ unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding;
+ if (InFPRs) {
+ MaxRegs = 4; // Maximum of 4 FPR arguments
+ RegCountField = 1; // __fpr
+ RegSaveIndex = 16; // save offset for f0
+ RegPadding = 0; // floats are passed in the high bits of an FPR
+ } else {
+ MaxRegs = 5; // Maximum of 5 GPR arguments
+ RegCountField = 0; // __gpr
+ RegSaveIndex = 2; // save offset for r2
+ RegPadding = Padding; // values are passed in the low bits of a GPR
+ }
+
+ llvm::Value *RegCountPtr = CGF.Builder.CreateStructGEP(
+ nullptr, VAListAddr, RegCountField, "reg_count_ptr");
+ llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
+ llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
+ llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
+ "fits_in_regs");
+
+ llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
+ llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
+ llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
+ CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
+
+ // Emit code to load the value if it was passed in registers.
+ CGF.EmitBlock(InRegBlock);
+
+ // Work out the address of an argument register.
+ llvm::Value *ScaledRegCount =
+ CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
+ llvm::Value *RegBase =
+ llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding);
+ llvm::Value *RegOffset =
+ CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
+ llvm::Value *RegSaveAreaPtr =
+ CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 3, "reg_save_area_ptr");
+ llvm::Value *RegSaveArea =
+ CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
+ llvm::Value *RawRegAddr =
+ CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr");
+ llvm::Value *RegAddr =
+ CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr");
+
+ // Update the register count
+ llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
+ llvm::Value *NewRegCount =
+ CGF.Builder.CreateAdd(RegCount, One, "reg_count");
+ CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
+ CGF.EmitBranch(ContBlock);
+
+ // Emit code to load the value if it was passed in memory.
+ CGF.EmitBlock(InMemBlock);
+
+ // Work out the address of a stack argument.
+ llvm::Value *OverflowArgAreaPtr = CGF.Builder.CreateStructGEP(
+ nullptr, VAListAddr, 2, "overflow_arg_area_ptr");
+ llvm::Value *OverflowArgArea =
+ CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area");
+ llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding);
+ llvm::Value *RawMemAddr =
+ CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr");
+ llvm::Value *MemAddr =
+ CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr");
+
+ // Update overflow_arg_area_ptr pointer
+ llvm::Value *NewOverflowArgArea =
+ CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area");
+ CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
+ CGF.EmitBranch(ContBlock);
+
+ // Return the appropriate result.
+ CGF.EmitBlock(ContBlock);
+ llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr");
+ ResAddr->addIncoming(RegAddr, InRegBlock);
+ ResAddr->addIncoming(MemAddr, InMemBlock);
+
+ if (IsIndirect)
+ return CGF.Builder.CreateLoad(ResAddr, "indirect_arg");
+
+ return ResAddr;
+}
+
+ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
+ if (RetTy->isVoidType())
+ return ABIArgInfo::getIgnore();
+ if (isVectorArgumentType(RetTy))
+ return ABIArgInfo::getDirect();
+ if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
+ return ABIArgInfo::getIndirect(0);
+ return (isPromotableIntegerType(RetTy) ?
+ ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
+}
+
+ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
+ // Handle the generic C++ ABI.
+ if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
+ return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
+
+ // Integers and enums are extended to full register width.
+ if (isPromotableIntegerType(Ty))
+ return ABIArgInfo::getExtend();
+
+ // Handle vector types and vector-like structure types. Note that
+ // as opposed to float-like structure types, we do not allow any
+ // padding for vector-like structures, so verify the sizes match.
+ uint64_t Size = getContext().getTypeSize(Ty);
+ QualType SingleElementTy = GetSingleElementType(Ty);
+ if (isVectorArgumentType(SingleElementTy) &&
+ getContext().getTypeSize(SingleElementTy) == Size)
+ return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
+
+ // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
+ if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
+ return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
+
+ // Handle small structures.
+ if (const RecordType *RT = Ty->getAs<RecordType>()) {
+ // Structures with flexible arrays have variable length, so really
+ // fail the size test above.
+ const RecordDecl *RD = RT->getDecl();
+ if (RD->hasFlexibleArrayMember())
+ return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
+
+ // The structure is passed as an unextended integer, a float, or a double.
+ llvm::Type *PassTy;
+ if (isFPArgumentType(SingleElementTy)) {
+ assert(Size == 32 || Size == 64);
+ if (Size == 32)
+ PassTy = llvm::Type::getFloatTy(getVMContext());
+ else
+ PassTy = llvm::Type::getDoubleTy(getVMContext());
+ } else
+ PassTy = llvm::IntegerType::get(getVMContext(), Size);
+ return ABIArgInfo::getDirect(PassTy);
+ }
+
+ // Non-structure compounds are passed indirectly.
+ if (isCompoundType(Ty))
+ return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
+
+ return ABIArgInfo::getDirect(nullptr);
+}
+
+//===----------------------------------------------------------------------===//
+// MSP430 ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
+ : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
+ void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &M) const override;
+};
+
+}
+
+void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
+ llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &M) const {
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
+ // Handle 'interrupt' attribute:
+ llvm::Function *F = cast<llvm::Function>(GV);
+
+ // Step 1: Set ISR calling convention.
+ F->setCallingConv(llvm::CallingConv::MSP430_INTR);
+
+ // Step 2: Add attributes goodness.
+ F->addFnAttr(llvm::Attribute::NoInline);
+
+ // Step 3: Emit ISR vector alias.
+ unsigned Num = attr->getNumber() / 2;
+ llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
+ "__isr_" + Twine(Num), F);
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// MIPS ABI Implementation. This works for both little-endian and
+// big-endian variants.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class MipsABIInfo : public ABIInfo {
+ bool IsO32;
+ unsigned MinABIStackAlignInBytes, StackAlignInBytes;
+ void CoerceToIntArgs(uint64_t TySize,
+ SmallVectorImpl<llvm::Type *> &ArgList) const;
+ llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
+ llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
+ llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
+public:
+ MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
+ ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
+ StackAlignInBytes(IsO32 ? 8 : 16) {}
+
+ ABIArgInfo classifyReturnType(QualType RetTy) const;
+ ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
+ void computeInfo(CGFunctionInfo &FI) const override;
+ llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const override;
+ bool shouldSignExtUnsignedType(QualType Ty) const override;
+};
+
+class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
+ unsigned SizeOfUnwindException;
+public:
+ MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
+ : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
+ SizeOfUnwindException(IsO32 ? 24 : 32) {}
+
+ int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
+ return 29;
+ }
+
+ void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &CGM) const override {
+ const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
+ if (!FD) return;
+ llvm::Function *Fn = cast<llvm::Function>(GV);
+ if (FD->hasAttr<Mips16Attr>()) {
+ Fn->addFnAttr("mips16");
+ }
+ else if (FD->hasAttr<NoMips16Attr>()) {
+ Fn->addFnAttr("nomips16");
+ }
+ }
+
+ bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const override;
+
+ unsigned getSizeOfUnwindException() const override {
+ return SizeOfUnwindException;
+ }
+};
+}
+
+void MipsABIInfo::CoerceToIntArgs(uint64_t TySize,
+ SmallVectorImpl<llvm::Type *> &ArgList) const {
+ llvm::IntegerType *IntTy =
+ llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
+
+ // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
+ for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
+ ArgList.push_back(IntTy);
+
+ // If necessary, add one more integer type to ArgList.
+ unsigned R = TySize % (MinABIStackAlignInBytes * 8);
+
+ if (R)
+ ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
+}
+
+// In N32/64, an aligned double precision floating point field is passed in
+// a register.
+llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
+ SmallVector<llvm::Type*, 8> ArgList, IntArgList;
+
+ if (IsO32) {
+ CoerceToIntArgs(TySize, ArgList);
+ return llvm::StructType::get(getVMContext(), ArgList);
+ }
+
+ if (Ty->isComplexType())
+ return CGT.ConvertType(Ty);
+
+ const RecordType *RT = Ty->getAs<RecordType>();
+
+ // Unions/vectors are passed in integer registers.
+ if (!RT || !RT->isStructureOrClassType()) {
+ CoerceToIntArgs(TySize, ArgList);
+ return llvm::StructType::get(getVMContext(), ArgList);
+ }
+
+ const RecordDecl *RD = RT->getDecl();
+ const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
+ assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
+
+ uint64_t LastOffset = 0;
+ unsigned idx = 0;
+ llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
+
+ // Iterate over fields in the struct/class and check if there are any aligned
+ // double fields.
+ for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
+ i != e; ++i, ++idx) {
+ const QualType Ty = i->getType();
+ const BuiltinType *BT = Ty->getAs<BuiltinType>();
+
+ if (!BT || BT->getKind() != BuiltinType::Double)
+ continue;
+
+ uint64_t Offset = Layout.getFieldOffset(idx);
+ if (Offset % 64) // Ignore doubles that are not aligned.
+ continue;
+
+ // Add ((Offset - LastOffset) / 64) args of type i64.
+ for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
+ ArgList.push_back(I64);
+
+ // Add double type.
+ ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
+ LastOffset = Offset + 64;
+ }
+
+ CoerceToIntArgs(TySize - LastOffset, IntArgList);
+ ArgList.append(IntArgList.begin(), IntArgList.end());
+
+ return llvm::StructType::get(getVMContext(), ArgList);
+}
+
+llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
+ uint64_t Offset) const {
+ if (OrigOffset + MinABIStackAlignInBytes > Offset)
+ return nullptr;
+
+ return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
+}
+
+ABIArgInfo
+MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
+ Ty = useFirstFieldIfTransparentUnion(Ty);
+
+ uint64_t OrigOffset = Offset;
+ uint64_t TySize = getContext().getTypeSize(Ty);
+ uint64_t Align = getContext().getTypeAlign(Ty) / 8;
+
+ Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
+ (uint64_t)StackAlignInBytes);
+ unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align);
+ Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
+
+ if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
+ // Ignore empty aggregates.
+ if (TySize == 0)
+ return ABIArgInfo::getIgnore();
+
+ if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
+ Offset = OrigOffset + MinABIStackAlignInBytes;
+ return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
+ }
+
+ // If we have reached here, aggregates are passed directly by coercing to
+ // another structure type. Padding is inserted if the offset of the
+ // aggregate is unaligned.
+ ABIArgInfo ArgInfo =
+ ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
+ getPaddingType(OrigOffset, CurrOffset));
+ ArgInfo.setInReg(true);
+ return ArgInfo;
+ }
+
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ // All integral types are promoted to the GPR width.
+ if (Ty->isIntegralOrEnumerationType())
+ return ABIArgInfo::getExtend();
+
+ return ABIArgInfo::getDirect(
+ nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
+}
+
+llvm::Type*
+MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
+ const RecordType *RT = RetTy->getAs<RecordType>();
+ SmallVector<llvm::Type*, 8> RTList;
+
+ if (RT && RT->isStructureOrClassType()) {
+ const RecordDecl *RD = RT->getDecl();
+ const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
+ unsigned FieldCnt = Layout.getFieldCount();
+
+ // N32/64 returns struct/classes in floating point registers if the
+ // following conditions are met:
+ // 1. The size of the struct/class is no larger than 128-bit.
+ // 2. The struct/class has one or two fields all of which are floating
+ // point types.
+ // 3. The offset of the first field is zero (this follows what gcc does).
+ //
+ // Any other composite results are returned in integer registers.
+ //
+ if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
+ RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
+ for (; b != e; ++b) {
+ const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
+
+ if (!BT || !BT->isFloatingPoint())
+ break;
+
+ RTList.push_back(CGT.ConvertType(b->getType()));
+ }
+
+ if (b == e)
+ return llvm::StructType::get(getVMContext(), RTList,
+ RD->hasAttr<PackedAttr>());
+
+ RTList.clear();
+ }
+ }
+
+ CoerceToIntArgs(Size, RTList);
+ return llvm::StructType::get(getVMContext(), RTList);
+}
+
+ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
+ uint64_t Size = getContext().getTypeSize(RetTy);
+
+ if (RetTy->isVoidType())
+ return ABIArgInfo::getIgnore();
+
+ // O32 doesn't treat zero-sized structs differently from other structs.
+ // However, N32/N64 ignores zero sized return values.
+ if (!IsO32 && Size == 0)
+ return ABIArgInfo::getIgnore();
+
+ if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
+ if (Size <= 128) {
+ if (RetTy->isAnyComplexType())
+ return ABIArgInfo::getDirect();
+
+ // O32 returns integer vectors in registers and N32/N64 returns all small
+ // aggregates in registers.
+ if (!IsO32 ||
+ (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
+ ABIArgInfo ArgInfo =
+ ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
+ ArgInfo.setInReg(true);
+ return ArgInfo;
+ }
+ }
+
+ return ABIArgInfo::getIndirect(0);
+ }
+
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
+ RetTy = EnumTy->getDecl()->getIntegerType();
+
+ return (RetTy->isPromotableIntegerType() ?
+ ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
+}
+
+void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
+ ABIArgInfo &RetInfo = FI.getReturnInfo();
+ if (!getCXXABI().classifyReturnType(FI))
+ RetInfo = classifyReturnType(FI.getReturnType());
+
+ // Check if a pointer to an aggregate is passed as a hidden argument.
+ uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
+
+ for (auto &I : FI.arguments())
+ I.info = classifyArgumentType(I.type, Offset);
+}
+
+llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const {
+ llvm::Type *BP = CGF.Int8PtrTy;
+ llvm::Type *BPP = CGF.Int8PtrPtrTy;
+
+ // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
+ // Pointers are also promoted in the same way but this only matters for N32.
+ unsigned SlotSizeInBits = IsO32 ? 32 : 64;
+ unsigned PtrWidth = getTarget().getPointerWidth(0);
+ if ((Ty->isIntegerType() &&
+ CGF.getContext().getIntWidth(Ty) < SlotSizeInBits) ||
+ (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
+ Ty = CGF.getContext().getIntTypeForBitwidth(SlotSizeInBits,
+ Ty->isSignedIntegerType());
+ }
+
+ CGBuilderTy &Builder = CGF.Builder;
+ llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
+ llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
+ int64_t TypeAlign =
+ std::min(getContext().getTypeAlign(Ty) / 8, StackAlignInBytes);
+ llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
+ llvm::Value *AddrTyped;
+ llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
+
+ if (TypeAlign > MinABIStackAlignInBytes) {
+ llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
+ llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
+ llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
+ llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
+ llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
+ AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
+ }
+ else
+ AddrTyped = Builder.CreateBitCast(Addr, PTy);
+
+ llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
+ TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
+ unsigned ArgSizeInBits = CGF.getContext().getTypeSize(Ty);
+ uint64_t Offset = llvm::RoundUpToAlignment(ArgSizeInBits / 8, TypeAlign);
+ llvm::Value *NextAddr =
+ Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
+ "ap.next");
+ Builder.CreateStore(NextAddr, VAListAddrAsBPP);
+
+ return AddrTyped;
+}
+
+bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
+ int TySize = getContext().getTypeSize(Ty);
+
+ // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
+ if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
+ return true;
+
+ return false;
+}
+
+bool
+MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const {
+ // This information comes from gcc's implementation, which seems to
+ // as canonical as it gets.
+
+ // Everything on MIPS is 4 bytes. Double-precision FP registers
+ // are aliased to pairs of single-precision FP registers.
+ llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
+
+ // 0-31 are the general purpose registers, $0 - $31.
+ // 32-63 are the floating-point registers, $f0 - $f31.
+ // 64 and 65 are the multiply/divide registers, $hi and $lo.
+ // 66 is the (notional, I think) register for signal-handler return.
+ AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
+
+ // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
+ // They are one bit wide and ignored here.
+
+ // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
+ // (coprocessor 1 is the FP unit)
+ // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
+ // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
+ // 176-181 are the DSP accumulator registers.
+ AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
+// Currently subclassed only to implement custom OpenCL C function attribute
+// handling.
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
+public:
+ TCETargetCodeGenInfo(CodeGenTypes &CGT)
+ : DefaultTargetCodeGenInfo(CGT) {}
+
+ void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &M) const override;
+};
+
+void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
+ llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &M) const {
+ const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
+ if (!FD) return;
+
+ llvm::Function *F = cast<llvm::Function>(GV);
+
+ if (M.getLangOpts().OpenCL) {
+ if (FD->hasAttr<OpenCLKernelAttr>()) {
+ // OpenCL C Kernel functions are not subject to inlining
+ F->addFnAttr(llvm::Attribute::NoInline);
+ const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
+ if (Attr) {
+ // Convert the reqd_work_group_size() attributes to metadata.
+ llvm::LLVMContext &Context = F->getContext();
+ llvm::NamedMDNode *OpenCLMetadata =
+ M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
+
+ SmallVector<llvm::Metadata *, 5> Operands;
+ Operands.push_back(llvm::ConstantAsMetadata::get(F));
+
+ Operands.push_back(
+ llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
+ M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
+ Operands.push_back(
+ llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
+ M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
+ Operands.push_back(
+ llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
+ M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
+
+ // Add a boolean constant operand for "required" (true) or "hint" (false)
+ // for implementing the work_group_size_hint attr later. Currently
+ // always true as the hint is not yet implemented.
+ Operands.push_back(
+ llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
+ OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
+ }
+ }
+ }
+}
+
+}
+
+//===----------------------------------------------------------------------===//
+// Hexagon ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class HexagonABIInfo : public ABIInfo {
+
+
+public:
+ HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
+
+private:
+
+ ABIArgInfo classifyReturnType(QualType RetTy) const;
+ ABIArgInfo classifyArgumentType(QualType RetTy) const;
+
+ void computeInfo(CGFunctionInfo &FI) const override;
+
+ llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const override;
+};
+
+class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
+ :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
+
+ int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
+ return 29;
+ }
+};
+
+}
+
+void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
+ if (!getCXXABI().classifyReturnType(FI))
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+ for (auto &I : FI.arguments())
+ I.info = classifyArgumentType(I.type);
+}
+
+ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
+ if (!isAggregateTypeForABI(Ty)) {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ return (Ty->isPromotableIntegerType() ?
+ ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
+ }
+
+ // Ignore empty records.
+ if (isEmptyRecord(getContext(), Ty, true))
+ return ABIArgInfo::getIgnore();
+
+ if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
+ return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
+
+ uint64_t Size = getContext().getTypeSize(Ty);
+ if (Size > 64)
+ return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
+ // Pass in the smallest viable integer type.
+ else if (Size > 32)
+ return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
+ else if (Size > 16)
+ return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
+ else if (Size > 8)
+ return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
+ else
+ return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
+}
+
+ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
+ if (RetTy->isVoidType())
+ return ABIArgInfo::getIgnore();
+
+ // Large vector types should be returned via memory.
+ if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
+ return ABIArgInfo::getIndirect(0);
+
+ if (!isAggregateTypeForABI(RetTy)) {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
+ RetTy = EnumTy->getDecl()->getIntegerType();
+
+ return (RetTy->isPromotableIntegerType() ?
+ ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
+ }
+
+ if (isEmptyRecord(getContext(), RetTy, true))
+ return ABIArgInfo::getIgnore();
+
+ // Aggregates <= 8 bytes are returned in r0; other aggregates
+ // are returned indirectly.
+ uint64_t Size = getContext().getTypeSize(RetTy);
+ if (Size <= 64) {
+ // Return in the smallest viable integer type.
+ if (Size <= 8)
+ return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
+ if (Size <= 16)
+ return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
+ if (Size <= 32)
+ return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
+ return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
+ }
+
+ return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
+}
+
+llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const {
+ // FIXME: Need to handle alignment
+ llvm::Type *BPP = CGF.Int8PtrPtrTy;
+
+ CGBuilderTy &Builder = CGF.Builder;
+ llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
+ "ap");
+ llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
+ llvm::Type *PTy =
+ llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
+ llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
+
+ uint64_t Offset =
+ llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
+ llvm::Value *NextAddr =
+ Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
+ "ap.next");
+ Builder.CreateStore(NextAddr, VAListAddrAsBPP);
+
+ return AddrTyped;
+}
+
+//===----------------------------------------------------------------------===//
+// AMDGPU ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
+ : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
+ void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &M) const override;
+};
+
+}
+
+void AMDGPUTargetCodeGenInfo::SetTargetAttributes(
+ const Decl *D,
+ llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &M) const {
+ const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
+ if (!FD)
+ return;
+
+ if (const auto Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
+ llvm::Function *F = cast<llvm::Function>(GV);
+ uint32_t NumVGPR = Attr->getNumVGPR();
+ if (NumVGPR != 0)
+ F->addFnAttr("amdgpu_num_vgpr", llvm::utostr(NumVGPR));
+ }
+
+ if (const auto Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
+ llvm::Function *F = cast<llvm::Function>(GV);
+ unsigned NumSGPR = Attr->getNumSGPR();
+ if (NumSGPR != 0)
+ F->addFnAttr("amdgpu_num_sgpr", llvm::utostr(NumSGPR));
+ }
+}
+
+
+//===----------------------------------------------------------------------===//
+// SPARC v9 ABI Implementation.
+// Based on the SPARC Compliance Definition version 2.4.1.
+//
+// Function arguments a mapped to a nominal "parameter array" and promoted to
+// registers depending on their type. Each argument occupies 8 or 16 bytes in
+// the array, structs larger than 16 bytes are passed indirectly.
+//
+// One case requires special care:
+//
+// struct mixed {
+// int i;
+// float f;
+// };
+//
+// When a struct mixed is passed by value, it only occupies 8 bytes in the
+// parameter array, but the int is passed in an integer register, and the float
+// is passed in a floating point register. This is represented as two arguments
+// with the LLVM IR inreg attribute:
+//
+// declare void f(i32 inreg %i, float inreg %f)
+//
+// The code generator will only allocate 4 bytes from the parameter array for
+// the inreg arguments. All other arguments are allocated a multiple of 8
+// bytes.
+//
+namespace {
+class SparcV9ABIInfo : public ABIInfo {
+public:
+ SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
+
+private:
+ ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
+ void computeInfo(CGFunctionInfo &FI) const override;
+ llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const override;
+
+ // Coercion type builder for structs passed in registers. The coercion type
+ // serves two purposes:
+ //
+ // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
+ // in registers.
+ // 2. Expose aligned floating point elements as first-level elements, so the
+ // code generator knows to pass them in floating point registers.
+ //
+ // We also compute the InReg flag which indicates that the struct contains
+ // aligned 32-bit floats.
+ //
+ struct CoerceBuilder {
+ llvm::LLVMContext &Context;
+ const llvm::DataLayout &DL;
+ SmallVector<llvm::Type*, 8> Elems;
+ uint64_t Size;
+ bool InReg;
+
+ CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
+ : Context(c), DL(dl), Size(0), InReg(false) {}
+
+ // Pad Elems with integers until Size is ToSize.
+ void pad(uint64_t ToSize) {
+ assert(ToSize >= Size && "Cannot remove elements");
+ if (ToSize == Size)
+ return;
+
+ // Finish the current 64-bit word.
+ uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64);
+ if (Aligned > Size && Aligned <= ToSize) {
+ Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
+ Size = Aligned;
+ }
+
+ // Add whole 64-bit words.
+ while (Size + 64 <= ToSize) {
+ Elems.push_back(llvm::Type::getInt64Ty(Context));
+ Size += 64;
+ }
+
+ // Final in-word padding.
+ if (Size < ToSize) {
+ Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
+ Size = ToSize;
+ }
+ }
+
+ // Add a floating point element at Offset.
+ void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
+ // Unaligned floats are treated as integers.
+ if (Offset % Bits)
+ return;
+ // The InReg flag is only required if there are any floats < 64 bits.
+ if (Bits < 64)
+ InReg = true;
+ pad(Offset);
+ Elems.push_back(Ty);
+ Size = Offset + Bits;
+ }
+
+ // Add a struct type to the coercion type, starting at Offset (in bits).
+ void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
+ const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
+ for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
+ llvm::Type *ElemTy = StrTy->getElementType(i);
+ uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
+ switch (ElemTy->getTypeID()) {
+ case llvm::Type::StructTyID:
+ addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
+ break;
+ case llvm::Type::FloatTyID:
+ addFloat(ElemOffset, ElemTy, 32);
+ break;
+ case llvm::Type::DoubleTyID:
+ addFloat(ElemOffset, ElemTy, 64);
+ break;
+ case llvm::Type::FP128TyID:
+ addFloat(ElemOffset, ElemTy, 128);
+ break;
+ case llvm::Type::PointerTyID:
+ if (ElemOffset % 64 == 0) {
+ pad(ElemOffset);
+ Elems.push_back(ElemTy);
+ Size += 64;
+ }
+ break;
+ default:
+ break;
+ }
+ }
+ }
+
+ // Check if Ty is a usable substitute for the coercion type.
+ bool isUsableType(llvm::StructType *Ty) const {
+ return llvm::makeArrayRef(Elems) == Ty->elements();
+ }
+
+ // Get the coercion type as a literal struct type.
+ llvm::Type *getType() const {
+ if (Elems.size() == 1)
+ return Elems.front();
+ else
+ return llvm::StructType::get(Context, Elems);
+ }
+ };
+};
+} // end anonymous namespace
+
+ABIArgInfo
+SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
+ if (Ty->isVoidType())
+ return ABIArgInfo::getIgnore();
+
+ uint64_t Size = getContext().getTypeSize(Ty);
+
+ // Anything too big to fit in registers is passed with an explicit indirect
+ // pointer / sret pointer.
+ if (Size > SizeLimit)
+ return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
+
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ // Integer types smaller than a register are extended.
+ if (Size < 64 && Ty->isIntegerType())
+ return ABIArgInfo::getExtend();
+
+ // Other non-aggregates go in registers.
+ if (!isAggregateTypeForABI(Ty))
+ return ABIArgInfo::getDirect();
+
+ // If a C++ object has either a non-trivial copy constructor or a non-trivial
+ // destructor, it is passed with an explicit indirect pointer / sret pointer.
+ if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
+ return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
+
+ // This is a small aggregate type that should be passed in registers.
+ // Build a coercion type from the LLVM struct type.
+ llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
+ if (!StrTy)
+ return ABIArgInfo::getDirect();
+
+ CoerceBuilder CB(getVMContext(), getDataLayout());
+ CB.addStruct(0, StrTy);
+ CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64));
+
+ // Try to use the original type for coercion.
+ llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
+
+ if (CB.InReg)
+ return ABIArgInfo::getDirectInReg(CoerceTy);
+ else
+ return ABIArgInfo::getDirect(CoerceTy);
+}
+
+llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const {
+ ABIArgInfo AI = classifyType(Ty, 16 * 8);
+ llvm::Type *ArgTy = CGT.ConvertType(Ty);
+ if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
+ AI.setCoerceToType(ArgTy);
+
+ llvm::Type *BPP = CGF.Int8PtrPtrTy;
+ CGBuilderTy &Builder = CGF.Builder;
+ llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
+ llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
+ llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
+ llvm::Value *ArgAddr;
+ unsigned Stride;
+
+ switch (AI.getKind()) {
+ case ABIArgInfo::Expand:
+ case ABIArgInfo::InAlloca:
+ llvm_unreachable("Unsupported ABI kind for va_arg");
+
+ case ABIArgInfo::Extend:
+ Stride = 8;
+ ArgAddr = Builder
+ .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy),
+ "extend");
+ break;
+
+ case ABIArgInfo::Direct:
+ Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
+ ArgAddr = Addr;
+ break;
+
+ case ABIArgInfo::Indirect:
+ Stride = 8;
+ ArgAddr = Builder.CreateBitCast(Addr,
+ llvm::PointerType::getUnqual(ArgPtrTy),
+ "indirect");
+ ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg");
+ break;
+
+ case ABIArgInfo::Ignore:
+ return llvm::UndefValue::get(ArgPtrTy);
+ }
+
+ // Update VAList.
+ Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next");
+ Builder.CreateStore(Addr, VAListAddrAsBPP);
+
+ return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr");
+}
+
+void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
+ FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
+ for (auto &I : FI.arguments())
+ I.info = classifyType(I.type, 16 * 8);
+}
+
+namespace {
+class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
+ : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
+
+ int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
+ return 14;
+ }
+
+ bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const override;
+};
+} // end anonymous namespace
+
+bool
+SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const {
+ // This is calculated from the LLVM and GCC tables and verified
+ // against gcc output. AFAIK all ABIs use the same encoding.
+
+ CodeGen::CGBuilderTy &Builder = CGF.Builder;
+
+ llvm::IntegerType *i8 = CGF.Int8Ty;
+ llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
+ llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
+
+ // 0-31: the 8-byte general-purpose registers
+ AssignToArrayRange(Builder, Address, Eight8, 0, 31);
+
+ // 32-63: f0-31, the 4-byte floating-point registers
+ AssignToArrayRange(Builder, Address, Four8, 32, 63);
+
+ // Y = 64
+ // PSR = 65
+ // WIM = 66
+ // TBR = 67
+ // PC = 68
+ // NPC = 69
+ // FSR = 70
+ // CSR = 71
+ AssignToArrayRange(Builder, Address, Eight8, 64, 71);
+
+ // 72-87: d0-15, the 8-byte floating-point registers
+ AssignToArrayRange(Builder, Address, Eight8, 72, 87);
+
+ return false;
+}
+
+
+//===----------------------------------------------------------------------===//
+// XCore ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+/// A SmallStringEnc instance is used to build up the TypeString by passing
+/// it by reference between functions that append to it.
+typedef llvm::SmallString<128> SmallStringEnc;
+
+/// TypeStringCache caches the meta encodings of Types.
+///
+/// The reason for caching TypeStrings is two fold:
+/// 1. To cache a type's encoding for later uses;
+/// 2. As a means to break recursive member type inclusion.
+///
+/// A cache Entry can have a Status of:
+/// NonRecursive: The type encoding is not recursive;
+/// Recursive: The type encoding is recursive;
+/// Incomplete: An incomplete TypeString;
+/// IncompleteUsed: An incomplete TypeString that has been used in a
+/// Recursive type encoding.
+///
+/// A NonRecursive entry will have all of its sub-members expanded as fully
+/// as possible. Whilst it may contain types which are recursive, the type
+/// itself is not recursive and thus its encoding may be safely used whenever
+/// the type is encountered.
+///
+/// A Recursive entry will have all of its sub-members expanded as fully as
+/// possible. The type itself is recursive and it may contain other types which
+/// are recursive. The Recursive encoding must not be used during the expansion
+/// of a recursive type's recursive branch. For simplicity the code uses
+/// IncompleteCount to reject all usage of Recursive encodings for member types.
+///
+/// An Incomplete entry is always a RecordType and only encodes its
+/// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
+/// are placed into the cache during type expansion as a means to identify and
+/// handle recursive inclusion of types as sub-members. If there is recursion
+/// the entry becomes IncompleteUsed.
+///
+/// During the expansion of a RecordType's members:
+///
+/// If the cache contains a NonRecursive encoding for the member type, the
+/// cached encoding is used;
+///
+/// If the cache contains a Recursive encoding for the member type, the
+/// cached encoding is 'Swapped' out, as it may be incorrect, and...
+///
+/// If the member is a RecordType, an Incomplete encoding is placed into the
+/// cache to break potential recursive inclusion of itself as a sub-member;
+///
+/// Once a member RecordType has been expanded, its temporary incomplete
+/// entry is removed from the cache. If a Recursive encoding was swapped out
+/// it is swapped back in;
+///
+/// If an incomplete entry is used to expand a sub-member, the incomplete
+/// entry is marked as IncompleteUsed. The cache keeps count of how many
+/// IncompleteUsed entries it currently contains in IncompleteUsedCount;
+///
+/// If a member's encoding is found to be a NonRecursive or Recursive viz:
+/// IncompleteUsedCount==0, the member's encoding is added to the cache.
+/// Else the member is part of a recursive type and thus the recursion has
+/// been exited too soon for the encoding to be correct for the member.
+///
+class TypeStringCache {
+ enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
+ struct Entry {
+ std::string Str; // The encoded TypeString for the type.
+ enum Status State; // Information about the encoding in 'Str'.
+ std::string Swapped; // A temporary place holder for a Recursive encoding
+ // during the expansion of RecordType's members.
+ };
+ std::map<const IdentifierInfo *, struct Entry> Map;
+ unsigned IncompleteCount; // Number of Incomplete entries in the Map.
+ unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
+public:
+ TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {};
+ void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
+ bool removeIncomplete(const IdentifierInfo *ID);
+ void addIfComplete(const IdentifierInfo *ID, StringRef Str,
+ bool IsRecursive);
+ StringRef lookupStr(const IdentifierInfo *ID);
+};
+
+/// TypeString encodings for enum & union fields must be order.
+/// FieldEncoding is a helper for this ordering process.
+class FieldEncoding {
+ bool HasName;
+ std::string Enc;
+public:
+ FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {};
+ StringRef str() {return Enc.c_str();};
+ bool operator<(const FieldEncoding &rhs) const {
+ if (HasName != rhs.HasName) return HasName;
+ return Enc < rhs.Enc;
+ }
+};
+
+class XCoreABIInfo : public DefaultABIInfo {
+public:
+ XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
+ llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const override;
+};
+
+class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
+ mutable TypeStringCache TSC;
+public:
+ XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
+ :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
+ void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &M) const override;
+};
+
+} // End anonymous namespace.
+
+llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const {
+ CGBuilderTy &Builder = CGF.Builder;
+
+ // Get the VAList.
+ llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr,
+ CGF.Int8PtrPtrTy);
+ llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP);
+
+ // Handle the argument.
+ ABIArgInfo AI = classifyArgumentType(Ty);
+ llvm::Type *ArgTy = CGT.ConvertType(Ty);
+ if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
+ AI.setCoerceToType(ArgTy);
+ llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
+ llvm::Value *Val;
+ uint64_t ArgSize = 0;
+ switch (AI.getKind()) {
+ case ABIArgInfo::Expand:
+ case ABIArgInfo::InAlloca:
+ llvm_unreachable("Unsupported ABI kind for va_arg");
+ case ABIArgInfo::Ignore:
+ Val = llvm::UndefValue::get(ArgPtrTy);
+ ArgSize = 0;
+ break;
+ case ABIArgInfo::Extend:
+ case ABIArgInfo::Direct:
+ Val = Builder.CreatePointerCast(AP, ArgPtrTy);
+ ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
+ if (ArgSize < 4)
+ ArgSize = 4;
+ break;
+ case ABIArgInfo::Indirect:
+ llvm::Value *ArgAddr;
+ ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy));
+ ArgAddr = Builder.CreateLoad(ArgAddr);
+ Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy);
+ ArgSize = 4;
+ break;
+ }
+
+ // Increment the VAList.
+ if (ArgSize) {
+ llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize);
+ Builder.CreateStore(APN, VAListAddrAsBPP);
+ }
+ return Val;
+}
+
+/// During the expansion of a RecordType, an incomplete TypeString is placed
+/// into the cache as a means to identify and break recursion.
+/// If there is a Recursive encoding in the cache, it is swapped out and will
+/// be reinserted by removeIncomplete().
+/// All other types of encoding should have been used rather than arriving here.
+void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
+ std::string StubEnc) {
+ if (!ID)
+ return;
+ Entry &E = Map[ID];
+ assert( (E.Str.empty() || E.State == Recursive) &&
+ "Incorrectly use of addIncomplete");
+ assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
+ E.Swapped.swap(E.Str); // swap out the Recursive
+ E.Str.swap(StubEnc);
+ E.State = Incomplete;
+ ++IncompleteCount;
+}
+
+/// Once the RecordType has been expanded, the temporary incomplete TypeString
+/// must be removed from the cache.
+/// If a Recursive was swapped out by addIncomplete(), it will be replaced.
+/// Returns true if the RecordType was defined recursively.
+bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
+ if (!ID)
+ return false;
+ auto I = Map.find(ID);
+ assert(I != Map.end() && "Entry not present");
+ Entry &E = I->second;
+ assert( (E.State == Incomplete ||
+ E.State == IncompleteUsed) &&
+ "Entry must be an incomplete type");
+ bool IsRecursive = false;
+ if (E.State == IncompleteUsed) {
+ // We made use of our Incomplete encoding, thus we are recursive.
+ IsRecursive = true;
+ --IncompleteUsedCount;
+ }
+ if (E.Swapped.empty())
+ Map.erase(I);
+ else {
+ // Swap the Recursive back.
+ E.Swapped.swap(E.Str);
+ E.Swapped.clear();
+ E.State = Recursive;
+ }
+ --IncompleteCount;
+ return IsRecursive;
+}
+
+/// Add the encoded TypeString to the cache only if it is NonRecursive or
+/// Recursive (viz: all sub-members were expanded as fully as possible).
+void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
+ bool IsRecursive) {
+ if (!ID || IncompleteUsedCount)
+ return; // No key or it is is an incomplete sub-type so don't add.
+ Entry &E = Map[ID];
+ if (IsRecursive && !E.Str.empty()) {
+ assert(E.State==Recursive && E.Str.size() == Str.size() &&
+ "This is not the same Recursive entry");
+ // The parent container was not recursive after all, so we could have used
+ // this Recursive sub-member entry after all, but we assumed the worse when
+ // we started viz: IncompleteCount!=0.
+ return;
+ }
+ assert(E.Str.empty() && "Entry already present");
+ E.Str = Str.str();
+ E.State = IsRecursive? Recursive : NonRecursive;
+}
+
+/// Return a cached TypeString encoding for the ID. If there isn't one, or we
+/// are recursively expanding a type (IncompleteCount != 0) and the cached
+/// encoding is Recursive, return an empty StringRef.
+StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
+ if (!ID)
+ return StringRef(); // We have no key.
+ auto I = Map.find(ID);
+ if (I == Map.end())
+ return StringRef(); // We have no encoding.
+ Entry &E = I->second;
+ if (E.State == Recursive && IncompleteCount)
+ return StringRef(); // We don't use Recursive encodings for member types.
+
+ if (E.State == Incomplete) {
+ // The incomplete type is being used to break out of recursion.
+ E.State = IncompleteUsed;
+ ++IncompleteUsedCount;
+ }
+ return E.Str.c_str();
+}
+
+/// The XCore ABI includes a type information section that communicates symbol
+/// type information to the linker. The linker uses this information to verify
+/// safety/correctness of things such as array bound and pointers et al.
+/// The ABI only requires C (and XC) language modules to emit TypeStrings.
+/// This type information (TypeString) is emitted into meta data for all global
+/// symbols: definitions, declarations, functions & variables.
+///
+/// The TypeString carries type, qualifier, name, size & value details.
+/// Please see 'Tools Development Guide' section 2.16.2 for format details:
+/// <https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf>
+/// The output is tested by test/CodeGen/xcore-stringtype.c.
+///
+static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
+ CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
+
+/// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
+void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &CGM) const {
+ SmallStringEnc Enc;
+ if (getTypeString(Enc, D, CGM, TSC)) {
+ llvm::LLVMContext &Ctx = CGM.getModule().getContext();
+ llvm::SmallVector<llvm::Metadata *, 2> MDVals;
+ MDVals.push_back(llvm::ConstantAsMetadata::get(GV));
+ MDVals.push_back(llvm::MDString::get(Ctx, Enc.str()));
+ llvm::NamedMDNode *MD =
+ CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
+ MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
+ }
+}
+
+static bool appendType(SmallStringEnc &Enc, QualType QType,
+ const CodeGen::CodeGenModule &CGM,
+ TypeStringCache &TSC);
+
+/// Helper function for appendRecordType().
+/// Builds a SmallVector containing the encoded field types in declaration order.
+static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
+ const RecordDecl *RD,
+ const CodeGen::CodeGenModule &CGM,
+ TypeStringCache &TSC) {
+ for (const auto *Field : RD->fields()) {
+ SmallStringEnc Enc;
+ Enc += "m(";
+ Enc += Field->getName();
+ Enc += "){";
+ if (Field->isBitField()) {
+ Enc += "b(";
+ llvm::raw_svector_ostream OS(Enc);
+ OS.resync();
+ OS << Field->getBitWidthValue(CGM.getContext());
+ OS.flush();
+ Enc += ':';
+ }
+ if (!appendType(Enc, Field->getType(), CGM, TSC))
+ return false;
+ if (Field->isBitField())
+ Enc += ')';
+ Enc += '}';
+ FE.push_back(FieldEncoding(!Field->getName().empty(), Enc));
+ }
+ return true;
+}
+
+/// Appends structure and union types to Enc and adds encoding to cache.
+/// Recursively calls appendType (via extractFieldType) for each field.
+/// Union types have their fields ordered according to the ABI.
+static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
+ const CodeGen::CodeGenModule &CGM,
+ TypeStringCache &TSC, const IdentifierInfo *ID) {
+ // Append the cached TypeString if we have one.
+ StringRef TypeString = TSC.lookupStr(ID);
+ if (!TypeString.empty()) {
+ Enc += TypeString;
+ return true;
+ }
+
+ // Start to emit an incomplete TypeString.
+ size_t Start = Enc.size();
+ Enc += (RT->isUnionType()? 'u' : 's');
+ Enc += '(';
+ if (ID)
+ Enc += ID->getName();
+ Enc += "){";
+
+ // We collect all encoded fields and order as necessary.
+ bool IsRecursive = false;
+ const RecordDecl *RD = RT->getDecl()->getDefinition();
+ if (RD && !RD->field_empty()) {
+ // An incomplete TypeString stub is placed in the cache for this RecordType
+ // so that recursive calls to this RecordType will use it whilst building a
+ // complete TypeString for this RecordType.
+ SmallVector<FieldEncoding, 16> FE;
+ std::string StubEnc(Enc.substr(Start).str());
+ StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString.
+ TSC.addIncomplete(ID, std::move(StubEnc));
+ if (!extractFieldType(FE, RD, CGM, TSC)) {
+ (void) TSC.removeIncomplete(ID);
+ return false;
+ }
+ IsRecursive = TSC.removeIncomplete(ID);
+ // The ABI requires unions to be sorted but not structures.
+ // See FieldEncoding::operator< for sort algorithm.
+ if (RT->isUnionType())
+ std::sort(FE.begin(), FE.end());
+ // We can now complete the TypeString.
+ unsigned E = FE.size();
+ for (unsigned I = 0; I != E; ++I) {
+ if (I)
+ Enc += ',';
+ Enc += FE[I].str();
+ }
+ }
+ Enc += '}';
+ TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
+ return true;
+}
+
+/// Appends enum types to Enc and adds the encoding to the cache.
+static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
+ TypeStringCache &TSC,
+ const IdentifierInfo *ID) {
+ // Append the cached TypeString if we have one.
+ StringRef TypeString = TSC.lookupStr(ID);
+ if (!TypeString.empty()) {
+ Enc += TypeString;
+ return true;
+ }
+
+ size_t Start = Enc.size();
+ Enc += "e(";
+ if (ID)
+ Enc += ID->getName();
+ Enc += "){";
+
+ // We collect all encoded enumerations and order them alphanumerically.
+ if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
+ SmallVector<FieldEncoding, 16> FE;
+ for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
+ ++I) {
+ SmallStringEnc EnumEnc;
+ EnumEnc += "m(";
+ EnumEnc += I->getName();
+ EnumEnc += "){";
+ I->getInitVal().toString(EnumEnc);
+ EnumEnc += '}';
+ FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
+ }
+ std::sort(FE.begin(), FE.end());
+ unsigned E = FE.size();
+ for (unsigned I = 0; I != E; ++I) {
+ if (I)
+ Enc += ',';
+ Enc += FE[I].str();
+ }
+ }
+ Enc += '}';
+ TSC.addIfComplete(ID, Enc.substr(Start), false);
+ return true;
+}
+
+/// Appends type's qualifier to Enc.
+/// This is done prior to appending the type's encoding.
+static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
+ // Qualifiers are emitted in alphabetical order.
+ static const char *Table[] = {"","c:","r:","cr:","v:","cv:","rv:","crv:"};
+ int Lookup = 0;
+ if (QT.isConstQualified())
+ Lookup += 1<<0;
+ if (QT.isRestrictQualified())
+ Lookup += 1<<1;
+ if (QT.isVolatileQualified())
+ Lookup += 1<<2;
+ Enc += Table[Lookup];
+}
+
+/// Appends built-in types to Enc.
+static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
+ const char *EncType;
+ switch (BT->getKind()) {
+ case BuiltinType::Void:
+ EncType = "0";
+ break;
+ case BuiltinType::Bool:
+ EncType = "b";
+ break;
+ case BuiltinType::Char_U:
+ EncType = "uc";
+ break;
+ case BuiltinType::UChar:
+ EncType = "uc";
+ break;
+ case BuiltinType::SChar:
+ EncType = "sc";
+ break;
+ case BuiltinType::UShort:
+ EncType = "us";
+ break;
+ case BuiltinType::Short:
+ EncType = "ss";
+ break;
+ case BuiltinType::UInt:
+ EncType = "ui";
+ break;
+ case BuiltinType::Int:
+ EncType = "si";
+ break;
+ case BuiltinType::ULong:
+ EncType = "ul";
+ break;
+ case BuiltinType::Long:
+ EncType = "sl";
+ break;
+ case BuiltinType::ULongLong:
+ EncType = "ull";
+ break;
+ case BuiltinType::LongLong:
+ EncType = "sll";
+ break;
+ case BuiltinType::Float:
+ EncType = "ft";
+ break;
+ case BuiltinType::Double:
+ EncType = "d";
+ break;
+ case BuiltinType::LongDouble:
+ EncType = "ld";
+ break;
+ default:
+ return false;
+ }
+ Enc += EncType;
+ return true;
+}
+
+/// Appends a pointer encoding to Enc before calling appendType for the pointee.
+static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
+ const CodeGen::CodeGenModule &CGM,
+ TypeStringCache &TSC) {
+ Enc += "p(";
+ if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
+ return false;
+ Enc += ')';
+ return true;
+}
+
+/// Appends array encoding to Enc before calling appendType for the element.
+static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
+ const ArrayType *AT,
+ const CodeGen::CodeGenModule &CGM,
+ TypeStringCache &TSC, StringRef NoSizeEnc) {
+ if (AT->getSizeModifier() != ArrayType::Normal)
+ return false;
+ Enc += "a(";
+ if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
+ CAT->getSize().toStringUnsigned(Enc);
+ else
+ Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
+ Enc += ':';
+ // The Qualifiers should be attached to the type rather than the array.
+ appendQualifier(Enc, QT);
+ if (!appendType(Enc, AT->getElementType(), CGM, TSC))
+ return false;
+ Enc += ')';
+ return true;
+}
+
+/// Appends a function encoding to Enc, calling appendType for the return type
+/// and the arguments.
+static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
+ const CodeGen::CodeGenModule &CGM,
+ TypeStringCache &TSC) {
+ Enc += "f{";
+ if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
+ return false;
+ Enc += "}(";
+ if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
+ // N.B. we are only interested in the adjusted param types.
+ auto I = FPT->param_type_begin();
+ auto E = FPT->param_type_end();
+ if (I != E) {
+ do {
+ if (!appendType(Enc, *I, CGM, TSC))
+ return false;
+ ++I;
+ if (I != E)
+ Enc += ',';
+ } while (I != E);
+ if (FPT->isVariadic())
+ Enc += ",va";
+ } else {
+ if (FPT->isVariadic())
+ Enc += "va";
+ else
+ Enc += '0';
+ }
+ }
+ Enc += ')';
+ return true;
+}
+
+/// Handles the type's qualifier before dispatching a call to handle specific
+/// type encodings.
+static bool appendType(SmallStringEnc &Enc, QualType QType,
+ const CodeGen::CodeGenModule &CGM,
+ TypeStringCache &TSC) {
+
+ QualType QT = QType.getCanonicalType();
+
+ if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
+ // The Qualifiers should be attached to the type rather than the array.
+ // Thus we don't call appendQualifier() here.
+ return appendArrayType(Enc, QT, AT, CGM, TSC, "");
+
+ appendQualifier(Enc, QT);
+
+ if (const BuiltinType *BT = QT->getAs<BuiltinType>())
+ return appendBuiltinType(Enc, BT);
+
+ if (const PointerType *PT = QT->getAs<PointerType>())
+ return appendPointerType(Enc, PT, CGM, TSC);
+
+ if (const EnumType *ET = QT->getAs<EnumType>())
+ return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
+
+ if (const RecordType *RT = QT->getAsStructureType())
+ return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
+
+ if (const RecordType *RT = QT->getAsUnionType())
+ return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
+
+ if (const FunctionType *FT = QT->getAs<FunctionType>())
+ return appendFunctionType(Enc, FT, CGM, TSC);
+
+ return false;
+}
+
+static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
+ CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
+ if (!D)
+ return false;
+
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ if (FD->getLanguageLinkage() != CLanguageLinkage)
+ return false;
+ return appendType(Enc, FD->getType(), CGM, TSC);
+ }
+
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
+ if (VD->getLanguageLinkage() != CLanguageLinkage)
+ return false;
+ QualType QT = VD->getType().getCanonicalType();
+ if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
+ // Global ArrayTypes are given a size of '*' if the size is unknown.
+ // The Qualifiers should be attached to the type rather than the array.
+ // Thus we don't call appendQualifier() here.
+ return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
+ }
+ return appendType(Enc, QT, CGM, TSC);
+ }
+ return false;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Driver code
+//===----------------------------------------------------------------------===//
+
+const llvm::Triple &CodeGenModule::getTriple() const {
+ return getTarget().getTriple();
+}
+
+bool CodeGenModule::supportsCOMDAT() const {
+ return !getTriple().isOSBinFormatMachO();
+}
+
+const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
+ if (TheTargetCodeGenInfo)
+ return *TheTargetCodeGenInfo;
+
+ const llvm::Triple &Triple = getTarget().getTriple();
+ switch (Triple.getArch()) {
+ default:
+ return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
+
+ case llvm::Triple::le32:
+ return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
+ case llvm::Triple::mips:
+ case llvm::Triple::mipsel:
+ return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
+
+ case llvm::Triple::mips64:
+ case llvm::Triple::mips64el:
+ return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
+
+ case llvm::Triple::aarch64:
+ case llvm::Triple::aarch64_be: {
+ AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
+ if (getTarget().getABI() == "darwinpcs")
+ Kind = AArch64ABIInfo::DarwinPCS;
+
+ return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind));
+ }
+
+ case llvm::Triple::arm:
+ case llvm::Triple::armeb:
+ case llvm::Triple::thumb:
+ case llvm::Triple::thumbeb:
+ {
+ if (Triple.getOS() == llvm::Triple::Win32) {
+ TheTargetCodeGenInfo =
+ new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP);
+ return *TheTargetCodeGenInfo;
+ }
+
+ ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
+ if (getTarget().getABI() == "apcs-gnu")
+ Kind = ARMABIInfo::APCS;
+ else if (CodeGenOpts.FloatABI == "hard" ||
+ (CodeGenOpts.FloatABI != "soft" &&
+ Triple.getEnvironment() == llvm::Triple::GNUEABIHF))
+ Kind = ARMABIInfo::AAPCS_VFP;
+
+ return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind));
+ }
+
+ case llvm::Triple::ppc:
+ return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
+ case llvm::Triple::ppc64:
+ if (Triple.isOSBinFormatELF()) {
+ PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
+ if (getTarget().getABI() == "elfv2")
+ Kind = PPC64_SVR4_ABIInfo::ELFv2;
+ bool HasQPX = getTarget().getABI() == "elfv1-qpx";
+
+ return *(TheTargetCodeGenInfo =
+ new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
+ } else
+ return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
+ case llvm::Triple::ppc64le: {
+ assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
+ PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
+ if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
+ Kind = PPC64_SVR4_ABIInfo::ELFv1;
+ bool HasQPX = getTarget().getABI() == "elfv1-qpx";
+
+ return *(TheTargetCodeGenInfo =
+ new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
+ }
+
+ case llvm::Triple::nvptx:
+ case llvm::Triple::nvptx64:
+ return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
+
+ case llvm::Triple::msp430:
+ return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
+
+ case llvm::Triple::systemz: {
+ bool HasVector = getTarget().getABI() == "vector";
+ return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types,
+ HasVector));
+ }
+
+ case llvm::Triple::tce:
+ return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
+
+ case llvm::Triple::x86: {
+ bool IsDarwinVectorABI = Triple.isOSDarwin();
+ bool IsSmallStructInRegABI =
+ X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
+ bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
+
+ if (Triple.getOS() == llvm::Triple::Win32) {
+ return *(TheTargetCodeGenInfo =
+ new WinX86_32TargetCodeGenInfo(Types,
+ IsDarwinVectorABI, IsSmallStructInRegABI,
+ IsWin32FloatStructABI,
+ CodeGenOpts.NumRegisterParameters));
+ } else {
+ return *(TheTargetCodeGenInfo =
+ new X86_32TargetCodeGenInfo(Types,
+ IsDarwinVectorABI, IsSmallStructInRegABI,
+ IsWin32FloatStructABI,
+ CodeGenOpts.NumRegisterParameters));
+ }
+ }
+
+ case llvm::Triple::x86_64: {
+ switch (Triple.getOS()) {
+ case llvm::Triple::Win32:
+ return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
+ case llvm::Triple::PS4:
+ return *(TheTargetCodeGenInfo = new PS4TargetCodeGenInfo(Types));
+ default:
+ return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types));
+ }
+ }
+ case llvm::Triple::hexagon:
+ return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
+ case llvm::Triple::r600:
+ return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
+ case llvm::Triple::amdgcn:
+ return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
+ case llvm::Triple::sparcv9:
+ return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types));
+ case llvm::Triple::xcore:
+ return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types));
+ }
+}
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/TargetInfo.h b/contrib/llvm/tools/clang/lib/CodeGen/TargetInfo.h
new file mode 100644
index 0000000..cc469d6
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/TargetInfo.h
@@ -0,0 +1,231 @@
+//===---- TargetInfo.h - Encapsulate target details -------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// These classes wrap the information about a call or function
+// definition used to handle ABI compliancy.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_CODEGEN_TARGETINFO_H
+#define LLVM_CLANG_LIB_CODEGEN_TARGETINFO_H
+
+#include "CGValue.h"
+#include "clang/AST/Type.h"
+#include "clang/Basic/LLVM.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringRef.h"
+
+namespace llvm {
+class Constant;
+class GlobalValue;
+class Type;
+class Value;
+}
+
+namespace clang {
+class ABIInfo;
+class Decl;
+
+namespace CodeGen {
+class CallArgList;
+class CodeGenModule;
+class CodeGenFunction;
+class CGFunctionInfo;
+}
+
+/// TargetCodeGenInfo - This class organizes various target-specific
+/// codegeneration issues, like target-specific attributes, builtins and so
+/// on.
+class TargetCodeGenInfo {
+ ABIInfo *Info;
+
+public:
+ // WARNING: Acquires the ownership of ABIInfo.
+ TargetCodeGenInfo(ABIInfo *info = 0) : Info(info) {}
+ virtual ~TargetCodeGenInfo();
+
+ /// getABIInfo() - Returns ABI info helper for the target.
+ const ABIInfo &getABIInfo() const { return *Info; }
+
+ /// SetTargetAttributes - Provides a convenient hook to handle extra
+ /// target-specific attributes for the given global.
+ virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &M) const {}
+
+ /// EmitTargetMD - Provides a convenient hook to handle extra
+ /// target-specific metadata for the given global.
+ virtual void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &M) const {}
+
+ /// Determines the size of struct _Unwind_Exception on this platform,
+ /// in 8-bit units. The Itanium ABI defines this as:
+ /// struct _Unwind_Exception {
+ /// uint64 exception_class;
+ /// _Unwind_Exception_Cleanup_Fn exception_cleanup;
+ /// uint64 private_1;
+ /// uint64 private_2;
+ /// };
+ virtual unsigned getSizeOfUnwindException() const;
+
+ /// Controls whether __builtin_extend_pointer should sign-extend
+ /// pointers to uint64_t or zero-extend them (the default). Has
+ /// no effect for targets:
+ /// - that have 64-bit pointers, or
+ /// - that cannot address through registers larger than pointers, or
+ /// - that implicitly ignore/truncate the top bits when addressing
+ /// through such registers.
+ virtual bool extendPointerWithSExt() const { return false; }
+
+ /// Determines the DWARF register number for the stack pointer, for
+ /// exception-handling purposes. Implements __builtin_dwarf_sp_column.
+ ///
+ /// Returns -1 if the operation is unsupported by this target.
+ virtual int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
+ return -1;
+ }
+
+ /// Initializes the given DWARF EH register-size table, a char*.
+ /// Implements __builtin_init_dwarf_reg_size_table.
+ ///
+ /// Returns true if the operation is unsupported by this target.
+ virtual bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const {
+ return true;
+ }
+
+ /// Performs the code-generation required to convert a return
+ /// address as stored by the system into the actual address of the
+ /// next instruction that will be executed.
+ ///
+ /// Used by __builtin_extract_return_addr().
+ virtual llvm::Value *decodeReturnAddress(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const {
+ return Address;
+ }
+
+ /// Performs the code-generation required to convert the address
+ /// of an instruction into a return address suitable for storage
+ /// by the system in a return slot.
+ ///
+ /// Used by __builtin_frob_return_addr().
+ virtual llvm::Value *encodeReturnAddress(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const {
+ return Address;
+ }
+
+ /// Corrects the low-level LLVM type for a given constraint and "usual"
+ /// type.
+ ///
+ /// \returns A pointer to a new LLVM type, possibly the same as the original
+ /// on success; 0 on failure.
+ virtual llvm::Type *adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
+ StringRef Constraint,
+ llvm::Type *Ty) const {
+ return Ty;
+ }
+
+ /// Adds constraints and types for result registers.
+ virtual void addReturnRegisterOutputs(
+ CodeGen::CodeGenFunction &CGF, CodeGen::LValue ReturnValue,
+ std::string &Constraints, std::vector<llvm::Type *> &ResultRegTypes,
+ std::vector<llvm::Type *> &ResultTruncRegTypes,
+ std::vector<CodeGen::LValue> &ResultRegDests, std::string &AsmString,
+ unsigned NumOutputs) const {}
+
+ /// doesReturnSlotInterfereWithArgs - Return true if the target uses an
+ /// argument slot for an 'sret' type.
+ virtual bool doesReturnSlotInterfereWithArgs() const { return true; }
+
+ /// Retrieve the address of a function to call immediately before
+ /// calling objc_retainAutoreleasedReturnValue. The
+ /// implementation of objc_autoreleaseReturnValue sniffs the
+ /// instruction stream following its return address to decide
+ /// whether it's a call to objc_retainAutoreleasedReturnValue.
+ /// This can be prohibitively expensive, depending on the
+ /// relocation model, and so on some targets it instead sniffs for
+ /// a particular instruction sequence. This functions returns
+ /// that instruction sequence in inline assembly, which will be
+ /// empty if none is required.
+ virtual StringRef getARCRetainAutoreleasedReturnValueMarker() const {
+ return "";
+ }
+
+ /// Return a constant used by UBSan as a signature to identify functions
+ /// possessing type information, or 0 if the platform is unsupported.
+ virtual llvm::Constant *
+ getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const {
+ return nullptr;
+ }
+
+ /// Determine whether a call to an unprototyped functions under
+ /// the given calling convention should use the variadic
+ /// convention or the non-variadic convention.
+ ///
+ /// There's a good reason to make a platform's variadic calling
+ /// convention be different from its non-variadic calling
+ /// convention: the non-variadic arguments can be passed in
+ /// registers (better for performance), and the variadic arguments
+ /// can be passed on the stack (also better for performance). If
+ /// this is done, however, unprototyped functions *must* use the
+ /// non-variadic convention, because C99 states that a call
+ /// through an unprototyped function type must succeed if the
+ /// function was defined with a non-variadic prototype with
+ /// compatible parameters. Therefore, splitting the conventions
+ /// makes it impossible to call a variadic function through an
+ /// unprototyped type. Since function prototypes came out in the
+ /// late 1970s, this is probably an acceptable trade-off.
+ /// Nonetheless, not all platforms are willing to make it, and in
+ /// particularly x86-64 bends over backwards to make the
+ /// conventions compatible.
+ ///
+ /// The default is false. This is correct whenever:
+ /// - the conventions are exactly the same, because it does not
+ /// matter and the resulting IR will be somewhat prettier in
+ /// certain cases; or
+ /// - the conventions are substantively different in how they pass
+ /// arguments, because in this case using the variadic convention
+ /// will lead to C99 violations.
+ ///
+ /// However, some platforms make the conventions identical except
+ /// for passing additional out-of-band information to a variadic
+ /// function: for example, x86-64 passes the number of SSE
+ /// arguments in %al. On these platforms, it is desirable to
+ /// call unprototyped functions using the variadic convention so
+ /// that unprototyped calls to varargs functions still succeed.
+ ///
+ /// Relatedly, platforms which pass the fixed arguments to this:
+ /// A foo(B, C, D);
+ /// differently than they would pass them to this:
+ /// A foo(B, C, D, ...);
+ /// may need to adjust the debugger-support code in Sema to do the
+ /// right thing when calling a function with no know signature.
+ virtual bool isNoProtoCallVariadic(const CodeGen::CallArgList &args,
+ const FunctionNoProtoType *fnType) const;
+
+ /// Gets the linker options necessary to link a dependent library on this
+ /// platform.
+ virtual void getDependentLibraryOption(llvm::StringRef Lib,
+ llvm::SmallString<24> &Opt) const;
+
+ /// Gets the linker options necessary to detect object file mismatches on
+ /// this platform.
+ virtual void getDetectMismatchOption(llvm::StringRef Name,
+ llvm::StringRef Value,
+ llvm::SmallString<32> &Opt) const {}
+
+ /// Gets the target-specific default alignment used when an 'aligned' clause
+ /// is used with a 'simd' OpenMP directive without specifying a specific
+ /// alignment.
+ virtual unsigned getOpenMPSimdDefaultAlignment(QualType Type) const {
+ return 0;
+ }
+};
+}
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/Driver/Action.cpp b/contrib/llvm/tools/clang/lib/Driver/Action.cpp
new file mode 100644
index 0000000..360dbee
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Driver/Action.cpp
@@ -0,0 +1,152 @@
+//===--- Action.cpp - Abstract compilation steps --------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Driver/Action.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <cassert>
+using namespace clang::driver;
+using namespace llvm::opt;
+
+Action::~Action() {
+ if (OwnsInputs) {
+ for (iterator it = begin(), ie = end(); it != ie; ++it)
+ delete *it;
+ }
+}
+
+const char *Action::getClassName(ActionClass AC) {
+ switch (AC) {
+ case InputClass: return "input";
+ case BindArchClass: return "bind-arch";
+ case PreprocessJobClass: return "preprocessor";
+ case PrecompileJobClass: return "precompiler";
+ case AnalyzeJobClass: return "analyzer";
+ case MigrateJobClass: return "migrator";
+ case CompileJobClass: return "compiler";
+ case BackendJobClass: return "backend";
+ case AssembleJobClass: return "assembler";
+ case LinkJobClass: return "linker";
+ case LipoJobClass: return "lipo";
+ case DsymutilJobClass: return "dsymutil";
+ case VerifyDebugInfoJobClass: return "verify-debug-info";
+ case VerifyPCHJobClass: return "verify-pch";
+ }
+
+ llvm_unreachable("invalid class");
+}
+
+void InputAction::anchor() {}
+
+InputAction::InputAction(const Arg &_Input, types::ID _Type)
+ : Action(InputClass, _Type), Input(_Input) {
+}
+
+void BindArchAction::anchor() {}
+
+BindArchAction::BindArchAction(std::unique_ptr<Action> Input,
+ const char *_ArchName)
+ : Action(BindArchClass, std::move(Input)), ArchName(_ArchName) {}
+
+void JobAction::anchor() {}
+
+JobAction::JobAction(ActionClass Kind, std::unique_ptr<Action> Input,
+ types::ID Type)
+ : Action(Kind, std::move(Input), Type) {}
+
+JobAction::JobAction(ActionClass Kind, const ActionList &Inputs, types::ID Type)
+ : Action(Kind, Inputs, Type) {
+}
+
+void PreprocessJobAction::anchor() {}
+
+PreprocessJobAction::PreprocessJobAction(std::unique_ptr<Action> Input,
+ types::ID OutputType)
+ : JobAction(PreprocessJobClass, std::move(Input), OutputType) {}
+
+void PrecompileJobAction::anchor() {}
+
+PrecompileJobAction::PrecompileJobAction(std::unique_ptr<Action> Input,
+ types::ID OutputType)
+ : JobAction(PrecompileJobClass, std::move(Input), OutputType) {}
+
+void AnalyzeJobAction::anchor() {}
+
+AnalyzeJobAction::AnalyzeJobAction(std::unique_ptr<Action> Input,
+ types::ID OutputType)
+ : JobAction(AnalyzeJobClass, std::move(Input), OutputType) {}
+
+void MigrateJobAction::anchor() {}
+
+MigrateJobAction::MigrateJobAction(std::unique_ptr<Action> Input,
+ types::ID OutputType)
+ : JobAction(MigrateJobClass, std::move(Input), OutputType) {}
+
+void CompileJobAction::anchor() {}
+
+CompileJobAction::CompileJobAction(std::unique_ptr<Action> Input,
+ types::ID OutputType)
+ : JobAction(CompileJobClass, std::move(Input), OutputType) {}
+
+void BackendJobAction::anchor() {}
+
+BackendJobAction::BackendJobAction(std::unique_ptr<Action> Input,
+ types::ID OutputType)
+ : JobAction(BackendJobClass, std::move(Input), OutputType) {}
+
+void AssembleJobAction::anchor() {}
+
+AssembleJobAction::AssembleJobAction(std::unique_ptr<Action> Input,
+ types::ID OutputType)
+ : JobAction(AssembleJobClass, std::move(Input), OutputType) {}
+
+void LinkJobAction::anchor() {}
+
+LinkJobAction::LinkJobAction(ActionList &Inputs, types::ID Type)
+ : JobAction(LinkJobClass, Inputs, Type) {
+}
+
+void LipoJobAction::anchor() {}
+
+LipoJobAction::LipoJobAction(ActionList &Inputs, types::ID Type)
+ : JobAction(LipoJobClass, Inputs, Type) {
+}
+
+void DsymutilJobAction::anchor() {}
+
+DsymutilJobAction::DsymutilJobAction(ActionList &Inputs, types::ID Type)
+ : JobAction(DsymutilJobClass, Inputs, Type) {
+}
+
+void VerifyJobAction::anchor() {}
+
+VerifyJobAction::VerifyJobAction(ActionClass Kind,
+ std::unique_ptr<Action> Input, types::ID Type)
+ : JobAction(Kind, std::move(Input), Type) {
+ assert((Kind == VerifyDebugInfoJobClass || Kind == VerifyPCHJobClass) &&
+ "ActionClass is not a valid VerifyJobAction");
+}
+
+VerifyJobAction::VerifyJobAction(ActionClass Kind, ActionList &Inputs,
+ types::ID Type)
+ : JobAction(Kind, Inputs, Type) {
+ assert((Kind == VerifyDebugInfoJobClass || Kind == VerifyPCHJobClass) &&
+ "ActionClass is not a valid VerifyJobAction");
+}
+
+void VerifyDebugInfoJobAction::anchor() {}
+
+VerifyDebugInfoJobAction::VerifyDebugInfoJobAction(
+ std::unique_ptr<Action> Input, types::ID Type)
+ : VerifyJobAction(VerifyDebugInfoJobClass, std::move(Input), Type) {}
+
+void VerifyPCHJobAction::anchor() {}
+
+VerifyPCHJobAction::VerifyPCHJobAction(std::unique_ptr<Action> Input,
+ types::ID Type)
+ : VerifyJobAction(VerifyPCHJobClass, std::move(Input), Type) {}
diff --git a/contrib/llvm/tools/clang/lib/Driver/Compilation.cpp b/contrib/llvm/tools/clang/lib/Driver/Compilation.cpp
new file mode 100644
index 0000000..2bcbd5c
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Driver/Compilation.cpp
@@ -0,0 +1,241 @@
+//===--- Compilation.cpp - Compilation Task Implementation ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Driver/Compilation.h"
+#include "clang/Driver/Action.h"
+#include "clang/Driver/Driver.h"
+#include "clang/Driver/DriverDiagnostic.h"
+#include "clang/Driver/Options.h"
+#include "clang/Driver/ToolChain.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Option/ArgList.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang::driver;
+using namespace clang;
+using namespace llvm::opt;
+
+Compilation::Compilation(const Driver &D, const ToolChain &_DefaultToolChain,
+ InputArgList *_Args, DerivedArgList *_TranslatedArgs)
+ : TheDriver(D), DefaultToolChain(_DefaultToolChain), Args(_Args),
+ TranslatedArgs(_TranslatedArgs), Redirects(nullptr),
+ ForDiagnostics(false) {}
+
+Compilation::~Compilation() {
+ delete TranslatedArgs;
+ delete Args;
+
+ // Free any derived arg lists.
+ for (llvm::DenseMap<std::pair<const ToolChain*, const char*>,
+ DerivedArgList*>::iterator it = TCArgs.begin(),
+ ie = TCArgs.end(); it != ie; ++it)
+ if (it->second != TranslatedArgs)
+ delete it->second;
+
+ // Free the actions, if built.
+ for (ActionList::iterator it = Actions.begin(), ie = Actions.end();
+ it != ie; ++it)
+ delete *it;
+
+ // Free redirections of stdout/stderr.
+ if (Redirects) {
+ delete Redirects[1];
+ delete Redirects[2];
+ delete [] Redirects;
+ }
+}
+
+const DerivedArgList &Compilation::getArgsForToolChain(const ToolChain *TC,
+ const char *BoundArch) {
+ if (!TC)
+ TC = &DefaultToolChain;
+
+ DerivedArgList *&Entry = TCArgs[std::make_pair(TC, BoundArch)];
+ if (!Entry) {
+ Entry = TC->TranslateArgs(*TranslatedArgs, BoundArch);
+ if (!Entry)
+ Entry = TranslatedArgs;
+ }
+
+ return *Entry;
+}
+
+bool Compilation::CleanupFile(const char *File, bool IssueErrors) const {
+ // FIXME: Why are we trying to remove files that we have not created? For
+ // example we should only try to remove a temporary assembly file if
+ // "clang -cc1" succeed in writing it. Was this a workaround for when
+ // clang was writing directly to a .s file and sometimes leaving it behind
+ // during a failure?
+
+ // FIXME: If this is necessary, we can still try to split
+ // llvm::sys::fs::remove into a removeFile and a removeDir and avoid the
+ // duplicated stat from is_regular_file.
+
+ // Don't try to remove files which we don't have write access to (but may be
+ // able to remove), or non-regular files. Underlying tools may have
+ // intentionally not overwritten them.
+ if (!llvm::sys::fs::can_write(File) || !llvm::sys::fs::is_regular_file(File))
+ return true;
+
+ if (std::error_code EC = llvm::sys::fs::remove(File)) {
+ // Failure is only failure if the file exists and is "regular". We checked
+ // for it being regular before, and llvm::sys::fs::remove ignores ENOENT,
+ // so we don't need to check again.
+
+ if (IssueErrors)
+ getDriver().Diag(clang::diag::err_drv_unable_to_remove_file)
+ << EC.message();
+ return false;
+ }
+ return true;
+}
+
+bool Compilation::CleanupFileList(const ArgStringList &Files,
+ bool IssueErrors) const {
+ bool Success = true;
+ for (ArgStringList::const_iterator
+ it = Files.begin(), ie = Files.end(); it != ie; ++it)
+ Success &= CleanupFile(*it, IssueErrors);
+ return Success;
+}
+
+bool Compilation::CleanupFileMap(const ArgStringMap &Files,
+ const JobAction *JA,
+ bool IssueErrors) const {
+ bool Success = true;
+ for (ArgStringMap::const_iterator
+ it = Files.begin(), ie = Files.end(); it != ie; ++it) {
+
+ // If specified, only delete the files associated with the JobAction.
+ // Otherwise, delete all files in the map.
+ if (JA && it->first != JA)
+ continue;
+ Success &= CleanupFile(it->second, IssueErrors);
+ }
+ return Success;
+}
+
+int Compilation::ExecuteCommand(const Command &C,
+ const Command *&FailingCommand) const {
+ if ((getDriver().CCPrintOptions ||
+ getArgs().hasArg(options::OPT_v)) && !getDriver().CCGenDiagnostics) {
+ raw_ostream *OS = &llvm::errs();
+
+ // Follow gcc implementation of CC_PRINT_OPTIONS; we could also cache the
+ // output stream.
+ if (getDriver().CCPrintOptions && getDriver().CCPrintOptionsFilename) {
+ std::error_code EC;
+ OS = new llvm::raw_fd_ostream(getDriver().CCPrintOptionsFilename, EC,
+ llvm::sys::fs::F_Append |
+ llvm::sys::fs::F_Text);
+ if (EC) {
+ getDriver().Diag(clang::diag::err_drv_cc_print_options_failure)
+ << EC.message();
+ FailingCommand = &C;
+ delete OS;
+ return 1;
+ }
+ }
+
+ if (getDriver().CCPrintOptions)
+ *OS << "[Logging clang options]";
+
+ C.Print(*OS, "\n", /*Quote=*/getDriver().CCPrintOptions);
+
+ if (OS != &llvm::errs())
+ delete OS;
+ }
+
+ std::string Error;
+ bool ExecutionFailed;
+ int Res = C.Execute(Redirects, &Error, &ExecutionFailed);
+ if (!Error.empty()) {
+ assert(Res && "Error string set with 0 result code!");
+ getDriver().Diag(clang::diag::err_drv_command_failure) << Error;
+ }
+
+ if (Res)
+ FailingCommand = &C;
+
+ return ExecutionFailed ? 1 : Res;
+}
+
+typedef SmallVectorImpl< std::pair<int, const Command *> > FailingCommandList;
+
+static bool ActionFailed(const Action *A,
+ const FailingCommandList &FailingCommands) {
+
+ if (FailingCommands.empty())
+ return false;
+
+ for (FailingCommandList::const_iterator CI = FailingCommands.begin(),
+ CE = FailingCommands.end(); CI != CE; ++CI)
+ if (A == &(CI->second->getSource()))
+ return true;
+
+ for (Action::const_iterator AI = A->begin(), AE = A->end(); AI != AE; ++AI)
+ if (ActionFailed(*AI, FailingCommands))
+ return true;
+
+ return false;
+}
+
+static bool InputsOk(const Command &C,
+ const FailingCommandList &FailingCommands) {
+ return !ActionFailed(&C.getSource(), FailingCommands);
+}
+
+void Compilation::ExecuteJob(const Job &J,
+ FailingCommandList &FailingCommands) const {
+ if (const Command *C = dyn_cast<Command>(&J)) {
+ if (!InputsOk(*C, FailingCommands))
+ return;
+ const Command *FailingCommand = nullptr;
+ if (int Res = ExecuteCommand(*C, FailingCommand))
+ FailingCommands.push_back(std::make_pair(Res, FailingCommand));
+ } else {
+ const JobList *Jobs = cast<JobList>(&J);
+ for (const auto &Job : *Jobs)
+ ExecuteJob(Job, FailingCommands);
+ }
+}
+
+void Compilation::initCompilationForDiagnostics() {
+ ForDiagnostics = true;
+
+ // Free actions and jobs.
+ DeleteContainerPointers(Actions);
+ Jobs.clear();
+
+ // Clear temporary/results file lists.
+ TempFiles.clear();
+ ResultFiles.clear();
+ FailureResultFiles.clear();
+
+ // Remove any user specified output. Claim any unclaimed arguments, so as
+ // to avoid emitting warnings about unused args.
+ OptSpecifier OutputOpts[] = { options::OPT_o, options::OPT_MD,
+ options::OPT_MMD };
+ for (unsigned i = 0, e = llvm::array_lengthof(OutputOpts); i != e; ++i) {
+ if (TranslatedArgs->hasArg(OutputOpts[i]))
+ TranslatedArgs->eraseArg(OutputOpts[i]);
+ }
+ TranslatedArgs->ClaimAllArgs();
+
+ // Redirect stdout/stderr to /dev/null.
+ Redirects = new const StringRef*[3]();
+ Redirects[0] = nullptr;
+ Redirects[1] = new StringRef();
+ Redirects[2] = new StringRef();
+}
+
+StringRef Compilation::getSysRoot() const {
+ return getDriver().SysRoot;
+}
diff --git a/contrib/llvm/tools/clang/lib/Driver/CrossWindowsToolChain.cpp b/contrib/llvm/tools/clang/lib/Driver/CrossWindowsToolChain.cpp
new file mode 100644
index 0000000..82456e7
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Driver/CrossWindowsToolChain.cpp
@@ -0,0 +1,117 @@
+//===--- CrossWindowsToolChain.cpp - Cross Windows Tool Chain -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ToolChains.h"
+#include "clang/Driver/Driver.h"
+#include "clang/Driver/Options.h"
+#include "llvm/Option/ArgList.h"
+
+using namespace clang::driver;
+using namespace clang::driver::toolchains;
+
+CrossWindowsToolChain::CrossWindowsToolChain(const Driver &D,
+ const llvm::Triple &T,
+ const llvm::opt::ArgList &Args)
+ : Generic_GCC(D, T, Args) {
+ if (GetCXXStdlibType(Args) == ToolChain::CST_Libstdcxx) {
+ const std::string &SysRoot = D.SysRoot;
+
+ // libstdc++ resides in /usr/lib, but depends on libgcc which is placed in
+ // /usr/lib/gcc.
+ getFilePaths().push_back(SysRoot + "/usr/lib");
+ getFilePaths().push_back(SysRoot + "/usr/lib/gcc");
+ }
+}
+
+bool CrossWindowsToolChain::IsUnwindTablesDefault() const {
+ // FIXME: all non-x86 targets need unwind tables, however, LLVM currently does
+ // not know how to emit them.
+ return getArch() == llvm::Triple::x86_64;
+}
+
+bool CrossWindowsToolChain::isPICDefault() const {
+ return getArch() == llvm::Triple::x86_64;
+}
+
+bool CrossWindowsToolChain::isPIEDefault() const {
+ return getArch() == llvm::Triple::x86_64;
+}
+
+bool CrossWindowsToolChain::isPICDefaultForced() const {
+ return getArch() == llvm::Triple::x86_64;
+}
+
+void CrossWindowsToolChain::
+AddClangSystemIncludeArgs(const llvm::opt::ArgList &DriverArgs,
+ llvm::opt::ArgStringList &CC1Args) const {
+ const Driver &D = getDriver();
+ const std::string &SysRoot = D.SysRoot;
+
+ if (DriverArgs.hasArg(options::OPT_nostdlibinc))
+ return;
+
+ addSystemInclude(DriverArgs, CC1Args, SysRoot + "/usr/local/include");
+ if (!DriverArgs.hasArg(options::OPT_nobuiltininc)) {
+ SmallString<128> ResourceDir(D.ResourceDir);
+ llvm::sys::path::append(ResourceDir, "include");
+ addSystemInclude(DriverArgs, CC1Args, ResourceDir);
+ }
+ addExternCSystemInclude(DriverArgs, CC1Args, SysRoot + "/usr/include");
+}
+
+void CrossWindowsToolChain::
+AddClangCXXStdlibIncludeArgs(const llvm::opt::ArgList &DriverArgs,
+ llvm::opt::ArgStringList &CC1Args) const {
+ const llvm::Triple &Triple = getTriple();
+ const std::string &SysRoot = getDriver().SysRoot;
+
+ if (DriverArgs.hasArg(options::OPT_nostdlibinc) ||
+ DriverArgs.hasArg(options::OPT_nostdincxx))
+ return;
+
+ switch (GetCXXStdlibType(DriverArgs)) {
+ case ToolChain::CST_Libcxx:
+ addSystemInclude(DriverArgs, CC1Args, SysRoot + "/usr/include/c++/v1");
+ break;
+
+ case ToolChain::CST_Libstdcxx:
+ addSystemInclude(DriverArgs, CC1Args, SysRoot + "/usr/include/c++");
+ addSystemInclude(DriverArgs, CC1Args,
+ SysRoot + "/usr/include/c++/" + Triple.str());
+ addSystemInclude(DriverArgs, CC1Args,
+ SysRoot + "/usr/include/c++/backwards");
+ }
+}
+
+void CrossWindowsToolChain::
+AddCXXStdlibLibArgs(const llvm::opt::ArgList &DriverArgs,
+ llvm::opt::ArgStringList &CC1Args) const {
+ switch (GetCXXStdlibType(DriverArgs)) {
+ case ToolChain::CST_Libcxx:
+ CC1Args.push_back("-lc++");
+ break;
+ case ToolChain::CST_Libstdcxx:
+ CC1Args.push_back("-lstdc++");
+ CC1Args.push_back("-lmingw32");
+ CC1Args.push_back("-lmingwex");
+ CC1Args.push_back("-lgcc");
+ CC1Args.push_back("-lmoldname");
+ CC1Args.push_back("-lmingw32");
+ break;
+ }
+}
+
+Tool *CrossWindowsToolChain::buildLinker() const {
+ return new tools::CrossWindows::Link(*this);
+}
+
+Tool *CrossWindowsToolChain::buildAssembler() const {
+ return new tools::CrossWindows::Assemble(*this);
+}
+
diff --git a/contrib/llvm/tools/clang/lib/Driver/Driver.cpp b/contrib/llvm/tools/clang/lib/Driver/Driver.cpp
new file mode 100644
index 0000000..65d0049
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Driver/Driver.cpp
@@ -0,0 +1,2190 @@
+//===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Driver/Driver.h"
+#include "InputInfo.h"
+#include "ToolChains.h"
+#include "clang/Basic/Version.h"
+#include "clang/Config/config.h"
+#include "clang/Driver/Action.h"
+#include "clang/Driver/Compilation.h"
+#include "clang/Driver/DriverDiagnostic.h"
+#include "clang/Driver/Job.h"
+#include "clang/Driver/Options.h"
+#include "clang/Driver/SanitizerArgs.h"
+#include "clang/Driver/Tool.h"
+#include "clang/Driver/ToolChain.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringSet.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/Option/Arg.h"
+#include "llvm/Option/ArgList.h"
+#include "llvm/Option/OptSpecifier.h"
+#include "llvm/Option/OptTable.h"
+#include "llvm/Option/Option.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/PrettyStackTrace.h"
+#include "llvm/Support/Process.h"
+#include "llvm/Support/Program.h"
+#include "llvm/Support/raw_ostream.h"
+#include <map>
+#include <memory>
+
+using namespace clang::driver;
+using namespace clang;
+using namespace llvm::opt;
+
+Driver::Driver(StringRef ClangExecutable, StringRef DefaultTargetTriple,
+ DiagnosticsEngine &Diags)
+ : Opts(createDriverOptTable()), Diags(Diags), Mode(GCCMode),
+ SaveTemps(SaveTempsNone), ClangExecutable(ClangExecutable),
+ SysRoot(DEFAULT_SYSROOT), UseStdLib(true),
+ DefaultTargetTriple(DefaultTargetTriple),
+ DriverTitle("clang LLVM compiler"), CCPrintOptionsFilename(nullptr),
+ CCPrintHeadersFilename(nullptr), CCLogDiagnosticsFilename(nullptr),
+ CCCPrintBindings(false), CCPrintHeaders(false), CCLogDiagnostics(false),
+ CCGenDiagnostics(false), CCCGenericGCCName(""), CheckInputsExist(true),
+ CCCUsePCH(true), SuppressMissingInputWarning(false) {
+
+ Name = llvm::sys::path::filename(ClangExecutable);
+ Dir = llvm::sys::path::parent_path(ClangExecutable);
+
+ // Compute the path to the resource directory.
+ StringRef ClangResourceDir(CLANG_RESOURCE_DIR);
+ SmallString<128> P(Dir);
+ if (ClangResourceDir != "") {
+ llvm::sys::path::append(P, ClangResourceDir);
+ } else {
+ StringRef ClangLibdirSuffix(CLANG_LIBDIR_SUFFIX);
+ llvm::sys::path::append(P, "..", Twine("lib") + ClangLibdirSuffix, "clang",
+ CLANG_VERSION_STRING);
+ }
+ ResourceDir = P.str();
+}
+
+Driver::~Driver() {
+ delete Opts;
+
+ llvm::DeleteContainerSeconds(ToolChains);
+}
+
+void Driver::ParseDriverMode(ArrayRef<const char *> Args) {
+ const std::string OptName =
+ getOpts().getOption(options::OPT_driver_mode).getPrefixedName();
+
+ for (size_t I = 0, E = Args.size(); I != E; ++I) {
+ // Ingore nullptrs, they are response file's EOL markers
+ if (Args[I] == nullptr)
+ continue;
+ const StringRef Arg = Args[I];
+ if (!Arg.startswith(OptName))
+ continue;
+
+ const StringRef Value = Arg.drop_front(OptName.size());
+ const unsigned M = llvm::StringSwitch<unsigned>(Value)
+ .Case("gcc", GCCMode)
+ .Case("g++", GXXMode)
+ .Case("cpp", CPPMode)
+ .Case("cl", CLMode)
+ .Default(~0U);
+
+ if (M != ~0U)
+ Mode = static_cast<DriverMode>(M);
+ else
+ Diag(diag::err_drv_unsupported_option_argument) << OptName << Value;
+ }
+}
+
+InputArgList *Driver::ParseArgStrings(ArrayRef<const char *> ArgStrings) {
+ llvm::PrettyStackTraceString CrashInfo("Command line argument parsing");
+
+ unsigned IncludedFlagsBitmask;
+ unsigned ExcludedFlagsBitmask;
+ std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
+ getIncludeExcludeOptionFlagMasks();
+
+ unsigned MissingArgIndex, MissingArgCount;
+ InputArgList *Args = getOpts().ParseArgs(ArgStrings.begin(), ArgStrings.end(),
+ MissingArgIndex, MissingArgCount,
+ IncludedFlagsBitmask,
+ ExcludedFlagsBitmask);
+
+ // Check for missing argument error.
+ if (MissingArgCount)
+ Diag(clang::diag::err_drv_missing_argument)
+ << Args->getArgString(MissingArgIndex) << MissingArgCount;
+
+ // Check for unsupported options.
+ for (const Arg *A : *Args) {
+ if (A->getOption().hasFlag(options::Unsupported)) {
+ Diag(clang::diag::err_drv_unsupported_opt) << A->getAsString(*Args);
+ continue;
+ }
+
+ // Warn about -mcpu= without an argument.
+ if (A->getOption().matches(options::OPT_mcpu_EQ) &&
+ A->containsValue("")) {
+ Diag(clang::diag::warn_drv_empty_joined_argument) <<
+ A->getAsString(*Args);
+ }
+ }
+
+ for (arg_iterator it = Args->filtered_begin(options::OPT_UNKNOWN),
+ ie = Args->filtered_end(); it != ie; ++it) {
+ Diags.Report(diag::err_drv_unknown_argument) << (*it) ->getAsString(*Args);
+ }
+
+ return Args;
+}
+
+// Determine which compilation mode we are in. We look for options which
+// affect the phase, starting with the earliest phases, and record which
+// option we used to determine the final phase.
+phases::ID Driver::getFinalPhase(const DerivedArgList &DAL, Arg **FinalPhaseArg)
+const {
+ Arg *PhaseArg = nullptr;
+ phases::ID FinalPhase;
+
+ // -{E,EP,P,M,MM} only run the preprocessor.
+ if (CCCIsCPP() ||
+ (PhaseArg = DAL.getLastArg(options::OPT_E)) ||
+ (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) ||
+ (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) ||
+ (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P))) {
+ FinalPhase = phases::Preprocess;
+
+ // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler.
+ } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) ||
+ (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) ||
+ (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) ||
+ (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) ||
+ (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) ||
+ (PhaseArg = DAL.getLastArg(options::OPT__migrate)) ||
+ (PhaseArg = DAL.getLastArg(options::OPT__analyze,
+ options::OPT__analyze_auto)) ||
+ (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) {
+ FinalPhase = phases::Compile;
+
+ // -S only runs up to the backend.
+ } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) {
+ FinalPhase = phases::Backend;
+
+ // -c only runs up to the assembler.
+ } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) {
+ FinalPhase = phases::Assemble;
+
+ // Otherwise do everything.
+ } else
+ FinalPhase = phases::Link;
+
+ if (FinalPhaseArg)
+ *FinalPhaseArg = PhaseArg;
+
+ return FinalPhase;
+}
+
+static Arg* MakeInputArg(DerivedArgList &Args, OptTable *Opts,
+ StringRef Value) {
+ Arg *A = new Arg(Opts->getOption(options::OPT_INPUT), Value,
+ Args.getBaseArgs().MakeIndex(Value), Value.data());
+ Args.AddSynthesizedArg(A);
+ A->claim();
+ return A;
+}
+
+DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const {
+ DerivedArgList *DAL = new DerivedArgList(Args);
+
+ bool HasNostdlib = Args.hasArg(options::OPT_nostdlib);
+ for (Arg *A : Args) {
+ // Unfortunately, we have to parse some forwarding options (-Xassembler,
+ // -Xlinker, -Xpreprocessor) because we either integrate their functionality
+ // (assembler and preprocessor), or bypass a previous driver ('collect2').
+
+ // Rewrite linker options, to replace --no-demangle with a custom internal
+ // option.
+ if ((A->getOption().matches(options::OPT_Wl_COMMA) ||
+ A->getOption().matches(options::OPT_Xlinker)) &&
+ A->containsValue("--no-demangle")) {
+ // Add the rewritten no-demangle argument.
+ DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_Xlinker__no_demangle));
+
+ // Add the remaining values as Xlinker arguments.
+ for (unsigned i = 0, e = A->getNumValues(); i != e; ++i)
+ if (StringRef(A->getValue(i)) != "--no-demangle")
+ DAL->AddSeparateArg(A, Opts->getOption(options::OPT_Xlinker),
+ A->getValue(i));
+
+ continue;
+ }
+
+ // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by
+ // some build systems. We don't try to be complete here because we don't
+ // care to encourage this usage model.
+ if (A->getOption().matches(options::OPT_Wp_COMMA) &&
+ (A->getValue(0) == StringRef("-MD") ||
+ A->getValue(0) == StringRef("-MMD"))) {
+ // Rewrite to -MD/-MMD along with -MF.
+ if (A->getValue(0) == StringRef("-MD"))
+ DAL->AddFlagArg(A, Opts->getOption(options::OPT_MD));
+ else
+ DAL->AddFlagArg(A, Opts->getOption(options::OPT_MMD));
+ if (A->getNumValues() == 2)
+ DAL->AddSeparateArg(A, Opts->getOption(options::OPT_MF),
+ A->getValue(1));
+ continue;
+ }
+
+ // Rewrite reserved library names.
+ if (A->getOption().matches(options::OPT_l)) {
+ StringRef Value = A->getValue();
+
+ // Rewrite unless -nostdlib is present.
+ if (!HasNostdlib && Value == "stdc++") {
+ DAL->AddFlagArg(A, Opts->getOption(
+ options::OPT_Z_reserved_lib_stdcxx));
+ continue;
+ }
+
+ // Rewrite unconditionally.
+ if (Value == "cc_kext") {
+ DAL->AddFlagArg(A, Opts->getOption(
+ options::OPT_Z_reserved_lib_cckext));
+ continue;
+ }
+ }
+
+ // Pick up inputs via the -- option.
+ if (A->getOption().matches(options::OPT__DASH_DASH)) {
+ A->claim();
+ for (unsigned i = 0, e = A->getNumValues(); i != e; ++i)
+ DAL->append(MakeInputArg(*DAL, Opts, A->getValue(i)));
+ continue;
+ }
+
+ DAL->append(A);
+ }
+
+ // Add a default value of -mlinker-version=, if one was given and the user
+ // didn't specify one.
+#if defined(HOST_LINK_VERSION)
+ if (!Args.hasArg(options::OPT_mlinker_version_EQ)) {
+ DAL->AddJoinedArg(0, Opts->getOption(options::OPT_mlinker_version_EQ),
+ HOST_LINK_VERSION);
+ DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim();
+ }
+#endif
+
+ return DAL;
+}
+
+Compilation *Driver::BuildCompilation(ArrayRef<const char *> ArgList) {
+ llvm::PrettyStackTraceString CrashInfo("Compilation construction");
+
+ // FIXME: Handle environment options which affect driver behavior, somewhere
+ // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS.
+
+ if (char *env = ::getenv("COMPILER_PATH")) {
+ StringRef CompilerPath = env;
+ while (!CompilerPath.empty()) {
+ std::pair<StringRef, StringRef> Split
+ = CompilerPath.split(llvm::sys::EnvPathSeparator);
+ PrefixDirs.push_back(Split.first);
+ CompilerPath = Split.second;
+ }
+ }
+
+ // We look for the driver mode option early, because the mode can affect
+ // how other options are parsed.
+ ParseDriverMode(ArgList.slice(1));
+
+ // FIXME: What are we going to do with -V and -b?
+
+ // FIXME: This stuff needs to go into the Compilation, not the driver.
+ bool CCCPrintActions;
+
+ InputArgList *Args = ParseArgStrings(ArgList.slice(1));
+
+ // -no-canonical-prefixes is used very early in main.
+ Args->ClaimAllArgs(options::OPT_no_canonical_prefixes);
+
+ // Ignore -pipe.
+ Args->ClaimAllArgs(options::OPT_pipe);
+
+ // Extract -ccc args.
+ //
+ // FIXME: We need to figure out where this behavior should live. Most of it
+ // should be outside in the client; the parts that aren't should have proper
+ // options, either by introducing new ones or by overloading gcc ones like -V
+ // or -b.
+ CCCPrintActions = Args->hasArg(options::OPT_ccc_print_phases);
+ CCCPrintBindings = Args->hasArg(options::OPT_ccc_print_bindings);
+ if (const Arg *A = Args->getLastArg(options::OPT_ccc_gcc_name))
+ CCCGenericGCCName = A->getValue();
+ CCCUsePCH = Args->hasFlag(options::OPT_ccc_pch_is_pch,
+ options::OPT_ccc_pch_is_pth);
+ // FIXME: DefaultTargetTriple is used by the target-prefixed calls to as/ld
+ // and getToolChain is const.
+ if (IsCLMode()) {
+ // clang-cl targets MSVC-style Win32.
+ llvm::Triple T(DefaultTargetTriple);
+ T.setOS(llvm::Triple::Win32);
+ T.setEnvironment(llvm::Triple::MSVC);
+ DefaultTargetTriple = T.str();
+ }
+ if (const Arg *A = Args->getLastArg(options::OPT_target))
+ DefaultTargetTriple = A->getValue();
+ if (const Arg *A = Args->getLastArg(options::OPT_ccc_install_dir))
+ Dir = InstalledDir = A->getValue();
+ for (arg_iterator it = Args->filtered_begin(options::OPT_B),
+ ie = Args->filtered_end(); it != ie; ++it) {
+ const Arg *A = *it;
+ A->claim();
+ PrefixDirs.push_back(A->getValue(0));
+ }
+ if (const Arg *A = Args->getLastArg(options::OPT__sysroot_EQ))
+ SysRoot = A->getValue();
+ if (const Arg *A = Args->getLastArg(options::OPT__dyld_prefix_EQ))
+ DyldPrefix = A->getValue();
+ if (Args->hasArg(options::OPT_nostdlib))
+ UseStdLib = false;
+
+ if (const Arg *A = Args->getLastArg(options::OPT_resource_dir))
+ ResourceDir = A->getValue();
+
+ if (const Arg *A = Args->getLastArg(options::OPT_save_temps_EQ)) {
+ SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue())
+ .Case("cwd", SaveTempsCwd)
+ .Case("obj", SaveTempsObj)
+ .Default(SaveTempsCwd);
+ }
+
+ // Perform the default argument translations.
+ DerivedArgList *TranslatedArgs = TranslateInputArgs(*Args);
+
+ // Owned by the host.
+ const ToolChain &TC = getToolChain(*Args);
+
+ // The compilation takes ownership of Args.
+ Compilation *C = new Compilation(*this, TC, Args, TranslatedArgs);
+
+ if (!HandleImmediateArgs(*C))
+ return C;
+
+ // Construct the list of inputs.
+ InputList Inputs;
+ BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs);
+
+ // Construct the list of abstract actions to perform for this compilation. On
+ // MachO targets this uses the driver-driver and universal actions.
+ if (TC.getTriple().isOSBinFormatMachO())
+ BuildUniversalActions(C->getDefaultToolChain(), C->getArgs(),
+ Inputs, C->getActions());
+ else
+ BuildActions(C->getDefaultToolChain(), C->getArgs(), Inputs,
+ C->getActions());
+
+ if (CCCPrintActions) {
+ PrintActions(*C);
+ return C;
+ }
+
+ BuildJobs(*C);
+
+ return C;
+}
+
+// When clang crashes, produce diagnostic information including the fully
+// preprocessed source file(s). Request that the developer attach the
+// diagnostic information to a bug report.
+void Driver::generateCompilationDiagnostics(Compilation &C,
+ const Command &FailingCommand) {
+ if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics))
+ return;
+
+ // Don't try to generate diagnostics for link or dsymutil jobs.
+ if (FailingCommand.getCreator().isLinkJob() ||
+ FailingCommand.getCreator().isDsymutilJob())
+ return;
+
+ // Print the version of the compiler.
+ PrintVersion(C, llvm::errs());
+
+ Diag(clang::diag::note_drv_command_failed_diag_msg)
+ << "PLEASE submit a bug report to " BUG_REPORT_URL " and include the "
+ "crash backtrace, preprocessed source, and associated run script.";
+
+ // Suppress driver output and emit preprocessor output to temp file.
+ Mode = CPPMode;
+ CCGenDiagnostics = true;
+
+ // Save the original job command(s).
+ Command Cmd = FailingCommand;
+
+ // Keep track of whether we produce any errors while trying to produce
+ // preprocessed sources.
+ DiagnosticErrorTrap Trap(Diags);
+
+ // Suppress tool output.
+ C.initCompilationForDiagnostics();
+
+ // Construct the list of inputs.
+ InputList Inputs;
+ BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs);
+
+ for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) {
+ bool IgnoreInput = false;
+
+ // Ignore input from stdin or any inputs that cannot be preprocessed.
+ // Check type first as not all linker inputs have a value.
+ if (types::getPreprocessedType(it->first) == types::TY_INVALID) {
+ IgnoreInput = true;
+ } else if (!strcmp(it->second->getValue(), "-")) {
+ Diag(clang::diag::note_drv_command_failed_diag_msg)
+ << "Error generating preprocessed source(s) - ignoring input from stdin"
+ ".";
+ IgnoreInput = true;
+ }
+
+ if (IgnoreInput) {
+ it = Inputs.erase(it);
+ ie = Inputs.end();
+ } else {
+ ++it;
+ }
+ }
+
+ if (Inputs.empty()) {
+ Diag(clang::diag::note_drv_command_failed_diag_msg)
+ << "Error generating preprocessed source(s) - no preprocessable inputs.";
+ return;
+ }
+
+ // Don't attempt to generate preprocessed files if multiple -arch options are
+ // used, unless they're all duplicates.
+ llvm::StringSet<> ArchNames;
+ for (const Arg *A : C.getArgs()) {
+ if (A->getOption().matches(options::OPT_arch)) {
+ StringRef ArchName = A->getValue();
+ ArchNames.insert(ArchName);
+ }
+ }
+ if (ArchNames.size() > 1) {
+ Diag(clang::diag::note_drv_command_failed_diag_msg)
+ << "Error generating preprocessed source(s) - cannot generate "
+ "preprocessed source with multiple -arch options.";
+ return;
+ }
+
+ // Construct the list of abstract actions to perform for this compilation. On
+ // Darwin OSes this uses the driver-driver and builds universal actions.
+ const ToolChain &TC = C.getDefaultToolChain();
+ if (TC.getTriple().isOSBinFormatMachO())
+ BuildUniversalActions(TC, C.getArgs(), Inputs, C.getActions());
+ else
+ BuildActions(TC, C.getArgs(), Inputs, C.getActions());
+
+ BuildJobs(C);
+
+ // If there were errors building the compilation, quit now.
+ if (Trap.hasErrorOccurred()) {
+ Diag(clang::diag::note_drv_command_failed_diag_msg)
+ << "Error generating preprocessed source(s).";
+ return;
+ }
+
+ // Generate preprocessed output.
+ SmallVector<std::pair<int, const Command *>, 4> FailingCommands;
+ C.ExecuteJob(C.getJobs(), FailingCommands);
+
+ // If any of the preprocessing commands failed, clean up and exit.
+ if (!FailingCommands.empty()) {
+ if (!isSaveTempsEnabled())
+ C.CleanupFileList(C.getTempFiles(), true);
+
+ Diag(clang::diag::note_drv_command_failed_diag_msg)
+ << "Error generating preprocessed source(s).";
+ return;
+ }
+
+ const ArgStringList &TempFiles = C.getTempFiles();
+ if (TempFiles.empty()) {
+ Diag(clang::diag::note_drv_command_failed_diag_msg)
+ << "Error generating preprocessed source(s).";
+ return;
+ }
+
+ Diag(clang::diag::note_drv_command_failed_diag_msg)
+ << "\n********************\n\n"
+ "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n"
+ "Preprocessed source(s) and associated run script(s) are located at:";
+
+ SmallString<128> VFS;
+ for (const char *TempFile : TempFiles) {
+ Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile;
+ if (StringRef(TempFile).endswith(".cache")) {
+ // In some cases (modules) we'll dump extra data to help with reproducing
+ // the crash into a directory next to the output.
+ VFS = llvm::sys::path::filename(TempFile);
+ llvm::sys::path::append(VFS, "vfs", "vfs.yaml");
+ }
+ }
+
+ // Assume associated files are based off of the first temporary file.
+ CrashReportInfo CrashInfo(TempFiles[0], VFS);
+
+ std::string Script = CrashInfo.Filename.rsplit('.').first.str() + ".sh";
+ std::error_code EC;
+ llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::F_Excl);
+ if (EC) {
+ Diag(clang::diag::note_drv_command_failed_diag_msg)
+ << "Error generating run script: " + Script + " " + EC.message();
+ } else {
+ ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n"
+ << "# Original command: ";
+ Cmd.Print(ScriptOS, "\n", /*Quote=*/true);
+ Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo);
+ Diag(clang::diag::note_drv_command_failed_diag_msg) << Script;
+ }
+
+ for (const auto &A : C.getArgs().filtered(options::OPT_frewrite_map_file,
+ options::OPT_frewrite_map_file_EQ))
+ Diag(clang::diag::note_drv_command_failed_diag_msg) << A->getValue();
+
+ Diag(clang::diag::note_drv_command_failed_diag_msg)
+ << "\n\n********************";
+}
+
+void Driver::setUpResponseFiles(Compilation &C, Job &J) {
+ if (JobList *Jobs = dyn_cast<JobList>(&J)) {
+ for (auto &Job : *Jobs)
+ setUpResponseFiles(C, Job);
+ return;
+ }
+
+ Command *CurCommand = dyn_cast<Command>(&J);
+ if (!CurCommand)
+ return;
+
+ // Since argumentsFitWithinSystemLimits() may underestimate system's capacity
+ // if the tool does not support response files, there is a chance/ that things
+ // will just work without a response file, so we silently just skip it.
+ if (CurCommand->getCreator().getResponseFilesSupport() == Tool::RF_None ||
+ llvm::sys::argumentsFitWithinSystemLimits(CurCommand->getArguments()))
+ return;
+
+ std::string TmpName = GetTemporaryPath("response", "txt");
+ CurCommand->setResponseFile(C.addTempFile(C.getArgs().MakeArgString(
+ TmpName.c_str())));
+}
+
+int Driver::ExecuteCompilation(Compilation &C,
+ SmallVectorImpl< std::pair<int, const Command *> > &FailingCommands) {
+ // Just print if -### was present.
+ if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
+ C.getJobs().Print(llvm::errs(), "\n", true);
+ return 0;
+ }
+
+ // If there were errors building the compilation, quit now.
+ if (Diags.hasErrorOccurred())
+ return 1;
+
+ // Set up response file names for each command, if necessary
+ setUpResponseFiles(C, C.getJobs());
+
+ C.ExecuteJob(C.getJobs(), FailingCommands);
+
+ // Remove temp files.
+ C.CleanupFileList(C.getTempFiles());
+
+ // If the command succeeded, we are done.
+ if (FailingCommands.empty())
+ return 0;
+
+ // Otherwise, remove result files and print extra information about abnormal
+ // failures.
+ for (SmallVectorImpl< std::pair<int, const Command *> >::iterator it =
+ FailingCommands.begin(), ie = FailingCommands.end(); it != ie; ++it) {
+ int Res = it->first;
+ const Command *FailingCommand = it->second;
+
+ // Remove result files if we're not saving temps.
+ if (!isSaveTempsEnabled()) {
+ const JobAction *JA = cast<JobAction>(&FailingCommand->getSource());
+ C.CleanupFileMap(C.getResultFiles(), JA, true);
+
+ // Failure result files are valid unless we crashed.
+ if (Res < 0)
+ C.CleanupFileMap(C.getFailureResultFiles(), JA, true);
+ }
+
+ // Print extra information about abnormal failures, if possible.
+ //
+ // This is ad-hoc, but we don't want to be excessively noisy. If the result
+ // status was 1, assume the command failed normally. In particular, if it
+ // was the compiler then assume it gave a reasonable error code. Failures
+ // in other tools are less common, and they generally have worse
+ // diagnostics, so always print the diagnostic there.
+ const Tool &FailingTool = FailingCommand->getCreator();
+
+ if (!FailingCommand->getCreator().hasGoodDiagnostics() || Res != 1) {
+ // FIXME: See FIXME above regarding result code interpretation.
+ if (Res < 0)
+ Diag(clang::diag::err_drv_command_signalled)
+ << FailingTool.getShortName();
+ else
+ Diag(clang::diag::err_drv_command_failed)
+ << FailingTool.getShortName() << Res;
+ }
+ }
+ return 0;
+}
+
+void Driver::PrintHelp(bool ShowHidden) const {
+ unsigned IncludedFlagsBitmask;
+ unsigned ExcludedFlagsBitmask;
+ std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
+ getIncludeExcludeOptionFlagMasks();
+
+ ExcludedFlagsBitmask |= options::NoDriverOption;
+ if (!ShowHidden)
+ ExcludedFlagsBitmask |= HelpHidden;
+
+ getOpts().PrintHelp(llvm::outs(), Name.c_str(), DriverTitle.c_str(),
+ IncludedFlagsBitmask, ExcludedFlagsBitmask);
+}
+
+void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const {
+ // FIXME: The following handlers should use a callback mechanism, we don't
+ // know what the client would like to do.
+ OS << getClangFullVersion() << '\n';
+ const ToolChain &TC = C.getDefaultToolChain();
+ OS << "Target: " << TC.getTripleString() << '\n';
+
+ // Print the threading model.
+ if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) {
+ // Don't print if the ToolChain would have barfed on it already
+ if (TC.isThreadModelSupported(A->getValue()))
+ OS << "Thread model: " << A->getValue();
+ } else
+ OS << "Thread model: " << TC.getThreadModel();
+ OS << '\n';
+}
+
+/// PrintDiagnosticCategories - Implement the --print-diagnostic-categories
+/// option.
+static void PrintDiagnosticCategories(raw_ostream &OS) {
+ // Skip the empty category.
+ for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories();
+ i != max; ++i)
+ OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n';
+}
+
+bool Driver::HandleImmediateArgs(const Compilation &C) {
+ // The order these options are handled in gcc is all over the place, but we
+ // don't expect inconsistencies w.r.t. that to matter in practice.
+
+ if (C.getArgs().hasArg(options::OPT_dumpmachine)) {
+ llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n';
+ return false;
+ }
+
+ if (C.getArgs().hasArg(options::OPT_dumpversion)) {
+ // Since -dumpversion is only implemented for pedantic GCC compatibility, we
+ // return an answer which matches our definition of __VERSION__.
+ //
+ // If we want to return a more correct answer some day, then we should
+ // introduce a non-pedantically GCC compatible mode to Clang in which we
+ // provide sensible definitions for -dumpversion, __VERSION__, etc.
+ llvm::outs() << "4.2.1\n";
+ return false;
+ }
+
+ if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) {
+ PrintDiagnosticCategories(llvm::outs());
+ return false;
+ }
+
+ if (C.getArgs().hasArg(options::OPT_help) ||
+ C.getArgs().hasArg(options::OPT__help_hidden)) {
+ PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden));
+ return false;
+ }
+
+ if (C.getArgs().hasArg(options::OPT__version)) {
+ // Follow gcc behavior and use stdout for --version and stderr for -v.
+ PrintVersion(C, llvm::outs());
+ return false;
+ }
+
+ if (C.getArgs().hasArg(options::OPT_v) ||
+ C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
+ PrintVersion(C, llvm::errs());
+ SuppressMissingInputWarning = true;
+ }
+
+ const ToolChain &TC = C.getDefaultToolChain();
+
+ if (C.getArgs().hasArg(options::OPT_v))
+ TC.printVerboseInfo(llvm::errs());
+
+ if (C.getArgs().hasArg(options::OPT_print_search_dirs)) {
+ llvm::outs() << "programs: =";
+ for (ToolChain::path_list::const_iterator it = TC.getProgramPaths().begin(),
+ ie = TC.getProgramPaths().end(); it != ie; ++it) {
+ if (it != TC.getProgramPaths().begin())
+ llvm::outs() << ':';
+ llvm::outs() << *it;
+ }
+ llvm::outs() << "\n";
+ llvm::outs() << "libraries: =" << ResourceDir;
+
+ StringRef sysroot = C.getSysRoot();
+
+ for (ToolChain::path_list::const_iterator it = TC.getFilePaths().begin(),
+ ie = TC.getFilePaths().end(); it != ie; ++it) {
+ llvm::outs() << ':';
+ const char *path = it->c_str();
+ if (path[0] == '=')
+ llvm::outs() << sysroot << path + 1;
+ else
+ llvm::outs() << path;
+ }
+ llvm::outs() << "\n";
+ return false;
+ }
+
+ // FIXME: The following handlers should use a callback mechanism, we don't
+ // know what the client would like to do.
+ if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) {
+ llvm::outs() << GetFilePath(A->getValue(), TC) << "\n";
+ return false;
+ }
+
+ if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) {
+ llvm::outs() << GetProgramPath(A->getValue(), TC) << "\n";
+ return false;
+ }
+
+ if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) {
+ llvm::outs() << GetFilePath("libgcc.a", TC) << "\n";
+ return false;
+ }
+
+ if (C.getArgs().hasArg(options::OPT_print_multi_lib)) {
+ const MultilibSet &Multilibs = TC.getMultilibs();
+
+ for (MultilibSet::const_iterator I = Multilibs.begin(), E = Multilibs.end();
+ I != E; ++I) {
+ llvm::outs() << *I << "\n";
+ }
+ return false;
+ }
+
+ if (C.getArgs().hasArg(options::OPT_print_multi_directory)) {
+ const MultilibSet &Multilibs = TC.getMultilibs();
+ for (MultilibSet::const_iterator I = Multilibs.begin(), E = Multilibs.end();
+ I != E; ++I) {
+ if (I->gccSuffix().empty())
+ llvm::outs() << ".\n";
+ else {
+ StringRef Suffix(I->gccSuffix());
+ assert(Suffix.front() == '/');
+ llvm::outs() << Suffix.substr(1) << "\n";
+ }
+ }
+ return false;
+ }
+
+ if (C.getArgs().hasArg(options::OPT_print_multi_os_directory)) {
+ // FIXME: This should print out "lib/../lib", "lib/../lib64", or
+ // "lib/../lib32" as appropriate for the toolchain. For now, print
+ // nothing because it's not supported yet.
+ return false;
+ }
+
+ return true;
+}
+
+static unsigned PrintActions1(const Compilation &C, Action *A,
+ std::map<Action*, unsigned> &Ids) {
+ if (Ids.count(A))
+ return Ids[A];
+
+ std::string str;
+ llvm::raw_string_ostream os(str);
+
+ os << Action::getClassName(A->getKind()) << ", ";
+ if (InputAction *IA = dyn_cast<InputAction>(A)) {
+ os << "\"" << IA->getInputArg().getValue() << "\"";
+ } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) {
+ os << '"' << BIA->getArchName() << '"'
+ << ", {" << PrintActions1(C, *BIA->begin(), Ids) << "}";
+ } else {
+ os << "{";
+ for (Action::iterator it = A->begin(), ie = A->end(); it != ie;) {
+ os << PrintActions1(C, *it, Ids);
+ ++it;
+ if (it != ie)
+ os << ", ";
+ }
+ os << "}";
+ }
+
+ unsigned Id = Ids.size();
+ Ids[A] = Id;
+ llvm::errs() << Id << ": " << os.str() << ", "
+ << types::getTypeName(A->getType()) << "\n";
+
+ return Id;
+}
+
+void Driver::PrintActions(const Compilation &C) const {
+ std::map<Action*, unsigned> Ids;
+ for (ActionList::const_iterator it = C.getActions().begin(),
+ ie = C.getActions().end(); it != ie; ++it)
+ PrintActions1(C, *it, Ids);
+}
+
+/// \brief Check whether the given input tree contains any compilation or
+/// assembly actions.
+static bool ContainsCompileOrAssembleAction(const Action *A) {
+ if (isa<CompileJobAction>(A) ||
+ isa<BackendJobAction>(A) ||
+ isa<AssembleJobAction>(A))
+ return true;
+
+ for (Action::const_iterator it = A->begin(), ie = A->end(); it != ie; ++it)
+ if (ContainsCompileOrAssembleAction(*it))
+ return true;
+
+ return false;
+}
+
+void Driver::BuildUniversalActions(const ToolChain &TC,
+ DerivedArgList &Args,
+ const InputList &BAInputs,
+ ActionList &Actions) const {
+ llvm::PrettyStackTraceString CrashInfo("Building universal build actions");
+ // Collect the list of architectures. Duplicates are allowed, but should only
+ // be handled once (in the order seen).
+ llvm::StringSet<> ArchNames;
+ SmallVector<const char *, 4> Archs;
+ for (Arg *A : Args) {
+ if (A->getOption().matches(options::OPT_arch)) {
+ // Validate the option here; we don't save the type here because its
+ // particular spelling may participate in other driver choices.
+ llvm::Triple::ArchType Arch =
+ tools::darwin::getArchTypeForMachOArchName(A->getValue());
+ if (Arch == llvm::Triple::UnknownArch) {
+ Diag(clang::diag::err_drv_invalid_arch_name)
+ << A->getAsString(Args);
+ continue;
+ }
+
+ A->claim();
+ if (ArchNames.insert(A->getValue()).second)
+ Archs.push_back(A->getValue());
+ }
+ }
+
+ // When there is no explicit arch for this platform, make sure we still bind
+ // the architecture (to the default) so that -Xarch_ is handled correctly.
+ if (!Archs.size())
+ Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName()));
+
+ ActionList SingleActions;
+ BuildActions(TC, Args, BAInputs, SingleActions);
+
+ // Add in arch bindings for every top level action, as well as lipo and
+ // dsymutil steps if needed.
+ for (unsigned i = 0, e = SingleActions.size(); i != e; ++i) {
+ Action *Act = SingleActions[i];
+
+ // Make sure we can lipo this kind of output. If not (and it is an actual
+ // output) then we disallow, since we can't create an output file with the
+ // right name without overwriting it. We could remove this oddity by just
+ // changing the output names to include the arch, which would also fix
+ // -save-temps. Compatibility wins for now.
+
+ if (Archs.size() > 1 && !types::canLipoType(Act->getType()))
+ Diag(clang::diag::err_drv_invalid_output_with_multiple_archs)
+ << types::getTypeName(Act->getType());
+
+ ActionList Inputs;
+ for (unsigned i = 0, e = Archs.size(); i != e; ++i) {
+ Inputs.push_back(
+ new BindArchAction(std::unique_ptr<Action>(Act), Archs[i]));
+ if (i != 0)
+ Inputs.back()->setOwnsInputs(false);
+ }
+
+ // Lipo if necessary, we do it this way because we need to set the arch flag
+ // so that -Xarch_ gets overwritten.
+ if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing)
+ Actions.append(Inputs.begin(), Inputs.end());
+ else
+ Actions.push_back(new LipoJobAction(Inputs, Act->getType()));
+
+ // Handle debug info queries.
+ Arg *A = Args.getLastArg(options::OPT_g_Group);
+ if (A && !A->getOption().matches(options::OPT_g0) &&
+ !A->getOption().matches(options::OPT_gstabs) &&
+ ContainsCompileOrAssembleAction(Actions.back())) {
+
+ // Add a 'dsymutil' step if necessary, when debug info is enabled and we
+ // have a compile input. We need to run 'dsymutil' ourselves in such cases
+ // because the debug info will refer to a temporary object file which
+ // will be removed at the end of the compilation process.
+ if (Act->getType() == types::TY_Image) {
+ ActionList Inputs;
+ Inputs.push_back(Actions.back());
+ Actions.pop_back();
+ Actions.push_back(new DsymutilJobAction(Inputs, types::TY_dSYM));
+ }
+
+ // Verify the debug info output.
+ if (Args.hasArg(options::OPT_verify_debug_info)) {
+ std::unique_ptr<Action> VerifyInput(Actions.back());
+ Actions.pop_back();
+ Actions.push_back(new VerifyDebugInfoJobAction(std::move(VerifyInput),
+ types::TY_Nothing));
+ }
+ }
+ }
+}
+
+/// \brief Check that the file referenced by Value exists. If it doesn't,
+/// issue a diagnostic and return false.
+static bool DiagnoseInputExistence(const Driver &D, const DerivedArgList &Args,
+ StringRef Value) {
+ if (!D.getCheckInputsExist())
+ return true;
+
+ // stdin always exists.
+ if (Value == "-")
+ return true;
+
+ SmallString<64> Path(Value);
+ if (Arg *WorkDir = Args.getLastArg(options::OPT_working_directory)) {
+ if (!llvm::sys::path::is_absolute(Path)) {
+ SmallString<64> Directory(WorkDir->getValue());
+ llvm::sys::path::append(Directory, Value);
+ Path.assign(Directory);
+ }
+ }
+
+ if (llvm::sys::fs::exists(Twine(Path)))
+ return true;
+
+ if (D.IsCLMode() && !llvm::sys::path::is_absolute(Twine(Path)) &&
+ llvm::sys::Process::FindInEnvPath("LIB", Value))
+ return true;
+
+ D.Diag(clang::diag::err_drv_no_such_file) << Path;
+ return false;
+}
+
+// Construct a the list of inputs and their types.
+void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args,
+ InputList &Inputs) const {
+ // Track the current user specified (-x) input. We also explicitly track the
+ // argument used to set the type; we only want to claim the type when we
+ // actually use it, so we warn about unused -x arguments.
+ types::ID InputType = types::TY_Nothing;
+ Arg *InputTypeArg = nullptr;
+
+ // The last /TC or /TP option sets the input type to C or C++ globally.
+ if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC,
+ options::OPT__SLASH_TP)) {
+ InputTypeArg = TCTP;
+ InputType = TCTP->getOption().matches(options::OPT__SLASH_TC)
+ ? types::TY_C : types::TY_CXX;
+
+ arg_iterator it = Args.filtered_begin(options::OPT__SLASH_TC,
+ options::OPT__SLASH_TP);
+ const arg_iterator ie = Args.filtered_end();
+ Arg *Previous = *it++;
+ bool ShowNote = false;
+ while (it != ie) {
+ Diag(clang::diag::warn_drv_overriding_flag_option)
+ << Previous->getSpelling() << (*it)->getSpelling();
+ Previous = *it++;
+ ShowNote = true;
+ }
+ if (ShowNote)
+ Diag(clang::diag::note_drv_t_option_is_global);
+
+ // No driver mode exposes -x and /TC or /TP; we don't support mixing them.
+ assert(!Args.hasArg(options::OPT_x) && "-x and /TC or /TP is not allowed");
+ }
+
+ for (Arg *A : Args) {
+ if (A->getOption().getKind() == Option::InputClass) {
+ const char *Value = A->getValue();
+ types::ID Ty = types::TY_INVALID;
+
+ // Infer the input type if necessary.
+ if (InputType == types::TY_Nothing) {
+ // If there was an explicit arg for this, claim it.
+ if (InputTypeArg)
+ InputTypeArg->claim();
+
+ // stdin must be handled specially.
+ if (memcmp(Value, "-", 2) == 0) {
+ // If running with -E, treat as a C input (this changes the builtin
+ // macros, for example). This may be overridden by -ObjC below.
+ //
+ // Otherwise emit an error but still use a valid type to avoid
+ // spurious errors (e.g., no inputs).
+ if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP())
+ Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl
+ : clang::diag::err_drv_unknown_stdin_type);
+ Ty = types::TY_C;
+ } else {
+ // Otherwise lookup by extension.
+ // Fallback is C if invoked as C preprocessor or Object otherwise.
+ // We use a host hook here because Darwin at least has its own
+ // idea of what .s is.
+ if (const char *Ext = strrchr(Value, '.'))
+ Ty = TC.LookupTypeForExtension(Ext + 1);
+
+ if (Ty == types::TY_INVALID) {
+ if (CCCIsCPP())
+ Ty = types::TY_C;
+ else
+ Ty = types::TY_Object;
+ }
+
+ // If the driver is invoked as C++ compiler (like clang++ or c++) it
+ // should autodetect some input files as C++ for g++ compatibility.
+ if (CCCIsCXX()) {
+ types::ID OldTy = Ty;
+ Ty = types::lookupCXXTypeForCType(Ty);
+
+ if (Ty != OldTy)
+ Diag(clang::diag::warn_drv_treating_input_as_cxx)
+ << getTypeName(OldTy) << getTypeName(Ty);
+ }
+ }
+
+ // -ObjC and -ObjC++ override the default language, but only for "source
+ // files". We just treat everything that isn't a linker input as a
+ // source file.
+ //
+ // FIXME: Clean this up if we move the phase sequence into the type.
+ if (Ty != types::TY_Object) {
+ if (Args.hasArg(options::OPT_ObjC))
+ Ty = types::TY_ObjC;
+ else if (Args.hasArg(options::OPT_ObjCXX))
+ Ty = types::TY_ObjCXX;
+ }
+ } else {
+ assert(InputTypeArg && "InputType set w/o InputTypeArg");
+ if (!InputTypeArg->getOption().matches(options::OPT_x)) {
+ // If emulating cl.exe, make sure that /TC and /TP don't affect input
+ // object files.
+ const char *Ext = strrchr(Value, '.');
+ if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object)
+ Ty = types::TY_Object;
+ }
+ if (Ty == types::TY_INVALID) {
+ Ty = InputType;
+ InputTypeArg->claim();
+ }
+ }
+
+ if (DiagnoseInputExistence(*this, Args, Value))
+ Inputs.push_back(std::make_pair(Ty, A));
+
+ } else if (A->getOption().matches(options::OPT__SLASH_Tc)) {
+ StringRef Value = A->getValue();
+ if (DiagnoseInputExistence(*this, Args, Value)) {
+ Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
+ Inputs.push_back(std::make_pair(types::TY_C, InputArg));
+ }
+ A->claim();
+ } else if (A->getOption().matches(options::OPT__SLASH_Tp)) {
+ StringRef Value = A->getValue();
+ if (DiagnoseInputExistence(*this, Args, Value)) {
+ Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
+ Inputs.push_back(std::make_pair(types::TY_CXX, InputArg));
+ }
+ A->claim();
+ } else if (A->getOption().hasFlag(options::LinkerInput)) {
+ // Just treat as object type, we could make a special type for this if
+ // necessary.
+ Inputs.push_back(std::make_pair(types::TY_Object, A));
+
+ } else if (A->getOption().matches(options::OPT_x)) {
+ InputTypeArg = A;
+ InputType = types::lookupTypeForTypeSpecifier(A->getValue());
+ A->claim();
+
+ // Follow gcc behavior and treat as linker input for invalid -x
+ // options. Its not clear why we shouldn't just revert to unknown; but
+ // this isn't very important, we might as well be bug compatible.
+ if (!InputType) {
+ Diag(clang::diag::err_drv_unknown_language) << A->getValue();
+ InputType = types::TY_Object;
+ }
+ }
+ }
+ if (CCCIsCPP() && Inputs.empty()) {
+ // If called as standalone preprocessor, stdin is processed
+ // if no other input is present.
+ Arg *A = MakeInputArg(Args, Opts, "-");
+ Inputs.push_back(std::make_pair(types::TY_C, A));
+ }
+}
+
+void Driver::BuildActions(const ToolChain &TC, DerivedArgList &Args,
+ const InputList &Inputs, ActionList &Actions) const {
+ llvm::PrettyStackTraceString CrashInfo("Building compilation actions");
+
+ if (!SuppressMissingInputWarning && Inputs.empty()) {
+ Diag(clang::diag::err_drv_no_input_files);
+ return;
+ }
+
+ Arg *FinalPhaseArg;
+ phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg);
+
+ if (FinalPhase == phases::Link && Args.hasArg(options::OPT_emit_llvm)) {
+ Diag(clang::diag::err_drv_emit_llvm_link);
+ }
+
+ // Reject -Z* at the top level, these options should never have been exposed
+ // by gcc.
+ if (Arg *A = Args.getLastArg(options::OPT_Z_Joined))
+ Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args);
+
+ // Diagnose misuse of /Fo.
+ if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) {
+ StringRef V = A->getValue();
+ if (Inputs.size() > 1 && !V.empty() &&
+ !llvm::sys::path::is_separator(V.back())) {
+ // Check whether /Fo tries to name an output file for multiple inputs.
+ Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
+ << A->getSpelling() << V;
+ Args.eraseArg(options::OPT__SLASH_Fo);
+ }
+ }
+
+ // Diagnose misuse of /Fa.
+ if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) {
+ StringRef V = A->getValue();
+ if (Inputs.size() > 1 && !V.empty() &&
+ !llvm::sys::path::is_separator(V.back())) {
+ // Check whether /Fa tries to name an asm file for multiple inputs.
+ Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
+ << A->getSpelling() << V;
+ Args.eraseArg(options::OPT__SLASH_Fa);
+ }
+ }
+
+ // Diagnose misuse of /o.
+ if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) {
+ if (A->getValue()[0] == '\0') {
+ // It has to have a value.
+ Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1;
+ Args.eraseArg(options::OPT__SLASH_o);
+ }
+ }
+
+ // Construct the actions to perform.
+ ActionList LinkerInputs;
+
+ llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PL;
+ for (unsigned i = 0, e = Inputs.size(); i != e; ++i) {
+ types::ID InputType = Inputs[i].first;
+ const Arg *InputArg = Inputs[i].second;
+
+ PL.clear();
+ types::getCompilationPhases(InputType, PL);
+
+ // If the first step comes after the final phase we are doing as part of
+ // this compilation, warn the user about it.
+ phases::ID InitialPhase = PL[0];
+ if (InitialPhase > FinalPhase) {
+ // Claim here to avoid the more general unused warning.
+ InputArg->claim();
+
+ // Suppress all unused style warnings with -Qunused-arguments
+ if (Args.hasArg(options::OPT_Qunused_arguments))
+ continue;
+
+ // Special case when final phase determined by binary name, rather than
+ // by a command-line argument with a corresponding Arg.
+ if (CCCIsCPP())
+ Diag(clang::diag::warn_drv_input_file_unused_by_cpp)
+ << InputArg->getAsString(Args)
+ << getPhaseName(InitialPhase);
+ // Special case '-E' warning on a previously preprocessed file to make
+ // more sense.
+ else if (InitialPhase == phases::Compile &&
+ FinalPhase == phases::Preprocess &&
+ getPreprocessedType(InputType) == types::TY_INVALID)
+ Diag(clang::diag::warn_drv_preprocessed_input_file_unused)
+ << InputArg->getAsString(Args)
+ << !!FinalPhaseArg
+ << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
+ else
+ Diag(clang::diag::warn_drv_input_file_unused)
+ << InputArg->getAsString(Args)
+ << getPhaseName(InitialPhase)
+ << !!FinalPhaseArg
+ << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
+ continue;
+ }
+
+ // Build the pipeline for this file.
+ std::unique_ptr<Action> Current(new InputAction(*InputArg, InputType));
+ for (SmallVectorImpl<phases::ID>::iterator
+ i = PL.begin(), e = PL.end(); i != e; ++i) {
+ phases::ID Phase = *i;
+
+ // We are done if this step is past what the user requested.
+ if (Phase > FinalPhase)
+ break;
+
+ // Queue linker inputs.
+ if (Phase == phases::Link) {
+ assert((i + 1) == e && "linking must be final compilation step.");
+ LinkerInputs.push_back(Current.release());
+ break;
+ }
+
+ // Some types skip the assembler phase (e.g., llvm-bc), but we can't
+ // encode this in the steps because the intermediate type depends on
+ // arguments. Just special case here.
+ if (Phase == phases::Assemble && Current->getType() != types::TY_PP_Asm)
+ continue;
+
+ // Otherwise construct the appropriate action.
+ Current = ConstructPhaseAction(TC, Args, Phase, std::move(Current));
+ if (Current->getType() == types::TY_Nothing)
+ break;
+ }
+
+ // If we ended with something, add to the output list.
+ if (Current)
+ Actions.push_back(Current.release());
+ }
+
+ // Add a link action if necessary.
+ if (!LinkerInputs.empty())
+ Actions.push_back(new LinkJobAction(LinkerInputs, types::TY_Image));
+
+ // If we are linking, claim any options which are obviously only used for
+ // compilation.
+ if (FinalPhase == phases::Link && PL.size() == 1) {
+ Args.ClaimAllArgs(options::OPT_CompileOnly_Group);
+ Args.ClaimAllArgs(options::OPT_cl_compile_Group);
+ }
+
+ // Claim ignored clang-cl options.
+ Args.ClaimAllArgs(options::OPT_cl_ignored_Group);
+}
+
+std::unique_ptr<Action>
+Driver::ConstructPhaseAction(const ToolChain &TC, const ArgList &Args,
+ phases::ID Phase,
+ std::unique_ptr<Action> Input) const {
+ llvm::PrettyStackTraceString CrashInfo("Constructing phase actions");
+ // Build the appropriate action.
+ switch (Phase) {
+ case phases::Link: llvm_unreachable("link action invalid here.");
+ case phases::Preprocess: {
+ types::ID OutputTy;
+ // -{M, MM} alter the output type.
+ if (Args.hasArg(options::OPT_M, options::OPT_MM)) {
+ OutputTy = types::TY_Dependencies;
+ } else {
+ OutputTy = Input->getType();
+ if (!Args.hasFlag(options::OPT_frewrite_includes,
+ options::OPT_fno_rewrite_includes, false) &&
+ !CCGenDiagnostics)
+ OutputTy = types::getPreprocessedType(OutputTy);
+ assert(OutputTy != types::TY_INVALID &&
+ "Cannot preprocess this input type!");
+ }
+ return llvm::make_unique<PreprocessJobAction>(std::move(Input), OutputTy);
+ }
+ case phases::Precompile: {
+ types::ID OutputTy = types::TY_PCH;
+ if (Args.hasArg(options::OPT_fsyntax_only)) {
+ // Syntax checks should not emit a PCH file
+ OutputTy = types::TY_Nothing;
+ }
+ return llvm::make_unique<PrecompileJobAction>(std::move(Input), OutputTy);
+ }
+ case phases::Compile: {
+ if (Args.hasArg(options::OPT_fsyntax_only))
+ return llvm::make_unique<CompileJobAction>(std::move(Input),
+ types::TY_Nothing);
+ if (Args.hasArg(options::OPT_rewrite_objc))
+ return llvm::make_unique<CompileJobAction>(std::move(Input),
+ types::TY_RewrittenObjC);
+ if (Args.hasArg(options::OPT_rewrite_legacy_objc))
+ return llvm::make_unique<CompileJobAction>(std::move(Input),
+ types::TY_RewrittenLegacyObjC);
+ if (Args.hasArg(options::OPT__analyze, options::OPT__analyze_auto))
+ return llvm::make_unique<AnalyzeJobAction>(std::move(Input),
+ types::TY_Plist);
+ if (Args.hasArg(options::OPT__migrate))
+ return llvm::make_unique<MigrateJobAction>(std::move(Input),
+ types::TY_Remap);
+ if (Args.hasArg(options::OPT_emit_ast))
+ return llvm::make_unique<CompileJobAction>(std::move(Input),
+ types::TY_AST);
+ if (Args.hasArg(options::OPT_module_file_info))
+ return llvm::make_unique<CompileJobAction>(std::move(Input),
+ types::TY_ModuleFile);
+ if (Args.hasArg(options::OPT_verify_pch))
+ return llvm::make_unique<VerifyPCHJobAction>(std::move(Input),
+ types::TY_Nothing);
+ return llvm::make_unique<CompileJobAction>(std::move(Input),
+ types::TY_LLVM_BC);
+ }
+ case phases::Backend: {
+ if (IsUsingLTO(TC, Args)) {
+ types::ID Output =
+ Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
+ return llvm::make_unique<BackendJobAction>(std::move(Input), Output);
+ }
+ if (Args.hasArg(options::OPT_emit_llvm)) {
+ types::ID Output =
+ Args.hasArg(options::OPT_S) ? types::TY_LLVM_IR : types::TY_LLVM_BC;
+ return llvm::make_unique<BackendJobAction>(std::move(Input), Output);
+ }
+ return llvm::make_unique<BackendJobAction>(std::move(Input),
+ types::TY_PP_Asm);
+ }
+ case phases::Assemble:
+ return llvm::make_unique<AssembleJobAction>(std::move(Input),
+ types::TY_Object);
+ }
+
+ llvm_unreachable("invalid phase in ConstructPhaseAction");
+}
+
+bool Driver::IsUsingLTO(const ToolChain &TC, const ArgList &Args) const {
+ if (TC.getSanitizerArgs().needsLTO())
+ return true;
+
+ if (Args.hasFlag(options::OPT_flto, options::OPT_fno_lto, false))
+ return true;
+
+ return false;
+}
+
+void Driver::BuildJobs(Compilation &C) const {
+ llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
+
+ Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
+
+ // It is an error to provide a -o option if we are making multiple output
+ // files.
+ if (FinalOutput) {
+ unsigned NumOutputs = 0;
+ for (const Action *A : C.getActions())
+ if (A->getType() != types::TY_Nothing)
+ ++NumOutputs;
+
+ if (NumOutputs > 1) {
+ Diag(clang::diag::err_drv_output_argument_with_multiple_files);
+ FinalOutput = nullptr;
+ }
+ }
+
+ // Collect the list of architectures.
+ llvm::StringSet<> ArchNames;
+ if (C.getDefaultToolChain().getTriple().isOSBinFormatMachO())
+ for (const Arg *A : C.getArgs())
+ if (A->getOption().matches(options::OPT_arch))
+ ArchNames.insert(A->getValue());
+
+ for (Action *A : C.getActions()) {
+ // If we are linking an image for multiple archs then the linker wants
+ // -arch_multiple and -final_output <final image name>. Unfortunately, this
+ // doesn't fit in cleanly because we have to pass this information down.
+ //
+ // FIXME: This is a hack; find a cleaner way to integrate this into the
+ // process.
+ const char *LinkingOutput = nullptr;
+ if (isa<LipoJobAction>(A)) {
+ if (FinalOutput)
+ LinkingOutput = FinalOutput->getValue();
+ else
+ LinkingOutput = getDefaultImageName();
+ }
+
+ InputInfo II;
+ BuildJobsForAction(C, A, &C.getDefaultToolChain(),
+ /*BoundArch*/nullptr,
+ /*AtTopLevel*/ true,
+ /*MultipleArchs*/ ArchNames.size() > 1,
+ /*LinkingOutput*/ LinkingOutput,
+ II);
+ }
+
+ // If the user passed -Qunused-arguments or there were errors, don't warn
+ // about any unused arguments.
+ if (Diags.hasErrorOccurred() ||
+ C.getArgs().hasArg(options::OPT_Qunused_arguments))
+ return;
+
+ // Claim -### here.
+ (void) C.getArgs().hasArg(options::OPT__HASH_HASH_HASH);
+
+ // Claim --driver-mode, it was handled earlier.
+ (void) C.getArgs().hasArg(options::OPT_driver_mode);
+
+ for (Arg *A : C.getArgs()) {
+ // FIXME: It would be nice to be able to send the argument to the
+ // DiagnosticsEngine, so that extra values, position, and so on could be
+ // printed.
+ if (!A->isClaimed()) {
+ if (A->getOption().hasFlag(options::NoArgumentUnused))
+ continue;
+
+ // Suppress the warning automatically if this is just a flag, and it is an
+ // instance of an argument we already claimed.
+ const Option &Opt = A->getOption();
+ if (Opt.getKind() == Option::FlagClass) {
+ bool DuplicateClaimed = false;
+
+ for (arg_iterator it = C.getArgs().filtered_begin(&Opt),
+ ie = C.getArgs().filtered_end(); it != ie; ++it) {
+ if ((*it)->isClaimed()) {
+ DuplicateClaimed = true;
+ break;
+ }
+ }
+
+ if (DuplicateClaimed)
+ continue;
+ }
+
+ Diag(clang::diag::warn_drv_unused_argument)
+ << A->getAsString(C.getArgs());
+ }
+ }
+}
+
+static const Tool *SelectToolForJob(Compilation &C, bool SaveTemps,
+ const ToolChain *TC, const JobAction *JA,
+ const ActionList *&Inputs) {
+ const Tool *ToolForJob = nullptr;
+
+ // See if we should look for a compiler with an integrated assembler. We match
+ // bottom up, so what we are actually looking for is an assembler job with a
+ // compiler input.
+
+ if (TC->useIntegratedAs() &&
+ !SaveTemps &&
+ !C.getArgs().hasArg(options::OPT_via_file_asm) &&
+ !C.getArgs().hasArg(options::OPT__SLASH_FA) &&
+ !C.getArgs().hasArg(options::OPT__SLASH_Fa) &&
+ isa<AssembleJobAction>(JA) &&
+ Inputs->size() == 1 && isa<BackendJobAction>(*Inputs->begin())) {
+ // A BackendJob is always preceded by a CompileJob, and without
+ // -save-temps they will always get combined together, so instead of
+ // checking the backend tool, check if the tool for the CompileJob
+ // has an integrated assembler.
+ const ActionList *BackendInputs = &(*Inputs)[0]->getInputs();
+ JobAction *CompileJA = cast<CompileJobAction>(*BackendInputs->begin());
+ const Tool *Compiler = TC->SelectTool(*CompileJA);
+ if (!Compiler)
+ return nullptr;
+ if (Compiler->hasIntegratedAssembler()) {
+ Inputs = &(*BackendInputs)[0]->getInputs();
+ ToolForJob = Compiler;
+ }
+ }
+
+ // A backend job should always be combined with the preceding compile job
+ // unless OPT_save_temps is enabled and the compiler is capable of emitting
+ // LLVM IR as an intermediate output.
+ if (isa<BackendJobAction>(JA)) {
+ // Check if the compiler supports emitting LLVM IR.
+ assert(Inputs->size() == 1);
+ JobAction *CompileJA = cast<CompileJobAction>(*Inputs->begin());
+ const Tool *Compiler = TC->SelectTool(*CompileJA);
+ if (!Compiler)
+ return nullptr;
+ if (!Compiler->canEmitIR() || !SaveTemps) {
+ Inputs = &(*Inputs)[0]->getInputs();
+ ToolForJob = Compiler;
+ }
+ }
+
+ // Otherwise use the tool for the current job.
+ if (!ToolForJob)
+ ToolForJob = TC->SelectTool(*JA);
+
+ // See if we should use an integrated preprocessor. We do so when we have
+ // exactly one input, since this is the only use case we care about
+ // (irrelevant since we don't support combine yet).
+ if (Inputs->size() == 1 && isa<PreprocessJobAction>(*Inputs->begin()) &&
+ !C.getArgs().hasArg(options::OPT_no_integrated_cpp) &&
+ !C.getArgs().hasArg(options::OPT_traditional_cpp) &&
+ !SaveTemps &&
+ !C.getArgs().hasArg(options::OPT_rewrite_objc) &&
+ ToolForJob->hasIntegratedCPP())
+ Inputs = &(*Inputs)[0]->getInputs();
+
+ return ToolForJob;
+}
+
+void Driver::BuildJobsForAction(Compilation &C,
+ const Action *A,
+ const ToolChain *TC,
+ const char *BoundArch,
+ bool AtTopLevel,
+ bool MultipleArchs,
+ const char *LinkingOutput,
+ InputInfo &Result) const {
+ llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
+
+ if (const InputAction *IA = dyn_cast<InputAction>(A)) {
+ // FIXME: It would be nice to not claim this here; maybe the old scheme of
+ // just using Args was better?
+ const Arg &Input = IA->getInputArg();
+ Input.claim();
+ if (Input.getOption().matches(options::OPT_INPUT)) {
+ const char *Name = Input.getValue();
+ Result = InputInfo(Name, A->getType(), Name);
+ } else
+ Result = InputInfo(&Input, A->getType(), "");
+ return;
+ }
+
+ if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) {
+ const ToolChain *TC;
+ const char *ArchName = BAA->getArchName();
+
+ if (ArchName)
+ TC = &getToolChain(C.getArgs(), ArchName);
+ else
+ TC = &C.getDefaultToolChain();
+
+ BuildJobsForAction(C, *BAA->begin(), TC, BAA->getArchName(),
+ AtTopLevel, MultipleArchs, LinkingOutput, Result);
+ return;
+ }
+
+ const ActionList *Inputs = &A->getInputs();
+
+ const JobAction *JA = cast<JobAction>(A);
+ const Tool *T = SelectToolForJob(C, isSaveTempsEnabled(), TC, JA, Inputs);
+ if (!T)
+ return;
+
+ // Only use pipes when there is exactly one input.
+ InputInfoList InputInfos;
+ for (const Action *Input : *Inputs) {
+ // Treat dsymutil and verify sub-jobs as being at the top-level too, they
+ // shouldn't get temporary output names.
+ // FIXME: Clean this up.
+ bool SubJobAtTopLevel = false;
+ if (AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A)))
+ SubJobAtTopLevel = true;
+
+ InputInfo II;
+ BuildJobsForAction(C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs,
+ LinkingOutput, II);
+ InputInfos.push_back(II);
+ }
+
+ // Always use the first input as the base input.
+ const char *BaseInput = InputInfos[0].getBaseInput();
+
+ // ... except dsymutil actions, which use their actual input as the base
+ // input.
+ if (JA->getType() == types::TY_dSYM)
+ BaseInput = InputInfos[0].getFilename();
+
+ // Determine the place to write output to, if any.
+ if (JA->getType() == types::TY_Nothing)
+ Result = InputInfo(A->getType(), BaseInput);
+ else
+ Result = InputInfo(GetNamedOutputPath(C, *JA, BaseInput, BoundArch,
+ AtTopLevel, MultipleArchs),
+ A->getType(), BaseInput);
+
+ if (CCCPrintBindings && !CCGenDiagnostics) {
+ llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"'
+ << " - \"" << T->getName() << "\", inputs: [";
+ for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) {
+ llvm::errs() << InputInfos[i].getAsString();
+ if (i + 1 != e)
+ llvm::errs() << ", ";
+ }
+ llvm::errs() << "], output: " << Result.getAsString() << "\n";
+ } else {
+ T->ConstructJob(C, *JA, Result, InputInfos,
+ C.getArgsForToolChain(TC, BoundArch), LinkingOutput);
+ }
+}
+
+const char *Driver::getDefaultImageName() const {
+ llvm::Triple Target(llvm::Triple::normalize(DefaultTargetTriple));
+ return Target.isOSWindows() ? "a.exe" : "a.out";
+}
+
+/// \brief Create output filename based on ArgValue, which could either be a
+/// full filename, filename without extension, or a directory. If ArgValue
+/// does not provide a filename, then use BaseName, and use the extension
+/// suitable for FileType.
+static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue,
+ StringRef BaseName, types::ID FileType) {
+ SmallString<128> Filename = ArgValue;
+
+ if (ArgValue.empty()) {
+ // If the argument is empty, output to BaseName in the current dir.
+ Filename = BaseName;
+ } else if (llvm::sys::path::is_separator(Filename.back())) {
+ // If the argument is a directory, output to BaseName in that dir.
+ llvm::sys::path::append(Filename, BaseName);
+ }
+
+ if (!llvm::sys::path::has_extension(ArgValue)) {
+ // If the argument didn't provide an extension, then set it.
+ const char *Extension = types::getTypeTempSuffix(FileType, true);
+
+ if (FileType == types::TY_Image &&
+ Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) {
+ // The output file is a dll.
+ Extension = "dll";
+ }
+
+ llvm::sys::path::replace_extension(Filename, Extension);
+ }
+
+ return Args.MakeArgString(Filename.c_str());
+}
+
+const char *Driver::GetNamedOutputPath(Compilation &C,
+ const JobAction &JA,
+ const char *BaseInput,
+ const char *BoundArch,
+ bool AtTopLevel,
+ bool MultipleArchs) const {
+ llvm::PrettyStackTraceString CrashInfo("Computing output path");
+ // Output to a user requested destination?
+ if (AtTopLevel && !isa<DsymutilJobAction>(JA) &&
+ !isa<VerifyJobAction>(JA)) {
+ if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
+ return C.addResultFile(FinalOutput->getValue(), &JA);
+ }
+
+ // For /P, preprocess to file named after BaseInput.
+ if (C.getArgs().hasArg(options::OPT__SLASH_P)) {
+ assert(AtTopLevel && isa<PreprocessJobAction>(JA));
+ StringRef BaseName = llvm::sys::path::filename(BaseInput);
+ StringRef NameArg;
+ if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi,
+ options::OPT__SLASH_o))
+ NameArg = A->getValue();
+ return C.addResultFile(MakeCLOutputFilename(C.getArgs(), NameArg, BaseName,
+ types::TY_PP_C), &JA);
+ }
+
+ // Default to writing to stdout?
+ if (AtTopLevel && !CCGenDiagnostics &&
+ (isa<PreprocessJobAction>(JA) || JA.getType() == types::TY_ModuleFile))
+ return "-";
+
+ // Is this the assembly listing for /FA?
+ if (JA.getType() == types::TY_PP_Asm &&
+ (C.getArgs().hasArg(options::OPT__SLASH_FA) ||
+ C.getArgs().hasArg(options::OPT__SLASH_Fa))) {
+ // Use /Fa and the input filename to determine the asm file name.
+ StringRef BaseName = llvm::sys::path::filename(BaseInput);
+ StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa);
+ return C.addResultFile(MakeCLOutputFilename(C.getArgs(), FaValue, BaseName,
+ JA.getType()), &JA);
+ }
+
+ // Output to a temporary file?
+ if ((!AtTopLevel && !isSaveTempsEnabled() &&
+ !C.getArgs().hasArg(options::OPT__SLASH_Fo)) ||
+ CCGenDiagnostics) {
+ StringRef Name = llvm::sys::path::filename(BaseInput);
+ std::pair<StringRef, StringRef> Split = Name.split('.');
+ std::string TmpName =
+ GetTemporaryPath(Split.first,
+ types::getTypeTempSuffix(JA.getType(), IsCLMode()));
+ return C.addTempFile(C.getArgs().MakeArgString(TmpName.c_str()));
+ }
+
+ SmallString<128> BasePath(BaseInput);
+ StringRef BaseName;
+
+ // Dsymutil actions should use the full path.
+ if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA))
+ BaseName = BasePath;
+ else
+ BaseName = llvm::sys::path::filename(BasePath);
+
+ // Determine what the derived output name should be.
+ const char *NamedOutput;
+
+ if (JA.getType() == types::TY_Object &&
+ C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) {
+ // The /Fo or /o flag decides the object filename.
+ StringRef Val = C.getArgs().getLastArg(options::OPT__SLASH_Fo,
+ options::OPT__SLASH_o)->getValue();
+ NamedOutput = MakeCLOutputFilename(C.getArgs(), Val, BaseName,
+ types::TY_Object);
+ } else if (JA.getType() == types::TY_Image &&
+ C.getArgs().hasArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o)) {
+ // The /Fe or /o flag names the linked file.
+ StringRef Val = C.getArgs().getLastArg(options::OPT__SLASH_Fe,
+ options::OPT__SLASH_o)->getValue();
+ NamedOutput = MakeCLOutputFilename(C.getArgs(), Val, BaseName,
+ types::TY_Image);
+ } else if (JA.getType() == types::TY_Image) {
+ if (IsCLMode()) {
+ // clang-cl uses BaseName for the executable name.
+ NamedOutput = MakeCLOutputFilename(C.getArgs(), "", BaseName,
+ types::TY_Image);
+ } else if (MultipleArchs && BoundArch) {
+ SmallString<128> Output(getDefaultImageName());
+ Output += "-";
+ Output.append(BoundArch);
+ NamedOutput = C.getArgs().MakeArgString(Output.c_str());
+ } else
+ NamedOutput = getDefaultImageName();
+ } else {
+ const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
+ assert(Suffix && "All types used for output should have a suffix.");
+
+ std::string::size_type End = std::string::npos;
+ if (!types::appendSuffixForType(JA.getType()))
+ End = BaseName.rfind('.');
+ SmallString<128> Suffixed(BaseName.substr(0, End));
+ if (MultipleArchs && BoundArch) {
+ Suffixed += "-";
+ Suffixed.append(BoundArch);
+ }
+ // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for
+ // the unoptimized bitcode so that it does not get overwritten by the ".bc"
+ // optimized bitcode output.
+ if (!AtTopLevel && C.getArgs().hasArg(options::OPT_emit_llvm) &&
+ JA.getType() == types::TY_LLVM_BC)
+ Suffixed += ".tmp";
+ Suffixed += '.';
+ Suffixed += Suffix;
+ NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str());
+ }
+
+ // Prepend object file path if -save-temps=obj
+ if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) &&
+ JA.getType() != types::TY_PCH) {
+ Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
+ SmallString<128> TempPath(FinalOutput->getValue());
+ llvm::sys::path::remove_filename(TempPath);
+ StringRef OutputFileName = llvm::sys::path::filename(NamedOutput);
+ llvm::sys::path::append(TempPath, OutputFileName);
+ NamedOutput = C.getArgs().MakeArgString(TempPath.c_str());
+ }
+
+ // If we're saving temps and the temp file conflicts with the input file,
+ // then avoid overwriting input file.
+ if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) {
+ bool SameFile = false;
+ SmallString<256> Result;
+ llvm::sys::fs::current_path(Result);
+ llvm::sys::path::append(Result, BaseName);
+ llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile);
+ // Must share the same path to conflict.
+ if (SameFile) {
+ StringRef Name = llvm::sys::path::filename(BaseInput);
+ std::pair<StringRef, StringRef> Split = Name.split('.');
+ std::string TmpName =
+ GetTemporaryPath(Split.first,
+ types::getTypeTempSuffix(JA.getType(), IsCLMode()));
+ return C.addTempFile(C.getArgs().MakeArgString(TmpName.c_str()));
+ }
+ }
+
+ // As an annoying special case, PCH generation doesn't strip the pathname.
+ if (JA.getType() == types::TY_PCH) {
+ llvm::sys::path::remove_filename(BasePath);
+ if (BasePath.empty())
+ BasePath = NamedOutput;
+ else
+ llvm::sys::path::append(BasePath, NamedOutput);
+ return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA);
+ } else {
+ return C.addResultFile(NamedOutput, &JA);
+ }
+}
+
+std::string Driver::GetFilePath(const char *Name, const ToolChain &TC) const {
+ // Respect a limited subset of the '-Bprefix' functionality in GCC by
+ // attempting to use this prefix when looking for file paths.
+ for (Driver::prefix_list::const_iterator it = PrefixDirs.begin(),
+ ie = PrefixDirs.end(); it != ie; ++it) {
+ std::string Dir(*it);
+ if (Dir.empty())
+ continue;
+ if (Dir[0] == '=')
+ Dir = SysRoot + Dir.substr(1);
+ SmallString<128> P(Dir);
+ llvm::sys::path::append(P, Name);
+ if (llvm::sys::fs::exists(Twine(P)))
+ return P.str();
+ }
+
+ SmallString<128> P(ResourceDir);
+ llvm::sys::path::append(P, Name);
+ if (llvm::sys::fs::exists(Twine(P)))
+ return P.str();
+
+ const ToolChain::path_list &List = TC.getFilePaths();
+ for (ToolChain::path_list::const_iterator
+ it = List.begin(), ie = List.end(); it != ie; ++it) {
+ std::string Dir(*it);
+ if (Dir.empty())
+ continue;
+ if (Dir[0] == '=')
+ Dir = SysRoot + Dir.substr(1);
+ SmallString<128> P(Dir);
+ llvm::sys::path::append(P, Name);
+ if (llvm::sys::fs::exists(Twine(P)))
+ return P.str();
+ }
+
+ return Name;
+}
+
+void
+Driver::generatePrefixedToolNames(const char *Tool, const ToolChain &TC,
+ SmallVectorImpl<std::string> &Names) const {
+ // FIXME: Needs a better variable than DefaultTargetTriple
+ Names.push_back(DefaultTargetTriple + "-" + Tool);
+ Names.push_back(Tool);
+}
+
+static bool ScanDirForExecutable(SmallString<128> &Dir,
+ ArrayRef<std::string> Names) {
+ for (const auto &Name : Names) {
+ llvm::sys::path::append(Dir, Name);
+ if (llvm::sys::fs::can_execute(Twine(Dir)))
+ return true;
+ llvm::sys::path::remove_filename(Dir);
+ }
+ return false;
+}
+
+std::string Driver::GetProgramPath(const char *Name,
+ const ToolChain &TC) const {
+ SmallVector<std::string, 2> TargetSpecificExecutables;
+ generatePrefixedToolNames(Name, TC, TargetSpecificExecutables);
+
+ // Respect a limited subset of the '-Bprefix' functionality in GCC by
+ // attempting to use this prefix when looking for program paths.
+ for (const auto &PrefixDir : PrefixDirs) {
+ if (llvm::sys::fs::is_directory(PrefixDir)) {
+ SmallString<128> P(PrefixDir);
+ if (ScanDirForExecutable(P, TargetSpecificExecutables))
+ return P.str();
+ } else {
+ SmallString<128> P(PrefixDir + Name);
+ if (llvm::sys::fs::can_execute(Twine(P)))
+ return P.str();
+ }
+ }
+
+ const ToolChain::path_list &List = TC.getProgramPaths();
+ for (const auto &Path : List) {
+ SmallString<128> P(Path);
+ if (ScanDirForExecutable(P, TargetSpecificExecutables))
+ return P.str();
+ }
+
+ // If all else failed, search the path.
+ for (const auto &TargetSpecificExecutable : TargetSpecificExecutables)
+ if (llvm::ErrorOr<std::string> P =
+ llvm::sys::findProgramByName(TargetSpecificExecutable))
+ return *P;
+
+ return Name;
+}
+
+std::string Driver::GetTemporaryPath(StringRef Prefix, const char *Suffix)
+ const {
+ SmallString<128> Path;
+ std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path);
+ if (EC) {
+ Diag(clang::diag::err_unable_to_make_temp) << EC.message();
+ return "";
+ }
+
+ return Path.str();
+}
+
+/// \brief Compute target triple from args.
+///
+/// This routine provides the logic to compute a target triple from various
+/// args passed to the driver and the default triple string.
+static llvm::Triple computeTargetTriple(StringRef DefaultTargetTriple,
+ const ArgList &Args,
+ StringRef DarwinArchName) {
+ // FIXME: Already done in Compilation *Driver::BuildCompilation
+ if (const Arg *A = Args.getLastArg(options::OPT_target))
+ DefaultTargetTriple = A->getValue();
+
+ llvm::Triple Target(llvm::Triple::normalize(DefaultTargetTriple));
+
+ // Handle Apple-specific options available here.
+ if (Target.isOSBinFormatMachO()) {
+ // If an explict Darwin arch name is given, that trumps all.
+ if (!DarwinArchName.empty()) {
+ tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName);
+ return Target;
+ }
+
+ // Handle the Darwin '-arch' flag.
+ if (Arg *A = Args.getLastArg(options::OPT_arch)) {
+ StringRef ArchName = A->getValue();
+ tools::darwin::setTripleTypeForMachOArchName(Target, ArchName);
+ }
+ }
+
+ // Handle pseudo-target flags '-mlittle-endian'/'-EL' and
+ // '-mbig-endian'/'-EB'.
+ if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian,
+ options::OPT_mbig_endian)) {
+ if (A->getOption().matches(options::OPT_mlittle_endian)) {
+ if (Target.getArch() == llvm::Triple::mips)
+ Target.setArch(llvm::Triple::mipsel);
+ else if (Target.getArch() == llvm::Triple::mips64)
+ Target.setArch(llvm::Triple::mips64el);
+ else if (Target.getArch() == llvm::Triple::aarch64_be)
+ Target.setArch(llvm::Triple::aarch64);
+ } else {
+ if (Target.getArch() == llvm::Triple::mipsel)
+ Target.setArch(llvm::Triple::mips);
+ else if (Target.getArch() == llvm::Triple::mips64el)
+ Target.setArch(llvm::Triple::mips64);
+ else if (Target.getArch() == llvm::Triple::aarch64)
+ Target.setArch(llvm::Triple::aarch64_be);
+ }
+ }
+
+ // Skip further flag support on OSes which don't support '-m32' or '-m64'.
+ if (Target.getArchName() == "tce" || Target.getOS() == llvm::Triple::Minix)
+ return Target;
+
+ // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'.
+ if (Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32,
+ options::OPT_m32, options::OPT_m16)) {
+ llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
+
+ if (A->getOption().matches(options::OPT_m64)) {
+ AT = Target.get64BitArchVariant().getArch();
+ if (Target.getEnvironment() == llvm::Triple::GNUX32)
+ Target.setEnvironment(llvm::Triple::GNU);
+ } else if (A->getOption().matches(options::OPT_mx32) &&
+ Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) {
+ AT = llvm::Triple::x86_64;
+ Target.setEnvironment(llvm::Triple::GNUX32);
+ } else if (A->getOption().matches(options::OPT_m32)) {
+ AT = Target.get32BitArchVariant().getArch();
+ if (Target.getEnvironment() == llvm::Triple::GNUX32)
+ Target.setEnvironment(llvm::Triple::GNU);
+ } else if (A->getOption().matches(options::OPT_m16) &&
+ Target.get32BitArchVariant().getArch() == llvm::Triple::x86) {
+ AT = llvm::Triple::x86;
+ Target.setEnvironment(llvm::Triple::CODE16);
+ }
+
+ if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
+ Target.setArch(AT);
+ }
+
+ return Target;
+}
+
+const ToolChain &Driver::getToolChain(const ArgList &Args,
+ StringRef DarwinArchName) const {
+ llvm::Triple Target =
+ computeTargetTriple(DefaultTargetTriple, Args, DarwinArchName);
+
+ ToolChain *&TC = ToolChains[Target.str()];
+ if (!TC) {
+ switch (Target.getOS()) {
+ case llvm::Triple::CloudABI:
+ TC = new toolchains::CloudABI(*this, Target, Args);
+ break;
+ case llvm::Triple::Darwin:
+ case llvm::Triple::MacOSX:
+ case llvm::Triple::IOS:
+ TC = new toolchains::DarwinClang(*this, Target, Args);
+ break;
+ case llvm::Triple::DragonFly:
+ TC = new toolchains::DragonFly(*this, Target, Args);
+ break;
+ case llvm::Triple::OpenBSD:
+ TC = new toolchains::OpenBSD(*this, Target, Args);
+ break;
+ case llvm::Triple::Bitrig:
+ TC = new toolchains::Bitrig(*this, Target, Args);
+ break;
+ case llvm::Triple::NetBSD:
+ TC = new toolchains::NetBSD(*this, Target, Args);
+ break;
+ case llvm::Triple::FreeBSD:
+ TC = new toolchains::FreeBSD(*this, Target, Args);
+ break;
+ case llvm::Triple::Minix:
+ TC = new toolchains::Minix(*this, Target, Args);
+ break;
+ case llvm::Triple::Linux:
+ if (Target.getArch() == llvm::Triple::hexagon)
+ TC = new toolchains::Hexagon_TC(*this, Target, Args);
+ else
+ TC = new toolchains::Linux(*this, Target, Args);
+ break;
+ case llvm::Triple::NaCl:
+ TC = new toolchains::NaCl_TC(*this, Target, Args);
+ break;
+ case llvm::Triple::Solaris:
+ TC = new toolchains::Solaris(*this, Target, Args);
+ break;
+ case llvm::Triple::Win32:
+ switch (Target.getEnvironment()) {
+ default:
+ if (Target.isOSBinFormatELF())
+ TC = new toolchains::Generic_ELF(*this, Target, Args);
+ else if (Target.isOSBinFormatMachO())
+ TC = new toolchains::MachO(*this, Target, Args);
+ else
+ TC = new toolchains::Generic_GCC(*this, Target, Args);
+ break;
+ case llvm::Triple::GNU:
+ // FIXME: We need a MinGW toolchain. Use the default Generic_GCC
+ // toolchain for now as the default case would below otherwise.
+ if (Target.isOSBinFormatELF())
+ TC = new toolchains::Generic_ELF(*this, Target, Args);
+ else
+ TC = new toolchains::Generic_GCC(*this, Target, Args);
+ break;
+ case llvm::Triple::Itanium:
+ TC = new toolchains::CrossWindowsToolChain(*this, Target, Args);
+ break;
+ case llvm::Triple::MSVC:
+ case llvm::Triple::UnknownEnvironment:
+ TC = new toolchains::MSVCToolChain(*this, Target, Args);
+ break;
+ }
+ break;
+ default:
+ // Of these targets, Hexagon is the only one that might have
+ // an OS of Linux, in which case it got handled above already.
+ if (Target.getArchName() == "tce")
+ TC = new toolchains::TCEToolChain(*this, Target, Args);
+ else if (Target.getArch() == llvm::Triple::hexagon)
+ TC = new toolchains::Hexagon_TC(*this, Target, Args);
+ else if (Target.getArch() == llvm::Triple::xcore)
+ TC = new toolchains::XCore(*this, Target, Args);
+ else if (Target.isOSBinFormatELF())
+ TC = new toolchains::Generic_ELF(*this, Target, Args);
+ else if (Target.isOSBinFormatMachO())
+ TC = new toolchains::MachO(*this, Target, Args);
+ else
+ TC = new toolchains::Generic_GCC(*this, Target, Args);
+ break;
+ }
+ }
+ return *TC;
+}
+
+bool Driver::ShouldUseClangCompiler(const JobAction &JA) const {
+ // Check if user requested no clang, or clang doesn't understand this type (we
+ // only handle single inputs for now).
+ if (JA.size() != 1 ||
+ !types::isAcceptedByClang((*JA.begin())->getType()))
+ return false;
+
+ // Otherwise make sure this is an action clang understands.
+ if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) &&
+ !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA))
+ return false;
+
+ return true;
+}
+
+/// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the
+/// grouped values as integers. Numbers which are not provided are set to 0.
+///
+/// \return True if the entire string was parsed (9.2), or all groups were
+/// parsed (10.3.5extrastuff).
+bool Driver::GetReleaseVersion(const char *Str, unsigned &Major,
+ unsigned &Minor, unsigned &Micro,
+ bool &HadExtra) {
+ HadExtra = false;
+
+ Major = Minor = Micro = 0;
+ if (*Str == '\0')
+ return false;
+
+ char *End;
+ Major = (unsigned) strtol(Str, &End, 10);
+ if (*Str != '\0' && *End == '\0')
+ return true;
+ if (*End != '.')
+ return false;
+
+ Str = End+1;
+ Minor = (unsigned) strtol(Str, &End, 10);
+ if (*Str != '\0' && *End == '\0')
+ return true;
+ if (*End != '.')
+ return false;
+
+ Str = End+1;
+ Micro = (unsigned) strtol(Str, &End, 10);
+ if (*Str != '\0' && *End == '\0')
+ return true;
+ if (Str == End)
+ return false;
+ HadExtra = true;
+ return true;
+}
+
+std::pair<unsigned, unsigned> Driver::getIncludeExcludeOptionFlagMasks() const {
+ unsigned IncludedFlagsBitmask = 0;
+ unsigned ExcludedFlagsBitmask = options::NoDriverOption;
+
+ if (Mode == CLMode) {
+ // Include CL and Core options.
+ IncludedFlagsBitmask |= options::CLOption;
+ IncludedFlagsBitmask |= options::CoreOption;
+ } else {
+ ExcludedFlagsBitmask |= options::CLOption;
+ }
+
+ return std::make_pair(IncludedFlagsBitmask, ExcludedFlagsBitmask);
+}
+
+bool clang::driver::isOptimizationLevelFast(const llvm::opt::ArgList &Args) {
+ return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false);
+}
diff --git a/contrib/llvm/tools/clang/lib/Driver/DriverOptions.cpp b/contrib/llvm/tools/clang/lib/Driver/DriverOptions.cpp
new file mode 100644
index 0000000..6ff1cba
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Driver/DriverOptions.cpp
@@ -0,0 +1,44 @@
+//===--- DriverOptions.cpp - Driver Options Table -------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Driver/Options.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Option/OptTable.h"
+#include "llvm/Option/Option.h"
+
+using namespace clang::driver;
+using namespace clang::driver::options;
+using namespace llvm::opt;
+
+#define PREFIX(NAME, VALUE) static const char *const NAME[] = VALUE;
+#include "clang/Driver/Options.inc"
+#undef PREFIX
+
+static const OptTable::Info InfoTable[] = {
+#define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \
+ HELPTEXT, METAVAR) \
+ { PREFIX, NAME, HELPTEXT, METAVAR, OPT_##ID, Option::KIND##Class, PARAM, \
+ FLAGS, OPT_##GROUP, OPT_##ALIAS, ALIASARGS },
+#include "clang/Driver/Options.inc"
+#undef OPTION
+};
+
+namespace {
+
+class DriverOptTable : public OptTable {
+public:
+ DriverOptTable()
+ : OptTable(InfoTable, llvm::array_lengthof(InfoTable)) {}
+};
+
+}
+
+OptTable *clang::driver::createDriverOptTable() {
+ return new DriverOptTable();
+}
diff --git a/contrib/llvm/tools/clang/lib/Driver/InputInfo.h b/contrib/llvm/tools/clang/lib/Driver/InputInfo.h
new file mode 100644
index 0000000..b23ba57
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Driver/InputInfo.h
@@ -0,0 +1,89 @@
+//===--- InputInfo.h - Input Source & Type Information ----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_DRIVER_INPUTINFO_H
+#define LLVM_CLANG_LIB_DRIVER_INPUTINFO_H
+
+#include "clang/Driver/Types.h"
+#include "llvm/Option/Arg.h"
+#include <cassert>
+#include <string>
+
+namespace clang {
+namespace driver {
+
+/// InputInfo - Wrapper for information about an input source.
+class InputInfo {
+ // FIXME: The distinction between filenames and inputarg here is
+ // gross; we should probably drop the idea of a "linker
+ // input". Doing so means tweaking pipelining to still create link
+ // steps when it sees linker inputs (but not treat them as
+ // arguments), and making sure that arguments get rendered
+ // correctly.
+ enum Class {
+ Nothing,
+ Filename,
+ InputArg,
+ Pipe
+ };
+
+ union {
+ const char *Filename;
+ const llvm::opt::Arg *InputArg;
+ } Data;
+ Class Kind;
+ types::ID Type;
+ const char *BaseInput;
+
+public:
+ InputInfo() {}
+ InputInfo(types::ID _Type, const char *_BaseInput)
+ : Kind(Nothing), Type(_Type), BaseInput(_BaseInput) {
+ }
+ InputInfo(const char *_Filename, types::ID _Type, const char *_BaseInput)
+ : Kind(Filename), Type(_Type), BaseInput(_BaseInput) {
+ Data.Filename = _Filename;
+ }
+ InputInfo(const llvm::opt::Arg *_InputArg, types::ID _Type,
+ const char *_BaseInput)
+ : Kind(InputArg), Type(_Type), BaseInput(_BaseInput) {
+ Data.InputArg = _InputArg;
+ }
+
+ bool isNothing() const { return Kind == Nothing; }
+ bool isFilename() const { return Kind == Filename; }
+ bool isInputArg() const { return Kind == InputArg; }
+ types::ID getType() const { return Type; }
+ const char *getBaseInput() const { return BaseInput; }
+
+ const char *getFilename() const {
+ assert(isFilename() && "Invalid accessor.");
+ return Data.Filename;
+ }
+ const llvm::opt::Arg &getInputArg() const {
+ assert(isInputArg() && "Invalid accessor.");
+ return *Data.InputArg;
+ }
+
+ /// getAsString - Return a string name for this input, for
+ /// debugging.
+ std::string getAsString() const {
+ if (isFilename())
+ return std::string("\"") + getFilename() + '"';
+ else if (isInputArg())
+ return "(input arg)";
+ else
+ return "(nothing)";
+ }
+};
+
+} // end namespace driver
+} // end namespace clang
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/Driver/Job.cpp b/contrib/llvm/tools/clang/lib/Driver/Job.cpp
new file mode 100644
index 0000000..6d18a41
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Driver/Job.cpp
@@ -0,0 +1,306 @@
+//===--- Job.cpp - Command to Execute -------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Driver/Driver.h"
+#include "clang/Driver/DriverDiagnostic.h"
+#include "clang/Driver/Job.h"
+#include "clang/Driver/Tool.h"
+#include "clang/Driver/ToolChain.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/StringSet.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/Support/Program.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cassert>
+using namespace clang::driver;
+using llvm::raw_ostream;
+using llvm::StringRef;
+using llvm::ArrayRef;
+
+Job::~Job() {}
+
+Command::Command(const Action &_Source, const Tool &_Creator,
+ const char *_Executable,
+ const ArgStringList &_Arguments)
+ : Job(CommandClass), Source(_Source), Creator(_Creator),
+ Executable(_Executable), Arguments(_Arguments),
+ ResponseFile(nullptr) {}
+
+static int skipArgs(const char *Flag, bool HaveCrashVFS) {
+ // These flags are all of the form -Flag <Arg> and are treated as two
+ // arguments. Therefore, we need to skip the flag and the next argument.
+ bool Res = llvm::StringSwitch<bool>(Flag)
+ .Cases("-I", "-MF", "-MT", "-MQ", true)
+ .Cases("-o", "-coverage-file", "-dependency-file", true)
+ .Cases("-fdebug-compilation-dir", "-idirafter", true)
+ .Cases("-include", "-include-pch", "-internal-isystem", true)
+ .Cases("-internal-externc-isystem", "-iprefix", "-iwithprefix", true)
+ .Cases("-iwithprefixbefore", "-isystem", "-iquote", true)
+ .Cases("-resource-dir", "-serialize-diagnostic-file", true)
+ .Cases("-dwarf-debug-flags", "-ivfsoverlay", true)
+ // Some include flags shouldn't be skipped if we have a crash VFS
+ .Case("-isysroot", !HaveCrashVFS)
+ .Default(false);
+
+ // Match found.
+ if (Res)
+ return 2;
+
+ // The remaining flags are treated as a single argument.
+
+ // These flags are all of the form -Flag and have no second argument.
+ Res = llvm::StringSwitch<bool>(Flag)
+ .Cases("-M", "-MM", "-MG", "-MP", "-MD", true)
+ .Case("-MMD", true)
+ .Default(false);
+
+ // Match found.
+ if (Res)
+ return 1;
+
+ // These flags are treated as a single argument (e.g., -F<Dir>).
+ StringRef FlagRef(Flag);
+ if (FlagRef.startswith("-F") || FlagRef.startswith("-I") ||
+ FlagRef.startswith("-fmodules-cache-path="))
+ return 1;
+
+ return 0;
+}
+
+static void PrintArg(raw_ostream &OS, const char *Arg, bool Quote) {
+ const bool Escape = std::strpbrk(Arg, "\"\\$");
+
+ if (!Quote && !Escape) {
+ OS << Arg;
+ return;
+ }
+
+ // Quote and escape. This isn't really complete, but good enough.
+ OS << '"';
+ while (const char c = *Arg++) {
+ if (c == '"' || c == '\\' || c == '$')
+ OS << '\\';
+ OS << c;
+ }
+ OS << '"';
+}
+
+void Command::writeResponseFile(raw_ostream &OS) const {
+ // In a file list, we only write the set of inputs to the response file
+ if (Creator.getResponseFilesSupport() == Tool::RF_FileList) {
+ for (const char *Arg : InputFileList) {
+ OS << Arg << '\n';
+ }
+ return;
+ }
+
+ // In regular response files, we send all arguments to the response file
+ for (const char *Arg : Arguments) {
+ OS << '"';
+
+ for (; *Arg != '\0'; Arg++) {
+ if (*Arg == '\"' || *Arg == '\\') {
+ OS << '\\';
+ }
+ OS << *Arg;
+ }
+
+ OS << "\" ";
+ }
+}
+
+void Command::buildArgvForResponseFile(
+ llvm::SmallVectorImpl<const char *> &Out) const {
+ // When not a file list, all arguments are sent to the response file.
+ // This leaves us to set the argv to a single parameter, requesting the tool
+ // to read the response file.
+ if (Creator.getResponseFilesSupport() != Tool::RF_FileList) {
+ Out.push_back(Executable);
+ Out.push_back(ResponseFileFlag.c_str());
+ return;
+ }
+
+ llvm::StringSet<> Inputs;
+ for (const char *InputName : InputFileList)
+ Inputs.insert(InputName);
+ Out.push_back(Executable);
+ // In a file list, build args vector ignoring parameters that will go in the
+ // response file (elements of the InputFileList vector)
+ bool FirstInput = true;
+ for (const char *Arg : Arguments) {
+ if (Inputs.count(Arg) == 0) {
+ Out.push_back(Arg);
+ } else if (FirstInput) {
+ FirstInput = false;
+ Out.push_back(Creator.getResponseFileFlag());
+ Out.push_back(ResponseFile);
+ }
+ }
+}
+
+void Command::Print(raw_ostream &OS, const char *Terminator, bool Quote,
+ CrashReportInfo *CrashInfo) const {
+ // Always quote the exe.
+ OS << ' ';
+ PrintArg(OS, Executable, /*Quote=*/true);
+
+ llvm::ArrayRef<const char *> Args = Arguments;
+ llvm::SmallVector<const char *, 128> ArgsRespFile;
+ if (ResponseFile != nullptr) {
+ buildArgvForResponseFile(ArgsRespFile);
+ Args = ArrayRef<const char *>(ArgsRespFile).slice(1); // no executable name
+ }
+
+ StringRef MainFilename;
+ // We'll need the argument to -main-file-name to find the input file name.
+ if (CrashInfo)
+ for (size_t I = 0, E = Args.size(); I + 1 < E; ++I)
+ if (StringRef(Args[I]).equals("-main-file-name"))
+ MainFilename = Args[I + 1];
+
+ bool HaveCrashVFS = CrashInfo && !CrashInfo->VFSPath.empty();
+ for (size_t i = 0, e = Args.size(); i < e; ++i) {
+ const char *const Arg = Args[i];
+
+ if (CrashInfo) {
+ if (int Skip = skipArgs(Arg, HaveCrashVFS)) {
+ i += Skip - 1;
+ continue;
+ } else if (llvm::sys::path::filename(Arg) == MainFilename &&
+ (i == 0 || StringRef(Args[i - 1]) != "-main-file-name")) {
+ // Replace the input file name with the crashinfo's file name.
+ OS << ' ';
+ StringRef ShortName = llvm::sys::path::filename(CrashInfo->Filename);
+ PrintArg(OS, ShortName.str().c_str(), Quote);
+ continue;
+ }
+ }
+
+ OS << ' ';
+ PrintArg(OS, Arg, Quote);
+ }
+
+ if (CrashInfo && HaveCrashVFS) {
+ OS << ' ';
+ PrintArg(OS, "-ivfsoverlay", Quote);
+ OS << ' ';
+ PrintArg(OS, CrashInfo->VFSPath.str().c_str(), Quote);
+ }
+
+ if (ResponseFile != nullptr) {
+ OS << "\n Arguments passed via response file:\n";
+ writeResponseFile(OS);
+ // Avoiding duplicated newline terminator, since FileLists are
+ // newline-separated.
+ if (Creator.getResponseFilesSupport() != Tool::RF_FileList)
+ OS << "\n";
+ OS << " (end of response file)";
+ }
+
+ OS << Terminator;
+}
+
+void Command::setResponseFile(const char *FileName) {
+ ResponseFile = FileName;
+ ResponseFileFlag = Creator.getResponseFileFlag();
+ ResponseFileFlag += FileName;
+}
+
+int Command::Execute(const StringRef **Redirects, std::string *ErrMsg,
+ bool *ExecutionFailed) const {
+ SmallVector<const char*, 128> Argv;
+
+ if (ResponseFile == nullptr) {
+ Argv.push_back(Executable);
+ Argv.append(Arguments.begin(), Arguments.end());
+ Argv.push_back(nullptr);
+
+ return llvm::sys::ExecuteAndWait(Executable, Argv.data(), /*env*/ nullptr,
+ Redirects, /*secondsToWait*/ 0,
+ /*memoryLimit*/ 0, ErrMsg,
+ ExecutionFailed);
+ }
+
+ // We need to put arguments in a response file (command is too large)
+ // Open stream to store the response file contents
+ std::string RespContents;
+ llvm::raw_string_ostream SS(RespContents);
+
+ // Write file contents and build the Argv vector
+ writeResponseFile(SS);
+ buildArgvForResponseFile(Argv);
+ Argv.push_back(nullptr);
+ SS.flush();
+
+ // Save the response file in the appropriate encoding
+ if (std::error_code EC = writeFileWithEncoding(
+ ResponseFile, RespContents, Creator.getResponseFileEncoding())) {
+ if (ErrMsg)
+ *ErrMsg = EC.message();
+ if (ExecutionFailed)
+ *ExecutionFailed = true;
+ return -1;
+ }
+
+ return llvm::sys::ExecuteAndWait(Executable, Argv.data(), /*env*/ nullptr,
+ Redirects, /*secondsToWait*/ 0,
+ /*memoryLimit*/ 0, ErrMsg, ExecutionFailed);
+}
+
+FallbackCommand::FallbackCommand(const Action &Source_, const Tool &Creator_,
+ const char *Executable_,
+ const ArgStringList &Arguments_,
+ std::unique_ptr<Command> Fallback_)
+ : Command(Source_, Creator_, Executable_, Arguments_),
+ Fallback(std::move(Fallback_)) {}
+
+void FallbackCommand::Print(raw_ostream &OS, const char *Terminator,
+ bool Quote, CrashReportInfo *CrashInfo) const {
+ Command::Print(OS, "", Quote, CrashInfo);
+ OS << " ||";
+ Fallback->Print(OS, Terminator, Quote, CrashInfo);
+}
+
+static bool ShouldFallback(int ExitCode) {
+ // FIXME: We really just want to fall back for internal errors, such
+ // as when some symbol cannot be mangled, when we should be able to
+ // parse something but can't, etc.
+ return ExitCode != 0;
+}
+
+int FallbackCommand::Execute(const StringRef **Redirects, std::string *ErrMsg,
+ bool *ExecutionFailed) const {
+ int PrimaryStatus = Command::Execute(Redirects, ErrMsg, ExecutionFailed);
+ if (!ShouldFallback(PrimaryStatus))
+ return PrimaryStatus;
+
+ // Clear ExecutionFailed and ErrMsg before falling back.
+ if (ErrMsg)
+ ErrMsg->clear();
+ if (ExecutionFailed)
+ *ExecutionFailed = false;
+
+ const Driver &D = getCreator().getToolChain().getDriver();
+ D.Diag(diag::warn_drv_invoking_fallback) << Fallback->getExecutable();
+
+ int SecondaryStatus = Fallback->Execute(Redirects, ErrMsg, ExecutionFailed);
+ return SecondaryStatus;
+}
+
+JobList::JobList() : Job(JobListClass) {}
+
+void JobList::Print(raw_ostream &OS, const char *Terminator, bool Quote,
+ CrashReportInfo *CrashInfo) const {
+ for (const auto &Job : *this)
+ Job.Print(OS, Terminator, Quote, CrashInfo);
+}
+
+void JobList::clear() { Jobs.clear(); }
diff --git a/contrib/llvm/tools/clang/lib/Driver/MSVCToolChain.cpp b/contrib/llvm/tools/clang/lib/Driver/MSVCToolChain.cpp
new file mode 100644
index 0000000..7739cb0
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Driver/MSVCToolChain.cpp
@@ -0,0 +1,497 @@
+//===--- ToolChains.cpp - ToolChain Implementations -----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ToolChains.h"
+#include "clang/Basic/CharInfo.h"
+#include "clang/Basic/Version.h"
+#include "clang/Driver/Compilation.h"
+#include "clang/Driver/Driver.h"
+#include "clang/Driver/DriverDiagnostic.h"
+#include "clang/Driver/Options.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Config/llvm-config.h"
+#include "llvm/Option/Arg.h"
+#include "llvm/Option/ArgList.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/Process.h"
+#include <cstdio>
+
+// Include the necessary headers to interface with the Windows registry and
+// environment.
+#if defined(LLVM_ON_WIN32)
+#define USE_WIN32
+#endif
+
+#ifdef USE_WIN32
+ #define WIN32_LEAN_AND_MEAN
+ #define NOGDI
+ #ifndef NOMINMAX
+ #define NOMINMAX
+ #endif
+ #include <windows.h>
+#endif
+
+using namespace clang::driver;
+using namespace clang::driver::toolchains;
+using namespace clang;
+using namespace llvm::opt;
+
+MSVCToolChain::MSVCToolChain(const Driver &D, const llvm::Triple& Triple,
+ const ArgList &Args)
+ : ToolChain(D, Triple, Args) {
+ getProgramPaths().push_back(getDriver().getInstalledDir());
+ if (getDriver().getInstalledDir() != getDriver().Dir)
+ getProgramPaths().push_back(getDriver().Dir);
+}
+
+Tool *MSVCToolChain::buildLinker() const {
+ return new tools::visualstudio::Link(*this);
+}
+
+Tool *MSVCToolChain::buildAssembler() const {
+ if (getTriple().isOSBinFormatMachO())
+ return new tools::darwin::Assemble(*this);
+ getDriver().Diag(clang::diag::err_no_external_assembler);
+ return nullptr;
+}
+
+bool MSVCToolChain::IsIntegratedAssemblerDefault() const {
+ return true;
+}
+
+bool MSVCToolChain::IsUnwindTablesDefault() const {
+ // Emit unwind tables by default on Win64. All non-x86_32 Windows platforms
+ // such as ARM and PPC actually require unwind tables, but LLVM doesn't know
+ // how to generate them yet.
+ return getArch() == llvm::Triple::x86_64;
+}
+
+bool MSVCToolChain::isPICDefault() const {
+ return getArch() == llvm::Triple::x86_64;
+}
+
+bool MSVCToolChain::isPIEDefault() const {
+ return false;
+}
+
+bool MSVCToolChain::isPICDefaultForced() const {
+ return getArch() == llvm::Triple::x86_64;
+}
+
+#ifdef USE_WIN32
+static bool readFullStringValue(HKEY hkey, const char *valueName,
+ std::string &value) {
+ // FIXME: We should be using the W versions of the registry functions, but
+ // doing so requires UTF8 / UTF16 conversions similar to how we handle command
+ // line arguments. The UTF8 conversion functions are not exposed publicly
+ // from LLVM though, so in order to do this we will probably need to create
+ // a registry abstraction in LLVMSupport that is Windows only.
+ DWORD result = 0;
+ DWORD valueSize = 0;
+ DWORD type = 0;
+ // First just query for the required size.
+ result = RegQueryValueEx(hkey, valueName, NULL, &type, NULL, &valueSize);
+ if (result != ERROR_SUCCESS || type != REG_SZ)
+ return false;
+ std::vector<BYTE> buffer(valueSize);
+ result = RegQueryValueEx(hkey, valueName, NULL, NULL, &buffer[0], &valueSize);
+ if (result == ERROR_SUCCESS)
+ value.assign(reinterpret_cast<const char *>(buffer.data()));
+ return result;
+}
+#endif
+
+/// \brief Read registry string.
+/// This also supports a means to look for high-versioned keys by use
+/// of a $VERSION placeholder in the key path.
+/// $VERSION in the key path is a placeholder for the version number,
+/// causing the highest value path to be searched for and used.
+/// I.e. "SOFTWARE\\Microsoft\\VisualStudio\\$VERSION".
+/// There can be additional characters in the component. Only the numeric
+/// characters are compared. This function only searches HKLM.
+static bool getSystemRegistryString(const char *keyPath, const char *valueName,
+ std::string &value, std::string *phValue) {
+#ifndef USE_WIN32
+ return false;
+#else
+ HKEY hRootKey = HKEY_LOCAL_MACHINE;
+ HKEY hKey = NULL;
+ long lResult;
+ bool returnValue = false;
+
+ const char *placeHolder = strstr(keyPath, "$VERSION");
+ std::string bestName;
+ // If we have a $VERSION placeholder, do the highest-version search.
+ if (placeHolder) {
+ const char *keyEnd = placeHolder - 1;
+ const char *nextKey = placeHolder;
+ // Find end of previous key.
+ while ((keyEnd > keyPath) && (*keyEnd != '\\'))
+ keyEnd--;
+ // Find end of key containing $VERSION.
+ while (*nextKey && (*nextKey != '\\'))
+ nextKey++;
+ size_t partialKeyLength = keyEnd - keyPath;
+ char partialKey[256];
+ if (partialKeyLength > sizeof(partialKey))
+ partialKeyLength = sizeof(partialKey);
+ strncpy(partialKey, keyPath, partialKeyLength);
+ partialKey[partialKeyLength] = '\0';
+ HKEY hTopKey = NULL;
+ lResult = RegOpenKeyEx(hRootKey, partialKey, 0, KEY_READ | KEY_WOW64_32KEY,
+ &hTopKey);
+ if (lResult == ERROR_SUCCESS) {
+ char keyName[256];
+ double bestValue = 0.0;
+ DWORD index, size = sizeof(keyName) - 1;
+ for (index = 0; RegEnumKeyEx(hTopKey, index, keyName, &size, NULL,
+ NULL, NULL, NULL) == ERROR_SUCCESS; index++) {
+ const char *sp = keyName;
+ while (*sp && !isDigit(*sp))
+ sp++;
+ if (!*sp)
+ continue;
+ const char *ep = sp + 1;
+ while (*ep && (isDigit(*ep) || (*ep == '.')))
+ ep++;
+ char numBuf[32];
+ strncpy(numBuf, sp, sizeof(numBuf) - 1);
+ numBuf[sizeof(numBuf) - 1] = '\0';
+ double dvalue = strtod(numBuf, NULL);
+ if (dvalue > bestValue) {
+ // Test that InstallDir is indeed there before keeping this index.
+ // Open the chosen key path remainder.
+ bestName = keyName;
+ // Append rest of key.
+ bestName.append(nextKey);
+ lResult = RegOpenKeyEx(hTopKey, bestName.c_str(), 0,
+ KEY_READ | KEY_WOW64_32KEY, &hKey);
+ if (lResult == ERROR_SUCCESS) {
+ lResult = readFullStringValue(hKey, valueName, value);
+ if (lResult == ERROR_SUCCESS) {
+ bestValue = dvalue;
+ if (phValue)
+ *phValue = bestName;
+ returnValue = true;
+ }
+ RegCloseKey(hKey);
+ }
+ }
+ size = sizeof(keyName) - 1;
+ }
+ RegCloseKey(hTopKey);
+ }
+ } else {
+ lResult =
+ RegOpenKeyEx(hRootKey, keyPath, 0, KEY_READ | KEY_WOW64_32KEY, &hKey);
+ if (lResult == ERROR_SUCCESS) {
+ lResult = readFullStringValue(hKey, valueName, value);
+ if (lResult == ERROR_SUCCESS)
+ returnValue = true;
+ if (phValue)
+ phValue->clear();
+ RegCloseKey(hKey);
+ }
+ }
+ return returnValue;
+#endif // USE_WIN32
+}
+
+/// \brief Get Windows SDK installation directory.
+bool MSVCToolChain::getWindowsSDKDir(std::string &path, int &major,
+ int &minor) const {
+ std::string sdkVersion;
+ // Try the Windows registry.
+ bool hasSDKDir = getSystemRegistryString(
+ "SOFTWARE\\Microsoft\\Microsoft SDKs\\Windows\\$VERSION",
+ "InstallationFolder", path, &sdkVersion);
+ if (!sdkVersion.empty())
+ std::sscanf(sdkVersion.c_str(), "v%d.%d", &major, &minor);
+ return hasSDKDir && !path.empty();
+}
+
+// Gets the library path required to link against the Windows SDK.
+bool MSVCToolChain::getWindowsSDKLibraryPath(std::string &path) const {
+ std::string sdkPath;
+ int sdkMajor = 0;
+ int sdkMinor = 0;
+
+ path.clear();
+ if (!getWindowsSDKDir(sdkPath, sdkMajor, sdkMinor))
+ return false;
+
+ llvm::SmallString<128> libPath(sdkPath);
+ llvm::sys::path::append(libPath, "Lib");
+ if (sdkMajor <= 7) {
+ switch (getArch()) {
+ // In Windows SDK 7.x, x86 libraries are directly in the Lib folder.
+ case llvm::Triple::x86:
+ break;
+ case llvm::Triple::x86_64:
+ llvm::sys::path::append(libPath, "x64");
+ break;
+ case llvm::Triple::arm:
+ // It is not necessary to link against Windows SDK 7.x when targeting ARM.
+ return false;
+ default:
+ return false;
+ }
+ } else {
+ // Windows SDK 8.x installs libraries in a folder whose names depend on the
+ // version of the OS you're targeting. By default choose the newest, which
+ // usually corresponds to the version of the OS you've installed the SDK on.
+ const char *tests[] = {"winv6.3", "win8", "win7"};
+ bool found = false;
+ for (const char *test : tests) {
+ llvm::SmallString<128> testPath(libPath);
+ llvm::sys::path::append(testPath, test);
+ if (llvm::sys::fs::exists(testPath.c_str())) {
+ libPath = testPath;
+ found = true;
+ break;
+ }
+ }
+
+ if (!found)
+ return false;
+
+ llvm::sys::path::append(libPath, "um");
+ switch (getArch()) {
+ case llvm::Triple::x86:
+ llvm::sys::path::append(libPath, "x86");
+ break;
+ case llvm::Triple::x86_64:
+ llvm::sys::path::append(libPath, "x64");
+ break;
+ case llvm::Triple::arm:
+ llvm::sys::path::append(libPath, "arm");
+ break;
+ default:
+ return false;
+ }
+ }
+
+ path = libPath.str();
+ return true;
+}
+
+// Get the location to use for Visual Studio binaries. The location priority
+// is: %VCINSTALLDIR% > %PATH% > newest copy of Visual Studio installed on
+// system (as reported by the registry).
+bool MSVCToolChain::getVisualStudioBinariesFolder(const char *clangProgramPath,
+ std::string &path) const {
+ path.clear();
+
+ SmallString<128> BinDir;
+
+ // First check the environment variables that vsvars32.bat sets.
+ llvm::Optional<std::string> VcInstallDir =
+ llvm::sys::Process::GetEnv("VCINSTALLDIR");
+ if (VcInstallDir.hasValue()) {
+ BinDir = VcInstallDir.getValue();
+ llvm::sys::path::append(BinDir, "bin");
+ } else {
+ // Next walk the PATH, trying to find a cl.exe in the path. If we find one,
+ // use that. However, make sure it's not clang's cl.exe.
+ llvm::Optional<std::string> OptPath = llvm::sys::Process::GetEnv("PATH");
+ if (OptPath.hasValue()) {
+ const char EnvPathSeparatorStr[] = {llvm::sys::EnvPathSeparator, '\0'};
+ SmallVector<StringRef, 8> PathSegments;
+ llvm::SplitString(OptPath.getValue(), PathSegments, EnvPathSeparatorStr);
+
+ for (StringRef PathSegment : PathSegments) {
+ if (PathSegment.empty())
+ continue;
+
+ SmallString<128> FilePath(PathSegment);
+ llvm::sys::path::append(FilePath, "cl.exe");
+ if (llvm::sys::fs::can_execute(FilePath.c_str()) &&
+ !llvm::sys::fs::equivalent(FilePath.c_str(), clangProgramPath)) {
+ // If we found it on the PATH, use it exactly as is with no
+ // modifications.
+ path = PathSegment;
+ return true;
+ }
+ }
+ }
+
+ std::string installDir;
+ // With no VCINSTALLDIR and nothing on the PATH, if we can't find it in the
+ // registry then we have no choice but to fail.
+ if (!getVisualStudioInstallDir(installDir))
+ return false;
+
+ // Regardless of what binary we're ultimately trying to find, we make sure
+ // that this is a Visual Studio directory by checking for cl.exe. We use
+ // cl.exe instead of other binaries like link.exe because programs such as
+ // GnuWin32 also have a utility called link.exe, so cl.exe is the least
+ // ambiguous.
+ BinDir = installDir;
+ llvm::sys::path::append(BinDir, "VC", "bin");
+ SmallString<128> ClPath(BinDir);
+ llvm::sys::path::append(ClPath, "cl.exe");
+
+ if (!llvm::sys::fs::can_execute(ClPath.c_str()))
+ return false;
+ }
+
+ if (BinDir.empty())
+ return false;
+
+ switch (getArch()) {
+ case llvm::Triple::x86:
+ break;
+ case llvm::Triple::x86_64:
+ llvm::sys::path::append(BinDir, "amd64");
+ break;
+ case llvm::Triple::arm:
+ llvm::sys::path::append(BinDir, "arm");
+ break;
+ default:
+ // Whatever this is, Visual Studio doesn't have a toolchain for it.
+ return false;
+ }
+ path = BinDir.str();
+ return true;
+}
+
+// Get Visual Studio installation directory.
+bool MSVCToolChain::getVisualStudioInstallDir(std::string &path) const {
+ // First check the environment variables that vsvars32.bat sets.
+ const char *vcinstalldir = getenv("VCINSTALLDIR");
+ if (vcinstalldir) {
+ path = vcinstalldir;
+ path = path.substr(0, path.find("\\VC"));
+ return true;
+ }
+
+ std::string vsIDEInstallDir;
+ std::string vsExpressIDEInstallDir;
+ // Then try the windows registry.
+ bool hasVCDir =
+ getSystemRegistryString("SOFTWARE\\Microsoft\\VisualStudio\\$VERSION",
+ "InstallDir", vsIDEInstallDir, nullptr);
+ if (hasVCDir && !vsIDEInstallDir.empty()) {
+ path = vsIDEInstallDir.substr(0, vsIDEInstallDir.find("\\Common7\\IDE"));
+ return true;
+ }
+
+ bool hasVCExpressDir =
+ getSystemRegistryString("SOFTWARE\\Microsoft\\VCExpress\\$VERSION",
+ "InstallDir", vsExpressIDEInstallDir, nullptr);
+ if (hasVCExpressDir && !vsExpressIDEInstallDir.empty()) {
+ path = vsExpressIDEInstallDir.substr(
+ 0, vsIDEInstallDir.find("\\Common7\\IDE"));
+ return true;
+ }
+
+ // Try the environment.
+ const char *vs120comntools = getenv("VS120COMNTOOLS");
+ const char *vs100comntools = getenv("VS100COMNTOOLS");
+ const char *vs90comntools = getenv("VS90COMNTOOLS");
+ const char *vs80comntools = getenv("VS80COMNTOOLS");
+
+ const char *vscomntools = nullptr;
+
+ // Find any version we can
+ if (vs120comntools)
+ vscomntools = vs120comntools;
+ else if (vs100comntools)
+ vscomntools = vs100comntools;
+ else if (vs90comntools)
+ vscomntools = vs90comntools;
+ else if (vs80comntools)
+ vscomntools = vs80comntools;
+
+ if (vscomntools && *vscomntools) {
+ const char *p = strstr(vscomntools, "\\Common7\\Tools");
+ path = p ? std::string(vscomntools, p) : vscomntools;
+ return true;
+ }
+ return false;
+}
+
+void MSVCToolChain::AddSystemIncludeWithSubfolder(const ArgList &DriverArgs,
+ ArgStringList &CC1Args,
+ const std::string &folder,
+ const char *subfolder) const {
+ llvm::SmallString<128> path(folder);
+ llvm::sys::path::append(path, subfolder);
+ addSystemInclude(DriverArgs, CC1Args, path);
+}
+
+void MSVCToolChain::AddClangSystemIncludeArgs(const ArgList &DriverArgs,
+ ArgStringList &CC1Args) const {
+ if (DriverArgs.hasArg(options::OPT_nostdinc))
+ return;
+
+ if (!DriverArgs.hasArg(options::OPT_nobuiltininc)) {
+ SmallString<128> P(getDriver().ResourceDir);
+ llvm::sys::path::append(P, "include");
+ addSystemInclude(DriverArgs, CC1Args, P);
+ }
+
+ if (DriverArgs.hasArg(options::OPT_nostdlibinc))
+ return;
+
+ // Honor %INCLUDE%. It should know essential search paths with vcvarsall.bat.
+ if (const char *cl_include_dir = getenv("INCLUDE")) {
+ SmallVector<StringRef, 8> Dirs;
+ StringRef(cl_include_dir)
+ .split(Dirs, ";", /*MaxSplit=*/-1, /*KeepEmpty=*/false);
+ for (StringRef Dir : Dirs)
+ addSystemInclude(DriverArgs, CC1Args, Dir);
+ if (!Dirs.empty())
+ return;
+ }
+
+ std::string VSDir;
+
+ // When built with access to the proper Windows APIs, try to actually find
+ // the correct include paths first.
+ if (getVisualStudioInstallDir(VSDir)) {
+ AddSystemIncludeWithSubfolder(DriverArgs, CC1Args, VSDir, "VC\\include");
+
+ std::string WindowsSDKDir;
+ int major, minor;
+ if (getWindowsSDKDir(WindowsSDKDir, major, minor)) {
+ if (major >= 8) {
+ AddSystemIncludeWithSubfolder(DriverArgs, CC1Args, WindowsSDKDir,
+ "include\\shared");
+ AddSystemIncludeWithSubfolder(DriverArgs, CC1Args, WindowsSDKDir,
+ "include\\um");
+ AddSystemIncludeWithSubfolder(DriverArgs, CC1Args, WindowsSDKDir,
+ "include\\winrt");
+ } else {
+ AddSystemIncludeWithSubfolder(DriverArgs, CC1Args, WindowsSDKDir,
+ "include");
+ }
+ } else {
+ addSystemInclude(DriverArgs, CC1Args, VSDir);
+ }
+ return;
+ }
+
+ // As a fallback, select default install paths.
+ // FIXME: Don't guess drives and paths like this on Windows.
+ const StringRef Paths[] = {
+ "C:/Program Files/Microsoft Visual Studio 10.0/VC/include",
+ "C:/Program Files/Microsoft Visual Studio 9.0/VC/include",
+ "C:/Program Files/Microsoft Visual Studio 9.0/VC/PlatformSDK/Include",
+ "C:/Program Files/Microsoft Visual Studio 8/VC/include",
+ "C:/Program Files/Microsoft Visual Studio 8/VC/PlatformSDK/Include"
+ };
+ addSystemIncludes(DriverArgs, CC1Args, Paths);
+}
+
+void MSVCToolChain::AddClangCXXStdlibIncludeArgs(const ArgList &DriverArgs,
+ ArgStringList &CC1Args) const {
+ // FIXME: There should probably be logic here to find libc++ on Windows.
+}
diff --git a/contrib/llvm/tools/clang/lib/Driver/Multilib.cpp b/contrib/llvm/tools/clang/lib/Driver/Multilib.cpp
new file mode 100644
index 0000000..8acda67
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Driver/Multilib.cpp
@@ -0,0 +1,295 @@
+//===--- Multilib.cpp - Multilib Implementation ---------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Driver/Multilib.h"
+#include "Tools.h"
+#include "clang/Driver/Options.h"
+#include "llvm/ADT/StringMap.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/StringSet.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/Option/Arg.h"
+#include "llvm/Option/ArgList.h"
+#include "llvm/Option/OptTable.h"
+#include "llvm/Option/Option.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/Regex.h"
+#include "llvm/Support/YAMLParser.h"
+#include "llvm/Support/YAMLTraits.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+
+using namespace clang::driver;
+using namespace clang;
+using namespace llvm::opt;
+using namespace llvm::sys;
+
+/// normalize Segment to "/foo/bar" or "".
+static void normalizePathSegment(std::string &Segment) {
+ StringRef seg = Segment;
+
+ // Prune trailing "/" or "./"
+ while (1) {
+ StringRef last = path::filename(seg);
+ if (last != ".")
+ break;
+ seg = path::parent_path(seg);
+ }
+
+ if (seg.empty() || seg == "/") {
+ Segment = "";
+ return;
+ }
+
+ // Add leading '/'
+ if (seg.front() != '/') {
+ Segment = "/" + seg.str();
+ } else {
+ Segment = seg;
+ }
+}
+
+Multilib::Multilib(StringRef GCCSuffix, StringRef OSSuffix,
+ StringRef IncludeSuffix)
+ : GCCSuffix(GCCSuffix), OSSuffix(OSSuffix), IncludeSuffix(IncludeSuffix) {
+ normalizePathSegment(this->GCCSuffix);
+ normalizePathSegment(this->OSSuffix);
+ normalizePathSegment(this->IncludeSuffix);
+}
+
+Multilib &Multilib::gccSuffix(StringRef S) {
+ GCCSuffix = S;
+ normalizePathSegment(GCCSuffix);
+ return *this;
+}
+
+Multilib &Multilib::osSuffix(StringRef S) {
+ OSSuffix = S;
+ normalizePathSegment(OSSuffix);
+ return *this;
+}
+
+Multilib &Multilib::includeSuffix(StringRef S) {
+ IncludeSuffix = S;
+ normalizePathSegment(IncludeSuffix);
+ return *this;
+}
+
+void Multilib::print(raw_ostream &OS) const {
+ assert(GCCSuffix.empty() || (StringRef(GCCSuffix).front() == '/'));
+ if (GCCSuffix.empty())
+ OS << ".";
+ else {
+ OS << StringRef(GCCSuffix).drop_front();
+ }
+ OS << ";";
+ for (StringRef Flag : Flags) {
+ if (Flag.front() == '+')
+ OS << "@" << Flag.substr(1);
+ }
+}
+
+bool Multilib::isValid() const {
+ llvm::StringMap<int> FlagSet;
+ for (unsigned I = 0, N = Flags.size(); I != N; ++I) {
+ StringRef Flag(Flags[I]);
+ llvm::StringMap<int>::iterator SI = FlagSet.find(Flag.substr(1));
+
+ assert(StringRef(Flag).front() == '+' || StringRef(Flag).front() == '-');
+
+ if (SI == FlagSet.end())
+ FlagSet[Flag.substr(1)] = I;
+ else if (Flags[I] != Flags[SI->getValue()])
+ return false;
+ }
+ return true;
+}
+
+bool Multilib::operator==(const Multilib &Other) const {
+ // Check whether the flags sets match
+ // allowing for the match to be order invariant
+ llvm::StringSet<> MyFlags;
+ for (const auto &Flag : Flags)
+ MyFlags.insert(Flag);
+
+ for (const auto &Flag : Other.Flags)
+ if (MyFlags.find(Flag) == MyFlags.end())
+ return false;
+
+ if (osSuffix() != Other.osSuffix())
+ return false;
+
+ if (gccSuffix() != Other.gccSuffix())
+ return false;
+
+ if (includeSuffix() != Other.includeSuffix())
+ return false;
+
+ return true;
+}
+
+raw_ostream &clang::driver::operator<<(raw_ostream &OS, const Multilib &M) {
+ M.print(OS);
+ return OS;
+}
+
+MultilibSet &MultilibSet::Maybe(const Multilib &M) {
+ Multilib Opposite;
+ // Negate any '+' flags
+ for (StringRef Flag : M.flags()) {
+ if (Flag.front() == '+')
+ Opposite.flags().push_back(("-" + Flag.substr(1)).str());
+ }
+ return Either(M, Opposite);
+}
+
+MultilibSet &MultilibSet::Either(const Multilib &M1, const Multilib &M2) {
+ return Either({M1, M2});
+}
+
+MultilibSet &MultilibSet::Either(const Multilib &M1, const Multilib &M2,
+ const Multilib &M3) {
+ return Either({M1, M2, M3});
+}
+
+MultilibSet &MultilibSet::Either(const Multilib &M1, const Multilib &M2,
+ const Multilib &M3, const Multilib &M4) {
+ return Either({M1, M2, M3, M4});
+}
+
+MultilibSet &MultilibSet::Either(const Multilib &M1, const Multilib &M2,
+ const Multilib &M3, const Multilib &M4,
+ const Multilib &M5) {
+ return Either({M1, M2, M3, M4, M5});
+}
+
+static Multilib compose(const Multilib &Base, const Multilib &New) {
+ SmallString<128> GCCSuffix;
+ llvm::sys::path::append(GCCSuffix, "/", Base.gccSuffix(), New.gccSuffix());
+ SmallString<128> OSSuffix;
+ llvm::sys::path::append(OSSuffix, "/", Base.osSuffix(), New.osSuffix());
+ SmallString<128> IncludeSuffix;
+ llvm::sys::path::append(IncludeSuffix, "/", Base.includeSuffix(),
+ New.includeSuffix());
+
+ Multilib Composed(GCCSuffix, OSSuffix, IncludeSuffix);
+
+ Multilib::flags_list &Flags = Composed.flags();
+
+ Flags.insert(Flags.end(), Base.flags().begin(), Base.flags().end());
+ Flags.insert(Flags.end(), New.flags().begin(), New.flags().end());
+
+ return Composed;
+}
+
+MultilibSet &MultilibSet::Either(ArrayRef<Multilib> MultilibSegments) {
+ multilib_list Composed;
+
+ if (Multilibs.empty())
+ Multilibs.insert(Multilibs.end(), MultilibSegments.begin(),
+ MultilibSegments.end());
+ else {
+ for (const Multilib &New : MultilibSegments) {
+ for (const Multilib &Base : *this) {
+ Multilib MO = compose(Base, New);
+ if (MO.isValid())
+ Composed.push_back(MO);
+ }
+ }
+
+ Multilibs = Composed;
+ }
+
+ return *this;
+}
+
+MultilibSet &MultilibSet::FilterOut(FilterCallback F) {
+ filterInPlace(F, Multilibs);
+ return *this;
+}
+
+MultilibSet &MultilibSet::FilterOut(const char *Regex) {
+ llvm::Regex R(Regex);
+#ifndef NDEBUG
+ std::string Error;
+ if (!R.isValid(Error)) {
+ llvm::errs() << Error;
+ llvm_unreachable("Invalid regex!");
+ }
+#endif
+
+ filterInPlace([&R](const Multilib &M) { return R.match(M.gccSuffix()); },
+ Multilibs);
+ return *this;
+}
+
+void MultilibSet::push_back(const Multilib &M) { Multilibs.push_back(M); }
+
+void MultilibSet::combineWith(const MultilibSet &Other) {
+ Multilibs.insert(Multilibs.end(), Other.begin(), Other.end());
+}
+
+static bool isFlagEnabled(StringRef Flag) {
+ char Indicator = Flag.front();
+ assert(Indicator == '+' || Indicator == '-');
+ return Indicator == '+';
+}
+
+bool MultilibSet::select(const Multilib::flags_list &Flags, Multilib &M) const {
+ llvm::StringMap<bool> FlagSet;
+
+ // Stuff all of the flags into the FlagSet such that a true mappend indicates
+ // the flag was enabled, and a false mappend indicates the flag was disabled.
+ for (StringRef Flag : Flags)
+ FlagSet[Flag.substr(1)] = isFlagEnabled(Flag);
+
+ multilib_list Filtered = filterCopy([&FlagSet](const Multilib &M) {
+ for (StringRef Flag : M.flags()) {
+ llvm::StringMap<bool>::const_iterator SI = FlagSet.find(Flag.substr(1));
+ if (SI != FlagSet.end())
+ if (SI->getValue() != isFlagEnabled(Flag))
+ return true;
+ }
+ return false;
+ }, Multilibs);
+
+ if (Filtered.size() == 0) {
+ return false;
+ } else if (Filtered.size() == 1) {
+ M = Filtered[0];
+ return true;
+ }
+
+ // TODO: pick the "best" multlib when more than one is suitable
+ assert(false);
+
+ return false;
+}
+
+void MultilibSet::print(raw_ostream &OS) const {
+ for (const Multilib &M : *this)
+ OS << M << "\n";
+}
+
+MultilibSet::multilib_list MultilibSet::filterCopy(FilterCallback F,
+ const multilib_list &Ms) {
+ multilib_list Copy(Ms);
+ filterInPlace(F, Copy);
+ return Copy;
+}
+
+void MultilibSet::filterInPlace(FilterCallback F, multilib_list &Ms) {
+ Ms.erase(std::remove_if(Ms.begin(), Ms.end(), F), Ms.end());
+}
+
+raw_ostream &clang::driver::operator<<(raw_ostream &OS, const MultilibSet &MS) {
+ MS.print(OS);
+ return OS;
+}
diff --git a/contrib/llvm/tools/clang/lib/Driver/Phases.cpp b/contrib/llvm/tools/clang/lib/Driver/Phases.cpp
new file mode 100644
index 0000000..7ae2708
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Driver/Phases.cpp
@@ -0,0 +1,27 @@
+//===--- Phases.cpp - Transformations on Driver Types ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Driver/Phases.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <cassert>
+
+using namespace clang::driver;
+
+const char *phases::getPhaseName(ID Id) {
+ switch (Id) {
+ case Preprocess: return "preprocessor";
+ case Precompile: return "precompiler";
+ case Compile: return "compiler";
+ case Backend: return "backend";
+ case Assemble: return "assembler";
+ case Link: return "linker";
+ }
+
+ llvm_unreachable("Invalid phase id.");
+}
diff --git a/contrib/llvm/tools/clang/lib/Driver/SanitizerArgs.cpp b/contrib/llvm/tools/clang/lib/Driver/SanitizerArgs.cpp
new file mode 100644
index 0000000..72530b4
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Driver/SanitizerArgs.cpp
@@ -0,0 +1,613 @@
+//===--- SanitizerArgs.cpp - Arguments for sanitizer tools ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/Driver/SanitizerArgs.h"
+#include "clang/Basic/Sanitizers.h"
+#include "clang/Driver/Driver.h"
+#include "clang/Driver/DriverDiagnostic.h"
+#include "clang/Driver/Options.h"
+#include "clang/Driver/ToolChain.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/SpecialCaseList.h"
+#include <memory>
+
+using namespace clang;
+using namespace clang::SanitizerKind;
+using namespace clang::driver;
+using namespace llvm::opt;
+
+enum : SanitizerMask {
+ NeedsUbsanRt = Undefined | Integer,
+ NotAllowedWithTrap = Vptr,
+ RequiresPIE = Memory | DataFlow,
+ NeedsUnwindTables = Address | Thread | Memory | DataFlow,
+ SupportsCoverage = Address | Memory | Leak | Undefined | Integer | DataFlow,
+ RecoverableByDefault = Undefined | Integer,
+ Unrecoverable = Address | Unreachable | Return,
+ LegacyFsanitizeRecoverMask = Undefined | Integer,
+ NeedsLTO = CFI,
+};
+
+enum CoverageFeature {
+ CoverageFunc = 1 << 0,
+ CoverageBB = 1 << 1,
+ CoverageEdge = 1 << 2,
+ CoverageIndirCall = 1 << 3,
+ CoverageTraceBB = 1 << 4,
+ CoverageTraceCmp = 1 << 5,
+ Coverage8bitCounters = 1 << 6,
+};
+
+/// Parse a -fsanitize= or -fno-sanitize= argument's values, diagnosing any
+/// invalid components. Returns a SanitizerMask.
+static SanitizerMask parseArgValues(const Driver &D, const llvm::opt::Arg *A,
+ bool DiagnoseErrors);
+
+/// Parse -f(no-)?sanitize-coverage= flag values, diagnosing any invalid
+/// components. Returns OR of members of \c CoverageFeature enumeration.
+static int parseCoverageFeatures(const Driver &D, const llvm::opt::Arg *A);
+
+/// Produce an argument string from ArgList \p Args, which shows how it
+/// provides some sanitizer kind from \p Mask. For example, the argument list
+/// "-fsanitize=thread,vptr -fsanitize=address" with mask \c NeedsUbsanRt
+/// would produce "-fsanitize=vptr".
+static std::string lastArgumentForMask(const Driver &D,
+ const llvm::opt::ArgList &Args,
+ SanitizerMask Mask);
+
+/// Produce an argument string from argument \p A, which shows how it provides
+/// a value in \p Mask. For instance, the argument
+/// "-fsanitize=address,alignment" with mask \c NeedsUbsanRt would produce
+/// "-fsanitize=alignment".
+static std::string describeSanitizeArg(const llvm::opt::Arg *A,
+ SanitizerMask Mask);
+
+/// Produce a string containing comma-separated names of sanitizers in \p
+/// Sanitizers set.
+static std::string toString(const clang::SanitizerSet &Sanitizers);
+
+static SanitizerMask getToolchainUnsupportedKinds(const ToolChain &TC) {
+ bool IsFreeBSD = TC.getTriple().getOS() == llvm::Triple::FreeBSD;
+ bool IsLinux = TC.getTriple().getOS() == llvm::Triple::Linux;
+ bool IsX86 = TC.getTriple().getArch() == llvm::Triple::x86;
+ bool IsX86_64 = TC.getTriple().getArch() == llvm::Triple::x86_64;
+ bool IsMIPS64 = TC.getTriple().getArch() == llvm::Triple::mips64 ||
+ TC.getTriple().getArch() == llvm::Triple::mips64el;
+
+ SanitizerMask Unsupported = 0;
+ if (!(IsLinux && (IsX86_64 || IsMIPS64))) {
+ Unsupported |= Memory | DataFlow;
+ }
+ if (!((IsLinux || IsFreeBSD) && (IsX86_64 || IsMIPS64))) {
+ Unsupported |= Thread;
+ }
+ if (!(IsLinux && (IsX86 || IsX86_64))) {
+ Unsupported |= Function;
+ }
+ return Unsupported;
+}
+
+static bool getDefaultBlacklist(const Driver &D, SanitizerMask Kinds,
+ std::string &BLPath) {
+ const char *BlacklistFile = nullptr;
+ if (Kinds & Address)
+ BlacklistFile = "asan_blacklist.txt";
+ else if (Kinds & Memory)
+ BlacklistFile = "msan_blacklist.txt";
+ else if (Kinds & Thread)
+ BlacklistFile = "tsan_blacklist.txt";
+ else if (Kinds & DataFlow)
+ BlacklistFile = "dfsan_abilist.txt";
+
+ if (BlacklistFile) {
+ clang::SmallString<64> Path(D.ResourceDir);
+ llvm::sys::path::append(Path, BlacklistFile);
+ BLPath = Path.str();
+ return true;
+ }
+ return false;
+}
+
+bool SanitizerArgs::needsUbsanRt() const {
+ return !UbsanTrapOnError && (Sanitizers.Mask & NeedsUbsanRt) &&
+ !Sanitizers.has(Address) &&
+ !Sanitizers.has(Memory) &&
+ !Sanitizers.has(Thread);
+}
+
+bool SanitizerArgs::requiresPIE() const {
+ return AsanZeroBaseShadow || (Sanitizers.Mask & RequiresPIE);
+}
+
+bool SanitizerArgs::needsUnwindTables() const {
+ return Sanitizers.Mask & NeedsUnwindTables;
+}
+
+bool SanitizerArgs::needsLTO() const {
+ return Sanitizers.Mask & NeedsLTO;
+}
+
+void SanitizerArgs::clear() {
+ Sanitizers.clear();
+ RecoverableSanitizers.clear();
+ BlacklistFiles.clear();
+ CoverageFeatures = 0;
+ MsanTrackOrigins = 0;
+ AsanFieldPadding = 0;
+ AsanZeroBaseShadow = false;
+ UbsanTrapOnError = false;
+ AsanSharedRuntime = false;
+ LinkCXXRuntimes = false;
+}
+
+SanitizerArgs::SanitizerArgs(const ToolChain &TC,
+ const llvm::opt::ArgList &Args) {
+ clear();
+ SanitizerMask AllRemove = 0; // During the loop below, the accumulated set of
+ // sanitizers disabled by the current sanitizer
+ // argument or any argument after it.
+ SanitizerMask AllAddedKinds = 0; // Mask of all sanitizers ever enabled by
+ // -fsanitize= flags (directly or via group
+ // expansion), some of which may be disabled
+ // later. Used to carefully prune
+ // unused-argument diagnostics.
+ SanitizerMask DiagnosedKinds = 0; // All Kinds we have diagnosed up to now.
+ // Used to deduplicate diagnostics.
+ SanitizerMask Kinds = 0;
+ SanitizerMask NotSupported = getToolchainUnsupportedKinds(TC);
+ ToolChain::RTTIMode RTTIMode = TC.getRTTIMode();
+
+ const Driver &D = TC.getDriver();
+ for (ArgList::const_reverse_iterator I = Args.rbegin(), E = Args.rend();
+ I != E; ++I) {
+ const auto *Arg = *I;
+ if (Arg->getOption().matches(options::OPT_fsanitize_EQ)) {
+ Arg->claim();
+ SanitizerMask Add = parseArgValues(D, Arg, true);
+ AllAddedKinds |= expandSanitizerGroups(Add);
+
+ // Avoid diagnosing any sanitizer which is disabled later.
+ Add &= ~AllRemove;
+ // At this point we have not expanded groups, so any unsupported
+ // sanitizers in Add are those which have been explicitly enabled.
+ // Diagnose them.
+ if (SanitizerMask KindsToDiagnose =
+ Add & NotSupported & ~DiagnosedKinds) {
+ // Only diagnose the new kinds.
+ std::string Desc = describeSanitizeArg(*I, KindsToDiagnose);
+ D.Diag(diag::err_drv_unsupported_opt_for_target)
+ << Desc << TC.getTriple().str();
+ DiagnosedKinds |= KindsToDiagnose;
+ }
+ Add &= ~NotSupported;
+
+ // Test for -fno-rtti + explicit -fsanitizer=vptr before expanding groups
+ // so we don't error out if -fno-rtti and -fsanitize=undefined were
+ // passed.
+ if (Add & Vptr &&
+ (RTTIMode == ToolChain::RM_DisabledImplicitly ||
+ RTTIMode == ToolChain::RM_DisabledExplicitly)) {
+ if (RTTIMode == ToolChain::RM_DisabledImplicitly)
+ // Warn about not having rtti enabled if the vptr sanitizer is
+ // explicitly enabled
+ D.Diag(diag::warn_drv_disabling_vptr_no_rtti_default);
+ else {
+ const llvm::opt::Arg *NoRTTIArg = TC.getRTTIArg();
+ assert(NoRTTIArg &&
+ "RTTI disabled explicitly but we have no argument!");
+ D.Diag(diag::err_drv_argument_not_allowed_with)
+ << "-fsanitize=vptr" << NoRTTIArg->getAsString(Args);
+ }
+
+ // Take out the Vptr sanitizer from the enabled sanitizers
+ AllRemove |= Vptr;
+ }
+
+ Add = expandSanitizerGroups(Add);
+ // Group expansion may have enabled a sanitizer which is disabled later.
+ Add &= ~AllRemove;
+ // Silently discard any unsupported sanitizers implicitly enabled through
+ // group expansion.
+ Add &= ~NotSupported;
+
+ Kinds |= Add;
+ } else if (Arg->getOption().matches(options::OPT_fno_sanitize_EQ)) {
+ Arg->claim();
+ SanitizerMask Remove = parseArgValues(D, Arg, true);
+ AllRemove |= expandSanitizerGroups(Remove);
+ }
+ }
+
+ // We disable the vptr sanitizer if it was enabled by group expansion but RTTI
+ // is disabled.
+ if ((Kinds & Vptr) &&
+ (RTTIMode == ToolChain::RM_DisabledImplicitly ||
+ RTTIMode == ToolChain::RM_DisabledExplicitly)) {
+ Kinds &= ~Vptr;
+ }
+
+ // Warn about undefined sanitizer options that require runtime support.
+ UbsanTrapOnError =
+ Args.hasFlag(options::OPT_fsanitize_undefined_trap_on_error,
+ options::OPT_fno_sanitize_undefined_trap_on_error, false);
+ if (UbsanTrapOnError && (Kinds & NotAllowedWithTrap)) {
+ D.Diag(clang::diag::err_drv_argument_not_allowed_with)
+ << lastArgumentForMask(D, Args, NotAllowedWithTrap)
+ << "-fsanitize-undefined-trap-on-error";
+ Kinds &= ~NotAllowedWithTrap;
+ }
+
+ // Warn about incompatible groups of sanitizers.
+ std::pair<SanitizerMask, SanitizerMask> IncompatibleGroups[] = {
+ std::make_pair(Address, Thread), std::make_pair(Address, Memory),
+ std::make_pair(Thread, Memory), std::make_pair(Leak, Thread),
+ std::make_pair(Leak, Memory)};
+ for (auto G : IncompatibleGroups) {
+ SanitizerMask Group = G.first;
+ if (Kinds & Group) {
+ if (SanitizerMask Incompatible = Kinds & G.second) {
+ D.Diag(clang::diag::err_drv_argument_not_allowed_with)
+ << lastArgumentForMask(D, Args, Group)
+ << lastArgumentForMask(D, Args, Incompatible);
+ Kinds &= ~Incompatible;
+ }
+ }
+ }
+ // FIXME: Currently -fsanitize=leak is silently ignored in the presence of
+ // -fsanitize=address. Perhaps it should print an error, or perhaps
+ // -f(-no)sanitize=leak should change whether leak detection is enabled by
+ // default in ASan?
+
+ // Parse -f(no-)?sanitize-recover flags.
+ SanitizerMask RecoverableKinds = RecoverableByDefault;
+ SanitizerMask DiagnosedUnrecoverableKinds = 0;
+ for (const auto *Arg : Args) {
+ const char *DeprecatedReplacement = nullptr;
+ if (Arg->getOption().matches(options::OPT_fsanitize_recover)) {
+ DeprecatedReplacement = "-fsanitize-recover=undefined,integer";
+ RecoverableKinds |= expandSanitizerGroups(LegacyFsanitizeRecoverMask);
+ Arg->claim();
+ } else if (Arg->getOption().matches(options::OPT_fno_sanitize_recover)) {
+ DeprecatedReplacement = "-fno-sanitize-recover=undefined,integer";
+ RecoverableKinds &= ~expandSanitizerGroups(LegacyFsanitizeRecoverMask);
+ Arg->claim();
+ } else if (Arg->getOption().matches(options::OPT_fsanitize_recover_EQ)) {
+ SanitizerMask Add = parseArgValues(D, Arg, true);
+ // Report error if user explicitly tries to recover from unrecoverable
+ // sanitizer.
+ if (SanitizerMask KindsToDiagnose =
+ Add & Unrecoverable & ~DiagnosedUnrecoverableKinds) {
+ SanitizerSet SetToDiagnose;
+ SetToDiagnose.Mask |= KindsToDiagnose;
+ D.Diag(diag::err_drv_unsupported_option_argument)
+ << Arg->getOption().getName() << toString(SetToDiagnose);
+ DiagnosedUnrecoverableKinds |= KindsToDiagnose;
+ }
+ RecoverableKinds |= expandSanitizerGroups(Add);
+ Arg->claim();
+ } else if (Arg->getOption().matches(options::OPT_fno_sanitize_recover_EQ)) {
+ RecoverableKinds &= ~expandSanitizerGroups(parseArgValues(D, Arg, true));
+ Arg->claim();
+ }
+ if (DeprecatedReplacement) {
+ D.Diag(diag::warn_drv_deprecated_arg) << Arg->getAsString(Args)
+ << DeprecatedReplacement;
+ }
+ }
+ RecoverableKinds &= Kinds;
+ RecoverableKinds &= ~Unrecoverable;
+
+ // Setup blacklist files.
+ // Add default blacklist from resource directory.
+ {
+ std::string BLPath;
+ if (getDefaultBlacklist(D, Kinds, BLPath) && llvm::sys::fs::exists(BLPath))
+ BlacklistFiles.push_back(BLPath);
+ }
+ // Parse -f(no-)sanitize-blacklist options.
+ for (const auto *Arg : Args) {
+ if (Arg->getOption().matches(options::OPT_fsanitize_blacklist)) {
+ Arg->claim();
+ std::string BLPath = Arg->getValue();
+ if (llvm::sys::fs::exists(BLPath))
+ BlacklistFiles.push_back(BLPath);
+ else
+ D.Diag(clang::diag::err_drv_no_such_file) << BLPath;
+ } else if (Arg->getOption().matches(options::OPT_fno_sanitize_blacklist)) {
+ Arg->claim();
+ BlacklistFiles.clear();
+ }
+ }
+ // Validate blacklists format.
+ {
+ std::string BLError;
+ std::unique_ptr<llvm::SpecialCaseList> SCL(
+ llvm::SpecialCaseList::create(BlacklistFiles, BLError));
+ if (!SCL.get())
+ D.Diag(clang::diag::err_drv_malformed_sanitizer_blacklist) << BLError;
+ }
+
+ // Parse -f[no-]sanitize-memory-track-origins[=level] options.
+ if (AllAddedKinds & Memory) {
+ if (Arg *A =
+ Args.getLastArg(options::OPT_fsanitize_memory_track_origins_EQ,
+ options::OPT_fsanitize_memory_track_origins,
+ options::OPT_fno_sanitize_memory_track_origins)) {
+ if (A->getOption().matches(options::OPT_fsanitize_memory_track_origins)) {
+ MsanTrackOrigins = 2;
+ } else if (A->getOption().matches(
+ options::OPT_fno_sanitize_memory_track_origins)) {
+ MsanTrackOrigins = 0;
+ } else {
+ StringRef S = A->getValue();
+ if (S.getAsInteger(0, MsanTrackOrigins) || MsanTrackOrigins < 0 ||
+ MsanTrackOrigins > 2) {
+ D.Diag(clang::diag::err_drv_invalid_value) << A->getAsString(Args) << S;
+ }
+ }
+ }
+ }
+
+ // Parse -f(no-)?sanitize-coverage flags if coverage is supported by the
+ // enabled sanitizers.
+ if (AllAddedKinds & SupportsCoverage) {
+ for (const auto *Arg : Args) {
+ if (Arg->getOption().matches(options::OPT_fsanitize_coverage)) {
+ Arg->claim();
+ int LegacySanitizeCoverage;
+ if (Arg->getNumValues() == 1 &&
+ !StringRef(Arg->getValue(0))
+ .getAsInteger(0, LegacySanitizeCoverage) &&
+ LegacySanitizeCoverage >= 0 && LegacySanitizeCoverage <= 4) {
+ // TODO: Add deprecation notice for this form.
+ switch (LegacySanitizeCoverage) {
+ case 0:
+ CoverageFeatures = 0;
+ break;
+ case 1:
+ CoverageFeatures = CoverageFunc;
+ break;
+ case 2:
+ CoverageFeatures = CoverageBB;
+ break;
+ case 3:
+ CoverageFeatures = CoverageEdge;
+ break;
+ case 4:
+ CoverageFeatures = CoverageEdge | CoverageIndirCall;
+ break;
+ }
+ continue;
+ }
+ CoverageFeatures |= parseCoverageFeatures(D, Arg);
+ } else if (Arg->getOption().matches(options::OPT_fno_sanitize_coverage)) {
+ Arg->claim();
+ CoverageFeatures &= ~parseCoverageFeatures(D, Arg);
+ }
+ }
+ }
+ // Choose at most one coverage type: function, bb, or edge.
+ if ((CoverageFeatures & CoverageFunc) && (CoverageFeatures & CoverageBB))
+ D.Diag(clang::diag::err_drv_argument_not_allowed_with)
+ << "-fsanitize-coverage=func"
+ << "-fsanitize-coverage=bb";
+ if ((CoverageFeatures & CoverageFunc) && (CoverageFeatures & CoverageEdge))
+ D.Diag(clang::diag::err_drv_argument_not_allowed_with)
+ << "-fsanitize-coverage=func"
+ << "-fsanitize-coverage=edge";
+ if ((CoverageFeatures & CoverageBB) && (CoverageFeatures & CoverageEdge))
+ D.Diag(clang::diag::err_drv_argument_not_allowed_with)
+ << "-fsanitize-coverage=bb"
+ << "-fsanitize-coverage=edge";
+ // Basic block tracing and 8-bit counters require some type of coverage
+ // enabled.
+ int CoverageTypes = CoverageFunc | CoverageBB | CoverageEdge;
+ if ((CoverageFeatures & CoverageTraceBB) &&
+ !(CoverageFeatures & CoverageTypes))
+ D.Diag(clang::diag::err_drv_argument_only_allowed_with)
+ << "-fsanitize-coverage=trace-bb"
+ << "-fsanitize-coverage=(func|bb|edge)";
+ if ((CoverageFeatures & Coverage8bitCounters) &&
+ !(CoverageFeatures & CoverageTypes))
+ D.Diag(clang::diag::err_drv_argument_only_allowed_with)
+ << "-fsanitize-coverage=8bit-counters"
+ << "-fsanitize-coverage=(func|bb|edge)";
+
+ if (AllAddedKinds & Address) {
+ AsanSharedRuntime =
+ Args.hasArg(options::OPT_shared_libasan) ||
+ (TC.getTriple().getEnvironment() == llvm::Triple::Android);
+ AsanZeroBaseShadow =
+ (TC.getTriple().getEnvironment() == llvm::Triple::Android);
+ if (Arg *A =
+ Args.getLastArg(options::OPT_fsanitize_address_field_padding)) {
+ StringRef S = A->getValue();
+ // Legal values are 0 and 1, 2, but in future we may add more levels.
+ if (S.getAsInteger(0, AsanFieldPadding) || AsanFieldPadding < 0 ||
+ AsanFieldPadding > 2) {
+ D.Diag(clang::diag::err_drv_invalid_value) << A->getAsString(Args) << S;
+ }
+ }
+
+ if (Arg *WindowsDebugRTArg =
+ Args.getLastArg(options::OPT__SLASH_MTd, options::OPT__SLASH_MT,
+ options::OPT__SLASH_MDd, options::OPT__SLASH_MD,
+ options::OPT__SLASH_LDd, options::OPT__SLASH_LD)) {
+ switch (WindowsDebugRTArg->getOption().getID()) {
+ case options::OPT__SLASH_MTd:
+ case options::OPT__SLASH_MDd:
+ case options::OPT__SLASH_LDd:
+ D.Diag(clang::diag::err_drv_argument_not_allowed_with)
+ << WindowsDebugRTArg->getAsString(Args)
+ << lastArgumentForMask(D, Args, Address);
+ D.Diag(clang::diag::note_drv_address_sanitizer_debug_runtime);
+ }
+ }
+ }
+
+ // Parse -link-cxx-sanitizer flag.
+ LinkCXXRuntimes =
+ Args.hasArg(options::OPT_fsanitize_link_cxx_runtime) || D.CCCIsCXX();
+
+ // Finally, initialize the set of available and recoverable sanitizers.
+ Sanitizers.Mask |= Kinds;
+ RecoverableSanitizers.Mask |= RecoverableKinds;
+}
+
+static std::string toString(const clang::SanitizerSet &Sanitizers) {
+ std::string Res;
+#define SANITIZER(NAME, ID) \
+ if (Sanitizers.has(ID)) { \
+ if (!Res.empty()) \
+ Res += ","; \
+ Res += NAME; \
+ }
+#include "clang/Basic/Sanitizers.def"
+ return Res;
+}
+
+void SanitizerArgs::addArgs(const llvm::opt::ArgList &Args,
+ llvm::opt::ArgStringList &CmdArgs) const {
+ if (Sanitizers.empty())
+ return;
+ CmdArgs.push_back(Args.MakeArgString("-fsanitize=" + toString(Sanitizers)));
+
+ if (!RecoverableSanitizers.empty())
+ CmdArgs.push_back(Args.MakeArgString("-fsanitize-recover=" +
+ toString(RecoverableSanitizers)));
+
+ if (UbsanTrapOnError)
+ CmdArgs.push_back("-fsanitize-undefined-trap-on-error");
+
+ for (const auto &BLPath : BlacklistFiles) {
+ SmallString<64> BlacklistOpt("-fsanitize-blacklist=");
+ BlacklistOpt += BLPath;
+ CmdArgs.push_back(Args.MakeArgString(BlacklistOpt));
+ }
+
+ if (MsanTrackOrigins)
+ CmdArgs.push_back(Args.MakeArgString("-fsanitize-memory-track-origins=" +
+ llvm::utostr(MsanTrackOrigins)));
+ if (AsanFieldPadding)
+ CmdArgs.push_back(Args.MakeArgString("-fsanitize-address-field-padding=" +
+ llvm::utostr(AsanFieldPadding)));
+ // Translate available CoverageFeatures to corresponding clang-cc1 flags.
+ std::pair<int, const char *> CoverageFlags[] = {
+ std::make_pair(CoverageFunc, "-fsanitize-coverage-type=1"),
+ std::make_pair(CoverageBB, "-fsanitize-coverage-type=2"),
+ std::make_pair(CoverageEdge, "-fsanitize-coverage-type=3"),
+ std::make_pair(CoverageIndirCall, "-fsanitize-coverage-indirect-calls"),
+ std::make_pair(CoverageTraceBB, "-fsanitize-coverage-trace-bb"),
+ std::make_pair(CoverageTraceCmp, "-fsanitize-coverage-trace-cmp"),
+ std::make_pair(Coverage8bitCounters, "-fsanitize-coverage-8bit-counters")};
+ for (auto F : CoverageFlags) {
+ if (CoverageFeatures & F.first)
+ CmdArgs.push_back(Args.MakeArgString(F.second));
+ }
+
+
+ // MSan: Workaround for PR16386.
+ // ASan: This is mainly to help LSan with cases such as
+ // https://code.google.com/p/address-sanitizer/issues/detail?id=373
+ // We can't make this conditional on -fsanitize=leak, as that flag shouldn't
+ // affect compilation.
+ if (Sanitizers.has(Memory) || Sanitizers.has(Address))
+ CmdArgs.push_back(Args.MakeArgString("-fno-assume-sane-operator-new"));
+}
+
+SanitizerMask parseArgValues(const Driver &D, const llvm::opt::Arg *A,
+ bool DiagnoseErrors) {
+ assert((A->getOption().matches(options::OPT_fsanitize_EQ) ||
+ A->getOption().matches(options::OPT_fno_sanitize_EQ) ||
+ A->getOption().matches(options::OPT_fsanitize_recover_EQ) ||
+ A->getOption().matches(options::OPT_fno_sanitize_recover_EQ)) &&
+ "Invalid argument in parseArgValues!");
+ SanitizerMask Kinds = 0;
+ for (int i = 0, n = A->getNumValues(); i != n; ++i) {
+ const char *Value = A->getValue(i);
+ SanitizerMask Kind;
+ // Special case: don't accept -fsanitize=all.
+ if (A->getOption().matches(options::OPT_fsanitize_EQ) &&
+ 0 == strcmp("all", Value))
+ Kind = 0;
+ else
+ Kind = parseSanitizerValue(Value, /*AllowGroups=*/true);
+
+ if (Kind)
+ Kinds |= Kind;
+ else if (DiagnoseErrors)
+ D.Diag(clang::diag::err_drv_unsupported_option_argument)
+ << A->getOption().getName() << Value;
+ }
+ return Kinds;
+}
+
+int parseCoverageFeatures(const Driver &D, const llvm::opt::Arg *A) {
+ assert(A->getOption().matches(options::OPT_fsanitize_coverage) ||
+ A->getOption().matches(options::OPT_fno_sanitize_coverage));
+ int Features = 0;
+ for (int i = 0, n = A->getNumValues(); i != n; ++i) {
+ const char *Value = A->getValue(i);
+ int F = llvm::StringSwitch<int>(Value)
+ .Case("func", CoverageFunc)
+ .Case("bb", CoverageBB)
+ .Case("edge", CoverageEdge)
+ .Case("indirect-calls", CoverageIndirCall)
+ .Case("trace-bb", CoverageTraceBB)
+ .Case("trace-cmp", CoverageTraceCmp)
+ .Case("8bit-counters", Coverage8bitCounters)
+ .Default(0);
+ if (F == 0)
+ D.Diag(clang::diag::err_drv_unsupported_option_argument)
+ << A->getOption().getName() << Value;
+ Features |= F;
+ }
+ return Features;
+}
+
+std::string lastArgumentForMask(const Driver &D, const llvm::opt::ArgList &Args,
+ SanitizerMask Mask) {
+ for (llvm::opt::ArgList::const_reverse_iterator I = Args.rbegin(),
+ E = Args.rend();
+ I != E; ++I) {
+ const auto *Arg = *I;
+ if (Arg->getOption().matches(options::OPT_fsanitize_EQ)) {
+ SanitizerMask AddKinds =
+ expandSanitizerGroups(parseArgValues(D, Arg, false));
+ if (AddKinds & Mask)
+ return describeSanitizeArg(Arg, Mask);
+ } else if (Arg->getOption().matches(options::OPT_fno_sanitize_EQ)) {
+ SanitizerMask RemoveKinds =
+ expandSanitizerGroups(parseArgValues(D, Arg, false));
+ Mask &= ~RemoveKinds;
+ }
+ }
+ llvm_unreachable("arg list didn't provide expected value");
+}
+
+std::string describeSanitizeArg(const llvm::opt::Arg *A, SanitizerMask Mask) {
+ assert(A->getOption().matches(options::OPT_fsanitize_EQ)
+ && "Invalid argument in describeSanitizerArg!");
+
+ std::string Sanitizers;
+ for (int i = 0, n = A->getNumValues(); i != n; ++i) {
+ if (expandSanitizerGroups(
+ parseSanitizerValue(A->getValue(i), /*AllowGroups=*/true)) &
+ Mask) {
+ if (!Sanitizers.empty())
+ Sanitizers += ",";
+ Sanitizers += A->getValue(i);
+ }
+ }
+
+ assert(!Sanitizers.empty() && "arg didn't provide expected value");
+ return "-fsanitize=" + Sanitizers;
+}
diff --git a/contrib/llvm/tools/clang/lib/Driver/Tool.cpp b/contrib/llvm/tools/clang/lib/Driver/Tool.cpp
new file mode 100644
index 0000000..7142e82
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Driver/Tool.cpp
@@ -0,0 +1,23 @@
+//===--- Tool.cpp - Compilation Tools -------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Driver/Tool.h"
+
+using namespace clang::driver;
+
+Tool::Tool(const char *_Name, const char *_ShortName, const ToolChain &TC,
+ ResponseFileSupport _ResponseSupport,
+ llvm::sys::WindowsEncodingMethod _ResponseEncoding,
+ const char *_ResponseFlag)
+ : Name(_Name), ShortName(_ShortName), TheToolChain(TC),
+ ResponseSupport(_ResponseSupport), ResponseEncoding(_ResponseEncoding),
+ ResponseFlag(_ResponseFlag) {}
+
+Tool::~Tool() {
+}
diff --git a/contrib/llvm/tools/clang/lib/Driver/ToolChain.cpp b/contrib/llvm/tools/clang/lib/Driver/ToolChain.cpp
new file mode 100644
index 0000000..f7b7402
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Driver/ToolChain.cpp
@@ -0,0 +1,483 @@
+//===--- ToolChain.cpp - Collections of tools for one platform ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Tools.h"
+#include "clang/Basic/ObjCRuntime.h"
+#include "clang/Driver/Action.h"
+#include "clang/Driver/Driver.h"
+#include "clang/Driver/DriverDiagnostic.h"
+#include "clang/Driver/Options.h"
+#include "clang/Driver/SanitizerArgs.h"
+#include "clang/Driver/ToolChain.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/Option/Arg.h"
+#include "llvm/Option/ArgList.h"
+#include "llvm/Option/Option.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FileSystem.h"
+using namespace clang::driver;
+using namespace clang;
+using namespace llvm::opt;
+
+static llvm::opt::Arg *GetRTTIArgument(const ArgList &Args) {
+ return Args.getLastArg(options::OPT_mkernel, options::OPT_fapple_kext,
+ options::OPT_fno_rtti, options::OPT_frtti);
+}
+
+static ToolChain::RTTIMode CalculateRTTIMode(const ArgList &Args,
+ const llvm::Triple &Triple,
+ const Arg *CachedRTTIArg) {
+ // Explicit rtti/no-rtti args
+ if (CachedRTTIArg) {
+ if (CachedRTTIArg->getOption().matches(options::OPT_frtti))
+ return ToolChain::RM_EnabledExplicitly;
+ else
+ return ToolChain::RM_DisabledExplicitly;
+ }
+
+ // -frtti is default, except for the PS4 CPU.
+ if (!Triple.isPS4CPU())
+ return ToolChain::RM_EnabledImplicitly;
+
+ // On the PS4, turning on c++ exceptions turns on rtti.
+ // We're assuming that, if we see -fexceptions, rtti gets turned on.
+ Arg *Exceptions = Args.getLastArgNoClaim(
+ options::OPT_fcxx_exceptions, options::OPT_fno_cxx_exceptions,
+ options::OPT_fexceptions, options::OPT_fno_exceptions);
+ if (Exceptions &&
+ (Exceptions->getOption().matches(options::OPT_fexceptions) ||
+ Exceptions->getOption().matches(options::OPT_fcxx_exceptions)))
+ return ToolChain::RM_EnabledImplicitly;
+
+ return ToolChain::RM_DisabledImplicitly;
+}
+
+ToolChain::ToolChain(const Driver &D, const llvm::Triple &T,
+ const ArgList &Args)
+ : D(D), Triple(T), Args(Args), CachedRTTIArg(GetRTTIArgument(Args)),
+ CachedRTTIMode(CalculateRTTIMode(Args, Triple, CachedRTTIArg)) {
+ if (Arg *A = Args.getLastArg(options::OPT_mthread_model))
+ if (!isThreadModelSupported(A->getValue()))
+ D.Diag(diag::err_drv_invalid_thread_model_for_target)
+ << A->getValue() << A->getAsString(Args);
+}
+
+ToolChain::~ToolChain() {
+}
+
+const Driver &ToolChain::getDriver() const {
+ return D;
+}
+
+bool ToolChain::useIntegratedAs() const {
+ return Args.hasFlag(options::OPT_fintegrated_as,
+ options::OPT_fno_integrated_as,
+ IsIntegratedAssemblerDefault());
+}
+
+const SanitizerArgs& ToolChain::getSanitizerArgs() const {
+ if (!SanitizerArguments.get())
+ SanitizerArguments.reset(new SanitizerArgs(*this, Args));
+ return *SanitizerArguments.get();
+}
+
+StringRef ToolChain::getDefaultUniversalArchName() const {
+ // In universal driver terms, the arch name accepted by -arch isn't exactly
+ // the same as the ones that appear in the triple. Roughly speaking, this is
+ // an inverse of the darwin::getArchTypeForDarwinArchName() function, but the
+ // only interesting special case is powerpc.
+ switch (Triple.getArch()) {
+ case llvm::Triple::ppc:
+ return "ppc";
+ case llvm::Triple::ppc64:
+ return "ppc64";
+ case llvm::Triple::ppc64le:
+ return "ppc64le";
+ default:
+ return Triple.getArchName();
+ }
+}
+
+bool ToolChain::IsUnwindTablesDefault() const {
+ return false;
+}
+
+Tool *ToolChain::getClang() const {
+ if (!Clang)
+ Clang.reset(new tools::Clang(*this));
+ return Clang.get();
+}
+
+Tool *ToolChain::buildAssembler() const {
+ return new tools::ClangAs(*this);
+}
+
+Tool *ToolChain::buildLinker() const {
+ llvm_unreachable("Linking is not supported by this toolchain");
+}
+
+Tool *ToolChain::getAssemble() const {
+ if (!Assemble)
+ Assemble.reset(buildAssembler());
+ return Assemble.get();
+}
+
+Tool *ToolChain::getClangAs() const {
+ if (!Assemble)
+ Assemble.reset(new tools::ClangAs(*this));
+ return Assemble.get();
+}
+
+Tool *ToolChain::getLink() const {
+ if (!Link)
+ Link.reset(buildLinker());
+ return Link.get();
+}
+
+Tool *ToolChain::getTool(Action::ActionClass AC) const {
+ switch (AC) {
+ case Action::AssembleJobClass:
+ return getAssemble();
+
+ case Action::LinkJobClass:
+ return getLink();
+
+ case Action::InputClass:
+ case Action::BindArchClass:
+ case Action::LipoJobClass:
+ case Action::DsymutilJobClass:
+ case Action::VerifyDebugInfoJobClass:
+ llvm_unreachable("Invalid tool kind.");
+
+ case Action::CompileJobClass:
+ case Action::PrecompileJobClass:
+ case Action::PreprocessJobClass:
+ case Action::AnalyzeJobClass:
+ case Action::MigrateJobClass:
+ case Action::VerifyPCHJobClass:
+ case Action::BackendJobClass:
+ return getClang();
+ }
+
+ llvm_unreachable("Invalid tool kind.");
+}
+
+Tool *ToolChain::SelectTool(const JobAction &JA) const {
+ if (getDriver().ShouldUseClangCompiler(JA))
+ return getClang();
+ Action::ActionClass AC = JA.getKind();
+ if (AC == Action::AssembleJobClass && useIntegratedAs())
+ return getClangAs();
+ return getTool(AC);
+}
+
+std::string ToolChain::GetFilePath(const char *Name) const {
+ return D.GetFilePath(Name, *this);
+
+}
+
+std::string ToolChain::GetProgramPath(const char *Name) const {
+ return D.GetProgramPath(Name, *this);
+}
+
+std::string ToolChain::GetLinkerPath() const {
+ if (Arg *A = Args.getLastArg(options::OPT_fuse_ld_EQ)) {
+ StringRef Suffix = A->getValue();
+
+ // If we're passed -fuse-ld= with no argument, or with the argument ld,
+ // then use whatever the default system linker is.
+ if (Suffix.empty() || Suffix == "ld")
+ return GetProgramPath("ld");
+
+ llvm::SmallString<8> LinkerName("ld.");
+ LinkerName.append(Suffix);
+
+ std::string LinkerPath(GetProgramPath(LinkerName.c_str()));
+ if (llvm::sys::fs::exists(LinkerPath))
+ return LinkerPath;
+
+ getDriver().Diag(diag::err_drv_invalid_linker_name) << A->getAsString(Args);
+ return "";
+ }
+
+ return GetProgramPath("ld");
+}
+
+
+types::ID ToolChain::LookupTypeForExtension(const char *Ext) const {
+ return types::lookupTypeForExtension(Ext);
+}
+
+bool ToolChain::HasNativeLLVMSupport() const {
+ return false;
+}
+
+bool ToolChain::isCrossCompiling() const {
+ llvm::Triple HostTriple(LLVM_HOST_TRIPLE);
+ switch (HostTriple.getArch()) {
+ // The A32/T32/T16 instruction sets are not separate architectures in this
+ // context.
+ case llvm::Triple::arm:
+ case llvm::Triple::armeb:
+ case llvm::Triple::thumb:
+ case llvm::Triple::thumbeb:
+ return getArch() != llvm::Triple::arm && getArch() != llvm::Triple::thumb &&
+ getArch() != llvm::Triple::armeb && getArch() != llvm::Triple::thumbeb;
+ default:
+ return HostTriple.getArch() != getArch();
+ }
+}
+
+ObjCRuntime ToolChain::getDefaultObjCRuntime(bool isNonFragile) const {
+ return ObjCRuntime(isNonFragile ? ObjCRuntime::GNUstep : ObjCRuntime::GCC,
+ VersionTuple());
+}
+
+bool ToolChain::isThreadModelSupported(const StringRef Model) const {
+ if (Model == "single") {
+ // FIXME: 'single' is only supported on ARM so far.
+ return Triple.getArch() == llvm::Triple::arm ||
+ Triple.getArch() == llvm::Triple::armeb ||
+ Triple.getArch() == llvm::Triple::thumb ||
+ Triple.getArch() == llvm::Triple::thumbeb;
+ } else if (Model == "posix")
+ return true;
+
+ return false;
+}
+
+std::string ToolChain::ComputeLLVMTriple(const ArgList &Args,
+ types::ID InputType) const {
+ switch (getTriple().getArch()) {
+ default:
+ return getTripleString();
+
+ case llvm::Triple::x86_64: {
+ llvm::Triple Triple = getTriple();
+ if (!Triple.isOSBinFormatMachO())
+ return getTripleString();
+
+ if (Arg *A = Args.getLastArg(options::OPT_march_EQ)) {
+ // x86_64h goes in the triple. Other -march options just use the
+ // vanilla triple we already have.
+ StringRef MArch = A->getValue();
+ if (MArch == "x86_64h")
+ Triple.setArchName(MArch);
+ }
+ return Triple.getTriple();
+ }
+ case llvm::Triple::aarch64: {
+ llvm::Triple Triple = getTriple();
+ if (!Triple.isOSBinFormatMachO())
+ return getTripleString();
+
+ // FIXME: older versions of ld64 expect the "arm64" component in the actual
+ // triple string and query it to determine whether an LTO file can be
+ // handled. Remove this when we don't care any more.
+ Triple.setArchName("arm64");
+ return Triple.getTriple();
+ }
+ case llvm::Triple::arm:
+ case llvm::Triple::armeb:
+ case llvm::Triple::thumb:
+ case llvm::Triple::thumbeb: {
+ // FIXME: Factor into subclasses.
+ llvm::Triple Triple = getTriple();
+ bool IsBigEndian = getTriple().getArch() == llvm::Triple::armeb ||
+ getTriple().getArch() == llvm::Triple::thumbeb;
+
+ // Handle pseudo-target flags '-mlittle-endian'/'-EL' and
+ // '-mbig-endian'/'-EB'.
+ if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian,
+ options::OPT_mbig_endian)) {
+ IsBigEndian = !A->getOption().matches(options::OPT_mlittle_endian);
+ }
+
+ // Thumb2 is the default for V7 on Darwin.
+ //
+ // FIXME: Thumb should just be another -target-feaure, not in the triple.
+ StringRef CPU = Triple.isOSBinFormatMachO()
+ ? tools::arm::getARMCPUForMArch(Args, Triple)
+ : tools::arm::getARMTargetCPU(Args, Triple);
+ StringRef Suffix =
+ tools::arm::getLLVMArchSuffixForARM(CPU,
+ tools::arm::getARMArch(Args, Triple));
+ bool ThumbDefault = Suffix.startswith("v6m") || Suffix.startswith("v7m") ||
+ Suffix.startswith("v7em") ||
+ (Suffix.startswith("v7") && getTriple().isOSBinFormatMachO());
+ // FIXME: this is invalid for WindowsCE
+ if (getTriple().isOSWindows())
+ ThumbDefault = true;
+ std::string ArchName;
+ if (IsBigEndian)
+ ArchName = "armeb";
+ else
+ ArchName = "arm";
+
+ // Assembly files should start in ARM mode.
+ if (InputType != types::TY_PP_Asm &&
+ Args.hasFlag(options::OPT_mthumb, options::OPT_mno_thumb, ThumbDefault))
+ {
+ if (IsBigEndian)
+ ArchName = "thumbeb";
+ else
+ ArchName = "thumb";
+ }
+ Triple.setArchName(ArchName + Suffix.str());
+
+ return Triple.getTriple();
+ }
+ }
+}
+
+std::string ToolChain::ComputeEffectiveClangTriple(const ArgList &Args,
+ types::ID InputType) const {
+ return ComputeLLVMTriple(Args, InputType);
+}
+
+void ToolChain::AddClangSystemIncludeArgs(const ArgList &DriverArgs,
+ ArgStringList &CC1Args) const {
+ // Each toolchain should provide the appropriate include flags.
+}
+
+void ToolChain::addClangTargetOptions(const ArgList &DriverArgs,
+ ArgStringList &CC1Args) const {
+}
+
+void ToolChain::addClangWarningOptions(ArgStringList &CC1Args) const {}
+
+ToolChain::RuntimeLibType ToolChain::GetRuntimeLibType(
+ const ArgList &Args) const
+{
+ if (Arg *A = Args.getLastArg(options::OPT_rtlib_EQ)) {
+ StringRef Value = A->getValue();
+ if (Value == "compiler-rt")
+ return ToolChain::RLT_CompilerRT;
+ if (Value == "libgcc")
+ return ToolChain::RLT_Libgcc;
+ getDriver().Diag(diag::err_drv_invalid_rtlib_name)
+ << A->getAsString(Args);
+ }
+
+ return GetDefaultRuntimeLibType();
+}
+
+ToolChain::CXXStdlibType ToolChain::GetCXXStdlibType(const ArgList &Args) const{
+ if (Arg *A = Args.getLastArg(options::OPT_stdlib_EQ)) {
+ StringRef Value = A->getValue();
+ if (Value == "libc++")
+ return ToolChain::CST_Libcxx;
+ if (Value == "libstdc++")
+ return ToolChain::CST_Libstdcxx;
+ getDriver().Diag(diag::err_drv_invalid_stdlib_name)
+ << A->getAsString(Args);
+ }
+
+ return ToolChain::CST_Libstdcxx;
+}
+
+/// \brief Utility function to add a system include directory to CC1 arguments.
+/*static*/ void ToolChain::addSystemInclude(const ArgList &DriverArgs,
+ ArgStringList &CC1Args,
+ const Twine &Path) {
+ CC1Args.push_back("-internal-isystem");
+ CC1Args.push_back(DriverArgs.MakeArgString(Path));
+}
+
+/// \brief Utility function to add a system include directory with extern "C"
+/// semantics to CC1 arguments.
+///
+/// Note that this should be used rarely, and only for directories that
+/// historically and for legacy reasons are treated as having implicit extern
+/// "C" semantics. These semantics are *ignored* by and large today, but its
+/// important to preserve the preprocessor changes resulting from the
+/// classification.
+/*static*/ void ToolChain::addExternCSystemInclude(const ArgList &DriverArgs,
+ ArgStringList &CC1Args,
+ const Twine &Path) {
+ CC1Args.push_back("-internal-externc-isystem");
+ CC1Args.push_back(DriverArgs.MakeArgString(Path));
+}
+
+void ToolChain::addExternCSystemIncludeIfExists(const ArgList &DriverArgs,
+ ArgStringList &CC1Args,
+ const Twine &Path) {
+ if (llvm::sys::fs::exists(Path))
+ addExternCSystemInclude(DriverArgs, CC1Args, Path);
+}
+
+/// \brief Utility function to add a list of system include directories to CC1.
+/*static*/ void ToolChain::addSystemIncludes(const ArgList &DriverArgs,
+ ArgStringList &CC1Args,
+ ArrayRef<StringRef> Paths) {
+ for (ArrayRef<StringRef>::iterator I = Paths.begin(), E = Paths.end();
+ I != E; ++I) {
+ CC1Args.push_back("-internal-isystem");
+ CC1Args.push_back(DriverArgs.MakeArgString(*I));
+ }
+}
+
+void ToolChain::AddClangCXXStdlibIncludeArgs(const ArgList &DriverArgs,
+ ArgStringList &CC1Args) const {
+ // Header search paths should be handled by each of the subclasses.
+ // Historically, they have not been, and instead have been handled inside of
+ // the CC1-layer frontend. As the logic is hoisted out, this generic function
+ // will slowly stop being called.
+ //
+ // While it is being called, replicate a bit of a hack to propagate the
+ // '-stdlib=' flag down to CC1 so that it can in turn customize the C++
+ // header search paths with it. Once all systems are overriding this
+ // function, the CC1 flag and this line can be removed.
+ DriverArgs.AddAllArgs(CC1Args, options::OPT_stdlib_EQ);
+}
+
+void ToolChain::AddCXXStdlibLibArgs(const ArgList &Args,
+ ArgStringList &CmdArgs) const {
+ CXXStdlibType Type = GetCXXStdlibType(Args);
+
+ switch (Type) {
+ case ToolChain::CST_Libcxx:
+ CmdArgs.push_back("-lc++");
+ break;
+
+ case ToolChain::CST_Libstdcxx:
+ CmdArgs.push_back("-lstdc++");
+ break;
+ }
+}
+
+void ToolChain::AddCCKextLibArgs(const ArgList &Args,
+ ArgStringList &CmdArgs) const {
+ CmdArgs.push_back("-lcc_kext");
+}
+
+bool ToolChain::AddFastMathRuntimeIfAvailable(const ArgList &Args,
+ ArgStringList &CmdArgs) const {
+ // Do not check for -fno-fast-math or -fno-unsafe-math when -Ofast passed
+ // (to keep the linker options consistent with gcc and clang itself).
+ if (!isOptimizationLevelFast(Args)) {
+ // Check if -ffast-math or -funsafe-math.
+ Arg *A =
+ Args.getLastArg(options::OPT_ffast_math, options::OPT_fno_fast_math,
+ options::OPT_funsafe_math_optimizations,
+ options::OPT_fno_unsafe_math_optimizations);
+
+ if (!A || A->getOption().getID() == options::OPT_fno_fast_math ||
+ A->getOption().getID() == options::OPT_fno_unsafe_math_optimizations)
+ return false;
+ }
+ // If crtfastmath.o exists add it to the arguments.
+ std::string Path = GetFilePath("crtfastmath.o");
+ if (Path == "crtfastmath.o") // Not found.
+ return false;
+
+ CmdArgs.push_back(Args.MakeArgString(Path));
+ return true;
+}
diff --git a/contrib/llvm/tools/clang/lib/Driver/ToolChains.cpp b/contrib/llvm/tools/clang/lib/Driver/ToolChains.cpp
new file mode 100644
index 0000000..6d52ab9
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Driver/ToolChains.cpp
@@ -0,0 +1,3721 @@
+//===--- ToolChains.cpp - ToolChain Implementations -----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ToolChains.h"
+#include "clang/Basic/ObjCRuntime.h"
+#include "clang/Basic/Version.h"
+#include "clang/Config/config.h" // for GCC_INSTALL_PREFIX
+#include "clang/Driver/Compilation.h"
+#include "clang/Driver/Driver.h"
+#include "clang/Driver/DriverDiagnostic.h"
+#include "clang/Driver/Options.h"
+#include "clang/Driver/SanitizerArgs.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/Option/Arg.h"
+#include "llvm/Option/ArgList.h"
+#include "llvm/Option/OptTable.h"
+#include "llvm/Option/Option.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/Program.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cstdlib> // ::getenv
+#include <system_error>
+
+using namespace clang::driver;
+using namespace clang::driver::toolchains;
+using namespace clang;
+using namespace llvm::opt;
+
+MachO::MachO(const Driver &D, const llvm::Triple &Triple,
+ const ArgList &Args)
+ : ToolChain(D, Triple, Args) {
+ getProgramPaths().push_back(getDriver().getInstalledDir());
+ if (getDriver().getInstalledDir() != getDriver().Dir)
+ getProgramPaths().push_back(getDriver().Dir);
+
+ // We expect 'as', 'ld', etc. to be adjacent to our install dir.
+ getProgramPaths().push_back(getDriver().getInstalledDir());
+ if (getDriver().getInstalledDir() != getDriver().Dir)
+ getProgramPaths().push_back(getDriver().Dir);
+}
+
+/// Darwin - Darwin tool chain for i386 and x86_64.
+Darwin::Darwin(const Driver & D, const llvm::Triple & Triple,
+ const ArgList & Args)
+ : MachO(D, Triple, Args), TargetInitialized(false) {
+ // Compute the initial Darwin version from the triple
+ unsigned Major, Minor, Micro;
+ if (!Triple.getMacOSXVersion(Major, Minor, Micro))
+ getDriver().Diag(diag::err_drv_invalid_darwin_version) <<
+ Triple.getOSName();
+ llvm::raw_string_ostream(MacosxVersionMin)
+ << Major << '.' << Minor << '.' << Micro;
+
+ // FIXME: DarwinVersion is only used to find GCC's libexec directory.
+ // It should be removed when we stop supporting that.
+ DarwinVersion[0] = Minor + 4;
+ DarwinVersion[1] = Micro;
+ DarwinVersion[2] = 0;
+
+ // Compute the initial iOS version from the triple
+ Triple.getiOSVersion(Major, Minor, Micro);
+ llvm::raw_string_ostream(iOSVersionMin)
+ << Major << '.' << Minor << '.' << Micro;
+}
+
+types::ID MachO::LookupTypeForExtension(const char *Ext) const {
+ types::ID Ty = types::lookupTypeForExtension(Ext);
+
+ // Darwin always preprocesses assembly files (unless -x is used explicitly).
+ if (Ty == types::TY_PP_Asm)
+ return types::TY_Asm;
+
+ return Ty;
+}
+
+bool MachO::HasNativeLLVMSupport() const {
+ return true;
+}
+
+/// Darwin provides an ARC runtime starting in MacOS X 10.7 and iOS 5.0.
+ObjCRuntime Darwin::getDefaultObjCRuntime(bool isNonFragile) const {
+ if (isTargetIOSBased())
+ return ObjCRuntime(ObjCRuntime::iOS, TargetVersion);
+ if (isNonFragile)
+ return ObjCRuntime(ObjCRuntime::MacOSX, TargetVersion);
+ return ObjCRuntime(ObjCRuntime::FragileMacOSX, TargetVersion);
+}
+
+/// Darwin provides a blocks runtime starting in MacOS X 10.6 and iOS 3.2.
+bool Darwin::hasBlocksRuntime() const {
+ if (isTargetIOSBased())
+ return !isIPhoneOSVersionLT(3, 2);
+ else {
+ assert(isTargetMacOS() && "unexpected darwin target");
+ return !isMacosxVersionLT(10, 6);
+ }
+}
+
+// FIXME: Use ARMTargetParser.
+static const char *GetArmArchForMArch(StringRef Value) {
+ return llvm::StringSwitch<const char*>(Value)
+ .Case("armv6k", "armv6")
+ .Case("armv6m", "armv6m")
+ .Case("armv5tej", "armv5")
+ .Case("xscale", "xscale")
+ .Case("armv4t", "armv4t")
+ .Case("armv7", "armv7")
+ .Cases("armv7a", "armv7-a", "armv7")
+ .Cases("armv7r", "armv7-r", "armv7")
+ .Cases("armv7em", "armv7e-m", "armv7em")
+ .Cases("armv7k", "armv7-k", "armv7k")
+ .Cases("armv7m", "armv7-m", "armv7m")
+ .Cases("armv7s", "armv7-s", "armv7s")
+ .Default(nullptr);
+}
+
+// FIXME: Use ARMTargetParser.
+static const char *GetArmArchForMCpu(StringRef Value) {
+ return llvm::StringSwitch<const char *>(Value)
+ .Cases("arm9e", "arm946e-s", "arm966e-s", "arm968e-s", "arm926ej-s","armv5")
+ .Cases("arm10e", "arm10tdmi", "armv5")
+ .Cases("arm1020t", "arm1020e", "arm1022e", "arm1026ej-s", "armv5")
+ .Case("xscale", "xscale")
+ .Cases("arm1136j-s", "arm1136jf-s", "arm1176jz-s", "arm1176jzf-s", "armv6")
+ .Cases("sc000", "cortex-m0", "cortex-m0plus", "cortex-m1", "armv6m")
+ .Cases("cortex-a5", "cortex-a7", "cortex-a8", "armv7")
+ .Cases("cortex-a9", "cortex-a12", "cortex-a15", "cortex-a17", "krait", "armv7")
+ .Cases("cortex-r4", "cortex-r4f", "cortex-r5", "cortex-r7", "armv7r")
+ .Cases("sc300", "cortex-m3", "armv7m")
+ .Cases("cortex-m4", "cortex-m7", "armv7em")
+ .Case("swift", "armv7s")
+ .Default(nullptr);
+}
+
+static bool isSoftFloatABI(const ArgList &Args) {
+ Arg *A = Args.getLastArg(options::OPT_msoft_float, options::OPT_mhard_float,
+ options::OPT_mfloat_abi_EQ);
+ if (!A)
+ return false;
+
+ return A->getOption().matches(options::OPT_msoft_float) ||
+ (A->getOption().matches(options::OPT_mfloat_abi_EQ) &&
+ A->getValue() == StringRef("soft"));
+}
+
+StringRef MachO::getMachOArchName(const ArgList &Args) const {
+ switch (getTriple().getArch()) {
+ default:
+ return getDefaultUniversalArchName();
+
+ case llvm::Triple::aarch64:
+ return "arm64";
+
+ case llvm::Triple::thumb:
+ case llvm::Triple::arm: {
+ if (const Arg *A = Args.getLastArg(options::OPT_march_EQ))
+ if (const char *Arch = GetArmArchForMArch(A->getValue()))
+ return Arch;
+
+ if (const Arg *A = Args.getLastArg(options::OPT_mcpu_EQ))
+ if (const char *Arch = GetArmArchForMCpu(A->getValue()))
+ return Arch;
+
+ return "arm";
+ }
+ }
+}
+
+Darwin::~Darwin() {
+}
+
+MachO::~MachO() {
+}
+
+
+std::string MachO::ComputeEffectiveClangTriple(const ArgList &Args,
+ types::ID InputType) const {
+ llvm::Triple Triple(ComputeLLVMTriple(Args, InputType));
+
+ return Triple.getTriple();
+}
+
+std::string Darwin::ComputeEffectiveClangTriple(const ArgList &Args,
+ types::ID InputType) const {
+ llvm::Triple Triple(ComputeLLVMTriple(Args, InputType));
+
+ // If the target isn't initialized (e.g., an unknown Darwin platform, return
+ // the default triple).
+ if (!isTargetInitialized())
+ return Triple.getTriple();
+
+ SmallString<16> Str;
+ Str += isTargetIOSBased() ? "ios" : "macosx";
+ Str += getTargetVersion().getAsString();
+ Triple.setOSName(Str);
+
+ return Triple.getTriple();
+}
+
+void Generic_ELF::anchor() {}
+
+Tool *MachO::getTool(Action::ActionClass AC) const {
+ switch (AC) {
+ case Action::LipoJobClass:
+ if (!Lipo)
+ Lipo.reset(new tools::darwin::Lipo(*this));
+ return Lipo.get();
+ case Action::DsymutilJobClass:
+ if (!Dsymutil)
+ Dsymutil.reset(new tools::darwin::Dsymutil(*this));
+ return Dsymutil.get();
+ case Action::VerifyDebugInfoJobClass:
+ if (!VerifyDebug)
+ VerifyDebug.reset(new tools::darwin::VerifyDebug(*this));
+ return VerifyDebug.get();
+ default:
+ return ToolChain::getTool(AC);
+ }
+}
+
+Tool *MachO::buildLinker() const {
+ return new tools::darwin::Link(*this);
+}
+
+Tool *MachO::buildAssembler() const {
+ return new tools::darwin::Assemble(*this);
+}
+
+DarwinClang::DarwinClang(const Driver &D, const llvm::Triple& Triple,
+ const ArgList &Args)
+ : Darwin(D, Triple, Args) {
+}
+
+void DarwinClang::addClangWarningOptions(ArgStringList &CC1Args) const {
+ // For iOS, 64-bit, promote certain warnings to errors.
+ if (!isTargetMacOS() && getTriple().isArch64Bit()) {
+ // Always enable -Wdeprecated-objc-isa-usage and promote it
+ // to an error.
+ CC1Args.push_back("-Wdeprecated-objc-isa-usage");
+ CC1Args.push_back("-Werror=deprecated-objc-isa-usage");
+
+ // Also error about implicit function declarations, as that
+ // can impact calling conventions.
+ CC1Args.push_back("-Werror=implicit-function-declaration");
+ }
+}
+
+/// \brief Determine whether Objective-C automated reference counting is
+/// enabled.
+static bool isObjCAutoRefCount(const ArgList &Args) {
+ return Args.hasFlag(options::OPT_fobjc_arc, options::OPT_fno_objc_arc, false);
+}
+
+void DarwinClang::AddLinkARCArgs(const ArgList &Args,
+ ArgStringList &CmdArgs) const {
+ // Avoid linking compatibility stubs on i386 mac.
+ if (isTargetMacOS() && getArch() == llvm::Triple::x86)
+ return;
+
+ ObjCRuntime runtime = getDefaultObjCRuntime(/*nonfragile*/ true);
+
+ if ((runtime.hasNativeARC() || !isObjCAutoRefCount(Args)) &&
+ runtime.hasSubscripting())
+ return;
+
+ CmdArgs.push_back("-force_load");
+ SmallString<128> P(getDriver().ClangExecutable);
+ llvm::sys::path::remove_filename(P); // 'clang'
+ llvm::sys::path::remove_filename(P); // 'bin'
+ llvm::sys::path::append(P, "lib", "arc", "libarclite_");
+ // Mash in the platform.
+ if (isTargetIOSSimulator())
+ P += "iphonesimulator";
+ else if (isTargetIPhoneOS())
+ P += "iphoneos";
+ else
+ P += "macosx";
+ P += ".a";
+
+ CmdArgs.push_back(Args.MakeArgString(P));
+}
+
+void MachO::AddLinkRuntimeLib(const ArgList &Args, ArgStringList &CmdArgs,
+ StringRef DarwinLibName, bool AlwaysLink,
+ bool IsEmbedded, bool AddRPath) const {
+ SmallString<128> Dir(getDriver().ResourceDir);
+ llvm::sys::path::append(Dir, "lib", IsEmbedded ? "macho_embedded" : "darwin");
+
+ SmallString<128> P(Dir);
+ llvm::sys::path::append(P, DarwinLibName);
+
+ // For now, allow missing resource libraries to support developers who may
+ // not have compiler-rt checked out or integrated into their build (unless
+ // we explicitly force linking with this library).
+ if (AlwaysLink || llvm::sys::fs::exists(P))
+ CmdArgs.push_back(Args.MakeArgString(P));
+
+ // Adding the rpaths might negatively interact when other rpaths are involved,
+ // so we should make sure we add the rpaths last, after all user-specified
+ // rpaths. This is currently true from this place, but we need to be
+ // careful if this function is ever called before user's rpaths are emitted.
+ if (AddRPath) {
+ assert(DarwinLibName.endswith(".dylib") && "must be a dynamic library");
+
+ // Add @executable_path to rpath to support having the dylib copied with
+ // the executable.
+ CmdArgs.push_back("-rpath");
+ CmdArgs.push_back("@executable_path");
+
+ // Add the path to the resource dir to rpath to support using the dylib
+ // from the default location without copying.
+ CmdArgs.push_back("-rpath");
+ CmdArgs.push_back(Args.MakeArgString(Dir));
+ }
+}
+
+void Darwin::addProfileRTLibs(const ArgList &Args,
+ ArgStringList &CmdArgs) const {
+ if (!(Args.hasFlag(options::OPT_fprofile_arcs, options::OPT_fno_profile_arcs,
+ false) ||
+ Args.hasArg(options::OPT_fprofile_generate) ||
+ Args.hasArg(options::OPT_fprofile_instr_generate) ||
+ Args.hasArg(options::OPT_fprofile_instr_generate_EQ) ||
+ Args.hasArg(options::OPT_fcreate_profile) ||
+ Args.hasArg(options::OPT_coverage)))
+ return;
+
+ // Select the appropriate runtime library for the target.
+ if (isTargetIOSBased())
+ AddLinkRuntimeLib(Args, CmdArgs, "libclang_rt.profile_ios.a",
+ /*AlwaysLink*/ true);
+ else
+ AddLinkRuntimeLib(Args, CmdArgs, "libclang_rt.profile_osx.a",
+ /*AlwaysLink*/ true);
+}
+
+void DarwinClang::AddLinkSanitizerLibArgs(const ArgList &Args,
+ ArgStringList &CmdArgs,
+ StringRef Sanitizer) const {
+ if (!Args.hasArg(options::OPT_dynamiclib) &&
+ !Args.hasArg(options::OPT_bundle)) {
+ // Sanitizer runtime libraries requires C++.
+ AddCXXStdlibLibArgs(Args, CmdArgs);
+ }
+ assert(isTargetMacOS() || isTargetIOSSimulator());
+ StringRef OS = isTargetMacOS() ? "osx" : "iossim";
+ AddLinkRuntimeLib(Args, CmdArgs, (Twine("libclang_rt.") + Sanitizer + "_" +
+ OS + "_dynamic.dylib").str(),
+ /*AlwaysLink*/ true, /*IsEmbedded*/ false,
+ /*AddRPath*/ true);
+
+ if (GetCXXStdlibType(Args) == ToolChain::CST_Libcxx) {
+ // Add explicit dependcy on -lc++abi, as -lc++ doesn't re-export
+ // all RTTI-related symbols that UBSan uses.
+ CmdArgs.push_back("-lc++abi");
+ }
+}
+
+void DarwinClang::AddLinkRuntimeLibArgs(const ArgList &Args,
+ ArgStringList &CmdArgs) const {
+ // Darwin only supports the compiler-rt based runtime libraries.
+ switch (GetRuntimeLibType(Args)) {
+ case ToolChain::RLT_CompilerRT:
+ break;
+ default:
+ getDriver().Diag(diag::err_drv_unsupported_rtlib_for_platform)
+ << Args.getLastArg(options::OPT_rtlib_EQ)->getValue() << "darwin";
+ return;
+ }
+
+ // Darwin doesn't support real static executables, don't link any runtime
+ // libraries with -static.
+ if (Args.hasArg(options::OPT_static) ||
+ Args.hasArg(options::OPT_fapple_kext) ||
+ Args.hasArg(options::OPT_mkernel))
+ return;
+
+ // Reject -static-libgcc for now, we can deal with this when and if someone
+ // cares. This is useful in situations where someone wants to statically link
+ // something like libstdc++, and needs its runtime support routines.
+ if (const Arg *A = Args.getLastArg(options::OPT_static_libgcc)) {
+ getDriver().Diag(diag::err_drv_unsupported_opt)
+ << A->getAsString(Args);
+ return;
+ }
+
+
+ const SanitizerArgs &Sanitize = getSanitizerArgs();
+
+ if (Sanitize.needsAsanRt()) {
+ if (!isTargetMacOS() && !isTargetIOSSimulator()) {
+ // FIXME: Move this check to SanitizerArgs::filterUnsupportedKinds.
+ getDriver().Diag(diag::err_drv_clang_unsupported_per_platform)
+ << "-fsanitize=address";
+ } else {
+ AddLinkSanitizerLibArgs(Args, CmdArgs, "asan");
+ }
+ }
+
+ if (Sanitize.needsUbsanRt()) {
+ if (!isTargetMacOS() && !isTargetIOSSimulator()) {
+ // FIXME: Move this check to SanitizerArgs::filterUnsupportedKinds.
+ getDriver().Diag(diag::err_drv_clang_unsupported_per_platform)
+ << "-fsanitize=undefined";
+ } else {
+ AddLinkSanitizerLibArgs(Args, CmdArgs, "ubsan");
+ }
+ }
+
+ // Otherwise link libSystem, then the dynamic runtime library, and finally any
+ // target specific static runtime library.
+ CmdArgs.push_back("-lSystem");
+
+ // Select the dynamic runtime library and the target specific static library.
+ if (isTargetIOSBased()) {
+ // If we are compiling as iOS / simulator, don't attempt to link libgcc_s.1,
+ // it never went into the SDK.
+ // Linking against libgcc_s.1 isn't needed for iOS 5.0+
+ if (isIPhoneOSVersionLT(5, 0) && !isTargetIOSSimulator() &&
+ getTriple().getArch() != llvm::Triple::aarch64)
+ CmdArgs.push_back("-lgcc_s.1");
+
+ // We currently always need a static runtime library for iOS.
+ AddLinkRuntimeLib(Args, CmdArgs, "libclang_rt.ios.a");
+ } else {
+ assert(isTargetMacOS() && "unexpected non MacOS platform");
+ // The dynamic runtime library was merged with libSystem for 10.6 and
+ // beyond; only 10.4 and 10.5 need an additional runtime library.
+ if (isMacosxVersionLT(10, 5))
+ CmdArgs.push_back("-lgcc_s.10.4");
+ else if (isMacosxVersionLT(10, 6))
+ CmdArgs.push_back("-lgcc_s.10.5");
+
+ // For OS X, we thought we would only need a static runtime library when
+ // targeting 10.4, to provide versions of the static functions which were
+ // omitted from 10.4.dylib.
+ //
+ // Unfortunately, that turned out to not be true, because Darwin system
+ // headers can still use eprintf on i386, and it is not exported from
+ // libSystem. Therefore, we still must provide a runtime library just for
+ // the tiny tiny handful of projects that *might* use that symbol.
+ if (isMacosxVersionLT(10, 5)) {
+ AddLinkRuntimeLib(Args, CmdArgs, "libclang_rt.10.4.a");
+ } else {
+ if (getTriple().getArch() == llvm::Triple::x86)
+ AddLinkRuntimeLib(Args, CmdArgs, "libclang_rt.eprintf.a");
+ AddLinkRuntimeLib(Args, CmdArgs, "libclang_rt.osx.a");
+ }
+ }
+}
+
+void Darwin::AddDeploymentTarget(DerivedArgList &Args) const {
+ const OptTable &Opts = getDriver().getOpts();
+
+ // Support allowing the SDKROOT environment variable used by xcrun and other
+ // Xcode tools to define the default sysroot, by making it the default for
+ // isysroot.
+ if (const Arg *A = Args.getLastArg(options::OPT_isysroot)) {
+ // Warn if the path does not exist.
+ if (!llvm::sys::fs::exists(A->getValue()))
+ getDriver().Diag(clang::diag::warn_missing_sysroot) << A->getValue();
+ } else {
+ if (char *env = ::getenv("SDKROOT")) {
+ // We only use this value as the default if it is an absolute path,
+ // exists, and it is not the root path.
+ if (llvm::sys::path::is_absolute(env) && llvm::sys::fs::exists(env) &&
+ StringRef(env) != "/") {
+ Args.append(Args.MakeSeparateArg(
+ nullptr, Opts.getOption(options::OPT_isysroot), env));
+ }
+ }
+ }
+
+ Arg *OSXVersion = Args.getLastArg(options::OPT_mmacosx_version_min_EQ);
+ Arg *iOSVersion = Args.getLastArg(options::OPT_miphoneos_version_min_EQ);
+
+ if (OSXVersion && iOSVersion) {
+ getDriver().Diag(diag::err_drv_argument_not_allowed_with)
+ << OSXVersion->getAsString(Args)
+ << iOSVersion->getAsString(Args);
+ iOSVersion = nullptr;
+ } else if (!OSXVersion && !iOSVersion) {
+ // If no deployment target was specified on the command line, check for
+ // environment defines.
+ StringRef OSXTarget;
+ StringRef iOSTarget;
+ if (char *env = ::getenv("MACOSX_DEPLOYMENT_TARGET"))
+ OSXTarget = env;
+ if (char *env = ::getenv("IPHONEOS_DEPLOYMENT_TARGET"))
+ iOSTarget = env;
+
+ // If no '-miphoneos-version-min' specified on the command line and
+ // IPHONEOS_DEPLOYMENT_TARGET is not defined, see if we can set the default
+ // based on -isysroot.
+ if (iOSTarget.empty()) {
+ if (const Arg *A = Args.getLastArg(options::OPT_isysroot)) {
+ StringRef first, second;
+ StringRef isysroot = A->getValue();
+ std::tie(first, second) = isysroot.split(StringRef("SDKs/iPhoneOS"));
+ if (second != "")
+ iOSTarget = second.substr(0,3);
+ }
+ }
+
+ // If no OSX or iOS target has been specified and we're compiling for armv7,
+ // go ahead as assume we're targeting iOS.
+ StringRef MachOArchName = getMachOArchName(Args);
+ if (OSXTarget.empty() && iOSTarget.empty() &&
+ (MachOArchName == "armv7" || MachOArchName == "armv7s" ||
+ MachOArchName == "arm64"))
+ iOSTarget = iOSVersionMin;
+
+ // Allow conflicts among OSX and iOS for historical reasons, but choose the
+ // default platform.
+ if (!OSXTarget.empty() && !iOSTarget.empty()) {
+ if (getTriple().getArch() == llvm::Triple::arm ||
+ getTriple().getArch() == llvm::Triple::aarch64 ||
+ getTriple().getArch() == llvm::Triple::thumb)
+ OSXTarget = "";
+ else
+ iOSTarget = "";
+ }
+
+ if (!OSXTarget.empty()) {
+ const Option O = Opts.getOption(options::OPT_mmacosx_version_min_EQ);
+ OSXVersion = Args.MakeJoinedArg(nullptr, O, OSXTarget);
+ Args.append(OSXVersion);
+ } else if (!iOSTarget.empty()) {
+ const Option O = Opts.getOption(options::OPT_miphoneos_version_min_EQ);
+ iOSVersion = Args.MakeJoinedArg(nullptr, O, iOSTarget);
+ Args.append(iOSVersion);
+ } else if (MachOArchName != "armv6m" && MachOArchName != "armv7m" &&
+ MachOArchName != "armv7em") {
+ // Otherwise, assume we are targeting OS X.
+ const Option O = Opts.getOption(options::OPT_mmacosx_version_min_EQ);
+ OSXVersion = Args.MakeJoinedArg(nullptr, O, MacosxVersionMin);
+ Args.append(OSXVersion);
+ }
+ }
+
+ DarwinPlatformKind Platform;
+ if (OSXVersion)
+ Platform = MacOS;
+ else if (iOSVersion)
+ Platform = IPhoneOS;
+ else
+ llvm_unreachable("Unable to infer Darwin variant");
+
+ // Set the tool chain target information.
+ unsigned Major, Minor, Micro;
+ bool HadExtra;
+ if (Platform == MacOS) {
+ assert(!iOSVersion && "Unknown target platform!");
+ if (!Driver::GetReleaseVersion(OSXVersion->getValue(), Major, Minor,
+ Micro, HadExtra) || HadExtra ||
+ Major != 10 || Minor >= 100 || Micro >= 100)
+ getDriver().Diag(diag::err_drv_invalid_version_number)
+ << OSXVersion->getAsString(Args);
+ } else if (Platform == IPhoneOS) {
+ assert(iOSVersion && "Unknown target platform!");
+ if (!Driver::GetReleaseVersion(iOSVersion->getValue(), Major, Minor,
+ Micro, HadExtra) || HadExtra ||
+ Major >= 10 || Minor >= 100 || Micro >= 100)
+ getDriver().Diag(diag::err_drv_invalid_version_number)
+ << iOSVersion->getAsString(Args);
+ } else
+ llvm_unreachable("unknown kind of Darwin platform");
+
+ // Recognize iOS targets with an x86 architecture as the iOS simulator.
+ if (iOSVersion && (getTriple().getArch() == llvm::Triple::x86 ||
+ getTriple().getArch() == llvm::Triple::x86_64))
+ Platform = IPhoneOSSimulator;
+
+ setTarget(Platform, Major, Minor, Micro);
+}
+
+void DarwinClang::AddCXXStdlibLibArgs(const ArgList &Args,
+ ArgStringList &CmdArgs) const {
+ CXXStdlibType Type = GetCXXStdlibType(Args);
+
+ switch (Type) {
+ case ToolChain::CST_Libcxx:
+ CmdArgs.push_back("-lc++");
+ break;
+
+ case ToolChain::CST_Libstdcxx: {
+ // Unfortunately, -lstdc++ doesn't always exist in the standard search path;
+ // it was previously found in the gcc lib dir. However, for all the Darwin
+ // platforms we care about it was -lstdc++.6, so we search for that
+ // explicitly if we can't see an obvious -lstdc++ candidate.
+
+ // Check in the sysroot first.
+ if (const Arg *A = Args.getLastArg(options::OPT_isysroot)) {
+ SmallString<128> P(A->getValue());
+ llvm::sys::path::append(P, "usr", "lib", "libstdc++.dylib");
+
+ if (!llvm::sys::fs::exists(P)) {
+ llvm::sys::path::remove_filename(P);
+ llvm::sys::path::append(P, "libstdc++.6.dylib");
+ if (llvm::sys::fs::exists(P)) {
+ CmdArgs.push_back(Args.MakeArgString(P));
+ return;
+ }
+ }
+ }
+
+ // Otherwise, look in the root.
+ // FIXME: This should be removed someday when we don't have to care about
+ // 10.6 and earlier, where /usr/lib/libstdc++.dylib does not exist.
+ if (!llvm::sys::fs::exists("/usr/lib/libstdc++.dylib") &&
+ llvm::sys::fs::exists("/usr/lib/libstdc++.6.dylib")) {
+ CmdArgs.push_back("/usr/lib/libstdc++.6.dylib");
+ return;
+ }
+
+ // Otherwise, let the linker search.
+ CmdArgs.push_back("-lstdc++");
+ break;
+ }
+ }
+}
+
+void DarwinClang::AddCCKextLibArgs(const ArgList &Args,
+ ArgStringList &CmdArgs) const {
+
+ // For Darwin platforms, use the compiler-rt-based support library
+ // instead of the gcc-provided one (which is also incidentally
+ // only present in the gcc lib dir, which makes it hard to find).
+
+ SmallString<128> P(getDriver().ResourceDir);
+ llvm::sys::path::append(P, "lib", "darwin");
+
+ // Use the newer cc_kext for iOS ARM after 6.0.
+ if (!isTargetIPhoneOS() || isTargetIOSSimulator() ||
+ getTriple().getArch() == llvm::Triple::aarch64 ||
+ !isIPhoneOSVersionLT(6, 0)) {
+ llvm::sys::path::append(P, "libclang_rt.cc_kext.a");
+ } else {
+ llvm::sys::path::append(P, "libclang_rt.cc_kext_ios5.a");
+ }
+
+ // For now, allow missing resource libraries to support developers who may
+ // not have compiler-rt checked out or integrated into their build.
+ if (llvm::sys::fs::exists(P))
+ CmdArgs.push_back(Args.MakeArgString(P));
+}
+
+DerivedArgList *MachO::TranslateArgs(const DerivedArgList &Args,
+ const char *BoundArch) const {
+ DerivedArgList *DAL = new DerivedArgList(Args.getBaseArgs());
+ const OptTable &Opts = getDriver().getOpts();
+
+ // FIXME: We really want to get out of the tool chain level argument
+ // translation business, as it makes the driver functionality much
+ // more opaque. For now, we follow gcc closely solely for the
+ // purpose of easily achieving feature parity & testability. Once we
+ // have something that works, we should reevaluate each translation
+ // and try to push it down into tool specific logic.
+
+ for (Arg *A : Args) {
+ if (A->getOption().matches(options::OPT_Xarch__)) {
+ // Skip this argument unless the architecture matches either the toolchain
+ // triple arch, or the arch being bound.
+ llvm::Triple::ArchType XarchArch =
+ tools::darwin::getArchTypeForMachOArchName(A->getValue(0));
+ if (!(XarchArch == getArch() ||
+ (BoundArch && XarchArch ==
+ tools::darwin::getArchTypeForMachOArchName(BoundArch))))
+ continue;
+
+ Arg *OriginalArg = A;
+ unsigned Index = Args.getBaseArgs().MakeIndex(A->getValue(1));
+ unsigned Prev = Index;
+ std::unique_ptr<Arg> XarchArg(Opts.ParseOneArg(Args, Index));
+
+ // If the argument parsing failed or more than one argument was
+ // consumed, the -Xarch_ argument's parameter tried to consume
+ // extra arguments. Emit an error and ignore.
+ //
+ // We also want to disallow any options which would alter the
+ // driver behavior; that isn't going to work in our model. We
+ // use isDriverOption() as an approximation, although things
+ // like -O4 are going to slip through.
+ if (!XarchArg || Index > Prev + 1) {
+ getDriver().Diag(diag::err_drv_invalid_Xarch_argument_with_args)
+ << A->getAsString(Args);
+ continue;
+ } else if (XarchArg->getOption().hasFlag(options::DriverOption)) {
+ getDriver().Diag(diag::err_drv_invalid_Xarch_argument_isdriver)
+ << A->getAsString(Args);
+ continue;
+ }
+
+ XarchArg->setBaseArg(A);
+
+ A = XarchArg.release();
+ DAL->AddSynthesizedArg(A);
+
+ // Linker input arguments require custom handling. The problem is that we
+ // have already constructed the phase actions, so we can not treat them as
+ // "input arguments".
+ if (A->getOption().hasFlag(options::LinkerInput)) {
+ // Convert the argument into individual Zlinker_input_args.
+ for (unsigned i = 0, e = A->getNumValues(); i != e; ++i) {
+ DAL->AddSeparateArg(OriginalArg,
+ Opts.getOption(options::OPT_Zlinker_input),
+ A->getValue(i));
+
+ }
+ continue;
+ }
+ }
+
+ // Sob. These is strictly gcc compatible for the time being. Apple
+ // gcc translates options twice, which means that self-expanding
+ // options add duplicates.
+ switch ((options::ID) A->getOption().getID()) {
+ default:
+ DAL->append(A);
+ break;
+
+ case options::OPT_mkernel:
+ case options::OPT_fapple_kext:
+ DAL->append(A);
+ DAL->AddFlagArg(A, Opts.getOption(options::OPT_static));
+ break;
+
+ case options::OPT_dependency_file:
+ DAL->AddSeparateArg(A, Opts.getOption(options::OPT_MF),
+ A->getValue());
+ break;
+
+ case options::OPT_gfull:
+ DAL->AddFlagArg(A, Opts.getOption(options::OPT_g_Flag));
+ DAL->AddFlagArg(A,
+ Opts.getOption(options::OPT_fno_eliminate_unused_debug_symbols));
+ break;
+
+ case options::OPT_gused:
+ DAL->AddFlagArg(A, Opts.getOption(options::OPT_g_Flag));
+ DAL->AddFlagArg(A,
+ Opts.getOption(options::OPT_feliminate_unused_debug_symbols));
+ break;
+
+ case options::OPT_shared:
+ DAL->AddFlagArg(A, Opts.getOption(options::OPT_dynamiclib));
+ break;
+
+ case options::OPT_fconstant_cfstrings:
+ DAL->AddFlagArg(A, Opts.getOption(options::OPT_mconstant_cfstrings));
+ break;
+
+ case options::OPT_fno_constant_cfstrings:
+ DAL->AddFlagArg(A, Opts.getOption(options::OPT_mno_constant_cfstrings));
+ break;
+
+ case options::OPT_Wnonportable_cfstrings:
+ DAL->AddFlagArg(A,
+ Opts.getOption(options::OPT_mwarn_nonportable_cfstrings));
+ break;
+
+ case options::OPT_Wno_nonportable_cfstrings:
+ DAL->AddFlagArg(A,
+ Opts.getOption(options::OPT_mno_warn_nonportable_cfstrings));
+ break;
+
+ case options::OPT_fpascal_strings:
+ DAL->AddFlagArg(A, Opts.getOption(options::OPT_mpascal_strings));
+ break;
+
+ case options::OPT_fno_pascal_strings:
+ DAL->AddFlagArg(A, Opts.getOption(options::OPT_mno_pascal_strings));
+ break;
+ }
+ }
+
+ if (getTriple().getArch() == llvm::Triple::x86 ||
+ getTriple().getArch() == llvm::Triple::x86_64)
+ if (!Args.hasArgNoClaim(options::OPT_mtune_EQ))
+ DAL->AddJoinedArg(nullptr, Opts.getOption(options::OPT_mtune_EQ),
+ "core2");
+
+ // Add the arch options based on the particular spelling of -arch, to match
+ // how the driver driver works.
+ if (BoundArch) {
+ StringRef Name = BoundArch;
+ const Option MCpu = Opts.getOption(options::OPT_mcpu_EQ);
+ const Option MArch = Opts.getOption(options::OPT_march_EQ);
+
+ // This code must be kept in sync with LLVM's getArchTypeForDarwinArch,
+ // which defines the list of which architectures we accept.
+ if (Name == "ppc")
+ ;
+ else if (Name == "ppc601")
+ DAL->AddJoinedArg(nullptr, MCpu, "601");
+ else if (Name == "ppc603")
+ DAL->AddJoinedArg(nullptr, MCpu, "603");
+ else if (Name == "ppc604")
+ DAL->AddJoinedArg(nullptr, MCpu, "604");
+ else if (Name == "ppc604e")
+ DAL->AddJoinedArg(nullptr, MCpu, "604e");
+ else if (Name == "ppc750")
+ DAL->AddJoinedArg(nullptr, MCpu, "750");
+ else if (Name == "ppc7400")
+ DAL->AddJoinedArg(nullptr, MCpu, "7400");
+ else if (Name == "ppc7450")
+ DAL->AddJoinedArg(nullptr, MCpu, "7450");
+ else if (Name == "ppc970")
+ DAL->AddJoinedArg(nullptr, MCpu, "970");
+
+ else if (Name == "ppc64" || Name == "ppc64le")
+ DAL->AddFlagArg(nullptr, Opts.getOption(options::OPT_m64));
+
+ else if (Name == "i386")
+ ;
+ else if (Name == "i486")
+ DAL->AddJoinedArg(nullptr, MArch, "i486");
+ else if (Name == "i586")
+ DAL->AddJoinedArg(nullptr, MArch, "i586");
+ else if (Name == "i686")
+ DAL->AddJoinedArg(nullptr, MArch, "i686");
+ else if (Name == "pentium")
+ DAL->AddJoinedArg(nullptr, MArch, "pentium");
+ else if (Name == "pentium2")
+ DAL->AddJoinedArg(nullptr, MArch, "pentium2");
+ else if (Name == "pentpro")
+ DAL->AddJoinedArg(nullptr, MArch, "pentiumpro");
+ else if (Name == "pentIIm3")
+ DAL->AddJoinedArg(nullptr, MArch, "pentium2");
+
+ else if (Name == "x86_64")
+ DAL->AddFlagArg(nullptr, Opts.getOption(options::OPT_m64));
+ else if (Name == "x86_64h") {
+ DAL->AddFlagArg(nullptr, Opts.getOption(options::OPT_m64));
+ DAL->AddJoinedArg(nullptr, MArch, "x86_64h");
+ }
+
+ else if (Name == "arm")
+ DAL->AddJoinedArg(nullptr, MArch, "armv4t");
+ else if (Name == "armv4t")
+ DAL->AddJoinedArg(nullptr, MArch, "armv4t");
+ else if (Name == "armv5")
+ DAL->AddJoinedArg(nullptr, MArch, "armv5tej");
+ else if (Name == "xscale")
+ DAL->AddJoinedArg(nullptr, MArch, "xscale");
+ else if (Name == "armv6")
+ DAL->AddJoinedArg(nullptr, MArch, "armv6k");
+ else if (Name == "armv6m")
+ DAL->AddJoinedArg(nullptr, MArch, "armv6m");
+ else if (Name == "armv7")
+ DAL->AddJoinedArg(nullptr, MArch, "armv7a");
+ else if (Name == "armv7em")
+ DAL->AddJoinedArg(nullptr, MArch, "armv7em");
+ else if (Name == "armv7k")
+ DAL->AddJoinedArg(nullptr, MArch, "armv7k");
+ else if (Name == "armv7m")
+ DAL->AddJoinedArg(nullptr, MArch, "armv7m");
+ else if (Name == "armv7s")
+ DAL->AddJoinedArg(nullptr, MArch, "armv7s");
+ }
+
+ return DAL;
+}
+
+void MachO::AddLinkRuntimeLibArgs(const llvm::opt::ArgList &Args,
+ llvm::opt::ArgStringList &CmdArgs) const {
+ // Embedded targets are simple at the moment, not supporting sanitizers and
+ // with different libraries for each member of the product { static, PIC } x
+ // { hard-float, soft-float }
+ llvm::SmallString<32> CompilerRT = StringRef("libclang_rt.");
+ CompilerRT +=
+ tools::arm::getARMFloatABI(getDriver(), Args, getTriple()) == "hard"
+ ? "hard"
+ : "soft";
+ CompilerRT += Args.hasArg(options::OPT_fPIC) ? "_pic.a" : "_static.a";
+
+ AddLinkRuntimeLib(Args, CmdArgs, CompilerRT, false, true);
+}
+
+
+DerivedArgList *Darwin::TranslateArgs(const DerivedArgList &Args,
+ const char *BoundArch) const {
+ // First get the generic Apple args, before moving onto Darwin-specific ones.
+ DerivedArgList *DAL = MachO::TranslateArgs(Args, BoundArch);
+ const OptTable &Opts = getDriver().getOpts();
+
+ // If no architecture is bound, none of the translations here are relevant.
+ if (!BoundArch)
+ return DAL;
+
+ // Add an explicit version min argument for the deployment target. We do this
+ // after argument translation because -Xarch_ arguments may add a version min
+ // argument.
+ AddDeploymentTarget(*DAL);
+
+ // For iOS 6, undo the translation to add -static for -mkernel/-fapple-kext.
+ // FIXME: It would be far better to avoid inserting those -static arguments,
+ // but we can't check the deployment target in the translation code until
+ // it is set here.
+ if (isTargetIOSBased() && !isIPhoneOSVersionLT(6, 0)) {
+ for (ArgList::iterator it = DAL->begin(), ie = DAL->end(); it != ie; ) {
+ Arg *A = *it;
+ ++it;
+ if (A->getOption().getID() != options::OPT_mkernel &&
+ A->getOption().getID() != options::OPT_fapple_kext)
+ continue;
+ assert(it != ie && "unexpected argument translation");
+ A = *it;
+ assert(A->getOption().getID() == options::OPT_static &&
+ "missing expected -static argument");
+ it = DAL->getArgs().erase(it);
+ }
+ }
+
+ // Default to use libc++ on OS X 10.9+ and iOS 7+.
+ if (((isTargetMacOS() && !isMacosxVersionLT(10, 9)) ||
+ (isTargetIOSBased() && !isIPhoneOSVersionLT(7, 0))) &&
+ !Args.getLastArg(options::OPT_stdlib_EQ))
+ DAL->AddJoinedArg(nullptr, Opts.getOption(options::OPT_stdlib_EQ),
+ "libc++");
+
+ // Validate the C++ standard library choice.
+ CXXStdlibType Type = GetCXXStdlibType(*DAL);
+ if (Type == ToolChain::CST_Libcxx) {
+ // Check whether the target provides libc++.
+ StringRef where;
+
+ // Complain about targeting iOS < 5.0 in any way.
+ if (isTargetIOSBased() && isIPhoneOSVersionLT(5, 0))
+ where = "iOS 5.0";
+
+ if (where != StringRef()) {
+ getDriver().Diag(clang::diag::err_drv_invalid_libcxx_deployment)
+ << where;
+ }
+ }
+
+ return DAL;
+}
+
+bool MachO::IsUnwindTablesDefault() const {
+ return getArch() == llvm::Triple::x86_64;
+}
+
+bool MachO::UseDwarfDebugFlags() const {
+ if (const char *S = ::getenv("RC_DEBUG_OPTIONS"))
+ return S[0] != '\0';
+ return false;
+}
+
+bool Darwin::UseSjLjExceptions() const {
+ // Darwin uses SjLj exceptions on ARM.
+ return (getTriple().getArch() == llvm::Triple::arm ||
+ getTriple().getArch() == llvm::Triple::thumb);
+}
+
+bool MachO::isPICDefault() const {
+ return true;
+}
+
+bool MachO::isPIEDefault() const {
+ return false;
+}
+
+bool MachO::isPICDefaultForced() const {
+ return (getArch() == llvm::Triple::x86_64 ||
+ getArch() == llvm::Triple::aarch64);
+}
+
+bool MachO::SupportsProfiling() const {
+ // Profiling instrumentation is only supported on x86.
+ return getArch() == llvm::Triple::x86 || getArch() == llvm::Triple::x86_64;
+}
+
+void Darwin::addMinVersionArgs(const llvm::opt::ArgList &Args,
+ llvm::opt::ArgStringList &CmdArgs) const {
+ VersionTuple TargetVersion = getTargetVersion();
+
+ if (isTargetIOSSimulator())
+ CmdArgs.push_back("-ios_simulator_version_min");
+ else if (isTargetIOSBased())
+ CmdArgs.push_back("-iphoneos_version_min");
+ else {
+ assert(isTargetMacOS() && "unexpected target");
+ CmdArgs.push_back("-macosx_version_min");
+ }
+
+ CmdArgs.push_back(Args.MakeArgString(TargetVersion.getAsString()));
+}
+
+void Darwin::addStartObjectFileArgs(const llvm::opt::ArgList &Args,
+ llvm::opt::ArgStringList &CmdArgs) const {
+ // Derived from startfile spec.
+ if (Args.hasArg(options::OPT_dynamiclib)) {
+ // Derived from darwin_dylib1 spec.
+ if (isTargetIOSSimulator()) {
+ ; // iOS simulator does not need dylib1.o.
+ } else if (isTargetIPhoneOS()) {
+ if (isIPhoneOSVersionLT(3, 1))
+ CmdArgs.push_back("-ldylib1.o");
+ } else {
+ if (isMacosxVersionLT(10, 5))
+ CmdArgs.push_back("-ldylib1.o");
+ else if (isMacosxVersionLT(10, 6))
+ CmdArgs.push_back("-ldylib1.10.5.o");
+ }
+ } else {
+ if (Args.hasArg(options::OPT_bundle)) {
+ if (!Args.hasArg(options::OPT_static)) {
+ // Derived from darwin_bundle1 spec.
+ if (isTargetIOSSimulator()) {
+ ; // iOS simulator does not need bundle1.o.
+ } else if (isTargetIPhoneOS()) {
+ if (isIPhoneOSVersionLT(3, 1))
+ CmdArgs.push_back("-lbundle1.o");
+ } else {
+ if (isMacosxVersionLT(10, 6))
+ CmdArgs.push_back("-lbundle1.o");
+ }
+ }
+ } else {
+ if (Args.hasArg(options::OPT_pg) && SupportsProfiling()) {
+ if (Args.hasArg(options::OPT_static) ||
+ Args.hasArg(options::OPT_object) ||
+ Args.hasArg(options::OPT_preload)) {
+ CmdArgs.push_back("-lgcrt0.o");
+ } else {
+ CmdArgs.push_back("-lgcrt1.o");
+
+ // darwin_crt2 spec is empty.
+ }
+ // By default on OS X 10.8 and later, we don't link with a crt1.o
+ // file and the linker knows to use _main as the entry point. But,
+ // when compiling with -pg, we need to link with the gcrt1.o file,
+ // so pass the -no_new_main option to tell the linker to use the
+ // "start" symbol as the entry point.
+ if (isTargetMacOS() && !isMacosxVersionLT(10, 8))
+ CmdArgs.push_back("-no_new_main");
+ } else {
+ if (Args.hasArg(options::OPT_static) ||
+ Args.hasArg(options::OPT_object) ||
+ Args.hasArg(options::OPT_preload)) {
+ CmdArgs.push_back("-lcrt0.o");
+ } else {
+ // Derived from darwin_crt1 spec.
+ if (isTargetIOSSimulator()) {
+ ; // iOS simulator does not need crt1.o.
+ } else if (isTargetIPhoneOS()) {
+ if (getArch() == llvm::Triple::aarch64)
+ ; // iOS does not need any crt1 files for arm64
+ else if (isIPhoneOSVersionLT(3, 1))
+ CmdArgs.push_back("-lcrt1.o");
+ else if (isIPhoneOSVersionLT(6, 0))
+ CmdArgs.push_back("-lcrt1.3.1.o");
+ } else {
+ if (isMacosxVersionLT(10, 5))
+ CmdArgs.push_back("-lcrt1.o");
+ else if (isMacosxVersionLT(10, 6))
+ CmdArgs.push_back("-lcrt1.10.5.o");
+ else if (isMacosxVersionLT(10, 8))
+ CmdArgs.push_back("-lcrt1.10.6.o");
+
+ // darwin_crt2 spec is empty.
+ }
+ }
+ }
+ }
+ }
+
+ if (!isTargetIPhoneOS() && Args.hasArg(options::OPT_shared_libgcc) &&
+ isMacosxVersionLT(10, 5)) {
+ const char *Str = Args.MakeArgString(GetFilePath("crt3.o"));
+ CmdArgs.push_back(Str);
+ }
+}
+
+bool Darwin::SupportsObjCGC() const {
+ return isTargetMacOS();
+}
+
+void Darwin::CheckObjCARC() const {
+ if (isTargetIOSBased()|| (isTargetMacOS() && !isMacosxVersionLT(10, 6)))
+ return;
+ getDriver().Diag(diag::err_arc_unsupported_on_toolchain);
+}
+
+/// Generic_GCC - A tool chain using the 'gcc' command to perform
+/// all subcommands; this relies on gcc translating the majority of
+/// command line options.
+
+/// \brief Parse a GCCVersion object out of a string of text.
+///
+/// This is the primary means of forming GCCVersion objects.
+/*static*/
+Generic_GCC::GCCVersion Linux::GCCVersion::Parse(StringRef VersionText) {
+ const GCCVersion BadVersion = { VersionText.str(), -1, -1, -1, "", "", "" };
+ std::pair<StringRef, StringRef> First = VersionText.split('.');
+ std::pair<StringRef, StringRef> Second = First.second.split('.');
+
+ GCCVersion GoodVersion = { VersionText.str(), -1, -1, -1, "", "", "" };
+ if (First.first.getAsInteger(10, GoodVersion.Major) ||
+ GoodVersion.Major < 0)
+ return BadVersion;
+ GoodVersion.MajorStr = First.first.str();
+ if (Second.first.getAsInteger(10, GoodVersion.Minor) ||
+ GoodVersion.Minor < 0)
+ return BadVersion;
+ GoodVersion.MinorStr = Second.first.str();
+
+ // First look for a number prefix and parse that if present. Otherwise just
+ // stash the entire patch string in the suffix, and leave the number
+ // unspecified. This covers versions strings such as:
+ // 4.4
+ // 4.4.0
+ // 4.4.x
+ // 4.4.2-rc4
+ // 4.4.x-patched
+ // And retains any patch number it finds.
+ StringRef PatchText = GoodVersion.PatchSuffix = Second.second.str();
+ if (!PatchText.empty()) {
+ if (size_t EndNumber = PatchText.find_first_not_of("0123456789")) {
+ // Try to parse the number and any suffix.
+ if (PatchText.slice(0, EndNumber).getAsInteger(10, GoodVersion.Patch) ||
+ GoodVersion.Patch < 0)
+ return BadVersion;
+ GoodVersion.PatchSuffix = PatchText.substr(EndNumber);
+ }
+ }
+
+ return GoodVersion;
+}
+
+/// \brief Less-than for GCCVersion, implementing a Strict Weak Ordering.
+bool Generic_GCC::GCCVersion::isOlderThan(int RHSMajor, int RHSMinor,
+ int RHSPatch,
+ StringRef RHSPatchSuffix) const {
+ if (Major != RHSMajor)
+ return Major < RHSMajor;
+ if (Minor != RHSMinor)
+ return Minor < RHSMinor;
+ if (Patch != RHSPatch) {
+ // Note that versions without a specified patch sort higher than those with
+ // a patch.
+ if (RHSPatch == -1)
+ return true;
+ if (Patch == -1)
+ return false;
+
+ // Otherwise just sort on the patch itself.
+ return Patch < RHSPatch;
+ }
+ if (PatchSuffix != RHSPatchSuffix) {
+ // Sort empty suffixes higher.
+ if (RHSPatchSuffix.empty())
+ return true;
+ if (PatchSuffix.empty())
+ return false;
+
+ // Provide a lexicographic sort to make this a total ordering.
+ return PatchSuffix < RHSPatchSuffix;
+ }
+
+ // The versions are equal.
+ return false;
+}
+
+static llvm::StringRef getGCCToolchainDir(const ArgList &Args) {
+ const Arg *A = Args.getLastArg(options::OPT_gcc_toolchain);
+ if (A)
+ return A->getValue();
+ return GCC_INSTALL_PREFIX;
+}
+
+/// \brief Initialize a GCCInstallationDetector from the driver.
+///
+/// This performs all of the autodetection and sets up the various paths.
+/// Once constructed, a GCCInstallationDetector is essentially immutable.
+///
+/// FIXME: We shouldn't need an explicit TargetTriple parameter here, and
+/// should instead pull the target out of the driver. This is currently
+/// necessary because the driver doesn't store the final version of the target
+/// triple.
+void
+Generic_GCC::GCCInstallationDetector::init(
+ const Driver &D, const llvm::Triple &TargetTriple, const ArgList &Args) {
+ llvm::Triple BiarchVariantTriple =
+ TargetTriple.isArch32Bit() ? TargetTriple.get64BitArchVariant()
+ : TargetTriple.get32BitArchVariant();
+ // The library directories which may contain GCC installations.
+ SmallVector<StringRef, 4> CandidateLibDirs, CandidateBiarchLibDirs;
+ // The compatible GCC triples for this particular architecture.
+ SmallVector<StringRef, 16> CandidateTripleAliases;
+ SmallVector<StringRef, 16> CandidateBiarchTripleAliases;
+ CollectLibDirsAndTriples(TargetTriple, BiarchVariantTriple, CandidateLibDirs,
+ CandidateTripleAliases, CandidateBiarchLibDirs,
+ CandidateBiarchTripleAliases);
+
+ // Compute the set of prefixes for our search.
+ SmallVector<std::string, 8> Prefixes(D.PrefixDirs.begin(),
+ D.PrefixDirs.end());
+
+ StringRef GCCToolchainDir = getGCCToolchainDir(Args);
+ if (GCCToolchainDir != "") {
+ if (GCCToolchainDir.back() == '/')
+ GCCToolchainDir = GCCToolchainDir.drop_back(); // remove the /
+
+ Prefixes.push_back(GCCToolchainDir);
+ } else {
+ // If we have a SysRoot, try that first.
+ if (!D.SysRoot.empty()) {
+ Prefixes.push_back(D.SysRoot);
+ Prefixes.push_back(D.SysRoot + "/usr");
+ }
+
+ // Then look for gcc installed alongside clang.
+ Prefixes.push_back(D.InstalledDir + "/..");
+
+ // And finally in /usr.
+ if (D.SysRoot.empty())
+ Prefixes.push_back("/usr");
+ }
+
+ // Loop over the various components which exist and select the best GCC
+ // installation available. GCC installs are ranked by version number.
+ Version = GCCVersion::Parse("0.0.0");
+ for (unsigned i = 0, ie = Prefixes.size(); i < ie; ++i) {
+ if (!llvm::sys::fs::exists(Prefixes[i]))
+ continue;
+ for (unsigned j = 0, je = CandidateLibDirs.size(); j < je; ++j) {
+ const std::string LibDir = Prefixes[i] + CandidateLibDirs[j].str();
+ if (!llvm::sys::fs::exists(LibDir))
+ continue;
+ for (unsigned k = 0, ke = CandidateTripleAliases.size(); k < ke; ++k)
+ ScanLibDirForGCCTriple(TargetTriple, Args, LibDir,
+ CandidateTripleAliases[k]);
+ }
+ for (unsigned j = 0, je = CandidateBiarchLibDirs.size(); j < je; ++j) {
+ const std::string LibDir = Prefixes[i] + CandidateBiarchLibDirs[j].str();
+ if (!llvm::sys::fs::exists(LibDir))
+ continue;
+ for (unsigned k = 0, ke = CandidateBiarchTripleAliases.size(); k < ke;
+ ++k)
+ ScanLibDirForGCCTriple(TargetTriple, Args, LibDir,
+ CandidateBiarchTripleAliases[k],
+ /*NeedsBiarchSuffix=*/ true);
+ }
+ }
+}
+
+void Generic_GCC::GCCInstallationDetector::print(raw_ostream &OS) const {
+ for (const auto &InstallPath : CandidateGCCInstallPaths)
+ OS << "Found candidate GCC installation: " << InstallPath << "\n";
+
+ if (!GCCInstallPath.empty())
+ OS << "Selected GCC installation: " << GCCInstallPath << "\n";
+
+ for (const auto &Multilib : Multilibs)
+ OS << "Candidate multilib: " << Multilib << "\n";
+
+ if (Multilibs.size() != 0 || !SelectedMultilib.isDefault())
+ OS << "Selected multilib: " << SelectedMultilib << "\n";
+}
+
+bool Generic_GCC::GCCInstallationDetector::getBiarchSibling(Multilib &M) const {
+ if (BiarchSibling.hasValue()) {
+ M = BiarchSibling.getValue();
+ return true;
+ }
+ return false;
+}
+
+/*static*/ void Generic_GCC::GCCInstallationDetector::CollectLibDirsAndTriples(
+ const llvm::Triple &TargetTriple, const llvm::Triple &BiarchTriple,
+ SmallVectorImpl<StringRef> &LibDirs,
+ SmallVectorImpl<StringRef> &TripleAliases,
+ SmallVectorImpl<StringRef> &BiarchLibDirs,
+ SmallVectorImpl<StringRef> &BiarchTripleAliases) {
+ // Declare a bunch of static data sets that we'll select between below. These
+ // are specifically designed to always refer to string literals to avoid any
+ // lifetime or initialization issues.
+ static const char *const AArch64LibDirs[] = { "/lib64", "/lib" };
+ static const char *const AArch64Triples[] = { "aarch64-none-linux-gnu",
+ "aarch64-linux-gnu",
+ "aarch64-linux-android",
+ "aarch64-redhat-linux" };
+ static const char *const AArch64beLibDirs[] = { "/lib" };
+ static const char *const AArch64beTriples[] = { "aarch64_be-none-linux-gnu",
+ "aarch64_be-linux-gnu" };
+
+ static const char *const ARMLibDirs[] = { "/lib" };
+ static const char *const ARMTriples[] = { "arm-linux-gnueabi",
+ "arm-linux-androideabi" };
+ static const char *const ARMHFTriples[] = { "arm-linux-gnueabihf",
+ "armv7hl-redhat-linux-gnueabi" };
+ static const char *const ARMebLibDirs[] = { "/lib" };
+ static const char *const ARMebTriples[] = { "armeb-linux-gnueabi",
+ "armeb-linux-androideabi" };
+ static const char *const ARMebHFTriples[] = { "armeb-linux-gnueabihf",
+ "armebv7hl-redhat-linux-gnueabi" };
+
+ static const char *const X86_64LibDirs[] = { "/lib64", "/lib" };
+ static const char *const X86_64Triples[] = {
+ "x86_64-linux-gnu", "x86_64-unknown-linux-gnu", "x86_64-pc-linux-gnu",
+ "x86_64-redhat-linux6E", "x86_64-redhat-linux", "x86_64-suse-linux",
+ "x86_64-manbo-linux-gnu", "x86_64-linux-gnu", "x86_64-slackware-linux",
+ "x86_64-linux-android", "x86_64-unknown-linux"
+ };
+ static const char *const X32LibDirs[] = { "/libx32" };
+ static const char *const X86LibDirs[] = { "/lib32", "/lib" };
+ static const char *const X86Triples[] = {
+ "i686-linux-gnu", "i686-pc-linux-gnu", "i486-linux-gnu", "i386-linux-gnu",
+ "i386-redhat-linux6E", "i686-redhat-linux", "i586-redhat-linux",
+ "i386-redhat-linux", "i586-suse-linux", "i486-slackware-linux",
+ "i686-montavista-linux", "i686-linux-android", "i586-linux-gnu"
+ };
+
+ static const char *const MIPSLibDirs[] = { "/lib" };
+ static const char *const MIPSTriples[] = { "mips-linux-gnu",
+ "mips-mti-linux-gnu",
+ "mips-img-linux-gnu" };
+ static const char *const MIPSELLibDirs[] = { "/lib" };
+ static const char *const MIPSELTriples[] = { "mipsel-linux-gnu",
+ "mipsel-linux-android",
+ "mips-img-linux-gnu" };
+
+ static const char *const MIPS64LibDirs[] = { "/lib64", "/lib" };
+ static const char *const MIPS64Triples[] = { "mips64-linux-gnu",
+ "mips-mti-linux-gnu",
+ "mips-img-linux-gnu",
+ "mips64-linux-gnuabi64" };
+ static const char *const MIPS64ELLibDirs[] = { "/lib64", "/lib" };
+ static const char *const MIPS64ELTriples[] = { "mips64el-linux-gnu",
+ "mips-mti-linux-gnu",
+ "mips-img-linux-gnu",
+ "mips64el-linux-android",
+ "mips64el-linux-gnuabi64" };
+
+ static const char *const PPCLibDirs[] = { "/lib32", "/lib" };
+ static const char *const PPCTriples[] = {
+ "powerpc-linux-gnu", "powerpc-unknown-linux-gnu", "powerpc-linux-gnuspe",
+ "powerpc-suse-linux", "powerpc-montavista-linuxspe"
+ };
+ static const char *const PPC64LibDirs[] = { "/lib64", "/lib" };
+ static const char *const PPC64Triples[] = { "powerpc64-linux-gnu",
+ "powerpc64-unknown-linux-gnu",
+ "powerpc64-suse-linux",
+ "ppc64-redhat-linux" };
+ static const char *const PPC64LELibDirs[] = { "/lib64", "/lib" };
+ static const char *const PPC64LETriples[] = { "powerpc64le-linux-gnu",
+ "powerpc64le-unknown-linux-gnu",
+ "powerpc64le-suse-linux",
+ "ppc64le-redhat-linux" };
+
+ static const char *const SPARCv8LibDirs[] = { "/lib32", "/lib" };
+ static const char *const SPARCv8Triples[] = { "sparc-linux-gnu",
+ "sparcv8-linux-gnu" };
+ static const char *const SPARCv9LibDirs[] = { "/lib64", "/lib" };
+ static const char *const SPARCv9Triples[] = { "sparc64-linux-gnu",
+ "sparcv9-linux-gnu" };
+
+ static const char *const SystemZLibDirs[] = { "/lib64", "/lib" };
+ static const char *const SystemZTriples[] = {
+ "s390x-linux-gnu", "s390x-unknown-linux-gnu", "s390x-ibm-linux-gnu",
+ "s390x-suse-linux", "s390x-redhat-linux"
+ };
+
+ using std::begin;
+ using std::end;
+
+ switch (TargetTriple.getArch()) {
+ case llvm::Triple::aarch64:
+ LibDirs.append(begin(AArch64LibDirs), end(AArch64LibDirs));
+ TripleAliases.append(begin(AArch64Triples), end(AArch64Triples));
+ BiarchLibDirs.append(begin(AArch64LibDirs), end(AArch64LibDirs));
+ BiarchTripleAliases.append(begin(AArch64Triples), end(AArch64Triples));
+ break;
+ case llvm::Triple::aarch64_be:
+ LibDirs.append(begin(AArch64beLibDirs), end(AArch64beLibDirs));
+ TripleAliases.append(begin(AArch64beTriples), end(AArch64beTriples));
+ BiarchLibDirs.append(begin(AArch64beLibDirs), end(AArch64beLibDirs));
+ BiarchTripleAliases.append(begin(AArch64beTriples), end(AArch64beTriples));
+ break;
+ case llvm::Triple::arm:
+ case llvm::Triple::thumb:
+ LibDirs.append(begin(ARMLibDirs), end(ARMLibDirs));
+ if (TargetTriple.getEnvironment() == llvm::Triple::GNUEABIHF) {
+ TripleAliases.append(begin(ARMHFTriples), end(ARMHFTriples));
+ } else {
+ TripleAliases.append(begin(ARMTriples), end(ARMTriples));
+ }
+ break;
+ case llvm::Triple::armeb:
+ case llvm::Triple::thumbeb:
+ LibDirs.append(begin(ARMebLibDirs), end(ARMebLibDirs));
+ if (TargetTriple.getEnvironment() == llvm::Triple::GNUEABIHF) {
+ TripleAliases.append(begin(ARMebHFTriples), end(ARMebHFTriples));
+ } else {
+ TripleAliases.append(begin(ARMebTriples), end(ARMebTriples));
+ }
+ break;
+ case llvm::Triple::x86_64:
+ LibDirs.append(begin(X86_64LibDirs), end(X86_64LibDirs));
+ TripleAliases.append(begin(X86_64Triples), end(X86_64Triples));
+ // x32 is always available when x86_64 is available, so adding it as
+ // secondary arch with x86_64 triples
+ if (TargetTriple.getEnvironment() == llvm::Triple::GNUX32) {
+ BiarchLibDirs.append(begin(X32LibDirs), end(X32LibDirs));
+ BiarchTripleAliases.append(begin(X86_64Triples), end(X86_64Triples));
+ } else {
+ BiarchLibDirs.append(begin(X86LibDirs), end(X86LibDirs));
+ BiarchTripleAliases.append(begin(X86Triples), end(X86Triples));
+ }
+ break;
+ case llvm::Triple::x86:
+ LibDirs.append(begin(X86LibDirs), end(X86LibDirs));
+ TripleAliases.append(begin(X86Triples), end(X86Triples));
+ BiarchLibDirs.append(begin(X86_64LibDirs), end(X86_64LibDirs));
+ BiarchTripleAliases.append(begin(X86_64Triples), end(X86_64Triples));
+ break;
+ case llvm::Triple::mips:
+ LibDirs.append(begin(MIPSLibDirs), end(MIPSLibDirs));
+ TripleAliases.append(begin(MIPSTriples), end(MIPSTriples));
+ BiarchLibDirs.append(begin(MIPS64LibDirs), end(MIPS64LibDirs));
+ BiarchTripleAliases.append(begin(MIPS64Triples), end(MIPS64Triples));
+ break;
+ case llvm::Triple::mipsel:
+ LibDirs.append(begin(MIPSELLibDirs), end(MIPSELLibDirs));
+ TripleAliases.append(begin(MIPSELTriples), end(MIPSELTriples));
+ TripleAliases.append(begin(MIPSTriples), end(MIPSTriples));
+ BiarchLibDirs.append(begin(MIPS64ELLibDirs), end(MIPS64ELLibDirs));
+ BiarchTripleAliases.append(begin(MIPS64ELTriples), end(MIPS64ELTriples));
+ break;
+ case llvm::Triple::mips64:
+ LibDirs.append(begin(MIPS64LibDirs), end(MIPS64LibDirs));
+ TripleAliases.append(begin(MIPS64Triples), end(MIPS64Triples));
+ BiarchLibDirs.append(begin(MIPSLibDirs), end(MIPSLibDirs));
+ BiarchTripleAliases.append(begin(MIPSTriples), end(MIPSTriples));
+ break;
+ case llvm::Triple::mips64el:
+ LibDirs.append(begin(MIPS64ELLibDirs), end(MIPS64ELLibDirs));
+ TripleAliases.append(begin(MIPS64ELTriples), end(MIPS64ELTriples));
+ BiarchLibDirs.append(begin(MIPSELLibDirs), end(MIPSELLibDirs));
+ BiarchTripleAliases.append(begin(MIPSELTriples), end(MIPSELTriples));
+ BiarchTripleAliases.append(begin(MIPSTriples), end(MIPSTriples));
+ break;
+ case llvm::Triple::ppc:
+ LibDirs.append(begin(PPCLibDirs), end(PPCLibDirs));
+ TripleAliases.append(begin(PPCTriples), end(PPCTriples));
+ BiarchLibDirs.append(begin(PPC64LibDirs), end(PPC64LibDirs));
+ BiarchTripleAliases.append(begin(PPC64Triples), end(PPC64Triples));
+ break;
+ case llvm::Triple::ppc64:
+ LibDirs.append(begin(PPC64LibDirs), end(PPC64LibDirs));
+ TripleAliases.append(begin(PPC64Triples), end(PPC64Triples));
+ BiarchLibDirs.append(begin(PPCLibDirs), end(PPCLibDirs));
+ BiarchTripleAliases.append(begin(PPCTriples), end(PPCTriples));
+ break;
+ case llvm::Triple::ppc64le:
+ LibDirs.append(begin(PPC64LELibDirs), end(PPC64LELibDirs));
+ TripleAliases.append(begin(PPC64LETriples), end(PPC64LETriples));
+ break;
+ case llvm::Triple::sparc:
+ LibDirs.append(begin(SPARCv8LibDirs), end(SPARCv8LibDirs));
+ TripleAliases.append(begin(SPARCv8Triples), end(SPARCv8Triples));
+ BiarchLibDirs.append(begin(SPARCv9LibDirs), end(SPARCv9LibDirs));
+ BiarchTripleAliases.append(begin(SPARCv9Triples), end(SPARCv9Triples));
+ break;
+ case llvm::Triple::sparcv9:
+ LibDirs.append(begin(SPARCv9LibDirs), end(SPARCv9LibDirs));
+ TripleAliases.append(begin(SPARCv9Triples), end(SPARCv9Triples));
+ BiarchLibDirs.append(begin(SPARCv8LibDirs), end(SPARCv8LibDirs));
+ BiarchTripleAliases.append(begin(SPARCv8Triples), end(SPARCv8Triples));
+ break;
+ case llvm::Triple::systemz:
+ LibDirs.append(begin(SystemZLibDirs), end(SystemZLibDirs));
+ TripleAliases.append(begin(SystemZTriples), end(SystemZTriples));
+ break;
+
+ default:
+ // By default, just rely on the standard lib directories and the original
+ // triple.
+ break;
+ }
+
+ // Always append the drivers target triple to the end, in case it doesn't
+ // match any of our aliases.
+ TripleAliases.push_back(TargetTriple.str());
+
+ // Also include the multiarch variant if it's different.
+ if (TargetTriple.str() != BiarchTriple.str())
+ BiarchTripleAliases.push_back(BiarchTriple.str());
+}
+
+namespace {
+// Filter to remove Multilibs that don't exist as a suffix to Path
+class FilterNonExistent {
+ StringRef Base;
+
+public:
+ FilterNonExistent(StringRef Base) : Base(Base) {}
+ bool operator()(const Multilib &M) {
+ return !llvm::sys::fs::exists(Base + M.gccSuffix() + "/crtbegin.o");
+ }
+};
+} // end anonymous namespace
+
+static void addMultilibFlag(bool Enabled, const char *const Flag,
+ std::vector<std::string> &Flags) {
+ if (Enabled)
+ Flags.push_back(std::string("+") + Flag);
+ else
+ Flags.push_back(std::string("-") + Flag);
+}
+
+static bool isMipsArch(llvm::Triple::ArchType Arch) {
+ return Arch == llvm::Triple::mips || Arch == llvm::Triple::mipsel ||
+ Arch == llvm::Triple::mips64 || Arch == llvm::Triple::mips64el;
+}
+
+static bool isMips32(llvm::Triple::ArchType Arch) {
+ return Arch == llvm::Triple::mips || Arch == llvm::Triple::mipsel;
+}
+
+static bool isMips64(llvm::Triple::ArchType Arch) {
+ return Arch == llvm::Triple::mips64 || Arch == llvm::Triple::mips64el;
+}
+
+static bool isMipsEL(llvm::Triple::ArchType Arch) {
+ return Arch == llvm::Triple::mipsel || Arch == llvm::Triple::mips64el;
+}
+
+static bool isMips16(const ArgList &Args) {
+ Arg *A = Args.getLastArg(options::OPT_mips16,
+ options::OPT_mno_mips16);
+ return A && A->getOption().matches(options::OPT_mips16);
+}
+
+static bool isMicroMips(const ArgList &Args) {
+ Arg *A = Args.getLastArg(options::OPT_mmicromips,
+ options::OPT_mno_micromips);
+ return A && A->getOption().matches(options::OPT_mmicromips);
+}
+
+struct DetectedMultilibs {
+ /// The set of multilibs that the detected installation supports.
+ MultilibSet Multilibs;
+
+ /// The primary multilib appropriate for the given flags.
+ Multilib SelectedMultilib;
+
+ /// On Biarch systems, this corresponds to the default multilib when
+ /// targeting the non-default multilib. Otherwise, it is empty.
+ llvm::Optional<Multilib> BiarchSibling;
+};
+
+static Multilib makeMultilib(StringRef commonSuffix) {
+ return Multilib(commonSuffix, commonSuffix, commonSuffix);
+}
+
+static bool findMIPSMultilibs(const llvm::Triple &TargetTriple, StringRef Path,
+ const llvm::opt::ArgList &Args,
+ DetectedMultilibs &Result) {
+ // Some MIPS toolchains put libraries and object files compiled
+ // using different options in to the sub-directoris which names
+ // reflects the flags used for compilation. For example sysroot
+ // directory might looks like the following examples:
+ //
+ // /usr
+ // /lib <= crt*.o files compiled with '-mips32'
+ // /mips16
+ // /usr
+ // /lib <= crt*.o files compiled with '-mips16'
+ // /el
+ // /usr
+ // /lib <= crt*.o files compiled with '-mips16 -EL'
+ //
+ // or
+ //
+ // /usr
+ // /lib <= crt*.o files compiled with '-mips32r2'
+ // /mips16
+ // /usr
+ // /lib <= crt*.o files compiled with '-mips32r2 -mips16'
+ // /mips32
+ // /usr
+ // /lib <= crt*.o files compiled with '-mips32'
+
+ FilterNonExistent NonExistent(Path);
+
+ // Check for FSF toolchain multilibs
+ MultilibSet FSFMipsMultilibs;
+ {
+ auto MArchMips32 = makeMultilib("/mips32")
+ .flag("+m32").flag("-m64").flag("-mmicromips").flag("+march=mips32");
+
+ auto MArchMicroMips = makeMultilib("/micromips")
+ .flag("+m32").flag("-m64").flag("+mmicromips");
+
+ auto MArchMips64r2 = makeMultilib("/mips64r2")
+ .flag("-m32").flag("+m64").flag("+march=mips64r2");
+
+ auto MArchMips64 = makeMultilib("/mips64")
+ .flag("-m32").flag("+m64").flag("-march=mips64r2");
+
+ auto MArchDefault = makeMultilib("")
+ .flag("+m32").flag("-m64").flag("-mmicromips").flag("+march=mips32r2");
+
+ auto Mips16 = makeMultilib("/mips16")
+ .flag("+mips16");
+
+ auto UCLibc = makeMultilib("/uclibc")
+ .flag("+muclibc");
+
+ auto MAbi64 = makeMultilib("/64")
+ .flag("+mabi=n64").flag("-mabi=n32").flag("-m32");
+
+ auto BigEndian = makeMultilib("")
+ .flag("+EB").flag("-EL");
+
+ auto LittleEndian = makeMultilib("/el")
+ .flag("+EL").flag("-EB");
+
+ auto SoftFloat = makeMultilib("/sof")
+ .flag("+msoft-float");
+
+ auto Nan2008 = makeMultilib("/nan2008")
+ .flag("+mnan=2008");
+
+ FSFMipsMultilibs = MultilibSet()
+ .Either(MArchMips32, MArchMicroMips,
+ MArchMips64r2, MArchMips64, MArchDefault)
+ .Maybe(UCLibc)
+ .Maybe(Mips16)
+ .FilterOut("/mips64/mips16")
+ .FilterOut("/mips64r2/mips16")
+ .FilterOut("/micromips/mips16")
+ .Maybe(MAbi64)
+ .FilterOut("/micromips/64")
+ .FilterOut("/mips32/64")
+ .FilterOut("^/64")
+ .FilterOut("/mips16/64")
+ .Either(BigEndian, LittleEndian)
+ .Maybe(SoftFloat)
+ .Maybe(Nan2008)
+ .FilterOut(".*sof/nan2008")
+ .FilterOut(NonExistent)
+ .setIncludeDirsCallback([](
+ StringRef InstallDir, StringRef TripleStr, const Multilib &M) {
+ std::vector<std::string> Dirs;
+ Dirs.push_back((InstallDir + "/include").str());
+ std::string SysRootInc = InstallDir.str() + "/../../../../sysroot";
+ if (StringRef(M.includeSuffix()).startswith("/uclibc"))
+ Dirs.push_back(SysRootInc + "/uclibc/usr/include");
+ else
+ Dirs.push_back(SysRootInc + "/usr/include");
+ return Dirs;
+ });
+ }
+
+ // Check for Code Sourcery toolchain multilibs
+ MultilibSet CSMipsMultilibs;
+ {
+ auto MArchMips16 = makeMultilib("/mips16")
+ .flag("+m32").flag("+mips16");
+
+ auto MArchMicroMips = makeMultilib("/micromips")
+ .flag("+m32").flag("+mmicromips");
+
+ auto MArchDefault = makeMultilib("")
+ .flag("-mips16").flag("-mmicromips");
+
+ auto UCLibc = makeMultilib("/uclibc")
+ .flag("+muclibc");
+
+ auto SoftFloat = makeMultilib("/soft-float")
+ .flag("+msoft-float");
+
+ auto Nan2008 = makeMultilib("/nan2008")
+ .flag("+mnan=2008");
+
+ auto DefaultFloat = makeMultilib("")
+ .flag("-msoft-float").flag("-mnan=2008");
+
+ auto BigEndian = makeMultilib("")
+ .flag("+EB").flag("-EL");
+
+ auto LittleEndian = makeMultilib("/el")
+ .flag("+EL").flag("-EB");
+
+ // Note that this one's osSuffix is ""
+ auto MAbi64 = makeMultilib("")
+ .gccSuffix("/64")
+ .includeSuffix("/64")
+ .flag("+mabi=n64").flag("-mabi=n32").flag("-m32");
+
+ CSMipsMultilibs = MultilibSet()
+ .Either(MArchMips16, MArchMicroMips, MArchDefault)
+ .Maybe(UCLibc)
+ .Either(SoftFloat, Nan2008, DefaultFloat)
+ .FilterOut("/micromips/nan2008")
+ .FilterOut("/mips16/nan2008")
+ .Either(BigEndian, LittleEndian)
+ .Maybe(MAbi64)
+ .FilterOut("/mips16.*/64")
+ .FilterOut("/micromips.*/64")
+ .FilterOut(NonExistent)
+ .setIncludeDirsCallback([](
+ StringRef InstallDir, StringRef TripleStr, const Multilib &M) {
+ std::vector<std::string> Dirs;
+ Dirs.push_back((InstallDir + "/include").str());
+ std::string SysRootInc =
+ InstallDir.str() + "/../../../../" + TripleStr.str();
+ if (StringRef(M.includeSuffix()).startswith("/uclibc"))
+ Dirs.push_back(SysRootInc + "/libc/uclibc/usr/include");
+ else
+ Dirs.push_back(SysRootInc + "/libc/usr/include");
+ return Dirs;
+ });
+ }
+
+ MultilibSet AndroidMipsMultilibs = MultilibSet()
+ .Maybe(Multilib("/mips-r2").flag("+march=mips32r2"))
+ .Maybe(Multilib("/mips-r6").flag("+march=mips32r6"))
+ .FilterOut(NonExistent);
+
+ MultilibSet DebianMipsMultilibs;
+ {
+ Multilib MAbiN32 = Multilib()
+ .gccSuffix("/n32")
+ .includeSuffix("/n32")
+ .flag("+mabi=n32");
+
+ Multilib M64 = Multilib()
+ .gccSuffix("/64")
+ .includeSuffix("/64")
+ .flag("+m64").flag("-m32").flag("-mabi=n32");
+
+ Multilib M32 = Multilib()
+ .flag("-m64").flag("+m32").flag("-mabi=n32");
+
+ DebianMipsMultilibs = MultilibSet()
+ .Either(M32, M64, MAbiN32)
+ .FilterOut(NonExistent);
+ }
+
+ MultilibSet ImgMultilibs;
+ {
+ auto Mips64r6 = makeMultilib("/mips64r6")
+ .flag("+m64").flag("-m32");
+
+ auto LittleEndian = makeMultilib("/el")
+ .flag("+EL").flag("-EB");
+
+ auto MAbi64 = makeMultilib("/64")
+ .flag("+mabi=n64").flag("-mabi=n32").flag("-m32");
+
+ ImgMultilibs = MultilibSet()
+ .Maybe(Mips64r6)
+ .Maybe(MAbi64)
+ .Maybe(LittleEndian)
+ .FilterOut(NonExistent)
+ .setIncludeDirsCallback([](
+ StringRef InstallDir, StringRef TripleStr, const Multilib &M) {
+ std::vector<std::string> Dirs;
+ Dirs.push_back((InstallDir + "/include").str());
+ Dirs.push_back((InstallDir + "/../../../../sysroot/usr/include").str());
+ return Dirs;
+ });
+ }
+
+ StringRef CPUName;
+ StringRef ABIName;
+ tools::mips::getMipsCPUAndABI(Args, TargetTriple, CPUName, ABIName);
+
+ llvm::Triple::ArchType TargetArch = TargetTriple.getArch();
+
+ Multilib::flags_list Flags;
+ addMultilibFlag(isMips32(TargetArch), "m32", Flags);
+ addMultilibFlag(isMips64(TargetArch), "m64", Flags);
+ addMultilibFlag(isMips16(Args), "mips16", Flags);
+ addMultilibFlag(CPUName == "mips32", "march=mips32", Flags);
+ addMultilibFlag(CPUName == "mips32r2" || CPUName == "mips32r3" ||
+ CPUName == "mips32r5",
+ "march=mips32r2", Flags);
+ addMultilibFlag(CPUName == "mips32r6", "march=mips32r6", Flags);
+ addMultilibFlag(CPUName == "mips64", "march=mips64", Flags);
+ addMultilibFlag(CPUName == "mips64r2" || CPUName == "mips64r3" ||
+ CPUName == "mips64r5" || CPUName == "octeon",
+ "march=mips64r2", Flags);
+ addMultilibFlag(isMicroMips(Args), "mmicromips", Flags);
+ addMultilibFlag(tools::mips::isUCLibc(Args), "muclibc", Flags);
+ addMultilibFlag(tools::mips::isNaN2008(Args, TargetTriple), "mnan=2008",
+ Flags);
+ addMultilibFlag(ABIName == "n32", "mabi=n32", Flags);
+ addMultilibFlag(ABIName == "n64", "mabi=n64", Flags);
+ addMultilibFlag(isSoftFloatABI(Args), "msoft-float", Flags);
+ addMultilibFlag(!isSoftFloatABI(Args), "mhard-float", Flags);
+ addMultilibFlag(isMipsEL(TargetArch), "EL", Flags);
+ addMultilibFlag(!isMipsEL(TargetArch), "EB", Flags);
+
+ if (TargetTriple.getEnvironment() == llvm::Triple::Android) {
+ // Select Android toolchain. It's the only choice in that case.
+ if (AndroidMipsMultilibs.select(Flags, Result.SelectedMultilib)) {
+ Result.Multilibs = AndroidMipsMultilibs;
+ return true;
+ }
+ return false;
+ }
+
+ if (TargetTriple.getVendor() == llvm::Triple::ImaginationTechnologies &&
+ TargetTriple.getOS() == llvm::Triple::Linux &&
+ TargetTriple.getEnvironment() == llvm::Triple::GNU) {
+ // Select mips-img-linux-gnu toolchain.
+ if (ImgMultilibs.select(Flags, Result.SelectedMultilib)) {
+ Result.Multilibs = ImgMultilibs;
+ return true;
+ }
+ return false;
+ }
+
+ // Sort candidates. Toolchain that best meets the directories goes first.
+ // Then select the first toolchains matches command line flags.
+ MultilibSet *candidates[] = { &DebianMipsMultilibs, &FSFMipsMultilibs,
+ &CSMipsMultilibs };
+ std::sort(
+ std::begin(candidates), std::end(candidates),
+ [](MultilibSet *a, MultilibSet *b) { return a->size() > b->size(); });
+ for (const auto &candidate : candidates) {
+ if (candidate->select(Flags, Result.SelectedMultilib)) {
+ if (candidate == &DebianMipsMultilibs)
+ Result.BiarchSibling = Multilib();
+ Result.Multilibs = *candidate;
+ return true;
+ }
+ }
+
+ {
+ // Fallback to the regular toolchain-tree structure.
+ Multilib Default;
+ Result.Multilibs.push_back(Default);
+ Result.Multilibs.FilterOut(NonExistent);
+
+ if (Result.Multilibs.select(Flags, Result.SelectedMultilib)) {
+ Result.BiarchSibling = Multilib();
+ return true;
+ }
+ }
+
+ return false;
+}
+
+static bool findBiarchMultilibs(const llvm::Triple &TargetTriple,
+ StringRef Path, const ArgList &Args,
+ bool NeedsBiarchSuffix,
+ DetectedMultilibs &Result) {
+
+ // Some versions of SUSE and Fedora on ppc64 put 32-bit libs
+ // in what would normally be GCCInstallPath and put the 64-bit
+ // libs in a subdirectory named 64. The simple logic we follow is that
+ // *if* there is a subdirectory of the right name with crtbegin.o in it,
+ // we use that. If not, and if not a biarch triple alias, we look for
+ // crtbegin.o without the subdirectory.
+
+ Multilib Default;
+ Multilib Alt64 = Multilib()
+ .gccSuffix("/64")
+ .includeSuffix("/64")
+ .flag("-m32").flag("+m64").flag("-mx32");
+ Multilib Alt32 = Multilib()
+ .gccSuffix("/32")
+ .includeSuffix("/32")
+ .flag("+m32").flag("-m64").flag("-mx32");
+ Multilib Altx32 = Multilib()
+ .gccSuffix("/x32")
+ .includeSuffix("/x32")
+ .flag("-m32").flag("-m64").flag("+mx32");
+
+ FilterNonExistent NonExistent(Path);
+
+ // Determine default multilib from: 32, 64, x32
+ // Also handle cases such as 64 on 32, 32 on 64, etc.
+ enum { UNKNOWN, WANT32, WANT64, WANTX32 } Want = UNKNOWN;
+ const bool IsX32 = TargetTriple.getEnvironment() == llvm::Triple::GNUX32;
+ if (TargetTriple.isArch32Bit() && !NonExistent(Alt32))
+ Want = WANT64;
+ else if (TargetTriple.isArch64Bit() && IsX32 && !NonExistent(Altx32))
+ Want = WANT64;
+ else if (TargetTriple.isArch64Bit() && !IsX32 && !NonExistent(Alt64))
+ Want = WANT32;
+ else {
+ if (TargetTriple.isArch32Bit())
+ Want = NeedsBiarchSuffix ? WANT64 : WANT32;
+ else if (IsX32)
+ Want = NeedsBiarchSuffix ? WANT64 : WANTX32;
+ else
+ Want = NeedsBiarchSuffix ? WANT32 : WANT64;
+ }
+
+ if (Want == WANT32)
+ Default.flag("+m32").flag("-m64").flag("-mx32");
+ else if (Want == WANT64)
+ Default.flag("-m32").flag("+m64").flag("-mx32");
+ else if (Want == WANTX32)
+ Default.flag("-m32").flag("-m64").flag("+mx32");
+ else
+ return false;
+
+ Result.Multilibs.push_back(Default);
+ Result.Multilibs.push_back(Alt64);
+ Result.Multilibs.push_back(Alt32);
+ Result.Multilibs.push_back(Altx32);
+
+ Result.Multilibs.FilterOut(NonExistent);
+
+ Multilib::flags_list Flags;
+ addMultilibFlag(TargetTriple.isArch64Bit() && !IsX32, "m64", Flags);
+ addMultilibFlag(TargetTriple.isArch32Bit(), "m32", Flags);
+ addMultilibFlag(TargetTriple.isArch64Bit() && IsX32, "mx32", Flags);
+
+ if (!Result.Multilibs.select(Flags, Result.SelectedMultilib))
+ return false;
+
+ if (Result.SelectedMultilib == Alt64 ||
+ Result.SelectedMultilib == Alt32 ||
+ Result.SelectedMultilib == Altx32)
+ Result.BiarchSibling = Default;
+
+ return true;
+}
+
+void Generic_GCC::GCCInstallationDetector::ScanLibDirForGCCTriple(
+ const llvm::Triple &TargetTriple, const ArgList &Args,
+ const std::string &LibDir, StringRef CandidateTriple,
+ bool NeedsBiarchSuffix) {
+ llvm::Triple::ArchType TargetArch = TargetTriple.getArch();
+ // There are various different suffixes involving the triple we
+ // check for. We also record what is necessary to walk from each back
+ // up to the lib directory.
+ const std::string LibSuffixes[] = {
+ "/gcc/" + CandidateTriple.str(),
+ // Debian puts cross-compilers in gcc-cross
+ "/gcc-cross/" + CandidateTriple.str(),
+ "/" + CandidateTriple.str() + "/gcc/" + CandidateTriple.str(),
+
+ // The Freescale PPC SDK has the gcc libraries in
+ // <sysroot>/usr/lib/<triple>/x.y.z so have a look there as well.
+ "/" + CandidateTriple.str(),
+
+ // Ubuntu has a strange mis-matched pair of triples that this happens to
+ // match.
+ // FIXME: It may be worthwhile to generalize this and look for a second
+ // triple.
+ "/i386-linux-gnu/gcc/" + CandidateTriple.str()
+ };
+ const std::string InstallSuffixes[] = {
+ "/../../..", // gcc/
+ "/../../..", // gcc-cross/
+ "/../../../..", // <triple>/gcc/
+ "/../..", // <triple>/
+ "/../../../.." // i386-linux-gnu/gcc/<triple>/
+ };
+ // Only look at the final, weird Ubuntu suffix for i386-linux-gnu.
+ const unsigned NumLibSuffixes =
+ (llvm::array_lengthof(LibSuffixes) - (TargetArch != llvm::Triple::x86));
+ for (unsigned i = 0; i < NumLibSuffixes; ++i) {
+ StringRef LibSuffix = LibSuffixes[i];
+ std::error_code EC;
+ for (llvm::sys::fs::directory_iterator LI(LibDir + LibSuffix, EC), LE;
+ !EC && LI != LE; LI = LI.increment(EC)) {
+ StringRef VersionText = llvm::sys::path::filename(LI->path());
+ GCCVersion CandidateVersion = GCCVersion::Parse(VersionText);
+ if (CandidateVersion.Major != -1) // Filter obviously bad entries.
+ if (!CandidateGCCInstallPaths.insert(LI->path()).second)
+ continue; // Saw this path before; no need to look at it again.
+ if (CandidateVersion.isOlderThan(4, 1, 1))
+ continue;
+ if (CandidateVersion <= Version)
+ continue;
+
+ DetectedMultilibs Detected;
+
+ // Debian mips multilibs behave more like the rest of the biarch ones,
+ // so handle them there
+ if (isMipsArch(TargetArch)) {
+ if (!findMIPSMultilibs(TargetTriple, LI->path(), Args, Detected))
+ continue;
+ } else if (!findBiarchMultilibs(TargetTriple, LI->path(), Args,
+ NeedsBiarchSuffix, Detected)) {
+ continue;
+ }
+
+ Multilibs = Detected.Multilibs;
+ SelectedMultilib = Detected.SelectedMultilib;
+ BiarchSibling = Detected.BiarchSibling;
+ Version = CandidateVersion;
+ GCCTriple.setTriple(CandidateTriple);
+ // FIXME: We hack together the directory name here instead of
+ // using LI to ensure stable path separators across Windows and
+ // Linux.
+ GCCInstallPath = LibDir + LibSuffixes[i] + "/" + VersionText.str();
+ GCCParentLibPath = GCCInstallPath + InstallSuffixes[i];
+ IsValid = true;
+ }
+ }
+}
+
+Generic_GCC::Generic_GCC(const Driver &D, const llvm::Triple& Triple,
+ const ArgList &Args)
+ : ToolChain(D, Triple, Args), GCCInstallation() {
+ getProgramPaths().push_back(getDriver().getInstalledDir());
+ if (getDriver().getInstalledDir() != getDriver().Dir)
+ getProgramPaths().push_back(getDriver().Dir);
+}
+
+Generic_GCC::~Generic_GCC() {
+}
+
+Tool *Generic_GCC::getTool(Action::ActionClass AC) const {
+ switch (AC) {
+ case Action::PreprocessJobClass:
+ if (!Preprocess)
+ Preprocess.reset(new tools::gcc::Preprocess(*this));
+ return Preprocess.get();
+ case Action::CompileJobClass:
+ if (!Compile)
+ Compile.reset(new tools::gcc::Compile(*this));
+ return Compile.get();
+ default:
+ return ToolChain::getTool(AC);
+ }
+}
+
+Tool *Generic_GCC::buildAssembler() const {
+ return new tools::gnutools::Assemble(*this);
+}
+
+Tool *Generic_GCC::buildLinker() const {
+ return new tools::gcc::Link(*this);
+}
+
+void Generic_GCC::printVerboseInfo(raw_ostream &OS) const {
+ // Print the information about how we detected the GCC installation.
+ GCCInstallation.print(OS);
+}
+
+bool Generic_GCC::IsUnwindTablesDefault() const {
+ return getArch() == llvm::Triple::x86_64;
+}
+
+bool Generic_GCC::isPICDefault() const {
+ return false;
+}
+
+bool Generic_GCC::isPIEDefault() const {
+ return false;
+}
+
+bool Generic_GCC::isPICDefaultForced() const {
+ return false;
+}
+
+bool Generic_GCC::IsIntegratedAssemblerDefault() const {
+ return getTriple().getArch() == llvm::Triple::x86 ||
+ getTriple().getArch() == llvm::Triple::x86_64 ||
+ getTriple().getArch() == llvm::Triple::aarch64 ||
+ getTriple().getArch() == llvm::Triple::aarch64_be ||
+ getTriple().getArch() == llvm::Triple::arm ||
+ getTriple().getArch() == llvm::Triple::armeb ||
+ getTriple().getArch() == llvm::Triple::thumb ||
+ getTriple().getArch() == llvm::Triple::thumbeb ||
+ getTriple().getArch() == llvm::Triple::ppc ||
+ getTriple().getArch() == llvm::Triple::ppc64 ||
+ getTriple().getArch() == llvm::Triple::ppc64le ||
+ getTriple().getArch() == llvm::Triple::sparc ||
+ getTriple().getArch() == llvm::Triple::sparcel ||
+ getTriple().getArch() == llvm::Triple::sparcv9 ||
+ getTriple().getArch() == llvm::Triple::systemz;
+}
+
+void Generic_ELF::addClangTargetOptions(const ArgList &DriverArgs,
+ ArgStringList &CC1Args) const {
+ const Generic_GCC::GCCVersion &V = GCCInstallation.getVersion();
+ bool UseInitArrayDefault =
+ getTriple().getArch() == llvm::Triple::aarch64 ||
+ getTriple().getArch() == llvm::Triple::aarch64_be ||
+ (getTriple().getOS() == llvm::Triple::Linux &&
+ (!V.isOlderThan(4, 7, 0) ||
+ getTriple().getEnvironment() == llvm::Triple::Android)) ||
+ getTriple().getOS() == llvm::Triple::NaCl;
+
+ if (DriverArgs.hasFlag(options::OPT_fuse_init_array,
+ options::OPT_fno_use_init_array,
+ UseInitArrayDefault))
+ CC1Args.push_back("-fuse-init-array");
+}
+
+/// Hexagon Toolchain
+
+std::string Hexagon_TC::GetGnuDir(const std::string &InstalledDir,
+ const ArgList &Args) {
+
+ // Locate the rest of the toolchain ...
+ std::string GccToolchain = getGCCToolchainDir(Args);
+
+ if (!GccToolchain.empty())
+ return GccToolchain;
+
+ std::string InstallRelDir = InstalledDir + "/../../gnu";
+ if (llvm::sys::fs::exists(InstallRelDir))
+ return InstallRelDir;
+
+ std::string PrefixRelDir = std::string(LLVM_PREFIX) + "/../gnu";
+ if (llvm::sys::fs::exists(PrefixRelDir))
+ return PrefixRelDir;
+
+ return InstallRelDir;
+}
+
+const char *Hexagon_TC::GetSmallDataThreshold(const ArgList &Args)
+{
+ Arg *A;
+
+ A = Args.getLastArg(options::OPT_G,
+ options::OPT_G_EQ,
+ options::OPT_msmall_data_threshold_EQ);
+ if (A)
+ return A->getValue();
+
+ A = Args.getLastArg(options::OPT_shared,
+ options::OPT_fpic,
+ options::OPT_fPIC);
+ if (A)
+ return "0";
+
+ return 0;
+}
+
+bool Hexagon_TC::UsesG0(const char* smallDataThreshold)
+{
+ return smallDataThreshold && smallDataThreshold[0] == '0';
+}
+
+static void GetHexagonLibraryPaths(
+ const ArgList &Args,
+ const std::string &Ver,
+ const std::string &MarchString,
+ const std::string &InstalledDir,
+ ToolChain::path_list *LibPaths)
+{
+ bool buildingLib = Args.hasArg(options::OPT_shared);
+
+ //----------------------------------------------------------------------------
+ // -L Args
+ //----------------------------------------------------------------------------
+ for (arg_iterator
+ it = Args.filtered_begin(options::OPT_L),
+ ie = Args.filtered_end();
+ it != ie;
+ ++it) {
+ for (unsigned i = 0, e = (*it)->getNumValues(); i != e; ++i)
+ LibPaths->push_back((*it)->getValue(i));
+ }
+
+ //----------------------------------------------------------------------------
+ // Other standard paths
+ //----------------------------------------------------------------------------
+ const std::string MarchSuffix = "/" + MarchString;
+ const std::string G0Suffix = "/G0";
+ const std::string MarchG0Suffix = MarchSuffix + G0Suffix;
+ const std::string RootDir = Hexagon_TC::GetGnuDir(InstalledDir, Args) + "/";
+
+ // lib/gcc/hexagon/...
+ std::string LibGCCHexagonDir = RootDir + "lib/gcc/hexagon/";
+ if (buildingLib) {
+ LibPaths->push_back(LibGCCHexagonDir + Ver + MarchG0Suffix);
+ LibPaths->push_back(LibGCCHexagonDir + Ver + G0Suffix);
+ }
+ LibPaths->push_back(LibGCCHexagonDir + Ver + MarchSuffix);
+ LibPaths->push_back(LibGCCHexagonDir + Ver);
+
+ // lib/gcc/...
+ LibPaths->push_back(RootDir + "lib/gcc");
+
+ // hexagon/lib/...
+ std::string HexagonLibDir = RootDir + "hexagon/lib";
+ if (buildingLib) {
+ LibPaths->push_back(HexagonLibDir + MarchG0Suffix);
+ LibPaths->push_back(HexagonLibDir + G0Suffix);
+ }
+ LibPaths->push_back(HexagonLibDir + MarchSuffix);
+ LibPaths->push_back(HexagonLibDir);
+}
+
+Hexagon_TC::Hexagon_TC(const Driver &D, const llvm::Triple &Triple,
+ const ArgList &Args)
+ : Linux(D, Triple, Args) {
+ const std::string InstalledDir(getDriver().getInstalledDir());
+ const std::string GnuDir = Hexagon_TC::GetGnuDir(InstalledDir, Args);
+
+ // Note: Generic_GCC::Generic_GCC adds InstalledDir and getDriver().Dir to
+ // program paths
+ const std::string BinDir(GnuDir + "/bin");
+ if (llvm::sys::fs::exists(BinDir))
+ getProgramPaths().push_back(BinDir);
+
+ // Determine version of GCC libraries and headers to use.
+ const std::string HexagonDir(GnuDir + "/lib/gcc/hexagon");
+ std::error_code ec;
+ GCCVersion MaxVersion= GCCVersion::Parse("0.0.0");
+ for (llvm::sys::fs::directory_iterator di(HexagonDir, ec), de;
+ !ec && di != de; di = di.increment(ec)) {
+ GCCVersion cv = GCCVersion::Parse(llvm::sys::path::filename(di->path()));
+ if (MaxVersion < cv)
+ MaxVersion = cv;
+ }
+ GCCLibAndIncVersion = MaxVersion;
+
+ ToolChain::path_list *LibPaths= &getFilePaths();
+
+ // Remove paths added by Linux toolchain. Currently Hexagon_TC really targets
+ // 'elf' OS type, so the Linux paths are not appropriate. When we actually
+ // support 'linux' we'll need to fix this up
+ LibPaths->clear();
+
+ GetHexagonLibraryPaths(
+ Args,
+ GetGCCLibAndIncVersion(),
+ GetTargetCPU(Args),
+ InstalledDir,
+ LibPaths);
+}
+
+Hexagon_TC::~Hexagon_TC() {
+}
+
+Tool *Hexagon_TC::buildAssembler() const {
+ return new tools::hexagon::Assemble(*this);
+}
+
+Tool *Hexagon_TC::buildLinker() const {
+ return new tools::hexagon::Link(*this);
+}
+
+void Hexagon_TC::AddClangSystemIncludeArgs(const ArgList &DriverArgs,
+ ArgStringList &CC1Args) const {
+ const Driver &D = getDriver();
+
+ if (DriverArgs.hasArg(options::OPT_nostdinc) ||
+ DriverArgs.hasArg(options::OPT_nostdlibinc))
+ return;
+
+ std::string Ver(GetGCCLibAndIncVersion());
+ std::string GnuDir = Hexagon_TC::GetGnuDir(D.InstalledDir, DriverArgs);
+ std::string HexagonDir(GnuDir + "/lib/gcc/hexagon/" + Ver);
+ addExternCSystemInclude(DriverArgs, CC1Args, HexagonDir + "/include");
+ addExternCSystemInclude(DriverArgs, CC1Args, HexagonDir + "/include-fixed");
+ addExternCSystemInclude(DriverArgs, CC1Args, GnuDir + "/hexagon/include");
+}
+
+void Hexagon_TC::AddClangCXXStdlibIncludeArgs(const ArgList &DriverArgs,
+ ArgStringList &CC1Args) const {
+
+ if (DriverArgs.hasArg(options::OPT_nostdlibinc) ||
+ DriverArgs.hasArg(options::OPT_nostdincxx))
+ return;
+
+ const Driver &D = getDriver();
+ std::string Ver(GetGCCLibAndIncVersion());
+ SmallString<128> IncludeDir(
+ Hexagon_TC::GetGnuDir(D.InstalledDir, DriverArgs));
+
+ llvm::sys::path::append(IncludeDir, "hexagon/include/c++/");
+ llvm::sys::path::append(IncludeDir, Ver);
+ addSystemInclude(DriverArgs, CC1Args, IncludeDir);
+}
+
+ToolChain::CXXStdlibType
+Hexagon_TC::GetCXXStdlibType(const ArgList &Args) const {
+ Arg *A = Args.getLastArg(options::OPT_stdlib_EQ);
+ if (!A)
+ return ToolChain::CST_Libstdcxx;
+
+ StringRef Value = A->getValue();
+ if (Value != "libstdc++") {
+ getDriver().Diag(diag::err_drv_invalid_stdlib_name)
+ << A->getAsString(Args);
+ }
+
+ return ToolChain::CST_Libstdcxx;
+}
+
+static int getHexagonVersion(const ArgList &Args) {
+ Arg *A = Args.getLastArg(options::OPT_march_EQ, options::OPT_mcpu_EQ);
+ // Select the default CPU (v4) if none was given.
+ if (!A)
+ return 4;
+
+ // FIXME: produce errors if we cannot parse the version.
+ StringRef WhichHexagon = A->getValue();
+ if (WhichHexagon.startswith("hexagonv")) {
+ int Val;
+ if (!WhichHexagon.substr(sizeof("hexagonv") - 1).getAsInteger(10, Val))
+ return Val;
+ }
+ if (WhichHexagon.startswith("v")) {
+ int Val;
+ if (!WhichHexagon.substr(1).getAsInteger(10, Val))
+ return Val;
+ }
+
+ // FIXME: should probably be an error.
+ return 4;
+}
+
+StringRef Hexagon_TC::GetTargetCPU(const ArgList &Args)
+{
+ int V = getHexagonVersion(Args);
+ // FIXME: We don't support versions < 4. We should error on them.
+ switch (V) {
+ default:
+ llvm_unreachable("Unexpected version");
+ case 5:
+ return "v5";
+ case 4:
+ return "v4";
+ case 3:
+ return "v3";
+ case 2:
+ return "v2";
+ case 1:
+ return "v1";
+ }
+}
+// End Hexagon
+
+/// NaCl Toolchain
+NaCl_TC::NaCl_TC(const Driver &D, const llvm::Triple &Triple,
+ const ArgList &Args)
+ : Generic_ELF(D, Triple, Args) {
+
+ // Remove paths added by Generic_GCC. NaCl Toolchain cannot use the
+ // default paths, and must instead only use the paths provided
+ // with this toolchain based on architecture.
+ path_list& file_paths = getFilePaths();
+ path_list& prog_paths = getProgramPaths();
+
+ file_paths.clear();
+ prog_paths.clear();
+
+ // Path for library files (libc.a, ...)
+ std::string FilePath(getDriver().Dir + "/../");
+
+ // Path for tools (clang, ld, etc..)
+ std::string ProgPath(getDriver().Dir + "/../");
+
+ // Path for toolchain libraries (libgcc.a, ...)
+ std::string ToolPath(getDriver().ResourceDir + "/lib/");
+
+ switch(Triple.getArch()) {
+ case llvm::Triple::x86: {
+ file_paths.push_back(FilePath + "x86_64-nacl/lib32");
+ file_paths.push_back(FilePath + "x86_64-nacl/usr/lib32");
+ prog_paths.push_back(ProgPath + "x86_64-nacl/bin");
+ file_paths.push_back(ToolPath + "i686-nacl");
+ break;
+ }
+ case llvm::Triple::x86_64: {
+ file_paths.push_back(FilePath + "x86_64-nacl/lib");
+ file_paths.push_back(FilePath + "x86_64-nacl/usr/lib");
+ prog_paths.push_back(ProgPath + "x86_64-nacl/bin");
+ file_paths.push_back(ToolPath + "x86_64-nacl");
+ break;
+ }
+ case llvm::Triple::arm: {
+ file_paths.push_back(FilePath + "arm-nacl/lib");
+ file_paths.push_back(FilePath + "arm-nacl/usr/lib");
+ prog_paths.push_back(ProgPath + "arm-nacl/bin");
+ file_paths.push_back(ToolPath + "arm-nacl");
+ break;
+ }
+ default:
+ break;
+ }
+
+ // Use provided linker, not system linker
+ Linker = GetProgramPath("ld");
+ NaClArmMacrosPath = GetFilePath("nacl-arm-macros.s");
+}
+
+void NaCl_TC::AddClangSystemIncludeArgs(const ArgList &DriverArgs,
+ ArgStringList &CC1Args) const {
+ const Driver &D = getDriver();
+ if (DriverArgs.hasArg(options::OPT_nostdinc))
+ return;
+
+ if (!DriverArgs.hasArg(options::OPT_nobuiltininc)) {
+ SmallString<128> P(D.ResourceDir);
+ llvm::sys::path::append(P, "include");
+ addSystemInclude(DriverArgs, CC1Args, P.str());
+ }
+
+ if (DriverArgs.hasArg(options::OPT_nostdlibinc))
+ return;
+
+ SmallString<128> P(D.Dir + "/../");
+ if (getTriple().getArch() == llvm::Triple::arm) {
+ llvm::sys::path::append(P, "arm-nacl/usr/include");
+ } else if (getTriple().getArch() == llvm::Triple::x86) {
+ llvm::sys::path::append(P, "x86_64-nacl/usr/include");
+ } else if (getTriple().getArch() == llvm::Triple::x86_64) {
+ llvm::sys::path::append(P, "x86_64-nacl/usr/include");
+ } else {
+ return;
+ }
+
+ addSystemInclude(DriverArgs, CC1Args, P.str());
+ llvm::sys::path::remove_filename(P);
+ llvm::sys::path::remove_filename(P);
+ llvm::sys::path::append(P, "include");
+ addSystemInclude(DriverArgs, CC1Args, P.str());
+}
+
+void NaCl_TC::AddCXXStdlibLibArgs(const ArgList &Args,
+ ArgStringList &CmdArgs) const {
+ // Check for -stdlib= flags. We only support libc++ but this consumes the arg
+ // if the value is libc++, and emits an error for other values.
+ GetCXXStdlibType(Args);
+ CmdArgs.push_back("-lc++");
+}
+
+void NaCl_TC::AddClangCXXStdlibIncludeArgs(const ArgList &DriverArgs,
+ ArgStringList &CC1Args) const {
+ const Driver &D = getDriver();
+ if (DriverArgs.hasArg(options::OPT_nostdlibinc) ||
+ DriverArgs.hasArg(options::OPT_nostdincxx))
+ return;
+
+ // Check for -stdlib= flags. We only support libc++ but this consumes the arg
+ // if the value is libc++, and emits an error for other values.
+ GetCXXStdlibType(DriverArgs);
+
+ if (getTriple().getArch() == llvm::Triple::arm) {
+ SmallString<128> P(D.Dir + "/../");
+ llvm::sys::path::append(P, "arm-nacl/include/c++/v1");
+ addSystemInclude(DriverArgs, CC1Args, P.str());
+ } else if (getTriple().getArch() == llvm::Triple::x86) {
+ SmallString<128> P(D.Dir + "/../");
+ llvm::sys::path::append(P, "x86_64-nacl/include/c++/v1");
+ addSystemInclude(DriverArgs, CC1Args, P.str());
+ } else if (getTriple().getArch() == llvm::Triple::x86_64) {
+ SmallString<128> P(D.Dir + "/../");
+ llvm::sys::path::append(P, "x86_64-nacl/include/c++/v1");
+ addSystemInclude(DriverArgs, CC1Args, P.str());
+ }
+}
+
+ToolChain::CXXStdlibType NaCl_TC::GetCXXStdlibType(const ArgList &Args) const {
+ if (Arg *A = Args.getLastArg(options::OPT_stdlib_EQ)) {
+ StringRef Value = A->getValue();
+ if (Value == "libc++")
+ return ToolChain::CST_Libcxx;
+ getDriver().Diag(diag::err_drv_invalid_stdlib_name)
+ << A->getAsString(Args);
+ }
+
+ return ToolChain::CST_Libcxx;
+}
+
+std::string NaCl_TC::ComputeEffectiveClangTriple(
+ const ArgList &Args, types::ID InputType) const {
+ llvm::Triple TheTriple(ComputeLLVMTriple(Args, InputType));
+ if (TheTriple.getArch() == llvm::Triple::arm &&
+ TheTriple.getEnvironment() == llvm::Triple::UnknownEnvironment)
+ TheTriple.setEnvironment(llvm::Triple::GNUEABIHF);
+ return TheTriple.getTriple();
+}
+
+Tool *NaCl_TC::buildLinker() const {
+ return new tools::nacltools::Link(*this);
+}
+
+Tool *NaCl_TC::buildAssembler() const {
+ if (getTriple().getArch() == llvm::Triple::arm)
+ return new tools::nacltools::AssembleARM(*this);
+ return new tools::gnutools::Assemble(*this);
+}
+// End NaCl
+
+/// TCEToolChain - A tool chain using the llvm bitcode tools to perform
+/// all subcommands. See http://tce.cs.tut.fi for our peculiar target.
+/// Currently does not support anything else but compilation.
+
+TCEToolChain::TCEToolChain(const Driver &D, const llvm::Triple& Triple,
+ const ArgList &Args)
+ : ToolChain(D, Triple, Args) {
+ // Path mangling to find libexec
+ std::string Path(getDriver().Dir);
+
+ Path += "/../libexec";
+ getProgramPaths().push_back(Path);
+}
+
+TCEToolChain::~TCEToolChain() {
+}
+
+bool TCEToolChain::IsMathErrnoDefault() const {
+ return true;
+}
+
+bool TCEToolChain::isPICDefault() const {
+ return false;
+}
+
+bool TCEToolChain::isPIEDefault() const {
+ return false;
+}
+
+bool TCEToolChain::isPICDefaultForced() const {
+ return false;
+}
+
+// CloudABI - CloudABI tool chain which can call ld(1) directly.
+
+CloudABI::CloudABI(const Driver &D, const llvm::Triple &Triple,
+ const ArgList &Args)
+ : Generic_ELF(D, Triple, Args) {
+ SmallString<128> P(getDriver().Dir);
+ llvm::sys::path::append(P, "..", getTriple().str(), "lib");
+ getFilePaths().push_back(P.str());
+}
+
+void CloudABI::AddClangCXXStdlibIncludeArgs(const ArgList &DriverArgs,
+ ArgStringList &CC1Args) const {
+ if (DriverArgs.hasArg(options::OPT_nostdlibinc) &&
+ DriverArgs.hasArg(options::OPT_nostdincxx))
+ return;
+
+ SmallString<128> P(getDriver().Dir);
+ llvm::sys::path::append(P, "..", getTriple().str(), "include/c++/v1");
+ addSystemInclude(DriverArgs, CC1Args, P.str());
+}
+
+void CloudABI::AddCXXStdlibLibArgs(const ArgList &Args,
+ ArgStringList &CmdArgs) const {
+ CmdArgs.push_back("-lc++");
+ CmdArgs.push_back("-lc++abi");
+ CmdArgs.push_back("-lunwind");
+}
+
+Tool *CloudABI::buildLinker() const { return new tools::cloudabi::Link(*this); }
+
+/// OpenBSD - OpenBSD tool chain which can call as(1) and ld(1) directly.
+
+OpenBSD::OpenBSD(const Driver &D, const llvm::Triple& Triple, const ArgList &Args)
+ : Generic_ELF(D, Triple, Args) {
+ getFilePaths().push_back(getDriver().Dir + "/../lib");
+ getFilePaths().push_back("/usr/lib");
+}
+
+Tool *OpenBSD::buildAssembler() const {
+ return new tools::openbsd::Assemble(*this);
+}
+
+Tool *OpenBSD::buildLinker() const {
+ return new tools::openbsd::Link(*this);
+}
+
+/// Bitrig - Bitrig tool chain which can call as(1) and ld(1) directly.
+
+Bitrig::Bitrig(const Driver &D, const llvm::Triple& Triple, const ArgList &Args)
+ : Generic_ELF(D, Triple, Args) {
+ getFilePaths().push_back(getDriver().Dir + "/../lib");
+ getFilePaths().push_back("/usr/lib");
+}
+
+Tool *Bitrig::buildAssembler() const {
+ return new tools::bitrig::Assemble(*this);
+}
+
+Tool *Bitrig::buildLinker() const {
+ return new tools::bitrig::Link(*this);
+}
+
+ToolChain::CXXStdlibType
+Bitrig::GetCXXStdlibType(const ArgList &Args) const {
+ if (Arg *A = Args.getLastArg(options::OPT_stdlib_EQ)) {
+ StringRef Value = A->getValue();
+ if (Value == "libstdc++")
+ return ToolChain::CST_Libstdcxx;
+ if (Value == "libc++")
+ return ToolChain::CST_Libcxx;
+
+ getDriver().Diag(diag::err_drv_invalid_stdlib_name)
+ << A->getAsString(Args);
+ }
+ return ToolChain::CST_Libcxx;
+}
+
+void Bitrig::AddClangCXXStdlibIncludeArgs(const ArgList &DriverArgs,
+ ArgStringList &CC1Args) const {
+ if (DriverArgs.hasArg(options::OPT_nostdlibinc) ||
+ DriverArgs.hasArg(options::OPT_nostdincxx))
+ return;
+
+ switch (GetCXXStdlibType(DriverArgs)) {
+ case ToolChain::CST_Libcxx:
+ addSystemInclude(DriverArgs, CC1Args,
+ getDriver().SysRoot + "/usr/include/c++/v1");
+ break;
+ case ToolChain::CST_Libstdcxx:
+ addSystemInclude(DriverArgs, CC1Args,
+ getDriver().SysRoot + "/usr/include/c++/stdc++");
+ addSystemInclude(DriverArgs, CC1Args,
+ getDriver().SysRoot + "/usr/include/c++/stdc++/backward");
+
+ StringRef Triple = getTriple().str();
+ if (Triple.startswith("amd64"))
+ addSystemInclude(DriverArgs, CC1Args,
+ getDriver().SysRoot + "/usr/include/c++/stdc++/x86_64" +
+ Triple.substr(5));
+ else
+ addSystemInclude(DriverArgs, CC1Args,
+ getDriver().SysRoot + "/usr/include/c++/stdc++/" +
+ Triple);
+ break;
+ }
+}
+
+void Bitrig::AddCXXStdlibLibArgs(const ArgList &Args,
+ ArgStringList &CmdArgs) const {
+ switch (GetCXXStdlibType(Args)) {
+ case ToolChain::CST_Libcxx:
+ CmdArgs.push_back("-lc++");
+ CmdArgs.push_back("-lc++abi");
+ CmdArgs.push_back("-lpthread");
+ break;
+ case ToolChain::CST_Libstdcxx:
+ CmdArgs.push_back("-lstdc++");
+ break;
+ }
+}
+
+/// FreeBSD - FreeBSD tool chain which can call as(1) and ld(1) directly.
+
+FreeBSD::FreeBSD(const Driver &D, const llvm::Triple& Triple, const ArgList &Args)
+ : Generic_ELF(D, Triple, Args) {
+
+ // When targeting 32-bit platforms, look for '/usr/lib32/crt1.o' and fall
+ // back to '/usr/lib' if it doesn't exist.
+ if ((Triple.getArch() == llvm::Triple::x86 ||
+ Triple.getArch() == llvm::Triple::ppc) &&
+ llvm::sys::fs::exists(getDriver().SysRoot + "/usr/lib32/crt1.o"))
+ getFilePaths().push_back(getDriver().SysRoot + "/usr/lib32");
+ else
+ getFilePaths().push_back(getDriver().SysRoot + "/usr/lib");
+}
+
+ToolChain::CXXStdlibType
+FreeBSD::GetCXXStdlibType(const ArgList &Args) const {
+ if (Arg *A = Args.getLastArg(options::OPT_stdlib_EQ)) {
+ StringRef Value = A->getValue();
+ if (Value == "libstdc++")
+ return ToolChain::CST_Libstdcxx;
+ if (Value == "libc++")
+ return ToolChain::CST_Libcxx;
+
+ getDriver().Diag(diag::err_drv_invalid_stdlib_name)
+ << A->getAsString(Args);
+ }
+ if (getTriple().getOSMajorVersion() >= 10)
+ return ToolChain::CST_Libcxx;
+ return ToolChain::CST_Libstdcxx;
+}
+
+void FreeBSD::AddClangCXXStdlibIncludeArgs(const ArgList &DriverArgs,
+ ArgStringList &CC1Args) const {
+ if (DriverArgs.hasArg(options::OPT_nostdlibinc) ||
+ DriverArgs.hasArg(options::OPT_nostdincxx))
+ return;
+
+ switch (GetCXXStdlibType(DriverArgs)) {
+ case ToolChain::CST_Libcxx:
+ addSystemInclude(DriverArgs, CC1Args,
+ getDriver().SysRoot + "/usr/include/c++/v1");
+ break;
+ case ToolChain::CST_Libstdcxx:
+ addSystemInclude(DriverArgs, CC1Args,
+ getDriver().SysRoot + "/usr/include/c++/4.2");
+ addSystemInclude(DriverArgs, CC1Args,
+ getDriver().SysRoot + "/usr/include/c++/4.2/backward");
+ break;
+ }
+}
+
+Tool *FreeBSD::buildAssembler() const {
+ return new tools::freebsd::Assemble(*this);
+}
+
+Tool *FreeBSD::buildLinker() const {
+ return new tools::freebsd::Link(*this);
+}
+
+bool FreeBSD::UseSjLjExceptions() const {
+ // FreeBSD uses SjLj exceptions on ARM oabi.
+ switch (getTriple().getEnvironment()) {
+ case llvm::Triple::GNUEABIHF:
+ case llvm::Triple::GNUEABI:
+ case llvm::Triple::EABI:
+ return false;
+
+ default:
+ return (getTriple().getArch() == llvm::Triple::arm ||
+ getTriple().getArch() == llvm::Triple::thumb);
+ }
+}
+
+bool FreeBSD::HasNativeLLVMSupport() const {
+ return true;
+}
+
+bool FreeBSD::isPIEDefault() const {
+ return getSanitizerArgs().requiresPIE();
+}
+
+/// NetBSD - NetBSD tool chain which can call as(1) and ld(1) directly.
+
+NetBSD::NetBSD(const Driver &D, const llvm::Triple& Triple, const ArgList &Args)
+ : Generic_ELF(D, Triple, Args) {
+
+ if (getDriver().UseStdLib) {
+ // When targeting a 32-bit platform, try the special directory used on
+ // 64-bit hosts, and only fall back to the main library directory if that
+ // doesn't work.
+ // FIXME: It'd be nicer to test if this directory exists, but I'm not sure
+ // what all logic is needed to emulate the '=' prefix here.
+ switch (Triple.getArch()) {
+ case llvm::Triple::x86:
+ getFilePaths().push_back("=/usr/lib/i386");
+ break;
+ case llvm::Triple::arm:
+ case llvm::Triple::armeb:
+ case llvm::Triple::thumb:
+ case llvm::Triple::thumbeb:
+ switch (Triple.getEnvironment()) {
+ case llvm::Triple::EABI:
+ case llvm::Triple::GNUEABI:
+ getFilePaths().push_back("=/usr/lib/eabi");
+ break;
+ case llvm::Triple::EABIHF:
+ case llvm::Triple::GNUEABIHF:
+ getFilePaths().push_back("=/usr/lib/eabihf");
+ break;
+ default:
+ getFilePaths().push_back("=/usr/lib/oabi");
+ break;
+ }
+ break;
+ case llvm::Triple::mips64:
+ case llvm::Triple::mips64el:
+ if (tools::mips::hasMipsAbiArg(Args, "o32"))
+ getFilePaths().push_back("=/usr/lib/o32");
+ else if (tools::mips::hasMipsAbiArg(Args, "64"))
+ getFilePaths().push_back("=/usr/lib/64");
+ break;
+ case llvm::Triple::ppc:
+ getFilePaths().push_back("=/usr/lib/powerpc");
+ break;
+ case llvm::Triple::sparc:
+ getFilePaths().push_back("=/usr/lib/sparc");
+ break;
+ default:
+ break;
+ }
+
+ getFilePaths().push_back("=/usr/lib");
+ }
+}
+
+Tool *NetBSD::buildAssembler() const {
+ return new tools::netbsd::Assemble(*this);
+}
+
+Tool *NetBSD::buildLinker() const {
+ return new tools::netbsd::Link(*this);
+}
+
+ToolChain::CXXStdlibType
+NetBSD::GetCXXStdlibType(const ArgList &Args) const {
+ if (Arg *A = Args.getLastArg(options::OPT_stdlib_EQ)) {
+ StringRef Value = A->getValue();
+ if (Value == "libstdc++")
+ return ToolChain::CST_Libstdcxx;
+ if (Value == "libc++")
+ return ToolChain::CST_Libcxx;
+
+ getDriver().Diag(diag::err_drv_invalid_stdlib_name)
+ << A->getAsString(Args);
+ }
+
+ unsigned Major, Minor, Micro;
+ getTriple().getOSVersion(Major, Minor, Micro);
+ if (Major >= 7 || (Major == 6 && Minor == 99 && Micro >= 49) || Major == 0) {
+ switch (getArch()) {
+ case llvm::Triple::aarch64:
+ case llvm::Triple::arm:
+ case llvm::Triple::armeb:
+ case llvm::Triple::thumb:
+ case llvm::Triple::thumbeb:
+ case llvm::Triple::ppc:
+ case llvm::Triple::ppc64:
+ case llvm::Triple::ppc64le:
+ case llvm::Triple::x86:
+ case llvm::Triple::x86_64:
+ return ToolChain::CST_Libcxx;
+ default:
+ break;
+ }
+ }
+ return ToolChain::CST_Libstdcxx;
+}
+
+void NetBSD::AddClangCXXStdlibIncludeArgs(const ArgList &DriverArgs,
+ ArgStringList &CC1Args) const {
+ if (DriverArgs.hasArg(options::OPT_nostdlibinc) ||
+ DriverArgs.hasArg(options::OPT_nostdincxx))
+ return;
+
+ switch (GetCXXStdlibType(DriverArgs)) {
+ case ToolChain::CST_Libcxx:
+ addSystemInclude(DriverArgs, CC1Args,
+ getDriver().SysRoot + "/usr/include/c++/");
+ break;
+ case ToolChain::CST_Libstdcxx:
+ addSystemInclude(DriverArgs, CC1Args,
+ getDriver().SysRoot + "/usr/include/g++");
+ addSystemInclude(DriverArgs, CC1Args,
+ getDriver().SysRoot + "/usr/include/g++/backward");
+ break;
+ }
+}
+
+/// Minix - Minix tool chain which can call as(1) and ld(1) directly.
+
+Minix::Minix(const Driver &D, const llvm::Triple& Triple, const ArgList &Args)
+ : Generic_ELF(D, Triple, Args) {
+ getFilePaths().push_back(getDriver().Dir + "/../lib");
+ getFilePaths().push_back("/usr/lib");
+}
+
+Tool *Minix::buildAssembler() const {
+ return new tools::minix::Assemble(*this);
+}
+
+Tool *Minix::buildLinker() const {
+ return new tools::minix::Link(*this);
+}
+
+/// Solaris - Solaris tool chain which can call as(1) and ld(1) directly.
+
+Solaris::Solaris(const Driver &D, const llvm::Triple& Triple,
+ const ArgList &Args)
+ : Generic_GCC(D, Triple, Args) {
+
+ getProgramPaths().push_back(getDriver().getInstalledDir());
+ if (getDriver().getInstalledDir() != getDriver().Dir)
+ getProgramPaths().push_back(getDriver().Dir);
+
+ getFilePaths().push_back(getDriver().Dir + "/../lib");
+ getFilePaths().push_back("/usr/lib");
+}
+
+Tool *Solaris::buildAssembler() const {
+ return new tools::solaris::Assemble(*this);
+}
+
+Tool *Solaris::buildLinker() const {
+ return new tools::solaris::Link(*this);
+}
+
+/// Distribution (very bare-bones at the moment).
+
+enum Distro {
+ ArchLinux,
+ DebianLenny,
+ DebianSqueeze,
+ DebianWheezy,
+ DebianJessie,
+ DebianStretch,
+ Exherbo,
+ RHEL4,
+ RHEL5,
+ RHEL6,
+ RHEL7,
+ Fedora,
+ OpenSUSE,
+ UbuntuHardy,
+ UbuntuIntrepid,
+ UbuntuJaunty,
+ UbuntuKarmic,
+ UbuntuLucid,
+ UbuntuMaverick,
+ UbuntuNatty,
+ UbuntuOneiric,
+ UbuntuPrecise,
+ UbuntuQuantal,
+ UbuntuRaring,
+ UbuntuSaucy,
+ UbuntuTrusty,
+ UbuntuUtopic,
+ UbuntuVivid,
+ UnknownDistro
+};
+
+static bool IsRedhat(enum Distro Distro) {
+ return Distro == Fedora || (Distro >= RHEL4 && Distro <= RHEL7);
+}
+
+static bool IsOpenSUSE(enum Distro Distro) {
+ return Distro == OpenSUSE;
+}
+
+static bool IsDebian(enum Distro Distro) {
+ return Distro >= DebianLenny && Distro <= DebianStretch;
+}
+
+static bool IsUbuntu(enum Distro Distro) {
+ return Distro >= UbuntuHardy && Distro <= UbuntuVivid;
+}
+
+static Distro DetectDistro(llvm::Triple::ArchType Arch) {
+ llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> File =
+ llvm::MemoryBuffer::getFile("/etc/lsb-release");
+ if (File) {
+ StringRef Data = File.get()->getBuffer();
+ SmallVector<StringRef, 16> Lines;
+ Data.split(Lines, "\n");
+ Distro Version = UnknownDistro;
+ for (unsigned i = 0, s = Lines.size(); i != s; ++i)
+ if (Version == UnknownDistro && Lines[i].startswith("DISTRIB_CODENAME="))
+ Version = llvm::StringSwitch<Distro>(Lines[i].substr(17))
+ .Case("hardy", UbuntuHardy)
+ .Case("intrepid", UbuntuIntrepid)
+ .Case("jaunty", UbuntuJaunty)
+ .Case("karmic", UbuntuKarmic)
+ .Case("lucid", UbuntuLucid)
+ .Case("maverick", UbuntuMaverick)
+ .Case("natty", UbuntuNatty)
+ .Case("oneiric", UbuntuOneiric)
+ .Case("precise", UbuntuPrecise)
+ .Case("quantal", UbuntuQuantal)
+ .Case("raring", UbuntuRaring)
+ .Case("saucy", UbuntuSaucy)
+ .Case("trusty", UbuntuTrusty)
+ .Case("utopic", UbuntuUtopic)
+ .Case("vivid", UbuntuVivid)
+ .Default(UnknownDistro);
+ return Version;
+ }
+
+ File = llvm::MemoryBuffer::getFile("/etc/redhat-release");
+ if (File) {
+ StringRef Data = File.get()->getBuffer();
+ if (Data.startswith("Fedora release"))
+ return Fedora;
+ if (Data.startswith("Red Hat Enterprise Linux") ||
+ Data.startswith("CentOS")) {
+ if (Data.find("release 7") != StringRef::npos)
+ return RHEL7;
+ else if (Data.find("release 6") != StringRef::npos)
+ return RHEL6;
+ else if (Data.find("release 5") != StringRef::npos)
+ return RHEL5;
+ else if (Data.find("release 4") != StringRef::npos)
+ return RHEL4;
+ }
+ return UnknownDistro;
+ }
+
+ File = llvm::MemoryBuffer::getFile("/etc/debian_version");
+ if (File) {
+ StringRef Data = File.get()->getBuffer();
+ if (Data[0] == '5')
+ return DebianLenny;
+ else if (Data.startswith("squeeze/sid") || Data[0] == '6')
+ return DebianSqueeze;
+ else if (Data.startswith("wheezy/sid") || Data[0] == '7')
+ return DebianWheezy;
+ else if (Data.startswith("jessie/sid") || Data[0] == '8')
+ return DebianJessie;
+ else if (Data.startswith("stretch/sid") || Data[0] == '9')
+ return DebianStretch;
+ return UnknownDistro;
+ }
+
+ if (llvm::sys::fs::exists("/etc/SuSE-release"))
+ return OpenSUSE;
+
+ if (llvm::sys::fs::exists("/etc/exherbo-release"))
+ return Exherbo;
+
+ if (llvm::sys::fs::exists("/etc/arch-release"))
+ return ArchLinux;
+
+ return UnknownDistro;
+}
+
+/// \brief Get our best guess at the multiarch triple for a target.
+///
+/// Debian-based systems are starting to use a multiarch setup where they use
+/// a target-triple directory in the library and header search paths.
+/// Unfortunately, this triple does not align with the vanilla target triple,
+/// so we provide a rough mapping here.
+static std::string getMultiarchTriple(const llvm::Triple &TargetTriple,
+ StringRef SysRoot) {
+ // For most architectures, just use whatever we have rather than trying to be
+ // clever.
+ switch (TargetTriple.getArch()) {
+ default:
+ return TargetTriple.str();
+
+ // We use the existence of '/lib/<triple>' as a directory to detect some
+ // common linux triples that don't quite match the Clang triple for both
+ // 32-bit and 64-bit targets. Multiarch fixes its install triples to these
+ // regardless of what the actual target triple is.
+ case llvm::Triple::arm:
+ case llvm::Triple::thumb:
+ if (TargetTriple.getEnvironment() == llvm::Triple::GNUEABIHF) {
+ if (llvm::sys::fs::exists(SysRoot + "/lib/arm-linux-gnueabihf"))
+ return "arm-linux-gnueabihf";
+ } else {
+ if (llvm::sys::fs::exists(SysRoot + "/lib/arm-linux-gnueabi"))
+ return "arm-linux-gnueabi";
+ }
+ return TargetTriple.str();
+ case llvm::Triple::armeb:
+ case llvm::Triple::thumbeb:
+ if (TargetTriple.getEnvironment() == llvm::Triple::GNUEABIHF) {
+ if (llvm::sys::fs::exists(SysRoot + "/lib/armeb-linux-gnueabihf"))
+ return "armeb-linux-gnueabihf";
+ } else {
+ if (llvm::sys::fs::exists(SysRoot + "/lib/armeb-linux-gnueabi"))
+ return "armeb-linux-gnueabi";
+ }
+ return TargetTriple.str();
+ case llvm::Triple::x86:
+ if (llvm::sys::fs::exists(SysRoot + "/lib/i386-linux-gnu"))
+ return "i386-linux-gnu";
+ return TargetTriple.str();
+ case llvm::Triple::x86_64:
+ // We don't want this for x32, otherwise it will match x86_64 libs
+ if (TargetTriple.getEnvironment() != llvm::Triple::GNUX32 &&
+ llvm::sys::fs::exists(SysRoot + "/lib/x86_64-linux-gnu"))
+ return "x86_64-linux-gnu";
+ return TargetTriple.str();
+ case llvm::Triple::aarch64:
+ if (llvm::sys::fs::exists(SysRoot + "/lib/aarch64-linux-gnu"))
+ return "aarch64-linux-gnu";
+ return TargetTriple.str();
+ case llvm::Triple::aarch64_be:
+ if (llvm::sys::fs::exists(SysRoot + "/lib/aarch64_be-linux-gnu"))
+ return "aarch64_be-linux-gnu";
+ return TargetTriple.str();
+ case llvm::Triple::mips:
+ if (llvm::sys::fs::exists(SysRoot + "/lib/mips-linux-gnu"))
+ return "mips-linux-gnu";
+ return TargetTriple.str();
+ case llvm::Triple::mipsel:
+ if (llvm::sys::fs::exists(SysRoot + "/lib/mipsel-linux-gnu"))
+ return "mipsel-linux-gnu";
+ return TargetTriple.str();
+ case llvm::Triple::mips64:
+ if (llvm::sys::fs::exists(SysRoot + "/lib/mips64-linux-gnu"))
+ return "mips64-linux-gnu";
+ if (llvm::sys::fs::exists(SysRoot + "/lib/mips64-linux-gnuabi64"))
+ return "mips64-linux-gnuabi64";
+ return TargetTriple.str();
+ case llvm::Triple::mips64el:
+ if (llvm::sys::fs::exists(SysRoot + "/lib/mips64el-linux-gnu"))
+ return "mips64el-linux-gnu";
+ if (llvm::sys::fs::exists(SysRoot + "/lib/mips64el-linux-gnuabi64"))
+ return "mips64el-linux-gnuabi64";
+ return TargetTriple.str();
+ case llvm::Triple::ppc:
+ if (llvm::sys::fs::exists(SysRoot + "/lib/powerpc-linux-gnuspe"))
+ return "powerpc-linux-gnuspe";
+ if (llvm::sys::fs::exists(SysRoot + "/lib/powerpc-linux-gnu"))
+ return "powerpc-linux-gnu";
+ return TargetTriple.str();
+ case llvm::Triple::ppc64:
+ if (llvm::sys::fs::exists(SysRoot + "/lib/powerpc64-linux-gnu"))
+ return "powerpc64-linux-gnu";
+ case llvm::Triple::ppc64le:
+ if (llvm::sys::fs::exists(SysRoot + "/lib/powerpc64le-linux-gnu"))
+ return "powerpc64le-linux-gnu";
+ return TargetTriple.str();
+ }
+}
+
+static void addPathIfExists(Twine Path, ToolChain::path_list &Paths) {
+ if (llvm::sys::fs::exists(Path)) Paths.push_back(Path.str());
+}
+
+static StringRef getOSLibDir(const llvm::Triple &Triple, const ArgList &Args) {
+ if (isMipsArch(Triple.getArch())) {
+ // lib32 directory has a special meaning on MIPS targets.
+ // It contains N32 ABI binaries. Use this folder if produce
+ // code for N32 ABI only.
+ if (tools::mips::hasMipsAbiArg(Args, "n32"))
+ return "lib32";
+ return Triple.isArch32Bit() ? "lib" : "lib64";
+ }
+
+ // It happens that only x86 and PPC use the 'lib32' variant of oslibdir, and
+ // using that variant while targeting other architectures causes problems
+ // because the libraries are laid out in shared system roots that can't cope
+ // with a 'lib32' library search path being considered. So we only enable
+ // them when we know we may need it.
+ //
+ // FIXME: This is a bit of a hack. We should really unify this code for
+ // reasoning about oslibdir spellings with the lib dir spellings in the
+ // GCCInstallationDetector, but that is a more significant refactoring.
+ if (Triple.getArch() == llvm::Triple::x86 ||
+ Triple.getArch() == llvm::Triple::ppc)
+ return "lib32";
+
+ if (Triple.getArch() == llvm::Triple::x86_64 &&
+ Triple.getEnvironment() == llvm::Triple::GNUX32)
+ return "libx32";
+
+ return Triple.isArch32Bit() ? "lib" : "lib64";
+}
+
+Linux::Linux(const Driver &D, const llvm::Triple &Triple, const ArgList &Args)
+ : Generic_ELF(D, Triple, Args) {
+ GCCInstallation.init(D, Triple, Args);
+ Multilibs = GCCInstallation.getMultilibs();
+ llvm::Triple::ArchType Arch = Triple.getArch();
+ std::string SysRoot = computeSysRoot();
+
+ // Cross-compiling binutils and GCC installations (vanilla and openSUSE at
+ // least) put various tools in a triple-prefixed directory off of the parent
+ // of the GCC installation. We use the GCC triple here to ensure that we end
+ // up with tools that support the same amount of cross compiling as the
+ // detected GCC installation. For example, if we find a GCC installation
+ // targeting x86_64, but it is a bi-arch GCC installation, it can also be
+ // used to target i386.
+ // FIXME: This seems unlikely to be Linux-specific.
+ ToolChain::path_list &PPaths = getProgramPaths();
+ PPaths.push_back(Twine(GCCInstallation.getParentLibPath() + "/../" +
+ GCCInstallation.getTriple().str() + "/bin").str());
+
+ Linker = GetLinkerPath();
+
+ Distro Distro = DetectDistro(Arch);
+
+ if (IsOpenSUSE(Distro) || IsUbuntu(Distro)) {
+ ExtraOpts.push_back("-z");
+ ExtraOpts.push_back("relro");
+ }
+
+ if (Arch == llvm::Triple::arm || Arch == llvm::Triple::thumb)
+ ExtraOpts.push_back("-X");
+
+ const bool IsAndroid = Triple.getEnvironment() == llvm::Triple::Android;
+ const bool IsMips = isMipsArch(Arch);
+
+ if (IsMips && !SysRoot.empty())
+ ExtraOpts.push_back("--sysroot=" + SysRoot);
+
+ // Do not use 'gnu' hash style for Mips targets because .gnu.hash
+ // and the MIPS ABI require .dynsym to be sorted in different ways.
+ // .gnu.hash needs symbols to be grouped by hash code whereas the MIPS
+ // ABI requires a mapping between the GOT and the symbol table.
+ // Android loader does not support .gnu.hash.
+ if (!IsMips && !IsAndroid) {
+ if (IsRedhat(Distro) || IsOpenSUSE(Distro) ||
+ (IsUbuntu(Distro) && Distro >= UbuntuMaverick))
+ ExtraOpts.push_back("--hash-style=gnu");
+
+ if (IsDebian(Distro) || IsOpenSUSE(Distro) || Distro == UbuntuLucid ||
+ Distro == UbuntuJaunty || Distro == UbuntuKarmic)
+ ExtraOpts.push_back("--hash-style=both");
+ }
+
+ if (IsRedhat(Distro))
+ ExtraOpts.push_back("--no-add-needed");
+
+ if ((IsDebian(Distro) && Distro >= DebianSqueeze) || IsOpenSUSE(Distro) ||
+ (IsRedhat(Distro) && Distro != RHEL4 && Distro != RHEL5) ||
+ (IsUbuntu(Distro) && Distro >= UbuntuKarmic))
+ ExtraOpts.push_back("--build-id");
+
+ if (IsOpenSUSE(Distro))
+ ExtraOpts.push_back("--enable-new-dtags");
+
+ // The selection of paths to try here is designed to match the patterns which
+ // the GCC driver itself uses, as this is part of the GCC-compatible driver.
+ // This was determined by running GCC in a fake filesystem, creating all
+ // possible permutations of these directories, and seeing which ones it added
+ // to the link paths.
+ path_list &Paths = getFilePaths();
+
+ const std::string OSLibDir = getOSLibDir(Triple, Args);
+ const std::string MultiarchTriple = getMultiarchTriple(Triple, SysRoot);
+
+ // Add the multilib suffixed paths where they are available.
+ if (GCCInstallation.isValid()) {
+ const llvm::Triple &GCCTriple = GCCInstallation.getTriple();
+ const std::string &LibPath = GCCInstallation.getParentLibPath();
+ const Multilib &Multilib = GCCInstallation.getMultilib();
+
+ // Sourcery CodeBench MIPS toolchain holds some libraries under
+ // a biarch-like suffix of the GCC installation.
+ addPathIfExists((GCCInstallation.getInstallPath() +
+ Multilib.gccSuffix()),
+ Paths);
+
+ // GCC cross compiling toolchains will install target libraries which ship
+ // as part of the toolchain under <prefix>/<triple>/<libdir> rather than as
+ // any part of the GCC installation in
+ // <prefix>/<libdir>/gcc/<triple>/<version>. This decision is somewhat
+ // debatable, but is the reality today. We need to search this tree even
+ // when we have a sysroot somewhere else. It is the responsibility of
+ // whomever is doing the cross build targeting a sysroot using a GCC
+ // installation that is *not* within the system root to ensure two things:
+ //
+ // 1) Any DSOs that are linked in from this tree or from the install path
+ // above must be present on the system root and found via an
+ // appropriate rpath.
+ // 2) There must not be libraries installed into
+ // <prefix>/<triple>/<libdir> unless they should be preferred over
+ // those within the system root.
+ //
+ // Note that this matches the GCC behavior. See the below comment for where
+ // Clang diverges from GCC's behavior.
+ addPathIfExists(LibPath + "/../" + GCCTriple.str() + "/lib/../" + OSLibDir +
+ Multilib.osSuffix(),
+ Paths);
+
+ // If the GCC installation we found is inside of the sysroot, we want to
+ // prefer libraries installed in the parent prefix of the GCC installation.
+ // It is important to *not* use these paths when the GCC installation is
+ // outside of the system root as that can pick up unintended libraries.
+ // This usually happens when there is an external cross compiler on the
+ // host system, and a more minimal sysroot available that is the target of
+ // the cross. Note that GCC does include some of these directories in some
+ // configurations but this seems somewhere between questionable and simply
+ // a bug.
+ if (StringRef(LibPath).startswith(SysRoot)) {
+ addPathIfExists(LibPath + "/" + MultiarchTriple, Paths);
+ addPathIfExists(LibPath + "/../" + OSLibDir, Paths);
+ }
+ }
+
+ // Similar to the logic for GCC above, if we currently running Clang inside
+ // of the requested system root, add its parent library paths to
+ // those searched.
+ // FIXME: It's not clear whether we should use the driver's installed
+ // directory ('Dir' below) or the ResourceDir.
+ if (StringRef(D.Dir).startswith(SysRoot)) {
+ addPathIfExists(D.Dir + "/../lib/" + MultiarchTriple, Paths);
+ addPathIfExists(D.Dir + "/../" + OSLibDir, Paths);
+ }
+
+ addPathIfExists(SysRoot + "/lib/" + MultiarchTriple, Paths);
+ addPathIfExists(SysRoot + "/lib/../" + OSLibDir, Paths);
+ addPathIfExists(SysRoot + "/usr/lib/" + MultiarchTriple, Paths);
+ addPathIfExists(SysRoot + "/usr/lib/../" + OSLibDir, Paths);
+
+ // Try walking via the GCC triple path in case of biarch or multiarch GCC
+ // installations with strange symlinks.
+ if (GCCInstallation.isValid()) {
+ addPathIfExists(SysRoot + "/usr/lib/" + GCCInstallation.getTriple().str() +
+ "/../../" + OSLibDir, Paths);
+
+ // Add the 'other' biarch variant path
+ Multilib BiarchSibling;
+ if (GCCInstallation.getBiarchSibling(BiarchSibling)) {
+ addPathIfExists(GCCInstallation.getInstallPath() +
+ BiarchSibling.gccSuffix(), Paths);
+ }
+
+ // See comments above on the multilib variant for details of why this is
+ // included even from outside the sysroot.
+ const std::string &LibPath = GCCInstallation.getParentLibPath();
+ const llvm::Triple &GCCTriple = GCCInstallation.getTriple();
+ const Multilib &Multilib = GCCInstallation.getMultilib();
+ addPathIfExists(LibPath + "/../" + GCCTriple.str() +
+ "/lib" + Multilib.osSuffix(), Paths);
+
+ // See comments above on the multilib variant for details of why this is
+ // only included from within the sysroot.
+ if (StringRef(LibPath).startswith(SysRoot))
+ addPathIfExists(LibPath, Paths);
+ }
+
+ // Similar to the logic for GCC above, if we are currently running Clang
+ // inside of the requested system root, add its parent library path to those
+ // searched.
+ // FIXME: It's not clear whether we should use the driver's installed
+ // directory ('Dir' below) or the ResourceDir.
+ if (StringRef(D.Dir).startswith(SysRoot))
+ addPathIfExists(D.Dir + "/../lib", Paths);
+
+ addPathIfExists(SysRoot + "/lib", Paths);
+ addPathIfExists(SysRoot + "/usr/lib", Paths);
+}
+
+bool Linux::HasNativeLLVMSupport() const {
+ return true;
+}
+
+Tool *Linux::buildLinker() const {
+ return new tools::gnutools::Link(*this);
+}
+
+Tool *Linux::buildAssembler() const {
+ return new tools::gnutools::Assemble(*this);
+}
+
+std::string Linux::computeSysRoot() const {
+ if (!getDriver().SysRoot.empty())
+ return getDriver().SysRoot;
+
+ if (!GCCInstallation.isValid() || !isMipsArch(getTriple().getArch()))
+ return std::string();
+
+ // Standalone MIPS toolchains use different names for sysroot folder
+ // and put it into different places. Here we try to check some known
+ // variants.
+
+ const StringRef InstallDir = GCCInstallation.getInstallPath();
+ const StringRef TripleStr = GCCInstallation.getTriple().str();
+ const Multilib &Multilib = GCCInstallation.getMultilib();
+
+ std::string Path = (InstallDir + "/../../../../" + TripleStr + "/libc" +
+ Multilib.osSuffix()).str();
+
+ if (llvm::sys::fs::exists(Path))
+ return Path;
+
+ Path = (InstallDir + "/../../../../sysroot" + Multilib.osSuffix()).str();
+
+ if (llvm::sys::fs::exists(Path))
+ return Path;
+
+ return std::string();
+}
+
+void Linux::AddClangSystemIncludeArgs(const ArgList &DriverArgs,
+ ArgStringList &CC1Args) const {
+ const Driver &D = getDriver();
+ std::string SysRoot = computeSysRoot();
+
+ if (DriverArgs.hasArg(options::OPT_nostdinc))
+ return;
+
+ if (!DriverArgs.hasArg(options::OPT_nostdlibinc))
+ addSystemInclude(DriverArgs, CC1Args, SysRoot + "/usr/local/include");
+
+ if (!DriverArgs.hasArg(options::OPT_nobuiltininc)) {
+ SmallString<128> P(D.ResourceDir);
+ llvm::sys::path::append(P, "include");
+ addSystemInclude(DriverArgs, CC1Args, P);
+ }
+
+ if (DriverArgs.hasArg(options::OPT_nostdlibinc))
+ return;
+
+ // Check for configure-time C include directories.
+ StringRef CIncludeDirs(C_INCLUDE_DIRS);
+ if (CIncludeDirs != "") {
+ SmallVector<StringRef, 5> dirs;
+ CIncludeDirs.split(dirs, ":");
+ for (StringRef dir : dirs) {
+ StringRef Prefix =
+ llvm::sys::path::is_absolute(dir) ? StringRef(SysRoot) : "";
+ addExternCSystemInclude(DriverArgs, CC1Args, Prefix + dir);
+ }
+ return;
+ }
+
+ // Lacking those, try to detect the correct set of system includes for the
+ // target triple.
+
+ // Add include directories specific to the selected multilib set and multilib.
+ if (GCCInstallation.isValid()) {
+ const auto &Callback = Multilibs.includeDirsCallback();
+ if (Callback) {
+ const auto IncludePaths = Callback(GCCInstallation.getInstallPath(),
+ GCCInstallation.getTriple().str(),
+ GCCInstallation.getMultilib());
+ for (const auto &Path : IncludePaths)
+ addExternCSystemIncludeIfExists(DriverArgs, CC1Args, Path);
+ }
+ }
+
+ // Implement generic Debian multiarch support.
+ const StringRef X86_64MultiarchIncludeDirs[] = {
+ "/usr/include/x86_64-linux-gnu",
+
+ // FIXME: These are older forms of multiarch. It's not clear that they're
+ // in use in any released version of Debian, so we should consider
+ // removing them.
+ "/usr/include/i686-linux-gnu/64", "/usr/include/i486-linux-gnu/64"
+ };
+ const StringRef X86MultiarchIncludeDirs[] = {
+ "/usr/include/i386-linux-gnu",
+
+ // FIXME: These are older forms of multiarch. It's not clear that they're
+ // in use in any released version of Debian, so we should consider
+ // removing them.
+ "/usr/include/x86_64-linux-gnu/32", "/usr/include/i686-linux-gnu",
+ "/usr/include/i486-linux-gnu"
+ };
+ const StringRef AArch64MultiarchIncludeDirs[] = {
+ "/usr/include/aarch64-linux-gnu"
+ };
+ const StringRef ARMMultiarchIncludeDirs[] = {
+ "/usr/include/arm-linux-gnueabi"
+ };
+ const StringRef ARMHFMultiarchIncludeDirs[] = {
+ "/usr/include/arm-linux-gnueabihf"
+ };
+ const StringRef MIPSMultiarchIncludeDirs[] = {
+ "/usr/include/mips-linux-gnu"
+ };
+ const StringRef MIPSELMultiarchIncludeDirs[] = {
+ "/usr/include/mipsel-linux-gnu"
+ };
+ const StringRef MIPS64MultiarchIncludeDirs[] = {
+ "/usr/include/mips64-linux-gnu",
+ "/usr/include/mips64-linux-gnuabi64"
+ };
+ const StringRef MIPS64ELMultiarchIncludeDirs[] = {
+ "/usr/include/mips64el-linux-gnu",
+ "/usr/include/mips64el-linux-gnuabi64"
+ };
+ const StringRef PPCMultiarchIncludeDirs[] = {
+ "/usr/include/powerpc-linux-gnu"
+ };
+ const StringRef PPC64MultiarchIncludeDirs[] = {
+ "/usr/include/powerpc64-linux-gnu"
+ };
+ const StringRef PPC64LEMultiarchIncludeDirs[] = {
+ "/usr/include/powerpc64le-linux-gnu"
+ };
+ ArrayRef<StringRef> MultiarchIncludeDirs;
+ if (getTriple().getArch() == llvm::Triple::x86_64) {
+ MultiarchIncludeDirs = X86_64MultiarchIncludeDirs;
+ } else if (getTriple().getArch() == llvm::Triple::x86) {
+ MultiarchIncludeDirs = X86MultiarchIncludeDirs;
+ } else if (getTriple().getArch() == llvm::Triple::aarch64 ||
+ getTriple().getArch() == llvm::Triple::aarch64_be) {
+ MultiarchIncludeDirs = AArch64MultiarchIncludeDirs;
+ } else if (getTriple().getArch() == llvm::Triple::arm) {
+ if (getTriple().getEnvironment() == llvm::Triple::GNUEABIHF)
+ MultiarchIncludeDirs = ARMHFMultiarchIncludeDirs;
+ else
+ MultiarchIncludeDirs = ARMMultiarchIncludeDirs;
+ } else if (getTriple().getArch() == llvm::Triple::mips) {
+ MultiarchIncludeDirs = MIPSMultiarchIncludeDirs;
+ } else if (getTriple().getArch() == llvm::Triple::mipsel) {
+ MultiarchIncludeDirs = MIPSELMultiarchIncludeDirs;
+ } else if (getTriple().getArch() == llvm::Triple::mips64) {
+ MultiarchIncludeDirs = MIPS64MultiarchIncludeDirs;
+ } else if (getTriple().getArch() == llvm::Triple::mips64el) {
+ MultiarchIncludeDirs = MIPS64ELMultiarchIncludeDirs;
+ } else if (getTriple().getArch() == llvm::Triple::ppc) {
+ MultiarchIncludeDirs = PPCMultiarchIncludeDirs;
+ } else if (getTriple().getArch() == llvm::Triple::ppc64) {
+ MultiarchIncludeDirs = PPC64MultiarchIncludeDirs;
+ } else if (getTriple().getArch() == llvm::Triple::ppc64le) {
+ MultiarchIncludeDirs = PPC64LEMultiarchIncludeDirs;
+ }
+ for (StringRef Dir : MultiarchIncludeDirs) {
+ if (llvm::sys::fs::exists(SysRoot + Dir)) {
+ addExternCSystemInclude(DriverArgs, CC1Args, SysRoot + Dir);
+ break;
+ }
+ }
+
+ if (getTriple().getOS() == llvm::Triple::RTEMS)
+ return;
+
+ // Add an include of '/include' directly. This isn't provided by default by
+ // system GCCs, but is often used with cross-compiling GCCs, and harmless to
+ // add even when Clang is acting as-if it were a system compiler.
+ addExternCSystemInclude(DriverArgs, CC1Args, SysRoot + "/include");
+
+ addExternCSystemInclude(DriverArgs, CC1Args, SysRoot + "/usr/include");
+}
+
+/// \brief Helper to add the variant paths of a libstdc++ installation.
+/*static*/ bool Linux::addLibStdCXXIncludePaths(Twine Base, Twine Suffix,
+ StringRef GCCTriple,
+ StringRef GCCMultiarchTriple,
+ StringRef TargetMultiarchTriple,
+ Twine IncludeSuffix,
+ const ArgList &DriverArgs,
+ ArgStringList &CC1Args) {
+ if (!llvm::sys::fs::exists(Base + Suffix))
+ return false;
+
+ addSystemInclude(DriverArgs, CC1Args, Base + Suffix);
+
+ // The vanilla GCC layout of libstdc++ headers uses a triple subdirectory. If
+ // that path exists or we have neither a GCC nor target multiarch triple, use
+ // this vanilla search path.
+ if ((GCCMultiarchTriple.empty() && TargetMultiarchTriple.empty()) ||
+ llvm::sys::fs::exists(Base + Suffix + "/" + GCCTriple + IncludeSuffix)) {
+ addSystemInclude(DriverArgs, CC1Args,
+ Base + Suffix + "/" + GCCTriple + IncludeSuffix);
+ } else {
+ // Otherwise try to use multiarch naming schemes which have normalized the
+ // triples and put the triple before the suffix.
+ //
+ // GCC surprisingly uses *both* the GCC triple with a multilib suffix and
+ // the target triple, so we support that here.
+ addSystemInclude(DriverArgs, CC1Args,
+ Base + "/" + GCCMultiarchTriple + Suffix + IncludeSuffix);
+ addSystemInclude(DriverArgs, CC1Args,
+ Base + "/" + TargetMultiarchTriple + Suffix);
+ }
+
+ addSystemInclude(DriverArgs, CC1Args, Base + Suffix + "/backward");
+ return true;
+}
+
+void Linux::AddClangCXXStdlibIncludeArgs(const ArgList &DriverArgs,
+ ArgStringList &CC1Args) const {
+ if (DriverArgs.hasArg(options::OPT_nostdlibinc) ||
+ DriverArgs.hasArg(options::OPT_nostdincxx))
+ return;
+
+ // Check if libc++ has been enabled and provide its include paths if so.
+ if (GetCXXStdlibType(DriverArgs) == ToolChain::CST_Libcxx) {
+ const std::string LibCXXIncludePathCandidates[] = {
+ // The primary location is within the Clang installation.
+ // FIXME: We shouldn't hard code 'v1' here to make Clang future proof to
+ // newer ABI versions.
+ getDriver().Dir + "/../include/c++/v1",
+
+ // We also check the system as for a long time this is the only place Clang looked.
+ // FIXME: We should really remove this. It doesn't make any sense.
+ getDriver().SysRoot + "/usr/include/c++/v1"
+ };
+ for (const auto &IncludePath : LibCXXIncludePathCandidates) {
+ if (!llvm::sys::fs::exists(IncludePath))
+ continue;
+ // Add the first candidate that exists.
+ addSystemInclude(DriverArgs, CC1Args, IncludePath);
+ break;
+ }
+ return;
+ }
+
+ // We need a detected GCC installation on Linux to provide libstdc++'s
+ // headers. We handled the libc++ case above.
+ if (!GCCInstallation.isValid())
+ return;
+
+ // By default, look for the C++ headers in an include directory adjacent to
+ // the lib directory of the GCC installation. Note that this is expect to be
+ // equivalent to '/usr/include/c++/X.Y' in almost all cases.
+ StringRef LibDir = GCCInstallation.getParentLibPath();
+ StringRef InstallDir = GCCInstallation.getInstallPath();
+ StringRef TripleStr = GCCInstallation.getTriple().str();
+ const Multilib &Multilib = GCCInstallation.getMultilib();
+ const std::string GCCMultiarchTriple =
+ getMultiarchTriple(GCCInstallation.getTriple(), getDriver().SysRoot);
+ const std::string TargetMultiarchTriple =
+ getMultiarchTriple(getTriple(), getDriver().SysRoot);
+ const GCCVersion &Version = GCCInstallation.getVersion();
+
+ // The primary search for libstdc++ supports multiarch variants.
+ if (addLibStdCXXIncludePaths(LibDir.str() + "/../include",
+ "/c++/" + Version.Text, TripleStr, GCCMultiarchTriple,
+ TargetMultiarchTriple,
+ Multilib.includeSuffix(), DriverArgs, CC1Args))
+ return;
+
+ // Otherwise, fall back on a bunch of options which don't use multiarch
+ // layouts for simplicity.
+ const std::string LibStdCXXIncludePathCandidates[] = {
+ // Gentoo is weird and places its headers inside the GCC install, so if the
+ // first attempt to find the headers fails, try these patterns.
+ InstallDir.str() + "/include/g++-v" + Version.MajorStr + "." +
+ Version.MinorStr,
+ InstallDir.str() + "/include/g++-v" + Version.MajorStr,
+ // Android standalone toolchain has C++ headers in yet another place.
+ LibDir.str() + "/../" + TripleStr.str() + "/include/c++/" + Version.Text,
+ // Freescale SDK C++ headers are directly in <sysroot>/usr/include/c++,
+ // without a subdirectory corresponding to the gcc version.
+ LibDir.str() + "/../include/c++",
+ };
+
+ for (const auto &IncludePath : LibStdCXXIncludePathCandidates) {
+ if (addLibStdCXXIncludePaths(IncludePath, /*Suffix*/ "", TripleStr,
+ /*GCCMultiarchTriple*/ "",
+ /*TargetMultiarchTriple*/ "",
+ Multilib.includeSuffix(), DriverArgs, CC1Args))
+ break;
+ }
+}
+
+bool Linux::isPIEDefault() const {
+ return getSanitizerArgs().requiresPIE();
+}
+
+/// DragonFly - DragonFly tool chain which can call as(1) and ld(1) directly.
+
+DragonFly::DragonFly(const Driver &D, const llvm::Triple& Triple, const ArgList &Args)
+ : Generic_ELF(D, Triple, Args) {
+
+ // Path mangling to find libexec
+ getProgramPaths().push_back(getDriver().getInstalledDir());
+ if (getDriver().getInstalledDir() != getDriver().Dir)
+ getProgramPaths().push_back(getDriver().Dir);
+
+ getFilePaths().push_back(getDriver().Dir + "/../lib");
+ getFilePaths().push_back("/usr/lib");
+ if (llvm::sys::fs::exists("/usr/lib/gcc47"))
+ getFilePaths().push_back("/usr/lib/gcc47");
+ else
+ getFilePaths().push_back("/usr/lib/gcc44");
+}
+
+Tool *DragonFly::buildAssembler() const {
+ return new tools::dragonfly::Assemble(*this);
+}
+
+Tool *DragonFly::buildLinker() const {
+ return new tools::dragonfly::Link(*this);
+}
+
+
+/// XCore tool chain
+XCore::XCore(const Driver &D, const llvm::Triple &Triple,
+ const ArgList &Args) : ToolChain(D, Triple, Args) {
+ // ProgramPaths are found via 'PATH' environment variable.
+}
+
+Tool *XCore::buildAssembler() const {
+ return new tools::XCore::Assemble(*this);
+}
+
+Tool *XCore::buildLinker() const {
+ return new tools::XCore::Link(*this);
+}
+
+bool XCore::isPICDefault() const {
+ return false;
+}
+
+bool XCore::isPIEDefault() const {
+ return false;
+}
+
+bool XCore::isPICDefaultForced() const {
+ return false;
+}
+
+bool XCore::SupportsProfiling() const {
+ return false;
+}
+
+bool XCore::hasBlocksRuntime() const {
+ return false;
+}
+
+void XCore::AddClangSystemIncludeArgs(const ArgList &DriverArgs,
+ ArgStringList &CC1Args) const {
+ if (DriverArgs.hasArg(options::OPT_nostdinc) ||
+ DriverArgs.hasArg(options::OPT_nostdlibinc))
+ return;
+ if (const char *cl_include_dir = getenv("XCC_C_INCLUDE_PATH")) {
+ SmallVector<StringRef, 4> Dirs;
+ const char EnvPathSeparatorStr[] = {llvm::sys::EnvPathSeparator,'\0'};
+ StringRef(cl_include_dir).split(Dirs, StringRef(EnvPathSeparatorStr));
+ ArrayRef<StringRef> DirVec(Dirs);
+ addSystemIncludes(DriverArgs, CC1Args, DirVec);
+ }
+}
+
+void XCore::addClangTargetOptions(const llvm::opt::ArgList &DriverArgs,
+ llvm::opt::ArgStringList &CC1Args) const {
+ CC1Args.push_back("-nostdsysteminc");
+}
+
+void XCore::AddClangCXXStdlibIncludeArgs(const ArgList &DriverArgs,
+ ArgStringList &CC1Args) const {
+ if (DriverArgs.hasArg(options::OPT_nostdinc) ||
+ DriverArgs.hasArg(options::OPT_nostdlibinc) ||
+ DriverArgs.hasArg(options::OPT_nostdincxx))
+ return;
+ if (const char *cl_include_dir = getenv("XCC_CPLUS_INCLUDE_PATH")) {
+ SmallVector<StringRef, 4> Dirs;
+ const char EnvPathSeparatorStr[] = {llvm::sys::EnvPathSeparator,'\0'};
+ StringRef(cl_include_dir).split(Dirs, StringRef(EnvPathSeparatorStr));
+ ArrayRef<StringRef> DirVec(Dirs);
+ addSystemIncludes(DriverArgs, CC1Args, DirVec);
+ }
+}
+
+void XCore::AddCXXStdlibLibArgs(const ArgList &Args,
+ ArgStringList &CmdArgs) const {
+ // We don't output any lib args. This is handled by xcc.
+}
diff --git a/contrib/llvm/tools/clang/lib/Driver/ToolChains.h b/contrib/llvm/tools/clang/lib/Driver/ToolChains.h
new file mode 100644
index 0000000..8906e21
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Driver/ToolChains.h
@@ -0,0 +1,876 @@
+//===--- ToolChains.h - ToolChain Implementations ---------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_DRIVER_TOOLCHAINS_H
+#define LLVM_CLANG_LIB_DRIVER_TOOLCHAINS_H
+
+#include "Tools.h"
+#include "clang/Basic/VersionTuple.h"
+#include "clang/Driver/Action.h"
+#include "clang/Driver/Multilib.h"
+#include "clang/Driver/ToolChain.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/Support/Compiler.h"
+#include <set>
+#include <vector>
+
+namespace clang {
+namespace driver {
+namespace toolchains {
+
+/// Generic_GCC - A tool chain using the 'gcc' command to perform
+/// all subcommands; this relies on gcc translating the majority of
+/// command line options.
+class LLVM_LIBRARY_VISIBILITY Generic_GCC : public ToolChain {
+protected:
+ /// \brief Struct to store and manipulate GCC versions.
+ ///
+ /// We rely on assumptions about the form and structure of GCC version
+ /// numbers: they consist of at most three '.'-separated components, and each
+ /// component is a non-negative integer except for the last component. For
+ /// the last component we are very flexible in order to tolerate release
+ /// candidates or 'x' wildcards.
+ ///
+ /// Note that the ordering established among GCCVersions is based on the
+ /// preferred version string to use. For example we prefer versions without
+ /// a hard-coded patch number to those with a hard coded patch number.
+ ///
+ /// Currently this doesn't provide any logic for textual suffixes to patches
+ /// in the way that (for example) Debian's version format does. If that ever
+ /// becomes necessary, it can be added.
+ struct GCCVersion {
+ /// \brief The unparsed text of the version.
+ std::string Text;
+
+ /// \brief The parsed major, minor, and patch numbers.
+ int Major, Minor, Patch;
+
+ /// \brief The text of the parsed major, and major+minor versions.
+ std::string MajorStr, MinorStr;
+
+ /// \brief Any textual suffix on the patch number.
+ std::string PatchSuffix;
+
+ static GCCVersion Parse(StringRef VersionText);
+ bool isOlderThan(int RHSMajor, int RHSMinor, int RHSPatch,
+ StringRef RHSPatchSuffix = StringRef()) const;
+ bool operator<(const GCCVersion &RHS) const {
+ return isOlderThan(RHS.Major, RHS.Minor, RHS.Patch, RHS.PatchSuffix);
+ }
+ bool operator>(const GCCVersion &RHS) const { return RHS < *this; }
+ bool operator<=(const GCCVersion &RHS) const { return !(*this > RHS); }
+ bool operator>=(const GCCVersion &RHS) const { return !(*this < RHS); }
+ };
+
+ /// \brief This is a class to find a viable GCC installation for Clang to
+ /// use.
+ ///
+ /// This class tries to find a GCC installation on the system, and report
+ /// information about it. It starts from the host information provided to the
+ /// Driver, and has logic for fuzzing that where appropriate.
+ class GCCInstallationDetector {
+ bool IsValid;
+ llvm::Triple GCCTriple;
+
+ // FIXME: These might be better as path objects.
+ std::string GCCInstallPath;
+ std::string GCCParentLibPath;
+
+ /// The primary multilib appropriate for the given flags.
+ Multilib SelectedMultilib;
+ /// On Biarch systems, this corresponds to the default multilib when
+ /// targeting the non-default multilib. Otherwise, it is empty.
+ llvm::Optional<Multilib> BiarchSibling;
+
+ GCCVersion Version;
+
+ // We retain the list of install paths that were considered and rejected in
+ // order to print out detailed information in verbose mode.
+ std::set<std::string> CandidateGCCInstallPaths;
+
+ /// The set of multilibs that the detected installation supports.
+ MultilibSet Multilibs;
+
+ public:
+ GCCInstallationDetector() : IsValid(false) {}
+ void init(const Driver &D, const llvm::Triple &TargetTriple,
+ const llvm::opt::ArgList &Args);
+
+ /// \brief Check whether we detected a valid GCC install.
+ bool isValid() const { return IsValid; }
+
+ /// \brief Get the GCC triple for the detected install.
+ const llvm::Triple &getTriple() const { return GCCTriple; }
+
+ /// \brief Get the detected GCC installation path.
+ StringRef getInstallPath() const { return GCCInstallPath; }
+
+ /// \brief Get the detected GCC parent lib path.
+ StringRef getParentLibPath() const { return GCCParentLibPath; }
+
+ /// \brief Get the detected Multilib
+ const Multilib &getMultilib() const { return SelectedMultilib; }
+
+ /// \brief Get the whole MultilibSet
+ const MultilibSet &getMultilibs() const { return Multilibs; }
+
+ /// Get the biarch sibling multilib (if it exists).
+ /// \return true iff such a sibling exists
+ bool getBiarchSibling(Multilib &M) const;
+
+ /// \brief Get the detected GCC version string.
+ const GCCVersion &getVersion() const { return Version; }
+
+ /// \brief Print information about the detected GCC installation.
+ void print(raw_ostream &OS) const;
+
+ private:
+ static void
+ CollectLibDirsAndTriples(const llvm::Triple &TargetTriple,
+ const llvm::Triple &BiarchTriple,
+ SmallVectorImpl<StringRef> &LibDirs,
+ SmallVectorImpl<StringRef> &TripleAliases,
+ SmallVectorImpl<StringRef> &BiarchLibDirs,
+ SmallVectorImpl<StringRef> &BiarchTripleAliases);
+
+ void ScanLibDirForGCCTriple(const llvm::Triple &TargetArch,
+ const llvm::opt::ArgList &Args,
+ const std::string &LibDir,
+ StringRef CandidateTriple,
+ bool NeedsBiarchSuffix = false);
+ };
+
+ GCCInstallationDetector GCCInstallation;
+
+public:
+ Generic_GCC(const Driver &D, const llvm::Triple &Triple,
+ const llvm::opt::ArgList &Args);
+ ~Generic_GCC() override;
+
+ void printVerboseInfo(raw_ostream &OS) const override;
+
+ bool IsUnwindTablesDefault() const override;
+ bool isPICDefault() const override;
+ bool isPIEDefault() const override;
+ bool isPICDefaultForced() const override;
+ bool IsIntegratedAssemblerDefault() const override;
+
+protected:
+ Tool *getTool(Action::ActionClass AC) const override;
+ Tool *buildAssembler() const override;
+ Tool *buildLinker() const override;
+
+ /// \name ToolChain Implementation Helper Functions
+ /// @{
+
+ /// \brief Check whether the target triple's architecture is 64-bits.
+ bool isTarget64Bit() const { return getTriple().isArch64Bit(); }
+
+ /// \brief Check whether the target triple's architecture is 32-bits.
+ bool isTarget32Bit() const { return getTriple().isArch32Bit(); }
+
+ /// @}
+
+private:
+ mutable std::unique_ptr<tools::gcc::Preprocess> Preprocess;
+ mutable std::unique_ptr<tools::gcc::Compile> Compile;
+};
+
+class LLVM_LIBRARY_VISIBILITY MachO : public ToolChain {
+protected:
+ Tool *buildAssembler() const override;
+ Tool *buildLinker() const override;
+ Tool *getTool(Action::ActionClass AC) const override;
+private:
+ mutable std::unique_ptr<tools::darwin::Lipo> Lipo;
+ mutable std::unique_ptr<tools::darwin::Dsymutil> Dsymutil;
+ mutable std::unique_ptr<tools::darwin::VerifyDebug> VerifyDebug;
+
+public:
+ MachO(const Driver &D, const llvm::Triple &Triple,
+ const llvm::opt::ArgList &Args);
+ ~MachO() override;
+
+ /// @name MachO specific toolchain API
+ /// {
+
+ /// Get the "MachO" arch name for a particular compiler invocation. For
+ /// example, Apple treats different ARM variations as distinct architectures.
+ StringRef getMachOArchName(const llvm::opt::ArgList &Args) const;
+
+
+ /// Add the linker arguments to link the ARC runtime library.
+ virtual void AddLinkARCArgs(const llvm::opt::ArgList &Args,
+ llvm::opt::ArgStringList &CmdArgs) const {}
+
+ /// Add the linker arguments to link the compiler runtime library.
+ virtual void AddLinkRuntimeLibArgs(const llvm::opt::ArgList &Args,
+ llvm::opt::ArgStringList &CmdArgs) const;
+
+ virtual void
+ addStartObjectFileArgs(const llvm::opt::ArgList &Args,
+ llvm::opt::ArgStringList &CmdArgs) const {}
+
+ virtual void addMinVersionArgs(const llvm::opt::ArgList &Args,
+ llvm::opt::ArgStringList &CmdArgs) const {}
+
+ /// On some iOS platforms, kernel and kernel modules were built statically. Is
+ /// this such a target?
+ virtual bool isKernelStatic() const {
+ return false;
+ }
+
+ /// Is the target either iOS or an iOS simulator?
+ bool isTargetIOSBased() const {
+ return false;
+ }
+
+ void AddLinkRuntimeLib(const llvm::opt::ArgList &Args,
+ llvm::opt::ArgStringList &CmdArgs,
+ StringRef DarwinLibName,
+ bool AlwaysLink = false,
+ bool IsEmbedded = false,
+ bool AddRPath = false) const;
+
+ /// Add any profiling runtime libraries that are needed. This is essentially a
+ /// MachO specific version of addProfileRT in Tools.cpp.
+ virtual void addProfileRTLibs(const llvm::opt::ArgList &Args,
+ llvm::opt::ArgStringList &CmdArgs) const {
+ // There aren't any profiling libs for embedded targets currently.
+ }
+
+ /// }
+ /// @name ToolChain Implementation
+ /// {
+
+ std::string ComputeEffectiveClangTriple(const llvm::opt::ArgList &Args,
+ types::ID InputType) const override;
+
+ types::ID LookupTypeForExtension(const char *Ext) const override;
+
+ bool HasNativeLLVMSupport() const override;
+
+ llvm::opt::DerivedArgList *
+ TranslateArgs(const llvm::opt::DerivedArgList &Args,
+ const char *BoundArch) const override;
+
+ bool IsBlocksDefault() const override {
+ // Always allow blocks on Apple; users interested in versioning are
+ // expected to use /usr/include/Block.h.
+ return true;
+ }
+ bool IsIntegratedAssemblerDefault() const override {
+ // Default integrated assembler to on for Apple's MachO targets.
+ return true;
+ }
+
+ bool IsMathErrnoDefault() const override {
+ return false;
+ }
+
+ bool IsEncodeExtendedBlockSignatureDefault() const override {
+ return true;
+ }
+
+ bool IsObjCNonFragileABIDefault() const override {
+ // Non-fragile ABI is default for everything but i386.
+ return getTriple().getArch() != llvm::Triple::x86;
+ }
+
+ bool UseObjCMixedDispatch() const override {
+ return true;
+ }
+
+ bool IsUnwindTablesDefault() const override;
+
+ RuntimeLibType GetDefaultRuntimeLibType() const override {
+ return ToolChain::RLT_CompilerRT;
+ }
+
+ bool isPICDefault() const override;
+ bool isPIEDefault() const override;
+ bool isPICDefaultForced() const override;
+
+ bool SupportsProfiling() const override;
+
+ bool SupportsObjCGC() const override {
+ return false;
+ }
+
+ bool UseDwarfDebugFlags() const override;
+
+ bool UseSjLjExceptions() const override {
+ return false;
+ }
+
+ /// }
+};
+
+ /// Darwin - The base Darwin tool chain.
+class LLVM_LIBRARY_VISIBILITY Darwin : public MachO {
+public:
+ /// The host version.
+ unsigned DarwinVersion[3];
+
+ /// Whether the information on the target has been initialized.
+ //
+ // FIXME: This should be eliminated. What we want to do is make this part of
+ // the "default target for arguments" selection process, once we get out of
+ // the argument translation business.
+ mutable bool TargetInitialized;
+
+ enum DarwinPlatformKind {
+ MacOS,
+ IPhoneOS,
+ IPhoneOSSimulator
+ };
+
+ mutable DarwinPlatformKind TargetPlatform;
+
+ /// The OS version we are targeting.
+ mutable VersionTuple TargetVersion;
+
+private:
+ /// The default macosx-version-min of this tool chain; empty until
+ /// initialized.
+ std::string MacosxVersionMin;
+
+ /// The default ios-version-min of this tool chain; empty until
+ /// initialized.
+ std::string iOSVersionMin;
+
+private:
+ void AddDeploymentTarget(llvm::opt::DerivedArgList &Args) const;
+
+public:
+ Darwin(const Driver &D, const llvm::Triple &Triple,
+ const llvm::opt::ArgList &Args);
+ ~Darwin() override;
+
+ std::string ComputeEffectiveClangTriple(const llvm::opt::ArgList &Args,
+ types::ID InputType) const override;
+
+ /// @name Apple Specific Toolchain Implementation
+ /// {
+
+ void
+ addMinVersionArgs(const llvm::opt::ArgList &Args,
+ llvm::opt::ArgStringList &CmdArgs) const override;
+
+ void
+ addStartObjectFileArgs(const llvm::opt::ArgList &Args,
+ llvm::opt::ArgStringList &CmdArgs) const override;
+
+ bool isKernelStatic() const override {
+ return !isTargetIPhoneOS() || isIPhoneOSVersionLT(6, 0);
+ }
+
+ void addProfileRTLibs(const llvm::opt::ArgList &Args,
+ llvm::opt::ArgStringList &CmdArgs) const override;
+
+protected:
+ /// }
+ /// @name Darwin specific Toolchain functions
+ /// {
+
+ // FIXME: Eliminate these ...Target functions and derive separate tool chains
+ // for these targets and put version in constructor.
+ void setTarget(DarwinPlatformKind Platform, unsigned Major, unsigned Minor,
+ unsigned Micro) const {
+ // FIXME: For now, allow reinitialization as long as values don't
+ // change. This will go away when we move away from argument translation.
+ if (TargetInitialized && TargetPlatform == Platform &&
+ TargetVersion == VersionTuple(Major, Minor, Micro))
+ return;
+
+ assert(!TargetInitialized && "Target already initialized!");
+ TargetInitialized = true;
+ TargetPlatform = Platform;
+ TargetVersion = VersionTuple(Major, Minor, Micro);
+ }
+
+ bool isTargetIPhoneOS() const {
+ assert(TargetInitialized && "Target not initialized!");
+ return TargetPlatform == IPhoneOS;
+ }
+
+ bool isTargetIOSSimulator() const {
+ assert(TargetInitialized && "Target not initialized!");
+ return TargetPlatform == IPhoneOSSimulator;
+ }
+
+ bool isTargetIOSBased() const {
+ assert(TargetInitialized && "Target not initialized!");
+ return isTargetIPhoneOS() || isTargetIOSSimulator();
+ }
+
+ bool isTargetMacOS() const {
+ return TargetPlatform == MacOS;
+ }
+
+ bool isTargetInitialized() const { return TargetInitialized; }
+
+ VersionTuple getTargetVersion() const {
+ assert(TargetInitialized && "Target not initialized!");
+ return TargetVersion;
+ }
+
+ bool isIPhoneOSVersionLT(unsigned V0, unsigned V1=0, unsigned V2=0) const {
+ assert(isTargetIOSBased() && "Unexpected call for non iOS target!");
+ return TargetVersion < VersionTuple(V0, V1, V2);
+ }
+
+ bool isMacosxVersionLT(unsigned V0, unsigned V1=0, unsigned V2=0) const {
+ assert(isTargetMacOS() && "Unexpected call for non OS X target!");
+ return TargetVersion < VersionTuple(V0, V1, V2);
+ }
+
+public:
+ /// }
+ /// @name ToolChain Implementation
+ /// {
+
+ // Darwin tools support multiple architecture (e.g., i386 and x86_64) and
+ // most development is done against SDKs, so compiling for a different
+ // architecture should not get any special treatment.
+ bool isCrossCompiling() const override { return false; }
+
+ llvm::opt::DerivedArgList *
+ TranslateArgs(const llvm::opt::DerivedArgList &Args,
+ const char *BoundArch) const override;
+
+ ObjCRuntime getDefaultObjCRuntime(bool isNonFragile) const override;
+ bool hasBlocksRuntime() const override;
+
+ bool UseObjCMixedDispatch() const override {
+ // This is only used with the non-fragile ABI and non-legacy dispatch.
+
+ // Mixed dispatch is used everywhere except OS X before 10.6.
+ return !(isTargetMacOS() && isMacosxVersionLT(10, 6));
+ }
+
+ unsigned GetDefaultStackProtectorLevel(bool KernelOrKext) const override {
+ // Stack protectors default to on for user code on 10.5,
+ // and for everything in 10.6 and beyond
+ if (isTargetIOSBased())
+ return 1;
+ else if (isTargetMacOS() && !isMacosxVersionLT(10, 6))
+ return 1;
+ else if (isTargetMacOS() && !isMacosxVersionLT(10, 5) && !KernelOrKext)
+ return 1;
+
+ return 0;
+ }
+
+ bool SupportsObjCGC() const override;
+
+ void CheckObjCARC() const override;
+
+ bool UseSjLjExceptions() const override;
+};
+
+/// DarwinClang - The Darwin toolchain used by Clang.
+class LLVM_LIBRARY_VISIBILITY DarwinClang : public Darwin {
+public:
+ DarwinClang(const Driver &D, const llvm::Triple &Triple,
+ const llvm::opt::ArgList &Args);
+
+ /// @name Apple ToolChain Implementation
+ /// {
+
+ void
+ AddLinkRuntimeLibArgs(const llvm::opt::ArgList &Args,
+ llvm::opt::ArgStringList &CmdArgs) const override;
+
+ void
+ AddCXXStdlibLibArgs(const llvm::opt::ArgList &Args,
+ llvm::opt::ArgStringList &CmdArgs) const override;
+
+ void
+ AddCCKextLibArgs(const llvm::opt::ArgList &Args,
+ llvm::opt::ArgStringList &CmdArgs) const override;
+
+ void addClangWarningOptions(llvm::opt::ArgStringList &CC1Args) const override;
+
+ void
+ AddLinkARCArgs(const llvm::opt::ArgList &Args,
+ llvm::opt::ArgStringList &CmdArgs) const override;
+ /// }
+
+private:
+ void AddLinkSanitizerLibArgs(const llvm::opt::ArgList &Args,
+ llvm::opt::ArgStringList &CmdArgs,
+ StringRef Sanitizer) const;
+};
+
+class LLVM_LIBRARY_VISIBILITY Generic_ELF : public Generic_GCC {
+ virtual void anchor();
+public:
+ Generic_ELF(const Driver &D, const llvm::Triple &Triple,
+ const llvm::opt::ArgList &Args)
+ : Generic_GCC(D, Triple, Args) {}
+
+ void addClangTargetOptions(const llvm::opt::ArgList &DriverArgs,
+ llvm::opt::ArgStringList &CC1Args) const override;
+};
+
+class LLVM_LIBRARY_VISIBILITY CloudABI : public Generic_ELF {
+public:
+ CloudABI(const Driver &D, const llvm::Triple &Triple,
+ const llvm::opt::ArgList &Args);
+ bool HasNativeLLVMSupport() const override { return true; }
+
+ bool IsMathErrnoDefault() const override { return false; }
+ bool IsObjCNonFragileABIDefault() const override { return true; }
+
+ CXXStdlibType GetCXXStdlibType(const llvm::opt::ArgList &Args)
+ const override {
+ return ToolChain::CST_Libcxx;
+ }
+ void AddClangCXXStdlibIncludeArgs(
+ const llvm::opt::ArgList &DriverArgs,
+ llvm::opt::ArgStringList &CC1Args) const override;
+ void AddCXXStdlibLibArgs(const llvm::opt::ArgList &Args,
+ llvm::opt::ArgStringList &CmdArgs) const override;
+
+ bool isPIEDefault() const override { return false; }
+
+protected:
+ Tool *buildLinker() const override;
+};
+
+class LLVM_LIBRARY_VISIBILITY Solaris : public Generic_GCC {
+public:
+ Solaris(const Driver &D, const llvm::Triple &Triple,
+ const llvm::opt::ArgList &Args);
+
+ bool IsIntegratedAssemblerDefault() const override { return true; }
+protected:
+ Tool *buildAssembler() const override;
+ Tool *buildLinker() const override;
+
+};
+
+
+class LLVM_LIBRARY_VISIBILITY OpenBSD : public Generic_ELF {
+public:
+ OpenBSD(const Driver &D, const llvm::Triple &Triple,
+ const llvm::opt::ArgList &Args);
+
+ bool IsMathErrnoDefault() const override { return false; }
+ bool IsObjCNonFragileABIDefault() const override { return true; }
+ bool isPIEDefault() const override { return true; }
+
+ unsigned GetDefaultStackProtectorLevel(bool KernelOrKext) const override {
+ return 2;
+ }
+
+protected:
+ Tool *buildAssembler() const override;
+ Tool *buildLinker() const override;
+};
+
+class LLVM_LIBRARY_VISIBILITY Bitrig : public Generic_ELF {
+public:
+ Bitrig(const Driver &D, const llvm::Triple &Triple,
+ const llvm::opt::ArgList &Args);
+
+ bool IsMathErrnoDefault() const override { return false; }
+ bool IsObjCNonFragileABIDefault() const override { return true; }
+
+ CXXStdlibType GetCXXStdlibType(const llvm::opt::ArgList &Args) const override;
+ void
+ AddClangCXXStdlibIncludeArgs(const llvm::opt::ArgList &DriverArgs,
+ llvm::opt::ArgStringList &CC1Args) const override;
+ void AddCXXStdlibLibArgs(const llvm::opt::ArgList &Args,
+ llvm::opt::ArgStringList &CmdArgs) const override;
+ unsigned GetDefaultStackProtectorLevel(bool KernelOrKext) const override {
+ return 1;
+ }
+
+protected:
+ Tool *buildAssembler() const override;
+ Tool *buildLinker() const override;
+};
+
+class LLVM_LIBRARY_VISIBILITY FreeBSD : public Generic_ELF {
+public:
+ FreeBSD(const Driver &D, const llvm::Triple &Triple,
+ const llvm::opt::ArgList &Args);
+ bool HasNativeLLVMSupport() const override;
+
+ bool IsMathErrnoDefault() const override { return false; }
+ bool IsObjCNonFragileABIDefault() const override { return true; }
+
+ CXXStdlibType GetCXXStdlibType(const llvm::opt::ArgList &Args) const override;
+ void
+ AddClangCXXStdlibIncludeArgs(const llvm::opt::ArgList &DriverArgs,
+ llvm::opt::ArgStringList &CC1Args) const override;
+
+ bool UseSjLjExceptions() const override;
+ bool isPIEDefault() const override;
+protected:
+ Tool *buildAssembler() const override;
+ Tool *buildLinker() const override;
+};
+
+class LLVM_LIBRARY_VISIBILITY NetBSD : public Generic_ELF {
+public:
+ NetBSD(const Driver &D, const llvm::Triple &Triple,
+ const llvm::opt::ArgList &Args);
+
+ bool IsMathErrnoDefault() const override { return false; }
+ bool IsObjCNonFragileABIDefault() const override { return true; }
+
+ CXXStdlibType GetCXXStdlibType(const llvm::opt::ArgList &Args) const override;
+
+ void
+ AddClangCXXStdlibIncludeArgs(const llvm::opt::ArgList &DriverArgs,
+ llvm::opt::ArgStringList &CC1Args) const override;
+ bool IsUnwindTablesDefault() const override {
+ return true;
+ }
+
+protected:
+ Tool *buildAssembler() const override;
+ Tool *buildLinker() const override;
+};
+
+class LLVM_LIBRARY_VISIBILITY Minix : public Generic_ELF {
+public:
+ Minix(const Driver &D, const llvm::Triple &Triple,
+ const llvm::opt::ArgList &Args);
+
+protected:
+ Tool *buildAssembler() const override;
+ Tool *buildLinker() const override;
+};
+
+class LLVM_LIBRARY_VISIBILITY DragonFly : public Generic_ELF {
+public:
+ DragonFly(const Driver &D, const llvm::Triple &Triple,
+ const llvm::opt::ArgList &Args);
+
+ bool IsMathErrnoDefault() const override { return false; }
+
+protected:
+ Tool *buildAssembler() const override;
+ Tool *buildLinker() const override;
+};
+
+class LLVM_LIBRARY_VISIBILITY Linux : public Generic_ELF {
+public:
+ Linux(const Driver &D, const llvm::Triple &Triple,
+ const llvm::opt::ArgList &Args);
+
+ bool HasNativeLLVMSupport() const override;
+
+ void
+ AddClangSystemIncludeArgs(const llvm::opt::ArgList &DriverArgs,
+ llvm::opt::ArgStringList &CC1Args) const override;
+ void
+ AddClangCXXStdlibIncludeArgs(const llvm::opt::ArgList &DriverArgs,
+ llvm::opt::ArgStringList &CC1Args) const override;
+ bool isPIEDefault() const override;
+
+ std::string Linker;
+ std::vector<std::string> ExtraOpts;
+
+protected:
+ Tool *buildAssembler() const override;
+ Tool *buildLinker() const override;
+
+private:
+ static bool addLibStdCXXIncludePaths(Twine Base, Twine Suffix,
+ StringRef GCCTriple,
+ StringRef GCCMultiarchTriple,
+ StringRef TargetMultiarchTriple,
+ Twine IncludeSuffix,
+ const llvm::opt::ArgList &DriverArgs,
+ llvm::opt::ArgStringList &CC1Args);
+
+ std::string computeSysRoot() const;
+};
+
+class LLVM_LIBRARY_VISIBILITY Hexagon_TC : public Linux {
+protected:
+ GCCVersion GCCLibAndIncVersion;
+ Tool *buildAssembler() const override;
+ Tool *buildLinker() const override;
+
+public:
+ Hexagon_TC(const Driver &D, const llvm::Triple &Triple,
+ const llvm::opt::ArgList &Args);
+ ~Hexagon_TC() override;
+
+ void
+ AddClangSystemIncludeArgs(const llvm::opt::ArgList &DriverArgs,
+ llvm::opt::ArgStringList &CC1Args) const override;
+ void
+ AddClangCXXStdlibIncludeArgs(const llvm::opt::ArgList &DriverArgs,
+ llvm::opt::ArgStringList &CC1Args) const override;
+ CXXStdlibType GetCXXStdlibType(const llvm::opt::ArgList &Args) const override;
+
+ StringRef GetGCCLibAndIncVersion() const { return GCCLibAndIncVersion.Text; }
+
+ static std::string GetGnuDir(const std::string &InstalledDir,
+ const llvm::opt::ArgList &Args);
+
+ static StringRef GetTargetCPU(const llvm::opt::ArgList &Args);
+
+ static const char *GetSmallDataThreshold(const llvm::opt::ArgList &Args);
+
+ static bool UsesG0(const char* smallDataThreshold);
+};
+
+class LLVM_LIBRARY_VISIBILITY NaCl_TC : public Generic_ELF {
+public:
+ NaCl_TC(const Driver &D, const llvm::Triple &Triple,
+ const llvm::opt::ArgList &Args);
+
+ void
+ AddClangSystemIncludeArgs(const llvm::opt::ArgList &DriverArgs,
+ llvm::opt::ArgStringList &CC1Args) const override;
+ void
+ AddClangCXXStdlibIncludeArgs(const llvm::opt::ArgList &DriverArgs,
+ llvm::opt::ArgStringList &CC1Args) const override;
+
+ CXXStdlibType
+ GetCXXStdlibType(const llvm::opt::ArgList &Args) const override;
+
+ void
+ AddCXXStdlibLibArgs(const llvm::opt::ArgList &Args,
+ llvm::opt::ArgStringList &CmdArgs) const override;
+
+ bool
+ IsIntegratedAssemblerDefault() const override { return false; }
+
+ // Get the path to the file containing NaCl's ARM macros. It lives in NaCl_TC
+ // because the AssembleARM tool needs a const char * that it can pass around
+ // and the toolchain outlives all the jobs.
+ const char *GetNaClArmMacrosPath() const { return NaClArmMacrosPath.c_str(); }
+
+ std::string ComputeEffectiveClangTriple(const llvm::opt::ArgList &Args,
+ types::ID InputType) const override;
+ std::string Linker;
+
+protected:
+ Tool *buildLinker() const override;
+ Tool *buildAssembler() const override;
+
+private:
+ std::string NaClArmMacrosPath;
+};
+
+/// TCEToolChain - A tool chain using the llvm bitcode tools to perform
+/// all subcommands. See http://tce.cs.tut.fi for our peculiar target.
+class LLVM_LIBRARY_VISIBILITY TCEToolChain : public ToolChain {
+public:
+ TCEToolChain(const Driver &D, const llvm::Triple &Triple,
+ const llvm::opt::ArgList &Args);
+ ~TCEToolChain() override;
+
+ bool IsMathErrnoDefault() const override;
+ bool isPICDefault() const override;
+ bool isPIEDefault() const override;
+ bool isPICDefaultForced() const override;
+};
+
+class LLVM_LIBRARY_VISIBILITY MSVCToolChain : public ToolChain {
+public:
+ MSVCToolChain(const Driver &D, const llvm::Triple &Triple,
+ const llvm::opt::ArgList &Args);
+
+ bool IsIntegratedAssemblerDefault() const override;
+ bool IsUnwindTablesDefault() const override;
+ bool isPICDefault() const override;
+ bool isPIEDefault() const override;
+ bool isPICDefaultForced() const override;
+
+ void
+ AddClangSystemIncludeArgs(const llvm::opt::ArgList &DriverArgs,
+ llvm::opt::ArgStringList &CC1Args) const override;
+ void
+ AddClangCXXStdlibIncludeArgs(const llvm::opt::ArgList &DriverArgs,
+ llvm::opt::ArgStringList &CC1Args) const override;
+
+ bool getWindowsSDKDir(std::string &path, int &major, int &minor) const;
+ bool getWindowsSDKLibraryPath(std::string &path) const;
+ bool getVisualStudioInstallDir(std::string &path) const;
+ bool getVisualStudioBinariesFolder(const char *clangProgramPath,
+ std::string &path) const;
+
+protected:
+ void AddSystemIncludeWithSubfolder(const llvm::opt::ArgList &DriverArgs,
+ llvm::opt::ArgStringList &CC1Args,
+ const std::string &folder,
+ const char *subfolder) const;
+
+ Tool *buildLinker() const override;
+ Tool *buildAssembler() const override;
+};
+
+class LLVM_LIBRARY_VISIBILITY CrossWindowsToolChain : public Generic_GCC {
+public:
+ CrossWindowsToolChain(const Driver &D, const llvm::Triple &T,
+ const llvm::opt::ArgList &Args);
+
+ bool IsIntegratedAssemblerDefault() const override { return true; }
+ bool IsUnwindTablesDefault() const override;
+ bool isPICDefault() const override;
+ bool isPIEDefault() const override;
+ bool isPICDefaultForced() const override;
+
+ unsigned int GetDefaultStackProtectorLevel(bool KernelOrKext) const override {
+ return 0;
+ }
+
+ void AddClangSystemIncludeArgs(const llvm::opt::ArgList &DriverArgs,
+ llvm::opt::ArgStringList &CC1Args)
+ const override;
+ void AddClangCXXStdlibIncludeArgs(const llvm::opt::ArgList &DriverArgs,
+ llvm::opt::ArgStringList &CC1Args)
+ const override;
+ void AddCXXStdlibLibArgs(const llvm::opt::ArgList &Args,
+ llvm::opt::ArgStringList &CmdArgs) const override;
+
+protected:
+ Tool *buildLinker() const override;
+ Tool *buildAssembler() const override;
+};
+
+class LLVM_LIBRARY_VISIBILITY XCore : public ToolChain {
+public:
+ XCore(const Driver &D, const llvm::Triple &Triple,
+ const llvm::opt::ArgList &Args);
+protected:
+ Tool *buildAssembler() const override;
+ Tool *buildLinker() const override;
+public:
+ bool isPICDefault() const override;
+ bool isPIEDefault() const override;
+ bool isPICDefaultForced() const override;
+ bool SupportsProfiling() const override;
+ bool hasBlocksRuntime() const override;
+ void AddClangSystemIncludeArgs(const llvm::opt::ArgList &DriverArgs,
+ llvm::opt::ArgStringList &CC1Args) const override;
+ void addClangTargetOptions(const llvm::opt::ArgList &DriverArgs,
+ llvm::opt::ArgStringList &CC1Args) const override;
+ void AddClangCXXStdlibIncludeArgs(const llvm::opt::ArgList &DriverArgs,
+ llvm::opt::ArgStringList &CC1Args) const override;
+ void AddCXXStdlibLibArgs(const llvm::opt::ArgList &Args,
+ llvm::opt::ArgStringList &CmdArgs) const override;
+};
+
+} // end namespace toolchains
+} // end namespace driver
+} // end namespace clang
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/Driver/Tools.cpp b/contrib/llvm/tools/clang/lib/Driver/Tools.cpp
new file mode 100644
index 0000000..72a242c
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Driver/Tools.cpp
@@ -0,0 +1,9029 @@
+//===--- Tools.cpp - Tools Implementations --------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Tools.h"
+#include "InputInfo.h"
+#include "ToolChains.h"
+#include "clang/Basic/CharInfo.h"
+#include "clang/Basic/LangOptions.h"
+#include "clang/Basic/ObjCRuntime.h"
+#include "clang/Basic/Version.h"
+#include "clang/Config/config.h"
+#include "clang/Driver/Action.h"
+#include "clang/Driver/Compilation.h"
+#include "clang/Driver/Driver.h"
+#include "clang/Driver/DriverDiagnostic.h"
+#include "clang/Driver/Job.h"
+#include "clang/Driver/Options.h"
+#include "clang/Driver/SanitizerArgs.h"
+#include "clang/Driver/ToolChain.h"
+#include "clang/Driver/Util.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/Option/Arg.h"
+#include "llvm/Option/ArgList.h"
+#include "llvm/Option/Option.h"
+#include "llvm/Support/TargetParser.h"
+#include "llvm/Support/Compression.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/Host.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/Process.h"
+#include "llvm/Support/Program.h"
+#include "llvm/Support/raw_ostream.h"
+
+#ifdef LLVM_ON_UNIX
+#include <unistd.h> // For getuid().
+#endif
+
+using namespace clang::driver;
+using namespace clang::driver::tools;
+using namespace clang;
+using namespace llvm::opt;
+
+static void addAssemblerKPIC(const ArgList &Args, ArgStringList &CmdArgs) {
+ Arg *LastPICArg = Args.getLastArg(options::OPT_fPIC, options::OPT_fno_PIC,
+ options::OPT_fpic, options::OPT_fno_pic,
+ options::OPT_fPIE, options::OPT_fno_PIE,
+ options::OPT_fpie, options::OPT_fno_pie);
+ if (!LastPICArg)
+ return;
+ if (LastPICArg->getOption().matches(options::OPT_fPIC) ||
+ LastPICArg->getOption().matches(options::OPT_fpic) ||
+ LastPICArg->getOption().matches(options::OPT_fPIE) ||
+ LastPICArg->getOption().matches(options::OPT_fpie)) {
+ CmdArgs.push_back("-KPIC");
+ }
+}
+
+/// CheckPreprocessingOptions - Perform some validation of preprocessing
+/// arguments that is shared with gcc.
+static void CheckPreprocessingOptions(const Driver &D, const ArgList &Args) {
+ if (Arg *A = Args.getLastArg(options::OPT_C, options::OPT_CC)) {
+ if (!Args.hasArg(options::OPT_E) && !Args.hasArg(options::OPT__SLASH_P) &&
+ !Args.hasArg(options::OPT__SLASH_EP) && !D.CCCIsCPP()) {
+ D.Diag(diag::err_drv_argument_only_allowed_with)
+ << A->getBaseArg().getAsString(Args)
+ << (D.IsCLMode() ? "/E, /P or /EP" : "-E");
+ }
+ }
+}
+
+/// CheckCodeGenerationOptions - Perform some validation of code generation
+/// arguments that is shared with gcc.
+static void CheckCodeGenerationOptions(const Driver &D, const ArgList &Args) {
+ // In gcc, only ARM checks this, but it seems reasonable to check universally.
+ if (Args.hasArg(options::OPT_static))
+ if (const Arg *A = Args.getLastArg(options::OPT_dynamic,
+ options::OPT_mdynamic_no_pic))
+ D.Diag(diag::err_drv_argument_not_allowed_with)
+ << A->getAsString(Args) << "-static";
+}
+
+// Add backslashes to escape spaces and other backslashes.
+// This is used for the space-separated argument list specified with
+// the -dwarf-debug-flags option.
+static void EscapeSpacesAndBackslashes(const char *Arg,
+ SmallVectorImpl<char> &Res) {
+ for ( ; *Arg; ++Arg) {
+ switch (*Arg) {
+ default: break;
+ case ' ':
+ case '\\':
+ Res.push_back('\\');
+ break;
+ }
+ Res.push_back(*Arg);
+ }
+}
+
+// Quote target names for inclusion in GNU Make dependency files.
+// Only the characters '$', '#', ' ', '\t' are quoted.
+static void QuoteTarget(StringRef Target,
+ SmallVectorImpl<char> &Res) {
+ for (unsigned i = 0, e = Target.size(); i != e; ++i) {
+ switch (Target[i]) {
+ case ' ':
+ case '\t':
+ // Escape the preceding backslashes
+ for (int j = i - 1; j >= 0 && Target[j] == '\\'; --j)
+ Res.push_back('\\');
+
+ // Escape the space/tab
+ Res.push_back('\\');
+ break;
+ case '$':
+ Res.push_back('$');
+ break;
+ case '#':
+ Res.push_back('\\');
+ break;
+ default:
+ break;
+ }
+
+ Res.push_back(Target[i]);
+ }
+}
+
+static void addDirectoryList(const ArgList &Args,
+ ArgStringList &CmdArgs,
+ const char *ArgName,
+ const char *EnvVar) {
+ const char *DirList = ::getenv(EnvVar);
+ bool CombinedArg = false;
+
+ if (!DirList)
+ return; // Nothing to do.
+
+ StringRef Name(ArgName);
+ if (Name.equals("-I") || Name.equals("-L"))
+ CombinedArg = true;
+
+ StringRef Dirs(DirList);
+ if (Dirs.empty()) // Empty string should not add '.'.
+ return;
+
+ StringRef::size_type Delim;
+ while ((Delim = Dirs.find(llvm::sys::EnvPathSeparator)) != StringRef::npos) {
+ if (Delim == 0) { // Leading colon.
+ if (CombinedArg) {
+ CmdArgs.push_back(Args.MakeArgString(std::string(ArgName) + "."));
+ } else {
+ CmdArgs.push_back(ArgName);
+ CmdArgs.push_back(".");
+ }
+ } else {
+ if (CombinedArg) {
+ CmdArgs.push_back(Args.MakeArgString(std::string(ArgName) + Dirs.substr(0, Delim)));
+ } else {
+ CmdArgs.push_back(ArgName);
+ CmdArgs.push_back(Args.MakeArgString(Dirs.substr(0, Delim)));
+ }
+ }
+ Dirs = Dirs.substr(Delim + 1);
+ }
+
+ if (Dirs.empty()) { // Trailing colon.
+ if (CombinedArg) {
+ CmdArgs.push_back(Args.MakeArgString(std::string(ArgName) + "."));
+ } else {
+ CmdArgs.push_back(ArgName);
+ CmdArgs.push_back(".");
+ }
+ } else { // Add the last path.
+ if (CombinedArg) {
+ CmdArgs.push_back(Args.MakeArgString(std::string(ArgName) + Dirs));
+ } else {
+ CmdArgs.push_back(ArgName);
+ CmdArgs.push_back(Args.MakeArgString(Dirs));
+ }
+ }
+}
+
+static void AddLinkerInputs(const ToolChain &TC,
+ const InputInfoList &Inputs, const ArgList &Args,
+ ArgStringList &CmdArgs) {
+ const Driver &D = TC.getDriver();
+
+ // Add extra linker input arguments which are not treated as inputs
+ // (constructed via -Xarch_).
+ Args.AddAllArgValues(CmdArgs, options::OPT_Zlinker_input);
+
+ for (const auto &II : Inputs) {
+ if (!TC.HasNativeLLVMSupport()) {
+ // Don't try to pass LLVM inputs unless we have native support.
+ if (II.getType() == types::TY_LLVM_IR ||
+ II.getType() == types::TY_LTO_IR ||
+ II.getType() == types::TY_LLVM_BC ||
+ II.getType() == types::TY_LTO_BC)
+ D.Diag(diag::err_drv_no_linker_llvm_support)
+ << TC.getTripleString();
+ }
+
+ // Add filenames immediately.
+ if (II.isFilename()) {
+ CmdArgs.push_back(II.getFilename());
+ continue;
+ }
+
+ // Otherwise, this is a linker input argument.
+ const Arg &A = II.getInputArg();
+
+ // Handle reserved library options.
+ if (A.getOption().matches(options::OPT_Z_reserved_lib_stdcxx))
+ TC.AddCXXStdlibLibArgs(Args, CmdArgs);
+ else if (A.getOption().matches(options::OPT_Z_reserved_lib_cckext))
+ TC.AddCCKextLibArgs(Args, CmdArgs);
+ else if (A.getOption().matches(options::OPT_z)) {
+ // Pass -z prefix for gcc linker compatibility.
+ A.claim();
+ A.render(Args, CmdArgs);
+ } else {
+ A.renderAsInput(Args, CmdArgs);
+ }
+ }
+
+ // LIBRARY_PATH - included following the user specified library paths.
+ // and only supported on native toolchains.
+ if (!TC.isCrossCompiling())
+ addDirectoryList(Args, CmdArgs, "-L", "LIBRARY_PATH");
+}
+
+/// \brief Determine whether Objective-C automated reference counting is
+/// enabled.
+static bool isObjCAutoRefCount(const ArgList &Args) {
+ return Args.hasFlag(options::OPT_fobjc_arc, options::OPT_fno_objc_arc, false);
+}
+
+/// \brief Determine whether we are linking the ObjC runtime.
+static bool isObjCRuntimeLinked(const ArgList &Args) {
+ if (isObjCAutoRefCount(Args)) {
+ Args.ClaimAllArgs(options::OPT_fobjc_link_runtime);
+ return true;
+ }
+ return Args.hasArg(options::OPT_fobjc_link_runtime);
+}
+
+static bool forwardToGCC(const Option &O) {
+ // Don't forward inputs from the original command line. They are added from
+ // InputInfoList.
+ return O.getKind() != Option::InputClass &&
+ !O.hasFlag(options::DriverOption) &&
+ !O.hasFlag(options::LinkerInput);
+}
+
+void Clang::AddPreprocessingOptions(Compilation &C,
+ const JobAction &JA,
+ const Driver &D,
+ const ArgList &Args,
+ ArgStringList &CmdArgs,
+ const InputInfo &Output,
+ const InputInfoList &Inputs) const {
+ Arg *A;
+
+ CheckPreprocessingOptions(D, Args);
+
+ Args.AddLastArg(CmdArgs, options::OPT_C);
+ Args.AddLastArg(CmdArgs, options::OPT_CC);
+
+ // Handle dependency file generation.
+ if ((A = Args.getLastArg(options::OPT_M, options::OPT_MM)) ||
+ (A = Args.getLastArg(options::OPT_MD)) ||
+ (A = Args.getLastArg(options::OPT_MMD))) {
+ // Determine the output location.
+ const char *DepFile;
+ if (Arg *MF = Args.getLastArg(options::OPT_MF)) {
+ DepFile = MF->getValue();
+ C.addFailureResultFile(DepFile, &JA);
+ } else if (Output.getType() == types::TY_Dependencies) {
+ DepFile = Output.getFilename();
+ } else if (A->getOption().matches(options::OPT_M) ||
+ A->getOption().matches(options::OPT_MM)) {
+ DepFile = "-";
+ } else {
+ DepFile = getDependencyFileName(Args, Inputs);
+ C.addFailureResultFile(DepFile, &JA);
+ }
+ CmdArgs.push_back("-dependency-file");
+ CmdArgs.push_back(DepFile);
+
+ // Add a default target if one wasn't specified.
+ if (!Args.hasArg(options::OPT_MT) && !Args.hasArg(options::OPT_MQ)) {
+ const char *DepTarget;
+
+ // If user provided -o, that is the dependency target, except
+ // when we are only generating a dependency file.
+ Arg *OutputOpt = Args.getLastArg(options::OPT_o);
+ if (OutputOpt && Output.getType() != types::TY_Dependencies) {
+ DepTarget = OutputOpt->getValue();
+ } else {
+ // Otherwise derive from the base input.
+ //
+ // FIXME: This should use the computed output file location.
+ SmallString<128> P(Inputs[0].getBaseInput());
+ llvm::sys::path::replace_extension(P, "o");
+ DepTarget = Args.MakeArgString(llvm::sys::path::filename(P));
+ }
+
+ CmdArgs.push_back("-MT");
+ SmallString<128> Quoted;
+ QuoteTarget(DepTarget, Quoted);
+ CmdArgs.push_back(Args.MakeArgString(Quoted));
+ }
+
+ if (A->getOption().matches(options::OPT_M) ||
+ A->getOption().matches(options::OPT_MD))
+ CmdArgs.push_back("-sys-header-deps");
+ if ((isa<PrecompileJobAction>(JA) &&
+ !Args.hasArg(options::OPT_fno_module_file_deps)) ||
+ Args.hasArg(options::OPT_fmodule_file_deps))
+ CmdArgs.push_back("-module-file-deps");
+ }
+
+ if (Args.hasArg(options::OPT_MG)) {
+ if (!A || A->getOption().matches(options::OPT_MD) ||
+ A->getOption().matches(options::OPT_MMD))
+ D.Diag(diag::err_drv_mg_requires_m_or_mm);
+ CmdArgs.push_back("-MG");
+ }
+
+ Args.AddLastArg(CmdArgs, options::OPT_MP);
+ Args.AddLastArg(CmdArgs, options::OPT_MV);
+
+ // Convert all -MQ <target> args to -MT <quoted target>
+ for (arg_iterator it = Args.filtered_begin(options::OPT_MT,
+ options::OPT_MQ),
+ ie = Args.filtered_end(); it != ie; ++it) {
+ const Arg *A = *it;
+ A->claim();
+
+ if (A->getOption().matches(options::OPT_MQ)) {
+ CmdArgs.push_back("-MT");
+ SmallString<128> Quoted;
+ QuoteTarget(A->getValue(), Quoted);
+ CmdArgs.push_back(Args.MakeArgString(Quoted));
+
+ // -MT flag - no change
+ } else {
+ A->render(Args, CmdArgs);
+ }
+ }
+
+ // Add -i* options, and automatically translate to
+ // -include-pch/-include-pth for transparent PCH support. It's
+ // wonky, but we include looking for .gch so we can support seamless
+ // replacement into a build system already set up to be generating
+ // .gch files.
+ bool RenderedImplicitInclude = false;
+ for (arg_iterator it = Args.filtered_begin(options::OPT_clang_i_Group),
+ ie = Args.filtered_end(); it != ie; ++it) {
+ const Arg *A = it;
+
+ if (A->getOption().matches(options::OPT_include)) {
+ bool IsFirstImplicitInclude = !RenderedImplicitInclude;
+ RenderedImplicitInclude = true;
+
+ // Use PCH if the user requested it.
+ bool UsePCH = D.CCCUsePCH;
+
+ bool FoundPTH = false;
+ bool FoundPCH = false;
+ SmallString<128> P(A->getValue());
+ // We want the files to have a name like foo.h.pch. Add a dummy extension
+ // so that replace_extension does the right thing.
+ P += ".dummy";
+ if (UsePCH) {
+ llvm::sys::path::replace_extension(P, "pch");
+ if (llvm::sys::fs::exists(P))
+ FoundPCH = true;
+ }
+
+ if (!FoundPCH) {
+ llvm::sys::path::replace_extension(P, "pth");
+ if (llvm::sys::fs::exists(P))
+ FoundPTH = true;
+ }
+
+ if (!FoundPCH && !FoundPTH) {
+ llvm::sys::path::replace_extension(P, "gch");
+ if (llvm::sys::fs::exists(P)) {
+ FoundPCH = UsePCH;
+ FoundPTH = !UsePCH;
+ }
+ }
+
+ if (FoundPCH || FoundPTH) {
+ if (IsFirstImplicitInclude) {
+ A->claim();
+ if (UsePCH)
+ CmdArgs.push_back("-include-pch");
+ else
+ CmdArgs.push_back("-include-pth");
+ CmdArgs.push_back(Args.MakeArgString(P));
+ continue;
+ } else {
+ // Ignore the PCH if not first on command line and emit warning.
+ D.Diag(diag::warn_drv_pch_not_first_include)
+ << P << A->getAsString(Args);
+ }
+ }
+ }
+
+ // Not translated, render as usual.
+ A->claim();
+ A->render(Args, CmdArgs);
+ }
+
+ Args.AddAllArgs(CmdArgs, options::OPT_D, options::OPT_U);
+ Args.AddAllArgs(CmdArgs, options::OPT_I_Group, options::OPT_F,
+ options::OPT_index_header_map);
+
+ // Add -Wp, and -Xassembler if using the preprocessor.
+
+ // FIXME: There is a very unfortunate problem here, some troubled
+ // souls abuse -Wp, to pass preprocessor options in gcc syntax. To
+ // really support that we would have to parse and then translate
+ // those options. :(
+ Args.AddAllArgValues(CmdArgs, options::OPT_Wp_COMMA,
+ options::OPT_Xpreprocessor);
+
+ // -I- is a deprecated GCC feature, reject it.
+ if (Arg *A = Args.getLastArg(options::OPT_I_))
+ D.Diag(diag::err_drv_I_dash_not_supported) << A->getAsString(Args);
+
+ // If we have a --sysroot, and don't have an explicit -isysroot flag, add an
+ // -isysroot to the CC1 invocation.
+ StringRef sysroot = C.getSysRoot();
+ if (sysroot != "") {
+ if (!Args.hasArg(options::OPT_isysroot)) {
+ CmdArgs.push_back("-isysroot");
+ CmdArgs.push_back(C.getArgs().MakeArgString(sysroot));
+ }
+ }
+
+ // Parse additional include paths from environment variables.
+ // FIXME: We should probably sink the logic for handling these from the
+ // frontend into the driver. It will allow deleting 4 otherwise unused flags.
+ // CPATH - included following the user specified includes (but prior to
+ // builtin and standard includes).
+ addDirectoryList(Args, CmdArgs, "-I", "CPATH");
+ // C_INCLUDE_PATH - system includes enabled when compiling C.
+ addDirectoryList(Args, CmdArgs, "-c-isystem", "C_INCLUDE_PATH");
+ // CPLUS_INCLUDE_PATH - system includes enabled when compiling C++.
+ addDirectoryList(Args, CmdArgs, "-cxx-isystem", "CPLUS_INCLUDE_PATH");
+ // OBJC_INCLUDE_PATH - system includes enabled when compiling ObjC.
+ addDirectoryList(Args, CmdArgs, "-objc-isystem", "OBJC_INCLUDE_PATH");
+ // OBJCPLUS_INCLUDE_PATH - system includes enabled when compiling ObjC++.
+ addDirectoryList(Args, CmdArgs, "-objcxx-isystem", "OBJCPLUS_INCLUDE_PATH");
+
+ // Add C++ include arguments, if needed.
+ if (types::isCXX(Inputs[0].getType()))
+ getToolChain().AddClangCXXStdlibIncludeArgs(Args, CmdArgs);
+
+ // Add system include arguments.
+ getToolChain().AddClangSystemIncludeArgs(Args, CmdArgs);
+}
+
+// FIXME: Move to target hook.
+static bool isSignedCharDefault(const llvm::Triple &Triple) {
+ switch (Triple.getArch()) {
+ default:
+ return true;
+
+ case llvm::Triple::aarch64:
+ case llvm::Triple::aarch64_be:
+ case llvm::Triple::arm:
+ case llvm::Triple::armeb:
+ case llvm::Triple::thumb:
+ case llvm::Triple::thumbeb:
+ if (Triple.isOSDarwin() || Triple.isOSWindows())
+ return true;
+ return false;
+
+ case llvm::Triple::ppc:
+ case llvm::Triple::ppc64:
+ if (Triple.isOSDarwin())
+ return true;
+ return false;
+
+ case llvm::Triple::hexagon:
+ case llvm::Triple::ppc64le:
+ case llvm::Triple::systemz:
+ case llvm::Triple::xcore:
+ return false;
+ }
+}
+
+static bool isNoCommonDefault(const llvm::Triple &Triple) {
+ switch (Triple.getArch()) {
+ default:
+ return false;
+
+ case llvm::Triple::xcore:
+ return true;
+ }
+}
+
+// Handle -mhwdiv=.
+static void getARMHWDivFeatures(const Driver &D, const Arg *A,
+ const ArgList &Args,
+ std::vector<const char *> &Features) {
+ StringRef HWDiv = A->getValue();
+ if (HWDiv == "arm") {
+ Features.push_back("+hwdiv-arm");
+ Features.push_back("-hwdiv");
+ } else if (HWDiv == "thumb") {
+ Features.push_back("-hwdiv-arm");
+ Features.push_back("+hwdiv");
+ } else if (HWDiv == "arm,thumb" || HWDiv == "thumb,arm") {
+ Features.push_back("+hwdiv-arm");
+ Features.push_back("+hwdiv");
+ } else if (HWDiv == "none") {
+ Features.push_back("-hwdiv-arm");
+ Features.push_back("-hwdiv");
+ } else
+ D.Diag(diag::err_drv_clang_unsupported) << A->getAsString(Args);
+}
+
+// Handle -mfpu=.
+//
+// FIXME: Centralize feature selection, defaulting shouldn't be also in the
+// frontend target.
+static void getARMFPUFeatures(const Driver &D, const Arg *A,
+ const ArgList &Args,
+ std::vector<const char *> &Features) {
+ StringRef FPU = A->getValue();
+
+ // FIXME: Why does "none" disable more than "invalid"?
+ if (FPU == "none") {
+ Features.push_back("-vfp2");
+ Features.push_back("-vfp3");
+ Features.push_back("-vfp4");
+ Features.push_back("-fp-armv8");
+ Features.push_back("-crypto");
+ Features.push_back("-neon");
+ return;
+ }
+
+ // FIXME: Make sure we differentiate sp-only.
+ if (FPU.find("-sp-") != StringRef::npos) {
+ Features.push_back("+fp-only-sp");
+ }
+
+ // All other FPU types, valid or invalid.
+ switch(llvm::ARMTargetParser::parseFPU(FPU)) {
+ case llvm::ARM::FK_INVALID:
+ case llvm::ARM::FK_SOFTVFP:
+ Features.push_back("-vfp2");
+ Features.push_back("-vfp3");
+ Features.push_back("-neon");
+ break;
+ case llvm::ARM::FK_VFP:
+ case llvm::ARM::FK_VFPV2:
+ Features.push_back("+vfp2");
+ Features.push_back("-neon");
+ break;
+ case llvm::ARM::FK_VFPV3_D16:
+ Features.push_back("+d16");
+ // fall-through
+ case llvm::ARM::FK_VFPV3:
+ Features.push_back("+vfp3");
+ Features.push_back("-neon");
+ break;
+ case llvm::ARM::FK_VFPV4_D16:
+ Features.push_back("+d16");
+ // fall-through
+ case llvm::ARM::FK_VFPV4:
+ Features.push_back("+vfp4");
+ Features.push_back("-neon");
+ break;
+ case llvm::ARM::FK_FPV5_D16:
+ Features.push_back("+d16");
+ // fall-through
+ case llvm::ARM::FK_FP_ARMV8:
+ Features.push_back("+fp-armv8");
+ Features.push_back("-neon");
+ Features.push_back("-crypto");
+ break;
+ case llvm::ARM::FK_NEON_FP_ARMV8:
+ Features.push_back("+fp-armv8");
+ Features.push_back("+neon");
+ Features.push_back("-crypto");
+ break;
+ case llvm::ARM::FK_CRYPTO_NEON_FP_ARMV8:
+ Features.push_back("+fp-armv8");
+ Features.push_back("+neon");
+ Features.push_back("+crypto");
+ break;
+ case llvm::ARM::FK_NEON:
+ Features.push_back("+neon");
+ break;
+ case llvm::ARM::FK_NEON_VFPV4:
+ Features.push_back("+neon");
+ Features.push_back("+vfp4");
+ break;
+ default:
+ D.Diag(diag::err_drv_clang_unsupported) << A->getAsString(Args);
+ }
+}
+
+static int getARMSubArchVersionNumber(const llvm::Triple &Triple) {
+ llvm::StringRef Arch = Triple.getArchName();
+ return llvm::ARMTargetParser::parseArchVersion(Arch);
+}
+
+static bool isARMMProfile(const llvm::Triple &Triple) {
+ llvm::StringRef Arch = Triple.getArchName();
+ unsigned Profile = llvm::ARMTargetParser::parseArchProfile(Arch);
+ return Profile == llvm::ARM::PK_M;
+}
+
+// Select the float ABI as determined by -msoft-float, -mhard-float, and
+// -mfloat-abi=.
+StringRef tools::arm::getARMFloatABI(const Driver &D, const ArgList &Args,
+ const llvm::Triple &Triple) {
+ StringRef FloatABI;
+ if (Arg *A = Args.getLastArg(options::OPT_msoft_float,
+ options::OPT_mhard_float,
+ options::OPT_mfloat_abi_EQ)) {
+ if (A->getOption().matches(options::OPT_msoft_float))
+ FloatABI = "soft";
+ else if (A->getOption().matches(options::OPT_mhard_float))
+ FloatABI = "hard";
+ else {
+ FloatABI = A->getValue();
+ if (FloatABI != "soft" && FloatABI != "softfp" && FloatABI != "hard") {
+ D.Diag(diag::err_drv_invalid_mfloat_abi)
+ << A->getAsString(Args);
+ FloatABI = "soft";
+ }
+ }
+ }
+
+ // If unspecified, choose the default based on the platform.
+ if (FloatABI.empty()) {
+ switch (Triple.getOS()) {
+ case llvm::Triple::Darwin:
+ case llvm::Triple::MacOSX:
+ case llvm::Triple::IOS: {
+ // Darwin defaults to "softfp" for v6 and v7.
+ //
+ if (getARMSubArchVersionNumber(Triple) == 6 ||
+ getARMSubArchVersionNumber(Triple) == 7)
+ FloatABI = "softfp";
+ else
+ FloatABI = "soft";
+ break;
+ }
+
+ // FIXME: this is invalid for WindowsCE
+ case llvm::Triple::Win32:
+ FloatABI = "hard";
+ break;
+
+ case llvm::Triple::FreeBSD:
+ switch(Triple.getEnvironment()) {
+ case llvm::Triple::GNUEABIHF:
+ FloatABI = "hard";
+ break;
+ default:
+ // FreeBSD defaults to soft float
+ FloatABI = "soft";
+ break;
+ }
+ break;
+
+ default:
+ switch(Triple.getEnvironment()) {
+ case llvm::Triple::GNUEABIHF:
+ FloatABI = "hard";
+ break;
+ case llvm::Triple::GNUEABI:
+ FloatABI = "softfp";
+ break;
+ case llvm::Triple::EABIHF:
+ FloatABI = "hard";
+ break;
+ case llvm::Triple::EABI:
+ // EABI is always AAPCS, and if it was not marked 'hard', it's softfp
+ FloatABI = "softfp";
+ break;
+ case llvm::Triple::Android: {
+ if (getARMSubArchVersionNumber(Triple) == 7)
+ FloatABI = "softfp";
+ else
+ FloatABI = "soft";
+ break;
+ }
+ default:
+ // Assume "soft", but warn the user we are guessing.
+ FloatABI = "soft";
+ if (Triple.getOS() != llvm::Triple::UnknownOS ||
+ !Triple.isOSBinFormatMachO())
+ D.Diag(diag::warn_drv_assuming_mfloat_abi_is) << "soft";
+ break;
+ }
+ }
+ }
+
+ return FloatABI;
+}
+
+static void getARMTargetFeatures(const Driver &D, const llvm::Triple &Triple,
+ const ArgList &Args,
+ std::vector<const char *> &Features,
+ bool ForAS) {
+ StringRef FloatABI = tools::arm::getARMFloatABI(D, Args, Triple);
+ if (!ForAS) {
+ // FIXME: Note, this is a hack, the LLVM backend doesn't actually use these
+ // yet (it uses the -mfloat-abi and -msoft-float options), and it is
+ // stripped out by the ARM target. We should probably pass this a new
+ // -target-option, which is handled by the -cc1/-cc1as invocation.
+ //
+ // FIXME2: For consistency, it would be ideal if we set up the target
+ // machine state the same when using the frontend or the assembler. We don't
+ // currently do that for the assembler, we pass the options directly to the
+ // backend and never even instantiate the frontend TargetInfo. If we did,
+ // and used its handleTargetFeatures hook, then we could ensure the
+ // assembler and the frontend behave the same.
+
+ // Use software floating point operations?
+ if (FloatABI == "soft")
+ Features.push_back("+soft-float");
+
+ // Use software floating point argument passing?
+ if (FloatABI != "hard")
+ Features.push_back("+soft-float-abi");
+ }
+
+ // Honor -mfpu=.
+ if (const Arg *A = Args.getLastArg(options::OPT_mfpu_EQ))
+ getARMFPUFeatures(D, A, Args, Features);
+ if (const Arg *A = Args.getLastArg(options::OPT_mhwdiv_EQ))
+ getARMHWDivFeatures(D, A, Args, Features);
+
+ // Check if -march is valid by checking if it can be canonicalised. getARMArch
+ // is used here instead of just checking the -march value in order to handle
+ // -march=native correctly.
+ if (const Arg *A = Args.getLastArg(options::OPT_march_EQ)) {
+ StringRef Arch = arm::getARMArch(Args, Triple);
+ if (llvm::ARMTargetParser::getCanonicalArchName(Arch).empty())
+ D.Diag(diag::err_drv_clang_unsupported) << A->getAsString(Args);
+ }
+
+ // We do a similar thing with -mcpu, but here things are complicated because
+ // the only function we have to check if a cpu is valid is
+ // getLLVMArchSuffixForARM which also needs an architecture.
+ if (const Arg *A = Args.getLastArg(options::OPT_mcpu_EQ)) {
+ StringRef CPU = arm::getARMTargetCPU(Args, Triple);
+ StringRef Arch = arm::getARMArch(Args, Triple);
+ if (strcmp(arm::getLLVMArchSuffixForARM(CPU, Arch), "") == 0)
+ D.Diag(diag::err_drv_clang_unsupported) << A->getAsString(Args);
+ }
+
+ // Setting -msoft-float effectively disables NEON because of the GCC
+ // implementation, although the same isn't true of VFP or VFP3.
+ if (FloatABI == "soft") {
+ Features.push_back("-neon");
+ // Also need to explicitly disable features which imply NEON.
+ Features.push_back("-crypto");
+ }
+
+ // En/disable crc code generation.
+ if (Arg *A = Args.getLastArg(options::OPT_mcrc, options::OPT_mnocrc)) {
+ if (A->getOption().matches(options::OPT_mcrc))
+ Features.push_back("+crc");
+ else
+ Features.push_back("-crc");
+ }
+
+ if (Triple.getSubArch() == llvm::Triple::SubArchType::ARMSubArch_v8_1a) {
+ Features.insert(Features.begin(), "+v8.1a");
+ }
+}
+
+void Clang::AddARMTargetArgs(const ArgList &Args,
+ ArgStringList &CmdArgs,
+ bool KernelOrKext) const {
+ const Driver &D = getToolChain().getDriver();
+ // Get the effective triple, which takes into account the deployment target.
+ std::string TripleStr = getToolChain().ComputeEffectiveClangTriple(Args);
+ llvm::Triple Triple(TripleStr);
+
+ // Select the ABI to use.
+ //
+ // FIXME: Support -meabi.
+ // FIXME: Parts of this are duplicated in the backend, unify this somehow.
+ const char *ABIName = nullptr;
+ if (Arg *A = Args.getLastArg(options::OPT_mabi_EQ)) {
+ ABIName = A->getValue();
+ } else if (Triple.isOSBinFormatMachO()) {
+ // The backend is hardwired to assume AAPCS for M-class processors, ensure
+ // the frontend matches that.
+ if (Triple.getEnvironment() == llvm::Triple::EABI ||
+ Triple.getOS() == llvm::Triple::UnknownOS ||
+ isARMMProfile(Triple)) {
+ ABIName = "aapcs";
+ } else {
+ ABIName = "apcs-gnu";
+ }
+ } else if (Triple.isOSWindows()) {
+ // FIXME: this is invalid for WindowsCE
+ ABIName = "aapcs";
+ } else {
+ // Select the default based on the platform.
+ switch(Triple.getEnvironment()) {
+ case llvm::Triple::Android:
+ case llvm::Triple::GNUEABI:
+ case llvm::Triple::GNUEABIHF:
+ ABIName = "aapcs-linux";
+ break;
+ case llvm::Triple::EABIHF:
+ case llvm::Triple::EABI:
+ ABIName = "aapcs";
+ break;
+ default:
+ if (Triple.getOS() == llvm::Triple::NetBSD)
+ ABIName = "apcs-gnu";
+ else
+ ABIName = "aapcs";
+ break;
+ }
+ }
+ CmdArgs.push_back("-target-abi");
+ CmdArgs.push_back(ABIName);
+
+ // Determine floating point ABI from the options & target defaults.
+ StringRef FloatABI = tools::arm::getARMFloatABI(D, Args, Triple);
+ if (FloatABI == "soft") {
+ // Floating point operations and argument passing are soft.
+ //
+ // FIXME: This changes CPP defines, we need -target-soft-float.
+ CmdArgs.push_back("-msoft-float");
+ CmdArgs.push_back("-mfloat-abi");
+ CmdArgs.push_back("soft");
+ } else if (FloatABI == "softfp") {
+ // Floating point operations are hard, but argument passing is soft.
+ CmdArgs.push_back("-mfloat-abi");
+ CmdArgs.push_back("soft");
+ } else {
+ // Floating point operations and argument passing are hard.
+ assert(FloatABI == "hard" && "Invalid float abi!");
+ CmdArgs.push_back("-mfloat-abi");
+ CmdArgs.push_back("hard");
+ }
+
+ // Kernel code has more strict alignment requirements.
+ if (KernelOrKext) {
+ if (!Triple.isiOS() || Triple.isOSVersionLT(6)) {
+ CmdArgs.push_back("-backend-option");
+ CmdArgs.push_back("-arm-long-calls");
+ }
+
+ CmdArgs.push_back("-backend-option");
+ CmdArgs.push_back("-arm-strict-align");
+
+ // The kext linker doesn't know how to deal with movw/movt.
+ CmdArgs.push_back("-backend-option");
+ CmdArgs.push_back("-arm-use-movt=0");
+ }
+
+ // -mkernel implies -mstrict-align; don't add the redundant option.
+ if (!KernelOrKext) {
+ if (Arg *A = Args.getLastArg(options::OPT_mno_unaligned_access,
+ options::OPT_munaligned_access)) {
+ CmdArgs.push_back("-backend-option");
+ if (A->getOption().matches(options::OPT_mno_unaligned_access))
+ CmdArgs.push_back("-arm-strict-align");
+ else {
+ if (Triple.getSubArch() == llvm::Triple::SubArchType::ARMSubArch_v6m)
+ D.Diag(diag::err_target_unsupported_unaligned) << "v6m";
+ CmdArgs.push_back("-arm-no-strict-align");
+ }
+ }
+ }
+
+ // Forward the -mglobal-merge option for explicit control over the pass.
+ if (Arg *A = Args.getLastArg(options::OPT_mglobal_merge,
+ options::OPT_mno_global_merge)) {
+ CmdArgs.push_back("-backend-option");
+ if (A->getOption().matches(options::OPT_mno_global_merge))
+ CmdArgs.push_back("-arm-global-merge=false");
+ else
+ CmdArgs.push_back("-arm-global-merge=true");
+ }
+
+ if (!Args.hasFlag(options::OPT_mimplicit_float,
+ options::OPT_mno_implicit_float,
+ true))
+ CmdArgs.push_back("-no-implicit-float");
+
+ // llvm does not support reserving registers in general. There is support
+ // for reserving r9 on ARM though (defined as a platform-specific register
+ // in ARM EABI).
+ if (Args.hasArg(options::OPT_ffixed_r9)) {
+ CmdArgs.push_back("-backend-option");
+ CmdArgs.push_back("-arm-reserve-r9");
+ }
+}
+
+/// getAArch64TargetCPU - Get the (LLVM) name of the AArch64 cpu we are
+/// targeting.
+static std::string getAArch64TargetCPU(const ArgList &Args) {
+ Arg *A;
+ std::string CPU;
+ // If we have -mtune or -mcpu, use that.
+ if ((A = Args.getLastArg(options::OPT_mtune_EQ))) {
+ CPU = A->getValue();
+ } else if ((A = Args.getLastArg(options::OPT_mcpu_EQ))) {
+ StringRef Mcpu = A->getValue();
+ CPU = Mcpu.split("+").first;
+ }
+
+ // Handle CPU name is 'native'.
+ if (CPU == "native")
+ return llvm::sys::getHostCPUName();
+ else if (CPU.size())
+ return CPU;
+
+ // Make sure we pick "cyclone" if -arch is used.
+ // FIXME: Should this be picked by checking the target triple instead?
+ if (Args.getLastArg(options::OPT_arch))
+ return "cyclone";
+
+ return "generic";
+}
+
+void Clang::AddAArch64TargetArgs(const ArgList &Args,
+ ArgStringList &CmdArgs) const {
+ std::string TripleStr = getToolChain().ComputeEffectiveClangTriple(Args);
+ llvm::Triple Triple(TripleStr);
+
+ if (!Args.hasFlag(options::OPT_mred_zone, options::OPT_mno_red_zone, true) ||
+ Args.hasArg(options::OPT_mkernel) ||
+ Args.hasArg(options::OPT_fapple_kext))
+ CmdArgs.push_back("-disable-red-zone");
+
+ if (!Args.hasFlag(options::OPT_mimplicit_float,
+ options::OPT_mno_implicit_float, true))
+ CmdArgs.push_back("-no-implicit-float");
+
+ const char *ABIName = nullptr;
+ if (Arg *A = Args.getLastArg(options::OPT_mabi_EQ))
+ ABIName = A->getValue();
+ else if (Triple.isOSDarwin())
+ ABIName = "darwinpcs";
+ else
+ ABIName = "aapcs";
+
+ CmdArgs.push_back("-target-abi");
+ CmdArgs.push_back(ABIName);
+
+ if (Arg *A = Args.getLastArg(options::OPT_mno_unaligned_access,
+ options::OPT_munaligned_access)) {
+ CmdArgs.push_back("-backend-option");
+ if (A->getOption().matches(options::OPT_mno_unaligned_access))
+ CmdArgs.push_back("-aarch64-strict-align");
+ else
+ CmdArgs.push_back("-aarch64-no-strict-align");
+ }
+
+ if (Arg *A = Args.getLastArg(options::OPT_mfix_cortex_a53_835769,
+ options::OPT_mno_fix_cortex_a53_835769)) {
+ CmdArgs.push_back("-backend-option");
+ if (A->getOption().matches(options::OPT_mfix_cortex_a53_835769))
+ CmdArgs.push_back("-aarch64-fix-cortex-a53-835769=1");
+ else
+ CmdArgs.push_back("-aarch64-fix-cortex-a53-835769=0");
+ } else if (Triple.getEnvironment() == llvm::Triple::Android) {
+ // Enabled A53 errata (835769) workaround by default on android
+ CmdArgs.push_back("-backend-option");
+ CmdArgs.push_back("-aarch64-fix-cortex-a53-835769=1");
+ }
+
+ // Forward the -mglobal-merge option for explicit control over the pass.
+ if (Arg *A = Args.getLastArg(options::OPT_mglobal_merge,
+ options::OPT_mno_global_merge)) {
+ CmdArgs.push_back("-backend-option");
+ if (A->getOption().matches(options::OPT_mno_global_merge))
+ CmdArgs.push_back("-aarch64-global-merge=false");
+ else
+ CmdArgs.push_back("-aarch64-global-merge=true");
+ }
+
+ if (Args.hasArg(options::OPT_ffixed_x18)) {
+ CmdArgs.push_back("-backend-option");
+ CmdArgs.push_back("-aarch64-reserve-x18");
+ }
+}
+
+// Get CPU and ABI names. They are not independent
+// so we have to calculate them together.
+void mips::getMipsCPUAndABI(const ArgList &Args,
+ const llvm::Triple &Triple,
+ StringRef &CPUName,
+ StringRef &ABIName) {
+ const char *DefMips32CPU = "mips32r2";
+ const char *DefMips64CPU = "mips64r2";
+
+ // MIPS32r6 is the default for mips(el)?-img-linux-gnu and MIPS64r6 is the
+ // default for mips64(el)?-img-linux-gnu.
+ if (Triple.getVendor() == llvm::Triple::ImaginationTechnologies &&
+ Triple.getEnvironment() == llvm::Triple::GNU) {
+ DefMips32CPU = "mips32r6";
+ DefMips64CPU = "mips64r6";
+ }
+
+ // MIPS3 is the default for mips64*-unknown-openbsd.
+ if (Triple.getOS() == llvm::Triple::OpenBSD)
+ DefMips64CPU = "mips3";
+
+ if (Arg *A = Args.getLastArg(options::OPT_march_EQ,
+ options::OPT_mcpu_EQ))
+ CPUName = A->getValue();
+
+ if (Arg *A = Args.getLastArg(options::OPT_mabi_EQ)) {
+ ABIName = A->getValue();
+ // Convert a GNU style Mips ABI name to the name
+ // accepted by LLVM Mips backend.
+ ABIName = llvm::StringSwitch<llvm::StringRef>(ABIName)
+ .Case("32", "o32")
+ .Case("64", "n64")
+ .Default(ABIName);
+ }
+
+ // Setup default CPU and ABI names.
+ if (CPUName.empty() && ABIName.empty()) {
+ switch (Triple.getArch()) {
+ default:
+ llvm_unreachable("Unexpected triple arch name");
+ case llvm::Triple::mips:
+ case llvm::Triple::mipsel:
+ CPUName = DefMips32CPU;
+ break;
+ case llvm::Triple::mips64:
+ case llvm::Triple::mips64el:
+ CPUName = DefMips64CPU;
+ break;
+ }
+ }
+
+ if (ABIName.empty()) {
+ // Deduce ABI name from the target triple.
+ if (Triple.getArch() == llvm::Triple::mips ||
+ Triple.getArch() == llvm::Triple::mipsel)
+ ABIName = "o32";
+ else
+ ABIName = "n64";
+ }
+
+ if (CPUName.empty()) {
+ // Deduce CPU name from ABI name.
+ CPUName = llvm::StringSwitch<const char *>(ABIName)
+ .Cases("o32", "eabi", DefMips32CPU)
+ .Cases("n32", "n64", DefMips64CPU)
+ .Default("");
+ }
+
+ // FIXME: Warn on inconsistent use of -march and -mabi.
+}
+
+// Convert ABI name to the GNU tools acceptable variant.
+static StringRef getGnuCompatibleMipsABIName(StringRef ABI) {
+ return llvm::StringSwitch<llvm::StringRef>(ABI)
+ .Case("o32", "32")
+ .Case("n64", "64")
+ .Default(ABI);
+}
+
+// Select the MIPS float ABI as determined by -msoft-float, -mhard-float,
+// and -mfloat-abi=.
+static StringRef getMipsFloatABI(const Driver &D, const ArgList &Args) {
+ StringRef FloatABI;
+ if (Arg *A = Args.getLastArg(options::OPT_msoft_float,
+ options::OPT_mhard_float,
+ options::OPT_mfloat_abi_EQ)) {
+ if (A->getOption().matches(options::OPT_msoft_float))
+ FloatABI = "soft";
+ else if (A->getOption().matches(options::OPT_mhard_float))
+ FloatABI = "hard";
+ else {
+ FloatABI = A->getValue();
+ if (FloatABI != "soft" && FloatABI != "hard") {
+ D.Diag(diag::err_drv_invalid_mfloat_abi) << A->getAsString(Args);
+ FloatABI = "hard";
+ }
+ }
+ }
+
+ // If unspecified, choose the default based on the platform.
+ if (FloatABI.empty()) {
+ // Assume "hard", because it's a default value used by gcc.
+ // When we start to recognize specific target MIPS processors,
+ // we will be able to select the default more correctly.
+ FloatABI = "hard";
+ }
+
+ return FloatABI;
+}
+
+static void AddTargetFeature(const ArgList &Args,
+ std::vector<const char *> &Features,
+ OptSpecifier OnOpt, OptSpecifier OffOpt,
+ StringRef FeatureName) {
+ if (Arg *A = Args.getLastArg(OnOpt, OffOpt)) {
+ if (A->getOption().matches(OnOpt))
+ Features.push_back(Args.MakeArgString("+" + FeatureName));
+ else
+ Features.push_back(Args.MakeArgString("-" + FeatureName));
+ }
+}
+
+static void getMIPSTargetFeatures(const Driver &D, const llvm::Triple &Triple,
+ const ArgList &Args,
+ std::vector<const char *> &Features) {
+ StringRef CPUName;
+ StringRef ABIName;
+ mips::getMipsCPUAndABI(Args, Triple, CPUName, ABIName);
+ ABIName = getGnuCompatibleMipsABIName(ABIName);
+
+ AddTargetFeature(Args, Features, options::OPT_mno_abicalls,
+ options::OPT_mabicalls, "noabicalls");
+
+ StringRef FloatABI = getMipsFloatABI(D, Args);
+ if (FloatABI == "soft") {
+ // FIXME: Note, this is a hack. We need to pass the selected float
+ // mode to the MipsTargetInfoBase to define appropriate macros there.
+ // Now it is the only method.
+ Features.push_back("+soft-float");
+ }
+
+ if (Arg *A = Args.getLastArg(options::OPT_mnan_EQ)) {
+ StringRef Val = StringRef(A->getValue());
+ if (Val == "2008") {
+ if (mips::getSupportedNanEncoding(CPUName) & mips::Nan2008)
+ Features.push_back("+nan2008");
+ else {
+ Features.push_back("-nan2008");
+ D.Diag(diag::warn_target_unsupported_nan2008) << CPUName;
+ }
+ } else if (Val == "legacy") {
+ if (mips::getSupportedNanEncoding(CPUName) & mips::NanLegacy)
+ Features.push_back("-nan2008");
+ else {
+ Features.push_back("+nan2008");
+ D.Diag(diag::warn_target_unsupported_nanlegacy) << CPUName;
+ }
+ } else
+ D.Diag(diag::err_drv_unsupported_option_argument)
+ << A->getOption().getName() << Val;
+ }
+
+ AddTargetFeature(Args, Features, options::OPT_msingle_float,
+ options::OPT_mdouble_float, "single-float");
+ AddTargetFeature(Args, Features, options::OPT_mips16, options::OPT_mno_mips16,
+ "mips16");
+ AddTargetFeature(Args, Features, options::OPT_mmicromips,
+ options::OPT_mno_micromips, "micromips");
+ AddTargetFeature(Args, Features, options::OPT_mdsp, options::OPT_mno_dsp,
+ "dsp");
+ AddTargetFeature(Args, Features, options::OPT_mdspr2, options::OPT_mno_dspr2,
+ "dspr2");
+ AddTargetFeature(Args, Features, options::OPT_mmsa, options::OPT_mno_msa,
+ "msa");
+
+ // Add the last -mfp32/-mfpxx/-mfp64 or if none are given and the ABI is O32
+ // pass -mfpxx
+ if (Arg *A = Args.getLastArg(options::OPT_mfp32, options::OPT_mfpxx,
+ options::OPT_mfp64)) {
+ if (A->getOption().matches(options::OPT_mfp32))
+ Features.push_back(Args.MakeArgString("-fp64"));
+ else if (A->getOption().matches(options::OPT_mfpxx)) {
+ Features.push_back(Args.MakeArgString("+fpxx"));
+ Features.push_back(Args.MakeArgString("+nooddspreg"));
+ } else
+ Features.push_back(Args.MakeArgString("+fp64"));
+ } else if (mips::isFPXXDefault(Triple, CPUName, ABIName)) {
+ Features.push_back(Args.MakeArgString("+fpxx"));
+ Features.push_back(Args.MakeArgString("+nooddspreg"));
+ }
+
+ AddTargetFeature(Args, Features, options::OPT_mno_odd_spreg,
+ options::OPT_modd_spreg, "nooddspreg");
+}
+
+void Clang::AddMIPSTargetArgs(const ArgList &Args,
+ ArgStringList &CmdArgs) const {
+ const Driver &D = getToolChain().getDriver();
+ StringRef CPUName;
+ StringRef ABIName;
+ const llvm::Triple &Triple = getToolChain().getTriple();
+ mips::getMipsCPUAndABI(Args, Triple, CPUName, ABIName);
+
+ CmdArgs.push_back("-target-abi");
+ CmdArgs.push_back(ABIName.data());
+
+ StringRef FloatABI = getMipsFloatABI(D, Args);
+
+ if (FloatABI == "soft") {
+ // Floating point operations and argument passing are soft.
+ CmdArgs.push_back("-msoft-float");
+ CmdArgs.push_back("-mfloat-abi");
+ CmdArgs.push_back("soft");
+ }
+ else {
+ // Floating point operations and argument passing are hard.
+ assert(FloatABI == "hard" && "Invalid float abi!");
+ CmdArgs.push_back("-mfloat-abi");
+ CmdArgs.push_back("hard");
+ }
+
+ if (Arg *A = Args.getLastArg(options::OPT_mxgot, options::OPT_mno_xgot)) {
+ if (A->getOption().matches(options::OPT_mxgot)) {
+ CmdArgs.push_back("-mllvm");
+ CmdArgs.push_back("-mxgot");
+ }
+ }
+
+ if (Arg *A = Args.getLastArg(options::OPT_mldc1_sdc1,
+ options::OPT_mno_ldc1_sdc1)) {
+ if (A->getOption().matches(options::OPT_mno_ldc1_sdc1)) {
+ CmdArgs.push_back("-mllvm");
+ CmdArgs.push_back("-mno-ldc1-sdc1");
+ }
+ }
+
+ if (Arg *A = Args.getLastArg(options::OPT_mcheck_zero_division,
+ options::OPT_mno_check_zero_division)) {
+ if (A->getOption().matches(options::OPT_mno_check_zero_division)) {
+ CmdArgs.push_back("-mllvm");
+ CmdArgs.push_back("-mno-check-zero-division");
+ }
+ }
+
+ if (Arg *A = Args.getLastArg(options::OPT_G)) {
+ StringRef v = A->getValue();
+ CmdArgs.push_back("-mllvm");
+ CmdArgs.push_back(Args.MakeArgString("-mips-ssection-threshold=" + v));
+ A->claim();
+ }
+}
+
+/// getPPCTargetCPU - Get the (LLVM) name of the PowerPC cpu we are targeting.
+static std::string getPPCTargetCPU(const ArgList &Args) {
+ if (Arg *A = Args.getLastArg(options::OPT_mcpu_EQ)) {
+ StringRef CPUName = A->getValue();
+
+ if (CPUName == "native") {
+ std::string CPU = llvm::sys::getHostCPUName();
+ if (!CPU.empty() && CPU != "generic")
+ return CPU;
+ else
+ return "";
+ }
+
+ return llvm::StringSwitch<const char *>(CPUName)
+ .Case("common", "generic")
+ .Case("440", "440")
+ .Case("440fp", "440")
+ .Case("450", "450")
+ .Case("601", "601")
+ .Case("602", "602")
+ .Case("603", "603")
+ .Case("603e", "603e")
+ .Case("603ev", "603ev")
+ .Case("604", "604")
+ .Case("604e", "604e")
+ .Case("620", "620")
+ .Case("630", "pwr3")
+ .Case("G3", "g3")
+ .Case("7400", "7400")
+ .Case("G4", "g4")
+ .Case("7450", "7450")
+ .Case("G4+", "g4+")
+ .Case("750", "750")
+ .Case("970", "970")
+ .Case("G5", "g5")
+ .Case("a2", "a2")
+ .Case("a2q", "a2q")
+ .Case("e500mc", "e500mc")
+ .Case("e5500", "e5500")
+ .Case("power3", "pwr3")
+ .Case("power4", "pwr4")
+ .Case("power5", "pwr5")
+ .Case("power5x", "pwr5x")
+ .Case("power6", "pwr6")
+ .Case("power6x", "pwr6x")
+ .Case("power7", "pwr7")
+ .Case("power8", "pwr8")
+ .Case("pwr3", "pwr3")
+ .Case("pwr4", "pwr4")
+ .Case("pwr5", "pwr5")
+ .Case("pwr5x", "pwr5x")
+ .Case("pwr6", "pwr6")
+ .Case("pwr6x", "pwr6x")
+ .Case("pwr7", "pwr7")
+ .Case("pwr8", "pwr8")
+ .Case("powerpc", "ppc")
+ .Case("powerpc64", "ppc64")
+ .Case("powerpc64le", "ppc64le")
+ .Default("");
+ }
+
+ return "";
+}
+
+static void getPPCTargetFeatures(const ArgList &Args,
+ std::vector<const char *> &Features) {
+ for (arg_iterator it = Args.filtered_begin(options::OPT_m_ppc_Features_Group),
+ ie = Args.filtered_end();
+ it != ie; ++it) {
+ StringRef Name = (*it)->getOption().getName();
+ (*it)->claim();
+
+ // Skip over "-m".
+ assert(Name.startswith("m") && "Invalid feature name.");
+ Name = Name.substr(1);
+
+ bool IsNegative = Name.startswith("no-");
+ if (IsNegative)
+ Name = Name.substr(3);
+
+ // Note that gcc calls this mfcrf and LLVM calls this mfocrf so we
+ // pass the correct option to the backend while calling the frontend
+ // option the same.
+ // TODO: Change the LLVM backend option maybe?
+ if (Name == "mfcrf")
+ Name = "mfocrf";
+
+ Features.push_back(Args.MakeArgString((IsNegative ? "-" : "+") + Name));
+ }
+
+ // Altivec is a bit weird, allow overriding of the Altivec feature here.
+ AddTargetFeature(Args, Features, options::OPT_faltivec,
+ options::OPT_fno_altivec, "altivec");
+}
+
+void Clang::AddPPCTargetArgs(const ArgList &Args,
+ ArgStringList &CmdArgs) const {
+ // Select the ABI to use.
+ const char *ABIName = nullptr;
+ if (Arg *A = Args.getLastArg(options::OPT_mabi_EQ)) {
+ ABIName = A->getValue();
+ } else if (getToolChain().getTriple().isOSLinux())
+ switch(getToolChain().getArch()) {
+ case llvm::Triple::ppc64: {
+ // When targeting a processor that supports QPX, or if QPX is
+ // specifically enabled, default to using the ABI that supports QPX (so
+ // long as it is not specifically disabled).
+ bool HasQPX = false;
+ if (Arg *A = Args.getLastArg(options::OPT_mcpu_EQ))
+ HasQPX = A->getValue() == StringRef("a2q");
+ HasQPX = Args.hasFlag(options::OPT_mqpx, options::OPT_mno_qpx, HasQPX);
+ if (HasQPX) {
+ ABIName = "elfv1-qpx";
+ break;
+ }
+
+ ABIName = "elfv1";
+ break;
+ }
+ case llvm::Triple::ppc64le:
+ ABIName = "elfv2";
+ break;
+ default:
+ break;
+ }
+
+ if (ABIName) {
+ CmdArgs.push_back("-target-abi");
+ CmdArgs.push_back(ABIName);
+ }
+}
+
+bool ppc::hasPPCAbiArg(const ArgList &Args, const char *Value) {
+ Arg *A = Args.getLastArg(options::OPT_mabi_EQ);
+ return A && (A->getValue() == StringRef(Value));
+}
+
+/// Get the (LLVM) name of the R600 gpu we are targeting.
+static std::string getR600TargetGPU(const ArgList &Args) {
+ if (Arg *A = Args.getLastArg(options::OPT_mcpu_EQ)) {
+ const char *GPUName = A->getValue();
+ return llvm::StringSwitch<const char *>(GPUName)
+ .Cases("rv630", "rv635", "r600")
+ .Cases("rv610", "rv620", "rs780", "rs880")
+ .Case("rv740", "rv770")
+ .Case("palm", "cedar")
+ .Cases("sumo", "sumo2", "sumo")
+ .Case("hemlock", "cypress")
+ .Case("aruba", "cayman")
+ .Default(GPUName);
+ }
+ return "";
+}
+
+static void getSparcTargetFeatures(const ArgList &Args,
+ std::vector<const char *> &Features) {
+ bool SoftFloatABI = true;
+ if (Arg *A =
+ Args.getLastArg(options::OPT_msoft_float, options::OPT_mhard_float)) {
+ if (A->getOption().matches(options::OPT_mhard_float))
+ SoftFloatABI = false;
+ }
+ if (SoftFloatABI)
+ Features.push_back("+soft-float");
+}
+
+void Clang::AddSparcTargetArgs(const ArgList &Args,
+ ArgStringList &CmdArgs) const {
+ const Driver &D = getToolChain().getDriver();
+
+ // Select the float ABI as determined by -msoft-float and -mhard-float.
+ StringRef FloatABI;
+ if (Arg *A = Args.getLastArg(options::OPT_msoft_float,
+ options::OPT_mhard_float)) {
+ if (A->getOption().matches(options::OPT_msoft_float))
+ FloatABI = "soft";
+ else if (A->getOption().matches(options::OPT_mhard_float))
+ FloatABI = "hard";
+ }
+
+ // If unspecified, choose the default based on the platform.
+ if (FloatABI.empty()) {
+ // Assume "soft", but warn the user we are guessing.
+ FloatABI = "soft";
+ D.Diag(diag::warn_drv_assuming_mfloat_abi_is) << "soft";
+ }
+
+ if (FloatABI == "soft") {
+ // Floating point operations and argument passing are soft.
+ //
+ // FIXME: This changes CPP defines, we need -target-soft-float.
+ CmdArgs.push_back("-msoft-float");
+ } else {
+ assert(FloatABI == "hard" && "Invalid float abi!");
+ CmdArgs.push_back("-mhard-float");
+ }
+}
+
+static const char *getSystemZTargetCPU(const ArgList &Args) {
+ if (const Arg *A = Args.getLastArg(options::OPT_march_EQ))
+ return A->getValue();
+ return "z10";
+}
+
+static void getSystemZTargetFeatures(const ArgList &Args,
+ std::vector<const char *> &Features) {
+ // -m(no-)htm overrides use of the transactional-execution facility.
+ if (Arg *A = Args.getLastArg(options::OPT_mhtm,
+ options::OPT_mno_htm)) {
+ if (A->getOption().matches(options::OPT_mhtm))
+ Features.push_back("+transactional-execution");
+ else
+ Features.push_back("-transactional-execution");
+ }
+ // -m(no-)vx overrides use of the vector facility.
+ if (Arg *A = Args.getLastArg(options::OPT_mvx,
+ options::OPT_mno_vx)) {
+ if (A->getOption().matches(options::OPT_mvx))
+ Features.push_back("+vector");
+ else
+ Features.push_back("-vector");
+ }
+}
+
+static const char *getX86TargetCPU(const ArgList &Args,
+ const llvm::Triple &Triple) {
+ if (const Arg *A = Args.getLastArg(options::OPT_march_EQ)) {
+ if (StringRef(A->getValue()) != "native") {
+ if (Triple.isOSDarwin() && Triple.getArchName() == "x86_64h")
+ return "core-avx2";
+
+ return A->getValue();
+ }
+
+ // FIXME: Reject attempts to use -march=native unless the target matches
+ // the host.
+ //
+ // FIXME: We should also incorporate the detected target features for use
+ // with -native.
+ std::string CPU = llvm::sys::getHostCPUName();
+ if (!CPU.empty() && CPU != "generic")
+ return Args.MakeArgString(CPU);
+ }
+
+ // Select the default CPU if none was given (or detection failed).
+
+ if (Triple.getArch() != llvm::Triple::x86_64 &&
+ Triple.getArch() != llvm::Triple::x86)
+ return nullptr; // This routine is only handling x86 targets.
+
+ bool Is64Bit = Triple.getArch() == llvm::Triple::x86_64;
+
+ // FIXME: Need target hooks.
+ if (Triple.isOSDarwin()) {
+ if (Triple.getArchName() == "x86_64h")
+ return "core-avx2";
+ return Is64Bit ? "core2" : "yonah";
+ }
+
+ // Set up default CPU name for PS4 compilers.
+ if (Triple.isPS4CPU())
+ return "btver2";
+
+ // On Android use targets compatible with gcc
+ if (Triple.getEnvironment() == llvm::Triple::Android)
+ return Is64Bit ? "x86-64" : "i686";
+
+ // Everything else goes to x86-64 in 64-bit mode.
+ if (Is64Bit)
+ return "x86-64";
+
+ switch (Triple.getOS()) {
+ case llvm::Triple::FreeBSD:
+ case llvm::Triple::NetBSD:
+ case llvm::Triple::OpenBSD:
+ return "i486";
+ case llvm::Triple::Haiku:
+ return "i586";
+ case llvm::Triple::Bitrig:
+ return "i686";
+ default:
+ // Fallback to p4.
+ return "pentium4";
+ }
+}
+
+static std::string getCPUName(const ArgList &Args, const llvm::Triple &T) {
+ switch(T.getArch()) {
+ default:
+ return "";
+
+ case llvm::Triple::aarch64:
+ case llvm::Triple::aarch64_be:
+ return getAArch64TargetCPU(Args);
+
+ case llvm::Triple::arm:
+ case llvm::Triple::armeb:
+ case llvm::Triple::thumb:
+ case llvm::Triple::thumbeb:
+ return arm::getARMTargetCPU(Args, T);
+
+ case llvm::Triple::mips:
+ case llvm::Triple::mipsel:
+ case llvm::Triple::mips64:
+ case llvm::Triple::mips64el: {
+ StringRef CPUName;
+ StringRef ABIName;
+ mips::getMipsCPUAndABI(Args, T, CPUName, ABIName);
+ return CPUName;
+ }
+
+ case llvm::Triple::ppc:
+ case llvm::Triple::ppc64:
+ case llvm::Triple::ppc64le: {
+ std::string TargetCPUName = getPPCTargetCPU(Args);
+ // LLVM may default to generating code for the native CPU,
+ // but, like gcc, we default to a more generic option for
+ // each architecture. (except on Darwin)
+ if (TargetCPUName.empty() && !T.isOSDarwin()) {
+ if (T.getArch() == llvm::Triple::ppc64)
+ TargetCPUName = "ppc64";
+ else if (T.getArch() == llvm::Triple::ppc64le)
+ TargetCPUName = "ppc64le";
+ else
+ TargetCPUName = "ppc";
+ }
+ return TargetCPUName;
+ }
+
+ case llvm::Triple::sparc:
+ case llvm::Triple::sparcel:
+ case llvm::Triple::sparcv9:
+ if (const Arg *A = Args.getLastArg(options::OPT_mcpu_EQ))
+ return A->getValue();
+ return "";
+
+ case llvm::Triple::x86:
+ case llvm::Triple::x86_64:
+ return getX86TargetCPU(Args, T);
+
+ case llvm::Triple::hexagon:
+ return "hexagon" + toolchains::Hexagon_TC::GetTargetCPU(Args).str();
+
+ case llvm::Triple::systemz:
+ return getSystemZTargetCPU(Args);
+
+ case llvm::Triple::r600:
+ case llvm::Triple::amdgcn:
+ return getR600TargetGPU(Args);
+ }
+}
+
+static void AddGoldPlugin(const ToolChain &ToolChain, const ArgList &Args,
+ ArgStringList &CmdArgs) {
+ // Tell the linker to load the plugin. This has to come before AddLinkerInputs
+ // as gold requires -plugin to come before any -plugin-opt that -Wl might
+ // forward.
+ CmdArgs.push_back("-plugin");
+ std::string Plugin = ToolChain.getDriver().Dir + "/../lib" CLANG_LIBDIR_SUFFIX "/LLVMgold.so";
+ CmdArgs.push_back(Args.MakeArgString(Plugin));
+
+ // Try to pass driver level flags relevant to LTO code generation down to
+ // the plugin.
+
+ // Handle flags for selecting CPU variants.
+ std::string CPU = getCPUName(Args, ToolChain.getTriple());
+ if (!CPU.empty())
+ CmdArgs.push_back(Args.MakeArgString(Twine("-plugin-opt=mcpu=") + CPU));
+}
+
+static void getX86TargetFeatures(const Driver &D, const llvm::Triple &Triple,
+ const ArgList &Args,
+ std::vector<const char *> &Features) {
+ // If -march=native, autodetect the feature list.
+ if (const Arg *A = Args.getLastArg(options::OPT_march_EQ)) {
+ if (StringRef(A->getValue()) == "native") {
+ llvm::StringMap<bool> HostFeatures;
+ if (llvm::sys::getHostCPUFeatures(HostFeatures))
+ for (auto &F : HostFeatures)
+ Features.push_back(Args.MakeArgString((F.second ? "+" : "-") +
+ F.first()));
+ }
+ }
+
+ if (Triple.getArchName() == "x86_64h") {
+ // x86_64h implies quite a few of the more modern subtarget features
+ // for Haswell class CPUs, but not all of them. Opt-out of a few.
+ Features.push_back("-rdrnd");
+ Features.push_back("-aes");
+ Features.push_back("-pclmul");
+ Features.push_back("-rtm");
+ Features.push_back("-hle");
+ Features.push_back("-fsgsbase");
+ }
+
+ // Add features to be compatible with gcc for Android.
+ if (Triple.getEnvironment() == llvm::Triple::Android) {
+ if (Triple.getArch() == llvm::Triple::x86_64) {
+ Features.push_back("+sse4.2");
+ Features.push_back("+popcnt");
+ } else
+ Features.push_back("+ssse3");
+ }
+
+ // Set features according to the -arch flag on MSVC.
+ if (Arg *A = Args.getLastArg(options::OPT__SLASH_arch)) {
+ StringRef Arch = A->getValue();
+ bool ArchUsed = false;
+ // First, look for flags that are shared in x86 and x86-64.
+ if (Triple.getArch() == llvm::Triple::x86_64 ||
+ Triple.getArch() == llvm::Triple::x86) {
+ if (Arch == "AVX" || Arch == "AVX2") {
+ ArchUsed = true;
+ Features.push_back(Args.MakeArgString("+" + Arch.lower()));
+ }
+ }
+ // Then, look for x86-specific flags.
+ if (Triple.getArch() == llvm::Triple::x86) {
+ if (Arch == "IA32") {
+ ArchUsed = true;
+ } else if (Arch == "SSE" || Arch == "SSE2") {
+ ArchUsed = true;
+ Features.push_back(Args.MakeArgString("+" + Arch.lower()));
+ }
+ }
+ if (!ArchUsed)
+ D.Diag(clang::diag::warn_drv_unused_argument) << A->getAsString(Args);
+ }
+
+ // Now add any that the user explicitly requested on the command line,
+ // which may override the defaults.
+ for (arg_iterator it = Args.filtered_begin(options::OPT_m_x86_Features_Group),
+ ie = Args.filtered_end();
+ it != ie; ++it) {
+ StringRef Name = (*it)->getOption().getName();
+ (*it)->claim();
+
+ // Skip over "-m".
+ assert(Name.startswith("m") && "Invalid feature name.");
+ Name = Name.substr(1);
+
+ bool IsNegative = Name.startswith("no-");
+ if (IsNegative)
+ Name = Name.substr(3);
+
+ Features.push_back(Args.MakeArgString((IsNegative ? "-" : "+") + Name));
+ }
+}
+
+void Clang::AddX86TargetArgs(const ArgList &Args,
+ ArgStringList &CmdArgs) const {
+ if (!Args.hasFlag(options::OPT_mred_zone,
+ options::OPT_mno_red_zone,
+ true) ||
+ Args.hasArg(options::OPT_mkernel) ||
+ Args.hasArg(options::OPT_fapple_kext))
+ CmdArgs.push_back("-disable-red-zone");
+
+ // Default to avoid implicit floating-point for kernel/kext code, but allow
+ // that to be overridden with -mno-soft-float.
+ bool NoImplicitFloat = (Args.hasArg(options::OPT_mkernel) ||
+ Args.hasArg(options::OPT_fapple_kext));
+ if (Arg *A = Args.getLastArg(options::OPT_msoft_float,
+ options::OPT_mno_soft_float,
+ options::OPT_mimplicit_float,
+ options::OPT_mno_implicit_float)) {
+ const Option &O = A->getOption();
+ NoImplicitFloat = (O.matches(options::OPT_mno_implicit_float) ||
+ O.matches(options::OPT_msoft_float));
+ }
+ if (NoImplicitFloat)
+ CmdArgs.push_back("-no-implicit-float");
+
+ if (Arg *A = Args.getLastArg(options::OPT_masm_EQ)) {
+ StringRef Value = A->getValue();
+ if (Value == "intel" || Value == "att") {
+ CmdArgs.push_back("-mllvm");
+ CmdArgs.push_back(Args.MakeArgString("-x86-asm-syntax=" + Value));
+ } else {
+ getToolChain().getDriver().Diag(diag::err_drv_unsupported_option_argument)
+ << A->getOption().getName() << Value;
+ }
+ }
+}
+
+void Clang::AddHexagonTargetArgs(const ArgList &Args,
+ ArgStringList &CmdArgs) const {
+ CmdArgs.push_back("-mqdsp6-compat");
+ CmdArgs.push_back("-Wreturn-type");
+
+ if (const char* v = toolchains::Hexagon_TC::GetSmallDataThreshold(Args)) {
+ std::string SmallDataThreshold="-hexagon-small-data-threshold=";
+ SmallDataThreshold += v;
+ CmdArgs.push_back ("-mllvm");
+ CmdArgs.push_back(Args.MakeArgString(SmallDataThreshold));
+ }
+
+ if (!Args.hasArg(options::OPT_fno_short_enums))
+ CmdArgs.push_back("-fshort-enums");
+ if (Args.getLastArg(options::OPT_mieee_rnd_near)) {
+ CmdArgs.push_back ("-mllvm");
+ CmdArgs.push_back ("-enable-hexagon-ieee-rnd-near");
+ }
+ CmdArgs.push_back ("-mllvm");
+ CmdArgs.push_back ("-machine-sink-split=0");
+}
+
+// Decode AArch64 features from string like +[no]featureA+[no]featureB+...
+static bool DecodeAArch64Features(const Driver &D, StringRef text,
+ std::vector<const char *> &Features) {
+ SmallVector<StringRef, 8> Split;
+ text.split(Split, StringRef("+"), -1, false);
+
+ for (unsigned I = 0, E = Split.size(); I != E; ++I) {
+ const char *result = llvm::StringSwitch<const char *>(Split[I])
+ .Case("fp", "+fp-armv8")
+ .Case("simd", "+neon")
+ .Case("crc", "+crc")
+ .Case("crypto", "+crypto")
+ .Case("nofp", "-fp-armv8")
+ .Case("nosimd", "-neon")
+ .Case("nocrc", "-crc")
+ .Case("nocrypto", "-crypto")
+ .Default(nullptr);
+ if (result)
+ Features.push_back(result);
+ else if (Split[I] == "neon" || Split[I] == "noneon")
+ D.Diag(diag::err_drv_no_neon_modifier);
+ else
+ return false;
+ }
+ return true;
+}
+
+// Check if the CPU name and feature modifiers in -mcpu are legal. If yes,
+// decode CPU and feature.
+static bool DecodeAArch64Mcpu(const Driver &D, StringRef Mcpu, StringRef &CPU,
+ std::vector<const char *> &Features) {
+ std::pair<StringRef, StringRef> Split = Mcpu.split("+");
+ CPU = Split.first;
+ if (CPU == "cyclone" || CPU == "cortex-a53" || CPU == "cortex-a57" || CPU == "cortex-a72") {
+ Features.push_back("+neon");
+ Features.push_back("+crc");
+ Features.push_back("+crypto");
+ } else if (CPU == "generic") {
+ Features.push_back("+neon");
+ } else {
+ return false;
+ }
+
+ if (Split.second.size() && !DecodeAArch64Features(D, Split.second, Features))
+ return false;
+
+ return true;
+}
+
+static bool
+getAArch64ArchFeaturesFromMarch(const Driver &D, StringRef March,
+ const ArgList &Args,
+ std::vector<const char *> &Features) {
+ std::pair<StringRef, StringRef> Split = March.split("+");
+
+ if (Split.first == "armv8-a" ||
+ Split.first == "armv8a") {
+ // ok, no additional features.
+ } else if (
+ Split.first == "armv8.1-a" ||
+ Split.first == "armv8.1a" ) {
+ Features.push_back("+v8.1a");
+ } else {
+ return false;
+ }
+
+ if (Split.second.size() && !DecodeAArch64Features(D, Split.second, Features))
+ return false;
+
+ return true;
+}
+
+static bool
+getAArch64ArchFeaturesFromMcpu(const Driver &D, StringRef Mcpu,
+ const ArgList &Args,
+ std::vector<const char *> &Features) {
+ StringRef CPU;
+ if (!DecodeAArch64Mcpu(D, Mcpu, CPU, Features))
+ return false;
+
+ return true;
+}
+
+static bool
+getAArch64MicroArchFeaturesFromMtune(const Driver &D, StringRef Mtune,
+ const ArgList &Args,
+ std::vector<const char *> &Features) {
+ // Handle CPU name is 'native'.
+ if (Mtune == "native")
+ Mtune = llvm::sys::getHostCPUName();
+ if (Mtune == "cyclone") {
+ Features.push_back("+zcm");
+ Features.push_back("+zcz");
+ }
+ return true;
+}
+
+static bool
+getAArch64MicroArchFeaturesFromMcpu(const Driver &D, StringRef Mcpu,
+ const ArgList &Args,
+ std::vector<const char *> &Features) {
+ StringRef CPU;
+ std::vector<const char *> DecodedFeature;
+ if (!DecodeAArch64Mcpu(D, Mcpu, CPU, DecodedFeature))
+ return false;
+
+ return getAArch64MicroArchFeaturesFromMtune(D, CPU, Args, Features);
+}
+
+static void getAArch64TargetFeatures(const Driver &D, const ArgList &Args,
+ std::vector<const char *> &Features) {
+ Arg *A;
+ bool success = true;
+ // Enable NEON by default.
+ Features.push_back("+neon");
+ if ((A = Args.getLastArg(options::OPT_march_EQ)))
+ success = getAArch64ArchFeaturesFromMarch(D, A->getValue(), Args, Features);
+ else if ((A = Args.getLastArg(options::OPT_mcpu_EQ)))
+ success = getAArch64ArchFeaturesFromMcpu(D, A->getValue(), Args, Features);
+ else if (Args.hasArg(options::OPT_arch))
+ success = getAArch64ArchFeaturesFromMcpu(D, getAArch64TargetCPU(Args), Args,
+ Features);
+
+ if (success && (A = Args.getLastArg(options::OPT_mtune_EQ)))
+ success =
+ getAArch64MicroArchFeaturesFromMtune(D, A->getValue(), Args, Features);
+ else if (success && (A = Args.getLastArg(options::OPT_mcpu_EQ)))
+ success =
+ getAArch64MicroArchFeaturesFromMcpu(D, A->getValue(), Args, Features);
+ else if (Args.hasArg(options::OPT_arch))
+ success = getAArch64MicroArchFeaturesFromMcpu(D, getAArch64TargetCPU(Args),
+ Args, Features);
+
+ if (!success)
+ D.Diag(diag::err_drv_clang_unsupported) << A->getAsString(Args);
+
+ if (Args.getLastArg(options::OPT_mgeneral_regs_only)) {
+ Features.push_back("-fp-armv8");
+ Features.push_back("-crypto");
+ Features.push_back("-neon");
+ }
+
+ // En/disable crc
+ if (Arg *A = Args.getLastArg(options::OPT_mcrc,
+ options::OPT_mnocrc)) {
+ if (A->getOption().matches(options::OPT_mcrc))
+ Features.push_back("+crc");
+ else
+ Features.push_back("-crc");
+ }
+}
+
+static void getTargetFeatures(const Driver &D, const llvm::Triple &Triple,
+ const ArgList &Args, ArgStringList &CmdArgs,
+ bool ForAS) {
+ std::vector<const char *> Features;
+ switch (Triple.getArch()) {
+ default:
+ break;
+ case llvm::Triple::mips:
+ case llvm::Triple::mipsel:
+ case llvm::Triple::mips64:
+ case llvm::Triple::mips64el:
+ getMIPSTargetFeatures(D, Triple, Args, Features);
+ break;
+
+ case llvm::Triple::arm:
+ case llvm::Triple::armeb:
+ case llvm::Triple::thumb:
+ case llvm::Triple::thumbeb:
+ getARMTargetFeatures(D, Triple, Args, Features, ForAS);
+ break;
+
+ case llvm::Triple::ppc:
+ case llvm::Triple::ppc64:
+ case llvm::Triple::ppc64le:
+ getPPCTargetFeatures(Args, Features);
+ break;
+ case llvm::Triple::sparc:
+ case llvm::Triple::sparcel:
+ case llvm::Triple::sparcv9:
+ getSparcTargetFeatures(Args, Features);
+ break;
+ case llvm::Triple::systemz:
+ getSystemZTargetFeatures(Args, Features);
+ break;
+ case llvm::Triple::aarch64:
+ case llvm::Triple::aarch64_be:
+ getAArch64TargetFeatures(D, Args, Features);
+ break;
+ case llvm::Triple::x86:
+ case llvm::Triple::x86_64:
+ getX86TargetFeatures(D, Triple, Args, Features);
+ break;
+ }
+
+ // Find the last of each feature.
+ llvm::StringMap<unsigned> LastOpt;
+ for (unsigned I = 0, N = Features.size(); I < N; ++I) {
+ const char *Name = Features[I];
+ assert(Name[0] == '-' || Name[0] == '+');
+ LastOpt[Name + 1] = I;
+ }
+
+ for (unsigned I = 0, N = Features.size(); I < N; ++I) {
+ // If this feature was overridden, ignore it.
+ const char *Name = Features[I];
+ llvm::StringMap<unsigned>::iterator LastI = LastOpt.find(Name + 1);
+ assert(LastI != LastOpt.end());
+ unsigned Last = LastI->second;
+ if (Last != I)
+ continue;
+
+ CmdArgs.push_back("-target-feature");
+ CmdArgs.push_back(Name);
+ }
+}
+
+static bool
+shouldUseExceptionTablesForObjCExceptions(const ObjCRuntime &runtime,
+ const llvm::Triple &Triple) {
+ // We use the zero-cost exception tables for Objective-C if the non-fragile
+ // ABI is enabled or when compiling for x86_64 and ARM on Snow Leopard and
+ // later.
+ if (runtime.isNonFragile())
+ return true;
+
+ if (!Triple.isMacOSX())
+ return false;
+
+ return (!Triple.isMacOSXVersionLT(10,5) &&
+ (Triple.getArch() == llvm::Triple::x86_64 ||
+ Triple.getArch() == llvm::Triple::arm));
+}
+
+// exceptionSettings() exists to share the logic between -cc1 and linker
+// invocations.
+static bool exceptionSettings(const ArgList &Args, const llvm::Triple &Triple) {
+ if (Arg *A = Args.getLastArg(options::OPT_fexceptions,
+ options::OPT_fno_exceptions))
+ if (A->getOption().matches(options::OPT_fexceptions))
+ return true;
+
+ return false;
+}
+
+/// Adds exception related arguments to the driver command arguments. There's a
+/// master flag, -fexceptions and also language specific flags to enable/disable
+/// C++ and Objective-C exceptions. This makes it possible to for example
+/// disable C++ exceptions but enable Objective-C exceptions.
+static void addExceptionArgs(const ArgList &Args, types::ID InputType,
+ const ToolChain &TC, bool KernelOrKext,
+ const ObjCRuntime &objcRuntime,
+ ArgStringList &CmdArgs) {
+ const Driver &D = TC.getDriver();
+ const llvm::Triple &Triple = TC.getTriple();
+
+ if (KernelOrKext) {
+ // -mkernel and -fapple-kext imply no exceptions, so claim exception related
+ // arguments now to avoid warnings about unused arguments.
+ Args.ClaimAllArgs(options::OPT_fexceptions);
+ Args.ClaimAllArgs(options::OPT_fno_exceptions);
+ Args.ClaimAllArgs(options::OPT_fobjc_exceptions);
+ Args.ClaimAllArgs(options::OPT_fno_objc_exceptions);
+ Args.ClaimAllArgs(options::OPT_fcxx_exceptions);
+ Args.ClaimAllArgs(options::OPT_fno_cxx_exceptions);
+ return;
+ }
+
+ // Gather the exception settings from the command line arguments.
+ bool EH = exceptionSettings(Args, Triple);
+
+ // Obj-C exceptions are enabled by default, regardless of -fexceptions. This
+ // is not necessarily sensible, but follows GCC.
+ if (types::isObjC(InputType) &&
+ Args.hasFlag(options::OPT_fobjc_exceptions,
+ options::OPT_fno_objc_exceptions,
+ true)) {
+ CmdArgs.push_back("-fobjc-exceptions");
+
+ EH |= shouldUseExceptionTablesForObjCExceptions(objcRuntime, Triple);
+ }
+
+ if (types::isCXX(InputType)) {
+ bool CXXExceptionsEnabled =
+ Triple.getArch() != llvm::Triple::xcore && !Triple.isPS4CPU();
+ Arg *ExceptionArg = Args.getLastArg(
+ options::OPT_fcxx_exceptions, options::OPT_fno_cxx_exceptions,
+ options::OPT_fexceptions, options::OPT_fno_exceptions);
+ if (ExceptionArg)
+ CXXExceptionsEnabled =
+ ExceptionArg->getOption().matches(options::OPT_fcxx_exceptions) ||
+ ExceptionArg->getOption().matches(options::OPT_fexceptions);
+
+ if (CXXExceptionsEnabled) {
+ if (Triple.isPS4CPU()) {
+ ToolChain::RTTIMode RTTIMode = TC.getRTTIMode();
+ assert(ExceptionArg &&
+ "On the PS4 exceptions should only be enabled if passing "
+ "an argument");
+ if (RTTIMode == ToolChain::RM_DisabledExplicitly) {
+ const Arg *RTTIArg = TC.getRTTIArg();
+ assert(RTTIArg && "RTTI disabled explicitly but no RTTIArg!");
+ D.Diag(diag::err_drv_argument_not_allowed_with)
+ << RTTIArg->getAsString(Args) << ExceptionArg->getAsString(Args);
+ } else if (RTTIMode == ToolChain::RM_EnabledImplicitly)
+ D.Diag(diag::warn_drv_enabling_rtti_with_exceptions);
+ } else
+ assert(TC.getRTTIMode() != ToolChain::RM_DisabledImplicitly);
+
+ CmdArgs.push_back("-fcxx-exceptions");
+
+ EH = true;
+ }
+ }
+
+ if (EH)
+ CmdArgs.push_back("-fexceptions");
+}
+
+static bool ShouldDisableAutolink(const ArgList &Args,
+ const ToolChain &TC) {
+ bool Default = true;
+ if (TC.getTriple().isOSDarwin()) {
+ // The native darwin assembler doesn't support the linker_option directives,
+ // so we disable them if we think the .s file will be passed to it.
+ Default = TC.useIntegratedAs();
+ }
+ return !Args.hasFlag(options::OPT_fautolink, options::OPT_fno_autolink,
+ Default);
+}
+
+static bool ShouldDisableDwarfDirectory(const ArgList &Args,
+ const ToolChain &TC) {
+ bool UseDwarfDirectory = Args.hasFlag(options::OPT_fdwarf_directory_asm,
+ options::OPT_fno_dwarf_directory_asm,
+ TC.useIntegratedAs());
+ return !UseDwarfDirectory;
+}
+
+/// \brief Check whether the given input tree contains any compilation actions.
+static bool ContainsCompileAction(const Action *A) {
+ if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A))
+ return true;
+
+ for (const auto &Act : *A)
+ if (ContainsCompileAction(Act))
+ return true;
+
+ return false;
+}
+
+/// \brief Check if -relax-all should be passed to the internal assembler.
+/// This is done by default when compiling non-assembler source with -O0.
+static bool UseRelaxAll(Compilation &C, const ArgList &Args) {
+ bool RelaxDefault = true;
+
+ if (Arg *A = Args.getLastArg(options::OPT_O_Group))
+ RelaxDefault = A->getOption().matches(options::OPT_O0);
+
+ if (RelaxDefault) {
+ RelaxDefault = false;
+ for (const auto &Act : C.getActions()) {
+ if (ContainsCompileAction(Act)) {
+ RelaxDefault = true;
+ break;
+ }
+ }
+ }
+
+ return Args.hasFlag(options::OPT_mrelax_all, options::OPT_mno_relax_all,
+ RelaxDefault);
+}
+
+static void CollectArgsForIntegratedAssembler(Compilation &C,
+ const ArgList &Args,
+ ArgStringList &CmdArgs,
+ const Driver &D) {
+ if (UseRelaxAll(C, Args))
+ CmdArgs.push_back("-mrelax-all");
+
+ // When passing -I arguments to the assembler we sometimes need to
+ // unconditionally take the next argument. For example, when parsing
+ // '-Wa,-I -Wa,foo' we need to accept the -Wa,foo arg after seeing the
+ // -Wa,-I arg and when parsing '-Wa,-I,foo' we need to accept the 'foo'
+ // arg after parsing the '-I' arg.
+ bool TakeNextArg = false;
+
+ // When using an integrated assembler, translate -Wa, and -Xassembler
+ // options.
+ bool CompressDebugSections = false;
+ for (arg_iterator it = Args.filtered_begin(options::OPT_Wa_COMMA,
+ options::OPT_Xassembler),
+ ie = Args.filtered_end(); it != ie; ++it) {
+ const Arg *A = *it;
+ A->claim();
+
+ for (unsigned i = 0, e = A->getNumValues(); i != e; ++i) {
+ StringRef Value = A->getValue(i);
+ if (TakeNextArg) {
+ CmdArgs.push_back(Value.data());
+ TakeNextArg = false;
+ continue;
+ }
+
+ if (Value == "-force_cpusubtype_ALL") {
+ // Do nothing, this is the default and we don't support anything else.
+ } else if (Value == "-L") {
+ CmdArgs.push_back("-msave-temp-labels");
+ } else if (Value == "--fatal-warnings") {
+ CmdArgs.push_back("-massembler-fatal-warnings");
+ } else if (Value == "--noexecstack") {
+ CmdArgs.push_back("-mnoexecstack");
+ } else if (Value == "-compress-debug-sections" ||
+ Value == "--compress-debug-sections") {
+ CompressDebugSections = true;
+ } else if (Value == "-nocompress-debug-sections" ||
+ Value == "--nocompress-debug-sections") {
+ CompressDebugSections = false;
+ } else if (Value.startswith("-I")) {
+ CmdArgs.push_back(Value.data());
+ // We need to consume the next argument if the current arg is a plain
+ // -I. The next arg will be the include directory.
+ if (Value == "-I")
+ TakeNextArg = true;
+ } else if (Value.startswith("-gdwarf-")) {
+ CmdArgs.push_back(Value.data());
+ } else {
+ D.Diag(diag::err_drv_unsupported_option_argument)
+ << A->getOption().getName() << Value;
+ }
+ }
+ }
+ if (CompressDebugSections) {
+ if (llvm::zlib::isAvailable())
+ CmdArgs.push_back("-compress-debug-sections");
+ else
+ D.Diag(diag::warn_debug_compression_unavailable);
+ }
+}
+
+// Until ARM libraries are build separately, we have them all in one library
+static StringRef getArchNameForCompilerRTLib(const ToolChain &TC) {
+ // FIXME: handle 64-bit
+ if (TC.getTriple().isOSWindows() &&
+ !TC.getTriple().isWindowsItaniumEnvironment())
+ return "i386";
+ if (TC.getArch() == llvm::Triple::arm || TC.getArch() == llvm::Triple::armeb)
+ return "arm";
+ return TC.getArchName();
+}
+
+static SmallString<128> getCompilerRTLibDir(const ToolChain &TC) {
+ // The runtimes are located in the OS-specific resource directory.
+ SmallString<128> Res(TC.getDriver().ResourceDir);
+ const llvm::Triple &Triple = TC.getTriple();
+ // TC.getOS() yield "freebsd10.0" whereas "freebsd" is expected.
+ StringRef OSLibName =
+ (Triple.getOS() == llvm::Triple::FreeBSD) ? "freebsd" : TC.getOS();
+ llvm::sys::path::append(Res, "lib", OSLibName);
+ return Res;
+}
+
+static SmallString<128> getCompilerRT(const ToolChain &TC, StringRef Component,
+ bool Shared = false) {
+ const char *Env = TC.getTriple().getEnvironment() == llvm::Triple::Android
+ ? "-android"
+ : "";
+
+ bool IsOSWindows = TC.getTriple().isOSWindows();
+ StringRef Arch = getArchNameForCompilerRTLib(TC);
+ const char *Prefix = IsOSWindows ? "" : "lib";
+ const char *Suffix =
+ Shared ? (IsOSWindows ? ".dll" : ".so") : (IsOSWindows ? ".lib" : ".a");
+
+ SmallString<128> Path = getCompilerRTLibDir(TC);
+ llvm::sys::path::append(Path, Prefix + Twine("clang_rt.") + Component + "-" +
+ Arch + Env + Suffix);
+
+ return Path;
+}
+
+// This adds the static libclang_rt.builtins-arch.a directly to the command line
+// FIXME: Make sure we can also emit shared objects if they're requested
+// and available, check for possible errors, etc.
+static void addClangRT(const ToolChain &TC, const ArgList &Args,
+ ArgStringList &CmdArgs) {
+ CmdArgs.push_back(Args.MakeArgString(getCompilerRT(TC, "builtins")));
+
+ if (!TC.getTriple().isOSWindows()) {
+ // FIXME: why do we link against gcc when we are using compiler-rt?
+ CmdArgs.push_back("-lgcc_s");
+ if (TC.getDriver().CCCIsCXX())
+ CmdArgs.push_back("-lgcc_eh");
+ }
+}
+
+static void addProfileRT(const ToolChain &TC, const ArgList &Args,
+ ArgStringList &CmdArgs) {
+ if (!(Args.hasFlag(options::OPT_fprofile_arcs, options::OPT_fno_profile_arcs,
+ false) ||
+ Args.hasArg(options::OPT_fprofile_generate) ||
+ Args.hasArg(options::OPT_fprofile_instr_generate) ||
+ Args.hasArg(options::OPT_fprofile_instr_generate_EQ) ||
+ Args.hasArg(options::OPT_fcreate_profile) ||
+ Args.hasArg(options::OPT_coverage)))
+ return;
+
+ CmdArgs.push_back(Args.MakeArgString(getCompilerRT(TC, "profile")));
+}
+
+static void addSanitizerRuntime(const ToolChain &TC, const ArgList &Args,
+ ArgStringList &CmdArgs, StringRef Sanitizer,
+ bool IsShared) {
+ // Static runtimes must be forced into executable, so we wrap them in
+ // whole-archive.
+ if (!IsShared)
+ CmdArgs.push_back("-whole-archive");
+ CmdArgs.push_back(Args.MakeArgString(getCompilerRT(TC, Sanitizer, IsShared)));
+ if (!IsShared)
+ CmdArgs.push_back("-no-whole-archive");
+}
+
+// Tries to use a file with the list of dynamic symbols that need to be exported
+// from the runtime library. Returns true if the file was found.
+static bool addSanitizerDynamicList(const ToolChain &TC, const ArgList &Args,
+ ArgStringList &CmdArgs,
+ StringRef Sanitizer) {
+ SmallString<128> SanRT = getCompilerRT(TC, Sanitizer);
+ if (llvm::sys::fs::exists(SanRT + ".syms")) {
+ CmdArgs.push_back(Args.MakeArgString("--dynamic-list=" + SanRT + ".syms"));
+ return true;
+ }
+ return false;
+}
+
+static void linkSanitizerRuntimeDeps(const ToolChain &TC,
+ ArgStringList &CmdArgs) {
+ // Force linking against the system libraries sanitizers depends on
+ // (see PR15823 why this is necessary).
+ CmdArgs.push_back("--no-as-needed");
+ CmdArgs.push_back("-lpthread");
+ CmdArgs.push_back("-lrt");
+ CmdArgs.push_back("-lm");
+ // There's no libdl on FreeBSD.
+ if (TC.getTriple().getOS() != llvm::Triple::FreeBSD)
+ CmdArgs.push_back("-ldl");
+}
+
+static void
+collectSanitizerRuntimes(const ToolChain &TC, const ArgList &Args,
+ SmallVectorImpl<StringRef> &SharedRuntimes,
+ SmallVectorImpl<StringRef> &StaticRuntimes,
+ SmallVectorImpl<StringRef> &HelperStaticRuntimes) {
+ const SanitizerArgs &SanArgs = TC.getSanitizerArgs();
+ // Collect shared runtimes.
+ if (SanArgs.needsAsanRt() && SanArgs.needsSharedAsanRt()) {
+ SharedRuntimes.push_back("asan");
+ }
+
+ // Collect static runtimes.
+ if (Args.hasArg(options::OPT_shared) ||
+ (TC.getTriple().getEnvironment() == llvm::Triple::Android)) {
+ // Don't link static runtimes into DSOs or if compiling for Android.
+ return;
+ }
+ if (SanArgs.needsAsanRt()) {
+ if (SanArgs.needsSharedAsanRt()) {
+ HelperStaticRuntimes.push_back("asan-preinit");
+ } else {
+ StaticRuntimes.push_back("asan");
+ if (SanArgs.linkCXXRuntimes())
+ StaticRuntimes.push_back("asan_cxx");
+ }
+ }
+ if (SanArgs.needsDfsanRt())
+ StaticRuntimes.push_back("dfsan");
+ if (SanArgs.needsLsanRt())
+ StaticRuntimes.push_back("lsan");
+ if (SanArgs.needsMsanRt()) {
+ StaticRuntimes.push_back("msan");
+ if (SanArgs.linkCXXRuntimes())
+ StaticRuntimes.push_back("msan_cxx");
+ }
+ if (SanArgs.needsTsanRt()) {
+ StaticRuntimes.push_back("tsan");
+ if (SanArgs.linkCXXRuntimes())
+ StaticRuntimes.push_back("tsan_cxx");
+ }
+ if (SanArgs.needsUbsanRt()) {
+ StaticRuntimes.push_back("ubsan_standalone");
+ if (SanArgs.linkCXXRuntimes())
+ StaticRuntimes.push_back("ubsan_standalone_cxx");
+ }
+}
+
+// Should be called before we add system libraries (C++ ABI, libstdc++/libc++,
+// C runtime, etc). Returns true if sanitizer system deps need to be linked in.
+static bool addSanitizerRuntimes(const ToolChain &TC, const ArgList &Args,
+ ArgStringList &CmdArgs) {
+ SmallVector<StringRef, 4> SharedRuntimes, StaticRuntimes,
+ HelperStaticRuntimes;
+ collectSanitizerRuntimes(TC, Args, SharedRuntimes, StaticRuntimes,
+ HelperStaticRuntimes);
+ for (auto RT : SharedRuntimes)
+ addSanitizerRuntime(TC, Args, CmdArgs, RT, true);
+ for (auto RT : HelperStaticRuntimes)
+ addSanitizerRuntime(TC, Args, CmdArgs, RT, false);
+ bool AddExportDynamic = false;
+ for (auto RT : StaticRuntimes) {
+ addSanitizerRuntime(TC, Args, CmdArgs, RT, false);
+ AddExportDynamic |= !addSanitizerDynamicList(TC, Args, CmdArgs, RT);
+ }
+ // If there is a static runtime with no dynamic list, force all the symbols
+ // to be dynamic to be sure we export sanitizer interface functions.
+ if (AddExportDynamic)
+ CmdArgs.push_back("-export-dynamic");
+ return !StaticRuntimes.empty();
+}
+
+static bool areOptimizationsEnabled(const ArgList &Args) {
+ // Find the last -O arg and see if it is non-zero.
+ if (Arg *A = Args.getLastArg(options::OPT_O_Group))
+ return !A->getOption().matches(options::OPT_O0);
+ // Defaults to -O0.
+ return false;
+}
+
+static bool shouldUseFramePointerForTarget(const ArgList &Args,
+ const llvm::Triple &Triple) {
+ // XCore never wants frame pointers, regardless of OS.
+ if (Triple.getArch() == llvm::Triple::xcore) {
+ return false;
+ }
+
+ if (Triple.isOSLinux()) {
+ switch (Triple.getArch()) {
+ // Don't use a frame pointer on linux if optimizing for certain targets.
+ case llvm::Triple::mips64:
+ case llvm::Triple::mips64el:
+ case llvm::Triple::mips:
+ case llvm::Triple::mipsel:
+ case llvm::Triple::systemz:
+ case llvm::Triple::x86:
+ case llvm::Triple::x86_64:
+ return !areOptimizationsEnabled(Args);
+ default:
+ return true;
+ }
+ }
+
+ if (Triple.isOSWindows()) {
+ switch (Triple.getArch()) {
+ case llvm::Triple::x86:
+ return !areOptimizationsEnabled(Args);
+ default:
+ // All other supported Windows ISAs use xdata unwind information, so frame
+ // pointers are not generally useful.
+ return false;
+ }
+ }
+
+ return true;
+}
+
+static bool shouldUseFramePointer(const ArgList &Args,
+ const llvm::Triple &Triple) {
+ if (Arg *A = Args.getLastArg(options::OPT_fno_omit_frame_pointer,
+ options::OPT_fomit_frame_pointer))
+ return A->getOption().matches(options::OPT_fno_omit_frame_pointer);
+
+ return shouldUseFramePointerForTarget(Args, Triple);
+}
+
+static bool shouldUseLeafFramePointer(const ArgList &Args,
+ const llvm::Triple &Triple) {
+ if (Arg *A = Args.getLastArg(options::OPT_mno_omit_leaf_frame_pointer,
+ options::OPT_momit_leaf_frame_pointer))
+ return A->getOption().matches(options::OPT_mno_omit_leaf_frame_pointer);
+
+ if (Triple.isPS4CPU())
+ return false;
+
+ return shouldUseFramePointerForTarget(Args, Triple);
+}
+
+/// Add a CC1 option to specify the debug compilation directory.
+static void addDebugCompDirArg(const ArgList &Args, ArgStringList &CmdArgs) {
+ SmallString<128> cwd;
+ if (!llvm::sys::fs::current_path(cwd)) {
+ CmdArgs.push_back("-fdebug-compilation-dir");
+ CmdArgs.push_back(Args.MakeArgString(cwd));
+ }
+}
+
+static const char *SplitDebugName(const ArgList &Args,
+ const InputInfo &Input) {
+ Arg *FinalOutput = Args.getLastArg(options::OPT_o);
+ if (FinalOutput && Args.hasArg(options::OPT_c)) {
+ SmallString<128> T(FinalOutput->getValue());
+ llvm::sys::path::replace_extension(T, "dwo");
+ return Args.MakeArgString(T);
+ } else {
+ // Use the compilation dir.
+ SmallString<128> T(
+ Args.getLastArgValue(options::OPT_fdebug_compilation_dir));
+ SmallString<128> F(llvm::sys::path::stem(Input.getBaseInput()));
+ llvm::sys::path::replace_extension(F, "dwo");
+ T += F;
+ return Args.MakeArgString(F);
+ }
+}
+
+static void SplitDebugInfo(const ToolChain &TC, Compilation &C,
+ const Tool &T, const JobAction &JA,
+ const ArgList &Args, const InputInfo &Output,
+ const char *OutFile) {
+ ArgStringList ExtractArgs;
+ ExtractArgs.push_back("--extract-dwo");
+
+ ArgStringList StripArgs;
+ StripArgs.push_back("--strip-dwo");
+
+ // Grabbing the output of the earlier compile step.
+ StripArgs.push_back(Output.getFilename());
+ ExtractArgs.push_back(Output.getFilename());
+ ExtractArgs.push_back(OutFile);
+
+ const char *Exec =
+ Args.MakeArgString(TC.GetProgramPath("objcopy"));
+
+ // First extract the dwo sections.
+ C.addCommand(llvm::make_unique<Command>(JA, T, Exec, ExtractArgs));
+
+ // Then remove them from the original .o file.
+ C.addCommand(llvm::make_unique<Command>(JA, T, Exec, StripArgs));
+}
+
+/// \brief Vectorize at all optimization levels greater than 1 except for -Oz.
+/// For -Oz the loop vectorizer is disable, while the slp vectorizer is enabled.
+static bool shouldEnableVectorizerAtOLevel(const ArgList &Args, bool isSlpVec) {
+ if (Arg *A = Args.getLastArg(options::OPT_O_Group)) {
+ if (A->getOption().matches(options::OPT_O4) ||
+ A->getOption().matches(options::OPT_Ofast))
+ return true;
+
+ if (A->getOption().matches(options::OPT_O0))
+ return false;
+
+ assert(A->getOption().matches(options::OPT_O) && "Must have a -O flag");
+
+ // Vectorize -Os.
+ StringRef S(A->getValue());
+ if (S == "s")
+ return true;
+
+ // Don't vectorize -Oz, unless it's the slp vectorizer.
+ if (S == "z")
+ return isSlpVec;
+
+ unsigned OptLevel = 0;
+ if (S.getAsInteger(10, OptLevel))
+ return false;
+
+ return OptLevel > 1;
+ }
+
+ return false;
+}
+
+/// Add -x lang to \p CmdArgs for \p Input.
+static void addDashXForInput(const ArgList &Args, const InputInfo &Input,
+ ArgStringList &CmdArgs) {
+ // When using -verify-pch, we don't want to provide the type
+ // 'precompiled-header' if it was inferred from the file extension
+ if (Args.hasArg(options::OPT_verify_pch) && Input.getType() == types::TY_PCH)
+ return;
+
+ CmdArgs.push_back("-x");
+ if (Args.hasArg(options::OPT_rewrite_objc))
+ CmdArgs.push_back(types::getTypeName(types::TY_PP_ObjCXX));
+ else
+ CmdArgs.push_back(types::getTypeName(Input.getType()));
+}
+
+static VersionTuple getMSCompatibilityVersion(unsigned Version) {
+ if (Version < 100)
+ return VersionTuple(Version);
+
+ if (Version < 10000)
+ return VersionTuple(Version / 100, Version % 100);
+
+ unsigned Build = 0, Factor = 1;
+ for ( ; Version > 10000; Version = Version / 10, Factor = Factor * 10)
+ Build = Build + (Version % 10) * Factor;
+ return VersionTuple(Version / 100, Version % 100, Build);
+}
+
+// Claim options we don't want to warn if they are unused. We do this for
+// options that build systems might add but are unused when assembling or only
+// running the preprocessor for example.
+static void claimNoWarnArgs(const ArgList &Args) {
+ // Don't warn about unused -f(no-)?lto. This can happen when we're
+ // preprocessing, precompiling or assembling.
+ Args.ClaimAllArgs(options::OPT_flto);
+ Args.ClaimAllArgs(options::OPT_fno_lto);
+}
+
+static void appendUserToPath(SmallVectorImpl<char> &Result) {
+#ifdef LLVM_ON_UNIX
+ const char *Username = getenv("LOGNAME");
+#else
+ const char *Username = getenv("USERNAME");
+#endif
+ if (Username) {
+ // Validate that LoginName can be used in a path, and get its length.
+ size_t Len = 0;
+ for (const char *P = Username; *P; ++P, ++Len) {
+ if (!isAlphanumeric(*P) && *P != '_') {
+ Username = nullptr;
+ break;
+ }
+ }
+
+ if (Username && Len > 0) {
+ Result.append(Username, Username + Len);
+ return;
+ }
+ }
+
+ // Fallback to user id.
+#ifdef LLVM_ON_UNIX
+ std::string UID = llvm::utostr(getuid());
+#else
+ // FIXME: Windows seems to have an 'SID' that might work.
+ std::string UID = "9999";
+#endif
+ Result.append(UID.begin(), UID.end());
+}
+
+void Clang::ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const ArgList &Args,
+ const char *LinkingOutput) const {
+ bool KernelOrKext = Args.hasArg(options::OPT_mkernel,
+ options::OPT_fapple_kext);
+ const Driver &D = getToolChain().getDriver();
+ ArgStringList CmdArgs;
+
+ bool IsWindowsGNU = getToolChain().getTriple().isWindowsGNUEnvironment();
+ bool IsWindowsCygnus =
+ getToolChain().getTriple().isWindowsCygwinEnvironment();
+ bool IsWindowsMSVC = getToolChain().getTriple().isWindowsMSVCEnvironment();
+
+ assert(Inputs.size() == 1 && "Unable to handle multiple inputs.");
+ const InputInfo &Input = Inputs[0];
+
+ // Invoke ourselves in -cc1 mode.
+ //
+ // FIXME: Implement custom jobs for internal actions.
+ CmdArgs.push_back("-cc1");
+
+ // Add the "effective" target triple.
+ CmdArgs.push_back("-triple");
+ std::string TripleStr = getToolChain().ComputeEffectiveClangTriple(Args);
+ CmdArgs.push_back(Args.MakeArgString(TripleStr));
+
+ const llvm::Triple TT(TripleStr);
+ if (TT.isOSWindows() && (TT.getArch() == llvm::Triple::arm ||
+ TT.getArch() == llvm::Triple::thumb)) {
+ unsigned Offset = TT.getArch() == llvm::Triple::arm ? 4 : 6;
+ unsigned Version;
+ TT.getArchName().substr(Offset).getAsInteger(10, Version);
+ if (Version < 7)
+ D.Diag(diag::err_target_unsupported_arch) << TT.getArchName()
+ << TripleStr;
+ }
+
+ // Push all default warning arguments that are specific to
+ // the given target. These come before user provided warning options
+ // are provided.
+ getToolChain().addClangWarningOptions(CmdArgs);
+
+ // Select the appropriate action.
+ RewriteKind rewriteKind = RK_None;
+
+ if (isa<AnalyzeJobAction>(JA)) {
+ assert(JA.getType() == types::TY_Plist && "Invalid output type.");
+ CmdArgs.push_back("-analyze");
+ } else if (isa<MigrateJobAction>(JA)) {
+ CmdArgs.push_back("-migrate");
+ } else if (isa<PreprocessJobAction>(JA)) {
+ if (Output.getType() == types::TY_Dependencies)
+ CmdArgs.push_back("-Eonly");
+ else {
+ CmdArgs.push_back("-E");
+ if (Args.hasArg(options::OPT_rewrite_objc) &&
+ !Args.hasArg(options::OPT_g_Group))
+ CmdArgs.push_back("-P");
+ }
+ } else if (isa<AssembleJobAction>(JA)) {
+ CmdArgs.push_back("-emit-obj");
+
+ CollectArgsForIntegratedAssembler(C, Args, CmdArgs, D);
+
+ // Also ignore explicit -force_cpusubtype_ALL option.
+ (void) Args.hasArg(options::OPT_force__cpusubtype__ALL);
+ } else if (isa<PrecompileJobAction>(JA)) {
+ // Use PCH if the user requested it.
+ bool UsePCH = D.CCCUsePCH;
+
+ if (JA.getType() == types::TY_Nothing)
+ CmdArgs.push_back("-fsyntax-only");
+ else if (UsePCH)
+ CmdArgs.push_back("-emit-pch");
+ else
+ CmdArgs.push_back("-emit-pth");
+ } else if (isa<VerifyPCHJobAction>(JA)) {
+ CmdArgs.push_back("-verify-pch");
+ } else {
+ assert((isa<CompileJobAction>(JA) || isa<BackendJobAction>(JA)) &&
+ "Invalid action for clang tool.");
+
+ if (JA.getType() == types::TY_Nothing) {
+ CmdArgs.push_back("-fsyntax-only");
+ } else if (JA.getType() == types::TY_LLVM_IR ||
+ JA.getType() == types::TY_LTO_IR) {
+ CmdArgs.push_back("-emit-llvm");
+ } else if (JA.getType() == types::TY_LLVM_BC ||
+ JA.getType() == types::TY_LTO_BC) {
+ CmdArgs.push_back("-emit-llvm-bc");
+ } else if (JA.getType() == types::TY_PP_Asm) {
+ CmdArgs.push_back("-S");
+ } else if (JA.getType() == types::TY_AST) {
+ CmdArgs.push_back("-emit-pch");
+ } else if (JA.getType() == types::TY_ModuleFile) {
+ CmdArgs.push_back("-module-file-info");
+ } else if (JA.getType() == types::TY_RewrittenObjC) {
+ CmdArgs.push_back("-rewrite-objc");
+ rewriteKind = RK_NonFragile;
+ } else if (JA.getType() == types::TY_RewrittenLegacyObjC) {
+ CmdArgs.push_back("-rewrite-objc");
+ rewriteKind = RK_Fragile;
+ } else {
+ assert(JA.getType() == types::TY_PP_Asm &&
+ "Unexpected output type!");
+ }
+
+ // Preserve use-list order by default when emitting bitcode, so that
+ // loading the bitcode up in 'opt' or 'llc' and running passes gives the
+ // same result as running passes here. For LTO, we don't need to preserve
+ // the use-list order, since serialization to bitcode is part of the flow.
+ if (JA.getType() == types::TY_LLVM_BC)
+ CmdArgs.push_back("-emit-llvm-uselists");
+ }
+
+ // We normally speed up the clang process a bit by skipping destructors at
+ // exit, but when we're generating diagnostics we can rely on some of the
+ // cleanup.
+ if (!C.isForDiagnostics())
+ CmdArgs.push_back("-disable-free");
+
+ // Disable the verification pass in -asserts builds.
+#ifdef NDEBUG
+ CmdArgs.push_back("-disable-llvm-verifier");
+#endif
+
+ // Set the main file name, so that debug info works even with
+ // -save-temps.
+ CmdArgs.push_back("-main-file-name");
+ CmdArgs.push_back(getBaseInputName(Args, Input));
+
+ // Some flags which affect the language (via preprocessor
+ // defines).
+ if (Args.hasArg(options::OPT_static))
+ CmdArgs.push_back("-static-define");
+
+ if (isa<AnalyzeJobAction>(JA)) {
+ // Enable region store model by default.
+ CmdArgs.push_back("-analyzer-store=region");
+
+ // Treat blocks as analysis entry points.
+ CmdArgs.push_back("-analyzer-opt-analyze-nested-blocks");
+
+ CmdArgs.push_back("-analyzer-eagerly-assume");
+
+ // Add default argument set.
+ if (!Args.hasArg(options::OPT__analyzer_no_default_checks)) {
+ CmdArgs.push_back("-analyzer-checker=core");
+
+ if (!IsWindowsMSVC)
+ CmdArgs.push_back("-analyzer-checker=unix");
+
+ if (getToolChain().getTriple().getVendor() == llvm::Triple::Apple)
+ CmdArgs.push_back("-analyzer-checker=osx");
+
+ CmdArgs.push_back("-analyzer-checker=deadcode");
+
+ if (types::isCXX(Input.getType()))
+ CmdArgs.push_back("-analyzer-checker=cplusplus");
+
+ // Enable the following experimental checkers for testing.
+ CmdArgs.push_back(
+ "-analyzer-checker=security.insecureAPI.UncheckedReturn");
+ CmdArgs.push_back("-analyzer-checker=security.insecureAPI.getpw");
+ CmdArgs.push_back("-analyzer-checker=security.insecureAPI.gets");
+ CmdArgs.push_back("-analyzer-checker=security.insecureAPI.mktemp");
+ CmdArgs.push_back("-analyzer-checker=security.insecureAPI.mkstemp");
+ CmdArgs.push_back("-analyzer-checker=security.insecureAPI.vfork");
+ }
+
+ // Set the output format. The default is plist, for (lame) historical
+ // reasons.
+ CmdArgs.push_back("-analyzer-output");
+ if (Arg *A = Args.getLastArg(options::OPT__analyzer_output))
+ CmdArgs.push_back(A->getValue());
+ else
+ CmdArgs.push_back("plist");
+
+ // Disable the presentation of standard compiler warnings when
+ // using --analyze. We only want to show static analyzer diagnostics
+ // or frontend errors.
+ CmdArgs.push_back("-w");
+
+ // Add -Xanalyzer arguments when running as analyzer.
+ Args.AddAllArgValues(CmdArgs, options::OPT_Xanalyzer);
+ }
+
+ CheckCodeGenerationOptions(D, Args);
+
+ bool PIE = getToolChain().isPIEDefault();
+ bool PIC = PIE || getToolChain().isPICDefault();
+ bool IsPICLevelTwo = PIC;
+
+ // Android-specific defaults for PIC/PIE
+ if (getToolChain().getTriple().getEnvironment() == llvm::Triple::Android) {
+ switch (getToolChain().getTriple().getArch()) {
+ case llvm::Triple::arm:
+ case llvm::Triple::armeb:
+ case llvm::Triple::thumb:
+ case llvm::Triple::thumbeb:
+ case llvm::Triple::aarch64:
+ case llvm::Triple::mips:
+ case llvm::Triple::mipsel:
+ case llvm::Triple::mips64:
+ case llvm::Triple::mips64el:
+ PIC = true; // "-fpic"
+ break;
+
+ case llvm::Triple::x86:
+ case llvm::Triple::x86_64:
+ PIC = true; // "-fPIC"
+ IsPICLevelTwo = true;
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ // OpenBSD-specific defaults for PIE
+ if (getToolChain().getTriple().getOS() == llvm::Triple::OpenBSD) {
+ switch (getToolChain().getTriple().getArch()) {
+ case llvm::Triple::mips64:
+ case llvm::Triple::mips64el:
+ case llvm::Triple::sparc:
+ case llvm::Triple::sparcel:
+ case llvm::Triple::x86:
+ case llvm::Triple::x86_64:
+ IsPICLevelTwo = false; // "-fpie"
+ break;
+
+ case llvm::Triple::ppc:
+ case llvm::Triple::sparcv9:
+ IsPICLevelTwo = true; // "-fPIE"
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ // For the PIC and PIE flag options, this logic is different from the
+ // legacy logic in very old versions of GCC, as that logic was just
+ // a bug no one had ever fixed. This logic is both more rational and
+ // consistent with GCC's new logic now that the bugs are fixed. The last
+ // argument relating to either PIC or PIE wins, and no other argument is
+ // used. If the last argument is any flavor of the '-fno-...' arguments,
+ // both PIC and PIE are disabled. Any PIE option implicitly enables PIC
+ // at the same level.
+ Arg *LastPICArg =Args.getLastArg(options::OPT_fPIC, options::OPT_fno_PIC,
+ options::OPT_fpic, options::OPT_fno_pic,
+ options::OPT_fPIE, options::OPT_fno_PIE,
+ options::OPT_fpie, options::OPT_fno_pie);
+ // Check whether the tool chain trumps the PIC-ness decision. If the PIC-ness
+ // is forced, then neither PIC nor PIE flags will have no effect.
+ if (!getToolChain().isPICDefaultForced()) {
+ if (LastPICArg) {
+ Option O = LastPICArg->getOption();
+ if (O.matches(options::OPT_fPIC) || O.matches(options::OPT_fpic) ||
+ O.matches(options::OPT_fPIE) || O.matches(options::OPT_fpie)) {
+ PIE = O.matches(options::OPT_fPIE) || O.matches(options::OPT_fpie);
+ PIC = PIE || O.matches(options::OPT_fPIC) ||
+ O.matches(options::OPT_fpic);
+ IsPICLevelTwo = O.matches(options::OPT_fPIE) ||
+ O.matches(options::OPT_fPIC);
+ } else {
+ PIE = PIC = false;
+ }
+ }
+ }
+
+ // Introduce a Darwin-specific hack. If the default is PIC but the flags
+ // specified while enabling PIC enabled level 1 PIC, just force it back to
+ // level 2 PIC instead. This matches the behavior of Darwin GCC (based on my
+ // informal testing).
+ if (PIC && getToolChain().getTriple().isOSDarwin())
+ IsPICLevelTwo |= getToolChain().isPICDefault();
+
+ // Note that these flags are trump-cards. Regardless of the order w.r.t. the
+ // PIC or PIE options above, if these show up, PIC is disabled.
+ llvm::Triple Triple(TripleStr);
+ if (KernelOrKext && (!Triple.isiOS() || Triple.isOSVersionLT(6)))
+ PIC = PIE = false;
+ if (Args.hasArg(options::OPT_static))
+ PIC = PIE = false;
+
+ if (Arg *A = Args.getLastArg(options::OPT_mdynamic_no_pic)) {
+ // This is a very special mode. It trumps the other modes, almost no one
+ // uses it, and it isn't even valid on any OS but Darwin.
+ if (!getToolChain().getTriple().isOSDarwin())
+ D.Diag(diag::err_drv_unsupported_opt_for_target)
+ << A->getSpelling() << getToolChain().getTriple().str();
+
+ // FIXME: Warn when this flag trumps some other PIC or PIE flag.
+
+ CmdArgs.push_back("-mrelocation-model");
+ CmdArgs.push_back("dynamic-no-pic");
+
+ // Only a forced PIC mode can cause the actual compile to have PIC defines
+ // etc., no flags are sufficient. This behavior was selected to closely
+ // match that of llvm-gcc and Apple GCC before that.
+ if (getToolChain().isPICDefault() && getToolChain().isPICDefaultForced()) {
+ CmdArgs.push_back("-pic-level");
+ CmdArgs.push_back("2");
+ }
+ } else {
+ // Currently, LLVM only knows about PIC vs. static; the PIE differences are
+ // handled in Clang's IRGen by the -pie-level flag.
+ CmdArgs.push_back("-mrelocation-model");
+ CmdArgs.push_back(PIC ? "pic" : "static");
+
+ if (PIC) {
+ CmdArgs.push_back("-pic-level");
+ CmdArgs.push_back(IsPICLevelTwo ? "2" : "1");
+ if (PIE) {
+ CmdArgs.push_back("-pie-level");
+ CmdArgs.push_back(IsPICLevelTwo ? "2" : "1");
+ }
+ }
+ }
+
+ CmdArgs.push_back("-mthread-model");
+ if (Arg *A = Args.getLastArg(options::OPT_mthread_model))
+ CmdArgs.push_back(A->getValue());
+ else
+ CmdArgs.push_back(Args.MakeArgString(getToolChain().getThreadModel()));
+
+ Args.AddLastArg(CmdArgs, options::OPT_fveclib);
+
+ if (!Args.hasFlag(options::OPT_fmerge_all_constants,
+ options::OPT_fno_merge_all_constants))
+ CmdArgs.push_back("-fno-merge-all-constants");
+
+ // LLVM Code Generator Options.
+
+ if (Args.hasArg(options::OPT_frewrite_map_file) ||
+ Args.hasArg(options::OPT_frewrite_map_file_EQ)) {
+ for (arg_iterator
+ MFI = Args.filtered_begin(options::OPT_frewrite_map_file,
+ options::OPT_frewrite_map_file_EQ),
+ MFE = Args.filtered_end();
+ MFI != MFE; ++MFI) {
+ CmdArgs.push_back("-frewrite-map-file");
+ CmdArgs.push_back((*MFI)->getValue());
+ (*MFI)->claim();
+ }
+ }
+
+ if (Arg *A = Args.getLastArg(options::OPT_Wframe_larger_than_EQ)) {
+ StringRef v = A->getValue();
+ CmdArgs.push_back("-mllvm");
+ CmdArgs.push_back(Args.MakeArgString("-warn-stack-size=" + v));
+ A->claim();
+ }
+
+ if (Arg *A = Args.getLastArg(options::OPT_mregparm_EQ)) {
+ CmdArgs.push_back("-mregparm");
+ CmdArgs.push_back(A->getValue());
+ }
+
+ if (Arg *A = Args.getLastArg(options::OPT_fpcc_struct_return,
+ options::OPT_freg_struct_return)) {
+ if (getToolChain().getArch() != llvm::Triple::x86) {
+ D.Diag(diag::err_drv_unsupported_opt_for_target)
+ << A->getSpelling() << getToolChain().getTriple().str();
+ } else if (A->getOption().matches(options::OPT_fpcc_struct_return)) {
+ CmdArgs.push_back("-fpcc-struct-return");
+ } else {
+ assert(A->getOption().matches(options::OPT_freg_struct_return));
+ CmdArgs.push_back("-freg-struct-return");
+ }
+ }
+
+ if (Args.hasFlag(options::OPT_mrtd, options::OPT_mno_rtd, false))
+ CmdArgs.push_back("-mrtd");
+
+ if (shouldUseFramePointer(Args, getToolChain().getTriple()))
+ CmdArgs.push_back("-mdisable-fp-elim");
+ if (!Args.hasFlag(options::OPT_fzero_initialized_in_bss,
+ options::OPT_fno_zero_initialized_in_bss))
+ CmdArgs.push_back("-mno-zero-initialized-in-bss");
+
+ bool OFastEnabled = isOptimizationLevelFast(Args);
+ // If -Ofast is the optimization level, then -fstrict-aliasing should be
+ // enabled. This alias option is being used to simplify the hasFlag logic.
+ OptSpecifier StrictAliasingAliasOption = OFastEnabled ? options::OPT_Ofast :
+ options::OPT_fstrict_aliasing;
+ // We turn strict aliasing off by default if we're in CL mode, since MSVC
+ // doesn't do any TBAA.
+ bool TBAAOnByDefault = !getToolChain().getDriver().IsCLMode();
+ if (!Args.hasFlag(options::OPT_fstrict_aliasing, StrictAliasingAliasOption,
+ options::OPT_fno_strict_aliasing, TBAAOnByDefault))
+ CmdArgs.push_back("-relaxed-aliasing");
+ if (!Args.hasFlag(options::OPT_fstruct_path_tbaa,
+ options::OPT_fno_struct_path_tbaa))
+ CmdArgs.push_back("-no-struct-path-tbaa");
+ if (Args.hasFlag(options::OPT_fstrict_enums, options::OPT_fno_strict_enums,
+ false))
+ CmdArgs.push_back("-fstrict-enums");
+ if (!Args.hasFlag(options::OPT_foptimize_sibling_calls,
+ options::OPT_fno_optimize_sibling_calls))
+ CmdArgs.push_back("-mdisable-tail-calls");
+
+ // Handle segmented stacks.
+ if (Args.hasArg(options::OPT_fsplit_stack))
+ CmdArgs.push_back("-split-stacks");
+
+ // If -Ofast is the optimization level, then -ffast-math should be enabled.
+ // This alias option is being used to simplify the getLastArg logic.
+ OptSpecifier FastMathAliasOption = OFastEnabled ? options::OPT_Ofast :
+ options::OPT_ffast_math;
+
+ // Handle various floating point optimization flags, mapping them to the
+ // appropriate LLVM code generation flags. The pattern for all of these is to
+ // default off the codegen optimizations, and if any flag enables them and no
+ // flag disables them after the flag enabling them, enable the codegen
+ // optimization. This is complicated by several "umbrella" flags.
+ if (Arg *A = Args.getLastArg(options::OPT_ffast_math, FastMathAliasOption,
+ options::OPT_fno_fast_math,
+ options::OPT_ffinite_math_only,
+ options::OPT_fno_finite_math_only,
+ options::OPT_fhonor_infinities,
+ options::OPT_fno_honor_infinities))
+ if (A->getOption().getID() != options::OPT_fno_fast_math &&
+ A->getOption().getID() != options::OPT_fno_finite_math_only &&
+ A->getOption().getID() != options::OPT_fhonor_infinities)
+ CmdArgs.push_back("-menable-no-infs");
+ if (Arg *A = Args.getLastArg(options::OPT_ffast_math, FastMathAliasOption,
+ options::OPT_fno_fast_math,
+ options::OPT_ffinite_math_only,
+ options::OPT_fno_finite_math_only,
+ options::OPT_fhonor_nans,
+ options::OPT_fno_honor_nans))
+ if (A->getOption().getID() != options::OPT_fno_fast_math &&
+ A->getOption().getID() != options::OPT_fno_finite_math_only &&
+ A->getOption().getID() != options::OPT_fhonor_nans)
+ CmdArgs.push_back("-menable-no-nans");
+
+ // -fmath-errno is the default on some platforms, e.g. BSD-derived OSes.
+ bool MathErrno = getToolChain().IsMathErrnoDefault();
+ if (Arg *A = Args.getLastArg(options::OPT_ffast_math, FastMathAliasOption,
+ options::OPT_fno_fast_math,
+ options::OPT_fmath_errno,
+ options::OPT_fno_math_errno)) {
+ // Turning on -ffast_math (with either flag) removes the need for MathErrno.
+ // However, turning *off* -ffast_math merely restores the toolchain default
+ // (which may be false).
+ if (A->getOption().getID() == options::OPT_fno_math_errno ||
+ A->getOption().getID() == options::OPT_ffast_math ||
+ A->getOption().getID() == options::OPT_Ofast)
+ MathErrno = false;
+ else if (A->getOption().getID() == options::OPT_fmath_errno)
+ MathErrno = true;
+ }
+ if (MathErrno)
+ CmdArgs.push_back("-fmath-errno");
+
+ // There are several flags which require disabling very specific
+ // optimizations. Any of these being disabled forces us to turn off the
+ // entire set of LLVM optimizations, so collect them through all the flag
+ // madness.
+ bool AssociativeMath = false;
+ if (Arg *A = Args.getLastArg(options::OPT_ffast_math, FastMathAliasOption,
+ options::OPT_fno_fast_math,
+ options::OPT_funsafe_math_optimizations,
+ options::OPT_fno_unsafe_math_optimizations,
+ options::OPT_fassociative_math,
+ options::OPT_fno_associative_math))
+ if (A->getOption().getID() != options::OPT_fno_fast_math &&
+ A->getOption().getID() != options::OPT_fno_unsafe_math_optimizations &&
+ A->getOption().getID() != options::OPT_fno_associative_math)
+ AssociativeMath = true;
+ bool ReciprocalMath = false;
+ if (Arg *A = Args.getLastArg(options::OPT_ffast_math, FastMathAliasOption,
+ options::OPT_fno_fast_math,
+ options::OPT_funsafe_math_optimizations,
+ options::OPT_fno_unsafe_math_optimizations,
+ options::OPT_freciprocal_math,
+ options::OPT_fno_reciprocal_math))
+ if (A->getOption().getID() != options::OPT_fno_fast_math &&
+ A->getOption().getID() != options::OPT_fno_unsafe_math_optimizations &&
+ A->getOption().getID() != options::OPT_fno_reciprocal_math)
+ ReciprocalMath = true;
+ bool SignedZeros = true;
+ if (Arg *A = Args.getLastArg(options::OPT_ffast_math, FastMathAliasOption,
+ options::OPT_fno_fast_math,
+ options::OPT_funsafe_math_optimizations,
+ options::OPT_fno_unsafe_math_optimizations,
+ options::OPT_fsigned_zeros,
+ options::OPT_fno_signed_zeros))
+ if (A->getOption().getID() != options::OPT_fno_fast_math &&
+ A->getOption().getID() != options::OPT_fno_unsafe_math_optimizations &&
+ A->getOption().getID() != options::OPT_fsigned_zeros)
+ SignedZeros = false;
+ bool TrappingMath = true;
+ if (Arg *A = Args.getLastArg(options::OPT_ffast_math, FastMathAliasOption,
+ options::OPT_fno_fast_math,
+ options::OPT_funsafe_math_optimizations,
+ options::OPT_fno_unsafe_math_optimizations,
+ options::OPT_ftrapping_math,
+ options::OPT_fno_trapping_math))
+ if (A->getOption().getID() != options::OPT_fno_fast_math &&
+ A->getOption().getID() != options::OPT_fno_unsafe_math_optimizations &&
+ A->getOption().getID() != options::OPT_ftrapping_math)
+ TrappingMath = false;
+ if (!MathErrno && AssociativeMath && ReciprocalMath && !SignedZeros &&
+ !TrappingMath)
+ CmdArgs.push_back("-menable-unsafe-fp-math");
+
+ if (!SignedZeros)
+ CmdArgs.push_back("-fno-signed-zeros");
+
+ if (ReciprocalMath)
+ CmdArgs.push_back("-freciprocal-math");
+
+ // Validate and pass through -fp-contract option.
+ if (Arg *A = Args.getLastArg(options::OPT_ffast_math, FastMathAliasOption,
+ options::OPT_fno_fast_math,
+ options::OPT_ffp_contract)) {
+ if (A->getOption().getID() == options::OPT_ffp_contract) {
+ StringRef Val = A->getValue();
+ if (Val == "fast" || Val == "on" || Val == "off") {
+ CmdArgs.push_back(Args.MakeArgString("-ffp-contract=" + Val));
+ } else {
+ D.Diag(diag::err_drv_unsupported_option_argument)
+ << A->getOption().getName() << Val;
+ }
+ } else if (A->getOption().matches(options::OPT_ffast_math) ||
+ (OFastEnabled && A->getOption().matches(options::OPT_Ofast))) {
+ // If fast-math is set then set the fp-contract mode to fast.
+ CmdArgs.push_back(Args.MakeArgString("-ffp-contract=fast"));
+ }
+ }
+
+ // We separately look for the '-ffast-math' and '-ffinite-math-only' flags,
+ // and if we find them, tell the frontend to provide the appropriate
+ // preprocessor macros. This is distinct from enabling any optimizations as
+ // these options induce language changes which must survive serialization
+ // and deserialization, etc.
+ if (Arg *A = Args.getLastArg(options::OPT_ffast_math, FastMathAliasOption,
+ options::OPT_fno_fast_math))
+ if (!A->getOption().matches(options::OPT_fno_fast_math))
+ CmdArgs.push_back("-ffast-math");
+ if (Arg *A = Args.getLastArg(options::OPT_ffinite_math_only,
+ options::OPT_fno_fast_math))
+ if (A->getOption().matches(options::OPT_ffinite_math_only))
+ CmdArgs.push_back("-ffinite-math-only");
+
+ // Decide whether to use verbose asm. Verbose assembly is the default on
+ // toolchains which have the integrated assembler on by default.
+ bool IsIntegratedAssemblerDefault =
+ getToolChain().IsIntegratedAssemblerDefault();
+ if (Args.hasFlag(options::OPT_fverbose_asm, options::OPT_fno_verbose_asm,
+ IsIntegratedAssemblerDefault) ||
+ Args.hasArg(options::OPT_dA))
+ CmdArgs.push_back("-masm-verbose");
+
+ if (!Args.hasFlag(options::OPT_fintegrated_as, options::OPT_fno_integrated_as,
+ IsIntegratedAssemblerDefault))
+ CmdArgs.push_back("-no-integrated-as");
+
+ if (Args.hasArg(options::OPT_fdebug_pass_structure)) {
+ CmdArgs.push_back("-mdebug-pass");
+ CmdArgs.push_back("Structure");
+ }
+ if (Args.hasArg(options::OPT_fdebug_pass_arguments)) {
+ CmdArgs.push_back("-mdebug-pass");
+ CmdArgs.push_back("Arguments");
+ }
+
+ // Enable -mconstructor-aliases except on darwin, where we have to
+ // work around a linker bug; see <rdar://problem/7651567>.
+ if (!getToolChain().getTriple().isOSDarwin())
+ CmdArgs.push_back("-mconstructor-aliases");
+
+ // Darwin's kernel doesn't support guard variables; just die if we
+ // try to use them.
+ if (KernelOrKext && getToolChain().getTriple().isOSDarwin())
+ CmdArgs.push_back("-fforbid-guard-variables");
+
+ if (Args.hasArg(options::OPT_mms_bitfields)) {
+ CmdArgs.push_back("-mms-bitfields");
+ }
+
+ // This is a coarse approximation of what llvm-gcc actually does, both
+ // -fasynchronous-unwind-tables and -fnon-call-exceptions interact in more
+ // complicated ways.
+ bool AsynchronousUnwindTables =
+ Args.hasFlag(options::OPT_fasynchronous_unwind_tables,
+ options::OPT_fno_asynchronous_unwind_tables,
+ (getToolChain().IsUnwindTablesDefault() ||
+ getToolChain().getSanitizerArgs().needsUnwindTables()) &&
+ !KernelOrKext);
+ if (Args.hasFlag(options::OPT_funwind_tables, options::OPT_fno_unwind_tables,
+ AsynchronousUnwindTables))
+ CmdArgs.push_back("-munwind-tables");
+
+ getToolChain().addClangTargetOptions(Args, CmdArgs);
+
+ if (Arg *A = Args.getLastArg(options::OPT_flimited_precision_EQ)) {
+ CmdArgs.push_back("-mlimit-float-precision");
+ CmdArgs.push_back(A->getValue());
+ }
+
+ // FIXME: Handle -mtune=.
+ (void) Args.hasArg(options::OPT_mtune_EQ);
+
+ if (Arg *A = Args.getLastArg(options::OPT_mcmodel_EQ)) {
+ CmdArgs.push_back("-mcode-model");
+ CmdArgs.push_back(A->getValue());
+ }
+
+ // Add the target cpu
+ std::string CPU = getCPUName(Args, Triple);
+ if (!CPU.empty()) {
+ CmdArgs.push_back("-target-cpu");
+ CmdArgs.push_back(Args.MakeArgString(CPU));
+ }
+
+ if (const Arg *A = Args.getLastArg(options::OPT_mfpmath_EQ)) {
+ CmdArgs.push_back("-mfpmath");
+ CmdArgs.push_back(A->getValue());
+ }
+
+ // Add the target features
+ getTargetFeatures(D, Triple, Args, CmdArgs, false);
+
+ // Add target specific flags.
+ switch(getToolChain().getArch()) {
+ default:
+ break;
+
+ case llvm::Triple::arm:
+ case llvm::Triple::armeb:
+ case llvm::Triple::thumb:
+ case llvm::Triple::thumbeb:
+ AddARMTargetArgs(Args, CmdArgs, KernelOrKext);
+ break;
+
+ case llvm::Triple::aarch64:
+ case llvm::Triple::aarch64_be:
+ AddAArch64TargetArgs(Args, CmdArgs);
+ break;
+
+ case llvm::Triple::mips:
+ case llvm::Triple::mipsel:
+ case llvm::Triple::mips64:
+ case llvm::Triple::mips64el:
+ AddMIPSTargetArgs(Args, CmdArgs);
+ break;
+
+ case llvm::Triple::ppc:
+ case llvm::Triple::ppc64:
+ case llvm::Triple::ppc64le:
+ AddPPCTargetArgs(Args, CmdArgs);
+ break;
+
+ case llvm::Triple::sparc:
+ case llvm::Triple::sparcel:
+ case llvm::Triple::sparcv9:
+ AddSparcTargetArgs(Args, CmdArgs);
+ break;
+
+ case llvm::Triple::x86:
+ case llvm::Triple::x86_64:
+ AddX86TargetArgs(Args, CmdArgs);
+ break;
+
+ case llvm::Triple::hexagon:
+ AddHexagonTargetArgs(Args, CmdArgs);
+ break;
+ }
+
+ // Add clang-cl arguments.
+ if (getToolChain().getDriver().IsCLMode())
+ AddClangCLArgs(Args, CmdArgs);
+
+ // Pass the linker version in use.
+ if (Arg *A = Args.getLastArg(options::OPT_mlinker_version_EQ)) {
+ CmdArgs.push_back("-target-linker-version");
+ CmdArgs.push_back(A->getValue());
+ }
+
+ if (!shouldUseLeafFramePointer(Args, getToolChain().getTriple()))
+ CmdArgs.push_back("-momit-leaf-frame-pointer");
+
+ // Explicitly error on some things we know we don't support and can't just
+ // ignore.
+ types::ID InputType = Input.getType();
+ if (!Args.hasArg(options::OPT_fallow_unsupported)) {
+ Arg *Unsupported;
+ if (types::isCXX(InputType) &&
+ getToolChain().getTriple().isOSDarwin() &&
+ getToolChain().getArch() == llvm::Triple::x86) {
+ if ((Unsupported = Args.getLastArg(options::OPT_fapple_kext)) ||
+ (Unsupported = Args.getLastArg(options::OPT_mkernel)))
+ D.Diag(diag::err_drv_clang_unsupported_opt_cxx_darwin_i386)
+ << Unsupported->getOption().getName();
+ }
+ }
+
+ Args.AddAllArgs(CmdArgs, options::OPT_v);
+ Args.AddLastArg(CmdArgs, options::OPT_H);
+ if (D.CCPrintHeaders && !D.CCGenDiagnostics) {
+ CmdArgs.push_back("-header-include-file");
+ CmdArgs.push_back(D.CCPrintHeadersFilename ?
+ D.CCPrintHeadersFilename : "-");
+ }
+ Args.AddLastArg(CmdArgs, options::OPT_P);
+ Args.AddLastArg(CmdArgs, options::OPT_print_ivar_layout);
+
+ if (D.CCLogDiagnostics && !D.CCGenDiagnostics) {
+ CmdArgs.push_back("-diagnostic-log-file");
+ CmdArgs.push_back(D.CCLogDiagnosticsFilename ?
+ D.CCLogDiagnosticsFilename : "-");
+ }
+
+ // Use the last option from "-g" group. "-gline-tables-only" and "-gdwarf-x"
+ // are preserved, all other debug options are substituted with "-g".
+ Args.ClaimAllArgs(options::OPT_g_Group);
+ if (Arg *A = Args.getLastArg(options::OPT_g_Group)) {
+ if (A->getOption().matches(options::OPT_gline_tables_only) ||
+ A->getOption().matches(options::OPT_g1)) {
+ // FIXME: we should support specifying dwarf version with
+ // -gline-tables-only.
+ CmdArgs.push_back("-gline-tables-only");
+ // Default is dwarf-2 for Darwin, OpenBSD, FreeBSD and Solaris.
+ const llvm::Triple &Triple = getToolChain().getTriple();
+ if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::OpenBSD ||
+ Triple.getOS() == llvm::Triple::FreeBSD ||
+ Triple.getOS() == llvm::Triple::Solaris)
+ CmdArgs.push_back("-gdwarf-2");
+ } else if (A->getOption().matches(options::OPT_gdwarf_2))
+ CmdArgs.push_back("-gdwarf-2");
+ else if (A->getOption().matches(options::OPT_gdwarf_3))
+ CmdArgs.push_back("-gdwarf-3");
+ else if (A->getOption().matches(options::OPT_gdwarf_4))
+ CmdArgs.push_back("-gdwarf-4");
+ else if (!A->getOption().matches(options::OPT_g0) &&
+ !A->getOption().matches(options::OPT_ggdb0)) {
+ // Default is dwarf-2 for Darwin, OpenBSD, FreeBSD and Solaris.
+ const llvm::Triple &Triple = getToolChain().getTriple();
+ if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::OpenBSD ||
+ Triple.getOS() == llvm::Triple::FreeBSD ||
+ Triple.getOS() == llvm::Triple::Solaris)
+ CmdArgs.push_back("-gdwarf-2");
+ else
+ CmdArgs.push_back("-g");
+ }
+ }
+
+ // We ignore flags -gstrict-dwarf and -grecord-gcc-switches for now.
+ Args.ClaimAllArgs(options::OPT_g_flags_Group);
+ if (Args.hasFlag(options::OPT_gcolumn_info, options::OPT_gno_column_info,
+ /*Default*/ true))
+ CmdArgs.push_back("-dwarf-column-info");
+
+ // FIXME: Move backend command line options to the module.
+ // -gsplit-dwarf should turn on -g and enable the backend dwarf
+ // splitting and extraction.
+ // FIXME: Currently only works on Linux.
+ if (getToolChain().getTriple().isOSLinux() &&
+ Args.hasArg(options::OPT_gsplit_dwarf)) {
+ CmdArgs.push_back("-g");
+ CmdArgs.push_back("-backend-option");
+ CmdArgs.push_back("-split-dwarf=Enable");
+ }
+
+ // -ggnu-pubnames turns on gnu style pubnames in the backend.
+ if (Args.hasArg(options::OPT_ggnu_pubnames)) {
+ CmdArgs.push_back("-backend-option");
+ CmdArgs.push_back("-generate-gnu-dwarf-pub-sections");
+ }
+
+ // -gdwarf-aranges turns on the emission of the aranges section in the
+ // backend.
+ if (Args.hasArg(options::OPT_gdwarf_aranges)) {
+ CmdArgs.push_back("-backend-option");
+ CmdArgs.push_back("-generate-arange-section");
+ }
+
+ if (Args.hasFlag(options::OPT_fdebug_types_section,
+ options::OPT_fno_debug_types_section, false)) {
+ CmdArgs.push_back("-backend-option");
+ CmdArgs.push_back("-generate-type-units");
+ }
+
+ // CloudABI uses -ffunction-sections and -fdata-sections by default.
+ bool UseSeparateSections = Triple.getOS() == llvm::Triple::CloudABI;
+
+ if (Args.hasFlag(options::OPT_ffunction_sections,
+ options::OPT_fno_function_sections, UseSeparateSections)) {
+ CmdArgs.push_back("-ffunction-sections");
+ }
+
+ if (Args.hasFlag(options::OPT_fdata_sections,
+ options::OPT_fno_data_sections, UseSeparateSections)) {
+ CmdArgs.push_back("-fdata-sections");
+ }
+
+ if (!Args.hasFlag(options::OPT_funique_section_names,
+ options::OPT_fno_unique_section_names, true))
+ CmdArgs.push_back("-fno-unique-section-names");
+
+ Args.AddAllArgs(CmdArgs, options::OPT_finstrument_functions);
+
+ if ((Args.hasArg(options::OPT_fprofile_instr_generate) ||
+ Args.hasArg(options::OPT_fprofile_instr_generate_EQ)) &&
+ (Args.hasArg(options::OPT_fprofile_instr_use) ||
+ Args.hasArg(options::OPT_fprofile_instr_use_EQ)))
+ D.Diag(diag::err_drv_argument_not_allowed_with)
+ << "-fprofile-instr-generate" << "-fprofile-instr-use";
+
+ if (Arg *A = Args.getLastArg(options::OPT_fprofile_instr_generate_EQ))
+ A->render(Args, CmdArgs);
+ else
+ Args.AddAllArgs(CmdArgs, options::OPT_fprofile_instr_generate);
+
+ if (Arg *A = Args.getLastArg(options::OPT_fprofile_instr_use_EQ))
+ A->render(Args, CmdArgs);
+ else if (Args.hasArg(options::OPT_fprofile_instr_use))
+ CmdArgs.push_back("-fprofile-instr-use=pgo-data");
+
+ if (Args.hasArg(options::OPT_ftest_coverage) ||
+ Args.hasArg(options::OPT_coverage))
+ CmdArgs.push_back("-femit-coverage-notes");
+ if (Args.hasFlag(options::OPT_fprofile_arcs, options::OPT_fno_profile_arcs,
+ false) ||
+ Args.hasArg(options::OPT_coverage))
+ CmdArgs.push_back("-femit-coverage-data");
+
+ if (Args.hasArg(options::OPT_fcoverage_mapping) &&
+ !(Args.hasArg(options::OPT_fprofile_instr_generate) ||
+ Args.hasArg(options::OPT_fprofile_instr_generate_EQ)))
+ D.Diag(diag::err_drv_argument_only_allowed_with)
+ << "-fcoverage-mapping" << "-fprofile-instr-generate";
+
+ if (Args.hasArg(options::OPT_fcoverage_mapping))
+ CmdArgs.push_back("-fcoverage-mapping");
+
+ if (C.getArgs().hasArg(options::OPT_c) ||
+ C.getArgs().hasArg(options::OPT_S)) {
+ if (Output.isFilename()) {
+ CmdArgs.push_back("-coverage-file");
+ SmallString<128> CoverageFilename;
+ if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o)) {
+ CoverageFilename = FinalOutput->getValue();
+ } else {
+ CoverageFilename = llvm::sys::path::filename(Output.getBaseInput());
+ }
+ if (llvm::sys::path::is_relative(CoverageFilename)) {
+ SmallString<128> Pwd;
+ if (!llvm::sys::fs::current_path(Pwd)) {
+ llvm::sys::path::append(Pwd, CoverageFilename);
+ CoverageFilename.swap(Pwd);
+ }
+ }
+ CmdArgs.push_back(Args.MakeArgString(CoverageFilename));
+ }
+ }
+
+ // Pass options for controlling the default header search paths.
+ if (Args.hasArg(options::OPT_nostdinc)) {
+ CmdArgs.push_back("-nostdsysteminc");
+ CmdArgs.push_back("-nobuiltininc");
+ } else {
+ if (Args.hasArg(options::OPT_nostdlibinc))
+ CmdArgs.push_back("-nostdsysteminc");
+ Args.AddLastArg(CmdArgs, options::OPT_nostdincxx);
+ Args.AddLastArg(CmdArgs, options::OPT_nobuiltininc);
+ }
+
+ // Pass the path to compiler resource files.
+ CmdArgs.push_back("-resource-dir");
+ CmdArgs.push_back(D.ResourceDir.c_str());
+
+ Args.AddLastArg(CmdArgs, options::OPT_working_directory);
+
+ bool ARCMTEnabled = false;
+ if (!Args.hasArg(options::OPT_fno_objc_arc, options::OPT_fobjc_arc)) {
+ if (const Arg *A = Args.getLastArg(options::OPT_ccc_arcmt_check,
+ options::OPT_ccc_arcmt_modify,
+ options::OPT_ccc_arcmt_migrate)) {
+ ARCMTEnabled = true;
+ switch (A->getOption().getID()) {
+ default:
+ llvm_unreachable("missed a case");
+ case options::OPT_ccc_arcmt_check:
+ CmdArgs.push_back("-arcmt-check");
+ break;
+ case options::OPT_ccc_arcmt_modify:
+ CmdArgs.push_back("-arcmt-modify");
+ break;
+ case options::OPT_ccc_arcmt_migrate:
+ CmdArgs.push_back("-arcmt-migrate");
+ CmdArgs.push_back("-mt-migrate-directory");
+ CmdArgs.push_back(A->getValue());
+
+ Args.AddLastArg(CmdArgs, options::OPT_arcmt_migrate_report_output);
+ Args.AddLastArg(CmdArgs, options::OPT_arcmt_migrate_emit_arc_errors);
+ break;
+ }
+ }
+ } else {
+ Args.ClaimAllArgs(options::OPT_ccc_arcmt_check);
+ Args.ClaimAllArgs(options::OPT_ccc_arcmt_modify);
+ Args.ClaimAllArgs(options::OPT_ccc_arcmt_migrate);
+ }
+
+ if (const Arg *A = Args.getLastArg(options::OPT_ccc_objcmt_migrate)) {
+ if (ARCMTEnabled) {
+ D.Diag(diag::err_drv_argument_not_allowed_with)
+ << A->getAsString(Args) << "-ccc-arcmt-migrate";
+ }
+ CmdArgs.push_back("-mt-migrate-directory");
+ CmdArgs.push_back(A->getValue());
+
+ if (!Args.hasArg(options::OPT_objcmt_migrate_literals,
+ options::OPT_objcmt_migrate_subscripting,
+ options::OPT_objcmt_migrate_property)) {
+ // None specified, means enable them all.
+ CmdArgs.push_back("-objcmt-migrate-literals");
+ CmdArgs.push_back("-objcmt-migrate-subscripting");
+ CmdArgs.push_back("-objcmt-migrate-property");
+ } else {
+ Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_literals);
+ Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_subscripting);
+ Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_property);
+ }
+ } else {
+ Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_literals);
+ Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_subscripting);
+ Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_property);
+ Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_all);
+ Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_readonly_property);
+ Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_readwrite_property);
+ Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_property_dot_syntax);
+ Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_annotation);
+ Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_instancetype);
+ Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_nsmacros);
+ Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_protocol_conformance);
+ Args.AddLastArg(CmdArgs, options::OPT_objcmt_atomic_property);
+ Args.AddLastArg(CmdArgs, options::OPT_objcmt_returns_innerpointer_property);
+ Args.AddLastArg(CmdArgs, options::OPT_objcmt_ns_nonatomic_iosonly);
+ Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_designated_init);
+ Args.AddLastArg(CmdArgs, options::OPT_objcmt_whitelist_dir_path);
+ }
+
+ // Add preprocessing options like -I, -D, etc. if we are using the
+ // preprocessor.
+ //
+ // FIXME: Support -fpreprocessed
+ if (types::getPreprocessedType(InputType) != types::TY_INVALID)
+ AddPreprocessingOptions(C, JA, D, Args, CmdArgs, Output, Inputs);
+
+ // Don't warn about "clang -c -DPIC -fPIC test.i" because libtool.m4 assumes
+ // that "The compiler can only warn and ignore the option if not recognized".
+ // When building with ccache, it will pass -D options to clang even on
+ // preprocessed inputs and configure concludes that -fPIC is not supported.
+ Args.ClaimAllArgs(options::OPT_D);
+
+ // Manually translate -O4 to -O3; let clang reject others.
+ if (Arg *A = Args.getLastArg(options::OPT_O_Group)) {
+ if (A->getOption().matches(options::OPT_O4)) {
+ CmdArgs.push_back("-O3");
+ D.Diag(diag::warn_O4_is_O3);
+ } else {
+ A->render(Args, CmdArgs);
+ }
+ }
+
+ // Warn about ignored options to clang.
+ for (arg_iterator it = Args.filtered_begin(
+ options::OPT_clang_ignored_gcc_optimization_f_Group),
+ ie = Args.filtered_end(); it != ie; ++it) {
+ D.Diag(diag::warn_ignored_gcc_optimization) << (*it)->getAsString(Args);
+ }
+
+ claimNoWarnArgs(Args);
+
+ Args.AddAllArgs(CmdArgs, options::OPT_R_Group);
+ Args.AddAllArgs(CmdArgs, options::OPT_W_Group);
+ if (Args.hasFlag(options::OPT_pedantic, options::OPT_no_pedantic, false))
+ CmdArgs.push_back("-pedantic");
+ Args.AddLastArg(CmdArgs, options::OPT_pedantic_errors);
+ Args.AddLastArg(CmdArgs, options::OPT_w);
+
+ // Handle -{std, ansi, trigraphs} -- take the last of -{std, ansi}
+ // (-ansi is equivalent to -std=c89 or -std=c++98).
+ //
+ // If a std is supplied, only add -trigraphs if it follows the
+ // option.
+ bool ImplyVCPPCXXVer = false;
+ if (Arg *Std = Args.getLastArg(options::OPT_std_EQ, options::OPT_ansi)) {
+ if (Std->getOption().matches(options::OPT_ansi))
+ if (types::isCXX(InputType))
+ CmdArgs.push_back("-std=c++98");
+ else
+ CmdArgs.push_back("-std=c89");
+ else
+ Std->render(Args, CmdArgs);
+
+ // If -f(no-)trigraphs appears after the language standard flag, honor it.
+ if (Arg *A = Args.getLastArg(options::OPT_std_EQ, options::OPT_ansi,
+ options::OPT_ftrigraphs,
+ options::OPT_fno_trigraphs))
+ if (A != Std)
+ A->render(Args, CmdArgs);
+ } else {
+ // Honor -std-default.
+ //
+ // FIXME: Clang doesn't correctly handle -std= when the input language
+ // doesn't match. For the time being just ignore this for C++ inputs;
+ // eventually we want to do all the standard defaulting here instead of
+ // splitting it between the driver and clang -cc1.
+ if (!types::isCXX(InputType))
+ Args.AddAllArgsTranslated(CmdArgs, options::OPT_std_default_EQ,
+ "-std=", /*Joined=*/true);
+ else if (IsWindowsMSVC)
+ ImplyVCPPCXXVer = true;
+
+ Args.AddLastArg(CmdArgs, options::OPT_ftrigraphs,
+ options::OPT_fno_trigraphs);
+ }
+
+ // GCC's behavior for -Wwrite-strings is a bit strange:
+ // * In C, this "warning flag" changes the types of string literals from
+ // 'char[N]' to 'const char[N]', and thus triggers an unrelated warning
+ // for the discarded qualifier.
+ // * In C++, this is just a normal warning flag.
+ //
+ // Implementing this warning correctly in C is hard, so we follow GCC's
+ // behavior for now. FIXME: Directly diagnose uses of a string literal as
+ // a non-const char* in C, rather than using this crude hack.
+ if (!types::isCXX(InputType)) {
+ // FIXME: This should behave just like a warning flag, and thus should also
+ // respect -Weverything, -Wno-everything, -Werror=write-strings, and so on.
+ Arg *WriteStrings =
+ Args.getLastArg(options::OPT_Wwrite_strings,
+ options::OPT_Wno_write_strings, options::OPT_w);
+ if (WriteStrings &&
+ WriteStrings->getOption().matches(options::OPT_Wwrite_strings))
+ CmdArgs.push_back("-fconst-strings");
+ }
+
+ // GCC provides a macro definition '__DEPRECATED' when -Wdeprecated is active
+ // during C++ compilation, which it is by default. GCC keeps this define even
+ // in the presence of '-w', match this behavior bug-for-bug.
+ if (types::isCXX(InputType) &&
+ Args.hasFlag(options::OPT_Wdeprecated, options::OPT_Wno_deprecated,
+ true)) {
+ CmdArgs.push_back("-fdeprecated-macro");
+ }
+
+ // Translate GCC's misnamer '-fasm' arguments to '-fgnu-keywords'.
+ if (Arg *Asm = Args.getLastArg(options::OPT_fasm, options::OPT_fno_asm)) {
+ if (Asm->getOption().matches(options::OPT_fasm))
+ CmdArgs.push_back("-fgnu-keywords");
+ else
+ CmdArgs.push_back("-fno-gnu-keywords");
+ }
+
+ if (ShouldDisableDwarfDirectory(Args, getToolChain()))
+ CmdArgs.push_back("-fno-dwarf-directory-asm");
+
+ if (ShouldDisableAutolink(Args, getToolChain()))
+ CmdArgs.push_back("-fno-autolink");
+
+ // Add in -fdebug-compilation-dir if necessary.
+ addDebugCompDirArg(Args, CmdArgs);
+
+ if (Arg *A = Args.getLastArg(options::OPT_ftemplate_depth_,
+ options::OPT_ftemplate_depth_EQ)) {
+ CmdArgs.push_back("-ftemplate-depth");
+ CmdArgs.push_back(A->getValue());
+ }
+
+ if (Arg *A = Args.getLastArg(options::OPT_foperator_arrow_depth_EQ)) {
+ CmdArgs.push_back("-foperator-arrow-depth");
+ CmdArgs.push_back(A->getValue());
+ }
+
+ if (Arg *A = Args.getLastArg(options::OPT_fconstexpr_depth_EQ)) {
+ CmdArgs.push_back("-fconstexpr-depth");
+ CmdArgs.push_back(A->getValue());
+ }
+
+ if (Arg *A = Args.getLastArg(options::OPT_fconstexpr_steps_EQ)) {
+ CmdArgs.push_back("-fconstexpr-steps");
+ CmdArgs.push_back(A->getValue());
+ }
+
+ if (Arg *A = Args.getLastArg(options::OPT_fbracket_depth_EQ)) {
+ CmdArgs.push_back("-fbracket-depth");
+ CmdArgs.push_back(A->getValue());
+ }
+
+ if (Arg *A = Args.getLastArg(options::OPT_Wlarge_by_value_copy_EQ,
+ options::OPT_Wlarge_by_value_copy_def)) {
+ if (A->getNumValues()) {
+ StringRef bytes = A->getValue();
+ CmdArgs.push_back(Args.MakeArgString("-Wlarge-by-value-copy=" + bytes));
+ } else
+ CmdArgs.push_back("-Wlarge-by-value-copy=64"); // default value
+ }
+
+
+ if (Args.hasArg(options::OPT_relocatable_pch))
+ CmdArgs.push_back("-relocatable-pch");
+
+ if (Arg *A = Args.getLastArg(options::OPT_fconstant_string_class_EQ)) {
+ CmdArgs.push_back("-fconstant-string-class");
+ CmdArgs.push_back(A->getValue());
+ }
+
+ if (Arg *A = Args.getLastArg(options::OPT_ftabstop_EQ)) {
+ CmdArgs.push_back("-ftabstop");
+ CmdArgs.push_back(A->getValue());
+ }
+
+ CmdArgs.push_back("-ferror-limit");
+ if (Arg *A = Args.getLastArg(options::OPT_ferror_limit_EQ))
+ CmdArgs.push_back(A->getValue());
+ else
+ CmdArgs.push_back("19");
+
+ if (Arg *A = Args.getLastArg(options::OPT_fmacro_backtrace_limit_EQ)) {
+ CmdArgs.push_back("-fmacro-backtrace-limit");
+ CmdArgs.push_back(A->getValue());
+ }
+
+ if (Arg *A = Args.getLastArg(options::OPT_ftemplate_backtrace_limit_EQ)) {
+ CmdArgs.push_back("-ftemplate-backtrace-limit");
+ CmdArgs.push_back(A->getValue());
+ }
+
+ if (Arg *A = Args.getLastArg(options::OPT_fconstexpr_backtrace_limit_EQ)) {
+ CmdArgs.push_back("-fconstexpr-backtrace-limit");
+ CmdArgs.push_back(A->getValue());
+ }
+
+ if (Arg *A = Args.getLastArg(options::OPT_fspell_checking_limit_EQ)) {
+ CmdArgs.push_back("-fspell-checking-limit");
+ CmdArgs.push_back(A->getValue());
+ }
+
+ // Pass -fmessage-length=.
+ CmdArgs.push_back("-fmessage-length");
+ if (Arg *A = Args.getLastArg(options::OPT_fmessage_length_EQ)) {
+ CmdArgs.push_back(A->getValue());
+ } else {
+ // If -fmessage-length=N was not specified, determine whether this is a
+ // terminal and, if so, implicitly define -fmessage-length appropriately.
+ unsigned N = llvm::sys::Process::StandardErrColumns();
+ CmdArgs.push_back(Args.MakeArgString(Twine(N)));
+ }
+
+ // -fvisibility= and -fvisibility-ms-compat are of a piece.
+ if (const Arg *A = Args.getLastArg(options::OPT_fvisibility_EQ,
+ options::OPT_fvisibility_ms_compat)) {
+ if (A->getOption().matches(options::OPT_fvisibility_EQ)) {
+ CmdArgs.push_back("-fvisibility");
+ CmdArgs.push_back(A->getValue());
+ } else {
+ assert(A->getOption().matches(options::OPT_fvisibility_ms_compat));
+ CmdArgs.push_back("-fvisibility");
+ CmdArgs.push_back("hidden");
+ CmdArgs.push_back("-ftype-visibility");
+ CmdArgs.push_back("default");
+ }
+ }
+
+ Args.AddLastArg(CmdArgs, options::OPT_fvisibility_inlines_hidden);
+
+ Args.AddLastArg(CmdArgs, options::OPT_ftlsmodel_EQ);
+
+ // -fhosted is default.
+ if (Args.hasFlag(options::OPT_ffreestanding, options::OPT_fhosted, false) ||
+ KernelOrKext)
+ CmdArgs.push_back("-ffreestanding");
+
+ // Forward -f (flag) options which we can pass directly.
+ Args.AddLastArg(CmdArgs, options::OPT_femit_all_decls);
+ Args.AddLastArg(CmdArgs, options::OPT_fheinous_gnu_extensions);
+ Args.AddLastArg(CmdArgs, options::OPT_fstandalone_debug);
+ Args.AddLastArg(CmdArgs, options::OPT_fno_standalone_debug);
+ Args.AddLastArg(CmdArgs, options::OPT_fno_operator_names);
+ // AltiVec language extensions aren't relevant for assembling.
+ if (!isa<PreprocessJobAction>(JA) ||
+ Output.getType() != types::TY_PP_Asm)
+ Args.AddLastArg(CmdArgs, options::OPT_faltivec);
+ Args.AddLastArg(CmdArgs, options::OPT_fdiagnostics_show_template_tree);
+ Args.AddLastArg(CmdArgs, options::OPT_fno_elide_type);
+
+ // Forward flags for OpenMP
+ if (Args.hasArg(options::OPT_fopenmp_EQ) ||
+ Args.hasArg(options::OPT_fopenmp)) {
+ CmdArgs.push_back("-fopenmp");
+ }
+
+ const SanitizerArgs &Sanitize = getToolChain().getSanitizerArgs();
+ Sanitize.addArgs(Args, CmdArgs);
+
+ // Report an error for -faltivec on anything other than PowerPC.
+ if (const Arg *A = Args.getLastArg(options::OPT_faltivec))
+ if (!(getToolChain().getArch() == llvm::Triple::ppc ||
+ getToolChain().getArch() == llvm::Triple::ppc64 ||
+ getToolChain().getArch() == llvm::Triple::ppc64le))
+ D.Diag(diag::err_drv_argument_only_allowed_with)
+ << A->getAsString(Args) << "ppc/ppc64/ppc64le";
+
+ if (getToolChain().SupportsProfiling())
+ Args.AddLastArg(CmdArgs, options::OPT_pg);
+
+ // -flax-vector-conversions is default.
+ if (!Args.hasFlag(options::OPT_flax_vector_conversions,
+ options::OPT_fno_lax_vector_conversions))
+ CmdArgs.push_back("-fno-lax-vector-conversions");
+
+ if (Args.getLastArg(options::OPT_fapple_kext))
+ CmdArgs.push_back("-fapple-kext");
+
+ Args.AddLastArg(CmdArgs, options::OPT_fobjc_sender_dependent_dispatch);
+ Args.AddLastArg(CmdArgs, options::OPT_fdiagnostics_print_source_range_info);
+ Args.AddLastArg(CmdArgs, options::OPT_fdiagnostics_parseable_fixits);
+ Args.AddLastArg(CmdArgs, options::OPT_ftime_report);
+ Args.AddLastArg(CmdArgs, options::OPT_ftrapv);
+
+ if (Arg *A = Args.getLastArg(options::OPT_ftrapv_handler_EQ)) {
+ CmdArgs.push_back("-ftrapv-handler");
+ CmdArgs.push_back(A->getValue());
+ }
+
+ Args.AddLastArg(CmdArgs, options::OPT_ftrap_function_EQ);
+
+ // -fno-strict-overflow implies -fwrapv if it isn't disabled, but
+ // -fstrict-overflow won't turn off an explicitly enabled -fwrapv.
+ if (Arg *A = Args.getLastArg(options::OPT_fwrapv,
+ options::OPT_fno_wrapv)) {
+ if (A->getOption().matches(options::OPT_fwrapv))
+ CmdArgs.push_back("-fwrapv");
+ } else if (Arg *A = Args.getLastArg(options::OPT_fstrict_overflow,
+ options::OPT_fno_strict_overflow)) {
+ if (A->getOption().matches(options::OPT_fno_strict_overflow))
+ CmdArgs.push_back("-fwrapv");
+ }
+
+ if (Arg *A = Args.getLastArg(options::OPT_freroll_loops,
+ options::OPT_fno_reroll_loops))
+ if (A->getOption().matches(options::OPT_freroll_loops))
+ CmdArgs.push_back("-freroll-loops");
+
+ Args.AddLastArg(CmdArgs, options::OPT_fwritable_strings);
+ Args.AddLastArg(CmdArgs, options::OPT_funroll_loops,
+ options::OPT_fno_unroll_loops);
+
+ Args.AddLastArg(CmdArgs, options::OPT_pthread);
+
+
+ // -stack-protector=0 is default.
+ unsigned StackProtectorLevel = 0;
+ if (Arg *A = Args.getLastArg(options::OPT_fno_stack_protector,
+ options::OPT_fstack_protector_all,
+ options::OPT_fstack_protector_strong,
+ options::OPT_fstack_protector)) {
+ if (A->getOption().matches(options::OPT_fstack_protector)) {
+ StackProtectorLevel = std::max<unsigned>(LangOptions::SSPOn,
+ getToolChain().GetDefaultStackProtectorLevel(KernelOrKext));
+ } else if (A->getOption().matches(options::OPT_fstack_protector_strong))
+ StackProtectorLevel = LangOptions::SSPStrong;
+ else if (A->getOption().matches(options::OPT_fstack_protector_all))
+ StackProtectorLevel = LangOptions::SSPReq;
+ } else {
+ StackProtectorLevel =
+ getToolChain().GetDefaultStackProtectorLevel(KernelOrKext);
+ }
+ if (StackProtectorLevel) {
+ CmdArgs.push_back("-stack-protector");
+ CmdArgs.push_back(Args.MakeArgString(Twine(StackProtectorLevel)));
+ }
+
+ // --param ssp-buffer-size=
+ for (arg_iterator it = Args.filtered_begin(options::OPT__param),
+ ie = Args.filtered_end(); it != ie; ++it) {
+ StringRef Str((*it)->getValue());
+ if (Str.startswith("ssp-buffer-size=")) {
+ if (StackProtectorLevel) {
+ CmdArgs.push_back("-stack-protector-buffer-size");
+ // FIXME: Verify the argument is a valid integer.
+ CmdArgs.push_back(Args.MakeArgString(Str.drop_front(16)));
+ }
+ (*it)->claim();
+ }
+ }
+
+ // Translate -mstackrealign
+ if (Args.hasFlag(options::OPT_mstackrealign, options::OPT_mno_stackrealign,
+ false)) {
+ CmdArgs.push_back("-backend-option");
+ CmdArgs.push_back("-force-align-stack");
+ }
+ if (!Args.hasFlag(options::OPT_mno_stackrealign, options::OPT_mstackrealign,
+ false)) {
+ CmdArgs.push_back(Args.MakeArgString("-mstackrealign"));
+ }
+
+ if (Args.hasArg(options::OPT_mstack_alignment)) {
+ StringRef alignment = Args.getLastArgValue(options::OPT_mstack_alignment);
+ CmdArgs.push_back(Args.MakeArgString("-mstack-alignment=" + alignment));
+ }
+
+ if (Args.hasArg(options::OPT_mstack_probe_size)) {
+ StringRef Size = Args.getLastArgValue(options::OPT_mstack_probe_size);
+
+ if (!Size.empty())
+ CmdArgs.push_back(Args.MakeArgString("-mstack-probe-size=" + Size));
+ else
+ CmdArgs.push_back("-mstack-probe-size=0");
+ }
+
+ if (getToolChain().getTriple().getArch() == llvm::Triple::aarch64 ||
+ getToolChain().getTriple().getArch() == llvm::Triple::aarch64_be)
+ CmdArgs.push_back("-fallow-half-arguments-and-returns");
+
+ if (Arg *A = Args.getLastArg(options::OPT_mrestrict_it,
+ options::OPT_mno_restrict_it)) {
+ if (A->getOption().matches(options::OPT_mrestrict_it)) {
+ CmdArgs.push_back("-backend-option");
+ CmdArgs.push_back("-arm-restrict-it");
+ } else {
+ CmdArgs.push_back("-backend-option");
+ CmdArgs.push_back("-arm-no-restrict-it");
+ }
+ } else if (TT.isOSWindows() && (TT.getArch() == llvm::Triple::arm ||
+ TT.getArch() == llvm::Triple::thumb)) {
+ // Windows on ARM expects restricted IT blocks
+ CmdArgs.push_back("-backend-option");
+ CmdArgs.push_back("-arm-restrict-it");
+ }
+
+ if (TT.getArch() == llvm::Triple::arm ||
+ TT.getArch() == llvm::Triple::thumb) {
+ if (Arg *A = Args.getLastArg(options::OPT_mlong_calls,
+ options::OPT_mno_long_calls)) {
+ if (A->getOption().matches(options::OPT_mlong_calls)) {
+ CmdArgs.push_back("-backend-option");
+ CmdArgs.push_back("-arm-long-calls");
+ }
+ }
+ }
+
+ // Forward -f options with positive and negative forms; we translate
+ // these by hand.
+ if (Arg *A = Args.getLastArg(options::OPT_fprofile_sample_use_EQ)) {
+ StringRef fname = A->getValue();
+ if (!llvm::sys::fs::exists(fname))
+ D.Diag(diag::err_drv_no_such_file) << fname;
+ else
+ A->render(Args, CmdArgs);
+ }
+
+ if (Args.hasArg(options::OPT_mkernel)) {
+ if (!Args.hasArg(options::OPT_fapple_kext) && types::isCXX(InputType))
+ CmdArgs.push_back("-fapple-kext");
+ if (!Args.hasArg(options::OPT_fbuiltin))
+ CmdArgs.push_back("-fno-builtin");
+ Args.ClaimAllArgs(options::OPT_fno_builtin);
+ }
+ // -fbuiltin is default.
+ else if (!Args.hasFlag(options::OPT_fbuiltin, options::OPT_fno_builtin))
+ CmdArgs.push_back("-fno-builtin");
+
+ if (!Args.hasFlag(options::OPT_fassume_sane_operator_new,
+ options::OPT_fno_assume_sane_operator_new))
+ CmdArgs.push_back("-fno-assume-sane-operator-new");
+
+ // -fblocks=0 is default.
+ if (Args.hasFlag(options::OPT_fblocks, options::OPT_fno_blocks,
+ getToolChain().IsBlocksDefault()) ||
+ (Args.hasArg(options::OPT_fgnu_runtime) &&
+ Args.hasArg(options::OPT_fobjc_nonfragile_abi) &&
+ !Args.hasArg(options::OPT_fno_blocks))) {
+ CmdArgs.push_back("-fblocks");
+
+ if (!Args.hasArg(options::OPT_fgnu_runtime) &&
+ !getToolChain().hasBlocksRuntime())
+ CmdArgs.push_back("-fblocks-runtime-optional");
+ }
+
+ // -fmodules enables modules (off by default).
+ // Users can pass -fno-cxx-modules to turn off modules support for
+ // C++/Objective-C++ programs, which is a little less mature.
+ bool HaveModules = false;
+ if (Args.hasFlag(options::OPT_fmodules, options::OPT_fno_modules, false)) {
+ bool AllowedInCXX = Args.hasFlag(options::OPT_fcxx_modules,
+ options::OPT_fno_cxx_modules,
+ true);
+ if (AllowedInCXX || !types::isCXX(InputType)) {
+ CmdArgs.push_back("-fmodules");
+ HaveModules = true;
+ }
+ }
+
+ // -fmodule-maps enables module map processing (off by default) for header
+ // checking. It is implied by -fmodules.
+ if (Args.hasFlag(options::OPT_fmodule_maps, options::OPT_fno_module_maps,
+ false)) {
+ CmdArgs.push_back("-fmodule-maps");
+ }
+
+ // -fmodules-decluse checks that modules used are declared so (off by
+ // default).
+ if (Args.hasFlag(options::OPT_fmodules_decluse,
+ options::OPT_fno_modules_decluse,
+ false)) {
+ CmdArgs.push_back("-fmodules-decluse");
+ }
+
+ // -fmodules-strict-decluse is like -fmodule-decluse, but also checks that
+ // all #included headers are part of modules.
+ if (Args.hasFlag(options::OPT_fmodules_strict_decluse,
+ options::OPT_fno_modules_strict_decluse,
+ false)) {
+ CmdArgs.push_back("-fmodules-strict-decluse");
+ }
+
+ // -fno-implicit-modules turns off implicitly compiling modules on demand.
+ if (!Args.hasFlag(options::OPT_fimplicit_modules,
+ options::OPT_fno_implicit_modules)) {
+ CmdArgs.push_back("-fno-implicit-modules");
+ }
+
+ // -fmodule-name specifies the module that is currently being built (or
+ // used for header checking by -fmodule-maps).
+ Args.AddLastArg(CmdArgs, options::OPT_fmodule_name);
+
+ // -fmodule-map-file can be used to specify files containing module
+ // definitions.
+ Args.AddAllArgs(CmdArgs, options::OPT_fmodule_map_file);
+
+ // -fmodule-file can be used to specify files containing precompiled modules.
+ Args.AddAllArgs(CmdArgs, options::OPT_fmodule_file);
+
+ // -fmodule-cache-path specifies where our implicitly-built module files
+ // should be written.
+ SmallString<128> ModuleCachePath;
+ if (Arg *A = Args.getLastArg(options::OPT_fmodules_cache_path))
+ ModuleCachePath = A->getValue();
+ if (HaveModules) {
+ if (C.isForDiagnostics()) {
+ // When generating crash reports, we want to emit the modules along with
+ // the reproduction sources, so we ignore any provided module path.
+ ModuleCachePath = Output.getFilename();
+ llvm::sys::path::replace_extension(ModuleCachePath, ".cache");
+ llvm::sys::path::append(ModuleCachePath, "modules");
+ } else if (ModuleCachePath.empty()) {
+ // No module path was provided: use the default.
+ llvm::sys::path::system_temp_directory(/*erasedOnReboot=*/false,
+ ModuleCachePath);
+ llvm::sys::path::append(ModuleCachePath, "org.llvm.clang.");
+ appendUserToPath(ModuleCachePath);
+ llvm::sys::path::append(ModuleCachePath, "ModuleCache");
+ }
+ const char Arg[] = "-fmodules-cache-path=";
+ ModuleCachePath.insert(ModuleCachePath.begin(), Arg, Arg + strlen(Arg));
+ CmdArgs.push_back(Args.MakeArgString(ModuleCachePath));
+ }
+
+ // When building modules and generating crashdumps, we need to dump a module
+ // dependency VFS alongside the output.
+ if (HaveModules && C.isForDiagnostics()) {
+ SmallString<128> VFSDir(Output.getFilename());
+ llvm::sys::path::replace_extension(VFSDir, ".cache");
+ // Add the cache directory as a temp so the crash diagnostics pick it up.
+ C.addTempFile(Args.MakeArgString(VFSDir));
+
+ llvm::sys::path::append(VFSDir, "vfs");
+ CmdArgs.push_back("-module-dependency-dir");
+ CmdArgs.push_back(Args.MakeArgString(VFSDir));
+ }
+
+ if (HaveModules)
+ Args.AddLastArg(CmdArgs, options::OPT_fmodules_user_build_path);
+
+ // Pass through all -fmodules-ignore-macro arguments.
+ Args.AddAllArgs(CmdArgs, options::OPT_fmodules_ignore_macro);
+ Args.AddLastArg(CmdArgs, options::OPT_fmodules_prune_interval);
+ Args.AddLastArg(CmdArgs, options::OPT_fmodules_prune_after);
+
+ Args.AddLastArg(CmdArgs, options::OPT_fbuild_session_timestamp);
+
+ if (Arg *A = Args.getLastArg(options::OPT_fbuild_session_file)) {
+ if (Args.hasArg(options::OPT_fbuild_session_timestamp))
+ D.Diag(diag::err_drv_argument_not_allowed_with)
+ << A->getAsString(Args) << "-fbuild-session-timestamp";
+
+ llvm::sys::fs::file_status Status;
+ if (llvm::sys::fs::status(A->getValue(), Status))
+ D.Diag(diag::err_drv_no_such_file) << A->getValue();
+ CmdArgs.push_back(Args.MakeArgString(
+ "-fbuild-session-timestamp=" +
+ Twine((uint64_t)Status.getLastModificationTime().toEpochTime())));
+ }
+
+ if (Args.getLastArg(options::OPT_fmodules_validate_once_per_build_session)) {
+ if (!Args.getLastArg(options::OPT_fbuild_session_timestamp,
+ options::OPT_fbuild_session_file))
+ D.Diag(diag::err_drv_modules_validate_once_requires_timestamp);
+
+ Args.AddLastArg(CmdArgs,
+ options::OPT_fmodules_validate_once_per_build_session);
+ }
+
+ Args.AddLastArg(CmdArgs, options::OPT_fmodules_validate_system_headers);
+
+ // -faccess-control is default.
+ if (Args.hasFlag(options::OPT_fno_access_control,
+ options::OPT_faccess_control,
+ false))
+ CmdArgs.push_back("-fno-access-control");
+
+ // -felide-constructors is the default.
+ if (Args.hasFlag(options::OPT_fno_elide_constructors,
+ options::OPT_felide_constructors,
+ false))
+ CmdArgs.push_back("-fno-elide-constructors");
+
+ ToolChain::RTTIMode RTTIMode = getToolChain().getRTTIMode();
+
+ if (KernelOrKext || (types::isCXX(InputType) &&
+ (RTTIMode == ToolChain::RM_DisabledExplicitly ||
+ RTTIMode == ToolChain::RM_DisabledImplicitly)))
+ CmdArgs.push_back("-fno-rtti");
+
+ // -fshort-enums=0 is default for all architectures except Hexagon.
+ if (Args.hasFlag(options::OPT_fshort_enums,
+ options::OPT_fno_short_enums,
+ getToolChain().getArch() ==
+ llvm::Triple::hexagon))
+ CmdArgs.push_back("-fshort-enums");
+
+ // -fsigned-char is default.
+ if (Arg *A = Args.getLastArg(
+ options::OPT_fsigned_char, options::OPT_fno_signed_char,
+ options::OPT_funsigned_char, options::OPT_fno_unsigned_char)) {
+ if (A->getOption().matches(options::OPT_funsigned_char) ||
+ A->getOption().matches(options::OPT_fno_signed_char)) {
+ CmdArgs.push_back("-fno-signed-char");
+ }
+ } else if (!isSignedCharDefault(getToolChain().getTriple())) {
+ CmdArgs.push_back("-fno-signed-char");
+ }
+
+ // -fuse-cxa-atexit is default.
+ if (!Args.hasFlag(options::OPT_fuse_cxa_atexit,
+ options::OPT_fno_use_cxa_atexit,
+ !IsWindowsCygnus && !IsWindowsGNU &&
+ getToolChain().getArch() != llvm::Triple::hexagon &&
+ getToolChain().getArch() != llvm::Triple::xcore) ||
+ KernelOrKext)
+ CmdArgs.push_back("-fno-use-cxa-atexit");
+
+ // -fms-extensions=0 is default.
+ if (Args.hasFlag(options::OPT_fms_extensions, options::OPT_fno_ms_extensions,
+ IsWindowsMSVC))
+ CmdArgs.push_back("-fms-extensions");
+
+ // -fno-use-line-directives is default.
+ if (Args.hasFlag(options::OPT_fuse_line_directives,
+ options::OPT_fno_use_line_directives, false))
+ CmdArgs.push_back("-fuse-line-directives");
+
+ // -fms-compatibility=0 is default.
+ if (Args.hasFlag(options::OPT_fms_compatibility,
+ options::OPT_fno_ms_compatibility,
+ (IsWindowsMSVC && Args.hasFlag(options::OPT_fms_extensions,
+ options::OPT_fno_ms_extensions,
+ true))))
+ CmdArgs.push_back("-fms-compatibility");
+
+ // -fms-compatibility-version=18.00 is default.
+ VersionTuple MSVT;
+ if (Args.hasFlag(options::OPT_fms_extensions, options::OPT_fno_ms_extensions,
+ IsWindowsMSVC) ||
+ Args.hasArg(options::OPT_fmsc_version) ||
+ Args.hasArg(options::OPT_fms_compatibility_version)) {
+ const Arg *MSCVersion = Args.getLastArg(options::OPT_fmsc_version);
+ const Arg *MSCompatibilityVersion =
+ Args.getLastArg(options::OPT_fms_compatibility_version);
+
+ if (MSCVersion && MSCompatibilityVersion)
+ D.Diag(diag::err_drv_argument_not_allowed_with)
+ << MSCVersion->getAsString(Args)
+ << MSCompatibilityVersion->getAsString(Args);
+
+ if (MSCompatibilityVersion) {
+ if (MSVT.tryParse(MSCompatibilityVersion->getValue()))
+ D.Diag(diag::err_drv_invalid_value)
+ << MSCompatibilityVersion->getAsString(Args)
+ << MSCompatibilityVersion->getValue();
+ } else if (MSCVersion) {
+ unsigned Version = 0;
+ if (StringRef(MSCVersion->getValue()).getAsInteger(10, Version))
+ D.Diag(diag::err_drv_invalid_value) << MSCVersion->getAsString(Args)
+ << MSCVersion->getValue();
+ MSVT = getMSCompatibilityVersion(Version);
+ } else {
+ MSVT = VersionTuple(18);
+ }
+
+ CmdArgs.push_back(
+ Args.MakeArgString("-fms-compatibility-version=" + MSVT.getAsString()));
+ }
+
+ bool IsMSVC2015Compatible = MSVT.getMajor() >= 19;
+ if (ImplyVCPPCXXVer) {
+ if (IsMSVC2015Compatible)
+ CmdArgs.push_back("-std=c++14");
+ else
+ CmdArgs.push_back("-std=c++11");
+ }
+
+ // -fno-borland-extensions is default.
+ if (Args.hasFlag(options::OPT_fborland_extensions,
+ options::OPT_fno_borland_extensions, false))
+ CmdArgs.push_back("-fborland-extensions");
+
+ // -fthreadsafe-static is default, except for MSVC compatibility versions less
+ // than 19.
+ if (!Args.hasFlag(options::OPT_fthreadsafe_statics,
+ options::OPT_fno_threadsafe_statics,
+ !IsWindowsMSVC || IsMSVC2015Compatible))
+ CmdArgs.push_back("-fno-threadsafe-statics");
+
+ // -fno-delayed-template-parsing is default, except for Windows where MSVC STL
+ // needs it.
+ if (Args.hasFlag(options::OPT_fdelayed_template_parsing,
+ options::OPT_fno_delayed_template_parsing, IsWindowsMSVC))
+ CmdArgs.push_back("-fdelayed-template-parsing");
+
+ // -fgnu-keywords default varies depending on language; only pass if
+ // specified.
+ if (Arg *A = Args.getLastArg(options::OPT_fgnu_keywords,
+ options::OPT_fno_gnu_keywords))
+ A->render(Args, CmdArgs);
+
+ if (Args.hasFlag(options::OPT_fgnu89_inline,
+ options::OPT_fno_gnu89_inline,
+ false))
+ CmdArgs.push_back("-fgnu89-inline");
+
+ if (Args.hasArg(options::OPT_fno_inline))
+ CmdArgs.push_back("-fno-inline");
+
+ if (Args.hasArg(options::OPT_fno_inline_functions))
+ CmdArgs.push_back("-fno-inline-functions");
+
+ ObjCRuntime objcRuntime = AddObjCRuntimeArgs(Args, CmdArgs, rewriteKind);
+
+ // -fobjc-dispatch-method is only relevant with the nonfragile-abi, and
+ // legacy is the default. Except for deployment taget of 10.5,
+ // next runtime is always legacy dispatch and -fno-objc-legacy-dispatch
+ // gets ignored silently.
+ if (objcRuntime.isNonFragile()) {
+ if (!Args.hasFlag(options::OPT_fobjc_legacy_dispatch,
+ options::OPT_fno_objc_legacy_dispatch,
+ objcRuntime.isLegacyDispatchDefaultForArch(
+ getToolChain().getArch()))) {
+ if (getToolChain().UseObjCMixedDispatch())
+ CmdArgs.push_back("-fobjc-dispatch-method=mixed");
+ else
+ CmdArgs.push_back("-fobjc-dispatch-method=non-legacy");
+ }
+ }
+
+ // When ObjectiveC legacy runtime is in effect on MacOSX,
+ // turn on the option to do Array/Dictionary subscripting
+ // by default.
+ if (getToolChain().getTriple().getArch() == llvm::Triple::x86 &&
+ getToolChain().getTriple().isMacOSX() &&
+ !getToolChain().getTriple().isMacOSXVersionLT(10, 7) &&
+ objcRuntime.getKind() == ObjCRuntime::FragileMacOSX &&
+ objcRuntime.isNeXTFamily())
+ CmdArgs.push_back("-fobjc-subscripting-legacy-runtime");
+
+ // -fencode-extended-block-signature=1 is default.
+ if (getToolChain().IsEncodeExtendedBlockSignatureDefault()) {
+ CmdArgs.push_back("-fencode-extended-block-signature");
+ }
+
+ // Allow -fno-objc-arr to trump -fobjc-arr/-fobjc-arc.
+ // NOTE: This logic is duplicated in ToolChains.cpp.
+ bool ARC = isObjCAutoRefCount(Args);
+ if (ARC) {
+ getToolChain().CheckObjCARC();
+
+ CmdArgs.push_back("-fobjc-arc");
+
+ // FIXME: It seems like this entire block, and several around it should be
+ // wrapped in isObjC, but for now we just use it here as this is where it
+ // was being used previously.
+ if (types::isCXX(InputType) && types::isObjC(InputType)) {
+ if (getToolChain().GetCXXStdlibType(Args) == ToolChain::CST_Libcxx)
+ CmdArgs.push_back("-fobjc-arc-cxxlib=libc++");
+ else
+ CmdArgs.push_back("-fobjc-arc-cxxlib=libstdc++");
+ }
+
+ // Allow the user to enable full exceptions code emission.
+ // We define off for Objective-CC, on for Objective-C++.
+ if (Args.hasFlag(options::OPT_fobjc_arc_exceptions,
+ options::OPT_fno_objc_arc_exceptions,
+ /*default*/ types::isCXX(InputType)))
+ CmdArgs.push_back("-fobjc-arc-exceptions");
+ }
+
+ // -fobjc-infer-related-result-type is the default, except in the Objective-C
+ // rewriter.
+ if (rewriteKind != RK_None)
+ CmdArgs.push_back("-fno-objc-infer-related-result-type");
+
+ // Handle -fobjc-gc and -fobjc-gc-only. They are exclusive, and -fobjc-gc-only
+ // takes precedence.
+ const Arg *GCArg = Args.getLastArg(options::OPT_fobjc_gc_only);
+ if (!GCArg)
+ GCArg = Args.getLastArg(options::OPT_fobjc_gc);
+ if (GCArg) {
+ if (ARC) {
+ D.Diag(diag::err_drv_objc_gc_arr)
+ << GCArg->getAsString(Args);
+ } else if (getToolChain().SupportsObjCGC()) {
+ GCArg->render(Args, CmdArgs);
+ } else {
+ // FIXME: We should move this to a hard error.
+ D.Diag(diag::warn_drv_objc_gc_unsupported)
+ << GCArg->getAsString(Args);
+ }
+ }
+
+ if (Args.hasFlag(options::OPT_fapplication_extension,
+ options::OPT_fno_application_extension, false))
+ CmdArgs.push_back("-fapplication-extension");
+
+ // Handle GCC-style exception args.
+ if (!C.getDriver().IsCLMode())
+ addExceptionArgs(Args, InputType, getToolChain(), KernelOrKext,
+ objcRuntime, CmdArgs);
+
+ if (getToolChain().UseSjLjExceptions())
+ CmdArgs.push_back("-fsjlj-exceptions");
+
+ // C++ "sane" operator new.
+ if (!Args.hasFlag(options::OPT_fassume_sane_operator_new,
+ options::OPT_fno_assume_sane_operator_new))
+ CmdArgs.push_back("-fno-assume-sane-operator-new");
+
+ // -fsized-deallocation is off by default, as it is an ABI-breaking change for
+ // most platforms.
+ if (Args.hasFlag(options::OPT_fsized_deallocation,
+ options::OPT_fno_sized_deallocation, false))
+ CmdArgs.push_back("-fsized-deallocation");
+
+ // -fconstant-cfstrings is default, and may be subject to argument translation
+ // on Darwin.
+ if (!Args.hasFlag(options::OPT_fconstant_cfstrings,
+ options::OPT_fno_constant_cfstrings) ||
+ !Args.hasFlag(options::OPT_mconstant_cfstrings,
+ options::OPT_mno_constant_cfstrings))
+ CmdArgs.push_back("-fno-constant-cfstrings");
+
+ // -fshort-wchar default varies depending on platform; only
+ // pass if specified.
+ if (Arg *A = Args.getLastArg(options::OPT_fshort_wchar,
+ options::OPT_fno_short_wchar))
+ A->render(Args, CmdArgs);
+
+ // -fno-pascal-strings is default, only pass non-default.
+ if (Args.hasFlag(options::OPT_fpascal_strings,
+ options::OPT_fno_pascal_strings,
+ false))
+ CmdArgs.push_back("-fpascal-strings");
+
+ // Honor -fpack-struct= and -fpack-struct, if given. Note that
+ // -fno-pack-struct doesn't apply to -fpack-struct=.
+ if (Arg *A = Args.getLastArg(options::OPT_fpack_struct_EQ)) {
+ std::string PackStructStr = "-fpack-struct=";
+ PackStructStr += A->getValue();
+ CmdArgs.push_back(Args.MakeArgString(PackStructStr));
+ } else if (Args.hasFlag(options::OPT_fpack_struct,
+ options::OPT_fno_pack_struct, false)) {
+ CmdArgs.push_back("-fpack-struct=1");
+ }
+
+ // Handle -fmax-type-align=N and -fno-type-align
+ bool SkipMaxTypeAlign = Args.hasArg(options::OPT_fno_max_type_align);
+ if (Arg *A = Args.getLastArg(options::OPT_fmax_type_align_EQ)) {
+ if (!SkipMaxTypeAlign) {
+ std::string MaxTypeAlignStr = "-fmax-type-align=";
+ MaxTypeAlignStr += A->getValue();
+ CmdArgs.push_back(Args.MakeArgString(MaxTypeAlignStr));
+ }
+ } else if (getToolChain().getTriple().isOSDarwin()) {
+ if (!SkipMaxTypeAlign) {
+ std::string MaxTypeAlignStr = "-fmax-type-align=16";
+ CmdArgs.push_back(Args.MakeArgString(MaxTypeAlignStr));
+ }
+ }
+
+ if (KernelOrKext || isNoCommonDefault(getToolChain().getTriple())) {
+ if (!Args.hasArg(options::OPT_fcommon))
+ CmdArgs.push_back("-fno-common");
+ Args.ClaimAllArgs(options::OPT_fno_common);
+ }
+
+ // -fcommon is default, only pass non-default.
+ else if (!Args.hasFlag(options::OPT_fcommon, options::OPT_fno_common))
+ CmdArgs.push_back("-fno-common");
+
+ // -fsigned-bitfields is default, and clang doesn't yet support
+ // -funsigned-bitfields.
+ if (!Args.hasFlag(options::OPT_fsigned_bitfields,
+ options::OPT_funsigned_bitfields))
+ D.Diag(diag::warn_drv_clang_unsupported)
+ << Args.getLastArg(options::OPT_funsigned_bitfields)->getAsString(Args);
+
+ // -fsigned-bitfields is default, and clang doesn't support -fno-for-scope.
+ if (!Args.hasFlag(options::OPT_ffor_scope,
+ options::OPT_fno_for_scope))
+ D.Diag(diag::err_drv_clang_unsupported)
+ << Args.getLastArg(options::OPT_fno_for_scope)->getAsString(Args);
+
+ // -finput_charset=UTF-8 is default. Reject others
+ if (Arg *inputCharset = Args.getLastArg(
+ options::OPT_finput_charset_EQ)) {
+ StringRef value = inputCharset->getValue();
+ if (value != "UTF-8")
+ D.Diag(diag::err_drv_invalid_value) << inputCharset->getAsString(Args) << value;
+ }
+
+ // -fexec_charset=UTF-8 is default. Reject others
+ if (Arg *execCharset = Args.getLastArg(
+ options::OPT_fexec_charset_EQ)) {
+ StringRef value = execCharset->getValue();
+ if (value != "UTF-8")
+ D.Diag(diag::err_drv_invalid_value) << execCharset->getAsString(Args) << value;
+ }
+
+ // -fcaret-diagnostics is default.
+ if (!Args.hasFlag(options::OPT_fcaret_diagnostics,
+ options::OPT_fno_caret_diagnostics, true))
+ CmdArgs.push_back("-fno-caret-diagnostics");
+
+ // -fdiagnostics-fixit-info is default, only pass non-default.
+ if (!Args.hasFlag(options::OPT_fdiagnostics_fixit_info,
+ options::OPT_fno_diagnostics_fixit_info))
+ CmdArgs.push_back("-fno-diagnostics-fixit-info");
+
+ // Enable -fdiagnostics-show-option by default.
+ if (Args.hasFlag(options::OPT_fdiagnostics_show_option,
+ options::OPT_fno_diagnostics_show_option))
+ CmdArgs.push_back("-fdiagnostics-show-option");
+
+ if (const Arg *A =
+ Args.getLastArg(options::OPT_fdiagnostics_show_category_EQ)) {
+ CmdArgs.push_back("-fdiagnostics-show-category");
+ CmdArgs.push_back(A->getValue());
+ }
+
+ if (const Arg *A =
+ Args.getLastArg(options::OPT_fdiagnostics_format_EQ)) {
+ CmdArgs.push_back("-fdiagnostics-format");
+ CmdArgs.push_back(A->getValue());
+ }
+
+ if (Arg *A = Args.getLastArg(
+ options::OPT_fdiagnostics_show_note_include_stack,
+ options::OPT_fno_diagnostics_show_note_include_stack)) {
+ if (A->getOption().matches(
+ options::OPT_fdiagnostics_show_note_include_stack))
+ CmdArgs.push_back("-fdiagnostics-show-note-include-stack");
+ else
+ CmdArgs.push_back("-fno-diagnostics-show-note-include-stack");
+ }
+
+ // Color diagnostics are the default, unless the terminal doesn't support
+ // them.
+ // Support both clang's -f[no-]color-diagnostics and gcc's
+ // -f[no-]diagnostics-colors[=never|always|auto].
+ enum { Colors_On, Colors_Off, Colors_Auto } ShowColors = Colors_Auto;
+ for (const auto &Arg : Args) {
+ const Option &O = Arg->getOption();
+ if (!O.matches(options::OPT_fcolor_diagnostics) &&
+ !O.matches(options::OPT_fdiagnostics_color) &&
+ !O.matches(options::OPT_fno_color_diagnostics) &&
+ !O.matches(options::OPT_fno_diagnostics_color) &&
+ !O.matches(options::OPT_fdiagnostics_color_EQ))
+ continue;
+
+ Arg->claim();
+ if (O.matches(options::OPT_fcolor_diagnostics) ||
+ O.matches(options::OPT_fdiagnostics_color)) {
+ ShowColors = Colors_On;
+ } else if (O.matches(options::OPT_fno_color_diagnostics) ||
+ O.matches(options::OPT_fno_diagnostics_color)) {
+ ShowColors = Colors_Off;
+ } else {
+ assert(O.matches(options::OPT_fdiagnostics_color_EQ));
+ StringRef value(Arg->getValue());
+ if (value == "always")
+ ShowColors = Colors_On;
+ else if (value == "never")
+ ShowColors = Colors_Off;
+ else if (value == "auto")
+ ShowColors = Colors_Auto;
+ else
+ getToolChain().getDriver().Diag(diag::err_drv_clang_unsupported)
+ << ("-fdiagnostics-color=" + value).str();
+ }
+ }
+ if (ShowColors == Colors_On ||
+ (ShowColors == Colors_Auto && llvm::sys::Process::StandardErrHasColors()))
+ CmdArgs.push_back("-fcolor-diagnostics");
+
+ if (Args.hasArg(options::OPT_fansi_escape_codes))
+ CmdArgs.push_back("-fansi-escape-codes");
+
+ if (!Args.hasFlag(options::OPT_fshow_source_location,
+ options::OPT_fno_show_source_location))
+ CmdArgs.push_back("-fno-show-source-location");
+
+ if (!Args.hasFlag(options::OPT_fshow_column,
+ options::OPT_fno_show_column,
+ true))
+ CmdArgs.push_back("-fno-show-column");
+
+ if (!Args.hasFlag(options::OPT_fspell_checking,
+ options::OPT_fno_spell_checking))
+ CmdArgs.push_back("-fno-spell-checking");
+
+
+ // -fno-asm-blocks is default.
+ if (Args.hasFlag(options::OPT_fasm_blocks, options::OPT_fno_asm_blocks,
+ false))
+ CmdArgs.push_back("-fasm-blocks");
+
+ // -fgnu-inline-asm is default.
+ if (!Args.hasFlag(options::OPT_fgnu_inline_asm,
+ options::OPT_fno_gnu_inline_asm, true))
+ CmdArgs.push_back("-fno-gnu-inline-asm");
+
+ // Enable vectorization per default according to the optimization level
+ // selected. For optimization levels that want vectorization we use the alias
+ // option to simplify the hasFlag logic.
+ bool EnableVec = shouldEnableVectorizerAtOLevel(Args, false);
+ OptSpecifier VectorizeAliasOption = EnableVec ? options::OPT_O_Group :
+ options::OPT_fvectorize;
+ if (Args.hasFlag(options::OPT_fvectorize, VectorizeAliasOption,
+ options::OPT_fno_vectorize, EnableVec))
+ CmdArgs.push_back("-vectorize-loops");
+
+ // -fslp-vectorize is enabled based on the optimization level selected.
+ bool EnableSLPVec = shouldEnableVectorizerAtOLevel(Args, true);
+ OptSpecifier SLPVectAliasOption = EnableSLPVec ? options::OPT_O_Group :
+ options::OPT_fslp_vectorize;
+ if (Args.hasFlag(options::OPT_fslp_vectorize, SLPVectAliasOption,
+ options::OPT_fno_slp_vectorize, EnableSLPVec))
+ CmdArgs.push_back("-vectorize-slp");
+
+ // -fno-slp-vectorize-aggressive is default.
+ if (Args.hasFlag(options::OPT_fslp_vectorize_aggressive,
+ options::OPT_fno_slp_vectorize_aggressive, false))
+ CmdArgs.push_back("-vectorize-slp-aggressive");
+
+ if (Arg *A = Args.getLastArg(options::OPT_fshow_overloads_EQ))
+ A->render(Args, CmdArgs);
+
+ // -fdollars-in-identifiers default varies depending on platform and
+ // language; only pass if specified.
+ if (Arg *A = Args.getLastArg(options::OPT_fdollars_in_identifiers,
+ options::OPT_fno_dollars_in_identifiers)) {
+ if (A->getOption().matches(options::OPT_fdollars_in_identifiers))
+ CmdArgs.push_back("-fdollars-in-identifiers");
+ else
+ CmdArgs.push_back("-fno-dollars-in-identifiers");
+ }
+
+ // -funit-at-a-time is default, and we don't support -fno-unit-at-a-time for
+ // practical purposes.
+ if (Arg *A = Args.getLastArg(options::OPT_funit_at_a_time,
+ options::OPT_fno_unit_at_a_time)) {
+ if (A->getOption().matches(options::OPT_fno_unit_at_a_time))
+ D.Diag(diag::warn_drv_clang_unsupported) << A->getAsString(Args);
+ }
+
+ if (Args.hasFlag(options::OPT_fapple_pragma_pack,
+ options::OPT_fno_apple_pragma_pack, false))
+ CmdArgs.push_back("-fapple-pragma-pack");
+
+ // le32-specific flags:
+ // -fno-math-builtin: clang should not convert math builtins to intrinsics
+ // by default.
+ if (getToolChain().getArch() == llvm::Triple::le32) {
+ CmdArgs.push_back("-fno-math-builtin");
+ }
+
+ // Default to -fno-builtin-str{cat,cpy} on Darwin for ARM.
+ //
+ // FIXME: This is disabled until clang -cc1 supports -fno-builtin-foo. PR4941.
+#if 0
+ if (getToolChain().getTriple().isOSDarwin() &&
+ (getToolChain().getArch() == llvm::Triple::arm ||
+ getToolChain().getArch() == llvm::Triple::thumb)) {
+ if (!Args.hasArg(options::OPT_fbuiltin_strcat))
+ CmdArgs.push_back("-fno-builtin-strcat");
+ if (!Args.hasArg(options::OPT_fbuiltin_strcpy))
+ CmdArgs.push_back("-fno-builtin-strcpy");
+ }
+#endif
+
+ // Enable rewrite includes if the user's asked for it or if we're generating
+ // diagnostics.
+ // TODO: Once -module-dependency-dir works with -frewrite-includes it'd be
+ // nice to enable this when doing a crashdump for modules as well.
+ if (Args.hasFlag(options::OPT_frewrite_includes,
+ options::OPT_fno_rewrite_includes, false) ||
+ (C.isForDiagnostics() && !HaveModules))
+ CmdArgs.push_back("-frewrite-includes");
+
+ // Only allow -traditional or -traditional-cpp outside in preprocessing modes.
+ if (Arg *A = Args.getLastArg(options::OPT_traditional,
+ options::OPT_traditional_cpp)) {
+ if (isa<PreprocessJobAction>(JA))
+ CmdArgs.push_back("-traditional-cpp");
+ else
+ D.Diag(diag::err_drv_clang_unsupported) << A->getAsString(Args);
+ }
+
+ Args.AddLastArg(CmdArgs, options::OPT_dM);
+ Args.AddLastArg(CmdArgs, options::OPT_dD);
+
+ // Handle serialized diagnostics.
+ if (Arg *A = Args.getLastArg(options::OPT__serialize_diags)) {
+ CmdArgs.push_back("-serialize-diagnostic-file");
+ CmdArgs.push_back(Args.MakeArgString(A->getValue()));
+ }
+
+ if (Args.hasArg(options::OPT_fretain_comments_from_system_headers))
+ CmdArgs.push_back("-fretain-comments-from-system-headers");
+
+ // Forward -fcomment-block-commands to -cc1.
+ Args.AddAllArgs(CmdArgs, options::OPT_fcomment_block_commands);
+ // Forward -fparse-all-comments to -cc1.
+ Args.AddAllArgs(CmdArgs, options::OPT_fparse_all_comments);
+
+ // Forward -Xclang arguments to -cc1, and -mllvm arguments to the LLVM option
+ // parser.
+ Args.AddAllArgValues(CmdArgs, options::OPT_Xclang);
+ bool OptDisabled = false;
+ for (arg_iterator it = Args.filtered_begin(options::OPT_mllvm),
+ ie = Args.filtered_end(); it != ie; ++it) {
+ (*it)->claim();
+
+ // We translate this by hand to the -cc1 argument, since nightly test uses
+ // it and developers have been trained to spell it with -mllvm.
+ if (StringRef((*it)->getValue(0)) == "-disable-llvm-optzns") {
+ CmdArgs.push_back("-disable-llvm-optzns");
+ OptDisabled = true;
+ } else
+ (*it)->render(Args, CmdArgs);
+ }
+
+ // With -save-temps, we want to save the unoptimized bitcode output from the
+ // CompileJobAction, so disable optimizations if they are not already
+ // disabled.
+ if (C.getDriver().isSaveTempsEnabled() && !OptDisabled &&
+ isa<CompileJobAction>(JA))
+ CmdArgs.push_back("-disable-llvm-optzns");
+
+ if (Output.getType() == types::TY_Dependencies) {
+ // Handled with other dependency code.
+ } else if (Output.isFilename()) {
+ CmdArgs.push_back("-o");
+ CmdArgs.push_back(Output.getFilename());
+ } else {
+ assert(Output.isNothing() && "Invalid output.");
+ }
+
+ for (const auto &II : Inputs) {
+ addDashXForInput(Args, II, CmdArgs);
+
+ if (II.isFilename())
+ CmdArgs.push_back(II.getFilename());
+ else
+ II.getInputArg().renderAsInput(Args, CmdArgs);
+ }
+
+ Args.AddAllArgs(CmdArgs, options::OPT_undef);
+
+ const char *Exec = getToolChain().getDriver().getClangProgramPath();
+
+ // Optionally embed the -cc1 level arguments into the debug info, for build
+ // analysis.
+ if (getToolChain().UseDwarfDebugFlags()) {
+ ArgStringList OriginalArgs;
+ for (const auto &Arg : Args)
+ Arg->render(Args, OriginalArgs);
+
+ SmallString<256> Flags;
+ Flags += Exec;
+ for (unsigned i = 0, e = OriginalArgs.size(); i != e; ++i) {
+ SmallString<128> EscapedArg;
+ EscapeSpacesAndBackslashes(OriginalArgs[i], EscapedArg);
+ Flags += " ";
+ Flags += EscapedArg;
+ }
+ CmdArgs.push_back("-dwarf-debug-flags");
+ CmdArgs.push_back(Args.MakeArgString(Flags));
+ }
+
+ // Add the split debug info name to the command lines here so we
+ // can propagate it to the backend.
+ bool SplitDwarf = Args.hasArg(options::OPT_gsplit_dwarf) &&
+ getToolChain().getTriple().isOSLinux() &&
+ (isa<AssembleJobAction>(JA) || isa<CompileJobAction>(JA) ||
+ isa<BackendJobAction>(JA));
+ const char *SplitDwarfOut;
+ if (SplitDwarf) {
+ CmdArgs.push_back("-split-dwarf-file");
+ SplitDwarfOut = SplitDebugName(Args, Input);
+ CmdArgs.push_back(SplitDwarfOut);
+ }
+
+ // Finally add the compile command to the compilation.
+ if (Args.hasArg(options::OPT__SLASH_fallback) &&
+ Output.getType() == types::TY_Object &&
+ (InputType == types::TY_C || InputType == types::TY_CXX)) {
+ auto CLCommand =
+ getCLFallback()->GetCommand(C, JA, Output, Inputs, Args, LinkingOutput);
+ C.addCommand(llvm::make_unique<FallbackCommand>(JA, *this, Exec, CmdArgs,
+ std::move(CLCommand)));
+ } else {
+ C.addCommand(llvm::make_unique<Command>(JA, *this, Exec, CmdArgs));
+ }
+
+
+ // Handle the debug info splitting at object creation time if we're
+ // creating an object.
+ // TODO: Currently only works on linux with newer objcopy.
+ if (SplitDwarf && !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA))
+ SplitDebugInfo(getToolChain(), C, *this, JA, Args, Output, SplitDwarfOut);
+
+ if (Arg *A = Args.getLastArg(options::OPT_pg))
+ if (Args.hasArg(options::OPT_fomit_frame_pointer))
+ D.Diag(diag::err_drv_argument_not_allowed_with)
+ << "-fomit-frame-pointer" << A->getAsString(Args);
+
+ // Claim some arguments which clang supports automatically.
+
+ // -fpch-preprocess is used with gcc to add a special marker in the output to
+ // include the PCH file. Clang's PTH solution is completely transparent, so we
+ // do not need to deal with it at all.
+ Args.ClaimAllArgs(options::OPT_fpch_preprocess);
+
+ // Claim some arguments which clang doesn't support, but we don't
+ // care to warn the user about.
+ Args.ClaimAllArgs(options::OPT_clang_ignored_f_Group);
+ Args.ClaimAllArgs(options::OPT_clang_ignored_m_Group);
+
+ // Disable warnings for clang -E -emit-llvm foo.c
+ Args.ClaimAllArgs(options::OPT_emit_llvm);
+}
+
+/// Add options related to the Objective-C runtime/ABI.
+///
+/// Returns true if the runtime is non-fragile.
+ObjCRuntime Clang::AddObjCRuntimeArgs(const ArgList &args,
+ ArgStringList &cmdArgs,
+ RewriteKind rewriteKind) const {
+ // Look for the controlling runtime option.
+ Arg *runtimeArg = args.getLastArg(options::OPT_fnext_runtime,
+ options::OPT_fgnu_runtime,
+ options::OPT_fobjc_runtime_EQ);
+
+ // Just forward -fobjc-runtime= to the frontend. This supercedes
+ // options about fragility.
+ if (runtimeArg &&
+ runtimeArg->getOption().matches(options::OPT_fobjc_runtime_EQ)) {
+ ObjCRuntime runtime;
+ StringRef value = runtimeArg->getValue();
+ if (runtime.tryParse(value)) {
+ getToolChain().getDriver().Diag(diag::err_drv_unknown_objc_runtime)
+ << value;
+ }
+
+ runtimeArg->render(args, cmdArgs);
+ return runtime;
+ }
+
+ // Otherwise, we'll need the ABI "version". Version numbers are
+ // slightly confusing for historical reasons:
+ // 1 - Traditional "fragile" ABI
+ // 2 - Non-fragile ABI, version 1
+ // 3 - Non-fragile ABI, version 2
+ unsigned objcABIVersion = 1;
+ // If -fobjc-abi-version= is present, use that to set the version.
+ if (Arg *abiArg = args.getLastArg(options::OPT_fobjc_abi_version_EQ)) {
+ StringRef value = abiArg->getValue();
+ if (value == "1")
+ objcABIVersion = 1;
+ else if (value == "2")
+ objcABIVersion = 2;
+ else if (value == "3")
+ objcABIVersion = 3;
+ else
+ getToolChain().getDriver().Diag(diag::err_drv_clang_unsupported)
+ << value;
+ } else {
+ // Otherwise, determine if we are using the non-fragile ABI.
+ bool nonFragileABIIsDefault =
+ (rewriteKind == RK_NonFragile ||
+ (rewriteKind == RK_None &&
+ getToolChain().IsObjCNonFragileABIDefault()));
+ if (args.hasFlag(options::OPT_fobjc_nonfragile_abi,
+ options::OPT_fno_objc_nonfragile_abi,
+ nonFragileABIIsDefault)) {
+ // Determine the non-fragile ABI version to use.
+#ifdef DISABLE_DEFAULT_NONFRAGILEABI_TWO
+ unsigned nonFragileABIVersion = 1;
+#else
+ unsigned nonFragileABIVersion = 2;
+#endif
+
+ if (Arg *abiArg = args.getLastArg(
+ options::OPT_fobjc_nonfragile_abi_version_EQ)) {
+ StringRef value = abiArg->getValue();
+ if (value == "1")
+ nonFragileABIVersion = 1;
+ else if (value == "2")
+ nonFragileABIVersion = 2;
+ else
+ getToolChain().getDriver().Diag(diag::err_drv_clang_unsupported)
+ << value;
+ }
+
+ objcABIVersion = 1 + nonFragileABIVersion;
+ } else {
+ objcABIVersion = 1;
+ }
+ }
+
+ // We don't actually care about the ABI version other than whether
+ // it's non-fragile.
+ bool isNonFragile = objcABIVersion != 1;
+
+ // If we have no runtime argument, ask the toolchain for its default runtime.
+ // However, the rewriter only really supports the Mac runtime, so assume that.
+ ObjCRuntime runtime;
+ if (!runtimeArg) {
+ switch (rewriteKind) {
+ case RK_None:
+ runtime = getToolChain().getDefaultObjCRuntime(isNonFragile);
+ break;
+ case RK_Fragile:
+ runtime = ObjCRuntime(ObjCRuntime::FragileMacOSX, VersionTuple());
+ break;
+ case RK_NonFragile:
+ runtime = ObjCRuntime(ObjCRuntime::MacOSX, VersionTuple());
+ break;
+ }
+
+ // -fnext-runtime
+ } else if (runtimeArg->getOption().matches(options::OPT_fnext_runtime)) {
+ // On Darwin, make this use the default behavior for the toolchain.
+ if (getToolChain().getTriple().isOSDarwin()) {
+ runtime = getToolChain().getDefaultObjCRuntime(isNonFragile);
+
+ // Otherwise, build for a generic macosx port.
+ } else {
+ runtime = ObjCRuntime(ObjCRuntime::MacOSX, VersionTuple());
+ }
+
+ // -fgnu-runtime
+ } else {
+ assert(runtimeArg->getOption().matches(options::OPT_fgnu_runtime));
+ // Legacy behaviour is to target the gnustep runtime if we are i
+ // non-fragile mode or the GCC runtime in fragile mode.
+ if (isNonFragile)
+ runtime = ObjCRuntime(ObjCRuntime::GNUstep, VersionTuple(1,6));
+ else
+ runtime = ObjCRuntime(ObjCRuntime::GCC, VersionTuple());
+ }
+
+ cmdArgs.push_back(args.MakeArgString(
+ "-fobjc-runtime=" + runtime.getAsString()));
+ return runtime;
+}
+
+static bool maybeConsumeDash(const std::string &EH, size_t &I) {
+ bool HaveDash = (I + 1 < EH.size() && EH[I + 1] == '-');
+ I += HaveDash;
+ return !HaveDash;
+}
+
+struct EHFlags {
+ EHFlags() : Synch(false), Asynch(false), NoExceptC(false) {}
+ bool Synch;
+ bool Asynch;
+ bool NoExceptC;
+};
+
+/// /EH controls whether to run destructor cleanups when exceptions are
+/// thrown. There are three modifiers:
+/// - s: Cleanup after "synchronous" exceptions, aka C++ exceptions.
+/// - a: Cleanup after "asynchronous" exceptions, aka structured exceptions.
+/// The 'a' modifier is unimplemented and fundamentally hard in LLVM IR.
+/// - c: Assume that extern "C" functions are implicitly noexcept. This
+/// modifier is an optimization, so we ignore it for now.
+/// The default is /EHs-c-, meaning cleanups are disabled.
+static EHFlags parseClangCLEHFlags(const Driver &D, const ArgList &Args) {
+ EHFlags EH;
+ std::vector<std::string> EHArgs = Args.getAllArgValues(options::OPT__SLASH_EH);
+ for (auto EHVal : EHArgs) {
+ for (size_t I = 0, E = EHVal.size(); I != E; ++I) {
+ switch (EHVal[I]) {
+ case 'a': EH.Asynch = maybeConsumeDash(EHVal, I); continue;
+ case 'c': EH.NoExceptC = maybeConsumeDash(EHVal, I); continue;
+ case 's': EH.Synch = maybeConsumeDash(EHVal, I); continue;
+ default: break;
+ }
+ D.Diag(clang::diag::err_drv_invalid_value) << "/EH" << EHVal;
+ break;
+ }
+ }
+ return EH;
+}
+
+void Clang::AddClangCLArgs(const ArgList &Args, ArgStringList &CmdArgs) const {
+ unsigned RTOptionID = options::OPT__SLASH_MT;
+
+ if (Args.hasArg(options::OPT__SLASH_LDd))
+ // The /LDd option implies /MTd. The dependent lib part can be overridden,
+ // but defining _DEBUG is sticky.
+ RTOptionID = options::OPT__SLASH_MTd;
+
+ if (Arg *A = Args.getLastArg(options::OPT__SLASH_M_Group))
+ RTOptionID = A->getOption().getID();
+
+ switch(RTOptionID) {
+ case options::OPT__SLASH_MD:
+ if (Args.hasArg(options::OPT__SLASH_LDd))
+ CmdArgs.push_back("-D_DEBUG");
+ CmdArgs.push_back("-D_MT");
+ CmdArgs.push_back("-D_DLL");
+ CmdArgs.push_back("--dependent-lib=msvcrt");
+ break;
+ case options::OPT__SLASH_MDd:
+ CmdArgs.push_back("-D_DEBUG");
+ CmdArgs.push_back("-D_MT");
+ CmdArgs.push_back("-D_DLL");
+ CmdArgs.push_back("--dependent-lib=msvcrtd");
+ break;
+ case options::OPT__SLASH_MT:
+ if (Args.hasArg(options::OPT__SLASH_LDd))
+ CmdArgs.push_back("-D_DEBUG");
+ CmdArgs.push_back("-D_MT");
+ CmdArgs.push_back("--dependent-lib=libcmt");
+ break;
+ case options::OPT__SLASH_MTd:
+ CmdArgs.push_back("-D_DEBUG");
+ CmdArgs.push_back("-D_MT");
+ CmdArgs.push_back("--dependent-lib=libcmtd");
+ break;
+ default:
+ llvm_unreachable("Unexpected option ID.");
+ }
+
+ // This provides POSIX compatibility (maps 'open' to '_open'), which most
+ // users want. The /Za flag to cl.exe turns this off, but it's not
+ // implemented in clang.
+ CmdArgs.push_back("--dependent-lib=oldnames");
+
+ // Both /showIncludes and /E (and /EP) write to stdout. Allowing both
+ // would produce interleaved output, so ignore /showIncludes in such cases.
+ if (!Args.hasArg(options::OPT_E) && !Args.hasArg(options::OPT__SLASH_EP))
+ if (Arg *A = Args.getLastArg(options::OPT_show_includes))
+ A->render(Args, CmdArgs);
+
+ // This controls whether or not we emit RTTI data for polymorphic types.
+ if (Args.hasFlag(options::OPT__SLASH_GR_, options::OPT__SLASH_GR,
+ /*default=*/false))
+ CmdArgs.push_back("-fno-rtti-data");
+
+ const Driver &D = getToolChain().getDriver();
+ EHFlags EH = parseClangCLEHFlags(D, Args);
+ // FIXME: Do something with NoExceptC.
+ if (EH.Synch || EH.Asynch) {
+ CmdArgs.push_back("-fcxx-exceptions");
+ CmdArgs.push_back("-fexceptions");
+ }
+
+ // /EP should expand to -E -P.
+ if (Args.hasArg(options::OPT__SLASH_EP)) {
+ CmdArgs.push_back("-E");
+ CmdArgs.push_back("-P");
+ }
+
+ unsigned VolatileOptionID;
+ if (getToolChain().getTriple().getArch() == llvm::Triple::x86_64 ||
+ getToolChain().getTriple().getArch() == llvm::Triple::x86)
+ VolatileOptionID = options::OPT__SLASH_volatile_ms;
+ else
+ VolatileOptionID = options::OPT__SLASH_volatile_iso;
+
+ if (Arg *A = Args.getLastArg(options::OPT__SLASH_volatile_Group))
+ VolatileOptionID = A->getOption().getID();
+
+ if (VolatileOptionID == options::OPT__SLASH_volatile_ms)
+ CmdArgs.push_back("-fms-volatile");
+
+ Arg *MostGeneralArg = Args.getLastArg(options::OPT__SLASH_vmg);
+ Arg *BestCaseArg = Args.getLastArg(options::OPT__SLASH_vmb);
+ if (MostGeneralArg && BestCaseArg)
+ D.Diag(clang::diag::err_drv_argument_not_allowed_with)
+ << MostGeneralArg->getAsString(Args) << BestCaseArg->getAsString(Args);
+
+ if (MostGeneralArg) {
+ Arg *SingleArg = Args.getLastArg(options::OPT__SLASH_vms);
+ Arg *MultipleArg = Args.getLastArg(options::OPT__SLASH_vmm);
+ Arg *VirtualArg = Args.getLastArg(options::OPT__SLASH_vmv);
+
+ Arg *FirstConflict = SingleArg ? SingleArg : MultipleArg;
+ Arg *SecondConflict = VirtualArg ? VirtualArg : MultipleArg;
+ if (FirstConflict && SecondConflict && FirstConflict != SecondConflict)
+ D.Diag(clang::diag::err_drv_argument_not_allowed_with)
+ << FirstConflict->getAsString(Args)
+ << SecondConflict->getAsString(Args);
+
+ if (SingleArg)
+ CmdArgs.push_back("-fms-memptr-rep=single");
+ else if (MultipleArg)
+ CmdArgs.push_back("-fms-memptr-rep=multiple");
+ else
+ CmdArgs.push_back("-fms-memptr-rep=virtual");
+ }
+
+ if (Arg *A = Args.getLastArg(options::OPT_vtordisp_mode_EQ))
+ A->render(Args, CmdArgs);
+
+ if (!Args.hasArg(options::OPT_fdiagnostics_format_EQ)) {
+ CmdArgs.push_back("-fdiagnostics-format");
+ if (Args.hasArg(options::OPT__SLASH_fallback))
+ CmdArgs.push_back("msvc-fallback");
+ else
+ CmdArgs.push_back("msvc");
+ }
+}
+
+visualstudio::Compile *Clang::getCLFallback() const {
+ if (!CLFallback)
+ CLFallback.reset(new visualstudio::Compile(getToolChain()));
+ return CLFallback.get();
+}
+
+void ClangAs::AddMIPSTargetArgs(const ArgList &Args,
+ ArgStringList &CmdArgs) const {
+ StringRef CPUName;
+ StringRef ABIName;
+ const llvm::Triple &Triple = getToolChain().getTriple();
+ mips::getMipsCPUAndABI(Args, Triple, CPUName, ABIName);
+
+ CmdArgs.push_back("-target-abi");
+ CmdArgs.push_back(ABIName.data());
+}
+
+void ClangAs::ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const ArgList &Args,
+ const char *LinkingOutput) const {
+ ArgStringList CmdArgs;
+
+ assert(Inputs.size() == 1 && "Unexpected number of inputs.");
+ const InputInfo &Input = Inputs[0];
+
+ // Don't warn about "clang -w -c foo.s"
+ Args.ClaimAllArgs(options::OPT_w);
+ // and "clang -emit-llvm -c foo.s"
+ Args.ClaimAllArgs(options::OPT_emit_llvm);
+
+ claimNoWarnArgs(Args);
+
+ // Invoke ourselves in -cc1as mode.
+ //
+ // FIXME: Implement custom jobs for internal actions.
+ CmdArgs.push_back("-cc1as");
+
+ // Add the "effective" target triple.
+ CmdArgs.push_back("-triple");
+ std::string TripleStr =
+ getToolChain().ComputeEffectiveClangTriple(Args, Input.getType());
+ CmdArgs.push_back(Args.MakeArgString(TripleStr));
+
+ // Set the output mode, we currently only expect to be used as a real
+ // assembler.
+ CmdArgs.push_back("-filetype");
+ CmdArgs.push_back("obj");
+
+ // Set the main file name, so that debug info works even with
+ // -save-temps or preprocessed assembly.
+ CmdArgs.push_back("-main-file-name");
+ CmdArgs.push_back(Clang::getBaseInputName(Args, Input));
+
+ // Add the target cpu
+ const llvm::Triple Triple(TripleStr);
+ std::string CPU = getCPUName(Args, Triple);
+ if (!CPU.empty()) {
+ CmdArgs.push_back("-target-cpu");
+ CmdArgs.push_back(Args.MakeArgString(CPU));
+ }
+
+ // Add the target features
+ const Driver &D = getToolChain().getDriver();
+ getTargetFeatures(D, Triple, Args, CmdArgs, true);
+
+ // Ignore explicit -force_cpusubtype_ALL option.
+ (void) Args.hasArg(options::OPT_force__cpusubtype__ALL);
+
+ // Determine the original source input.
+ const Action *SourceAction = &JA;
+ while (SourceAction->getKind() != Action::InputClass) {
+ assert(!SourceAction->getInputs().empty() && "unexpected root action!");
+ SourceAction = SourceAction->getInputs()[0];
+ }
+
+ // Forward -g and handle debug info related flags, assuming we are dealing
+ // with an actual assembly file.
+ if (SourceAction->getType() == types::TY_Asm ||
+ SourceAction->getType() == types::TY_PP_Asm) {
+ Args.ClaimAllArgs(options::OPT_g_Group);
+ if (Arg *A = Args.getLastArg(options::OPT_g_Group))
+ if (!A->getOption().matches(options::OPT_g0))
+ CmdArgs.push_back("-g");
+
+ if (Args.hasArg(options::OPT_gdwarf_2))
+ CmdArgs.push_back("-gdwarf-2");
+ if (Args.hasArg(options::OPT_gdwarf_3))
+ CmdArgs.push_back("-gdwarf-3");
+ if (Args.hasArg(options::OPT_gdwarf_4))
+ CmdArgs.push_back("-gdwarf-4");
+
+ // Add the -fdebug-compilation-dir flag if needed.
+ addDebugCompDirArg(Args, CmdArgs);
+
+ // Set the AT_producer to the clang version when using the integrated
+ // assembler on assembly source files.
+ CmdArgs.push_back("-dwarf-debug-producer");
+ CmdArgs.push_back(Args.MakeArgString(getClangFullVersion()));
+ }
+
+ // Optionally embed the -cc1as level arguments into the debug info, for build
+ // analysis.
+ if (getToolChain().UseDwarfDebugFlags()) {
+ ArgStringList OriginalArgs;
+ for (const auto &Arg : Args)
+ Arg->render(Args, OriginalArgs);
+
+ SmallString<256> Flags;
+ const char *Exec = getToolChain().getDriver().getClangProgramPath();
+ Flags += Exec;
+ for (unsigned i = 0, e = OriginalArgs.size(); i != e; ++i) {
+ SmallString<128> EscapedArg;
+ EscapeSpacesAndBackslashes(OriginalArgs[i], EscapedArg);
+ Flags += " ";
+ Flags += EscapedArg;
+ }
+ CmdArgs.push_back("-dwarf-debug-flags");
+ CmdArgs.push_back(Args.MakeArgString(Flags));
+ }
+
+ // FIXME: Add -static support, once we have it.
+
+ // Add target specific flags.
+ switch(getToolChain().getArch()) {
+ default:
+ break;
+
+ case llvm::Triple::mips:
+ case llvm::Triple::mipsel:
+ case llvm::Triple::mips64:
+ case llvm::Triple::mips64el:
+ AddMIPSTargetArgs(Args, CmdArgs);
+ break;
+ }
+
+ // Consume all the warning flags. Usually this would be handled more
+ // gracefully by -cc1 (warning about unknown warning flags, etc) but -cc1as
+ // doesn't handle that so rather than warning about unused flags that are
+ // actually used, we'll lie by omission instead.
+ // FIXME: Stop lying and consume only the appropriate driver flags
+ for (arg_iterator it = Args.filtered_begin(options::OPT_W_Group),
+ ie = Args.filtered_end();
+ it != ie; ++it)
+ (*it)->claim();
+
+ CollectArgsForIntegratedAssembler(C, Args, CmdArgs,
+ getToolChain().getDriver());
+
+ Args.AddAllArgs(CmdArgs, options::OPT_mllvm);
+
+ assert(Output.isFilename() && "Unexpected lipo output.");
+ CmdArgs.push_back("-o");
+ CmdArgs.push_back(Output.getFilename());
+
+ assert(Input.isFilename() && "Invalid input.");
+ CmdArgs.push_back(Input.getFilename());
+
+ const char *Exec = getToolChain().getDriver().getClangProgramPath();
+ C.addCommand(llvm::make_unique<Command>(JA, *this, Exec, CmdArgs));
+
+ // Handle the debug info splitting at object creation time if we're
+ // creating an object.
+ // TODO: Currently only works on linux with newer objcopy.
+ if (Args.hasArg(options::OPT_gsplit_dwarf) &&
+ getToolChain().getTriple().isOSLinux())
+ SplitDebugInfo(getToolChain(), C, *this, JA, Args, Output,
+ SplitDebugName(Args, Input));
+}
+
+void GnuTool::anchor() {}
+
+void gcc::Common::ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const ArgList &Args,
+ const char *LinkingOutput) const {
+ const Driver &D = getToolChain().getDriver();
+ ArgStringList CmdArgs;
+
+ for (const auto &A : Args) {
+ if (forwardToGCC(A->getOption())) {
+ // Don't forward any -g arguments to assembly steps.
+ if (isa<AssembleJobAction>(JA) &&
+ A->getOption().matches(options::OPT_g_Group))
+ continue;
+
+ // Don't forward any -W arguments to assembly and link steps.
+ if ((isa<AssembleJobAction>(JA) || isa<LinkJobAction>(JA)) &&
+ A->getOption().matches(options::OPT_W_Group))
+ continue;
+
+ // It is unfortunate that we have to claim here, as this means
+ // we will basically never report anything interesting for
+ // platforms using a generic gcc, even if we are just using gcc
+ // to get to the assembler.
+ A->claim();
+ A->render(Args, CmdArgs);
+ }
+ }
+
+ RenderExtraToolArgs(JA, CmdArgs);
+
+ // If using a driver driver, force the arch.
+ if (getToolChain().getTriple().isOSDarwin()) {
+ CmdArgs.push_back("-arch");
+ CmdArgs.push_back(
+ Args.MakeArgString(getToolChain().getDefaultUniversalArchName()));
+ }
+
+ // Try to force gcc to match the tool chain we want, if we recognize
+ // the arch.
+ //
+ // FIXME: The triple class should directly provide the information we want
+ // here.
+ llvm::Triple::ArchType Arch = getToolChain().getArch();
+ if (Arch == llvm::Triple::x86 || Arch == llvm::Triple::ppc)
+ CmdArgs.push_back("-m32");
+ else if (Arch == llvm::Triple::x86_64 || Arch == llvm::Triple::ppc64 ||
+ Arch == llvm::Triple::ppc64le)
+ CmdArgs.push_back("-m64");
+
+ if (Output.isFilename()) {
+ CmdArgs.push_back("-o");
+ CmdArgs.push_back(Output.getFilename());
+ } else {
+ assert(Output.isNothing() && "Unexpected output");
+ CmdArgs.push_back("-fsyntax-only");
+ }
+
+ Args.AddAllArgValues(CmdArgs, options::OPT_Wa_COMMA,
+ options::OPT_Xassembler);
+
+ // Only pass -x if gcc will understand it; otherwise hope gcc
+ // understands the suffix correctly. The main use case this would go
+ // wrong in is for linker inputs if they happened to have an odd
+ // suffix; really the only way to get this to happen is a command
+ // like '-x foobar a.c' which will treat a.c like a linker input.
+ //
+ // FIXME: For the linker case specifically, can we safely convert
+ // inputs into '-Wl,' options?
+ for (const auto &II : Inputs) {
+ // Don't try to pass LLVM or AST inputs to a generic gcc.
+ if (II.getType() == types::TY_LLVM_IR || II.getType() == types::TY_LTO_IR ||
+ II.getType() == types::TY_LLVM_BC || II.getType() == types::TY_LTO_BC)
+ D.Diag(diag::err_drv_no_linker_llvm_support)
+ << getToolChain().getTripleString();
+ else if (II.getType() == types::TY_AST)
+ D.Diag(diag::err_drv_no_ast_support)
+ << getToolChain().getTripleString();
+ else if (II.getType() == types::TY_ModuleFile)
+ D.Diag(diag::err_drv_no_module_support)
+ << getToolChain().getTripleString();
+
+ if (types::canTypeBeUserSpecified(II.getType())) {
+ CmdArgs.push_back("-x");
+ CmdArgs.push_back(types::getTypeName(II.getType()));
+ }
+
+ if (II.isFilename())
+ CmdArgs.push_back(II.getFilename());
+ else {
+ const Arg &A = II.getInputArg();
+
+ // Reverse translate some rewritten options.
+ if (A.getOption().matches(options::OPT_Z_reserved_lib_stdcxx)) {
+ CmdArgs.push_back("-lstdc++");
+ continue;
+ }
+
+ // Don't render as input, we need gcc to do the translations.
+ A.render(Args, CmdArgs);
+ }
+ }
+
+ const std::string customGCCName = D.getCCCGenericGCCName();
+ const char *GCCName;
+ if (!customGCCName.empty())
+ GCCName = customGCCName.c_str();
+ else if (D.CCCIsCXX()) {
+ GCCName = "g++";
+ } else
+ GCCName = "gcc";
+
+ const char *Exec =
+ Args.MakeArgString(getToolChain().GetProgramPath(GCCName));
+ C.addCommand(llvm::make_unique<Command>(JA, *this, Exec, CmdArgs));
+}
+
+void gcc::Preprocess::RenderExtraToolArgs(const JobAction &JA,
+ ArgStringList &CmdArgs) const {
+ CmdArgs.push_back("-E");
+}
+
+void gcc::Compile::RenderExtraToolArgs(const JobAction &JA,
+ ArgStringList &CmdArgs) const {
+ const Driver &D = getToolChain().getDriver();
+
+ switch (JA.getType()) {
+ // If -flto, etc. are present then make sure not to force assembly output.
+ case types::TY_LLVM_IR:
+ case types::TY_LTO_IR:
+ case types::TY_LLVM_BC:
+ case types::TY_LTO_BC:
+ CmdArgs.push_back("-c");
+ break;
+ case types::TY_PP_Asm:
+ CmdArgs.push_back("-S");
+ break;
+ case types::TY_Nothing:
+ CmdArgs.push_back("-fsyntax-only");
+ break;
+ default:
+ D.Diag(diag::err_drv_invalid_gcc_output_type) << getTypeName(JA.getType());
+ }
+}
+
+void gcc::Link::RenderExtraToolArgs(const JobAction &JA,
+ ArgStringList &CmdArgs) const {
+ // The types are (hopefully) good enough.
+}
+
+// Hexagon tools start.
+void hexagon::Assemble::RenderExtraToolArgs(const JobAction &JA,
+ ArgStringList &CmdArgs) const {
+
+}
+void hexagon::Assemble::ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const ArgList &Args,
+ const char *LinkingOutput) const {
+ claimNoWarnArgs(Args);
+
+ const Driver &D = getToolChain().getDriver();
+ ArgStringList CmdArgs;
+
+ std::string MarchString = "-march=";
+ MarchString += toolchains::Hexagon_TC::GetTargetCPU(Args);
+ CmdArgs.push_back(Args.MakeArgString(MarchString));
+
+ RenderExtraToolArgs(JA, CmdArgs);
+
+ if (Output.isFilename()) {
+ CmdArgs.push_back("-o");
+ CmdArgs.push_back(Output.getFilename());
+ } else {
+ assert(Output.isNothing() && "Unexpected output");
+ CmdArgs.push_back("-fsyntax-only");
+ }
+
+ if (const char* v = toolchains::Hexagon_TC::GetSmallDataThreshold(Args))
+ CmdArgs.push_back(Args.MakeArgString(std::string("-G") + v));
+
+ Args.AddAllArgValues(CmdArgs, options::OPT_Wa_COMMA,
+ options::OPT_Xassembler);
+
+ // Only pass -x if gcc will understand it; otherwise hope gcc
+ // understands the suffix correctly. The main use case this would go
+ // wrong in is for linker inputs if they happened to have an odd
+ // suffix; really the only way to get this to happen is a command
+ // like '-x foobar a.c' which will treat a.c like a linker input.
+ //
+ // FIXME: For the linker case specifically, can we safely convert
+ // inputs into '-Wl,' options?
+ for (const auto &II : Inputs) {
+ // Don't try to pass LLVM or AST inputs to a generic gcc.
+ if (II.getType() == types::TY_LLVM_IR || II.getType() == types::TY_LTO_IR ||
+ II.getType() == types::TY_LLVM_BC || II.getType() == types::TY_LTO_BC)
+ D.Diag(clang::diag::err_drv_no_linker_llvm_support)
+ << getToolChain().getTripleString();
+ else if (II.getType() == types::TY_AST)
+ D.Diag(clang::diag::err_drv_no_ast_support)
+ << getToolChain().getTripleString();
+ else if (II.getType() == types::TY_ModuleFile)
+ D.Diag(diag::err_drv_no_module_support)
+ << getToolChain().getTripleString();
+
+ if (II.isFilename())
+ CmdArgs.push_back(II.getFilename());
+ else
+ // Don't render as input, we need gcc to do the translations. FIXME: Pranav: What is this ?
+ II.getInputArg().render(Args, CmdArgs);
+ }
+
+ const char *GCCName = "hexagon-as";
+ const char *Exec = Args.MakeArgString(getToolChain().GetProgramPath(GCCName));
+ C.addCommand(llvm::make_unique<Command>(JA, *this, Exec, CmdArgs));
+}
+
+void hexagon::Link::RenderExtraToolArgs(const JobAction &JA,
+ ArgStringList &CmdArgs) const {
+ // The types are (hopefully) good enough.
+}
+
+static void constructHexagonLinkArgs(Compilation &C, const JobAction &JA,
+ const toolchains::Hexagon_TC& ToolChain,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const ArgList &Args,
+ ArgStringList &CmdArgs,
+ const char *LinkingOutput) {
+
+ const Driver &D = ToolChain.getDriver();
+
+
+ //----------------------------------------------------------------------------
+ //
+ //----------------------------------------------------------------------------
+ bool hasStaticArg = Args.hasArg(options::OPT_static);
+ bool buildingLib = Args.hasArg(options::OPT_shared);
+ bool buildPIE = Args.hasArg(options::OPT_pie);
+ bool incStdLib = !Args.hasArg(options::OPT_nostdlib);
+ bool incStartFiles = !Args.hasArg(options::OPT_nostartfiles);
+ bool incDefLibs = !Args.hasArg(options::OPT_nodefaultlibs);
+ bool useG0 = false;
+ bool useShared = buildingLib && !hasStaticArg;
+
+ //----------------------------------------------------------------------------
+ // Silence warnings for various options
+ //----------------------------------------------------------------------------
+
+ Args.ClaimAllArgs(options::OPT_g_Group);
+ Args.ClaimAllArgs(options::OPT_emit_llvm);
+ Args.ClaimAllArgs(options::OPT_w); // Other warning options are already
+ // handled somewhere else.
+ Args.ClaimAllArgs(options::OPT_static_libgcc);
+
+ //----------------------------------------------------------------------------
+ //
+ //----------------------------------------------------------------------------
+ for (const auto &Opt : ToolChain.ExtraOpts)
+ CmdArgs.push_back(Opt.c_str());
+
+ std::string MarchString = toolchains::Hexagon_TC::GetTargetCPU(Args);
+ CmdArgs.push_back(Args.MakeArgString("-m" + MarchString));
+
+ if (buildingLib) {
+ CmdArgs.push_back("-shared");
+ CmdArgs.push_back("-call_shared"); // should be the default, but doing as
+ // hexagon-gcc does
+ }
+
+ if (hasStaticArg)
+ CmdArgs.push_back("-static");
+
+ if (buildPIE && !buildingLib)
+ CmdArgs.push_back("-pie");
+
+ if (const char* v = toolchains::Hexagon_TC::GetSmallDataThreshold(Args)) {
+ CmdArgs.push_back(Args.MakeArgString(std::string("-G") + v));
+ useG0 = toolchains::Hexagon_TC::UsesG0(v);
+ }
+
+ //----------------------------------------------------------------------------
+ //
+ //----------------------------------------------------------------------------
+ CmdArgs.push_back("-o");
+ CmdArgs.push_back(Output.getFilename());
+
+ const std::string MarchSuffix = "/" + MarchString;
+ const std::string G0Suffix = "/G0";
+ const std::string MarchG0Suffix = MarchSuffix + G0Suffix;
+ const std::string RootDir =
+ toolchains::Hexagon_TC::GetGnuDir(D.InstalledDir, Args) + "/";
+ const std::string StartFilesDir = RootDir
+ + "hexagon/lib"
+ + (useG0 ? MarchG0Suffix : MarchSuffix);
+
+ //----------------------------------------------------------------------------
+ // moslib
+ //----------------------------------------------------------------------------
+ std::vector<std::string> oslibs;
+ bool hasStandalone= false;
+
+ for (arg_iterator it = Args.filtered_begin(options::OPT_moslib_EQ),
+ ie = Args.filtered_end(); it != ie; ++it) {
+ (*it)->claim();
+ oslibs.push_back((*it)->getValue());
+ hasStandalone = hasStandalone || (oslibs.back() == "standalone");
+ }
+ if (oslibs.empty()) {
+ oslibs.push_back("standalone");
+ hasStandalone = true;
+ }
+
+ //----------------------------------------------------------------------------
+ // Start Files
+ //----------------------------------------------------------------------------
+ if (incStdLib && incStartFiles) {
+
+ if (!buildingLib) {
+ if (hasStandalone) {
+ CmdArgs.push_back(
+ Args.MakeArgString(StartFilesDir + "/crt0_standalone.o"));
+ }
+ CmdArgs.push_back(Args.MakeArgString(StartFilesDir + "/crt0.o"));
+ }
+ std::string initObj = useShared ? "/initS.o" : "/init.o";
+ CmdArgs.push_back(Args.MakeArgString(StartFilesDir + initObj));
+ }
+
+ //----------------------------------------------------------------------------
+ // Library Search Paths
+ //----------------------------------------------------------------------------
+ const ToolChain::path_list &LibPaths = ToolChain.getFilePaths();
+ for (const auto &LibPath : LibPaths)
+ CmdArgs.push_back(Args.MakeArgString(StringRef("-L") + LibPath));
+
+ //----------------------------------------------------------------------------
+ //
+ //----------------------------------------------------------------------------
+ Args.AddAllArgs(CmdArgs, options::OPT_T_Group);
+ Args.AddAllArgs(CmdArgs, options::OPT_e);
+ Args.AddAllArgs(CmdArgs, options::OPT_s);
+ Args.AddAllArgs(CmdArgs, options::OPT_t);
+ Args.AddAllArgs(CmdArgs, options::OPT_u_Group);
+
+ AddLinkerInputs(ToolChain, Inputs, Args, CmdArgs);
+
+ //----------------------------------------------------------------------------
+ // Libraries
+ //----------------------------------------------------------------------------
+ if (incStdLib && incDefLibs) {
+ if (D.CCCIsCXX()) {
+ ToolChain.AddCXXStdlibLibArgs(Args, CmdArgs);
+ CmdArgs.push_back("-lm");
+ }
+
+ CmdArgs.push_back("--start-group");
+
+ if (!buildingLib) {
+ for(std::vector<std::string>::iterator i = oslibs.begin(),
+ e = oslibs.end(); i != e; ++i)
+ CmdArgs.push_back(Args.MakeArgString("-l" + *i));
+ CmdArgs.push_back("-lc");
+ }
+ CmdArgs.push_back("-lgcc");
+
+ CmdArgs.push_back("--end-group");
+ }
+
+ //----------------------------------------------------------------------------
+ // End files
+ //----------------------------------------------------------------------------
+ if (incStdLib && incStartFiles) {
+ std::string finiObj = useShared ? "/finiS.o" : "/fini.o";
+ CmdArgs.push_back(Args.MakeArgString(StartFilesDir + finiObj));
+ }
+}
+
+void hexagon::Link::ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const ArgList &Args,
+ const char *LinkingOutput) const {
+
+ const toolchains::Hexagon_TC& ToolChain =
+ static_cast<const toolchains::Hexagon_TC&>(getToolChain());
+
+ ArgStringList CmdArgs;
+ constructHexagonLinkArgs(C, JA, ToolChain, Output, Inputs, Args, CmdArgs,
+ LinkingOutput);
+
+ std::string Linker = ToolChain.GetProgramPath("hexagon-ld");
+ C.addCommand(llvm::make_unique<Command>(JA, *this, Args.MakeArgString(Linker),
+ CmdArgs));
+}
+// Hexagon tools end.
+
+const StringRef arm::getARMArch(const ArgList &Args,
+ const llvm::Triple &Triple) {
+ StringRef MArch;
+ if (Arg *A = Args.getLastArg(options::OPT_march_EQ)) {
+ // Otherwise, if we have -march= choose the base CPU for that arch.
+ MArch = A->getValue();
+ } else {
+ // Otherwise, use the Arch from the triple.
+ MArch = Triple.getArchName();
+ }
+
+ // Handle -march=native.
+ if (MArch == "native") {
+ std::string CPU = llvm::sys::getHostCPUName();
+ if (CPU != "generic") {
+ // Translate the native cpu into the architecture suffix for that CPU.
+ const char *Suffix = arm::getLLVMArchSuffixForARM(CPU, MArch);
+ // If there is no valid architecture suffix for this CPU we don't know how
+ // to handle it, so return no architecture.
+ if (strcmp(Suffix,"") == 0)
+ MArch = "";
+ else
+ MArch = std::string("arm") + Suffix;
+ }
+ }
+
+ return MArch;
+}
+/// Get the (LLVM) name of the minimum ARM CPU for the arch we are targeting.
+const char *arm::getARMCPUForMArch(const ArgList &Args,
+ const llvm::Triple &Triple) {
+ StringRef MArch = getARMArch(Args, Triple);
+ // getARMCPUForArch defaults to the triple if MArch is empty, but empty MArch
+ // here means an -march=native that we can't handle, so instead return no CPU.
+ if (MArch.empty())
+ return "";
+
+ // We need to return an empty string here on invalid MArch values as the
+ // various places that call this function can't cope with a null result.
+ const char *result = Triple.getARMCPUForArch(MArch);
+ if (result)
+ return result;
+ else
+ return "";
+}
+
+/// getARMTargetCPU - Get the (LLVM) name of the ARM cpu we are targeting.
+StringRef arm::getARMTargetCPU(const ArgList &Args,
+ const llvm::Triple &Triple) {
+ // FIXME: Warn on inconsistent use of -mcpu and -march.
+ // If we have -mcpu=, use that.
+ if (Arg *A = Args.getLastArg(options::OPT_mcpu_EQ)) {
+ StringRef MCPU = A->getValue();
+ // Handle -mcpu=native.
+ if (MCPU == "native")
+ return llvm::sys::getHostCPUName();
+ else
+ return MCPU;
+ }
+
+ return getARMCPUForMArch(Args, Triple);
+}
+
+/// getLLVMArchSuffixForARM - Get the LLVM arch name to use for a particular
+/// CPU (or Arch, if CPU is generic).
+//
+// FIXME: This is redundant with -mcpu, why does LLVM use this.
+// FIXME: tblgen this, or kill it!
+// FIXME: Use ARMTargetParser.
+const char *arm::getLLVMArchSuffixForARM(StringRef CPU, StringRef Arch) {
+ // FIXME: Use ARMTargetParser
+ if (CPU == "generic") {
+ if (Arch == "armv8.1a" || Arch == "armv8.1-a" ||
+ Arch == "armebv8.1a" || Arch == "armebv8.1-a") {
+ return "v8.1a";
+ }
+ }
+
+ // FIXME: Use ARMTargetParser
+ return llvm::StringSwitch<const char *>(CPU)
+ .Cases("arm8", "arm810", "v4")
+ .Cases("strongarm", "strongarm110", "strongarm1100", "strongarm1110", "v4")
+ .Cases("arm7tdmi", "arm7tdmi-s", "arm710t", "v4t")
+ .Cases("arm720t", "arm9", "arm9tdmi", "v4t")
+ .Cases("arm920", "arm920t", "arm922t", "v4t")
+ .Cases("arm940t", "ep9312","v4t")
+ .Cases("arm10tdmi", "arm1020t", "v5")
+ .Cases("arm9e", "arm926ej-s", "arm946e-s", "v5e")
+ .Cases("arm966e-s", "arm968e-s", "arm10e", "v5e")
+ .Cases("arm1020e", "arm1022e", "xscale", "iwmmxt", "v5e")
+ .Cases("arm1136j-s", "arm1136jf-s", "v6")
+ .Cases("arm1176jz-s", "arm1176jzf-s", "v6k")
+ .Cases("mpcorenovfp", "mpcore", "v6k")
+ .Cases("arm1156t2-s", "arm1156t2f-s", "v6t2")
+ .Cases("cortex-a5", "cortex-a7", "cortex-a8", "v7")
+ .Cases("cortex-a9", "cortex-a12", "cortex-a15", "cortex-a17", "krait", "v7")
+ .Cases("cortex-r4", "cortex-r4f", "cortex-r5", "cortex-r7", "v7r")
+ .Cases("sc000", "cortex-m0", "cortex-m0plus", "cortex-m1", "v6m")
+ .Cases("sc300", "cortex-m3", "v7m")
+ .Cases("cortex-m4", "cortex-m7", "v7em")
+ .Case("swift", "v7s")
+ .Case("cyclone", "v8")
+ .Cases("cortex-a53", "cortex-a57", "cortex-a72", "v8")
+ .Default("");
+}
+
+void arm::appendEBLinkFlags(const ArgList &Args, ArgStringList &CmdArgs,
+ const llvm::Triple &Triple) {
+ if (Args.hasArg(options::OPT_r))
+ return;
+
+ // ARMv7 (and later) and ARMv6-M do not support BE-32, so instruct the linker
+ // to generate BE-8 executables.
+ if (getARMSubArchVersionNumber(Triple) >= 7 || isARMMProfile(Triple))
+ CmdArgs.push_back("--be8");
+}
+
+mips::NanEncoding mips::getSupportedNanEncoding(StringRef &CPU) {
+ return (NanEncoding)llvm::StringSwitch<int>(CPU)
+ .Case("mips1", NanLegacy)
+ .Case("mips2", NanLegacy)
+ .Case("mips3", NanLegacy)
+ .Case("mips4", NanLegacy)
+ .Case("mips5", NanLegacy)
+ .Case("mips32", NanLegacy)
+ .Case("mips32r2", NanLegacy)
+ .Case("mips32r3", NanLegacy | Nan2008)
+ .Case("mips32r5", NanLegacy | Nan2008)
+ .Case("mips32r6", Nan2008)
+ .Case("mips64", NanLegacy)
+ .Case("mips64r2", NanLegacy)
+ .Case("mips64r3", NanLegacy | Nan2008)
+ .Case("mips64r5", NanLegacy | Nan2008)
+ .Case("mips64r6", Nan2008)
+ .Default(NanLegacy);
+}
+
+bool mips::hasMipsAbiArg(const ArgList &Args, const char *Value) {
+ Arg *A = Args.getLastArg(options::OPT_mabi_EQ);
+ return A && (A->getValue() == StringRef(Value));
+}
+
+bool mips::isUCLibc(const ArgList &Args) {
+ Arg *A = Args.getLastArg(options::OPT_m_libc_Group);
+ return A && A->getOption().matches(options::OPT_muclibc);
+}
+
+bool mips::isNaN2008(const ArgList &Args, const llvm::Triple &Triple) {
+ if (Arg *NaNArg = Args.getLastArg(options::OPT_mnan_EQ))
+ return llvm::StringSwitch<bool>(NaNArg->getValue())
+ .Case("2008", true)
+ .Case("legacy", false)
+ .Default(false);
+
+ // NaN2008 is the default for MIPS32r6/MIPS64r6.
+ return llvm::StringSwitch<bool>(getCPUName(Args, Triple))
+ .Cases("mips32r6", "mips64r6", true)
+ .Default(false);
+
+ return false;
+}
+
+bool mips::isFPXXDefault(const llvm::Triple &Triple, StringRef CPUName,
+ StringRef ABIName) {
+ if (Triple.getVendor() != llvm::Triple::ImaginationTechnologies &&
+ Triple.getVendor() != llvm::Triple::MipsTechnologies)
+ return false;
+
+ if (ABIName != "32")
+ return false;
+
+ return llvm::StringSwitch<bool>(CPUName)
+ .Cases("mips2", "mips3", "mips4", "mips5", true)
+ .Cases("mips32", "mips32r2", "mips32r3", "mips32r5", true)
+ .Cases("mips64", "mips64r2", "mips64r3", "mips64r5", true)
+ .Default(false);
+}
+
+llvm::Triple::ArchType darwin::getArchTypeForMachOArchName(StringRef Str) {
+ // See arch(3) and llvm-gcc's driver-driver.c. We don't implement support for
+ // archs which Darwin doesn't use.
+
+ // The matching this routine does is fairly pointless, since it is neither the
+ // complete architecture list, nor a reasonable subset. The problem is that
+ // historically the driver driver accepts this and also ties its -march=
+ // handling to the architecture name, so we need to be careful before removing
+ // support for it.
+
+ // This code must be kept in sync with Clang's Darwin specific argument
+ // translation.
+
+ return llvm::StringSwitch<llvm::Triple::ArchType>(Str)
+ .Cases("ppc", "ppc601", "ppc603", "ppc604", "ppc604e", llvm::Triple::ppc)
+ .Cases("ppc750", "ppc7400", "ppc7450", "ppc970", llvm::Triple::ppc)
+ .Case("ppc64", llvm::Triple::ppc64)
+ .Cases("i386", "i486", "i486SX", "i586", "i686", llvm::Triple::x86)
+ .Cases("pentium", "pentpro", "pentIIm3", "pentIIm5", "pentium4",
+ llvm::Triple::x86)
+ .Cases("x86_64", "x86_64h", llvm::Triple::x86_64)
+ // This is derived from the driver driver.
+ .Cases("arm", "armv4t", "armv5", "armv6", "armv6m", llvm::Triple::arm)
+ .Cases("armv7", "armv7em", "armv7k", "armv7m", llvm::Triple::arm)
+ .Cases("armv7s", "xscale", llvm::Triple::arm)
+ .Case("arm64", llvm::Triple::aarch64)
+ .Case("r600", llvm::Triple::r600)
+ .Case("amdgcn", llvm::Triple::amdgcn)
+ .Case("nvptx", llvm::Triple::nvptx)
+ .Case("nvptx64", llvm::Triple::nvptx64)
+ .Case("amdil", llvm::Triple::amdil)
+ .Case("spir", llvm::Triple::spir)
+ .Default(llvm::Triple::UnknownArch);
+}
+
+void darwin::setTripleTypeForMachOArchName(llvm::Triple &T, StringRef Str) {
+ llvm::Triple::ArchType Arch = getArchTypeForMachOArchName(Str);
+ T.setArch(Arch);
+
+ if (Str == "x86_64h")
+ T.setArchName(Str);
+ else if (Str == "armv6m" || Str == "armv7m" || Str == "armv7em") {
+ T.setOS(llvm::Triple::UnknownOS);
+ T.setObjectFormat(llvm::Triple::MachO);
+ }
+}
+
+const char *Clang::getBaseInputName(const ArgList &Args,
+ const InputInfo &Input) {
+ return Args.MakeArgString(llvm::sys::path::filename(Input.getBaseInput()));
+}
+
+const char *Clang::getBaseInputStem(const ArgList &Args,
+ const InputInfoList &Inputs) {
+ const char *Str = getBaseInputName(Args, Inputs[0]);
+
+ if (const char *End = strrchr(Str, '.'))
+ return Args.MakeArgString(std::string(Str, End));
+
+ return Str;
+}
+
+const char *Clang::getDependencyFileName(const ArgList &Args,
+ const InputInfoList &Inputs) {
+ // FIXME: Think about this more.
+ std::string Res;
+
+ if (Arg *OutputOpt = Args.getLastArg(options::OPT_o)) {
+ std::string Str(OutputOpt->getValue());
+ Res = Str.substr(0, Str.rfind('.'));
+ } else {
+ Res = getBaseInputStem(Args, Inputs);
+ }
+ return Args.MakeArgString(Res + ".d");
+}
+
+void cloudabi::Link::ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const ArgList &Args,
+ const char *LinkingOutput) const {
+ const ToolChain &ToolChain = getToolChain();
+ const Driver &D = ToolChain.getDriver();
+ ArgStringList CmdArgs;
+
+ // Silence warning for "clang -g foo.o -o foo"
+ Args.ClaimAllArgs(options::OPT_g_Group);
+ // and "clang -emit-llvm foo.o -o foo"
+ Args.ClaimAllArgs(options::OPT_emit_llvm);
+ // and for "clang -w foo.o -o foo". Other warning options are already
+ // handled somewhere else.
+ Args.ClaimAllArgs(options::OPT_w);
+
+ if (!D.SysRoot.empty())
+ CmdArgs.push_back(Args.MakeArgString("--sysroot=" + D.SysRoot));
+
+ // CloudABI only supports static linkage.
+ CmdArgs.push_back("-Bstatic");
+ CmdArgs.push_back("--eh-frame-hdr");
+ CmdArgs.push_back("--gc-sections");
+
+ if (Output.isFilename()) {
+ CmdArgs.push_back("-o");
+ CmdArgs.push_back(Output.getFilename());
+ } else {
+ assert(Output.isNothing() && "Invalid output.");
+ }
+
+ if (!Args.hasArg(options::OPT_nostdlib) &&
+ !Args.hasArg(options::OPT_nostartfiles)) {
+ CmdArgs.push_back(Args.MakeArgString(ToolChain.GetFilePath("crt0.o")));
+ CmdArgs.push_back(Args.MakeArgString(ToolChain.GetFilePath("crtbegin.o")));
+ }
+
+ Args.AddAllArgs(CmdArgs, options::OPT_L);
+ const ToolChain::path_list &Paths = ToolChain.getFilePaths();
+ for (const auto &Path : Paths)
+ CmdArgs.push_back(Args.MakeArgString(StringRef("-L") + Path));
+ Args.AddAllArgs(CmdArgs, options::OPT_T_Group);
+ Args.AddAllArgs(CmdArgs, options::OPT_e);
+ Args.AddAllArgs(CmdArgs, options::OPT_s);
+ Args.AddAllArgs(CmdArgs, options::OPT_t);
+ Args.AddAllArgs(CmdArgs, options::OPT_Z_Flag);
+ Args.AddAllArgs(CmdArgs, options::OPT_r);
+
+ if (D.IsUsingLTO(ToolChain, Args))
+ AddGoldPlugin(ToolChain, Args, CmdArgs);
+
+ AddLinkerInputs(ToolChain, Inputs, Args, CmdArgs);
+
+ if (!Args.hasArg(options::OPT_nostdlib) &&
+ !Args.hasArg(options::OPT_nodefaultlibs)) {
+ if (D.CCCIsCXX())
+ ToolChain.AddCXXStdlibLibArgs(Args, CmdArgs);
+ CmdArgs.push_back("-lc");
+ CmdArgs.push_back("-lcompiler_rt");
+ }
+
+ if (!Args.hasArg(options::OPT_nostdlib) &&
+ !Args.hasArg(options::OPT_nostartfiles))
+ CmdArgs.push_back(Args.MakeArgString(ToolChain.GetFilePath("crtend.o")));
+
+ const char *Exec = Args.MakeArgString(ToolChain.GetLinkerPath());
+ C.addCommand(llvm::make_unique<Command>(JA, *this, Exec, CmdArgs));
+}
+
+void darwin::Assemble::ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const ArgList &Args,
+ const char *LinkingOutput) const {
+ ArgStringList CmdArgs;
+
+ assert(Inputs.size() == 1 && "Unexpected number of inputs.");
+ const InputInfo &Input = Inputs[0];
+
+ // Determine the original source input.
+ const Action *SourceAction = &JA;
+ while (SourceAction->getKind() != Action::InputClass) {
+ assert(!SourceAction->getInputs().empty() && "unexpected root action!");
+ SourceAction = SourceAction->getInputs()[0];
+ }
+
+ // If -fno_integrated_as is used add -Q to the darwin assember driver to make
+ // sure it runs its system assembler not clang's integrated assembler.
+ // Applicable to darwin11+ and Xcode 4+. darwin<10 lacked integrated-as.
+ // FIXME: at run-time detect assembler capabilities or rely on version
+ // information forwarded by -target-assembler-version (future)
+ if (Args.hasArg(options::OPT_fno_integrated_as)) {
+ const llvm::Triple &T(getToolChain().getTriple());
+ if (!(T.isMacOSX() && T.isMacOSXVersionLT(10, 7)))
+ CmdArgs.push_back("-Q");
+ }
+
+ // Forward -g, assuming we are dealing with an actual assembly file.
+ if (SourceAction->getType() == types::TY_Asm ||
+ SourceAction->getType() == types::TY_PP_Asm) {
+ if (Args.hasArg(options::OPT_gstabs))
+ CmdArgs.push_back("--gstabs");
+ else if (Args.hasArg(options::OPT_g_Group))
+ CmdArgs.push_back("-g");
+ }
+
+ // Derived from asm spec.
+ AddMachOArch(Args, CmdArgs);
+
+ // Use -force_cpusubtype_ALL on x86 by default.
+ if (getToolChain().getArch() == llvm::Triple::x86 ||
+ getToolChain().getArch() == llvm::Triple::x86_64 ||
+ Args.hasArg(options::OPT_force__cpusubtype__ALL))
+ CmdArgs.push_back("-force_cpusubtype_ALL");
+
+ if (getToolChain().getArch() != llvm::Triple::x86_64 &&
+ (((Args.hasArg(options::OPT_mkernel) ||
+ Args.hasArg(options::OPT_fapple_kext)) &&
+ getMachOToolChain().isKernelStatic()) ||
+ Args.hasArg(options::OPT_static)))
+ CmdArgs.push_back("-static");
+
+ Args.AddAllArgValues(CmdArgs, options::OPT_Wa_COMMA,
+ options::OPT_Xassembler);
+
+ assert(Output.isFilename() && "Unexpected lipo output.");
+ CmdArgs.push_back("-o");
+ CmdArgs.push_back(Output.getFilename());
+
+ assert(Input.isFilename() && "Invalid input.");
+ CmdArgs.push_back(Input.getFilename());
+
+ // asm_final spec is empty.
+
+ const char *Exec =
+ Args.MakeArgString(getToolChain().GetProgramPath("as"));
+ C.addCommand(llvm::make_unique<Command>(JA, *this, Exec, CmdArgs));
+}
+
+void darwin::MachOTool::anchor() {}
+
+void darwin::MachOTool::AddMachOArch(const ArgList &Args,
+ ArgStringList &CmdArgs) const {
+ StringRef ArchName = getMachOToolChain().getMachOArchName(Args);
+
+ // Derived from darwin_arch spec.
+ CmdArgs.push_back("-arch");
+ CmdArgs.push_back(Args.MakeArgString(ArchName));
+
+ // FIXME: Is this needed anymore?
+ if (ArchName == "arm")
+ CmdArgs.push_back("-force_cpusubtype_ALL");
+}
+
+bool darwin::Link::NeedsTempPath(const InputInfoList &Inputs) const {
+ // We only need to generate a temp path for LTO if we aren't compiling object
+ // files. When compiling source files, we run 'dsymutil' after linking. We
+ // don't run 'dsymutil' when compiling object files.
+ for (const auto &Input : Inputs)
+ if (Input.getType() != types::TY_Object)
+ return true;
+
+ return false;
+}
+
+void darwin::Link::AddLinkArgs(Compilation &C,
+ const ArgList &Args,
+ ArgStringList &CmdArgs,
+ const InputInfoList &Inputs) const {
+ const Driver &D = getToolChain().getDriver();
+ const toolchains::MachO &MachOTC = getMachOToolChain();
+
+ unsigned Version[3] = { 0, 0, 0 };
+ if (Arg *A = Args.getLastArg(options::OPT_mlinker_version_EQ)) {
+ bool HadExtra;
+ if (!Driver::GetReleaseVersion(A->getValue(), Version[0],
+ Version[1], Version[2], HadExtra) ||
+ HadExtra)
+ D.Diag(diag::err_drv_invalid_version_number)
+ << A->getAsString(Args);
+ }
+
+ // Newer linkers support -demangle. Pass it if supported and not disabled by
+ // the user.
+ if (Version[0] >= 100 && !Args.hasArg(options::OPT_Z_Xlinker__no_demangle))
+ CmdArgs.push_back("-demangle");
+
+ if (Args.hasArg(options::OPT_rdynamic) && Version[0] >= 137)
+ CmdArgs.push_back("-export_dynamic");
+
+ // If we are using App Extension restrictions, pass a flag to the linker
+ // telling it that the compiled code has been audited.
+ if (Args.hasFlag(options::OPT_fapplication_extension,
+ options::OPT_fno_application_extension, false))
+ CmdArgs.push_back("-application_extension");
+
+ // If we are using LTO, then automatically create a temporary file path for
+ // the linker to use, so that it's lifetime will extend past a possible
+ // dsymutil step.
+ if (Version[0] >= 116 && D.IsUsingLTO(getToolChain(), Args) &&
+ NeedsTempPath(Inputs)) {
+ const char *TmpPath = C.getArgs().MakeArgString(
+ D.GetTemporaryPath("cc", types::getTypeTempSuffix(types::TY_Object)));
+ C.addTempFile(TmpPath);
+ CmdArgs.push_back("-object_path_lto");
+ CmdArgs.push_back(TmpPath);
+ }
+
+ // Derived from the "link" spec.
+ Args.AddAllArgs(CmdArgs, options::OPT_static);
+ if (!Args.hasArg(options::OPT_static))
+ CmdArgs.push_back("-dynamic");
+ if (Args.hasArg(options::OPT_fgnu_runtime)) {
+ // FIXME: gcc replaces -lobjc in forward args with -lobjc-gnu
+ // here. How do we wish to handle such things?
+ }
+
+ if (!Args.hasArg(options::OPT_dynamiclib)) {
+ AddMachOArch(Args, CmdArgs);
+ // FIXME: Why do this only on this path?
+ Args.AddLastArg(CmdArgs, options::OPT_force__cpusubtype__ALL);
+
+ Args.AddLastArg(CmdArgs, options::OPT_bundle);
+ Args.AddAllArgs(CmdArgs, options::OPT_bundle__loader);
+ Args.AddAllArgs(CmdArgs, options::OPT_client__name);
+
+ Arg *A;
+ if ((A = Args.getLastArg(options::OPT_compatibility__version)) ||
+ (A = Args.getLastArg(options::OPT_current__version)) ||
+ (A = Args.getLastArg(options::OPT_install__name)))
+ D.Diag(diag::err_drv_argument_only_allowed_with)
+ << A->getAsString(Args) << "-dynamiclib";
+
+ Args.AddLastArg(CmdArgs, options::OPT_force__flat__namespace);
+ Args.AddLastArg(CmdArgs, options::OPT_keep__private__externs);
+ Args.AddLastArg(CmdArgs, options::OPT_private__bundle);
+ } else {
+ CmdArgs.push_back("-dylib");
+
+ Arg *A;
+ if ((A = Args.getLastArg(options::OPT_bundle)) ||
+ (A = Args.getLastArg(options::OPT_bundle__loader)) ||
+ (A = Args.getLastArg(options::OPT_client__name)) ||
+ (A = Args.getLastArg(options::OPT_force__flat__namespace)) ||
+ (A = Args.getLastArg(options::OPT_keep__private__externs)) ||
+ (A = Args.getLastArg(options::OPT_private__bundle)))
+ D.Diag(diag::err_drv_argument_not_allowed_with)
+ << A->getAsString(Args) << "-dynamiclib";
+
+ Args.AddAllArgsTranslated(CmdArgs, options::OPT_compatibility__version,
+ "-dylib_compatibility_version");
+ Args.AddAllArgsTranslated(CmdArgs, options::OPT_current__version,
+ "-dylib_current_version");
+
+ AddMachOArch(Args, CmdArgs);
+
+ Args.AddAllArgsTranslated(CmdArgs, options::OPT_install__name,
+ "-dylib_install_name");
+ }
+
+ Args.AddLastArg(CmdArgs, options::OPT_all__load);
+ Args.AddAllArgs(CmdArgs, options::OPT_allowable__client);
+ Args.AddLastArg(CmdArgs, options::OPT_bind__at__load);
+ if (MachOTC.isTargetIOSBased())
+ Args.AddLastArg(CmdArgs, options::OPT_arch__errors__fatal);
+ Args.AddLastArg(CmdArgs, options::OPT_dead__strip);
+ Args.AddLastArg(CmdArgs, options::OPT_no__dead__strip__inits__and__terms);
+ Args.AddAllArgs(CmdArgs, options::OPT_dylib__file);
+ Args.AddLastArg(CmdArgs, options::OPT_dynamic);
+ Args.AddAllArgs(CmdArgs, options::OPT_exported__symbols__list);
+ Args.AddLastArg(CmdArgs, options::OPT_flat__namespace);
+ Args.AddAllArgs(CmdArgs, options::OPT_force__load);
+ Args.AddAllArgs(CmdArgs, options::OPT_headerpad__max__install__names);
+ Args.AddAllArgs(CmdArgs, options::OPT_image__base);
+ Args.AddAllArgs(CmdArgs, options::OPT_init);
+
+ // Add the deployment target.
+ MachOTC.addMinVersionArgs(Args, CmdArgs);
+
+ Args.AddLastArg(CmdArgs, options::OPT_nomultidefs);
+ Args.AddLastArg(CmdArgs, options::OPT_multi__module);
+ Args.AddLastArg(CmdArgs, options::OPT_single__module);
+ Args.AddAllArgs(CmdArgs, options::OPT_multiply__defined);
+ Args.AddAllArgs(CmdArgs, options::OPT_multiply__defined__unused);
+
+ if (const Arg *A = Args.getLastArg(options::OPT_fpie, options::OPT_fPIE,
+ options::OPT_fno_pie,
+ options::OPT_fno_PIE)) {
+ if (A->getOption().matches(options::OPT_fpie) ||
+ A->getOption().matches(options::OPT_fPIE))
+ CmdArgs.push_back("-pie");
+ else
+ CmdArgs.push_back("-no_pie");
+ }
+
+ Args.AddLastArg(CmdArgs, options::OPT_prebind);
+ Args.AddLastArg(CmdArgs, options::OPT_noprebind);
+ Args.AddLastArg(CmdArgs, options::OPT_nofixprebinding);
+ Args.AddLastArg(CmdArgs, options::OPT_prebind__all__twolevel__modules);
+ Args.AddLastArg(CmdArgs, options::OPT_read__only__relocs);
+ Args.AddAllArgs(CmdArgs, options::OPT_sectcreate);
+ Args.AddAllArgs(CmdArgs, options::OPT_sectorder);
+ Args.AddAllArgs(CmdArgs, options::OPT_seg1addr);
+ Args.AddAllArgs(CmdArgs, options::OPT_segprot);
+ Args.AddAllArgs(CmdArgs, options::OPT_segaddr);
+ Args.AddAllArgs(CmdArgs, options::OPT_segs__read__only__addr);
+ Args.AddAllArgs(CmdArgs, options::OPT_segs__read__write__addr);
+ Args.AddAllArgs(CmdArgs, options::OPT_seg__addr__table);
+ Args.AddAllArgs(CmdArgs, options::OPT_seg__addr__table__filename);
+ Args.AddAllArgs(CmdArgs, options::OPT_sub__library);
+ Args.AddAllArgs(CmdArgs, options::OPT_sub__umbrella);
+
+ // Give --sysroot= preference, over the Apple specific behavior to also use
+ // --isysroot as the syslibroot.
+ StringRef sysroot = C.getSysRoot();
+ if (sysroot != "") {
+ CmdArgs.push_back("-syslibroot");
+ CmdArgs.push_back(C.getArgs().MakeArgString(sysroot));
+ } else if (const Arg *A = Args.getLastArg(options::OPT_isysroot)) {
+ CmdArgs.push_back("-syslibroot");
+ CmdArgs.push_back(A->getValue());
+ }
+
+ Args.AddLastArg(CmdArgs, options::OPT_twolevel__namespace);
+ Args.AddLastArg(CmdArgs, options::OPT_twolevel__namespace__hints);
+ Args.AddAllArgs(CmdArgs, options::OPT_umbrella);
+ Args.AddAllArgs(CmdArgs, options::OPT_undefined);
+ Args.AddAllArgs(CmdArgs, options::OPT_unexported__symbols__list);
+ Args.AddAllArgs(CmdArgs, options::OPT_weak__reference__mismatches);
+ Args.AddLastArg(CmdArgs, options::OPT_X_Flag);
+ Args.AddAllArgs(CmdArgs, options::OPT_y);
+ Args.AddLastArg(CmdArgs, options::OPT_w);
+ Args.AddAllArgs(CmdArgs, options::OPT_pagezero__size);
+ Args.AddAllArgs(CmdArgs, options::OPT_segs__read__);
+ Args.AddLastArg(CmdArgs, options::OPT_seglinkedit);
+ Args.AddLastArg(CmdArgs, options::OPT_noseglinkedit);
+ Args.AddAllArgs(CmdArgs, options::OPT_sectalign);
+ Args.AddAllArgs(CmdArgs, options::OPT_sectobjectsymbols);
+ Args.AddAllArgs(CmdArgs, options::OPT_segcreate);
+ Args.AddLastArg(CmdArgs, options::OPT_whyload);
+ Args.AddLastArg(CmdArgs, options::OPT_whatsloaded);
+ Args.AddAllArgs(CmdArgs, options::OPT_dylinker__install__name);
+ Args.AddLastArg(CmdArgs, options::OPT_dylinker);
+ Args.AddLastArg(CmdArgs, options::OPT_Mach);
+}
+
+enum LibOpenMP {
+ LibUnknown,
+ LibGOMP,
+ LibIOMP5
+};
+
+/// Map a -fopenmp=<blah> macro to the corresponding library.
+static LibOpenMP getOpenMPLibByName(StringRef Name) {
+ return llvm::StringSwitch<LibOpenMP>(Name).Case("libgomp", LibGOMP)
+ .Case("libiomp5", LibIOMP5)
+ .Default(LibUnknown);
+}
+
+/// Get the default -l<blah> flag to use for -fopenmp, if no library is
+/// specified. This can be overridden at configure time.
+static const char *getDefaultOpenMPLibFlag() {
+#ifndef OPENMP_DEFAULT_LIB
+#define OPENMP_DEFAULT_LIB iomp5
+#endif
+
+#define STR2(lib) #lib
+#define STR(lib) STR2(lib)
+ return "-l" STR(OPENMP_DEFAULT_LIB);
+#undef STR
+#undef STR2
+}
+
+void darwin::Link::ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const ArgList &Args,
+ const char *LinkingOutput) const {
+ assert(Output.getType() == types::TY_Image && "Invalid linker output type.");
+
+ // If the number of arguments surpasses the system limits, we will encode the
+ // input files in a separate file, shortening the command line. To this end,
+ // build a list of input file names that can be passed via a file with the
+ // -filelist linker option.
+ llvm::opt::ArgStringList InputFileList;
+
+ // The logic here is derived from gcc's behavior; most of which
+ // comes from specs (starting with link_command). Consult gcc for
+ // more information.
+ ArgStringList CmdArgs;
+
+ /// Hack(tm) to ignore linking errors when we are doing ARC migration.
+ if (Args.hasArg(options::OPT_ccc_arcmt_check,
+ options::OPT_ccc_arcmt_migrate)) {
+ for (const auto &Arg : Args)
+ Arg->claim();
+ const char *Exec =
+ Args.MakeArgString(getToolChain().GetProgramPath("touch"));
+ CmdArgs.push_back(Output.getFilename());
+ C.addCommand(llvm::make_unique<Command>(JA, *this, Exec, CmdArgs));
+ return;
+ }
+
+ // I'm not sure why this particular decomposition exists in gcc, but
+ // we follow suite for ease of comparison.
+ AddLinkArgs(C, Args, CmdArgs, Inputs);
+
+ Args.AddAllArgs(CmdArgs, options::OPT_d_Flag);
+ Args.AddAllArgs(CmdArgs, options::OPT_s);
+ Args.AddAllArgs(CmdArgs, options::OPT_t);
+ Args.AddAllArgs(CmdArgs, options::OPT_Z_Flag);
+ Args.AddAllArgs(CmdArgs, options::OPT_u_Group);
+ Args.AddLastArg(CmdArgs, options::OPT_e);
+ Args.AddAllArgs(CmdArgs, options::OPT_r);
+
+ // Forward -ObjC when either -ObjC or -ObjC++ is used, to force loading
+ // members of static archive libraries which implement Objective-C classes or
+ // categories.
+ if (Args.hasArg(options::OPT_ObjC) || Args.hasArg(options::OPT_ObjCXX))
+ CmdArgs.push_back("-ObjC");
+
+ CmdArgs.push_back("-o");
+ CmdArgs.push_back(Output.getFilename());
+
+ if (!Args.hasArg(options::OPT_nostdlib) &&
+ !Args.hasArg(options::OPT_nostartfiles))
+ getMachOToolChain().addStartObjectFileArgs(Args, CmdArgs);
+
+ Args.AddAllArgs(CmdArgs, options::OPT_L);
+
+ if (const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ)) {
+ switch (getOpenMPLibByName(A->getValue())) {
+ case LibGOMP:
+ CmdArgs.push_back("-lgomp");
+ break;
+ case LibIOMP5:
+ CmdArgs.push_back("-liomp5");
+ break;
+ case LibUnknown:
+ getToolChain().getDriver().Diag(diag::err_drv_unsupported_option_argument)
+ << A->getOption().getName() << A->getValue();
+ break;
+ }
+ } else if (Args.hasArg(options::OPT_fopenmp)) {
+ CmdArgs.push_back(getDefaultOpenMPLibFlag());
+ }
+
+ AddLinkerInputs(getToolChain(), Inputs, Args, CmdArgs);
+ // Build the input file for -filelist (list of linker input files) in case we
+ // need it later
+ for (const auto &II : Inputs) {
+ if (!II.isFilename()) {
+ // This is a linker input argument.
+ // We cannot mix input arguments and file names in a -filelist input, thus
+ // we prematurely stop our list (remaining files shall be passed as
+ // arguments).
+ if (InputFileList.size() > 0)
+ break;
+
+ continue;
+ }
+
+ InputFileList.push_back(II.getFilename());
+ }
+
+ if (isObjCRuntimeLinked(Args) &&
+ !Args.hasArg(options::OPT_nostdlib) &&
+ !Args.hasArg(options::OPT_nodefaultlibs)) {
+ // We use arclite library for both ARC and subscripting support.
+ getMachOToolChain().AddLinkARCArgs(Args, CmdArgs);
+
+ CmdArgs.push_back("-framework");
+ CmdArgs.push_back("Foundation");
+ // Link libobj.
+ CmdArgs.push_back("-lobjc");
+ }
+
+ if (LinkingOutput) {
+ CmdArgs.push_back("-arch_multiple");
+ CmdArgs.push_back("-final_output");
+ CmdArgs.push_back(LinkingOutput);
+ }
+
+ if (Args.hasArg(options::OPT_fnested_functions))
+ CmdArgs.push_back("-allow_stack_execute");
+
+ // TODO: It would be nice to use addProfileRT() here, but darwin's compiler-rt
+ // paths are different enough from other toolchains that this needs a fair
+ // amount of refactoring done first.
+ getMachOToolChain().addProfileRTLibs(Args, CmdArgs);
+
+ if (!Args.hasArg(options::OPT_nostdlib) &&
+ !Args.hasArg(options::OPT_nodefaultlibs)) {
+ if (getToolChain().getDriver().CCCIsCXX())
+ getToolChain().AddCXXStdlibLibArgs(Args, CmdArgs);
+
+ // link_ssp spec is empty.
+
+ // Let the tool chain choose which runtime library to link.
+ getMachOToolChain().AddLinkRuntimeLibArgs(Args, CmdArgs);
+ }
+
+ if (!Args.hasArg(options::OPT_nostdlib) &&
+ !Args.hasArg(options::OPT_nostartfiles)) {
+ // endfile_spec is empty.
+ }
+
+ Args.AddAllArgs(CmdArgs, options::OPT_T_Group);
+ Args.AddAllArgs(CmdArgs, options::OPT_F);
+
+ // -iframework should be forwarded as -F.
+ for (auto it = Args.filtered_begin(options::OPT_iframework),
+ ie = Args.filtered_end(); it != ie; ++it)
+ CmdArgs.push_back(Args.MakeArgString(std::string("-F") +
+ (*it)->getValue()));
+
+ if (!Args.hasArg(options::OPT_nostdlib) &&
+ !Args.hasArg(options::OPT_nodefaultlibs)) {
+ if (Arg *A = Args.getLastArg(options::OPT_fveclib)) {
+ if (A->getValue() == StringRef("Accelerate")) {
+ CmdArgs.push_back("-framework");
+ CmdArgs.push_back("Accelerate");
+ }
+ }
+ }
+
+ const char *Exec =
+ Args.MakeArgString(getToolChain().GetLinkerPath());
+ std::unique_ptr<Command> Cmd =
+ llvm::make_unique<Command>(JA, *this, Exec, CmdArgs);
+ Cmd->setInputFileList(std::move(InputFileList));
+ C.addCommand(std::move(Cmd));
+}
+
+void darwin::Lipo::ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const ArgList &Args,
+ const char *LinkingOutput) const {
+ ArgStringList CmdArgs;
+
+ CmdArgs.push_back("-create");
+ assert(Output.isFilename() && "Unexpected lipo output.");
+
+ CmdArgs.push_back("-output");
+ CmdArgs.push_back(Output.getFilename());
+
+ for (const auto &II : Inputs) {
+ assert(II.isFilename() && "Unexpected lipo input.");
+ CmdArgs.push_back(II.getFilename());
+ }
+
+ const char *Exec = Args.MakeArgString(getToolChain().GetProgramPath("lipo"));
+ C.addCommand(llvm::make_unique<Command>(JA, *this, Exec, CmdArgs));
+}
+
+void darwin::Dsymutil::ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const ArgList &Args,
+ const char *LinkingOutput) const {
+ ArgStringList CmdArgs;
+
+ CmdArgs.push_back("-o");
+ CmdArgs.push_back(Output.getFilename());
+
+ assert(Inputs.size() == 1 && "Unable to handle multiple inputs.");
+ const InputInfo &Input = Inputs[0];
+ assert(Input.isFilename() && "Unexpected dsymutil input.");
+ CmdArgs.push_back(Input.getFilename());
+
+ const char *Exec =
+ Args.MakeArgString(getToolChain().GetProgramPath("dsymutil"));
+ C.addCommand(llvm::make_unique<Command>(JA, *this, Exec, CmdArgs));
+}
+
+void darwin::VerifyDebug::ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const ArgList &Args,
+ const char *LinkingOutput) const {
+ ArgStringList CmdArgs;
+ CmdArgs.push_back("--verify");
+ CmdArgs.push_back("--debug-info");
+ CmdArgs.push_back("--eh-frame");
+ CmdArgs.push_back("--quiet");
+
+ assert(Inputs.size() == 1 && "Unable to handle multiple inputs.");
+ const InputInfo &Input = Inputs[0];
+ assert(Input.isFilename() && "Unexpected verify input");
+
+ // Grabbing the output of the earlier dsymutil run.
+ CmdArgs.push_back(Input.getFilename());
+
+ const char *Exec =
+ Args.MakeArgString(getToolChain().GetProgramPath("dwarfdump"));
+ C.addCommand(llvm::make_unique<Command>(JA, *this, Exec, CmdArgs));
+}
+
+void solaris::Assemble::ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const ArgList &Args,
+ const char *LinkingOutput) const {
+ claimNoWarnArgs(Args);
+ ArgStringList CmdArgs;
+
+ Args.AddAllArgValues(CmdArgs, options::OPT_Wa_COMMA,
+ options::OPT_Xassembler);
+
+ CmdArgs.push_back("-o");
+ CmdArgs.push_back(Output.getFilename());
+
+ for (const auto &II : Inputs)
+ CmdArgs.push_back(II.getFilename());
+
+ const char *Exec = Args.MakeArgString(getToolChain().GetProgramPath("as"));
+ C.addCommand(llvm::make_unique<Command>(JA, *this, Exec, CmdArgs));
+}
+
+void solaris::Link::ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const ArgList &Args,
+ const char *LinkingOutput) const {
+ // FIXME: Find a real GCC, don't hard-code versions here
+ std::string GCCLibPath = "/usr/gcc/4.5/lib/gcc/";
+ const llvm::Triple &T = getToolChain().getTriple();
+ std::string LibPath = "/usr/lib/";
+ llvm::Triple::ArchType Arch = T.getArch();
+ switch (Arch) {
+ case llvm::Triple::x86:
+ GCCLibPath +=
+ ("i386-" + T.getVendorName() + "-" + T.getOSName()).str() + "/4.5.2/";
+ break;
+ case llvm::Triple::x86_64:
+ GCCLibPath += ("i386-" + T.getVendorName() + "-" + T.getOSName()).str();
+ GCCLibPath += "/4.5.2/amd64/";
+ LibPath += "amd64/";
+ break;
+ default:
+ llvm_unreachable("Unsupported architecture");
+ }
+
+ ArgStringList CmdArgs;
+
+ // Demangle C++ names in errors
+ CmdArgs.push_back("-C");
+
+ if ((!Args.hasArg(options::OPT_nostdlib)) &&
+ (!Args.hasArg(options::OPT_shared))) {
+ CmdArgs.push_back("-e");
+ CmdArgs.push_back("_start");
+ }
+
+ if (Args.hasArg(options::OPT_static)) {
+ CmdArgs.push_back("-Bstatic");
+ CmdArgs.push_back("-dn");
+ } else {
+ CmdArgs.push_back("-Bdynamic");
+ if (Args.hasArg(options::OPT_shared)) {
+ CmdArgs.push_back("-shared");
+ } else {
+ CmdArgs.push_back("--dynamic-linker");
+ CmdArgs.push_back(Args.MakeArgString(LibPath + "ld.so.1"));
+ }
+ }
+
+ if (Output.isFilename()) {
+ CmdArgs.push_back("-o");
+ CmdArgs.push_back(Output.getFilename());
+ } else {
+ assert(Output.isNothing() && "Invalid output.");
+ }
+
+ if (!Args.hasArg(options::OPT_nostdlib) &&
+ !Args.hasArg(options::OPT_nostartfiles)) {
+ if (!Args.hasArg(options::OPT_shared)) {
+ CmdArgs.push_back(Args.MakeArgString(LibPath + "crt1.o"));
+ CmdArgs.push_back(Args.MakeArgString(LibPath + "crti.o"));
+ CmdArgs.push_back(Args.MakeArgString(LibPath + "values-Xa.o"));
+ CmdArgs.push_back(Args.MakeArgString(GCCLibPath + "crtbegin.o"));
+ } else {
+ CmdArgs.push_back(Args.MakeArgString(LibPath + "crti.o"));
+ CmdArgs.push_back(Args.MakeArgString(LibPath + "values-Xa.o"));
+ CmdArgs.push_back(Args.MakeArgString(GCCLibPath + "crtbegin.o"));
+ }
+ if (getToolChain().getDriver().CCCIsCXX())
+ CmdArgs.push_back(Args.MakeArgString(LibPath + "cxa_finalize.o"));
+ }
+
+ CmdArgs.push_back(Args.MakeArgString("-L" + GCCLibPath));
+
+ Args.AddAllArgs(CmdArgs, options::OPT_L);
+ Args.AddAllArgs(CmdArgs, options::OPT_T_Group);
+ Args.AddAllArgs(CmdArgs, options::OPT_e);
+ Args.AddAllArgs(CmdArgs, options::OPT_r);
+
+ AddLinkerInputs(getToolChain(), Inputs, Args, CmdArgs);
+
+ if (!Args.hasArg(options::OPT_nostdlib) &&
+ !Args.hasArg(options::OPT_nodefaultlibs)) {
+ if (getToolChain().getDriver().CCCIsCXX())
+ getToolChain().AddCXXStdlibLibArgs(Args, CmdArgs);
+ CmdArgs.push_back("-lgcc_s");
+ if (!Args.hasArg(options::OPT_shared)) {
+ CmdArgs.push_back("-lgcc");
+ CmdArgs.push_back("-lc");
+ CmdArgs.push_back("-lm");
+ }
+ }
+
+ if (!Args.hasArg(options::OPT_nostdlib) &&
+ !Args.hasArg(options::OPT_nostartfiles)) {
+ CmdArgs.push_back(Args.MakeArgString(GCCLibPath + "crtend.o"));
+ }
+ CmdArgs.push_back(Args.MakeArgString(LibPath + "crtn.o"));
+
+ addProfileRT(getToolChain(), Args, CmdArgs);
+
+ const char *Exec =
+ Args.MakeArgString(getToolChain().GetLinkerPath());
+ C.addCommand(llvm::make_unique<Command>(JA, *this, Exec, CmdArgs));
+}
+
+void openbsd::Assemble::ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const ArgList &Args,
+ const char *LinkingOutput) const {
+ claimNoWarnArgs(Args);
+ ArgStringList CmdArgs;
+ bool NeedsKPIC = false;
+
+ switch (getToolChain().getArch()) {
+ case llvm::Triple::x86:
+ // When building 32-bit code on OpenBSD/amd64, we have to explicitly
+ // instruct as in the base system to assemble 32-bit code.
+ CmdArgs.push_back("--32");
+ break;
+
+ case llvm::Triple::ppc:
+ CmdArgs.push_back("-mppc");
+ CmdArgs.push_back("-many");
+ break;
+
+ case llvm::Triple::sparc:
+ case llvm::Triple::sparcel:
+ CmdArgs.push_back("-32");
+ NeedsKPIC = true;
+ break;
+
+ case llvm::Triple::sparcv9:
+ CmdArgs.push_back("-64");
+ CmdArgs.push_back("-Av9a");
+ NeedsKPIC = true;
+ break;
+
+ case llvm::Triple::mips64:
+ case llvm::Triple::mips64el: {
+ StringRef CPUName;
+ StringRef ABIName;
+ mips::getMipsCPUAndABI(Args, getToolChain().getTriple(), CPUName, ABIName);
+
+ CmdArgs.push_back("-mabi");
+ CmdArgs.push_back(getGnuCompatibleMipsABIName(ABIName).data());
+
+ if (getToolChain().getArch() == llvm::Triple::mips64)
+ CmdArgs.push_back("-EB");
+ else
+ CmdArgs.push_back("-EL");
+
+ NeedsKPIC = true;
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ if (NeedsKPIC)
+ addAssemblerKPIC(Args, CmdArgs);
+
+ Args.AddAllArgValues(CmdArgs, options::OPT_Wa_COMMA,
+ options::OPT_Xassembler);
+
+ CmdArgs.push_back("-o");
+ CmdArgs.push_back(Output.getFilename());
+
+ for (const auto &II : Inputs)
+ CmdArgs.push_back(II.getFilename());
+
+ const char *Exec =
+ Args.MakeArgString(getToolChain().GetProgramPath("as"));
+ C.addCommand(llvm::make_unique<Command>(JA, *this, Exec, CmdArgs));
+}
+
+void openbsd::Link::ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const ArgList &Args,
+ const char *LinkingOutput) const {
+ const Driver &D = getToolChain().getDriver();
+ ArgStringList CmdArgs;
+
+ // Silence warning for "clang -g foo.o -o foo"
+ Args.ClaimAllArgs(options::OPT_g_Group);
+ // and "clang -emit-llvm foo.o -o foo"
+ Args.ClaimAllArgs(options::OPT_emit_llvm);
+ // and for "clang -w foo.o -o foo". Other warning options are already
+ // handled somewhere else.
+ Args.ClaimAllArgs(options::OPT_w);
+
+ if (getToolChain().getArch() == llvm::Triple::mips64)
+ CmdArgs.push_back("-EB");
+ else if (getToolChain().getArch() == llvm::Triple::mips64el)
+ CmdArgs.push_back("-EL");
+
+ if ((!Args.hasArg(options::OPT_nostdlib)) &&
+ (!Args.hasArg(options::OPT_shared))) {
+ CmdArgs.push_back("-e");
+ CmdArgs.push_back("__start");
+ }
+
+ if (Args.hasArg(options::OPT_static)) {
+ CmdArgs.push_back("-Bstatic");
+ } else {
+ if (Args.hasArg(options::OPT_rdynamic))
+ CmdArgs.push_back("-export-dynamic");
+ CmdArgs.push_back("--eh-frame-hdr");
+ CmdArgs.push_back("-Bdynamic");
+ if (Args.hasArg(options::OPT_shared)) {
+ CmdArgs.push_back("-shared");
+ } else {
+ CmdArgs.push_back("-dynamic-linker");
+ CmdArgs.push_back("/usr/libexec/ld.so");
+ }
+ }
+
+ if (Args.hasArg(options::OPT_nopie))
+ CmdArgs.push_back("-nopie");
+
+ if (Output.isFilename()) {
+ CmdArgs.push_back("-o");
+ CmdArgs.push_back(Output.getFilename());
+ } else {
+ assert(Output.isNothing() && "Invalid output.");
+ }
+
+ if (!Args.hasArg(options::OPT_nostdlib) &&
+ !Args.hasArg(options::OPT_nostartfiles)) {
+ if (!Args.hasArg(options::OPT_shared)) {
+ if (Args.hasArg(options::OPT_pg))
+ CmdArgs.push_back(Args.MakeArgString(
+ getToolChain().GetFilePath("gcrt0.o")));
+ else
+ CmdArgs.push_back(Args.MakeArgString(
+ getToolChain().GetFilePath("crt0.o")));
+ CmdArgs.push_back(Args.MakeArgString(
+ getToolChain().GetFilePath("crtbegin.o")));
+ } else {
+ CmdArgs.push_back(Args.MakeArgString(
+ getToolChain().GetFilePath("crtbeginS.o")));
+ }
+ }
+
+ std::string Triple = getToolChain().getTripleString();
+ if (Triple.substr(0, 6) == "x86_64")
+ Triple.replace(0, 6, "amd64");
+ CmdArgs.push_back(Args.MakeArgString("-L/usr/lib/gcc-lib/" + Triple +
+ "/4.2.1"));
+
+ Args.AddAllArgs(CmdArgs, options::OPT_L);
+ Args.AddAllArgs(CmdArgs, options::OPT_T_Group);
+ Args.AddAllArgs(CmdArgs, options::OPT_e);
+ Args.AddAllArgs(CmdArgs, options::OPT_s);
+ Args.AddAllArgs(CmdArgs, options::OPT_t);
+ Args.AddAllArgs(CmdArgs, options::OPT_Z_Flag);
+ Args.AddAllArgs(CmdArgs, options::OPT_r);
+
+ AddLinkerInputs(getToolChain(), Inputs, Args, CmdArgs);
+
+ if (!Args.hasArg(options::OPT_nostdlib) &&
+ !Args.hasArg(options::OPT_nodefaultlibs)) {
+ if (D.CCCIsCXX()) {
+ getToolChain().AddCXXStdlibLibArgs(Args, CmdArgs);
+ if (Args.hasArg(options::OPT_pg))
+ CmdArgs.push_back("-lm_p");
+ else
+ CmdArgs.push_back("-lm");
+ }
+
+ // FIXME: For some reason GCC passes -lgcc before adding
+ // the default system libraries. Just mimic this for now.
+ CmdArgs.push_back("-lgcc");
+
+ if (Args.hasArg(options::OPT_pthread)) {
+ if (!Args.hasArg(options::OPT_shared) &&
+ Args.hasArg(options::OPT_pg))
+ CmdArgs.push_back("-lpthread_p");
+ else
+ CmdArgs.push_back("-lpthread");
+ }
+
+ if (!Args.hasArg(options::OPT_shared)) {
+ if (Args.hasArg(options::OPT_pg))
+ CmdArgs.push_back("-lc_p");
+ else
+ CmdArgs.push_back("-lc");
+ }
+
+ CmdArgs.push_back("-lgcc");
+ }
+
+ if (!Args.hasArg(options::OPT_nostdlib) &&
+ !Args.hasArg(options::OPT_nostartfiles)) {
+ if (!Args.hasArg(options::OPT_shared))
+ CmdArgs.push_back(Args.MakeArgString(
+ getToolChain().GetFilePath("crtend.o")));
+ else
+ CmdArgs.push_back(Args.MakeArgString(
+ getToolChain().GetFilePath("crtendS.o")));
+ }
+
+ const char *Exec =
+ Args.MakeArgString(getToolChain().GetLinkerPath());
+ C.addCommand(llvm::make_unique<Command>(JA, *this, Exec, CmdArgs));
+}
+
+void bitrig::Assemble::ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const ArgList &Args,
+ const char *LinkingOutput) const {
+ claimNoWarnArgs(Args);
+ ArgStringList CmdArgs;
+
+ Args.AddAllArgValues(CmdArgs, options::OPT_Wa_COMMA,
+ options::OPT_Xassembler);
+
+ CmdArgs.push_back("-o");
+ CmdArgs.push_back(Output.getFilename());
+
+ for (const auto &II : Inputs)
+ CmdArgs.push_back(II.getFilename());
+
+ const char *Exec = Args.MakeArgString(getToolChain().GetProgramPath("as"));
+ C.addCommand(llvm::make_unique<Command>(JA, *this, Exec, CmdArgs));
+}
+
+void bitrig::Link::ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const ArgList &Args,
+ const char *LinkingOutput) const {
+ const Driver &D = getToolChain().getDriver();
+ ArgStringList CmdArgs;
+
+ if ((!Args.hasArg(options::OPT_nostdlib)) &&
+ (!Args.hasArg(options::OPT_shared))) {
+ CmdArgs.push_back("-e");
+ CmdArgs.push_back("__start");
+ }
+
+ if (Args.hasArg(options::OPT_static)) {
+ CmdArgs.push_back("-Bstatic");
+ } else {
+ if (Args.hasArg(options::OPT_rdynamic))
+ CmdArgs.push_back("-export-dynamic");
+ CmdArgs.push_back("--eh-frame-hdr");
+ CmdArgs.push_back("-Bdynamic");
+ if (Args.hasArg(options::OPT_shared)) {
+ CmdArgs.push_back("-shared");
+ } else {
+ CmdArgs.push_back("-dynamic-linker");
+ CmdArgs.push_back("/usr/libexec/ld.so");
+ }
+ }
+
+ if (Output.isFilename()) {
+ CmdArgs.push_back("-o");
+ CmdArgs.push_back(Output.getFilename());
+ } else {
+ assert(Output.isNothing() && "Invalid output.");
+ }
+
+ if (!Args.hasArg(options::OPT_nostdlib) &&
+ !Args.hasArg(options::OPT_nostartfiles)) {
+ if (!Args.hasArg(options::OPT_shared)) {
+ if (Args.hasArg(options::OPT_pg))
+ CmdArgs.push_back(Args.MakeArgString(
+ getToolChain().GetFilePath("gcrt0.o")));
+ else
+ CmdArgs.push_back(Args.MakeArgString(
+ getToolChain().GetFilePath("crt0.o")));
+ CmdArgs.push_back(Args.MakeArgString(
+ getToolChain().GetFilePath("crtbegin.o")));
+ } else {
+ CmdArgs.push_back(Args.MakeArgString(
+ getToolChain().GetFilePath("crtbeginS.o")));
+ }
+ }
+
+ Args.AddAllArgs(CmdArgs, options::OPT_L);
+ Args.AddAllArgs(CmdArgs, options::OPT_T_Group);
+ Args.AddAllArgs(CmdArgs, options::OPT_e);
+
+ AddLinkerInputs(getToolChain(), Inputs, Args, CmdArgs);
+
+ if (!Args.hasArg(options::OPT_nostdlib) &&
+ !Args.hasArg(options::OPT_nodefaultlibs)) {
+ if (D.CCCIsCXX()) {
+ getToolChain().AddCXXStdlibLibArgs(Args, CmdArgs);
+ if (Args.hasArg(options::OPT_pg))
+ CmdArgs.push_back("-lm_p");
+ else
+ CmdArgs.push_back("-lm");
+ }
+
+ if (Args.hasArg(options::OPT_pthread)) {
+ if (!Args.hasArg(options::OPT_shared) &&
+ Args.hasArg(options::OPT_pg))
+ CmdArgs.push_back("-lpthread_p");
+ else
+ CmdArgs.push_back("-lpthread");
+ }
+
+ if (!Args.hasArg(options::OPT_shared)) {
+ if (Args.hasArg(options::OPT_pg))
+ CmdArgs.push_back("-lc_p");
+ else
+ CmdArgs.push_back("-lc");
+ }
+
+ StringRef MyArch;
+ switch (getToolChain().getTriple().getArch()) {
+ case llvm::Triple::arm:
+ MyArch = "arm";
+ break;
+ case llvm::Triple::x86:
+ MyArch = "i386";
+ break;
+ case llvm::Triple::x86_64:
+ MyArch = "amd64";
+ break;
+ default:
+ llvm_unreachable("Unsupported architecture");
+ }
+ CmdArgs.push_back(Args.MakeArgString("-lclang_rt." + MyArch));
+ }
+
+ if (!Args.hasArg(options::OPT_nostdlib) &&
+ !Args.hasArg(options::OPT_nostartfiles)) {
+ if (!Args.hasArg(options::OPT_shared))
+ CmdArgs.push_back(Args.MakeArgString(
+ getToolChain().GetFilePath("crtend.o")));
+ else
+ CmdArgs.push_back(Args.MakeArgString(
+ getToolChain().GetFilePath("crtendS.o")));
+ }
+
+ const char *Exec =
+ Args.MakeArgString(getToolChain().GetLinkerPath());
+ C.addCommand(llvm::make_unique<Command>(JA, *this, Exec, CmdArgs));
+}
+
+void freebsd::Assemble::ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const ArgList &Args,
+ const char *LinkingOutput) const {
+ claimNoWarnArgs(Args);
+ ArgStringList CmdArgs;
+
+ // When building 32-bit code on FreeBSD/amd64, we have to explicitly
+ // instruct as in the base system to assemble 32-bit code.
+ if (getToolChain().getArch() == llvm::Triple::x86)
+ CmdArgs.push_back("--32");
+ else if (getToolChain().getArch() == llvm::Triple::ppc)
+ CmdArgs.push_back("-a32");
+ else if (getToolChain().getArch() == llvm::Triple::mips ||
+ getToolChain().getArch() == llvm::Triple::mipsel ||
+ getToolChain().getArch() == llvm::Triple::mips64 ||
+ getToolChain().getArch() == llvm::Triple::mips64el) {
+ StringRef CPUName;
+ StringRef ABIName;
+ mips::getMipsCPUAndABI(Args, getToolChain().getTriple(), CPUName, ABIName);
+
+ CmdArgs.push_back("-march");
+ CmdArgs.push_back(CPUName.data());
+
+ CmdArgs.push_back("-mabi");
+ CmdArgs.push_back(getGnuCompatibleMipsABIName(ABIName).data());
+
+ if (getToolChain().getArch() == llvm::Triple::mips ||
+ getToolChain().getArch() == llvm::Triple::mips64)
+ CmdArgs.push_back("-EB");
+ else
+ CmdArgs.push_back("-EL");
+
+ addAssemblerKPIC(Args, CmdArgs);
+ } else if (getToolChain().getArch() == llvm::Triple::arm ||
+ getToolChain().getArch() == llvm::Triple::armeb ||
+ getToolChain().getArch() == llvm::Triple::thumb ||
+ getToolChain().getArch() == llvm::Triple::thumbeb) {
+ const Driver &D = getToolChain().getDriver();
+ const llvm::Triple &Triple = getToolChain().getTriple();
+ StringRef FloatABI = arm::getARMFloatABI(D, Args, Triple);
+
+ if (FloatABI == "hard") {
+ CmdArgs.push_back("-mfpu=vfp");
+ } else {
+ CmdArgs.push_back("-mfpu=softvfp");
+ }
+
+ switch(getToolChain().getTriple().getEnvironment()) {
+ case llvm::Triple::GNUEABIHF:
+ case llvm::Triple::GNUEABI:
+ case llvm::Triple::EABI:
+ CmdArgs.push_back("-meabi=5");
+ break;
+
+ default:
+ CmdArgs.push_back("-matpcs");
+ }
+ } else if (getToolChain().getArch() == llvm::Triple::sparc ||
+ getToolChain().getArch() == llvm::Triple::sparcel ||
+ getToolChain().getArch() == llvm::Triple::sparcv9) {
+ if (getToolChain().getArch() == llvm::Triple::sparc)
+ CmdArgs.push_back("-Av8plusa");
+ else
+ CmdArgs.push_back("-Av9a");
+
+ addAssemblerKPIC(Args, CmdArgs);
+ }
+
+ Args.AddAllArgValues(CmdArgs, options::OPT_Wa_COMMA,
+ options::OPT_Xassembler);
+
+ CmdArgs.push_back("-o");
+ CmdArgs.push_back(Output.getFilename());
+
+ for (const auto &II : Inputs)
+ CmdArgs.push_back(II.getFilename());
+
+ const char *Exec = Args.MakeArgString(getToolChain().GetProgramPath("as"));
+ C.addCommand(llvm::make_unique<Command>(JA, *this, Exec, CmdArgs));
+}
+
+void freebsd::Link::ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const ArgList &Args,
+ const char *LinkingOutput) const {
+ const toolchains::FreeBSD& ToolChain =
+ static_cast<const toolchains::FreeBSD&>(getToolChain());
+ const Driver &D = ToolChain.getDriver();
+ const bool IsPIE =
+ !Args.hasArg(options::OPT_shared) &&
+ (Args.hasArg(options::OPT_pie) || ToolChain.isPIEDefault());
+ ArgStringList CmdArgs;
+
+ // Silence warning for "clang -g foo.o -o foo"
+ Args.ClaimAllArgs(options::OPT_g_Group);
+ // and "clang -emit-llvm foo.o -o foo"
+ Args.ClaimAllArgs(options::OPT_emit_llvm);
+ // and for "clang -w foo.o -o foo". Other warning options are already
+ // handled somewhere else.
+ Args.ClaimAllArgs(options::OPT_w);
+
+ if (!D.SysRoot.empty())
+ CmdArgs.push_back(Args.MakeArgString("--sysroot=" + D.SysRoot));
+
+ if (IsPIE)
+ CmdArgs.push_back("-pie");
+
+ if (Args.hasArg(options::OPT_static)) {
+ CmdArgs.push_back("-Bstatic");
+ } else {
+ if (Args.hasArg(options::OPT_rdynamic))
+ CmdArgs.push_back("-export-dynamic");
+ CmdArgs.push_back("--eh-frame-hdr");
+ if (Args.hasArg(options::OPT_shared)) {
+ CmdArgs.push_back("-Bshareable");
+ } else {
+ CmdArgs.push_back("-dynamic-linker");
+ CmdArgs.push_back("/libexec/ld-elf.so.1");
+ }
+ if (ToolChain.getTriple().getOSMajorVersion() >= 9) {
+ llvm::Triple::ArchType Arch = ToolChain.getArch();
+ if (Arch == llvm::Triple::arm || Arch == llvm::Triple::sparc ||
+ Arch == llvm::Triple::x86 || Arch == llvm::Triple::x86_64) {
+ CmdArgs.push_back("--hash-style=both");
+ }
+ }
+ CmdArgs.push_back("--enable-new-dtags");
+ }
+
+ // When building 32-bit code on FreeBSD/amd64, we have to explicitly
+ // instruct ld in the base system to link 32-bit code.
+ if (ToolChain.getArch() == llvm::Triple::x86) {
+ CmdArgs.push_back("-m");
+ CmdArgs.push_back("elf_i386_fbsd");
+ }
+
+ if (ToolChain.getArch() == llvm::Triple::ppc) {
+ CmdArgs.push_back("-m");
+ CmdArgs.push_back("elf32ppc_fbsd");
+ }
+
+ if (Arg *A = Args.getLastArg(options::OPT_G)) {
+ if (ToolChain.getArch() == llvm::Triple::mips ||
+ ToolChain.getArch() == llvm::Triple::mipsel ||
+ ToolChain.getArch() == llvm::Triple::mips64 ||
+ ToolChain.getArch() == llvm::Triple::mips64el) {
+ StringRef v = A->getValue();
+ CmdArgs.push_back(Args.MakeArgString("-G" + v));
+ A->claim();
+ }
+ }
+
+ if (Output.isFilename()) {
+ CmdArgs.push_back("-o");
+ CmdArgs.push_back(Output.getFilename());
+ } else {
+ assert(Output.isNothing() && "Invalid output.");
+ }
+
+ if (!Args.hasArg(options::OPT_nostdlib) &&
+ !Args.hasArg(options::OPT_nostartfiles)) {
+ const char *crt1 = nullptr;
+ if (!Args.hasArg(options::OPT_shared)) {
+ if (Args.hasArg(options::OPT_pg))
+ crt1 = "gcrt1.o";
+ else if (IsPIE)
+ crt1 = "Scrt1.o";
+ else
+ crt1 = "crt1.o";
+ }
+ if (crt1)
+ CmdArgs.push_back(Args.MakeArgString(ToolChain.GetFilePath(crt1)));
+
+ CmdArgs.push_back(Args.MakeArgString(ToolChain.GetFilePath("crti.o")));
+
+ const char *crtbegin = nullptr;
+ if (Args.hasArg(options::OPT_static))
+ crtbegin = "crtbeginT.o";
+ else if (Args.hasArg(options::OPT_shared) || IsPIE)
+ crtbegin = "crtbeginS.o";
+ else
+ crtbegin = "crtbegin.o";
+
+ CmdArgs.push_back(Args.MakeArgString(ToolChain.GetFilePath(crtbegin)));
+ }
+
+ Args.AddAllArgs(CmdArgs, options::OPT_L);
+ const ToolChain::path_list &Paths = ToolChain.getFilePaths();
+ for (const auto &Path : Paths)
+ CmdArgs.push_back(Args.MakeArgString(StringRef("-L") + Path));
+ Args.AddAllArgs(CmdArgs, options::OPT_T_Group);
+ Args.AddAllArgs(CmdArgs, options::OPT_e);
+ Args.AddAllArgs(CmdArgs, options::OPT_s);
+ Args.AddAllArgs(CmdArgs, options::OPT_t);
+ Args.AddAllArgs(CmdArgs, options::OPT_Z_Flag);
+ Args.AddAllArgs(CmdArgs, options::OPT_r);
+
+ if (D.IsUsingLTO(getToolChain(), Args))
+ AddGoldPlugin(ToolChain, Args, CmdArgs);
+
+ bool NeedsSanitizerDeps = addSanitizerRuntimes(ToolChain, Args, CmdArgs);
+ AddLinkerInputs(ToolChain, Inputs, Args, CmdArgs);
+
+ if (!Args.hasArg(options::OPT_nostdlib) &&
+ !Args.hasArg(options::OPT_nodefaultlibs)) {
+ if (D.CCCIsCXX()) {
+ ToolChain.AddCXXStdlibLibArgs(Args, CmdArgs);
+ if (Args.hasArg(options::OPT_pg))
+ CmdArgs.push_back("-lm_p");
+ else
+ CmdArgs.push_back("-lm");
+ }
+ if (NeedsSanitizerDeps)
+ linkSanitizerRuntimeDeps(ToolChain, CmdArgs);
+ // FIXME: For some reason GCC passes -lgcc and -lgcc_s before adding
+ // the default system libraries. Just mimic this for now.
+ if (Args.hasArg(options::OPT_pg))
+ CmdArgs.push_back("-lgcc_p");
+ else
+ CmdArgs.push_back("-lgcc");
+ if (Args.hasArg(options::OPT_static)) {
+ CmdArgs.push_back("-lgcc_eh");
+ } else if (Args.hasArg(options::OPT_pg)) {
+ CmdArgs.push_back("-lgcc_eh_p");
+ } else {
+ CmdArgs.push_back("--as-needed");
+ CmdArgs.push_back("-lgcc_s");
+ CmdArgs.push_back("--no-as-needed");
+ }
+
+ if (Args.hasArg(options::OPT_pthread)) {
+ if (Args.hasArg(options::OPT_pg))
+ CmdArgs.push_back("-lpthread_p");
+ else
+ CmdArgs.push_back("-lpthread");
+ }
+
+ if (Args.hasArg(options::OPT_pg)) {
+ if (Args.hasArg(options::OPT_shared))
+ CmdArgs.push_back("-lc");
+ else
+ CmdArgs.push_back("-lc_p");
+ CmdArgs.push_back("-lgcc_p");
+ } else {
+ CmdArgs.push_back("-lc");
+ CmdArgs.push_back("-lgcc");
+ }
+
+ if (Args.hasArg(options::OPT_static)) {
+ CmdArgs.push_back("-lgcc_eh");
+ } else if (Args.hasArg(options::OPT_pg)) {
+ CmdArgs.push_back("-lgcc_eh_p");
+ } else {
+ CmdArgs.push_back("--as-needed");
+ CmdArgs.push_back("-lgcc_s");
+ CmdArgs.push_back("--no-as-needed");
+ }
+ }
+
+ if (!Args.hasArg(options::OPT_nostdlib) &&
+ !Args.hasArg(options::OPT_nostartfiles)) {
+ if (Args.hasArg(options::OPT_shared) || IsPIE)
+ CmdArgs.push_back(Args.MakeArgString(ToolChain.GetFilePath("crtendS.o")));
+ else
+ CmdArgs.push_back(Args.MakeArgString(ToolChain.GetFilePath("crtend.o")));
+ CmdArgs.push_back(Args.MakeArgString(ToolChain.GetFilePath("crtn.o")));
+ }
+
+ addProfileRT(ToolChain, Args, CmdArgs);
+
+ const char *Exec =
+ Args.MakeArgString(getToolChain().GetLinkerPath());
+ C.addCommand(llvm::make_unique<Command>(JA, *this, Exec, CmdArgs));
+}
+
+void netbsd::Assemble::ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const ArgList &Args,
+ const char *LinkingOutput) const {
+ claimNoWarnArgs(Args);
+ ArgStringList CmdArgs;
+
+ // GNU as needs different flags for creating the correct output format
+ // on architectures with different ABIs or optional feature sets.
+ switch (getToolChain().getArch()) {
+ case llvm::Triple::x86:
+ CmdArgs.push_back("--32");
+ break;
+ case llvm::Triple::arm:
+ case llvm::Triple::armeb:
+ case llvm::Triple::thumb:
+ case llvm::Triple::thumbeb: {
+ std::string MArch(arm::getARMTargetCPU(Args, getToolChain().getTriple()));
+ CmdArgs.push_back(Args.MakeArgString("-mcpu=" + MArch));
+ break;
+ }
+
+ case llvm::Triple::mips:
+ case llvm::Triple::mipsel:
+ case llvm::Triple::mips64:
+ case llvm::Triple::mips64el: {
+ StringRef CPUName;
+ StringRef ABIName;
+ mips::getMipsCPUAndABI(Args, getToolChain().getTriple(), CPUName, ABIName);
+
+ CmdArgs.push_back("-march");
+ CmdArgs.push_back(CPUName.data());
+
+ CmdArgs.push_back("-mabi");
+ CmdArgs.push_back(getGnuCompatibleMipsABIName(ABIName).data());
+
+ if (getToolChain().getArch() == llvm::Triple::mips ||
+ getToolChain().getArch() == llvm::Triple::mips64)
+ CmdArgs.push_back("-EB");
+ else
+ CmdArgs.push_back("-EL");
+
+ addAssemblerKPIC(Args, CmdArgs);
+ break;
+ }
+
+ case llvm::Triple::sparc:
+ case llvm::Triple::sparcel:
+ CmdArgs.push_back("-32");
+ addAssemblerKPIC(Args, CmdArgs);
+ break;
+
+ case llvm::Triple::sparcv9:
+ CmdArgs.push_back("-64");
+ CmdArgs.push_back("-Av9");
+ addAssemblerKPIC(Args, CmdArgs);
+ break;
+
+ default:
+ break;
+ }
+
+ Args.AddAllArgValues(CmdArgs, options::OPT_Wa_COMMA,
+ options::OPT_Xassembler);
+
+ CmdArgs.push_back("-o");
+ CmdArgs.push_back(Output.getFilename());
+
+ for (const auto &II : Inputs)
+ CmdArgs.push_back(II.getFilename());
+
+ const char *Exec = Args.MakeArgString((getToolChain().GetProgramPath("as")));
+ C.addCommand(llvm::make_unique<Command>(JA, *this, Exec, CmdArgs));
+}
+
+void netbsd::Link::ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const ArgList &Args,
+ const char *LinkingOutput) const {
+ const Driver &D = getToolChain().getDriver();
+ ArgStringList CmdArgs;
+
+ if (!D.SysRoot.empty())
+ CmdArgs.push_back(Args.MakeArgString("--sysroot=" + D.SysRoot));
+
+ CmdArgs.push_back("--eh-frame-hdr");
+ if (Args.hasArg(options::OPT_static)) {
+ CmdArgs.push_back("-Bstatic");
+ } else {
+ if (Args.hasArg(options::OPT_rdynamic))
+ CmdArgs.push_back("-export-dynamic");
+ if (Args.hasArg(options::OPT_shared)) {
+ CmdArgs.push_back("-Bshareable");
+ } else {
+ CmdArgs.push_back("-dynamic-linker");
+ CmdArgs.push_back("/libexec/ld.elf_so");
+ }
+ }
+
+ // Many NetBSD architectures support more than one ABI.
+ // Determine the correct emulation for ld.
+ switch (getToolChain().getArch()) {
+ case llvm::Triple::x86:
+ CmdArgs.push_back("-m");
+ CmdArgs.push_back("elf_i386");
+ break;
+ case llvm::Triple::arm:
+ case llvm::Triple::thumb:
+ CmdArgs.push_back("-m");
+ switch (getToolChain().getTriple().getEnvironment()) {
+ case llvm::Triple::EABI:
+ case llvm::Triple::GNUEABI:
+ CmdArgs.push_back("armelf_nbsd_eabi");
+ break;
+ case llvm::Triple::EABIHF:
+ case llvm::Triple::GNUEABIHF:
+ CmdArgs.push_back("armelf_nbsd_eabihf");
+ break;
+ default:
+ CmdArgs.push_back("armelf_nbsd");
+ break;
+ }
+ break;
+ case llvm::Triple::armeb:
+ case llvm::Triple::thumbeb:
+ arm::appendEBLinkFlags(Args, CmdArgs,
+ llvm::Triple(getToolChain().ComputeEffectiveClangTriple(Args)));
+ CmdArgs.push_back("-m");
+ switch (getToolChain().getTriple().getEnvironment()) {
+ case llvm::Triple::EABI:
+ case llvm::Triple::GNUEABI:
+ CmdArgs.push_back("armelfb_nbsd_eabi");
+ break;
+ case llvm::Triple::EABIHF:
+ case llvm::Triple::GNUEABIHF:
+ CmdArgs.push_back("armelfb_nbsd_eabihf");
+ break;
+ default:
+ CmdArgs.push_back("armelfb_nbsd");
+ break;
+ }
+ break;
+ case llvm::Triple::mips64:
+ case llvm::Triple::mips64el:
+ if (mips::hasMipsAbiArg(Args, "32")) {
+ CmdArgs.push_back("-m");
+ if (getToolChain().getArch() == llvm::Triple::mips64)
+ CmdArgs.push_back("elf32btsmip");
+ else
+ CmdArgs.push_back("elf32ltsmip");
+ } else if (mips::hasMipsAbiArg(Args, "64")) {
+ CmdArgs.push_back("-m");
+ if (getToolChain().getArch() == llvm::Triple::mips64)
+ CmdArgs.push_back("elf64btsmip");
+ else
+ CmdArgs.push_back("elf64ltsmip");
+ }
+ break;
+ case llvm::Triple::ppc:
+ CmdArgs.push_back("-m");
+ CmdArgs.push_back("elf32ppc_nbsd");
+ break;
+
+ case llvm::Triple::ppc64:
+ case llvm::Triple::ppc64le:
+ CmdArgs.push_back("-m");
+ CmdArgs.push_back("elf64ppc");
+ break;
+
+ case llvm::Triple::sparc:
+ CmdArgs.push_back("-m");
+ CmdArgs.push_back("elf32_sparc");
+ break;
+
+ case llvm::Triple::sparcv9:
+ CmdArgs.push_back("-m");
+ CmdArgs.push_back("elf64_sparc");
+ break;
+
+ default:
+ break;
+ }
+
+ if (Output.isFilename()) {
+ CmdArgs.push_back("-o");
+ CmdArgs.push_back(Output.getFilename());
+ } else {
+ assert(Output.isNothing() && "Invalid output.");
+ }
+
+ if (!Args.hasArg(options::OPT_nostdlib) &&
+ !Args.hasArg(options::OPT_nostartfiles)) {
+ if (!Args.hasArg(options::OPT_shared)) {
+ CmdArgs.push_back(Args.MakeArgString(
+ getToolChain().GetFilePath("crt0.o")));
+ CmdArgs.push_back(Args.MakeArgString(
+ getToolChain().GetFilePath("crti.o")));
+ CmdArgs.push_back(Args.MakeArgString(
+ getToolChain().GetFilePath("crtbegin.o")));
+ } else {
+ CmdArgs.push_back(Args.MakeArgString(
+ getToolChain().GetFilePath("crti.o")));
+ CmdArgs.push_back(Args.MakeArgString(
+ getToolChain().GetFilePath("crtbeginS.o")));
+ }
+ }
+
+ Args.AddAllArgs(CmdArgs, options::OPT_L);
+ Args.AddAllArgs(CmdArgs, options::OPT_T_Group);
+ Args.AddAllArgs(CmdArgs, options::OPT_e);
+ Args.AddAllArgs(CmdArgs, options::OPT_s);
+ Args.AddAllArgs(CmdArgs, options::OPT_t);
+ Args.AddAllArgs(CmdArgs, options::OPT_Z_Flag);
+ Args.AddAllArgs(CmdArgs, options::OPT_r);
+
+ AddLinkerInputs(getToolChain(), Inputs, Args, CmdArgs);
+
+ unsigned Major, Minor, Micro;
+ getToolChain().getTriple().getOSVersion(Major, Minor, Micro);
+ bool useLibgcc = true;
+ if (Major >= 7 || (Major == 6 && Minor == 99 && Micro >= 49) || Major == 0) {
+ switch(getToolChain().getArch()) {
+ case llvm::Triple::aarch64:
+ case llvm::Triple::arm:
+ case llvm::Triple::armeb:
+ case llvm::Triple::thumb:
+ case llvm::Triple::thumbeb:
+ case llvm::Triple::ppc:
+ case llvm::Triple::ppc64:
+ case llvm::Triple::ppc64le:
+ case llvm::Triple::x86:
+ case llvm::Triple::x86_64:
+ useLibgcc = false;
+ break;
+ default:
+ break;
+ }
+ }
+
+ if (!Args.hasArg(options::OPT_nostdlib) &&
+ !Args.hasArg(options::OPT_nodefaultlibs)) {
+ if (D.CCCIsCXX()) {
+ getToolChain().AddCXXStdlibLibArgs(Args, CmdArgs);
+ CmdArgs.push_back("-lm");
+ }
+ if (Args.hasArg(options::OPT_pthread))
+ CmdArgs.push_back("-lpthread");
+ CmdArgs.push_back("-lc");
+
+ if (useLibgcc) {
+ if (Args.hasArg(options::OPT_static)) {
+ // libgcc_eh depends on libc, so resolve as much as possible,
+ // pull in any new requirements from libc and then get the rest
+ // of libgcc.
+ CmdArgs.push_back("-lgcc_eh");
+ CmdArgs.push_back("-lc");
+ CmdArgs.push_back("-lgcc");
+ } else {
+ CmdArgs.push_back("-lgcc");
+ CmdArgs.push_back("--as-needed");
+ CmdArgs.push_back("-lgcc_s");
+ CmdArgs.push_back("--no-as-needed");
+ }
+ }
+ }
+
+ if (!Args.hasArg(options::OPT_nostdlib) &&
+ !Args.hasArg(options::OPT_nostartfiles)) {
+ if (!Args.hasArg(options::OPT_shared))
+ CmdArgs.push_back(Args.MakeArgString(getToolChain().GetFilePath(
+ "crtend.o")));
+ else
+ CmdArgs.push_back(Args.MakeArgString(getToolChain().GetFilePath(
+ "crtendS.o")));
+ CmdArgs.push_back(Args.MakeArgString(getToolChain().GetFilePath(
+ "crtn.o")));
+ }
+
+ addProfileRT(getToolChain(), Args, CmdArgs);
+
+ const char *Exec = Args.MakeArgString(getToolChain().GetLinkerPath());
+ C.addCommand(llvm::make_unique<Command>(JA, *this, Exec, CmdArgs));
+}
+
+void gnutools::Assemble::ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const ArgList &Args,
+ const char *LinkingOutput) const {
+ claimNoWarnArgs(Args);
+
+ ArgStringList CmdArgs;
+ bool NeedsKPIC = false;
+
+ switch (getToolChain().getArch()) {
+ default:
+ break;
+ // Add --32/--64 to make sure we get the format we want.
+ // This is incomplete
+ case llvm::Triple::x86:
+ CmdArgs.push_back("--32");
+ break;
+ case llvm::Triple::x86_64:
+ if (getToolChain().getTriple().getEnvironment() == llvm::Triple::GNUX32)
+ CmdArgs.push_back("--x32");
+ else
+ CmdArgs.push_back("--64");
+ break;
+ case llvm::Triple::ppc:
+ CmdArgs.push_back("-a32");
+ CmdArgs.push_back("-mppc");
+ CmdArgs.push_back("-many");
+ break;
+ case llvm::Triple::ppc64:
+ CmdArgs.push_back("-a64");
+ CmdArgs.push_back("-mppc64");
+ CmdArgs.push_back("-many");
+ break;
+ case llvm::Triple::ppc64le:
+ CmdArgs.push_back("-a64");
+ CmdArgs.push_back("-mppc64");
+ CmdArgs.push_back("-many");
+ CmdArgs.push_back("-mlittle-endian");
+ break;
+ case llvm::Triple::sparc:
+ case llvm::Triple::sparcel:
+ CmdArgs.push_back("-32");
+ CmdArgs.push_back("-Av8plusa");
+ NeedsKPIC = true;
+ break;
+ case llvm::Triple::sparcv9:
+ CmdArgs.push_back("-64");
+ CmdArgs.push_back("-Av9a");
+ NeedsKPIC = true;
+ break;
+ case llvm::Triple::arm:
+ case llvm::Triple::armeb:
+ case llvm::Triple::thumb:
+ case llvm::Triple::thumbeb: {
+ const llvm::Triple &Triple = getToolChain().getTriple();
+ switch (Triple.getSubArch()) {
+ case llvm::Triple::ARMSubArch_v7:
+ CmdArgs.push_back("-mfpu=neon");
+ break;
+ case llvm::Triple::ARMSubArch_v8:
+ CmdArgs.push_back("-mfpu=crypto-neon-fp-armv8");
+ break;
+ default:
+ break;
+ }
+
+ StringRef ARMFloatABI = tools::arm::getARMFloatABI(
+ getToolChain().getDriver(), Args,
+ llvm::Triple(getToolChain().ComputeEffectiveClangTriple(Args)));
+ CmdArgs.push_back(Args.MakeArgString("-mfloat-abi=" + ARMFloatABI));
+
+ Args.AddLastArg(CmdArgs, options::OPT_march_EQ);
+
+ // FIXME: remove krait check when GNU tools support krait cpu
+ // for now replace it with -march=armv7-a to avoid a lower
+ // march from being picked in the absence of a cpu flag.
+ Arg *A;
+ if ((A = Args.getLastArg(options::OPT_mcpu_EQ)) &&
+ StringRef(A->getValue()) == "krait")
+ CmdArgs.push_back("-march=armv7-a");
+ else
+ Args.AddLastArg(CmdArgs, options::OPT_mcpu_EQ);
+ Args.AddLastArg(CmdArgs, options::OPT_mfpu_EQ);
+ break;
+ }
+ case llvm::Triple::mips:
+ case llvm::Triple::mipsel:
+ case llvm::Triple::mips64:
+ case llvm::Triple::mips64el: {
+ StringRef CPUName;
+ StringRef ABIName;
+ mips::getMipsCPUAndABI(Args, getToolChain().getTriple(), CPUName, ABIName);
+ ABIName = getGnuCompatibleMipsABIName(ABIName);
+
+ CmdArgs.push_back("-march");
+ CmdArgs.push_back(CPUName.data());
+
+ CmdArgs.push_back("-mabi");
+ CmdArgs.push_back(ABIName.data());
+
+ // -mno-shared should be emitted unless -fpic, -fpie, -fPIC, -fPIE,
+ // or -mshared (not implemented) is in effect.
+ bool IsPicOrPie = false;
+ if (Arg *A = Args.getLastArg(options::OPT_fPIC, options::OPT_fno_PIC,
+ options::OPT_fpic, options::OPT_fno_pic,
+ options::OPT_fPIE, options::OPT_fno_PIE,
+ options::OPT_fpie, options::OPT_fno_pie)) {
+ if (A->getOption().matches(options::OPT_fPIC) ||
+ A->getOption().matches(options::OPT_fpic) ||
+ A->getOption().matches(options::OPT_fPIE) ||
+ A->getOption().matches(options::OPT_fpie))
+ IsPicOrPie = true;
+ }
+ if (!IsPicOrPie)
+ CmdArgs.push_back("-mno-shared");
+
+ // LLVM doesn't support -mplt yet and acts as if it is always given.
+ // However, -mplt has no effect with the N64 ABI.
+ CmdArgs.push_back(ABIName == "64" ? "-KPIC" : "-call_nonpic");
+
+ if (getToolChain().getArch() == llvm::Triple::mips ||
+ getToolChain().getArch() == llvm::Triple::mips64)
+ CmdArgs.push_back("-EB");
+ else
+ CmdArgs.push_back("-EL");
+
+ if (Arg *A = Args.getLastArg(options::OPT_mnan_EQ)) {
+ if (StringRef(A->getValue()) == "2008")
+ CmdArgs.push_back(Args.MakeArgString("-mnan=2008"));
+ }
+
+ // Add the last -mfp32/-mfpxx/-mfp64 or -mfpxx if it is enabled by default.
+ if (Arg *A = Args.getLastArg(options::OPT_mfp32, options::OPT_mfpxx,
+ options::OPT_mfp64)) {
+ A->claim();
+ A->render(Args, CmdArgs);
+ } else if (mips::isFPXXDefault(getToolChain().getTriple(), CPUName,
+ ABIName))
+ CmdArgs.push_back("-mfpxx");
+
+ // Pass on -mmips16 or -mno-mips16. However, the assembler equivalent of
+ // -mno-mips16 is actually -no-mips16.
+ if (Arg *A = Args.getLastArg(options::OPT_mips16,
+ options::OPT_mno_mips16)) {
+ if (A->getOption().matches(options::OPT_mips16)) {
+ A->claim();
+ A->render(Args, CmdArgs);
+ } else {
+ A->claim();
+ CmdArgs.push_back("-no-mips16");
+ }
+ }
+
+ Args.AddLastArg(CmdArgs, options::OPT_mmicromips,
+ options::OPT_mno_micromips);
+ Args.AddLastArg(CmdArgs, options::OPT_mdsp, options::OPT_mno_dsp);
+ Args.AddLastArg(CmdArgs, options::OPT_mdspr2, options::OPT_mno_dspr2);
+
+ if (Arg *A = Args.getLastArg(options::OPT_mmsa, options::OPT_mno_msa)) {
+ // Do not use AddLastArg because not all versions of MIPS assembler
+ // support -mmsa / -mno-msa options.
+ if (A->getOption().matches(options::OPT_mmsa))
+ CmdArgs.push_back(Args.MakeArgString("-mmsa"));
+ }
+
+ Args.AddLastArg(CmdArgs, options::OPT_mhard_float,
+ options::OPT_msoft_float);
+
+ Args.AddLastArg(CmdArgs, options::OPT_modd_spreg,
+ options::OPT_mno_odd_spreg);
+
+ NeedsKPIC = true;
+ break;
+ }
+ case llvm::Triple::systemz: {
+ // Always pass an -march option, since our default of z10 is later
+ // than the GNU assembler's default.
+ StringRef CPUName = getSystemZTargetCPU(Args);
+ CmdArgs.push_back(Args.MakeArgString("-march=" + CPUName));
+ break;
+ }
+ }
+
+ if (NeedsKPIC)
+ addAssemblerKPIC(Args, CmdArgs);
+
+ Args.AddAllArgValues(CmdArgs, options::OPT_Wa_COMMA,
+ options::OPT_Xassembler);
+
+ CmdArgs.push_back("-o");
+ CmdArgs.push_back(Output.getFilename());
+
+ for (const auto &II : Inputs)
+ CmdArgs.push_back(II.getFilename());
+
+ const char *Exec = Args.MakeArgString(getToolChain().GetProgramPath("as"));
+ C.addCommand(llvm::make_unique<Command>(JA, *this, Exec, CmdArgs));
+
+ // Handle the debug info splitting at object creation time if we're
+ // creating an object.
+ // TODO: Currently only works on linux with newer objcopy.
+ if (Args.hasArg(options::OPT_gsplit_dwarf) &&
+ getToolChain().getTriple().isOSLinux())
+ SplitDebugInfo(getToolChain(), C, *this, JA, Args, Output,
+ SplitDebugName(Args, Inputs[0]));
+}
+
+static void AddLibgcc(const llvm::Triple &Triple, const Driver &D,
+ ArgStringList &CmdArgs, const ArgList &Args) {
+ bool isAndroid = Triple.getEnvironment() == llvm::Triple::Android;
+ bool StaticLibgcc = Args.hasArg(options::OPT_static_libgcc) ||
+ Args.hasArg(options::OPT_static);
+ if (!D.CCCIsCXX())
+ CmdArgs.push_back("-lgcc");
+
+ if (StaticLibgcc || isAndroid) {
+ if (D.CCCIsCXX())
+ CmdArgs.push_back("-lgcc");
+ } else {
+ if (!D.CCCIsCXX())
+ CmdArgs.push_back("--as-needed");
+ CmdArgs.push_back("-lgcc_s");
+ if (!D.CCCIsCXX())
+ CmdArgs.push_back("--no-as-needed");
+ }
+
+ if (StaticLibgcc && !isAndroid)
+ CmdArgs.push_back("-lgcc_eh");
+ else if (!Args.hasArg(options::OPT_shared) && D.CCCIsCXX())
+ CmdArgs.push_back("-lgcc");
+
+ // According to Android ABI, we have to link with libdl if we are
+ // linking with non-static libgcc.
+ //
+ // NOTE: This fixes a link error on Android MIPS as well. The non-static
+ // libgcc for MIPS relies on _Unwind_Find_FDE and dl_iterate_phdr from libdl.
+ if (isAndroid && !StaticLibgcc)
+ CmdArgs.push_back("-ldl");
+}
+
+static std::string getLinuxDynamicLinker(const ArgList &Args,
+ const toolchains::Linux &ToolChain) {
+ if (ToolChain.getTriple().getEnvironment() == llvm::Triple::Android) {
+ if (ToolChain.getTriple().isArch64Bit())
+ return "/system/bin/linker64";
+ else
+ return "/system/bin/linker";
+ } else if (ToolChain.getArch() == llvm::Triple::x86 ||
+ ToolChain.getArch() == llvm::Triple::sparc ||
+ ToolChain.getArch() == llvm::Triple::sparcel)
+ return "/lib/ld-linux.so.2";
+ else if (ToolChain.getArch() == llvm::Triple::aarch64)
+ return "/lib/ld-linux-aarch64.so.1";
+ else if (ToolChain.getArch() == llvm::Triple::aarch64_be)
+ return "/lib/ld-linux-aarch64_be.so.1";
+ else if (ToolChain.getArch() == llvm::Triple::arm ||
+ ToolChain.getArch() == llvm::Triple::thumb) {
+ if (ToolChain.getTriple().getEnvironment() == llvm::Triple::GNUEABIHF)
+ return "/lib/ld-linux-armhf.so.3";
+ else
+ return "/lib/ld-linux.so.3";
+ } else if (ToolChain.getArch() == llvm::Triple::armeb ||
+ ToolChain.getArch() == llvm::Triple::thumbeb) {
+ if (ToolChain.getTriple().getEnvironment() == llvm::Triple::GNUEABIHF)
+ return "/lib/ld-linux-armhf.so.3"; /* TODO: check which dynamic linker name. */
+ else
+ return "/lib/ld-linux.so.3"; /* TODO: check which dynamic linker name. */
+ } else if (ToolChain.getArch() == llvm::Triple::mips ||
+ ToolChain.getArch() == llvm::Triple::mipsel ||
+ ToolChain.getArch() == llvm::Triple::mips64 ||
+ ToolChain.getArch() == llvm::Triple::mips64el) {
+ StringRef CPUName;
+ StringRef ABIName;
+ mips::getMipsCPUAndABI(Args, ToolChain.getTriple(), CPUName, ABIName);
+ bool IsNaN2008 = mips::isNaN2008(Args, ToolChain.getTriple());
+
+ StringRef LibDir = llvm::StringSwitch<llvm::StringRef>(ABIName)
+ .Case("o32", "/lib")
+ .Case("n32", "/lib32")
+ .Case("n64", "/lib64")
+ .Default("/lib");
+ StringRef LibName;
+ if (mips::isUCLibc(Args))
+ LibName = IsNaN2008 ? "ld-uClibc-mipsn8.so.0" : "ld-uClibc.so.0";
+ else
+ LibName = IsNaN2008 ? "ld-linux-mipsn8.so.1" : "ld.so.1";
+
+ return (LibDir + "/" + LibName).str();
+ } else if (ToolChain.getArch() == llvm::Triple::ppc)
+ return "/lib/ld.so.1";
+ else if (ToolChain.getArch() == llvm::Triple::ppc64) {
+ if (ppc::hasPPCAbiArg(Args, "elfv2"))
+ return "/lib64/ld64.so.2";
+ return "/lib64/ld64.so.1";
+ } else if (ToolChain.getArch() == llvm::Triple::ppc64le) {
+ if (ppc::hasPPCAbiArg(Args, "elfv1"))
+ return "/lib64/ld64.so.1";
+ return "/lib64/ld64.so.2";
+ } else if (ToolChain.getArch() == llvm::Triple::systemz)
+ return "/lib64/ld64.so.1";
+ else if (ToolChain.getArch() == llvm::Triple::sparcv9)
+ return "/lib64/ld-linux.so.2";
+ else if (ToolChain.getArch() == llvm::Triple::x86_64 &&
+ ToolChain.getTriple().getEnvironment() == llvm::Triple::GNUX32)
+ return "/libx32/ld-linux-x32.so.2";
+ else
+ return "/lib64/ld-linux-x86-64.so.2";
+}
+
+static void AddRunTimeLibs(const ToolChain &TC, const Driver &D,
+ ArgStringList &CmdArgs, const ArgList &Args) {
+ // Make use of compiler-rt if --rtlib option is used
+ ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(Args);
+
+ switch (RLT) {
+ case ToolChain::RLT_CompilerRT:
+ switch (TC.getTriple().getOS()) {
+ default: llvm_unreachable("unsupported OS");
+ case llvm::Triple::Win32:
+ case llvm::Triple::Linux:
+ addClangRT(TC, Args, CmdArgs);
+ break;
+ }
+ break;
+ case ToolChain::RLT_Libgcc:
+ AddLibgcc(TC.getTriple(), D, CmdArgs, Args);
+ break;
+ }
+}
+
+static const char *getLDMOption(const llvm::Triple &T, const ArgList &Args) {
+ switch (T.getArch()) {
+ case llvm::Triple::x86:
+ return "elf_i386";
+ case llvm::Triple::aarch64:
+ return "aarch64linux";
+ case llvm::Triple::aarch64_be:
+ return "aarch64_be_linux";
+ case llvm::Triple::arm:
+ case llvm::Triple::thumb:
+ return "armelf_linux_eabi";
+ case llvm::Triple::armeb:
+ case llvm::Triple::thumbeb:
+ return "armebelf_linux_eabi"; /* TODO: check which NAME. */
+ case llvm::Triple::ppc:
+ return "elf32ppclinux";
+ case llvm::Triple::ppc64:
+ return "elf64ppc";
+ case llvm::Triple::ppc64le:
+ return "elf64lppc";
+ case llvm::Triple::sparc:
+ case llvm::Triple::sparcel:
+ return "elf32_sparc";
+ case llvm::Triple::sparcv9:
+ return "elf64_sparc";
+ case llvm::Triple::mips:
+ return "elf32btsmip";
+ case llvm::Triple::mipsel:
+ return "elf32ltsmip";
+ case llvm::Triple::mips64:
+ if (mips::hasMipsAbiArg(Args, "n32"))
+ return "elf32btsmipn32";
+ return "elf64btsmip";
+ case llvm::Triple::mips64el:
+ if (mips::hasMipsAbiArg(Args, "n32"))
+ return "elf32ltsmipn32";
+ return "elf64ltsmip";
+ case llvm::Triple::systemz:
+ return "elf64_s390";
+ case llvm::Triple::x86_64:
+ if (T.getEnvironment() == llvm::Triple::GNUX32)
+ return "elf32_x86_64";
+ return "elf_x86_64";
+ default:
+ llvm_unreachable("Unexpected arch");
+ }
+}
+
+void gnutools::Link::ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const ArgList &Args,
+ const char *LinkingOutput) const {
+ const toolchains::Linux& ToolChain =
+ static_cast<const toolchains::Linux&>(getToolChain());
+ const Driver &D = ToolChain.getDriver();
+ const bool isAndroid =
+ ToolChain.getTriple().getEnvironment() == llvm::Triple::Android;
+ const bool IsPIE =
+ !Args.hasArg(options::OPT_shared) &&
+ !Args.hasArg(options::OPT_static) &&
+ (Args.hasArg(options::OPT_pie) || ToolChain.isPIEDefault());
+
+ ArgStringList CmdArgs;
+
+ // Silence warning for "clang -g foo.o -o foo"
+ Args.ClaimAllArgs(options::OPT_g_Group);
+ // and "clang -emit-llvm foo.o -o foo"
+ Args.ClaimAllArgs(options::OPT_emit_llvm);
+ // and for "clang -w foo.o -o foo". Other warning options are already
+ // handled somewhere else.
+ Args.ClaimAllArgs(options::OPT_w);
+
+ if (!D.SysRoot.empty())
+ CmdArgs.push_back(Args.MakeArgString("--sysroot=" + D.SysRoot));
+
+ if (IsPIE)
+ CmdArgs.push_back("-pie");
+
+ if (Args.hasArg(options::OPT_rdynamic))
+ CmdArgs.push_back("-export-dynamic");
+
+ if (Args.hasArg(options::OPT_s))
+ CmdArgs.push_back("-s");
+
+ if (ToolChain.getArch() == llvm::Triple::armeb ||
+ ToolChain.getArch() == llvm::Triple::thumbeb)
+ arm::appendEBLinkFlags(Args, CmdArgs,
+ llvm::Triple(getToolChain().ComputeEffectiveClangTriple(Args)));
+
+ for (const auto &Opt : ToolChain.ExtraOpts)
+ CmdArgs.push_back(Opt.c_str());
+
+ if (!Args.hasArg(options::OPT_static)) {
+ CmdArgs.push_back("--eh-frame-hdr");
+ }
+
+ CmdArgs.push_back("-m");
+ CmdArgs.push_back(getLDMOption(ToolChain.getTriple(), Args));
+
+ if (Args.hasArg(options::OPT_static)) {
+ if (ToolChain.getArch() == llvm::Triple::arm ||
+ ToolChain.getArch() == llvm::Triple::armeb ||
+ ToolChain.getArch() == llvm::Triple::thumb ||
+ ToolChain.getArch() == llvm::Triple::thumbeb)
+ CmdArgs.push_back("-Bstatic");
+ else
+ CmdArgs.push_back("-static");
+ } else if (Args.hasArg(options::OPT_shared)) {
+ CmdArgs.push_back("-shared");
+ }
+
+ if (ToolChain.getArch() == llvm::Triple::arm ||
+ ToolChain.getArch() == llvm::Triple::armeb ||
+ ToolChain.getArch() == llvm::Triple::thumb ||
+ ToolChain.getArch() == llvm::Triple::thumbeb ||
+ (!Args.hasArg(options::OPT_static) &&
+ !Args.hasArg(options::OPT_shared))) {
+ CmdArgs.push_back("-dynamic-linker");
+ CmdArgs.push_back(Args.MakeArgString(
+ D.DyldPrefix + getLinuxDynamicLinker(Args, ToolChain)));
+ }
+
+ CmdArgs.push_back("-o");
+ CmdArgs.push_back(Output.getFilename());
+
+ if (!Args.hasArg(options::OPT_nostdlib) &&
+ !Args.hasArg(options::OPT_nostartfiles)) {
+ if (!isAndroid) {
+ const char *crt1 = nullptr;
+ if (!Args.hasArg(options::OPT_shared)){
+ if (Args.hasArg(options::OPT_pg))
+ crt1 = "gcrt1.o";
+ else if (IsPIE)
+ crt1 = "Scrt1.o";
+ else
+ crt1 = "crt1.o";
+ }
+ if (crt1)
+ CmdArgs.push_back(Args.MakeArgString(ToolChain.GetFilePath(crt1)));
+
+ CmdArgs.push_back(Args.MakeArgString(ToolChain.GetFilePath("crti.o")));
+ }
+
+ const char *crtbegin;
+ if (Args.hasArg(options::OPT_static))
+ crtbegin = isAndroid ? "crtbegin_static.o" : "crtbeginT.o";
+ else if (Args.hasArg(options::OPT_shared))
+ crtbegin = isAndroid ? "crtbegin_so.o" : "crtbeginS.o";
+ else if (IsPIE)
+ crtbegin = isAndroid ? "crtbegin_dynamic.o" : "crtbeginS.o";
+ else
+ crtbegin = isAndroid ? "crtbegin_dynamic.o" : "crtbegin.o";
+ CmdArgs.push_back(Args.MakeArgString(ToolChain.GetFilePath(crtbegin)));
+
+ // Add crtfastmath.o if available and fast math is enabled.
+ ToolChain.AddFastMathRuntimeIfAvailable(Args, CmdArgs);
+ }
+
+ Args.AddAllArgs(CmdArgs, options::OPT_L);
+ Args.AddAllArgs(CmdArgs, options::OPT_u);
+
+ const ToolChain::path_list &Paths = ToolChain.getFilePaths();
+
+ for (const auto &Path : Paths)
+ CmdArgs.push_back(Args.MakeArgString(StringRef("-L") + Path));
+
+ if (D.IsUsingLTO(getToolChain(), Args))
+ AddGoldPlugin(ToolChain, Args, CmdArgs);
+
+ if (Args.hasArg(options::OPT_Z_Xlinker__no_demangle))
+ CmdArgs.push_back("--no-demangle");
+
+ bool NeedsSanitizerDeps = addSanitizerRuntimes(ToolChain, Args, CmdArgs);
+ AddLinkerInputs(ToolChain, Inputs, Args, CmdArgs);
+ // The profile runtime also needs access to system libraries.
+ addProfileRT(getToolChain(), Args, CmdArgs);
+
+ if (D.CCCIsCXX() &&
+ !Args.hasArg(options::OPT_nostdlib) &&
+ !Args.hasArg(options::OPT_nodefaultlibs)) {
+ bool OnlyLibstdcxxStatic = Args.hasArg(options::OPT_static_libstdcxx) &&
+ !Args.hasArg(options::OPT_static);
+ if (OnlyLibstdcxxStatic)
+ CmdArgs.push_back("-Bstatic");
+ ToolChain.AddCXXStdlibLibArgs(Args, CmdArgs);
+ if (OnlyLibstdcxxStatic)
+ CmdArgs.push_back("-Bdynamic");
+ CmdArgs.push_back("-lm");
+ }
+ // Silence warnings when linking C code with a C++ '-stdlib' argument.
+ Args.ClaimAllArgs(options::OPT_stdlib_EQ);
+
+ if (!Args.hasArg(options::OPT_nostdlib)) {
+ if (!Args.hasArg(options::OPT_nodefaultlibs)) {
+ if (Args.hasArg(options::OPT_static))
+ CmdArgs.push_back("--start-group");
+
+ if (NeedsSanitizerDeps)
+ linkSanitizerRuntimeDeps(ToolChain, CmdArgs);
+
+ bool WantPthread = true;
+ if (const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ)) {
+ switch (getOpenMPLibByName(A->getValue())) {
+ case LibGOMP:
+ CmdArgs.push_back("-lgomp");
+
+ // FIXME: Exclude this for platforms with libgomp that don't require
+ // librt. Most modern Linux platforms require it, but some may not.
+ CmdArgs.push_back("-lrt");
+ break;
+ case LibIOMP5:
+ CmdArgs.push_back("-liomp5");
+ break;
+ case LibUnknown:
+ D.Diag(diag::err_drv_unsupported_option_argument)
+ << A->getOption().getName() << A->getValue();
+ break;
+ }
+ } else if (Args.hasArg(options::OPT_fopenmp)) {
+ CmdArgs.push_back(getDefaultOpenMPLibFlag());
+ } else {
+ WantPthread = Args.hasArg(options::OPT_pthread) ||
+ Args.hasArg(options::OPT_pthreads);
+ }
+ AddRunTimeLibs(ToolChain, D, CmdArgs, Args);
+
+ if (WantPthread && !isAndroid)
+ CmdArgs.push_back("-lpthread");
+
+ CmdArgs.push_back("-lc");
+
+ if (Args.hasArg(options::OPT_static))
+ CmdArgs.push_back("--end-group");
+ else
+ AddRunTimeLibs(ToolChain, D, CmdArgs, Args);
+ }
+
+ if (!Args.hasArg(options::OPT_nostartfiles)) {
+ const char *crtend;
+ if (Args.hasArg(options::OPT_shared))
+ crtend = isAndroid ? "crtend_so.o" : "crtendS.o";
+ else if (IsPIE)
+ crtend = isAndroid ? "crtend_android.o" : "crtendS.o";
+ else
+ crtend = isAndroid ? "crtend_android.o" : "crtend.o";
+
+ CmdArgs.push_back(Args.MakeArgString(ToolChain.GetFilePath(crtend)));
+ if (!isAndroid)
+ CmdArgs.push_back(Args.MakeArgString(ToolChain.GetFilePath("crtn.o")));
+ }
+ }
+
+ C.addCommand(
+ llvm::make_unique<Command>(JA, *this, ToolChain.Linker.c_str(), CmdArgs));
+}
+
+
+// NaCl ARM assembly (inline or standalone) can be written with a set of macros
+// for the various SFI requirements like register masking. The assembly tool
+// inserts the file containing the macros as an input into all the assembly
+// jobs.
+void nacltools::AssembleARM::ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const ArgList &Args,
+ const char *LinkingOutput) const {
+ const toolchains::NaCl_TC& ToolChain =
+ static_cast<const toolchains::NaCl_TC&>(getToolChain());
+ InputInfo NaClMacros(ToolChain.GetNaClArmMacrosPath(), types::TY_PP_Asm,
+ "nacl-arm-macros.s");
+ InputInfoList NewInputs;
+ NewInputs.push_back(NaClMacros);
+ NewInputs.append(Inputs.begin(), Inputs.end());
+ gnutools::Assemble::ConstructJob(C, JA, Output, NewInputs, Args,
+ LinkingOutput);
+}
+
+
+// This is quite similar to gnutools::link::ConstructJob with changes that
+// we use static by default, do not yet support sanitizers or LTO, and a few
+// others. Eventually we can support more of that and hopefully migrate back
+// to gnutools::link.
+void nacltools::Link::ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const ArgList &Args,
+ const char *LinkingOutput) const {
+
+ const toolchains::NaCl_TC& ToolChain =
+ static_cast<const toolchains::NaCl_TC&>(getToolChain());
+ const Driver &D = ToolChain.getDriver();
+ const bool IsStatic =
+ !Args.hasArg(options::OPT_dynamic) &&
+ !Args.hasArg(options::OPT_shared);
+
+ ArgStringList CmdArgs;
+
+ // Silence warning for "clang -g foo.o -o foo"
+ Args.ClaimAllArgs(options::OPT_g_Group);
+ // and "clang -emit-llvm foo.o -o foo"
+ Args.ClaimAllArgs(options::OPT_emit_llvm);
+ // and for "clang -w foo.o -o foo". Other warning options are already
+ // handled somewhere else.
+ Args.ClaimAllArgs(options::OPT_w);
+
+ if (!D.SysRoot.empty())
+ CmdArgs.push_back(Args.MakeArgString("--sysroot=" + D.SysRoot));
+
+ if (Args.hasArg(options::OPT_rdynamic))
+ CmdArgs.push_back("-export-dynamic");
+
+ if (Args.hasArg(options::OPT_s))
+ CmdArgs.push_back("-s");
+
+ // NaCl_TC doesn't have ExtraOpts like Linux; the only relevant flag from
+ // there is --build-id, which we do want.
+ CmdArgs.push_back("--build-id");
+
+ if (!IsStatic)
+ CmdArgs.push_back("--eh-frame-hdr");
+
+ CmdArgs.push_back("-m");
+ if (ToolChain.getArch() == llvm::Triple::x86)
+ CmdArgs.push_back("elf_i386_nacl");
+ else if (ToolChain.getArch() == llvm::Triple::arm)
+ CmdArgs.push_back("armelf_nacl");
+ else if (ToolChain.getArch() == llvm::Triple::x86_64)
+ CmdArgs.push_back("elf_x86_64_nacl");
+ else
+ D.Diag(diag::err_target_unsupported_arch) << ToolChain.getArchName() <<
+ "Native Client";
+
+
+ if (IsStatic)
+ CmdArgs.push_back("-static");
+ else if (Args.hasArg(options::OPT_shared))
+ CmdArgs.push_back("-shared");
+
+ CmdArgs.push_back("-o");
+ CmdArgs.push_back(Output.getFilename());
+ if (!Args.hasArg(options::OPT_nostdlib) &&
+ !Args.hasArg(options::OPT_nostartfiles)) {
+ if (!Args.hasArg(options::OPT_shared))
+ CmdArgs.push_back(Args.MakeArgString(ToolChain.GetFilePath("crt1.o")));
+ CmdArgs.push_back(Args.MakeArgString(ToolChain.GetFilePath("crti.o")));
+
+ const char *crtbegin;
+ if (IsStatic)
+ crtbegin = "crtbeginT.o";
+ else if (Args.hasArg(options::OPT_shared))
+ crtbegin = "crtbeginS.o";
+ else
+ crtbegin = "crtbegin.o";
+ CmdArgs.push_back(Args.MakeArgString(ToolChain.GetFilePath(crtbegin)));
+ }
+
+ Args.AddAllArgs(CmdArgs, options::OPT_L);
+ Args.AddAllArgs(CmdArgs, options::OPT_u);
+
+ const ToolChain::path_list &Paths = ToolChain.getFilePaths();
+
+ for (const auto &Path : Paths)
+ CmdArgs.push_back(Args.MakeArgString(StringRef("-L") + Path));
+
+ if (Args.hasArg(options::OPT_Z_Xlinker__no_demangle))
+ CmdArgs.push_back("--no-demangle");
+
+ AddLinkerInputs(ToolChain, Inputs, Args, CmdArgs);
+
+ if (D.CCCIsCXX() &&
+ !Args.hasArg(options::OPT_nostdlib) &&
+ !Args.hasArg(options::OPT_nodefaultlibs)) {
+ bool OnlyLibstdcxxStatic = Args.hasArg(options::OPT_static_libstdcxx) &&
+ !IsStatic;
+ if (OnlyLibstdcxxStatic)
+ CmdArgs.push_back("-Bstatic");
+ ToolChain.AddCXXStdlibLibArgs(Args, CmdArgs);
+ if (OnlyLibstdcxxStatic)
+ CmdArgs.push_back("-Bdynamic");
+ CmdArgs.push_back("-lm");
+ }
+
+ if (!Args.hasArg(options::OPT_nostdlib)) {
+ if (!Args.hasArg(options::OPT_nodefaultlibs)) {
+ // Always use groups, since it has no effect on dynamic libraries.
+ CmdArgs.push_back("--start-group");
+ CmdArgs.push_back("-lc");
+ // NaCl's libc++ currently requires libpthread, so just always include it
+ // in the group for C++.
+ if (Args.hasArg(options::OPT_pthread) ||
+ Args.hasArg(options::OPT_pthreads) ||
+ D.CCCIsCXX()) {
+ CmdArgs.push_back("-lpthread");
+ }
+
+ CmdArgs.push_back("-lgcc");
+ CmdArgs.push_back("--as-needed");
+ if (IsStatic)
+ CmdArgs.push_back("-lgcc_eh");
+ else
+ CmdArgs.push_back("-lgcc_s");
+ CmdArgs.push_back("--no-as-needed");
+ CmdArgs.push_back("--end-group");
+ }
+
+ if (!Args.hasArg(options::OPT_nostartfiles)) {
+ const char *crtend;
+ if (Args.hasArg(options::OPT_shared))
+ crtend = "crtendS.o";
+ else
+ crtend = "crtend.o";
+
+ CmdArgs.push_back(Args.MakeArgString(ToolChain.GetFilePath(crtend)));
+ CmdArgs.push_back(Args.MakeArgString(ToolChain.GetFilePath("crtn.o")));
+ }
+ }
+
+ C.addCommand(llvm::make_unique<Command>(JA, *this,
+ ToolChain.Linker.c_str(), CmdArgs));
+}
+
+
+void minix::Assemble::ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const ArgList &Args,
+ const char *LinkingOutput) const {
+ claimNoWarnArgs(Args);
+ ArgStringList CmdArgs;
+
+ Args.AddAllArgValues(CmdArgs, options::OPT_Wa_COMMA, options::OPT_Xassembler);
+
+ CmdArgs.push_back("-o");
+ CmdArgs.push_back(Output.getFilename());
+
+ for (const auto &II : Inputs)
+ CmdArgs.push_back(II.getFilename());
+
+ const char *Exec = Args.MakeArgString(getToolChain().GetProgramPath("as"));
+ C.addCommand(llvm::make_unique<Command>(JA, *this, Exec, CmdArgs));
+}
+
+void minix::Link::ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const ArgList &Args,
+ const char *LinkingOutput) const {
+ const Driver &D = getToolChain().getDriver();
+ ArgStringList CmdArgs;
+
+ if (Output.isFilename()) {
+ CmdArgs.push_back("-o");
+ CmdArgs.push_back(Output.getFilename());
+ } else {
+ assert(Output.isNothing() && "Invalid output.");
+ }
+
+ if (!Args.hasArg(options::OPT_nostdlib) &&
+ !Args.hasArg(options::OPT_nostartfiles)) {
+ CmdArgs.push_back(Args.MakeArgString(getToolChain().GetFilePath("crt1.o")));
+ CmdArgs.push_back(Args.MakeArgString(getToolChain().GetFilePath("crti.o")));
+ CmdArgs.push_back(Args.MakeArgString(getToolChain().GetFilePath("crtbegin.o")));
+ CmdArgs.push_back(Args.MakeArgString(getToolChain().GetFilePath("crtn.o")));
+ }
+
+ Args.AddAllArgs(CmdArgs, options::OPT_L);
+ Args.AddAllArgs(CmdArgs, options::OPT_T_Group);
+ Args.AddAllArgs(CmdArgs, options::OPT_e);
+
+ AddLinkerInputs(getToolChain(), Inputs, Args, CmdArgs);
+
+ addProfileRT(getToolChain(), Args, CmdArgs);
+
+ if (!Args.hasArg(options::OPT_nostdlib) &&
+ !Args.hasArg(options::OPT_nodefaultlibs)) {
+ if (D.CCCIsCXX()) {
+ getToolChain().AddCXXStdlibLibArgs(Args, CmdArgs);
+ CmdArgs.push_back("-lm");
+ }
+ }
+
+ if (!Args.hasArg(options::OPT_nostdlib) &&
+ !Args.hasArg(options::OPT_nostartfiles)) {
+ if (Args.hasArg(options::OPT_pthread))
+ CmdArgs.push_back("-lpthread");
+ CmdArgs.push_back("-lc");
+ CmdArgs.push_back("-lCompilerRT-Generic");
+ CmdArgs.push_back("-L/usr/pkg/compiler-rt/lib");
+ CmdArgs.push_back(
+ Args.MakeArgString(getToolChain().GetFilePath("crtend.o")));
+ }
+
+ const char *Exec = Args.MakeArgString(getToolChain().GetLinkerPath());
+ C.addCommand(llvm::make_unique<Command>(JA, *this, Exec, CmdArgs));
+}
+
+/// DragonFly Tools
+
+// For now, DragonFly Assemble does just about the same as for
+// FreeBSD, but this may change soon.
+void dragonfly::Assemble::ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const ArgList &Args,
+ const char *LinkingOutput) const {
+ claimNoWarnArgs(Args);
+ ArgStringList CmdArgs;
+
+ // When building 32-bit code on DragonFly/pc64, we have to explicitly
+ // instruct as in the base system to assemble 32-bit code.
+ if (getToolChain().getArch() == llvm::Triple::x86)
+ CmdArgs.push_back("--32");
+
+ Args.AddAllArgValues(CmdArgs, options::OPT_Wa_COMMA, options::OPT_Xassembler);
+
+ CmdArgs.push_back("-o");
+ CmdArgs.push_back(Output.getFilename());
+
+ for (const auto &II : Inputs)
+ CmdArgs.push_back(II.getFilename());
+
+ const char *Exec = Args.MakeArgString(getToolChain().GetProgramPath("as"));
+ C.addCommand(llvm::make_unique<Command>(JA, *this, Exec, CmdArgs));
+}
+
+void dragonfly::Link::ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const ArgList &Args,
+ const char *LinkingOutput) const {
+ const Driver &D = getToolChain().getDriver();
+ ArgStringList CmdArgs;
+ bool UseGCC47 = llvm::sys::fs::exists("/usr/lib/gcc47");
+
+ if (!D.SysRoot.empty())
+ CmdArgs.push_back(Args.MakeArgString("--sysroot=" + D.SysRoot));
+
+ CmdArgs.push_back("--eh-frame-hdr");
+ if (Args.hasArg(options::OPT_static)) {
+ CmdArgs.push_back("-Bstatic");
+ } else {
+ if (Args.hasArg(options::OPT_rdynamic))
+ CmdArgs.push_back("-export-dynamic");
+ if (Args.hasArg(options::OPT_shared))
+ CmdArgs.push_back("-Bshareable");
+ else {
+ CmdArgs.push_back("-dynamic-linker");
+ CmdArgs.push_back("/usr/libexec/ld-elf.so.2");
+ }
+ CmdArgs.push_back("--hash-style=both");
+ }
+
+ // When building 32-bit code on DragonFly/pc64, we have to explicitly
+ // instruct ld in the base system to link 32-bit code.
+ if (getToolChain().getArch() == llvm::Triple::x86) {
+ CmdArgs.push_back("-m");
+ CmdArgs.push_back("elf_i386");
+ }
+
+ if (Output.isFilename()) {
+ CmdArgs.push_back("-o");
+ CmdArgs.push_back(Output.getFilename());
+ } else {
+ assert(Output.isNothing() && "Invalid output.");
+ }
+
+ if (!Args.hasArg(options::OPT_nostdlib) &&
+ !Args.hasArg(options::OPT_nostartfiles)) {
+ if (!Args.hasArg(options::OPT_shared)) {
+ if (Args.hasArg(options::OPT_pg))
+ CmdArgs.push_back(Args.MakeArgString(
+ getToolChain().GetFilePath("gcrt1.o")));
+ else {
+ if (Args.hasArg(options::OPT_pie))
+ CmdArgs.push_back(Args.MakeArgString(
+ getToolChain().GetFilePath("Scrt1.o")));
+ else
+ CmdArgs.push_back(Args.MakeArgString(
+ getToolChain().GetFilePath("crt1.o")));
+ }
+ }
+ CmdArgs.push_back(Args.MakeArgString(
+ getToolChain().GetFilePath("crti.o")));
+ if (Args.hasArg(options::OPT_shared) || Args.hasArg(options::OPT_pie))
+ CmdArgs.push_back(Args.MakeArgString(
+ getToolChain().GetFilePath("crtbeginS.o")));
+ else
+ CmdArgs.push_back(Args.MakeArgString(
+ getToolChain().GetFilePath("crtbegin.o")));
+ }
+
+ Args.AddAllArgs(CmdArgs, options::OPT_L);
+ Args.AddAllArgs(CmdArgs, options::OPT_T_Group);
+ Args.AddAllArgs(CmdArgs, options::OPT_e);
+
+ AddLinkerInputs(getToolChain(), Inputs, Args, CmdArgs);
+
+ if (!Args.hasArg(options::OPT_nostdlib) &&
+ !Args.hasArg(options::OPT_nodefaultlibs)) {
+ // FIXME: GCC passes on -lgcc, -lgcc_pic and a whole lot of
+ // rpaths
+ if (UseGCC47)
+ CmdArgs.push_back("-L/usr/lib/gcc47");
+ else
+ CmdArgs.push_back("-L/usr/lib/gcc44");
+
+ if (!Args.hasArg(options::OPT_static)) {
+ if (UseGCC47) {
+ CmdArgs.push_back("-rpath");
+ CmdArgs.push_back("/usr/lib/gcc47");
+ } else {
+ CmdArgs.push_back("-rpath");
+ CmdArgs.push_back("/usr/lib/gcc44");
+ }
+ }
+
+ if (D.CCCIsCXX()) {
+ getToolChain().AddCXXStdlibLibArgs(Args, CmdArgs);
+ CmdArgs.push_back("-lm");
+ }
+
+ if (Args.hasArg(options::OPT_pthread))
+ CmdArgs.push_back("-lpthread");
+
+ if (!Args.hasArg(options::OPT_nolibc)) {
+ CmdArgs.push_back("-lc");
+ }
+
+ if (UseGCC47) {
+ if (Args.hasArg(options::OPT_static) ||
+ Args.hasArg(options::OPT_static_libgcc)) {
+ CmdArgs.push_back("-lgcc");
+ CmdArgs.push_back("-lgcc_eh");
+ } else {
+ if (Args.hasArg(options::OPT_shared_libgcc)) {
+ CmdArgs.push_back("-lgcc_pic");
+ if (!Args.hasArg(options::OPT_shared))
+ CmdArgs.push_back("-lgcc");
+ } else {
+ CmdArgs.push_back("-lgcc");
+ CmdArgs.push_back("--as-needed");
+ CmdArgs.push_back("-lgcc_pic");
+ CmdArgs.push_back("--no-as-needed");
+ }
+ }
+ } else {
+ if (Args.hasArg(options::OPT_shared)) {
+ CmdArgs.push_back("-lgcc_pic");
+ } else {
+ CmdArgs.push_back("-lgcc");
+ }
+ }
+ }
+
+ if (!Args.hasArg(options::OPT_nostdlib) &&
+ !Args.hasArg(options::OPT_nostartfiles)) {
+ if (Args.hasArg(options::OPT_shared) || Args.hasArg(options::OPT_pie))
+ CmdArgs.push_back(Args.MakeArgString(
+ getToolChain().GetFilePath("crtendS.o")));
+ else
+ CmdArgs.push_back(Args.MakeArgString(
+ getToolChain().GetFilePath("crtend.o")));
+ CmdArgs.push_back(Args.MakeArgString(
+ getToolChain().GetFilePath("crtn.o")));
+ }
+
+ addProfileRT(getToolChain(), Args, CmdArgs);
+
+ const char *Exec = Args.MakeArgString(getToolChain().GetLinkerPath());
+ C.addCommand(llvm::make_unique<Command>(JA, *this, Exec, CmdArgs));
+}
+
+// Try to find Exe from a Visual Studio distribution. This first tries to find
+// an installed copy of Visual Studio and, failing that, looks in the PATH,
+// making sure that whatever executable that's found is not a same-named exe
+// from clang itself to prevent clang from falling back to itself.
+static std::string FindVisualStudioExecutable(const ToolChain &TC,
+ const char *Exe,
+ const char *ClangProgramPath) {
+ const auto &MSVC = static_cast<const toolchains::MSVCToolChain &>(TC);
+ std::string visualStudioBinDir;
+ if (MSVC.getVisualStudioBinariesFolder(ClangProgramPath,
+ visualStudioBinDir)) {
+ SmallString<128> FilePath(visualStudioBinDir);
+ llvm::sys::path::append(FilePath, Exe);
+ if (llvm::sys::fs::can_execute(FilePath.c_str()))
+ return FilePath.str();
+ }
+
+ return Exe;
+}
+
+void visualstudio::Link::ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const ArgList &Args,
+ const char *LinkingOutput) const {
+ ArgStringList CmdArgs;
+ const ToolChain &TC = getToolChain();
+
+ assert((Output.isFilename() || Output.isNothing()) && "invalid output");
+ if (Output.isFilename())
+ CmdArgs.push_back(Args.MakeArgString(std::string("-out:") +
+ Output.getFilename()));
+
+ if (!Args.hasArg(options::OPT_nostdlib) &&
+ !Args.hasArg(options::OPT_nostartfiles) && !C.getDriver().IsCLMode())
+ CmdArgs.push_back("-defaultlib:libcmt");
+
+ if (!llvm::sys::Process::GetEnv("LIB")) {
+ // If the VC environment hasn't been configured (perhaps because the user
+ // did not run vcvarsall), try to build a consistent link environment. If
+ // the environment variable is set however, assume the user knows what
+ // they're doing.
+ std::string VisualStudioDir;
+ const auto &MSVC = static_cast<const toolchains::MSVCToolChain &>(TC);
+ if (MSVC.getVisualStudioInstallDir(VisualStudioDir)) {
+ SmallString<128> LibDir(VisualStudioDir);
+ llvm::sys::path::append(LibDir, "VC", "lib");
+ switch (MSVC.getArch()) {
+ case llvm::Triple::x86:
+ // x86 just puts the libraries directly in lib
+ break;
+ case llvm::Triple::x86_64:
+ llvm::sys::path::append(LibDir, "amd64");
+ break;
+ case llvm::Triple::arm:
+ llvm::sys::path::append(LibDir, "arm");
+ break;
+ default:
+ break;
+ }
+ CmdArgs.push_back(
+ Args.MakeArgString(std::string("-libpath:") + LibDir.c_str()));
+ }
+
+ std::string WindowsSdkLibPath;
+ if (MSVC.getWindowsSDKLibraryPath(WindowsSdkLibPath))
+ CmdArgs.push_back(Args.MakeArgString(std::string("-libpath:") +
+ WindowsSdkLibPath.c_str()));
+ }
+
+ CmdArgs.push_back("-nologo");
+
+ if (Args.hasArg(options::OPT_g_Group))
+ CmdArgs.push_back("-debug");
+
+ bool DLL = Args.hasArg(options::OPT__SLASH_LD,
+ options::OPT__SLASH_LDd,
+ options::OPT_shared);
+ if (DLL) {
+ CmdArgs.push_back(Args.MakeArgString("-dll"));
+
+ SmallString<128> ImplibName(Output.getFilename());
+ llvm::sys::path::replace_extension(ImplibName, "lib");
+ CmdArgs.push_back(Args.MakeArgString(std::string("-implib:") +
+ ImplibName));
+ }
+
+ if (TC.getSanitizerArgs().needsAsanRt()) {
+ CmdArgs.push_back(Args.MakeArgString("-debug"));
+ CmdArgs.push_back(Args.MakeArgString("-incremental:no"));
+ if (Args.hasArg(options::OPT__SLASH_MD, options::OPT__SLASH_MDd)) {
+ static const char *CompilerRTComponents[] = {
+ "asan_dynamic",
+ "asan_dynamic_runtime_thunk",
+ };
+ for (const auto &Component : CompilerRTComponents)
+ CmdArgs.push_back(Args.MakeArgString(getCompilerRT(TC, Component)));
+ // Make sure the dynamic runtime thunk is not optimized out at link time
+ // to ensure proper SEH handling.
+ CmdArgs.push_back(Args.MakeArgString("-include:___asan_seh_interceptor"));
+ } else if (DLL) {
+ CmdArgs.push_back(Args.MakeArgString(getCompilerRT(TC, "asan_dll_thunk")));
+ } else {
+ static const char *CompilerRTComponents[] = {
+ "asan",
+ "asan_cxx",
+ };
+ for (const auto &Component : CompilerRTComponents)
+ CmdArgs.push_back(Args.MakeArgString(getCompilerRT(TC, Component)));
+ }
+ }
+
+ Args.AddAllArgValues(CmdArgs, options::OPT__SLASH_link);
+
+ // Add filenames, libraries, and other linker inputs.
+ for (const auto &Input : Inputs) {
+ if (Input.isFilename()) {
+ CmdArgs.push_back(Input.getFilename());
+ continue;
+ }
+
+ const Arg &A = Input.getInputArg();
+
+ // Render -l options differently for the MSVC linker.
+ if (A.getOption().matches(options::OPT_l)) {
+ StringRef Lib = A.getValue();
+ const char *LinkLibArg;
+ if (Lib.endswith(".lib"))
+ LinkLibArg = Args.MakeArgString(Lib);
+ else
+ LinkLibArg = Args.MakeArgString(Lib + ".lib");
+ CmdArgs.push_back(LinkLibArg);
+ continue;
+ }
+
+ // Otherwise, this is some other kind of linker input option like -Wl, -z,
+ // or -L. Render it, even if MSVC doesn't understand it.
+ A.renderAsInput(Args, CmdArgs);
+ }
+
+ // We need to special case some linker paths. In the case of lld, we need to
+ // translate 'lld' into 'lld-link', and in the case of the regular msvc
+ // linker, we need to use a special search algorithm.
+ llvm::SmallString<128> linkPath;
+ StringRef Linker = Args.getLastArgValue(options::OPT_fuse_ld_EQ, "link");
+ if (Linker.equals_lower("lld"))
+ Linker = "lld-link";
+
+ if (Linker.equals_lower("link")) {
+ // If we're using the MSVC linker, it's not sufficient to just use link
+ // from the program PATH, because other environments like GnuWin32 install
+ // their own link.exe which may come first.
+ linkPath = FindVisualStudioExecutable(TC, "link.exe",
+ C.getDriver().getClangProgramPath());
+ } else {
+ linkPath = Linker;
+ llvm::sys::path::replace_extension(linkPath, "exe");
+ linkPath = TC.GetProgramPath(linkPath.c_str());
+ }
+
+ const char *Exec = Args.MakeArgString(linkPath);
+ C.addCommand(llvm::make_unique<Command>(JA, *this, Exec, CmdArgs));
+}
+
+void visualstudio::Compile::ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const ArgList &Args,
+ const char *LinkingOutput) const {
+ C.addCommand(GetCommand(C, JA, Output, Inputs, Args, LinkingOutput));
+}
+
+std::unique_ptr<Command> visualstudio::Compile::GetCommand(
+ Compilation &C, const JobAction &JA, const InputInfo &Output,
+ const InputInfoList &Inputs, const ArgList &Args,
+ const char *LinkingOutput) const {
+ ArgStringList CmdArgs;
+ CmdArgs.push_back("/nologo");
+ CmdArgs.push_back("/c"); // Compile only.
+ CmdArgs.push_back("/W0"); // No warnings.
+
+ // The goal is to be able to invoke this tool correctly based on
+ // any flag accepted by clang-cl.
+
+ // These are spelled the same way in clang and cl.exe,.
+ Args.AddAllArgs(CmdArgs, options::OPT_D, options::OPT_U);
+ Args.AddAllArgs(CmdArgs, options::OPT_I);
+
+ // Optimization level.
+ if (Arg *A = Args.getLastArg(options::OPT_O, options::OPT_O0)) {
+ if (A->getOption().getID() == options::OPT_O0) {
+ CmdArgs.push_back("/Od");
+ } else {
+ StringRef OptLevel = A->getValue();
+ if (OptLevel == "1" || OptLevel == "2" || OptLevel == "s")
+ A->render(Args, CmdArgs);
+ else if (OptLevel == "3")
+ CmdArgs.push_back("/Ox");
+ }
+ }
+
+ // Flags for which clang-cl has an alias.
+ // FIXME: How can we ensure this stays in sync with relevant clang-cl options?
+
+ if (Args.hasFlag(options::OPT__SLASH_GR_, options::OPT__SLASH_GR,
+ /*default=*/false))
+ CmdArgs.push_back("/GR-");
+ if (Arg *A = Args.getLastArg(options::OPT_ffunction_sections,
+ options::OPT_fno_function_sections))
+ CmdArgs.push_back(A->getOption().getID() == options::OPT_ffunction_sections
+ ? "/Gy"
+ : "/Gy-");
+ if (Arg *A = Args.getLastArg(options::OPT_fdata_sections,
+ options::OPT_fno_data_sections))
+ CmdArgs.push_back(
+ A->getOption().getID() == options::OPT_fdata_sections ? "/Gw" : "/Gw-");
+ if (Args.hasArg(options::OPT_fsyntax_only))
+ CmdArgs.push_back("/Zs");
+ if (Args.hasArg(options::OPT_g_Flag, options::OPT_gline_tables_only))
+ CmdArgs.push_back("/Z7");
+
+ std::vector<std::string> Includes =
+ Args.getAllArgValues(options::OPT_include);
+ for (const auto &Include : Includes)
+ CmdArgs.push_back(Args.MakeArgString(std::string("/FI") + Include));
+
+ // Flags that can simply be passed through.
+ Args.AddAllArgs(CmdArgs, options::OPT__SLASH_LD);
+ Args.AddAllArgs(CmdArgs, options::OPT__SLASH_LDd);
+ Args.AddAllArgs(CmdArgs, options::OPT__SLASH_EH);
+
+ // The order of these flags is relevant, so pick the last one.
+ if (Arg *A = Args.getLastArg(options::OPT__SLASH_MD, options::OPT__SLASH_MDd,
+ options::OPT__SLASH_MT, options::OPT__SLASH_MTd))
+ A->render(Args, CmdArgs);
+
+
+ // Input filename.
+ assert(Inputs.size() == 1);
+ const InputInfo &II = Inputs[0];
+ assert(II.getType() == types::TY_C || II.getType() == types::TY_CXX);
+ CmdArgs.push_back(II.getType() == types::TY_C ? "/Tc" : "/Tp");
+ if (II.isFilename())
+ CmdArgs.push_back(II.getFilename());
+ else
+ II.getInputArg().renderAsInput(Args, CmdArgs);
+
+ // Output filename.
+ assert(Output.getType() == types::TY_Object);
+ const char *Fo = Args.MakeArgString(std::string("/Fo") +
+ Output.getFilename());
+ CmdArgs.push_back(Fo);
+
+ const Driver &D = getToolChain().getDriver();
+ std::string Exec = FindVisualStudioExecutable(getToolChain(), "cl.exe",
+ D.getClangProgramPath());
+ return llvm::make_unique<Command>(JA, *this, Args.MakeArgString(Exec),
+ CmdArgs);
+}
+
+
+/// XCore Tools
+// We pass assemble and link construction to the xcc tool.
+
+void XCore::Assemble::ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const ArgList &Args,
+ const char *LinkingOutput) const {
+ claimNoWarnArgs(Args);
+ ArgStringList CmdArgs;
+
+ CmdArgs.push_back("-o");
+ CmdArgs.push_back(Output.getFilename());
+
+ CmdArgs.push_back("-c");
+
+ if (Args.hasArg(options::OPT_v))
+ CmdArgs.push_back("-v");
+
+ if (Arg *A = Args.getLastArg(options::OPT_g_Group))
+ if (!A->getOption().matches(options::OPT_g0))
+ CmdArgs.push_back("-g");
+
+ if (Args.hasFlag(options::OPT_fverbose_asm, options::OPT_fno_verbose_asm,
+ false))
+ CmdArgs.push_back("-fverbose-asm");
+
+ Args.AddAllArgValues(CmdArgs, options::OPT_Wa_COMMA,
+ options::OPT_Xassembler);
+
+ for (const auto &II : Inputs)
+ CmdArgs.push_back(II.getFilename());
+
+ const char *Exec = Args.MakeArgString(getToolChain().GetProgramPath("xcc"));
+ C.addCommand(llvm::make_unique<Command>(JA, *this, Exec, CmdArgs));
+}
+
+void XCore::Link::ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const ArgList &Args,
+ const char *LinkingOutput) const {
+ ArgStringList CmdArgs;
+
+ if (Output.isFilename()) {
+ CmdArgs.push_back("-o");
+ CmdArgs.push_back(Output.getFilename());
+ } else {
+ assert(Output.isNothing() && "Invalid output.");
+ }
+
+ if (Args.hasArg(options::OPT_v))
+ CmdArgs.push_back("-v");
+
+ if (exceptionSettings(Args, getToolChain().getTriple()))
+ CmdArgs.push_back("-fexceptions");
+
+ AddLinkerInputs(getToolChain(), Inputs, Args, CmdArgs);
+
+ const char *Exec = Args.MakeArgString(getToolChain().GetProgramPath("xcc"));
+ C.addCommand(llvm::make_unique<Command>(JA, *this, Exec, CmdArgs));
+}
+
+void CrossWindows::Assemble::ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const ArgList &Args,
+ const char *LinkingOutput) const {
+ claimNoWarnArgs(Args);
+ const auto &TC =
+ static_cast<const toolchains::CrossWindowsToolChain &>(getToolChain());
+ ArgStringList CmdArgs;
+ const char *Exec;
+
+ switch (TC.getArch()) {
+ default: llvm_unreachable("unsupported architecture");
+ case llvm::Triple::arm:
+ case llvm::Triple::thumb:
+ break;
+ case llvm::Triple::x86:
+ CmdArgs.push_back("--32");
+ break;
+ case llvm::Triple::x86_64:
+ CmdArgs.push_back("--64");
+ break;
+ }
+
+ Args.AddAllArgValues(CmdArgs, options::OPT_Wa_COMMA, options::OPT_Xassembler);
+
+ CmdArgs.push_back("-o");
+ CmdArgs.push_back(Output.getFilename());
+
+ for (const auto &Input : Inputs)
+ CmdArgs.push_back(Input.getFilename());
+
+ const std::string Assembler = TC.GetProgramPath("as");
+ Exec = Args.MakeArgString(Assembler);
+
+ C.addCommand(llvm::make_unique<Command>(JA, *this, Exec, CmdArgs));
+}
+
+void CrossWindows::Link::ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const ArgList &Args,
+ const char *LinkingOutput) const {
+ const auto &TC =
+ static_cast<const toolchains::CrossWindowsToolChain &>(getToolChain());
+ const llvm::Triple &T = TC.getTriple();
+ const Driver &D = TC.getDriver();
+ SmallString<128> EntryPoint;
+ ArgStringList CmdArgs;
+ const char *Exec;
+
+ // Silence warning for "clang -g foo.o -o foo"
+ Args.ClaimAllArgs(options::OPT_g_Group);
+ // and "clang -emit-llvm foo.o -o foo"
+ Args.ClaimAllArgs(options::OPT_emit_llvm);
+ // and for "clang -w foo.o -o foo"
+ Args.ClaimAllArgs(options::OPT_w);
+ // Other warning options are already handled somewhere else.
+
+ if (!D.SysRoot.empty())
+ CmdArgs.push_back(Args.MakeArgString("--sysroot=" + D.SysRoot));
+
+ if (Args.hasArg(options::OPT_pie))
+ CmdArgs.push_back("-pie");
+ if (Args.hasArg(options::OPT_rdynamic))
+ CmdArgs.push_back("-export-dynamic");
+ if (Args.hasArg(options::OPT_s))
+ CmdArgs.push_back("--strip-all");
+
+ CmdArgs.push_back("-m");
+ switch (TC.getArch()) {
+ default: llvm_unreachable("unsupported architecture");
+ case llvm::Triple::arm:
+ case llvm::Triple::thumb:
+ // FIXME: this is incorrect for WinCE
+ CmdArgs.push_back("thumb2pe");
+ break;
+ case llvm::Triple::x86:
+ CmdArgs.push_back("i386pe");
+ EntryPoint.append("_");
+ break;
+ case llvm::Triple::x86_64:
+ CmdArgs.push_back("i386pep");
+ break;
+ }
+
+ if (Args.hasArg(options::OPT_shared)) {
+ switch (T.getArch()) {
+ default: llvm_unreachable("unsupported architecture");
+ case llvm::Triple::arm:
+ case llvm::Triple::thumb:
+ case llvm::Triple::x86_64:
+ EntryPoint.append("_DllMainCRTStartup");
+ break;
+ case llvm::Triple::x86:
+ EntryPoint.append("_DllMainCRTStartup@12");
+ break;
+ }
+
+ CmdArgs.push_back("-shared");
+ CmdArgs.push_back("-Bdynamic");
+
+ CmdArgs.push_back("--enable-auto-image-base");
+
+ CmdArgs.push_back("--entry");
+ CmdArgs.push_back(Args.MakeArgString(EntryPoint));
+ } else {
+ EntryPoint.append("mainCRTStartup");
+
+ CmdArgs.push_back(Args.hasArg(options::OPT_static) ? "-Bstatic"
+ : "-Bdynamic");
+
+ if (!Args.hasArg(options::OPT_nostdlib) &&
+ !Args.hasArg(options::OPT_nostartfiles)) {
+ CmdArgs.push_back("--entry");
+ CmdArgs.push_back(Args.MakeArgString(EntryPoint));
+ }
+
+ // FIXME: handle subsystem
+ }
+
+ // NOTE: deal with multiple definitions on Windows (e.g. COMDAT)
+ CmdArgs.push_back("--allow-multiple-definition");
+
+ CmdArgs.push_back("-o");
+ CmdArgs.push_back(Output.getFilename());
+
+ if (Args.hasArg(options::OPT_shared) || Args.hasArg(options::OPT_rdynamic)) {
+ SmallString<261> ImpLib(Output.getFilename());
+ llvm::sys::path::replace_extension(ImpLib, ".lib");
+
+ CmdArgs.push_back("--out-implib");
+ CmdArgs.push_back(Args.MakeArgString(ImpLib));
+ }
+
+ if (!Args.hasArg(options::OPT_nostdlib) &&
+ !Args.hasArg(options::OPT_nostartfiles)) {
+ const std::string CRTPath(D.SysRoot + "/usr/lib/");
+ const char *CRTBegin;
+
+ CRTBegin =
+ Args.hasArg(options::OPT_shared) ? "crtbeginS.obj" : "crtbegin.obj";
+ CmdArgs.push_back(Args.MakeArgString(CRTPath + CRTBegin));
+ }
+
+ Args.AddAllArgs(CmdArgs, options::OPT_L);
+
+ const auto &Paths = TC.getFilePaths();
+ for (const auto &Path : Paths)
+ CmdArgs.push_back(Args.MakeArgString(StringRef("-L") + Path));
+
+ AddLinkerInputs(TC, Inputs, Args, CmdArgs);
+
+ if (D.CCCIsCXX() && !Args.hasArg(options::OPT_nostdlib) &&
+ !Args.hasArg(options::OPT_nodefaultlibs)) {
+ bool StaticCXX = Args.hasArg(options::OPT_static_libstdcxx) &&
+ !Args.hasArg(options::OPT_static);
+ if (StaticCXX)
+ CmdArgs.push_back("-Bstatic");
+ TC.AddCXXStdlibLibArgs(Args, CmdArgs);
+ if (StaticCXX)
+ CmdArgs.push_back("-Bdynamic");
+ }
+
+ if (!Args.hasArg(options::OPT_nostdlib)) {
+ if (!Args.hasArg(options::OPT_nodefaultlibs)) {
+ // TODO handle /MT[d] /MD[d]
+ CmdArgs.push_back("-lmsvcrt");
+ AddRunTimeLibs(TC, D, CmdArgs, Args);
+ }
+ }
+
+ const std::string Linker = TC.GetProgramPath("ld");
+ Exec = Args.MakeArgString(Linker);
+
+ C.addCommand(llvm::make_unique<Command>(JA, *this, Exec, CmdArgs));
+}
diff --git a/contrib/llvm/tools/clang/lib/Driver/Tools.h b/contrib/llvm/tools/clang/lib/Driver/Tools.h
new file mode 100644
index 0000000..25fe063
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Driver/Tools.h
@@ -0,0 +1,733 @@
+//===--- Tools.h - Tool Implementations -------------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_DRIVER_TOOLS_H
+#define LLVM_CLANG_LIB_DRIVER_TOOLS_H
+
+#include "clang/Driver/Tool.h"
+#include "clang/Driver/Types.h"
+#include "clang/Driver/Util.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/Option/Option.h"
+#include "llvm/Support/Compiler.h"
+
+namespace clang {
+ class ObjCRuntime;
+
+namespace driver {
+ class Command;
+ class Driver;
+
+namespace toolchains {
+ class MachO;
+}
+
+namespace tools {
+
+namespace visualstudio {
+ class Compile;
+}
+
+using llvm::opt::ArgStringList;
+
+ /// \brief Clang compiler tool.
+ class LLVM_LIBRARY_VISIBILITY Clang : public Tool {
+ public:
+ static const char *getBaseInputName(const llvm::opt::ArgList &Args,
+ const InputInfo &Input);
+ static const char *getBaseInputStem(const llvm::opt::ArgList &Args,
+ const InputInfoList &Inputs);
+ static const char *getDependencyFileName(const llvm::opt::ArgList &Args,
+ const InputInfoList &Inputs);
+
+ private:
+ void AddPreprocessingOptions(Compilation &C, const JobAction &JA,
+ const Driver &D,
+ const llvm::opt::ArgList &Args,
+ llvm::opt::ArgStringList &CmdArgs,
+ const InputInfo &Output,
+ const InputInfoList &Inputs) const;
+
+ void AddAArch64TargetArgs(const llvm::opt::ArgList &Args,
+ llvm::opt::ArgStringList &CmdArgs) const;
+ void AddARMTargetArgs(const llvm::opt::ArgList &Args,
+ llvm::opt::ArgStringList &CmdArgs,
+ bool KernelOrKext) const;
+ void AddARM64TargetArgs(const llvm::opt::ArgList &Args,
+ llvm::opt::ArgStringList &CmdArgs) const;
+ void AddMIPSTargetArgs(const llvm::opt::ArgList &Args,
+ llvm::opt::ArgStringList &CmdArgs) const;
+ void AddPPCTargetArgs(const llvm::opt::ArgList &Args,
+ llvm::opt::ArgStringList &CmdArgs) const;
+ void AddR600TargetArgs(const llvm::opt::ArgList &Args,
+ llvm::opt::ArgStringList &CmdArgs) const;
+ void AddSparcTargetArgs(const llvm::opt::ArgList &Args,
+ llvm::opt::ArgStringList &CmdArgs) const;
+ void AddSystemZTargetArgs(const llvm::opt::ArgList &Args,
+ llvm::opt::ArgStringList &CmdArgs) const;
+ void AddX86TargetArgs(const llvm::opt::ArgList &Args,
+ llvm::opt::ArgStringList &CmdArgs) const;
+ void AddHexagonTargetArgs(const llvm::opt::ArgList &Args,
+ llvm::opt::ArgStringList &CmdArgs) const;
+
+ enum RewriteKind { RK_None, RK_Fragile, RK_NonFragile };
+
+ ObjCRuntime AddObjCRuntimeArgs(const llvm::opt::ArgList &args,
+ llvm::opt::ArgStringList &cmdArgs,
+ RewriteKind rewrite) const;
+
+ void AddClangCLArgs(const llvm::opt::ArgList &Args,
+ llvm::opt::ArgStringList &CmdArgs) const;
+
+ visualstudio::Compile *getCLFallback() const;
+
+ mutable std::unique_ptr<visualstudio::Compile> CLFallback;
+
+ public:
+ Clang(const ToolChain &TC) : Tool("clang", "clang frontend", TC, RF_Full) {}
+
+ bool hasGoodDiagnostics() const override { return true; }
+ bool hasIntegratedAssembler() const override { return true; }
+ bool hasIntegratedCPP() const override { return true; }
+ bool canEmitIR() const override { return true; }
+
+ void ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output, const InputInfoList &Inputs,
+ const llvm::opt::ArgList &TCArgs,
+ const char *LinkingOutput) const override;
+ };
+
+ /// \brief Clang integrated assembler tool.
+ class LLVM_LIBRARY_VISIBILITY ClangAs : public Tool {
+ public:
+ ClangAs(const ToolChain &TC) : Tool("clang::as",
+ "clang integrated assembler", TC,
+ RF_Full) {}
+ void AddMIPSTargetArgs(const llvm::opt::ArgList &Args,
+ llvm::opt::ArgStringList &CmdArgs) const;
+ bool hasGoodDiagnostics() const override { return true; }
+ bool hasIntegratedAssembler() const override { return false; }
+ bool hasIntegratedCPP() const override { return false; }
+
+ void ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output, const InputInfoList &Inputs,
+ const llvm::opt::ArgList &TCArgs,
+ const char *LinkingOutput) const override;
+ };
+
+ /// \brief Base class for all GNU tools that provide the same behavior when
+ /// it comes to response files support
+ class GnuTool : public Tool {
+ virtual void anchor();
+
+ public:
+ GnuTool(const char *Name, const char *ShortName, const ToolChain &TC)
+ : Tool(Name, ShortName, TC, RF_Full, llvm::sys::WEM_CurrentCodePage) {}
+ };
+
+ /// gcc - Generic GCC tool implementations.
+namespace gcc {
+ class LLVM_LIBRARY_VISIBILITY Common : public GnuTool {
+ public:
+ Common(const char *Name, const char *ShortName,
+ const ToolChain &TC) : GnuTool(Name, ShortName, TC) {}
+
+ void ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const llvm::opt::ArgList &TCArgs,
+ const char *LinkingOutput) const override;
+
+ /// RenderExtraToolArgs - Render any arguments necessary to force
+ /// the particular tool mode.
+ virtual void
+ RenderExtraToolArgs(const JobAction &JA,
+ llvm::opt::ArgStringList &CmdArgs) const = 0;
+ };
+
+ class LLVM_LIBRARY_VISIBILITY Preprocess : public Common {
+ public:
+ Preprocess(const ToolChain &TC) : Common("gcc::Preprocess",
+ "gcc preprocessor", TC) {}
+
+ bool hasGoodDiagnostics() const override { return true; }
+ bool hasIntegratedCPP() const override { return false; }
+
+ void RenderExtraToolArgs(const JobAction &JA,
+ llvm::opt::ArgStringList &CmdArgs) const override;
+ };
+
+ class LLVM_LIBRARY_VISIBILITY Compile : public Common {
+ public:
+ Compile(const ToolChain &TC) : Common("gcc::Compile",
+ "gcc frontend", TC) {}
+
+ bool hasGoodDiagnostics() const override { return true; }
+ bool hasIntegratedCPP() const override { return true; }
+
+ void RenderExtraToolArgs(const JobAction &JA,
+ llvm::opt::ArgStringList &CmdArgs) const override;
+ };
+
+ class LLVM_LIBRARY_VISIBILITY Link : public Common {
+ public:
+ Link(const ToolChain &TC) : Common("gcc::Link",
+ "linker (via gcc)", TC) {}
+
+ bool hasIntegratedCPP() const override { return false; }
+ bool isLinkJob() const override { return true; }
+
+ void RenderExtraToolArgs(const JobAction &JA,
+ llvm::opt::ArgStringList &CmdArgs) const override;
+ };
+} // end namespace gcc
+
+namespace hexagon {
+ // For Hexagon, we do not need to instantiate tools for PreProcess, PreCompile and Compile.
+ // We simply use "clang -cc1" for those actions.
+ class LLVM_LIBRARY_VISIBILITY Assemble : public GnuTool {
+ public:
+ Assemble(const ToolChain &TC) : GnuTool("hexagon::Assemble",
+ "hexagon-as", TC) {}
+
+ bool hasIntegratedCPP() const override { return false; }
+
+ void RenderExtraToolArgs(const JobAction &JA,
+ llvm::opt::ArgStringList &CmdArgs) const;
+ void ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output, const InputInfoList &Inputs,
+ const llvm::opt::ArgList &TCArgs,
+ const char *LinkingOutput) const override;
+ };
+
+ class LLVM_LIBRARY_VISIBILITY Link : public GnuTool {
+ public:
+ Link(const ToolChain &TC) : GnuTool("hexagon::Link",
+ "hexagon-ld", TC) {}
+
+ bool hasIntegratedCPP() const override { return false; }
+ bool isLinkJob() const override { return true; }
+
+ virtual void RenderExtraToolArgs(const JobAction &JA,
+ llvm::opt::ArgStringList &CmdArgs) const;
+ void ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output, const InputInfoList &Inputs,
+ const llvm::opt::ArgList &TCArgs,
+ const char *LinkingOutput) const override;
+ };
+} // end namespace hexagon.
+
+namespace arm {
+ StringRef getARMTargetCPU(const llvm::opt::ArgList &Args,
+ const llvm::Triple &Triple);
+ const StringRef getARMArch(const llvm::opt::ArgList &Args,
+ const llvm::Triple &Triple);
+ const char* getARMCPUForMArch(const llvm::opt::ArgList &Args,
+ const llvm::Triple &Triple);
+ const char* getLLVMArchSuffixForARM(StringRef CPU, StringRef Arch);
+
+ void appendEBLinkFlags(const llvm::opt::ArgList &Args, ArgStringList &CmdArgs, const llvm::Triple &Triple);
+}
+
+namespace mips {
+ typedef enum {
+ NanLegacy = 1,
+ Nan2008 = 2
+ } NanEncoding;
+ NanEncoding getSupportedNanEncoding(StringRef &CPU);
+ void getMipsCPUAndABI(const llvm::opt::ArgList &Args,
+ const llvm::Triple &Triple, StringRef &CPUName,
+ StringRef &ABIName);
+ bool hasMipsAbiArg(const llvm::opt::ArgList &Args, const char *Value);
+ bool isUCLibc(const llvm::opt::ArgList &Args);
+ bool isNaN2008(const llvm::opt::ArgList &Args, const llvm::Triple &Triple);
+ bool isFPXXDefault(const llvm::Triple &Triple, StringRef CPUName,
+ StringRef ABIName);
+}
+
+namespace ppc {
+ bool hasPPCAbiArg(const llvm::opt::ArgList &Args, const char *Value);
+}
+
+ /// cloudabi -- Directly call GNU Binutils linker
+namespace cloudabi {
+class LLVM_LIBRARY_VISIBILITY Link : public GnuTool {
+public:
+ Link(const ToolChain &TC) : GnuTool("cloudabi::Link", "linker", TC) {}
+
+ bool hasIntegratedCPP() const override { return false; }
+ bool isLinkJob() const override { return true; }
+
+ void ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output, const InputInfoList &Inputs,
+ const llvm::opt::ArgList &TCArgs,
+ const char *LinkingOutput) const override;
+};
+} // end namespace cloudabi
+
+namespace darwin {
+ llvm::Triple::ArchType getArchTypeForMachOArchName(StringRef Str);
+ void setTripleTypeForMachOArchName(llvm::Triple &T, StringRef Str);
+
+ class LLVM_LIBRARY_VISIBILITY MachOTool : public Tool {
+ virtual void anchor();
+ protected:
+ void AddMachOArch(const llvm::opt::ArgList &Args,
+ llvm::opt::ArgStringList &CmdArgs) const;
+
+ const toolchains::MachO &getMachOToolChain() const {
+ return reinterpret_cast<const toolchains::MachO&>(getToolChain());
+ }
+
+ public:
+ MachOTool(
+ const char *Name, const char *ShortName, const ToolChain &TC,
+ ResponseFileSupport ResponseSupport = RF_None,
+ llvm::sys::WindowsEncodingMethod ResponseEncoding = llvm::sys::WEM_UTF8,
+ const char *ResponseFlag = "@")
+ : Tool(Name, ShortName, TC, ResponseSupport, ResponseEncoding,
+ ResponseFlag) {}
+ };
+
+ class LLVM_LIBRARY_VISIBILITY Assemble : public MachOTool {
+ public:
+ Assemble(const ToolChain &TC) : MachOTool("darwin::Assemble",
+ "assembler", TC) {}
+
+ bool hasIntegratedCPP() const override { return false; }
+
+ void ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output, const InputInfoList &Inputs,
+ const llvm::opt::ArgList &TCArgs,
+ const char *LinkingOutput) const override;
+ };
+
+ class LLVM_LIBRARY_VISIBILITY Link : public MachOTool {
+ bool NeedsTempPath(const InputInfoList &Inputs) const;
+ void AddLinkArgs(Compilation &C, const llvm::opt::ArgList &Args,
+ llvm::opt::ArgStringList &CmdArgs,
+ const InputInfoList &Inputs) const;
+
+ public:
+ Link(const ToolChain &TC) : MachOTool("darwin::Link", "linker", TC,
+ RF_FileList, llvm::sys::WEM_UTF8,
+ "-filelist") {}
+
+ bool hasIntegratedCPP() const override { return false; }
+ bool isLinkJob() const override { return true; }
+
+ void ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output, const InputInfoList &Inputs,
+ const llvm::opt::ArgList &TCArgs,
+ const char *LinkingOutput) const override;
+ };
+
+ class LLVM_LIBRARY_VISIBILITY Lipo : public MachOTool {
+ public:
+ Lipo(const ToolChain &TC) : MachOTool("darwin::Lipo", "lipo", TC) {}
+
+ bool hasIntegratedCPP() const override { return false; }
+
+ void ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output, const InputInfoList &Inputs,
+ const llvm::opt::ArgList &TCArgs,
+ const char *LinkingOutput) const override;
+ };
+
+ class LLVM_LIBRARY_VISIBILITY Dsymutil : public MachOTool {
+ public:
+ Dsymutil(const ToolChain &TC) : MachOTool("darwin::Dsymutil",
+ "dsymutil", TC) {}
+
+ bool hasIntegratedCPP() const override { return false; }
+ bool isDsymutilJob() const override { return true; }
+
+ void ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const llvm::opt::ArgList &TCArgs,
+ const char *LinkingOutput) const override;
+ };
+
+ class LLVM_LIBRARY_VISIBILITY VerifyDebug : public MachOTool {
+ public:
+ VerifyDebug(const ToolChain &TC) : MachOTool("darwin::VerifyDebug",
+ "dwarfdump", TC) {}
+
+ bool hasIntegratedCPP() const override { return false; }
+
+ void ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output, const InputInfoList &Inputs,
+ const llvm::opt::ArgList &TCArgs,
+ const char *LinkingOutput) const override;
+ };
+
+}
+
+ /// openbsd -- Directly call GNU Binutils assembler and linker
+namespace openbsd {
+ class LLVM_LIBRARY_VISIBILITY Assemble : public GnuTool {
+ public:
+ Assemble(const ToolChain &TC) : GnuTool("openbsd::Assemble", "assembler",
+ TC) {}
+
+ bool hasIntegratedCPP() const override { return false; }
+
+ void ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const llvm::opt::ArgList &TCArgs,
+ const char *LinkingOutput) const override;
+ };
+ class LLVM_LIBRARY_VISIBILITY Link : public GnuTool {
+ public:
+ Link(const ToolChain &TC) : GnuTool("openbsd::Link", "linker", TC) {}
+
+ bool hasIntegratedCPP() const override { return false; }
+ bool isLinkJob() const override { return true; }
+
+ void ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output, const InputInfoList &Inputs,
+ const llvm::opt::ArgList &TCArgs,
+ const char *LinkingOutput) const override;
+ };
+} // end namespace openbsd
+
+ /// bitrig -- Directly call GNU Binutils assembler and linker
+namespace bitrig {
+ class LLVM_LIBRARY_VISIBILITY Assemble : public GnuTool {
+ public:
+ Assemble(const ToolChain &TC) : GnuTool("bitrig::Assemble", "assembler",
+ TC) {}
+
+ bool hasIntegratedCPP() const override { return false; }
+
+ void ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output, const InputInfoList &Inputs,
+ const llvm::opt::ArgList &TCArgs,
+ const char *LinkingOutput) const override;
+ };
+ class LLVM_LIBRARY_VISIBILITY Link : public GnuTool {
+ public:
+ Link(const ToolChain &TC) : GnuTool("bitrig::Link", "linker", TC) {}
+
+ bool hasIntegratedCPP() const override { return false; }
+ bool isLinkJob() const override { return true; }
+
+ void ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output, const InputInfoList &Inputs,
+ const llvm::opt::ArgList &TCArgs,
+ const char *LinkingOutput) const override;
+ };
+} // end namespace bitrig
+
+ /// freebsd -- Directly call GNU Binutils assembler and linker
+namespace freebsd {
+ class LLVM_LIBRARY_VISIBILITY Assemble : public GnuTool {
+ public:
+ Assemble(const ToolChain &TC) : GnuTool("freebsd::Assemble", "assembler",
+ TC) {}
+
+ bool hasIntegratedCPP() const override { return false; }
+
+ void ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output, const InputInfoList &Inputs,
+ const llvm::opt::ArgList &TCArgs,
+ const char *LinkingOutput) const override;
+ };
+ class LLVM_LIBRARY_VISIBILITY Link : public GnuTool {
+ public:
+ Link(const ToolChain &TC) : GnuTool("freebsd::Link", "linker", TC) {}
+
+ bool hasIntegratedCPP() const override { return false; }
+ bool isLinkJob() const override { return true; }
+
+ void ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output, const InputInfoList &Inputs,
+ const llvm::opt::ArgList &TCArgs,
+ const char *LinkingOutput) const override;
+ };
+} // end namespace freebsd
+
+ /// netbsd -- Directly call GNU Binutils assembler and linker
+namespace netbsd {
+ class LLVM_LIBRARY_VISIBILITY Assemble : public GnuTool {
+
+ public:
+ Assemble(const ToolChain &TC)
+ : GnuTool("netbsd::Assemble", "assembler", TC) {}
+
+ bool hasIntegratedCPP() const override { return false; }
+
+ void ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output, const InputInfoList &Inputs,
+ const llvm::opt::ArgList &TCArgs,
+ const char *LinkingOutput) const override;
+ };
+ class LLVM_LIBRARY_VISIBILITY Link : public GnuTool {
+
+ public:
+ Link(const ToolChain &TC)
+ : GnuTool("netbsd::Link", "linker", TC) {}
+
+ bool hasIntegratedCPP() const override { return false; }
+ bool isLinkJob() const override { return true; }
+
+ void ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output, const InputInfoList &Inputs,
+ const llvm::opt::ArgList &TCArgs,
+ const char *LinkingOutput) const override;
+ };
+} // end namespace netbsd
+
+ /// Directly call GNU Binutils' assembler and linker.
+namespace gnutools {
+ class LLVM_LIBRARY_VISIBILITY Assemble : public GnuTool {
+ public:
+ Assemble(const ToolChain &TC) : GnuTool("GNU::Assemble", "assembler", TC) {}
+
+ bool hasIntegratedCPP() const override { return false; }
+
+ void ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const llvm::opt::ArgList &TCArgs,
+ const char *LinkingOutput) const override;
+ };
+ class LLVM_LIBRARY_VISIBILITY Link : public GnuTool {
+ public:
+ Link(const ToolChain &TC) : GnuTool("GNU::Link", "linker", TC) {}
+
+ bool hasIntegratedCPP() const override { return false; }
+ bool isLinkJob() const override { return true; }
+
+ void ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const llvm::opt::ArgList &TCArgs,
+ const char *LinkingOutput) const override;
+ };
+}
+
+namespace nacltools {
+ class LLVM_LIBRARY_VISIBILITY AssembleARM : public gnutools::Assemble {
+ public:
+ AssembleARM(const ToolChain &TC) : gnutools::Assemble(TC) {}
+
+ void ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const llvm::opt::ArgList &TCArgs,
+ const char *LinkingOutput) const override;
+ };
+ class LLVM_LIBRARY_VISIBILITY Link : public Tool {
+ public:
+ Link(const ToolChain &TC) : Tool("NaCl::Link", "linker", TC) {}
+
+ bool hasIntegratedCPP() const override { return false; }
+ bool isLinkJob() const override { return true; }
+
+ void ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const llvm::opt::ArgList &TCArgs,
+ const char *LinkingOutput) const override;
+ };
+}
+
+ /// minix -- Directly call GNU Binutils assembler and linker
+namespace minix {
+ class LLVM_LIBRARY_VISIBILITY Assemble : public GnuTool {
+ public:
+ Assemble(const ToolChain &TC) : GnuTool("minix::Assemble", "assembler",
+ TC) {}
+
+ bool hasIntegratedCPP() const override { return false; }
+
+ void ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const llvm::opt::ArgList &TCArgs,
+ const char *LinkingOutput) const override;
+ };
+ class LLVM_LIBRARY_VISIBILITY Link : public GnuTool {
+ public:
+ Link(const ToolChain &TC) : GnuTool("minix::Link", "linker", TC) {}
+
+ bool hasIntegratedCPP() const override { return false; }
+ bool isLinkJob() const override { return true; }
+
+ void ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const llvm::opt::ArgList &TCArgs,
+ const char *LinkingOutput) const override;
+ };
+} // end namespace minix
+
+ /// solaris -- Directly call Solaris assembler and linker
+namespace solaris {
+ class LLVM_LIBRARY_VISIBILITY Assemble : public Tool {
+ public:
+ Assemble(const ToolChain &TC) : Tool("solaris::Assemble", "assembler",
+ TC) {}
+
+ bool hasIntegratedCPP() const override { return false; }
+
+ void ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output, const InputInfoList &Inputs,
+ const llvm::opt::ArgList &TCArgs,
+ const char *LinkingOutput) const override;
+ };
+ class LLVM_LIBRARY_VISIBILITY Link : public Tool {
+ public:
+ Link(const ToolChain &TC) : Tool("solaris::Link", "linker", TC) {}
+
+ bool hasIntegratedCPP() const override { return false; }
+ bool isLinkJob() const override { return true; }
+
+ void ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output, const InputInfoList &Inputs,
+ const llvm::opt::ArgList &TCArgs,
+ const char *LinkingOutput) const override;
+ };
+} // end namespace solaris
+
+ /// dragonfly -- Directly call GNU Binutils assembler and linker
+namespace dragonfly {
+ class LLVM_LIBRARY_VISIBILITY Assemble : public GnuTool {
+ public:
+ Assemble(const ToolChain &TC) : GnuTool("dragonfly::Assemble", "assembler",
+ TC) {}
+
+ bool hasIntegratedCPP() const override { return false; }
+
+ void ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output, const InputInfoList &Inputs,
+ const llvm::opt::ArgList &TCArgs,
+ const char *LinkingOutput) const override;
+ };
+ class LLVM_LIBRARY_VISIBILITY Link : public GnuTool {
+ public:
+ Link(const ToolChain &TC) : GnuTool("dragonfly::Link", "linker", TC) {}
+
+ bool hasIntegratedCPP() const override { return false; }
+ bool isLinkJob() const override { return true; }
+
+ void ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const llvm::opt::ArgList &TCArgs,
+ const char *LinkingOutput) const override;
+ };
+} // end namespace dragonfly
+
+/// Visual studio tools.
+namespace visualstudio {
+ class LLVM_LIBRARY_VISIBILITY Link : public Tool {
+ public:
+ Link(const ToolChain &TC) : Tool("visualstudio::Link", "linker", TC,
+ RF_Full, llvm::sys::WEM_UTF16) {}
+
+ bool hasIntegratedCPP() const override { return false; }
+ bool isLinkJob() const override { return true; }
+
+ void ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output, const InputInfoList &Inputs,
+ const llvm::opt::ArgList &TCArgs,
+ const char *LinkingOutput) const override;
+ };
+
+ class LLVM_LIBRARY_VISIBILITY Compile : public Tool {
+ public:
+ Compile(const ToolChain &TC) : Tool("visualstudio::Compile", "compiler", TC,
+ RF_Full, llvm::sys::WEM_UTF16) {}
+
+ bool hasIntegratedAssembler() const override { return true; }
+ bool hasIntegratedCPP() const override { return true; }
+ bool isLinkJob() const override { return false; }
+
+ void ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output, const InputInfoList &Inputs,
+ const llvm::opt::ArgList &TCArgs,
+ const char *LinkingOutput) const override;
+
+ std::unique_ptr<Command> GetCommand(Compilation &C, const JobAction &JA,
+ const InputInfo &Output,
+ const InputInfoList &Inputs,
+ const llvm::opt::ArgList &TCArgs,
+ const char *LinkingOutput) const;
+ };
+} // end namespace visualstudio
+
+namespace arm {
+ StringRef getARMFloatABI(const Driver &D, const llvm::opt::ArgList &Args,
+ const llvm::Triple &Triple);
+}
+namespace XCore {
+ // For XCore, we do not need to instantiate tools for PreProcess, PreCompile and Compile.
+ // We simply use "clang -cc1" for those actions.
+ class LLVM_LIBRARY_VISIBILITY Assemble : public Tool {
+ public:
+ Assemble(const ToolChain &TC) : Tool("XCore::Assemble",
+ "XCore-as", TC) {}
+
+ bool hasIntegratedCPP() const override { return false; }
+ void ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output, const InputInfoList &Inputs,
+ const llvm::opt::ArgList &TCArgs,
+ const char *LinkingOutput) const override;
+ };
+
+ class LLVM_LIBRARY_VISIBILITY Link : public Tool {
+ public:
+ Link(const ToolChain &TC) : Tool("XCore::Link",
+ "XCore-ld", TC) {}
+
+ bool hasIntegratedCPP() const override { return false; }
+ bool isLinkJob() const override { return true; }
+ void ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output, const InputInfoList &Inputs,
+ const llvm::opt::ArgList &TCArgs,
+ const char *LinkingOutput) const override;
+ };
+} // end namespace XCore.
+
+namespace CrossWindows {
+class LLVM_LIBRARY_VISIBILITY Assemble : public Tool {
+public:
+ Assemble(const ToolChain &TC) : Tool("CrossWindows::Assemble", "as", TC) { }
+
+ bool hasIntegratedCPP() const override { return false; }
+
+ void ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output, const InputInfoList &Inputs,
+ const llvm::opt::ArgList &TCArgs,
+ const char *LinkingOutput) const override;
+};
+
+class LLVM_LIBRARY_VISIBILITY Link : public Tool {
+public:
+ Link(const ToolChain &TC) : Tool("CrossWindows::Link", "ld", TC, RF_Full) {}
+
+ bool hasIntegratedCPP() const override { return false; }
+ bool isLinkJob() const override { return true; }
+
+ void ConstructJob(Compilation &C, const JobAction &JA,
+ const InputInfo &Output, const InputInfoList &Inputs,
+ const llvm::opt::ArgList &TCArgs,
+ const char *LinkingOutput) const override;
+};
+}
+
+} // end namespace toolchains
+} // end namespace driver
+} // end namespace clang
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/Driver/Types.cpp b/contrib/llvm/tools/clang/lib/Driver/Types.cpp
new file mode 100644
index 0000000..7b28145
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Driver/Types.cpp
@@ -0,0 +1,234 @@
+//===--- Types.cpp - Driver input & temporary type information ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Driver/Types.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringSwitch.h"
+#include <cassert>
+#include <string.h>
+
+using namespace clang::driver;
+using namespace clang::driver::types;
+
+struct TypeInfo {
+ const char *Name;
+ const char *Flags;
+ const char *TempSuffix;
+ ID PreprocessedType;
+};
+
+static const TypeInfo TypeInfos[] = {
+#define TYPE(NAME, ID, PP_TYPE, TEMP_SUFFIX, FLAGS) \
+ { NAME, FLAGS, TEMP_SUFFIX, TY_##PP_TYPE, },
+#include "clang/Driver/Types.def"
+#undef TYPE
+};
+static const unsigned numTypes = llvm::array_lengthof(TypeInfos);
+
+static const TypeInfo &getInfo(unsigned id) {
+ assert(id > 0 && id - 1 < numTypes && "Invalid Type ID.");
+ return TypeInfos[id - 1];
+}
+
+const char *types::getTypeName(ID Id) {
+ return getInfo(Id).Name;
+}
+
+types::ID types::getPreprocessedType(ID Id) {
+ return getInfo(Id).PreprocessedType;
+}
+
+const char *types::getTypeTempSuffix(ID Id, bool CLMode) {
+ if (Id == TY_Object && CLMode)
+ return "obj";
+ if (Id == TY_Image && CLMode)
+ return "exe";
+ if (Id == TY_PP_Asm && CLMode)
+ return "asm";
+ return getInfo(Id).TempSuffix;
+}
+
+bool types::onlyAssembleType(ID Id) {
+ return strchr(getInfo(Id).Flags, 'a');
+}
+
+bool types::onlyPrecompileType(ID Id) {
+ return strchr(getInfo(Id).Flags, 'p');
+}
+
+bool types::canTypeBeUserSpecified(ID Id) {
+ return strchr(getInfo(Id).Flags, 'u');
+}
+
+bool types::appendSuffixForType(ID Id) {
+ return strchr(getInfo(Id).Flags, 'A');
+}
+
+bool types::canLipoType(ID Id) {
+ return (Id == TY_Nothing ||
+ Id == TY_Image ||
+ Id == TY_Object ||
+ Id == TY_LTO_BC);
+}
+
+bool types::isAcceptedByClang(ID Id) {
+ switch (Id) {
+ default:
+ return false;
+
+ case TY_Asm:
+ case TY_C: case TY_PP_C:
+ case TY_CL:
+ case TY_CUDA: case TY_PP_CUDA:
+ case TY_ObjC: case TY_PP_ObjC: case TY_PP_ObjC_Alias:
+ case TY_CXX: case TY_PP_CXX:
+ case TY_ObjCXX: case TY_PP_ObjCXX: case TY_PP_ObjCXX_Alias:
+ case TY_CHeader: case TY_PP_CHeader:
+ case TY_CLHeader:
+ case TY_ObjCHeader: case TY_PP_ObjCHeader:
+ case TY_CXXHeader: case TY_PP_CXXHeader:
+ case TY_ObjCXXHeader: case TY_PP_ObjCXXHeader:
+ case TY_AST: case TY_ModuleFile:
+ case TY_LLVM_IR: case TY_LLVM_BC:
+ return true;
+ }
+}
+
+bool types::isObjC(ID Id) {
+ switch (Id) {
+ default:
+ return false;
+
+ case TY_ObjC: case TY_PP_ObjC: case TY_PP_ObjC_Alias:
+ case TY_ObjCXX: case TY_PP_ObjCXX:
+ case TY_ObjCHeader: case TY_PP_ObjCHeader:
+ case TY_ObjCXXHeader: case TY_PP_ObjCXXHeader: case TY_PP_ObjCXX_Alias:
+ return true;
+ }
+}
+
+bool types::isCXX(ID Id) {
+ switch (Id) {
+ default:
+ return false;
+
+ case TY_CXX: case TY_PP_CXX:
+ case TY_ObjCXX: case TY_PP_ObjCXX: case TY_PP_ObjCXX_Alias:
+ case TY_CXXHeader: case TY_PP_CXXHeader:
+ case TY_ObjCXXHeader: case TY_PP_ObjCXXHeader:
+ case TY_CUDA: case TY_PP_CUDA:
+ return true;
+ }
+}
+
+types::ID types::lookupTypeForExtension(const char *Ext) {
+ return llvm::StringSwitch<types::ID>(Ext)
+ .Case("c", TY_C)
+ .Case("i", TY_PP_C)
+ .Case("m", TY_ObjC)
+ .Case("M", TY_ObjCXX)
+ .Case("h", TY_CHeader)
+ .Case("C", TY_CXX)
+ .Case("H", TY_CXXHeader)
+ .Case("f", TY_PP_Fortran)
+ .Case("F", TY_Fortran)
+ .Case("s", TY_PP_Asm)
+ .Case("asm", TY_PP_Asm)
+ .Case("S", TY_Asm)
+ .Case("o", TY_Object)
+ .Case("obj", TY_Object)
+ .Case("lib", TY_Object)
+ .Case("ii", TY_PP_CXX)
+ .Case("mi", TY_PP_ObjC)
+ .Case("mm", TY_ObjCXX)
+ .Case("bc", TY_LLVM_BC)
+ .Case("cc", TY_CXX)
+ .Case("CC", TY_CXX)
+ .Case("cl", TY_CL)
+ .Case("cp", TY_CXX)
+ .Case("cu", TY_CUDA)
+ .Case("cui", TY_PP_CUDA)
+ .Case("hh", TY_CXXHeader)
+ .Case("ll", TY_LLVM_IR)
+ .Case("hpp", TY_CXXHeader)
+ .Case("ads", TY_Ada)
+ .Case("adb", TY_Ada)
+ .Case("ast", TY_AST)
+ .Case("c++", TY_CXX)
+ .Case("C++", TY_CXX)
+ .Case("cxx", TY_CXX)
+ .Case("cpp", TY_CXX)
+ .Case("CPP", TY_CXX)
+ .Case("CXX", TY_CXX)
+ .Case("for", TY_PP_Fortran)
+ .Case("FOR", TY_PP_Fortran)
+ .Case("fpp", TY_Fortran)
+ .Case("FPP", TY_Fortran)
+ .Case("f90", TY_PP_Fortran)
+ .Case("f95", TY_PP_Fortran)
+ .Case("F90", TY_Fortran)
+ .Case("F95", TY_Fortran)
+ .Case("mii", TY_PP_ObjCXX)
+ .Case("pcm", TY_ModuleFile)
+ .Case("pch", TY_PCH)
+ .Case("gch", TY_PCH)
+ .Default(TY_INVALID);
+}
+
+types::ID types::lookupTypeForTypeSpecifier(const char *Name) {
+ for (unsigned i=0; i<numTypes; ++i) {
+ types::ID Id = (types::ID) (i + 1);
+ if (canTypeBeUserSpecified(Id) &&
+ strcmp(Name, getInfo(Id).Name) == 0)
+ return Id;
+ }
+
+ return TY_INVALID;
+}
+
+// FIXME: Why don't we just put this list in the defs file, eh.
+void types::getCompilationPhases(ID Id, llvm::SmallVectorImpl<phases::ID> &P) {
+ if (Id != TY_Object) {
+ if (getPreprocessedType(Id) != TY_INVALID) {
+ P.push_back(phases::Preprocess);
+ }
+
+ if (onlyPrecompileType(Id)) {
+ P.push_back(phases::Precompile);
+ } else {
+ if (!onlyAssembleType(Id)) {
+ P.push_back(phases::Compile);
+ P.push_back(phases::Backend);
+ }
+ P.push_back(phases::Assemble);
+ }
+ }
+ if (!onlyPrecompileType(Id)) {
+ P.push_back(phases::Link);
+ }
+ assert(0 < P.size() && "Not enough phases in list");
+ assert(P.size() <= phases::MaxNumberOfPhases && "Too many phases in list");
+ return;
+}
+
+ID types::lookupCXXTypeForCType(ID Id) {
+ switch (Id) {
+ default:
+ return Id;
+
+ case types::TY_C:
+ return types::TY_CXX;
+ case types::TY_PP_C:
+ return types::TY_PP_CXX;
+ case types::TY_CHeader:
+ return types::TY_CXXHeader;
+ case types::TY_PP_CHeader:
+ return types::TY_PP_CXXHeader;
+ }
+}
diff --git a/contrib/llvm/tools/clang/lib/Edit/Commit.cpp b/contrib/llvm/tools/clang/lib/Edit/Commit.cpp
new file mode 100644
index 0000000..9c08cc2
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Edit/Commit.cpp
@@ -0,0 +1,346 @@
+//===----- Commit.cpp - A unit of edits -----------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Edit/Commit.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Edit/EditedSource.h"
+#include "clang/Lex/Lexer.h"
+#include "clang/Lex/PPConditionalDirectiveRecord.h"
+
+using namespace clang;
+using namespace edit;
+
+SourceLocation Commit::Edit::getFileLocation(SourceManager &SM) const {
+ SourceLocation Loc = SM.getLocForStartOfFile(Offset.getFID());
+ Loc = Loc.getLocWithOffset(Offset.getOffset());
+ assert(Loc.isFileID());
+ return Loc;
+}
+
+CharSourceRange Commit::Edit::getFileRange(SourceManager &SM) const {
+ SourceLocation Loc = getFileLocation(SM);
+ return CharSourceRange::getCharRange(Loc, Loc.getLocWithOffset(Length));
+}
+
+CharSourceRange Commit::Edit::getInsertFromRange(SourceManager &SM) const {
+ SourceLocation Loc = SM.getLocForStartOfFile(InsertFromRangeOffs.getFID());
+ Loc = Loc.getLocWithOffset(InsertFromRangeOffs.getOffset());
+ assert(Loc.isFileID());
+ return CharSourceRange::getCharRange(Loc, Loc.getLocWithOffset(Length));
+}
+
+Commit::Commit(EditedSource &Editor)
+ : SourceMgr(Editor.getSourceManager()), LangOpts(Editor.getLangOpts()),
+ PPRec(Editor.getPPCondDirectiveRecord()),
+ Editor(&Editor), IsCommitable(true) { }
+
+bool Commit::insert(SourceLocation loc, StringRef text,
+ bool afterToken, bool beforePreviousInsertions) {
+ if (text.empty())
+ return true;
+
+ FileOffset Offs;
+ if ((!afterToken && !canInsert(loc, Offs)) ||
+ ( afterToken && !canInsertAfterToken(loc, Offs, loc))) {
+ IsCommitable = false;
+ return false;
+ }
+
+ addInsert(loc, Offs, text, beforePreviousInsertions);
+ return true;
+}
+
+bool Commit::insertFromRange(SourceLocation loc,
+ CharSourceRange range,
+ bool afterToken, bool beforePreviousInsertions) {
+ FileOffset RangeOffs;
+ unsigned RangeLen;
+ if (!canRemoveRange(range, RangeOffs, RangeLen)) {
+ IsCommitable = false;
+ return false;
+ }
+
+ FileOffset Offs;
+ if ((!afterToken && !canInsert(loc, Offs)) ||
+ ( afterToken && !canInsertAfterToken(loc, Offs, loc))) {
+ IsCommitable = false;
+ return false;
+ }
+
+ if (PPRec &&
+ PPRec->areInDifferentConditionalDirectiveRegion(loc, range.getBegin())) {
+ IsCommitable = false;
+ return false;
+ }
+
+ addInsertFromRange(loc, Offs, RangeOffs, RangeLen, beforePreviousInsertions);
+ return true;
+}
+
+bool Commit::remove(CharSourceRange range) {
+ FileOffset Offs;
+ unsigned Len;
+ if (!canRemoveRange(range, Offs, Len)) {
+ IsCommitable = false;
+ return false;
+ }
+
+ addRemove(range.getBegin(), Offs, Len);
+ return true;
+}
+
+bool Commit::insertWrap(StringRef before, CharSourceRange range,
+ StringRef after) {
+ bool commitableBefore = insert(range.getBegin(), before, /*afterToken=*/false,
+ /*beforePreviousInsertions=*/true);
+ bool commitableAfter;
+ if (range.isTokenRange())
+ commitableAfter = insertAfterToken(range.getEnd(), after);
+ else
+ commitableAfter = insert(range.getEnd(), after);
+
+ return commitableBefore && commitableAfter;
+}
+
+bool Commit::replace(CharSourceRange range, StringRef text) {
+ if (text.empty())
+ return remove(range);
+
+ FileOffset Offs;
+ unsigned Len;
+ if (!canInsert(range.getBegin(), Offs) || !canRemoveRange(range, Offs, Len)) {
+ IsCommitable = false;
+ return false;
+ }
+
+ addRemove(range.getBegin(), Offs, Len);
+ addInsert(range.getBegin(), Offs, text, false);
+ return true;
+}
+
+bool Commit::replaceWithInner(CharSourceRange range,
+ CharSourceRange replacementRange) {
+ FileOffset OuterBegin;
+ unsigned OuterLen;
+ if (!canRemoveRange(range, OuterBegin, OuterLen)) {
+ IsCommitable = false;
+ return false;
+ }
+
+ FileOffset InnerBegin;
+ unsigned InnerLen;
+ if (!canRemoveRange(replacementRange, InnerBegin, InnerLen)) {
+ IsCommitable = false;
+ return false;
+ }
+
+ FileOffset OuterEnd = OuterBegin.getWithOffset(OuterLen);
+ FileOffset InnerEnd = InnerBegin.getWithOffset(InnerLen);
+ if (OuterBegin.getFID() != InnerBegin.getFID() ||
+ InnerBegin < OuterBegin ||
+ InnerBegin > OuterEnd ||
+ InnerEnd > OuterEnd) {
+ IsCommitable = false;
+ return false;
+ }
+
+ addRemove(range.getBegin(),
+ OuterBegin, InnerBegin.getOffset() - OuterBegin.getOffset());
+ addRemove(replacementRange.getEnd(),
+ InnerEnd, OuterEnd.getOffset() - InnerEnd.getOffset());
+ return true;
+}
+
+bool Commit::replaceText(SourceLocation loc, StringRef text,
+ StringRef replacementText) {
+ if (text.empty() || replacementText.empty())
+ return true;
+
+ FileOffset Offs;
+ unsigned Len;
+ if (!canReplaceText(loc, replacementText, Offs, Len)) {
+ IsCommitable = false;
+ return false;
+ }
+
+ addRemove(loc, Offs, Len);
+ addInsert(loc, Offs, text, false);
+ return true;
+}
+
+void Commit::addInsert(SourceLocation OrigLoc, FileOffset Offs, StringRef text,
+ bool beforePreviousInsertions) {
+ if (text.empty())
+ return;
+
+ Edit data;
+ data.Kind = Act_Insert;
+ data.OrigLoc = OrigLoc;
+ data.Offset = Offs;
+ data.Text = copyString(text);
+ data.BeforePrev = beforePreviousInsertions;
+ CachedEdits.push_back(data);
+}
+
+void Commit::addInsertFromRange(SourceLocation OrigLoc, FileOffset Offs,
+ FileOffset RangeOffs, unsigned RangeLen,
+ bool beforePreviousInsertions) {
+ if (RangeLen == 0)
+ return;
+
+ Edit data;
+ data.Kind = Act_InsertFromRange;
+ data.OrigLoc = OrigLoc;
+ data.Offset = Offs;
+ data.InsertFromRangeOffs = RangeOffs;
+ data.Length = RangeLen;
+ data.BeforePrev = beforePreviousInsertions;
+ CachedEdits.push_back(data);
+}
+
+void Commit::addRemove(SourceLocation OrigLoc,
+ FileOffset Offs, unsigned Len) {
+ if (Len == 0)
+ return;
+
+ Edit data;
+ data.Kind = Act_Remove;
+ data.OrigLoc = OrigLoc;
+ data.Offset = Offs;
+ data.Length = Len;
+ CachedEdits.push_back(data);
+}
+
+bool Commit::canInsert(SourceLocation loc, FileOffset &offs) {
+ if (loc.isInvalid())
+ return false;
+
+ if (loc.isMacroID())
+ isAtStartOfMacroExpansion(loc, &loc);
+
+ const SourceManager &SM = SourceMgr;
+ while (SM.isMacroArgExpansion(loc))
+ loc = SM.getImmediateSpellingLoc(loc);
+
+ if (loc.isMacroID())
+ if (!isAtStartOfMacroExpansion(loc, &loc))
+ return false;
+
+ if (SM.isInSystemHeader(loc))
+ return false;
+
+ std::pair<FileID, unsigned> locInfo = SM.getDecomposedLoc(loc);
+ if (locInfo.first.isInvalid())
+ return false;
+ offs = FileOffset(locInfo.first, locInfo.second);
+ return canInsertInOffset(loc, offs);
+}
+
+bool Commit::canInsertAfterToken(SourceLocation loc, FileOffset &offs,
+ SourceLocation &AfterLoc) {
+ if (loc.isInvalid())
+
+ return false;
+
+ SourceLocation spellLoc = SourceMgr.getSpellingLoc(loc);
+ unsigned tokLen = Lexer::MeasureTokenLength(spellLoc, SourceMgr, LangOpts);
+ AfterLoc = loc.getLocWithOffset(tokLen);
+
+ if (loc.isMacroID())
+ isAtEndOfMacroExpansion(loc, &loc);
+
+ const SourceManager &SM = SourceMgr;
+ while (SM.isMacroArgExpansion(loc))
+ loc = SM.getImmediateSpellingLoc(loc);
+
+ if (loc.isMacroID())
+ if (!isAtEndOfMacroExpansion(loc, &loc))
+ return false;
+
+ if (SM.isInSystemHeader(loc))
+ return false;
+
+ loc = Lexer::getLocForEndOfToken(loc, 0, SourceMgr, LangOpts);
+ if (loc.isInvalid())
+ return false;
+
+ std::pair<FileID, unsigned> locInfo = SM.getDecomposedLoc(loc);
+ if (locInfo.first.isInvalid())
+ return false;
+ offs = FileOffset(locInfo.first, locInfo.second);
+ return canInsertInOffset(loc, offs);
+}
+
+bool Commit::canInsertInOffset(SourceLocation OrigLoc, FileOffset Offs) {
+ for (unsigned i = 0, e = CachedEdits.size(); i != e; ++i) {
+ Edit &act = CachedEdits[i];
+ if (act.Kind == Act_Remove) {
+ if (act.Offset.getFID() == Offs.getFID() &&
+ Offs > act.Offset && Offs < act.Offset.getWithOffset(act.Length))
+ return false; // position has been removed.
+ }
+ }
+
+ if (!Editor)
+ return true;
+ return Editor->canInsertInOffset(OrigLoc, Offs);
+}
+
+bool Commit::canRemoveRange(CharSourceRange range,
+ FileOffset &Offs, unsigned &Len) {
+ const SourceManager &SM = SourceMgr;
+ range = Lexer::makeFileCharRange(range, SM, LangOpts);
+ if (range.isInvalid())
+ return false;
+
+ if (range.getBegin().isMacroID() || range.getEnd().isMacroID())
+ return false;
+ if (SM.isInSystemHeader(range.getBegin()) ||
+ SM.isInSystemHeader(range.getEnd()))
+ return false;
+
+ if (PPRec && PPRec->rangeIntersectsConditionalDirective(range.getAsRange()))
+ return false;
+
+ std::pair<FileID, unsigned> beginInfo = SM.getDecomposedLoc(range.getBegin());
+ std::pair<FileID, unsigned> endInfo = SM.getDecomposedLoc(range.getEnd());
+ if (beginInfo.first != endInfo.first ||
+ beginInfo.second > endInfo.second)
+ return false;
+
+ Offs = FileOffset(beginInfo.first, beginInfo.second);
+ Len = endInfo.second - beginInfo.second;
+ return true;
+}
+
+bool Commit::canReplaceText(SourceLocation loc, StringRef text,
+ FileOffset &Offs, unsigned &Len) {
+ assert(!text.empty());
+
+ if (!canInsert(loc, Offs))
+ return false;
+
+ // Try to load the file buffer.
+ bool invalidTemp = false;
+ StringRef file = SourceMgr.getBufferData(Offs.getFID(), &invalidTemp);
+ if (invalidTemp)
+ return false;
+
+ Len = text.size();
+ return file.substr(Offs.getOffset()).startswith(text);
+}
+
+bool Commit::isAtStartOfMacroExpansion(SourceLocation loc,
+ SourceLocation *MacroBegin) const {
+ return Lexer::isAtStartOfMacroExpansion(loc, SourceMgr, LangOpts, MacroBegin);
+}
+bool Commit::isAtEndOfMacroExpansion(SourceLocation loc,
+ SourceLocation *MacroEnd) const {
+ return Lexer::isAtEndOfMacroExpansion(loc, SourceMgr, LangOpts, MacroEnd);
+}
diff --git a/contrib/llvm/tools/clang/lib/Edit/EditedSource.cpp b/contrib/llvm/tools/clang/lib/Edit/EditedSource.cpp
new file mode 100644
index 0000000..e557de9
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Edit/EditedSource.cpp
@@ -0,0 +1,406 @@
+//===----- EditedSource.cpp - Collection of source edits ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Edit/EditedSource.h"
+#include "clang/Basic/CharInfo.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Edit/Commit.h"
+#include "clang/Edit/EditsReceiver.h"
+#include "clang/Lex/Lexer.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/Twine.h"
+
+using namespace clang;
+using namespace edit;
+
+void EditsReceiver::remove(CharSourceRange range) {
+ replace(range, StringRef());
+}
+
+StringRef EditedSource::copyString(const Twine &twine) {
+ SmallString<128> Data;
+ return copyString(twine.toStringRef(Data));
+}
+
+bool EditedSource::canInsertInOffset(SourceLocation OrigLoc, FileOffset Offs) {
+ FileEditsTy::iterator FA = getActionForOffset(Offs);
+ if (FA != FileEdits.end()) {
+ if (FA->first != Offs)
+ return false; // position has been removed.
+ }
+
+ if (SourceMgr.isMacroArgExpansion(OrigLoc)) {
+ SourceLocation
+ DefArgLoc = SourceMgr.getImmediateExpansionRange(OrigLoc).first;
+ SourceLocation
+ ExpLoc = SourceMgr.getImmediateExpansionRange(DefArgLoc).first;
+ llvm::DenseMap<unsigned, SourceLocation>::iterator
+ I = ExpansionToArgMap.find(ExpLoc.getRawEncoding());
+ if (I != ExpansionToArgMap.end() && I->second != DefArgLoc)
+ return false; // Trying to write in a macro argument input that has
+ // already been written for another argument of the same macro.
+ }
+
+ return true;
+}
+
+bool EditedSource::commitInsert(SourceLocation OrigLoc,
+ FileOffset Offs, StringRef text,
+ bool beforePreviousInsertions) {
+ if (!canInsertInOffset(OrigLoc, Offs))
+ return false;
+ if (text.empty())
+ return true;
+
+ if (SourceMgr.isMacroArgExpansion(OrigLoc)) {
+ SourceLocation
+ DefArgLoc = SourceMgr.getImmediateExpansionRange(OrigLoc).first;
+ SourceLocation
+ ExpLoc = SourceMgr.getImmediateExpansionRange(DefArgLoc).first;
+ ExpansionToArgMap[ExpLoc.getRawEncoding()] = DefArgLoc;
+ }
+
+ FileEdit &FA = FileEdits[Offs];
+ if (FA.Text.empty()) {
+ FA.Text = copyString(text);
+ return true;
+ }
+
+ if (beforePreviousInsertions)
+ FA.Text = copyString(Twine(text) + FA.Text);
+ else
+ FA.Text = copyString(Twine(FA.Text) + text);
+
+ return true;
+}
+
+bool EditedSource::commitInsertFromRange(SourceLocation OrigLoc,
+ FileOffset Offs,
+ FileOffset InsertFromRangeOffs, unsigned Len,
+ bool beforePreviousInsertions) {
+ if (Len == 0)
+ return true;
+
+ SmallString<128> StrVec;
+ FileOffset BeginOffs = InsertFromRangeOffs;
+ FileOffset EndOffs = BeginOffs.getWithOffset(Len);
+ FileEditsTy::iterator I = FileEdits.upper_bound(BeginOffs);
+ if (I != FileEdits.begin())
+ --I;
+
+ for (; I != FileEdits.end(); ++I) {
+ FileEdit &FA = I->second;
+ FileOffset B = I->first;
+ FileOffset E = B.getWithOffset(FA.RemoveLen);
+
+ if (BeginOffs == B)
+ break;
+
+ if (BeginOffs < E) {
+ if (BeginOffs > B) {
+ BeginOffs = E;
+ ++I;
+ }
+ break;
+ }
+ }
+
+ for (; I != FileEdits.end() && EndOffs > I->first; ++I) {
+ FileEdit &FA = I->second;
+ FileOffset B = I->first;
+ FileOffset E = B.getWithOffset(FA.RemoveLen);
+
+ if (BeginOffs < B) {
+ bool Invalid = false;
+ StringRef text = getSourceText(BeginOffs, B, Invalid);
+ if (Invalid)
+ return false;
+ StrVec += text;
+ }
+ StrVec += FA.Text;
+ BeginOffs = E;
+ }
+
+ if (BeginOffs < EndOffs) {
+ bool Invalid = false;
+ StringRef text = getSourceText(BeginOffs, EndOffs, Invalid);
+ if (Invalid)
+ return false;
+ StrVec += text;
+ }
+
+ return commitInsert(OrigLoc, Offs, StrVec, beforePreviousInsertions);
+}
+
+void EditedSource::commitRemove(SourceLocation OrigLoc,
+ FileOffset BeginOffs, unsigned Len) {
+ if (Len == 0)
+ return;
+
+ FileOffset EndOffs = BeginOffs.getWithOffset(Len);
+ FileEditsTy::iterator I = FileEdits.upper_bound(BeginOffs);
+ if (I != FileEdits.begin())
+ --I;
+
+ for (; I != FileEdits.end(); ++I) {
+ FileEdit &FA = I->second;
+ FileOffset B = I->first;
+ FileOffset E = B.getWithOffset(FA.RemoveLen);
+
+ if (BeginOffs < E)
+ break;
+ }
+
+ FileOffset TopBegin, TopEnd;
+ FileEdit *TopFA = nullptr;
+
+ if (I == FileEdits.end()) {
+ FileEditsTy::iterator
+ NewI = FileEdits.insert(I, std::make_pair(BeginOffs, FileEdit()));
+ NewI->second.RemoveLen = Len;
+ return;
+ }
+
+ FileEdit &FA = I->second;
+ FileOffset B = I->first;
+ FileOffset E = B.getWithOffset(FA.RemoveLen);
+ if (BeginOffs < B) {
+ FileEditsTy::iterator
+ NewI = FileEdits.insert(I, std::make_pair(BeginOffs, FileEdit()));
+ TopBegin = BeginOffs;
+ TopEnd = EndOffs;
+ TopFA = &NewI->second;
+ TopFA->RemoveLen = Len;
+ } else {
+ TopBegin = B;
+ TopEnd = E;
+ TopFA = &I->second;
+ if (TopEnd >= EndOffs)
+ return;
+ unsigned diff = EndOffs.getOffset() - TopEnd.getOffset();
+ TopEnd = EndOffs;
+ TopFA->RemoveLen += diff;
+ if (B == BeginOffs)
+ TopFA->Text = StringRef();
+ ++I;
+ }
+
+ while (I != FileEdits.end()) {
+ FileEdit &FA = I->second;
+ FileOffset B = I->first;
+ FileOffset E = B.getWithOffset(FA.RemoveLen);
+
+ if (B >= TopEnd)
+ break;
+
+ if (E <= TopEnd) {
+ FileEdits.erase(I++);
+ continue;
+ }
+
+ if (B < TopEnd) {
+ unsigned diff = E.getOffset() - TopEnd.getOffset();
+ TopEnd = E;
+ TopFA->RemoveLen += diff;
+ FileEdits.erase(I);
+ }
+
+ break;
+ }
+}
+
+bool EditedSource::commit(const Commit &commit) {
+ if (!commit.isCommitable())
+ return false;
+
+ for (edit::Commit::edit_iterator
+ I = commit.edit_begin(), E = commit.edit_end(); I != E; ++I) {
+ const edit::Commit::Edit &edit = *I;
+ switch (edit.Kind) {
+ case edit::Commit::Act_Insert:
+ commitInsert(edit.OrigLoc, edit.Offset, edit.Text, edit.BeforePrev);
+ break;
+ case edit::Commit::Act_InsertFromRange:
+ commitInsertFromRange(edit.OrigLoc, edit.Offset,
+ edit.InsertFromRangeOffs, edit.Length,
+ edit.BeforePrev);
+ break;
+ case edit::Commit::Act_Remove:
+ commitRemove(edit.OrigLoc, edit.Offset, edit.Length);
+ break;
+ }
+ }
+
+ return true;
+}
+
+// \brief Returns true if it is ok to make the two given characters adjacent.
+static bool canBeJoined(char left, char right, const LangOptions &LangOpts) {
+ // FIXME: Should use TokenConcatenation to make sure we don't allow stuff like
+ // making two '<' adjacent.
+ return !(Lexer::isIdentifierBodyChar(left, LangOpts) &&
+ Lexer::isIdentifierBodyChar(right, LangOpts));
+}
+
+/// \brief Returns true if it is ok to eliminate the trailing whitespace between
+/// the given characters.
+static bool canRemoveWhitespace(char left, char beforeWSpace, char right,
+ const LangOptions &LangOpts) {
+ if (!canBeJoined(left, right, LangOpts))
+ return false;
+ if (isWhitespace(left) || isWhitespace(right))
+ return true;
+ if (canBeJoined(beforeWSpace, right, LangOpts))
+ return false; // the whitespace was intentional, keep it.
+ return true;
+}
+
+/// \brief Check the range that we are going to remove and:
+/// -Remove any trailing whitespace if possible.
+/// -Insert a space if removing the range is going to mess up the source tokens.
+static void adjustRemoval(const SourceManager &SM, const LangOptions &LangOpts,
+ SourceLocation Loc, FileOffset offs,
+ unsigned &len, StringRef &text) {
+ assert(len && text.empty());
+ SourceLocation BeginTokLoc = Lexer::GetBeginningOfToken(Loc, SM, LangOpts);
+ if (BeginTokLoc != Loc)
+ return; // the range is not at the beginning of a token, keep the range.
+
+ bool Invalid = false;
+ StringRef buffer = SM.getBufferData(offs.getFID(), &Invalid);
+ if (Invalid)
+ return;
+
+ unsigned begin = offs.getOffset();
+ unsigned end = begin + len;
+
+ // Do not try to extend the removal if we're at the end of the buffer already.
+ if (end == buffer.size())
+ return;
+
+ assert(begin < buffer.size() && end < buffer.size() && "Invalid range!");
+
+ // FIXME: Remove newline.
+
+ if (begin == 0) {
+ if (buffer[end] == ' ')
+ ++len;
+ return;
+ }
+
+ if (buffer[end] == ' ') {
+ assert((end + 1 != buffer.size() || buffer.data()[end + 1] == 0) &&
+ "buffer not zero-terminated!");
+ if (canRemoveWhitespace(/*left=*/buffer[begin-1],
+ /*beforeWSpace=*/buffer[end-1],
+ /*right=*/buffer.data()[end + 1], // zero-terminated
+ LangOpts))
+ ++len;
+ return;
+ }
+
+ if (!canBeJoined(buffer[begin-1], buffer[end], LangOpts))
+ text = " ";
+}
+
+static void applyRewrite(EditsReceiver &receiver,
+ StringRef text, FileOffset offs, unsigned len,
+ const SourceManager &SM, const LangOptions &LangOpts) {
+ assert(!offs.getFID().isInvalid());
+ SourceLocation Loc = SM.getLocForStartOfFile(offs.getFID());
+ Loc = Loc.getLocWithOffset(offs.getOffset());
+ assert(Loc.isFileID());
+
+ if (text.empty())
+ adjustRemoval(SM, LangOpts, Loc, offs, len, text);
+
+ CharSourceRange range = CharSourceRange::getCharRange(Loc,
+ Loc.getLocWithOffset(len));
+
+ if (text.empty()) {
+ assert(len);
+ receiver.remove(range);
+ return;
+ }
+
+ if (len)
+ receiver.replace(range, text);
+ else
+ receiver.insert(Loc, text);
+}
+
+void EditedSource::applyRewrites(EditsReceiver &receiver) {
+ SmallString<128> StrVec;
+ FileOffset CurOffs, CurEnd;
+ unsigned CurLen;
+
+ if (FileEdits.empty())
+ return;
+
+ FileEditsTy::iterator I = FileEdits.begin();
+ CurOffs = I->first;
+ StrVec = I->second.Text;
+ CurLen = I->second.RemoveLen;
+ CurEnd = CurOffs.getWithOffset(CurLen);
+ ++I;
+
+ for (FileEditsTy::iterator E = FileEdits.end(); I != E; ++I) {
+ FileOffset offs = I->first;
+ FileEdit act = I->second;
+ assert(offs >= CurEnd);
+
+ if (offs == CurEnd) {
+ StrVec += act.Text;
+ CurLen += act.RemoveLen;
+ CurEnd.getWithOffset(act.RemoveLen);
+ continue;
+ }
+
+ applyRewrite(receiver, StrVec, CurOffs, CurLen, SourceMgr, LangOpts);
+ CurOffs = offs;
+ StrVec = act.Text;
+ CurLen = act.RemoveLen;
+ CurEnd = CurOffs.getWithOffset(CurLen);
+ }
+
+ applyRewrite(receiver, StrVec, CurOffs, CurLen, SourceMgr, LangOpts);
+}
+
+void EditedSource::clearRewrites() {
+ FileEdits.clear();
+ StrAlloc.Reset();
+}
+
+StringRef EditedSource::getSourceText(FileOffset BeginOffs, FileOffset EndOffs,
+ bool &Invalid) {
+ assert(BeginOffs.getFID() == EndOffs.getFID());
+ assert(BeginOffs <= EndOffs);
+ SourceLocation BLoc = SourceMgr.getLocForStartOfFile(BeginOffs.getFID());
+ BLoc = BLoc.getLocWithOffset(BeginOffs.getOffset());
+ assert(BLoc.isFileID());
+ SourceLocation
+ ELoc = BLoc.getLocWithOffset(EndOffs.getOffset() - BeginOffs.getOffset());
+ return Lexer::getSourceText(CharSourceRange::getCharRange(BLoc, ELoc),
+ SourceMgr, LangOpts, &Invalid);
+}
+
+EditedSource::FileEditsTy::iterator
+EditedSource::getActionForOffset(FileOffset Offs) {
+ FileEditsTy::iterator I = FileEdits.upper_bound(Offs);
+ if (I == FileEdits.begin())
+ return FileEdits.end();
+ --I;
+ FileEdit &FA = I->second;
+ FileOffset B = I->first;
+ FileOffset E = B.getWithOffset(FA.RemoveLen);
+ if (Offs >= B && Offs < E)
+ return I;
+
+ return FileEdits.end();
+}
diff --git a/contrib/llvm/tools/clang/lib/Edit/RewriteObjCFoundationAPI.cpp b/contrib/llvm/tools/clang/lib/Edit/RewriteObjCFoundationAPI.cpp
new file mode 100644
index 0000000..9f71168
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Edit/RewriteObjCFoundationAPI.cpp
@@ -0,0 +1,1170 @@
+//===--- RewriteObjCFoundationAPI.cpp - Foundation API Rewriter -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Rewrites legacy method calls to modern syntax.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Edit/Rewriters.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/AST/NSAPI.h"
+#include "clang/AST/ParentMap.h"
+#include "clang/Edit/Commit.h"
+#include "clang/Lex/Lexer.h"
+
+using namespace clang;
+using namespace edit;
+
+static bool checkForLiteralCreation(const ObjCMessageExpr *Msg,
+ IdentifierInfo *&ClassId,
+ const LangOptions &LangOpts) {
+ if (!Msg || Msg->isImplicit() || !Msg->getMethodDecl())
+ return false;
+
+ const ObjCInterfaceDecl *Receiver = Msg->getReceiverInterface();
+ if (!Receiver)
+ return false;
+ ClassId = Receiver->getIdentifier();
+
+ if (Msg->getReceiverKind() == ObjCMessageExpr::Class)
+ return true;
+
+ // When in ARC mode we also convert "[[.. alloc] init]" messages to literals,
+ // since the change from +1 to +0 will be handled fine by ARC.
+ if (LangOpts.ObjCAutoRefCount) {
+ if (Msg->getReceiverKind() == ObjCMessageExpr::Instance) {
+ if (const ObjCMessageExpr *Rec = dyn_cast<ObjCMessageExpr>(
+ Msg->getInstanceReceiver()->IgnoreParenImpCasts())) {
+ if (Rec->getMethodFamily() == OMF_alloc)
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// rewriteObjCRedundantCallWithLiteral.
+//===----------------------------------------------------------------------===//
+
+bool edit::rewriteObjCRedundantCallWithLiteral(const ObjCMessageExpr *Msg,
+ const NSAPI &NS, Commit &commit) {
+ IdentifierInfo *II = nullptr;
+ if (!checkForLiteralCreation(Msg, II, NS.getASTContext().getLangOpts()))
+ return false;
+ if (Msg->getNumArgs() != 1)
+ return false;
+
+ const Expr *Arg = Msg->getArg(0)->IgnoreParenImpCasts();
+ Selector Sel = Msg->getSelector();
+
+ if ((isa<ObjCStringLiteral>(Arg) &&
+ NS.getNSClassId(NSAPI::ClassId_NSString) == II &&
+ (NS.getNSStringSelector(NSAPI::NSStr_stringWithString) == Sel ||
+ NS.getNSStringSelector(NSAPI::NSStr_initWithString) == Sel)) ||
+
+ (isa<ObjCArrayLiteral>(Arg) &&
+ NS.getNSClassId(NSAPI::ClassId_NSArray) == II &&
+ (NS.getNSArraySelector(NSAPI::NSArr_arrayWithArray) == Sel ||
+ NS.getNSArraySelector(NSAPI::NSArr_initWithArray) == Sel)) ||
+
+ (isa<ObjCDictionaryLiteral>(Arg) &&
+ NS.getNSClassId(NSAPI::ClassId_NSDictionary) == II &&
+ (NS.getNSDictionarySelector(
+ NSAPI::NSDict_dictionaryWithDictionary) == Sel ||
+ NS.getNSDictionarySelector(NSAPI::NSDict_initWithDictionary) == Sel))) {
+
+ commit.replaceWithInner(Msg->getSourceRange(),
+ Msg->getArg(0)->getSourceRange());
+ return true;
+ }
+
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// rewriteToObjCSubscriptSyntax.
+//===----------------------------------------------------------------------===//
+
+/// \brief Check for classes that accept 'objectForKey:' (or the other selectors
+/// that the migrator handles) but return their instances as 'id', resulting
+/// in the compiler resolving 'objectForKey:' as the method from NSDictionary.
+///
+/// When checking if we can convert to subscripting syntax, check whether
+/// the receiver is a result of a class method from a hardcoded list of
+/// such classes. In such a case return the specific class as the interface
+/// of the receiver.
+///
+/// FIXME: Remove this when these classes start using 'instancetype'.
+static const ObjCInterfaceDecl *
+maybeAdjustInterfaceForSubscriptingCheck(const ObjCInterfaceDecl *IFace,
+ const Expr *Receiver,
+ ASTContext &Ctx) {
+ assert(IFace && Receiver);
+
+ // If the receiver has type 'id'...
+ if (!Ctx.isObjCIdType(Receiver->getType().getUnqualifiedType()))
+ return IFace;
+
+ const ObjCMessageExpr *
+ InnerMsg = dyn_cast<ObjCMessageExpr>(Receiver->IgnoreParenCasts());
+ if (!InnerMsg)
+ return IFace;
+
+ QualType ClassRec;
+ switch (InnerMsg->getReceiverKind()) {
+ case ObjCMessageExpr::Instance:
+ case ObjCMessageExpr::SuperInstance:
+ return IFace;
+
+ case ObjCMessageExpr::Class:
+ ClassRec = InnerMsg->getClassReceiver();
+ break;
+ case ObjCMessageExpr::SuperClass:
+ ClassRec = InnerMsg->getSuperType();
+ break;
+ }
+
+ if (ClassRec.isNull())
+ return IFace;
+
+ // ...and it is the result of a class message...
+
+ const ObjCObjectType *ObjTy = ClassRec->getAs<ObjCObjectType>();
+ if (!ObjTy)
+ return IFace;
+ const ObjCInterfaceDecl *OID = ObjTy->getInterface();
+
+ // ...and the receiving class is NSMapTable or NSLocale, return that
+ // class as the receiving interface.
+ if (OID->getName() == "NSMapTable" ||
+ OID->getName() == "NSLocale")
+ return OID;
+
+ return IFace;
+}
+
+static bool canRewriteToSubscriptSyntax(const ObjCInterfaceDecl *&IFace,
+ const ObjCMessageExpr *Msg,
+ ASTContext &Ctx,
+ Selector subscriptSel) {
+ const Expr *Rec = Msg->getInstanceReceiver();
+ if (!Rec)
+ return false;
+ IFace = maybeAdjustInterfaceForSubscriptingCheck(IFace, Rec, Ctx);
+
+ if (const ObjCMethodDecl *MD = IFace->lookupInstanceMethod(subscriptSel)) {
+ if (!MD->isUnavailable())
+ return true;
+ }
+ return false;
+}
+
+static bool subscriptOperatorNeedsParens(const Expr *FullExpr);
+
+static void maybePutParensOnReceiver(const Expr *Receiver, Commit &commit) {
+ if (subscriptOperatorNeedsParens(Receiver)) {
+ SourceRange RecRange = Receiver->getSourceRange();
+ commit.insertWrap("(", RecRange, ")");
+ }
+}
+
+static bool rewriteToSubscriptGetCommon(const ObjCMessageExpr *Msg,
+ Commit &commit) {
+ if (Msg->getNumArgs() != 1)
+ return false;
+ const Expr *Rec = Msg->getInstanceReceiver();
+ if (!Rec)
+ return false;
+
+ SourceRange MsgRange = Msg->getSourceRange();
+ SourceRange RecRange = Rec->getSourceRange();
+ SourceRange ArgRange = Msg->getArg(0)->getSourceRange();
+
+ commit.replaceWithInner(CharSourceRange::getCharRange(MsgRange.getBegin(),
+ ArgRange.getBegin()),
+ CharSourceRange::getTokenRange(RecRange));
+ commit.replaceWithInner(SourceRange(ArgRange.getBegin(), MsgRange.getEnd()),
+ ArgRange);
+ commit.insertWrap("[", ArgRange, "]");
+ maybePutParensOnReceiver(Rec, commit);
+ return true;
+}
+
+static bool rewriteToArraySubscriptGet(const ObjCInterfaceDecl *IFace,
+ const ObjCMessageExpr *Msg,
+ const NSAPI &NS,
+ Commit &commit) {
+ if (!canRewriteToSubscriptSyntax(IFace, Msg, NS.getASTContext(),
+ NS.getObjectAtIndexedSubscriptSelector()))
+ return false;
+ return rewriteToSubscriptGetCommon(Msg, commit);
+}
+
+static bool rewriteToDictionarySubscriptGet(const ObjCInterfaceDecl *IFace,
+ const ObjCMessageExpr *Msg,
+ const NSAPI &NS,
+ Commit &commit) {
+ if (!canRewriteToSubscriptSyntax(IFace, Msg, NS.getASTContext(),
+ NS.getObjectForKeyedSubscriptSelector()))
+ return false;
+ return rewriteToSubscriptGetCommon(Msg, commit);
+}
+
+static bool rewriteToArraySubscriptSet(const ObjCInterfaceDecl *IFace,
+ const ObjCMessageExpr *Msg,
+ const NSAPI &NS,
+ Commit &commit) {
+ if (!canRewriteToSubscriptSyntax(IFace, Msg, NS.getASTContext(),
+ NS.getSetObjectAtIndexedSubscriptSelector()))
+ return false;
+
+ if (Msg->getNumArgs() != 2)
+ return false;
+ const Expr *Rec = Msg->getInstanceReceiver();
+ if (!Rec)
+ return false;
+
+ SourceRange MsgRange = Msg->getSourceRange();
+ SourceRange RecRange = Rec->getSourceRange();
+ SourceRange Arg0Range = Msg->getArg(0)->getSourceRange();
+ SourceRange Arg1Range = Msg->getArg(1)->getSourceRange();
+
+ commit.replaceWithInner(CharSourceRange::getCharRange(MsgRange.getBegin(),
+ Arg0Range.getBegin()),
+ CharSourceRange::getTokenRange(RecRange));
+ commit.replaceWithInner(CharSourceRange::getCharRange(Arg0Range.getBegin(),
+ Arg1Range.getBegin()),
+ CharSourceRange::getTokenRange(Arg0Range));
+ commit.replaceWithInner(SourceRange(Arg1Range.getBegin(), MsgRange.getEnd()),
+ Arg1Range);
+ commit.insertWrap("[", CharSourceRange::getCharRange(Arg0Range.getBegin(),
+ Arg1Range.getBegin()),
+ "] = ");
+ maybePutParensOnReceiver(Rec, commit);
+ return true;
+}
+
+static bool rewriteToDictionarySubscriptSet(const ObjCInterfaceDecl *IFace,
+ const ObjCMessageExpr *Msg,
+ const NSAPI &NS,
+ Commit &commit) {
+ if (!canRewriteToSubscriptSyntax(IFace, Msg, NS.getASTContext(),
+ NS.getSetObjectForKeyedSubscriptSelector()))
+ return false;
+
+ if (Msg->getNumArgs() != 2)
+ return false;
+ const Expr *Rec = Msg->getInstanceReceiver();
+ if (!Rec)
+ return false;
+
+ SourceRange MsgRange = Msg->getSourceRange();
+ SourceRange RecRange = Rec->getSourceRange();
+ SourceRange Arg0Range = Msg->getArg(0)->getSourceRange();
+ SourceRange Arg1Range = Msg->getArg(1)->getSourceRange();
+
+ SourceLocation LocBeforeVal = Arg0Range.getBegin();
+ commit.insertBefore(LocBeforeVal, "] = ");
+ commit.insertFromRange(LocBeforeVal, Arg1Range, /*afterToken=*/false,
+ /*beforePreviousInsertions=*/true);
+ commit.insertBefore(LocBeforeVal, "[");
+ commit.replaceWithInner(CharSourceRange::getCharRange(MsgRange.getBegin(),
+ Arg0Range.getBegin()),
+ CharSourceRange::getTokenRange(RecRange));
+ commit.replaceWithInner(SourceRange(Arg0Range.getBegin(), MsgRange.getEnd()),
+ Arg0Range);
+ maybePutParensOnReceiver(Rec, commit);
+ return true;
+}
+
+bool edit::rewriteToObjCSubscriptSyntax(const ObjCMessageExpr *Msg,
+ const NSAPI &NS, Commit &commit) {
+ if (!Msg || Msg->isImplicit() ||
+ Msg->getReceiverKind() != ObjCMessageExpr::Instance)
+ return false;
+ const ObjCMethodDecl *Method = Msg->getMethodDecl();
+ if (!Method)
+ return false;
+
+ const ObjCInterfaceDecl *IFace =
+ NS.getASTContext().getObjContainingInterface(Method);
+ if (!IFace)
+ return false;
+ Selector Sel = Msg->getSelector();
+
+ if (Sel == NS.getNSArraySelector(NSAPI::NSArr_objectAtIndex))
+ return rewriteToArraySubscriptGet(IFace, Msg, NS, commit);
+
+ if (Sel == NS.getNSDictionarySelector(NSAPI::NSDict_objectForKey))
+ return rewriteToDictionarySubscriptGet(IFace, Msg, NS, commit);
+
+ if (Msg->getNumArgs() != 2)
+ return false;
+
+ if (Sel == NS.getNSArraySelector(NSAPI::NSMutableArr_replaceObjectAtIndex))
+ return rewriteToArraySubscriptSet(IFace, Msg, NS, commit);
+
+ if (Sel == NS.getNSDictionarySelector(NSAPI::NSMutableDict_setObjectForKey))
+ return rewriteToDictionarySubscriptSet(IFace, Msg, NS, commit);
+
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// rewriteToObjCLiteralSyntax.
+//===----------------------------------------------------------------------===//
+
+static bool rewriteToArrayLiteral(const ObjCMessageExpr *Msg,
+ const NSAPI &NS, Commit &commit,
+ const ParentMap *PMap);
+static bool rewriteToDictionaryLiteral(const ObjCMessageExpr *Msg,
+ const NSAPI &NS, Commit &commit);
+static bool rewriteToNumberLiteral(const ObjCMessageExpr *Msg,
+ const NSAPI &NS, Commit &commit);
+static bool rewriteToNumericBoxedExpression(const ObjCMessageExpr *Msg,
+ const NSAPI &NS, Commit &commit);
+static bool rewriteToStringBoxedExpression(const ObjCMessageExpr *Msg,
+ const NSAPI &NS, Commit &commit);
+
+bool edit::rewriteToObjCLiteralSyntax(const ObjCMessageExpr *Msg,
+ const NSAPI &NS, Commit &commit,
+ const ParentMap *PMap) {
+ IdentifierInfo *II = nullptr;
+ if (!checkForLiteralCreation(Msg, II, NS.getASTContext().getLangOpts()))
+ return false;
+
+ if (II == NS.getNSClassId(NSAPI::ClassId_NSArray))
+ return rewriteToArrayLiteral(Msg, NS, commit, PMap);
+ if (II == NS.getNSClassId(NSAPI::ClassId_NSDictionary))
+ return rewriteToDictionaryLiteral(Msg, NS, commit);
+ if (II == NS.getNSClassId(NSAPI::ClassId_NSNumber))
+ return rewriteToNumberLiteral(Msg, NS, commit);
+ if (II == NS.getNSClassId(NSAPI::ClassId_NSString))
+ return rewriteToStringBoxedExpression(Msg, NS, commit);
+
+ return false;
+}
+
+/// \brief Returns true if the immediate message arguments of \c Msg should not
+/// be rewritten because it will interfere with the rewrite of the parent
+/// message expression. e.g.
+/// \code
+/// [NSDictionary dictionaryWithObjects:
+/// [NSArray arrayWithObjects:@"1", @"2", nil]
+/// forKeys:[NSArray arrayWithObjects:@"A", @"B", nil]];
+/// \endcode
+/// It will return true for this because we are going to rewrite this directly
+/// to a dictionary literal without any array literals.
+static bool shouldNotRewriteImmediateMessageArgs(const ObjCMessageExpr *Msg,
+ const NSAPI &NS);
+
+//===----------------------------------------------------------------------===//
+// rewriteToArrayLiteral.
+//===----------------------------------------------------------------------===//
+
+/// \brief Adds an explicit cast to 'id' if the type is not objc object.
+static void objectifyExpr(const Expr *E, Commit &commit);
+
+static bool rewriteToArrayLiteral(const ObjCMessageExpr *Msg,
+ const NSAPI &NS, Commit &commit,
+ const ParentMap *PMap) {
+ if (PMap) {
+ const ObjCMessageExpr *ParentMsg =
+ dyn_cast_or_null<ObjCMessageExpr>(PMap->getParentIgnoreParenCasts(Msg));
+ if (shouldNotRewriteImmediateMessageArgs(ParentMsg, NS))
+ return false;
+ }
+
+ Selector Sel = Msg->getSelector();
+ SourceRange MsgRange = Msg->getSourceRange();
+
+ if (Sel == NS.getNSArraySelector(NSAPI::NSArr_array)) {
+ if (Msg->getNumArgs() != 0)
+ return false;
+ commit.replace(MsgRange, "@[]");
+ return true;
+ }
+
+ if (Sel == NS.getNSArraySelector(NSAPI::NSArr_arrayWithObject)) {
+ if (Msg->getNumArgs() != 1)
+ return false;
+ objectifyExpr(Msg->getArg(0), commit);
+ SourceRange ArgRange = Msg->getArg(0)->getSourceRange();
+ commit.replaceWithInner(MsgRange, ArgRange);
+ commit.insertWrap("@[", ArgRange, "]");
+ return true;
+ }
+
+ if (Sel == NS.getNSArraySelector(NSAPI::NSArr_arrayWithObjects) ||
+ Sel == NS.getNSArraySelector(NSAPI::NSArr_initWithObjects)) {
+ if (Msg->getNumArgs() == 0)
+ return false;
+ const Expr *SentinelExpr = Msg->getArg(Msg->getNumArgs() - 1);
+ if (!NS.getASTContext().isSentinelNullExpr(SentinelExpr))
+ return false;
+
+ for (unsigned i = 0, e = Msg->getNumArgs() - 1; i != e; ++i)
+ objectifyExpr(Msg->getArg(i), commit);
+
+ if (Msg->getNumArgs() == 1) {
+ commit.replace(MsgRange, "@[]");
+ return true;
+ }
+ SourceRange ArgRange(Msg->getArg(0)->getLocStart(),
+ Msg->getArg(Msg->getNumArgs()-2)->getLocEnd());
+ commit.replaceWithInner(MsgRange, ArgRange);
+ commit.insertWrap("@[", ArgRange, "]");
+ return true;
+ }
+
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// rewriteToDictionaryLiteral.
+//===----------------------------------------------------------------------===//
+
+/// \brief If \c Msg is an NSArray creation message or literal, this gets the
+/// objects that were used to create it.
+/// \returns true if it is an NSArray and we got objects, or false otherwise.
+static bool getNSArrayObjects(const Expr *E, const NSAPI &NS,
+ SmallVectorImpl<const Expr *> &Objs) {
+ if (!E)
+ return false;
+
+ E = E->IgnoreParenCasts();
+ if (!E)
+ return false;
+
+ if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) {
+ IdentifierInfo *Cls = nullptr;
+ if (!checkForLiteralCreation(Msg, Cls, NS.getASTContext().getLangOpts()))
+ return false;
+
+ if (Cls != NS.getNSClassId(NSAPI::ClassId_NSArray))
+ return false;
+
+ Selector Sel = Msg->getSelector();
+ if (Sel == NS.getNSArraySelector(NSAPI::NSArr_array))
+ return true; // empty array.
+
+ if (Sel == NS.getNSArraySelector(NSAPI::NSArr_arrayWithObject)) {
+ if (Msg->getNumArgs() != 1)
+ return false;
+ Objs.push_back(Msg->getArg(0));
+ return true;
+ }
+
+ if (Sel == NS.getNSArraySelector(NSAPI::NSArr_arrayWithObjects) ||
+ Sel == NS.getNSArraySelector(NSAPI::NSArr_initWithObjects)) {
+ if (Msg->getNumArgs() == 0)
+ return false;
+ const Expr *SentinelExpr = Msg->getArg(Msg->getNumArgs() - 1);
+ if (!NS.getASTContext().isSentinelNullExpr(SentinelExpr))
+ return false;
+
+ for (unsigned i = 0, e = Msg->getNumArgs() - 1; i != e; ++i)
+ Objs.push_back(Msg->getArg(i));
+ return true;
+ }
+
+ } else if (const ObjCArrayLiteral *ArrLit = dyn_cast<ObjCArrayLiteral>(E)) {
+ for (unsigned i = 0, e = ArrLit->getNumElements(); i != e; ++i)
+ Objs.push_back(ArrLit->getElement(i));
+ return true;
+ }
+
+ return false;
+}
+
+static bool rewriteToDictionaryLiteral(const ObjCMessageExpr *Msg,
+ const NSAPI &NS, Commit &commit) {
+ Selector Sel = Msg->getSelector();
+ SourceRange MsgRange = Msg->getSourceRange();
+
+ if (Sel == NS.getNSDictionarySelector(NSAPI::NSDict_dictionary)) {
+ if (Msg->getNumArgs() != 0)
+ return false;
+ commit.replace(MsgRange, "@{}");
+ return true;
+ }
+
+ if (Sel == NS.getNSDictionarySelector(
+ NSAPI::NSDict_dictionaryWithObjectForKey)) {
+ if (Msg->getNumArgs() != 2)
+ return false;
+
+ objectifyExpr(Msg->getArg(0), commit);
+ objectifyExpr(Msg->getArg(1), commit);
+
+ SourceRange ValRange = Msg->getArg(0)->getSourceRange();
+ SourceRange KeyRange = Msg->getArg(1)->getSourceRange();
+ // Insert key before the value.
+ commit.insertBefore(ValRange.getBegin(), ": ");
+ commit.insertFromRange(ValRange.getBegin(),
+ CharSourceRange::getTokenRange(KeyRange),
+ /*afterToken=*/false, /*beforePreviousInsertions=*/true);
+ commit.insertBefore(ValRange.getBegin(), "@{");
+ commit.insertAfterToken(ValRange.getEnd(), "}");
+ commit.replaceWithInner(MsgRange, ValRange);
+ return true;
+ }
+
+ if (Sel == NS.getNSDictionarySelector(
+ NSAPI::NSDict_dictionaryWithObjectsAndKeys) ||
+ Sel == NS.getNSDictionarySelector(NSAPI::NSDict_initWithObjectsAndKeys)) {
+ if (Msg->getNumArgs() % 2 != 1)
+ return false;
+ unsigned SentinelIdx = Msg->getNumArgs() - 1;
+ const Expr *SentinelExpr = Msg->getArg(SentinelIdx);
+ if (!NS.getASTContext().isSentinelNullExpr(SentinelExpr))
+ return false;
+
+ if (Msg->getNumArgs() == 1) {
+ commit.replace(MsgRange, "@{}");
+ return true;
+ }
+
+ for (unsigned i = 0; i < SentinelIdx; i += 2) {
+ objectifyExpr(Msg->getArg(i), commit);
+ objectifyExpr(Msg->getArg(i+1), commit);
+
+ SourceRange ValRange = Msg->getArg(i)->getSourceRange();
+ SourceRange KeyRange = Msg->getArg(i+1)->getSourceRange();
+ // Insert value after key.
+ commit.insertAfterToken(KeyRange.getEnd(), ": ");
+ commit.insertFromRange(KeyRange.getEnd(), ValRange, /*afterToken=*/true);
+ commit.remove(CharSourceRange::getCharRange(ValRange.getBegin(),
+ KeyRange.getBegin()));
+ }
+ // Range of arguments up until and including the last key.
+ // The sentinel and first value are cut off, the value will move after the
+ // key.
+ SourceRange ArgRange(Msg->getArg(1)->getLocStart(),
+ Msg->getArg(SentinelIdx-1)->getLocEnd());
+ commit.insertWrap("@{", ArgRange, "}");
+ commit.replaceWithInner(MsgRange, ArgRange);
+ return true;
+ }
+
+ if (Sel == NS.getNSDictionarySelector(
+ NSAPI::NSDict_dictionaryWithObjectsForKeys) ||
+ Sel == NS.getNSDictionarySelector(NSAPI::NSDict_initWithObjectsForKeys)) {
+ if (Msg->getNumArgs() != 2)
+ return false;
+
+ SmallVector<const Expr *, 8> Vals;
+ if (!getNSArrayObjects(Msg->getArg(0), NS, Vals))
+ return false;
+
+ SmallVector<const Expr *, 8> Keys;
+ if (!getNSArrayObjects(Msg->getArg(1), NS, Keys))
+ return false;
+
+ if (Vals.size() != Keys.size())
+ return false;
+
+ if (Vals.empty()) {
+ commit.replace(MsgRange, "@{}");
+ return true;
+ }
+
+ for (unsigned i = 0, n = Vals.size(); i < n; ++i) {
+ objectifyExpr(Vals[i], commit);
+ objectifyExpr(Keys[i], commit);
+
+ SourceRange ValRange = Vals[i]->getSourceRange();
+ SourceRange KeyRange = Keys[i]->getSourceRange();
+ // Insert value after key.
+ commit.insertAfterToken(KeyRange.getEnd(), ": ");
+ commit.insertFromRange(KeyRange.getEnd(), ValRange, /*afterToken=*/true);
+ }
+ // Range of arguments up until and including the last key.
+ // The first value is cut off, the value will move after the key.
+ SourceRange ArgRange(Keys.front()->getLocStart(),
+ Keys.back()->getLocEnd());
+ commit.insertWrap("@{", ArgRange, "}");
+ commit.replaceWithInner(MsgRange, ArgRange);
+ return true;
+ }
+
+ return false;
+}
+
+static bool shouldNotRewriteImmediateMessageArgs(const ObjCMessageExpr *Msg,
+ const NSAPI &NS) {
+ if (!Msg)
+ return false;
+
+ IdentifierInfo *II = nullptr;
+ if (!checkForLiteralCreation(Msg, II, NS.getASTContext().getLangOpts()))
+ return false;
+
+ if (II != NS.getNSClassId(NSAPI::ClassId_NSDictionary))
+ return false;
+
+ Selector Sel = Msg->getSelector();
+ if (Sel == NS.getNSDictionarySelector(
+ NSAPI::NSDict_dictionaryWithObjectsForKeys) ||
+ Sel == NS.getNSDictionarySelector(NSAPI::NSDict_initWithObjectsForKeys)) {
+ if (Msg->getNumArgs() != 2)
+ return false;
+
+ SmallVector<const Expr *, 8> Vals;
+ if (!getNSArrayObjects(Msg->getArg(0), NS, Vals))
+ return false;
+
+ SmallVector<const Expr *, 8> Keys;
+ if (!getNSArrayObjects(Msg->getArg(1), NS, Keys))
+ return false;
+
+ if (Vals.size() != Keys.size())
+ return false;
+
+ return true;
+ }
+
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// rewriteToNumberLiteral.
+//===----------------------------------------------------------------------===//
+
+static bool rewriteToCharLiteral(const ObjCMessageExpr *Msg,
+ const CharacterLiteral *Arg,
+ const NSAPI &NS, Commit &commit) {
+ if (Arg->getKind() != CharacterLiteral::Ascii)
+ return false;
+ if (NS.isNSNumberLiteralSelector(NSAPI::NSNumberWithChar,
+ Msg->getSelector())) {
+ SourceRange ArgRange = Arg->getSourceRange();
+ commit.replaceWithInner(Msg->getSourceRange(), ArgRange);
+ commit.insert(ArgRange.getBegin(), "@");
+ return true;
+ }
+
+ return rewriteToNumericBoxedExpression(Msg, NS, commit);
+}
+
+static bool rewriteToBoolLiteral(const ObjCMessageExpr *Msg,
+ const Expr *Arg,
+ const NSAPI &NS, Commit &commit) {
+ if (NS.isNSNumberLiteralSelector(NSAPI::NSNumberWithBool,
+ Msg->getSelector())) {
+ SourceRange ArgRange = Arg->getSourceRange();
+ commit.replaceWithInner(Msg->getSourceRange(), ArgRange);
+ commit.insert(ArgRange.getBegin(), "@");
+ return true;
+ }
+
+ return rewriteToNumericBoxedExpression(Msg, NS, commit);
+}
+
+namespace {
+
+struct LiteralInfo {
+ bool Hex, Octal;
+ StringRef U, F, L, LL;
+ CharSourceRange WithoutSuffRange;
+};
+
+}
+
+static bool getLiteralInfo(SourceRange literalRange,
+ bool isFloat, bool isIntZero,
+ ASTContext &Ctx, LiteralInfo &Info) {
+ if (literalRange.getBegin().isMacroID() ||
+ literalRange.getEnd().isMacroID())
+ return false;
+ StringRef text = Lexer::getSourceText(
+ CharSourceRange::getTokenRange(literalRange),
+ Ctx.getSourceManager(), Ctx.getLangOpts());
+ if (text.empty())
+ return false;
+
+ Optional<bool> UpperU, UpperL;
+ bool UpperF = false;
+
+ struct Suff {
+ static bool has(StringRef suff, StringRef &text) {
+ if (text.endswith(suff)) {
+ text = text.substr(0, text.size()-suff.size());
+ return true;
+ }
+ return false;
+ }
+ };
+
+ while (1) {
+ if (Suff::has("u", text)) {
+ UpperU = false;
+ } else if (Suff::has("U", text)) {
+ UpperU = true;
+ } else if (Suff::has("ll", text)) {
+ UpperL = false;
+ } else if (Suff::has("LL", text)) {
+ UpperL = true;
+ } else if (Suff::has("l", text)) {
+ UpperL = false;
+ } else if (Suff::has("L", text)) {
+ UpperL = true;
+ } else if (isFloat && Suff::has("f", text)) {
+ UpperF = false;
+ } else if (isFloat && Suff::has("F", text)) {
+ UpperF = true;
+ } else
+ break;
+ }
+
+ if (!UpperU.hasValue() && !UpperL.hasValue())
+ UpperU = UpperL = true;
+ else if (UpperU.hasValue() && !UpperL.hasValue())
+ UpperL = UpperU;
+ else if (UpperL.hasValue() && !UpperU.hasValue())
+ UpperU = UpperL;
+
+ Info.U = *UpperU ? "U" : "u";
+ Info.L = *UpperL ? "L" : "l";
+ Info.LL = *UpperL ? "LL" : "ll";
+ Info.F = UpperF ? "F" : "f";
+
+ Info.Hex = Info.Octal = false;
+ if (text.startswith("0x"))
+ Info.Hex = true;
+ else if (!isFloat && !isIntZero && text.startswith("0"))
+ Info.Octal = true;
+
+ SourceLocation B = literalRange.getBegin();
+ Info.WithoutSuffRange =
+ CharSourceRange::getCharRange(B, B.getLocWithOffset(text.size()));
+ return true;
+}
+
+static bool rewriteToNumberLiteral(const ObjCMessageExpr *Msg,
+ const NSAPI &NS, Commit &commit) {
+ if (Msg->getNumArgs() != 1)
+ return false;
+
+ const Expr *Arg = Msg->getArg(0)->IgnoreParenImpCasts();
+ if (const CharacterLiteral *CharE = dyn_cast<CharacterLiteral>(Arg))
+ return rewriteToCharLiteral(Msg, CharE, NS, commit);
+ if (const ObjCBoolLiteralExpr *BE = dyn_cast<ObjCBoolLiteralExpr>(Arg))
+ return rewriteToBoolLiteral(Msg, BE, NS, commit);
+ if (const CXXBoolLiteralExpr *BE = dyn_cast<CXXBoolLiteralExpr>(Arg))
+ return rewriteToBoolLiteral(Msg, BE, NS, commit);
+
+ const Expr *literalE = Arg;
+ if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(literalE)) {
+ if (UOE->getOpcode() == UO_Plus || UOE->getOpcode() == UO_Minus)
+ literalE = UOE->getSubExpr();
+ }
+
+ // Only integer and floating literals, otherwise try to rewrite to boxed
+ // expression.
+ if (!isa<IntegerLiteral>(literalE) && !isa<FloatingLiteral>(literalE))
+ return rewriteToNumericBoxedExpression(Msg, NS, commit);
+
+ ASTContext &Ctx = NS.getASTContext();
+ Selector Sel = Msg->getSelector();
+ Optional<NSAPI::NSNumberLiteralMethodKind>
+ MKOpt = NS.getNSNumberLiteralMethodKind(Sel);
+ if (!MKOpt)
+ return false;
+ NSAPI::NSNumberLiteralMethodKind MK = *MKOpt;
+
+ bool CallIsUnsigned = false, CallIsLong = false, CallIsLongLong = false;
+ bool CallIsFloating = false, CallIsDouble = false;
+
+ switch (MK) {
+ // We cannot have these calls with int/float literals.
+ case NSAPI::NSNumberWithChar:
+ case NSAPI::NSNumberWithUnsignedChar:
+ case NSAPI::NSNumberWithShort:
+ case NSAPI::NSNumberWithUnsignedShort:
+ case NSAPI::NSNumberWithBool:
+ return rewriteToNumericBoxedExpression(Msg, NS, commit);
+
+ case NSAPI::NSNumberWithUnsignedInt:
+ case NSAPI::NSNumberWithUnsignedInteger:
+ CallIsUnsigned = true;
+ case NSAPI::NSNumberWithInt:
+ case NSAPI::NSNumberWithInteger:
+ break;
+
+ case NSAPI::NSNumberWithUnsignedLong:
+ CallIsUnsigned = true;
+ case NSAPI::NSNumberWithLong:
+ CallIsLong = true;
+ break;
+
+ case NSAPI::NSNumberWithUnsignedLongLong:
+ CallIsUnsigned = true;
+ case NSAPI::NSNumberWithLongLong:
+ CallIsLongLong = true;
+ break;
+
+ case NSAPI::NSNumberWithDouble:
+ CallIsDouble = true;
+ case NSAPI::NSNumberWithFloat:
+ CallIsFloating = true;
+ break;
+ }
+
+ SourceRange ArgRange = Arg->getSourceRange();
+ QualType ArgTy = Arg->getType();
+ QualType CallTy = Msg->getArg(0)->getType();
+
+ // Check for the easy case, the literal maps directly to the call.
+ if (Ctx.hasSameType(ArgTy, CallTy)) {
+ commit.replaceWithInner(Msg->getSourceRange(), ArgRange);
+ commit.insert(ArgRange.getBegin(), "@");
+ return true;
+ }
+
+ // We will need to modify the literal suffix to get the same type as the call.
+ // Try with boxed expression if it came from a macro.
+ if (ArgRange.getBegin().isMacroID())
+ return rewriteToNumericBoxedExpression(Msg, NS, commit);
+
+ bool LitIsFloat = ArgTy->isFloatingType();
+ // For a float passed to integer call, don't try rewriting to objc literal.
+ // It is difficult and a very uncommon case anyway.
+ // But try with boxed expression.
+ if (LitIsFloat && !CallIsFloating)
+ return rewriteToNumericBoxedExpression(Msg, NS, commit);
+
+ // Try to modify the literal make it the same type as the method call.
+ // -Modify the suffix, and/or
+ // -Change integer to float
+
+ LiteralInfo LitInfo;
+ bool isIntZero = false;
+ if (const IntegerLiteral *IntE = dyn_cast<IntegerLiteral>(literalE))
+ isIntZero = !IntE->getValue().getBoolValue();
+ if (!getLiteralInfo(ArgRange, LitIsFloat, isIntZero, Ctx, LitInfo))
+ return rewriteToNumericBoxedExpression(Msg, NS, commit);
+
+ // Not easy to do int -> float with hex/octal and uncommon anyway.
+ if (!LitIsFloat && CallIsFloating && (LitInfo.Hex || LitInfo.Octal))
+ return rewriteToNumericBoxedExpression(Msg, NS, commit);
+
+ SourceLocation LitB = LitInfo.WithoutSuffRange.getBegin();
+ SourceLocation LitE = LitInfo.WithoutSuffRange.getEnd();
+
+ commit.replaceWithInner(CharSourceRange::getTokenRange(Msg->getSourceRange()),
+ LitInfo.WithoutSuffRange);
+ commit.insert(LitB, "@");
+
+ if (!LitIsFloat && CallIsFloating)
+ commit.insert(LitE, ".0");
+
+ if (CallIsFloating) {
+ if (!CallIsDouble)
+ commit.insert(LitE, LitInfo.F);
+ } else {
+ if (CallIsUnsigned)
+ commit.insert(LitE, LitInfo.U);
+
+ if (CallIsLong)
+ commit.insert(LitE, LitInfo.L);
+ else if (CallIsLongLong)
+ commit.insert(LitE, LitInfo.LL);
+ }
+ return true;
+}
+
+// FIXME: Make determination of operator precedence more general and
+// make it broadly available.
+static bool subscriptOperatorNeedsParens(const Expr *FullExpr) {
+ const Expr* Expr = FullExpr->IgnoreImpCasts();
+ if (isa<ArraySubscriptExpr>(Expr) ||
+ isa<CallExpr>(Expr) ||
+ isa<DeclRefExpr>(Expr) ||
+ isa<CXXNamedCastExpr>(Expr) ||
+ isa<CXXConstructExpr>(Expr) ||
+ isa<CXXThisExpr>(Expr) ||
+ isa<CXXTypeidExpr>(Expr) ||
+ isa<CXXUnresolvedConstructExpr>(Expr) ||
+ isa<ObjCMessageExpr>(Expr) ||
+ isa<ObjCPropertyRefExpr>(Expr) ||
+ isa<ObjCProtocolExpr>(Expr) ||
+ isa<MemberExpr>(Expr) ||
+ isa<ObjCIvarRefExpr>(Expr) ||
+ isa<ParenExpr>(FullExpr) ||
+ isa<ParenListExpr>(Expr) ||
+ isa<SizeOfPackExpr>(Expr))
+ return false;
+
+ return true;
+}
+static bool castOperatorNeedsParens(const Expr *FullExpr) {
+ const Expr* Expr = FullExpr->IgnoreImpCasts();
+ if (isa<ArraySubscriptExpr>(Expr) ||
+ isa<CallExpr>(Expr) ||
+ isa<DeclRefExpr>(Expr) ||
+ isa<CastExpr>(Expr) ||
+ isa<CXXNewExpr>(Expr) ||
+ isa<CXXConstructExpr>(Expr) ||
+ isa<CXXDeleteExpr>(Expr) ||
+ isa<CXXNoexceptExpr>(Expr) ||
+ isa<CXXPseudoDestructorExpr>(Expr) ||
+ isa<CXXScalarValueInitExpr>(Expr) ||
+ isa<CXXThisExpr>(Expr) ||
+ isa<CXXTypeidExpr>(Expr) ||
+ isa<CXXUnresolvedConstructExpr>(Expr) ||
+ isa<ObjCMessageExpr>(Expr) ||
+ isa<ObjCPropertyRefExpr>(Expr) ||
+ isa<ObjCProtocolExpr>(Expr) ||
+ isa<MemberExpr>(Expr) ||
+ isa<ObjCIvarRefExpr>(Expr) ||
+ isa<ParenExpr>(FullExpr) ||
+ isa<ParenListExpr>(Expr) ||
+ isa<SizeOfPackExpr>(Expr) ||
+ isa<UnaryOperator>(Expr))
+ return false;
+
+ return true;
+}
+
+static void objectifyExpr(const Expr *E, Commit &commit) {
+ if (!E) return;
+
+ QualType T = E->getType();
+ if (T->isObjCObjectPointerType()) {
+ if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
+ if (ICE->getCastKind() != CK_CPointerToObjCPointerCast)
+ return;
+ } else {
+ return;
+ }
+ } else if (!T->isPointerType()) {
+ return;
+ }
+
+ SourceRange Range = E->getSourceRange();
+ if (castOperatorNeedsParens(E))
+ commit.insertWrap("(", Range, ")");
+ commit.insertBefore(Range.getBegin(), "(id)");
+}
+
+//===----------------------------------------------------------------------===//
+// rewriteToNumericBoxedExpression.
+//===----------------------------------------------------------------------===//
+
+static bool isEnumConstant(const Expr *E) {
+ if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
+ if (const ValueDecl *VD = DRE->getDecl())
+ return isa<EnumConstantDecl>(VD);
+
+ return false;
+}
+
+static bool rewriteToNumericBoxedExpression(const ObjCMessageExpr *Msg,
+ const NSAPI &NS, Commit &commit) {
+ if (Msg->getNumArgs() != 1)
+ return false;
+
+ const Expr *Arg = Msg->getArg(0);
+ if (Arg->isTypeDependent())
+ return false;
+
+ ASTContext &Ctx = NS.getASTContext();
+ Selector Sel = Msg->getSelector();
+ Optional<NSAPI::NSNumberLiteralMethodKind>
+ MKOpt = NS.getNSNumberLiteralMethodKind(Sel);
+ if (!MKOpt)
+ return false;
+ NSAPI::NSNumberLiteralMethodKind MK = *MKOpt;
+
+ const Expr *OrigArg = Arg->IgnoreImpCasts();
+ QualType FinalTy = Arg->getType();
+ QualType OrigTy = OrigArg->getType();
+ uint64_t FinalTySize = Ctx.getTypeSize(FinalTy);
+ uint64_t OrigTySize = Ctx.getTypeSize(OrigTy);
+
+ bool isTruncated = FinalTySize < OrigTySize;
+ bool needsCast = false;
+
+ if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
+ switch (ICE->getCastKind()) {
+ case CK_LValueToRValue:
+ case CK_NoOp:
+ case CK_UserDefinedConversion:
+ break;
+
+ case CK_IntegralCast: {
+ if (MK == NSAPI::NSNumberWithBool && OrigTy->isBooleanType())
+ break;
+ // Be more liberal with Integer/UnsignedInteger which are very commonly
+ // used.
+ if ((MK == NSAPI::NSNumberWithInteger ||
+ MK == NSAPI::NSNumberWithUnsignedInteger) &&
+ !isTruncated) {
+ if (OrigTy->getAs<EnumType>() || isEnumConstant(OrigArg))
+ break;
+ if ((MK==NSAPI::NSNumberWithInteger) == OrigTy->isSignedIntegerType() &&
+ OrigTySize >= Ctx.getTypeSize(Ctx.IntTy))
+ break;
+ }
+
+ needsCast = true;
+ break;
+ }
+
+ case CK_PointerToBoolean:
+ case CK_IntegralToBoolean:
+ case CK_IntegralToFloating:
+ case CK_FloatingToIntegral:
+ case CK_FloatingToBoolean:
+ case CK_FloatingCast:
+ case CK_FloatingComplexToReal:
+ case CK_FloatingComplexToBoolean:
+ case CK_IntegralComplexToReal:
+ case CK_IntegralComplexToBoolean:
+ case CK_AtomicToNonAtomic:
+ case CK_AddressSpaceConversion:
+ needsCast = true;
+ break;
+
+ case CK_Dependent:
+ case CK_BitCast:
+ case CK_LValueBitCast:
+ case CK_BaseToDerived:
+ case CK_DerivedToBase:
+ case CK_UncheckedDerivedToBase:
+ case CK_Dynamic:
+ case CK_ToUnion:
+ case CK_ArrayToPointerDecay:
+ case CK_FunctionToPointerDecay:
+ case CK_NullToPointer:
+ case CK_NullToMemberPointer:
+ case CK_BaseToDerivedMemberPointer:
+ case CK_DerivedToBaseMemberPointer:
+ case CK_MemberPointerToBoolean:
+ case CK_ReinterpretMemberPointer:
+ case CK_ConstructorConversion:
+ case CK_IntegralToPointer:
+ case CK_PointerToIntegral:
+ case CK_ToVoid:
+ case CK_VectorSplat:
+ case CK_CPointerToObjCPointerCast:
+ case CK_BlockPointerToObjCPointerCast:
+ case CK_AnyPointerToBlockPointerCast:
+ case CK_ObjCObjectLValueCast:
+ case CK_FloatingRealToComplex:
+ case CK_FloatingComplexCast:
+ case CK_FloatingComplexToIntegralComplex:
+ case CK_IntegralRealToComplex:
+ case CK_IntegralComplexCast:
+ case CK_IntegralComplexToFloatingComplex:
+ case CK_ARCProduceObject:
+ case CK_ARCConsumeObject:
+ case CK_ARCReclaimReturnedObject:
+ case CK_ARCExtendBlockObject:
+ case CK_NonAtomicToAtomic:
+ case CK_CopyAndAutoreleaseBlockObject:
+ case CK_BuiltinFnToFnPtr:
+ case CK_ZeroToOCLEvent:
+ return false;
+ }
+ }
+
+ if (needsCast) {
+ DiagnosticsEngine &Diags = Ctx.getDiagnostics();
+ // FIXME: Use a custom category name to distinguish migration diagnostics.
+ unsigned diagID = Diags.getCustomDiagID(DiagnosticsEngine::Warning,
+ "converting to boxing syntax requires casting %0 to %1");
+ Diags.Report(Msg->getExprLoc(), diagID) << OrigTy << FinalTy
+ << Msg->getSourceRange();
+ return false;
+ }
+
+ SourceRange ArgRange = OrigArg->getSourceRange();
+ commit.replaceWithInner(Msg->getSourceRange(), ArgRange);
+
+ if (isa<ParenExpr>(OrigArg) || isa<IntegerLiteral>(OrigArg))
+ commit.insertBefore(ArgRange.getBegin(), "@");
+ else
+ commit.insertWrap("@(", ArgRange, ")");
+
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// rewriteToStringBoxedExpression.
+//===----------------------------------------------------------------------===//
+
+static bool doRewriteToUTF8StringBoxedExpressionHelper(
+ const ObjCMessageExpr *Msg,
+ const NSAPI &NS, Commit &commit) {
+ const Expr *Arg = Msg->getArg(0);
+ if (Arg->isTypeDependent())
+ return false;
+
+ ASTContext &Ctx = NS.getASTContext();
+
+ const Expr *OrigArg = Arg->IgnoreImpCasts();
+ QualType OrigTy = OrigArg->getType();
+ if (OrigTy->isArrayType())
+ OrigTy = Ctx.getArrayDecayedType(OrigTy);
+
+ if (const StringLiteral *
+ StrE = dyn_cast<StringLiteral>(OrigArg->IgnoreParens())) {
+ commit.replaceWithInner(Msg->getSourceRange(), StrE->getSourceRange());
+ commit.insert(StrE->getLocStart(), "@");
+ return true;
+ }
+
+ if (const PointerType *PT = OrigTy->getAs<PointerType>()) {
+ QualType PointeeType = PT->getPointeeType();
+ if (Ctx.hasSameUnqualifiedType(PointeeType, Ctx.CharTy)) {
+ SourceRange ArgRange = OrigArg->getSourceRange();
+ commit.replaceWithInner(Msg->getSourceRange(), ArgRange);
+
+ if (isa<ParenExpr>(OrigArg) || isa<IntegerLiteral>(OrigArg))
+ commit.insertBefore(ArgRange.getBegin(), "@");
+ else
+ commit.insertWrap("@(", ArgRange, ")");
+
+ return true;
+ }
+ }
+
+ return false;
+}
+
+static bool rewriteToStringBoxedExpression(const ObjCMessageExpr *Msg,
+ const NSAPI &NS, Commit &commit) {
+ Selector Sel = Msg->getSelector();
+
+ if (Sel == NS.getNSStringSelector(NSAPI::NSStr_stringWithUTF8String) ||
+ Sel == NS.getNSStringSelector(NSAPI::NSStr_stringWithCString) ||
+ Sel == NS.getNSStringSelector(NSAPI::NSStr_initWithUTF8String)) {
+ if (Msg->getNumArgs() != 1)
+ return false;
+ return doRewriteToUTF8StringBoxedExpressionHelper(Msg, NS, commit);
+ }
+
+ if (Sel == NS.getNSStringSelector(NSAPI::NSStr_stringWithCStringEncoding)) {
+ if (Msg->getNumArgs() != 2)
+ return false;
+
+ const Expr *encodingArg = Msg->getArg(1);
+ if (NS.isNSUTF8StringEncodingConstant(encodingArg) ||
+ NS.isNSASCIIStringEncodingConstant(encodingArg))
+ return doRewriteToUTF8StringBoxedExpressionHelper(Msg, NS, commit);
+ }
+
+ return false;
+}
diff --git a/contrib/llvm/tools/clang/lib/Format/BreakableToken.cpp b/contrib/llvm/tools/clang/lib/Format/BreakableToken.cpp
new file mode 100644
index 0000000..66e935a
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Format/BreakableToken.cpp
@@ -0,0 +1,460 @@
+//===--- BreakableToken.cpp - Format C++ code -----------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// \brief Contains implementation of BreakableToken class and classes derived
+/// from it.
+///
+//===----------------------------------------------------------------------===//
+
+#include "BreakableToken.h"
+#include "clang/Basic/CharInfo.h"
+#include "clang/Format/Format.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Support/Debug.h"
+#include <algorithm>
+
+#define DEBUG_TYPE "format-token-breaker"
+
+namespace clang {
+namespace format {
+
+static const char *const Blanks = " \t\v\f\r";
+static bool IsBlank(char C) {
+ switch (C) {
+ case ' ':
+ case '\t':
+ case '\v':
+ case '\f':
+ case '\r':
+ return true;
+ default:
+ return false;
+ }
+}
+
+static BreakableToken::Split getCommentSplit(StringRef Text,
+ unsigned ContentStartColumn,
+ unsigned ColumnLimit,
+ unsigned TabWidth,
+ encoding::Encoding Encoding) {
+ if (ColumnLimit <= ContentStartColumn + 1)
+ return BreakableToken::Split(StringRef::npos, 0);
+
+ unsigned MaxSplit = ColumnLimit - ContentStartColumn + 1;
+ unsigned MaxSplitBytes = 0;
+
+ for (unsigned NumChars = 0;
+ NumChars < MaxSplit && MaxSplitBytes < Text.size();) {
+ unsigned BytesInChar =
+ encoding::getCodePointNumBytes(Text[MaxSplitBytes], Encoding);
+ NumChars +=
+ encoding::columnWidthWithTabs(Text.substr(MaxSplitBytes, BytesInChar),
+ ContentStartColumn, TabWidth, Encoding);
+ MaxSplitBytes += BytesInChar;
+ }
+
+ StringRef::size_type SpaceOffset = Text.find_last_of(Blanks, MaxSplitBytes);
+ if (SpaceOffset == StringRef::npos ||
+ // Don't break at leading whitespace.
+ Text.find_last_not_of(Blanks, SpaceOffset) == StringRef::npos) {
+ // Make sure that we don't break at leading whitespace that
+ // reaches past MaxSplit.
+ StringRef::size_type FirstNonWhitespace = Text.find_first_not_of(Blanks);
+ if (FirstNonWhitespace == StringRef::npos)
+ // If the comment is only whitespace, we cannot split.
+ return BreakableToken::Split(StringRef::npos, 0);
+ SpaceOffset = Text.find_first_of(
+ Blanks, std::max<unsigned>(MaxSplitBytes, FirstNonWhitespace));
+ }
+ if (SpaceOffset != StringRef::npos && SpaceOffset != 0) {
+ StringRef BeforeCut = Text.substr(0, SpaceOffset).rtrim(Blanks);
+ StringRef AfterCut = Text.substr(SpaceOffset).ltrim(Blanks);
+ return BreakableToken::Split(BeforeCut.size(),
+ AfterCut.begin() - BeforeCut.end());
+ }
+ return BreakableToken::Split(StringRef::npos, 0);
+}
+
+static BreakableToken::Split
+getStringSplit(StringRef Text, unsigned UsedColumns, unsigned ColumnLimit,
+ unsigned TabWidth, encoding::Encoding Encoding) {
+ // FIXME: Reduce unit test case.
+ if (Text.empty())
+ return BreakableToken::Split(StringRef::npos, 0);
+ if (ColumnLimit <= UsedColumns)
+ return BreakableToken::Split(StringRef::npos, 0);
+ unsigned MaxSplit = ColumnLimit - UsedColumns;
+ StringRef::size_type SpaceOffset = 0;
+ StringRef::size_type SlashOffset = 0;
+ StringRef::size_type WordStartOffset = 0;
+ StringRef::size_type SplitPoint = 0;
+ for (unsigned Chars = 0;;) {
+ unsigned Advance;
+ if (Text[0] == '\\') {
+ Advance = encoding::getEscapeSequenceLength(Text);
+ Chars += Advance;
+ } else {
+ Advance = encoding::getCodePointNumBytes(Text[0], Encoding);
+ Chars += encoding::columnWidthWithTabs(
+ Text.substr(0, Advance), UsedColumns + Chars, TabWidth, Encoding);
+ }
+
+ if (Chars > MaxSplit || Text.size() <= Advance)
+ break;
+
+ if (IsBlank(Text[0]))
+ SpaceOffset = SplitPoint;
+ if (Text[0] == '/')
+ SlashOffset = SplitPoint;
+ if (Advance == 1 && !isAlphanumeric(Text[0]))
+ WordStartOffset = SplitPoint;
+
+ SplitPoint += Advance;
+ Text = Text.substr(Advance);
+ }
+
+ if (SpaceOffset != 0)
+ return BreakableToken::Split(SpaceOffset + 1, 0);
+ if (SlashOffset != 0)
+ return BreakableToken::Split(SlashOffset + 1, 0);
+ if (WordStartOffset != 0)
+ return BreakableToken::Split(WordStartOffset + 1, 0);
+ if (SplitPoint != 0)
+ return BreakableToken::Split(SplitPoint, 0);
+ return BreakableToken::Split(StringRef::npos, 0);
+}
+
+unsigned BreakableSingleLineToken::getLineCount() const { return 1; }
+
+unsigned BreakableSingleLineToken::getLineLengthAfterSplit(
+ unsigned LineIndex, unsigned Offset, StringRef::size_type Length) const {
+ return StartColumn + Prefix.size() + Postfix.size() +
+ encoding::columnWidthWithTabs(Line.substr(Offset, Length),
+ StartColumn + Prefix.size(),
+ Style.TabWidth, Encoding);
+}
+
+BreakableSingleLineToken::BreakableSingleLineToken(
+ const FormatToken &Tok, unsigned IndentLevel, unsigned StartColumn,
+ StringRef Prefix, StringRef Postfix, bool InPPDirective,
+ encoding::Encoding Encoding, const FormatStyle &Style)
+ : BreakableToken(Tok, IndentLevel, InPPDirective, Encoding, Style),
+ StartColumn(StartColumn), Prefix(Prefix), Postfix(Postfix) {
+ assert(Tok.TokenText.endswith(Postfix));
+ Line = Tok.TokenText.substr(
+ Prefix.size(), Tok.TokenText.size() - Prefix.size() - Postfix.size());
+}
+
+BreakableStringLiteral::BreakableStringLiteral(
+ const FormatToken &Tok, unsigned IndentLevel, unsigned StartColumn,
+ StringRef Prefix, StringRef Postfix, bool InPPDirective,
+ encoding::Encoding Encoding, const FormatStyle &Style)
+ : BreakableSingleLineToken(Tok, IndentLevel, StartColumn, Prefix, Postfix,
+ InPPDirective, Encoding, Style) {}
+
+BreakableToken::Split
+BreakableStringLiteral::getSplit(unsigned LineIndex, unsigned TailOffset,
+ unsigned ColumnLimit) const {
+ return getStringSplit(Line.substr(TailOffset),
+ StartColumn + Prefix.size() + Postfix.size(),
+ ColumnLimit, Style.TabWidth, Encoding);
+}
+
+void BreakableStringLiteral::insertBreak(unsigned LineIndex,
+ unsigned TailOffset, Split Split,
+ WhitespaceManager &Whitespaces) {
+ unsigned LeadingSpaces = StartColumn;
+ // The '@' of an ObjC string literal (@"Test") does not become part of the
+ // string token.
+ // FIXME: It might be a cleaner solution to merge the tokens as a
+ // precomputation step.
+ if (Prefix.startswith("@"))
+ --LeadingSpaces;
+ Whitespaces.replaceWhitespaceInToken(
+ Tok, Prefix.size() + TailOffset + Split.first, Split.second, Postfix,
+ Prefix, InPPDirective, 1, IndentLevel, LeadingSpaces);
+}
+
+static StringRef getLineCommentIndentPrefix(StringRef Comment) {
+ static const char *const KnownPrefixes[] = { "///", "//" };
+ StringRef LongestPrefix;
+ for (StringRef KnownPrefix : KnownPrefixes) {
+ if (Comment.startswith(KnownPrefix)) {
+ size_t PrefixLength = KnownPrefix.size();
+ while (PrefixLength < Comment.size() && Comment[PrefixLength] == ' ')
+ ++PrefixLength;
+ if (PrefixLength > LongestPrefix.size())
+ LongestPrefix = Comment.substr(0, PrefixLength);
+ }
+ }
+ return LongestPrefix;
+}
+
+BreakableLineComment::BreakableLineComment(
+ const FormatToken &Token, unsigned IndentLevel, unsigned StartColumn,
+ bool InPPDirective, encoding::Encoding Encoding, const FormatStyle &Style)
+ : BreakableSingleLineToken(Token, IndentLevel, StartColumn,
+ getLineCommentIndentPrefix(Token.TokenText), "",
+ InPPDirective, Encoding, Style) {
+ OriginalPrefix = Prefix;
+ if (Token.TokenText.size() > Prefix.size() &&
+ isAlphanumeric(Token.TokenText[Prefix.size()])) {
+ if (Prefix == "//")
+ Prefix = "// ";
+ else if (Prefix == "///")
+ Prefix = "/// ";
+ }
+}
+
+BreakableToken::Split
+BreakableLineComment::getSplit(unsigned LineIndex, unsigned TailOffset,
+ unsigned ColumnLimit) const {
+ return getCommentSplit(Line.substr(TailOffset), StartColumn + Prefix.size(),
+ ColumnLimit, Style.TabWidth, Encoding);
+}
+
+void BreakableLineComment::insertBreak(unsigned LineIndex, unsigned TailOffset,
+ Split Split,
+ WhitespaceManager &Whitespaces) {
+ Whitespaces.replaceWhitespaceInToken(
+ Tok, OriginalPrefix.size() + TailOffset + Split.first, Split.second,
+ Postfix, Prefix, InPPDirective, /*Newlines=*/1, IndentLevel, StartColumn);
+}
+
+void BreakableLineComment::replaceWhitespace(unsigned LineIndex,
+ unsigned TailOffset, Split Split,
+ WhitespaceManager &Whitespaces) {
+ Whitespaces.replaceWhitespaceInToken(
+ Tok, OriginalPrefix.size() + TailOffset + Split.first, Split.second, "",
+ "", /*InPPDirective=*/false, /*Newlines=*/0, /*IndentLevel=*/0,
+ /*Spaces=*/1);
+}
+
+void
+BreakableLineComment::replaceWhitespaceBefore(unsigned LineIndex,
+ WhitespaceManager &Whitespaces) {
+ if (OriginalPrefix != Prefix) {
+ Whitespaces.replaceWhitespaceInToken(Tok, OriginalPrefix.size(), 0, "", "",
+ /*InPPDirective=*/false,
+ /*Newlines=*/0, /*IndentLevel=*/0,
+ /*Spaces=*/1);
+ }
+}
+
+BreakableBlockComment::BreakableBlockComment(
+ const FormatToken &Token, unsigned IndentLevel, unsigned StartColumn,
+ unsigned OriginalStartColumn, bool FirstInLine, bool InPPDirective,
+ encoding::Encoding Encoding, const FormatStyle &Style)
+ : BreakableToken(Token, IndentLevel, InPPDirective, Encoding, Style) {
+ StringRef TokenText(Token.TokenText);
+ assert(TokenText.startswith("/*") && TokenText.endswith("*/"));
+ TokenText.substr(2, TokenText.size() - 4).split(Lines, "\n");
+
+ int IndentDelta = StartColumn - OriginalStartColumn;
+ LeadingWhitespace.resize(Lines.size());
+ StartOfLineColumn.resize(Lines.size());
+ StartOfLineColumn[0] = StartColumn + 2;
+ for (size_t i = 1; i < Lines.size(); ++i)
+ adjustWhitespace(i, IndentDelta);
+
+ Decoration = "* ";
+ if (Lines.size() == 1 && !FirstInLine) {
+ // Comments for which FirstInLine is false can start on arbitrary column,
+ // and available horizontal space can be too small to align consecutive
+ // lines with the first one.
+ // FIXME: We could, probably, align them to current indentation level, but
+ // now we just wrap them without stars.
+ Decoration = "";
+ }
+ for (size_t i = 1, e = Lines.size(); i < e && !Decoration.empty(); ++i) {
+ // If the last line is empty, the closing "*/" will have a star.
+ if (i + 1 == e && Lines[i].empty())
+ break;
+ if (!Lines[i].empty() && i + 1 != e && Decoration.startswith(Lines[i]))
+ continue;
+ while (!Lines[i].startswith(Decoration))
+ Decoration = Decoration.substr(0, Decoration.size() - 1);
+ }
+
+ LastLineNeedsDecoration = true;
+ IndentAtLineBreak = StartOfLineColumn[0] + 1;
+ for (size_t i = 1; i < Lines.size(); ++i) {
+ if (Lines[i].empty()) {
+ if (i + 1 == Lines.size()) {
+ // Empty last line means that we already have a star as a part of the
+ // trailing */. We also need to preserve whitespace, so that */ is
+ // correctly indented.
+ LastLineNeedsDecoration = false;
+ } else if (Decoration.empty()) {
+ // For all other lines, set the start column to 0 if they're empty, so
+ // we do not insert trailing whitespace anywhere.
+ StartOfLineColumn[i] = 0;
+ }
+ continue;
+ }
+
+ // The first line already excludes the star.
+ // For all other lines, adjust the line to exclude the star and
+ // (optionally) the first whitespace.
+ unsigned DecorationSize =
+ Decoration.startswith(Lines[i]) ? Lines[i].size() : Decoration.size();
+ StartOfLineColumn[i] += DecorationSize;
+ Lines[i] = Lines[i].substr(DecorationSize);
+ LeadingWhitespace[i] += DecorationSize;
+ if (!Decoration.startswith(Lines[i]))
+ IndentAtLineBreak =
+ std::min<int>(IndentAtLineBreak, std::max(0, StartOfLineColumn[i]));
+ }
+ IndentAtLineBreak = std::max<unsigned>(IndentAtLineBreak, Decoration.size());
+ DEBUG({
+ llvm::dbgs() << "IndentAtLineBreak " << IndentAtLineBreak << "\n";
+ for (size_t i = 0; i < Lines.size(); ++i) {
+ llvm::dbgs() << i << " |" << Lines[i] << "| " << LeadingWhitespace[i]
+ << "\n";
+ }
+ });
+}
+
+void BreakableBlockComment::adjustWhitespace(unsigned LineIndex,
+ int IndentDelta) {
+ // When in a preprocessor directive, the trailing backslash in a block comment
+ // is not needed, but can serve a purpose of uniformity with necessary escaped
+ // newlines outside the comment. In this case we remove it here before
+ // trimming the trailing whitespace. The backslash will be re-added later when
+ // inserting a line break.
+ size_t EndOfPreviousLine = Lines[LineIndex - 1].size();
+ if (InPPDirective && Lines[LineIndex - 1].endswith("\\"))
+ --EndOfPreviousLine;
+
+ // Calculate the end of the non-whitespace text in the previous line.
+ EndOfPreviousLine =
+ Lines[LineIndex - 1].find_last_not_of(Blanks, EndOfPreviousLine);
+ if (EndOfPreviousLine == StringRef::npos)
+ EndOfPreviousLine = 0;
+ else
+ ++EndOfPreviousLine;
+ // Calculate the start of the non-whitespace text in the current line.
+ size_t StartOfLine = Lines[LineIndex].find_first_not_of(Blanks);
+ if (StartOfLine == StringRef::npos)
+ StartOfLine = Lines[LineIndex].size();
+
+ StringRef Whitespace = Lines[LineIndex].substr(0, StartOfLine);
+ // Adjust Lines to only contain relevant text.
+ Lines[LineIndex - 1] = Lines[LineIndex - 1].substr(0, EndOfPreviousLine);
+ Lines[LineIndex] = Lines[LineIndex].substr(StartOfLine);
+ // Adjust LeadingWhitespace to account all whitespace between the lines
+ // to the current line.
+ LeadingWhitespace[LineIndex] =
+ Lines[LineIndex].begin() - Lines[LineIndex - 1].end();
+
+ // Adjust the start column uniformly across all lines.
+ StartOfLineColumn[LineIndex] =
+ encoding::columnWidthWithTabs(Whitespace, 0, Style.TabWidth, Encoding) +
+ IndentDelta;
+}
+
+unsigned BreakableBlockComment::getLineCount() const { return Lines.size(); }
+
+unsigned BreakableBlockComment::getLineLengthAfterSplit(
+ unsigned LineIndex, unsigned Offset, StringRef::size_type Length) const {
+ unsigned ContentStartColumn = getContentStartColumn(LineIndex, Offset);
+ return ContentStartColumn +
+ encoding::columnWidthWithTabs(Lines[LineIndex].substr(Offset, Length),
+ ContentStartColumn, Style.TabWidth,
+ Encoding) +
+ // The last line gets a "*/" postfix.
+ (LineIndex + 1 == Lines.size() ? 2 : 0);
+}
+
+BreakableToken::Split
+BreakableBlockComment::getSplit(unsigned LineIndex, unsigned TailOffset,
+ unsigned ColumnLimit) const {
+ return getCommentSplit(Lines[LineIndex].substr(TailOffset),
+ getContentStartColumn(LineIndex, TailOffset),
+ ColumnLimit, Style.TabWidth, Encoding);
+}
+
+void BreakableBlockComment::insertBreak(unsigned LineIndex, unsigned TailOffset,
+ Split Split,
+ WhitespaceManager &Whitespaces) {
+ StringRef Text = Lines[LineIndex].substr(TailOffset);
+ StringRef Prefix = Decoration;
+ if (LineIndex + 1 == Lines.size() &&
+ Text.size() == Split.first + Split.second) {
+ // For the last line we need to break before "*/", but not to add "* ".
+ Prefix = "";
+ }
+
+ unsigned BreakOffsetInToken =
+ Text.data() - Tok.TokenText.data() + Split.first;
+ unsigned CharsToRemove = Split.second;
+ assert(IndentAtLineBreak >= Decoration.size());
+ Whitespaces.replaceWhitespaceInToken(
+ Tok, BreakOffsetInToken, CharsToRemove, "", Prefix, InPPDirective, 1,
+ IndentLevel, IndentAtLineBreak - Decoration.size());
+}
+
+void BreakableBlockComment::replaceWhitespace(unsigned LineIndex,
+ unsigned TailOffset, Split Split,
+ WhitespaceManager &Whitespaces) {
+ StringRef Text = Lines[LineIndex].substr(TailOffset);
+ unsigned BreakOffsetInToken =
+ Text.data() - Tok.TokenText.data() + Split.first;
+ unsigned CharsToRemove = Split.second;
+ Whitespaces.replaceWhitespaceInToken(
+ Tok, BreakOffsetInToken, CharsToRemove, "", "", /*InPPDirective=*/false,
+ /*Newlines=*/0, /*IndentLevel=*/0, /*Spaces=*/1);
+}
+
+void
+BreakableBlockComment::replaceWhitespaceBefore(unsigned LineIndex,
+ WhitespaceManager &Whitespaces) {
+ if (LineIndex == 0)
+ return;
+ StringRef Prefix = Decoration;
+ if (Lines[LineIndex].empty()) {
+ if (LineIndex + 1 == Lines.size()) {
+ if (!LastLineNeedsDecoration) {
+ // If the last line was empty, we don't need a prefix, as the */ will
+ // line up with the decoration (if it exists).
+ Prefix = "";
+ }
+ } else if (!Decoration.empty()) {
+ // For other empty lines, if we do have a decoration, adapt it to not
+ // contain a trailing whitespace.
+ Prefix = Prefix.substr(0, 1);
+ }
+ } else {
+ if (StartOfLineColumn[LineIndex] == 1) {
+ // This line starts immediately after the decorating *.
+ Prefix = Prefix.substr(0, 1);
+ }
+ }
+
+ unsigned WhitespaceOffsetInToken = Lines[LineIndex].data() -
+ Tok.TokenText.data() -
+ LeadingWhitespace[LineIndex];
+ Whitespaces.replaceWhitespaceInToken(
+ Tok, WhitespaceOffsetInToken, LeadingWhitespace[LineIndex], "", Prefix,
+ InPPDirective, 1, IndentLevel,
+ StartOfLineColumn[LineIndex] - Prefix.size());
+}
+
+unsigned
+BreakableBlockComment::getContentStartColumn(unsigned LineIndex,
+ unsigned TailOffset) const {
+ // If we break, we always break at the predefined indent.
+ if (TailOffset != 0)
+ return IndentAtLineBreak;
+ return std::max(0, StartOfLineColumn[LineIndex]);
+}
+
+} // namespace format
+} // namespace clang
diff --git a/contrib/llvm/tools/clang/lib/Format/BreakableToken.h b/contrib/llvm/tools/clang/lib/Format/BreakableToken.h
new file mode 100644
index 0000000..eb1f9fd
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Format/BreakableToken.h
@@ -0,0 +1,245 @@
+//===--- BreakableToken.h - Format C++ code -------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// \brief Declares BreakableToken, BreakableStringLiteral, and
+/// BreakableBlockComment classes, that contain token type-specific logic to
+/// break long lines in tokens.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_FORMAT_BREAKABLETOKEN_H
+#define LLVM_CLANG_LIB_FORMAT_BREAKABLETOKEN_H
+
+#include "Encoding.h"
+#include "TokenAnnotator.h"
+#include "WhitespaceManager.h"
+#include <utility>
+
+namespace clang {
+namespace format {
+
+struct FormatStyle;
+
+/// \brief Base class for strategies on how to break tokens.
+///
+/// FIXME: The interface seems set in stone, so we might want to just pull the
+/// strategy into the class, instead of controlling it from the outside.
+class BreakableToken {
+public:
+ /// \brief Contains starting character index and length of split.
+ typedef std::pair<StringRef::size_type, unsigned> Split;
+
+ virtual ~BreakableToken() {}
+
+ /// \brief Returns the number of lines in this token in the original code.
+ virtual unsigned getLineCount() const = 0;
+
+ /// \brief Returns the number of columns required to format the piece of line
+ /// at \p LineIndex, from byte offset \p Offset with length \p Length.
+ ///
+ /// Note that previous breaks are not taken into account. \p Offset is always
+ /// specified from the start of the (original) line.
+ /// \p Length can be set to StringRef::npos, which means "to the end of line".
+ virtual unsigned
+ getLineLengthAfterSplit(unsigned LineIndex, unsigned Offset,
+ StringRef::size_type Length) const = 0;
+
+ /// \brief Returns a range (offset, length) at which to break the line at
+ /// \p LineIndex, if previously broken at \p TailOffset. If possible, do not
+ /// violate \p ColumnLimit.
+ virtual Split getSplit(unsigned LineIndex, unsigned TailOffset,
+ unsigned ColumnLimit) const = 0;
+
+ /// \brief Emits the previously retrieved \p Split via \p Whitespaces.
+ virtual void insertBreak(unsigned LineIndex, unsigned TailOffset, Split Split,
+ WhitespaceManager &Whitespaces) = 0;
+
+ /// \brief Replaces the whitespace range described by \p Split with a single
+ /// space.
+ virtual void replaceWhitespace(unsigned LineIndex, unsigned TailOffset,
+ Split Split,
+ WhitespaceManager &Whitespaces) = 0;
+
+ /// \brief Replaces the whitespace between \p LineIndex-1 and \p LineIndex.
+ virtual void replaceWhitespaceBefore(unsigned LineIndex,
+ WhitespaceManager &Whitespaces) {}
+
+protected:
+ BreakableToken(const FormatToken &Tok, unsigned IndentLevel,
+ bool InPPDirective, encoding::Encoding Encoding,
+ const FormatStyle &Style)
+ : Tok(Tok), IndentLevel(IndentLevel), InPPDirective(InPPDirective),
+ Encoding(Encoding), Style(Style) {}
+
+ const FormatToken &Tok;
+ const unsigned IndentLevel;
+ const bool InPPDirective;
+ const encoding::Encoding Encoding;
+ const FormatStyle &Style;
+};
+
+/// \brief Base class for single line tokens that can be broken.
+///
+/// \c getSplit() needs to be implemented by child classes.
+class BreakableSingleLineToken : public BreakableToken {
+public:
+ unsigned getLineCount() const override;
+ unsigned getLineLengthAfterSplit(unsigned LineIndex, unsigned TailOffset,
+ StringRef::size_type Length) const override;
+
+protected:
+ BreakableSingleLineToken(const FormatToken &Tok, unsigned IndentLevel,
+ unsigned StartColumn, StringRef Prefix,
+ StringRef Postfix, bool InPPDirective,
+ encoding::Encoding Encoding,
+ const FormatStyle &Style);
+
+ // The column in which the token starts.
+ unsigned StartColumn;
+ // The prefix a line needs after a break in the token.
+ StringRef Prefix;
+ // The postfix a line needs before introducing a break.
+ StringRef Postfix;
+ // The token text excluding the prefix and postfix.
+ StringRef Line;
+};
+
+class BreakableStringLiteral : public BreakableSingleLineToken {
+public:
+ /// \brief Creates a breakable token for a single line string literal.
+ ///
+ /// \p StartColumn specifies the column in which the token will start
+ /// after formatting.
+ BreakableStringLiteral(const FormatToken &Tok, unsigned IndentLevel,
+ unsigned StartColumn, StringRef Prefix,
+ StringRef Postfix, bool InPPDirective,
+ encoding::Encoding Encoding, const FormatStyle &Style);
+
+ Split getSplit(unsigned LineIndex, unsigned TailOffset,
+ unsigned ColumnLimit) const override;
+ void insertBreak(unsigned LineIndex, unsigned TailOffset, Split Split,
+ WhitespaceManager &Whitespaces) override;
+ void replaceWhitespace(unsigned LineIndex, unsigned TailOffset, Split Split,
+ WhitespaceManager &Whitespaces) override {}
+};
+
+class BreakableLineComment : public BreakableSingleLineToken {
+public:
+ /// \brief Creates a breakable token for a line comment.
+ ///
+ /// \p StartColumn specifies the column in which the comment will start
+ /// after formatting.
+ BreakableLineComment(const FormatToken &Token, unsigned IndentLevel,
+ unsigned StartColumn, bool InPPDirective,
+ encoding::Encoding Encoding, const FormatStyle &Style);
+
+ Split getSplit(unsigned LineIndex, unsigned TailOffset,
+ unsigned ColumnLimit) const override;
+ void insertBreak(unsigned LineIndex, unsigned TailOffset, Split Split,
+ WhitespaceManager &Whitespaces) override;
+ void replaceWhitespace(unsigned LineIndex, unsigned TailOffset, Split Split,
+ WhitespaceManager &Whitespaces) override;
+ void replaceWhitespaceBefore(unsigned LineIndex,
+ WhitespaceManager &Whitespaces) override;
+
+private:
+ // The prefix without an additional space if one was added.
+ StringRef OriginalPrefix;
+};
+
+class BreakableBlockComment : public BreakableToken {
+public:
+ /// \brief Creates a breakable token for a block comment.
+ ///
+ /// \p StartColumn specifies the column in which the comment will start
+ /// after formatting, while \p OriginalStartColumn specifies in which
+ /// column the comment started before formatting.
+ /// If the comment starts a line after formatting, set \p FirstInLine to true.
+ BreakableBlockComment(const FormatToken &Token, unsigned IndentLevel,
+ unsigned StartColumn, unsigned OriginaStartColumn,
+ bool FirstInLine, bool InPPDirective,
+ encoding::Encoding Encoding, const FormatStyle &Style);
+
+ unsigned getLineCount() const override;
+ unsigned getLineLengthAfterSplit(unsigned LineIndex, unsigned TailOffset,
+ StringRef::size_type Length) const override;
+ Split getSplit(unsigned LineIndex, unsigned TailOffset,
+ unsigned ColumnLimit) const override;
+ void insertBreak(unsigned LineIndex, unsigned TailOffset, Split Split,
+ WhitespaceManager &Whitespaces) override;
+ void replaceWhitespace(unsigned LineIndex, unsigned TailOffset, Split Split,
+ WhitespaceManager &Whitespaces) override;
+ void replaceWhitespaceBefore(unsigned LineIndex,
+ WhitespaceManager &Whitespaces) override;
+
+private:
+ // Rearranges the whitespace between Lines[LineIndex-1] and Lines[LineIndex],
+ // so that all whitespace between the lines is accounted to Lines[LineIndex]
+ // as leading whitespace:
+ // - Lines[LineIndex] points to the text after that whitespace
+ // - Lines[LineIndex-1] shrinks by its trailing whitespace
+ // - LeadingWhitespace[LineIndex] is updated with the complete whitespace
+ // between the end of the text of Lines[LineIndex-1] and Lines[LineIndex]
+ //
+ // Sets StartOfLineColumn to the intended column in which the text at
+ // Lines[LineIndex] starts (note that the decoration, if present, is not
+ // considered part of the text).
+ void adjustWhitespace(unsigned LineIndex, int IndentDelta);
+
+ // Returns the column at which the text in line LineIndex starts, when broken
+ // at TailOffset. Note that the decoration (if present) is not considered part
+ // of the text.
+ unsigned getContentStartColumn(unsigned LineIndex, unsigned TailOffset) const;
+
+ // Contains the text of the lines of the block comment, excluding the leading
+ // /* in the first line and trailing */ in the last line, and excluding all
+ // trailing whitespace between the lines. Note that the decoration (if
+ // present) is also not considered part of the text.
+ SmallVector<StringRef, 16> Lines;
+
+ // LeadingWhitespace[i] is the number of characters regarded as whitespace in
+ // front of Lines[i]. Note that this can include "* " sequences, which we
+ // regard as whitespace when all lines have a "*" prefix.
+ SmallVector<unsigned, 16> LeadingWhitespace;
+
+ // StartOfLineColumn[i] is the target column at which Line[i] should be.
+ // Note that this excludes a leading "* " or "*" in case all lines have
+ // a "*" prefix.
+ // The first line's target column is always positive. The remaining lines'
+ // target columns are relative to the first line to allow correct indentation
+ // of comments in \c WhitespaceManager. Thus they can be negative as well (in
+ // case the first line needs to be unindented more than there's actual
+ // whitespace in another line).
+ SmallVector<int, 16> StartOfLineColumn;
+
+ // The column at which the text of a broken line should start.
+ // Note that an optional decoration would go before that column.
+ // IndentAtLineBreak is a uniform position for all lines in a block comment,
+ // regardless of their relative position.
+ // FIXME: Revisit the decision to do this; the main reason was to support
+ // patterns like
+ // /**************//**
+ // * Comment
+ // We could also support such patterns by special casing the first line
+ // instead.
+ unsigned IndentAtLineBreak;
+
+ // This is to distinguish between the case when the last line was empty and
+ // the case when it started with a decoration ("*" or "* ").
+ bool LastLineNeedsDecoration;
+
+ // Either "* " if all lines begin with a "*", or empty.
+ StringRef Decoration;
+};
+
+} // namespace format
+} // namespace clang
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/Format/ContinuationIndenter.cpp b/contrib/llvm/tools/clang/lib/Format/ContinuationIndenter.cpp
new file mode 100644
index 0000000..4e8f5af
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Format/ContinuationIndenter.cpp
@@ -0,0 +1,1154 @@
+//===--- ContinuationIndenter.cpp - Format C++ code -----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// \brief This file implements the continuation indenter.
+///
+//===----------------------------------------------------------------------===//
+
+#include "BreakableToken.h"
+#include "ContinuationIndenter.h"
+#include "WhitespaceManager.h"
+#include "clang/Basic/OperatorPrecedence.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Format/Format.h"
+#include "llvm/Support/Debug.h"
+#include <string>
+
+#define DEBUG_TYPE "format-formatter"
+
+namespace clang {
+namespace format {
+
+// Returns the length of everything up to the first possible line break after
+// the ), ], } or > matching \c Tok.
+static unsigned getLengthToMatchingParen(const FormatToken &Tok) {
+ if (!Tok.MatchingParen)
+ return 0;
+ FormatToken *End = Tok.MatchingParen;
+ while (End->Next && !End->Next->CanBreakBefore) {
+ End = End->Next;
+ }
+ return End->TotalLength - Tok.TotalLength + 1;
+}
+
+// Returns \c true if \c Tok is the "." or "->" of a call and starts the next
+// segment of a builder type call.
+static bool startsSegmentOfBuilderTypeCall(const FormatToken &Tok) {
+ return Tok.isMemberAccess() && Tok.Previous && Tok.Previous->closesScope();
+}
+
+// Returns \c true if \c Current starts a new parameter.
+static bool startsNextParameter(const FormatToken &Current,
+ const FormatStyle &Style) {
+ const FormatToken &Previous = *Current.Previous;
+ if (Current.is(TT_CtorInitializerComma) &&
+ Style.BreakConstructorInitializersBeforeComma)
+ return true;
+ return Previous.is(tok::comma) && !Current.isTrailingComment() &&
+ (Previous.isNot(TT_CtorInitializerComma) ||
+ !Style.BreakConstructorInitializersBeforeComma);
+}
+
+ContinuationIndenter::ContinuationIndenter(const FormatStyle &Style,
+ const AdditionalKeywords &Keywords,
+ SourceManager &SourceMgr,
+ WhitespaceManager &Whitespaces,
+ encoding::Encoding Encoding,
+ bool BinPackInconclusiveFunctions)
+ : Style(Style), Keywords(Keywords), SourceMgr(SourceMgr),
+ Whitespaces(Whitespaces), Encoding(Encoding),
+ BinPackInconclusiveFunctions(BinPackInconclusiveFunctions),
+ CommentPragmasRegex(Style.CommentPragmas) {}
+
+LineState ContinuationIndenter::getInitialState(unsigned FirstIndent,
+ const AnnotatedLine *Line,
+ bool DryRun) {
+ LineState State;
+ State.FirstIndent = FirstIndent;
+ State.Column = FirstIndent;
+ State.Line = Line;
+ State.NextToken = Line->First;
+ State.Stack.push_back(ParenState(FirstIndent, Line->Level, FirstIndent,
+ /*AvoidBinPacking=*/false,
+ /*NoLineBreak=*/false));
+ State.LineContainsContinuedForLoopSection = false;
+ State.StartOfStringLiteral = 0;
+ State.StartOfLineLevel = 0;
+ State.LowestLevelOnLine = 0;
+ State.IgnoreStackForComparison = false;
+
+ // The first token has already been indented and thus consumed.
+ moveStateToNextToken(State, DryRun, /*Newline=*/false);
+ return State;
+}
+
+bool ContinuationIndenter::canBreak(const LineState &State) {
+ const FormatToken &Current = *State.NextToken;
+ const FormatToken &Previous = *Current.Previous;
+ assert(&Previous == Current.Previous);
+ if (!Current.CanBreakBefore &&
+ !(State.Stack.back().BreakBeforeClosingBrace &&
+ Current.closesBlockTypeList(Style)))
+ return false;
+ // The opening "{" of a braced list has to be on the same line as the first
+ // element if it is nested in another braced init list or function call.
+ if (!Current.MustBreakBefore && Previous.is(tok::l_brace) &&
+ Previous.isNot(TT_DictLiteral) && Previous.BlockKind == BK_BracedInit &&
+ Previous.Previous &&
+ Previous.Previous->isOneOf(tok::l_brace, tok::l_paren, tok::comma))
+ return false;
+ // This prevents breaks like:
+ // ...
+ // SomeParameter, OtherParameter).DoSomething(
+ // ...
+ // As they hide "DoSomething" and are generally bad for readability.
+ if (Previous.opensScope() && Previous.isNot(tok::l_brace) &&
+ State.LowestLevelOnLine < State.StartOfLineLevel &&
+ State.LowestLevelOnLine < Current.NestingLevel)
+ return false;
+ if (Current.isMemberAccess() && State.Stack.back().ContainsUnwrappedBuilder)
+ return false;
+
+ // Don't create a 'hanging' indent if there are multiple blocks in a single
+ // statement.
+ if (Previous.is(tok::l_brace) && State.Stack.size() > 1 &&
+ State.Stack[State.Stack.size() - 2].NestedBlockInlined &&
+ State.Stack[State.Stack.size() - 2].HasMultipleNestedBlocks)
+ return false;
+
+ // Don't break after very short return types (e.g. "void") as that is often
+ // unexpected.
+ if (Current.is(TT_FunctionDeclarationName) &&
+ !Style.AlwaysBreakAfterDefinitionReturnType && State.Column < 6)
+ return false;
+
+ return !State.Stack.back().NoLineBreak;
+}
+
+bool ContinuationIndenter::mustBreak(const LineState &State) {
+ const FormatToken &Current = *State.NextToken;
+ const FormatToken &Previous = *Current.Previous;
+ if (Current.MustBreakBefore || Current.is(TT_InlineASMColon))
+ return true;
+ if (State.Stack.back().BreakBeforeClosingBrace &&
+ Current.closesBlockTypeList(Style))
+ return true;
+ if (Previous.is(tok::semi) && State.LineContainsContinuedForLoopSection)
+ return true;
+ if ((startsNextParameter(Current, Style) || Previous.is(tok::semi) ||
+ (Style.BreakBeforeTernaryOperators && Current.is(TT_ConditionalExpr) &&
+ Previous.isNot(tok::question)) ||
+ (!Style.BreakBeforeTernaryOperators &&
+ Previous.is(TT_ConditionalExpr))) &&
+ State.Stack.back().BreakBeforeParameter && !Current.isTrailingComment() &&
+ !Current.isOneOf(tok::r_paren, tok::r_brace))
+ return true;
+ if (Style.AlwaysBreakBeforeMultilineStrings &&
+ State.Column > State.Stack.back().Indent && // Breaking saves columns.
+ !Previous.isOneOf(tok::kw_return, tok::lessless, tok::at) &&
+ !Previous.isOneOf(TT_InlineASMColon, TT_ConditionalExpr) &&
+ nextIsMultilineString(State))
+ return true;
+ if (((Previous.is(TT_DictLiteral) && Previous.is(tok::l_brace)) ||
+ Previous.is(TT_ArrayInitializerLSquare)) &&
+ Style.ColumnLimit > 0 &&
+ getLengthToMatchingParen(Previous) + State.Column > getColumnLimit(State))
+ return true;
+ if (Current.is(TT_CtorInitializerColon) &&
+ ((Style.AllowShortFunctionsOnASingleLine != FormatStyle::SFS_All) ||
+ Style.BreakConstructorInitializersBeforeComma || Style.ColumnLimit != 0))
+ return true;
+ if (Current.is(TT_SelectorName) && State.Stack.back().ObjCSelectorNameFound &&
+ State.Stack.back().BreakBeforeParameter)
+ return true;
+
+ if (State.Column < getNewLineColumn(State))
+ return false;
+
+ // Using CanBreakBefore here and below takes care of the decision whether the
+ // current style uses wrapping before or after operators for the given
+ // operator.
+ if (Previous.is(TT_BinaryOperator) && Current.CanBreakBefore) {
+ // If we need to break somewhere inside the LHS of a binary expression, we
+ // should also break after the operator. Otherwise, the formatting would
+ // hide the operator precedence, e.g. in:
+ // if (aaaaaaaaaaaaaa ==
+ // bbbbbbbbbbbbbb && c) {..
+ // For comparisons, we only apply this rule, if the LHS is a binary
+ // expression itself as otherwise, the line breaks seem superfluous.
+ // We need special cases for ">>" which we have split into two ">" while
+ // lexing in order to make template parsing easier.
+ bool IsComparison = (Previous.getPrecedence() == prec::Relational ||
+ Previous.getPrecedence() == prec::Equality) &&
+ Previous.Previous &&
+ Previous.Previous->isNot(TT_BinaryOperator); // For >>.
+ bool LHSIsBinaryExpr =
+ Previous.Previous && Previous.Previous->EndsBinaryExpression;
+ if ((!IsComparison || LHSIsBinaryExpr) && !Current.isTrailingComment() &&
+ Previous.getPrecedence() != prec::Assignment &&
+ State.Stack.back().BreakBeforeParameter)
+ return true;
+ } else if (Current.is(TT_BinaryOperator) && Current.CanBreakBefore &&
+ State.Stack.back().BreakBeforeParameter) {
+ return true;
+ }
+
+ // Same as above, but for the first "<<" operator.
+ if (Current.is(tok::lessless) && Current.isNot(TT_OverloadedOperator) &&
+ State.Stack.back().BreakBeforeParameter &&
+ State.Stack.back().FirstLessLess == 0)
+ return true;
+
+ if (Current.NestingLevel == 0 && !Current.isTrailingComment()) {
+ // Always break after "template <...>" and leading annotations. This is only
+ // for cases where the entire line does not fit on a single line as a
+ // different LineFormatter would be used otherwise.
+ if (Previous.ClosesTemplateDeclaration)
+ return true;
+ if (Previous.is(TT_FunctionAnnotationRParen))
+ return true;
+ if (Previous.is(TT_LeadingJavaAnnotation) && Current.isNot(tok::l_paren) &&
+ Current.isNot(TT_LeadingJavaAnnotation))
+ return true;
+ }
+
+ // If the return type spans multiple lines, wrap before the function name.
+ if (Current.isOneOf(TT_FunctionDeclarationName, tok::kw_operator) &&
+ State.Stack.back().BreakBeforeParameter)
+ return true;
+
+ if (startsSegmentOfBuilderTypeCall(Current) &&
+ (State.Stack.back().CallContinuation != 0 ||
+ State.Stack.back().BreakBeforeParameter))
+ return true;
+
+ // The following could be precomputed as they do not depend on the state.
+ // However, as they should take effect only if the UnwrappedLine does not fit
+ // into the ColumnLimit, they are checked here in the ContinuationIndenter.
+ if (Style.ColumnLimit != 0 && Previous.BlockKind == BK_Block &&
+ Previous.is(tok::l_brace) && !Current.isOneOf(tok::r_brace, tok::comment))
+ return true;
+
+ if (Current.is(tok::lessless) && Previous.is(tok::identifier) &&
+ Previous.TokenText == "endl")
+ return true;
+
+ return false;
+}
+
+unsigned ContinuationIndenter::addTokenToState(LineState &State, bool Newline,
+ bool DryRun,
+ unsigned ExtraSpaces) {
+ const FormatToken &Current = *State.NextToken;
+
+ assert(!State.Stack.empty());
+ if ((Current.is(TT_ImplicitStringLiteral) &&
+ (Current.Previous->Tok.getIdentifierInfo() == nullptr ||
+ Current.Previous->Tok.getIdentifierInfo()->getPPKeywordID() ==
+ tok::pp_not_keyword))) {
+ unsigned EndColumn =
+ SourceMgr.getSpellingColumnNumber(Current.WhitespaceRange.getEnd());
+ if (Current.LastNewlineOffset != 0) {
+ // If there is a newline within this token, the final column will solely
+ // determined by the current end column.
+ State.Column = EndColumn;
+ } else {
+ unsigned StartColumn =
+ SourceMgr.getSpellingColumnNumber(Current.WhitespaceRange.getBegin());
+ assert(EndColumn >= StartColumn);
+ State.Column += EndColumn - StartColumn;
+ }
+ moveStateToNextToken(State, DryRun, /*Newline=*/false);
+ return 0;
+ }
+
+ unsigned Penalty = 0;
+ if (Newline)
+ Penalty = addTokenOnNewLine(State, DryRun);
+ else
+ addTokenOnCurrentLine(State, DryRun, ExtraSpaces);
+
+ return moveStateToNextToken(State, DryRun, Newline) + Penalty;
+}
+
+void ContinuationIndenter::addTokenOnCurrentLine(LineState &State, bool DryRun,
+ unsigned ExtraSpaces) {
+ FormatToken &Current = *State.NextToken;
+ const FormatToken &Previous = *State.NextToken->Previous;
+ if (Current.is(tok::equal) &&
+ (State.Line->First->is(tok::kw_for) || Current.NestingLevel == 0) &&
+ State.Stack.back().VariablePos == 0) {
+ State.Stack.back().VariablePos = State.Column;
+ // Move over * and & if they are bound to the variable name.
+ const FormatToken *Tok = &Previous;
+ while (Tok && State.Stack.back().VariablePos >= Tok->ColumnWidth) {
+ State.Stack.back().VariablePos -= Tok->ColumnWidth;
+ if (Tok->SpacesRequiredBefore != 0)
+ break;
+ Tok = Tok->Previous;
+ }
+ if (Previous.PartOfMultiVariableDeclStmt)
+ State.Stack.back().LastSpace = State.Stack.back().VariablePos;
+ }
+
+ unsigned Spaces = Current.SpacesRequiredBefore + ExtraSpaces;
+
+ if (!DryRun)
+ Whitespaces.replaceWhitespace(Current, /*Newlines=*/0, /*IndentLevel=*/0,
+ Spaces, State.Column + Spaces);
+
+ if (Current.is(TT_SelectorName) &&
+ !State.Stack.back().ObjCSelectorNameFound) {
+ if (Current.LongestObjCSelectorName == 0)
+ State.Stack.back().AlignColons = false;
+ else if (State.Stack.back().Indent + Current.LongestObjCSelectorName >
+ State.Column + Spaces + Current.ColumnWidth)
+ State.Stack.back().ColonPos =
+ std::max(State.FirstIndent + Style.ContinuationIndentWidth,
+ State.Stack.back().Indent) +
+ Current.LongestObjCSelectorName;
+ else
+ State.Stack.back().ColonPos = State.Column + Spaces + Current.ColumnWidth;
+ }
+
+ if (Style.AlignAfterOpenBracket && Previous.opensScope() &&
+ Previous.isNot(TT_ObjCMethodExpr) &&
+ (Current.isNot(TT_LineComment) || Previous.BlockKind == BK_BracedInit))
+ State.Stack.back().Indent = State.Column + Spaces;
+ if (State.Stack.back().AvoidBinPacking && startsNextParameter(Current, Style))
+ State.Stack.back().NoLineBreak = true;
+ if (startsSegmentOfBuilderTypeCall(Current) &&
+ State.Column > getNewLineColumn(State))
+ State.Stack.back().ContainsUnwrappedBuilder = true;
+
+ if (Current.is(TT_LambdaArrow))
+ State.Stack.back().NoLineBreak = true;
+ if (Current.isMemberAccess() && Previous.is(tok::r_paren) &&
+ (Previous.MatchingParen &&
+ (Previous.TotalLength - Previous.MatchingParen->TotalLength > 10))) {
+ // If there is a function call with long parameters, break before trailing
+ // calls. This prevents things like:
+ // EXPECT_CALL(SomeLongParameter).Times(
+ // 2);
+ // We don't want to do this for short parameters as they can just be
+ // indexes.
+ State.Stack.back().NoLineBreak = true;
+ }
+
+ State.Column += Spaces;
+ if (Current.isNot(tok::comment) && Previous.is(tok::l_paren) &&
+ Previous.Previous &&
+ Previous.Previous->isOneOf(tok::kw_if, tok::kw_for)) {
+ // Treat the condition inside an if as if it was a second function
+ // parameter, i.e. let nested calls have a continuation indent.
+ State.Stack.back().LastSpace = State.Column;
+ State.Stack.back().NestedBlockIndent = State.Column;
+ } else if (!Current.isOneOf(tok::comment, tok::caret) &&
+ (Previous.is(tok::comma) ||
+ (Previous.is(tok::colon) && Previous.is(TT_ObjCMethodExpr)))) {
+ State.Stack.back().LastSpace = State.Column;
+ } else if ((Previous.isOneOf(TT_BinaryOperator, TT_ConditionalExpr,
+ TT_CtorInitializerColon)) &&
+ ((Previous.getPrecedence() != prec::Assignment &&
+ (Previous.isNot(tok::lessless) || Previous.OperatorIndex != 0 ||
+ !Previous.LastOperator)) ||
+ Current.StartsBinaryExpression)) {
+ // Always indent relative to the RHS of the expression unless this is a
+ // simple assignment without binary expression on the RHS. Also indent
+ // relative to unary operators and the colons of constructor initializers.
+ State.Stack.back().LastSpace = State.Column;
+ } else if (Previous.is(TT_InheritanceColon)) {
+ State.Stack.back().Indent = State.Column;
+ State.Stack.back().LastSpace = State.Column;
+ } else if (Previous.opensScope()) {
+ // If a function has a trailing call, indent all parameters from the
+ // opening parenthesis. This avoids confusing indents like:
+ // OuterFunction(InnerFunctionCall( // break
+ // ParameterToInnerFunction)) // break
+ // .SecondInnerFunctionCall();
+ bool HasTrailingCall = false;
+ if (Previous.MatchingParen) {
+ const FormatToken *Next = Previous.MatchingParen->getNextNonComment();
+ HasTrailingCall = Next && Next->isMemberAccess();
+ }
+ if (HasTrailingCall && State.Stack.size() > 1 &&
+ State.Stack[State.Stack.size() - 2].CallContinuation == 0)
+ State.Stack.back().LastSpace = State.Column;
+ }
+}
+
+unsigned ContinuationIndenter::addTokenOnNewLine(LineState &State,
+ bool DryRun) {
+ FormatToken &Current = *State.NextToken;
+ const FormatToken &Previous = *State.NextToken->Previous;
+
+ // Extra penalty that needs to be added because of the way certain line
+ // breaks are chosen.
+ unsigned Penalty = 0;
+
+ const FormatToken *PreviousNonComment = Current.getPreviousNonComment();
+ const FormatToken *NextNonComment = Previous.getNextNonComment();
+ if (!NextNonComment)
+ NextNonComment = &Current;
+ // The first line break on any NestingLevel causes an extra penalty in order
+ // prefer similar line breaks.
+ if (!State.Stack.back().ContainsLineBreak)
+ Penalty += 15;
+ State.Stack.back().ContainsLineBreak = true;
+
+ Penalty += State.NextToken->SplitPenalty;
+
+ // Breaking before the first "<<" is generally not desirable if the LHS is
+ // short. Also always add the penalty if the LHS is split over mutliple lines
+ // to avoid unnecessary line breaks that just work around this penalty.
+ if (NextNonComment->is(tok::lessless) &&
+ State.Stack.back().FirstLessLess == 0 &&
+ (State.Column <= Style.ColumnLimit / 3 ||
+ State.Stack.back().BreakBeforeParameter))
+ Penalty += Style.PenaltyBreakFirstLessLess;
+
+ State.Column = getNewLineColumn(State);
+ State.Stack.back().NestedBlockIndent = State.Column;
+ if (NextNonComment->isMemberAccess()) {
+ if (State.Stack.back().CallContinuation == 0)
+ State.Stack.back().CallContinuation = State.Column;
+ } else if (NextNonComment->is(TT_SelectorName)) {
+ if (!State.Stack.back().ObjCSelectorNameFound) {
+ if (NextNonComment->LongestObjCSelectorName == 0) {
+ State.Stack.back().AlignColons = false;
+ } else {
+ State.Stack.back().ColonPos =
+ (Style.IndentWrappedFunctionNames
+ ? std::max(State.Stack.back().Indent,
+ State.FirstIndent + Style.ContinuationIndentWidth)
+ : State.Stack.back().Indent) +
+ NextNonComment->LongestObjCSelectorName;
+ }
+ } else if (State.Stack.back().AlignColons &&
+ State.Stack.back().ColonPos <= NextNonComment->ColumnWidth) {
+ State.Stack.back().ColonPos = State.Column + NextNonComment->ColumnWidth;
+ }
+ } else if (PreviousNonComment && PreviousNonComment->is(tok::colon) &&
+ PreviousNonComment->isOneOf(TT_ObjCMethodExpr, TT_DictLiteral)) {
+ // FIXME: This is hacky, find a better way. The problem is that in an ObjC
+ // method expression, the block should be aligned to the line starting it,
+ // e.g.:
+ // [aaaaaaaaaaaaaaa aaaaaaaaa: \\ break for some reason
+ // ^(int *i) {
+ // // ...
+ // }];
+ // Thus, we set LastSpace of the next higher NestingLevel, to which we move
+ // when we consume all of the "}"'s FakeRParens at the "{".
+ if (State.Stack.size() > 1)
+ State.Stack[State.Stack.size() - 2].LastSpace =
+ std::max(State.Stack.back().LastSpace, State.Stack.back().Indent) +
+ Style.ContinuationIndentWidth;
+ }
+
+ if ((Previous.isOneOf(tok::comma, tok::semi) &&
+ !State.Stack.back().AvoidBinPacking) ||
+ Previous.is(TT_BinaryOperator))
+ State.Stack.back().BreakBeforeParameter = false;
+ if (Previous.isOneOf(TT_TemplateCloser, TT_JavaAnnotation) &&
+ Current.NestingLevel == 0)
+ State.Stack.back().BreakBeforeParameter = false;
+ if (NextNonComment->is(tok::question) ||
+ (PreviousNonComment && PreviousNonComment->is(tok::question)))
+ State.Stack.back().BreakBeforeParameter = true;
+
+ if (!DryRun) {
+ unsigned Newlines = std::max(
+ 1u, std::min(Current.NewlinesBefore, Style.MaxEmptyLinesToKeep + 1));
+ Whitespaces.replaceWhitespace(Current, Newlines,
+ State.Stack.back().IndentLevel, State.Column,
+ State.Column, State.Line->InPPDirective);
+ }
+
+ if (!Current.isTrailingComment())
+ State.Stack.back().LastSpace = State.Column;
+ State.StartOfLineLevel = Current.NestingLevel;
+ State.LowestLevelOnLine = Current.NestingLevel;
+
+ // Any break on this level means that the parent level has been broken
+ // and we need to avoid bin packing there.
+ bool NestedBlockSpecialCase =
+ Current.is(tok::r_brace) && State.Stack.size() > 1 &&
+ State.Stack[State.Stack.size() - 2].NestedBlockInlined;
+ if (!NestedBlockSpecialCase) {
+ for (unsigned i = 0, e = State.Stack.size() - 1; i != e; ++i) {
+ State.Stack[i].BreakBeforeParameter = true;
+ }
+ }
+
+ if (PreviousNonComment &&
+ !PreviousNonComment->isOneOf(tok::comma, tok::semi) &&
+ (PreviousNonComment->isNot(TT_TemplateCloser) ||
+ Current.NestingLevel != 0) &&
+ !PreviousNonComment->isOneOf(
+ TT_BinaryOperator, TT_FunctionAnnotationRParen, TT_JavaAnnotation,
+ TT_LeadingJavaAnnotation) &&
+ Current.isNot(TT_BinaryOperator) && !PreviousNonComment->opensScope())
+ State.Stack.back().BreakBeforeParameter = true;
+
+ // If we break after { or the [ of an array initializer, we should also break
+ // before the corresponding } or ].
+ if (PreviousNonComment &&
+ (PreviousNonComment->isOneOf(tok::l_brace, TT_ArrayInitializerLSquare)))
+ State.Stack.back().BreakBeforeClosingBrace = true;
+
+ if (State.Stack.back().AvoidBinPacking) {
+ // If we are breaking after '(', '{', '<', this is not bin packing
+ // unless AllowAllParametersOfDeclarationOnNextLine is false or this is a
+ // dict/object literal.
+ if (!Previous.isOneOf(tok::l_paren, tok::l_brace, TT_BinaryOperator) ||
+ (!Style.AllowAllParametersOfDeclarationOnNextLine &&
+ State.Line->MustBeDeclaration) ||
+ Previous.is(TT_DictLiteral))
+ State.Stack.back().BreakBeforeParameter = true;
+ }
+
+ return Penalty;
+}
+
+unsigned ContinuationIndenter::getNewLineColumn(const LineState &State) {
+ if (!State.NextToken || !State.NextToken->Previous)
+ return 0;
+ FormatToken &Current = *State.NextToken;
+ const FormatToken &Previous = *Current.Previous;
+ // If we are continuing an expression, we want to use the continuation indent.
+ unsigned ContinuationIndent =
+ std::max(State.Stack.back().LastSpace, State.Stack.back().Indent) +
+ Style.ContinuationIndentWidth;
+ const FormatToken *PreviousNonComment = Current.getPreviousNonComment();
+ const FormatToken *NextNonComment = Previous.getNextNonComment();
+ if (!NextNonComment)
+ NextNonComment = &Current;
+
+ // Java specific bits.
+ if (Style.Language == FormatStyle::LK_Java &&
+ Current.isOneOf(Keywords.kw_implements, Keywords.kw_extends))
+ return std::max(State.Stack.back().LastSpace,
+ State.Stack.back().Indent + Style.ContinuationIndentWidth);
+
+ if (NextNonComment->is(tok::l_brace) && NextNonComment->BlockKind == BK_Block)
+ return Current.NestingLevel == 0 ? State.FirstIndent
+ : State.Stack.back().Indent;
+ if (Current.isOneOf(tok::r_brace, tok::r_square) && State.Stack.size() > 1) {
+ if (Current.closesBlockTypeList(Style))
+ return State.Stack[State.Stack.size() - 2].NestedBlockIndent;
+ if (Current.MatchingParen &&
+ Current.MatchingParen->BlockKind == BK_BracedInit)
+ return State.Stack[State.Stack.size() - 2].LastSpace;
+ return State.FirstIndent;
+ }
+ if (Current.is(tok::identifier) && Current.Next &&
+ Current.Next->is(TT_DictLiteral))
+ return State.Stack.back().Indent;
+ if (NextNonComment->isStringLiteral() && State.StartOfStringLiteral != 0)
+ return State.StartOfStringLiteral;
+ if (NextNonComment->is(TT_ObjCStringLiteral) &&
+ State.StartOfStringLiteral != 0)
+ return State.StartOfStringLiteral - 1;
+ if (NextNonComment->is(tok::lessless) &&
+ State.Stack.back().FirstLessLess != 0)
+ return State.Stack.back().FirstLessLess;
+ if (NextNonComment->isMemberAccess()) {
+ if (State.Stack.back().CallContinuation == 0)
+ return ContinuationIndent;
+ return State.Stack.back().CallContinuation;
+ }
+ if (State.Stack.back().QuestionColumn != 0 &&
+ ((NextNonComment->is(tok::colon) &&
+ NextNonComment->is(TT_ConditionalExpr)) ||
+ Previous.is(TT_ConditionalExpr)))
+ return State.Stack.back().QuestionColumn;
+ if (Previous.is(tok::comma) && State.Stack.back().VariablePos != 0)
+ return State.Stack.back().VariablePos;
+ if ((PreviousNonComment &&
+ (PreviousNonComment->ClosesTemplateDeclaration ||
+ PreviousNonComment->isOneOf(
+ TT_AttributeParen, TT_FunctionAnnotationRParen, TT_JavaAnnotation,
+ TT_LeadingJavaAnnotation))) ||
+ (!Style.IndentWrappedFunctionNames &&
+ NextNonComment->isOneOf(tok::kw_operator, TT_FunctionDeclarationName)))
+ return std::max(State.Stack.back().LastSpace, State.Stack.back().Indent);
+ if (NextNonComment->is(TT_SelectorName)) {
+ if (!State.Stack.back().ObjCSelectorNameFound) {
+ if (NextNonComment->LongestObjCSelectorName == 0)
+ return State.Stack.back().Indent;
+ return (Style.IndentWrappedFunctionNames
+ ? std::max(State.Stack.back().Indent,
+ State.FirstIndent + Style.ContinuationIndentWidth)
+ : State.Stack.back().Indent) +
+ NextNonComment->LongestObjCSelectorName -
+ NextNonComment->ColumnWidth;
+ }
+ if (!State.Stack.back().AlignColons)
+ return State.Stack.back().Indent;
+ if (State.Stack.back().ColonPos > NextNonComment->ColumnWidth)
+ return State.Stack.back().ColonPos - NextNonComment->ColumnWidth;
+ return State.Stack.back().Indent;
+ }
+ if (NextNonComment->is(TT_ArraySubscriptLSquare)) {
+ if (State.Stack.back().StartOfArraySubscripts != 0)
+ return State.Stack.back().StartOfArraySubscripts;
+ return ContinuationIndent;
+ }
+
+ // This ensure that we correctly format ObjC methods calls without inputs,
+ // i.e. where the last element isn't selector like: [callee method];
+ if (NextNonComment->is(tok::identifier) && NextNonComment->FakeRParens == 0 &&
+ NextNonComment->Next && NextNonComment->Next->is(TT_ObjCMethodExpr))
+ return State.Stack.back().Indent;
+
+ if (NextNonComment->isOneOf(TT_StartOfName, TT_PointerOrReference) ||
+ Previous.isOneOf(tok::coloncolon, tok::equal))
+ return ContinuationIndent;
+ if (PreviousNonComment && PreviousNonComment->is(tok::colon) &&
+ PreviousNonComment->isOneOf(TT_ObjCMethodExpr, TT_DictLiteral))
+ return ContinuationIndent;
+ if (NextNonComment->is(TT_CtorInitializerColon))
+ return State.FirstIndent + Style.ConstructorInitializerIndentWidth;
+ if (NextNonComment->is(TT_CtorInitializerComma))
+ return State.Stack.back().Indent;
+ if (Previous.is(tok::r_paren) && !Current.isBinaryOperator() &&
+ !Current.isOneOf(tok::colon, tok::comment))
+ return ContinuationIndent;
+ if (State.Stack.back().Indent == State.FirstIndent && PreviousNonComment &&
+ PreviousNonComment->isNot(tok::r_brace))
+ // Ensure that we fall back to the continuation indent width instead of
+ // just flushing continuations left.
+ return State.Stack.back().Indent + Style.ContinuationIndentWidth;
+ return State.Stack.back().Indent;
+}
+
+unsigned ContinuationIndenter::moveStateToNextToken(LineState &State,
+ bool DryRun, bool Newline) {
+ assert(State.Stack.size());
+ const FormatToken &Current = *State.NextToken;
+
+ if (Current.is(TT_InheritanceColon))
+ State.Stack.back().AvoidBinPacking = true;
+ if (Current.is(tok::lessless) && Current.isNot(TT_OverloadedOperator)) {
+ if (State.Stack.back().FirstLessLess == 0)
+ State.Stack.back().FirstLessLess = State.Column;
+ else
+ State.Stack.back().LastOperatorWrapped = Newline;
+ }
+ if ((Current.is(TT_BinaryOperator) && Current.isNot(tok::lessless)) ||
+ Current.is(TT_ConditionalExpr))
+ State.Stack.back().LastOperatorWrapped = Newline;
+ if (Current.is(TT_ArraySubscriptLSquare) &&
+ State.Stack.back().StartOfArraySubscripts == 0)
+ State.Stack.back().StartOfArraySubscripts = State.Column;
+ if ((Current.is(tok::question) && Style.BreakBeforeTernaryOperators) ||
+ (Current.getPreviousNonComment() && Current.isNot(tok::colon) &&
+ Current.getPreviousNonComment()->is(tok::question) &&
+ !Style.BreakBeforeTernaryOperators))
+ State.Stack.back().QuestionColumn = State.Column;
+ if (!Current.opensScope() && !Current.closesScope())
+ State.LowestLevelOnLine =
+ std::min(State.LowestLevelOnLine, Current.NestingLevel);
+ if (Current.isMemberAccess())
+ State.Stack.back().StartOfFunctionCall =
+ Current.LastOperator ? 0 : State.Column;
+ if (Current.is(TT_SelectorName))
+ State.Stack.back().ObjCSelectorNameFound = true;
+ if (Current.is(TT_CtorInitializerColon)) {
+ // Indent 2 from the column, so:
+ // SomeClass::SomeClass()
+ // : First(...), ...
+ // Next(...)
+ // ^ line up here.
+ State.Stack.back().Indent =
+ State.Column + (Style.BreakConstructorInitializersBeforeComma ? 0 : 2);
+ State.Stack.back().NestedBlockIndent = State.Stack.back().Indent;
+ if (Style.ConstructorInitializerAllOnOneLineOrOnePerLine)
+ State.Stack.back().AvoidBinPacking = true;
+ State.Stack.back().BreakBeforeParameter = false;
+ }
+ if (Current.isOneOf(TT_BinaryOperator, TT_ConditionalExpr) && Newline)
+ State.Stack.back().NestedBlockIndent =
+ State.Column + Current.ColumnWidth + 1;
+
+ // Insert scopes created by fake parenthesis.
+ const FormatToken *Previous = Current.getPreviousNonComment();
+
+ // Add special behavior to support a format commonly used for JavaScript
+ // closures:
+ // SomeFunction(function() {
+ // foo();
+ // bar();
+ // }, a, b, c);
+ if (Current.isNot(tok::comment) && Previous && Previous->is(tok::l_brace) &&
+ State.Stack.size() > 1) {
+ if (State.Stack[State.Stack.size() - 2].NestedBlockInlined && Newline) {
+ for (unsigned i = 0, e = State.Stack.size() - 1; i != e; ++i) {
+ State.Stack[i].NoLineBreak = true;
+ }
+ }
+ State.Stack[State.Stack.size() - 2].NestedBlockInlined = false;
+ }
+ if (Previous && (Previous->isOneOf(tok::l_paren, tok::comma, tok::colon) ||
+ Previous->isOneOf(TT_BinaryOperator, TT_ConditionalExpr)) &&
+ !Previous->isOneOf(TT_DictLiteral, TT_ObjCMethodExpr)) {
+ State.Stack.back().NestedBlockInlined =
+ !Newline &&
+ (Previous->isNot(tok::l_paren) || Previous->ParameterCount > 1);
+ }
+
+ moveStatePastFakeLParens(State, Newline);
+ moveStatePastScopeOpener(State, Newline);
+ moveStatePastScopeCloser(State);
+ moveStatePastFakeRParens(State);
+
+ if (Current.isStringLiteral() && State.StartOfStringLiteral == 0)
+ State.StartOfStringLiteral = State.Column;
+ if (Current.is(TT_ObjCStringLiteral) && State.StartOfStringLiteral == 0)
+ State.StartOfStringLiteral = State.Column + 1;
+ else if (!Current.isOneOf(tok::comment, tok::identifier, tok::hash) &&
+ !Current.isStringLiteral())
+ State.StartOfStringLiteral = 0;
+
+ State.Column += Current.ColumnWidth;
+ State.NextToken = State.NextToken->Next;
+ unsigned Penalty = breakProtrudingToken(Current, State, DryRun);
+ if (State.Column > getColumnLimit(State)) {
+ unsigned ExcessCharacters = State.Column - getColumnLimit(State);
+ Penalty += Style.PenaltyExcessCharacter * ExcessCharacters;
+ }
+
+ if (Current.Role)
+ Current.Role->formatFromToken(State, this, DryRun);
+ // If the previous has a special role, let it consume tokens as appropriate.
+ // It is necessary to start at the previous token for the only implemented
+ // role (comma separated list). That way, the decision whether or not to break
+ // after the "{" is already done and both options are tried and evaluated.
+ // FIXME: This is ugly, find a better way.
+ if (Previous && Previous->Role)
+ Penalty += Previous->Role->formatAfterToken(State, this, DryRun);
+
+ return Penalty;
+}
+
+void ContinuationIndenter::moveStatePastFakeLParens(LineState &State,
+ bool Newline) {
+ const FormatToken &Current = *State.NextToken;
+ const FormatToken *Previous = Current.getPreviousNonComment();
+
+ // Don't add extra indentation for the first fake parenthesis after
+ // 'return', assignments or opening <({[. The indentation for these cases
+ // is special cased.
+ bool SkipFirstExtraIndent =
+ (Previous && (Previous->opensScope() ||
+ Previous->isOneOf(tok::semi, tok::kw_return) ||
+ (Previous->getPrecedence() == prec::Assignment &&
+ Style.AlignOperands) ||
+ Previous->is(TT_ObjCMethodExpr)));
+ for (SmallVectorImpl<prec::Level>::const_reverse_iterator
+ I = Current.FakeLParens.rbegin(),
+ E = Current.FakeLParens.rend();
+ I != E; ++I) {
+ ParenState NewParenState = State.Stack.back();
+ NewParenState.ContainsLineBreak = false;
+
+ // Indent from 'LastSpace' unless these are fake parentheses encapsulating
+ // a builder type call after 'return' or, if the alignment after opening
+ // brackets is disabled.
+ if (!Current.isTrailingComment() &&
+ (Style.AlignOperands || *I < prec::Assignment) &&
+ (!Previous || Previous->isNot(tok::kw_return) ||
+ (Style.Language != FormatStyle::LK_Java && *I > 0)) &&
+ (Style.AlignAfterOpenBracket || *I != prec::Comma ||
+ Current.NestingLevel == 0))
+ NewParenState.Indent =
+ std::max(std::max(State.Column, NewParenState.Indent),
+ State.Stack.back().LastSpace);
+
+ // Don't allow the RHS of an operator to be split over multiple lines unless
+ // there is a line-break right after the operator.
+ // Exclude relational operators, as there, it is always more desirable to
+ // have the LHS 'left' of the RHS.
+ if (Previous && Previous->getPrecedence() > prec::Assignment &&
+ Previous->isOneOf(TT_BinaryOperator, TT_ConditionalExpr) &&
+ Previous->getPrecedence() != prec::Relational) {
+ bool BreakBeforeOperator =
+ Previous->is(tok::lessless) ||
+ (Previous->is(TT_BinaryOperator) &&
+ Style.BreakBeforeBinaryOperators != FormatStyle::BOS_None) ||
+ (Previous->is(TT_ConditionalExpr) &&
+ Style.BreakBeforeTernaryOperators);
+ if ((!Newline && !BreakBeforeOperator) ||
+ (!State.Stack.back().LastOperatorWrapped && BreakBeforeOperator))
+ NewParenState.NoLineBreak = true;
+ }
+
+ // Do not indent relative to the fake parentheses inserted for "." or "->".
+ // This is a special case to make the following to statements consistent:
+ // OuterFunction(InnerFunctionCall( // break
+ // ParameterToInnerFunction));
+ // OuterFunction(SomeObject.InnerFunctionCall( // break
+ // ParameterToInnerFunction));
+ if (*I > prec::Unknown)
+ NewParenState.LastSpace = std::max(NewParenState.LastSpace, State.Column);
+ if (*I != prec::Conditional)
+ NewParenState.StartOfFunctionCall = State.Column;
+
+ // Always indent conditional expressions. Never indent expression where
+ // the 'operator' is ',', ';' or an assignment (i.e. *I <=
+ // prec::Assignment) as those have different indentation rules. Indent
+ // other expression, unless the indentation needs to be skipped.
+ if (*I == prec::Conditional ||
+ (!SkipFirstExtraIndent && *I > prec::Assignment &&
+ !Current.isTrailingComment()))
+ NewParenState.Indent += Style.ContinuationIndentWidth;
+ if ((Previous && !Previous->opensScope()) || *I > prec::Comma)
+ NewParenState.BreakBeforeParameter = false;
+ State.Stack.push_back(NewParenState);
+ SkipFirstExtraIndent = false;
+ }
+}
+
+void ContinuationIndenter::moveStatePastFakeRParens(LineState &State) {
+ for (unsigned i = 0, e = State.NextToken->FakeRParens; i != e; ++i) {
+ unsigned VariablePos = State.Stack.back().VariablePos;
+ if (State.Stack.size() == 1) {
+ // Do not pop the last element.
+ break;
+ }
+ State.Stack.pop_back();
+ State.Stack.back().VariablePos = VariablePos;
+ }
+}
+
+void ContinuationIndenter::moveStatePastScopeOpener(LineState &State,
+ bool Newline) {
+ const FormatToken &Current = *State.NextToken;
+ if (!Current.opensScope())
+ return;
+
+ if (Current.MatchingParen && Current.BlockKind == BK_Block) {
+ moveStateToNewBlock(State);
+ return;
+ }
+
+ unsigned NewIndent;
+ unsigned NewIndentLevel = State.Stack.back().IndentLevel;
+ unsigned LastSpace = State.Stack.back().LastSpace;
+ bool AvoidBinPacking;
+ bool BreakBeforeParameter = false;
+ if (Current.isOneOf(tok::l_brace, TT_ArrayInitializerLSquare)) {
+ if (Current.opensBlockTypeList(Style)) {
+ NewIndent = State.Stack.back().NestedBlockIndent + Style.IndentWidth;
+ NewIndent = std::min(State.Column + 2, NewIndent);
+ ++NewIndentLevel;
+ } else {
+ NewIndent = State.Stack.back().LastSpace + Style.ContinuationIndentWidth;
+ }
+ const FormatToken *NextNoComment = Current.getNextNonComment();
+ AvoidBinPacking =
+ Current.isOneOf(TT_ArrayInitializerLSquare, TT_DictLiteral) ||
+ Style.Language == FormatStyle::LK_Proto || !Style.BinPackArguments ||
+ (NextNoComment && NextNoComment->is(TT_DesignatedInitializerPeriod));
+ } else {
+ NewIndent = Style.ContinuationIndentWidth +
+ std::max(State.Stack.back().LastSpace,
+ State.Stack.back().StartOfFunctionCall);
+
+ // Ensure that different different brackets force relative alignment, e.g.:
+ // void SomeFunction(vector< // break
+ // int> v);
+ // FIXME: We likely want to do this for more combinations of brackets.
+ // Verify that it is wanted for ObjC, too.
+ if (Current.Tok.getKind() == tok::less &&
+ Current.ParentBracket == tok::l_paren) {
+ NewIndent = std::max(NewIndent, State.Stack.back().Indent);
+ LastSpace = std::max(LastSpace, State.Stack.back().Indent);
+ }
+
+ AvoidBinPacking =
+ (State.Line->MustBeDeclaration && !Style.BinPackParameters) ||
+ (!State.Line->MustBeDeclaration && !Style.BinPackArguments) ||
+ (Style.ExperimentalAutoDetectBinPacking &&
+ (Current.PackingKind == PPK_OnePerLine ||
+ (!BinPackInconclusiveFunctions &&
+ Current.PackingKind == PPK_Inconclusive)));
+ if (Current.is(TT_ObjCMethodExpr) && Current.MatchingParen) {
+ if (Style.ColumnLimit) {
+ // If this '[' opens an ObjC call, determine whether all parameters fit
+ // into one line and put one per line if they don't.
+ if (getLengthToMatchingParen(Current) + State.Column >
+ getColumnLimit(State))
+ BreakBeforeParameter = true;
+ } else {
+ // For ColumnLimit = 0, we have to figure out whether there is or has to
+ // be a line break within this call.
+ for (const FormatToken *Tok = &Current;
+ Tok && Tok != Current.MatchingParen; Tok = Tok->Next) {
+ if (Tok->MustBreakBefore ||
+ (Tok->CanBreakBefore && Tok->NewlinesBefore > 0)) {
+ BreakBeforeParameter = true;
+ break;
+ }
+ }
+ }
+ }
+ }
+ bool NoLineBreak = State.Stack.back().NoLineBreak ||
+ (Current.is(TT_TemplateOpener) &&
+ State.Stack.back().ContainsUnwrappedBuilder);
+ unsigned NestedBlockIndent = std::max(State.Stack.back().StartOfFunctionCall,
+ State.Stack.back().NestedBlockIndent);
+ State.Stack.push_back(ParenState(NewIndent, NewIndentLevel, LastSpace,
+ AvoidBinPacking, NoLineBreak));
+ State.Stack.back().NestedBlockIndent = NestedBlockIndent;
+ State.Stack.back().BreakBeforeParameter = BreakBeforeParameter;
+ State.Stack.back().HasMultipleNestedBlocks = Current.BlockParameterCount > 1;
+}
+
+void ContinuationIndenter::moveStatePastScopeCloser(LineState &State) {
+ const FormatToken &Current = *State.NextToken;
+ if (!Current.closesScope())
+ return;
+
+ // If we encounter a closing ), ], } or >, we can remove a level from our
+ // stacks.
+ if (State.Stack.size() > 1 &&
+ (Current.isOneOf(tok::r_paren, tok::r_square) ||
+ (Current.is(tok::r_brace) && State.NextToken != State.Line->First) ||
+ State.NextToken->is(TT_TemplateCloser)))
+ State.Stack.pop_back();
+
+ if (Current.is(tok::r_square)) {
+ // If this ends the array subscript expr, reset the corresponding value.
+ const FormatToken *NextNonComment = Current.getNextNonComment();
+ if (NextNonComment && NextNonComment->isNot(tok::l_square))
+ State.Stack.back().StartOfArraySubscripts = 0;
+ }
+}
+
+void ContinuationIndenter::moveStateToNewBlock(LineState &State) {
+ unsigned NestedBlockIndent = State.Stack.back().NestedBlockIndent;
+ // ObjC block sometimes follow special indentation rules.
+ unsigned NewIndent =
+ NestedBlockIndent + (State.NextToken->is(TT_ObjCBlockLBrace)
+ ? Style.ObjCBlockIndentWidth
+ : Style.IndentWidth);
+ State.Stack.push_back(ParenState(
+ NewIndent, /*NewIndentLevel=*/State.Stack.back().IndentLevel + 1,
+ State.Stack.back().LastSpace, /*AvoidBinPacking=*/true,
+ State.Stack.back().NoLineBreak));
+ State.Stack.back().NestedBlockIndent = NestedBlockIndent;
+ State.Stack.back().BreakBeforeParameter = true;
+}
+
+unsigned ContinuationIndenter::addMultilineToken(const FormatToken &Current,
+ LineState &State) {
+ // Break before further function parameters on all levels.
+ for (unsigned i = 0, e = State.Stack.size(); i != e; ++i)
+ State.Stack[i].BreakBeforeParameter = true;
+
+ unsigned ColumnsUsed = State.Column;
+ // We can only affect layout of the first and the last line, so the penalty
+ // for all other lines is constant, and we ignore it.
+ State.Column = Current.LastLineColumnWidth;
+
+ if (ColumnsUsed > getColumnLimit(State))
+ return Style.PenaltyExcessCharacter * (ColumnsUsed - getColumnLimit(State));
+ return 0;
+}
+
+unsigned ContinuationIndenter::breakProtrudingToken(const FormatToken &Current,
+ LineState &State,
+ bool DryRun) {
+ // Don't break multi-line tokens other than block comments. Instead, just
+ // update the state.
+ if (Current.isNot(TT_BlockComment) && Current.IsMultiline)
+ return addMultilineToken(Current, State);
+
+ // Don't break implicit string literals or import statements.
+ if (Current.is(TT_ImplicitStringLiteral) ||
+ State.Line->Type == LT_ImportStatement)
+ return 0;
+
+ if (!Current.isStringLiteral() && !Current.is(tok::comment))
+ return 0;
+
+ std::unique_ptr<BreakableToken> Token;
+ unsigned StartColumn = State.Column - Current.ColumnWidth;
+ unsigned ColumnLimit = getColumnLimit(State);
+
+ if (Current.isStringLiteral()) {
+ // FIXME: String literal breaking is currently disabled for Java and JS, as
+ // it requires strings to be merged using "+" which we don't support.
+ if (Style.Language == FormatStyle::LK_Java ||
+ Style.Language == FormatStyle::LK_JavaScript)
+ return 0;
+
+ // Don't break string literals inside preprocessor directives (except for
+ // #define directives, as their contents are stored in separate lines and
+ // are not affected by this check).
+ // This way we avoid breaking code with line directives and unknown
+ // preprocessor directives that contain long string literals.
+ if (State.Line->Type == LT_PreprocessorDirective)
+ return 0;
+ // Exempts unterminated string literals from line breaking. The user will
+ // likely want to terminate the string before any line breaking is done.
+ if (Current.IsUnterminatedLiteral)
+ return 0;
+
+ StringRef Text = Current.TokenText;
+ StringRef Prefix;
+ StringRef Postfix;
+ bool IsNSStringLiteral = false;
+ // FIXME: Handle whitespace between '_T', '(', '"..."', and ')'.
+ // FIXME: Store Prefix and Suffix (or PrefixLength and SuffixLength to
+ // reduce the overhead) for each FormatToken, which is a string, so that we
+ // don't run multiple checks here on the hot path.
+ if (Text.startswith("\"") && Current.Previous &&
+ Current.Previous->is(tok::at)) {
+ IsNSStringLiteral = true;
+ Prefix = "@\"";
+ }
+ if ((Text.endswith(Postfix = "\"") &&
+ (IsNSStringLiteral || Text.startswith(Prefix = "\"") ||
+ Text.startswith(Prefix = "u\"") || Text.startswith(Prefix = "U\"") ||
+ Text.startswith(Prefix = "u8\"") ||
+ Text.startswith(Prefix = "L\""))) ||
+ (Text.startswith(Prefix = "_T(\"") && Text.endswith(Postfix = "\")"))) {
+ Token.reset(new BreakableStringLiteral(
+ Current, State.Line->Level, StartColumn, Prefix, Postfix,
+ State.Line->InPPDirective, Encoding, Style));
+ } else {
+ return 0;
+ }
+ } else if (Current.is(TT_BlockComment) && Current.isTrailingComment()) {
+ if (CommentPragmasRegex.match(Current.TokenText.substr(2)))
+ return 0;
+ Token.reset(new BreakableBlockComment(
+ Current, State.Line->Level, StartColumn, Current.OriginalColumn,
+ !Current.Previous, State.Line->InPPDirective, Encoding, Style));
+ } else if (Current.is(TT_LineComment) &&
+ (Current.Previous == nullptr ||
+ Current.Previous->isNot(TT_ImplicitStringLiteral))) {
+ if (CommentPragmasRegex.match(Current.TokenText.substr(2)))
+ return 0;
+ Token.reset(new BreakableLineComment(Current, State.Line->Level,
+ StartColumn, /*InPPDirective=*/false,
+ Encoding, Style));
+ // We don't insert backslashes when breaking line comments.
+ ColumnLimit = Style.ColumnLimit;
+ } else {
+ return 0;
+ }
+ if (Current.UnbreakableTailLength >= ColumnLimit)
+ return 0;
+
+ unsigned RemainingSpace = ColumnLimit - Current.UnbreakableTailLength;
+ bool BreakInserted = false;
+ unsigned Penalty = 0;
+ unsigned RemainingTokenColumns = 0;
+ for (unsigned LineIndex = 0, EndIndex = Token->getLineCount();
+ LineIndex != EndIndex; ++LineIndex) {
+ if (!DryRun)
+ Token->replaceWhitespaceBefore(LineIndex, Whitespaces);
+ unsigned TailOffset = 0;
+ RemainingTokenColumns =
+ Token->getLineLengthAfterSplit(LineIndex, TailOffset, StringRef::npos);
+ while (RemainingTokenColumns > RemainingSpace) {
+ BreakableToken::Split Split =
+ Token->getSplit(LineIndex, TailOffset, ColumnLimit);
+ if (Split.first == StringRef::npos) {
+ // The last line's penalty is handled in addNextStateToQueue().
+ if (LineIndex < EndIndex - 1)
+ Penalty += Style.PenaltyExcessCharacter *
+ (RemainingTokenColumns - RemainingSpace);
+ break;
+ }
+ assert(Split.first != 0);
+ unsigned NewRemainingTokenColumns = Token->getLineLengthAfterSplit(
+ LineIndex, TailOffset + Split.first + Split.second, StringRef::npos);
+
+ // We can remove extra whitespace instead of breaking the line.
+ if (RemainingTokenColumns + 1 - Split.second <= RemainingSpace) {
+ RemainingTokenColumns = 0;
+ if (!DryRun)
+ Token->replaceWhitespace(LineIndex, TailOffset, Split, Whitespaces);
+ break;
+ }
+
+ // When breaking before a tab character, it may be moved by a few columns,
+ // but will still be expanded to the next tab stop, so we don't save any
+ // columns.
+ if (NewRemainingTokenColumns == RemainingTokenColumns)
+ break;
+
+ assert(NewRemainingTokenColumns < RemainingTokenColumns);
+ if (!DryRun)
+ Token->insertBreak(LineIndex, TailOffset, Split, Whitespaces);
+ Penalty += Current.SplitPenalty;
+ unsigned ColumnsUsed =
+ Token->getLineLengthAfterSplit(LineIndex, TailOffset, Split.first);
+ if (ColumnsUsed > ColumnLimit) {
+ Penalty += Style.PenaltyExcessCharacter * (ColumnsUsed - ColumnLimit);
+ }
+ TailOffset += Split.first + Split.second;
+ RemainingTokenColumns = NewRemainingTokenColumns;
+ BreakInserted = true;
+ }
+ }
+
+ State.Column = RemainingTokenColumns;
+
+ if (BreakInserted) {
+ // If we break the token inside a parameter list, we need to break before
+ // the next parameter on all levels, so that the next parameter is clearly
+ // visible. Line comments already introduce a break.
+ if (Current.isNot(TT_LineComment)) {
+ for (unsigned i = 0, e = State.Stack.size(); i != e; ++i)
+ State.Stack[i].BreakBeforeParameter = true;
+ }
+
+ Penalty += Current.isStringLiteral() ? Style.PenaltyBreakString
+ : Style.PenaltyBreakComment;
+
+ State.Stack.back().LastSpace = StartColumn;
+ }
+ return Penalty;
+}
+
+unsigned ContinuationIndenter::getColumnLimit(const LineState &State) const {
+ // In preprocessor directives reserve two chars for trailing " \"
+ return Style.ColumnLimit - (State.Line->InPPDirective ? 2 : 0);
+}
+
+bool ContinuationIndenter::nextIsMultilineString(const LineState &State) {
+ const FormatToken &Current = *State.NextToken;
+ if (!Current.isStringLiteral() || Current.is(TT_ImplicitStringLiteral))
+ return false;
+ // We never consider raw string literals "multiline" for the purpose of
+ // AlwaysBreakBeforeMultilineStrings implementation as they are special-cased
+ // (see TokenAnnotator::mustBreakBefore().
+ if (Current.TokenText.startswith("R\""))
+ return false;
+ if (Current.IsMultiline)
+ return true;
+ if (Current.getNextNonComment() &&
+ Current.getNextNonComment()->isStringLiteral())
+ return true; // Implicit concatenation.
+ if (Style.ColumnLimit != 0 &&
+ State.Column + Current.ColumnWidth + Current.UnbreakableTailLength >
+ Style.ColumnLimit)
+ return true; // String will be split.
+ return false;
+}
+
+} // namespace format
+} // namespace clang
diff --git a/contrib/llvm/tools/clang/lib/Format/ContinuationIndenter.h b/contrib/llvm/tools/clang/lib/Format/ContinuationIndenter.h
new file mode 100644
index 0000000..36691d9
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Format/ContinuationIndenter.h
@@ -0,0 +1,383 @@
+//===--- ContinuationIndenter.h - Format C++ code ---------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// \brief This file implements an indenter that manages the indentation of
+/// continuations.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_FORMAT_CONTINUATIONINDENTER_H
+#define LLVM_CLANG_LIB_FORMAT_CONTINUATIONINDENTER_H
+
+#include "Encoding.h"
+#include "FormatToken.h"
+#include "clang/Format/Format.h"
+#include "llvm/Support/Regex.h"
+
+namespace clang {
+class SourceManager;
+
+namespace format {
+
+class AnnotatedLine;
+struct FormatToken;
+struct LineState;
+struct ParenState;
+class WhitespaceManager;
+
+class ContinuationIndenter {
+public:
+ /// \brief Constructs a \c ContinuationIndenter to format \p Line starting in
+ /// column \p FirstIndent.
+ ContinuationIndenter(const FormatStyle &Style,
+ const AdditionalKeywords &Keywords,
+ SourceManager &SourceMgr, WhitespaceManager &Whitespaces,
+ encoding::Encoding Encoding,
+ bool BinPackInconclusiveFunctions);
+
+ /// \brief Get the initial state, i.e. the state after placing \p Line's
+ /// first token at \p FirstIndent.
+ LineState getInitialState(unsigned FirstIndent, const AnnotatedLine *Line,
+ bool DryRun);
+
+ // FIXME: canBreak and mustBreak aren't strictly indentation-related. Find a
+ // better home.
+ /// \brief Returns \c true, if a line break after \p State is allowed.
+ bool canBreak(const LineState &State);
+
+ /// \brief Returns \c true, if a line break after \p State is mandatory.
+ bool mustBreak(const LineState &State);
+
+ /// \brief Appends the next token to \p State and updates information
+ /// necessary for indentation.
+ ///
+ /// Puts the token on the current line if \p Newline is \c false and adds a
+ /// line break and necessary indentation otherwise.
+ ///
+ /// If \p DryRun is \c false, also creates and stores the required
+ /// \c Replacement.
+ unsigned addTokenToState(LineState &State, bool Newline, bool DryRun,
+ unsigned ExtraSpaces = 0);
+
+ /// \brief Get the column limit for this line. This is the style's column
+ /// limit, potentially reduced for preprocessor definitions.
+ unsigned getColumnLimit(const LineState &State) const;
+
+private:
+ /// \brief Mark the next token as consumed in \p State and modify its stacks
+ /// accordingly.
+ unsigned moveStateToNextToken(LineState &State, bool DryRun, bool Newline);
+
+ /// \brief Update 'State' according to the next token's fake left parentheses.
+ void moveStatePastFakeLParens(LineState &State, bool Newline);
+ /// \brief Update 'State' according to the next token's fake r_parens.
+ void moveStatePastFakeRParens(LineState &State);
+
+ /// \brief Update 'State' according to the next token being one of "(<{[".
+ void moveStatePastScopeOpener(LineState &State, bool Newline);
+ /// \brief Update 'State' according to the next token being one of ")>}]".
+ void moveStatePastScopeCloser(LineState &State);
+ /// \brief Update 'State' with the next token opening a nested block.
+ void moveStateToNewBlock(LineState &State);
+
+ /// \brief If the current token sticks out over the end of the line, break
+ /// it if possible.
+ ///
+ /// \returns An extra penalty if a token was broken, otherwise 0.
+ ///
+ /// The returned penalty will cover the cost of the additional line breaks and
+ /// column limit violation in all lines except for the last one. The penalty
+ /// for the column limit violation in the last line (and in single line
+ /// tokens) is handled in \c addNextStateToQueue.
+ unsigned breakProtrudingToken(const FormatToken &Current, LineState &State,
+ bool DryRun);
+
+ /// \brief Appends the next token to \p State and updates information
+ /// necessary for indentation.
+ ///
+ /// Puts the token on the current line.
+ ///
+ /// If \p DryRun is \c false, also creates and stores the required
+ /// \c Replacement.
+ void addTokenOnCurrentLine(LineState &State, bool DryRun,
+ unsigned ExtraSpaces);
+
+ /// \brief Appends the next token to \p State and updates information
+ /// necessary for indentation.
+ ///
+ /// Adds a line break and necessary indentation.
+ ///
+ /// If \p DryRun is \c false, also creates and stores the required
+ /// \c Replacement.
+ unsigned addTokenOnNewLine(LineState &State, bool DryRun);
+
+ /// \brief Calculate the new column for a line wrap before the next token.
+ unsigned getNewLineColumn(const LineState &State);
+
+ /// \brief Adds a multiline token to the \p State.
+ ///
+ /// \returns Extra penalty for the first line of the literal: last line is
+ /// handled in \c addNextStateToQueue, and the penalty for other lines doesn't
+ /// matter, as we don't change them.
+ unsigned addMultilineToken(const FormatToken &Current, LineState &State);
+
+ /// \brief Returns \c true if the next token starts a multiline string
+ /// literal.
+ ///
+ /// This includes implicitly concatenated strings, strings that will be broken
+ /// by clang-format and string literals with escaped newlines.
+ bool nextIsMultilineString(const LineState &State);
+
+ FormatStyle Style;
+ const AdditionalKeywords &Keywords;
+ SourceManager &SourceMgr;
+ WhitespaceManager &Whitespaces;
+ encoding::Encoding Encoding;
+ bool BinPackInconclusiveFunctions;
+ llvm::Regex CommentPragmasRegex;
+};
+
+struct ParenState {
+ ParenState(unsigned Indent, unsigned IndentLevel, unsigned LastSpace,
+ bool AvoidBinPacking, bool NoLineBreak)
+ : Indent(Indent), IndentLevel(IndentLevel), LastSpace(LastSpace),
+ NestedBlockIndent(Indent), FirstLessLess(0),
+ BreakBeforeClosingBrace(false), QuestionColumn(0),
+ AvoidBinPacking(AvoidBinPacking), BreakBeforeParameter(false),
+ NoLineBreak(NoLineBreak), LastOperatorWrapped(true), ColonPos(0),
+ StartOfFunctionCall(0), StartOfArraySubscripts(0),
+ NestedNameSpecifierContinuation(0), CallContinuation(0), VariablePos(0),
+ ContainsLineBreak(false), ContainsUnwrappedBuilder(0),
+ AlignColons(true), ObjCSelectorNameFound(false),
+ HasMultipleNestedBlocks(false), NestedBlockInlined(false) {}
+
+ /// \brief The position to which a specific parenthesis level needs to be
+ /// indented.
+ unsigned Indent;
+
+ /// \brief The number of indentation levels of the block.
+ unsigned IndentLevel;
+
+ /// \brief The position of the last space on each level.
+ ///
+ /// Used e.g. to break like:
+ /// functionCall(Parameter, otherCall(
+ /// OtherParameter));
+ unsigned LastSpace;
+
+ /// \brief If a block relative to this parenthesis level gets wrapped, indent
+ /// it this much.
+ unsigned NestedBlockIndent;
+
+ /// \brief The position the first "<<" operator encountered on each level.
+ ///
+ /// Used to align "<<" operators. 0 if no such operator has been encountered
+ /// on a level.
+ unsigned FirstLessLess;
+
+ /// \brief Whether a newline needs to be inserted before the block's closing
+ /// brace.
+ ///
+ /// We only want to insert a newline before the closing brace if there also
+ /// was a newline after the beginning left brace.
+ bool BreakBeforeClosingBrace;
+
+ /// \brief The column of a \c ? in a conditional expression;
+ unsigned QuestionColumn;
+
+ /// \brief Avoid bin packing, i.e. multiple parameters/elements on multiple
+ /// lines, in this context.
+ bool AvoidBinPacking;
+
+ /// \brief Break after the next comma (or all the commas in this context if
+ /// \c AvoidBinPacking is \c true).
+ bool BreakBeforeParameter;
+
+ /// \brief Line breaking in this context would break a formatting rule.
+ bool NoLineBreak;
+
+ /// \brief True if the last binary operator on this level was wrapped to the
+ /// next line.
+ bool LastOperatorWrapped;
+
+ /// \brief The position of the colon in an ObjC method declaration/call.
+ unsigned ColonPos;
+
+ /// \brief The start of the most recent function in a builder-type call.
+ unsigned StartOfFunctionCall;
+
+ /// \brief Contains the start of array subscript expressions, so that they
+ /// can be aligned.
+ unsigned StartOfArraySubscripts;
+
+ /// \brief If a nested name specifier was broken over multiple lines, this
+ /// contains the start column of the second line. Otherwise 0.
+ unsigned NestedNameSpecifierContinuation;
+
+ /// \brief If a call expression was broken over multiple lines, this
+ /// contains the start column of the second line. Otherwise 0.
+ unsigned CallContinuation;
+
+ /// \brief The column of the first variable name in a variable declaration.
+ ///
+ /// Used to align further variables if necessary.
+ unsigned VariablePos;
+
+ /// \brief \c true if this \c ParenState already contains a line-break.
+ ///
+ /// The first line break in a certain \c ParenState causes extra penalty so
+ /// that clang-format prefers similar breaks, i.e. breaks in the same
+ /// parenthesis.
+ bool ContainsLineBreak;
+
+ /// \brief \c true if this \c ParenState contains multiple segments of a
+ /// builder-type call on one line.
+ bool ContainsUnwrappedBuilder;
+
+ /// \brief \c true if the colons of the curren ObjC method expression should
+ /// be aligned.
+ ///
+ /// Not considered for memoization as it will always have the same value at
+ /// the same token.
+ bool AlignColons;
+
+ /// \brief \c true if at least one selector name was found in the current
+ /// ObjC method expression.
+ ///
+ /// Not considered for memoization as it will always have the same value at
+ /// the same token.
+ bool ObjCSelectorNameFound;
+
+ /// \brief \c true if there are multiple nested blocks inside these parens.
+ ///
+ /// Not considered for memoization as it will always have the same value at
+ /// the same token.
+ bool HasMultipleNestedBlocks;
+
+ // \brief The start of a nested block (e.g. lambda introducer in C++ or
+ // "function" in JavaScript) is not wrapped to a new line.
+ bool NestedBlockInlined;
+
+ bool operator<(const ParenState &Other) const {
+ if (Indent != Other.Indent)
+ return Indent < Other.Indent;
+ if (LastSpace != Other.LastSpace)
+ return LastSpace < Other.LastSpace;
+ if (NestedBlockIndent != Other.NestedBlockIndent)
+ return NestedBlockIndent < Other.NestedBlockIndent;
+ if (FirstLessLess != Other.FirstLessLess)
+ return FirstLessLess < Other.FirstLessLess;
+ if (BreakBeforeClosingBrace != Other.BreakBeforeClosingBrace)
+ return BreakBeforeClosingBrace;
+ if (QuestionColumn != Other.QuestionColumn)
+ return QuestionColumn < Other.QuestionColumn;
+ if (AvoidBinPacking != Other.AvoidBinPacking)
+ return AvoidBinPacking;
+ if (BreakBeforeParameter != Other.BreakBeforeParameter)
+ return BreakBeforeParameter;
+ if (NoLineBreak != Other.NoLineBreak)
+ return NoLineBreak;
+ if (LastOperatorWrapped != Other.LastOperatorWrapped)
+ return LastOperatorWrapped;
+ if (ColonPos != Other.ColonPos)
+ return ColonPos < Other.ColonPos;
+ if (StartOfFunctionCall != Other.StartOfFunctionCall)
+ return StartOfFunctionCall < Other.StartOfFunctionCall;
+ if (StartOfArraySubscripts != Other.StartOfArraySubscripts)
+ return StartOfArraySubscripts < Other.StartOfArraySubscripts;
+ if (CallContinuation != Other.CallContinuation)
+ return CallContinuation < Other.CallContinuation;
+ if (VariablePos != Other.VariablePos)
+ return VariablePos < Other.VariablePos;
+ if (ContainsLineBreak != Other.ContainsLineBreak)
+ return ContainsLineBreak < Other.ContainsLineBreak;
+ if (ContainsUnwrappedBuilder != Other.ContainsUnwrappedBuilder)
+ return ContainsUnwrappedBuilder < Other.ContainsUnwrappedBuilder;
+ if (NestedBlockInlined != Other.NestedBlockInlined)
+ return NestedBlockInlined < Other.NestedBlockInlined;
+ return false;
+ }
+};
+
+/// \brief The current state when indenting a unwrapped line.
+///
+/// As the indenting tries different combinations this is copied by value.
+struct LineState {
+ /// \brief The number of used columns in the current line.
+ unsigned Column;
+
+ /// \brief The token that needs to be next formatted.
+ FormatToken *NextToken;
+
+ /// \brief \c true if this line contains a continued for-loop section.
+ bool LineContainsContinuedForLoopSection;
+
+ /// \brief The \c NestingLevel at the start of this line.
+ unsigned StartOfLineLevel;
+
+ /// \brief The lowest \c NestingLevel on the current line.
+ unsigned LowestLevelOnLine;
+
+ /// \brief The start column of the string literal, if we're in a string
+ /// literal sequence, 0 otherwise.
+ unsigned StartOfStringLiteral;
+
+ /// \brief A stack keeping track of properties applying to parenthesis
+ /// levels.
+ std::vector<ParenState> Stack;
+
+ /// \brief Ignore the stack of \c ParenStates for state comparison.
+ ///
+ /// In long and deeply nested unwrapped lines, the current algorithm can
+ /// be insufficient for finding the best formatting with a reasonable amount
+ /// of time and memory. Setting this flag will effectively lead to the
+ /// algorithm not analyzing some combinations. However, these combinations
+ /// rarely contain the optimal solution: In short, accepting a higher
+ /// penalty early would need to lead to different values in the \c
+ /// ParenState stack (in an otherwise identical state) and these different
+ /// values would need to lead to a significant amount of avoided penalty
+ /// later.
+ ///
+ /// FIXME: Come up with a better algorithm instead.
+ bool IgnoreStackForComparison;
+
+ /// \brief The indent of the first token.
+ unsigned FirstIndent;
+
+ /// \brief The line that is being formatted.
+ ///
+ /// Does not need to be considered for memoization because it doesn't change.
+ const AnnotatedLine *Line;
+
+ /// \brief Comparison operator to be able to used \c LineState in \c map.
+ bool operator<(const LineState &Other) const {
+ if (NextToken != Other.NextToken)
+ return NextToken < Other.NextToken;
+ if (Column != Other.Column)
+ return Column < Other.Column;
+ if (LineContainsContinuedForLoopSection !=
+ Other.LineContainsContinuedForLoopSection)
+ return LineContainsContinuedForLoopSection;
+ if (StartOfLineLevel != Other.StartOfLineLevel)
+ return StartOfLineLevel < Other.StartOfLineLevel;
+ if (LowestLevelOnLine != Other.LowestLevelOnLine)
+ return LowestLevelOnLine < Other.LowestLevelOnLine;
+ if (StartOfStringLiteral != Other.StartOfStringLiteral)
+ return StartOfStringLiteral < Other.StartOfStringLiteral;
+ if (IgnoreStackForComparison || Other.IgnoreStackForComparison)
+ return false;
+ return Stack < Other.Stack;
+ }
+};
+
+} // end namespace format
+} // end namespace clang
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/Format/Encoding.h b/contrib/llvm/tools/clang/lib/Format/Encoding.h
new file mode 100644
index 0000000..766d292
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Format/Encoding.h
@@ -0,0 +1,146 @@
+//===--- Encoding.h - Format C++ code -------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// \brief Contains functions for text encoding manipulation. Supports UTF-8,
+/// 8-bit encodings and escape sequences in C++ string literals.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_FORMAT_ENCODING_H
+#define LLVM_CLANG_LIB_FORMAT_ENCODING_H
+
+#include "clang/Basic/LLVM.h"
+#include "llvm/Support/ConvertUTF.h"
+#include "llvm/Support/Unicode.h"
+
+namespace clang {
+namespace format {
+namespace encoding {
+
+enum Encoding {
+ Encoding_UTF8,
+ Encoding_Unknown // We treat all other encodings as 8-bit encodings.
+};
+
+/// \brief Detects encoding of the Text. If the Text can be decoded using UTF-8,
+/// it is considered UTF8, otherwise we treat it as some 8-bit encoding.
+inline Encoding detectEncoding(StringRef Text) {
+ const UTF8 *Ptr = reinterpret_cast<const UTF8 *>(Text.begin());
+ const UTF8 *BufEnd = reinterpret_cast<const UTF8 *>(Text.end());
+ if (::isLegalUTF8String(&Ptr, BufEnd))
+ return Encoding_UTF8;
+ return Encoding_Unknown;
+}
+
+inline unsigned getCodePointCountUTF8(StringRef Text) {
+ unsigned CodePoints = 0;
+ for (size_t i = 0, e = Text.size(); i < e; i += getNumBytesForUTF8(Text[i])) {
+ ++CodePoints;
+ }
+ return CodePoints;
+}
+
+/// \brief Gets the number of code points in the Text using the specified
+/// Encoding.
+inline unsigned getCodePointCount(StringRef Text, Encoding Encoding) {
+ switch (Encoding) {
+ case Encoding_UTF8:
+ return getCodePointCountUTF8(Text);
+ default:
+ return Text.size();
+ }
+}
+
+/// \brief Returns the number of columns required to display the \p Text on a
+/// generic Unicode-capable terminal. Text is assumed to use the specified
+/// \p Encoding.
+inline unsigned columnWidth(StringRef Text, Encoding Encoding) {
+ if (Encoding == Encoding_UTF8) {
+ int ContentWidth = llvm::sys::unicode::columnWidthUTF8(Text);
+ // FIXME: Figure out the correct way to handle this in the presence of both
+ // printable and unprintable multi-byte UTF-8 characters. Falling back to
+ // returning the number of bytes may cause problems, as columnWidth suddenly
+ // becomes non-additive.
+ if (ContentWidth >= 0)
+ return ContentWidth;
+ }
+ return Text.size();
+}
+
+/// \brief Returns the number of columns required to display the \p Text,
+/// starting from the \p StartColumn on a terminal with the \p TabWidth. The
+/// text is assumed to use the specified \p Encoding.
+inline unsigned columnWidthWithTabs(StringRef Text, unsigned StartColumn,
+ unsigned TabWidth, Encoding Encoding) {
+ unsigned TotalWidth = 0;
+ StringRef Tail = Text;
+ for (;;) {
+ StringRef::size_type TabPos = Tail.find('\t');
+ if (TabPos == StringRef::npos)
+ return TotalWidth + columnWidth(Tail, Encoding);
+ TotalWidth += columnWidth(Tail.substr(0, TabPos), Encoding);
+ TotalWidth += TabWidth - (TotalWidth + StartColumn) % TabWidth;
+ Tail = Tail.substr(TabPos + 1);
+ }
+}
+
+/// \brief Gets the number of bytes in a sequence representing a single
+/// codepoint and starting with FirstChar in the specified Encoding.
+inline unsigned getCodePointNumBytes(char FirstChar, Encoding Encoding) {
+ switch (Encoding) {
+ case Encoding_UTF8:
+ return getNumBytesForUTF8(FirstChar);
+ default:
+ return 1;
+ }
+}
+
+inline bool isOctDigit(char c) { return '0' <= c && c <= '7'; }
+
+inline bool isHexDigit(char c) {
+ return ('0' <= c && c <= '9') || ('a' <= c && c <= 'f') ||
+ ('A' <= c && c <= 'F');
+}
+
+/// \brief Gets the length of an escape sequence inside a C++ string literal.
+/// Text should span from the beginning of the escape sequence (starting with a
+/// backslash) to the end of the string literal.
+inline unsigned getEscapeSequenceLength(StringRef Text) {
+ assert(Text[0] == '\\');
+ if (Text.size() < 2)
+ return 1;
+
+ switch (Text[1]) {
+ case 'u':
+ return 6;
+ case 'U':
+ return 10;
+ case 'x': {
+ unsigned I = 2; // Point after '\x'.
+ while (I < Text.size() && isHexDigit(Text[I]))
+ ++I;
+ return I;
+ }
+ default:
+ if (isOctDigit(Text[1])) {
+ unsigned I = 1;
+ while (I < Text.size() && I < 4 && isOctDigit(Text[I]))
+ ++I;
+ return I;
+ }
+ return 2;
+ }
+}
+
+} // namespace encoding
+} // namespace format
+} // namespace clang
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/Format/Format.cpp b/contrib/llvm/tools/clang/lib/Format/Format.cpp
new file mode 100644
index 0000000..10c68f9
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Format/Format.cpp
@@ -0,0 +1,1654 @@
+//===--- Format.cpp - Format C++ code -------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// \brief This file implements functions declared in Format.h. This will be
+/// split into separate files as we go.
+///
+//===----------------------------------------------------------------------===//
+
+#include "ContinuationIndenter.h"
+#include "TokenAnnotator.h"
+#include "UnwrappedLineFormatter.h"
+#include "UnwrappedLineParser.h"
+#include "WhitespaceManager.h"
+#include "clang/Basic/Diagnostic.h"
+#include "clang/Basic/DiagnosticOptions.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Format/Format.h"
+#include "clang/Lex/Lexer.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Support/Allocator.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/YAMLTraits.h"
+#include <queue>
+#include <string>
+
+#define DEBUG_TYPE "format-formatter"
+
+using clang::format::FormatStyle;
+
+LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(std::string)
+
+namespace llvm {
+namespace yaml {
+template <> struct ScalarEnumerationTraits<FormatStyle::LanguageKind> {
+ static void enumeration(IO &IO, FormatStyle::LanguageKind &Value) {
+ IO.enumCase(Value, "Cpp", FormatStyle::LK_Cpp);
+ IO.enumCase(Value, "Java", FormatStyle::LK_Java);
+ IO.enumCase(Value, "JavaScript", FormatStyle::LK_JavaScript);
+ IO.enumCase(Value, "Proto", FormatStyle::LK_Proto);
+ }
+};
+
+template <> struct ScalarEnumerationTraits<FormatStyle::LanguageStandard> {
+ static void enumeration(IO &IO, FormatStyle::LanguageStandard &Value) {
+ IO.enumCase(Value, "Cpp03", FormatStyle::LS_Cpp03);
+ IO.enumCase(Value, "C++03", FormatStyle::LS_Cpp03);
+ IO.enumCase(Value, "Cpp11", FormatStyle::LS_Cpp11);
+ IO.enumCase(Value, "C++11", FormatStyle::LS_Cpp11);
+ IO.enumCase(Value, "Auto", FormatStyle::LS_Auto);
+ }
+};
+
+template <> struct ScalarEnumerationTraits<FormatStyle::UseTabStyle> {
+ static void enumeration(IO &IO, FormatStyle::UseTabStyle &Value) {
+ IO.enumCase(Value, "Never", FormatStyle::UT_Never);
+ IO.enumCase(Value, "false", FormatStyle::UT_Never);
+ IO.enumCase(Value, "Always", FormatStyle::UT_Always);
+ IO.enumCase(Value, "true", FormatStyle::UT_Always);
+ IO.enumCase(Value, "ForIndentation", FormatStyle::UT_ForIndentation);
+ }
+};
+
+template <> struct ScalarEnumerationTraits<FormatStyle::ShortFunctionStyle> {
+ static void enumeration(IO &IO, FormatStyle::ShortFunctionStyle &Value) {
+ IO.enumCase(Value, "None", FormatStyle::SFS_None);
+ IO.enumCase(Value, "false", FormatStyle::SFS_None);
+ IO.enumCase(Value, "All", FormatStyle::SFS_All);
+ IO.enumCase(Value, "true", FormatStyle::SFS_All);
+ IO.enumCase(Value, "Inline", FormatStyle::SFS_Inline);
+ IO.enumCase(Value, "Empty", FormatStyle::SFS_Empty);
+ }
+};
+
+template <> struct ScalarEnumerationTraits<FormatStyle::BinaryOperatorStyle> {
+ static void enumeration(IO &IO, FormatStyle::BinaryOperatorStyle &Value) {
+ IO.enumCase(Value, "All", FormatStyle::BOS_All);
+ IO.enumCase(Value, "true", FormatStyle::BOS_All);
+ IO.enumCase(Value, "None", FormatStyle::BOS_None);
+ IO.enumCase(Value, "false", FormatStyle::BOS_None);
+ IO.enumCase(Value, "NonAssignment", FormatStyle::BOS_NonAssignment);
+ }
+};
+
+template <> struct ScalarEnumerationTraits<FormatStyle::BraceBreakingStyle> {
+ static void enumeration(IO &IO, FormatStyle::BraceBreakingStyle &Value) {
+ IO.enumCase(Value, "Attach", FormatStyle::BS_Attach);
+ IO.enumCase(Value, "Linux", FormatStyle::BS_Linux);
+ IO.enumCase(Value, "Stroustrup", FormatStyle::BS_Stroustrup);
+ IO.enumCase(Value, "Allman", FormatStyle::BS_Allman);
+ IO.enumCase(Value, "GNU", FormatStyle::BS_GNU);
+ }
+};
+
+template <>
+struct ScalarEnumerationTraits<FormatStyle::NamespaceIndentationKind> {
+ static void enumeration(IO &IO,
+ FormatStyle::NamespaceIndentationKind &Value) {
+ IO.enumCase(Value, "None", FormatStyle::NI_None);
+ IO.enumCase(Value, "Inner", FormatStyle::NI_Inner);
+ IO.enumCase(Value, "All", FormatStyle::NI_All);
+ }
+};
+
+template <> struct ScalarEnumerationTraits<FormatStyle::PointerAlignmentStyle> {
+ static void enumeration(IO &IO, FormatStyle::PointerAlignmentStyle &Value) {
+ IO.enumCase(Value, "Middle", FormatStyle::PAS_Middle);
+ IO.enumCase(Value, "Left", FormatStyle::PAS_Left);
+ IO.enumCase(Value, "Right", FormatStyle::PAS_Right);
+
+ // For backward compatibility.
+ IO.enumCase(Value, "true", FormatStyle::PAS_Left);
+ IO.enumCase(Value, "false", FormatStyle::PAS_Right);
+ }
+};
+
+template <>
+struct ScalarEnumerationTraits<FormatStyle::SpaceBeforeParensOptions> {
+ static void enumeration(IO &IO,
+ FormatStyle::SpaceBeforeParensOptions &Value) {
+ IO.enumCase(Value, "Never", FormatStyle::SBPO_Never);
+ IO.enumCase(Value, "ControlStatements",
+ FormatStyle::SBPO_ControlStatements);
+ IO.enumCase(Value, "Always", FormatStyle::SBPO_Always);
+
+ // For backward compatibility.
+ IO.enumCase(Value, "false", FormatStyle::SBPO_Never);
+ IO.enumCase(Value, "true", FormatStyle::SBPO_ControlStatements);
+ }
+};
+
+template <> struct MappingTraits<FormatStyle> {
+ static void mapping(IO &IO, FormatStyle &Style) {
+ // When reading, read the language first, we need it for getPredefinedStyle.
+ IO.mapOptional("Language", Style.Language);
+
+ if (IO.outputting()) {
+ StringRef StylesArray[] = {"LLVM", "Google", "Chromium",
+ "Mozilla", "WebKit", "GNU"};
+ ArrayRef<StringRef> Styles(StylesArray);
+ for (size_t i = 0, e = Styles.size(); i < e; ++i) {
+ StringRef StyleName(Styles[i]);
+ FormatStyle PredefinedStyle;
+ if (getPredefinedStyle(StyleName, Style.Language, &PredefinedStyle) &&
+ Style == PredefinedStyle) {
+ IO.mapOptional("# BasedOnStyle", StyleName);
+ break;
+ }
+ }
+ } else {
+ StringRef BasedOnStyle;
+ IO.mapOptional("BasedOnStyle", BasedOnStyle);
+ if (!BasedOnStyle.empty()) {
+ FormatStyle::LanguageKind OldLanguage = Style.Language;
+ FormatStyle::LanguageKind Language =
+ ((FormatStyle *)IO.getContext())->Language;
+ if (!getPredefinedStyle(BasedOnStyle, Language, &Style)) {
+ IO.setError(Twine("Unknown value for BasedOnStyle: ", BasedOnStyle));
+ return;
+ }
+ Style.Language = OldLanguage;
+ }
+ }
+
+ IO.mapOptional("AccessModifierOffset", Style.AccessModifierOffset);
+ IO.mapOptional("AlignAfterOpenBracket", Style.AlignAfterOpenBracket);
+ IO.mapOptional("AlignEscapedNewlinesLeft", Style.AlignEscapedNewlinesLeft);
+ IO.mapOptional("AlignOperands", Style.AlignOperands);
+ IO.mapOptional("AlignTrailingComments", Style.AlignTrailingComments);
+ IO.mapOptional("AlignConsecutiveAssignments", Style.AlignConsecutiveAssignments);
+ IO.mapOptional("AllowAllParametersOfDeclarationOnNextLine",
+ Style.AllowAllParametersOfDeclarationOnNextLine);
+ IO.mapOptional("AllowShortBlocksOnASingleLine",
+ Style.AllowShortBlocksOnASingleLine);
+ IO.mapOptional("AllowShortCaseLabelsOnASingleLine",
+ Style.AllowShortCaseLabelsOnASingleLine);
+ IO.mapOptional("AllowShortIfStatementsOnASingleLine",
+ Style.AllowShortIfStatementsOnASingleLine);
+ IO.mapOptional("AllowShortLoopsOnASingleLine",
+ Style.AllowShortLoopsOnASingleLine);
+ IO.mapOptional("AllowShortFunctionsOnASingleLine",
+ Style.AllowShortFunctionsOnASingleLine);
+ IO.mapOptional("AlwaysBreakAfterDefinitionReturnType",
+ Style.AlwaysBreakAfterDefinitionReturnType);
+ IO.mapOptional("AlwaysBreakTemplateDeclarations",
+ Style.AlwaysBreakTemplateDeclarations);
+ IO.mapOptional("AlwaysBreakBeforeMultilineStrings",
+ Style.AlwaysBreakBeforeMultilineStrings);
+ IO.mapOptional("BreakBeforeBinaryOperators",
+ Style.BreakBeforeBinaryOperators);
+ IO.mapOptional("BreakBeforeTernaryOperators",
+ Style.BreakBeforeTernaryOperators);
+ IO.mapOptional("BreakConstructorInitializersBeforeComma",
+ Style.BreakConstructorInitializersBeforeComma);
+ IO.mapOptional("BinPackParameters", Style.BinPackParameters);
+ IO.mapOptional("BinPackArguments", Style.BinPackArguments);
+ IO.mapOptional("ColumnLimit", Style.ColumnLimit);
+ IO.mapOptional("ConstructorInitializerAllOnOneLineOrOnePerLine",
+ Style.ConstructorInitializerAllOnOneLineOrOnePerLine);
+ IO.mapOptional("ConstructorInitializerIndentWidth",
+ Style.ConstructorInitializerIndentWidth);
+ IO.mapOptional("DerivePointerAlignment", Style.DerivePointerAlignment);
+ IO.mapOptional("ExperimentalAutoDetectBinPacking",
+ Style.ExperimentalAutoDetectBinPacking);
+ IO.mapOptional("IndentCaseLabels", Style.IndentCaseLabels);
+ IO.mapOptional("IndentWrappedFunctionNames",
+ Style.IndentWrappedFunctionNames);
+ IO.mapOptional("IndentFunctionDeclarationAfterType",
+ Style.IndentWrappedFunctionNames);
+ IO.mapOptional("MaxEmptyLinesToKeep", Style.MaxEmptyLinesToKeep);
+ IO.mapOptional("KeepEmptyLinesAtTheStartOfBlocks",
+ Style.KeepEmptyLinesAtTheStartOfBlocks);
+ IO.mapOptional("NamespaceIndentation", Style.NamespaceIndentation);
+ IO.mapOptional("ObjCBlockIndentWidth", Style.ObjCBlockIndentWidth);
+ IO.mapOptional("ObjCSpaceAfterProperty", Style.ObjCSpaceAfterProperty);
+ IO.mapOptional("ObjCSpaceBeforeProtocolList",
+ Style.ObjCSpaceBeforeProtocolList);
+ IO.mapOptional("PenaltyBreakBeforeFirstCallParameter",
+ Style.PenaltyBreakBeforeFirstCallParameter);
+ IO.mapOptional("PenaltyBreakComment", Style.PenaltyBreakComment);
+ IO.mapOptional("PenaltyBreakString", Style.PenaltyBreakString);
+ IO.mapOptional("PenaltyBreakFirstLessLess",
+ Style.PenaltyBreakFirstLessLess);
+ IO.mapOptional("PenaltyExcessCharacter", Style.PenaltyExcessCharacter);
+ IO.mapOptional("PenaltyReturnTypeOnItsOwnLine",
+ Style.PenaltyReturnTypeOnItsOwnLine);
+ IO.mapOptional("PointerAlignment", Style.PointerAlignment);
+ IO.mapOptional("SpacesBeforeTrailingComments",
+ Style.SpacesBeforeTrailingComments);
+ IO.mapOptional("Cpp11BracedListStyle", Style.Cpp11BracedListStyle);
+ IO.mapOptional("Standard", Style.Standard);
+ IO.mapOptional("IndentWidth", Style.IndentWidth);
+ IO.mapOptional("TabWidth", Style.TabWidth);
+ IO.mapOptional("UseTab", Style.UseTab);
+ IO.mapOptional("BreakBeforeBraces", Style.BreakBeforeBraces);
+ IO.mapOptional("SpacesInParentheses", Style.SpacesInParentheses);
+ IO.mapOptional("SpacesInSquareBrackets", Style.SpacesInSquareBrackets);
+ IO.mapOptional("SpacesInAngles", Style.SpacesInAngles);
+ IO.mapOptional("SpaceInEmptyParentheses", Style.SpaceInEmptyParentheses);
+ IO.mapOptional("SpacesInCStyleCastParentheses",
+ Style.SpacesInCStyleCastParentheses);
+ IO.mapOptional("SpaceAfterCStyleCast", Style.SpaceAfterCStyleCast);
+ IO.mapOptional("SpacesInContainerLiterals",
+ Style.SpacesInContainerLiterals);
+ IO.mapOptional("SpaceBeforeAssignmentOperators",
+ Style.SpaceBeforeAssignmentOperators);
+ IO.mapOptional("ContinuationIndentWidth", Style.ContinuationIndentWidth);
+ IO.mapOptional("CommentPragmas", Style.CommentPragmas);
+ IO.mapOptional("ForEachMacros", Style.ForEachMacros);
+
+ // For backward compatibility.
+ if (!IO.outputting()) {
+ IO.mapOptional("SpaceAfterControlStatementKeyword",
+ Style.SpaceBeforeParens);
+ IO.mapOptional("PointerBindsToType", Style.PointerAlignment);
+ IO.mapOptional("DerivePointerBinding", Style.DerivePointerAlignment);
+ }
+ IO.mapOptional("SpaceBeforeParens", Style.SpaceBeforeParens);
+ IO.mapOptional("DisableFormat", Style.DisableFormat);
+ }
+};
+
+// Allows to read vector<FormatStyle> while keeping default values.
+// IO.getContext() should contain a pointer to the FormatStyle structure, that
+// will be used to get default values for missing keys.
+// If the first element has no Language specified, it will be treated as the
+// default one for the following elements.
+template <> struct DocumentListTraits<std::vector<FormatStyle>> {
+ static size_t size(IO &IO, std::vector<FormatStyle> &Seq) {
+ return Seq.size();
+ }
+ static FormatStyle &element(IO &IO, std::vector<FormatStyle> &Seq,
+ size_t Index) {
+ if (Index >= Seq.size()) {
+ assert(Index == Seq.size());
+ FormatStyle Template;
+ if (Seq.size() > 0 && Seq[0].Language == FormatStyle::LK_None) {
+ Template = Seq[0];
+ } else {
+ Template = *((const FormatStyle *)IO.getContext());
+ Template.Language = FormatStyle::LK_None;
+ }
+ Seq.resize(Index + 1, Template);
+ }
+ return Seq[Index];
+ }
+};
+}
+}
+
+namespace clang {
+namespace format {
+
+const std::error_category &getParseCategory() {
+ static ParseErrorCategory C;
+ return C;
+}
+std::error_code make_error_code(ParseError e) {
+ return std::error_code(static_cast<int>(e), getParseCategory());
+}
+
+const char *ParseErrorCategory::name() const LLVM_NOEXCEPT {
+ return "clang-format.parse_error";
+}
+
+std::string ParseErrorCategory::message(int EV) const {
+ switch (static_cast<ParseError>(EV)) {
+ case ParseError::Success:
+ return "Success";
+ case ParseError::Error:
+ return "Invalid argument";
+ case ParseError::Unsuitable:
+ return "Unsuitable";
+ }
+ llvm_unreachable("unexpected parse error");
+}
+
+FormatStyle getLLVMStyle() {
+ FormatStyle LLVMStyle;
+ LLVMStyle.Language = FormatStyle::LK_Cpp;
+ LLVMStyle.AccessModifierOffset = -2;
+ LLVMStyle.AlignEscapedNewlinesLeft = false;
+ LLVMStyle.AlignAfterOpenBracket = true;
+ LLVMStyle.AlignOperands = true;
+ LLVMStyle.AlignTrailingComments = true;
+ LLVMStyle.AlignConsecutiveAssignments = false;
+ LLVMStyle.AllowAllParametersOfDeclarationOnNextLine = true;
+ LLVMStyle.AllowShortFunctionsOnASingleLine = FormatStyle::SFS_All;
+ LLVMStyle.AllowShortBlocksOnASingleLine = false;
+ LLVMStyle.AllowShortCaseLabelsOnASingleLine = false;
+ LLVMStyle.AllowShortIfStatementsOnASingleLine = false;
+ LLVMStyle.AllowShortLoopsOnASingleLine = false;
+ LLVMStyle.AlwaysBreakAfterDefinitionReturnType = false;
+ LLVMStyle.AlwaysBreakBeforeMultilineStrings = false;
+ LLVMStyle.AlwaysBreakTemplateDeclarations = false;
+ LLVMStyle.BinPackParameters = true;
+ LLVMStyle.BinPackArguments = true;
+ LLVMStyle.BreakBeforeBinaryOperators = FormatStyle::BOS_None;
+ LLVMStyle.BreakBeforeTernaryOperators = true;
+ LLVMStyle.BreakBeforeBraces = FormatStyle::BS_Attach;
+ LLVMStyle.BreakConstructorInitializersBeforeComma = false;
+ LLVMStyle.ColumnLimit = 80;
+ LLVMStyle.CommentPragmas = "^ IWYU pragma:";
+ LLVMStyle.ConstructorInitializerAllOnOneLineOrOnePerLine = false;
+ LLVMStyle.ConstructorInitializerIndentWidth = 4;
+ LLVMStyle.ContinuationIndentWidth = 4;
+ LLVMStyle.Cpp11BracedListStyle = true;
+ LLVMStyle.DerivePointerAlignment = false;
+ LLVMStyle.ExperimentalAutoDetectBinPacking = false;
+ LLVMStyle.ForEachMacros.push_back("foreach");
+ LLVMStyle.ForEachMacros.push_back("Q_FOREACH");
+ LLVMStyle.ForEachMacros.push_back("BOOST_FOREACH");
+ LLVMStyle.IndentCaseLabels = false;
+ LLVMStyle.IndentWrappedFunctionNames = false;
+ LLVMStyle.IndentWidth = 2;
+ LLVMStyle.TabWidth = 8;
+ LLVMStyle.MaxEmptyLinesToKeep = 1;
+ LLVMStyle.KeepEmptyLinesAtTheStartOfBlocks = true;
+ LLVMStyle.NamespaceIndentation = FormatStyle::NI_None;
+ LLVMStyle.ObjCBlockIndentWidth = 2;
+ LLVMStyle.ObjCSpaceAfterProperty = false;
+ LLVMStyle.ObjCSpaceBeforeProtocolList = true;
+ LLVMStyle.PointerAlignment = FormatStyle::PAS_Right;
+ LLVMStyle.SpacesBeforeTrailingComments = 1;
+ LLVMStyle.Standard = FormatStyle::LS_Cpp11;
+ LLVMStyle.UseTab = FormatStyle::UT_Never;
+ LLVMStyle.SpacesInParentheses = false;
+ LLVMStyle.SpacesInSquareBrackets = false;
+ LLVMStyle.SpaceInEmptyParentheses = false;
+ LLVMStyle.SpacesInContainerLiterals = true;
+ LLVMStyle.SpacesInCStyleCastParentheses = false;
+ LLVMStyle.SpaceAfterCStyleCast = false;
+ LLVMStyle.SpaceBeforeParens = FormatStyle::SBPO_ControlStatements;
+ LLVMStyle.SpaceBeforeAssignmentOperators = true;
+ LLVMStyle.SpacesInAngles = false;
+
+ LLVMStyle.PenaltyBreakComment = 300;
+ LLVMStyle.PenaltyBreakFirstLessLess = 120;
+ LLVMStyle.PenaltyBreakString = 1000;
+ LLVMStyle.PenaltyExcessCharacter = 1000000;
+ LLVMStyle.PenaltyReturnTypeOnItsOwnLine = 60;
+ LLVMStyle.PenaltyBreakBeforeFirstCallParameter = 19;
+
+ LLVMStyle.DisableFormat = false;
+
+ return LLVMStyle;
+}
+
+FormatStyle getGoogleStyle(FormatStyle::LanguageKind Language) {
+ FormatStyle GoogleStyle = getLLVMStyle();
+ GoogleStyle.Language = Language;
+
+ GoogleStyle.AccessModifierOffset = -1;
+ GoogleStyle.AlignEscapedNewlinesLeft = true;
+ GoogleStyle.AllowShortIfStatementsOnASingleLine = true;
+ GoogleStyle.AllowShortLoopsOnASingleLine = true;
+ GoogleStyle.AlwaysBreakBeforeMultilineStrings = true;
+ GoogleStyle.AlwaysBreakTemplateDeclarations = true;
+ GoogleStyle.ConstructorInitializerAllOnOneLineOrOnePerLine = true;
+ GoogleStyle.DerivePointerAlignment = true;
+ GoogleStyle.IndentCaseLabels = true;
+ GoogleStyle.KeepEmptyLinesAtTheStartOfBlocks = false;
+ GoogleStyle.ObjCSpaceAfterProperty = false;
+ GoogleStyle.ObjCSpaceBeforeProtocolList = false;
+ GoogleStyle.PointerAlignment = FormatStyle::PAS_Left;
+ GoogleStyle.SpacesBeforeTrailingComments = 2;
+ GoogleStyle.Standard = FormatStyle::LS_Auto;
+
+ GoogleStyle.PenaltyReturnTypeOnItsOwnLine = 200;
+ GoogleStyle.PenaltyBreakBeforeFirstCallParameter = 1;
+
+ if (Language == FormatStyle::LK_Java) {
+ GoogleStyle.AlignAfterOpenBracket = false;
+ GoogleStyle.AlignOperands = false;
+ GoogleStyle.AlignTrailingComments = false;
+ GoogleStyle.AllowShortFunctionsOnASingleLine = FormatStyle::SFS_Empty;
+ GoogleStyle.AllowShortIfStatementsOnASingleLine = false;
+ GoogleStyle.AlwaysBreakBeforeMultilineStrings = false;
+ GoogleStyle.BreakBeforeBinaryOperators = FormatStyle::BOS_NonAssignment;
+ GoogleStyle.ColumnLimit = 100;
+ GoogleStyle.SpaceAfterCStyleCast = true;
+ GoogleStyle.SpacesBeforeTrailingComments = 1;
+ } else if (Language == FormatStyle::LK_JavaScript) {
+ GoogleStyle.BreakBeforeTernaryOperators = false;
+ GoogleStyle.MaxEmptyLinesToKeep = 3;
+ GoogleStyle.SpacesInContainerLiterals = false;
+ GoogleStyle.AllowShortFunctionsOnASingleLine = FormatStyle::SFS_Inline;
+ GoogleStyle.AlwaysBreakBeforeMultilineStrings = false;
+ } else if (Language == FormatStyle::LK_Proto) {
+ GoogleStyle.AllowShortFunctionsOnASingleLine = FormatStyle::SFS_None;
+ GoogleStyle.SpacesInContainerLiterals = false;
+ }
+
+ return GoogleStyle;
+}
+
+FormatStyle getChromiumStyle(FormatStyle::LanguageKind Language) {
+ FormatStyle ChromiumStyle = getGoogleStyle(Language);
+ if (Language == FormatStyle::LK_Java) {
+ ChromiumStyle.AllowShortIfStatementsOnASingleLine = true;
+ ChromiumStyle.IndentWidth = 4;
+ ChromiumStyle.ContinuationIndentWidth = 8;
+ } else {
+ ChromiumStyle.AllowAllParametersOfDeclarationOnNextLine = false;
+ ChromiumStyle.AllowShortFunctionsOnASingleLine = FormatStyle::SFS_Inline;
+ ChromiumStyle.AllowShortIfStatementsOnASingleLine = false;
+ ChromiumStyle.AllowShortLoopsOnASingleLine = false;
+ ChromiumStyle.BinPackParameters = false;
+ ChromiumStyle.DerivePointerAlignment = false;
+ }
+ return ChromiumStyle;
+}
+
+FormatStyle getMozillaStyle() {
+ FormatStyle MozillaStyle = getLLVMStyle();
+ MozillaStyle.AllowAllParametersOfDeclarationOnNextLine = false;
+ MozillaStyle.Cpp11BracedListStyle = false;
+ MozillaStyle.ConstructorInitializerAllOnOneLineOrOnePerLine = true;
+ MozillaStyle.DerivePointerAlignment = true;
+ MozillaStyle.IndentCaseLabels = true;
+ MozillaStyle.ObjCSpaceAfterProperty = true;
+ MozillaStyle.ObjCSpaceBeforeProtocolList = false;
+ MozillaStyle.PenaltyReturnTypeOnItsOwnLine = 200;
+ MozillaStyle.PointerAlignment = FormatStyle::PAS_Left;
+ MozillaStyle.Standard = FormatStyle::LS_Cpp03;
+ return MozillaStyle;
+}
+
+FormatStyle getWebKitStyle() {
+ FormatStyle Style = getLLVMStyle();
+ Style.AccessModifierOffset = -4;
+ Style.AlignAfterOpenBracket = false;
+ Style.AlignOperands = false;
+ Style.AlignTrailingComments = false;
+ Style.BreakBeforeBinaryOperators = FormatStyle::BOS_All;
+ Style.BreakBeforeBraces = FormatStyle::BS_Stroustrup;
+ Style.BreakConstructorInitializersBeforeComma = true;
+ Style.Cpp11BracedListStyle = false;
+ Style.ColumnLimit = 0;
+ Style.IndentWidth = 4;
+ Style.NamespaceIndentation = FormatStyle::NI_Inner;
+ Style.ObjCBlockIndentWidth = 4;
+ Style.ObjCSpaceAfterProperty = true;
+ Style.PointerAlignment = FormatStyle::PAS_Left;
+ Style.Standard = FormatStyle::LS_Cpp03;
+ return Style;
+}
+
+FormatStyle getGNUStyle() {
+ FormatStyle Style = getLLVMStyle();
+ Style.AlwaysBreakAfterDefinitionReturnType = true;
+ Style.BreakBeforeBinaryOperators = FormatStyle::BOS_All;
+ Style.BreakBeforeBraces = FormatStyle::BS_GNU;
+ Style.BreakBeforeTernaryOperators = true;
+ Style.Cpp11BracedListStyle = false;
+ Style.ColumnLimit = 79;
+ Style.SpaceBeforeParens = FormatStyle::SBPO_Always;
+ Style.Standard = FormatStyle::LS_Cpp03;
+ return Style;
+}
+
+FormatStyle getNoStyle() {
+ FormatStyle NoStyle = getLLVMStyle();
+ NoStyle.DisableFormat = true;
+ return NoStyle;
+}
+
+bool getPredefinedStyle(StringRef Name, FormatStyle::LanguageKind Language,
+ FormatStyle *Style) {
+ if (Name.equals_lower("llvm")) {
+ *Style = getLLVMStyle();
+ } else if (Name.equals_lower("chromium")) {
+ *Style = getChromiumStyle(Language);
+ } else if (Name.equals_lower("mozilla")) {
+ *Style = getMozillaStyle();
+ } else if (Name.equals_lower("google")) {
+ *Style = getGoogleStyle(Language);
+ } else if (Name.equals_lower("webkit")) {
+ *Style = getWebKitStyle();
+ } else if (Name.equals_lower("gnu")) {
+ *Style = getGNUStyle();
+ } else if (Name.equals_lower("none")) {
+ *Style = getNoStyle();
+ } else {
+ return false;
+ }
+
+ Style->Language = Language;
+ return true;
+}
+
+std::error_code parseConfiguration(StringRef Text, FormatStyle *Style) {
+ assert(Style);
+ FormatStyle::LanguageKind Language = Style->Language;
+ assert(Language != FormatStyle::LK_None);
+ if (Text.trim().empty())
+ return make_error_code(ParseError::Error);
+
+ std::vector<FormatStyle> Styles;
+ llvm::yaml::Input Input(Text);
+ // DocumentListTraits<vector<FormatStyle>> uses the context to get default
+ // values for the fields, keys for which are missing from the configuration.
+ // Mapping also uses the context to get the language to find the correct
+ // base style.
+ Input.setContext(Style);
+ Input >> Styles;
+ if (Input.error())
+ return Input.error();
+
+ for (unsigned i = 0; i < Styles.size(); ++i) {
+ // Ensures that only the first configuration can skip the Language option.
+ if (Styles[i].Language == FormatStyle::LK_None && i != 0)
+ return make_error_code(ParseError::Error);
+ // Ensure that each language is configured at most once.
+ for (unsigned j = 0; j < i; ++j) {
+ if (Styles[i].Language == Styles[j].Language) {
+ DEBUG(llvm::dbgs()
+ << "Duplicate languages in the config file on positions " << j
+ << " and " << i << "\n");
+ return make_error_code(ParseError::Error);
+ }
+ }
+ }
+ // Look for a suitable configuration starting from the end, so we can
+ // find the configuration for the specific language first, and the default
+ // configuration (which can only be at slot 0) after it.
+ for (int i = Styles.size() - 1; i >= 0; --i) {
+ if (Styles[i].Language == Language ||
+ Styles[i].Language == FormatStyle::LK_None) {
+ *Style = Styles[i];
+ Style->Language = Language;
+ return make_error_code(ParseError::Success);
+ }
+ }
+ return make_error_code(ParseError::Unsuitable);
+}
+
+std::string configurationAsText(const FormatStyle &Style) {
+ std::string Text;
+ llvm::raw_string_ostream Stream(Text);
+ llvm::yaml::Output Output(Stream);
+ // We use the same mapping method for input and output, so we need a non-const
+ // reference here.
+ FormatStyle NonConstStyle = Style;
+ Output << NonConstStyle;
+ return Stream.str();
+}
+
+namespace {
+
+class FormatTokenLexer {
+public:
+ FormatTokenLexer(SourceManager &SourceMgr, FileID ID, FormatStyle &Style,
+ encoding::Encoding Encoding)
+ : FormatTok(nullptr), IsFirstToken(true), GreaterStashed(false),
+ LessStashed(false), Column(0), TrailingWhitespace(0),
+ SourceMgr(SourceMgr), ID(ID), Style(Style),
+ IdentTable(getFormattingLangOpts(Style)), Keywords(IdentTable),
+ Encoding(Encoding), FirstInLineIndex(0), FormattingDisabled(false) {
+ Lex.reset(new Lexer(ID, SourceMgr.getBuffer(ID), SourceMgr,
+ getFormattingLangOpts(Style)));
+ Lex->SetKeepWhitespaceMode(true);
+
+ for (const std::string &ForEachMacro : Style.ForEachMacros)
+ ForEachMacros.push_back(&IdentTable.get(ForEachMacro));
+ std::sort(ForEachMacros.begin(), ForEachMacros.end());
+ }
+
+ ArrayRef<FormatToken *> lex() {
+ assert(Tokens.empty());
+ assert(FirstInLineIndex == 0);
+ do {
+ Tokens.push_back(getNextToken());
+ tryMergePreviousTokens();
+ if (Tokens.back()->NewlinesBefore > 0 || Tokens.back()->IsMultiline)
+ FirstInLineIndex = Tokens.size() - 1;
+ } while (Tokens.back()->Tok.isNot(tok::eof));
+ return Tokens;
+ }
+
+ const AdditionalKeywords &getKeywords() { return Keywords; }
+
+private:
+ void tryMergePreviousTokens() {
+ if (tryMerge_TMacro())
+ return;
+ if (tryMergeConflictMarkers())
+ return;
+ if (tryMergeLessLess())
+ return;
+
+ if (Style.Language == FormatStyle::LK_JavaScript) {
+ if (tryMergeJSRegexLiteral())
+ return;
+ if (tryMergeEscapeSequence())
+ return;
+ if (tryMergeTemplateString())
+ return;
+
+ static const tok::TokenKind JSIdentity[] = {tok::equalequal, tok::equal};
+ static const tok::TokenKind JSNotIdentity[] = {tok::exclaimequal,
+ tok::equal};
+ static const tok::TokenKind JSShiftEqual[] = {tok::greater, tok::greater,
+ tok::greaterequal};
+ static const tok::TokenKind JSRightArrow[] = {tok::equal, tok::greater};
+ // FIXME: Investigate what token type gives the correct operator priority.
+ if (tryMergeTokens(JSIdentity, TT_BinaryOperator))
+ return;
+ if (tryMergeTokens(JSNotIdentity, TT_BinaryOperator))
+ return;
+ if (tryMergeTokens(JSShiftEqual, TT_BinaryOperator))
+ return;
+ if (tryMergeTokens(JSRightArrow, TT_JsFatArrow))
+ return;
+ }
+ }
+
+ bool tryMergeLessLess() {
+ // Merge X,less,less,Y into X,lessless,Y unless X or Y is less.
+ if (Tokens.size() < 3)
+ return false;
+
+ bool FourthTokenIsLess = false;
+ if (Tokens.size() > 3)
+ FourthTokenIsLess = (Tokens.end() - 4)[0]->is(tok::less);
+
+ auto First = Tokens.end() - 3;
+ if (First[2]->is(tok::less) || First[1]->isNot(tok::less) ||
+ First[0]->isNot(tok::less) || FourthTokenIsLess)
+ return false;
+
+ // Only merge if there currently is no whitespace between the two "<".
+ if (First[1]->WhitespaceRange.getBegin() !=
+ First[1]->WhitespaceRange.getEnd())
+ return false;
+
+ First[0]->Tok.setKind(tok::lessless);
+ First[0]->TokenText = "<<";
+ First[0]->ColumnWidth += 1;
+ Tokens.erase(Tokens.end() - 2);
+ return true;
+ }
+
+ bool tryMergeTokens(ArrayRef<tok::TokenKind> Kinds, TokenType NewType) {
+ if (Tokens.size() < Kinds.size())
+ return false;
+
+ SmallVectorImpl<FormatToken *>::const_iterator First =
+ Tokens.end() - Kinds.size();
+ if (!First[0]->is(Kinds[0]))
+ return false;
+ unsigned AddLength = 0;
+ for (unsigned i = 1; i < Kinds.size(); ++i) {
+ if (!First[i]->is(Kinds[i]) ||
+ First[i]->WhitespaceRange.getBegin() !=
+ First[i]->WhitespaceRange.getEnd())
+ return false;
+ AddLength += First[i]->TokenText.size();
+ }
+ Tokens.resize(Tokens.size() - Kinds.size() + 1);
+ First[0]->TokenText = StringRef(First[0]->TokenText.data(),
+ First[0]->TokenText.size() + AddLength);
+ First[0]->ColumnWidth += AddLength;
+ First[0]->Type = NewType;
+ return true;
+ }
+
+ // Tries to merge an escape sequence, i.e. a "\\" and the following
+ // character. Use e.g. inside JavaScript regex literals.
+ bool tryMergeEscapeSequence() {
+ if (Tokens.size() < 2)
+ return false;
+ FormatToken *Previous = Tokens[Tokens.size() - 2];
+ if (Previous->isNot(tok::unknown) || Previous->TokenText != "\\")
+ return false;
+ ++Previous->ColumnWidth;
+ StringRef Text = Previous->TokenText;
+ Previous->TokenText = StringRef(Text.data(), Text.size() + 1);
+ resetLexer(SourceMgr.getFileOffset(Tokens.back()->Tok.getLocation()) + 1);
+ Tokens.resize(Tokens.size() - 1);
+ Column = Previous->OriginalColumn + Previous->ColumnWidth;
+ return true;
+ }
+
+ // Try to determine whether the current token ends a JavaScript regex literal.
+ // We heuristically assume that this is a regex literal if we find two
+ // unescaped slashes on a line and the token before the first slash is one of
+ // "(;,{}![:?", a binary operator or 'return', as those cannot be followed by
+ // a division.
+ bool tryMergeJSRegexLiteral() {
+ if (Tokens.size() < 2)
+ return false;
+ // If a regex literal ends in "\//", this gets represented by an unknown
+ // token "\" and a comment.
+ bool MightEndWithEscapedSlash =
+ Tokens.back()->is(tok::comment) &&
+ Tokens.back()->TokenText.startswith("//") &&
+ Tokens[Tokens.size() - 2]->TokenText == "\\";
+ if (!MightEndWithEscapedSlash &&
+ (Tokens.back()->isNot(tok::slash) ||
+ (Tokens[Tokens.size() - 2]->is(tok::unknown) &&
+ Tokens[Tokens.size() - 2]->TokenText == "\\")))
+ return false;
+ unsigned TokenCount = 0;
+ unsigned LastColumn = Tokens.back()->OriginalColumn;
+ for (auto I = Tokens.rbegin() + 1, E = Tokens.rend(); I != E; ++I) {
+ ++TokenCount;
+ if (I[0]->isOneOf(tok::slash, tok::slashequal) && I + 1 != E &&
+ (I[1]->isOneOf(tok::l_paren, tok::semi, tok::l_brace, tok::r_brace,
+ tok::exclaim, tok::l_square, tok::colon, tok::comma,
+ tok::question, tok::kw_return) ||
+ I[1]->isBinaryOperator())) {
+ if (MightEndWithEscapedSlash) {
+ // This regex literal ends in '\//'. Skip past the '//' of the last
+ // token and re-start lexing from there.
+ SourceLocation Loc = Tokens.back()->Tok.getLocation();
+ resetLexer(SourceMgr.getFileOffset(Loc) + 2);
+ }
+ Tokens.resize(Tokens.size() - TokenCount);
+ Tokens.back()->Tok.setKind(tok::unknown);
+ Tokens.back()->Type = TT_RegexLiteral;
+ Tokens.back()->ColumnWidth += LastColumn - I[0]->OriginalColumn;
+ return true;
+ }
+
+ // There can't be a newline inside a regex literal.
+ if (I[0]->NewlinesBefore > 0)
+ return false;
+ }
+ return false;
+ }
+
+ bool tryMergeTemplateString() {
+ if (Tokens.size() < 2)
+ return false;
+
+ FormatToken *EndBacktick = Tokens.back();
+ // Backticks get lexed as tok::unknown tokens. If a template string contains
+ // a comment start, it gets lexed as a tok::comment, or tok::unknown if
+ // unterminated.
+ if (!EndBacktick->isOneOf(tok::comment, tok::unknown))
+ return false;
+ size_t CommentBacktickPos = EndBacktick->TokenText.find('`');
+ // Unknown token that's not actually a backtick, or a comment that doesn't
+ // contain a backtick.
+ if (CommentBacktickPos == StringRef::npos)
+ return false;
+
+ unsigned TokenCount = 0;
+ bool IsMultiline = false;
+ unsigned EndColumnInFirstLine =
+ EndBacktick->OriginalColumn + EndBacktick->ColumnWidth;
+ for (auto I = Tokens.rbegin() + 1, E = Tokens.rend(); I != E; I++) {
+ ++TokenCount;
+ if (I[0]->NewlinesBefore > 0 || I[0]->IsMultiline)
+ IsMultiline = true;
+
+ // If there was a preceding template string, this must be the start of a
+ // template string, not the end.
+ if (I[0]->is(TT_TemplateString))
+ return false;
+
+ if (I[0]->isNot(tok::unknown) || I[0]->TokenText != "`") {
+ // Keep track of the rhs offset of the last token to wrap across lines -
+ // its the rhs offset of the first line of the template string, used to
+ // determine its width.
+ if (I[0]->IsMultiline)
+ EndColumnInFirstLine = I[0]->OriginalColumn + I[0]->ColumnWidth;
+ // If the token has newlines, the token before it (if it exists) is the
+ // rhs end of the previous line.
+ if (I[0]->NewlinesBefore > 0 && (I + 1 != E))
+ EndColumnInFirstLine = I[1]->OriginalColumn + I[1]->ColumnWidth;
+
+ continue;
+ }
+
+ Tokens.resize(Tokens.size() - TokenCount);
+ Tokens.back()->Type = TT_TemplateString;
+ const char *EndOffset =
+ EndBacktick->TokenText.data() + 1 + CommentBacktickPos;
+ if (CommentBacktickPos != 0) {
+ // If the backtick was not the first character (e.g. in a comment),
+ // re-lex after the backtick position.
+ SourceLocation Loc = EndBacktick->Tok.getLocation();
+ resetLexer(SourceMgr.getFileOffset(Loc) + CommentBacktickPos + 1);
+ }
+ Tokens.back()->TokenText =
+ StringRef(Tokens.back()->TokenText.data(),
+ EndOffset - Tokens.back()->TokenText.data());
+
+ unsigned EndOriginalColumn = EndBacktick->OriginalColumn;
+ if (EndOriginalColumn == 0) {
+ SourceLocation Loc = EndBacktick->Tok.getLocation();
+ EndOriginalColumn = SourceMgr.getSpellingColumnNumber(Loc);
+ }
+ // If the ` is further down within the token (e.g. in a comment).
+ EndOriginalColumn += CommentBacktickPos;
+
+ if (IsMultiline) {
+ // ColumnWidth is from backtick to last token in line.
+ // LastLineColumnWidth is 0 to backtick.
+ // x = `some content
+ // until here`;
+ Tokens.back()->ColumnWidth =
+ EndColumnInFirstLine - Tokens.back()->OriginalColumn;
+ Tokens.back()->LastLineColumnWidth = EndOriginalColumn;
+ Tokens.back()->IsMultiline = true;
+ } else {
+ // Token simply spans from start to end, +1 for the ` itself.
+ Tokens.back()->ColumnWidth =
+ EndOriginalColumn - Tokens.back()->OriginalColumn + 1;
+ }
+ return true;
+ }
+ return false;
+ }
+
+ bool tryMerge_TMacro() {
+ if (Tokens.size() < 4)
+ return false;
+ FormatToken *Last = Tokens.back();
+ if (!Last->is(tok::r_paren))
+ return false;
+
+ FormatToken *String = Tokens[Tokens.size() - 2];
+ if (!String->is(tok::string_literal) || String->IsMultiline)
+ return false;
+
+ if (!Tokens[Tokens.size() - 3]->is(tok::l_paren))
+ return false;
+
+ FormatToken *Macro = Tokens[Tokens.size() - 4];
+ if (Macro->TokenText != "_T")
+ return false;
+
+ const char *Start = Macro->TokenText.data();
+ const char *End = Last->TokenText.data() + Last->TokenText.size();
+ String->TokenText = StringRef(Start, End - Start);
+ String->IsFirst = Macro->IsFirst;
+ String->LastNewlineOffset = Macro->LastNewlineOffset;
+ String->WhitespaceRange = Macro->WhitespaceRange;
+ String->OriginalColumn = Macro->OriginalColumn;
+ String->ColumnWidth = encoding::columnWidthWithTabs(
+ String->TokenText, String->OriginalColumn, Style.TabWidth, Encoding);
+ String->NewlinesBefore = Macro->NewlinesBefore;
+ String->HasUnescapedNewline = Macro->HasUnescapedNewline;
+
+ Tokens.pop_back();
+ Tokens.pop_back();
+ Tokens.pop_back();
+ Tokens.back() = String;
+ return true;
+ }
+
+ bool tryMergeConflictMarkers() {
+ if (Tokens.back()->NewlinesBefore == 0 && Tokens.back()->isNot(tok::eof))
+ return false;
+
+ // Conflict lines look like:
+ // <marker> <text from the vcs>
+ // For example:
+ // >>>>>>> /file/in/file/system at revision 1234
+ //
+ // We merge all tokens in a line that starts with a conflict marker
+ // into a single token with a special token type that the unwrapped line
+ // parser will use to correctly rebuild the underlying code.
+
+ FileID ID;
+ // Get the position of the first token in the line.
+ unsigned FirstInLineOffset;
+ std::tie(ID, FirstInLineOffset) = SourceMgr.getDecomposedLoc(
+ Tokens[FirstInLineIndex]->getStartOfNonWhitespace());
+ StringRef Buffer = SourceMgr.getBuffer(ID)->getBuffer();
+ // Calculate the offset of the start of the current line.
+ auto LineOffset = Buffer.rfind('\n', FirstInLineOffset);
+ if (LineOffset == StringRef::npos) {
+ LineOffset = 0;
+ } else {
+ ++LineOffset;
+ }
+
+ auto FirstSpace = Buffer.find_first_of(" \n", LineOffset);
+ StringRef LineStart;
+ if (FirstSpace == StringRef::npos) {
+ LineStart = Buffer.substr(LineOffset);
+ } else {
+ LineStart = Buffer.substr(LineOffset, FirstSpace - LineOffset);
+ }
+
+ TokenType Type = TT_Unknown;
+ if (LineStart == "<<<<<<<" || LineStart == ">>>>") {
+ Type = TT_ConflictStart;
+ } else if (LineStart == "|||||||" || LineStart == "=======" ||
+ LineStart == "====") {
+ Type = TT_ConflictAlternative;
+ } else if (LineStart == ">>>>>>>" || LineStart == "<<<<") {
+ Type = TT_ConflictEnd;
+ }
+
+ if (Type != TT_Unknown) {
+ FormatToken *Next = Tokens.back();
+
+ Tokens.resize(FirstInLineIndex + 1);
+ // We do not need to build a complete token here, as we will skip it
+ // during parsing anyway (as we must not touch whitespace around conflict
+ // markers).
+ Tokens.back()->Type = Type;
+ Tokens.back()->Tok.setKind(tok::kw___unknown_anytype);
+
+ Tokens.push_back(Next);
+ return true;
+ }
+
+ return false;
+ }
+
+ FormatToken *getStashedToken() {
+ // Create a synthesized second '>' or '<' token.
+ Token Tok = FormatTok->Tok;
+ StringRef TokenText = FormatTok->TokenText;
+
+ unsigned OriginalColumn = FormatTok->OriginalColumn;
+ FormatTok = new (Allocator.Allocate()) FormatToken;
+ FormatTok->Tok = Tok;
+ SourceLocation TokLocation =
+ FormatTok->Tok.getLocation().getLocWithOffset(Tok.getLength() - 1);
+ FormatTok->Tok.setLocation(TokLocation);
+ FormatTok->WhitespaceRange = SourceRange(TokLocation, TokLocation);
+ FormatTok->TokenText = TokenText;
+ FormatTok->ColumnWidth = 1;
+ FormatTok->OriginalColumn = OriginalColumn + 1;
+
+ return FormatTok;
+ }
+
+ FormatToken *getNextToken() {
+ if (GreaterStashed) {
+ GreaterStashed = false;
+ return getStashedToken();
+ }
+ if (LessStashed) {
+ LessStashed = false;
+ return getStashedToken();
+ }
+
+ FormatTok = new (Allocator.Allocate()) FormatToken;
+ readRawToken(*FormatTok);
+ SourceLocation WhitespaceStart =
+ FormatTok->Tok.getLocation().getLocWithOffset(-TrailingWhitespace);
+ FormatTok->IsFirst = IsFirstToken;
+ IsFirstToken = false;
+
+ // Consume and record whitespace until we find a significant token.
+ unsigned WhitespaceLength = TrailingWhitespace;
+ while (FormatTok->Tok.is(tok::unknown)) {
+ StringRef Text = FormatTok->TokenText;
+ auto EscapesNewline = [&](int pos) {
+ // A '\r' here is just part of '\r\n'. Skip it.
+ if (pos >= 0 && Text[pos] == '\r')
+ --pos;
+ // See whether there is an odd number of '\' before this.
+ unsigned count = 0;
+ for (; pos >= 0; --pos, ++count)
+ if (Text[pos] != '\\')
+ break;
+ return count & 1;
+ };
+ // FIXME: This miscounts tok:unknown tokens that are not just
+ // whitespace, e.g. a '`' character.
+ for (int i = 0, e = Text.size(); i != e; ++i) {
+ switch (Text[i]) {
+ case '\n':
+ ++FormatTok->NewlinesBefore;
+ FormatTok->HasUnescapedNewline = !EscapesNewline(i - 1);
+ FormatTok->LastNewlineOffset = WhitespaceLength + i + 1;
+ Column = 0;
+ break;
+ case '\r':
+ FormatTok->LastNewlineOffset = WhitespaceLength + i + 1;
+ Column = 0;
+ break;
+ case '\f':
+ case '\v':
+ Column = 0;
+ break;
+ case ' ':
+ ++Column;
+ break;
+ case '\t':
+ Column += Style.TabWidth - Column % Style.TabWidth;
+ break;
+ case '\\':
+ if (i + 1 == e || (Text[i + 1] != '\r' && Text[i + 1] != '\n'))
+ FormatTok->Type = TT_ImplicitStringLiteral;
+ break;
+ default:
+ FormatTok->Type = TT_ImplicitStringLiteral;
+ ++Column;
+ break;
+ }
+ }
+
+ if (FormatTok->is(TT_ImplicitStringLiteral))
+ break;
+ WhitespaceLength += FormatTok->Tok.getLength();
+
+ readRawToken(*FormatTok);
+ }
+
+ // In case the token starts with escaped newlines, we want to
+ // take them into account as whitespace - this pattern is quite frequent
+ // in macro definitions.
+ // FIXME: Add a more explicit test.
+ while (FormatTok->TokenText.size() > 1 && FormatTok->TokenText[0] == '\\' &&
+ FormatTok->TokenText[1] == '\n') {
+ ++FormatTok->NewlinesBefore;
+ WhitespaceLength += 2;
+ FormatTok->LastNewlineOffset = 2;
+ Column = 0;
+ FormatTok->TokenText = FormatTok->TokenText.substr(2);
+ }
+
+ FormatTok->WhitespaceRange = SourceRange(
+ WhitespaceStart, WhitespaceStart.getLocWithOffset(WhitespaceLength));
+
+ FormatTok->OriginalColumn = Column;
+
+ TrailingWhitespace = 0;
+ if (FormatTok->Tok.is(tok::comment)) {
+ // FIXME: Add the trimmed whitespace to Column.
+ StringRef UntrimmedText = FormatTok->TokenText;
+ FormatTok->TokenText = FormatTok->TokenText.rtrim(" \t\v\f");
+ TrailingWhitespace = UntrimmedText.size() - FormatTok->TokenText.size();
+ } else if (FormatTok->Tok.is(tok::raw_identifier)) {
+ IdentifierInfo &Info = IdentTable.get(FormatTok->TokenText);
+ FormatTok->Tok.setIdentifierInfo(&Info);
+ FormatTok->Tok.setKind(Info.getTokenID());
+ if (Style.Language == FormatStyle::LK_Java &&
+ FormatTok->isOneOf(tok::kw_struct, tok::kw_union, tok::kw_delete)) {
+ FormatTok->Tok.setKind(tok::identifier);
+ FormatTok->Tok.setIdentifierInfo(nullptr);
+ }
+ } else if (FormatTok->Tok.is(tok::greatergreater)) {
+ FormatTok->Tok.setKind(tok::greater);
+ FormatTok->TokenText = FormatTok->TokenText.substr(0, 1);
+ GreaterStashed = true;
+ } else if (FormatTok->Tok.is(tok::lessless)) {
+ FormatTok->Tok.setKind(tok::less);
+ FormatTok->TokenText = FormatTok->TokenText.substr(0, 1);
+ LessStashed = true;
+ }
+
+ // Now FormatTok is the next non-whitespace token.
+
+ StringRef Text = FormatTok->TokenText;
+ size_t FirstNewlinePos = Text.find('\n');
+ if (FirstNewlinePos == StringRef::npos) {
+ // FIXME: ColumnWidth actually depends on the start column, we need to
+ // take this into account when the token is moved.
+ FormatTok->ColumnWidth =
+ encoding::columnWidthWithTabs(Text, Column, Style.TabWidth, Encoding);
+ Column += FormatTok->ColumnWidth;
+ } else {
+ FormatTok->IsMultiline = true;
+ // FIXME: ColumnWidth actually depends on the start column, we need to
+ // take this into account when the token is moved.
+ FormatTok->ColumnWidth = encoding::columnWidthWithTabs(
+ Text.substr(0, FirstNewlinePos), Column, Style.TabWidth, Encoding);
+
+ // The last line of the token always starts in column 0.
+ // Thus, the length can be precomputed even in the presence of tabs.
+ FormatTok->LastLineColumnWidth = encoding::columnWidthWithTabs(
+ Text.substr(Text.find_last_of('\n') + 1), 0, Style.TabWidth,
+ Encoding);
+ Column = FormatTok->LastLineColumnWidth;
+ }
+
+ if (std::find(ForEachMacros.begin(), ForEachMacros.end(),
+ FormatTok->Tok.getIdentifierInfo()) != ForEachMacros.end())
+ FormatTok->Type = TT_ForEachMacro;
+
+ return FormatTok;
+ }
+
+ FormatToken *FormatTok;
+ bool IsFirstToken;
+ bool GreaterStashed, LessStashed;
+ unsigned Column;
+ unsigned TrailingWhitespace;
+ std::unique_ptr<Lexer> Lex;
+ SourceManager &SourceMgr;
+ FileID ID;
+ FormatStyle &Style;
+ IdentifierTable IdentTable;
+ AdditionalKeywords Keywords;
+ encoding::Encoding Encoding;
+ llvm::SpecificBumpPtrAllocator<FormatToken> Allocator;
+ // Index (in 'Tokens') of the last token that starts a new line.
+ unsigned FirstInLineIndex;
+ SmallVector<FormatToken *, 16> Tokens;
+ SmallVector<IdentifierInfo *, 8> ForEachMacros;
+
+ bool FormattingDisabled;
+
+ void readRawToken(FormatToken &Tok) {
+ Lex->LexFromRawLexer(Tok.Tok);
+ Tok.TokenText = StringRef(SourceMgr.getCharacterData(Tok.Tok.getLocation()),
+ Tok.Tok.getLength());
+ // For formatting, treat unterminated string literals like normal string
+ // literals.
+ if (Tok.is(tok::unknown)) {
+ if (!Tok.TokenText.empty() && Tok.TokenText[0] == '"') {
+ Tok.Tok.setKind(tok::string_literal);
+ Tok.IsUnterminatedLiteral = true;
+ } else if (Style.Language == FormatStyle::LK_JavaScript &&
+ Tok.TokenText == "''") {
+ Tok.Tok.setKind(tok::char_constant);
+ }
+ }
+
+ if (Tok.is(tok::comment) && (Tok.TokenText == "// clang-format on" ||
+ Tok.TokenText == "/* clang-format on */")) {
+ FormattingDisabled = false;
+ }
+
+ Tok.Finalized = FormattingDisabled;
+
+ if (Tok.is(tok::comment) && (Tok.TokenText == "// clang-format off" ||
+ Tok.TokenText == "/* clang-format off */")) {
+ FormattingDisabled = true;
+ }
+ }
+
+ void resetLexer(unsigned Offset) {
+ StringRef Buffer = SourceMgr.getBufferData(ID);
+ Lex.reset(new Lexer(SourceMgr.getLocForStartOfFile(ID),
+ getFormattingLangOpts(Style), Buffer.begin(),
+ Buffer.begin() + Offset, Buffer.end()));
+ Lex->SetKeepWhitespaceMode(true);
+ }
+};
+
+static StringRef getLanguageName(FormatStyle::LanguageKind Language) {
+ switch (Language) {
+ case FormatStyle::LK_Cpp:
+ return "C++";
+ case FormatStyle::LK_Java:
+ return "Java";
+ case FormatStyle::LK_JavaScript:
+ return "JavaScript";
+ case FormatStyle::LK_Proto:
+ return "Proto";
+ default:
+ return "Unknown";
+ }
+}
+
+class Formatter : public UnwrappedLineConsumer {
+public:
+ Formatter(const FormatStyle &Style, SourceManager &SourceMgr, FileID ID,
+ ArrayRef<CharSourceRange> Ranges)
+ : Style(Style), ID(ID), SourceMgr(SourceMgr),
+ Whitespaces(SourceMgr, Style,
+ inputUsesCRLF(SourceMgr.getBufferData(ID))),
+ Ranges(Ranges.begin(), Ranges.end()), UnwrappedLines(1),
+ Encoding(encoding::detectEncoding(SourceMgr.getBufferData(ID))) {
+ DEBUG(llvm::dbgs() << "File encoding: "
+ << (Encoding == encoding::Encoding_UTF8 ? "UTF8"
+ : "unknown")
+ << "\n");
+ DEBUG(llvm::dbgs() << "Language: " << getLanguageName(Style.Language)
+ << "\n");
+ }
+
+ tooling::Replacements format(bool *IncompleteFormat) {
+ tooling::Replacements Result;
+ FormatTokenLexer Tokens(SourceMgr, ID, Style, Encoding);
+
+ UnwrappedLineParser Parser(Style, Tokens.getKeywords(), Tokens.lex(),
+ *this);
+ Parser.parse();
+ assert(UnwrappedLines.rbegin()->empty());
+ for (unsigned Run = 0, RunE = UnwrappedLines.size(); Run + 1 != RunE;
+ ++Run) {
+ DEBUG(llvm::dbgs() << "Run " << Run << "...\n");
+ SmallVector<AnnotatedLine *, 16> AnnotatedLines;
+ for (unsigned i = 0, e = UnwrappedLines[Run].size(); i != e; ++i) {
+ AnnotatedLines.push_back(new AnnotatedLine(UnwrappedLines[Run][i]));
+ }
+ tooling::Replacements RunResult =
+ format(AnnotatedLines, Tokens, IncompleteFormat);
+ DEBUG({
+ llvm::dbgs() << "Replacements for run " << Run << ":\n";
+ for (tooling::Replacements::iterator I = RunResult.begin(),
+ E = RunResult.end();
+ I != E; ++I) {
+ llvm::dbgs() << I->toString() << "\n";
+ }
+ });
+ for (unsigned i = 0, e = AnnotatedLines.size(); i != e; ++i) {
+ delete AnnotatedLines[i];
+ }
+ Result.insert(RunResult.begin(), RunResult.end());
+ Whitespaces.reset();
+ }
+ return Result;
+ }
+
+ tooling::Replacements format(SmallVectorImpl<AnnotatedLine *> &AnnotatedLines,
+ FormatTokenLexer &Tokens, bool *IncompleteFormat) {
+ TokenAnnotator Annotator(Style, Tokens.getKeywords());
+ for (unsigned i = 0, e = AnnotatedLines.size(); i != e; ++i) {
+ Annotator.annotate(*AnnotatedLines[i]);
+ }
+ deriveLocalStyle(AnnotatedLines);
+ for (unsigned i = 0, e = AnnotatedLines.size(); i != e; ++i) {
+ Annotator.calculateFormattingInformation(*AnnotatedLines[i]);
+ }
+ computeAffectedLines(AnnotatedLines.begin(), AnnotatedLines.end());
+
+ Annotator.setCommentLineLevels(AnnotatedLines);
+ ContinuationIndenter Indenter(Style, Tokens.getKeywords(), SourceMgr,
+ Whitespaces, Encoding,
+ BinPackInconclusiveFunctions);
+ UnwrappedLineFormatter(&Indenter, &Whitespaces, Style, Tokens.getKeywords(),
+ IncompleteFormat)
+ .format(AnnotatedLines);
+ return Whitespaces.generateReplacements();
+ }
+
+private:
+ // Determines which lines are affected by the SourceRanges given as input.
+ // Returns \c true if at least one line between I and E or one of their
+ // children is affected.
+ bool computeAffectedLines(SmallVectorImpl<AnnotatedLine *>::iterator I,
+ SmallVectorImpl<AnnotatedLine *>::iterator E) {
+ bool SomeLineAffected = false;
+ const AnnotatedLine *PreviousLine = nullptr;
+ while (I != E) {
+ AnnotatedLine *Line = *I;
+ Line->LeadingEmptyLinesAffected = affectsLeadingEmptyLines(*Line->First);
+
+ // If a line is part of a preprocessor directive, it needs to be formatted
+ // if any token within the directive is affected.
+ if (Line->InPPDirective) {
+ FormatToken *Last = Line->Last;
+ SmallVectorImpl<AnnotatedLine *>::iterator PPEnd = I + 1;
+ while (PPEnd != E && !(*PPEnd)->First->HasUnescapedNewline) {
+ Last = (*PPEnd)->Last;
+ ++PPEnd;
+ }
+
+ if (affectsTokenRange(*Line->First, *Last,
+ /*IncludeLeadingNewlines=*/false)) {
+ SomeLineAffected = true;
+ markAllAsAffected(I, PPEnd);
+ }
+ I = PPEnd;
+ continue;
+ }
+
+ if (nonPPLineAffected(Line, PreviousLine))
+ SomeLineAffected = true;
+
+ PreviousLine = Line;
+ ++I;
+ }
+ return SomeLineAffected;
+ }
+
+ // Determines whether 'Line' is affected by the SourceRanges given as input.
+ // Returns \c true if line or one if its children is affected.
+ bool nonPPLineAffected(AnnotatedLine *Line,
+ const AnnotatedLine *PreviousLine) {
+ bool SomeLineAffected = false;
+ Line->ChildrenAffected =
+ computeAffectedLines(Line->Children.begin(), Line->Children.end());
+ if (Line->ChildrenAffected)
+ SomeLineAffected = true;
+
+ // Stores whether one of the line's tokens is directly affected.
+ bool SomeTokenAffected = false;
+ // Stores whether we need to look at the leading newlines of the next token
+ // in order to determine whether it was affected.
+ bool IncludeLeadingNewlines = false;
+
+ // Stores whether the first child line of any of this line's tokens is
+ // affected.
+ bool SomeFirstChildAffected = false;
+
+ for (FormatToken *Tok = Line->First; Tok; Tok = Tok->Next) {
+ // Determine whether 'Tok' was affected.
+ if (affectsTokenRange(*Tok, *Tok, IncludeLeadingNewlines))
+ SomeTokenAffected = true;
+
+ // Determine whether the first child of 'Tok' was affected.
+ if (!Tok->Children.empty() && Tok->Children.front()->Affected)
+ SomeFirstChildAffected = true;
+
+ IncludeLeadingNewlines = Tok->Children.empty();
+ }
+
+ // Was this line moved, i.e. has it previously been on the same line as an
+ // affected line?
+ bool LineMoved = PreviousLine && PreviousLine->Affected &&
+ Line->First->NewlinesBefore == 0;
+
+ bool IsContinuedComment =
+ Line->First->is(tok::comment) && Line->First->Next == nullptr &&
+ Line->First->NewlinesBefore < 2 && PreviousLine &&
+ PreviousLine->Affected && PreviousLine->Last->is(tok::comment);
+
+ if (SomeTokenAffected || SomeFirstChildAffected || LineMoved ||
+ IsContinuedComment) {
+ Line->Affected = true;
+ SomeLineAffected = true;
+ }
+ return SomeLineAffected;
+ }
+
+ // Marks all lines between I and E as well as all their children as affected.
+ void markAllAsAffected(SmallVectorImpl<AnnotatedLine *>::iterator I,
+ SmallVectorImpl<AnnotatedLine *>::iterator E) {
+ while (I != E) {
+ (*I)->Affected = true;
+ markAllAsAffected((*I)->Children.begin(), (*I)->Children.end());
+ ++I;
+ }
+ }
+
+ // Returns true if the range from 'First' to 'Last' intersects with one of the
+ // input ranges.
+ bool affectsTokenRange(const FormatToken &First, const FormatToken &Last,
+ bool IncludeLeadingNewlines) {
+ SourceLocation Start = First.WhitespaceRange.getBegin();
+ if (!IncludeLeadingNewlines)
+ Start = Start.getLocWithOffset(First.LastNewlineOffset);
+ SourceLocation End = Last.getStartOfNonWhitespace();
+ End = End.getLocWithOffset(Last.TokenText.size());
+ CharSourceRange Range = CharSourceRange::getCharRange(Start, End);
+ return affectsCharSourceRange(Range);
+ }
+
+ // Returns true if one of the input ranges intersect the leading empty lines
+ // before 'Tok'.
+ bool affectsLeadingEmptyLines(const FormatToken &Tok) {
+ CharSourceRange EmptyLineRange = CharSourceRange::getCharRange(
+ Tok.WhitespaceRange.getBegin(),
+ Tok.WhitespaceRange.getBegin().getLocWithOffset(Tok.LastNewlineOffset));
+ return affectsCharSourceRange(EmptyLineRange);
+ }
+
+ // Returns true if 'Range' intersects with one of the input ranges.
+ bool affectsCharSourceRange(const CharSourceRange &Range) {
+ for (SmallVectorImpl<CharSourceRange>::const_iterator I = Ranges.begin(),
+ E = Ranges.end();
+ I != E; ++I) {
+ if (!SourceMgr.isBeforeInTranslationUnit(Range.getEnd(), I->getBegin()) &&
+ !SourceMgr.isBeforeInTranslationUnit(I->getEnd(), Range.getBegin()))
+ return true;
+ }
+ return false;
+ }
+
+ static bool inputUsesCRLF(StringRef Text) {
+ return Text.count('\r') * 2 > Text.count('\n');
+ }
+
+ void
+ deriveLocalStyle(const SmallVectorImpl<AnnotatedLine *> &AnnotatedLines) {
+ unsigned CountBoundToVariable = 0;
+ unsigned CountBoundToType = 0;
+ bool HasCpp03IncompatibleFormat = false;
+ bool HasBinPackedFunction = false;
+ bool HasOnePerLineFunction = false;
+ for (unsigned i = 0, e = AnnotatedLines.size(); i != e; ++i) {
+ if (!AnnotatedLines[i]->First->Next)
+ continue;
+ FormatToken *Tok = AnnotatedLines[i]->First->Next;
+ while (Tok->Next) {
+ if (Tok->is(TT_PointerOrReference)) {
+ bool SpacesBefore =
+ Tok->WhitespaceRange.getBegin() != Tok->WhitespaceRange.getEnd();
+ bool SpacesAfter = Tok->Next->WhitespaceRange.getBegin() !=
+ Tok->Next->WhitespaceRange.getEnd();
+ if (SpacesBefore && !SpacesAfter)
+ ++CountBoundToVariable;
+ else if (!SpacesBefore && SpacesAfter)
+ ++CountBoundToType;
+ }
+
+ if (Tok->WhitespaceRange.getBegin() == Tok->WhitespaceRange.getEnd()) {
+ if (Tok->is(tok::coloncolon) && Tok->Previous->is(TT_TemplateOpener))
+ HasCpp03IncompatibleFormat = true;
+ if (Tok->is(TT_TemplateCloser) &&
+ Tok->Previous->is(TT_TemplateCloser))
+ HasCpp03IncompatibleFormat = true;
+ }
+
+ if (Tok->PackingKind == PPK_BinPacked)
+ HasBinPackedFunction = true;
+ if (Tok->PackingKind == PPK_OnePerLine)
+ HasOnePerLineFunction = true;
+
+ Tok = Tok->Next;
+ }
+ }
+ if (Style.DerivePointerAlignment) {
+ if (CountBoundToType > CountBoundToVariable)
+ Style.PointerAlignment = FormatStyle::PAS_Left;
+ else if (CountBoundToType < CountBoundToVariable)
+ Style.PointerAlignment = FormatStyle::PAS_Right;
+ }
+ if (Style.Standard == FormatStyle::LS_Auto) {
+ Style.Standard = HasCpp03IncompatibleFormat ? FormatStyle::LS_Cpp11
+ : FormatStyle::LS_Cpp03;
+ }
+ BinPackInconclusiveFunctions =
+ HasBinPackedFunction || !HasOnePerLineFunction;
+ }
+
+ void consumeUnwrappedLine(const UnwrappedLine &TheLine) override {
+ assert(!UnwrappedLines.empty());
+ UnwrappedLines.back().push_back(TheLine);
+ }
+
+ void finishRun() override {
+ UnwrappedLines.push_back(SmallVector<UnwrappedLine, 16>());
+ }
+
+ FormatStyle Style;
+ FileID ID;
+ SourceManager &SourceMgr;
+ WhitespaceManager Whitespaces;
+ SmallVector<CharSourceRange, 8> Ranges;
+ SmallVector<SmallVector<UnwrappedLine, 16>, 2> UnwrappedLines;
+
+ encoding::Encoding Encoding;
+ bool BinPackInconclusiveFunctions;
+};
+
+} // end anonymous namespace
+
+tooling::Replacements reformat(const FormatStyle &Style,
+ SourceManager &SourceMgr, FileID ID,
+ ArrayRef<CharSourceRange> Ranges,
+ bool *IncompleteFormat) {
+ if (Style.DisableFormat)
+ return tooling::Replacements();
+ Formatter formatter(Style, SourceMgr, ID, Ranges);
+ return formatter.format(IncompleteFormat);
+}
+
+tooling::Replacements reformat(const FormatStyle &Style, StringRef Code,
+ ArrayRef<tooling::Range> Ranges,
+ StringRef FileName,
+ bool *IncompleteFormat) {
+ if (Style.DisableFormat)
+ return tooling::Replacements();
+
+ FileManager Files((FileSystemOptions()));
+ DiagnosticsEngine Diagnostics(
+ IntrusiveRefCntPtr<DiagnosticIDs>(new DiagnosticIDs),
+ new DiagnosticOptions);
+ SourceManager SourceMgr(Diagnostics, Files);
+ std::unique_ptr<llvm::MemoryBuffer> Buf =
+ llvm::MemoryBuffer::getMemBuffer(Code, FileName);
+ const clang::FileEntry *Entry =
+ Files.getVirtualFile(FileName, Buf->getBufferSize(), 0);
+ SourceMgr.overrideFileContents(Entry, std::move(Buf));
+ FileID ID =
+ SourceMgr.createFileID(Entry, SourceLocation(), clang::SrcMgr::C_User);
+ SourceLocation StartOfFile = SourceMgr.getLocForStartOfFile(ID);
+ std::vector<CharSourceRange> CharRanges;
+ for (const tooling::Range &Range : Ranges) {
+ SourceLocation Start = StartOfFile.getLocWithOffset(Range.getOffset());
+ SourceLocation End = Start.getLocWithOffset(Range.getLength());
+ CharRanges.push_back(CharSourceRange::getCharRange(Start, End));
+ }
+ return reformat(Style, SourceMgr, ID, CharRanges, IncompleteFormat);
+}
+
+LangOptions getFormattingLangOpts(const FormatStyle &Style) {
+ LangOptions LangOpts;
+ LangOpts.CPlusPlus = 1;
+ LangOpts.CPlusPlus11 = Style.Standard == FormatStyle::LS_Cpp03 ? 0 : 1;
+ LangOpts.CPlusPlus14 = Style.Standard == FormatStyle::LS_Cpp03 ? 0 : 1;
+ LangOpts.LineComment = 1;
+ bool AlternativeOperators = Style.Language == FormatStyle::LK_Cpp;
+ LangOpts.CXXOperatorNames = AlternativeOperators ? 1 : 0;
+ LangOpts.Bool = 1;
+ LangOpts.ObjC1 = 1;
+ LangOpts.ObjC2 = 1;
+ LangOpts.MicrosoftExt = 1; // To get kw___try, kw___finally.
+ return LangOpts;
+}
+
+const char *StyleOptionHelpDescription =
+ "Coding style, currently supports:\n"
+ " LLVM, Google, Chromium, Mozilla, WebKit.\n"
+ "Use -style=file to load style configuration from\n"
+ ".clang-format file located in one of the parent\n"
+ "directories of the source file (or current\n"
+ "directory for stdin).\n"
+ "Use -style=\"{key: value, ...}\" to set specific\n"
+ "parameters, e.g.:\n"
+ " -style=\"{BasedOnStyle: llvm, IndentWidth: 8}\"";
+
+static FormatStyle::LanguageKind getLanguageByFileName(StringRef FileName) {
+ if (FileName.endswith(".java")) {
+ return FormatStyle::LK_Java;
+ } else if (FileName.endswith_lower(".js") || FileName.endswith_lower(".ts")) {
+ // JavaScript or TypeScript.
+ return FormatStyle::LK_JavaScript;
+ } else if (FileName.endswith_lower(".proto") ||
+ FileName.endswith_lower(".protodevel")) {
+ return FormatStyle::LK_Proto;
+ }
+ return FormatStyle::LK_Cpp;
+}
+
+FormatStyle getStyle(StringRef StyleName, StringRef FileName,
+ StringRef FallbackStyle) {
+ FormatStyle Style = getLLVMStyle();
+ Style.Language = getLanguageByFileName(FileName);
+ if (!getPredefinedStyle(FallbackStyle, Style.Language, &Style)) {
+ llvm::errs() << "Invalid fallback style \"" << FallbackStyle
+ << "\" using LLVM style\n";
+ return Style;
+ }
+
+ if (StyleName.startswith("{")) {
+ // Parse YAML/JSON style from the command line.
+ if (std::error_code ec = parseConfiguration(StyleName, &Style)) {
+ llvm::errs() << "Error parsing -style: " << ec.message() << ", using "
+ << FallbackStyle << " style\n";
+ }
+ return Style;
+ }
+
+ if (!StyleName.equals_lower("file")) {
+ if (!getPredefinedStyle(StyleName, Style.Language, &Style))
+ llvm::errs() << "Invalid value for -style, using " << FallbackStyle
+ << " style\n";
+ return Style;
+ }
+
+ // Look for .clang-format/_clang-format file in the file's parent directories.
+ SmallString<128> UnsuitableConfigFiles;
+ SmallString<128> Path(FileName);
+ llvm::sys::fs::make_absolute(Path);
+ for (StringRef Directory = Path; !Directory.empty();
+ Directory = llvm::sys::path::parent_path(Directory)) {
+ if (!llvm::sys::fs::is_directory(Directory))
+ continue;
+ SmallString<128> ConfigFile(Directory);
+
+ llvm::sys::path::append(ConfigFile, ".clang-format");
+ DEBUG(llvm::dbgs() << "Trying " << ConfigFile << "...\n");
+ bool IsFile = false;
+ // Ignore errors from is_regular_file: we only need to know if we can read
+ // the file or not.
+ llvm::sys::fs::is_regular_file(Twine(ConfigFile), IsFile);
+
+ if (!IsFile) {
+ // Try _clang-format too, since dotfiles are not commonly used on Windows.
+ ConfigFile = Directory;
+ llvm::sys::path::append(ConfigFile, "_clang-format");
+ DEBUG(llvm::dbgs() << "Trying " << ConfigFile << "...\n");
+ llvm::sys::fs::is_regular_file(Twine(ConfigFile), IsFile);
+ }
+
+ if (IsFile) {
+ llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
+ llvm::MemoryBuffer::getFile(ConfigFile.c_str());
+ if (std::error_code EC = Text.getError()) {
+ llvm::errs() << EC.message() << "\n";
+ break;
+ }
+ if (std::error_code ec =
+ parseConfiguration(Text.get()->getBuffer(), &Style)) {
+ if (ec == ParseError::Unsuitable) {
+ if (!UnsuitableConfigFiles.empty())
+ UnsuitableConfigFiles.append(", ");
+ UnsuitableConfigFiles.append(ConfigFile);
+ continue;
+ }
+ llvm::errs() << "Error reading " << ConfigFile << ": " << ec.message()
+ << "\n";
+ break;
+ }
+ DEBUG(llvm::dbgs() << "Using configuration file " << ConfigFile << "\n");
+ return Style;
+ }
+ }
+ llvm::errs() << "Can't find usable .clang-format, using " << FallbackStyle
+ << " style\n";
+ if (!UnsuitableConfigFiles.empty()) {
+ llvm::errs() << "Configuration file(s) do(es) not support "
+ << getLanguageName(Style.Language) << ": "
+ << UnsuitableConfigFiles << "\n";
+ }
+ return Style;
+}
+
+} // namespace format
+} // namespace clang
diff --git a/contrib/llvm/tools/clang/lib/Format/FormatToken.cpp b/contrib/llvm/tools/clang/lib/Format/FormatToken.cpp
new file mode 100644
index 0000000..88678ca
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Format/FormatToken.cpp
@@ -0,0 +1,272 @@
+//===--- FormatToken.cpp - Format C++ code --------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// \brief This file implements specific functions of \c FormatTokens and their
+/// roles.
+///
+//===----------------------------------------------------------------------===//
+
+#include "FormatToken.h"
+#include "ContinuationIndenter.h"
+#include "clang/Format/Format.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/Debug.h"
+#include <climits>
+
+namespace clang {
+namespace format {
+
+// FIXME: This is copy&pasted from Sema. Put it in a common place and remove
+// duplication.
+bool FormatToken::isSimpleTypeSpecifier() const {
+ switch (Tok.getKind()) {
+ case tok::kw_short:
+ case tok::kw_long:
+ case tok::kw___int64:
+ case tok::kw___int128:
+ case tok::kw_signed:
+ case tok::kw_unsigned:
+ case tok::kw_void:
+ case tok::kw_char:
+ case tok::kw_int:
+ case tok::kw_half:
+ case tok::kw_float:
+ case tok::kw_double:
+ case tok::kw_wchar_t:
+ case tok::kw_bool:
+ case tok::kw___underlying_type:
+ case tok::annot_typename:
+ case tok::kw_char16_t:
+ case tok::kw_char32_t:
+ case tok::kw_typeof:
+ case tok::kw_decltype:
+ return true;
+ default:
+ return false;
+ }
+}
+
+TokenRole::~TokenRole() {}
+
+void TokenRole::precomputeFormattingInfos(const FormatToken *Token) {}
+
+unsigned CommaSeparatedList::formatAfterToken(LineState &State,
+ ContinuationIndenter *Indenter,
+ bool DryRun) {
+ if (State.NextToken == nullptr || !State.NextToken->Previous)
+ return 0;
+
+ // Ensure that we start on the opening brace.
+ const FormatToken *LBrace =
+ State.NextToken->Previous->getPreviousNonComment();
+ if (!LBrace || LBrace->isNot(tok::l_brace) || LBrace->BlockKind == BK_Block ||
+ LBrace->Type == TT_DictLiteral ||
+ LBrace->Next->Type == TT_DesignatedInitializerPeriod)
+ return 0;
+
+ // Calculate the number of code points we have to format this list. As the
+ // first token is already placed, we have to subtract it.
+ unsigned RemainingCodePoints =
+ Style.ColumnLimit - State.Column + State.NextToken->Previous->ColumnWidth;
+
+ // Find the best ColumnFormat, i.e. the best number of columns to use.
+ const ColumnFormat *Format = getColumnFormat(RemainingCodePoints);
+ // If no ColumnFormat can be used, the braced list would generally be
+ // bin-packed. Add a severe penalty to this so that column layouts are
+ // preferred if possible.
+ if (!Format)
+ return 10000;
+
+ // Format the entire list.
+ unsigned Penalty = 0;
+ unsigned Column = 0;
+ unsigned Item = 0;
+ while (State.NextToken != LBrace->MatchingParen) {
+ bool NewLine = false;
+ unsigned ExtraSpaces = 0;
+
+ // If the previous token was one of our commas, we are now on the next item.
+ if (Item < Commas.size() && State.NextToken->Previous == Commas[Item]) {
+ if (!State.NextToken->isTrailingComment()) {
+ ExtraSpaces += Format->ColumnSizes[Column] - ItemLengths[Item];
+ ++Column;
+ }
+ ++Item;
+ }
+
+ if (Column == Format->Columns || State.NextToken->MustBreakBefore) {
+ Column = 0;
+ NewLine = true;
+ }
+
+ // Place token using the continuation indenter and store the penalty.
+ Penalty += Indenter->addTokenToState(State, NewLine, DryRun, ExtraSpaces);
+ }
+ return Penalty;
+}
+
+unsigned CommaSeparatedList::formatFromToken(LineState &State,
+ ContinuationIndenter *Indenter,
+ bool DryRun) {
+ if (HasNestedBracedList)
+ State.Stack.back().AvoidBinPacking = true;
+ return 0;
+}
+
+// Returns the lengths in code points between Begin and End (both included),
+// assuming that the entire sequence is put on a single line.
+static unsigned CodePointsBetween(const FormatToken *Begin,
+ const FormatToken *End) {
+ assert(End->TotalLength >= Begin->TotalLength);
+ return End->TotalLength - Begin->TotalLength + Begin->ColumnWidth;
+}
+
+void CommaSeparatedList::precomputeFormattingInfos(const FormatToken *Token) {
+ // FIXME: At some point we might want to do this for other lists, too.
+ if (!Token->MatchingParen || Token->isNot(tok::l_brace))
+ return;
+
+ // In C++11 braced list style, we should not format in columns unless they
+ // have many items (20 or more) or we allow bin-packing of function call
+ // arguments.
+ if (Style.Cpp11BracedListStyle && !Style.BinPackArguments &&
+ Commas.size() < 19)
+ return;
+
+ // Column format doesn't really make sense if we don't align after brackets.
+ if (!Style.AlignAfterOpenBracket)
+ return;
+
+ FormatToken *ItemBegin = Token->Next;
+ while (ItemBegin->isTrailingComment())
+ ItemBegin = ItemBegin->Next;
+ SmallVector<bool, 8> MustBreakBeforeItem;
+
+ // The lengths of an item if it is put at the end of the line. This includes
+ // trailing comments which are otherwise ignored for column alignment.
+ SmallVector<unsigned, 8> EndOfLineItemLength;
+
+ bool HasSeparatingComment = false;
+ for (unsigned i = 0, e = Commas.size() + 1; i != e; ++i) {
+ // Skip comments on their own line.
+ while (ItemBegin->HasUnescapedNewline && ItemBegin->isTrailingComment()) {
+ ItemBegin = ItemBegin->Next;
+ HasSeparatingComment = i > 0;
+ }
+
+ MustBreakBeforeItem.push_back(ItemBegin->MustBreakBefore);
+ if (ItemBegin->is(tok::l_brace))
+ HasNestedBracedList = true;
+ const FormatToken *ItemEnd = nullptr;
+ if (i == Commas.size()) {
+ ItemEnd = Token->MatchingParen;
+ const FormatToken *NonCommentEnd = ItemEnd->getPreviousNonComment();
+ ItemLengths.push_back(CodePointsBetween(ItemBegin, NonCommentEnd));
+ if (Style.Cpp11BracedListStyle) {
+ // In Cpp11 braced list style, the } and possibly other subsequent
+ // tokens will need to stay on a line with the last element.
+ while (ItemEnd->Next && !ItemEnd->Next->CanBreakBefore)
+ ItemEnd = ItemEnd->Next;
+ } else {
+ // In other braced lists styles, the "}" can be wrapped to the new line.
+ ItemEnd = Token->MatchingParen->Previous;
+ }
+ } else {
+ ItemEnd = Commas[i];
+ // The comma is counted as part of the item when calculating the length.
+ ItemLengths.push_back(CodePointsBetween(ItemBegin, ItemEnd));
+
+ // Consume trailing comments so the are included in EndOfLineItemLength.
+ if (ItemEnd->Next && !ItemEnd->Next->HasUnescapedNewline &&
+ ItemEnd->Next->isTrailingComment())
+ ItemEnd = ItemEnd->Next;
+ }
+ EndOfLineItemLength.push_back(CodePointsBetween(ItemBegin, ItemEnd));
+ // If there is a trailing comma in the list, the next item will start at the
+ // closing brace. Don't create an extra item for this.
+ if (ItemEnd->getNextNonComment() == Token->MatchingParen)
+ break;
+ ItemBegin = ItemEnd->Next;
+ }
+
+ // Don't use column layout for nested lists, lists with few elements and in
+ // presence of separating comments.
+ if (Token->NestingLevel != 0 || Commas.size() < 5 || HasSeparatingComment)
+ return;
+
+ // We can never place more than ColumnLimit / 3 items in a row (because of the
+ // spaces and the comma).
+ for (unsigned Columns = 1; Columns <= Style.ColumnLimit / 3; ++Columns) {
+ ColumnFormat Format;
+ Format.Columns = Columns;
+ Format.ColumnSizes.resize(Columns);
+ std::vector<unsigned> MinSizeInColumn(Columns, UINT_MAX);
+ Format.LineCount = 1;
+ bool HasRowWithSufficientColumns = false;
+ unsigned Column = 0;
+ for (unsigned i = 0, e = ItemLengths.size(); i != e; ++i) {
+ assert(i < MustBreakBeforeItem.size());
+ if (MustBreakBeforeItem[i] || Column == Columns) {
+ ++Format.LineCount;
+ Column = 0;
+ }
+ if (Column == Columns - 1)
+ HasRowWithSufficientColumns = true;
+ unsigned Length =
+ (Column == Columns - 1) ? EndOfLineItemLength[i] : ItemLengths[i];
+ Format.ColumnSizes[Column] = std::max(Format.ColumnSizes[Column], Length);
+ MinSizeInColumn[Column] = std::min(MinSizeInColumn[Column], Length);
+ ++Column;
+ }
+ // If all rows are terminated early (e.g. by trailing comments), we don't
+ // need to look further.
+ if (!HasRowWithSufficientColumns)
+ break;
+ Format.TotalWidth = Columns - 1; // Width of the N-1 spaces.
+
+ for (unsigned i = 0; i < Columns; ++i)
+ Format.TotalWidth += Format.ColumnSizes[i];
+
+ // Don't use this Format, if the difference between the longest and shortest
+ // element in a column exceeds a threshold to avoid excessive spaces.
+ if ([&] {
+ for (unsigned i = 0; i < Columns - 1; ++i)
+ if (Format.ColumnSizes[i] - MinSizeInColumn[i] > 10)
+ return true;
+ return false;
+ }())
+ continue;
+
+ // Ignore layouts that are bound to violate the column limit.
+ if (Format.TotalWidth > Style.ColumnLimit)
+ continue;
+
+ Formats.push_back(Format);
+ }
+}
+
+const CommaSeparatedList::ColumnFormat *
+CommaSeparatedList::getColumnFormat(unsigned RemainingCharacters) const {
+ const ColumnFormat *BestFormat = nullptr;
+ for (SmallVector<ColumnFormat, 4>::const_reverse_iterator
+ I = Formats.rbegin(),
+ E = Formats.rend();
+ I != E; ++I) {
+ if (I->TotalWidth <= RemainingCharacters) {
+ if (BestFormat && I->LineCount > BestFormat->LineCount)
+ break;
+ BestFormat = &*I;
+ }
+ }
+ return BestFormat;
+}
+
+} // namespace format
+} // namespace clang
diff --git a/contrib/llvm/tools/clang/lib/Format/FormatToken.h b/contrib/llvm/tools/clang/lib/Format/FormatToken.h
new file mode 100644
index 0000000..ec0fdf4
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Format/FormatToken.h
@@ -0,0 +1,605 @@
+//===--- FormatToken.h - Format C++ code ------------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// \brief This file contains the declaration of the FormatToken, a wrapper
+/// around Token with additional information related to formatting.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_FORMAT_FORMATTOKEN_H
+#define LLVM_CLANG_LIB_FORMAT_FORMATTOKEN_H
+
+#include "clang/Basic/IdentifierTable.h"
+#include "clang/Basic/OperatorPrecedence.h"
+#include "clang/Format/Format.h"
+#include "clang/Lex/Lexer.h"
+#include <memory>
+
+namespace clang {
+namespace format {
+
+enum TokenType {
+ TT_ArrayInitializerLSquare,
+ TT_ArraySubscriptLSquare,
+ TT_AttributeParen,
+ TT_BinaryOperator,
+ TT_BitFieldColon,
+ TT_BlockComment,
+ TT_CastRParen,
+ TT_ConditionalExpr,
+ TT_ConflictAlternative,
+ TT_ConflictEnd,
+ TT_ConflictStart,
+ TT_CtorInitializerColon,
+ TT_CtorInitializerComma,
+ TT_DesignatedInitializerPeriod,
+ TT_DictLiteral,
+ TT_ForEachMacro,
+ TT_FunctionAnnotationRParen,
+ TT_FunctionDeclarationName,
+ TT_FunctionLBrace,
+ TT_FunctionTypeLParen,
+ TT_ImplicitStringLiteral,
+ TT_InheritanceColon,
+ TT_InlineASMBrace,
+ TT_InlineASMColon,
+ TT_JavaAnnotation,
+ TT_JsFatArrow,
+ TT_JsTypeColon,
+ TT_JsTypeOptionalQuestion,
+ TT_LambdaArrow,
+ TT_LambdaLSquare,
+ TT_LeadingJavaAnnotation,
+ TT_LineComment,
+ TT_ObjCBlockLBrace,
+ TT_ObjCBlockLParen,
+ TT_ObjCDecl,
+ TT_ObjCForIn,
+ TT_ObjCMethodExpr,
+ TT_ObjCMethodSpecifier,
+ TT_ObjCProperty,
+ TT_ObjCStringLiteral,
+ TT_OverloadedOperator,
+ TT_OverloadedOperatorLParen,
+ TT_PointerOrReference,
+ TT_PureVirtualSpecifier,
+ TT_RangeBasedForLoopColon,
+ TT_RegexLiteral,
+ TT_SelectorName,
+ TT_StartOfName,
+ TT_TemplateCloser,
+ TT_TemplateOpener,
+ TT_TemplateString,
+ TT_TrailingAnnotation,
+ TT_TrailingReturnArrow,
+ TT_TrailingUnaryOperator,
+ TT_UnaryOperator,
+ TT_Unknown
+};
+
+// Represents what type of block a set of braces open.
+enum BraceBlockKind {
+ BK_Unknown,
+ BK_Block,
+ BK_BracedInit
+};
+
+// The packing kind of a function's parameters.
+enum ParameterPackingKind {
+ PPK_BinPacked,
+ PPK_OnePerLine,
+ PPK_Inconclusive
+};
+
+enum FormatDecision {
+ FD_Unformatted,
+ FD_Continue,
+ FD_Break
+};
+
+class TokenRole;
+class AnnotatedLine;
+
+/// \brief A wrapper around a \c Token storing information about the
+/// whitespace characters preceding it.
+struct FormatToken {
+ FormatToken() {}
+
+ /// \brief The \c Token.
+ Token Tok;
+
+ /// \brief The number of newlines immediately before the \c Token.
+ ///
+ /// This can be used to determine what the user wrote in the original code
+ /// and thereby e.g. leave an empty line between two function definitions.
+ unsigned NewlinesBefore = 0;
+
+ /// \brief Whether there is at least one unescaped newline before the \c
+ /// Token.
+ bool HasUnescapedNewline = false;
+
+ /// \brief The range of the whitespace immediately preceding the \c Token.
+ SourceRange WhitespaceRange;
+
+ /// \brief The offset just past the last '\n' in this token's leading
+ /// whitespace (relative to \c WhiteSpaceStart). 0 if there is no '\n'.
+ unsigned LastNewlineOffset = 0;
+
+ /// \brief The width of the non-whitespace parts of the token (or its first
+ /// line for multi-line tokens) in columns.
+ /// We need this to correctly measure number of columns a token spans.
+ unsigned ColumnWidth = 0;
+
+ /// \brief Contains the width in columns of the last line of a multi-line
+ /// token.
+ unsigned LastLineColumnWidth = 0;
+
+ /// \brief Whether the token text contains newlines (escaped or not).
+ bool IsMultiline = false;
+
+ /// \brief Indicates that this is the first token.
+ bool IsFirst = false;
+
+ /// \brief Whether there must be a line break before this token.
+ ///
+ /// This happens for example when a preprocessor directive ended directly
+ /// before the token.
+ bool MustBreakBefore = false;
+
+ /// \brief The raw text of the token.
+ ///
+ /// Contains the raw token text without leading whitespace and without leading
+ /// escaped newlines.
+ StringRef TokenText;
+
+ /// \brief Set to \c true if this token is an unterminated literal.
+ bool IsUnterminatedLiteral = 0;
+
+ /// \brief Contains the kind of block if this token is a brace.
+ BraceBlockKind BlockKind = BK_Unknown;
+
+ TokenType Type = TT_Unknown;
+
+ /// \brief The number of spaces that should be inserted before this token.
+ unsigned SpacesRequiredBefore = 0;
+
+ /// \brief \c true if it is allowed to break before this token.
+ bool CanBreakBefore = false;
+
+ /// \brief \c true if this is the ">" of "template<..>".
+ bool ClosesTemplateDeclaration = false;
+
+ /// \brief Number of parameters, if this is "(", "[" or "<".
+ ///
+ /// This is initialized to 1 as we don't need to distinguish functions with
+ /// 0 parameters from functions with 1 parameter. Thus, we can simply count
+ /// the number of commas.
+ unsigned ParameterCount = 0;
+
+ /// \brief Number of parameters that are nested blocks,
+ /// if this is "(", "[" or "<".
+ unsigned BlockParameterCount = 0;
+
+ /// \brief If this is a bracket ("<", "(", "[" or "{"), contains the kind of
+ /// the surrounding bracket.
+ tok::TokenKind ParentBracket = tok::unknown;
+
+ /// \brief A token can have a special role that can carry extra information
+ /// about the token's formatting.
+ std::unique_ptr<TokenRole> Role;
+
+ /// \brief If this is an opening parenthesis, how are the parameters packed?
+ ParameterPackingKind PackingKind = PPK_Inconclusive;
+
+ /// \brief The total length of the unwrapped line up to and including this
+ /// token.
+ unsigned TotalLength = 0;
+
+ /// \brief The original 0-based column of this token, including expanded tabs.
+ /// The configured TabWidth is used as tab width.
+ unsigned OriginalColumn = 0;
+
+ /// \brief The length of following tokens until the next natural split point,
+ /// or the next token that can be broken.
+ unsigned UnbreakableTailLength = 0;
+
+ // FIXME: Come up with a 'cleaner' concept.
+ /// \brief The binding strength of a token. This is a combined value of
+ /// operator precedence, parenthesis nesting, etc.
+ unsigned BindingStrength = 0;
+
+ /// \brief The nesting level of this token, i.e. the number of surrounding (),
+ /// [], {} or <>.
+ unsigned NestingLevel = 0;
+
+ /// \brief Penalty for inserting a line break before this token.
+ unsigned SplitPenalty = 0;
+
+ /// \brief If this is the first ObjC selector name in an ObjC method
+ /// definition or call, this contains the length of the longest name.
+ ///
+ /// This being set to 0 means that the selectors should not be colon-aligned,
+ /// e.g. because several of them are block-type.
+ unsigned LongestObjCSelectorName = 0;
+
+ /// \brief Stores the number of required fake parentheses and the
+ /// corresponding operator precedence.
+ ///
+ /// If multiple fake parentheses start at a token, this vector stores them in
+ /// reverse order, i.e. inner fake parenthesis first.
+ SmallVector<prec::Level, 4> FakeLParens;
+ /// \brief Insert this many fake ) after this token for correct indentation.
+ unsigned FakeRParens = 0;
+
+ /// \brief \c true if this token starts a binary expression, i.e. has at least
+ /// one fake l_paren with a precedence greater than prec::Unknown.
+ bool StartsBinaryExpression = false;
+ /// \brief \c true if this token ends a binary expression.
+ bool EndsBinaryExpression = false;
+
+ /// \brief Is this is an operator (or "."/"->") in a sequence of operators
+ /// with the same precedence, contains the 0-based operator index.
+ unsigned OperatorIndex = 0;
+
+ /// \brief Is this the last operator (or "."/"->") in a sequence of operators
+ /// with the same precedence?
+ bool LastOperator = false;
+
+ /// \brief Is this token part of a \c DeclStmt defining multiple variables?
+ ///
+ /// Only set if \c Type == \c TT_StartOfName.
+ bool PartOfMultiVariableDeclStmt = false;
+
+ /// \brief If this is a bracket, this points to the matching one.
+ FormatToken *MatchingParen = nullptr;
+
+ /// \brief The previous token in the unwrapped line.
+ FormatToken *Previous = nullptr;
+
+ /// \brief The next token in the unwrapped line.
+ FormatToken *Next = nullptr;
+
+ /// \brief If this token starts a block, this contains all the unwrapped lines
+ /// in it.
+ SmallVector<AnnotatedLine *, 1> Children;
+
+ /// \brief Stores the formatting decision for the token once it was made.
+ FormatDecision Decision = FD_Unformatted;
+
+ /// \brief If \c true, this token has been fully formatted (indented and
+ /// potentially re-formatted inside), and we do not allow further formatting
+ /// changes.
+ bool Finalized = false;
+
+ bool is(tok::TokenKind Kind) const { return Tok.is(Kind); }
+ bool is(TokenType TT) const { return Type == TT; }
+ bool is(const IdentifierInfo *II) const {
+ return II && II == Tok.getIdentifierInfo();
+ }
+ template <typename A, typename B> bool isOneOf(A K1, B K2) const {
+ return is(K1) || is(K2);
+ }
+ template <typename A, typename B, typename... Ts>
+ bool isOneOf(A K1, B K2, Ts... Ks) const {
+ return is(K1) || isOneOf(K2, Ks...);
+ }
+ template <typename T> bool isNot(T Kind) const { return !is(Kind); }
+
+ bool isStringLiteral() const { return tok::isStringLiteral(Tok.getKind()); }
+
+ bool isObjCAtKeyword(tok::ObjCKeywordKind Kind) const {
+ return Tok.isObjCAtKeyword(Kind);
+ }
+
+ bool isAccessSpecifier(bool ColonRequired = true) const {
+ return isOneOf(tok::kw_public, tok::kw_protected, tok::kw_private) &&
+ (!ColonRequired || (Next && Next->is(tok::colon)));
+ }
+
+ /// \brief Determine whether the token is a simple-type-specifier.
+ bool isSimpleTypeSpecifier() const;
+
+ bool isObjCAccessSpecifier() const {
+ return is(tok::at) && Next && (Next->isObjCAtKeyword(tok::objc_public) ||
+ Next->isObjCAtKeyword(tok::objc_protected) ||
+ Next->isObjCAtKeyword(tok::objc_package) ||
+ Next->isObjCAtKeyword(tok::objc_private));
+ }
+
+ /// \brief Returns whether \p Tok is ([{ or a template opening <.
+ bool opensScope() const {
+ return isOneOf(tok::l_paren, tok::l_brace, tok::l_square,
+ TT_TemplateOpener);
+ }
+ /// \brief Returns whether \p Tok is )]} or a template closing >.
+ bool closesScope() const {
+ return isOneOf(tok::r_paren, tok::r_brace, tok::r_square,
+ TT_TemplateCloser);
+ }
+
+ /// \brief Returns \c true if this is a "." or "->" accessing a member.
+ bool isMemberAccess() const {
+ return isOneOf(tok::arrow, tok::period, tok::arrowstar) &&
+ !isOneOf(TT_DesignatedInitializerPeriod, TT_TrailingReturnArrow,
+ TT_LambdaArrow);
+ }
+
+ bool isUnaryOperator() const {
+ switch (Tok.getKind()) {
+ case tok::plus:
+ case tok::plusplus:
+ case tok::minus:
+ case tok::minusminus:
+ case tok::exclaim:
+ case tok::tilde:
+ case tok::kw_sizeof:
+ case tok::kw_alignof:
+ return true;
+ default:
+ return false;
+ }
+ }
+
+ bool isBinaryOperator() const {
+ // Comma is a binary operator, but does not behave as such wrt. formatting.
+ return getPrecedence() > prec::Comma;
+ }
+
+ bool isTrailingComment() const {
+ return is(tok::comment) &&
+ (is(TT_LineComment) || !Next || Next->NewlinesBefore > 0);
+ }
+
+ /// \brief Returns \c true if this is a keyword that can be used
+ /// like a function call (e.g. sizeof, typeid, ...).
+ bool isFunctionLikeKeyword() const {
+ switch (Tok.getKind()) {
+ case tok::kw_throw:
+ case tok::kw_typeid:
+ case tok::kw_return:
+ case tok::kw_sizeof:
+ case tok::kw_alignof:
+ case tok::kw_alignas:
+ case tok::kw_decltype:
+ case tok::kw_noexcept:
+ case tok::kw_static_assert:
+ case tok::kw___attribute:
+ return true;
+ default:
+ return false;
+ }
+ }
+
+ /// \brief Returns actual token start location without leading escaped
+ /// newlines and whitespace.
+ ///
+ /// This can be different to Tok.getLocation(), which includes leading escaped
+ /// newlines.
+ SourceLocation getStartOfNonWhitespace() const {
+ return WhitespaceRange.getEnd();
+ }
+
+ prec::Level getPrecedence() const {
+ return getBinOpPrecedence(Tok.getKind(), true, true);
+ }
+
+ /// \brief Returns the previous token ignoring comments.
+ FormatToken *getPreviousNonComment() const {
+ FormatToken *Tok = Previous;
+ while (Tok && Tok->is(tok::comment))
+ Tok = Tok->Previous;
+ return Tok;
+ }
+
+ /// \brief Returns the next token ignoring comments.
+ const FormatToken *getNextNonComment() const {
+ const FormatToken *Tok = Next;
+ while (Tok && Tok->is(tok::comment))
+ Tok = Tok->Next;
+ return Tok;
+ }
+
+ /// \brief Returns \c true if this tokens starts a block-type list, i.e. a
+ /// list that should be indented with a block indent.
+ bool opensBlockTypeList(const FormatStyle &Style) const {
+ return is(TT_ArrayInitializerLSquare) ||
+ (is(tok::l_brace) &&
+ (BlockKind == BK_Block || is(TT_DictLiteral) ||
+ (!Style.Cpp11BracedListStyle && NestingLevel == 0)));
+ }
+
+ /// \brief Same as opensBlockTypeList, but for the closing token.
+ bool closesBlockTypeList(const FormatStyle &Style) const {
+ return MatchingParen && MatchingParen->opensBlockTypeList(Style);
+ }
+
+private:
+ // Disallow copying.
+ FormatToken(const FormatToken &) = delete;
+ void operator=(const FormatToken &) = delete;
+};
+
+class ContinuationIndenter;
+struct LineState;
+
+class TokenRole {
+public:
+ TokenRole(const FormatStyle &Style) : Style(Style) {}
+ virtual ~TokenRole();
+
+ /// \brief After the \c TokenAnnotator has finished annotating all the tokens,
+ /// this function precomputes required information for formatting.
+ virtual void precomputeFormattingInfos(const FormatToken *Token);
+
+ /// \brief Apply the special formatting that the given role demands.
+ ///
+ /// Assumes that the token having this role is already formatted.
+ ///
+ /// Continues formatting from \p State leaving indentation to \p Indenter and
+ /// returns the total penalty that this formatting incurs.
+ virtual unsigned formatFromToken(LineState &State,
+ ContinuationIndenter *Indenter,
+ bool DryRun) {
+ return 0;
+ }
+
+ /// \brief Same as \c formatFromToken, but assumes that the first token has
+ /// already been set thereby deciding on the first line break.
+ virtual unsigned formatAfterToken(LineState &State,
+ ContinuationIndenter *Indenter,
+ bool DryRun) {
+ return 0;
+ }
+
+ /// \brief Notifies the \c Role that a comma was found.
+ virtual void CommaFound(const FormatToken *Token) {}
+
+protected:
+ const FormatStyle &Style;
+};
+
+class CommaSeparatedList : public TokenRole {
+public:
+ CommaSeparatedList(const FormatStyle &Style)
+ : TokenRole(Style), HasNestedBracedList(false) {}
+
+ void precomputeFormattingInfos(const FormatToken *Token) override;
+
+ unsigned formatAfterToken(LineState &State, ContinuationIndenter *Indenter,
+ bool DryRun) override;
+
+ unsigned formatFromToken(LineState &State, ContinuationIndenter *Indenter,
+ bool DryRun) override;
+
+ /// \brief Adds \p Token as the next comma to the \c CommaSeparated list.
+ void CommaFound(const FormatToken *Token) override {
+ Commas.push_back(Token);
+ }
+
+private:
+ /// \brief A struct that holds information on how to format a given list with
+ /// a specific number of columns.
+ struct ColumnFormat {
+ /// \brief The number of columns to use.
+ unsigned Columns;
+
+ /// \brief The total width in characters.
+ unsigned TotalWidth;
+
+ /// \brief The number of lines required for this format.
+ unsigned LineCount;
+
+ /// \brief The size of each column in characters.
+ SmallVector<unsigned, 8> ColumnSizes;
+ };
+
+ /// \brief Calculate which \c ColumnFormat fits best into
+ /// \p RemainingCharacters.
+ const ColumnFormat *getColumnFormat(unsigned RemainingCharacters) const;
+
+ /// \brief The ordered \c FormatTokens making up the commas of this list.
+ SmallVector<const FormatToken *, 8> Commas;
+
+ /// \brief The length of each of the list's items in characters including the
+ /// trailing comma.
+ SmallVector<unsigned, 8> ItemLengths;
+
+ /// \brief Precomputed formats that can be used for this list.
+ SmallVector<ColumnFormat, 4> Formats;
+
+ bool HasNestedBracedList;
+};
+
+/// \brief Encapsulates keywords that are context sensitive or for languages not
+/// properly supported by Clang's lexer.
+struct AdditionalKeywords {
+ AdditionalKeywords(IdentifierTable &IdentTable) {
+ kw_in = &IdentTable.get("in");
+ kw_CF_ENUM = &IdentTable.get("CF_ENUM");
+ kw_CF_OPTIONS = &IdentTable.get("CF_OPTIONS");
+ kw_NS_ENUM = &IdentTable.get("NS_ENUM");
+ kw_NS_OPTIONS = &IdentTable.get("NS_OPTIONS");
+
+ kw_finally = &IdentTable.get("finally");
+ kw_function = &IdentTable.get("function");
+ kw_import = &IdentTable.get("import");
+ kw_var = &IdentTable.get("var");
+
+ kw_abstract = &IdentTable.get("abstract");
+ kw_extends = &IdentTable.get("extends");
+ kw_final = &IdentTable.get("final");
+ kw_implements = &IdentTable.get("implements");
+ kw_instanceof = &IdentTable.get("instanceof");
+ kw_interface = &IdentTable.get("interface");
+ kw_native = &IdentTable.get("native");
+ kw_package = &IdentTable.get("package");
+ kw_synchronized = &IdentTable.get("synchronized");
+ kw_throws = &IdentTable.get("throws");
+ kw___except = &IdentTable.get("__except");
+
+ kw_mark = &IdentTable.get("mark");
+
+ kw_option = &IdentTable.get("option");
+ kw_optional = &IdentTable.get("optional");
+ kw_repeated = &IdentTable.get("repeated");
+ kw_required = &IdentTable.get("required");
+ kw_returns = &IdentTable.get("returns");
+
+ kw_signals = &IdentTable.get("signals");
+ kw_slots = &IdentTable.get("slots");
+ kw_qslots = &IdentTable.get("Q_SLOTS");
+ }
+
+ // Context sensitive keywords.
+ IdentifierInfo *kw_in;
+ IdentifierInfo *kw_CF_ENUM;
+ IdentifierInfo *kw_CF_OPTIONS;
+ IdentifierInfo *kw_NS_ENUM;
+ IdentifierInfo *kw_NS_OPTIONS;
+ IdentifierInfo *kw___except;
+
+ // JavaScript keywords.
+ IdentifierInfo *kw_finally;
+ IdentifierInfo *kw_function;
+ IdentifierInfo *kw_import;
+ IdentifierInfo *kw_var;
+
+ // Java keywords.
+ IdentifierInfo *kw_abstract;
+ IdentifierInfo *kw_extends;
+ IdentifierInfo *kw_final;
+ IdentifierInfo *kw_implements;
+ IdentifierInfo *kw_instanceof;
+ IdentifierInfo *kw_interface;
+ IdentifierInfo *kw_native;
+ IdentifierInfo *kw_package;
+ IdentifierInfo *kw_synchronized;
+ IdentifierInfo *kw_throws;
+
+ // Pragma keywords.
+ IdentifierInfo *kw_mark;
+
+ // Proto keywords.
+ IdentifierInfo *kw_option;
+ IdentifierInfo *kw_optional;
+ IdentifierInfo *kw_repeated;
+ IdentifierInfo *kw_required;
+ IdentifierInfo *kw_returns;
+
+ // QT keywords.
+ IdentifierInfo *kw_signals;
+ IdentifierInfo *kw_slots;
+ IdentifierInfo *kw_qslots;
+};
+
+} // namespace format
+} // namespace clang
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/Format/TokenAnnotator.cpp b/contrib/llvm/tools/clang/lib/Format/TokenAnnotator.cpp
new file mode 100644
index 0000000..98f5709
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Format/TokenAnnotator.cpp
@@ -0,0 +1,2247 @@
+//===--- TokenAnnotator.cpp - Format C++ code -----------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// \brief This file implements a token annotator, i.e. creates
+/// \c AnnotatedTokens out of \c FormatTokens with required extra information.
+///
+//===----------------------------------------------------------------------===//
+
+#include "TokenAnnotator.h"
+#include "clang/Basic/SourceManager.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/Support/Debug.h"
+
+#define DEBUG_TYPE "format-token-annotator"
+
+namespace clang {
+namespace format {
+
+namespace {
+
+/// \brief A parser that gathers additional information about tokens.
+///
+/// The \c TokenAnnotator tries to match parenthesis and square brakets and
+/// store a parenthesis levels. It also tries to resolve matching "<" and ">"
+/// into template parameter lists.
+class AnnotatingParser {
+public:
+ AnnotatingParser(const FormatStyle &Style, AnnotatedLine &Line,
+ const AdditionalKeywords &Keywords)
+ : Style(Style), Line(Line), CurrentToken(Line.First), AutoFound(false),
+ Keywords(Keywords) {
+ Contexts.push_back(Context(tok::unknown, 1, /*IsExpression=*/false));
+ resetTokenMetadata(CurrentToken);
+ }
+
+private:
+ bool parseAngle() {
+ if (!CurrentToken)
+ return false;
+ FormatToken *Left = CurrentToken->Previous;
+ Left->ParentBracket = Contexts.back().ContextKind;
+ ScopedContextCreator ContextCreator(*this, tok::less, 10);
+
+ // If this angle is in the context of an expression, we need to be more
+ // hesitant to detect it as opening template parameters.
+ bool InExprContext = Contexts.back().IsExpression;
+
+ Contexts.back().IsExpression = false;
+ // If there's a template keyword before the opening angle bracket, this is a
+ // template parameter, not an argument.
+ Contexts.back().InTemplateArgument =
+ Left->Previous && Left->Previous->Tok.isNot(tok::kw_template);
+
+ if (Style.Language == FormatStyle::LK_Java &&
+ CurrentToken->is(tok::question))
+ next();
+
+ while (CurrentToken) {
+ if (CurrentToken->is(tok::greater)) {
+ Left->MatchingParen = CurrentToken;
+ CurrentToken->MatchingParen = Left;
+ CurrentToken->Type = TT_TemplateCloser;
+ next();
+ return true;
+ }
+ if (CurrentToken->is(tok::question) &&
+ Style.Language == FormatStyle::LK_Java) {
+ next();
+ continue;
+ }
+ if (CurrentToken->isOneOf(tok::r_paren, tok::r_square, tok::r_brace) ||
+ (CurrentToken->isOneOf(tok::colon, tok::question) && InExprContext))
+ return false;
+ // If a && or || is found and interpreted as a binary operator, this set
+ // of angles is likely part of something like "a < b && c > d". If the
+ // angles are inside an expression, the ||/&& might also be a binary
+ // operator that was misinterpreted because we are parsing template
+ // parameters.
+ // FIXME: This is getting out of hand, write a decent parser.
+ if (CurrentToken->Previous->isOneOf(tok::pipepipe, tok::ampamp) &&
+ CurrentToken->Previous->is(TT_BinaryOperator) &&
+ Contexts[Contexts.size() - 2].IsExpression &&
+ Line.First->isNot(tok::kw_template))
+ return false;
+ updateParameterCount(Left, CurrentToken);
+ if (!consumeToken())
+ return false;
+ }
+ return false;
+ }
+
+ bool parseParens(bool LookForDecls = false) {
+ if (!CurrentToken)
+ return false;
+ FormatToken *Left = CurrentToken->Previous;
+ Left->ParentBracket = Contexts.back().ContextKind;
+ ScopedContextCreator ContextCreator(*this, tok::l_paren, 1);
+
+ // FIXME: This is a bit of a hack. Do better.
+ Contexts.back().ColonIsForRangeExpr =
+ Contexts.size() == 2 && Contexts[0].ColonIsForRangeExpr;
+
+ bool StartsObjCMethodExpr = false;
+ if (CurrentToken->is(tok::caret)) {
+ // (^ can start a block type.
+ Left->Type = TT_ObjCBlockLParen;
+ } else if (FormatToken *MaybeSel = Left->Previous) {
+ // @selector( starts a selector.
+ if (MaybeSel->isObjCAtKeyword(tok::objc_selector) && MaybeSel->Previous &&
+ MaybeSel->Previous->is(tok::at)) {
+ StartsObjCMethodExpr = true;
+ }
+ }
+
+ if (Left->Previous &&
+ (Left->Previous->isOneOf(tok::kw_static_assert, tok::kw_if,
+ tok::kw_while, tok::l_paren, tok::comma) ||
+ Left->Previous->is(TT_BinaryOperator))) {
+ // static_assert, if and while usually contain expressions.
+ Contexts.back().IsExpression = true;
+ } else if (Left->Previous && Left->Previous->is(tok::r_square) &&
+ Left->Previous->MatchingParen &&
+ Left->Previous->MatchingParen->is(TT_LambdaLSquare)) {
+ // This is a parameter list of a lambda expression.
+ Contexts.back().IsExpression = false;
+ } else if (Line.InPPDirective &&
+ (!Left->Previous ||
+ !Left->Previous->isOneOf(tok::identifier,
+ TT_OverloadedOperator))) {
+ Contexts.back().IsExpression = true;
+ } else if (Contexts[Contexts.size() - 2].CaretFound) {
+ // This is the parameter list of an ObjC block.
+ Contexts.back().IsExpression = false;
+ } else if (Left->Previous && Left->Previous->is(tok::kw___attribute)) {
+ Left->Type = TT_AttributeParen;
+ } else if (Left->Previous && Left->Previous->is(TT_ForEachMacro)) {
+ // The first argument to a foreach macro is a declaration.
+ Contexts.back().IsForEachMacro = true;
+ Contexts.back().IsExpression = false;
+ } else if (Left->Previous && Left->Previous->MatchingParen &&
+ Left->Previous->MatchingParen->is(TT_ObjCBlockLParen)) {
+ Contexts.back().IsExpression = false;
+ }
+
+ if (StartsObjCMethodExpr) {
+ Contexts.back().ColonIsObjCMethodExpr = true;
+ Left->Type = TT_ObjCMethodExpr;
+ }
+
+ bool MightBeFunctionType = CurrentToken->is(tok::star);
+ bool HasMultipleLines = false;
+ bool HasMultipleParametersOnALine = false;
+ bool MightBeObjCForRangeLoop =
+ Left->Previous && Left->Previous->is(tok::kw_for);
+ while (CurrentToken) {
+ // LookForDecls is set when "if (" has been seen. Check for
+ // 'identifier' '*' 'identifier' followed by not '=' -- this
+ // '*' has to be a binary operator but determineStarAmpUsage() will
+ // categorize it as an unary operator, so set the right type here.
+ if (LookForDecls && CurrentToken->Next) {
+ FormatToken *Prev = CurrentToken->getPreviousNonComment();
+ if (Prev) {
+ FormatToken *PrevPrev = Prev->getPreviousNonComment();
+ FormatToken *Next = CurrentToken->Next;
+ if (PrevPrev && PrevPrev->is(tok::identifier) &&
+ Prev->isOneOf(tok::star, tok::amp, tok::ampamp) &&
+ CurrentToken->is(tok::identifier) && Next->isNot(tok::equal)) {
+ Prev->Type = TT_BinaryOperator;
+ LookForDecls = false;
+ }
+ }
+ }
+
+ if (CurrentToken->Previous->is(TT_PointerOrReference) &&
+ CurrentToken->Previous->Previous->isOneOf(tok::l_paren,
+ tok::coloncolon))
+ MightBeFunctionType = true;
+ if (CurrentToken->Previous->is(TT_BinaryOperator))
+ Contexts.back().IsExpression = true;
+ if (CurrentToken->is(tok::r_paren)) {
+ if (MightBeFunctionType && CurrentToken->Next &&
+ (CurrentToken->Next->is(tok::l_paren) ||
+ (CurrentToken->Next->is(tok::l_square) &&
+ !Contexts.back().IsExpression)))
+ Left->Type = TT_FunctionTypeLParen;
+ Left->MatchingParen = CurrentToken;
+ CurrentToken->MatchingParen = Left;
+
+ if (StartsObjCMethodExpr) {
+ CurrentToken->Type = TT_ObjCMethodExpr;
+ if (Contexts.back().FirstObjCSelectorName) {
+ Contexts.back().FirstObjCSelectorName->LongestObjCSelectorName =
+ Contexts.back().LongestObjCSelectorName;
+ }
+ }
+
+ if (Left->is(TT_AttributeParen))
+ CurrentToken->Type = TT_AttributeParen;
+ if (Left->Previous && Left->Previous->is(TT_JavaAnnotation))
+ CurrentToken->Type = TT_JavaAnnotation;
+ if (Left->Previous && Left->Previous->is(TT_LeadingJavaAnnotation))
+ CurrentToken->Type = TT_LeadingJavaAnnotation;
+
+ if (!HasMultipleLines)
+ Left->PackingKind = PPK_Inconclusive;
+ else if (HasMultipleParametersOnALine)
+ Left->PackingKind = PPK_BinPacked;
+ else
+ Left->PackingKind = PPK_OnePerLine;
+
+ next();
+ return true;
+ }
+ if (CurrentToken->isOneOf(tok::r_square, tok::r_brace))
+ return false;
+
+ if (CurrentToken->is(tok::l_brace))
+ Left->Type = TT_Unknown; // Not TT_ObjCBlockLParen
+ if (CurrentToken->is(tok::comma) && CurrentToken->Next &&
+ !CurrentToken->Next->HasUnescapedNewline &&
+ !CurrentToken->Next->isTrailingComment())
+ HasMultipleParametersOnALine = true;
+ if (CurrentToken->isOneOf(tok::kw_const, tok::kw_auto) ||
+ CurrentToken->isSimpleTypeSpecifier())
+ Contexts.back().IsExpression = false;
+ if (CurrentToken->isOneOf(tok::semi, tok::colon))
+ MightBeObjCForRangeLoop = false;
+ if (MightBeObjCForRangeLoop && CurrentToken->is(Keywords.kw_in))
+ CurrentToken->Type = TT_ObjCForIn;
+ // When we discover a 'new', we set CanBeExpression to 'false' in order to
+ // parse the type correctly. Reset that after a comma.
+ if (CurrentToken->is(tok::comma))
+ Contexts.back().CanBeExpression = true;
+
+ FormatToken *Tok = CurrentToken;
+ if (!consumeToken())
+ return false;
+ updateParameterCount(Left, Tok);
+ if (CurrentToken && CurrentToken->HasUnescapedNewline)
+ HasMultipleLines = true;
+ }
+ return false;
+ }
+
+ bool parseSquare() {
+ if (!CurrentToken)
+ return false;
+
+ // A '[' could be an index subscript (after an identifier or after
+ // ')' or ']'), it could be the start of an Objective-C method
+ // expression, or it could the the start of an Objective-C array literal.
+ FormatToken *Left = CurrentToken->Previous;
+ Left->ParentBracket = Contexts.back().ContextKind;
+ FormatToken *Parent = Left->getPreviousNonComment();
+ bool StartsObjCMethodExpr =
+ Contexts.back().CanBeExpression && Left->isNot(TT_LambdaLSquare) &&
+ CurrentToken->isNot(tok::l_brace) &&
+ (!Parent ||
+ Parent->isOneOf(tok::colon, tok::l_square, tok::l_paren,
+ tok::kw_return, tok::kw_throw) ||
+ Parent->isUnaryOperator() ||
+ Parent->isOneOf(TT_ObjCForIn, TT_CastRParen) ||
+ getBinOpPrecedence(Parent->Tok.getKind(), true, true) > prec::Unknown);
+ ScopedContextCreator ContextCreator(*this, tok::l_square, 10);
+ Contexts.back().IsExpression = true;
+ bool ColonFound = false;
+
+ if (StartsObjCMethodExpr) {
+ Contexts.back().ColonIsObjCMethodExpr = true;
+ Left->Type = TT_ObjCMethodExpr;
+ } else if (Parent && Parent->is(tok::at)) {
+ Left->Type = TT_ArrayInitializerLSquare;
+ } else if (Left->is(TT_Unknown)) {
+ Left->Type = TT_ArraySubscriptLSquare;
+ }
+
+ while (CurrentToken) {
+ if (CurrentToken->is(tok::r_square)) {
+ if (CurrentToken->Next && CurrentToken->Next->is(tok::l_paren) &&
+ Left->is(TT_ObjCMethodExpr)) {
+ // An ObjC method call is rarely followed by an open parenthesis.
+ // FIXME: Do we incorrectly label ":" with this?
+ StartsObjCMethodExpr = false;
+ Left->Type = TT_Unknown;
+ }
+ if (StartsObjCMethodExpr && CurrentToken->Previous != Left) {
+ CurrentToken->Type = TT_ObjCMethodExpr;
+ // determineStarAmpUsage() thinks that '*' '[' is allocating an
+ // array of pointers, but if '[' starts a selector then '*' is a
+ // binary operator.
+ if (Parent && Parent->is(TT_PointerOrReference))
+ Parent->Type = TT_BinaryOperator;
+ }
+ Left->MatchingParen = CurrentToken;
+ CurrentToken->MatchingParen = Left;
+ if (Contexts.back().FirstObjCSelectorName) {
+ Contexts.back().FirstObjCSelectorName->LongestObjCSelectorName =
+ Contexts.back().LongestObjCSelectorName;
+ if (Left->BlockParameterCount > 1)
+ Contexts.back().FirstObjCSelectorName->LongestObjCSelectorName = 0;
+ }
+ next();
+ return true;
+ }
+ if (CurrentToken->isOneOf(tok::r_paren, tok::r_brace))
+ return false;
+ if (CurrentToken->is(tok::colon)) {
+ if (Left->is(TT_ArraySubscriptLSquare)) {
+ Left->Type = TT_ObjCMethodExpr;
+ StartsObjCMethodExpr = true;
+ Contexts.back().ColonIsObjCMethodExpr = true;
+ if (Parent && Parent->is(tok::r_paren))
+ Parent->Type = TT_CastRParen;
+ }
+ ColonFound = true;
+ }
+ if (CurrentToken->is(tok::comma) &&
+ Style.Language != FormatStyle::LK_Proto &&
+ (Left->is(TT_ArraySubscriptLSquare) ||
+ (Left->is(TT_ObjCMethodExpr) && !ColonFound)))
+ Left->Type = TT_ArrayInitializerLSquare;
+ FormatToken *Tok = CurrentToken;
+ if (!consumeToken())
+ return false;
+ updateParameterCount(Left, Tok);
+ }
+ return false;
+ }
+
+ bool parseBrace() {
+ if (CurrentToken) {
+ FormatToken *Left = CurrentToken->Previous;
+ Left->ParentBracket = Contexts.back().ContextKind;
+
+ if (Contexts.back().CaretFound)
+ Left->Type = TT_ObjCBlockLBrace;
+ Contexts.back().CaretFound = false;
+
+ ScopedContextCreator ContextCreator(*this, tok::l_brace, 1);
+ Contexts.back().ColonIsDictLiteral = true;
+ if (Left->BlockKind == BK_BracedInit)
+ Contexts.back().IsExpression = true;
+
+ while (CurrentToken) {
+ if (CurrentToken->is(tok::r_brace)) {
+ Left->MatchingParen = CurrentToken;
+ CurrentToken->MatchingParen = Left;
+ next();
+ return true;
+ }
+ if (CurrentToken->isOneOf(tok::r_paren, tok::r_square))
+ return false;
+ updateParameterCount(Left, CurrentToken);
+ if (CurrentToken->isOneOf(tok::colon, tok::l_brace)) {
+ FormatToken *Previous = CurrentToken->getPreviousNonComment();
+ if ((CurrentToken->is(tok::colon) ||
+ Style.Language == FormatStyle::LK_Proto) &&
+ Previous->is(tok::identifier))
+ Previous->Type = TT_SelectorName;
+ if (CurrentToken->is(tok::colon) ||
+ Style.Language == FormatStyle::LK_JavaScript)
+ Left->Type = TT_DictLiteral;
+ }
+ if (!consumeToken())
+ return false;
+ }
+ }
+ return true;
+ }
+
+ void updateParameterCount(FormatToken *Left, FormatToken *Current) {
+ if (Current->is(TT_LambdaLSquare) ||
+ (Current->is(tok::caret) && Current->is(TT_UnaryOperator)) ||
+ (Style.Language == FormatStyle::LK_JavaScript &&
+ Current->is(Keywords.kw_function))) {
+ ++Left->BlockParameterCount;
+ }
+ if (Current->is(tok::comma)) {
+ ++Left->ParameterCount;
+ if (!Left->Role)
+ Left->Role.reset(new CommaSeparatedList(Style));
+ Left->Role->CommaFound(Current);
+ } else if (Left->ParameterCount == 0 && Current->isNot(tok::comment)) {
+ Left->ParameterCount = 1;
+ }
+ }
+
+ bool parseConditional() {
+ while (CurrentToken) {
+ if (CurrentToken->is(tok::colon)) {
+ CurrentToken->Type = TT_ConditionalExpr;
+ next();
+ return true;
+ }
+ if (!consumeToken())
+ return false;
+ }
+ return false;
+ }
+
+ bool parseTemplateDeclaration() {
+ if (CurrentToken && CurrentToken->is(tok::less)) {
+ CurrentToken->Type = TT_TemplateOpener;
+ next();
+ if (!parseAngle())
+ return false;
+ if (CurrentToken)
+ CurrentToken->Previous->ClosesTemplateDeclaration = true;
+ return true;
+ }
+ return false;
+ }
+
+ bool consumeToken() {
+ FormatToken *Tok = CurrentToken;
+ next();
+ switch (Tok->Tok.getKind()) {
+ case tok::plus:
+ case tok::minus:
+ if (!Tok->Previous && Line.MustBeDeclaration)
+ Tok->Type = TT_ObjCMethodSpecifier;
+ break;
+ case tok::colon:
+ if (!Tok->Previous)
+ return false;
+ // Colons from ?: are handled in parseConditional().
+ if (Style.Language == FormatStyle::LK_JavaScript) {
+ if (Contexts.back().ColonIsForRangeExpr || // colon in for loop
+ (Contexts.size() == 1 && // switch/case labels
+ !Line.First->isOneOf(tok::kw_enum, tok::kw_case)) ||
+ Contexts.back().ContextKind == tok::l_paren || // function params
+ Contexts.back().ContextKind == tok::l_square || // array type
+ Line.MustBeDeclaration) { // method/property declaration
+ Tok->Type = TT_JsTypeColon;
+ break;
+ }
+ }
+ if (Contexts.back().ColonIsDictLiteral) {
+ Tok->Type = TT_DictLiteral;
+ } else if (Contexts.back().ColonIsObjCMethodExpr ||
+ Line.First->is(TT_ObjCMethodSpecifier)) {
+ Tok->Type = TT_ObjCMethodExpr;
+ Tok->Previous->Type = TT_SelectorName;
+ if (Tok->Previous->ColumnWidth >
+ Contexts.back().LongestObjCSelectorName) {
+ Contexts.back().LongestObjCSelectorName = Tok->Previous->ColumnWidth;
+ }
+ if (!Contexts.back().FirstObjCSelectorName)
+ Contexts.back().FirstObjCSelectorName = Tok->Previous;
+ } else if (Contexts.back().ColonIsForRangeExpr) {
+ Tok->Type = TT_RangeBasedForLoopColon;
+ } else if (CurrentToken && CurrentToken->is(tok::numeric_constant)) {
+ Tok->Type = TT_BitFieldColon;
+ } else if (Contexts.size() == 1 &&
+ !Line.First->isOneOf(tok::kw_enum, tok::kw_case)) {
+ if (Tok->Previous->is(tok::r_paren))
+ Tok->Type = TT_CtorInitializerColon;
+ else
+ Tok->Type = TT_InheritanceColon;
+ } else if (Tok->Previous->is(tok::identifier) && Tok->Next &&
+ Tok->Next->isOneOf(tok::r_paren, tok::comma)) {
+ // This handles a special macro in ObjC code where selectors including
+ // the colon are passed as macro arguments.
+ Tok->Type = TT_ObjCMethodExpr;
+ } else if (Contexts.back().ContextKind == tok::l_paren) {
+ Tok->Type = TT_InlineASMColon;
+ }
+ break;
+ case tok::kw_if:
+ case tok::kw_while:
+ if (CurrentToken && CurrentToken->is(tok::l_paren)) {
+ next();
+ if (!parseParens(/*LookForDecls=*/true))
+ return false;
+ }
+ break;
+ case tok::kw_for:
+ Contexts.back().ColonIsForRangeExpr = true;
+ next();
+ if (!parseParens())
+ return false;
+ break;
+ case tok::l_paren:
+ if (!parseParens())
+ return false;
+ if (Line.MustBeDeclaration && Contexts.size() == 1 &&
+ !Contexts.back().IsExpression && Line.First->isNot(TT_ObjCProperty) &&
+ (!Tok->Previous ||
+ !Tok->Previous->isOneOf(tok::kw_decltype, TT_LeadingJavaAnnotation)))
+ Line.MightBeFunctionDecl = true;
+ break;
+ case tok::l_square:
+ if (!parseSquare())
+ return false;
+ break;
+ case tok::l_brace:
+ if (!parseBrace())
+ return false;
+ break;
+ case tok::less:
+ if (!NonTemplateLess.count(Tok) &&
+ (!Tok->Previous ||
+ (!Tok->Previous->Tok.isLiteral() &&
+ !(Tok->Previous->is(tok::r_paren) && Contexts.size() > 1))) &&
+ parseAngle()) {
+ Tok->Type = TT_TemplateOpener;
+ } else {
+ Tok->Type = TT_BinaryOperator;
+ NonTemplateLess.insert(Tok);
+ CurrentToken = Tok;
+ next();
+ }
+ break;
+ case tok::r_paren:
+ case tok::r_square:
+ return false;
+ case tok::r_brace:
+ // Lines can start with '}'.
+ if (Tok->Previous)
+ return false;
+ break;
+ case tok::greater:
+ Tok->Type = TT_BinaryOperator;
+ break;
+ case tok::kw_operator:
+ while (CurrentToken &&
+ !CurrentToken->isOneOf(tok::l_paren, tok::semi, tok::r_paren)) {
+ if (CurrentToken->isOneOf(tok::star, tok::amp))
+ CurrentToken->Type = TT_PointerOrReference;
+ consumeToken();
+ if (CurrentToken && CurrentToken->Previous->is(TT_BinaryOperator))
+ CurrentToken->Previous->Type = TT_OverloadedOperator;
+ }
+ if (CurrentToken) {
+ CurrentToken->Type = TT_OverloadedOperatorLParen;
+ if (CurrentToken->Previous->is(TT_BinaryOperator))
+ CurrentToken->Previous->Type = TT_OverloadedOperator;
+ }
+ break;
+ case tok::question:
+ if (Style.Language == FormatStyle::LK_JavaScript && Tok->Next &&
+ Tok->Next->isOneOf(tok::semi, tok::colon, tok::r_paren,
+ tok::r_brace)) {
+ // Question marks before semicolons, colons, etc. indicate optional
+ // types (fields, parameters), e.g.
+ // function(x?: string, y?) {...}
+ // class X { y?; }
+ Tok->Type = TT_JsTypeOptionalQuestion;
+ break;
+ }
+ // Declarations cannot be conditional expressions, this can only be part
+ // of a type declaration.
+ if (Line.MustBeDeclaration &&
+ Style.Language == FormatStyle::LK_JavaScript)
+ break;
+ parseConditional();
+ break;
+ case tok::kw_template:
+ parseTemplateDeclaration();
+ break;
+ case tok::comma:
+ if (Contexts.back().InCtorInitializer)
+ Tok->Type = TT_CtorInitializerComma;
+ else if (Contexts.back().FirstStartOfName &&
+ (Contexts.size() == 1 || Line.First->is(tok::kw_for))) {
+ Contexts.back().FirstStartOfName->PartOfMultiVariableDeclStmt = true;
+ Line.IsMultiVariableDeclStmt = true;
+ }
+ if (Contexts.back().IsForEachMacro)
+ Contexts.back().IsExpression = true;
+ break;
+ default:
+ break;
+ }
+ return true;
+ }
+
+ void parseIncludeDirective() {
+ if (CurrentToken && CurrentToken->is(tok::less)) {
+ next();
+ while (CurrentToken) {
+ if (CurrentToken->isNot(tok::comment) || CurrentToken->Next)
+ CurrentToken->Type = TT_ImplicitStringLiteral;
+ next();
+ }
+ }
+ }
+
+ void parseWarningOrError() {
+ next();
+ // We still want to format the whitespace left of the first token of the
+ // warning or error.
+ next();
+ while (CurrentToken) {
+ CurrentToken->Type = TT_ImplicitStringLiteral;
+ next();
+ }
+ }
+
+ void parsePragma() {
+ next(); // Consume "pragma".
+ if (CurrentToken &&
+ CurrentToken->isOneOf(Keywords.kw_mark, Keywords.kw_option)) {
+ bool IsMark = CurrentToken->is(Keywords.kw_mark);
+ next(); // Consume "mark".
+ next(); // Consume first token (so we fix leading whitespace).
+ while (CurrentToken) {
+ if (IsMark || CurrentToken->Previous->is(TT_BinaryOperator))
+ CurrentToken->Type = TT_ImplicitStringLiteral;
+ next();
+ }
+ }
+ }
+
+ LineType parsePreprocessorDirective() {
+ LineType Type = LT_PreprocessorDirective;
+ next();
+ if (!CurrentToken)
+ return Type;
+ if (CurrentToken->Tok.is(tok::numeric_constant)) {
+ CurrentToken->SpacesRequiredBefore = 1;
+ return Type;
+ }
+ // Hashes in the middle of a line can lead to any strange token
+ // sequence.
+ if (!CurrentToken->Tok.getIdentifierInfo())
+ return Type;
+ switch (CurrentToken->Tok.getIdentifierInfo()->getPPKeywordID()) {
+ case tok::pp_include:
+ case tok::pp_include_next:
+ case tok::pp_import:
+ next();
+ parseIncludeDirective();
+ Type = LT_ImportStatement;
+ break;
+ case tok::pp_error:
+ case tok::pp_warning:
+ parseWarningOrError();
+ break;
+ case tok::pp_pragma:
+ parsePragma();
+ break;
+ case tok::pp_if:
+ case tok::pp_elif:
+ Contexts.back().IsExpression = true;
+ parseLine();
+ break;
+ default:
+ break;
+ }
+ while (CurrentToken)
+ next();
+ return Type;
+ }
+
+public:
+ LineType parseLine() {
+ NonTemplateLess.clear();
+ if (CurrentToken->is(tok::hash))
+ return parsePreprocessorDirective();
+
+ // Directly allow to 'import <string-literal>' to support protocol buffer
+ // definitions (code.google.com/p/protobuf) or missing "#" (either way we
+ // should not break the line).
+ IdentifierInfo *Info = CurrentToken->Tok.getIdentifierInfo();
+ if ((Style.Language == FormatStyle::LK_Java &&
+ CurrentToken->is(Keywords.kw_package)) ||
+ (Info && Info->getPPKeywordID() == tok::pp_import &&
+ CurrentToken->Next &&
+ CurrentToken->Next->isOneOf(tok::string_literal, tok::identifier,
+ tok::kw_static))) {
+ next();
+ parseIncludeDirective();
+ return LT_ImportStatement;
+ }
+
+ // If this line starts and ends in '<' and '>', respectively, it is likely
+ // part of "#define <a/b.h>".
+ if (CurrentToken->is(tok::less) && Line.Last->is(tok::greater)) {
+ parseIncludeDirective();
+ return LT_ImportStatement;
+ }
+
+ // In .proto files, top-level options are very similar to import statements
+ // and should not be line-wrapped.
+ if (Style.Language == FormatStyle::LK_Proto && Line.Level == 0 &&
+ CurrentToken->is(Keywords.kw_option)) {
+ next();
+ if (CurrentToken && CurrentToken->is(tok::identifier))
+ return LT_ImportStatement;
+ }
+
+ bool KeywordVirtualFound = false;
+ bool ImportStatement = false;
+ while (CurrentToken) {
+ if (CurrentToken->is(tok::kw_virtual))
+ KeywordVirtualFound = true;
+ if (IsImportStatement(*CurrentToken))
+ ImportStatement = true;
+ if (!consumeToken())
+ return LT_Invalid;
+ }
+ if (KeywordVirtualFound)
+ return LT_VirtualFunctionDecl;
+ if (ImportStatement)
+ return LT_ImportStatement;
+
+ if (Line.First->is(TT_ObjCMethodSpecifier)) {
+ if (Contexts.back().FirstObjCSelectorName)
+ Contexts.back().FirstObjCSelectorName->LongestObjCSelectorName =
+ Contexts.back().LongestObjCSelectorName;
+ return LT_ObjCMethodDecl;
+ }
+
+ return LT_Other;
+ }
+
+private:
+ bool IsImportStatement(const FormatToken &Tok) {
+ // FIXME: Closure-library specific stuff should not be hard-coded but be
+ // configurable.
+ return Style.Language == FormatStyle::LK_JavaScript &&
+ Tok.TokenText == "goog" && Tok.Next && Tok.Next->is(tok::period) &&
+ Tok.Next->Next && (Tok.Next->Next->TokenText == "module" ||
+ Tok.Next->Next->TokenText == "require" ||
+ Tok.Next->Next->TokenText == "provide") &&
+ Tok.Next->Next->Next && Tok.Next->Next->Next->is(tok::l_paren);
+ }
+
+ void resetTokenMetadata(FormatToken *Token) {
+ if (!Token)
+ return;
+
+ // Reset token type in case we have already looked at it and then
+ // recovered from an error (e.g. failure to find the matching >).
+ if (!CurrentToken->isOneOf(TT_LambdaLSquare, TT_ForEachMacro,
+ TT_FunctionLBrace, TT_ImplicitStringLiteral,
+ TT_InlineASMBrace, TT_RegexLiteral,
+ TT_TrailingReturnArrow))
+ CurrentToken->Type = TT_Unknown;
+ CurrentToken->Role.reset();
+ CurrentToken->MatchingParen = nullptr;
+ CurrentToken->FakeLParens.clear();
+ CurrentToken->FakeRParens = 0;
+ }
+
+ void next() {
+ if (CurrentToken) {
+ CurrentToken->NestingLevel = Contexts.size() - 1;
+ CurrentToken->BindingStrength = Contexts.back().BindingStrength;
+ modifyContext(*CurrentToken);
+ determineTokenType(*CurrentToken);
+ CurrentToken = CurrentToken->Next;
+ }
+
+ resetTokenMetadata(CurrentToken);
+ }
+
+ /// \brief A struct to hold information valid in a specific context, e.g.
+ /// a pair of parenthesis.
+ struct Context {
+ Context(tok::TokenKind ContextKind, unsigned BindingStrength,
+ bool IsExpression)
+ : ContextKind(ContextKind), BindingStrength(BindingStrength),
+ IsExpression(IsExpression) {}
+
+ tok::TokenKind ContextKind;
+ unsigned BindingStrength;
+ bool IsExpression;
+ unsigned LongestObjCSelectorName = 0;
+ bool ColonIsForRangeExpr = false;
+ bool ColonIsDictLiteral = false;
+ bool ColonIsObjCMethodExpr = false;
+ FormatToken *FirstObjCSelectorName = nullptr;
+ FormatToken *FirstStartOfName = nullptr;
+ bool CanBeExpression = true;
+ bool InTemplateArgument = false;
+ bool InCtorInitializer = false;
+ bool CaretFound = false;
+ bool IsForEachMacro = false;
+ };
+
+ /// \brief Puts a new \c Context onto the stack \c Contexts for the lifetime
+ /// of each instance.
+ struct ScopedContextCreator {
+ AnnotatingParser &P;
+
+ ScopedContextCreator(AnnotatingParser &P, tok::TokenKind ContextKind,
+ unsigned Increase)
+ : P(P) {
+ P.Contexts.push_back(Context(ContextKind,
+ P.Contexts.back().BindingStrength + Increase,
+ P.Contexts.back().IsExpression));
+ }
+
+ ~ScopedContextCreator() { P.Contexts.pop_back(); }
+ };
+
+ void modifyContext(const FormatToken &Current) {
+ if (Current.getPrecedence() == prec::Assignment &&
+ !Line.First->isOneOf(tok::kw_template, tok::kw_using) &&
+ (!Current.Previous || Current.Previous->isNot(tok::kw_operator))) {
+ Contexts.back().IsExpression = true;
+ if (!Line.First->is(TT_UnaryOperator)) {
+ for (FormatToken *Previous = Current.Previous;
+ Previous && !Previous->isOneOf(tok::comma, tok::semi);
+ Previous = Previous->Previous) {
+ if (Previous->isOneOf(tok::r_square, tok::r_paren)) {
+ Previous = Previous->MatchingParen;
+ if (!Previous)
+ break;
+ }
+ if (Previous->opensScope())
+ break;
+ if (Previous->isOneOf(TT_BinaryOperator, TT_UnaryOperator) &&
+ Previous->isOneOf(tok::star, tok::amp, tok::ampamp) &&
+ Previous->Previous && Previous->Previous->isNot(tok::equal))
+ Previous->Type = TT_PointerOrReference;
+ }
+ }
+ } else if (Current.is(tok::lessless) &&
+ (!Current.Previous || !Current.Previous->is(tok::kw_operator))) {
+ Contexts.back().IsExpression = true;
+ } else if (Current.isOneOf(tok::kw_return, tok::kw_throw)) {
+ Contexts.back().IsExpression = true;
+ } else if (Current.is(TT_TrailingReturnArrow)) {
+ Contexts.back().IsExpression = false;
+ } else if (Current.is(tok::l_paren) && !Line.MustBeDeclaration &&
+ !Line.InPPDirective &&
+ (!Current.Previous ||
+ Current.Previous->isNot(tok::kw_decltype))) {
+ bool ParametersOfFunctionType =
+ Current.Previous && Current.Previous->is(tok::r_paren) &&
+ Current.Previous->MatchingParen &&
+ Current.Previous->MatchingParen->is(TT_FunctionTypeLParen);
+ bool IsForOrCatch = Current.Previous &&
+ Current.Previous->isOneOf(tok::kw_for, tok::kw_catch);
+ Contexts.back().IsExpression = !ParametersOfFunctionType && !IsForOrCatch;
+ } else if (Current.isOneOf(tok::r_paren, tok::greater, tok::comma)) {
+ for (FormatToken *Previous = Current.Previous;
+ Previous && Previous->isOneOf(tok::star, tok::amp);
+ Previous = Previous->Previous)
+ Previous->Type = TT_PointerOrReference;
+ if (Line.MustBeDeclaration)
+ Contexts.back().IsExpression = Contexts.front().InCtorInitializer;
+ } else if (Current.Previous &&
+ Current.Previous->is(TT_CtorInitializerColon)) {
+ Contexts.back().IsExpression = true;
+ Contexts.back().InCtorInitializer = true;
+ } else if (Current.is(tok::kw_new)) {
+ Contexts.back().CanBeExpression = false;
+ } else if (Current.is(tok::semi) || Current.is(tok::exclaim)) {
+ // This should be the condition or increment in a for-loop.
+ Contexts.back().IsExpression = true;
+ }
+ }
+
+ void determineTokenType(FormatToken &Current) {
+ if (!Current.is(TT_Unknown))
+ // The token type is already known.
+ return;
+
+ // Line.MightBeFunctionDecl can only be true after the parentheses of a
+ // function declaration have been found. In this case, 'Current' is a
+ // trailing token of this declaration and thus cannot be a name.
+ if (Current.is(Keywords.kw_instanceof)) {
+ Current.Type = TT_BinaryOperator;
+ } else if (isStartOfName(Current) &&
+ (!Line.MightBeFunctionDecl || Current.NestingLevel != 0)) {
+ Contexts.back().FirstStartOfName = &Current;
+ Current.Type = TT_StartOfName;
+ } else if (Current.is(tok::kw_auto)) {
+ AutoFound = true;
+ } else if (Current.is(tok::arrow) &&
+ Style.Language == FormatStyle::LK_Java) {
+ Current.Type = TT_LambdaArrow;
+ } else if (Current.is(tok::arrow) && AutoFound && Line.MustBeDeclaration &&
+ Current.NestingLevel == 0) {
+ Current.Type = TT_TrailingReturnArrow;
+ } else if (Current.isOneOf(tok::star, tok::amp, tok::ampamp)) {
+ Current.Type =
+ determineStarAmpUsage(Current, Contexts.back().CanBeExpression &&
+ Contexts.back().IsExpression,
+ Contexts.back().InTemplateArgument);
+ } else if (Current.isOneOf(tok::minus, tok::plus, tok::caret)) {
+ Current.Type = determinePlusMinusCaretUsage(Current);
+ if (Current.is(TT_UnaryOperator) && Current.is(tok::caret))
+ Contexts.back().CaretFound = true;
+ } else if (Current.isOneOf(tok::minusminus, tok::plusplus)) {
+ Current.Type = determineIncrementUsage(Current);
+ } else if (Current.isOneOf(tok::exclaim, tok::tilde)) {
+ Current.Type = TT_UnaryOperator;
+ } else if (Current.is(tok::question)) {
+ if (Style.Language == FormatStyle::LK_JavaScript &&
+ Line.MustBeDeclaration) {
+ // In JavaScript, `interface X { foo?(): bar; }` is an optional method
+ // on the interface, not a ternary expression.
+ Current.Type = TT_JsTypeOptionalQuestion;
+ } else {
+ Current.Type = TT_ConditionalExpr;
+ }
+ } else if (Current.isBinaryOperator() &&
+ (!Current.Previous || Current.Previous->isNot(tok::l_square))) {
+ Current.Type = TT_BinaryOperator;
+ } else if (Current.is(tok::comment)) {
+ if (Current.TokenText.startswith("/*")) {
+ if (Current.TokenText.endswith("*/"))
+ Current.Type = TT_BlockComment;
+ else
+ // The lexer has for some reason determined a comment here. But we
+ // cannot really handle it, if it isn't properly terminated.
+ Current.Tok.setKind(tok::unknown);
+ } else {
+ Current.Type = TT_LineComment;
+ }
+ } else if (Current.is(tok::r_paren)) {
+ if (rParenEndsCast(Current))
+ Current.Type = TT_CastRParen;
+ if (Current.MatchingParen && Current.Next &&
+ !Current.Next->isBinaryOperator() &&
+ !Current.Next->isOneOf(tok::semi, tok::colon, tok::l_brace))
+ if (FormatToken *BeforeParen = Current.MatchingParen->Previous)
+ if (BeforeParen->is(tok::identifier) &&
+ BeforeParen->TokenText == BeforeParen->TokenText.upper() &&
+ (!BeforeParen->Previous ||
+ BeforeParen->Previous->ClosesTemplateDeclaration))
+ Current.Type = TT_FunctionAnnotationRParen;
+ } else if (Current.is(tok::at) && Current.Next) {
+ if (Current.Next->isStringLiteral()) {
+ Current.Type = TT_ObjCStringLiteral;
+ } else {
+ switch (Current.Next->Tok.getObjCKeywordID()) {
+ case tok::objc_interface:
+ case tok::objc_implementation:
+ case tok::objc_protocol:
+ Current.Type = TT_ObjCDecl;
+ break;
+ case tok::objc_property:
+ Current.Type = TT_ObjCProperty;
+ break;
+ default:
+ break;
+ }
+ }
+ } else if (Current.is(tok::period)) {
+ FormatToken *PreviousNoComment = Current.getPreviousNonComment();
+ if (PreviousNoComment &&
+ PreviousNoComment->isOneOf(tok::comma, tok::l_brace))
+ Current.Type = TT_DesignatedInitializerPeriod;
+ else if (Style.Language == FormatStyle::LK_Java && Current.Previous &&
+ Current.Previous->isOneOf(TT_JavaAnnotation,
+ TT_LeadingJavaAnnotation)) {
+ Current.Type = Current.Previous->Type;
+ }
+ } else if (Current.isOneOf(tok::identifier, tok::kw_const) &&
+ Current.Previous &&
+ !Current.Previous->isOneOf(tok::equal, tok::at) &&
+ Line.MightBeFunctionDecl && Contexts.size() == 1) {
+ // Line.MightBeFunctionDecl can only be true after the parentheses of a
+ // function declaration have been found.
+ Current.Type = TT_TrailingAnnotation;
+ } else if ((Style.Language == FormatStyle::LK_Java ||
+ Style.Language == FormatStyle::LK_JavaScript) &&
+ Current.Previous) {
+ if (Current.Previous->is(tok::at) &&
+ Current.isNot(Keywords.kw_interface)) {
+ const FormatToken &AtToken = *Current.Previous;
+ const FormatToken *Previous = AtToken.getPreviousNonComment();
+ if (!Previous || Previous->is(TT_LeadingJavaAnnotation))
+ Current.Type = TT_LeadingJavaAnnotation;
+ else
+ Current.Type = TT_JavaAnnotation;
+ } else if (Current.Previous->is(tok::period) &&
+ Current.Previous->isOneOf(TT_JavaAnnotation,
+ TT_LeadingJavaAnnotation)) {
+ Current.Type = Current.Previous->Type;
+ }
+ }
+ }
+
+ /// \brief Take a guess at whether \p Tok starts a name of a function or
+ /// variable declaration.
+ ///
+ /// This is a heuristic based on whether \p Tok is an identifier following
+ /// something that is likely a type.
+ bool isStartOfName(const FormatToken &Tok) {
+ if (Tok.isNot(tok::identifier) || !Tok.Previous)
+ return false;
+
+ if (Tok.Previous->is(TT_LeadingJavaAnnotation))
+ return false;
+
+ // Skip "const" as it does not have an influence on whether this is a name.
+ FormatToken *PreviousNotConst = Tok.Previous;
+ while (PreviousNotConst && PreviousNotConst->is(tok::kw_const))
+ PreviousNotConst = PreviousNotConst->Previous;
+
+ if (!PreviousNotConst)
+ return false;
+
+ bool IsPPKeyword = PreviousNotConst->is(tok::identifier) &&
+ PreviousNotConst->Previous &&
+ PreviousNotConst->Previous->is(tok::hash);
+
+ if (PreviousNotConst->is(TT_TemplateCloser))
+ return PreviousNotConst && PreviousNotConst->MatchingParen &&
+ PreviousNotConst->MatchingParen->Previous &&
+ PreviousNotConst->MatchingParen->Previous->isNot(tok::period) &&
+ PreviousNotConst->MatchingParen->Previous->isNot(tok::kw_template);
+
+ if (PreviousNotConst->is(tok::r_paren) && PreviousNotConst->MatchingParen &&
+ PreviousNotConst->MatchingParen->Previous &&
+ PreviousNotConst->MatchingParen->Previous->is(tok::kw_decltype))
+ return true;
+
+ return (!IsPPKeyword && PreviousNotConst->is(tok::identifier)) ||
+ PreviousNotConst->is(TT_PointerOrReference) ||
+ PreviousNotConst->isSimpleTypeSpecifier();
+ }
+
+ /// \brief Determine whether ')' is ending a cast.
+ bool rParenEndsCast(const FormatToken &Tok) {
+ FormatToken *LeftOfParens = nullptr;
+ if (Tok.MatchingParen)
+ LeftOfParens = Tok.MatchingParen->getPreviousNonComment();
+ if (LeftOfParens && LeftOfParens->is(tok::r_paren) &&
+ LeftOfParens->MatchingParen)
+ LeftOfParens = LeftOfParens->MatchingParen->Previous;
+ if (LeftOfParens && LeftOfParens->is(tok::r_square) &&
+ LeftOfParens->MatchingParen &&
+ LeftOfParens->MatchingParen->is(TT_LambdaLSquare))
+ return false;
+ if (Tok.Next) {
+ if (Tok.Next->is(tok::question))
+ return false;
+ if (Style.Language == FormatStyle::LK_JavaScript &&
+ Tok.Next->is(Keywords.kw_in))
+ return false;
+ if (Style.Language == FormatStyle::LK_Java && Tok.Next->is(tok::l_paren))
+ return true;
+ }
+ bool IsCast = false;
+ bool ParensAreEmpty = Tok.Previous == Tok.MatchingParen;
+ bool ParensAreType =
+ !Tok.Previous ||
+ Tok.Previous->isOneOf(TT_PointerOrReference, TT_TemplateCloser) ||
+ Tok.Previous->isSimpleTypeSpecifier();
+ bool ParensCouldEndDecl =
+ Tok.Next && Tok.Next->isOneOf(tok::equal, tok::semi, tok::l_brace);
+ bool IsSizeOfOrAlignOf =
+ LeftOfParens && LeftOfParens->isOneOf(tok::kw_sizeof, tok::kw_alignof);
+ if (ParensAreType && !ParensCouldEndDecl && !IsSizeOfOrAlignOf &&
+ (Contexts.size() > 1 && Contexts[Contexts.size() - 2].IsExpression))
+ IsCast = true;
+ else if (Tok.Next && Tok.Next->isNot(tok::string_literal) &&
+ (Tok.Next->Tok.isLiteral() ||
+ Tok.Next->isOneOf(tok::kw_sizeof, tok::kw_alignof)))
+ IsCast = true;
+ // If there is an identifier after the (), it is likely a cast, unless
+ // there is also an identifier before the ().
+ else if (LeftOfParens && Tok.Next &&
+ (LeftOfParens->Tok.getIdentifierInfo() == nullptr ||
+ LeftOfParens->is(tok::kw_return)) &&
+ !LeftOfParens->isOneOf(TT_OverloadedOperator, tok::at,
+ TT_TemplateCloser)) {
+ if (Tok.Next->isOneOf(tok::identifier, tok::numeric_constant)) {
+ IsCast = true;
+ } else {
+ // Use heuristics to recognize c style casting.
+ FormatToken *Prev = Tok.Previous;
+ if (Prev && Prev->isOneOf(tok::amp, tok::star))
+ Prev = Prev->Previous;
+
+ if (Prev && Tok.Next && Tok.Next->Next) {
+ bool NextIsUnary = Tok.Next->isUnaryOperator() ||
+ Tok.Next->isOneOf(tok::amp, tok::star);
+ IsCast =
+ NextIsUnary && !Tok.Next->is(tok::plus) &&
+ Tok.Next->Next->isOneOf(tok::identifier, tok::numeric_constant);
+ }
+
+ for (; Prev != Tok.MatchingParen; Prev = Prev->Previous) {
+ if (!Prev ||
+ !Prev->isOneOf(tok::kw_const, tok::identifier, tok::coloncolon)) {
+ IsCast = false;
+ break;
+ }
+ }
+ }
+ }
+ return IsCast && !ParensAreEmpty;
+ }
+
+ /// \brief Return the type of the given token assuming it is * or &.
+ TokenType determineStarAmpUsage(const FormatToken &Tok, bool IsExpression,
+ bool InTemplateArgument) {
+ if (Style.Language == FormatStyle::LK_JavaScript)
+ return TT_BinaryOperator;
+
+ const FormatToken *PrevToken = Tok.getPreviousNonComment();
+ if (!PrevToken)
+ return TT_UnaryOperator;
+
+ const FormatToken *NextToken = Tok.getNextNonComment();
+ if (!NextToken ||
+ (NextToken->is(tok::l_brace) && !NextToken->getNextNonComment()))
+ return TT_Unknown;
+
+ if (PrevToken->is(tok::coloncolon))
+ return TT_PointerOrReference;
+
+ if (PrevToken->isOneOf(tok::l_paren, tok::l_square, tok::l_brace,
+ tok::comma, tok::semi, tok::kw_return, tok::colon,
+ tok::equal, tok::kw_delete, tok::kw_sizeof) ||
+ PrevToken->isOneOf(TT_BinaryOperator, TT_ConditionalExpr,
+ TT_UnaryOperator, TT_CastRParen))
+ return TT_UnaryOperator;
+
+ if (NextToken->is(tok::l_square) && NextToken->isNot(TT_LambdaLSquare))
+ return TT_PointerOrReference;
+ if (NextToken->isOneOf(tok::kw_operator, tok::comma, tok::semi))
+ return TT_PointerOrReference;
+
+ if (PrevToken->is(tok::r_paren) && PrevToken->MatchingParen &&
+ PrevToken->MatchingParen->Previous &&
+ PrevToken->MatchingParen->Previous->isOneOf(tok::kw_typeof,
+ tok::kw_decltype))
+ return TT_PointerOrReference;
+
+ if (PrevToken->Tok.isLiteral() ||
+ PrevToken->isOneOf(tok::r_paren, tok::r_square, tok::kw_true,
+ tok::kw_false, tok::r_brace) ||
+ NextToken->Tok.isLiteral() ||
+ NextToken->isOneOf(tok::kw_true, tok::kw_false) ||
+ NextToken->isUnaryOperator() ||
+ // If we know we're in a template argument, there are no named
+ // declarations. Thus, having an identifier on the right-hand side
+ // indicates a binary operator.
+ (InTemplateArgument && NextToken->Tok.isAnyIdentifier()))
+ return TT_BinaryOperator;
+
+ // "&&(" is quite unlikely to be two successive unary "&".
+ if (Tok.is(tok::ampamp) && NextToken && NextToken->is(tok::l_paren))
+ return TT_BinaryOperator;
+
+ // This catches some cases where evaluation order is used as control flow:
+ // aaa && aaa->f();
+ const FormatToken *NextNextToken = NextToken->getNextNonComment();
+ if (NextNextToken && NextNextToken->is(tok::arrow))
+ return TT_BinaryOperator;
+
+ // It is very unlikely that we are going to find a pointer or reference type
+ // definition on the RHS of an assignment.
+ if (IsExpression && !Contexts.back().CaretFound)
+ return TT_BinaryOperator;
+
+ return TT_PointerOrReference;
+ }
+
+ TokenType determinePlusMinusCaretUsage(const FormatToken &Tok) {
+ const FormatToken *PrevToken = Tok.getPreviousNonComment();
+ if (!PrevToken || PrevToken->is(TT_CastRParen))
+ return TT_UnaryOperator;
+
+ // Use heuristics to recognize unary operators.
+ if (PrevToken->isOneOf(tok::equal, tok::l_paren, tok::comma, tok::l_square,
+ tok::question, tok::colon, tok::kw_return,
+ tok::kw_case, tok::at, tok::l_brace))
+ return TT_UnaryOperator;
+
+ // There can't be two consecutive binary operators.
+ if (PrevToken->is(TT_BinaryOperator))
+ return TT_UnaryOperator;
+
+ // Fall back to marking the token as binary operator.
+ return TT_BinaryOperator;
+ }
+
+ /// \brief Determine whether ++/-- are pre- or post-increments/-decrements.
+ TokenType determineIncrementUsage(const FormatToken &Tok) {
+ const FormatToken *PrevToken = Tok.getPreviousNonComment();
+ if (!PrevToken || PrevToken->is(TT_CastRParen))
+ return TT_UnaryOperator;
+ if (PrevToken->isOneOf(tok::r_paren, tok::r_square, tok::identifier))
+ return TT_TrailingUnaryOperator;
+
+ return TT_UnaryOperator;
+ }
+
+ SmallVector<Context, 8> Contexts;
+
+ const FormatStyle &Style;
+ AnnotatedLine &Line;
+ FormatToken *CurrentToken;
+ bool AutoFound;
+ const AdditionalKeywords &Keywords;
+
+ // Set of "<" tokens that do not open a template parameter list. If parseAngle
+ // determines that a specific token can't be a template opener, it will make
+ // same decision irrespective of the decisions for tokens leading up to it.
+ // Store this information to prevent this from causing exponential runtime.
+ llvm::SmallPtrSet<FormatToken *, 16> NonTemplateLess;
+};
+
+static const int PrecedenceUnaryOperator = prec::PointerToMember + 1;
+static const int PrecedenceArrowAndPeriod = prec::PointerToMember + 2;
+
+/// \brief Parses binary expressions by inserting fake parenthesis based on
+/// operator precedence.
+class ExpressionParser {
+public:
+ ExpressionParser(const FormatStyle &Style, const AdditionalKeywords &Keywords,
+ AnnotatedLine &Line)
+ : Style(Style), Keywords(Keywords), Current(Line.First) {}
+
+ /// \brief Parse expressions with the given operatore precedence.
+ void parse(int Precedence = 0) {
+ // Skip 'return' and ObjC selector colons as they are not part of a binary
+ // expression.
+ while (Current && (Current->is(tok::kw_return) ||
+ (Current->is(tok::colon) &&
+ Current->isOneOf(TT_ObjCMethodExpr, TT_DictLiteral))))
+ next();
+
+ if (!Current || Precedence > PrecedenceArrowAndPeriod)
+ return;
+
+ // Conditional expressions need to be parsed separately for proper nesting.
+ if (Precedence == prec::Conditional) {
+ parseConditionalExpr();
+ return;
+ }
+
+ // Parse unary operators, which all have a higher precedence than binary
+ // operators.
+ if (Precedence == PrecedenceUnaryOperator) {
+ parseUnaryOperator();
+ return;
+ }
+
+ FormatToken *Start = Current;
+ FormatToken *LatestOperator = nullptr;
+ unsigned OperatorIndex = 0;
+
+ while (Current) {
+ // Consume operators with higher precedence.
+ parse(Precedence + 1);
+
+ int CurrentPrecedence = getCurrentPrecedence();
+
+ if (Current && Current->is(TT_SelectorName) &&
+ Precedence == CurrentPrecedence) {
+ if (LatestOperator)
+ addFakeParenthesis(Start, prec::Level(Precedence));
+ Start = Current;
+ }
+
+ // At the end of the line or when an operator with higher precedence is
+ // found, insert fake parenthesis and return.
+ if (!Current || (Current->closesScope() && Current->MatchingParen) ||
+ (CurrentPrecedence != -1 && CurrentPrecedence < Precedence) ||
+ (CurrentPrecedence == prec::Conditional &&
+ Precedence == prec::Assignment && Current->is(tok::colon))) {
+ break;
+ }
+
+ // Consume scopes: (), [], <> and {}
+ if (Current->opensScope()) {
+ while (Current && !Current->closesScope()) {
+ next();
+ parse();
+ }
+ next();
+ } else {
+ // Operator found.
+ if (CurrentPrecedence == Precedence) {
+ LatestOperator = Current;
+ Current->OperatorIndex = OperatorIndex;
+ ++OperatorIndex;
+ }
+ next(/*SkipPastLeadingComments=*/Precedence > 0);
+ }
+ }
+
+ if (LatestOperator && (Current || Precedence > 0)) {
+ LatestOperator->LastOperator = true;
+ if (Precedence == PrecedenceArrowAndPeriod) {
+ // Call expressions don't have a binary operator precedence.
+ addFakeParenthesis(Start, prec::Unknown);
+ } else {
+ addFakeParenthesis(Start, prec::Level(Precedence));
+ }
+ }
+ }
+
+private:
+ /// \brief Gets the precedence (+1) of the given token for binary operators
+ /// and other tokens that we treat like binary operators.
+ int getCurrentPrecedence() {
+ if (Current) {
+ const FormatToken *NextNonComment = Current->getNextNonComment();
+ if (Current->is(TT_ConditionalExpr))
+ return prec::Conditional;
+ else if (NextNonComment && NextNonComment->is(tok::colon) &&
+ NextNonComment->is(TT_DictLiteral))
+ return prec::Comma;
+ else if (Current->is(TT_LambdaArrow))
+ return prec::Comma;
+ else if (Current->isOneOf(tok::semi, TT_InlineASMColon,
+ TT_SelectorName) ||
+ (Current->is(tok::comment) && NextNonComment &&
+ NextNonComment->is(TT_SelectorName)))
+ return 0;
+ else if (Current->is(TT_RangeBasedForLoopColon))
+ return prec::Comma;
+ else if (Current->is(TT_BinaryOperator) || Current->is(tok::comma))
+ return Current->getPrecedence();
+ else if (Current->isOneOf(tok::period, tok::arrow))
+ return PrecedenceArrowAndPeriod;
+ else if (Style.Language == FormatStyle::LK_Java &&
+ Current->isOneOf(Keywords.kw_extends, Keywords.kw_implements,
+ Keywords.kw_throws))
+ return 0;
+ }
+ return -1;
+ }
+
+ void addFakeParenthesis(FormatToken *Start, prec::Level Precedence) {
+ Start->FakeLParens.push_back(Precedence);
+ if (Precedence > prec::Unknown)
+ Start->StartsBinaryExpression = true;
+ if (Current) {
+ FormatToken *Previous = Current->Previous;
+ while (Previous->is(tok::comment) && Previous->Previous)
+ Previous = Previous->Previous;
+ ++Previous->FakeRParens;
+ if (Precedence > prec::Unknown)
+ Previous->EndsBinaryExpression = true;
+ }
+ }
+
+ /// \brief Parse unary operator expressions and surround them with fake
+ /// parentheses if appropriate.
+ void parseUnaryOperator() {
+ if (!Current || Current->isNot(TT_UnaryOperator)) {
+ parse(PrecedenceArrowAndPeriod);
+ return;
+ }
+
+ FormatToken *Start = Current;
+ next();
+ parseUnaryOperator();
+
+ // The actual precedence doesn't matter.
+ addFakeParenthesis(Start, prec::Unknown);
+ }
+
+ void parseConditionalExpr() {
+ while (Current && Current->isTrailingComment()) {
+ next();
+ }
+ FormatToken *Start = Current;
+ parse(prec::LogicalOr);
+ if (!Current || !Current->is(tok::question))
+ return;
+ next();
+ parse(prec::Assignment);
+ if (!Current || Current->isNot(TT_ConditionalExpr))
+ return;
+ next();
+ parse(prec::Assignment);
+ addFakeParenthesis(Start, prec::Conditional);
+ }
+
+ void next(bool SkipPastLeadingComments = true) {
+ if (Current)
+ Current = Current->Next;
+ while (Current &&
+ (Current->NewlinesBefore == 0 || SkipPastLeadingComments) &&
+ Current->isTrailingComment())
+ Current = Current->Next;
+ }
+
+ const FormatStyle &Style;
+ const AdditionalKeywords &Keywords;
+ FormatToken *Current;
+};
+
+} // end anonymous namespace
+
+void TokenAnnotator::setCommentLineLevels(
+ SmallVectorImpl<AnnotatedLine *> &Lines) {
+ const AnnotatedLine *NextNonCommentLine = nullptr;
+ for (SmallVectorImpl<AnnotatedLine *>::reverse_iterator I = Lines.rbegin(),
+ E = Lines.rend();
+ I != E; ++I) {
+ if (NextNonCommentLine && (*I)->First->is(tok::comment) &&
+ (*I)->First->Next == nullptr)
+ (*I)->Level = NextNonCommentLine->Level;
+ else
+ NextNonCommentLine = (*I)->First->isNot(tok::r_brace) ? (*I) : nullptr;
+
+ setCommentLineLevels((*I)->Children);
+ }
+}
+
+void TokenAnnotator::annotate(AnnotatedLine &Line) {
+ for (SmallVectorImpl<AnnotatedLine *>::iterator I = Line.Children.begin(),
+ E = Line.Children.end();
+ I != E; ++I) {
+ annotate(**I);
+ }
+ AnnotatingParser Parser(Style, Line, Keywords);
+ Line.Type = Parser.parseLine();
+ if (Line.Type == LT_Invalid)
+ return;
+
+ ExpressionParser ExprParser(Style, Keywords, Line);
+ ExprParser.parse();
+
+ if (Line.First->is(TT_ObjCMethodSpecifier))
+ Line.Type = LT_ObjCMethodDecl;
+ else if (Line.First->is(TT_ObjCDecl))
+ Line.Type = LT_ObjCDecl;
+ else if (Line.First->is(TT_ObjCProperty))
+ Line.Type = LT_ObjCProperty;
+
+ Line.First->SpacesRequiredBefore = 1;
+ Line.First->CanBreakBefore = Line.First->MustBreakBefore;
+}
+
+// This function heuristically determines whether 'Current' starts the name of a
+// function declaration.
+static bool isFunctionDeclarationName(const FormatToken &Current) {
+ if (!Current.is(TT_StartOfName) || Current.NestingLevel != 0)
+ return false;
+ const FormatToken *Next = Current.Next;
+ for (; Next; Next = Next->Next) {
+ if (Next->is(TT_TemplateOpener)) {
+ Next = Next->MatchingParen;
+ } else if (Next->is(tok::coloncolon)) {
+ Next = Next->Next;
+ if (!Next || !Next->is(tok::identifier))
+ return false;
+ } else if (Next->is(tok::l_paren)) {
+ break;
+ } else {
+ return false;
+ }
+ }
+ if (!Next)
+ return false;
+ assert(Next->is(tok::l_paren));
+ if (Next->Next == Next->MatchingParen)
+ return true;
+ for (const FormatToken *Tok = Next->Next; Tok && Tok != Next->MatchingParen;
+ Tok = Tok->Next) {
+ if (Tok->is(tok::kw_const) || Tok->isSimpleTypeSpecifier() ||
+ Tok->isOneOf(TT_PointerOrReference, TT_StartOfName))
+ return true;
+ if (Tok->isOneOf(tok::l_brace, tok::string_literal, TT_ObjCMethodExpr) ||
+ Tok->Tok.isLiteral())
+ return false;
+ }
+ return false;
+}
+
+void TokenAnnotator::calculateFormattingInformation(AnnotatedLine &Line) {
+ for (SmallVectorImpl<AnnotatedLine *>::iterator I = Line.Children.begin(),
+ E = Line.Children.end();
+ I != E; ++I) {
+ calculateFormattingInformation(**I);
+ }
+
+ Line.First->TotalLength =
+ Line.First->IsMultiline ? Style.ColumnLimit : Line.First->ColumnWidth;
+ if (!Line.First->Next)
+ return;
+ FormatToken *Current = Line.First->Next;
+ bool InFunctionDecl = Line.MightBeFunctionDecl;
+ while (Current) {
+ if (isFunctionDeclarationName(*Current))
+ Current->Type = TT_FunctionDeclarationName;
+ if (Current->is(TT_LineComment)) {
+ if (Current->Previous->BlockKind == BK_BracedInit &&
+ Current->Previous->opensScope())
+ Current->SpacesRequiredBefore = Style.Cpp11BracedListStyle ? 0 : 1;
+ else
+ Current->SpacesRequiredBefore = Style.SpacesBeforeTrailingComments;
+
+ // If we find a trailing comment, iterate backwards to determine whether
+ // it seems to relate to a specific parameter. If so, break before that
+ // parameter to avoid changing the comment's meaning. E.g. don't move 'b'
+ // to the previous line in:
+ // SomeFunction(a,
+ // b, // comment
+ // c);
+ if (!Current->HasUnescapedNewline) {
+ for (FormatToken *Parameter = Current->Previous; Parameter;
+ Parameter = Parameter->Previous) {
+ if (Parameter->isOneOf(tok::comment, tok::r_brace))
+ break;
+ if (Parameter->Previous && Parameter->Previous->is(tok::comma)) {
+ if (!Parameter->Previous->is(TT_CtorInitializerComma) &&
+ Parameter->HasUnescapedNewline)
+ Parameter->MustBreakBefore = true;
+ break;
+ }
+ }
+ }
+ } else if (Current->SpacesRequiredBefore == 0 &&
+ spaceRequiredBefore(Line, *Current)) {
+ Current->SpacesRequiredBefore = 1;
+ }
+
+ Current->MustBreakBefore =
+ Current->MustBreakBefore || mustBreakBefore(Line, *Current);
+
+ if (Style.AlwaysBreakAfterDefinitionReturnType && InFunctionDecl &&
+ Current->is(TT_FunctionDeclarationName) &&
+ !Line.Last->isOneOf(tok::semi, tok::comment)) // Only for definitions.
+ // FIXME: Line.Last points to other characters than tok::semi
+ // and tok::lbrace.
+ Current->MustBreakBefore = true;
+
+ Current->CanBreakBefore =
+ Current->MustBreakBefore || canBreakBefore(Line, *Current);
+ unsigned ChildSize = 0;
+ if (Current->Previous->Children.size() == 1) {
+ FormatToken &LastOfChild = *Current->Previous->Children[0]->Last;
+ ChildSize = LastOfChild.isTrailingComment() ? Style.ColumnLimit
+ : LastOfChild.TotalLength + 1;
+ }
+ const FormatToken *Prev = Current->Previous;
+ if (Current->MustBreakBefore || Prev->Children.size() > 1 ||
+ (Prev->Children.size() == 1 &&
+ Prev->Children[0]->First->MustBreakBefore) ||
+ Current->IsMultiline)
+ Current->TotalLength = Prev->TotalLength + Style.ColumnLimit;
+ else
+ Current->TotalLength = Prev->TotalLength + Current->ColumnWidth +
+ ChildSize + Current->SpacesRequiredBefore;
+
+ if (Current->is(TT_CtorInitializerColon))
+ InFunctionDecl = false;
+
+ // FIXME: Only calculate this if CanBreakBefore is true once static
+ // initializers etc. are sorted out.
+ // FIXME: Move magic numbers to a better place.
+ Current->SplitPenalty = 20 * Current->BindingStrength +
+ splitPenalty(Line, *Current, InFunctionDecl);
+
+ Current = Current->Next;
+ }
+
+ calculateUnbreakableTailLengths(Line);
+ for (Current = Line.First; Current != nullptr; Current = Current->Next) {
+ if (Current->Role)
+ Current->Role->precomputeFormattingInfos(Current);
+ }
+
+ DEBUG({ printDebugInfo(Line); });
+}
+
+void TokenAnnotator::calculateUnbreakableTailLengths(AnnotatedLine &Line) {
+ unsigned UnbreakableTailLength = 0;
+ FormatToken *Current = Line.Last;
+ while (Current) {
+ Current->UnbreakableTailLength = UnbreakableTailLength;
+ if (Current->CanBreakBefore ||
+ Current->isOneOf(tok::comment, tok::string_literal)) {
+ UnbreakableTailLength = 0;
+ } else {
+ UnbreakableTailLength +=
+ Current->ColumnWidth + Current->SpacesRequiredBefore;
+ }
+ Current = Current->Previous;
+ }
+}
+
+unsigned TokenAnnotator::splitPenalty(const AnnotatedLine &Line,
+ const FormatToken &Tok,
+ bool InFunctionDecl) {
+ const FormatToken &Left = *Tok.Previous;
+ const FormatToken &Right = Tok;
+
+ if (Left.is(tok::semi))
+ return 0;
+
+ if (Style.Language == FormatStyle::LK_Java) {
+ if (Right.isOneOf(Keywords.kw_extends, Keywords.kw_throws))
+ return 1;
+ if (Right.is(Keywords.kw_implements))
+ return 2;
+ if (Left.is(tok::comma) && Left.NestingLevel == 0)
+ return 3;
+ } else if (Style.Language == FormatStyle::LK_JavaScript) {
+ if (Right.is(Keywords.kw_function) && Left.isNot(tok::comma))
+ return 100;
+ }
+
+ if (Left.is(tok::comma) || (Right.is(tok::identifier) && Right.Next &&
+ Right.Next->is(TT_DictLiteral)))
+ return 1;
+ if (Right.is(tok::l_square)) {
+ if (Style.Language == FormatStyle::LK_Proto)
+ return 1;
+ // Slightly prefer formatting local lambda definitions like functions.
+ if (Right.is(TT_LambdaLSquare) && Left.is(tok::equal))
+ return 50;
+ if (!Right.isOneOf(TT_ObjCMethodExpr, TT_LambdaLSquare))
+ return 500;
+ }
+
+ if (Right.isOneOf(TT_StartOfName, TT_FunctionDeclarationName) ||
+ Right.is(tok::kw_operator)) {
+ if (Line.First->is(tok::kw_for) && Right.PartOfMultiVariableDeclStmt)
+ return 3;
+ if (Left.is(TT_StartOfName))
+ return 110;
+ if (InFunctionDecl && Right.NestingLevel == 0)
+ return Style.PenaltyReturnTypeOnItsOwnLine;
+ return 200;
+ }
+ if (Right.is(TT_PointerOrReference))
+ return 190;
+ if (Right.is(TT_TrailingReturnArrow))
+ return 110;
+ if (Left.is(tok::equal) && Right.is(tok::l_brace))
+ return 150;
+ if (Left.is(TT_CastRParen))
+ return 100;
+ if (Left.is(tok::coloncolon) ||
+ (Right.is(tok::period) && Style.Language == FormatStyle::LK_Proto))
+ return 500;
+ if (Left.isOneOf(tok::kw_class, tok::kw_struct))
+ return 5000;
+
+ if (Left.isOneOf(TT_RangeBasedForLoopColon, TT_InheritanceColon))
+ return 2;
+
+ if (Right.isMemberAccess()) {
+ if (Left.is(tok::r_paren) && Left.MatchingParen &&
+ Left.MatchingParen->ParameterCount > 0)
+ return 20; // Should be smaller than breaking at a nested comma.
+ return 150;
+ }
+
+ if (Right.is(TT_TrailingAnnotation) &&
+ (!Right.Next || Right.Next->isNot(tok::l_paren))) {
+ // Moving trailing annotations to the next line is fine for ObjC method
+ // declarations.
+ if (Line.First->is(TT_ObjCMethodSpecifier))
+
+ return 10;
+ // Generally, breaking before a trailing annotation is bad unless it is
+ // function-like. It seems to be especially preferable to keep standard
+ // annotations (i.e. "const", "final" and "override") on the same line.
+ // Use a slightly higher penalty after ")" so that annotations like
+ // "const override" are kept together.
+ bool is_short_annotation = Right.TokenText.size() < 10;
+ return (Left.is(tok::r_paren) ? 100 : 120) + (is_short_annotation ? 50 : 0);
+ }
+
+ // In for-loops, prefer breaking at ',' and ';'.
+ if (Line.First->is(tok::kw_for) && Left.is(tok::equal))
+ return 4;
+
+ // In Objective-C method expressions, prefer breaking before "param:" over
+ // breaking after it.
+ if (Right.is(TT_SelectorName))
+ return 0;
+ if (Left.is(tok::colon) && Left.is(TT_ObjCMethodExpr))
+ return Line.MightBeFunctionDecl ? 50 : 500;
+
+ if (Left.is(tok::l_paren) && InFunctionDecl && Style.AlignAfterOpenBracket)
+ return 100;
+ if (Left.is(tok::l_paren) && Left.Previous && Left.Previous->is(tok::kw_if))
+ return 1000;
+ if (Left.is(tok::equal) && InFunctionDecl)
+ return 110;
+ if (Right.is(tok::r_brace))
+ return 1;
+ if (Left.is(TT_TemplateOpener))
+ return 100;
+ if (Left.opensScope()) {
+ if (!Style.AlignAfterOpenBracket)
+ return 0;
+ return Left.ParameterCount > 1 ? Style.PenaltyBreakBeforeFirstCallParameter
+ : 19;
+ }
+ if (Left.is(TT_JavaAnnotation))
+ return 50;
+
+ if (Right.is(tok::lessless)) {
+ if (Left.is(tok::string_literal) &&
+ (!Right.LastOperator || Right.OperatorIndex != 1)) {
+ StringRef Content = Left.TokenText;
+ if (Content.startswith("\""))
+ Content = Content.drop_front(1);
+ if (Content.endswith("\""))
+ Content = Content.drop_back(1);
+ Content = Content.trim();
+ if (Content.size() > 1 &&
+ (Content.back() == ':' || Content.back() == '='))
+ return 25;
+ }
+ return 1; // Breaking at a << is really cheap.
+ }
+ if (Left.is(TT_ConditionalExpr))
+ return prec::Conditional;
+ prec::Level Level = Left.getPrecedence();
+ if (Level != prec::Unknown)
+ return Level;
+ Level = Right.getPrecedence();
+ if (Level != prec::Unknown)
+ return Level;
+
+ return 3;
+}
+
+bool TokenAnnotator::spaceRequiredBetween(const AnnotatedLine &Line,
+ const FormatToken &Left,
+ const FormatToken &Right) {
+ if (Left.is(tok::kw_return) && Right.isNot(tok::semi))
+ return true;
+ if (Style.ObjCSpaceAfterProperty && Line.Type == LT_ObjCProperty &&
+ Left.Tok.getObjCKeywordID() == tok::objc_property)
+ return true;
+ if (Right.is(tok::hashhash))
+ return Left.is(tok::hash);
+ if (Left.isOneOf(tok::hashhash, tok::hash))
+ return Right.is(tok::hash);
+ if (Left.is(tok::l_paren) && Right.is(tok::r_paren))
+ return Style.SpaceInEmptyParentheses;
+ if (Left.is(tok::l_paren) || Right.is(tok::r_paren))
+ return (Right.is(TT_CastRParen) ||
+ (Left.MatchingParen && Left.MatchingParen->is(TT_CastRParen)))
+ ? Style.SpacesInCStyleCastParentheses
+ : Style.SpacesInParentheses;
+ if (Right.isOneOf(tok::semi, tok::comma))
+ return false;
+ if (Right.is(tok::less) &&
+ (Left.is(tok::kw_template) ||
+ (Line.Type == LT_ObjCDecl && Style.ObjCSpaceBeforeProtocolList)))
+ return true;
+ if (Left.isOneOf(tok::exclaim, tok::tilde))
+ return false;
+ if (Left.is(tok::at) &&
+ Right.isOneOf(tok::identifier, tok::string_literal, tok::char_constant,
+ tok::numeric_constant, tok::l_paren, tok::l_brace,
+ tok::kw_true, tok::kw_false))
+ return false;
+ if (Left.is(tok::coloncolon))
+ return false;
+ if (Left.is(tok::less) || Right.isOneOf(tok::greater, tok::less))
+ return false;
+ if (Right.is(tok::ellipsis))
+ return Left.Tok.isLiteral();
+ if (Left.is(tok::l_square) && Right.is(tok::amp))
+ return false;
+ if (Right.is(TT_PointerOrReference))
+ return !(Left.is(tok::r_paren) && Left.MatchingParen &&
+ (Left.MatchingParen->is(TT_OverloadedOperatorLParen) ||
+ (Left.MatchingParen->Previous &&
+ Left.MatchingParen->Previous->is(
+ TT_FunctionDeclarationName)))) &&
+ (Left.Tok.isLiteral() ||
+ (!Left.isOneOf(TT_PointerOrReference, tok::l_paren) &&
+ (Style.PointerAlignment != FormatStyle::PAS_Left ||
+ Line.IsMultiVariableDeclStmt)));
+ if (Right.is(TT_FunctionTypeLParen) && Left.isNot(tok::l_paren) &&
+ (!Left.is(TT_PointerOrReference) ||
+ (Style.PointerAlignment != FormatStyle::PAS_Right &&
+ !Line.IsMultiVariableDeclStmt)))
+ return true;
+ if (Left.is(TT_PointerOrReference))
+ return Right.Tok.isLiteral() || Right.is(TT_BlockComment) ||
+ (!Right.isOneOf(TT_PointerOrReference, TT_ArraySubscriptLSquare,
+ tok::l_paren) &&
+ (Style.PointerAlignment != FormatStyle::PAS_Right &&
+ !Line.IsMultiVariableDeclStmt) &&
+ Left.Previous &&
+ !Left.Previous->isOneOf(tok::l_paren, tok::coloncolon));
+ if (Right.is(tok::star) && Left.is(tok::l_paren))
+ return false;
+ if (Left.is(tok::l_square))
+ return (Left.is(TT_ArrayInitializerLSquare) &&
+ Style.SpacesInContainerLiterals && Right.isNot(tok::r_square)) ||
+ (Left.is(TT_ArraySubscriptLSquare) && Style.SpacesInSquareBrackets &&
+ Right.isNot(tok::r_square));
+ if (Right.is(tok::r_square))
+ return Right.MatchingParen &&
+ ((Style.SpacesInContainerLiterals &&
+ Right.MatchingParen->is(TT_ArrayInitializerLSquare)) ||
+ (Style.SpacesInSquareBrackets &&
+ Right.MatchingParen->is(TT_ArraySubscriptLSquare)));
+ if (Right.is(tok::l_square) &&
+ !Right.isOneOf(TT_ObjCMethodExpr, TT_LambdaLSquare) &&
+ !Left.isOneOf(tok::numeric_constant, TT_DictLiteral))
+ return false;
+ if (Left.is(tok::colon))
+ return !Left.is(TT_ObjCMethodExpr);
+ if (Left.is(tok::l_brace) && Right.is(tok::r_brace))
+ return !Left.Children.empty(); // No spaces in "{}".
+ if ((Left.is(tok::l_brace) && Left.BlockKind != BK_Block) ||
+ (Right.is(tok::r_brace) && Right.MatchingParen &&
+ Right.MatchingParen->BlockKind != BK_Block))
+ return !Style.Cpp11BracedListStyle;
+ if (Left.is(TT_BlockComment))
+ return !Left.TokenText.endswith("=*/");
+ if (Right.is(tok::l_paren)) {
+ if (Left.is(tok::r_paren) && Left.is(TT_AttributeParen))
+ return true;
+ return Line.Type == LT_ObjCDecl || Left.is(tok::semi) ||
+ (Style.SpaceBeforeParens != FormatStyle::SBPO_Never &&
+ (Left.isOneOf(tok::kw_if, tok::kw_for, tok::kw_while,
+ tok::kw_switch, tok::kw_case, TT_ForEachMacro) ||
+ (Left.isOneOf(tok::kw_try, Keywords.kw___except, tok::kw_catch,
+ tok::kw_new, tok::kw_delete) &&
+ (!Left.Previous || Left.Previous->isNot(tok::period))))) ||
+ (Style.SpaceBeforeParens == FormatStyle::SBPO_Always &&
+ (Left.is(tok::identifier) || Left.isFunctionLikeKeyword() || Left.is(tok::r_paren)) &&
+ Line.Type != LT_PreprocessorDirective);
+ }
+ if (Left.is(tok::at) && Right.Tok.getObjCKeywordID() != tok::objc_not_keyword)
+ return false;
+ if (Right.is(TT_UnaryOperator))
+ return !Left.isOneOf(tok::l_paren, tok::l_square, tok::at) &&
+ (Left.isNot(tok::colon) || Left.isNot(TT_ObjCMethodExpr));
+ if ((Left.isOneOf(tok::identifier, tok::greater, tok::r_square,
+ tok::r_paren) ||
+ Left.isSimpleTypeSpecifier()) &&
+ Right.is(tok::l_brace) && Right.getNextNonComment() &&
+ Right.BlockKind != BK_Block)
+ return false;
+ if (Left.is(tok::period) || Right.is(tok::period))
+ return false;
+ if (Right.is(tok::hash) && Left.is(tok::identifier) && Left.TokenText == "L")
+ return false;
+ if (Left.is(TT_TemplateCloser) && Left.MatchingParen &&
+ Left.MatchingParen->Previous &&
+ Left.MatchingParen->Previous->is(tok::period))
+ // A.<B>DoSomething();
+ return false;
+ if (Left.is(TT_TemplateCloser) && Right.is(tok::l_square))
+ return false;
+ return true;
+}
+
+bool TokenAnnotator::spaceRequiredBefore(const AnnotatedLine &Line,
+ const FormatToken &Right) {
+ const FormatToken &Left = *Right.Previous;
+ if (Style.Language == FormatStyle::LK_Proto) {
+ if (Right.is(tok::period) &&
+ Left.isOneOf(Keywords.kw_optional, Keywords.kw_required,
+ Keywords.kw_repeated))
+ return true;
+ if (Right.is(tok::l_paren) &&
+ Left.isOneOf(Keywords.kw_returns, Keywords.kw_option))
+ return true;
+ } else if (Style.Language == FormatStyle::LK_JavaScript) {
+ if (Left.is(Keywords.kw_var))
+ return true;
+ if (Right.isOneOf(TT_JsTypeColon, TT_JsTypeOptionalQuestion))
+ return false;
+ if ((Left.is(tok::l_brace) || Right.is(tok::r_brace)) &&
+ Line.First->isOneOf(Keywords.kw_import, tok::kw_export))
+ return false;
+ if (Left.is(tok::ellipsis))
+ return false;
+ if (Left.is(TT_TemplateCloser) &&
+ !Right.isOneOf(tok::equal, tok::l_brace, tok::comma, tok::l_square,
+ Keywords.kw_implements, Keywords.kw_extends))
+ // Type assertions ('<type>expr') are not followed by whitespace. Other
+ // locations that should have whitespace following are identified by the
+ // above set of follower tokens.
+ return false;
+ } else if (Style.Language == FormatStyle::LK_Java) {
+ if (Left.is(tok::r_square) && Right.is(tok::l_brace))
+ return true;
+ if (Left.is(TT_LambdaArrow) || Right.is(TT_LambdaArrow))
+ return true;
+ if (Left.is(Keywords.kw_synchronized) && Right.is(tok::l_paren))
+ return Style.SpaceBeforeParens != FormatStyle::SBPO_Never;
+ if ((Left.isOneOf(tok::kw_static, tok::kw_public, tok::kw_private,
+ tok::kw_protected) ||
+ Left.isOneOf(Keywords.kw_final, Keywords.kw_abstract,
+ Keywords.kw_native)) &&
+ Right.is(TT_TemplateOpener))
+ return true;
+ }
+ if (Right.Tok.getIdentifierInfo() && Left.Tok.getIdentifierInfo())
+ return true; // Never ever merge two identifiers.
+ if (Left.is(TT_ImplicitStringLiteral))
+ return Right.WhitespaceRange.getBegin() != Right.WhitespaceRange.getEnd();
+ if (Line.Type == LT_ObjCMethodDecl) {
+ if (Left.is(TT_ObjCMethodSpecifier))
+ return true;
+ if (Left.is(tok::r_paren) && Right.is(tok::identifier))
+ // Don't space between ')' and <id>
+ return false;
+ }
+ if (Line.Type == LT_ObjCProperty &&
+ (Right.is(tok::equal) || Left.is(tok::equal)))
+ return false;
+
+ if (Right.is(TT_TrailingReturnArrow) || Left.is(TT_TrailingReturnArrow))
+ return true;
+ if (Left.is(tok::comma))
+ return true;
+ if (Right.is(tok::comma))
+ return false;
+ if (Right.isOneOf(TT_CtorInitializerColon, TT_ObjCBlockLParen))
+ return true;
+ if (Left.is(tok::kw_operator))
+ return Right.is(tok::coloncolon);
+ if (Right.is(TT_OverloadedOperatorLParen))
+ return false;
+ if (Right.is(tok::colon)) {
+ if (Line.First->isOneOf(tok::kw_case, tok::kw_default) ||
+ !Right.getNextNonComment() || Right.getNextNonComment()->is(tok::semi))
+ return false;
+ if (Right.is(TT_ObjCMethodExpr))
+ return false;
+ if (Left.is(tok::question))
+ return false;
+ if (Right.is(TT_InlineASMColon) && Left.is(tok::coloncolon))
+ return false;
+ if (Right.is(TT_DictLiteral))
+ return Style.SpacesInContainerLiterals;
+ return true;
+ }
+ if (Left.is(TT_UnaryOperator))
+ return Right.is(TT_BinaryOperator);
+
+ // If the next token is a binary operator or a selector name, we have
+ // incorrectly classified the parenthesis as a cast. FIXME: Detect correctly.
+ if (Left.is(TT_CastRParen))
+ return Style.SpaceAfterCStyleCast ||
+ Right.isOneOf(TT_BinaryOperator, TT_SelectorName);
+
+ if (Left.is(tok::greater) && Right.is(tok::greater)) {
+ return Right.is(TT_TemplateCloser) && Left.is(TT_TemplateCloser) &&
+ (Style.Standard != FormatStyle::LS_Cpp11 || Style.SpacesInAngles);
+ }
+ if (Right.isOneOf(tok::arrow, tok::period, tok::arrowstar, tok::periodstar) ||
+ Left.isOneOf(tok::arrow, tok::period, tok::arrowstar, tok::periodstar))
+ return false;
+ if (!Style.SpaceBeforeAssignmentOperators &&
+ Right.getPrecedence() == prec::Assignment)
+ return false;
+ if (Right.is(tok::coloncolon) && Left.isNot(tok::l_brace))
+ return (Left.is(TT_TemplateOpener) &&
+ Style.Standard == FormatStyle::LS_Cpp03) ||
+ !(Left.isOneOf(tok::identifier, tok::l_paren, tok::r_paren) ||
+ Left.isOneOf(TT_TemplateCloser, TT_TemplateOpener));
+ if ((Left.is(TT_TemplateOpener)) != (Right.is(TT_TemplateCloser)))
+ return Style.SpacesInAngles;
+ if ((Right.is(TT_BinaryOperator) && !Left.is(tok::l_paren)) ||
+ Left.isOneOf(TT_BinaryOperator, TT_ConditionalExpr))
+ return true;
+ if (Left.is(TT_TemplateCloser) && Right.is(tok::l_paren) &&
+ Right.isNot(TT_FunctionTypeLParen))
+ return Style.SpaceBeforeParens == FormatStyle::SBPO_Always;
+ if (Right.is(TT_TemplateOpener) && Left.is(tok::r_paren) &&
+ Left.MatchingParen && Left.MatchingParen->is(TT_OverloadedOperatorLParen))
+ return false;
+ if (Right.is(tok::less) && Left.isNot(tok::l_paren) &&
+ Line.First->is(tok::hash))
+ return true;
+ if (Right.is(TT_TrailingUnaryOperator))
+ return false;
+ if (Left.is(TT_RegexLiteral))
+ return false;
+ return spaceRequiredBetween(Line, Left, Right);
+}
+
+// Returns 'true' if 'Tok' is a brace we'd want to break before in Allman style.
+static bool isAllmanBrace(const FormatToken &Tok) {
+ return Tok.is(tok::l_brace) && Tok.BlockKind == BK_Block &&
+ !Tok.isOneOf(TT_ObjCBlockLBrace, TT_DictLiteral);
+}
+
+bool TokenAnnotator::mustBreakBefore(const AnnotatedLine &Line,
+ const FormatToken &Right) {
+ const FormatToken &Left = *Right.Previous;
+ if (Right.NewlinesBefore > 1)
+ return true;
+
+ // If the last token before a '}' is a comma or a trailing comment, the
+ // intention is to insert a line break after it in order to make shuffling
+ // around entries easier.
+ const FormatToken *BeforeClosingBrace = nullptr;
+ if (Left.isOneOf(tok::l_brace, TT_ArrayInitializerLSquare) &&
+ Left.BlockKind != BK_Block && Left.MatchingParen)
+ BeforeClosingBrace = Left.MatchingParen->Previous;
+ else if (Right.MatchingParen &&
+ Right.MatchingParen->isOneOf(tok::l_brace,
+ TT_ArrayInitializerLSquare))
+ BeforeClosingBrace = &Left;
+ if (BeforeClosingBrace && (BeforeClosingBrace->is(tok::comma) ||
+ BeforeClosingBrace->isTrailingComment()))
+ return true;
+
+ if (Right.is(tok::comment))
+ return Left.BlockKind != BK_BracedInit &&
+ Left.isNot(TT_CtorInitializerColon) &&
+ (Right.NewlinesBefore > 0 && Right.HasUnescapedNewline);
+ if (Left.isTrailingComment())
+ return true;
+ if (Left.isStringLiteral() &&
+ (Right.isStringLiteral() || Right.is(TT_ObjCStringLiteral)))
+ return true;
+ if (Right.Previous->IsUnterminatedLiteral)
+ return true;
+ if (Right.is(tok::lessless) && Right.Next &&
+ Right.Previous->is(tok::string_literal) &&
+ Right.Next->is(tok::string_literal))
+ return true;
+ if (Right.Previous->ClosesTemplateDeclaration &&
+ Right.Previous->MatchingParen &&
+ Right.Previous->MatchingParen->NestingLevel == 0 &&
+ Style.AlwaysBreakTemplateDeclarations)
+ return true;
+ if ((Right.isOneOf(TT_CtorInitializerComma, TT_CtorInitializerColon)) &&
+ Style.BreakConstructorInitializersBeforeComma &&
+ !Style.ConstructorInitializerAllOnOneLineOrOnePerLine)
+ return true;
+ if (Right.is(tok::string_literal) && Right.TokenText.startswith("R\""))
+ // Raw string literals are special wrt. line breaks. The author has made a
+ // deliberate choice and might have aligned the contents of the string
+ // literal accordingly. Thus, we try keep existing line breaks.
+ return Right.NewlinesBefore > 0;
+ if (Right.Previous->is(tok::l_brace) && Right.NestingLevel == 1 &&
+ Style.Language == FormatStyle::LK_Proto)
+ // Don't put enums onto single lines in protocol buffers.
+ return true;
+ if (Right.is(TT_InlineASMBrace))
+ return Right.HasUnescapedNewline;
+ if (Style.Language == FormatStyle::LK_JavaScript && Right.is(tok::r_brace) &&
+ Left.is(tok::l_brace) && !Left.Children.empty())
+ // Support AllowShortFunctionsOnASingleLine for JavaScript.
+ return Style.AllowShortFunctionsOnASingleLine == FormatStyle::SFS_None ||
+ (Left.NestingLevel == 0 && Line.Level == 0 &&
+ Style.AllowShortFunctionsOnASingleLine == FormatStyle::SFS_Inline);
+ if (isAllmanBrace(Left) || isAllmanBrace(Right))
+ return Style.BreakBeforeBraces == FormatStyle::BS_Allman ||
+ Style.BreakBeforeBraces == FormatStyle::BS_GNU;
+ if (Style.Language == FormatStyle::LK_Proto && Left.isNot(tok::l_brace) &&
+ Right.is(TT_SelectorName))
+ return true;
+ if (Left.is(TT_ObjCBlockLBrace) && !Style.AllowShortBlocksOnASingleLine)
+ return true;
+
+ if ((Style.Language == FormatStyle::LK_Java ||
+ Style.Language == FormatStyle::LK_JavaScript) &&
+ Left.is(TT_LeadingJavaAnnotation) &&
+ Right.isNot(TT_LeadingJavaAnnotation) && Right.isNot(tok::l_paren) &&
+ Line.Last->is(tok::l_brace))
+ return true;
+
+ if (Style.Language == FormatStyle::LK_JavaScript) {
+ // FIXME: This might apply to other languages and token kinds.
+ if (Right.is(tok::char_constant) && Left.is(tok::plus) && Left.Previous &&
+ Left.Previous->is(tok::char_constant))
+ return true;
+ if (Left.is(TT_DictLiteral) && Left.is(tok::l_brace) &&
+ Left.NestingLevel == 0 && Left.Previous &&
+ Left.Previous->is(tok::equal) &&
+ Line.First->isOneOf(tok::identifier, Keywords.kw_import,
+ tok::kw_export) &&
+ // kw_var is a pseudo-token that's a tok::identifier, so matches above.
+ !Line.First->is(Keywords.kw_var))
+ // Enum style object literal.
+ return true;
+ } else if (Style.Language == FormatStyle::LK_Java) {
+ if (Right.is(tok::plus) && Left.is(tok::string_literal) && Right.Next &&
+ Right.Next->is(tok::string_literal))
+ return true;
+ }
+
+ return false;
+}
+
+bool TokenAnnotator::canBreakBefore(const AnnotatedLine &Line,
+ const FormatToken &Right) {
+ const FormatToken &Left = *Right.Previous;
+
+ if (Style.Language == FormatStyle::LK_Java) {
+ if (Left.isOneOf(Keywords.kw_throws, Keywords.kw_extends,
+ Keywords.kw_implements))
+ return false;
+ if (Right.isOneOf(Keywords.kw_throws, Keywords.kw_extends,
+ Keywords.kw_implements))
+ return true;
+ }
+
+ if (Left.is(tok::at))
+ return false;
+ if (Left.Tok.getObjCKeywordID() == tok::objc_interface)
+ return false;
+ if (Left.isOneOf(TT_JavaAnnotation, TT_LeadingJavaAnnotation))
+ return !Right.is(tok::l_paren);
+ if (Right.is(TT_PointerOrReference))
+ return Line.IsMultiVariableDeclStmt ||
+ (Style.PointerAlignment == FormatStyle::PAS_Right &&
+ (!Right.Next || Right.Next->isNot(TT_FunctionDeclarationName)));
+ if (Right.isOneOf(TT_StartOfName, TT_FunctionDeclarationName) ||
+ Right.is(tok::kw_operator))
+ return true;
+ if (Left.is(TT_PointerOrReference))
+ return false;
+ if (Right.isTrailingComment())
+ // We rely on MustBreakBefore being set correctly here as we should not
+ // change the "binding" behavior of a comment.
+ // The first comment in a braced lists is always interpreted as belonging to
+ // the first list element. Otherwise, it should be placed outside of the
+ // list.
+ return Left.BlockKind == BK_BracedInit;
+ if (Left.is(tok::question) && Right.is(tok::colon))
+ return false;
+ if (Right.is(TT_ConditionalExpr) || Right.is(tok::question))
+ return Style.BreakBeforeTernaryOperators;
+ if (Left.is(TT_ConditionalExpr) || Left.is(tok::question))
+ return !Style.BreakBeforeTernaryOperators;
+ if (Right.is(TT_InheritanceColon))
+ return true;
+ if (Right.is(tok::colon) &&
+ !Right.isOneOf(TT_CtorInitializerColon, TT_InlineASMColon))
+ return false;
+ if (Left.is(tok::colon) && (Left.isOneOf(TT_DictLiteral, TT_ObjCMethodExpr)))
+ return true;
+ if (Right.is(TT_SelectorName) || (Right.is(tok::identifier) && Right.Next &&
+ Right.Next->is(TT_ObjCMethodExpr)))
+ return Left.isNot(tok::period); // FIXME: Properly parse ObjC calls.
+ if (Left.is(tok::r_paren) && Line.Type == LT_ObjCProperty)
+ return true;
+ if (Left.ClosesTemplateDeclaration)
+ return true;
+ if (Right.isOneOf(TT_RangeBasedForLoopColon, TT_OverloadedOperatorLParen,
+ TT_OverloadedOperator))
+ return false;
+ if (Left.is(TT_RangeBasedForLoopColon))
+ return true;
+ if (Right.is(TT_RangeBasedForLoopColon))
+ return false;
+ if (Left.isOneOf(TT_TemplateCloser, TT_UnaryOperator) ||
+ Left.is(tok::kw_operator))
+ return false;
+ if (Left.is(tok::equal) && !Right.isOneOf(tok::kw_default, tok::kw_delete) &&
+ Line.Type == LT_VirtualFunctionDecl)
+ return false;
+ if (Left.is(tok::l_paren) && Left.is(TT_AttributeParen))
+ return false;
+ if (Left.is(tok::l_paren) && Left.Previous &&
+ (Left.Previous->isOneOf(TT_BinaryOperator, TT_CastRParen)))
+ return false;
+ if (Right.is(TT_ImplicitStringLiteral))
+ return false;
+
+ if (Right.is(tok::r_paren) || Right.is(TT_TemplateCloser))
+ return false;
+
+ // We only break before r_brace if there was a corresponding break before
+ // the l_brace, which is tracked by BreakBeforeClosingBrace.
+ if (Right.is(tok::r_brace))
+ return Right.MatchingParen && Right.MatchingParen->BlockKind == BK_Block;
+
+ // Allow breaking after a trailing annotation, e.g. after a method
+ // declaration.
+ if (Left.is(TT_TrailingAnnotation))
+ return !Right.isOneOf(tok::l_brace, tok::semi, tok::equal, tok::l_paren,
+ tok::less, tok::coloncolon);
+
+ if (Right.is(tok::kw___attribute))
+ return true;
+
+ if (Left.is(tok::identifier) && Right.is(tok::string_literal))
+ return true;
+
+ if (Right.is(tok::identifier) && Right.Next && Right.Next->is(TT_DictLiteral))
+ return true;
+
+ if (Left.is(TT_CtorInitializerComma) &&
+ Style.BreakConstructorInitializersBeforeComma)
+ return false;
+ if (Right.is(TT_CtorInitializerComma) &&
+ Style.BreakConstructorInitializersBeforeComma)
+ return true;
+ if ((Left.is(tok::greater) && Right.is(tok::greater)) ||
+ (Left.is(tok::less) && Right.is(tok::less)))
+ return false;
+ if (Right.is(TT_BinaryOperator) &&
+ Style.BreakBeforeBinaryOperators != FormatStyle::BOS_None &&
+ (Style.BreakBeforeBinaryOperators == FormatStyle::BOS_All ||
+ Right.getPrecedence() != prec::Assignment))
+ return true;
+ if (Left.is(TT_ArrayInitializerLSquare))
+ return true;
+ if (Right.is(tok::kw_typename) && Left.isNot(tok::kw_const))
+ return true;
+ if (Left.isBinaryOperator() && !Left.isOneOf(tok::arrowstar, tok::lessless) &&
+ Style.BreakBeforeBinaryOperators != FormatStyle::BOS_All &&
+ (Style.BreakBeforeBinaryOperators == FormatStyle::BOS_None ||
+ Left.getPrecedence() == prec::Assignment))
+ return true;
+ return Left.isOneOf(tok::comma, tok::coloncolon, tok::semi, tok::l_brace,
+ tok::kw_class, tok::kw_struct) ||
+ Right.isMemberAccess() ||
+ Right.isOneOf(TT_TrailingReturnArrow, TT_LambdaArrow, tok::lessless,
+ tok::colon, tok::l_square, tok::at) ||
+ (Left.is(tok::r_paren) &&
+ Right.isOneOf(tok::identifier, tok::kw_const)) ||
+ (Left.is(tok::l_paren) && !Right.is(tok::r_paren));
+}
+
+void TokenAnnotator::printDebugInfo(const AnnotatedLine &Line) {
+ llvm::errs() << "AnnotatedTokens:\n";
+ const FormatToken *Tok = Line.First;
+ while (Tok) {
+ llvm::errs() << " M=" << Tok->MustBreakBefore
+ << " C=" << Tok->CanBreakBefore << " T=" << Tok->Type
+ << " S=" << Tok->SpacesRequiredBefore
+ << " B=" << Tok->BlockParameterCount
+ << " P=" << Tok->SplitPenalty << " Name=" << Tok->Tok.getName()
+ << " L=" << Tok->TotalLength << " PPK=" << Tok->PackingKind
+ << " FakeLParens=";
+ for (unsigned i = 0, e = Tok->FakeLParens.size(); i != e; ++i)
+ llvm::errs() << Tok->FakeLParens[i] << "/";
+ llvm::errs() << " FakeRParens=" << Tok->FakeRParens << "\n";
+ if (!Tok->Next)
+ assert(Tok == Line.Last);
+ Tok = Tok->Next;
+ }
+ llvm::errs() << "----\n";
+}
+
+} // namespace format
+} // namespace clang
diff --git a/contrib/llvm/tools/clang/lib/Format/TokenAnnotator.h b/contrib/llvm/tools/clang/lib/Format/TokenAnnotator.h
new file mode 100644
index 0000000..a948cdb
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Format/TokenAnnotator.h
@@ -0,0 +1,153 @@
+//===--- TokenAnnotator.h - Format C++ code ---------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// \brief This file implements a token annotator, i.e. creates
+/// \c AnnotatedTokens out of \c FormatTokens with required extra information.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_FORMAT_TOKENANNOTATOR_H
+#define LLVM_CLANG_LIB_FORMAT_TOKENANNOTATOR_H
+
+#include "UnwrappedLineParser.h"
+#include "clang/Format/Format.h"
+#include <string>
+
+namespace clang {
+class SourceManager;
+
+namespace format {
+
+enum LineType {
+ LT_Invalid,
+ LT_ImportStatement,
+ LT_ObjCDecl, // An @interface, @implementation, or @protocol line.
+ LT_ObjCMethodDecl,
+ LT_ObjCProperty, // An @property line.
+ LT_Other,
+ LT_PreprocessorDirective,
+ LT_VirtualFunctionDecl
+};
+
+class AnnotatedLine {
+public:
+ AnnotatedLine(const UnwrappedLine &Line)
+ : First(Line.Tokens.front().Tok), Level(Line.Level),
+ InPPDirective(Line.InPPDirective),
+ MustBeDeclaration(Line.MustBeDeclaration), MightBeFunctionDecl(false),
+ IsMultiVariableDeclStmt(false), Affected(false),
+ LeadingEmptyLinesAffected(false), ChildrenAffected(false) {
+ assert(!Line.Tokens.empty());
+
+ // Calculate Next and Previous for all tokens. Note that we must overwrite
+ // Next and Previous for every token, as previous formatting runs might have
+ // left them in a different state.
+ First->Previous = nullptr;
+ FormatToken *Current = First;
+ for (std::list<UnwrappedLineNode>::const_iterator I = ++Line.Tokens.begin(),
+ E = Line.Tokens.end();
+ I != E; ++I) {
+ const UnwrappedLineNode &Node = *I;
+ Current->Next = I->Tok;
+ I->Tok->Previous = Current;
+ Current = Current->Next;
+ Current->Children.clear();
+ for (const auto& Child : Node.Children) {
+ Children.push_back(new AnnotatedLine(Child));
+ Current->Children.push_back(Children.back());
+ }
+ }
+ Last = Current;
+ Last->Next = nullptr;
+ }
+
+ ~AnnotatedLine() {
+ for (unsigned i = 0, e = Children.size(); i != e; ++i) {
+ delete Children[i];
+ }
+ FormatToken *Current = First;
+ while (Current) {
+ Current->Children.clear();
+ Current->Role.reset();
+ Current = Current->Next;
+ }
+ }
+
+ FormatToken *First;
+ FormatToken *Last;
+
+ SmallVector<AnnotatedLine *, 0> Children;
+
+ LineType Type;
+ unsigned Level;
+ bool InPPDirective;
+ bool MustBeDeclaration;
+ bool MightBeFunctionDecl;
+ bool IsMultiVariableDeclStmt;
+
+ /// \c True if this line should be formatted, i.e. intersects directly or
+ /// indirectly with one of the input ranges.
+ bool Affected;
+
+ /// \c True if the leading empty lines of this line intersect with one of the
+ /// input ranges.
+ bool LeadingEmptyLinesAffected;
+
+ /// \c True if a one of this line's children intersects with an input range.
+ bool ChildrenAffected;
+
+private:
+ // Disallow copying.
+ AnnotatedLine(const AnnotatedLine &) = delete;
+ void operator=(const AnnotatedLine &) = delete;
+};
+
+/// \brief Determines extra information about the tokens comprising an
+/// \c UnwrappedLine.
+class TokenAnnotator {
+public:
+ TokenAnnotator(const FormatStyle &Style, const AdditionalKeywords &Keywords)
+ : Style(Style), Keywords(Keywords) {}
+
+ /// \brief Adapts the indent levels of comment lines to the indent of the
+ /// subsequent line.
+ // FIXME: Can/should this be done in the UnwrappedLineParser?
+ void setCommentLineLevels(SmallVectorImpl<AnnotatedLine *> &Lines);
+
+ void annotate(AnnotatedLine &Line);
+ void calculateFormattingInformation(AnnotatedLine &Line);
+
+private:
+ /// \brief Calculate the penalty for splitting before \c Tok.
+ unsigned splitPenalty(const AnnotatedLine &Line, const FormatToken &Tok,
+ bool InFunctionDecl);
+
+ bool spaceRequiredBetween(const AnnotatedLine &Line, const FormatToken &Left,
+ const FormatToken &Right);
+
+ bool spaceRequiredBefore(const AnnotatedLine &Line, const FormatToken &Tok);
+
+ bool mustBreakBefore(const AnnotatedLine &Line, const FormatToken &Right);
+
+ bool canBreakBefore(const AnnotatedLine &Line, const FormatToken &Right);
+
+ void printDebugInfo(const AnnotatedLine &Line);
+
+ void calculateUnbreakableTailLengths(AnnotatedLine &Line);
+
+ const FormatStyle &Style;
+
+ const AdditionalKeywords &Keywords;
+};
+
+} // end namespace format
+} // end namespace clang
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/Format/UnwrappedLineFormatter.cpp b/contrib/llvm/tools/clang/lib/Format/UnwrappedLineFormatter.cpp
new file mode 100644
index 0000000..cbf8c6c
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Format/UnwrappedLineFormatter.cpp
@@ -0,0 +1,949 @@
+//===--- UnwrappedLineFormatter.cpp - Format C++ code ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "UnwrappedLineFormatter.h"
+#include "WhitespaceManager.h"
+#include "llvm/Support/Debug.h"
+
+#define DEBUG_TYPE "format-formatter"
+
+namespace clang {
+namespace format {
+
+namespace {
+
+bool startsExternCBlock(const AnnotatedLine &Line) {
+ const FormatToken *Next = Line.First->getNextNonComment();
+ const FormatToken *NextNext = Next ? Next->getNextNonComment() : nullptr;
+ return Line.First->is(tok::kw_extern) && Next && Next->isStringLiteral() &&
+ NextNext && NextNext->is(tok::l_brace);
+}
+
+/// \brief Tracks the indent level of \c AnnotatedLines across levels.
+///
+/// \c nextLine must be called for each \c AnnotatedLine, after which \c
+/// getIndent() will return the indent for the last line \c nextLine was called
+/// with.
+/// If the line is not formatted (and thus the indent does not change), calling
+/// \c adjustToUnmodifiedLine after the call to \c nextLine will cause
+/// subsequent lines on the same level to be indented at the same level as the
+/// given line.
+class LevelIndentTracker {
+public:
+ LevelIndentTracker(const FormatStyle &Style,
+ const AdditionalKeywords &Keywords, unsigned StartLevel,
+ int AdditionalIndent)
+ : Style(Style), Keywords(Keywords), AdditionalIndent(AdditionalIndent) {
+ for (unsigned i = 0; i != StartLevel; ++i)
+ IndentForLevel.push_back(Style.IndentWidth * i + AdditionalIndent);
+ }
+
+ /// \brief Returns the indent for the current line.
+ unsigned getIndent() const { return Indent; }
+
+ /// \brief Update the indent state given that \p Line is going to be formatted
+ /// next.
+ void nextLine(const AnnotatedLine &Line) {
+ Offset = getIndentOffset(*Line.First);
+ if (Line.InPPDirective) {
+ Indent = Line.Level * Style.IndentWidth + AdditionalIndent;
+ } else {
+ while (IndentForLevel.size() <= Line.Level)
+ IndentForLevel.push_back(-1);
+ IndentForLevel.resize(Line.Level + 1);
+ Indent = getIndent(IndentForLevel, Line.Level);
+ }
+ if (static_cast<int>(Indent) + Offset >= 0)
+ Indent += Offset;
+ }
+
+ /// \brief Update the level indent to adapt to the given \p Line.
+ ///
+ /// When a line is not formatted, we move the subsequent lines on the same
+ /// level to the same indent.
+ /// Note that \c nextLine must have been called before this method.
+ void adjustToUnmodifiedLine(const AnnotatedLine &Line) {
+ unsigned LevelIndent = Line.First->OriginalColumn;
+ if (static_cast<int>(LevelIndent) - Offset >= 0)
+ LevelIndent -= Offset;
+ if ((Line.First->isNot(tok::comment) || IndentForLevel[Line.Level] == -1) &&
+ !Line.InPPDirective)
+ IndentForLevel[Line.Level] = LevelIndent;
+ }
+
+private:
+ /// \brief Get the offset of the line relatively to the level.
+ ///
+ /// For example, 'public:' labels in classes are offset by 1 or 2
+ /// characters to the left from their level.
+ int getIndentOffset(const FormatToken &RootToken) {
+ if (Style.Language == FormatStyle::LK_Java ||
+ Style.Language == FormatStyle::LK_JavaScript)
+ return 0;
+ if (RootToken.isAccessSpecifier(false) ||
+ RootToken.isObjCAccessSpecifier() ||
+ (RootToken.is(Keywords.kw_signals) && RootToken.Next &&
+ RootToken.Next->is(tok::colon)))
+ return Style.AccessModifierOffset;
+ return 0;
+ }
+
+ /// \brief Get the indent of \p Level from \p IndentForLevel.
+ ///
+ /// \p IndentForLevel must contain the indent for the level \c l
+ /// at \p IndentForLevel[l], or a value < 0 if the indent for
+ /// that level is unknown.
+ unsigned getIndent(ArrayRef<int> IndentForLevel, unsigned Level) {
+ if (IndentForLevel[Level] != -1)
+ return IndentForLevel[Level];
+ if (Level == 0)
+ return 0;
+ return getIndent(IndentForLevel, Level - 1) + Style.IndentWidth;
+ }
+
+ const FormatStyle &Style;
+ const AdditionalKeywords &Keywords;
+ const unsigned AdditionalIndent;
+
+ /// \brief The indent in characters for each level.
+ std::vector<int> IndentForLevel;
+
+ /// \brief Offset of the current line relative to the indent level.
+ ///
+ /// For example, the 'public' keywords is often indented with a negative
+ /// offset.
+ int Offset = 0;
+
+ /// \brief The current line's indent.
+ unsigned Indent = 0;
+};
+
+class LineJoiner {
+public:
+ LineJoiner(const FormatStyle &Style, const AdditionalKeywords &Keywords,
+ const SmallVectorImpl<AnnotatedLine *> &Lines)
+ : Style(Style), Keywords(Keywords), End(Lines.end()),
+ Next(Lines.begin()) {}
+
+ /// \brief Returns the next line, merging multiple lines into one if possible.
+ const AnnotatedLine *getNextMergedLine(bool DryRun,
+ LevelIndentTracker &IndentTracker) {
+ if (Next == End)
+ return nullptr;
+ const AnnotatedLine *Current = *Next;
+ IndentTracker.nextLine(*Current);
+ unsigned MergedLines =
+ tryFitMultipleLinesInOne(IndentTracker.getIndent(), Next, End);
+ if (MergedLines > 0 && Style.ColumnLimit == 0)
+ // Disallow line merging if there is a break at the start of one of the
+ // input lines.
+ for (unsigned i = 0; i < MergedLines; ++i)
+ if (Next[i + 1]->First->NewlinesBefore > 0)
+ MergedLines = 0;
+ if (!DryRun)
+ for (unsigned i = 0; i < MergedLines; ++i)
+ join(*Next[i], *Next[i + 1]);
+ Next = Next + MergedLines + 1;
+ return Current;
+ }
+
+private:
+ /// \brief Calculates how many lines can be merged into 1 starting at \p I.
+ unsigned
+ tryFitMultipleLinesInOne(unsigned Indent,
+ SmallVectorImpl<AnnotatedLine *>::const_iterator I,
+ SmallVectorImpl<AnnotatedLine *>::const_iterator E) {
+ // Can't join the last line with anything.
+ if (I + 1 == E)
+ return 0;
+ // We can never merge stuff if there are trailing line comments.
+ const AnnotatedLine *TheLine = *I;
+ if (TheLine->Last->is(TT_LineComment))
+ return 0;
+ if (I[1]->Type == LT_Invalid || I[1]->First->MustBreakBefore)
+ return 0;
+ if (TheLine->InPPDirective &&
+ (!I[1]->InPPDirective || I[1]->First->HasUnescapedNewline))
+ return 0;
+
+ if (Style.ColumnLimit > 0 && Indent > Style.ColumnLimit)
+ return 0;
+
+ unsigned Limit =
+ Style.ColumnLimit == 0 ? UINT_MAX : Style.ColumnLimit - Indent;
+ // If we already exceed the column limit, we set 'Limit' to 0. The different
+ // tryMerge..() functions can then decide whether to still do merging.
+ Limit = TheLine->Last->TotalLength > Limit
+ ? 0
+ : Limit - TheLine->Last->TotalLength;
+
+ // FIXME: TheLine->Level != 0 might or might not be the right check to do.
+ // If necessary, change to something smarter.
+ bool MergeShortFunctions =
+ Style.AllowShortFunctionsOnASingleLine == FormatStyle::SFS_All ||
+ (Style.AllowShortFunctionsOnASingleLine == FormatStyle::SFS_Empty &&
+ I[1]->First->is(tok::r_brace)) ||
+ (Style.AllowShortFunctionsOnASingleLine == FormatStyle::SFS_Inline &&
+ TheLine->Level != 0);
+
+ if (TheLine->Last->is(TT_FunctionLBrace) &&
+ TheLine->First != TheLine->Last) {
+ return MergeShortFunctions ? tryMergeSimpleBlock(I, E, Limit) : 0;
+ }
+ if (TheLine->Last->is(tok::l_brace)) {
+ return Style.BreakBeforeBraces == FormatStyle::BS_Attach
+ ? tryMergeSimpleBlock(I, E, Limit)
+ : 0;
+ }
+ if (I[1]->First->is(TT_FunctionLBrace) &&
+ Style.BreakBeforeBraces != FormatStyle::BS_Attach) {
+ if (I[1]->Last->is(TT_LineComment))
+ return 0;
+
+ // Check for Limit <= 2 to account for the " {".
+ if (Limit <= 2 || (Style.ColumnLimit == 0 && containsMustBreak(TheLine)))
+ return 0;
+ Limit -= 2;
+
+ unsigned MergedLines = 0;
+ if (MergeShortFunctions) {
+ MergedLines = tryMergeSimpleBlock(I + 1, E, Limit);
+ // If we managed to merge the block, count the function header, which is
+ // on a separate line.
+ if (MergedLines > 0)
+ ++MergedLines;
+ }
+ return MergedLines;
+ }
+ if (TheLine->First->is(tok::kw_if)) {
+ return Style.AllowShortIfStatementsOnASingleLine
+ ? tryMergeSimpleControlStatement(I, E, Limit)
+ : 0;
+ }
+ if (TheLine->First->isOneOf(tok::kw_for, tok::kw_while)) {
+ return Style.AllowShortLoopsOnASingleLine
+ ? tryMergeSimpleControlStatement(I, E, Limit)
+ : 0;
+ }
+ if (TheLine->First->isOneOf(tok::kw_case, tok::kw_default)) {
+ return Style.AllowShortCaseLabelsOnASingleLine
+ ? tryMergeShortCaseLabels(I, E, Limit)
+ : 0;
+ }
+ if (TheLine->InPPDirective &&
+ (TheLine->First->HasUnescapedNewline || TheLine->First->IsFirst)) {
+ return tryMergeSimplePPDirective(I, E, Limit);
+ }
+ return 0;
+ }
+
+ unsigned
+ tryMergeSimplePPDirective(SmallVectorImpl<AnnotatedLine *>::const_iterator I,
+ SmallVectorImpl<AnnotatedLine *>::const_iterator E,
+ unsigned Limit) {
+ if (Limit == 0)
+ return 0;
+ if (I + 2 != E && I[2]->InPPDirective && !I[2]->First->HasUnescapedNewline)
+ return 0;
+ if (1 + I[1]->Last->TotalLength > Limit)
+ return 0;
+ return 1;
+ }
+
+ unsigned tryMergeSimpleControlStatement(
+ SmallVectorImpl<AnnotatedLine *>::const_iterator I,
+ SmallVectorImpl<AnnotatedLine *>::const_iterator E, unsigned Limit) {
+ if (Limit == 0)
+ return 0;
+ if ((Style.BreakBeforeBraces == FormatStyle::BS_Allman ||
+ Style.BreakBeforeBraces == FormatStyle::BS_GNU) &&
+ (I[1]->First->is(tok::l_brace) && !Style.AllowShortBlocksOnASingleLine))
+ return 0;
+ if (I[1]->InPPDirective != (*I)->InPPDirective ||
+ (I[1]->InPPDirective && I[1]->First->HasUnescapedNewline))
+ return 0;
+ Limit = limitConsideringMacros(I + 1, E, Limit);
+ AnnotatedLine &Line = **I;
+ if (Line.Last->isNot(tok::r_paren))
+ return 0;
+ if (1 + I[1]->Last->TotalLength > Limit)
+ return 0;
+ if (I[1]->First->isOneOf(tok::semi, tok::kw_if, tok::kw_for, tok::kw_while,
+ TT_LineComment))
+ return 0;
+ // Only inline simple if's (no nested if or else).
+ if (I + 2 != E && Line.First->is(tok::kw_if) &&
+ I[2]->First->is(tok::kw_else))
+ return 0;
+ return 1;
+ }
+
+ unsigned
+ tryMergeShortCaseLabels(SmallVectorImpl<AnnotatedLine *>::const_iterator I,
+ SmallVectorImpl<AnnotatedLine *>::const_iterator E,
+ unsigned Limit) {
+ if (Limit == 0 || I + 1 == E ||
+ I[1]->First->isOneOf(tok::kw_case, tok::kw_default))
+ return 0;
+ unsigned NumStmts = 0;
+ unsigned Length = 0;
+ bool InPPDirective = I[0]->InPPDirective;
+ for (; NumStmts < 3; ++NumStmts) {
+ if (I + 1 + NumStmts == E)
+ break;
+ const AnnotatedLine *Line = I[1 + NumStmts];
+ if (Line->InPPDirective != InPPDirective)
+ break;
+ if (Line->First->isOneOf(tok::kw_case, tok::kw_default, tok::r_brace))
+ break;
+ if (Line->First->isOneOf(tok::kw_if, tok::kw_for, tok::kw_switch,
+ tok::kw_while, tok::comment))
+ return 0;
+ Length += I[1 + NumStmts]->Last->TotalLength + 1; // 1 for the space.
+ }
+ if (NumStmts == 0 || NumStmts == 3 || Length > Limit)
+ return 0;
+ return NumStmts;
+ }
+
+ unsigned
+ tryMergeSimpleBlock(SmallVectorImpl<AnnotatedLine *>::const_iterator I,
+ SmallVectorImpl<AnnotatedLine *>::const_iterator E,
+ unsigned Limit) {
+ AnnotatedLine &Line = **I;
+
+ // Don't merge ObjC @ keywords and methods.
+ // FIXME: If an option to allow short exception handling clauses on a single
+ // line is added, change this to not return for @try and friends.
+ if (Style.Language != FormatStyle::LK_Java &&
+ Line.First->isOneOf(tok::at, tok::minus, tok::plus))
+ return 0;
+
+ // Check that the current line allows merging. This depends on whether we
+ // are in a control flow statements as well as several style flags.
+ if (Line.First->isOneOf(tok::kw_else, tok::kw_case) ||
+ (Line.First->Next && Line.First->Next->is(tok::kw_else)))
+ return 0;
+ if (Line.First->isOneOf(tok::kw_if, tok::kw_while, tok::kw_do, tok::kw_try,
+ tok::kw___try, tok::kw_catch, tok::kw___finally,
+ tok::kw_for, tok::r_brace) ||
+ Line.First->is(Keywords.kw___except)) {
+ if (!Style.AllowShortBlocksOnASingleLine)
+ return 0;
+ if (!Style.AllowShortIfStatementsOnASingleLine &&
+ Line.First->is(tok::kw_if))
+ return 0;
+ if (!Style.AllowShortLoopsOnASingleLine &&
+ Line.First->isOneOf(tok::kw_while, tok::kw_do, tok::kw_for))
+ return 0;
+ // FIXME: Consider an option to allow short exception handling clauses on
+ // a single line.
+ // FIXME: This isn't covered by tests.
+ // FIXME: For catch, __except, __finally the first token on the line
+ // is '}', so this isn't correct here.
+ if (Line.First->isOneOf(tok::kw_try, tok::kw___try, tok::kw_catch,
+ Keywords.kw___except, tok::kw___finally))
+ return 0;
+ }
+
+ FormatToken *Tok = I[1]->First;
+ if (Tok->is(tok::r_brace) && !Tok->MustBreakBefore &&
+ (Tok->getNextNonComment() == nullptr ||
+ Tok->getNextNonComment()->is(tok::semi))) {
+ // We merge empty blocks even if the line exceeds the column limit.
+ Tok->SpacesRequiredBefore = 0;
+ Tok->CanBreakBefore = true;
+ return 1;
+ } else if (Limit != 0 && Line.First->isNot(tok::kw_namespace) &&
+ !startsExternCBlock(Line)) {
+ // We don't merge short records.
+ if (Line.First->isOneOf(tok::kw_class, tok::kw_union, tok::kw_struct,
+ Keywords.kw_interface))
+ return 0;
+
+ // Check that we still have three lines and they fit into the limit.
+ if (I + 2 == E || I[2]->Type == LT_Invalid)
+ return 0;
+ Limit = limitConsideringMacros(I + 2, E, Limit);
+
+ if (!nextTwoLinesFitInto(I, Limit))
+ return 0;
+
+ // Second, check that the next line does not contain any braces - if it
+ // does, readability declines when putting it into a single line.
+ if (I[1]->Last->is(TT_LineComment))
+ return 0;
+ do {
+ if (Tok->is(tok::l_brace) && Tok->BlockKind != BK_BracedInit)
+ return 0;
+ Tok = Tok->Next;
+ } while (Tok);
+
+ // Last, check that the third line starts with a closing brace.
+ Tok = I[2]->First;
+ if (Tok->isNot(tok::r_brace))
+ return 0;
+
+ // Don't merge "if (a) { .. } else {".
+ if (Tok->Next && Tok->Next->is(tok::kw_else))
+ return 0;
+
+ return 2;
+ }
+ return 0;
+ }
+
+ /// Returns the modified column limit for \p I if it is inside a macro and
+ /// needs a trailing '\'.
+ unsigned
+ limitConsideringMacros(SmallVectorImpl<AnnotatedLine *>::const_iterator I,
+ SmallVectorImpl<AnnotatedLine *>::const_iterator E,
+ unsigned Limit) {
+ if (I[0]->InPPDirective && I + 1 != E &&
+ !I[1]->First->HasUnescapedNewline && !I[1]->First->is(tok::eof)) {
+ return Limit < 2 ? 0 : Limit - 2;
+ }
+ return Limit;
+ }
+
+ bool nextTwoLinesFitInto(SmallVectorImpl<AnnotatedLine *>::const_iterator I,
+ unsigned Limit) {
+ if (I[1]->First->MustBreakBefore || I[2]->First->MustBreakBefore)
+ return false;
+ return 1 + I[1]->Last->TotalLength + 1 + I[2]->Last->TotalLength <= Limit;
+ }
+
+ bool containsMustBreak(const AnnotatedLine *Line) {
+ for (const FormatToken *Tok = Line->First; Tok; Tok = Tok->Next) {
+ if (Tok->MustBreakBefore)
+ return true;
+ }
+ return false;
+ }
+
+ void join(AnnotatedLine &A, const AnnotatedLine &B) {
+ assert(!A.Last->Next);
+ assert(!B.First->Previous);
+ if (B.Affected)
+ A.Affected = true;
+ A.Last->Next = B.First;
+ B.First->Previous = A.Last;
+ B.First->CanBreakBefore = true;
+ unsigned LengthA = A.Last->TotalLength + B.First->SpacesRequiredBefore;
+ for (FormatToken *Tok = B.First; Tok; Tok = Tok->Next) {
+ Tok->TotalLength += LengthA;
+ A.Last = Tok;
+ }
+ }
+
+ const FormatStyle &Style;
+ const AdditionalKeywords &Keywords;
+ const SmallVectorImpl<AnnotatedLine*>::const_iterator End;
+
+ SmallVectorImpl<AnnotatedLine*>::const_iterator Next;
+};
+
+static void markFinalized(FormatToken *Tok) {
+ for (; Tok; Tok = Tok->Next) {
+ Tok->Finalized = true;
+ for (AnnotatedLine *Child : Tok->Children)
+ markFinalized(Child->First);
+ }
+}
+
+#ifndef NDEBUG
+static void printLineState(const LineState &State) {
+ llvm::dbgs() << "State: ";
+ for (const ParenState &P : State.Stack) {
+ llvm::dbgs() << P.Indent << "|" << P.LastSpace << "|" << P.NestedBlockIndent
+ << " ";
+ }
+ llvm::dbgs() << State.NextToken->TokenText << "\n";
+}
+#endif
+
+/// \brief Base class for classes that format one \c AnnotatedLine.
+class LineFormatter {
+public:
+ LineFormatter(ContinuationIndenter *Indenter, WhitespaceManager *Whitespaces,
+ const FormatStyle &Style,
+ UnwrappedLineFormatter *BlockFormatter)
+ : Indenter(Indenter), Whitespaces(Whitespaces), Style(Style),
+ BlockFormatter(BlockFormatter) {}
+ virtual ~LineFormatter() {}
+
+ /// \brief Formats an \c AnnotatedLine and returns the penalty.
+ ///
+ /// If \p DryRun is \c false, directly applies the changes.
+ virtual unsigned formatLine(const AnnotatedLine &Line, unsigned FirstIndent,
+ bool DryRun) = 0;
+
+protected:
+ /// \brief If the \p State's next token is an r_brace closing a nested block,
+ /// format the nested block before it.
+ ///
+ /// Returns \c true if all children could be placed successfully and adapts
+ /// \p Penalty as well as \p State. If \p DryRun is false, also directly
+ /// creates changes using \c Whitespaces.
+ ///
+ /// The crucial idea here is that children always get formatted upon
+ /// encountering the closing brace right after the nested block. Now, if we
+ /// are currently trying to keep the "}" on the same line (i.e. \p NewLine is
+ /// \c false), the entire block has to be kept on the same line (which is only
+ /// possible if it fits on the line, only contains a single statement, etc.
+ ///
+ /// If \p NewLine is true, we format the nested block on separate lines, i.e.
+ /// break after the "{", format all lines with correct indentation and the put
+ /// the closing "}" on yet another new line.
+ ///
+ /// This enables us to keep the simple structure of the
+ /// \c UnwrappedLineFormatter, where we only have two options for each token:
+ /// break or don't break.
+ bool formatChildren(LineState &State, bool NewLine, bool DryRun,
+ unsigned &Penalty) {
+ const FormatToken *LBrace = State.NextToken->getPreviousNonComment();
+ FormatToken &Previous = *State.NextToken->Previous;
+ if (!LBrace || LBrace->isNot(tok::l_brace) ||
+ LBrace->BlockKind != BK_Block || Previous.Children.size() == 0)
+ // The previous token does not open a block. Nothing to do. We don't
+ // assert so that we can simply call this function for all tokens.
+ return true;
+
+ if (NewLine) {
+ int AdditionalIndent = State.Stack.back().Indent -
+ Previous.Children[0]->Level * Style.IndentWidth;
+
+ Penalty +=
+ BlockFormatter->format(Previous.Children, DryRun, AdditionalIndent,
+ /*FixBadIndentation=*/true);
+ return true;
+ }
+
+ if (Previous.Children[0]->First->MustBreakBefore)
+ return false;
+
+ // Cannot merge multiple statements into a single line.
+ if (Previous.Children.size() > 1)
+ return false;
+
+ // Cannot merge into one line if this line ends on a comment.
+ if (Previous.is(tok::comment))
+ return false;
+
+ // We can't put the closing "}" on a line with a trailing comment.
+ if (Previous.Children[0]->Last->isTrailingComment())
+ return false;
+
+ // If the child line exceeds the column limit, we wouldn't want to merge it.
+ // We add +2 for the trailing " }".
+ if (Style.ColumnLimit > 0 &&
+ Previous.Children[0]->Last->TotalLength + State.Column + 2 >
+ Style.ColumnLimit)
+ return false;
+
+ if (!DryRun) {
+ Whitespaces->replaceWhitespace(
+ *Previous.Children[0]->First,
+ /*Newlines=*/0, /*IndentLevel=*/0, /*Spaces=*/1,
+ /*StartOfTokenColumn=*/State.Column, State.Line->InPPDirective);
+ }
+ Penalty += formatLine(*Previous.Children[0], State.Column + 1, DryRun);
+
+ State.Column += 1 + Previous.Children[0]->Last->TotalLength;
+ return true;
+ }
+
+ ContinuationIndenter *Indenter;
+
+private:
+ WhitespaceManager *Whitespaces;
+ const FormatStyle &Style;
+ UnwrappedLineFormatter *BlockFormatter;
+};
+
+/// \brief Formatter that keeps the existing line breaks.
+class NoColumnLimitLineFormatter : public LineFormatter {
+public:
+ NoColumnLimitLineFormatter(ContinuationIndenter *Indenter,
+ WhitespaceManager *Whitespaces,
+ const FormatStyle &Style,
+ UnwrappedLineFormatter *BlockFormatter)
+ : LineFormatter(Indenter, Whitespaces, Style, BlockFormatter) {}
+
+ /// \brief Formats the line, simply keeping all of the input's line breaking
+ /// decisions.
+ unsigned formatLine(const AnnotatedLine &Line, unsigned FirstIndent,
+ bool DryRun) override {
+ assert(!DryRun);
+ LineState State =
+ Indenter->getInitialState(FirstIndent, &Line, /*DryRun=*/false);
+ while (State.NextToken) {
+ bool Newline =
+ Indenter->mustBreak(State) ||
+ (Indenter->canBreak(State) && State.NextToken->NewlinesBefore > 0);
+ unsigned Penalty = 0;
+ formatChildren(State, Newline, /*DryRun=*/false, Penalty);
+ Indenter->addTokenToState(State, Newline, /*DryRun=*/false);
+ }
+ return 0;
+ }
+};
+
+/// \brief Formatter that puts all tokens into a single line without breaks.
+class NoLineBreakFormatter : public LineFormatter {
+public:
+ NoLineBreakFormatter(ContinuationIndenter *Indenter,
+ WhitespaceManager *Whitespaces, const FormatStyle &Style,
+ UnwrappedLineFormatter *BlockFormatter)
+ : LineFormatter(Indenter, Whitespaces, Style, BlockFormatter) {}
+
+ /// \brief Puts all tokens into a single line.
+ unsigned formatLine(const AnnotatedLine &Line, unsigned FirstIndent,
+ bool DryRun) {
+ unsigned Penalty = 0;
+ LineState State = Indenter->getInitialState(FirstIndent, &Line, DryRun);
+ while (State.NextToken) {
+ formatChildren(State, /*Newline=*/false, DryRun, Penalty);
+ Indenter->addTokenToState(State, /*Newline=*/false, DryRun);
+ }
+ return Penalty;
+ }
+};
+
+/// \brief Finds the best way to break lines.
+class OptimizingLineFormatter : public LineFormatter {
+public:
+ OptimizingLineFormatter(ContinuationIndenter *Indenter,
+ WhitespaceManager *Whitespaces,
+ const FormatStyle &Style,
+ UnwrappedLineFormatter *BlockFormatter)
+ : LineFormatter(Indenter, Whitespaces, Style, BlockFormatter) {}
+
+ /// \brief Formats the line by finding the best line breaks with line lengths
+ /// below the column limit.
+ unsigned formatLine(const AnnotatedLine &Line, unsigned FirstIndent,
+ bool DryRun) {
+ LineState State = Indenter->getInitialState(FirstIndent, &Line, DryRun);
+
+ // If the ObjC method declaration does not fit on a line, we should format
+ // it with one arg per line.
+ if (State.Line->Type == LT_ObjCMethodDecl)
+ State.Stack.back().BreakBeforeParameter = true;
+
+ // Find best solution in solution space.
+ return analyzeSolutionSpace(State, DryRun);
+ }
+
+private:
+ struct CompareLineStatePointers {
+ bool operator()(LineState *obj1, LineState *obj2) const {
+ return *obj1 < *obj2;
+ }
+ };
+
+ /// \brief A pair of <penalty, count> that is used to prioritize the BFS on.
+ ///
+ /// In case of equal penalties, we want to prefer states that were inserted
+ /// first. During state generation we make sure that we insert states first
+ /// that break the line as late as possible.
+ typedef std::pair<unsigned, unsigned> OrderedPenalty;
+
+ /// \brief An edge in the solution space from \c Previous->State to \c State,
+ /// inserting a newline dependent on the \c NewLine.
+ struct StateNode {
+ StateNode(const LineState &State, bool NewLine, StateNode *Previous)
+ : State(State), NewLine(NewLine), Previous(Previous) {}
+ LineState State;
+ bool NewLine;
+ StateNode *Previous;
+ };
+
+ /// \brief An item in the prioritized BFS search queue. The \c StateNode's
+ /// \c State has the given \c OrderedPenalty.
+ typedef std::pair<OrderedPenalty, StateNode *> QueueItem;
+
+ /// \brief The BFS queue type.
+ typedef std::priority_queue<QueueItem, std::vector<QueueItem>,
+ std::greater<QueueItem>> QueueType;
+
+ /// \brief Analyze the entire solution space starting from \p InitialState.
+ ///
+ /// This implements a variant of Dijkstra's algorithm on the graph that spans
+ /// the solution space (\c LineStates are the nodes). The algorithm tries to
+ /// find the shortest path (the one with lowest penalty) from \p InitialState
+ /// to a state where all tokens are placed. Returns the penalty.
+ ///
+ /// If \p DryRun is \c false, directly applies the changes.
+ unsigned analyzeSolutionSpace(LineState &InitialState, bool DryRun) {
+ std::set<LineState *, CompareLineStatePointers> Seen;
+
+ // Increasing count of \c StateNode items we have created. This is used to
+ // create a deterministic order independent of the container.
+ unsigned Count = 0;
+ QueueType Queue;
+
+ // Insert start element into queue.
+ StateNode *Node =
+ new (Allocator.Allocate()) StateNode(InitialState, false, nullptr);
+ Queue.push(QueueItem(OrderedPenalty(0, Count), Node));
+ ++Count;
+
+ unsigned Penalty = 0;
+
+ // While not empty, take first element and follow edges.
+ while (!Queue.empty()) {
+ Penalty = Queue.top().first.first;
+ StateNode *Node = Queue.top().second;
+ if (!Node->State.NextToken) {
+ DEBUG(llvm::dbgs() << "\n---\nPenalty for line: " << Penalty << "\n");
+ break;
+ }
+ Queue.pop();
+
+ // Cut off the analysis of certain solutions if the analysis gets too
+ // complex. See description of IgnoreStackForComparison.
+ if (Count > 10000)
+ Node->State.IgnoreStackForComparison = true;
+
+ if (!Seen.insert(&Node->State).second)
+ // State already examined with lower penalty.
+ continue;
+
+ FormatDecision LastFormat = Node->State.NextToken->Decision;
+ if (LastFormat == FD_Unformatted || LastFormat == FD_Continue)
+ addNextStateToQueue(Penalty, Node, /*NewLine=*/false, &Count, &Queue);
+ if (LastFormat == FD_Unformatted || LastFormat == FD_Break)
+ addNextStateToQueue(Penalty, Node, /*NewLine=*/true, &Count, &Queue);
+ }
+
+ if (Queue.empty()) {
+ // We were unable to find a solution, do nothing.
+ // FIXME: Add diagnostic?
+ DEBUG(llvm::dbgs() << "Could not find a solution.\n");
+ return 0;
+ }
+
+ // Reconstruct the solution.
+ if (!DryRun)
+ reconstructPath(InitialState, Queue.top().second);
+
+ DEBUG(llvm::dbgs() << "Total number of analyzed states: " << Count << "\n");
+ DEBUG(llvm::dbgs() << "---\n");
+
+ return Penalty;
+ }
+
+ /// \brief Add the following state to the analysis queue \c Queue.
+ ///
+ /// Assume the current state is \p PreviousNode and has been reached with a
+ /// penalty of \p Penalty. Insert a line break if \p NewLine is \c true.
+ void addNextStateToQueue(unsigned Penalty, StateNode *PreviousNode,
+ bool NewLine, unsigned *Count, QueueType *Queue) {
+ if (NewLine && !Indenter->canBreak(PreviousNode->State))
+ return;
+ if (!NewLine && Indenter->mustBreak(PreviousNode->State))
+ return;
+
+ StateNode *Node = new (Allocator.Allocate())
+ StateNode(PreviousNode->State, NewLine, PreviousNode);
+ if (!formatChildren(Node->State, NewLine, /*DryRun=*/true, Penalty))
+ return;
+
+ Penalty += Indenter->addTokenToState(Node->State, NewLine, true);
+
+ Queue->push(QueueItem(OrderedPenalty(Penalty, *Count), Node));
+ ++(*Count);
+ }
+
+ /// \brief Applies the best formatting by reconstructing the path in the
+ /// solution space that leads to \c Best.
+ void reconstructPath(LineState &State, StateNode *Best) {
+ std::deque<StateNode *> Path;
+ // We do not need a break before the initial token.
+ while (Best->Previous) {
+ Path.push_front(Best);
+ Best = Best->Previous;
+ }
+ for (std::deque<StateNode *>::iterator I = Path.begin(), E = Path.end();
+ I != E; ++I) {
+ unsigned Penalty = 0;
+ formatChildren(State, (*I)->NewLine, /*DryRun=*/false, Penalty);
+ Penalty += Indenter->addTokenToState(State, (*I)->NewLine, false);
+
+ DEBUG({
+ printLineState((*I)->Previous->State);
+ if ((*I)->NewLine) {
+ llvm::dbgs() << "Penalty for placing "
+ << (*I)->Previous->State.NextToken->Tok.getName() << ": "
+ << Penalty << "\n";
+ }
+ });
+ }
+ }
+
+ llvm::SpecificBumpPtrAllocator<StateNode> Allocator;
+};
+
+} // namespace
+
+unsigned
+UnwrappedLineFormatter::format(const SmallVectorImpl<AnnotatedLine *> &Lines,
+ bool DryRun, int AdditionalIndent,
+ bool FixBadIndentation) {
+ LineJoiner Joiner(Style, Keywords, Lines);
+
+ // Try to look up already computed penalty in DryRun-mode.
+ std::pair<const SmallVectorImpl<AnnotatedLine *> *, unsigned> CacheKey(
+ &Lines, AdditionalIndent);
+ auto CacheIt = PenaltyCache.find(CacheKey);
+ if (DryRun && CacheIt != PenaltyCache.end())
+ return CacheIt->second;
+
+ assert(!Lines.empty());
+ unsigned Penalty = 0;
+ LevelIndentTracker IndentTracker(Style, Keywords, Lines[0]->Level,
+ AdditionalIndent);
+ const AnnotatedLine *PreviousLine = nullptr;
+ const AnnotatedLine *NextLine = nullptr;
+ for (const AnnotatedLine *Line =
+ Joiner.getNextMergedLine(DryRun, IndentTracker);
+ Line; Line = NextLine) {
+ const AnnotatedLine &TheLine = *Line;
+ unsigned Indent = IndentTracker.getIndent();
+ bool FixIndentation =
+ FixBadIndentation && (Indent != TheLine.First->OriginalColumn);
+ bool ShouldFormat = TheLine.Affected || FixIndentation;
+ // We cannot format this line; if the reason is that the line had a
+ // parsing error, remember that.
+ if (ShouldFormat && TheLine.Type == LT_Invalid && IncompleteFormat)
+ *IncompleteFormat = true;
+
+ if (ShouldFormat && TheLine.Type != LT_Invalid) {
+ if (!DryRun)
+ formatFirstToken(*TheLine.First, PreviousLine, TheLine.Level, Indent,
+ TheLine.InPPDirective);
+
+ NextLine = Joiner.getNextMergedLine(DryRun, IndentTracker);
+ unsigned ColumnLimit = getColumnLimit(TheLine.InPPDirective, NextLine);
+ bool FitsIntoOneLine =
+ TheLine.Last->TotalLength + Indent <= ColumnLimit ||
+ TheLine.Type == LT_ImportStatement;
+
+ if (Style.ColumnLimit == 0)
+ NoColumnLimitLineFormatter(Indenter, Whitespaces, Style, this)
+ .formatLine(TheLine, Indent, DryRun);
+ else if (FitsIntoOneLine)
+ Penalty += NoLineBreakFormatter(Indenter, Whitespaces, Style, this)
+ .formatLine(TheLine, Indent, DryRun);
+ else
+ Penalty += OptimizingLineFormatter(Indenter, Whitespaces, Style, this)
+ .formatLine(TheLine, Indent, DryRun);
+ } else {
+ // If no token in the current line is affected, we still need to format
+ // affected children.
+ if (TheLine.ChildrenAffected)
+ format(TheLine.Children, DryRun);
+
+ // Adapt following lines on the current indent level to the same level
+ // unless the current \c AnnotatedLine is not at the beginning of a line.
+ bool StartsNewLine =
+ TheLine.First->NewlinesBefore > 0 || TheLine.First->IsFirst;
+ if (StartsNewLine)
+ IndentTracker.adjustToUnmodifiedLine(TheLine);
+ if (!DryRun) {
+ bool ReformatLeadingWhitespace =
+ StartsNewLine && ((PreviousLine && PreviousLine->Affected) ||
+ TheLine.LeadingEmptyLinesAffected);
+ // Format the first token.
+ if (ReformatLeadingWhitespace)
+ formatFirstToken(*TheLine.First, PreviousLine, TheLine.Level,
+ TheLine.First->OriginalColumn,
+ TheLine.InPPDirective);
+ else
+ Whitespaces->addUntouchableToken(*TheLine.First,
+ TheLine.InPPDirective);
+
+ // Notify the WhitespaceManager about the unchanged whitespace.
+ for (FormatToken *Tok = TheLine.First->Next; Tok; Tok = Tok->Next)
+ Whitespaces->addUntouchableToken(*Tok, TheLine.InPPDirective);
+ }
+ NextLine = Joiner.getNextMergedLine(DryRun, IndentTracker);
+ }
+ if (!DryRun)
+ markFinalized(TheLine.First);
+ PreviousLine = &TheLine;
+ }
+ PenaltyCache[CacheKey] = Penalty;
+ return Penalty;
+}
+
+void UnwrappedLineFormatter::formatFirstToken(FormatToken &RootToken,
+ const AnnotatedLine *PreviousLine,
+ unsigned IndentLevel,
+ unsigned Indent,
+ bool InPPDirective) {
+ if (RootToken.is(tok::eof)) {
+ unsigned Newlines = std::min(RootToken.NewlinesBefore, 1u);
+ Whitespaces->replaceWhitespace(RootToken, Newlines, /*IndentLevel=*/0,
+ /*Spaces=*/0, /*TargetColumn=*/0);
+ return;
+ }
+ unsigned Newlines =
+ std::min(RootToken.NewlinesBefore, Style.MaxEmptyLinesToKeep + 1);
+ // Remove empty lines before "}" where applicable.
+ if (RootToken.is(tok::r_brace) &&
+ (!RootToken.Next ||
+ (RootToken.Next->is(tok::semi) && !RootToken.Next->Next)))
+ Newlines = std::min(Newlines, 1u);
+ if (Newlines == 0 && !RootToken.IsFirst)
+ Newlines = 1;
+ if (RootToken.IsFirst && !RootToken.HasUnescapedNewline)
+ Newlines = 0;
+
+ // Remove empty lines after "{".
+ if (!Style.KeepEmptyLinesAtTheStartOfBlocks && PreviousLine &&
+ PreviousLine->Last->is(tok::l_brace) &&
+ PreviousLine->First->isNot(tok::kw_namespace) &&
+ !startsExternCBlock(*PreviousLine))
+ Newlines = 1;
+
+ // Insert extra new line before access specifiers.
+ if (PreviousLine && PreviousLine->Last->isOneOf(tok::semi, tok::r_brace) &&
+ RootToken.isAccessSpecifier() && RootToken.NewlinesBefore == 1)
+ ++Newlines;
+
+ // Remove empty lines after access specifiers.
+ if (PreviousLine && PreviousLine->First->isAccessSpecifier() &&
+ (!PreviousLine->InPPDirective || !RootToken.HasUnescapedNewline))
+ Newlines = std::min(1u, Newlines);
+
+ Whitespaces->replaceWhitespace(RootToken, Newlines, IndentLevel, Indent,
+ Indent, InPPDirective &&
+ !RootToken.HasUnescapedNewline);
+}
+
+unsigned
+UnwrappedLineFormatter::getColumnLimit(bool InPPDirective,
+ const AnnotatedLine *NextLine) const {
+ // In preprocessor directives reserve two chars for trailing " \" if the
+ // next line continues the preprocessor directive.
+ bool ContinuesPPDirective =
+ InPPDirective &&
+ // If there is no next line, this is likely a child line and the parent
+ // continues the preprocessor directive.
+ (!NextLine ||
+ (NextLine->InPPDirective &&
+ // If there is an unescaped newline between this line and the next, the
+ // next line starts a new preprocessor directive.
+ !NextLine->First->HasUnescapedNewline));
+ return Style.ColumnLimit - (ContinuesPPDirective ? 2 : 0);
+}
+
+} // namespace format
+} // namespace clang
diff --git a/contrib/llvm/tools/clang/lib/Format/UnwrappedLineFormatter.h b/contrib/llvm/tools/clang/lib/Format/UnwrappedLineFormatter.h
new file mode 100644
index 0000000..da9aa1c
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Format/UnwrappedLineFormatter.h
@@ -0,0 +1,72 @@
+//===--- UnwrappedLineFormatter.h - Format C++ code -------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// \brief Implements a combinartorial exploration of all the different
+/// linebreaks unwrapped lines can be formatted in.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_FORMAT_UNWRAPPEDLINEFORMATTER_H
+#define LLVM_CLANG_LIB_FORMAT_UNWRAPPEDLINEFORMATTER_H
+
+#include "ContinuationIndenter.h"
+#include "clang/Format/Format.h"
+#include <map>
+#include <queue>
+#include <string>
+
+namespace clang {
+namespace format {
+
+class ContinuationIndenter;
+class WhitespaceManager;
+
+class UnwrappedLineFormatter {
+public:
+ UnwrappedLineFormatter(ContinuationIndenter *Indenter,
+ WhitespaceManager *Whitespaces,
+ const FormatStyle &Style,
+ const AdditionalKeywords &Keywords,
+ bool *IncompleteFormat)
+ : Indenter(Indenter), Whitespaces(Whitespaces), Style(Style),
+ Keywords(Keywords), IncompleteFormat(IncompleteFormat) {}
+
+ /// \brief Format the current block and return the penalty.
+ unsigned format(const SmallVectorImpl<AnnotatedLine *> &Lines,
+ bool DryRun = false, int AdditionalIndent = 0,
+ bool FixBadIndentation = false);
+
+private:
+ /// \brief Add a new line and the required indent before the first Token
+ /// of the \c UnwrappedLine if there was no structural parsing error.
+ void formatFirstToken(FormatToken &RootToken,
+ const AnnotatedLine *PreviousLine, unsigned IndentLevel,
+ unsigned Indent, bool InPPDirective);
+
+ /// \brief Returns the column limit for a line, taking into account whether we
+ /// need an escaped newline due to a continued preprocessor directive.
+ unsigned getColumnLimit(bool InPPDirective, const AnnotatedLine *NextLine) const;
+
+ // Cache to store the penalty of formatting a vector of AnnotatedLines
+ // starting from a specific additional offset. Improves performance if there
+ // are many nested blocks.
+ std::map<std::pair<const SmallVectorImpl<AnnotatedLine *> *, unsigned>,
+ unsigned> PenaltyCache;
+
+ ContinuationIndenter *Indenter;
+ WhitespaceManager *Whitespaces;
+ const FormatStyle &Style;
+ const AdditionalKeywords &Keywords;
+ bool *IncompleteFormat;
+};
+} // end namespace format
+} // end namespace clang
+
+#endif // LLVM_CLANG_LIB_FORMAT_UNWRAPPEDLINEFORMATTER_H
diff --git a/contrib/llvm/tools/clang/lib/Format/UnwrappedLineParser.cpp b/contrib/llvm/tools/clang/lib/Format/UnwrappedLineParser.cpp
new file mode 100644
index 0000000..939528f
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Format/UnwrappedLineParser.cpp
@@ -0,0 +1,1884 @@
+//===--- UnwrappedLineParser.cpp - Format C++ code ------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// \brief This file contains the implementation of the UnwrappedLineParser,
+/// which turns a stream of tokens into UnwrappedLines.
+///
+//===----------------------------------------------------------------------===//
+
+#include "UnwrappedLineParser.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+
+#define DEBUG_TYPE "format-parser"
+
+namespace clang {
+namespace format {
+
+class FormatTokenSource {
+public:
+ virtual ~FormatTokenSource() {}
+ virtual FormatToken *getNextToken() = 0;
+
+ virtual unsigned getPosition() = 0;
+ virtual FormatToken *setPosition(unsigned Position) = 0;
+};
+
+namespace {
+
+class ScopedDeclarationState {
+public:
+ ScopedDeclarationState(UnwrappedLine &Line, std::vector<bool> &Stack,
+ bool MustBeDeclaration)
+ : Line(Line), Stack(Stack) {
+ Line.MustBeDeclaration = MustBeDeclaration;
+ Stack.push_back(MustBeDeclaration);
+ }
+ ~ScopedDeclarationState() {
+ Stack.pop_back();
+ if (!Stack.empty())
+ Line.MustBeDeclaration = Stack.back();
+ else
+ Line.MustBeDeclaration = true;
+ }
+
+private:
+ UnwrappedLine &Line;
+ std::vector<bool> &Stack;
+};
+
+class ScopedMacroState : public FormatTokenSource {
+public:
+ ScopedMacroState(UnwrappedLine &Line, FormatTokenSource *&TokenSource,
+ FormatToken *&ResetToken)
+ : Line(Line), TokenSource(TokenSource), ResetToken(ResetToken),
+ PreviousLineLevel(Line.Level), PreviousTokenSource(TokenSource),
+ Token(nullptr) {
+ TokenSource = this;
+ Line.Level = 0;
+ Line.InPPDirective = true;
+ }
+
+ ~ScopedMacroState() override {
+ TokenSource = PreviousTokenSource;
+ ResetToken = Token;
+ Line.InPPDirective = false;
+ Line.Level = PreviousLineLevel;
+ }
+
+ FormatToken *getNextToken() override {
+ // The \c UnwrappedLineParser guards against this by never calling
+ // \c getNextToken() after it has encountered the first eof token.
+ assert(!eof());
+ Token = PreviousTokenSource->getNextToken();
+ if (eof())
+ return getFakeEOF();
+ return Token;
+ }
+
+ unsigned getPosition() override { return PreviousTokenSource->getPosition(); }
+
+ FormatToken *setPosition(unsigned Position) override {
+ Token = PreviousTokenSource->setPosition(Position);
+ return Token;
+ }
+
+private:
+ bool eof() { return Token && Token->HasUnescapedNewline; }
+
+ FormatToken *getFakeEOF() {
+ static bool EOFInitialized = false;
+ static FormatToken FormatTok;
+ if (!EOFInitialized) {
+ FormatTok.Tok.startToken();
+ FormatTok.Tok.setKind(tok::eof);
+ EOFInitialized = true;
+ }
+ return &FormatTok;
+ }
+
+ UnwrappedLine &Line;
+ FormatTokenSource *&TokenSource;
+ FormatToken *&ResetToken;
+ unsigned PreviousLineLevel;
+ FormatTokenSource *PreviousTokenSource;
+
+ FormatToken *Token;
+};
+
+} // end anonymous namespace
+
+class ScopedLineState {
+public:
+ ScopedLineState(UnwrappedLineParser &Parser,
+ bool SwitchToPreprocessorLines = false)
+ : Parser(Parser), OriginalLines(Parser.CurrentLines) {
+ if (SwitchToPreprocessorLines)
+ Parser.CurrentLines = &Parser.PreprocessorDirectives;
+ else if (!Parser.Line->Tokens.empty())
+ Parser.CurrentLines = &Parser.Line->Tokens.back().Children;
+ PreBlockLine = std::move(Parser.Line);
+ Parser.Line = llvm::make_unique<UnwrappedLine>();
+ Parser.Line->Level = PreBlockLine->Level;
+ Parser.Line->InPPDirective = PreBlockLine->InPPDirective;
+ }
+
+ ~ScopedLineState() {
+ if (!Parser.Line->Tokens.empty()) {
+ Parser.addUnwrappedLine();
+ }
+ assert(Parser.Line->Tokens.empty());
+ Parser.Line = std::move(PreBlockLine);
+ if (Parser.CurrentLines == &Parser.PreprocessorDirectives)
+ Parser.MustBreakBeforeNextToken = true;
+ Parser.CurrentLines = OriginalLines;
+ }
+
+private:
+ UnwrappedLineParser &Parser;
+
+ std::unique_ptr<UnwrappedLine> PreBlockLine;
+ SmallVectorImpl<UnwrappedLine> *OriginalLines;
+};
+
+class CompoundStatementIndenter {
+public:
+ CompoundStatementIndenter(UnwrappedLineParser *Parser,
+ const FormatStyle &Style, unsigned &LineLevel)
+ : LineLevel(LineLevel), OldLineLevel(LineLevel) {
+ if (Style.BreakBeforeBraces == FormatStyle::BS_Allman) {
+ Parser->addUnwrappedLine();
+ } else if (Style.BreakBeforeBraces == FormatStyle::BS_GNU) {
+ Parser->addUnwrappedLine();
+ ++LineLevel;
+ }
+ }
+ ~CompoundStatementIndenter() { LineLevel = OldLineLevel; }
+
+private:
+ unsigned &LineLevel;
+ unsigned OldLineLevel;
+};
+
+namespace {
+
+class IndexedTokenSource : public FormatTokenSource {
+public:
+ IndexedTokenSource(ArrayRef<FormatToken *> Tokens)
+ : Tokens(Tokens), Position(-1) {}
+
+ FormatToken *getNextToken() override {
+ ++Position;
+ return Tokens[Position];
+ }
+
+ unsigned getPosition() override {
+ assert(Position >= 0);
+ return Position;
+ }
+
+ FormatToken *setPosition(unsigned P) override {
+ Position = P;
+ return Tokens[Position];
+ }
+
+ void reset() { Position = -1; }
+
+private:
+ ArrayRef<FormatToken *> Tokens;
+ int Position;
+};
+
+} // end anonymous namespace
+
+UnwrappedLineParser::UnwrappedLineParser(const FormatStyle &Style,
+ const AdditionalKeywords &Keywords,
+ ArrayRef<FormatToken *> Tokens,
+ UnwrappedLineConsumer &Callback)
+ : Line(new UnwrappedLine), MustBreakBeforeNextToken(false),
+ CurrentLines(&Lines), Style(Style), Keywords(Keywords), Tokens(nullptr),
+ Callback(Callback), AllTokens(Tokens), PPBranchLevel(-1) {}
+
+void UnwrappedLineParser::reset() {
+ PPBranchLevel = -1;
+ Line.reset(new UnwrappedLine);
+ CommentsBeforeNextToken.clear();
+ FormatTok = nullptr;
+ MustBreakBeforeNextToken = false;
+ PreprocessorDirectives.clear();
+ CurrentLines = &Lines;
+ DeclarationScopeStack.clear();
+ PPStack.clear();
+}
+
+void UnwrappedLineParser::parse() {
+ IndexedTokenSource TokenSource(AllTokens);
+ do {
+ DEBUG(llvm::dbgs() << "----\n");
+ reset();
+ Tokens = &TokenSource;
+ TokenSource.reset();
+
+ readToken();
+ parseFile();
+ // Create line with eof token.
+ pushToken(FormatTok);
+ addUnwrappedLine();
+
+ for (SmallVectorImpl<UnwrappedLine>::iterator I = Lines.begin(),
+ E = Lines.end();
+ I != E; ++I) {
+ Callback.consumeUnwrappedLine(*I);
+ }
+ Callback.finishRun();
+ Lines.clear();
+ while (!PPLevelBranchIndex.empty() &&
+ PPLevelBranchIndex.back() + 1 >= PPLevelBranchCount.back()) {
+ PPLevelBranchIndex.resize(PPLevelBranchIndex.size() - 1);
+ PPLevelBranchCount.resize(PPLevelBranchCount.size() - 1);
+ }
+ if (!PPLevelBranchIndex.empty()) {
+ ++PPLevelBranchIndex.back();
+ assert(PPLevelBranchIndex.size() == PPLevelBranchCount.size());
+ assert(PPLevelBranchIndex.back() <= PPLevelBranchCount.back());
+ }
+ } while (!PPLevelBranchIndex.empty());
+
+}
+
+void UnwrappedLineParser::parseFile() {
+ // The top-level context in a file always has declarations, except for pre-
+ // processor directives and JavaScript files.
+ bool MustBeDeclaration =
+ !Line->InPPDirective && Style.Language != FormatStyle::LK_JavaScript;
+ ScopedDeclarationState DeclarationState(*Line, DeclarationScopeStack,
+ MustBeDeclaration);
+ parseLevel(/*HasOpeningBrace=*/false);
+ // Make sure to format the remaining tokens.
+ flushComments(true);
+ addUnwrappedLine();
+}
+
+void UnwrappedLineParser::parseLevel(bool HasOpeningBrace) {
+ bool SwitchLabelEncountered = false;
+ do {
+ switch (FormatTok->Tok.getKind()) {
+ case tok::comment:
+ nextToken();
+ addUnwrappedLine();
+ break;
+ case tok::l_brace:
+ // FIXME: Add parameter whether this can happen - if this happens, we must
+ // be in a non-declaration context.
+ parseBlock(/*MustBeDeclaration=*/false);
+ addUnwrappedLine();
+ break;
+ case tok::r_brace:
+ if (HasOpeningBrace)
+ return;
+ nextToken();
+ addUnwrappedLine();
+ break;
+ case tok::kw_default:
+ case tok::kw_case:
+ if (!SwitchLabelEncountered &&
+ (Style.IndentCaseLabels || (Line->InPPDirective && Line->Level == 1)))
+ ++Line->Level;
+ SwitchLabelEncountered = true;
+ parseStructuralElement();
+ break;
+ default:
+ parseStructuralElement();
+ break;
+ }
+ } while (!eof());
+}
+
+void UnwrappedLineParser::calculateBraceTypes(bool ExpectClassBody) {
+ // We'll parse forward through the tokens until we hit
+ // a closing brace or eof - note that getNextToken() will
+ // parse macros, so this will magically work inside macro
+ // definitions, too.
+ unsigned StoredPosition = Tokens->getPosition();
+ FormatToken *Tok = FormatTok;
+ // Keep a stack of positions of lbrace tokens. We will
+ // update information about whether an lbrace starts a
+ // braced init list or a different block during the loop.
+ SmallVector<FormatToken *, 8> LBraceStack;
+ assert(Tok->Tok.is(tok::l_brace));
+ do {
+ // Get next none-comment token.
+ FormatToken *NextTok;
+ unsigned ReadTokens = 0;
+ do {
+ NextTok = Tokens->getNextToken();
+ ++ReadTokens;
+ } while (NextTok->is(tok::comment));
+
+ switch (Tok->Tok.getKind()) {
+ case tok::l_brace:
+ Tok->BlockKind = BK_Unknown;
+ LBraceStack.push_back(Tok);
+ break;
+ case tok::r_brace:
+ if (!LBraceStack.empty()) {
+ if (LBraceStack.back()->BlockKind == BK_Unknown) {
+ bool ProbablyBracedList = false;
+ if (Style.Language == FormatStyle::LK_Proto) {
+ ProbablyBracedList = NextTok->isOneOf(tok::comma, tok::r_square);
+ } else {
+ // Using OriginalColumn to distinguish between ObjC methods and
+ // binary operators is a bit hacky.
+ bool NextIsObjCMethod = NextTok->isOneOf(tok::plus, tok::minus) &&
+ NextTok->OriginalColumn == 0;
+
+ // If there is a comma, semicolon or right paren after the closing
+ // brace, we assume this is a braced initializer list. Note that
+ // regardless how we mark inner braces here, we will overwrite the
+ // BlockKind later if we parse a braced list (where all blocks
+ // inside are by default braced lists), or when we explicitly detect
+ // blocks (for example while parsing lambdas).
+ //
+ // We exclude + and - as they can be ObjC visibility modifiers.
+ ProbablyBracedList =
+ NextTok->isOneOf(tok::comma, tok::period, tok::colon,
+ tok::r_paren, tok::r_square, tok::l_brace,
+ tok::l_paren, tok::ellipsis) ||
+ (NextTok->is(tok::semi) &&
+ (!ExpectClassBody || LBraceStack.size() != 1)) ||
+ (NextTok->isBinaryOperator() && !NextIsObjCMethod);
+ }
+ if (ProbablyBracedList) {
+ Tok->BlockKind = BK_BracedInit;
+ LBraceStack.back()->BlockKind = BK_BracedInit;
+ } else {
+ Tok->BlockKind = BK_Block;
+ LBraceStack.back()->BlockKind = BK_Block;
+ }
+ }
+ LBraceStack.pop_back();
+ }
+ break;
+ case tok::at:
+ case tok::semi:
+ case tok::kw_if:
+ case tok::kw_while:
+ case tok::kw_for:
+ case tok::kw_switch:
+ case tok::kw_try:
+ case tok::kw___try:
+ if (!LBraceStack.empty())
+ LBraceStack.back()->BlockKind = BK_Block;
+ break;
+ default:
+ break;
+ }
+ Tok = NextTok;
+ } while (Tok->Tok.isNot(tok::eof) && !LBraceStack.empty());
+ // Assume other blocks for all unclosed opening braces.
+ for (unsigned i = 0, e = LBraceStack.size(); i != e; ++i) {
+ if (LBraceStack[i]->BlockKind == BK_Unknown)
+ LBraceStack[i]->BlockKind = BK_Block;
+ }
+
+ FormatTok = Tokens->setPosition(StoredPosition);
+}
+
+void UnwrappedLineParser::parseBlock(bool MustBeDeclaration, bool AddLevel,
+ bool MunchSemi) {
+ assert(FormatTok->Tok.is(tok::l_brace) && "'{' expected");
+ unsigned InitialLevel = Line->Level;
+ nextToken();
+
+ addUnwrappedLine();
+
+ ScopedDeclarationState DeclarationState(*Line, DeclarationScopeStack,
+ MustBeDeclaration);
+ if (AddLevel)
+ ++Line->Level;
+ parseLevel(/*HasOpeningBrace=*/true);
+
+ if (!FormatTok->Tok.is(tok::r_brace)) {
+ Line->Level = InitialLevel;
+ return;
+ }
+
+ nextToken(); // Munch the closing brace.
+ if (MunchSemi && FormatTok->Tok.is(tok::semi))
+ nextToken();
+ Line->Level = InitialLevel;
+}
+
+static bool isGoogScope(const UnwrappedLine &Line) {
+ // FIXME: Closure-library specific stuff should not be hard-coded but be
+ // configurable.
+ if (Line.Tokens.size() < 4)
+ return false;
+ auto I = Line.Tokens.begin();
+ if (I->Tok->TokenText != "goog")
+ return false;
+ ++I;
+ if (I->Tok->isNot(tok::period))
+ return false;
+ ++I;
+ if (I->Tok->TokenText != "scope")
+ return false;
+ ++I;
+ return I->Tok->is(tok::l_paren);
+}
+
+static bool ShouldBreakBeforeBrace(const FormatStyle &Style,
+ const FormatToken &InitialToken) {
+ switch (Style.BreakBeforeBraces) {
+ case FormatStyle::BS_Linux:
+ return InitialToken.isOneOf(tok::kw_namespace, tok::kw_class);
+ case FormatStyle::BS_Allman:
+ case FormatStyle::BS_GNU:
+ return true;
+ default:
+ return false;
+ }
+}
+
+void UnwrappedLineParser::parseChildBlock() {
+ FormatTok->BlockKind = BK_Block;
+ nextToken();
+ {
+ bool GoogScope =
+ Style.Language == FormatStyle::LK_JavaScript && isGoogScope(*Line);
+ ScopedLineState LineState(*this);
+ ScopedDeclarationState DeclarationState(*Line, DeclarationScopeStack,
+ /*MustBeDeclaration=*/false);
+ Line->Level += GoogScope ? 0 : 1;
+ parseLevel(/*HasOpeningBrace=*/true);
+ flushComments(isOnNewLine(*FormatTok));
+ Line->Level -= GoogScope ? 0 : 1;
+ }
+ nextToken();
+}
+
+void UnwrappedLineParser::parsePPDirective() {
+ assert(FormatTok->Tok.is(tok::hash) && "'#' expected");
+ ScopedMacroState MacroState(*Line, Tokens, FormatTok);
+ nextToken();
+
+ if (!FormatTok->Tok.getIdentifierInfo()) {
+ parsePPUnknown();
+ return;
+ }
+
+ switch (FormatTok->Tok.getIdentifierInfo()->getPPKeywordID()) {
+ case tok::pp_define:
+ parsePPDefine();
+ return;
+ case tok::pp_if:
+ parsePPIf(/*IfDef=*/false);
+ break;
+ case tok::pp_ifdef:
+ case tok::pp_ifndef:
+ parsePPIf(/*IfDef=*/true);
+ break;
+ case tok::pp_else:
+ parsePPElse();
+ break;
+ case tok::pp_elif:
+ parsePPElIf();
+ break;
+ case tok::pp_endif:
+ parsePPEndIf();
+ break;
+ default:
+ parsePPUnknown();
+ break;
+ }
+}
+
+void UnwrappedLineParser::conditionalCompilationCondition(bool Unreachable) {
+ if (Unreachable || (!PPStack.empty() && PPStack.back() == PP_Unreachable))
+ PPStack.push_back(PP_Unreachable);
+ else
+ PPStack.push_back(PP_Conditional);
+}
+
+void UnwrappedLineParser::conditionalCompilationStart(bool Unreachable) {
+ ++PPBranchLevel;
+ assert(PPBranchLevel >= 0 && PPBranchLevel <= (int)PPLevelBranchIndex.size());
+ if (PPBranchLevel == (int)PPLevelBranchIndex.size()) {
+ PPLevelBranchIndex.push_back(0);
+ PPLevelBranchCount.push_back(0);
+ }
+ PPChainBranchIndex.push(0);
+ bool Skip = PPLevelBranchIndex[PPBranchLevel] > 0;
+ conditionalCompilationCondition(Unreachable || Skip);
+}
+
+void UnwrappedLineParser::conditionalCompilationAlternative() {
+ if (!PPStack.empty())
+ PPStack.pop_back();
+ assert(PPBranchLevel < (int)PPLevelBranchIndex.size());
+ if (!PPChainBranchIndex.empty())
+ ++PPChainBranchIndex.top();
+ conditionalCompilationCondition(
+ PPBranchLevel >= 0 && !PPChainBranchIndex.empty() &&
+ PPLevelBranchIndex[PPBranchLevel] != PPChainBranchIndex.top());
+}
+
+void UnwrappedLineParser::conditionalCompilationEnd() {
+ assert(PPBranchLevel < (int)PPLevelBranchIndex.size());
+ if (PPBranchLevel >= 0 && !PPChainBranchIndex.empty()) {
+ if (PPChainBranchIndex.top() + 1 > PPLevelBranchCount[PPBranchLevel]) {
+ PPLevelBranchCount[PPBranchLevel] = PPChainBranchIndex.top() + 1;
+ }
+ }
+ // Guard against #endif's without #if.
+ if (PPBranchLevel > 0)
+ --PPBranchLevel;
+ if (!PPChainBranchIndex.empty())
+ PPChainBranchIndex.pop();
+ if (!PPStack.empty())
+ PPStack.pop_back();
+}
+
+void UnwrappedLineParser::parsePPIf(bool IfDef) {
+ nextToken();
+ bool IsLiteralFalse = (FormatTok->Tok.isLiteral() &&
+ FormatTok->Tok.getLiteralData() != nullptr &&
+ StringRef(FormatTok->Tok.getLiteralData(),
+ FormatTok->Tok.getLength()) == "0") ||
+ FormatTok->Tok.is(tok::kw_false);
+ conditionalCompilationStart(!IfDef && IsLiteralFalse);
+ parsePPUnknown();
+}
+
+void UnwrappedLineParser::parsePPElse() {
+ conditionalCompilationAlternative();
+ parsePPUnknown();
+}
+
+void UnwrappedLineParser::parsePPElIf() { parsePPElse(); }
+
+void UnwrappedLineParser::parsePPEndIf() {
+ conditionalCompilationEnd();
+ parsePPUnknown();
+}
+
+void UnwrappedLineParser::parsePPDefine() {
+ nextToken();
+
+ if (FormatTok->Tok.getKind() != tok::identifier) {
+ parsePPUnknown();
+ return;
+ }
+ nextToken();
+ if (FormatTok->Tok.getKind() == tok::l_paren &&
+ FormatTok->WhitespaceRange.getBegin() ==
+ FormatTok->WhitespaceRange.getEnd()) {
+ parseParens();
+ }
+ addUnwrappedLine();
+ Line->Level = 1;
+
+ // Errors during a preprocessor directive can only affect the layout of the
+ // preprocessor directive, and thus we ignore them. An alternative approach
+ // would be to use the same approach we use on the file level (no
+ // re-indentation if there was a structural error) within the macro
+ // definition.
+ parseFile();
+}
+
+void UnwrappedLineParser::parsePPUnknown() {
+ do {
+ nextToken();
+ } while (!eof());
+ addUnwrappedLine();
+}
+
+// Here we blacklist certain tokens that are not usually the first token in an
+// unwrapped line. This is used in attempt to distinguish macro calls without
+// trailing semicolons from other constructs split to several lines.
+static bool tokenCanStartNewLine(const clang::Token &Tok) {
+ // Semicolon can be a null-statement, l_square can be a start of a macro or
+ // a C++11 attribute, but this doesn't seem to be common.
+ return Tok.isNot(tok::semi) && Tok.isNot(tok::l_brace) &&
+ Tok.isNot(tok::l_square) &&
+ // Tokens that can only be used as binary operators and a part of
+ // overloaded operator names.
+ Tok.isNot(tok::period) && Tok.isNot(tok::periodstar) &&
+ Tok.isNot(tok::arrow) && Tok.isNot(tok::arrowstar) &&
+ Tok.isNot(tok::less) && Tok.isNot(tok::greater) &&
+ Tok.isNot(tok::slash) && Tok.isNot(tok::percent) &&
+ Tok.isNot(tok::lessless) && Tok.isNot(tok::greatergreater) &&
+ Tok.isNot(tok::equal) && Tok.isNot(tok::plusequal) &&
+ Tok.isNot(tok::minusequal) && Tok.isNot(tok::starequal) &&
+ Tok.isNot(tok::slashequal) && Tok.isNot(tok::percentequal) &&
+ Tok.isNot(tok::ampequal) && Tok.isNot(tok::pipeequal) &&
+ Tok.isNot(tok::caretequal) && Tok.isNot(tok::greatergreaterequal) &&
+ Tok.isNot(tok::lesslessequal) &&
+ // Colon is used in labels, base class lists, initializer lists,
+ // range-based for loops, ternary operator, but should never be the
+ // first token in an unwrapped line.
+ Tok.isNot(tok::colon) &&
+ // 'noexcept' is a trailing annotation.
+ Tok.isNot(tok::kw_noexcept);
+}
+
+void UnwrappedLineParser::parseStructuralElement() {
+ assert(!FormatTok->Tok.is(tok::l_brace));
+ switch (FormatTok->Tok.getKind()) {
+ case tok::at:
+ nextToken();
+ if (FormatTok->Tok.is(tok::l_brace)) {
+ parseBracedList();
+ break;
+ }
+ switch (FormatTok->Tok.getObjCKeywordID()) {
+ case tok::objc_public:
+ case tok::objc_protected:
+ case tok::objc_package:
+ case tok::objc_private:
+ return parseAccessSpecifier();
+ case tok::objc_interface:
+ case tok::objc_implementation:
+ return parseObjCInterfaceOrImplementation();
+ case tok::objc_protocol:
+ return parseObjCProtocol();
+ case tok::objc_end:
+ return; // Handled by the caller.
+ case tok::objc_optional:
+ case tok::objc_required:
+ nextToken();
+ addUnwrappedLine();
+ return;
+ case tok::objc_try:
+ // This branch isn't strictly necessary (the kw_try case below would
+ // do this too after the tok::at is parsed above). But be explicit.
+ parseTryCatch();
+ return;
+ default:
+ break;
+ }
+ break;
+ case tok::kw_asm:
+ nextToken();
+ if (FormatTok->is(tok::l_brace)) {
+ FormatTok->Type = TT_InlineASMBrace;
+ nextToken();
+ while (FormatTok && FormatTok->isNot(tok::eof)) {
+ if (FormatTok->is(tok::r_brace)) {
+ FormatTok->Type = TT_InlineASMBrace;
+ nextToken();
+ addUnwrappedLine();
+ break;
+ }
+ FormatTok->Finalized = true;
+ nextToken();
+ }
+ }
+ break;
+ case tok::kw_namespace:
+ parseNamespace();
+ return;
+ case tok::kw_inline:
+ nextToken();
+ if (FormatTok->Tok.is(tok::kw_namespace)) {
+ parseNamespace();
+ return;
+ }
+ break;
+ case tok::kw_public:
+ case tok::kw_protected:
+ case tok::kw_private:
+ if (Style.Language == FormatStyle::LK_Java ||
+ Style.Language == FormatStyle::LK_JavaScript)
+ nextToken();
+ else
+ parseAccessSpecifier();
+ return;
+ case tok::kw_if:
+ parseIfThenElse();
+ return;
+ case tok::kw_for:
+ case tok::kw_while:
+ parseForOrWhileLoop();
+ return;
+ case tok::kw_do:
+ parseDoWhile();
+ return;
+ case tok::kw_switch:
+ parseSwitch();
+ return;
+ case tok::kw_default:
+ nextToken();
+ parseLabel();
+ return;
+ case tok::kw_case:
+ parseCaseLabel();
+ return;
+ case tok::kw_try:
+ case tok::kw___try:
+ parseTryCatch();
+ return;
+ case tok::kw_extern:
+ nextToken();
+ if (FormatTok->Tok.is(tok::string_literal)) {
+ nextToken();
+ if (FormatTok->Tok.is(tok::l_brace)) {
+ parseBlock(/*MustBeDeclaration=*/true, /*AddLevel=*/false);
+ addUnwrappedLine();
+ return;
+ }
+ }
+ break;
+ case tok::kw_export:
+ if (Style.Language == FormatStyle::LK_JavaScript) {
+ parseJavaScriptEs6ImportExport();
+ return;
+ }
+ break;
+ case tok::identifier:
+ if (FormatTok->is(TT_ForEachMacro)) {
+ parseForOrWhileLoop();
+ return;
+ }
+ if (Style.Language == FormatStyle::LK_JavaScript &&
+ FormatTok->is(Keywords.kw_import)) {
+ parseJavaScriptEs6ImportExport();
+ return;
+ }
+ if (FormatTok->is(Keywords.kw_signals)) {
+ nextToken();
+ if (FormatTok->is(tok::colon)) {
+ nextToken();
+ addUnwrappedLine();
+ }
+ return;
+ }
+ // In all other cases, parse the declaration.
+ break;
+ default:
+ break;
+ }
+ do {
+ switch (FormatTok->Tok.getKind()) {
+ case tok::at:
+ nextToken();
+ if (FormatTok->Tok.is(tok::l_brace))
+ parseBracedList();
+ break;
+ case tok::kw_enum:
+ parseEnum();
+ break;
+ case tok::kw_typedef:
+ nextToken();
+ if (FormatTok->isOneOf(Keywords.kw_NS_ENUM, Keywords.kw_NS_OPTIONS,
+ Keywords.kw_CF_ENUM, Keywords.kw_CF_OPTIONS))
+ parseEnum();
+ break;
+ case tok::kw_struct:
+ case tok::kw_union:
+ case tok::kw_class:
+ parseRecord();
+ // A record declaration or definition is always the start of a structural
+ // element.
+ break;
+ case tok::period:
+ nextToken();
+ // In Java, classes have an implicit static member "class".
+ if (Style.Language == FormatStyle::LK_Java && FormatTok &&
+ FormatTok->is(tok::kw_class))
+ nextToken();
+ break;
+ case tok::semi:
+ nextToken();
+ addUnwrappedLine();
+ return;
+ case tok::r_brace:
+ addUnwrappedLine();
+ return;
+ case tok::l_paren:
+ parseParens();
+ break;
+ case tok::caret:
+ nextToken();
+ if (FormatTok->Tok.isAnyIdentifier() ||
+ FormatTok->isSimpleTypeSpecifier())
+ nextToken();
+ if (FormatTok->is(tok::l_paren))
+ parseParens();
+ if (FormatTok->is(tok::l_brace))
+ parseChildBlock();
+ break;
+ case tok::l_brace:
+ if (!tryToParseBracedList()) {
+ // A block outside of parentheses must be the last part of a
+ // structural element.
+ // FIXME: Figure out cases where this is not true, and add projections
+ // for them (the one we know is missing are lambdas).
+ if (Style.BreakBeforeBraces != FormatStyle::BS_Attach)
+ addUnwrappedLine();
+ FormatTok->Type = TT_FunctionLBrace;
+ parseBlock(/*MustBeDeclaration=*/false);
+ addUnwrappedLine();
+ return;
+ }
+ // Otherwise this was a braced init list, and the structural
+ // element continues.
+ break;
+ case tok::kw_try:
+ // We arrive here when parsing function-try blocks.
+ parseTryCatch();
+ return;
+ case tok::identifier: {
+ // Parse function literal unless 'function' is the first token in a line
+ // in which case this should be treated as a free-standing function.
+ if (Style.Language == FormatStyle::LK_JavaScript &&
+ FormatTok->is(Keywords.kw_function) && Line->Tokens.size() > 0) {
+ tryToParseJSFunction();
+ break;
+ }
+ if ((Style.Language == FormatStyle::LK_JavaScript ||
+ Style.Language == FormatStyle::LK_Java) &&
+ FormatTok->is(Keywords.kw_interface)) {
+ parseRecord();
+ break;
+ }
+
+ StringRef Text = FormatTok->TokenText;
+ nextToken();
+ if (Line->Tokens.size() == 1 &&
+ // JS doesn't have macros, and within classes colons indicate fields,
+ // not labels.
+ Style.Language != FormatStyle::LK_JavaScript) {
+ if (FormatTok->Tok.is(tok::colon) && !Line->MustBeDeclaration) {
+ parseLabel();
+ return;
+ }
+ // Recognize function-like macro usages without trailing semicolon as
+ // well as free-standing macros like Q_OBJECT.
+ bool FunctionLike = FormatTok->is(tok::l_paren);
+ if (FunctionLike)
+ parseParens();
+
+ bool FollowedByNewline =
+ CommentsBeforeNextToken.empty()
+ ? FormatTok->NewlinesBefore > 0
+ : CommentsBeforeNextToken.front()->NewlinesBefore > 0;
+
+ if (FollowedByNewline &&
+ (Text.size() >= 5 || FunctionLike) &&
+ tokenCanStartNewLine(FormatTok->Tok) && Text == Text.upper()) {
+ addUnwrappedLine();
+ return;
+ }
+ }
+ break;
+ }
+ case tok::equal:
+ // Fat arrows (=>) have tok::TokenKind tok::equal but TokenType
+ // TT_JsFatArrow. The always start an expression or a child block if
+ // followed by a curly.
+ if (FormatTok->is(TT_JsFatArrow)) {
+ nextToken();
+ if (FormatTok->is(tok::l_brace)) {
+ parseChildBlock();
+ }
+ break;
+ }
+
+ nextToken();
+ if (FormatTok->Tok.is(tok::l_brace)) {
+ parseBracedList();
+ }
+ break;
+ case tok::l_square:
+ parseSquare();
+ break;
+ case tok::kw_new:
+ parseNew();
+ break;
+ default:
+ nextToken();
+ break;
+ }
+ } while (!eof());
+}
+
+bool UnwrappedLineParser::tryToParseLambda() {
+ // FIXME: This is a dirty way to access the previous token. Find a better
+ // solution.
+ if (!Line->Tokens.empty() &&
+ (Line->Tokens.back().Tok->isOneOf(tok::identifier, tok::kw_operator,
+ tok::kw_new, tok::kw_delete) ||
+ Line->Tokens.back().Tok->closesScope() ||
+ Line->Tokens.back().Tok->isSimpleTypeSpecifier())) {
+ nextToken();
+ return false;
+ }
+ assert(FormatTok->is(tok::l_square));
+ FormatToken &LSquare = *FormatTok;
+ if (!tryToParseLambdaIntroducer())
+ return false;
+
+ while (FormatTok->isNot(tok::l_brace)) {
+ if (FormatTok->isSimpleTypeSpecifier()) {
+ nextToken();
+ continue;
+ }
+ switch (FormatTok->Tok.getKind()) {
+ case tok::l_brace:
+ break;
+ case tok::l_paren:
+ parseParens();
+ break;
+ case tok::amp:
+ case tok::star:
+ case tok::kw_const:
+ case tok::comma:
+ case tok::less:
+ case tok::greater:
+ case tok::identifier:
+ case tok::coloncolon:
+ case tok::kw_mutable:
+ nextToken();
+ break;
+ case tok::arrow:
+ FormatTok->Type = TT_TrailingReturnArrow;
+ nextToken();
+ break;
+ default:
+ return true;
+ }
+ }
+ LSquare.Type = TT_LambdaLSquare;
+ parseChildBlock();
+ return true;
+}
+
+bool UnwrappedLineParser::tryToParseLambdaIntroducer() {
+ nextToken();
+ if (FormatTok->is(tok::equal)) {
+ nextToken();
+ if (FormatTok->is(tok::r_square)) {
+ nextToken();
+ return true;
+ }
+ if (FormatTok->isNot(tok::comma))
+ return false;
+ nextToken();
+ } else if (FormatTok->is(tok::amp)) {
+ nextToken();
+ if (FormatTok->is(tok::r_square)) {
+ nextToken();
+ return true;
+ }
+ if (!FormatTok->isOneOf(tok::comma, tok::identifier)) {
+ return false;
+ }
+ if (FormatTok->is(tok::comma))
+ nextToken();
+ } else if (FormatTok->is(tok::r_square)) {
+ nextToken();
+ return true;
+ }
+ do {
+ if (FormatTok->is(tok::amp))
+ nextToken();
+ if (!FormatTok->isOneOf(tok::identifier, tok::kw_this))
+ return false;
+ nextToken();
+ if (FormatTok->is(tok::ellipsis))
+ nextToken();
+ if (FormatTok->is(tok::comma)) {
+ nextToken();
+ } else if (FormatTok->is(tok::r_square)) {
+ nextToken();
+ return true;
+ } else {
+ return false;
+ }
+ } while (!eof());
+ return false;
+}
+
+void UnwrappedLineParser::tryToParseJSFunction() {
+ nextToken();
+
+ // Consume function name.
+ if (FormatTok->is(tok::identifier))
+ nextToken();
+
+ if (FormatTok->isNot(tok::l_paren))
+ return;
+
+ // Parse formal parameter list.
+ parseBalanced(tok::l_paren, tok::r_paren);
+
+ if (FormatTok->is(tok::colon)) {
+ // Parse a type definition.
+ nextToken();
+
+ // Eat the type declaration. For braced inline object types, balance braces,
+ // otherwise just parse until finding an l_brace for the function body.
+ if (FormatTok->is(tok::l_brace)) {
+ parseBalanced(tok::l_brace, tok::r_brace);
+ } else {
+ while(FormatTok->isNot(tok::l_brace) && !eof()) {
+ nextToken();
+ }
+ }
+ }
+
+ parseChildBlock();
+}
+
+void UnwrappedLineParser::parseBalanced(tok::TokenKind OpenKind,
+ tok::TokenKind CloseKind) {
+ assert(FormatTok->is(OpenKind));
+ nextToken();
+ int Depth = 1;
+ while (Depth > 0 && !eof()) {
+ // Parse the formal parameter list.
+ if (FormatTok->is(OpenKind)) {
+ ++Depth;
+ } else if (FormatTok->is(CloseKind)) {
+ --Depth;
+ }
+ nextToken();
+ }
+}
+
+bool UnwrappedLineParser::tryToParseBracedList() {
+ if (FormatTok->BlockKind == BK_Unknown)
+ calculateBraceTypes();
+ assert(FormatTok->BlockKind != BK_Unknown);
+ if (FormatTok->BlockKind == BK_Block)
+ return false;
+ parseBracedList();
+ return true;
+}
+
+bool UnwrappedLineParser::parseBracedList(bool ContinueOnSemicolons) {
+ bool HasError = false;
+ nextToken();
+
+ // FIXME: Once we have an expression parser in the UnwrappedLineParser,
+ // replace this by using parseAssigmentExpression() inside.
+ do {
+ if (Style.Language == FormatStyle::LK_JavaScript) {
+ if (FormatTok->is(Keywords.kw_function)) {
+ tryToParseJSFunction();
+ continue;
+ } else if (FormatTok->is(TT_JsFatArrow)) {
+ nextToken();
+ // Fat arrows can be followed by simple expressions or by child blocks
+ // in curly braces.
+ if (FormatTok->is(tok::l_brace)){
+ parseChildBlock();
+ continue;
+ }
+ }
+ }
+ switch (FormatTok->Tok.getKind()) {
+ case tok::caret:
+ nextToken();
+ if (FormatTok->is(tok::l_brace)) {
+ parseChildBlock();
+ }
+ break;
+ case tok::l_square:
+ tryToParseLambda();
+ break;
+ case tok::l_brace:
+ // Assume there are no blocks inside a braced init list apart
+ // from the ones we explicitly parse out (like lambdas).
+ FormatTok->BlockKind = BK_BracedInit;
+ parseBracedList();
+ break;
+ case tok::r_paren:
+ // JavaScript can just have free standing methods and getters/setters in
+ // object literals. Detect them by a "{" following ")".
+ if (Style.Language == FormatStyle::LK_JavaScript) {
+ nextToken();
+ if (FormatTok->is(tok::l_brace))
+ parseChildBlock();
+ break;
+ }
+ nextToken();
+ break;
+ case tok::r_brace:
+ nextToken();
+ return !HasError;
+ case tok::semi:
+ HasError = true;
+ if (!ContinueOnSemicolons)
+ return !HasError;
+ nextToken();
+ break;
+ case tok::comma:
+ nextToken();
+ break;
+ default:
+ nextToken();
+ break;
+ }
+ } while (!eof());
+ return false;
+}
+
+void UnwrappedLineParser::parseParens() {
+ assert(FormatTok->Tok.is(tok::l_paren) && "'(' expected.");
+ nextToken();
+ do {
+ switch (FormatTok->Tok.getKind()) {
+ case tok::l_paren:
+ parseParens();
+ if (Style.Language == FormatStyle::LK_Java && FormatTok->is(tok::l_brace))
+ parseChildBlock();
+ break;
+ case tok::r_paren:
+ nextToken();
+ return;
+ case tok::r_brace:
+ // A "}" inside parenthesis is an error if there wasn't a matching "{".
+ return;
+ case tok::l_square:
+ tryToParseLambda();
+ break;
+ case tok::l_brace:
+ if (!tryToParseBracedList())
+ parseChildBlock();
+ break;
+ case tok::at:
+ nextToken();
+ if (FormatTok->Tok.is(tok::l_brace))
+ parseBracedList();
+ break;
+ case tok::identifier:
+ if (Style.Language == FormatStyle::LK_JavaScript &&
+ FormatTok->is(Keywords.kw_function))
+ tryToParseJSFunction();
+ else
+ nextToken();
+ break;
+ default:
+ nextToken();
+ break;
+ }
+ } while (!eof());
+}
+
+void UnwrappedLineParser::parseSquare() {
+ assert(FormatTok->Tok.is(tok::l_square) && "'[' expected.");
+ if (tryToParseLambda())
+ return;
+ do {
+ switch (FormatTok->Tok.getKind()) {
+ case tok::l_paren:
+ parseParens();
+ break;
+ case tok::r_square:
+ nextToken();
+ return;
+ case tok::r_brace:
+ // A "}" inside parenthesis is an error if there wasn't a matching "{".
+ return;
+ case tok::l_square:
+ parseSquare();
+ break;
+ case tok::l_brace: {
+ if (!tryToParseBracedList())
+ parseChildBlock();
+ break;
+ }
+ case tok::at:
+ nextToken();
+ if (FormatTok->Tok.is(tok::l_brace))
+ parseBracedList();
+ break;
+ default:
+ nextToken();
+ break;
+ }
+ } while (!eof());
+}
+
+void UnwrappedLineParser::parseIfThenElse() {
+ assert(FormatTok->Tok.is(tok::kw_if) && "'if' expected");
+ nextToken();
+ if (FormatTok->Tok.is(tok::l_paren))
+ parseParens();
+ bool NeedsUnwrappedLine = false;
+ if (FormatTok->Tok.is(tok::l_brace)) {
+ CompoundStatementIndenter Indenter(this, Style, Line->Level);
+ parseBlock(/*MustBeDeclaration=*/false);
+ if (Style.BreakBeforeBraces == FormatStyle::BS_Allman ||
+ Style.BreakBeforeBraces == FormatStyle::BS_GNU) {
+ addUnwrappedLine();
+ } else {
+ NeedsUnwrappedLine = true;
+ }
+ } else {
+ addUnwrappedLine();
+ ++Line->Level;
+ parseStructuralElement();
+ --Line->Level;
+ }
+ if (FormatTok->Tok.is(tok::kw_else)) {
+ if (Style.BreakBeforeBraces == FormatStyle::BS_Stroustrup)
+ addUnwrappedLine();
+ nextToken();
+ if (FormatTok->Tok.is(tok::l_brace)) {
+ CompoundStatementIndenter Indenter(this, Style, Line->Level);
+ parseBlock(/*MustBeDeclaration=*/false);
+ addUnwrappedLine();
+ } else if (FormatTok->Tok.is(tok::kw_if)) {
+ parseIfThenElse();
+ } else {
+ addUnwrappedLine();
+ ++Line->Level;
+ parseStructuralElement();
+ --Line->Level;
+ }
+ } else if (NeedsUnwrappedLine) {
+ addUnwrappedLine();
+ }
+}
+
+void UnwrappedLineParser::parseTryCatch() {
+ assert(FormatTok->isOneOf(tok::kw_try, tok::kw___try) && "'try' expected");
+ nextToken();
+ bool NeedsUnwrappedLine = false;
+ if (FormatTok->is(tok::colon)) {
+ // We are in a function try block, what comes is an initializer list.
+ nextToken();
+ while (FormatTok->is(tok::identifier)) {
+ nextToken();
+ if (FormatTok->is(tok::l_paren))
+ parseParens();
+ if (FormatTok->is(tok::comma))
+ nextToken();
+ }
+ }
+ // Parse try with resource.
+ if (Style.Language == FormatStyle::LK_Java && FormatTok->is(tok::l_paren)) {
+ parseParens();
+ }
+ if (FormatTok->is(tok::l_brace)) {
+ CompoundStatementIndenter Indenter(this, Style, Line->Level);
+ parseBlock(/*MustBeDeclaration=*/false);
+ if (Style.BreakBeforeBraces == FormatStyle::BS_Allman ||
+ Style.BreakBeforeBraces == FormatStyle::BS_GNU ||
+ Style.BreakBeforeBraces == FormatStyle::BS_Stroustrup) {
+ addUnwrappedLine();
+ } else {
+ NeedsUnwrappedLine = true;
+ }
+ } else if (!FormatTok->is(tok::kw_catch)) {
+ // The C++ standard requires a compound-statement after a try.
+ // If there's none, we try to assume there's a structuralElement
+ // and try to continue.
+ addUnwrappedLine();
+ ++Line->Level;
+ parseStructuralElement();
+ --Line->Level;
+ }
+ while (1) {
+ if (FormatTok->is(tok::at))
+ nextToken();
+ if (!(FormatTok->isOneOf(tok::kw_catch, Keywords.kw___except,
+ tok::kw___finally) ||
+ ((Style.Language == FormatStyle::LK_Java ||
+ Style.Language == FormatStyle::LK_JavaScript) &&
+ FormatTok->is(Keywords.kw_finally)) ||
+ (FormatTok->Tok.isObjCAtKeyword(tok::objc_catch) ||
+ FormatTok->Tok.isObjCAtKeyword(tok::objc_finally))))
+ break;
+ nextToken();
+ while (FormatTok->isNot(tok::l_brace)) {
+ if (FormatTok->is(tok::l_paren)) {
+ parseParens();
+ continue;
+ }
+ if (FormatTok->isOneOf(tok::semi, tok::r_brace, tok::eof))
+ return;
+ nextToken();
+ }
+ NeedsUnwrappedLine = false;
+ CompoundStatementIndenter Indenter(this, Style, Line->Level);
+ parseBlock(/*MustBeDeclaration=*/false);
+ if (Style.BreakBeforeBraces == FormatStyle::BS_Allman ||
+ Style.BreakBeforeBraces == FormatStyle::BS_GNU ||
+ Style.BreakBeforeBraces == FormatStyle::BS_Stroustrup) {
+ addUnwrappedLine();
+ } else {
+ NeedsUnwrappedLine = true;
+ }
+ }
+ if (NeedsUnwrappedLine) {
+ addUnwrappedLine();
+ }
+}
+
+void UnwrappedLineParser::parseNamespace() {
+ assert(FormatTok->Tok.is(tok::kw_namespace) && "'namespace' expected");
+
+ const FormatToken &InitialToken = *FormatTok;
+ nextToken();
+ if (FormatTok->Tok.is(tok::identifier))
+ nextToken();
+ if (FormatTok->Tok.is(tok::l_brace)) {
+ if (ShouldBreakBeforeBrace(Style, InitialToken))
+ addUnwrappedLine();
+
+ bool AddLevel = Style.NamespaceIndentation == FormatStyle::NI_All ||
+ (Style.NamespaceIndentation == FormatStyle::NI_Inner &&
+ DeclarationScopeStack.size() > 1);
+ parseBlock(/*MustBeDeclaration=*/true, AddLevel);
+ // Munch the semicolon after a namespace. This is more common than one would
+ // think. Puttin the semicolon into its own line is very ugly.
+ if (FormatTok->Tok.is(tok::semi))
+ nextToken();
+ addUnwrappedLine();
+ }
+ // FIXME: Add error handling.
+}
+
+void UnwrappedLineParser::parseNew() {
+ assert(FormatTok->is(tok::kw_new) && "'new' expected");
+ nextToken();
+ if (Style.Language != FormatStyle::LK_Java)
+ return;
+
+ // In Java, we can parse everything up to the parens, which aren't optional.
+ do {
+ // There should not be a ;, { or } before the new's open paren.
+ if (FormatTok->isOneOf(tok::semi, tok::l_brace, tok::r_brace))
+ return;
+
+ // Consume the parens.
+ if (FormatTok->is(tok::l_paren)) {
+ parseParens();
+
+ // If there is a class body of an anonymous class, consume that as child.
+ if (FormatTok->is(tok::l_brace))
+ parseChildBlock();
+ return;
+ }
+ nextToken();
+ } while (!eof());
+}
+
+void UnwrappedLineParser::parseForOrWhileLoop() {
+ assert(FormatTok->isOneOf(tok::kw_for, tok::kw_while, TT_ForEachMacro) &&
+ "'for', 'while' or foreach macro expected");
+ nextToken();
+ if (FormatTok->Tok.is(tok::l_paren))
+ parseParens();
+ if (FormatTok->Tok.is(tok::l_brace)) {
+ CompoundStatementIndenter Indenter(this, Style, Line->Level);
+ parseBlock(/*MustBeDeclaration=*/false);
+ addUnwrappedLine();
+ } else {
+ addUnwrappedLine();
+ ++Line->Level;
+ parseStructuralElement();
+ --Line->Level;
+ }
+}
+
+void UnwrappedLineParser::parseDoWhile() {
+ assert(FormatTok->Tok.is(tok::kw_do) && "'do' expected");
+ nextToken();
+ if (FormatTok->Tok.is(tok::l_brace)) {
+ CompoundStatementIndenter Indenter(this, Style, Line->Level);
+ parseBlock(/*MustBeDeclaration=*/false);
+ if (Style.BreakBeforeBraces == FormatStyle::BS_GNU)
+ addUnwrappedLine();
+ } else {
+ addUnwrappedLine();
+ ++Line->Level;
+ parseStructuralElement();
+ --Line->Level;
+ }
+
+ // FIXME: Add error handling.
+ if (!FormatTok->Tok.is(tok::kw_while)) {
+ addUnwrappedLine();
+ return;
+ }
+
+ nextToken();
+ parseStructuralElement();
+}
+
+void UnwrappedLineParser::parseLabel() {
+ nextToken();
+ unsigned OldLineLevel = Line->Level;
+ if (Line->Level > 1 || (!Line->InPPDirective && Line->Level > 0))
+ --Line->Level;
+ if (CommentsBeforeNextToken.empty() && FormatTok->Tok.is(tok::l_brace)) {
+ CompoundStatementIndenter Indenter(this, Style, Line->Level);
+ parseBlock(/*MustBeDeclaration=*/false);
+ if (FormatTok->Tok.is(tok::kw_break)) {
+ // "break;" after "}" on its own line only for BS_Allman and BS_GNU
+ if (Style.BreakBeforeBraces == FormatStyle::BS_Allman ||
+ Style.BreakBeforeBraces == FormatStyle::BS_GNU) {
+ addUnwrappedLine();
+ }
+ parseStructuralElement();
+ }
+ addUnwrappedLine();
+ } else {
+ if (FormatTok->is(tok::semi))
+ nextToken();
+ addUnwrappedLine();
+ }
+ Line->Level = OldLineLevel;
+}
+
+void UnwrappedLineParser::parseCaseLabel() {
+ assert(FormatTok->Tok.is(tok::kw_case) && "'case' expected");
+ // FIXME: fix handling of complex expressions here.
+ do {
+ nextToken();
+ } while (!eof() && !FormatTok->Tok.is(tok::colon));
+ parseLabel();
+}
+
+void UnwrappedLineParser::parseSwitch() {
+ assert(FormatTok->Tok.is(tok::kw_switch) && "'switch' expected");
+ nextToken();
+ if (FormatTok->Tok.is(tok::l_paren))
+ parseParens();
+ if (FormatTok->Tok.is(tok::l_brace)) {
+ CompoundStatementIndenter Indenter(this, Style, Line->Level);
+ parseBlock(/*MustBeDeclaration=*/false);
+ addUnwrappedLine();
+ } else {
+ addUnwrappedLine();
+ ++Line->Level;
+ parseStructuralElement();
+ --Line->Level;
+ }
+}
+
+void UnwrappedLineParser::parseAccessSpecifier() {
+ nextToken();
+ // Understand Qt's slots.
+ if (FormatTok->isOneOf(Keywords.kw_slots, Keywords.kw_qslots))
+ nextToken();
+ // Otherwise, we don't know what it is, and we'd better keep the next token.
+ if (FormatTok->Tok.is(tok::colon))
+ nextToken();
+ addUnwrappedLine();
+}
+
+void UnwrappedLineParser::parseEnum() {
+ // Won't be 'enum' for NS_ENUMs.
+ if (FormatTok->Tok.is(tok::kw_enum))
+ nextToken();
+
+ // Eat up enum class ...
+ if (FormatTok->Tok.is(tok::kw_class) || FormatTok->Tok.is(tok::kw_struct))
+ nextToken();
+ while (FormatTok->Tok.getIdentifierInfo() ||
+ FormatTok->isOneOf(tok::colon, tok::coloncolon, tok::less,
+ tok::greater, tok::comma, tok::question)) {
+ nextToken();
+ // We can have macros or attributes in between 'enum' and the enum name.
+ if (FormatTok->is(tok::l_paren))
+ parseParens();
+ if (FormatTok->is(tok::identifier))
+ nextToken();
+ }
+
+ // Just a declaration or something is wrong.
+ if (FormatTok->isNot(tok::l_brace))
+ return;
+ FormatTok->BlockKind = BK_Block;
+
+ if (Style.Language == FormatStyle::LK_Java) {
+ // Java enums are different.
+ parseJavaEnumBody();
+ return;
+ }
+
+ // Parse enum body.
+ bool HasError = !parseBracedList(/*ContinueOnSemicolons=*/true);
+ if (HasError) {
+ if (FormatTok->is(tok::semi))
+ nextToken();
+ addUnwrappedLine();
+ }
+
+ // We fall through to parsing a structural element afterwards, so that in
+ // enum A {} n, m;
+ // "} n, m;" will end up in one unwrapped line.
+}
+
+void UnwrappedLineParser::parseJavaEnumBody() {
+ // Determine whether the enum is simple, i.e. does not have a semicolon or
+ // constants with class bodies. Simple enums can be formatted like braced
+ // lists, contracted to a single line, etc.
+ unsigned StoredPosition = Tokens->getPosition();
+ bool IsSimple = true;
+ FormatToken *Tok = Tokens->getNextToken();
+ while (Tok) {
+ if (Tok->is(tok::r_brace))
+ break;
+ if (Tok->isOneOf(tok::l_brace, tok::semi)) {
+ IsSimple = false;
+ break;
+ }
+ // FIXME: This will also mark enums with braces in the arguments to enum
+ // constants as "not simple". This is probably fine in practice, though.
+ Tok = Tokens->getNextToken();
+ }
+ FormatTok = Tokens->setPosition(StoredPosition);
+
+ if (IsSimple) {
+ parseBracedList();
+ addUnwrappedLine();
+ return;
+ }
+
+ // Parse the body of a more complex enum.
+ // First add a line for everything up to the "{".
+ nextToken();
+ addUnwrappedLine();
+ ++Line->Level;
+
+ // Parse the enum constants.
+ while (FormatTok) {
+ if (FormatTok->is(tok::l_brace)) {
+ // Parse the constant's class body.
+ parseBlock(/*MustBeDeclaration=*/true, /*AddLevel=*/true,
+ /*MunchSemi=*/false);
+ } else if (FormatTok->is(tok::l_paren)) {
+ parseParens();
+ } else if (FormatTok->is(tok::comma)) {
+ nextToken();
+ addUnwrappedLine();
+ } else if (FormatTok->is(tok::semi)) {
+ nextToken();
+ addUnwrappedLine();
+ break;
+ } else if (FormatTok->is(tok::r_brace)) {
+ addUnwrappedLine();
+ break;
+ } else {
+ nextToken();
+ }
+ }
+
+ // Parse the class body after the enum's ";" if any.
+ parseLevel(/*HasOpeningBrace=*/true);
+ nextToken();
+ --Line->Level;
+ addUnwrappedLine();
+}
+
+void UnwrappedLineParser::parseRecord() {
+ const FormatToken &InitialToken = *FormatTok;
+ nextToken();
+
+
+ // The actual identifier can be a nested name specifier, and in macros
+ // it is often token-pasted.
+ while (FormatTok->isOneOf(tok::identifier, tok::coloncolon, tok::hashhash,
+ tok::kw___attribute, tok::kw___declspec,
+ tok::kw_alignas) ||
+ ((Style.Language == FormatStyle::LK_Java ||
+ Style.Language == FormatStyle::LK_JavaScript) &&
+ FormatTok->isOneOf(tok::period, tok::comma))) {
+ bool IsNonMacroIdentifier =
+ FormatTok->is(tok::identifier) &&
+ FormatTok->TokenText != FormatTok->TokenText.upper();
+ nextToken();
+ // We can have macros or attributes in between 'class' and the class name.
+ if (!IsNonMacroIdentifier && FormatTok->Tok.is(tok::l_paren))
+ parseParens();
+ }
+
+ // Note that parsing away template declarations here leads to incorrectly
+ // accepting function declarations as record declarations.
+ // In general, we cannot solve this problem. Consider:
+ // class A<int> B() {}
+ // which can be a function definition or a class definition when B() is a
+ // macro. If we find enough real-world cases where this is a problem, we
+ // can parse for the 'template' keyword in the beginning of the statement,
+ // and thus rule out the record production in case there is no template
+ // (this would still leave us with an ambiguity between template function
+ // and class declarations).
+ if (FormatTok->isOneOf(tok::colon, tok::less)) {
+ while (!eof()) {
+ if (FormatTok->is(tok::l_brace)) {
+ calculateBraceTypes(/*ExpectClassBody=*/true);
+ if (!tryToParseBracedList())
+ break;
+ }
+ if (FormatTok->Tok.is(tok::semi))
+ return;
+ nextToken();
+ }
+ }
+ if (FormatTok->Tok.is(tok::l_brace)) {
+ if (ShouldBreakBeforeBrace(Style, InitialToken))
+ addUnwrappedLine();
+
+ parseBlock(/*MustBeDeclaration=*/true, /*AddLevel=*/true,
+ /*MunchSemi=*/false);
+ }
+ // We fall through to parsing a structural element afterwards, so
+ // class A {} n, m;
+ // will end up in one unwrapped line.
+ // This does not apply for Java and JavaScript.
+ if (Style.Language == FormatStyle::LK_Java ||
+ Style.Language == FormatStyle::LK_JavaScript)
+ addUnwrappedLine();
+}
+
+void UnwrappedLineParser::parseObjCProtocolList() {
+ assert(FormatTok->Tok.is(tok::less) && "'<' expected.");
+ do
+ nextToken();
+ while (!eof() && FormatTok->Tok.isNot(tok::greater));
+ nextToken(); // Skip '>'.
+}
+
+void UnwrappedLineParser::parseObjCUntilAtEnd() {
+ do {
+ if (FormatTok->Tok.isObjCAtKeyword(tok::objc_end)) {
+ nextToken();
+ addUnwrappedLine();
+ break;
+ }
+ if (FormatTok->is(tok::l_brace)) {
+ parseBlock(/*MustBeDeclaration=*/false);
+ // In ObjC interfaces, nothing should be following the "}".
+ addUnwrappedLine();
+ } else if (FormatTok->is(tok::r_brace)) {
+ // Ignore stray "}". parseStructuralElement doesn't consume them.
+ nextToken();
+ addUnwrappedLine();
+ } else {
+ parseStructuralElement();
+ }
+ } while (!eof());
+}
+
+void UnwrappedLineParser::parseObjCInterfaceOrImplementation() {
+ nextToken();
+ nextToken(); // interface name
+
+ // @interface can be followed by either a base class, or a category.
+ if (FormatTok->Tok.is(tok::colon)) {
+ nextToken();
+ nextToken(); // base class name
+ } else if (FormatTok->Tok.is(tok::l_paren))
+ // Skip category, if present.
+ parseParens();
+
+ if (FormatTok->Tok.is(tok::less))
+ parseObjCProtocolList();
+
+ if (FormatTok->Tok.is(tok::l_brace)) {
+ if (Style.BreakBeforeBraces == FormatStyle::BS_Allman ||
+ Style.BreakBeforeBraces == FormatStyle::BS_GNU)
+ addUnwrappedLine();
+ parseBlock(/*MustBeDeclaration=*/true);
+ }
+
+ // With instance variables, this puts '}' on its own line. Without instance
+ // variables, this ends the @interface line.
+ addUnwrappedLine();
+
+ parseObjCUntilAtEnd();
+}
+
+void UnwrappedLineParser::parseObjCProtocol() {
+ nextToken();
+ nextToken(); // protocol name
+
+ if (FormatTok->Tok.is(tok::less))
+ parseObjCProtocolList();
+
+ // Check for protocol declaration.
+ if (FormatTok->Tok.is(tok::semi)) {
+ nextToken();
+ return addUnwrappedLine();
+ }
+
+ addUnwrappedLine();
+ parseObjCUntilAtEnd();
+}
+
+void UnwrappedLineParser::parseJavaScriptEs6ImportExport() {
+ assert(FormatTok->isOneOf(Keywords.kw_import, tok::kw_export));
+ nextToken();
+
+ // Consume the "default" in "export default class/function".
+ if (FormatTok->is(tok::kw_default))
+ nextToken();
+
+ // Consume "function" and "default function", so that these get parsed as
+ // free-standing JS functions, i.e. do not require a trailing semicolon.
+ if (FormatTok->is(Keywords.kw_function)) {
+ nextToken();
+ return;
+ }
+
+ if (FormatTok->isOneOf(tok::kw_const, tok::kw_class, Keywords.kw_var))
+ return; // Fall through to parsing the corresponding structure.
+
+ if (FormatTok->is(tok::l_brace)) {
+ FormatTok->BlockKind = BK_Block;
+ parseBracedList();
+ }
+
+ while (!eof() && FormatTok->isNot(tok::semi) &&
+ FormatTok->isNot(tok::l_brace)) {
+ nextToken();
+ }
+}
+
+LLVM_ATTRIBUTE_UNUSED static void printDebugInfo(const UnwrappedLine &Line,
+ StringRef Prefix = "") {
+ llvm::dbgs() << Prefix << "Line(" << Line.Level << ")"
+ << (Line.InPPDirective ? " MACRO" : "") << ": ";
+ for (std::list<UnwrappedLineNode>::const_iterator I = Line.Tokens.begin(),
+ E = Line.Tokens.end();
+ I != E; ++I) {
+ llvm::dbgs() << I->Tok->Tok.getName() << "[" << I->Tok->Type << "] ";
+ }
+ for (std::list<UnwrappedLineNode>::const_iterator I = Line.Tokens.begin(),
+ E = Line.Tokens.end();
+ I != E; ++I) {
+ const UnwrappedLineNode &Node = *I;
+ for (SmallVectorImpl<UnwrappedLine>::const_iterator
+ I = Node.Children.begin(),
+ E = Node.Children.end();
+ I != E; ++I) {
+ printDebugInfo(*I, "\nChild: ");
+ }
+ }
+ llvm::dbgs() << "\n";
+}
+
+void UnwrappedLineParser::addUnwrappedLine() {
+ if (Line->Tokens.empty())
+ return;
+ DEBUG({
+ if (CurrentLines == &Lines)
+ printDebugInfo(*Line);
+ });
+ CurrentLines->push_back(*Line);
+ Line->Tokens.clear();
+ if (CurrentLines == &Lines && !PreprocessorDirectives.empty()) {
+ for (SmallVectorImpl<UnwrappedLine>::iterator
+ I = PreprocessorDirectives.begin(),
+ E = PreprocessorDirectives.end();
+ I != E; ++I) {
+ CurrentLines->push_back(*I);
+ }
+ PreprocessorDirectives.clear();
+ }
+}
+
+bool UnwrappedLineParser::eof() const { return FormatTok->Tok.is(tok::eof); }
+
+bool UnwrappedLineParser::isOnNewLine(const FormatToken &FormatTok) {
+ return (Line->InPPDirective || FormatTok.HasUnescapedNewline) &&
+ FormatTok.NewlinesBefore > 0;
+}
+
+void UnwrappedLineParser::flushComments(bool NewlineBeforeNext) {
+ bool JustComments = Line->Tokens.empty();
+ for (SmallVectorImpl<FormatToken *>::const_iterator
+ I = CommentsBeforeNextToken.begin(),
+ E = CommentsBeforeNextToken.end();
+ I != E; ++I) {
+ if (isOnNewLine(**I) && JustComments)
+ addUnwrappedLine();
+ pushToken(*I);
+ }
+ if (NewlineBeforeNext && JustComments)
+ addUnwrappedLine();
+ CommentsBeforeNextToken.clear();
+}
+
+void UnwrappedLineParser::nextToken() {
+ if (eof())
+ return;
+ flushComments(isOnNewLine(*FormatTok));
+ pushToken(FormatTok);
+ readToken();
+}
+
+void UnwrappedLineParser::readToken() {
+ bool CommentsInCurrentLine = true;
+ do {
+ FormatTok = Tokens->getNextToken();
+ assert(FormatTok);
+ while (!Line->InPPDirective && FormatTok->Tok.is(tok::hash) &&
+ (FormatTok->HasUnescapedNewline || FormatTok->IsFirst)) {
+ // If there is an unfinished unwrapped line, we flush the preprocessor
+ // directives only after that unwrapped line was finished later.
+ bool SwitchToPreprocessorLines = !Line->Tokens.empty();
+ ScopedLineState BlockState(*this, SwitchToPreprocessorLines);
+ // Comments stored before the preprocessor directive need to be output
+ // before the preprocessor directive, at the same level as the
+ // preprocessor directive, as we consider them to apply to the directive.
+ flushComments(isOnNewLine(*FormatTok));
+ parsePPDirective();
+ }
+ while (FormatTok->Type == TT_ConflictStart ||
+ FormatTok->Type == TT_ConflictEnd ||
+ FormatTok->Type == TT_ConflictAlternative) {
+ if (FormatTok->Type == TT_ConflictStart) {
+ conditionalCompilationStart(/*Unreachable=*/false);
+ } else if (FormatTok->Type == TT_ConflictAlternative) {
+ conditionalCompilationAlternative();
+ } else if (FormatTok->Type == TT_ConflictEnd) {
+ conditionalCompilationEnd();
+ }
+ FormatTok = Tokens->getNextToken();
+ FormatTok->MustBreakBefore = true;
+ }
+
+ if (!PPStack.empty() && (PPStack.back() == PP_Unreachable) &&
+ !Line->InPPDirective) {
+ continue;
+ }
+
+ if (!FormatTok->Tok.is(tok::comment))
+ return;
+ if (isOnNewLine(*FormatTok) || FormatTok->IsFirst) {
+ CommentsInCurrentLine = false;
+ }
+ if (CommentsInCurrentLine) {
+ pushToken(FormatTok);
+ } else {
+ CommentsBeforeNextToken.push_back(FormatTok);
+ }
+ } while (!eof());
+}
+
+void UnwrappedLineParser::pushToken(FormatToken *Tok) {
+ Line->Tokens.push_back(UnwrappedLineNode(Tok));
+ if (MustBreakBeforeNextToken) {
+ Line->Tokens.back().Tok->MustBreakBefore = true;
+ MustBreakBeforeNextToken = false;
+ }
+}
+
+} // end namespace format
+} // end namespace clang
diff --git a/contrib/llvm/tools/clang/lib/Format/UnwrappedLineParser.h b/contrib/llvm/tools/clang/lib/Format/UnwrappedLineParser.h
new file mode 100644
index 0000000..6a6e56f
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Format/UnwrappedLineParser.h
@@ -0,0 +1,225 @@
+//===--- UnwrappedLineParser.h - Format C++ code ----------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// \brief This file contains the declaration of the UnwrappedLineParser,
+/// which turns a stream of tokens into UnwrappedLines.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_FORMAT_UNWRAPPEDLINEPARSER_H
+#define LLVM_CLANG_LIB_FORMAT_UNWRAPPEDLINEPARSER_H
+
+#include "FormatToken.h"
+#include "clang/Basic/IdentifierTable.h"
+#include "clang/Format/Format.h"
+#include <list>
+#include <stack>
+
+namespace clang {
+namespace format {
+
+struct UnwrappedLineNode;
+
+/// \brief An unwrapped line is a sequence of \c Token, that we would like to
+/// put on a single line if there was no column limit.
+///
+/// This is used as a main interface between the \c UnwrappedLineParser and the
+/// \c UnwrappedLineFormatter. The key property is that changing the formatting
+/// within an unwrapped line does not affect any other unwrapped lines.
+struct UnwrappedLine {
+ UnwrappedLine();
+
+ // FIXME: Don't use std::list here.
+ /// \brief The \c Tokens comprising this \c UnwrappedLine.
+ std::list<UnwrappedLineNode> Tokens;
+
+ /// \brief The indent level of the \c UnwrappedLine.
+ unsigned Level;
+
+ /// \brief Whether this \c UnwrappedLine is part of a preprocessor directive.
+ bool InPPDirective;
+
+ bool MustBeDeclaration;
+};
+
+class UnwrappedLineConsumer {
+public:
+ virtual ~UnwrappedLineConsumer() {}
+ virtual void consumeUnwrappedLine(const UnwrappedLine &Line) = 0;
+ virtual void finishRun() = 0;
+};
+
+class FormatTokenSource;
+
+class UnwrappedLineParser {
+public:
+ UnwrappedLineParser(const FormatStyle &Style,
+ const AdditionalKeywords &Keywords,
+ ArrayRef<FormatToken *> Tokens,
+ UnwrappedLineConsumer &Callback);
+
+ void parse();
+
+private:
+ void reset();
+ void parseFile();
+ void parseLevel(bool HasOpeningBrace);
+ void parseBlock(bool MustBeDeclaration, bool AddLevel = true,
+ bool MunchSemi = true);
+ void parseChildBlock();
+ void parsePPDirective();
+ void parsePPDefine();
+ void parsePPIf(bool IfDef);
+ void parsePPElIf();
+ void parsePPElse();
+ void parsePPEndIf();
+ void parsePPUnknown();
+ void parseStructuralElement();
+ bool tryToParseBracedList();
+ bool parseBracedList(bool ContinueOnSemicolons = false);
+ void parseParens();
+ void parseSquare();
+ void parseIfThenElse();
+ void parseTryCatch();
+ void parseForOrWhileLoop();
+ void parseDoWhile();
+ void parseLabel();
+ void parseCaseLabel();
+ void parseSwitch();
+ void parseNamespace();
+ void parseNew();
+ void parseAccessSpecifier();
+ void parseEnum();
+ void parseJavaEnumBody();
+ void parseRecord();
+ void parseObjCProtocolList();
+ void parseObjCUntilAtEnd();
+ void parseObjCInterfaceOrImplementation();
+ void parseObjCProtocol();
+ void parseJavaScriptEs6ImportExport();
+ bool tryToParseLambda();
+ bool tryToParseLambdaIntroducer();
+ void tryToParseJSFunction();
+ /// \brief Parses tokens until encountering the CloseKind token, but balances
+ /// tokens when encountering more OpenKind tokens. Useful for e.g. parsing a
+ /// curly brace delimited block that can contain nested blocks.
+ /// The parser must be positioned on a token of OpenKind.
+ void parseBalanced(tok::TokenKind OpenKind, tok::TokenKind CloseKind);
+ void addUnwrappedLine();
+ bool eof() const;
+ void nextToken();
+ void readToken();
+ void flushComments(bool NewlineBeforeNext);
+ void pushToken(FormatToken *Tok);
+ void calculateBraceTypes(bool ExpectClassBody = false);
+
+ // Marks a conditional compilation edge (for example, an '#if', '#ifdef',
+ // '#else' or merge conflict marker). If 'Unreachable' is true, assumes
+ // this branch either cannot be taken (for example '#if false'), or should
+ // not be taken in this round.
+ void conditionalCompilationCondition(bool Unreachable);
+ void conditionalCompilationStart(bool Unreachable);
+ void conditionalCompilationAlternative();
+ void conditionalCompilationEnd();
+
+ bool isOnNewLine(const FormatToken &FormatTok);
+
+ // FIXME: We are constantly running into bugs where Line.Level is incorrectly
+ // subtracted from beyond 0. Introduce a method to subtract from Line.Level
+ // and use that everywhere in the Parser.
+ std::unique_ptr<UnwrappedLine> Line;
+
+ // Comments are sorted into unwrapped lines by whether they are in the same
+ // line as the previous token, or not. If not, they belong to the next token.
+ // Since the next token might already be in a new unwrapped line, we need to
+ // store the comments belonging to that token.
+ SmallVector<FormatToken *, 1> CommentsBeforeNextToken;
+ FormatToken *FormatTok;
+ bool MustBreakBeforeNextToken;
+
+ // The parsed lines. Only added to through \c CurrentLines.
+ SmallVector<UnwrappedLine, 8> Lines;
+
+ // Preprocessor directives are parsed out-of-order from other unwrapped lines.
+ // Thus, we need to keep a list of preprocessor directives to be reported
+ // after an unwarpped line that has been started was finished.
+ SmallVector<UnwrappedLine, 4> PreprocessorDirectives;
+
+ // New unwrapped lines are added via CurrentLines.
+ // Usually points to \c &Lines. While parsing a preprocessor directive when
+ // there is an unfinished previous unwrapped line, will point to
+ // \c &PreprocessorDirectives.
+ SmallVectorImpl<UnwrappedLine> *CurrentLines;
+
+ // We store for each line whether it must be a declaration depending on
+ // whether we are in a compound statement or not.
+ std::vector<bool> DeclarationScopeStack;
+
+ const FormatStyle &Style;
+ const AdditionalKeywords &Keywords;
+
+ FormatTokenSource *Tokens;
+ UnwrappedLineConsumer &Callback;
+
+ // FIXME: This is a temporary measure until we have reworked the ownership
+ // of the format tokens. The goal is to have the actual tokens created and
+ // owned outside of and handed into the UnwrappedLineParser.
+ ArrayRef<FormatToken *> AllTokens;
+
+ // Represents preprocessor branch type, so we can find matching
+ // #if/#else/#endif directives.
+ enum PPBranchKind {
+ PP_Conditional, // Any #if, #ifdef, #ifndef, #elif, block outside #if 0
+ PP_Unreachable // #if 0 or a conditional preprocessor block inside #if 0
+ };
+
+ // Keeps a stack of currently active preprocessor branching directives.
+ SmallVector<PPBranchKind, 16> PPStack;
+
+ // The \c UnwrappedLineParser re-parses the code for each combination
+ // of preprocessor branches that can be taken.
+ // To that end, we take the same branch (#if, #else, or one of the #elif
+ // branches) for each nesting level of preprocessor branches.
+ // \c PPBranchLevel stores the current nesting level of preprocessor
+ // branches during one pass over the code.
+ int PPBranchLevel;
+
+ // Contains the current branch (#if, #else or one of the #elif branches)
+ // for each nesting level.
+ SmallVector<int, 8> PPLevelBranchIndex;
+
+ // Contains the maximum number of branches at each nesting level.
+ SmallVector<int, 8> PPLevelBranchCount;
+
+ // Contains the number of branches per nesting level we are currently
+ // in while parsing a preprocessor branch sequence.
+ // This is used to update PPLevelBranchCount at the end of a branch
+ // sequence.
+ std::stack<int> PPChainBranchIndex;
+
+ friend class ScopedLineState;
+ friend class CompoundStatementIndenter;
+};
+
+struct UnwrappedLineNode {
+ UnwrappedLineNode() : Tok(nullptr) {}
+ UnwrappedLineNode(FormatToken *Tok) : Tok(Tok) {}
+
+ FormatToken *Tok;
+ SmallVector<UnwrappedLine, 0> Children;
+};
+
+inline UnwrappedLine::UnwrappedLine()
+ : Level(0), InPPDirective(false), MustBeDeclaration(false) {}
+
+} // end namespace format
+} // end namespace clang
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/Format/WhitespaceManager.cpp b/contrib/llvm/tools/clang/lib/Format/WhitespaceManager.cpp
new file mode 100644
index 0000000..4baaab1
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Format/WhitespaceManager.cpp
@@ -0,0 +1,448 @@
+//===--- WhitespaceManager.cpp - Format C++ code --------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// \brief This file implements WhitespaceManager class.
+///
+//===----------------------------------------------------------------------===//
+
+#include "WhitespaceManager.h"
+#include "llvm/ADT/STLExtras.h"
+
+namespace clang {
+namespace format {
+
+bool WhitespaceManager::Change::IsBeforeInFile::
+operator()(const Change &C1, const Change &C2) const {
+ return SourceMgr.isBeforeInTranslationUnit(
+ C1.OriginalWhitespaceRange.getBegin(),
+ C2.OriginalWhitespaceRange.getBegin());
+}
+
+WhitespaceManager::Change::Change(
+ bool CreateReplacement, const SourceRange &OriginalWhitespaceRange,
+ unsigned IndentLevel, int Spaces, unsigned StartOfTokenColumn,
+ unsigned NewlinesBefore, StringRef PreviousLinePostfix,
+ StringRef CurrentLinePrefix, tok::TokenKind Kind, bool ContinuesPPDirective)
+ : CreateReplacement(CreateReplacement),
+ OriginalWhitespaceRange(OriginalWhitespaceRange),
+ StartOfTokenColumn(StartOfTokenColumn), NewlinesBefore(NewlinesBefore),
+ PreviousLinePostfix(PreviousLinePostfix),
+ CurrentLinePrefix(CurrentLinePrefix), Kind(Kind),
+ ContinuesPPDirective(ContinuesPPDirective), IndentLevel(IndentLevel),
+ Spaces(Spaces), IsTrailingComment(false), TokenLength(0),
+ PreviousEndOfTokenColumn(0), EscapedNewlineColumn(0),
+ StartOfBlockComment(nullptr), IndentationOffset(0) {}
+
+void WhitespaceManager::reset() {
+ Changes.clear();
+ Replaces.clear();
+}
+
+void WhitespaceManager::replaceWhitespace(FormatToken &Tok, unsigned Newlines,
+ unsigned IndentLevel, unsigned Spaces,
+ unsigned StartOfTokenColumn,
+ bool InPPDirective) {
+ if (Tok.Finalized)
+ return;
+ Tok.Decision = (Newlines > 0) ? FD_Break : FD_Continue;
+ Changes.push_back(Change(true, Tok.WhitespaceRange, IndentLevel, Spaces,
+ StartOfTokenColumn, Newlines, "", "",
+ Tok.Tok.getKind(), InPPDirective && !Tok.IsFirst));
+}
+
+void WhitespaceManager::addUntouchableToken(const FormatToken &Tok,
+ bool InPPDirective) {
+ if (Tok.Finalized)
+ return;
+ Changes.push_back(Change(false, Tok.WhitespaceRange, /*IndentLevel=*/0,
+ /*Spaces=*/0, Tok.OriginalColumn, Tok.NewlinesBefore,
+ "", "", Tok.Tok.getKind(),
+ InPPDirective && !Tok.IsFirst));
+}
+
+void WhitespaceManager::replaceWhitespaceInToken(
+ const FormatToken &Tok, unsigned Offset, unsigned ReplaceChars,
+ StringRef PreviousPostfix, StringRef CurrentPrefix, bool InPPDirective,
+ unsigned Newlines, unsigned IndentLevel, int Spaces) {
+ if (Tok.Finalized)
+ return;
+ SourceLocation Start = Tok.getStartOfNonWhitespace().getLocWithOffset(Offset);
+ Changes.push_back(Change(
+ true, SourceRange(Start, Start.getLocWithOffset(ReplaceChars)),
+ IndentLevel, Spaces, std::max(0, Spaces), Newlines, PreviousPostfix,
+ CurrentPrefix,
+ // If we don't add a newline this change doesn't start a comment. Thus,
+ // when we align line comments, we don't need to treat this change as one.
+ // FIXME: We still need to take this change in account to properly
+ // calculate the new length of the comment and to calculate the changes
+ // for which to do the alignment when aligning comments.
+ Tok.is(TT_LineComment) && Newlines > 0 ? tok::comment : tok::unknown,
+ InPPDirective && !Tok.IsFirst));
+}
+
+const tooling::Replacements &WhitespaceManager::generateReplacements() {
+ if (Changes.empty())
+ return Replaces;
+
+ std::sort(Changes.begin(), Changes.end(), Change::IsBeforeInFile(SourceMgr));
+ calculateLineBreakInformation();
+ alignConsecutiveAssignments();
+ alignTrailingComments();
+ alignEscapedNewlines();
+ generateChanges();
+
+ return Replaces;
+}
+
+void WhitespaceManager::calculateLineBreakInformation() {
+ Changes[0].PreviousEndOfTokenColumn = 0;
+ for (unsigned i = 1, e = Changes.size(); i != e; ++i) {
+ unsigned OriginalWhitespaceStart =
+ SourceMgr.getFileOffset(Changes[i].OriginalWhitespaceRange.getBegin());
+ unsigned PreviousOriginalWhitespaceEnd = SourceMgr.getFileOffset(
+ Changes[i - 1].OriginalWhitespaceRange.getEnd());
+ Changes[i - 1].TokenLength = OriginalWhitespaceStart -
+ PreviousOriginalWhitespaceEnd +
+ Changes[i].PreviousLinePostfix.size() +
+ Changes[i - 1].CurrentLinePrefix.size();
+
+ Changes[i].PreviousEndOfTokenColumn =
+ Changes[i - 1].StartOfTokenColumn + Changes[i - 1].TokenLength;
+
+ Changes[i - 1].IsTrailingComment =
+ (Changes[i].NewlinesBefore > 0 || Changes[i].Kind == tok::eof) &&
+ Changes[i - 1].Kind == tok::comment;
+ }
+ // FIXME: The last token is currently not always an eof token; in those
+ // cases, setting TokenLength of the last token to 0 is wrong.
+ Changes.back().TokenLength = 0;
+ Changes.back().IsTrailingComment = Changes.back().Kind == tok::comment;
+
+ const WhitespaceManager::Change *LastBlockComment = nullptr;
+ for (auto &Change : Changes) {
+ Change.StartOfBlockComment = nullptr;
+ Change.IndentationOffset = 0;
+ if (Change.Kind == tok::comment) {
+ LastBlockComment = &Change;
+ } else if (Change.Kind == tok::unknown) {
+ if ((Change.StartOfBlockComment = LastBlockComment))
+ Change.IndentationOffset =
+ Change.StartOfTokenColumn -
+ Change.StartOfBlockComment->StartOfTokenColumn;
+ } else {
+ LastBlockComment = nullptr;
+ }
+ }
+}
+
+// Walk through all of the changes and find sequences of "=" to align. To do
+// so, keep track of the lines and whether or not an "=" was found on align. If
+// a "=" is found on a line, extend the current sequence. If the current line
+// cannot be part of a sequence, e.g. because there is an empty line before it
+// or it contains non-assignments, finalize the previous sequence.
+void WhitespaceManager::alignConsecutiveAssignments() {
+ if (!Style.AlignConsecutiveAssignments)
+ return;
+
+ unsigned MinColumn = 0;
+ unsigned StartOfSequence = 0;
+ unsigned EndOfSequence = 0;
+ bool FoundAssignmentOnLine = false;
+ bool FoundLeftParenOnLine = false;
+ unsigned CurrentLine = 0;
+
+ auto AlignSequence = [&] {
+ alignConsecutiveAssignments(StartOfSequence, EndOfSequence, MinColumn);
+ MinColumn = 0;
+ StartOfSequence = 0;
+ EndOfSequence = 0;
+ };
+
+ for (unsigned i = 0, e = Changes.size(); i != e; ++i) {
+ if (Changes[i].NewlinesBefore != 0) {
+ CurrentLine += Changes[i].NewlinesBefore;
+ if (StartOfSequence > 0 &&
+ (Changes[i].NewlinesBefore > 1 || !FoundAssignmentOnLine)) {
+ EndOfSequence = i;
+ AlignSequence();
+ }
+ FoundAssignmentOnLine = false;
+ FoundLeftParenOnLine = false;
+ }
+
+ if ((Changes[i].Kind == tok::equal &&
+ (FoundAssignmentOnLine || ((Changes[i].NewlinesBefore > 0 ||
+ Changes[i + 1].NewlinesBefore > 0)))) ||
+ (!FoundLeftParenOnLine && Changes[i].Kind == tok::r_paren)) {
+ if (StartOfSequence > 0)
+ AlignSequence();
+ } else if (Changes[i].Kind == tok::l_paren) {
+ FoundLeftParenOnLine = true;
+ if (!FoundAssignmentOnLine && StartOfSequence > 0)
+ AlignSequence();
+ } else if (!FoundAssignmentOnLine && !FoundLeftParenOnLine &&
+ Changes[i].Kind == tok::equal) {
+ FoundAssignmentOnLine = true;
+ EndOfSequence = i;
+ if (StartOfSequence == 0)
+ StartOfSequence = i;
+
+ unsigned ChangeMinColumn = Changes[i].StartOfTokenColumn;
+ MinColumn = std::max(MinColumn, ChangeMinColumn);
+ }
+ }
+
+ if (StartOfSequence > 0) {
+ EndOfSequence = Changes.size();
+ AlignSequence();
+ }
+}
+
+void WhitespaceManager::alignConsecutiveAssignments(unsigned Start,
+ unsigned End,
+ unsigned Column) {
+ bool AlignedAssignment = false;
+ int PreviousShift = 0;
+ for (unsigned i = Start; i != End; ++i) {
+ int Shift = 0;
+ if (Changes[i].NewlinesBefore > 0)
+ AlignedAssignment = false;
+ if (!AlignedAssignment && Changes[i].Kind == tok::equal) {
+ Shift = Column - Changes[i].StartOfTokenColumn;
+ AlignedAssignment = true;
+ PreviousShift = Shift;
+ }
+ assert(Shift >= 0);
+ Changes[i].Spaces += Shift;
+ if (i + 1 != Changes.size())
+ Changes[i + 1].PreviousEndOfTokenColumn += Shift;
+ Changes[i].StartOfTokenColumn += Shift;
+ if (AlignedAssignment) {
+ Changes[i].StartOfTokenColumn += PreviousShift;
+ if (i + 1 != Changes.size())
+ Changes[i + 1].PreviousEndOfTokenColumn += PreviousShift;
+ }
+ }
+}
+
+void WhitespaceManager::alignTrailingComments() {
+ unsigned MinColumn = 0;
+ unsigned MaxColumn = UINT_MAX;
+ unsigned StartOfSequence = 0;
+ bool BreakBeforeNext = false;
+ unsigned Newlines = 0;
+ for (unsigned i = 0, e = Changes.size(); i != e; ++i) {
+ if (Changes[i].StartOfBlockComment)
+ continue;
+ Newlines += Changes[i].NewlinesBefore;
+ if (!Changes[i].IsTrailingComment)
+ continue;
+
+ unsigned ChangeMinColumn = Changes[i].StartOfTokenColumn;
+ unsigned ChangeMaxColumn = Style.ColumnLimit - Changes[i].TokenLength;
+ if (i + 1 != e && Changes[i + 1].ContinuesPPDirective)
+ ChangeMaxColumn -= 2;
+ // If this comment follows an } in column 0, it probably documents the
+ // closing of a namespace and we don't want to align it.
+ bool FollowsRBraceInColumn0 = i > 0 && Changes[i].NewlinesBefore == 0 &&
+ Changes[i - 1].Kind == tok::r_brace &&
+ Changes[i - 1].StartOfTokenColumn == 0;
+ bool WasAlignedWithStartOfNextLine = false;
+ if (Changes[i].NewlinesBefore == 1) { // A comment on its own line.
+ unsigned CommentColumn = SourceMgr.getSpellingColumnNumber(
+ Changes[i].OriginalWhitespaceRange.getEnd());
+ for (unsigned j = i + 1; j != e; ++j) {
+ if (Changes[j].Kind != tok::comment) { // Skip over comments.
+ unsigned NextColumn = SourceMgr.getSpellingColumnNumber(
+ Changes[j].OriginalWhitespaceRange.getEnd());
+ // The start of the next token was previously aligned with the
+ // start of this comment.
+ WasAlignedWithStartOfNextLine =
+ CommentColumn == NextColumn ||
+ CommentColumn == NextColumn + Style.IndentWidth;
+ break;
+ }
+ }
+ }
+ if (!Style.AlignTrailingComments || FollowsRBraceInColumn0) {
+ alignTrailingComments(StartOfSequence, i, MinColumn);
+ MinColumn = ChangeMinColumn;
+ MaxColumn = ChangeMinColumn;
+ StartOfSequence = i;
+ } else if (BreakBeforeNext || Newlines > 1 ||
+ (ChangeMinColumn > MaxColumn || ChangeMaxColumn < MinColumn) ||
+ // Break the comment sequence if the previous line did not end
+ // in a trailing comment.
+ (Changes[i].NewlinesBefore == 1 && i > 0 &&
+ !Changes[i - 1].IsTrailingComment) ||
+ WasAlignedWithStartOfNextLine) {
+ alignTrailingComments(StartOfSequence, i, MinColumn);
+ MinColumn = ChangeMinColumn;
+ MaxColumn = ChangeMaxColumn;
+ StartOfSequence = i;
+ } else {
+ MinColumn = std::max(MinColumn, ChangeMinColumn);
+ MaxColumn = std::min(MaxColumn, ChangeMaxColumn);
+ }
+ BreakBeforeNext =
+ (i == 0) || (Changes[i].NewlinesBefore > 1) ||
+ // Never start a sequence with a comment at the beginning of
+ // the line.
+ (Changes[i].NewlinesBefore == 1 && StartOfSequence == i);
+ Newlines = 0;
+ }
+ alignTrailingComments(StartOfSequence, Changes.size(), MinColumn);
+}
+
+void WhitespaceManager::alignTrailingComments(unsigned Start, unsigned End,
+ unsigned Column) {
+ for (unsigned i = Start; i != End; ++i) {
+ int Shift = 0;
+ if (Changes[i].IsTrailingComment) {
+ Shift = Column - Changes[i].StartOfTokenColumn;
+ }
+ if (Changes[i].StartOfBlockComment) {
+ Shift = Changes[i].IndentationOffset +
+ Changes[i].StartOfBlockComment->StartOfTokenColumn -
+ Changes[i].StartOfTokenColumn;
+ }
+ assert(Shift >= 0);
+ Changes[i].Spaces += Shift;
+ if (i + 1 != End)
+ Changes[i + 1].PreviousEndOfTokenColumn += Shift;
+ Changes[i].StartOfTokenColumn += Shift;
+ }
+}
+
+void WhitespaceManager::alignEscapedNewlines() {
+ unsigned MaxEndOfLine =
+ Style.AlignEscapedNewlinesLeft ? 0 : Style.ColumnLimit;
+ unsigned StartOfMacro = 0;
+ for (unsigned i = 1, e = Changes.size(); i < e; ++i) {
+ Change &C = Changes[i];
+ if (C.NewlinesBefore > 0) {
+ if (C.ContinuesPPDirective) {
+ MaxEndOfLine = std::max(C.PreviousEndOfTokenColumn + 2, MaxEndOfLine);
+ } else {
+ alignEscapedNewlines(StartOfMacro + 1, i, MaxEndOfLine);
+ MaxEndOfLine = Style.AlignEscapedNewlinesLeft ? 0 : Style.ColumnLimit;
+ StartOfMacro = i;
+ }
+ }
+ }
+ alignEscapedNewlines(StartOfMacro + 1, Changes.size(), MaxEndOfLine);
+}
+
+void WhitespaceManager::alignEscapedNewlines(unsigned Start, unsigned End,
+ unsigned Column) {
+ for (unsigned i = Start; i < End; ++i) {
+ Change &C = Changes[i];
+ if (C.NewlinesBefore > 0) {
+ assert(C.ContinuesPPDirective);
+ if (C.PreviousEndOfTokenColumn + 1 > Column)
+ C.EscapedNewlineColumn = 0;
+ else
+ C.EscapedNewlineColumn = Column;
+ }
+ }
+}
+
+void WhitespaceManager::generateChanges() {
+ for (unsigned i = 0, e = Changes.size(); i != e; ++i) {
+ const Change &C = Changes[i];
+ if (i > 0) {
+ assert(Changes[i - 1].OriginalWhitespaceRange.getBegin() !=
+ C.OriginalWhitespaceRange.getBegin() &&
+ "Generating two replacements for the same location");
+ }
+ if (C.CreateReplacement) {
+ std::string ReplacementText = C.PreviousLinePostfix;
+ if (C.ContinuesPPDirective)
+ appendNewlineText(ReplacementText, C.NewlinesBefore,
+ C.PreviousEndOfTokenColumn, C.EscapedNewlineColumn);
+ else
+ appendNewlineText(ReplacementText, C.NewlinesBefore);
+ appendIndentText(ReplacementText, C.IndentLevel, std::max(0, C.Spaces),
+ C.StartOfTokenColumn - std::max(0, C.Spaces));
+ ReplacementText.append(C.CurrentLinePrefix);
+ storeReplacement(C.OriginalWhitespaceRange, ReplacementText);
+ }
+ }
+}
+
+void WhitespaceManager::storeReplacement(const SourceRange &Range,
+ StringRef Text) {
+ unsigned WhitespaceLength = SourceMgr.getFileOffset(Range.getEnd()) -
+ SourceMgr.getFileOffset(Range.getBegin());
+ // Don't create a replacement, if it does not change anything.
+ if (StringRef(SourceMgr.getCharacterData(Range.getBegin()),
+ WhitespaceLength) == Text)
+ return;
+ Replaces.insert(tooling::Replacement(
+ SourceMgr, CharSourceRange::getCharRange(Range), Text));
+}
+
+void WhitespaceManager::appendNewlineText(std::string &Text,
+ unsigned Newlines) {
+ for (unsigned i = 0; i < Newlines; ++i)
+ Text.append(UseCRLF ? "\r\n" : "\n");
+}
+
+void WhitespaceManager::appendNewlineText(std::string &Text, unsigned Newlines,
+ unsigned PreviousEndOfTokenColumn,
+ unsigned EscapedNewlineColumn) {
+ if (Newlines > 0) {
+ unsigned Offset =
+ std::min<int>(EscapedNewlineColumn - 1, PreviousEndOfTokenColumn);
+ for (unsigned i = 0; i < Newlines; ++i) {
+ Text.append(std::string(EscapedNewlineColumn - Offset - 1, ' '));
+ Text.append(UseCRLF ? "\\\r\n" : "\\\n");
+ Offset = 0;
+ }
+ }
+}
+
+void WhitespaceManager::appendIndentText(std::string &Text,
+ unsigned IndentLevel, unsigned Spaces,
+ unsigned WhitespaceStartColumn) {
+ switch (Style.UseTab) {
+ case FormatStyle::UT_Never:
+ Text.append(std::string(Spaces, ' '));
+ break;
+ case FormatStyle::UT_Always: {
+ unsigned FirstTabWidth =
+ Style.TabWidth - WhitespaceStartColumn % Style.TabWidth;
+ // Indent with tabs only when there's at least one full tab.
+ if (FirstTabWidth + Style.TabWidth <= Spaces) {
+ Spaces -= FirstTabWidth;
+ Text.append("\t");
+ }
+ Text.append(std::string(Spaces / Style.TabWidth, '\t'));
+ Text.append(std::string(Spaces % Style.TabWidth, ' '));
+ break;
+ }
+ case FormatStyle::UT_ForIndentation:
+ if (WhitespaceStartColumn == 0) {
+ unsigned Indentation = IndentLevel * Style.IndentWidth;
+ // This happens, e.g. when a line in a block comment is indented less than
+ // the first one.
+ if (Indentation > Spaces)
+ Indentation = Spaces;
+ unsigned Tabs = Indentation / Style.TabWidth;
+ Text.append(std::string(Tabs, '\t'));
+ Spaces -= Tabs * Style.TabWidth;
+ }
+ Text.append(std::string(Spaces, ' '));
+ break;
+ }
+}
+
+} // namespace format
+} // namespace clang
diff --git a/contrib/llvm/tools/clang/lib/Format/WhitespaceManager.h b/contrib/llvm/tools/clang/lib/Format/WhitespaceManager.h
new file mode 100644
index 0000000..4bfc813
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Format/WhitespaceManager.h
@@ -0,0 +1,210 @@
+//===--- WhitespaceManager.h - Format C++ code ------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// \brief WhitespaceManager class manages whitespace around tokens and their
+/// replacements.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_FORMAT_WHITESPACEMANAGER_H
+#define LLVM_CLANG_LIB_FORMAT_WHITESPACEMANAGER_H
+
+#include "TokenAnnotator.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Format/Format.h"
+#include <string>
+
+namespace clang {
+namespace format {
+
+/// \brief Manages the whitespaces around tokens and their replacements.
+///
+/// This includes special handling for certain constructs, e.g. the alignment of
+/// trailing line comments.
+///
+/// To guarantee correctness of alignment operations, the \c WhitespaceManager
+/// must be informed about every token in the source file; for each token, there
+/// must be exactly one call to either \c replaceWhitespace or
+/// \c addUntouchableToken.
+///
+/// There may be multiple calls to \c breakToken for a given token.
+class WhitespaceManager {
+public:
+ WhitespaceManager(SourceManager &SourceMgr, const FormatStyle &Style,
+ bool UseCRLF)
+ : SourceMgr(SourceMgr), Style(Style), UseCRLF(UseCRLF) {}
+
+ /// \brief Prepares the \c WhitespaceManager for another run.
+ void reset();
+
+ /// \brief Replaces the whitespace in front of \p Tok. Only call once for
+ /// each \c AnnotatedToken.
+ void replaceWhitespace(FormatToken &Tok, unsigned Newlines,
+ unsigned IndentLevel, unsigned Spaces,
+ unsigned StartOfTokenColumn,
+ bool InPPDirective = false);
+
+ /// \brief Adds information about an unchangeable token's whitespace.
+ ///
+ /// Needs to be called for every token for which \c replaceWhitespace
+ /// was not called.
+ void addUntouchableToken(const FormatToken &Tok, bool InPPDirective);
+
+ /// \brief Inserts or replaces whitespace in the middle of a token.
+ ///
+ /// Inserts \p PreviousPostfix, \p Newlines, \p Spaces and \p CurrentPrefix
+ /// (in this order) at \p Offset inside \p Tok, replacing \p ReplaceChars
+ /// characters.
+ ///
+ /// Note: \p Spaces can be negative to retain information about initial
+ /// relative column offset between a line of a block comment and the start of
+ /// the comment. This negative offset may be compensated by trailing comment
+ /// alignment here. In all other cases negative \p Spaces will be truncated to
+ /// 0.
+ ///
+ /// When \p InPPDirective is true, escaped newlines are inserted. \p Spaces is
+ /// used to align backslashes correctly.
+ void replaceWhitespaceInToken(const FormatToken &Tok, unsigned Offset,
+ unsigned ReplaceChars,
+ StringRef PreviousPostfix,
+ StringRef CurrentPrefix, bool InPPDirective,
+ unsigned Newlines, unsigned IndentLevel,
+ int Spaces);
+
+ /// \brief Returns all the \c Replacements created during formatting.
+ const tooling::Replacements &generateReplacements();
+
+private:
+ /// \brief Represents a change before a token, a break inside a token,
+ /// or the layout of an unchanged token (or whitespace within).
+ struct Change {
+ /// \brief Functor to sort changes in original source order.
+ class IsBeforeInFile {
+ public:
+ IsBeforeInFile(const SourceManager &SourceMgr) : SourceMgr(SourceMgr) {}
+ bool operator()(const Change &C1, const Change &C2) const;
+
+ private:
+ const SourceManager &SourceMgr;
+ };
+
+ Change() {}
+
+ /// \brief Creates a \c Change.
+ ///
+ /// The generated \c Change will replace the characters at
+ /// \p OriginalWhitespaceRange with a concatenation of
+ /// \p PreviousLinePostfix, \p NewlinesBefore line breaks, \p Spaces spaces
+ /// and \p CurrentLinePrefix.
+ ///
+ /// \p StartOfTokenColumn and \p InPPDirective will be used to lay out
+ /// trailing comments and escaped newlines.
+ Change(bool CreateReplacement, const SourceRange &OriginalWhitespaceRange,
+ unsigned IndentLevel, int Spaces, unsigned StartOfTokenColumn,
+ unsigned NewlinesBefore, StringRef PreviousLinePostfix,
+ StringRef CurrentLinePrefix, tok::TokenKind Kind,
+ bool ContinuesPPDirective);
+
+ bool CreateReplacement;
+ // Changes might be in the middle of a token, so we cannot just keep the
+ // FormatToken around to query its information.
+ SourceRange OriginalWhitespaceRange;
+ unsigned StartOfTokenColumn;
+ unsigned NewlinesBefore;
+ std::string PreviousLinePostfix;
+ std::string CurrentLinePrefix;
+ // The kind of the token whose whitespace this change replaces, or in which
+ // this change inserts whitespace.
+ // FIXME: Currently this is not set correctly for breaks inside comments, as
+ // the \c BreakableToken is still doing its own alignment.
+ tok::TokenKind Kind;
+ bool ContinuesPPDirective;
+
+ // The number of nested blocks the token is in. This is used to add tabs
+ // only for the indentation, and not for alignment, when
+ // UseTab = US_ForIndentation.
+ unsigned IndentLevel;
+
+ // The number of spaces in front of the token or broken part of the token.
+ // This will be adapted when aligning tokens.
+ // Can be negative to retain information about the initial relative offset
+ // of the lines in a block comment. This is used when aligning trailing
+ // comments. Uncompensated negative offset is truncated to 0.
+ int Spaces;
+
+ // \c IsTrailingComment, \c TokenLength, \c PreviousEndOfTokenColumn and
+ // \c EscapedNewlineColumn will be calculated in
+ // \c calculateLineBreakInformation.
+ bool IsTrailingComment;
+ unsigned TokenLength;
+ unsigned PreviousEndOfTokenColumn;
+ unsigned EscapedNewlineColumn;
+
+ // These fields are used to retain correct relative line indentation in a
+ // block comment when aligning trailing comments.
+ //
+ // If this Change represents a continuation of a block comment,
+ // \c StartOfBlockComment is pointer to the first Change in the block
+ // comment. \c IndentationOffset is a relative column offset to this
+ // change, so that the correct column can be reconstructed at the end of
+ // the alignment process.
+ const Change *StartOfBlockComment;
+ int IndentationOffset;
+ };
+
+ /// \brief Calculate \c IsTrailingComment, \c TokenLength for the last tokens
+ /// or token parts in a line and \c PreviousEndOfTokenColumn and
+ /// \c EscapedNewlineColumn for the first tokens or token parts in a line.
+ void calculateLineBreakInformation();
+
+ /// \brief Align consecutive assignments over all \c Changes.
+ void alignConsecutiveAssignments();
+
+ /// \brief Align consecutive assignments from change \p Start to change \p End at
+ /// the specified \p Column.
+ void alignConsecutiveAssignments(unsigned Start, unsigned End, unsigned Column);
+
+ /// \brief Align trailing comments over all \c Changes.
+ void alignTrailingComments();
+
+ /// \brief Align trailing comments from change \p Start to change \p End at
+ /// the specified \p Column.
+ void alignTrailingComments(unsigned Start, unsigned End, unsigned Column);
+
+ /// \brief Align escaped newlines over all \c Changes.
+ void alignEscapedNewlines();
+
+ /// \brief Align escaped newlines from change \p Start to change \p End at
+ /// the specified \p Column.
+ void alignEscapedNewlines(unsigned Start, unsigned End, unsigned Column);
+
+ /// \brief Fill \c Replaces with the replacements for all effective changes.
+ void generateChanges();
+
+ /// \brief Stores \p Text as the replacement for the whitespace in \p Range.
+ void storeReplacement(const SourceRange &Range, StringRef Text);
+ void appendNewlineText(std::string &Text, unsigned Newlines);
+ void appendNewlineText(std::string &Text, unsigned Newlines,
+ unsigned PreviousEndOfTokenColumn,
+ unsigned EscapedNewlineColumn);
+ void appendIndentText(std::string &Text, unsigned IndentLevel,
+ unsigned Spaces, unsigned WhitespaceStartColumn);
+
+ SmallVector<Change, 16> Changes;
+ SourceManager &SourceMgr;
+ tooling::Replacements Replaces;
+ const FormatStyle &Style;
+ bool UseCRLF;
+};
+
+} // namespace format
+} // namespace clang
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/Frontend/ASTConsumers.cpp b/contrib/llvm/tools/clang/lib/Frontend/ASTConsumers.cpp
new file mode 100644
index 0000000..52776b6
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Frontend/ASTConsumers.cpp
@@ -0,0 +1,489 @@
+//===--- ASTConsumers.cpp - ASTConsumer implementations -------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// AST Consumer Implementations.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Frontend/ASTConsumers.h"
+#include "clang/AST/AST.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/PrettyPrinter.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/AST/RecursiveASTVisitor.h"
+#include "clang/Basic/Diagnostic.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/SourceManager.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/Timer.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+/// ASTPrinter - Pretty-printer and dumper of ASTs
+
+namespace {
+ class ASTPrinter : public ASTConsumer,
+ public RecursiveASTVisitor<ASTPrinter> {
+ typedef RecursiveASTVisitor<ASTPrinter> base;
+
+ public:
+ ASTPrinter(raw_ostream *Out = nullptr, bool Dump = false,
+ StringRef FilterString = "", bool DumpLookups = false)
+ : Out(Out ? *Out : llvm::outs()), Dump(Dump),
+ FilterString(FilterString), DumpLookups(DumpLookups) {}
+
+ void HandleTranslationUnit(ASTContext &Context) override {
+ TranslationUnitDecl *D = Context.getTranslationUnitDecl();
+
+ if (FilterString.empty())
+ return print(D);
+
+ TraverseDecl(D);
+ }
+
+ bool shouldWalkTypesOfTypeLocs() const { return false; }
+
+ bool TraverseDecl(Decl *D) {
+ if (D && filterMatches(D)) {
+ bool ShowColors = Out.has_colors();
+ if (ShowColors)
+ Out.changeColor(raw_ostream::BLUE);
+ Out << ((Dump || DumpLookups) ? "Dumping " : "Printing ") << getName(D)
+ << ":\n";
+ if (ShowColors)
+ Out.resetColor();
+ print(D);
+ Out << "\n";
+ // Don't traverse child nodes to avoid output duplication.
+ return true;
+ }
+ return base::TraverseDecl(D);
+ }
+
+ private:
+ std::string getName(Decl *D) {
+ if (isa<NamedDecl>(D))
+ return cast<NamedDecl>(D)->getQualifiedNameAsString();
+ return "";
+ }
+ bool filterMatches(Decl *D) {
+ return getName(D).find(FilterString) != std::string::npos;
+ }
+ void print(Decl *D) {
+ if (DumpLookups) {
+ if (DeclContext *DC = dyn_cast<DeclContext>(D)) {
+ if (DC == DC->getPrimaryContext())
+ DC->dumpLookups(Out, Dump);
+ else
+ Out << "Lookup map is in primary DeclContext "
+ << DC->getPrimaryContext() << "\n";
+ } else
+ Out << "Not a DeclContext\n";
+ } else if (Dump)
+ D->dump(Out);
+ else
+ D->print(Out, /*Indentation=*/0, /*PrintInstantiation=*/true);
+ }
+
+ raw_ostream &Out;
+ bool Dump;
+ std::string FilterString;
+ bool DumpLookups;
+ };
+
+ class ASTDeclNodeLister : public ASTConsumer,
+ public RecursiveASTVisitor<ASTDeclNodeLister> {
+ public:
+ ASTDeclNodeLister(raw_ostream *Out = nullptr)
+ : Out(Out ? *Out : llvm::outs()) {}
+
+ void HandleTranslationUnit(ASTContext &Context) override {
+ TraverseDecl(Context.getTranslationUnitDecl());
+ }
+
+ bool shouldWalkTypesOfTypeLocs() const { return false; }
+
+ bool VisitNamedDecl(NamedDecl *D) {
+ D->printQualifiedName(Out);
+ Out << '\n';
+ return true;
+ }
+
+ private:
+ raw_ostream &Out;
+ };
+} // end anonymous namespace
+
+std::unique_ptr<ASTConsumer> clang::CreateASTPrinter(raw_ostream *Out,
+ StringRef FilterString) {
+ return llvm::make_unique<ASTPrinter>(Out, /*Dump=*/false, FilterString);
+}
+
+std::unique_ptr<ASTConsumer> clang::CreateASTDumper(StringRef FilterString,
+ bool DumpDecls,
+ bool DumpLookups) {
+ assert((DumpDecls || DumpLookups) && "nothing to dump");
+ return llvm::make_unique<ASTPrinter>(nullptr, DumpDecls, FilterString,
+ DumpLookups);
+}
+
+std::unique_ptr<ASTConsumer> clang::CreateASTDeclNodeLister() {
+ return llvm::make_unique<ASTDeclNodeLister>(nullptr);
+}
+
+//===----------------------------------------------------------------------===//
+/// ASTViewer - AST Visualization
+
+namespace {
+ class ASTViewer : public ASTConsumer {
+ ASTContext *Context;
+ public:
+ void Initialize(ASTContext &Context) override {
+ this->Context = &Context;
+ }
+
+ bool HandleTopLevelDecl(DeclGroupRef D) override {
+ for (DeclGroupRef::iterator I = D.begin(), E = D.end(); I != E; ++I)
+ HandleTopLevelSingleDecl(*I);
+ return true;
+ }
+
+ void HandleTopLevelSingleDecl(Decl *D);
+ };
+}
+
+void ASTViewer::HandleTopLevelSingleDecl(Decl *D) {
+ if (isa<FunctionDecl>(D) || isa<ObjCMethodDecl>(D)) {
+ D->print(llvm::errs());
+
+ if (Stmt *Body = D->getBody()) {
+ llvm::errs() << '\n';
+ Body->viewAST();
+ llvm::errs() << '\n';
+ }
+ }
+}
+
+std::unique_ptr<ASTConsumer> clang::CreateASTViewer() {
+ return llvm::make_unique<ASTViewer>();
+}
+
+//===----------------------------------------------------------------------===//
+/// DeclContextPrinter - Decl and DeclContext Visualization
+
+namespace {
+
+class DeclContextPrinter : public ASTConsumer {
+ raw_ostream& Out;
+public:
+ DeclContextPrinter() : Out(llvm::errs()) {}
+
+ void HandleTranslationUnit(ASTContext &C) override {
+ PrintDeclContext(C.getTranslationUnitDecl(), 4);
+ }
+
+ void PrintDeclContext(const DeclContext* DC, unsigned Indentation);
+};
+} // end anonymous namespace
+
+void DeclContextPrinter::PrintDeclContext(const DeclContext* DC,
+ unsigned Indentation) {
+ // Print DeclContext name.
+ switch (DC->getDeclKind()) {
+ case Decl::TranslationUnit:
+ Out << "[translation unit] " << DC;
+ break;
+ case Decl::Namespace: {
+ Out << "[namespace] ";
+ const NamespaceDecl* ND = cast<NamespaceDecl>(DC);
+ Out << *ND;
+ break;
+ }
+ case Decl::Enum: {
+ const EnumDecl* ED = cast<EnumDecl>(DC);
+ if (ED->isCompleteDefinition())
+ Out << "[enum] ";
+ else
+ Out << "<enum> ";
+ Out << *ED;
+ break;
+ }
+ case Decl::Record: {
+ const RecordDecl* RD = cast<RecordDecl>(DC);
+ if (RD->isCompleteDefinition())
+ Out << "[struct] ";
+ else
+ Out << "<struct> ";
+ Out << *RD;
+ break;
+ }
+ case Decl::CXXRecord: {
+ const CXXRecordDecl* RD = cast<CXXRecordDecl>(DC);
+ if (RD->isCompleteDefinition())
+ Out << "[class] ";
+ else
+ Out << "<class> ";
+ Out << *RD << ' ' << DC;
+ break;
+ }
+ case Decl::ObjCMethod:
+ Out << "[objc method]";
+ break;
+ case Decl::ObjCInterface:
+ Out << "[objc interface]";
+ break;
+ case Decl::ObjCCategory:
+ Out << "[objc category]";
+ break;
+ case Decl::ObjCProtocol:
+ Out << "[objc protocol]";
+ break;
+ case Decl::ObjCImplementation:
+ Out << "[objc implementation]";
+ break;
+ case Decl::ObjCCategoryImpl:
+ Out << "[objc categoryimpl]";
+ break;
+ case Decl::LinkageSpec:
+ Out << "[linkage spec]";
+ break;
+ case Decl::Block:
+ Out << "[block]";
+ break;
+ case Decl::Function: {
+ const FunctionDecl* FD = cast<FunctionDecl>(DC);
+ if (FD->doesThisDeclarationHaveABody())
+ Out << "[function] ";
+ else
+ Out << "<function> ";
+ Out << *FD;
+ // Print the parameters.
+ Out << "(";
+ bool PrintComma = false;
+ for (auto I : FD->params()) {
+ if (PrintComma)
+ Out << ", ";
+ else
+ PrintComma = true;
+ Out << *I;
+ }
+ Out << ")";
+ break;
+ }
+ case Decl::CXXMethod: {
+ const CXXMethodDecl* D = cast<CXXMethodDecl>(DC);
+ if (D->isOutOfLine())
+ Out << "[c++ method] ";
+ else if (D->isImplicit())
+ Out << "(c++ method) ";
+ else
+ Out << "<c++ method> ";
+ Out << *D;
+ // Print the parameters.
+ Out << "(";
+ bool PrintComma = false;
+ for (FunctionDecl::param_const_iterator I = D->param_begin(),
+ E = D->param_end(); I != E; ++I) {
+ if (PrintComma)
+ Out << ", ";
+ else
+ PrintComma = true;
+ Out << **I;
+ }
+ Out << ")";
+
+ // Check the semantic DeclContext.
+ const DeclContext* SemaDC = D->getDeclContext();
+ const DeclContext* LexicalDC = D->getLexicalDeclContext();
+ if (SemaDC != LexicalDC)
+ Out << " [[" << SemaDC << "]]";
+
+ break;
+ }
+ case Decl::CXXConstructor: {
+ const CXXConstructorDecl* D = cast<CXXConstructorDecl>(DC);
+ if (D->isOutOfLine())
+ Out << "[c++ ctor] ";
+ else if (D->isImplicit())
+ Out << "(c++ ctor) ";
+ else
+ Out << "<c++ ctor> ";
+ Out << *D;
+ // Print the parameters.
+ Out << "(";
+ bool PrintComma = false;
+ for (FunctionDecl::param_const_iterator I = D->param_begin(),
+ E = D->param_end(); I != E; ++I) {
+ if (PrintComma)
+ Out << ", ";
+ else
+ PrintComma = true;
+ Out << **I;
+ }
+ Out << ")";
+
+ // Check the semantic DC.
+ const DeclContext* SemaDC = D->getDeclContext();
+ const DeclContext* LexicalDC = D->getLexicalDeclContext();
+ if (SemaDC != LexicalDC)
+ Out << " [[" << SemaDC << "]]";
+ break;
+ }
+ case Decl::CXXDestructor: {
+ const CXXDestructorDecl* D = cast<CXXDestructorDecl>(DC);
+ if (D->isOutOfLine())
+ Out << "[c++ dtor] ";
+ else if (D->isImplicit())
+ Out << "(c++ dtor) ";
+ else
+ Out << "<c++ dtor> ";
+ Out << *D;
+ // Check the semantic DC.
+ const DeclContext* SemaDC = D->getDeclContext();
+ const DeclContext* LexicalDC = D->getLexicalDeclContext();
+ if (SemaDC != LexicalDC)
+ Out << " [[" << SemaDC << "]]";
+ break;
+ }
+ case Decl::CXXConversion: {
+ const CXXConversionDecl* D = cast<CXXConversionDecl>(DC);
+ if (D->isOutOfLine())
+ Out << "[c++ conversion] ";
+ else if (D->isImplicit())
+ Out << "(c++ conversion) ";
+ else
+ Out << "<c++ conversion> ";
+ Out << *D;
+ // Check the semantic DC.
+ const DeclContext* SemaDC = D->getDeclContext();
+ const DeclContext* LexicalDC = D->getLexicalDeclContext();
+ if (SemaDC != LexicalDC)
+ Out << " [[" << SemaDC << "]]";
+ break;
+ }
+
+ default:
+ llvm_unreachable("a decl that inherits DeclContext isn't handled");
+ }
+
+ Out << "\n";
+
+ // Print decls in the DeclContext.
+ for (auto *I : DC->decls()) {
+ for (unsigned i = 0; i < Indentation; ++i)
+ Out << " ";
+
+ Decl::Kind DK = I->getKind();
+ switch (DK) {
+ case Decl::Namespace:
+ case Decl::Enum:
+ case Decl::Record:
+ case Decl::CXXRecord:
+ case Decl::ObjCMethod:
+ case Decl::ObjCInterface:
+ case Decl::ObjCCategory:
+ case Decl::ObjCProtocol:
+ case Decl::ObjCImplementation:
+ case Decl::ObjCCategoryImpl:
+ case Decl::LinkageSpec:
+ case Decl::Block:
+ case Decl::Function:
+ case Decl::CXXMethod:
+ case Decl::CXXConstructor:
+ case Decl::CXXDestructor:
+ case Decl::CXXConversion:
+ {
+ DeclContext* DC = cast<DeclContext>(I);
+ PrintDeclContext(DC, Indentation+2);
+ break;
+ }
+ case Decl::IndirectField: {
+ IndirectFieldDecl* IFD = cast<IndirectFieldDecl>(I);
+ Out << "<IndirectField> " << *IFD << '\n';
+ break;
+ }
+ case Decl::Label: {
+ LabelDecl *LD = cast<LabelDecl>(I);
+ Out << "<Label> " << *LD << '\n';
+ break;
+ }
+ case Decl::Field: {
+ FieldDecl *FD = cast<FieldDecl>(I);
+ Out << "<field> " << *FD << '\n';
+ break;
+ }
+ case Decl::Typedef:
+ case Decl::TypeAlias: {
+ TypedefNameDecl* TD = cast<TypedefNameDecl>(I);
+ Out << "<typedef> " << *TD << '\n';
+ break;
+ }
+ case Decl::EnumConstant: {
+ EnumConstantDecl* ECD = cast<EnumConstantDecl>(I);
+ Out << "<enum constant> " << *ECD << '\n';
+ break;
+ }
+ case Decl::Var: {
+ VarDecl* VD = cast<VarDecl>(I);
+ Out << "<var> " << *VD << '\n';
+ break;
+ }
+ case Decl::ImplicitParam: {
+ ImplicitParamDecl* IPD = cast<ImplicitParamDecl>(I);
+ Out << "<implicit parameter> " << *IPD << '\n';
+ break;
+ }
+ case Decl::ParmVar: {
+ ParmVarDecl* PVD = cast<ParmVarDecl>(I);
+ Out << "<parameter> " << *PVD << '\n';
+ break;
+ }
+ case Decl::ObjCProperty: {
+ ObjCPropertyDecl* OPD = cast<ObjCPropertyDecl>(I);
+ Out << "<objc property> " << *OPD << '\n';
+ break;
+ }
+ case Decl::FunctionTemplate: {
+ FunctionTemplateDecl* FTD = cast<FunctionTemplateDecl>(I);
+ Out << "<function template> " << *FTD << '\n';
+ break;
+ }
+ case Decl::FileScopeAsm: {
+ Out << "<file-scope asm>\n";
+ break;
+ }
+ case Decl::UsingDirective: {
+ Out << "<using directive>\n";
+ break;
+ }
+ case Decl::NamespaceAlias: {
+ NamespaceAliasDecl* NAD = cast<NamespaceAliasDecl>(I);
+ Out << "<namespace alias> " << *NAD << '\n';
+ break;
+ }
+ case Decl::ClassTemplate: {
+ ClassTemplateDecl *CTD = cast<ClassTemplateDecl>(I);
+ Out << "<class template> " << *CTD << '\n';
+ break;
+ }
+ case Decl::OMPThreadPrivate: {
+ Out << "<omp threadprivate> " << '"' << I << "\"\n";
+ break;
+ }
+ default:
+ Out << "DeclKind: " << DK << '"' << I << "\"\n";
+ llvm_unreachable("decl unhandled");
+ }
+ }
+}
+std::unique_ptr<ASTConsumer> clang::CreateDeclContextPrinter() {
+ return llvm::make_unique<DeclContextPrinter>();
+}
diff --git a/contrib/llvm/tools/clang/lib/Frontend/ASTMerge.cpp b/contrib/llvm/tools/clang/lib/Frontend/ASTMerge.cpp
new file mode 100644
index 0000000..b84df94
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Frontend/ASTMerge.cpp
@@ -0,0 +1,113 @@
+//===-- ASTMerge.cpp - AST Merging Frontent Action --------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/Frontend/ASTUnit.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTDiagnostic.h"
+#include "clang/AST/ASTImporter.h"
+#include "clang/Basic/Diagnostic.h"
+#include "clang/Frontend/CompilerInstance.h"
+#include "clang/Frontend/FrontendActions.h"
+
+using namespace clang;
+
+std::unique_ptr<ASTConsumer>
+ASTMergeAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) {
+ return AdaptedAction->CreateASTConsumer(CI, InFile);
+}
+
+bool ASTMergeAction::BeginSourceFileAction(CompilerInstance &CI,
+ StringRef Filename) {
+ // FIXME: This is a hack. We need a better way to communicate the
+ // AST file, compiler instance, and file name than member variables
+ // of FrontendAction.
+ AdaptedAction->setCurrentInput(getCurrentInput(), takeCurrentASTUnit());
+ AdaptedAction->setCompilerInstance(&CI);
+ return AdaptedAction->BeginSourceFileAction(CI, Filename);
+}
+
+void ASTMergeAction::ExecuteAction() {
+ CompilerInstance &CI = getCompilerInstance();
+ CI.getDiagnostics().getClient()->BeginSourceFile(
+ CI.getASTContext().getLangOpts());
+ CI.getDiagnostics().SetArgToStringFn(&FormatASTNodeDiagnosticArgument,
+ &CI.getASTContext());
+ IntrusiveRefCntPtr<DiagnosticIDs>
+ DiagIDs(CI.getDiagnostics().getDiagnosticIDs());
+ for (unsigned I = 0, N = ASTFiles.size(); I != N; ++I) {
+ IntrusiveRefCntPtr<DiagnosticsEngine>
+ Diags(new DiagnosticsEngine(DiagIDs, &CI.getDiagnosticOpts(),
+ new ForwardingDiagnosticConsumer(
+ *CI.getDiagnostics().getClient()),
+ /*ShouldOwnClient=*/true));
+ std::unique_ptr<ASTUnit> Unit = ASTUnit::LoadFromASTFile(
+ ASTFiles[I], Diags, CI.getFileSystemOpts(), false);
+ if (!Unit)
+ continue;
+
+ ASTImporter Importer(CI.getASTContext(),
+ CI.getFileManager(),
+ Unit->getASTContext(),
+ Unit->getFileManager(),
+ /*MinimalImport=*/false);
+
+ TranslationUnitDecl *TU = Unit->getASTContext().getTranslationUnitDecl();
+ CI.getASTConsumer().Initialize(CI.getASTContext());
+ for (auto *D : TU->decls()) {
+ // Don't re-import __va_list_tag, __builtin_va_list.
+ if (const auto *ND = dyn_cast<NamedDecl>(D))
+ if (IdentifierInfo *II = ND->getIdentifier())
+ if (II->isStr("__va_list_tag") || II->isStr("__builtin_va_list"))
+ continue;
+
+ Decl *ToD = Importer.Import(D);
+
+ if (ToD) {
+ DeclGroupRef DGR(ToD);
+ CI.getASTConsumer().HandleTopLevelDecl(DGR);
+ }
+ }
+ }
+
+ AdaptedAction->ExecuteAction();
+ CI.getDiagnostics().getClient()->EndSourceFile();
+}
+
+void ASTMergeAction::EndSourceFileAction() {
+ return AdaptedAction->EndSourceFileAction();
+}
+
+ASTMergeAction::ASTMergeAction(FrontendAction *AdaptedAction,
+ ArrayRef<std::string> ASTFiles)
+ : AdaptedAction(AdaptedAction), ASTFiles(ASTFiles.begin(), ASTFiles.end()) {
+ assert(AdaptedAction && "ASTMergeAction needs an action to adapt");
+}
+
+ASTMergeAction::~ASTMergeAction() {
+ delete AdaptedAction;
+}
+
+bool ASTMergeAction::usesPreprocessorOnly() const {
+ return AdaptedAction->usesPreprocessorOnly();
+}
+
+TranslationUnitKind ASTMergeAction::getTranslationUnitKind() {
+ return AdaptedAction->getTranslationUnitKind();
+}
+
+bool ASTMergeAction::hasPCHSupport() const {
+ return AdaptedAction->hasPCHSupport();
+}
+
+bool ASTMergeAction::hasASTFileSupport() const {
+ return AdaptedAction->hasASTFileSupport();
+}
+
+bool ASTMergeAction::hasCodeCompletionSupport() const {
+ return AdaptedAction->hasCodeCompletionSupport();
+}
diff --git a/contrib/llvm/tools/clang/lib/Frontend/ASTUnit.cpp b/contrib/llvm/tools/clang/lib/Frontend/ASTUnit.cpp
new file mode 100644
index 0000000..7226344
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Frontend/ASTUnit.cpp
@@ -0,0 +1,2836 @@
+//===--- ASTUnit.cpp - ASTUnit utility ------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// ASTUnit Implementation.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Frontend/ASTUnit.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclVisitor.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/AST/TypeOrdering.h"
+#include "clang/Basic/Diagnostic.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Basic/TargetOptions.h"
+#include "clang/Basic/VirtualFileSystem.h"
+#include "clang/Frontend/CompilerInstance.h"
+#include "clang/Frontend/FrontendActions.h"
+#include "clang/Frontend/FrontendDiagnostic.h"
+#include "clang/Frontend/FrontendOptions.h"
+#include "clang/Frontend/MultiplexConsumer.h"
+#include "clang/Frontend/Utils.h"
+#include "clang/Lex/HeaderSearch.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Lex/PreprocessorOptions.h"
+#include "clang/Sema/Sema.h"
+#include "clang/Serialization/ASTReader.h"
+#include "clang/Serialization/ASTWriter.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringSet.h"
+#include "llvm/Support/CrashRecoveryContext.h"
+#include "llvm/Support/Host.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/Mutex.h"
+#include "llvm/Support/MutexGuard.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/Timer.h"
+#include "llvm/Support/raw_ostream.h"
+#include <atomic>
+#include <cstdio>
+#include <cstdlib>
+using namespace clang;
+
+using llvm::TimeRecord;
+
+namespace {
+ class SimpleTimer {
+ bool WantTiming;
+ TimeRecord Start;
+ std::string Output;
+
+ public:
+ explicit SimpleTimer(bool WantTiming) : WantTiming(WantTiming) {
+ if (WantTiming)
+ Start = TimeRecord::getCurrentTime();
+ }
+
+ void setOutput(const Twine &Output) {
+ if (WantTiming)
+ this->Output = Output.str();
+ }
+
+ ~SimpleTimer() {
+ if (WantTiming) {
+ TimeRecord Elapsed = TimeRecord::getCurrentTime();
+ Elapsed -= Start;
+ llvm::errs() << Output << ':';
+ Elapsed.print(Elapsed, llvm::errs());
+ llvm::errs() << '\n';
+ }
+ }
+ };
+
+ struct OnDiskData {
+ /// \brief The file in which the precompiled preamble is stored.
+ std::string PreambleFile;
+
+ /// \brief Temporary files that should be removed when the ASTUnit is
+ /// destroyed.
+ SmallVector<std::string, 4> TemporaryFiles;
+
+ /// \brief Erase temporary files.
+ void CleanTemporaryFiles();
+
+ /// \brief Erase the preamble file.
+ void CleanPreambleFile();
+
+ /// \brief Erase temporary files and the preamble file.
+ void Cleanup();
+ };
+}
+
+static llvm::sys::SmartMutex<false> &getOnDiskMutex() {
+ static llvm::sys::SmartMutex<false> M(/* recursive = */ true);
+ return M;
+}
+
+static void cleanupOnDiskMapAtExit();
+
+typedef llvm::DenseMap<const ASTUnit *,
+ std::unique_ptr<OnDiskData>> OnDiskDataMap;
+static OnDiskDataMap &getOnDiskDataMap() {
+ static OnDiskDataMap M;
+ static bool hasRegisteredAtExit = false;
+ if (!hasRegisteredAtExit) {
+ hasRegisteredAtExit = true;
+ atexit(cleanupOnDiskMapAtExit);
+ }
+ return M;
+}
+
+static void cleanupOnDiskMapAtExit() {
+ // Use the mutex because there can be an alive thread destroying an ASTUnit.
+ llvm::MutexGuard Guard(getOnDiskMutex());
+ for (const auto &I : getOnDiskDataMap()) {
+ // We don't worry about freeing the memory associated with OnDiskDataMap.
+ // All we care about is erasing stale files.
+ I.second->Cleanup();
+ }
+}
+
+static OnDiskData &getOnDiskData(const ASTUnit *AU) {
+ // We require the mutex since we are modifying the structure of the
+ // DenseMap.
+ llvm::MutexGuard Guard(getOnDiskMutex());
+ OnDiskDataMap &M = getOnDiskDataMap();
+ auto &D = M[AU];
+ if (!D)
+ D = llvm::make_unique<OnDiskData>();
+ return *D;
+}
+
+static void erasePreambleFile(const ASTUnit *AU) {
+ getOnDiskData(AU).CleanPreambleFile();
+}
+
+static void removeOnDiskEntry(const ASTUnit *AU) {
+ // We require the mutex since we are modifying the structure of the
+ // DenseMap.
+ llvm::MutexGuard Guard(getOnDiskMutex());
+ OnDiskDataMap &M = getOnDiskDataMap();
+ OnDiskDataMap::iterator I = M.find(AU);
+ if (I != M.end()) {
+ I->second->Cleanup();
+ M.erase(I);
+ }
+}
+
+static void setPreambleFile(const ASTUnit *AU, StringRef preambleFile) {
+ getOnDiskData(AU).PreambleFile = preambleFile;
+}
+
+static const std::string &getPreambleFile(const ASTUnit *AU) {
+ return getOnDiskData(AU).PreambleFile;
+}
+
+void OnDiskData::CleanTemporaryFiles() {
+ for (StringRef File : TemporaryFiles)
+ llvm::sys::fs::remove(File);
+ TemporaryFiles.clear();
+}
+
+void OnDiskData::CleanPreambleFile() {
+ if (!PreambleFile.empty()) {
+ llvm::sys::fs::remove(PreambleFile);
+ PreambleFile.clear();
+ }
+}
+
+void OnDiskData::Cleanup() {
+ CleanTemporaryFiles();
+ CleanPreambleFile();
+}
+
+struct ASTUnit::ASTWriterData {
+ SmallString<128> Buffer;
+ llvm::BitstreamWriter Stream;
+ ASTWriter Writer;
+
+ ASTWriterData() : Stream(Buffer), Writer(Stream) { }
+};
+
+void ASTUnit::clearFileLevelDecls() {
+ llvm::DeleteContainerSeconds(FileDecls);
+}
+
+void ASTUnit::CleanTemporaryFiles() {
+ getOnDiskData(this).CleanTemporaryFiles();
+}
+
+void ASTUnit::addTemporaryFile(StringRef TempFile) {
+ getOnDiskData(this).TemporaryFiles.push_back(TempFile);
+}
+
+/// \brief After failing to build a precompiled preamble (due to
+/// errors in the source that occurs in the preamble), the number of
+/// reparses during which we'll skip even trying to precompile the
+/// preamble.
+const unsigned DefaultPreambleRebuildInterval = 5;
+
+/// \brief Tracks the number of ASTUnit objects that are currently active.
+///
+/// Used for debugging purposes only.
+static std::atomic<unsigned> ActiveASTUnitObjects;
+
+ASTUnit::ASTUnit(bool _MainFileIsAST)
+ : Reader(nullptr), HadModuleLoaderFatalFailure(false),
+ OnlyLocalDecls(false), CaptureDiagnostics(false),
+ MainFileIsAST(_MainFileIsAST),
+ TUKind(TU_Complete), WantTiming(getenv("LIBCLANG_TIMING")),
+ OwnsRemappedFileBuffers(true),
+ NumStoredDiagnosticsFromDriver(0),
+ PreambleRebuildCounter(0),
+ NumWarningsInPreamble(0),
+ ShouldCacheCodeCompletionResults(false),
+ IncludeBriefCommentsInCodeCompletion(false), UserFilesAreVolatile(false),
+ CompletionCacheTopLevelHashValue(0),
+ PreambleTopLevelHashValue(0),
+ CurrentTopLevelHashValue(0),
+ UnsafeToFree(false) {
+ if (getenv("LIBCLANG_OBJTRACKING"))
+ fprintf(stderr, "+++ %u translation units\n", ++ActiveASTUnitObjects);
+}
+
+ASTUnit::~ASTUnit() {
+ // If we loaded from an AST file, balance out the BeginSourceFile call.
+ if (MainFileIsAST && getDiagnostics().getClient()) {
+ getDiagnostics().getClient()->EndSourceFile();
+ }
+
+ clearFileLevelDecls();
+
+ // Clean up the temporary files and the preamble file.
+ removeOnDiskEntry(this);
+
+ // Free the buffers associated with remapped files. We are required to
+ // perform this operation here because we explicitly request that the
+ // compiler instance *not* free these buffers for each invocation of the
+ // parser.
+ if (Invocation.get() && OwnsRemappedFileBuffers) {
+ PreprocessorOptions &PPOpts = Invocation->getPreprocessorOpts();
+ for (const auto &RB : PPOpts.RemappedFileBuffers)
+ delete RB.second;
+ }
+
+ ClearCachedCompletionResults();
+
+ if (getenv("LIBCLANG_OBJTRACKING"))
+ fprintf(stderr, "--- %u translation units\n", --ActiveASTUnitObjects);
+}
+
+void ASTUnit::setPreprocessor(Preprocessor *pp) { PP = pp; }
+
+/// \brief Determine the set of code-completion contexts in which this
+/// declaration should be shown.
+static unsigned getDeclShowContexts(const NamedDecl *ND,
+ const LangOptions &LangOpts,
+ bool &IsNestedNameSpecifier) {
+ IsNestedNameSpecifier = false;
+
+ if (isa<UsingShadowDecl>(ND))
+ ND = dyn_cast<NamedDecl>(ND->getUnderlyingDecl());
+ if (!ND)
+ return 0;
+
+ uint64_t Contexts = 0;
+ if (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND) ||
+ isa<ClassTemplateDecl>(ND) || isa<TemplateTemplateParmDecl>(ND)) {
+ // Types can appear in these contexts.
+ if (LangOpts.CPlusPlus || !isa<TagDecl>(ND))
+ Contexts |= (1LL << CodeCompletionContext::CCC_TopLevel)
+ | (1LL << CodeCompletionContext::CCC_ObjCIvarList)
+ | (1LL << CodeCompletionContext::CCC_ClassStructUnion)
+ | (1LL << CodeCompletionContext::CCC_Statement)
+ | (1LL << CodeCompletionContext::CCC_Type)
+ | (1LL << CodeCompletionContext::CCC_ParenthesizedExpression);
+
+ // In C++, types can appear in expressions contexts (for functional casts).
+ if (LangOpts.CPlusPlus)
+ Contexts |= (1LL << CodeCompletionContext::CCC_Expression);
+
+ // In Objective-C, message sends can send interfaces. In Objective-C++,
+ // all types are available due to functional casts.
+ if (LangOpts.CPlusPlus || isa<ObjCInterfaceDecl>(ND))
+ Contexts |= (1LL << CodeCompletionContext::CCC_ObjCMessageReceiver);
+
+ // In Objective-C, you can only be a subclass of another Objective-C class
+ if (isa<ObjCInterfaceDecl>(ND))
+ Contexts |= (1LL << CodeCompletionContext::CCC_ObjCInterfaceName);
+
+ // Deal with tag names.
+ if (isa<EnumDecl>(ND)) {
+ Contexts |= (1LL << CodeCompletionContext::CCC_EnumTag);
+
+ // Part of the nested-name-specifier in C++0x.
+ if (LangOpts.CPlusPlus11)
+ IsNestedNameSpecifier = true;
+ } else if (const RecordDecl *Record = dyn_cast<RecordDecl>(ND)) {
+ if (Record->isUnion())
+ Contexts |= (1LL << CodeCompletionContext::CCC_UnionTag);
+ else
+ Contexts |= (1LL << CodeCompletionContext::CCC_ClassOrStructTag);
+
+ if (LangOpts.CPlusPlus)
+ IsNestedNameSpecifier = true;
+ } else if (isa<ClassTemplateDecl>(ND))
+ IsNestedNameSpecifier = true;
+ } else if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
+ // Values can appear in these contexts.
+ Contexts = (1LL << CodeCompletionContext::CCC_Statement)
+ | (1LL << CodeCompletionContext::CCC_Expression)
+ | (1LL << CodeCompletionContext::CCC_ParenthesizedExpression)
+ | (1LL << CodeCompletionContext::CCC_ObjCMessageReceiver);
+ } else if (isa<ObjCProtocolDecl>(ND)) {
+ Contexts = (1LL << CodeCompletionContext::CCC_ObjCProtocolName);
+ } else if (isa<ObjCCategoryDecl>(ND)) {
+ Contexts = (1LL << CodeCompletionContext::CCC_ObjCCategoryName);
+ } else if (isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND)) {
+ Contexts = (1LL << CodeCompletionContext::CCC_Namespace);
+
+ // Part of the nested-name-specifier.
+ IsNestedNameSpecifier = true;
+ }
+
+ return Contexts;
+}
+
+void ASTUnit::CacheCodeCompletionResults() {
+ if (!TheSema)
+ return;
+
+ SimpleTimer Timer(WantTiming);
+ Timer.setOutput("Cache global code completions for " + getMainFileName());
+
+ // Clear out the previous results.
+ ClearCachedCompletionResults();
+
+ // Gather the set of global code completions.
+ typedef CodeCompletionResult Result;
+ SmallVector<Result, 8> Results;
+ CachedCompletionAllocator = new GlobalCodeCompletionAllocator;
+ CodeCompletionTUInfo CCTUInfo(CachedCompletionAllocator);
+ TheSema->GatherGlobalCodeCompletions(*CachedCompletionAllocator,
+ CCTUInfo, Results);
+
+ // Translate global code completions into cached completions.
+ llvm::DenseMap<CanQualType, unsigned> CompletionTypes;
+
+ for (Result &R : Results) {
+ switch (R.Kind) {
+ case Result::RK_Declaration: {
+ bool IsNestedNameSpecifier = false;
+ CachedCodeCompletionResult CachedResult;
+ CachedResult.Completion = R.CreateCodeCompletionString(
+ *TheSema, *CachedCompletionAllocator, CCTUInfo,
+ IncludeBriefCommentsInCodeCompletion);
+ CachedResult.ShowInContexts = getDeclShowContexts(
+ R.Declaration, Ctx->getLangOpts(), IsNestedNameSpecifier);
+ CachedResult.Priority = R.Priority;
+ CachedResult.Kind = R.CursorKind;
+ CachedResult.Availability = R.Availability;
+
+ // Keep track of the type of this completion in an ASTContext-agnostic
+ // way.
+ QualType UsageType = getDeclUsageType(*Ctx, R.Declaration);
+ if (UsageType.isNull()) {
+ CachedResult.TypeClass = STC_Void;
+ CachedResult.Type = 0;
+ } else {
+ CanQualType CanUsageType
+ = Ctx->getCanonicalType(UsageType.getUnqualifiedType());
+ CachedResult.TypeClass = getSimplifiedTypeClass(CanUsageType);
+
+ // Determine whether we have already seen this type. If so, we save
+ // ourselves the work of formatting the type string by using the
+ // temporary, CanQualType-based hash table to find the associated value.
+ unsigned &TypeValue = CompletionTypes[CanUsageType];
+ if (TypeValue == 0) {
+ TypeValue = CompletionTypes.size();
+ CachedCompletionTypes[QualType(CanUsageType).getAsString()]
+ = TypeValue;
+ }
+
+ CachedResult.Type = TypeValue;
+ }
+
+ CachedCompletionResults.push_back(CachedResult);
+
+ /// Handle nested-name-specifiers in C++.
+ if (TheSema->Context.getLangOpts().CPlusPlus && IsNestedNameSpecifier &&
+ !R.StartsNestedNameSpecifier) {
+ // The contexts in which a nested-name-specifier can appear in C++.
+ uint64_t NNSContexts
+ = (1LL << CodeCompletionContext::CCC_TopLevel)
+ | (1LL << CodeCompletionContext::CCC_ObjCIvarList)
+ | (1LL << CodeCompletionContext::CCC_ClassStructUnion)
+ | (1LL << CodeCompletionContext::CCC_Statement)
+ | (1LL << CodeCompletionContext::CCC_Expression)
+ | (1LL << CodeCompletionContext::CCC_ObjCMessageReceiver)
+ | (1LL << CodeCompletionContext::CCC_EnumTag)
+ | (1LL << CodeCompletionContext::CCC_UnionTag)
+ | (1LL << CodeCompletionContext::CCC_ClassOrStructTag)
+ | (1LL << CodeCompletionContext::CCC_Type)
+ | (1LL << CodeCompletionContext::CCC_PotentiallyQualifiedName)
+ | (1LL << CodeCompletionContext::CCC_ParenthesizedExpression);
+
+ if (isa<NamespaceDecl>(R.Declaration) ||
+ isa<NamespaceAliasDecl>(R.Declaration))
+ NNSContexts |= (1LL << CodeCompletionContext::CCC_Namespace);
+
+ if (unsigned RemainingContexts
+ = NNSContexts & ~CachedResult.ShowInContexts) {
+ // If there any contexts where this completion can be a
+ // nested-name-specifier but isn't already an option, create a
+ // nested-name-specifier completion.
+ R.StartsNestedNameSpecifier = true;
+ CachedResult.Completion = R.CreateCodeCompletionString(
+ *TheSema, *CachedCompletionAllocator, CCTUInfo,
+ IncludeBriefCommentsInCodeCompletion);
+ CachedResult.ShowInContexts = RemainingContexts;
+ CachedResult.Priority = CCP_NestedNameSpecifier;
+ CachedResult.TypeClass = STC_Void;
+ CachedResult.Type = 0;
+ CachedCompletionResults.push_back(CachedResult);
+ }
+ }
+ break;
+ }
+
+ case Result::RK_Keyword:
+ case Result::RK_Pattern:
+ // Ignore keywords and patterns; we don't care, since they are so
+ // easily regenerated.
+ break;
+
+ case Result::RK_Macro: {
+ CachedCodeCompletionResult CachedResult;
+ CachedResult.Completion = R.CreateCodeCompletionString(
+ *TheSema, *CachedCompletionAllocator, CCTUInfo,
+ IncludeBriefCommentsInCodeCompletion);
+ CachedResult.ShowInContexts
+ = (1LL << CodeCompletionContext::CCC_TopLevel)
+ | (1LL << CodeCompletionContext::CCC_ObjCInterface)
+ | (1LL << CodeCompletionContext::CCC_ObjCImplementation)
+ | (1LL << CodeCompletionContext::CCC_ObjCIvarList)
+ | (1LL << CodeCompletionContext::CCC_ClassStructUnion)
+ | (1LL << CodeCompletionContext::CCC_Statement)
+ | (1LL << CodeCompletionContext::CCC_Expression)
+ | (1LL << CodeCompletionContext::CCC_ObjCMessageReceiver)
+ | (1LL << CodeCompletionContext::CCC_MacroNameUse)
+ | (1LL << CodeCompletionContext::CCC_PreprocessorExpression)
+ | (1LL << CodeCompletionContext::CCC_ParenthesizedExpression)
+ | (1LL << CodeCompletionContext::CCC_OtherWithMacros);
+
+ CachedResult.Priority = R.Priority;
+ CachedResult.Kind = R.CursorKind;
+ CachedResult.Availability = R.Availability;
+ CachedResult.TypeClass = STC_Void;
+ CachedResult.Type = 0;
+ CachedCompletionResults.push_back(CachedResult);
+ break;
+ }
+ }
+ }
+
+ // Save the current top-level hash value.
+ CompletionCacheTopLevelHashValue = CurrentTopLevelHashValue;
+}
+
+void ASTUnit::ClearCachedCompletionResults() {
+ CachedCompletionResults.clear();
+ CachedCompletionTypes.clear();
+ CachedCompletionAllocator = nullptr;
+}
+
+namespace {
+
+/// \brief Gathers information from ASTReader that will be used to initialize
+/// a Preprocessor.
+class ASTInfoCollector : public ASTReaderListener {
+ Preprocessor &PP;
+ ASTContext &Context;
+ LangOptions &LangOpt;
+ std::shared_ptr<TargetOptions> &TargetOpts;
+ IntrusiveRefCntPtr<TargetInfo> &Target;
+ unsigned &Counter;
+
+ bool InitializedLanguage;
+public:
+ ASTInfoCollector(Preprocessor &PP, ASTContext &Context, LangOptions &LangOpt,
+ std::shared_ptr<TargetOptions> &TargetOpts,
+ IntrusiveRefCntPtr<TargetInfo> &Target, unsigned &Counter)
+ : PP(PP), Context(Context), LangOpt(LangOpt), TargetOpts(TargetOpts),
+ Target(Target), Counter(Counter), InitializedLanguage(false) {}
+
+ bool ReadLanguageOptions(const LangOptions &LangOpts, bool Complain,
+ bool AllowCompatibleDifferences) override {
+ if (InitializedLanguage)
+ return false;
+
+ LangOpt = LangOpts;
+ InitializedLanguage = true;
+
+ updated();
+ return false;
+ }
+
+ bool ReadTargetOptions(const TargetOptions &TargetOpts, bool Complain,
+ bool AllowCompatibleDifferences) override {
+ // If we've already initialized the target, don't do it again.
+ if (Target)
+ return false;
+
+ this->TargetOpts = std::make_shared<TargetOptions>(TargetOpts);
+ Target =
+ TargetInfo::CreateTargetInfo(PP.getDiagnostics(), this->TargetOpts);
+
+ updated();
+ return false;
+ }
+
+ void ReadCounter(const serialization::ModuleFile &M,
+ unsigned Value) override {
+ Counter = Value;
+ }
+
+private:
+ void updated() {
+ if (!Target || !InitializedLanguage)
+ return;
+
+ // Inform the target of the language options.
+ //
+ // FIXME: We shouldn't need to do this, the target should be immutable once
+ // created. This complexity should be lifted elsewhere.
+ Target->adjust(LangOpt);
+
+ // Initialize the preprocessor.
+ PP.Initialize(*Target);
+
+ // Initialize the ASTContext
+ Context.InitBuiltinTypes(*Target);
+
+ // We didn't have access to the comment options when the ASTContext was
+ // constructed, so register them now.
+ Context.getCommentCommandTraits().registerCommentOptions(
+ LangOpt.CommentOpts);
+ }
+};
+
+ /// \brief Diagnostic consumer that saves each diagnostic it is given.
+class StoredDiagnosticConsumer : public DiagnosticConsumer {
+ SmallVectorImpl<StoredDiagnostic> &StoredDiags;
+ SourceManager *SourceMgr;
+
+public:
+ explicit StoredDiagnosticConsumer(
+ SmallVectorImpl<StoredDiagnostic> &StoredDiags)
+ : StoredDiags(StoredDiags), SourceMgr(nullptr) {}
+
+ void BeginSourceFile(const LangOptions &LangOpts,
+ const Preprocessor *PP = nullptr) override {
+ if (PP)
+ SourceMgr = &PP->getSourceManager();
+ }
+
+ void HandleDiagnostic(DiagnosticsEngine::Level Level,
+ const Diagnostic &Info) override;
+};
+
+/// \brief RAII object that optionally captures diagnostics, if
+/// there is no diagnostic client to capture them already.
+class CaptureDroppedDiagnostics {
+ DiagnosticsEngine &Diags;
+ StoredDiagnosticConsumer Client;
+ DiagnosticConsumer *PreviousClient;
+ std::unique_ptr<DiagnosticConsumer> OwningPreviousClient;
+
+public:
+ CaptureDroppedDiagnostics(bool RequestCapture, DiagnosticsEngine &Diags,
+ SmallVectorImpl<StoredDiagnostic> &StoredDiags)
+ : Diags(Diags), Client(StoredDiags), PreviousClient(nullptr)
+ {
+ if (RequestCapture || Diags.getClient() == nullptr) {
+ OwningPreviousClient = Diags.takeClient();
+ PreviousClient = Diags.getClient();
+ Diags.setClient(&Client, false);
+ }
+ }
+
+ ~CaptureDroppedDiagnostics() {
+ if (Diags.getClient() == &Client)
+ Diags.setClient(PreviousClient, !!OwningPreviousClient.release());
+ }
+};
+
+} // anonymous namespace
+
+void StoredDiagnosticConsumer::HandleDiagnostic(DiagnosticsEngine::Level Level,
+ const Diagnostic &Info) {
+ // Default implementation (Warnings/errors count).
+ DiagnosticConsumer::HandleDiagnostic(Level, Info);
+
+ // Only record the diagnostic if it's part of the source manager we know
+ // about. This effectively drops diagnostics from modules we're building.
+ // FIXME: In the long run, ee don't want to drop source managers from modules.
+ if (!Info.hasSourceManager() || &Info.getSourceManager() == SourceMgr)
+ StoredDiags.push_back(StoredDiagnostic(Level, Info));
+}
+
+ASTMutationListener *ASTUnit::getASTMutationListener() {
+ if (WriterData)
+ return &WriterData->Writer;
+ return nullptr;
+}
+
+ASTDeserializationListener *ASTUnit::getDeserializationListener() {
+ if (WriterData)
+ return &WriterData->Writer;
+ return nullptr;
+}
+
+std::unique_ptr<llvm::MemoryBuffer>
+ASTUnit::getBufferForFile(StringRef Filename, std::string *ErrorStr) {
+ assert(FileMgr);
+ auto Buffer = FileMgr->getBufferForFile(Filename);
+ if (Buffer)
+ return std::move(*Buffer);
+ if (ErrorStr)
+ *ErrorStr = Buffer.getError().message();
+ return nullptr;
+}
+
+/// \brief Configure the diagnostics object for use with ASTUnit.
+void ASTUnit::ConfigureDiags(IntrusiveRefCntPtr<DiagnosticsEngine> Diags,
+ ASTUnit &AST, bool CaptureDiagnostics) {
+ assert(Diags.get() && "no DiagnosticsEngine was provided");
+ if (CaptureDiagnostics)
+ Diags->setClient(new StoredDiagnosticConsumer(AST.StoredDiagnostics));
+}
+
+std::unique_ptr<ASTUnit> ASTUnit::LoadFromASTFile(
+ const std::string &Filename, IntrusiveRefCntPtr<DiagnosticsEngine> Diags,
+ const FileSystemOptions &FileSystemOpts, bool OnlyLocalDecls,
+ ArrayRef<RemappedFile> RemappedFiles, bool CaptureDiagnostics,
+ bool AllowPCHWithCompilerErrors, bool UserFilesAreVolatile) {
+ std::unique_ptr<ASTUnit> AST(new ASTUnit(true));
+
+ // Recover resources if we crash before exiting this method.
+ llvm::CrashRecoveryContextCleanupRegistrar<ASTUnit>
+ ASTUnitCleanup(AST.get());
+ llvm::CrashRecoveryContextCleanupRegistrar<DiagnosticsEngine,
+ llvm::CrashRecoveryContextReleaseRefCleanup<DiagnosticsEngine> >
+ DiagCleanup(Diags.get());
+
+ ConfigureDiags(Diags, *AST, CaptureDiagnostics);
+
+ AST->OnlyLocalDecls = OnlyLocalDecls;
+ AST->CaptureDiagnostics = CaptureDiagnostics;
+ AST->Diagnostics = Diags;
+ IntrusiveRefCntPtr<vfs::FileSystem> VFS = vfs::getRealFileSystem();
+ AST->FileMgr = new FileManager(FileSystemOpts, VFS);
+ AST->UserFilesAreVolatile = UserFilesAreVolatile;
+ AST->SourceMgr = new SourceManager(AST->getDiagnostics(),
+ AST->getFileManager(),
+ UserFilesAreVolatile);
+ AST->HSOpts = new HeaderSearchOptions();
+
+ AST->HeaderInfo.reset(new HeaderSearch(AST->HSOpts,
+ AST->getSourceManager(),
+ AST->getDiagnostics(),
+ AST->ASTFileLangOpts,
+ /*Target=*/nullptr));
+
+ PreprocessorOptions *PPOpts = new PreprocessorOptions();
+
+ for (const auto &RemappedFile : RemappedFiles)
+ PPOpts->addRemappedFile(RemappedFile.first, RemappedFile.second);
+
+ // Gather Info for preprocessor construction later on.
+
+ HeaderSearch &HeaderInfo = *AST->HeaderInfo;
+ unsigned Counter;
+
+ AST->PP =
+ new Preprocessor(PPOpts, AST->getDiagnostics(), AST->ASTFileLangOpts,
+ AST->getSourceManager(), HeaderInfo, *AST,
+ /*IILookup=*/nullptr,
+ /*OwnsHeaderSearch=*/false);
+ Preprocessor &PP = *AST->PP;
+
+ AST->Ctx = new ASTContext(AST->ASTFileLangOpts, AST->getSourceManager(),
+ PP.getIdentifierTable(), PP.getSelectorTable(),
+ PP.getBuiltinInfo());
+ ASTContext &Context = *AST->Ctx;
+
+ bool disableValid = false;
+ if (::getenv("LIBCLANG_DISABLE_PCH_VALIDATION"))
+ disableValid = true;
+ AST->Reader = new ASTReader(PP, Context,
+ /*isysroot=*/"",
+ /*DisableValidation=*/disableValid,
+ AllowPCHWithCompilerErrors);
+
+ AST->Reader->setListener(llvm::make_unique<ASTInfoCollector>(
+ *AST->PP, Context, AST->ASTFileLangOpts, AST->TargetOpts, AST->Target,
+ Counter));
+
+ // Attach the AST reader to the AST context as an external AST
+ // source, so that declarations will be deserialized from the
+ // AST file as needed.
+ // We need the external source to be set up before we read the AST, because
+ // eagerly-deserialized declarations may use it.
+ Context.setExternalSource(AST->Reader);
+
+ switch (AST->Reader->ReadAST(Filename, serialization::MK_MainFile,
+ SourceLocation(), ASTReader::ARR_None)) {
+ case ASTReader::Success:
+ break;
+
+ case ASTReader::Failure:
+ case ASTReader::Missing:
+ case ASTReader::OutOfDate:
+ case ASTReader::VersionMismatch:
+ case ASTReader::ConfigurationMismatch:
+ case ASTReader::HadErrors:
+ AST->getDiagnostics().Report(diag::err_fe_unable_to_load_pch);
+ return nullptr;
+ }
+
+ AST->OriginalSourceFile = AST->Reader->getOriginalSourceFile();
+
+ PP.setCounterValue(Counter);
+
+ // Create an AST consumer, even though it isn't used.
+ AST->Consumer.reset(new ASTConsumer);
+
+ // Create a semantic analysis object and tell the AST reader about it.
+ AST->TheSema.reset(new Sema(PP, Context, *AST->Consumer));
+ AST->TheSema->Initialize();
+ AST->Reader->InitializeSema(*AST->TheSema);
+
+ // Tell the diagnostic client that we have started a source file.
+ AST->getDiagnostics().getClient()->BeginSourceFile(Context.getLangOpts(),&PP);
+
+ return AST;
+}
+
+namespace {
+
+/// \brief Preprocessor callback class that updates a hash value with the names
+/// of all macros that have been defined by the translation unit.
+class MacroDefinitionTrackerPPCallbacks : public PPCallbacks {
+ unsigned &Hash;
+
+public:
+ explicit MacroDefinitionTrackerPPCallbacks(unsigned &Hash) : Hash(Hash) { }
+
+ void MacroDefined(const Token &MacroNameTok,
+ const MacroDirective *MD) override {
+ Hash = llvm::HashString(MacroNameTok.getIdentifierInfo()->getName(), Hash);
+ }
+};
+
+/// \brief Add the given declaration to the hash of all top-level entities.
+void AddTopLevelDeclarationToHash(Decl *D, unsigned &Hash) {
+ if (!D)
+ return;
+
+ DeclContext *DC = D->getDeclContext();
+ if (!DC)
+ return;
+
+ if (!(DC->isTranslationUnit() || DC->getLookupParent()->isTranslationUnit()))
+ return;
+
+ if (NamedDecl *ND = dyn_cast<NamedDecl>(D)) {
+ if (EnumDecl *EnumD = dyn_cast<EnumDecl>(D)) {
+ // For an unscoped enum include the enumerators in the hash since they
+ // enter the top-level namespace.
+ if (!EnumD->isScoped()) {
+ for (const auto *EI : EnumD->enumerators()) {
+ if (EI->getIdentifier())
+ Hash = llvm::HashString(EI->getIdentifier()->getName(), Hash);
+ }
+ }
+ }
+
+ if (ND->getIdentifier())
+ Hash = llvm::HashString(ND->getIdentifier()->getName(), Hash);
+ else if (DeclarationName Name = ND->getDeclName()) {
+ std::string NameStr = Name.getAsString();
+ Hash = llvm::HashString(NameStr, Hash);
+ }
+ return;
+ }
+
+ if (ImportDecl *ImportD = dyn_cast<ImportDecl>(D)) {
+ if (Module *Mod = ImportD->getImportedModule()) {
+ std::string ModName = Mod->getFullModuleName();
+ Hash = llvm::HashString(ModName, Hash);
+ }
+ return;
+ }
+}
+
+class TopLevelDeclTrackerConsumer : public ASTConsumer {
+ ASTUnit &Unit;
+ unsigned &Hash;
+
+public:
+ TopLevelDeclTrackerConsumer(ASTUnit &_Unit, unsigned &Hash)
+ : Unit(_Unit), Hash(Hash) {
+ Hash = 0;
+ }
+
+ void handleTopLevelDecl(Decl *D) {
+ if (!D)
+ return;
+
+ // FIXME: Currently ObjC method declarations are incorrectly being
+ // reported as top-level declarations, even though their DeclContext
+ // is the containing ObjC @interface/@implementation. This is a
+ // fundamental problem in the parser right now.
+ if (isa<ObjCMethodDecl>(D))
+ return;
+
+ AddTopLevelDeclarationToHash(D, Hash);
+ Unit.addTopLevelDecl(D);
+
+ handleFileLevelDecl(D);
+ }
+
+ void handleFileLevelDecl(Decl *D) {
+ Unit.addFileLevelDecl(D);
+ if (NamespaceDecl *NSD = dyn_cast<NamespaceDecl>(D)) {
+ for (auto *I : NSD->decls())
+ handleFileLevelDecl(I);
+ }
+ }
+
+ bool HandleTopLevelDecl(DeclGroupRef D) override {
+ for (Decl *TopLevelDecl : D)
+ handleTopLevelDecl(TopLevelDecl);
+ return true;
+ }
+
+ // We're not interested in "interesting" decls.
+ void HandleInterestingDecl(DeclGroupRef) override {}
+
+ void HandleTopLevelDeclInObjCContainer(DeclGroupRef D) override {
+ for (Decl *TopLevelDecl : D)
+ handleTopLevelDecl(TopLevelDecl);
+ }
+
+ ASTMutationListener *GetASTMutationListener() override {
+ return Unit.getASTMutationListener();
+ }
+
+ ASTDeserializationListener *GetASTDeserializationListener() override {
+ return Unit.getDeserializationListener();
+ }
+};
+
+class TopLevelDeclTrackerAction : public ASTFrontendAction {
+public:
+ ASTUnit &Unit;
+
+ std::unique_ptr<ASTConsumer> CreateASTConsumer(CompilerInstance &CI,
+ StringRef InFile) override {
+ CI.getPreprocessor().addPPCallbacks(
+ llvm::make_unique<MacroDefinitionTrackerPPCallbacks>(
+ Unit.getCurrentTopLevelHashValue()));
+ return llvm::make_unique<TopLevelDeclTrackerConsumer>(
+ Unit, Unit.getCurrentTopLevelHashValue());
+ }
+
+public:
+ TopLevelDeclTrackerAction(ASTUnit &_Unit) : Unit(_Unit) {}
+
+ bool hasCodeCompletionSupport() const override { return false; }
+ TranslationUnitKind getTranslationUnitKind() override {
+ return Unit.getTranslationUnitKind();
+ }
+};
+
+class PrecompilePreambleAction : public ASTFrontendAction {
+ ASTUnit &Unit;
+ bool HasEmittedPreamblePCH;
+
+public:
+ explicit PrecompilePreambleAction(ASTUnit &Unit)
+ : Unit(Unit), HasEmittedPreamblePCH(false) {}
+
+ std::unique_ptr<ASTConsumer> CreateASTConsumer(CompilerInstance &CI,
+ StringRef InFile) override;
+ bool hasEmittedPreamblePCH() const { return HasEmittedPreamblePCH; }
+ void setHasEmittedPreamblePCH() { HasEmittedPreamblePCH = true; }
+ bool shouldEraseOutputFiles() override { return !hasEmittedPreamblePCH(); }
+
+ bool hasCodeCompletionSupport() const override { return false; }
+ bool hasASTFileSupport() const override { return false; }
+ TranslationUnitKind getTranslationUnitKind() override { return TU_Prefix; }
+};
+
+class PrecompilePreambleConsumer : public PCHGenerator {
+ ASTUnit &Unit;
+ unsigned &Hash;
+ std::vector<Decl *> TopLevelDecls;
+ PrecompilePreambleAction *Action;
+
+public:
+ PrecompilePreambleConsumer(ASTUnit &Unit, PrecompilePreambleAction *Action,
+ const Preprocessor &PP, StringRef isysroot,
+ raw_ostream *Out)
+ : PCHGenerator(PP, "", nullptr, isysroot, Out, /*AllowASTWithErrors=*/true),
+ Unit(Unit), Hash(Unit.getCurrentTopLevelHashValue()), Action(Action) {
+ Hash = 0;
+ }
+
+ bool HandleTopLevelDecl(DeclGroupRef DG) override {
+ for (Decl *D : DG) {
+ // FIXME: Currently ObjC method declarations are incorrectly being
+ // reported as top-level declarations, even though their DeclContext
+ // is the containing ObjC @interface/@implementation. This is a
+ // fundamental problem in the parser right now.
+ if (isa<ObjCMethodDecl>(D))
+ continue;
+ AddTopLevelDeclarationToHash(D, Hash);
+ TopLevelDecls.push_back(D);
+ }
+ return true;
+ }
+
+ void HandleTranslationUnit(ASTContext &Ctx) override {
+ PCHGenerator::HandleTranslationUnit(Ctx);
+ if (hasEmittedPCH()) {
+ // Translate the top-level declarations we captured during
+ // parsing into declaration IDs in the precompiled
+ // preamble. This will allow us to deserialize those top-level
+ // declarations when requested.
+ for (Decl *D : TopLevelDecls) {
+ // Invalid top-level decls may not have been serialized.
+ if (D->isInvalidDecl())
+ continue;
+ Unit.addTopLevelDeclFromPreamble(getWriter().getDeclID(D));
+ }
+
+ Action->setHasEmittedPreamblePCH();
+ }
+ }
+};
+
+}
+
+std::unique_ptr<ASTConsumer>
+PrecompilePreambleAction::CreateASTConsumer(CompilerInstance &CI,
+ StringRef InFile) {
+ std::string Sysroot;
+ std::string OutputFile;
+ raw_ostream *OS = GeneratePCHAction::ComputeASTConsumerArguments(
+ CI, InFile, Sysroot, OutputFile);
+ if (!OS)
+ return nullptr;
+
+ if (!CI.getFrontendOpts().RelocatablePCH)
+ Sysroot.clear();
+
+ CI.getPreprocessor().addPPCallbacks(
+ llvm::make_unique<MacroDefinitionTrackerPPCallbacks>(
+ Unit.getCurrentTopLevelHashValue()));
+ return llvm::make_unique<PrecompilePreambleConsumer>(
+ Unit, this, CI.getPreprocessor(), Sysroot, OS);
+}
+
+static bool isNonDriverDiag(const StoredDiagnostic &StoredDiag) {
+ return StoredDiag.getLocation().isValid();
+}
+
+static void
+checkAndRemoveNonDriverDiags(SmallVectorImpl<StoredDiagnostic> &StoredDiags) {
+ // Get rid of stored diagnostics except the ones from the driver which do not
+ // have a source location.
+ StoredDiags.erase(
+ std::remove_if(StoredDiags.begin(), StoredDiags.end(), isNonDriverDiag),
+ StoredDiags.end());
+}
+
+static void checkAndSanitizeDiags(SmallVectorImpl<StoredDiagnostic> &
+ StoredDiagnostics,
+ SourceManager &SM) {
+ // The stored diagnostic has the old source manager in it; update
+ // the locations to refer into the new source manager. Since we've
+ // been careful to make sure that the source manager's state
+ // before and after are identical, so that we can reuse the source
+ // location itself.
+ for (StoredDiagnostic &SD : StoredDiagnostics) {
+ if (SD.getLocation().isValid()) {
+ FullSourceLoc Loc(SD.getLocation(), SM);
+ SD.setLocation(Loc);
+ }
+ }
+}
+
+/// Parse the source file into a translation unit using the given compiler
+/// invocation, replacing the current translation unit.
+///
+/// \returns True if a failure occurred that causes the ASTUnit not to
+/// contain any translation-unit information, false otherwise.
+bool ASTUnit::Parse(std::unique_ptr<llvm::MemoryBuffer> OverrideMainBuffer) {
+ SavedMainFileBuffer.reset();
+
+ if (!Invocation)
+ return true;
+
+ // Create the compiler instance to use for building the AST.
+ std::unique_ptr<CompilerInstance> Clang(new CompilerInstance());
+
+ // Recover resources if we crash before exiting this method.
+ llvm::CrashRecoveryContextCleanupRegistrar<CompilerInstance>
+ CICleanup(Clang.get());
+
+ IntrusiveRefCntPtr<CompilerInvocation>
+ CCInvocation(new CompilerInvocation(*Invocation));
+
+ Clang->setInvocation(CCInvocation.get());
+ OriginalSourceFile = Clang->getFrontendOpts().Inputs[0].getFile();
+
+ // Set up diagnostics, capturing any diagnostics that would
+ // otherwise be dropped.
+ Clang->setDiagnostics(&getDiagnostics());
+
+ // Create the target instance.
+ Clang->setTarget(TargetInfo::CreateTargetInfo(
+ Clang->getDiagnostics(), Clang->getInvocation().TargetOpts));
+ if (!Clang->hasTarget())
+ return true;
+
+ // Inform the target of the language options.
+ //
+ // FIXME: We shouldn't need to do this, the target should be immutable once
+ // created. This complexity should be lifted elsewhere.
+ Clang->getTarget().adjust(Clang->getLangOpts());
+
+ assert(Clang->getFrontendOpts().Inputs.size() == 1 &&
+ "Invocation must have exactly one source file!");
+ assert(Clang->getFrontendOpts().Inputs[0].getKind() != IK_AST &&
+ "FIXME: AST inputs not yet supported here!");
+ assert(Clang->getFrontendOpts().Inputs[0].getKind() != IK_LLVM_IR &&
+ "IR inputs not support here!");
+
+ // Configure the various subsystems.
+ LangOpts = Clang->getInvocation().LangOpts;
+ FileSystemOpts = Clang->getFileSystemOpts();
+ IntrusiveRefCntPtr<vfs::FileSystem> VFS =
+ createVFSFromCompilerInvocation(Clang->getInvocation(), getDiagnostics());
+ if (!VFS)
+ return true;
+ FileMgr = new FileManager(FileSystemOpts, VFS);
+ SourceMgr = new SourceManager(getDiagnostics(), *FileMgr,
+ UserFilesAreVolatile);
+ TheSema.reset();
+ Ctx = nullptr;
+ PP = nullptr;
+ Reader = nullptr;
+
+ // Clear out old caches and data.
+ TopLevelDecls.clear();
+ clearFileLevelDecls();
+ CleanTemporaryFiles();
+
+ if (!OverrideMainBuffer) {
+ checkAndRemoveNonDriverDiags(StoredDiagnostics);
+ TopLevelDeclsInPreamble.clear();
+ }
+
+ // Create a file manager object to provide access to and cache the filesystem.
+ Clang->setFileManager(&getFileManager());
+
+ // Create the source manager.
+ Clang->setSourceManager(&getSourceManager());
+
+ // If the main file has been overridden due to the use of a preamble,
+ // make that override happen and introduce the preamble.
+ PreprocessorOptions &PreprocessorOpts = Clang->getPreprocessorOpts();
+ if (OverrideMainBuffer) {
+ PreprocessorOpts.addRemappedFile(OriginalSourceFile,
+ OverrideMainBuffer.get());
+ PreprocessorOpts.PrecompiledPreambleBytes.first = Preamble.size();
+ PreprocessorOpts.PrecompiledPreambleBytes.second
+ = PreambleEndsAtStartOfLine;
+ PreprocessorOpts.ImplicitPCHInclude = getPreambleFile(this);
+ PreprocessorOpts.DisablePCHValidation = true;
+
+ // The stored diagnostic has the old source manager in it; update
+ // the locations to refer into the new source manager. Since we've
+ // been careful to make sure that the source manager's state
+ // before and after are identical, so that we can reuse the source
+ // location itself.
+ checkAndSanitizeDiags(StoredDiagnostics, getSourceManager());
+
+ // Keep track of the override buffer;
+ SavedMainFileBuffer = std::move(OverrideMainBuffer);
+ }
+
+ std::unique_ptr<TopLevelDeclTrackerAction> Act(
+ new TopLevelDeclTrackerAction(*this));
+
+ // Recover resources if we crash before exiting this method.
+ llvm::CrashRecoveryContextCleanupRegistrar<TopLevelDeclTrackerAction>
+ ActCleanup(Act.get());
+
+ if (!Act->BeginSourceFile(*Clang.get(), Clang->getFrontendOpts().Inputs[0]))
+ goto error;
+
+ if (SavedMainFileBuffer) {
+ std::string ModName = getPreambleFile(this);
+ TranslateStoredDiagnostics(getFileManager(), getSourceManager(),
+ PreambleDiagnostics, StoredDiagnostics);
+ }
+
+ if (!Act->Execute())
+ goto error;
+
+ transferASTDataFromCompilerInstance(*Clang);
+
+ Act->EndSourceFile();
+
+ FailedParseDiagnostics.clear();
+
+ return false;
+
+error:
+ // Remove the overridden buffer we used for the preamble.
+ SavedMainFileBuffer = nullptr;
+
+ // Keep the ownership of the data in the ASTUnit because the client may
+ // want to see the diagnostics.
+ transferASTDataFromCompilerInstance(*Clang);
+ FailedParseDiagnostics.swap(StoredDiagnostics);
+ StoredDiagnostics.clear();
+ NumStoredDiagnosticsFromDriver = 0;
+ return true;
+}
+
+/// \brief Simple function to retrieve a path for a preamble precompiled header.
+static std::string GetPreamblePCHPath() {
+ // FIXME: This is a hack so that we can override the preamble file during
+ // crash-recovery testing, which is the only case where the preamble files
+ // are not necessarily cleaned up.
+ const char *TmpFile = ::getenv("CINDEXTEST_PREAMBLE_FILE");
+ if (TmpFile)
+ return TmpFile;
+
+ SmallString<128> Path;
+ llvm::sys::fs::createTemporaryFile("preamble", "pch", Path);
+
+ return Path.str();
+}
+
+/// \brief Compute the preamble for the main file, providing the source buffer
+/// that corresponds to the main file along with a pair (bytes, start-of-line)
+/// that describes the preamble.
+ASTUnit::ComputedPreamble
+ASTUnit::ComputePreamble(CompilerInvocation &Invocation, unsigned MaxLines) {
+ FrontendOptions &FrontendOpts = Invocation.getFrontendOpts();
+ PreprocessorOptions &PreprocessorOpts = Invocation.getPreprocessorOpts();
+
+ // Try to determine if the main file has been remapped, either from the
+ // command line (to another file) or directly through the compiler invocation
+ // (to a memory buffer).
+ llvm::MemoryBuffer *Buffer = nullptr;
+ std::unique_ptr<llvm::MemoryBuffer> BufferOwner;
+ std::string MainFilePath(FrontendOpts.Inputs[0].getFile());
+ llvm::sys::fs::UniqueID MainFileID;
+ if (!llvm::sys::fs::getUniqueID(MainFilePath, MainFileID)) {
+ // Check whether there is a file-file remapping of the main file
+ for (const auto &RF : PreprocessorOpts.RemappedFiles) {
+ std::string MPath(RF.first);
+ llvm::sys::fs::UniqueID MID;
+ if (!llvm::sys::fs::getUniqueID(MPath, MID)) {
+ if (MainFileID == MID) {
+ // We found a remapping. Try to load the resulting, remapped source.
+ BufferOwner = getBufferForFile(RF.second);
+ if (!BufferOwner)
+ return ComputedPreamble(nullptr, nullptr, 0, true);
+ }
+ }
+ }
+
+ // Check whether there is a file-buffer remapping. It supercedes the
+ // file-file remapping.
+ for (const auto &RB : PreprocessorOpts.RemappedFileBuffers) {
+ std::string MPath(RB.first);
+ llvm::sys::fs::UniqueID MID;
+ if (!llvm::sys::fs::getUniqueID(MPath, MID)) {
+ if (MainFileID == MID) {
+ // We found a remapping.
+ BufferOwner.reset();
+ Buffer = const_cast<llvm::MemoryBuffer *>(RB.second);
+ }
+ }
+ }
+ }
+
+ // If the main source file was not remapped, load it now.
+ if (!Buffer && !BufferOwner) {
+ BufferOwner = getBufferForFile(FrontendOpts.Inputs[0].getFile());
+ if (!BufferOwner)
+ return ComputedPreamble(nullptr, nullptr, 0, true);
+ }
+
+ if (!Buffer)
+ Buffer = BufferOwner.get();
+ auto Pre = Lexer::ComputePreamble(Buffer->getBuffer(),
+ *Invocation.getLangOpts(), MaxLines);
+ return ComputedPreamble(Buffer, std::move(BufferOwner), Pre.first,
+ Pre.second);
+}
+
+ASTUnit::PreambleFileHash
+ASTUnit::PreambleFileHash::createForFile(off_t Size, time_t ModTime) {
+ PreambleFileHash Result;
+ Result.Size = Size;
+ Result.ModTime = ModTime;
+ memset(Result.MD5, 0, sizeof(Result.MD5));
+ return Result;
+}
+
+ASTUnit::PreambleFileHash ASTUnit::PreambleFileHash::createForMemoryBuffer(
+ const llvm::MemoryBuffer *Buffer) {
+ PreambleFileHash Result;
+ Result.Size = Buffer->getBufferSize();
+ Result.ModTime = 0;
+
+ llvm::MD5 MD5Ctx;
+ MD5Ctx.update(Buffer->getBuffer().data());
+ MD5Ctx.final(Result.MD5);
+
+ return Result;
+}
+
+namespace clang {
+bool operator==(const ASTUnit::PreambleFileHash &LHS,
+ const ASTUnit::PreambleFileHash &RHS) {
+ return LHS.Size == RHS.Size && LHS.ModTime == RHS.ModTime &&
+ memcmp(LHS.MD5, RHS.MD5, sizeof(LHS.MD5)) == 0;
+}
+} // namespace clang
+
+static std::pair<unsigned, unsigned>
+makeStandaloneRange(CharSourceRange Range, const SourceManager &SM,
+ const LangOptions &LangOpts) {
+ CharSourceRange FileRange = Lexer::makeFileCharRange(Range, SM, LangOpts);
+ unsigned Offset = SM.getFileOffset(FileRange.getBegin());
+ unsigned EndOffset = SM.getFileOffset(FileRange.getEnd());
+ return std::make_pair(Offset, EndOffset);
+}
+
+static ASTUnit::StandaloneFixIt makeStandaloneFixIt(const SourceManager &SM,
+ const LangOptions &LangOpts,
+ const FixItHint &InFix) {
+ ASTUnit::StandaloneFixIt OutFix;
+ OutFix.RemoveRange = makeStandaloneRange(InFix.RemoveRange, SM, LangOpts);
+ OutFix.InsertFromRange = makeStandaloneRange(InFix.InsertFromRange, SM,
+ LangOpts);
+ OutFix.CodeToInsert = InFix.CodeToInsert;
+ OutFix.BeforePreviousInsertions = InFix.BeforePreviousInsertions;
+ return OutFix;
+}
+
+static ASTUnit::StandaloneDiagnostic
+makeStandaloneDiagnostic(const LangOptions &LangOpts,
+ const StoredDiagnostic &InDiag) {
+ ASTUnit::StandaloneDiagnostic OutDiag;
+ OutDiag.ID = InDiag.getID();
+ OutDiag.Level = InDiag.getLevel();
+ OutDiag.Message = InDiag.getMessage();
+ OutDiag.LocOffset = 0;
+ if (InDiag.getLocation().isInvalid())
+ return OutDiag;
+ const SourceManager &SM = InDiag.getLocation().getManager();
+ SourceLocation FileLoc = SM.getFileLoc(InDiag.getLocation());
+ OutDiag.Filename = SM.getFilename(FileLoc);
+ if (OutDiag.Filename.empty())
+ return OutDiag;
+ OutDiag.LocOffset = SM.getFileOffset(FileLoc);
+ for (const CharSourceRange &Range : InDiag.getRanges())
+ OutDiag.Ranges.push_back(makeStandaloneRange(Range, SM, LangOpts));
+ for (const FixItHint &FixIt : InDiag.getFixIts())
+ OutDiag.FixIts.push_back(makeStandaloneFixIt(SM, LangOpts, FixIt));
+
+ return OutDiag;
+}
+
+/// \brief Attempt to build or re-use a precompiled preamble when (re-)parsing
+/// the source file.
+///
+/// This routine will compute the preamble of the main source file. If a
+/// non-trivial preamble is found, it will precompile that preamble into a
+/// precompiled header so that the precompiled preamble can be used to reduce
+/// reparsing time. If a precompiled preamble has already been constructed,
+/// this routine will determine if it is still valid and, if so, avoid
+/// rebuilding the precompiled preamble.
+///
+/// \param AllowRebuild When true (the default), this routine is
+/// allowed to rebuild the precompiled preamble if it is found to be
+/// out-of-date.
+///
+/// \param MaxLines When non-zero, the maximum number of lines that
+/// can occur within the preamble.
+///
+/// \returns If the precompiled preamble can be used, returns a newly-allocated
+/// buffer that should be used in place of the main file when doing so.
+/// Otherwise, returns a NULL pointer.
+std::unique_ptr<llvm::MemoryBuffer>
+ASTUnit::getMainBufferWithPrecompiledPreamble(
+ const CompilerInvocation &PreambleInvocationIn, bool AllowRebuild,
+ unsigned MaxLines) {
+
+ IntrusiveRefCntPtr<CompilerInvocation>
+ PreambleInvocation(new CompilerInvocation(PreambleInvocationIn));
+ FrontendOptions &FrontendOpts = PreambleInvocation->getFrontendOpts();
+ PreprocessorOptions &PreprocessorOpts
+ = PreambleInvocation->getPreprocessorOpts();
+
+ ComputedPreamble NewPreamble = ComputePreamble(*PreambleInvocation, MaxLines);
+
+ if (!NewPreamble.Size) {
+ // We couldn't find a preamble in the main source. Clear out the current
+ // preamble, if we have one. It's obviously no good any more.
+ Preamble.clear();
+ erasePreambleFile(this);
+
+ // The next time we actually see a preamble, precompile it.
+ PreambleRebuildCounter = 1;
+ return nullptr;
+ }
+
+ if (!Preamble.empty()) {
+ // We've previously computed a preamble. Check whether we have the same
+ // preamble now that we did before, and that there's enough space in
+ // the main-file buffer within the precompiled preamble to fit the
+ // new main file.
+ if (Preamble.size() == NewPreamble.Size &&
+ PreambleEndsAtStartOfLine == NewPreamble.PreambleEndsAtStartOfLine &&
+ memcmp(Preamble.getBufferStart(), NewPreamble.Buffer->getBufferStart(),
+ NewPreamble.Size) == 0) {
+ // The preamble has not changed. We may be able to re-use the precompiled
+ // preamble.
+
+ // Check that none of the files used by the preamble have changed.
+ bool AnyFileChanged = false;
+
+ // First, make a record of those files that have been overridden via
+ // remapping or unsaved_files.
+ llvm::StringMap<PreambleFileHash> OverriddenFiles;
+ for (const auto &R : PreprocessorOpts.RemappedFiles) {
+ if (AnyFileChanged)
+ break;
+
+ vfs::Status Status;
+ if (FileMgr->getNoncachedStatValue(R.second, Status)) {
+ // If we can't stat the file we're remapping to, assume that something
+ // horrible happened.
+ AnyFileChanged = true;
+ break;
+ }
+
+ OverriddenFiles[R.first] = PreambleFileHash::createForFile(
+ Status.getSize(), Status.getLastModificationTime().toEpochTime());
+ }
+
+ for (const auto &RB : PreprocessorOpts.RemappedFileBuffers) {
+ if (AnyFileChanged)
+ break;
+ OverriddenFiles[RB.first] =
+ PreambleFileHash::createForMemoryBuffer(RB.second);
+ }
+
+ // Check whether anything has changed.
+ for (llvm::StringMap<PreambleFileHash>::iterator
+ F = FilesInPreamble.begin(), FEnd = FilesInPreamble.end();
+ !AnyFileChanged && F != FEnd;
+ ++F) {
+ llvm::StringMap<PreambleFileHash>::iterator Overridden
+ = OverriddenFiles.find(F->first());
+ if (Overridden != OverriddenFiles.end()) {
+ // This file was remapped; check whether the newly-mapped file
+ // matches up with the previous mapping.
+ if (Overridden->second != F->second)
+ AnyFileChanged = true;
+ continue;
+ }
+
+ // The file was not remapped; check whether it has changed on disk.
+ vfs::Status Status;
+ if (FileMgr->getNoncachedStatValue(F->first(), Status)) {
+ // If we can't stat the file, assume that something horrible happened.
+ AnyFileChanged = true;
+ } else if (Status.getSize() != uint64_t(F->second.Size) ||
+ Status.getLastModificationTime().toEpochTime() !=
+ uint64_t(F->second.ModTime))
+ AnyFileChanged = true;
+ }
+
+ if (!AnyFileChanged) {
+ // Okay! We can re-use the precompiled preamble.
+
+ // Set the state of the diagnostic object to mimic its state
+ // after parsing the preamble.
+ getDiagnostics().Reset();
+ ProcessWarningOptions(getDiagnostics(),
+ PreambleInvocation->getDiagnosticOpts());
+ getDiagnostics().setNumWarnings(NumWarningsInPreamble);
+
+ return llvm::MemoryBuffer::getMemBufferCopy(
+ NewPreamble.Buffer->getBuffer(), FrontendOpts.Inputs[0].getFile());
+ }
+ }
+
+ // If we aren't allowed to rebuild the precompiled preamble, just
+ // return now.
+ if (!AllowRebuild)
+ return nullptr;
+
+ // We can't reuse the previously-computed preamble. Build a new one.
+ Preamble.clear();
+ PreambleDiagnostics.clear();
+ erasePreambleFile(this);
+ PreambleRebuildCounter = 1;
+ } else if (!AllowRebuild) {
+ // We aren't allowed to rebuild the precompiled preamble; just
+ // return now.
+ return nullptr;
+ }
+
+ // If the preamble rebuild counter > 1, it's because we previously
+ // failed to build a preamble and we're not yet ready to try
+ // again. Decrement the counter and return a failure.
+ if (PreambleRebuildCounter > 1) {
+ --PreambleRebuildCounter;
+ return nullptr;
+ }
+
+ // Create a temporary file for the precompiled preamble. In rare
+ // circumstances, this can fail.
+ std::string PreamblePCHPath = GetPreamblePCHPath();
+ if (PreamblePCHPath.empty()) {
+ // Try again next time.
+ PreambleRebuildCounter = 1;
+ return nullptr;
+ }
+
+ // We did not previously compute a preamble, or it can't be reused anyway.
+ SimpleTimer PreambleTimer(WantTiming);
+ PreambleTimer.setOutput("Precompiling preamble");
+
+ // Save the preamble text for later; we'll need to compare against it for
+ // subsequent reparses.
+ StringRef MainFilename = FrontendOpts.Inputs[0].getFile();
+ Preamble.assign(FileMgr->getFile(MainFilename),
+ NewPreamble.Buffer->getBufferStart(),
+ NewPreamble.Buffer->getBufferStart() + NewPreamble.Size);
+ PreambleEndsAtStartOfLine = NewPreamble.PreambleEndsAtStartOfLine;
+
+ PreambleBuffer = llvm::MemoryBuffer::getMemBufferCopy(
+ NewPreamble.Buffer->getBuffer().slice(0, Preamble.size()), MainFilename);
+
+ // Remap the main source file to the preamble buffer.
+ StringRef MainFilePath = FrontendOpts.Inputs[0].getFile();
+ PreprocessorOpts.addRemappedFile(MainFilePath, PreambleBuffer.get());
+
+ // Tell the compiler invocation to generate a temporary precompiled header.
+ FrontendOpts.ProgramAction = frontend::GeneratePCH;
+ // FIXME: Generate the precompiled header into memory?
+ FrontendOpts.OutputFile = PreamblePCHPath;
+ PreprocessorOpts.PrecompiledPreambleBytes.first = 0;
+ PreprocessorOpts.PrecompiledPreambleBytes.second = false;
+
+ // Create the compiler instance to use for building the precompiled preamble.
+ std::unique_ptr<CompilerInstance> Clang(new CompilerInstance());
+
+ // Recover resources if we crash before exiting this method.
+ llvm::CrashRecoveryContextCleanupRegistrar<CompilerInstance>
+ CICleanup(Clang.get());
+
+ Clang->setInvocation(&*PreambleInvocation);
+ OriginalSourceFile = Clang->getFrontendOpts().Inputs[0].getFile();
+
+ // Set up diagnostics, capturing all of the diagnostics produced.
+ Clang->setDiagnostics(&getDiagnostics());
+
+ // Create the target instance.
+ Clang->setTarget(TargetInfo::CreateTargetInfo(
+ Clang->getDiagnostics(), Clang->getInvocation().TargetOpts));
+ if (!Clang->hasTarget()) {
+ llvm::sys::fs::remove(FrontendOpts.OutputFile);
+ Preamble.clear();
+ PreambleRebuildCounter = DefaultPreambleRebuildInterval;
+ PreprocessorOpts.RemappedFileBuffers.pop_back();
+ return nullptr;
+ }
+
+ // Inform the target of the language options.
+ //
+ // FIXME: We shouldn't need to do this, the target should be immutable once
+ // created. This complexity should be lifted elsewhere.
+ Clang->getTarget().adjust(Clang->getLangOpts());
+
+ assert(Clang->getFrontendOpts().Inputs.size() == 1 &&
+ "Invocation must have exactly one source file!");
+ assert(Clang->getFrontendOpts().Inputs[0].getKind() != IK_AST &&
+ "FIXME: AST inputs not yet supported here!");
+ assert(Clang->getFrontendOpts().Inputs[0].getKind() != IK_LLVM_IR &&
+ "IR inputs not support here!");
+
+ // Clear out old caches and data.
+ getDiagnostics().Reset();
+ ProcessWarningOptions(getDiagnostics(), Clang->getDiagnosticOpts());
+ checkAndRemoveNonDriverDiags(StoredDiagnostics);
+ TopLevelDecls.clear();
+ TopLevelDeclsInPreamble.clear();
+ PreambleDiagnostics.clear();
+
+ IntrusiveRefCntPtr<vfs::FileSystem> VFS =
+ createVFSFromCompilerInvocation(Clang->getInvocation(), getDiagnostics());
+ if (!VFS)
+ return nullptr;
+
+ // Create a file manager object to provide access to and cache the filesystem.
+ Clang->setFileManager(new FileManager(Clang->getFileSystemOpts(), VFS));
+
+ // Create the source manager.
+ Clang->setSourceManager(new SourceManager(getDiagnostics(),
+ Clang->getFileManager()));
+
+ auto PreambleDepCollector = std::make_shared<DependencyCollector>();
+ Clang->addDependencyCollector(PreambleDepCollector);
+
+ std::unique_ptr<PrecompilePreambleAction> Act;
+ Act.reset(new PrecompilePreambleAction(*this));
+ if (!Act->BeginSourceFile(*Clang.get(), Clang->getFrontendOpts().Inputs[0])) {
+ llvm::sys::fs::remove(FrontendOpts.OutputFile);
+ Preamble.clear();
+ PreambleRebuildCounter = DefaultPreambleRebuildInterval;
+ PreprocessorOpts.RemappedFileBuffers.pop_back();
+ return nullptr;
+ }
+
+ Act->Execute();
+
+ // Transfer any diagnostics generated when parsing the preamble into the set
+ // of preamble diagnostics.
+ for (stored_diag_iterator I = stored_diag_afterDriver_begin(),
+ E = stored_diag_end();
+ I != E; ++I)
+ PreambleDiagnostics.push_back(
+ makeStandaloneDiagnostic(Clang->getLangOpts(), *I));
+
+ Act->EndSourceFile();
+
+ checkAndRemoveNonDriverDiags(StoredDiagnostics);
+
+ if (!Act->hasEmittedPreamblePCH()) {
+ // The preamble PCH failed (e.g. there was a module loading fatal error),
+ // so no precompiled header was generated. Forget that we even tried.
+ // FIXME: Should we leave a note for ourselves to try again?
+ llvm::sys::fs::remove(FrontendOpts.OutputFile);
+ Preamble.clear();
+ TopLevelDeclsInPreamble.clear();
+ PreambleRebuildCounter = DefaultPreambleRebuildInterval;
+ PreprocessorOpts.RemappedFileBuffers.pop_back();
+ return nullptr;
+ }
+
+ // Keep track of the preamble we precompiled.
+ setPreambleFile(this, FrontendOpts.OutputFile);
+ NumWarningsInPreamble = getDiagnostics().getNumWarnings();
+
+ // Keep track of all of the files that the source manager knows about,
+ // so we can verify whether they have changed or not.
+ FilesInPreamble.clear();
+ SourceManager &SourceMgr = Clang->getSourceManager();
+ for (auto &Filename : PreambleDepCollector->getDependencies()) {
+ const FileEntry *File = Clang->getFileManager().getFile(Filename);
+ if (!File || File == SourceMgr.getFileEntryForID(SourceMgr.getMainFileID()))
+ continue;
+ if (time_t ModTime = File->getModificationTime()) {
+ FilesInPreamble[File->getName()] = PreambleFileHash::createForFile(
+ File->getSize(), ModTime);
+ } else {
+ llvm::MemoryBuffer *Buffer = SourceMgr.getMemoryBufferForFile(File);
+ FilesInPreamble[File->getName()] =
+ PreambleFileHash::createForMemoryBuffer(Buffer);
+ }
+ }
+
+ PreambleRebuildCounter = 1;
+ PreprocessorOpts.RemappedFileBuffers.pop_back();
+
+ // If the hash of top-level entities differs from the hash of the top-level
+ // entities the last time we rebuilt the preamble, clear out the completion
+ // cache.
+ if (CurrentTopLevelHashValue != PreambleTopLevelHashValue) {
+ CompletionCacheTopLevelHashValue = 0;
+ PreambleTopLevelHashValue = CurrentTopLevelHashValue;
+ }
+
+ return llvm::MemoryBuffer::getMemBufferCopy(NewPreamble.Buffer->getBuffer(),
+ MainFilename);
+}
+
+void ASTUnit::RealizeTopLevelDeclsFromPreamble() {
+ std::vector<Decl *> Resolved;
+ Resolved.reserve(TopLevelDeclsInPreamble.size());
+ ExternalASTSource &Source = *getASTContext().getExternalSource();
+ for (serialization::DeclID TopLevelDecl : TopLevelDeclsInPreamble) {
+ // Resolve the declaration ID to an actual declaration, possibly
+ // deserializing the declaration in the process.
+ if (Decl *D = Source.GetExternalDecl(TopLevelDecl))
+ Resolved.push_back(D);
+ }
+ TopLevelDeclsInPreamble.clear();
+ TopLevelDecls.insert(TopLevelDecls.begin(), Resolved.begin(), Resolved.end());
+}
+
+void ASTUnit::transferASTDataFromCompilerInstance(CompilerInstance &CI) {
+ // Steal the created target, context, and preprocessor if they have been
+ // created.
+ assert(CI.hasInvocation() && "missing invocation");
+ LangOpts = CI.getInvocation().LangOpts;
+ TheSema = CI.takeSema();
+ Consumer = CI.takeASTConsumer();
+ if (CI.hasASTContext())
+ Ctx = &CI.getASTContext();
+ if (CI.hasPreprocessor())
+ PP = &CI.getPreprocessor();
+ CI.setSourceManager(nullptr);
+ CI.setFileManager(nullptr);
+ if (CI.hasTarget())
+ Target = &CI.getTarget();
+ Reader = CI.getModuleManager();
+ HadModuleLoaderFatalFailure = CI.hadModuleLoaderFatalFailure();
+}
+
+StringRef ASTUnit::getMainFileName() const {
+ if (Invocation && !Invocation->getFrontendOpts().Inputs.empty()) {
+ const FrontendInputFile &Input = Invocation->getFrontendOpts().Inputs[0];
+ if (Input.isFile())
+ return Input.getFile();
+ else
+ return Input.getBuffer()->getBufferIdentifier();
+ }
+
+ if (SourceMgr) {
+ if (const FileEntry *
+ FE = SourceMgr->getFileEntryForID(SourceMgr->getMainFileID()))
+ return FE->getName();
+ }
+
+ return StringRef();
+}
+
+StringRef ASTUnit::getASTFileName() const {
+ if (!isMainFileAST())
+ return StringRef();
+
+ serialization::ModuleFile &
+ Mod = Reader->getModuleManager().getPrimaryModule();
+ return Mod.FileName;
+}
+
+ASTUnit *ASTUnit::create(CompilerInvocation *CI,
+ IntrusiveRefCntPtr<DiagnosticsEngine> Diags,
+ bool CaptureDiagnostics,
+ bool UserFilesAreVolatile) {
+ std::unique_ptr<ASTUnit> AST;
+ AST.reset(new ASTUnit(false));
+ ConfigureDiags(Diags, *AST, CaptureDiagnostics);
+ AST->Diagnostics = Diags;
+ AST->Invocation = CI;
+ AST->FileSystemOpts = CI->getFileSystemOpts();
+ IntrusiveRefCntPtr<vfs::FileSystem> VFS =
+ createVFSFromCompilerInvocation(*CI, *Diags);
+ if (!VFS)
+ return nullptr;
+ AST->FileMgr = new FileManager(AST->FileSystemOpts, VFS);
+ AST->UserFilesAreVolatile = UserFilesAreVolatile;
+ AST->SourceMgr = new SourceManager(AST->getDiagnostics(), *AST->FileMgr,
+ UserFilesAreVolatile);
+
+ return AST.release();
+}
+
+ASTUnit *ASTUnit::LoadFromCompilerInvocationAction(
+ CompilerInvocation *CI, IntrusiveRefCntPtr<DiagnosticsEngine> Diags,
+ ASTFrontendAction *Action, ASTUnit *Unit, bool Persistent,
+ StringRef ResourceFilesPath, bool OnlyLocalDecls, bool CaptureDiagnostics,
+ bool PrecompilePreamble, bool CacheCodeCompletionResults,
+ bool IncludeBriefCommentsInCodeCompletion, bool UserFilesAreVolatile,
+ std::unique_ptr<ASTUnit> *ErrAST) {
+ assert(CI && "A CompilerInvocation is required");
+
+ std::unique_ptr<ASTUnit> OwnAST;
+ ASTUnit *AST = Unit;
+ if (!AST) {
+ // Create the AST unit.
+ OwnAST.reset(create(CI, Diags, CaptureDiagnostics, UserFilesAreVolatile));
+ AST = OwnAST.get();
+ if (!AST)
+ return nullptr;
+ }
+
+ if (!ResourceFilesPath.empty()) {
+ // Override the resources path.
+ CI->getHeaderSearchOpts().ResourceDir = ResourceFilesPath;
+ }
+ AST->OnlyLocalDecls = OnlyLocalDecls;
+ AST->CaptureDiagnostics = CaptureDiagnostics;
+ if (PrecompilePreamble)
+ AST->PreambleRebuildCounter = 2;
+ AST->TUKind = Action ? Action->getTranslationUnitKind() : TU_Complete;
+ AST->ShouldCacheCodeCompletionResults = CacheCodeCompletionResults;
+ AST->IncludeBriefCommentsInCodeCompletion
+ = IncludeBriefCommentsInCodeCompletion;
+
+ // Recover resources if we crash before exiting this method.
+ llvm::CrashRecoveryContextCleanupRegistrar<ASTUnit>
+ ASTUnitCleanup(OwnAST.get());
+ llvm::CrashRecoveryContextCleanupRegistrar<DiagnosticsEngine,
+ llvm::CrashRecoveryContextReleaseRefCleanup<DiagnosticsEngine> >
+ DiagCleanup(Diags.get());
+
+ // We'll manage file buffers ourselves.
+ CI->getPreprocessorOpts().RetainRemappedFileBuffers = true;
+ CI->getFrontendOpts().DisableFree = false;
+ ProcessWarningOptions(AST->getDiagnostics(), CI->getDiagnosticOpts());
+
+ // Create the compiler instance to use for building the AST.
+ std::unique_ptr<CompilerInstance> Clang(new CompilerInstance());
+
+ // Recover resources if we crash before exiting this method.
+ llvm::CrashRecoveryContextCleanupRegistrar<CompilerInstance>
+ CICleanup(Clang.get());
+
+ Clang->setInvocation(CI);
+ AST->OriginalSourceFile = Clang->getFrontendOpts().Inputs[0].getFile();
+
+ // Set up diagnostics, capturing any diagnostics that would
+ // otherwise be dropped.
+ Clang->setDiagnostics(&AST->getDiagnostics());
+
+ // Create the target instance.
+ Clang->setTarget(TargetInfo::CreateTargetInfo(
+ Clang->getDiagnostics(), Clang->getInvocation().TargetOpts));
+ if (!Clang->hasTarget())
+ return nullptr;
+
+ // Inform the target of the language options.
+ //
+ // FIXME: We shouldn't need to do this, the target should be immutable once
+ // created. This complexity should be lifted elsewhere.
+ Clang->getTarget().adjust(Clang->getLangOpts());
+
+ assert(Clang->getFrontendOpts().Inputs.size() == 1 &&
+ "Invocation must have exactly one source file!");
+ assert(Clang->getFrontendOpts().Inputs[0].getKind() != IK_AST &&
+ "FIXME: AST inputs not yet supported here!");
+ assert(Clang->getFrontendOpts().Inputs[0].getKind() != IK_LLVM_IR &&
+ "IR inputs not supported here!");
+
+ // Configure the various subsystems.
+ AST->TheSema.reset();
+ AST->Ctx = nullptr;
+ AST->PP = nullptr;
+ AST->Reader = nullptr;
+
+ // Create a file manager object to provide access to and cache the filesystem.
+ Clang->setFileManager(&AST->getFileManager());
+
+ // Create the source manager.
+ Clang->setSourceManager(&AST->getSourceManager());
+
+ ASTFrontendAction *Act = Action;
+
+ std::unique_ptr<TopLevelDeclTrackerAction> TrackerAct;
+ if (!Act) {
+ TrackerAct.reset(new TopLevelDeclTrackerAction(*AST));
+ Act = TrackerAct.get();
+ }
+
+ // Recover resources if we crash before exiting this method.
+ llvm::CrashRecoveryContextCleanupRegistrar<TopLevelDeclTrackerAction>
+ ActCleanup(TrackerAct.get());
+
+ if (!Act->BeginSourceFile(*Clang.get(), Clang->getFrontendOpts().Inputs[0])) {
+ AST->transferASTDataFromCompilerInstance(*Clang);
+ if (OwnAST && ErrAST)
+ ErrAST->swap(OwnAST);
+
+ return nullptr;
+ }
+
+ if (Persistent && !TrackerAct) {
+ Clang->getPreprocessor().addPPCallbacks(
+ llvm::make_unique<MacroDefinitionTrackerPPCallbacks>(
+ AST->getCurrentTopLevelHashValue()));
+ std::vector<std::unique_ptr<ASTConsumer>> Consumers;
+ if (Clang->hasASTConsumer())
+ Consumers.push_back(Clang->takeASTConsumer());
+ Consumers.push_back(llvm::make_unique<TopLevelDeclTrackerConsumer>(
+ *AST, AST->getCurrentTopLevelHashValue()));
+ Clang->setASTConsumer(
+ llvm::make_unique<MultiplexConsumer>(std::move(Consumers)));
+ }
+ if (!Act->Execute()) {
+ AST->transferASTDataFromCompilerInstance(*Clang);
+ if (OwnAST && ErrAST)
+ ErrAST->swap(OwnAST);
+
+ return nullptr;
+ }
+
+ // Steal the created target, context, and preprocessor.
+ AST->transferASTDataFromCompilerInstance(*Clang);
+
+ Act->EndSourceFile();
+
+ if (OwnAST)
+ return OwnAST.release();
+ else
+ return AST;
+}
+
+bool ASTUnit::LoadFromCompilerInvocation(bool PrecompilePreamble) {
+ if (!Invocation)
+ return true;
+
+ // We'll manage file buffers ourselves.
+ Invocation->getPreprocessorOpts().RetainRemappedFileBuffers = true;
+ Invocation->getFrontendOpts().DisableFree = false;
+ ProcessWarningOptions(getDiagnostics(), Invocation->getDiagnosticOpts());
+
+ std::unique_ptr<llvm::MemoryBuffer> OverrideMainBuffer;
+ if (PrecompilePreamble) {
+ PreambleRebuildCounter = 2;
+ OverrideMainBuffer = getMainBufferWithPrecompiledPreamble(*Invocation);
+ }
+
+ SimpleTimer ParsingTimer(WantTiming);
+ ParsingTimer.setOutput("Parsing " + getMainFileName());
+
+ // Recover resources if we crash before exiting this method.
+ llvm::CrashRecoveryContextCleanupRegistrar<llvm::MemoryBuffer>
+ MemBufferCleanup(OverrideMainBuffer.get());
+
+ return Parse(std::move(OverrideMainBuffer));
+}
+
+std::unique_ptr<ASTUnit> ASTUnit::LoadFromCompilerInvocation(
+ CompilerInvocation *CI, IntrusiveRefCntPtr<DiagnosticsEngine> Diags,
+ bool OnlyLocalDecls, bool CaptureDiagnostics, bool PrecompilePreamble,
+ TranslationUnitKind TUKind, bool CacheCodeCompletionResults,
+ bool IncludeBriefCommentsInCodeCompletion, bool UserFilesAreVolatile) {
+ // Create the AST unit.
+ std::unique_ptr<ASTUnit> AST(new ASTUnit(false));
+ ConfigureDiags(Diags, *AST, CaptureDiagnostics);
+ AST->Diagnostics = Diags;
+ AST->OnlyLocalDecls = OnlyLocalDecls;
+ AST->CaptureDiagnostics = CaptureDiagnostics;
+ AST->TUKind = TUKind;
+ AST->ShouldCacheCodeCompletionResults = CacheCodeCompletionResults;
+ AST->IncludeBriefCommentsInCodeCompletion
+ = IncludeBriefCommentsInCodeCompletion;
+ AST->Invocation = CI;
+ AST->FileSystemOpts = CI->getFileSystemOpts();
+ IntrusiveRefCntPtr<vfs::FileSystem> VFS =
+ createVFSFromCompilerInvocation(*CI, *Diags);
+ if (!VFS)
+ return nullptr;
+ AST->FileMgr = new FileManager(AST->FileSystemOpts, VFS);
+ AST->UserFilesAreVolatile = UserFilesAreVolatile;
+
+ // Recover resources if we crash before exiting this method.
+ llvm::CrashRecoveryContextCleanupRegistrar<ASTUnit>
+ ASTUnitCleanup(AST.get());
+ llvm::CrashRecoveryContextCleanupRegistrar<DiagnosticsEngine,
+ llvm::CrashRecoveryContextReleaseRefCleanup<DiagnosticsEngine> >
+ DiagCleanup(Diags.get());
+
+ if (AST->LoadFromCompilerInvocation(PrecompilePreamble))
+ return nullptr;
+ return AST;
+}
+
+ASTUnit *ASTUnit::LoadFromCommandLine(
+ const char **ArgBegin, const char **ArgEnd,
+ IntrusiveRefCntPtr<DiagnosticsEngine> Diags, StringRef ResourceFilesPath,
+ bool OnlyLocalDecls, bool CaptureDiagnostics,
+ ArrayRef<RemappedFile> RemappedFiles, bool RemappedFilesKeepOriginalName,
+ bool PrecompilePreamble, TranslationUnitKind TUKind,
+ bool CacheCodeCompletionResults, bool IncludeBriefCommentsInCodeCompletion,
+ bool AllowPCHWithCompilerErrors, bool SkipFunctionBodies,
+ bool UserFilesAreVolatile, bool ForSerialization,
+ std::unique_ptr<ASTUnit> *ErrAST) {
+ assert(Diags.get() && "no DiagnosticsEngine was provided");
+
+ SmallVector<StoredDiagnostic, 4> StoredDiagnostics;
+
+ IntrusiveRefCntPtr<CompilerInvocation> CI;
+
+ {
+
+ CaptureDroppedDiagnostics Capture(CaptureDiagnostics, *Diags,
+ StoredDiagnostics);
+
+ CI = clang::createInvocationFromCommandLine(
+ llvm::makeArrayRef(ArgBegin, ArgEnd),
+ Diags);
+ if (!CI)
+ return nullptr;
+ }
+
+ // Override any files that need remapping
+ for (const auto &RemappedFile : RemappedFiles) {
+ CI->getPreprocessorOpts().addRemappedFile(RemappedFile.first,
+ RemappedFile.second);
+ }
+ PreprocessorOptions &PPOpts = CI->getPreprocessorOpts();
+ PPOpts.RemappedFilesKeepOriginalName = RemappedFilesKeepOriginalName;
+ PPOpts.AllowPCHWithCompilerErrors = AllowPCHWithCompilerErrors;
+
+ // Override the resources path.
+ CI->getHeaderSearchOpts().ResourceDir = ResourceFilesPath;
+
+ CI->getFrontendOpts().SkipFunctionBodies = SkipFunctionBodies;
+
+ // Create the AST unit.
+ std::unique_ptr<ASTUnit> AST;
+ AST.reset(new ASTUnit(false));
+ ConfigureDiags(Diags, *AST, CaptureDiagnostics);
+ AST->Diagnostics = Diags;
+ AST->FileSystemOpts = CI->getFileSystemOpts();
+ IntrusiveRefCntPtr<vfs::FileSystem> VFS =
+ createVFSFromCompilerInvocation(*CI, *Diags);
+ if (!VFS)
+ return nullptr;
+ AST->FileMgr = new FileManager(AST->FileSystemOpts, VFS);
+ AST->OnlyLocalDecls = OnlyLocalDecls;
+ AST->CaptureDiagnostics = CaptureDiagnostics;
+ AST->TUKind = TUKind;
+ AST->ShouldCacheCodeCompletionResults = CacheCodeCompletionResults;
+ AST->IncludeBriefCommentsInCodeCompletion
+ = IncludeBriefCommentsInCodeCompletion;
+ AST->UserFilesAreVolatile = UserFilesAreVolatile;
+ AST->NumStoredDiagnosticsFromDriver = StoredDiagnostics.size();
+ AST->StoredDiagnostics.swap(StoredDiagnostics);
+ AST->Invocation = CI;
+ if (ForSerialization)
+ AST->WriterData.reset(new ASTWriterData());
+ // Zero out now to ease cleanup during crash recovery.
+ CI = nullptr;
+ Diags = nullptr;
+
+ // Recover resources if we crash before exiting this method.
+ llvm::CrashRecoveryContextCleanupRegistrar<ASTUnit>
+ ASTUnitCleanup(AST.get());
+
+ if (AST->LoadFromCompilerInvocation(PrecompilePreamble)) {
+ // Some error occurred, if caller wants to examine diagnostics, pass it the
+ // ASTUnit.
+ if (ErrAST) {
+ AST->StoredDiagnostics.swap(AST->FailedParseDiagnostics);
+ ErrAST->swap(AST);
+ }
+ return nullptr;
+ }
+
+ return AST.release();
+}
+
+bool ASTUnit::Reparse(ArrayRef<RemappedFile> RemappedFiles) {
+ if (!Invocation)
+ return true;
+
+ clearFileLevelDecls();
+
+ SimpleTimer ParsingTimer(WantTiming);
+ ParsingTimer.setOutput("Reparsing " + getMainFileName());
+
+ // Remap files.
+ PreprocessorOptions &PPOpts = Invocation->getPreprocessorOpts();
+ for (const auto &RB : PPOpts.RemappedFileBuffers)
+ delete RB.second;
+
+ Invocation->getPreprocessorOpts().clearRemappedFiles();
+ for (const auto &RemappedFile : RemappedFiles) {
+ Invocation->getPreprocessorOpts().addRemappedFile(RemappedFile.first,
+ RemappedFile.second);
+ }
+
+ // If we have a preamble file lying around, or if we might try to
+ // build a precompiled preamble, do so now.
+ std::unique_ptr<llvm::MemoryBuffer> OverrideMainBuffer;
+ if (!getPreambleFile(this).empty() || PreambleRebuildCounter > 0)
+ OverrideMainBuffer = getMainBufferWithPrecompiledPreamble(*Invocation);
+
+ // Clear out the diagnostics state.
+ getDiagnostics().Reset();
+ ProcessWarningOptions(getDiagnostics(), Invocation->getDiagnosticOpts());
+ if (OverrideMainBuffer)
+ getDiagnostics().setNumWarnings(NumWarningsInPreamble);
+
+ // Parse the sources
+ bool Result = Parse(std::move(OverrideMainBuffer));
+
+ // If we're caching global code-completion results, and the top-level
+ // declarations have changed, clear out the code-completion cache.
+ if (!Result && ShouldCacheCodeCompletionResults &&
+ CurrentTopLevelHashValue != CompletionCacheTopLevelHashValue)
+ CacheCodeCompletionResults();
+
+ // We now need to clear out the completion info related to this translation
+ // unit; it'll be recreated if necessary.
+ CCTUInfo.reset();
+
+ return Result;
+}
+
+//----------------------------------------------------------------------------//
+// Code completion
+//----------------------------------------------------------------------------//
+
+namespace {
+ /// \brief Code completion consumer that combines the cached code-completion
+ /// results from an ASTUnit with the code-completion results provided to it,
+ /// then passes the result on to
+ class AugmentedCodeCompleteConsumer : public CodeCompleteConsumer {
+ uint64_t NormalContexts;
+ ASTUnit &AST;
+ CodeCompleteConsumer &Next;
+
+ public:
+ AugmentedCodeCompleteConsumer(ASTUnit &AST, CodeCompleteConsumer &Next,
+ const CodeCompleteOptions &CodeCompleteOpts)
+ : CodeCompleteConsumer(CodeCompleteOpts, Next.isOutputBinary()),
+ AST(AST), Next(Next)
+ {
+ // Compute the set of contexts in which we will look when we don't have
+ // any information about the specific context.
+ NormalContexts
+ = (1LL << CodeCompletionContext::CCC_TopLevel)
+ | (1LL << CodeCompletionContext::CCC_ObjCInterface)
+ | (1LL << CodeCompletionContext::CCC_ObjCImplementation)
+ | (1LL << CodeCompletionContext::CCC_ObjCIvarList)
+ | (1LL << CodeCompletionContext::CCC_Statement)
+ | (1LL << CodeCompletionContext::CCC_Expression)
+ | (1LL << CodeCompletionContext::CCC_ObjCMessageReceiver)
+ | (1LL << CodeCompletionContext::CCC_DotMemberAccess)
+ | (1LL << CodeCompletionContext::CCC_ArrowMemberAccess)
+ | (1LL << CodeCompletionContext::CCC_ObjCPropertyAccess)
+ | (1LL << CodeCompletionContext::CCC_ObjCProtocolName)
+ | (1LL << CodeCompletionContext::CCC_ParenthesizedExpression)
+ | (1LL << CodeCompletionContext::CCC_Recovery);
+
+ if (AST.getASTContext().getLangOpts().CPlusPlus)
+ NormalContexts |= (1LL << CodeCompletionContext::CCC_EnumTag)
+ | (1LL << CodeCompletionContext::CCC_UnionTag)
+ | (1LL << CodeCompletionContext::CCC_ClassOrStructTag);
+ }
+
+ void ProcessCodeCompleteResults(Sema &S, CodeCompletionContext Context,
+ CodeCompletionResult *Results,
+ unsigned NumResults) override;
+
+ void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg,
+ OverloadCandidate *Candidates,
+ unsigned NumCandidates) override {
+ Next.ProcessOverloadCandidates(S, CurrentArg, Candidates, NumCandidates);
+ }
+
+ CodeCompletionAllocator &getAllocator() override {
+ return Next.getAllocator();
+ }
+
+ CodeCompletionTUInfo &getCodeCompletionTUInfo() override {
+ return Next.getCodeCompletionTUInfo();
+ }
+ };
+}
+
+/// \brief Helper function that computes which global names are hidden by the
+/// local code-completion results.
+static void CalculateHiddenNames(const CodeCompletionContext &Context,
+ CodeCompletionResult *Results,
+ unsigned NumResults,
+ ASTContext &Ctx,
+ llvm::StringSet<llvm::BumpPtrAllocator> &HiddenNames){
+ bool OnlyTagNames = false;
+ switch (Context.getKind()) {
+ case CodeCompletionContext::CCC_Recovery:
+ case CodeCompletionContext::CCC_TopLevel:
+ case CodeCompletionContext::CCC_ObjCInterface:
+ case CodeCompletionContext::CCC_ObjCImplementation:
+ case CodeCompletionContext::CCC_ObjCIvarList:
+ case CodeCompletionContext::CCC_ClassStructUnion:
+ case CodeCompletionContext::CCC_Statement:
+ case CodeCompletionContext::CCC_Expression:
+ case CodeCompletionContext::CCC_ObjCMessageReceiver:
+ case CodeCompletionContext::CCC_DotMemberAccess:
+ case CodeCompletionContext::CCC_ArrowMemberAccess:
+ case CodeCompletionContext::CCC_ObjCPropertyAccess:
+ case CodeCompletionContext::CCC_Namespace:
+ case CodeCompletionContext::CCC_Type:
+ case CodeCompletionContext::CCC_Name:
+ case CodeCompletionContext::CCC_PotentiallyQualifiedName:
+ case CodeCompletionContext::CCC_ParenthesizedExpression:
+ case CodeCompletionContext::CCC_ObjCInterfaceName:
+ break;
+
+ case CodeCompletionContext::CCC_EnumTag:
+ case CodeCompletionContext::CCC_UnionTag:
+ case CodeCompletionContext::CCC_ClassOrStructTag:
+ OnlyTagNames = true;
+ break;
+
+ case CodeCompletionContext::CCC_ObjCProtocolName:
+ case CodeCompletionContext::CCC_MacroName:
+ case CodeCompletionContext::CCC_MacroNameUse:
+ case CodeCompletionContext::CCC_PreprocessorExpression:
+ case CodeCompletionContext::CCC_PreprocessorDirective:
+ case CodeCompletionContext::CCC_NaturalLanguage:
+ case CodeCompletionContext::CCC_SelectorName:
+ case CodeCompletionContext::CCC_TypeQualifiers:
+ case CodeCompletionContext::CCC_Other:
+ case CodeCompletionContext::CCC_OtherWithMacros:
+ case CodeCompletionContext::CCC_ObjCInstanceMessage:
+ case CodeCompletionContext::CCC_ObjCClassMessage:
+ case CodeCompletionContext::CCC_ObjCCategoryName:
+ // We're looking for nothing, or we're looking for names that cannot
+ // be hidden.
+ return;
+ }
+
+ typedef CodeCompletionResult Result;
+ for (unsigned I = 0; I != NumResults; ++I) {
+ if (Results[I].Kind != Result::RK_Declaration)
+ continue;
+
+ unsigned IDNS
+ = Results[I].Declaration->getUnderlyingDecl()->getIdentifierNamespace();
+
+ bool Hiding = false;
+ if (OnlyTagNames)
+ Hiding = (IDNS & Decl::IDNS_Tag);
+ else {
+ unsigned HiddenIDNS = (Decl::IDNS_Type | Decl::IDNS_Member |
+ Decl::IDNS_Namespace | Decl::IDNS_Ordinary |
+ Decl::IDNS_NonMemberOperator);
+ if (Ctx.getLangOpts().CPlusPlus)
+ HiddenIDNS |= Decl::IDNS_Tag;
+ Hiding = (IDNS & HiddenIDNS);
+ }
+
+ if (!Hiding)
+ continue;
+
+ DeclarationName Name = Results[I].Declaration->getDeclName();
+ if (IdentifierInfo *Identifier = Name.getAsIdentifierInfo())
+ HiddenNames.insert(Identifier->getName());
+ else
+ HiddenNames.insert(Name.getAsString());
+ }
+}
+
+
+void AugmentedCodeCompleteConsumer::ProcessCodeCompleteResults(Sema &S,
+ CodeCompletionContext Context,
+ CodeCompletionResult *Results,
+ unsigned NumResults) {
+ // Merge the results we were given with the results we cached.
+ bool AddedResult = false;
+ uint64_t InContexts =
+ Context.getKind() == CodeCompletionContext::CCC_Recovery
+ ? NormalContexts : (1LL << Context.getKind());
+ // Contains the set of names that are hidden by "local" completion results.
+ llvm::StringSet<llvm::BumpPtrAllocator> HiddenNames;
+ typedef CodeCompletionResult Result;
+ SmallVector<Result, 8> AllResults;
+ for (ASTUnit::cached_completion_iterator
+ C = AST.cached_completion_begin(),
+ CEnd = AST.cached_completion_end();
+ C != CEnd; ++C) {
+ // If the context we are in matches any of the contexts we are
+ // interested in, we'll add this result.
+ if ((C->ShowInContexts & InContexts) == 0)
+ continue;
+
+ // If we haven't added any results previously, do so now.
+ if (!AddedResult) {
+ CalculateHiddenNames(Context, Results, NumResults, S.Context,
+ HiddenNames);
+ AllResults.insert(AllResults.end(), Results, Results + NumResults);
+ AddedResult = true;
+ }
+
+ // Determine whether this global completion result is hidden by a local
+ // completion result. If so, skip it.
+ if (C->Kind != CXCursor_MacroDefinition &&
+ HiddenNames.count(C->Completion->getTypedText()))
+ continue;
+
+ // Adjust priority based on similar type classes.
+ unsigned Priority = C->Priority;
+ CodeCompletionString *Completion = C->Completion;
+ if (!Context.getPreferredType().isNull()) {
+ if (C->Kind == CXCursor_MacroDefinition) {
+ Priority = getMacroUsagePriority(C->Completion->getTypedText(),
+ S.getLangOpts(),
+ Context.getPreferredType()->isAnyPointerType());
+ } else if (C->Type) {
+ CanQualType Expected
+ = S.Context.getCanonicalType(
+ Context.getPreferredType().getUnqualifiedType());
+ SimplifiedTypeClass ExpectedSTC = getSimplifiedTypeClass(Expected);
+ if (ExpectedSTC == C->TypeClass) {
+ // We know this type is similar; check for an exact match.
+ llvm::StringMap<unsigned> &CachedCompletionTypes
+ = AST.getCachedCompletionTypes();
+ llvm::StringMap<unsigned>::iterator Pos
+ = CachedCompletionTypes.find(QualType(Expected).getAsString());
+ if (Pos != CachedCompletionTypes.end() && Pos->second == C->Type)
+ Priority /= CCF_ExactTypeMatch;
+ else
+ Priority /= CCF_SimilarTypeMatch;
+ }
+ }
+ }
+
+ // Adjust the completion string, if required.
+ if (C->Kind == CXCursor_MacroDefinition &&
+ Context.getKind() == CodeCompletionContext::CCC_MacroNameUse) {
+ // Create a new code-completion string that just contains the
+ // macro name, without its arguments.
+ CodeCompletionBuilder Builder(getAllocator(), getCodeCompletionTUInfo(),
+ CCP_CodePattern, C->Availability);
+ Builder.AddTypedTextChunk(C->Completion->getTypedText());
+ Priority = CCP_CodePattern;
+ Completion = Builder.TakeString();
+ }
+
+ AllResults.push_back(Result(Completion, Priority, C->Kind,
+ C->Availability));
+ }
+
+ // If we did not add any cached completion results, just forward the
+ // results we were given to the next consumer.
+ if (!AddedResult) {
+ Next.ProcessCodeCompleteResults(S, Context, Results, NumResults);
+ return;
+ }
+
+ Next.ProcessCodeCompleteResults(S, Context, AllResults.data(),
+ AllResults.size());
+}
+
+
+
+void ASTUnit::CodeComplete(StringRef File, unsigned Line, unsigned Column,
+ ArrayRef<RemappedFile> RemappedFiles,
+ bool IncludeMacros,
+ bool IncludeCodePatterns,
+ bool IncludeBriefComments,
+ CodeCompleteConsumer &Consumer,
+ DiagnosticsEngine &Diag, LangOptions &LangOpts,
+ SourceManager &SourceMgr, FileManager &FileMgr,
+ SmallVectorImpl<StoredDiagnostic> &StoredDiagnostics,
+ SmallVectorImpl<const llvm::MemoryBuffer *> &OwnedBuffers) {
+ if (!Invocation)
+ return;
+
+ SimpleTimer CompletionTimer(WantTiming);
+ CompletionTimer.setOutput("Code completion @ " + File + ":" +
+ Twine(Line) + ":" + Twine(Column));
+
+ IntrusiveRefCntPtr<CompilerInvocation>
+ CCInvocation(new CompilerInvocation(*Invocation));
+
+ FrontendOptions &FrontendOpts = CCInvocation->getFrontendOpts();
+ CodeCompleteOptions &CodeCompleteOpts = FrontendOpts.CodeCompleteOpts;
+ PreprocessorOptions &PreprocessorOpts = CCInvocation->getPreprocessorOpts();
+
+ CodeCompleteOpts.IncludeMacros = IncludeMacros &&
+ CachedCompletionResults.empty();
+ CodeCompleteOpts.IncludeCodePatterns = IncludeCodePatterns;
+ CodeCompleteOpts.IncludeGlobals = CachedCompletionResults.empty();
+ CodeCompleteOpts.IncludeBriefComments = IncludeBriefComments;
+
+ assert(IncludeBriefComments == this->IncludeBriefCommentsInCodeCompletion);
+
+ FrontendOpts.CodeCompletionAt.FileName = File;
+ FrontendOpts.CodeCompletionAt.Line = Line;
+ FrontendOpts.CodeCompletionAt.Column = Column;
+
+ // Set the language options appropriately.
+ LangOpts = *CCInvocation->getLangOpts();
+
+ // Spell-checking and warnings are wasteful during code-completion.
+ LangOpts.SpellChecking = false;
+ CCInvocation->getDiagnosticOpts().IgnoreWarnings = true;
+
+ std::unique_ptr<CompilerInstance> Clang(new CompilerInstance());
+
+ // Recover resources if we crash before exiting this method.
+ llvm::CrashRecoveryContextCleanupRegistrar<CompilerInstance>
+ CICleanup(Clang.get());
+
+ Clang->setInvocation(&*CCInvocation);
+ OriginalSourceFile = Clang->getFrontendOpts().Inputs[0].getFile();
+
+ // Set up diagnostics, capturing any diagnostics produced.
+ Clang->setDiagnostics(&Diag);
+ CaptureDroppedDiagnostics Capture(true,
+ Clang->getDiagnostics(),
+ StoredDiagnostics);
+ ProcessWarningOptions(Diag, CCInvocation->getDiagnosticOpts());
+
+ // Create the target instance.
+ Clang->setTarget(TargetInfo::CreateTargetInfo(
+ Clang->getDiagnostics(), Clang->getInvocation().TargetOpts));
+ if (!Clang->hasTarget()) {
+ Clang->setInvocation(nullptr);
+ return;
+ }
+
+ // Inform the target of the language options.
+ //
+ // FIXME: We shouldn't need to do this, the target should be immutable once
+ // created. This complexity should be lifted elsewhere.
+ Clang->getTarget().adjust(Clang->getLangOpts());
+
+ assert(Clang->getFrontendOpts().Inputs.size() == 1 &&
+ "Invocation must have exactly one source file!");
+ assert(Clang->getFrontendOpts().Inputs[0].getKind() != IK_AST &&
+ "FIXME: AST inputs not yet supported here!");
+ assert(Clang->getFrontendOpts().Inputs[0].getKind() != IK_LLVM_IR &&
+ "IR inputs not support here!");
+
+
+ // Use the source and file managers that we were given.
+ Clang->setFileManager(&FileMgr);
+ Clang->setSourceManager(&SourceMgr);
+
+ // Remap files.
+ PreprocessorOpts.clearRemappedFiles();
+ PreprocessorOpts.RetainRemappedFileBuffers = true;
+ for (const auto &RemappedFile : RemappedFiles) {
+ PreprocessorOpts.addRemappedFile(RemappedFile.first, RemappedFile.second);
+ OwnedBuffers.push_back(RemappedFile.second);
+ }
+
+ // Use the code completion consumer we were given, but adding any cached
+ // code-completion results.
+ AugmentedCodeCompleteConsumer *AugmentedConsumer
+ = new AugmentedCodeCompleteConsumer(*this, Consumer, CodeCompleteOpts);
+ Clang->setCodeCompletionConsumer(AugmentedConsumer);
+
+ // If we have a precompiled preamble, try to use it. We only allow
+ // the use of the precompiled preamble if we're if the completion
+ // point is within the main file, after the end of the precompiled
+ // preamble.
+ std::unique_ptr<llvm::MemoryBuffer> OverrideMainBuffer;
+ if (!getPreambleFile(this).empty()) {
+ std::string CompleteFilePath(File);
+ llvm::sys::fs::UniqueID CompleteFileID;
+
+ if (!llvm::sys::fs::getUniqueID(CompleteFilePath, CompleteFileID)) {
+ std::string MainPath(OriginalSourceFile);
+ llvm::sys::fs::UniqueID MainID;
+ if (!llvm::sys::fs::getUniqueID(MainPath, MainID)) {
+ if (CompleteFileID == MainID && Line > 1)
+ OverrideMainBuffer = getMainBufferWithPrecompiledPreamble(
+ *CCInvocation, false, Line - 1);
+ }
+ }
+ }
+
+ // If the main file has been overridden due to the use of a preamble,
+ // make that override happen and introduce the preamble.
+ if (OverrideMainBuffer) {
+ PreprocessorOpts.addRemappedFile(OriginalSourceFile,
+ OverrideMainBuffer.get());
+ PreprocessorOpts.PrecompiledPreambleBytes.first = Preamble.size();
+ PreprocessorOpts.PrecompiledPreambleBytes.second
+ = PreambleEndsAtStartOfLine;
+ PreprocessorOpts.ImplicitPCHInclude = getPreambleFile(this);
+ PreprocessorOpts.DisablePCHValidation = true;
+
+ OwnedBuffers.push_back(OverrideMainBuffer.release());
+ } else {
+ PreprocessorOpts.PrecompiledPreambleBytes.first = 0;
+ PreprocessorOpts.PrecompiledPreambleBytes.second = false;
+ }
+
+ // Disable the preprocessing record if modules are not enabled.
+ if (!Clang->getLangOpts().Modules)
+ PreprocessorOpts.DetailedRecord = false;
+
+ std::unique_ptr<SyntaxOnlyAction> Act;
+ Act.reset(new SyntaxOnlyAction);
+ if (Act->BeginSourceFile(*Clang.get(), Clang->getFrontendOpts().Inputs[0])) {
+ Act->Execute();
+ Act->EndSourceFile();
+ }
+}
+
+bool ASTUnit::Save(StringRef File) {
+ if (HadModuleLoaderFatalFailure)
+ return true;
+
+ // Write to a temporary file and later rename it to the actual file, to avoid
+ // possible race conditions.
+ SmallString<128> TempPath;
+ TempPath = File;
+ TempPath += "-%%%%%%%%";
+ int fd;
+ if (llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath))
+ return true;
+
+ // FIXME: Can we somehow regenerate the stat cache here, or do we need to
+ // unconditionally create a stat cache when we parse the file?
+ llvm::raw_fd_ostream Out(fd, /*shouldClose=*/true);
+
+ serialize(Out);
+ Out.close();
+ if (Out.has_error()) {
+ Out.clear_error();
+ return true;
+ }
+
+ if (llvm::sys::fs::rename(TempPath, File)) {
+ llvm::sys::fs::remove(TempPath);
+ return true;
+ }
+
+ return false;
+}
+
+static bool serializeUnit(ASTWriter &Writer,
+ SmallVectorImpl<char> &Buffer,
+ Sema &S,
+ bool hasErrors,
+ raw_ostream &OS) {
+ Writer.WriteAST(S, std::string(), nullptr, "", hasErrors);
+
+ // Write the generated bitstream to "Out".
+ if (!Buffer.empty())
+ OS.write(Buffer.data(), Buffer.size());
+
+ return false;
+}
+
+bool ASTUnit::serialize(raw_ostream &OS) {
+ bool hasErrors = getDiagnostics().hasErrorOccurred();
+
+ if (WriterData)
+ return serializeUnit(WriterData->Writer, WriterData->Buffer,
+ getSema(), hasErrors, OS);
+
+ SmallString<128> Buffer;
+ llvm::BitstreamWriter Stream(Buffer);
+ ASTWriter Writer(Stream);
+ return serializeUnit(Writer, Buffer, getSema(), hasErrors, OS);
+}
+
+typedef ContinuousRangeMap<unsigned, int, 2> SLocRemap;
+
+void ASTUnit::TranslateStoredDiagnostics(
+ FileManager &FileMgr,
+ SourceManager &SrcMgr,
+ const SmallVectorImpl<StandaloneDiagnostic> &Diags,
+ SmallVectorImpl<StoredDiagnostic> &Out) {
+ // Map the standalone diagnostic into the new source manager. We also need to
+ // remap all the locations to the new view. This includes the diag location,
+ // any associated source ranges, and the source ranges of associated fix-its.
+ // FIXME: There should be a cleaner way to do this.
+
+ SmallVector<StoredDiagnostic, 4> Result;
+ Result.reserve(Diags.size());
+ for (const StandaloneDiagnostic &SD : Diags) {
+ // Rebuild the StoredDiagnostic.
+ if (SD.Filename.empty())
+ continue;
+ const FileEntry *FE = FileMgr.getFile(SD.Filename);
+ if (!FE)
+ continue;
+ FileID FID = SrcMgr.translateFile(FE);
+ SourceLocation FileLoc = SrcMgr.getLocForStartOfFile(FID);
+ if (FileLoc.isInvalid())
+ continue;
+ SourceLocation L = FileLoc.getLocWithOffset(SD.LocOffset);
+ FullSourceLoc Loc(L, SrcMgr);
+
+ SmallVector<CharSourceRange, 4> Ranges;
+ Ranges.reserve(SD.Ranges.size());
+ for (const auto &Range : SD.Ranges) {
+ SourceLocation BL = FileLoc.getLocWithOffset(Range.first);
+ SourceLocation EL = FileLoc.getLocWithOffset(Range.second);
+ Ranges.push_back(CharSourceRange::getCharRange(BL, EL));
+ }
+
+ SmallVector<FixItHint, 2> FixIts;
+ FixIts.reserve(SD.FixIts.size());
+ for (const StandaloneFixIt &FixIt : SD.FixIts) {
+ FixIts.push_back(FixItHint());
+ FixItHint &FH = FixIts.back();
+ FH.CodeToInsert = FixIt.CodeToInsert;
+ SourceLocation BL = FileLoc.getLocWithOffset(FixIt.RemoveRange.first);
+ SourceLocation EL = FileLoc.getLocWithOffset(FixIt.RemoveRange.second);
+ FH.RemoveRange = CharSourceRange::getCharRange(BL, EL);
+ }
+
+ Result.push_back(StoredDiagnostic(SD.Level, SD.ID,
+ SD.Message, Loc, Ranges, FixIts));
+ }
+ Result.swap(Out);
+}
+
+void ASTUnit::addFileLevelDecl(Decl *D) {
+ assert(D);
+
+ // We only care about local declarations.
+ if (D->isFromASTFile())
+ return;
+
+ SourceManager &SM = *SourceMgr;
+ SourceLocation Loc = D->getLocation();
+ if (Loc.isInvalid() || !SM.isLocalSourceLocation(Loc))
+ return;
+
+ // We only keep track of the file-level declarations of each file.
+ if (!D->getLexicalDeclContext()->isFileContext())
+ return;
+
+ SourceLocation FileLoc = SM.getFileLoc(Loc);
+ assert(SM.isLocalSourceLocation(FileLoc));
+ FileID FID;
+ unsigned Offset;
+ std::tie(FID, Offset) = SM.getDecomposedLoc(FileLoc);
+ if (FID.isInvalid())
+ return;
+
+ LocDeclsTy *&Decls = FileDecls[FID];
+ if (!Decls)
+ Decls = new LocDeclsTy();
+
+ std::pair<unsigned, Decl *> LocDecl(Offset, D);
+
+ if (Decls->empty() || Decls->back().first <= Offset) {
+ Decls->push_back(LocDecl);
+ return;
+ }
+
+ LocDeclsTy::iterator I = std::upper_bound(Decls->begin(), Decls->end(),
+ LocDecl, llvm::less_first());
+
+ Decls->insert(I, LocDecl);
+}
+
+void ASTUnit::findFileRegionDecls(FileID File, unsigned Offset, unsigned Length,
+ SmallVectorImpl<Decl *> &Decls) {
+ if (File.isInvalid())
+ return;
+
+ if (SourceMgr->isLoadedFileID(File)) {
+ assert(Ctx->getExternalSource() && "No external source!");
+ return Ctx->getExternalSource()->FindFileRegionDecls(File, Offset, Length,
+ Decls);
+ }
+
+ FileDeclsTy::iterator I = FileDecls.find(File);
+ if (I == FileDecls.end())
+ return;
+
+ LocDeclsTy &LocDecls = *I->second;
+ if (LocDecls.empty())
+ return;
+
+ LocDeclsTy::iterator BeginIt =
+ std::lower_bound(LocDecls.begin(), LocDecls.end(),
+ std::make_pair(Offset, (Decl *)nullptr),
+ llvm::less_first());
+ if (BeginIt != LocDecls.begin())
+ --BeginIt;
+
+ // If we are pointing at a top-level decl inside an objc container, we need
+ // to backtrack until we find it otherwise we will fail to report that the
+ // region overlaps with an objc container.
+ while (BeginIt != LocDecls.begin() &&
+ BeginIt->second->isTopLevelDeclInObjCContainer())
+ --BeginIt;
+
+ LocDeclsTy::iterator EndIt = std::upper_bound(
+ LocDecls.begin(), LocDecls.end(),
+ std::make_pair(Offset + Length, (Decl *)nullptr), llvm::less_first());
+ if (EndIt != LocDecls.end())
+ ++EndIt;
+
+ for (LocDeclsTy::iterator DIt = BeginIt; DIt != EndIt; ++DIt)
+ Decls.push_back(DIt->second);
+}
+
+SourceLocation ASTUnit::getLocation(const FileEntry *File,
+ unsigned Line, unsigned Col) const {
+ const SourceManager &SM = getSourceManager();
+ SourceLocation Loc = SM.translateFileLineCol(File, Line, Col);
+ return SM.getMacroArgExpandedLocation(Loc);
+}
+
+SourceLocation ASTUnit::getLocation(const FileEntry *File,
+ unsigned Offset) const {
+ const SourceManager &SM = getSourceManager();
+ SourceLocation FileLoc = SM.translateFileLineCol(File, 1, 1);
+ return SM.getMacroArgExpandedLocation(FileLoc.getLocWithOffset(Offset));
+}
+
+/// \brief If \arg Loc is a loaded location from the preamble, returns
+/// the corresponding local location of the main file, otherwise it returns
+/// \arg Loc.
+SourceLocation ASTUnit::mapLocationFromPreamble(SourceLocation Loc) {
+ FileID PreambleID;
+ if (SourceMgr)
+ PreambleID = SourceMgr->getPreambleFileID();
+
+ if (Loc.isInvalid() || Preamble.empty() || PreambleID.isInvalid())
+ return Loc;
+
+ unsigned Offs;
+ if (SourceMgr->isInFileID(Loc, PreambleID, &Offs) && Offs < Preamble.size()) {
+ SourceLocation FileLoc
+ = SourceMgr->getLocForStartOfFile(SourceMgr->getMainFileID());
+ return FileLoc.getLocWithOffset(Offs);
+ }
+
+ return Loc;
+}
+
+/// \brief If \arg Loc is a local location of the main file but inside the
+/// preamble chunk, returns the corresponding loaded location from the
+/// preamble, otherwise it returns \arg Loc.
+SourceLocation ASTUnit::mapLocationToPreamble(SourceLocation Loc) {
+ FileID PreambleID;
+ if (SourceMgr)
+ PreambleID = SourceMgr->getPreambleFileID();
+
+ if (Loc.isInvalid() || Preamble.empty() || PreambleID.isInvalid())
+ return Loc;
+
+ unsigned Offs;
+ if (SourceMgr->isInFileID(Loc, SourceMgr->getMainFileID(), &Offs) &&
+ Offs < Preamble.size()) {
+ SourceLocation FileLoc = SourceMgr->getLocForStartOfFile(PreambleID);
+ return FileLoc.getLocWithOffset(Offs);
+ }
+
+ return Loc;
+}
+
+bool ASTUnit::isInPreambleFileID(SourceLocation Loc) {
+ FileID FID;
+ if (SourceMgr)
+ FID = SourceMgr->getPreambleFileID();
+
+ if (Loc.isInvalid() || FID.isInvalid())
+ return false;
+
+ return SourceMgr->isInFileID(Loc, FID);
+}
+
+bool ASTUnit::isInMainFileID(SourceLocation Loc) {
+ FileID FID;
+ if (SourceMgr)
+ FID = SourceMgr->getMainFileID();
+
+ if (Loc.isInvalid() || FID.isInvalid())
+ return false;
+
+ return SourceMgr->isInFileID(Loc, FID);
+}
+
+SourceLocation ASTUnit::getEndOfPreambleFileID() {
+ FileID FID;
+ if (SourceMgr)
+ FID = SourceMgr->getPreambleFileID();
+
+ if (FID.isInvalid())
+ return SourceLocation();
+
+ return SourceMgr->getLocForEndOfFile(FID);
+}
+
+SourceLocation ASTUnit::getStartOfMainFileID() {
+ FileID FID;
+ if (SourceMgr)
+ FID = SourceMgr->getMainFileID();
+
+ if (FID.isInvalid())
+ return SourceLocation();
+
+ return SourceMgr->getLocForStartOfFile(FID);
+}
+
+llvm::iterator_range<PreprocessingRecord::iterator>
+ASTUnit::getLocalPreprocessingEntities() const {
+ if (isMainFileAST()) {
+ serialization::ModuleFile &
+ Mod = Reader->getModuleManager().getPrimaryModule();
+ return Reader->getModulePreprocessedEntities(Mod);
+ }
+
+ if (PreprocessingRecord *PPRec = PP->getPreprocessingRecord())
+ return llvm::make_range(PPRec->local_begin(), PPRec->local_end());
+
+ return llvm::make_range(PreprocessingRecord::iterator(),
+ PreprocessingRecord::iterator());
+}
+
+bool ASTUnit::visitLocalTopLevelDecls(void *context, DeclVisitorFn Fn) {
+ if (isMainFileAST()) {
+ serialization::ModuleFile &
+ Mod = Reader->getModuleManager().getPrimaryModule();
+ for (const Decl *D : Reader->getModuleFileLevelDecls(Mod)) {
+ if (!Fn(context, D))
+ return false;
+ }
+
+ return true;
+ }
+
+ for (ASTUnit::top_level_iterator TL = top_level_begin(),
+ TLEnd = top_level_end();
+ TL != TLEnd; ++TL) {
+ if (!Fn(context, *TL))
+ return false;
+ }
+
+ return true;
+}
+
+namespace {
+struct PCHLocatorInfo {
+ serialization::ModuleFile *Mod;
+ PCHLocatorInfo() : Mod(nullptr) {}
+};
+}
+
+static bool PCHLocator(serialization::ModuleFile &M, void *UserData) {
+ PCHLocatorInfo &Info = *static_cast<PCHLocatorInfo*>(UserData);
+ switch (M.Kind) {
+ case serialization::MK_ImplicitModule:
+ case serialization::MK_ExplicitModule:
+ return true; // skip dependencies.
+ case serialization::MK_PCH:
+ Info.Mod = &M;
+ return true; // found it.
+ case serialization::MK_Preamble:
+ return false; // look in dependencies.
+ case serialization::MK_MainFile:
+ return false; // look in dependencies.
+ }
+
+ return true;
+}
+
+const FileEntry *ASTUnit::getPCHFile() {
+ if (!Reader)
+ return nullptr;
+
+ PCHLocatorInfo Info;
+ Reader->getModuleManager().visit(PCHLocator, &Info);
+ if (Info.Mod)
+ return Info.Mod->File;
+
+ return nullptr;
+}
+
+bool ASTUnit::isModuleFile() {
+ return isMainFileAST() && !ASTFileLangOpts.CurrentModule.empty();
+}
+
+void ASTUnit::PreambleData::countLines() const {
+ NumLines = 0;
+ if (empty())
+ return;
+
+ NumLines = std::count(Buffer.begin(), Buffer.end(), '\n');
+
+ if (Buffer.back() != '\n')
+ ++NumLines;
+}
+
+#ifndef NDEBUG
+ASTUnit::ConcurrencyState::ConcurrencyState() {
+ Mutex = new llvm::sys::MutexImpl(/*recursive=*/true);
+}
+
+ASTUnit::ConcurrencyState::~ConcurrencyState() {
+ delete static_cast<llvm::sys::MutexImpl *>(Mutex);
+}
+
+void ASTUnit::ConcurrencyState::start() {
+ bool acquired = static_cast<llvm::sys::MutexImpl *>(Mutex)->tryacquire();
+ assert(acquired && "Concurrent access to ASTUnit!");
+}
+
+void ASTUnit::ConcurrencyState::finish() {
+ static_cast<llvm::sys::MutexImpl *>(Mutex)->release();
+}
+
+#else // NDEBUG
+
+ASTUnit::ConcurrencyState::ConcurrencyState() { Mutex = 0; }
+ASTUnit::ConcurrencyState::~ConcurrencyState() {}
+void ASTUnit::ConcurrencyState::start() {}
+void ASTUnit::ConcurrencyState::finish() {}
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/Frontend/CacheTokens.cpp b/contrib/llvm/tools/clang/lib/Frontend/CacheTokens.cpp
new file mode 100644
index 0000000..7d2a09c
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Frontend/CacheTokens.cpp
@@ -0,0 +1,693 @@
+//===--- CacheTokens.cpp - Caching of lexer tokens for PTH support --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This provides a possible implementation of PTH support for Clang that is
+// based on caching lexed tokens and identifiers.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Frontend/Utils.h"
+#include "clang/Basic/Diagnostic.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/FileSystemStatCache.h"
+#include "clang/Basic/IdentifierTable.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Lex/Lexer.h"
+#include "clang/Lex/Preprocessor.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringMap.h"
+#include "llvm/Support/EndianStream.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/OnDiskHashTable.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/raw_ostream.h"
+
+// FIXME: put this somewhere else?
+#ifndef S_ISDIR
+#define S_ISDIR(x) (((x)&_S_IFDIR)!=0)
+#endif
+
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// PTH-specific stuff.
+//===----------------------------------------------------------------------===//
+
+typedef uint32_t Offset;
+
+namespace {
+class PTHEntry {
+ Offset TokenData, PPCondData;
+
+public:
+ PTHEntry() {}
+
+ PTHEntry(Offset td, Offset ppcd)
+ : TokenData(td), PPCondData(ppcd) {}
+
+ Offset getTokenOffset() const { return TokenData; }
+ Offset getPPCondTableOffset() const { return PPCondData; }
+};
+
+
+class PTHEntryKeyVariant {
+ union { const FileEntry* FE; const char* Path; };
+ enum { IsFE = 0x1, IsDE = 0x2, IsNoExist = 0x0 } Kind;
+ FileData *Data;
+
+public:
+ PTHEntryKeyVariant(const FileEntry *fe) : FE(fe), Kind(IsFE), Data(nullptr) {}
+
+ PTHEntryKeyVariant(FileData *Data, const char *path)
+ : Path(path), Kind(IsDE), Data(new FileData(*Data)) {}
+
+ explicit PTHEntryKeyVariant(const char *path)
+ : Path(path), Kind(IsNoExist), Data(nullptr) {}
+
+ bool isFile() const { return Kind == IsFE; }
+
+ StringRef getString() const {
+ return Kind == IsFE ? FE->getName() : Path;
+ }
+
+ unsigned getKind() const { return (unsigned) Kind; }
+
+ void EmitData(raw_ostream& Out) {
+ using namespace llvm::support;
+ endian::Writer<little> LE(Out);
+ switch (Kind) {
+ case IsFE: {
+ // Emit stat information.
+ llvm::sys::fs::UniqueID UID = FE->getUniqueID();
+ LE.write<uint64_t>(UID.getFile());
+ LE.write<uint64_t>(UID.getDevice());
+ LE.write<uint64_t>(FE->getModificationTime());
+ LE.write<uint64_t>(FE->getSize());
+ } break;
+ case IsDE:
+ // Emit stat information.
+ LE.write<uint64_t>(Data->UniqueID.getFile());
+ LE.write<uint64_t>(Data->UniqueID.getDevice());
+ LE.write<uint64_t>(Data->ModTime);
+ LE.write<uint64_t>(Data->Size);
+ delete Data;
+ break;
+ default:
+ break;
+ }
+ }
+
+ unsigned getRepresentationLength() const {
+ return Kind == IsNoExist ? 0 : 4 + 4 + 2 + 8 + 8;
+ }
+};
+
+class FileEntryPTHEntryInfo {
+public:
+ typedef PTHEntryKeyVariant key_type;
+ typedef key_type key_type_ref;
+
+ typedef PTHEntry data_type;
+ typedef const PTHEntry& data_type_ref;
+
+ typedef unsigned hash_value_type;
+ typedef unsigned offset_type;
+
+ static hash_value_type ComputeHash(PTHEntryKeyVariant V) {
+ return llvm::HashString(V.getString());
+ }
+
+ static std::pair<unsigned,unsigned>
+ EmitKeyDataLength(raw_ostream& Out, PTHEntryKeyVariant V,
+ const PTHEntry& E) {
+ using namespace llvm::support;
+ endian::Writer<little> LE(Out);
+
+ unsigned n = V.getString().size() + 1 + 1;
+ LE.write<uint16_t>(n);
+
+ unsigned m = V.getRepresentationLength() + (V.isFile() ? 4 + 4 : 0);
+ LE.write<uint8_t>(m);
+
+ return std::make_pair(n, m);
+ }
+
+ static void EmitKey(raw_ostream& Out, PTHEntryKeyVariant V, unsigned n){
+ using namespace llvm::support;
+ // Emit the entry kind.
+ endian::Writer<little>(Out).write<uint8_t>((unsigned)V.getKind());
+ // Emit the string.
+ Out.write(V.getString().data(), n - 1);
+ }
+
+ static void EmitData(raw_ostream& Out, PTHEntryKeyVariant V,
+ const PTHEntry& E, unsigned) {
+ using namespace llvm::support;
+ endian::Writer<little> LE(Out);
+
+ // For file entries emit the offsets into the PTH file for token data
+ // and the preprocessor blocks table.
+ if (V.isFile()) {
+ LE.write<uint32_t>(E.getTokenOffset());
+ LE.write<uint32_t>(E.getPPCondTableOffset());
+ }
+
+ // Emit any other data associated with the key (i.e., stat information).
+ V.EmitData(Out);
+ }
+};
+
+class OffsetOpt {
+ bool valid;
+ Offset off;
+public:
+ OffsetOpt() : valid(false) {}
+ bool hasOffset() const { return valid; }
+ Offset getOffset() const { assert(valid); return off; }
+ void setOffset(Offset o) { off = o; valid = true; }
+};
+} // end anonymous namespace
+
+typedef llvm::OnDiskChainedHashTableGenerator<FileEntryPTHEntryInfo> PTHMap;
+
+namespace {
+class PTHWriter {
+ typedef llvm::DenseMap<const IdentifierInfo*,uint32_t> IDMap;
+ typedef llvm::StringMap<OffsetOpt, llvm::BumpPtrAllocator> CachedStrsTy;
+
+ IDMap IM;
+ raw_pwrite_stream &Out;
+ Preprocessor& PP;
+ uint32_t idcount;
+ PTHMap PM;
+ CachedStrsTy CachedStrs;
+ Offset CurStrOffset;
+ std::vector<llvm::StringMapEntry<OffsetOpt>*> StrEntries;
+
+ //// Get the persistent id for the given IdentifierInfo*.
+ uint32_t ResolveID(const IdentifierInfo* II);
+
+ /// Emit a token to the PTH file.
+ void EmitToken(const Token& T);
+
+ void Emit8(uint32_t V) {
+ using namespace llvm::support;
+ endian::Writer<little>(Out).write<uint8_t>(V);
+ }
+
+ void Emit16(uint32_t V) {
+ using namespace llvm::support;
+ endian::Writer<little>(Out).write<uint16_t>(V);
+ }
+
+ void Emit32(uint32_t V) {
+ using namespace llvm::support;
+ endian::Writer<little>(Out).write<uint32_t>(V);
+ }
+
+ void EmitBuf(const char *Ptr, unsigned NumBytes) {
+ Out.write(Ptr, NumBytes);
+ }
+
+ void EmitString(StringRef V) {
+ using namespace llvm::support;
+ endian::Writer<little>(Out).write<uint16_t>(V.size());
+ EmitBuf(V.data(), V.size());
+ }
+
+ /// EmitIdentifierTable - Emits two tables to the PTH file. The first is
+ /// a hashtable mapping from identifier strings to persistent IDs.
+ /// The second is a straight table mapping from persistent IDs to string data
+ /// (the keys of the first table).
+ std::pair<Offset, Offset> EmitIdentifierTable();
+
+ /// EmitFileTable - Emit a table mapping from file name strings to PTH
+ /// token data.
+ Offset EmitFileTable() { return PM.Emit(Out); }
+
+ PTHEntry LexTokens(Lexer& L);
+ Offset EmitCachedSpellings();
+
+public:
+ PTHWriter(raw_pwrite_stream &out, Preprocessor &pp)
+ : Out(out), PP(pp), idcount(0), CurStrOffset(0) {}
+
+ PTHMap &getPM() { return PM; }
+ void GeneratePTH(const std::string &MainFile);
+};
+} // end anonymous namespace
+
+uint32_t PTHWriter::ResolveID(const IdentifierInfo* II) {
+ // Null IdentifierInfo's map to the persistent ID 0.
+ if (!II)
+ return 0;
+
+ IDMap::iterator I = IM.find(II);
+ if (I != IM.end())
+ return I->second; // We've already added 1.
+
+ IM[II] = ++idcount; // Pre-increment since '0' is reserved for NULL.
+ return idcount;
+}
+
+void PTHWriter::EmitToken(const Token& T) {
+ // Emit the token kind, flags, and length.
+ Emit32(((uint32_t) T.getKind()) | ((((uint32_t) T.getFlags())) << 8)|
+ (((uint32_t) T.getLength()) << 16));
+
+ if (!T.isLiteral()) {
+ Emit32(ResolveID(T.getIdentifierInfo()));
+ } else {
+ // We cache *un-cleaned* spellings. This gives us 100% fidelity with the
+ // source code.
+ StringRef s(T.getLiteralData(), T.getLength());
+
+ // Get the string entry.
+ auto &E = *CachedStrs.insert(std::make_pair(s, OffsetOpt())).first;
+
+ // If this is a new string entry, bump the PTH offset.
+ if (!E.second.hasOffset()) {
+ E.second.setOffset(CurStrOffset);
+ StrEntries.push_back(&E);
+ CurStrOffset += s.size() + 1;
+ }
+
+ // Emit the relative offset into the PTH file for the spelling string.
+ Emit32(E.second.getOffset());
+ }
+
+ // Emit the offset into the original source file of this token so that we
+ // can reconstruct its SourceLocation.
+ Emit32(PP.getSourceManager().getFileOffset(T.getLocation()));
+}
+
+PTHEntry PTHWriter::LexTokens(Lexer& L) {
+ // Pad 0's so that we emit tokens to a 4-byte alignment.
+ // This speed up reading them back in.
+ using namespace llvm::support;
+ endian::Writer<little> LE(Out);
+ uint32_t TokenOff = Out.tell();
+ for (uint64_t N = llvm::OffsetToAlignment(TokenOff, 4); N; --N, ++TokenOff)
+ LE.write<uint8_t>(0);
+
+ // Keep track of matching '#if' ... '#endif'.
+ typedef std::vector<std::pair<Offset, unsigned> > PPCondTable;
+ PPCondTable PPCond;
+ std::vector<unsigned> PPStartCond;
+ bool ParsingPreprocessorDirective = false;
+ Token Tok;
+
+ do {
+ L.LexFromRawLexer(Tok);
+ NextToken:
+
+ if ((Tok.isAtStartOfLine() || Tok.is(tok::eof)) &&
+ ParsingPreprocessorDirective) {
+ // Insert an eod token into the token cache. It has the same
+ // position as the next token that is not on the same line as the
+ // preprocessor directive. Observe that we continue processing
+ // 'Tok' when we exit this branch.
+ Token Tmp = Tok;
+ Tmp.setKind(tok::eod);
+ Tmp.clearFlag(Token::StartOfLine);
+ Tmp.setIdentifierInfo(nullptr);
+ EmitToken(Tmp);
+ ParsingPreprocessorDirective = false;
+ }
+
+ if (Tok.is(tok::raw_identifier)) {
+ PP.LookUpIdentifierInfo(Tok);
+ EmitToken(Tok);
+ continue;
+ }
+
+ if (Tok.is(tok::hash) && Tok.isAtStartOfLine()) {
+ // Special processing for #include. Store the '#' token and lex
+ // the next token.
+ assert(!ParsingPreprocessorDirective);
+ Offset HashOff = (Offset) Out.tell();
+
+ // Get the next token.
+ Token NextTok;
+ L.LexFromRawLexer(NextTok);
+
+ // If we see the start of line, then we had a null directive "#". In
+ // this case, discard both tokens.
+ if (NextTok.isAtStartOfLine())
+ goto NextToken;
+
+ // The token is the start of a directive. Emit it.
+ EmitToken(Tok);
+ Tok = NextTok;
+
+ // Did we see 'include'/'import'/'include_next'?
+ if (Tok.isNot(tok::raw_identifier)) {
+ EmitToken(Tok);
+ continue;
+ }
+
+ IdentifierInfo* II = PP.LookUpIdentifierInfo(Tok);
+ tok::PPKeywordKind K = II->getPPKeywordID();
+
+ ParsingPreprocessorDirective = true;
+
+ switch (K) {
+ case tok::pp_not_keyword:
+ // Invalid directives "#foo" can occur in #if 0 blocks etc, just pass
+ // them through.
+ default:
+ break;
+
+ case tok::pp_include:
+ case tok::pp_import:
+ case tok::pp_include_next: {
+ // Save the 'include' token.
+ EmitToken(Tok);
+ // Lex the next token as an include string.
+ L.setParsingPreprocessorDirective(true);
+ L.LexIncludeFilename(Tok);
+ L.setParsingPreprocessorDirective(false);
+ assert(!Tok.isAtStartOfLine());
+ if (Tok.is(tok::raw_identifier))
+ PP.LookUpIdentifierInfo(Tok);
+
+ break;
+ }
+ case tok::pp_if:
+ case tok::pp_ifdef:
+ case tok::pp_ifndef: {
+ // Add an entry for '#if' and friends. We initially set the target
+ // index to 0. This will get backpatched when we hit #endif.
+ PPStartCond.push_back(PPCond.size());
+ PPCond.push_back(std::make_pair(HashOff, 0U));
+ break;
+ }
+ case tok::pp_endif: {
+ // Add an entry for '#endif'. We set the target table index to itself.
+ // This will later be set to zero when emitting to the PTH file. We
+ // use 0 for uninitialized indices because that is easier to debug.
+ unsigned index = PPCond.size();
+ // Backpatch the opening '#if' entry.
+ assert(!PPStartCond.empty());
+ assert(PPCond.size() > PPStartCond.back());
+ assert(PPCond[PPStartCond.back()].second == 0);
+ PPCond[PPStartCond.back()].second = index;
+ PPStartCond.pop_back();
+ // Add the new entry to PPCond.
+ PPCond.push_back(std::make_pair(HashOff, index));
+ EmitToken(Tok);
+
+ // Some files have gibberish on the same line as '#endif'.
+ // Discard these tokens.
+ do
+ L.LexFromRawLexer(Tok);
+ while (Tok.isNot(tok::eof) && !Tok.isAtStartOfLine());
+ // We have the next token in hand.
+ // Don't immediately lex the next one.
+ goto NextToken;
+ }
+ case tok::pp_elif:
+ case tok::pp_else: {
+ // Add an entry for #elif or #else.
+ // This serves as both a closing and opening of a conditional block.
+ // This means that its entry will get backpatched later.
+ unsigned index = PPCond.size();
+ // Backpatch the previous '#if' entry.
+ assert(!PPStartCond.empty());
+ assert(PPCond.size() > PPStartCond.back());
+ assert(PPCond[PPStartCond.back()].second == 0);
+ PPCond[PPStartCond.back()].second = index;
+ PPStartCond.pop_back();
+ // Now add '#elif' as a new block opening.
+ PPCond.push_back(std::make_pair(HashOff, 0U));
+ PPStartCond.push_back(index);
+ break;
+ }
+ }
+ }
+
+ EmitToken(Tok);
+ }
+ while (Tok.isNot(tok::eof));
+
+ assert(PPStartCond.empty() && "Error: imblanced preprocessor conditionals.");
+
+ // Next write out PPCond.
+ Offset PPCondOff = (Offset) Out.tell();
+
+ // Write out the size of PPCond so that clients can identifer empty tables.
+ Emit32(PPCond.size());
+
+ for (unsigned i = 0, e = PPCond.size(); i!=e; ++i) {
+ Emit32(PPCond[i].first - TokenOff);
+ uint32_t x = PPCond[i].second;
+ assert(x != 0 && "PPCond entry not backpatched.");
+ // Emit zero for #endifs. This allows us to do checking when
+ // we read the PTH file back in.
+ Emit32(x == i ? 0 : x);
+ }
+
+ return PTHEntry(TokenOff, PPCondOff);
+}
+
+Offset PTHWriter::EmitCachedSpellings() {
+ // Write each cached strings to the PTH file.
+ Offset SpellingsOff = Out.tell();
+
+ for (std::vector<llvm::StringMapEntry<OffsetOpt>*>::iterator
+ I = StrEntries.begin(), E = StrEntries.end(); I!=E; ++I)
+ EmitBuf((*I)->getKeyData(), (*I)->getKeyLength()+1 /*nul included*/);
+
+ return SpellingsOff;
+}
+
+static uint32_t swap32le(uint32_t X) {
+ return llvm::support::endian::byte_swap<uint32_t, llvm::support::little>(X);
+}
+
+static void pwrite32le(raw_pwrite_stream &OS, uint32_t Val, uint64_t &Off) {
+ uint32_t LEVal = swap32le(Val);
+ OS.pwrite(reinterpret_cast<const char *>(&LEVal), 4, Off);
+ Off += 4;
+}
+
+void PTHWriter::GeneratePTH(const std::string &MainFile) {
+ // Generate the prologue.
+ Out << "cfe-pth" << '\0';
+ Emit32(PTHManager::Version);
+
+ // Leave 4 words for the prologue.
+ Offset PrologueOffset = Out.tell();
+ for (unsigned i = 0; i < 4; ++i)
+ Emit32(0);
+
+ // Write the name of the MainFile.
+ if (!MainFile.empty()) {
+ EmitString(MainFile);
+ } else {
+ // String with 0 bytes.
+ Emit16(0);
+ }
+ Emit8(0);
+
+ // Iterate over all the files in SourceManager. Create a lexer
+ // for each file and cache the tokens.
+ SourceManager &SM = PP.getSourceManager();
+ const LangOptions &LOpts = PP.getLangOpts();
+
+ for (SourceManager::fileinfo_iterator I = SM.fileinfo_begin(),
+ E = SM.fileinfo_end(); I != E; ++I) {
+ const SrcMgr::ContentCache &C = *I->second;
+ const FileEntry *FE = C.OrigEntry;
+
+ // FIXME: Handle files with non-absolute paths.
+ if (llvm::sys::path::is_relative(FE->getName()))
+ continue;
+
+ const llvm::MemoryBuffer *B = C.getBuffer(PP.getDiagnostics(), SM);
+ if (!B) continue;
+
+ FileID FID = SM.createFileID(FE, SourceLocation(), SrcMgr::C_User);
+ const llvm::MemoryBuffer *FromFile = SM.getBuffer(FID);
+ Lexer L(FID, FromFile, SM, LOpts);
+ PM.insert(FE, LexTokens(L));
+ }
+
+ // Write out the identifier table.
+ const std::pair<Offset,Offset> &IdTableOff = EmitIdentifierTable();
+
+ // Write out the cached strings table.
+ Offset SpellingOff = EmitCachedSpellings();
+
+ // Write out the file table.
+ Offset FileTableOff = EmitFileTable();
+
+ // Finally, write the prologue.
+ uint64_t Off = PrologueOffset;
+ pwrite32le(Out, IdTableOff.first, Off);
+ pwrite32le(Out, IdTableOff.second, Off);
+ pwrite32le(Out, FileTableOff, Off);
+ pwrite32le(Out, SpellingOff, Off);
+}
+
+namespace {
+/// StatListener - A simple "interpose" object used to monitor stat calls
+/// invoked by FileManager while processing the original sources used
+/// as input to PTH generation. StatListener populates the PTHWriter's
+/// file map with stat information for directories as well as negative stats.
+/// Stat information for files are populated elsewhere.
+class StatListener : public FileSystemStatCache {
+ PTHMap &PM;
+public:
+ StatListener(PTHMap &pm) : PM(pm) {}
+ ~StatListener() override {}
+
+ LookupResult getStat(const char *Path, FileData &Data, bool isFile,
+ std::unique_ptr<vfs::File> *F,
+ vfs::FileSystem &FS) override {
+ LookupResult Result = statChained(Path, Data, isFile, F, FS);
+
+ if (Result == CacheMissing) // Failed 'stat'.
+ PM.insert(PTHEntryKeyVariant(Path), PTHEntry());
+ else if (Data.IsDirectory) {
+ // Only cache directories with absolute paths.
+ if (llvm::sys::path::is_relative(Path))
+ return Result;
+
+ PM.insert(PTHEntryKeyVariant(&Data, Path), PTHEntry());
+ }
+
+ return Result;
+ }
+};
+} // end anonymous namespace
+
+void clang::CacheTokens(Preprocessor &PP, raw_pwrite_stream *OS) {
+ // Get the name of the main file.
+ const SourceManager &SrcMgr = PP.getSourceManager();
+ const FileEntry *MainFile = SrcMgr.getFileEntryForID(SrcMgr.getMainFileID());
+ SmallString<128> MainFilePath(MainFile->getName());
+
+ llvm::sys::fs::make_absolute(MainFilePath);
+
+ // Create the PTHWriter.
+ PTHWriter PW(*OS, PP);
+
+ // Install the 'stat' system call listener in the FileManager.
+ auto StatCacheOwner = llvm::make_unique<StatListener>(PW.getPM());
+ StatListener *StatCache = StatCacheOwner.get();
+ PP.getFileManager().addStatCache(std::move(StatCacheOwner),
+ /*AtBeginning=*/true);
+
+ // Lex through the entire file. This will populate SourceManager with
+ // all of the header information.
+ Token Tok;
+ PP.EnterMainSourceFile();
+ do { PP.Lex(Tok); } while (Tok.isNot(tok::eof));
+
+ // Generate the PTH file.
+ PP.getFileManager().removeStatCache(StatCache);
+ PW.GeneratePTH(MainFilePath.str());
+}
+
+//===----------------------------------------------------------------------===//
+
+namespace {
+class PTHIdKey {
+public:
+ const IdentifierInfo* II;
+ uint32_t FileOffset;
+};
+
+class PTHIdentifierTableTrait {
+public:
+ typedef PTHIdKey* key_type;
+ typedef key_type key_type_ref;
+
+ typedef uint32_t data_type;
+ typedef data_type data_type_ref;
+
+ typedef unsigned hash_value_type;
+ typedef unsigned offset_type;
+
+ static hash_value_type ComputeHash(PTHIdKey* key) {
+ return llvm::HashString(key->II->getName());
+ }
+
+ static std::pair<unsigned,unsigned>
+ EmitKeyDataLength(raw_ostream& Out, const PTHIdKey* key, uint32_t) {
+ using namespace llvm::support;
+ unsigned n = key->II->getLength() + 1;
+ endian::Writer<little>(Out).write<uint16_t>(n);
+ return std::make_pair(n, sizeof(uint32_t));
+ }
+
+ static void EmitKey(raw_ostream& Out, PTHIdKey* key, unsigned n) {
+ // Record the location of the key data. This is used when generating
+ // the mapping from persistent IDs to strings.
+ key->FileOffset = Out.tell();
+ Out.write(key->II->getNameStart(), n);
+ }
+
+ static void EmitData(raw_ostream& Out, PTHIdKey*, uint32_t pID,
+ unsigned) {
+ using namespace llvm::support;
+ endian::Writer<little>(Out).write<uint32_t>(pID);
+ }
+};
+} // end anonymous namespace
+
+/// EmitIdentifierTable - Emits two tables to the PTH file. The first is
+/// a hashtable mapping from identifier strings to persistent IDs. The second
+/// is a straight table mapping from persistent IDs to string data (the
+/// keys of the first table).
+///
+std::pair<Offset,Offset> PTHWriter::EmitIdentifierTable() {
+ // Build two maps:
+ // (1) an inverse map from persistent IDs -> (IdentifierInfo*,Offset)
+ // (2) a map from (IdentifierInfo*, Offset)* -> persistent IDs
+
+ // Note that we use 'calloc', so all the bytes are 0.
+ PTHIdKey *IIDMap = (PTHIdKey*)calloc(idcount, sizeof(PTHIdKey));
+
+ // Create the hashtable.
+ llvm::OnDiskChainedHashTableGenerator<PTHIdentifierTableTrait> IIOffMap;
+
+ // Generate mapping from persistent IDs -> IdentifierInfo*.
+ for (IDMap::iterator I = IM.begin(), E = IM.end(); I != E; ++I) {
+ // Decrement by 1 because we are using a vector for the lookup and
+ // 0 is reserved for NULL.
+ assert(I->second > 0);
+ assert(I->second-1 < idcount);
+ unsigned idx = I->second-1;
+
+ // Store the mapping from persistent ID to IdentifierInfo*
+ IIDMap[idx].II = I->first;
+
+ // Store the reverse mapping in a hashtable.
+ IIOffMap.insert(&IIDMap[idx], I->second);
+ }
+
+ // Write out the inverse map first. This causes the PCIDKey entries to
+ // record PTH file offsets for the string data. This is used to write
+ // the second table.
+ Offset StringTableOffset = IIOffMap.Emit(Out);
+
+ // Now emit the table mapping from persistent IDs to PTH file offsets.
+ Offset IDOff = Out.tell();
+ Emit32(idcount); // Emit the number of identifiers.
+ for (unsigned i = 0 ; i < idcount; ++i)
+ Emit32(IIDMap[i].FileOffset);
+
+ // Finally, release the inverse map.
+ free(IIDMap);
+
+ return std::make_pair(IDOff, StringTableOffset);
+}
diff --git a/contrib/llvm/tools/clang/lib/Frontend/ChainedDiagnosticConsumer.cpp b/contrib/llvm/tools/clang/lib/Frontend/ChainedDiagnosticConsumer.cpp
new file mode 100644
index 0000000..d77fd18
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Frontend/ChainedDiagnosticConsumer.cpp
@@ -0,0 +1,14 @@
+//===- ChainedDiagnosticConsumer.cpp - Chain Diagnostic Clients -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Frontend/ChainedDiagnosticConsumer.h"
+
+using namespace clang;
+
+void ChainedDiagnosticConsumer::anchor() { }
diff --git a/contrib/llvm/tools/clang/lib/Frontend/ChainedIncludesSource.cpp b/contrib/llvm/tools/clang/lib/Frontend/ChainedIncludesSource.cpp
new file mode 100644
index 0000000..f3677f8
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Frontend/ChainedIncludesSource.cpp
@@ -0,0 +1,292 @@
+//===- ChainedIncludesSource.cpp - Chained PCHs in Memory -------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the ChainedIncludesSource class, which converts headers
+// to chained PCHs in memory, mainly used for testing.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Frontend/ASTUnit.h"
+#include "clang/Frontend/CompilerInstance.h"
+#include "clang/Frontend/TextDiagnosticPrinter.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Parse/ParseAST.h"
+#include "clang/Serialization/ASTReader.h"
+#include "clang/Serialization/ASTWriter.h"
+#include "llvm/Support/MemoryBuffer.h"
+
+using namespace clang;
+
+namespace {
+class ChainedIncludesSource : public ExternalSemaSource {
+public:
+ ~ChainedIncludesSource() override;
+
+ ExternalSemaSource &getFinalReader() const { return *FinalReader; }
+
+ std::vector<CompilerInstance *> CIs;
+ IntrusiveRefCntPtr<ExternalSemaSource> FinalReader;
+
+protected:
+ //===----------------------------------------------------------------------===//
+ // ExternalASTSource interface.
+ //===----------------------------------------------------------------------===//
+
+ Decl *GetExternalDecl(uint32_t ID) override;
+ Selector GetExternalSelector(uint32_t ID) override;
+ uint32_t GetNumExternalSelectors() override;
+ Stmt *GetExternalDeclStmt(uint64_t Offset) override;
+ CXXCtorInitializer **GetExternalCXXCtorInitializers(uint64_t Offset) override;
+ CXXBaseSpecifier *GetExternalCXXBaseSpecifiers(uint64_t Offset) override;
+ bool FindExternalVisibleDeclsByName(const DeclContext *DC,
+ DeclarationName Name) override;
+ ExternalLoadResult
+ FindExternalLexicalDecls(const DeclContext *DC,
+ bool (*isKindWeWant)(Decl::Kind),
+ SmallVectorImpl<Decl *> &Result) override;
+ void CompleteType(TagDecl *Tag) override;
+ void CompleteType(ObjCInterfaceDecl *Class) override;
+ void StartedDeserializing() override;
+ void FinishedDeserializing() override;
+ void StartTranslationUnit(ASTConsumer *Consumer) override;
+ void PrintStats() override;
+
+ /// Return the amount of memory used by memory buffers, breaking down
+ /// by heap-backed versus mmap'ed memory.
+ void getMemoryBufferSizes(MemoryBufferSizes &sizes) const override;
+
+ //===----------------------------------------------------------------------===//
+ // ExternalSemaSource interface.
+ //===----------------------------------------------------------------------===//
+
+ void InitializeSema(Sema &S) override;
+ void ForgetSema() override;
+ void ReadMethodPool(Selector Sel) override;
+ bool LookupUnqualified(LookupResult &R, Scope *S) override;
+};
+}
+
+static ASTReader *
+createASTReader(CompilerInstance &CI, StringRef pchFile,
+ SmallVectorImpl<std::unique_ptr<llvm::MemoryBuffer>> &MemBufs,
+ SmallVectorImpl<std::string> &bufNames,
+ ASTDeserializationListener *deserialListener = nullptr) {
+ Preprocessor &PP = CI.getPreprocessor();
+ std::unique_ptr<ASTReader> Reader;
+ Reader.reset(new ASTReader(PP, CI.getASTContext(), /*isysroot=*/"",
+ /*DisableValidation=*/true));
+ for (unsigned ti = 0; ti < bufNames.size(); ++ti) {
+ StringRef sr(bufNames[ti]);
+ Reader->addInMemoryBuffer(sr, std::move(MemBufs[ti]));
+ }
+ Reader->setDeserializationListener(deserialListener);
+ switch (Reader->ReadAST(pchFile, serialization::MK_PCH, SourceLocation(),
+ ASTReader::ARR_None)) {
+ case ASTReader::Success:
+ // Set the predefines buffer as suggested by the PCH reader.
+ PP.setPredefines(Reader->getSuggestedPredefines());
+ return Reader.release();
+
+ case ASTReader::Failure:
+ case ASTReader::Missing:
+ case ASTReader::OutOfDate:
+ case ASTReader::VersionMismatch:
+ case ASTReader::ConfigurationMismatch:
+ case ASTReader::HadErrors:
+ break;
+ }
+ return nullptr;
+}
+
+ChainedIncludesSource::~ChainedIncludesSource() {
+ for (unsigned i = 0, e = CIs.size(); i != e; ++i)
+ delete CIs[i];
+}
+
+IntrusiveRefCntPtr<ExternalSemaSource> clang::createChainedIncludesSource(
+ CompilerInstance &CI, IntrusiveRefCntPtr<ExternalSemaSource> &Reader) {
+
+ std::vector<std::string> &includes = CI.getPreprocessorOpts().ChainedIncludes;
+ assert(!includes.empty() && "No '-chain-include' in options!");
+
+ IntrusiveRefCntPtr<ChainedIncludesSource> source(new ChainedIncludesSource());
+ InputKind IK = CI.getFrontendOpts().Inputs[0].getKind();
+
+ SmallVector<std::unique_ptr<llvm::MemoryBuffer>, 4> SerialBufs;
+ SmallVector<std::string, 4> serialBufNames;
+
+ for (unsigned i = 0, e = includes.size(); i != e; ++i) {
+ bool firstInclude = (i == 0);
+ std::unique_ptr<CompilerInvocation> CInvok;
+ CInvok.reset(new CompilerInvocation(CI.getInvocation()));
+
+ CInvok->getPreprocessorOpts().ChainedIncludes.clear();
+ CInvok->getPreprocessorOpts().ImplicitPCHInclude.clear();
+ CInvok->getPreprocessorOpts().ImplicitPTHInclude.clear();
+ CInvok->getPreprocessorOpts().DisablePCHValidation = true;
+ CInvok->getPreprocessorOpts().Includes.clear();
+ CInvok->getPreprocessorOpts().MacroIncludes.clear();
+ CInvok->getPreprocessorOpts().Macros.clear();
+
+ CInvok->getFrontendOpts().Inputs.clear();
+ FrontendInputFile InputFile(includes[i], IK);
+ CInvok->getFrontendOpts().Inputs.push_back(InputFile);
+
+ TextDiagnosticPrinter *DiagClient =
+ new TextDiagnosticPrinter(llvm::errs(), new DiagnosticOptions());
+ IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs());
+ IntrusiveRefCntPtr<DiagnosticsEngine> Diags(
+ new DiagnosticsEngine(DiagID, &CI.getDiagnosticOpts(), DiagClient));
+
+ std::unique_ptr<CompilerInstance> Clang(new CompilerInstance());
+ Clang->setInvocation(CInvok.release());
+ Clang->setDiagnostics(Diags.get());
+ Clang->setTarget(TargetInfo::CreateTargetInfo(
+ Clang->getDiagnostics(), Clang->getInvocation().TargetOpts));
+ Clang->createFileManager();
+ Clang->createSourceManager(Clang->getFileManager());
+ Clang->createPreprocessor(TU_Prefix);
+ Clang->getDiagnosticClient().BeginSourceFile(Clang->getLangOpts(),
+ &Clang->getPreprocessor());
+ Clang->createASTContext();
+
+ SmallVector<char, 256> serialAST;
+ llvm::raw_svector_ostream OS(serialAST);
+ auto consumer =
+ llvm::make_unique<PCHGenerator>(Clang->getPreprocessor(), "-", nullptr,
+ /*isysroot=*/"", &OS);
+ Clang->getASTContext().setASTMutationListener(
+ consumer->GetASTMutationListener());
+ Clang->setASTConsumer(std::move(consumer));
+ Clang->createSema(TU_Prefix, nullptr);
+
+ if (firstInclude) {
+ Preprocessor &PP = Clang->getPreprocessor();
+ PP.getBuiltinInfo().InitializeBuiltins(PP.getIdentifierTable(),
+ PP.getLangOpts());
+ } else {
+ assert(!SerialBufs.empty());
+ SmallVector<std::unique_ptr<llvm::MemoryBuffer>, 4> Bufs;
+ // TODO: Pass through the existing MemoryBuffer instances instead of
+ // allocating new ones.
+ for (auto &SB : SerialBufs)
+ Bufs.push_back(llvm::MemoryBuffer::getMemBuffer(SB->getBuffer()));
+ std::string pchName = includes[i-1];
+ llvm::raw_string_ostream os(pchName);
+ os << ".pch" << i-1;
+ serialBufNames.push_back(os.str());
+
+ IntrusiveRefCntPtr<ASTReader> Reader;
+ Reader = createASTReader(
+ *Clang, pchName, Bufs, serialBufNames,
+ Clang->getASTConsumer().GetASTDeserializationListener());
+ if (!Reader)
+ return nullptr;
+ Clang->setModuleManager(Reader);
+ Clang->getASTContext().setExternalSource(Reader);
+ }
+
+ if (!Clang->InitializeSourceManager(InputFile))
+ return nullptr;
+
+ ParseAST(Clang->getSema());
+ Clang->getDiagnosticClient().EndSourceFile();
+ SerialBufs.push_back(llvm::MemoryBuffer::getMemBufferCopy(OS.str()));
+ source->CIs.push_back(Clang.release());
+ }
+
+ assert(!SerialBufs.empty());
+ std::string pchName = includes.back() + ".pch-final";
+ serialBufNames.push_back(pchName);
+ Reader = createASTReader(CI, pchName, SerialBufs, serialBufNames);
+ if (!Reader)
+ return nullptr;
+
+ source->FinalReader = Reader;
+ return source;
+}
+
+//===----------------------------------------------------------------------===//
+// ExternalASTSource interface.
+//===----------------------------------------------------------------------===//
+
+Decl *ChainedIncludesSource::GetExternalDecl(uint32_t ID) {
+ return getFinalReader().GetExternalDecl(ID);
+}
+Selector ChainedIncludesSource::GetExternalSelector(uint32_t ID) {
+ return getFinalReader().GetExternalSelector(ID);
+}
+uint32_t ChainedIncludesSource::GetNumExternalSelectors() {
+ return getFinalReader().GetNumExternalSelectors();
+}
+Stmt *ChainedIncludesSource::GetExternalDeclStmt(uint64_t Offset) {
+ return getFinalReader().GetExternalDeclStmt(Offset);
+}
+CXXBaseSpecifier *
+ChainedIncludesSource::GetExternalCXXBaseSpecifiers(uint64_t Offset) {
+ return getFinalReader().GetExternalCXXBaseSpecifiers(Offset);
+}
+CXXCtorInitializer **
+ChainedIncludesSource::GetExternalCXXCtorInitializers(uint64_t Offset) {
+ return getFinalReader().GetExternalCXXCtorInitializers(Offset);
+}
+bool
+ChainedIncludesSource::FindExternalVisibleDeclsByName(const DeclContext *DC,
+ DeclarationName Name) {
+ return getFinalReader().FindExternalVisibleDeclsByName(DC, Name);
+}
+ExternalLoadResult
+ChainedIncludesSource::FindExternalLexicalDecls(const DeclContext *DC,
+ bool (*isKindWeWant)(Decl::Kind),
+ SmallVectorImpl<Decl*> &Result) {
+ return getFinalReader().FindExternalLexicalDecls(DC, isKindWeWant, Result);
+}
+void ChainedIncludesSource::CompleteType(TagDecl *Tag) {
+ return getFinalReader().CompleteType(Tag);
+}
+void ChainedIncludesSource::CompleteType(ObjCInterfaceDecl *Class) {
+ return getFinalReader().CompleteType(Class);
+}
+void ChainedIncludesSource::StartedDeserializing() {
+ return getFinalReader().StartedDeserializing();
+}
+void ChainedIncludesSource::FinishedDeserializing() {
+ return getFinalReader().FinishedDeserializing();
+}
+void ChainedIncludesSource::StartTranslationUnit(ASTConsumer *Consumer) {
+ return getFinalReader().StartTranslationUnit(Consumer);
+}
+void ChainedIncludesSource::PrintStats() {
+ return getFinalReader().PrintStats();
+}
+void ChainedIncludesSource::getMemoryBufferSizes(MemoryBufferSizes &sizes)const{
+ for (unsigned i = 0, e = CIs.size(); i != e; ++i) {
+ if (const ExternalASTSource *eSrc =
+ CIs[i]->getASTContext().getExternalSource()) {
+ eSrc->getMemoryBufferSizes(sizes);
+ }
+ }
+
+ getFinalReader().getMemoryBufferSizes(sizes);
+}
+
+void ChainedIncludesSource::InitializeSema(Sema &S) {
+ return getFinalReader().InitializeSema(S);
+}
+void ChainedIncludesSource::ForgetSema() {
+ return getFinalReader().ForgetSema();
+}
+void ChainedIncludesSource::ReadMethodPool(Selector Sel) {
+ getFinalReader().ReadMethodPool(Sel);
+}
+bool ChainedIncludesSource::LookupUnqualified(LookupResult &R, Scope *S) {
+ return getFinalReader().LookupUnqualified(R, S);
+}
+
diff --git a/contrib/llvm/tools/clang/lib/Frontend/CodeGenOptions.cpp b/contrib/llvm/tools/clang/lib/Frontend/CodeGenOptions.cpp
new file mode 100644
index 0000000..75ee47f
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Frontend/CodeGenOptions.cpp
@@ -0,0 +1,24 @@
+//===--- CodeGenOptions.cpp -----------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Frontend/CodeGenOptions.h"
+#include <string.h>
+
+namespace clang {
+
+CodeGenOptions::CodeGenOptions() {
+#define CODEGENOPT(Name, Bits, Default) Name = Default;
+#define ENUM_CODEGENOPT(Name, Type, Bits, Default) set##Name(Default);
+#include "clang/Frontend/CodeGenOptions.def"
+
+ RelocationModel = "pic";
+ memcpy(CoverageVersion, "402*", 4);
+}
+
+} // end namespace clang
diff --git a/contrib/llvm/tools/clang/lib/Frontend/CompilerInstance.cpp b/contrib/llvm/tools/clang/lib/Frontend/CompilerInstance.cpp
new file mode 100644
index 0000000..9e01727
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Frontend/CompilerInstance.cpp
@@ -0,0 +1,1712 @@
+//===--- CompilerInstance.cpp ---------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Frontend/CompilerInstance.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Decl.h"
+#include "clang/Basic/Diagnostic.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Basic/Version.h"
+#include "clang/Config/config.h"
+#include "clang/Frontend/ChainedDiagnosticConsumer.h"
+#include "clang/Frontend/FrontendAction.h"
+#include "clang/Frontend/FrontendActions.h"
+#include "clang/Frontend/FrontendDiagnostic.h"
+#include "clang/Frontend/LogDiagnosticPrinter.h"
+#include "clang/Frontend/SerializedDiagnosticPrinter.h"
+#include "clang/Frontend/TextDiagnosticPrinter.h"
+#include "clang/Frontend/Utils.h"
+#include "clang/Frontend/VerifyDiagnosticConsumer.h"
+#include "clang/Lex/HeaderSearch.h"
+#include "clang/Lex/PTHManager.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Sema/CodeCompleteConsumer.h"
+#include "clang/Sema/Sema.h"
+#include "clang/Serialization/ASTReader.h"
+#include "clang/Serialization/GlobalModuleIndex.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/CrashRecoveryContext.h"
+#include "llvm/Support/Errc.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/Host.h"
+#include "llvm/Support/LockFileManager.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/Program.h"
+#include "llvm/Support/Signals.h"
+#include "llvm/Support/Timer.h"
+#include "llvm/Support/raw_ostream.h"
+#include <sys/stat.h>
+#include <system_error>
+#include <time.h>
+
+using namespace clang;
+
+CompilerInstance::CompilerInstance(bool BuildingModule)
+ : ModuleLoader(BuildingModule),
+ Invocation(new CompilerInvocation()), ModuleManager(nullptr),
+ BuildGlobalModuleIndex(false), HaveFullGlobalModuleIndex(false),
+ ModuleBuildFailed(false) {
+}
+
+CompilerInstance::~CompilerInstance() {
+ assert(OutputFiles.empty() && "Still output files in flight?");
+}
+
+void CompilerInstance::setInvocation(CompilerInvocation *Value) {
+ Invocation = Value;
+}
+
+bool CompilerInstance::shouldBuildGlobalModuleIndex() const {
+ return (BuildGlobalModuleIndex ||
+ (ModuleManager && ModuleManager->isGlobalIndexUnavailable() &&
+ getFrontendOpts().GenerateGlobalModuleIndex)) &&
+ !ModuleBuildFailed;
+}
+
+void CompilerInstance::setDiagnostics(DiagnosticsEngine *Value) {
+ Diagnostics = Value;
+}
+
+void CompilerInstance::setTarget(TargetInfo *Value) {
+ Target = Value;
+}
+
+void CompilerInstance::setFileManager(FileManager *Value) {
+ FileMgr = Value;
+ if (Value)
+ VirtualFileSystem = Value->getVirtualFileSystem();
+ else
+ VirtualFileSystem.reset();
+}
+
+void CompilerInstance::setSourceManager(SourceManager *Value) {
+ SourceMgr = Value;
+}
+
+void CompilerInstance::setPreprocessor(Preprocessor *Value) { PP = Value; }
+
+void CompilerInstance::setASTContext(ASTContext *Value) { Context = Value; }
+
+void CompilerInstance::setSema(Sema *S) {
+ TheSema.reset(S);
+}
+
+void CompilerInstance::setASTConsumer(std::unique_ptr<ASTConsumer> Value) {
+ Consumer = std::move(Value);
+}
+
+void CompilerInstance::setCodeCompletionConsumer(CodeCompleteConsumer *Value) {
+ CompletionConsumer.reset(Value);
+}
+
+std::unique_ptr<Sema> CompilerInstance::takeSema() {
+ return std::move(TheSema);
+}
+
+IntrusiveRefCntPtr<ASTReader> CompilerInstance::getModuleManager() const {
+ return ModuleManager;
+}
+void CompilerInstance::setModuleManager(IntrusiveRefCntPtr<ASTReader> Reader) {
+ ModuleManager = Reader;
+}
+
+std::shared_ptr<ModuleDependencyCollector>
+CompilerInstance::getModuleDepCollector() const {
+ return ModuleDepCollector;
+}
+
+void CompilerInstance::setModuleDepCollector(
+ std::shared_ptr<ModuleDependencyCollector> Collector) {
+ ModuleDepCollector = Collector;
+}
+
+// Diagnostics
+static void SetUpDiagnosticLog(DiagnosticOptions *DiagOpts,
+ const CodeGenOptions *CodeGenOpts,
+ DiagnosticsEngine &Diags) {
+ std::error_code EC;
+ std::unique_ptr<raw_ostream> StreamOwner;
+ raw_ostream *OS = &llvm::errs();
+ if (DiagOpts->DiagnosticLogFile != "-") {
+ // Create the output stream.
+ auto FileOS = llvm::make_unique<llvm::raw_fd_ostream>(
+ DiagOpts->DiagnosticLogFile, EC,
+ llvm::sys::fs::F_Append | llvm::sys::fs::F_Text);
+ if (EC) {
+ Diags.Report(diag::warn_fe_cc_log_diagnostics_failure)
+ << DiagOpts->DiagnosticLogFile << EC.message();
+ } else {
+ FileOS->SetUnbuffered();
+ FileOS->SetUseAtomicWrites(true);
+ OS = FileOS.get();
+ StreamOwner = std::move(FileOS);
+ }
+ }
+
+ // Chain in the diagnostic client which will log the diagnostics.
+ auto Logger = llvm::make_unique<LogDiagnosticPrinter>(*OS, DiagOpts,
+ std::move(StreamOwner));
+ if (CodeGenOpts)
+ Logger->setDwarfDebugFlags(CodeGenOpts->DwarfDebugFlags);
+ assert(Diags.ownsClient());
+ Diags.setClient(
+ new ChainedDiagnosticConsumer(Diags.takeClient(), std::move(Logger)));
+}
+
+static void SetupSerializedDiagnostics(DiagnosticOptions *DiagOpts,
+ DiagnosticsEngine &Diags,
+ StringRef OutputFile) {
+ auto SerializedConsumer =
+ clang::serialized_diags::create(OutputFile, DiagOpts);
+
+ if (Diags.ownsClient()) {
+ Diags.setClient(new ChainedDiagnosticConsumer(
+ Diags.takeClient(), std::move(SerializedConsumer)));
+ } else {
+ Diags.setClient(new ChainedDiagnosticConsumer(
+ Diags.getClient(), std::move(SerializedConsumer)));
+ }
+}
+
+void CompilerInstance::createDiagnostics(DiagnosticConsumer *Client,
+ bool ShouldOwnClient) {
+ Diagnostics = createDiagnostics(&getDiagnosticOpts(), Client,
+ ShouldOwnClient, &getCodeGenOpts());
+}
+
+IntrusiveRefCntPtr<DiagnosticsEngine>
+CompilerInstance::createDiagnostics(DiagnosticOptions *Opts,
+ DiagnosticConsumer *Client,
+ bool ShouldOwnClient,
+ const CodeGenOptions *CodeGenOpts) {
+ IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs());
+ IntrusiveRefCntPtr<DiagnosticsEngine>
+ Diags(new DiagnosticsEngine(DiagID, Opts));
+
+ // Create the diagnostic client for reporting errors or for
+ // implementing -verify.
+ if (Client) {
+ Diags->setClient(Client, ShouldOwnClient);
+ } else
+ Diags->setClient(new TextDiagnosticPrinter(llvm::errs(), Opts));
+
+ // Chain in -verify checker, if requested.
+ if (Opts->VerifyDiagnostics)
+ Diags->setClient(new VerifyDiagnosticConsumer(*Diags));
+
+ // Chain in -diagnostic-log-file dumper, if requested.
+ if (!Opts->DiagnosticLogFile.empty())
+ SetUpDiagnosticLog(Opts, CodeGenOpts, *Diags);
+
+ if (!Opts->DiagnosticSerializationFile.empty())
+ SetupSerializedDiagnostics(Opts, *Diags,
+ Opts->DiagnosticSerializationFile);
+
+ // Configure our handling of diagnostics.
+ ProcessWarningOptions(*Diags, *Opts);
+
+ return Diags;
+}
+
+// File Manager
+
+void CompilerInstance::createFileManager() {
+ if (!hasVirtualFileSystem()) {
+ // TODO: choose the virtual file system based on the CompilerInvocation.
+ setVirtualFileSystem(vfs::getRealFileSystem());
+ }
+ FileMgr = new FileManager(getFileSystemOpts(), VirtualFileSystem);
+}
+
+// Source Manager
+
+void CompilerInstance::createSourceManager(FileManager &FileMgr) {
+ SourceMgr = new SourceManager(getDiagnostics(), FileMgr);
+}
+
+// Initialize the remapping of files to alternative contents, e.g.,
+// those specified through other files.
+static void InitializeFileRemapping(DiagnosticsEngine &Diags,
+ SourceManager &SourceMgr,
+ FileManager &FileMgr,
+ const PreprocessorOptions &InitOpts) {
+ // Remap files in the source manager (with buffers).
+ for (const auto &RB : InitOpts.RemappedFileBuffers) {
+ // Create the file entry for the file that we're mapping from.
+ const FileEntry *FromFile =
+ FileMgr.getVirtualFile(RB.first, RB.second->getBufferSize(), 0);
+ if (!FromFile) {
+ Diags.Report(diag::err_fe_remap_missing_from_file) << RB.first;
+ if (!InitOpts.RetainRemappedFileBuffers)
+ delete RB.second;
+ continue;
+ }
+
+ // Override the contents of the "from" file with the contents of
+ // the "to" file.
+ SourceMgr.overrideFileContents(FromFile, RB.second,
+ InitOpts.RetainRemappedFileBuffers);
+ }
+
+ // Remap files in the source manager (with other files).
+ for (const auto &RF : InitOpts.RemappedFiles) {
+ // Find the file that we're mapping to.
+ const FileEntry *ToFile = FileMgr.getFile(RF.second);
+ if (!ToFile) {
+ Diags.Report(diag::err_fe_remap_missing_to_file) << RF.first << RF.second;
+ continue;
+ }
+
+ // Create the file entry for the file that we're mapping from.
+ const FileEntry *FromFile =
+ FileMgr.getVirtualFile(RF.first, ToFile->getSize(), 0);
+ if (!FromFile) {
+ Diags.Report(diag::err_fe_remap_missing_from_file) << RF.first;
+ continue;
+ }
+
+ // Override the contents of the "from" file with the contents of
+ // the "to" file.
+ SourceMgr.overrideFileContents(FromFile, ToFile);
+ }
+
+ SourceMgr.setOverridenFilesKeepOriginalName(
+ InitOpts.RemappedFilesKeepOriginalName);
+}
+
+// Preprocessor
+
+void CompilerInstance::createPreprocessor(TranslationUnitKind TUKind) {
+ const PreprocessorOptions &PPOpts = getPreprocessorOpts();
+
+ // Create a PTH manager if we are using some form of a token cache.
+ PTHManager *PTHMgr = nullptr;
+ if (!PPOpts.TokenCache.empty())
+ PTHMgr = PTHManager::Create(PPOpts.TokenCache, getDiagnostics());
+
+ // Create the Preprocessor.
+ HeaderSearch *HeaderInfo = new HeaderSearch(&getHeaderSearchOpts(),
+ getSourceManager(),
+ getDiagnostics(),
+ getLangOpts(),
+ &getTarget());
+ PP = new Preprocessor(&getPreprocessorOpts(), getDiagnostics(), getLangOpts(),
+ getSourceManager(), *HeaderInfo, *this, PTHMgr,
+ /*OwnsHeaderSearch=*/true, TUKind);
+ PP->Initialize(getTarget());
+
+ // Note that this is different then passing PTHMgr to Preprocessor's ctor.
+ // That argument is used as the IdentifierInfoLookup argument to
+ // IdentifierTable's ctor.
+ if (PTHMgr) {
+ PTHMgr->setPreprocessor(&*PP);
+ PP->setPTHManager(PTHMgr);
+ }
+
+ if (PPOpts.DetailedRecord)
+ PP->createPreprocessingRecord();
+
+ // Apply remappings to the source manager.
+ InitializeFileRemapping(PP->getDiagnostics(), PP->getSourceManager(),
+ PP->getFileManager(), PPOpts);
+
+ // Predefine macros and configure the preprocessor.
+ InitializePreprocessor(*PP, PPOpts, getFrontendOpts());
+
+ // Initialize the header search object.
+ ApplyHeaderSearchOptions(PP->getHeaderSearchInfo(), getHeaderSearchOpts(),
+ PP->getLangOpts(), PP->getTargetInfo().getTriple());
+
+ PP->setPreprocessedOutput(getPreprocessorOutputOpts().ShowCPP);
+
+ if (PP->getLangOpts().Modules)
+ PP->getHeaderSearchInfo().setModuleCachePath(getSpecificModuleCachePath());
+
+ // Handle generating dependencies, if requested.
+ const DependencyOutputOptions &DepOpts = getDependencyOutputOpts();
+ if (!DepOpts.OutputFile.empty())
+ TheDependencyFileGenerator.reset(
+ DependencyFileGenerator::CreateAndAttachToPreprocessor(*PP, DepOpts));
+ if (!DepOpts.DOTOutputFile.empty())
+ AttachDependencyGraphGen(*PP, DepOpts.DOTOutputFile,
+ getHeaderSearchOpts().Sysroot);
+
+ for (auto &Listener : DependencyCollectors)
+ Listener->attachToPreprocessor(*PP);
+
+ // If we don't have a collector, but we are collecting module dependencies,
+ // then we're the top level compiler instance and need to create one.
+ if (!ModuleDepCollector && !DepOpts.ModuleDependencyOutputDir.empty())
+ ModuleDepCollector = std::make_shared<ModuleDependencyCollector>(
+ DepOpts.ModuleDependencyOutputDir);
+
+ // Handle generating header include information, if requested.
+ if (DepOpts.ShowHeaderIncludes)
+ AttachHeaderIncludeGen(*PP);
+ if (!DepOpts.HeaderIncludeOutputFile.empty()) {
+ StringRef OutputPath = DepOpts.HeaderIncludeOutputFile;
+ if (OutputPath == "-")
+ OutputPath = "";
+ AttachHeaderIncludeGen(*PP, /*ShowAllHeaders=*/true, OutputPath,
+ /*ShowDepth=*/false);
+ }
+
+ if (DepOpts.PrintShowIncludes) {
+ AttachHeaderIncludeGen(*PP, /*ShowAllHeaders=*/false, /*OutputPath=*/"",
+ /*ShowDepth=*/true, /*MSStyle=*/true);
+ }
+}
+
+std::string CompilerInstance::getSpecificModuleCachePath() {
+ // Set up the module path, including the hash for the
+ // module-creation options.
+ SmallString<256> SpecificModuleCache(
+ getHeaderSearchOpts().ModuleCachePath);
+ if (!getHeaderSearchOpts().DisableModuleHash)
+ llvm::sys::path::append(SpecificModuleCache,
+ getInvocation().getModuleHash());
+ return SpecificModuleCache.str();
+}
+
+// ASTContext
+
+void CompilerInstance::createASTContext() {
+ Preprocessor &PP = getPreprocessor();
+ Context = new ASTContext(getLangOpts(), PP.getSourceManager(),
+ PP.getIdentifierTable(), PP.getSelectorTable(),
+ PP.getBuiltinInfo());
+ Context->InitBuiltinTypes(getTarget());
+}
+
+// ExternalASTSource
+
+void CompilerInstance::createPCHExternalASTSource(
+ StringRef Path, bool DisablePCHValidation, bool AllowPCHWithCompilerErrors,
+ void *DeserializationListener, bool OwnDeserializationListener) {
+ bool Preamble = getPreprocessorOpts().PrecompiledPreambleBytes.first != 0;
+ ModuleManager = createPCHExternalASTSource(
+ Path, getHeaderSearchOpts().Sysroot, DisablePCHValidation,
+ AllowPCHWithCompilerErrors, getPreprocessor(), getASTContext(),
+ DeserializationListener, OwnDeserializationListener, Preamble,
+ getFrontendOpts().UseGlobalModuleIndex);
+}
+
+IntrusiveRefCntPtr<ASTReader> CompilerInstance::createPCHExternalASTSource(
+ StringRef Path, const std::string &Sysroot, bool DisablePCHValidation,
+ bool AllowPCHWithCompilerErrors, Preprocessor &PP, ASTContext &Context,
+ void *DeserializationListener, bool OwnDeserializationListener,
+ bool Preamble, bool UseGlobalModuleIndex) {
+ HeaderSearchOptions &HSOpts = PP.getHeaderSearchInfo().getHeaderSearchOpts();
+
+ IntrusiveRefCntPtr<ASTReader> Reader(
+ new ASTReader(PP, Context, Sysroot.empty() ? "" : Sysroot.c_str(),
+ DisablePCHValidation, AllowPCHWithCompilerErrors,
+ /*AllowConfigurationMismatch*/ false,
+ HSOpts.ModulesValidateSystemHeaders, UseGlobalModuleIndex));
+
+ // We need the external source to be set up before we read the AST, because
+ // eagerly-deserialized declarations may use it.
+ Context.setExternalSource(Reader.get());
+
+ Reader->setDeserializationListener(
+ static_cast<ASTDeserializationListener *>(DeserializationListener),
+ /*TakeOwnership=*/OwnDeserializationListener);
+ switch (Reader->ReadAST(Path,
+ Preamble ? serialization::MK_Preamble
+ : serialization::MK_PCH,
+ SourceLocation(),
+ ASTReader::ARR_None)) {
+ case ASTReader::Success:
+ // Set the predefines buffer as suggested by the PCH reader. Typically, the
+ // predefines buffer will be empty.
+ PP.setPredefines(Reader->getSuggestedPredefines());
+ return Reader;
+
+ case ASTReader::Failure:
+ // Unrecoverable failure: don't even try to process the input file.
+ break;
+
+ case ASTReader::Missing:
+ case ASTReader::OutOfDate:
+ case ASTReader::VersionMismatch:
+ case ASTReader::ConfigurationMismatch:
+ case ASTReader::HadErrors:
+ // No suitable PCH file could be found. Return an error.
+ break;
+ }
+
+ Context.setExternalSource(nullptr);
+ return nullptr;
+}
+
+// Code Completion
+
+static bool EnableCodeCompletion(Preprocessor &PP,
+ const std::string &Filename,
+ unsigned Line,
+ unsigned Column) {
+ // Tell the source manager to chop off the given file at a specific
+ // line and column.
+ const FileEntry *Entry = PP.getFileManager().getFile(Filename);
+ if (!Entry) {
+ PP.getDiagnostics().Report(diag::err_fe_invalid_code_complete_file)
+ << Filename;
+ return true;
+ }
+
+ // Truncate the named file at the given line/column.
+ PP.SetCodeCompletionPoint(Entry, Line, Column);
+ return false;
+}
+
+void CompilerInstance::createCodeCompletionConsumer() {
+ const ParsedSourceLocation &Loc = getFrontendOpts().CodeCompletionAt;
+ if (!CompletionConsumer) {
+ setCodeCompletionConsumer(
+ createCodeCompletionConsumer(getPreprocessor(),
+ Loc.FileName, Loc.Line, Loc.Column,
+ getFrontendOpts().CodeCompleteOpts,
+ llvm::outs()));
+ if (!CompletionConsumer)
+ return;
+ } else if (EnableCodeCompletion(getPreprocessor(), Loc.FileName,
+ Loc.Line, Loc.Column)) {
+ setCodeCompletionConsumer(nullptr);
+ return;
+ }
+
+ if (CompletionConsumer->isOutputBinary() &&
+ llvm::sys::ChangeStdoutToBinary()) {
+ getPreprocessor().getDiagnostics().Report(diag::err_fe_stdout_binary);
+ setCodeCompletionConsumer(nullptr);
+ }
+}
+
+void CompilerInstance::createFrontendTimer() {
+ FrontendTimer.reset(new llvm::Timer("Clang front-end timer"));
+}
+
+CodeCompleteConsumer *
+CompilerInstance::createCodeCompletionConsumer(Preprocessor &PP,
+ const std::string &Filename,
+ unsigned Line,
+ unsigned Column,
+ const CodeCompleteOptions &Opts,
+ raw_ostream &OS) {
+ if (EnableCodeCompletion(PP, Filename, Line, Column))
+ return nullptr;
+
+ // Set up the creation routine for code-completion.
+ return new PrintingCodeCompleteConsumer(Opts, OS);
+}
+
+void CompilerInstance::createSema(TranslationUnitKind TUKind,
+ CodeCompleteConsumer *CompletionConsumer) {
+ TheSema.reset(new Sema(getPreprocessor(), getASTContext(), getASTConsumer(),
+ TUKind, CompletionConsumer));
+}
+
+// Output Files
+
+void CompilerInstance::addOutputFile(OutputFile &&OutFile) {
+ assert(OutFile.OS && "Attempt to add empty stream to output list!");
+ OutputFiles.push_back(std::move(OutFile));
+}
+
+void CompilerInstance::clearOutputFiles(bool EraseFiles) {
+ for (OutputFile &OF : OutputFiles) {
+ // Manually close the stream before we rename it.
+ OF.OS.reset();
+
+ if (!OF.TempFilename.empty()) {
+ if (EraseFiles) {
+ llvm::sys::fs::remove(OF.TempFilename);
+ } else {
+ SmallString<128> NewOutFile(OF.Filename);
+
+ // If '-working-directory' was passed, the output filename should be
+ // relative to that.
+ FileMgr->FixupRelativePath(NewOutFile);
+ if (std::error_code ec =
+ llvm::sys::fs::rename(OF.TempFilename, NewOutFile)) {
+ getDiagnostics().Report(diag::err_unable_to_rename_temp)
+ << OF.TempFilename << OF.Filename << ec.message();
+
+ llvm::sys::fs::remove(OF.TempFilename);
+ }
+ }
+ } else if (!OF.Filename.empty() && EraseFiles)
+ llvm::sys::fs::remove(OF.Filename);
+
+ }
+ OutputFiles.clear();
+ NonSeekStream.reset();
+}
+
+raw_pwrite_stream *
+CompilerInstance::createDefaultOutputFile(bool Binary, StringRef InFile,
+ StringRef Extension) {
+ return createOutputFile(getFrontendOpts().OutputFile, Binary,
+ /*RemoveFileOnSignal=*/true, InFile, Extension,
+ /*UseTemporary=*/true);
+}
+
+llvm::raw_null_ostream *CompilerInstance::createNullOutputFile() {
+ auto OS = llvm::make_unique<llvm::raw_null_ostream>();
+ llvm::raw_null_ostream *Ret = OS.get();
+ addOutputFile(OutputFile("", "", std::move(OS)));
+ return Ret;
+}
+
+raw_pwrite_stream *
+CompilerInstance::createOutputFile(StringRef OutputPath, bool Binary,
+ bool RemoveFileOnSignal, StringRef InFile,
+ StringRef Extension, bool UseTemporary,
+ bool CreateMissingDirectories) {
+ std::string OutputPathName, TempPathName;
+ std::error_code EC;
+ std::unique_ptr<raw_pwrite_stream> OS = createOutputFile(
+ OutputPath, EC, Binary, RemoveFileOnSignal, InFile, Extension,
+ UseTemporary, CreateMissingDirectories, &OutputPathName, &TempPathName);
+ if (!OS) {
+ getDiagnostics().Report(diag::err_fe_unable_to_open_output) << OutputPath
+ << EC.message();
+ return nullptr;
+ }
+
+ raw_pwrite_stream *Ret = OS.get();
+ // Add the output file -- but don't try to remove "-", since this means we are
+ // using stdin.
+ addOutputFile(OutputFile((OutputPathName != "-") ? OutputPathName : "",
+ TempPathName, std::move(OS)));
+
+ return Ret;
+}
+
+std::unique_ptr<llvm::raw_pwrite_stream> CompilerInstance::createOutputFile(
+ StringRef OutputPath, std::error_code &Error, bool Binary,
+ bool RemoveFileOnSignal, StringRef InFile, StringRef Extension,
+ bool UseTemporary, bool CreateMissingDirectories,
+ std::string *ResultPathName, std::string *TempPathName) {
+ assert((!CreateMissingDirectories || UseTemporary) &&
+ "CreateMissingDirectories is only allowed when using temporary files");
+
+ std::string OutFile, TempFile;
+ if (!OutputPath.empty()) {
+ OutFile = OutputPath;
+ } else if (InFile == "-") {
+ OutFile = "-";
+ } else if (!Extension.empty()) {
+ SmallString<128> Path(InFile);
+ llvm::sys::path::replace_extension(Path, Extension);
+ OutFile = Path.str();
+ } else {
+ OutFile = "-";
+ }
+
+ std::unique_ptr<llvm::raw_fd_ostream> OS;
+ std::string OSFile;
+
+ if (UseTemporary) {
+ if (OutFile == "-")
+ UseTemporary = false;
+ else {
+ llvm::sys::fs::file_status Status;
+ llvm::sys::fs::status(OutputPath, Status);
+ if (llvm::sys::fs::exists(Status)) {
+ // Fail early if we can't write to the final destination.
+ if (!llvm::sys::fs::can_write(OutputPath))
+ return nullptr;
+
+ // Don't use a temporary if the output is a special file. This handles
+ // things like '-o /dev/null'
+ if (!llvm::sys::fs::is_regular_file(Status))
+ UseTemporary = false;
+ }
+ }
+ }
+
+ if (UseTemporary) {
+ // Create a temporary file.
+ SmallString<128> TempPath;
+ TempPath = OutFile;
+ TempPath += "-%%%%%%%%";
+ int fd;
+ std::error_code EC =
+ llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath);
+
+ if (CreateMissingDirectories &&
+ EC == llvm::errc::no_such_file_or_directory) {
+ StringRef Parent = llvm::sys::path::parent_path(OutputPath);
+ EC = llvm::sys::fs::create_directories(Parent);
+ if (!EC) {
+ EC = llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath);
+ }
+ }
+
+ if (!EC) {
+ OS.reset(new llvm::raw_fd_ostream(fd, /*shouldClose=*/true));
+ OSFile = TempFile = TempPath.str();
+ }
+ // If we failed to create the temporary, fallback to writing to the file
+ // directly. This handles the corner case where we cannot write to the
+ // directory, but can write to the file.
+ }
+
+ if (!OS) {
+ OSFile = OutFile;
+ OS.reset(new llvm::raw_fd_ostream(
+ OSFile, Error,
+ (Binary ? llvm::sys::fs::F_None : llvm::sys::fs::F_Text)));
+ if (Error)
+ return nullptr;
+ }
+
+ // Make sure the out stream file gets removed if we crash.
+ if (RemoveFileOnSignal)
+ llvm::sys::RemoveFileOnSignal(OSFile);
+
+ if (ResultPathName)
+ *ResultPathName = OutFile;
+ if (TempPathName)
+ *TempPathName = TempFile;
+
+ if (!Binary || OS->supportsSeeking())
+ return std::move(OS);
+
+ auto B = llvm::make_unique<llvm::buffer_ostream>(*OS);
+ assert(!NonSeekStream);
+ NonSeekStream = std::move(OS);
+ return std::move(B);
+}
+
+// Initialization Utilities
+
+bool CompilerInstance::InitializeSourceManager(const FrontendInputFile &Input){
+ return InitializeSourceManager(Input, getDiagnostics(),
+ getFileManager(), getSourceManager(),
+ getFrontendOpts());
+}
+
+bool CompilerInstance::InitializeSourceManager(const FrontendInputFile &Input,
+ DiagnosticsEngine &Diags,
+ FileManager &FileMgr,
+ SourceManager &SourceMgr,
+ const FrontendOptions &Opts) {
+ SrcMgr::CharacteristicKind
+ Kind = Input.isSystem() ? SrcMgr::C_System : SrcMgr::C_User;
+
+ if (Input.isBuffer()) {
+ SourceMgr.setMainFileID(SourceMgr.createFileID(
+ std::unique_ptr<llvm::MemoryBuffer>(Input.getBuffer()), Kind));
+ assert(!SourceMgr.getMainFileID().isInvalid() &&
+ "Couldn't establish MainFileID!");
+ return true;
+ }
+
+ StringRef InputFile = Input.getFile();
+
+ // Figure out where to get and map in the main file.
+ if (InputFile != "-") {
+ const FileEntry *File = FileMgr.getFile(InputFile, /*OpenFile=*/true);
+ if (!File) {
+ Diags.Report(diag::err_fe_error_reading) << InputFile;
+ return false;
+ }
+
+ // The natural SourceManager infrastructure can't currently handle named
+ // pipes, but we would at least like to accept them for the main
+ // file. Detect them here, read them with the volatile flag so FileMgr will
+ // pick up the correct size, and simply override their contents as we do for
+ // STDIN.
+ if (File->isNamedPipe()) {
+ auto MB = FileMgr.getBufferForFile(File, /*isVolatile=*/true);
+ if (MB) {
+ // Create a new virtual file that will have the correct size.
+ File = FileMgr.getVirtualFile(InputFile, (*MB)->getBufferSize(), 0);
+ SourceMgr.overrideFileContents(File, std::move(*MB));
+ } else {
+ Diags.Report(diag::err_cannot_open_file) << InputFile
+ << MB.getError().message();
+ return false;
+ }
+ }
+
+ SourceMgr.setMainFileID(
+ SourceMgr.createFileID(File, SourceLocation(), Kind));
+ } else {
+ llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> SBOrErr =
+ llvm::MemoryBuffer::getSTDIN();
+ if (std::error_code EC = SBOrErr.getError()) {
+ Diags.Report(diag::err_fe_error_reading_stdin) << EC.message();
+ return false;
+ }
+ std::unique_ptr<llvm::MemoryBuffer> SB = std::move(SBOrErr.get());
+
+ const FileEntry *File = FileMgr.getVirtualFile(SB->getBufferIdentifier(),
+ SB->getBufferSize(), 0);
+ SourceMgr.setMainFileID(
+ SourceMgr.createFileID(File, SourceLocation(), Kind));
+ SourceMgr.overrideFileContents(File, std::move(SB));
+ }
+
+ assert(!SourceMgr.getMainFileID().isInvalid() &&
+ "Couldn't establish MainFileID!");
+ return true;
+}
+
+// High-Level Operations
+
+bool CompilerInstance::ExecuteAction(FrontendAction &Act) {
+ assert(hasDiagnostics() && "Diagnostics engine is not initialized!");
+ assert(!getFrontendOpts().ShowHelp && "Client must handle '-help'!");
+ assert(!getFrontendOpts().ShowVersion && "Client must handle '-version'!");
+
+ // FIXME: Take this as an argument, once all the APIs we used have moved to
+ // taking it as an input instead of hard-coding llvm::errs.
+ raw_ostream &OS = llvm::errs();
+
+ // Create the target instance.
+ setTarget(TargetInfo::CreateTargetInfo(getDiagnostics(),
+ getInvocation().TargetOpts));
+ if (!hasTarget())
+ return false;
+
+ // Inform the target of the language options.
+ //
+ // FIXME: We shouldn't need to do this, the target should be immutable once
+ // created. This complexity should be lifted elsewhere.
+ getTarget().adjust(getLangOpts());
+
+ // rewriter project will change target built-in bool type from its default.
+ if (getFrontendOpts().ProgramAction == frontend::RewriteObjC)
+ getTarget().noSignedCharForObjCBool();
+
+ // Validate/process some options.
+ if (getHeaderSearchOpts().Verbose)
+ OS << "clang -cc1 version " CLANG_VERSION_STRING
+ << " based upon " << BACKEND_PACKAGE_STRING
+ << " default target " << llvm::sys::getDefaultTargetTriple() << "\n";
+
+ if (getFrontendOpts().ShowTimers)
+ createFrontendTimer();
+
+ if (getFrontendOpts().ShowStats)
+ llvm::EnableStatistics();
+
+ for (unsigned i = 0, e = getFrontendOpts().Inputs.size(); i != e; ++i) {
+ // Reset the ID tables if we are reusing the SourceManager and parsing
+ // regular files.
+ if (hasSourceManager() && !Act.isModelParsingAction())
+ getSourceManager().clearIDTables();
+
+ if (Act.BeginSourceFile(*this, getFrontendOpts().Inputs[i])) {
+ Act.Execute();
+ Act.EndSourceFile();
+ }
+ }
+
+ // Notify the diagnostic client that all files were processed.
+ getDiagnostics().getClient()->finish();
+
+ if (getDiagnosticOpts().ShowCarets) {
+ // We can have multiple diagnostics sharing one diagnostic client.
+ // Get the total number of warnings/errors from the client.
+ unsigned NumWarnings = getDiagnostics().getClient()->getNumWarnings();
+ unsigned NumErrors = getDiagnostics().getClient()->getNumErrors();
+
+ if (NumWarnings)
+ OS << NumWarnings << " warning" << (NumWarnings == 1 ? "" : "s");
+ if (NumWarnings && NumErrors)
+ OS << " and ";
+ if (NumErrors)
+ OS << NumErrors << " error" << (NumErrors == 1 ? "" : "s");
+ if (NumWarnings || NumErrors)
+ OS << " generated.\n";
+ }
+
+ if (getFrontendOpts().ShowStats && hasFileManager()) {
+ getFileManager().PrintStats();
+ OS << "\n";
+ }
+
+ return !getDiagnostics().getClient()->getNumErrors();
+}
+
+/// \brief Determine the appropriate source input kind based on language
+/// options.
+static InputKind getSourceInputKindFromOptions(const LangOptions &LangOpts) {
+ if (LangOpts.OpenCL)
+ return IK_OpenCL;
+ if (LangOpts.CUDA)
+ return IK_CUDA;
+ if (LangOpts.ObjC1)
+ return LangOpts.CPlusPlus? IK_ObjCXX : IK_ObjC;
+ return LangOpts.CPlusPlus? IK_CXX : IK_C;
+}
+
+/// \brief Compile a module file for the given module, using the options
+/// provided by the importing compiler instance. Returns true if the module
+/// was built without errors.
+static bool compileModuleImpl(CompilerInstance &ImportingInstance,
+ SourceLocation ImportLoc,
+ Module *Module,
+ StringRef ModuleFileName) {
+ ModuleMap &ModMap
+ = ImportingInstance.getPreprocessor().getHeaderSearchInfo().getModuleMap();
+
+ // Construct a compiler invocation for creating this module.
+ IntrusiveRefCntPtr<CompilerInvocation> Invocation
+ (new CompilerInvocation(ImportingInstance.getInvocation()));
+
+ PreprocessorOptions &PPOpts = Invocation->getPreprocessorOpts();
+
+ // For any options that aren't intended to affect how a module is built,
+ // reset them to their default values.
+ Invocation->getLangOpts()->resetNonModularOptions();
+ PPOpts.resetNonModularOptions();
+
+ // Remove any macro definitions that are explicitly ignored by the module.
+ // They aren't supposed to affect how the module is built anyway.
+ const HeaderSearchOptions &HSOpts = Invocation->getHeaderSearchOpts();
+ PPOpts.Macros.erase(
+ std::remove_if(PPOpts.Macros.begin(), PPOpts.Macros.end(),
+ [&HSOpts](const std::pair<std::string, bool> &def) {
+ StringRef MacroDef = def.first;
+ return HSOpts.ModulesIgnoreMacros.count(MacroDef.split('=').first) > 0;
+ }),
+ PPOpts.Macros.end());
+
+ // Note the name of the module we're building.
+ Invocation->getLangOpts()->CurrentModule = Module->getTopLevelModuleName();
+
+ // Make sure that the failed-module structure has been allocated in
+ // the importing instance, and propagate the pointer to the newly-created
+ // instance.
+ PreprocessorOptions &ImportingPPOpts
+ = ImportingInstance.getInvocation().getPreprocessorOpts();
+ if (!ImportingPPOpts.FailedModules)
+ ImportingPPOpts.FailedModules = new PreprocessorOptions::FailedModulesSet;
+ PPOpts.FailedModules = ImportingPPOpts.FailedModules;
+
+ // If there is a module map file, build the module using the module map.
+ // Set up the inputs/outputs so that we build the module from its umbrella
+ // header.
+ FrontendOptions &FrontendOpts = Invocation->getFrontendOpts();
+ FrontendOpts.OutputFile = ModuleFileName.str();
+ FrontendOpts.DisableFree = false;
+ FrontendOpts.GenerateGlobalModuleIndex = false;
+ FrontendOpts.Inputs.clear();
+ InputKind IK = getSourceInputKindFromOptions(*Invocation->getLangOpts());
+
+ // Don't free the remapped file buffers; they are owned by our caller.
+ PPOpts.RetainRemappedFileBuffers = true;
+
+ Invocation->getDiagnosticOpts().VerifyDiagnostics = 0;
+ assert(ImportingInstance.getInvocation().getModuleHash() ==
+ Invocation->getModuleHash() && "Module hash mismatch!");
+
+ // Construct a compiler instance that will be used to actually create the
+ // module.
+ CompilerInstance Instance(/*BuildingModule=*/true);
+ Instance.setInvocation(&*Invocation);
+
+ Instance.createDiagnostics(new ForwardingDiagnosticConsumer(
+ ImportingInstance.getDiagnosticClient()),
+ /*ShouldOwnClient=*/true);
+
+ Instance.setVirtualFileSystem(&ImportingInstance.getVirtualFileSystem());
+
+ // Note that this module is part of the module build stack, so that we
+ // can detect cycles in the module graph.
+ Instance.setFileManager(&ImportingInstance.getFileManager());
+ Instance.createSourceManager(Instance.getFileManager());
+ SourceManager &SourceMgr = Instance.getSourceManager();
+ SourceMgr.setModuleBuildStack(
+ ImportingInstance.getSourceManager().getModuleBuildStack());
+ SourceMgr.pushModuleBuildStack(Module->getTopLevelModuleName(),
+ FullSourceLoc(ImportLoc, ImportingInstance.getSourceManager()));
+
+ // If we're collecting module dependencies, we need to share a collector
+ // between all of the module CompilerInstances.
+ Instance.setModuleDepCollector(ImportingInstance.getModuleDepCollector());
+
+ // Get or create the module map that we'll use to build this module.
+ std::string InferredModuleMapContent;
+ if (const FileEntry *ModuleMapFile =
+ ModMap.getContainingModuleMapFile(Module)) {
+ // Use the module map where this module resides.
+ FrontendOpts.Inputs.push_back(
+ FrontendInputFile(ModuleMapFile->getName(), IK));
+ } else {
+ SmallString<128> FakeModuleMapFile(Module->Directory->getName());
+ llvm::sys::path::append(FakeModuleMapFile, "__inferred_module.map");
+ FrontendOpts.Inputs.push_back(FrontendInputFile(FakeModuleMapFile, IK));
+
+ llvm::raw_string_ostream OS(InferredModuleMapContent);
+ Module->print(OS);
+ OS.flush();
+
+ std::unique_ptr<llvm::MemoryBuffer> ModuleMapBuffer =
+ llvm::MemoryBuffer::getMemBuffer(InferredModuleMapContent);
+ ModuleMapFile = Instance.getFileManager().getVirtualFile(
+ FakeModuleMapFile, InferredModuleMapContent.size(), 0);
+ SourceMgr.overrideFileContents(ModuleMapFile, std::move(ModuleMapBuffer));
+ }
+
+ // Construct a module-generating action. Passing through the module map is
+ // safe because the FileManager is shared between the compiler instances.
+ GenerateModuleAction CreateModuleAction(
+ ModMap.getModuleMapFileForUniquing(Module), Module->IsSystem);
+
+ ImportingInstance.getDiagnostics().Report(ImportLoc,
+ diag::remark_module_build)
+ << Module->Name << ModuleFileName;
+
+ // Execute the action to actually build the module in-place. Use a separate
+ // thread so that we get a stack large enough.
+ const unsigned ThreadStackSize = 8 << 20;
+ llvm::CrashRecoveryContext CRC;
+ CRC.RunSafelyOnThread([&]() { Instance.ExecuteAction(CreateModuleAction); },
+ ThreadStackSize);
+
+ ImportingInstance.getDiagnostics().Report(ImportLoc,
+ diag::remark_module_build_done)
+ << Module->Name;
+
+ // Delete the temporary module map file.
+ // FIXME: Even though we're executing under crash protection, it would still
+ // be nice to do this with RemoveFileOnSignal when we can. However, that
+ // doesn't make sense for all clients, so clean this up manually.
+ Instance.clearOutputFiles(/*EraseFiles=*/true);
+
+ // We've rebuilt a module. If we're allowed to generate or update the global
+ // module index, record that fact in the importing compiler instance.
+ if (ImportingInstance.getFrontendOpts().GenerateGlobalModuleIndex) {
+ ImportingInstance.setBuildGlobalModuleIndex(true);
+ }
+
+ return !Instance.getDiagnostics().hasErrorOccurred();
+}
+
+static bool compileAndLoadModule(CompilerInstance &ImportingInstance,
+ SourceLocation ImportLoc,
+ SourceLocation ModuleNameLoc, Module *Module,
+ StringRef ModuleFileName) {
+ DiagnosticsEngine &Diags = ImportingInstance.getDiagnostics();
+
+ auto diagnoseBuildFailure = [&] {
+ Diags.Report(ModuleNameLoc, diag::err_module_not_built)
+ << Module->Name << SourceRange(ImportLoc, ModuleNameLoc);
+ };
+
+ // FIXME: have LockFileManager return an error_code so that we can
+ // avoid the mkdir when the directory already exists.
+ StringRef Dir = llvm::sys::path::parent_path(ModuleFileName);
+ llvm::sys::fs::create_directories(Dir);
+
+ while (1) {
+ unsigned ModuleLoadCapabilities = ASTReader::ARR_Missing;
+ llvm::LockFileManager Locked(ModuleFileName);
+ switch (Locked) {
+ case llvm::LockFileManager::LFS_Error:
+ Diags.Report(ModuleNameLoc, diag::err_module_lock_failure)
+ << Module->Name;
+ return false;
+
+ case llvm::LockFileManager::LFS_Owned:
+ // We're responsible for building the module ourselves.
+ if (!compileModuleImpl(ImportingInstance, ModuleNameLoc, Module,
+ ModuleFileName)) {
+ diagnoseBuildFailure();
+ return false;
+ }
+ break;
+
+ case llvm::LockFileManager::LFS_Shared:
+ // Someone else is responsible for building the module. Wait for them to
+ // finish.
+ switch (Locked.waitForUnlock()) {
+ case llvm::LockFileManager::Res_Success:
+ ModuleLoadCapabilities |= ASTReader::ARR_OutOfDate;
+ break;
+ case llvm::LockFileManager::Res_OwnerDied:
+ continue; // try again to get the lock.
+ case llvm::LockFileManager::Res_Timeout:
+ Diags.Report(ModuleNameLoc, diag::err_module_lock_timeout)
+ << Module->Name;
+ // Clear the lock file so that future invokations can make progress.
+ Locked.unsafeRemoveLockFile();
+ return false;
+ }
+ break;
+ }
+
+ // Try to read the module file, now that we've compiled it.
+ ASTReader::ASTReadResult ReadResult =
+ ImportingInstance.getModuleManager()->ReadAST(
+ ModuleFileName, serialization::MK_ImplicitModule, ImportLoc,
+ ModuleLoadCapabilities);
+
+ if (ReadResult == ASTReader::OutOfDate &&
+ Locked == llvm::LockFileManager::LFS_Shared) {
+ // The module may be out of date in the presence of file system races,
+ // or if one of its imports depends on header search paths that are not
+ // consistent with this ImportingInstance. Try again...
+ continue;
+ } else if (ReadResult == ASTReader::Missing) {
+ diagnoseBuildFailure();
+ } else if (ReadResult != ASTReader::Success &&
+ !Diags.hasErrorOccurred()) {
+ // The ASTReader didn't diagnose the error, so conservatively report it.
+ diagnoseBuildFailure();
+ }
+ return ReadResult == ASTReader::Success;
+ }
+}
+
+/// \brief Diagnose differences between the current definition of the given
+/// configuration macro and the definition provided on the command line.
+static void checkConfigMacro(Preprocessor &PP, StringRef ConfigMacro,
+ Module *Mod, SourceLocation ImportLoc) {
+ IdentifierInfo *Id = PP.getIdentifierInfo(ConfigMacro);
+ SourceManager &SourceMgr = PP.getSourceManager();
+
+ // If this identifier has never had a macro definition, then it could
+ // not have changed.
+ if (!Id->hadMacroDefinition())
+ return;
+ auto *LatestLocalMD = PP.getLocalMacroDirectiveHistory(Id);
+
+ // Find the macro definition from the command line.
+ MacroInfo *CmdLineDefinition = nullptr;
+ for (auto *MD = LatestLocalMD; MD; MD = MD->getPrevious()) {
+ // We only care about the predefines buffer.
+ FileID FID = SourceMgr.getFileID(MD->getLocation());
+ if (FID.isInvalid() || FID != PP.getPredefinesFileID())
+ continue;
+ if (auto *DMD = dyn_cast<DefMacroDirective>(MD))
+ CmdLineDefinition = DMD->getMacroInfo();
+ break;
+ }
+
+ auto *CurrentDefinition = PP.getMacroInfo(Id);
+ if (CurrentDefinition == CmdLineDefinition) {
+ // Macro matches. Nothing to do.
+ } else if (!CurrentDefinition) {
+ // This macro was defined on the command line, then #undef'd later.
+ // Complain.
+ PP.Diag(ImportLoc, diag::warn_module_config_macro_undef)
+ << true << ConfigMacro << Mod->getFullModuleName();
+ auto LatestDef = LatestLocalMD->getDefinition();
+ assert(LatestDef.isUndefined() &&
+ "predefined macro went away with no #undef?");
+ PP.Diag(LatestDef.getUndefLocation(), diag::note_module_def_undef_here)
+ << true;
+ return;
+ } else if (!CmdLineDefinition) {
+ // There was no definition for this macro in the predefines buffer,
+ // but there was a local definition. Complain.
+ PP.Diag(ImportLoc, diag::warn_module_config_macro_undef)
+ << false << ConfigMacro << Mod->getFullModuleName();
+ PP.Diag(CurrentDefinition->getDefinitionLoc(),
+ diag::note_module_def_undef_here)
+ << false;
+ } else if (!CurrentDefinition->isIdenticalTo(*CmdLineDefinition, PP,
+ /*Syntactically=*/true)) {
+ // The macro definitions differ.
+ PP.Diag(ImportLoc, diag::warn_module_config_macro_undef)
+ << false << ConfigMacro << Mod->getFullModuleName();
+ PP.Diag(CurrentDefinition->getDefinitionLoc(),
+ diag::note_module_def_undef_here)
+ << false;
+ }
+}
+
+/// \brief Write a new timestamp file with the given path.
+static void writeTimestampFile(StringRef TimestampFile) {
+ std::error_code EC;
+ llvm::raw_fd_ostream Out(TimestampFile.str(), EC, llvm::sys::fs::F_None);
+}
+
+/// \brief Prune the module cache of modules that haven't been accessed in
+/// a long time.
+static void pruneModuleCache(const HeaderSearchOptions &HSOpts) {
+ struct stat StatBuf;
+ llvm::SmallString<128> TimestampFile;
+ TimestampFile = HSOpts.ModuleCachePath;
+ llvm::sys::path::append(TimestampFile, "modules.timestamp");
+
+ // Try to stat() the timestamp file.
+ if (::stat(TimestampFile.c_str(), &StatBuf)) {
+ // If the timestamp file wasn't there, create one now.
+ if (errno == ENOENT) {
+ writeTimestampFile(TimestampFile);
+ }
+ return;
+ }
+
+ // Check whether the time stamp is older than our pruning interval.
+ // If not, do nothing.
+ time_t TimeStampModTime = StatBuf.st_mtime;
+ time_t CurrentTime = time(nullptr);
+ if (CurrentTime - TimeStampModTime <= time_t(HSOpts.ModuleCachePruneInterval))
+ return;
+
+ // Write a new timestamp file so that nobody else attempts to prune.
+ // There is a benign race condition here, if two Clang instances happen to
+ // notice at the same time that the timestamp is out-of-date.
+ writeTimestampFile(TimestampFile);
+
+ // Walk the entire module cache, looking for unused module files and module
+ // indices.
+ std::error_code EC;
+ SmallString<128> ModuleCachePathNative;
+ llvm::sys::path::native(HSOpts.ModuleCachePath, ModuleCachePathNative);
+ for (llvm::sys::fs::directory_iterator Dir(ModuleCachePathNative, EC), DirEnd;
+ Dir != DirEnd && !EC; Dir.increment(EC)) {
+ // If we don't have a directory, there's nothing to look into.
+ if (!llvm::sys::fs::is_directory(Dir->path()))
+ continue;
+
+ // Walk all of the files within this directory.
+ for (llvm::sys::fs::directory_iterator File(Dir->path(), EC), FileEnd;
+ File != FileEnd && !EC; File.increment(EC)) {
+ // We only care about module and global module index files.
+ StringRef Extension = llvm::sys::path::extension(File->path());
+ if (Extension != ".pcm" && Extension != ".timestamp" &&
+ llvm::sys::path::filename(File->path()) != "modules.idx")
+ continue;
+
+ // Look at this file. If we can't stat it, there's nothing interesting
+ // there.
+ if (::stat(File->path().c_str(), &StatBuf))
+ continue;
+
+ // If the file has been used recently enough, leave it there.
+ time_t FileAccessTime = StatBuf.st_atime;
+ if (CurrentTime - FileAccessTime <=
+ time_t(HSOpts.ModuleCachePruneAfter)) {
+ continue;
+ }
+
+ // Remove the file.
+ llvm::sys::fs::remove(File->path());
+
+ // Remove the timestamp file.
+ std::string TimpestampFilename = File->path() + ".timestamp";
+ llvm::sys::fs::remove(TimpestampFilename);
+ }
+
+ // If we removed all of the files in the directory, remove the directory
+ // itself.
+ if (llvm::sys::fs::directory_iterator(Dir->path(), EC) ==
+ llvm::sys::fs::directory_iterator() && !EC)
+ llvm::sys::fs::remove(Dir->path());
+ }
+}
+
+void CompilerInstance::createModuleManager() {
+ if (!ModuleManager) {
+ if (!hasASTContext())
+ createASTContext();
+
+ // If we're implicitly building modules but not currently recursively
+ // building a module, check whether we need to prune the module cache.
+ if (getLangOpts().ImplicitModules &&
+ getSourceManager().getModuleBuildStack().empty() &&
+ getHeaderSearchOpts().ModuleCachePruneInterval > 0 &&
+ getHeaderSearchOpts().ModuleCachePruneAfter > 0) {
+ pruneModuleCache(getHeaderSearchOpts());
+ }
+
+ HeaderSearchOptions &HSOpts = getHeaderSearchOpts();
+ std::string Sysroot = HSOpts.Sysroot;
+ const PreprocessorOptions &PPOpts = getPreprocessorOpts();
+ ModuleManager = new ASTReader(getPreprocessor(), *Context,
+ Sysroot.empty() ? "" : Sysroot.c_str(),
+ PPOpts.DisablePCHValidation,
+ /*AllowASTWithCompilerErrors=*/false,
+ /*AllowConfigurationMismatch=*/false,
+ HSOpts.ModulesValidateSystemHeaders,
+ getFrontendOpts().UseGlobalModuleIndex);
+ if (hasASTConsumer()) {
+ ModuleManager->setDeserializationListener(
+ getASTConsumer().GetASTDeserializationListener());
+ getASTContext().setASTMutationListener(
+ getASTConsumer().GetASTMutationListener());
+ }
+ getASTContext().setExternalSource(ModuleManager);
+ if (hasSema())
+ ModuleManager->InitializeSema(getSema());
+ if (hasASTConsumer())
+ ModuleManager->StartTranslationUnit(&getASTConsumer());
+ }
+}
+
+bool CompilerInstance::loadModuleFile(StringRef FileName) {
+ // Helper to recursively read the module names for all modules we're adding.
+ // We mark these as known and redirect any attempt to load that module to
+ // the files we were handed.
+ struct ReadModuleNames : ASTReaderListener {
+ CompilerInstance &CI;
+ std::vector<StringRef> ModuleFileStack;
+ std::vector<StringRef> ModuleNameStack;
+ bool Failed;
+ bool TopFileIsModule;
+
+ ReadModuleNames(CompilerInstance &CI)
+ : CI(CI), Failed(false), TopFileIsModule(false) {}
+
+ bool needsImportVisitation() const override { return true; }
+
+ void visitImport(StringRef FileName) override {
+ if (!CI.ExplicitlyLoadedModuleFiles.insert(FileName).second) {
+ if (ModuleFileStack.size() == 0)
+ TopFileIsModule = true;
+ return;
+ }
+
+ ModuleFileStack.push_back(FileName);
+ ModuleNameStack.push_back(StringRef());
+ if (ASTReader::readASTFileControlBlock(FileName, CI.getFileManager(),
+ *this)) {
+ CI.getDiagnostics().Report(
+ SourceLocation(), CI.getFileManager().getBufferForFile(FileName)
+ ? diag::err_module_file_invalid
+ : diag::err_module_file_not_found)
+ << FileName;
+ for (int I = ModuleFileStack.size() - 2; I >= 0; --I)
+ CI.getDiagnostics().Report(SourceLocation(),
+ diag::note_module_file_imported_by)
+ << ModuleFileStack[I]
+ << !ModuleNameStack[I].empty() << ModuleNameStack[I];
+ Failed = true;
+ }
+ ModuleNameStack.pop_back();
+ ModuleFileStack.pop_back();
+ }
+
+ void ReadModuleName(StringRef ModuleName) override {
+ if (ModuleFileStack.size() == 1)
+ TopFileIsModule = true;
+ ModuleNameStack.back() = ModuleName;
+
+ auto &ModuleFile = CI.ModuleFileOverrides[ModuleName];
+ if (!ModuleFile.empty() &&
+ CI.getFileManager().getFile(ModuleFile) !=
+ CI.getFileManager().getFile(ModuleFileStack.back()))
+ CI.getDiagnostics().Report(SourceLocation(),
+ diag::err_conflicting_module_files)
+ << ModuleName << ModuleFile << ModuleFileStack.back();
+ ModuleFile = ModuleFileStack.back();
+ }
+ } RMN(*this);
+
+ // If we don't already have an ASTReader, create one now.
+ if (!ModuleManager)
+ createModuleManager();
+
+ // Tell the module manager about this module file.
+ if (getModuleManager()->getModuleManager().addKnownModuleFile(FileName)) {
+ getDiagnostics().Report(SourceLocation(), diag::err_module_file_not_found)
+ << FileName;
+ return false;
+ }
+
+ // Build our mapping of module names to module files from this file
+ // and its imports.
+ RMN.visitImport(FileName);
+
+ if (RMN.Failed)
+ return false;
+
+ // If we never found a module name for the top file, then it's not a module,
+ // it's a PCH or preamble or something.
+ if (!RMN.TopFileIsModule) {
+ getDiagnostics().Report(SourceLocation(), diag::err_module_file_not_module)
+ << FileName;
+ return false;
+ }
+
+ return true;
+}
+
+ModuleLoadResult
+CompilerInstance::loadModule(SourceLocation ImportLoc,
+ ModuleIdPath Path,
+ Module::NameVisibilityKind Visibility,
+ bool IsInclusionDirective) {
+ // Determine what file we're searching from.
+ StringRef ModuleName = Path[0].first->getName();
+ SourceLocation ModuleNameLoc = Path[0].second;
+
+ // If we've already handled this import, just return the cached result.
+ // This one-element cache is important to eliminate redundant diagnostics
+ // when both the preprocessor and parser see the same import declaration.
+ if (!ImportLoc.isInvalid() && LastModuleImportLoc == ImportLoc) {
+ // Make the named module visible.
+ if (LastModuleImportResult && ModuleName != getLangOpts().CurrentModule &&
+ ModuleName != getLangOpts().ImplementationOfModule)
+ ModuleManager->makeModuleVisible(LastModuleImportResult, Visibility,
+ ImportLoc);
+ return LastModuleImportResult;
+ }
+
+ clang::Module *Module = nullptr;
+
+ // If we don't already have information on this module, load the module now.
+ llvm::DenseMap<const IdentifierInfo *, clang::Module *>::iterator Known
+ = KnownModules.find(Path[0].first);
+ if (Known != KnownModules.end()) {
+ // Retrieve the cached top-level module.
+ Module = Known->second;
+ } else if (ModuleName == getLangOpts().CurrentModule ||
+ ModuleName == getLangOpts().ImplementationOfModule) {
+ // This is the module we're building.
+ Module = PP->getHeaderSearchInfo().lookupModule(ModuleName);
+ Known = KnownModules.insert(std::make_pair(Path[0].first, Module)).first;
+ } else {
+ // Search for a module with the given name.
+ Module = PP->getHeaderSearchInfo().lookupModule(ModuleName);
+ if (!Module) {
+ getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_found)
+ << ModuleName
+ << SourceRange(ImportLoc, ModuleNameLoc);
+ ModuleBuildFailed = true;
+ return ModuleLoadResult();
+ }
+
+ auto Override = ModuleFileOverrides.find(ModuleName);
+ bool Explicit = Override != ModuleFileOverrides.end();
+ if (!Explicit && !getLangOpts().ImplicitModules) {
+ getDiagnostics().Report(ModuleNameLoc, diag::err_module_build_disabled)
+ << ModuleName;
+ ModuleBuildFailed = true;
+ return ModuleLoadResult();
+ }
+
+ std::string ModuleFileName =
+ Explicit ? Override->second
+ : PP->getHeaderSearchInfo().getModuleFileName(Module);
+
+ // If we don't already have an ASTReader, create one now.
+ if (!ModuleManager)
+ createModuleManager();
+
+ if (TheDependencyFileGenerator)
+ TheDependencyFileGenerator->AttachToASTReader(*ModuleManager);
+
+ if (ModuleDepCollector)
+ ModuleDepCollector->attachToASTReader(*ModuleManager);
+
+ for (auto &Listener : DependencyCollectors)
+ Listener->attachToASTReader(*ModuleManager);
+
+ // Try to load the module file.
+ unsigned ARRFlags =
+ Explicit ? 0 : ASTReader::ARR_OutOfDate | ASTReader::ARR_Missing;
+ switch (ModuleManager->ReadAST(ModuleFileName,
+ Explicit ? serialization::MK_ExplicitModule
+ : serialization::MK_ImplicitModule,
+ ImportLoc, ARRFlags)) {
+ case ASTReader::Success:
+ break;
+
+ case ASTReader::OutOfDate:
+ case ASTReader::Missing: {
+ if (Explicit) {
+ // ReadAST has already complained for us.
+ ModuleLoader::HadFatalFailure = true;
+ KnownModules[Path[0].first] = nullptr;
+ return ModuleLoadResult();
+ }
+
+ // The module file is missing or out-of-date. Build it.
+ assert(Module && "missing module file");
+ // Check whether there is a cycle in the module graph.
+ ModuleBuildStack ModPath = getSourceManager().getModuleBuildStack();
+ ModuleBuildStack::iterator Pos = ModPath.begin(), PosEnd = ModPath.end();
+ for (; Pos != PosEnd; ++Pos) {
+ if (Pos->first == ModuleName)
+ break;
+ }
+
+ if (Pos != PosEnd) {
+ SmallString<256> CyclePath;
+ for (; Pos != PosEnd; ++Pos) {
+ CyclePath += Pos->first;
+ CyclePath += " -> ";
+ }
+ CyclePath += ModuleName;
+
+ getDiagnostics().Report(ModuleNameLoc, diag::err_module_cycle)
+ << ModuleName << CyclePath;
+ return ModuleLoadResult();
+ }
+
+ // Check whether we have already attempted to build this module (but
+ // failed).
+ if (getPreprocessorOpts().FailedModules &&
+ getPreprocessorOpts().FailedModules->hasAlreadyFailed(ModuleName)) {
+ getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_built)
+ << ModuleName
+ << SourceRange(ImportLoc, ModuleNameLoc);
+ ModuleBuildFailed = true;
+ return ModuleLoadResult();
+ }
+
+ // Try to compile and then load the module.
+ if (!compileAndLoadModule(*this, ImportLoc, ModuleNameLoc, Module,
+ ModuleFileName)) {
+ assert(getDiagnostics().hasErrorOccurred() &&
+ "undiagnosed error in compileAndLoadModule");
+ if (getPreprocessorOpts().FailedModules)
+ getPreprocessorOpts().FailedModules->addFailed(ModuleName);
+ KnownModules[Path[0].first] = nullptr;
+ ModuleBuildFailed = true;
+ return ModuleLoadResult();
+ }
+
+ // Okay, we've rebuilt and now loaded the module.
+ break;
+ }
+
+ case ASTReader::VersionMismatch:
+ case ASTReader::ConfigurationMismatch:
+ case ASTReader::HadErrors:
+ ModuleLoader::HadFatalFailure = true;
+ // FIXME: The ASTReader will already have complained, but can we showhorn
+ // that diagnostic information into a more useful form?
+ KnownModules[Path[0].first] = nullptr;
+ return ModuleLoadResult();
+
+ case ASTReader::Failure:
+ ModuleLoader::HadFatalFailure = true;
+ // Already complained, but note now that we failed.
+ KnownModules[Path[0].first] = nullptr;
+ ModuleBuildFailed = true;
+ return ModuleLoadResult();
+ }
+
+ // Cache the result of this top-level module lookup for later.
+ Known = KnownModules.insert(std::make_pair(Path[0].first, Module)).first;
+ }
+
+ // If we never found the module, fail.
+ if (!Module)
+ return ModuleLoadResult();
+
+ // Verify that the rest of the module path actually corresponds to
+ // a submodule.
+ if (Path.size() > 1) {
+ for (unsigned I = 1, N = Path.size(); I != N; ++I) {
+ StringRef Name = Path[I].first->getName();
+ clang::Module *Sub = Module->findSubmodule(Name);
+
+ if (!Sub) {
+ // Attempt to perform typo correction to find a module name that works.
+ SmallVector<StringRef, 2> Best;
+ unsigned BestEditDistance = (std::numeric_limits<unsigned>::max)();
+
+ for (clang::Module::submodule_iterator J = Module->submodule_begin(),
+ JEnd = Module->submodule_end();
+ J != JEnd; ++J) {
+ unsigned ED = Name.edit_distance((*J)->Name,
+ /*AllowReplacements=*/true,
+ BestEditDistance);
+ if (ED <= BestEditDistance) {
+ if (ED < BestEditDistance) {
+ Best.clear();
+ BestEditDistance = ED;
+ }
+
+ Best.push_back((*J)->Name);
+ }
+ }
+
+ // If there was a clear winner, user it.
+ if (Best.size() == 1) {
+ getDiagnostics().Report(Path[I].second,
+ diag::err_no_submodule_suggest)
+ << Path[I].first << Module->getFullModuleName() << Best[0]
+ << SourceRange(Path[0].second, Path[I-1].second)
+ << FixItHint::CreateReplacement(SourceRange(Path[I].second),
+ Best[0]);
+
+ Sub = Module->findSubmodule(Best[0]);
+ }
+ }
+
+ if (!Sub) {
+ // No submodule by this name. Complain, and don't look for further
+ // submodules.
+ getDiagnostics().Report(Path[I].second, diag::err_no_submodule)
+ << Path[I].first << Module->getFullModuleName()
+ << SourceRange(Path[0].second, Path[I-1].second);
+ break;
+ }
+
+ Module = Sub;
+ }
+ }
+
+ // Don't make the module visible if we are in the implementation.
+ if (ModuleName == getLangOpts().ImplementationOfModule)
+ return ModuleLoadResult(Module, false);
+
+ // Make the named module visible, if it's not already part of the module
+ // we are parsing.
+ if (ModuleName != getLangOpts().CurrentModule) {
+ if (!Module->IsFromModuleFile) {
+ // We have an umbrella header or directory that doesn't actually include
+ // all of the headers within the directory it covers. Complain about
+ // this missing submodule and recover by forgetting that we ever saw
+ // this submodule.
+ // FIXME: Should we detect this at module load time? It seems fairly
+ // expensive (and rare).
+ getDiagnostics().Report(ImportLoc, diag::warn_missing_submodule)
+ << Module->getFullModuleName()
+ << SourceRange(Path.front().second, Path.back().second);
+
+ return ModuleLoadResult(nullptr, true);
+ }
+
+ // Check whether this module is available.
+ clang::Module::Requirement Requirement;
+ clang::Module::UnresolvedHeaderDirective MissingHeader;
+ if (!Module->isAvailable(getLangOpts(), getTarget(), Requirement,
+ MissingHeader)) {
+ if (MissingHeader.FileNameLoc.isValid()) {
+ getDiagnostics().Report(MissingHeader.FileNameLoc,
+ diag::err_module_header_missing)
+ << MissingHeader.IsUmbrella << MissingHeader.FileName;
+ } else {
+ getDiagnostics().Report(ImportLoc, diag::err_module_unavailable)
+ << Module->getFullModuleName()
+ << Requirement.second << Requirement.first
+ << SourceRange(Path.front().second, Path.back().second);
+ }
+ LastModuleImportLoc = ImportLoc;
+ LastModuleImportResult = ModuleLoadResult();
+ return ModuleLoadResult();
+ }
+
+ ModuleManager->makeModuleVisible(Module, Visibility, ImportLoc);
+ }
+
+ // Check for any configuration macros that have changed.
+ clang::Module *TopModule = Module->getTopLevelModule();
+ for (unsigned I = 0, N = TopModule->ConfigMacros.size(); I != N; ++I) {
+ checkConfigMacro(getPreprocessor(), TopModule->ConfigMacros[I],
+ Module, ImportLoc);
+ }
+
+ LastModuleImportLoc = ImportLoc;
+ LastModuleImportResult = ModuleLoadResult(Module, false);
+ return LastModuleImportResult;
+}
+
+void CompilerInstance::makeModuleVisible(Module *Mod,
+ Module::NameVisibilityKind Visibility,
+ SourceLocation ImportLoc) {
+ if (!ModuleManager)
+ createModuleManager();
+ if (!ModuleManager)
+ return;
+
+ ModuleManager->makeModuleVisible(Mod, Visibility, ImportLoc);
+}
+
+GlobalModuleIndex *CompilerInstance::loadGlobalModuleIndex(
+ SourceLocation TriggerLoc) {
+ if (!ModuleManager)
+ createModuleManager();
+ // Can't do anything if we don't have the module manager.
+ if (!ModuleManager)
+ return nullptr;
+ // Get an existing global index. This loads it if not already
+ // loaded.
+ ModuleManager->loadGlobalIndex();
+ GlobalModuleIndex *GlobalIndex = ModuleManager->getGlobalIndex();
+ // If the global index doesn't exist, create it.
+ if (!GlobalIndex && shouldBuildGlobalModuleIndex() && hasFileManager() &&
+ hasPreprocessor()) {
+ llvm::sys::fs::create_directories(
+ getPreprocessor().getHeaderSearchInfo().getModuleCachePath());
+ GlobalModuleIndex::writeIndex(
+ getFileManager(),
+ getPreprocessor().getHeaderSearchInfo().getModuleCachePath());
+ ModuleManager->resetForReload();
+ ModuleManager->loadGlobalIndex();
+ GlobalIndex = ModuleManager->getGlobalIndex();
+ }
+ // For finding modules needing to be imported for fixit messages,
+ // we need to make the global index cover all modules, so we do that here.
+ if (!HaveFullGlobalModuleIndex && GlobalIndex && !buildingModule()) {
+ ModuleMap &MMap = getPreprocessor().getHeaderSearchInfo().getModuleMap();
+ bool RecreateIndex = false;
+ for (ModuleMap::module_iterator I = MMap.module_begin(),
+ E = MMap.module_end(); I != E; ++I) {
+ Module *TheModule = I->second;
+ const FileEntry *Entry = TheModule->getASTFile();
+ if (!Entry) {
+ SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> Path;
+ Path.push_back(std::make_pair(
+ getPreprocessor().getIdentifierInfo(TheModule->Name), TriggerLoc));
+ std::reverse(Path.begin(), Path.end());
+ // Load a module as hidden. This also adds it to the global index.
+ loadModule(TheModule->DefinitionLoc, Path,
+ Module::Hidden, false);
+ RecreateIndex = true;
+ }
+ }
+ if (RecreateIndex) {
+ GlobalModuleIndex::writeIndex(
+ getFileManager(),
+ getPreprocessor().getHeaderSearchInfo().getModuleCachePath());
+ ModuleManager->resetForReload();
+ ModuleManager->loadGlobalIndex();
+ GlobalIndex = ModuleManager->getGlobalIndex();
+ }
+ HaveFullGlobalModuleIndex = true;
+ }
+ return GlobalIndex;
+}
+
+// Check global module index for missing imports.
+bool
+CompilerInstance::lookupMissingImports(StringRef Name,
+ SourceLocation TriggerLoc) {
+ // Look for the symbol in non-imported modules, but only if an error
+ // actually occurred.
+ if (!buildingModule()) {
+ // Load global module index, or retrieve a previously loaded one.
+ GlobalModuleIndex *GlobalIndex = loadGlobalModuleIndex(
+ TriggerLoc);
+
+ // Only if we have a global index.
+ if (GlobalIndex) {
+ GlobalModuleIndex::HitSet FoundModules;
+
+ // Find the modules that reference the identifier.
+ // Note that this only finds top-level modules.
+ // We'll let diagnoseTypo find the actual declaration module.
+ if (GlobalIndex->lookupIdentifier(Name, FoundModules))
+ return true;
+ }
+ }
+
+ return false;
+}
+void CompilerInstance::resetAndLeakSema() { BuryPointer(takeSema()); }
diff --git a/contrib/llvm/tools/clang/lib/Frontend/CompilerInvocation.cpp b/contrib/llvm/tools/clang/lib/Frontend/CompilerInvocation.cpp
new file mode 100644
index 0000000..8d3d312
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Frontend/CompilerInvocation.cpp
@@ -0,0 +1,2121 @@
+//===--- CompilerInvocation.cpp -------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Frontend/CompilerInvocation.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/Version.h"
+#include "clang/Config/config.h"
+#include "clang/Driver/DriverDiagnostic.h"
+#include "clang/Driver/Options.h"
+#include "clang/Driver/Util.h"
+#include "clang/Frontend/FrontendDiagnostic.h"
+#include "clang/Frontend/LangStandard.h"
+#include "clang/Frontend/Utils.h"
+#include "clang/Lex/HeaderSearchOptions.h"
+#include "clang/Serialization/ASTReader.h"
+#include "llvm/ADT/Hashing.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/Option/Arg.h"
+#include "llvm/Option/ArgList.h"
+#include "llvm/Option/OptTable.h"
+#include "llvm/Option/Option.h"
+#include "llvm/Support/CodeGen.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/Host.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/Process.h"
+#include <atomic>
+#include <memory>
+#include <sys/stat.h>
+#include <system_error>
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// Initialization.
+//===----------------------------------------------------------------------===//
+
+CompilerInvocationBase::CompilerInvocationBase()
+ : LangOpts(new LangOptions()), TargetOpts(new TargetOptions()),
+ DiagnosticOpts(new DiagnosticOptions()),
+ HeaderSearchOpts(new HeaderSearchOptions()),
+ PreprocessorOpts(new PreprocessorOptions()) {}
+
+CompilerInvocationBase::CompilerInvocationBase(const CompilerInvocationBase &X)
+ : RefCountedBase<CompilerInvocation>(),
+ LangOpts(new LangOptions(*X.getLangOpts())),
+ TargetOpts(new TargetOptions(X.getTargetOpts())),
+ DiagnosticOpts(new DiagnosticOptions(X.getDiagnosticOpts())),
+ HeaderSearchOpts(new HeaderSearchOptions(X.getHeaderSearchOpts())),
+ PreprocessorOpts(new PreprocessorOptions(X.getPreprocessorOpts())) {}
+
+CompilerInvocationBase::~CompilerInvocationBase() {}
+
+//===----------------------------------------------------------------------===//
+// Deserialization (from args)
+//===----------------------------------------------------------------------===//
+
+using namespace clang::driver;
+using namespace clang::driver::options;
+using namespace llvm::opt;
+
+//
+
+static unsigned getOptimizationLevel(ArgList &Args, InputKind IK,
+ DiagnosticsEngine &Diags) {
+ unsigned DefaultOpt = 0;
+ if (IK == IK_OpenCL && !Args.hasArg(OPT_cl_opt_disable))
+ DefaultOpt = 2;
+
+ if (Arg *A = Args.getLastArg(options::OPT_O_Group)) {
+ if (A->getOption().matches(options::OPT_O0))
+ return 0;
+
+ if (A->getOption().matches(options::OPT_Ofast))
+ return 3;
+
+ assert (A->getOption().matches(options::OPT_O));
+
+ StringRef S(A->getValue());
+ if (S == "s" || S == "z" || S.empty())
+ return 2;
+
+ return getLastArgIntValue(Args, OPT_O, DefaultOpt, Diags);
+ }
+
+ return DefaultOpt;
+}
+
+static unsigned getOptimizationLevelSize(ArgList &Args) {
+ if (Arg *A = Args.getLastArg(options::OPT_O_Group)) {
+ if (A->getOption().matches(options::OPT_O)) {
+ switch (A->getValue()[0]) {
+ default:
+ return 0;
+ case 's':
+ return 1;
+ case 'z':
+ return 2;
+ }
+ }
+ }
+ return 0;
+}
+
+static void addDiagnosticArgs(ArgList &Args, OptSpecifier Group,
+ OptSpecifier GroupWithValue,
+ std::vector<std::string> &Diagnostics) {
+ for (Arg *A : Args.filtered(Group)) {
+ if (A->getOption().getKind() == Option::FlagClass) {
+ // The argument is a pure flag (such as OPT_Wall or OPT_Wdeprecated). Add
+ // its name (minus the "W" or "R" at the beginning) to the warning list.
+ Diagnostics.push_back(A->getOption().getName().drop_front(1));
+ } else if (A->getOption().matches(GroupWithValue)) {
+ // This is -Wfoo= or -Rfoo=, where foo is the name of the diagnostic group.
+ Diagnostics.push_back(A->getOption().getName().drop_front(1).rtrim("=-"));
+ } else {
+ // Otherwise, add its value (for OPT_W_Joined and similar).
+ for (const char *Arg : A->getValues())
+ Diagnostics.push_back(Arg);
+ }
+ }
+}
+
+static bool ParseAnalyzerArgs(AnalyzerOptions &Opts, ArgList &Args,
+ DiagnosticsEngine &Diags) {
+ using namespace options;
+ bool Success = true;
+ if (Arg *A = Args.getLastArg(OPT_analyzer_store)) {
+ StringRef Name = A->getValue();
+ AnalysisStores Value = llvm::StringSwitch<AnalysisStores>(Name)
+#define ANALYSIS_STORE(NAME, CMDFLAG, DESC, CREATFN) \
+ .Case(CMDFLAG, NAME##Model)
+#include "clang/StaticAnalyzer/Core/Analyses.def"
+ .Default(NumStores);
+ if (Value == NumStores) {
+ Diags.Report(diag::err_drv_invalid_value)
+ << A->getAsString(Args) << Name;
+ Success = false;
+ } else {
+ Opts.AnalysisStoreOpt = Value;
+ }
+ }
+
+ if (Arg *A = Args.getLastArg(OPT_analyzer_constraints)) {
+ StringRef Name = A->getValue();
+ AnalysisConstraints Value = llvm::StringSwitch<AnalysisConstraints>(Name)
+#define ANALYSIS_CONSTRAINTS(NAME, CMDFLAG, DESC, CREATFN) \
+ .Case(CMDFLAG, NAME##Model)
+#include "clang/StaticAnalyzer/Core/Analyses.def"
+ .Default(NumConstraints);
+ if (Value == NumConstraints) {
+ Diags.Report(diag::err_drv_invalid_value)
+ << A->getAsString(Args) << Name;
+ Success = false;
+ } else {
+ Opts.AnalysisConstraintsOpt = Value;
+ }
+ }
+
+ if (Arg *A = Args.getLastArg(OPT_analyzer_output)) {
+ StringRef Name = A->getValue();
+ AnalysisDiagClients Value = llvm::StringSwitch<AnalysisDiagClients>(Name)
+#define ANALYSIS_DIAGNOSTICS(NAME, CMDFLAG, DESC, CREATFN) \
+ .Case(CMDFLAG, PD_##NAME)
+#include "clang/StaticAnalyzer/Core/Analyses.def"
+ .Default(NUM_ANALYSIS_DIAG_CLIENTS);
+ if (Value == NUM_ANALYSIS_DIAG_CLIENTS) {
+ Diags.Report(diag::err_drv_invalid_value)
+ << A->getAsString(Args) << Name;
+ Success = false;
+ } else {
+ Opts.AnalysisDiagOpt = Value;
+ }
+ }
+
+ if (Arg *A = Args.getLastArg(OPT_analyzer_purge)) {
+ StringRef Name = A->getValue();
+ AnalysisPurgeMode Value = llvm::StringSwitch<AnalysisPurgeMode>(Name)
+#define ANALYSIS_PURGE(NAME, CMDFLAG, DESC) \
+ .Case(CMDFLAG, NAME)
+#include "clang/StaticAnalyzer/Core/Analyses.def"
+ .Default(NumPurgeModes);
+ if (Value == NumPurgeModes) {
+ Diags.Report(diag::err_drv_invalid_value)
+ << A->getAsString(Args) << Name;
+ Success = false;
+ } else {
+ Opts.AnalysisPurgeOpt = Value;
+ }
+ }
+
+ if (Arg *A = Args.getLastArg(OPT_analyzer_inlining_mode)) {
+ StringRef Name = A->getValue();
+ AnalysisInliningMode Value = llvm::StringSwitch<AnalysisInliningMode>(Name)
+#define ANALYSIS_INLINING_MODE(NAME, CMDFLAG, DESC) \
+ .Case(CMDFLAG, NAME)
+#include "clang/StaticAnalyzer/Core/Analyses.def"
+ .Default(NumInliningModes);
+ if (Value == NumInliningModes) {
+ Diags.Report(diag::err_drv_invalid_value)
+ << A->getAsString(Args) << Name;
+ Success = false;
+ } else {
+ Opts.InliningMode = Value;
+ }
+ }
+
+ Opts.ShowCheckerHelp = Args.hasArg(OPT_analyzer_checker_help);
+ Opts.DisableAllChecks = Args.hasArg(OPT_analyzer_disable_all_checks);
+
+ Opts.visualizeExplodedGraphWithGraphViz =
+ Args.hasArg(OPT_analyzer_viz_egraph_graphviz);
+ Opts.visualizeExplodedGraphWithUbiGraph =
+ Args.hasArg(OPT_analyzer_viz_egraph_ubigraph);
+ Opts.NoRetryExhausted = Args.hasArg(OPT_analyzer_disable_retry_exhausted);
+ Opts.AnalyzeAll = Args.hasArg(OPT_analyzer_opt_analyze_headers);
+ Opts.AnalyzerDisplayProgress = Args.hasArg(OPT_analyzer_display_progress);
+ Opts.AnalyzeNestedBlocks =
+ Args.hasArg(OPT_analyzer_opt_analyze_nested_blocks);
+ Opts.eagerlyAssumeBinOpBifurcation = Args.hasArg(OPT_analyzer_eagerly_assume);
+ Opts.AnalyzeSpecificFunction = Args.getLastArgValue(OPT_analyze_function);
+ Opts.UnoptimizedCFG = Args.hasArg(OPT_analysis_UnoptimizedCFG);
+ Opts.TrimGraph = Args.hasArg(OPT_trim_egraph);
+ Opts.maxBlockVisitOnPath =
+ getLastArgIntValue(Args, OPT_analyzer_max_loop, 4, Diags);
+ Opts.PrintStats = Args.hasArg(OPT_analyzer_stats);
+ Opts.InlineMaxStackDepth =
+ getLastArgIntValue(Args, OPT_analyzer_inline_max_stack_depth,
+ Opts.InlineMaxStackDepth, Diags);
+
+ Opts.CheckersControlList.clear();
+ for (arg_iterator it = Args.filtered_begin(OPT_analyzer_checker,
+ OPT_analyzer_disable_checker),
+ ie = Args.filtered_end(); it != ie; ++it) {
+ const Arg *A = *it;
+ A->claim();
+ bool enable = (A->getOption().getID() == OPT_analyzer_checker);
+ // We can have a list of comma separated checker names, e.g:
+ // '-analyzer-checker=cocoa,unix'
+ StringRef checkerList = A->getValue();
+ SmallVector<StringRef, 4> checkers;
+ checkerList.split(checkers, ",");
+ for (unsigned i = 0, e = checkers.size(); i != e; ++i)
+ Opts.CheckersControlList.push_back(std::make_pair(checkers[i], enable));
+ }
+
+ // Go through the analyzer configuration options.
+ for (arg_iterator it = Args.filtered_begin(OPT_analyzer_config),
+ ie = Args.filtered_end(); it != ie; ++it) {
+ const Arg *A = *it;
+ A->claim();
+ // We can have a list of comma separated config names, e.g:
+ // '-analyzer-config key1=val1,key2=val2'
+ StringRef configList = A->getValue();
+ SmallVector<StringRef, 4> configVals;
+ configList.split(configVals, ",");
+ for (unsigned i = 0, e = configVals.size(); i != e; ++i) {
+ StringRef key, val;
+ std::tie(key, val) = configVals[i].split("=");
+ if (val.empty()) {
+ Diags.Report(SourceLocation(),
+ diag::err_analyzer_config_no_value) << configVals[i];
+ Success = false;
+ break;
+ }
+ if (val.find('=') != StringRef::npos) {
+ Diags.Report(SourceLocation(),
+ diag::err_analyzer_config_multiple_values)
+ << configVals[i];
+ Success = false;
+ break;
+ }
+ Opts.Config[key] = val;
+ }
+ }
+
+ return Success;
+}
+
+static bool ParseMigratorArgs(MigratorOptions &Opts, ArgList &Args) {
+ Opts.NoNSAllocReallocError = Args.hasArg(OPT_migrator_no_nsalloc_error);
+ Opts.NoFinalizeRemoval = Args.hasArg(OPT_migrator_no_finalize_removal);
+ return true;
+}
+
+static void ParseCommentArgs(CommentOptions &Opts, ArgList &Args) {
+ Opts.BlockCommandNames = Args.getAllArgValues(OPT_fcomment_block_commands);
+ Opts.ParseAllComments = Args.hasArg(OPT_fparse_all_comments);
+}
+
+static StringRef getCodeModel(ArgList &Args, DiagnosticsEngine &Diags) {
+ if (Arg *A = Args.getLastArg(OPT_mcode_model)) {
+ StringRef Value = A->getValue();
+ if (Value == "small" || Value == "kernel" || Value == "medium" ||
+ Value == "large")
+ return Value;
+ Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args) << Value;
+ }
+ return "default";
+}
+
+/// \brief Create a new Regex instance out of the string value in \p RpassArg.
+/// It returns a pointer to the newly generated Regex instance.
+static std::shared_ptr<llvm::Regex>
+GenerateOptimizationRemarkRegex(DiagnosticsEngine &Diags, ArgList &Args,
+ Arg *RpassArg) {
+ StringRef Val = RpassArg->getValue();
+ std::string RegexError;
+ std::shared_ptr<llvm::Regex> Pattern = std::make_shared<llvm::Regex>(Val);
+ if (!Pattern->isValid(RegexError)) {
+ Diags.Report(diag::err_drv_optimization_remark_pattern)
+ << RegexError << RpassArg->getAsString(Args);
+ Pattern.reset();
+ }
+ return Pattern;
+}
+
+static void parseSanitizerKinds(StringRef FlagName,
+ const std::vector<std::string> &Sanitizers,
+ DiagnosticsEngine &Diags, SanitizerSet &S) {
+ for (const auto &Sanitizer : Sanitizers) {
+ SanitizerMask K = parseSanitizerValue(Sanitizer, /*AllowGroups=*/false);
+ if (K == 0)
+ Diags.Report(diag::err_drv_invalid_value) << FlagName << Sanitizer;
+ else
+ S.set(K, true);
+ }
+}
+
+static bool ParseCodeGenArgs(CodeGenOptions &Opts, ArgList &Args, InputKind IK,
+ DiagnosticsEngine &Diags,
+ const TargetOptions &TargetOpts) {
+ using namespace options;
+ bool Success = true;
+
+ unsigned OptimizationLevel = getOptimizationLevel(Args, IK, Diags);
+ // TODO: This could be done in Driver
+ unsigned MaxOptLevel = 3;
+ if (OptimizationLevel > MaxOptLevel) {
+ // If the optimization level is not supported, fall back on the default
+ // optimization
+ Diags.Report(diag::warn_drv_optimization_value)
+ << Args.getLastArg(OPT_O)->getAsString(Args) << "-O" << MaxOptLevel;
+ OptimizationLevel = MaxOptLevel;
+ }
+ Opts.OptimizationLevel = OptimizationLevel;
+
+ // We must always run at least the always inlining pass.
+ Opts.setInlining(
+ (Opts.OptimizationLevel > 1) ? CodeGenOptions::NormalInlining
+ : CodeGenOptions::OnlyAlwaysInlining);
+ // -fno-inline-functions overrides OptimizationLevel > 1.
+ Opts.NoInline = Args.hasArg(OPT_fno_inline);
+ Opts.setInlining(Args.hasArg(OPT_fno_inline_functions) ?
+ CodeGenOptions::OnlyAlwaysInlining : Opts.getInlining());
+
+ if (Arg *A = Args.getLastArg(OPT_fveclib)) {
+ StringRef Name = A->getValue();
+ if (Name == "Accelerate")
+ Opts.setVecLib(CodeGenOptions::Accelerate);
+ else if (Name == "none")
+ Opts.setVecLib(CodeGenOptions::NoLibrary);
+ else
+ Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args) << Name;
+ }
+
+ if (Args.hasArg(OPT_gline_tables_only)) {
+ Opts.setDebugInfo(CodeGenOptions::DebugLineTablesOnly);
+ } else if (Args.hasArg(OPT_g_Flag) || Args.hasArg(OPT_gdwarf_2) ||
+ Args.hasArg(OPT_gdwarf_3) || Args.hasArg(OPT_gdwarf_4)) {
+ bool Default = false;
+ // Until dtrace (via CTF) and LLDB can deal with distributed debug info,
+ // Darwin and FreeBSD default to standalone/full debug info.
+ if (llvm::Triple(TargetOpts.Triple).isOSDarwin() ||
+ llvm::Triple(TargetOpts.Triple).isOSFreeBSD())
+ Default = true;
+
+ if (Args.hasFlag(OPT_fstandalone_debug, OPT_fno_standalone_debug, Default))
+ Opts.setDebugInfo(CodeGenOptions::FullDebugInfo);
+ else
+ Opts.setDebugInfo(CodeGenOptions::LimitedDebugInfo);
+ }
+ Opts.DebugColumnInfo = Args.hasArg(OPT_dwarf_column_info);
+ Opts.SplitDwarfFile = Args.getLastArgValue(OPT_split_dwarf_file);
+ if (Args.hasArg(OPT_gdwarf_2))
+ Opts.DwarfVersion = 2;
+ else if (Args.hasArg(OPT_gdwarf_3))
+ Opts.DwarfVersion = 3;
+ else if (Args.hasArg(OPT_gdwarf_4))
+ Opts.DwarfVersion = 4;
+ else if (Opts.getDebugInfo() != CodeGenOptions::NoDebugInfo)
+ // Default Dwarf version is 4 if we are generating debug information.
+ Opts.DwarfVersion = 4;
+
+ if (const Arg *A =
+ Args.getLastArg(OPT_emit_llvm_uselists, OPT_no_emit_llvm_uselists))
+ Opts.EmitLLVMUseLists = A->getOption().getID() == OPT_emit_llvm_uselists;
+
+ Opts.DisableLLVMOpts = Args.hasArg(OPT_disable_llvm_optzns);
+ Opts.DisableRedZone = Args.hasArg(OPT_disable_red_zone);
+ Opts.ForbidGuardVariables = Args.hasArg(OPT_fforbid_guard_variables);
+ Opts.UseRegisterSizedBitfieldAccess = Args.hasArg(
+ OPT_fuse_register_sized_bitfield_access);
+ Opts.RelaxedAliasing = Args.hasArg(OPT_relaxed_aliasing);
+ Opts.StructPathTBAA = !Args.hasArg(OPT_no_struct_path_tbaa);
+ Opts.DwarfDebugFlags = Args.getLastArgValue(OPT_dwarf_debug_flags);
+ Opts.MergeAllConstants = !Args.hasArg(OPT_fno_merge_all_constants);
+ Opts.NoCommon = Args.hasArg(OPT_fno_common);
+ Opts.NoImplicitFloat = Args.hasArg(OPT_no_implicit_float);
+ Opts.OptimizeSize = getOptimizationLevelSize(Args);
+ Opts.SimplifyLibCalls = !(Args.hasArg(OPT_fno_builtin) ||
+ Args.hasArg(OPT_ffreestanding));
+ Opts.UnrollLoops =
+ Args.hasFlag(OPT_funroll_loops, OPT_fno_unroll_loops,
+ (Opts.OptimizationLevel > 1 && !Opts.OptimizeSize));
+ Opts.RerollLoops = Args.hasArg(OPT_freroll_loops);
+
+ Opts.DisableIntegratedAS = Args.hasArg(OPT_fno_integrated_as);
+ Opts.Autolink = !Args.hasArg(OPT_fno_autolink);
+ Opts.SampleProfileFile = Args.getLastArgValue(OPT_fprofile_sample_use_EQ);
+ Opts.ProfileInstrGenerate = Args.hasArg(OPT_fprofile_instr_generate) ||
+ Args.hasArg(OPT_fprofile_instr_generate_EQ);;
+ Opts.InstrProfileOutput = Args.getLastArgValue(OPT_fprofile_instr_generate_EQ);
+ Opts.InstrProfileInput = Args.getLastArgValue(OPT_fprofile_instr_use_EQ);
+ Opts.CoverageMapping = Args.hasArg(OPT_fcoverage_mapping);
+ Opts.DumpCoverageMapping = Args.hasArg(OPT_dump_coverage_mapping);
+ Opts.AsmVerbose = Args.hasArg(OPT_masm_verbose);
+ Opts.ObjCAutoRefCountExceptions = Args.hasArg(OPT_fobjc_arc_exceptions);
+ Opts.CXAAtExit = !Args.hasArg(OPT_fno_use_cxa_atexit);
+ Opts.CXXCtorDtorAliases = Args.hasArg(OPT_mconstructor_aliases);
+ Opts.CodeModel = getCodeModel(Args, Diags);
+ Opts.DebugPass = Args.getLastArgValue(OPT_mdebug_pass);
+ Opts.DisableFPElim = Args.hasArg(OPT_mdisable_fp_elim);
+ Opts.DisableFree = Args.hasArg(OPT_disable_free);
+ Opts.DisableTailCalls = Args.hasArg(OPT_mdisable_tail_calls);
+ Opts.FloatABI = Args.getLastArgValue(OPT_mfloat_abi);
+ Opts.LessPreciseFPMAD = Args.hasArg(OPT_cl_mad_enable);
+ Opts.LimitFloatPrecision = Args.getLastArgValue(OPT_mlimit_float_precision);
+ Opts.NoInfsFPMath = (Args.hasArg(OPT_menable_no_infinities) ||
+ Args.hasArg(OPT_cl_finite_math_only) ||
+ Args.hasArg(OPT_cl_fast_relaxed_math));
+ Opts.NoNaNsFPMath = (Args.hasArg(OPT_menable_no_nans) ||
+ Args.hasArg(OPT_cl_unsafe_math_optimizations) ||
+ Args.hasArg(OPT_cl_finite_math_only) ||
+ Args.hasArg(OPT_cl_fast_relaxed_math));
+ Opts.NoSignedZeros = Args.hasArg(OPT_fno_signed_zeros);
+ Opts.ReciprocalMath = Args.hasArg(OPT_freciprocal_math);
+ Opts.NoZeroInitializedInBSS = Args.hasArg(OPT_mno_zero_initialized_in_bss);
+ Opts.BackendOptions = Args.getAllArgValues(OPT_backend_option);
+ Opts.NumRegisterParameters = getLastArgIntValue(Args, OPT_mregparm, 0, Diags);
+ Opts.NoExecStack = Args.hasArg(OPT_mno_exec_stack);
+ Opts.FatalWarnings = Args.hasArg(OPT_massembler_fatal_warnings);
+ Opts.EnableSegmentedStacks = Args.hasArg(OPT_split_stacks);
+ Opts.RelaxAll = Args.hasArg(OPT_mrelax_all);
+ Opts.OmitLeafFramePointer = Args.hasArg(OPT_momit_leaf_frame_pointer);
+ Opts.SaveTempLabels = Args.hasArg(OPT_msave_temp_labels);
+ Opts.NoDwarfDirectoryAsm = Args.hasArg(OPT_fno_dwarf_directory_asm);
+ Opts.SoftFloat = Args.hasArg(OPT_msoft_float);
+ Opts.StrictEnums = Args.hasArg(OPT_fstrict_enums);
+ Opts.UnsafeFPMath = Args.hasArg(OPT_menable_unsafe_fp_math) ||
+ Args.hasArg(OPT_cl_unsafe_math_optimizations) ||
+ Args.hasArg(OPT_cl_fast_relaxed_math);
+ Opts.UnwindTables = Args.hasArg(OPT_munwind_tables);
+ Opts.RelocationModel = Args.getLastArgValue(OPT_mrelocation_model, "pic");
+ Opts.ThreadModel = Args.getLastArgValue(OPT_mthread_model, "posix");
+ if (Opts.ThreadModel != "posix" && Opts.ThreadModel != "single")
+ Diags.Report(diag::err_drv_invalid_value)
+ << Args.getLastArg(OPT_mthread_model)->getAsString(Args)
+ << Opts.ThreadModel;
+ Opts.TrapFuncName = Args.getLastArgValue(OPT_ftrap_function_EQ);
+ Opts.UseInitArray = Args.hasArg(OPT_fuse_init_array);
+
+ Opts.FunctionSections = Args.hasFlag(OPT_ffunction_sections,
+ OPT_fno_function_sections, false);
+ Opts.DataSections = Args.hasFlag(OPT_fdata_sections,
+ OPT_fno_data_sections, false);
+ Opts.UniqueSectionNames = Args.hasFlag(OPT_funique_section_names,
+ OPT_fno_unique_section_names, true);
+
+ Opts.MergeFunctions = Args.hasArg(OPT_fmerge_functions);
+
+ Opts.MSVolatile = Args.hasArg(OPT_fms_volatile);
+
+ Opts.VectorizeBB = Args.hasArg(OPT_vectorize_slp_aggressive);
+ Opts.VectorizeLoop = Args.hasArg(OPT_vectorize_loops);
+ Opts.VectorizeSLP = Args.hasArg(OPT_vectorize_slp);
+
+ Opts.MainFileName = Args.getLastArgValue(OPT_main_file_name);
+ Opts.VerifyModule = !Args.hasArg(OPT_disable_llvm_verifier);
+
+ Opts.DisableGCov = Args.hasArg(OPT_test_coverage);
+ Opts.EmitGcovArcs = Args.hasArg(OPT_femit_coverage_data);
+ Opts.EmitGcovNotes = Args.hasArg(OPT_femit_coverage_notes);
+ if (Opts.EmitGcovArcs || Opts.EmitGcovNotes) {
+ Opts.CoverageFile = Args.getLastArgValue(OPT_coverage_file);
+ Opts.CoverageExtraChecksum = Args.hasArg(OPT_coverage_cfg_checksum);
+ Opts.CoverageNoFunctionNamesInData =
+ Args.hasArg(OPT_coverage_no_function_names_in_data);
+ Opts.CoverageExitBlockBeforeBody =
+ Args.hasArg(OPT_coverage_exit_block_before_body);
+ if (Args.hasArg(OPT_coverage_version_EQ)) {
+ StringRef CoverageVersion = Args.getLastArgValue(OPT_coverage_version_EQ);
+ if (CoverageVersion.size() != 4) {
+ Diags.Report(diag::err_drv_invalid_value)
+ << Args.getLastArg(OPT_coverage_version_EQ)->getAsString(Args)
+ << CoverageVersion;
+ } else {
+ memcpy(Opts.CoverageVersion, CoverageVersion.data(), 4);
+ }
+ }
+ }
+
+ Opts.InstrumentFunctions = Args.hasArg(OPT_finstrument_functions);
+ Opts.InstrumentForProfiling = Args.hasArg(OPT_pg);
+ Opts.EmitOpenCLArgMetadata = Args.hasArg(OPT_cl_kernel_arg_info);
+ Opts.CompressDebugSections = Args.hasArg(OPT_compress_debug_sections);
+ Opts.DebugCompilationDir = Args.getLastArgValue(OPT_fdebug_compilation_dir);
+ Opts.LinkBitcodeFile = Args.getLastArgValue(OPT_mlink_bitcode_file);
+ Opts.SanitizeCoverageType =
+ getLastArgIntValue(Args, OPT_fsanitize_coverage_type, 0, Diags);
+ Opts.SanitizeCoverageIndirectCalls =
+ Args.hasArg(OPT_fsanitize_coverage_indirect_calls);
+ Opts.SanitizeCoverageTraceBB = Args.hasArg(OPT_fsanitize_coverage_trace_bb);
+ Opts.SanitizeCoverageTraceCmp = Args.hasArg(OPT_fsanitize_coverage_trace_cmp);
+ Opts.SanitizeCoverage8bitCounters =
+ Args.hasArg(OPT_fsanitize_coverage_8bit_counters);
+ Opts.SanitizeMemoryTrackOrigins =
+ getLastArgIntValue(Args, OPT_fsanitize_memory_track_origins_EQ, 0, Diags);
+ Opts.SanitizeUndefinedTrapOnError =
+ Args.hasArg(OPT_fsanitize_undefined_trap_on_error);
+ Opts.SSPBufferSize =
+ getLastArgIntValue(Args, OPT_stack_protector_buffer_size, 8, Diags);
+ Opts.StackRealignment = Args.hasArg(OPT_mstackrealign);
+ if (Arg *A = Args.getLastArg(OPT_mstack_alignment)) {
+ StringRef Val = A->getValue();
+ unsigned StackAlignment = Opts.StackAlignment;
+ Val.getAsInteger(10, StackAlignment);
+ Opts.StackAlignment = StackAlignment;
+ }
+
+ if (Arg *A = Args.getLastArg(OPT_mstack_probe_size)) {
+ StringRef Val = A->getValue();
+ unsigned StackProbeSize = Opts.StackProbeSize;
+ Val.getAsInteger(0, StackProbeSize);
+ Opts.StackProbeSize = StackProbeSize;
+ }
+
+ if (Arg *A = Args.getLastArg(OPT_fobjc_dispatch_method_EQ)) {
+ StringRef Name = A->getValue();
+ unsigned Method = llvm::StringSwitch<unsigned>(Name)
+ .Case("legacy", CodeGenOptions::Legacy)
+ .Case("non-legacy", CodeGenOptions::NonLegacy)
+ .Case("mixed", CodeGenOptions::Mixed)
+ .Default(~0U);
+ if (Method == ~0U) {
+ Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args) << Name;
+ Success = false;
+ } else {
+ Opts.setObjCDispatchMethod(
+ static_cast<CodeGenOptions::ObjCDispatchMethodKind>(Method));
+ }
+ }
+
+ if (Arg *A = Args.getLastArg(OPT_ftlsmodel_EQ)) {
+ StringRef Name = A->getValue();
+ unsigned Model = llvm::StringSwitch<unsigned>(Name)
+ .Case("global-dynamic", CodeGenOptions::GeneralDynamicTLSModel)
+ .Case("local-dynamic", CodeGenOptions::LocalDynamicTLSModel)
+ .Case("initial-exec", CodeGenOptions::InitialExecTLSModel)
+ .Case("local-exec", CodeGenOptions::LocalExecTLSModel)
+ .Default(~0U);
+ if (Model == ~0U) {
+ Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args) << Name;
+ Success = false;
+ } else {
+ Opts.setDefaultTLSModel(static_cast<CodeGenOptions::TLSModel>(Model));
+ }
+ }
+
+ if (Arg *A = Args.getLastArg(OPT_ffp_contract)) {
+ StringRef Val = A->getValue();
+ if (Val == "fast")
+ Opts.setFPContractMode(CodeGenOptions::FPC_Fast);
+ else if (Val == "on")
+ Opts.setFPContractMode(CodeGenOptions::FPC_On);
+ else if (Val == "off")
+ Opts.setFPContractMode(CodeGenOptions::FPC_Off);
+ else
+ Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args) << Val;
+ }
+
+ if (Arg *A = Args.getLastArg(OPT_fpcc_struct_return, OPT_freg_struct_return)) {
+ if (A->getOption().matches(OPT_fpcc_struct_return)) {
+ Opts.setStructReturnConvention(CodeGenOptions::SRCK_OnStack);
+ } else {
+ assert(A->getOption().matches(OPT_freg_struct_return));
+ Opts.setStructReturnConvention(CodeGenOptions::SRCK_InRegs);
+ }
+ }
+
+ Opts.DependentLibraries = Args.getAllArgValues(OPT_dependent_lib);
+ bool NeedLocTracking = false;
+
+ if (Arg *A = Args.getLastArg(OPT_Rpass_EQ)) {
+ Opts.OptimizationRemarkPattern =
+ GenerateOptimizationRemarkRegex(Diags, Args, A);
+ NeedLocTracking = true;
+ }
+
+ if (Arg *A = Args.getLastArg(OPT_Rpass_missed_EQ)) {
+ Opts.OptimizationRemarkMissedPattern =
+ GenerateOptimizationRemarkRegex(Diags, Args, A);
+ NeedLocTracking = true;
+ }
+
+ if (Arg *A = Args.getLastArg(OPT_Rpass_analysis_EQ)) {
+ Opts.OptimizationRemarkAnalysisPattern =
+ GenerateOptimizationRemarkRegex(Diags, Args, A);
+ NeedLocTracking = true;
+ }
+
+ // If the user requested to use a sample profile for PGO, then the
+ // backend will need to track source location information so the profile
+ // can be incorporated into the IR.
+ if (!Opts.SampleProfileFile.empty())
+ NeedLocTracking = true;
+
+ // If the user requested a flag that requires source locations available in
+ // the backend, make sure that the backend tracks source location information.
+ if (NeedLocTracking && Opts.getDebugInfo() == CodeGenOptions::NoDebugInfo)
+ Opts.setDebugInfo(CodeGenOptions::LocTrackingOnly);
+
+ Opts.RewriteMapFiles = Args.getAllArgValues(OPT_frewrite_map_file);
+
+ // Parse -fsanitize-recover= arguments.
+ // FIXME: Report unrecoverable sanitizers incorrectly specified here.
+ parseSanitizerKinds("-fsanitize-recover=",
+ Args.getAllArgValues(OPT_fsanitize_recover_EQ), Diags,
+ Opts.SanitizeRecover);
+
+ Opts.CudaGpuBinaryFileNames =
+ Args.getAllArgValues(OPT_fcuda_include_gpubinary);
+
+ return Success;
+}
+
+static void ParseDependencyOutputArgs(DependencyOutputOptions &Opts,
+ ArgList &Args) {
+ using namespace options;
+ Opts.OutputFile = Args.getLastArgValue(OPT_dependency_file);
+ Opts.Targets = Args.getAllArgValues(OPT_MT);
+ Opts.IncludeSystemHeaders = Args.hasArg(OPT_sys_header_deps);
+ Opts.IncludeModuleFiles = Args.hasArg(OPT_module_file_deps);
+ Opts.UsePhonyTargets = Args.hasArg(OPT_MP);
+ Opts.ShowHeaderIncludes = Args.hasArg(OPT_H);
+ Opts.HeaderIncludeOutputFile = Args.getLastArgValue(OPT_header_include_file);
+ Opts.AddMissingHeaderDeps = Args.hasArg(OPT_MG);
+ Opts.PrintShowIncludes = Args.hasArg(OPT_show_includes);
+ Opts.DOTOutputFile = Args.getLastArgValue(OPT_dependency_dot);
+ Opts.ModuleDependencyOutputDir =
+ Args.getLastArgValue(OPT_module_dependency_dir);
+ if (Args.hasArg(OPT_MV))
+ Opts.OutputFormat = DependencyOutputFormat::NMake;
+}
+
+bool clang::ParseDiagnosticArgs(DiagnosticOptions &Opts, ArgList &Args,
+ DiagnosticsEngine *Diags) {
+ using namespace options;
+ bool Success = true;
+
+ Opts.DiagnosticLogFile = Args.getLastArgValue(OPT_diagnostic_log_file);
+ if (Arg *A =
+ Args.getLastArg(OPT_diagnostic_serialized_file, OPT__serialize_diags))
+ Opts.DiagnosticSerializationFile = A->getValue();
+ Opts.IgnoreWarnings = Args.hasArg(OPT_w);
+ Opts.NoRewriteMacros = Args.hasArg(OPT_Wno_rewrite_macros);
+ Opts.Pedantic = Args.hasArg(OPT_pedantic);
+ Opts.PedanticErrors = Args.hasArg(OPT_pedantic_errors);
+ Opts.ShowCarets = !Args.hasArg(OPT_fno_caret_diagnostics);
+ Opts.ShowColors = Args.hasArg(OPT_fcolor_diagnostics);
+ Opts.ShowColumn = Args.hasFlag(OPT_fshow_column,
+ OPT_fno_show_column,
+ /*Default=*/true);
+ Opts.ShowFixits = !Args.hasArg(OPT_fno_diagnostics_fixit_info);
+ Opts.ShowLocation = !Args.hasArg(OPT_fno_show_source_location);
+ Opts.ShowOptionNames = Args.hasArg(OPT_fdiagnostics_show_option);
+
+ llvm::sys::Process::UseANSIEscapeCodes(Args.hasArg(OPT_fansi_escape_codes));
+
+ // Default behavior is to not to show note include stacks.
+ Opts.ShowNoteIncludeStack = false;
+ if (Arg *A = Args.getLastArg(OPT_fdiagnostics_show_note_include_stack,
+ OPT_fno_diagnostics_show_note_include_stack))
+ if (A->getOption().matches(OPT_fdiagnostics_show_note_include_stack))
+ Opts.ShowNoteIncludeStack = true;
+
+ StringRef ShowOverloads =
+ Args.getLastArgValue(OPT_fshow_overloads_EQ, "all");
+ if (ShowOverloads == "best")
+ Opts.setShowOverloads(Ovl_Best);
+ else if (ShowOverloads == "all")
+ Opts.setShowOverloads(Ovl_All);
+ else {
+ Success = false;
+ if (Diags)
+ Diags->Report(diag::err_drv_invalid_value)
+ << Args.getLastArg(OPT_fshow_overloads_EQ)->getAsString(Args)
+ << ShowOverloads;
+ }
+
+ StringRef ShowCategory =
+ Args.getLastArgValue(OPT_fdiagnostics_show_category, "none");
+ if (ShowCategory == "none")
+ Opts.ShowCategories = 0;
+ else if (ShowCategory == "id")
+ Opts.ShowCategories = 1;
+ else if (ShowCategory == "name")
+ Opts.ShowCategories = 2;
+ else {
+ Success = false;
+ if (Diags)
+ Diags->Report(diag::err_drv_invalid_value)
+ << Args.getLastArg(OPT_fdiagnostics_show_category)->getAsString(Args)
+ << ShowCategory;
+ }
+
+ StringRef Format =
+ Args.getLastArgValue(OPT_fdiagnostics_format, "clang");
+ if (Format == "clang")
+ Opts.setFormat(DiagnosticOptions::Clang);
+ else if (Format == "msvc")
+ Opts.setFormat(DiagnosticOptions::MSVC);
+ else if (Format == "msvc-fallback") {
+ Opts.setFormat(DiagnosticOptions::MSVC);
+ Opts.CLFallbackMode = true;
+ } else if (Format == "vi")
+ Opts.setFormat(DiagnosticOptions::Vi);
+ else {
+ Success = false;
+ if (Diags)
+ Diags->Report(diag::err_drv_invalid_value)
+ << Args.getLastArg(OPT_fdiagnostics_format)->getAsString(Args)
+ << Format;
+ }
+
+ Opts.ShowSourceRanges = Args.hasArg(OPT_fdiagnostics_print_source_range_info);
+ Opts.ShowParseableFixits = Args.hasArg(OPT_fdiagnostics_parseable_fixits);
+ Opts.ShowPresumedLoc = !Args.hasArg(OPT_fno_diagnostics_use_presumed_location);
+ Opts.VerifyDiagnostics = Args.hasArg(OPT_verify);
+ Opts.ElideType = !Args.hasArg(OPT_fno_elide_type);
+ Opts.ShowTemplateTree = Args.hasArg(OPT_fdiagnostics_show_template_tree);
+ Opts.ErrorLimit = getLastArgIntValue(Args, OPT_ferror_limit, 0, Diags);
+ Opts.MacroBacktraceLimit =
+ getLastArgIntValue(Args, OPT_fmacro_backtrace_limit,
+ DiagnosticOptions::DefaultMacroBacktraceLimit, Diags);
+ Opts.TemplateBacktraceLimit = getLastArgIntValue(
+ Args, OPT_ftemplate_backtrace_limit,
+ DiagnosticOptions::DefaultTemplateBacktraceLimit, Diags);
+ Opts.ConstexprBacktraceLimit = getLastArgIntValue(
+ Args, OPT_fconstexpr_backtrace_limit,
+ DiagnosticOptions::DefaultConstexprBacktraceLimit, Diags);
+ Opts.SpellCheckingLimit = getLastArgIntValue(
+ Args, OPT_fspell_checking_limit,
+ DiagnosticOptions::DefaultSpellCheckingLimit, Diags);
+ Opts.TabStop = getLastArgIntValue(Args, OPT_ftabstop,
+ DiagnosticOptions::DefaultTabStop, Diags);
+ if (Opts.TabStop == 0 || Opts.TabStop > DiagnosticOptions::MaxTabStop) {
+ Opts.TabStop = DiagnosticOptions::DefaultTabStop;
+ if (Diags)
+ Diags->Report(diag::warn_ignoring_ftabstop_value)
+ << Opts.TabStop << DiagnosticOptions::DefaultTabStop;
+ }
+ Opts.MessageLength = getLastArgIntValue(Args, OPT_fmessage_length, 0, Diags);
+ addDiagnosticArgs(Args, OPT_W_Group, OPT_W_value_Group, Opts.Warnings);
+ addDiagnosticArgs(Args, OPT_R_Group, OPT_R_value_Group, Opts.Remarks);
+
+ return Success;
+}
+
+static void ParseFileSystemArgs(FileSystemOptions &Opts, ArgList &Args) {
+ Opts.WorkingDir = Args.getLastArgValue(OPT_working_directory);
+}
+
+static InputKind ParseFrontendArgs(FrontendOptions &Opts, ArgList &Args,
+ DiagnosticsEngine &Diags) {
+ using namespace options;
+ Opts.ProgramAction = frontend::ParseSyntaxOnly;
+ if (const Arg *A = Args.getLastArg(OPT_Action_Group)) {
+ switch (A->getOption().getID()) {
+ default:
+ llvm_unreachable("Invalid option in group!");
+ case OPT_ast_list:
+ Opts.ProgramAction = frontend::ASTDeclList; break;
+ case OPT_ast_dump:
+ case OPT_ast_dump_lookups:
+ Opts.ProgramAction = frontend::ASTDump; break;
+ case OPT_ast_print:
+ Opts.ProgramAction = frontend::ASTPrint; break;
+ case OPT_ast_view:
+ Opts.ProgramAction = frontend::ASTView; break;
+ case OPT_dump_raw_tokens:
+ Opts.ProgramAction = frontend::DumpRawTokens; break;
+ case OPT_dump_tokens:
+ Opts.ProgramAction = frontend::DumpTokens; break;
+ case OPT_S:
+ Opts.ProgramAction = frontend::EmitAssembly; break;
+ case OPT_emit_llvm_bc:
+ Opts.ProgramAction = frontend::EmitBC; break;
+ case OPT_emit_html:
+ Opts.ProgramAction = frontend::EmitHTML; break;
+ case OPT_emit_llvm:
+ Opts.ProgramAction = frontend::EmitLLVM; break;
+ case OPT_emit_llvm_only:
+ Opts.ProgramAction = frontend::EmitLLVMOnly; break;
+ case OPT_emit_codegen_only:
+ Opts.ProgramAction = frontend::EmitCodeGenOnly; break;
+ case OPT_emit_obj:
+ Opts.ProgramAction = frontend::EmitObj; break;
+ case OPT_fixit_EQ:
+ Opts.FixItSuffix = A->getValue();
+ // fall-through!
+ case OPT_fixit:
+ Opts.ProgramAction = frontend::FixIt; break;
+ case OPT_emit_module:
+ Opts.ProgramAction = frontend::GenerateModule; break;
+ case OPT_emit_pch:
+ Opts.ProgramAction = frontend::GeneratePCH; break;
+ case OPT_emit_pth:
+ Opts.ProgramAction = frontend::GeneratePTH; break;
+ case OPT_init_only:
+ Opts.ProgramAction = frontend::InitOnly; break;
+ case OPT_fsyntax_only:
+ Opts.ProgramAction = frontend::ParseSyntaxOnly; break;
+ case OPT_module_file_info:
+ Opts.ProgramAction = frontend::ModuleFileInfo; break;
+ case OPT_verify_pch:
+ Opts.ProgramAction = frontend::VerifyPCH; break;
+ case OPT_print_decl_contexts:
+ Opts.ProgramAction = frontend::PrintDeclContext; break;
+ case OPT_print_preamble:
+ Opts.ProgramAction = frontend::PrintPreamble; break;
+ case OPT_E:
+ Opts.ProgramAction = frontend::PrintPreprocessedInput; break;
+ case OPT_rewrite_macros:
+ Opts.ProgramAction = frontend::RewriteMacros; break;
+ case OPT_rewrite_objc:
+ Opts.ProgramAction = frontend::RewriteObjC; break;
+ case OPT_rewrite_test:
+ Opts.ProgramAction = frontend::RewriteTest; break;
+ case OPT_analyze:
+ Opts.ProgramAction = frontend::RunAnalysis; break;
+ case OPT_migrate:
+ Opts.ProgramAction = frontend::MigrateSource; break;
+ case OPT_Eonly:
+ Opts.ProgramAction = frontend::RunPreprocessorOnly; break;
+ }
+ }
+
+ if (const Arg* A = Args.getLastArg(OPT_plugin)) {
+ Opts.Plugins.push_back(A->getValue(0));
+ Opts.ProgramAction = frontend::PluginAction;
+ Opts.ActionName = A->getValue();
+
+ for (arg_iterator it = Args.filtered_begin(OPT_plugin_arg),
+ end = Args.filtered_end(); it != end; ++it) {
+ if ((*it)->getValue(0) == Opts.ActionName)
+ Opts.PluginArgs.push_back((*it)->getValue(1));
+ }
+ }
+
+ Opts.AddPluginActions = Args.getAllArgValues(OPT_add_plugin);
+ Opts.AddPluginArgs.resize(Opts.AddPluginActions.size());
+ for (int i = 0, e = Opts.AddPluginActions.size(); i != e; ++i) {
+ for (arg_iterator it = Args.filtered_begin(OPT_plugin_arg),
+ end = Args.filtered_end(); it != end; ++it) {
+ if ((*it)->getValue(0) == Opts.AddPluginActions[i])
+ Opts.AddPluginArgs[i].push_back((*it)->getValue(1));
+ }
+ }
+
+ if (const Arg *A = Args.getLastArg(OPT_code_completion_at)) {
+ Opts.CodeCompletionAt =
+ ParsedSourceLocation::FromString(A->getValue());
+ if (Opts.CodeCompletionAt.FileName.empty())
+ Diags.Report(diag::err_drv_invalid_value)
+ << A->getAsString(Args) << A->getValue();
+ }
+ Opts.DisableFree = Args.hasArg(OPT_disable_free);
+
+ Opts.OutputFile = Args.getLastArgValue(OPT_o);
+ Opts.Plugins = Args.getAllArgValues(OPT_load);
+ Opts.RelocatablePCH = Args.hasArg(OPT_relocatable_pch);
+ Opts.ShowHelp = Args.hasArg(OPT_help);
+ Opts.ShowStats = Args.hasArg(OPT_print_stats);
+ Opts.ShowTimers = Args.hasArg(OPT_ftime_report);
+ Opts.ShowVersion = Args.hasArg(OPT_version);
+ Opts.ASTMergeFiles = Args.getAllArgValues(OPT_ast_merge);
+ Opts.LLVMArgs = Args.getAllArgValues(OPT_mllvm);
+ Opts.FixWhatYouCan = Args.hasArg(OPT_fix_what_you_can);
+ Opts.FixOnlyWarnings = Args.hasArg(OPT_fix_only_warnings);
+ Opts.FixAndRecompile = Args.hasArg(OPT_fixit_recompile);
+ Opts.FixToTemporaries = Args.hasArg(OPT_fixit_to_temp);
+ Opts.ASTDumpDecls = Args.hasArg(OPT_ast_dump);
+ Opts.ASTDumpFilter = Args.getLastArgValue(OPT_ast_dump_filter);
+ Opts.ASTDumpLookups = Args.hasArg(OPT_ast_dump_lookups);
+ Opts.UseGlobalModuleIndex = !Args.hasArg(OPT_fno_modules_global_index);
+ Opts.GenerateGlobalModuleIndex = Opts.UseGlobalModuleIndex;
+ Opts.ModuleMapFiles = Args.getAllArgValues(OPT_fmodule_map_file);
+ Opts.ModuleFiles = Args.getAllArgValues(OPT_fmodule_file);
+
+ Opts.CodeCompleteOpts.IncludeMacros
+ = Args.hasArg(OPT_code_completion_macros);
+ Opts.CodeCompleteOpts.IncludeCodePatterns
+ = Args.hasArg(OPT_code_completion_patterns);
+ Opts.CodeCompleteOpts.IncludeGlobals
+ = !Args.hasArg(OPT_no_code_completion_globals);
+ Opts.CodeCompleteOpts.IncludeBriefComments
+ = Args.hasArg(OPT_code_completion_brief_comments);
+
+ Opts.OverrideRecordLayoutsFile
+ = Args.getLastArgValue(OPT_foverride_record_layout_EQ);
+ if (const Arg *A = Args.getLastArg(OPT_arcmt_check,
+ OPT_arcmt_modify,
+ OPT_arcmt_migrate)) {
+ switch (A->getOption().getID()) {
+ default:
+ llvm_unreachable("missed a case");
+ case OPT_arcmt_check:
+ Opts.ARCMTAction = FrontendOptions::ARCMT_Check;
+ break;
+ case OPT_arcmt_modify:
+ Opts.ARCMTAction = FrontendOptions::ARCMT_Modify;
+ break;
+ case OPT_arcmt_migrate:
+ Opts.ARCMTAction = FrontendOptions::ARCMT_Migrate;
+ break;
+ }
+ }
+ Opts.MTMigrateDir = Args.getLastArgValue(OPT_mt_migrate_directory);
+ Opts.ARCMTMigrateReportOut
+ = Args.getLastArgValue(OPT_arcmt_migrate_report_output);
+ Opts.ARCMTMigrateEmitARCErrors
+ = Args.hasArg(OPT_arcmt_migrate_emit_arc_errors);
+
+ if (Args.hasArg(OPT_objcmt_migrate_literals))
+ Opts.ObjCMTAction |= FrontendOptions::ObjCMT_Literals;
+ if (Args.hasArg(OPT_objcmt_migrate_subscripting))
+ Opts.ObjCMTAction |= FrontendOptions::ObjCMT_Subscripting;
+ if (Args.hasArg(OPT_objcmt_migrate_property_dot_syntax))
+ Opts.ObjCMTAction |= FrontendOptions::ObjCMT_PropertyDotSyntax;
+ if (Args.hasArg(OPT_objcmt_migrate_property))
+ Opts.ObjCMTAction |= FrontendOptions::ObjCMT_Property;
+ if (Args.hasArg(OPT_objcmt_migrate_readonly_property))
+ Opts.ObjCMTAction |= FrontendOptions::ObjCMT_ReadonlyProperty;
+ if (Args.hasArg(OPT_objcmt_migrate_readwrite_property))
+ Opts.ObjCMTAction |= FrontendOptions::ObjCMT_ReadwriteProperty;
+ if (Args.hasArg(OPT_objcmt_migrate_annotation))
+ Opts.ObjCMTAction |= FrontendOptions::ObjCMT_Annotation;
+ if (Args.hasArg(OPT_objcmt_returns_innerpointer_property))
+ Opts.ObjCMTAction |= FrontendOptions::ObjCMT_ReturnsInnerPointerProperty;
+ if (Args.hasArg(OPT_objcmt_migrate_instancetype))
+ Opts.ObjCMTAction |= FrontendOptions::ObjCMT_Instancetype;
+ if (Args.hasArg(OPT_objcmt_migrate_nsmacros))
+ Opts.ObjCMTAction |= FrontendOptions::ObjCMT_NsMacros;
+ if (Args.hasArg(OPT_objcmt_migrate_protocol_conformance))
+ Opts.ObjCMTAction |= FrontendOptions::ObjCMT_ProtocolConformance;
+ if (Args.hasArg(OPT_objcmt_atomic_property))
+ Opts.ObjCMTAction |= FrontendOptions::ObjCMT_AtomicProperty;
+ if (Args.hasArg(OPT_objcmt_ns_nonatomic_iosonly))
+ Opts.ObjCMTAction |= FrontendOptions::ObjCMT_NsAtomicIOSOnlyProperty;
+ if (Args.hasArg(OPT_objcmt_migrate_designated_init))
+ Opts.ObjCMTAction |= FrontendOptions::ObjCMT_DesignatedInitializer;
+ if (Args.hasArg(OPT_objcmt_migrate_all))
+ Opts.ObjCMTAction |= FrontendOptions::ObjCMT_MigrateDecls;
+
+ Opts.ObjCMTWhiteListPath = Args.getLastArgValue(OPT_objcmt_whitelist_dir_path);
+
+ if (Opts.ARCMTAction != FrontendOptions::ARCMT_None &&
+ Opts.ObjCMTAction != FrontendOptions::ObjCMT_None) {
+ Diags.Report(diag::err_drv_argument_not_allowed_with)
+ << "ARC migration" << "ObjC migration";
+ }
+
+ InputKind DashX = IK_None;
+ if (const Arg *A = Args.getLastArg(OPT_x)) {
+ DashX = llvm::StringSwitch<InputKind>(A->getValue())
+ .Case("c", IK_C)
+ .Case("cl", IK_OpenCL)
+ .Case("cuda", IK_CUDA)
+ .Case("c++", IK_CXX)
+ .Case("objective-c", IK_ObjC)
+ .Case("objective-c++", IK_ObjCXX)
+ .Case("cpp-output", IK_PreprocessedC)
+ .Case("assembler-with-cpp", IK_Asm)
+ .Case("c++-cpp-output", IK_PreprocessedCXX)
+ .Case("cuda-cpp-output", IK_PreprocessedCuda)
+ .Case("objective-c-cpp-output", IK_PreprocessedObjC)
+ .Case("objc-cpp-output", IK_PreprocessedObjC)
+ .Case("objective-c++-cpp-output", IK_PreprocessedObjCXX)
+ .Case("objc++-cpp-output", IK_PreprocessedObjCXX)
+ .Case("c-header", IK_C)
+ .Case("cl-header", IK_OpenCL)
+ .Case("objective-c-header", IK_ObjC)
+ .Case("c++-header", IK_CXX)
+ .Case("objective-c++-header", IK_ObjCXX)
+ .Cases("ast", "pcm", IK_AST)
+ .Case("ir", IK_LLVM_IR)
+ .Default(IK_None);
+ if (DashX == IK_None)
+ Diags.Report(diag::err_drv_invalid_value)
+ << A->getAsString(Args) << A->getValue();
+ }
+
+ // '-' is the default input if none is given.
+ std::vector<std::string> Inputs = Args.getAllArgValues(OPT_INPUT);
+ Opts.Inputs.clear();
+ if (Inputs.empty())
+ Inputs.push_back("-");
+ for (unsigned i = 0, e = Inputs.size(); i != e; ++i) {
+ InputKind IK = DashX;
+ if (IK == IK_None) {
+ IK = FrontendOptions::getInputKindForExtension(
+ StringRef(Inputs[i]).rsplit('.').second);
+ // FIXME: Remove this hack.
+ if (i == 0)
+ DashX = IK;
+ }
+ Opts.Inputs.push_back(FrontendInputFile(Inputs[i], IK));
+ }
+
+ return DashX;
+}
+
+std::string CompilerInvocation::GetResourcesPath(const char *Argv0,
+ void *MainAddr) {
+ std::string ClangExecutable =
+ llvm::sys::fs::getMainExecutable(Argv0, MainAddr);
+ StringRef Dir = llvm::sys::path::parent_path(ClangExecutable);
+
+ // Compute the path to the resource directory.
+ StringRef ClangResourceDir(CLANG_RESOURCE_DIR);
+ SmallString<128> P(Dir);
+ if (ClangResourceDir != "") {
+ llvm::sys::path::append(P, ClangResourceDir);
+ } else {
+ StringRef ClangLibdirSuffix(CLANG_LIBDIR_SUFFIX);
+ llvm::sys::path::append(P, "..", Twine("lib") + ClangLibdirSuffix, "clang",
+ CLANG_VERSION_STRING);
+ }
+
+ return P.str();
+}
+
+static void ParseHeaderSearchArgs(HeaderSearchOptions &Opts, ArgList &Args) {
+ using namespace options;
+ Opts.Sysroot = Args.getLastArgValue(OPT_isysroot, "/");
+ Opts.Verbose = Args.hasArg(OPT_v);
+ Opts.UseBuiltinIncludes = !Args.hasArg(OPT_nobuiltininc);
+ Opts.UseStandardSystemIncludes = !Args.hasArg(OPT_nostdsysteminc);
+ Opts.UseStandardCXXIncludes = !Args.hasArg(OPT_nostdincxx);
+ if (const Arg *A = Args.getLastArg(OPT_stdlib_EQ))
+ Opts.UseLibcxx = (strcmp(A->getValue(), "libc++") == 0);
+ Opts.ResourceDir = Args.getLastArgValue(OPT_resource_dir);
+ Opts.ModuleCachePath = Args.getLastArgValue(OPT_fmodules_cache_path);
+ Opts.ModuleUserBuildPath = Args.getLastArgValue(OPT_fmodules_user_build_path);
+ Opts.DisableModuleHash = Args.hasArg(OPT_fdisable_module_hash);
+ // -fmodules implies -fmodule-maps
+ Opts.ModuleMaps = Args.hasArg(OPT_fmodule_maps) || Args.hasArg(OPT_fmodules);
+ Opts.ModuleMapFileHomeIsCwd = Args.hasArg(OPT_fmodule_map_file_home_is_cwd);
+ Opts.ModuleCachePruneInterval =
+ getLastArgIntValue(Args, OPT_fmodules_prune_interval, 7 * 24 * 60 * 60);
+ Opts.ModuleCachePruneAfter =
+ getLastArgIntValue(Args, OPT_fmodules_prune_after, 31 * 24 * 60 * 60);
+ Opts.ModulesValidateOncePerBuildSession =
+ Args.hasArg(OPT_fmodules_validate_once_per_build_session);
+ Opts.BuildSessionTimestamp =
+ getLastArgUInt64Value(Args, OPT_fbuild_session_timestamp, 0);
+ Opts.ModulesValidateSystemHeaders =
+ Args.hasArg(OPT_fmodules_validate_system_headers);
+
+ for (arg_iterator it = Args.filtered_begin(OPT_fmodules_ignore_macro),
+ ie = Args.filtered_end();
+ it != ie; ++it) {
+ StringRef MacroDef = (*it)->getValue();
+ Opts.ModulesIgnoreMacros.insert(MacroDef.split('=').first);
+ }
+
+ // Add -I..., -F..., and -index-header-map options in order.
+ bool IsIndexHeaderMap = false;
+ for (arg_iterator it = Args.filtered_begin(OPT_I, OPT_F,
+ OPT_index_header_map),
+ ie = Args.filtered_end(); it != ie; ++it) {
+ if ((*it)->getOption().matches(OPT_index_header_map)) {
+ // -index-header-map applies to the next -I or -F.
+ IsIndexHeaderMap = true;
+ continue;
+ }
+
+ frontend::IncludeDirGroup Group
+ = IsIndexHeaderMap? frontend::IndexHeaderMap : frontend::Angled;
+
+ Opts.AddPath((*it)->getValue(), Group,
+ /*IsFramework=*/ (*it)->getOption().matches(OPT_F), true);
+ IsIndexHeaderMap = false;
+ }
+
+ // Add -iprefix/-iwithprefix/-iwithprefixbefore options.
+ StringRef Prefix = ""; // FIXME: This isn't the correct default prefix.
+ for (arg_iterator it = Args.filtered_begin(OPT_iprefix, OPT_iwithprefix,
+ OPT_iwithprefixbefore),
+ ie = Args.filtered_end(); it != ie; ++it) {
+ const Arg *A = *it;
+ if (A->getOption().matches(OPT_iprefix))
+ Prefix = A->getValue();
+ else if (A->getOption().matches(OPT_iwithprefix))
+ Opts.AddPath(Prefix.str() + A->getValue(),
+ frontend::After, false, true);
+ else
+ Opts.AddPath(Prefix.str() + A->getValue(),
+ frontend::Angled, false, true);
+ }
+
+ for (arg_iterator it = Args.filtered_begin(OPT_idirafter),
+ ie = Args.filtered_end(); it != ie; ++it)
+ Opts.AddPath((*it)->getValue(), frontend::After, false, true);
+ for (arg_iterator it = Args.filtered_begin(OPT_iquote),
+ ie = Args.filtered_end(); it != ie; ++it)
+ Opts.AddPath((*it)->getValue(), frontend::Quoted, false, true);
+ for (arg_iterator it = Args.filtered_begin(OPT_isystem,
+ OPT_iwithsysroot), ie = Args.filtered_end(); it != ie; ++it)
+ Opts.AddPath((*it)->getValue(), frontend::System, false,
+ !(*it)->getOption().matches(OPT_iwithsysroot));
+ for (arg_iterator it = Args.filtered_begin(OPT_iframework),
+ ie = Args.filtered_end(); it != ie; ++it)
+ Opts.AddPath((*it)->getValue(), frontend::System, true, true);
+
+ // Add the paths for the various language specific isystem flags.
+ for (arg_iterator it = Args.filtered_begin(OPT_c_isystem),
+ ie = Args.filtered_end(); it != ie; ++it)
+ Opts.AddPath((*it)->getValue(), frontend::CSystem, false, true);
+ for (arg_iterator it = Args.filtered_begin(OPT_cxx_isystem),
+ ie = Args.filtered_end(); it != ie; ++it)
+ Opts.AddPath((*it)->getValue(), frontend::CXXSystem, false, true);
+ for (arg_iterator it = Args.filtered_begin(OPT_objc_isystem),
+ ie = Args.filtered_end(); it != ie; ++it)
+ Opts.AddPath((*it)->getValue(), frontend::ObjCSystem, false,true);
+ for (arg_iterator it = Args.filtered_begin(OPT_objcxx_isystem),
+ ie = Args.filtered_end(); it != ie; ++it)
+ Opts.AddPath((*it)->getValue(), frontend::ObjCXXSystem, false, true);
+
+ // Add the internal paths from a driver that detects standard include paths.
+ for (arg_iterator I = Args.filtered_begin(OPT_internal_isystem,
+ OPT_internal_externc_isystem),
+ E = Args.filtered_end();
+ I != E; ++I) {
+ frontend::IncludeDirGroup Group = frontend::System;
+ if ((*I)->getOption().matches(OPT_internal_externc_isystem))
+ Group = frontend::ExternCSystem;
+ Opts.AddPath((*I)->getValue(), Group, false, true);
+ }
+
+ // Add the path prefixes which are implicitly treated as being system headers.
+ for (arg_iterator I = Args.filtered_begin(OPT_system_header_prefix,
+ OPT_no_system_header_prefix),
+ E = Args.filtered_end();
+ I != E; ++I)
+ Opts.AddSystemHeaderPrefix(
+ (*I)->getValue(), (*I)->getOption().matches(OPT_system_header_prefix));
+
+ for (arg_iterator I = Args.filtered_begin(OPT_ivfsoverlay),
+ E = Args.filtered_end(); I != E; ++I)
+ Opts.AddVFSOverlayFile((*I)->getValue());
+}
+
+void CompilerInvocation::setLangDefaults(LangOptions &Opts, InputKind IK,
+ LangStandard::Kind LangStd) {
+ // Set some properties which depend solely on the input kind; it would be nice
+ // to move these to the language standard, and have the driver resolve the
+ // input kind + language standard.
+ if (IK == IK_Asm) {
+ Opts.AsmPreprocessor = 1;
+ } else if (IK == IK_ObjC ||
+ IK == IK_ObjCXX ||
+ IK == IK_PreprocessedObjC ||
+ IK == IK_PreprocessedObjCXX) {
+ Opts.ObjC1 = Opts.ObjC2 = 1;
+ }
+
+ if (LangStd == LangStandard::lang_unspecified) {
+ // Based on the base language, pick one.
+ switch (IK) {
+ case IK_None:
+ case IK_AST:
+ case IK_LLVM_IR:
+ llvm_unreachable("Invalid input kind!");
+ case IK_OpenCL:
+ LangStd = LangStandard::lang_opencl;
+ break;
+ case IK_CUDA:
+ case IK_PreprocessedCuda:
+ LangStd = LangStandard::lang_cuda;
+ break;
+ case IK_Asm:
+ case IK_C:
+ case IK_PreprocessedC:
+ case IK_ObjC:
+ case IK_PreprocessedObjC:
+ LangStd = LangStandard::lang_gnu11;
+ break;
+ case IK_CXX:
+ case IK_PreprocessedCXX:
+ case IK_ObjCXX:
+ case IK_PreprocessedObjCXX:
+ LangStd = LangStandard::lang_gnucxx98;
+ break;
+ }
+ }
+
+ const LangStandard &Std = LangStandard::getLangStandardForKind(LangStd);
+ Opts.LineComment = Std.hasLineComments();
+ Opts.C99 = Std.isC99();
+ Opts.C11 = Std.isC11();
+ Opts.CPlusPlus = Std.isCPlusPlus();
+ Opts.CPlusPlus11 = Std.isCPlusPlus11();
+ Opts.CPlusPlus14 = Std.isCPlusPlus14();
+ Opts.CPlusPlus1z = Std.isCPlusPlus1z();
+ Opts.Digraphs = Std.hasDigraphs();
+ Opts.GNUMode = Std.isGNUMode();
+ Opts.GNUInline = Std.isC89();
+ Opts.HexFloats = Std.hasHexFloats();
+ Opts.ImplicitInt = Std.hasImplicitInt();
+
+ // Set OpenCL Version.
+ Opts.OpenCL = LangStd == LangStandard::lang_opencl || IK == IK_OpenCL;
+ if (LangStd == LangStandard::lang_opencl)
+ Opts.OpenCLVersion = 100;
+ else if (LangStd == LangStandard::lang_opencl11)
+ Opts.OpenCLVersion = 110;
+ else if (LangStd == LangStandard::lang_opencl12)
+ Opts.OpenCLVersion = 120;
+ else if (LangStd == LangStandard::lang_opencl20)
+ Opts.OpenCLVersion = 200;
+
+ // OpenCL has some additional defaults.
+ if (Opts.OpenCL) {
+ Opts.AltiVec = 0;
+ Opts.CXXOperatorNames = 1;
+ Opts.LaxVectorConversions = 0;
+ Opts.DefaultFPContract = 1;
+ Opts.NativeHalfType = 1;
+ }
+
+ Opts.CUDA = IK == IK_CUDA || IK == IK_PreprocessedCuda ||
+ LangStd == LangStandard::lang_cuda;
+
+ // OpenCL and C++ both have bool, true, false keywords.
+ Opts.Bool = Opts.OpenCL || Opts.CPlusPlus;
+
+ // OpenCL has half keyword
+ Opts.Half = Opts.OpenCL;
+
+ // C++ has wchar_t keyword.
+ Opts.WChar = Opts.CPlusPlus;
+
+ Opts.GNUKeywords = Opts.GNUMode;
+ Opts.CXXOperatorNames = Opts.CPlusPlus;
+
+ Opts.DollarIdents = !Opts.AsmPreprocessor;
+}
+
+/// Attempt to parse a visibility value out of the given argument.
+static Visibility parseVisibility(Arg *arg, ArgList &args,
+ DiagnosticsEngine &diags) {
+ StringRef value = arg->getValue();
+ if (value == "default") {
+ return DefaultVisibility;
+ } else if (value == "hidden") {
+ return HiddenVisibility;
+ } else if (value == "protected") {
+ // FIXME: diagnose if target does not support protected visibility
+ return ProtectedVisibility;
+ }
+
+ diags.Report(diag::err_drv_invalid_value)
+ << arg->getAsString(args) << value;
+ return DefaultVisibility;
+}
+
+static void ParseLangArgs(LangOptions &Opts, ArgList &Args, InputKind IK,
+ DiagnosticsEngine &Diags) {
+ // FIXME: Cleanup per-file based stuff.
+ LangStandard::Kind LangStd = LangStandard::lang_unspecified;
+ if (const Arg *A = Args.getLastArg(OPT_std_EQ)) {
+ LangStd = llvm::StringSwitch<LangStandard::Kind>(A->getValue())
+#define LANGSTANDARD(id, name, desc, features) \
+ .Case(name, LangStandard::lang_##id)
+#include "clang/Frontend/LangStandards.def"
+ .Default(LangStandard::lang_unspecified);
+ if (LangStd == LangStandard::lang_unspecified)
+ Diags.Report(diag::err_drv_invalid_value)
+ << A->getAsString(Args) << A->getValue();
+ else {
+ // Valid standard, check to make sure language and standard are
+ // compatible.
+ const LangStandard &Std = LangStandard::getLangStandardForKind(LangStd);
+ switch (IK) {
+ case IK_C:
+ case IK_ObjC:
+ case IK_PreprocessedC:
+ case IK_PreprocessedObjC:
+ if (!(Std.isC89() || Std.isC99()))
+ Diags.Report(diag::err_drv_argument_not_allowed_with)
+ << A->getAsString(Args) << "C/ObjC";
+ break;
+ case IK_CXX:
+ case IK_ObjCXX:
+ case IK_PreprocessedCXX:
+ case IK_PreprocessedObjCXX:
+ if (!Std.isCPlusPlus())
+ Diags.Report(diag::err_drv_argument_not_allowed_with)
+ << A->getAsString(Args) << "C++/ObjC++";
+ break;
+ case IK_OpenCL:
+ if (!Std.isC99())
+ Diags.Report(diag::err_drv_argument_not_allowed_with)
+ << A->getAsString(Args) << "OpenCL";
+ break;
+ case IK_CUDA:
+ case IK_PreprocessedCuda:
+ if (!Std.isCPlusPlus())
+ Diags.Report(diag::err_drv_argument_not_allowed_with)
+ << A->getAsString(Args) << "CUDA";
+ break;
+ default:
+ break;
+ }
+ }
+ }
+
+ // -cl-std only applies for OpenCL language standards.
+ // Override the -std option in this case.
+ if (const Arg *A = Args.getLastArg(OPT_cl_std_EQ)) {
+ LangStandard::Kind OpenCLLangStd
+ = llvm::StringSwitch<LangStandard::Kind>(A->getValue())
+ .Case("CL", LangStandard::lang_opencl)
+ .Case("CL1.1", LangStandard::lang_opencl11)
+ .Case("CL1.2", LangStandard::lang_opencl12)
+ .Case("CL2.0", LangStandard::lang_opencl20)
+ .Default(LangStandard::lang_unspecified);
+
+ if (OpenCLLangStd == LangStandard::lang_unspecified) {
+ Diags.Report(diag::err_drv_invalid_value)
+ << A->getAsString(Args) << A->getValue();
+ }
+ else
+ LangStd = OpenCLLangStd;
+ }
+
+ CompilerInvocation::setLangDefaults(Opts, IK, LangStd);
+
+ // We abuse '-f[no-]gnu-keywords' to force overriding all GNU-extension
+ // keywords. This behavior is provided by GCC's poorly named '-fasm' flag,
+ // while a subset (the non-C++ GNU keywords) is provided by GCC's
+ // '-fgnu-keywords'. Clang conflates the two for simplicity under the single
+ // name, as it doesn't seem a useful distinction.
+ Opts.GNUKeywords = Args.hasFlag(OPT_fgnu_keywords, OPT_fno_gnu_keywords,
+ Opts.GNUKeywords);
+
+ if (Args.hasArg(OPT_fno_operator_names))
+ Opts.CXXOperatorNames = 0;
+
+ if (Args.hasArg(OPT_fcuda_is_device))
+ Opts.CUDAIsDevice = 1;
+
+ if (Args.hasArg(OPT_fcuda_allow_host_calls_from_host_device))
+ Opts.CUDAAllowHostCallsFromHostDevice = 1;
+
+ if (Args.hasArg(OPT_fcuda_disable_target_call_checks))
+ Opts.CUDADisableTargetCallChecks = 1;
+
+ if (Opts.ObjC1) {
+ if (Arg *arg = Args.getLastArg(OPT_fobjc_runtime_EQ)) {
+ StringRef value = arg->getValue();
+ if (Opts.ObjCRuntime.tryParse(value))
+ Diags.Report(diag::err_drv_unknown_objc_runtime) << value;
+ }
+
+ if (Args.hasArg(OPT_fobjc_gc_only))
+ Opts.setGC(LangOptions::GCOnly);
+ else if (Args.hasArg(OPT_fobjc_gc))
+ Opts.setGC(LangOptions::HybridGC);
+ else if (Args.hasArg(OPT_fobjc_arc)) {
+ Opts.ObjCAutoRefCount = 1;
+ if (!Opts.ObjCRuntime.allowsARC())
+ Diags.Report(diag::err_arc_unsupported_on_runtime);
+
+ // Only set ObjCARCWeak if ARC is enabled.
+ if (Args.hasArg(OPT_fobjc_runtime_has_weak))
+ Opts.ObjCARCWeak = 1;
+ else
+ Opts.ObjCARCWeak = Opts.ObjCRuntime.allowsWeak();
+ }
+
+ if (Args.hasArg(OPT_fno_objc_infer_related_result_type))
+ Opts.ObjCInferRelatedResultType = 0;
+
+ if (Args.hasArg(OPT_fobjc_subscripting_legacy_runtime))
+ Opts.ObjCSubscriptingLegacyRuntime =
+ (Opts.ObjCRuntime.getKind() == ObjCRuntime::FragileMacOSX);
+ }
+
+ if (Args.hasArg(OPT_fgnu89_inline)) {
+ if (Opts.CPlusPlus)
+ Diags.Report(diag::err_drv_argument_not_allowed_with) << "-fgnu89-inline"
+ << "C++/ObjC++";
+ else
+ Opts.GNUInline = 1;
+ }
+
+ if (Args.hasArg(OPT_fapple_kext)) {
+ if (!Opts.CPlusPlus)
+ Diags.Report(diag::warn_c_kext);
+ else
+ Opts.AppleKext = 1;
+ }
+
+ if (Args.hasArg(OPT_print_ivar_layout))
+ Opts.ObjCGCBitmapPrint = 1;
+ if (Args.hasArg(OPT_fno_constant_cfstrings))
+ Opts.NoConstantCFStrings = 1;
+
+ if (Args.hasArg(OPT_faltivec))
+ Opts.AltiVec = 1;
+
+ if (Args.hasArg(OPT_pthread))
+ Opts.POSIXThreads = 1;
+
+ // The value-visibility mode defaults to "default".
+ if (Arg *visOpt = Args.getLastArg(OPT_fvisibility)) {
+ Opts.setValueVisibilityMode(parseVisibility(visOpt, Args, Diags));
+ } else {
+ Opts.setValueVisibilityMode(DefaultVisibility);
+ }
+
+ // The type-visibility mode defaults to the value-visibility mode.
+ if (Arg *typeVisOpt = Args.getLastArg(OPT_ftype_visibility)) {
+ Opts.setTypeVisibilityMode(parseVisibility(typeVisOpt, Args, Diags));
+ } else {
+ Opts.setTypeVisibilityMode(Opts.getValueVisibilityMode());
+ }
+
+ if (Args.hasArg(OPT_fvisibility_inlines_hidden))
+ Opts.InlineVisibilityHidden = 1;
+
+ if (Args.hasArg(OPT_ftrapv)) {
+ Opts.setSignedOverflowBehavior(LangOptions::SOB_Trapping);
+ // Set the handler, if one is specified.
+ Opts.OverflowHandler =
+ Args.getLastArgValue(OPT_ftrapv_handler);
+ }
+ else if (Args.hasArg(OPT_fwrapv))
+ Opts.setSignedOverflowBehavior(LangOptions::SOB_Defined);
+
+ Opts.MSVCCompat = Args.hasArg(OPT_fms_compatibility);
+ Opts.MicrosoftExt = Opts.MSVCCompat || Args.hasArg(OPT_fms_extensions);
+ Opts.AsmBlocks = Args.hasArg(OPT_fasm_blocks) || Opts.MicrosoftExt;
+ Opts.MSCompatibilityVersion = 0;
+ if (const Arg *A = Args.getLastArg(OPT_fms_compatibility_version)) {
+ VersionTuple VT;
+ if (VT.tryParse(A->getValue()))
+ Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args)
+ << A->getValue();
+ Opts.MSCompatibilityVersion = VT.getMajor() * 10000000 +
+ VT.getMinor().getValueOr(0) * 100000 +
+ VT.getSubminor().getValueOr(0);
+ }
+
+ // Mimicing gcc's behavior, trigraphs are only enabled if -trigraphs
+ // is specified, or -std is set to a conforming mode.
+ // Trigraphs are disabled by default in c++1z onwards.
+ Opts.Trigraphs = !Opts.GNUMode && !Opts.MSVCCompat && !Opts.CPlusPlus1z;
+ Opts.Trigraphs =
+ Args.hasFlag(OPT_ftrigraphs, OPT_fno_trigraphs, Opts.Trigraphs);
+
+ Opts.DollarIdents = Args.hasFlag(OPT_fdollars_in_identifiers,
+ OPT_fno_dollars_in_identifiers,
+ Opts.DollarIdents);
+ Opts.PascalStrings = Args.hasArg(OPT_fpascal_strings);
+ Opts.VtorDispMode = getLastArgIntValue(Args, OPT_vtordisp_mode_EQ, 1, Diags);
+ Opts.Borland = Args.hasArg(OPT_fborland_extensions);
+ Opts.WritableStrings = Args.hasArg(OPT_fwritable_strings);
+ Opts.ConstStrings = Args.hasFlag(OPT_fconst_strings, OPT_fno_const_strings,
+ Opts.ConstStrings);
+ if (Args.hasArg(OPT_fno_lax_vector_conversions))
+ Opts.LaxVectorConversions = 0;
+ if (Args.hasArg(OPT_fno_threadsafe_statics))
+ Opts.ThreadsafeStatics = 0;
+ Opts.Exceptions = Args.hasArg(OPT_fexceptions);
+ Opts.ObjCExceptions = Args.hasArg(OPT_fobjc_exceptions);
+ Opts.CXXExceptions = Args.hasArg(OPT_fcxx_exceptions);
+ Opts.SjLjExceptions = Args.hasArg(OPT_fsjlj_exceptions);
+ Opts.TraditionalCPP = Args.hasArg(OPT_traditional_cpp);
+
+ Opts.RTTI = !Args.hasArg(OPT_fno_rtti);
+ Opts.RTTIData = Opts.RTTI && !Args.hasArg(OPT_fno_rtti_data);
+ Opts.Blocks = Args.hasArg(OPT_fblocks);
+ Opts.BlocksRuntimeOptional = Args.hasArg(OPT_fblocks_runtime_optional);
+ Opts.Modules = Args.hasArg(OPT_fmodules);
+ Opts.ModulesStrictDeclUse = Args.hasArg(OPT_fmodules_strict_decluse);
+ Opts.ModulesDeclUse =
+ Args.hasArg(OPT_fmodules_decluse) || Opts.ModulesStrictDeclUse;
+ Opts.ModulesLocalVisibility =
+ Args.hasArg(OPT_fmodules_local_submodule_visibility);
+ Opts.ModulesSearchAll = Opts.Modules &&
+ !Args.hasArg(OPT_fno_modules_search_all) &&
+ Args.hasArg(OPT_fmodules_search_all);
+ Opts.ModulesErrorRecovery = !Args.hasArg(OPT_fno_modules_error_recovery);
+ Opts.ModulesImplicitMaps = Args.hasFlag(OPT_fmodules_implicit_maps,
+ OPT_fno_modules_implicit_maps, true);
+ Opts.ImplicitModules = !Args.hasArg(OPT_fno_implicit_modules);
+ Opts.CharIsSigned = Opts.OpenCL || !Args.hasArg(OPT_fno_signed_char);
+ Opts.WChar = Opts.CPlusPlus && !Args.hasArg(OPT_fno_wchar);
+ Opts.ShortWChar = Args.hasFlag(OPT_fshort_wchar, OPT_fno_short_wchar, false);
+ Opts.ShortEnums = Args.hasArg(OPT_fshort_enums);
+ Opts.Freestanding = Args.hasArg(OPT_ffreestanding);
+ Opts.NoBuiltin = Args.hasArg(OPT_fno_builtin) || Opts.Freestanding;
+ Opts.NoMathBuiltin = Args.hasArg(OPT_fno_math_builtin);
+ Opts.AssumeSaneOperatorNew = !Args.hasArg(OPT_fno_assume_sane_operator_new);
+ Opts.SizedDeallocation = Args.hasArg(OPT_fsized_deallocation);
+ Opts.ConceptsTS = Args.hasArg(OPT_fconcepts_ts);
+ Opts.HeinousExtensions = Args.hasArg(OPT_fheinous_gnu_extensions);
+ Opts.AccessControl = !Args.hasArg(OPT_fno_access_control);
+ Opts.ElideConstructors = !Args.hasArg(OPT_fno_elide_constructors);
+ Opts.MathErrno = !Opts.OpenCL && Args.hasArg(OPT_fmath_errno);
+ Opts.InstantiationDepth =
+ getLastArgIntValue(Args, OPT_ftemplate_depth, 256, Diags);
+ Opts.ArrowDepth =
+ getLastArgIntValue(Args, OPT_foperator_arrow_depth, 256, Diags);
+ Opts.ConstexprCallDepth =
+ getLastArgIntValue(Args, OPT_fconstexpr_depth, 512, Diags);
+ Opts.ConstexprStepLimit =
+ getLastArgIntValue(Args, OPT_fconstexpr_steps, 1048576, Diags);
+ Opts.BracketDepth = getLastArgIntValue(Args, OPT_fbracket_depth, 256, Diags);
+ Opts.DelayedTemplateParsing = Args.hasArg(OPT_fdelayed_template_parsing);
+ Opts.NumLargeByValueCopy =
+ getLastArgIntValue(Args, OPT_Wlarge_by_value_copy_EQ, 0, Diags);
+ Opts.MSBitfields = Args.hasArg(OPT_mms_bitfields);
+ Opts.ObjCConstantStringClass =
+ Args.getLastArgValue(OPT_fconstant_string_class);
+ Opts.ObjCDefaultSynthProperties =
+ !Args.hasArg(OPT_disable_objc_default_synthesize_properties);
+ Opts.EncodeExtendedBlockSig =
+ Args.hasArg(OPT_fencode_extended_block_signature);
+ Opts.EmitAllDecls = Args.hasArg(OPT_femit_all_decls);
+ Opts.PackStruct = getLastArgIntValue(Args, OPT_fpack_struct_EQ, 0, Diags);
+ Opts.MaxTypeAlign = getLastArgIntValue(Args, OPT_fmax_type_align_EQ, 0, Diags);
+ Opts.PICLevel = getLastArgIntValue(Args, OPT_pic_level, 0, Diags);
+ Opts.PIELevel = getLastArgIntValue(Args, OPT_pie_level, 0, Diags);
+ Opts.Static = Args.hasArg(OPT_static_define);
+ Opts.DumpRecordLayoutsSimple = Args.hasArg(OPT_fdump_record_layouts_simple);
+ Opts.DumpRecordLayouts = Opts.DumpRecordLayoutsSimple
+ || Args.hasArg(OPT_fdump_record_layouts);
+ Opts.DumpVTableLayouts = Args.hasArg(OPT_fdump_vtable_layouts);
+ Opts.SpellChecking = !Args.hasArg(OPT_fno_spell_checking);
+ Opts.NoBitFieldTypeAlign = Args.hasArg(OPT_fno_bitfield_type_align);
+ Opts.SinglePrecisionConstants = Args.hasArg(OPT_cl_single_precision_constant);
+ Opts.FastRelaxedMath = Args.hasArg(OPT_cl_fast_relaxed_math);
+ Opts.MRTD = Args.hasArg(OPT_mrtd);
+ Opts.HexagonQdsp6Compat = Args.hasArg(OPT_mqdsp6_compat);
+ Opts.FakeAddressSpaceMap = Args.hasArg(OPT_ffake_address_space_map);
+ Opts.ParseUnknownAnytype = Args.hasArg(OPT_funknown_anytype);
+ Opts.DebuggerSupport = Args.hasArg(OPT_fdebugger_support);
+ Opts.DebuggerCastResultToId = Args.hasArg(OPT_fdebugger_cast_result_to_id);
+ Opts.DebuggerObjCLiteral = Args.hasArg(OPT_fdebugger_objc_literal);
+ Opts.ApplePragmaPack = Args.hasArg(OPT_fapple_pragma_pack);
+ Opts.CurrentModule = Args.getLastArgValue(OPT_fmodule_name);
+ Opts.AppExt = Args.hasArg(OPT_fapplication_extension);
+ Opts.ImplementationOfModule =
+ Args.getLastArgValue(OPT_fmodule_implementation_of);
+ Opts.ModuleFeatures = Args.getAllArgValues(OPT_fmodule_feature);
+ Opts.NativeHalfType |= Args.hasArg(OPT_fnative_half_type);
+ Opts.HalfArgsAndReturns = Args.hasArg(OPT_fallow_half_arguments_and_returns);
+ Opts.GNUAsm = !Args.hasArg(OPT_fno_gnu_inline_asm);
+
+ if (!Opts.CurrentModule.empty() && !Opts.ImplementationOfModule.empty() &&
+ Opts.CurrentModule != Opts.ImplementationOfModule) {
+ Diags.Report(diag::err_conflicting_module_names)
+ << Opts.CurrentModule << Opts.ImplementationOfModule;
+ }
+
+ // For now, we only support local submodule visibility in C++ (because we
+ // heavily depend on the ODR for merging redefinitions).
+ if (Opts.ModulesLocalVisibility && !Opts.CPlusPlus)
+ Diags.Report(diag::err_drv_argument_not_allowed_with)
+ << "-fmodules-local-submodule-visibility" << "C";
+
+ if (Arg *A = Args.getLastArg(OPT_faddress_space_map_mangling_EQ)) {
+ switch (llvm::StringSwitch<unsigned>(A->getValue())
+ .Case("target", LangOptions::ASMM_Target)
+ .Case("no", LangOptions::ASMM_Off)
+ .Case("yes", LangOptions::ASMM_On)
+ .Default(255)) {
+ default:
+ Diags.Report(diag::err_drv_invalid_value)
+ << "-faddress-space-map-mangling=" << A->getValue();
+ break;
+ case LangOptions::ASMM_Target:
+ Opts.setAddressSpaceMapMangling(LangOptions::ASMM_Target);
+ break;
+ case LangOptions::ASMM_On:
+ Opts.setAddressSpaceMapMangling(LangOptions::ASMM_On);
+ break;
+ case LangOptions::ASMM_Off:
+ Opts.setAddressSpaceMapMangling(LangOptions::ASMM_Off);
+ break;
+ }
+ }
+
+ if (Arg *A = Args.getLastArg(OPT_fms_memptr_rep_EQ)) {
+ LangOptions::PragmaMSPointersToMembersKind InheritanceModel =
+ llvm::StringSwitch<LangOptions::PragmaMSPointersToMembersKind>(
+ A->getValue())
+ .Case("single",
+ LangOptions::PPTMK_FullGeneralitySingleInheritance)
+ .Case("multiple",
+ LangOptions::PPTMK_FullGeneralityMultipleInheritance)
+ .Case("virtual",
+ LangOptions::PPTMK_FullGeneralityVirtualInheritance)
+ .Default(LangOptions::PPTMK_BestCase);
+ if (InheritanceModel == LangOptions::PPTMK_BestCase)
+ Diags.Report(diag::err_drv_invalid_value)
+ << "-fms-memptr-rep=" << A->getValue();
+
+ Opts.setMSPointerToMemberRepresentationMethod(InheritanceModel);
+ }
+
+ // Check if -fopenmp is specified.
+ Opts.OpenMP = Args.hasArg(options::OPT_fopenmp);
+
+ // Record whether the __DEPRECATED define was requested.
+ Opts.Deprecated = Args.hasFlag(OPT_fdeprecated_macro,
+ OPT_fno_deprecated_macro,
+ Opts.Deprecated);
+
+ // FIXME: Eliminate this dependency.
+ unsigned Opt = getOptimizationLevel(Args, IK, Diags),
+ OptSize = getOptimizationLevelSize(Args);
+ Opts.Optimize = Opt != 0;
+ Opts.OptimizeSize = OptSize != 0;
+
+ // This is the __NO_INLINE__ define, which just depends on things like the
+ // optimization level and -fno-inline, not actually whether the backend has
+ // inlining enabled.
+ Opts.NoInlineDefine = !Opt || Args.hasArg(OPT_fno_inline);
+
+ Opts.FastMath = Args.hasArg(OPT_ffast_math) ||
+ Args.hasArg(OPT_cl_fast_relaxed_math);
+ Opts.FiniteMathOnly = Args.hasArg(OPT_ffinite_math_only) ||
+ Args.hasArg(OPT_cl_finite_math_only) ||
+ Args.hasArg(OPT_cl_fast_relaxed_math);
+
+ Opts.RetainCommentsFromSystemHeaders =
+ Args.hasArg(OPT_fretain_comments_from_system_headers);
+
+ unsigned SSP = getLastArgIntValue(Args, OPT_stack_protector, 0, Diags);
+ switch (SSP) {
+ default:
+ Diags.Report(diag::err_drv_invalid_value)
+ << Args.getLastArg(OPT_stack_protector)->getAsString(Args) << SSP;
+ break;
+ case 0: Opts.setStackProtector(LangOptions::SSPOff); break;
+ case 1: Opts.setStackProtector(LangOptions::SSPOn); break;
+ case 2: Opts.setStackProtector(LangOptions::SSPStrong); break;
+ case 3: Opts.setStackProtector(LangOptions::SSPReq); break;
+ }
+
+ // Parse -fsanitize= arguments.
+ parseSanitizerKinds("-fsanitize=", Args.getAllArgValues(OPT_fsanitize_EQ),
+ Diags, Opts.Sanitize);
+ // -fsanitize-address-field-padding=N has to be a LangOpt, parse it here.
+ Opts.SanitizeAddressFieldPadding =
+ getLastArgIntValue(Args, OPT_fsanitize_address_field_padding, 0, Diags);
+ Opts.SanitizerBlacklistFiles = Args.getAllArgValues(OPT_fsanitize_blacklist);
+}
+
+static void ParsePreprocessorArgs(PreprocessorOptions &Opts, ArgList &Args,
+ FileManager &FileMgr,
+ DiagnosticsEngine &Diags) {
+ using namespace options;
+ Opts.ImplicitPCHInclude = Args.getLastArgValue(OPT_include_pch);
+ Opts.ImplicitPTHInclude = Args.getLastArgValue(OPT_include_pth);
+ if (const Arg *A = Args.getLastArg(OPT_token_cache))
+ Opts.TokenCache = A->getValue();
+ else
+ Opts.TokenCache = Opts.ImplicitPTHInclude;
+ Opts.UsePredefines = !Args.hasArg(OPT_undef);
+ Opts.DetailedRecord = Args.hasArg(OPT_detailed_preprocessing_record);
+ Opts.DisablePCHValidation = Args.hasArg(OPT_fno_validate_pch);
+
+ Opts.DumpDeserializedPCHDecls = Args.hasArg(OPT_dump_deserialized_pch_decls);
+ for (arg_iterator it = Args.filtered_begin(OPT_error_on_deserialized_pch_decl),
+ ie = Args.filtered_end(); it != ie; ++it) {
+ const Arg *A = *it;
+ Opts.DeserializedPCHDeclsToErrorOn.insert(A->getValue());
+ }
+
+ if (const Arg *A = Args.getLastArg(OPT_preamble_bytes_EQ)) {
+ StringRef Value(A->getValue());
+ size_t Comma = Value.find(',');
+ unsigned Bytes = 0;
+ unsigned EndOfLine = 0;
+
+ if (Comma == StringRef::npos ||
+ Value.substr(0, Comma).getAsInteger(10, Bytes) ||
+ Value.substr(Comma + 1).getAsInteger(10, EndOfLine))
+ Diags.Report(diag::err_drv_preamble_format);
+ else {
+ Opts.PrecompiledPreambleBytes.first = Bytes;
+ Opts.PrecompiledPreambleBytes.second = (EndOfLine != 0);
+ }
+ }
+
+ // Add macros from the command line.
+ for (arg_iterator it = Args.filtered_begin(OPT_D, OPT_U),
+ ie = Args.filtered_end(); it != ie; ++it) {
+ if ((*it)->getOption().matches(OPT_D))
+ Opts.addMacroDef((*it)->getValue());
+ else
+ Opts.addMacroUndef((*it)->getValue());
+ }
+
+ Opts.MacroIncludes = Args.getAllArgValues(OPT_imacros);
+
+ // Add the ordered list of -includes.
+ for (arg_iterator it = Args.filtered_begin(OPT_include),
+ ie = Args.filtered_end(); it != ie; ++it) {
+ const Arg *A = *it;
+ Opts.Includes.push_back(A->getValue());
+ }
+
+ for (arg_iterator it = Args.filtered_begin(OPT_chain_include),
+ ie = Args.filtered_end(); it != ie; ++it) {
+ const Arg *A = *it;
+ Opts.ChainedIncludes.push_back(A->getValue());
+ }
+
+ // Include 'altivec.h' if -faltivec option present
+ if (Args.hasArg(OPT_faltivec))
+ Opts.Includes.push_back("altivec.h");
+
+ for (arg_iterator it = Args.filtered_begin(OPT_remap_file),
+ ie = Args.filtered_end(); it != ie; ++it) {
+ const Arg *A = *it;
+ std::pair<StringRef,StringRef> Split =
+ StringRef(A->getValue()).split(';');
+
+ if (Split.second.empty()) {
+ Diags.Report(diag::err_drv_invalid_remap_file) << A->getAsString(Args);
+ continue;
+ }
+
+ Opts.addRemappedFile(Split.first, Split.second);
+ }
+
+ if (Arg *A = Args.getLastArg(OPT_fobjc_arc_cxxlib_EQ)) {
+ StringRef Name = A->getValue();
+ unsigned Library = llvm::StringSwitch<unsigned>(Name)
+ .Case("libc++", ARCXX_libcxx)
+ .Case("libstdc++", ARCXX_libstdcxx)
+ .Case("none", ARCXX_nolib)
+ .Default(~0U);
+ if (Library == ~0U)
+ Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args) << Name;
+ else
+ Opts.ObjCXXARCStandardLibrary = (ObjCXXARCStandardLibraryKind)Library;
+ }
+}
+
+static void ParsePreprocessorOutputArgs(PreprocessorOutputOptions &Opts,
+ ArgList &Args,
+ frontend::ActionKind Action) {
+ using namespace options;
+
+ switch (Action) {
+ case frontend::ASTDeclList:
+ case frontend::ASTDump:
+ case frontend::ASTPrint:
+ case frontend::ASTView:
+ case frontend::EmitAssembly:
+ case frontend::EmitBC:
+ case frontend::EmitHTML:
+ case frontend::EmitLLVM:
+ case frontend::EmitLLVMOnly:
+ case frontend::EmitCodeGenOnly:
+ case frontend::EmitObj:
+ case frontend::FixIt:
+ case frontend::GenerateModule:
+ case frontend::GeneratePCH:
+ case frontend::GeneratePTH:
+ case frontend::ParseSyntaxOnly:
+ case frontend::ModuleFileInfo:
+ case frontend::VerifyPCH:
+ case frontend::PluginAction:
+ case frontend::PrintDeclContext:
+ case frontend::RewriteObjC:
+ case frontend::RewriteTest:
+ case frontend::RunAnalysis:
+ case frontend::MigrateSource:
+ Opts.ShowCPP = 0;
+ break;
+
+ case frontend::DumpRawTokens:
+ case frontend::DumpTokens:
+ case frontend::InitOnly:
+ case frontend::PrintPreamble:
+ case frontend::PrintPreprocessedInput:
+ case frontend::RewriteMacros:
+ case frontend::RunPreprocessorOnly:
+ Opts.ShowCPP = !Args.hasArg(OPT_dM);
+ break;
+ }
+
+ Opts.ShowComments = Args.hasArg(OPT_C);
+ Opts.ShowLineMarkers = !Args.hasArg(OPT_P);
+ Opts.ShowMacroComments = Args.hasArg(OPT_CC);
+ Opts.ShowMacros = Args.hasArg(OPT_dM) || Args.hasArg(OPT_dD);
+ Opts.RewriteIncludes = Args.hasArg(OPT_frewrite_includes);
+ Opts.UseLineDirectives = Args.hasArg(OPT_fuse_line_directives);
+}
+
+static void ParseTargetArgs(TargetOptions &Opts, ArgList &Args) {
+ using namespace options;
+ Opts.ABI = Args.getLastArgValue(OPT_target_abi);
+ Opts.CPU = Args.getLastArgValue(OPT_target_cpu);
+ Opts.FPMath = Args.getLastArgValue(OPT_mfpmath);
+ Opts.FeaturesAsWritten = Args.getAllArgValues(OPT_target_feature);
+ Opts.LinkerVersion = Args.getLastArgValue(OPT_target_linker_version);
+ Opts.Triple = llvm::Triple::normalize(Args.getLastArgValue(OPT_triple));
+
+ // Use the default target triple if unspecified.
+ if (Opts.Triple.empty())
+ Opts.Triple = llvm::sys::getDefaultTargetTriple();
+}
+
+bool CompilerInvocation::CreateFromArgs(CompilerInvocation &Res,
+ const char *const *ArgBegin,
+ const char *const *ArgEnd,
+ DiagnosticsEngine &Diags) {
+ bool Success = true;
+
+ // Parse the arguments.
+ std::unique_ptr<OptTable> Opts(createDriverOptTable());
+ const unsigned IncludedFlagsBitmask = options::CC1Option;
+ unsigned MissingArgIndex, MissingArgCount;
+ std::unique_ptr<InputArgList> Args(
+ Opts->ParseArgs(ArgBegin, ArgEnd, MissingArgIndex, MissingArgCount,
+ IncludedFlagsBitmask));
+
+ // Check for missing argument error.
+ if (MissingArgCount) {
+ Diags.Report(diag::err_drv_missing_argument)
+ << Args->getArgString(MissingArgIndex) << MissingArgCount;
+ Success = false;
+ }
+
+ // Issue errors on unknown arguments.
+ for (arg_iterator it = Args->filtered_begin(OPT_UNKNOWN),
+ ie = Args->filtered_end(); it != ie; ++it) {
+ Diags.Report(diag::err_drv_unknown_argument) << (*it)->getAsString(*Args);
+ Success = false;
+ }
+
+ Success = ParseAnalyzerArgs(*Res.getAnalyzerOpts(), *Args, Diags) && Success;
+ Success = ParseMigratorArgs(Res.getMigratorOpts(), *Args) && Success;
+ ParseDependencyOutputArgs(Res.getDependencyOutputOpts(), *Args);
+ Success = ParseDiagnosticArgs(Res.getDiagnosticOpts(), *Args, &Diags)
+ && Success;
+ ParseCommentArgs(Res.getLangOpts()->CommentOpts, *Args);
+ ParseFileSystemArgs(Res.getFileSystemOpts(), *Args);
+ // FIXME: We shouldn't have to pass the DashX option around here
+ InputKind DashX = ParseFrontendArgs(Res.getFrontendOpts(), *Args, Diags);
+ ParseTargetArgs(Res.getTargetOpts(), *Args);
+ Success = ParseCodeGenArgs(Res.getCodeGenOpts(), *Args, DashX, Diags,
+ Res.getTargetOpts()) && Success;
+ ParseHeaderSearchArgs(Res.getHeaderSearchOpts(), *Args);
+ if (DashX != IK_AST && DashX != IK_LLVM_IR) {
+ ParseLangArgs(*Res.getLangOpts(), *Args, DashX, Diags);
+ if (Res.getFrontendOpts().ProgramAction == frontend::RewriteObjC)
+ Res.getLangOpts()->ObjCExceptions = 1;
+ }
+ // FIXME: ParsePreprocessorArgs uses the FileManager to read the contents of
+ // PCH file and find the original header name. Remove the need to do that in
+ // ParsePreprocessorArgs and remove the FileManager
+ // parameters from the function and the "FileManager.h" #include.
+ FileManager FileMgr(Res.getFileSystemOpts());
+ ParsePreprocessorArgs(Res.getPreprocessorOpts(), *Args, FileMgr, Diags);
+ ParsePreprocessorOutputArgs(Res.getPreprocessorOutputOpts(), *Args,
+ Res.getFrontendOpts().ProgramAction);
+ return Success;
+}
+
+namespace {
+
+ class ModuleSignature {
+ SmallVector<uint64_t, 16> Data;
+ unsigned CurBit;
+ uint64_t CurValue;
+
+ public:
+ ModuleSignature() : CurBit(0), CurValue(0) { }
+
+ void add(uint64_t Value, unsigned Bits);
+ void add(StringRef Value);
+ void flush();
+
+ llvm::APInt getAsInteger() const;
+ };
+}
+
+void ModuleSignature::add(uint64_t Value, unsigned int NumBits) {
+ CurValue |= Value << CurBit;
+ if (CurBit + NumBits < 64) {
+ CurBit += NumBits;
+ return;
+ }
+
+ // Add the current word.
+ Data.push_back(CurValue);
+
+ if (CurBit)
+ CurValue = Value >> (64-CurBit);
+ else
+ CurValue = 0;
+ CurBit = (CurBit+NumBits) & 63;
+}
+
+void ModuleSignature::flush() {
+ if (CurBit == 0)
+ return;
+
+ Data.push_back(CurValue);
+ CurBit = 0;
+ CurValue = 0;
+}
+
+void ModuleSignature::add(StringRef Value) {
+ for (StringRef::iterator I = Value.begin(), IEnd = Value.end(); I != IEnd;++I)
+ add(*I, 8);
+}
+
+llvm::APInt ModuleSignature::getAsInteger() const {
+ return llvm::APInt(Data.size() * 64, Data);
+}
+
+std::string CompilerInvocation::getModuleHash() const {
+ // Note: For QoI reasons, the things we use as a hash here should all be
+ // dumped via the -module-info flag.
+ using llvm::hash_code;
+ using llvm::hash_value;
+ using llvm::hash_combine;
+
+ // Start the signature with the compiler version.
+ // FIXME: We'd rather use something more cryptographically sound than
+ // CityHash, but this will do for now.
+ hash_code code = hash_value(getClangFullRepositoryVersion());
+
+ // Extend the signature with the language options
+#define LANGOPT(Name, Bits, Default, Description) \
+ code = hash_combine(code, LangOpts->Name);
+#define ENUM_LANGOPT(Name, Type, Bits, Default, Description) \
+ code = hash_combine(code, static_cast<unsigned>(LangOpts->get##Name()));
+#define BENIGN_LANGOPT(Name, Bits, Default, Description)
+#define BENIGN_ENUM_LANGOPT(Name, Type, Bits, Default, Description)
+#include "clang/Basic/LangOptions.def"
+
+ // Extend the signature with the target options.
+ code = hash_combine(code, TargetOpts->Triple, TargetOpts->CPU,
+ TargetOpts->ABI);
+ for (unsigned i = 0, n = TargetOpts->FeaturesAsWritten.size(); i != n; ++i)
+ code = hash_combine(code, TargetOpts->FeaturesAsWritten[i]);
+
+ // Extend the signature with preprocessor options.
+ const PreprocessorOptions &ppOpts = getPreprocessorOpts();
+ const HeaderSearchOptions &hsOpts = getHeaderSearchOpts();
+ code = hash_combine(code, ppOpts.UsePredefines, ppOpts.DetailedRecord);
+
+ for (std::vector<std::pair<std::string, bool/*isUndef*/> >::const_iterator
+ I = getPreprocessorOpts().Macros.begin(),
+ IEnd = getPreprocessorOpts().Macros.end();
+ I != IEnd; ++I) {
+ // If we're supposed to ignore this macro for the purposes of modules,
+ // don't put it into the hash.
+ if (!hsOpts.ModulesIgnoreMacros.empty()) {
+ // Check whether we're ignoring this macro.
+ StringRef MacroDef = I->first;
+ if (hsOpts.ModulesIgnoreMacros.count(MacroDef.split('=').first))
+ continue;
+ }
+
+ code = hash_combine(code, I->first, I->second);
+ }
+
+ // Extend the signature with the sysroot.
+ code = hash_combine(code, hsOpts.Sysroot, hsOpts.UseBuiltinIncludes,
+ hsOpts.UseStandardSystemIncludes,
+ hsOpts.UseStandardCXXIncludes,
+ hsOpts.UseLibcxx);
+ code = hash_combine(code, hsOpts.ResourceDir);
+
+ // Extend the signature with the user build path.
+ code = hash_combine(code, hsOpts.ModuleUserBuildPath);
+
+ // Darwin-specific hack: if we have a sysroot, use the contents and
+ // modification time of
+ // $sysroot/System/Library/CoreServices/SystemVersion.plist
+ // as part of the module hash.
+ if (!hsOpts.Sysroot.empty()) {
+ SmallString<128> systemVersionFile;
+ systemVersionFile += hsOpts.Sysroot;
+ llvm::sys::path::append(systemVersionFile, "System");
+ llvm::sys::path::append(systemVersionFile, "Library");
+ llvm::sys::path::append(systemVersionFile, "CoreServices");
+ llvm::sys::path::append(systemVersionFile, "SystemVersion.plist");
+
+ llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> buffer =
+ llvm::MemoryBuffer::getFile(systemVersionFile);
+ if (buffer) {
+ code = hash_combine(code, buffer.get()->getBuffer());
+
+ struct stat statBuf;
+ if (stat(systemVersionFile.c_str(), &statBuf) == 0)
+ code = hash_combine(code, statBuf.st_mtime);
+ }
+ }
+
+ return llvm::APInt(64, code).toString(36, /*Signed=*/false);
+}
+
+namespace clang {
+
+template<typename IntTy>
+static IntTy getLastArgIntValueImpl(const ArgList &Args, OptSpecifier Id,
+ IntTy Default,
+ DiagnosticsEngine *Diags) {
+ IntTy Res = Default;
+ if (Arg *A = Args.getLastArg(Id)) {
+ if (StringRef(A->getValue()).getAsInteger(10, Res)) {
+ if (Diags)
+ Diags->Report(diag::err_drv_invalid_int_value) << A->getAsString(Args)
+ << A->getValue();
+ }
+ }
+ return Res;
+}
+
+
+// Declared in clang/Frontend/Utils.h.
+int getLastArgIntValue(const ArgList &Args, OptSpecifier Id, int Default,
+ DiagnosticsEngine *Diags) {
+ return getLastArgIntValueImpl<int>(Args, Id, Default, Diags);
+}
+
+uint64_t getLastArgUInt64Value(const ArgList &Args, OptSpecifier Id,
+ uint64_t Default,
+ DiagnosticsEngine *Diags) {
+ return getLastArgIntValueImpl<uint64_t>(Args, Id, Default, Diags);
+}
+
+void BuryPointer(const void *Ptr) {
+ // This function may be called only a small fixed amount of times per each
+ // invocation, otherwise we do actually have a leak which we want to report.
+ // If this function is called more than kGraveYardMaxSize times, the pointers
+ // will not be properly buried and a leak detector will report a leak, which
+ // is what we want in such case.
+ static const size_t kGraveYardMaxSize = 16;
+ LLVM_ATTRIBUTE_UNUSED static const void *GraveYard[kGraveYardMaxSize];
+ static std::atomic<unsigned> GraveYardSize;
+ unsigned Idx = GraveYardSize++;
+ if (Idx >= kGraveYardMaxSize)
+ return;
+ GraveYard[Idx] = Ptr;
+}
+
+IntrusiveRefCntPtr<vfs::FileSystem>
+createVFSFromCompilerInvocation(const CompilerInvocation &CI,
+ DiagnosticsEngine &Diags) {
+ if (CI.getHeaderSearchOpts().VFSOverlayFiles.empty())
+ return vfs::getRealFileSystem();
+
+ IntrusiveRefCntPtr<vfs::OverlayFileSystem>
+ Overlay(new vfs::OverlayFileSystem(vfs::getRealFileSystem()));
+ // earlier vfs files are on the bottom
+ for (const std::string &File : CI.getHeaderSearchOpts().VFSOverlayFiles) {
+ llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Buffer =
+ llvm::MemoryBuffer::getFile(File);
+ if (!Buffer) {
+ Diags.Report(diag::err_missing_vfs_overlay_file) << File;
+ return IntrusiveRefCntPtr<vfs::FileSystem>();
+ }
+
+ IntrusiveRefCntPtr<vfs::FileSystem> FS =
+ vfs::getVFSFromYAML(std::move(Buffer.get()), /*DiagHandler*/ nullptr);
+ if (!FS.get()) {
+ Diags.Report(diag::err_invalid_vfs_overlay) << File;
+ return IntrusiveRefCntPtr<vfs::FileSystem>();
+ }
+ Overlay->pushOverlay(FS);
+ }
+ return Overlay;
+}
+} // end namespace clang
diff --git a/contrib/llvm/tools/clang/lib/Frontend/CreateInvocationFromCommandLine.cpp b/contrib/llvm/tools/clang/lib/Frontend/CreateInvocationFromCommandLine.cpp
new file mode 100644
index 0000000..4a8a8a0
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Frontend/CreateInvocationFromCommandLine.cpp
@@ -0,0 +1,89 @@
+//===--- CreateInvocationFromCommandLine.cpp - CompilerInvocation from Args ==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Construct a compiler invocation object for command line driver arguments
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Frontend/Utils.h"
+#include "clang/Basic/DiagnosticOptions.h"
+#include "clang/Driver/Compilation.h"
+#include "clang/Driver/Driver.h"
+#include "clang/Driver/Options.h"
+#include "clang/Driver/Tool.h"
+#include "clang/Frontend/CompilerInstance.h"
+#include "clang/Frontend/FrontendDiagnostic.h"
+#include "llvm/Option/ArgList.h"
+#include "llvm/Support/Host.h"
+using namespace clang;
+using namespace llvm::opt;
+
+/// createInvocationFromCommandLine - Construct a compiler invocation object for
+/// a command line argument vector.
+///
+/// \return A CompilerInvocation, or 0 if none was built for the given
+/// argument vector.
+CompilerInvocation *
+clang::createInvocationFromCommandLine(ArrayRef<const char *> ArgList,
+ IntrusiveRefCntPtr<DiagnosticsEngine> Diags) {
+ if (!Diags.get()) {
+ // No diagnostics engine was provided, so create our own diagnostics object
+ // with the default options.
+ Diags = CompilerInstance::createDiagnostics(new DiagnosticOptions);
+ }
+
+ SmallVector<const char *, 16> Args;
+ Args.push_back("<clang>"); // FIXME: Remove dummy argument.
+ Args.insert(Args.end(), ArgList.begin(), ArgList.end());
+
+ // FIXME: Find a cleaner way to force the driver into restricted modes.
+ Args.push_back("-fsyntax-only");
+
+ // FIXME: We shouldn't have to pass in the path info.
+ driver::Driver TheDriver("clang", llvm::sys::getDefaultTargetTriple(),
+ *Diags);
+
+ // Don't check that inputs exist, they may have been remapped.
+ TheDriver.setCheckInputsExist(false);
+
+ std::unique_ptr<driver::Compilation> C(TheDriver.BuildCompilation(Args));
+
+ // Just print the cc1 options if -### was present.
+ if (C->getArgs().hasArg(driver::options::OPT__HASH_HASH_HASH)) {
+ C->getJobs().Print(llvm::errs(), "\n", true);
+ return nullptr;
+ }
+
+ // We expect to get back exactly one command job, if we didn't something
+ // failed.
+ const driver::JobList &Jobs = C->getJobs();
+ if (Jobs.size() != 1 || !isa<driver::Command>(*Jobs.begin())) {
+ SmallString<256> Msg;
+ llvm::raw_svector_ostream OS(Msg);
+ Jobs.Print(OS, "; ", true);
+ Diags->Report(diag::err_fe_expected_compiler_job) << OS.str();
+ return nullptr;
+ }
+
+ const driver::Command &Cmd = cast<driver::Command>(*Jobs.begin());
+ if (StringRef(Cmd.getCreator().getName()) != "clang") {
+ Diags->Report(diag::err_fe_expected_clang_command);
+ return nullptr;
+ }
+
+ const ArgStringList &CCArgs = Cmd.getArguments();
+ std::unique_ptr<CompilerInvocation> CI(new CompilerInvocation());
+ if (!CompilerInvocation::CreateFromArgs(*CI,
+ const_cast<const char **>(CCArgs.data()),
+ const_cast<const char **>(CCArgs.data()) +
+ CCArgs.size(),
+ *Diags))
+ return nullptr;
+ return CI.release();
+}
diff --git a/contrib/llvm/tools/clang/lib/Frontend/DependencyFile.cpp b/contrib/llvm/tools/clang/lib/Frontend/DependencyFile.cpp
new file mode 100644
index 0000000..0995ab4
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Frontend/DependencyFile.cpp
@@ -0,0 +1,453 @@
+//===--- DependencyFile.cpp - Generate dependency file --------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This code generates dependency files.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Frontend/Utils.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Frontend/DependencyOutputOptions.h"
+#include "clang/Frontend/FrontendDiagnostic.h"
+#include "clang/Lex/DirectoryLookup.h"
+#include "clang/Lex/LexDiagnostic.h"
+#include "clang/Lex/PPCallbacks.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Serialization/ASTReader.h"
+#include "llvm/ADT/StringSet.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+
+namespace {
+struct DepCollectorPPCallbacks : public PPCallbacks {
+ DependencyCollector &DepCollector;
+ SourceManager &SM;
+ DepCollectorPPCallbacks(DependencyCollector &L, SourceManager &SM)
+ : DepCollector(L), SM(SM) { }
+
+ void FileChanged(SourceLocation Loc, FileChangeReason Reason,
+ SrcMgr::CharacteristicKind FileType,
+ FileID PrevFID) override {
+ if (Reason != PPCallbacks::EnterFile)
+ return;
+
+ // Dependency generation really does want to go all the way to the
+ // file entry for a source location to find out what is depended on.
+ // We do not want #line markers to affect dependency generation!
+ const FileEntry *FE =
+ SM.getFileEntryForID(SM.getFileID(SM.getExpansionLoc(Loc)));
+ if (!FE)
+ return;
+
+ StringRef Filename = FE->getName();
+
+ // Remove leading "./" (or ".//" or "././" etc.)
+ while (Filename.size() > 2 && Filename[0] == '.' &&
+ llvm::sys::path::is_separator(Filename[1])) {
+ Filename = Filename.substr(1);
+ while (llvm::sys::path::is_separator(Filename[0]))
+ Filename = Filename.substr(1);
+ }
+
+ DepCollector.maybeAddDependency(Filename, /*FromModule*/false,
+ FileType != SrcMgr::C_User,
+ /*IsModuleFile*/false, /*IsMissing*/false);
+ }
+
+ void InclusionDirective(SourceLocation HashLoc, const Token &IncludeTok,
+ StringRef FileName, bool IsAngled,
+ CharSourceRange FilenameRange, const FileEntry *File,
+ StringRef SearchPath, StringRef RelativePath,
+ const Module *Imported) override {
+ if (!File)
+ DepCollector.maybeAddDependency(FileName, /*FromModule*/false,
+ /*IsSystem*/false, /*IsModuleFile*/false,
+ /*IsMissing*/true);
+ // Files that actually exist are handled by FileChanged.
+ }
+
+ void EndOfMainFile() override {
+ DepCollector.finishedMainFile();
+ }
+};
+
+struct DepCollectorASTListener : public ASTReaderListener {
+ DependencyCollector &DepCollector;
+ DepCollectorASTListener(DependencyCollector &L) : DepCollector(L) { }
+ bool needsInputFileVisitation() override { return true; }
+ bool needsSystemInputFileVisitation() override {
+ return DepCollector.needSystemDependencies();
+ }
+ void visitModuleFile(StringRef Filename) override {
+ DepCollector.maybeAddDependency(Filename, /*FromModule*/true,
+ /*IsSystem*/false, /*IsModuleFile*/true,
+ /*IsMissing*/false);
+ }
+ bool visitInputFile(StringRef Filename, bool IsSystem,
+ bool IsOverridden) override {
+ if (IsOverridden)
+ return true;
+
+ DepCollector.maybeAddDependency(Filename, /*FromModule*/true, IsSystem,
+ /*IsModuleFile*/false, /*IsMissing*/false);
+ return true;
+ }
+};
+} // end anonymous namespace
+
+void DependencyCollector::maybeAddDependency(StringRef Filename, bool FromModule,
+ bool IsSystem, bool IsModuleFile,
+ bool IsMissing) {
+ if (Seen.insert(Filename).second &&
+ sawDependency(Filename, FromModule, IsSystem, IsModuleFile, IsMissing))
+ Dependencies.push_back(Filename);
+}
+
+static bool isSpecialFilename(StringRef Filename) {
+ return llvm::StringSwitch<bool>(Filename)
+ .Case("<built-in>", true)
+ .Case("<stdin>", true)
+ .Default(false);
+}
+
+bool DependencyCollector::sawDependency(StringRef Filename, bool FromModule,
+ bool IsSystem, bool IsModuleFile,
+ bool IsMissing) {
+ return !isSpecialFilename(Filename) &&
+ (needSystemDependencies() || !IsSystem);
+}
+
+DependencyCollector::~DependencyCollector() { }
+void DependencyCollector::attachToPreprocessor(Preprocessor &PP) {
+ PP.addPPCallbacks(
+ llvm::make_unique<DepCollectorPPCallbacks>(*this, PP.getSourceManager()));
+}
+void DependencyCollector::attachToASTReader(ASTReader &R) {
+ R.addListener(llvm::make_unique<DepCollectorASTListener>(*this));
+}
+
+namespace {
+/// Private implementation for DependencyFileGenerator
+class DFGImpl : public PPCallbacks {
+ std::vector<std::string> Files;
+ llvm::StringSet<> FilesSet;
+ const Preprocessor *PP;
+ std::string OutputFile;
+ std::vector<std::string> Targets;
+ bool IncludeSystemHeaders;
+ bool PhonyTarget;
+ bool AddMissingHeaderDeps;
+ bool SeenMissingHeader;
+ bool IncludeModuleFiles;
+ DependencyOutputFormat OutputFormat;
+
+private:
+ bool FileMatchesDepCriteria(const char *Filename,
+ SrcMgr::CharacteristicKind FileType);
+ void OutputDependencyFile();
+
+public:
+ DFGImpl(const Preprocessor *_PP, const DependencyOutputOptions &Opts)
+ : PP(_PP), OutputFile(Opts.OutputFile), Targets(Opts.Targets),
+ IncludeSystemHeaders(Opts.IncludeSystemHeaders),
+ PhonyTarget(Opts.UsePhonyTargets),
+ AddMissingHeaderDeps(Opts.AddMissingHeaderDeps),
+ SeenMissingHeader(false),
+ IncludeModuleFiles(Opts.IncludeModuleFiles),
+ OutputFormat(Opts.OutputFormat) {}
+
+ void FileChanged(SourceLocation Loc, FileChangeReason Reason,
+ SrcMgr::CharacteristicKind FileType,
+ FileID PrevFID) override;
+ void InclusionDirective(SourceLocation HashLoc, const Token &IncludeTok,
+ StringRef FileName, bool IsAngled,
+ CharSourceRange FilenameRange, const FileEntry *File,
+ StringRef SearchPath, StringRef RelativePath,
+ const Module *Imported) override;
+
+ void EndOfMainFile() override {
+ OutputDependencyFile();
+ }
+
+ void AddFilename(StringRef Filename);
+ bool includeSystemHeaders() const { return IncludeSystemHeaders; }
+ bool includeModuleFiles() const { return IncludeModuleFiles; }
+};
+
+class DFGASTReaderListener : public ASTReaderListener {
+ DFGImpl &Parent;
+public:
+ DFGASTReaderListener(DFGImpl &Parent)
+ : Parent(Parent) { }
+ bool needsInputFileVisitation() override { return true; }
+ bool needsSystemInputFileVisitation() override {
+ return Parent.includeSystemHeaders();
+ }
+ void visitModuleFile(StringRef Filename) override;
+ bool visitInputFile(StringRef Filename, bool isSystem,
+ bool isOverridden) override;
+};
+}
+
+DependencyFileGenerator::DependencyFileGenerator(void *Impl)
+: Impl(Impl) { }
+
+DependencyFileGenerator *DependencyFileGenerator::CreateAndAttachToPreprocessor(
+ clang::Preprocessor &PP, const clang::DependencyOutputOptions &Opts) {
+
+ if (Opts.Targets.empty()) {
+ PP.getDiagnostics().Report(diag::err_fe_dependency_file_requires_MT);
+ return nullptr;
+ }
+
+ // Disable the "file not found" diagnostic if the -MG option was given.
+ if (Opts.AddMissingHeaderDeps)
+ PP.SetSuppressIncludeNotFoundError(true);
+
+ DFGImpl *Callback = new DFGImpl(&PP, Opts);
+ PP.addPPCallbacks(std::unique_ptr<PPCallbacks>(Callback));
+ return new DependencyFileGenerator(Callback);
+}
+
+void DependencyFileGenerator::AttachToASTReader(ASTReader &R) {
+ DFGImpl *I = reinterpret_cast<DFGImpl *>(Impl);
+ assert(I && "missing implementation");
+ R.addListener(llvm::make_unique<DFGASTReaderListener>(*I));
+}
+
+/// FileMatchesDepCriteria - Determine whether the given Filename should be
+/// considered as a dependency.
+bool DFGImpl::FileMatchesDepCriteria(const char *Filename,
+ SrcMgr::CharacteristicKind FileType) {
+ if (isSpecialFilename(Filename))
+ return false;
+
+ if (IncludeSystemHeaders)
+ return true;
+
+ return FileType == SrcMgr::C_User;
+}
+
+void DFGImpl::FileChanged(SourceLocation Loc,
+ FileChangeReason Reason,
+ SrcMgr::CharacteristicKind FileType,
+ FileID PrevFID) {
+ if (Reason != PPCallbacks::EnterFile)
+ return;
+
+ // Dependency generation really does want to go all the way to the
+ // file entry for a source location to find out what is depended on.
+ // We do not want #line markers to affect dependency generation!
+ SourceManager &SM = PP->getSourceManager();
+
+ const FileEntry *FE =
+ SM.getFileEntryForID(SM.getFileID(SM.getExpansionLoc(Loc)));
+ if (!FE) return;
+
+ StringRef Filename = FE->getName();
+ if (!FileMatchesDepCriteria(Filename.data(), FileType))
+ return;
+
+ // Remove leading "./" (or ".//" or "././" etc.)
+ while (Filename.size() > 2 && Filename[0] == '.' &&
+ llvm::sys::path::is_separator(Filename[1])) {
+ Filename = Filename.substr(1);
+ while (llvm::sys::path::is_separator(Filename[0]))
+ Filename = Filename.substr(1);
+ }
+
+ AddFilename(Filename);
+}
+
+void DFGImpl::InclusionDirective(SourceLocation HashLoc,
+ const Token &IncludeTok,
+ StringRef FileName,
+ bool IsAngled,
+ CharSourceRange FilenameRange,
+ const FileEntry *File,
+ StringRef SearchPath,
+ StringRef RelativePath,
+ const Module *Imported) {
+ if (!File) {
+ if (AddMissingHeaderDeps)
+ AddFilename(FileName);
+ else
+ SeenMissingHeader = true;
+ }
+}
+
+void DFGImpl::AddFilename(StringRef Filename) {
+ if (FilesSet.insert(Filename).second)
+ Files.push_back(Filename);
+}
+
+/// Print the filename, with escaping or quoting that accommodates the three
+/// most likely tools that use dependency files: GNU Make, BSD Make, and
+/// NMake/Jom.
+///
+/// BSD Make is the simplest case: It does no escaping at all. This means
+/// characters that are normally delimiters, i.e. space and # (the comment
+/// character) simply aren't supported in filenames.
+///
+/// GNU Make does allow space and # in filenames, but to avoid being treated
+/// as a delimiter or comment, these must be escaped with a backslash. Because
+/// backslash is itself the escape character, if a backslash appears in a
+/// filename, it should be escaped as well. (As a special case, $ is escaped
+/// as $$, which is the normal Make way to handle the $ character.)
+/// For compatibility with BSD Make and historical practice, if GNU Make
+/// un-escapes characters in a filename but doesn't find a match, it will
+/// retry with the unmodified original string.
+///
+/// GCC tries to accommodate both Make formats by escaping any space or #
+/// characters in the original filename, but not escaping backslashes. The
+/// apparent intent is so that filenames with backslashes will be handled
+/// correctly by BSD Make, and by GNU Make in its fallback mode of using the
+/// unmodified original string; filenames with # or space characters aren't
+/// supported by BSD Make at all, but will be handled correctly by GNU Make
+/// due to the escaping.
+///
+/// A corner case that GCC gets only partly right is when the original filename
+/// has a backslash immediately followed by space or #. GNU Make would expect
+/// this backslash to be escaped; however GCC escapes the original backslash
+/// only when followed by space, not #. It will therefore take a dependency
+/// from a directive such as
+/// #include "a\ b\#c.h"
+/// and emit it as
+/// a\\\ b\\#c.h
+/// which GNU Make will interpret as
+/// a\ b\
+/// followed by a comment. Failing to find this file, it will fall back to the
+/// original string, which probably doesn't exist either; in any case it won't
+/// find
+/// a\ b\#c.h
+/// which is the actual filename specified by the include directive.
+///
+/// Clang does what GCC does, rather than what GNU Make expects.
+///
+/// NMake/Jom has a different set of scary characters, but wraps filespecs in
+/// double-quotes to avoid misinterpreting them; see
+/// https://msdn.microsoft.com/en-us/library/dd9y37ha.aspx for NMake info,
+/// https://msdn.microsoft.com/en-us/library/windows/desktop/aa365247(v=vs.85).aspx
+/// for Windows file-naming info.
+static void PrintFilename(raw_ostream &OS, StringRef Filename,
+ DependencyOutputFormat OutputFormat) {
+ if (OutputFormat == DependencyOutputFormat::NMake) {
+ // Add quotes if needed. These are the characters listed as "special" to
+ // NMake, that are legal in a Windows filespec, and that could cause
+ // misinterpretation of the dependency string.
+ if (Filename.find_first_of(" #${}^!") != StringRef::npos)
+ OS << '\"' << Filename << '\"';
+ else
+ OS << Filename;
+ return;
+ }
+ assert(OutputFormat == DependencyOutputFormat::Make);
+ for (unsigned i = 0, e = Filename.size(); i != e; ++i) {
+ if (Filename[i] == '#') // Handle '#' the broken gcc way.
+ OS << '\\';
+ else if (Filename[i] == ' ') { // Handle space correctly.
+ OS << '\\';
+ unsigned j = i;
+ while (j > 0 && Filename[--j] == '\\')
+ OS << '\\';
+ } else if (Filename[i] == '$') // $ is escaped by $$.
+ OS << '$';
+ OS << Filename[i];
+ }
+}
+
+void DFGImpl::OutputDependencyFile() {
+ if (SeenMissingHeader) {
+ llvm::sys::fs::remove(OutputFile);
+ return;
+ }
+
+ std::error_code EC;
+ llvm::raw_fd_ostream OS(OutputFile, EC, llvm::sys::fs::F_Text);
+ if (EC) {
+ PP->getDiagnostics().Report(diag::err_fe_error_opening) << OutputFile
+ << EC.message();
+ return;
+ }
+
+ // Write out the dependency targets, trying to avoid overly long
+ // lines when possible. We try our best to emit exactly the same
+ // dependency file as GCC (4.2), assuming the included files are the
+ // same.
+ const unsigned MaxColumns = 75;
+ unsigned Columns = 0;
+
+ for (std::vector<std::string>::iterator
+ I = Targets.begin(), E = Targets.end(); I != E; ++I) {
+ unsigned N = I->length();
+ if (Columns == 0) {
+ Columns += N;
+ } else if (Columns + N + 2 > MaxColumns) {
+ Columns = N + 2;
+ OS << " \\\n ";
+ } else {
+ Columns += N + 1;
+ OS << ' ';
+ }
+ // Targets already quoted as needed.
+ OS << *I;
+ }
+
+ OS << ':';
+ Columns += 1;
+
+ // Now add each dependency in the order it was seen, but avoiding
+ // duplicates.
+ for (std::vector<std::string>::iterator I = Files.begin(),
+ E = Files.end(); I != E; ++I) {
+ // Start a new line if this would exceed the column limit. Make
+ // sure to leave space for a trailing " \" in case we need to
+ // break the line on the next iteration.
+ unsigned N = I->length();
+ if (Columns + (N + 1) + 2 > MaxColumns) {
+ OS << " \\\n ";
+ Columns = 2;
+ }
+ OS << ' ';
+ PrintFilename(OS, *I, OutputFormat);
+ Columns += N + 1;
+ }
+ OS << '\n';
+
+ // Create phony targets if requested.
+ if (PhonyTarget && !Files.empty()) {
+ // Skip the first entry, this is always the input file itself.
+ for (std::vector<std::string>::iterator I = Files.begin() + 1,
+ E = Files.end(); I != E; ++I) {
+ OS << '\n';
+ PrintFilename(OS, *I, OutputFormat);
+ OS << ":\n";
+ }
+ }
+}
+
+bool DFGASTReaderListener::visitInputFile(llvm::StringRef Filename,
+ bool IsSystem, bool IsOverridden) {
+ assert(!IsSystem || needsSystemInputFileVisitation());
+ if (IsOverridden)
+ return true;
+
+ Parent.AddFilename(Filename);
+ return true;
+}
+
+void DFGASTReaderListener::visitModuleFile(llvm::StringRef Filename) {
+ if (Parent.includeModuleFiles())
+ Parent.AddFilename(Filename);
+}
diff --git a/contrib/llvm/tools/clang/lib/Frontend/DependencyGraph.cpp b/contrib/llvm/tools/clang/lib/Frontend/DependencyGraph.cpp
new file mode 100644
index 0000000..67a977e
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Frontend/DependencyGraph.cpp
@@ -0,0 +1,138 @@
+//===--- DependencyGraph.cpp - Generate dependency file -------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This code generates a header dependency graph in DOT format, for use
+// with, e.g., GraphViz.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Frontend/Utils.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Frontend/FrontendDiagnostic.h"
+#include "clang/Lex/PPCallbacks.h"
+#include "clang/Lex/Preprocessor.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/Support/GraphWriter.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+namespace DOT = llvm::DOT;
+
+namespace {
+class DependencyGraphCallback : public PPCallbacks {
+ const Preprocessor *PP;
+ std::string OutputFile;
+ std::string SysRoot;
+ llvm::SetVector<const FileEntry *> AllFiles;
+ typedef llvm::DenseMap<const FileEntry *,
+ SmallVector<const FileEntry *, 2> > DependencyMap;
+
+ DependencyMap Dependencies;
+
+private:
+ raw_ostream &writeNodeReference(raw_ostream &OS,
+ const FileEntry *Node);
+ void OutputGraphFile();
+
+public:
+ DependencyGraphCallback(const Preprocessor *_PP, StringRef OutputFile,
+ StringRef SysRoot)
+ : PP(_PP), OutputFile(OutputFile.str()), SysRoot(SysRoot.str()) { }
+
+ void InclusionDirective(SourceLocation HashLoc, const Token &IncludeTok,
+ StringRef FileName, bool IsAngled,
+ CharSourceRange FilenameRange, const FileEntry *File,
+ StringRef SearchPath, StringRef RelativePath,
+ const Module *Imported) override;
+
+ void EndOfMainFile() override {
+ OutputGraphFile();
+ }
+
+};
+}
+
+void clang::AttachDependencyGraphGen(Preprocessor &PP, StringRef OutputFile,
+ StringRef SysRoot) {
+ PP.addPPCallbacks(llvm::make_unique<DependencyGraphCallback>(&PP, OutputFile,
+ SysRoot));
+}
+
+void DependencyGraphCallback::InclusionDirective(SourceLocation HashLoc,
+ const Token &IncludeTok,
+ StringRef FileName,
+ bool IsAngled,
+ CharSourceRange FilenameRange,
+ const FileEntry *File,
+ StringRef SearchPath,
+ StringRef RelativePath,
+ const Module *Imported) {
+ if (!File)
+ return;
+
+ SourceManager &SM = PP->getSourceManager();
+ const FileEntry *FromFile
+ = SM.getFileEntryForID(SM.getFileID(SM.getExpansionLoc(HashLoc)));
+ if (!FromFile)
+ return;
+
+ Dependencies[FromFile].push_back(File);
+
+ AllFiles.insert(File);
+ AllFiles.insert(FromFile);
+}
+
+raw_ostream &
+DependencyGraphCallback::writeNodeReference(raw_ostream &OS,
+ const FileEntry *Node) {
+ OS << "header_" << Node->getUID();
+ return OS;
+}
+
+void DependencyGraphCallback::OutputGraphFile() {
+ std::error_code EC;
+ llvm::raw_fd_ostream OS(OutputFile, EC, llvm::sys::fs::F_Text);
+ if (EC) {
+ PP->getDiagnostics().Report(diag::err_fe_error_opening) << OutputFile
+ << EC.message();
+ return;
+ }
+
+ OS << "digraph \"dependencies\" {\n";
+
+ // Write the nodes
+ for (unsigned I = 0, N = AllFiles.size(); I != N; ++I) {
+ // Write the node itself.
+ OS.indent(2);
+ writeNodeReference(OS, AllFiles[I]);
+ OS << " [ shape=\"box\", label=\"";
+ StringRef FileName = AllFiles[I]->getName();
+ if (FileName.startswith(SysRoot))
+ FileName = FileName.substr(SysRoot.size());
+
+ OS << DOT::EscapeString(FileName)
+ << "\"];\n";
+ }
+
+ // Write the edges
+ for (DependencyMap::iterator F = Dependencies.begin(),
+ FEnd = Dependencies.end();
+ F != FEnd; ++F) {
+ for (unsigned I = 0, N = F->second.size(); I != N; ++I) {
+ OS.indent(2);
+ writeNodeReference(OS, F->first);
+ OS << " -> ";
+ writeNodeReference(OS, F->second[I]);
+ OS << ";\n";
+ }
+ }
+ OS << "}\n";
+}
+
diff --git a/contrib/llvm/tools/clang/lib/Frontend/DiagnosticRenderer.cpp b/contrib/llvm/tools/clang/lib/Frontend/DiagnosticRenderer.cpp
new file mode 100644
index 0000000..c63e98d
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Frontend/DiagnosticRenderer.cpp
@@ -0,0 +1,514 @@
+//===--- DiagnosticRenderer.cpp - Diagnostic Pretty-Printing --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Frontend/DiagnosticRenderer.h"
+#include "clang/Basic/DiagnosticOptions.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Edit/Commit.h"
+#include "clang/Edit/EditedSource.h"
+#include "clang/Edit/EditsReceiver.h"
+#include "clang/Lex/Lexer.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+using namespace clang;
+
+/// \brief Retrieve the name of the immediate macro expansion.
+///
+/// This routine starts from a source location, and finds the name of the macro
+/// responsible for its immediate expansion. It looks through any intervening
+/// macro argument expansions to compute this. It returns a StringRef which
+/// refers to the SourceManager-owned buffer of the source where that macro
+/// name is spelled. Thus, the result shouldn't out-live that SourceManager.
+///
+/// This differs from Lexer::getImmediateMacroName in that any macro argument
+/// location will result in the topmost function macro that accepted it.
+/// e.g.
+/// \code
+/// MAC1( MAC2(foo) )
+/// \endcode
+/// for location of 'foo' token, this function will return "MAC1" while
+/// Lexer::getImmediateMacroName will return "MAC2".
+static StringRef getImmediateMacroName(SourceLocation Loc,
+ const SourceManager &SM,
+ const LangOptions &LangOpts) {
+ assert(Loc.isMacroID() && "Only reasonble to call this on macros");
+ // Walk past macro argument expanions.
+ while (SM.isMacroArgExpansion(Loc))
+ Loc = SM.getImmediateExpansionRange(Loc).first;
+
+ // If the macro's spelling has no FileID, then it's actually a token paste
+ // or stringization (or similar) and not a macro at all.
+ if (!SM.getFileEntryForID(SM.getFileID(SM.getSpellingLoc(Loc))))
+ return StringRef();
+
+ // Find the spelling location of the start of the non-argument expansion
+ // range. This is where the macro name was spelled in order to begin
+ // expanding this macro.
+ Loc = SM.getSpellingLoc(SM.getImmediateExpansionRange(Loc).first);
+
+ // Dig out the buffer where the macro name was spelled and the extents of the
+ // name so that we can render it into the expansion note.
+ std::pair<FileID, unsigned> ExpansionInfo = SM.getDecomposedLoc(Loc);
+ unsigned MacroTokenLength = Lexer::MeasureTokenLength(Loc, SM, LangOpts);
+ StringRef ExpansionBuffer = SM.getBufferData(ExpansionInfo.first);
+ return ExpansionBuffer.substr(ExpansionInfo.second, MacroTokenLength);
+}
+
+DiagnosticRenderer::DiagnosticRenderer(const LangOptions &LangOpts,
+ DiagnosticOptions *DiagOpts)
+ : LangOpts(LangOpts), DiagOpts(DiagOpts), LastLevel() {}
+
+DiagnosticRenderer::~DiagnosticRenderer() {}
+
+namespace {
+
+class FixitReceiver : public edit::EditsReceiver {
+ SmallVectorImpl<FixItHint> &MergedFixits;
+
+public:
+ FixitReceiver(SmallVectorImpl<FixItHint> &MergedFixits)
+ : MergedFixits(MergedFixits) { }
+ void insert(SourceLocation loc, StringRef text) override {
+ MergedFixits.push_back(FixItHint::CreateInsertion(loc, text));
+ }
+ void replace(CharSourceRange range, StringRef text) override {
+ MergedFixits.push_back(FixItHint::CreateReplacement(range, text));
+ }
+};
+
+}
+
+static void mergeFixits(ArrayRef<FixItHint> FixItHints,
+ const SourceManager &SM, const LangOptions &LangOpts,
+ SmallVectorImpl<FixItHint> &MergedFixits) {
+ edit::Commit commit(SM, LangOpts);
+ for (ArrayRef<FixItHint>::const_iterator
+ I = FixItHints.begin(), E = FixItHints.end(); I != E; ++I) {
+ const FixItHint &Hint = *I;
+ if (Hint.CodeToInsert.empty()) {
+ if (Hint.InsertFromRange.isValid())
+ commit.insertFromRange(Hint.RemoveRange.getBegin(),
+ Hint.InsertFromRange, /*afterToken=*/false,
+ Hint.BeforePreviousInsertions);
+ else
+ commit.remove(Hint.RemoveRange);
+ } else {
+ if (Hint.RemoveRange.isTokenRange() ||
+ Hint.RemoveRange.getBegin() != Hint.RemoveRange.getEnd())
+ commit.replace(Hint.RemoveRange, Hint.CodeToInsert);
+ else
+ commit.insert(Hint.RemoveRange.getBegin(), Hint.CodeToInsert,
+ /*afterToken=*/false, Hint.BeforePreviousInsertions);
+ }
+ }
+
+ edit::EditedSource Editor(SM, LangOpts);
+ if (Editor.commit(commit)) {
+ FixitReceiver Rec(MergedFixits);
+ Editor.applyRewrites(Rec);
+ }
+}
+
+void DiagnosticRenderer::emitDiagnostic(SourceLocation Loc,
+ DiagnosticsEngine::Level Level,
+ StringRef Message,
+ ArrayRef<CharSourceRange> Ranges,
+ ArrayRef<FixItHint> FixItHints,
+ const SourceManager *SM,
+ DiagOrStoredDiag D) {
+ assert(SM || Loc.isInvalid());
+
+ beginDiagnostic(D, Level);
+
+ if (!Loc.isValid())
+ // If we have no source location, just emit the diagnostic message.
+ emitDiagnosticMessage(Loc, PresumedLoc(), Level, Message, Ranges, SM, D);
+ else {
+ // Get the ranges into a local array we can hack on.
+ SmallVector<CharSourceRange, 20> MutableRanges(Ranges.begin(),
+ Ranges.end());
+
+ SmallVector<FixItHint, 8> MergedFixits;
+ if (!FixItHints.empty()) {
+ mergeFixits(FixItHints, *SM, LangOpts, MergedFixits);
+ FixItHints = MergedFixits;
+ }
+
+ for (ArrayRef<FixItHint>::const_iterator I = FixItHints.begin(),
+ E = FixItHints.end();
+ I != E; ++I)
+ if (I->RemoveRange.isValid())
+ MutableRanges.push_back(I->RemoveRange);
+
+ SourceLocation UnexpandedLoc = Loc;
+
+ // Find the ultimate expansion location for the diagnostic.
+ Loc = SM->getFileLoc(Loc);
+
+ PresumedLoc PLoc = SM->getPresumedLoc(Loc, DiagOpts->ShowPresumedLoc);
+
+ // First, if this diagnostic is not in the main file, print out the
+ // "included from" lines.
+ emitIncludeStack(Loc, PLoc, Level, *SM);
+
+ // Next, emit the actual diagnostic message and caret.
+ emitDiagnosticMessage(Loc, PLoc, Level, Message, Ranges, SM, D);
+ emitCaret(Loc, Level, MutableRanges, FixItHints, *SM);
+
+ // If this location is within a macro, walk from UnexpandedLoc up to Loc
+ // and produce a macro backtrace.
+ if (UnexpandedLoc.isValid() && UnexpandedLoc.isMacroID()) {
+ unsigned MacroDepth = 0;
+ emitMacroExpansions(UnexpandedLoc, Level, MutableRanges, FixItHints, *SM,
+ MacroDepth);
+ }
+ }
+
+ LastLoc = Loc;
+ LastLevel = Level;
+
+ endDiagnostic(D, Level);
+}
+
+
+void DiagnosticRenderer::emitStoredDiagnostic(StoredDiagnostic &Diag) {
+ emitDiagnostic(Diag.getLocation(), Diag.getLevel(), Diag.getMessage(),
+ Diag.getRanges(), Diag.getFixIts(),
+ Diag.getLocation().isValid() ? &Diag.getLocation().getManager()
+ : nullptr,
+ &Diag);
+}
+
+void DiagnosticRenderer::emitBasicNote(StringRef Message) {
+ emitDiagnosticMessage(
+ SourceLocation(), PresumedLoc(), DiagnosticsEngine::Note, Message,
+ None, nullptr, DiagOrStoredDiag());
+}
+
+/// \brief Prints an include stack when appropriate for a particular
+/// diagnostic level and location.
+///
+/// This routine handles all the logic of suppressing particular include
+/// stacks (such as those for notes) and duplicate include stacks when
+/// repeated warnings occur within the same file. It also handles the logic
+/// of customizing the formatting and display of the include stack.
+///
+/// \param Loc The diagnostic location.
+/// \param PLoc The presumed location of the diagnostic location.
+/// \param Level The diagnostic level of the message this stack pertains to.
+void DiagnosticRenderer::emitIncludeStack(SourceLocation Loc,
+ PresumedLoc PLoc,
+ DiagnosticsEngine::Level Level,
+ const SourceManager &SM) {
+ SourceLocation IncludeLoc = PLoc.getIncludeLoc();
+
+ // Skip redundant include stacks altogether.
+ if (LastIncludeLoc == IncludeLoc)
+ return;
+
+ LastIncludeLoc = IncludeLoc;
+
+ if (!DiagOpts->ShowNoteIncludeStack && Level == DiagnosticsEngine::Note)
+ return;
+
+ if (IncludeLoc.isValid())
+ emitIncludeStackRecursively(IncludeLoc, SM);
+ else {
+ emitModuleBuildStack(SM);
+ emitImportStack(Loc, SM);
+ }
+}
+
+/// \brief Helper to recursivly walk up the include stack and print each layer
+/// on the way back down.
+void DiagnosticRenderer::emitIncludeStackRecursively(SourceLocation Loc,
+ const SourceManager &SM) {
+ if (Loc.isInvalid()) {
+ emitModuleBuildStack(SM);
+ return;
+ }
+
+ PresumedLoc PLoc = SM.getPresumedLoc(Loc, DiagOpts->ShowPresumedLoc);
+ if (PLoc.isInvalid())
+ return;
+
+ // If this source location was imported from a module, print the module
+ // import stack rather than the
+ // FIXME: We want submodule granularity here.
+ std::pair<SourceLocation, StringRef> Imported = SM.getModuleImportLoc(Loc);
+ if (Imported.first.isValid()) {
+ // This location was imported by a module. Emit the module import stack.
+ emitImportStackRecursively(Imported.first, Imported.second, SM);
+ return;
+ }
+
+ // Emit the other include frames first.
+ emitIncludeStackRecursively(PLoc.getIncludeLoc(), SM);
+
+ // Emit the inclusion text/note.
+ emitIncludeLocation(Loc, PLoc, SM);
+}
+
+/// \brief Emit the module import stack associated with the current location.
+void DiagnosticRenderer::emitImportStack(SourceLocation Loc,
+ const SourceManager &SM) {
+ if (Loc.isInvalid()) {
+ emitModuleBuildStack(SM);
+ return;
+ }
+
+ std::pair<SourceLocation, StringRef> NextImportLoc
+ = SM.getModuleImportLoc(Loc);
+ emitImportStackRecursively(NextImportLoc.first, NextImportLoc.second, SM);
+}
+
+/// \brief Helper to recursivly walk up the import stack and print each layer
+/// on the way back down.
+void DiagnosticRenderer::emitImportStackRecursively(SourceLocation Loc,
+ StringRef ModuleName,
+ const SourceManager &SM) {
+ if (Loc.isInvalid()) {
+ return;
+ }
+
+ PresumedLoc PLoc = SM.getPresumedLoc(Loc, DiagOpts->ShowPresumedLoc);
+ if (PLoc.isInvalid())
+ return;
+
+ // Emit the other import frames first.
+ std::pair<SourceLocation, StringRef> NextImportLoc
+ = SM.getModuleImportLoc(Loc);
+ emitImportStackRecursively(NextImportLoc.first, NextImportLoc.second, SM);
+
+ // Emit the inclusion text/note.
+ emitImportLocation(Loc, PLoc, ModuleName, SM);
+}
+
+/// \brief Emit the module build stack, for cases where a module is (re-)built
+/// on demand.
+void DiagnosticRenderer::emitModuleBuildStack(const SourceManager &SM) {
+ ModuleBuildStack Stack = SM.getModuleBuildStack();
+ for (unsigned I = 0, N = Stack.size(); I != N; ++I) {
+ const SourceManager &CurSM = Stack[I].second.getManager();
+ SourceLocation CurLoc = Stack[I].second;
+ emitBuildingModuleLocation(CurLoc,
+ CurSM.getPresumedLoc(CurLoc,
+ DiagOpts->ShowPresumedLoc),
+ Stack[I].first,
+ CurSM);
+ }
+}
+
+// Helper function to fix up source ranges. It takes in an array of ranges,
+// and outputs an array of ranges where we want to draw the range highlighting
+// around the location specified by CaretLoc.
+//
+// To find locations which correspond to the caret, we crawl the macro caller
+// chain for the beginning and end of each range. If the caret location
+// is in a macro expansion, we search each chain for a location
+// in the same expansion as the caret; otherwise, we crawl to the top of
+// each chain. Two locations are part of the same macro expansion
+// iff the FileID is the same.
+static void mapDiagnosticRanges(
+ SourceLocation CaretLoc,
+ ArrayRef<CharSourceRange> Ranges,
+ SmallVectorImpl<CharSourceRange> &SpellingRanges,
+ const SourceManager *SM) {
+ FileID CaretLocFileID = SM->getFileID(CaretLoc);
+
+ for (ArrayRef<CharSourceRange>::const_iterator I = Ranges.begin(),
+ E = Ranges.end();
+ I != E; ++I) {
+ SourceLocation Begin = I->getBegin(), End = I->getEnd();
+ bool IsTokenRange = I->isTokenRange();
+
+ FileID BeginFileID = SM->getFileID(Begin);
+ FileID EndFileID = SM->getFileID(End);
+
+ // Find the common parent for the beginning and end of the range.
+
+ // First, crawl the expansion chain for the beginning of the range.
+ llvm::SmallDenseMap<FileID, SourceLocation> BeginLocsMap;
+ while (Begin.isMacroID() && BeginFileID != EndFileID) {
+ BeginLocsMap[BeginFileID] = Begin;
+ Begin = SM->getImmediateExpansionRange(Begin).first;
+ BeginFileID = SM->getFileID(Begin);
+ }
+
+ // Then, crawl the expansion chain for the end of the range.
+ if (BeginFileID != EndFileID) {
+ while (End.isMacroID() && !BeginLocsMap.count(EndFileID)) {
+ End = SM->getImmediateExpansionRange(End).second;
+ EndFileID = SM->getFileID(End);
+ }
+ if (End.isMacroID()) {
+ Begin = BeginLocsMap[EndFileID];
+ BeginFileID = EndFileID;
+ }
+ }
+
+ while (Begin.isMacroID() && BeginFileID != CaretLocFileID) {
+ if (SM->isMacroArgExpansion(Begin)) {
+ Begin = SM->getImmediateSpellingLoc(Begin);
+ End = SM->getImmediateSpellingLoc(End);
+ } else {
+ Begin = SM->getImmediateExpansionRange(Begin).first;
+ End = SM->getImmediateExpansionRange(End).second;
+ }
+ BeginFileID = SM->getFileID(Begin);
+ if (BeginFileID != SM->getFileID(End)) {
+ // FIXME: Ugly hack to stop a crash; this code is making bad
+ // assumptions and it's too complicated for me to reason
+ // about.
+ Begin = End = SourceLocation();
+ break;
+ }
+ }
+
+ // Return the spelling location of the beginning and end of the range.
+ Begin = SM->getSpellingLoc(Begin);
+ End = SM->getSpellingLoc(End);
+ SpellingRanges.push_back(CharSourceRange(SourceRange(Begin, End),
+ IsTokenRange));
+ }
+}
+
+void DiagnosticRenderer::emitCaret(SourceLocation Loc,
+ DiagnosticsEngine::Level Level,
+ ArrayRef<CharSourceRange> Ranges,
+ ArrayRef<FixItHint> Hints,
+ const SourceManager &SM) {
+ SmallVector<CharSourceRange, 4> SpellingRanges;
+ mapDiagnosticRanges(Loc, Ranges, SpellingRanges, &SM);
+ emitCodeContext(Loc, Level, SpellingRanges, Hints, SM);
+}
+
+/// \brief Recursively emit notes for each macro expansion and caret
+/// diagnostics where appropriate.
+///
+/// Walks up the macro expansion stack printing expansion notes, the code
+/// snippet, caret, underlines and FixItHint display as appropriate at each
+/// level.
+///
+/// \param Loc The location for this caret.
+/// \param Level The diagnostic level currently being emitted.
+/// \param Ranges The underlined ranges for this code snippet.
+/// \param Hints The FixIt hints active for this diagnostic.
+/// \param OnMacroInst The current depth of the macro expansion stack.
+void DiagnosticRenderer::emitMacroExpansions(SourceLocation Loc,
+ DiagnosticsEngine::Level Level,
+ ArrayRef<CharSourceRange> Ranges,
+ ArrayRef<FixItHint> Hints,
+ const SourceManager &SM,
+ unsigned &MacroDepth,
+ unsigned OnMacroInst) {
+ assert(!Loc.isInvalid() && "must have a valid source location here");
+
+ // Walk up to the caller of this macro, and produce a backtrace down to there.
+ SourceLocation OneLevelUp = SM.getImmediateMacroCallerLoc(Loc);
+ if (OneLevelUp.isMacroID())
+ emitMacroExpansions(OneLevelUp, Level, Ranges, Hints, SM,
+ MacroDepth, OnMacroInst + 1);
+ else
+ MacroDepth = OnMacroInst + 1;
+
+ unsigned MacroSkipStart = 0, MacroSkipEnd = 0;
+ if (MacroDepth > DiagOpts->MacroBacktraceLimit &&
+ DiagOpts->MacroBacktraceLimit != 0) {
+ MacroSkipStart = DiagOpts->MacroBacktraceLimit / 2 +
+ DiagOpts->MacroBacktraceLimit % 2;
+ MacroSkipEnd = MacroDepth - DiagOpts->MacroBacktraceLimit / 2;
+ }
+
+ // Whether to suppress printing this macro expansion.
+ bool Suppressed = (OnMacroInst >= MacroSkipStart &&
+ OnMacroInst < MacroSkipEnd);
+
+ if (Suppressed) {
+ // Tell the user that we've skipped contexts.
+ if (OnMacroInst == MacroSkipStart) {
+ SmallString<200> MessageStorage;
+ llvm::raw_svector_ostream Message(MessageStorage);
+ Message << "(skipping " << (MacroSkipEnd - MacroSkipStart)
+ << " expansions in backtrace; use -fmacro-backtrace-limit=0 to "
+ "see all)";
+ emitBasicNote(Message.str());
+ }
+ return;
+ }
+
+ // Find the spelling location for the macro definition. We must use the
+ // spelling location here to avoid emitting a macro bactrace for the note.
+ SourceLocation SpellingLoc = Loc;
+ // If this is the expansion of a macro argument, point the caret at the
+ // use of the argument in the definition of the macro, not the expansion.
+ if (SM.isMacroArgExpansion(Loc))
+ SpellingLoc = SM.getImmediateExpansionRange(Loc).first;
+ SpellingLoc = SM.getSpellingLoc(SpellingLoc);
+
+ // Map the ranges into the FileID of the diagnostic location.
+ SmallVector<CharSourceRange, 4> SpellingRanges;
+ mapDiagnosticRanges(Loc, Ranges, SpellingRanges, &SM);
+
+ SmallString<100> MessageStorage;
+ llvm::raw_svector_ostream Message(MessageStorage);
+ StringRef MacroName = getImmediateMacroName(Loc, SM, LangOpts);
+ if (MacroName.empty())
+ Message << "expanded from here";
+ else
+ Message << "expanded from macro '" << MacroName << "'";
+ emitDiagnostic(SpellingLoc, DiagnosticsEngine::Note, Message.str(),
+ SpellingRanges, None, &SM);
+}
+
+DiagnosticNoteRenderer::~DiagnosticNoteRenderer() {}
+
+void DiagnosticNoteRenderer::emitIncludeLocation(SourceLocation Loc,
+ PresumedLoc PLoc,
+ const SourceManager &SM) {
+ // Generate a note indicating the include location.
+ SmallString<200> MessageStorage;
+ llvm::raw_svector_ostream Message(MessageStorage);
+ Message << "in file included from " << PLoc.getFilename() << ':'
+ << PLoc.getLine() << ":";
+ emitNote(Loc, Message.str(), &SM);
+}
+
+void DiagnosticNoteRenderer::emitImportLocation(SourceLocation Loc,
+ PresumedLoc PLoc,
+ StringRef ModuleName,
+ const SourceManager &SM) {
+ // Generate a note indicating the include location.
+ SmallString<200> MessageStorage;
+ llvm::raw_svector_ostream Message(MessageStorage);
+ Message << "in module '" << ModuleName << "' imported from "
+ << PLoc.getFilename() << ':' << PLoc.getLine() << ":";
+ emitNote(Loc, Message.str(), &SM);
+}
+
+void
+DiagnosticNoteRenderer::emitBuildingModuleLocation(SourceLocation Loc,
+ PresumedLoc PLoc,
+ StringRef ModuleName,
+ const SourceManager &SM) {
+ // Generate a note indicating the include location.
+ SmallString<200> MessageStorage;
+ llvm::raw_svector_ostream Message(MessageStorage);
+ if (PLoc.getFilename())
+ Message << "while building module '" << ModuleName << "' imported from "
+ << PLoc.getFilename() << ':' << PLoc.getLine() << ":";
+ else
+ Message << "while building module '" << ModuleName << "':";
+ emitNote(Loc, Message.str(), &SM);
+}
diff --git a/contrib/llvm/tools/clang/lib/Frontend/FrontendAction.cpp b/contrib/llvm/tools/clang/lib/Frontend/FrontendAction.cpp
new file mode 100644
index 0000000..9bba755
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Frontend/FrontendAction.cpp
@@ -0,0 +1,590 @@
+//===--- FrontendAction.cpp -----------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Frontend/FrontendAction.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclGroup.h"
+#include "clang/Frontend/ASTUnit.h"
+#include "clang/Frontend/CompilerInstance.h"
+#include "clang/Frontend/FrontendDiagnostic.h"
+#include "clang/Frontend/FrontendPluginRegistry.h"
+#include "clang/Frontend/LayoutOverrideSource.h"
+#include "clang/Frontend/MultiplexConsumer.h"
+#include "clang/Frontend/Utils.h"
+#include "clang/Lex/HeaderSearch.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Parse/ParseAST.h"
+#include "clang/Serialization/ASTDeserializationListener.h"
+#include "clang/Serialization/ASTReader.h"
+#include "clang/Serialization/GlobalModuleIndex.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/Timer.h"
+#include "llvm/Support/raw_ostream.h"
+#include <system_error>
+using namespace clang;
+
+template class llvm::Registry<clang::PluginASTAction>;
+
+namespace {
+
+class DelegatingDeserializationListener : public ASTDeserializationListener {
+ ASTDeserializationListener *Previous;
+ bool DeletePrevious;
+
+public:
+ explicit DelegatingDeserializationListener(
+ ASTDeserializationListener *Previous, bool DeletePrevious)
+ : Previous(Previous), DeletePrevious(DeletePrevious) {}
+ ~DelegatingDeserializationListener() override {
+ if (DeletePrevious)
+ delete Previous;
+ }
+
+ void ReaderInitialized(ASTReader *Reader) override {
+ if (Previous)
+ Previous->ReaderInitialized(Reader);
+ }
+ void IdentifierRead(serialization::IdentID ID,
+ IdentifierInfo *II) override {
+ if (Previous)
+ Previous->IdentifierRead(ID, II);
+ }
+ void TypeRead(serialization::TypeIdx Idx, QualType T) override {
+ if (Previous)
+ Previous->TypeRead(Idx, T);
+ }
+ void DeclRead(serialization::DeclID ID, const Decl *D) override {
+ if (Previous)
+ Previous->DeclRead(ID, D);
+ }
+ void SelectorRead(serialization::SelectorID ID, Selector Sel) override {
+ if (Previous)
+ Previous->SelectorRead(ID, Sel);
+ }
+ void MacroDefinitionRead(serialization::PreprocessedEntityID PPID,
+ MacroDefinitionRecord *MD) override {
+ if (Previous)
+ Previous->MacroDefinitionRead(PPID, MD);
+ }
+};
+
+/// \brief Dumps deserialized declarations.
+class DeserializedDeclsDumper : public DelegatingDeserializationListener {
+public:
+ explicit DeserializedDeclsDumper(ASTDeserializationListener *Previous,
+ bool DeletePrevious)
+ : DelegatingDeserializationListener(Previous, DeletePrevious) {}
+
+ void DeclRead(serialization::DeclID ID, const Decl *D) override {
+ llvm::outs() << "PCH DECL: " << D->getDeclKindName();
+ if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
+ llvm::outs() << " - " << *ND;
+ llvm::outs() << "\n";
+
+ DelegatingDeserializationListener::DeclRead(ID, D);
+ }
+};
+
+/// \brief Checks deserialized declarations and emits error if a name
+/// matches one given in command-line using -error-on-deserialized-decl.
+class DeserializedDeclsChecker : public DelegatingDeserializationListener {
+ ASTContext &Ctx;
+ std::set<std::string> NamesToCheck;
+
+public:
+ DeserializedDeclsChecker(ASTContext &Ctx,
+ const std::set<std::string> &NamesToCheck,
+ ASTDeserializationListener *Previous,
+ bool DeletePrevious)
+ : DelegatingDeserializationListener(Previous, DeletePrevious), Ctx(Ctx),
+ NamesToCheck(NamesToCheck) {}
+
+ void DeclRead(serialization::DeclID ID, const Decl *D) override {
+ if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
+ if (NamesToCheck.find(ND->getNameAsString()) != NamesToCheck.end()) {
+ unsigned DiagID
+ = Ctx.getDiagnostics().getCustomDiagID(DiagnosticsEngine::Error,
+ "%0 was deserialized");
+ Ctx.getDiagnostics().Report(Ctx.getFullLoc(D->getLocation()), DiagID)
+ << ND->getNameAsString();
+ }
+
+ DelegatingDeserializationListener::DeclRead(ID, D);
+ }
+};
+
+} // end anonymous namespace
+
+FrontendAction::FrontendAction() : Instance(nullptr) {}
+
+FrontendAction::~FrontendAction() {}
+
+void FrontendAction::setCurrentInput(const FrontendInputFile &CurrentInput,
+ std::unique_ptr<ASTUnit> AST) {
+ this->CurrentInput = CurrentInput;
+ CurrentASTUnit = std::move(AST);
+}
+
+std::unique_ptr<ASTConsumer>
+FrontendAction::CreateWrappedASTConsumer(CompilerInstance &CI,
+ StringRef InFile) {
+ std::unique_ptr<ASTConsumer> Consumer = CreateASTConsumer(CI, InFile);
+ if (!Consumer)
+ return nullptr;
+
+ if (CI.getFrontendOpts().AddPluginActions.size() == 0)
+ return Consumer;
+
+ // Make sure the non-plugin consumer is first, so that plugins can't
+ // modifiy the AST.
+ std::vector<std::unique_ptr<ASTConsumer>> Consumers;
+ Consumers.push_back(std::move(Consumer));
+
+ for (size_t i = 0, e = CI.getFrontendOpts().AddPluginActions.size();
+ i != e; ++i) {
+ // This is O(|plugins| * |add_plugins|), but since both numbers are
+ // way below 50 in practice, that's ok.
+ for (FrontendPluginRegistry::iterator
+ it = FrontendPluginRegistry::begin(),
+ ie = FrontendPluginRegistry::end();
+ it != ie; ++it) {
+ if (it->getName() != CI.getFrontendOpts().AddPluginActions[i])
+ continue;
+ std::unique_ptr<PluginASTAction> P = it->instantiate();
+ if (P->ParseArgs(CI, CI.getFrontendOpts().AddPluginArgs[i]))
+ Consumers.push_back(P->CreateASTConsumer(CI, InFile));
+ }
+ }
+
+ return llvm::make_unique<MultiplexConsumer>(std::move(Consumers));
+}
+
+bool FrontendAction::BeginSourceFile(CompilerInstance &CI,
+ const FrontendInputFile &Input) {
+ assert(!Instance && "Already processing a source file!");
+ assert(!Input.isEmpty() && "Unexpected empty filename!");
+ setCurrentInput(Input);
+ setCompilerInstance(&CI);
+
+ StringRef InputFile = Input.getFile();
+ bool HasBegunSourceFile = false;
+ if (!BeginInvocation(CI))
+ goto failure;
+
+ // AST files follow a very different path, since they share objects via the
+ // AST unit.
+ if (Input.getKind() == IK_AST) {
+ assert(!usesPreprocessorOnly() &&
+ "Attempt to pass AST file to preprocessor only action!");
+ assert(hasASTFileSupport() &&
+ "This action does not have AST file support!");
+
+ IntrusiveRefCntPtr<DiagnosticsEngine> Diags(&CI.getDiagnostics());
+
+ std::unique_ptr<ASTUnit> AST =
+ ASTUnit::LoadFromASTFile(InputFile, Diags, CI.getFileSystemOpts());
+
+ if (!AST)
+ goto failure;
+
+ // Inform the diagnostic client we are processing a source file.
+ CI.getDiagnosticClient().BeginSourceFile(CI.getLangOpts(), nullptr);
+ HasBegunSourceFile = true;
+
+ // Set the shared objects, these are reset when we finish processing the
+ // file, otherwise the CompilerInstance will happily destroy them.
+ CI.setFileManager(&AST->getFileManager());
+ CI.setSourceManager(&AST->getSourceManager());
+ CI.setPreprocessor(&AST->getPreprocessor());
+ CI.setASTContext(&AST->getASTContext());
+
+ setCurrentInput(Input, std::move(AST));
+
+ // Initialize the action.
+ if (!BeginSourceFileAction(CI, InputFile))
+ goto failure;
+
+ // Create the AST consumer.
+ CI.setASTConsumer(CreateWrappedASTConsumer(CI, InputFile));
+ if (!CI.hasASTConsumer())
+ goto failure;
+
+ return true;
+ }
+
+ if (!CI.hasVirtualFileSystem()) {
+ if (IntrusiveRefCntPtr<vfs::FileSystem> VFS =
+ createVFSFromCompilerInvocation(CI.getInvocation(),
+ CI.getDiagnostics()))
+ CI.setVirtualFileSystem(VFS);
+ else
+ goto failure;
+ }
+
+ // Set up the file and source managers, if needed.
+ if (!CI.hasFileManager())
+ CI.createFileManager();
+ if (!CI.hasSourceManager())
+ CI.createSourceManager(CI.getFileManager());
+
+ // IR files bypass the rest of initialization.
+ if (Input.getKind() == IK_LLVM_IR) {
+ assert(hasIRSupport() &&
+ "This action does not have IR file support!");
+
+ // Inform the diagnostic client we are processing a source file.
+ CI.getDiagnosticClient().BeginSourceFile(CI.getLangOpts(), nullptr);
+ HasBegunSourceFile = true;
+
+ // Initialize the action.
+ if (!BeginSourceFileAction(CI, InputFile))
+ goto failure;
+
+ // Initialize the main file entry.
+ if (!CI.InitializeSourceManager(CurrentInput))
+ goto failure;
+
+ return true;
+ }
+
+ // If the implicit PCH include is actually a directory, rather than
+ // a single file, search for a suitable PCH file in that directory.
+ if (!CI.getPreprocessorOpts().ImplicitPCHInclude.empty()) {
+ FileManager &FileMgr = CI.getFileManager();
+ PreprocessorOptions &PPOpts = CI.getPreprocessorOpts();
+ StringRef PCHInclude = PPOpts.ImplicitPCHInclude;
+ std::string SpecificModuleCachePath = CI.getSpecificModuleCachePath();
+ if (const DirectoryEntry *PCHDir = FileMgr.getDirectory(PCHInclude)) {
+ std::error_code EC;
+ SmallString<128> DirNative;
+ llvm::sys::path::native(PCHDir->getName(), DirNative);
+ bool Found = false;
+ for (llvm::sys::fs::directory_iterator Dir(DirNative, EC), DirEnd;
+ Dir != DirEnd && !EC; Dir.increment(EC)) {
+ // Check whether this is an acceptable AST file.
+ if (ASTReader::isAcceptableASTFile(Dir->path(), FileMgr,
+ CI.getLangOpts(),
+ CI.getTargetOpts(),
+ CI.getPreprocessorOpts(),
+ SpecificModuleCachePath)) {
+ PPOpts.ImplicitPCHInclude = Dir->path();
+ Found = true;
+ break;
+ }
+ }
+
+ if (!Found) {
+ CI.getDiagnostics().Report(diag::err_fe_no_pch_in_dir) << PCHInclude;
+ return true;
+ }
+ }
+ }
+
+ // Set up the preprocessor if needed. When parsing model files the
+ // preprocessor of the original source is reused.
+ if (!isModelParsingAction())
+ CI.createPreprocessor(getTranslationUnitKind());
+
+ // Inform the diagnostic client we are processing a source file.
+ CI.getDiagnosticClient().BeginSourceFile(CI.getLangOpts(),
+ &CI.getPreprocessor());
+ HasBegunSourceFile = true;
+
+ // Initialize the action.
+ if (!BeginSourceFileAction(CI, InputFile))
+ goto failure;
+
+ // Initialize the main file entry. It is important that this occurs after
+ // BeginSourceFileAction, which may change CurrentInput during module builds.
+ if (!CI.InitializeSourceManager(CurrentInput))
+ goto failure;
+
+ // Create the AST context and consumer unless this is a preprocessor only
+ // action.
+ if (!usesPreprocessorOnly()) {
+ // Parsing a model file should reuse the existing ASTContext.
+ if (!isModelParsingAction())
+ CI.createASTContext();
+
+ std::unique_ptr<ASTConsumer> Consumer =
+ CreateWrappedASTConsumer(CI, InputFile);
+ if (!Consumer)
+ goto failure;
+
+ // FIXME: should not overwrite ASTMutationListener when parsing model files?
+ if (!isModelParsingAction())
+ CI.getASTContext().setASTMutationListener(Consumer->GetASTMutationListener());
+
+ if (!CI.getPreprocessorOpts().ChainedIncludes.empty()) {
+ // Convert headers to PCH and chain them.
+ IntrusiveRefCntPtr<ExternalSemaSource> source, FinalReader;
+ source = createChainedIncludesSource(CI, FinalReader);
+ if (!source)
+ goto failure;
+ CI.setModuleManager(static_cast<ASTReader *>(FinalReader.get()));
+ CI.getASTContext().setExternalSource(source);
+ } else if (!CI.getPreprocessorOpts().ImplicitPCHInclude.empty()) {
+ // Use PCH.
+ assert(hasPCHSupport() && "This action does not have PCH support!");
+ ASTDeserializationListener *DeserialListener =
+ Consumer->GetASTDeserializationListener();
+ bool DeleteDeserialListener = false;
+ if (CI.getPreprocessorOpts().DumpDeserializedPCHDecls) {
+ DeserialListener = new DeserializedDeclsDumper(DeserialListener,
+ DeleteDeserialListener);
+ DeleteDeserialListener = true;
+ }
+ if (!CI.getPreprocessorOpts().DeserializedPCHDeclsToErrorOn.empty()) {
+ DeserialListener = new DeserializedDeclsChecker(
+ CI.getASTContext(),
+ CI.getPreprocessorOpts().DeserializedPCHDeclsToErrorOn,
+ DeserialListener, DeleteDeserialListener);
+ DeleteDeserialListener = true;
+ }
+ CI.createPCHExternalASTSource(
+ CI.getPreprocessorOpts().ImplicitPCHInclude,
+ CI.getPreprocessorOpts().DisablePCHValidation,
+ CI.getPreprocessorOpts().AllowPCHWithCompilerErrors, DeserialListener,
+ DeleteDeserialListener);
+ if (!CI.getASTContext().getExternalSource())
+ goto failure;
+ }
+
+ CI.setASTConsumer(std::move(Consumer));
+ if (!CI.hasASTConsumer())
+ goto failure;
+ }
+
+ // Initialize built-in info as long as we aren't using an external AST
+ // source.
+ if (!CI.hasASTContext() || !CI.getASTContext().getExternalSource()) {
+ Preprocessor &PP = CI.getPreprocessor();
+
+ // If modules are enabled, create the module manager before creating
+ // any builtins, so that all declarations know that they might be
+ // extended by an external source.
+ if (CI.getLangOpts().Modules)
+ CI.createModuleManager();
+
+ PP.getBuiltinInfo().InitializeBuiltins(PP.getIdentifierTable(),
+ PP.getLangOpts());
+ } else {
+ // FIXME: If this is a problem, recover from it by creating a multiplex
+ // source.
+ assert((!CI.getLangOpts().Modules || CI.getModuleManager()) &&
+ "modules enabled but created an external source that "
+ "doesn't support modules");
+ }
+
+ // If we were asked to load any module map files, do so now.
+ for (const auto &Filename : CI.getFrontendOpts().ModuleMapFiles) {
+ if (auto *File = CI.getFileManager().getFile(Filename))
+ CI.getPreprocessor().getHeaderSearchInfo().loadModuleMapFile(
+ File, /*IsSystem*/false);
+ else
+ CI.getDiagnostics().Report(diag::err_module_map_not_found) << Filename;
+ }
+
+ // If we were asked to load any module files, do so now.
+ for (const auto &ModuleFile : CI.getFrontendOpts().ModuleFiles)
+ if (!CI.loadModuleFile(ModuleFile))
+ goto failure;
+
+ // If there is a layout overrides file, attach an external AST source that
+ // provides the layouts from that file.
+ if (!CI.getFrontendOpts().OverrideRecordLayoutsFile.empty() &&
+ CI.hasASTContext() && !CI.getASTContext().getExternalSource()) {
+ IntrusiveRefCntPtr<ExternalASTSource>
+ Override(new LayoutOverrideSource(
+ CI.getFrontendOpts().OverrideRecordLayoutsFile));
+ CI.getASTContext().setExternalSource(Override);
+ }
+
+ return true;
+
+ // If we failed, reset state since the client will not end up calling the
+ // matching EndSourceFile().
+ failure:
+ if (isCurrentFileAST()) {
+ CI.setASTContext(nullptr);
+ CI.setPreprocessor(nullptr);
+ CI.setSourceManager(nullptr);
+ CI.setFileManager(nullptr);
+ }
+
+ if (HasBegunSourceFile)
+ CI.getDiagnosticClient().EndSourceFile();
+ CI.clearOutputFiles(/*EraseFiles=*/true);
+ setCurrentInput(FrontendInputFile());
+ setCompilerInstance(nullptr);
+ return false;
+}
+
+bool FrontendAction::Execute() {
+ CompilerInstance &CI = getCompilerInstance();
+
+ if (CI.hasFrontendTimer()) {
+ llvm::TimeRegion Timer(CI.getFrontendTimer());
+ ExecuteAction();
+ }
+ else ExecuteAction();
+
+ // If we are supposed to rebuild the global module index, do so now unless
+ // there were any module-build failures.
+ if (CI.shouldBuildGlobalModuleIndex() && CI.hasFileManager() &&
+ CI.hasPreprocessor()) {
+ GlobalModuleIndex::writeIndex(
+ CI.getFileManager(),
+ CI.getPreprocessor().getHeaderSearchInfo().getModuleCachePath());
+ }
+
+ return true;
+}
+
+void FrontendAction::EndSourceFile() {
+ CompilerInstance &CI = getCompilerInstance();
+
+ // Inform the diagnostic client we are done with this source file.
+ CI.getDiagnosticClient().EndSourceFile();
+
+ // Inform the preprocessor we are done.
+ if (CI.hasPreprocessor())
+ CI.getPreprocessor().EndSourceFile();
+
+ // Finalize the action.
+ EndSourceFileAction();
+
+ // Sema references the ast consumer, so reset sema first.
+ //
+ // FIXME: There is more per-file stuff we could just drop here?
+ bool DisableFree = CI.getFrontendOpts().DisableFree;
+ if (DisableFree) {
+ CI.resetAndLeakSema();
+ CI.resetAndLeakASTContext();
+ BuryPointer(CI.takeASTConsumer().get());
+ } else {
+ CI.setSema(nullptr);
+ CI.setASTContext(nullptr);
+ CI.setASTConsumer(nullptr);
+ }
+
+ if (CI.getFrontendOpts().ShowStats) {
+ llvm::errs() << "\nSTATISTICS FOR '" << getCurrentFile() << "':\n";
+ CI.getPreprocessor().PrintStats();
+ CI.getPreprocessor().getIdentifierTable().PrintStats();
+ CI.getPreprocessor().getHeaderSearchInfo().PrintStats();
+ CI.getSourceManager().PrintStats();
+ llvm::errs() << "\n";
+ }
+
+ // Cleanup the output streams, and erase the output files if instructed by the
+ // FrontendAction.
+ CI.clearOutputFiles(/*EraseFiles=*/shouldEraseOutputFiles());
+
+ if (isCurrentFileAST()) {
+ if (DisableFree) {
+ CI.resetAndLeakPreprocessor();
+ CI.resetAndLeakSourceManager();
+ CI.resetAndLeakFileManager();
+ } else {
+ CI.setPreprocessor(nullptr);
+ CI.setSourceManager(nullptr);
+ CI.setFileManager(nullptr);
+ }
+ }
+
+ setCompilerInstance(nullptr);
+ setCurrentInput(FrontendInputFile());
+}
+
+bool FrontendAction::shouldEraseOutputFiles() {
+ return getCompilerInstance().getDiagnostics().hasErrorOccurred();
+}
+
+//===----------------------------------------------------------------------===//
+// Utility Actions
+//===----------------------------------------------------------------------===//
+
+void ASTFrontendAction::ExecuteAction() {
+ CompilerInstance &CI = getCompilerInstance();
+ if (!CI.hasPreprocessor())
+ return;
+
+ // FIXME: Move the truncation aspect of this into Sema, we delayed this till
+ // here so the source manager would be initialized.
+ if (hasCodeCompletionSupport() &&
+ !CI.getFrontendOpts().CodeCompletionAt.FileName.empty())
+ CI.createCodeCompletionConsumer();
+
+ // Use a code completion consumer?
+ CodeCompleteConsumer *CompletionConsumer = nullptr;
+ if (CI.hasCodeCompletionConsumer())
+ CompletionConsumer = &CI.getCodeCompletionConsumer();
+
+ if (!CI.hasSema())
+ CI.createSema(getTranslationUnitKind(), CompletionConsumer);
+
+ ParseAST(CI.getSema(), CI.getFrontendOpts().ShowStats,
+ CI.getFrontendOpts().SkipFunctionBodies);
+}
+
+void PluginASTAction::anchor() { }
+
+std::unique_ptr<ASTConsumer>
+PreprocessorFrontendAction::CreateASTConsumer(CompilerInstance &CI,
+ StringRef InFile) {
+ llvm_unreachable("Invalid CreateASTConsumer on preprocessor action!");
+}
+
+std::unique_ptr<ASTConsumer>
+WrapperFrontendAction::CreateASTConsumer(CompilerInstance &CI,
+ StringRef InFile) {
+ return WrappedAction->CreateASTConsumer(CI, InFile);
+}
+bool WrapperFrontendAction::BeginInvocation(CompilerInstance &CI) {
+ return WrappedAction->BeginInvocation(CI);
+}
+bool WrapperFrontendAction::BeginSourceFileAction(CompilerInstance &CI,
+ StringRef Filename) {
+ WrappedAction->setCurrentInput(getCurrentInput());
+ WrappedAction->setCompilerInstance(&CI);
+ return WrappedAction->BeginSourceFileAction(CI, Filename);
+}
+void WrapperFrontendAction::ExecuteAction() {
+ WrappedAction->ExecuteAction();
+}
+void WrapperFrontendAction::EndSourceFileAction() {
+ WrappedAction->EndSourceFileAction();
+}
+
+bool WrapperFrontendAction::usesPreprocessorOnly() const {
+ return WrappedAction->usesPreprocessorOnly();
+}
+TranslationUnitKind WrapperFrontendAction::getTranslationUnitKind() {
+ return WrappedAction->getTranslationUnitKind();
+}
+bool WrapperFrontendAction::hasPCHSupport() const {
+ return WrappedAction->hasPCHSupport();
+}
+bool WrapperFrontendAction::hasASTFileSupport() const {
+ return WrappedAction->hasASTFileSupport();
+}
+bool WrapperFrontendAction::hasIRSupport() const {
+ return WrappedAction->hasIRSupport();
+}
+bool WrapperFrontendAction::hasCodeCompletionSupport() const {
+ return WrappedAction->hasCodeCompletionSupport();
+}
+
+WrapperFrontendAction::WrapperFrontendAction(FrontendAction *WrappedAction)
+ : WrappedAction(WrappedAction) {}
+
diff --git a/contrib/llvm/tools/clang/lib/Frontend/FrontendActions.cpp b/contrib/llvm/tools/clang/lib/Frontend/FrontendActions.cpp
new file mode 100644
index 0000000..46cdeeb
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Frontend/FrontendActions.cpp
@@ -0,0 +1,695 @@
+//===--- FrontendActions.cpp ----------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Frontend/FrontendActions.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Frontend/ASTConsumers.h"
+#include "clang/Frontend/ASTUnit.h"
+#include "clang/Frontend/CompilerInstance.h"
+#include "clang/Frontend/FrontendDiagnostic.h"
+#include "clang/Frontend/Utils.h"
+#include "clang/Lex/HeaderSearch.h"
+#include "clang/Lex/Pragma.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Parse/Parser.h"
+#include "clang/Serialization/ASTReader.h"
+#include "clang/Serialization/ASTWriter.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/raw_ostream.h"
+#include <memory>
+#include <system_error>
+
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// Custom Actions
+//===----------------------------------------------------------------------===//
+
+std::unique_ptr<ASTConsumer>
+InitOnlyAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) {
+ return llvm::make_unique<ASTConsumer>();
+}
+
+void InitOnlyAction::ExecuteAction() {
+}
+
+//===----------------------------------------------------------------------===//
+// AST Consumer Actions
+//===----------------------------------------------------------------------===//
+
+std::unique_ptr<ASTConsumer>
+ASTPrintAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) {
+ if (raw_ostream *OS = CI.createDefaultOutputFile(false, InFile))
+ return CreateASTPrinter(OS, CI.getFrontendOpts().ASTDumpFilter);
+ return nullptr;
+}
+
+std::unique_ptr<ASTConsumer>
+ASTDumpAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) {
+ return CreateASTDumper(CI.getFrontendOpts().ASTDumpFilter,
+ CI.getFrontendOpts().ASTDumpDecls,
+ CI.getFrontendOpts().ASTDumpLookups);
+}
+
+std::unique_ptr<ASTConsumer>
+ASTDeclListAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) {
+ return CreateASTDeclNodeLister();
+}
+
+std::unique_ptr<ASTConsumer>
+ASTViewAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) {
+ return CreateASTViewer();
+}
+
+std::unique_ptr<ASTConsumer>
+DeclContextPrintAction::CreateASTConsumer(CompilerInstance &CI,
+ StringRef InFile) {
+ return CreateDeclContextPrinter();
+}
+
+std::unique_ptr<ASTConsumer>
+GeneratePCHAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) {
+ std::string Sysroot;
+ std::string OutputFile;
+ raw_ostream *OS =
+ ComputeASTConsumerArguments(CI, InFile, Sysroot, OutputFile);
+ if (!OS)
+ return nullptr;
+
+ if (!CI.getFrontendOpts().RelocatablePCH)
+ Sysroot.clear();
+ return llvm::make_unique<PCHGenerator>(CI.getPreprocessor(), OutputFile,
+ nullptr, Sysroot, OS);
+}
+
+raw_ostream *GeneratePCHAction::ComputeASTConsumerArguments(
+ CompilerInstance &CI, StringRef InFile, std::string &Sysroot,
+ std::string &OutputFile) {
+ Sysroot = CI.getHeaderSearchOpts().Sysroot;
+ if (CI.getFrontendOpts().RelocatablePCH && Sysroot.empty()) {
+ CI.getDiagnostics().Report(diag::err_relocatable_without_isysroot);
+ return nullptr;
+ }
+
+ // We use createOutputFile here because this is exposed via libclang, and we
+ // must disable the RemoveFileOnSignal behavior.
+ // We use a temporary to avoid race conditions.
+ raw_ostream *OS =
+ CI.createOutputFile(CI.getFrontendOpts().OutputFile, /*Binary=*/true,
+ /*RemoveFileOnSignal=*/false, InFile,
+ /*Extension=*/"", /*useTemporary=*/true);
+ if (!OS)
+ return nullptr;
+
+ OutputFile = CI.getFrontendOpts().OutputFile;
+ return OS;
+}
+
+std::unique_ptr<ASTConsumer>
+GenerateModuleAction::CreateASTConsumer(CompilerInstance &CI,
+ StringRef InFile) {
+ std::string Sysroot;
+ std::string OutputFile;
+ raw_ostream *OS =
+ ComputeASTConsumerArguments(CI, InFile, Sysroot, OutputFile);
+ if (!OS)
+ return nullptr;
+
+ return llvm::make_unique<PCHGenerator>(CI.getPreprocessor(), OutputFile,
+ Module, Sysroot, OS);
+}
+
+static SmallVectorImpl<char> &
+operator+=(SmallVectorImpl<char> &Includes, StringRef RHS) {
+ Includes.append(RHS.begin(), RHS.end());
+ return Includes;
+}
+
+static std::error_code addHeaderInclude(StringRef HeaderName,
+ SmallVectorImpl<char> &Includes,
+ const LangOptions &LangOpts,
+ bool IsExternC) {
+ if (IsExternC && LangOpts.CPlusPlus)
+ Includes += "extern \"C\" {\n";
+ if (LangOpts.ObjC1)
+ Includes += "#import \"";
+ else
+ Includes += "#include \"";
+
+ Includes += HeaderName;
+
+ Includes += "\"\n";
+ if (IsExternC && LangOpts.CPlusPlus)
+ Includes += "}\n";
+ return std::error_code();
+}
+
+/// \brief Collect the set of header includes needed to construct the given
+/// module and update the TopHeaders file set of the module.
+///
+/// \param Module The module we're collecting includes from.
+///
+/// \param Includes Will be augmented with the set of \#includes or \#imports
+/// needed to load all of the named headers.
+static std::error_code
+collectModuleHeaderIncludes(const LangOptions &LangOpts, FileManager &FileMgr,
+ ModuleMap &ModMap, clang::Module *Module,
+ SmallVectorImpl<char> &Includes) {
+ // Don't collect any headers for unavailable modules.
+ if (!Module->isAvailable())
+ return std::error_code();
+
+ // Add includes for each of these headers.
+ for (Module::Header &H : Module->Headers[Module::HK_Normal]) {
+ Module->addTopHeader(H.Entry);
+ // Use the path as specified in the module map file. We'll look for this
+ // file relative to the module build directory (the directory containing
+ // the module map file) so this will find the same file that we found
+ // while parsing the module map.
+ if (std::error_code Err = addHeaderInclude(H.NameAsWritten, Includes,
+ LangOpts, Module->IsExternC))
+ return Err;
+ }
+ // Note that Module->PrivateHeaders will not be a TopHeader.
+
+ if (Module::Header UmbrellaHeader = Module->getUmbrellaHeader()) {
+ Module->addTopHeader(UmbrellaHeader.Entry);
+ if (Module->Parent) {
+ // Include the umbrella header for submodules.
+ if (std::error_code Err = addHeaderInclude(UmbrellaHeader.NameAsWritten,
+ Includes, LangOpts,
+ Module->IsExternC))
+ return Err;
+ }
+ } else if (Module::DirectoryName UmbrellaDir = Module->getUmbrellaDir()) {
+ // Add all of the headers we find in this subdirectory.
+ std::error_code EC;
+ SmallString<128> DirNative;
+ llvm::sys::path::native(UmbrellaDir.Entry->getName(), DirNative);
+ for (llvm::sys::fs::recursive_directory_iterator Dir(DirNative, EC),
+ DirEnd;
+ Dir != DirEnd && !EC; Dir.increment(EC)) {
+ // Check whether this entry has an extension typically associated with
+ // headers.
+ if (!llvm::StringSwitch<bool>(llvm::sys::path::extension(Dir->path()))
+ .Cases(".h", ".H", ".hh", ".hpp", true)
+ .Default(false))
+ continue;
+
+ const FileEntry *Header = FileMgr.getFile(Dir->path());
+ // FIXME: This shouldn't happen unless there is a file system race. Is
+ // that worth diagnosing?
+ if (!Header)
+ continue;
+
+ // If this header is marked 'unavailable' in this module, don't include
+ // it.
+ if (ModMap.isHeaderUnavailableInModule(Header, Module))
+ continue;
+
+ // Compute the relative path from the directory to this file.
+ SmallVector<StringRef, 16> Components;
+ auto PathIt = llvm::sys::path::rbegin(Dir->path());
+ for (int I = 0; I != Dir.level() + 1; ++I, ++PathIt)
+ Components.push_back(*PathIt);
+ SmallString<128> RelativeHeader(UmbrellaDir.NameAsWritten);
+ for (auto It = Components.rbegin(), End = Components.rend(); It != End;
+ ++It)
+ llvm::sys::path::append(RelativeHeader, *It);
+
+ // Include this header as part of the umbrella directory.
+ Module->addTopHeader(Header);
+ if (std::error_code Err = addHeaderInclude(RelativeHeader, Includes,
+ LangOpts, Module->IsExternC))
+ return Err;
+ }
+
+ if (EC)
+ return EC;
+ }
+
+ // Recurse into submodules.
+ for (clang::Module::submodule_iterator Sub = Module->submodule_begin(),
+ SubEnd = Module->submodule_end();
+ Sub != SubEnd; ++Sub)
+ if (std::error_code Err = collectModuleHeaderIncludes(
+ LangOpts, FileMgr, ModMap, *Sub, Includes))
+ return Err;
+
+ return std::error_code();
+}
+
+bool GenerateModuleAction::BeginSourceFileAction(CompilerInstance &CI,
+ StringRef Filename) {
+ // Find the module map file.
+ const FileEntry *ModuleMap = CI.getFileManager().getFile(Filename);
+ if (!ModuleMap) {
+ CI.getDiagnostics().Report(diag::err_module_map_not_found)
+ << Filename;
+ return false;
+ }
+
+ // Parse the module map file.
+ HeaderSearch &HS = CI.getPreprocessor().getHeaderSearchInfo();
+ if (HS.loadModuleMapFile(ModuleMap, IsSystem))
+ return false;
+
+ if (CI.getLangOpts().CurrentModule.empty()) {
+ CI.getDiagnostics().Report(diag::err_missing_module_name);
+
+ // FIXME: Eventually, we could consider asking whether there was just
+ // a single module described in the module map, and use that as a
+ // default. Then it would be fairly trivial to just "compile" a module
+ // map with a single module (the common case).
+ return false;
+ }
+
+ // If we're being run from the command-line, the module build stack will not
+ // have been filled in yet, so complete it now in order to allow us to detect
+ // module cycles.
+ SourceManager &SourceMgr = CI.getSourceManager();
+ if (SourceMgr.getModuleBuildStack().empty())
+ SourceMgr.pushModuleBuildStack(CI.getLangOpts().CurrentModule,
+ FullSourceLoc(SourceLocation(), SourceMgr));
+
+ // Dig out the module definition.
+ Module = HS.lookupModule(CI.getLangOpts().CurrentModule,
+ /*AllowSearch=*/false);
+ if (!Module) {
+ CI.getDiagnostics().Report(diag::err_missing_module)
+ << CI.getLangOpts().CurrentModule << Filename;
+
+ return false;
+ }
+
+ // Check whether we can build this module at all.
+ clang::Module::Requirement Requirement;
+ clang::Module::UnresolvedHeaderDirective MissingHeader;
+ if (!Module->isAvailable(CI.getLangOpts(), CI.getTarget(), Requirement,
+ MissingHeader)) {
+ if (MissingHeader.FileNameLoc.isValid()) {
+ CI.getDiagnostics().Report(MissingHeader.FileNameLoc,
+ diag::err_module_header_missing)
+ << MissingHeader.IsUmbrella << MissingHeader.FileName;
+ } else {
+ CI.getDiagnostics().Report(diag::err_module_unavailable)
+ << Module->getFullModuleName()
+ << Requirement.second << Requirement.first;
+ }
+
+ return false;
+ }
+
+ if (ModuleMapForUniquing && ModuleMapForUniquing != ModuleMap) {
+ Module->IsInferred = true;
+ HS.getModuleMap().setInferredModuleAllowedBy(Module, ModuleMapForUniquing);
+ } else {
+ ModuleMapForUniquing = ModuleMap;
+ }
+
+ FileManager &FileMgr = CI.getFileManager();
+
+ // Collect the set of #includes we need to build the module.
+ SmallString<256> HeaderContents;
+ std::error_code Err = std::error_code();
+ if (Module::Header UmbrellaHeader = Module->getUmbrellaHeader())
+ Err = addHeaderInclude(UmbrellaHeader.NameAsWritten, HeaderContents,
+ CI.getLangOpts(), Module->IsExternC);
+ if (!Err)
+ Err = collectModuleHeaderIncludes(
+ CI.getLangOpts(), FileMgr,
+ CI.getPreprocessor().getHeaderSearchInfo().getModuleMap(), Module,
+ HeaderContents);
+
+ if (Err) {
+ CI.getDiagnostics().Report(diag::err_module_cannot_create_includes)
+ << Module->getFullModuleName() << Err.message();
+ return false;
+ }
+
+ // Inform the preprocessor that includes from within the input buffer should
+ // be resolved relative to the build directory of the module map file.
+ CI.getPreprocessor().setMainFileDir(Module->Directory);
+
+ std::unique_ptr<llvm::MemoryBuffer> InputBuffer =
+ llvm::MemoryBuffer::getMemBufferCopy(HeaderContents,
+ Module::getModuleInputBufferName());
+ // Ownership of InputBuffer will be transferred to the SourceManager.
+ setCurrentInput(FrontendInputFile(InputBuffer.release(), getCurrentFileKind(),
+ Module->IsSystem));
+ return true;
+}
+
+raw_ostream *GenerateModuleAction::ComputeASTConsumerArguments(
+ CompilerInstance &CI, StringRef InFile, std::string &Sysroot,
+ std::string &OutputFile) {
+ // If no output file was provided, figure out where this module would go
+ // in the module cache.
+ if (CI.getFrontendOpts().OutputFile.empty()) {
+ HeaderSearch &HS = CI.getPreprocessor().getHeaderSearchInfo();
+ CI.getFrontendOpts().OutputFile =
+ HS.getModuleFileName(CI.getLangOpts().CurrentModule,
+ ModuleMapForUniquing->getName());
+ }
+
+ // We use createOutputFile here because this is exposed via libclang, and we
+ // must disable the RemoveFileOnSignal behavior.
+ // We use a temporary to avoid race conditions.
+ raw_ostream *OS =
+ CI.createOutputFile(CI.getFrontendOpts().OutputFile, /*Binary=*/true,
+ /*RemoveFileOnSignal=*/false, InFile,
+ /*Extension=*/"", /*useTemporary=*/true,
+ /*CreateMissingDirectories=*/true);
+ if (!OS)
+ return nullptr;
+
+ OutputFile = CI.getFrontendOpts().OutputFile;
+ return OS;
+}
+
+std::unique_ptr<ASTConsumer>
+SyntaxOnlyAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) {
+ return llvm::make_unique<ASTConsumer>();
+}
+
+std::unique_ptr<ASTConsumer>
+DumpModuleInfoAction::CreateASTConsumer(CompilerInstance &CI,
+ StringRef InFile) {
+ return llvm::make_unique<ASTConsumer>();
+}
+
+std::unique_ptr<ASTConsumer>
+VerifyPCHAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) {
+ return llvm::make_unique<ASTConsumer>();
+}
+
+void VerifyPCHAction::ExecuteAction() {
+ CompilerInstance &CI = getCompilerInstance();
+ bool Preamble = CI.getPreprocessorOpts().PrecompiledPreambleBytes.first != 0;
+ const std::string &Sysroot = CI.getHeaderSearchOpts().Sysroot;
+ std::unique_ptr<ASTReader> Reader(
+ new ASTReader(CI.getPreprocessor(), CI.getASTContext(),
+ Sysroot.empty() ? "" : Sysroot.c_str(),
+ /*DisableValidation*/ false,
+ /*AllowPCHWithCompilerErrors*/ false,
+ /*AllowConfigurationMismatch*/ true,
+ /*ValidateSystemInputs*/ true));
+
+ Reader->ReadAST(getCurrentFile(),
+ Preamble ? serialization::MK_Preamble
+ : serialization::MK_PCH,
+ SourceLocation(),
+ ASTReader::ARR_ConfigurationMismatch);
+}
+
+namespace {
+ /// \brief AST reader listener that dumps module information for a module
+ /// file.
+ class DumpModuleInfoListener : public ASTReaderListener {
+ llvm::raw_ostream &Out;
+
+ public:
+ DumpModuleInfoListener(llvm::raw_ostream &Out) : Out(Out) { }
+
+#define DUMP_BOOLEAN(Value, Text) \
+ Out.indent(4) << Text << ": " << (Value? "Yes" : "No") << "\n"
+
+ bool ReadFullVersionInformation(StringRef FullVersion) override {
+ Out.indent(2)
+ << "Generated by "
+ << (FullVersion == getClangFullRepositoryVersion()? "this"
+ : "a different")
+ << " Clang: " << FullVersion << "\n";
+ return ASTReaderListener::ReadFullVersionInformation(FullVersion);
+ }
+
+ void ReadModuleName(StringRef ModuleName) override {
+ Out.indent(2) << "Module name: " << ModuleName << "\n";
+ }
+ void ReadModuleMapFile(StringRef ModuleMapPath) override {
+ Out.indent(2) << "Module map file: " << ModuleMapPath << "\n";
+ }
+
+ bool ReadLanguageOptions(const LangOptions &LangOpts, bool Complain,
+ bool AllowCompatibleDifferences) override {
+ Out.indent(2) << "Language options:\n";
+#define LANGOPT(Name, Bits, Default, Description) \
+ DUMP_BOOLEAN(LangOpts.Name, Description);
+#define ENUM_LANGOPT(Name, Type, Bits, Default, Description) \
+ Out.indent(4) << Description << ": " \
+ << static_cast<unsigned>(LangOpts.get##Name()) << "\n";
+#define VALUE_LANGOPT(Name, Bits, Default, Description) \
+ Out.indent(4) << Description << ": " << LangOpts.Name << "\n";
+#define BENIGN_LANGOPT(Name, Bits, Default, Description)
+#define BENIGN_ENUM_LANGOPT(Name, Type, Bits, Default, Description)
+#include "clang/Basic/LangOptions.def"
+ return false;
+ }
+
+ bool ReadTargetOptions(const TargetOptions &TargetOpts, bool Complain,
+ bool AllowCompatibleDifferences) override {
+ Out.indent(2) << "Target options:\n";
+ Out.indent(4) << " Triple: " << TargetOpts.Triple << "\n";
+ Out.indent(4) << " CPU: " << TargetOpts.CPU << "\n";
+ Out.indent(4) << " ABI: " << TargetOpts.ABI << "\n";
+
+ if (!TargetOpts.FeaturesAsWritten.empty()) {
+ Out.indent(4) << "Target features:\n";
+ for (unsigned I = 0, N = TargetOpts.FeaturesAsWritten.size();
+ I != N; ++I) {
+ Out.indent(6) << TargetOpts.FeaturesAsWritten[I] << "\n";
+ }
+ }
+
+ return false;
+ }
+
+ bool ReadDiagnosticOptions(IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts,
+ bool Complain) override {
+ Out.indent(2) << "Diagnostic options:\n";
+#define DIAGOPT(Name, Bits, Default) DUMP_BOOLEAN(DiagOpts->Name, #Name);
+#define ENUM_DIAGOPT(Name, Type, Bits, Default) \
+ Out.indent(4) << #Name << ": " << DiagOpts->get##Name() << "\n";
+#define VALUE_DIAGOPT(Name, Bits, Default) \
+ Out.indent(4) << #Name << ": " << DiagOpts->Name << "\n";
+#include "clang/Basic/DiagnosticOptions.def"
+
+ Out.indent(4) << "Diagnostic flags:\n";
+ for (const std::string &Warning : DiagOpts->Warnings)
+ Out.indent(6) << "-W" << Warning << "\n";
+ for (const std::string &Remark : DiagOpts->Remarks)
+ Out.indent(6) << "-R" << Remark << "\n";
+
+ return false;
+ }
+
+ bool ReadHeaderSearchOptions(const HeaderSearchOptions &HSOpts,
+ StringRef SpecificModuleCachePath,
+ bool Complain) override {
+ Out.indent(2) << "Header search options:\n";
+ Out.indent(4) << "System root [-isysroot=]: '" << HSOpts.Sysroot << "'\n";
+ Out.indent(4) << "Module Cache: '" << SpecificModuleCachePath << "'\n";
+ DUMP_BOOLEAN(HSOpts.UseBuiltinIncludes,
+ "Use builtin include directories [-nobuiltininc]");
+ DUMP_BOOLEAN(HSOpts.UseStandardSystemIncludes,
+ "Use standard system include directories [-nostdinc]");
+ DUMP_BOOLEAN(HSOpts.UseStandardCXXIncludes,
+ "Use standard C++ include directories [-nostdinc++]");
+ DUMP_BOOLEAN(HSOpts.UseLibcxx,
+ "Use libc++ (rather than libstdc++) [-stdlib=]");
+ return false;
+ }
+
+ bool ReadPreprocessorOptions(const PreprocessorOptions &PPOpts,
+ bool Complain,
+ std::string &SuggestedPredefines) override {
+ Out.indent(2) << "Preprocessor options:\n";
+ DUMP_BOOLEAN(PPOpts.UsePredefines,
+ "Uses compiler/target-specific predefines [-undef]");
+ DUMP_BOOLEAN(PPOpts.DetailedRecord,
+ "Uses detailed preprocessing record (for indexing)");
+
+ if (!PPOpts.Macros.empty()) {
+ Out.indent(4) << "Predefined macros:\n";
+ }
+
+ for (std::vector<std::pair<std::string, bool/*isUndef*/> >::const_iterator
+ I = PPOpts.Macros.begin(), IEnd = PPOpts.Macros.end();
+ I != IEnd; ++I) {
+ Out.indent(6);
+ if (I->second)
+ Out << "-U";
+ else
+ Out << "-D";
+ Out << I->first << "\n";
+ }
+ return false;
+ }
+#undef DUMP_BOOLEAN
+ };
+}
+
+void DumpModuleInfoAction::ExecuteAction() {
+ // Set up the output file.
+ std::unique_ptr<llvm::raw_fd_ostream> OutFile;
+ StringRef OutputFileName = getCompilerInstance().getFrontendOpts().OutputFile;
+ if (!OutputFileName.empty() && OutputFileName != "-") {
+ std::error_code EC;
+ OutFile.reset(new llvm::raw_fd_ostream(OutputFileName.str(), EC,
+ llvm::sys::fs::F_Text));
+ }
+ llvm::raw_ostream &Out = OutFile.get()? *OutFile.get() : llvm::outs();
+
+ Out << "Information for module file '" << getCurrentFile() << "':\n";
+ DumpModuleInfoListener Listener(Out);
+ ASTReader::readASTFileControlBlock(getCurrentFile(),
+ getCompilerInstance().getFileManager(),
+ Listener);
+}
+
+//===----------------------------------------------------------------------===//
+// Preprocessor Actions
+//===----------------------------------------------------------------------===//
+
+void DumpRawTokensAction::ExecuteAction() {
+ Preprocessor &PP = getCompilerInstance().getPreprocessor();
+ SourceManager &SM = PP.getSourceManager();
+
+ // Start lexing the specified input file.
+ const llvm::MemoryBuffer *FromFile = SM.getBuffer(SM.getMainFileID());
+ Lexer RawLex(SM.getMainFileID(), FromFile, SM, PP.getLangOpts());
+ RawLex.SetKeepWhitespaceMode(true);
+
+ Token RawTok;
+ RawLex.LexFromRawLexer(RawTok);
+ while (RawTok.isNot(tok::eof)) {
+ PP.DumpToken(RawTok, true);
+ llvm::errs() << "\n";
+ RawLex.LexFromRawLexer(RawTok);
+ }
+}
+
+void DumpTokensAction::ExecuteAction() {
+ Preprocessor &PP = getCompilerInstance().getPreprocessor();
+ // Start preprocessing the specified input file.
+ Token Tok;
+ PP.EnterMainSourceFile();
+ do {
+ PP.Lex(Tok);
+ PP.DumpToken(Tok, true);
+ llvm::errs() << "\n";
+ } while (Tok.isNot(tok::eof));
+}
+
+void GeneratePTHAction::ExecuteAction() {
+ CompilerInstance &CI = getCompilerInstance();
+ raw_pwrite_stream *OS = CI.createDefaultOutputFile(true, getCurrentFile());
+ if (!OS)
+ return;
+
+ CacheTokens(CI.getPreprocessor(), OS);
+}
+
+void PreprocessOnlyAction::ExecuteAction() {
+ Preprocessor &PP = getCompilerInstance().getPreprocessor();
+
+ // Ignore unknown pragmas.
+ PP.IgnorePragmas();
+
+ Token Tok;
+ // Start parsing the specified input file.
+ PP.EnterMainSourceFile();
+ do {
+ PP.Lex(Tok);
+ } while (Tok.isNot(tok::eof));
+}
+
+void PrintPreprocessedAction::ExecuteAction() {
+ CompilerInstance &CI = getCompilerInstance();
+ // Output file may need to be set to 'Binary', to avoid converting Unix style
+ // line feeds (<LF>) to Microsoft style line feeds (<CR><LF>).
+ //
+ // Look to see what type of line endings the file uses. If there's a
+ // CRLF, then we won't open the file up in binary mode. If there is
+ // just an LF or CR, then we will open the file up in binary mode.
+ // In this fashion, the output format should match the input format, unless
+ // the input format has inconsistent line endings.
+ //
+ // This should be a relatively fast operation since most files won't have
+ // all of their source code on a single line. However, that is still a
+ // concern, so if we scan for too long, we'll just assume the file should
+ // be opened in binary mode.
+ bool BinaryMode = true;
+ bool InvalidFile = false;
+ const SourceManager& SM = CI.getSourceManager();
+ const llvm::MemoryBuffer *Buffer = SM.getBuffer(SM.getMainFileID(),
+ &InvalidFile);
+ if (!InvalidFile) {
+ const char *cur = Buffer->getBufferStart();
+ const char *end = Buffer->getBufferEnd();
+ const char *next = (cur != end) ? cur + 1 : end;
+
+ // Limit ourselves to only scanning 256 characters into the source
+ // file. This is mostly a sanity check in case the file has no
+ // newlines whatsoever.
+ if (end - cur > 256) end = cur + 256;
+
+ while (next < end) {
+ if (*cur == 0x0D) { // CR
+ if (*next == 0x0A) // CRLF
+ BinaryMode = false;
+
+ break;
+ } else if (*cur == 0x0A) // LF
+ break;
+
+ ++cur, ++next;
+ }
+ }
+
+ raw_ostream *OS = CI.createDefaultOutputFile(BinaryMode, getCurrentFile());
+ if (!OS) return;
+
+ DoPrintPreprocessedInput(CI.getPreprocessor(), OS,
+ CI.getPreprocessorOutputOpts());
+}
+
+void PrintPreambleAction::ExecuteAction() {
+ switch (getCurrentFileKind()) {
+ case IK_C:
+ case IK_CXX:
+ case IK_ObjC:
+ case IK_ObjCXX:
+ case IK_OpenCL:
+ case IK_CUDA:
+ break;
+
+ case IK_None:
+ case IK_Asm:
+ case IK_PreprocessedC:
+ case IK_PreprocessedCuda:
+ case IK_PreprocessedCXX:
+ case IK_PreprocessedObjC:
+ case IK_PreprocessedObjCXX:
+ case IK_AST:
+ case IK_LLVM_IR:
+ // We can't do anything with these.
+ return;
+ }
+
+ CompilerInstance &CI = getCompilerInstance();
+ auto Buffer = CI.getFileManager().getBufferForFile(getCurrentFile());
+ if (Buffer) {
+ unsigned Preamble =
+ Lexer::ComputePreamble((*Buffer)->getBuffer(), CI.getLangOpts()).first;
+ llvm::outs().write((*Buffer)->getBufferStart(), Preamble);
+ }
+}
diff --git a/contrib/llvm/tools/clang/lib/Frontend/FrontendOptions.cpp b/contrib/llvm/tools/clang/lib/Frontend/FrontendOptions.cpp
new file mode 100644
index 0000000..9ede674
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Frontend/FrontendOptions.cpp
@@ -0,0 +1,32 @@
+//===--- FrontendOptions.cpp ----------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Frontend/FrontendOptions.h"
+#include "llvm/ADT/StringSwitch.h"
+using namespace clang;
+
+InputKind FrontendOptions::getInputKindForExtension(StringRef Extension) {
+ return llvm::StringSwitch<InputKind>(Extension)
+ .Cases("ast", "pcm", IK_AST)
+ .Case("c", IK_C)
+ .Cases("S", "s", IK_Asm)
+ .Case("i", IK_PreprocessedC)
+ .Case("ii", IK_PreprocessedCXX)
+ .Case("cui", IK_PreprocessedCuda)
+ .Case("m", IK_ObjC)
+ .Case("mi", IK_PreprocessedObjC)
+ .Cases("mm", "M", IK_ObjCXX)
+ .Case("mii", IK_PreprocessedObjCXX)
+ .Cases("C", "cc", "cp", IK_CXX)
+ .Cases("cpp", "CPP", "c++", "cxx", "hpp", IK_CXX)
+ .Case("cl", IK_OpenCL)
+ .Case("cu", IK_CUDA)
+ .Cases("ll", "bc", IK_LLVM_IR)
+ .Default(IK_C);
+}
diff --git a/contrib/llvm/tools/clang/lib/Frontend/HeaderIncludeGen.cpp b/contrib/llvm/tools/clang/lib/Frontend/HeaderIncludeGen.cpp
new file mode 100644
index 0000000..5732e5b
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Frontend/HeaderIncludeGen.cpp
@@ -0,0 +1,138 @@
+//===--- HeaderIncludes.cpp - Generate Header Includes --------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Frontend/Utils.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Frontend/FrontendDiagnostic.h"
+#include "clang/Lex/Preprocessor.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace clang;
+
+namespace {
+class HeaderIncludesCallback : public PPCallbacks {
+ SourceManager &SM;
+ raw_ostream *OutputFile;
+ unsigned CurrentIncludeDepth;
+ bool HasProcessedPredefines;
+ bool OwnsOutputFile;
+ bool ShowAllHeaders;
+ bool ShowDepth;
+ bool MSStyle;
+
+public:
+ HeaderIncludesCallback(const Preprocessor *PP, bool ShowAllHeaders_,
+ raw_ostream *OutputFile_, bool OwnsOutputFile_,
+ bool ShowDepth_, bool MSStyle_)
+ : SM(PP->getSourceManager()), OutputFile(OutputFile_),
+ CurrentIncludeDepth(0), HasProcessedPredefines(false),
+ OwnsOutputFile(OwnsOutputFile_), ShowAllHeaders(ShowAllHeaders_),
+ ShowDepth(ShowDepth_), MSStyle(MSStyle_) {}
+
+ ~HeaderIncludesCallback() override {
+ if (OwnsOutputFile)
+ delete OutputFile;
+ }
+
+ void FileChanged(SourceLocation Loc, FileChangeReason Reason,
+ SrcMgr::CharacteristicKind FileType,
+ FileID PrevFID) override;
+};
+}
+
+void clang::AttachHeaderIncludeGen(Preprocessor &PP, bool ShowAllHeaders,
+ StringRef OutputPath, bool ShowDepth,
+ bool MSStyle) {
+ raw_ostream *OutputFile = MSStyle ? &llvm::outs() : &llvm::errs();
+ bool OwnsOutputFile = false;
+
+ // Open the output file, if used.
+ if (!OutputPath.empty()) {
+ std::error_code EC;
+ llvm::raw_fd_ostream *OS = new llvm::raw_fd_ostream(
+ OutputPath.str(), EC, llvm::sys::fs::F_Append | llvm::sys::fs::F_Text);
+ if (EC) {
+ PP.getDiagnostics().Report(clang::diag::warn_fe_cc_print_header_failure)
+ << EC.message();
+ delete OS;
+ } else {
+ OS->SetUnbuffered();
+ OS->SetUseAtomicWrites(true);
+ OutputFile = OS;
+ OwnsOutputFile = true;
+ }
+ }
+
+ PP.addPPCallbacks(llvm::make_unique<HeaderIncludesCallback>(&PP,
+ ShowAllHeaders,
+ OutputFile,
+ OwnsOutputFile,
+ ShowDepth,
+ MSStyle));
+}
+
+void HeaderIncludesCallback::FileChanged(SourceLocation Loc,
+ FileChangeReason Reason,
+ SrcMgr::CharacteristicKind NewFileType,
+ FileID PrevFID) {
+ // Unless we are exiting a #include, make sure to skip ahead to the line the
+ // #include directive was at.
+ PresumedLoc UserLoc = SM.getPresumedLoc(Loc);
+ if (UserLoc.isInvalid())
+ return;
+
+ // Adjust the current include depth.
+ if (Reason == PPCallbacks::EnterFile) {
+ ++CurrentIncludeDepth;
+ } else if (Reason == PPCallbacks::ExitFile) {
+ if (CurrentIncludeDepth)
+ --CurrentIncludeDepth;
+
+ // We track when we are done with the predefines by watching for the first
+ // place where we drop back to a nesting depth of 1.
+ if (CurrentIncludeDepth == 1 && !HasProcessedPredefines)
+ HasProcessedPredefines = true;
+
+ return;
+ } else
+ return;
+
+ // Show the header if we are (a) past the predefines, or (b) showing all
+ // headers and in the predefines at a depth past the initial file and command
+ // line buffers.
+ bool ShowHeader = (HasProcessedPredefines ||
+ (ShowAllHeaders && CurrentIncludeDepth > 2));
+
+ // Dump the header include information we are past the predefines buffer or
+ // are showing all headers.
+ if (ShowHeader && Reason == PPCallbacks::EnterFile) {
+ // Write to a temporary string to avoid unnecessary flushing on errs().
+ SmallString<512> Filename(UserLoc.getFilename());
+ if (!MSStyle)
+ Lexer::Stringify(Filename);
+
+ SmallString<256> Msg;
+ if (MSStyle)
+ Msg += "Note: including file:";
+
+ if (ShowDepth) {
+ // The main source file is at depth 1, so skip one dot.
+ for (unsigned i = 1; i != CurrentIncludeDepth; ++i)
+ Msg += MSStyle ? ' ' : '.';
+
+ if (!MSStyle)
+ Msg += ' ';
+ }
+ Msg += Filename;
+ Msg += '\n';
+
+ OutputFile->write(Msg.data(), Msg.size());
+ OutputFile->flush();
+ }
+}
diff --git a/contrib/llvm/tools/clang/lib/Frontend/InitHeaderSearch.cpp b/contrib/llvm/tools/clang/lib/Frontend/InitHeaderSearch.cpp
new file mode 100644
index 0000000..2bd999e
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Frontend/InitHeaderSearch.cpp
@@ -0,0 +1,724 @@
+//===--- InitHeaderSearch.cpp - Initialize header search paths ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the InitHeaderSearch class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Frontend/Utils.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/LangOptions.h"
+#include "clang/Config/config.h" // C_INCLUDE_DIRS
+#include "clang/Lex/HeaderSearch.h"
+#include "clang/Lex/HeaderSearchOptions.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace clang::frontend;
+
+namespace {
+
+/// InitHeaderSearch - This class makes it easier to set the search paths of
+/// a HeaderSearch object. InitHeaderSearch stores several search path lists
+/// internally, which can be sent to a HeaderSearch object in one swoop.
+class InitHeaderSearch {
+ std::vector<std::pair<IncludeDirGroup, DirectoryLookup> > IncludePath;
+ typedef std::vector<std::pair<IncludeDirGroup,
+ DirectoryLookup> >::const_iterator path_iterator;
+ std::vector<std::pair<std::string, bool> > SystemHeaderPrefixes;
+ HeaderSearch &Headers;
+ bool Verbose;
+ std::string IncludeSysroot;
+ bool HasSysroot;
+
+public:
+
+ InitHeaderSearch(HeaderSearch &HS, bool verbose, StringRef sysroot)
+ : Headers(HS), Verbose(verbose), IncludeSysroot(sysroot),
+ HasSysroot(!(sysroot.empty() || sysroot == "/")) {
+ }
+
+ /// AddPath - Add the specified path to the specified group list, prefixing
+ /// the sysroot if used.
+ void AddPath(const Twine &Path, IncludeDirGroup Group, bool isFramework);
+
+ /// AddUnmappedPath - Add the specified path to the specified group list,
+ /// without performing any sysroot remapping.
+ void AddUnmappedPath(const Twine &Path, IncludeDirGroup Group,
+ bool isFramework);
+
+ /// AddSystemHeaderPrefix - Add the specified prefix to the system header
+ /// prefix list.
+ void AddSystemHeaderPrefix(StringRef Prefix, bool IsSystemHeader) {
+ SystemHeaderPrefixes.push_back(std::make_pair(Prefix, IsSystemHeader));
+ }
+
+ /// AddGnuCPlusPlusIncludePaths - Add the necessary paths to support a gnu
+ /// libstdc++.
+ void AddGnuCPlusPlusIncludePaths(StringRef Base,
+ StringRef ArchDir,
+ StringRef Dir32,
+ StringRef Dir64,
+ const llvm::Triple &triple);
+
+ /// AddMinGWCPlusPlusIncludePaths - Add the necessary paths to support a MinGW
+ /// libstdc++.
+ void AddMinGWCPlusPlusIncludePaths(StringRef Base,
+ StringRef Arch,
+ StringRef Version);
+
+ /// AddMinGW64CXXPaths - Add the necessary paths to support
+ /// libstdc++ of x86_64-w64-mingw32 aka mingw-w64.
+ void AddMinGW64CXXPaths(StringRef Base,
+ StringRef Version);
+
+ // AddDefaultCIncludePaths - Add paths that should always be searched.
+ void AddDefaultCIncludePaths(const llvm::Triple &triple,
+ const HeaderSearchOptions &HSOpts);
+
+ // AddDefaultCPlusPlusIncludePaths - Add paths that should be searched when
+ // compiling c++.
+ void AddDefaultCPlusPlusIncludePaths(const llvm::Triple &triple,
+ const HeaderSearchOptions &HSOpts);
+
+ /// AddDefaultSystemIncludePaths - Adds the default system include paths so
+ /// that e.g. stdio.h is found.
+ void AddDefaultIncludePaths(const LangOptions &Lang,
+ const llvm::Triple &triple,
+ const HeaderSearchOptions &HSOpts);
+
+ /// Realize - Merges all search path lists into one list and send it to
+ /// HeaderSearch.
+ void Realize(const LangOptions &Lang);
+};
+
+} // end anonymous namespace.
+
+static bool CanPrefixSysroot(StringRef Path) {
+#if defined(LLVM_ON_WIN32)
+ return !Path.empty() && llvm::sys::path::is_separator(Path[0]);
+#else
+ return llvm::sys::path::is_absolute(Path);
+#endif
+}
+
+void InitHeaderSearch::AddPath(const Twine &Path, IncludeDirGroup Group,
+ bool isFramework) {
+ // Add the path with sysroot prepended, if desired and this is a system header
+ // group.
+ if (HasSysroot) {
+ SmallString<256> MappedPathStorage;
+ StringRef MappedPathStr = Path.toStringRef(MappedPathStorage);
+ if (CanPrefixSysroot(MappedPathStr)) {
+ AddUnmappedPath(IncludeSysroot + Path, Group, isFramework);
+ return;
+ }
+ }
+
+ AddUnmappedPath(Path, Group, isFramework);
+}
+
+void InitHeaderSearch::AddUnmappedPath(const Twine &Path, IncludeDirGroup Group,
+ bool isFramework) {
+ assert(!Path.isTriviallyEmpty() && "can't handle empty path here");
+
+ FileManager &FM = Headers.getFileMgr();
+ SmallString<256> MappedPathStorage;
+ StringRef MappedPathStr = Path.toStringRef(MappedPathStorage);
+
+ // Compute the DirectoryLookup type.
+ SrcMgr::CharacteristicKind Type;
+ if (Group == Quoted || Group == Angled || Group == IndexHeaderMap) {
+ Type = SrcMgr::C_User;
+ } else if (Group == ExternCSystem) {
+ Type = SrcMgr::C_ExternCSystem;
+ } else {
+ Type = SrcMgr::C_System;
+ }
+
+ // If the directory exists, add it.
+ if (const DirectoryEntry *DE = FM.getDirectory(MappedPathStr)) {
+ IncludePath.push_back(
+ std::make_pair(Group, DirectoryLookup(DE, Type, isFramework)));
+ return;
+ }
+
+ // Check to see if this is an apple-style headermap (which are not allowed to
+ // be frameworks).
+ if (!isFramework) {
+ if (const FileEntry *FE = FM.getFile(MappedPathStr)) {
+ if (const HeaderMap *HM = Headers.CreateHeaderMap(FE)) {
+ // It is a headermap, add it to the search path.
+ IncludePath.push_back(
+ std::make_pair(Group,
+ DirectoryLookup(HM, Type, Group == IndexHeaderMap)));
+ return;
+ }
+ }
+ }
+
+ if (Verbose)
+ llvm::errs() << "ignoring nonexistent directory \""
+ << MappedPathStr << "\"\n";
+}
+
+void InitHeaderSearch::AddGnuCPlusPlusIncludePaths(StringRef Base,
+ StringRef ArchDir,
+ StringRef Dir32,
+ StringRef Dir64,
+ const llvm::Triple &triple) {
+ // Add the base dir
+ AddPath(Base, CXXSystem, false);
+
+ // Add the multilib dirs
+ llvm::Triple::ArchType arch = triple.getArch();
+ bool is64bit = arch == llvm::Triple::ppc64 || arch == llvm::Triple::x86_64;
+ if (is64bit)
+ AddPath(Base + "/" + ArchDir + "/" + Dir64, CXXSystem, false);
+ else
+ AddPath(Base + "/" + ArchDir + "/" + Dir32, CXXSystem, false);
+
+ // Add the backward dir
+ AddPath(Base + "/backward", CXXSystem, false);
+}
+
+void InitHeaderSearch::AddMinGWCPlusPlusIncludePaths(StringRef Base,
+ StringRef Arch,
+ StringRef Version) {
+ AddPath(Base + "/" + Arch + "/" + Version + "/include/c++",
+ CXXSystem, false);
+ AddPath(Base + "/" + Arch + "/" + Version + "/include/c++/" + Arch,
+ CXXSystem, false);
+ AddPath(Base + "/" + Arch + "/" + Version + "/include/c++/backward",
+ CXXSystem, false);
+}
+
+void InitHeaderSearch::AddMinGW64CXXPaths(StringRef Base,
+ StringRef Version) {
+ // Assumes Base is HeaderSearchOpts' ResourceDir
+ AddPath(Base + "/../../../include/c++/" + Version,
+ CXXSystem, false);
+ AddPath(Base + "/../../../include/c++/" + Version + "/x86_64-w64-mingw32",
+ CXXSystem, false);
+ AddPath(Base + "/../../../include/c++/" + Version + "/i686-w64-mingw32",
+ CXXSystem, false);
+ AddPath(Base + "/../../../include/c++/" + Version + "/backward",
+ CXXSystem, false);
+}
+
+void InitHeaderSearch::AddDefaultCIncludePaths(const llvm::Triple &triple,
+ const HeaderSearchOptions &HSOpts) {
+ llvm::Triple::OSType os = triple.getOS();
+
+ if (HSOpts.UseStandardSystemIncludes) {
+ switch (os) {
+ case llvm::Triple::CloudABI:
+ case llvm::Triple::FreeBSD:
+ case llvm::Triple::NetBSD:
+ case llvm::Triple::OpenBSD:
+ case llvm::Triple::Bitrig:
+ case llvm::Triple::NaCl:
+ break;
+ default:
+ // FIXME: temporary hack: hard-coded paths.
+ AddPath("/usr/local/include", System, false);
+ break;
+ }
+ }
+
+ // Builtin includes use #include_next directives and should be positioned
+ // just prior C include dirs.
+ if (HSOpts.UseBuiltinIncludes) {
+ // Ignore the sys root, we *always* look for clang headers relative to
+ // supplied path.
+ SmallString<128> P = StringRef(HSOpts.ResourceDir);
+ llvm::sys::path::append(P, "include");
+ AddUnmappedPath(P, ExternCSystem, false);
+ }
+
+ // All remaining additions are for system include directories, early exit if
+ // we aren't using them.
+ if (!HSOpts.UseStandardSystemIncludes)
+ return;
+
+ // Add dirs specified via 'configure --with-c-include-dirs'.
+ StringRef CIncludeDirs(C_INCLUDE_DIRS);
+ if (CIncludeDirs != "") {
+ SmallVector<StringRef, 5> dirs;
+ CIncludeDirs.split(dirs, ":");
+ for (SmallVectorImpl<StringRef>::iterator i = dirs.begin();
+ i != dirs.end();
+ ++i)
+ AddPath(*i, ExternCSystem, false);
+ return;
+ }
+
+ switch (os) {
+ case llvm::Triple::Linux:
+ llvm_unreachable("Include management is handled in the driver.");
+
+ case llvm::Triple::CloudABI: {
+ // <sysroot>/<triple>/include
+ SmallString<128> P = StringRef(HSOpts.ResourceDir);
+ llvm::sys::path::append(P, "../../..", triple.str(), "include");
+ AddPath(P, System, false);
+ break;
+ }
+
+ case llvm::Triple::Haiku:
+ AddPath("/boot/common/include", System, false);
+ AddPath("/boot/develop/headers/os", System, false);
+ AddPath("/boot/develop/headers/os/app", System, false);
+ AddPath("/boot/develop/headers/os/arch", System, false);
+ AddPath("/boot/develop/headers/os/device", System, false);
+ AddPath("/boot/develop/headers/os/drivers", System, false);
+ AddPath("/boot/develop/headers/os/game", System, false);
+ AddPath("/boot/develop/headers/os/interface", System, false);
+ AddPath("/boot/develop/headers/os/kernel", System, false);
+ AddPath("/boot/develop/headers/os/locale", System, false);
+ AddPath("/boot/develop/headers/os/mail", System, false);
+ AddPath("/boot/develop/headers/os/media", System, false);
+ AddPath("/boot/develop/headers/os/midi", System, false);
+ AddPath("/boot/develop/headers/os/midi2", System, false);
+ AddPath("/boot/develop/headers/os/net", System, false);
+ AddPath("/boot/develop/headers/os/storage", System, false);
+ AddPath("/boot/develop/headers/os/support", System, false);
+ AddPath("/boot/develop/headers/os/translation", System, false);
+ AddPath("/boot/develop/headers/os/add-ons/graphics", System, false);
+ AddPath("/boot/develop/headers/os/add-ons/input_server", System, false);
+ AddPath("/boot/develop/headers/os/add-ons/screen_saver", System, false);
+ AddPath("/boot/develop/headers/os/add-ons/tracker", System, false);
+ AddPath("/boot/develop/headers/os/be_apps/Deskbar", System, false);
+ AddPath("/boot/develop/headers/os/be_apps/NetPositive", System, false);
+ AddPath("/boot/develop/headers/os/be_apps/Tracker", System, false);
+ AddPath("/boot/develop/headers/cpp", System, false);
+ AddPath("/boot/develop/headers/cpp/i586-pc-haiku", System, false);
+ AddPath("/boot/develop/headers/3rdparty", System, false);
+ AddPath("/boot/develop/headers/bsd", System, false);
+ AddPath("/boot/develop/headers/glibc", System, false);
+ AddPath("/boot/develop/headers/posix", System, false);
+ AddPath("/boot/develop/headers", System, false);
+ break;
+ case llvm::Triple::RTEMS:
+ break;
+ case llvm::Triple::Win32:
+ switch (triple.getEnvironment()) {
+ default: llvm_unreachable("Include management is handled in the driver.");
+ case llvm::Triple::Cygnus:
+ AddPath("/usr/include/w32api", System, false);
+ break;
+ case llvm::Triple::GNU:
+ // mingw-w64 crt include paths
+ // <sysroot>/i686-w64-mingw32/include
+ SmallString<128> P = StringRef(HSOpts.ResourceDir);
+ llvm::sys::path::append(P, "../../../i686-w64-mingw32/include");
+ AddPath(P, System, false);
+
+ // <sysroot>/x86_64-w64-mingw32/include
+ P.resize(HSOpts.ResourceDir.size());
+ llvm::sys::path::append(P, "../../../x86_64-w64-mingw32/include");
+ AddPath(P, System, false);
+
+ // mingw.org crt include paths
+ // <sysroot>/include
+ P.resize(HSOpts.ResourceDir.size());
+ llvm::sys::path::append(P, "../../../include");
+ AddPath(P, System, false);
+ AddPath("/mingw/include", System, false);
+#if defined(LLVM_ON_WIN32)
+ AddPath("c:/mingw/include", System, false);
+#endif
+ break;
+ }
+ break;
+ default:
+ break;
+ }
+
+ switch (os) {
+ case llvm::Triple::CloudABI:
+ case llvm::Triple::RTEMS:
+ case llvm::Triple::NaCl:
+ break;
+ default:
+ AddPath("/usr/include", ExternCSystem, false);
+ break;
+ }
+}
+
+void InitHeaderSearch::
+AddDefaultCPlusPlusIncludePaths(const llvm::Triple &triple, const HeaderSearchOptions &HSOpts) {
+ llvm::Triple::OSType os = triple.getOS();
+ // FIXME: temporary hack: hard-coded paths.
+
+ if (triple.isOSDarwin()) {
+ switch (triple.getArch()) {
+ default: break;
+
+ case llvm::Triple::ppc:
+ case llvm::Triple::ppc64:
+ AddGnuCPlusPlusIncludePaths("/usr/include/c++/4.2.1",
+ "powerpc-apple-darwin10", "", "ppc64",
+ triple);
+ AddGnuCPlusPlusIncludePaths("/usr/include/c++/4.0.0",
+ "powerpc-apple-darwin10", "", "ppc64",
+ triple);
+ break;
+
+ case llvm::Triple::x86:
+ case llvm::Triple::x86_64:
+ AddGnuCPlusPlusIncludePaths("/usr/include/c++/4.2.1",
+ "i686-apple-darwin10", "", "x86_64", triple);
+ AddGnuCPlusPlusIncludePaths("/usr/include/c++/4.0.0",
+ "i686-apple-darwin8", "", "", triple);
+ break;
+
+ case llvm::Triple::arm:
+ case llvm::Triple::thumb:
+ AddGnuCPlusPlusIncludePaths("/usr/include/c++/4.2.1",
+ "arm-apple-darwin10", "v7", "", triple);
+ AddGnuCPlusPlusIncludePaths("/usr/include/c++/4.2.1",
+ "arm-apple-darwin10", "v6", "", triple);
+ break;
+
+ case llvm::Triple::aarch64:
+ AddGnuCPlusPlusIncludePaths("/usr/include/c++/4.2.1",
+ "arm64-apple-darwin10", "", "", triple);
+ break;
+ }
+ return;
+ }
+
+ switch (os) {
+ case llvm::Triple::Linux:
+ llvm_unreachable("Include management is handled in the driver.");
+ break;
+ case llvm::Triple::Win32:
+ switch (triple.getEnvironment()) {
+ default: llvm_unreachable("Include management is handled in the driver.");
+ case llvm::Triple::Cygnus:
+ // Cygwin-1.7
+ AddMinGWCPlusPlusIncludePaths("/usr/lib/gcc", "i686-pc-cygwin", "4.7.3");
+ AddMinGWCPlusPlusIncludePaths("/usr/lib/gcc", "i686-pc-cygwin", "4.5.3");
+ AddMinGWCPlusPlusIncludePaths("/usr/lib/gcc", "i686-pc-cygwin", "4.3.4");
+ // g++-4 / Cygwin-1.5
+ AddMinGWCPlusPlusIncludePaths("/usr/lib/gcc", "i686-pc-cygwin", "4.3.2");
+ break;
+ case llvm::Triple::GNU:
+ // mingw-w64 C++ include paths (i686-w64-mingw32 and x86_64-w64-mingw32)
+ AddMinGW64CXXPaths(HSOpts.ResourceDir, "4.7.0");
+ AddMinGW64CXXPaths(HSOpts.ResourceDir, "4.7.1");
+ AddMinGW64CXXPaths(HSOpts.ResourceDir, "4.7.2");
+ AddMinGW64CXXPaths(HSOpts.ResourceDir, "4.7.3");
+ AddMinGW64CXXPaths(HSOpts.ResourceDir, "4.8.0");
+ AddMinGW64CXXPaths(HSOpts.ResourceDir, "4.8.1");
+ AddMinGW64CXXPaths(HSOpts.ResourceDir, "4.8.2");
+ // mingw.org C++ include paths
+#if defined(LLVM_ON_WIN32)
+ AddMinGWCPlusPlusIncludePaths("c:/MinGW/lib/gcc", "mingw32", "4.7.0");
+ AddMinGWCPlusPlusIncludePaths("c:/MinGW/lib/gcc", "mingw32", "4.7.1");
+ AddMinGWCPlusPlusIncludePaths("c:/MinGW/lib/gcc", "mingw32", "4.7.2");
+ AddMinGWCPlusPlusIncludePaths("c:/MinGW/lib/gcc", "mingw32", "4.7.3");
+ AddMinGWCPlusPlusIncludePaths("c:/MinGW/lib/gcc", "mingw32", "4.8.0");
+ AddMinGWCPlusPlusIncludePaths("c:/MinGW/lib/gcc", "mingw32", "4.8.1");
+ AddMinGWCPlusPlusIncludePaths("c:/MinGW/lib/gcc", "mingw32", "4.8.2");
+#endif
+ break;
+ }
+ case llvm::Triple::DragonFly:
+ if (llvm::sys::fs::exists("/usr/lib/gcc47"))
+ AddPath("/usr/include/c++/4.7", CXXSystem, false);
+ else
+ AddPath("/usr/include/c++/4.4", CXXSystem, false);
+ break;
+ case llvm::Triple::OpenBSD: {
+ std::string t = triple.getTriple();
+ if (t.substr(0, 6) == "x86_64")
+ t.replace(0, 6, "amd64");
+ AddGnuCPlusPlusIncludePaths("/usr/include/g++",
+ t, "", "", triple);
+ break;
+ }
+ case llvm::Triple::Minix:
+ AddGnuCPlusPlusIncludePaths("/usr/gnu/include/c++/4.4.3",
+ "", "", "", triple);
+ break;
+ case llvm::Triple::Solaris:
+ AddGnuCPlusPlusIncludePaths("/usr/gcc/4.5/include/c++/4.5.2/",
+ "i386-pc-solaris2.11", "", "", triple);
+ break;
+ default:
+ break;
+ }
+}
+
+void InitHeaderSearch::AddDefaultIncludePaths(const LangOptions &Lang,
+ const llvm::Triple &triple,
+ const HeaderSearchOptions &HSOpts) {
+ // NB: This code path is going away. All of the logic is moving into the
+ // driver which has the information necessary to do target-specific
+ // selections of default include paths. Each target which moves there will be
+ // exempted from this logic here until we can delete the entire pile of code.
+ switch (triple.getOS()) {
+ default:
+ break; // Everything else continues to use this routine's logic.
+
+ case llvm::Triple::Linux:
+ return;
+
+ case llvm::Triple::Win32:
+ if (triple.getEnvironment() == llvm::Triple::MSVC ||
+ triple.getEnvironment() == llvm::Triple::Itanium ||
+ triple.isOSBinFormatMachO())
+ return;
+ break;
+ }
+
+ if (Lang.CPlusPlus && HSOpts.UseStandardCXXIncludes &&
+ HSOpts.UseStandardSystemIncludes) {
+ if (HSOpts.UseLibcxx) {
+ if (triple.isOSDarwin()) {
+ // On Darwin, libc++ may be installed alongside the compiler in
+ // include/c++/v1.
+ if (!HSOpts.ResourceDir.empty()) {
+ // Remove version from foo/lib/clang/version
+ StringRef NoVer = llvm::sys::path::parent_path(HSOpts.ResourceDir);
+ // Remove clang from foo/lib/clang
+ StringRef Lib = llvm::sys::path::parent_path(NoVer);
+ // Remove lib from foo/lib
+ SmallString<128> P = llvm::sys::path::parent_path(Lib);
+
+ // Get foo/include/c++/v1
+ llvm::sys::path::append(P, "include", "c++", "v1");
+ AddUnmappedPath(P, CXXSystem, false);
+ }
+ }
+ // On Solaris, include the support directory for things like xlocale and
+ // fudged system headers.
+ if (triple.getOS() == llvm::Triple::Solaris)
+ AddPath("/usr/include/c++/v1/support/solaris", CXXSystem, false);
+
+ AddPath("/usr/include/c++/v1", CXXSystem, false);
+ } else {
+ AddDefaultCPlusPlusIncludePaths(triple, HSOpts);
+ }
+ }
+
+ AddDefaultCIncludePaths(triple, HSOpts);
+
+ // Add the default framework include paths on Darwin.
+ if (HSOpts.UseStandardSystemIncludes) {
+ if (triple.isOSDarwin()) {
+ AddPath("/System/Library/Frameworks", System, true);
+ AddPath("/Library/Frameworks", System, true);
+ }
+ }
+}
+
+/// RemoveDuplicates - If there are duplicate directory entries in the specified
+/// search list, remove the later (dead) ones. Returns the number of non-system
+/// headers removed, which is used to update NumAngled.
+static unsigned RemoveDuplicates(std::vector<DirectoryLookup> &SearchList,
+ unsigned First, bool Verbose) {
+ llvm::SmallPtrSet<const DirectoryEntry *, 8> SeenDirs;
+ llvm::SmallPtrSet<const DirectoryEntry *, 8> SeenFrameworkDirs;
+ llvm::SmallPtrSet<const HeaderMap *, 8> SeenHeaderMaps;
+ unsigned NonSystemRemoved = 0;
+ for (unsigned i = First; i != SearchList.size(); ++i) {
+ unsigned DirToRemove = i;
+
+ const DirectoryLookup &CurEntry = SearchList[i];
+
+ if (CurEntry.isNormalDir()) {
+ // If this isn't the first time we've seen this dir, remove it.
+ if (SeenDirs.insert(CurEntry.getDir()).second)
+ continue;
+ } else if (CurEntry.isFramework()) {
+ // If this isn't the first time we've seen this framework dir, remove it.
+ if (SeenFrameworkDirs.insert(CurEntry.getFrameworkDir()).second)
+ continue;
+ } else {
+ assert(CurEntry.isHeaderMap() && "Not a headermap or normal dir?");
+ // If this isn't the first time we've seen this headermap, remove it.
+ if (SeenHeaderMaps.insert(CurEntry.getHeaderMap()).second)
+ continue;
+ }
+
+ // If we have a normal #include dir/framework/headermap that is shadowed
+ // later in the chain by a system include location, we actually want to
+ // ignore the user's request and drop the user dir... keeping the system
+ // dir. This is weird, but required to emulate GCC's search path correctly.
+ //
+ // Since dupes of system dirs are rare, just rescan to find the original
+ // that we're nuking instead of using a DenseMap.
+ if (CurEntry.getDirCharacteristic() != SrcMgr::C_User) {
+ // Find the dir that this is the same of.
+ unsigned FirstDir;
+ for (FirstDir = 0; ; ++FirstDir) {
+ assert(FirstDir != i && "Didn't find dupe?");
+
+ const DirectoryLookup &SearchEntry = SearchList[FirstDir];
+
+ // If these are different lookup types, then they can't be the dupe.
+ if (SearchEntry.getLookupType() != CurEntry.getLookupType())
+ continue;
+
+ bool isSame;
+ if (CurEntry.isNormalDir())
+ isSame = SearchEntry.getDir() == CurEntry.getDir();
+ else if (CurEntry.isFramework())
+ isSame = SearchEntry.getFrameworkDir() == CurEntry.getFrameworkDir();
+ else {
+ assert(CurEntry.isHeaderMap() && "Not a headermap or normal dir?");
+ isSame = SearchEntry.getHeaderMap() == CurEntry.getHeaderMap();
+ }
+
+ if (isSame)
+ break;
+ }
+
+ // If the first dir in the search path is a non-system dir, zap it
+ // instead of the system one.
+ if (SearchList[FirstDir].getDirCharacteristic() == SrcMgr::C_User)
+ DirToRemove = FirstDir;
+ }
+
+ if (Verbose) {
+ llvm::errs() << "ignoring duplicate directory \""
+ << CurEntry.getName() << "\"\n";
+ if (DirToRemove != i)
+ llvm::errs() << " as it is a non-system directory that duplicates "
+ << "a system directory\n";
+ }
+ if (DirToRemove != i)
+ ++NonSystemRemoved;
+
+ // This is reached if the current entry is a duplicate. Remove the
+ // DirToRemove (usually the current dir).
+ SearchList.erase(SearchList.begin()+DirToRemove);
+ --i;
+ }
+ return NonSystemRemoved;
+}
+
+
+void InitHeaderSearch::Realize(const LangOptions &Lang) {
+ // Concatenate ANGLE+SYSTEM+AFTER chains together into SearchList.
+ std::vector<DirectoryLookup> SearchList;
+ SearchList.reserve(IncludePath.size());
+
+ // Quoted arguments go first.
+ for (path_iterator it = IncludePath.begin(), ie = IncludePath.end();
+ it != ie; ++it) {
+ if (it->first == Quoted)
+ SearchList.push_back(it->second);
+ }
+ // Deduplicate and remember index.
+ RemoveDuplicates(SearchList, 0, Verbose);
+ unsigned NumQuoted = SearchList.size();
+
+ for (path_iterator it = IncludePath.begin(), ie = IncludePath.end();
+ it != ie; ++it) {
+ if (it->first == Angled || it->first == IndexHeaderMap)
+ SearchList.push_back(it->second);
+ }
+
+ RemoveDuplicates(SearchList, NumQuoted, Verbose);
+ unsigned NumAngled = SearchList.size();
+
+ for (path_iterator it = IncludePath.begin(), ie = IncludePath.end();
+ it != ie; ++it) {
+ if (it->first == System || it->first == ExternCSystem ||
+ (!Lang.ObjC1 && !Lang.CPlusPlus && it->first == CSystem) ||
+ (/*FIXME !Lang.ObjC1 && */Lang.CPlusPlus && it->first == CXXSystem) ||
+ (Lang.ObjC1 && !Lang.CPlusPlus && it->first == ObjCSystem) ||
+ (Lang.ObjC1 && Lang.CPlusPlus && it->first == ObjCXXSystem))
+ SearchList.push_back(it->second);
+ }
+
+ for (path_iterator it = IncludePath.begin(), ie = IncludePath.end();
+ it != ie; ++it) {
+ if (it->first == After)
+ SearchList.push_back(it->second);
+ }
+
+ // Remove duplicates across both the Angled and System directories. GCC does
+ // this and failing to remove duplicates across these two groups breaks
+ // #include_next.
+ unsigned NonSystemRemoved = RemoveDuplicates(SearchList, NumQuoted, Verbose);
+ NumAngled -= NonSystemRemoved;
+
+ bool DontSearchCurDir = false; // TODO: set to true if -I- is set?
+ Headers.SetSearchPaths(SearchList, NumQuoted, NumAngled, DontSearchCurDir);
+
+ Headers.SetSystemHeaderPrefixes(SystemHeaderPrefixes);
+
+ // If verbose, print the list of directories that will be searched.
+ if (Verbose) {
+ llvm::errs() << "#include \"...\" search starts here:\n";
+ for (unsigned i = 0, e = SearchList.size(); i != e; ++i) {
+ if (i == NumQuoted)
+ llvm::errs() << "#include <...> search starts here:\n";
+ const char *Name = SearchList[i].getName();
+ const char *Suffix;
+ if (SearchList[i].isNormalDir())
+ Suffix = "";
+ else if (SearchList[i].isFramework())
+ Suffix = " (framework directory)";
+ else {
+ assert(SearchList[i].isHeaderMap() && "Unknown DirectoryLookup");
+ Suffix = " (headermap)";
+ }
+ llvm::errs() << " " << Name << Suffix << "\n";
+ }
+ llvm::errs() << "End of search list.\n";
+ }
+}
+
+void clang::ApplyHeaderSearchOptions(HeaderSearch &HS,
+ const HeaderSearchOptions &HSOpts,
+ const LangOptions &Lang,
+ const llvm::Triple &Triple) {
+ InitHeaderSearch Init(HS, HSOpts.Verbose, HSOpts.Sysroot);
+
+ // Add the user defined entries.
+ for (unsigned i = 0, e = HSOpts.UserEntries.size(); i != e; ++i) {
+ const HeaderSearchOptions::Entry &E = HSOpts.UserEntries[i];
+ if (E.IgnoreSysRoot) {
+ Init.AddUnmappedPath(E.Path, E.Group, E.IsFramework);
+ } else {
+ Init.AddPath(E.Path, E.Group, E.IsFramework);
+ }
+ }
+
+ Init.AddDefaultIncludePaths(Lang, Triple, HSOpts);
+
+ for (unsigned i = 0, e = HSOpts.SystemHeaderPrefixes.size(); i != e; ++i)
+ Init.AddSystemHeaderPrefix(HSOpts.SystemHeaderPrefixes[i].Prefix,
+ HSOpts.SystemHeaderPrefixes[i].IsSystemHeader);
+
+ if (HSOpts.UseBuiltinIncludes) {
+ // Set up the builtin include directory in the module map.
+ SmallString<128> P = StringRef(HSOpts.ResourceDir);
+ llvm::sys::path::append(P, "include");
+ if (const DirectoryEntry *Dir = HS.getFileMgr().getDirectory(P))
+ HS.getModuleMap().setBuiltinIncludeDir(Dir);
+ }
+
+ Init.Realize(Lang);
+}
diff --git a/contrib/llvm/tools/clang/lib/Frontend/InitPreprocessor.cpp b/contrib/llvm/tools/clang/lib/Frontend/InitPreprocessor.cpp
new file mode 100644
index 0000000..dfc46f4
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Frontend/InitPreprocessor.cpp
@@ -0,0 +1,975 @@
+//===--- InitPreprocessor.cpp - PP initialization code. ---------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the clang::InitializePreprocessor function.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Frontend/Utils.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/MacroBuilder.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Basic/Version.h"
+#include "clang/Frontend/FrontendDiagnostic.h"
+#include "clang/Frontend/FrontendOptions.h"
+#include "clang/Lex/HeaderSearch.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Lex/PreprocessorOptions.h"
+#include "clang/Serialization/ASTReader.h"
+#include "llvm/ADT/APFloat.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/Path.h"
+using namespace clang;
+
+static bool MacroBodyEndsInBackslash(StringRef MacroBody) {
+ while (!MacroBody.empty() && isWhitespace(MacroBody.back()))
+ MacroBody = MacroBody.drop_back();
+ return !MacroBody.empty() && MacroBody.back() == '\\';
+}
+
+// Append a #define line to Buf for Macro. Macro should be of the form XXX,
+// in which case we emit "#define XXX 1" or "XXX=Y z W" in which case we emit
+// "#define XXX Y z W". To get a #define with no value, use "XXX=".
+static void DefineBuiltinMacro(MacroBuilder &Builder, StringRef Macro,
+ DiagnosticsEngine &Diags) {
+ std::pair<StringRef, StringRef> MacroPair = Macro.split('=');
+ StringRef MacroName = MacroPair.first;
+ StringRef MacroBody = MacroPair.second;
+ if (MacroName.size() != Macro.size()) {
+ // Per GCC -D semantics, the macro ends at \n if it exists.
+ StringRef::size_type End = MacroBody.find_first_of("\n\r");
+ if (End != StringRef::npos)
+ Diags.Report(diag::warn_fe_macro_contains_embedded_newline)
+ << MacroName;
+ MacroBody = MacroBody.substr(0, End);
+ // We handle macro bodies which end in a backslash by appending an extra
+ // backslash+newline. This makes sure we don't accidentally treat the
+ // backslash as a line continuation marker.
+ if (MacroBodyEndsInBackslash(MacroBody))
+ Builder.defineMacro(MacroName, Twine(MacroBody) + "\\\n");
+ else
+ Builder.defineMacro(MacroName, MacroBody);
+ } else {
+ // Push "macroname 1".
+ Builder.defineMacro(Macro);
+ }
+}
+
+/// AddImplicitInclude - Add an implicit \#include of the specified file to the
+/// predefines buffer.
+/// As these includes are generated by -include arguments the header search
+/// logic is going to search relatively to the current working directory.
+static void AddImplicitInclude(MacroBuilder &Builder, StringRef File) {
+ Builder.append(Twine("#include \"") + File + "\"");
+}
+
+static void AddImplicitIncludeMacros(MacroBuilder &Builder, StringRef File) {
+ Builder.append(Twine("#__include_macros \"") + File + "\"");
+ // Marker token to stop the __include_macros fetch loop.
+ Builder.append("##"); // ##?
+}
+
+/// AddImplicitIncludePTH - Add an implicit \#include using the original file
+/// used to generate a PTH cache.
+static void AddImplicitIncludePTH(MacroBuilder &Builder, Preprocessor &PP,
+ StringRef ImplicitIncludePTH) {
+ PTHManager *P = PP.getPTHManager();
+ // Null check 'P' in the corner case where it couldn't be created.
+ const char *OriginalFile = P ? P->getOriginalSourceFile() : nullptr;
+
+ if (!OriginalFile) {
+ PP.getDiagnostics().Report(diag::err_fe_pth_file_has_no_source_header)
+ << ImplicitIncludePTH;
+ return;
+ }
+
+ AddImplicitInclude(Builder, OriginalFile);
+}
+
+/// \brief Add an implicit \#include using the original file used to generate
+/// a PCH file.
+static void AddImplicitIncludePCH(MacroBuilder &Builder, Preprocessor &PP,
+ StringRef ImplicitIncludePCH) {
+ std::string OriginalFile =
+ ASTReader::getOriginalSourceFile(ImplicitIncludePCH, PP.getFileManager(),
+ PP.getDiagnostics());
+ if (OriginalFile.empty())
+ return;
+
+ AddImplicitInclude(Builder, OriginalFile);
+}
+
+/// PickFP - This is used to pick a value based on the FP semantics of the
+/// specified FP model.
+template <typename T>
+static T PickFP(const llvm::fltSemantics *Sem, T IEEESingleVal,
+ T IEEEDoubleVal, T X87DoubleExtendedVal, T PPCDoubleDoubleVal,
+ T IEEEQuadVal) {
+ if (Sem == (const llvm::fltSemantics*)&llvm::APFloat::IEEEsingle)
+ return IEEESingleVal;
+ if (Sem == (const llvm::fltSemantics*)&llvm::APFloat::IEEEdouble)
+ return IEEEDoubleVal;
+ if (Sem == (const llvm::fltSemantics*)&llvm::APFloat::x87DoubleExtended)
+ return X87DoubleExtendedVal;
+ if (Sem == (const llvm::fltSemantics*)&llvm::APFloat::PPCDoubleDouble)
+ return PPCDoubleDoubleVal;
+ assert(Sem == (const llvm::fltSemantics*)&llvm::APFloat::IEEEquad);
+ return IEEEQuadVal;
+}
+
+static void DefineFloatMacros(MacroBuilder &Builder, StringRef Prefix,
+ const llvm::fltSemantics *Sem, StringRef Ext) {
+ const char *DenormMin, *Epsilon, *Max, *Min;
+ DenormMin = PickFP(Sem, "1.40129846e-45", "4.9406564584124654e-324",
+ "3.64519953188247460253e-4951",
+ "4.94065645841246544176568792868221e-324",
+ "6.47517511943802511092443895822764655e-4966");
+ int Digits = PickFP(Sem, 6, 15, 18, 31, 33);
+ int DecimalDigits = PickFP(Sem, 9, 17, 21, 33, 36);
+ Epsilon = PickFP(Sem, "1.19209290e-7", "2.2204460492503131e-16",
+ "1.08420217248550443401e-19",
+ "4.94065645841246544176568792868221e-324",
+ "1.92592994438723585305597794258492732e-34");
+ int MantissaDigits = PickFP(Sem, 24, 53, 64, 106, 113);
+ int Min10Exp = PickFP(Sem, -37, -307, -4931, -291, -4931);
+ int Max10Exp = PickFP(Sem, 38, 308, 4932, 308, 4932);
+ int MinExp = PickFP(Sem, -125, -1021, -16381, -968, -16381);
+ int MaxExp = PickFP(Sem, 128, 1024, 16384, 1024, 16384);
+ Min = PickFP(Sem, "1.17549435e-38", "2.2250738585072014e-308",
+ "3.36210314311209350626e-4932",
+ "2.00416836000897277799610805135016e-292",
+ "3.36210314311209350626267781732175260e-4932");
+ Max = PickFP(Sem, "3.40282347e+38", "1.7976931348623157e+308",
+ "1.18973149535723176502e+4932",
+ "1.79769313486231580793728971405301e+308",
+ "1.18973149535723176508575932662800702e+4932");
+
+ SmallString<32> DefPrefix;
+ DefPrefix = "__";
+ DefPrefix += Prefix;
+ DefPrefix += "_";
+
+ Builder.defineMacro(DefPrefix + "DENORM_MIN__", Twine(DenormMin)+Ext);
+ Builder.defineMacro(DefPrefix + "HAS_DENORM__");
+ Builder.defineMacro(DefPrefix + "DIG__", Twine(Digits));
+ Builder.defineMacro(DefPrefix + "DECIMAL_DIG__", Twine(DecimalDigits));
+ Builder.defineMacro(DefPrefix + "EPSILON__", Twine(Epsilon)+Ext);
+ Builder.defineMacro(DefPrefix + "HAS_INFINITY__");
+ Builder.defineMacro(DefPrefix + "HAS_QUIET_NAN__");
+ Builder.defineMacro(DefPrefix + "MANT_DIG__", Twine(MantissaDigits));
+
+ Builder.defineMacro(DefPrefix + "MAX_10_EXP__", Twine(Max10Exp));
+ Builder.defineMacro(DefPrefix + "MAX_EXP__", Twine(MaxExp));
+ Builder.defineMacro(DefPrefix + "MAX__", Twine(Max)+Ext);
+
+ Builder.defineMacro(DefPrefix + "MIN_10_EXP__","("+Twine(Min10Exp)+")");
+ Builder.defineMacro(DefPrefix + "MIN_EXP__", "("+Twine(MinExp)+")");
+ Builder.defineMacro(DefPrefix + "MIN__", Twine(Min)+Ext);
+}
+
+
+/// DefineTypeSize - Emit a macro to the predefines buffer that declares a macro
+/// named MacroName with the max value for a type with width 'TypeWidth' a
+/// signedness of 'isSigned' and with a value suffix of 'ValSuffix' (e.g. LL).
+static void DefineTypeSize(const Twine &MacroName, unsigned TypeWidth,
+ StringRef ValSuffix, bool isSigned,
+ MacroBuilder &Builder) {
+ llvm::APInt MaxVal = isSigned ? llvm::APInt::getSignedMaxValue(TypeWidth)
+ : llvm::APInt::getMaxValue(TypeWidth);
+ Builder.defineMacro(MacroName, MaxVal.toString(10, isSigned) + ValSuffix);
+}
+
+/// DefineTypeSize - An overloaded helper that uses TargetInfo to determine
+/// the width, suffix, and signedness of the given type
+static void DefineTypeSize(const Twine &MacroName, TargetInfo::IntType Ty,
+ const TargetInfo &TI, MacroBuilder &Builder) {
+ DefineTypeSize(MacroName, TI.getTypeWidth(Ty), TI.getTypeConstantSuffix(Ty),
+ TI.isTypeSigned(Ty), Builder);
+}
+
+static void DefineFmt(const Twine &Prefix, TargetInfo::IntType Ty,
+ const TargetInfo &TI, MacroBuilder &Builder) {
+ bool IsSigned = TI.isTypeSigned(Ty);
+ StringRef FmtModifier = TI.getTypeFormatModifier(Ty);
+ for (const char *Fmt = IsSigned ? "di" : "ouxX"; *Fmt; ++Fmt) {
+ Builder.defineMacro(Prefix + "_FMT" + Twine(*Fmt) + "__",
+ Twine("\"") + FmtModifier + Twine(*Fmt) + "\"");
+ }
+}
+
+static void DefineType(const Twine &MacroName, TargetInfo::IntType Ty,
+ MacroBuilder &Builder) {
+ Builder.defineMacro(MacroName, TargetInfo::getTypeName(Ty));
+}
+
+static void DefineTypeWidth(StringRef MacroName, TargetInfo::IntType Ty,
+ const TargetInfo &TI, MacroBuilder &Builder) {
+ Builder.defineMacro(MacroName, Twine(TI.getTypeWidth(Ty)));
+}
+
+static void DefineTypeSizeof(StringRef MacroName, unsigned BitWidth,
+ const TargetInfo &TI, MacroBuilder &Builder) {
+ Builder.defineMacro(MacroName,
+ Twine(BitWidth / TI.getCharWidth()));
+}
+
+static void DefineExactWidthIntType(TargetInfo::IntType Ty,
+ const TargetInfo &TI,
+ MacroBuilder &Builder) {
+ int TypeWidth = TI.getTypeWidth(Ty);
+ bool IsSigned = TI.isTypeSigned(Ty);
+
+ // Use the target specified int64 type, when appropriate, so that [u]int64_t
+ // ends up being defined in terms of the correct type.
+ if (TypeWidth == 64)
+ Ty = IsSigned ? TI.getInt64Type() : TI.getUInt64Type();
+
+ const char *Prefix = IsSigned ? "__INT" : "__UINT";
+
+ DefineType(Prefix + Twine(TypeWidth) + "_TYPE__", Ty, Builder);
+ DefineFmt(Prefix + Twine(TypeWidth), Ty, TI, Builder);
+
+ StringRef ConstSuffix(TI.getTypeConstantSuffix(Ty));
+ Builder.defineMacro(Prefix + Twine(TypeWidth) + "_C_SUFFIX__", ConstSuffix);
+}
+
+static void DefineExactWidthIntTypeSize(TargetInfo::IntType Ty,
+ const TargetInfo &TI,
+ MacroBuilder &Builder) {
+ int TypeWidth = TI.getTypeWidth(Ty);
+ bool IsSigned = TI.isTypeSigned(Ty);
+
+ // Use the target specified int64 type, when appropriate, so that [u]int64_t
+ // ends up being defined in terms of the correct type.
+ if (TypeWidth == 64)
+ Ty = IsSigned ? TI.getInt64Type() : TI.getUInt64Type();
+
+ const char *Prefix = IsSigned ? "__INT" : "__UINT";
+ DefineTypeSize(Prefix + Twine(TypeWidth) + "_MAX__", Ty, TI, Builder);
+}
+
+static void DefineLeastWidthIntType(unsigned TypeWidth, bool IsSigned,
+ const TargetInfo &TI,
+ MacroBuilder &Builder) {
+ TargetInfo::IntType Ty = TI.getLeastIntTypeByWidth(TypeWidth, IsSigned);
+ if (Ty == TargetInfo::NoInt)
+ return;
+
+ const char *Prefix = IsSigned ? "__INT_LEAST" : "__UINT_LEAST";
+ DefineType(Prefix + Twine(TypeWidth) + "_TYPE__", Ty, Builder);
+ DefineTypeSize(Prefix + Twine(TypeWidth) + "_MAX__", Ty, TI, Builder);
+ DefineFmt(Prefix + Twine(TypeWidth), Ty, TI, Builder);
+}
+
+static void DefineFastIntType(unsigned TypeWidth, bool IsSigned,
+ const TargetInfo &TI, MacroBuilder &Builder) {
+ // stdint.h currently defines the fast int types as equivalent to the least
+ // types.
+ TargetInfo::IntType Ty = TI.getLeastIntTypeByWidth(TypeWidth, IsSigned);
+ if (Ty == TargetInfo::NoInt)
+ return;
+
+ const char *Prefix = IsSigned ? "__INT_FAST" : "__UINT_FAST";
+ DefineType(Prefix + Twine(TypeWidth) + "_TYPE__", Ty, Builder);
+ DefineTypeSize(Prefix + Twine(TypeWidth) + "_MAX__", Ty, TI, Builder);
+
+ DefineFmt(Prefix + Twine(TypeWidth), Ty, TI, Builder);
+}
+
+
+/// Get the value the ATOMIC_*_LOCK_FREE macro should have for a type with
+/// the specified properties.
+static const char *getLockFreeValue(unsigned TypeWidth, unsigned TypeAlign,
+ unsigned InlineWidth) {
+ // Fully-aligned, power-of-2 sizes no larger than the inline
+ // width will be inlined as lock-free operations.
+ if (TypeWidth == TypeAlign && (TypeWidth & (TypeWidth - 1)) == 0 &&
+ TypeWidth <= InlineWidth)
+ return "2"; // "always lock free"
+ // We cannot be certain what operations the lib calls might be
+ // able to implement as lock-free on future processors.
+ return "1"; // "sometimes lock free"
+}
+
+/// \brief Add definitions required for a smooth interaction between
+/// Objective-C++ automated reference counting and libstdc++ (4.2).
+static void AddObjCXXARCLibstdcxxDefines(const LangOptions &LangOpts,
+ MacroBuilder &Builder) {
+ Builder.defineMacro("_GLIBCXX_PREDEFINED_OBJC_ARC_IS_SCALAR");
+
+ std::string Result;
+ {
+ // Provide specializations for the __is_scalar type trait so that
+ // lifetime-qualified objects are not considered "scalar" types, which
+ // libstdc++ uses as an indicator of the presence of trivial copy, assign,
+ // default-construct, and destruct semantics (none of which hold for
+ // lifetime-qualified objects in ARC).
+ llvm::raw_string_ostream Out(Result);
+
+ Out << "namespace std {\n"
+ << "\n"
+ << "struct __true_type;\n"
+ << "struct __false_type;\n"
+ << "\n";
+
+ Out << "template<typename _Tp> struct __is_scalar;\n"
+ << "\n";
+
+ Out << "template<typename _Tp>\n"
+ << "struct __is_scalar<__attribute__((objc_ownership(strong))) _Tp> {\n"
+ << " enum { __value = 0 };\n"
+ << " typedef __false_type __type;\n"
+ << "};\n"
+ << "\n";
+
+ if (LangOpts.ObjCARCWeak) {
+ Out << "template<typename _Tp>\n"
+ << "struct __is_scalar<__attribute__((objc_ownership(weak))) _Tp> {\n"
+ << " enum { __value = 0 };\n"
+ << " typedef __false_type __type;\n"
+ << "};\n"
+ << "\n";
+ }
+
+ Out << "template<typename _Tp>\n"
+ << "struct __is_scalar<__attribute__((objc_ownership(autoreleasing)))"
+ << " _Tp> {\n"
+ << " enum { __value = 0 };\n"
+ << " typedef __false_type __type;\n"
+ << "};\n"
+ << "\n";
+
+ Out << "}\n";
+ }
+ Builder.append(Result);
+}
+
+static void InitializeStandardPredefinedMacros(const TargetInfo &TI,
+ const LangOptions &LangOpts,
+ const FrontendOptions &FEOpts,
+ MacroBuilder &Builder) {
+ if (!LangOpts.MSVCCompat && !LangOpts.TraditionalCPP)
+ Builder.defineMacro("__STDC__");
+ if (LangOpts.Freestanding)
+ Builder.defineMacro("__STDC_HOSTED__", "0");
+ else
+ Builder.defineMacro("__STDC_HOSTED__");
+
+ if (!LangOpts.CPlusPlus) {
+ if (LangOpts.C11)
+ Builder.defineMacro("__STDC_VERSION__", "201112L");
+ else if (LangOpts.C99)
+ Builder.defineMacro("__STDC_VERSION__", "199901L");
+ else if (!LangOpts.GNUMode && LangOpts.Digraphs)
+ Builder.defineMacro("__STDC_VERSION__", "199409L");
+ } else {
+ // FIXME: Use correct value for C++17.
+ if (LangOpts.CPlusPlus1z)
+ Builder.defineMacro("__cplusplus", "201406L");
+ // C++1y [cpp.predefined]p1:
+ // The name __cplusplus is defined to the value 201402L when compiling a
+ // C++ translation unit.
+ else if (LangOpts.CPlusPlus14)
+ Builder.defineMacro("__cplusplus", "201402L");
+ // C++11 [cpp.predefined]p1:
+ // The name __cplusplus is defined to the value 201103L when compiling a
+ // C++ translation unit.
+ else if (LangOpts.CPlusPlus11)
+ Builder.defineMacro("__cplusplus", "201103L");
+ // C++03 [cpp.predefined]p1:
+ // The name __cplusplus is defined to the value 199711L when compiling a
+ // C++ translation unit.
+ else
+ Builder.defineMacro("__cplusplus", "199711L");
+ }
+
+ // In C11 these are environment macros. In C++11 they are only defined
+ // as part of <cuchar>. To prevent breakage when mixing C and C++
+ // code, define these macros unconditionally. We can define them
+ // unconditionally, as Clang always uses UTF-16 and UTF-32 for 16-bit
+ // and 32-bit character literals.
+ Builder.defineMacro("__STDC_UTF_16__", "1");
+ Builder.defineMacro("__STDC_UTF_32__", "1");
+
+ if (LangOpts.ObjC1)
+ Builder.defineMacro("__OBJC__");
+
+ // Not "standard" per se, but available even with the -undef flag.
+ if (LangOpts.AsmPreprocessor)
+ Builder.defineMacro("__ASSEMBLER__");
+}
+
+/// Initialize the predefined C++ language feature test macros defined in
+/// ISO/IEC JTC1/SC22/WG21 (C++) SD-6: "SG10 Feature Test Recommendations".
+static void InitializeCPlusPlusFeatureTestMacros(const LangOptions &LangOpts,
+ MacroBuilder &Builder) {
+ // C++98 features.
+ if (LangOpts.RTTI)
+ Builder.defineMacro("__cpp_rtti", "199711");
+ if (LangOpts.CXXExceptions)
+ Builder.defineMacro("__cpp_exceptions", "199711");
+
+ // C++11 features.
+ if (LangOpts.CPlusPlus11) {
+ Builder.defineMacro("__cpp_unicode_characters", "200704");
+ Builder.defineMacro("__cpp_raw_strings", "200710");
+ Builder.defineMacro("__cpp_unicode_literals", "200710");
+ Builder.defineMacro("__cpp_user_defined_literals", "200809");
+ Builder.defineMacro("__cpp_lambdas", "200907");
+ Builder.defineMacro("__cpp_constexpr",
+ LangOpts.CPlusPlus14 ? "201304" : "200704");
+ Builder.defineMacro("__cpp_range_based_for", "200907");
+ Builder.defineMacro("__cpp_static_assert", "200410");
+ Builder.defineMacro("__cpp_decltype", "200707");
+ Builder.defineMacro("__cpp_attributes", "200809");
+ Builder.defineMacro("__cpp_rvalue_references", "200610");
+ Builder.defineMacro("__cpp_variadic_templates", "200704");
+ Builder.defineMacro("__cpp_initializer_lists", "200806");
+ Builder.defineMacro("__cpp_delegating_constructors", "200604");
+ Builder.defineMacro("__cpp_nsdmi", "200809");
+ Builder.defineMacro("__cpp_inheriting_constructors", "200802");
+ Builder.defineMacro("__cpp_ref_qualifiers", "200710");
+ Builder.defineMacro("__cpp_alias_templates", "200704");
+ }
+
+ // C++14 features.
+ if (LangOpts.CPlusPlus14) {
+ Builder.defineMacro("__cpp_binary_literals", "201304");
+ Builder.defineMacro("__cpp_digit_separators", "201309");
+ Builder.defineMacro("__cpp_init_captures", "201304");
+ Builder.defineMacro("__cpp_generic_lambdas", "201304");
+ Builder.defineMacro("__cpp_decltype_auto", "201304");
+ Builder.defineMacro("__cpp_return_type_deduction", "201304");
+ Builder.defineMacro("__cpp_aggregate_nsdmi", "201304");
+ Builder.defineMacro("__cpp_variable_templates", "201304");
+ }
+ if (LangOpts.SizedDeallocation)
+ Builder.defineMacro("__cpp_sized_deallocation", "201309");
+ if (LangOpts.ConceptsTS)
+ Builder.defineMacro("__cpp_experimental_concepts", "1");
+}
+
+static void InitializePredefinedMacros(const TargetInfo &TI,
+ const LangOptions &LangOpts,
+ const FrontendOptions &FEOpts,
+ MacroBuilder &Builder) {
+ // Compiler version introspection macros.
+ Builder.defineMacro("__llvm__"); // LLVM Backend
+ Builder.defineMacro("__clang__"); // Clang Frontend
+#define TOSTR2(X) #X
+#define TOSTR(X) TOSTR2(X)
+ Builder.defineMacro("__clang_major__", TOSTR(CLANG_VERSION_MAJOR));
+ Builder.defineMacro("__clang_minor__", TOSTR(CLANG_VERSION_MINOR));
+#ifdef CLANG_VERSION_PATCHLEVEL
+ Builder.defineMacro("__clang_patchlevel__", TOSTR(CLANG_VERSION_PATCHLEVEL));
+#else
+ Builder.defineMacro("__clang_patchlevel__", "0");
+#endif
+ Builder.defineMacro("__clang_version__",
+ "\"" CLANG_VERSION_STRING " "
+ + getClangFullRepositoryVersion() + "\"");
+#undef TOSTR
+#undef TOSTR2
+ if (!LangOpts.MSVCCompat) {
+ // Currently claim to be compatible with GCC 4.2.1-5621, but only if we're
+ // not compiling for MSVC compatibility
+ Builder.defineMacro("__GNUC_MINOR__", "2");
+ Builder.defineMacro("__GNUC_PATCHLEVEL__", "1");
+ Builder.defineMacro("__GNUC__", "4");
+ Builder.defineMacro("__GXX_ABI_VERSION", "1002");
+ }
+
+ // Define macros for the C11 / C++11 memory orderings
+ Builder.defineMacro("__ATOMIC_RELAXED", "0");
+ Builder.defineMacro("__ATOMIC_CONSUME", "1");
+ Builder.defineMacro("__ATOMIC_ACQUIRE", "2");
+ Builder.defineMacro("__ATOMIC_RELEASE", "3");
+ Builder.defineMacro("__ATOMIC_ACQ_REL", "4");
+ Builder.defineMacro("__ATOMIC_SEQ_CST", "5");
+
+ // Support for #pragma redefine_extname (Sun compatibility)
+ Builder.defineMacro("__PRAGMA_REDEFINE_EXTNAME", "1");
+
+ // As sad as it is, enough software depends on the __VERSION__ for version
+ // checks that it is necessary to report 4.2.1 (the base GCC version we claim
+ // compatibility with) first.
+ Builder.defineMacro("__VERSION__", "\"4.2.1 Compatible " +
+ Twine(getClangFullCPPVersion()) + "\"");
+
+ // Initialize language-specific preprocessor defines.
+
+ // Standard conforming mode?
+ if (!LangOpts.GNUMode && !LangOpts.MSVCCompat)
+ Builder.defineMacro("__STRICT_ANSI__");
+
+ if (!LangOpts.MSVCCompat && LangOpts.CPlusPlus11)
+ Builder.defineMacro("__GXX_EXPERIMENTAL_CXX0X__");
+
+ if (LangOpts.ObjC1) {
+ if (LangOpts.ObjCRuntime.isNonFragile()) {
+ Builder.defineMacro("__OBJC2__");
+
+ if (LangOpts.ObjCExceptions)
+ Builder.defineMacro("OBJC_ZEROCOST_EXCEPTIONS");
+ }
+
+ if (LangOpts.getGC() != LangOptions::NonGC)
+ Builder.defineMacro("__OBJC_GC__");
+
+ if (LangOpts.ObjCRuntime.isNeXTFamily())
+ Builder.defineMacro("__NEXT_RUNTIME__");
+
+ if (LangOpts.ObjCRuntime.getKind() == ObjCRuntime::ObjFW) {
+ VersionTuple tuple = LangOpts.ObjCRuntime.getVersion();
+
+ unsigned minor = 0;
+ if (tuple.getMinor().hasValue())
+ minor = tuple.getMinor().getValue();
+
+ unsigned subminor = 0;
+ if (tuple.getSubminor().hasValue())
+ subminor = tuple.getSubminor().getValue();
+
+ Builder.defineMacro("__OBJFW_RUNTIME_ABI__",
+ Twine(tuple.getMajor() * 10000 + minor * 100 +
+ subminor));
+ }
+
+ Builder.defineMacro("IBOutlet", "__attribute__((iboutlet))");
+ Builder.defineMacro("IBOutletCollection(ClassName)",
+ "__attribute__((iboutletcollection(ClassName)))");
+ Builder.defineMacro("IBAction", "void)__attribute__((ibaction)");
+ Builder.defineMacro("IBInspectable", "");
+ Builder.defineMacro("IB_DESIGNABLE", "");
+ }
+
+ if (LangOpts.CPlusPlus)
+ InitializeCPlusPlusFeatureTestMacros(LangOpts, Builder);
+
+ // darwin_constant_cfstrings controls this. This is also dependent
+ // on other things like the runtime I believe. This is set even for C code.
+ if (!LangOpts.NoConstantCFStrings)
+ Builder.defineMacro("__CONSTANT_CFSTRINGS__");
+
+ if (LangOpts.ObjC2)
+ Builder.defineMacro("OBJC_NEW_PROPERTIES");
+
+ if (LangOpts.PascalStrings)
+ Builder.defineMacro("__PASCAL_STRINGS__");
+
+ if (LangOpts.Blocks) {
+ Builder.defineMacro("__block", "__attribute__((__blocks__(byref)))");
+ Builder.defineMacro("__BLOCKS__");
+ }
+
+ if (!LangOpts.MSVCCompat && LangOpts.Exceptions)
+ Builder.defineMacro("__EXCEPTIONS");
+ if (!LangOpts.MSVCCompat && LangOpts.RTTI)
+ Builder.defineMacro("__GXX_RTTI");
+ if (LangOpts.SjLjExceptions)
+ Builder.defineMacro("__USING_SJLJ_EXCEPTIONS__");
+
+ if (LangOpts.Deprecated)
+ Builder.defineMacro("__DEPRECATED");
+
+ if (!LangOpts.MSVCCompat && LangOpts.CPlusPlus) {
+ Builder.defineMacro("__GNUG__", "4");
+ Builder.defineMacro("__GXX_WEAK__");
+ Builder.defineMacro("__private_extern__", "extern");
+ }
+
+ if (LangOpts.MicrosoftExt) {
+ if (LangOpts.WChar) {
+ // wchar_t supported as a keyword.
+ Builder.defineMacro("_WCHAR_T_DEFINED");
+ Builder.defineMacro("_NATIVE_WCHAR_T_DEFINED");
+ }
+ }
+
+ if (LangOpts.Optimize)
+ Builder.defineMacro("__OPTIMIZE__");
+ if (LangOpts.OptimizeSize)
+ Builder.defineMacro("__OPTIMIZE_SIZE__");
+
+ if (LangOpts.FastMath)
+ Builder.defineMacro("__FAST_MATH__");
+
+ // Initialize target-specific preprocessor defines.
+
+ // __BYTE_ORDER__ was added in GCC 4.6. It's analogous
+ // to the macro __BYTE_ORDER (no trailing underscores)
+ // from glibc's <endian.h> header.
+ // We don't support the PDP-11 as a target, but include
+ // the define so it can still be compared against.
+ Builder.defineMacro("__ORDER_LITTLE_ENDIAN__", "1234");
+ Builder.defineMacro("__ORDER_BIG_ENDIAN__", "4321");
+ Builder.defineMacro("__ORDER_PDP_ENDIAN__", "3412");
+ if (TI.isBigEndian()) {
+ Builder.defineMacro("__BYTE_ORDER__", "__ORDER_BIG_ENDIAN__");
+ Builder.defineMacro("__BIG_ENDIAN__");
+ } else {
+ Builder.defineMacro("__BYTE_ORDER__", "__ORDER_LITTLE_ENDIAN__");
+ Builder.defineMacro("__LITTLE_ENDIAN__");
+ }
+
+ if (TI.getPointerWidth(0) == 64 && TI.getLongWidth() == 64
+ && TI.getIntWidth() == 32) {
+ Builder.defineMacro("_LP64");
+ Builder.defineMacro("__LP64__");
+ }
+
+ if (TI.getPointerWidth(0) == 32 && TI.getLongWidth() == 32
+ && TI.getIntWidth() == 32) {
+ Builder.defineMacro("_ILP32");
+ Builder.defineMacro("__ILP32__");
+ }
+
+ // Define type sizing macros based on the target properties.
+ assert(TI.getCharWidth() == 8 && "Only support 8-bit char so far");
+ Builder.defineMacro("__CHAR_BIT__", "8");
+
+ DefineTypeSize("__SCHAR_MAX__", TargetInfo::SignedChar, TI, Builder);
+ DefineTypeSize("__SHRT_MAX__", TargetInfo::SignedShort, TI, Builder);
+ DefineTypeSize("__INT_MAX__", TargetInfo::SignedInt, TI, Builder);
+ DefineTypeSize("__LONG_MAX__", TargetInfo::SignedLong, TI, Builder);
+ DefineTypeSize("__LONG_LONG_MAX__", TargetInfo::SignedLongLong, TI, Builder);
+ DefineTypeSize("__WCHAR_MAX__", TI.getWCharType(), TI, Builder);
+ DefineTypeSize("__INTMAX_MAX__", TI.getIntMaxType(), TI, Builder);
+ DefineTypeSize("__SIZE_MAX__", TI.getSizeType(), TI, Builder);
+
+ DefineTypeSize("__UINTMAX_MAX__", TI.getUIntMaxType(), TI, Builder);
+ DefineTypeSize("__PTRDIFF_MAX__", TI.getPtrDiffType(0), TI, Builder);
+ DefineTypeSize("__INTPTR_MAX__", TI.getIntPtrType(), TI, Builder);
+ DefineTypeSize("__UINTPTR_MAX__", TI.getUIntPtrType(), TI, Builder);
+
+ DefineTypeSizeof("__SIZEOF_DOUBLE__", TI.getDoubleWidth(), TI, Builder);
+ DefineTypeSizeof("__SIZEOF_FLOAT__", TI.getFloatWidth(), TI, Builder);
+ DefineTypeSizeof("__SIZEOF_INT__", TI.getIntWidth(), TI, Builder);
+ DefineTypeSizeof("__SIZEOF_LONG__", TI.getLongWidth(), TI, Builder);
+ DefineTypeSizeof("__SIZEOF_LONG_DOUBLE__",TI.getLongDoubleWidth(),TI,Builder);
+ DefineTypeSizeof("__SIZEOF_LONG_LONG__", TI.getLongLongWidth(), TI, Builder);
+ DefineTypeSizeof("__SIZEOF_POINTER__", TI.getPointerWidth(0), TI, Builder);
+ DefineTypeSizeof("__SIZEOF_SHORT__", TI.getShortWidth(), TI, Builder);
+ DefineTypeSizeof("__SIZEOF_PTRDIFF_T__",
+ TI.getTypeWidth(TI.getPtrDiffType(0)), TI, Builder);
+ DefineTypeSizeof("__SIZEOF_SIZE_T__",
+ TI.getTypeWidth(TI.getSizeType()), TI, Builder);
+ DefineTypeSizeof("__SIZEOF_WCHAR_T__",
+ TI.getTypeWidth(TI.getWCharType()), TI, Builder);
+ DefineTypeSizeof("__SIZEOF_WINT_T__",
+ TI.getTypeWidth(TI.getWIntType()), TI, Builder);
+ if (TI.hasInt128Type())
+ DefineTypeSizeof("__SIZEOF_INT128__", 128, TI, Builder);
+
+ DefineType("__INTMAX_TYPE__", TI.getIntMaxType(), Builder);
+ DefineFmt("__INTMAX", TI.getIntMaxType(), TI, Builder);
+ Builder.defineMacro("__INTMAX_C_SUFFIX__",
+ TI.getTypeConstantSuffix(TI.getIntMaxType()));
+ DefineType("__UINTMAX_TYPE__", TI.getUIntMaxType(), Builder);
+ DefineFmt("__UINTMAX", TI.getUIntMaxType(), TI, Builder);
+ Builder.defineMacro("__UINTMAX_C_SUFFIX__",
+ TI.getTypeConstantSuffix(TI.getUIntMaxType()));
+ DefineTypeWidth("__INTMAX_WIDTH__", TI.getIntMaxType(), TI, Builder);
+ DefineType("__PTRDIFF_TYPE__", TI.getPtrDiffType(0), Builder);
+ DefineFmt("__PTRDIFF", TI.getPtrDiffType(0), TI, Builder);
+ DefineTypeWidth("__PTRDIFF_WIDTH__", TI.getPtrDiffType(0), TI, Builder);
+ DefineType("__INTPTR_TYPE__", TI.getIntPtrType(), Builder);
+ DefineFmt("__INTPTR", TI.getIntPtrType(), TI, Builder);
+ DefineTypeWidth("__INTPTR_WIDTH__", TI.getIntPtrType(), TI, Builder);
+ DefineType("__SIZE_TYPE__", TI.getSizeType(), Builder);
+ DefineFmt("__SIZE", TI.getSizeType(), TI, Builder);
+ DefineTypeWidth("__SIZE_WIDTH__", TI.getSizeType(), TI, Builder);
+ DefineType("__WCHAR_TYPE__", TI.getWCharType(), Builder);
+ DefineTypeWidth("__WCHAR_WIDTH__", TI.getWCharType(), TI, Builder);
+ DefineType("__WINT_TYPE__", TI.getWIntType(), Builder);
+ DefineTypeWidth("__WINT_WIDTH__", TI.getWIntType(), TI, Builder);
+ DefineTypeWidth("__SIG_ATOMIC_WIDTH__", TI.getSigAtomicType(), TI, Builder);
+ DefineTypeSize("__SIG_ATOMIC_MAX__", TI.getSigAtomicType(), TI, Builder);
+ DefineType("__CHAR16_TYPE__", TI.getChar16Type(), Builder);
+ DefineType("__CHAR32_TYPE__", TI.getChar32Type(), Builder);
+
+ DefineTypeWidth("__UINTMAX_WIDTH__", TI.getUIntMaxType(), TI, Builder);
+ DefineType("__UINTPTR_TYPE__", TI.getUIntPtrType(), Builder);
+ DefineFmt("__UINTPTR", TI.getUIntPtrType(), TI, Builder);
+ DefineTypeWidth("__UINTPTR_WIDTH__", TI.getUIntPtrType(), TI, Builder);
+
+ DefineFloatMacros(Builder, "FLT", &TI.getFloatFormat(), "F");
+ DefineFloatMacros(Builder, "DBL", &TI.getDoubleFormat(), "");
+ DefineFloatMacros(Builder, "LDBL", &TI.getLongDoubleFormat(), "L");
+
+ // Define a __POINTER_WIDTH__ macro for stdint.h.
+ Builder.defineMacro("__POINTER_WIDTH__",
+ Twine((int)TI.getPointerWidth(0)));
+
+ // Define __BIGGEST_ALIGNMENT__ to be compatible with gcc.
+ Builder.defineMacro("__BIGGEST_ALIGNMENT__",
+ Twine(TI.getSuitableAlign() / TI.getCharWidth()) );
+
+ if (!LangOpts.CharIsSigned)
+ Builder.defineMacro("__CHAR_UNSIGNED__");
+
+ if (!TargetInfo::isTypeSigned(TI.getWCharType()))
+ Builder.defineMacro("__WCHAR_UNSIGNED__");
+
+ if (!TargetInfo::isTypeSigned(TI.getWIntType()))
+ Builder.defineMacro("__WINT_UNSIGNED__");
+
+ // Define exact-width integer types for stdint.h
+ DefineExactWidthIntType(TargetInfo::SignedChar, TI, Builder);
+
+ if (TI.getShortWidth() > TI.getCharWidth())
+ DefineExactWidthIntType(TargetInfo::SignedShort, TI, Builder);
+
+ if (TI.getIntWidth() > TI.getShortWidth())
+ DefineExactWidthIntType(TargetInfo::SignedInt, TI, Builder);
+
+ if (TI.getLongWidth() > TI.getIntWidth())
+ DefineExactWidthIntType(TargetInfo::SignedLong, TI, Builder);
+
+ if (TI.getLongLongWidth() > TI.getLongWidth())
+ DefineExactWidthIntType(TargetInfo::SignedLongLong, TI, Builder);
+
+ DefineExactWidthIntType(TargetInfo::UnsignedChar, TI, Builder);
+ DefineExactWidthIntTypeSize(TargetInfo::UnsignedChar, TI, Builder);
+ DefineExactWidthIntTypeSize(TargetInfo::SignedChar, TI, Builder);
+
+ if (TI.getShortWidth() > TI.getCharWidth()) {
+ DefineExactWidthIntType(TargetInfo::UnsignedShort, TI, Builder);
+ DefineExactWidthIntTypeSize(TargetInfo::UnsignedShort, TI, Builder);
+ DefineExactWidthIntTypeSize(TargetInfo::SignedShort, TI, Builder);
+ }
+
+ if (TI.getIntWidth() > TI.getShortWidth()) {
+ DefineExactWidthIntType(TargetInfo::UnsignedInt, TI, Builder);
+ DefineExactWidthIntTypeSize(TargetInfo::UnsignedInt, TI, Builder);
+ DefineExactWidthIntTypeSize(TargetInfo::SignedInt, TI, Builder);
+ }
+
+ if (TI.getLongWidth() > TI.getIntWidth()) {
+ DefineExactWidthIntType(TargetInfo::UnsignedLong, TI, Builder);
+ DefineExactWidthIntTypeSize(TargetInfo::UnsignedLong, TI, Builder);
+ DefineExactWidthIntTypeSize(TargetInfo::SignedLong, TI, Builder);
+ }
+
+ if (TI.getLongLongWidth() > TI.getLongWidth()) {
+ DefineExactWidthIntType(TargetInfo::UnsignedLongLong, TI, Builder);
+ DefineExactWidthIntTypeSize(TargetInfo::UnsignedLongLong, TI, Builder);
+ DefineExactWidthIntTypeSize(TargetInfo::SignedLongLong, TI, Builder);
+ }
+
+ DefineLeastWidthIntType(8, true, TI, Builder);
+ DefineLeastWidthIntType(8, false, TI, Builder);
+ DefineLeastWidthIntType(16, true, TI, Builder);
+ DefineLeastWidthIntType(16, false, TI, Builder);
+ DefineLeastWidthIntType(32, true, TI, Builder);
+ DefineLeastWidthIntType(32, false, TI, Builder);
+ DefineLeastWidthIntType(64, true, TI, Builder);
+ DefineLeastWidthIntType(64, false, TI, Builder);
+
+ DefineFastIntType(8, true, TI, Builder);
+ DefineFastIntType(8, false, TI, Builder);
+ DefineFastIntType(16, true, TI, Builder);
+ DefineFastIntType(16, false, TI, Builder);
+ DefineFastIntType(32, true, TI, Builder);
+ DefineFastIntType(32, false, TI, Builder);
+ DefineFastIntType(64, true, TI, Builder);
+ DefineFastIntType(64, false, TI, Builder);
+
+ if (const char *Prefix = TI.getUserLabelPrefix())
+ Builder.defineMacro("__USER_LABEL_PREFIX__", Prefix);
+
+ if (LangOpts.FastMath || LangOpts.FiniteMathOnly)
+ Builder.defineMacro("__FINITE_MATH_ONLY__", "1");
+ else
+ Builder.defineMacro("__FINITE_MATH_ONLY__", "0");
+
+ if (!LangOpts.MSVCCompat) {
+ if (LangOpts.GNUInline || LangOpts.CPlusPlus)
+ Builder.defineMacro("__GNUC_GNU_INLINE__");
+ else
+ Builder.defineMacro("__GNUC_STDC_INLINE__");
+
+ // The value written by __atomic_test_and_set.
+ // FIXME: This is target-dependent.
+ Builder.defineMacro("__GCC_ATOMIC_TEST_AND_SET_TRUEVAL", "1");
+
+ // Used by libstdc++ to implement ATOMIC_<foo>_LOCK_FREE.
+ unsigned InlineWidthBits = TI.getMaxAtomicInlineWidth();
+#define DEFINE_LOCK_FREE_MACRO(TYPE, Type) \
+ Builder.defineMacro("__GCC_ATOMIC_" #TYPE "_LOCK_FREE", \
+ getLockFreeValue(TI.get##Type##Width(), \
+ TI.get##Type##Align(), \
+ InlineWidthBits));
+ DEFINE_LOCK_FREE_MACRO(BOOL, Bool);
+ DEFINE_LOCK_FREE_MACRO(CHAR, Char);
+ DEFINE_LOCK_FREE_MACRO(CHAR16_T, Char16);
+ DEFINE_LOCK_FREE_MACRO(CHAR32_T, Char32);
+ DEFINE_LOCK_FREE_MACRO(WCHAR_T, WChar);
+ DEFINE_LOCK_FREE_MACRO(SHORT, Short);
+ DEFINE_LOCK_FREE_MACRO(INT, Int);
+ DEFINE_LOCK_FREE_MACRO(LONG, Long);
+ DEFINE_LOCK_FREE_MACRO(LLONG, LongLong);
+ Builder.defineMacro("__GCC_ATOMIC_POINTER_LOCK_FREE",
+ getLockFreeValue(TI.getPointerWidth(0),
+ TI.getPointerAlign(0),
+ InlineWidthBits));
+#undef DEFINE_LOCK_FREE_MACRO
+ }
+
+ if (LangOpts.NoInlineDefine)
+ Builder.defineMacro("__NO_INLINE__");
+
+ if (unsigned PICLevel = LangOpts.PICLevel) {
+ Builder.defineMacro("__PIC__", Twine(PICLevel));
+ Builder.defineMacro("__pic__", Twine(PICLevel));
+ }
+ if (unsigned PIELevel = LangOpts.PIELevel) {
+ Builder.defineMacro("__PIE__", Twine(PIELevel));
+ Builder.defineMacro("__pie__", Twine(PIELevel));
+ }
+
+ // Macros to control C99 numerics and <float.h>
+ Builder.defineMacro("__FLT_EVAL_METHOD__", Twine(TI.getFloatEvalMethod()));
+ Builder.defineMacro("__FLT_RADIX__", "2");
+ Builder.defineMacro("__DECIMAL_DIG__", "__LDBL_DECIMAL_DIG__");
+
+ if (LangOpts.getStackProtector() == LangOptions::SSPOn)
+ Builder.defineMacro("__SSP__");
+ else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
+ Builder.defineMacro("__SSP_STRONG__", "2");
+ else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
+ Builder.defineMacro("__SSP_ALL__", "3");
+
+ if (FEOpts.ProgramAction == frontend::RewriteObjC)
+ Builder.defineMacro("__weak", "__attribute__((objc_gc(weak)))");
+
+ // Define a macro that exists only when using the static analyzer.
+ if (FEOpts.ProgramAction == frontend::RunAnalysis)
+ Builder.defineMacro("__clang_analyzer__");
+
+ if (LangOpts.FastRelaxedMath)
+ Builder.defineMacro("__FAST_RELAXED_MATH__");
+
+ if (LangOpts.ObjCAutoRefCount) {
+ Builder.defineMacro("__weak", "__attribute__((objc_ownership(weak)))");
+ Builder.defineMacro("__strong", "__attribute__((objc_ownership(strong)))");
+ Builder.defineMacro("__autoreleasing",
+ "__attribute__((objc_ownership(autoreleasing)))");
+ Builder.defineMacro("__unsafe_unretained",
+ "__attribute__((objc_ownership(none)))");
+ }
+
+ // OpenMP definition
+ if (LangOpts.OpenMP) {
+ // OpenMP 2.2:
+ // In implementations that support a preprocessor, the _OPENMP
+ // macro name is defined to have the decimal value yyyymm where
+ // yyyy and mm are the year and the month designations of the
+ // version of the OpenMP API that the implementation support.
+ Builder.defineMacro("_OPENMP", "201307");
+ }
+
+ // CUDA device path compilaton
+ if (LangOpts.CUDAIsDevice) {
+ // The CUDA_ARCH value is set for the GPU target specified in the NVPTX
+ // backend's target defines.
+ Builder.defineMacro("__CUDA_ARCH__");
+ }
+
+ // Get other target #defines.
+ TI.getTargetDefines(LangOpts, Builder);
+}
+
+/// InitializePreprocessor - Initialize the preprocessor getting it and the
+/// environment ready to process a single file. This returns true on error.
+///
+void clang::InitializePreprocessor(Preprocessor &PP,
+ const PreprocessorOptions &InitOpts,
+ const FrontendOptions &FEOpts) {
+ const LangOptions &LangOpts = PP.getLangOpts();
+ std::string PredefineBuffer;
+ PredefineBuffer.reserve(4080);
+ llvm::raw_string_ostream Predefines(PredefineBuffer);
+ MacroBuilder Builder(Predefines);
+
+ // Emit line markers for various builtin sections of the file. We don't do
+ // this in asm preprocessor mode, because "# 4" is not a line marker directive
+ // in this mode.
+ if (!PP.getLangOpts().AsmPreprocessor)
+ Builder.append("# 1 \"<built-in>\" 3");
+
+ // Install things like __POWERPC__, __GNUC__, etc into the macro table.
+ if (InitOpts.UsePredefines) {
+ InitializePredefinedMacros(PP.getTargetInfo(), LangOpts, FEOpts, Builder);
+
+ // Install definitions to make Objective-C++ ARC work well with various
+ // C++ Standard Library implementations.
+ if (LangOpts.ObjC1 && LangOpts.CPlusPlus && LangOpts.ObjCAutoRefCount) {
+ switch (InitOpts.ObjCXXARCStandardLibrary) {
+ case ARCXX_nolib:
+ case ARCXX_libcxx:
+ break;
+
+ case ARCXX_libstdcxx:
+ AddObjCXXARCLibstdcxxDefines(LangOpts, Builder);
+ break;
+ }
+ }
+ }
+
+ // Even with predefines off, some macros are still predefined.
+ // These should all be defined in the preprocessor according to the
+ // current language configuration.
+ InitializeStandardPredefinedMacros(PP.getTargetInfo(), PP.getLangOpts(),
+ FEOpts, Builder);
+
+ // Add on the predefines from the driver. Wrap in a #line directive to report
+ // that they come from the command line.
+ if (!PP.getLangOpts().AsmPreprocessor)
+ Builder.append("# 1 \"<command line>\" 1");
+
+ // Process #define's and #undef's in the order they are given.
+ for (unsigned i = 0, e = InitOpts.Macros.size(); i != e; ++i) {
+ if (InitOpts.Macros[i].second) // isUndef
+ Builder.undefineMacro(InitOpts.Macros[i].first);
+ else
+ DefineBuiltinMacro(Builder, InitOpts.Macros[i].first,
+ PP.getDiagnostics());
+ }
+
+ // If -imacros are specified, include them now. These are processed before
+ // any -include directives.
+ for (unsigned i = 0, e = InitOpts.MacroIncludes.size(); i != e; ++i)
+ AddImplicitIncludeMacros(Builder, InitOpts.MacroIncludes[i]);
+
+ // Process -include-pch/-include-pth directives.
+ if (!InitOpts.ImplicitPCHInclude.empty())
+ AddImplicitIncludePCH(Builder, PP, InitOpts.ImplicitPCHInclude);
+ if (!InitOpts.ImplicitPTHInclude.empty())
+ AddImplicitIncludePTH(Builder, PP, InitOpts.ImplicitPTHInclude);
+
+ // Process -include directives.
+ for (unsigned i = 0, e = InitOpts.Includes.size(); i != e; ++i) {
+ const std::string &Path = InitOpts.Includes[i];
+ AddImplicitInclude(Builder, Path);
+ }
+
+ // Exit the command line and go back to <built-in> (2 is LC_LEAVE).
+ if (!PP.getLangOpts().AsmPreprocessor)
+ Builder.append("# 1 \"<built-in>\" 2");
+
+ // Instruct the preprocessor to skip the preamble.
+ PP.setSkipMainFilePreamble(InitOpts.PrecompiledPreambleBytes.first,
+ InitOpts.PrecompiledPreambleBytes.second);
+
+ // Copy PredefinedBuffer into the Preprocessor.
+ PP.setPredefines(Predefines.str());
+}
diff --git a/contrib/llvm/tools/clang/lib/Frontend/LangStandards.cpp b/contrib/llvm/tools/clang/lib/Frontend/LangStandards.cpp
new file mode 100644
index 0000000..f133327
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Frontend/LangStandards.cpp
@@ -0,0 +1,43 @@
+//===--- LangStandards.cpp - Language Standard Definitions ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Frontend/LangStandard.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/Support/ErrorHandling.h"
+using namespace clang;
+using namespace clang::frontend;
+
+#define LANGSTANDARD(id, name, desc, features) \
+ static const LangStandard Lang_##id = { name, desc, features };
+#include "clang/Frontend/LangStandards.def"
+
+const LangStandard &LangStandard::getLangStandardForKind(Kind K) {
+ switch (K) {
+ case lang_unspecified:
+ llvm::report_fatal_error("getLangStandardForKind() on unspecified kind");
+#define LANGSTANDARD(id, name, desc, features) \
+ case lang_##id: return Lang_##id;
+#include "clang/Frontend/LangStandards.def"
+ }
+ llvm_unreachable("Invalid language kind!");
+}
+
+const LangStandard *LangStandard::getLangStandardForName(StringRef Name) {
+ Kind K = llvm::StringSwitch<Kind>(Name)
+#define LANGSTANDARD(id, name, desc, features) \
+ .Case(name, lang_##id)
+#include "clang/Frontend/LangStandards.def"
+ .Default(lang_unspecified);
+ if (K == lang_unspecified)
+ return nullptr;
+
+ return &getLangStandardForKind(K);
+}
+
+
diff --git a/contrib/llvm/tools/clang/lib/Frontend/LayoutOverrideSource.cpp b/contrib/llvm/tools/clang/lib/Frontend/LayoutOverrideSource.cpp
new file mode 100644
index 0000000..924a640
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Frontend/LayoutOverrideSource.cpp
@@ -0,0 +1,208 @@
+//===--- LayoutOverrideSource.cpp --Override Record Layouts ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/Frontend/LayoutOverrideSource.h"
+#include "clang/AST/Decl.h"
+#include "clang/Basic/CharInfo.h"
+#include "llvm/Support/raw_ostream.h"
+#include <fstream>
+#include <string>
+
+using namespace clang;
+
+/// \brief Parse a simple identifier.
+static std::string parseName(StringRef S) {
+ if (S.empty() || !isIdentifierHead(S[0]))
+ return "";
+
+ unsigned Offset = 1;
+ while (Offset < S.size() && isIdentifierBody(S[Offset]))
+ ++Offset;
+
+ return S.substr(0, Offset).str();
+}
+
+LayoutOverrideSource::LayoutOverrideSource(StringRef Filename) {
+ std::ifstream Input(Filename.str().c_str());
+ if (!Input.is_open())
+ return;
+
+ // Parse the output of -fdump-record-layouts.
+ std::string CurrentType;
+ Layout CurrentLayout;
+ bool ExpectingType = false;
+
+ while (Input.good()) {
+ std::string Line;
+ getline(Input, Line);
+
+ StringRef LineStr(Line);
+
+ // Determine whether the following line will start a
+ if (LineStr.find("*** Dumping AST Record Layout") != StringRef::npos) {
+ // Flush the last type/layout, if there is one.
+ if (!CurrentType.empty())
+ Layouts[CurrentType] = CurrentLayout;
+ CurrentLayout = Layout();
+
+ ExpectingType = true;
+ continue;
+ }
+
+ // If we're expecting a type, grab it.
+ if (ExpectingType) {
+ ExpectingType = false;
+
+ StringRef::size_type Pos;
+ if ((Pos = LineStr.find("struct ")) != StringRef::npos)
+ LineStr = LineStr.substr(Pos + strlen("struct "));
+ else if ((Pos = LineStr.find("class ")) != StringRef::npos)
+ LineStr = LineStr.substr(Pos + strlen("class "));
+ else if ((Pos = LineStr.find("union ")) != StringRef::npos)
+ LineStr = LineStr.substr(Pos + strlen("union "));
+ else
+ continue;
+
+ // Find the name of the type.
+ CurrentType = parseName(LineStr);
+ CurrentLayout = Layout();
+ continue;
+ }
+
+ // Check for the size of the type.
+ StringRef::size_type Pos = LineStr.find(" Size:");
+ if (Pos != StringRef::npos) {
+ // Skip past the " Size:" prefix.
+ LineStr = LineStr.substr(Pos + strlen(" Size:"));
+
+ unsigned long long Size = 0;
+ (void)LineStr.getAsInteger(10, Size);
+ CurrentLayout.Size = Size;
+ continue;
+ }
+
+ // Check for the alignment of the type.
+ Pos = LineStr.find("Alignment:");
+ if (Pos != StringRef::npos) {
+ // Skip past the "Alignment:" prefix.
+ LineStr = LineStr.substr(Pos + strlen("Alignment:"));
+
+ unsigned long long Alignment = 0;
+ (void)LineStr.getAsInteger(10, Alignment);
+ CurrentLayout.Align = Alignment;
+ continue;
+ }
+
+ // Check for the size/alignment of the type.
+ Pos = LineStr.find("sizeof=");
+ if (Pos != StringRef::npos) {
+ /* Skip past the sizeof= prefix. */
+ LineStr = LineStr.substr(Pos + strlen("sizeof="));
+
+ // Parse size.
+ unsigned long long Size = 0;
+ (void)LineStr.getAsInteger(10, Size);
+ CurrentLayout.Size = Size;
+
+ Pos = LineStr.find("align=");
+ if (Pos != StringRef::npos) {
+ /* Skip past the align= prefix. */
+ LineStr = LineStr.substr(Pos + strlen("align="));
+
+ // Parse alignment.
+ unsigned long long Alignment = 0;
+ (void)LineStr.getAsInteger(10, Alignment);
+ CurrentLayout.Align = Alignment;
+ }
+
+ continue;
+ }
+
+ // Check for the field offsets of the type.
+ Pos = LineStr.find("FieldOffsets: [");
+ if (Pos == StringRef::npos)
+ continue;
+
+ LineStr = LineStr.substr(Pos + strlen("FieldOffsets: ["));
+ while (!LineStr.empty() && isDigit(LineStr[0])) {
+ // Parse this offset.
+ unsigned Idx = 1;
+ while (Idx < LineStr.size() && isDigit(LineStr[Idx]))
+ ++Idx;
+
+ unsigned long long Offset = 0;
+ (void)LineStr.substr(0, Idx).getAsInteger(10, Offset);
+
+ CurrentLayout.FieldOffsets.push_back(Offset);
+
+ // Skip over this offset, the following comma, and any spaces.
+ LineStr = LineStr.substr(Idx + 1);
+ while (!LineStr.empty() && isWhitespace(LineStr[0]))
+ LineStr = LineStr.substr(1);
+ }
+ }
+
+ // Flush the last type/layout, if there is one.
+ if (!CurrentType.empty())
+ Layouts[CurrentType] = CurrentLayout;
+}
+
+bool
+LayoutOverrideSource::layoutRecordType(const RecordDecl *Record,
+ uint64_t &Size, uint64_t &Alignment,
+ llvm::DenseMap<const FieldDecl *, uint64_t> &FieldOffsets,
+ llvm::DenseMap<const CXXRecordDecl *, CharUnits> &BaseOffsets,
+ llvm::DenseMap<const CXXRecordDecl *, CharUnits> &VirtualBaseOffsets)
+{
+ // We can't override unnamed declarations.
+ if (!Record->getIdentifier())
+ return false;
+
+ // Check whether we have a layout for this record.
+ llvm::StringMap<Layout>::iterator Known = Layouts.find(Record->getName());
+ if (Known == Layouts.end())
+ return false;
+
+ // Provide field layouts.
+ unsigned NumFields = 0;
+ for (RecordDecl::field_iterator F = Record->field_begin(),
+ FEnd = Record->field_end();
+ F != FEnd; ++F, ++NumFields) {
+ if (NumFields >= Known->second.FieldOffsets.size())
+ continue;
+
+ FieldOffsets[*F] = Known->second.FieldOffsets[NumFields];
+ }
+
+ // Wrong number of fields.
+ if (NumFields != Known->second.FieldOffsets.size())
+ return false;
+
+ Size = Known->second.Size;
+ Alignment = Known->second.Align;
+ return true;
+}
+
+void LayoutOverrideSource::dump() {
+ raw_ostream &OS = llvm::errs();
+ for (llvm::StringMap<Layout>::iterator L = Layouts.begin(),
+ LEnd = Layouts.end();
+ L != LEnd; ++L) {
+ OS << "Type: blah " << L->first() << '\n';
+ OS << " Size:" << L->second.Size << '\n';
+ OS << " Alignment:" << L->second.Align << '\n';
+ OS << " FieldOffsets: [";
+ for (unsigned I = 0, N = L->second.FieldOffsets.size(); I != N; ++I) {
+ if (I)
+ OS << ", ";
+ OS << L->second.FieldOffsets[I];
+ }
+ OS << "]\n";
+ }
+}
+
diff --git a/contrib/llvm/tools/clang/lib/Frontend/LogDiagnosticPrinter.cpp b/contrib/llvm/tools/clang/lib/Frontend/LogDiagnosticPrinter.cpp
new file mode 100644
index 0000000..c6a18e0
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Frontend/LogDiagnosticPrinter.cpp
@@ -0,0 +1,165 @@
+//===--- LogDiagnosticPrinter.cpp - Log Diagnostic Printer ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Frontend/LogDiagnosticPrinter.h"
+#include "clang/Basic/DiagnosticOptions.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/PlistSupport.h"
+#include "clang/Basic/SourceManager.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace clang;
+using namespace markup;
+
+LogDiagnosticPrinter::LogDiagnosticPrinter(
+ raw_ostream &os, DiagnosticOptions *diags,
+ std::unique_ptr<raw_ostream> StreamOwner)
+ : OS(os), StreamOwner(std::move(StreamOwner)), LangOpts(nullptr),
+ DiagOpts(diags) {}
+
+static StringRef getLevelName(DiagnosticsEngine::Level Level) {
+ switch (Level) {
+ case DiagnosticsEngine::Ignored: return "ignored";
+ case DiagnosticsEngine::Remark: return "remark";
+ case DiagnosticsEngine::Note: return "note";
+ case DiagnosticsEngine::Warning: return "warning";
+ case DiagnosticsEngine::Error: return "error";
+ case DiagnosticsEngine::Fatal: return "fatal error";
+ }
+ llvm_unreachable("Invalid DiagnosticsEngine level!");
+}
+
+void
+LogDiagnosticPrinter::EmitDiagEntry(llvm::raw_ostream &OS,
+ const LogDiagnosticPrinter::DiagEntry &DE) {
+ OS << " <dict>\n";
+ OS << " <key>level</key>\n"
+ << " ";
+ EmitString(OS, getLevelName(DE.DiagnosticLevel)) << '\n';
+ if (!DE.Filename.empty()) {
+ OS << " <key>filename</key>\n"
+ << " ";
+ EmitString(OS, DE.Filename) << '\n';
+ }
+ if (DE.Line != 0) {
+ OS << " <key>line</key>\n"
+ << " ";
+ EmitInteger(OS, DE.Line) << '\n';
+ }
+ if (DE.Column != 0) {
+ OS << " <key>column</key>\n"
+ << " ";
+ EmitInteger(OS, DE.Column) << '\n';
+ }
+ if (!DE.Message.empty()) {
+ OS << " <key>message</key>\n"
+ << " ";
+ EmitString(OS, DE.Message) << '\n';
+ }
+ OS << " <key>ID</key>\n"
+ << " ";
+ EmitInteger(OS, DE.DiagnosticID) << '\n';
+ if (!DE.WarningOption.empty()) {
+ OS << " <key>WarningOption</key>\n"
+ << " ";
+ EmitString(OS, DE.WarningOption) << '\n';
+ }
+ OS << " </dict>\n";
+}
+
+void LogDiagnosticPrinter::EndSourceFile() {
+ // We emit all the diagnostics in EndSourceFile. However, we don't emit any
+ // entry if no diagnostics were present.
+ //
+ // Note that DiagnosticConsumer has no "end-of-compilation" callback, so we
+ // will miss any diagnostics which are emitted after and outside the
+ // translation unit processing.
+ if (Entries.empty())
+ return;
+
+ // Write to a temporary string to ensure atomic write of diagnostic object.
+ SmallString<512> Msg;
+ llvm::raw_svector_ostream OS(Msg);
+
+ OS << "<dict>\n";
+ if (!MainFilename.empty()) {
+ OS << " <key>main-file</key>\n"
+ << " ";
+ EmitString(OS, MainFilename) << '\n';
+ }
+ if (!DwarfDebugFlags.empty()) {
+ OS << " <key>dwarf-debug-flags</key>\n"
+ << " ";
+ EmitString(OS, DwarfDebugFlags) << '\n';
+ }
+ OS << " <key>diagnostics</key>\n";
+ OS << " <array>\n";
+ for (auto &DE : Entries)
+ EmitDiagEntry(OS, DE);
+ OS << " </array>\n";
+ OS << "</dict>\n";
+
+ this->OS << OS.str();
+}
+
+void LogDiagnosticPrinter::HandleDiagnostic(DiagnosticsEngine::Level Level,
+ const Diagnostic &Info) {
+ // Default implementation (Warnings/errors count).
+ DiagnosticConsumer::HandleDiagnostic(Level, Info);
+
+ // Initialize the main file name, if we haven't already fetched it.
+ if (MainFilename.empty() && Info.hasSourceManager()) {
+ const SourceManager &SM = Info.getSourceManager();
+ FileID FID = SM.getMainFileID();
+ if (!FID.isInvalid()) {
+ const FileEntry *FE = SM.getFileEntryForID(FID);
+ if (FE && FE->isValid())
+ MainFilename = FE->getName();
+ }
+ }
+
+ // Create the diag entry.
+ DiagEntry DE;
+ DE.DiagnosticID = Info.getID();
+ DE.DiagnosticLevel = Level;
+
+ DE.WarningOption = DiagnosticIDs::getWarningOptionForDiag(DE.DiagnosticID);
+
+ // Format the message.
+ SmallString<100> MessageStr;
+ Info.FormatDiagnostic(MessageStr);
+ DE.Message = MessageStr.str();
+
+ // Set the location information.
+ DE.Filename = "";
+ DE.Line = DE.Column = 0;
+ if (Info.getLocation().isValid() && Info.hasSourceManager()) {
+ const SourceManager &SM = Info.getSourceManager();
+ PresumedLoc PLoc = SM.getPresumedLoc(Info.getLocation());
+
+ if (PLoc.isInvalid()) {
+ // At least print the file name if available:
+ FileID FID = SM.getFileID(Info.getLocation());
+ if (!FID.isInvalid()) {
+ const FileEntry *FE = SM.getFileEntryForID(FID);
+ if (FE && FE->isValid())
+ DE.Filename = FE->getName();
+ }
+ } else {
+ DE.Filename = PLoc.getFilename();
+ DE.Line = PLoc.getLine();
+ DE.Column = PLoc.getColumn();
+ }
+ }
+
+ // Record the diagnostic entry.
+ Entries.push_back(DE);
+}
+
diff --git a/contrib/llvm/tools/clang/lib/Frontend/ModuleDependencyCollector.cpp b/contrib/llvm/tools/clang/lib/Frontend/ModuleDependencyCollector.cpp
new file mode 100644
index 0000000..67852dc
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Frontend/ModuleDependencyCollector.cpp
@@ -0,0 +1,93 @@
+//===--- ModuleDependencyCollector.cpp - Collect module dependencies ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Collect the dependencies of a set of modules.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Frontend/Utils.h"
+#include "clang/Serialization/ASTReader.h"
+#include "llvm/ADT/StringSet.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+
+namespace {
+/// Private implementation for ModuleDependencyCollector
+class ModuleDependencyListener : public ASTReaderListener {
+ ModuleDependencyCollector &Collector;
+
+ std::error_code copyToRoot(StringRef Src);
+public:
+ ModuleDependencyListener(ModuleDependencyCollector &Collector)
+ : Collector(Collector) {}
+ bool needsInputFileVisitation() override { return true; }
+ bool needsSystemInputFileVisitation() override { return true; }
+ bool visitInputFile(StringRef Filename, bool IsSystem,
+ bool IsOverridden) override;
+};
+}
+
+void ModuleDependencyCollector::attachToASTReader(ASTReader &R) {
+ R.addListener(llvm::make_unique<ModuleDependencyListener>(*this));
+}
+
+void ModuleDependencyCollector::writeFileMap() {
+ if (Seen.empty())
+ return;
+
+ SmallString<256> Dest = getDest();
+ llvm::sys::path::append(Dest, "vfs.yaml");
+
+ std::error_code EC;
+ llvm::raw_fd_ostream OS(Dest, EC, llvm::sys::fs::F_Text);
+ if (EC) {
+ setHasErrors();
+ return;
+ }
+ VFSWriter.write(OS);
+}
+
+std::error_code ModuleDependencyListener::copyToRoot(StringRef Src) {
+ using namespace llvm::sys;
+
+ // We need an absolute path to append to the root.
+ SmallString<256> AbsoluteSrc = Src;
+ fs::make_absolute(AbsoluteSrc);
+ // Canonicalize to a native path to avoid mixed separator styles.
+ path::native(AbsoluteSrc);
+ // TODO: We probably need to handle .. as well as . in order to have valid
+ // input to the YAMLVFSWriter.
+ FileManager::removeDotPaths(AbsoluteSrc);
+
+ // Build the destination path.
+ SmallString<256> Dest = Collector.getDest();
+ path::append(Dest, path::relative_path(AbsoluteSrc));
+
+ // Copy the file into place.
+ if (std::error_code EC = fs::create_directories(path::parent_path(Dest),
+ /*IgnoreExisting=*/true))
+ return EC;
+ if (std::error_code EC = fs::copy_file(AbsoluteSrc, Dest))
+ return EC;
+ // Use the absolute path under the root for the file mapping.
+ Collector.addFileMapping(AbsoluteSrc, Dest);
+ return std::error_code();
+}
+
+bool ModuleDependencyListener::visitInputFile(StringRef Filename, bool IsSystem,
+ bool IsOverridden) {
+ if (Collector.insertSeen(Filename))
+ if (copyToRoot(Filename))
+ Collector.setHasErrors();
+ return true;
+}
diff --git a/contrib/llvm/tools/clang/lib/Frontend/MultiplexConsumer.cpp b/contrib/llvm/tools/clang/lib/Frontend/MultiplexConsumer.cpp
new file mode 100644
index 0000000..219e949
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Frontend/MultiplexConsumer.cpp
@@ -0,0 +1,337 @@
+//===- MultiplexConsumer.cpp - AST Consumer for PCH Generation --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the MultiplexConsumer class. It also declares and defines
+// MultiplexASTDeserializationListener and MultiplexASTMutationListener, which
+// are implementation details of MultiplexConsumer.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Frontend/MultiplexConsumer.h"
+#include "clang/AST/ASTMutationListener.h"
+#include "clang/AST/DeclGroup.h"
+#include "clang/Serialization/ASTDeserializationListener.h"
+
+using namespace clang;
+
+namespace clang {
+
+// This ASTDeserializationListener forwards its notifications to a set of
+// child listeners.
+class MultiplexASTDeserializationListener
+ : public ASTDeserializationListener {
+public:
+ // Does NOT take ownership of the elements in L.
+ MultiplexASTDeserializationListener(
+ const std::vector<ASTDeserializationListener*>& L);
+ void ReaderInitialized(ASTReader *Reader) override;
+ void IdentifierRead(serialization::IdentID ID,
+ IdentifierInfo *II) override;
+ void TypeRead(serialization::TypeIdx Idx, QualType T) override;
+ void DeclRead(serialization::DeclID ID, const Decl *D) override;
+ void SelectorRead(serialization::SelectorID iD, Selector Sel) override;
+ void MacroDefinitionRead(serialization::PreprocessedEntityID,
+ MacroDefinitionRecord *MD) override;
+
+private:
+ std::vector<ASTDeserializationListener *> Listeners;
+};
+
+MultiplexASTDeserializationListener::MultiplexASTDeserializationListener(
+ const std::vector<ASTDeserializationListener*>& L)
+ : Listeners(L) {
+}
+
+void MultiplexASTDeserializationListener::ReaderInitialized(
+ ASTReader *Reader) {
+ for (size_t i = 0, e = Listeners.size(); i != e; ++i)
+ Listeners[i]->ReaderInitialized(Reader);
+}
+
+void MultiplexASTDeserializationListener::IdentifierRead(
+ serialization::IdentID ID, IdentifierInfo *II) {
+ for (size_t i = 0, e = Listeners.size(); i != e; ++i)
+ Listeners[i]->IdentifierRead(ID, II);
+}
+
+void MultiplexASTDeserializationListener::TypeRead(
+ serialization::TypeIdx Idx, QualType T) {
+ for (size_t i = 0, e = Listeners.size(); i != e; ++i)
+ Listeners[i]->TypeRead(Idx, T);
+}
+
+void MultiplexASTDeserializationListener::DeclRead(
+ serialization::DeclID ID, const Decl *D) {
+ for (size_t i = 0, e = Listeners.size(); i != e; ++i)
+ Listeners[i]->DeclRead(ID, D);
+}
+
+void MultiplexASTDeserializationListener::SelectorRead(
+ serialization::SelectorID ID, Selector Sel) {
+ for (size_t i = 0, e = Listeners.size(); i != e; ++i)
+ Listeners[i]->SelectorRead(ID, Sel);
+}
+
+void MultiplexASTDeserializationListener::MacroDefinitionRead(
+ serialization::PreprocessedEntityID ID, MacroDefinitionRecord *MD) {
+ for (size_t i = 0, e = Listeners.size(); i != e; ++i)
+ Listeners[i]->MacroDefinitionRead(ID, MD);
+}
+
+// This ASTMutationListener forwards its notifications to a set of
+// child listeners.
+class MultiplexASTMutationListener : public ASTMutationListener {
+public:
+ // Does NOT take ownership of the elements in L.
+ MultiplexASTMutationListener(ArrayRef<ASTMutationListener*> L);
+ void CompletedTagDefinition(const TagDecl *D) override;
+ void AddedVisibleDecl(const DeclContext *DC, const Decl *D) override;
+ void AddedCXXImplicitMember(const CXXRecordDecl *RD, const Decl *D) override;
+ void AddedCXXTemplateSpecialization(const ClassTemplateDecl *TD,
+ const ClassTemplateSpecializationDecl *D) override;
+ void AddedCXXTemplateSpecialization(const VarTemplateDecl *TD,
+ const VarTemplateSpecializationDecl *D) override;
+ void AddedCXXTemplateSpecialization(const FunctionTemplateDecl *TD,
+ const FunctionDecl *D) override;
+ void DeducedReturnType(const FunctionDecl *FD, QualType ReturnType) override;
+ void ResolvedOperatorDelete(const CXXDestructorDecl *DD,
+ const FunctionDecl *Delete) override;
+ void CompletedImplicitDefinition(const FunctionDecl *D) override;
+ void StaticDataMemberInstantiated(const VarDecl *D) override;
+ void AddedObjCCategoryToInterface(const ObjCCategoryDecl *CatD,
+ const ObjCInterfaceDecl *IFD) override;
+ void AddedObjCPropertyInClassExtension(const ObjCPropertyDecl *Prop,
+ const ObjCPropertyDecl *OrigProp,
+ const ObjCCategoryDecl *ClassExt) override;
+ void DeclarationMarkedUsed(const Decl *D) override;
+ void DeclarationMarkedOpenMPThreadPrivate(const Decl *D) override;
+ void RedefinedHiddenDefinition(const NamedDecl *D, Module *M) override;
+
+private:
+ std::vector<ASTMutationListener*> Listeners;
+};
+
+MultiplexASTMutationListener::MultiplexASTMutationListener(
+ ArrayRef<ASTMutationListener*> L)
+ : Listeners(L.begin(), L.end()) {
+}
+
+void MultiplexASTMutationListener::CompletedTagDefinition(const TagDecl *D) {
+ for (size_t i = 0, e = Listeners.size(); i != e; ++i)
+ Listeners[i]->CompletedTagDefinition(D);
+}
+
+void MultiplexASTMutationListener::AddedVisibleDecl(
+ const DeclContext *DC, const Decl *D) {
+ for (size_t i = 0, e = Listeners.size(); i != e; ++i)
+ Listeners[i]->AddedVisibleDecl(DC, D);
+}
+
+void MultiplexASTMutationListener::AddedCXXImplicitMember(
+ const CXXRecordDecl *RD, const Decl *D) {
+ for (size_t i = 0, e = Listeners.size(); i != e; ++i)
+ Listeners[i]->AddedCXXImplicitMember(RD, D);
+}
+void MultiplexASTMutationListener::AddedCXXTemplateSpecialization(
+ const ClassTemplateDecl *TD, const ClassTemplateSpecializationDecl *D) {
+ for (size_t i = 0, e = Listeners.size(); i != e; ++i)
+ Listeners[i]->AddedCXXTemplateSpecialization(TD, D);
+}
+void MultiplexASTMutationListener::AddedCXXTemplateSpecialization(
+ const VarTemplateDecl *TD, const VarTemplateSpecializationDecl *D) {
+ for (size_t i = 0, e = Listeners.size(); i != e; ++i)
+ Listeners[i]->AddedCXXTemplateSpecialization(TD, D);
+}
+void MultiplexASTMutationListener::AddedCXXTemplateSpecialization(
+ const FunctionTemplateDecl *TD, const FunctionDecl *D) {
+ for (size_t i = 0, e = Listeners.size(); i != e; ++i)
+ Listeners[i]->AddedCXXTemplateSpecialization(TD, D);
+}
+void MultiplexASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
+ QualType ReturnType) {
+ for (size_t i = 0, e = Listeners.size(); i != e; ++i)
+ Listeners[i]->DeducedReturnType(FD, ReturnType);
+}
+void MultiplexASTMutationListener::ResolvedOperatorDelete(
+ const CXXDestructorDecl *DD, const FunctionDecl *Delete) {
+ for (auto *L : Listeners)
+ L->ResolvedOperatorDelete(DD, Delete);
+}
+void MultiplexASTMutationListener::CompletedImplicitDefinition(
+ const FunctionDecl *D) {
+ for (size_t i = 0, e = Listeners.size(); i != e; ++i)
+ Listeners[i]->CompletedImplicitDefinition(D);
+}
+void MultiplexASTMutationListener::StaticDataMemberInstantiated(
+ const VarDecl *D) {
+ for (size_t i = 0, e = Listeners.size(); i != e; ++i)
+ Listeners[i]->StaticDataMemberInstantiated(D);
+}
+void MultiplexASTMutationListener::AddedObjCCategoryToInterface(
+ const ObjCCategoryDecl *CatD,
+ const ObjCInterfaceDecl *IFD) {
+ for (size_t i = 0, e = Listeners.size(); i != e; ++i)
+ Listeners[i]->AddedObjCCategoryToInterface(CatD, IFD);
+}
+void MultiplexASTMutationListener::AddedObjCPropertyInClassExtension(
+ const ObjCPropertyDecl *Prop,
+ const ObjCPropertyDecl *OrigProp,
+ const ObjCCategoryDecl *ClassExt) {
+ for (size_t i = 0, e = Listeners.size(); i != e; ++i)
+ Listeners[i]->AddedObjCPropertyInClassExtension(Prop, OrigProp, ClassExt);
+}
+void MultiplexASTMutationListener::DeclarationMarkedUsed(const Decl *D) {
+ for (size_t i = 0, e = Listeners.size(); i != e; ++i)
+ Listeners[i]->DeclarationMarkedUsed(D);
+}
+void MultiplexASTMutationListener::DeclarationMarkedOpenMPThreadPrivate(
+ const Decl *D) {
+ for (size_t i = 0, e = Listeners.size(); i != e; ++i)
+ Listeners[i]->DeclarationMarkedOpenMPThreadPrivate(D);
+}
+void MultiplexASTMutationListener::RedefinedHiddenDefinition(const NamedDecl *D,
+ Module *M) {
+ for (auto *L : Listeners)
+ L->RedefinedHiddenDefinition(D, M);
+}
+
+} // end namespace clang
+
+MultiplexConsumer::MultiplexConsumer(
+ std::vector<std::unique_ptr<ASTConsumer>> C)
+ : Consumers(std::move(C)), MutationListener(), DeserializationListener() {
+ // Collect the mutation listeners and deserialization listeners of all
+ // children, and create a multiplex listener each if so.
+ std::vector<ASTMutationListener*> mutationListeners;
+ std::vector<ASTDeserializationListener*> serializationListeners;
+ for (auto &Consumer : Consumers) {
+ if (auto *mutationListener = Consumer->GetASTMutationListener())
+ mutationListeners.push_back(mutationListener);
+ if (auto *serializationListener = Consumer->GetASTDeserializationListener())
+ serializationListeners.push_back(serializationListener);
+ }
+ if (!mutationListeners.empty()) {
+ MutationListener =
+ llvm::make_unique<MultiplexASTMutationListener>(mutationListeners);
+ }
+ if (!serializationListeners.empty()) {
+ DeserializationListener =
+ llvm::make_unique<MultiplexASTDeserializationListener>(
+ serializationListeners);
+ }
+}
+
+MultiplexConsumer::~MultiplexConsumer() {}
+
+void MultiplexConsumer::Initialize(ASTContext &Context) {
+ for (auto &Consumer : Consumers)
+ Consumer->Initialize(Context);
+}
+
+bool MultiplexConsumer::HandleTopLevelDecl(DeclGroupRef D) {
+ bool Continue = true;
+ for (auto &Consumer : Consumers)
+ Continue = Continue && Consumer->HandleTopLevelDecl(D);
+ return Continue;
+}
+
+void MultiplexConsumer::HandleInlineMethodDefinition(CXXMethodDecl *D) {
+ for (auto &Consumer : Consumers)
+ Consumer->HandleInlineMethodDefinition(D);
+}
+
+void MultiplexConsumer::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
+ for (auto &Consumer : Consumers)
+ Consumer->HandleCXXStaticMemberVarInstantiation(VD);
+}
+
+void MultiplexConsumer::HandleInterestingDecl(DeclGroupRef D) {
+ for (auto &Consumer : Consumers)
+ Consumer->HandleInterestingDecl(D);
+}
+
+void MultiplexConsumer::HandleTranslationUnit(ASTContext &Ctx) {
+ for (auto &Consumer : Consumers)
+ Consumer->HandleTranslationUnit(Ctx);
+}
+
+void MultiplexConsumer::HandleTagDeclDefinition(TagDecl *D) {
+ for (auto &Consumer : Consumers)
+ Consumer->HandleTagDeclDefinition(D);
+}
+
+void MultiplexConsumer::HandleTagDeclRequiredDefinition(const TagDecl *D) {
+ for (auto &Consumer : Consumers)
+ Consumer->HandleTagDeclRequiredDefinition(D);
+}
+
+void MultiplexConsumer::HandleCXXImplicitFunctionInstantiation(FunctionDecl *D){
+ for (auto &Consumer : Consumers)
+ Consumer->HandleCXXImplicitFunctionInstantiation(D);
+}
+
+void MultiplexConsumer::HandleTopLevelDeclInObjCContainer(DeclGroupRef D) {
+ for (auto &Consumer : Consumers)
+ Consumer->HandleTopLevelDeclInObjCContainer(D);
+}
+
+void MultiplexConsumer::HandleImplicitImportDecl(ImportDecl *D) {
+ for (auto &Consumer : Consumers)
+ Consumer->HandleImplicitImportDecl(D);
+}
+
+void MultiplexConsumer::HandleLinkerOptionPragma(llvm::StringRef Opts) {
+ for (auto &Consumer : Consumers)
+ Consumer->HandleLinkerOptionPragma(Opts);
+}
+
+void MultiplexConsumer::HandleDetectMismatch(llvm::StringRef Name, llvm::StringRef Value) {
+ for (auto &Consumer : Consumers)
+ Consumer->HandleDetectMismatch(Name, Value);
+}
+
+void MultiplexConsumer::HandleDependentLibrary(llvm::StringRef Lib) {
+ for (auto &Consumer : Consumers)
+ Consumer->HandleDependentLibrary(Lib);
+}
+
+void MultiplexConsumer::CompleteTentativeDefinition(VarDecl *D) {
+ for (auto &Consumer : Consumers)
+ Consumer->CompleteTentativeDefinition(D);
+}
+
+void MultiplexConsumer::HandleVTable(CXXRecordDecl *RD) {
+ for (auto &Consumer : Consumers)
+ Consumer->HandleVTable(RD);
+}
+
+ASTMutationListener *MultiplexConsumer::GetASTMutationListener() {
+ return MutationListener.get();
+}
+
+ASTDeserializationListener *MultiplexConsumer::GetASTDeserializationListener() {
+ return DeserializationListener.get();
+}
+
+void MultiplexConsumer::PrintStats() {
+ for (auto &Consumer : Consumers)
+ Consumer->PrintStats();
+}
+
+void MultiplexConsumer::InitializeSema(Sema &S) {
+ for (auto &Consumer : Consumers)
+ if (SemaConsumer *SC = dyn_cast<SemaConsumer>(Consumer.get()))
+ SC->InitializeSema(S);
+}
+
+void MultiplexConsumer::ForgetSema() {
+ for (auto &Consumer : Consumers)
+ if (SemaConsumer *SC = dyn_cast<SemaConsumer>(Consumer.get()))
+ SC->ForgetSema();
+}
diff --git a/contrib/llvm/tools/clang/lib/Frontend/PrintPreprocessedOutput.cpp b/contrib/llvm/tools/clang/lib/Frontend/PrintPreprocessedOutput.cpp
new file mode 100644
index 0000000..037a6a5
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Frontend/PrintPreprocessedOutput.cpp
@@ -0,0 +1,752 @@
+//===--- PrintPreprocessedOutput.cpp - Implement the -E mode --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This code simply runs the preprocessor on the input file and prints out the
+// result. This is the traditional behavior of the -E option.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Frontend/Utils.h"
+#include "clang/Basic/CharInfo.h"
+#include "clang/Basic/Diagnostic.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Frontend/PreprocessorOutputOptions.h"
+#include "clang/Lex/MacroInfo.h"
+#include "clang/Lex/PPCallbacks.h"
+#include "clang/Lex/Pragma.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Lex/TokenConcatenation.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cstdio>
+using namespace clang;
+
+/// PrintMacroDefinition - Print a macro definition in a form that will be
+/// properly accepted back as a definition.
+static void PrintMacroDefinition(const IdentifierInfo &II, const MacroInfo &MI,
+ Preprocessor &PP, raw_ostream &OS) {
+ OS << "#define " << II.getName();
+
+ if (MI.isFunctionLike()) {
+ OS << '(';
+ if (!MI.arg_empty()) {
+ MacroInfo::arg_iterator AI = MI.arg_begin(), E = MI.arg_end();
+ for (; AI+1 != E; ++AI) {
+ OS << (*AI)->getName();
+ OS << ',';
+ }
+
+ // Last argument.
+ if ((*AI)->getName() == "__VA_ARGS__")
+ OS << "...";
+ else
+ OS << (*AI)->getName();
+ }
+
+ if (MI.isGNUVarargs())
+ OS << "..."; // #define foo(x...)
+
+ OS << ')';
+ }
+
+ // GCC always emits a space, even if the macro body is empty. However, do not
+ // want to emit two spaces if the first token has a leading space.
+ if (MI.tokens_empty() || !MI.tokens_begin()->hasLeadingSpace())
+ OS << ' ';
+
+ SmallString<128> SpellingBuffer;
+ for (const auto &T : MI.tokens()) {
+ if (T.hasLeadingSpace())
+ OS << ' ';
+
+ OS << PP.getSpelling(T, SpellingBuffer);
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Preprocessed token printer
+//===----------------------------------------------------------------------===//
+
+namespace {
+class PrintPPOutputPPCallbacks : public PPCallbacks {
+ Preprocessor &PP;
+ SourceManager &SM;
+ TokenConcatenation ConcatInfo;
+public:
+ raw_ostream &OS;
+private:
+ unsigned CurLine;
+
+ bool EmittedTokensOnThisLine;
+ bool EmittedDirectiveOnThisLine;
+ SrcMgr::CharacteristicKind FileType;
+ SmallString<512> CurFilename;
+ bool Initialized;
+ bool DisableLineMarkers;
+ bool DumpDefines;
+ bool UseLineDirectives;
+ bool IsFirstFileEntered;
+public:
+ PrintPPOutputPPCallbacks(Preprocessor &pp, raw_ostream &os, bool lineMarkers,
+ bool defines, bool UseLineDirectives)
+ : PP(pp), SM(PP.getSourceManager()), ConcatInfo(PP), OS(os),
+ DisableLineMarkers(lineMarkers), DumpDefines(defines),
+ UseLineDirectives(UseLineDirectives) {
+ CurLine = 0;
+ CurFilename += "<uninit>";
+ EmittedTokensOnThisLine = false;
+ EmittedDirectiveOnThisLine = false;
+ FileType = SrcMgr::C_User;
+ Initialized = false;
+ IsFirstFileEntered = false;
+ }
+
+ void setEmittedTokensOnThisLine() { EmittedTokensOnThisLine = true; }
+ bool hasEmittedTokensOnThisLine() const { return EmittedTokensOnThisLine; }
+
+ void setEmittedDirectiveOnThisLine() { EmittedDirectiveOnThisLine = true; }
+ bool hasEmittedDirectiveOnThisLine() const {
+ return EmittedDirectiveOnThisLine;
+ }
+
+ bool startNewLineIfNeeded(bool ShouldUpdateCurrentLine = true);
+
+ void FileChanged(SourceLocation Loc, FileChangeReason Reason,
+ SrcMgr::CharacteristicKind FileType,
+ FileID PrevFID) override;
+ void InclusionDirective(SourceLocation HashLoc, const Token &IncludeTok,
+ StringRef FileName, bool IsAngled,
+ CharSourceRange FilenameRange, const FileEntry *File,
+ StringRef SearchPath, StringRef RelativePath,
+ const Module *Imported) override;
+ void Ident(SourceLocation Loc, const std::string &str) override;
+ void PragmaMessage(SourceLocation Loc, StringRef Namespace,
+ PragmaMessageKind Kind, StringRef Str) override;
+ void PragmaDebug(SourceLocation Loc, StringRef DebugType) override;
+ void PragmaDiagnosticPush(SourceLocation Loc, StringRef Namespace) override;
+ void PragmaDiagnosticPop(SourceLocation Loc, StringRef Namespace) override;
+ void PragmaDiagnostic(SourceLocation Loc, StringRef Namespace,
+ diag::Severity Map, StringRef Str) override;
+ void PragmaWarning(SourceLocation Loc, StringRef WarningSpec,
+ ArrayRef<int> Ids) override;
+ void PragmaWarningPush(SourceLocation Loc, int Level) override;
+ void PragmaWarningPop(SourceLocation Loc) override;
+
+ bool HandleFirstTokOnLine(Token &Tok);
+
+ /// Move to the line of the provided source location. This will
+ /// return true if the output stream required adjustment or if
+ /// the requested location is on the first line.
+ bool MoveToLine(SourceLocation Loc) {
+ PresumedLoc PLoc = SM.getPresumedLoc(Loc);
+ if (PLoc.isInvalid())
+ return false;
+ return MoveToLine(PLoc.getLine()) || (PLoc.getLine() == 1);
+ }
+ bool MoveToLine(unsigned LineNo);
+
+ bool AvoidConcat(const Token &PrevPrevTok, const Token &PrevTok,
+ const Token &Tok) {
+ return ConcatInfo.AvoidConcat(PrevPrevTok, PrevTok, Tok);
+ }
+ void WriteLineInfo(unsigned LineNo, const char *Extra=nullptr,
+ unsigned ExtraLen=0);
+ bool LineMarkersAreDisabled() const { return DisableLineMarkers; }
+ void HandleNewlinesInToken(const char *TokStr, unsigned Len);
+
+ /// MacroDefined - This hook is called whenever a macro definition is seen.
+ void MacroDefined(const Token &MacroNameTok,
+ const MacroDirective *MD) override;
+
+ /// MacroUndefined - This hook is called whenever a macro #undef is seen.
+ void MacroUndefined(const Token &MacroNameTok,
+ const MacroDefinition &MD) override;
+};
+} // end anonymous namespace
+
+void PrintPPOutputPPCallbacks::WriteLineInfo(unsigned LineNo,
+ const char *Extra,
+ unsigned ExtraLen) {
+ startNewLineIfNeeded(/*ShouldUpdateCurrentLine=*/false);
+
+ // Emit #line directives or GNU line markers depending on what mode we're in.
+ if (UseLineDirectives) {
+ OS << "#line" << ' ' << LineNo << ' ' << '"';
+ OS.write_escaped(CurFilename);
+ OS << '"';
+ } else {
+ OS << '#' << ' ' << LineNo << ' ' << '"';
+ OS.write_escaped(CurFilename);
+ OS << '"';
+
+ if (ExtraLen)
+ OS.write(Extra, ExtraLen);
+
+ if (FileType == SrcMgr::C_System)
+ OS.write(" 3", 2);
+ else if (FileType == SrcMgr::C_ExternCSystem)
+ OS.write(" 3 4", 4);
+ }
+ OS << '\n';
+}
+
+/// MoveToLine - Move the output to the source line specified by the location
+/// object. We can do this by emitting some number of \n's, or be emitting a
+/// #line directive. This returns false if already at the specified line, true
+/// if some newlines were emitted.
+bool PrintPPOutputPPCallbacks::MoveToLine(unsigned LineNo) {
+ // If this line is "close enough" to the original line, just print newlines,
+ // otherwise print a #line directive.
+ if (LineNo-CurLine <= 8) {
+ if (LineNo-CurLine == 1)
+ OS << '\n';
+ else if (LineNo == CurLine)
+ return false; // Spelling line moved, but expansion line didn't.
+ else {
+ const char *NewLines = "\n\n\n\n\n\n\n\n";
+ OS.write(NewLines, LineNo-CurLine);
+ }
+ } else if (!DisableLineMarkers) {
+ // Emit a #line or line marker.
+ WriteLineInfo(LineNo, nullptr, 0);
+ } else {
+ // Okay, we're in -P mode, which turns off line markers. However, we still
+ // need to emit a newline between tokens on different lines.
+ startNewLineIfNeeded(/*ShouldUpdateCurrentLine=*/false);
+ }
+
+ CurLine = LineNo;
+ return true;
+}
+
+bool
+PrintPPOutputPPCallbacks::startNewLineIfNeeded(bool ShouldUpdateCurrentLine) {
+ if (EmittedTokensOnThisLine || EmittedDirectiveOnThisLine) {
+ OS << '\n';
+ EmittedTokensOnThisLine = false;
+ EmittedDirectiveOnThisLine = false;
+ if (ShouldUpdateCurrentLine)
+ ++CurLine;
+ return true;
+ }
+
+ return false;
+}
+
+/// FileChanged - Whenever the preprocessor enters or exits a #include file
+/// it invokes this handler. Update our conception of the current source
+/// position.
+void PrintPPOutputPPCallbacks::FileChanged(SourceLocation Loc,
+ FileChangeReason Reason,
+ SrcMgr::CharacteristicKind NewFileType,
+ FileID PrevFID) {
+ // Unless we are exiting a #include, make sure to skip ahead to the line the
+ // #include directive was at.
+ SourceManager &SourceMgr = SM;
+
+ PresumedLoc UserLoc = SourceMgr.getPresumedLoc(Loc);
+ if (UserLoc.isInvalid())
+ return;
+
+ unsigned NewLine = UserLoc.getLine();
+
+ if (Reason == PPCallbacks::EnterFile) {
+ SourceLocation IncludeLoc = UserLoc.getIncludeLoc();
+ if (IncludeLoc.isValid())
+ MoveToLine(IncludeLoc);
+ } else if (Reason == PPCallbacks::SystemHeaderPragma) {
+ // GCC emits the # directive for this directive on the line AFTER the
+ // directive and emits a bunch of spaces that aren't needed. This is because
+ // otherwise we will emit a line marker for THIS line, which requires an
+ // extra blank line after the directive to avoid making all following lines
+ // off by one. We can do better by simply incrementing NewLine here.
+ NewLine += 1;
+ }
+
+ CurLine = NewLine;
+
+ CurFilename.clear();
+ CurFilename += UserLoc.getFilename();
+ FileType = NewFileType;
+
+ if (DisableLineMarkers) {
+ startNewLineIfNeeded(/*ShouldUpdateCurrentLine=*/false);
+ return;
+ }
+
+ if (!Initialized) {
+ WriteLineInfo(CurLine);
+ Initialized = true;
+ }
+
+ // Do not emit an enter marker for the main file (which we expect is the first
+ // entered file). This matches gcc, and improves compatibility with some tools
+ // which track the # line markers as a way to determine when the preprocessed
+ // output is in the context of the main file.
+ if (Reason == PPCallbacks::EnterFile && !IsFirstFileEntered) {
+ IsFirstFileEntered = true;
+ return;
+ }
+
+ switch (Reason) {
+ case PPCallbacks::EnterFile:
+ WriteLineInfo(CurLine, " 1", 2);
+ break;
+ case PPCallbacks::ExitFile:
+ WriteLineInfo(CurLine, " 2", 2);
+ break;
+ case PPCallbacks::SystemHeaderPragma:
+ case PPCallbacks::RenameFile:
+ WriteLineInfo(CurLine);
+ break;
+ }
+}
+
+void PrintPPOutputPPCallbacks::InclusionDirective(SourceLocation HashLoc,
+ const Token &IncludeTok,
+ StringRef FileName,
+ bool IsAngled,
+ CharSourceRange FilenameRange,
+ const FileEntry *File,
+ StringRef SearchPath,
+ StringRef RelativePath,
+ const Module *Imported) {
+ // When preprocessing, turn implicit imports into @imports.
+ // FIXME: This is a stop-gap until a more comprehensive "preprocessing with
+ // modules" solution is introduced.
+ if (Imported) {
+ startNewLineIfNeeded();
+ MoveToLine(HashLoc);
+ OS << "@import " << Imported->getFullModuleName() << ";"
+ << " /* clang -E: implicit import for \"" << File->getName() << "\" */";
+ // Since we want a newline after the @import, but not a #<line>, start a new
+ // line immediately.
+ EmittedTokensOnThisLine = true;
+ startNewLineIfNeeded();
+ }
+}
+
+/// Ident - Handle #ident directives when read by the preprocessor.
+///
+void PrintPPOutputPPCallbacks::Ident(SourceLocation Loc, const std::string &S) {
+ MoveToLine(Loc);
+
+ OS.write("#ident ", strlen("#ident "));
+ OS.write(&S[0], S.size());
+ EmittedTokensOnThisLine = true;
+}
+
+/// MacroDefined - This hook is called whenever a macro definition is seen.
+void PrintPPOutputPPCallbacks::MacroDefined(const Token &MacroNameTok,
+ const MacroDirective *MD) {
+ const MacroInfo *MI = MD->getMacroInfo();
+ // Only print out macro definitions in -dD mode.
+ if (!DumpDefines ||
+ // Ignore __FILE__ etc.
+ MI->isBuiltinMacro()) return;
+
+ MoveToLine(MI->getDefinitionLoc());
+ PrintMacroDefinition(*MacroNameTok.getIdentifierInfo(), *MI, PP, OS);
+ setEmittedDirectiveOnThisLine();
+}
+
+void PrintPPOutputPPCallbacks::MacroUndefined(const Token &MacroNameTok,
+ const MacroDefinition &MD) {
+ // Only print out macro definitions in -dD mode.
+ if (!DumpDefines) return;
+
+ MoveToLine(MacroNameTok.getLocation());
+ OS << "#undef " << MacroNameTok.getIdentifierInfo()->getName();
+ setEmittedDirectiveOnThisLine();
+}
+
+static void outputPrintable(llvm::raw_ostream& OS,
+ const std::string &Str) {
+ for (unsigned i = 0, e = Str.size(); i != e; ++i) {
+ unsigned char Char = Str[i];
+ if (isPrintable(Char) && Char != '\\' && Char != '"')
+ OS << (char)Char;
+ else // Output anything hard as an octal escape.
+ OS << '\\'
+ << (char)('0'+ ((Char >> 6) & 7))
+ << (char)('0'+ ((Char >> 3) & 7))
+ << (char)('0'+ ((Char >> 0) & 7));
+ }
+}
+
+void PrintPPOutputPPCallbacks::PragmaMessage(SourceLocation Loc,
+ StringRef Namespace,
+ PragmaMessageKind Kind,
+ StringRef Str) {
+ startNewLineIfNeeded();
+ MoveToLine(Loc);
+ OS << "#pragma ";
+ if (!Namespace.empty())
+ OS << Namespace << ' ';
+ switch (Kind) {
+ case PMK_Message:
+ OS << "message(\"";
+ break;
+ case PMK_Warning:
+ OS << "warning \"";
+ break;
+ case PMK_Error:
+ OS << "error \"";
+ break;
+ }
+
+ outputPrintable(OS, Str);
+ OS << '"';
+ if (Kind == PMK_Message)
+ OS << ')';
+ setEmittedDirectiveOnThisLine();
+}
+
+void PrintPPOutputPPCallbacks::PragmaDebug(SourceLocation Loc,
+ StringRef DebugType) {
+ startNewLineIfNeeded();
+ MoveToLine(Loc);
+
+ OS << "#pragma clang __debug ";
+ OS << DebugType;
+
+ setEmittedDirectiveOnThisLine();
+}
+
+void PrintPPOutputPPCallbacks::
+PragmaDiagnosticPush(SourceLocation Loc, StringRef Namespace) {
+ startNewLineIfNeeded();
+ MoveToLine(Loc);
+ OS << "#pragma " << Namespace << " diagnostic push";
+ setEmittedDirectiveOnThisLine();
+}
+
+void PrintPPOutputPPCallbacks::
+PragmaDiagnosticPop(SourceLocation Loc, StringRef Namespace) {
+ startNewLineIfNeeded();
+ MoveToLine(Loc);
+ OS << "#pragma " << Namespace << " diagnostic pop";
+ setEmittedDirectiveOnThisLine();
+}
+
+void PrintPPOutputPPCallbacks::PragmaDiagnostic(SourceLocation Loc,
+ StringRef Namespace,
+ diag::Severity Map,
+ StringRef Str) {
+ startNewLineIfNeeded();
+ MoveToLine(Loc);
+ OS << "#pragma " << Namespace << " diagnostic ";
+ switch (Map) {
+ case diag::Severity::Remark:
+ OS << "remark";
+ break;
+ case diag::Severity::Warning:
+ OS << "warning";
+ break;
+ case diag::Severity::Error:
+ OS << "error";
+ break;
+ case diag::Severity::Ignored:
+ OS << "ignored";
+ break;
+ case diag::Severity::Fatal:
+ OS << "fatal";
+ break;
+ }
+ OS << " \"" << Str << '"';
+ setEmittedDirectiveOnThisLine();
+}
+
+void PrintPPOutputPPCallbacks::PragmaWarning(SourceLocation Loc,
+ StringRef WarningSpec,
+ ArrayRef<int> Ids) {
+ startNewLineIfNeeded();
+ MoveToLine(Loc);
+ OS << "#pragma warning(" << WarningSpec << ':';
+ for (ArrayRef<int>::iterator I = Ids.begin(), E = Ids.end(); I != E; ++I)
+ OS << ' ' << *I;
+ OS << ')';
+ setEmittedDirectiveOnThisLine();
+}
+
+void PrintPPOutputPPCallbacks::PragmaWarningPush(SourceLocation Loc,
+ int Level) {
+ startNewLineIfNeeded();
+ MoveToLine(Loc);
+ OS << "#pragma warning(push";
+ if (Level >= 0)
+ OS << ", " << Level;
+ OS << ')';
+ setEmittedDirectiveOnThisLine();
+}
+
+void PrintPPOutputPPCallbacks::PragmaWarningPop(SourceLocation Loc) {
+ startNewLineIfNeeded();
+ MoveToLine(Loc);
+ OS << "#pragma warning(pop)";
+ setEmittedDirectiveOnThisLine();
+}
+
+/// HandleFirstTokOnLine - When emitting a preprocessed file in -E mode, this
+/// is called for the first token on each new line. If this really is the start
+/// of a new logical line, handle it and return true, otherwise return false.
+/// This may not be the start of a logical line because the "start of line"
+/// marker is set for spelling lines, not expansion ones.
+bool PrintPPOutputPPCallbacks::HandleFirstTokOnLine(Token &Tok) {
+ // Figure out what line we went to and insert the appropriate number of
+ // newline characters.
+ if (!MoveToLine(Tok.getLocation()))
+ return false;
+
+ // Print out space characters so that the first token on a line is
+ // indented for easy reading.
+ unsigned ColNo = SM.getExpansionColumnNumber(Tok.getLocation());
+
+ // The first token on a line can have a column number of 1, yet still expect
+ // leading white space, if a macro expansion in column 1 starts with an empty
+ // macro argument, or an empty nested macro expansion. In this case, move the
+ // token to column 2.
+ if (ColNo == 1 && Tok.hasLeadingSpace())
+ ColNo = 2;
+
+ // This hack prevents stuff like:
+ // #define HASH #
+ // HASH define foo bar
+ // From having the # character end up at column 1, which makes it so it
+ // is not handled as a #define next time through the preprocessor if in
+ // -fpreprocessed mode.
+ if (ColNo <= 1 && Tok.is(tok::hash))
+ OS << ' ';
+
+ // Otherwise, indent the appropriate number of spaces.
+ for (; ColNo > 1; --ColNo)
+ OS << ' ';
+
+ return true;
+}
+
+void PrintPPOutputPPCallbacks::HandleNewlinesInToken(const char *TokStr,
+ unsigned Len) {
+ unsigned NumNewlines = 0;
+ for (; Len; --Len, ++TokStr) {
+ if (*TokStr != '\n' &&
+ *TokStr != '\r')
+ continue;
+
+ ++NumNewlines;
+
+ // If we have \n\r or \r\n, skip both and count as one line.
+ if (Len != 1 &&
+ (TokStr[1] == '\n' || TokStr[1] == '\r') &&
+ TokStr[0] != TokStr[1])
+ ++TokStr, --Len;
+ }
+
+ if (NumNewlines == 0) return;
+
+ CurLine += NumNewlines;
+}
+
+
+namespace {
+struct UnknownPragmaHandler : public PragmaHandler {
+ const char *Prefix;
+ PrintPPOutputPPCallbacks *Callbacks;
+
+ UnknownPragmaHandler(const char *prefix, PrintPPOutputPPCallbacks *callbacks)
+ : Prefix(prefix), Callbacks(callbacks) {}
+ void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,
+ Token &PragmaTok) override {
+ // Figure out what line we went to and insert the appropriate number of
+ // newline characters.
+ Callbacks->startNewLineIfNeeded();
+ Callbacks->MoveToLine(PragmaTok.getLocation());
+ Callbacks->OS.write(Prefix, strlen(Prefix));
+ // Read and print all of the pragma tokens.
+ while (PragmaTok.isNot(tok::eod)) {
+ if (PragmaTok.hasLeadingSpace())
+ Callbacks->OS << ' ';
+ std::string TokSpell = PP.getSpelling(PragmaTok);
+ Callbacks->OS.write(&TokSpell[0], TokSpell.size());
+
+ // Expand macros in pragmas with -fms-extensions. The assumption is that
+ // the majority of pragmas in such a file will be Microsoft pragmas.
+ if (PP.getLangOpts().MicrosoftExt)
+ PP.Lex(PragmaTok);
+ else
+ PP.LexUnexpandedToken(PragmaTok);
+ }
+ Callbacks->setEmittedDirectiveOnThisLine();
+ }
+};
+} // end anonymous namespace
+
+
+static void PrintPreprocessedTokens(Preprocessor &PP, Token &Tok,
+ PrintPPOutputPPCallbacks *Callbacks,
+ raw_ostream &OS) {
+ bool DropComments = PP.getLangOpts().TraditionalCPP &&
+ !PP.getCommentRetentionState();
+
+ char Buffer[256];
+ Token PrevPrevTok, PrevTok;
+ PrevPrevTok.startToken();
+ PrevTok.startToken();
+ while (1) {
+ if (Callbacks->hasEmittedDirectiveOnThisLine()) {
+ Callbacks->startNewLineIfNeeded();
+ Callbacks->MoveToLine(Tok.getLocation());
+ }
+
+ // If this token is at the start of a line, emit newlines if needed.
+ if (Tok.isAtStartOfLine() && Callbacks->HandleFirstTokOnLine(Tok)) {
+ // done.
+ } else if (Tok.hasLeadingSpace() ||
+ // If we haven't emitted a token on this line yet, PrevTok isn't
+ // useful to look at and no concatenation could happen anyway.
+ (Callbacks->hasEmittedTokensOnThisLine() &&
+ // Don't print "-" next to "-", it would form "--".
+ Callbacks->AvoidConcat(PrevPrevTok, PrevTok, Tok))) {
+ OS << ' ';
+ }
+
+ if (DropComments && Tok.is(tok::comment)) {
+ // Skip comments. Normally the preprocessor does not generate
+ // tok::comment nodes at all when not keeping comments, but under
+ // -traditional-cpp the lexer keeps /all/ whitespace, including comments.
+ SourceLocation StartLoc = Tok.getLocation();
+ Callbacks->MoveToLine(StartLoc.getLocWithOffset(Tok.getLength()));
+ } else if (Tok.is(tok::annot_module_include) ||
+ Tok.is(tok::annot_module_begin) ||
+ Tok.is(tok::annot_module_end)) {
+ // PrintPPOutputPPCallbacks::InclusionDirective handles producing
+ // appropriate output here. Ignore this token entirely.
+ PP.Lex(Tok);
+ continue;
+ } else if (IdentifierInfo *II = Tok.getIdentifierInfo()) {
+ OS << II->getName();
+ } else if (Tok.isLiteral() && !Tok.needsCleaning() &&
+ Tok.getLiteralData()) {
+ OS.write(Tok.getLiteralData(), Tok.getLength());
+ } else if (Tok.getLength() < 256) {
+ const char *TokPtr = Buffer;
+ unsigned Len = PP.getSpelling(Tok, TokPtr);
+ OS.write(TokPtr, Len);
+
+ // Tokens that can contain embedded newlines need to adjust our current
+ // line number.
+ if (Tok.getKind() == tok::comment || Tok.getKind() == tok::unknown)
+ Callbacks->HandleNewlinesInToken(TokPtr, Len);
+ } else {
+ std::string S = PP.getSpelling(Tok);
+ OS.write(&S[0], S.size());
+
+ // Tokens that can contain embedded newlines need to adjust our current
+ // line number.
+ if (Tok.getKind() == tok::comment || Tok.getKind() == tok::unknown)
+ Callbacks->HandleNewlinesInToken(&S[0], S.size());
+ }
+ Callbacks->setEmittedTokensOnThisLine();
+
+ if (Tok.is(tok::eof)) break;
+
+ PrevPrevTok = PrevTok;
+ PrevTok = Tok;
+ PP.Lex(Tok);
+ }
+}
+
+typedef std::pair<const IdentifierInfo *, MacroInfo *> id_macro_pair;
+static int MacroIDCompare(const id_macro_pair *LHS, const id_macro_pair *RHS) {
+ return LHS->first->getName().compare(RHS->first->getName());
+}
+
+static void DoPrintMacros(Preprocessor &PP, raw_ostream *OS) {
+ // Ignore unknown pragmas.
+ PP.IgnorePragmas();
+
+ // -dM mode just scans and ignores all tokens in the files, then dumps out
+ // the macro table at the end.
+ PP.EnterMainSourceFile();
+
+ Token Tok;
+ do PP.Lex(Tok);
+ while (Tok.isNot(tok::eof));
+
+ SmallVector<id_macro_pair, 128> MacrosByID;
+ for (Preprocessor::macro_iterator I = PP.macro_begin(), E = PP.macro_end();
+ I != E; ++I) {
+ auto *MD = I->second.getLatest();
+ if (MD && MD->isDefined())
+ MacrosByID.push_back(id_macro_pair(I->first, MD->getMacroInfo()));
+ }
+ llvm::array_pod_sort(MacrosByID.begin(), MacrosByID.end(), MacroIDCompare);
+
+ for (unsigned i = 0, e = MacrosByID.size(); i != e; ++i) {
+ MacroInfo &MI = *MacrosByID[i].second;
+ // Ignore computed macros like __LINE__ and friends.
+ if (MI.isBuiltinMacro()) continue;
+
+ PrintMacroDefinition(*MacrosByID[i].first, MI, PP, *OS);
+ *OS << '\n';
+ }
+}
+
+/// DoPrintPreprocessedInput - This implements -E mode.
+///
+void clang::DoPrintPreprocessedInput(Preprocessor &PP, raw_ostream *OS,
+ const PreprocessorOutputOptions &Opts) {
+ // Show macros with no output is handled specially.
+ if (!Opts.ShowCPP) {
+ assert(Opts.ShowMacros && "Not yet implemented!");
+ DoPrintMacros(PP, OS);
+ return;
+ }
+
+ // Inform the preprocessor whether we want it to retain comments or not, due
+ // to -C or -CC.
+ PP.SetCommentRetentionState(Opts.ShowComments, Opts.ShowMacroComments);
+
+ PrintPPOutputPPCallbacks *Callbacks = new PrintPPOutputPPCallbacks(
+ PP, *OS, !Opts.ShowLineMarkers, Opts.ShowMacros, Opts.UseLineDirectives);
+ PP.AddPragmaHandler(new UnknownPragmaHandler("#pragma", Callbacks));
+ PP.AddPragmaHandler("GCC", new UnknownPragmaHandler("#pragma GCC",Callbacks));
+ PP.AddPragmaHandler("clang",
+ new UnknownPragmaHandler("#pragma clang", Callbacks));
+
+ PP.addPPCallbacks(std::unique_ptr<PPCallbacks>(Callbacks));
+
+ // After we have configured the preprocessor, enter the main file.
+ PP.EnterMainSourceFile();
+
+ // Consume all of the tokens that come from the predefines buffer. Those
+ // should not be emitted into the output and are guaranteed to be at the
+ // start.
+ const SourceManager &SourceMgr = PP.getSourceManager();
+ Token Tok;
+ do {
+ PP.Lex(Tok);
+ if (Tok.is(tok::eof) || !Tok.getLocation().isFileID())
+ break;
+
+ PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation());
+ if (PLoc.isInvalid())
+ break;
+
+ if (strcmp(PLoc.getFilename(), "<built-in>"))
+ break;
+ } while (true);
+
+ // Read all the preprocessed tokens, printing them out to the stream.
+ PrintPreprocessedTokens(PP, Tok, Callbacks, *OS);
+ *OS << '\n';
+}
diff --git a/contrib/llvm/tools/clang/lib/Frontend/Rewrite/FixItRewriter.cpp b/contrib/llvm/tools/clang/lib/Frontend/Rewrite/FixItRewriter.cpp
new file mode 100644
index 0000000..a3e14f9
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Frontend/Rewrite/FixItRewriter.cpp
@@ -0,0 +1,196 @@
+//===--- FixItRewriter.cpp - Fix-It Rewriter Diagnostic Client --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This is a diagnostic client adaptor that performs rewrites as
+// suggested by code modification hints attached to diagnostics. It
+// then forwards any diagnostics to the adapted diagnostic client.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Rewrite/Frontend/FixItRewriter.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/SourceLocation.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Edit/Commit.h"
+#include "clang/Edit/EditsReceiver.h"
+#include "clang/Frontend/FrontendDiagnostic.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cstdio>
+#include <memory>
+
+using namespace clang;
+
+FixItRewriter::FixItRewriter(DiagnosticsEngine &Diags, SourceManager &SourceMgr,
+ const LangOptions &LangOpts,
+ FixItOptions *FixItOpts)
+ : Diags(Diags),
+ Editor(SourceMgr, LangOpts),
+ Rewrite(SourceMgr, LangOpts),
+ FixItOpts(FixItOpts),
+ NumFailures(0),
+ PrevDiagSilenced(false) {
+ Owner = Diags.takeClient();
+ Client = Diags.getClient();
+ Diags.setClient(this, false);
+}
+
+FixItRewriter::~FixItRewriter() {
+ Diags.setClient(Client, Owner.release() != nullptr);
+}
+
+bool FixItRewriter::WriteFixedFile(FileID ID, raw_ostream &OS) {
+ const RewriteBuffer *RewriteBuf = Rewrite.getRewriteBufferFor(ID);
+ if (!RewriteBuf) return true;
+ RewriteBuf->write(OS);
+ OS.flush();
+ return false;
+}
+
+namespace {
+
+class RewritesReceiver : public edit::EditsReceiver {
+ Rewriter &Rewrite;
+
+public:
+ RewritesReceiver(Rewriter &Rewrite) : Rewrite(Rewrite) { }
+
+ void insert(SourceLocation loc, StringRef text) override {
+ Rewrite.InsertText(loc, text);
+ }
+ void replace(CharSourceRange range, StringRef text) override {
+ Rewrite.ReplaceText(range.getBegin(), Rewrite.getRangeSize(range), text);
+ }
+};
+
+}
+
+bool FixItRewriter::WriteFixedFiles(
+ std::vector<std::pair<std::string, std::string> > *RewrittenFiles) {
+ if (NumFailures > 0 && !FixItOpts->FixWhatYouCan) {
+ Diag(FullSourceLoc(), diag::warn_fixit_no_changes);
+ return true;
+ }
+
+ RewritesReceiver Rec(Rewrite);
+ Editor.applyRewrites(Rec);
+
+ for (iterator I = buffer_begin(), E = buffer_end(); I != E; ++I) {
+ const FileEntry *Entry = Rewrite.getSourceMgr().getFileEntryForID(I->first);
+ int fd;
+ std::string Filename = FixItOpts->RewriteFilename(Entry->getName(), fd);
+ std::error_code EC;
+ std::unique_ptr<llvm::raw_fd_ostream> OS;
+ if (fd != -1) {
+ OS.reset(new llvm::raw_fd_ostream(fd, /*shouldClose=*/true));
+ } else {
+ OS.reset(new llvm::raw_fd_ostream(Filename, EC, llvm::sys::fs::F_None));
+ }
+ if (EC) {
+ Diags.Report(clang::diag::err_fe_unable_to_open_output) << Filename
+ << EC.message();
+ continue;
+ }
+ RewriteBuffer &RewriteBuf = I->second;
+ RewriteBuf.write(*OS);
+ OS->flush();
+
+ if (RewrittenFiles)
+ RewrittenFiles->push_back(std::make_pair(Entry->getName(), Filename));
+ }
+
+ return false;
+}
+
+bool FixItRewriter::IncludeInDiagnosticCounts() const {
+ return Client ? Client->IncludeInDiagnosticCounts() : true;
+}
+
+void FixItRewriter::HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,
+ const Diagnostic &Info) {
+ // Default implementation (Warnings/errors count).
+ DiagnosticConsumer::HandleDiagnostic(DiagLevel, Info);
+
+ if (!FixItOpts->Silent ||
+ DiagLevel >= DiagnosticsEngine::Error ||
+ (DiagLevel == DiagnosticsEngine::Note && !PrevDiagSilenced) ||
+ (DiagLevel > DiagnosticsEngine::Note && Info.getNumFixItHints())) {
+ Client->HandleDiagnostic(DiagLevel, Info);
+ PrevDiagSilenced = false;
+ } else {
+ PrevDiagSilenced = true;
+ }
+
+ // Skip over any diagnostics that are ignored or notes.
+ if (DiagLevel <= DiagnosticsEngine::Note)
+ return;
+ // Skip over errors if we are only fixing warnings.
+ if (DiagLevel >= DiagnosticsEngine::Error && FixItOpts->FixOnlyWarnings) {
+ ++NumFailures;
+ return;
+ }
+
+ // Make sure that we can perform all of the modifications we
+ // in this diagnostic.
+ edit::Commit commit(Editor);
+ for (unsigned Idx = 0, Last = Info.getNumFixItHints();
+ Idx < Last; ++Idx) {
+ const FixItHint &Hint = Info.getFixItHint(Idx);
+
+ if (Hint.CodeToInsert.empty()) {
+ if (Hint.InsertFromRange.isValid())
+ commit.insertFromRange(Hint.RemoveRange.getBegin(),
+ Hint.InsertFromRange, /*afterToken=*/false,
+ Hint.BeforePreviousInsertions);
+ else
+ commit.remove(Hint.RemoveRange);
+ } else {
+ if (Hint.RemoveRange.isTokenRange() ||
+ Hint.RemoveRange.getBegin() != Hint.RemoveRange.getEnd())
+ commit.replace(Hint.RemoveRange, Hint.CodeToInsert);
+ else
+ commit.insert(Hint.RemoveRange.getBegin(), Hint.CodeToInsert,
+ /*afterToken=*/false, Hint.BeforePreviousInsertions);
+ }
+ }
+ bool CanRewrite = Info.getNumFixItHints() > 0 && commit.isCommitable();
+
+ if (!CanRewrite) {
+ if (Info.getNumFixItHints() > 0)
+ Diag(Info.getLocation(), diag::note_fixit_in_macro);
+
+ // If this was an error, refuse to perform any rewriting.
+ if (DiagLevel >= DiagnosticsEngine::Error) {
+ if (++NumFailures == 1)
+ Diag(Info.getLocation(), diag::note_fixit_unfixed_error);
+ }
+ return;
+ }
+
+ if (!Editor.commit(commit)) {
+ ++NumFailures;
+ Diag(Info.getLocation(), diag::note_fixit_failed);
+ return;
+ }
+
+ Diag(Info.getLocation(), diag::note_fixit_applied);
+}
+
+/// \brief Emit a diagnostic via the adapted diagnostic client.
+void FixItRewriter::Diag(SourceLocation Loc, unsigned DiagID) {
+ // When producing this diagnostic, we temporarily bypass ourselves,
+ // clear out any current diagnostic, and let the downstream client
+ // format the diagnostic.
+ Diags.setClient(Client, false);
+ Diags.Clear();
+ Diags.Report(Loc, DiagID);
+ Diags.setClient(this, false);
+}
+
+FixItOptions::~FixItOptions() {}
diff --git a/contrib/llvm/tools/clang/lib/Frontend/Rewrite/FrontendActions.cpp b/contrib/llvm/tools/clang/lib/Frontend/Rewrite/FrontendActions.cpp
new file mode 100644
index 0000000..1b5eb28
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Frontend/Rewrite/FrontendActions.cpp
@@ -0,0 +1,196 @@
+//===--- FrontendActions.cpp ----------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Rewrite/Frontend/FrontendActions.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Frontend/CompilerInstance.h"
+#include "clang/Frontend/FrontendActions.h"
+#include "clang/Frontend/FrontendDiagnostic.h"
+#include "clang/Frontend/Utils.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Parse/Parser.h"
+#include "clang/Rewrite/Frontend/ASTConsumers.h"
+#include "clang/Rewrite/Frontend/FixItRewriter.h"
+#include "clang/Rewrite/Frontend/Rewriters.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/raw_ostream.h"
+#include <memory>
+
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// AST Consumer Actions
+//===----------------------------------------------------------------------===//
+
+std::unique_ptr<ASTConsumer>
+HTMLPrintAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) {
+ if (raw_ostream *OS = CI.createDefaultOutputFile(false, InFile))
+ return CreateHTMLPrinter(OS, CI.getPreprocessor());
+ return nullptr;
+}
+
+FixItAction::FixItAction() {}
+FixItAction::~FixItAction() {}
+
+std::unique_ptr<ASTConsumer>
+FixItAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) {
+ return llvm::make_unique<ASTConsumer>();
+}
+
+namespace {
+class FixItRewriteInPlace : public FixItOptions {
+public:
+ std::string RewriteFilename(const std::string &Filename, int &fd) override {
+ fd = -1;
+ return Filename;
+ }
+};
+
+class FixItActionSuffixInserter : public FixItOptions {
+ std::string NewSuffix;
+
+public:
+ FixItActionSuffixInserter(std::string NewSuffix, bool FixWhatYouCan)
+ : NewSuffix(NewSuffix) {
+ this->FixWhatYouCan = FixWhatYouCan;
+ }
+
+ std::string RewriteFilename(const std::string &Filename, int &fd) override {
+ fd = -1;
+ SmallString<128> Path(Filename);
+ llvm::sys::path::replace_extension(Path,
+ NewSuffix + llvm::sys::path::extension(Path));
+ return Path.str();
+ }
+};
+
+class FixItRewriteToTemp : public FixItOptions {
+public:
+ std::string RewriteFilename(const std::string &Filename, int &fd) override {
+ SmallString<128> Path;
+ llvm::sys::fs::createTemporaryFile(llvm::sys::path::filename(Filename),
+ llvm::sys::path::extension(Filename), fd,
+ Path);
+ return Path.str();
+ }
+};
+} // end anonymous namespace
+
+bool FixItAction::BeginSourceFileAction(CompilerInstance &CI,
+ StringRef Filename) {
+ const FrontendOptions &FEOpts = getCompilerInstance().getFrontendOpts();
+ if (!FEOpts.FixItSuffix.empty()) {
+ FixItOpts.reset(new FixItActionSuffixInserter(FEOpts.FixItSuffix,
+ FEOpts.FixWhatYouCan));
+ } else {
+ FixItOpts.reset(new FixItRewriteInPlace);
+ FixItOpts->FixWhatYouCan = FEOpts.FixWhatYouCan;
+ }
+ Rewriter.reset(new FixItRewriter(CI.getDiagnostics(), CI.getSourceManager(),
+ CI.getLangOpts(), FixItOpts.get()));
+ return true;
+}
+
+void FixItAction::EndSourceFileAction() {
+ // Otherwise rewrite all files.
+ Rewriter->WriteFixedFiles();
+}
+
+bool FixItRecompile::BeginInvocation(CompilerInstance &CI) {
+
+ std::vector<std::pair<std::string, std::string> > RewrittenFiles;
+ bool err = false;
+ {
+ const FrontendOptions &FEOpts = CI.getFrontendOpts();
+ std::unique_ptr<FrontendAction> FixAction(new SyntaxOnlyAction());
+ if (FixAction->BeginSourceFile(CI, FEOpts.Inputs[0])) {
+ std::unique_ptr<FixItOptions> FixItOpts;
+ if (FEOpts.FixToTemporaries)
+ FixItOpts.reset(new FixItRewriteToTemp());
+ else
+ FixItOpts.reset(new FixItRewriteInPlace());
+ FixItOpts->Silent = true;
+ FixItOpts->FixWhatYouCan = FEOpts.FixWhatYouCan;
+ FixItOpts->FixOnlyWarnings = FEOpts.FixOnlyWarnings;
+ FixItRewriter Rewriter(CI.getDiagnostics(), CI.getSourceManager(),
+ CI.getLangOpts(), FixItOpts.get());
+ FixAction->Execute();
+
+ err = Rewriter.WriteFixedFiles(&RewrittenFiles);
+
+ FixAction->EndSourceFile();
+ CI.setSourceManager(nullptr);
+ CI.setFileManager(nullptr);
+ } else {
+ err = true;
+ }
+ }
+ if (err)
+ return false;
+ CI.getDiagnosticClient().clear();
+ CI.getDiagnostics().Reset();
+
+ PreprocessorOptions &PPOpts = CI.getPreprocessorOpts();
+ PPOpts.RemappedFiles.insert(PPOpts.RemappedFiles.end(),
+ RewrittenFiles.begin(), RewrittenFiles.end());
+ PPOpts.RemappedFilesKeepOriginalName = false;
+
+ return true;
+}
+
+#ifdef CLANG_ENABLE_OBJC_REWRITER
+
+std::unique_ptr<ASTConsumer>
+RewriteObjCAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) {
+ if (raw_ostream *OS = CI.createDefaultOutputFile(false, InFile, "cpp")) {
+ if (CI.getLangOpts().ObjCRuntime.isNonFragile())
+ return CreateModernObjCRewriter(InFile, OS,
+ CI.getDiagnostics(), CI.getLangOpts(),
+ CI.getDiagnosticOpts().NoRewriteMacros,
+ (CI.getCodeGenOpts().getDebugInfo() !=
+ CodeGenOptions::NoDebugInfo));
+ return CreateObjCRewriter(InFile, OS,
+ CI.getDiagnostics(), CI.getLangOpts(),
+ CI.getDiagnosticOpts().NoRewriteMacros);
+ }
+ return nullptr;
+}
+
+#endif
+
+//===----------------------------------------------------------------------===//
+// Preprocessor Actions
+//===----------------------------------------------------------------------===//
+
+void RewriteMacrosAction::ExecuteAction() {
+ CompilerInstance &CI = getCompilerInstance();
+ raw_ostream *OS = CI.createDefaultOutputFile(true, getCurrentFile());
+ if (!OS) return;
+
+ RewriteMacrosInInput(CI.getPreprocessor(), OS);
+}
+
+void RewriteTestAction::ExecuteAction() {
+ CompilerInstance &CI = getCompilerInstance();
+ raw_ostream *OS = CI.createDefaultOutputFile(false, getCurrentFile());
+ if (!OS) return;
+
+ DoRewriteTest(CI.getPreprocessor(), OS);
+}
+
+void RewriteIncludesAction::ExecuteAction() {
+ CompilerInstance &CI = getCompilerInstance();
+ raw_ostream *OS = CI.createDefaultOutputFile(true, getCurrentFile());
+ if (!OS) return;
+
+ RewriteIncludesInInput(CI.getPreprocessor(), OS,
+ CI.getPreprocessorOutputOpts());
+}
diff --git a/contrib/llvm/tools/clang/lib/Frontend/Rewrite/HTMLPrint.cpp b/contrib/llvm/tools/clang/lib/Frontend/Rewrite/HTMLPrint.cpp
new file mode 100644
index 0000000..22ccfe6
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Frontend/Rewrite/HTMLPrint.cpp
@@ -0,0 +1,95 @@
+//===--- HTMLPrint.cpp - Source code -> HTML pretty-printing --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Pretty-printing of source code to HTML.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Rewrite/Frontend/ASTConsumers.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Decl.h"
+#include "clang/Basic/Diagnostic.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Rewrite/Core/HTMLRewrite.h"
+#include "clang/Rewrite/Core/Rewriter.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// Functional HTML pretty-printing.
+//===----------------------------------------------------------------------===//
+
+namespace {
+ class HTMLPrinter : public ASTConsumer {
+ Rewriter R;
+ raw_ostream *Out;
+ Preprocessor &PP;
+ bool SyntaxHighlight, HighlightMacros;
+
+ public:
+ HTMLPrinter(raw_ostream *OS, Preprocessor &pp,
+ bool _SyntaxHighlight, bool _HighlightMacros)
+ : Out(OS), PP(pp), SyntaxHighlight(_SyntaxHighlight),
+ HighlightMacros(_HighlightMacros) {}
+
+ void Initialize(ASTContext &context) override;
+ void HandleTranslationUnit(ASTContext &Ctx) override;
+ };
+}
+
+std::unique_ptr<ASTConsumer> clang::CreateHTMLPrinter(raw_ostream *OS,
+ Preprocessor &PP,
+ bool SyntaxHighlight,
+ bool HighlightMacros) {
+ return llvm::make_unique<HTMLPrinter>(OS, PP, SyntaxHighlight,
+ HighlightMacros);
+}
+
+void HTMLPrinter::Initialize(ASTContext &context) {
+ R.setSourceMgr(context.getSourceManager(), context.getLangOpts());
+}
+
+void HTMLPrinter::HandleTranslationUnit(ASTContext &Ctx) {
+ if (PP.getDiagnostics().hasErrorOccurred())
+ return;
+
+ // Format the file.
+ FileID FID = R.getSourceMgr().getMainFileID();
+ const FileEntry* Entry = R.getSourceMgr().getFileEntryForID(FID);
+ const char* Name;
+ // In some cases, in particular the case where the input is from stdin,
+ // there is no entry. Fall back to the memory buffer for a name in those
+ // cases.
+ if (Entry)
+ Name = Entry->getName();
+ else
+ Name = R.getSourceMgr().getBuffer(FID)->getBufferIdentifier();
+
+ html::AddLineNumbers(R, FID);
+ html::AddHeaderFooterInternalBuiltinCSS(R, FID, Name);
+
+ // If we have a preprocessor, relex the file and syntax highlight.
+ // We might not have a preprocessor if we come from a deserialized AST file,
+ // for example.
+
+ if (SyntaxHighlight) html::SyntaxHighlight(R, FID, PP);
+ if (HighlightMacros) html::HighlightMacros(R, FID, PP);
+ html::EscapeText(R, FID, false, true);
+
+ // Emit the HTML.
+ const RewriteBuffer &RewriteBuf = R.getEditBuffer(FID);
+ char *Buffer = (char*)malloc(RewriteBuf.size());
+ std::copy(RewriteBuf.begin(), RewriteBuf.end(), Buffer);
+ Out->write(Buffer, RewriteBuf.size());
+ free(Buffer);
+}
diff --git a/contrib/llvm/tools/clang/lib/Frontend/Rewrite/InclusionRewriter.cpp b/contrib/llvm/tools/clang/lib/Frontend/Rewrite/InclusionRewriter.cpp
new file mode 100644
index 0000000..b9ea051
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Frontend/Rewrite/InclusionRewriter.cpp
@@ -0,0 +1,588 @@
+//===--- InclusionRewriter.cpp - Rewrite includes into their expansions ---===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This code rewrites include invocations into their expansions. This gives you
+// a file with all included files merged into it.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Rewrite/Frontend/Rewriters.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Frontend/PreprocessorOutputOptions.h"
+#include "clang/Lex/HeaderSearch.h"
+#include "clang/Lex/Pragma.h"
+#include "clang/Lex/Preprocessor.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace llvm;
+
+namespace {
+
+class InclusionRewriter : public PPCallbacks {
+ /// Information about which #includes were actually performed,
+ /// created by preprocessor callbacks.
+ struct FileChange {
+ const Module *Mod;
+ SourceLocation From;
+ FileID Id;
+ SrcMgr::CharacteristicKind FileType;
+ FileChange(SourceLocation From, const Module *Mod) : Mod(Mod), From(From) {
+ }
+ };
+ Preprocessor &PP; ///< Used to find inclusion directives.
+ SourceManager &SM; ///< Used to read and manage source files.
+ raw_ostream &OS; ///< The destination stream for rewritten contents.
+ StringRef MainEOL; ///< The line ending marker to use.
+ const llvm::MemoryBuffer *PredefinesBuffer; ///< The preprocessor predefines.
+ bool ShowLineMarkers; ///< Show #line markers.
+ bool UseLineDirectives; ///< Use of line directives or line markers.
+ typedef std::map<unsigned, FileChange> FileChangeMap;
+ FileChangeMap FileChanges; ///< Tracks which files were included where.
+ /// Used transitively for building up the FileChanges mapping over the
+ /// various \c PPCallbacks callbacks.
+ FileChangeMap::iterator LastInsertedFileChange;
+public:
+ InclusionRewriter(Preprocessor &PP, raw_ostream &OS, bool ShowLineMarkers,
+ bool UseLineDirectives);
+ bool Process(FileID FileId, SrcMgr::CharacteristicKind FileType);
+ void setPredefinesBuffer(const llvm::MemoryBuffer *Buf) {
+ PredefinesBuffer = Buf;
+ }
+ void detectMainFileEOL();
+private:
+ void FileChanged(SourceLocation Loc, FileChangeReason Reason,
+ SrcMgr::CharacteristicKind FileType,
+ FileID PrevFID) override;
+ void FileSkipped(const FileEntry &SkippedFile, const Token &FilenameTok,
+ SrcMgr::CharacteristicKind FileType) override;
+ void InclusionDirective(SourceLocation HashLoc, const Token &IncludeTok,
+ StringRef FileName, bool IsAngled,
+ CharSourceRange FilenameRange, const FileEntry *File,
+ StringRef SearchPath, StringRef RelativePath,
+ const Module *Imported) override;
+ void WriteLineInfo(const char *Filename, int Line,
+ SrcMgr::CharacteristicKind FileType,
+ StringRef Extra = StringRef());
+ void WriteImplicitModuleImport(const Module *Mod);
+ void OutputContentUpTo(const MemoryBuffer &FromFile,
+ unsigned &WriteFrom, unsigned WriteTo,
+ StringRef EOL, int &lines,
+ bool EnsureNewline);
+ void CommentOutDirective(Lexer &DirectivesLex, const Token &StartToken,
+ const MemoryBuffer &FromFile, StringRef EOL,
+ unsigned &NextToWrite, int &Lines);
+ bool HandleHasInclude(FileID FileId, Lexer &RawLex,
+ const DirectoryLookup *Lookup, Token &Tok,
+ bool &FileExists);
+ const FileChange *FindFileChangeLocation(SourceLocation Loc) const;
+ StringRef NextIdentifierName(Lexer &RawLex, Token &RawToken);
+};
+
+} // end anonymous namespace
+
+/// Initializes an InclusionRewriter with a \p PP source and \p OS destination.
+InclusionRewriter::InclusionRewriter(Preprocessor &PP, raw_ostream &OS,
+ bool ShowLineMarkers,
+ bool UseLineDirectives)
+ : PP(PP), SM(PP.getSourceManager()), OS(OS), MainEOL("\n"),
+ PredefinesBuffer(nullptr), ShowLineMarkers(ShowLineMarkers),
+ UseLineDirectives(UseLineDirectives),
+ LastInsertedFileChange(FileChanges.end()) {}
+
+/// Write appropriate line information as either #line directives or GNU line
+/// markers depending on what mode we're in, including the \p Filename and
+/// \p Line we are located at, using the specified \p EOL line separator, and
+/// any \p Extra context specifiers in GNU line directives.
+void InclusionRewriter::WriteLineInfo(const char *Filename, int Line,
+ SrcMgr::CharacteristicKind FileType,
+ StringRef Extra) {
+ if (!ShowLineMarkers)
+ return;
+ if (UseLineDirectives) {
+ OS << "#line" << ' ' << Line << ' ' << '"';
+ OS.write_escaped(Filename);
+ OS << '"';
+ } else {
+ // Use GNU linemarkers as described here:
+ // http://gcc.gnu.org/onlinedocs/cpp/Preprocessor-Output.html
+ OS << '#' << ' ' << Line << ' ' << '"';
+ OS.write_escaped(Filename);
+ OS << '"';
+ if (!Extra.empty())
+ OS << Extra;
+ if (FileType == SrcMgr::C_System)
+ // "`3' This indicates that the following text comes from a system header
+ // file, so certain warnings should be suppressed."
+ OS << " 3";
+ else if (FileType == SrcMgr::C_ExternCSystem)
+ // as above for `3', plus "`4' This indicates that the following text
+ // should be treated as being wrapped in an implicit extern "C" block."
+ OS << " 3 4";
+ }
+ OS << MainEOL;
+}
+
+void InclusionRewriter::WriteImplicitModuleImport(const Module *Mod) {
+ OS << "@import " << Mod->getFullModuleName() << ";"
+ << " /* clang -frewrite-includes: implicit import */" << MainEOL;
+}
+
+/// FileChanged - Whenever the preprocessor enters or exits a #include file
+/// it invokes this handler.
+void InclusionRewriter::FileChanged(SourceLocation Loc,
+ FileChangeReason Reason,
+ SrcMgr::CharacteristicKind NewFileType,
+ FileID) {
+ if (Reason != EnterFile)
+ return;
+ if (LastInsertedFileChange == FileChanges.end())
+ // we didn't reach this file (eg: the main file) via an inclusion directive
+ return;
+ LastInsertedFileChange->second.Id = FullSourceLoc(Loc, SM).getFileID();
+ LastInsertedFileChange->second.FileType = NewFileType;
+ LastInsertedFileChange = FileChanges.end();
+}
+
+/// Called whenever an inclusion is skipped due to canonical header protection
+/// macros.
+void InclusionRewriter::FileSkipped(const FileEntry &/*SkippedFile*/,
+ const Token &/*FilenameTok*/,
+ SrcMgr::CharacteristicKind /*FileType*/) {
+ assert(LastInsertedFileChange != FileChanges.end() && "A file, that wasn't "
+ "found via an inclusion directive, was skipped");
+ FileChanges.erase(LastInsertedFileChange);
+ LastInsertedFileChange = FileChanges.end();
+}
+
+/// This should be called whenever the preprocessor encounters include
+/// directives. It does not say whether the file has been included, but it
+/// provides more information about the directive (hash location instead
+/// of location inside the included file). It is assumed that the matching
+/// FileChanged() or FileSkipped() is called after this.
+void InclusionRewriter::InclusionDirective(SourceLocation HashLoc,
+ const Token &/*IncludeTok*/,
+ StringRef /*FileName*/,
+ bool /*IsAngled*/,
+ CharSourceRange /*FilenameRange*/,
+ const FileEntry * /*File*/,
+ StringRef /*SearchPath*/,
+ StringRef /*RelativePath*/,
+ const Module *Imported) {
+ assert(LastInsertedFileChange == FileChanges.end() && "Another inclusion "
+ "directive was found before the previous one was processed");
+ std::pair<FileChangeMap::iterator, bool> p = FileChanges.insert(
+ std::make_pair(HashLoc.getRawEncoding(), FileChange(HashLoc, Imported)));
+ assert(p.second && "Unexpected revisitation of the same include directive");
+ if (!Imported)
+ LastInsertedFileChange = p.first;
+}
+
+/// Simple lookup for a SourceLocation (specifically one denoting the hash in
+/// an inclusion directive) in the map of inclusion information, FileChanges.
+const InclusionRewriter::FileChange *
+InclusionRewriter::FindFileChangeLocation(SourceLocation Loc) const {
+ FileChangeMap::const_iterator I = FileChanges.find(Loc.getRawEncoding());
+ if (I != FileChanges.end())
+ return &I->second;
+ return nullptr;
+}
+
+/// Detect the likely line ending style of \p FromFile by examining the first
+/// newline found within it.
+static StringRef DetectEOL(const MemoryBuffer &FromFile) {
+ // Detect what line endings the file uses, so that added content does not mix
+ // the style. We need to check for "\r\n" first because "\n\r" will match
+ // "\r\n\r\n".
+ const char *Pos = strchr(FromFile.getBufferStart(), '\n');
+ if (!Pos)
+ return "\n";
+ if (Pos - 1 >= FromFile.getBufferStart() && Pos[-1] == '\r')
+ return "\r\n";
+ if (Pos + 1 < FromFile.getBufferEnd() && Pos[1] == '\r')
+ return "\n\r";
+ return "\n";
+}
+
+void InclusionRewriter::detectMainFileEOL() {
+ bool Invalid;
+ const MemoryBuffer &FromFile = *SM.getBuffer(SM.getMainFileID(), &Invalid);
+ assert(!Invalid);
+ if (Invalid)
+ return; // Should never happen, but whatever.
+ MainEOL = DetectEOL(FromFile);
+}
+
+/// Writes out bytes from \p FromFile, starting at \p NextToWrite and ending at
+/// \p WriteTo - 1.
+void InclusionRewriter::OutputContentUpTo(const MemoryBuffer &FromFile,
+ unsigned &WriteFrom, unsigned WriteTo,
+ StringRef LocalEOL, int &Line,
+ bool EnsureNewline) {
+ if (WriteTo <= WriteFrom)
+ return;
+ if (&FromFile == PredefinesBuffer) {
+ // Ignore the #defines of the predefines buffer.
+ WriteFrom = WriteTo;
+ return;
+ }
+
+ // If we would output half of a line ending, advance one character to output
+ // the whole line ending. All buffers are null terminated, so looking ahead
+ // one byte is safe.
+ if (LocalEOL.size() == 2 &&
+ LocalEOL[0] == (FromFile.getBufferStart() + WriteTo)[-1] &&
+ LocalEOL[1] == (FromFile.getBufferStart() + WriteTo)[0])
+ WriteTo++;
+
+ StringRef TextToWrite(FromFile.getBufferStart() + WriteFrom,
+ WriteTo - WriteFrom);
+
+ if (MainEOL == LocalEOL) {
+ OS << TextToWrite;
+ // count lines manually, it's faster than getPresumedLoc()
+ Line += TextToWrite.count(LocalEOL);
+ if (EnsureNewline && !TextToWrite.endswith(LocalEOL))
+ OS << MainEOL;
+ } else {
+ // Output the file one line at a time, rewriting the line endings as we go.
+ StringRef Rest = TextToWrite;
+ while (!Rest.empty()) {
+ StringRef LineText;
+ std::tie(LineText, Rest) = Rest.split(LocalEOL);
+ OS << LineText;
+ Line++;
+ if (!Rest.empty())
+ OS << MainEOL;
+ }
+ if (TextToWrite.endswith(LocalEOL) || EnsureNewline)
+ OS << MainEOL;
+ }
+ WriteFrom = WriteTo;
+}
+
+/// Print characters from \p FromFile starting at \p NextToWrite up until the
+/// inclusion directive at \p StartToken, then print out the inclusion
+/// inclusion directive disabled by a #if directive, updating \p NextToWrite
+/// and \p Line to track the number of source lines visited and the progress
+/// through the \p FromFile buffer.
+void InclusionRewriter::CommentOutDirective(Lexer &DirectiveLex,
+ const Token &StartToken,
+ const MemoryBuffer &FromFile,
+ StringRef LocalEOL,
+ unsigned &NextToWrite, int &Line) {
+ OutputContentUpTo(FromFile, NextToWrite,
+ SM.getFileOffset(StartToken.getLocation()), LocalEOL, Line,
+ false);
+ Token DirectiveToken;
+ do {
+ DirectiveLex.LexFromRawLexer(DirectiveToken);
+ } while (!DirectiveToken.is(tok::eod) && DirectiveToken.isNot(tok::eof));
+ if (&FromFile == PredefinesBuffer) {
+ // OutputContentUpTo() would not output anything anyway.
+ return;
+ }
+ OS << "#if 0 /* expanded by -frewrite-includes */" << MainEOL;
+ OutputContentUpTo(FromFile, NextToWrite,
+ SM.getFileOffset(DirectiveToken.getLocation()) +
+ DirectiveToken.getLength(),
+ LocalEOL, Line, true);
+ OS << "#endif /* expanded by -frewrite-includes */" << MainEOL;
+}
+
+/// Find the next identifier in the pragma directive specified by \p RawToken.
+StringRef InclusionRewriter::NextIdentifierName(Lexer &RawLex,
+ Token &RawToken) {
+ RawLex.LexFromRawLexer(RawToken);
+ if (RawToken.is(tok::raw_identifier))
+ PP.LookUpIdentifierInfo(RawToken);
+ if (RawToken.is(tok::identifier))
+ return RawToken.getIdentifierInfo()->getName();
+ return StringRef();
+}
+
+// Expand __has_include and __has_include_next if possible. If there's no
+// definitive answer return false.
+bool InclusionRewriter::HandleHasInclude(
+ FileID FileId, Lexer &RawLex, const DirectoryLookup *Lookup, Token &Tok,
+ bool &FileExists) {
+ // Lex the opening paren.
+ RawLex.LexFromRawLexer(Tok);
+ if (Tok.isNot(tok::l_paren))
+ return false;
+
+ RawLex.LexFromRawLexer(Tok);
+
+ SmallString<128> FilenameBuffer;
+ StringRef Filename;
+ // Since the raw lexer doesn't give us angle_literals we have to parse them
+ // ourselves.
+ // FIXME: What to do if the file name is a macro?
+ if (Tok.is(tok::less)) {
+ RawLex.LexFromRawLexer(Tok);
+
+ FilenameBuffer += '<';
+ do {
+ if (Tok.is(tok::eod)) // Sanity check.
+ return false;
+
+ if (Tok.is(tok::raw_identifier))
+ PP.LookUpIdentifierInfo(Tok);
+
+ // Get the string piece.
+ SmallVector<char, 128> TmpBuffer;
+ bool Invalid = false;
+ StringRef TmpName = PP.getSpelling(Tok, TmpBuffer, &Invalid);
+ if (Invalid)
+ return false;
+
+ FilenameBuffer += TmpName;
+
+ RawLex.LexFromRawLexer(Tok);
+ } while (Tok.isNot(tok::greater));
+
+ FilenameBuffer += '>';
+ Filename = FilenameBuffer;
+ } else {
+ if (Tok.isNot(tok::string_literal))
+ return false;
+
+ bool Invalid = false;
+ Filename = PP.getSpelling(Tok, FilenameBuffer, &Invalid);
+ if (Invalid)
+ return false;
+ }
+
+ // Lex the closing paren.
+ RawLex.LexFromRawLexer(Tok);
+ if (Tok.isNot(tok::r_paren))
+ return false;
+
+ // Now ask HeaderInfo if it knows about the header.
+ // FIXME: Subframeworks aren't handled here. Do we care?
+ bool isAngled = PP.GetIncludeFilenameSpelling(Tok.getLocation(), Filename);
+ const DirectoryLookup *CurDir;
+ const FileEntry *FileEnt = PP.getSourceManager().getFileEntryForID(FileId);
+ SmallVector<std::pair<const FileEntry *, const DirectoryEntry *>, 1>
+ Includers;
+ Includers.push_back(std::make_pair(FileEnt, FileEnt->getDir()));
+ const FileEntry *File = PP.getHeaderSearchInfo().LookupFile(
+ Filename, SourceLocation(), isAngled, nullptr, CurDir, Includers, nullptr,
+ nullptr, nullptr, false);
+
+ FileExists = File != nullptr;
+ return true;
+}
+
+/// Use a raw lexer to analyze \p FileId, incrementally copying parts of it
+/// and including content of included files recursively.
+bool InclusionRewriter::Process(FileID FileId,
+ SrcMgr::CharacteristicKind FileType)
+{
+ bool Invalid;
+ const MemoryBuffer &FromFile = *SM.getBuffer(FileId, &Invalid);
+ if (Invalid) // invalid inclusion
+ return false;
+ const char *FileName = FromFile.getBufferIdentifier();
+ Lexer RawLex(FileId, &FromFile, PP.getSourceManager(), PP.getLangOpts());
+ RawLex.SetCommentRetentionState(false);
+
+ StringRef LocalEOL = DetectEOL(FromFile);
+
+ // Per the GNU docs: "1" indicates entering a new file.
+ if (FileId == SM.getMainFileID() || FileId == PP.getPredefinesFileID())
+ WriteLineInfo(FileName, 1, FileType, "");
+ else
+ WriteLineInfo(FileName, 1, FileType, " 1");
+
+ if (SM.getFileIDSize(FileId) == 0)
+ return false;
+
+ // The next byte to be copied from the source file, which may be non-zero if
+ // the lexer handled a BOM.
+ unsigned NextToWrite = SM.getFileOffset(RawLex.getSourceLocation());
+ assert(SM.getLineNumber(FileId, NextToWrite) == 1);
+ int Line = 1; // The current input file line number.
+
+ Token RawToken;
+ RawLex.LexFromRawLexer(RawToken);
+
+ // TODO: Consider adding a switch that strips possibly unimportant content,
+ // such as comments, to reduce the size of repro files.
+ while (RawToken.isNot(tok::eof)) {
+ if (RawToken.is(tok::hash) && RawToken.isAtStartOfLine()) {
+ RawLex.setParsingPreprocessorDirective(true);
+ Token HashToken = RawToken;
+ RawLex.LexFromRawLexer(RawToken);
+ if (RawToken.is(tok::raw_identifier))
+ PP.LookUpIdentifierInfo(RawToken);
+ if (RawToken.getIdentifierInfo() != nullptr) {
+ switch (RawToken.getIdentifierInfo()->getPPKeywordID()) {
+ case tok::pp_include:
+ case tok::pp_include_next:
+ case tok::pp_import: {
+ CommentOutDirective(RawLex, HashToken, FromFile, LocalEOL, NextToWrite,
+ Line);
+ if (FileId != PP.getPredefinesFileID())
+ WriteLineInfo(FileName, Line - 1, FileType, "");
+ StringRef LineInfoExtra;
+ if (const FileChange *Change = FindFileChangeLocation(
+ HashToken.getLocation())) {
+ if (Change->Mod) {
+ WriteImplicitModuleImport(Change->Mod);
+
+ // else now include and recursively process the file
+ } else if (Process(Change->Id, Change->FileType)) {
+ // and set lineinfo back to this file, if the nested one was
+ // actually included
+ // `2' indicates returning to a file (after having included
+ // another file.
+ LineInfoExtra = " 2";
+ }
+ }
+ // fix up lineinfo (since commented out directive changed line
+ // numbers) for inclusions that were skipped due to header guards
+ WriteLineInfo(FileName, Line, FileType, LineInfoExtra);
+ break;
+ }
+ case tok::pp_pragma: {
+ StringRef Identifier = NextIdentifierName(RawLex, RawToken);
+ if (Identifier == "clang" || Identifier == "GCC") {
+ if (NextIdentifierName(RawLex, RawToken) == "system_header") {
+ // keep the directive in, commented out
+ CommentOutDirective(RawLex, HashToken, FromFile, LocalEOL,
+ NextToWrite, Line);
+ // update our own type
+ FileType = SM.getFileCharacteristic(RawToken.getLocation());
+ WriteLineInfo(FileName, Line, FileType);
+ }
+ } else if (Identifier == "once") {
+ // keep the directive in, commented out
+ CommentOutDirective(RawLex, HashToken, FromFile, LocalEOL,
+ NextToWrite, Line);
+ WriteLineInfo(FileName, Line, FileType);
+ }
+ break;
+ }
+ case tok::pp_if:
+ case tok::pp_elif: {
+ bool elif = (RawToken.getIdentifierInfo()->getPPKeywordID() ==
+ tok::pp_elif);
+ // Rewrite special builtin macros to avoid pulling in host details.
+ do {
+ // Walk over the directive.
+ RawLex.LexFromRawLexer(RawToken);
+ if (RawToken.is(tok::raw_identifier))
+ PP.LookUpIdentifierInfo(RawToken);
+
+ if (RawToken.is(tok::identifier)) {
+ bool HasFile;
+ SourceLocation Loc = RawToken.getLocation();
+
+ // Rewrite __has_include(x)
+ if (RawToken.getIdentifierInfo()->isStr("__has_include")) {
+ if (!HandleHasInclude(FileId, RawLex, nullptr, RawToken,
+ HasFile))
+ continue;
+ // Rewrite __has_include_next(x)
+ } else if (RawToken.getIdentifierInfo()->isStr(
+ "__has_include_next")) {
+ const DirectoryLookup *Lookup = PP.GetCurDirLookup();
+ if (Lookup)
+ ++Lookup;
+
+ if (!HandleHasInclude(FileId, RawLex, Lookup, RawToken,
+ HasFile))
+ continue;
+ } else {
+ continue;
+ }
+ // Replace the macro with (0) or (1), followed by the commented
+ // out macro for reference.
+ OutputContentUpTo(FromFile, NextToWrite, SM.getFileOffset(Loc),
+ LocalEOL, Line, false);
+ OS << '(' << (int) HasFile << ")/*";
+ OutputContentUpTo(FromFile, NextToWrite,
+ SM.getFileOffset(RawToken.getLocation()) +
+ RawToken.getLength(),
+ LocalEOL, Line, false);
+ OS << "*/";
+ }
+ } while (RawToken.isNot(tok::eod));
+ if (elif) {
+ OutputContentUpTo(FromFile, NextToWrite,
+ SM.getFileOffset(RawToken.getLocation()) +
+ RawToken.getLength(),
+ LocalEOL, Line, /*EnsureNewline=*/ true);
+ WriteLineInfo(FileName, Line, FileType);
+ }
+ break;
+ }
+ case tok::pp_endif:
+ case tok::pp_else: {
+ // We surround every #include by #if 0 to comment it out, but that
+ // changes line numbers. These are fixed up right after that, but
+ // the whole #include could be inside a preprocessor conditional
+ // that is not processed. So it is necessary to fix the line
+ // numbers one the next line after each #else/#endif as well.
+ RawLex.SetKeepWhitespaceMode(true);
+ do {
+ RawLex.LexFromRawLexer(RawToken);
+ } while (RawToken.isNot(tok::eod) && RawToken.isNot(tok::eof));
+ OutputContentUpTo(FromFile, NextToWrite,
+ SM.getFileOffset(RawToken.getLocation()) +
+ RawToken.getLength(),
+ LocalEOL, Line, /*EnsureNewline=*/ true);
+ WriteLineInfo(FileName, Line, FileType);
+ RawLex.SetKeepWhitespaceMode(false);
+ }
+ default:
+ break;
+ }
+ }
+ RawLex.setParsingPreprocessorDirective(false);
+ }
+ RawLex.LexFromRawLexer(RawToken);
+ }
+ OutputContentUpTo(FromFile, NextToWrite,
+ SM.getFileOffset(SM.getLocForEndOfFile(FileId)), LocalEOL,
+ Line, /*EnsureNewline=*/true);
+ return true;
+}
+
+/// InclusionRewriterInInput - Implement -frewrite-includes mode.
+void clang::RewriteIncludesInInput(Preprocessor &PP, raw_ostream *OS,
+ const PreprocessorOutputOptions &Opts) {
+ SourceManager &SM = PP.getSourceManager();
+ InclusionRewriter *Rewrite = new InclusionRewriter(
+ PP, *OS, Opts.ShowLineMarkers, Opts.UseLineDirectives);
+ Rewrite->detectMainFileEOL();
+
+ PP.addPPCallbacks(std::unique_ptr<PPCallbacks>(Rewrite));
+ PP.IgnorePragmas();
+
+ // First let the preprocessor process the entire file and call callbacks.
+ // Callbacks will record which #include's were actually performed.
+ PP.EnterMainSourceFile();
+ Token Tok;
+ // Only preprocessor directives matter here, so disable macro expansion
+ // everywhere else as an optimization.
+ // TODO: It would be even faster if the preprocessor could be switched
+ // to a mode where it would parse only preprocessor directives and comments,
+ // nothing else matters for parsing or processing.
+ PP.SetMacroExpansionOnlyInDirectives();
+ do {
+ PP.Lex(Tok);
+ } while (Tok.isNot(tok::eof));
+ Rewrite->setPredefinesBuffer(SM.getBuffer(PP.getPredefinesFileID()));
+ Rewrite->Process(PP.getPredefinesFileID(), SrcMgr::C_User);
+ Rewrite->Process(SM.getMainFileID(), SrcMgr::C_User);
+ OS->flush();
+}
diff --git a/contrib/llvm/tools/clang/lib/Frontend/Rewrite/RewriteMacros.cpp b/contrib/llvm/tools/clang/lib/Frontend/Rewrite/RewriteMacros.cpp
new file mode 100644
index 0000000..0d0a991
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Frontend/Rewrite/RewriteMacros.cpp
@@ -0,0 +1,217 @@
+//===--- RewriteMacros.cpp - Rewrite macros into their expansions ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This code rewrites macro invocations into their expansions. This gives you
+// a macro expanded file that retains comments and #includes.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Rewrite/Frontend/Rewriters.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Rewrite/Core/Rewriter.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cstdio>
+#include <memory>
+
+using namespace clang;
+
+/// isSameToken - Return true if the two specified tokens start have the same
+/// content.
+static bool isSameToken(Token &RawTok, Token &PPTok) {
+ // If two tokens have the same kind and the same identifier info, they are
+ // obviously the same.
+ if (PPTok.getKind() == RawTok.getKind() &&
+ PPTok.getIdentifierInfo() == RawTok.getIdentifierInfo())
+ return true;
+
+ // Otherwise, if they are different but have the same identifier info, they
+ // are also considered to be the same. This allows keywords and raw lexed
+ // identifiers with the same name to be treated the same.
+ if (PPTok.getIdentifierInfo() &&
+ PPTok.getIdentifierInfo() == RawTok.getIdentifierInfo())
+ return true;
+
+ return false;
+}
+
+
+/// GetNextRawTok - Return the next raw token in the stream, skipping over
+/// comments if ReturnComment is false.
+static const Token &GetNextRawTok(const std::vector<Token> &RawTokens,
+ unsigned &CurTok, bool ReturnComment) {
+ assert(CurTok < RawTokens.size() && "Overran eof!");
+
+ // If the client doesn't want comments and we have one, skip it.
+ if (!ReturnComment && RawTokens[CurTok].is(tok::comment))
+ ++CurTok;
+
+ return RawTokens[CurTok++];
+}
+
+
+/// LexRawTokensFromMainFile - Lets all the raw tokens from the main file into
+/// the specified vector.
+static void LexRawTokensFromMainFile(Preprocessor &PP,
+ std::vector<Token> &RawTokens) {
+ SourceManager &SM = PP.getSourceManager();
+
+ // Create a lexer to lex all the tokens of the main file in raw mode. Even
+ // though it is in raw mode, it will not return comments.
+ const llvm::MemoryBuffer *FromFile = SM.getBuffer(SM.getMainFileID());
+ Lexer RawLex(SM.getMainFileID(), FromFile, SM, PP.getLangOpts());
+
+ // Switch on comment lexing because we really do want them.
+ RawLex.SetCommentRetentionState(true);
+
+ Token RawTok;
+ do {
+ RawLex.LexFromRawLexer(RawTok);
+
+ // If we have an identifier with no identifier info for our raw token, look
+ // up the indentifier info. This is important for equality comparison of
+ // identifier tokens.
+ if (RawTok.is(tok::raw_identifier))
+ PP.LookUpIdentifierInfo(RawTok);
+
+ RawTokens.push_back(RawTok);
+ } while (RawTok.isNot(tok::eof));
+}
+
+
+/// RewriteMacrosInInput - Implement -rewrite-macros mode.
+void clang::RewriteMacrosInInput(Preprocessor &PP, raw_ostream *OS) {
+ SourceManager &SM = PP.getSourceManager();
+
+ Rewriter Rewrite;
+ Rewrite.setSourceMgr(SM, PP.getLangOpts());
+ RewriteBuffer &RB = Rewrite.getEditBuffer(SM.getMainFileID());
+
+ std::vector<Token> RawTokens;
+ LexRawTokensFromMainFile(PP, RawTokens);
+ unsigned CurRawTok = 0;
+ Token RawTok = GetNextRawTok(RawTokens, CurRawTok, false);
+
+
+ // Get the first preprocessing token.
+ PP.EnterMainSourceFile();
+ Token PPTok;
+ PP.Lex(PPTok);
+
+ // Preprocess the input file in parallel with raw lexing the main file. Ignore
+ // all tokens that are preprocessed from a file other than the main file (e.g.
+ // a header). If we see tokens that are in the preprocessed file but not the
+ // lexed file, we have a macro expansion. If we see tokens in the lexed file
+ // that aren't in the preprocessed view, we have macros that expand to no
+ // tokens, or macro arguments etc.
+ while (RawTok.isNot(tok::eof) || PPTok.isNot(tok::eof)) {
+ SourceLocation PPLoc = SM.getExpansionLoc(PPTok.getLocation());
+
+ // If PPTok is from a different source file, ignore it.
+ if (!SM.isWrittenInMainFile(PPLoc)) {
+ PP.Lex(PPTok);
+ continue;
+ }
+
+ // If the raw file hits a preprocessor directive, they will be extra tokens
+ // in the raw file that don't exist in the preprocsesed file. However, we
+ // choose to preserve them in the output file and otherwise handle them
+ // specially.
+ if (RawTok.is(tok::hash) && RawTok.isAtStartOfLine()) {
+ // If this is a #warning directive or #pragma mark (GNU extensions),
+ // comment the line out.
+ if (RawTokens[CurRawTok].is(tok::identifier)) {
+ const IdentifierInfo *II = RawTokens[CurRawTok].getIdentifierInfo();
+ if (II->getName() == "warning") {
+ // Comment out #warning.
+ RB.InsertTextAfter(SM.getFileOffset(RawTok.getLocation()), "//");
+ } else if (II->getName() == "pragma" &&
+ RawTokens[CurRawTok+1].is(tok::identifier) &&
+ (RawTokens[CurRawTok+1].getIdentifierInfo()->getName() ==
+ "mark")) {
+ // Comment out #pragma mark.
+ RB.InsertTextAfter(SM.getFileOffset(RawTok.getLocation()), "//");
+ }
+ }
+
+ // Otherwise, if this is a #include or some other directive, just leave it
+ // in the file by skipping over the line.
+ RawTok = GetNextRawTok(RawTokens, CurRawTok, false);
+ while (!RawTok.isAtStartOfLine() && RawTok.isNot(tok::eof))
+ RawTok = GetNextRawTok(RawTokens, CurRawTok, false);
+ continue;
+ }
+
+ // Okay, both tokens are from the same file. Get their offsets from the
+ // start of the file.
+ unsigned PPOffs = SM.getFileOffset(PPLoc);
+ unsigned RawOffs = SM.getFileOffset(RawTok.getLocation());
+
+ // If the offsets are the same and the token kind is the same, ignore them.
+ if (PPOffs == RawOffs && isSameToken(RawTok, PPTok)) {
+ RawTok = GetNextRawTok(RawTokens, CurRawTok, false);
+ PP.Lex(PPTok);
+ continue;
+ }
+
+ // If the PP token is farther along than the raw token, something was
+ // deleted. Comment out the raw token.
+ if (RawOffs <= PPOffs) {
+ // Comment out a whole run of tokens instead of bracketing each one with
+ // comments. Add a leading space if RawTok didn't have one.
+ bool HasSpace = RawTok.hasLeadingSpace();
+ RB.InsertTextAfter(RawOffs, &" /*"[HasSpace]);
+ unsigned EndPos;
+
+ do {
+ EndPos = RawOffs+RawTok.getLength();
+
+ RawTok = GetNextRawTok(RawTokens, CurRawTok, true);
+ RawOffs = SM.getFileOffset(RawTok.getLocation());
+
+ if (RawTok.is(tok::comment)) {
+ // Skip past the comment.
+ RawTok = GetNextRawTok(RawTokens, CurRawTok, false);
+ break;
+ }
+
+ } while (RawOffs <= PPOffs && !RawTok.isAtStartOfLine() &&
+ (PPOffs != RawOffs || !isSameToken(RawTok, PPTok)));
+
+ RB.InsertTextBefore(EndPos, "*/");
+ continue;
+ }
+
+ // Otherwise, there was a replacement an expansion. Insert the new token
+ // in the output buffer. Insert the whole run of new tokens at once to get
+ // them in the right order.
+ unsigned InsertPos = PPOffs;
+ std::string Expansion;
+ while (PPOffs < RawOffs) {
+ Expansion += ' ' + PP.getSpelling(PPTok);
+ PP.Lex(PPTok);
+ PPLoc = SM.getExpansionLoc(PPTok.getLocation());
+ PPOffs = SM.getFileOffset(PPLoc);
+ }
+ Expansion += ' ';
+ RB.InsertTextBefore(InsertPos, Expansion);
+ }
+
+ // Get the buffer corresponding to MainFileID. If we haven't changed it, then
+ // we are done.
+ if (const RewriteBuffer *RewriteBuf =
+ Rewrite.getRewriteBufferFor(SM.getMainFileID())) {
+ //printf("Changed:\n");
+ *OS << std::string(RewriteBuf->begin(), RewriteBuf->end());
+ } else {
+ fprintf(stderr, "No changes\n");
+ }
+ OS->flush();
+}
diff --git a/contrib/llvm/tools/clang/lib/Frontend/Rewrite/RewriteModernObjC.cpp b/contrib/llvm/tools/clang/lib/Frontend/Rewrite/RewriteModernObjC.cpp
new file mode 100644
index 0000000..e13cdb3
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Frontend/Rewrite/RewriteModernObjC.cpp
@@ -0,0 +1,7731 @@
+//===--- RewriteObjC.cpp - Playground for the code rewriter ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Hacks and fun related to the code rewriter.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Rewrite/Frontend/ASTConsumers.h"
+#include "clang/AST/AST.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/ParentMap.h"
+#include "clang/Basic/CharInfo.h"
+#include "clang/Basic/Diagnostic.h"
+#include "clang/Basic/IdentifierTable.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Lex/Lexer.h"
+#include "clang/Rewrite/Core/Rewriter.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/raw_ostream.h"
+#include <memory>
+
+#ifdef CLANG_ENABLE_OBJC_REWRITER
+
+using namespace clang;
+using llvm::utostr;
+
+namespace {
+ class RewriteModernObjC : public ASTConsumer {
+ protected:
+
+ enum {
+ BLOCK_FIELD_IS_OBJECT = 3, /* id, NSObject, __attribute__((NSObject)),
+ block, ... */
+ BLOCK_FIELD_IS_BLOCK = 7, /* a block variable */
+ BLOCK_FIELD_IS_BYREF = 8, /* the on stack structure holding the
+ __block variable */
+ BLOCK_FIELD_IS_WEAK = 16, /* declared __weak, only used in byref copy
+ helpers */
+ BLOCK_BYREF_CALLER = 128, /* called from __block (byref) copy/dispose
+ support routines */
+ BLOCK_BYREF_CURRENT_MAX = 256
+ };
+
+ enum {
+ BLOCK_NEEDS_FREE = (1 << 24),
+ BLOCK_HAS_COPY_DISPOSE = (1 << 25),
+ BLOCK_HAS_CXX_OBJ = (1 << 26),
+ BLOCK_IS_GC = (1 << 27),
+ BLOCK_IS_GLOBAL = (1 << 28),
+ BLOCK_HAS_DESCRIPTOR = (1 << 29)
+ };
+
+ Rewriter Rewrite;
+ DiagnosticsEngine &Diags;
+ const LangOptions &LangOpts;
+ ASTContext *Context;
+ SourceManager *SM;
+ TranslationUnitDecl *TUDecl;
+ FileID MainFileID;
+ const char *MainFileStart, *MainFileEnd;
+ Stmt *CurrentBody;
+ ParentMap *PropParentMap; // created lazily.
+ std::string InFileName;
+ raw_ostream* OutFile;
+ std::string Preamble;
+
+ TypeDecl *ProtocolTypeDecl;
+ VarDecl *GlobalVarDecl;
+ Expr *GlobalConstructionExp;
+ unsigned RewriteFailedDiag;
+ unsigned GlobalBlockRewriteFailedDiag;
+ // ObjC string constant support.
+ unsigned NumObjCStringLiterals;
+ VarDecl *ConstantStringClassReference;
+ RecordDecl *NSStringRecord;
+
+ // ObjC foreach break/continue generation support.
+ int BcLabelCount;
+
+ unsigned TryFinallyContainsReturnDiag;
+ // Needed for super.
+ ObjCMethodDecl *CurMethodDef;
+ RecordDecl *SuperStructDecl;
+ RecordDecl *ConstantStringDecl;
+
+ FunctionDecl *MsgSendFunctionDecl;
+ FunctionDecl *MsgSendSuperFunctionDecl;
+ FunctionDecl *MsgSendStretFunctionDecl;
+ FunctionDecl *MsgSendSuperStretFunctionDecl;
+ FunctionDecl *MsgSendFpretFunctionDecl;
+ FunctionDecl *GetClassFunctionDecl;
+ FunctionDecl *GetMetaClassFunctionDecl;
+ FunctionDecl *GetSuperClassFunctionDecl;
+ FunctionDecl *SelGetUidFunctionDecl;
+ FunctionDecl *CFStringFunctionDecl;
+ FunctionDecl *SuperConstructorFunctionDecl;
+ FunctionDecl *CurFunctionDef;
+
+ /* Misc. containers needed for meta-data rewrite. */
+ SmallVector<ObjCImplementationDecl *, 8> ClassImplementation;
+ SmallVector<ObjCCategoryImplDecl *, 8> CategoryImplementation;
+ llvm::SmallPtrSet<ObjCInterfaceDecl*, 8> ObjCSynthesizedStructs;
+ llvm::SmallPtrSet<ObjCProtocolDecl*, 8> ObjCSynthesizedProtocols;
+ llvm::SmallPtrSet<ObjCInterfaceDecl*, 8> ObjCWrittenInterfaces;
+ llvm::SmallPtrSet<TagDecl*, 32> GlobalDefinedTags;
+ SmallVector<ObjCInterfaceDecl*, 32> ObjCInterfacesSeen;
+ /// DefinedNonLazyClasses - List of defined "non-lazy" classes.
+ SmallVector<ObjCInterfaceDecl*, 8> DefinedNonLazyClasses;
+
+ /// DefinedNonLazyCategories - List of defined "non-lazy" categories.
+ SmallVector<ObjCCategoryDecl *, 8> DefinedNonLazyCategories;
+
+ SmallVector<Stmt *, 32> Stmts;
+ SmallVector<int, 8> ObjCBcLabelNo;
+ // Remember all the @protocol(<expr>) expressions.
+ llvm::SmallPtrSet<ObjCProtocolDecl *, 32> ProtocolExprDecls;
+
+ llvm::DenseSet<uint64_t> CopyDestroyCache;
+
+ // Block expressions.
+ SmallVector<BlockExpr *, 32> Blocks;
+ SmallVector<int, 32> InnerDeclRefsCount;
+ SmallVector<DeclRefExpr *, 32> InnerDeclRefs;
+
+ SmallVector<DeclRefExpr *, 32> BlockDeclRefs;
+
+
+ // Block related declarations.
+ SmallVector<ValueDecl *, 8> BlockByCopyDecls;
+ llvm::SmallPtrSet<ValueDecl *, 8> BlockByCopyDeclsPtrSet;
+ SmallVector<ValueDecl *, 8> BlockByRefDecls;
+ llvm::SmallPtrSet<ValueDecl *, 8> BlockByRefDeclsPtrSet;
+ llvm::DenseMap<ValueDecl *, unsigned> BlockByRefDeclNo;
+ llvm::SmallPtrSet<ValueDecl *, 8> ImportedBlockDecls;
+ llvm::SmallPtrSet<VarDecl *, 8> ImportedLocalExternalDecls;
+
+ llvm::DenseMap<BlockExpr *, std::string> RewrittenBlockExprs;
+ llvm::DenseMap<ObjCInterfaceDecl *,
+ llvm::SmallPtrSet<ObjCIvarDecl *, 8> > ReferencedIvars;
+
+ // ivar bitfield grouping containers
+ llvm::DenseSet<const ObjCInterfaceDecl *> ObjCInterefaceHasBitfieldGroups;
+ llvm::DenseMap<const ObjCIvarDecl* , unsigned> IvarGroupNumber;
+ // This container maps an <class, group number for ivar> tuple to the type
+ // of the struct where the bitfield belongs.
+ llvm::DenseMap<std::pair<const ObjCInterfaceDecl*, unsigned>, QualType> GroupRecordType;
+ SmallVector<FunctionDecl*, 32> FunctionDefinitionsSeen;
+
+ // This maps an original source AST to it's rewritten form. This allows
+ // us to avoid rewriting the same node twice (which is very uncommon).
+ // This is needed to support some of the exotic property rewriting.
+ llvm::DenseMap<Stmt *, Stmt *> ReplacedNodes;
+
+ // Needed for header files being rewritten
+ bool IsHeader;
+ bool SilenceRewriteMacroWarning;
+ bool GenerateLineInfo;
+ bool objc_impl_method;
+
+ bool DisableReplaceStmt;
+ class DisableReplaceStmtScope {
+ RewriteModernObjC &R;
+ bool SavedValue;
+
+ public:
+ DisableReplaceStmtScope(RewriteModernObjC &R)
+ : R(R), SavedValue(R.DisableReplaceStmt) {
+ R.DisableReplaceStmt = true;
+ }
+ ~DisableReplaceStmtScope() {
+ R.DisableReplaceStmt = SavedValue;
+ }
+ };
+ void InitializeCommon(ASTContext &context);
+
+ public:
+ llvm::DenseMap<ObjCMethodDecl*, std::string> MethodInternalNames;
+ // Top Level Driver code.
+ bool HandleTopLevelDecl(DeclGroupRef D) override {
+ for (DeclGroupRef::iterator I = D.begin(), E = D.end(); I != E; ++I) {
+ if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(*I)) {
+ if (!Class->isThisDeclarationADefinition()) {
+ RewriteForwardClassDecl(D);
+ break;
+ } else {
+ // Keep track of all interface declarations seen.
+ ObjCInterfacesSeen.push_back(Class);
+ break;
+ }
+ }
+
+ if (ObjCProtocolDecl *Proto = dyn_cast<ObjCProtocolDecl>(*I)) {
+ if (!Proto->isThisDeclarationADefinition()) {
+ RewriteForwardProtocolDecl(D);
+ break;
+ }
+ }
+
+ if (FunctionDecl *FDecl = dyn_cast<FunctionDecl>(*I)) {
+ // Under modern abi, we cannot translate body of the function
+ // yet until all class extensions and its implementation is seen.
+ // This is because they may introduce new bitfields which must go
+ // into their grouping struct.
+ if (FDecl->isThisDeclarationADefinition() &&
+ // Not c functions defined inside an objc container.
+ !FDecl->isTopLevelDeclInObjCContainer()) {
+ FunctionDefinitionsSeen.push_back(FDecl);
+ break;
+ }
+ }
+ HandleTopLevelSingleDecl(*I);
+ }
+ return true;
+ }
+
+ void HandleTopLevelDeclInObjCContainer(DeclGroupRef D) override {
+ for (DeclGroupRef::iterator I = D.begin(), E = D.end(); I != E; ++I) {
+ if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(*I)) {
+ if (isTopLevelBlockPointerType(TD->getUnderlyingType()))
+ RewriteBlockPointerDecl(TD);
+ else if (TD->getUnderlyingType()->isFunctionPointerType())
+ CheckFunctionPointerDecl(TD->getUnderlyingType(), TD);
+ else
+ RewriteObjCQualifiedInterfaceTypes(TD);
+ }
+ }
+ return;
+ }
+
+ void HandleTopLevelSingleDecl(Decl *D);
+ void HandleDeclInMainFile(Decl *D);
+ RewriteModernObjC(std::string inFile, raw_ostream *OS,
+ DiagnosticsEngine &D, const LangOptions &LOpts,
+ bool silenceMacroWarn, bool LineInfo);
+
+ ~RewriteModernObjC() override {}
+
+ void HandleTranslationUnit(ASTContext &C) override;
+
+ void ReplaceStmt(Stmt *Old, Stmt *New) {
+ ReplaceStmtWithRange(Old, New, Old->getSourceRange());
+ }
+
+ void ReplaceStmtWithRange(Stmt *Old, Stmt *New, SourceRange SrcRange) {
+ assert(Old != nullptr && New != nullptr && "Expected non-null Stmt's");
+
+ Stmt *ReplacingStmt = ReplacedNodes[Old];
+ if (ReplacingStmt)
+ return; // We can't rewrite the same node twice.
+
+ if (DisableReplaceStmt)
+ return;
+
+ // Measure the old text.
+ int Size = Rewrite.getRangeSize(SrcRange);
+ if (Size == -1) {
+ Diags.Report(Context->getFullLoc(Old->getLocStart()), RewriteFailedDiag)
+ << Old->getSourceRange();
+ return;
+ }
+ // Get the new text.
+ std::string SStr;
+ llvm::raw_string_ostream S(SStr);
+ New->printPretty(S, nullptr, PrintingPolicy(LangOpts));
+ const std::string &Str = S.str();
+
+ // If replacement succeeded or warning disabled return with no warning.
+ if (!Rewrite.ReplaceText(SrcRange.getBegin(), Size, Str)) {
+ ReplacedNodes[Old] = New;
+ return;
+ }
+ if (SilenceRewriteMacroWarning)
+ return;
+ Diags.Report(Context->getFullLoc(Old->getLocStart()), RewriteFailedDiag)
+ << Old->getSourceRange();
+ }
+
+ void InsertText(SourceLocation Loc, StringRef Str,
+ bool InsertAfter = true) {
+ // If insertion succeeded or warning disabled return with no warning.
+ if (!Rewrite.InsertText(Loc, Str, InsertAfter) ||
+ SilenceRewriteMacroWarning)
+ return;
+
+ Diags.Report(Context->getFullLoc(Loc), RewriteFailedDiag);
+ }
+
+ void ReplaceText(SourceLocation Start, unsigned OrigLength,
+ StringRef Str) {
+ // If removal succeeded or warning disabled return with no warning.
+ if (!Rewrite.ReplaceText(Start, OrigLength, Str) ||
+ SilenceRewriteMacroWarning)
+ return;
+
+ Diags.Report(Context->getFullLoc(Start), RewriteFailedDiag);
+ }
+
+ // Syntactic Rewriting.
+ void RewriteRecordBody(RecordDecl *RD);
+ void RewriteInclude();
+ void RewriteLineDirective(const Decl *D);
+ void ConvertSourceLocationToLineDirective(SourceLocation Loc,
+ std::string &LineString);
+ void RewriteForwardClassDecl(DeclGroupRef D);
+ void RewriteForwardClassDecl(const SmallVectorImpl<Decl *> &DG);
+ void RewriteForwardClassEpilogue(ObjCInterfaceDecl *ClassDecl,
+ const std::string &typedefString);
+ void RewriteImplementations();
+ void RewritePropertyImplDecl(ObjCPropertyImplDecl *PID,
+ ObjCImplementationDecl *IMD,
+ ObjCCategoryImplDecl *CID);
+ void RewriteInterfaceDecl(ObjCInterfaceDecl *Dcl);
+ void RewriteImplementationDecl(Decl *Dcl);
+ void RewriteObjCMethodDecl(const ObjCInterfaceDecl *IDecl,
+ ObjCMethodDecl *MDecl, std::string &ResultStr);
+ void RewriteTypeIntoString(QualType T, std::string &ResultStr,
+ const FunctionType *&FPRetType);
+ void RewriteByRefString(std::string &ResultStr, const std::string &Name,
+ ValueDecl *VD, bool def=false);
+ void RewriteCategoryDecl(ObjCCategoryDecl *Dcl);
+ void RewriteProtocolDecl(ObjCProtocolDecl *Dcl);
+ void RewriteForwardProtocolDecl(DeclGroupRef D);
+ void RewriteForwardProtocolDecl(const SmallVectorImpl<Decl *> &DG);
+ void RewriteMethodDeclaration(ObjCMethodDecl *Method);
+ void RewriteProperty(ObjCPropertyDecl *prop);
+ void RewriteFunctionDecl(FunctionDecl *FD);
+ void RewriteBlockPointerType(std::string& Str, QualType Type);
+ void RewriteBlockPointerTypeVariable(std::string& Str, ValueDecl *VD);
+ void RewriteBlockLiteralFunctionDecl(FunctionDecl *FD);
+ void RewriteObjCQualifiedInterfaceTypes(Decl *Dcl);
+ void RewriteTypeOfDecl(VarDecl *VD);
+ void RewriteObjCQualifiedInterfaceTypes(Expr *E);
+
+ std::string getIvarAccessString(ObjCIvarDecl *D);
+
+ // Expression Rewriting.
+ Stmt *RewriteFunctionBodyOrGlobalInitializer(Stmt *S);
+ Stmt *RewriteAtEncode(ObjCEncodeExpr *Exp);
+ Stmt *RewritePropertyOrImplicitGetter(PseudoObjectExpr *Pseudo);
+ Stmt *RewritePropertyOrImplicitSetter(PseudoObjectExpr *Pseudo);
+ Stmt *RewriteAtSelector(ObjCSelectorExpr *Exp);
+ Stmt *RewriteMessageExpr(ObjCMessageExpr *Exp);
+ Stmt *RewriteObjCStringLiteral(ObjCStringLiteral *Exp);
+ Stmt *RewriteObjCBoolLiteralExpr(ObjCBoolLiteralExpr *Exp);
+ Stmt *RewriteObjCBoxedExpr(ObjCBoxedExpr *Exp);
+ Stmt *RewriteObjCArrayLiteralExpr(ObjCArrayLiteral *Exp);
+ Stmt *RewriteObjCDictionaryLiteralExpr(ObjCDictionaryLiteral *Exp);
+ Stmt *RewriteObjCProtocolExpr(ObjCProtocolExpr *Exp);
+ Stmt *RewriteObjCTryStmt(ObjCAtTryStmt *S);
+ Stmt *RewriteObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S);
+ Stmt *RewriteObjCSynchronizedStmt(ObjCAtSynchronizedStmt *S);
+ Stmt *RewriteObjCThrowStmt(ObjCAtThrowStmt *S);
+ Stmt *RewriteObjCForCollectionStmt(ObjCForCollectionStmt *S,
+ SourceLocation OrigEnd);
+ Stmt *RewriteBreakStmt(BreakStmt *S);
+ Stmt *RewriteContinueStmt(ContinueStmt *S);
+ void RewriteCastExpr(CStyleCastExpr *CE);
+ void RewriteImplicitCastObjCExpr(CastExpr *IE);
+ void RewriteLinkageSpec(LinkageSpecDecl *LSD);
+
+ // Computes ivar bitfield group no.
+ unsigned ObjCIvarBitfieldGroupNo(ObjCIvarDecl *IV);
+ // Names field decl. for ivar bitfield group.
+ void ObjCIvarBitfieldGroupDecl(ObjCIvarDecl *IV, std::string &Result);
+ // Names struct type for ivar bitfield group.
+ void ObjCIvarBitfieldGroupType(ObjCIvarDecl *IV, std::string &Result);
+ // Names symbol for ivar bitfield group field offset.
+ void ObjCIvarBitfieldGroupOffset(ObjCIvarDecl *IV, std::string &Result);
+ // Given an ivar bitfield, it builds (or finds) its group record type.
+ QualType GetGroupRecordTypeForObjCIvarBitfield(ObjCIvarDecl *IV);
+ QualType SynthesizeBitfieldGroupStructType(
+ ObjCIvarDecl *IV,
+ SmallVectorImpl<ObjCIvarDecl *> &IVars);
+
+ // Block rewriting.
+ void RewriteBlocksInFunctionProtoType(QualType funcType, NamedDecl *D);
+
+ // Block specific rewrite rules.
+ void RewriteBlockPointerDecl(NamedDecl *VD);
+ void RewriteByRefVar(VarDecl *VD, bool firstDecl, bool lastDecl);
+ Stmt *RewriteBlockDeclRefExpr(DeclRefExpr *VD);
+ Stmt *RewriteLocalVariableExternalStorage(DeclRefExpr *DRE);
+ void RewriteBlockPointerFunctionArgs(FunctionDecl *FD);
+
+ void RewriteObjCInternalStruct(ObjCInterfaceDecl *CDecl,
+ std::string &Result);
+
+ void RewriteObjCFieldDecl(FieldDecl *fieldDecl, std::string &Result);
+ bool IsTagDefinedInsideClass(ObjCContainerDecl *IDecl, TagDecl *Tag,
+ bool &IsNamedDefinition);
+ void RewriteLocallyDefinedNamedAggregates(FieldDecl *fieldDecl,
+ std::string &Result);
+
+ bool RewriteObjCFieldDeclType(QualType &Type, std::string &Result);
+
+ void RewriteIvarOffsetSymbols(ObjCInterfaceDecl *CDecl,
+ std::string &Result);
+
+ void Initialize(ASTContext &context) override;
+
+ // Misc. AST transformation routines. Sometimes they end up calling
+ // rewriting routines on the new ASTs.
+ CallExpr *SynthesizeCallToFunctionDecl(FunctionDecl *FD,
+ Expr **args, unsigned nargs,
+ SourceLocation StartLoc=SourceLocation(),
+ SourceLocation EndLoc=SourceLocation());
+
+ Expr *SynthMsgSendStretCallExpr(FunctionDecl *MsgSendStretFlavor,
+ QualType returnType,
+ SmallVectorImpl<QualType> &ArgTypes,
+ SmallVectorImpl<Expr*> &MsgExprs,
+ ObjCMethodDecl *Method);
+
+ Stmt *SynthMessageExpr(ObjCMessageExpr *Exp,
+ SourceLocation StartLoc=SourceLocation(),
+ SourceLocation EndLoc=SourceLocation());
+
+ void SynthCountByEnumWithState(std::string &buf);
+ void SynthMsgSendFunctionDecl();
+ void SynthMsgSendSuperFunctionDecl();
+ void SynthMsgSendStretFunctionDecl();
+ void SynthMsgSendFpretFunctionDecl();
+ void SynthMsgSendSuperStretFunctionDecl();
+ void SynthGetClassFunctionDecl();
+ void SynthGetMetaClassFunctionDecl();
+ void SynthGetSuperClassFunctionDecl();
+ void SynthSelGetUidFunctionDecl();
+ void SynthSuperConstructorFunctionDecl();
+
+ // Rewriting metadata
+ template<typename MethodIterator>
+ void RewriteObjCMethodsMetaData(MethodIterator MethodBegin,
+ MethodIterator MethodEnd,
+ bool IsInstanceMethod,
+ StringRef prefix,
+ StringRef ClassName,
+ std::string &Result);
+ void RewriteObjCProtocolMetaData(ObjCProtocolDecl *Protocol,
+ std::string &Result);
+ void RewriteObjCProtocolListMetaData(
+ const ObjCList<ObjCProtocolDecl> &Prots,
+ StringRef prefix, StringRef ClassName, std::string &Result);
+ void RewriteObjCClassMetaData(ObjCImplementationDecl *IDecl,
+ std::string &Result);
+ void RewriteClassSetupInitHook(std::string &Result);
+
+ void RewriteMetaDataIntoBuffer(std::string &Result);
+ void WriteImageInfo(std::string &Result);
+ void RewriteObjCCategoryImplDecl(ObjCCategoryImplDecl *CDecl,
+ std::string &Result);
+ void RewriteCategorySetupInitHook(std::string &Result);
+
+ // Rewriting ivar
+ void RewriteIvarOffsetComputation(ObjCIvarDecl *ivar,
+ std::string &Result);
+ Stmt *RewriteObjCIvarRefExpr(ObjCIvarRefExpr *IV);
+
+
+ std::string SynthesizeByrefCopyDestroyHelper(VarDecl *VD, int flag);
+ std::string SynthesizeBlockHelperFuncs(BlockExpr *CE, int i,
+ StringRef funcName, std::string Tag);
+ std::string SynthesizeBlockFunc(BlockExpr *CE, int i,
+ StringRef funcName, std::string Tag);
+ std::string SynthesizeBlockImpl(BlockExpr *CE,
+ std::string Tag, std::string Desc);
+ std::string SynthesizeBlockDescriptor(std::string DescTag,
+ std::string ImplTag,
+ int i, StringRef funcName,
+ unsigned hasCopy);
+ Stmt *SynthesizeBlockCall(CallExpr *Exp, const Expr* BlockExp);
+ void SynthesizeBlockLiterals(SourceLocation FunLocStart,
+ StringRef FunName);
+ FunctionDecl *SynthBlockInitFunctionDecl(StringRef name);
+ Stmt *SynthBlockInitExpr(BlockExpr *Exp,
+ const SmallVectorImpl<DeclRefExpr *> &InnerBlockDeclRefs);
+
+ // Misc. helper routines.
+ QualType getProtocolType();
+ void WarnAboutReturnGotoStmts(Stmt *S);
+ void CheckFunctionPointerDecl(QualType dType, NamedDecl *ND);
+ void InsertBlockLiteralsWithinFunction(FunctionDecl *FD);
+ void InsertBlockLiteralsWithinMethod(ObjCMethodDecl *MD);
+
+ bool IsDeclStmtInForeachHeader(DeclStmt *DS);
+ void CollectBlockDeclRefInfo(BlockExpr *Exp);
+ void GetBlockDeclRefExprs(Stmt *S);
+ void GetInnerBlockDeclRefExprs(Stmt *S,
+ SmallVectorImpl<DeclRefExpr *> &InnerBlockDeclRefs,
+ llvm::SmallPtrSetImpl<const DeclContext *> &InnerContexts);
+
+ // We avoid calling Type::isBlockPointerType(), since it operates on the
+ // canonical type. We only care if the top-level type is a closure pointer.
+ bool isTopLevelBlockPointerType(QualType T) {
+ return isa<BlockPointerType>(T);
+ }
+
+ /// convertBlockPointerToFunctionPointer - Converts a block-pointer type
+ /// to a function pointer type and upon success, returns true; false
+ /// otherwise.
+ bool convertBlockPointerToFunctionPointer(QualType &T) {
+ if (isTopLevelBlockPointerType(T)) {
+ const BlockPointerType *BPT = T->getAs<BlockPointerType>();
+ T = Context->getPointerType(BPT->getPointeeType());
+ return true;
+ }
+ return false;
+ }
+
+ bool convertObjCTypeToCStyleType(QualType &T);
+
+ bool needToScanForQualifiers(QualType T);
+ QualType getSuperStructType();
+ QualType getConstantStringStructType();
+ QualType convertFunctionTypeOfBlocks(const FunctionType *FT);
+ bool BufferContainsPPDirectives(const char *startBuf, const char *endBuf);
+
+ void convertToUnqualifiedObjCType(QualType &T) {
+ if (T->isObjCQualifiedIdType()) {
+ bool isConst = T.isConstQualified();
+ T = isConst ? Context->getObjCIdType().withConst()
+ : Context->getObjCIdType();
+ }
+ else if (T->isObjCQualifiedClassType())
+ T = Context->getObjCClassType();
+ else if (T->isObjCObjectPointerType() &&
+ T->getPointeeType()->isObjCQualifiedInterfaceType()) {
+ if (const ObjCObjectPointerType * OBJPT =
+ T->getAsObjCInterfacePointerType()) {
+ const ObjCInterfaceType *IFaceT = OBJPT->getInterfaceType();
+ T = QualType(IFaceT, 0);
+ T = Context->getPointerType(T);
+ }
+ }
+ }
+
+ // FIXME: This predicate seems like it would be useful to add to ASTContext.
+ bool isObjCType(QualType T) {
+ if (!LangOpts.ObjC1 && !LangOpts.ObjC2)
+ return false;
+
+ QualType OCT = Context->getCanonicalType(T).getUnqualifiedType();
+
+ if (OCT == Context->getCanonicalType(Context->getObjCIdType()) ||
+ OCT == Context->getCanonicalType(Context->getObjCClassType()))
+ return true;
+
+ if (const PointerType *PT = OCT->getAs<PointerType>()) {
+ if (isa<ObjCInterfaceType>(PT->getPointeeType()) ||
+ PT->getPointeeType()->isObjCQualifiedIdType())
+ return true;
+ }
+ return false;
+ }
+ bool PointerTypeTakesAnyBlockArguments(QualType QT);
+ bool PointerTypeTakesAnyObjCQualifiedType(QualType QT);
+ void GetExtentOfArgList(const char *Name, const char *&LParen,
+ const char *&RParen);
+
+ void QuoteDoublequotes(std::string &From, std::string &To) {
+ for (unsigned i = 0; i < From.length(); i++) {
+ if (From[i] == '"')
+ To += "\\\"";
+ else
+ To += From[i];
+ }
+ }
+
+ QualType getSimpleFunctionType(QualType result,
+ ArrayRef<QualType> args,
+ bool variadic = false) {
+ if (result == Context->getObjCInstanceType())
+ result = Context->getObjCIdType();
+ FunctionProtoType::ExtProtoInfo fpi;
+ fpi.Variadic = variadic;
+ return Context->getFunctionType(result, args, fpi);
+ }
+
+ // Helper function: create a CStyleCastExpr with trivial type source info.
+ CStyleCastExpr* NoTypeInfoCStyleCastExpr(ASTContext *Ctx, QualType Ty,
+ CastKind Kind, Expr *E) {
+ TypeSourceInfo *TInfo = Ctx->getTrivialTypeSourceInfo(Ty, SourceLocation());
+ return CStyleCastExpr::Create(*Ctx, Ty, VK_RValue, Kind, E, nullptr,
+ TInfo, SourceLocation(), SourceLocation());
+ }
+
+ bool ImplementationIsNonLazy(const ObjCImplDecl *OD) const {
+ IdentifierInfo* II = &Context->Idents.get("load");
+ Selector LoadSel = Context->Selectors.getSelector(0, &II);
+ return OD->getClassMethod(LoadSel) != nullptr;
+ }
+
+ StringLiteral *getStringLiteral(StringRef Str) {
+ QualType StrType = Context->getConstantArrayType(
+ Context->CharTy, llvm::APInt(32, Str.size() + 1), ArrayType::Normal,
+ 0);
+ return StringLiteral::Create(*Context, Str, StringLiteral::Ascii,
+ /*Pascal=*/false, StrType, SourceLocation());
+ }
+ };
+
+}
+
+void RewriteModernObjC::RewriteBlocksInFunctionProtoType(QualType funcType,
+ NamedDecl *D) {
+ if (const FunctionProtoType *fproto
+ = dyn_cast<FunctionProtoType>(funcType.IgnoreParens())) {
+ for (const auto &I : fproto->param_types())
+ if (isTopLevelBlockPointerType(I)) {
+ // All the args are checked/rewritten. Don't call twice!
+ RewriteBlockPointerDecl(D);
+ break;
+ }
+ }
+}
+
+void RewriteModernObjC::CheckFunctionPointerDecl(QualType funcType, NamedDecl *ND) {
+ const PointerType *PT = funcType->getAs<PointerType>();
+ if (PT && PointerTypeTakesAnyBlockArguments(funcType))
+ RewriteBlocksInFunctionProtoType(PT->getPointeeType(), ND);
+}
+
+static bool IsHeaderFile(const std::string &Filename) {
+ std::string::size_type DotPos = Filename.rfind('.');
+
+ if (DotPos == std::string::npos) {
+ // no file extension
+ return false;
+ }
+
+ std::string Ext = std::string(Filename.begin()+DotPos+1, Filename.end());
+ // C header: .h
+ // C++ header: .hh or .H;
+ return Ext == "h" || Ext == "hh" || Ext == "H";
+}
+
+RewriteModernObjC::RewriteModernObjC(std::string inFile, raw_ostream* OS,
+ DiagnosticsEngine &D, const LangOptions &LOpts,
+ bool silenceMacroWarn,
+ bool LineInfo)
+ : Diags(D), LangOpts(LOpts), InFileName(inFile), OutFile(OS),
+ SilenceRewriteMacroWarning(silenceMacroWarn), GenerateLineInfo(LineInfo) {
+ IsHeader = IsHeaderFile(inFile);
+ RewriteFailedDiag = Diags.getCustomDiagID(DiagnosticsEngine::Warning,
+ "rewriting sub-expression within a macro (may not be correct)");
+ // FIXME. This should be an error. But if block is not called, it is OK. And it
+ // may break including some headers.
+ GlobalBlockRewriteFailedDiag = Diags.getCustomDiagID(DiagnosticsEngine::Warning,
+ "rewriting block literal declared in global scope is not implemented");
+
+ TryFinallyContainsReturnDiag = Diags.getCustomDiagID(
+ DiagnosticsEngine::Warning,
+ "rewriter doesn't support user-specified control flow semantics "
+ "for @try/@finally (code may not execute properly)");
+}
+
+std::unique_ptr<ASTConsumer> clang::CreateModernObjCRewriter(
+ const std::string &InFile, raw_ostream *OS, DiagnosticsEngine &Diags,
+ const LangOptions &LOpts, bool SilenceRewriteMacroWarning, bool LineInfo) {
+ return llvm::make_unique<RewriteModernObjC>(
+ InFile, OS, Diags, LOpts, SilenceRewriteMacroWarning, LineInfo);
+}
+
+void RewriteModernObjC::InitializeCommon(ASTContext &context) {
+ Context = &context;
+ SM = &Context->getSourceManager();
+ TUDecl = Context->getTranslationUnitDecl();
+ MsgSendFunctionDecl = nullptr;
+ MsgSendSuperFunctionDecl = nullptr;
+ MsgSendStretFunctionDecl = nullptr;
+ MsgSendSuperStretFunctionDecl = nullptr;
+ MsgSendFpretFunctionDecl = nullptr;
+ GetClassFunctionDecl = nullptr;
+ GetMetaClassFunctionDecl = nullptr;
+ GetSuperClassFunctionDecl = nullptr;
+ SelGetUidFunctionDecl = nullptr;
+ CFStringFunctionDecl = nullptr;
+ ConstantStringClassReference = nullptr;
+ NSStringRecord = nullptr;
+ CurMethodDef = nullptr;
+ CurFunctionDef = nullptr;
+ GlobalVarDecl = nullptr;
+ GlobalConstructionExp = nullptr;
+ SuperStructDecl = nullptr;
+ ProtocolTypeDecl = nullptr;
+ ConstantStringDecl = nullptr;
+ BcLabelCount = 0;
+ SuperConstructorFunctionDecl = nullptr;
+ NumObjCStringLiterals = 0;
+ PropParentMap = nullptr;
+ CurrentBody = nullptr;
+ DisableReplaceStmt = false;
+ objc_impl_method = false;
+
+ // Get the ID and start/end of the main file.
+ MainFileID = SM->getMainFileID();
+ const llvm::MemoryBuffer *MainBuf = SM->getBuffer(MainFileID);
+ MainFileStart = MainBuf->getBufferStart();
+ MainFileEnd = MainBuf->getBufferEnd();
+
+ Rewrite.setSourceMgr(Context->getSourceManager(), Context->getLangOpts());
+}
+
+//===----------------------------------------------------------------------===//
+// Top Level Driver Code
+//===----------------------------------------------------------------------===//
+
+void RewriteModernObjC::HandleTopLevelSingleDecl(Decl *D) {
+ if (Diags.hasErrorOccurred())
+ return;
+
+ // Two cases: either the decl could be in the main file, or it could be in a
+ // #included file. If the former, rewrite it now. If the later, check to see
+ // if we rewrote the #include/#import.
+ SourceLocation Loc = D->getLocation();
+ Loc = SM->getExpansionLoc(Loc);
+
+ // If this is for a builtin, ignore it.
+ if (Loc.isInvalid()) return;
+
+ // Look for built-in declarations that we need to refer during the rewrite.
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ RewriteFunctionDecl(FD);
+ } else if (VarDecl *FVD = dyn_cast<VarDecl>(D)) {
+ // declared in <Foundation/NSString.h>
+ if (FVD->getName() == "_NSConstantStringClassReference") {
+ ConstantStringClassReference = FVD;
+ return;
+ }
+ } else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(D)) {
+ RewriteCategoryDecl(CD);
+ } else if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D)) {
+ if (PD->isThisDeclarationADefinition())
+ RewriteProtocolDecl(PD);
+ } else if (LinkageSpecDecl *LSD = dyn_cast<LinkageSpecDecl>(D)) {
+ // FIXME. This will not work in all situations and leaving it out
+ // is harmless.
+ // RewriteLinkageSpec(LSD);
+
+ // Recurse into linkage specifications
+ for (DeclContext::decl_iterator DI = LSD->decls_begin(),
+ DIEnd = LSD->decls_end();
+ DI != DIEnd; ) {
+ if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>((*DI))) {
+ if (!IFace->isThisDeclarationADefinition()) {
+ SmallVector<Decl *, 8> DG;
+ SourceLocation StartLoc = IFace->getLocStart();
+ do {
+ if (isa<ObjCInterfaceDecl>(*DI) &&
+ !cast<ObjCInterfaceDecl>(*DI)->isThisDeclarationADefinition() &&
+ StartLoc == (*DI)->getLocStart())
+ DG.push_back(*DI);
+ else
+ break;
+
+ ++DI;
+ } while (DI != DIEnd);
+ RewriteForwardClassDecl(DG);
+ continue;
+ }
+ else {
+ // Keep track of all interface declarations seen.
+ ObjCInterfacesSeen.push_back(IFace);
+ ++DI;
+ continue;
+ }
+ }
+
+ if (ObjCProtocolDecl *Proto = dyn_cast<ObjCProtocolDecl>((*DI))) {
+ if (!Proto->isThisDeclarationADefinition()) {
+ SmallVector<Decl *, 8> DG;
+ SourceLocation StartLoc = Proto->getLocStart();
+ do {
+ if (isa<ObjCProtocolDecl>(*DI) &&
+ !cast<ObjCProtocolDecl>(*DI)->isThisDeclarationADefinition() &&
+ StartLoc == (*DI)->getLocStart())
+ DG.push_back(*DI);
+ else
+ break;
+
+ ++DI;
+ } while (DI != DIEnd);
+ RewriteForwardProtocolDecl(DG);
+ continue;
+ }
+ }
+
+ HandleTopLevelSingleDecl(*DI);
+ ++DI;
+ }
+ }
+ // If we have a decl in the main file, see if we should rewrite it.
+ if (SM->isWrittenInMainFile(Loc))
+ return HandleDeclInMainFile(D);
+}
+
+//===----------------------------------------------------------------------===//
+// Syntactic (non-AST) Rewriting Code
+//===----------------------------------------------------------------------===//
+
+void RewriteModernObjC::RewriteInclude() {
+ SourceLocation LocStart = SM->getLocForStartOfFile(MainFileID);
+ StringRef MainBuf = SM->getBufferData(MainFileID);
+ const char *MainBufStart = MainBuf.begin();
+ const char *MainBufEnd = MainBuf.end();
+ size_t ImportLen = strlen("import");
+
+ // Loop over the whole file, looking for includes.
+ for (const char *BufPtr = MainBufStart; BufPtr < MainBufEnd; ++BufPtr) {
+ if (*BufPtr == '#') {
+ if (++BufPtr == MainBufEnd)
+ return;
+ while (*BufPtr == ' ' || *BufPtr == '\t')
+ if (++BufPtr == MainBufEnd)
+ return;
+ if (!strncmp(BufPtr, "import", ImportLen)) {
+ // replace import with include
+ SourceLocation ImportLoc =
+ LocStart.getLocWithOffset(BufPtr-MainBufStart);
+ ReplaceText(ImportLoc, ImportLen, "include");
+ BufPtr += ImportLen;
+ }
+ }
+ }
+}
+
+static void WriteInternalIvarName(const ObjCInterfaceDecl *IDecl,
+ ObjCIvarDecl *IvarDecl, std::string &Result) {
+ Result += "OBJC_IVAR_$_";
+ Result += IDecl->getName();
+ Result += "$";
+ Result += IvarDecl->getName();
+}
+
+std::string
+RewriteModernObjC::getIvarAccessString(ObjCIvarDecl *D) {
+ const ObjCInterfaceDecl *ClassDecl = D->getContainingInterface();
+
+ // Build name of symbol holding ivar offset.
+ std::string IvarOffsetName;
+ if (D->isBitField())
+ ObjCIvarBitfieldGroupOffset(D, IvarOffsetName);
+ else
+ WriteInternalIvarName(ClassDecl, D, IvarOffsetName);
+
+
+ std::string S = "(*(";
+ QualType IvarT = D->getType();
+ if (D->isBitField())
+ IvarT = GetGroupRecordTypeForObjCIvarBitfield(D);
+
+ if (!isa<TypedefType>(IvarT) && IvarT->isRecordType()) {
+ RecordDecl *RD = IvarT->getAs<RecordType>()->getDecl();
+ RD = RD->getDefinition();
+ if (RD && !RD->getDeclName().getAsIdentifierInfo()) {
+ // decltype(((Foo_IMPL*)0)->bar) *
+ ObjCContainerDecl *CDecl =
+ dyn_cast<ObjCContainerDecl>(D->getDeclContext());
+ // ivar in class extensions requires special treatment.
+ if (ObjCCategoryDecl *CatDecl = dyn_cast<ObjCCategoryDecl>(CDecl))
+ CDecl = CatDecl->getClassInterface();
+ std::string RecName = CDecl->getName();
+ RecName += "_IMPL";
+ RecordDecl *RD = RecordDecl::Create(*Context, TTK_Struct, TUDecl,
+ SourceLocation(), SourceLocation(),
+ &Context->Idents.get(RecName.c_str()));
+ QualType PtrStructIMPL = Context->getPointerType(Context->getTagDeclType(RD));
+ unsigned UnsignedIntSize =
+ static_cast<unsigned>(Context->getTypeSize(Context->UnsignedIntTy));
+ Expr *Zero = IntegerLiteral::Create(*Context,
+ llvm::APInt(UnsignedIntSize, 0),
+ Context->UnsignedIntTy, SourceLocation());
+ Zero = NoTypeInfoCStyleCastExpr(Context, PtrStructIMPL, CK_BitCast, Zero);
+ ParenExpr *PE = new (Context) ParenExpr(SourceLocation(), SourceLocation(),
+ Zero);
+ FieldDecl *FD = FieldDecl::Create(*Context, nullptr, SourceLocation(),
+ SourceLocation(),
+ &Context->Idents.get(D->getNameAsString()),
+ IvarT, nullptr,
+ /*BitWidth=*/nullptr, /*Mutable=*/true,
+ ICIS_NoInit);
+ MemberExpr *ME = new (Context)
+ MemberExpr(PE, true, SourceLocation(), FD, SourceLocation(),
+ FD->getType(), VK_LValue, OK_Ordinary);
+ IvarT = Context->getDecltypeType(ME, ME->getType());
+ }
+ }
+ convertObjCTypeToCStyleType(IvarT);
+ QualType castT = Context->getPointerType(IvarT);
+ std::string TypeString(castT.getAsString(Context->getPrintingPolicy()));
+ S += TypeString;
+ S += ")";
+
+ // ((char *)self + IVAR_OFFSET_SYMBOL_NAME)
+ S += "((char *)self + ";
+ S += IvarOffsetName;
+ S += "))";
+ if (D->isBitField()) {
+ S += ".";
+ S += D->getNameAsString();
+ }
+ ReferencedIvars[const_cast<ObjCInterfaceDecl *>(ClassDecl)].insert(D);
+ return S;
+}
+
+/// mustSynthesizeSetterGetterMethod - returns true if setter or getter has not
+/// been found in the class implementation. In this case, it must be synthesized.
+static bool mustSynthesizeSetterGetterMethod(ObjCImplementationDecl *IMP,
+ ObjCPropertyDecl *PD,
+ bool getter) {
+ return getter ? !IMP->getInstanceMethod(PD->getGetterName())
+ : !IMP->getInstanceMethod(PD->getSetterName());
+
+}
+
+void RewriteModernObjC::RewritePropertyImplDecl(ObjCPropertyImplDecl *PID,
+ ObjCImplementationDecl *IMD,
+ ObjCCategoryImplDecl *CID) {
+ static bool objcGetPropertyDefined = false;
+ static bool objcSetPropertyDefined = false;
+ SourceLocation startGetterSetterLoc;
+
+ if (PID->getLocStart().isValid()) {
+ SourceLocation startLoc = PID->getLocStart();
+ InsertText(startLoc, "// ");
+ const char *startBuf = SM->getCharacterData(startLoc);
+ assert((*startBuf == '@') && "bogus @synthesize location");
+ const char *semiBuf = strchr(startBuf, ';');
+ assert((*semiBuf == ';') && "@synthesize: can't find ';'");
+ startGetterSetterLoc = startLoc.getLocWithOffset(semiBuf-startBuf+1);
+ }
+ else
+ startGetterSetterLoc = IMD ? IMD->getLocEnd() : CID->getLocEnd();
+
+ if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
+ return; // FIXME: is this correct?
+
+ // Generate the 'getter' function.
+ ObjCPropertyDecl *PD = PID->getPropertyDecl();
+ ObjCIvarDecl *OID = PID->getPropertyIvarDecl();
+ assert(IMD && OID && "Synthesized ivars must be attached to @implementation");
+
+ unsigned Attributes = PD->getPropertyAttributes();
+ if (mustSynthesizeSetterGetterMethod(IMD, PD, true /*getter*/)) {
+ bool GenGetProperty = !(Attributes & ObjCPropertyDecl::OBJC_PR_nonatomic) &&
+ (Attributes & (ObjCPropertyDecl::OBJC_PR_retain |
+ ObjCPropertyDecl::OBJC_PR_copy));
+ std::string Getr;
+ if (GenGetProperty && !objcGetPropertyDefined) {
+ objcGetPropertyDefined = true;
+ // FIXME. Is this attribute correct in all cases?
+ Getr = "\nextern \"C\" __declspec(dllimport) "
+ "id objc_getProperty(id, SEL, long, bool);\n";
+ }
+ RewriteObjCMethodDecl(OID->getContainingInterface(),
+ PD->getGetterMethodDecl(), Getr);
+ Getr += "{ ";
+ // Synthesize an explicit cast to gain access to the ivar.
+ // See objc-act.c:objc_synthesize_new_getter() for details.
+ if (GenGetProperty) {
+ // return objc_getProperty(self, _cmd, offsetof(ClassDecl, OID), 1)
+ Getr += "typedef ";
+ const FunctionType *FPRetType = nullptr;
+ RewriteTypeIntoString(PD->getGetterMethodDecl()->getReturnType(), Getr,
+ FPRetType);
+ Getr += " _TYPE";
+ if (FPRetType) {
+ Getr += ")"; // close the precedence "scope" for "*".
+
+ // Now, emit the argument types (if any).
+ if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(FPRetType)){
+ Getr += "(";
+ for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
+ if (i) Getr += ", ";
+ std::string ParamStr =
+ FT->getParamType(i).getAsString(Context->getPrintingPolicy());
+ Getr += ParamStr;
+ }
+ if (FT->isVariadic()) {
+ if (FT->getNumParams())
+ Getr += ", ";
+ Getr += "...";
+ }
+ Getr += ")";
+ } else
+ Getr += "()";
+ }
+ Getr += ";\n";
+ Getr += "return (_TYPE)";
+ Getr += "objc_getProperty(self, _cmd, ";
+ RewriteIvarOffsetComputation(OID, Getr);
+ Getr += ", 1)";
+ }
+ else
+ Getr += "return " + getIvarAccessString(OID);
+ Getr += "; }";
+ InsertText(startGetterSetterLoc, Getr);
+ }
+
+ if (PD->isReadOnly() ||
+ !mustSynthesizeSetterGetterMethod(IMD, PD, false /*setter*/))
+ return;
+
+ // Generate the 'setter' function.
+ std::string Setr;
+ bool GenSetProperty = Attributes & (ObjCPropertyDecl::OBJC_PR_retain |
+ ObjCPropertyDecl::OBJC_PR_copy);
+ if (GenSetProperty && !objcSetPropertyDefined) {
+ objcSetPropertyDefined = true;
+ // FIXME. Is this attribute correct in all cases?
+ Setr = "\nextern \"C\" __declspec(dllimport) "
+ "void objc_setProperty (id, SEL, long, id, bool, bool);\n";
+ }
+
+ RewriteObjCMethodDecl(OID->getContainingInterface(),
+ PD->getSetterMethodDecl(), Setr);
+ Setr += "{ ";
+ // Synthesize an explicit cast to initialize the ivar.
+ // See objc-act.c:objc_synthesize_new_setter() for details.
+ if (GenSetProperty) {
+ Setr += "objc_setProperty (self, _cmd, ";
+ RewriteIvarOffsetComputation(OID, Setr);
+ Setr += ", (id)";
+ Setr += PD->getName();
+ Setr += ", ";
+ if (Attributes & ObjCPropertyDecl::OBJC_PR_nonatomic)
+ Setr += "0, ";
+ else
+ Setr += "1, ";
+ if (Attributes & ObjCPropertyDecl::OBJC_PR_copy)
+ Setr += "1)";
+ else
+ Setr += "0)";
+ }
+ else {
+ Setr += getIvarAccessString(OID) + " = ";
+ Setr += PD->getName();
+ }
+ Setr += "; }\n";
+ InsertText(startGetterSetterLoc, Setr);
+}
+
+static void RewriteOneForwardClassDecl(ObjCInterfaceDecl *ForwardDecl,
+ std::string &typedefString) {
+ typedefString += "\n#ifndef _REWRITER_typedef_";
+ typedefString += ForwardDecl->getNameAsString();
+ typedefString += "\n";
+ typedefString += "#define _REWRITER_typedef_";
+ typedefString += ForwardDecl->getNameAsString();
+ typedefString += "\n";
+ typedefString += "typedef struct objc_object ";
+ typedefString += ForwardDecl->getNameAsString();
+ // typedef struct { } _objc_exc_Classname;
+ typedefString += ";\ntypedef struct {} _objc_exc_";
+ typedefString += ForwardDecl->getNameAsString();
+ typedefString += ";\n#endif\n";
+}
+
+void RewriteModernObjC::RewriteForwardClassEpilogue(ObjCInterfaceDecl *ClassDecl,
+ const std::string &typedefString) {
+ SourceLocation startLoc = ClassDecl->getLocStart();
+ const char *startBuf = SM->getCharacterData(startLoc);
+ const char *semiPtr = strchr(startBuf, ';');
+ // Replace the @class with typedefs corresponding to the classes.
+ ReplaceText(startLoc, semiPtr-startBuf+1, typedefString);
+}
+
+void RewriteModernObjC::RewriteForwardClassDecl(DeclGroupRef D) {
+ std::string typedefString;
+ for (DeclGroupRef::iterator I = D.begin(), E = D.end(); I != E; ++I) {
+ if (ObjCInterfaceDecl *ForwardDecl = dyn_cast<ObjCInterfaceDecl>(*I)) {
+ if (I == D.begin()) {
+ // Translate to typedef's that forward reference structs with the same name
+ // as the class. As a convenience, we include the original declaration
+ // as a comment.
+ typedefString += "// @class ";
+ typedefString += ForwardDecl->getNameAsString();
+ typedefString += ";";
+ }
+ RewriteOneForwardClassDecl(ForwardDecl, typedefString);
+ }
+ else
+ HandleTopLevelSingleDecl(*I);
+ }
+ DeclGroupRef::iterator I = D.begin();
+ RewriteForwardClassEpilogue(cast<ObjCInterfaceDecl>(*I), typedefString);
+}
+
+void RewriteModernObjC::RewriteForwardClassDecl(
+ const SmallVectorImpl<Decl *> &D) {
+ std::string typedefString;
+ for (unsigned i = 0; i < D.size(); i++) {
+ ObjCInterfaceDecl *ForwardDecl = cast<ObjCInterfaceDecl>(D[i]);
+ if (i == 0) {
+ typedefString += "// @class ";
+ typedefString += ForwardDecl->getNameAsString();
+ typedefString += ";";
+ }
+ RewriteOneForwardClassDecl(ForwardDecl, typedefString);
+ }
+ RewriteForwardClassEpilogue(cast<ObjCInterfaceDecl>(D[0]), typedefString);
+}
+
+void RewriteModernObjC::RewriteMethodDeclaration(ObjCMethodDecl *Method) {
+ // When method is a synthesized one, such as a getter/setter there is
+ // nothing to rewrite.
+ if (Method->isImplicit())
+ return;
+ SourceLocation LocStart = Method->getLocStart();
+ SourceLocation LocEnd = Method->getLocEnd();
+
+ if (SM->getExpansionLineNumber(LocEnd) >
+ SM->getExpansionLineNumber(LocStart)) {
+ InsertText(LocStart, "#if 0\n");
+ ReplaceText(LocEnd, 1, ";\n#endif\n");
+ } else {
+ InsertText(LocStart, "// ");
+ }
+}
+
+void RewriteModernObjC::RewriteProperty(ObjCPropertyDecl *prop) {
+ SourceLocation Loc = prop->getAtLoc();
+
+ ReplaceText(Loc, 0, "// ");
+ // FIXME: handle properties that are declared across multiple lines.
+}
+
+void RewriteModernObjC::RewriteCategoryDecl(ObjCCategoryDecl *CatDecl) {
+ SourceLocation LocStart = CatDecl->getLocStart();
+
+ // FIXME: handle category headers that are declared across multiple lines.
+ if (CatDecl->getIvarRBraceLoc().isValid()) {
+ ReplaceText(LocStart, 1, "/** ");
+ ReplaceText(CatDecl->getIvarRBraceLoc(), 1, "**/ ");
+ }
+ else {
+ ReplaceText(LocStart, 0, "// ");
+ }
+
+ for (auto *I : CatDecl->properties())
+ RewriteProperty(I);
+
+ for (auto *I : CatDecl->instance_methods())
+ RewriteMethodDeclaration(I);
+ for (auto *I : CatDecl->class_methods())
+ RewriteMethodDeclaration(I);
+
+ // Lastly, comment out the @end.
+ ReplaceText(CatDecl->getAtEndRange().getBegin(),
+ strlen("@end"), "/* @end */\n");
+}
+
+void RewriteModernObjC::RewriteProtocolDecl(ObjCProtocolDecl *PDecl) {
+ SourceLocation LocStart = PDecl->getLocStart();
+ assert(PDecl->isThisDeclarationADefinition());
+
+ // FIXME: handle protocol headers that are declared across multiple lines.
+ ReplaceText(LocStart, 0, "// ");
+
+ for (auto *I : PDecl->instance_methods())
+ RewriteMethodDeclaration(I);
+ for (auto *I : PDecl->class_methods())
+ RewriteMethodDeclaration(I);
+ for (auto *I : PDecl->properties())
+ RewriteProperty(I);
+
+ // Lastly, comment out the @end.
+ SourceLocation LocEnd = PDecl->getAtEndRange().getBegin();
+ ReplaceText(LocEnd, strlen("@end"), "/* @end */\n");
+
+ // Must comment out @optional/@required
+ const char *startBuf = SM->getCharacterData(LocStart);
+ const char *endBuf = SM->getCharacterData(LocEnd);
+ for (const char *p = startBuf; p < endBuf; p++) {
+ if (*p == '@' && !strncmp(p+1, "optional", strlen("optional"))) {
+ SourceLocation OptionalLoc = LocStart.getLocWithOffset(p-startBuf);
+ ReplaceText(OptionalLoc, strlen("@optional"), "/* @optional */");
+
+ }
+ else if (*p == '@' && !strncmp(p+1, "required", strlen("required"))) {
+ SourceLocation OptionalLoc = LocStart.getLocWithOffset(p-startBuf);
+ ReplaceText(OptionalLoc, strlen("@required"), "/* @required */");
+
+ }
+ }
+}
+
+void RewriteModernObjC::RewriteForwardProtocolDecl(DeclGroupRef D) {
+ SourceLocation LocStart = (*D.begin())->getLocStart();
+ if (LocStart.isInvalid())
+ llvm_unreachable("Invalid SourceLocation");
+ // FIXME: handle forward protocol that are declared across multiple lines.
+ ReplaceText(LocStart, 0, "// ");
+}
+
+void
+RewriteModernObjC::RewriteForwardProtocolDecl(const SmallVectorImpl<Decl *> &DG) {
+ SourceLocation LocStart = DG[0]->getLocStart();
+ if (LocStart.isInvalid())
+ llvm_unreachable("Invalid SourceLocation");
+ // FIXME: handle forward protocol that are declared across multiple lines.
+ ReplaceText(LocStart, 0, "// ");
+}
+
+void
+RewriteModernObjC::RewriteLinkageSpec(LinkageSpecDecl *LSD) {
+ SourceLocation LocStart = LSD->getExternLoc();
+ if (LocStart.isInvalid())
+ llvm_unreachable("Invalid extern SourceLocation");
+
+ ReplaceText(LocStart, 0, "// ");
+ if (!LSD->hasBraces())
+ return;
+ // FIXME. We don't rewrite well if '{' is not on same line as 'extern'.
+ SourceLocation LocRBrace = LSD->getRBraceLoc();
+ if (LocRBrace.isInvalid())
+ llvm_unreachable("Invalid rbrace SourceLocation");
+ ReplaceText(LocRBrace, 0, "// ");
+}
+
+void RewriteModernObjC::RewriteTypeIntoString(QualType T, std::string &ResultStr,
+ const FunctionType *&FPRetType) {
+ if (T->isObjCQualifiedIdType())
+ ResultStr += "id";
+ else if (T->isFunctionPointerType() ||
+ T->isBlockPointerType()) {
+ // needs special handling, since pointer-to-functions have special
+ // syntax (where a decaration models use).
+ QualType retType = T;
+ QualType PointeeTy;
+ if (const PointerType* PT = retType->getAs<PointerType>())
+ PointeeTy = PT->getPointeeType();
+ else if (const BlockPointerType *BPT = retType->getAs<BlockPointerType>())
+ PointeeTy = BPT->getPointeeType();
+ if ((FPRetType = PointeeTy->getAs<FunctionType>())) {
+ ResultStr +=
+ FPRetType->getReturnType().getAsString(Context->getPrintingPolicy());
+ ResultStr += "(*";
+ }
+ } else
+ ResultStr += T.getAsString(Context->getPrintingPolicy());
+}
+
+void RewriteModernObjC::RewriteObjCMethodDecl(const ObjCInterfaceDecl *IDecl,
+ ObjCMethodDecl *OMD,
+ std::string &ResultStr) {
+ //fprintf(stderr,"In RewriteObjCMethodDecl\n");
+ const FunctionType *FPRetType = nullptr;
+ ResultStr += "\nstatic ";
+ RewriteTypeIntoString(OMD->getReturnType(), ResultStr, FPRetType);
+ ResultStr += " ";
+
+ // Unique method name
+ std::string NameStr;
+
+ if (OMD->isInstanceMethod())
+ NameStr += "_I_";
+ else
+ NameStr += "_C_";
+
+ NameStr += IDecl->getNameAsString();
+ NameStr += "_";
+
+ if (ObjCCategoryImplDecl *CID =
+ dyn_cast<ObjCCategoryImplDecl>(OMD->getDeclContext())) {
+ NameStr += CID->getNameAsString();
+ NameStr += "_";
+ }
+ // Append selector names, replacing ':' with '_'
+ {
+ std::string selString = OMD->getSelector().getAsString();
+ int len = selString.size();
+ for (int i = 0; i < len; i++)
+ if (selString[i] == ':')
+ selString[i] = '_';
+ NameStr += selString;
+ }
+ // Remember this name for metadata emission
+ MethodInternalNames[OMD] = NameStr;
+ ResultStr += NameStr;
+
+ // Rewrite arguments
+ ResultStr += "(";
+
+ // invisible arguments
+ if (OMD->isInstanceMethod()) {
+ QualType selfTy = Context->getObjCInterfaceType(IDecl);
+ selfTy = Context->getPointerType(selfTy);
+ if (!LangOpts.MicrosoftExt) {
+ if (ObjCSynthesizedStructs.count(const_cast<ObjCInterfaceDecl*>(IDecl)))
+ ResultStr += "struct ";
+ }
+ // When rewriting for Microsoft, explicitly omit the structure name.
+ ResultStr += IDecl->getNameAsString();
+ ResultStr += " *";
+ }
+ else
+ ResultStr += Context->getObjCClassType().getAsString(
+ Context->getPrintingPolicy());
+
+ ResultStr += " self, ";
+ ResultStr += Context->getObjCSelType().getAsString(Context->getPrintingPolicy());
+ ResultStr += " _cmd";
+
+ // Method arguments.
+ for (const auto *PDecl : OMD->params()) {
+ ResultStr += ", ";
+ if (PDecl->getType()->isObjCQualifiedIdType()) {
+ ResultStr += "id ";
+ ResultStr += PDecl->getNameAsString();
+ } else {
+ std::string Name = PDecl->getNameAsString();
+ QualType QT = PDecl->getType();
+ // Make sure we convert "t (^)(...)" to "t (*)(...)".
+ (void)convertBlockPointerToFunctionPointer(QT);
+ QT.getAsStringInternal(Name, Context->getPrintingPolicy());
+ ResultStr += Name;
+ }
+ }
+ if (OMD->isVariadic())
+ ResultStr += ", ...";
+ ResultStr += ") ";
+
+ if (FPRetType) {
+ ResultStr += ")"; // close the precedence "scope" for "*".
+
+ // Now, emit the argument types (if any).
+ if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(FPRetType)) {
+ ResultStr += "(";
+ for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
+ if (i) ResultStr += ", ";
+ std::string ParamStr =
+ FT->getParamType(i).getAsString(Context->getPrintingPolicy());
+ ResultStr += ParamStr;
+ }
+ if (FT->isVariadic()) {
+ if (FT->getNumParams())
+ ResultStr += ", ";
+ ResultStr += "...";
+ }
+ ResultStr += ")";
+ } else {
+ ResultStr += "()";
+ }
+ }
+}
+void RewriteModernObjC::RewriteImplementationDecl(Decl *OID) {
+ ObjCImplementationDecl *IMD = dyn_cast<ObjCImplementationDecl>(OID);
+ ObjCCategoryImplDecl *CID = dyn_cast<ObjCCategoryImplDecl>(OID);
+
+ if (IMD) {
+ if (IMD->getIvarRBraceLoc().isValid()) {
+ ReplaceText(IMD->getLocStart(), 1, "/** ");
+ ReplaceText(IMD->getIvarRBraceLoc(), 1, "**/ ");
+ }
+ else {
+ InsertText(IMD->getLocStart(), "// ");
+ }
+ }
+ else
+ InsertText(CID->getLocStart(), "// ");
+
+ for (auto *OMD : IMD ? IMD->instance_methods() : CID->instance_methods()) {
+ std::string ResultStr;
+ RewriteObjCMethodDecl(OMD->getClassInterface(), OMD, ResultStr);
+ SourceLocation LocStart = OMD->getLocStart();
+ SourceLocation LocEnd = OMD->getCompoundBody()->getLocStart();
+
+ const char *startBuf = SM->getCharacterData(LocStart);
+ const char *endBuf = SM->getCharacterData(LocEnd);
+ ReplaceText(LocStart, endBuf-startBuf, ResultStr);
+ }
+
+ for (auto *OMD : IMD ? IMD->class_methods() : CID->class_methods()) {
+ std::string ResultStr;
+ RewriteObjCMethodDecl(OMD->getClassInterface(), OMD, ResultStr);
+ SourceLocation LocStart = OMD->getLocStart();
+ SourceLocation LocEnd = OMD->getCompoundBody()->getLocStart();
+
+ const char *startBuf = SM->getCharacterData(LocStart);
+ const char *endBuf = SM->getCharacterData(LocEnd);
+ ReplaceText(LocStart, endBuf-startBuf, ResultStr);
+ }
+ for (auto *I : IMD ? IMD->property_impls() : CID->property_impls())
+ RewritePropertyImplDecl(I, IMD, CID);
+
+ InsertText(IMD ? IMD->getLocEnd() : CID->getLocEnd(), "// ");
+}
+
+void RewriteModernObjC::RewriteInterfaceDecl(ObjCInterfaceDecl *ClassDecl) {
+ // Do not synthesize more than once.
+ if (ObjCSynthesizedStructs.count(ClassDecl))
+ return;
+ // Make sure super class's are written before current class is written.
+ ObjCInterfaceDecl *SuperClass = ClassDecl->getSuperClass();
+ while (SuperClass) {
+ RewriteInterfaceDecl(SuperClass);
+ SuperClass = SuperClass->getSuperClass();
+ }
+ std::string ResultStr;
+ if (!ObjCWrittenInterfaces.count(ClassDecl->getCanonicalDecl())) {
+ // we haven't seen a forward decl - generate a typedef.
+ RewriteOneForwardClassDecl(ClassDecl, ResultStr);
+ RewriteIvarOffsetSymbols(ClassDecl, ResultStr);
+
+ RewriteObjCInternalStruct(ClassDecl, ResultStr);
+ // Mark this typedef as having been written into its c++ equivalent.
+ ObjCWrittenInterfaces.insert(ClassDecl->getCanonicalDecl());
+
+ for (auto *I : ClassDecl->properties())
+ RewriteProperty(I);
+ for (auto *I : ClassDecl->instance_methods())
+ RewriteMethodDeclaration(I);
+ for (auto *I : ClassDecl->class_methods())
+ RewriteMethodDeclaration(I);
+
+ // Lastly, comment out the @end.
+ ReplaceText(ClassDecl->getAtEndRange().getBegin(), strlen("@end"),
+ "/* @end */\n");
+ }
+}
+
+Stmt *RewriteModernObjC::RewritePropertyOrImplicitSetter(PseudoObjectExpr *PseudoOp) {
+ SourceRange OldRange = PseudoOp->getSourceRange();
+
+ // We just magically know some things about the structure of this
+ // expression.
+ ObjCMessageExpr *OldMsg =
+ cast<ObjCMessageExpr>(PseudoOp->getSemanticExpr(
+ PseudoOp->getNumSemanticExprs() - 1));
+
+ // Because the rewriter doesn't allow us to rewrite rewritten code,
+ // we need to suppress rewriting the sub-statements.
+ Expr *Base;
+ SmallVector<Expr*, 2> Args;
+ {
+ DisableReplaceStmtScope S(*this);
+
+ // Rebuild the base expression if we have one.
+ Base = nullptr;
+ if (OldMsg->getReceiverKind() == ObjCMessageExpr::Instance) {
+ Base = OldMsg->getInstanceReceiver();
+ Base = cast<OpaqueValueExpr>(Base)->getSourceExpr();
+ Base = cast<Expr>(RewriteFunctionBodyOrGlobalInitializer(Base));
+ }
+
+ unsigned numArgs = OldMsg->getNumArgs();
+ for (unsigned i = 0; i < numArgs; i++) {
+ Expr *Arg = OldMsg->getArg(i);
+ if (isa<OpaqueValueExpr>(Arg))
+ Arg = cast<OpaqueValueExpr>(Arg)->getSourceExpr();
+ Arg = cast<Expr>(RewriteFunctionBodyOrGlobalInitializer(Arg));
+ Args.push_back(Arg);
+ }
+ }
+
+ // TODO: avoid this copy.
+ SmallVector<SourceLocation, 1> SelLocs;
+ OldMsg->getSelectorLocs(SelLocs);
+
+ ObjCMessageExpr *NewMsg = nullptr;
+ switch (OldMsg->getReceiverKind()) {
+ case ObjCMessageExpr::Class:
+ NewMsg = ObjCMessageExpr::Create(*Context, OldMsg->getType(),
+ OldMsg->getValueKind(),
+ OldMsg->getLeftLoc(),
+ OldMsg->getClassReceiverTypeInfo(),
+ OldMsg->getSelector(),
+ SelLocs,
+ OldMsg->getMethodDecl(),
+ Args,
+ OldMsg->getRightLoc(),
+ OldMsg->isImplicit());
+ break;
+
+ case ObjCMessageExpr::Instance:
+ NewMsg = ObjCMessageExpr::Create(*Context, OldMsg->getType(),
+ OldMsg->getValueKind(),
+ OldMsg->getLeftLoc(),
+ Base,
+ OldMsg->getSelector(),
+ SelLocs,
+ OldMsg->getMethodDecl(),
+ Args,
+ OldMsg->getRightLoc(),
+ OldMsg->isImplicit());
+ break;
+
+ case ObjCMessageExpr::SuperClass:
+ case ObjCMessageExpr::SuperInstance:
+ NewMsg = ObjCMessageExpr::Create(*Context, OldMsg->getType(),
+ OldMsg->getValueKind(),
+ OldMsg->getLeftLoc(),
+ OldMsg->getSuperLoc(),
+ OldMsg->getReceiverKind() == ObjCMessageExpr::SuperInstance,
+ OldMsg->getSuperType(),
+ OldMsg->getSelector(),
+ SelLocs,
+ OldMsg->getMethodDecl(),
+ Args,
+ OldMsg->getRightLoc(),
+ OldMsg->isImplicit());
+ break;
+ }
+
+ Stmt *Replacement = SynthMessageExpr(NewMsg);
+ ReplaceStmtWithRange(PseudoOp, Replacement, OldRange);
+ return Replacement;
+}
+
+Stmt *RewriteModernObjC::RewritePropertyOrImplicitGetter(PseudoObjectExpr *PseudoOp) {
+ SourceRange OldRange = PseudoOp->getSourceRange();
+
+ // We just magically know some things about the structure of this
+ // expression.
+ ObjCMessageExpr *OldMsg =
+ cast<ObjCMessageExpr>(PseudoOp->getResultExpr()->IgnoreImplicit());
+
+ // Because the rewriter doesn't allow us to rewrite rewritten code,
+ // we need to suppress rewriting the sub-statements.
+ Expr *Base = nullptr;
+ SmallVector<Expr*, 1> Args;
+ {
+ DisableReplaceStmtScope S(*this);
+ // Rebuild the base expression if we have one.
+ if (OldMsg->getReceiverKind() == ObjCMessageExpr::Instance) {
+ Base = OldMsg->getInstanceReceiver();
+ Base = cast<OpaqueValueExpr>(Base)->getSourceExpr();
+ Base = cast<Expr>(RewriteFunctionBodyOrGlobalInitializer(Base));
+ }
+ unsigned numArgs = OldMsg->getNumArgs();
+ for (unsigned i = 0; i < numArgs; i++) {
+ Expr *Arg = OldMsg->getArg(i);
+ if (isa<OpaqueValueExpr>(Arg))
+ Arg = cast<OpaqueValueExpr>(Arg)->getSourceExpr();
+ Arg = cast<Expr>(RewriteFunctionBodyOrGlobalInitializer(Arg));
+ Args.push_back(Arg);
+ }
+ }
+
+ // Intentionally empty.
+ SmallVector<SourceLocation, 1> SelLocs;
+
+ ObjCMessageExpr *NewMsg = nullptr;
+ switch (OldMsg->getReceiverKind()) {
+ case ObjCMessageExpr::Class:
+ NewMsg = ObjCMessageExpr::Create(*Context, OldMsg->getType(),
+ OldMsg->getValueKind(),
+ OldMsg->getLeftLoc(),
+ OldMsg->getClassReceiverTypeInfo(),
+ OldMsg->getSelector(),
+ SelLocs,
+ OldMsg->getMethodDecl(),
+ Args,
+ OldMsg->getRightLoc(),
+ OldMsg->isImplicit());
+ break;
+
+ case ObjCMessageExpr::Instance:
+ NewMsg = ObjCMessageExpr::Create(*Context, OldMsg->getType(),
+ OldMsg->getValueKind(),
+ OldMsg->getLeftLoc(),
+ Base,
+ OldMsg->getSelector(),
+ SelLocs,
+ OldMsg->getMethodDecl(),
+ Args,
+ OldMsg->getRightLoc(),
+ OldMsg->isImplicit());
+ break;
+
+ case ObjCMessageExpr::SuperClass:
+ case ObjCMessageExpr::SuperInstance:
+ NewMsg = ObjCMessageExpr::Create(*Context, OldMsg->getType(),
+ OldMsg->getValueKind(),
+ OldMsg->getLeftLoc(),
+ OldMsg->getSuperLoc(),
+ OldMsg->getReceiverKind() == ObjCMessageExpr::SuperInstance,
+ OldMsg->getSuperType(),
+ OldMsg->getSelector(),
+ SelLocs,
+ OldMsg->getMethodDecl(),
+ Args,
+ OldMsg->getRightLoc(),
+ OldMsg->isImplicit());
+ break;
+ }
+
+ Stmt *Replacement = SynthMessageExpr(NewMsg);
+ ReplaceStmtWithRange(PseudoOp, Replacement, OldRange);
+ return Replacement;
+}
+
+/// SynthCountByEnumWithState - To print:
+/// ((NSUInteger (*)
+/// (id, SEL, struct __objcFastEnumerationState *, id *, NSUInteger))
+/// (void *)objc_msgSend)((id)l_collection,
+/// sel_registerName(
+/// "countByEnumeratingWithState:objects:count:"),
+/// &enumState,
+/// (id *)__rw_items, (NSUInteger)16)
+///
+void RewriteModernObjC::SynthCountByEnumWithState(std::string &buf) {
+ buf += "((_WIN_NSUInteger (*) (id, SEL, struct __objcFastEnumerationState *, "
+ "id *, _WIN_NSUInteger))(void *)objc_msgSend)";
+ buf += "\n\t\t";
+ buf += "((id)l_collection,\n\t\t";
+ buf += "sel_registerName(\"countByEnumeratingWithState:objects:count:\"),";
+ buf += "\n\t\t";
+ buf += "&enumState, "
+ "(id *)__rw_items, (_WIN_NSUInteger)16)";
+}
+
+/// RewriteBreakStmt - Rewrite for a break-stmt inside an ObjC2's foreach
+/// statement to exit to its outer synthesized loop.
+///
+Stmt *RewriteModernObjC::RewriteBreakStmt(BreakStmt *S) {
+ if (Stmts.empty() || !isa<ObjCForCollectionStmt>(Stmts.back()))
+ return S;
+ // replace break with goto __break_label
+ std::string buf;
+
+ SourceLocation startLoc = S->getLocStart();
+ buf = "goto __break_label_";
+ buf += utostr(ObjCBcLabelNo.back());
+ ReplaceText(startLoc, strlen("break"), buf);
+
+ return nullptr;
+}
+
+void RewriteModernObjC::ConvertSourceLocationToLineDirective(
+ SourceLocation Loc,
+ std::string &LineString) {
+ if (Loc.isFileID() && GenerateLineInfo) {
+ LineString += "\n#line ";
+ PresumedLoc PLoc = SM->getPresumedLoc(Loc);
+ LineString += utostr(PLoc.getLine());
+ LineString += " \"";
+ LineString += Lexer::Stringify(PLoc.getFilename());
+ LineString += "\"\n";
+ }
+}
+
+/// RewriteContinueStmt - Rewrite for a continue-stmt inside an ObjC2's foreach
+/// statement to continue with its inner synthesized loop.
+///
+Stmt *RewriteModernObjC::RewriteContinueStmt(ContinueStmt *S) {
+ if (Stmts.empty() || !isa<ObjCForCollectionStmt>(Stmts.back()))
+ return S;
+ // replace continue with goto __continue_label
+ std::string buf;
+
+ SourceLocation startLoc = S->getLocStart();
+ buf = "goto __continue_label_";
+ buf += utostr(ObjCBcLabelNo.back());
+ ReplaceText(startLoc, strlen("continue"), buf);
+
+ return nullptr;
+}
+
+/// RewriteObjCForCollectionStmt - Rewriter for ObjC2's foreach statement.
+/// It rewrites:
+/// for ( type elem in collection) { stmts; }
+
+/// Into:
+/// {
+/// type elem;
+/// struct __objcFastEnumerationState enumState = { 0 };
+/// id __rw_items[16];
+/// id l_collection = (id)collection;
+/// NSUInteger limit = [l_collection countByEnumeratingWithState:&enumState
+/// objects:__rw_items count:16];
+/// if (limit) {
+/// unsigned long startMutations = *enumState.mutationsPtr;
+/// do {
+/// unsigned long counter = 0;
+/// do {
+/// if (startMutations != *enumState.mutationsPtr)
+/// objc_enumerationMutation(l_collection);
+/// elem = (type)enumState.itemsPtr[counter++];
+/// stmts;
+/// __continue_label: ;
+/// } while (counter < limit);
+/// } while ((limit = [l_collection countByEnumeratingWithState:&enumState
+/// objects:__rw_items count:16]));
+/// elem = nil;
+/// __break_label: ;
+/// }
+/// else
+/// elem = nil;
+/// }
+///
+Stmt *RewriteModernObjC::RewriteObjCForCollectionStmt(ObjCForCollectionStmt *S,
+ SourceLocation OrigEnd) {
+ assert(!Stmts.empty() && "ObjCForCollectionStmt - Statement stack empty");
+ assert(isa<ObjCForCollectionStmt>(Stmts.back()) &&
+ "ObjCForCollectionStmt Statement stack mismatch");
+ assert(!ObjCBcLabelNo.empty() &&
+ "ObjCForCollectionStmt - Label No stack empty");
+
+ SourceLocation startLoc = S->getLocStart();
+ const char *startBuf = SM->getCharacterData(startLoc);
+ StringRef elementName;
+ std::string elementTypeAsString;
+ std::string buf;
+ // line directive first.
+ SourceLocation ForEachLoc = S->getForLoc();
+ ConvertSourceLocationToLineDirective(ForEachLoc, buf);
+ buf += "{\n\t";
+ if (DeclStmt *DS = dyn_cast<DeclStmt>(S->getElement())) {
+ // type elem;
+ NamedDecl* D = cast<NamedDecl>(DS->getSingleDecl());
+ QualType ElementType = cast<ValueDecl>(D)->getType();
+ if (ElementType->isObjCQualifiedIdType() ||
+ ElementType->isObjCQualifiedInterfaceType())
+ // Simply use 'id' for all qualified types.
+ elementTypeAsString = "id";
+ else
+ elementTypeAsString = ElementType.getAsString(Context->getPrintingPolicy());
+ buf += elementTypeAsString;
+ buf += " ";
+ elementName = D->getName();
+ buf += elementName;
+ buf += ";\n\t";
+ }
+ else {
+ DeclRefExpr *DR = cast<DeclRefExpr>(S->getElement());
+ elementName = DR->getDecl()->getName();
+ ValueDecl *VD = cast<ValueDecl>(DR->getDecl());
+ if (VD->getType()->isObjCQualifiedIdType() ||
+ VD->getType()->isObjCQualifiedInterfaceType())
+ // Simply use 'id' for all qualified types.
+ elementTypeAsString = "id";
+ else
+ elementTypeAsString = VD->getType().getAsString(Context->getPrintingPolicy());
+ }
+
+ // struct __objcFastEnumerationState enumState = { 0 };
+ buf += "struct __objcFastEnumerationState enumState = { 0 };\n\t";
+ // id __rw_items[16];
+ buf += "id __rw_items[16];\n\t";
+ // id l_collection = (id)
+ buf += "id l_collection = (id)";
+ // Find start location of 'collection' the hard way!
+ const char *startCollectionBuf = startBuf;
+ startCollectionBuf += 3; // skip 'for'
+ startCollectionBuf = strchr(startCollectionBuf, '(');
+ startCollectionBuf++; // skip '('
+ // find 'in' and skip it.
+ while (*startCollectionBuf != ' ' ||
+ *(startCollectionBuf+1) != 'i' || *(startCollectionBuf+2) != 'n' ||
+ (*(startCollectionBuf+3) != ' ' &&
+ *(startCollectionBuf+3) != '[' && *(startCollectionBuf+3) != '('))
+ startCollectionBuf++;
+ startCollectionBuf += 3;
+
+ // Replace: "for (type element in" with string constructed thus far.
+ ReplaceText(startLoc, startCollectionBuf - startBuf, buf);
+ // Replace ')' in for '(' type elem in collection ')' with ';'
+ SourceLocation rightParenLoc = S->getRParenLoc();
+ const char *rparenBuf = SM->getCharacterData(rightParenLoc);
+ SourceLocation lparenLoc = startLoc.getLocWithOffset(rparenBuf-startBuf);
+ buf = ";\n\t";
+
+ // unsigned long limit = [l_collection countByEnumeratingWithState:&enumState
+ // objects:__rw_items count:16];
+ // which is synthesized into:
+ // NSUInteger limit =
+ // ((NSUInteger (*)
+ // (id, SEL, struct __objcFastEnumerationState *, id *, NSUInteger))
+ // (void *)objc_msgSend)((id)l_collection,
+ // sel_registerName(
+ // "countByEnumeratingWithState:objects:count:"),
+ // (struct __objcFastEnumerationState *)&state,
+ // (id *)__rw_items, (NSUInteger)16);
+ buf += "_WIN_NSUInteger limit =\n\t\t";
+ SynthCountByEnumWithState(buf);
+ buf += ";\n\t";
+ /// if (limit) {
+ /// unsigned long startMutations = *enumState.mutationsPtr;
+ /// do {
+ /// unsigned long counter = 0;
+ /// do {
+ /// if (startMutations != *enumState.mutationsPtr)
+ /// objc_enumerationMutation(l_collection);
+ /// elem = (type)enumState.itemsPtr[counter++];
+ buf += "if (limit) {\n\t";
+ buf += "unsigned long startMutations = *enumState.mutationsPtr;\n\t";
+ buf += "do {\n\t\t";
+ buf += "unsigned long counter = 0;\n\t\t";
+ buf += "do {\n\t\t\t";
+ buf += "if (startMutations != *enumState.mutationsPtr)\n\t\t\t\t";
+ buf += "objc_enumerationMutation(l_collection);\n\t\t\t";
+ buf += elementName;
+ buf += " = (";
+ buf += elementTypeAsString;
+ buf += ")enumState.itemsPtr[counter++];";
+ // Replace ')' in for '(' type elem in collection ')' with all of these.
+ ReplaceText(lparenLoc, 1, buf);
+
+ /// __continue_label: ;
+ /// } while (counter < limit);
+ /// } while ((limit = [l_collection countByEnumeratingWithState:&enumState
+ /// objects:__rw_items count:16]));
+ /// elem = nil;
+ /// __break_label: ;
+ /// }
+ /// else
+ /// elem = nil;
+ /// }
+ ///
+ buf = ";\n\t";
+ buf += "__continue_label_";
+ buf += utostr(ObjCBcLabelNo.back());
+ buf += ": ;";
+ buf += "\n\t\t";
+ buf += "} while (counter < limit);\n\t";
+ buf += "} while ((limit = ";
+ SynthCountByEnumWithState(buf);
+ buf += "));\n\t";
+ buf += elementName;
+ buf += " = ((";
+ buf += elementTypeAsString;
+ buf += ")0);\n\t";
+ buf += "__break_label_";
+ buf += utostr(ObjCBcLabelNo.back());
+ buf += ": ;\n\t";
+ buf += "}\n\t";
+ buf += "else\n\t\t";
+ buf += elementName;
+ buf += " = ((";
+ buf += elementTypeAsString;
+ buf += ")0);\n\t";
+ buf += "}\n";
+
+ // Insert all these *after* the statement body.
+ // FIXME: If this should support Obj-C++, support CXXTryStmt
+ if (isa<CompoundStmt>(S->getBody())) {
+ SourceLocation endBodyLoc = OrigEnd.getLocWithOffset(1);
+ InsertText(endBodyLoc, buf);
+ } else {
+ /* Need to treat single statements specially. For example:
+ *
+ * for (A *a in b) if (stuff()) break;
+ * for (A *a in b) xxxyy;
+ *
+ * The following code simply scans ahead to the semi to find the actual end.
+ */
+ const char *stmtBuf = SM->getCharacterData(OrigEnd);
+ const char *semiBuf = strchr(stmtBuf, ';');
+ assert(semiBuf && "Can't find ';'");
+ SourceLocation endBodyLoc = OrigEnd.getLocWithOffset(semiBuf-stmtBuf+1);
+ InsertText(endBodyLoc, buf);
+ }
+ Stmts.pop_back();
+ ObjCBcLabelNo.pop_back();
+ return nullptr;
+}
+
+static void Write_RethrowObject(std::string &buf) {
+ buf += "{ struct _FIN { _FIN(id reth) : rethrow(reth) {}\n";
+ buf += "\t~_FIN() { if (rethrow) objc_exception_throw(rethrow); }\n";
+ buf += "\tid rethrow;\n";
+ buf += "\t} _fin_force_rethow(_rethrow);";
+}
+
+/// RewriteObjCSynchronizedStmt -
+/// This routine rewrites @synchronized(expr) stmt;
+/// into:
+/// objc_sync_enter(expr);
+/// @try stmt @finally { objc_sync_exit(expr); }
+///
+Stmt *RewriteModernObjC::RewriteObjCSynchronizedStmt(ObjCAtSynchronizedStmt *S) {
+ // Get the start location and compute the semi location.
+ SourceLocation startLoc = S->getLocStart();
+ const char *startBuf = SM->getCharacterData(startLoc);
+
+ assert((*startBuf == '@') && "bogus @synchronized location");
+
+ std::string buf;
+ SourceLocation SynchLoc = S->getAtSynchronizedLoc();
+ ConvertSourceLocationToLineDirective(SynchLoc, buf);
+ buf += "{ id _rethrow = 0; id _sync_obj = (id)";
+
+ const char *lparenBuf = startBuf;
+ while (*lparenBuf != '(') lparenBuf++;
+ ReplaceText(startLoc, lparenBuf-startBuf+1, buf);
+
+ buf = "; objc_sync_enter(_sync_obj);\n";
+ buf += "try {\n\tstruct _SYNC_EXIT { _SYNC_EXIT(id arg) : sync_exit(arg) {}";
+ buf += "\n\t~_SYNC_EXIT() {objc_sync_exit(sync_exit);}";
+ buf += "\n\tid sync_exit;";
+ buf += "\n\t} _sync_exit(_sync_obj);\n";
+
+ // We can't use S->getSynchExpr()->getLocEnd() to find the end location, since
+ // the sync expression is typically a message expression that's already
+ // been rewritten! (which implies the SourceLocation's are invalid).
+ SourceLocation RParenExprLoc = S->getSynchBody()->getLocStart();
+ const char *RParenExprLocBuf = SM->getCharacterData(RParenExprLoc);
+ while (*RParenExprLocBuf != ')') RParenExprLocBuf--;
+ RParenExprLoc = startLoc.getLocWithOffset(RParenExprLocBuf-startBuf);
+
+ SourceLocation LBranceLoc = S->getSynchBody()->getLocStart();
+ const char *LBraceLocBuf = SM->getCharacterData(LBranceLoc);
+ assert (*LBraceLocBuf == '{');
+ ReplaceText(RParenExprLoc, (LBraceLocBuf - SM->getCharacterData(RParenExprLoc) + 1), buf);
+
+ SourceLocation startRBraceLoc = S->getSynchBody()->getLocEnd();
+ assert((*SM->getCharacterData(startRBraceLoc) == '}') &&
+ "bogus @synchronized block");
+
+ buf = "} catch (id e) {_rethrow = e;}\n";
+ Write_RethrowObject(buf);
+ buf += "}\n";
+ buf += "}\n";
+
+ ReplaceText(startRBraceLoc, 1, buf);
+
+ return nullptr;
+}
+
+void RewriteModernObjC::WarnAboutReturnGotoStmts(Stmt *S)
+{
+ // Perform a bottom up traversal of all children.
+ for (Stmt::child_range CI = S->children(); CI; ++CI)
+ if (*CI)
+ WarnAboutReturnGotoStmts(*CI);
+
+ if (isa<ReturnStmt>(S) || isa<GotoStmt>(S)) {
+ Diags.Report(Context->getFullLoc(S->getLocStart()),
+ TryFinallyContainsReturnDiag);
+ }
+ return;
+}
+
+Stmt *RewriteModernObjC::RewriteObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) {
+ SourceLocation startLoc = S->getAtLoc();
+ ReplaceText(startLoc, strlen("@autoreleasepool"), "/* @autoreleasepool */");
+ ReplaceText(S->getSubStmt()->getLocStart(), 1,
+ "{ __AtAutoreleasePool __autoreleasepool; ");
+
+ return nullptr;
+}
+
+Stmt *RewriteModernObjC::RewriteObjCTryStmt(ObjCAtTryStmt *S) {
+ ObjCAtFinallyStmt *finalStmt = S->getFinallyStmt();
+ bool noCatch = S->getNumCatchStmts() == 0;
+ std::string buf;
+ SourceLocation TryLocation = S->getAtTryLoc();
+ ConvertSourceLocationToLineDirective(TryLocation, buf);
+
+ if (finalStmt) {
+ if (noCatch)
+ buf += "{ id volatile _rethrow = 0;\n";
+ else {
+ buf += "{ id volatile _rethrow = 0;\ntry {\n";
+ }
+ }
+ // Get the start location and compute the semi location.
+ SourceLocation startLoc = S->getLocStart();
+ const char *startBuf = SM->getCharacterData(startLoc);
+
+ assert((*startBuf == '@') && "bogus @try location");
+ if (finalStmt)
+ ReplaceText(startLoc, 1, buf);
+ else
+ // @try -> try
+ ReplaceText(startLoc, 1, "");
+
+ for (unsigned I = 0, N = S->getNumCatchStmts(); I != N; ++I) {
+ ObjCAtCatchStmt *Catch = S->getCatchStmt(I);
+ VarDecl *catchDecl = Catch->getCatchParamDecl();
+
+ startLoc = Catch->getLocStart();
+ bool AtRemoved = false;
+ if (catchDecl) {
+ QualType t = catchDecl->getType();
+ if (const ObjCObjectPointerType *Ptr = t->getAs<ObjCObjectPointerType>()) {
+ // Should be a pointer to a class.
+ ObjCInterfaceDecl *IDecl = Ptr->getObjectType()->getInterface();
+ if (IDecl) {
+ std::string Result;
+ ConvertSourceLocationToLineDirective(Catch->getLocStart(), Result);
+
+ startBuf = SM->getCharacterData(startLoc);
+ assert((*startBuf == '@') && "bogus @catch location");
+ SourceLocation rParenLoc = Catch->getRParenLoc();
+ const char *rParenBuf = SM->getCharacterData(rParenLoc);
+
+ // _objc_exc_Foo *_e as argument to catch.
+ Result += "catch (_objc_exc_"; Result += IDecl->getNameAsString();
+ Result += " *_"; Result += catchDecl->getNameAsString();
+ Result += ")";
+ ReplaceText(startLoc, rParenBuf-startBuf+1, Result);
+ // Foo *e = (Foo *)_e;
+ Result.clear();
+ Result = "{ ";
+ Result += IDecl->getNameAsString();
+ Result += " *"; Result += catchDecl->getNameAsString();
+ Result += " = ("; Result += IDecl->getNameAsString(); Result += "*)";
+ Result += "_"; Result += catchDecl->getNameAsString();
+
+ Result += "; ";
+ SourceLocation lBraceLoc = Catch->getCatchBody()->getLocStart();
+ ReplaceText(lBraceLoc, 1, Result);
+ AtRemoved = true;
+ }
+ }
+ }
+ if (!AtRemoved)
+ // @catch -> catch
+ ReplaceText(startLoc, 1, "");
+
+ }
+ if (finalStmt) {
+ buf.clear();
+ SourceLocation FinallyLoc = finalStmt->getLocStart();
+
+ if (noCatch) {
+ ConvertSourceLocationToLineDirective(FinallyLoc, buf);
+ buf += "catch (id e) {_rethrow = e;}\n";
+ }
+ else {
+ buf += "}\n";
+ ConvertSourceLocationToLineDirective(FinallyLoc, buf);
+ buf += "catch (id e) {_rethrow = e;}\n";
+ }
+
+ SourceLocation startFinalLoc = finalStmt->getLocStart();
+ ReplaceText(startFinalLoc, 8, buf);
+ Stmt *body = finalStmt->getFinallyBody();
+ SourceLocation startFinalBodyLoc = body->getLocStart();
+ buf.clear();
+ Write_RethrowObject(buf);
+ ReplaceText(startFinalBodyLoc, 1, buf);
+
+ SourceLocation endFinalBodyLoc = body->getLocEnd();
+ ReplaceText(endFinalBodyLoc, 1, "}\n}");
+ // Now check for any return/continue/go statements within the @try.
+ WarnAboutReturnGotoStmts(S->getTryBody());
+ }
+
+ return nullptr;
+}
+
+// This can't be done with ReplaceStmt(S, ThrowExpr), since
+// the throw expression is typically a message expression that's already
+// been rewritten! (which implies the SourceLocation's are invalid).
+Stmt *RewriteModernObjC::RewriteObjCThrowStmt(ObjCAtThrowStmt *S) {
+ // Get the start location and compute the semi location.
+ SourceLocation startLoc = S->getLocStart();
+ const char *startBuf = SM->getCharacterData(startLoc);
+
+ assert((*startBuf == '@') && "bogus @throw location");
+
+ std::string buf;
+ /* void objc_exception_throw(id) __attribute__((noreturn)); */
+ if (S->getThrowExpr())
+ buf = "objc_exception_throw(";
+ else
+ buf = "throw";
+
+ // handle "@ throw" correctly.
+ const char *wBuf = strchr(startBuf, 'w');
+ assert((*wBuf == 'w') && "@throw: can't find 'w'");
+ ReplaceText(startLoc, wBuf-startBuf+1, buf);
+
+ SourceLocation endLoc = S->getLocEnd();
+ const char *endBuf = SM->getCharacterData(endLoc);
+ const char *semiBuf = strchr(endBuf, ';');
+ assert((*semiBuf == ';') && "@throw: can't find ';'");
+ SourceLocation semiLoc = startLoc.getLocWithOffset(semiBuf-startBuf);
+ if (S->getThrowExpr())
+ ReplaceText(semiLoc, 1, ");");
+ return nullptr;
+}
+
+Stmt *RewriteModernObjC::RewriteAtEncode(ObjCEncodeExpr *Exp) {
+ // Create a new string expression.
+ std::string StrEncoding;
+ Context->getObjCEncodingForType(Exp->getEncodedType(), StrEncoding);
+ Expr *Replacement = getStringLiteral(StrEncoding);
+ ReplaceStmt(Exp, Replacement);
+
+ // Replace this subexpr in the parent.
+ // delete Exp; leak for now, see RewritePropertyOrImplicitSetter() usage for more info.
+ return Replacement;
+}
+
+Stmt *RewriteModernObjC::RewriteAtSelector(ObjCSelectorExpr *Exp) {
+ if (!SelGetUidFunctionDecl)
+ SynthSelGetUidFunctionDecl();
+ assert(SelGetUidFunctionDecl && "Can't find sel_registerName() decl");
+ // Create a call to sel_registerName("selName").
+ SmallVector<Expr*, 8> SelExprs;
+ SelExprs.push_back(getStringLiteral(Exp->getSelector().getAsString()));
+ CallExpr *SelExp = SynthesizeCallToFunctionDecl(SelGetUidFunctionDecl,
+ &SelExprs[0], SelExprs.size());
+ ReplaceStmt(Exp, SelExp);
+ // delete Exp; leak for now, see RewritePropertyOrImplicitSetter() usage for more info.
+ return SelExp;
+}
+
+CallExpr *RewriteModernObjC::SynthesizeCallToFunctionDecl(
+ FunctionDecl *FD, Expr **args, unsigned nargs, SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+ // Get the type, we will need to reference it in a couple spots.
+ QualType msgSendType = FD->getType();
+
+ // Create a reference to the objc_msgSend() declaration.
+ DeclRefExpr *DRE =
+ new (Context) DeclRefExpr(FD, false, msgSendType, VK_LValue, SourceLocation());
+
+ // Now, we cast the reference to a pointer to the objc_msgSend type.
+ QualType pToFunc = Context->getPointerType(msgSendType);
+ ImplicitCastExpr *ICE =
+ ImplicitCastExpr::Create(*Context, pToFunc, CK_FunctionToPointerDecay,
+ DRE, nullptr, VK_RValue);
+
+ const FunctionType *FT = msgSendType->getAs<FunctionType>();
+
+ CallExpr *Exp =
+ new (Context) CallExpr(*Context, ICE, llvm::makeArrayRef(args, nargs),
+ FT->getCallResultType(*Context),
+ VK_RValue, EndLoc);
+ return Exp;
+}
+
+static bool scanForProtocolRefs(const char *startBuf, const char *endBuf,
+ const char *&startRef, const char *&endRef) {
+ while (startBuf < endBuf) {
+ if (*startBuf == '<')
+ startRef = startBuf; // mark the start.
+ if (*startBuf == '>') {
+ if (startRef && *startRef == '<') {
+ endRef = startBuf; // mark the end.
+ return true;
+ }
+ return false;
+ }
+ startBuf++;
+ }
+ return false;
+}
+
+static void scanToNextArgument(const char *&argRef) {
+ int angle = 0;
+ while (*argRef != ')' && (*argRef != ',' || angle > 0)) {
+ if (*argRef == '<')
+ angle++;
+ else if (*argRef == '>')
+ angle--;
+ argRef++;
+ }
+ assert(angle == 0 && "scanToNextArgument - bad protocol type syntax");
+}
+
+bool RewriteModernObjC::needToScanForQualifiers(QualType T) {
+ if (T->isObjCQualifiedIdType())
+ return true;
+ if (const PointerType *PT = T->getAs<PointerType>()) {
+ if (PT->getPointeeType()->isObjCQualifiedIdType())
+ return true;
+ }
+ if (T->isObjCObjectPointerType()) {
+ T = T->getPointeeType();
+ return T->isObjCQualifiedInterfaceType();
+ }
+ if (T->isArrayType()) {
+ QualType ElemTy = Context->getBaseElementType(T);
+ return needToScanForQualifiers(ElemTy);
+ }
+ return false;
+}
+
+void RewriteModernObjC::RewriteObjCQualifiedInterfaceTypes(Expr *E) {
+ QualType Type = E->getType();
+ if (needToScanForQualifiers(Type)) {
+ SourceLocation Loc, EndLoc;
+
+ if (const CStyleCastExpr *ECE = dyn_cast<CStyleCastExpr>(E)) {
+ Loc = ECE->getLParenLoc();
+ EndLoc = ECE->getRParenLoc();
+ } else {
+ Loc = E->getLocStart();
+ EndLoc = E->getLocEnd();
+ }
+ // This will defend against trying to rewrite synthesized expressions.
+ if (Loc.isInvalid() || EndLoc.isInvalid())
+ return;
+
+ const char *startBuf = SM->getCharacterData(Loc);
+ const char *endBuf = SM->getCharacterData(EndLoc);
+ const char *startRef = nullptr, *endRef = nullptr;
+ if (scanForProtocolRefs(startBuf, endBuf, startRef, endRef)) {
+ // Get the locations of the startRef, endRef.
+ SourceLocation LessLoc = Loc.getLocWithOffset(startRef-startBuf);
+ SourceLocation GreaterLoc = Loc.getLocWithOffset(endRef-startBuf+1);
+ // Comment out the protocol references.
+ InsertText(LessLoc, "/*");
+ InsertText(GreaterLoc, "*/");
+ }
+ }
+}
+
+void RewriteModernObjC::RewriteObjCQualifiedInterfaceTypes(Decl *Dcl) {
+ SourceLocation Loc;
+ QualType Type;
+ const FunctionProtoType *proto = nullptr;
+ if (VarDecl *VD = dyn_cast<VarDecl>(Dcl)) {
+ Loc = VD->getLocation();
+ Type = VD->getType();
+ }
+ else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Dcl)) {
+ Loc = FD->getLocation();
+ // Check for ObjC 'id' and class types that have been adorned with protocol
+ // information (id<p>, C<p>*). The protocol references need to be rewritten!
+ const FunctionType *funcType = FD->getType()->getAs<FunctionType>();
+ assert(funcType && "missing function type");
+ proto = dyn_cast<FunctionProtoType>(funcType);
+ if (!proto)
+ return;
+ Type = proto->getReturnType();
+ }
+ else if (FieldDecl *FD = dyn_cast<FieldDecl>(Dcl)) {
+ Loc = FD->getLocation();
+ Type = FD->getType();
+ }
+ else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(Dcl)) {
+ Loc = TD->getLocation();
+ Type = TD->getUnderlyingType();
+ }
+ else
+ return;
+
+ if (needToScanForQualifiers(Type)) {
+ // Since types are unique, we need to scan the buffer.
+
+ const char *endBuf = SM->getCharacterData(Loc);
+ const char *startBuf = endBuf;
+ while (*startBuf != ';' && *startBuf != '<' && startBuf != MainFileStart)
+ startBuf--; // scan backward (from the decl location) for return type.
+ const char *startRef = nullptr, *endRef = nullptr;
+ if (scanForProtocolRefs(startBuf, endBuf, startRef, endRef)) {
+ // Get the locations of the startRef, endRef.
+ SourceLocation LessLoc = Loc.getLocWithOffset(startRef-endBuf);
+ SourceLocation GreaterLoc = Loc.getLocWithOffset(endRef-endBuf+1);
+ // Comment out the protocol references.
+ InsertText(LessLoc, "/*");
+ InsertText(GreaterLoc, "*/");
+ }
+ }
+ if (!proto)
+ return; // most likely, was a variable
+ // Now check arguments.
+ const char *startBuf = SM->getCharacterData(Loc);
+ const char *startFuncBuf = startBuf;
+ for (unsigned i = 0; i < proto->getNumParams(); i++) {
+ if (needToScanForQualifiers(proto->getParamType(i))) {
+ // Since types are unique, we need to scan the buffer.
+
+ const char *endBuf = startBuf;
+ // scan forward (from the decl location) for argument types.
+ scanToNextArgument(endBuf);
+ const char *startRef = nullptr, *endRef = nullptr;
+ if (scanForProtocolRefs(startBuf, endBuf, startRef, endRef)) {
+ // Get the locations of the startRef, endRef.
+ SourceLocation LessLoc =
+ Loc.getLocWithOffset(startRef-startFuncBuf);
+ SourceLocation GreaterLoc =
+ Loc.getLocWithOffset(endRef-startFuncBuf+1);
+ // Comment out the protocol references.
+ InsertText(LessLoc, "/*");
+ InsertText(GreaterLoc, "*/");
+ }
+ startBuf = ++endBuf;
+ }
+ else {
+ // If the function name is derived from a macro expansion, then the
+ // argument buffer will not follow the name. Need to speak with Chris.
+ while (*startBuf && *startBuf != ')' && *startBuf != ',')
+ startBuf++; // scan forward (from the decl location) for argument types.
+ startBuf++;
+ }
+ }
+}
+
+void RewriteModernObjC::RewriteTypeOfDecl(VarDecl *ND) {
+ QualType QT = ND->getType();
+ const Type* TypePtr = QT->getAs<Type>();
+ if (!isa<TypeOfExprType>(TypePtr))
+ return;
+ while (isa<TypeOfExprType>(TypePtr)) {
+ const TypeOfExprType *TypeOfExprTypePtr = cast<TypeOfExprType>(TypePtr);
+ QT = TypeOfExprTypePtr->getUnderlyingExpr()->getType();
+ TypePtr = QT->getAs<Type>();
+ }
+ // FIXME. This will not work for multiple declarators; as in:
+ // __typeof__(a) b,c,d;
+ std::string TypeAsString(QT.getAsString(Context->getPrintingPolicy()));
+ SourceLocation DeclLoc = ND->getTypeSpecStartLoc();
+ const char *startBuf = SM->getCharacterData(DeclLoc);
+ if (ND->getInit()) {
+ std::string Name(ND->getNameAsString());
+ TypeAsString += " " + Name + " = ";
+ Expr *E = ND->getInit();
+ SourceLocation startLoc;
+ if (const CStyleCastExpr *ECE = dyn_cast<CStyleCastExpr>(E))
+ startLoc = ECE->getLParenLoc();
+ else
+ startLoc = E->getLocStart();
+ startLoc = SM->getExpansionLoc(startLoc);
+ const char *endBuf = SM->getCharacterData(startLoc);
+ ReplaceText(DeclLoc, endBuf-startBuf-1, TypeAsString);
+ }
+ else {
+ SourceLocation X = ND->getLocEnd();
+ X = SM->getExpansionLoc(X);
+ const char *endBuf = SM->getCharacterData(X);
+ ReplaceText(DeclLoc, endBuf-startBuf-1, TypeAsString);
+ }
+}
+
+// SynthSelGetUidFunctionDecl - SEL sel_registerName(const char *str);
+void RewriteModernObjC::SynthSelGetUidFunctionDecl() {
+ IdentifierInfo *SelGetUidIdent = &Context->Idents.get("sel_registerName");
+ SmallVector<QualType, 16> ArgTys;
+ ArgTys.push_back(Context->getPointerType(Context->CharTy.withConst()));
+ QualType getFuncType =
+ getSimpleFunctionType(Context->getObjCSelType(), ArgTys);
+ SelGetUidFunctionDecl = FunctionDecl::Create(*Context, TUDecl,
+ SourceLocation(),
+ SourceLocation(),
+ SelGetUidIdent, getFuncType,
+ nullptr, SC_Extern);
+}
+
+void RewriteModernObjC::RewriteFunctionDecl(FunctionDecl *FD) {
+ // declared in <objc/objc.h>
+ if (FD->getIdentifier() &&
+ FD->getName() == "sel_registerName") {
+ SelGetUidFunctionDecl = FD;
+ return;
+ }
+ RewriteObjCQualifiedInterfaceTypes(FD);
+}
+
+void RewriteModernObjC::RewriteBlockPointerType(std::string& Str, QualType Type) {
+ std::string TypeString(Type.getAsString(Context->getPrintingPolicy()));
+ const char *argPtr = TypeString.c_str();
+ if (!strchr(argPtr, '^')) {
+ Str += TypeString;
+ return;
+ }
+ while (*argPtr) {
+ Str += (*argPtr == '^' ? '*' : *argPtr);
+ argPtr++;
+ }
+}
+
+// FIXME. Consolidate this routine with RewriteBlockPointerType.
+void RewriteModernObjC::RewriteBlockPointerTypeVariable(std::string& Str,
+ ValueDecl *VD) {
+ QualType Type = VD->getType();
+ std::string TypeString(Type.getAsString(Context->getPrintingPolicy()));
+ const char *argPtr = TypeString.c_str();
+ int paren = 0;
+ while (*argPtr) {
+ switch (*argPtr) {
+ case '(':
+ Str += *argPtr;
+ paren++;
+ break;
+ case ')':
+ Str += *argPtr;
+ paren--;
+ break;
+ case '^':
+ Str += '*';
+ if (paren == 1)
+ Str += VD->getNameAsString();
+ break;
+ default:
+ Str += *argPtr;
+ break;
+ }
+ argPtr++;
+ }
+}
+
+void RewriteModernObjC::RewriteBlockLiteralFunctionDecl(FunctionDecl *FD) {
+ SourceLocation FunLocStart = FD->getTypeSpecStartLoc();
+ const FunctionType *funcType = FD->getType()->getAs<FunctionType>();
+ const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(funcType);
+ if (!proto)
+ return;
+ QualType Type = proto->getReturnType();
+ std::string FdStr = Type.getAsString(Context->getPrintingPolicy());
+ FdStr += " ";
+ FdStr += FD->getName();
+ FdStr += "(";
+ unsigned numArgs = proto->getNumParams();
+ for (unsigned i = 0; i < numArgs; i++) {
+ QualType ArgType = proto->getParamType(i);
+ RewriteBlockPointerType(FdStr, ArgType);
+ if (i+1 < numArgs)
+ FdStr += ", ";
+ }
+ if (FD->isVariadic()) {
+ FdStr += (numArgs > 0) ? ", ...);\n" : "...);\n";
+ }
+ else
+ FdStr += ");\n";
+ InsertText(FunLocStart, FdStr);
+}
+
+// SynthSuperConstructorFunctionDecl - id __rw_objc_super(id obj, id super);
+void RewriteModernObjC::SynthSuperConstructorFunctionDecl() {
+ if (SuperConstructorFunctionDecl)
+ return;
+ IdentifierInfo *msgSendIdent = &Context->Idents.get("__rw_objc_super");
+ SmallVector<QualType, 16> ArgTys;
+ QualType argT = Context->getObjCIdType();
+ assert(!argT.isNull() && "Can't find 'id' type");
+ ArgTys.push_back(argT);
+ ArgTys.push_back(argT);
+ QualType msgSendType = getSimpleFunctionType(Context->getObjCIdType(),
+ ArgTys);
+ SuperConstructorFunctionDecl = FunctionDecl::Create(*Context, TUDecl,
+ SourceLocation(),
+ SourceLocation(),
+ msgSendIdent, msgSendType,
+ nullptr, SC_Extern);
+}
+
+// SynthMsgSendFunctionDecl - id objc_msgSend(id self, SEL op, ...);
+void RewriteModernObjC::SynthMsgSendFunctionDecl() {
+ IdentifierInfo *msgSendIdent = &Context->Idents.get("objc_msgSend");
+ SmallVector<QualType, 16> ArgTys;
+ QualType argT = Context->getObjCIdType();
+ assert(!argT.isNull() && "Can't find 'id' type");
+ ArgTys.push_back(argT);
+ argT = Context->getObjCSelType();
+ assert(!argT.isNull() && "Can't find 'SEL' type");
+ ArgTys.push_back(argT);
+ QualType msgSendType = getSimpleFunctionType(Context->getObjCIdType(),
+ ArgTys, /*isVariadic=*/true);
+ MsgSendFunctionDecl = FunctionDecl::Create(*Context, TUDecl,
+ SourceLocation(),
+ SourceLocation(),
+ msgSendIdent, msgSendType, nullptr,
+ SC_Extern);
+}
+
+// SynthMsgSendSuperFunctionDecl - id objc_msgSendSuper(void);
+void RewriteModernObjC::SynthMsgSendSuperFunctionDecl() {
+ IdentifierInfo *msgSendIdent = &Context->Idents.get("objc_msgSendSuper");
+ SmallVector<QualType, 2> ArgTys;
+ ArgTys.push_back(Context->VoidTy);
+ QualType msgSendType = getSimpleFunctionType(Context->getObjCIdType(),
+ ArgTys, /*isVariadic=*/true);
+ MsgSendSuperFunctionDecl = FunctionDecl::Create(*Context, TUDecl,
+ SourceLocation(),
+ SourceLocation(),
+ msgSendIdent, msgSendType,
+ nullptr, SC_Extern);
+}
+
+// SynthMsgSendStretFunctionDecl - id objc_msgSend_stret(id self, SEL op, ...);
+void RewriteModernObjC::SynthMsgSendStretFunctionDecl() {
+ IdentifierInfo *msgSendIdent = &Context->Idents.get("objc_msgSend_stret");
+ SmallVector<QualType, 16> ArgTys;
+ QualType argT = Context->getObjCIdType();
+ assert(!argT.isNull() && "Can't find 'id' type");
+ ArgTys.push_back(argT);
+ argT = Context->getObjCSelType();
+ assert(!argT.isNull() && "Can't find 'SEL' type");
+ ArgTys.push_back(argT);
+ QualType msgSendType = getSimpleFunctionType(Context->getObjCIdType(),
+ ArgTys, /*isVariadic=*/true);
+ MsgSendStretFunctionDecl = FunctionDecl::Create(*Context, TUDecl,
+ SourceLocation(),
+ SourceLocation(),
+ msgSendIdent, msgSendType,
+ nullptr, SC_Extern);
+}
+
+// SynthMsgSendSuperStretFunctionDecl -
+// id objc_msgSendSuper_stret(void);
+void RewriteModernObjC::SynthMsgSendSuperStretFunctionDecl() {
+ IdentifierInfo *msgSendIdent =
+ &Context->Idents.get("objc_msgSendSuper_stret");
+ SmallVector<QualType, 2> ArgTys;
+ ArgTys.push_back(Context->VoidTy);
+ QualType msgSendType = getSimpleFunctionType(Context->getObjCIdType(),
+ ArgTys, /*isVariadic=*/true);
+ MsgSendSuperStretFunctionDecl = FunctionDecl::Create(*Context, TUDecl,
+ SourceLocation(),
+ SourceLocation(),
+ msgSendIdent,
+ msgSendType, nullptr,
+ SC_Extern);
+}
+
+// SynthMsgSendFpretFunctionDecl - double objc_msgSend_fpret(id self, SEL op, ...);
+void RewriteModernObjC::SynthMsgSendFpretFunctionDecl() {
+ IdentifierInfo *msgSendIdent = &Context->Idents.get("objc_msgSend_fpret");
+ SmallVector<QualType, 16> ArgTys;
+ QualType argT = Context->getObjCIdType();
+ assert(!argT.isNull() && "Can't find 'id' type");
+ ArgTys.push_back(argT);
+ argT = Context->getObjCSelType();
+ assert(!argT.isNull() && "Can't find 'SEL' type");
+ ArgTys.push_back(argT);
+ QualType msgSendType = getSimpleFunctionType(Context->DoubleTy,
+ ArgTys, /*isVariadic=*/true);
+ MsgSendFpretFunctionDecl = FunctionDecl::Create(*Context, TUDecl,
+ SourceLocation(),
+ SourceLocation(),
+ msgSendIdent, msgSendType,
+ nullptr, SC_Extern);
+}
+
+// SynthGetClassFunctionDecl - Class objc_getClass(const char *name);
+void RewriteModernObjC::SynthGetClassFunctionDecl() {
+ IdentifierInfo *getClassIdent = &Context->Idents.get("objc_getClass");
+ SmallVector<QualType, 16> ArgTys;
+ ArgTys.push_back(Context->getPointerType(Context->CharTy.withConst()));
+ QualType getClassType = getSimpleFunctionType(Context->getObjCClassType(),
+ ArgTys);
+ GetClassFunctionDecl = FunctionDecl::Create(*Context, TUDecl,
+ SourceLocation(),
+ SourceLocation(),
+ getClassIdent, getClassType,
+ nullptr, SC_Extern);
+}
+
+// SynthGetSuperClassFunctionDecl - Class class_getSuperclass(Class cls);
+void RewriteModernObjC::SynthGetSuperClassFunctionDecl() {
+ IdentifierInfo *getSuperClassIdent =
+ &Context->Idents.get("class_getSuperclass");
+ SmallVector<QualType, 16> ArgTys;
+ ArgTys.push_back(Context->getObjCClassType());
+ QualType getClassType = getSimpleFunctionType(Context->getObjCClassType(),
+ ArgTys);
+ GetSuperClassFunctionDecl = FunctionDecl::Create(*Context, TUDecl,
+ SourceLocation(),
+ SourceLocation(),
+ getSuperClassIdent,
+ getClassType, nullptr,
+ SC_Extern);
+}
+
+// SynthGetMetaClassFunctionDecl - Class objc_getMetaClass(const char *name);
+void RewriteModernObjC::SynthGetMetaClassFunctionDecl() {
+ IdentifierInfo *getClassIdent = &Context->Idents.get("objc_getMetaClass");
+ SmallVector<QualType, 16> ArgTys;
+ ArgTys.push_back(Context->getPointerType(Context->CharTy.withConst()));
+ QualType getClassType = getSimpleFunctionType(Context->getObjCClassType(),
+ ArgTys);
+ GetMetaClassFunctionDecl = FunctionDecl::Create(*Context, TUDecl,
+ SourceLocation(),
+ SourceLocation(),
+ getClassIdent, getClassType,
+ nullptr, SC_Extern);
+}
+
+Stmt *RewriteModernObjC::RewriteObjCStringLiteral(ObjCStringLiteral *Exp) {
+ assert (Exp != nullptr && "Expected non-null ObjCStringLiteral");
+ QualType strType = getConstantStringStructType();
+
+ std::string S = "__NSConstantStringImpl_";
+
+ std::string tmpName = InFileName;
+ unsigned i;
+ for (i=0; i < tmpName.length(); i++) {
+ char c = tmpName.at(i);
+ // replace any non-alphanumeric characters with '_'.
+ if (!isAlphanumeric(c))
+ tmpName[i] = '_';
+ }
+ S += tmpName;
+ S += "_";
+ S += utostr(NumObjCStringLiterals++);
+
+ Preamble += "static __NSConstantStringImpl " + S;
+ Preamble += " __attribute__ ((section (\"__DATA, __cfstring\"))) = {__CFConstantStringClassReference,";
+ Preamble += "0x000007c8,"; // utf8_str
+ // The pretty printer for StringLiteral handles escape characters properly.
+ std::string prettyBufS;
+ llvm::raw_string_ostream prettyBuf(prettyBufS);
+ Exp->getString()->printPretty(prettyBuf, nullptr, PrintingPolicy(LangOpts));
+ Preamble += prettyBuf.str();
+ Preamble += ",";
+ Preamble += utostr(Exp->getString()->getByteLength()) + "};\n";
+
+ VarDecl *NewVD = VarDecl::Create(*Context, TUDecl, SourceLocation(),
+ SourceLocation(), &Context->Idents.get(S),
+ strType, nullptr, SC_Static);
+ DeclRefExpr *DRE = new (Context) DeclRefExpr(NewVD, false, strType, VK_LValue,
+ SourceLocation());
+ Expr *Unop = new (Context) UnaryOperator(DRE, UO_AddrOf,
+ Context->getPointerType(DRE->getType()),
+ VK_RValue, OK_Ordinary,
+ SourceLocation());
+ // cast to NSConstantString *
+ CastExpr *cast = NoTypeInfoCStyleCastExpr(Context, Exp->getType(),
+ CK_CPointerToObjCPointerCast, Unop);
+ ReplaceStmt(Exp, cast);
+ // delete Exp; leak for now, see RewritePropertyOrImplicitSetter() usage for more info.
+ return cast;
+}
+
+Stmt *RewriteModernObjC::RewriteObjCBoolLiteralExpr(ObjCBoolLiteralExpr *Exp) {
+ unsigned IntSize =
+ static_cast<unsigned>(Context->getTypeSize(Context->IntTy));
+
+ Expr *FlagExp = IntegerLiteral::Create(*Context,
+ llvm::APInt(IntSize, Exp->getValue()),
+ Context->IntTy, Exp->getLocation());
+ CastExpr *cast = NoTypeInfoCStyleCastExpr(Context, Context->ObjCBuiltinBoolTy,
+ CK_BitCast, FlagExp);
+ ParenExpr *PE = new (Context) ParenExpr(Exp->getLocation(), Exp->getExprLoc(),
+ cast);
+ ReplaceStmt(Exp, PE);
+ return PE;
+}
+
+Stmt *RewriteModernObjC::RewriteObjCBoxedExpr(ObjCBoxedExpr *Exp) {
+ // synthesize declaration of helper functions needed in this routine.
+ if (!SelGetUidFunctionDecl)
+ SynthSelGetUidFunctionDecl();
+ // use objc_msgSend() for all.
+ if (!MsgSendFunctionDecl)
+ SynthMsgSendFunctionDecl();
+ if (!GetClassFunctionDecl)
+ SynthGetClassFunctionDecl();
+
+ FunctionDecl *MsgSendFlavor = MsgSendFunctionDecl;
+ SourceLocation StartLoc = Exp->getLocStart();
+ SourceLocation EndLoc = Exp->getLocEnd();
+
+ // Synthesize a call to objc_msgSend().
+ SmallVector<Expr*, 4> MsgExprs;
+ SmallVector<Expr*, 4> ClsExprs;
+
+ // Create a call to objc_getClass("<BoxingClass>"). It will be the 1st argument.
+ ObjCMethodDecl *BoxingMethod = Exp->getBoxingMethod();
+ ObjCInterfaceDecl *BoxingClass = BoxingMethod->getClassInterface();
+
+ IdentifierInfo *clsName = BoxingClass->getIdentifier();
+ ClsExprs.push_back(getStringLiteral(clsName->getName()));
+ CallExpr *Cls = SynthesizeCallToFunctionDecl(GetClassFunctionDecl,
+ &ClsExprs[0],
+ ClsExprs.size(),
+ StartLoc, EndLoc);
+ MsgExprs.push_back(Cls);
+
+ // Create a call to sel_registerName("<BoxingMethod>:"), etc.
+ // it will be the 2nd argument.
+ SmallVector<Expr*, 4> SelExprs;
+ SelExprs.push_back(
+ getStringLiteral(BoxingMethod->getSelector().getAsString()));
+ CallExpr *SelExp = SynthesizeCallToFunctionDecl(SelGetUidFunctionDecl,
+ &SelExprs[0], SelExprs.size(),
+ StartLoc, EndLoc);
+ MsgExprs.push_back(SelExp);
+
+ // User provided sub-expression is the 3rd, and last, argument.
+ Expr *subExpr = Exp->getSubExpr();
+ if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(subExpr)) {
+ QualType type = ICE->getType();
+ const Expr *SubExpr = ICE->IgnoreParenImpCasts();
+ CastKind CK = CK_BitCast;
+ if (SubExpr->getType()->isIntegralType(*Context) && type->isBooleanType())
+ CK = CK_IntegralToBoolean;
+ subExpr = NoTypeInfoCStyleCastExpr(Context, type, CK, subExpr);
+ }
+ MsgExprs.push_back(subExpr);
+
+ SmallVector<QualType, 4> ArgTypes;
+ ArgTypes.push_back(Context->getObjCClassType());
+ ArgTypes.push_back(Context->getObjCSelType());
+ for (const auto PI : BoxingMethod->parameters())
+ ArgTypes.push_back(PI->getType());
+
+ QualType returnType = Exp->getType();
+ // Get the type, we will need to reference it in a couple spots.
+ QualType msgSendType = MsgSendFlavor->getType();
+
+ // Create a reference to the objc_msgSend() declaration.
+ DeclRefExpr *DRE = new (Context) DeclRefExpr(MsgSendFlavor, false, msgSendType,
+ VK_LValue, SourceLocation());
+
+ CastExpr *cast = NoTypeInfoCStyleCastExpr(Context,
+ Context->getPointerType(Context->VoidTy),
+ CK_BitCast, DRE);
+
+ // Now do the "normal" pointer to function cast.
+ QualType castType =
+ getSimpleFunctionType(returnType, ArgTypes, BoxingMethod->isVariadic());
+ castType = Context->getPointerType(castType);
+ cast = NoTypeInfoCStyleCastExpr(Context, castType, CK_BitCast,
+ cast);
+
+ // Don't forget the parens to enforce the proper binding.
+ ParenExpr *PE = new (Context) ParenExpr(StartLoc, EndLoc, cast);
+
+ const FunctionType *FT = msgSendType->getAs<FunctionType>();
+ CallExpr *CE = new (Context)
+ CallExpr(*Context, PE, MsgExprs, FT->getReturnType(), VK_RValue, EndLoc);
+ ReplaceStmt(Exp, CE);
+ return CE;
+}
+
+Stmt *RewriteModernObjC::RewriteObjCArrayLiteralExpr(ObjCArrayLiteral *Exp) {
+ // synthesize declaration of helper functions needed in this routine.
+ if (!SelGetUidFunctionDecl)
+ SynthSelGetUidFunctionDecl();
+ // use objc_msgSend() for all.
+ if (!MsgSendFunctionDecl)
+ SynthMsgSendFunctionDecl();
+ if (!GetClassFunctionDecl)
+ SynthGetClassFunctionDecl();
+
+ FunctionDecl *MsgSendFlavor = MsgSendFunctionDecl;
+ SourceLocation StartLoc = Exp->getLocStart();
+ SourceLocation EndLoc = Exp->getLocEnd();
+
+ // Build the expression: __NSContainer_literal(int, ...).arr
+ QualType IntQT = Context->IntTy;
+ QualType NSArrayFType =
+ getSimpleFunctionType(Context->VoidTy, IntQT, true);
+ std::string NSArrayFName("__NSContainer_literal");
+ FunctionDecl *NSArrayFD = SynthBlockInitFunctionDecl(NSArrayFName);
+ DeclRefExpr *NSArrayDRE =
+ new (Context) DeclRefExpr(NSArrayFD, false, NSArrayFType, VK_RValue,
+ SourceLocation());
+
+ SmallVector<Expr*, 16> InitExprs;
+ unsigned NumElements = Exp->getNumElements();
+ unsigned UnsignedIntSize =
+ static_cast<unsigned>(Context->getTypeSize(Context->UnsignedIntTy));
+ Expr *count = IntegerLiteral::Create(*Context,
+ llvm::APInt(UnsignedIntSize, NumElements),
+ Context->UnsignedIntTy, SourceLocation());
+ InitExprs.push_back(count);
+ for (unsigned i = 0; i < NumElements; i++)
+ InitExprs.push_back(Exp->getElement(i));
+ Expr *NSArrayCallExpr =
+ new (Context) CallExpr(*Context, NSArrayDRE, InitExprs,
+ NSArrayFType, VK_LValue, SourceLocation());
+
+ FieldDecl *ARRFD = FieldDecl::Create(*Context, nullptr, SourceLocation(),
+ SourceLocation(),
+ &Context->Idents.get("arr"),
+ Context->getPointerType(Context->VoidPtrTy),
+ nullptr, /*BitWidth=*/nullptr,
+ /*Mutable=*/true, ICIS_NoInit);
+ MemberExpr *ArrayLiteralME = new (Context)
+ MemberExpr(NSArrayCallExpr, false, SourceLocation(), ARRFD,
+ SourceLocation(), ARRFD->getType(), VK_LValue, OK_Ordinary);
+ QualType ConstIdT = Context->getObjCIdType().withConst();
+ CStyleCastExpr * ArrayLiteralObjects =
+ NoTypeInfoCStyleCastExpr(Context,
+ Context->getPointerType(ConstIdT),
+ CK_BitCast,
+ ArrayLiteralME);
+
+ // Synthesize a call to objc_msgSend().
+ SmallVector<Expr*, 32> MsgExprs;
+ SmallVector<Expr*, 4> ClsExprs;
+ QualType expType = Exp->getType();
+
+ // Create a call to objc_getClass("NSArray"). It will be th 1st argument.
+ ObjCInterfaceDecl *Class =
+ expType->getPointeeType()->getAs<ObjCObjectType>()->getInterface();
+
+ IdentifierInfo *clsName = Class->getIdentifier();
+ ClsExprs.push_back(getStringLiteral(clsName->getName()));
+ CallExpr *Cls = SynthesizeCallToFunctionDecl(GetClassFunctionDecl,
+ &ClsExprs[0],
+ ClsExprs.size(),
+ StartLoc, EndLoc);
+ MsgExprs.push_back(Cls);
+
+ // Create a call to sel_registerName("arrayWithObjects:count:").
+ // it will be the 2nd argument.
+ SmallVector<Expr*, 4> SelExprs;
+ ObjCMethodDecl *ArrayMethod = Exp->getArrayWithObjectsMethod();
+ SelExprs.push_back(
+ getStringLiteral(ArrayMethod->getSelector().getAsString()));
+ CallExpr *SelExp = SynthesizeCallToFunctionDecl(SelGetUidFunctionDecl,
+ &SelExprs[0], SelExprs.size(),
+ StartLoc, EndLoc);
+ MsgExprs.push_back(SelExp);
+
+ // (const id [])objects
+ MsgExprs.push_back(ArrayLiteralObjects);
+
+ // (NSUInteger)cnt
+ Expr *cnt = IntegerLiteral::Create(*Context,
+ llvm::APInt(UnsignedIntSize, NumElements),
+ Context->UnsignedIntTy, SourceLocation());
+ MsgExprs.push_back(cnt);
+
+
+ SmallVector<QualType, 4> ArgTypes;
+ ArgTypes.push_back(Context->getObjCClassType());
+ ArgTypes.push_back(Context->getObjCSelType());
+ for (const auto *PI : ArrayMethod->params())
+ ArgTypes.push_back(PI->getType());
+
+ QualType returnType = Exp->getType();
+ // Get the type, we will need to reference it in a couple spots.
+ QualType msgSendType = MsgSendFlavor->getType();
+
+ // Create a reference to the objc_msgSend() declaration.
+ DeclRefExpr *DRE = new (Context) DeclRefExpr(MsgSendFlavor, false, msgSendType,
+ VK_LValue, SourceLocation());
+
+ CastExpr *cast = NoTypeInfoCStyleCastExpr(Context,
+ Context->getPointerType(Context->VoidTy),
+ CK_BitCast, DRE);
+
+ // Now do the "normal" pointer to function cast.
+ QualType castType =
+ getSimpleFunctionType(returnType, ArgTypes, ArrayMethod->isVariadic());
+ castType = Context->getPointerType(castType);
+ cast = NoTypeInfoCStyleCastExpr(Context, castType, CK_BitCast,
+ cast);
+
+ // Don't forget the parens to enforce the proper binding.
+ ParenExpr *PE = new (Context) ParenExpr(StartLoc, EndLoc, cast);
+
+ const FunctionType *FT = msgSendType->getAs<FunctionType>();
+ CallExpr *CE = new (Context)
+ CallExpr(*Context, PE, MsgExprs, FT->getReturnType(), VK_RValue, EndLoc);
+ ReplaceStmt(Exp, CE);
+ return CE;
+}
+
+Stmt *RewriteModernObjC::RewriteObjCDictionaryLiteralExpr(ObjCDictionaryLiteral *Exp) {
+ // synthesize declaration of helper functions needed in this routine.
+ if (!SelGetUidFunctionDecl)
+ SynthSelGetUidFunctionDecl();
+ // use objc_msgSend() for all.
+ if (!MsgSendFunctionDecl)
+ SynthMsgSendFunctionDecl();
+ if (!GetClassFunctionDecl)
+ SynthGetClassFunctionDecl();
+
+ FunctionDecl *MsgSendFlavor = MsgSendFunctionDecl;
+ SourceLocation StartLoc = Exp->getLocStart();
+ SourceLocation EndLoc = Exp->getLocEnd();
+
+ // Build the expression: __NSContainer_literal(int, ...).arr
+ QualType IntQT = Context->IntTy;
+ QualType NSDictFType =
+ getSimpleFunctionType(Context->VoidTy, IntQT, true);
+ std::string NSDictFName("__NSContainer_literal");
+ FunctionDecl *NSDictFD = SynthBlockInitFunctionDecl(NSDictFName);
+ DeclRefExpr *NSDictDRE =
+ new (Context) DeclRefExpr(NSDictFD, false, NSDictFType, VK_RValue,
+ SourceLocation());
+
+ SmallVector<Expr*, 16> KeyExprs;
+ SmallVector<Expr*, 16> ValueExprs;
+
+ unsigned NumElements = Exp->getNumElements();
+ unsigned UnsignedIntSize =
+ static_cast<unsigned>(Context->getTypeSize(Context->UnsignedIntTy));
+ Expr *count = IntegerLiteral::Create(*Context,
+ llvm::APInt(UnsignedIntSize, NumElements),
+ Context->UnsignedIntTy, SourceLocation());
+ KeyExprs.push_back(count);
+ ValueExprs.push_back(count);
+ for (unsigned i = 0; i < NumElements; i++) {
+ ObjCDictionaryElement Element = Exp->getKeyValueElement(i);
+ KeyExprs.push_back(Element.Key);
+ ValueExprs.push_back(Element.Value);
+ }
+
+ // (const id [])objects
+ Expr *NSValueCallExpr =
+ new (Context) CallExpr(*Context, NSDictDRE, ValueExprs,
+ NSDictFType, VK_LValue, SourceLocation());
+
+ FieldDecl *ARRFD = FieldDecl::Create(*Context, nullptr, SourceLocation(),
+ SourceLocation(),
+ &Context->Idents.get("arr"),
+ Context->getPointerType(Context->VoidPtrTy),
+ nullptr, /*BitWidth=*/nullptr,
+ /*Mutable=*/true, ICIS_NoInit);
+ MemberExpr *DictLiteralValueME = new (Context)
+ MemberExpr(NSValueCallExpr, false, SourceLocation(), ARRFD,
+ SourceLocation(), ARRFD->getType(), VK_LValue, OK_Ordinary);
+ QualType ConstIdT = Context->getObjCIdType().withConst();
+ CStyleCastExpr * DictValueObjects =
+ NoTypeInfoCStyleCastExpr(Context,
+ Context->getPointerType(ConstIdT),
+ CK_BitCast,
+ DictLiteralValueME);
+ // (const id <NSCopying> [])keys
+ Expr *NSKeyCallExpr =
+ new (Context) CallExpr(*Context, NSDictDRE, KeyExprs,
+ NSDictFType, VK_LValue, SourceLocation());
+
+ MemberExpr *DictLiteralKeyME = new (Context)
+ MemberExpr(NSKeyCallExpr, false, SourceLocation(), ARRFD,
+ SourceLocation(), ARRFD->getType(), VK_LValue, OK_Ordinary);
+
+ CStyleCastExpr * DictKeyObjects =
+ NoTypeInfoCStyleCastExpr(Context,
+ Context->getPointerType(ConstIdT),
+ CK_BitCast,
+ DictLiteralKeyME);
+
+
+
+ // Synthesize a call to objc_msgSend().
+ SmallVector<Expr*, 32> MsgExprs;
+ SmallVector<Expr*, 4> ClsExprs;
+ QualType expType = Exp->getType();
+
+ // Create a call to objc_getClass("NSArray"). It will be th 1st argument.
+ ObjCInterfaceDecl *Class =
+ expType->getPointeeType()->getAs<ObjCObjectType>()->getInterface();
+
+ IdentifierInfo *clsName = Class->getIdentifier();
+ ClsExprs.push_back(getStringLiteral(clsName->getName()));
+ CallExpr *Cls = SynthesizeCallToFunctionDecl(GetClassFunctionDecl,
+ &ClsExprs[0],
+ ClsExprs.size(),
+ StartLoc, EndLoc);
+ MsgExprs.push_back(Cls);
+
+ // Create a call to sel_registerName("arrayWithObjects:count:").
+ // it will be the 2nd argument.
+ SmallVector<Expr*, 4> SelExprs;
+ ObjCMethodDecl *DictMethod = Exp->getDictWithObjectsMethod();
+ SelExprs.push_back(getStringLiteral(DictMethod->getSelector().getAsString()));
+ CallExpr *SelExp = SynthesizeCallToFunctionDecl(SelGetUidFunctionDecl,
+ &SelExprs[0], SelExprs.size(),
+ StartLoc, EndLoc);
+ MsgExprs.push_back(SelExp);
+
+ // (const id [])objects
+ MsgExprs.push_back(DictValueObjects);
+
+ // (const id <NSCopying> [])keys
+ MsgExprs.push_back(DictKeyObjects);
+
+ // (NSUInteger)cnt
+ Expr *cnt = IntegerLiteral::Create(*Context,
+ llvm::APInt(UnsignedIntSize, NumElements),
+ Context->UnsignedIntTy, SourceLocation());
+ MsgExprs.push_back(cnt);
+
+
+ SmallVector<QualType, 8> ArgTypes;
+ ArgTypes.push_back(Context->getObjCClassType());
+ ArgTypes.push_back(Context->getObjCSelType());
+ for (const auto *PI : DictMethod->params()) {
+ QualType T = PI->getType();
+ if (const PointerType* PT = T->getAs<PointerType>()) {
+ QualType PointeeTy = PT->getPointeeType();
+ convertToUnqualifiedObjCType(PointeeTy);
+ T = Context->getPointerType(PointeeTy);
+ }
+ ArgTypes.push_back(T);
+ }
+
+ QualType returnType = Exp->getType();
+ // Get the type, we will need to reference it in a couple spots.
+ QualType msgSendType = MsgSendFlavor->getType();
+
+ // Create a reference to the objc_msgSend() declaration.
+ DeclRefExpr *DRE = new (Context) DeclRefExpr(MsgSendFlavor, false, msgSendType,
+ VK_LValue, SourceLocation());
+
+ CastExpr *cast = NoTypeInfoCStyleCastExpr(Context,
+ Context->getPointerType(Context->VoidTy),
+ CK_BitCast, DRE);
+
+ // Now do the "normal" pointer to function cast.
+ QualType castType =
+ getSimpleFunctionType(returnType, ArgTypes, DictMethod->isVariadic());
+ castType = Context->getPointerType(castType);
+ cast = NoTypeInfoCStyleCastExpr(Context, castType, CK_BitCast,
+ cast);
+
+ // Don't forget the parens to enforce the proper binding.
+ ParenExpr *PE = new (Context) ParenExpr(StartLoc, EndLoc, cast);
+
+ const FunctionType *FT = msgSendType->getAs<FunctionType>();
+ CallExpr *CE = new (Context)
+ CallExpr(*Context, PE, MsgExprs, FT->getReturnType(), VK_RValue, EndLoc);
+ ReplaceStmt(Exp, CE);
+ return CE;
+}
+
+// struct __rw_objc_super {
+// struct objc_object *object; struct objc_object *superClass;
+// };
+QualType RewriteModernObjC::getSuperStructType() {
+ if (!SuperStructDecl) {
+ SuperStructDecl = RecordDecl::Create(*Context, TTK_Struct, TUDecl,
+ SourceLocation(), SourceLocation(),
+ &Context->Idents.get("__rw_objc_super"));
+ QualType FieldTypes[2];
+
+ // struct objc_object *object;
+ FieldTypes[0] = Context->getObjCIdType();
+ // struct objc_object *superClass;
+ FieldTypes[1] = Context->getObjCIdType();
+
+ // Create fields
+ for (unsigned i = 0; i < 2; ++i) {
+ SuperStructDecl->addDecl(FieldDecl::Create(*Context, SuperStructDecl,
+ SourceLocation(),
+ SourceLocation(), nullptr,
+ FieldTypes[i], nullptr,
+ /*BitWidth=*/nullptr,
+ /*Mutable=*/false,
+ ICIS_NoInit));
+ }
+
+ SuperStructDecl->completeDefinition();
+ }
+ return Context->getTagDeclType(SuperStructDecl);
+}
+
+QualType RewriteModernObjC::getConstantStringStructType() {
+ if (!ConstantStringDecl) {
+ ConstantStringDecl = RecordDecl::Create(*Context, TTK_Struct, TUDecl,
+ SourceLocation(), SourceLocation(),
+ &Context->Idents.get("__NSConstantStringImpl"));
+ QualType FieldTypes[4];
+
+ // struct objc_object *receiver;
+ FieldTypes[0] = Context->getObjCIdType();
+ // int flags;
+ FieldTypes[1] = Context->IntTy;
+ // char *str;
+ FieldTypes[2] = Context->getPointerType(Context->CharTy);
+ // long length;
+ FieldTypes[3] = Context->LongTy;
+
+ // Create fields
+ for (unsigned i = 0; i < 4; ++i) {
+ ConstantStringDecl->addDecl(FieldDecl::Create(*Context,
+ ConstantStringDecl,
+ SourceLocation(),
+ SourceLocation(), nullptr,
+ FieldTypes[i], nullptr,
+ /*BitWidth=*/nullptr,
+ /*Mutable=*/true,
+ ICIS_NoInit));
+ }
+
+ ConstantStringDecl->completeDefinition();
+ }
+ return Context->getTagDeclType(ConstantStringDecl);
+}
+
+/// getFunctionSourceLocation - returns start location of a function
+/// definition. Complication arises when function has declared as
+/// extern "C" or extern "C" {...}
+static SourceLocation getFunctionSourceLocation (RewriteModernObjC &R,
+ FunctionDecl *FD) {
+ if (FD->isExternC() && !FD->isMain()) {
+ const DeclContext *DC = FD->getDeclContext();
+ if (const LinkageSpecDecl *LSD = dyn_cast<LinkageSpecDecl>(DC))
+ // if it is extern "C" {...}, return function decl's own location.
+ if (!LSD->getRBraceLoc().isValid())
+ return LSD->getExternLoc();
+ }
+ if (FD->getStorageClass() != SC_None)
+ R.RewriteBlockLiteralFunctionDecl(FD);
+ return FD->getTypeSpecStartLoc();
+}
+
+void RewriteModernObjC::RewriteLineDirective(const Decl *D) {
+
+ SourceLocation Location = D->getLocation();
+
+ if (Location.isFileID() && GenerateLineInfo) {
+ std::string LineString("\n#line ");
+ PresumedLoc PLoc = SM->getPresumedLoc(Location);
+ LineString += utostr(PLoc.getLine());
+ LineString += " \"";
+ LineString += Lexer::Stringify(PLoc.getFilename());
+ if (isa<ObjCMethodDecl>(D))
+ LineString += "\"";
+ else LineString += "\"\n";
+
+ Location = D->getLocStart();
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ if (FD->isExternC() && !FD->isMain()) {
+ const DeclContext *DC = FD->getDeclContext();
+ if (const LinkageSpecDecl *LSD = dyn_cast<LinkageSpecDecl>(DC))
+ // if it is extern "C" {...}, return function decl's own location.
+ if (!LSD->getRBraceLoc().isValid())
+ Location = LSD->getExternLoc();
+ }
+ }
+ InsertText(Location, LineString);
+ }
+}
+
+/// SynthMsgSendStretCallExpr - This routine translates message expression
+/// into a call to objc_msgSend_stret() entry point. Tricky part is that
+/// nil check on receiver must be performed before calling objc_msgSend_stret.
+/// MsgSendStretFlavor - function declaration objc_msgSend_stret(...)
+/// msgSendType - function type of objc_msgSend_stret(...)
+/// returnType - Result type of the method being synthesized.
+/// ArgTypes - type of the arguments passed to objc_msgSend_stret, starting with receiver type.
+/// MsgExprs - list of argument expressions being passed to objc_msgSend_stret,
+/// starting with receiver.
+/// Method - Method being rewritten.
+Expr *RewriteModernObjC::SynthMsgSendStretCallExpr(FunctionDecl *MsgSendStretFlavor,
+ QualType returnType,
+ SmallVectorImpl<QualType> &ArgTypes,
+ SmallVectorImpl<Expr*> &MsgExprs,
+ ObjCMethodDecl *Method) {
+ // Now do the "normal" pointer to function cast.
+ QualType castType = getSimpleFunctionType(returnType, ArgTypes,
+ Method ? Method->isVariadic()
+ : false);
+ castType = Context->getPointerType(castType);
+
+ // build type for containing the objc_msgSend_stret object.
+ static unsigned stretCount=0;
+ std::string name = "__Stret"; name += utostr(stretCount);
+ std::string str =
+ "extern \"C\" void * __cdecl memset(void *_Dst, int _Val, size_t _Size);\n";
+ str += "namespace {\n";
+ str += "struct "; str += name;
+ str += " {\n\t";
+ str += name;
+ str += "(id receiver, SEL sel";
+ for (unsigned i = 2; i < ArgTypes.size(); i++) {
+ std::string ArgName = "arg"; ArgName += utostr(i);
+ ArgTypes[i].getAsStringInternal(ArgName, Context->getPrintingPolicy());
+ str += ", "; str += ArgName;
+ }
+ // could be vararg.
+ for (unsigned i = ArgTypes.size(); i < MsgExprs.size(); i++) {
+ std::string ArgName = "arg"; ArgName += utostr(i);
+ MsgExprs[i]->getType().getAsStringInternal(ArgName,
+ Context->getPrintingPolicy());
+ str += ", "; str += ArgName;
+ }
+
+ str += ") {\n";
+ str += "\t unsigned size = sizeof(";
+ str += returnType.getAsString(Context->getPrintingPolicy()); str += ");\n";
+
+ str += "\t if (size == 1 || size == 2 || size == 4 || size == 8)\n";
+
+ str += "\t s = (("; str += castType.getAsString(Context->getPrintingPolicy());
+ str += ")(void *)objc_msgSend)(receiver, sel";
+ for (unsigned i = 2; i < ArgTypes.size(); i++) {
+ str += ", arg"; str += utostr(i);
+ }
+ // could be vararg.
+ for (unsigned i = ArgTypes.size(); i < MsgExprs.size(); i++) {
+ str += ", arg"; str += utostr(i);
+ }
+ str+= ");\n";
+
+ str += "\t else if (receiver == 0)\n";
+ str += "\t memset((void*)&s, 0, sizeof(s));\n";
+ str += "\t else\n";
+
+
+ str += "\t s = (("; str += castType.getAsString(Context->getPrintingPolicy());
+ str += ")(void *)objc_msgSend_stret)(receiver, sel";
+ for (unsigned i = 2; i < ArgTypes.size(); i++) {
+ str += ", arg"; str += utostr(i);
+ }
+ // could be vararg.
+ for (unsigned i = ArgTypes.size(); i < MsgExprs.size(); i++) {
+ str += ", arg"; str += utostr(i);
+ }
+ str += ");\n";
+
+
+ str += "\t}\n";
+ str += "\t"; str += returnType.getAsString(Context->getPrintingPolicy());
+ str += " s;\n";
+ str += "};\n};\n\n";
+ SourceLocation FunLocStart;
+ if (CurFunctionDef)
+ FunLocStart = getFunctionSourceLocation(*this, CurFunctionDef);
+ else {
+ assert(CurMethodDef && "SynthMsgSendStretCallExpr - CurMethodDef is null");
+ FunLocStart = CurMethodDef->getLocStart();
+ }
+
+ InsertText(FunLocStart, str);
+ ++stretCount;
+
+ // AST for __Stretn(receiver, args).s;
+ IdentifierInfo *ID = &Context->Idents.get(name);
+ FunctionDecl *FD = FunctionDecl::Create(*Context, TUDecl, SourceLocation(),
+ SourceLocation(), ID, castType,
+ nullptr, SC_Extern, false, false);
+ DeclRefExpr *DRE = new (Context) DeclRefExpr(FD, false, castType, VK_RValue,
+ SourceLocation());
+ CallExpr *STCE = new (Context) CallExpr(*Context, DRE, MsgExprs,
+ castType, VK_LValue, SourceLocation());
+
+ FieldDecl *FieldD = FieldDecl::Create(*Context, nullptr, SourceLocation(),
+ SourceLocation(),
+ &Context->Idents.get("s"),
+ returnType, nullptr,
+ /*BitWidth=*/nullptr,
+ /*Mutable=*/true, ICIS_NoInit);
+ MemberExpr *ME = new (Context)
+ MemberExpr(STCE, false, SourceLocation(), FieldD, SourceLocation(),
+ FieldD->getType(), VK_LValue, OK_Ordinary);
+
+ return ME;
+}
+
+Stmt *RewriteModernObjC::SynthMessageExpr(ObjCMessageExpr *Exp,
+ SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+ if (!SelGetUidFunctionDecl)
+ SynthSelGetUidFunctionDecl();
+ if (!MsgSendFunctionDecl)
+ SynthMsgSendFunctionDecl();
+ if (!MsgSendSuperFunctionDecl)
+ SynthMsgSendSuperFunctionDecl();
+ if (!MsgSendStretFunctionDecl)
+ SynthMsgSendStretFunctionDecl();
+ if (!MsgSendSuperStretFunctionDecl)
+ SynthMsgSendSuperStretFunctionDecl();
+ if (!MsgSendFpretFunctionDecl)
+ SynthMsgSendFpretFunctionDecl();
+ if (!GetClassFunctionDecl)
+ SynthGetClassFunctionDecl();
+ if (!GetSuperClassFunctionDecl)
+ SynthGetSuperClassFunctionDecl();
+ if (!GetMetaClassFunctionDecl)
+ SynthGetMetaClassFunctionDecl();
+
+ // default to objc_msgSend().
+ FunctionDecl *MsgSendFlavor = MsgSendFunctionDecl;
+ // May need to use objc_msgSend_stret() as well.
+ FunctionDecl *MsgSendStretFlavor = nullptr;
+ if (ObjCMethodDecl *mDecl = Exp->getMethodDecl()) {
+ QualType resultType = mDecl->getReturnType();
+ if (resultType->isRecordType())
+ MsgSendStretFlavor = MsgSendStretFunctionDecl;
+ else if (resultType->isRealFloatingType())
+ MsgSendFlavor = MsgSendFpretFunctionDecl;
+ }
+
+ // Synthesize a call to objc_msgSend().
+ SmallVector<Expr*, 8> MsgExprs;
+ switch (Exp->getReceiverKind()) {
+ case ObjCMessageExpr::SuperClass: {
+ MsgSendFlavor = MsgSendSuperFunctionDecl;
+ if (MsgSendStretFlavor)
+ MsgSendStretFlavor = MsgSendSuperStretFunctionDecl;
+ assert(MsgSendFlavor && "MsgSendFlavor is NULL!");
+
+ ObjCInterfaceDecl *ClassDecl = CurMethodDef->getClassInterface();
+
+ SmallVector<Expr*, 4> InitExprs;
+
+ // set the receiver to self, the first argument to all methods.
+ InitExprs.push_back(
+ NoTypeInfoCStyleCastExpr(Context, Context->getObjCIdType(),
+ CK_BitCast,
+ new (Context) DeclRefExpr(CurMethodDef->getSelfDecl(),
+ false,
+ Context->getObjCIdType(),
+ VK_RValue,
+ SourceLocation()))
+ ); // set the 'receiver'.
+
+ // (id)class_getSuperclass((Class)objc_getClass("CurrentClass"))
+ SmallVector<Expr*, 8> ClsExprs;
+ ClsExprs.push_back(getStringLiteral(ClassDecl->getIdentifier()->getName()));
+ // (Class)objc_getClass("CurrentClass")
+ CallExpr *Cls = SynthesizeCallToFunctionDecl(GetMetaClassFunctionDecl,
+ &ClsExprs[0],
+ ClsExprs.size(),
+ StartLoc,
+ EndLoc);
+ ClsExprs.clear();
+ ClsExprs.push_back(Cls);
+ Cls = SynthesizeCallToFunctionDecl(GetSuperClassFunctionDecl,
+ &ClsExprs[0], ClsExprs.size(),
+ StartLoc, EndLoc);
+
+ // (id)class_getSuperclass((Class)objc_getClass("CurrentClass"))
+ // To turn off a warning, type-cast to 'id'
+ InitExprs.push_back( // set 'super class', using class_getSuperclass().
+ NoTypeInfoCStyleCastExpr(Context,
+ Context->getObjCIdType(),
+ CK_BitCast, Cls));
+ // struct __rw_objc_super
+ QualType superType = getSuperStructType();
+ Expr *SuperRep;
+
+ if (LangOpts.MicrosoftExt) {
+ SynthSuperConstructorFunctionDecl();
+ // Simulate a constructor call...
+ DeclRefExpr *DRE = new (Context) DeclRefExpr(SuperConstructorFunctionDecl,
+ false, superType, VK_LValue,
+ SourceLocation());
+ SuperRep = new (Context) CallExpr(*Context, DRE, InitExprs,
+ superType, VK_LValue,
+ SourceLocation());
+ // The code for super is a little tricky to prevent collision with
+ // the structure definition in the header. The rewriter has it's own
+ // internal definition (__rw_objc_super) that is uses. This is why
+ // we need the cast below. For example:
+ // (struct __rw_objc_super *)&__rw_objc_super((id)self, (id)objc_getClass("SUPER"))
+ //
+ SuperRep = new (Context) UnaryOperator(SuperRep, UO_AddrOf,
+ Context->getPointerType(SuperRep->getType()),
+ VK_RValue, OK_Ordinary,
+ SourceLocation());
+ SuperRep = NoTypeInfoCStyleCastExpr(Context,
+ Context->getPointerType(superType),
+ CK_BitCast, SuperRep);
+ } else {
+ // (struct __rw_objc_super) { <exprs from above> }
+ InitListExpr *ILE =
+ new (Context) InitListExpr(*Context, SourceLocation(), InitExprs,
+ SourceLocation());
+ TypeSourceInfo *superTInfo
+ = Context->getTrivialTypeSourceInfo(superType);
+ SuperRep = new (Context) CompoundLiteralExpr(SourceLocation(), superTInfo,
+ superType, VK_LValue,
+ ILE, false);
+ // struct __rw_objc_super *
+ SuperRep = new (Context) UnaryOperator(SuperRep, UO_AddrOf,
+ Context->getPointerType(SuperRep->getType()),
+ VK_RValue, OK_Ordinary,
+ SourceLocation());
+ }
+ MsgExprs.push_back(SuperRep);
+ break;
+ }
+
+ case ObjCMessageExpr::Class: {
+ SmallVector<Expr*, 8> ClsExprs;
+ ObjCInterfaceDecl *Class
+ = Exp->getClassReceiver()->getAs<ObjCObjectType>()->getInterface();
+ IdentifierInfo *clsName = Class->getIdentifier();
+ ClsExprs.push_back(getStringLiteral(clsName->getName()));
+ CallExpr *Cls = SynthesizeCallToFunctionDecl(GetClassFunctionDecl,
+ &ClsExprs[0],
+ ClsExprs.size(),
+ StartLoc, EndLoc);
+ CastExpr *ArgExpr = NoTypeInfoCStyleCastExpr(Context,
+ Context->getObjCIdType(),
+ CK_BitCast, Cls);
+ MsgExprs.push_back(ArgExpr);
+ break;
+ }
+
+ case ObjCMessageExpr::SuperInstance:{
+ MsgSendFlavor = MsgSendSuperFunctionDecl;
+ if (MsgSendStretFlavor)
+ MsgSendStretFlavor = MsgSendSuperStretFunctionDecl;
+ assert(MsgSendFlavor && "MsgSendFlavor is NULL!");
+ ObjCInterfaceDecl *ClassDecl = CurMethodDef->getClassInterface();
+ SmallVector<Expr*, 4> InitExprs;
+
+ InitExprs.push_back(
+ NoTypeInfoCStyleCastExpr(Context, Context->getObjCIdType(),
+ CK_BitCast,
+ new (Context) DeclRefExpr(CurMethodDef->getSelfDecl(),
+ false,
+ Context->getObjCIdType(),
+ VK_RValue, SourceLocation()))
+ ); // set the 'receiver'.
+
+ // (id)class_getSuperclass((Class)objc_getClass("CurrentClass"))
+ SmallVector<Expr*, 8> ClsExprs;
+ ClsExprs.push_back(getStringLiteral(ClassDecl->getIdentifier()->getName()));
+ // (Class)objc_getClass("CurrentClass")
+ CallExpr *Cls = SynthesizeCallToFunctionDecl(GetClassFunctionDecl,
+ &ClsExprs[0],
+ ClsExprs.size(),
+ StartLoc, EndLoc);
+ ClsExprs.clear();
+ ClsExprs.push_back(Cls);
+ Cls = SynthesizeCallToFunctionDecl(GetSuperClassFunctionDecl,
+ &ClsExprs[0], ClsExprs.size(),
+ StartLoc, EndLoc);
+
+ // (id)class_getSuperclass((Class)objc_getClass("CurrentClass"))
+ // To turn off a warning, type-cast to 'id'
+ InitExprs.push_back(
+ // set 'super class', using class_getSuperclass().
+ NoTypeInfoCStyleCastExpr(Context, Context->getObjCIdType(),
+ CK_BitCast, Cls));
+ // struct __rw_objc_super
+ QualType superType = getSuperStructType();
+ Expr *SuperRep;
+
+ if (LangOpts.MicrosoftExt) {
+ SynthSuperConstructorFunctionDecl();
+ // Simulate a constructor call...
+ DeclRefExpr *DRE = new (Context) DeclRefExpr(SuperConstructorFunctionDecl,
+ false, superType, VK_LValue,
+ SourceLocation());
+ SuperRep = new (Context) CallExpr(*Context, DRE, InitExprs,
+ superType, VK_LValue, SourceLocation());
+ // The code for super is a little tricky to prevent collision with
+ // the structure definition in the header. The rewriter has it's own
+ // internal definition (__rw_objc_super) that is uses. This is why
+ // we need the cast below. For example:
+ // (struct __rw_objc_super *)&__rw_objc_super((id)self, (id)objc_getClass("SUPER"))
+ //
+ SuperRep = new (Context) UnaryOperator(SuperRep, UO_AddrOf,
+ Context->getPointerType(SuperRep->getType()),
+ VK_RValue, OK_Ordinary,
+ SourceLocation());
+ SuperRep = NoTypeInfoCStyleCastExpr(Context,
+ Context->getPointerType(superType),
+ CK_BitCast, SuperRep);
+ } else {
+ // (struct __rw_objc_super) { <exprs from above> }
+ InitListExpr *ILE =
+ new (Context) InitListExpr(*Context, SourceLocation(), InitExprs,
+ SourceLocation());
+ TypeSourceInfo *superTInfo
+ = Context->getTrivialTypeSourceInfo(superType);
+ SuperRep = new (Context) CompoundLiteralExpr(SourceLocation(), superTInfo,
+ superType, VK_RValue, ILE,
+ false);
+ }
+ MsgExprs.push_back(SuperRep);
+ break;
+ }
+
+ case ObjCMessageExpr::Instance: {
+ // Remove all type-casts because it may contain objc-style types; e.g.
+ // Foo<Proto> *.
+ Expr *recExpr = Exp->getInstanceReceiver();
+ while (CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(recExpr))
+ recExpr = CE->getSubExpr();
+ CastKind CK = recExpr->getType()->isObjCObjectPointerType()
+ ? CK_BitCast : recExpr->getType()->isBlockPointerType()
+ ? CK_BlockPointerToObjCPointerCast
+ : CK_CPointerToObjCPointerCast;
+
+ recExpr = NoTypeInfoCStyleCastExpr(Context, Context->getObjCIdType(),
+ CK, recExpr);
+ MsgExprs.push_back(recExpr);
+ break;
+ }
+ }
+
+ // Create a call to sel_registerName("selName"), it will be the 2nd argument.
+ SmallVector<Expr*, 8> SelExprs;
+ SelExprs.push_back(getStringLiteral(Exp->getSelector().getAsString()));
+ CallExpr *SelExp = SynthesizeCallToFunctionDecl(SelGetUidFunctionDecl,
+ &SelExprs[0], SelExprs.size(),
+ StartLoc,
+ EndLoc);
+ MsgExprs.push_back(SelExp);
+
+ // Now push any user supplied arguments.
+ for (unsigned i = 0; i < Exp->getNumArgs(); i++) {
+ Expr *userExpr = Exp->getArg(i);
+ // Make all implicit casts explicit...ICE comes in handy:-)
+ if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(userExpr)) {
+ // Reuse the ICE type, it is exactly what the doctor ordered.
+ QualType type = ICE->getType();
+ if (needToScanForQualifiers(type))
+ type = Context->getObjCIdType();
+ // Make sure we convert "type (^)(...)" to "type (*)(...)".
+ (void)convertBlockPointerToFunctionPointer(type);
+ const Expr *SubExpr = ICE->IgnoreParenImpCasts();
+ CastKind CK;
+ if (SubExpr->getType()->isIntegralType(*Context) &&
+ type->isBooleanType()) {
+ CK = CK_IntegralToBoolean;
+ } else if (type->isObjCObjectPointerType()) {
+ if (SubExpr->getType()->isBlockPointerType()) {
+ CK = CK_BlockPointerToObjCPointerCast;
+ } else if (SubExpr->getType()->isPointerType()) {
+ CK = CK_CPointerToObjCPointerCast;
+ } else {
+ CK = CK_BitCast;
+ }
+ } else {
+ CK = CK_BitCast;
+ }
+
+ userExpr = NoTypeInfoCStyleCastExpr(Context, type, CK, userExpr);
+ }
+ // Make id<P...> cast into an 'id' cast.
+ else if (CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(userExpr)) {
+ if (CE->getType()->isObjCQualifiedIdType()) {
+ while ((CE = dyn_cast<CStyleCastExpr>(userExpr)))
+ userExpr = CE->getSubExpr();
+ CastKind CK;
+ if (userExpr->getType()->isIntegralType(*Context)) {
+ CK = CK_IntegralToPointer;
+ } else if (userExpr->getType()->isBlockPointerType()) {
+ CK = CK_BlockPointerToObjCPointerCast;
+ } else if (userExpr->getType()->isPointerType()) {
+ CK = CK_CPointerToObjCPointerCast;
+ } else {
+ CK = CK_BitCast;
+ }
+ userExpr = NoTypeInfoCStyleCastExpr(Context, Context->getObjCIdType(),
+ CK, userExpr);
+ }
+ }
+ MsgExprs.push_back(userExpr);
+ // We've transferred the ownership to MsgExprs. For now, we *don't* null
+ // out the argument in the original expression (since we aren't deleting
+ // the ObjCMessageExpr). See RewritePropertyOrImplicitSetter() usage for more info.
+ //Exp->setArg(i, 0);
+ }
+ // Generate the funky cast.
+ CastExpr *cast;
+ SmallVector<QualType, 8> ArgTypes;
+ QualType returnType;
+
+ // Push 'id' and 'SEL', the 2 implicit arguments.
+ if (MsgSendFlavor == MsgSendSuperFunctionDecl)
+ ArgTypes.push_back(Context->getPointerType(getSuperStructType()));
+ else
+ ArgTypes.push_back(Context->getObjCIdType());
+ ArgTypes.push_back(Context->getObjCSelType());
+ if (ObjCMethodDecl *OMD = Exp->getMethodDecl()) {
+ // Push any user argument types.
+ for (const auto *PI : OMD->params()) {
+ QualType t = PI->getType()->isObjCQualifiedIdType()
+ ? Context->getObjCIdType()
+ : PI->getType();
+ // Make sure we convert "t (^)(...)" to "t (*)(...)".
+ (void)convertBlockPointerToFunctionPointer(t);
+ ArgTypes.push_back(t);
+ }
+ returnType = Exp->getType();
+ convertToUnqualifiedObjCType(returnType);
+ (void)convertBlockPointerToFunctionPointer(returnType);
+ } else {
+ returnType = Context->getObjCIdType();
+ }
+ // Get the type, we will need to reference it in a couple spots.
+ QualType msgSendType = MsgSendFlavor->getType();
+
+ // Create a reference to the objc_msgSend() declaration.
+ DeclRefExpr *DRE = new (Context) DeclRefExpr(MsgSendFlavor, false, msgSendType,
+ VK_LValue, SourceLocation());
+
+ // Need to cast objc_msgSend to "void *" (to workaround a GCC bandaid).
+ // If we don't do this cast, we get the following bizarre warning/note:
+ // xx.m:13: warning: function called through a non-compatible type
+ // xx.m:13: note: if this code is reached, the program will abort
+ cast = NoTypeInfoCStyleCastExpr(Context,
+ Context->getPointerType(Context->VoidTy),
+ CK_BitCast, DRE);
+
+ // Now do the "normal" pointer to function cast.
+ // If we don't have a method decl, force a variadic cast.
+ const ObjCMethodDecl *MD = Exp->getMethodDecl();
+ QualType castType =
+ getSimpleFunctionType(returnType, ArgTypes, MD ? MD->isVariadic() : true);
+ castType = Context->getPointerType(castType);
+ cast = NoTypeInfoCStyleCastExpr(Context, castType, CK_BitCast,
+ cast);
+
+ // Don't forget the parens to enforce the proper binding.
+ ParenExpr *PE = new (Context) ParenExpr(StartLoc, EndLoc, cast);
+
+ const FunctionType *FT = msgSendType->getAs<FunctionType>();
+ CallExpr *CE = new (Context)
+ CallExpr(*Context, PE, MsgExprs, FT->getReturnType(), VK_RValue, EndLoc);
+ Stmt *ReplacingStmt = CE;
+ if (MsgSendStretFlavor) {
+ // We have the method which returns a struct/union. Must also generate
+ // call to objc_msgSend_stret and hang both varieties on a conditional
+ // expression which dictate which one to envoke depending on size of
+ // method's return type.
+
+ Expr *STCE = SynthMsgSendStretCallExpr(MsgSendStretFlavor,
+ returnType,
+ ArgTypes, MsgExprs,
+ Exp->getMethodDecl());
+ ReplacingStmt = STCE;
+ }
+ // delete Exp; leak for now, see RewritePropertyOrImplicitSetter() usage for more info.
+ return ReplacingStmt;
+}
+
+Stmt *RewriteModernObjC::RewriteMessageExpr(ObjCMessageExpr *Exp) {
+ Stmt *ReplacingStmt = SynthMessageExpr(Exp, Exp->getLocStart(),
+ Exp->getLocEnd());
+
+ // Now do the actual rewrite.
+ ReplaceStmt(Exp, ReplacingStmt);
+
+ // delete Exp; leak for now, see RewritePropertyOrImplicitSetter() usage for more info.
+ return ReplacingStmt;
+}
+
+// typedef struct objc_object Protocol;
+QualType RewriteModernObjC::getProtocolType() {
+ if (!ProtocolTypeDecl) {
+ TypeSourceInfo *TInfo
+ = Context->getTrivialTypeSourceInfo(Context->getObjCIdType());
+ ProtocolTypeDecl = TypedefDecl::Create(*Context, TUDecl,
+ SourceLocation(), SourceLocation(),
+ &Context->Idents.get("Protocol"),
+ TInfo);
+ }
+ return Context->getTypeDeclType(ProtocolTypeDecl);
+}
+
+/// RewriteObjCProtocolExpr - Rewrite a protocol expression into
+/// a synthesized/forward data reference (to the protocol's metadata).
+/// The forward references (and metadata) are generated in
+/// RewriteModernObjC::HandleTranslationUnit().
+Stmt *RewriteModernObjC::RewriteObjCProtocolExpr(ObjCProtocolExpr *Exp) {
+ std::string Name = "_OBJC_PROTOCOL_REFERENCE_$_" +
+ Exp->getProtocol()->getNameAsString();
+ IdentifierInfo *ID = &Context->Idents.get(Name);
+ VarDecl *VD = VarDecl::Create(*Context, TUDecl, SourceLocation(),
+ SourceLocation(), ID, getProtocolType(),
+ nullptr, SC_Extern);
+ DeclRefExpr *DRE = new (Context) DeclRefExpr(VD, false, getProtocolType(),
+ VK_LValue, SourceLocation());
+ CastExpr *castExpr =
+ NoTypeInfoCStyleCastExpr(
+ Context, Context->getPointerType(DRE->getType()), CK_BitCast, DRE);
+ ReplaceStmt(Exp, castExpr);
+ ProtocolExprDecls.insert(Exp->getProtocol()->getCanonicalDecl());
+ // delete Exp; leak for now, see RewritePropertyOrImplicitSetter() usage for more info.
+ return castExpr;
+
+}
+
+bool RewriteModernObjC::BufferContainsPPDirectives(const char *startBuf,
+ const char *endBuf) {
+ while (startBuf < endBuf) {
+ if (*startBuf == '#') {
+ // Skip whitespace.
+ for (++startBuf; startBuf[0] == ' ' || startBuf[0] == '\t'; ++startBuf)
+ ;
+ if (!strncmp(startBuf, "if", strlen("if")) ||
+ !strncmp(startBuf, "ifdef", strlen("ifdef")) ||
+ !strncmp(startBuf, "ifndef", strlen("ifndef")) ||
+ !strncmp(startBuf, "define", strlen("define")) ||
+ !strncmp(startBuf, "undef", strlen("undef")) ||
+ !strncmp(startBuf, "else", strlen("else")) ||
+ !strncmp(startBuf, "elif", strlen("elif")) ||
+ !strncmp(startBuf, "endif", strlen("endif")) ||
+ !strncmp(startBuf, "pragma", strlen("pragma")) ||
+ !strncmp(startBuf, "include", strlen("include")) ||
+ !strncmp(startBuf, "import", strlen("import")) ||
+ !strncmp(startBuf, "include_next", strlen("include_next")))
+ return true;
+ }
+ startBuf++;
+ }
+ return false;
+}
+
+/// IsTagDefinedInsideClass - This routine checks that a named tagged type
+/// is defined inside an objective-c class. If so, it returns true.
+bool RewriteModernObjC::IsTagDefinedInsideClass(ObjCContainerDecl *IDecl,
+ TagDecl *Tag,
+ bool &IsNamedDefinition) {
+ if (!IDecl)
+ return false;
+ SourceLocation TagLocation;
+ if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag)) {
+ RD = RD->getDefinition();
+ if (!RD || !RD->getDeclName().getAsIdentifierInfo())
+ return false;
+ IsNamedDefinition = true;
+ TagLocation = RD->getLocation();
+ return Context->getSourceManager().isBeforeInTranslationUnit(
+ IDecl->getLocation(), TagLocation);
+ }
+ if (EnumDecl *ED = dyn_cast<EnumDecl>(Tag)) {
+ if (!ED || !ED->getDeclName().getAsIdentifierInfo())
+ return false;
+ IsNamedDefinition = true;
+ TagLocation = ED->getLocation();
+ return Context->getSourceManager().isBeforeInTranslationUnit(
+ IDecl->getLocation(), TagLocation);
+
+ }
+ return false;
+}
+
+/// RewriteObjCFieldDeclType - This routine rewrites a type into the buffer.
+/// It handles elaborated types, as well as enum types in the process.
+bool RewriteModernObjC::RewriteObjCFieldDeclType(QualType &Type,
+ std::string &Result) {
+ if (isa<TypedefType>(Type)) {
+ Result += "\t";
+ return false;
+ }
+
+ if (Type->isArrayType()) {
+ QualType ElemTy = Context->getBaseElementType(Type);
+ return RewriteObjCFieldDeclType(ElemTy, Result);
+ }
+ else if (Type->isRecordType()) {
+ RecordDecl *RD = Type->getAs<RecordType>()->getDecl();
+ if (RD->isCompleteDefinition()) {
+ if (RD->isStruct())
+ Result += "\n\tstruct ";
+ else if (RD->isUnion())
+ Result += "\n\tunion ";
+ else
+ assert(false && "class not allowed as an ivar type");
+
+ Result += RD->getName();
+ if (GlobalDefinedTags.count(RD)) {
+ // struct/union is defined globally, use it.
+ Result += " ";
+ return true;
+ }
+ Result += " {\n";
+ for (auto *FD : RD->fields())
+ RewriteObjCFieldDecl(FD, Result);
+ Result += "\t} ";
+ return true;
+ }
+ }
+ else if (Type->isEnumeralType()) {
+ EnumDecl *ED = Type->getAs<EnumType>()->getDecl();
+ if (ED->isCompleteDefinition()) {
+ Result += "\n\tenum ";
+ Result += ED->getName();
+ if (GlobalDefinedTags.count(ED)) {
+ // Enum is globall defined, use it.
+ Result += " ";
+ return true;
+ }
+
+ Result += " {\n";
+ for (const auto *EC : ED->enumerators()) {
+ Result += "\t"; Result += EC->getName(); Result += " = ";
+ llvm::APSInt Val = EC->getInitVal();
+ Result += Val.toString(10);
+ Result += ",\n";
+ }
+ Result += "\t} ";
+ return true;
+ }
+ }
+
+ Result += "\t";
+ convertObjCTypeToCStyleType(Type);
+ return false;
+}
+
+
+/// RewriteObjCFieldDecl - This routine rewrites a field into the buffer.
+/// It handles elaborated types, as well as enum types in the process.
+void RewriteModernObjC::RewriteObjCFieldDecl(FieldDecl *fieldDecl,
+ std::string &Result) {
+ QualType Type = fieldDecl->getType();
+ std::string Name = fieldDecl->getNameAsString();
+
+ bool EleboratedType = RewriteObjCFieldDeclType(Type, Result);
+ if (!EleboratedType)
+ Type.getAsStringInternal(Name, Context->getPrintingPolicy());
+ Result += Name;
+ if (fieldDecl->isBitField()) {
+ Result += " : "; Result += utostr(fieldDecl->getBitWidthValue(*Context));
+ }
+ else if (EleboratedType && Type->isArrayType()) {
+ const ArrayType *AT = Context->getAsArrayType(Type);
+ do {
+ if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
+ Result += "[";
+ llvm::APInt Dim = CAT->getSize();
+ Result += utostr(Dim.getZExtValue());
+ Result += "]";
+ }
+ AT = Context->getAsArrayType(AT->getElementType());
+ } while (AT);
+ }
+
+ Result += ";\n";
+}
+
+/// RewriteLocallyDefinedNamedAggregates - This routine rewrites locally defined
+/// named aggregate types into the input buffer.
+void RewriteModernObjC::RewriteLocallyDefinedNamedAggregates(FieldDecl *fieldDecl,
+ std::string &Result) {
+ QualType Type = fieldDecl->getType();
+ if (isa<TypedefType>(Type))
+ return;
+ if (Type->isArrayType())
+ Type = Context->getBaseElementType(Type);
+ ObjCContainerDecl *IDecl =
+ dyn_cast<ObjCContainerDecl>(fieldDecl->getDeclContext());
+
+ TagDecl *TD = nullptr;
+ if (Type->isRecordType()) {
+ TD = Type->getAs<RecordType>()->getDecl();
+ }
+ else if (Type->isEnumeralType()) {
+ TD = Type->getAs<EnumType>()->getDecl();
+ }
+
+ if (TD) {
+ if (GlobalDefinedTags.count(TD))
+ return;
+
+ bool IsNamedDefinition = false;
+ if (IsTagDefinedInsideClass(IDecl, TD, IsNamedDefinition)) {
+ RewriteObjCFieldDeclType(Type, Result);
+ Result += ";";
+ }
+ if (IsNamedDefinition)
+ GlobalDefinedTags.insert(TD);
+ }
+
+}
+
+unsigned RewriteModernObjC::ObjCIvarBitfieldGroupNo(ObjCIvarDecl *IV) {
+ const ObjCInterfaceDecl *CDecl = IV->getContainingInterface();
+ if (ObjCInterefaceHasBitfieldGroups.count(CDecl)) {
+ return IvarGroupNumber[IV];
+ }
+ unsigned GroupNo = 0;
+ SmallVector<const ObjCIvarDecl *, 8> IVars;
+ for (const ObjCIvarDecl *IVD = CDecl->all_declared_ivar_begin();
+ IVD; IVD = IVD->getNextIvar())
+ IVars.push_back(IVD);
+
+ for (unsigned i = 0, e = IVars.size(); i < e; i++)
+ if (IVars[i]->isBitField()) {
+ IvarGroupNumber[IVars[i++]] = ++GroupNo;
+ while (i < e && IVars[i]->isBitField())
+ IvarGroupNumber[IVars[i++]] = GroupNo;
+ if (i < e)
+ --i;
+ }
+
+ ObjCInterefaceHasBitfieldGroups.insert(CDecl);
+ return IvarGroupNumber[IV];
+}
+
+QualType RewriteModernObjC::SynthesizeBitfieldGroupStructType(
+ ObjCIvarDecl *IV,
+ SmallVectorImpl<ObjCIvarDecl *> &IVars) {
+ std::string StructTagName;
+ ObjCIvarBitfieldGroupType(IV, StructTagName);
+ RecordDecl *RD = RecordDecl::Create(*Context, TTK_Struct,
+ Context->getTranslationUnitDecl(),
+ SourceLocation(), SourceLocation(),
+ &Context->Idents.get(StructTagName));
+ for (unsigned i=0, e = IVars.size(); i < e; i++) {
+ ObjCIvarDecl *Ivar = IVars[i];
+ RD->addDecl(FieldDecl::Create(*Context, RD, SourceLocation(), SourceLocation(),
+ &Context->Idents.get(Ivar->getName()),
+ Ivar->getType(),
+ nullptr, /*Expr *BW */Ivar->getBitWidth(),
+ false, ICIS_NoInit));
+ }
+ RD->completeDefinition();
+ return Context->getTagDeclType(RD);
+}
+
+QualType RewriteModernObjC::GetGroupRecordTypeForObjCIvarBitfield(ObjCIvarDecl *IV) {
+ const ObjCInterfaceDecl *CDecl = IV->getContainingInterface();
+ unsigned GroupNo = ObjCIvarBitfieldGroupNo(IV);
+ std::pair<const ObjCInterfaceDecl*, unsigned> tuple = std::make_pair(CDecl, GroupNo);
+ if (GroupRecordType.count(tuple))
+ return GroupRecordType[tuple];
+
+ SmallVector<ObjCIvarDecl *, 8> IVars;
+ for (const ObjCIvarDecl *IVD = CDecl->all_declared_ivar_begin();
+ IVD; IVD = IVD->getNextIvar()) {
+ if (IVD->isBitField())
+ IVars.push_back(const_cast<ObjCIvarDecl *>(IVD));
+ else {
+ if (!IVars.empty()) {
+ unsigned GroupNo = ObjCIvarBitfieldGroupNo(IVars[0]);
+ // Generate the struct type for this group of bitfield ivars.
+ GroupRecordType[std::make_pair(CDecl, GroupNo)] =
+ SynthesizeBitfieldGroupStructType(IVars[0], IVars);
+ IVars.clear();
+ }
+ }
+ }
+ if (!IVars.empty()) {
+ // Do the last one.
+ unsigned GroupNo = ObjCIvarBitfieldGroupNo(IVars[0]);
+ GroupRecordType[std::make_pair(CDecl, GroupNo)] =
+ SynthesizeBitfieldGroupStructType(IVars[0], IVars);
+ }
+ QualType RetQT = GroupRecordType[tuple];
+ assert(!RetQT.isNull() && "GetGroupRecordTypeForObjCIvarBitfield struct type is NULL");
+
+ return RetQT;
+}
+
+/// ObjCIvarBitfieldGroupDecl - Names field decl. for ivar bitfield group.
+/// Name would be: classname__GRBF_n where n is the group number for this ivar.
+void RewriteModernObjC::ObjCIvarBitfieldGroupDecl(ObjCIvarDecl *IV,
+ std::string &Result) {
+ const ObjCInterfaceDecl *CDecl = IV->getContainingInterface();
+ Result += CDecl->getName();
+ Result += "__GRBF_";
+ unsigned GroupNo = ObjCIvarBitfieldGroupNo(IV);
+ Result += utostr(GroupNo);
+ return;
+}
+
+/// ObjCIvarBitfieldGroupType - Names struct type for ivar bitfield group.
+/// Name of the struct would be: classname__T_n where n is the group number for
+/// this ivar.
+void RewriteModernObjC::ObjCIvarBitfieldGroupType(ObjCIvarDecl *IV,
+ std::string &Result) {
+ const ObjCInterfaceDecl *CDecl = IV->getContainingInterface();
+ Result += CDecl->getName();
+ Result += "__T_";
+ unsigned GroupNo = ObjCIvarBitfieldGroupNo(IV);
+ Result += utostr(GroupNo);
+ return;
+}
+
+/// ObjCIvarBitfieldGroupOffset - Names symbol for ivar bitfield group field offset.
+/// Name would be: OBJC_IVAR_$_classname__GRBF_n where n is the group number for
+/// this ivar.
+void RewriteModernObjC::ObjCIvarBitfieldGroupOffset(ObjCIvarDecl *IV,
+ std::string &Result) {
+ Result += "OBJC_IVAR_$_";
+ ObjCIvarBitfieldGroupDecl(IV, Result);
+}
+
+#define SKIP_BITFIELDS(IX, ENDIX, VEC) { \
+ while ((IX < ENDIX) && VEC[IX]->isBitField()) \
+ ++IX; \
+ if (IX < ENDIX) \
+ --IX; \
+}
+
+/// RewriteObjCInternalStruct - Rewrite one internal struct corresponding to
+/// an objective-c class with ivars.
+void RewriteModernObjC::RewriteObjCInternalStruct(ObjCInterfaceDecl *CDecl,
+ std::string &Result) {
+ assert(CDecl && "Class missing in SynthesizeObjCInternalStruct");
+ assert(CDecl->getName() != "" &&
+ "Name missing in SynthesizeObjCInternalStruct");
+ ObjCInterfaceDecl *RCDecl = CDecl->getSuperClass();
+ SmallVector<ObjCIvarDecl *, 8> IVars;
+ for (ObjCIvarDecl *IVD = CDecl->all_declared_ivar_begin();
+ IVD; IVD = IVD->getNextIvar())
+ IVars.push_back(IVD);
+
+ SourceLocation LocStart = CDecl->getLocStart();
+ SourceLocation LocEnd = CDecl->getEndOfDefinitionLoc();
+
+ const char *startBuf = SM->getCharacterData(LocStart);
+ const char *endBuf = SM->getCharacterData(LocEnd);
+
+ // If no ivars and no root or if its root, directly or indirectly,
+ // have no ivars (thus not synthesized) then no need to synthesize this class.
+ if ((!CDecl->isThisDeclarationADefinition() || IVars.size() == 0) &&
+ (!RCDecl || !ObjCSynthesizedStructs.count(RCDecl))) {
+ endBuf += Lexer::MeasureTokenLength(LocEnd, *SM, LangOpts);
+ ReplaceText(LocStart, endBuf-startBuf, Result);
+ return;
+ }
+
+ // Insert named struct/union definitions inside class to
+ // outer scope. This follows semantics of locally defined
+ // struct/unions in objective-c classes.
+ for (unsigned i = 0, e = IVars.size(); i < e; i++)
+ RewriteLocallyDefinedNamedAggregates(IVars[i], Result);
+
+ // Insert named structs which are syntheized to group ivar bitfields
+ // to outer scope as well.
+ for (unsigned i = 0, e = IVars.size(); i < e; i++)
+ if (IVars[i]->isBitField()) {
+ ObjCIvarDecl *IV = IVars[i];
+ QualType QT = GetGroupRecordTypeForObjCIvarBitfield(IV);
+ RewriteObjCFieldDeclType(QT, Result);
+ Result += ";";
+ // skip over ivar bitfields in this group.
+ SKIP_BITFIELDS(i , e, IVars);
+ }
+
+ Result += "\nstruct ";
+ Result += CDecl->getNameAsString();
+ Result += "_IMPL {\n";
+
+ if (RCDecl && ObjCSynthesizedStructs.count(RCDecl)) {
+ Result += "\tstruct "; Result += RCDecl->getNameAsString();
+ Result += "_IMPL "; Result += RCDecl->getNameAsString();
+ Result += "_IVARS;\n";
+ }
+
+ for (unsigned i = 0, e = IVars.size(); i < e; i++) {
+ if (IVars[i]->isBitField()) {
+ ObjCIvarDecl *IV = IVars[i];
+ Result += "\tstruct ";
+ ObjCIvarBitfieldGroupType(IV, Result); Result += " ";
+ ObjCIvarBitfieldGroupDecl(IV, Result); Result += ";\n";
+ // skip over ivar bitfields in this group.
+ SKIP_BITFIELDS(i , e, IVars);
+ }
+ else
+ RewriteObjCFieldDecl(IVars[i], Result);
+ }
+
+ Result += "};\n";
+ endBuf += Lexer::MeasureTokenLength(LocEnd, *SM, LangOpts);
+ ReplaceText(LocStart, endBuf-startBuf, Result);
+ // Mark this struct as having been generated.
+ if (!ObjCSynthesizedStructs.insert(CDecl).second)
+ llvm_unreachable("struct already synthesize- RewriteObjCInternalStruct");
+}
+
+/// RewriteIvarOffsetSymbols - Rewrite ivar offset symbols of those ivars which
+/// have been referenced in an ivar access expression.
+void RewriteModernObjC::RewriteIvarOffsetSymbols(ObjCInterfaceDecl *CDecl,
+ std::string &Result) {
+ // write out ivar offset symbols which have been referenced in an ivar
+ // access expression.
+ llvm::SmallPtrSet<ObjCIvarDecl *, 8> Ivars = ReferencedIvars[CDecl];
+ if (Ivars.empty())
+ return;
+
+ llvm::DenseSet<std::pair<const ObjCInterfaceDecl*, unsigned> > GroupSymbolOutput;
+ for (ObjCIvarDecl *IvarDecl : Ivars) {
+ const ObjCInterfaceDecl *IDecl = IvarDecl->getContainingInterface();
+ unsigned GroupNo = 0;
+ if (IvarDecl->isBitField()) {
+ GroupNo = ObjCIvarBitfieldGroupNo(IvarDecl);
+ if (GroupSymbolOutput.count(std::make_pair(IDecl, GroupNo)))
+ continue;
+ }
+ Result += "\n";
+ if (LangOpts.MicrosoftExt)
+ Result += "__declspec(allocate(\".objc_ivar$B\")) ";
+ Result += "extern \"C\" ";
+ if (LangOpts.MicrosoftExt &&
+ IvarDecl->getAccessControl() != ObjCIvarDecl::Private &&
+ IvarDecl->getAccessControl() != ObjCIvarDecl::Package)
+ Result += "__declspec(dllimport) ";
+
+ Result += "unsigned long ";
+ if (IvarDecl->isBitField()) {
+ ObjCIvarBitfieldGroupOffset(IvarDecl, Result);
+ GroupSymbolOutput.insert(std::make_pair(IDecl, GroupNo));
+ }
+ else
+ WriteInternalIvarName(CDecl, IvarDecl, Result);
+ Result += ";";
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Meta Data Emission
+//===----------------------------------------------------------------------===//
+
+
+/// RewriteImplementations - This routine rewrites all method implementations
+/// and emits meta-data.
+
+void RewriteModernObjC::RewriteImplementations() {
+ int ClsDefCount = ClassImplementation.size();
+ int CatDefCount = CategoryImplementation.size();
+
+ // Rewrite implemented methods
+ for (int i = 0; i < ClsDefCount; i++) {
+ ObjCImplementationDecl *OIMP = ClassImplementation[i];
+ ObjCInterfaceDecl *CDecl = OIMP->getClassInterface();
+ if (CDecl->isImplicitInterfaceDecl())
+ assert(false &&
+ "Legacy implicit interface rewriting not supported in moder abi");
+ RewriteImplementationDecl(OIMP);
+ }
+
+ for (int i = 0; i < CatDefCount; i++) {
+ ObjCCategoryImplDecl *CIMP = CategoryImplementation[i];
+ ObjCInterfaceDecl *CDecl = CIMP->getClassInterface();
+ if (CDecl->isImplicitInterfaceDecl())
+ assert(false &&
+ "Legacy implicit interface rewriting not supported in moder abi");
+ RewriteImplementationDecl(CIMP);
+ }
+}
+
+void RewriteModernObjC::RewriteByRefString(std::string &ResultStr,
+ const std::string &Name,
+ ValueDecl *VD, bool def) {
+ assert(BlockByRefDeclNo.count(VD) &&
+ "RewriteByRefString: ByRef decl missing");
+ if (def)
+ ResultStr += "struct ";
+ ResultStr += "__Block_byref_" + Name +
+ "_" + utostr(BlockByRefDeclNo[VD]) ;
+}
+
+static bool HasLocalVariableExternalStorage(ValueDecl *VD) {
+ if (VarDecl *Var = dyn_cast<VarDecl>(VD))
+ return (Var->isFunctionOrMethodVarDecl() && !Var->hasLocalStorage());
+ return false;
+}
+
+std::string RewriteModernObjC::SynthesizeBlockFunc(BlockExpr *CE, int i,
+ StringRef funcName,
+ std::string Tag) {
+ const FunctionType *AFT = CE->getFunctionType();
+ QualType RT = AFT->getReturnType();
+ std::string StructRef = "struct " + Tag;
+ SourceLocation BlockLoc = CE->getExprLoc();
+ std::string S;
+ ConvertSourceLocationToLineDirective(BlockLoc, S);
+
+ S += "static " + RT.getAsString(Context->getPrintingPolicy()) + " __" +
+ funcName.str() + "_block_func_" + utostr(i);
+
+ BlockDecl *BD = CE->getBlockDecl();
+
+ if (isa<FunctionNoProtoType>(AFT)) {
+ // No user-supplied arguments. Still need to pass in a pointer to the
+ // block (to reference imported block decl refs).
+ S += "(" + StructRef + " *__cself)";
+ } else if (BD->param_empty()) {
+ S += "(" + StructRef + " *__cself)";
+ } else {
+ const FunctionProtoType *FT = cast<FunctionProtoType>(AFT);
+ assert(FT && "SynthesizeBlockFunc: No function proto");
+ S += '(';
+ // first add the implicit argument.
+ S += StructRef + " *__cself, ";
+ std::string ParamStr;
+ for (BlockDecl::param_iterator AI = BD->param_begin(),
+ E = BD->param_end(); AI != E; ++AI) {
+ if (AI != BD->param_begin()) S += ", ";
+ ParamStr = (*AI)->getNameAsString();
+ QualType QT = (*AI)->getType();
+ (void)convertBlockPointerToFunctionPointer(QT);
+ QT.getAsStringInternal(ParamStr, Context->getPrintingPolicy());
+ S += ParamStr;
+ }
+ if (FT->isVariadic()) {
+ if (!BD->param_empty()) S += ", ";
+ S += "...";
+ }
+ S += ')';
+ }
+ S += " {\n";
+
+ // Create local declarations to avoid rewriting all closure decl ref exprs.
+ // First, emit a declaration for all "by ref" decls.
+ for (SmallVectorImpl<ValueDecl *>::iterator I = BlockByRefDecls.begin(),
+ E = BlockByRefDecls.end(); I != E; ++I) {
+ S += " ";
+ std::string Name = (*I)->getNameAsString();
+ std::string TypeString;
+ RewriteByRefString(TypeString, Name, (*I));
+ TypeString += " *";
+ Name = TypeString + Name;
+ S += Name + " = __cself->" + (*I)->getNameAsString() + "; // bound by ref\n";
+ }
+ // Next, emit a declaration for all "by copy" declarations.
+ for (SmallVectorImpl<ValueDecl *>::iterator I = BlockByCopyDecls.begin(),
+ E = BlockByCopyDecls.end(); I != E; ++I) {
+ S += " ";
+ // Handle nested closure invocation. For example:
+ //
+ // void (^myImportedClosure)(void);
+ // myImportedClosure = ^(void) { setGlobalInt(x + y); };
+ //
+ // void (^anotherClosure)(void);
+ // anotherClosure = ^(void) {
+ // myImportedClosure(); // import and invoke the closure
+ // };
+ //
+ if (isTopLevelBlockPointerType((*I)->getType())) {
+ RewriteBlockPointerTypeVariable(S, (*I));
+ S += " = (";
+ RewriteBlockPointerType(S, (*I)->getType());
+ S += ")";
+ S += "__cself->" + (*I)->getNameAsString() + "; // bound by copy\n";
+ }
+ else {
+ std::string Name = (*I)->getNameAsString();
+ QualType QT = (*I)->getType();
+ if (HasLocalVariableExternalStorage(*I))
+ QT = Context->getPointerType(QT);
+ QT.getAsStringInternal(Name, Context->getPrintingPolicy());
+ S += Name + " = __cself->" +
+ (*I)->getNameAsString() + "; // bound by copy\n";
+ }
+ }
+ std::string RewrittenStr = RewrittenBlockExprs[CE];
+ const char *cstr = RewrittenStr.c_str();
+ while (*cstr++ != '{') ;
+ S += cstr;
+ S += "\n";
+ return S;
+}
+
+std::string RewriteModernObjC::SynthesizeBlockHelperFuncs(BlockExpr *CE, int i,
+ StringRef funcName,
+ std::string Tag) {
+ std::string StructRef = "struct " + Tag;
+ std::string S = "static void __";
+
+ S += funcName;
+ S += "_block_copy_" + utostr(i);
+ S += "(" + StructRef;
+ S += "*dst, " + StructRef;
+ S += "*src) {";
+ for (ValueDecl *VD : ImportedBlockDecls) {
+ S += "_Block_object_assign((void*)&dst->";
+ S += VD->getNameAsString();
+ S += ", (void*)src->";
+ S += VD->getNameAsString();
+ if (BlockByRefDeclsPtrSet.count(VD))
+ S += ", " + utostr(BLOCK_FIELD_IS_BYREF) + "/*BLOCK_FIELD_IS_BYREF*/);";
+ else if (VD->getType()->isBlockPointerType())
+ S += ", " + utostr(BLOCK_FIELD_IS_BLOCK) + "/*BLOCK_FIELD_IS_BLOCK*/);";
+ else
+ S += ", " + utostr(BLOCK_FIELD_IS_OBJECT) + "/*BLOCK_FIELD_IS_OBJECT*/);";
+ }
+ S += "}\n";
+
+ S += "\nstatic void __";
+ S += funcName;
+ S += "_block_dispose_" + utostr(i);
+ S += "(" + StructRef;
+ S += "*src) {";
+ for (ValueDecl *VD : ImportedBlockDecls) {
+ S += "_Block_object_dispose((void*)src->";
+ S += VD->getNameAsString();
+ if (BlockByRefDeclsPtrSet.count(VD))
+ S += ", " + utostr(BLOCK_FIELD_IS_BYREF) + "/*BLOCK_FIELD_IS_BYREF*/);";
+ else if (VD->getType()->isBlockPointerType())
+ S += ", " + utostr(BLOCK_FIELD_IS_BLOCK) + "/*BLOCK_FIELD_IS_BLOCK*/);";
+ else
+ S += ", " + utostr(BLOCK_FIELD_IS_OBJECT) + "/*BLOCK_FIELD_IS_OBJECT*/);";
+ }
+ S += "}\n";
+ return S;
+}
+
+std::string RewriteModernObjC::SynthesizeBlockImpl(BlockExpr *CE, std::string Tag,
+ std::string Desc) {
+ std::string S = "\nstruct " + Tag;
+ std::string Constructor = " " + Tag;
+
+ S += " {\n struct __block_impl impl;\n";
+ S += " struct " + Desc;
+ S += "* Desc;\n";
+
+ Constructor += "(void *fp, "; // Invoke function pointer.
+ Constructor += "struct " + Desc; // Descriptor pointer.
+ Constructor += " *desc";
+
+ if (BlockDeclRefs.size()) {
+ // Output all "by copy" declarations.
+ for (SmallVectorImpl<ValueDecl *>::iterator I = BlockByCopyDecls.begin(),
+ E = BlockByCopyDecls.end(); I != E; ++I) {
+ S += " ";
+ std::string FieldName = (*I)->getNameAsString();
+ std::string ArgName = "_" + FieldName;
+ // Handle nested closure invocation. For example:
+ //
+ // void (^myImportedBlock)(void);
+ // myImportedBlock = ^(void) { setGlobalInt(x + y); };
+ //
+ // void (^anotherBlock)(void);
+ // anotherBlock = ^(void) {
+ // myImportedBlock(); // import and invoke the closure
+ // };
+ //
+ if (isTopLevelBlockPointerType((*I)->getType())) {
+ S += "struct __block_impl *";
+ Constructor += ", void *" + ArgName;
+ } else {
+ QualType QT = (*I)->getType();
+ if (HasLocalVariableExternalStorage(*I))
+ QT = Context->getPointerType(QT);
+ QT.getAsStringInternal(FieldName, Context->getPrintingPolicy());
+ QT.getAsStringInternal(ArgName, Context->getPrintingPolicy());
+ Constructor += ", " + ArgName;
+ }
+ S += FieldName + ";\n";
+ }
+ // Output all "by ref" declarations.
+ for (SmallVectorImpl<ValueDecl *>::iterator I = BlockByRefDecls.begin(),
+ E = BlockByRefDecls.end(); I != E; ++I) {
+ S += " ";
+ std::string FieldName = (*I)->getNameAsString();
+ std::string ArgName = "_" + FieldName;
+ {
+ std::string TypeString;
+ RewriteByRefString(TypeString, FieldName, (*I));
+ TypeString += " *";
+ FieldName = TypeString + FieldName;
+ ArgName = TypeString + ArgName;
+ Constructor += ", " + ArgName;
+ }
+ S += FieldName + "; // by ref\n";
+ }
+ // Finish writing the constructor.
+ Constructor += ", int flags=0)";
+ // Initialize all "by copy" arguments.
+ bool firsTime = true;
+ for (SmallVectorImpl<ValueDecl *>::iterator I = BlockByCopyDecls.begin(),
+ E = BlockByCopyDecls.end(); I != E; ++I) {
+ std::string Name = (*I)->getNameAsString();
+ if (firsTime) {
+ Constructor += " : ";
+ firsTime = false;
+ }
+ else
+ Constructor += ", ";
+ if (isTopLevelBlockPointerType((*I)->getType()))
+ Constructor += Name + "((struct __block_impl *)_" + Name + ")";
+ else
+ Constructor += Name + "(_" + Name + ")";
+ }
+ // Initialize all "by ref" arguments.
+ for (SmallVectorImpl<ValueDecl *>::iterator I = BlockByRefDecls.begin(),
+ E = BlockByRefDecls.end(); I != E; ++I) {
+ std::string Name = (*I)->getNameAsString();
+ if (firsTime) {
+ Constructor += " : ";
+ firsTime = false;
+ }
+ else
+ Constructor += ", ";
+ Constructor += Name + "(_" + Name + "->__forwarding)";
+ }
+
+ Constructor += " {\n";
+ if (GlobalVarDecl)
+ Constructor += " impl.isa = &_NSConcreteGlobalBlock;\n";
+ else
+ Constructor += " impl.isa = &_NSConcreteStackBlock;\n";
+ Constructor += " impl.Flags = flags;\n impl.FuncPtr = fp;\n";
+
+ Constructor += " Desc = desc;\n";
+ } else {
+ // Finish writing the constructor.
+ Constructor += ", int flags=0) {\n";
+ if (GlobalVarDecl)
+ Constructor += " impl.isa = &_NSConcreteGlobalBlock;\n";
+ else
+ Constructor += " impl.isa = &_NSConcreteStackBlock;\n";
+ Constructor += " impl.Flags = flags;\n impl.FuncPtr = fp;\n";
+ Constructor += " Desc = desc;\n";
+ }
+ Constructor += " ";
+ Constructor += "}\n";
+ S += Constructor;
+ S += "};\n";
+ return S;
+}
+
+std::string RewriteModernObjC::SynthesizeBlockDescriptor(std::string DescTag,
+ std::string ImplTag, int i,
+ StringRef FunName,
+ unsigned hasCopy) {
+ std::string S = "\nstatic struct " + DescTag;
+
+ S += " {\n size_t reserved;\n";
+ S += " size_t Block_size;\n";
+ if (hasCopy) {
+ S += " void (*copy)(struct ";
+ S += ImplTag; S += "*, struct ";
+ S += ImplTag; S += "*);\n";
+
+ S += " void (*dispose)(struct ";
+ S += ImplTag; S += "*);\n";
+ }
+ S += "} ";
+
+ S += DescTag + "_DATA = { 0, sizeof(struct ";
+ S += ImplTag + ")";
+ if (hasCopy) {
+ S += ", __" + FunName.str() + "_block_copy_" + utostr(i);
+ S += ", __" + FunName.str() + "_block_dispose_" + utostr(i);
+ }
+ S += "};\n";
+ return S;
+}
+
+void RewriteModernObjC::SynthesizeBlockLiterals(SourceLocation FunLocStart,
+ StringRef FunName) {
+ bool RewriteSC = (GlobalVarDecl &&
+ !Blocks.empty() &&
+ GlobalVarDecl->getStorageClass() == SC_Static &&
+ GlobalVarDecl->getType().getCVRQualifiers());
+ if (RewriteSC) {
+ std::string SC(" void __");
+ SC += GlobalVarDecl->getNameAsString();
+ SC += "() {}";
+ InsertText(FunLocStart, SC);
+ }
+
+ // Insert closures that were part of the function.
+ for (unsigned i = 0, count=0; i < Blocks.size(); i++) {
+ CollectBlockDeclRefInfo(Blocks[i]);
+ // Need to copy-in the inner copied-in variables not actually used in this
+ // block.
+ for (int j = 0; j < InnerDeclRefsCount[i]; j++) {
+ DeclRefExpr *Exp = InnerDeclRefs[count++];
+ ValueDecl *VD = Exp->getDecl();
+ BlockDeclRefs.push_back(Exp);
+ if (!VD->hasAttr<BlocksAttr>()) {
+ if (!BlockByCopyDeclsPtrSet.count(VD)) {
+ BlockByCopyDeclsPtrSet.insert(VD);
+ BlockByCopyDecls.push_back(VD);
+ }
+ continue;
+ }
+
+ if (!BlockByRefDeclsPtrSet.count(VD)) {
+ BlockByRefDeclsPtrSet.insert(VD);
+ BlockByRefDecls.push_back(VD);
+ }
+
+ // imported objects in the inner blocks not used in the outer
+ // blocks must be copied/disposed in the outer block as well.
+ if (VD->getType()->isObjCObjectPointerType() ||
+ VD->getType()->isBlockPointerType())
+ ImportedBlockDecls.insert(VD);
+ }
+
+ std::string ImplTag = "__" + FunName.str() + "_block_impl_" + utostr(i);
+ std::string DescTag = "__" + FunName.str() + "_block_desc_" + utostr(i);
+
+ std::string CI = SynthesizeBlockImpl(Blocks[i], ImplTag, DescTag);
+
+ InsertText(FunLocStart, CI);
+
+ std::string CF = SynthesizeBlockFunc(Blocks[i], i, FunName, ImplTag);
+
+ InsertText(FunLocStart, CF);
+
+ if (ImportedBlockDecls.size()) {
+ std::string HF = SynthesizeBlockHelperFuncs(Blocks[i], i, FunName, ImplTag);
+ InsertText(FunLocStart, HF);
+ }
+ std::string BD = SynthesizeBlockDescriptor(DescTag, ImplTag, i, FunName,
+ ImportedBlockDecls.size() > 0);
+ InsertText(FunLocStart, BD);
+
+ BlockDeclRefs.clear();
+ BlockByRefDecls.clear();
+ BlockByRefDeclsPtrSet.clear();
+ BlockByCopyDecls.clear();
+ BlockByCopyDeclsPtrSet.clear();
+ ImportedBlockDecls.clear();
+ }
+ if (RewriteSC) {
+ // Must insert any 'const/volatile/static here. Since it has been
+ // removed as result of rewriting of block literals.
+ std::string SC;
+ if (GlobalVarDecl->getStorageClass() == SC_Static)
+ SC = "static ";
+ if (GlobalVarDecl->getType().isConstQualified())
+ SC += "const ";
+ if (GlobalVarDecl->getType().isVolatileQualified())
+ SC += "volatile ";
+ if (GlobalVarDecl->getType().isRestrictQualified())
+ SC += "restrict ";
+ InsertText(FunLocStart, SC);
+ }
+ if (GlobalConstructionExp) {
+ // extra fancy dance for global literal expression.
+
+ // Always the latest block expression on the block stack.
+ std::string Tag = "__";
+ Tag += FunName;
+ Tag += "_block_impl_";
+ Tag += utostr(Blocks.size()-1);
+ std::string globalBuf = "static ";
+ globalBuf += Tag; globalBuf += " ";
+ std::string SStr;
+
+ llvm::raw_string_ostream constructorExprBuf(SStr);
+ GlobalConstructionExp->printPretty(constructorExprBuf, nullptr,
+ PrintingPolicy(LangOpts));
+ globalBuf += constructorExprBuf.str();
+ globalBuf += ";\n";
+ InsertText(FunLocStart, globalBuf);
+ GlobalConstructionExp = nullptr;
+ }
+
+ Blocks.clear();
+ InnerDeclRefsCount.clear();
+ InnerDeclRefs.clear();
+ RewrittenBlockExprs.clear();
+}
+
+void RewriteModernObjC::InsertBlockLiteralsWithinFunction(FunctionDecl *FD) {
+ SourceLocation FunLocStart =
+ (!Blocks.empty()) ? getFunctionSourceLocation(*this, FD)
+ : FD->getTypeSpecStartLoc();
+ StringRef FuncName = FD->getName();
+
+ SynthesizeBlockLiterals(FunLocStart, FuncName);
+}
+
+static void BuildUniqueMethodName(std::string &Name,
+ ObjCMethodDecl *MD) {
+ ObjCInterfaceDecl *IFace = MD->getClassInterface();
+ Name = IFace->getName();
+ Name += "__" + MD->getSelector().getAsString();
+ // Convert colons to underscores.
+ std::string::size_type loc = 0;
+ while ((loc = Name.find(":", loc)) != std::string::npos)
+ Name.replace(loc, 1, "_");
+}
+
+void RewriteModernObjC::InsertBlockLiteralsWithinMethod(ObjCMethodDecl *MD) {
+ //fprintf(stderr,"In InsertBlockLiteralsWitinMethod\n");
+ //SourceLocation FunLocStart = MD->getLocStart();
+ SourceLocation FunLocStart = MD->getLocStart();
+ std::string FuncName;
+ BuildUniqueMethodName(FuncName, MD);
+ SynthesizeBlockLiterals(FunLocStart, FuncName);
+}
+
+void RewriteModernObjC::GetBlockDeclRefExprs(Stmt *S) {
+ for (Stmt::child_range CI = S->children(); CI; ++CI)
+ if (*CI) {
+ if (BlockExpr *CBE = dyn_cast<BlockExpr>(*CI))
+ GetBlockDeclRefExprs(CBE->getBody());
+ else
+ GetBlockDeclRefExprs(*CI);
+ }
+ // Handle specific things.
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(S))
+ if (DRE->refersToEnclosingVariableOrCapture() ||
+ HasLocalVariableExternalStorage(DRE->getDecl()))
+ // FIXME: Handle enums.
+ BlockDeclRefs.push_back(DRE);
+
+ return;
+}
+
+void RewriteModernObjC::GetInnerBlockDeclRefExprs(Stmt *S,
+ SmallVectorImpl<DeclRefExpr *> &InnerBlockDeclRefs,
+ llvm::SmallPtrSetImpl<const DeclContext *> &InnerContexts) {
+ for (Stmt::child_range CI = S->children(); CI; ++CI)
+ if (*CI) {
+ if (BlockExpr *CBE = dyn_cast<BlockExpr>(*CI)) {
+ InnerContexts.insert(cast<DeclContext>(CBE->getBlockDecl()));
+ GetInnerBlockDeclRefExprs(CBE->getBody(),
+ InnerBlockDeclRefs,
+ InnerContexts);
+ }
+ else
+ GetInnerBlockDeclRefExprs(*CI,
+ InnerBlockDeclRefs,
+ InnerContexts);
+
+ }
+ // Handle specific things.
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(S)) {
+ if (DRE->refersToEnclosingVariableOrCapture() ||
+ HasLocalVariableExternalStorage(DRE->getDecl())) {
+ if (!InnerContexts.count(DRE->getDecl()->getDeclContext()))
+ InnerBlockDeclRefs.push_back(DRE);
+ if (VarDecl *Var = cast<VarDecl>(DRE->getDecl()))
+ if (Var->isFunctionOrMethodVarDecl())
+ ImportedLocalExternalDecls.insert(Var);
+ }
+ }
+
+ return;
+}
+
+/// convertObjCTypeToCStyleType - This routine converts such objc types
+/// as qualified objects, and blocks to their closest c/c++ types that
+/// it can. It returns true if input type was modified.
+bool RewriteModernObjC::convertObjCTypeToCStyleType(QualType &T) {
+ QualType oldT = T;
+ convertBlockPointerToFunctionPointer(T);
+ if (T->isFunctionPointerType()) {
+ QualType PointeeTy;
+ if (const PointerType* PT = T->getAs<PointerType>()) {
+ PointeeTy = PT->getPointeeType();
+ if (const FunctionType *FT = PointeeTy->getAs<FunctionType>()) {
+ T = convertFunctionTypeOfBlocks(FT);
+ T = Context->getPointerType(T);
+ }
+ }
+ }
+
+ convertToUnqualifiedObjCType(T);
+ return T != oldT;
+}
+
+/// convertFunctionTypeOfBlocks - This routine converts a function type
+/// whose result type may be a block pointer or whose argument type(s)
+/// might be block pointers to an equivalent function type replacing
+/// all block pointers to function pointers.
+QualType RewriteModernObjC::convertFunctionTypeOfBlocks(const FunctionType *FT) {
+ const FunctionProtoType *FTP = dyn_cast<FunctionProtoType>(FT);
+ // FTP will be null for closures that don't take arguments.
+ // Generate a funky cast.
+ SmallVector<QualType, 8> ArgTypes;
+ QualType Res = FT->getReturnType();
+ bool modified = convertObjCTypeToCStyleType(Res);
+
+ if (FTP) {
+ for (auto &I : FTP->param_types()) {
+ QualType t = I;
+ // Make sure we convert "t (^)(...)" to "t (*)(...)".
+ if (convertObjCTypeToCStyleType(t))
+ modified = true;
+ ArgTypes.push_back(t);
+ }
+ }
+ QualType FuncType;
+ if (modified)
+ FuncType = getSimpleFunctionType(Res, ArgTypes);
+ else FuncType = QualType(FT, 0);
+ return FuncType;
+}
+
+Stmt *RewriteModernObjC::SynthesizeBlockCall(CallExpr *Exp, const Expr *BlockExp) {
+ // Navigate to relevant type information.
+ const BlockPointerType *CPT = nullptr;
+
+ if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BlockExp)) {
+ CPT = DRE->getType()->getAs<BlockPointerType>();
+ } else if (const MemberExpr *MExpr = dyn_cast<MemberExpr>(BlockExp)) {
+ CPT = MExpr->getType()->getAs<BlockPointerType>();
+ }
+ else if (const ParenExpr *PRE = dyn_cast<ParenExpr>(BlockExp)) {
+ return SynthesizeBlockCall(Exp, PRE->getSubExpr());
+ }
+ else if (const ImplicitCastExpr *IEXPR = dyn_cast<ImplicitCastExpr>(BlockExp))
+ CPT = IEXPR->getType()->getAs<BlockPointerType>();
+ else if (const ConditionalOperator *CEXPR =
+ dyn_cast<ConditionalOperator>(BlockExp)) {
+ Expr *LHSExp = CEXPR->getLHS();
+ Stmt *LHSStmt = SynthesizeBlockCall(Exp, LHSExp);
+ Expr *RHSExp = CEXPR->getRHS();
+ Stmt *RHSStmt = SynthesizeBlockCall(Exp, RHSExp);
+ Expr *CONDExp = CEXPR->getCond();
+ ConditionalOperator *CondExpr =
+ new (Context) ConditionalOperator(CONDExp,
+ SourceLocation(), cast<Expr>(LHSStmt),
+ SourceLocation(), cast<Expr>(RHSStmt),
+ Exp->getType(), VK_RValue, OK_Ordinary);
+ return CondExpr;
+ } else if (const ObjCIvarRefExpr *IRE = dyn_cast<ObjCIvarRefExpr>(BlockExp)) {
+ CPT = IRE->getType()->getAs<BlockPointerType>();
+ } else if (const PseudoObjectExpr *POE
+ = dyn_cast<PseudoObjectExpr>(BlockExp)) {
+ CPT = POE->getType()->castAs<BlockPointerType>();
+ } else {
+ assert(1 && "RewriteBlockClass: Bad type");
+ }
+ assert(CPT && "RewriteBlockClass: Bad type");
+ const FunctionType *FT = CPT->getPointeeType()->getAs<FunctionType>();
+ assert(FT && "RewriteBlockClass: Bad type");
+ const FunctionProtoType *FTP = dyn_cast<FunctionProtoType>(FT);
+ // FTP will be null for closures that don't take arguments.
+
+ RecordDecl *RD = RecordDecl::Create(*Context, TTK_Struct, TUDecl,
+ SourceLocation(), SourceLocation(),
+ &Context->Idents.get("__block_impl"));
+ QualType PtrBlock = Context->getPointerType(Context->getTagDeclType(RD));
+
+ // Generate a funky cast.
+ SmallVector<QualType, 8> ArgTypes;
+
+ // Push the block argument type.
+ ArgTypes.push_back(PtrBlock);
+ if (FTP) {
+ for (auto &I : FTP->param_types()) {
+ QualType t = I;
+ // Make sure we convert "t (^)(...)" to "t (*)(...)".
+ if (!convertBlockPointerToFunctionPointer(t))
+ convertToUnqualifiedObjCType(t);
+ ArgTypes.push_back(t);
+ }
+ }
+ // Now do the pointer to function cast.
+ QualType PtrToFuncCastType = getSimpleFunctionType(Exp->getType(), ArgTypes);
+
+ PtrToFuncCastType = Context->getPointerType(PtrToFuncCastType);
+
+ CastExpr *BlkCast = NoTypeInfoCStyleCastExpr(Context, PtrBlock,
+ CK_BitCast,
+ const_cast<Expr*>(BlockExp));
+ // Don't forget the parens to enforce the proper binding.
+ ParenExpr *PE = new (Context) ParenExpr(SourceLocation(), SourceLocation(),
+ BlkCast);
+ //PE->dump();
+
+ FieldDecl *FD = FieldDecl::Create(*Context, nullptr, SourceLocation(),
+ SourceLocation(),
+ &Context->Idents.get("FuncPtr"),
+ Context->VoidPtrTy, nullptr,
+ /*BitWidth=*/nullptr, /*Mutable=*/true,
+ ICIS_NoInit);
+ MemberExpr *ME =
+ new (Context) MemberExpr(PE, true, SourceLocation(), FD, SourceLocation(),
+ FD->getType(), VK_LValue, OK_Ordinary);
+
+ CastExpr *FunkCast = NoTypeInfoCStyleCastExpr(Context, PtrToFuncCastType,
+ CK_BitCast, ME);
+ PE = new (Context) ParenExpr(SourceLocation(), SourceLocation(), FunkCast);
+
+ SmallVector<Expr*, 8> BlkExprs;
+ // Add the implicit argument.
+ BlkExprs.push_back(BlkCast);
+ // Add the user arguments.
+ for (CallExpr::arg_iterator I = Exp->arg_begin(),
+ E = Exp->arg_end(); I != E; ++I) {
+ BlkExprs.push_back(*I);
+ }
+ CallExpr *CE = new (Context) CallExpr(*Context, PE, BlkExprs,
+ Exp->getType(), VK_RValue,
+ SourceLocation());
+ return CE;
+}
+
+// We need to return the rewritten expression to handle cases where the
+// DeclRefExpr is embedded in another expression being rewritten.
+// For example:
+//
+// int main() {
+// __block Foo *f;
+// __block int i;
+//
+// void (^myblock)() = ^() {
+// [f test]; // f is a DeclRefExpr embedded in a message (which is being rewritten).
+// i = 77;
+// };
+//}
+Stmt *RewriteModernObjC::RewriteBlockDeclRefExpr(DeclRefExpr *DeclRefExp) {
+ // Rewrite the byref variable into BYREFVAR->__forwarding->BYREFVAR
+ // for each DeclRefExp where BYREFVAR is name of the variable.
+ ValueDecl *VD = DeclRefExp->getDecl();
+ bool isArrow = DeclRefExp->refersToEnclosingVariableOrCapture() ||
+ HasLocalVariableExternalStorage(DeclRefExp->getDecl());
+
+ FieldDecl *FD = FieldDecl::Create(*Context, nullptr, SourceLocation(),
+ SourceLocation(),
+ &Context->Idents.get("__forwarding"),
+ Context->VoidPtrTy, nullptr,
+ /*BitWidth=*/nullptr, /*Mutable=*/true,
+ ICIS_NoInit);
+ MemberExpr *ME = new (Context)
+ MemberExpr(DeclRefExp, isArrow, SourceLocation(), FD, SourceLocation(),
+ FD->getType(), VK_LValue, OK_Ordinary);
+
+ StringRef Name = VD->getName();
+ FD = FieldDecl::Create(*Context, nullptr, SourceLocation(), SourceLocation(),
+ &Context->Idents.get(Name),
+ Context->VoidPtrTy, nullptr,
+ /*BitWidth=*/nullptr, /*Mutable=*/true,
+ ICIS_NoInit);
+ ME =
+ new (Context) MemberExpr(ME, true, SourceLocation(), FD, SourceLocation(),
+ DeclRefExp->getType(), VK_LValue, OK_Ordinary);
+
+ // Need parens to enforce precedence.
+ ParenExpr *PE = new (Context) ParenExpr(DeclRefExp->getExprLoc(),
+ DeclRefExp->getExprLoc(),
+ ME);
+ ReplaceStmt(DeclRefExp, PE);
+ return PE;
+}
+
+// Rewrites the imported local variable V with external storage
+// (static, extern, etc.) as *V
+//
+Stmt *RewriteModernObjC::RewriteLocalVariableExternalStorage(DeclRefExpr *DRE) {
+ ValueDecl *VD = DRE->getDecl();
+ if (VarDecl *Var = dyn_cast<VarDecl>(VD))
+ if (!ImportedLocalExternalDecls.count(Var))
+ return DRE;
+ Expr *Exp = new (Context) UnaryOperator(DRE, UO_Deref, DRE->getType(),
+ VK_LValue, OK_Ordinary,
+ DRE->getLocation());
+ // Need parens to enforce precedence.
+ ParenExpr *PE = new (Context) ParenExpr(SourceLocation(), SourceLocation(),
+ Exp);
+ ReplaceStmt(DRE, PE);
+ return PE;
+}
+
+void RewriteModernObjC::RewriteCastExpr(CStyleCastExpr *CE) {
+ SourceLocation LocStart = CE->getLParenLoc();
+ SourceLocation LocEnd = CE->getRParenLoc();
+
+ // Need to avoid trying to rewrite synthesized casts.
+ if (LocStart.isInvalid())
+ return;
+ // Need to avoid trying to rewrite casts contained in macros.
+ if (!Rewriter::isRewritable(LocStart) || !Rewriter::isRewritable(LocEnd))
+ return;
+
+ const char *startBuf = SM->getCharacterData(LocStart);
+ const char *endBuf = SM->getCharacterData(LocEnd);
+ QualType QT = CE->getType();
+ const Type* TypePtr = QT->getAs<Type>();
+ if (isa<TypeOfExprType>(TypePtr)) {
+ const TypeOfExprType *TypeOfExprTypePtr = cast<TypeOfExprType>(TypePtr);
+ QT = TypeOfExprTypePtr->getUnderlyingExpr()->getType();
+ std::string TypeAsString = "(";
+ RewriteBlockPointerType(TypeAsString, QT);
+ TypeAsString += ")";
+ ReplaceText(LocStart, endBuf-startBuf+1, TypeAsString);
+ return;
+ }
+ // advance the location to startArgList.
+ const char *argPtr = startBuf;
+
+ while (*argPtr++ && (argPtr < endBuf)) {
+ switch (*argPtr) {
+ case '^':
+ // Replace the '^' with '*'.
+ LocStart = LocStart.getLocWithOffset(argPtr-startBuf);
+ ReplaceText(LocStart, 1, "*");
+ break;
+ }
+ }
+ return;
+}
+
+void RewriteModernObjC::RewriteImplicitCastObjCExpr(CastExpr *IC) {
+ CastKind CastKind = IC->getCastKind();
+ if (CastKind != CK_BlockPointerToObjCPointerCast &&
+ CastKind != CK_AnyPointerToBlockPointerCast)
+ return;
+
+ QualType QT = IC->getType();
+ (void)convertBlockPointerToFunctionPointer(QT);
+ std::string TypeString(QT.getAsString(Context->getPrintingPolicy()));
+ std::string Str = "(";
+ Str += TypeString;
+ Str += ")";
+ InsertText(IC->getSubExpr()->getLocStart(), &Str[0], Str.size());
+
+ return;
+}
+
+void RewriteModernObjC::RewriteBlockPointerFunctionArgs(FunctionDecl *FD) {
+ SourceLocation DeclLoc = FD->getLocation();
+ unsigned parenCount = 0;
+
+ // We have 1 or more arguments that have closure pointers.
+ const char *startBuf = SM->getCharacterData(DeclLoc);
+ const char *startArgList = strchr(startBuf, '(');
+
+ assert((*startArgList == '(') && "Rewriter fuzzy parser confused");
+
+ parenCount++;
+ // advance the location to startArgList.
+ DeclLoc = DeclLoc.getLocWithOffset(startArgList-startBuf);
+ assert((DeclLoc.isValid()) && "Invalid DeclLoc");
+
+ const char *argPtr = startArgList;
+
+ while (*argPtr++ && parenCount) {
+ switch (*argPtr) {
+ case '^':
+ // Replace the '^' with '*'.
+ DeclLoc = DeclLoc.getLocWithOffset(argPtr-startArgList);
+ ReplaceText(DeclLoc, 1, "*");
+ break;
+ case '(':
+ parenCount++;
+ break;
+ case ')':
+ parenCount--;
+ break;
+ }
+ }
+ return;
+}
+
+bool RewriteModernObjC::PointerTypeTakesAnyBlockArguments(QualType QT) {
+ const FunctionProtoType *FTP;
+ const PointerType *PT = QT->getAs<PointerType>();
+ if (PT) {
+ FTP = PT->getPointeeType()->getAs<FunctionProtoType>();
+ } else {
+ const BlockPointerType *BPT = QT->getAs<BlockPointerType>();
+ assert(BPT && "BlockPointerTypeTakeAnyBlockArguments(): not a block pointer type");
+ FTP = BPT->getPointeeType()->getAs<FunctionProtoType>();
+ }
+ if (FTP) {
+ for (const auto &I : FTP->param_types())
+ if (isTopLevelBlockPointerType(I))
+ return true;
+ }
+ return false;
+}
+
+bool RewriteModernObjC::PointerTypeTakesAnyObjCQualifiedType(QualType QT) {
+ const FunctionProtoType *FTP;
+ const PointerType *PT = QT->getAs<PointerType>();
+ if (PT) {
+ FTP = PT->getPointeeType()->getAs<FunctionProtoType>();
+ } else {
+ const BlockPointerType *BPT = QT->getAs<BlockPointerType>();
+ assert(BPT && "BlockPointerTypeTakeAnyBlockArguments(): not a block pointer type");
+ FTP = BPT->getPointeeType()->getAs<FunctionProtoType>();
+ }
+ if (FTP) {
+ for (const auto &I : FTP->param_types()) {
+ if (I->isObjCQualifiedIdType())
+ return true;
+ if (I->isObjCObjectPointerType() &&
+ I->getPointeeType()->isObjCQualifiedInterfaceType())
+ return true;
+ }
+
+ }
+ return false;
+}
+
+void RewriteModernObjC::GetExtentOfArgList(const char *Name, const char *&LParen,
+ const char *&RParen) {
+ const char *argPtr = strchr(Name, '(');
+ assert((*argPtr == '(') && "Rewriter fuzzy parser confused");
+
+ LParen = argPtr; // output the start.
+ argPtr++; // skip past the left paren.
+ unsigned parenCount = 1;
+
+ while (*argPtr && parenCount) {
+ switch (*argPtr) {
+ case '(': parenCount++; break;
+ case ')': parenCount--; break;
+ default: break;
+ }
+ if (parenCount) argPtr++;
+ }
+ assert((*argPtr == ')') && "Rewriter fuzzy parser confused");
+ RParen = argPtr; // output the end
+}
+
+void RewriteModernObjC::RewriteBlockPointerDecl(NamedDecl *ND) {
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
+ RewriteBlockPointerFunctionArgs(FD);
+ return;
+ }
+ // Handle Variables and Typedefs.
+ SourceLocation DeclLoc = ND->getLocation();
+ QualType DeclT;
+ if (VarDecl *VD = dyn_cast<VarDecl>(ND))
+ DeclT = VD->getType();
+ else if (TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(ND))
+ DeclT = TDD->getUnderlyingType();
+ else if (FieldDecl *FD = dyn_cast<FieldDecl>(ND))
+ DeclT = FD->getType();
+ else
+ llvm_unreachable("RewriteBlockPointerDecl(): Decl type not yet handled");
+
+ const char *startBuf = SM->getCharacterData(DeclLoc);
+ const char *endBuf = startBuf;
+ // scan backward (from the decl location) for the end of the previous decl.
+ while (*startBuf != '^' && *startBuf != ';' && startBuf != MainFileStart)
+ startBuf--;
+ SourceLocation Start = DeclLoc.getLocWithOffset(startBuf-endBuf);
+ std::string buf;
+ unsigned OrigLength=0;
+ // *startBuf != '^' if we are dealing with a pointer to function that
+ // may take block argument types (which will be handled below).
+ if (*startBuf == '^') {
+ // Replace the '^' with '*', computing a negative offset.
+ buf = '*';
+ startBuf++;
+ OrigLength++;
+ }
+ while (*startBuf != ')') {
+ buf += *startBuf;
+ startBuf++;
+ OrigLength++;
+ }
+ buf += ')';
+ OrigLength++;
+
+ if (PointerTypeTakesAnyBlockArguments(DeclT) ||
+ PointerTypeTakesAnyObjCQualifiedType(DeclT)) {
+ // Replace the '^' with '*' for arguments.
+ // Replace id<P> with id/*<>*/
+ DeclLoc = ND->getLocation();
+ startBuf = SM->getCharacterData(DeclLoc);
+ const char *argListBegin, *argListEnd;
+ GetExtentOfArgList(startBuf, argListBegin, argListEnd);
+ while (argListBegin < argListEnd) {
+ if (*argListBegin == '^')
+ buf += '*';
+ else if (*argListBegin == '<') {
+ buf += "/*";
+ buf += *argListBegin++;
+ OrigLength++;
+ while (*argListBegin != '>') {
+ buf += *argListBegin++;
+ OrigLength++;
+ }
+ buf += *argListBegin;
+ buf += "*/";
+ }
+ else
+ buf += *argListBegin;
+ argListBegin++;
+ OrigLength++;
+ }
+ buf += ')';
+ OrigLength++;
+ }
+ ReplaceText(Start, OrigLength, buf);
+
+ return;
+}
+
+
+/// SynthesizeByrefCopyDestroyHelper - This routine synthesizes:
+/// void __Block_byref_id_object_copy(struct Block_byref_id_object *dst,
+/// struct Block_byref_id_object *src) {
+/// _Block_object_assign (&_dest->object, _src->object,
+/// BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_OBJECT
+/// [|BLOCK_FIELD_IS_WEAK]) // object
+/// _Block_object_assign(&_dest->object, _src->object,
+/// BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_BLOCK
+/// [|BLOCK_FIELD_IS_WEAK]) // block
+/// }
+/// And:
+/// void __Block_byref_id_object_dispose(struct Block_byref_id_object *_src) {
+/// _Block_object_dispose(_src->object,
+/// BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_OBJECT
+/// [|BLOCK_FIELD_IS_WEAK]) // object
+/// _Block_object_dispose(_src->object,
+/// BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_BLOCK
+/// [|BLOCK_FIELD_IS_WEAK]) // block
+/// }
+
+std::string RewriteModernObjC::SynthesizeByrefCopyDestroyHelper(VarDecl *VD,
+ int flag) {
+ std::string S;
+ if (CopyDestroyCache.count(flag))
+ return S;
+ CopyDestroyCache.insert(flag);
+ S = "static void __Block_byref_id_object_copy_";
+ S += utostr(flag);
+ S += "(void *dst, void *src) {\n";
+
+ // offset into the object pointer is computed as:
+ // void * + void* + int + int + void* + void *
+ unsigned IntSize =
+ static_cast<unsigned>(Context->getTypeSize(Context->IntTy));
+ unsigned VoidPtrSize =
+ static_cast<unsigned>(Context->getTypeSize(Context->VoidPtrTy));
+
+ unsigned offset = (VoidPtrSize*4 + IntSize + IntSize)/Context->getCharWidth();
+ S += " _Block_object_assign((char*)dst + ";
+ S += utostr(offset);
+ S += ", *(void * *) ((char*)src + ";
+ S += utostr(offset);
+ S += "), ";
+ S += utostr(flag);
+ S += ");\n}\n";
+
+ S += "static void __Block_byref_id_object_dispose_";
+ S += utostr(flag);
+ S += "(void *src) {\n";
+ S += " _Block_object_dispose(*(void * *) ((char*)src + ";
+ S += utostr(offset);
+ S += "), ";
+ S += utostr(flag);
+ S += ");\n}\n";
+ return S;
+}
+
+/// RewriteByRefVar - For each __block typex ND variable this routine transforms
+/// the declaration into:
+/// struct __Block_byref_ND {
+/// void *__isa; // NULL for everything except __weak pointers
+/// struct __Block_byref_ND *__forwarding;
+/// int32_t __flags;
+/// int32_t __size;
+/// void *__Block_byref_id_object_copy; // If variable is __block ObjC object
+/// void *__Block_byref_id_object_dispose; // If variable is __block ObjC object
+/// typex ND;
+/// };
+///
+/// It then replaces declaration of ND variable with:
+/// struct __Block_byref_ND ND = {__isa=0B, __forwarding=&ND, __flags=some_flag,
+/// __size=sizeof(struct __Block_byref_ND),
+/// ND=initializer-if-any};
+///
+///
+void RewriteModernObjC::RewriteByRefVar(VarDecl *ND, bool firstDecl,
+ bool lastDecl) {
+ int flag = 0;
+ int isa = 0;
+ SourceLocation DeclLoc = ND->getTypeSpecStartLoc();
+ if (DeclLoc.isInvalid())
+ // If type location is missing, it is because of missing type (a warning).
+ // Use variable's location which is good for this case.
+ DeclLoc = ND->getLocation();
+ const char *startBuf = SM->getCharacterData(DeclLoc);
+ SourceLocation X = ND->getLocEnd();
+ X = SM->getExpansionLoc(X);
+ const char *endBuf = SM->getCharacterData(X);
+ std::string Name(ND->getNameAsString());
+ std::string ByrefType;
+ RewriteByRefString(ByrefType, Name, ND, true);
+ ByrefType += " {\n";
+ ByrefType += " void *__isa;\n";
+ RewriteByRefString(ByrefType, Name, ND);
+ ByrefType += " *__forwarding;\n";
+ ByrefType += " int __flags;\n";
+ ByrefType += " int __size;\n";
+ // Add void *__Block_byref_id_object_copy;
+ // void *__Block_byref_id_object_dispose; if needed.
+ QualType Ty = ND->getType();
+ bool HasCopyAndDispose = Context->BlockRequiresCopying(Ty, ND);
+ if (HasCopyAndDispose) {
+ ByrefType += " void (*__Block_byref_id_object_copy)(void*, void*);\n";
+ ByrefType += " void (*__Block_byref_id_object_dispose)(void*);\n";
+ }
+
+ QualType T = Ty;
+ (void)convertBlockPointerToFunctionPointer(T);
+ T.getAsStringInternal(Name, Context->getPrintingPolicy());
+
+ ByrefType += " " + Name + ";\n";
+ ByrefType += "};\n";
+ // Insert this type in global scope. It is needed by helper function.
+ SourceLocation FunLocStart;
+ if (CurFunctionDef)
+ FunLocStart = getFunctionSourceLocation(*this, CurFunctionDef);
+ else {
+ assert(CurMethodDef && "RewriteByRefVar - CurMethodDef is null");
+ FunLocStart = CurMethodDef->getLocStart();
+ }
+ InsertText(FunLocStart, ByrefType);
+
+ if (Ty.isObjCGCWeak()) {
+ flag |= BLOCK_FIELD_IS_WEAK;
+ isa = 1;
+ }
+ if (HasCopyAndDispose) {
+ flag = BLOCK_BYREF_CALLER;
+ QualType Ty = ND->getType();
+ // FIXME. Handle __weak variable (BLOCK_FIELD_IS_WEAK) as well.
+ if (Ty->isBlockPointerType())
+ flag |= BLOCK_FIELD_IS_BLOCK;
+ else
+ flag |= BLOCK_FIELD_IS_OBJECT;
+ std::string HF = SynthesizeByrefCopyDestroyHelper(ND, flag);
+ if (!HF.empty())
+ Preamble += HF;
+ }
+
+ // struct __Block_byref_ND ND =
+ // {0, &ND, some_flag, __size=sizeof(struct __Block_byref_ND),
+ // initializer-if-any};
+ bool hasInit = (ND->getInit() != nullptr);
+ // FIXME. rewriter does not support __block c++ objects which
+ // require construction.
+ if (hasInit)
+ if (CXXConstructExpr *CExp = dyn_cast<CXXConstructExpr>(ND->getInit())) {
+ CXXConstructorDecl *CXXDecl = CExp->getConstructor();
+ if (CXXDecl && CXXDecl->isDefaultConstructor())
+ hasInit = false;
+ }
+
+ unsigned flags = 0;
+ if (HasCopyAndDispose)
+ flags |= BLOCK_HAS_COPY_DISPOSE;
+ Name = ND->getNameAsString();
+ ByrefType.clear();
+ RewriteByRefString(ByrefType, Name, ND);
+ std::string ForwardingCastType("(");
+ ForwardingCastType += ByrefType + " *)";
+ ByrefType += " " + Name + " = {(void*)";
+ ByrefType += utostr(isa);
+ ByrefType += "," + ForwardingCastType + "&" + Name + ", ";
+ ByrefType += utostr(flags);
+ ByrefType += ", ";
+ ByrefType += "sizeof(";
+ RewriteByRefString(ByrefType, Name, ND);
+ ByrefType += ")";
+ if (HasCopyAndDispose) {
+ ByrefType += ", __Block_byref_id_object_copy_";
+ ByrefType += utostr(flag);
+ ByrefType += ", __Block_byref_id_object_dispose_";
+ ByrefType += utostr(flag);
+ }
+
+ if (!firstDecl) {
+ // In multiple __block declarations, and for all but 1st declaration,
+ // find location of the separating comma. This would be start location
+ // where new text is to be inserted.
+ DeclLoc = ND->getLocation();
+ const char *startDeclBuf = SM->getCharacterData(DeclLoc);
+ const char *commaBuf = startDeclBuf;
+ while (*commaBuf != ',')
+ commaBuf--;
+ assert((*commaBuf == ',') && "RewriteByRefVar: can't find ','");
+ DeclLoc = DeclLoc.getLocWithOffset(commaBuf - startDeclBuf);
+ startBuf = commaBuf;
+ }
+
+ if (!hasInit) {
+ ByrefType += "};\n";
+ unsigned nameSize = Name.size();
+ // for block or function pointer declaration. Name is aleady
+ // part of the declaration.
+ if (Ty->isBlockPointerType() || Ty->isFunctionPointerType())
+ nameSize = 1;
+ ReplaceText(DeclLoc, endBuf-startBuf+nameSize, ByrefType);
+ }
+ else {
+ ByrefType += ", ";
+ SourceLocation startLoc;
+ Expr *E = ND->getInit();
+ if (const CStyleCastExpr *ECE = dyn_cast<CStyleCastExpr>(E))
+ startLoc = ECE->getLParenLoc();
+ else
+ startLoc = E->getLocStart();
+ startLoc = SM->getExpansionLoc(startLoc);
+ endBuf = SM->getCharacterData(startLoc);
+ ReplaceText(DeclLoc, endBuf-startBuf, ByrefType);
+
+ const char separator = lastDecl ? ';' : ',';
+ const char *startInitializerBuf = SM->getCharacterData(startLoc);
+ const char *separatorBuf = strchr(startInitializerBuf, separator);
+ assert((*separatorBuf == separator) &&
+ "RewriteByRefVar: can't find ';' or ','");
+ SourceLocation separatorLoc =
+ startLoc.getLocWithOffset(separatorBuf-startInitializerBuf);
+
+ InsertText(separatorLoc, lastDecl ? "}" : "};\n");
+ }
+ return;
+}
+
+void RewriteModernObjC::CollectBlockDeclRefInfo(BlockExpr *Exp) {
+ // Add initializers for any closure decl refs.
+ GetBlockDeclRefExprs(Exp->getBody());
+ if (BlockDeclRefs.size()) {
+ // Unique all "by copy" declarations.
+ for (unsigned i = 0; i < BlockDeclRefs.size(); i++)
+ if (!BlockDeclRefs[i]->getDecl()->hasAttr<BlocksAttr>()) {
+ if (!BlockByCopyDeclsPtrSet.count(BlockDeclRefs[i]->getDecl())) {
+ BlockByCopyDeclsPtrSet.insert(BlockDeclRefs[i]->getDecl());
+ BlockByCopyDecls.push_back(BlockDeclRefs[i]->getDecl());
+ }
+ }
+ // Unique all "by ref" declarations.
+ for (unsigned i = 0; i < BlockDeclRefs.size(); i++)
+ if (BlockDeclRefs[i]->getDecl()->hasAttr<BlocksAttr>()) {
+ if (!BlockByRefDeclsPtrSet.count(BlockDeclRefs[i]->getDecl())) {
+ BlockByRefDeclsPtrSet.insert(BlockDeclRefs[i]->getDecl());
+ BlockByRefDecls.push_back(BlockDeclRefs[i]->getDecl());
+ }
+ }
+ // Find any imported blocks...they will need special attention.
+ for (unsigned i = 0; i < BlockDeclRefs.size(); i++)
+ if (BlockDeclRefs[i]->getDecl()->hasAttr<BlocksAttr>() ||
+ BlockDeclRefs[i]->getType()->isObjCObjectPointerType() ||
+ BlockDeclRefs[i]->getType()->isBlockPointerType())
+ ImportedBlockDecls.insert(BlockDeclRefs[i]->getDecl());
+ }
+}
+
+FunctionDecl *RewriteModernObjC::SynthBlockInitFunctionDecl(StringRef name) {
+ IdentifierInfo *ID = &Context->Idents.get(name);
+ QualType FType = Context->getFunctionNoProtoType(Context->VoidPtrTy);
+ return FunctionDecl::Create(*Context, TUDecl, SourceLocation(),
+ SourceLocation(), ID, FType, nullptr, SC_Extern,
+ false, false);
+}
+
+Stmt *RewriteModernObjC::SynthBlockInitExpr(BlockExpr *Exp,
+ const SmallVectorImpl<DeclRefExpr *> &InnerBlockDeclRefs) {
+
+ const BlockDecl *block = Exp->getBlockDecl();
+
+ Blocks.push_back(Exp);
+
+ CollectBlockDeclRefInfo(Exp);
+
+ // Add inner imported variables now used in current block.
+ int countOfInnerDecls = 0;
+ if (!InnerBlockDeclRefs.empty()) {
+ for (unsigned i = 0; i < InnerBlockDeclRefs.size(); i++) {
+ DeclRefExpr *Exp = InnerBlockDeclRefs[i];
+ ValueDecl *VD = Exp->getDecl();
+ if (!VD->hasAttr<BlocksAttr>() && !BlockByCopyDeclsPtrSet.count(VD)) {
+ // We need to save the copied-in variables in nested
+ // blocks because it is needed at the end for some of the API generations.
+ // See SynthesizeBlockLiterals routine.
+ InnerDeclRefs.push_back(Exp); countOfInnerDecls++;
+ BlockDeclRefs.push_back(Exp);
+ BlockByCopyDeclsPtrSet.insert(VD);
+ BlockByCopyDecls.push_back(VD);
+ }
+ if (VD->hasAttr<BlocksAttr>() && !BlockByRefDeclsPtrSet.count(VD)) {
+ InnerDeclRefs.push_back(Exp); countOfInnerDecls++;
+ BlockDeclRefs.push_back(Exp);
+ BlockByRefDeclsPtrSet.insert(VD);
+ BlockByRefDecls.push_back(VD);
+ }
+ }
+ // Find any imported blocks...they will need special attention.
+ for (unsigned i = 0; i < InnerBlockDeclRefs.size(); i++)
+ if (InnerBlockDeclRefs[i]->getDecl()->hasAttr<BlocksAttr>() ||
+ InnerBlockDeclRefs[i]->getType()->isObjCObjectPointerType() ||
+ InnerBlockDeclRefs[i]->getType()->isBlockPointerType())
+ ImportedBlockDecls.insert(InnerBlockDeclRefs[i]->getDecl());
+ }
+ InnerDeclRefsCount.push_back(countOfInnerDecls);
+
+ std::string FuncName;
+
+ if (CurFunctionDef)
+ FuncName = CurFunctionDef->getNameAsString();
+ else if (CurMethodDef)
+ BuildUniqueMethodName(FuncName, CurMethodDef);
+ else if (GlobalVarDecl)
+ FuncName = std::string(GlobalVarDecl->getNameAsString());
+
+ bool GlobalBlockExpr =
+ block->getDeclContext()->getRedeclContext()->isFileContext();
+
+ if (GlobalBlockExpr && !GlobalVarDecl) {
+ Diags.Report(block->getLocation(), GlobalBlockRewriteFailedDiag);
+ GlobalBlockExpr = false;
+ }
+
+ std::string BlockNumber = utostr(Blocks.size()-1);
+
+ std::string Func = "__" + FuncName + "_block_func_" + BlockNumber;
+
+ // Get a pointer to the function type so we can cast appropriately.
+ QualType BFT = convertFunctionTypeOfBlocks(Exp->getFunctionType());
+ QualType FType = Context->getPointerType(BFT);
+
+ FunctionDecl *FD;
+ Expr *NewRep;
+
+ // Simulate a constructor call...
+ std::string Tag;
+
+ if (GlobalBlockExpr)
+ Tag = "__global_";
+ else
+ Tag = "__";
+ Tag += FuncName + "_block_impl_" + BlockNumber;
+
+ FD = SynthBlockInitFunctionDecl(Tag);
+ DeclRefExpr *DRE = new (Context) DeclRefExpr(FD, false, FType, VK_RValue,
+ SourceLocation());
+
+ SmallVector<Expr*, 4> InitExprs;
+
+ // Initialize the block function.
+ FD = SynthBlockInitFunctionDecl(Func);
+ DeclRefExpr *Arg = new (Context) DeclRefExpr(FD, false, FD->getType(),
+ VK_LValue, SourceLocation());
+ CastExpr *castExpr = NoTypeInfoCStyleCastExpr(Context, Context->VoidPtrTy,
+ CK_BitCast, Arg);
+ InitExprs.push_back(castExpr);
+
+ // Initialize the block descriptor.
+ std::string DescData = "__" + FuncName + "_block_desc_" + BlockNumber + "_DATA";
+
+ VarDecl *NewVD = VarDecl::Create(*Context, TUDecl,
+ SourceLocation(), SourceLocation(),
+ &Context->Idents.get(DescData.c_str()),
+ Context->VoidPtrTy, nullptr,
+ SC_Static);
+ UnaryOperator *DescRefExpr =
+ new (Context) UnaryOperator(new (Context) DeclRefExpr(NewVD, false,
+ Context->VoidPtrTy,
+ VK_LValue,
+ SourceLocation()),
+ UO_AddrOf,
+ Context->getPointerType(Context->VoidPtrTy),
+ VK_RValue, OK_Ordinary,
+ SourceLocation());
+ InitExprs.push_back(DescRefExpr);
+
+ // Add initializers for any closure decl refs.
+ if (BlockDeclRefs.size()) {
+ Expr *Exp;
+ // Output all "by copy" declarations.
+ for (SmallVectorImpl<ValueDecl *>::iterator I = BlockByCopyDecls.begin(),
+ E = BlockByCopyDecls.end(); I != E; ++I) {
+ if (isObjCType((*I)->getType())) {
+ // FIXME: Conform to ABI ([[obj retain] autorelease]).
+ FD = SynthBlockInitFunctionDecl((*I)->getName());
+ Exp = new (Context) DeclRefExpr(FD, false, FD->getType(),
+ VK_LValue, SourceLocation());
+ if (HasLocalVariableExternalStorage(*I)) {
+ QualType QT = (*I)->getType();
+ QT = Context->getPointerType(QT);
+ Exp = new (Context) UnaryOperator(Exp, UO_AddrOf, QT, VK_RValue,
+ OK_Ordinary, SourceLocation());
+ }
+ } else if (isTopLevelBlockPointerType((*I)->getType())) {
+ FD = SynthBlockInitFunctionDecl((*I)->getName());
+ Arg = new (Context) DeclRefExpr(FD, false, FD->getType(),
+ VK_LValue, SourceLocation());
+ Exp = NoTypeInfoCStyleCastExpr(Context, Context->VoidPtrTy,
+ CK_BitCast, Arg);
+ } else {
+ FD = SynthBlockInitFunctionDecl((*I)->getName());
+ Exp = new (Context) DeclRefExpr(FD, false, FD->getType(),
+ VK_LValue, SourceLocation());
+ if (HasLocalVariableExternalStorage(*I)) {
+ QualType QT = (*I)->getType();
+ QT = Context->getPointerType(QT);
+ Exp = new (Context) UnaryOperator(Exp, UO_AddrOf, QT, VK_RValue,
+ OK_Ordinary, SourceLocation());
+ }
+
+ }
+ InitExprs.push_back(Exp);
+ }
+ // Output all "by ref" declarations.
+ for (SmallVectorImpl<ValueDecl *>::iterator I = BlockByRefDecls.begin(),
+ E = BlockByRefDecls.end(); I != E; ++I) {
+ ValueDecl *ND = (*I);
+ std::string Name(ND->getNameAsString());
+ std::string RecName;
+ RewriteByRefString(RecName, Name, ND, true);
+ IdentifierInfo *II = &Context->Idents.get(RecName.c_str()
+ + sizeof("struct"));
+ RecordDecl *RD = RecordDecl::Create(*Context, TTK_Struct, TUDecl,
+ SourceLocation(), SourceLocation(),
+ II);
+ assert(RD && "SynthBlockInitExpr(): Can't find RecordDecl");
+ QualType castT = Context->getPointerType(Context->getTagDeclType(RD));
+
+ FD = SynthBlockInitFunctionDecl((*I)->getName());
+ Exp = new (Context) DeclRefExpr(FD, false, FD->getType(), VK_LValue,
+ SourceLocation());
+ bool isNestedCapturedVar = false;
+ if (block)
+ for (const auto &CI : block->captures()) {
+ const VarDecl *variable = CI.getVariable();
+ if (variable == ND && CI.isNested()) {
+ assert (CI.isByRef() &&
+ "SynthBlockInitExpr - captured block variable is not byref");
+ isNestedCapturedVar = true;
+ break;
+ }
+ }
+ // captured nested byref variable has its address passed. Do not take
+ // its address again.
+ if (!isNestedCapturedVar)
+ Exp = new (Context) UnaryOperator(Exp, UO_AddrOf,
+ Context->getPointerType(Exp->getType()),
+ VK_RValue, OK_Ordinary, SourceLocation());
+ Exp = NoTypeInfoCStyleCastExpr(Context, castT, CK_BitCast, Exp);
+ InitExprs.push_back(Exp);
+ }
+ }
+ if (ImportedBlockDecls.size()) {
+ // generate BLOCK_HAS_COPY_DISPOSE(have helper funcs) | BLOCK_HAS_DESCRIPTOR
+ int flag = (BLOCK_HAS_COPY_DISPOSE | BLOCK_HAS_DESCRIPTOR);
+ unsigned IntSize =
+ static_cast<unsigned>(Context->getTypeSize(Context->IntTy));
+ Expr *FlagExp = IntegerLiteral::Create(*Context, llvm::APInt(IntSize, flag),
+ Context->IntTy, SourceLocation());
+ InitExprs.push_back(FlagExp);
+ }
+ NewRep = new (Context) CallExpr(*Context, DRE, InitExprs,
+ FType, VK_LValue, SourceLocation());
+
+ if (GlobalBlockExpr) {
+ assert (!GlobalConstructionExp &&
+ "SynthBlockInitExpr - GlobalConstructionExp must be null");
+ GlobalConstructionExp = NewRep;
+ NewRep = DRE;
+ }
+
+ NewRep = new (Context) UnaryOperator(NewRep, UO_AddrOf,
+ Context->getPointerType(NewRep->getType()),
+ VK_RValue, OK_Ordinary, SourceLocation());
+ NewRep = NoTypeInfoCStyleCastExpr(Context, FType, CK_BitCast,
+ NewRep);
+ // Put Paren around the call.
+ NewRep = new (Context) ParenExpr(SourceLocation(), SourceLocation(),
+ NewRep);
+
+ BlockDeclRefs.clear();
+ BlockByRefDecls.clear();
+ BlockByRefDeclsPtrSet.clear();
+ BlockByCopyDecls.clear();
+ BlockByCopyDeclsPtrSet.clear();
+ ImportedBlockDecls.clear();
+ return NewRep;
+}
+
+bool RewriteModernObjC::IsDeclStmtInForeachHeader(DeclStmt *DS) {
+ if (const ObjCForCollectionStmt * CS =
+ dyn_cast<ObjCForCollectionStmt>(Stmts.back()))
+ return CS->getElement() == DS;
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Function Body / Expression rewriting
+//===----------------------------------------------------------------------===//
+
+Stmt *RewriteModernObjC::RewriteFunctionBodyOrGlobalInitializer(Stmt *S) {
+ if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
+ isa<DoStmt>(S) || isa<ForStmt>(S))
+ Stmts.push_back(S);
+ else if (isa<ObjCForCollectionStmt>(S)) {
+ Stmts.push_back(S);
+ ObjCBcLabelNo.push_back(++BcLabelCount);
+ }
+
+ // Pseudo-object operations and ivar references need special
+ // treatment because we're going to recursively rewrite them.
+ if (PseudoObjectExpr *PseudoOp = dyn_cast<PseudoObjectExpr>(S)) {
+ if (isa<BinaryOperator>(PseudoOp->getSyntacticForm())) {
+ return RewritePropertyOrImplicitSetter(PseudoOp);
+ } else {
+ return RewritePropertyOrImplicitGetter(PseudoOp);
+ }
+ } else if (ObjCIvarRefExpr *IvarRefExpr = dyn_cast<ObjCIvarRefExpr>(S)) {
+ return RewriteObjCIvarRefExpr(IvarRefExpr);
+ }
+ else if (isa<OpaqueValueExpr>(S))
+ S = cast<OpaqueValueExpr>(S)->getSourceExpr();
+
+ SourceRange OrigStmtRange = S->getSourceRange();
+
+ // Perform a bottom up rewrite of all children.
+ for (Stmt::child_range CI = S->children(); CI; ++CI)
+ if (*CI) {
+ Stmt *childStmt = (*CI);
+ Stmt *newStmt = RewriteFunctionBodyOrGlobalInitializer(childStmt);
+ if (newStmt) {
+ *CI = newStmt;
+ }
+ }
+
+ if (BlockExpr *BE = dyn_cast<BlockExpr>(S)) {
+ SmallVector<DeclRefExpr *, 8> InnerBlockDeclRefs;
+ llvm::SmallPtrSet<const DeclContext *, 8> InnerContexts;
+ InnerContexts.insert(BE->getBlockDecl());
+ ImportedLocalExternalDecls.clear();
+ GetInnerBlockDeclRefExprs(BE->getBody(),
+ InnerBlockDeclRefs, InnerContexts);
+ // Rewrite the block body in place.
+ Stmt *SaveCurrentBody = CurrentBody;
+ CurrentBody = BE->getBody();
+ PropParentMap = nullptr;
+ // block literal on rhs of a property-dot-sytax assignment
+ // must be replaced by its synthesize ast so getRewrittenText
+ // works as expected. In this case, what actually ends up on RHS
+ // is the blockTranscribed which is the helper function for the
+ // block literal; as in: self.c = ^() {[ace ARR];};
+ bool saveDisableReplaceStmt = DisableReplaceStmt;
+ DisableReplaceStmt = false;
+ RewriteFunctionBodyOrGlobalInitializer(BE->getBody());
+ DisableReplaceStmt = saveDisableReplaceStmt;
+ CurrentBody = SaveCurrentBody;
+ PropParentMap = nullptr;
+ ImportedLocalExternalDecls.clear();
+ // Now we snarf the rewritten text and stash it away for later use.
+ std::string Str = Rewrite.getRewrittenText(BE->getSourceRange());
+ RewrittenBlockExprs[BE] = Str;
+
+ Stmt *blockTranscribed = SynthBlockInitExpr(BE, InnerBlockDeclRefs);
+
+ //blockTranscribed->dump();
+ ReplaceStmt(S, blockTranscribed);
+ return blockTranscribed;
+ }
+ // Handle specific things.
+ if (ObjCEncodeExpr *AtEncode = dyn_cast<ObjCEncodeExpr>(S))
+ return RewriteAtEncode(AtEncode);
+
+ if (ObjCSelectorExpr *AtSelector = dyn_cast<ObjCSelectorExpr>(S))
+ return RewriteAtSelector(AtSelector);
+
+ if (ObjCStringLiteral *AtString = dyn_cast<ObjCStringLiteral>(S))
+ return RewriteObjCStringLiteral(AtString);
+
+ if (ObjCBoolLiteralExpr *BoolLitExpr = dyn_cast<ObjCBoolLiteralExpr>(S))
+ return RewriteObjCBoolLiteralExpr(BoolLitExpr);
+
+ if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(S))
+ return RewriteObjCBoxedExpr(BoxedExpr);
+
+ if (ObjCArrayLiteral *ArrayLitExpr = dyn_cast<ObjCArrayLiteral>(S))
+ return RewriteObjCArrayLiteralExpr(ArrayLitExpr);
+
+ if (ObjCDictionaryLiteral *DictionaryLitExpr =
+ dyn_cast<ObjCDictionaryLiteral>(S))
+ return RewriteObjCDictionaryLiteralExpr(DictionaryLitExpr);
+
+ if (ObjCMessageExpr *MessExpr = dyn_cast<ObjCMessageExpr>(S)) {
+#if 0
+ // Before we rewrite it, put the original message expression in a comment.
+ SourceLocation startLoc = MessExpr->getLocStart();
+ SourceLocation endLoc = MessExpr->getLocEnd();
+
+ const char *startBuf = SM->getCharacterData(startLoc);
+ const char *endBuf = SM->getCharacterData(endLoc);
+
+ std::string messString;
+ messString += "// ";
+ messString.append(startBuf, endBuf-startBuf+1);
+ messString += "\n";
+
+ // FIXME: Missing definition of
+ // InsertText(clang::SourceLocation, char const*, unsigned int).
+ // InsertText(startLoc, messString.c_str(), messString.size());
+ // Tried this, but it didn't work either...
+ // ReplaceText(startLoc, 0, messString.c_str(), messString.size());
+#endif
+ return RewriteMessageExpr(MessExpr);
+ }
+
+ if (ObjCAutoreleasePoolStmt *StmtAutoRelease =
+ dyn_cast<ObjCAutoreleasePoolStmt>(S)) {
+ return RewriteObjCAutoreleasePoolStmt(StmtAutoRelease);
+ }
+
+ if (ObjCAtTryStmt *StmtTry = dyn_cast<ObjCAtTryStmt>(S))
+ return RewriteObjCTryStmt(StmtTry);
+
+ if (ObjCAtSynchronizedStmt *StmtTry = dyn_cast<ObjCAtSynchronizedStmt>(S))
+ return RewriteObjCSynchronizedStmt(StmtTry);
+
+ if (ObjCAtThrowStmt *StmtThrow = dyn_cast<ObjCAtThrowStmt>(S))
+ return RewriteObjCThrowStmt(StmtThrow);
+
+ if (ObjCProtocolExpr *ProtocolExp = dyn_cast<ObjCProtocolExpr>(S))
+ return RewriteObjCProtocolExpr(ProtocolExp);
+
+ if (ObjCForCollectionStmt *StmtForCollection =
+ dyn_cast<ObjCForCollectionStmt>(S))
+ return RewriteObjCForCollectionStmt(StmtForCollection,
+ OrigStmtRange.getEnd());
+ if (BreakStmt *StmtBreakStmt =
+ dyn_cast<BreakStmt>(S))
+ return RewriteBreakStmt(StmtBreakStmt);
+ if (ContinueStmt *StmtContinueStmt =
+ dyn_cast<ContinueStmt>(S))
+ return RewriteContinueStmt(StmtContinueStmt);
+
+ // Need to check for protocol refs (id <P>, Foo <P> *) in variable decls
+ // and cast exprs.
+ if (DeclStmt *DS = dyn_cast<DeclStmt>(S)) {
+ // FIXME: What we're doing here is modifying the type-specifier that
+ // precedes the first Decl. In the future the DeclGroup should have
+ // a separate type-specifier that we can rewrite.
+ // NOTE: We need to avoid rewriting the DeclStmt if it is within
+ // the context of an ObjCForCollectionStmt. For example:
+ // NSArray *someArray;
+ // for (id <FooProtocol> index in someArray) ;
+ // This is because RewriteObjCForCollectionStmt() does textual rewriting
+ // and it depends on the original text locations/positions.
+ if (Stmts.empty() || !IsDeclStmtInForeachHeader(DS))
+ RewriteObjCQualifiedInterfaceTypes(*DS->decl_begin());
+
+ // Blocks rewrite rules.
+ for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end();
+ DI != DE; ++DI) {
+ Decl *SD = *DI;
+ if (ValueDecl *ND = dyn_cast<ValueDecl>(SD)) {
+ if (isTopLevelBlockPointerType(ND->getType()))
+ RewriteBlockPointerDecl(ND);
+ else if (ND->getType()->isFunctionPointerType())
+ CheckFunctionPointerDecl(ND->getType(), ND);
+ if (VarDecl *VD = dyn_cast<VarDecl>(SD)) {
+ if (VD->hasAttr<BlocksAttr>()) {
+ static unsigned uniqueByrefDeclCount = 0;
+ assert(!BlockByRefDeclNo.count(ND) &&
+ "RewriteFunctionBodyOrGlobalInitializer: Duplicate byref decl");
+ BlockByRefDeclNo[ND] = uniqueByrefDeclCount++;
+ RewriteByRefVar(VD, (DI == DS->decl_begin()), ((DI+1) == DE));
+ }
+ else
+ RewriteTypeOfDecl(VD);
+ }
+ }
+ if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
+ if (isTopLevelBlockPointerType(TD->getUnderlyingType()))
+ RewriteBlockPointerDecl(TD);
+ else if (TD->getUnderlyingType()->isFunctionPointerType())
+ CheckFunctionPointerDecl(TD->getUnderlyingType(), TD);
+ }
+ }
+ }
+
+ if (CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(S))
+ RewriteObjCQualifiedInterfaceTypes(CE);
+
+ if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
+ isa<DoStmt>(S) || isa<ForStmt>(S)) {
+ assert(!Stmts.empty() && "Statement stack is empty");
+ assert ((isa<SwitchStmt>(Stmts.back()) || isa<WhileStmt>(Stmts.back()) ||
+ isa<DoStmt>(Stmts.back()) || isa<ForStmt>(Stmts.back()))
+ && "Statement stack mismatch");
+ Stmts.pop_back();
+ }
+ // Handle blocks rewriting.
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(S)) {
+ ValueDecl *VD = DRE->getDecl();
+ if (VD->hasAttr<BlocksAttr>())
+ return RewriteBlockDeclRefExpr(DRE);
+ if (HasLocalVariableExternalStorage(VD))
+ return RewriteLocalVariableExternalStorage(DRE);
+ }
+
+ if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
+ if (CE->getCallee()->getType()->isBlockPointerType()) {
+ Stmt *BlockCall = SynthesizeBlockCall(CE, CE->getCallee());
+ ReplaceStmt(S, BlockCall);
+ return BlockCall;
+ }
+ }
+ if (CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(S)) {
+ RewriteCastExpr(CE);
+ }
+ if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(S)) {
+ RewriteImplicitCastObjCExpr(ICE);
+ }
+#if 0
+
+ if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(S)) {
+ CastExpr *Replacement = new (Context) CastExpr(ICE->getType(),
+ ICE->getSubExpr(),
+ SourceLocation());
+ // Get the new text.
+ std::string SStr;
+ llvm::raw_string_ostream Buf(SStr);
+ Replacement->printPretty(Buf);
+ const std::string &Str = Buf.str();
+
+ printf("CAST = %s\n", &Str[0]);
+ InsertText(ICE->getSubExpr()->getLocStart(), &Str[0], Str.size());
+ delete S;
+ return Replacement;
+ }
+#endif
+ // Return this stmt unmodified.
+ return S;
+}
+
+void RewriteModernObjC::RewriteRecordBody(RecordDecl *RD) {
+ for (auto *FD : RD->fields()) {
+ if (isTopLevelBlockPointerType(FD->getType()))
+ RewriteBlockPointerDecl(FD);
+ if (FD->getType()->isObjCQualifiedIdType() ||
+ FD->getType()->isObjCQualifiedInterfaceType())
+ RewriteObjCQualifiedInterfaceTypes(FD);
+ }
+}
+
+/// HandleDeclInMainFile - This is called for each top-level decl defined in the
+/// main file of the input.
+void RewriteModernObjC::HandleDeclInMainFile(Decl *D) {
+ switch (D->getKind()) {
+ case Decl::Function: {
+ FunctionDecl *FD = cast<FunctionDecl>(D);
+ if (FD->isOverloadedOperator())
+ return;
+
+ // Since function prototypes don't have ParmDecl's, we check the function
+ // prototype. This enables us to rewrite function declarations and
+ // definitions using the same code.
+ RewriteBlocksInFunctionProtoType(FD->getType(), FD);
+
+ if (!FD->isThisDeclarationADefinition())
+ break;
+
+ // FIXME: If this should support Obj-C++, support CXXTryStmt
+ if (CompoundStmt *Body = dyn_cast_or_null<CompoundStmt>(FD->getBody())) {
+ CurFunctionDef = FD;
+ CurrentBody = Body;
+ Body =
+ cast_or_null<CompoundStmt>(RewriteFunctionBodyOrGlobalInitializer(Body));
+ FD->setBody(Body);
+ CurrentBody = nullptr;
+ if (PropParentMap) {
+ delete PropParentMap;
+ PropParentMap = nullptr;
+ }
+ // This synthesizes and inserts the block "impl" struct, invoke function,
+ // and any copy/dispose helper functions.
+ InsertBlockLiteralsWithinFunction(FD);
+ RewriteLineDirective(D);
+ CurFunctionDef = nullptr;
+ }
+ break;
+ }
+ case Decl::ObjCMethod: {
+ ObjCMethodDecl *MD = cast<ObjCMethodDecl>(D);
+ if (CompoundStmt *Body = MD->getCompoundBody()) {
+ CurMethodDef = MD;
+ CurrentBody = Body;
+ Body =
+ cast_or_null<CompoundStmt>(RewriteFunctionBodyOrGlobalInitializer(Body));
+ MD->setBody(Body);
+ CurrentBody = nullptr;
+ if (PropParentMap) {
+ delete PropParentMap;
+ PropParentMap = nullptr;
+ }
+ InsertBlockLiteralsWithinMethod(MD);
+ RewriteLineDirective(D);
+ CurMethodDef = nullptr;
+ }
+ break;
+ }
+ case Decl::ObjCImplementation: {
+ ObjCImplementationDecl *CI = cast<ObjCImplementationDecl>(D);
+ ClassImplementation.push_back(CI);
+ break;
+ }
+ case Decl::ObjCCategoryImpl: {
+ ObjCCategoryImplDecl *CI = cast<ObjCCategoryImplDecl>(D);
+ CategoryImplementation.push_back(CI);
+ break;
+ }
+ case Decl::Var: {
+ VarDecl *VD = cast<VarDecl>(D);
+ RewriteObjCQualifiedInterfaceTypes(VD);
+ if (isTopLevelBlockPointerType(VD->getType()))
+ RewriteBlockPointerDecl(VD);
+ else if (VD->getType()->isFunctionPointerType()) {
+ CheckFunctionPointerDecl(VD->getType(), VD);
+ if (VD->getInit()) {
+ if (CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(VD->getInit())) {
+ RewriteCastExpr(CE);
+ }
+ }
+ } else if (VD->getType()->isRecordType()) {
+ RecordDecl *RD = VD->getType()->getAs<RecordType>()->getDecl();
+ if (RD->isCompleteDefinition())
+ RewriteRecordBody(RD);
+ }
+ if (VD->getInit()) {
+ GlobalVarDecl = VD;
+ CurrentBody = VD->getInit();
+ RewriteFunctionBodyOrGlobalInitializer(VD->getInit());
+ CurrentBody = nullptr;
+ if (PropParentMap) {
+ delete PropParentMap;
+ PropParentMap = nullptr;
+ }
+ SynthesizeBlockLiterals(VD->getTypeSpecStartLoc(), VD->getName());
+ GlobalVarDecl = nullptr;
+
+ // This is needed for blocks.
+ if (CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(VD->getInit())) {
+ RewriteCastExpr(CE);
+ }
+ }
+ break;
+ }
+ case Decl::TypeAlias:
+ case Decl::Typedef: {
+ if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
+ if (isTopLevelBlockPointerType(TD->getUnderlyingType()))
+ RewriteBlockPointerDecl(TD);
+ else if (TD->getUnderlyingType()->isFunctionPointerType())
+ CheckFunctionPointerDecl(TD->getUnderlyingType(), TD);
+ else
+ RewriteObjCQualifiedInterfaceTypes(TD);
+ }
+ break;
+ }
+ case Decl::CXXRecord:
+ case Decl::Record: {
+ RecordDecl *RD = cast<RecordDecl>(D);
+ if (RD->isCompleteDefinition())
+ RewriteRecordBody(RD);
+ break;
+ }
+ default:
+ break;
+ }
+ // Nothing yet.
+}
+
+/// Write_ProtocolExprReferencedMetadata - This routine writer out the
+/// protocol reference symbols in the for of:
+/// struct _protocol_t *PROTOCOL_REF = &PROTOCOL_METADATA.
+static void Write_ProtocolExprReferencedMetadata(ASTContext *Context,
+ ObjCProtocolDecl *PDecl,
+ std::string &Result) {
+ // Also output .objc_protorefs$B section and its meta-data.
+ if (Context->getLangOpts().MicrosoftExt)
+ Result += "static ";
+ Result += "struct _protocol_t *";
+ Result += "_OBJC_PROTOCOL_REFERENCE_$_";
+ Result += PDecl->getNameAsString();
+ Result += " = &";
+ Result += "_OBJC_PROTOCOL_"; Result += PDecl->getNameAsString();
+ Result += ";\n";
+}
+
+void RewriteModernObjC::HandleTranslationUnit(ASTContext &C) {
+ if (Diags.hasErrorOccurred())
+ return;
+
+ RewriteInclude();
+
+ for (unsigned i = 0, e = FunctionDefinitionsSeen.size(); i < e; i++) {
+ // translation of function bodies were postponed until all class and
+ // their extensions and implementations are seen. This is because, we
+ // cannot build grouping structs for bitfields until they are all seen.
+ FunctionDecl *FDecl = FunctionDefinitionsSeen[i];
+ HandleTopLevelSingleDecl(FDecl);
+ }
+
+ // Here's a great place to add any extra declarations that may be needed.
+ // Write out meta data for each @protocol(<expr>).
+ for (ObjCProtocolDecl *ProtDecl : ProtocolExprDecls) {
+ RewriteObjCProtocolMetaData(ProtDecl, Preamble);
+ Write_ProtocolExprReferencedMetadata(Context, ProtDecl, Preamble);
+ }
+
+ InsertText(SM->getLocForStartOfFile(MainFileID), Preamble, false);
+
+ if (ClassImplementation.size() || CategoryImplementation.size())
+ RewriteImplementations();
+
+ for (unsigned i = 0, e = ObjCInterfacesSeen.size(); i < e; i++) {
+ ObjCInterfaceDecl *CDecl = ObjCInterfacesSeen[i];
+ // Write struct declaration for the class matching its ivar declarations.
+ // Note that for modern abi, this is postponed until the end of TU
+ // because class extensions and the implementation might declare their own
+ // private ivars.
+ RewriteInterfaceDecl(CDecl);
+ }
+
+ // Get the buffer corresponding to MainFileID. If we haven't changed it, then
+ // we are done.
+ if (const RewriteBuffer *RewriteBuf =
+ Rewrite.getRewriteBufferFor(MainFileID)) {
+ //printf("Changed:\n");
+ *OutFile << std::string(RewriteBuf->begin(), RewriteBuf->end());
+ } else {
+ llvm::errs() << "No changes\n";
+ }
+
+ if (ClassImplementation.size() || CategoryImplementation.size() ||
+ ProtocolExprDecls.size()) {
+ // Rewrite Objective-c meta data*
+ std::string ResultStr;
+ RewriteMetaDataIntoBuffer(ResultStr);
+ // Emit metadata.
+ *OutFile << ResultStr;
+ }
+ // Emit ImageInfo;
+ {
+ std::string ResultStr;
+ WriteImageInfo(ResultStr);
+ *OutFile << ResultStr;
+ }
+ OutFile->flush();
+}
+
+void RewriteModernObjC::Initialize(ASTContext &context) {
+ InitializeCommon(context);
+
+ Preamble += "#ifndef __OBJC2__\n";
+ Preamble += "#define __OBJC2__\n";
+ Preamble += "#endif\n";
+
+ // declaring objc_selector outside the parameter list removes a silly
+ // scope related warning...
+ if (IsHeader)
+ Preamble = "#pragma once\n";
+ Preamble += "struct objc_selector; struct objc_class;\n";
+ Preamble += "struct __rw_objc_super { \n\tstruct objc_object *object; ";
+ Preamble += "\n\tstruct objc_object *superClass; ";
+ // Add a constructor for creating temporary objects.
+ Preamble += "\n\t__rw_objc_super(struct objc_object *o, struct objc_object *s) ";
+ Preamble += ": object(o), superClass(s) {} ";
+ Preamble += "\n};\n";
+
+ if (LangOpts.MicrosoftExt) {
+ // Define all sections using syntax that makes sense.
+ // These are currently generated.
+ Preamble += "\n#pragma section(\".objc_classlist$B\", long, read, write)\n";
+ Preamble += "#pragma section(\".objc_catlist$B\", long, read, write)\n";
+ Preamble += "#pragma section(\".objc_imageinfo$B\", long, read, write)\n";
+ Preamble += "#pragma section(\".objc_nlclslist$B\", long, read, write)\n";
+ Preamble += "#pragma section(\".objc_nlcatlist$B\", long, read, write)\n";
+ // These are generated but not necessary for functionality.
+ Preamble += "#pragma section(\".cat_cls_meth$B\", long, read, write)\n";
+ Preamble += "#pragma section(\".inst_meth$B\", long, read, write)\n";
+ Preamble += "#pragma section(\".cls_meth$B\", long, read, write)\n";
+ Preamble += "#pragma section(\".objc_ivar$B\", long, read, write)\n";
+
+ // These need be generated for performance. Currently they are not,
+ // using API calls instead.
+ Preamble += "#pragma section(\".objc_selrefs$B\", long, read, write)\n";
+ Preamble += "#pragma section(\".objc_classrefs$B\", long, read, write)\n";
+ Preamble += "#pragma section(\".objc_superrefs$B\", long, read, write)\n";
+
+ }
+ Preamble += "#ifndef _REWRITER_typedef_Protocol\n";
+ Preamble += "typedef struct objc_object Protocol;\n";
+ Preamble += "#define _REWRITER_typedef_Protocol\n";
+ Preamble += "#endif\n";
+ if (LangOpts.MicrosoftExt) {
+ Preamble += "#define __OBJC_RW_DLLIMPORT extern \"C\" __declspec(dllimport)\n";
+ Preamble += "#define __OBJC_RW_STATICIMPORT extern \"C\"\n";
+ }
+ else
+ Preamble += "#define __OBJC_RW_DLLIMPORT extern\n";
+
+ Preamble += "__OBJC_RW_DLLIMPORT void objc_msgSend(void);\n";
+ Preamble += "__OBJC_RW_DLLIMPORT void objc_msgSendSuper(void);\n";
+ Preamble += "__OBJC_RW_DLLIMPORT void objc_msgSend_stret(void);\n";
+ Preamble += "__OBJC_RW_DLLIMPORT void objc_msgSendSuper_stret(void);\n";
+ Preamble += "__OBJC_RW_DLLIMPORT void objc_msgSend_fpret(void);\n";
+
+ Preamble += "__OBJC_RW_DLLIMPORT struct objc_class *objc_getClass";
+ Preamble += "(const char *);\n";
+ Preamble += "__OBJC_RW_DLLIMPORT struct objc_class *class_getSuperclass";
+ Preamble += "(struct objc_class *);\n";
+ Preamble += "__OBJC_RW_DLLIMPORT struct objc_class *objc_getMetaClass";
+ Preamble += "(const char *);\n";
+ Preamble += "__OBJC_RW_DLLIMPORT void objc_exception_throw( struct objc_object *);\n";
+ // @synchronized hooks.
+ Preamble += "__OBJC_RW_DLLIMPORT int objc_sync_enter( struct objc_object *);\n";
+ Preamble += "__OBJC_RW_DLLIMPORT int objc_sync_exit( struct objc_object *);\n";
+ Preamble += "__OBJC_RW_DLLIMPORT Protocol *objc_getProtocol(const char *);\n";
+ Preamble += "#ifdef _WIN64\n";
+ Preamble += "typedef unsigned long long _WIN_NSUInteger;\n";
+ Preamble += "#else\n";
+ Preamble += "typedef unsigned int _WIN_NSUInteger;\n";
+ Preamble += "#endif\n";
+ Preamble += "#ifndef __FASTENUMERATIONSTATE\n";
+ Preamble += "struct __objcFastEnumerationState {\n\t";
+ Preamble += "unsigned long state;\n\t";
+ Preamble += "void **itemsPtr;\n\t";
+ Preamble += "unsigned long *mutationsPtr;\n\t";
+ Preamble += "unsigned long extra[5];\n};\n";
+ Preamble += "__OBJC_RW_DLLIMPORT void objc_enumerationMutation(struct objc_object *);\n";
+ Preamble += "#define __FASTENUMERATIONSTATE\n";
+ Preamble += "#endif\n";
+ Preamble += "#ifndef __NSCONSTANTSTRINGIMPL\n";
+ Preamble += "struct __NSConstantStringImpl {\n";
+ Preamble += " int *isa;\n";
+ Preamble += " int flags;\n";
+ Preamble += " char *str;\n";
+ Preamble += "#if _WIN64\n";
+ Preamble += " long long length;\n";
+ Preamble += "#else\n";
+ Preamble += " long length;\n";
+ Preamble += "#endif\n";
+ Preamble += "};\n";
+ Preamble += "#ifdef CF_EXPORT_CONSTANT_STRING\n";
+ Preamble += "extern \"C\" __declspec(dllexport) int __CFConstantStringClassReference[];\n";
+ Preamble += "#else\n";
+ Preamble += "__OBJC_RW_DLLIMPORT int __CFConstantStringClassReference[];\n";
+ Preamble += "#endif\n";
+ Preamble += "#define __NSCONSTANTSTRINGIMPL\n";
+ Preamble += "#endif\n";
+ // Blocks preamble.
+ Preamble += "#ifndef BLOCK_IMPL\n";
+ Preamble += "#define BLOCK_IMPL\n";
+ Preamble += "struct __block_impl {\n";
+ Preamble += " void *isa;\n";
+ Preamble += " int Flags;\n";
+ Preamble += " int Reserved;\n";
+ Preamble += " void *FuncPtr;\n";
+ Preamble += "};\n";
+ Preamble += "// Runtime copy/destroy helper functions (from Block_private.h)\n";
+ Preamble += "#ifdef __OBJC_EXPORT_BLOCKS\n";
+ Preamble += "extern \"C\" __declspec(dllexport) "
+ "void _Block_object_assign(void *, const void *, const int);\n";
+ Preamble += "extern \"C\" __declspec(dllexport) void _Block_object_dispose(const void *, const int);\n";
+ Preamble += "extern \"C\" __declspec(dllexport) void *_NSConcreteGlobalBlock[32];\n";
+ Preamble += "extern \"C\" __declspec(dllexport) void *_NSConcreteStackBlock[32];\n";
+ Preamble += "#else\n";
+ Preamble += "__OBJC_RW_DLLIMPORT void _Block_object_assign(void *, const void *, const int);\n";
+ Preamble += "__OBJC_RW_DLLIMPORT void _Block_object_dispose(const void *, const int);\n";
+ Preamble += "__OBJC_RW_DLLIMPORT void *_NSConcreteGlobalBlock[32];\n";
+ Preamble += "__OBJC_RW_DLLIMPORT void *_NSConcreteStackBlock[32];\n";
+ Preamble += "#endif\n";
+ Preamble += "#endif\n";
+ if (LangOpts.MicrosoftExt) {
+ Preamble += "#undef __OBJC_RW_DLLIMPORT\n";
+ Preamble += "#undef __OBJC_RW_STATICIMPORT\n";
+ Preamble += "#ifndef KEEP_ATTRIBUTES\n"; // We use this for clang tests.
+ Preamble += "#define __attribute__(X)\n";
+ Preamble += "#endif\n";
+ Preamble += "#ifndef __weak\n";
+ Preamble += "#define __weak\n";
+ Preamble += "#endif\n";
+ Preamble += "#ifndef __block\n";
+ Preamble += "#define __block\n";
+ Preamble += "#endif\n";
+ }
+ else {
+ Preamble += "#define __block\n";
+ Preamble += "#define __weak\n";
+ }
+
+ // Declarations required for modern objective-c array and dictionary literals.
+ Preamble += "\n#include <stdarg.h>\n";
+ Preamble += "struct __NSContainer_literal {\n";
+ Preamble += " void * *arr;\n";
+ Preamble += " __NSContainer_literal (unsigned int count, ...) {\n";
+ Preamble += "\tva_list marker;\n";
+ Preamble += "\tva_start(marker, count);\n";
+ Preamble += "\tarr = new void *[count];\n";
+ Preamble += "\tfor (unsigned i = 0; i < count; i++)\n";
+ Preamble += "\t arr[i] = va_arg(marker, void *);\n";
+ Preamble += "\tva_end( marker );\n";
+ Preamble += " };\n";
+ Preamble += " ~__NSContainer_literal() {\n";
+ Preamble += "\tdelete[] arr;\n";
+ Preamble += " }\n";
+ Preamble += "};\n";
+
+ // Declaration required for implementation of @autoreleasepool statement.
+ Preamble += "extern \"C\" __declspec(dllimport) void * objc_autoreleasePoolPush(void);\n";
+ Preamble += "extern \"C\" __declspec(dllimport) void objc_autoreleasePoolPop(void *);\n\n";
+ Preamble += "struct __AtAutoreleasePool {\n";
+ Preamble += " __AtAutoreleasePool() {atautoreleasepoolobj = objc_autoreleasePoolPush();}\n";
+ Preamble += " ~__AtAutoreleasePool() {objc_autoreleasePoolPop(atautoreleasepoolobj);}\n";
+ Preamble += " void * atautoreleasepoolobj;\n";
+ Preamble += "};\n";
+
+ // NOTE! Windows uses LLP64 for 64bit mode. So, cast pointer to long long
+ // as this avoids warning in any 64bit/32bit compilation model.
+ Preamble += "\n#define __OFFSETOFIVAR__(TYPE, MEMBER) ((long long) &((TYPE *)0)->MEMBER)\n";
+}
+
+/// RewriteIvarOffsetComputation - This rutine synthesizes computation of
+/// ivar offset.
+void RewriteModernObjC::RewriteIvarOffsetComputation(ObjCIvarDecl *ivar,
+ std::string &Result) {
+ Result += "__OFFSETOFIVAR__(struct ";
+ Result += ivar->getContainingInterface()->getNameAsString();
+ if (LangOpts.MicrosoftExt)
+ Result += "_IMPL";
+ Result += ", ";
+ if (ivar->isBitField())
+ ObjCIvarBitfieldGroupDecl(ivar, Result);
+ else
+ Result += ivar->getNameAsString();
+ Result += ")";
+}
+
+/// WriteModernMetadataDeclarations - Writes out metadata declarations for modern ABI.
+/// struct _prop_t {
+/// const char *name;
+/// char *attributes;
+/// }
+
+/// struct _prop_list_t {
+/// uint32_t entsize; // sizeof(struct _prop_t)
+/// uint32_t count_of_properties;
+/// struct _prop_t prop_list[count_of_properties];
+/// }
+
+/// struct _protocol_t;
+
+/// struct _protocol_list_t {
+/// long protocol_count; // Note, this is 32/64 bit
+/// struct _protocol_t * protocol_list[protocol_count];
+/// }
+
+/// struct _objc_method {
+/// SEL _cmd;
+/// const char *method_type;
+/// char *_imp;
+/// }
+
+/// struct _method_list_t {
+/// uint32_t entsize; // sizeof(struct _objc_method)
+/// uint32_t method_count;
+/// struct _objc_method method_list[method_count];
+/// }
+
+/// struct _protocol_t {
+/// id isa; // NULL
+/// const char *protocol_name;
+/// const struct _protocol_list_t * protocol_list; // super protocols
+/// const struct method_list_t *instance_methods;
+/// const struct method_list_t *class_methods;
+/// const struct method_list_t *optionalInstanceMethods;
+/// const struct method_list_t *optionalClassMethods;
+/// const struct _prop_list_t * properties;
+/// const uint32_t size; // sizeof(struct _protocol_t)
+/// const uint32_t flags; // = 0
+/// const char ** extendedMethodTypes;
+/// }
+
+/// struct _ivar_t {
+/// unsigned long int *offset; // pointer to ivar offset location
+/// const char *name;
+/// const char *type;
+/// uint32_t alignment;
+/// uint32_t size;
+/// }
+
+/// struct _ivar_list_t {
+/// uint32 entsize; // sizeof(struct _ivar_t)
+/// uint32 count;
+/// struct _ivar_t list[count];
+/// }
+
+/// struct _class_ro_t {
+/// uint32_t flags;
+/// uint32_t instanceStart;
+/// uint32_t instanceSize;
+/// uint32_t reserved; // only when building for 64bit targets
+/// const uint8_t *ivarLayout;
+/// const char *name;
+/// const struct _method_list_t *baseMethods;
+/// const struct _protocol_list_t *baseProtocols;
+/// const struct _ivar_list_t *ivars;
+/// const uint8_t *weakIvarLayout;
+/// const struct _prop_list_t *properties;
+/// }
+
+/// struct _class_t {
+/// struct _class_t *isa;
+/// struct _class_t *superclass;
+/// void *cache;
+/// IMP *vtable;
+/// struct _class_ro_t *ro;
+/// }
+
+/// struct _category_t {
+/// const char *name;
+/// struct _class_t *cls;
+/// const struct _method_list_t *instance_methods;
+/// const struct _method_list_t *class_methods;
+/// const struct _protocol_list_t *protocols;
+/// const struct _prop_list_t *properties;
+/// }
+
+/// MessageRefTy - LLVM for:
+/// struct _message_ref_t {
+/// IMP messenger;
+/// SEL name;
+/// };
+
+/// SuperMessageRefTy - LLVM for:
+/// struct _super_message_ref_t {
+/// SUPER_IMP messenger;
+/// SEL name;
+/// };
+
+static void WriteModernMetadataDeclarations(ASTContext *Context, std::string &Result) {
+ static bool meta_data_declared = false;
+ if (meta_data_declared)
+ return;
+
+ Result += "\nstruct _prop_t {\n";
+ Result += "\tconst char *name;\n";
+ Result += "\tconst char *attributes;\n";
+ Result += "};\n";
+
+ Result += "\nstruct _protocol_t;\n";
+
+ Result += "\nstruct _objc_method {\n";
+ Result += "\tstruct objc_selector * _cmd;\n";
+ Result += "\tconst char *method_type;\n";
+ Result += "\tvoid *_imp;\n";
+ Result += "};\n";
+
+ Result += "\nstruct _protocol_t {\n";
+ Result += "\tvoid * isa; // NULL\n";
+ Result += "\tconst char *protocol_name;\n";
+ Result += "\tconst struct _protocol_list_t * protocol_list; // super protocols\n";
+ Result += "\tconst struct method_list_t *instance_methods;\n";
+ Result += "\tconst struct method_list_t *class_methods;\n";
+ Result += "\tconst struct method_list_t *optionalInstanceMethods;\n";
+ Result += "\tconst struct method_list_t *optionalClassMethods;\n";
+ Result += "\tconst struct _prop_list_t * properties;\n";
+ Result += "\tconst unsigned int size; // sizeof(struct _protocol_t)\n";
+ Result += "\tconst unsigned int flags; // = 0\n";
+ Result += "\tconst char ** extendedMethodTypes;\n";
+ Result += "};\n";
+
+ Result += "\nstruct _ivar_t {\n";
+ Result += "\tunsigned long int *offset; // pointer to ivar offset location\n";
+ Result += "\tconst char *name;\n";
+ Result += "\tconst char *type;\n";
+ Result += "\tunsigned int alignment;\n";
+ Result += "\tunsigned int size;\n";
+ Result += "};\n";
+
+ Result += "\nstruct _class_ro_t {\n";
+ Result += "\tunsigned int flags;\n";
+ Result += "\tunsigned int instanceStart;\n";
+ Result += "\tunsigned int instanceSize;\n";
+ const llvm::Triple &Triple(Context->getTargetInfo().getTriple());
+ if (Triple.getArch() == llvm::Triple::x86_64)
+ Result += "\tunsigned int reserved;\n";
+ Result += "\tconst unsigned char *ivarLayout;\n";
+ Result += "\tconst char *name;\n";
+ Result += "\tconst struct _method_list_t *baseMethods;\n";
+ Result += "\tconst struct _objc_protocol_list *baseProtocols;\n";
+ Result += "\tconst struct _ivar_list_t *ivars;\n";
+ Result += "\tconst unsigned char *weakIvarLayout;\n";
+ Result += "\tconst struct _prop_list_t *properties;\n";
+ Result += "};\n";
+
+ Result += "\nstruct _class_t {\n";
+ Result += "\tstruct _class_t *isa;\n";
+ Result += "\tstruct _class_t *superclass;\n";
+ Result += "\tvoid *cache;\n";
+ Result += "\tvoid *vtable;\n";
+ Result += "\tstruct _class_ro_t *ro;\n";
+ Result += "};\n";
+
+ Result += "\nstruct _category_t {\n";
+ Result += "\tconst char *name;\n";
+ Result += "\tstruct _class_t *cls;\n";
+ Result += "\tconst struct _method_list_t *instance_methods;\n";
+ Result += "\tconst struct _method_list_t *class_methods;\n";
+ Result += "\tconst struct _protocol_list_t *protocols;\n";
+ Result += "\tconst struct _prop_list_t *properties;\n";
+ Result += "};\n";
+
+ Result += "extern \"C\" __declspec(dllimport) struct objc_cache _objc_empty_cache;\n";
+ Result += "#pragma warning(disable:4273)\n";
+ meta_data_declared = true;
+}
+
+static void Write_protocol_list_t_TypeDecl(std::string &Result,
+ long super_protocol_count) {
+ Result += "struct /*_protocol_list_t*/"; Result += " {\n";
+ Result += "\tlong protocol_count; // Note, this is 32/64 bit\n";
+ Result += "\tstruct _protocol_t *super_protocols[";
+ Result += utostr(super_protocol_count); Result += "];\n";
+ Result += "}";
+}
+
+static void Write_method_list_t_TypeDecl(std::string &Result,
+ unsigned int method_count) {
+ Result += "struct /*_method_list_t*/"; Result += " {\n";
+ Result += "\tunsigned int entsize; // sizeof(struct _objc_method)\n";
+ Result += "\tunsigned int method_count;\n";
+ Result += "\tstruct _objc_method method_list[";
+ Result += utostr(method_count); Result += "];\n";
+ Result += "}";
+}
+
+static void Write__prop_list_t_TypeDecl(std::string &Result,
+ unsigned int property_count) {
+ Result += "struct /*_prop_list_t*/"; Result += " {\n";
+ Result += "\tunsigned int entsize; // sizeof(struct _prop_t)\n";
+ Result += "\tunsigned int count_of_properties;\n";
+ Result += "\tstruct _prop_t prop_list[";
+ Result += utostr(property_count); Result += "];\n";
+ Result += "}";
+}
+
+static void Write__ivar_list_t_TypeDecl(std::string &Result,
+ unsigned int ivar_count) {
+ Result += "struct /*_ivar_list_t*/"; Result += " {\n";
+ Result += "\tunsigned int entsize; // sizeof(struct _prop_t)\n";
+ Result += "\tunsigned int count;\n";
+ Result += "\tstruct _ivar_t ivar_list[";
+ Result += utostr(ivar_count); Result += "];\n";
+ Result += "}";
+}
+
+static void Write_protocol_list_initializer(ASTContext *Context, std::string &Result,
+ ArrayRef<ObjCProtocolDecl *> SuperProtocols,
+ StringRef VarName,
+ StringRef ProtocolName) {
+ if (SuperProtocols.size() > 0) {
+ Result += "\nstatic ";
+ Write_protocol_list_t_TypeDecl(Result, SuperProtocols.size());
+ Result += " "; Result += VarName;
+ Result += ProtocolName;
+ Result += " __attribute__ ((used, section (\"__DATA,__objc_const\"))) = {\n";
+ Result += "\t"; Result += utostr(SuperProtocols.size()); Result += ",\n";
+ for (unsigned i = 0, e = SuperProtocols.size(); i < e; i++) {
+ ObjCProtocolDecl *SuperPD = SuperProtocols[i];
+ Result += "\t&"; Result += "_OBJC_PROTOCOL_";
+ Result += SuperPD->getNameAsString();
+ if (i == e-1)
+ Result += "\n};\n";
+ else
+ Result += ",\n";
+ }
+ }
+}
+
+static void Write_method_list_t_initializer(RewriteModernObjC &RewriteObj,
+ ASTContext *Context, std::string &Result,
+ ArrayRef<ObjCMethodDecl *> Methods,
+ StringRef VarName,
+ StringRef TopLevelDeclName,
+ bool MethodImpl) {
+ if (Methods.size() > 0) {
+ Result += "\nstatic ";
+ Write_method_list_t_TypeDecl(Result, Methods.size());
+ Result += " "; Result += VarName;
+ Result += TopLevelDeclName;
+ Result += " __attribute__ ((used, section (\"__DATA,__objc_const\"))) = {\n";
+ Result += "\t"; Result += "sizeof(_objc_method)"; Result += ",\n";
+ Result += "\t"; Result += utostr(Methods.size()); Result += ",\n";
+ for (unsigned i = 0, e = Methods.size(); i < e; i++) {
+ ObjCMethodDecl *MD = Methods[i];
+ if (i == 0)
+ Result += "\t{{(struct objc_selector *)\"";
+ else
+ Result += "\t{(struct objc_selector *)\"";
+ Result += (MD)->getSelector().getAsString(); Result += "\"";
+ Result += ", ";
+ std::string MethodTypeString;
+ Context->getObjCEncodingForMethodDecl(MD, MethodTypeString);
+ Result += "\""; Result += MethodTypeString; Result += "\"";
+ Result += ", ";
+ if (!MethodImpl)
+ Result += "0";
+ else {
+ Result += "(void *)";
+ Result += RewriteObj.MethodInternalNames[MD];
+ }
+ if (i == e-1)
+ Result += "}}\n";
+ else
+ Result += "},\n";
+ }
+ Result += "};\n";
+ }
+}
+
+static void Write_prop_list_t_initializer(RewriteModernObjC &RewriteObj,
+ ASTContext *Context, std::string &Result,
+ ArrayRef<ObjCPropertyDecl *> Properties,
+ const Decl *Container,
+ StringRef VarName,
+ StringRef ProtocolName) {
+ if (Properties.size() > 0) {
+ Result += "\nstatic ";
+ Write__prop_list_t_TypeDecl(Result, Properties.size());
+ Result += " "; Result += VarName;
+ Result += ProtocolName;
+ Result += " __attribute__ ((used, section (\"__DATA,__objc_const\"))) = {\n";
+ Result += "\t"; Result += "sizeof(_prop_t)"; Result += ",\n";
+ Result += "\t"; Result += utostr(Properties.size()); Result += ",\n";
+ for (unsigned i = 0, e = Properties.size(); i < e; i++) {
+ ObjCPropertyDecl *PropDecl = Properties[i];
+ if (i == 0)
+ Result += "\t{{\"";
+ else
+ Result += "\t{\"";
+ Result += PropDecl->getName(); Result += "\",";
+ std::string PropertyTypeString, QuotePropertyTypeString;
+ Context->getObjCEncodingForPropertyDecl(PropDecl, Container, PropertyTypeString);
+ RewriteObj.QuoteDoublequotes(PropertyTypeString, QuotePropertyTypeString);
+ Result += "\""; Result += QuotePropertyTypeString; Result += "\"";
+ if (i == e-1)
+ Result += "}}\n";
+ else
+ Result += "},\n";
+ }
+ Result += "};\n";
+ }
+}
+
+// Metadata flags
+enum MetaDataDlags {
+ CLS = 0x0,
+ CLS_META = 0x1,
+ CLS_ROOT = 0x2,
+ OBJC2_CLS_HIDDEN = 0x10,
+ CLS_EXCEPTION = 0x20,
+
+ /// (Obsolete) ARC-specific: this class has a .release_ivars method
+ CLS_HAS_IVAR_RELEASER = 0x40,
+ /// class was compiled with -fobjc-arr
+ CLS_COMPILED_BY_ARC = 0x80 // (1<<7)
+};
+
+static void Write__class_ro_t_initializer(ASTContext *Context, std::string &Result,
+ unsigned int flags,
+ const std::string &InstanceStart,
+ const std::string &InstanceSize,
+ ArrayRef<ObjCMethodDecl *>baseMethods,
+ ArrayRef<ObjCProtocolDecl *>baseProtocols,
+ ArrayRef<ObjCIvarDecl *>ivars,
+ ArrayRef<ObjCPropertyDecl *>Properties,
+ StringRef VarName,
+ StringRef ClassName) {
+ Result += "\nstatic struct _class_ro_t ";
+ Result += VarName; Result += ClassName;
+ Result += " __attribute__ ((used, section (\"__DATA,__objc_const\"))) = {\n";
+ Result += "\t";
+ Result += llvm::utostr(flags); Result += ", ";
+ Result += InstanceStart; Result += ", ";
+ Result += InstanceSize; Result += ", \n";
+ Result += "\t";
+ const llvm::Triple &Triple(Context->getTargetInfo().getTriple());
+ if (Triple.getArch() == llvm::Triple::x86_64)
+ // uint32_t const reserved; // only when building for 64bit targets
+ Result += "(unsigned int)0, \n\t";
+ // const uint8_t * const ivarLayout;
+ Result += "0, \n\t";
+ Result += "\""; Result += ClassName; Result += "\",\n\t";
+ bool metaclass = ((flags & CLS_META) != 0);
+ if (baseMethods.size() > 0) {
+ Result += "(const struct _method_list_t *)&";
+ if (metaclass)
+ Result += "_OBJC_$_CLASS_METHODS_";
+ else
+ Result += "_OBJC_$_INSTANCE_METHODS_";
+ Result += ClassName;
+ Result += ",\n\t";
+ }
+ else
+ Result += "0, \n\t";
+
+ if (!metaclass && baseProtocols.size() > 0) {
+ Result += "(const struct _objc_protocol_list *)&";
+ Result += "_OBJC_CLASS_PROTOCOLS_$_"; Result += ClassName;
+ Result += ",\n\t";
+ }
+ else
+ Result += "0, \n\t";
+
+ if (!metaclass && ivars.size() > 0) {
+ Result += "(const struct _ivar_list_t *)&";
+ Result += "_OBJC_$_INSTANCE_VARIABLES_"; Result += ClassName;
+ Result += ",\n\t";
+ }
+ else
+ Result += "0, \n\t";
+
+ // weakIvarLayout
+ Result += "0, \n\t";
+ if (!metaclass && Properties.size() > 0) {
+ Result += "(const struct _prop_list_t *)&";
+ Result += "_OBJC_$_PROP_LIST_"; Result += ClassName;
+ Result += ",\n";
+ }
+ else
+ Result += "0, \n";
+
+ Result += "};\n";
+}
+
+static void Write_class_t(ASTContext *Context, std::string &Result,
+ StringRef VarName,
+ const ObjCInterfaceDecl *CDecl, bool metaclass) {
+ bool rootClass = (!CDecl->getSuperClass());
+ const ObjCInterfaceDecl *RootClass = CDecl;
+
+ if (!rootClass) {
+ // Find the Root class
+ RootClass = CDecl->getSuperClass();
+ while (RootClass->getSuperClass()) {
+ RootClass = RootClass->getSuperClass();
+ }
+ }
+
+ if (metaclass && rootClass) {
+ // Need to handle a case of use of forward declaration.
+ Result += "\n";
+ Result += "extern \"C\" ";
+ if (CDecl->getImplementation())
+ Result += "__declspec(dllexport) ";
+ else
+ Result += "__declspec(dllimport) ";
+
+ Result += "struct _class_t OBJC_CLASS_$_";
+ Result += CDecl->getNameAsString();
+ Result += ";\n";
+ }
+ // Also, for possibility of 'super' metadata class not having been defined yet.
+ if (!rootClass) {
+ ObjCInterfaceDecl *SuperClass = CDecl->getSuperClass();
+ Result += "\n";
+ Result += "extern \"C\" ";
+ if (SuperClass->getImplementation())
+ Result += "__declspec(dllexport) ";
+ else
+ Result += "__declspec(dllimport) ";
+
+ Result += "struct _class_t ";
+ Result += VarName;
+ Result += SuperClass->getNameAsString();
+ Result += ";\n";
+
+ if (metaclass && RootClass != SuperClass) {
+ Result += "extern \"C\" ";
+ if (RootClass->getImplementation())
+ Result += "__declspec(dllexport) ";
+ else
+ Result += "__declspec(dllimport) ";
+
+ Result += "struct _class_t ";
+ Result += VarName;
+ Result += RootClass->getNameAsString();
+ Result += ";\n";
+ }
+ }
+
+ Result += "\nextern \"C\" __declspec(dllexport) struct _class_t ";
+ Result += VarName; Result += CDecl->getNameAsString();
+ Result += " __attribute__ ((used, section (\"__DATA,__objc_data\"))) = {\n";
+ Result += "\t";
+ if (metaclass) {
+ if (!rootClass) {
+ Result += "0, // &"; Result += VarName;
+ Result += RootClass->getNameAsString();
+ Result += ",\n\t";
+ Result += "0, // &"; Result += VarName;
+ Result += CDecl->getSuperClass()->getNameAsString();
+ Result += ",\n\t";
+ }
+ else {
+ Result += "0, // &"; Result += VarName;
+ Result += CDecl->getNameAsString();
+ Result += ",\n\t";
+ Result += "0, // &OBJC_CLASS_$_"; Result += CDecl->getNameAsString();
+ Result += ",\n\t";
+ }
+ }
+ else {
+ Result += "0, // &OBJC_METACLASS_$_";
+ Result += CDecl->getNameAsString();
+ Result += ",\n\t";
+ if (!rootClass) {
+ Result += "0, // &"; Result += VarName;
+ Result += CDecl->getSuperClass()->getNameAsString();
+ Result += ",\n\t";
+ }
+ else
+ Result += "0,\n\t";
+ }
+ Result += "0, // (void *)&_objc_empty_cache,\n\t";
+ Result += "0, // unused, was (void *)&_objc_empty_vtable,\n\t";
+ if (metaclass)
+ Result += "&_OBJC_METACLASS_RO_$_";
+ else
+ Result += "&_OBJC_CLASS_RO_$_";
+ Result += CDecl->getNameAsString();
+ Result += ",\n};\n";
+
+ // Add static function to initialize some of the meta-data fields.
+ // avoid doing it twice.
+ if (metaclass)
+ return;
+
+ const ObjCInterfaceDecl *SuperClass =
+ rootClass ? CDecl : CDecl->getSuperClass();
+
+ Result += "static void OBJC_CLASS_SETUP_$_";
+ Result += CDecl->getNameAsString();
+ Result += "(void ) {\n";
+ Result += "\tOBJC_METACLASS_$_"; Result += CDecl->getNameAsString();
+ Result += ".isa = "; Result += "&OBJC_METACLASS_$_";
+ Result += RootClass->getNameAsString(); Result += ";\n";
+
+ Result += "\tOBJC_METACLASS_$_"; Result += CDecl->getNameAsString();
+ Result += ".superclass = ";
+ if (rootClass)
+ Result += "&OBJC_CLASS_$_";
+ else
+ Result += "&OBJC_METACLASS_$_";
+
+ Result += SuperClass->getNameAsString(); Result += ";\n";
+
+ Result += "\tOBJC_METACLASS_$_"; Result += CDecl->getNameAsString();
+ Result += ".cache = "; Result += "&_objc_empty_cache"; Result += ";\n";
+
+ Result += "\tOBJC_CLASS_$_"; Result += CDecl->getNameAsString();
+ Result += ".isa = "; Result += "&OBJC_METACLASS_$_";
+ Result += CDecl->getNameAsString(); Result += ";\n";
+
+ if (!rootClass) {
+ Result += "\tOBJC_CLASS_$_"; Result += CDecl->getNameAsString();
+ Result += ".superclass = "; Result += "&OBJC_CLASS_$_";
+ Result += SuperClass->getNameAsString(); Result += ";\n";
+ }
+
+ Result += "\tOBJC_CLASS_$_"; Result += CDecl->getNameAsString();
+ Result += ".cache = "; Result += "&_objc_empty_cache"; Result += ";\n";
+ Result += "}\n";
+}
+
+static void Write_category_t(RewriteModernObjC &RewriteObj, ASTContext *Context,
+ std::string &Result,
+ ObjCCategoryDecl *CatDecl,
+ ObjCInterfaceDecl *ClassDecl,
+ ArrayRef<ObjCMethodDecl *> InstanceMethods,
+ ArrayRef<ObjCMethodDecl *> ClassMethods,
+ ArrayRef<ObjCProtocolDecl *> RefedProtocols,
+ ArrayRef<ObjCPropertyDecl *> ClassProperties) {
+ StringRef CatName = CatDecl->getName();
+ StringRef ClassName = ClassDecl->getName();
+ // must declare an extern class object in case this class is not implemented
+ // in this TU.
+ Result += "\n";
+ Result += "extern \"C\" ";
+ if (ClassDecl->getImplementation())
+ Result += "__declspec(dllexport) ";
+ else
+ Result += "__declspec(dllimport) ";
+
+ Result += "struct _class_t ";
+ Result += "OBJC_CLASS_$_"; Result += ClassName;
+ Result += ";\n";
+
+ Result += "\nstatic struct _category_t ";
+ Result += "_OBJC_$_CATEGORY_";
+ Result += ClassName; Result += "_$_"; Result += CatName;
+ Result += " __attribute__ ((used, section (\"__DATA,__objc_const\"))) = \n";
+ Result += "{\n";
+ Result += "\t\""; Result += ClassName; Result += "\",\n";
+ Result += "\t0, // &"; Result += "OBJC_CLASS_$_"; Result += ClassName;
+ Result += ",\n";
+ if (InstanceMethods.size() > 0) {
+ Result += "\t(const struct _method_list_t *)&";
+ Result += "_OBJC_$_CATEGORY_INSTANCE_METHODS_";
+ Result += ClassName; Result += "_$_"; Result += CatName;
+ Result += ",\n";
+ }
+ else
+ Result += "\t0,\n";
+
+ if (ClassMethods.size() > 0) {
+ Result += "\t(const struct _method_list_t *)&";
+ Result += "_OBJC_$_CATEGORY_CLASS_METHODS_";
+ Result += ClassName; Result += "_$_"; Result += CatName;
+ Result += ",\n";
+ }
+ else
+ Result += "\t0,\n";
+
+ if (RefedProtocols.size() > 0) {
+ Result += "\t(const struct _protocol_list_t *)&";
+ Result += "_OBJC_CATEGORY_PROTOCOLS_$_";
+ Result += ClassName; Result += "_$_"; Result += CatName;
+ Result += ",\n";
+ }
+ else
+ Result += "\t0,\n";
+
+ if (ClassProperties.size() > 0) {
+ Result += "\t(const struct _prop_list_t *)&"; Result += "_OBJC_$_PROP_LIST_";
+ Result += ClassName; Result += "_$_"; Result += CatName;
+ Result += ",\n";
+ }
+ else
+ Result += "\t0,\n";
+
+ Result += "};\n";
+
+ // Add static function to initialize the class pointer in the category structure.
+ Result += "static void OBJC_CATEGORY_SETUP_$_";
+ Result += ClassDecl->getNameAsString();
+ Result += "_$_";
+ Result += CatName;
+ Result += "(void ) {\n";
+ Result += "\t_OBJC_$_CATEGORY_";
+ Result += ClassDecl->getNameAsString();
+ Result += "_$_";
+ Result += CatName;
+ Result += ".cls = "; Result += "&OBJC_CLASS_$_"; Result += ClassName;
+ Result += ";\n}\n";
+}
+
+static void Write__extendedMethodTypes_initializer(RewriteModernObjC &RewriteObj,
+ ASTContext *Context, std::string &Result,
+ ArrayRef<ObjCMethodDecl *> Methods,
+ StringRef VarName,
+ StringRef ProtocolName) {
+ if (Methods.size() == 0)
+ return;
+
+ Result += "\nstatic const char *";
+ Result += VarName; Result += ProtocolName;
+ Result += " [] __attribute__ ((used, section (\"__DATA,__objc_const\"))) = \n";
+ Result += "{\n";
+ for (unsigned i = 0, e = Methods.size(); i < e; i++) {
+ ObjCMethodDecl *MD = Methods[i];
+ std::string MethodTypeString, QuoteMethodTypeString;
+ Context->getObjCEncodingForMethodDecl(MD, MethodTypeString, true);
+ RewriteObj.QuoteDoublequotes(MethodTypeString, QuoteMethodTypeString);
+ Result += "\t\""; Result += QuoteMethodTypeString; Result += "\"";
+ if (i == e-1)
+ Result += "\n};\n";
+ else {
+ Result += ",\n";
+ }
+ }
+}
+
+static void Write_IvarOffsetVar(RewriteModernObjC &RewriteObj,
+ ASTContext *Context,
+ std::string &Result,
+ ArrayRef<ObjCIvarDecl *> Ivars,
+ ObjCInterfaceDecl *CDecl) {
+ // FIXME. visibilty of offset symbols may have to be set; for Darwin
+ // this is what happens:
+ /**
+ if (Ivar->getAccessControl() == ObjCIvarDecl::Private ||
+ Ivar->getAccessControl() == ObjCIvarDecl::Package ||
+ Class->getVisibility() == HiddenVisibility)
+ Visibility shoud be: HiddenVisibility;
+ else
+ Visibility shoud be: DefaultVisibility;
+ */
+
+ Result += "\n";
+ for (unsigned i =0, e = Ivars.size(); i < e; i++) {
+ ObjCIvarDecl *IvarDecl = Ivars[i];
+ if (Context->getLangOpts().MicrosoftExt)
+ Result += "__declspec(allocate(\".objc_ivar$B\")) ";
+
+ if (!Context->getLangOpts().MicrosoftExt ||
+ IvarDecl->getAccessControl() == ObjCIvarDecl::Private ||
+ IvarDecl->getAccessControl() == ObjCIvarDecl::Package)
+ Result += "extern \"C\" unsigned long int ";
+ else
+ Result += "extern \"C\" __declspec(dllexport) unsigned long int ";
+ if (Ivars[i]->isBitField())
+ RewriteObj.ObjCIvarBitfieldGroupOffset(IvarDecl, Result);
+ else
+ WriteInternalIvarName(CDecl, IvarDecl, Result);
+ Result += " __attribute__ ((used, section (\"__DATA,__objc_ivar\")))";
+ Result += " = ";
+ RewriteObj.RewriteIvarOffsetComputation(IvarDecl, Result);
+ Result += ";\n";
+ if (Ivars[i]->isBitField()) {
+ // skip over rest of the ivar bitfields.
+ SKIP_BITFIELDS(i , e, Ivars);
+ }
+ }
+}
+
+static void Write__ivar_list_t_initializer(RewriteModernObjC &RewriteObj,
+ ASTContext *Context, std::string &Result,
+ ArrayRef<ObjCIvarDecl *> OriginalIvars,
+ StringRef VarName,
+ ObjCInterfaceDecl *CDecl) {
+ if (OriginalIvars.size() > 0) {
+ Write_IvarOffsetVar(RewriteObj, Context, Result, OriginalIvars, CDecl);
+ SmallVector<ObjCIvarDecl *, 8> Ivars;
+ // strip off all but the first ivar bitfield from each group of ivars.
+ // Such ivars in the ivar list table will be replaced by their grouping struct
+ // 'ivar'.
+ for (unsigned i = 0, e = OriginalIvars.size(); i < e; i++) {
+ if (OriginalIvars[i]->isBitField()) {
+ Ivars.push_back(OriginalIvars[i]);
+ // skip over rest of the ivar bitfields.
+ SKIP_BITFIELDS(i , e, OriginalIvars);
+ }
+ else
+ Ivars.push_back(OriginalIvars[i]);
+ }
+
+ Result += "\nstatic ";
+ Write__ivar_list_t_TypeDecl(Result, Ivars.size());
+ Result += " "; Result += VarName;
+ Result += CDecl->getNameAsString();
+ Result += " __attribute__ ((used, section (\"__DATA,__objc_const\"))) = {\n";
+ Result += "\t"; Result += "sizeof(_ivar_t)"; Result += ",\n";
+ Result += "\t"; Result += utostr(Ivars.size()); Result += ",\n";
+ for (unsigned i =0, e = Ivars.size(); i < e; i++) {
+ ObjCIvarDecl *IvarDecl = Ivars[i];
+ if (i == 0)
+ Result += "\t{{";
+ else
+ Result += "\t {";
+ Result += "(unsigned long int *)&";
+ if (Ivars[i]->isBitField())
+ RewriteObj.ObjCIvarBitfieldGroupOffset(IvarDecl, Result);
+ else
+ WriteInternalIvarName(CDecl, IvarDecl, Result);
+ Result += ", ";
+
+ Result += "\"";
+ if (Ivars[i]->isBitField())
+ RewriteObj.ObjCIvarBitfieldGroupDecl(Ivars[i], Result);
+ else
+ Result += IvarDecl->getName();
+ Result += "\", ";
+
+ QualType IVQT = IvarDecl->getType();
+ if (IvarDecl->isBitField())
+ IVQT = RewriteObj.GetGroupRecordTypeForObjCIvarBitfield(IvarDecl);
+
+ std::string IvarTypeString, QuoteIvarTypeString;
+ Context->getObjCEncodingForType(IVQT, IvarTypeString,
+ IvarDecl);
+ RewriteObj.QuoteDoublequotes(IvarTypeString, QuoteIvarTypeString);
+ Result += "\""; Result += QuoteIvarTypeString; Result += "\", ";
+
+ // FIXME. this alignment represents the host alignment and need be changed to
+ // represent the target alignment.
+ unsigned Align = Context->getTypeAlign(IVQT)/8;
+ Align = llvm::Log2_32(Align);
+ Result += llvm::utostr(Align); Result += ", ";
+ CharUnits Size = Context->getTypeSizeInChars(IVQT);
+ Result += llvm::utostr(Size.getQuantity());
+ if (i == e-1)
+ Result += "}}\n";
+ else
+ Result += "},\n";
+ }
+ Result += "};\n";
+ }
+}
+
+/// RewriteObjCProtocolMetaData - Rewrite protocols meta-data.
+void RewriteModernObjC::RewriteObjCProtocolMetaData(ObjCProtocolDecl *PDecl,
+ std::string &Result) {
+
+ // Do not synthesize the protocol more than once.
+ if (ObjCSynthesizedProtocols.count(PDecl->getCanonicalDecl()))
+ return;
+ WriteModernMetadataDeclarations(Context, Result);
+
+ if (ObjCProtocolDecl *Def = PDecl->getDefinition())
+ PDecl = Def;
+ // Must write out all protocol definitions in current qualifier list,
+ // and in their nested qualifiers before writing out current definition.
+ for (auto *I : PDecl->protocols())
+ RewriteObjCProtocolMetaData(I, Result);
+
+ // Construct method lists.
+ std::vector<ObjCMethodDecl *> InstanceMethods, ClassMethods;
+ std::vector<ObjCMethodDecl *> OptInstanceMethods, OptClassMethods;
+ for (auto *MD : PDecl->instance_methods()) {
+ if (MD->getImplementationControl() == ObjCMethodDecl::Optional) {
+ OptInstanceMethods.push_back(MD);
+ } else {
+ InstanceMethods.push_back(MD);
+ }
+ }
+
+ for (auto *MD : PDecl->class_methods()) {
+ if (MD->getImplementationControl() == ObjCMethodDecl::Optional) {
+ OptClassMethods.push_back(MD);
+ } else {
+ ClassMethods.push_back(MD);
+ }
+ }
+ std::vector<ObjCMethodDecl *> AllMethods;
+ for (unsigned i = 0, e = InstanceMethods.size(); i < e; i++)
+ AllMethods.push_back(InstanceMethods[i]);
+ for (unsigned i = 0, e = ClassMethods.size(); i < e; i++)
+ AllMethods.push_back(ClassMethods[i]);
+ for (unsigned i = 0, e = OptInstanceMethods.size(); i < e; i++)
+ AllMethods.push_back(OptInstanceMethods[i]);
+ for (unsigned i = 0, e = OptClassMethods.size(); i < e; i++)
+ AllMethods.push_back(OptClassMethods[i]);
+
+ Write__extendedMethodTypes_initializer(*this, Context, Result,
+ AllMethods,
+ "_OBJC_PROTOCOL_METHOD_TYPES_",
+ PDecl->getNameAsString());
+ // Protocol's super protocol list
+ SmallVector<ObjCProtocolDecl *, 8> SuperProtocols(PDecl->protocols());
+ Write_protocol_list_initializer(Context, Result, SuperProtocols,
+ "_OBJC_PROTOCOL_REFS_",
+ PDecl->getNameAsString());
+
+ Write_method_list_t_initializer(*this, Context, Result, InstanceMethods,
+ "_OBJC_PROTOCOL_INSTANCE_METHODS_",
+ PDecl->getNameAsString(), false);
+
+ Write_method_list_t_initializer(*this, Context, Result, ClassMethods,
+ "_OBJC_PROTOCOL_CLASS_METHODS_",
+ PDecl->getNameAsString(), false);
+
+ Write_method_list_t_initializer(*this, Context, Result, OptInstanceMethods,
+ "_OBJC_PROTOCOL_OPT_INSTANCE_METHODS_",
+ PDecl->getNameAsString(), false);
+
+ Write_method_list_t_initializer(*this, Context, Result, OptClassMethods,
+ "_OBJC_PROTOCOL_OPT_CLASS_METHODS_",
+ PDecl->getNameAsString(), false);
+
+ // Protocol's property metadata.
+ SmallVector<ObjCPropertyDecl *, 8> ProtocolProperties(PDecl->properties());
+ Write_prop_list_t_initializer(*this, Context, Result, ProtocolProperties,
+ /* Container */nullptr,
+ "_OBJC_PROTOCOL_PROPERTIES_",
+ PDecl->getNameAsString());
+
+ // Writer out root metadata for current protocol: struct _protocol_t
+ Result += "\n";
+ if (LangOpts.MicrosoftExt)
+ Result += "static ";
+ Result += "struct _protocol_t _OBJC_PROTOCOL_";
+ Result += PDecl->getNameAsString();
+ Result += " __attribute__ ((used, section (\"__DATA,__datacoal_nt,coalesced\"))) = {\n";
+ Result += "\t0,\n"; // id is; is null
+ Result += "\t\""; Result += PDecl->getNameAsString(); Result += "\",\n";
+ if (SuperProtocols.size() > 0) {
+ Result += "\t(const struct _protocol_list_t *)&"; Result += "_OBJC_PROTOCOL_REFS_";
+ Result += PDecl->getNameAsString(); Result += ",\n";
+ }
+ else
+ Result += "\t0,\n";
+ if (InstanceMethods.size() > 0) {
+ Result += "\t(const struct method_list_t *)&_OBJC_PROTOCOL_INSTANCE_METHODS_";
+ Result += PDecl->getNameAsString(); Result += ",\n";
+ }
+ else
+ Result += "\t0,\n";
+
+ if (ClassMethods.size() > 0) {
+ Result += "\t(const struct method_list_t *)&_OBJC_PROTOCOL_CLASS_METHODS_";
+ Result += PDecl->getNameAsString(); Result += ",\n";
+ }
+ else
+ Result += "\t0,\n";
+
+ if (OptInstanceMethods.size() > 0) {
+ Result += "\t(const struct method_list_t *)&_OBJC_PROTOCOL_OPT_INSTANCE_METHODS_";
+ Result += PDecl->getNameAsString(); Result += ",\n";
+ }
+ else
+ Result += "\t0,\n";
+
+ if (OptClassMethods.size() > 0) {
+ Result += "\t(const struct method_list_t *)&_OBJC_PROTOCOL_OPT_CLASS_METHODS_";
+ Result += PDecl->getNameAsString(); Result += ",\n";
+ }
+ else
+ Result += "\t0,\n";
+
+ if (ProtocolProperties.size() > 0) {
+ Result += "\t(const struct _prop_list_t *)&_OBJC_PROTOCOL_PROPERTIES_";
+ Result += PDecl->getNameAsString(); Result += ",\n";
+ }
+ else
+ Result += "\t0,\n";
+
+ Result += "\t"; Result += "sizeof(_protocol_t)"; Result += ",\n";
+ Result += "\t0,\n";
+
+ if (AllMethods.size() > 0) {
+ Result += "\t(const char **)&"; Result += "_OBJC_PROTOCOL_METHOD_TYPES_";
+ Result += PDecl->getNameAsString();
+ Result += "\n};\n";
+ }
+ else
+ Result += "\t0\n};\n";
+
+ if (LangOpts.MicrosoftExt)
+ Result += "static ";
+ Result += "struct _protocol_t *";
+ Result += "_OBJC_LABEL_PROTOCOL_$_"; Result += PDecl->getNameAsString();
+ Result += " = &_OBJC_PROTOCOL_"; Result += PDecl->getNameAsString();
+ Result += ";\n";
+
+ // Mark this protocol as having been generated.
+ if (!ObjCSynthesizedProtocols.insert(PDecl->getCanonicalDecl()).second)
+ llvm_unreachable("protocol already synthesized");
+
+}
+
+void RewriteModernObjC::RewriteObjCProtocolListMetaData(
+ const ObjCList<ObjCProtocolDecl> &Protocols,
+ StringRef prefix, StringRef ClassName,
+ std::string &Result) {
+ if (Protocols.empty()) return;
+
+ for (unsigned i = 0; i != Protocols.size(); i++)
+ RewriteObjCProtocolMetaData(Protocols[i], Result);
+
+ // Output the top lovel protocol meta-data for the class.
+ /* struct _objc_protocol_list {
+ struct _objc_protocol_list *next;
+ int protocol_count;
+ struct _objc_protocol *class_protocols[];
+ }
+ */
+ Result += "\n";
+ if (LangOpts.MicrosoftExt)
+ Result += "__declspec(allocate(\".cat_cls_meth$B\")) ";
+ Result += "static struct {\n";
+ Result += "\tstruct _objc_protocol_list *next;\n";
+ Result += "\tint protocol_count;\n";
+ Result += "\tstruct _objc_protocol *class_protocols[";
+ Result += utostr(Protocols.size());
+ Result += "];\n} _OBJC_";
+ Result += prefix;
+ Result += "_PROTOCOLS_";
+ Result += ClassName;
+ Result += " __attribute__ ((used, section (\"__OBJC, __cat_cls_meth\")))= "
+ "{\n\t0, ";
+ Result += utostr(Protocols.size());
+ Result += "\n";
+
+ Result += "\t,{&_OBJC_PROTOCOL_";
+ Result += Protocols[0]->getNameAsString();
+ Result += " \n";
+
+ for (unsigned i = 1; i != Protocols.size(); i++) {
+ Result += "\t ,&_OBJC_PROTOCOL_";
+ Result += Protocols[i]->getNameAsString();
+ Result += "\n";
+ }
+ Result += "\t }\n};\n";
+}
+
+/// hasObjCExceptionAttribute - Return true if this class or any super
+/// class has the __objc_exception__ attribute.
+/// FIXME. Move this to ASTContext.cpp as it is also used for IRGen.
+static bool hasObjCExceptionAttribute(ASTContext &Context,
+ const ObjCInterfaceDecl *OID) {
+ if (OID->hasAttr<ObjCExceptionAttr>())
+ return true;
+ if (const ObjCInterfaceDecl *Super = OID->getSuperClass())
+ return hasObjCExceptionAttribute(Context, Super);
+ return false;
+}
+
+void RewriteModernObjC::RewriteObjCClassMetaData(ObjCImplementationDecl *IDecl,
+ std::string &Result) {
+ ObjCInterfaceDecl *CDecl = IDecl->getClassInterface();
+
+ // Explicitly declared @interface's are already synthesized.
+ if (CDecl->isImplicitInterfaceDecl())
+ assert(false &&
+ "Legacy implicit interface rewriting not supported in moder abi");
+
+ WriteModernMetadataDeclarations(Context, Result);
+ SmallVector<ObjCIvarDecl *, 8> IVars;
+
+ for (ObjCIvarDecl *IVD = CDecl->all_declared_ivar_begin();
+ IVD; IVD = IVD->getNextIvar()) {
+ // Ignore unnamed bit-fields.
+ if (!IVD->getDeclName())
+ continue;
+ IVars.push_back(IVD);
+ }
+
+ Write__ivar_list_t_initializer(*this, Context, Result, IVars,
+ "_OBJC_$_INSTANCE_VARIABLES_",
+ CDecl);
+
+ // Build _objc_method_list for class's instance methods if needed
+ SmallVector<ObjCMethodDecl *, 32> InstanceMethods(IDecl->instance_methods());
+
+ // If any of our property implementations have associated getters or
+ // setters, produce metadata for them as well.
+ for (const auto *Prop : IDecl->property_impls()) {
+ if (Prop->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
+ continue;
+ if (!Prop->getPropertyIvarDecl())
+ continue;
+ ObjCPropertyDecl *PD = Prop->getPropertyDecl();
+ if (!PD)
+ continue;
+ if (ObjCMethodDecl *Getter = PD->getGetterMethodDecl())
+ if (mustSynthesizeSetterGetterMethod(IDecl, PD, true /*getter*/))
+ InstanceMethods.push_back(Getter);
+ if (PD->isReadOnly())
+ continue;
+ if (ObjCMethodDecl *Setter = PD->getSetterMethodDecl())
+ if (mustSynthesizeSetterGetterMethod(IDecl, PD, false /*setter*/))
+ InstanceMethods.push_back(Setter);
+ }
+
+ Write_method_list_t_initializer(*this, Context, Result, InstanceMethods,
+ "_OBJC_$_INSTANCE_METHODS_",
+ IDecl->getNameAsString(), true);
+
+ SmallVector<ObjCMethodDecl *, 32> ClassMethods(IDecl->class_methods());
+
+ Write_method_list_t_initializer(*this, Context, Result, ClassMethods,
+ "_OBJC_$_CLASS_METHODS_",
+ IDecl->getNameAsString(), true);
+
+ // Protocols referenced in class declaration?
+ // Protocol's super protocol list
+ std::vector<ObjCProtocolDecl *> RefedProtocols;
+ const ObjCList<ObjCProtocolDecl> &Protocols = CDecl->getReferencedProtocols();
+ for (ObjCList<ObjCProtocolDecl>::iterator I = Protocols.begin(),
+ E = Protocols.end();
+ I != E; ++I) {
+ RefedProtocols.push_back(*I);
+ // Must write out all protocol definitions in current qualifier list,
+ // and in their nested qualifiers before writing out current definition.
+ RewriteObjCProtocolMetaData(*I, Result);
+ }
+
+ Write_protocol_list_initializer(Context, Result,
+ RefedProtocols,
+ "_OBJC_CLASS_PROTOCOLS_$_",
+ IDecl->getNameAsString());
+
+ // Protocol's property metadata.
+ SmallVector<ObjCPropertyDecl *, 8> ClassProperties(CDecl->properties());
+ Write_prop_list_t_initializer(*this, Context, Result, ClassProperties,
+ /* Container */IDecl,
+ "_OBJC_$_PROP_LIST_",
+ CDecl->getNameAsString());
+
+
+ // Data for initializing _class_ro_t metaclass meta-data
+ uint32_t flags = CLS_META;
+ std::string InstanceSize;
+ std::string InstanceStart;
+
+
+ bool classIsHidden = CDecl->getVisibility() == HiddenVisibility;
+ if (classIsHidden)
+ flags |= OBJC2_CLS_HIDDEN;
+
+ if (!CDecl->getSuperClass())
+ // class is root
+ flags |= CLS_ROOT;
+ InstanceSize = "sizeof(struct _class_t)";
+ InstanceStart = InstanceSize;
+ Write__class_ro_t_initializer(Context, Result, flags,
+ InstanceStart, InstanceSize,
+ ClassMethods,
+ nullptr,
+ nullptr,
+ nullptr,
+ "_OBJC_METACLASS_RO_$_",
+ CDecl->getNameAsString());
+
+ // Data for initializing _class_ro_t meta-data
+ flags = CLS;
+ if (classIsHidden)
+ flags |= OBJC2_CLS_HIDDEN;
+
+ if (hasObjCExceptionAttribute(*Context, CDecl))
+ flags |= CLS_EXCEPTION;
+
+ if (!CDecl->getSuperClass())
+ // class is root
+ flags |= CLS_ROOT;
+
+ InstanceSize.clear();
+ InstanceStart.clear();
+ if (!ObjCSynthesizedStructs.count(CDecl)) {
+ InstanceSize = "0";
+ InstanceStart = "0";
+ }
+ else {
+ InstanceSize = "sizeof(struct ";
+ InstanceSize += CDecl->getNameAsString();
+ InstanceSize += "_IMPL)";
+
+ ObjCIvarDecl *IVD = CDecl->all_declared_ivar_begin();
+ if (IVD) {
+ RewriteIvarOffsetComputation(IVD, InstanceStart);
+ }
+ else
+ InstanceStart = InstanceSize;
+ }
+ Write__class_ro_t_initializer(Context, Result, flags,
+ InstanceStart, InstanceSize,
+ InstanceMethods,
+ RefedProtocols,
+ IVars,
+ ClassProperties,
+ "_OBJC_CLASS_RO_$_",
+ CDecl->getNameAsString());
+
+ Write_class_t(Context, Result,
+ "OBJC_METACLASS_$_",
+ CDecl, /*metaclass*/true);
+
+ Write_class_t(Context, Result,
+ "OBJC_CLASS_$_",
+ CDecl, /*metaclass*/false);
+
+ if (ImplementationIsNonLazy(IDecl))
+ DefinedNonLazyClasses.push_back(CDecl);
+
+}
+
+void RewriteModernObjC::RewriteClassSetupInitHook(std::string &Result) {
+ int ClsDefCount = ClassImplementation.size();
+ if (!ClsDefCount)
+ return;
+ Result += "#pragma section(\".objc_inithooks$B\", long, read, write)\n";
+ Result += "__declspec(allocate(\".objc_inithooks$B\")) ";
+ Result += "static void *OBJC_CLASS_SETUP[] = {\n";
+ for (int i = 0; i < ClsDefCount; i++) {
+ ObjCImplementationDecl *IDecl = ClassImplementation[i];
+ ObjCInterfaceDecl *CDecl = IDecl->getClassInterface();
+ Result += "\t(void *)&OBJC_CLASS_SETUP_$_";
+ Result += CDecl->getName(); Result += ",\n";
+ }
+ Result += "};\n";
+}
+
+void RewriteModernObjC::RewriteMetaDataIntoBuffer(std::string &Result) {
+ int ClsDefCount = ClassImplementation.size();
+ int CatDefCount = CategoryImplementation.size();
+
+ // For each implemented class, write out all its meta data.
+ for (int i = 0; i < ClsDefCount; i++)
+ RewriteObjCClassMetaData(ClassImplementation[i], Result);
+
+ RewriteClassSetupInitHook(Result);
+
+ // For each implemented category, write out all its meta data.
+ for (int i = 0; i < CatDefCount; i++)
+ RewriteObjCCategoryImplDecl(CategoryImplementation[i], Result);
+
+ RewriteCategorySetupInitHook(Result);
+
+ if (ClsDefCount > 0) {
+ if (LangOpts.MicrosoftExt)
+ Result += "__declspec(allocate(\".objc_classlist$B\")) ";
+ Result += "static struct _class_t *L_OBJC_LABEL_CLASS_$ [";
+ Result += llvm::utostr(ClsDefCount); Result += "]";
+ Result +=
+ " __attribute__((used, section (\"__DATA, __objc_classlist,"
+ "regular,no_dead_strip\")))= {\n";
+ for (int i = 0; i < ClsDefCount; i++) {
+ Result += "\t&OBJC_CLASS_$_";
+ Result += ClassImplementation[i]->getNameAsString();
+ Result += ",\n";
+ }
+ Result += "};\n";
+
+ if (!DefinedNonLazyClasses.empty()) {
+ if (LangOpts.MicrosoftExt)
+ Result += "__declspec(allocate(\".objc_nlclslist$B\")) \n";
+ Result += "static struct _class_t *_OBJC_LABEL_NONLAZY_CLASS_$[] = {\n\t";
+ for (unsigned i = 0, e = DefinedNonLazyClasses.size(); i < e; i++) {
+ Result += "\t&OBJC_CLASS_$_"; Result += DefinedNonLazyClasses[i]->getNameAsString();
+ Result += ",\n";
+ }
+ Result += "};\n";
+ }
+ }
+
+ if (CatDefCount > 0) {
+ if (LangOpts.MicrosoftExt)
+ Result += "__declspec(allocate(\".objc_catlist$B\")) ";
+ Result += "static struct _category_t *L_OBJC_LABEL_CATEGORY_$ [";
+ Result += llvm::utostr(CatDefCount); Result += "]";
+ Result +=
+ " __attribute__((used, section (\"__DATA, __objc_catlist,"
+ "regular,no_dead_strip\")))= {\n";
+ for (int i = 0; i < CatDefCount; i++) {
+ Result += "\t&_OBJC_$_CATEGORY_";
+ Result +=
+ CategoryImplementation[i]->getClassInterface()->getNameAsString();
+ Result += "_$_";
+ Result += CategoryImplementation[i]->getNameAsString();
+ Result += ",\n";
+ }
+ Result += "};\n";
+ }
+
+ if (!DefinedNonLazyCategories.empty()) {
+ if (LangOpts.MicrosoftExt)
+ Result += "__declspec(allocate(\".objc_nlcatlist$B\")) \n";
+ Result += "static struct _category_t *_OBJC_LABEL_NONLAZY_CATEGORY_$[] = {\n\t";
+ for (unsigned i = 0, e = DefinedNonLazyCategories.size(); i < e; i++) {
+ Result += "\t&_OBJC_$_CATEGORY_";
+ Result +=
+ DefinedNonLazyCategories[i]->getClassInterface()->getNameAsString();
+ Result += "_$_";
+ Result += DefinedNonLazyCategories[i]->getNameAsString();
+ Result += ",\n";
+ }
+ Result += "};\n";
+ }
+}
+
+void RewriteModernObjC::WriteImageInfo(std::string &Result) {
+ if (LangOpts.MicrosoftExt)
+ Result += "__declspec(allocate(\".objc_imageinfo$B\")) \n";
+
+ Result += "static struct IMAGE_INFO { unsigned version; unsigned flag; } ";
+ // version 0, ObjCABI is 2
+ Result += "_OBJC_IMAGE_INFO = { 0, 2 };\n";
+}
+
+/// RewriteObjCCategoryImplDecl - Rewrite metadata for each category
+/// implementation.
+void RewriteModernObjC::RewriteObjCCategoryImplDecl(ObjCCategoryImplDecl *IDecl,
+ std::string &Result) {
+ WriteModernMetadataDeclarations(Context, Result);
+ ObjCInterfaceDecl *ClassDecl = IDecl->getClassInterface();
+ // Find category declaration for this implementation.
+ ObjCCategoryDecl *CDecl
+ = ClassDecl->FindCategoryDeclaration(IDecl->getIdentifier());
+
+ std::string FullCategoryName = ClassDecl->getNameAsString();
+ FullCategoryName += "_$_";
+ FullCategoryName += CDecl->getNameAsString();
+
+ // Build _objc_method_list for class's instance methods if needed
+ SmallVector<ObjCMethodDecl *, 32> InstanceMethods(IDecl->instance_methods());
+
+ // If any of our property implementations have associated getters or
+ // setters, produce metadata for them as well.
+ for (const auto *Prop : IDecl->property_impls()) {
+ if (Prop->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
+ continue;
+ if (!Prop->getPropertyIvarDecl())
+ continue;
+ ObjCPropertyDecl *PD = Prop->getPropertyDecl();
+ if (!PD)
+ continue;
+ if (ObjCMethodDecl *Getter = PD->getGetterMethodDecl())
+ InstanceMethods.push_back(Getter);
+ if (PD->isReadOnly())
+ continue;
+ if (ObjCMethodDecl *Setter = PD->getSetterMethodDecl())
+ InstanceMethods.push_back(Setter);
+ }
+
+ Write_method_list_t_initializer(*this, Context, Result, InstanceMethods,
+ "_OBJC_$_CATEGORY_INSTANCE_METHODS_",
+ FullCategoryName, true);
+
+ SmallVector<ObjCMethodDecl *, 32> ClassMethods(IDecl->class_methods());
+
+ Write_method_list_t_initializer(*this, Context, Result, ClassMethods,
+ "_OBJC_$_CATEGORY_CLASS_METHODS_",
+ FullCategoryName, true);
+
+ // Protocols referenced in class declaration?
+ // Protocol's super protocol list
+ SmallVector<ObjCProtocolDecl *, 8> RefedProtocols(CDecl->protocols());
+ for (auto *I : CDecl->protocols())
+ // Must write out all protocol definitions in current qualifier list,
+ // and in their nested qualifiers before writing out current definition.
+ RewriteObjCProtocolMetaData(I, Result);
+
+ Write_protocol_list_initializer(Context, Result,
+ RefedProtocols,
+ "_OBJC_CATEGORY_PROTOCOLS_$_",
+ FullCategoryName);
+
+ // Protocol's property metadata.
+ SmallVector<ObjCPropertyDecl *, 8> ClassProperties(CDecl->properties());
+ Write_prop_list_t_initializer(*this, Context, Result, ClassProperties,
+ /* Container */IDecl,
+ "_OBJC_$_PROP_LIST_",
+ FullCategoryName);
+
+ Write_category_t(*this, Context, Result,
+ CDecl,
+ ClassDecl,
+ InstanceMethods,
+ ClassMethods,
+ RefedProtocols,
+ ClassProperties);
+
+ // Determine if this category is also "non-lazy".
+ if (ImplementationIsNonLazy(IDecl))
+ DefinedNonLazyCategories.push_back(CDecl);
+
+}
+
+void RewriteModernObjC::RewriteCategorySetupInitHook(std::string &Result) {
+ int CatDefCount = CategoryImplementation.size();
+ if (!CatDefCount)
+ return;
+ Result += "#pragma section(\".objc_inithooks$B\", long, read, write)\n";
+ Result += "__declspec(allocate(\".objc_inithooks$B\")) ";
+ Result += "static void *OBJC_CATEGORY_SETUP[] = {\n";
+ for (int i = 0; i < CatDefCount; i++) {
+ ObjCCategoryImplDecl *IDecl = CategoryImplementation[i];
+ ObjCCategoryDecl *CatDecl= IDecl->getCategoryDecl();
+ ObjCInterfaceDecl *ClassDecl = IDecl->getClassInterface();
+ Result += "\t(void *)&OBJC_CATEGORY_SETUP_$_";
+ Result += ClassDecl->getName();
+ Result += "_$_";
+ Result += CatDecl->getName();
+ Result += ",\n";
+ }
+ Result += "};\n";
+}
+
+// RewriteObjCMethodsMetaData - Rewrite methods metadata for instance or
+/// class methods.
+template<typename MethodIterator>
+void RewriteModernObjC::RewriteObjCMethodsMetaData(MethodIterator MethodBegin,
+ MethodIterator MethodEnd,
+ bool IsInstanceMethod,
+ StringRef prefix,
+ StringRef ClassName,
+ std::string &Result) {
+ if (MethodBegin == MethodEnd) return;
+
+ if (!objc_impl_method) {
+ /* struct _objc_method {
+ SEL _cmd;
+ char *method_types;
+ void *_imp;
+ }
+ */
+ Result += "\nstruct _objc_method {\n";
+ Result += "\tSEL _cmd;\n";
+ Result += "\tchar *method_types;\n";
+ Result += "\tvoid *_imp;\n";
+ Result += "};\n";
+
+ objc_impl_method = true;
+ }
+
+ // Build _objc_method_list for class's methods if needed
+
+ /* struct {
+ struct _objc_method_list *next_method;
+ int method_count;
+ struct _objc_method method_list[];
+ }
+ */
+ unsigned NumMethods = std::distance(MethodBegin, MethodEnd);
+ Result += "\n";
+ if (LangOpts.MicrosoftExt) {
+ if (IsInstanceMethod)
+ Result += "__declspec(allocate(\".inst_meth$B\")) ";
+ else
+ Result += "__declspec(allocate(\".cls_meth$B\")) ";
+ }
+ Result += "static struct {\n";
+ Result += "\tstruct _objc_method_list *next_method;\n";
+ Result += "\tint method_count;\n";
+ Result += "\tstruct _objc_method method_list[";
+ Result += utostr(NumMethods);
+ Result += "];\n} _OBJC_";
+ Result += prefix;
+ Result += IsInstanceMethod ? "INSTANCE" : "CLASS";
+ Result += "_METHODS_";
+ Result += ClassName;
+ Result += " __attribute__ ((used, section (\"__OBJC, __";
+ Result += IsInstanceMethod ? "inst" : "cls";
+ Result += "_meth\")))= ";
+ Result += "{\n\t0, " + utostr(NumMethods) + "\n";
+
+ Result += "\t,{{(SEL)\"";
+ Result += (*MethodBegin)->getSelector().getAsString().c_str();
+ std::string MethodTypeString;
+ Context->getObjCEncodingForMethodDecl(*MethodBegin, MethodTypeString);
+ Result += "\", \"";
+ Result += MethodTypeString;
+ Result += "\", (void *)";
+ Result += MethodInternalNames[*MethodBegin];
+ Result += "}\n";
+ for (++MethodBegin; MethodBegin != MethodEnd; ++MethodBegin) {
+ Result += "\t ,{(SEL)\"";
+ Result += (*MethodBegin)->getSelector().getAsString().c_str();
+ std::string MethodTypeString;
+ Context->getObjCEncodingForMethodDecl(*MethodBegin, MethodTypeString);
+ Result += "\", \"";
+ Result += MethodTypeString;
+ Result += "\", (void *)";
+ Result += MethodInternalNames[*MethodBegin];
+ Result += "}\n";
+ }
+ Result += "\t }\n};\n";
+}
+
+Stmt *RewriteModernObjC::RewriteObjCIvarRefExpr(ObjCIvarRefExpr *IV) {
+ SourceRange OldRange = IV->getSourceRange();
+ Expr *BaseExpr = IV->getBase();
+
+ // Rewrite the base, but without actually doing replaces.
+ {
+ DisableReplaceStmtScope S(*this);
+ BaseExpr = cast<Expr>(RewriteFunctionBodyOrGlobalInitializer(BaseExpr));
+ IV->setBase(BaseExpr);
+ }
+
+ ObjCIvarDecl *D = IV->getDecl();
+
+ Expr *Replacement = IV;
+
+ if (BaseExpr->getType()->isObjCObjectPointerType()) {
+ const ObjCInterfaceType *iFaceDecl =
+ dyn_cast<ObjCInterfaceType>(BaseExpr->getType()->getPointeeType());
+ assert(iFaceDecl && "RewriteObjCIvarRefExpr - iFaceDecl is null");
+ // lookup which class implements the instance variable.
+ ObjCInterfaceDecl *clsDeclared = nullptr;
+ iFaceDecl->getDecl()->lookupInstanceVariable(D->getIdentifier(),
+ clsDeclared);
+ assert(clsDeclared && "RewriteObjCIvarRefExpr(): Can't find class");
+
+ // Build name of symbol holding ivar offset.
+ std::string IvarOffsetName;
+ if (D->isBitField())
+ ObjCIvarBitfieldGroupOffset(D, IvarOffsetName);
+ else
+ WriteInternalIvarName(clsDeclared, D, IvarOffsetName);
+
+ ReferencedIvars[clsDeclared].insert(D);
+
+ // cast offset to "char *".
+ CastExpr *castExpr = NoTypeInfoCStyleCastExpr(Context,
+ Context->getPointerType(Context->CharTy),
+ CK_BitCast,
+ BaseExpr);
+ VarDecl *NewVD = VarDecl::Create(*Context, TUDecl, SourceLocation(),
+ SourceLocation(), &Context->Idents.get(IvarOffsetName),
+ Context->UnsignedLongTy, nullptr,
+ SC_Extern);
+ DeclRefExpr *DRE = new (Context) DeclRefExpr(NewVD, false,
+ Context->UnsignedLongTy, VK_LValue,
+ SourceLocation());
+ BinaryOperator *addExpr =
+ new (Context) BinaryOperator(castExpr, DRE, BO_Add,
+ Context->getPointerType(Context->CharTy),
+ VK_RValue, OK_Ordinary, SourceLocation(), false);
+ // Don't forget the parens to enforce the proper binding.
+ ParenExpr *PE = new (Context) ParenExpr(SourceLocation(),
+ SourceLocation(),
+ addExpr);
+ QualType IvarT = D->getType();
+ if (D->isBitField())
+ IvarT = GetGroupRecordTypeForObjCIvarBitfield(D);
+
+ if (!isa<TypedefType>(IvarT) && IvarT->isRecordType()) {
+ RecordDecl *RD = IvarT->getAs<RecordType>()->getDecl();
+ RD = RD->getDefinition();
+ if (RD && !RD->getDeclName().getAsIdentifierInfo()) {
+ // decltype(((Foo_IMPL*)0)->bar) *
+ ObjCContainerDecl *CDecl =
+ dyn_cast<ObjCContainerDecl>(D->getDeclContext());
+ // ivar in class extensions requires special treatment.
+ if (ObjCCategoryDecl *CatDecl = dyn_cast<ObjCCategoryDecl>(CDecl))
+ CDecl = CatDecl->getClassInterface();
+ std::string RecName = CDecl->getName();
+ RecName += "_IMPL";
+ RecordDecl *RD = RecordDecl::Create(*Context, TTK_Struct, TUDecl,
+ SourceLocation(), SourceLocation(),
+ &Context->Idents.get(RecName.c_str()));
+ QualType PtrStructIMPL = Context->getPointerType(Context->getTagDeclType(RD));
+ unsigned UnsignedIntSize =
+ static_cast<unsigned>(Context->getTypeSize(Context->UnsignedIntTy));
+ Expr *Zero = IntegerLiteral::Create(*Context,
+ llvm::APInt(UnsignedIntSize, 0),
+ Context->UnsignedIntTy, SourceLocation());
+ Zero = NoTypeInfoCStyleCastExpr(Context, PtrStructIMPL, CK_BitCast, Zero);
+ ParenExpr *PE = new (Context) ParenExpr(SourceLocation(), SourceLocation(),
+ Zero);
+ FieldDecl *FD = FieldDecl::Create(*Context, nullptr, SourceLocation(),
+ SourceLocation(),
+ &Context->Idents.get(D->getNameAsString()),
+ IvarT, nullptr,
+ /*BitWidth=*/nullptr,
+ /*Mutable=*/true, ICIS_NoInit);
+ MemberExpr *ME = new (Context)
+ MemberExpr(PE, true, SourceLocation(), FD, SourceLocation(),
+ FD->getType(), VK_LValue, OK_Ordinary);
+ IvarT = Context->getDecltypeType(ME, ME->getType());
+ }
+ }
+ convertObjCTypeToCStyleType(IvarT);
+ QualType castT = Context->getPointerType(IvarT);
+
+ castExpr = NoTypeInfoCStyleCastExpr(Context,
+ castT,
+ CK_BitCast,
+ PE);
+
+
+ Expr *Exp = new (Context) UnaryOperator(castExpr, UO_Deref, IvarT,
+ VK_LValue, OK_Ordinary,
+ SourceLocation());
+ PE = new (Context) ParenExpr(OldRange.getBegin(),
+ OldRange.getEnd(),
+ Exp);
+
+ if (D->isBitField()) {
+ FieldDecl *FD = FieldDecl::Create(*Context, nullptr, SourceLocation(),
+ SourceLocation(),
+ &Context->Idents.get(D->getNameAsString()),
+ D->getType(), nullptr,
+ /*BitWidth=*/D->getBitWidth(),
+ /*Mutable=*/true, ICIS_NoInit);
+ MemberExpr *ME = new (Context)
+ MemberExpr(PE, /*isArrow*/ false, SourceLocation(), FD,
+ SourceLocation(), FD->getType(), VK_LValue, OK_Ordinary);
+ Replacement = ME;
+
+ }
+ else
+ Replacement = PE;
+ }
+
+ ReplaceStmtWithRange(IV, Replacement, OldRange);
+ return Replacement;
+}
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/Frontend/Rewrite/RewriteObjC.cpp b/contrib/llvm/tools/clang/lib/Frontend/Rewrite/RewriteObjC.cpp
new file mode 100644
index 0000000..b2a45b4
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Frontend/Rewrite/RewriteObjC.cpp
@@ -0,0 +1,5928 @@
+//===--- RewriteObjC.cpp - Playground for the code rewriter ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Hacks and fun related to the code rewriter.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Rewrite/Frontend/ASTConsumers.h"
+#include "clang/AST/AST.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/ParentMap.h"
+#include "clang/Basic/CharInfo.h"
+#include "clang/Basic/Diagnostic.h"
+#include "clang/Basic/IdentifierTable.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Lex/Lexer.h"
+#include "clang/Rewrite/Core/Rewriter.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/raw_ostream.h"
+#include <memory>
+
+#ifdef CLANG_ENABLE_OBJC_REWRITER
+
+using namespace clang;
+using llvm::utostr;
+
+namespace {
+ class RewriteObjC : public ASTConsumer {
+ protected:
+
+ enum {
+ BLOCK_FIELD_IS_OBJECT = 3, /* id, NSObject, __attribute__((NSObject)),
+ block, ... */
+ BLOCK_FIELD_IS_BLOCK = 7, /* a block variable */
+ BLOCK_FIELD_IS_BYREF = 8, /* the on stack structure holding the
+ __block variable */
+ BLOCK_FIELD_IS_WEAK = 16, /* declared __weak, only used in byref copy
+ helpers */
+ BLOCK_BYREF_CALLER = 128, /* called from __block (byref) copy/dispose
+ support routines */
+ BLOCK_BYREF_CURRENT_MAX = 256
+ };
+
+ enum {
+ BLOCK_NEEDS_FREE = (1 << 24),
+ BLOCK_HAS_COPY_DISPOSE = (1 << 25),
+ BLOCK_HAS_CXX_OBJ = (1 << 26),
+ BLOCK_IS_GC = (1 << 27),
+ BLOCK_IS_GLOBAL = (1 << 28),
+ BLOCK_HAS_DESCRIPTOR = (1 << 29)
+ };
+ static const int OBJC_ABI_VERSION = 7;
+
+ Rewriter Rewrite;
+ DiagnosticsEngine &Diags;
+ const LangOptions &LangOpts;
+ ASTContext *Context;
+ SourceManager *SM;
+ TranslationUnitDecl *TUDecl;
+ FileID MainFileID;
+ const char *MainFileStart, *MainFileEnd;
+ Stmt *CurrentBody;
+ ParentMap *PropParentMap; // created lazily.
+ std::string InFileName;
+ raw_ostream* OutFile;
+ std::string Preamble;
+
+ TypeDecl *ProtocolTypeDecl;
+ VarDecl *GlobalVarDecl;
+ unsigned RewriteFailedDiag;
+ // ObjC string constant support.
+ unsigned NumObjCStringLiterals;
+ VarDecl *ConstantStringClassReference;
+ RecordDecl *NSStringRecord;
+
+ // ObjC foreach break/continue generation support.
+ int BcLabelCount;
+
+ unsigned TryFinallyContainsReturnDiag;
+ // Needed for super.
+ ObjCMethodDecl *CurMethodDef;
+ RecordDecl *SuperStructDecl;
+ RecordDecl *ConstantStringDecl;
+
+ FunctionDecl *MsgSendFunctionDecl;
+ FunctionDecl *MsgSendSuperFunctionDecl;
+ FunctionDecl *MsgSendStretFunctionDecl;
+ FunctionDecl *MsgSendSuperStretFunctionDecl;
+ FunctionDecl *MsgSendFpretFunctionDecl;
+ FunctionDecl *GetClassFunctionDecl;
+ FunctionDecl *GetMetaClassFunctionDecl;
+ FunctionDecl *GetSuperClassFunctionDecl;
+ FunctionDecl *SelGetUidFunctionDecl;
+ FunctionDecl *CFStringFunctionDecl;
+ FunctionDecl *SuperConstructorFunctionDecl;
+ FunctionDecl *CurFunctionDef;
+ FunctionDecl *CurFunctionDeclToDeclareForBlock;
+
+ /* Misc. containers needed for meta-data rewrite. */
+ SmallVector<ObjCImplementationDecl *, 8> ClassImplementation;
+ SmallVector<ObjCCategoryImplDecl *, 8> CategoryImplementation;
+ llvm::SmallPtrSet<ObjCInterfaceDecl*, 8> ObjCSynthesizedStructs;
+ llvm::SmallPtrSet<ObjCProtocolDecl*, 8> ObjCSynthesizedProtocols;
+ llvm::SmallPtrSet<ObjCInterfaceDecl*, 8> ObjCForwardDecls;
+ llvm::DenseMap<ObjCMethodDecl*, std::string> MethodInternalNames;
+ SmallVector<Stmt *, 32> Stmts;
+ SmallVector<int, 8> ObjCBcLabelNo;
+ // Remember all the @protocol(<expr>) expressions.
+ llvm::SmallPtrSet<ObjCProtocolDecl *, 32> ProtocolExprDecls;
+
+ llvm::DenseSet<uint64_t> CopyDestroyCache;
+
+ // Block expressions.
+ SmallVector<BlockExpr *, 32> Blocks;
+ SmallVector<int, 32> InnerDeclRefsCount;
+ SmallVector<DeclRefExpr *, 32> InnerDeclRefs;
+
+ SmallVector<DeclRefExpr *, 32> BlockDeclRefs;
+
+ // Block related declarations.
+ SmallVector<ValueDecl *, 8> BlockByCopyDecls;
+ llvm::SmallPtrSet<ValueDecl *, 8> BlockByCopyDeclsPtrSet;
+ SmallVector<ValueDecl *, 8> BlockByRefDecls;
+ llvm::SmallPtrSet<ValueDecl *, 8> BlockByRefDeclsPtrSet;
+ llvm::DenseMap<ValueDecl *, unsigned> BlockByRefDeclNo;
+ llvm::SmallPtrSet<ValueDecl *, 8> ImportedBlockDecls;
+ llvm::SmallPtrSet<VarDecl *, 8> ImportedLocalExternalDecls;
+
+ llvm::DenseMap<BlockExpr *, std::string> RewrittenBlockExprs;
+
+ // This maps an original source AST to it's rewritten form. This allows
+ // us to avoid rewriting the same node twice (which is very uncommon).
+ // This is needed to support some of the exotic property rewriting.
+ llvm::DenseMap<Stmt *, Stmt *> ReplacedNodes;
+
+ // Needed for header files being rewritten
+ bool IsHeader;
+ bool SilenceRewriteMacroWarning;
+ bool objc_impl_method;
+
+ bool DisableReplaceStmt;
+ class DisableReplaceStmtScope {
+ RewriteObjC &R;
+ bool SavedValue;
+
+ public:
+ DisableReplaceStmtScope(RewriteObjC &R)
+ : R(R), SavedValue(R.DisableReplaceStmt) {
+ R.DisableReplaceStmt = true;
+ }
+ ~DisableReplaceStmtScope() {
+ R.DisableReplaceStmt = SavedValue;
+ }
+ };
+ void InitializeCommon(ASTContext &context);
+
+ public:
+
+ // Top Level Driver code.
+ bool HandleTopLevelDecl(DeclGroupRef D) override {
+ for (DeclGroupRef::iterator I = D.begin(), E = D.end(); I != E; ++I) {
+ if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(*I)) {
+ if (!Class->isThisDeclarationADefinition()) {
+ RewriteForwardClassDecl(D);
+ break;
+ }
+ }
+
+ if (ObjCProtocolDecl *Proto = dyn_cast<ObjCProtocolDecl>(*I)) {
+ if (!Proto->isThisDeclarationADefinition()) {
+ RewriteForwardProtocolDecl(D);
+ break;
+ }
+ }
+
+ HandleTopLevelSingleDecl(*I);
+ }
+ return true;
+ }
+ void HandleTopLevelSingleDecl(Decl *D);
+ void HandleDeclInMainFile(Decl *D);
+ RewriteObjC(std::string inFile, raw_ostream *OS,
+ DiagnosticsEngine &D, const LangOptions &LOpts,
+ bool silenceMacroWarn);
+
+ ~RewriteObjC() override {}
+
+ void HandleTranslationUnit(ASTContext &C) override;
+
+ void ReplaceStmt(Stmt *Old, Stmt *New) {
+ ReplaceStmtWithRange(Old, New, Old->getSourceRange());
+ }
+
+ void ReplaceStmtWithRange(Stmt *Old, Stmt *New, SourceRange SrcRange) {
+ assert(Old != nullptr && New != nullptr && "Expected non-null Stmt's");
+
+ Stmt *ReplacingStmt = ReplacedNodes[Old];
+ if (ReplacingStmt)
+ return; // We can't rewrite the same node twice.
+
+ if (DisableReplaceStmt)
+ return;
+
+ // Measure the old text.
+ int Size = Rewrite.getRangeSize(SrcRange);
+ if (Size == -1) {
+ Diags.Report(Context->getFullLoc(Old->getLocStart()), RewriteFailedDiag)
+ << Old->getSourceRange();
+ return;
+ }
+ // Get the new text.
+ std::string SStr;
+ llvm::raw_string_ostream S(SStr);
+ New->printPretty(S, nullptr, PrintingPolicy(LangOpts));
+ const std::string &Str = S.str();
+
+ // If replacement succeeded or warning disabled return with no warning.
+ if (!Rewrite.ReplaceText(SrcRange.getBegin(), Size, Str)) {
+ ReplacedNodes[Old] = New;
+ return;
+ }
+ if (SilenceRewriteMacroWarning)
+ return;
+ Diags.Report(Context->getFullLoc(Old->getLocStart()), RewriteFailedDiag)
+ << Old->getSourceRange();
+ }
+
+ void InsertText(SourceLocation Loc, StringRef Str,
+ bool InsertAfter = true) {
+ // If insertion succeeded or warning disabled return with no warning.
+ if (!Rewrite.InsertText(Loc, Str, InsertAfter) ||
+ SilenceRewriteMacroWarning)
+ return;
+
+ Diags.Report(Context->getFullLoc(Loc), RewriteFailedDiag);
+ }
+
+ void ReplaceText(SourceLocation Start, unsigned OrigLength,
+ StringRef Str) {
+ // If removal succeeded or warning disabled return with no warning.
+ if (!Rewrite.ReplaceText(Start, OrigLength, Str) ||
+ SilenceRewriteMacroWarning)
+ return;
+
+ Diags.Report(Context->getFullLoc(Start), RewriteFailedDiag);
+ }
+
+ // Syntactic Rewriting.
+ void RewriteRecordBody(RecordDecl *RD);
+ void RewriteInclude();
+ void RewriteForwardClassDecl(DeclGroupRef D);
+ void RewriteForwardClassDecl(const SmallVectorImpl<Decl *> &DG);
+ void RewriteForwardClassEpilogue(ObjCInterfaceDecl *ClassDecl,
+ const std::string &typedefString);
+ void RewriteImplementations();
+ void RewritePropertyImplDecl(ObjCPropertyImplDecl *PID,
+ ObjCImplementationDecl *IMD,
+ ObjCCategoryImplDecl *CID);
+ void RewriteInterfaceDecl(ObjCInterfaceDecl *Dcl);
+ void RewriteImplementationDecl(Decl *Dcl);
+ void RewriteObjCMethodDecl(const ObjCInterfaceDecl *IDecl,
+ ObjCMethodDecl *MDecl, std::string &ResultStr);
+ void RewriteTypeIntoString(QualType T, std::string &ResultStr,
+ const FunctionType *&FPRetType);
+ void RewriteByRefString(std::string &ResultStr, const std::string &Name,
+ ValueDecl *VD, bool def=false);
+ void RewriteCategoryDecl(ObjCCategoryDecl *Dcl);
+ void RewriteProtocolDecl(ObjCProtocolDecl *Dcl);
+ void RewriteForwardProtocolDecl(DeclGroupRef D);
+ void RewriteForwardProtocolDecl(const SmallVectorImpl<Decl *> &DG);
+ void RewriteMethodDeclaration(ObjCMethodDecl *Method);
+ void RewriteProperty(ObjCPropertyDecl *prop);
+ void RewriteFunctionDecl(FunctionDecl *FD);
+ void RewriteBlockPointerType(std::string& Str, QualType Type);
+ void RewriteBlockPointerTypeVariable(std::string& Str, ValueDecl *VD);
+ void RewriteBlockLiteralFunctionDecl(FunctionDecl *FD);
+ void RewriteObjCQualifiedInterfaceTypes(Decl *Dcl);
+ void RewriteTypeOfDecl(VarDecl *VD);
+ void RewriteObjCQualifiedInterfaceTypes(Expr *E);
+
+ // Expression Rewriting.
+ Stmt *RewriteFunctionBodyOrGlobalInitializer(Stmt *S);
+ Stmt *RewriteAtEncode(ObjCEncodeExpr *Exp);
+ Stmt *RewritePropertyOrImplicitGetter(PseudoObjectExpr *Pseudo);
+ Stmt *RewritePropertyOrImplicitSetter(PseudoObjectExpr *Pseudo);
+ Stmt *RewriteAtSelector(ObjCSelectorExpr *Exp);
+ Stmt *RewriteMessageExpr(ObjCMessageExpr *Exp);
+ Stmt *RewriteObjCStringLiteral(ObjCStringLiteral *Exp);
+ Stmt *RewriteObjCProtocolExpr(ObjCProtocolExpr *Exp);
+ void RewriteTryReturnStmts(Stmt *S);
+ void RewriteSyncReturnStmts(Stmt *S, std::string buf);
+ Stmt *RewriteObjCTryStmt(ObjCAtTryStmt *S);
+ Stmt *RewriteObjCSynchronizedStmt(ObjCAtSynchronizedStmt *S);
+ Stmt *RewriteObjCThrowStmt(ObjCAtThrowStmt *S);
+ Stmt *RewriteObjCForCollectionStmt(ObjCForCollectionStmt *S,
+ SourceLocation OrigEnd);
+ Stmt *RewriteBreakStmt(BreakStmt *S);
+ Stmt *RewriteContinueStmt(ContinueStmt *S);
+ void RewriteCastExpr(CStyleCastExpr *CE);
+
+ // Block rewriting.
+ void RewriteBlocksInFunctionProtoType(QualType funcType, NamedDecl *D);
+
+ // Block specific rewrite rules.
+ void RewriteBlockPointerDecl(NamedDecl *VD);
+ void RewriteByRefVar(VarDecl *VD);
+ Stmt *RewriteBlockDeclRefExpr(DeclRefExpr *VD);
+ Stmt *RewriteLocalVariableExternalStorage(DeclRefExpr *DRE);
+ void RewriteBlockPointerFunctionArgs(FunctionDecl *FD);
+
+ void RewriteObjCInternalStruct(ObjCInterfaceDecl *CDecl,
+ std::string &Result);
+
+ void Initialize(ASTContext &context) override = 0;
+
+ // Metadata Rewriting.
+ virtual void RewriteMetaDataIntoBuffer(std::string &Result) = 0;
+ virtual void RewriteObjCProtocolListMetaData(const ObjCList<ObjCProtocolDecl> &Prots,
+ StringRef prefix,
+ StringRef ClassName,
+ std::string &Result) = 0;
+ virtual void RewriteObjCCategoryImplDecl(ObjCCategoryImplDecl *CDecl,
+ std::string &Result) = 0;
+ virtual void RewriteObjCProtocolMetaData(ObjCProtocolDecl *Protocol,
+ StringRef prefix,
+ StringRef ClassName,
+ std::string &Result) = 0;
+ virtual void RewriteObjCClassMetaData(ObjCImplementationDecl *IDecl,
+ std::string &Result) = 0;
+
+ // Rewriting ivar access
+ virtual Stmt *RewriteObjCIvarRefExpr(ObjCIvarRefExpr *IV) = 0;
+ virtual void RewriteIvarOffsetComputation(ObjCIvarDecl *ivar,
+ std::string &Result) = 0;
+
+ // Misc. AST transformation routines. Sometimes they end up calling
+ // rewriting routines on the new ASTs.
+ CallExpr *SynthesizeCallToFunctionDecl(FunctionDecl *FD,
+ Expr **args, unsigned nargs,
+ SourceLocation StartLoc=SourceLocation(),
+ SourceLocation EndLoc=SourceLocation());
+ CallExpr *SynthMsgSendStretCallExpr(FunctionDecl *MsgSendStretFlavor,
+ QualType msgSendType,
+ QualType returnType,
+ SmallVectorImpl<QualType> &ArgTypes,
+ SmallVectorImpl<Expr*> &MsgExprs,
+ ObjCMethodDecl *Method);
+ Stmt *SynthMessageExpr(ObjCMessageExpr *Exp,
+ SourceLocation StartLoc=SourceLocation(),
+ SourceLocation EndLoc=SourceLocation());
+
+ void SynthCountByEnumWithState(std::string &buf);
+ void SynthMsgSendFunctionDecl();
+ void SynthMsgSendSuperFunctionDecl();
+ void SynthMsgSendStretFunctionDecl();
+ void SynthMsgSendFpretFunctionDecl();
+ void SynthMsgSendSuperStretFunctionDecl();
+ void SynthGetClassFunctionDecl();
+ void SynthGetMetaClassFunctionDecl();
+ void SynthGetSuperClassFunctionDecl();
+ void SynthSelGetUidFunctionDecl();
+ void SynthSuperConstructorFunctionDecl();
+
+ std::string SynthesizeByrefCopyDestroyHelper(VarDecl *VD, int flag);
+ std::string SynthesizeBlockHelperFuncs(BlockExpr *CE, int i,
+ StringRef funcName, std::string Tag);
+ std::string SynthesizeBlockFunc(BlockExpr *CE, int i,
+ StringRef funcName, std::string Tag);
+ std::string SynthesizeBlockImpl(BlockExpr *CE,
+ std::string Tag, std::string Desc);
+ std::string SynthesizeBlockDescriptor(std::string DescTag,
+ std::string ImplTag,
+ int i, StringRef funcName,
+ unsigned hasCopy);
+ Stmt *SynthesizeBlockCall(CallExpr *Exp, const Expr* BlockExp);
+ void SynthesizeBlockLiterals(SourceLocation FunLocStart,
+ StringRef FunName);
+ FunctionDecl *SynthBlockInitFunctionDecl(StringRef name);
+ Stmt *SynthBlockInitExpr(BlockExpr *Exp,
+ const SmallVectorImpl<DeclRefExpr *> &InnerBlockDeclRefs);
+
+ // Misc. helper routines.
+ QualType getProtocolType();
+ void WarnAboutReturnGotoStmts(Stmt *S);
+ void HasReturnStmts(Stmt *S, bool &hasReturns);
+ void CheckFunctionPointerDecl(QualType dType, NamedDecl *ND);
+ void InsertBlockLiteralsWithinFunction(FunctionDecl *FD);
+ void InsertBlockLiteralsWithinMethod(ObjCMethodDecl *MD);
+
+ bool IsDeclStmtInForeachHeader(DeclStmt *DS);
+ void CollectBlockDeclRefInfo(BlockExpr *Exp);
+ void GetBlockDeclRefExprs(Stmt *S);
+ void GetInnerBlockDeclRefExprs(Stmt *S,
+ SmallVectorImpl<DeclRefExpr *> &InnerBlockDeclRefs,
+ llvm::SmallPtrSetImpl<const DeclContext *> &InnerContexts);
+
+ // We avoid calling Type::isBlockPointerType(), since it operates on the
+ // canonical type. We only care if the top-level type is a closure pointer.
+ bool isTopLevelBlockPointerType(QualType T) {
+ return isa<BlockPointerType>(T);
+ }
+
+ /// convertBlockPointerToFunctionPointer - Converts a block-pointer type
+ /// to a function pointer type and upon success, returns true; false
+ /// otherwise.
+ bool convertBlockPointerToFunctionPointer(QualType &T) {
+ if (isTopLevelBlockPointerType(T)) {
+ const BlockPointerType *BPT = T->getAs<BlockPointerType>();
+ T = Context->getPointerType(BPT->getPointeeType());
+ return true;
+ }
+ return false;
+ }
+
+ bool needToScanForQualifiers(QualType T);
+ QualType getSuperStructType();
+ QualType getConstantStringStructType();
+ QualType convertFunctionTypeOfBlocks(const FunctionType *FT);
+ bool BufferContainsPPDirectives(const char *startBuf, const char *endBuf);
+
+ void convertToUnqualifiedObjCType(QualType &T) {
+ if (T->isObjCQualifiedIdType())
+ T = Context->getObjCIdType();
+ else if (T->isObjCQualifiedClassType())
+ T = Context->getObjCClassType();
+ else if (T->isObjCObjectPointerType() &&
+ T->getPointeeType()->isObjCQualifiedInterfaceType()) {
+ if (const ObjCObjectPointerType * OBJPT =
+ T->getAsObjCInterfacePointerType()) {
+ const ObjCInterfaceType *IFaceT = OBJPT->getInterfaceType();
+ T = QualType(IFaceT, 0);
+ T = Context->getPointerType(T);
+ }
+ }
+ }
+
+ // FIXME: This predicate seems like it would be useful to add to ASTContext.
+ bool isObjCType(QualType T) {
+ if (!LangOpts.ObjC1 && !LangOpts.ObjC2)
+ return false;
+
+ QualType OCT = Context->getCanonicalType(T).getUnqualifiedType();
+
+ if (OCT == Context->getCanonicalType(Context->getObjCIdType()) ||
+ OCT == Context->getCanonicalType(Context->getObjCClassType()))
+ return true;
+
+ if (const PointerType *PT = OCT->getAs<PointerType>()) {
+ if (isa<ObjCInterfaceType>(PT->getPointeeType()) ||
+ PT->getPointeeType()->isObjCQualifiedIdType())
+ return true;
+ }
+ return false;
+ }
+ bool PointerTypeTakesAnyBlockArguments(QualType QT);
+ bool PointerTypeTakesAnyObjCQualifiedType(QualType QT);
+ void GetExtentOfArgList(const char *Name, const char *&LParen,
+ const char *&RParen);
+
+ void QuoteDoublequotes(std::string &From, std::string &To) {
+ for (unsigned i = 0; i < From.length(); i++) {
+ if (From[i] == '"')
+ To += "\\\"";
+ else
+ To += From[i];
+ }
+ }
+
+ QualType getSimpleFunctionType(QualType result,
+ ArrayRef<QualType> args,
+ bool variadic = false) {
+ if (result == Context->getObjCInstanceType())
+ result = Context->getObjCIdType();
+ FunctionProtoType::ExtProtoInfo fpi;
+ fpi.Variadic = variadic;
+ return Context->getFunctionType(result, args, fpi);
+ }
+
+ // Helper function: create a CStyleCastExpr with trivial type source info.
+ CStyleCastExpr* NoTypeInfoCStyleCastExpr(ASTContext *Ctx, QualType Ty,
+ CastKind Kind, Expr *E) {
+ TypeSourceInfo *TInfo = Ctx->getTrivialTypeSourceInfo(Ty, SourceLocation());
+ return CStyleCastExpr::Create(*Ctx, Ty, VK_RValue, Kind, E, nullptr,
+ TInfo, SourceLocation(), SourceLocation());
+ }
+
+ StringLiteral *getStringLiteral(StringRef Str) {
+ QualType StrType = Context->getConstantArrayType(
+ Context->CharTy, llvm::APInt(32, Str.size() + 1), ArrayType::Normal,
+ 0);
+ return StringLiteral::Create(*Context, Str, StringLiteral::Ascii,
+ /*Pascal=*/false, StrType, SourceLocation());
+ }
+ };
+
+ class RewriteObjCFragileABI : public RewriteObjC {
+ public:
+
+ RewriteObjCFragileABI(std::string inFile, raw_ostream *OS,
+ DiagnosticsEngine &D, const LangOptions &LOpts,
+ bool silenceMacroWarn) : RewriteObjC(inFile, OS,
+ D, LOpts,
+ silenceMacroWarn) {}
+
+ ~RewriteObjCFragileABI() override {}
+ void Initialize(ASTContext &context) override;
+
+ // Rewriting metadata
+ template<typename MethodIterator>
+ void RewriteObjCMethodsMetaData(MethodIterator MethodBegin,
+ MethodIterator MethodEnd,
+ bool IsInstanceMethod,
+ StringRef prefix,
+ StringRef ClassName,
+ std::string &Result);
+ void RewriteObjCProtocolMetaData(ObjCProtocolDecl *Protocol,
+ StringRef prefix, StringRef ClassName,
+ std::string &Result) override;
+ void RewriteObjCProtocolListMetaData(
+ const ObjCList<ObjCProtocolDecl> &Prots,
+ StringRef prefix, StringRef ClassName, std::string &Result) override;
+ void RewriteObjCClassMetaData(ObjCImplementationDecl *IDecl,
+ std::string &Result) override;
+ void RewriteMetaDataIntoBuffer(std::string &Result) override;
+ void RewriteObjCCategoryImplDecl(ObjCCategoryImplDecl *CDecl,
+ std::string &Result) override;
+
+ // Rewriting ivar
+ void RewriteIvarOffsetComputation(ObjCIvarDecl *ivar,
+ std::string &Result) override;
+ Stmt *RewriteObjCIvarRefExpr(ObjCIvarRefExpr *IV) override;
+ };
+}
+
+void RewriteObjC::RewriteBlocksInFunctionProtoType(QualType funcType,
+ NamedDecl *D) {
+ if (const FunctionProtoType *fproto
+ = dyn_cast<FunctionProtoType>(funcType.IgnoreParens())) {
+ for (const auto &I : fproto->param_types())
+ if (isTopLevelBlockPointerType(I)) {
+ // All the args are checked/rewritten. Don't call twice!
+ RewriteBlockPointerDecl(D);
+ break;
+ }
+ }
+}
+
+void RewriteObjC::CheckFunctionPointerDecl(QualType funcType, NamedDecl *ND) {
+ const PointerType *PT = funcType->getAs<PointerType>();
+ if (PT && PointerTypeTakesAnyBlockArguments(funcType))
+ RewriteBlocksInFunctionProtoType(PT->getPointeeType(), ND);
+}
+
+static bool IsHeaderFile(const std::string &Filename) {
+ std::string::size_type DotPos = Filename.rfind('.');
+
+ if (DotPos == std::string::npos) {
+ // no file extension
+ return false;
+ }
+
+ std::string Ext = std::string(Filename.begin()+DotPos+1, Filename.end());
+ // C header: .h
+ // C++ header: .hh or .H;
+ return Ext == "h" || Ext == "hh" || Ext == "H";
+}
+
+RewriteObjC::RewriteObjC(std::string inFile, raw_ostream* OS,
+ DiagnosticsEngine &D, const LangOptions &LOpts,
+ bool silenceMacroWarn)
+ : Diags(D), LangOpts(LOpts), InFileName(inFile), OutFile(OS),
+ SilenceRewriteMacroWarning(silenceMacroWarn) {
+ IsHeader = IsHeaderFile(inFile);
+ RewriteFailedDiag = Diags.getCustomDiagID(DiagnosticsEngine::Warning,
+ "rewriting sub-expression within a macro (may not be correct)");
+ TryFinallyContainsReturnDiag = Diags.getCustomDiagID(
+ DiagnosticsEngine::Warning,
+ "rewriter doesn't support user-specified control flow semantics "
+ "for @try/@finally (code may not execute properly)");
+}
+
+std::unique_ptr<ASTConsumer>
+clang::CreateObjCRewriter(const std::string &InFile, raw_ostream *OS,
+ DiagnosticsEngine &Diags, const LangOptions &LOpts,
+ bool SilenceRewriteMacroWarning) {
+ return llvm::make_unique<RewriteObjCFragileABI>(InFile, OS, Diags, LOpts,
+ SilenceRewriteMacroWarning);
+}
+
+void RewriteObjC::InitializeCommon(ASTContext &context) {
+ Context = &context;
+ SM = &Context->getSourceManager();
+ TUDecl = Context->getTranslationUnitDecl();
+ MsgSendFunctionDecl = nullptr;
+ MsgSendSuperFunctionDecl = nullptr;
+ MsgSendStretFunctionDecl = nullptr;
+ MsgSendSuperStretFunctionDecl = nullptr;
+ MsgSendFpretFunctionDecl = nullptr;
+ GetClassFunctionDecl = nullptr;
+ GetMetaClassFunctionDecl = nullptr;
+ GetSuperClassFunctionDecl = nullptr;
+ SelGetUidFunctionDecl = nullptr;
+ CFStringFunctionDecl = nullptr;
+ ConstantStringClassReference = nullptr;
+ NSStringRecord = nullptr;
+ CurMethodDef = nullptr;
+ CurFunctionDef = nullptr;
+ CurFunctionDeclToDeclareForBlock = nullptr;
+ GlobalVarDecl = nullptr;
+ SuperStructDecl = nullptr;
+ ProtocolTypeDecl = nullptr;
+ ConstantStringDecl = nullptr;
+ BcLabelCount = 0;
+ SuperConstructorFunctionDecl = nullptr;
+ NumObjCStringLiterals = 0;
+ PropParentMap = nullptr;
+ CurrentBody = nullptr;
+ DisableReplaceStmt = false;
+ objc_impl_method = false;
+
+ // Get the ID and start/end of the main file.
+ MainFileID = SM->getMainFileID();
+ const llvm::MemoryBuffer *MainBuf = SM->getBuffer(MainFileID);
+ MainFileStart = MainBuf->getBufferStart();
+ MainFileEnd = MainBuf->getBufferEnd();
+
+ Rewrite.setSourceMgr(Context->getSourceManager(), Context->getLangOpts());
+}
+
+//===----------------------------------------------------------------------===//
+// Top Level Driver Code
+//===----------------------------------------------------------------------===//
+
+void RewriteObjC::HandleTopLevelSingleDecl(Decl *D) {
+ if (Diags.hasErrorOccurred())
+ return;
+
+ // Two cases: either the decl could be in the main file, or it could be in a
+ // #included file. If the former, rewrite it now. If the later, check to see
+ // if we rewrote the #include/#import.
+ SourceLocation Loc = D->getLocation();
+ Loc = SM->getExpansionLoc(Loc);
+
+ // If this is for a builtin, ignore it.
+ if (Loc.isInvalid()) return;
+
+ // Look for built-in declarations that we need to refer during the rewrite.
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ RewriteFunctionDecl(FD);
+ } else if (VarDecl *FVD = dyn_cast<VarDecl>(D)) {
+ // declared in <Foundation/NSString.h>
+ if (FVD->getName() == "_NSConstantStringClassReference") {
+ ConstantStringClassReference = FVD;
+ return;
+ }
+ } else if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D)) {
+ if (ID->isThisDeclarationADefinition())
+ RewriteInterfaceDecl(ID);
+ } else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(D)) {
+ RewriteCategoryDecl(CD);
+ } else if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D)) {
+ if (PD->isThisDeclarationADefinition())
+ RewriteProtocolDecl(PD);
+ } else if (LinkageSpecDecl *LSD = dyn_cast<LinkageSpecDecl>(D)) {
+ // Recurse into linkage specifications
+ for (DeclContext::decl_iterator DI = LSD->decls_begin(),
+ DIEnd = LSD->decls_end();
+ DI != DIEnd; ) {
+ if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>((*DI))) {
+ if (!IFace->isThisDeclarationADefinition()) {
+ SmallVector<Decl *, 8> DG;
+ SourceLocation StartLoc = IFace->getLocStart();
+ do {
+ if (isa<ObjCInterfaceDecl>(*DI) &&
+ !cast<ObjCInterfaceDecl>(*DI)->isThisDeclarationADefinition() &&
+ StartLoc == (*DI)->getLocStart())
+ DG.push_back(*DI);
+ else
+ break;
+
+ ++DI;
+ } while (DI != DIEnd);
+ RewriteForwardClassDecl(DG);
+ continue;
+ }
+ }
+
+ if (ObjCProtocolDecl *Proto = dyn_cast<ObjCProtocolDecl>((*DI))) {
+ if (!Proto->isThisDeclarationADefinition()) {
+ SmallVector<Decl *, 8> DG;
+ SourceLocation StartLoc = Proto->getLocStart();
+ do {
+ if (isa<ObjCProtocolDecl>(*DI) &&
+ !cast<ObjCProtocolDecl>(*DI)->isThisDeclarationADefinition() &&
+ StartLoc == (*DI)->getLocStart())
+ DG.push_back(*DI);
+ else
+ break;
+
+ ++DI;
+ } while (DI != DIEnd);
+ RewriteForwardProtocolDecl(DG);
+ continue;
+ }
+ }
+
+ HandleTopLevelSingleDecl(*DI);
+ ++DI;
+ }
+ }
+ // If we have a decl in the main file, see if we should rewrite it.
+ if (SM->isWrittenInMainFile(Loc))
+ return HandleDeclInMainFile(D);
+}
+
+//===----------------------------------------------------------------------===//
+// Syntactic (non-AST) Rewriting Code
+//===----------------------------------------------------------------------===//
+
+void RewriteObjC::RewriteInclude() {
+ SourceLocation LocStart = SM->getLocForStartOfFile(MainFileID);
+ StringRef MainBuf = SM->getBufferData(MainFileID);
+ const char *MainBufStart = MainBuf.begin();
+ const char *MainBufEnd = MainBuf.end();
+ size_t ImportLen = strlen("import");
+
+ // Loop over the whole file, looking for includes.
+ for (const char *BufPtr = MainBufStart; BufPtr < MainBufEnd; ++BufPtr) {
+ if (*BufPtr == '#') {
+ if (++BufPtr == MainBufEnd)
+ return;
+ while (*BufPtr == ' ' || *BufPtr == '\t')
+ if (++BufPtr == MainBufEnd)
+ return;
+ if (!strncmp(BufPtr, "import", ImportLen)) {
+ // replace import with include
+ SourceLocation ImportLoc =
+ LocStart.getLocWithOffset(BufPtr-MainBufStart);
+ ReplaceText(ImportLoc, ImportLen, "include");
+ BufPtr += ImportLen;
+ }
+ }
+ }
+}
+
+static std::string getIvarAccessString(ObjCIvarDecl *OID) {
+ const ObjCInterfaceDecl *ClassDecl = OID->getContainingInterface();
+ std::string S;
+ S = "((struct ";
+ S += ClassDecl->getIdentifier()->getName();
+ S += "_IMPL *)self)->";
+ S += OID->getName();
+ return S;
+}
+
+void RewriteObjC::RewritePropertyImplDecl(ObjCPropertyImplDecl *PID,
+ ObjCImplementationDecl *IMD,
+ ObjCCategoryImplDecl *CID) {
+ static bool objcGetPropertyDefined = false;
+ static bool objcSetPropertyDefined = false;
+ SourceLocation startLoc = PID->getLocStart();
+ InsertText(startLoc, "// ");
+ const char *startBuf = SM->getCharacterData(startLoc);
+ assert((*startBuf == '@') && "bogus @synthesize location");
+ const char *semiBuf = strchr(startBuf, ';');
+ assert((*semiBuf == ';') && "@synthesize: can't find ';'");
+ SourceLocation onePastSemiLoc =
+ startLoc.getLocWithOffset(semiBuf-startBuf+1);
+
+ if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
+ return; // FIXME: is this correct?
+
+ // Generate the 'getter' function.
+ ObjCPropertyDecl *PD = PID->getPropertyDecl();
+ ObjCIvarDecl *OID = PID->getPropertyIvarDecl();
+
+ if (!OID)
+ return;
+ unsigned Attributes = PD->getPropertyAttributes();
+ if (!PD->getGetterMethodDecl()->isDefined()) {
+ bool GenGetProperty = !(Attributes & ObjCPropertyDecl::OBJC_PR_nonatomic) &&
+ (Attributes & (ObjCPropertyDecl::OBJC_PR_retain |
+ ObjCPropertyDecl::OBJC_PR_copy));
+ std::string Getr;
+ if (GenGetProperty && !objcGetPropertyDefined) {
+ objcGetPropertyDefined = true;
+ // FIXME. Is this attribute correct in all cases?
+ Getr = "\nextern \"C\" __declspec(dllimport) "
+ "id objc_getProperty(id, SEL, long, bool);\n";
+ }
+ RewriteObjCMethodDecl(OID->getContainingInterface(),
+ PD->getGetterMethodDecl(), Getr);
+ Getr += "{ ";
+ // Synthesize an explicit cast to gain access to the ivar.
+ // See objc-act.c:objc_synthesize_new_getter() for details.
+ if (GenGetProperty) {
+ // return objc_getProperty(self, _cmd, offsetof(ClassDecl, OID), 1)
+ Getr += "typedef ";
+ const FunctionType *FPRetType = nullptr;
+ RewriteTypeIntoString(PD->getGetterMethodDecl()->getReturnType(), Getr,
+ FPRetType);
+ Getr += " _TYPE";
+ if (FPRetType) {
+ Getr += ")"; // close the precedence "scope" for "*".
+
+ // Now, emit the argument types (if any).
+ if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(FPRetType)){
+ Getr += "(";
+ for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
+ if (i) Getr += ", ";
+ std::string ParamStr =
+ FT->getParamType(i).getAsString(Context->getPrintingPolicy());
+ Getr += ParamStr;
+ }
+ if (FT->isVariadic()) {
+ if (FT->getNumParams())
+ Getr += ", ";
+ Getr += "...";
+ }
+ Getr += ")";
+ } else
+ Getr += "()";
+ }
+ Getr += ";\n";
+ Getr += "return (_TYPE)";
+ Getr += "objc_getProperty(self, _cmd, ";
+ RewriteIvarOffsetComputation(OID, Getr);
+ Getr += ", 1)";
+ }
+ else
+ Getr += "return " + getIvarAccessString(OID);
+ Getr += "; }";
+ InsertText(onePastSemiLoc, Getr);
+ }
+
+ if (PD->isReadOnly() || PD->getSetterMethodDecl()->isDefined())
+ return;
+
+ // Generate the 'setter' function.
+ std::string Setr;
+ bool GenSetProperty = Attributes & (ObjCPropertyDecl::OBJC_PR_retain |
+ ObjCPropertyDecl::OBJC_PR_copy);
+ if (GenSetProperty && !objcSetPropertyDefined) {
+ objcSetPropertyDefined = true;
+ // FIXME. Is this attribute correct in all cases?
+ Setr = "\nextern \"C\" __declspec(dllimport) "
+ "void objc_setProperty (id, SEL, long, id, bool, bool);\n";
+ }
+
+ RewriteObjCMethodDecl(OID->getContainingInterface(),
+ PD->getSetterMethodDecl(), Setr);
+ Setr += "{ ";
+ // Synthesize an explicit cast to initialize the ivar.
+ // See objc-act.c:objc_synthesize_new_setter() for details.
+ if (GenSetProperty) {
+ Setr += "objc_setProperty (self, _cmd, ";
+ RewriteIvarOffsetComputation(OID, Setr);
+ Setr += ", (id)";
+ Setr += PD->getName();
+ Setr += ", ";
+ if (Attributes & ObjCPropertyDecl::OBJC_PR_nonatomic)
+ Setr += "0, ";
+ else
+ Setr += "1, ";
+ if (Attributes & ObjCPropertyDecl::OBJC_PR_copy)
+ Setr += "1)";
+ else
+ Setr += "0)";
+ }
+ else {
+ Setr += getIvarAccessString(OID) + " = ";
+ Setr += PD->getName();
+ }
+ Setr += "; }";
+ InsertText(onePastSemiLoc, Setr);
+}
+
+static void RewriteOneForwardClassDecl(ObjCInterfaceDecl *ForwardDecl,
+ std::string &typedefString) {
+ typedefString += "#ifndef _REWRITER_typedef_";
+ typedefString += ForwardDecl->getNameAsString();
+ typedefString += "\n";
+ typedefString += "#define _REWRITER_typedef_";
+ typedefString += ForwardDecl->getNameAsString();
+ typedefString += "\n";
+ typedefString += "typedef struct objc_object ";
+ typedefString += ForwardDecl->getNameAsString();
+ typedefString += ";\n#endif\n";
+}
+
+void RewriteObjC::RewriteForwardClassEpilogue(ObjCInterfaceDecl *ClassDecl,
+ const std::string &typedefString) {
+ SourceLocation startLoc = ClassDecl->getLocStart();
+ const char *startBuf = SM->getCharacterData(startLoc);
+ const char *semiPtr = strchr(startBuf, ';');
+ // Replace the @class with typedefs corresponding to the classes.
+ ReplaceText(startLoc, semiPtr-startBuf+1, typedefString);
+}
+
+void RewriteObjC::RewriteForwardClassDecl(DeclGroupRef D) {
+ std::string typedefString;
+ for (DeclGroupRef::iterator I = D.begin(), E = D.end(); I != E; ++I) {
+ ObjCInterfaceDecl *ForwardDecl = cast<ObjCInterfaceDecl>(*I);
+ if (I == D.begin()) {
+ // Translate to typedef's that forward reference structs with the same name
+ // as the class. As a convenience, we include the original declaration
+ // as a comment.
+ typedefString += "// @class ";
+ typedefString += ForwardDecl->getNameAsString();
+ typedefString += ";\n";
+ }
+ RewriteOneForwardClassDecl(ForwardDecl, typedefString);
+ }
+ DeclGroupRef::iterator I = D.begin();
+ RewriteForwardClassEpilogue(cast<ObjCInterfaceDecl>(*I), typedefString);
+}
+
+void RewriteObjC::RewriteForwardClassDecl(const SmallVectorImpl<Decl *> &D) {
+ std::string typedefString;
+ for (unsigned i = 0; i < D.size(); i++) {
+ ObjCInterfaceDecl *ForwardDecl = cast<ObjCInterfaceDecl>(D[i]);
+ if (i == 0) {
+ typedefString += "// @class ";
+ typedefString += ForwardDecl->getNameAsString();
+ typedefString += ";\n";
+ }
+ RewriteOneForwardClassDecl(ForwardDecl, typedefString);
+ }
+ RewriteForwardClassEpilogue(cast<ObjCInterfaceDecl>(D[0]), typedefString);
+}
+
+void RewriteObjC::RewriteMethodDeclaration(ObjCMethodDecl *Method) {
+ // When method is a synthesized one, such as a getter/setter there is
+ // nothing to rewrite.
+ if (Method->isImplicit())
+ return;
+ SourceLocation LocStart = Method->getLocStart();
+ SourceLocation LocEnd = Method->getLocEnd();
+
+ if (SM->getExpansionLineNumber(LocEnd) >
+ SM->getExpansionLineNumber(LocStart)) {
+ InsertText(LocStart, "#if 0\n");
+ ReplaceText(LocEnd, 1, ";\n#endif\n");
+ } else {
+ InsertText(LocStart, "// ");
+ }
+}
+
+void RewriteObjC::RewriteProperty(ObjCPropertyDecl *prop) {
+ SourceLocation Loc = prop->getAtLoc();
+
+ ReplaceText(Loc, 0, "// ");
+ // FIXME: handle properties that are declared across multiple lines.
+}
+
+void RewriteObjC::RewriteCategoryDecl(ObjCCategoryDecl *CatDecl) {
+ SourceLocation LocStart = CatDecl->getLocStart();
+
+ // FIXME: handle category headers that are declared across multiple lines.
+ ReplaceText(LocStart, 0, "// ");
+
+ for (auto *I : CatDecl->properties())
+ RewriteProperty(I);
+ for (auto *I : CatDecl->instance_methods())
+ RewriteMethodDeclaration(I);
+ for (auto *I : CatDecl->class_methods())
+ RewriteMethodDeclaration(I);
+
+ // Lastly, comment out the @end.
+ ReplaceText(CatDecl->getAtEndRange().getBegin(),
+ strlen("@end"), "/* @end */");
+}
+
+void RewriteObjC::RewriteProtocolDecl(ObjCProtocolDecl *PDecl) {
+ SourceLocation LocStart = PDecl->getLocStart();
+ assert(PDecl->isThisDeclarationADefinition());
+
+ // FIXME: handle protocol headers that are declared across multiple lines.
+ ReplaceText(LocStart, 0, "// ");
+
+ for (auto *I : PDecl->instance_methods())
+ RewriteMethodDeclaration(I);
+ for (auto *I : PDecl->class_methods())
+ RewriteMethodDeclaration(I);
+ for (auto *I : PDecl->properties())
+ RewriteProperty(I);
+
+ // Lastly, comment out the @end.
+ SourceLocation LocEnd = PDecl->getAtEndRange().getBegin();
+ ReplaceText(LocEnd, strlen("@end"), "/* @end */");
+
+ // Must comment out @optional/@required
+ const char *startBuf = SM->getCharacterData(LocStart);
+ const char *endBuf = SM->getCharacterData(LocEnd);
+ for (const char *p = startBuf; p < endBuf; p++) {
+ if (*p == '@' && !strncmp(p+1, "optional", strlen("optional"))) {
+ SourceLocation OptionalLoc = LocStart.getLocWithOffset(p-startBuf);
+ ReplaceText(OptionalLoc, strlen("@optional"), "/* @optional */");
+
+ }
+ else if (*p == '@' && !strncmp(p+1, "required", strlen("required"))) {
+ SourceLocation OptionalLoc = LocStart.getLocWithOffset(p-startBuf);
+ ReplaceText(OptionalLoc, strlen("@required"), "/* @required */");
+
+ }
+ }
+}
+
+void RewriteObjC::RewriteForwardProtocolDecl(DeclGroupRef D) {
+ SourceLocation LocStart = (*D.begin())->getLocStart();
+ if (LocStart.isInvalid())
+ llvm_unreachable("Invalid SourceLocation");
+ // FIXME: handle forward protocol that are declared across multiple lines.
+ ReplaceText(LocStart, 0, "// ");
+}
+
+void
+RewriteObjC::RewriteForwardProtocolDecl(const SmallVectorImpl<Decl *> &DG) {
+ SourceLocation LocStart = DG[0]->getLocStart();
+ if (LocStart.isInvalid())
+ llvm_unreachable("Invalid SourceLocation");
+ // FIXME: handle forward protocol that are declared across multiple lines.
+ ReplaceText(LocStart, 0, "// ");
+}
+
+void RewriteObjC::RewriteTypeIntoString(QualType T, std::string &ResultStr,
+ const FunctionType *&FPRetType) {
+ if (T->isObjCQualifiedIdType())
+ ResultStr += "id";
+ else if (T->isFunctionPointerType() ||
+ T->isBlockPointerType()) {
+ // needs special handling, since pointer-to-functions have special
+ // syntax (where a decaration models use).
+ QualType retType = T;
+ QualType PointeeTy;
+ if (const PointerType* PT = retType->getAs<PointerType>())
+ PointeeTy = PT->getPointeeType();
+ else if (const BlockPointerType *BPT = retType->getAs<BlockPointerType>())
+ PointeeTy = BPT->getPointeeType();
+ if ((FPRetType = PointeeTy->getAs<FunctionType>())) {
+ ResultStr +=
+ FPRetType->getReturnType().getAsString(Context->getPrintingPolicy());
+ ResultStr += "(*";
+ }
+ } else
+ ResultStr += T.getAsString(Context->getPrintingPolicy());
+}
+
+void RewriteObjC::RewriteObjCMethodDecl(const ObjCInterfaceDecl *IDecl,
+ ObjCMethodDecl *OMD,
+ std::string &ResultStr) {
+ //fprintf(stderr,"In RewriteObjCMethodDecl\n");
+ const FunctionType *FPRetType = nullptr;
+ ResultStr += "\nstatic ";
+ RewriteTypeIntoString(OMD->getReturnType(), ResultStr, FPRetType);
+ ResultStr += " ";
+
+ // Unique method name
+ std::string NameStr;
+
+ if (OMD->isInstanceMethod())
+ NameStr += "_I_";
+ else
+ NameStr += "_C_";
+
+ NameStr += IDecl->getNameAsString();
+ NameStr += "_";
+
+ if (ObjCCategoryImplDecl *CID =
+ dyn_cast<ObjCCategoryImplDecl>(OMD->getDeclContext())) {
+ NameStr += CID->getNameAsString();
+ NameStr += "_";
+ }
+ // Append selector names, replacing ':' with '_'
+ {
+ std::string selString = OMD->getSelector().getAsString();
+ int len = selString.size();
+ for (int i = 0; i < len; i++)
+ if (selString[i] == ':')
+ selString[i] = '_';
+ NameStr += selString;
+ }
+ // Remember this name for metadata emission
+ MethodInternalNames[OMD] = NameStr;
+ ResultStr += NameStr;
+
+ // Rewrite arguments
+ ResultStr += "(";
+
+ // invisible arguments
+ if (OMD->isInstanceMethod()) {
+ QualType selfTy = Context->getObjCInterfaceType(IDecl);
+ selfTy = Context->getPointerType(selfTy);
+ if (!LangOpts.MicrosoftExt) {
+ if (ObjCSynthesizedStructs.count(const_cast<ObjCInterfaceDecl*>(IDecl)))
+ ResultStr += "struct ";
+ }
+ // When rewriting for Microsoft, explicitly omit the structure name.
+ ResultStr += IDecl->getNameAsString();
+ ResultStr += " *";
+ }
+ else
+ ResultStr += Context->getObjCClassType().getAsString(
+ Context->getPrintingPolicy());
+
+ ResultStr += " self, ";
+ ResultStr += Context->getObjCSelType().getAsString(Context->getPrintingPolicy());
+ ResultStr += " _cmd";
+
+ // Method arguments.
+ for (const auto *PDecl : OMD->params()) {
+ ResultStr += ", ";
+ if (PDecl->getType()->isObjCQualifiedIdType()) {
+ ResultStr += "id ";
+ ResultStr += PDecl->getNameAsString();
+ } else {
+ std::string Name = PDecl->getNameAsString();
+ QualType QT = PDecl->getType();
+ // Make sure we convert "t (^)(...)" to "t (*)(...)".
+ (void)convertBlockPointerToFunctionPointer(QT);
+ QT.getAsStringInternal(Name, Context->getPrintingPolicy());
+ ResultStr += Name;
+ }
+ }
+ if (OMD->isVariadic())
+ ResultStr += ", ...";
+ ResultStr += ") ";
+
+ if (FPRetType) {
+ ResultStr += ")"; // close the precedence "scope" for "*".
+
+ // Now, emit the argument types (if any).
+ if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(FPRetType)) {
+ ResultStr += "(";
+ for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
+ if (i) ResultStr += ", ";
+ std::string ParamStr =
+ FT->getParamType(i).getAsString(Context->getPrintingPolicy());
+ ResultStr += ParamStr;
+ }
+ if (FT->isVariadic()) {
+ if (FT->getNumParams())
+ ResultStr += ", ";
+ ResultStr += "...";
+ }
+ ResultStr += ")";
+ } else {
+ ResultStr += "()";
+ }
+ }
+}
+void RewriteObjC::RewriteImplementationDecl(Decl *OID) {
+ ObjCImplementationDecl *IMD = dyn_cast<ObjCImplementationDecl>(OID);
+ ObjCCategoryImplDecl *CID = dyn_cast<ObjCCategoryImplDecl>(OID);
+
+ InsertText(IMD ? IMD->getLocStart() : CID->getLocStart(), "// ");
+
+ for (auto *OMD : IMD ? IMD->instance_methods() : CID->instance_methods()) {
+ std::string ResultStr;
+ RewriteObjCMethodDecl(OMD->getClassInterface(), OMD, ResultStr);
+ SourceLocation LocStart = OMD->getLocStart();
+ SourceLocation LocEnd = OMD->getCompoundBody()->getLocStart();
+
+ const char *startBuf = SM->getCharacterData(LocStart);
+ const char *endBuf = SM->getCharacterData(LocEnd);
+ ReplaceText(LocStart, endBuf-startBuf, ResultStr);
+ }
+
+ for (auto *OMD : IMD ? IMD->class_methods() : CID->class_methods()) {
+ std::string ResultStr;
+ RewriteObjCMethodDecl(OMD->getClassInterface(), OMD, ResultStr);
+ SourceLocation LocStart = OMD->getLocStart();
+ SourceLocation LocEnd = OMD->getCompoundBody()->getLocStart();
+
+ const char *startBuf = SM->getCharacterData(LocStart);
+ const char *endBuf = SM->getCharacterData(LocEnd);
+ ReplaceText(LocStart, endBuf-startBuf, ResultStr);
+ }
+ for (auto *I : IMD ? IMD->property_impls() : CID->property_impls())
+ RewritePropertyImplDecl(I, IMD, CID);
+
+ InsertText(IMD ? IMD->getLocEnd() : CID->getLocEnd(), "// ");
+}
+
+void RewriteObjC::RewriteInterfaceDecl(ObjCInterfaceDecl *ClassDecl) {
+ std::string ResultStr;
+ if (!ObjCForwardDecls.count(ClassDecl->getCanonicalDecl())) {
+ // we haven't seen a forward decl - generate a typedef.
+ ResultStr = "#ifndef _REWRITER_typedef_";
+ ResultStr += ClassDecl->getNameAsString();
+ ResultStr += "\n";
+ ResultStr += "#define _REWRITER_typedef_";
+ ResultStr += ClassDecl->getNameAsString();
+ ResultStr += "\n";
+ ResultStr += "typedef struct objc_object ";
+ ResultStr += ClassDecl->getNameAsString();
+ ResultStr += ";\n#endif\n";
+ // Mark this typedef as having been generated.
+ ObjCForwardDecls.insert(ClassDecl->getCanonicalDecl());
+ }
+ RewriteObjCInternalStruct(ClassDecl, ResultStr);
+
+ for (auto *I : ClassDecl->properties())
+ RewriteProperty(I);
+ for (auto *I : ClassDecl->instance_methods())
+ RewriteMethodDeclaration(I);
+ for (auto *I : ClassDecl->class_methods())
+ RewriteMethodDeclaration(I);
+
+ // Lastly, comment out the @end.
+ ReplaceText(ClassDecl->getAtEndRange().getBegin(), strlen("@end"),
+ "/* @end */");
+}
+
+Stmt *RewriteObjC::RewritePropertyOrImplicitSetter(PseudoObjectExpr *PseudoOp) {
+ SourceRange OldRange = PseudoOp->getSourceRange();
+
+ // We just magically know some things about the structure of this
+ // expression.
+ ObjCMessageExpr *OldMsg =
+ cast<ObjCMessageExpr>(PseudoOp->getSemanticExpr(
+ PseudoOp->getNumSemanticExprs() - 1));
+
+ // Because the rewriter doesn't allow us to rewrite rewritten code,
+ // we need to suppress rewriting the sub-statements.
+ Expr *Base, *RHS;
+ {
+ DisableReplaceStmtScope S(*this);
+
+ // Rebuild the base expression if we have one.
+ Base = nullptr;
+ if (OldMsg->getReceiverKind() == ObjCMessageExpr::Instance) {
+ Base = OldMsg->getInstanceReceiver();
+ Base = cast<OpaqueValueExpr>(Base)->getSourceExpr();
+ Base = cast<Expr>(RewriteFunctionBodyOrGlobalInitializer(Base));
+ }
+
+ // Rebuild the RHS.
+ RHS = cast<BinaryOperator>(PseudoOp->getSyntacticForm())->getRHS();
+ RHS = cast<OpaqueValueExpr>(RHS)->getSourceExpr();
+ RHS = cast<Expr>(RewriteFunctionBodyOrGlobalInitializer(RHS));
+ }
+
+ // TODO: avoid this copy.
+ SmallVector<SourceLocation, 1> SelLocs;
+ OldMsg->getSelectorLocs(SelLocs);
+
+ ObjCMessageExpr *NewMsg = nullptr;
+ switch (OldMsg->getReceiverKind()) {
+ case ObjCMessageExpr::Class:
+ NewMsg = ObjCMessageExpr::Create(*Context, OldMsg->getType(),
+ OldMsg->getValueKind(),
+ OldMsg->getLeftLoc(),
+ OldMsg->getClassReceiverTypeInfo(),
+ OldMsg->getSelector(),
+ SelLocs,
+ OldMsg->getMethodDecl(),
+ RHS,
+ OldMsg->getRightLoc(),
+ OldMsg->isImplicit());
+ break;
+
+ case ObjCMessageExpr::Instance:
+ NewMsg = ObjCMessageExpr::Create(*Context, OldMsg->getType(),
+ OldMsg->getValueKind(),
+ OldMsg->getLeftLoc(),
+ Base,
+ OldMsg->getSelector(),
+ SelLocs,
+ OldMsg->getMethodDecl(),
+ RHS,
+ OldMsg->getRightLoc(),
+ OldMsg->isImplicit());
+ break;
+
+ case ObjCMessageExpr::SuperClass:
+ case ObjCMessageExpr::SuperInstance:
+ NewMsg = ObjCMessageExpr::Create(*Context, OldMsg->getType(),
+ OldMsg->getValueKind(),
+ OldMsg->getLeftLoc(),
+ OldMsg->getSuperLoc(),
+ OldMsg->getReceiverKind() == ObjCMessageExpr::SuperInstance,
+ OldMsg->getSuperType(),
+ OldMsg->getSelector(),
+ SelLocs,
+ OldMsg->getMethodDecl(),
+ RHS,
+ OldMsg->getRightLoc(),
+ OldMsg->isImplicit());
+ break;
+ }
+
+ Stmt *Replacement = SynthMessageExpr(NewMsg);
+ ReplaceStmtWithRange(PseudoOp, Replacement, OldRange);
+ return Replacement;
+}
+
+Stmt *RewriteObjC::RewritePropertyOrImplicitGetter(PseudoObjectExpr *PseudoOp) {
+ SourceRange OldRange = PseudoOp->getSourceRange();
+
+ // We just magically know some things about the structure of this
+ // expression.
+ ObjCMessageExpr *OldMsg =
+ cast<ObjCMessageExpr>(PseudoOp->getResultExpr()->IgnoreImplicit());
+
+ // Because the rewriter doesn't allow us to rewrite rewritten code,
+ // we need to suppress rewriting the sub-statements.
+ Expr *Base = nullptr;
+ {
+ DisableReplaceStmtScope S(*this);
+
+ // Rebuild the base expression if we have one.
+ if (OldMsg->getReceiverKind() == ObjCMessageExpr::Instance) {
+ Base = OldMsg->getInstanceReceiver();
+ Base = cast<OpaqueValueExpr>(Base)->getSourceExpr();
+ Base = cast<Expr>(RewriteFunctionBodyOrGlobalInitializer(Base));
+ }
+ }
+
+ // Intentionally empty.
+ SmallVector<SourceLocation, 1> SelLocs;
+ SmallVector<Expr*, 1> Args;
+
+ ObjCMessageExpr *NewMsg = nullptr;
+ switch (OldMsg->getReceiverKind()) {
+ case ObjCMessageExpr::Class:
+ NewMsg = ObjCMessageExpr::Create(*Context, OldMsg->getType(),
+ OldMsg->getValueKind(),
+ OldMsg->getLeftLoc(),
+ OldMsg->getClassReceiverTypeInfo(),
+ OldMsg->getSelector(),
+ SelLocs,
+ OldMsg->getMethodDecl(),
+ Args,
+ OldMsg->getRightLoc(),
+ OldMsg->isImplicit());
+ break;
+
+ case ObjCMessageExpr::Instance:
+ NewMsg = ObjCMessageExpr::Create(*Context, OldMsg->getType(),
+ OldMsg->getValueKind(),
+ OldMsg->getLeftLoc(),
+ Base,
+ OldMsg->getSelector(),
+ SelLocs,
+ OldMsg->getMethodDecl(),
+ Args,
+ OldMsg->getRightLoc(),
+ OldMsg->isImplicit());
+ break;
+
+ case ObjCMessageExpr::SuperClass:
+ case ObjCMessageExpr::SuperInstance:
+ NewMsg = ObjCMessageExpr::Create(*Context, OldMsg->getType(),
+ OldMsg->getValueKind(),
+ OldMsg->getLeftLoc(),
+ OldMsg->getSuperLoc(),
+ OldMsg->getReceiverKind() == ObjCMessageExpr::SuperInstance,
+ OldMsg->getSuperType(),
+ OldMsg->getSelector(),
+ SelLocs,
+ OldMsg->getMethodDecl(),
+ Args,
+ OldMsg->getRightLoc(),
+ OldMsg->isImplicit());
+ break;
+ }
+
+ Stmt *Replacement = SynthMessageExpr(NewMsg);
+ ReplaceStmtWithRange(PseudoOp, Replacement, OldRange);
+ return Replacement;
+}
+
+/// SynthCountByEnumWithState - To print:
+/// ((unsigned int (*)
+/// (id, SEL, struct __objcFastEnumerationState *, id *, unsigned int))
+/// (void *)objc_msgSend)((id)l_collection,
+/// sel_registerName(
+/// "countByEnumeratingWithState:objects:count:"),
+/// &enumState,
+/// (id *)__rw_items, (unsigned int)16)
+///
+void RewriteObjC::SynthCountByEnumWithState(std::string &buf) {
+ buf += "((unsigned int (*) (id, SEL, struct __objcFastEnumerationState *, "
+ "id *, unsigned int))(void *)objc_msgSend)";
+ buf += "\n\t\t";
+ buf += "((id)l_collection,\n\t\t";
+ buf += "sel_registerName(\"countByEnumeratingWithState:objects:count:\"),";
+ buf += "\n\t\t";
+ buf += "&enumState, "
+ "(id *)__rw_items, (unsigned int)16)";
+}
+
+/// RewriteBreakStmt - Rewrite for a break-stmt inside an ObjC2's foreach
+/// statement to exit to its outer synthesized loop.
+///
+Stmt *RewriteObjC::RewriteBreakStmt(BreakStmt *S) {
+ if (Stmts.empty() || !isa<ObjCForCollectionStmt>(Stmts.back()))
+ return S;
+ // replace break with goto __break_label
+ std::string buf;
+
+ SourceLocation startLoc = S->getLocStart();
+ buf = "goto __break_label_";
+ buf += utostr(ObjCBcLabelNo.back());
+ ReplaceText(startLoc, strlen("break"), buf);
+
+ return nullptr;
+}
+
+/// RewriteContinueStmt - Rewrite for a continue-stmt inside an ObjC2's foreach
+/// statement to continue with its inner synthesized loop.
+///
+Stmt *RewriteObjC::RewriteContinueStmt(ContinueStmt *S) {
+ if (Stmts.empty() || !isa<ObjCForCollectionStmt>(Stmts.back()))
+ return S;
+ // replace continue with goto __continue_label
+ std::string buf;
+
+ SourceLocation startLoc = S->getLocStart();
+ buf = "goto __continue_label_";
+ buf += utostr(ObjCBcLabelNo.back());
+ ReplaceText(startLoc, strlen("continue"), buf);
+
+ return nullptr;
+}
+
+/// RewriteObjCForCollectionStmt - Rewriter for ObjC2's foreach statement.
+/// It rewrites:
+/// for ( type elem in collection) { stmts; }
+
+/// Into:
+/// {
+/// type elem;
+/// struct __objcFastEnumerationState enumState = { 0 };
+/// id __rw_items[16];
+/// id l_collection = (id)collection;
+/// unsigned long limit = [l_collection countByEnumeratingWithState:&enumState
+/// objects:__rw_items count:16];
+/// if (limit) {
+/// unsigned long startMutations = *enumState.mutationsPtr;
+/// do {
+/// unsigned long counter = 0;
+/// do {
+/// if (startMutations != *enumState.mutationsPtr)
+/// objc_enumerationMutation(l_collection);
+/// elem = (type)enumState.itemsPtr[counter++];
+/// stmts;
+/// __continue_label: ;
+/// } while (counter < limit);
+/// } while (limit = [l_collection countByEnumeratingWithState:&enumState
+/// objects:__rw_items count:16]);
+/// elem = nil;
+/// __break_label: ;
+/// }
+/// else
+/// elem = nil;
+/// }
+///
+Stmt *RewriteObjC::RewriteObjCForCollectionStmt(ObjCForCollectionStmt *S,
+ SourceLocation OrigEnd) {
+ assert(!Stmts.empty() && "ObjCForCollectionStmt - Statement stack empty");
+ assert(isa<ObjCForCollectionStmt>(Stmts.back()) &&
+ "ObjCForCollectionStmt Statement stack mismatch");
+ assert(!ObjCBcLabelNo.empty() &&
+ "ObjCForCollectionStmt - Label No stack empty");
+
+ SourceLocation startLoc = S->getLocStart();
+ const char *startBuf = SM->getCharacterData(startLoc);
+ StringRef elementName;
+ std::string elementTypeAsString;
+ std::string buf;
+ buf = "\n{\n\t";
+ if (DeclStmt *DS = dyn_cast<DeclStmt>(S->getElement())) {
+ // type elem;
+ NamedDecl* D = cast<NamedDecl>(DS->getSingleDecl());
+ QualType ElementType = cast<ValueDecl>(D)->getType();
+ if (ElementType->isObjCQualifiedIdType() ||
+ ElementType->isObjCQualifiedInterfaceType())
+ // Simply use 'id' for all qualified types.
+ elementTypeAsString = "id";
+ else
+ elementTypeAsString = ElementType.getAsString(Context->getPrintingPolicy());
+ buf += elementTypeAsString;
+ buf += " ";
+ elementName = D->getName();
+ buf += elementName;
+ buf += ";\n\t";
+ }
+ else {
+ DeclRefExpr *DR = cast<DeclRefExpr>(S->getElement());
+ elementName = DR->getDecl()->getName();
+ ValueDecl *VD = cast<ValueDecl>(DR->getDecl());
+ if (VD->getType()->isObjCQualifiedIdType() ||
+ VD->getType()->isObjCQualifiedInterfaceType())
+ // Simply use 'id' for all qualified types.
+ elementTypeAsString = "id";
+ else
+ elementTypeAsString = VD->getType().getAsString(Context->getPrintingPolicy());
+ }
+
+ // struct __objcFastEnumerationState enumState = { 0 };
+ buf += "struct __objcFastEnumerationState enumState = { 0 };\n\t";
+ // id __rw_items[16];
+ buf += "id __rw_items[16];\n\t";
+ // id l_collection = (id)
+ buf += "id l_collection = (id)";
+ // Find start location of 'collection' the hard way!
+ const char *startCollectionBuf = startBuf;
+ startCollectionBuf += 3; // skip 'for'
+ startCollectionBuf = strchr(startCollectionBuf, '(');
+ startCollectionBuf++; // skip '('
+ // find 'in' and skip it.
+ while (*startCollectionBuf != ' ' ||
+ *(startCollectionBuf+1) != 'i' || *(startCollectionBuf+2) != 'n' ||
+ (*(startCollectionBuf+3) != ' ' &&
+ *(startCollectionBuf+3) != '[' && *(startCollectionBuf+3) != '('))
+ startCollectionBuf++;
+ startCollectionBuf += 3;
+
+ // Replace: "for (type element in" with string constructed thus far.
+ ReplaceText(startLoc, startCollectionBuf - startBuf, buf);
+ // Replace ')' in for '(' type elem in collection ')' with ';'
+ SourceLocation rightParenLoc = S->getRParenLoc();
+ const char *rparenBuf = SM->getCharacterData(rightParenLoc);
+ SourceLocation lparenLoc = startLoc.getLocWithOffset(rparenBuf-startBuf);
+ buf = ";\n\t";
+
+ // unsigned long limit = [l_collection countByEnumeratingWithState:&enumState
+ // objects:__rw_items count:16];
+ // which is synthesized into:
+ // unsigned int limit =
+ // ((unsigned int (*)
+ // (id, SEL, struct __objcFastEnumerationState *, id *, unsigned int))
+ // (void *)objc_msgSend)((id)l_collection,
+ // sel_registerName(
+ // "countByEnumeratingWithState:objects:count:"),
+ // (struct __objcFastEnumerationState *)&state,
+ // (id *)__rw_items, (unsigned int)16);
+ buf += "unsigned long limit =\n\t\t";
+ SynthCountByEnumWithState(buf);
+ buf += ";\n\t";
+ /// if (limit) {
+ /// unsigned long startMutations = *enumState.mutationsPtr;
+ /// do {
+ /// unsigned long counter = 0;
+ /// do {
+ /// if (startMutations != *enumState.mutationsPtr)
+ /// objc_enumerationMutation(l_collection);
+ /// elem = (type)enumState.itemsPtr[counter++];
+ buf += "if (limit) {\n\t";
+ buf += "unsigned long startMutations = *enumState.mutationsPtr;\n\t";
+ buf += "do {\n\t\t";
+ buf += "unsigned long counter = 0;\n\t\t";
+ buf += "do {\n\t\t\t";
+ buf += "if (startMutations != *enumState.mutationsPtr)\n\t\t\t\t";
+ buf += "objc_enumerationMutation(l_collection);\n\t\t\t";
+ buf += elementName;
+ buf += " = (";
+ buf += elementTypeAsString;
+ buf += ")enumState.itemsPtr[counter++];";
+ // Replace ')' in for '(' type elem in collection ')' with all of these.
+ ReplaceText(lparenLoc, 1, buf);
+
+ /// __continue_label: ;
+ /// } while (counter < limit);
+ /// } while (limit = [l_collection countByEnumeratingWithState:&enumState
+ /// objects:__rw_items count:16]);
+ /// elem = nil;
+ /// __break_label: ;
+ /// }
+ /// else
+ /// elem = nil;
+ /// }
+ ///
+ buf = ";\n\t";
+ buf += "__continue_label_";
+ buf += utostr(ObjCBcLabelNo.back());
+ buf += ": ;";
+ buf += "\n\t\t";
+ buf += "} while (counter < limit);\n\t";
+ buf += "} while (limit = ";
+ SynthCountByEnumWithState(buf);
+ buf += ");\n\t";
+ buf += elementName;
+ buf += " = ((";
+ buf += elementTypeAsString;
+ buf += ")0);\n\t";
+ buf += "__break_label_";
+ buf += utostr(ObjCBcLabelNo.back());
+ buf += ": ;\n\t";
+ buf += "}\n\t";
+ buf += "else\n\t\t";
+ buf += elementName;
+ buf += " = ((";
+ buf += elementTypeAsString;
+ buf += ")0);\n\t";
+ buf += "}\n";
+
+ // Insert all these *after* the statement body.
+ // FIXME: If this should support Obj-C++, support CXXTryStmt
+ if (isa<CompoundStmt>(S->getBody())) {
+ SourceLocation endBodyLoc = OrigEnd.getLocWithOffset(1);
+ InsertText(endBodyLoc, buf);
+ } else {
+ /* Need to treat single statements specially. For example:
+ *
+ * for (A *a in b) if (stuff()) break;
+ * for (A *a in b) xxxyy;
+ *
+ * The following code simply scans ahead to the semi to find the actual end.
+ */
+ const char *stmtBuf = SM->getCharacterData(OrigEnd);
+ const char *semiBuf = strchr(stmtBuf, ';');
+ assert(semiBuf && "Can't find ';'");
+ SourceLocation endBodyLoc = OrigEnd.getLocWithOffset(semiBuf-stmtBuf+1);
+ InsertText(endBodyLoc, buf);
+ }
+ Stmts.pop_back();
+ ObjCBcLabelNo.pop_back();
+ return nullptr;
+}
+
+/// RewriteObjCSynchronizedStmt -
+/// This routine rewrites @synchronized(expr) stmt;
+/// into:
+/// objc_sync_enter(expr);
+/// @try stmt @finally { objc_sync_exit(expr); }
+///
+Stmt *RewriteObjC::RewriteObjCSynchronizedStmt(ObjCAtSynchronizedStmt *S) {
+ // Get the start location and compute the semi location.
+ SourceLocation startLoc = S->getLocStart();
+ const char *startBuf = SM->getCharacterData(startLoc);
+
+ assert((*startBuf == '@') && "bogus @synchronized location");
+
+ std::string buf;
+ buf = "objc_sync_enter((id)";
+ const char *lparenBuf = startBuf;
+ while (*lparenBuf != '(') lparenBuf++;
+ ReplaceText(startLoc, lparenBuf-startBuf+1, buf);
+ // We can't use S->getSynchExpr()->getLocEnd() to find the end location, since
+ // the sync expression is typically a message expression that's already
+ // been rewritten! (which implies the SourceLocation's are invalid).
+ SourceLocation endLoc = S->getSynchBody()->getLocStart();
+ const char *endBuf = SM->getCharacterData(endLoc);
+ while (*endBuf != ')') endBuf--;
+ SourceLocation rparenLoc = startLoc.getLocWithOffset(endBuf-startBuf);
+ buf = ");\n";
+ // declare a new scope with two variables, _stack and _rethrow.
+ buf += "/* @try scope begin */ \n{ struct _objc_exception_data {\n";
+ buf += "int buf[18/*32-bit i386*/];\n";
+ buf += "char *pointers[4];} _stack;\n";
+ buf += "id volatile _rethrow = 0;\n";
+ buf += "objc_exception_try_enter(&_stack);\n";
+ buf += "if (!_setjmp(_stack.buf)) /* @try block continue */\n";
+ ReplaceText(rparenLoc, 1, buf);
+ startLoc = S->getSynchBody()->getLocEnd();
+ startBuf = SM->getCharacterData(startLoc);
+
+ assert((*startBuf == '}') && "bogus @synchronized block");
+ SourceLocation lastCurlyLoc = startLoc;
+ buf = "}\nelse {\n";
+ buf += " _rethrow = objc_exception_extract(&_stack);\n";
+ buf += "}\n";
+ buf += "{ /* implicit finally clause */\n";
+ buf += " if (!_rethrow) objc_exception_try_exit(&_stack);\n";
+
+ std::string syncBuf;
+ syncBuf += " objc_sync_exit(";
+
+ Expr *syncExpr = S->getSynchExpr();
+ CastKind CK = syncExpr->getType()->isObjCObjectPointerType()
+ ? CK_BitCast :
+ syncExpr->getType()->isBlockPointerType()
+ ? CK_BlockPointerToObjCPointerCast
+ : CK_CPointerToObjCPointerCast;
+ syncExpr = NoTypeInfoCStyleCastExpr(Context, Context->getObjCIdType(),
+ CK, syncExpr);
+ std::string syncExprBufS;
+ llvm::raw_string_ostream syncExprBuf(syncExprBufS);
+ assert(syncExpr != nullptr && "Expected non-null Expr");
+ syncExpr->printPretty(syncExprBuf, nullptr, PrintingPolicy(LangOpts));
+ syncBuf += syncExprBuf.str();
+ syncBuf += ");";
+
+ buf += syncBuf;
+ buf += "\n if (_rethrow) objc_exception_throw(_rethrow);\n";
+ buf += "}\n";
+ buf += "}";
+
+ ReplaceText(lastCurlyLoc, 1, buf);
+
+ bool hasReturns = false;
+ HasReturnStmts(S->getSynchBody(), hasReturns);
+ if (hasReturns)
+ RewriteSyncReturnStmts(S->getSynchBody(), syncBuf);
+
+ return nullptr;
+}
+
+void RewriteObjC::WarnAboutReturnGotoStmts(Stmt *S)
+{
+ // Perform a bottom up traversal of all children.
+ for (Stmt::child_range CI = S->children(); CI; ++CI)
+ if (*CI)
+ WarnAboutReturnGotoStmts(*CI);
+
+ if (isa<ReturnStmt>(S) || isa<GotoStmt>(S)) {
+ Diags.Report(Context->getFullLoc(S->getLocStart()),
+ TryFinallyContainsReturnDiag);
+ }
+ return;
+}
+
+void RewriteObjC::HasReturnStmts(Stmt *S, bool &hasReturns)
+{
+ // Perform a bottom up traversal of all children.
+ for (Stmt::child_range CI = S->children(); CI; ++CI)
+ if (*CI)
+ HasReturnStmts(*CI, hasReturns);
+
+ if (isa<ReturnStmt>(S))
+ hasReturns = true;
+ return;
+}
+
+void RewriteObjC::RewriteTryReturnStmts(Stmt *S) {
+ // Perform a bottom up traversal of all children.
+ for (Stmt::child_range CI = S->children(); CI; ++CI)
+ if (*CI) {
+ RewriteTryReturnStmts(*CI);
+ }
+ if (isa<ReturnStmt>(S)) {
+ SourceLocation startLoc = S->getLocStart();
+ const char *startBuf = SM->getCharacterData(startLoc);
+
+ const char *semiBuf = strchr(startBuf, ';');
+ assert((*semiBuf == ';') && "RewriteTryReturnStmts: can't find ';'");
+ SourceLocation onePastSemiLoc = startLoc.getLocWithOffset(semiBuf-startBuf+1);
+
+ std::string buf;
+ buf = "{ objc_exception_try_exit(&_stack); return";
+
+ ReplaceText(startLoc, 6, buf);
+ InsertText(onePastSemiLoc, "}");
+ }
+ return;
+}
+
+void RewriteObjC::RewriteSyncReturnStmts(Stmt *S, std::string syncExitBuf) {
+ // Perform a bottom up traversal of all children.
+ for (Stmt::child_range CI = S->children(); CI; ++CI)
+ if (*CI) {
+ RewriteSyncReturnStmts(*CI, syncExitBuf);
+ }
+ if (isa<ReturnStmt>(S)) {
+ SourceLocation startLoc = S->getLocStart();
+ const char *startBuf = SM->getCharacterData(startLoc);
+
+ const char *semiBuf = strchr(startBuf, ';');
+ assert((*semiBuf == ';') && "RewriteSyncReturnStmts: can't find ';'");
+ SourceLocation onePastSemiLoc = startLoc.getLocWithOffset(semiBuf-startBuf+1);
+
+ std::string buf;
+ buf = "{ objc_exception_try_exit(&_stack);";
+ buf += syncExitBuf;
+ buf += " return";
+
+ ReplaceText(startLoc, 6, buf);
+ InsertText(onePastSemiLoc, "}");
+ }
+ return;
+}
+
+Stmt *RewriteObjC::RewriteObjCTryStmt(ObjCAtTryStmt *S) {
+ // Get the start location and compute the semi location.
+ SourceLocation startLoc = S->getLocStart();
+ const char *startBuf = SM->getCharacterData(startLoc);
+
+ assert((*startBuf == '@') && "bogus @try location");
+
+ std::string buf;
+ // declare a new scope with two variables, _stack and _rethrow.
+ buf = "/* @try scope begin */ { struct _objc_exception_data {\n";
+ buf += "int buf[18/*32-bit i386*/];\n";
+ buf += "char *pointers[4];} _stack;\n";
+ buf += "id volatile _rethrow = 0;\n";
+ buf += "objc_exception_try_enter(&_stack);\n";
+ buf += "if (!_setjmp(_stack.buf)) /* @try block continue */\n";
+
+ ReplaceText(startLoc, 4, buf);
+
+ startLoc = S->getTryBody()->getLocEnd();
+ startBuf = SM->getCharacterData(startLoc);
+
+ assert((*startBuf == '}') && "bogus @try block");
+
+ SourceLocation lastCurlyLoc = startLoc;
+ if (S->getNumCatchStmts()) {
+ startLoc = startLoc.getLocWithOffset(1);
+ buf = " /* @catch begin */ else {\n";
+ buf += " id _caught = objc_exception_extract(&_stack);\n";
+ buf += " objc_exception_try_enter (&_stack);\n";
+ buf += " if (_setjmp(_stack.buf))\n";
+ buf += " _rethrow = objc_exception_extract(&_stack);\n";
+ buf += " else { /* @catch continue */";
+
+ InsertText(startLoc, buf);
+ } else { /* no catch list */
+ buf = "}\nelse {\n";
+ buf += " _rethrow = objc_exception_extract(&_stack);\n";
+ buf += "}";
+ ReplaceText(lastCurlyLoc, 1, buf);
+ }
+ Stmt *lastCatchBody = nullptr;
+ for (unsigned I = 0, N = S->getNumCatchStmts(); I != N; ++I) {
+ ObjCAtCatchStmt *Catch = S->getCatchStmt(I);
+ VarDecl *catchDecl = Catch->getCatchParamDecl();
+
+ if (I == 0)
+ buf = "if ("; // we are generating code for the first catch clause
+ else
+ buf = "else if (";
+ startLoc = Catch->getLocStart();
+ startBuf = SM->getCharacterData(startLoc);
+
+ assert((*startBuf == '@') && "bogus @catch location");
+
+ const char *lParenLoc = strchr(startBuf, '(');
+
+ if (Catch->hasEllipsis()) {
+ // Now rewrite the body...
+ lastCatchBody = Catch->getCatchBody();
+ SourceLocation bodyLoc = lastCatchBody->getLocStart();
+ const char *bodyBuf = SM->getCharacterData(bodyLoc);
+ assert(*SM->getCharacterData(Catch->getRParenLoc()) == ')' &&
+ "bogus @catch paren location");
+ assert((*bodyBuf == '{') && "bogus @catch body location");
+
+ buf += "1) { id _tmp = _caught;";
+ Rewrite.ReplaceText(startLoc, bodyBuf-startBuf+1, buf);
+ } else if (catchDecl) {
+ QualType t = catchDecl->getType();
+ if (t == Context->getObjCIdType()) {
+ buf += "1) { ";
+ ReplaceText(startLoc, lParenLoc-startBuf+1, buf);
+ } else if (const ObjCObjectPointerType *Ptr =
+ t->getAs<ObjCObjectPointerType>()) {
+ // Should be a pointer to a class.
+ ObjCInterfaceDecl *IDecl = Ptr->getObjectType()->getInterface();
+ if (IDecl) {
+ buf += "objc_exception_match((struct objc_class *)objc_getClass(\"";
+ buf += IDecl->getNameAsString();
+ buf += "\"), (struct objc_object *)_caught)) { ";
+ ReplaceText(startLoc, lParenLoc-startBuf+1, buf);
+ }
+ }
+ // Now rewrite the body...
+ lastCatchBody = Catch->getCatchBody();
+ SourceLocation rParenLoc = Catch->getRParenLoc();
+ SourceLocation bodyLoc = lastCatchBody->getLocStart();
+ const char *bodyBuf = SM->getCharacterData(bodyLoc);
+ const char *rParenBuf = SM->getCharacterData(rParenLoc);
+ assert((*rParenBuf == ')') && "bogus @catch paren location");
+ assert((*bodyBuf == '{') && "bogus @catch body location");
+
+ // Here we replace ") {" with "= _caught;" (which initializes and
+ // declares the @catch parameter).
+ ReplaceText(rParenLoc, bodyBuf-rParenBuf+1, " = _caught;");
+ } else {
+ llvm_unreachable("@catch rewrite bug");
+ }
+ }
+ // Complete the catch list...
+ if (lastCatchBody) {
+ SourceLocation bodyLoc = lastCatchBody->getLocEnd();
+ assert(*SM->getCharacterData(bodyLoc) == '}' &&
+ "bogus @catch body location");
+
+ // Insert the last (implicit) else clause *before* the right curly brace.
+ bodyLoc = bodyLoc.getLocWithOffset(-1);
+ buf = "} /* last catch end */\n";
+ buf += "else {\n";
+ buf += " _rethrow = _caught;\n";
+ buf += " objc_exception_try_exit(&_stack);\n";
+ buf += "} } /* @catch end */\n";
+ if (!S->getFinallyStmt())
+ buf += "}\n";
+ InsertText(bodyLoc, buf);
+
+ // Set lastCurlyLoc
+ lastCurlyLoc = lastCatchBody->getLocEnd();
+ }
+ if (ObjCAtFinallyStmt *finalStmt = S->getFinallyStmt()) {
+ startLoc = finalStmt->getLocStart();
+ startBuf = SM->getCharacterData(startLoc);
+ assert((*startBuf == '@') && "bogus @finally start");
+
+ ReplaceText(startLoc, 8, "/* @finally */");
+
+ Stmt *body = finalStmt->getFinallyBody();
+ SourceLocation startLoc = body->getLocStart();
+ SourceLocation endLoc = body->getLocEnd();
+ assert(*SM->getCharacterData(startLoc) == '{' &&
+ "bogus @finally body location");
+ assert(*SM->getCharacterData(endLoc) == '}' &&
+ "bogus @finally body location");
+
+ startLoc = startLoc.getLocWithOffset(1);
+ InsertText(startLoc, " if (!_rethrow) objc_exception_try_exit(&_stack);\n");
+ endLoc = endLoc.getLocWithOffset(-1);
+ InsertText(endLoc, " if (_rethrow) objc_exception_throw(_rethrow);\n");
+
+ // Set lastCurlyLoc
+ lastCurlyLoc = body->getLocEnd();
+
+ // Now check for any return/continue/go statements within the @try.
+ WarnAboutReturnGotoStmts(S->getTryBody());
+ } else { /* no finally clause - make sure we synthesize an implicit one */
+ buf = "{ /* implicit finally clause */\n";
+ buf += " if (!_rethrow) objc_exception_try_exit(&_stack);\n";
+ buf += " if (_rethrow) objc_exception_throw(_rethrow);\n";
+ buf += "}";
+ ReplaceText(lastCurlyLoc, 1, buf);
+
+ // Now check for any return/continue/go statements within the @try.
+ // The implicit finally clause won't called if the @try contains any
+ // jump statements.
+ bool hasReturns = false;
+ HasReturnStmts(S->getTryBody(), hasReturns);
+ if (hasReturns)
+ RewriteTryReturnStmts(S->getTryBody());
+ }
+ // Now emit the final closing curly brace...
+ lastCurlyLoc = lastCurlyLoc.getLocWithOffset(1);
+ InsertText(lastCurlyLoc, " } /* @try scope end */\n");
+ return nullptr;
+}
+
+// This can't be done with ReplaceStmt(S, ThrowExpr), since
+// the throw expression is typically a message expression that's already
+// been rewritten! (which implies the SourceLocation's are invalid).
+Stmt *RewriteObjC::RewriteObjCThrowStmt(ObjCAtThrowStmt *S) {
+ // Get the start location and compute the semi location.
+ SourceLocation startLoc = S->getLocStart();
+ const char *startBuf = SM->getCharacterData(startLoc);
+
+ assert((*startBuf == '@') && "bogus @throw location");
+
+ std::string buf;
+ /* void objc_exception_throw(id) __attribute__((noreturn)); */
+ if (S->getThrowExpr())
+ buf = "objc_exception_throw(";
+ else // add an implicit argument
+ buf = "objc_exception_throw(_caught";
+
+ // handle "@ throw" correctly.
+ const char *wBuf = strchr(startBuf, 'w');
+ assert((*wBuf == 'w') && "@throw: can't find 'w'");
+ ReplaceText(startLoc, wBuf-startBuf+1, buf);
+
+ const char *semiBuf = strchr(startBuf, ';');
+ assert((*semiBuf == ';') && "@throw: can't find ';'");
+ SourceLocation semiLoc = startLoc.getLocWithOffset(semiBuf-startBuf);
+ ReplaceText(semiLoc, 1, ");");
+ return nullptr;
+}
+
+Stmt *RewriteObjC::RewriteAtEncode(ObjCEncodeExpr *Exp) {
+ // Create a new string expression.
+ std::string StrEncoding;
+ Context->getObjCEncodingForType(Exp->getEncodedType(), StrEncoding);
+ Expr *Replacement = getStringLiteral(StrEncoding);
+ ReplaceStmt(Exp, Replacement);
+
+ // Replace this subexpr in the parent.
+ // delete Exp; leak for now, see RewritePropertyOrImplicitSetter() usage for more info.
+ return Replacement;
+}
+
+Stmt *RewriteObjC::RewriteAtSelector(ObjCSelectorExpr *Exp) {
+ if (!SelGetUidFunctionDecl)
+ SynthSelGetUidFunctionDecl();
+ assert(SelGetUidFunctionDecl && "Can't find sel_registerName() decl");
+ // Create a call to sel_registerName("selName").
+ SmallVector<Expr*, 8> SelExprs;
+ SelExprs.push_back(getStringLiteral(Exp->getSelector().getAsString()));
+ CallExpr *SelExp = SynthesizeCallToFunctionDecl(SelGetUidFunctionDecl,
+ &SelExprs[0], SelExprs.size());
+ ReplaceStmt(Exp, SelExp);
+ // delete Exp; leak for now, see RewritePropertyOrImplicitSetter() usage for more info.
+ return SelExp;
+}
+
+CallExpr *RewriteObjC::SynthesizeCallToFunctionDecl(
+ FunctionDecl *FD, Expr **args, unsigned nargs, SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+ // Get the type, we will need to reference it in a couple spots.
+ QualType msgSendType = FD->getType();
+
+ // Create a reference to the objc_msgSend() declaration.
+ DeclRefExpr *DRE = new (Context) DeclRefExpr(FD, false, msgSendType,
+ VK_LValue, SourceLocation());
+
+ // Now, we cast the reference to a pointer to the objc_msgSend type.
+ QualType pToFunc = Context->getPointerType(msgSendType);
+ ImplicitCastExpr *ICE =
+ ImplicitCastExpr::Create(*Context, pToFunc, CK_FunctionToPointerDecay,
+ DRE, nullptr, VK_RValue);
+
+ const FunctionType *FT = msgSendType->getAs<FunctionType>();
+
+ CallExpr *Exp =
+ new (Context) CallExpr(*Context, ICE, llvm::makeArrayRef(args, nargs),
+ FT->getCallResultType(*Context),
+ VK_RValue, EndLoc);
+ return Exp;
+}
+
+static bool scanForProtocolRefs(const char *startBuf, const char *endBuf,
+ const char *&startRef, const char *&endRef) {
+ while (startBuf < endBuf) {
+ if (*startBuf == '<')
+ startRef = startBuf; // mark the start.
+ if (*startBuf == '>') {
+ if (startRef && *startRef == '<') {
+ endRef = startBuf; // mark the end.
+ return true;
+ }
+ return false;
+ }
+ startBuf++;
+ }
+ return false;
+}
+
+static void scanToNextArgument(const char *&argRef) {
+ int angle = 0;
+ while (*argRef != ')' && (*argRef != ',' || angle > 0)) {
+ if (*argRef == '<')
+ angle++;
+ else if (*argRef == '>')
+ angle--;
+ argRef++;
+ }
+ assert(angle == 0 && "scanToNextArgument - bad protocol type syntax");
+}
+
+bool RewriteObjC::needToScanForQualifiers(QualType T) {
+ if (T->isObjCQualifiedIdType())
+ return true;
+ if (const PointerType *PT = T->getAs<PointerType>()) {
+ if (PT->getPointeeType()->isObjCQualifiedIdType())
+ return true;
+ }
+ if (T->isObjCObjectPointerType()) {
+ T = T->getPointeeType();
+ return T->isObjCQualifiedInterfaceType();
+ }
+ if (T->isArrayType()) {
+ QualType ElemTy = Context->getBaseElementType(T);
+ return needToScanForQualifiers(ElemTy);
+ }
+ return false;
+}
+
+void RewriteObjC::RewriteObjCQualifiedInterfaceTypes(Expr *E) {
+ QualType Type = E->getType();
+ if (needToScanForQualifiers(Type)) {
+ SourceLocation Loc, EndLoc;
+
+ if (const CStyleCastExpr *ECE = dyn_cast<CStyleCastExpr>(E)) {
+ Loc = ECE->getLParenLoc();
+ EndLoc = ECE->getRParenLoc();
+ } else {
+ Loc = E->getLocStart();
+ EndLoc = E->getLocEnd();
+ }
+ // This will defend against trying to rewrite synthesized expressions.
+ if (Loc.isInvalid() || EndLoc.isInvalid())
+ return;
+
+ const char *startBuf = SM->getCharacterData(Loc);
+ const char *endBuf = SM->getCharacterData(EndLoc);
+ const char *startRef = nullptr, *endRef = nullptr;
+ if (scanForProtocolRefs(startBuf, endBuf, startRef, endRef)) {
+ // Get the locations of the startRef, endRef.
+ SourceLocation LessLoc = Loc.getLocWithOffset(startRef-startBuf);
+ SourceLocation GreaterLoc = Loc.getLocWithOffset(endRef-startBuf+1);
+ // Comment out the protocol references.
+ InsertText(LessLoc, "/*");
+ InsertText(GreaterLoc, "*/");
+ }
+ }
+}
+
+void RewriteObjC::RewriteObjCQualifiedInterfaceTypes(Decl *Dcl) {
+ SourceLocation Loc;
+ QualType Type;
+ const FunctionProtoType *proto = nullptr;
+ if (VarDecl *VD = dyn_cast<VarDecl>(Dcl)) {
+ Loc = VD->getLocation();
+ Type = VD->getType();
+ }
+ else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Dcl)) {
+ Loc = FD->getLocation();
+ // Check for ObjC 'id' and class types that have been adorned with protocol
+ // information (id<p>, C<p>*). The protocol references need to be rewritten!
+ const FunctionType *funcType = FD->getType()->getAs<FunctionType>();
+ assert(funcType && "missing function type");
+ proto = dyn_cast<FunctionProtoType>(funcType);
+ if (!proto)
+ return;
+ Type = proto->getReturnType();
+ }
+ else if (FieldDecl *FD = dyn_cast<FieldDecl>(Dcl)) {
+ Loc = FD->getLocation();
+ Type = FD->getType();
+ }
+ else
+ return;
+
+ if (needToScanForQualifiers(Type)) {
+ // Since types are unique, we need to scan the buffer.
+
+ const char *endBuf = SM->getCharacterData(Loc);
+ const char *startBuf = endBuf;
+ while (*startBuf != ';' && *startBuf != '<' && startBuf != MainFileStart)
+ startBuf--; // scan backward (from the decl location) for return type.
+ const char *startRef = nullptr, *endRef = nullptr;
+ if (scanForProtocolRefs(startBuf, endBuf, startRef, endRef)) {
+ // Get the locations of the startRef, endRef.
+ SourceLocation LessLoc = Loc.getLocWithOffset(startRef-endBuf);
+ SourceLocation GreaterLoc = Loc.getLocWithOffset(endRef-endBuf+1);
+ // Comment out the protocol references.
+ InsertText(LessLoc, "/*");
+ InsertText(GreaterLoc, "*/");
+ }
+ }
+ if (!proto)
+ return; // most likely, was a variable
+ // Now check arguments.
+ const char *startBuf = SM->getCharacterData(Loc);
+ const char *startFuncBuf = startBuf;
+ for (unsigned i = 0; i < proto->getNumParams(); i++) {
+ if (needToScanForQualifiers(proto->getParamType(i))) {
+ // Since types are unique, we need to scan the buffer.
+
+ const char *endBuf = startBuf;
+ // scan forward (from the decl location) for argument types.
+ scanToNextArgument(endBuf);
+ const char *startRef = nullptr, *endRef = nullptr;
+ if (scanForProtocolRefs(startBuf, endBuf, startRef, endRef)) {
+ // Get the locations of the startRef, endRef.
+ SourceLocation LessLoc =
+ Loc.getLocWithOffset(startRef-startFuncBuf);
+ SourceLocation GreaterLoc =
+ Loc.getLocWithOffset(endRef-startFuncBuf+1);
+ // Comment out the protocol references.
+ InsertText(LessLoc, "/*");
+ InsertText(GreaterLoc, "*/");
+ }
+ startBuf = ++endBuf;
+ }
+ else {
+ // If the function name is derived from a macro expansion, then the
+ // argument buffer will not follow the name. Need to speak with Chris.
+ while (*startBuf && *startBuf != ')' && *startBuf != ',')
+ startBuf++; // scan forward (from the decl location) for argument types.
+ startBuf++;
+ }
+ }
+}
+
+void RewriteObjC::RewriteTypeOfDecl(VarDecl *ND) {
+ QualType QT = ND->getType();
+ const Type* TypePtr = QT->getAs<Type>();
+ if (!isa<TypeOfExprType>(TypePtr))
+ return;
+ while (isa<TypeOfExprType>(TypePtr)) {
+ const TypeOfExprType *TypeOfExprTypePtr = cast<TypeOfExprType>(TypePtr);
+ QT = TypeOfExprTypePtr->getUnderlyingExpr()->getType();
+ TypePtr = QT->getAs<Type>();
+ }
+ // FIXME. This will not work for multiple declarators; as in:
+ // __typeof__(a) b,c,d;
+ std::string TypeAsString(QT.getAsString(Context->getPrintingPolicy()));
+ SourceLocation DeclLoc = ND->getTypeSpecStartLoc();
+ const char *startBuf = SM->getCharacterData(DeclLoc);
+ if (ND->getInit()) {
+ std::string Name(ND->getNameAsString());
+ TypeAsString += " " + Name + " = ";
+ Expr *E = ND->getInit();
+ SourceLocation startLoc;
+ if (const CStyleCastExpr *ECE = dyn_cast<CStyleCastExpr>(E))
+ startLoc = ECE->getLParenLoc();
+ else
+ startLoc = E->getLocStart();
+ startLoc = SM->getExpansionLoc(startLoc);
+ const char *endBuf = SM->getCharacterData(startLoc);
+ ReplaceText(DeclLoc, endBuf-startBuf-1, TypeAsString);
+ }
+ else {
+ SourceLocation X = ND->getLocEnd();
+ X = SM->getExpansionLoc(X);
+ const char *endBuf = SM->getCharacterData(X);
+ ReplaceText(DeclLoc, endBuf-startBuf-1, TypeAsString);
+ }
+}
+
+// SynthSelGetUidFunctionDecl - SEL sel_registerName(const char *str);
+void RewriteObjC::SynthSelGetUidFunctionDecl() {
+ IdentifierInfo *SelGetUidIdent = &Context->Idents.get("sel_registerName");
+ SmallVector<QualType, 16> ArgTys;
+ ArgTys.push_back(Context->getPointerType(Context->CharTy.withConst()));
+ QualType getFuncType =
+ getSimpleFunctionType(Context->getObjCSelType(), ArgTys);
+ SelGetUidFunctionDecl = FunctionDecl::Create(*Context, TUDecl,
+ SourceLocation(),
+ SourceLocation(),
+ SelGetUidIdent, getFuncType,
+ nullptr, SC_Extern);
+}
+
+void RewriteObjC::RewriteFunctionDecl(FunctionDecl *FD) {
+ // declared in <objc/objc.h>
+ if (FD->getIdentifier() &&
+ FD->getName() == "sel_registerName") {
+ SelGetUidFunctionDecl = FD;
+ return;
+ }
+ RewriteObjCQualifiedInterfaceTypes(FD);
+}
+
+void RewriteObjC::RewriteBlockPointerType(std::string& Str, QualType Type) {
+ std::string TypeString(Type.getAsString(Context->getPrintingPolicy()));
+ const char *argPtr = TypeString.c_str();
+ if (!strchr(argPtr, '^')) {
+ Str += TypeString;
+ return;
+ }
+ while (*argPtr) {
+ Str += (*argPtr == '^' ? '*' : *argPtr);
+ argPtr++;
+ }
+}
+
+// FIXME. Consolidate this routine with RewriteBlockPointerType.
+void RewriteObjC::RewriteBlockPointerTypeVariable(std::string& Str,
+ ValueDecl *VD) {
+ QualType Type = VD->getType();
+ std::string TypeString(Type.getAsString(Context->getPrintingPolicy()));
+ const char *argPtr = TypeString.c_str();
+ int paren = 0;
+ while (*argPtr) {
+ switch (*argPtr) {
+ case '(':
+ Str += *argPtr;
+ paren++;
+ break;
+ case ')':
+ Str += *argPtr;
+ paren--;
+ break;
+ case '^':
+ Str += '*';
+ if (paren == 1)
+ Str += VD->getNameAsString();
+ break;
+ default:
+ Str += *argPtr;
+ break;
+ }
+ argPtr++;
+ }
+}
+
+
+void RewriteObjC::RewriteBlockLiteralFunctionDecl(FunctionDecl *FD) {
+ SourceLocation FunLocStart = FD->getTypeSpecStartLoc();
+ const FunctionType *funcType = FD->getType()->getAs<FunctionType>();
+ const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(funcType);
+ if (!proto)
+ return;
+ QualType Type = proto->getReturnType();
+ std::string FdStr = Type.getAsString(Context->getPrintingPolicy());
+ FdStr += " ";
+ FdStr += FD->getName();
+ FdStr += "(";
+ unsigned numArgs = proto->getNumParams();
+ for (unsigned i = 0; i < numArgs; i++) {
+ QualType ArgType = proto->getParamType(i);
+ RewriteBlockPointerType(FdStr, ArgType);
+ if (i+1 < numArgs)
+ FdStr += ", ";
+ }
+ FdStr += ");\n";
+ InsertText(FunLocStart, FdStr);
+ CurFunctionDeclToDeclareForBlock = nullptr;
+}
+
+// SynthSuperConstructorFunctionDecl - id objc_super(id obj, id super);
+void RewriteObjC::SynthSuperConstructorFunctionDecl() {
+ if (SuperConstructorFunctionDecl)
+ return;
+ IdentifierInfo *msgSendIdent = &Context->Idents.get("__rw_objc_super");
+ SmallVector<QualType, 16> ArgTys;
+ QualType argT = Context->getObjCIdType();
+ assert(!argT.isNull() && "Can't find 'id' type");
+ ArgTys.push_back(argT);
+ ArgTys.push_back(argT);
+ QualType msgSendType = getSimpleFunctionType(Context->getObjCIdType(),
+ ArgTys);
+ SuperConstructorFunctionDecl = FunctionDecl::Create(*Context, TUDecl,
+ SourceLocation(),
+ SourceLocation(),
+ msgSendIdent, msgSendType,
+ nullptr, SC_Extern);
+}
+
+// SynthMsgSendFunctionDecl - id objc_msgSend(id self, SEL op, ...);
+void RewriteObjC::SynthMsgSendFunctionDecl() {
+ IdentifierInfo *msgSendIdent = &Context->Idents.get("objc_msgSend");
+ SmallVector<QualType, 16> ArgTys;
+ QualType argT = Context->getObjCIdType();
+ assert(!argT.isNull() && "Can't find 'id' type");
+ ArgTys.push_back(argT);
+ argT = Context->getObjCSelType();
+ assert(!argT.isNull() && "Can't find 'SEL' type");
+ ArgTys.push_back(argT);
+ QualType msgSendType = getSimpleFunctionType(Context->getObjCIdType(),
+ ArgTys, /*isVariadic=*/true);
+ MsgSendFunctionDecl = FunctionDecl::Create(*Context, TUDecl,
+ SourceLocation(),
+ SourceLocation(),
+ msgSendIdent, msgSendType,
+ nullptr, SC_Extern);
+}
+
+// SynthMsgSendSuperFunctionDecl - id objc_msgSendSuper(struct objc_super *, SEL op, ...);
+void RewriteObjC::SynthMsgSendSuperFunctionDecl() {
+ IdentifierInfo *msgSendIdent = &Context->Idents.get("objc_msgSendSuper");
+ SmallVector<QualType, 16> ArgTys;
+ RecordDecl *RD = RecordDecl::Create(*Context, TTK_Struct, TUDecl,
+ SourceLocation(), SourceLocation(),
+ &Context->Idents.get("objc_super"));
+ QualType argT = Context->getPointerType(Context->getTagDeclType(RD));
+ assert(!argT.isNull() && "Can't build 'struct objc_super *' type");
+ ArgTys.push_back(argT);
+ argT = Context->getObjCSelType();
+ assert(!argT.isNull() && "Can't find 'SEL' type");
+ ArgTys.push_back(argT);
+ QualType msgSendType = getSimpleFunctionType(Context->getObjCIdType(),
+ ArgTys, /*isVariadic=*/true);
+ MsgSendSuperFunctionDecl = FunctionDecl::Create(*Context, TUDecl,
+ SourceLocation(),
+ SourceLocation(),
+ msgSendIdent, msgSendType,
+ nullptr, SC_Extern);
+}
+
+// SynthMsgSendStretFunctionDecl - id objc_msgSend_stret(id self, SEL op, ...);
+void RewriteObjC::SynthMsgSendStretFunctionDecl() {
+ IdentifierInfo *msgSendIdent = &Context->Idents.get("objc_msgSend_stret");
+ SmallVector<QualType, 16> ArgTys;
+ QualType argT = Context->getObjCIdType();
+ assert(!argT.isNull() && "Can't find 'id' type");
+ ArgTys.push_back(argT);
+ argT = Context->getObjCSelType();
+ assert(!argT.isNull() && "Can't find 'SEL' type");
+ ArgTys.push_back(argT);
+ QualType msgSendType = getSimpleFunctionType(Context->getObjCIdType(),
+ ArgTys, /*isVariadic=*/true);
+ MsgSendStretFunctionDecl = FunctionDecl::Create(*Context, TUDecl,
+ SourceLocation(),
+ SourceLocation(),
+ msgSendIdent, msgSendType,
+ nullptr, SC_Extern);
+}
+
+// SynthMsgSendSuperStretFunctionDecl -
+// id objc_msgSendSuper_stret(struct objc_super *, SEL op, ...);
+void RewriteObjC::SynthMsgSendSuperStretFunctionDecl() {
+ IdentifierInfo *msgSendIdent =
+ &Context->Idents.get("objc_msgSendSuper_stret");
+ SmallVector<QualType, 16> ArgTys;
+ RecordDecl *RD = RecordDecl::Create(*Context, TTK_Struct, TUDecl,
+ SourceLocation(), SourceLocation(),
+ &Context->Idents.get("objc_super"));
+ QualType argT = Context->getPointerType(Context->getTagDeclType(RD));
+ assert(!argT.isNull() && "Can't build 'struct objc_super *' type");
+ ArgTys.push_back(argT);
+ argT = Context->getObjCSelType();
+ assert(!argT.isNull() && "Can't find 'SEL' type");
+ ArgTys.push_back(argT);
+ QualType msgSendType = getSimpleFunctionType(Context->getObjCIdType(),
+ ArgTys, /*isVariadic=*/true);
+ MsgSendSuperStretFunctionDecl = FunctionDecl::Create(*Context, TUDecl,
+ SourceLocation(),
+ SourceLocation(),
+ msgSendIdent,
+ msgSendType, nullptr,
+ SC_Extern);
+}
+
+// SynthMsgSendFpretFunctionDecl - double objc_msgSend_fpret(id self, SEL op, ...);
+void RewriteObjC::SynthMsgSendFpretFunctionDecl() {
+ IdentifierInfo *msgSendIdent = &Context->Idents.get("objc_msgSend_fpret");
+ SmallVector<QualType, 16> ArgTys;
+ QualType argT = Context->getObjCIdType();
+ assert(!argT.isNull() && "Can't find 'id' type");
+ ArgTys.push_back(argT);
+ argT = Context->getObjCSelType();
+ assert(!argT.isNull() && "Can't find 'SEL' type");
+ ArgTys.push_back(argT);
+ QualType msgSendType = getSimpleFunctionType(Context->DoubleTy,
+ ArgTys, /*isVariadic=*/true);
+ MsgSendFpretFunctionDecl = FunctionDecl::Create(*Context, TUDecl,
+ SourceLocation(),
+ SourceLocation(),
+ msgSendIdent, msgSendType,
+ nullptr, SC_Extern);
+}
+
+// SynthGetClassFunctionDecl - id objc_getClass(const char *name);
+void RewriteObjC::SynthGetClassFunctionDecl() {
+ IdentifierInfo *getClassIdent = &Context->Idents.get("objc_getClass");
+ SmallVector<QualType, 16> ArgTys;
+ ArgTys.push_back(Context->getPointerType(Context->CharTy.withConst()));
+ QualType getClassType = getSimpleFunctionType(Context->getObjCIdType(),
+ ArgTys);
+ GetClassFunctionDecl = FunctionDecl::Create(*Context, TUDecl,
+ SourceLocation(),
+ SourceLocation(),
+ getClassIdent, getClassType,
+ nullptr, SC_Extern);
+}
+
+// SynthGetSuperClassFunctionDecl - Class class_getSuperclass(Class cls);
+void RewriteObjC::SynthGetSuperClassFunctionDecl() {
+ IdentifierInfo *getSuperClassIdent =
+ &Context->Idents.get("class_getSuperclass");
+ SmallVector<QualType, 16> ArgTys;
+ ArgTys.push_back(Context->getObjCClassType());
+ QualType getClassType = getSimpleFunctionType(Context->getObjCClassType(),
+ ArgTys);
+ GetSuperClassFunctionDecl = FunctionDecl::Create(*Context, TUDecl,
+ SourceLocation(),
+ SourceLocation(),
+ getSuperClassIdent,
+ getClassType, nullptr,
+ SC_Extern);
+}
+
+// SynthGetMetaClassFunctionDecl - id objc_getMetaClass(const char *name);
+void RewriteObjC::SynthGetMetaClassFunctionDecl() {
+ IdentifierInfo *getClassIdent = &Context->Idents.get("objc_getMetaClass");
+ SmallVector<QualType, 16> ArgTys;
+ ArgTys.push_back(Context->getPointerType(Context->CharTy.withConst()));
+ QualType getClassType = getSimpleFunctionType(Context->getObjCIdType(),
+ ArgTys);
+ GetMetaClassFunctionDecl = FunctionDecl::Create(*Context, TUDecl,
+ SourceLocation(),
+ SourceLocation(),
+ getClassIdent, getClassType,
+ nullptr, SC_Extern);
+}
+
+Stmt *RewriteObjC::RewriteObjCStringLiteral(ObjCStringLiteral *Exp) {
+ assert(Exp != nullptr && "Expected non-null ObjCStringLiteral");
+ QualType strType = getConstantStringStructType();
+
+ std::string S = "__NSConstantStringImpl_";
+
+ std::string tmpName = InFileName;
+ unsigned i;
+ for (i=0; i < tmpName.length(); i++) {
+ char c = tmpName.at(i);
+ // replace any non-alphanumeric characters with '_'.
+ if (!isAlphanumeric(c))
+ tmpName[i] = '_';
+ }
+ S += tmpName;
+ S += "_";
+ S += utostr(NumObjCStringLiterals++);
+
+ Preamble += "static __NSConstantStringImpl " + S;
+ Preamble += " __attribute__ ((section (\"__DATA, __cfstring\"))) = {__CFConstantStringClassReference,";
+ Preamble += "0x000007c8,"; // utf8_str
+ // The pretty printer for StringLiteral handles escape characters properly.
+ std::string prettyBufS;
+ llvm::raw_string_ostream prettyBuf(prettyBufS);
+ Exp->getString()->printPretty(prettyBuf, nullptr, PrintingPolicy(LangOpts));
+ Preamble += prettyBuf.str();
+ Preamble += ",";
+ Preamble += utostr(Exp->getString()->getByteLength()) + "};\n";
+
+ VarDecl *NewVD = VarDecl::Create(*Context, TUDecl, SourceLocation(),
+ SourceLocation(), &Context->Idents.get(S),
+ strType, nullptr, SC_Static);
+ DeclRefExpr *DRE = new (Context) DeclRefExpr(NewVD, false, strType, VK_LValue,
+ SourceLocation());
+ Expr *Unop = new (Context) UnaryOperator(DRE, UO_AddrOf,
+ Context->getPointerType(DRE->getType()),
+ VK_RValue, OK_Ordinary,
+ SourceLocation());
+ // cast to NSConstantString *
+ CastExpr *cast = NoTypeInfoCStyleCastExpr(Context, Exp->getType(),
+ CK_CPointerToObjCPointerCast, Unop);
+ ReplaceStmt(Exp, cast);
+ // delete Exp; leak for now, see RewritePropertyOrImplicitSetter() usage for more info.
+ return cast;
+}
+
+// struct objc_super { struct objc_object *receiver; struct objc_class *super; };
+QualType RewriteObjC::getSuperStructType() {
+ if (!SuperStructDecl) {
+ SuperStructDecl = RecordDecl::Create(*Context, TTK_Struct, TUDecl,
+ SourceLocation(), SourceLocation(),
+ &Context->Idents.get("objc_super"));
+ QualType FieldTypes[2];
+
+ // struct objc_object *receiver;
+ FieldTypes[0] = Context->getObjCIdType();
+ // struct objc_class *super;
+ FieldTypes[1] = Context->getObjCClassType();
+
+ // Create fields
+ for (unsigned i = 0; i < 2; ++i) {
+ SuperStructDecl->addDecl(FieldDecl::Create(*Context, SuperStructDecl,
+ SourceLocation(),
+ SourceLocation(), nullptr,
+ FieldTypes[i], nullptr,
+ /*BitWidth=*/nullptr,
+ /*Mutable=*/false,
+ ICIS_NoInit));
+ }
+
+ SuperStructDecl->completeDefinition();
+ }
+ return Context->getTagDeclType(SuperStructDecl);
+}
+
+QualType RewriteObjC::getConstantStringStructType() {
+ if (!ConstantStringDecl) {
+ ConstantStringDecl = RecordDecl::Create(*Context, TTK_Struct, TUDecl,
+ SourceLocation(), SourceLocation(),
+ &Context->Idents.get("__NSConstantStringImpl"));
+ QualType FieldTypes[4];
+
+ // struct objc_object *receiver;
+ FieldTypes[0] = Context->getObjCIdType();
+ // int flags;
+ FieldTypes[1] = Context->IntTy;
+ // char *str;
+ FieldTypes[2] = Context->getPointerType(Context->CharTy);
+ // long length;
+ FieldTypes[3] = Context->LongTy;
+
+ // Create fields
+ for (unsigned i = 0; i < 4; ++i) {
+ ConstantStringDecl->addDecl(FieldDecl::Create(*Context,
+ ConstantStringDecl,
+ SourceLocation(),
+ SourceLocation(), nullptr,
+ FieldTypes[i], nullptr,
+ /*BitWidth=*/nullptr,
+ /*Mutable=*/true,
+ ICIS_NoInit));
+ }
+
+ ConstantStringDecl->completeDefinition();
+ }
+ return Context->getTagDeclType(ConstantStringDecl);
+}
+
+CallExpr *RewriteObjC::SynthMsgSendStretCallExpr(FunctionDecl *MsgSendStretFlavor,
+ QualType msgSendType,
+ QualType returnType,
+ SmallVectorImpl<QualType> &ArgTypes,
+ SmallVectorImpl<Expr*> &MsgExprs,
+ ObjCMethodDecl *Method) {
+ // Create a reference to the objc_msgSend_stret() declaration.
+ DeclRefExpr *STDRE = new (Context) DeclRefExpr(MsgSendStretFlavor,
+ false, msgSendType,
+ VK_LValue, SourceLocation());
+ // Need to cast objc_msgSend_stret to "void *" (see above comment).
+ CastExpr *cast = NoTypeInfoCStyleCastExpr(Context,
+ Context->getPointerType(Context->VoidTy),
+ CK_BitCast, STDRE);
+ // Now do the "normal" pointer to function cast.
+ QualType castType = getSimpleFunctionType(returnType, ArgTypes,
+ Method ? Method->isVariadic()
+ : false);
+ castType = Context->getPointerType(castType);
+ cast = NoTypeInfoCStyleCastExpr(Context, castType, CK_BitCast,
+ cast);
+
+ // Don't forget the parens to enforce the proper binding.
+ ParenExpr *PE = new (Context) ParenExpr(SourceLocation(), SourceLocation(), cast);
+
+ const FunctionType *FT = msgSendType->getAs<FunctionType>();
+ CallExpr *STCE = new (Context) CallExpr(
+ *Context, PE, MsgExprs, FT->getReturnType(), VK_RValue, SourceLocation());
+ return STCE;
+
+}
+
+
+Stmt *RewriteObjC::SynthMessageExpr(ObjCMessageExpr *Exp,
+ SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+ if (!SelGetUidFunctionDecl)
+ SynthSelGetUidFunctionDecl();
+ if (!MsgSendFunctionDecl)
+ SynthMsgSendFunctionDecl();
+ if (!MsgSendSuperFunctionDecl)
+ SynthMsgSendSuperFunctionDecl();
+ if (!MsgSendStretFunctionDecl)
+ SynthMsgSendStretFunctionDecl();
+ if (!MsgSendSuperStretFunctionDecl)
+ SynthMsgSendSuperStretFunctionDecl();
+ if (!MsgSendFpretFunctionDecl)
+ SynthMsgSendFpretFunctionDecl();
+ if (!GetClassFunctionDecl)
+ SynthGetClassFunctionDecl();
+ if (!GetSuperClassFunctionDecl)
+ SynthGetSuperClassFunctionDecl();
+ if (!GetMetaClassFunctionDecl)
+ SynthGetMetaClassFunctionDecl();
+
+ // default to objc_msgSend().
+ FunctionDecl *MsgSendFlavor = MsgSendFunctionDecl;
+ // May need to use objc_msgSend_stret() as well.
+ FunctionDecl *MsgSendStretFlavor = nullptr;
+ if (ObjCMethodDecl *mDecl = Exp->getMethodDecl()) {
+ QualType resultType = mDecl->getReturnType();
+ if (resultType->isRecordType())
+ MsgSendStretFlavor = MsgSendStretFunctionDecl;
+ else if (resultType->isRealFloatingType())
+ MsgSendFlavor = MsgSendFpretFunctionDecl;
+ }
+
+ // Synthesize a call to objc_msgSend().
+ SmallVector<Expr*, 8> MsgExprs;
+ switch (Exp->getReceiverKind()) {
+ case ObjCMessageExpr::SuperClass: {
+ MsgSendFlavor = MsgSendSuperFunctionDecl;
+ if (MsgSendStretFlavor)
+ MsgSendStretFlavor = MsgSendSuperStretFunctionDecl;
+ assert(MsgSendFlavor && "MsgSendFlavor is NULL!");
+
+ ObjCInterfaceDecl *ClassDecl = CurMethodDef->getClassInterface();
+
+ SmallVector<Expr*, 4> InitExprs;
+
+ // set the receiver to self, the first argument to all methods.
+ InitExprs.push_back(
+ NoTypeInfoCStyleCastExpr(Context, Context->getObjCIdType(),
+ CK_BitCast,
+ new (Context) DeclRefExpr(CurMethodDef->getSelfDecl(),
+ false,
+ Context->getObjCIdType(),
+ VK_RValue,
+ SourceLocation()))
+ ); // set the 'receiver'.
+
+ // (id)class_getSuperclass((Class)objc_getClass("CurrentClass"))
+ SmallVector<Expr*, 8> ClsExprs;
+ ClsExprs.push_back(getStringLiteral(ClassDecl->getIdentifier()->getName()));
+ CallExpr *Cls = SynthesizeCallToFunctionDecl(GetMetaClassFunctionDecl,
+ &ClsExprs[0],
+ ClsExprs.size(),
+ StartLoc,
+ EndLoc);
+ // (Class)objc_getClass("CurrentClass")
+ CastExpr *ArgExpr = NoTypeInfoCStyleCastExpr(Context,
+ Context->getObjCClassType(),
+ CK_BitCast, Cls);
+ ClsExprs.clear();
+ ClsExprs.push_back(ArgExpr);
+ Cls = SynthesizeCallToFunctionDecl(GetSuperClassFunctionDecl,
+ &ClsExprs[0], ClsExprs.size(),
+ StartLoc, EndLoc);
+
+ // (id)class_getSuperclass((Class)objc_getClass("CurrentClass"))
+ // To turn off a warning, type-cast to 'id'
+ InitExprs.push_back( // set 'super class', using class_getSuperclass().
+ NoTypeInfoCStyleCastExpr(Context,
+ Context->getObjCIdType(),
+ CK_BitCast, Cls));
+ // struct objc_super
+ QualType superType = getSuperStructType();
+ Expr *SuperRep;
+
+ if (LangOpts.MicrosoftExt) {
+ SynthSuperConstructorFunctionDecl();
+ // Simulate a constructor call...
+ DeclRefExpr *DRE = new (Context) DeclRefExpr(SuperConstructorFunctionDecl,
+ false, superType, VK_LValue,
+ SourceLocation());
+ SuperRep = new (Context) CallExpr(*Context, DRE, InitExprs,
+ superType, VK_LValue,
+ SourceLocation());
+ // The code for super is a little tricky to prevent collision with
+ // the structure definition in the header. The rewriter has it's own
+ // internal definition (__rw_objc_super) that is uses. This is why
+ // we need the cast below. For example:
+ // (struct objc_super *)&__rw_objc_super((id)self, (id)objc_getClass("SUPER"))
+ //
+ SuperRep = new (Context) UnaryOperator(SuperRep, UO_AddrOf,
+ Context->getPointerType(SuperRep->getType()),
+ VK_RValue, OK_Ordinary,
+ SourceLocation());
+ SuperRep = NoTypeInfoCStyleCastExpr(Context,
+ Context->getPointerType(superType),
+ CK_BitCast, SuperRep);
+ } else {
+ // (struct objc_super) { <exprs from above> }
+ InitListExpr *ILE =
+ new (Context) InitListExpr(*Context, SourceLocation(), InitExprs,
+ SourceLocation());
+ TypeSourceInfo *superTInfo
+ = Context->getTrivialTypeSourceInfo(superType);
+ SuperRep = new (Context) CompoundLiteralExpr(SourceLocation(), superTInfo,
+ superType, VK_LValue,
+ ILE, false);
+ // struct objc_super *
+ SuperRep = new (Context) UnaryOperator(SuperRep, UO_AddrOf,
+ Context->getPointerType(SuperRep->getType()),
+ VK_RValue, OK_Ordinary,
+ SourceLocation());
+ }
+ MsgExprs.push_back(SuperRep);
+ break;
+ }
+
+ case ObjCMessageExpr::Class: {
+ SmallVector<Expr*, 8> ClsExprs;
+ ObjCInterfaceDecl *Class
+ = Exp->getClassReceiver()->getAs<ObjCObjectType>()->getInterface();
+ IdentifierInfo *clsName = Class->getIdentifier();
+ ClsExprs.push_back(getStringLiteral(clsName->getName()));
+ CallExpr *Cls = SynthesizeCallToFunctionDecl(GetClassFunctionDecl,
+ &ClsExprs[0],
+ ClsExprs.size(),
+ StartLoc, EndLoc);
+ MsgExprs.push_back(Cls);
+ break;
+ }
+
+ case ObjCMessageExpr::SuperInstance:{
+ MsgSendFlavor = MsgSendSuperFunctionDecl;
+ if (MsgSendStretFlavor)
+ MsgSendStretFlavor = MsgSendSuperStretFunctionDecl;
+ assert(MsgSendFlavor && "MsgSendFlavor is NULL!");
+ ObjCInterfaceDecl *ClassDecl = CurMethodDef->getClassInterface();
+ SmallVector<Expr*, 4> InitExprs;
+
+ InitExprs.push_back(
+ NoTypeInfoCStyleCastExpr(Context, Context->getObjCIdType(),
+ CK_BitCast,
+ new (Context) DeclRefExpr(CurMethodDef->getSelfDecl(),
+ false,
+ Context->getObjCIdType(),
+ VK_RValue, SourceLocation()))
+ ); // set the 'receiver'.
+
+ // (id)class_getSuperclass((Class)objc_getClass("CurrentClass"))
+ SmallVector<Expr*, 8> ClsExprs;
+ ClsExprs.push_back(getStringLiteral(ClassDecl->getIdentifier()->getName()));
+ CallExpr *Cls = SynthesizeCallToFunctionDecl(GetClassFunctionDecl,
+ &ClsExprs[0],
+ ClsExprs.size(),
+ StartLoc, EndLoc);
+ // (Class)objc_getClass("CurrentClass")
+ CastExpr *ArgExpr = NoTypeInfoCStyleCastExpr(Context,
+ Context->getObjCClassType(),
+ CK_BitCast, Cls);
+ ClsExprs.clear();
+ ClsExprs.push_back(ArgExpr);
+ Cls = SynthesizeCallToFunctionDecl(GetSuperClassFunctionDecl,
+ &ClsExprs[0], ClsExprs.size(),
+ StartLoc, EndLoc);
+
+ // (id)class_getSuperclass((Class)objc_getClass("CurrentClass"))
+ // To turn off a warning, type-cast to 'id'
+ InitExprs.push_back(
+ // set 'super class', using class_getSuperclass().
+ NoTypeInfoCStyleCastExpr(Context, Context->getObjCIdType(),
+ CK_BitCast, Cls));
+ // struct objc_super
+ QualType superType = getSuperStructType();
+ Expr *SuperRep;
+
+ if (LangOpts.MicrosoftExt) {
+ SynthSuperConstructorFunctionDecl();
+ // Simulate a constructor call...
+ DeclRefExpr *DRE = new (Context) DeclRefExpr(SuperConstructorFunctionDecl,
+ false, superType, VK_LValue,
+ SourceLocation());
+ SuperRep = new (Context) CallExpr(*Context, DRE, InitExprs,
+ superType, VK_LValue, SourceLocation());
+ // The code for super is a little tricky to prevent collision with
+ // the structure definition in the header. The rewriter has it's own
+ // internal definition (__rw_objc_super) that is uses. This is why
+ // we need the cast below. For example:
+ // (struct objc_super *)&__rw_objc_super((id)self, (id)objc_getClass("SUPER"))
+ //
+ SuperRep = new (Context) UnaryOperator(SuperRep, UO_AddrOf,
+ Context->getPointerType(SuperRep->getType()),
+ VK_RValue, OK_Ordinary,
+ SourceLocation());
+ SuperRep = NoTypeInfoCStyleCastExpr(Context,
+ Context->getPointerType(superType),
+ CK_BitCast, SuperRep);
+ } else {
+ // (struct objc_super) { <exprs from above> }
+ InitListExpr *ILE =
+ new (Context) InitListExpr(*Context, SourceLocation(), InitExprs,
+ SourceLocation());
+ TypeSourceInfo *superTInfo
+ = Context->getTrivialTypeSourceInfo(superType);
+ SuperRep = new (Context) CompoundLiteralExpr(SourceLocation(), superTInfo,
+ superType, VK_RValue, ILE,
+ false);
+ }
+ MsgExprs.push_back(SuperRep);
+ break;
+ }
+
+ case ObjCMessageExpr::Instance: {
+ // Remove all type-casts because it may contain objc-style types; e.g.
+ // Foo<Proto> *.
+ Expr *recExpr = Exp->getInstanceReceiver();
+ while (CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(recExpr))
+ recExpr = CE->getSubExpr();
+ CastKind CK = recExpr->getType()->isObjCObjectPointerType()
+ ? CK_BitCast : recExpr->getType()->isBlockPointerType()
+ ? CK_BlockPointerToObjCPointerCast
+ : CK_CPointerToObjCPointerCast;
+
+ recExpr = NoTypeInfoCStyleCastExpr(Context, Context->getObjCIdType(),
+ CK, recExpr);
+ MsgExprs.push_back(recExpr);
+ break;
+ }
+ }
+
+ // Create a call to sel_registerName("selName"), it will be the 2nd argument.
+ SmallVector<Expr*, 8> SelExprs;
+ SelExprs.push_back(getStringLiteral(Exp->getSelector().getAsString()));
+ CallExpr *SelExp = SynthesizeCallToFunctionDecl(SelGetUidFunctionDecl,
+ &SelExprs[0], SelExprs.size(),
+ StartLoc,
+ EndLoc);
+ MsgExprs.push_back(SelExp);
+
+ // Now push any user supplied arguments.
+ for (unsigned i = 0; i < Exp->getNumArgs(); i++) {
+ Expr *userExpr = Exp->getArg(i);
+ // Make all implicit casts explicit...ICE comes in handy:-)
+ if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(userExpr)) {
+ // Reuse the ICE type, it is exactly what the doctor ordered.
+ QualType type = ICE->getType();
+ if (needToScanForQualifiers(type))
+ type = Context->getObjCIdType();
+ // Make sure we convert "type (^)(...)" to "type (*)(...)".
+ (void)convertBlockPointerToFunctionPointer(type);
+ const Expr *SubExpr = ICE->IgnoreParenImpCasts();
+ CastKind CK;
+ if (SubExpr->getType()->isIntegralType(*Context) &&
+ type->isBooleanType()) {
+ CK = CK_IntegralToBoolean;
+ } else if (type->isObjCObjectPointerType()) {
+ if (SubExpr->getType()->isBlockPointerType()) {
+ CK = CK_BlockPointerToObjCPointerCast;
+ } else if (SubExpr->getType()->isPointerType()) {
+ CK = CK_CPointerToObjCPointerCast;
+ } else {
+ CK = CK_BitCast;
+ }
+ } else {
+ CK = CK_BitCast;
+ }
+
+ userExpr = NoTypeInfoCStyleCastExpr(Context, type, CK, userExpr);
+ }
+ // Make id<P...> cast into an 'id' cast.
+ else if (CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(userExpr)) {
+ if (CE->getType()->isObjCQualifiedIdType()) {
+ while ((CE = dyn_cast<CStyleCastExpr>(userExpr)))
+ userExpr = CE->getSubExpr();
+ CastKind CK;
+ if (userExpr->getType()->isIntegralType(*Context)) {
+ CK = CK_IntegralToPointer;
+ } else if (userExpr->getType()->isBlockPointerType()) {
+ CK = CK_BlockPointerToObjCPointerCast;
+ } else if (userExpr->getType()->isPointerType()) {
+ CK = CK_CPointerToObjCPointerCast;
+ } else {
+ CK = CK_BitCast;
+ }
+ userExpr = NoTypeInfoCStyleCastExpr(Context, Context->getObjCIdType(),
+ CK, userExpr);
+ }
+ }
+ MsgExprs.push_back(userExpr);
+ // We've transferred the ownership to MsgExprs. For now, we *don't* null
+ // out the argument in the original expression (since we aren't deleting
+ // the ObjCMessageExpr). See RewritePropertyOrImplicitSetter() usage for more info.
+ //Exp->setArg(i, 0);
+ }
+ // Generate the funky cast.
+ CastExpr *cast;
+ SmallVector<QualType, 8> ArgTypes;
+ QualType returnType;
+
+ // Push 'id' and 'SEL', the 2 implicit arguments.
+ if (MsgSendFlavor == MsgSendSuperFunctionDecl)
+ ArgTypes.push_back(Context->getPointerType(getSuperStructType()));
+ else
+ ArgTypes.push_back(Context->getObjCIdType());
+ ArgTypes.push_back(Context->getObjCSelType());
+ if (ObjCMethodDecl *OMD = Exp->getMethodDecl()) {
+ // Push any user argument types.
+ for (const auto *PI : OMD->params()) {
+ QualType t = PI->getType()->isObjCQualifiedIdType()
+ ? Context->getObjCIdType()
+ : PI->getType();
+ // Make sure we convert "t (^)(...)" to "t (*)(...)".
+ (void)convertBlockPointerToFunctionPointer(t);
+ ArgTypes.push_back(t);
+ }
+ returnType = Exp->getType();
+ convertToUnqualifiedObjCType(returnType);
+ (void)convertBlockPointerToFunctionPointer(returnType);
+ } else {
+ returnType = Context->getObjCIdType();
+ }
+ // Get the type, we will need to reference it in a couple spots.
+ QualType msgSendType = MsgSendFlavor->getType();
+
+ // Create a reference to the objc_msgSend() declaration.
+ DeclRefExpr *DRE = new (Context) DeclRefExpr(MsgSendFlavor, false, msgSendType,
+ VK_LValue, SourceLocation());
+
+ // Need to cast objc_msgSend to "void *" (to workaround a GCC bandaid).
+ // If we don't do this cast, we get the following bizarre warning/note:
+ // xx.m:13: warning: function called through a non-compatible type
+ // xx.m:13: note: if this code is reached, the program will abort
+ cast = NoTypeInfoCStyleCastExpr(Context,
+ Context->getPointerType(Context->VoidTy),
+ CK_BitCast, DRE);
+
+ // Now do the "normal" pointer to function cast.
+ // If we don't have a method decl, force a variadic cast.
+ const ObjCMethodDecl *MD = Exp->getMethodDecl();
+ QualType castType =
+ getSimpleFunctionType(returnType, ArgTypes, MD ? MD->isVariadic() : true);
+ castType = Context->getPointerType(castType);
+ cast = NoTypeInfoCStyleCastExpr(Context, castType, CK_BitCast,
+ cast);
+
+ // Don't forget the parens to enforce the proper binding.
+ ParenExpr *PE = new (Context) ParenExpr(StartLoc, EndLoc, cast);
+
+ const FunctionType *FT = msgSendType->getAs<FunctionType>();
+ CallExpr *CE = new (Context)
+ CallExpr(*Context, PE, MsgExprs, FT->getReturnType(), VK_RValue, EndLoc);
+ Stmt *ReplacingStmt = CE;
+ if (MsgSendStretFlavor) {
+ // We have the method which returns a struct/union. Must also generate
+ // call to objc_msgSend_stret and hang both varieties on a conditional
+ // expression which dictate which one to envoke depending on size of
+ // method's return type.
+
+ CallExpr *STCE = SynthMsgSendStretCallExpr(MsgSendStretFlavor,
+ msgSendType, returnType,
+ ArgTypes, MsgExprs,
+ Exp->getMethodDecl());
+
+ // Build sizeof(returnType)
+ UnaryExprOrTypeTraitExpr *sizeofExpr =
+ new (Context) UnaryExprOrTypeTraitExpr(UETT_SizeOf,
+ Context->getTrivialTypeSourceInfo(returnType),
+ Context->getSizeType(), SourceLocation(),
+ SourceLocation());
+ // (sizeof(returnType) <= 8 ? objc_msgSend(...) : objc_msgSend_stret(...))
+ // FIXME: Value of 8 is base on ppc32/x86 ABI for the most common cases.
+ // For X86 it is more complicated and some kind of target specific routine
+ // is needed to decide what to do.
+ unsigned IntSize =
+ static_cast<unsigned>(Context->getTypeSize(Context->IntTy));
+ IntegerLiteral *limit = IntegerLiteral::Create(*Context,
+ llvm::APInt(IntSize, 8),
+ Context->IntTy,
+ SourceLocation());
+ BinaryOperator *lessThanExpr =
+ new (Context) BinaryOperator(sizeofExpr, limit, BO_LE, Context->IntTy,
+ VK_RValue, OK_Ordinary, SourceLocation(),
+ false);
+ // (sizeof(returnType) <= 8 ? objc_msgSend(...) : objc_msgSend_stret(...))
+ ConditionalOperator *CondExpr =
+ new (Context) ConditionalOperator(lessThanExpr,
+ SourceLocation(), CE,
+ SourceLocation(), STCE,
+ returnType, VK_RValue, OK_Ordinary);
+ ReplacingStmt = new (Context) ParenExpr(SourceLocation(), SourceLocation(),
+ CondExpr);
+ }
+ // delete Exp; leak for now, see RewritePropertyOrImplicitSetter() usage for more info.
+ return ReplacingStmt;
+}
+
+Stmt *RewriteObjC::RewriteMessageExpr(ObjCMessageExpr *Exp) {
+ Stmt *ReplacingStmt = SynthMessageExpr(Exp, Exp->getLocStart(),
+ Exp->getLocEnd());
+
+ // Now do the actual rewrite.
+ ReplaceStmt(Exp, ReplacingStmt);
+
+ // delete Exp; leak for now, see RewritePropertyOrImplicitSetter() usage for more info.
+ return ReplacingStmt;
+}
+
+// typedef struct objc_object Protocol;
+QualType RewriteObjC::getProtocolType() {
+ if (!ProtocolTypeDecl) {
+ TypeSourceInfo *TInfo
+ = Context->getTrivialTypeSourceInfo(Context->getObjCIdType());
+ ProtocolTypeDecl = TypedefDecl::Create(*Context, TUDecl,
+ SourceLocation(), SourceLocation(),
+ &Context->Idents.get("Protocol"),
+ TInfo);
+ }
+ return Context->getTypeDeclType(ProtocolTypeDecl);
+}
+
+/// RewriteObjCProtocolExpr - Rewrite a protocol expression into
+/// a synthesized/forward data reference (to the protocol's metadata).
+/// The forward references (and metadata) are generated in
+/// RewriteObjC::HandleTranslationUnit().
+Stmt *RewriteObjC::RewriteObjCProtocolExpr(ObjCProtocolExpr *Exp) {
+ std::string Name = "_OBJC_PROTOCOL_" + Exp->getProtocol()->getNameAsString();
+ IdentifierInfo *ID = &Context->Idents.get(Name);
+ VarDecl *VD = VarDecl::Create(*Context, TUDecl, SourceLocation(),
+ SourceLocation(), ID, getProtocolType(),
+ nullptr, SC_Extern);
+ DeclRefExpr *DRE = new (Context) DeclRefExpr(VD, false, getProtocolType(),
+ VK_LValue, SourceLocation());
+ Expr *DerefExpr = new (Context) UnaryOperator(DRE, UO_AddrOf,
+ Context->getPointerType(DRE->getType()),
+ VK_RValue, OK_Ordinary, SourceLocation());
+ CastExpr *castExpr = NoTypeInfoCStyleCastExpr(Context, DerefExpr->getType(),
+ CK_BitCast,
+ DerefExpr);
+ ReplaceStmt(Exp, castExpr);
+ ProtocolExprDecls.insert(Exp->getProtocol()->getCanonicalDecl());
+ // delete Exp; leak for now, see RewritePropertyOrImplicitSetter() usage for more info.
+ return castExpr;
+
+}
+
+bool RewriteObjC::BufferContainsPPDirectives(const char *startBuf,
+ const char *endBuf) {
+ while (startBuf < endBuf) {
+ if (*startBuf == '#') {
+ // Skip whitespace.
+ for (++startBuf; startBuf[0] == ' ' || startBuf[0] == '\t'; ++startBuf)
+ ;
+ if (!strncmp(startBuf, "if", strlen("if")) ||
+ !strncmp(startBuf, "ifdef", strlen("ifdef")) ||
+ !strncmp(startBuf, "ifndef", strlen("ifndef")) ||
+ !strncmp(startBuf, "define", strlen("define")) ||
+ !strncmp(startBuf, "undef", strlen("undef")) ||
+ !strncmp(startBuf, "else", strlen("else")) ||
+ !strncmp(startBuf, "elif", strlen("elif")) ||
+ !strncmp(startBuf, "endif", strlen("endif")) ||
+ !strncmp(startBuf, "pragma", strlen("pragma")) ||
+ !strncmp(startBuf, "include", strlen("include")) ||
+ !strncmp(startBuf, "import", strlen("import")) ||
+ !strncmp(startBuf, "include_next", strlen("include_next")))
+ return true;
+ }
+ startBuf++;
+ }
+ return false;
+}
+
+/// RewriteObjCInternalStruct - Rewrite one internal struct corresponding to
+/// an objective-c class with ivars.
+void RewriteObjC::RewriteObjCInternalStruct(ObjCInterfaceDecl *CDecl,
+ std::string &Result) {
+ assert(CDecl && "Class missing in SynthesizeObjCInternalStruct");
+ assert(CDecl->getName() != "" &&
+ "Name missing in SynthesizeObjCInternalStruct");
+ // Do not synthesize more than once.
+ if (ObjCSynthesizedStructs.count(CDecl))
+ return;
+ ObjCInterfaceDecl *RCDecl = CDecl->getSuperClass();
+ int NumIvars = CDecl->ivar_size();
+ SourceLocation LocStart = CDecl->getLocStart();
+ SourceLocation LocEnd = CDecl->getEndOfDefinitionLoc();
+
+ const char *startBuf = SM->getCharacterData(LocStart);
+ const char *endBuf = SM->getCharacterData(LocEnd);
+
+ // If no ivars and no root or if its root, directly or indirectly,
+ // have no ivars (thus not synthesized) then no need to synthesize this class.
+ if ((!CDecl->isThisDeclarationADefinition() || NumIvars == 0) &&
+ (!RCDecl || !ObjCSynthesizedStructs.count(RCDecl))) {
+ endBuf += Lexer::MeasureTokenLength(LocEnd, *SM, LangOpts);
+ ReplaceText(LocStart, endBuf-startBuf, Result);
+ return;
+ }
+
+ // FIXME: This has potential of causing problem. If
+ // SynthesizeObjCInternalStruct is ever called recursively.
+ Result += "\nstruct ";
+ Result += CDecl->getNameAsString();
+ if (LangOpts.MicrosoftExt)
+ Result += "_IMPL";
+
+ if (NumIvars > 0) {
+ const char *cursor = strchr(startBuf, '{');
+ assert((cursor && endBuf)
+ && "SynthesizeObjCInternalStruct - malformed @interface");
+ // If the buffer contains preprocessor directives, we do more fine-grained
+ // rewrites. This is intended to fix code that looks like (which occurs in
+ // NSURL.h, for example):
+ //
+ // #ifdef XYZ
+ // @interface Foo : NSObject
+ // #else
+ // @interface FooBar : NSObject
+ // #endif
+ // {
+ // int i;
+ // }
+ // @end
+ //
+ // This clause is segregated to avoid breaking the common case.
+ if (BufferContainsPPDirectives(startBuf, cursor)) {
+ SourceLocation L = RCDecl ? CDecl->getSuperClassLoc() :
+ CDecl->getAtStartLoc();
+ const char *endHeader = SM->getCharacterData(L);
+ endHeader += Lexer::MeasureTokenLength(L, *SM, LangOpts);
+
+ if (CDecl->protocol_begin() != CDecl->protocol_end()) {
+ // advance to the end of the referenced protocols.
+ while (endHeader < cursor && *endHeader != '>') endHeader++;
+ endHeader++;
+ }
+ // rewrite the original header
+ ReplaceText(LocStart, endHeader-startBuf, Result);
+ } else {
+ // rewrite the original header *without* disturbing the '{'
+ ReplaceText(LocStart, cursor-startBuf, Result);
+ }
+ if (RCDecl && ObjCSynthesizedStructs.count(RCDecl)) {
+ Result = "\n struct ";
+ Result += RCDecl->getNameAsString();
+ Result += "_IMPL ";
+ Result += RCDecl->getNameAsString();
+ Result += "_IVARS;\n";
+
+ // insert the super class structure definition.
+ SourceLocation OnePastCurly =
+ LocStart.getLocWithOffset(cursor-startBuf+1);
+ InsertText(OnePastCurly, Result);
+ }
+ cursor++; // past '{'
+
+ // Now comment out any visibility specifiers.
+ while (cursor < endBuf) {
+ if (*cursor == '@') {
+ SourceLocation atLoc = LocStart.getLocWithOffset(cursor-startBuf);
+ // Skip whitespace.
+ for (++cursor; cursor[0] == ' ' || cursor[0] == '\t'; ++cursor)
+ /*scan*/;
+
+ // FIXME: presence of @public, etc. inside comment results in
+ // this transformation as well, which is still correct c-code.
+ if (!strncmp(cursor, "public", strlen("public")) ||
+ !strncmp(cursor, "private", strlen("private")) ||
+ !strncmp(cursor, "package", strlen("package")) ||
+ !strncmp(cursor, "protected", strlen("protected")))
+ InsertText(atLoc, "// ");
+ }
+ // FIXME: If there are cases where '<' is used in ivar declaration part
+ // of user code, then scan the ivar list and use needToScanForQualifiers
+ // for type checking.
+ else if (*cursor == '<') {
+ SourceLocation atLoc = LocStart.getLocWithOffset(cursor-startBuf);
+ InsertText(atLoc, "/* ");
+ cursor = strchr(cursor, '>');
+ cursor++;
+ atLoc = LocStart.getLocWithOffset(cursor-startBuf);
+ InsertText(atLoc, " */");
+ } else if (*cursor == '^') { // rewrite block specifier.
+ SourceLocation caretLoc = LocStart.getLocWithOffset(cursor-startBuf);
+ ReplaceText(caretLoc, 1, "*");
+ }
+ cursor++;
+ }
+ // Don't forget to add a ';'!!
+ InsertText(LocEnd.getLocWithOffset(1), ";");
+ } else { // we don't have any instance variables - insert super struct.
+ endBuf += Lexer::MeasureTokenLength(LocEnd, *SM, LangOpts);
+ Result += " {\n struct ";
+ Result += RCDecl->getNameAsString();
+ Result += "_IMPL ";
+ Result += RCDecl->getNameAsString();
+ Result += "_IVARS;\n};\n";
+ ReplaceText(LocStart, endBuf-startBuf, Result);
+ }
+ // Mark this struct as having been generated.
+ if (!ObjCSynthesizedStructs.insert(CDecl).second)
+ llvm_unreachable("struct already synthesize- SynthesizeObjCInternalStruct");
+}
+
+//===----------------------------------------------------------------------===//
+// Meta Data Emission
+//===----------------------------------------------------------------------===//
+
+
+/// RewriteImplementations - This routine rewrites all method implementations
+/// and emits meta-data.
+
+void RewriteObjC::RewriteImplementations() {
+ int ClsDefCount = ClassImplementation.size();
+ int CatDefCount = CategoryImplementation.size();
+
+ // Rewrite implemented methods
+ for (int i = 0; i < ClsDefCount; i++)
+ RewriteImplementationDecl(ClassImplementation[i]);
+
+ for (int i = 0; i < CatDefCount; i++)
+ RewriteImplementationDecl(CategoryImplementation[i]);
+}
+
+void RewriteObjC::RewriteByRefString(std::string &ResultStr,
+ const std::string &Name,
+ ValueDecl *VD, bool def) {
+ assert(BlockByRefDeclNo.count(VD) &&
+ "RewriteByRefString: ByRef decl missing");
+ if (def)
+ ResultStr += "struct ";
+ ResultStr += "__Block_byref_" + Name +
+ "_" + utostr(BlockByRefDeclNo[VD]) ;
+}
+
+static bool HasLocalVariableExternalStorage(ValueDecl *VD) {
+ if (VarDecl *Var = dyn_cast<VarDecl>(VD))
+ return (Var->isFunctionOrMethodVarDecl() && !Var->hasLocalStorage());
+ return false;
+}
+
+std::string RewriteObjC::SynthesizeBlockFunc(BlockExpr *CE, int i,
+ StringRef funcName,
+ std::string Tag) {
+ const FunctionType *AFT = CE->getFunctionType();
+ QualType RT = AFT->getReturnType();
+ std::string StructRef = "struct " + Tag;
+ std::string S = "static " + RT.getAsString(Context->getPrintingPolicy()) + " __" +
+ funcName.str() + "_" + "block_func_" + utostr(i);
+
+ BlockDecl *BD = CE->getBlockDecl();
+
+ if (isa<FunctionNoProtoType>(AFT)) {
+ // No user-supplied arguments. Still need to pass in a pointer to the
+ // block (to reference imported block decl refs).
+ S += "(" + StructRef + " *__cself)";
+ } else if (BD->param_empty()) {
+ S += "(" + StructRef + " *__cself)";
+ } else {
+ const FunctionProtoType *FT = cast<FunctionProtoType>(AFT);
+ assert(FT && "SynthesizeBlockFunc: No function proto");
+ S += '(';
+ // first add the implicit argument.
+ S += StructRef + " *__cself, ";
+ std::string ParamStr;
+ for (BlockDecl::param_iterator AI = BD->param_begin(),
+ E = BD->param_end(); AI != E; ++AI) {
+ if (AI != BD->param_begin()) S += ", ";
+ ParamStr = (*AI)->getNameAsString();
+ QualType QT = (*AI)->getType();
+ (void)convertBlockPointerToFunctionPointer(QT);
+ QT.getAsStringInternal(ParamStr, Context->getPrintingPolicy());
+ S += ParamStr;
+ }
+ if (FT->isVariadic()) {
+ if (!BD->param_empty()) S += ", ";
+ S += "...";
+ }
+ S += ')';
+ }
+ S += " {\n";
+
+ // Create local declarations to avoid rewriting all closure decl ref exprs.
+ // First, emit a declaration for all "by ref" decls.
+ for (SmallVectorImpl<ValueDecl *>::iterator I = BlockByRefDecls.begin(),
+ E = BlockByRefDecls.end(); I != E; ++I) {
+ S += " ";
+ std::string Name = (*I)->getNameAsString();
+ std::string TypeString;
+ RewriteByRefString(TypeString, Name, (*I));
+ TypeString += " *";
+ Name = TypeString + Name;
+ S += Name + " = __cself->" + (*I)->getNameAsString() + "; // bound by ref\n";
+ }
+ // Next, emit a declaration for all "by copy" declarations.
+ for (SmallVectorImpl<ValueDecl *>::iterator I = BlockByCopyDecls.begin(),
+ E = BlockByCopyDecls.end(); I != E; ++I) {
+ S += " ";
+ // Handle nested closure invocation. For example:
+ //
+ // void (^myImportedClosure)(void);
+ // myImportedClosure = ^(void) { setGlobalInt(x + y); };
+ //
+ // void (^anotherClosure)(void);
+ // anotherClosure = ^(void) {
+ // myImportedClosure(); // import and invoke the closure
+ // };
+ //
+ if (isTopLevelBlockPointerType((*I)->getType())) {
+ RewriteBlockPointerTypeVariable(S, (*I));
+ S += " = (";
+ RewriteBlockPointerType(S, (*I)->getType());
+ S += ")";
+ S += "__cself->" + (*I)->getNameAsString() + "; // bound by copy\n";
+ }
+ else {
+ std::string Name = (*I)->getNameAsString();
+ QualType QT = (*I)->getType();
+ if (HasLocalVariableExternalStorage(*I))
+ QT = Context->getPointerType(QT);
+ QT.getAsStringInternal(Name, Context->getPrintingPolicy());
+ S += Name + " = __cself->" +
+ (*I)->getNameAsString() + "; // bound by copy\n";
+ }
+ }
+ std::string RewrittenStr = RewrittenBlockExprs[CE];
+ const char *cstr = RewrittenStr.c_str();
+ while (*cstr++ != '{') ;
+ S += cstr;
+ S += "\n";
+ return S;
+}
+
+std::string RewriteObjC::SynthesizeBlockHelperFuncs(BlockExpr *CE, int i,
+ StringRef funcName,
+ std::string Tag) {
+ std::string StructRef = "struct " + Tag;
+ std::string S = "static void __";
+
+ S += funcName;
+ S += "_block_copy_" + utostr(i);
+ S += "(" + StructRef;
+ S += "*dst, " + StructRef;
+ S += "*src) {";
+ for (ValueDecl *VD : ImportedBlockDecls) {
+ S += "_Block_object_assign((void*)&dst->";
+ S += VD->getNameAsString();
+ S += ", (void*)src->";
+ S += VD->getNameAsString();
+ if (BlockByRefDeclsPtrSet.count(VD))
+ S += ", " + utostr(BLOCK_FIELD_IS_BYREF) + "/*BLOCK_FIELD_IS_BYREF*/);";
+ else if (VD->getType()->isBlockPointerType())
+ S += ", " + utostr(BLOCK_FIELD_IS_BLOCK) + "/*BLOCK_FIELD_IS_BLOCK*/);";
+ else
+ S += ", " + utostr(BLOCK_FIELD_IS_OBJECT) + "/*BLOCK_FIELD_IS_OBJECT*/);";
+ }
+ S += "}\n";
+
+ S += "\nstatic void __";
+ S += funcName;
+ S += "_block_dispose_" + utostr(i);
+ S += "(" + StructRef;
+ S += "*src) {";
+ for (ValueDecl *VD : ImportedBlockDecls) {
+ S += "_Block_object_dispose((void*)src->";
+ S += VD->getNameAsString();
+ if (BlockByRefDeclsPtrSet.count(VD))
+ S += ", " + utostr(BLOCK_FIELD_IS_BYREF) + "/*BLOCK_FIELD_IS_BYREF*/);";
+ else if (VD->getType()->isBlockPointerType())
+ S += ", " + utostr(BLOCK_FIELD_IS_BLOCK) + "/*BLOCK_FIELD_IS_BLOCK*/);";
+ else
+ S += ", " + utostr(BLOCK_FIELD_IS_OBJECT) + "/*BLOCK_FIELD_IS_OBJECT*/);";
+ }
+ S += "}\n";
+ return S;
+}
+
+std::string RewriteObjC::SynthesizeBlockImpl(BlockExpr *CE, std::string Tag,
+ std::string Desc) {
+ std::string S = "\nstruct " + Tag;
+ std::string Constructor = " " + Tag;
+
+ S += " {\n struct __block_impl impl;\n";
+ S += " struct " + Desc;
+ S += "* Desc;\n";
+
+ Constructor += "(void *fp, "; // Invoke function pointer.
+ Constructor += "struct " + Desc; // Descriptor pointer.
+ Constructor += " *desc";
+
+ if (BlockDeclRefs.size()) {
+ // Output all "by copy" declarations.
+ for (SmallVectorImpl<ValueDecl *>::iterator I = BlockByCopyDecls.begin(),
+ E = BlockByCopyDecls.end(); I != E; ++I) {
+ S += " ";
+ std::string FieldName = (*I)->getNameAsString();
+ std::string ArgName = "_" + FieldName;
+ // Handle nested closure invocation. For example:
+ //
+ // void (^myImportedBlock)(void);
+ // myImportedBlock = ^(void) { setGlobalInt(x + y); };
+ //
+ // void (^anotherBlock)(void);
+ // anotherBlock = ^(void) {
+ // myImportedBlock(); // import and invoke the closure
+ // };
+ //
+ if (isTopLevelBlockPointerType((*I)->getType())) {
+ S += "struct __block_impl *";
+ Constructor += ", void *" + ArgName;
+ } else {
+ QualType QT = (*I)->getType();
+ if (HasLocalVariableExternalStorage(*I))
+ QT = Context->getPointerType(QT);
+ QT.getAsStringInternal(FieldName, Context->getPrintingPolicy());
+ QT.getAsStringInternal(ArgName, Context->getPrintingPolicy());
+ Constructor += ", " + ArgName;
+ }
+ S += FieldName + ";\n";
+ }
+ // Output all "by ref" declarations.
+ for (SmallVectorImpl<ValueDecl *>::iterator I = BlockByRefDecls.begin(),
+ E = BlockByRefDecls.end(); I != E; ++I) {
+ S += " ";
+ std::string FieldName = (*I)->getNameAsString();
+ std::string ArgName = "_" + FieldName;
+ {
+ std::string TypeString;
+ RewriteByRefString(TypeString, FieldName, (*I));
+ TypeString += " *";
+ FieldName = TypeString + FieldName;
+ ArgName = TypeString + ArgName;
+ Constructor += ", " + ArgName;
+ }
+ S += FieldName + "; // by ref\n";
+ }
+ // Finish writing the constructor.
+ Constructor += ", int flags=0)";
+ // Initialize all "by copy" arguments.
+ bool firsTime = true;
+ for (SmallVectorImpl<ValueDecl *>::iterator I = BlockByCopyDecls.begin(),
+ E = BlockByCopyDecls.end(); I != E; ++I) {
+ std::string Name = (*I)->getNameAsString();
+ if (firsTime) {
+ Constructor += " : ";
+ firsTime = false;
+ }
+ else
+ Constructor += ", ";
+ if (isTopLevelBlockPointerType((*I)->getType()))
+ Constructor += Name + "((struct __block_impl *)_" + Name + ")";
+ else
+ Constructor += Name + "(_" + Name + ")";
+ }
+ // Initialize all "by ref" arguments.
+ for (SmallVectorImpl<ValueDecl *>::iterator I = BlockByRefDecls.begin(),
+ E = BlockByRefDecls.end(); I != E; ++I) {
+ std::string Name = (*I)->getNameAsString();
+ if (firsTime) {
+ Constructor += " : ";
+ firsTime = false;
+ }
+ else
+ Constructor += ", ";
+ Constructor += Name + "(_" + Name + "->__forwarding)";
+ }
+
+ Constructor += " {\n";
+ if (GlobalVarDecl)
+ Constructor += " impl.isa = &_NSConcreteGlobalBlock;\n";
+ else
+ Constructor += " impl.isa = &_NSConcreteStackBlock;\n";
+ Constructor += " impl.Flags = flags;\n impl.FuncPtr = fp;\n";
+
+ Constructor += " Desc = desc;\n";
+ } else {
+ // Finish writing the constructor.
+ Constructor += ", int flags=0) {\n";
+ if (GlobalVarDecl)
+ Constructor += " impl.isa = &_NSConcreteGlobalBlock;\n";
+ else
+ Constructor += " impl.isa = &_NSConcreteStackBlock;\n";
+ Constructor += " impl.Flags = flags;\n impl.FuncPtr = fp;\n";
+ Constructor += " Desc = desc;\n";
+ }
+ Constructor += " ";
+ Constructor += "}\n";
+ S += Constructor;
+ S += "};\n";
+ return S;
+}
+
+std::string RewriteObjC::SynthesizeBlockDescriptor(std::string DescTag,
+ std::string ImplTag, int i,
+ StringRef FunName,
+ unsigned hasCopy) {
+ std::string S = "\nstatic struct " + DescTag;
+
+ S += " {\n unsigned long reserved;\n";
+ S += " unsigned long Block_size;\n";
+ if (hasCopy) {
+ S += " void (*copy)(struct ";
+ S += ImplTag; S += "*, struct ";
+ S += ImplTag; S += "*);\n";
+
+ S += " void (*dispose)(struct ";
+ S += ImplTag; S += "*);\n";
+ }
+ S += "} ";
+
+ S += DescTag + "_DATA = { 0, sizeof(struct ";
+ S += ImplTag + ")";
+ if (hasCopy) {
+ S += ", __" + FunName.str() + "_block_copy_" + utostr(i);
+ S += ", __" + FunName.str() + "_block_dispose_" + utostr(i);
+ }
+ S += "};\n";
+ return S;
+}
+
+void RewriteObjC::SynthesizeBlockLiterals(SourceLocation FunLocStart,
+ StringRef FunName) {
+ // Insert declaration for the function in which block literal is used.
+ if (CurFunctionDeclToDeclareForBlock && !Blocks.empty())
+ RewriteBlockLiteralFunctionDecl(CurFunctionDeclToDeclareForBlock);
+ bool RewriteSC = (GlobalVarDecl &&
+ !Blocks.empty() &&
+ GlobalVarDecl->getStorageClass() == SC_Static &&
+ GlobalVarDecl->getType().getCVRQualifiers());
+ if (RewriteSC) {
+ std::string SC(" void __");
+ SC += GlobalVarDecl->getNameAsString();
+ SC += "() {}";
+ InsertText(FunLocStart, SC);
+ }
+
+ // Insert closures that were part of the function.
+ for (unsigned i = 0, count=0; i < Blocks.size(); i++) {
+ CollectBlockDeclRefInfo(Blocks[i]);
+ // Need to copy-in the inner copied-in variables not actually used in this
+ // block.
+ for (int j = 0; j < InnerDeclRefsCount[i]; j++) {
+ DeclRefExpr *Exp = InnerDeclRefs[count++];
+ ValueDecl *VD = Exp->getDecl();
+ BlockDeclRefs.push_back(Exp);
+ if (!VD->hasAttr<BlocksAttr>() && !BlockByCopyDeclsPtrSet.count(VD)) {
+ BlockByCopyDeclsPtrSet.insert(VD);
+ BlockByCopyDecls.push_back(VD);
+ }
+ if (VD->hasAttr<BlocksAttr>() && !BlockByRefDeclsPtrSet.count(VD)) {
+ BlockByRefDeclsPtrSet.insert(VD);
+ BlockByRefDecls.push_back(VD);
+ }
+ // imported objects in the inner blocks not used in the outer
+ // blocks must be copied/disposed in the outer block as well.
+ if (VD->hasAttr<BlocksAttr>() ||
+ VD->getType()->isObjCObjectPointerType() ||
+ VD->getType()->isBlockPointerType())
+ ImportedBlockDecls.insert(VD);
+ }
+
+ std::string ImplTag = "__" + FunName.str() + "_block_impl_" + utostr(i);
+ std::string DescTag = "__" + FunName.str() + "_block_desc_" + utostr(i);
+
+ std::string CI = SynthesizeBlockImpl(Blocks[i], ImplTag, DescTag);
+
+ InsertText(FunLocStart, CI);
+
+ std::string CF = SynthesizeBlockFunc(Blocks[i], i, FunName, ImplTag);
+
+ InsertText(FunLocStart, CF);
+
+ if (ImportedBlockDecls.size()) {
+ std::string HF = SynthesizeBlockHelperFuncs(Blocks[i], i, FunName, ImplTag);
+ InsertText(FunLocStart, HF);
+ }
+ std::string BD = SynthesizeBlockDescriptor(DescTag, ImplTag, i, FunName,
+ ImportedBlockDecls.size() > 0);
+ InsertText(FunLocStart, BD);
+
+ BlockDeclRefs.clear();
+ BlockByRefDecls.clear();
+ BlockByRefDeclsPtrSet.clear();
+ BlockByCopyDecls.clear();
+ BlockByCopyDeclsPtrSet.clear();
+ ImportedBlockDecls.clear();
+ }
+ if (RewriteSC) {
+ // Must insert any 'const/volatile/static here. Since it has been
+ // removed as result of rewriting of block literals.
+ std::string SC;
+ if (GlobalVarDecl->getStorageClass() == SC_Static)
+ SC = "static ";
+ if (GlobalVarDecl->getType().isConstQualified())
+ SC += "const ";
+ if (GlobalVarDecl->getType().isVolatileQualified())
+ SC += "volatile ";
+ if (GlobalVarDecl->getType().isRestrictQualified())
+ SC += "restrict ";
+ InsertText(FunLocStart, SC);
+ }
+
+ Blocks.clear();
+ InnerDeclRefsCount.clear();
+ InnerDeclRefs.clear();
+ RewrittenBlockExprs.clear();
+}
+
+void RewriteObjC::InsertBlockLiteralsWithinFunction(FunctionDecl *FD) {
+ SourceLocation FunLocStart = FD->getTypeSpecStartLoc();
+ StringRef FuncName = FD->getName();
+
+ SynthesizeBlockLiterals(FunLocStart, FuncName);
+}
+
+static void BuildUniqueMethodName(std::string &Name,
+ ObjCMethodDecl *MD) {
+ ObjCInterfaceDecl *IFace = MD->getClassInterface();
+ Name = IFace->getName();
+ Name += "__" + MD->getSelector().getAsString();
+ // Convert colons to underscores.
+ std::string::size_type loc = 0;
+ while ((loc = Name.find(":", loc)) != std::string::npos)
+ Name.replace(loc, 1, "_");
+}
+
+void RewriteObjC::InsertBlockLiteralsWithinMethod(ObjCMethodDecl *MD) {
+ //fprintf(stderr,"In InsertBlockLiteralsWitinMethod\n");
+ //SourceLocation FunLocStart = MD->getLocStart();
+ SourceLocation FunLocStart = MD->getLocStart();
+ std::string FuncName;
+ BuildUniqueMethodName(FuncName, MD);
+ SynthesizeBlockLiterals(FunLocStart, FuncName);
+}
+
+void RewriteObjC::GetBlockDeclRefExprs(Stmt *S) {
+ for (Stmt::child_range CI = S->children(); CI; ++CI)
+ if (*CI) {
+ if (BlockExpr *CBE = dyn_cast<BlockExpr>(*CI))
+ GetBlockDeclRefExprs(CBE->getBody());
+ else
+ GetBlockDeclRefExprs(*CI);
+ }
+ // Handle specific things.
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(S))
+ if (DRE->refersToEnclosingVariableOrCapture() ||
+ HasLocalVariableExternalStorage(DRE->getDecl()))
+ // FIXME: Handle enums.
+ BlockDeclRefs.push_back(DRE);
+
+ return;
+}
+
+void RewriteObjC::GetInnerBlockDeclRefExprs(Stmt *S,
+ SmallVectorImpl<DeclRefExpr *> &InnerBlockDeclRefs,
+ llvm::SmallPtrSetImpl<const DeclContext *> &InnerContexts) {
+ for (Stmt::child_range CI = S->children(); CI; ++CI)
+ if (*CI) {
+ if (BlockExpr *CBE = dyn_cast<BlockExpr>(*CI)) {
+ InnerContexts.insert(cast<DeclContext>(CBE->getBlockDecl()));
+ GetInnerBlockDeclRefExprs(CBE->getBody(),
+ InnerBlockDeclRefs,
+ InnerContexts);
+ }
+ else
+ GetInnerBlockDeclRefExprs(*CI,
+ InnerBlockDeclRefs,
+ InnerContexts);
+
+ }
+ // Handle specific things.
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(S)) {
+ if (DRE->refersToEnclosingVariableOrCapture() ||
+ HasLocalVariableExternalStorage(DRE->getDecl())) {
+ if (!InnerContexts.count(DRE->getDecl()->getDeclContext()))
+ InnerBlockDeclRefs.push_back(DRE);
+ if (VarDecl *Var = cast<VarDecl>(DRE->getDecl()))
+ if (Var->isFunctionOrMethodVarDecl())
+ ImportedLocalExternalDecls.insert(Var);
+ }
+ }
+
+ return;
+}
+
+/// convertFunctionTypeOfBlocks - This routine converts a function type
+/// whose result type may be a block pointer or whose argument type(s)
+/// might be block pointers to an equivalent function type replacing
+/// all block pointers to function pointers.
+QualType RewriteObjC::convertFunctionTypeOfBlocks(const FunctionType *FT) {
+ const FunctionProtoType *FTP = dyn_cast<FunctionProtoType>(FT);
+ // FTP will be null for closures that don't take arguments.
+ // Generate a funky cast.
+ SmallVector<QualType, 8> ArgTypes;
+ QualType Res = FT->getReturnType();
+ bool HasBlockType = convertBlockPointerToFunctionPointer(Res);
+
+ if (FTP) {
+ for (auto &I : FTP->param_types()) {
+ QualType t = I;
+ // Make sure we convert "t (^)(...)" to "t (*)(...)".
+ if (convertBlockPointerToFunctionPointer(t))
+ HasBlockType = true;
+ ArgTypes.push_back(t);
+ }
+ }
+ QualType FuncType;
+ // FIXME. Does this work if block takes no argument but has a return type
+ // which is of block type?
+ if (HasBlockType)
+ FuncType = getSimpleFunctionType(Res, ArgTypes);
+ else FuncType = QualType(FT, 0);
+ return FuncType;
+}
+
+Stmt *RewriteObjC::SynthesizeBlockCall(CallExpr *Exp, const Expr *BlockExp) {
+ // Navigate to relevant type information.
+ const BlockPointerType *CPT = nullptr;
+
+ if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BlockExp)) {
+ CPT = DRE->getType()->getAs<BlockPointerType>();
+ } else if (const MemberExpr *MExpr = dyn_cast<MemberExpr>(BlockExp)) {
+ CPT = MExpr->getType()->getAs<BlockPointerType>();
+ }
+ else if (const ParenExpr *PRE = dyn_cast<ParenExpr>(BlockExp)) {
+ return SynthesizeBlockCall(Exp, PRE->getSubExpr());
+ }
+ else if (const ImplicitCastExpr *IEXPR = dyn_cast<ImplicitCastExpr>(BlockExp))
+ CPT = IEXPR->getType()->getAs<BlockPointerType>();
+ else if (const ConditionalOperator *CEXPR =
+ dyn_cast<ConditionalOperator>(BlockExp)) {
+ Expr *LHSExp = CEXPR->getLHS();
+ Stmt *LHSStmt = SynthesizeBlockCall(Exp, LHSExp);
+ Expr *RHSExp = CEXPR->getRHS();
+ Stmt *RHSStmt = SynthesizeBlockCall(Exp, RHSExp);
+ Expr *CONDExp = CEXPR->getCond();
+ ConditionalOperator *CondExpr =
+ new (Context) ConditionalOperator(CONDExp,
+ SourceLocation(), cast<Expr>(LHSStmt),
+ SourceLocation(), cast<Expr>(RHSStmt),
+ Exp->getType(), VK_RValue, OK_Ordinary);
+ return CondExpr;
+ } else if (const ObjCIvarRefExpr *IRE = dyn_cast<ObjCIvarRefExpr>(BlockExp)) {
+ CPT = IRE->getType()->getAs<BlockPointerType>();
+ } else if (const PseudoObjectExpr *POE
+ = dyn_cast<PseudoObjectExpr>(BlockExp)) {
+ CPT = POE->getType()->castAs<BlockPointerType>();
+ } else {
+ assert(1 && "RewriteBlockClass: Bad type");
+ }
+ assert(CPT && "RewriteBlockClass: Bad type");
+ const FunctionType *FT = CPT->getPointeeType()->getAs<FunctionType>();
+ assert(FT && "RewriteBlockClass: Bad type");
+ const FunctionProtoType *FTP = dyn_cast<FunctionProtoType>(FT);
+ // FTP will be null for closures that don't take arguments.
+
+ RecordDecl *RD = RecordDecl::Create(*Context, TTK_Struct, TUDecl,
+ SourceLocation(), SourceLocation(),
+ &Context->Idents.get("__block_impl"));
+ QualType PtrBlock = Context->getPointerType(Context->getTagDeclType(RD));
+
+ // Generate a funky cast.
+ SmallVector<QualType, 8> ArgTypes;
+
+ // Push the block argument type.
+ ArgTypes.push_back(PtrBlock);
+ if (FTP) {
+ for (auto &I : FTP->param_types()) {
+ QualType t = I;
+ // Make sure we convert "t (^)(...)" to "t (*)(...)".
+ if (!convertBlockPointerToFunctionPointer(t))
+ convertToUnqualifiedObjCType(t);
+ ArgTypes.push_back(t);
+ }
+ }
+ // Now do the pointer to function cast.
+ QualType PtrToFuncCastType = getSimpleFunctionType(Exp->getType(), ArgTypes);
+
+ PtrToFuncCastType = Context->getPointerType(PtrToFuncCastType);
+
+ CastExpr *BlkCast = NoTypeInfoCStyleCastExpr(Context, PtrBlock,
+ CK_BitCast,
+ const_cast<Expr*>(BlockExp));
+ // Don't forget the parens to enforce the proper binding.
+ ParenExpr *PE = new (Context) ParenExpr(SourceLocation(), SourceLocation(),
+ BlkCast);
+ //PE->dump();
+
+ FieldDecl *FD = FieldDecl::Create(*Context, nullptr, SourceLocation(),
+ SourceLocation(),
+ &Context->Idents.get("FuncPtr"),
+ Context->VoidPtrTy, nullptr,
+ /*BitWidth=*/nullptr, /*Mutable=*/true,
+ ICIS_NoInit);
+ MemberExpr *ME =
+ new (Context) MemberExpr(PE, true, SourceLocation(), FD, SourceLocation(),
+ FD->getType(), VK_LValue, OK_Ordinary);
+
+ CastExpr *FunkCast = NoTypeInfoCStyleCastExpr(Context, PtrToFuncCastType,
+ CK_BitCast, ME);
+ PE = new (Context) ParenExpr(SourceLocation(), SourceLocation(), FunkCast);
+
+ SmallVector<Expr*, 8> BlkExprs;
+ // Add the implicit argument.
+ BlkExprs.push_back(BlkCast);
+ // Add the user arguments.
+ for (CallExpr::arg_iterator I = Exp->arg_begin(),
+ E = Exp->arg_end(); I != E; ++I) {
+ BlkExprs.push_back(*I);
+ }
+ CallExpr *CE = new (Context) CallExpr(*Context, PE, BlkExprs,
+ Exp->getType(), VK_RValue,
+ SourceLocation());
+ return CE;
+}
+
+// We need to return the rewritten expression to handle cases where the
+// BlockDeclRefExpr is embedded in another expression being rewritten.
+// For example:
+//
+// int main() {
+// __block Foo *f;
+// __block int i;
+//
+// void (^myblock)() = ^() {
+// [f test]; // f is a BlockDeclRefExpr embedded in a message (which is being rewritten).
+// i = 77;
+// };
+//}
+Stmt *RewriteObjC::RewriteBlockDeclRefExpr(DeclRefExpr *DeclRefExp) {
+ // Rewrite the byref variable into BYREFVAR->__forwarding->BYREFVAR
+ // for each DeclRefExp where BYREFVAR is name of the variable.
+ ValueDecl *VD = DeclRefExp->getDecl();
+ bool isArrow = DeclRefExp->refersToEnclosingVariableOrCapture() ||
+ HasLocalVariableExternalStorage(DeclRefExp->getDecl());
+
+ FieldDecl *FD = FieldDecl::Create(*Context, nullptr, SourceLocation(),
+ SourceLocation(),
+ &Context->Idents.get("__forwarding"),
+ Context->VoidPtrTy, nullptr,
+ /*BitWidth=*/nullptr, /*Mutable=*/true,
+ ICIS_NoInit);
+ MemberExpr *ME = new (Context)
+ MemberExpr(DeclRefExp, isArrow, SourceLocation(), FD, SourceLocation(),
+ FD->getType(), VK_LValue, OK_Ordinary);
+
+ StringRef Name = VD->getName();
+ FD = FieldDecl::Create(*Context, nullptr, SourceLocation(), SourceLocation(),
+ &Context->Idents.get(Name),
+ Context->VoidPtrTy, nullptr,
+ /*BitWidth=*/nullptr, /*Mutable=*/true,
+ ICIS_NoInit);
+ ME =
+ new (Context) MemberExpr(ME, true, SourceLocation(), FD, SourceLocation(),
+ DeclRefExp->getType(), VK_LValue, OK_Ordinary);
+
+ // Need parens to enforce precedence.
+ ParenExpr *PE = new (Context) ParenExpr(DeclRefExp->getExprLoc(),
+ DeclRefExp->getExprLoc(),
+ ME);
+ ReplaceStmt(DeclRefExp, PE);
+ return PE;
+}
+
+// Rewrites the imported local variable V with external storage
+// (static, extern, etc.) as *V
+//
+Stmt *RewriteObjC::RewriteLocalVariableExternalStorage(DeclRefExpr *DRE) {
+ ValueDecl *VD = DRE->getDecl();
+ if (VarDecl *Var = dyn_cast<VarDecl>(VD))
+ if (!ImportedLocalExternalDecls.count(Var))
+ return DRE;
+ Expr *Exp = new (Context) UnaryOperator(DRE, UO_Deref, DRE->getType(),
+ VK_LValue, OK_Ordinary,
+ DRE->getLocation());
+ // Need parens to enforce precedence.
+ ParenExpr *PE = new (Context) ParenExpr(SourceLocation(), SourceLocation(),
+ Exp);
+ ReplaceStmt(DRE, PE);
+ return PE;
+}
+
+void RewriteObjC::RewriteCastExpr(CStyleCastExpr *CE) {
+ SourceLocation LocStart = CE->getLParenLoc();
+ SourceLocation LocEnd = CE->getRParenLoc();
+
+ // Need to avoid trying to rewrite synthesized casts.
+ if (LocStart.isInvalid())
+ return;
+ // Need to avoid trying to rewrite casts contained in macros.
+ if (!Rewriter::isRewritable(LocStart) || !Rewriter::isRewritable(LocEnd))
+ return;
+
+ const char *startBuf = SM->getCharacterData(LocStart);
+ const char *endBuf = SM->getCharacterData(LocEnd);
+ QualType QT = CE->getType();
+ const Type* TypePtr = QT->getAs<Type>();
+ if (isa<TypeOfExprType>(TypePtr)) {
+ const TypeOfExprType *TypeOfExprTypePtr = cast<TypeOfExprType>(TypePtr);
+ QT = TypeOfExprTypePtr->getUnderlyingExpr()->getType();
+ std::string TypeAsString = "(";
+ RewriteBlockPointerType(TypeAsString, QT);
+ TypeAsString += ")";
+ ReplaceText(LocStart, endBuf-startBuf+1, TypeAsString);
+ return;
+ }
+ // advance the location to startArgList.
+ const char *argPtr = startBuf;
+
+ while (*argPtr++ && (argPtr < endBuf)) {
+ switch (*argPtr) {
+ case '^':
+ // Replace the '^' with '*'.
+ LocStart = LocStart.getLocWithOffset(argPtr-startBuf);
+ ReplaceText(LocStart, 1, "*");
+ break;
+ }
+ }
+ return;
+}
+
+void RewriteObjC::RewriteBlockPointerFunctionArgs(FunctionDecl *FD) {
+ SourceLocation DeclLoc = FD->getLocation();
+ unsigned parenCount = 0;
+
+ // We have 1 or more arguments that have closure pointers.
+ const char *startBuf = SM->getCharacterData(DeclLoc);
+ const char *startArgList = strchr(startBuf, '(');
+
+ assert((*startArgList == '(') && "Rewriter fuzzy parser confused");
+
+ parenCount++;
+ // advance the location to startArgList.
+ DeclLoc = DeclLoc.getLocWithOffset(startArgList-startBuf);
+ assert((DeclLoc.isValid()) && "Invalid DeclLoc");
+
+ const char *argPtr = startArgList;
+
+ while (*argPtr++ && parenCount) {
+ switch (*argPtr) {
+ case '^':
+ // Replace the '^' with '*'.
+ DeclLoc = DeclLoc.getLocWithOffset(argPtr-startArgList);
+ ReplaceText(DeclLoc, 1, "*");
+ break;
+ case '(':
+ parenCount++;
+ break;
+ case ')':
+ parenCount--;
+ break;
+ }
+ }
+ return;
+}
+
+bool RewriteObjC::PointerTypeTakesAnyBlockArguments(QualType QT) {
+ const FunctionProtoType *FTP;
+ const PointerType *PT = QT->getAs<PointerType>();
+ if (PT) {
+ FTP = PT->getPointeeType()->getAs<FunctionProtoType>();
+ } else {
+ const BlockPointerType *BPT = QT->getAs<BlockPointerType>();
+ assert(BPT && "BlockPointerTypeTakeAnyBlockArguments(): not a block pointer type");
+ FTP = BPT->getPointeeType()->getAs<FunctionProtoType>();
+ }
+ if (FTP) {
+ for (const auto &I : FTP->param_types())
+ if (isTopLevelBlockPointerType(I))
+ return true;
+ }
+ return false;
+}
+
+bool RewriteObjC::PointerTypeTakesAnyObjCQualifiedType(QualType QT) {
+ const FunctionProtoType *FTP;
+ const PointerType *PT = QT->getAs<PointerType>();
+ if (PT) {
+ FTP = PT->getPointeeType()->getAs<FunctionProtoType>();
+ } else {
+ const BlockPointerType *BPT = QT->getAs<BlockPointerType>();
+ assert(BPT && "BlockPointerTypeTakeAnyBlockArguments(): not a block pointer type");
+ FTP = BPT->getPointeeType()->getAs<FunctionProtoType>();
+ }
+ if (FTP) {
+ for (const auto &I : FTP->param_types()) {
+ if (I->isObjCQualifiedIdType())
+ return true;
+ if (I->isObjCObjectPointerType() &&
+ I->getPointeeType()->isObjCQualifiedInterfaceType())
+ return true;
+ }
+
+ }
+ return false;
+}
+
+void RewriteObjC::GetExtentOfArgList(const char *Name, const char *&LParen,
+ const char *&RParen) {
+ const char *argPtr = strchr(Name, '(');
+ assert((*argPtr == '(') && "Rewriter fuzzy parser confused");
+
+ LParen = argPtr; // output the start.
+ argPtr++; // skip past the left paren.
+ unsigned parenCount = 1;
+
+ while (*argPtr && parenCount) {
+ switch (*argPtr) {
+ case '(': parenCount++; break;
+ case ')': parenCount--; break;
+ default: break;
+ }
+ if (parenCount) argPtr++;
+ }
+ assert((*argPtr == ')') && "Rewriter fuzzy parser confused");
+ RParen = argPtr; // output the end
+}
+
+void RewriteObjC::RewriteBlockPointerDecl(NamedDecl *ND) {
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
+ RewriteBlockPointerFunctionArgs(FD);
+ return;
+ }
+ // Handle Variables and Typedefs.
+ SourceLocation DeclLoc = ND->getLocation();
+ QualType DeclT;
+ if (VarDecl *VD = dyn_cast<VarDecl>(ND))
+ DeclT = VD->getType();
+ else if (TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(ND))
+ DeclT = TDD->getUnderlyingType();
+ else if (FieldDecl *FD = dyn_cast<FieldDecl>(ND))
+ DeclT = FD->getType();
+ else
+ llvm_unreachable("RewriteBlockPointerDecl(): Decl type not yet handled");
+
+ const char *startBuf = SM->getCharacterData(DeclLoc);
+ const char *endBuf = startBuf;
+ // scan backward (from the decl location) for the end of the previous decl.
+ while (*startBuf != '^' && *startBuf != ';' && startBuf != MainFileStart)
+ startBuf--;
+ SourceLocation Start = DeclLoc.getLocWithOffset(startBuf-endBuf);
+ std::string buf;
+ unsigned OrigLength=0;
+ // *startBuf != '^' if we are dealing with a pointer to function that
+ // may take block argument types (which will be handled below).
+ if (*startBuf == '^') {
+ // Replace the '^' with '*', computing a negative offset.
+ buf = '*';
+ startBuf++;
+ OrigLength++;
+ }
+ while (*startBuf != ')') {
+ buf += *startBuf;
+ startBuf++;
+ OrigLength++;
+ }
+ buf += ')';
+ OrigLength++;
+
+ if (PointerTypeTakesAnyBlockArguments(DeclT) ||
+ PointerTypeTakesAnyObjCQualifiedType(DeclT)) {
+ // Replace the '^' with '*' for arguments.
+ // Replace id<P> with id/*<>*/
+ DeclLoc = ND->getLocation();
+ startBuf = SM->getCharacterData(DeclLoc);
+ const char *argListBegin, *argListEnd;
+ GetExtentOfArgList(startBuf, argListBegin, argListEnd);
+ while (argListBegin < argListEnd) {
+ if (*argListBegin == '^')
+ buf += '*';
+ else if (*argListBegin == '<') {
+ buf += "/*";
+ buf += *argListBegin++;
+ OrigLength++;
+ while (*argListBegin != '>') {
+ buf += *argListBegin++;
+ OrigLength++;
+ }
+ buf += *argListBegin;
+ buf += "*/";
+ }
+ else
+ buf += *argListBegin;
+ argListBegin++;
+ OrigLength++;
+ }
+ buf += ')';
+ OrigLength++;
+ }
+ ReplaceText(Start, OrigLength, buf);
+
+ return;
+}
+
+
+/// SynthesizeByrefCopyDestroyHelper - This routine synthesizes:
+/// void __Block_byref_id_object_copy(struct Block_byref_id_object *dst,
+/// struct Block_byref_id_object *src) {
+/// _Block_object_assign (&_dest->object, _src->object,
+/// BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_OBJECT
+/// [|BLOCK_FIELD_IS_WEAK]) // object
+/// _Block_object_assign(&_dest->object, _src->object,
+/// BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_BLOCK
+/// [|BLOCK_FIELD_IS_WEAK]) // block
+/// }
+/// And:
+/// void __Block_byref_id_object_dispose(struct Block_byref_id_object *_src) {
+/// _Block_object_dispose(_src->object,
+/// BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_OBJECT
+/// [|BLOCK_FIELD_IS_WEAK]) // object
+/// _Block_object_dispose(_src->object,
+/// BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_BLOCK
+/// [|BLOCK_FIELD_IS_WEAK]) // block
+/// }
+
+std::string RewriteObjC::SynthesizeByrefCopyDestroyHelper(VarDecl *VD,
+ int flag) {
+ std::string S;
+ if (CopyDestroyCache.count(flag))
+ return S;
+ CopyDestroyCache.insert(flag);
+ S = "static void __Block_byref_id_object_copy_";
+ S += utostr(flag);
+ S += "(void *dst, void *src) {\n";
+
+ // offset into the object pointer is computed as:
+ // void * + void* + int + int + void* + void *
+ unsigned IntSize =
+ static_cast<unsigned>(Context->getTypeSize(Context->IntTy));
+ unsigned VoidPtrSize =
+ static_cast<unsigned>(Context->getTypeSize(Context->VoidPtrTy));
+
+ unsigned offset = (VoidPtrSize*4 + IntSize + IntSize)/Context->getCharWidth();
+ S += " _Block_object_assign((char*)dst + ";
+ S += utostr(offset);
+ S += ", *(void * *) ((char*)src + ";
+ S += utostr(offset);
+ S += "), ";
+ S += utostr(flag);
+ S += ");\n}\n";
+
+ S += "static void __Block_byref_id_object_dispose_";
+ S += utostr(flag);
+ S += "(void *src) {\n";
+ S += " _Block_object_dispose(*(void * *) ((char*)src + ";
+ S += utostr(offset);
+ S += "), ";
+ S += utostr(flag);
+ S += ");\n}\n";
+ return S;
+}
+
+/// RewriteByRefVar - For each __block typex ND variable this routine transforms
+/// the declaration into:
+/// struct __Block_byref_ND {
+/// void *__isa; // NULL for everything except __weak pointers
+/// struct __Block_byref_ND *__forwarding;
+/// int32_t __flags;
+/// int32_t __size;
+/// void *__Block_byref_id_object_copy; // If variable is __block ObjC object
+/// void *__Block_byref_id_object_dispose; // If variable is __block ObjC object
+/// typex ND;
+/// };
+///
+/// It then replaces declaration of ND variable with:
+/// struct __Block_byref_ND ND = {__isa=0B, __forwarding=&ND, __flags=some_flag,
+/// __size=sizeof(struct __Block_byref_ND),
+/// ND=initializer-if-any};
+///
+///
+void RewriteObjC::RewriteByRefVar(VarDecl *ND) {
+ // Insert declaration for the function in which block literal is
+ // used.
+ if (CurFunctionDeclToDeclareForBlock)
+ RewriteBlockLiteralFunctionDecl(CurFunctionDeclToDeclareForBlock);
+ int flag = 0;
+ int isa = 0;
+ SourceLocation DeclLoc = ND->getTypeSpecStartLoc();
+ if (DeclLoc.isInvalid())
+ // If type location is missing, it is because of missing type (a warning).
+ // Use variable's location which is good for this case.
+ DeclLoc = ND->getLocation();
+ const char *startBuf = SM->getCharacterData(DeclLoc);
+ SourceLocation X = ND->getLocEnd();
+ X = SM->getExpansionLoc(X);
+ const char *endBuf = SM->getCharacterData(X);
+ std::string Name(ND->getNameAsString());
+ std::string ByrefType;
+ RewriteByRefString(ByrefType, Name, ND, true);
+ ByrefType += " {\n";
+ ByrefType += " void *__isa;\n";
+ RewriteByRefString(ByrefType, Name, ND);
+ ByrefType += " *__forwarding;\n";
+ ByrefType += " int __flags;\n";
+ ByrefType += " int __size;\n";
+ // Add void *__Block_byref_id_object_copy;
+ // void *__Block_byref_id_object_dispose; if needed.
+ QualType Ty = ND->getType();
+ bool HasCopyAndDispose = Context->BlockRequiresCopying(Ty, ND);
+ if (HasCopyAndDispose) {
+ ByrefType += " void (*__Block_byref_id_object_copy)(void*, void*);\n";
+ ByrefType += " void (*__Block_byref_id_object_dispose)(void*);\n";
+ }
+
+ QualType T = Ty;
+ (void)convertBlockPointerToFunctionPointer(T);
+ T.getAsStringInternal(Name, Context->getPrintingPolicy());
+
+ ByrefType += " " + Name + ";\n";
+ ByrefType += "};\n";
+ // Insert this type in global scope. It is needed by helper function.
+ SourceLocation FunLocStart;
+ if (CurFunctionDef)
+ FunLocStart = CurFunctionDef->getTypeSpecStartLoc();
+ else {
+ assert(CurMethodDef && "RewriteByRefVar - CurMethodDef is null");
+ FunLocStart = CurMethodDef->getLocStart();
+ }
+ InsertText(FunLocStart, ByrefType);
+ if (Ty.isObjCGCWeak()) {
+ flag |= BLOCK_FIELD_IS_WEAK;
+ isa = 1;
+ }
+
+ if (HasCopyAndDispose) {
+ flag = BLOCK_BYREF_CALLER;
+ QualType Ty = ND->getType();
+ // FIXME. Handle __weak variable (BLOCK_FIELD_IS_WEAK) as well.
+ if (Ty->isBlockPointerType())
+ flag |= BLOCK_FIELD_IS_BLOCK;
+ else
+ flag |= BLOCK_FIELD_IS_OBJECT;
+ std::string HF = SynthesizeByrefCopyDestroyHelper(ND, flag);
+ if (!HF.empty())
+ InsertText(FunLocStart, HF);
+ }
+
+ // struct __Block_byref_ND ND =
+ // {0, &ND, some_flag, __size=sizeof(struct __Block_byref_ND),
+ // initializer-if-any};
+ bool hasInit = (ND->getInit() != nullptr);
+ unsigned flags = 0;
+ if (HasCopyAndDispose)
+ flags |= BLOCK_HAS_COPY_DISPOSE;
+ Name = ND->getNameAsString();
+ ByrefType.clear();
+ RewriteByRefString(ByrefType, Name, ND);
+ std::string ForwardingCastType("(");
+ ForwardingCastType += ByrefType + " *)";
+ if (!hasInit) {
+ ByrefType += " " + Name + " = {(void*)";
+ ByrefType += utostr(isa);
+ ByrefType += "," + ForwardingCastType + "&" + Name + ", ";
+ ByrefType += utostr(flags);
+ ByrefType += ", ";
+ ByrefType += "sizeof(";
+ RewriteByRefString(ByrefType, Name, ND);
+ ByrefType += ")";
+ if (HasCopyAndDispose) {
+ ByrefType += ", __Block_byref_id_object_copy_";
+ ByrefType += utostr(flag);
+ ByrefType += ", __Block_byref_id_object_dispose_";
+ ByrefType += utostr(flag);
+ }
+ ByrefType += "};\n";
+ unsigned nameSize = Name.size();
+ // for block or function pointer declaration. Name is aleady
+ // part of the declaration.
+ if (Ty->isBlockPointerType() || Ty->isFunctionPointerType())
+ nameSize = 1;
+ ReplaceText(DeclLoc, endBuf-startBuf+nameSize, ByrefType);
+ }
+ else {
+ SourceLocation startLoc;
+ Expr *E = ND->getInit();
+ if (const CStyleCastExpr *ECE = dyn_cast<CStyleCastExpr>(E))
+ startLoc = ECE->getLParenLoc();
+ else
+ startLoc = E->getLocStart();
+ startLoc = SM->getExpansionLoc(startLoc);
+ endBuf = SM->getCharacterData(startLoc);
+ ByrefType += " " + Name;
+ ByrefType += " = {(void*)";
+ ByrefType += utostr(isa);
+ ByrefType += "," + ForwardingCastType + "&" + Name + ", ";
+ ByrefType += utostr(flags);
+ ByrefType += ", ";
+ ByrefType += "sizeof(";
+ RewriteByRefString(ByrefType, Name, ND);
+ ByrefType += "), ";
+ if (HasCopyAndDispose) {
+ ByrefType += "__Block_byref_id_object_copy_";
+ ByrefType += utostr(flag);
+ ByrefType += ", __Block_byref_id_object_dispose_";
+ ByrefType += utostr(flag);
+ ByrefType += ", ";
+ }
+ ReplaceText(DeclLoc, endBuf-startBuf, ByrefType);
+
+ // Complete the newly synthesized compound expression by inserting a right
+ // curly brace before the end of the declaration.
+ // FIXME: This approach avoids rewriting the initializer expression. It
+ // also assumes there is only one declarator. For example, the following
+ // isn't currently supported by this routine (in general):
+ //
+ // double __block BYREFVAR = 1.34, BYREFVAR2 = 1.37;
+ //
+ const char *startInitializerBuf = SM->getCharacterData(startLoc);
+ const char *semiBuf = strchr(startInitializerBuf, ';');
+ assert((*semiBuf == ';') && "RewriteByRefVar: can't find ';'");
+ SourceLocation semiLoc =
+ startLoc.getLocWithOffset(semiBuf-startInitializerBuf);
+
+ InsertText(semiLoc, "}");
+ }
+ return;
+}
+
+void RewriteObjC::CollectBlockDeclRefInfo(BlockExpr *Exp) {
+ // Add initializers for any closure decl refs.
+ GetBlockDeclRefExprs(Exp->getBody());
+ if (BlockDeclRefs.size()) {
+ // Unique all "by copy" declarations.
+ for (unsigned i = 0; i < BlockDeclRefs.size(); i++)
+ if (!BlockDeclRefs[i]->getDecl()->hasAttr<BlocksAttr>()) {
+ if (!BlockByCopyDeclsPtrSet.count(BlockDeclRefs[i]->getDecl())) {
+ BlockByCopyDeclsPtrSet.insert(BlockDeclRefs[i]->getDecl());
+ BlockByCopyDecls.push_back(BlockDeclRefs[i]->getDecl());
+ }
+ }
+ // Unique all "by ref" declarations.
+ for (unsigned i = 0; i < BlockDeclRefs.size(); i++)
+ if (BlockDeclRefs[i]->getDecl()->hasAttr<BlocksAttr>()) {
+ if (!BlockByRefDeclsPtrSet.count(BlockDeclRefs[i]->getDecl())) {
+ BlockByRefDeclsPtrSet.insert(BlockDeclRefs[i]->getDecl());
+ BlockByRefDecls.push_back(BlockDeclRefs[i]->getDecl());
+ }
+ }
+ // Find any imported blocks...they will need special attention.
+ for (unsigned i = 0; i < BlockDeclRefs.size(); i++)
+ if (BlockDeclRefs[i]->getDecl()->hasAttr<BlocksAttr>() ||
+ BlockDeclRefs[i]->getType()->isObjCObjectPointerType() ||
+ BlockDeclRefs[i]->getType()->isBlockPointerType())
+ ImportedBlockDecls.insert(BlockDeclRefs[i]->getDecl());
+ }
+}
+
+FunctionDecl *RewriteObjC::SynthBlockInitFunctionDecl(StringRef name) {
+ IdentifierInfo *ID = &Context->Idents.get(name);
+ QualType FType = Context->getFunctionNoProtoType(Context->VoidPtrTy);
+ return FunctionDecl::Create(*Context, TUDecl, SourceLocation(),
+ SourceLocation(), ID, FType, nullptr, SC_Extern,
+ false, false);
+}
+
+Stmt *RewriteObjC::SynthBlockInitExpr(BlockExpr *Exp,
+ const SmallVectorImpl<DeclRefExpr *> &InnerBlockDeclRefs) {
+ const BlockDecl *block = Exp->getBlockDecl();
+ Blocks.push_back(Exp);
+
+ CollectBlockDeclRefInfo(Exp);
+
+ // Add inner imported variables now used in current block.
+ int countOfInnerDecls = 0;
+ if (!InnerBlockDeclRefs.empty()) {
+ for (unsigned i = 0; i < InnerBlockDeclRefs.size(); i++) {
+ DeclRefExpr *Exp = InnerBlockDeclRefs[i];
+ ValueDecl *VD = Exp->getDecl();
+ if (!VD->hasAttr<BlocksAttr>() && !BlockByCopyDeclsPtrSet.count(VD)) {
+ // We need to save the copied-in variables in nested
+ // blocks because it is needed at the end for some of the API generations.
+ // See SynthesizeBlockLiterals routine.
+ InnerDeclRefs.push_back(Exp); countOfInnerDecls++;
+ BlockDeclRefs.push_back(Exp);
+ BlockByCopyDeclsPtrSet.insert(VD);
+ BlockByCopyDecls.push_back(VD);
+ }
+ if (VD->hasAttr<BlocksAttr>() && !BlockByRefDeclsPtrSet.count(VD)) {
+ InnerDeclRefs.push_back(Exp); countOfInnerDecls++;
+ BlockDeclRefs.push_back(Exp);
+ BlockByRefDeclsPtrSet.insert(VD);
+ BlockByRefDecls.push_back(VD);
+ }
+ }
+ // Find any imported blocks...they will need special attention.
+ for (unsigned i = 0; i < InnerBlockDeclRefs.size(); i++)
+ if (InnerBlockDeclRefs[i]->getDecl()->hasAttr<BlocksAttr>() ||
+ InnerBlockDeclRefs[i]->getType()->isObjCObjectPointerType() ||
+ InnerBlockDeclRefs[i]->getType()->isBlockPointerType())
+ ImportedBlockDecls.insert(InnerBlockDeclRefs[i]->getDecl());
+ }
+ InnerDeclRefsCount.push_back(countOfInnerDecls);
+
+ std::string FuncName;
+
+ if (CurFunctionDef)
+ FuncName = CurFunctionDef->getNameAsString();
+ else if (CurMethodDef)
+ BuildUniqueMethodName(FuncName, CurMethodDef);
+ else if (GlobalVarDecl)
+ FuncName = std::string(GlobalVarDecl->getNameAsString());
+
+ std::string BlockNumber = utostr(Blocks.size()-1);
+
+ std::string Tag = "__" + FuncName + "_block_impl_" + BlockNumber;
+ std::string Func = "__" + FuncName + "_block_func_" + BlockNumber;
+
+ // Get a pointer to the function type so we can cast appropriately.
+ QualType BFT = convertFunctionTypeOfBlocks(Exp->getFunctionType());
+ QualType FType = Context->getPointerType(BFT);
+
+ FunctionDecl *FD;
+ Expr *NewRep;
+
+ // Simulate a constructor call...
+ FD = SynthBlockInitFunctionDecl(Tag);
+ DeclRefExpr *DRE = new (Context) DeclRefExpr(FD, false, FType, VK_RValue,
+ SourceLocation());
+
+ SmallVector<Expr*, 4> InitExprs;
+
+ // Initialize the block function.
+ FD = SynthBlockInitFunctionDecl(Func);
+ DeclRefExpr *Arg = new (Context) DeclRefExpr(FD, false, FD->getType(),
+ VK_LValue, SourceLocation());
+ CastExpr *castExpr = NoTypeInfoCStyleCastExpr(Context, Context->VoidPtrTy,
+ CK_BitCast, Arg);
+ InitExprs.push_back(castExpr);
+
+ // Initialize the block descriptor.
+ std::string DescData = "__" + FuncName + "_block_desc_" + BlockNumber + "_DATA";
+
+ VarDecl *NewVD = VarDecl::Create(*Context, TUDecl,
+ SourceLocation(), SourceLocation(),
+ &Context->Idents.get(DescData.c_str()),
+ Context->VoidPtrTy, nullptr,
+ SC_Static);
+ UnaryOperator *DescRefExpr =
+ new (Context) UnaryOperator(new (Context) DeclRefExpr(NewVD, false,
+ Context->VoidPtrTy,
+ VK_LValue,
+ SourceLocation()),
+ UO_AddrOf,
+ Context->getPointerType(Context->VoidPtrTy),
+ VK_RValue, OK_Ordinary,
+ SourceLocation());
+ InitExprs.push_back(DescRefExpr);
+
+ // Add initializers for any closure decl refs.
+ if (BlockDeclRefs.size()) {
+ Expr *Exp;
+ // Output all "by copy" declarations.
+ for (SmallVectorImpl<ValueDecl *>::iterator I = BlockByCopyDecls.begin(),
+ E = BlockByCopyDecls.end(); I != E; ++I) {
+ if (isObjCType((*I)->getType())) {
+ // FIXME: Conform to ABI ([[obj retain] autorelease]).
+ FD = SynthBlockInitFunctionDecl((*I)->getName());
+ Exp = new (Context) DeclRefExpr(FD, false, FD->getType(), VK_LValue,
+ SourceLocation());
+ if (HasLocalVariableExternalStorage(*I)) {
+ QualType QT = (*I)->getType();
+ QT = Context->getPointerType(QT);
+ Exp = new (Context) UnaryOperator(Exp, UO_AddrOf, QT, VK_RValue,
+ OK_Ordinary, SourceLocation());
+ }
+ } else if (isTopLevelBlockPointerType((*I)->getType())) {
+ FD = SynthBlockInitFunctionDecl((*I)->getName());
+ Arg = new (Context) DeclRefExpr(FD, false, FD->getType(), VK_LValue,
+ SourceLocation());
+ Exp = NoTypeInfoCStyleCastExpr(Context, Context->VoidPtrTy,
+ CK_BitCast, Arg);
+ } else {
+ FD = SynthBlockInitFunctionDecl((*I)->getName());
+ Exp = new (Context) DeclRefExpr(FD, false, FD->getType(), VK_LValue,
+ SourceLocation());
+ if (HasLocalVariableExternalStorage(*I)) {
+ QualType QT = (*I)->getType();
+ QT = Context->getPointerType(QT);
+ Exp = new (Context) UnaryOperator(Exp, UO_AddrOf, QT, VK_RValue,
+ OK_Ordinary, SourceLocation());
+ }
+
+ }
+ InitExprs.push_back(Exp);
+ }
+ // Output all "by ref" declarations.
+ for (SmallVectorImpl<ValueDecl *>::iterator I = BlockByRefDecls.begin(),
+ E = BlockByRefDecls.end(); I != E; ++I) {
+ ValueDecl *ND = (*I);
+ std::string Name(ND->getNameAsString());
+ std::string RecName;
+ RewriteByRefString(RecName, Name, ND, true);
+ IdentifierInfo *II = &Context->Idents.get(RecName.c_str()
+ + sizeof("struct"));
+ RecordDecl *RD = RecordDecl::Create(*Context, TTK_Struct, TUDecl,
+ SourceLocation(), SourceLocation(),
+ II);
+ assert(RD && "SynthBlockInitExpr(): Can't find RecordDecl");
+ QualType castT = Context->getPointerType(Context->getTagDeclType(RD));
+
+ FD = SynthBlockInitFunctionDecl((*I)->getName());
+ Exp = new (Context) DeclRefExpr(FD, false, FD->getType(), VK_LValue,
+ SourceLocation());
+ bool isNestedCapturedVar = false;
+ if (block)
+ for (const auto &CI : block->captures()) {
+ const VarDecl *variable = CI.getVariable();
+ if (variable == ND && CI.isNested()) {
+ assert (CI.isByRef() &&
+ "SynthBlockInitExpr - captured block variable is not byref");
+ isNestedCapturedVar = true;
+ break;
+ }
+ }
+ // captured nested byref variable has its address passed. Do not take
+ // its address again.
+ if (!isNestedCapturedVar)
+ Exp = new (Context) UnaryOperator(Exp, UO_AddrOf,
+ Context->getPointerType(Exp->getType()),
+ VK_RValue, OK_Ordinary, SourceLocation());
+ Exp = NoTypeInfoCStyleCastExpr(Context, castT, CK_BitCast, Exp);
+ InitExprs.push_back(Exp);
+ }
+ }
+ if (ImportedBlockDecls.size()) {
+ // generate BLOCK_HAS_COPY_DISPOSE(have helper funcs) | BLOCK_HAS_DESCRIPTOR
+ int flag = (BLOCK_HAS_COPY_DISPOSE | BLOCK_HAS_DESCRIPTOR);
+ unsigned IntSize =
+ static_cast<unsigned>(Context->getTypeSize(Context->IntTy));
+ Expr *FlagExp = IntegerLiteral::Create(*Context, llvm::APInt(IntSize, flag),
+ Context->IntTy, SourceLocation());
+ InitExprs.push_back(FlagExp);
+ }
+ NewRep = new (Context) CallExpr(*Context, DRE, InitExprs,
+ FType, VK_LValue, SourceLocation());
+ NewRep = new (Context) UnaryOperator(NewRep, UO_AddrOf,
+ Context->getPointerType(NewRep->getType()),
+ VK_RValue, OK_Ordinary, SourceLocation());
+ NewRep = NoTypeInfoCStyleCastExpr(Context, FType, CK_BitCast,
+ NewRep);
+ BlockDeclRefs.clear();
+ BlockByRefDecls.clear();
+ BlockByRefDeclsPtrSet.clear();
+ BlockByCopyDecls.clear();
+ BlockByCopyDeclsPtrSet.clear();
+ ImportedBlockDecls.clear();
+ return NewRep;
+}
+
+bool RewriteObjC::IsDeclStmtInForeachHeader(DeclStmt *DS) {
+ if (const ObjCForCollectionStmt * CS =
+ dyn_cast<ObjCForCollectionStmt>(Stmts.back()))
+ return CS->getElement() == DS;
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Function Body / Expression rewriting
+//===----------------------------------------------------------------------===//
+
+Stmt *RewriteObjC::RewriteFunctionBodyOrGlobalInitializer(Stmt *S) {
+ if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
+ isa<DoStmt>(S) || isa<ForStmt>(S))
+ Stmts.push_back(S);
+ else if (isa<ObjCForCollectionStmt>(S)) {
+ Stmts.push_back(S);
+ ObjCBcLabelNo.push_back(++BcLabelCount);
+ }
+
+ // Pseudo-object operations and ivar references need special
+ // treatment because we're going to recursively rewrite them.
+ if (PseudoObjectExpr *PseudoOp = dyn_cast<PseudoObjectExpr>(S)) {
+ if (isa<BinaryOperator>(PseudoOp->getSyntacticForm())) {
+ return RewritePropertyOrImplicitSetter(PseudoOp);
+ } else {
+ return RewritePropertyOrImplicitGetter(PseudoOp);
+ }
+ } else if (ObjCIvarRefExpr *IvarRefExpr = dyn_cast<ObjCIvarRefExpr>(S)) {
+ return RewriteObjCIvarRefExpr(IvarRefExpr);
+ }
+
+ SourceRange OrigStmtRange = S->getSourceRange();
+
+ // Perform a bottom up rewrite of all children.
+ for (Stmt::child_range CI = S->children(); CI; ++CI)
+ if (*CI) {
+ Stmt *childStmt = (*CI);
+ Stmt *newStmt = RewriteFunctionBodyOrGlobalInitializer(childStmt);
+ if (newStmt) {
+ *CI = newStmt;
+ }
+ }
+
+ if (BlockExpr *BE = dyn_cast<BlockExpr>(S)) {
+ SmallVector<DeclRefExpr *, 8> InnerBlockDeclRefs;
+ llvm::SmallPtrSet<const DeclContext *, 8> InnerContexts;
+ InnerContexts.insert(BE->getBlockDecl());
+ ImportedLocalExternalDecls.clear();
+ GetInnerBlockDeclRefExprs(BE->getBody(),
+ InnerBlockDeclRefs, InnerContexts);
+ // Rewrite the block body in place.
+ Stmt *SaveCurrentBody = CurrentBody;
+ CurrentBody = BE->getBody();
+ PropParentMap = nullptr;
+ // block literal on rhs of a property-dot-sytax assignment
+ // must be replaced by its synthesize ast so getRewrittenText
+ // works as expected. In this case, what actually ends up on RHS
+ // is the blockTranscribed which is the helper function for the
+ // block literal; as in: self.c = ^() {[ace ARR];};
+ bool saveDisableReplaceStmt = DisableReplaceStmt;
+ DisableReplaceStmt = false;
+ RewriteFunctionBodyOrGlobalInitializer(BE->getBody());
+ DisableReplaceStmt = saveDisableReplaceStmt;
+ CurrentBody = SaveCurrentBody;
+ PropParentMap = nullptr;
+ ImportedLocalExternalDecls.clear();
+ // Now we snarf the rewritten text and stash it away for later use.
+ std::string Str = Rewrite.getRewrittenText(BE->getSourceRange());
+ RewrittenBlockExprs[BE] = Str;
+
+ Stmt *blockTranscribed = SynthBlockInitExpr(BE, InnerBlockDeclRefs);
+
+ //blockTranscribed->dump();
+ ReplaceStmt(S, blockTranscribed);
+ return blockTranscribed;
+ }
+ // Handle specific things.
+ if (ObjCEncodeExpr *AtEncode = dyn_cast<ObjCEncodeExpr>(S))
+ return RewriteAtEncode(AtEncode);
+
+ if (ObjCSelectorExpr *AtSelector = dyn_cast<ObjCSelectorExpr>(S))
+ return RewriteAtSelector(AtSelector);
+
+ if (ObjCStringLiteral *AtString = dyn_cast<ObjCStringLiteral>(S))
+ return RewriteObjCStringLiteral(AtString);
+
+ if (ObjCMessageExpr *MessExpr = dyn_cast<ObjCMessageExpr>(S)) {
+#if 0
+ // Before we rewrite it, put the original message expression in a comment.
+ SourceLocation startLoc = MessExpr->getLocStart();
+ SourceLocation endLoc = MessExpr->getLocEnd();
+
+ const char *startBuf = SM->getCharacterData(startLoc);
+ const char *endBuf = SM->getCharacterData(endLoc);
+
+ std::string messString;
+ messString += "// ";
+ messString.append(startBuf, endBuf-startBuf+1);
+ messString += "\n";
+
+ // FIXME: Missing definition of
+ // InsertText(clang::SourceLocation, char const*, unsigned int).
+ // InsertText(startLoc, messString.c_str(), messString.size());
+ // Tried this, but it didn't work either...
+ // ReplaceText(startLoc, 0, messString.c_str(), messString.size());
+#endif
+ return RewriteMessageExpr(MessExpr);
+ }
+
+ if (ObjCAtTryStmt *StmtTry = dyn_cast<ObjCAtTryStmt>(S))
+ return RewriteObjCTryStmt(StmtTry);
+
+ if (ObjCAtSynchronizedStmt *StmtTry = dyn_cast<ObjCAtSynchronizedStmt>(S))
+ return RewriteObjCSynchronizedStmt(StmtTry);
+
+ if (ObjCAtThrowStmt *StmtThrow = dyn_cast<ObjCAtThrowStmt>(S))
+ return RewriteObjCThrowStmt(StmtThrow);
+
+ if (ObjCProtocolExpr *ProtocolExp = dyn_cast<ObjCProtocolExpr>(S))
+ return RewriteObjCProtocolExpr(ProtocolExp);
+
+ if (ObjCForCollectionStmt *StmtForCollection =
+ dyn_cast<ObjCForCollectionStmt>(S))
+ return RewriteObjCForCollectionStmt(StmtForCollection,
+ OrigStmtRange.getEnd());
+ if (BreakStmt *StmtBreakStmt =
+ dyn_cast<BreakStmt>(S))
+ return RewriteBreakStmt(StmtBreakStmt);
+ if (ContinueStmt *StmtContinueStmt =
+ dyn_cast<ContinueStmt>(S))
+ return RewriteContinueStmt(StmtContinueStmt);
+
+ // Need to check for protocol refs (id <P>, Foo <P> *) in variable decls
+ // and cast exprs.
+ if (DeclStmt *DS = dyn_cast<DeclStmt>(S)) {
+ // FIXME: What we're doing here is modifying the type-specifier that
+ // precedes the first Decl. In the future the DeclGroup should have
+ // a separate type-specifier that we can rewrite.
+ // NOTE: We need to avoid rewriting the DeclStmt if it is within
+ // the context of an ObjCForCollectionStmt. For example:
+ // NSArray *someArray;
+ // for (id <FooProtocol> index in someArray) ;
+ // This is because RewriteObjCForCollectionStmt() does textual rewriting
+ // and it depends on the original text locations/positions.
+ if (Stmts.empty() || !IsDeclStmtInForeachHeader(DS))
+ RewriteObjCQualifiedInterfaceTypes(*DS->decl_begin());
+
+ // Blocks rewrite rules.
+ for (auto *SD : DS->decls()) {
+ if (ValueDecl *ND = dyn_cast<ValueDecl>(SD)) {
+ if (isTopLevelBlockPointerType(ND->getType()))
+ RewriteBlockPointerDecl(ND);
+ else if (ND->getType()->isFunctionPointerType())
+ CheckFunctionPointerDecl(ND->getType(), ND);
+ if (VarDecl *VD = dyn_cast<VarDecl>(SD)) {
+ if (VD->hasAttr<BlocksAttr>()) {
+ static unsigned uniqueByrefDeclCount = 0;
+ assert(!BlockByRefDeclNo.count(ND) &&
+ "RewriteFunctionBodyOrGlobalInitializer: Duplicate byref decl");
+ BlockByRefDeclNo[ND] = uniqueByrefDeclCount++;
+ RewriteByRefVar(VD);
+ }
+ else
+ RewriteTypeOfDecl(VD);
+ }
+ }
+ if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
+ if (isTopLevelBlockPointerType(TD->getUnderlyingType()))
+ RewriteBlockPointerDecl(TD);
+ else if (TD->getUnderlyingType()->isFunctionPointerType())
+ CheckFunctionPointerDecl(TD->getUnderlyingType(), TD);
+ }
+ }
+ }
+
+ if (CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(S))
+ RewriteObjCQualifiedInterfaceTypes(CE);
+
+ if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
+ isa<DoStmt>(S) || isa<ForStmt>(S)) {
+ assert(!Stmts.empty() && "Statement stack is empty");
+ assert ((isa<SwitchStmt>(Stmts.back()) || isa<WhileStmt>(Stmts.back()) ||
+ isa<DoStmt>(Stmts.back()) || isa<ForStmt>(Stmts.back()))
+ && "Statement stack mismatch");
+ Stmts.pop_back();
+ }
+ // Handle blocks rewriting.
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(S)) {
+ ValueDecl *VD = DRE->getDecl();
+ if (VD->hasAttr<BlocksAttr>())
+ return RewriteBlockDeclRefExpr(DRE);
+ if (HasLocalVariableExternalStorage(VD))
+ return RewriteLocalVariableExternalStorage(DRE);
+ }
+
+ if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
+ if (CE->getCallee()->getType()->isBlockPointerType()) {
+ Stmt *BlockCall = SynthesizeBlockCall(CE, CE->getCallee());
+ ReplaceStmt(S, BlockCall);
+ return BlockCall;
+ }
+ }
+ if (CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(S)) {
+ RewriteCastExpr(CE);
+ }
+#if 0
+ if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(S)) {
+ CastExpr *Replacement = new (Context) CastExpr(ICE->getType(),
+ ICE->getSubExpr(),
+ SourceLocation());
+ // Get the new text.
+ std::string SStr;
+ llvm::raw_string_ostream Buf(SStr);
+ Replacement->printPretty(Buf);
+ const std::string &Str = Buf.str();
+
+ printf("CAST = %s\n", &Str[0]);
+ InsertText(ICE->getSubExpr()->getLocStart(), &Str[0], Str.size());
+ delete S;
+ return Replacement;
+ }
+#endif
+ // Return this stmt unmodified.
+ return S;
+}
+
+void RewriteObjC::RewriteRecordBody(RecordDecl *RD) {
+ for (auto *FD : RD->fields()) {
+ if (isTopLevelBlockPointerType(FD->getType()))
+ RewriteBlockPointerDecl(FD);
+ if (FD->getType()->isObjCQualifiedIdType() ||
+ FD->getType()->isObjCQualifiedInterfaceType())
+ RewriteObjCQualifiedInterfaceTypes(FD);
+ }
+}
+
+/// HandleDeclInMainFile - This is called for each top-level decl defined in the
+/// main file of the input.
+void RewriteObjC::HandleDeclInMainFile(Decl *D) {
+ switch (D->getKind()) {
+ case Decl::Function: {
+ FunctionDecl *FD = cast<FunctionDecl>(D);
+ if (FD->isOverloadedOperator())
+ return;
+
+ // Since function prototypes don't have ParmDecl's, we check the function
+ // prototype. This enables us to rewrite function declarations and
+ // definitions using the same code.
+ RewriteBlocksInFunctionProtoType(FD->getType(), FD);
+
+ if (!FD->isThisDeclarationADefinition())
+ break;
+
+ // FIXME: If this should support Obj-C++, support CXXTryStmt
+ if (CompoundStmt *Body = dyn_cast_or_null<CompoundStmt>(FD->getBody())) {
+ CurFunctionDef = FD;
+ CurFunctionDeclToDeclareForBlock = FD;
+ CurrentBody = Body;
+ Body =
+ cast_or_null<CompoundStmt>(RewriteFunctionBodyOrGlobalInitializer(Body));
+ FD->setBody(Body);
+ CurrentBody = nullptr;
+ if (PropParentMap) {
+ delete PropParentMap;
+ PropParentMap = nullptr;
+ }
+ // This synthesizes and inserts the block "impl" struct, invoke function,
+ // and any copy/dispose helper functions.
+ InsertBlockLiteralsWithinFunction(FD);
+ CurFunctionDef = nullptr;
+ CurFunctionDeclToDeclareForBlock = nullptr;
+ }
+ break;
+ }
+ case Decl::ObjCMethod: {
+ ObjCMethodDecl *MD = cast<ObjCMethodDecl>(D);
+ if (CompoundStmt *Body = MD->getCompoundBody()) {
+ CurMethodDef = MD;
+ CurrentBody = Body;
+ Body =
+ cast_or_null<CompoundStmt>(RewriteFunctionBodyOrGlobalInitializer(Body));
+ MD->setBody(Body);
+ CurrentBody = nullptr;
+ if (PropParentMap) {
+ delete PropParentMap;
+ PropParentMap = nullptr;
+ }
+ InsertBlockLiteralsWithinMethod(MD);
+ CurMethodDef = nullptr;
+ }
+ break;
+ }
+ case Decl::ObjCImplementation: {
+ ObjCImplementationDecl *CI = cast<ObjCImplementationDecl>(D);
+ ClassImplementation.push_back(CI);
+ break;
+ }
+ case Decl::ObjCCategoryImpl: {
+ ObjCCategoryImplDecl *CI = cast<ObjCCategoryImplDecl>(D);
+ CategoryImplementation.push_back(CI);
+ break;
+ }
+ case Decl::Var: {
+ VarDecl *VD = cast<VarDecl>(D);
+ RewriteObjCQualifiedInterfaceTypes(VD);
+ if (isTopLevelBlockPointerType(VD->getType()))
+ RewriteBlockPointerDecl(VD);
+ else if (VD->getType()->isFunctionPointerType()) {
+ CheckFunctionPointerDecl(VD->getType(), VD);
+ if (VD->getInit()) {
+ if (CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(VD->getInit())) {
+ RewriteCastExpr(CE);
+ }
+ }
+ } else if (VD->getType()->isRecordType()) {
+ RecordDecl *RD = VD->getType()->getAs<RecordType>()->getDecl();
+ if (RD->isCompleteDefinition())
+ RewriteRecordBody(RD);
+ }
+ if (VD->getInit()) {
+ GlobalVarDecl = VD;
+ CurrentBody = VD->getInit();
+ RewriteFunctionBodyOrGlobalInitializer(VD->getInit());
+ CurrentBody = nullptr;
+ if (PropParentMap) {
+ delete PropParentMap;
+ PropParentMap = nullptr;
+ }
+ SynthesizeBlockLiterals(VD->getTypeSpecStartLoc(), VD->getName());
+ GlobalVarDecl = nullptr;
+
+ // This is needed for blocks.
+ if (CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(VD->getInit())) {
+ RewriteCastExpr(CE);
+ }
+ }
+ break;
+ }
+ case Decl::TypeAlias:
+ case Decl::Typedef: {
+ if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
+ if (isTopLevelBlockPointerType(TD->getUnderlyingType()))
+ RewriteBlockPointerDecl(TD);
+ else if (TD->getUnderlyingType()->isFunctionPointerType())
+ CheckFunctionPointerDecl(TD->getUnderlyingType(), TD);
+ }
+ break;
+ }
+ case Decl::CXXRecord:
+ case Decl::Record: {
+ RecordDecl *RD = cast<RecordDecl>(D);
+ if (RD->isCompleteDefinition())
+ RewriteRecordBody(RD);
+ break;
+ }
+ default:
+ break;
+ }
+ // Nothing yet.
+}
+
+void RewriteObjC::HandleTranslationUnit(ASTContext &C) {
+ if (Diags.hasErrorOccurred())
+ return;
+
+ RewriteInclude();
+
+ // Here's a great place to add any extra declarations that may be needed.
+ // Write out meta data for each @protocol(<expr>).
+ for (ObjCProtocolDecl *ProtDecl : ProtocolExprDecls)
+ RewriteObjCProtocolMetaData(ProtDecl, "", "", Preamble);
+
+ InsertText(SM->getLocForStartOfFile(MainFileID), Preamble, false);
+ if (ClassImplementation.size() || CategoryImplementation.size())
+ RewriteImplementations();
+
+ // Get the buffer corresponding to MainFileID. If we haven't changed it, then
+ // we are done.
+ if (const RewriteBuffer *RewriteBuf =
+ Rewrite.getRewriteBufferFor(MainFileID)) {
+ //printf("Changed:\n");
+ *OutFile << std::string(RewriteBuf->begin(), RewriteBuf->end());
+ } else {
+ llvm::errs() << "No changes\n";
+ }
+
+ if (ClassImplementation.size() || CategoryImplementation.size() ||
+ ProtocolExprDecls.size()) {
+ // Rewrite Objective-c meta data*
+ std::string ResultStr;
+ RewriteMetaDataIntoBuffer(ResultStr);
+ // Emit metadata.
+ *OutFile << ResultStr;
+ }
+ OutFile->flush();
+}
+
+void RewriteObjCFragileABI::Initialize(ASTContext &context) {
+ InitializeCommon(context);
+
+ // declaring objc_selector outside the parameter list removes a silly
+ // scope related warning...
+ if (IsHeader)
+ Preamble = "#pragma once\n";
+ Preamble += "struct objc_selector; struct objc_class;\n";
+ Preamble += "struct __rw_objc_super { struct objc_object *object; ";
+ Preamble += "struct objc_object *superClass; ";
+ if (LangOpts.MicrosoftExt) {
+ // Add a constructor for creating temporary objects.
+ Preamble += "__rw_objc_super(struct objc_object *o, struct objc_object *s) "
+ ": ";
+ Preamble += "object(o), superClass(s) {} ";
+ }
+ Preamble += "};\n";
+ Preamble += "#ifndef _REWRITER_typedef_Protocol\n";
+ Preamble += "typedef struct objc_object Protocol;\n";
+ Preamble += "#define _REWRITER_typedef_Protocol\n";
+ Preamble += "#endif\n";
+ if (LangOpts.MicrosoftExt) {
+ Preamble += "#define __OBJC_RW_DLLIMPORT extern \"C\" __declspec(dllimport)\n";
+ Preamble += "#define __OBJC_RW_STATICIMPORT extern \"C\"\n";
+ } else
+ Preamble += "#define __OBJC_RW_DLLIMPORT extern\n";
+ Preamble += "__OBJC_RW_DLLIMPORT struct objc_object *objc_msgSend";
+ Preamble += "(struct objc_object *, struct objc_selector *, ...);\n";
+ Preamble += "__OBJC_RW_DLLIMPORT struct objc_object *objc_msgSendSuper";
+ Preamble += "(struct objc_super *, struct objc_selector *, ...);\n";
+ Preamble += "__OBJC_RW_DLLIMPORT struct objc_object* objc_msgSend_stret";
+ Preamble += "(struct objc_object *, struct objc_selector *, ...);\n";
+ Preamble += "__OBJC_RW_DLLIMPORT struct objc_object* objc_msgSendSuper_stret";
+ Preamble += "(struct objc_super *, struct objc_selector *, ...);\n";
+ Preamble += "__OBJC_RW_DLLIMPORT double objc_msgSend_fpret";
+ Preamble += "(struct objc_object *, struct objc_selector *, ...);\n";
+ Preamble += "__OBJC_RW_DLLIMPORT struct objc_object *objc_getClass";
+ Preamble += "(const char *);\n";
+ Preamble += "__OBJC_RW_DLLIMPORT struct objc_class *class_getSuperclass";
+ Preamble += "(struct objc_class *);\n";
+ Preamble += "__OBJC_RW_DLLIMPORT struct objc_object *objc_getMetaClass";
+ Preamble += "(const char *);\n";
+ Preamble += "__OBJC_RW_DLLIMPORT void objc_exception_throw(struct objc_object *);\n";
+ Preamble += "__OBJC_RW_DLLIMPORT void objc_exception_try_enter(void *);\n";
+ Preamble += "__OBJC_RW_DLLIMPORT void objc_exception_try_exit(void *);\n";
+ Preamble += "__OBJC_RW_DLLIMPORT struct objc_object *objc_exception_extract(void *);\n";
+ Preamble += "__OBJC_RW_DLLIMPORT int objc_exception_match";
+ Preamble += "(struct objc_class *, struct objc_object *);\n";
+ // @synchronized hooks.
+ Preamble += "__OBJC_RW_DLLIMPORT int objc_sync_enter(struct objc_object *);\n";
+ Preamble += "__OBJC_RW_DLLIMPORT int objc_sync_exit(struct objc_object *);\n";
+ Preamble += "__OBJC_RW_DLLIMPORT Protocol *objc_getProtocol(const char *);\n";
+ Preamble += "#ifndef __FASTENUMERATIONSTATE\n";
+ Preamble += "struct __objcFastEnumerationState {\n\t";
+ Preamble += "unsigned long state;\n\t";
+ Preamble += "void **itemsPtr;\n\t";
+ Preamble += "unsigned long *mutationsPtr;\n\t";
+ Preamble += "unsigned long extra[5];\n};\n";
+ Preamble += "__OBJC_RW_DLLIMPORT void objc_enumerationMutation(struct objc_object *);\n";
+ Preamble += "#define __FASTENUMERATIONSTATE\n";
+ Preamble += "#endif\n";
+ Preamble += "#ifndef __NSCONSTANTSTRINGIMPL\n";
+ Preamble += "struct __NSConstantStringImpl {\n";
+ Preamble += " int *isa;\n";
+ Preamble += " int flags;\n";
+ Preamble += " char *str;\n";
+ Preamble += " long length;\n";
+ Preamble += "};\n";
+ Preamble += "#ifdef CF_EXPORT_CONSTANT_STRING\n";
+ Preamble += "extern \"C\" __declspec(dllexport) int __CFConstantStringClassReference[];\n";
+ Preamble += "#else\n";
+ Preamble += "__OBJC_RW_DLLIMPORT int __CFConstantStringClassReference[];\n";
+ Preamble += "#endif\n";
+ Preamble += "#define __NSCONSTANTSTRINGIMPL\n";
+ Preamble += "#endif\n";
+ // Blocks preamble.
+ Preamble += "#ifndef BLOCK_IMPL\n";
+ Preamble += "#define BLOCK_IMPL\n";
+ Preamble += "struct __block_impl {\n";
+ Preamble += " void *isa;\n";
+ Preamble += " int Flags;\n";
+ Preamble += " int Reserved;\n";
+ Preamble += " void *FuncPtr;\n";
+ Preamble += "};\n";
+ Preamble += "// Runtime copy/destroy helper functions (from Block_private.h)\n";
+ Preamble += "#ifdef __OBJC_EXPORT_BLOCKS\n";
+ Preamble += "extern \"C\" __declspec(dllexport) "
+ "void _Block_object_assign(void *, const void *, const int);\n";
+ Preamble += "extern \"C\" __declspec(dllexport) void _Block_object_dispose(const void *, const int);\n";
+ Preamble += "extern \"C\" __declspec(dllexport) void *_NSConcreteGlobalBlock[32];\n";
+ Preamble += "extern \"C\" __declspec(dllexport) void *_NSConcreteStackBlock[32];\n";
+ Preamble += "#else\n";
+ Preamble += "__OBJC_RW_DLLIMPORT void _Block_object_assign(void *, const void *, const int);\n";
+ Preamble += "__OBJC_RW_DLLIMPORT void _Block_object_dispose(const void *, const int);\n";
+ Preamble += "__OBJC_RW_DLLIMPORT void *_NSConcreteGlobalBlock[32];\n";
+ Preamble += "__OBJC_RW_DLLIMPORT void *_NSConcreteStackBlock[32];\n";
+ Preamble += "#endif\n";
+ Preamble += "#endif\n";
+ if (LangOpts.MicrosoftExt) {
+ Preamble += "#undef __OBJC_RW_DLLIMPORT\n";
+ Preamble += "#undef __OBJC_RW_STATICIMPORT\n";
+ Preamble += "#ifndef KEEP_ATTRIBUTES\n"; // We use this for clang tests.
+ Preamble += "#define __attribute__(X)\n";
+ Preamble += "#endif\n";
+ Preamble += "#define __weak\n";
+ }
+ else {
+ Preamble += "#define __block\n";
+ Preamble += "#define __weak\n";
+ }
+ // NOTE! Windows uses LLP64 for 64bit mode. So, cast pointer to long long
+ // as this avoids warning in any 64bit/32bit compilation model.
+ Preamble += "\n#define __OFFSETOFIVAR__(TYPE, MEMBER) ((long long) &((TYPE *)0)->MEMBER)\n";
+}
+
+/// RewriteIvarOffsetComputation - This rutine synthesizes computation of
+/// ivar offset.
+void RewriteObjCFragileABI::RewriteIvarOffsetComputation(ObjCIvarDecl *ivar,
+ std::string &Result) {
+ if (ivar->isBitField()) {
+ // FIXME: The hack below doesn't work for bitfields. For now, we simply
+ // place all bitfields at offset 0.
+ Result += "0";
+ } else {
+ Result += "__OFFSETOFIVAR__(struct ";
+ Result += ivar->getContainingInterface()->getNameAsString();
+ if (LangOpts.MicrosoftExt)
+ Result += "_IMPL";
+ Result += ", ";
+ Result += ivar->getNameAsString();
+ Result += ")";
+ }
+}
+
+/// RewriteObjCProtocolMetaData - Rewrite protocols meta-data.
+void RewriteObjCFragileABI::RewriteObjCProtocolMetaData(
+ ObjCProtocolDecl *PDecl, StringRef prefix,
+ StringRef ClassName, std::string &Result) {
+ static bool objc_protocol_methods = false;
+
+ // Output struct protocol_methods holder of method selector and type.
+ if (!objc_protocol_methods && PDecl->hasDefinition()) {
+ /* struct protocol_methods {
+ SEL _cmd;
+ char *method_types;
+ }
+ */
+ Result += "\nstruct _protocol_methods {\n";
+ Result += "\tstruct objc_selector *_cmd;\n";
+ Result += "\tchar *method_types;\n";
+ Result += "};\n";
+
+ objc_protocol_methods = true;
+ }
+ // Do not synthesize the protocol more than once.
+ if (ObjCSynthesizedProtocols.count(PDecl->getCanonicalDecl()))
+ return;
+
+ if (ObjCProtocolDecl *Def = PDecl->getDefinition())
+ PDecl = Def;
+
+ if (PDecl->instmeth_begin() != PDecl->instmeth_end()) {
+ unsigned NumMethods = std::distance(PDecl->instmeth_begin(),
+ PDecl->instmeth_end());
+ /* struct _objc_protocol_method_list {
+ int protocol_method_count;
+ struct protocol_methods protocols[];
+ }
+ */
+ Result += "\nstatic struct {\n";
+ Result += "\tint protocol_method_count;\n";
+ Result += "\tstruct _protocol_methods protocol_methods[";
+ Result += utostr(NumMethods);
+ Result += "];\n} _OBJC_PROTOCOL_INSTANCE_METHODS_";
+ Result += PDecl->getNameAsString();
+ Result += " __attribute__ ((used, section (\"__OBJC, __cat_inst_meth\")))= "
+ "{\n\t" + utostr(NumMethods) + "\n";
+
+ // Output instance methods declared in this protocol.
+ for (ObjCProtocolDecl::instmeth_iterator
+ I = PDecl->instmeth_begin(), E = PDecl->instmeth_end();
+ I != E; ++I) {
+ if (I == PDecl->instmeth_begin())
+ Result += "\t ,{{(struct objc_selector *)\"";
+ else
+ Result += "\t ,{(struct objc_selector *)\"";
+ Result += (*I)->getSelector().getAsString();
+ std::string MethodTypeString;
+ Context->getObjCEncodingForMethodDecl((*I), MethodTypeString);
+ Result += "\", \"";
+ Result += MethodTypeString;
+ Result += "\"}\n";
+ }
+ Result += "\t }\n};\n";
+ }
+
+ // Output class methods declared in this protocol.
+ unsigned NumMethods = std::distance(PDecl->classmeth_begin(),
+ PDecl->classmeth_end());
+ if (NumMethods > 0) {
+ /* struct _objc_protocol_method_list {
+ int protocol_method_count;
+ struct protocol_methods protocols[];
+ }
+ */
+ Result += "\nstatic struct {\n";
+ Result += "\tint protocol_method_count;\n";
+ Result += "\tstruct _protocol_methods protocol_methods[";
+ Result += utostr(NumMethods);
+ Result += "];\n} _OBJC_PROTOCOL_CLASS_METHODS_";
+ Result += PDecl->getNameAsString();
+ Result += " __attribute__ ((used, section (\"__OBJC, __cat_cls_meth\")))= "
+ "{\n\t";
+ Result += utostr(NumMethods);
+ Result += "\n";
+
+ // Output instance methods declared in this protocol.
+ for (ObjCProtocolDecl::classmeth_iterator
+ I = PDecl->classmeth_begin(), E = PDecl->classmeth_end();
+ I != E; ++I) {
+ if (I == PDecl->classmeth_begin())
+ Result += "\t ,{{(struct objc_selector *)\"";
+ else
+ Result += "\t ,{(struct objc_selector *)\"";
+ Result += (*I)->getSelector().getAsString();
+ std::string MethodTypeString;
+ Context->getObjCEncodingForMethodDecl((*I), MethodTypeString);
+ Result += "\", \"";
+ Result += MethodTypeString;
+ Result += "\"}\n";
+ }
+ Result += "\t }\n};\n";
+ }
+
+ // Output:
+ /* struct _objc_protocol {
+ // Objective-C 1.0 extensions
+ struct _objc_protocol_extension *isa;
+ char *protocol_name;
+ struct _objc_protocol **protocol_list;
+ struct _objc_protocol_method_list *instance_methods;
+ struct _objc_protocol_method_list *class_methods;
+ };
+ */
+ static bool objc_protocol = false;
+ if (!objc_protocol) {
+ Result += "\nstruct _objc_protocol {\n";
+ Result += "\tstruct _objc_protocol_extension *isa;\n";
+ Result += "\tchar *protocol_name;\n";
+ Result += "\tstruct _objc_protocol **protocol_list;\n";
+ Result += "\tstruct _objc_protocol_method_list *instance_methods;\n";
+ Result += "\tstruct _objc_protocol_method_list *class_methods;\n";
+ Result += "};\n";
+
+ objc_protocol = true;
+ }
+
+ Result += "\nstatic struct _objc_protocol _OBJC_PROTOCOL_";
+ Result += PDecl->getNameAsString();
+ Result += " __attribute__ ((used, section (\"__OBJC, __protocol\")))= "
+ "{\n\t0, \"";
+ Result += PDecl->getNameAsString();
+ Result += "\", 0, ";
+ if (PDecl->instmeth_begin() != PDecl->instmeth_end()) {
+ Result += "(struct _objc_protocol_method_list *)&_OBJC_PROTOCOL_INSTANCE_METHODS_";
+ Result += PDecl->getNameAsString();
+ Result += ", ";
+ }
+ else
+ Result += "0, ";
+ if (PDecl->classmeth_begin() != PDecl->classmeth_end()) {
+ Result += "(struct _objc_protocol_method_list *)&_OBJC_PROTOCOL_CLASS_METHODS_";
+ Result += PDecl->getNameAsString();
+ Result += "\n";
+ }
+ else
+ Result += "0\n";
+ Result += "};\n";
+
+ // Mark this protocol as having been generated.
+ if (!ObjCSynthesizedProtocols.insert(PDecl->getCanonicalDecl()).second)
+ llvm_unreachable("protocol already synthesized");
+
+}
+
+void RewriteObjCFragileABI::RewriteObjCProtocolListMetaData(
+ const ObjCList<ObjCProtocolDecl> &Protocols,
+ StringRef prefix, StringRef ClassName,
+ std::string &Result) {
+ if (Protocols.empty()) return;
+
+ for (unsigned i = 0; i != Protocols.size(); i++)
+ RewriteObjCProtocolMetaData(Protocols[i], prefix, ClassName, Result);
+
+ // Output the top lovel protocol meta-data for the class.
+ /* struct _objc_protocol_list {
+ struct _objc_protocol_list *next;
+ int protocol_count;
+ struct _objc_protocol *class_protocols[];
+ }
+ */
+ Result += "\nstatic struct {\n";
+ Result += "\tstruct _objc_protocol_list *next;\n";
+ Result += "\tint protocol_count;\n";
+ Result += "\tstruct _objc_protocol *class_protocols[";
+ Result += utostr(Protocols.size());
+ Result += "];\n} _OBJC_";
+ Result += prefix;
+ Result += "_PROTOCOLS_";
+ Result += ClassName;
+ Result += " __attribute__ ((used, section (\"__OBJC, __cat_cls_meth\")))= "
+ "{\n\t0, ";
+ Result += utostr(Protocols.size());
+ Result += "\n";
+
+ Result += "\t,{&_OBJC_PROTOCOL_";
+ Result += Protocols[0]->getNameAsString();
+ Result += " \n";
+
+ for (unsigned i = 1; i != Protocols.size(); i++) {
+ Result += "\t ,&_OBJC_PROTOCOL_";
+ Result += Protocols[i]->getNameAsString();
+ Result += "\n";
+ }
+ Result += "\t }\n};\n";
+}
+
+void RewriteObjCFragileABI::RewriteObjCClassMetaData(ObjCImplementationDecl *IDecl,
+ std::string &Result) {
+ ObjCInterfaceDecl *CDecl = IDecl->getClassInterface();
+
+ // Explicitly declared @interface's are already synthesized.
+ if (CDecl->isImplicitInterfaceDecl()) {
+ // FIXME: Implementation of a class with no @interface (legacy) does not
+ // produce correct synthesis as yet.
+ RewriteObjCInternalStruct(CDecl, Result);
+ }
+
+ // Build _objc_ivar_list metadata for classes ivars if needed
+ unsigned NumIvars = !IDecl->ivar_empty()
+ ? IDecl->ivar_size()
+ : (CDecl ? CDecl->ivar_size() : 0);
+ if (NumIvars > 0) {
+ static bool objc_ivar = false;
+ if (!objc_ivar) {
+ /* struct _objc_ivar {
+ char *ivar_name;
+ char *ivar_type;
+ int ivar_offset;
+ };
+ */
+ Result += "\nstruct _objc_ivar {\n";
+ Result += "\tchar *ivar_name;\n";
+ Result += "\tchar *ivar_type;\n";
+ Result += "\tint ivar_offset;\n";
+ Result += "};\n";
+
+ objc_ivar = true;
+ }
+
+ /* struct {
+ int ivar_count;
+ struct _objc_ivar ivar_list[nIvars];
+ };
+ */
+ Result += "\nstatic struct {\n";
+ Result += "\tint ivar_count;\n";
+ Result += "\tstruct _objc_ivar ivar_list[";
+ Result += utostr(NumIvars);
+ Result += "];\n} _OBJC_INSTANCE_VARIABLES_";
+ Result += IDecl->getNameAsString();
+ Result += " __attribute__ ((used, section (\"__OBJC, __instance_vars\")))= "
+ "{\n\t";
+ Result += utostr(NumIvars);
+ Result += "\n";
+
+ ObjCInterfaceDecl::ivar_iterator IVI, IVE;
+ SmallVector<ObjCIvarDecl *, 8> IVars;
+ if (!IDecl->ivar_empty()) {
+ for (auto *IV : IDecl->ivars())
+ IVars.push_back(IV);
+ IVI = IDecl->ivar_begin();
+ IVE = IDecl->ivar_end();
+ } else {
+ IVI = CDecl->ivar_begin();
+ IVE = CDecl->ivar_end();
+ }
+ Result += "\t,{{\"";
+ Result += IVI->getNameAsString();
+ Result += "\", \"";
+ std::string TmpString, StrEncoding;
+ Context->getObjCEncodingForType(IVI->getType(), TmpString, *IVI);
+ QuoteDoublequotes(TmpString, StrEncoding);
+ Result += StrEncoding;
+ Result += "\", ";
+ RewriteIvarOffsetComputation(*IVI, Result);
+ Result += "}\n";
+ for (++IVI; IVI != IVE; ++IVI) {
+ Result += "\t ,{\"";
+ Result += IVI->getNameAsString();
+ Result += "\", \"";
+ std::string TmpString, StrEncoding;
+ Context->getObjCEncodingForType(IVI->getType(), TmpString, *IVI);
+ QuoteDoublequotes(TmpString, StrEncoding);
+ Result += StrEncoding;
+ Result += "\", ";
+ RewriteIvarOffsetComputation(*IVI, Result);
+ Result += "}\n";
+ }
+
+ Result += "\t }\n};\n";
+ }
+
+ // Build _objc_method_list for class's instance methods if needed
+ SmallVector<ObjCMethodDecl *, 32> InstanceMethods(IDecl->instance_methods());
+
+ // If any of our property implementations have associated getters or
+ // setters, produce metadata for them as well.
+ for (const auto *Prop : IDecl->property_impls()) {
+ if (Prop->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
+ continue;
+ if (!Prop->getPropertyIvarDecl())
+ continue;
+ ObjCPropertyDecl *PD = Prop->getPropertyDecl();
+ if (!PD)
+ continue;
+ if (ObjCMethodDecl *Getter = PD->getGetterMethodDecl())
+ if (!Getter->isDefined())
+ InstanceMethods.push_back(Getter);
+ if (PD->isReadOnly())
+ continue;
+ if (ObjCMethodDecl *Setter = PD->getSetterMethodDecl())
+ if (!Setter->isDefined())
+ InstanceMethods.push_back(Setter);
+ }
+ RewriteObjCMethodsMetaData(InstanceMethods.begin(), InstanceMethods.end(),
+ true, "", IDecl->getName(), Result);
+
+ // Build _objc_method_list for class's class methods if needed
+ RewriteObjCMethodsMetaData(IDecl->classmeth_begin(), IDecl->classmeth_end(),
+ false, "", IDecl->getName(), Result);
+
+ // Protocols referenced in class declaration?
+ RewriteObjCProtocolListMetaData(CDecl->getReferencedProtocols(),
+ "CLASS", CDecl->getName(), Result);
+
+ // Declaration of class/meta-class metadata
+ /* struct _objc_class {
+ struct _objc_class *isa; // or const char *root_class_name when metadata
+ const char *super_class_name;
+ char *name;
+ long version;
+ long info;
+ long instance_size;
+ struct _objc_ivar_list *ivars;
+ struct _objc_method_list *methods;
+ struct objc_cache *cache;
+ struct objc_protocol_list *protocols;
+ const char *ivar_layout;
+ struct _objc_class_ext *ext;
+ };
+ */
+ static bool objc_class = false;
+ if (!objc_class) {
+ Result += "\nstruct _objc_class {\n";
+ Result += "\tstruct _objc_class *isa;\n";
+ Result += "\tconst char *super_class_name;\n";
+ Result += "\tchar *name;\n";
+ Result += "\tlong version;\n";
+ Result += "\tlong info;\n";
+ Result += "\tlong instance_size;\n";
+ Result += "\tstruct _objc_ivar_list *ivars;\n";
+ Result += "\tstruct _objc_method_list *methods;\n";
+ Result += "\tstruct objc_cache *cache;\n";
+ Result += "\tstruct _objc_protocol_list *protocols;\n";
+ Result += "\tconst char *ivar_layout;\n";
+ Result += "\tstruct _objc_class_ext *ext;\n";
+ Result += "};\n";
+ objc_class = true;
+ }
+
+ // Meta-class metadata generation.
+ ObjCInterfaceDecl *RootClass = nullptr;
+ ObjCInterfaceDecl *SuperClass = CDecl->getSuperClass();
+ while (SuperClass) {
+ RootClass = SuperClass;
+ SuperClass = SuperClass->getSuperClass();
+ }
+ SuperClass = CDecl->getSuperClass();
+
+ Result += "\nstatic struct _objc_class _OBJC_METACLASS_";
+ Result += CDecl->getNameAsString();
+ Result += " __attribute__ ((used, section (\"__OBJC, __meta_class\")))= "
+ "{\n\t(struct _objc_class *)\"";
+ Result += (RootClass ? RootClass->getNameAsString() : CDecl->getNameAsString());
+ Result += "\"";
+
+ if (SuperClass) {
+ Result += ", \"";
+ Result += SuperClass->getNameAsString();
+ Result += "\", \"";
+ Result += CDecl->getNameAsString();
+ Result += "\"";
+ }
+ else {
+ Result += ", 0, \"";
+ Result += CDecl->getNameAsString();
+ Result += "\"";
+ }
+ // Set 'ivars' field for root class to 0. ObjC1 runtime does not use it.
+ // 'info' field is initialized to CLS_META(2) for metaclass
+ Result += ", 0,2, sizeof(struct _objc_class), 0";
+ if (IDecl->classmeth_begin() != IDecl->classmeth_end()) {
+ Result += "\n\t, (struct _objc_method_list *)&_OBJC_CLASS_METHODS_";
+ Result += IDecl->getNameAsString();
+ Result += "\n";
+ }
+ else
+ Result += ", 0\n";
+ if (CDecl->protocol_begin() != CDecl->protocol_end()) {
+ Result += "\t,0, (struct _objc_protocol_list *)&_OBJC_CLASS_PROTOCOLS_";
+ Result += CDecl->getNameAsString();
+ Result += ",0,0\n";
+ }
+ else
+ Result += "\t,0,0,0,0\n";
+ Result += "};\n";
+
+ // class metadata generation.
+ Result += "\nstatic struct _objc_class _OBJC_CLASS_";
+ Result += CDecl->getNameAsString();
+ Result += " __attribute__ ((used, section (\"__OBJC, __class\")))= "
+ "{\n\t&_OBJC_METACLASS_";
+ Result += CDecl->getNameAsString();
+ if (SuperClass) {
+ Result += ", \"";
+ Result += SuperClass->getNameAsString();
+ Result += "\", \"";
+ Result += CDecl->getNameAsString();
+ Result += "\"";
+ }
+ else {
+ Result += ", 0, \"";
+ Result += CDecl->getNameAsString();
+ Result += "\"";
+ }
+ // 'info' field is initialized to CLS_CLASS(1) for class
+ Result += ", 0,1";
+ if (!ObjCSynthesizedStructs.count(CDecl))
+ Result += ",0";
+ else {
+ // class has size. Must synthesize its size.
+ Result += ",sizeof(struct ";
+ Result += CDecl->getNameAsString();
+ if (LangOpts.MicrosoftExt)
+ Result += "_IMPL";
+ Result += ")";
+ }
+ if (NumIvars > 0) {
+ Result += ", (struct _objc_ivar_list *)&_OBJC_INSTANCE_VARIABLES_";
+ Result += CDecl->getNameAsString();
+ Result += "\n\t";
+ }
+ else
+ Result += ",0";
+ if (IDecl->instmeth_begin() != IDecl->instmeth_end()) {
+ Result += ", (struct _objc_method_list *)&_OBJC_INSTANCE_METHODS_";
+ Result += CDecl->getNameAsString();
+ Result += ", 0\n\t";
+ }
+ else
+ Result += ",0,0";
+ if (CDecl->protocol_begin() != CDecl->protocol_end()) {
+ Result += ", (struct _objc_protocol_list*)&_OBJC_CLASS_PROTOCOLS_";
+ Result += CDecl->getNameAsString();
+ Result += ", 0,0\n";
+ }
+ else
+ Result += ",0,0,0\n";
+ Result += "};\n";
+}
+
+void RewriteObjCFragileABI::RewriteMetaDataIntoBuffer(std::string &Result) {
+ int ClsDefCount = ClassImplementation.size();
+ int CatDefCount = CategoryImplementation.size();
+
+ // For each implemented class, write out all its meta data.
+ for (int i = 0; i < ClsDefCount; i++)
+ RewriteObjCClassMetaData(ClassImplementation[i], Result);
+
+ // For each implemented category, write out all its meta data.
+ for (int i = 0; i < CatDefCount; i++)
+ RewriteObjCCategoryImplDecl(CategoryImplementation[i], Result);
+
+ // Write objc_symtab metadata
+ /*
+ struct _objc_symtab
+ {
+ long sel_ref_cnt;
+ SEL *refs;
+ short cls_def_cnt;
+ short cat_def_cnt;
+ void *defs[cls_def_cnt + cat_def_cnt];
+ };
+ */
+
+ Result += "\nstruct _objc_symtab {\n";
+ Result += "\tlong sel_ref_cnt;\n";
+ Result += "\tSEL *refs;\n";
+ Result += "\tshort cls_def_cnt;\n";
+ Result += "\tshort cat_def_cnt;\n";
+ Result += "\tvoid *defs[" + utostr(ClsDefCount + CatDefCount)+ "];\n";
+ Result += "};\n\n";
+
+ Result += "static struct _objc_symtab "
+ "_OBJC_SYMBOLS __attribute__((used, section (\"__OBJC, __symbols\")))= {\n";
+ Result += "\t0, 0, " + utostr(ClsDefCount)
+ + ", " + utostr(CatDefCount) + "\n";
+ for (int i = 0; i < ClsDefCount; i++) {
+ Result += "\t,&_OBJC_CLASS_";
+ Result += ClassImplementation[i]->getNameAsString();
+ Result += "\n";
+ }
+
+ for (int i = 0; i < CatDefCount; i++) {
+ Result += "\t,&_OBJC_CATEGORY_";
+ Result += CategoryImplementation[i]->getClassInterface()->getNameAsString();
+ Result += "_";
+ Result += CategoryImplementation[i]->getNameAsString();
+ Result += "\n";
+ }
+
+ Result += "};\n\n";
+
+ // Write objc_module metadata
+
+ /*
+ struct _objc_module {
+ long version;
+ long size;
+ const char *name;
+ struct _objc_symtab *symtab;
+ }
+ */
+
+ Result += "\nstruct _objc_module {\n";
+ Result += "\tlong version;\n";
+ Result += "\tlong size;\n";
+ Result += "\tconst char *name;\n";
+ Result += "\tstruct _objc_symtab *symtab;\n";
+ Result += "};\n\n";
+ Result += "static struct _objc_module "
+ "_OBJC_MODULES __attribute__ ((used, section (\"__OBJC, __module_info\")))= {\n";
+ Result += "\t" + utostr(OBJC_ABI_VERSION) +
+ ", sizeof(struct _objc_module), \"\", &_OBJC_SYMBOLS\n";
+ Result += "};\n\n";
+
+ if (LangOpts.MicrosoftExt) {
+ if (ProtocolExprDecls.size()) {
+ Result += "#pragma section(\".objc_protocol$B\",long,read,write)\n";
+ Result += "#pragma data_seg(push, \".objc_protocol$B\")\n";
+ for (ObjCProtocolDecl *ProtDecl : ProtocolExprDecls) {
+ Result += "static struct _objc_protocol *_POINTER_OBJC_PROTOCOL_";
+ Result += ProtDecl->getNameAsString();
+ Result += " = &_OBJC_PROTOCOL_";
+ Result += ProtDecl->getNameAsString();
+ Result += ";\n";
+ }
+ Result += "#pragma data_seg(pop)\n\n";
+ }
+ Result += "#pragma section(\".objc_module_info$B\",long,read,write)\n";
+ Result += "#pragma data_seg(push, \".objc_module_info$B\")\n";
+ Result += "static struct _objc_module *_POINTER_OBJC_MODULES = ";
+ Result += "&_OBJC_MODULES;\n";
+ Result += "#pragma data_seg(pop)\n\n";
+ }
+}
+
+/// RewriteObjCCategoryImplDecl - Rewrite metadata for each category
+/// implementation.
+void RewriteObjCFragileABI::RewriteObjCCategoryImplDecl(ObjCCategoryImplDecl *IDecl,
+ std::string &Result) {
+ ObjCInterfaceDecl *ClassDecl = IDecl->getClassInterface();
+ // Find category declaration for this implementation.
+ ObjCCategoryDecl *CDecl
+ = ClassDecl->FindCategoryDeclaration(IDecl->getIdentifier());
+
+ std::string FullCategoryName = ClassDecl->getNameAsString();
+ FullCategoryName += '_';
+ FullCategoryName += IDecl->getNameAsString();
+
+ // Build _objc_method_list for class's instance methods if needed
+ SmallVector<ObjCMethodDecl *, 32> InstanceMethods(IDecl->instance_methods());
+
+ // If any of our property implementations have associated getters or
+ // setters, produce metadata for them as well.
+ for (const auto *Prop : IDecl->property_impls()) {
+ if (Prop->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
+ continue;
+ if (!Prop->getPropertyIvarDecl())
+ continue;
+ ObjCPropertyDecl *PD = Prop->getPropertyDecl();
+ if (!PD)
+ continue;
+ if (ObjCMethodDecl *Getter = PD->getGetterMethodDecl())
+ InstanceMethods.push_back(Getter);
+ if (PD->isReadOnly())
+ continue;
+ if (ObjCMethodDecl *Setter = PD->getSetterMethodDecl())
+ InstanceMethods.push_back(Setter);
+ }
+ RewriteObjCMethodsMetaData(InstanceMethods.begin(), InstanceMethods.end(),
+ true, "CATEGORY_", FullCategoryName.c_str(),
+ Result);
+
+ // Build _objc_method_list for class's class methods if needed
+ RewriteObjCMethodsMetaData(IDecl->classmeth_begin(), IDecl->classmeth_end(),
+ false, "CATEGORY_", FullCategoryName.c_str(),
+ Result);
+
+ // Protocols referenced in class declaration?
+ // Null CDecl is case of a category implementation with no category interface
+ if (CDecl)
+ RewriteObjCProtocolListMetaData(CDecl->getReferencedProtocols(), "CATEGORY",
+ FullCategoryName, Result);
+ /* struct _objc_category {
+ char *category_name;
+ char *class_name;
+ struct _objc_method_list *instance_methods;
+ struct _objc_method_list *class_methods;
+ struct _objc_protocol_list *protocols;
+ // Objective-C 1.0 extensions
+ uint32_t size; // sizeof (struct _objc_category)
+ struct _objc_property_list *instance_properties; // category's own
+ // @property decl.
+ };
+ */
+
+ static bool objc_category = false;
+ if (!objc_category) {
+ Result += "\nstruct _objc_category {\n";
+ Result += "\tchar *category_name;\n";
+ Result += "\tchar *class_name;\n";
+ Result += "\tstruct _objc_method_list *instance_methods;\n";
+ Result += "\tstruct _objc_method_list *class_methods;\n";
+ Result += "\tstruct _objc_protocol_list *protocols;\n";
+ Result += "\tunsigned int size;\n";
+ Result += "\tstruct _objc_property_list *instance_properties;\n";
+ Result += "};\n";
+ objc_category = true;
+ }
+ Result += "\nstatic struct _objc_category _OBJC_CATEGORY_";
+ Result += FullCategoryName;
+ Result += " __attribute__ ((used, section (\"__OBJC, __category\")))= {\n\t\"";
+ Result += IDecl->getNameAsString();
+ Result += "\"\n\t, \"";
+ Result += ClassDecl->getNameAsString();
+ Result += "\"\n";
+
+ if (IDecl->instmeth_begin() != IDecl->instmeth_end()) {
+ Result += "\t, (struct _objc_method_list *)"
+ "&_OBJC_CATEGORY_INSTANCE_METHODS_";
+ Result += FullCategoryName;
+ Result += "\n";
+ }
+ else
+ Result += "\t, 0\n";
+ if (IDecl->classmeth_begin() != IDecl->classmeth_end()) {
+ Result += "\t, (struct _objc_method_list *)"
+ "&_OBJC_CATEGORY_CLASS_METHODS_";
+ Result += FullCategoryName;
+ Result += "\n";
+ }
+ else
+ Result += "\t, 0\n";
+
+ if (CDecl && CDecl->protocol_begin() != CDecl->protocol_end()) {
+ Result += "\t, (struct _objc_protocol_list *)&_OBJC_CATEGORY_PROTOCOLS_";
+ Result += FullCategoryName;
+ Result += "\n";
+ }
+ else
+ Result += "\t, 0\n";
+ Result += "\t, sizeof(struct _objc_category), 0\n};\n";
+}
+
+// RewriteObjCMethodsMetaData - Rewrite methods metadata for instance or
+/// class methods.
+template<typename MethodIterator>
+void RewriteObjCFragileABI::RewriteObjCMethodsMetaData(MethodIterator MethodBegin,
+ MethodIterator MethodEnd,
+ bool IsInstanceMethod,
+ StringRef prefix,
+ StringRef ClassName,
+ std::string &Result) {
+ if (MethodBegin == MethodEnd) return;
+
+ if (!objc_impl_method) {
+ /* struct _objc_method {
+ SEL _cmd;
+ char *method_types;
+ void *_imp;
+ }
+ */
+ Result += "\nstruct _objc_method {\n";
+ Result += "\tSEL _cmd;\n";
+ Result += "\tchar *method_types;\n";
+ Result += "\tvoid *_imp;\n";
+ Result += "};\n";
+
+ objc_impl_method = true;
+ }
+
+ // Build _objc_method_list for class's methods if needed
+
+ /* struct {
+ struct _objc_method_list *next_method;
+ int method_count;
+ struct _objc_method method_list[];
+ }
+ */
+ unsigned NumMethods = std::distance(MethodBegin, MethodEnd);
+ Result += "\nstatic struct {\n";
+ Result += "\tstruct _objc_method_list *next_method;\n";
+ Result += "\tint method_count;\n";
+ Result += "\tstruct _objc_method method_list[";
+ Result += utostr(NumMethods);
+ Result += "];\n} _OBJC_";
+ Result += prefix;
+ Result += IsInstanceMethod ? "INSTANCE" : "CLASS";
+ Result += "_METHODS_";
+ Result += ClassName;
+ Result += " __attribute__ ((used, section (\"__OBJC, __";
+ Result += IsInstanceMethod ? "inst" : "cls";
+ Result += "_meth\")))= ";
+ Result += "{\n\t0, " + utostr(NumMethods) + "\n";
+
+ Result += "\t,{{(SEL)\"";
+ Result += (*MethodBegin)->getSelector().getAsString().c_str();
+ std::string MethodTypeString;
+ Context->getObjCEncodingForMethodDecl(*MethodBegin, MethodTypeString);
+ Result += "\", \"";
+ Result += MethodTypeString;
+ Result += "\", (void *)";
+ Result += MethodInternalNames[*MethodBegin];
+ Result += "}\n";
+ for (++MethodBegin; MethodBegin != MethodEnd; ++MethodBegin) {
+ Result += "\t ,{(SEL)\"";
+ Result += (*MethodBegin)->getSelector().getAsString().c_str();
+ std::string MethodTypeString;
+ Context->getObjCEncodingForMethodDecl(*MethodBegin, MethodTypeString);
+ Result += "\", \"";
+ Result += MethodTypeString;
+ Result += "\", (void *)";
+ Result += MethodInternalNames[*MethodBegin];
+ Result += "}\n";
+ }
+ Result += "\t }\n};\n";
+}
+
+Stmt *RewriteObjCFragileABI::RewriteObjCIvarRefExpr(ObjCIvarRefExpr *IV) {
+ SourceRange OldRange = IV->getSourceRange();
+ Expr *BaseExpr = IV->getBase();
+
+ // Rewrite the base, but without actually doing replaces.
+ {
+ DisableReplaceStmtScope S(*this);
+ BaseExpr = cast<Expr>(RewriteFunctionBodyOrGlobalInitializer(BaseExpr));
+ IV->setBase(BaseExpr);
+ }
+
+ ObjCIvarDecl *D = IV->getDecl();
+
+ Expr *Replacement = IV;
+ if (CurMethodDef) {
+ if (BaseExpr->getType()->isObjCObjectPointerType()) {
+ const ObjCInterfaceType *iFaceDecl =
+ dyn_cast<ObjCInterfaceType>(BaseExpr->getType()->getPointeeType());
+ assert(iFaceDecl && "RewriteObjCIvarRefExpr - iFaceDecl is null");
+ // lookup which class implements the instance variable.
+ ObjCInterfaceDecl *clsDeclared = nullptr;
+ iFaceDecl->getDecl()->lookupInstanceVariable(D->getIdentifier(),
+ clsDeclared);
+ assert(clsDeclared && "RewriteObjCIvarRefExpr(): Can't find class");
+
+ // Synthesize an explicit cast to gain access to the ivar.
+ std::string RecName = clsDeclared->getIdentifier()->getName();
+ RecName += "_IMPL";
+ IdentifierInfo *II = &Context->Idents.get(RecName);
+ RecordDecl *RD = RecordDecl::Create(*Context, TTK_Struct, TUDecl,
+ SourceLocation(), SourceLocation(),
+ II);
+ assert(RD && "RewriteObjCIvarRefExpr(): Can't find RecordDecl");
+ QualType castT = Context->getPointerType(Context->getTagDeclType(RD));
+ CastExpr *castExpr = NoTypeInfoCStyleCastExpr(Context, castT,
+ CK_BitCast,
+ IV->getBase());
+ // Don't forget the parens to enforce the proper binding.
+ ParenExpr *PE = new (Context) ParenExpr(OldRange.getBegin(),
+ OldRange.getEnd(),
+ castExpr);
+ if (IV->isFreeIvar() &&
+ declaresSameEntity(CurMethodDef->getClassInterface(), iFaceDecl->getDecl())) {
+ MemberExpr *ME = new (Context)
+ MemberExpr(PE, true, SourceLocation(), D, IV->getLocation(),
+ D->getType(), VK_LValue, OK_Ordinary);
+ Replacement = ME;
+ } else {
+ IV->setBase(PE);
+ }
+ }
+ } else { // we are outside a method.
+ assert(!IV->isFreeIvar() && "Cannot have a free standing ivar outside a method");
+
+ // Explicit ivar refs need to have a cast inserted.
+ // FIXME: consider sharing some of this code with the code above.
+ if (BaseExpr->getType()->isObjCObjectPointerType()) {
+ const ObjCInterfaceType *iFaceDecl =
+ dyn_cast<ObjCInterfaceType>(BaseExpr->getType()->getPointeeType());
+ // lookup which class implements the instance variable.
+ ObjCInterfaceDecl *clsDeclared = nullptr;
+ iFaceDecl->getDecl()->lookupInstanceVariable(D->getIdentifier(),
+ clsDeclared);
+ assert(clsDeclared && "RewriteObjCIvarRefExpr(): Can't find class");
+
+ // Synthesize an explicit cast to gain access to the ivar.
+ std::string RecName = clsDeclared->getIdentifier()->getName();
+ RecName += "_IMPL";
+ IdentifierInfo *II = &Context->Idents.get(RecName);
+ RecordDecl *RD = RecordDecl::Create(*Context, TTK_Struct, TUDecl,
+ SourceLocation(), SourceLocation(),
+ II);
+ assert(RD && "RewriteObjCIvarRefExpr(): Can't find RecordDecl");
+ QualType castT = Context->getPointerType(Context->getTagDeclType(RD));
+ CastExpr *castExpr = NoTypeInfoCStyleCastExpr(Context, castT,
+ CK_BitCast,
+ IV->getBase());
+ // Don't forget the parens to enforce the proper binding.
+ ParenExpr *PE = new (Context) ParenExpr(IV->getBase()->getLocStart(),
+ IV->getBase()->getLocEnd(), castExpr);
+ // Cannot delete IV->getBase(), since PE points to it.
+ // Replace the old base with the cast. This is important when doing
+ // embedded rewrites. For example, [newInv->_container addObject:0].
+ IV->setBase(PE);
+ }
+ }
+
+ ReplaceStmtWithRange(IV, Replacement, OldRange);
+ return Replacement;
+}
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/Frontend/Rewrite/RewriteTest.cpp b/contrib/llvm/tools/clang/lib/Frontend/Rewrite/RewriteTest.cpp
new file mode 100644
index 0000000..722c5e8
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Frontend/Rewrite/RewriteTest.cpp
@@ -0,0 +1,39 @@
+//===--- RewriteTest.cpp - Rewriter playground ----------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This is a testbed.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Rewrite/Frontend/Rewriters.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Rewrite/Core/TokenRewriter.h"
+#include "llvm/Support/raw_ostream.h"
+
+void clang::DoRewriteTest(Preprocessor &PP, raw_ostream* OS) {
+ SourceManager &SM = PP.getSourceManager();
+ const LangOptions &LangOpts = PP.getLangOpts();
+
+ TokenRewriter Rewriter(SM.getMainFileID(), SM, LangOpts);
+
+ // Throw <i> </i> tags around comments.
+ for (TokenRewriter::token_iterator I = Rewriter.token_begin(),
+ E = Rewriter.token_end(); I != E; ++I) {
+ if (I->isNot(tok::comment)) continue;
+
+ Rewriter.AddTokenBefore(I, "<i>");
+ Rewriter.AddTokenAfter(I, "</i>");
+ }
+
+
+ // Print out the output.
+ for (TokenRewriter::token_iterator I = Rewriter.token_begin(),
+ E = Rewriter.token_end(); I != E; ++I)
+ *OS << PP.getSpelling(*I);
+}
diff --git a/contrib/llvm/tools/clang/lib/Frontend/SerializedDiagnosticPrinter.cpp b/contrib/llvm/tools/clang/lib/Frontend/SerializedDiagnosticPrinter.cpp
new file mode 100644
index 0000000..d31b12e
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Frontend/SerializedDiagnosticPrinter.cpp
@@ -0,0 +1,918 @@
+//===--- SerializedDiagnosticPrinter.cpp - Serializer for diagnostics -----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Frontend/SerializedDiagnosticPrinter.h"
+#include "clang/Basic/Diagnostic.h"
+#include "clang/Basic/DiagnosticOptions.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/Version.h"
+#include "clang/Frontend/DiagnosticRenderer.h"
+#include "clang/Frontend/FrontendDiagnostic.h"
+#include "clang/Frontend/SerializedDiagnosticReader.h"
+#include "clang/Frontend/SerializedDiagnostics.h"
+#include "clang/Frontend/TextDiagnosticPrinter.h"
+#include "clang/Lex/Lexer.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/Support/raw_ostream.h"
+#include <vector>
+
+using namespace clang;
+using namespace clang::serialized_diags;
+
+namespace {
+
+class AbbreviationMap {
+ llvm::DenseMap<unsigned, unsigned> Abbrevs;
+public:
+ AbbreviationMap() {}
+
+ void set(unsigned recordID, unsigned abbrevID) {
+ assert(Abbrevs.find(recordID) == Abbrevs.end()
+ && "Abbreviation already set.");
+ Abbrevs[recordID] = abbrevID;
+ }
+
+ unsigned get(unsigned recordID) {
+ assert(Abbrevs.find(recordID) != Abbrevs.end() &&
+ "Abbreviation not set.");
+ return Abbrevs[recordID];
+ }
+};
+
+typedef SmallVector<uint64_t, 64> RecordData;
+typedef SmallVectorImpl<uint64_t> RecordDataImpl;
+
+class SDiagsWriter;
+
+class SDiagsRenderer : public DiagnosticNoteRenderer {
+ SDiagsWriter &Writer;
+public:
+ SDiagsRenderer(SDiagsWriter &Writer, const LangOptions &LangOpts,
+ DiagnosticOptions *DiagOpts)
+ : DiagnosticNoteRenderer(LangOpts, DiagOpts), Writer(Writer) {}
+
+ ~SDiagsRenderer() override {}
+
+protected:
+ void emitDiagnosticMessage(SourceLocation Loc,
+ PresumedLoc PLoc,
+ DiagnosticsEngine::Level Level,
+ StringRef Message,
+ ArrayRef<CharSourceRange> Ranges,
+ const SourceManager *SM,
+ DiagOrStoredDiag D) override;
+
+ void emitDiagnosticLoc(SourceLocation Loc, PresumedLoc PLoc,
+ DiagnosticsEngine::Level Level,
+ ArrayRef<CharSourceRange> Ranges,
+ const SourceManager &SM) override {}
+
+ void emitNote(SourceLocation Loc, StringRef Message,
+ const SourceManager *SM) override;
+
+ void emitCodeContext(SourceLocation Loc,
+ DiagnosticsEngine::Level Level,
+ SmallVectorImpl<CharSourceRange>& Ranges,
+ ArrayRef<FixItHint> Hints,
+ const SourceManager &SM) override;
+
+ void beginDiagnostic(DiagOrStoredDiag D,
+ DiagnosticsEngine::Level Level) override;
+ void endDiagnostic(DiagOrStoredDiag D,
+ DiagnosticsEngine::Level Level) override;
+};
+
+typedef llvm::DenseMap<unsigned, unsigned> AbbrevLookup;
+
+class SDiagsMerger : SerializedDiagnosticReader {
+ SDiagsWriter &Writer;
+ AbbrevLookup FileLookup;
+ AbbrevLookup CategoryLookup;
+ AbbrevLookup DiagFlagLookup;
+
+public:
+ SDiagsMerger(SDiagsWriter &Writer)
+ : SerializedDiagnosticReader(), Writer(Writer) {}
+
+ std::error_code mergeRecordsFromFile(const char *File) {
+ return readDiagnostics(File);
+ }
+
+protected:
+ std::error_code visitStartOfDiagnostic() override;
+ std::error_code visitEndOfDiagnostic() override;
+ std::error_code visitCategoryRecord(unsigned ID, StringRef Name) override;
+ std::error_code visitDiagFlagRecord(unsigned ID, StringRef Name) override;
+ std::error_code visitDiagnosticRecord(
+ unsigned Severity, const serialized_diags::Location &Location,
+ unsigned Category, unsigned Flag, StringRef Message) override;
+ std::error_code visitFilenameRecord(unsigned ID, unsigned Size,
+ unsigned Timestamp,
+ StringRef Name) override;
+ std::error_code visitFixitRecord(const serialized_diags::Location &Start,
+ const serialized_diags::Location &End,
+ StringRef CodeToInsert) override;
+ std::error_code
+ visitSourceRangeRecord(const serialized_diags::Location &Start,
+ const serialized_diags::Location &End) override;
+
+private:
+ std::error_code adjustSourceLocFilename(RecordData &Record,
+ unsigned int offset);
+
+ void adjustAbbrevID(RecordData &Record, AbbrevLookup &Lookup,
+ unsigned NewAbbrev);
+
+ void writeRecordWithAbbrev(unsigned ID, RecordData &Record);
+
+ void writeRecordWithBlob(unsigned ID, RecordData &Record, StringRef Blob);
+};
+
+class SDiagsWriter : public DiagnosticConsumer {
+ friend class SDiagsRenderer;
+ friend class SDiagsMerger;
+
+ struct SharedState;
+
+ explicit SDiagsWriter(IntrusiveRefCntPtr<SharedState> State)
+ : LangOpts(nullptr), OriginalInstance(false), MergeChildRecords(false),
+ State(State) {}
+
+public:
+ SDiagsWriter(StringRef File, DiagnosticOptions *Diags, bool MergeChildRecords)
+ : LangOpts(nullptr), OriginalInstance(true),
+ MergeChildRecords(MergeChildRecords),
+ State(new SharedState(File, Diags)) {
+ if (MergeChildRecords)
+ RemoveOldDiagnostics();
+ EmitPreamble();
+ }
+
+ ~SDiagsWriter() override {}
+
+ void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,
+ const Diagnostic &Info) override;
+
+ void BeginSourceFile(const LangOptions &LO, const Preprocessor *PP) override {
+ LangOpts = &LO;
+ }
+
+ void finish() override;
+
+private:
+ /// \brief Build a DiagnosticsEngine to emit diagnostics about the diagnostics
+ DiagnosticsEngine *getMetaDiags();
+
+ /// \brief Remove old copies of the serialized diagnostics. This is necessary
+ /// so that we can detect when subprocesses write diagnostics that we should
+ /// merge into our own.
+ void RemoveOldDiagnostics();
+
+ /// \brief Emit the preamble for the serialized diagnostics.
+ void EmitPreamble();
+
+ /// \brief Emit the BLOCKINFO block.
+ void EmitBlockInfoBlock();
+
+ /// \brief Emit the META data block.
+ void EmitMetaBlock();
+
+ /// \brief Start a DIAG block.
+ void EnterDiagBlock();
+
+ /// \brief End a DIAG block.
+ void ExitDiagBlock();
+
+ /// \brief Emit a DIAG record.
+ void EmitDiagnosticMessage(SourceLocation Loc,
+ PresumedLoc PLoc,
+ DiagnosticsEngine::Level Level,
+ StringRef Message,
+ const SourceManager *SM,
+ DiagOrStoredDiag D);
+
+ /// \brief Emit FIXIT and SOURCE_RANGE records for a diagnostic.
+ void EmitCodeContext(SmallVectorImpl<CharSourceRange> &Ranges,
+ ArrayRef<FixItHint> Hints,
+ const SourceManager &SM);
+
+ /// \brief Emit a record for a CharSourceRange.
+ void EmitCharSourceRange(CharSourceRange R, const SourceManager &SM);
+
+ /// \brief Emit the string information for the category.
+ unsigned getEmitCategory(unsigned category = 0);
+
+ /// \brief Emit the string information for diagnostic flags.
+ unsigned getEmitDiagnosticFlag(DiagnosticsEngine::Level DiagLevel,
+ unsigned DiagID = 0);
+
+ unsigned getEmitDiagnosticFlag(StringRef DiagName);
+
+ /// \brief Emit (lazily) the file string and retrieved the file identifier.
+ unsigned getEmitFile(const char *Filename);
+
+ /// \brief Add SourceLocation information the specified record.
+ void AddLocToRecord(SourceLocation Loc, const SourceManager *SM,
+ PresumedLoc PLoc, RecordDataImpl &Record,
+ unsigned TokSize = 0);
+
+ /// \brief Add SourceLocation information the specified record.
+ void AddLocToRecord(SourceLocation Loc, RecordDataImpl &Record,
+ const SourceManager *SM,
+ unsigned TokSize = 0) {
+ AddLocToRecord(Loc, SM, SM ? SM->getPresumedLoc(Loc) : PresumedLoc(),
+ Record, TokSize);
+ }
+
+ /// \brief Add CharSourceRange information the specified record.
+ void AddCharSourceRangeToRecord(CharSourceRange R, RecordDataImpl &Record,
+ const SourceManager &SM);
+
+ /// \brief Language options, which can differ from one clone of this client
+ /// to another.
+ const LangOptions *LangOpts;
+
+ /// \brief Whether this is the original instance (rather than one of its
+ /// clones), responsible for writing the file at the end.
+ bool OriginalInstance;
+
+ /// \brief Whether this instance should aggregate diagnostics that are
+ /// generated from child processes.
+ bool MergeChildRecords;
+
+ /// \brief State that is shared among the various clones of this diagnostic
+ /// consumer.
+ struct SharedState : RefCountedBase<SharedState> {
+ SharedState(StringRef File, DiagnosticOptions *Diags)
+ : DiagOpts(Diags), Stream(Buffer), OutputFile(File.str()),
+ EmittedAnyDiagBlocks(false) {}
+
+ /// \brief Diagnostic options.
+ IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts;
+
+ /// \brief The byte buffer for the serialized content.
+ SmallString<1024> Buffer;
+
+ /// \brief The BitStreamWriter for the serialized diagnostics.
+ llvm::BitstreamWriter Stream;
+
+ /// \brief The name of the diagnostics file.
+ std::string OutputFile;
+
+ /// \brief The set of constructed record abbreviations.
+ AbbreviationMap Abbrevs;
+
+ /// \brief A utility buffer for constructing record content.
+ RecordData Record;
+
+ /// \brief A text buffer for rendering diagnostic text.
+ SmallString<256> diagBuf;
+
+ /// \brief The collection of diagnostic categories used.
+ llvm::DenseSet<unsigned> Categories;
+
+ /// \brief The collection of files used.
+ llvm::DenseMap<const char *, unsigned> Files;
+
+ typedef llvm::DenseMap<const void *, std::pair<unsigned, StringRef> >
+ DiagFlagsTy;
+
+ /// \brief Map for uniquing strings.
+ DiagFlagsTy DiagFlags;
+
+ /// \brief Whether we have already started emission of any DIAG blocks. Once
+ /// this becomes \c true, we never close a DIAG block until we know that we're
+ /// starting another one or we're done.
+ bool EmittedAnyDiagBlocks;
+
+ /// \brief Engine for emitting diagnostics about the diagnostics.
+ std::unique_ptr<DiagnosticsEngine> MetaDiagnostics;
+ };
+
+ /// \brief State shared among the various clones of this diagnostic consumer.
+ IntrusiveRefCntPtr<SharedState> State;
+};
+} // end anonymous namespace
+
+namespace clang {
+namespace serialized_diags {
+std::unique_ptr<DiagnosticConsumer>
+create(StringRef OutputFile, DiagnosticOptions *Diags, bool MergeChildRecords) {
+ return llvm::make_unique<SDiagsWriter>(OutputFile, Diags, MergeChildRecords);
+}
+
+} // end namespace serialized_diags
+} // end namespace clang
+
+//===----------------------------------------------------------------------===//
+// Serialization methods.
+//===----------------------------------------------------------------------===//
+
+/// \brief Emits a block ID in the BLOCKINFO block.
+static void EmitBlockID(unsigned ID, const char *Name,
+ llvm::BitstreamWriter &Stream,
+ RecordDataImpl &Record) {
+ Record.clear();
+ Record.push_back(ID);
+ Stream.EmitRecord(llvm::bitc::BLOCKINFO_CODE_SETBID, Record);
+
+ // Emit the block name if present.
+ if (!Name || Name[0] == 0)
+ return;
+
+ Record.clear();
+
+ while (*Name)
+ Record.push_back(*Name++);
+
+ Stream.EmitRecord(llvm::bitc::BLOCKINFO_CODE_BLOCKNAME, Record);
+}
+
+/// \brief Emits a record ID in the BLOCKINFO block.
+static void EmitRecordID(unsigned ID, const char *Name,
+ llvm::BitstreamWriter &Stream,
+ RecordDataImpl &Record){
+ Record.clear();
+ Record.push_back(ID);
+
+ while (*Name)
+ Record.push_back(*Name++);
+
+ Stream.EmitRecord(llvm::bitc::BLOCKINFO_CODE_SETRECORDNAME, Record);
+}
+
+void SDiagsWriter::AddLocToRecord(SourceLocation Loc,
+ const SourceManager *SM,
+ PresumedLoc PLoc,
+ RecordDataImpl &Record,
+ unsigned TokSize) {
+ if (PLoc.isInvalid()) {
+ // Emit a "sentinel" location.
+ Record.push_back((unsigned)0); // File.
+ Record.push_back((unsigned)0); // Line.
+ Record.push_back((unsigned)0); // Column.
+ Record.push_back((unsigned)0); // Offset.
+ return;
+ }
+
+ Record.push_back(getEmitFile(PLoc.getFilename()));
+ Record.push_back(PLoc.getLine());
+ Record.push_back(PLoc.getColumn()+TokSize);
+ Record.push_back(SM->getFileOffset(Loc));
+}
+
+void SDiagsWriter::AddCharSourceRangeToRecord(CharSourceRange Range,
+ RecordDataImpl &Record,
+ const SourceManager &SM) {
+ AddLocToRecord(Range.getBegin(), Record, &SM);
+ unsigned TokSize = 0;
+ if (Range.isTokenRange())
+ TokSize = Lexer::MeasureTokenLength(Range.getEnd(),
+ SM, *LangOpts);
+
+ AddLocToRecord(Range.getEnd(), Record, &SM, TokSize);
+}
+
+unsigned SDiagsWriter::getEmitFile(const char *FileName){
+ if (!FileName)
+ return 0;
+
+ unsigned &entry = State->Files[FileName];
+ if (entry)
+ return entry;
+
+ // Lazily generate the record for the file.
+ entry = State->Files.size();
+ RecordData Record;
+ Record.push_back(RECORD_FILENAME);
+ Record.push_back(entry);
+ Record.push_back(0); // For legacy.
+ Record.push_back(0); // For legacy.
+ StringRef Name(FileName);
+ Record.push_back(Name.size());
+ State->Stream.EmitRecordWithBlob(State->Abbrevs.get(RECORD_FILENAME), Record,
+ Name);
+
+ return entry;
+}
+
+void SDiagsWriter::EmitCharSourceRange(CharSourceRange R,
+ const SourceManager &SM) {
+ State->Record.clear();
+ State->Record.push_back(RECORD_SOURCE_RANGE);
+ AddCharSourceRangeToRecord(R, State->Record, SM);
+ State->Stream.EmitRecordWithAbbrev(State->Abbrevs.get(RECORD_SOURCE_RANGE),
+ State->Record);
+}
+
+/// \brief Emits the preamble of the diagnostics file.
+void SDiagsWriter::EmitPreamble() {
+ // Emit the file header.
+ State->Stream.Emit((unsigned)'D', 8);
+ State->Stream.Emit((unsigned)'I', 8);
+ State->Stream.Emit((unsigned)'A', 8);
+ State->Stream.Emit((unsigned)'G', 8);
+
+ EmitBlockInfoBlock();
+ EmitMetaBlock();
+}
+
+static void AddSourceLocationAbbrev(llvm::BitCodeAbbrev *Abbrev) {
+ using namespace llvm;
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 10)); // File ID.
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // Line.
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // Column.
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // Offset;
+}
+
+static void AddRangeLocationAbbrev(llvm::BitCodeAbbrev *Abbrev) {
+ AddSourceLocationAbbrev(Abbrev);
+ AddSourceLocationAbbrev(Abbrev);
+}
+
+void SDiagsWriter::EmitBlockInfoBlock() {
+ State->Stream.EnterBlockInfoBlock(3);
+
+ using namespace llvm;
+ llvm::BitstreamWriter &Stream = State->Stream;
+ RecordData &Record = State->Record;
+ AbbreviationMap &Abbrevs = State->Abbrevs;
+
+ // ==---------------------------------------------------------------------==//
+ // The subsequent records and Abbrevs are for the "Meta" block.
+ // ==---------------------------------------------------------------------==//
+
+ EmitBlockID(BLOCK_META, "Meta", Stream, Record);
+ EmitRecordID(RECORD_VERSION, "Version", Stream, Record);
+ BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(RECORD_VERSION));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
+ Abbrevs.set(RECORD_VERSION, Stream.EmitBlockInfoAbbrev(BLOCK_META, Abbrev));
+
+ // ==---------------------------------------------------------------------==//
+ // The subsequent records and Abbrevs are for the "Diagnostic" block.
+ // ==---------------------------------------------------------------------==//
+
+ EmitBlockID(BLOCK_DIAG, "Diag", Stream, Record);
+ EmitRecordID(RECORD_DIAG, "DiagInfo", Stream, Record);
+ EmitRecordID(RECORD_SOURCE_RANGE, "SrcRange", Stream, Record);
+ EmitRecordID(RECORD_CATEGORY, "CatName", Stream, Record);
+ EmitRecordID(RECORD_DIAG_FLAG, "DiagFlag", Stream, Record);
+ EmitRecordID(RECORD_FILENAME, "FileName", Stream, Record);
+ EmitRecordID(RECORD_FIXIT, "FixIt", Stream, Record);
+
+ // Emit abbreviation for RECORD_DIAG.
+ Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(RECORD_DIAG));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); // Diag level.
+ AddSourceLocationAbbrev(Abbrev);
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 10)); // Category.
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 10)); // Mapped Diag ID.
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // Text size.
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Diagnostc text.
+ Abbrevs.set(RECORD_DIAG, Stream.EmitBlockInfoAbbrev(BLOCK_DIAG, Abbrev));
+
+ // Emit abbrevation for RECORD_CATEGORY.
+ Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(RECORD_CATEGORY));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // Category ID.
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // Text size.
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Category text.
+ Abbrevs.set(RECORD_CATEGORY, Stream.EmitBlockInfoAbbrev(BLOCK_DIAG, Abbrev));
+
+ // Emit abbrevation for RECORD_SOURCE_RANGE.
+ Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(RECORD_SOURCE_RANGE));
+ AddRangeLocationAbbrev(Abbrev);
+ Abbrevs.set(RECORD_SOURCE_RANGE,
+ Stream.EmitBlockInfoAbbrev(BLOCK_DIAG, Abbrev));
+
+ // Emit the abbreviation for RECORD_DIAG_FLAG.
+ Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(RECORD_DIAG_FLAG));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 10)); // Mapped Diag ID.
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // Text size.
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Flag name text.
+ Abbrevs.set(RECORD_DIAG_FLAG, Stream.EmitBlockInfoAbbrev(BLOCK_DIAG,
+ Abbrev));
+
+ // Emit the abbreviation for RECORD_FILENAME.
+ Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(RECORD_FILENAME));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 10)); // Mapped file ID.
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // Size.
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // Modifcation time.
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // Text size.
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // File name text.
+ Abbrevs.set(RECORD_FILENAME, Stream.EmitBlockInfoAbbrev(BLOCK_DIAG,
+ Abbrev));
+
+ // Emit the abbreviation for RECORD_FIXIT.
+ Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(RECORD_FIXIT));
+ AddRangeLocationAbbrev(Abbrev);
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // Text size.
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // FixIt text.
+ Abbrevs.set(RECORD_FIXIT, Stream.EmitBlockInfoAbbrev(BLOCK_DIAG,
+ Abbrev));
+
+ Stream.ExitBlock();
+}
+
+void SDiagsWriter::EmitMetaBlock() {
+ llvm::BitstreamWriter &Stream = State->Stream;
+ RecordData &Record = State->Record;
+ AbbreviationMap &Abbrevs = State->Abbrevs;
+
+ Stream.EnterSubblock(BLOCK_META, 3);
+ Record.clear();
+ Record.push_back(RECORD_VERSION);
+ Record.push_back(VersionNumber);
+ Stream.EmitRecordWithAbbrev(Abbrevs.get(RECORD_VERSION), Record);
+ Stream.ExitBlock();
+}
+
+unsigned SDiagsWriter::getEmitCategory(unsigned int category) {
+ if (!State->Categories.insert(category).second)
+ return category;
+
+ // We use a local version of 'Record' so that we can be generating
+ // another record when we lazily generate one for the category entry.
+ RecordData Record;
+ Record.push_back(RECORD_CATEGORY);
+ Record.push_back(category);
+ StringRef catName = DiagnosticIDs::getCategoryNameFromID(category);
+ Record.push_back(catName.size());
+ State->Stream.EmitRecordWithBlob(State->Abbrevs.get(RECORD_CATEGORY), Record,
+ catName);
+
+ return category;
+}
+
+unsigned SDiagsWriter::getEmitDiagnosticFlag(DiagnosticsEngine::Level DiagLevel,
+ unsigned DiagID) {
+ if (DiagLevel == DiagnosticsEngine::Note)
+ return 0; // No flag for notes.
+
+ StringRef FlagName = DiagnosticIDs::getWarningOptionForDiag(DiagID);
+ return getEmitDiagnosticFlag(FlagName);
+}
+
+unsigned SDiagsWriter::getEmitDiagnosticFlag(StringRef FlagName) {
+ if (FlagName.empty())
+ return 0;
+
+ // Here we assume that FlagName points to static data whose pointer
+ // value is fixed. This allows us to unique by diagnostic groups.
+ const void *data = FlagName.data();
+ std::pair<unsigned, StringRef> &entry = State->DiagFlags[data];
+ if (entry.first == 0) {
+ entry.first = State->DiagFlags.size();
+ entry.second = FlagName;
+
+ // Lazily emit the string in a separate record.
+ RecordData Record;
+ Record.push_back(RECORD_DIAG_FLAG);
+ Record.push_back(entry.first);
+ Record.push_back(FlagName.size());
+ State->Stream.EmitRecordWithBlob(State->Abbrevs.get(RECORD_DIAG_FLAG),
+ Record, FlagName);
+ }
+
+ return entry.first;
+}
+
+void SDiagsWriter::HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,
+ const Diagnostic &Info) {
+ // Enter the block for a non-note diagnostic immediately, rather than waiting
+ // for beginDiagnostic, in case associated notes are emitted before we get
+ // there.
+ if (DiagLevel != DiagnosticsEngine::Note) {
+ if (State->EmittedAnyDiagBlocks)
+ ExitDiagBlock();
+
+ EnterDiagBlock();
+ State->EmittedAnyDiagBlocks = true;
+ }
+
+ // Compute the diagnostic text.
+ State->diagBuf.clear();
+ Info.FormatDiagnostic(State->diagBuf);
+
+ if (Info.getLocation().isInvalid()) {
+ // Special-case diagnostics with no location. We may not have entered a
+ // source file in this case, so we can't use the normal DiagnosticsRenderer
+ // machinery.
+
+ // Make sure we bracket all notes as "sub-diagnostics". This matches
+ // the behavior in SDiagsRenderer::emitDiagnostic().
+ if (DiagLevel == DiagnosticsEngine::Note)
+ EnterDiagBlock();
+
+ EmitDiagnosticMessage(SourceLocation(), PresumedLoc(), DiagLevel,
+ State->diagBuf, nullptr, &Info);
+
+ if (DiagLevel == DiagnosticsEngine::Note)
+ ExitDiagBlock();
+
+ return;
+ }
+
+ assert(Info.hasSourceManager() && LangOpts &&
+ "Unexpected diagnostic with valid location outside of a source file");
+ SDiagsRenderer Renderer(*this, *LangOpts, &*State->DiagOpts);
+ Renderer.emitDiagnostic(Info.getLocation(), DiagLevel,
+ State->diagBuf,
+ Info.getRanges(),
+ Info.getFixItHints(),
+ &Info.getSourceManager(),
+ &Info);
+}
+
+static serialized_diags::Level getStableLevel(DiagnosticsEngine::Level Level) {
+ switch (Level) {
+#define CASE(X) case DiagnosticsEngine::X: return serialized_diags::X;
+ CASE(Ignored)
+ CASE(Note)
+ CASE(Remark)
+ CASE(Warning)
+ CASE(Error)
+ CASE(Fatal)
+#undef CASE
+ }
+
+ llvm_unreachable("invalid diagnostic level");
+}
+
+void SDiagsWriter::EmitDiagnosticMessage(SourceLocation Loc,
+ PresumedLoc PLoc,
+ DiagnosticsEngine::Level Level,
+ StringRef Message,
+ const SourceManager *SM,
+ DiagOrStoredDiag D) {
+ llvm::BitstreamWriter &Stream = State->Stream;
+ RecordData &Record = State->Record;
+ AbbreviationMap &Abbrevs = State->Abbrevs;
+
+ // Emit the RECORD_DIAG record.
+ Record.clear();
+ Record.push_back(RECORD_DIAG);
+ Record.push_back(getStableLevel(Level));
+ AddLocToRecord(Loc, SM, PLoc, Record);
+
+ if (const Diagnostic *Info = D.dyn_cast<const Diagnostic*>()) {
+ // Emit the category string lazily and get the category ID.
+ unsigned DiagID = DiagnosticIDs::getCategoryNumberForDiag(Info->getID());
+ Record.push_back(getEmitCategory(DiagID));
+ // Emit the diagnostic flag string lazily and get the mapped ID.
+ Record.push_back(getEmitDiagnosticFlag(Level, Info->getID()));
+ } else {
+ Record.push_back(getEmitCategory());
+ Record.push_back(getEmitDiagnosticFlag(Level));
+ }
+
+ Record.push_back(Message.size());
+ Stream.EmitRecordWithBlob(Abbrevs.get(RECORD_DIAG), Record, Message);
+}
+
+void
+SDiagsRenderer::emitDiagnosticMessage(SourceLocation Loc,
+ PresumedLoc PLoc,
+ DiagnosticsEngine::Level Level,
+ StringRef Message,
+ ArrayRef<clang::CharSourceRange> Ranges,
+ const SourceManager *SM,
+ DiagOrStoredDiag D) {
+ Writer.EmitDiagnosticMessage(Loc, PLoc, Level, Message, SM, D);
+}
+
+void SDiagsWriter::EnterDiagBlock() {
+ State->Stream.EnterSubblock(BLOCK_DIAG, 4);
+}
+
+void SDiagsWriter::ExitDiagBlock() {
+ State->Stream.ExitBlock();
+}
+
+void SDiagsRenderer::beginDiagnostic(DiagOrStoredDiag D,
+ DiagnosticsEngine::Level Level) {
+ if (Level == DiagnosticsEngine::Note)
+ Writer.EnterDiagBlock();
+}
+
+void SDiagsRenderer::endDiagnostic(DiagOrStoredDiag D,
+ DiagnosticsEngine::Level Level) {
+ // Only end note diagnostics here, because we can't be sure when we've seen
+ // the last note associated with a non-note diagnostic.
+ if (Level == DiagnosticsEngine::Note)
+ Writer.ExitDiagBlock();
+}
+
+void SDiagsWriter::EmitCodeContext(SmallVectorImpl<CharSourceRange> &Ranges,
+ ArrayRef<FixItHint> Hints,
+ const SourceManager &SM) {
+ llvm::BitstreamWriter &Stream = State->Stream;
+ RecordData &Record = State->Record;
+ AbbreviationMap &Abbrevs = State->Abbrevs;
+
+ // Emit Source Ranges.
+ for (ArrayRef<CharSourceRange>::iterator I = Ranges.begin(), E = Ranges.end();
+ I != E; ++I)
+ if (I->isValid())
+ EmitCharSourceRange(*I, SM);
+
+ // Emit FixIts.
+ for (ArrayRef<FixItHint>::iterator I = Hints.begin(), E = Hints.end();
+ I != E; ++I) {
+ const FixItHint &Fix = *I;
+ if (Fix.isNull())
+ continue;
+ Record.clear();
+ Record.push_back(RECORD_FIXIT);
+ AddCharSourceRangeToRecord(Fix.RemoveRange, Record, SM);
+ Record.push_back(Fix.CodeToInsert.size());
+ Stream.EmitRecordWithBlob(Abbrevs.get(RECORD_FIXIT), Record,
+ Fix.CodeToInsert);
+ }
+}
+
+void SDiagsRenderer::emitCodeContext(SourceLocation Loc,
+ DiagnosticsEngine::Level Level,
+ SmallVectorImpl<CharSourceRange> &Ranges,
+ ArrayRef<FixItHint> Hints,
+ const SourceManager &SM) {
+ Writer.EmitCodeContext(Ranges, Hints, SM);
+}
+
+void SDiagsRenderer::emitNote(SourceLocation Loc, StringRef Message,
+ const SourceManager *SM) {
+ Writer.EnterDiagBlock();
+ PresumedLoc PLoc = SM ? SM->getPresumedLoc(Loc) : PresumedLoc();
+ Writer.EmitDiagnosticMessage(Loc, PLoc, DiagnosticsEngine::Note,
+ Message, SM, DiagOrStoredDiag());
+ Writer.ExitDiagBlock();
+}
+
+DiagnosticsEngine *SDiagsWriter::getMetaDiags() {
+ // FIXME: It's slightly absurd to create a new diagnostics engine here, but
+ // the other options that are available today are worse:
+ //
+ // 1. Teach DiagnosticsConsumers to emit diagnostics to the engine they are a
+ // part of. The DiagnosticsEngine would need to know not to send
+ // diagnostics back to the consumer that failed. This would require us to
+ // rework ChainedDiagnosticsConsumer and teach the engine about multiple
+ // consumers, which is difficult today because most APIs interface with
+ // consumers rather than the engine itself.
+ //
+ // 2. Pass a DiagnosticsEngine to SDiagsWriter on creation - this would need
+ // to be distinct from the engine the writer was being added to and would
+ // normally not be used.
+ if (!State->MetaDiagnostics) {
+ IntrusiveRefCntPtr<DiagnosticIDs> IDs(new DiagnosticIDs());
+ auto Client =
+ new TextDiagnosticPrinter(llvm::errs(), State->DiagOpts.get());
+ State->MetaDiagnostics = llvm::make_unique<DiagnosticsEngine>(
+ IDs, State->DiagOpts.get(), Client);
+ }
+ return State->MetaDiagnostics.get();
+}
+
+void SDiagsWriter::RemoveOldDiagnostics() {
+ if (!llvm::sys::fs::remove(State->OutputFile))
+ return;
+
+ getMetaDiags()->Report(diag::warn_fe_serialized_diag_merge_failure);
+ // Disable merging child records, as whatever is in this file may be
+ // misleading.
+ MergeChildRecords = false;
+}
+
+void SDiagsWriter::finish() {
+ // The original instance is responsible for writing the file.
+ if (!OriginalInstance)
+ return;
+
+ // Finish off any diagnostic we were in the process of emitting.
+ if (State->EmittedAnyDiagBlocks)
+ ExitDiagBlock();
+
+ if (MergeChildRecords) {
+ if (!State->EmittedAnyDiagBlocks)
+ // We have no diagnostics of our own, so we can just leave the child
+ // process' output alone
+ return;
+
+ if (llvm::sys::fs::exists(State->OutputFile))
+ if (SDiagsMerger(*this).mergeRecordsFromFile(State->OutputFile.c_str()))
+ getMetaDiags()->Report(diag::warn_fe_serialized_diag_merge_failure);
+ }
+
+ std::error_code EC;
+ auto OS = llvm::make_unique<llvm::raw_fd_ostream>(State->OutputFile.c_str(),
+ EC, llvm::sys::fs::F_None);
+ if (EC) {
+ getMetaDiags()->Report(diag::warn_fe_serialized_diag_failure)
+ << State->OutputFile << EC.message();
+ return;
+ }
+
+ // Write the generated bitstream to "Out".
+ OS->write((char *)&State->Buffer.front(), State->Buffer.size());
+ OS->flush();
+}
+
+std::error_code SDiagsMerger::visitStartOfDiagnostic() {
+ Writer.EnterDiagBlock();
+ return std::error_code();
+}
+
+std::error_code SDiagsMerger::visitEndOfDiagnostic() {
+ Writer.ExitDiagBlock();
+ return std::error_code();
+}
+
+std::error_code
+SDiagsMerger::visitSourceRangeRecord(const serialized_diags::Location &Start,
+ const serialized_diags::Location &End) {
+ RecordData Record;
+ Record.push_back(RECORD_SOURCE_RANGE);
+ Record.push_back(FileLookup[Start.FileID]);
+ Record.push_back(Start.Line);
+ Record.push_back(Start.Col);
+ Record.push_back(Start.Offset);
+ Record.push_back(FileLookup[End.FileID]);
+ Record.push_back(End.Line);
+ Record.push_back(End.Col);
+ Record.push_back(End.Offset);
+
+ Writer.State->Stream.EmitRecordWithAbbrev(
+ Writer.State->Abbrevs.get(RECORD_SOURCE_RANGE), Record);
+ return std::error_code();
+}
+
+std::error_code SDiagsMerger::visitDiagnosticRecord(
+ unsigned Severity, const serialized_diags::Location &Location,
+ unsigned Category, unsigned Flag, StringRef Message) {
+ RecordData MergedRecord;
+ MergedRecord.push_back(RECORD_DIAG);
+ MergedRecord.push_back(Severity);
+ MergedRecord.push_back(FileLookup[Location.FileID]);
+ MergedRecord.push_back(Location.Line);
+ MergedRecord.push_back(Location.Col);
+ MergedRecord.push_back(Location.Offset);
+ MergedRecord.push_back(CategoryLookup[Category]);
+ MergedRecord.push_back(Flag ? DiagFlagLookup[Flag] : 0);
+ MergedRecord.push_back(Message.size());
+
+ Writer.State->Stream.EmitRecordWithBlob(
+ Writer.State->Abbrevs.get(RECORD_DIAG), MergedRecord, Message);
+ return std::error_code();
+}
+
+std::error_code
+SDiagsMerger::visitFixitRecord(const serialized_diags::Location &Start,
+ const serialized_diags::Location &End,
+ StringRef Text) {
+ RecordData Record;
+ Record.push_back(RECORD_FIXIT);
+ Record.push_back(FileLookup[Start.FileID]);
+ Record.push_back(Start.Line);
+ Record.push_back(Start.Col);
+ Record.push_back(Start.Offset);
+ Record.push_back(FileLookup[End.FileID]);
+ Record.push_back(End.Line);
+ Record.push_back(End.Col);
+ Record.push_back(End.Offset);
+ Record.push_back(Text.size());
+
+ Writer.State->Stream.EmitRecordWithBlob(
+ Writer.State->Abbrevs.get(RECORD_FIXIT), Record, Text);
+ return std::error_code();
+}
+
+std::error_code SDiagsMerger::visitFilenameRecord(unsigned ID, unsigned Size,
+ unsigned Timestamp,
+ StringRef Name) {
+ FileLookup[ID] = Writer.getEmitFile(Name.str().c_str());
+ return std::error_code();
+}
+
+std::error_code SDiagsMerger::visitCategoryRecord(unsigned ID, StringRef Name) {
+ CategoryLookup[ID] = Writer.getEmitCategory(ID);
+ return std::error_code();
+}
+
+std::error_code SDiagsMerger::visitDiagFlagRecord(unsigned ID, StringRef Name) {
+ DiagFlagLookup[ID] = Writer.getEmitDiagnosticFlag(Name);
+ return std::error_code();
+}
diff --git a/contrib/llvm/tools/clang/lib/Frontend/SerializedDiagnosticReader.cpp b/contrib/llvm/tools/clang/lib/Frontend/SerializedDiagnosticReader.cpp
new file mode 100644
index 0000000..0ebbd22
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Frontend/SerializedDiagnosticReader.cpp
@@ -0,0 +1,295 @@
+//===--- SerializedDiagnosticReader.cpp - Reads diagnostics ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Frontend/SerializedDiagnosticReader.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Frontend/SerializedDiagnostics.h"
+#include "llvm/Support/ManagedStatic.h"
+#include "llvm/Support/MemoryBuffer.h"
+
+using namespace clang;
+using namespace clang::serialized_diags;
+
+std::error_code SerializedDiagnosticReader::readDiagnostics(StringRef File) {
+ // Open the diagnostics file.
+ FileSystemOptions FO;
+ FileManager FileMgr(FO);
+
+ auto Buffer = FileMgr.getBufferForFile(File);
+ if (!Buffer)
+ return SDError::CouldNotLoad;
+
+ llvm::BitstreamReader StreamFile;
+ StreamFile.init((const unsigned char *)(*Buffer)->getBufferStart(),
+ (const unsigned char *)(*Buffer)->getBufferEnd());
+
+ llvm::BitstreamCursor Stream(StreamFile);
+
+ // Sniff for the signature.
+ if (Stream.Read(8) != 'D' ||
+ Stream.Read(8) != 'I' ||
+ Stream.Read(8) != 'A' ||
+ Stream.Read(8) != 'G')
+ return SDError::InvalidSignature;
+
+ // Read the top level blocks.
+ while (!Stream.AtEndOfStream()) {
+ if (Stream.ReadCode() != llvm::bitc::ENTER_SUBBLOCK)
+ return SDError::InvalidDiagnostics;
+
+ std::error_code EC;
+ switch (Stream.ReadSubBlockID()) {
+ case llvm::bitc::BLOCKINFO_BLOCK_ID:
+ if (Stream.ReadBlockInfoBlock())
+ return SDError::MalformedBlockInfoBlock;
+ continue;
+ case BLOCK_META:
+ if ((EC = readMetaBlock(Stream)))
+ return EC;
+ continue;
+ case BLOCK_DIAG:
+ if ((EC = readDiagnosticBlock(Stream)))
+ return EC;
+ continue;
+ default:
+ if (!Stream.SkipBlock())
+ return SDError::MalformedTopLevelBlock;
+ continue;
+ }
+ }
+ return std::error_code();
+}
+
+enum class SerializedDiagnosticReader::Cursor {
+ Record = 1,
+ BlockEnd,
+ BlockBegin
+};
+
+llvm::ErrorOr<SerializedDiagnosticReader::Cursor>
+SerializedDiagnosticReader::skipUntilRecordOrBlock(
+ llvm::BitstreamCursor &Stream, unsigned &BlockOrRecordID) {
+ BlockOrRecordID = 0;
+
+ while (!Stream.AtEndOfStream()) {
+ unsigned Code = Stream.ReadCode();
+
+ switch ((llvm::bitc::FixedAbbrevIDs)Code) {
+ case llvm::bitc::ENTER_SUBBLOCK:
+ BlockOrRecordID = Stream.ReadSubBlockID();
+ return Cursor::BlockBegin;
+
+ case llvm::bitc::END_BLOCK:
+ if (Stream.ReadBlockEnd())
+ return SDError::InvalidDiagnostics;
+ return Cursor::BlockEnd;
+
+ case llvm::bitc::DEFINE_ABBREV:
+ Stream.ReadAbbrevRecord();
+ continue;
+
+ case llvm::bitc::UNABBREV_RECORD:
+ return SDError::UnsupportedConstruct;
+
+ default:
+ // We found a record.
+ BlockOrRecordID = Code;
+ return Cursor::Record;
+ }
+ }
+
+ return SDError::InvalidDiagnostics;
+}
+
+std::error_code
+SerializedDiagnosticReader::readMetaBlock(llvm::BitstreamCursor &Stream) {
+ if (Stream.EnterSubBlock(clang::serialized_diags::BLOCK_META))
+ return SDError::MalformedMetadataBlock;
+
+ bool VersionChecked = false;
+
+ while (true) {
+ unsigned BlockOrCode = 0;
+ llvm::ErrorOr<Cursor> Res = skipUntilRecordOrBlock(Stream, BlockOrCode);
+ if (!Res)
+ Res.getError();
+
+ switch (Res.get()) {
+ case Cursor::Record:
+ break;
+ case Cursor::BlockBegin:
+ if (Stream.SkipBlock())
+ return SDError::MalformedMetadataBlock;
+ case Cursor::BlockEnd:
+ if (!VersionChecked)
+ return SDError::MissingVersion;
+ return std::error_code();
+ }
+
+ SmallVector<uint64_t, 1> Record;
+ unsigned RecordID = Stream.readRecord(BlockOrCode, Record);
+
+ if (RecordID == RECORD_VERSION) {
+ if (Record.size() < 1)
+ return SDError::MissingVersion;
+ if (Record[0] > VersionNumber)
+ return SDError::VersionMismatch;
+ VersionChecked = true;
+ }
+ }
+}
+
+std::error_code
+SerializedDiagnosticReader::readDiagnosticBlock(llvm::BitstreamCursor &Stream) {
+ if (Stream.EnterSubBlock(clang::serialized_diags::BLOCK_DIAG))
+ return SDError::MalformedDiagnosticBlock;
+
+ std::error_code EC;
+ if ((EC = visitStartOfDiagnostic()))
+ return EC;
+
+ SmallVector<uint64_t, 16> Record;
+ while (true) {
+ unsigned BlockOrCode = 0;
+ llvm::ErrorOr<Cursor> Res = skipUntilRecordOrBlock(Stream, BlockOrCode);
+ if (!Res)
+ Res.getError();
+
+ switch (Res.get()) {
+ case Cursor::BlockBegin:
+ // The only blocks we care about are subdiagnostics.
+ if (BlockOrCode == serialized_diags::BLOCK_DIAG) {
+ if ((EC = readDiagnosticBlock(Stream)))
+ return EC;
+ } else if (!Stream.SkipBlock())
+ return SDError::MalformedSubBlock;
+ continue;
+ case Cursor::BlockEnd:
+ if ((EC = visitEndOfDiagnostic()))
+ return EC;
+ return std::error_code();
+ case Cursor::Record:
+ break;
+ }
+
+ // Read the record.
+ Record.clear();
+ StringRef Blob;
+ unsigned RecID = Stream.readRecord(BlockOrCode, Record, &Blob);
+
+ if (RecID < serialized_diags::RECORD_FIRST ||
+ RecID > serialized_diags::RECORD_LAST)
+ continue;
+
+ switch ((RecordIDs)RecID) {
+ case RECORD_CATEGORY:
+ // A category has ID and name size.
+ if (Record.size() != 2)
+ return SDError::MalformedDiagnosticRecord;
+ if ((EC = visitCategoryRecord(Record[0], Blob)))
+ return EC;
+ continue;
+ case RECORD_DIAG:
+ // A diagnostic has severity, location (4), category, flag, and message
+ // size.
+ if (Record.size() != 8)
+ return SDError::MalformedDiagnosticRecord;
+ if ((EC = visitDiagnosticRecord(
+ Record[0], Location(Record[1], Record[2], Record[3], Record[4]),
+ Record[5], Record[6], Blob)))
+ return EC;
+ continue;
+ case RECORD_DIAG_FLAG:
+ // A diagnostic flag has ID and name size.
+ if (Record.size() != 2)
+ return SDError::MalformedDiagnosticRecord;
+ if ((EC = visitDiagFlagRecord(Record[0], Blob)))
+ return EC;
+ continue;
+ case RECORD_FILENAME:
+ // A filename has ID, size, timestamp, and name size. The size and
+ // timestamp are legacy fields that are always zero these days.
+ if (Record.size() != 4)
+ return SDError::MalformedDiagnosticRecord;
+ if ((EC = visitFilenameRecord(Record[0], Record[1], Record[2], Blob)))
+ return EC;
+ continue;
+ case RECORD_FIXIT:
+ // A fixit has two locations (4 each) and message size.
+ if (Record.size() != 9)
+ return SDError::MalformedDiagnosticRecord;
+ if ((EC = visitFixitRecord(
+ Location(Record[0], Record[1], Record[2], Record[3]),
+ Location(Record[4], Record[5], Record[6], Record[7]), Blob)))
+ return EC;
+ continue;
+ case RECORD_SOURCE_RANGE:
+ // A source range is two locations (4 each).
+ if (Record.size() != 8)
+ return SDError::MalformedDiagnosticRecord;
+ if ((EC = visitSourceRangeRecord(
+ Location(Record[0], Record[1], Record[2], Record[3]),
+ Location(Record[4], Record[5], Record[6], Record[7]))))
+ return EC;
+ continue;
+ case RECORD_VERSION:
+ // A version is just a number.
+ if (Record.size() != 1)
+ return SDError::MalformedDiagnosticRecord;
+ if ((EC = visitVersionRecord(Record[0])))
+ return EC;
+ continue;
+ }
+ }
+}
+
+namespace {
+class SDErrorCategoryType final : public std::error_category {
+ const char *name() const LLVM_NOEXCEPT override {
+ return "clang.serialized_diags";
+ }
+ std::string message(int IE) const override {
+ SDError E = static_cast<SDError>(IE);
+ switch (E) {
+ case SDError::CouldNotLoad:
+ return "Failed to open diagnostics file";
+ case SDError::InvalidSignature:
+ return "Invalid diagnostics signature";
+ case SDError::InvalidDiagnostics:
+ return "Parse error reading diagnostics";
+ case SDError::MalformedTopLevelBlock:
+ return "Malformed block at top-level of diagnostics";
+ case SDError::MalformedSubBlock:
+ return "Malformed sub-block in a diagnostic";
+ case SDError::MalformedBlockInfoBlock:
+ return "Malformed BlockInfo block";
+ case SDError::MalformedMetadataBlock:
+ return "Malformed Metadata block";
+ case SDError::MalformedDiagnosticBlock:
+ return "Malformed Diagnostic block";
+ case SDError::MalformedDiagnosticRecord:
+ return "Malformed Diagnostic record";
+ case SDError::MissingVersion:
+ return "No version provided in diagnostics";
+ case SDError::VersionMismatch:
+ return "Unsupported diagnostics version";
+ case SDError::UnsupportedConstruct:
+ return "Bitcode constructs that are not supported in diagnostics appear";
+ case SDError::HandlerFailed:
+ return "Generic error occurred while handling a record";
+ }
+ llvm_unreachable("Unknown error type!");
+ }
+};
+}
+
+static llvm::ManagedStatic<SDErrorCategoryType> ErrorCategory;
+const std::error_category &clang::serialized_diags::SDErrorCategory() {
+ return *ErrorCategory;
+}
diff --git a/contrib/llvm/tools/clang/lib/Frontend/TextDiagnostic.cpp b/contrib/llvm/tools/clang/lib/Frontend/TextDiagnostic.cpp
new file mode 100644
index 0000000..aaf17a9
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Frontend/TextDiagnostic.cpp
@@ -0,0 +1,1261 @@
+//===--- TextDiagnostic.cpp - Text Diagnostic Pretty-Printing -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Frontend/TextDiagnostic.h"
+#include "clang/Basic/CharInfo.h"
+#include "clang/Basic/DiagnosticOptions.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Lex/Lexer.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/ConvertUTF.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/Locale.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+
+using namespace clang;
+
+static const enum raw_ostream::Colors noteColor =
+ raw_ostream::BLACK;
+static const enum raw_ostream::Colors remarkColor =
+ raw_ostream::BLUE;
+static const enum raw_ostream::Colors fixitColor =
+ raw_ostream::GREEN;
+static const enum raw_ostream::Colors caretColor =
+ raw_ostream::GREEN;
+static const enum raw_ostream::Colors warningColor =
+ raw_ostream::MAGENTA;
+static const enum raw_ostream::Colors templateColor =
+ raw_ostream::CYAN;
+static const enum raw_ostream::Colors errorColor = raw_ostream::RED;
+static const enum raw_ostream::Colors fatalColor = raw_ostream::RED;
+// Used for changing only the bold attribute.
+static const enum raw_ostream::Colors savedColor =
+ raw_ostream::SAVEDCOLOR;
+
+/// \brief Add highlights to differences in template strings.
+static void applyTemplateHighlighting(raw_ostream &OS, StringRef Str,
+ bool &Normal, bool Bold) {
+ while (1) {
+ size_t Pos = Str.find(ToggleHighlight);
+ OS << Str.slice(0, Pos);
+ if (Pos == StringRef::npos)
+ break;
+
+ Str = Str.substr(Pos + 1);
+ if (Normal)
+ OS.changeColor(templateColor, true);
+ else {
+ OS.resetColor();
+ if (Bold)
+ OS.changeColor(savedColor, true);
+ }
+ Normal = !Normal;
+ }
+}
+
+/// \brief Number of spaces to indent when word-wrapping.
+const unsigned WordWrapIndentation = 6;
+
+static int bytesSincePreviousTabOrLineBegin(StringRef SourceLine, size_t i) {
+ int bytes = 0;
+ while (0<i) {
+ if (SourceLine[--i]=='\t')
+ break;
+ ++bytes;
+ }
+ return bytes;
+}
+
+/// \brief returns a printable representation of first item from input range
+///
+/// This function returns a printable representation of the next item in a line
+/// of source. If the next byte begins a valid and printable character, that
+/// character is returned along with 'true'.
+///
+/// Otherwise, if the next byte begins a valid, but unprintable character, a
+/// printable, escaped representation of the character is returned, along with
+/// 'false'. Otherwise a printable, escaped representation of the next byte
+/// is returned along with 'false'.
+///
+/// \note The index is updated to be used with a subsequent call to
+/// printableTextForNextCharacter.
+///
+/// \param SourceLine The line of source
+/// \param i Pointer to byte index,
+/// \param TabStop used to expand tabs
+/// \return pair(printable text, 'true' iff original text was printable)
+///
+static std::pair<SmallString<16>, bool>
+printableTextForNextCharacter(StringRef SourceLine, size_t *i,
+ unsigned TabStop) {
+ assert(i && "i must not be null");
+ assert(*i<SourceLine.size() && "must point to a valid index");
+
+ if (SourceLine[*i]=='\t') {
+ assert(0 < TabStop && TabStop <= DiagnosticOptions::MaxTabStop &&
+ "Invalid -ftabstop value");
+ unsigned col = bytesSincePreviousTabOrLineBegin(SourceLine, *i);
+ unsigned NumSpaces = TabStop - col%TabStop;
+ assert(0 < NumSpaces && NumSpaces <= TabStop
+ && "Invalid computation of space amt");
+ ++(*i);
+
+ SmallString<16> expandedTab;
+ expandedTab.assign(NumSpaces, ' ');
+ return std::make_pair(expandedTab, true);
+ }
+
+ unsigned char const *begin, *end;
+ begin = reinterpret_cast<unsigned char const *>(&*(SourceLine.begin() + *i));
+ end = begin + (SourceLine.size() - *i);
+
+ if (isLegalUTF8Sequence(begin, end)) {
+ UTF32 c;
+ UTF32 *cptr = &c;
+ unsigned char const *original_begin = begin;
+ unsigned char const *cp_end = begin+getNumBytesForUTF8(SourceLine[*i]);
+
+ ConversionResult res = ConvertUTF8toUTF32(&begin, cp_end, &cptr, cptr+1,
+ strictConversion);
+ (void)res;
+ assert(conversionOK==res);
+ assert(0 < begin-original_begin
+ && "we must be further along in the string now");
+ *i += begin-original_begin;
+
+ if (!llvm::sys::locale::isPrint(c)) {
+ // If next character is valid UTF-8, but not printable
+ SmallString<16> expandedCP("<U+>");
+ while (c) {
+ expandedCP.insert(expandedCP.begin()+3, llvm::hexdigit(c%16));
+ c/=16;
+ }
+ while (expandedCP.size() < 8)
+ expandedCP.insert(expandedCP.begin()+3, llvm::hexdigit(0));
+ return std::make_pair(expandedCP, false);
+ }
+
+ // If next character is valid UTF-8, and printable
+ return std::make_pair(SmallString<16>(original_begin, cp_end), true);
+
+ }
+
+ // If next byte is not valid UTF-8 (and therefore not printable)
+ SmallString<16> expandedByte("<XX>");
+ unsigned char byte = SourceLine[*i];
+ expandedByte[1] = llvm::hexdigit(byte / 16);
+ expandedByte[2] = llvm::hexdigit(byte % 16);
+ ++(*i);
+ return std::make_pair(expandedByte, false);
+}
+
+static void expandTabs(std::string &SourceLine, unsigned TabStop) {
+ size_t i = SourceLine.size();
+ while (i>0) {
+ i--;
+ if (SourceLine[i]!='\t')
+ continue;
+ size_t tmp_i = i;
+ std::pair<SmallString<16>,bool> res
+ = printableTextForNextCharacter(SourceLine, &tmp_i, TabStop);
+ SourceLine.replace(i, 1, res.first.c_str());
+ }
+}
+
+/// This function takes a raw source line and produces a mapping from the bytes
+/// of the printable representation of the line to the columns those printable
+/// characters will appear at (numbering the first column as 0).
+///
+/// If a byte 'i' corresponds to multiple columns (e.g. the byte contains a tab
+/// character) then the array will map that byte to the first column the
+/// tab appears at and the next value in the map will have been incremented
+/// more than once.
+///
+/// If a byte is the first in a sequence of bytes that together map to a single
+/// entity in the output, then the array will map that byte to the appropriate
+/// column while the subsequent bytes will be -1.
+///
+/// The last element in the array does not correspond to any byte in the input
+/// and instead is the number of columns needed to display the source
+///
+/// example: (given a tabstop of 8)
+///
+/// "a \t \u3042" -> {0,1,2,8,9,-1,-1,11}
+///
+/// (\\u3042 is represented in UTF-8 by three bytes and takes two columns to
+/// display)
+static void byteToColumn(StringRef SourceLine, unsigned TabStop,
+ SmallVectorImpl<int> &out) {
+ out.clear();
+
+ if (SourceLine.empty()) {
+ out.resize(1u,0);
+ return;
+ }
+
+ out.resize(SourceLine.size()+1, -1);
+
+ int columns = 0;
+ size_t i = 0;
+ while (i<SourceLine.size()) {
+ out[i] = columns;
+ std::pair<SmallString<16>,bool> res
+ = printableTextForNextCharacter(SourceLine, &i, TabStop);
+ columns += llvm::sys::locale::columnWidth(res.first);
+ }
+ out.back() = columns;
+}
+
+/// This function takes a raw source line and produces a mapping from columns
+/// to the byte of the source line that produced the character displaying at
+/// that column. This is the inverse of the mapping produced by byteToColumn()
+///
+/// The last element in the array is the number of bytes in the source string
+///
+/// example: (given a tabstop of 8)
+///
+/// "a \t \u3042" -> {0,1,2,-1,-1,-1,-1,-1,3,4,-1,7}
+///
+/// (\\u3042 is represented in UTF-8 by three bytes and takes two columns to
+/// display)
+static void columnToByte(StringRef SourceLine, unsigned TabStop,
+ SmallVectorImpl<int> &out) {
+ out.clear();
+
+ if (SourceLine.empty()) {
+ out.resize(1u, 0);
+ return;
+ }
+
+ int columns = 0;
+ size_t i = 0;
+ while (i<SourceLine.size()) {
+ out.resize(columns+1, -1);
+ out.back() = i;
+ std::pair<SmallString<16>,bool> res
+ = printableTextForNextCharacter(SourceLine, &i, TabStop);
+ columns += llvm::sys::locale::columnWidth(res.first);
+ }
+ out.resize(columns+1, -1);
+ out.back() = i;
+}
+
+namespace {
+struct SourceColumnMap {
+ SourceColumnMap(StringRef SourceLine, unsigned TabStop)
+ : m_SourceLine(SourceLine) {
+
+ ::byteToColumn(SourceLine, TabStop, m_byteToColumn);
+ ::columnToByte(SourceLine, TabStop, m_columnToByte);
+
+ assert(m_byteToColumn.size()==SourceLine.size()+1);
+ assert(0 < m_byteToColumn.size() && 0 < m_columnToByte.size());
+ assert(m_byteToColumn.size()
+ == static_cast<unsigned>(m_columnToByte.back()+1));
+ assert(static_cast<unsigned>(m_byteToColumn.back()+1)
+ == m_columnToByte.size());
+ }
+ int columns() const { return m_byteToColumn.back(); }
+ int bytes() const { return m_columnToByte.back(); }
+
+ /// \brief Map a byte to the column which it is at the start of, or return -1
+ /// if it is not at the start of a column (for a UTF-8 trailing byte).
+ int byteToColumn(int n) const {
+ assert(0<=n && n<static_cast<int>(m_byteToColumn.size()));
+ return m_byteToColumn[n];
+ }
+
+ /// \brief Map a byte to the first column which contains it.
+ int byteToContainingColumn(int N) const {
+ assert(0 <= N && N < static_cast<int>(m_byteToColumn.size()));
+ while (m_byteToColumn[N] == -1)
+ --N;
+ return m_byteToColumn[N];
+ }
+
+ /// \brief Map a column to the byte which starts the column, or return -1 if
+ /// the column the second or subsequent column of an expanded tab or similar
+ /// multi-column entity.
+ int columnToByte(int n) const {
+ assert(0<=n && n<static_cast<int>(m_columnToByte.size()));
+ return m_columnToByte[n];
+ }
+
+ /// \brief Map from a byte index to the next byte which starts a column.
+ int startOfNextColumn(int N) const {
+ assert(0 <= N && N < static_cast<int>(m_byteToColumn.size() - 1));
+ while (byteToColumn(++N) == -1) {}
+ return N;
+ }
+
+ /// \brief Map from a byte index to the previous byte which starts a column.
+ int startOfPreviousColumn(int N) const {
+ assert(0 < N && N < static_cast<int>(m_byteToColumn.size()));
+ while (byteToColumn(--N) == -1) {}
+ return N;
+ }
+
+ StringRef getSourceLine() const {
+ return m_SourceLine;
+ }
+
+private:
+ const std::string m_SourceLine;
+ SmallVector<int,200> m_byteToColumn;
+ SmallVector<int,200> m_columnToByte;
+};
+} // end anonymous namespace
+
+/// \brief When the source code line we want to print is too long for
+/// the terminal, select the "interesting" region.
+static void selectInterestingSourceRegion(std::string &SourceLine,
+ std::string &CaretLine,
+ std::string &FixItInsertionLine,
+ unsigned Columns,
+ const SourceColumnMap &map) {
+ unsigned CaretColumns = CaretLine.size();
+ unsigned FixItColumns = llvm::sys::locale::columnWidth(FixItInsertionLine);
+ unsigned MaxColumns = std::max(static_cast<unsigned>(map.columns()),
+ std::max(CaretColumns, FixItColumns));
+ // if the number of columns is less than the desired number we're done
+ if (MaxColumns <= Columns)
+ return;
+
+ // No special characters are allowed in CaretLine.
+ assert(CaretLine.end() ==
+ std::find_if(CaretLine.begin(), CaretLine.end(),
+ [](char c) { return c < ' ' || '~' < c; }));
+
+ // Find the slice that we need to display the full caret line
+ // correctly.
+ unsigned CaretStart = 0, CaretEnd = CaretLine.size();
+ for (; CaretStart != CaretEnd; ++CaretStart)
+ if (!isWhitespace(CaretLine[CaretStart]))
+ break;
+
+ for (; CaretEnd != CaretStart; --CaretEnd)
+ if (!isWhitespace(CaretLine[CaretEnd - 1]))
+ break;
+
+ // caret has already been inserted into CaretLine so the above whitespace
+ // check is guaranteed to include the caret
+
+ // If we have a fix-it line, make sure the slice includes all of the
+ // fix-it information.
+ if (!FixItInsertionLine.empty()) {
+ unsigned FixItStart = 0, FixItEnd = FixItInsertionLine.size();
+ for (; FixItStart != FixItEnd; ++FixItStart)
+ if (!isWhitespace(FixItInsertionLine[FixItStart]))
+ break;
+
+ for (; FixItEnd != FixItStart; --FixItEnd)
+ if (!isWhitespace(FixItInsertionLine[FixItEnd - 1]))
+ break;
+
+ // We can safely use the byte offset FixItStart as the column offset
+ // because the characters up until FixItStart are all ASCII whitespace
+ // characters.
+ unsigned FixItStartCol = FixItStart;
+ unsigned FixItEndCol
+ = llvm::sys::locale::columnWidth(FixItInsertionLine.substr(0, FixItEnd));
+
+ CaretStart = std::min(FixItStartCol, CaretStart);
+ CaretEnd = std::max(FixItEndCol, CaretEnd);
+ }
+
+ // CaretEnd may have been set at the middle of a character
+ // If it's not at a character's first column then advance it past the current
+ // character.
+ while (static_cast<int>(CaretEnd) < map.columns() &&
+ -1 == map.columnToByte(CaretEnd))
+ ++CaretEnd;
+
+ assert((static_cast<int>(CaretStart) > map.columns() ||
+ -1!=map.columnToByte(CaretStart)) &&
+ "CaretStart must not point to a column in the middle of a source"
+ " line character");
+ assert((static_cast<int>(CaretEnd) > map.columns() ||
+ -1!=map.columnToByte(CaretEnd)) &&
+ "CaretEnd must not point to a column in the middle of a source line"
+ " character");
+
+ // CaretLine[CaretStart, CaretEnd) contains all of the interesting
+ // parts of the caret line. While this slice is smaller than the
+ // number of columns we have, try to grow the slice to encompass
+ // more context.
+
+ unsigned SourceStart = map.columnToByte(std::min<unsigned>(CaretStart,
+ map.columns()));
+ unsigned SourceEnd = map.columnToByte(std::min<unsigned>(CaretEnd,
+ map.columns()));
+
+ unsigned CaretColumnsOutsideSource = CaretEnd-CaretStart
+ - (map.byteToColumn(SourceEnd)-map.byteToColumn(SourceStart));
+
+ char const *front_ellipse = " ...";
+ char const *front_space = " ";
+ char const *back_ellipse = "...";
+ unsigned ellipses_space = strlen(front_ellipse) + strlen(back_ellipse);
+
+ unsigned TargetColumns = Columns;
+ // Give us extra room for the ellipses
+ // and any of the caret line that extends past the source
+ if (TargetColumns > ellipses_space+CaretColumnsOutsideSource)
+ TargetColumns -= ellipses_space+CaretColumnsOutsideSource;
+
+ while (SourceStart>0 || SourceEnd<SourceLine.size()) {
+ bool ExpandedRegion = false;
+
+ if (SourceStart>0) {
+ unsigned NewStart = map.startOfPreviousColumn(SourceStart);
+
+ // Skip over any whitespace we see here; we're looking for
+ // another bit of interesting text.
+ // FIXME: Detect non-ASCII whitespace characters too.
+ while (NewStart && isWhitespace(SourceLine[NewStart]))
+ NewStart = map.startOfPreviousColumn(NewStart);
+
+ // Skip over this bit of "interesting" text.
+ while (NewStart) {
+ unsigned Prev = map.startOfPreviousColumn(NewStart);
+ if (isWhitespace(SourceLine[Prev]))
+ break;
+ NewStart = Prev;
+ }
+
+ assert(map.byteToColumn(NewStart) != -1);
+ unsigned NewColumns = map.byteToColumn(SourceEnd) -
+ map.byteToColumn(NewStart);
+ if (NewColumns <= TargetColumns) {
+ SourceStart = NewStart;
+ ExpandedRegion = true;
+ }
+ }
+
+ if (SourceEnd<SourceLine.size()) {
+ unsigned NewEnd = map.startOfNextColumn(SourceEnd);
+
+ // Skip over any whitespace we see here; we're looking for
+ // another bit of interesting text.
+ // FIXME: Detect non-ASCII whitespace characters too.
+ while (NewEnd < SourceLine.size() && isWhitespace(SourceLine[NewEnd]))
+ NewEnd = map.startOfNextColumn(NewEnd);
+
+ // Skip over this bit of "interesting" text.
+ while (NewEnd < SourceLine.size() && isWhitespace(SourceLine[NewEnd]))
+ NewEnd = map.startOfNextColumn(NewEnd);
+
+ assert(map.byteToColumn(NewEnd) != -1);
+ unsigned NewColumns = map.byteToColumn(NewEnd) -
+ map.byteToColumn(SourceStart);
+ if (NewColumns <= TargetColumns) {
+ SourceEnd = NewEnd;
+ ExpandedRegion = true;
+ }
+ }
+
+ if (!ExpandedRegion)
+ break;
+ }
+
+ CaretStart = map.byteToColumn(SourceStart);
+ CaretEnd = map.byteToColumn(SourceEnd) + CaretColumnsOutsideSource;
+
+ // [CaretStart, CaretEnd) is the slice we want. Update the various
+ // output lines to show only this slice, with two-space padding
+ // before the lines so that it looks nicer.
+
+ assert(CaretStart!=(unsigned)-1 && CaretEnd!=(unsigned)-1 &&
+ SourceStart!=(unsigned)-1 && SourceEnd!=(unsigned)-1);
+ assert(SourceStart <= SourceEnd);
+ assert(CaretStart <= CaretEnd);
+
+ unsigned BackColumnsRemoved
+ = map.byteToColumn(SourceLine.size())-map.byteToColumn(SourceEnd);
+ unsigned FrontColumnsRemoved = CaretStart;
+ unsigned ColumnsKept = CaretEnd-CaretStart;
+
+ // We checked up front that the line needed truncation
+ assert(FrontColumnsRemoved+ColumnsKept+BackColumnsRemoved > Columns);
+
+ // The line needs some truncation, and we'd prefer to keep the front
+ // if possible, so remove the back
+ if (BackColumnsRemoved > strlen(back_ellipse))
+ SourceLine.replace(SourceEnd, std::string::npos, back_ellipse);
+
+ // If that's enough then we're done
+ if (FrontColumnsRemoved+ColumnsKept <= Columns)
+ return;
+
+ // Otherwise remove the front as well
+ if (FrontColumnsRemoved > strlen(front_ellipse)) {
+ SourceLine.replace(0, SourceStart, front_ellipse);
+ CaretLine.replace(0, CaretStart, front_space);
+ if (!FixItInsertionLine.empty())
+ FixItInsertionLine.replace(0, CaretStart, front_space);
+ }
+}
+
+/// \brief Skip over whitespace in the string, starting at the given
+/// index.
+///
+/// \returns The index of the first non-whitespace character that is
+/// greater than or equal to Idx or, if no such character exists,
+/// returns the end of the string.
+static unsigned skipWhitespace(unsigned Idx, StringRef Str, unsigned Length) {
+ while (Idx < Length && isWhitespace(Str[Idx]))
+ ++Idx;
+ return Idx;
+}
+
+/// \brief If the given character is the start of some kind of
+/// balanced punctuation (e.g., quotes or parentheses), return the
+/// character that will terminate the punctuation.
+///
+/// \returns The ending punctuation character, if any, or the NULL
+/// character if the input character does not start any punctuation.
+static inline char findMatchingPunctuation(char c) {
+ switch (c) {
+ case '\'': return '\'';
+ case '`': return '\'';
+ case '"': return '"';
+ case '(': return ')';
+ case '[': return ']';
+ case '{': return '}';
+ default: break;
+ }
+
+ return 0;
+}
+
+/// \brief Find the end of the word starting at the given offset
+/// within a string.
+///
+/// \returns the index pointing one character past the end of the
+/// word.
+static unsigned findEndOfWord(unsigned Start, StringRef Str,
+ unsigned Length, unsigned Column,
+ unsigned Columns) {
+ assert(Start < Str.size() && "Invalid start position!");
+ unsigned End = Start + 1;
+
+ // If we are already at the end of the string, take that as the word.
+ if (End == Str.size())
+ return End;
+
+ // Determine if the start of the string is actually opening
+ // punctuation, e.g., a quote or parentheses.
+ char EndPunct = findMatchingPunctuation(Str[Start]);
+ if (!EndPunct) {
+ // This is a normal word. Just find the first space character.
+ while (End < Length && !isWhitespace(Str[End]))
+ ++End;
+ return End;
+ }
+
+ // We have the start of a balanced punctuation sequence (quotes,
+ // parentheses, etc.). Determine the full sequence is.
+ SmallString<16> PunctuationEndStack;
+ PunctuationEndStack.push_back(EndPunct);
+ while (End < Length && !PunctuationEndStack.empty()) {
+ if (Str[End] == PunctuationEndStack.back())
+ PunctuationEndStack.pop_back();
+ else if (char SubEndPunct = findMatchingPunctuation(Str[End]))
+ PunctuationEndStack.push_back(SubEndPunct);
+
+ ++End;
+ }
+
+ // Find the first space character after the punctuation ended.
+ while (End < Length && !isWhitespace(Str[End]))
+ ++End;
+
+ unsigned PunctWordLength = End - Start;
+ if (// If the word fits on this line
+ Column + PunctWordLength <= Columns ||
+ // ... or the word is "short enough" to take up the next line
+ // without too much ugly white space
+ PunctWordLength < Columns/3)
+ return End; // Take the whole thing as a single "word".
+
+ // The whole quoted/parenthesized string is too long to print as a
+ // single "word". Instead, find the "word" that starts just after
+ // the punctuation and use that end-point instead. This will recurse
+ // until it finds something small enough to consider a word.
+ return findEndOfWord(Start + 1, Str, Length, Column + 1, Columns);
+}
+
+/// \brief Print the given string to a stream, word-wrapping it to
+/// some number of columns in the process.
+///
+/// \param OS the stream to which the word-wrapping string will be
+/// emitted.
+/// \param Str the string to word-wrap and output.
+/// \param Columns the number of columns to word-wrap to.
+/// \param Column the column number at which the first character of \p
+/// Str will be printed. This will be non-zero when part of the first
+/// line has already been printed.
+/// \param Bold if the current text should be bold
+/// \param Indentation the number of spaces to indent any lines beyond
+/// the first line.
+/// \returns true if word-wrapping was required, or false if the
+/// string fit on the first line.
+static bool printWordWrapped(raw_ostream &OS, StringRef Str,
+ unsigned Columns,
+ unsigned Column = 0,
+ bool Bold = false,
+ unsigned Indentation = WordWrapIndentation) {
+ const unsigned Length = std::min(Str.find('\n'), Str.size());
+ bool TextNormal = true;
+
+ // The string used to indent each line.
+ SmallString<16> IndentStr;
+ IndentStr.assign(Indentation, ' ');
+ bool Wrapped = false;
+ for (unsigned WordStart = 0, WordEnd; WordStart < Length;
+ WordStart = WordEnd) {
+ // Find the beginning of the next word.
+ WordStart = skipWhitespace(WordStart, Str, Length);
+ if (WordStart == Length)
+ break;
+
+ // Find the end of this word.
+ WordEnd = findEndOfWord(WordStart, Str, Length, Column, Columns);
+
+ // Does this word fit on the current line?
+ unsigned WordLength = WordEnd - WordStart;
+ if (Column + WordLength < Columns) {
+ // This word fits on the current line; print it there.
+ if (WordStart) {
+ OS << ' ';
+ Column += 1;
+ }
+ applyTemplateHighlighting(OS, Str.substr(WordStart, WordLength),
+ TextNormal, Bold);
+ Column += WordLength;
+ continue;
+ }
+
+ // This word does not fit on the current line, so wrap to the next
+ // line.
+ OS << '\n';
+ OS.write(&IndentStr[0], Indentation);
+ applyTemplateHighlighting(OS, Str.substr(WordStart, WordLength),
+ TextNormal, Bold);
+ Column = Indentation + WordLength;
+ Wrapped = true;
+ }
+
+ // Append any remaning text from the message with its existing formatting.
+ applyTemplateHighlighting(OS, Str.substr(Length), TextNormal, Bold);
+
+ assert(TextNormal && "Text highlighted at end of diagnostic message.");
+
+ return Wrapped;
+}
+
+TextDiagnostic::TextDiagnostic(raw_ostream &OS,
+ const LangOptions &LangOpts,
+ DiagnosticOptions *DiagOpts)
+ : DiagnosticRenderer(LangOpts, DiagOpts), OS(OS) {}
+
+TextDiagnostic::~TextDiagnostic() {}
+
+void
+TextDiagnostic::emitDiagnosticMessage(SourceLocation Loc,
+ PresumedLoc PLoc,
+ DiagnosticsEngine::Level Level,
+ StringRef Message,
+ ArrayRef<clang::CharSourceRange> Ranges,
+ const SourceManager *SM,
+ DiagOrStoredDiag D) {
+ uint64_t StartOfLocationInfo = OS.tell();
+
+ // Emit the location of this particular diagnostic.
+ if (Loc.isValid())
+ emitDiagnosticLoc(Loc, PLoc, Level, Ranges, *SM);
+
+ if (DiagOpts->ShowColors)
+ OS.resetColor();
+
+ printDiagnosticLevel(OS, Level, DiagOpts->ShowColors,
+ DiagOpts->CLFallbackMode);
+ printDiagnosticMessage(OS,
+ /*IsSupplemental*/ Level == DiagnosticsEngine::Note,
+ Message, OS.tell() - StartOfLocationInfo,
+ DiagOpts->MessageLength, DiagOpts->ShowColors);
+}
+
+/*static*/ void
+TextDiagnostic::printDiagnosticLevel(raw_ostream &OS,
+ DiagnosticsEngine::Level Level,
+ bool ShowColors,
+ bool CLFallbackMode) {
+ if (ShowColors) {
+ // Print diagnostic category in bold and color
+ switch (Level) {
+ case DiagnosticsEngine::Ignored:
+ llvm_unreachable("Invalid diagnostic type");
+ case DiagnosticsEngine::Note: OS.changeColor(noteColor, true); break;
+ case DiagnosticsEngine::Remark: OS.changeColor(remarkColor, true); break;
+ case DiagnosticsEngine::Warning: OS.changeColor(warningColor, true); break;
+ case DiagnosticsEngine::Error: OS.changeColor(errorColor, true); break;
+ case DiagnosticsEngine::Fatal: OS.changeColor(fatalColor, true); break;
+ }
+ }
+
+ switch (Level) {
+ case DiagnosticsEngine::Ignored:
+ llvm_unreachable("Invalid diagnostic type");
+ case DiagnosticsEngine::Note: OS << "note"; break;
+ case DiagnosticsEngine::Remark: OS << "remark"; break;
+ case DiagnosticsEngine::Warning: OS << "warning"; break;
+ case DiagnosticsEngine::Error: OS << "error"; break;
+ case DiagnosticsEngine::Fatal: OS << "fatal error"; break;
+ }
+
+ // In clang-cl /fallback mode, print diagnostics as "error(clang):". This
+ // makes it more clear whether a message is coming from clang or cl.exe,
+ // and it prevents MSBuild from concluding that the build failed just because
+ // there is an "error:" in the output.
+ if (CLFallbackMode)
+ OS << "(clang)";
+
+ OS << ": ";
+
+ if (ShowColors)
+ OS.resetColor();
+}
+
+/*static*/
+void TextDiagnostic::printDiagnosticMessage(raw_ostream &OS,
+ bool IsSupplemental,
+ StringRef Message,
+ unsigned CurrentColumn,
+ unsigned Columns, bool ShowColors) {
+ bool Bold = false;
+ if (ShowColors && !IsSupplemental) {
+ // Print primary diagnostic messages in bold and without color, to visually
+ // indicate the transition from continuation notes and other output.
+ OS.changeColor(savedColor, true);
+ Bold = true;
+ }
+
+ if (Columns)
+ printWordWrapped(OS, Message, Columns, CurrentColumn, Bold);
+ else {
+ bool Normal = true;
+ applyTemplateHighlighting(OS, Message, Normal, Bold);
+ assert(Normal && "Formatting should have returned to normal");
+ }
+
+ if (ShowColors)
+ OS.resetColor();
+ OS << '\n';
+}
+
+/// \brief Print out the file/line/column information and include trace.
+///
+/// This method handlen the emission of the diagnostic location information.
+/// This includes extracting as much location information as is present for
+/// the diagnostic and printing it, as well as any include stack or source
+/// ranges necessary.
+void TextDiagnostic::emitDiagnosticLoc(SourceLocation Loc, PresumedLoc PLoc,
+ DiagnosticsEngine::Level Level,
+ ArrayRef<CharSourceRange> Ranges,
+ const SourceManager &SM) {
+ if (PLoc.isInvalid()) {
+ // At least print the file name if available:
+ FileID FID = SM.getFileID(Loc);
+ if (!FID.isInvalid()) {
+ const FileEntry* FE = SM.getFileEntryForID(FID);
+ if (FE && FE->isValid()) {
+ OS << FE->getName();
+ if (FE->isInPCH())
+ OS << " (in PCH)";
+ OS << ": ";
+ }
+ }
+ return;
+ }
+ unsigned LineNo = PLoc.getLine();
+
+ if (!DiagOpts->ShowLocation)
+ return;
+
+ if (DiagOpts->ShowColors)
+ OS.changeColor(savedColor, true);
+
+ OS << PLoc.getFilename();
+ switch (DiagOpts->getFormat()) {
+ case DiagnosticOptions::Clang: OS << ':' << LineNo; break;
+ case DiagnosticOptions::MSVC: OS << '(' << LineNo; break;
+ case DiagnosticOptions::Vi: OS << " +" << LineNo; break;
+ }
+
+ if (DiagOpts->ShowColumn)
+ // Compute the column number.
+ if (unsigned ColNo = PLoc.getColumn()) {
+ if (DiagOpts->getFormat() == DiagnosticOptions::MSVC) {
+ OS << ',';
+ // Visual Studio 2010 or earlier expects column number to be off by one
+ if (LangOpts.MSCompatibilityVersion &&
+ !LangOpts.isCompatibleWithMSVC(LangOptions::MSVC2012))
+ ColNo--;
+ } else
+ OS << ':';
+ OS << ColNo;
+ }
+ switch (DiagOpts->getFormat()) {
+ case DiagnosticOptions::Clang:
+ case DiagnosticOptions::Vi: OS << ':'; break;
+ case DiagnosticOptions::MSVC: OS << ") : "; break;
+ }
+
+ if (DiagOpts->ShowSourceRanges && !Ranges.empty()) {
+ FileID CaretFileID =
+ SM.getFileID(SM.getExpansionLoc(Loc));
+ bool PrintedRange = false;
+
+ for (ArrayRef<CharSourceRange>::const_iterator RI = Ranges.begin(),
+ RE = Ranges.end();
+ RI != RE; ++RI) {
+ // Ignore invalid ranges.
+ if (!RI->isValid()) continue;
+
+ SourceLocation B = SM.getExpansionLoc(RI->getBegin());
+ SourceLocation E = SM.getExpansionLoc(RI->getEnd());
+
+ // If the End location and the start location are the same and are a
+ // macro location, then the range was something that came from a
+ // macro expansion or _Pragma. If this is an object-like macro, the
+ // best we can do is to highlight the range. If this is a
+ // function-like macro, we'd also like to highlight the arguments.
+ if (B == E && RI->getEnd().isMacroID())
+ E = SM.getExpansionRange(RI->getEnd()).second;
+
+ std::pair<FileID, unsigned> BInfo = SM.getDecomposedLoc(B);
+ std::pair<FileID, unsigned> EInfo = SM.getDecomposedLoc(E);
+
+ // If the start or end of the range is in another file, just discard
+ // it.
+ if (BInfo.first != CaretFileID || EInfo.first != CaretFileID)
+ continue;
+
+ // Add in the length of the token, so that we cover multi-char
+ // tokens.
+ unsigned TokSize = 0;
+ if (RI->isTokenRange())
+ TokSize = Lexer::MeasureTokenLength(E, SM, LangOpts);
+
+ OS << '{' << SM.getLineNumber(BInfo.first, BInfo.second) << ':'
+ << SM.getColumnNumber(BInfo.first, BInfo.second) << '-'
+ << SM.getLineNumber(EInfo.first, EInfo.second) << ':'
+ << (SM.getColumnNumber(EInfo.first, EInfo.second)+TokSize)
+ << '}';
+ PrintedRange = true;
+ }
+
+ if (PrintedRange)
+ OS << ':';
+ }
+ OS << ' ';
+}
+
+void TextDiagnostic::emitIncludeLocation(SourceLocation Loc,
+ PresumedLoc PLoc,
+ const SourceManager &SM) {
+ if (DiagOpts->ShowLocation)
+ OS << "In file included from " << PLoc.getFilename() << ':'
+ << PLoc.getLine() << ":\n";
+ else
+ OS << "In included file:\n";
+}
+
+void TextDiagnostic::emitImportLocation(SourceLocation Loc, PresumedLoc PLoc,
+ StringRef ModuleName,
+ const SourceManager &SM) {
+ if (DiagOpts->ShowLocation)
+ OS << "In module '" << ModuleName << "' imported from "
+ << PLoc.getFilename() << ':' << PLoc.getLine() << ":\n";
+ else
+ OS << "In module " << ModuleName << "':\n";
+}
+
+void TextDiagnostic::emitBuildingModuleLocation(SourceLocation Loc,
+ PresumedLoc PLoc,
+ StringRef ModuleName,
+ const SourceManager &SM) {
+ if (DiagOpts->ShowLocation && PLoc.getFilename())
+ OS << "While building module '" << ModuleName << "' imported from "
+ << PLoc.getFilename() << ':' << PLoc.getLine() << ":\n";
+ else
+ OS << "While building module '" << ModuleName << "':\n";
+}
+
+/// \brief Highlight a SourceRange (with ~'s) for any characters on LineNo.
+static void highlightRange(const CharSourceRange &R,
+ unsigned LineNo, FileID FID,
+ const SourceColumnMap &map,
+ std::string &CaretLine,
+ const SourceManager &SM,
+ const LangOptions &LangOpts) {
+ if (!R.isValid()) return;
+
+ SourceLocation Begin = R.getBegin();
+ SourceLocation End = R.getEnd();
+
+ unsigned StartLineNo = SM.getExpansionLineNumber(Begin);
+ if (StartLineNo > LineNo || SM.getFileID(Begin) != FID)
+ return; // No intersection.
+
+ unsigned EndLineNo = SM.getExpansionLineNumber(End);
+ if (EndLineNo < LineNo || SM.getFileID(End) != FID)
+ return; // No intersection.
+
+ // Compute the column number of the start.
+ unsigned StartColNo = 0;
+ if (StartLineNo == LineNo) {
+ StartColNo = SM.getExpansionColumnNumber(Begin);
+ if (StartColNo) --StartColNo; // Zero base the col #.
+ }
+
+ // Compute the column number of the end.
+ unsigned EndColNo = map.getSourceLine().size();
+ if (EndLineNo == LineNo) {
+ EndColNo = SM.getExpansionColumnNumber(End);
+ if (EndColNo) {
+ --EndColNo; // Zero base the col #.
+
+ // Add in the length of the token, so that we cover multi-char tokens if
+ // this is a token range.
+ if (R.isTokenRange())
+ EndColNo += Lexer::MeasureTokenLength(End, SM, LangOpts);
+ } else {
+ EndColNo = CaretLine.size();
+ }
+ }
+
+ assert(StartColNo <= EndColNo && "Invalid range!");
+
+ // Check that a token range does not highlight only whitespace.
+ if (R.isTokenRange()) {
+ // Pick the first non-whitespace column.
+ while (StartColNo < map.getSourceLine().size() &&
+ (map.getSourceLine()[StartColNo] == ' ' ||
+ map.getSourceLine()[StartColNo] == '\t'))
+ StartColNo = map.startOfNextColumn(StartColNo);
+
+ // Pick the last non-whitespace column.
+ if (EndColNo > map.getSourceLine().size())
+ EndColNo = map.getSourceLine().size();
+ while (EndColNo &&
+ (map.getSourceLine()[EndColNo-1] == ' ' ||
+ map.getSourceLine()[EndColNo-1] == '\t'))
+ EndColNo = map.startOfPreviousColumn(EndColNo);
+
+ // If the start/end passed each other, then we are trying to highlight a
+ // range that just exists in whitespace, which must be some sort of other
+ // bug.
+ assert(StartColNo <= EndColNo && "Trying to highlight whitespace??");
+ }
+
+ assert(StartColNo <= map.getSourceLine().size() && "Invalid range!");
+ assert(EndColNo <= map.getSourceLine().size() && "Invalid range!");
+
+ // Fill the range with ~'s.
+ StartColNo = map.byteToContainingColumn(StartColNo);
+ EndColNo = map.byteToContainingColumn(EndColNo);
+
+ assert(StartColNo <= EndColNo && "Invalid range!");
+ if (CaretLine.size() < EndColNo)
+ CaretLine.resize(EndColNo,' ');
+ std::fill(CaretLine.begin()+StartColNo,CaretLine.begin()+EndColNo,'~');
+}
+
+static std::string buildFixItInsertionLine(unsigned LineNo,
+ const SourceColumnMap &map,
+ ArrayRef<FixItHint> Hints,
+ const SourceManager &SM,
+ const DiagnosticOptions *DiagOpts) {
+ std::string FixItInsertionLine;
+ if (Hints.empty() || !DiagOpts->ShowFixits)
+ return FixItInsertionLine;
+ unsigned PrevHintEndCol = 0;
+
+ for (ArrayRef<FixItHint>::iterator I = Hints.begin(), E = Hints.end();
+ I != E; ++I) {
+ if (!I->CodeToInsert.empty()) {
+ // We have an insertion hint. Determine whether the inserted
+ // code contains no newlines and is on the same line as the caret.
+ std::pair<FileID, unsigned> HintLocInfo
+ = SM.getDecomposedExpansionLoc(I->RemoveRange.getBegin());
+ if (LineNo == SM.getLineNumber(HintLocInfo.first, HintLocInfo.second) &&
+ StringRef(I->CodeToInsert).find_first_of("\n\r") == StringRef::npos) {
+ // Insert the new code into the line just below the code
+ // that the user wrote.
+ // Note: When modifying this function, be very careful about what is a
+ // "column" (printed width, platform-dependent) and what is a
+ // "byte offset" (SourceManager "column").
+ unsigned HintByteOffset
+ = SM.getColumnNumber(HintLocInfo.first, HintLocInfo.second) - 1;
+
+ // The hint must start inside the source or right at the end
+ assert(HintByteOffset < static_cast<unsigned>(map.bytes())+1);
+ unsigned HintCol = map.byteToContainingColumn(HintByteOffset);
+
+ // If we inserted a long previous hint, push this one forwards, and add
+ // an extra space to show that this is not part of the previous
+ // completion. This is sort of the best we can do when two hints appear
+ // to overlap.
+ //
+ // Note that if this hint is located immediately after the previous
+ // hint, no space will be added, since the location is more important.
+ if (HintCol < PrevHintEndCol)
+ HintCol = PrevHintEndCol + 1;
+
+ // This should NOT use HintByteOffset, because the source might have
+ // Unicode characters in earlier columns.
+ unsigned NewFixItLineSize = FixItInsertionLine.size() +
+ (HintCol - PrevHintEndCol) + I->CodeToInsert.size();
+ if (NewFixItLineSize > FixItInsertionLine.size())
+ FixItInsertionLine.resize(NewFixItLineSize, ' ');
+
+ std::copy(I->CodeToInsert.begin(), I->CodeToInsert.end(),
+ FixItInsertionLine.end() - I->CodeToInsert.size());
+
+ PrevHintEndCol =
+ HintCol + llvm::sys::locale::columnWidth(I->CodeToInsert);
+ } else {
+ FixItInsertionLine.clear();
+ break;
+ }
+ }
+ }
+
+ expandTabs(FixItInsertionLine, DiagOpts->TabStop);
+
+ return FixItInsertionLine;
+}
+
+/// \brief Emit a code snippet and caret line.
+///
+/// This routine emits a single line's code snippet and caret line..
+///
+/// \param Loc The location for the caret.
+/// \param Ranges The underlined ranges for this code snippet.
+/// \param Hints The FixIt hints active for this diagnostic.
+void TextDiagnostic::emitSnippetAndCaret(
+ SourceLocation Loc, DiagnosticsEngine::Level Level,
+ SmallVectorImpl<CharSourceRange>& Ranges,
+ ArrayRef<FixItHint> Hints,
+ const SourceManager &SM) {
+ assert(!Loc.isInvalid() && "must have a valid source location here");
+ assert(Loc.isFileID() && "must have a file location here");
+
+ // If caret diagnostics are enabled and we have location, we want to
+ // emit the caret. However, we only do this if the location moved
+ // from the last diagnostic, if the last diagnostic was a note that
+ // was part of a different warning or error diagnostic, or if the
+ // diagnostic has ranges. We don't want to emit the same caret
+ // multiple times if one loc has multiple diagnostics.
+ if (!DiagOpts->ShowCarets)
+ return;
+ if (Loc == LastLoc && Ranges.empty() && Hints.empty() &&
+ (LastLevel != DiagnosticsEngine::Note || Level == LastLevel))
+ return;
+
+ // Decompose the location into a FID/Offset pair.
+ std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
+ FileID FID = LocInfo.first;
+ unsigned FileOffset = LocInfo.second;
+
+ // Get information about the buffer it points into.
+ bool Invalid = false;
+ const char *BufStart = SM.getBufferData(FID, &Invalid).data();
+ if (Invalid)
+ return;
+
+ unsigned LineNo = SM.getLineNumber(FID, FileOffset);
+ unsigned ColNo = SM.getColumnNumber(FID, FileOffset);
+
+ // Arbitrarily stop showing snippets when the line is too long.
+ static const size_t MaxLineLengthToPrint = 4096;
+ if (ColNo > MaxLineLengthToPrint)
+ return;
+
+ // Rewind from the current position to the start of the line.
+ const char *TokPtr = BufStart+FileOffset;
+ const char *LineStart = TokPtr-ColNo+1; // Column # is 1-based.
+
+ // Compute the line end. Scan forward from the error position to the end of
+ // the line.
+ const char *LineEnd = TokPtr;
+ while (*LineEnd != '\n' && *LineEnd != '\r' && *LineEnd != '\0')
+ ++LineEnd;
+
+ // Arbitrarily stop showing snippets when the line is too long.
+ if (size_t(LineEnd - LineStart) > MaxLineLengthToPrint)
+ return;
+
+ // Copy the line of code into an std::string for ease of manipulation.
+ std::string SourceLine(LineStart, LineEnd);
+
+ // Build the byte to column map.
+ const SourceColumnMap sourceColMap(SourceLine, DiagOpts->TabStop);
+
+ // Create a line for the caret that is filled with spaces that is the same
+ // number of columns as the line of source code.
+ std::string CaretLine(sourceColMap.columns(), ' ');
+
+ // Highlight all of the characters covered by Ranges with ~ characters.
+ for (SmallVectorImpl<CharSourceRange>::iterator I = Ranges.begin(),
+ E = Ranges.end();
+ I != E; ++I)
+ highlightRange(*I, LineNo, FID, sourceColMap, CaretLine, SM, LangOpts);
+
+ // Next, insert the caret itself.
+ ColNo = sourceColMap.byteToContainingColumn(ColNo-1);
+ if (CaretLine.size()<ColNo+1)
+ CaretLine.resize(ColNo+1, ' ');
+ CaretLine[ColNo] = '^';
+
+ std::string FixItInsertionLine = buildFixItInsertionLine(LineNo,
+ sourceColMap,
+ Hints, SM,
+ DiagOpts.get());
+
+ // If the source line is too long for our terminal, select only the
+ // "interesting" source region within that line.
+ unsigned Columns = DiagOpts->MessageLength;
+ if (Columns)
+ selectInterestingSourceRegion(SourceLine, CaretLine, FixItInsertionLine,
+ Columns, sourceColMap);
+
+ // If we are in -fdiagnostics-print-source-range-info mode, we are trying
+ // to produce easily machine parsable output. Add a space before the
+ // source line and the caret to make it trivial to tell the main diagnostic
+ // line from what the user is intended to see.
+ if (DiagOpts->ShowSourceRanges) {
+ SourceLine = ' ' + SourceLine;
+ CaretLine = ' ' + CaretLine;
+ }
+
+ // Finally, remove any blank spaces from the end of CaretLine.
+ while (CaretLine[CaretLine.size()-1] == ' ')
+ CaretLine.erase(CaretLine.end()-1);
+
+ // Emit what we have computed.
+ emitSnippet(SourceLine);
+
+ if (DiagOpts->ShowColors)
+ OS.changeColor(caretColor, true);
+ OS << CaretLine << '\n';
+ if (DiagOpts->ShowColors)
+ OS.resetColor();
+
+ if (!FixItInsertionLine.empty()) {
+ if (DiagOpts->ShowColors)
+ // Print fixit line in color
+ OS.changeColor(fixitColor, false);
+ if (DiagOpts->ShowSourceRanges)
+ OS << ' ';
+ OS << FixItInsertionLine << '\n';
+ if (DiagOpts->ShowColors)
+ OS.resetColor();
+ }
+
+ // Print out any parseable fixit information requested by the options.
+ emitParseableFixits(Hints, SM);
+}
+
+void TextDiagnostic::emitSnippet(StringRef line) {
+ if (line.empty())
+ return;
+
+ size_t i = 0;
+
+ std::string to_print;
+ bool print_reversed = false;
+
+ while (i<line.size()) {
+ std::pair<SmallString<16>,bool> res
+ = printableTextForNextCharacter(line, &i, DiagOpts->TabStop);
+ bool was_printable = res.second;
+
+ if (DiagOpts->ShowColors && was_printable == print_reversed) {
+ if (print_reversed)
+ OS.reverseColor();
+ OS << to_print;
+ to_print.clear();
+ if (DiagOpts->ShowColors)
+ OS.resetColor();
+ }
+
+ print_reversed = !was_printable;
+ to_print += res.first.str();
+ }
+
+ if (print_reversed && DiagOpts->ShowColors)
+ OS.reverseColor();
+ OS << to_print;
+ if (print_reversed && DiagOpts->ShowColors)
+ OS.resetColor();
+
+ OS << '\n';
+}
+
+void TextDiagnostic::emitParseableFixits(ArrayRef<FixItHint> Hints,
+ const SourceManager &SM) {
+ if (!DiagOpts->ShowParseableFixits)
+ return;
+
+ // We follow FixItRewriter's example in not (yet) handling
+ // fix-its in macros.
+ for (ArrayRef<FixItHint>::iterator I = Hints.begin(), E = Hints.end();
+ I != E; ++I) {
+ if (I->RemoveRange.isInvalid() ||
+ I->RemoveRange.getBegin().isMacroID() ||
+ I->RemoveRange.getEnd().isMacroID())
+ return;
+ }
+
+ for (ArrayRef<FixItHint>::iterator I = Hints.begin(), E = Hints.end();
+ I != E; ++I) {
+ SourceLocation BLoc = I->RemoveRange.getBegin();
+ SourceLocation ELoc = I->RemoveRange.getEnd();
+
+ std::pair<FileID, unsigned> BInfo = SM.getDecomposedLoc(BLoc);
+ std::pair<FileID, unsigned> EInfo = SM.getDecomposedLoc(ELoc);
+
+ // Adjust for token ranges.
+ if (I->RemoveRange.isTokenRange())
+ EInfo.second += Lexer::MeasureTokenLength(ELoc, SM, LangOpts);
+
+ // We specifically do not do word-wrapping or tab-expansion here,
+ // because this is supposed to be easy to parse.
+ PresumedLoc PLoc = SM.getPresumedLoc(BLoc);
+ if (PLoc.isInvalid())
+ break;
+
+ OS << "fix-it:\"";
+ OS.write_escaped(PLoc.getFilename());
+ OS << "\":{" << SM.getLineNumber(BInfo.first, BInfo.second)
+ << ':' << SM.getColumnNumber(BInfo.first, BInfo.second)
+ << '-' << SM.getLineNumber(EInfo.first, EInfo.second)
+ << ':' << SM.getColumnNumber(EInfo.first, EInfo.second)
+ << "}:\"";
+ OS.write_escaped(I->CodeToInsert);
+ OS << "\"\n";
+ }
+}
diff --git a/contrib/llvm/tools/clang/lib/Frontend/TextDiagnosticBuffer.cpp b/contrib/llvm/tools/clang/lib/Frontend/TextDiagnosticBuffer.cpp
new file mode 100644
index 0000000..9c6bebb
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Frontend/TextDiagnosticBuffer.cpp
@@ -0,0 +1,63 @@
+//===--- TextDiagnosticBuffer.cpp - Buffer Text Diagnostics ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This is a concrete diagnostic client, which buffers the diagnostic messages.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Frontend/TextDiagnosticBuffer.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/ErrorHandling.h"
+using namespace clang;
+
+/// HandleDiagnostic - Store the errors, warnings, and notes that are
+/// reported.
+///
+void TextDiagnosticBuffer::HandleDiagnostic(DiagnosticsEngine::Level Level,
+ const Diagnostic &Info) {
+ // Default implementation (Warnings/errors count).
+ DiagnosticConsumer::HandleDiagnostic(Level, Info);
+
+ SmallString<100> Buf;
+ Info.FormatDiagnostic(Buf);
+ switch (Level) {
+ default: llvm_unreachable(
+ "Diagnostic not handled during diagnostic buffering!");
+ case DiagnosticsEngine::Note:
+ Notes.push_back(std::make_pair(Info.getLocation(), Buf.str()));
+ break;
+ case DiagnosticsEngine::Warning:
+ Warnings.push_back(std::make_pair(Info.getLocation(), Buf.str()));
+ break;
+ case DiagnosticsEngine::Remark:
+ Remarks.push_back(std::make_pair(Info.getLocation(), Buf.str()));
+ break;
+ case DiagnosticsEngine::Error:
+ case DiagnosticsEngine::Fatal:
+ Errors.push_back(std::make_pair(Info.getLocation(), Buf.str()));
+ break;
+ }
+}
+
+void TextDiagnosticBuffer::FlushDiagnostics(DiagnosticsEngine &Diags) const {
+ // FIXME: Flush the diagnostics in order.
+ for (const_iterator it = err_begin(), ie = err_end(); it != ie; ++it)
+ Diags.Report(Diags.getCustomDiagID(DiagnosticsEngine::Error, "%0"))
+ << it->second;
+ for (const_iterator it = warn_begin(), ie = warn_end(); it != ie; ++it)
+ Diags.Report(Diags.getCustomDiagID(DiagnosticsEngine::Warning, "%0"))
+ << it->second;
+ for (const_iterator it = remark_begin(), ie = remark_end(); it != ie; ++it)
+ Diags.Report(Diags.getCustomDiagID(DiagnosticsEngine::Remark, "%0"))
+ << it->second;
+ for (const_iterator it = note_begin(), ie = note_end(); it != ie; ++it)
+ Diags.Report(Diags.getCustomDiagID(DiagnosticsEngine::Note, "%0"))
+ << it->second;
+}
+
diff --git a/contrib/llvm/tools/clang/lib/Frontend/TextDiagnosticPrinter.cpp b/contrib/llvm/tools/clang/lib/Frontend/TextDiagnosticPrinter.cpp
new file mode 100644
index 0000000..66b46b7
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Frontend/TextDiagnosticPrinter.cpp
@@ -0,0 +1,161 @@
+//===--- TextDiagnosticPrinter.cpp - Diagnostic Printer -------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This diagnostic client prints out their diagnostic messages.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Frontend/TextDiagnosticPrinter.h"
+#include "clang/Basic/DiagnosticOptions.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Frontend/TextDiagnostic.h"
+#include "clang/Lex/Lexer.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+using namespace clang;
+
+TextDiagnosticPrinter::TextDiagnosticPrinter(raw_ostream &os,
+ DiagnosticOptions *diags,
+ bool _OwnsOutputStream)
+ : OS(os), DiagOpts(diags),
+ OwnsOutputStream(_OwnsOutputStream) {
+}
+
+TextDiagnosticPrinter::~TextDiagnosticPrinter() {
+ if (OwnsOutputStream)
+ delete &OS;
+}
+
+void TextDiagnosticPrinter::BeginSourceFile(const LangOptions &LO,
+ const Preprocessor *PP) {
+ // Build the TextDiagnostic utility.
+ TextDiag.reset(new TextDiagnostic(OS, LO, &*DiagOpts));
+}
+
+void TextDiagnosticPrinter::EndSourceFile() {
+ TextDiag.reset();
+}
+
+/// \brief Print any diagnostic option information to a raw_ostream.
+///
+/// This implements all of the logic for adding diagnostic options to a message
+/// (via OS). Each relevant option is comma separated and all are enclosed in
+/// the standard bracketing: " [...]".
+static void printDiagnosticOptions(raw_ostream &OS,
+ DiagnosticsEngine::Level Level,
+ const Diagnostic &Info,
+ const DiagnosticOptions &DiagOpts) {
+ bool Started = false;
+ if (DiagOpts.ShowOptionNames) {
+ // Handle special cases for non-warnings early.
+ if (Info.getID() == diag::fatal_too_many_errors) {
+ OS << " [-ferror-limit=]";
+ return;
+ }
+
+ // The code below is somewhat fragile because we are essentially trying to
+ // report to the user what happened by inferring what the diagnostic engine
+ // did. Eventually it might make more sense to have the diagnostic engine
+ // include some "why" information in the diagnostic.
+
+ // If this is a warning which has been mapped to an error by the user (as
+ // inferred by checking whether the default mapping is to an error) then
+ // flag it as such. Note that diagnostics could also have been mapped by a
+ // pragma, but we don't currently have a way to distinguish this.
+ if (Level == DiagnosticsEngine::Error &&
+ DiagnosticIDs::isBuiltinWarningOrExtension(Info.getID()) &&
+ !DiagnosticIDs::isDefaultMappingAsError(Info.getID())) {
+ OS << " [-Werror";
+ Started = true;
+ }
+
+ StringRef Opt = DiagnosticIDs::getWarningOptionForDiag(Info.getID());
+ if (!Opt.empty()) {
+ OS << (Started ? "," : " [")
+ << (Level == DiagnosticsEngine::Remark ? "-R" : "-W") << Opt;
+ StringRef OptValue = Info.getDiags()->getFlagValue();
+ if (!OptValue.empty())
+ OS << "=" << OptValue;
+ Started = true;
+ }
+ }
+
+ // If the user wants to see category information, include it too.
+ if (DiagOpts.ShowCategories) {
+ unsigned DiagCategory =
+ DiagnosticIDs::getCategoryNumberForDiag(Info.getID());
+ if (DiagCategory) {
+ OS << (Started ? "," : " [");
+ Started = true;
+ if (DiagOpts.ShowCategories == 1)
+ OS << DiagCategory;
+ else {
+ assert(DiagOpts.ShowCategories == 2 && "Invalid ShowCategories value");
+ OS << DiagnosticIDs::getCategoryNameFromID(DiagCategory);
+ }
+ }
+ }
+ if (Started)
+ OS << ']';
+}
+
+void TextDiagnosticPrinter::HandleDiagnostic(DiagnosticsEngine::Level Level,
+ const Diagnostic &Info) {
+ // Default implementation (Warnings/errors count).
+ DiagnosticConsumer::HandleDiagnostic(Level, Info);
+
+ // Render the diagnostic message into a temporary buffer eagerly. We'll use
+ // this later as we print out the diagnostic to the terminal.
+ SmallString<100> OutStr;
+ Info.FormatDiagnostic(OutStr);
+
+ llvm::raw_svector_ostream DiagMessageStream(OutStr);
+ printDiagnosticOptions(DiagMessageStream, Level, Info, *DiagOpts);
+
+ // Keeps track of the starting position of the location
+ // information (e.g., "foo.c:10:4:") that precedes the error
+ // message. We use this information to determine how long the
+ // file+line+column number prefix is.
+ uint64_t StartOfLocationInfo = OS.tell();
+
+ if (!Prefix.empty())
+ OS << Prefix << ": ";
+
+ // Use a dedicated, simpler path for diagnostics without a valid location.
+ // This is important as if the location is missing, we may be emitting
+ // diagnostics in a context that lacks language options, a source manager, or
+ // other infrastructure necessary when emitting more rich diagnostics.
+ if (!Info.getLocation().isValid()) {
+ TextDiagnostic::printDiagnosticLevel(OS, Level, DiagOpts->ShowColors,
+ DiagOpts->CLFallbackMode);
+ TextDiagnostic::printDiagnosticMessage(OS, Level, DiagMessageStream.str(),
+ OS.tell() - StartOfLocationInfo,
+ DiagOpts->MessageLength,
+ DiagOpts->ShowColors);
+ OS.flush();
+ return;
+ }
+
+ // Assert that the rest of our infrastructure is setup properly.
+ assert(DiagOpts && "Unexpected diagnostic without options set");
+ assert(Info.hasSourceManager() &&
+ "Unexpected diagnostic with no source manager");
+ assert(TextDiag && "Unexpected diagnostic outside source file processing");
+
+ TextDiag->emitDiagnostic(Info.getLocation(), Level, DiagMessageStream.str(),
+ Info.getRanges(),
+ Info.getFixItHints(),
+ &Info.getSourceManager());
+
+ OS.flush();
+}
diff --git a/contrib/llvm/tools/clang/lib/Frontend/VerifyDiagnosticConsumer.cpp b/contrib/llvm/tools/clang/lib/Frontend/VerifyDiagnosticConsumer.cpp
new file mode 100644
index 0000000..910e394
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Frontend/VerifyDiagnosticConsumer.cpp
@@ -0,0 +1,906 @@
+//===---- VerifyDiagnosticConsumer.cpp - Verifying Diagnostic Client ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This is a concrete diagnostic client, which buffers the diagnostic messages.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Frontend/VerifyDiagnosticConsumer.h"
+#include "clang/Basic/CharInfo.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Frontend/FrontendDiagnostic.h"
+#include "clang/Frontend/TextDiagnosticBuffer.h"
+#include "clang/Lex/HeaderSearch.h"
+#include "clang/Lex/Preprocessor.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/Regex.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+typedef VerifyDiagnosticConsumer::Directive Directive;
+typedef VerifyDiagnosticConsumer::DirectiveList DirectiveList;
+typedef VerifyDiagnosticConsumer::ExpectedData ExpectedData;
+
+VerifyDiagnosticConsumer::VerifyDiagnosticConsumer(DiagnosticsEngine &Diags_)
+ : Diags(Diags_),
+ PrimaryClient(Diags.getClient()), PrimaryClientOwner(Diags.takeClient()),
+ Buffer(new TextDiagnosticBuffer()), CurrentPreprocessor(nullptr),
+ LangOpts(nullptr), SrcManager(nullptr), ActiveSourceFiles(0),
+ Status(HasNoDirectives)
+{
+ if (Diags.hasSourceManager())
+ setSourceManager(Diags.getSourceManager());
+}
+
+VerifyDiagnosticConsumer::~VerifyDiagnosticConsumer() {
+ assert(!ActiveSourceFiles && "Incomplete parsing of source files!");
+ assert(!CurrentPreprocessor && "CurrentPreprocessor should be invalid!");
+ SrcManager = nullptr;
+ CheckDiagnostics();
+ Diags.takeClient().release();
+}
+
+#ifndef NDEBUG
+namespace {
+class VerifyFileTracker : public PPCallbacks {
+ VerifyDiagnosticConsumer &Verify;
+ SourceManager &SM;
+
+public:
+ VerifyFileTracker(VerifyDiagnosticConsumer &Verify, SourceManager &SM)
+ : Verify(Verify), SM(SM) { }
+
+ /// \brief Hook into the preprocessor and update the list of parsed
+ /// files when the preprocessor indicates a new file is entered.
+ void FileChanged(SourceLocation Loc, FileChangeReason Reason,
+ SrcMgr::CharacteristicKind FileType,
+ FileID PrevFID) override {
+ Verify.UpdateParsedFileStatus(SM, SM.getFileID(Loc),
+ VerifyDiagnosticConsumer::IsParsed);
+ }
+};
+} // End anonymous namespace.
+#endif
+
+// DiagnosticConsumer interface.
+
+void VerifyDiagnosticConsumer::BeginSourceFile(const LangOptions &LangOpts,
+ const Preprocessor *PP) {
+ // Attach comment handler on first invocation.
+ if (++ActiveSourceFiles == 1) {
+ if (PP) {
+ CurrentPreprocessor = PP;
+ this->LangOpts = &LangOpts;
+ setSourceManager(PP->getSourceManager());
+ const_cast<Preprocessor*>(PP)->addCommentHandler(this);
+#ifndef NDEBUG
+ // Debug build tracks parsed files.
+ const_cast<Preprocessor*>(PP)->addPPCallbacks(
+ llvm::make_unique<VerifyFileTracker>(*this, *SrcManager));
+#endif
+ }
+ }
+
+ assert((!PP || CurrentPreprocessor == PP) && "Preprocessor changed!");
+ PrimaryClient->BeginSourceFile(LangOpts, PP);
+}
+
+void VerifyDiagnosticConsumer::EndSourceFile() {
+ assert(ActiveSourceFiles && "No active source files!");
+ PrimaryClient->EndSourceFile();
+
+ // Detach comment handler once last active source file completed.
+ if (--ActiveSourceFiles == 0) {
+ if (CurrentPreprocessor)
+ const_cast<Preprocessor*>(CurrentPreprocessor)->removeCommentHandler(this);
+
+ // Check diagnostics once last file completed.
+ CheckDiagnostics();
+ CurrentPreprocessor = nullptr;
+ LangOpts = nullptr;
+ }
+}
+
+void VerifyDiagnosticConsumer::HandleDiagnostic(
+ DiagnosticsEngine::Level DiagLevel, const Diagnostic &Info) {
+ if (Info.hasSourceManager()) {
+ // If this diagnostic is for a different source manager, ignore it.
+ if (SrcManager && &Info.getSourceManager() != SrcManager)
+ return;
+
+ setSourceManager(Info.getSourceManager());
+ }
+
+#ifndef NDEBUG
+ // Debug build tracks unparsed files for possible
+ // unparsed expected-* directives.
+ if (SrcManager) {
+ SourceLocation Loc = Info.getLocation();
+ if (Loc.isValid()) {
+ ParsedStatus PS = IsUnparsed;
+
+ Loc = SrcManager->getExpansionLoc(Loc);
+ FileID FID = SrcManager->getFileID(Loc);
+
+ const FileEntry *FE = SrcManager->getFileEntryForID(FID);
+ if (FE && CurrentPreprocessor && SrcManager->isLoadedFileID(FID)) {
+ // If the file is a modules header file it shall not be parsed
+ // for expected-* directives.
+ HeaderSearch &HS = CurrentPreprocessor->getHeaderSearchInfo();
+ if (HS.findModuleForHeader(FE))
+ PS = IsUnparsedNoDirectives;
+ }
+
+ UpdateParsedFileStatus(*SrcManager, FID, PS);
+ }
+ }
+#endif
+
+ // Send the diagnostic to the buffer, we will check it once we reach the end
+ // of the source file (or are destructed).
+ Buffer->HandleDiagnostic(DiagLevel, Info);
+}
+
+//===----------------------------------------------------------------------===//
+// Checking diagnostics implementation.
+//===----------------------------------------------------------------------===//
+
+typedef TextDiagnosticBuffer::DiagList DiagList;
+typedef TextDiagnosticBuffer::const_iterator const_diag_iterator;
+
+namespace {
+
+/// StandardDirective - Directive with string matching.
+///
+class StandardDirective : public Directive {
+public:
+ StandardDirective(SourceLocation DirectiveLoc, SourceLocation DiagnosticLoc,
+ bool MatchAnyLine, StringRef Text, unsigned Min,
+ unsigned Max)
+ : Directive(DirectiveLoc, DiagnosticLoc, MatchAnyLine, Text, Min, Max) { }
+
+ bool isValid(std::string &Error) override {
+ // all strings are considered valid; even empty ones
+ return true;
+ }
+
+ bool match(StringRef S) override {
+ return S.find(Text) != StringRef::npos;
+ }
+};
+
+/// RegexDirective - Directive with regular-expression matching.
+///
+class RegexDirective : public Directive {
+public:
+ RegexDirective(SourceLocation DirectiveLoc, SourceLocation DiagnosticLoc,
+ bool MatchAnyLine, StringRef Text, unsigned Min, unsigned Max,
+ StringRef RegexStr)
+ : Directive(DirectiveLoc, DiagnosticLoc, MatchAnyLine, Text, Min, Max),
+ Regex(RegexStr) { }
+
+ bool isValid(std::string &Error) override {
+ if (Regex.isValid(Error))
+ return true;
+ return false;
+ }
+
+ bool match(StringRef S) override {
+ return Regex.match(S);
+ }
+
+private:
+ llvm::Regex Regex;
+};
+
+class ParseHelper
+{
+public:
+ ParseHelper(StringRef S)
+ : Begin(S.begin()), End(S.end()), C(Begin), P(Begin), PEnd(nullptr) {}
+
+ // Return true if string literal is next.
+ bool Next(StringRef S) {
+ P = C;
+ PEnd = C + S.size();
+ if (PEnd > End)
+ return false;
+ return !memcmp(P, S.data(), S.size());
+ }
+
+ // Return true if number is next.
+ // Output N only if number is next.
+ bool Next(unsigned &N) {
+ unsigned TMP = 0;
+ P = C;
+ for (; P < End && P[0] >= '0' && P[0] <= '9'; ++P) {
+ TMP *= 10;
+ TMP += P[0] - '0';
+ }
+ if (P == C)
+ return false;
+ PEnd = P;
+ N = TMP;
+ return true;
+ }
+
+ // Return true if string literal is found.
+ // When true, P marks begin-position of S in content.
+ bool Search(StringRef S, bool EnsureStartOfWord = false) {
+ do {
+ P = std::search(C, End, S.begin(), S.end());
+ PEnd = P + S.size();
+ if (P == End)
+ break;
+ if (!EnsureStartOfWord
+ // Check if string literal starts a new word.
+ || P == Begin || isWhitespace(P[-1])
+ // Or it could be preceded by the start of a comment.
+ || (P > (Begin + 1) && (P[-1] == '/' || P[-1] == '*')
+ && P[-2] == '/'))
+ return true;
+ // Otherwise, skip and search again.
+ } while (Advance());
+ return false;
+ }
+
+ // Return true if a CloseBrace that closes the OpenBrace at the current nest
+ // level is found. When true, P marks begin-position of CloseBrace.
+ bool SearchClosingBrace(StringRef OpenBrace, StringRef CloseBrace) {
+ unsigned Depth = 1;
+ P = C;
+ while (P < End) {
+ StringRef S(P, End - P);
+ if (S.startswith(OpenBrace)) {
+ ++Depth;
+ P += OpenBrace.size();
+ } else if (S.startswith(CloseBrace)) {
+ --Depth;
+ if (Depth == 0) {
+ PEnd = P + CloseBrace.size();
+ return true;
+ }
+ P += CloseBrace.size();
+ } else {
+ ++P;
+ }
+ }
+ return false;
+ }
+
+ // Advance 1-past previous next/search.
+ // Behavior is undefined if previous next/search failed.
+ bool Advance() {
+ C = PEnd;
+ return C < End;
+ }
+
+ // Skip zero or more whitespace.
+ void SkipWhitespace() {
+ for (; C < End && isWhitespace(*C); ++C)
+ ;
+ }
+
+ // Return true if EOF reached.
+ bool Done() {
+ return !(C < End);
+ }
+
+ const char * const Begin; // beginning of expected content
+ const char * const End; // end of expected content (1-past)
+ const char *C; // position of next char in content
+ const char *P;
+
+private:
+ const char *PEnd; // previous next/search subject end (1-past)
+};
+
+} // namespace anonymous
+
+/// ParseDirective - Go through the comment and see if it indicates expected
+/// diagnostics. If so, then put them in the appropriate directive list.
+///
+/// Returns true if any valid directives were found.
+static bool ParseDirective(StringRef S, ExpectedData *ED, SourceManager &SM,
+ Preprocessor *PP, SourceLocation Pos,
+ VerifyDiagnosticConsumer::DirectiveStatus &Status) {
+ DiagnosticsEngine &Diags = PP ? PP->getDiagnostics() : SM.getDiagnostics();
+
+ // A single comment may contain multiple directives.
+ bool FoundDirective = false;
+ for (ParseHelper PH(S); !PH.Done();) {
+ // Search for token: expected
+ if (!PH.Search("expected", true))
+ break;
+ PH.Advance();
+
+ // Next token: -
+ if (!PH.Next("-"))
+ continue;
+ PH.Advance();
+
+ // Next token: { error | warning | note }
+ DirectiveList *DL = nullptr;
+ if (PH.Next("error"))
+ DL = ED ? &ED->Errors : nullptr;
+ else if (PH.Next("warning"))
+ DL = ED ? &ED->Warnings : nullptr;
+ else if (PH.Next("remark"))
+ DL = ED ? &ED->Remarks : nullptr;
+ else if (PH.Next("note"))
+ DL = ED ? &ED->Notes : nullptr;
+ else if (PH.Next("no-diagnostics")) {
+ if (Status == VerifyDiagnosticConsumer::HasOtherExpectedDirectives)
+ Diags.Report(Pos, diag::err_verify_invalid_no_diags)
+ << /*IsExpectedNoDiagnostics=*/true;
+ else
+ Status = VerifyDiagnosticConsumer::HasExpectedNoDiagnostics;
+ continue;
+ } else
+ continue;
+ PH.Advance();
+
+ if (Status == VerifyDiagnosticConsumer::HasExpectedNoDiagnostics) {
+ Diags.Report(Pos, diag::err_verify_invalid_no_diags)
+ << /*IsExpectedNoDiagnostics=*/false;
+ continue;
+ }
+ Status = VerifyDiagnosticConsumer::HasOtherExpectedDirectives;
+
+ // If a directive has been found but we're not interested
+ // in storing the directive information, return now.
+ if (!DL)
+ return true;
+
+ // Default directive kind.
+ bool RegexKind = false;
+ const char* KindStr = "string";
+
+ // Next optional token: -
+ if (PH.Next("-re")) {
+ PH.Advance();
+ RegexKind = true;
+ KindStr = "regex";
+ }
+
+ // Next optional token: @
+ SourceLocation ExpectedLoc;
+ bool MatchAnyLine = false;
+ if (!PH.Next("@")) {
+ ExpectedLoc = Pos;
+ } else {
+ PH.Advance();
+ unsigned Line = 0;
+ bool FoundPlus = PH.Next("+");
+ if (FoundPlus || PH.Next("-")) {
+ // Relative to current line.
+ PH.Advance();
+ bool Invalid = false;
+ unsigned ExpectedLine = SM.getSpellingLineNumber(Pos, &Invalid);
+ if (!Invalid && PH.Next(Line) && (FoundPlus || Line < ExpectedLine)) {
+ if (FoundPlus) ExpectedLine += Line;
+ else ExpectedLine -= Line;
+ ExpectedLoc = SM.translateLineCol(SM.getFileID(Pos), ExpectedLine, 1);
+ }
+ } else if (PH.Next(Line)) {
+ // Absolute line number.
+ if (Line > 0)
+ ExpectedLoc = SM.translateLineCol(SM.getFileID(Pos), Line, 1);
+ } else if (PP && PH.Search(":")) {
+ // Specific source file.
+ StringRef Filename(PH.C, PH.P-PH.C);
+ PH.Advance();
+
+ // Lookup file via Preprocessor, like a #include.
+ const DirectoryLookup *CurDir;
+ const FileEntry *FE =
+ PP->LookupFile(Pos, Filename, false, nullptr, nullptr, CurDir,
+ nullptr, nullptr, nullptr);
+ if (!FE) {
+ Diags.Report(Pos.getLocWithOffset(PH.C-PH.Begin),
+ diag::err_verify_missing_file) << Filename << KindStr;
+ continue;
+ }
+
+ if (SM.translateFile(FE).isInvalid())
+ SM.createFileID(FE, Pos, SrcMgr::C_User);
+
+ if (PH.Next(Line) && Line > 0)
+ ExpectedLoc = SM.translateFileLineCol(FE, Line, 1);
+ else if (PH.Next("*")) {
+ MatchAnyLine = true;
+ ExpectedLoc = SM.translateFileLineCol(FE, 1, 1);
+ }
+ }
+
+ if (ExpectedLoc.isInvalid()) {
+ Diags.Report(Pos.getLocWithOffset(PH.C-PH.Begin),
+ diag::err_verify_missing_line) << KindStr;
+ continue;
+ }
+ PH.Advance();
+ }
+
+ // Skip optional whitespace.
+ PH.SkipWhitespace();
+
+ // Next optional token: positive integer or a '+'.
+ unsigned Min = 1;
+ unsigned Max = 1;
+ if (PH.Next(Min)) {
+ PH.Advance();
+ // A positive integer can be followed by a '+' meaning min
+ // or more, or by a '-' meaning a range from min to max.
+ if (PH.Next("+")) {
+ Max = Directive::MaxCount;
+ PH.Advance();
+ } else if (PH.Next("-")) {
+ PH.Advance();
+ if (!PH.Next(Max) || Max < Min) {
+ Diags.Report(Pos.getLocWithOffset(PH.C-PH.Begin),
+ diag::err_verify_invalid_range) << KindStr;
+ continue;
+ }
+ PH.Advance();
+ } else {
+ Max = Min;
+ }
+ } else if (PH.Next("+")) {
+ // '+' on its own means "1 or more".
+ Max = Directive::MaxCount;
+ PH.Advance();
+ }
+
+ // Skip optional whitespace.
+ PH.SkipWhitespace();
+
+ // Next token: {{
+ if (!PH.Next("{{")) {
+ Diags.Report(Pos.getLocWithOffset(PH.C-PH.Begin),
+ diag::err_verify_missing_start) << KindStr;
+ continue;
+ }
+ PH.Advance();
+ const char* const ContentBegin = PH.C; // mark content begin
+
+ // Search for token: }}
+ if (!PH.SearchClosingBrace("{{", "}}")) {
+ Diags.Report(Pos.getLocWithOffset(PH.C-PH.Begin),
+ diag::err_verify_missing_end) << KindStr;
+ continue;
+ }
+ const char* const ContentEnd = PH.P; // mark content end
+ PH.Advance();
+
+ // Build directive text; convert \n to newlines.
+ std::string Text;
+ StringRef NewlineStr = "\\n";
+ StringRef Content(ContentBegin, ContentEnd-ContentBegin);
+ size_t CPos = 0;
+ size_t FPos;
+ while ((FPos = Content.find(NewlineStr, CPos)) != StringRef::npos) {
+ Text += Content.substr(CPos, FPos-CPos);
+ Text += '\n';
+ CPos = FPos + NewlineStr.size();
+ }
+ if (Text.empty())
+ Text.assign(ContentBegin, ContentEnd);
+
+ // Check that regex directives contain at least one regex.
+ if (RegexKind && Text.find("{{") == StringRef::npos) {
+ Diags.Report(Pos.getLocWithOffset(ContentBegin-PH.Begin),
+ diag::err_verify_missing_regex) << Text;
+ return false;
+ }
+
+ // Construct new directive.
+ std::unique_ptr<Directive> D = Directive::create(
+ RegexKind, Pos, ExpectedLoc, MatchAnyLine, Text, Min, Max);
+
+ std::string Error;
+ if (D->isValid(Error)) {
+ DL->push_back(std::move(D));
+ FoundDirective = true;
+ } else {
+ Diags.Report(Pos.getLocWithOffset(ContentBegin-PH.Begin),
+ diag::err_verify_invalid_content)
+ << KindStr << Error;
+ }
+ }
+
+ return FoundDirective;
+}
+
+/// HandleComment - Hook into the preprocessor and extract comments containing
+/// expected errors and warnings.
+bool VerifyDiagnosticConsumer::HandleComment(Preprocessor &PP,
+ SourceRange Comment) {
+ SourceManager &SM = PP.getSourceManager();
+
+ // If this comment is for a different source manager, ignore it.
+ if (SrcManager && &SM != SrcManager)
+ return false;
+
+ SourceLocation CommentBegin = Comment.getBegin();
+
+ const char *CommentRaw = SM.getCharacterData(CommentBegin);
+ StringRef C(CommentRaw, SM.getCharacterData(Comment.getEnd()) - CommentRaw);
+
+ if (C.empty())
+ return false;
+
+ // Fold any "\<EOL>" sequences
+ size_t loc = C.find('\\');
+ if (loc == StringRef::npos) {
+ ParseDirective(C, &ED, SM, &PP, CommentBegin, Status);
+ return false;
+ }
+
+ std::string C2;
+ C2.reserve(C.size());
+
+ for (size_t last = 0;; loc = C.find('\\', last)) {
+ if (loc == StringRef::npos || loc == C.size()) {
+ C2 += C.substr(last);
+ break;
+ }
+ C2 += C.substr(last, loc-last);
+ last = loc + 1;
+
+ if (C[last] == '\n' || C[last] == '\r') {
+ ++last;
+
+ // Escape \r\n or \n\r, but not \n\n.
+ if (last < C.size())
+ if (C[last] == '\n' || C[last] == '\r')
+ if (C[last] != C[last-1])
+ ++last;
+ } else {
+ // This was just a normal backslash.
+ C2 += '\\';
+ }
+ }
+
+ if (!C2.empty())
+ ParseDirective(C2, &ED, SM, &PP, CommentBegin, Status);
+ return false;
+}
+
+#ifndef NDEBUG
+/// \brief Lex the specified source file to determine whether it contains
+/// any expected-* directives. As a Lexer is used rather than a full-blown
+/// Preprocessor, directives inside skipped #if blocks will still be found.
+///
+/// \return true if any directives were found.
+static bool findDirectives(SourceManager &SM, FileID FID,
+ const LangOptions &LangOpts) {
+ // Create a raw lexer to pull all the comments out of FID.
+ if (FID.isInvalid())
+ return false;
+
+ // Create a lexer to lex all the tokens of the main file in raw mode.
+ const llvm::MemoryBuffer *FromFile = SM.getBuffer(FID);
+ Lexer RawLex(FID, FromFile, SM, LangOpts);
+
+ // Return comments as tokens, this is how we find expected diagnostics.
+ RawLex.SetCommentRetentionState(true);
+
+ Token Tok;
+ Tok.setKind(tok::comment);
+ VerifyDiagnosticConsumer::DirectiveStatus Status =
+ VerifyDiagnosticConsumer::HasNoDirectives;
+ while (Tok.isNot(tok::eof)) {
+ RawLex.LexFromRawLexer(Tok);
+ if (!Tok.is(tok::comment)) continue;
+
+ std::string Comment = RawLex.getSpelling(Tok, SM, LangOpts);
+ if (Comment.empty()) continue;
+
+ // Find first directive.
+ if (ParseDirective(Comment, nullptr, SM, nullptr, Tok.getLocation(),
+ Status))
+ return true;
+ }
+ return false;
+}
+#endif // !NDEBUG
+
+/// \brief Takes a list of diagnostics that have been generated but not matched
+/// by an expected-* directive and produces a diagnostic to the user from this.
+static unsigned PrintUnexpected(DiagnosticsEngine &Diags, SourceManager *SourceMgr,
+ const_diag_iterator diag_begin,
+ const_diag_iterator diag_end,
+ const char *Kind) {
+ if (diag_begin == diag_end) return 0;
+
+ SmallString<256> Fmt;
+ llvm::raw_svector_ostream OS(Fmt);
+ for (const_diag_iterator I = diag_begin, E = diag_end; I != E; ++I) {
+ if (I->first.isInvalid() || !SourceMgr)
+ OS << "\n (frontend)";
+ else {
+ OS << "\n ";
+ if (const FileEntry *File = SourceMgr->getFileEntryForID(
+ SourceMgr->getFileID(I->first)))
+ OS << " File " << File->getName();
+ OS << " Line " << SourceMgr->getPresumedLineNumber(I->first);
+ }
+ OS << ": " << I->second;
+ }
+
+ Diags.Report(diag::err_verify_inconsistent_diags).setForceEmit()
+ << Kind << /*Unexpected=*/true << OS.str();
+ return std::distance(diag_begin, diag_end);
+}
+
+/// \brief Takes a list of diagnostics that were expected to have been generated
+/// but were not and produces a diagnostic to the user from this.
+static unsigned PrintExpected(DiagnosticsEngine &Diags,
+ SourceManager &SourceMgr,
+ std::vector<Directive *> &DL, const char *Kind) {
+ if (DL.empty())
+ return 0;
+
+ SmallString<256> Fmt;
+ llvm::raw_svector_ostream OS(Fmt);
+ for (auto *DirPtr : DL) {
+ Directive &D = *DirPtr;
+ OS << "\n File " << SourceMgr.getFilename(D.DiagnosticLoc);
+ if (D.MatchAnyLine)
+ OS << " Line *";
+ else
+ OS << " Line " << SourceMgr.getPresumedLineNumber(D.DiagnosticLoc);
+ if (D.DirectiveLoc != D.DiagnosticLoc)
+ OS << " (directive at "
+ << SourceMgr.getFilename(D.DirectiveLoc) << ':'
+ << SourceMgr.getPresumedLineNumber(D.DirectiveLoc) << ')';
+ OS << ": " << D.Text;
+ }
+
+ Diags.Report(diag::err_verify_inconsistent_diags).setForceEmit()
+ << Kind << /*Unexpected=*/false << OS.str();
+ return DL.size();
+}
+
+/// \brief Determine whether two source locations come from the same file.
+static bool IsFromSameFile(SourceManager &SM, SourceLocation DirectiveLoc,
+ SourceLocation DiagnosticLoc) {
+ while (DiagnosticLoc.isMacroID())
+ DiagnosticLoc = SM.getImmediateMacroCallerLoc(DiagnosticLoc);
+
+ if (SM.isWrittenInSameFile(DirectiveLoc, DiagnosticLoc))
+ return true;
+
+ const FileEntry *DiagFile = SM.getFileEntryForID(SM.getFileID(DiagnosticLoc));
+ if (!DiagFile && SM.isWrittenInMainFile(DirectiveLoc))
+ return true;
+
+ return (DiagFile == SM.getFileEntryForID(SM.getFileID(DirectiveLoc)));
+}
+
+/// CheckLists - Compare expected to seen diagnostic lists and return the
+/// the difference between them.
+///
+static unsigned CheckLists(DiagnosticsEngine &Diags, SourceManager &SourceMgr,
+ const char *Label,
+ DirectiveList &Left,
+ const_diag_iterator d2_begin,
+ const_diag_iterator d2_end) {
+ std::vector<Directive *> LeftOnly;
+ DiagList Right(d2_begin, d2_end);
+
+ for (auto &Owner : Left) {
+ Directive &D = *Owner;
+ unsigned LineNo1 = SourceMgr.getPresumedLineNumber(D.DiagnosticLoc);
+
+ for (unsigned i = 0; i < D.Max; ++i) {
+ DiagList::iterator II, IE;
+ for (II = Right.begin(), IE = Right.end(); II != IE; ++II) {
+ if (!D.MatchAnyLine) {
+ unsigned LineNo2 = SourceMgr.getPresumedLineNumber(II->first);
+ if (LineNo1 != LineNo2)
+ continue;
+ }
+
+ if (!IsFromSameFile(SourceMgr, D.DiagnosticLoc, II->first))
+ continue;
+
+ const std::string &RightText = II->second;
+ if (D.match(RightText))
+ break;
+ }
+ if (II == IE) {
+ // Not found.
+ if (i >= D.Min) break;
+ LeftOnly.push_back(&D);
+ } else {
+ // Found. The same cannot be found twice.
+ Right.erase(II);
+ }
+ }
+ }
+ // Now all that's left in Right are those that were not matched.
+ unsigned num = PrintExpected(Diags, SourceMgr, LeftOnly, Label);
+ num += PrintUnexpected(Diags, &SourceMgr, Right.begin(), Right.end(), Label);
+ return num;
+}
+
+/// CheckResults - This compares the expected results to those that
+/// were actually reported. It emits any discrepencies. Return "true" if there
+/// were problems. Return "false" otherwise.
+///
+static unsigned CheckResults(DiagnosticsEngine &Diags, SourceManager &SourceMgr,
+ const TextDiagnosticBuffer &Buffer,
+ ExpectedData &ED) {
+ // We want to capture the delta between what was expected and what was
+ // seen.
+ //
+ // Expected \ Seen - set expected but not seen
+ // Seen \ Expected - set seen but not expected
+ unsigned NumProblems = 0;
+
+ // See if there are error mismatches.
+ NumProblems += CheckLists(Diags, SourceMgr, "error", ED.Errors,
+ Buffer.err_begin(), Buffer.err_end());
+
+ // See if there are warning mismatches.
+ NumProblems += CheckLists(Diags, SourceMgr, "warning", ED.Warnings,
+ Buffer.warn_begin(), Buffer.warn_end());
+
+ // See if there are remark mismatches.
+ NumProblems += CheckLists(Diags, SourceMgr, "remark", ED.Remarks,
+ Buffer.remark_begin(), Buffer.remark_end());
+
+ // See if there are note mismatches.
+ NumProblems += CheckLists(Diags, SourceMgr, "note", ED.Notes,
+ Buffer.note_begin(), Buffer.note_end());
+
+ return NumProblems;
+}
+
+void VerifyDiagnosticConsumer::UpdateParsedFileStatus(SourceManager &SM,
+ FileID FID,
+ ParsedStatus PS) {
+ // Check SourceManager hasn't changed.
+ setSourceManager(SM);
+
+#ifndef NDEBUG
+ if (FID.isInvalid())
+ return;
+
+ const FileEntry *FE = SM.getFileEntryForID(FID);
+
+ if (PS == IsParsed) {
+ // Move the FileID from the unparsed set to the parsed set.
+ UnparsedFiles.erase(FID);
+ ParsedFiles.insert(std::make_pair(FID, FE));
+ } else if (!ParsedFiles.count(FID) && !UnparsedFiles.count(FID)) {
+ // Add the FileID to the unparsed set if we haven't seen it before.
+
+ // Check for directives.
+ bool FoundDirectives;
+ if (PS == IsUnparsedNoDirectives)
+ FoundDirectives = false;
+ else
+ FoundDirectives = !LangOpts || findDirectives(SM, FID, *LangOpts);
+
+ // Add the FileID to the unparsed set.
+ UnparsedFiles.insert(std::make_pair(FID,
+ UnparsedFileStatus(FE, FoundDirectives)));
+ }
+#endif
+}
+
+void VerifyDiagnosticConsumer::CheckDiagnostics() {
+ // Ensure any diagnostics go to the primary client.
+ DiagnosticConsumer *CurClient = Diags.getClient();
+ std::unique_ptr<DiagnosticConsumer> Owner = Diags.takeClient();
+ Diags.setClient(PrimaryClient, false);
+
+#ifndef NDEBUG
+ // In a debug build, scan through any files that may have been missed
+ // during parsing and issue a fatal error if directives are contained
+ // within these files. If a fatal error occurs, this suggests that
+ // this file is being parsed separately from the main file, in which
+ // case consider moving the directives to the correct place, if this
+ // is applicable.
+ if (UnparsedFiles.size() > 0) {
+ // Generate a cache of parsed FileEntry pointers for alias lookups.
+ llvm::SmallPtrSet<const FileEntry *, 8> ParsedFileCache;
+ for (ParsedFilesMap::iterator I = ParsedFiles.begin(),
+ End = ParsedFiles.end(); I != End; ++I) {
+ if (const FileEntry *FE = I->second)
+ ParsedFileCache.insert(FE);
+ }
+
+ // Iterate through list of unparsed files.
+ for (UnparsedFilesMap::iterator I = UnparsedFiles.begin(),
+ End = UnparsedFiles.end(); I != End; ++I) {
+ const UnparsedFileStatus &Status = I->second;
+ const FileEntry *FE = Status.getFile();
+
+ // Skip files that have been parsed via an alias.
+ if (FE && ParsedFileCache.count(FE))
+ continue;
+
+ // Report a fatal error if this file contained directives.
+ if (Status.foundDirectives()) {
+ llvm::report_fatal_error(Twine("-verify directives found after rather"
+ " than during normal parsing of ",
+ StringRef(FE ? FE->getName() : "(unknown)")));
+ }
+ }
+
+ // UnparsedFiles has been processed now, so clear it.
+ UnparsedFiles.clear();
+ }
+#endif // !NDEBUG
+
+ if (SrcManager) {
+ // Produce an error if no expected-* directives could be found in the
+ // source file(s) processed.
+ if (Status == HasNoDirectives) {
+ Diags.Report(diag::err_verify_no_directives).setForceEmit();
+ ++NumErrors;
+ Status = HasNoDirectivesReported;
+ }
+
+ // Check that the expected diagnostics occurred.
+ NumErrors += CheckResults(Diags, *SrcManager, *Buffer, ED);
+ } else {
+ NumErrors += (PrintUnexpected(Diags, nullptr, Buffer->err_begin(),
+ Buffer->err_end(), "error") +
+ PrintUnexpected(Diags, nullptr, Buffer->warn_begin(),
+ Buffer->warn_end(), "warn") +
+ PrintUnexpected(Diags, nullptr, Buffer->note_begin(),
+ Buffer->note_end(), "note"));
+ }
+
+ Diags.setClient(CurClient, Owner.release() != nullptr);
+
+ // Reset the buffer, we have processed all the diagnostics in it.
+ Buffer.reset(new TextDiagnosticBuffer());
+ ED.Reset();
+}
+
+std::unique_ptr<Directive> Directive::create(bool RegexKind,
+ SourceLocation DirectiveLoc,
+ SourceLocation DiagnosticLoc,
+ bool MatchAnyLine, StringRef Text,
+ unsigned Min, unsigned Max) {
+ if (!RegexKind)
+ return llvm::make_unique<StandardDirective>(DirectiveLoc, DiagnosticLoc,
+ MatchAnyLine, Text, Min, Max);
+
+ // Parse the directive into a regular expression.
+ std::string RegexStr;
+ StringRef S = Text;
+ while (!S.empty()) {
+ if (S.startswith("{{")) {
+ S = S.drop_front(2);
+ size_t RegexMatchLength = S.find("}}");
+ assert(RegexMatchLength != StringRef::npos);
+ // Append the regex, enclosed in parentheses.
+ RegexStr += "(";
+ RegexStr.append(S.data(), RegexMatchLength);
+ RegexStr += ")";
+ S = S.drop_front(RegexMatchLength + 2);
+ } else {
+ size_t VerbatimMatchLength = S.find("{{");
+ if (VerbatimMatchLength == StringRef::npos)
+ VerbatimMatchLength = S.size();
+ // Escape and append the fixed string.
+ RegexStr += llvm::Regex::escape(S.substr(0, VerbatimMatchLength));
+ S = S.drop_front(VerbatimMatchLength);
+ }
+ }
+
+ return llvm::make_unique<RegexDirective>(
+ DirectiveLoc, DiagnosticLoc, MatchAnyLine, Text, Min, Max, RegexStr);
+}
diff --git a/contrib/llvm/tools/clang/lib/FrontendTool/ExecuteCompilerInvocation.cpp b/contrib/llvm/tools/clang/lib/FrontendTool/ExecuteCompilerInvocation.cpp
new file mode 100644
index 0000000..79cf004
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/FrontendTool/ExecuteCompilerInvocation.cpp
@@ -0,0 +1,226 @@
+//===--- ExecuteCompilerInvocation.cpp ------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file holds ExecuteCompilerInvocation(). It is split into its own file to
+// minimize the impact of pulling in essentially everything else in Clang.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/FrontendTool/Utils.h"
+#include "clang/ARCMigrate/ARCMTActions.h"
+#include "clang/CodeGen/CodeGenAction.h"
+#include "clang/Driver/Options.h"
+#include "clang/Frontend/CompilerInstance.h"
+#include "clang/Frontend/CompilerInvocation.h"
+#include "clang/Frontend/FrontendActions.h"
+#include "clang/Frontend/FrontendDiagnostic.h"
+#include "clang/Frontend/FrontendPluginRegistry.h"
+#include "clang/Frontend/Utils.h"
+#include "clang/Rewrite/Frontend/FrontendActions.h"
+#include "clang/StaticAnalyzer/Frontend/FrontendActions.h"
+#include "llvm/Option/OptTable.h"
+#include "llvm/Option/Option.h"
+#include "llvm/Support/DynamicLibrary.h"
+#include "llvm/Support/ErrorHandling.h"
+using namespace clang;
+using namespace llvm::opt;
+
+static FrontendAction *CreateFrontendBaseAction(CompilerInstance &CI) {
+ using namespace clang::frontend;
+ StringRef Action("unknown");
+ (void)Action;
+
+ switch (CI.getFrontendOpts().ProgramAction) {
+ case ASTDeclList: return new ASTDeclListAction();
+ case ASTDump: return new ASTDumpAction();
+ case ASTPrint: return new ASTPrintAction();
+ case ASTView: return new ASTViewAction();
+ case DumpRawTokens: return new DumpRawTokensAction();
+ case DumpTokens: return new DumpTokensAction();
+ case EmitAssembly: return new EmitAssemblyAction();
+ case EmitBC: return new EmitBCAction();
+ case EmitHTML: return new HTMLPrintAction();
+ case EmitLLVM: return new EmitLLVMAction();
+ case EmitLLVMOnly: return new EmitLLVMOnlyAction();
+ case EmitCodeGenOnly: return new EmitCodeGenOnlyAction();
+ case EmitObj: return new EmitObjAction();
+ case FixIt: return new FixItAction();
+ case GenerateModule: return new GenerateModuleAction;
+ case GeneratePCH: return new GeneratePCHAction;
+ case GeneratePTH: return new GeneratePTHAction();
+ case InitOnly: return new InitOnlyAction();
+ case ParseSyntaxOnly: return new SyntaxOnlyAction();
+ case ModuleFileInfo: return new DumpModuleInfoAction();
+ case VerifyPCH: return new VerifyPCHAction();
+
+ case PluginAction: {
+ for (FrontendPluginRegistry::iterator it =
+ FrontendPluginRegistry::begin(), ie = FrontendPluginRegistry::end();
+ it != ie; ++it) {
+ if (it->getName() == CI.getFrontendOpts().ActionName) {
+ std::unique_ptr<PluginASTAction> P(it->instantiate());
+ if (!P->ParseArgs(CI, CI.getFrontendOpts().PluginArgs))
+ return nullptr;
+ return P.release();
+ }
+ }
+
+ CI.getDiagnostics().Report(diag::err_fe_invalid_plugin_name)
+ << CI.getFrontendOpts().ActionName;
+ return nullptr;
+ }
+
+ case PrintDeclContext: return new DeclContextPrintAction();
+ case PrintPreamble: return new PrintPreambleAction();
+ case PrintPreprocessedInput: {
+ if (CI.getPreprocessorOutputOpts().RewriteIncludes)
+ return new RewriteIncludesAction();
+ return new PrintPreprocessedAction();
+ }
+
+ case RewriteMacros: return new RewriteMacrosAction();
+ case RewriteTest: return new RewriteTestAction();
+#ifdef CLANG_ENABLE_OBJC_REWRITER
+ case RewriteObjC: return new RewriteObjCAction();
+#else
+ case RewriteObjC: Action = "RewriteObjC"; break;
+#endif
+#ifdef CLANG_ENABLE_ARCMT
+ case MigrateSource: return new arcmt::MigrateSourceAction();
+#else
+ case MigrateSource: Action = "MigrateSource"; break;
+#endif
+#ifdef CLANG_ENABLE_STATIC_ANALYZER
+ case RunAnalysis: return new ento::AnalysisAction();
+#else
+ case RunAnalysis: Action = "RunAnalysis"; break;
+#endif
+ case RunPreprocessorOnly: return new PreprocessOnlyAction();
+ }
+
+#if !defined(CLANG_ENABLE_ARCMT) || !defined(CLANG_ENABLE_STATIC_ANALYZER) \
+ || !defined(CLANG_ENABLE_OBJC_REWRITER)
+ CI.getDiagnostics().Report(diag::err_fe_action_not_available) << Action;
+ return 0;
+#else
+ llvm_unreachable("Invalid program action!");
+#endif
+}
+
+static FrontendAction *CreateFrontendAction(CompilerInstance &CI) {
+ // Create the underlying action.
+ FrontendAction *Act = CreateFrontendBaseAction(CI);
+ if (!Act)
+ return nullptr;
+
+ const FrontendOptions &FEOpts = CI.getFrontendOpts();
+
+ if (FEOpts.FixAndRecompile) {
+ Act = new FixItRecompile(Act);
+ }
+
+#ifdef CLANG_ENABLE_ARCMT
+ if (CI.getFrontendOpts().ProgramAction != frontend::MigrateSource &&
+ CI.getFrontendOpts().ProgramAction != frontend::GeneratePCH) {
+ // Potentially wrap the base FE action in an ARC Migrate Tool action.
+ switch (FEOpts.ARCMTAction) {
+ case FrontendOptions::ARCMT_None:
+ break;
+ case FrontendOptions::ARCMT_Check:
+ Act = new arcmt::CheckAction(Act);
+ break;
+ case FrontendOptions::ARCMT_Modify:
+ Act = new arcmt::ModifyAction(Act);
+ break;
+ case FrontendOptions::ARCMT_Migrate:
+ Act = new arcmt::MigrateAction(Act,
+ FEOpts.MTMigrateDir,
+ FEOpts.ARCMTMigrateReportOut,
+ FEOpts.ARCMTMigrateEmitARCErrors);
+ break;
+ }
+
+ if (FEOpts.ObjCMTAction != FrontendOptions::ObjCMT_None) {
+ Act = new arcmt::ObjCMigrateAction(Act, FEOpts.MTMigrateDir,
+ FEOpts.ObjCMTAction);
+ }
+ }
+#endif
+
+ // If there are any AST files to merge, create a frontend action
+ // adaptor to perform the merge.
+ if (!FEOpts.ASTMergeFiles.empty())
+ Act = new ASTMergeAction(Act, FEOpts.ASTMergeFiles);
+
+ return Act;
+}
+
+bool clang::ExecuteCompilerInvocation(CompilerInstance *Clang) {
+ // Honor -help.
+ if (Clang->getFrontendOpts().ShowHelp) {
+ std::unique_ptr<OptTable> Opts(driver::createDriverOptTable());
+ Opts->PrintHelp(llvm::outs(), "clang -cc1",
+ "LLVM 'Clang' Compiler: http://clang.llvm.org",
+ /*Include=*/ driver::options::CC1Option, /*Exclude=*/ 0);
+ return true;
+ }
+
+ // Honor -version.
+ //
+ // FIXME: Use a better -version message?
+ if (Clang->getFrontendOpts().ShowVersion) {
+ llvm::cl::PrintVersionMessage();
+ return true;
+ }
+
+ // Load any requested plugins.
+ for (unsigned i = 0,
+ e = Clang->getFrontendOpts().Plugins.size(); i != e; ++i) {
+ const std::string &Path = Clang->getFrontendOpts().Plugins[i];
+ std::string Error;
+ if (llvm::sys::DynamicLibrary::LoadLibraryPermanently(Path.c_str(), &Error))
+ Clang->getDiagnostics().Report(diag::err_fe_unable_to_load_plugin)
+ << Path << Error;
+ }
+
+ // Honor -mllvm.
+ //
+ // FIXME: Remove this, one day.
+ // This should happen AFTER plugins have been loaded!
+ if (!Clang->getFrontendOpts().LLVMArgs.empty()) {
+ unsigned NumArgs = Clang->getFrontendOpts().LLVMArgs.size();
+ auto Args = llvm::make_unique<const char*[]>(NumArgs + 2);
+ Args[0] = "clang (LLVM option parsing)";
+ for (unsigned i = 0; i != NumArgs; ++i)
+ Args[i + 1] = Clang->getFrontendOpts().LLVMArgs[i].c_str();
+ Args[NumArgs + 1] = nullptr;
+ llvm::cl::ParseCommandLineOptions(NumArgs + 1, Args.get());
+ }
+
+#ifdef CLANG_ENABLE_STATIC_ANALYZER
+ // Honor -analyzer-checker-help.
+ // This should happen AFTER plugins have been loaded!
+ if (Clang->getAnalyzerOpts()->ShowCheckerHelp) {
+ ento::printCheckerHelp(llvm::outs(), Clang->getFrontendOpts().Plugins);
+ return true;
+ }
+#endif
+
+ // If there were errors in processing arguments, don't do anything else.
+ if (Clang->getDiagnostics().hasErrorOccurred())
+ return false;
+ // Create and execute the frontend action.
+ std::unique_ptr<FrontendAction> Act(CreateFrontendAction(*Clang));
+ if (!Act)
+ return false;
+ bool Success = Clang->ExecuteAction(*Act);
+ if (Clang->getFrontendOpts().DisableFree)
+ BuryPointer(std::move(Act));
+ return Success;
+}
diff --git a/contrib/llvm/tools/clang/lib/Headers/Intrin.h b/contrib/llvm/tools/clang/lib/Headers/Intrin.h
new file mode 100644
index 0000000..727a55e
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/Intrin.h
@@ -0,0 +1,965 @@
+/* ===-------- Intrin.h ---------------------------------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+/* Only include this if we're compiling for the windows platform. */
+#ifndef _MSC_VER
+#include_next <Intrin.h>
+#else
+
+#ifndef __INTRIN_H
+#define __INTRIN_H
+
+/* First include the standard intrinsics. */
+#if defined(__i386__) || defined(__x86_64__)
+#include <x86intrin.h>
+#endif
+
+/* For the definition of jmp_buf. */
+#if __STDC_HOSTED__
+#include <setjmp.h>
+#endif
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#if defined(__MMX__)
+/* And the random ones that aren't in those files. */
+__m64 _m_from_float(float);
+__m64 _m_from_int(int _l);
+void _m_prefetch(void *);
+float _m_to_float(__m64);
+int _m_to_int(__m64 _M);
+#endif
+
+/* Other assorted instruction intrinsics. */
+void __addfsbyte(unsigned long, unsigned char);
+void __addfsdword(unsigned long, unsigned long);
+void __addfsword(unsigned long, unsigned short);
+void __code_seg(const char *);
+static __inline__
+void __cpuid(int[4], int);
+static __inline__
+void __cpuidex(int[4], int, int);
+void __debugbreak(void);
+__int64 __emul(int, int);
+unsigned __int64 __emulu(unsigned int, unsigned int);
+void __cdecl __fastfail(unsigned int);
+unsigned int __getcallerseflags(void);
+static __inline__
+void __halt(void);
+unsigned char __inbyte(unsigned short);
+void __inbytestring(unsigned short, unsigned char *, unsigned long);
+void __incfsbyte(unsigned long);
+void __incfsdword(unsigned long);
+void __incfsword(unsigned long);
+unsigned long __indword(unsigned short);
+void __indwordstring(unsigned short, unsigned long *, unsigned long);
+void __int2c(void);
+void __invlpg(void *);
+unsigned short __inword(unsigned short);
+void __inwordstring(unsigned short, unsigned short *, unsigned long);
+void __lidt(void *);
+unsigned __int64 __ll_lshift(unsigned __int64, int);
+__int64 __ll_rshift(__int64, int);
+void __llwpcb(void *);
+unsigned char __lwpins32(unsigned int, unsigned int, unsigned int);
+void __lwpval32(unsigned int, unsigned int, unsigned int);
+unsigned int __lzcnt(unsigned int);
+unsigned short __lzcnt16(unsigned short);
+static __inline__
+void __movsb(unsigned char *, unsigned char const *, size_t);
+static __inline__
+void __movsd(unsigned long *, unsigned long const *, size_t);
+static __inline__
+void __movsw(unsigned short *, unsigned short const *, size_t);
+void __nop(void);
+void __nvreg_restore_fence(void);
+void __nvreg_save_fence(void);
+void __outbyte(unsigned short, unsigned char);
+void __outbytestring(unsigned short, unsigned char *, unsigned long);
+void __outdword(unsigned short, unsigned long);
+void __outdwordstring(unsigned short, unsigned long *, unsigned long);
+void __outword(unsigned short, unsigned short);
+void __outwordstring(unsigned short, unsigned short *, unsigned long);
+static __inline__
+unsigned int __popcnt(unsigned int);
+static __inline__
+unsigned short __popcnt16(unsigned short);
+unsigned long __readcr0(void);
+unsigned long __readcr2(void);
+static __inline__
+unsigned long __readcr3(void);
+unsigned long __readcr4(void);
+unsigned long __readcr8(void);
+unsigned int __readdr(unsigned int);
+#ifdef __i386__
+static __inline__
+unsigned char __readfsbyte(unsigned long);
+static __inline__
+unsigned long __readfsdword(unsigned long);
+static __inline__
+unsigned __int64 __readfsqword(unsigned long);
+static __inline__
+unsigned short __readfsword(unsigned long);
+#endif
+static __inline__
+unsigned __int64 __readmsr(unsigned long);
+unsigned __int64 __readpmc(unsigned long);
+unsigned long __segmentlimit(unsigned long);
+void __sidt(void *);
+void *__slwpcb(void);
+static __inline__
+void __stosb(unsigned char *, unsigned char, size_t);
+static __inline__
+void __stosd(unsigned long *, unsigned long, size_t);
+static __inline__
+void __stosw(unsigned short *, unsigned short, size_t);
+void __svm_clgi(void);
+void __svm_invlpga(void *, int);
+void __svm_skinit(int);
+void __svm_stgi(void);
+void __svm_vmload(size_t);
+void __svm_vmrun(size_t);
+void __svm_vmsave(size_t);
+void __ud2(void);
+unsigned __int64 __ull_rshift(unsigned __int64, int);
+void __vmx_off(void);
+void __vmx_vmptrst(unsigned __int64 *);
+void __wbinvd(void);
+void __writecr0(unsigned int);
+static __inline__
+void __writecr3(unsigned int);
+void __writecr4(unsigned int);
+void __writecr8(unsigned int);
+void __writedr(unsigned int, unsigned int);
+void __writefsbyte(unsigned long, unsigned char);
+void __writefsdword(unsigned long, unsigned long);
+void __writefsqword(unsigned long, unsigned __int64);
+void __writefsword(unsigned long, unsigned short);
+void __writemsr(unsigned long, unsigned __int64);
+static __inline__
+void *_AddressOfReturnAddress(void);
+static __inline__
+unsigned char _BitScanForward(unsigned long *_Index, unsigned long _Mask);
+static __inline__
+unsigned char _BitScanReverse(unsigned long *_Index, unsigned long _Mask);
+static __inline__
+unsigned char _bittest(long const *, long);
+static __inline__
+unsigned char _bittestandcomplement(long *, long);
+static __inline__
+unsigned char _bittestandreset(long *, long);
+static __inline__
+unsigned char _bittestandset(long *, long);
+unsigned __int64 __cdecl _byteswap_uint64(unsigned __int64);
+unsigned long __cdecl _byteswap_ulong(unsigned long);
+unsigned short __cdecl _byteswap_ushort(unsigned short);
+void __cdecl _disable(void);
+void __cdecl _enable(void);
+void __cdecl _fxrstor(void const *);
+void __cdecl _fxsave(void *);
+long _InterlockedAddLargeStatistic(__int64 volatile *_Addend, long _Value);
+static __inline__
+long _InterlockedAnd(long volatile *_Value, long _Mask);
+static __inline__
+short _InterlockedAnd16(short volatile *_Value, short _Mask);
+static __inline__
+char _InterlockedAnd8(char volatile *_Value, char _Mask);
+unsigned char _interlockedbittestandreset(long volatile *, long);
+static __inline__
+unsigned char _interlockedbittestandset(long volatile *, long);
+static __inline__
+long __cdecl _InterlockedCompareExchange(long volatile *_Destination,
+ long _Exchange, long _Comparand);
+long _InterlockedCompareExchange_HLEAcquire(long volatile *, long, long);
+long _InterlockedCompareExchange_HLERelease(long volatile *, long, long);
+static __inline__
+short _InterlockedCompareExchange16(short volatile *_Destination,
+ short _Exchange, short _Comparand);
+static __inline__
+__int64 _InterlockedCompareExchange64(__int64 volatile *_Destination,
+ __int64 _Exchange, __int64 _Comparand);
+__int64 _InterlockedcompareExchange64_HLEAcquire(__int64 volatile *, __int64,
+ __int64);
+__int64 _InterlockedCompareExchange64_HLERelease(__int64 volatile *, __int64,
+ __int64);
+static __inline__
+char _InterlockedCompareExchange8(char volatile *_Destination, char _Exchange,
+ char _Comparand);
+void *_InterlockedCompareExchangePointer_HLEAcquire(void *volatile *, void *,
+ void *);
+void *_InterlockedCompareExchangePointer_HLERelease(void *volatile *, void *,
+ void *);
+static __inline__
+long __cdecl _InterlockedDecrement(long volatile *_Addend);
+static __inline__
+short _InterlockedDecrement16(short volatile *_Addend);
+long _InterlockedExchange(long volatile *_Target, long _Value);
+static __inline__
+short _InterlockedExchange16(short volatile *_Target, short _Value);
+static __inline__
+char _InterlockedExchange8(char volatile *_Target, char _Value);
+static __inline__
+long __cdecl _InterlockedExchangeAdd(long volatile *_Addend, long _Value);
+long _InterlockedExchangeAdd_HLEAcquire(long volatile *, long);
+long _InterlockedExchangeAdd_HLERelease(long volatile *, long);
+static __inline__
+short _InterlockedExchangeAdd16(short volatile *_Addend, short _Value);
+__int64 _InterlockedExchangeAdd64_HLEAcquire(__int64 volatile *, __int64);
+__int64 _InterlockedExchangeAdd64_HLERelease(__int64 volatile *, __int64);
+static __inline__
+char _InterlockedExchangeAdd8(char volatile *_Addend, char _Value);
+static __inline__
+long __cdecl _InterlockedIncrement(long volatile *_Addend);
+static __inline__
+short _InterlockedIncrement16(short volatile *_Addend);
+static __inline__
+long _InterlockedOr(long volatile *_Value, long _Mask);
+static __inline__
+short _InterlockedOr16(short volatile *_Value, short _Mask);
+static __inline__
+char _InterlockedOr8(char volatile *_Value, char _Mask);
+static __inline__
+long _InterlockedXor(long volatile *_Value, long _Mask);
+static __inline__
+short _InterlockedXor16(short volatile *_Value, short _Mask);
+static __inline__
+char _InterlockedXor8(char volatile *_Value, char _Mask);
+void __cdecl _invpcid(unsigned int, void *);
+static __inline__
+unsigned long __cdecl _lrotl(unsigned long, int);
+static __inline__
+unsigned long __cdecl _lrotr(unsigned long, int);
+static __inline__
+static __inline__
+void _ReadBarrier(void);
+static __inline__
+void _ReadWriteBarrier(void);
+static __inline__
+void *_ReturnAddress(void);
+unsigned int _rorx_u32(unsigned int, const unsigned int);
+static __inline__
+unsigned int __cdecl _rotl(unsigned int _Value, int _Shift);
+static __inline__
+unsigned short _rotl16(unsigned short _Value, unsigned char _Shift);
+static __inline__
+unsigned __int64 __cdecl _rotl64(unsigned __int64 _Value, int _Shift);
+static __inline__
+unsigned char _rotl8(unsigned char _Value, unsigned char _Shift);
+static __inline__
+unsigned int __cdecl _rotr(unsigned int _Value, int _Shift);
+static __inline__
+unsigned short _rotr16(unsigned short _Value, unsigned char _Shift);
+static __inline__
+unsigned __int64 __cdecl _rotr64(unsigned __int64 _Value, int _Shift);
+static __inline__
+unsigned char _rotr8(unsigned char _Value, unsigned char _Shift);
+int _sarx_i32(int, unsigned int);
+#if __STDC_HOSTED__
+int __cdecl _setjmp(jmp_buf);
+#endif
+unsigned int _shlx_u32(unsigned int, unsigned int);
+unsigned int _shrx_u32(unsigned int, unsigned int);
+void _Store_HLERelease(long volatile *, long);
+void _Store64_HLERelease(__int64 volatile *, __int64);
+void _StorePointer_HLERelease(void *volatile *, void *);
+static __inline__
+void _WriteBarrier(void);
+unsigned __int32 xbegin(void);
+void _xend(void);
+static __inline__
+#define _XCR_XFEATURE_ENABLED_MASK 0
+unsigned __int64 __cdecl _xgetbv(unsigned int);
+void __cdecl _xrstor(void const *, unsigned __int64);
+void __cdecl _xsave(void *, unsigned __int64);
+void __cdecl _xsaveopt(void *, unsigned __int64);
+void __cdecl _xsetbv(unsigned int, unsigned __int64);
+
+/* These additional intrinsics are turned on in x64/amd64/x86_64 mode. */
+#ifdef __x86_64__
+void __addgsbyte(unsigned long, unsigned char);
+void __addgsdword(unsigned long, unsigned long);
+void __addgsqword(unsigned long, unsigned __int64);
+void __addgsword(unsigned long, unsigned short);
+static __inline__
+void __faststorefence(void);
+void __incgsbyte(unsigned long);
+void __incgsdword(unsigned long);
+void __incgsqword(unsigned long);
+void __incgsword(unsigned long);
+unsigned char __lwpins64(unsigned __int64, unsigned int, unsigned int);
+void __lwpval64(unsigned __int64, unsigned int, unsigned int);
+unsigned __int64 __lzcnt64(unsigned __int64);
+static __inline__
+void __movsq(unsigned long long *, unsigned long long const *, size_t);
+__int64 __mulh(__int64, __int64);
+static __inline__
+unsigned __int64 __popcnt64(unsigned __int64);
+static __inline__
+unsigned char __readgsbyte(unsigned long);
+static __inline__
+unsigned long __readgsdword(unsigned long);
+static __inline__
+unsigned __int64 __readgsqword(unsigned long);
+unsigned short __readgsword(unsigned long);
+unsigned __int64 __shiftleft128(unsigned __int64 _LowPart,
+ unsigned __int64 _HighPart,
+ unsigned char _Shift);
+unsigned __int64 __shiftright128(unsigned __int64 _LowPart,
+ unsigned __int64 _HighPart,
+ unsigned char _Shift);
+static __inline__
+void __stosq(unsigned __int64 *, unsigned __int64, size_t);
+unsigned char __vmx_on(unsigned __int64 *);
+unsigned char __vmx_vmclear(unsigned __int64 *);
+unsigned char __vmx_vmlaunch(void);
+unsigned char __vmx_vmptrld(unsigned __int64 *);
+unsigned char __vmx_vmread(size_t, size_t *);
+unsigned char __vmx_vmresume(void);
+unsigned char __vmx_vmwrite(size_t, size_t);
+void __writegsbyte(unsigned long, unsigned char);
+void __writegsdword(unsigned long, unsigned long);
+void __writegsqword(unsigned long, unsigned __int64);
+void __writegsword(unsigned long, unsigned short);
+static __inline__
+unsigned char _BitScanForward64(unsigned long *_Index, unsigned __int64 _Mask);
+static __inline__
+unsigned char _BitScanReverse64(unsigned long *_Index, unsigned __int64 _Mask);
+static __inline__
+unsigned char _bittest64(__int64 const *, __int64);
+static __inline__
+unsigned char _bittestandcomplement64(__int64 *, __int64);
+static __inline__
+unsigned char _bittestandreset64(__int64 *, __int64);
+static __inline__
+unsigned char _bittestandset64(__int64 *, __int64);
+unsigned __int64 __cdecl _byteswap_uint64(unsigned __int64);
+void __cdecl _fxrstor64(void const *);
+void __cdecl _fxsave64(void *);
+long _InterlockedAnd_np(long volatile *_Value, long _Mask);
+short _InterlockedAnd16_np(short volatile *_Value, short _Mask);
+__int64 _InterlockedAnd64_np(__int64 volatile *_Value, __int64 _Mask);
+char _InterlockedAnd8_np(char volatile *_Value, char _Mask);
+unsigned char _interlockedbittestandreset64(__int64 volatile *, __int64);
+static __inline__
+unsigned char _interlockedbittestandset64(__int64 volatile *, __int64);
+long _InterlockedCompareExchange_np(long volatile *_Destination, long _Exchange,
+ long _Comparand);
+unsigned char _InterlockedCompareExchange128(__int64 volatile *_Destination,
+ __int64 _ExchangeHigh,
+ __int64 _ExchangeLow,
+ __int64 *_CompareandResult);
+unsigned char _InterlockedCompareExchange128_np(__int64 volatile *_Destination,
+ __int64 _ExchangeHigh,
+ __int64 _ExchangeLow,
+ __int64 *_ComparandResult);
+short _InterlockedCompareExchange16_np(short volatile *_Destination,
+ short _Exchange, short _Comparand);
+__int64 _InterlockedCompareExchange64_HLEAcquire(__int64 volatile *, __int64,
+ __int64);
+__int64 _InterlockedCompareExchange64_HLERelease(__int64 volatile *, __int64,
+ __int64);
+__int64 _InterlockedCompareExchange64_np(__int64 volatile *_Destination,
+ __int64 _Exchange, __int64 _Comparand);
+void *_InterlockedCompareExchangePointer(void *volatile *_Destination,
+ void *_Exchange, void *_Comparand);
+void *_InterlockedCompareExchangePointer_np(void *volatile *_Destination,
+ void *_Exchange, void *_Comparand);
+static __inline__
+__int64 _InterlockedDecrement64(__int64 volatile *_Addend);
+static __inline__
+__int64 _InterlockedExchange64(__int64 volatile *_Target, __int64 _Value);
+static __inline__
+__int64 _InterlockedExchangeAdd64(__int64 volatile *_Addend, __int64 _Value);
+void *_InterlockedExchangePointer(void *volatile *_Target, void *_Value);
+static __inline__
+__int64 _InterlockedIncrement64(__int64 volatile *_Addend);
+long _InterlockedOr_np(long volatile *_Value, long _Mask);
+short _InterlockedOr16_np(short volatile *_Value, short _Mask);
+static __inline__
+__int64 _InterlockedOr64(__int64 volatile *_Value, __int64 _Mask);
+__int64 _InterlockedOr64_np(__int64 volatile *_Value, __int64 _Mask);
+char _InterlockedOr8_np(char volatile *_Value, char _Mask);
+long _InterlockedXor_np(long volatile *_Value, long _Mask);
+short _InterlockedXor16_np(short volatile *_Value, short _Mask);
+static __inline__
+__int64 _InterlockedXor64(__int64 volatile *_Value, __int64 _Mask);
+__int64 _InterlockedXor64_np(__int64 volatile *_Value, __int64 _Mask);
+char _InterlockedXor8_np(char volatile *_Value, char _Mask);
+static __inline__
+__int64 _mul128(__int64 _Multiplier, __int64 _Multiplicand,
+ __int64 *_HighProduct);
+unsigned __int64 _rorx_u64(unsigned __int64, const unsigned int);
+__int64 _sarx_i64(__int64, unsigned int);
+#if __STDC_HOSTED__
+int __cdecl _setjmpex(jmp_buf);
+#endif
+unsigned __int64 _shlx_u64(unsigned __int64, unsigned int);
+unsigned __int64 _shrx_u64(unsigned __int64, unsigned int);
+/*
+ * Multiply two 64-bit integers and obtain a 64-bit result.
+ * The low-half is returned directly and the high half is in an out parameter.
+ */
+static __inline__ unsigned __int64 __attribute__((__always_inline__, __nodebug__))
+_umul128(unsigned __int64 _Multiplier, unsigned __int64 _Multiplicand,
+ unsigned __int64 *_HighProduct) {
+ unsigned __int128 _FullProduct =
+ (unsigned __int128)_Multiplier * (unsigned __int128)_Multiplicand;
+ *_HighProduct = _FullProduct >> 64;
+ return _FullProduct;
+}
+static __inline__ unsigned __int64 __attribute__((__always_inline__, __nodebug__))
+__umulh(unsigned __int64 _Multiplier, unsigned __int64 _Multiplicand) {
+ unsigned __int128 _FullProduct =
+ (unsigned __int128)_Multiplier * (unsigned __int128)_Multiplicand;
+ return _FullProduct >> 64;
+}
+void __cdecl _xrstor64(void const *, unsigned __int64);
+void __cdecl _xsave64(void *, unsigned __int64);
+void __cdecl _xsaveopt64(void *, unsigned __int64);
+
+#endif /* __x86_64__ */
+
+/*----------------------------------------------------------------------------*\
+|* Bit Twiddling
+\*----------------------------------------------------------------------------*/
+static __inline__ unsigned char __attribute__((__always_inline__, __nodebug__))
+_rotl8(unsigned char _Value, unsigned char _Shift) {
+ _Shift &= 0x7;
+ return _Shift ? (_Value << _Shift) | (_Value >> (8 - _Shift)) : _Value;
+}
+static __inline__ unsigned char __attribute__((__always_inline__, __nodebug__))
+_rotr8(unsigned char _Value, unsigned char _Shift) {
+ _Shift &= 0x7;
+ return _Shift ? (_Value >> _Shift) | (_Value << (8 - _Shift)) : _Value;
+}
+static __inline__ unsigned short __attribute__((__always_inline__, __nodebug__))
+_rotl16(unsigned short _Value, unsigned char _Shift) {
+ _Shift &= 0xf;
+ return _Shift ? (_Value << _Shift) | (_Value >> (16 - _Shift)) : _Value;
+}
+static __inline__ unsigned short __attribute__((__always_inline__, __nodebug__))
+_rotr16(unsigned short _Value, unsigned char _Shift) {
+ _Shift &= 0xf;
+ return _Shift ? (_Value >> _Shift) | (_Value << (16 - _Shift)) : _Value;
+}
+static __inline__ unsigned int __attribute__((__always_inline__, __nodebug__))
+_rotl(unsigned int _Value, int _Shift) {
+ _Shift &= 0x1f;
+ return _Shift ? (_Value << _Shift) | (_Value >> (32 - _Shift)) : _Value;
+}
+static __inline__ unsigned int __attribute__((__always_inline__, __nodebug__))
+_rotr(unsigned int _Value, int _Shift) {
+ _Shift &= 0x1f;
+ return _Shift ? (_Value >> _Shift) | (_Value << (32 - _Shift)) : _Value;
+}
+static __inline__ unsigned long __attribute__((__always_inline__, __nodebug__))
+_lrotl(unsigned long _Value, int _Shift) {
+ _Shift &= 0x1f;
+ return _Shift ? (_Value << _Shift) | (_Value >> (32 - _Shift)) : _Value;
+}
+static __inline__ unsigned long __attribute__((__always_inline__, __nodebug__))
+_lrotr(unsigned long _Value, int _Shift) {
+ _Shift &= 0x1f;
+ return _Shift ? (_Value >> _Shift) | (_Value << (32 - _Shift)) : _Value;
+}
+static
+__inline__ unsigned __int64 __attribute__((__always_inline__, __nodebug__))
+_rotl64(unsigned __int64 _Value, int _Shift) {
+ _Shift &= 0x3f;
+ return _Shift ? (_Value << _Shift) | (_Value >> (64 - _Shift)) : _Value;
+}
+static
+__inline__ unsigned __int64 __attribute__((__always_inline__, __nodebug__))
+_rotr64(unsigned __int64 _Value, int _Shift) {
+ _Shift &= 0x3f;
+ return _Shift ? (_Value >> _Shift) | (_Value << (64 - _Shift)) : _Value;
+}
+/*----------------------------------------------------------------------------*\
+|* Bit Counting and Testing
+\*----------------------------------------------------------------------------*/
+static __inline__ unsigned char __attribute__((__always_inline__, __nodebug__))
+_BitScanForward(unsigned long *_Index, unsigned long _Mask) {
+ if (!_Mask)
+ return 0;
+ *_Index = __builtin_ctzl(_Mask);
+ return 1;
+}
+static __inline__ unsigned char __attribute__((__always_inline__, __nodebug__))
+_BitScanReverse(unsigned long *_Index, unsigned long _Mask) {
+ if (!_Mask)
+ return 0;
+ *_Index = 31 - __builtin_clzl(_Mask);
+ return 1;
+}
+static __inline__ unsigned short __attribute__((__always_inline__, __nodebug__))
+__popcnt16(unsigned short value) {
+ return __builtin_popcount((int)value);
+}
+static __inline__ unsigned int __attribute__((__always_inline__, __nodebug__))
+__popcnt(unsigned int value) {
+ return __builtin_popcount(value);
+}
+static __inline__ unsigned char __attribute__((__always_inline__, __nodebug__))
+_bittest(long const *a, long b) {
+ return (*a >> b) & 1;
+}
+static __inline__ unsigned char __attribute__((__always_inline__, __nodebug__))
+_bittestandcomplement(long *a, long b) {
+ unsigned char x = (*a >> b) & 1;
+ *a = *a ^ (1 << b);
+ return x;
+}
+static __inline__ unsigned char __attribute__((__always_inline__, __nodebug__))
+_bittestandreset(long *a, long b) {
+ unsigned char x = (*a >> b) & 1;
+ *a = *a & ~(1 << b);
+ return x;
+}
+static __inline__ unsigned char __attribute__((__always_inline__, __nodebug__))
+_bittestandset(long *a, long b) {
+ unsigned char x = (*a >> b) & 1;
+ *a = *a | (1 << b);
+ return x;
+}
+#if defined(__i386__) || defined(__x86_64__)
+static __inline__ unsigned char __attribute__((__always_inline__, __nodebug__))
+_interlockedbittestandset(long volatile *__BitBase, long __BitPos) {
+ unsigned char __Res;
+ __asm__ ("xor %0, %0\n"
+ "lock bts %2, %1\n"
+ "setc %0\n"
+ : "=r" (__Res), "+m"(*__BitBase)
+ : "Ir"(__BitPos));
+ return __Res;
+}
+#endif
+#ifdef __x86_64__
+static __inline__ unsigned char __attribute__((__always_inline__, __nodebug__))
+_BitScanForward64(unsigned long *_Index, unsigned __int64 _Mask) {
+ if (!_Mask)
+ return 0;
+ *_Index = __builtin_ctzll(_Mask);
+ return 1;
+}
+static __inline__ unsigned char __attribute__((__always_inline__, __nodebug__))
+_BitScanReverse64(unsigned long *_Index, unsigned __int64 _Mask) {
+ if (!_Mask)
+ return 0;
+ *_Index = 63 - __builtin_clzll(_Mask);
+ return 1;
+}
+static __inline__
+unsigned __int64 __attribute__((__always_inline__, __nodebug__))
+ __popcnt64(unsigned __int64 value) {
+ return __builtin_popcountll(value);
+}
+static __inline__ unsigned char __attribute__((__always_inline__, __nodebug__))
+_bittest64(__int64 const *a, __int64 b) {
+ return (*a >> b) & 1;
+}
+static __inline__ unsigned char __attribute__((__always_inline__, __nodebug__))
+_bittestandcomplement64(__int64 *a, __int64 b) {
+ unsigned char x = (*a >> b) & 1;
+ *a = *a ^ (1ll << b);
+ return x;
+}
+static __inline__ unsigned char __attribute__((__always_inline__, __nodebug__))
+_bittestandreset64(__int64 *a, __int64 b) {
+ unsigned char x = (*a >> b) & 1;
+ *a = *a & ~(1ll << b);
+ return x;
+}
+static __inline__ unsigned char __attribute__((__always_inline__, __nodebug__))
+_bittestandset64(__int64 *a, __int64 b) {
+ unsigned char x = (*a >> b) & 1;
+ *a = *a | (1ll << b);
+ return x;
+}
+static __inline__ unsigned char __attribute__((__always_inline__, __nodebug__))
+_interlockedbittestandset64(__int64 volatile *__BitBase, __int64 __BitPos) {
+ unsigned char __Res;
+ __asm__ ("xor %0, %0\n"
+ "lock bts %2, %1\n"
+ "setc %0\n"
+ : "=r" (__Res), "+m"(*__BitBase)
+ : "Ir"(__BitPos));
+ return __Res;
+}
+#endif
+/*----------------------------------------------------------------------------*\
+|* Interlocked Exchange Add
+\*----------------------------------------------------------------------------*/
+static __inline__ char __attribute__((__always_inline__, __nodebug__))
+_InterlockedExchangeAdd8(char volatile *_Addend, char _Value) {
+ return __atomic_add_fetch(_Addend, _Value, 0) - _Value;
+}
+static __inline__ short __attribute__((__always_inline__, __nodebug__))
+_InterlockedExchangeAdd16(short volatile *_Addend, short _Value) {
+ return __atomic_add_fetch(_Addend, _Value, 0) - _Value;
+}
+#ifdef __x86_64__
+static __inline__ __int64 __attribute__((__always_inline__, __nodebug__))
+_InterlockedExchangeAdd64(__int64 volatile *_Addend, __int64 _Value) {
+ return __atomic_add_fetch(_Addend, _Value, 0) - _Value;
+}
+#endif
+/*----------------------------------------------------------------------------*\
+|* Interlocked Exchange Sub
+\*----------------------------------------------------------------------------*/
+static __inline__ char __attribute__((__always_inline__, __nodebug__))
+_InterlockedExchangeSub8(char volatile *_Subend, char _Value) {
+ return __atomic_sub_fetch(_Subend, _Value, 0) + _Value;
+}
+static __inline__ short __attribute__((__always_inline__, __nodebug__))
+_InterlockedExchangeSub16(short volatile *_Subend, short _Value) {
+ return __atomic_sub_fetch(_Subend, _Value, 0) + _Value;
+}
+static __inline__ long __attribute__((__always_inline__, __nodebug__))
+_InterlockedExchangeSub(long volatile *_Subend, long _Value) {
+ return __atomic_sub_fetch(_Subend, _Value, 0) + _Value;
+}
+#ifdef __x86_64__
+static __inline__ __int64 __attribute__((__always_inline__, __nodebug__))
+_InterlockedExchangeSub64(__int64 volatile *_Subend, __int64 _Value) {
+ return __atomic_sub_fetch(_Subend, _Value, 0) + _Value;
+}
+#endif
+/*----------------------------------------------------------------------------*\
+|* Interlocked Increment
+\*----------------------------------------------------------------------------*/
+static __inline__ short __attribute__((__always_inline__, __nodebug__))
+_InterlockedIncrement16(short volatile *_Value) {
+ return __atomic_add_fetch(_Value, 1, 0);
+}
+#ifdef __x86_64__
+static __inline__ __int64 __attribute__((__always_inline__, __nodebug__))
+_InterlockedIncrement64(__int64 volatile *_Value) {
+ return __atomic_add_fetch(_Value, 1, 0);
+}
+#endif
+/*----------------------------------------------------------------------------*\
+|* Interlocked Decrement
+\*----------------------------------------------------------------------------*/
+static __inline__ short __attribute__((__always_inline__, __nodebug__))
+_InterlockedDecrement16(short volatile *_Value) {
+ return __atomic_sub_fetch(_Value, 1, 0);
+}
+#ifdef __x86_64__
+static __inline__ __int64 __attribute__((__always_inline__, __nodebug__))
+_InterlockedDecrement64(__int64 volatile *_Value) {
+ return __atomic_sub_fetch(_Value, 1, 0);
+}
+#endif
+/*----------------------------------------------------------------------------*\
+|* Interlocked And
+\*----------------------------------------------------------------------------*/
+static __inline__ char __attribute__((__always_inline__, __nodebug__))
+_InterlockedAnd8(char volatile *_Value, char _Mask) {
+ return __atomic_and_fetch(_Value, _Mask, 0);
+}
+static __inline__ short __attribute__((__always_inline__, __nodebug__))
+_InterlockedAnd16(short volatile *_Value, short _Mask) {
+ return __atomic_and_fetch(_Value, _Mask, 0);
+}
+static __inline__ long __attribute__((__always_inline__, __nodebug__))
+_InterlockedAnd(long volatile *_Value, long _Mask) {
+ return __atomic_and_fetch(_Value, _Mask, 0);
+}
+#ifdef __x86_64__
+static __inline__ __int64 __attribute__((__always_inline__, __nodebug__))
+_InterlockedAnd64(__int64 volatile *_Value, __int64 _Mask) {
+ return __atomic_and_fetch(_Value, _Mask, 0);
+}
+#endif
+/*----------------------------------------------------------------------------*\
+|* Interlocked Or
+\*----------------------------------------------------------------------------*/
+static __inline__ char __attribute__((__always_inline__, __nodebug__))
+_InterlockedOr8(char volatile *_Value, char _Mask) {
+ return __atomic_or_fetch(_Value, _Mask, 0);
+}
+static __inline__ short __attribute__((__always_inline__, __nodebug__))
+_InterlockedOr16(short volatile *_Value, short _Mask) {
+ return __atomic_or_fetch(_Value, _Mask, 0);
+}
+static __inline__ long __attribute__((__always_inline__, __nodebug__))
+_InterlockedOr(long volatile *_Value, long _Mask) {
+ return __atomic_or_fetch(_Value, _Mask, 0);
+}
+#ifdef __x86_64__
+static __inline__ __int64 __attribute__((__always_inline__, __nodebug__))
+_InterlockedOr64(__int64 volatile *_Value, __int64 _Mask) {
+ return __atomic_or_fetch(_Value, _Mask, 0);
+}
+#endif
+/*----------------------------------------------------------------------------*\
+|* Interlocked Xor
+\*----------------------------------------------------------------------------*/
+static __inline__ char __attribute__((__always_inline__, __nodebug__))
+_InterlockedXor8(char volatile *_Value, char _Mask) {
+ return __atomic_xor_fetch(_Value, _Mask, 0);
+}
+static __inline__ short __attribute__((__always_inline__, __nodebug__))
+_InterlockedXor16(short volatile *_Value, short _Mask) {
+ return __atomic_xor_fetch(_Value, _Mask, 0);
+}
+static __inline__ long __attribute__((__always_inline__, __nodebug__))
+_InterlockedXor(long volatile *_Value, long _Mask) {
+ return __atomic_xor_fetch(_Value, _Mask, 0);
+}
+#ifdef __x86_64__
+static __inline__ __int64 __attribute__((__always_inline__, __nodebug__))
+_InterlockedXor64(__int64 volatile *_Value, __int64 _Mask) {
+ return __atomic_xor_fetch(_Value, _Mask, 0);
+}
+#endif
+/*----------------------------------------------------------------------------*\
+|* Interlocked Exchange
+\*----------------------------------------------------------------------------*/
+static __inline__ char __attribute__((__always_inline__, __nodebug__))
+_InterlockedExchange8(char volatile *_Target, char _Value) {
+ __atomic_exchange(_Target, &_Value, &_Value, 0);
+ return _Value;
+}
+static __inline__ short __attribute__((__always_inline__, __nodebug__))
+_InterlockedExchange16(short volatile *_Target, short _Value) {
+ __atomic_exchange(_Target, &_Value, &_Value, 0);
+ return _Value;
+}
+#ifdef __x86_64__
+static __inline__ __int64 __attribute__((__always_inline__, __nodebug__))
+_InterlockedExchange64(__int64 volatile *_Target, __int64 _Value) {
+ __atomic_exchange(_Target, &_Value, &_Value, 0);
+ return _Value;
+}
+#endif
+/*----------------------------------------------------------------------------*\
+|* Interlocked Compare Exchange
+\*----------------------------------------------------------------------------*/
+static __inline__ char __attribute__((__always_inline__, __nodebug__))
+_InterlockedCompareExchange8(char volatile *_Destination,
+ char _Exchange, char _Comparand) {
+ __atomic_compare_exchange(_Destination, &_Comparand, &_Exchange, 0, 0, 0);
+ return _Comparand;
+}
+static __inline__ short __attribute__((__always_inline__, __nodebug__))
+_InterlockedCompareExchange16(short volatile *_Destination,
+ short _Exchange, short _Comparand) {
+ __atomic_compare_exchange(_Destination, &_Comparand, &_Exchange, 0, 0, 0);
+ return _Comparand;
+}
+static __inline__ __int64 __attribute__((__always_inline__, __nodebug__))
+_InterlockedCompareExchange64(__int64 volatile *_Destination,
+ __int64 _Exchange, __int64 _Comparand) {
+ __atomic_compare_exchange(_Destination, &_Comparand, &_Exchange, 0, 0, 0);
+ return _Comparand;
+}
+/*----------------------------------------------------------------------------*\
+|* Barriers
+\*----------------------------------------------------------------------------*/
+#if defined(__i386__) || defined(__x86_64__)
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+__attribute__((__deprecated__("use other intrinsics or C++11 atomics instead")))
+_ReadWriteBarrier(void) {
+ __asm__ volatile ("" : : : "memory");
+}
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+__attribute__((__deprecated__("use other intrinsics or C++11 atomics instead")))
+_ReadBarrier(void) {
+ __asm__ volatile ("" : : : "memory");
+}
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+__attribute__((__deprecated__("use other intrinsics or C++11 atomics instead")))
+_WriteBarrier(void) {
+ __asm__ volatile ("" : : : "memory");
+}
+#endif
+#ifdef __x86_64__
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+__faststorefence(void) {
+ __asm__ volatile("lock orq $0, (%%rsp)" : : : "memory");
+}
+#endif
+/*----------------------------------------------------------------------------*\
+|* readfs, readgs
+|* (Pointers in address space #256 and #257 are relative to the GS and FS
+|* segment registers, respectively.)
+\*----------------------------------------------------------------------------*/
+#define __ptr_to_addr_space(__addr_space_nbr, __type, __offset) \
+ ((volatile __type __attribute__((__address_space__(__addr_space_nbr)))*) \
+ (__offset))
+
+#ifdef __i386__
+static __inline__ unsigned char __attribute__((__always_inline__, __nodebug__))
+__readfsbyte(unsigned long __offset) {
+ return *__ptr_to_addr_space(257, unsigned char, __offset);
+}
+static __inline__ unsigned __int64 __attribute__((__always_inline__, __nodebug__))
+__readfsqword(unsigned long __offset) {
+ return *__ptr_to_addr_space(257, unsigned __int64, __offset);
+}
+static __inline__ unsigned short __attribute__((__always_inline__, __nodebug__))
+__readfsword(unsigned long __offset) {
+ return *__ptr_to_addr_space(257, unsigned short, __offset);
+}
+#endif
+#ifdef __x86_64__
+static __inline__ unsigned char __attribute__((__always_inline__, __nodebug__))
+__readgsbyte(unsigned long __offset) {
+ return *__ptr_to_addr_space(256, unsigned char, __offset);
+}
+static __inline__ unsigned long __attribute__((__always_inline__, __nodebug__))
+__readgsdword(unsigned long __offset) {
+ return *__ptr_to_addr_space(256, unsigned long, __offset);
+}
+static __inline__ unsigned __int64 __attribute__((__always_inline__, __nodebug__))
+__readgsqword(unsigned long __offset) {
+ return *__ptr_to_addr_space(256, unsigned __int64, __offset);
+}
+static __inline__ unsigned short __attribute__((__always_inline__, __nodebug__))
+__readgsword(unsigned long __offset) {
+ return *__ptr_to_addr_space(256, unsigned short, __offset);
+}
+#endif
+#undef __ptr_to_addr_space
+/*----------------------------------------------------------------------------*\
+|* movs, stos
+\*----------------------------------------------------------------------------*/
+#if defined(__i386__) || defined(__x86_64__)
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+__movsb(unsigned char *__dst, unsigned char const *__src, size_t __n) {
+ __asm__("rep movsb" : : "D"(__dst), "S"(__src), "c"(__n)
+ : "%edi", "%esi", "%ecx");
+}
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+__movsd(unsigned long *__dst, unsigned long const *__src, size_t __n) {
+ __asm__("rep movsl" : : "D"(__dst), "S"(__src), "c"(__n)
+ : "%edi", "%esi", "%ecx");
+}
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+__movsw(unsigned short *__dst, unsigned short const *__src, size_t __n) {
+ __asm__("rep movsh" : : "D"(__dst), "S"(__src), "c"(__n)
+ : "%edi", "%esi", "%ecx");
+}
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+__stosb(unsigned char *__dst, unsigned char __x, size_t __n) {
+ __asm__("rep stosb" : : "D"(__dst), "a"(__x), "c"(__n)
+ : "%edi", "%ecx");
+}
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+__stosd(unsigned long *__dst, unsigned long __x, size_t __n) {
+ __asm__("rep stosl" : : "D"(__dst), "a"(__x), "c"(__n)
+ : "%edi", "%ecx");
+}
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+__stosw(unsigned short *__dst, unsigned short __x, size_t __n) {
+ __asm__("rep stosh" : : "D"(__dst), "a"(__x), "c"(__n)
+ : "%edi", "%ecx");
+}
+#endif
+#ifdef __x86_64__
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+__movsq(unsigned long long *__dst, unsigned long long const *__src, size_t __n) {
+ __asm__("rep movsq" : : "D"(__dst), "S"(__src), "c"(__n)
+ : "%edi", "%esi", "%ecx");
+}
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+__stosq(unsigned __int64 *__dst, unsigned __int64 __x, size_t __n) {
+ __asm__("rep stosq" : : "D"(__dst), "a"(__x), "c"(__n)
+ : "%edi", "%ecx");
+}
+#endif
+
+/*----------------------------------------------------------------------------*\
+|* Misc
+\*----------------------------------------------------------------------------*/
+static __inline__ void * __attribute__((__always_inline__, __nodebug__))
+_AddressOfReturnAddress(void) {
+ return (void*)((char*)__builtin_frame_address(0) + sizeof(void*));
+}
+static __inline__ void * __attribute__((__always_inline__, __nodebug__))
+_ReturnAddress(void) {
+ return __builtin_return_address(0);
+}
+#if defined(__i386__) || defined(__x86_64__)
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+__cpuid(int __info[4], int __level) {
+ __asm__ ("cpuid" : "=a"(__info[0]), "=b" (__info[1]), "=c"(__info[2]), "=d"(__info[3])
+ : "a"(__level));
+}
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+__cpuidex(int __info[4], int __level, int __ecx) {
+ __asm__ ("cpuid" : "=a"(__info[0]), "=b" (__info[1]), "=c"(__info[2]), "=d"(__info[3])
+ : "a"(__level), "c"(__ecx));
+}
+static __inline__ unsigned __int64 __cdecl __attribute__((__always_inline__, __nodebug__))
+_xgetbv(unsigned int __xcr_no) {
+ unsigned int __eax, __edx;
+ __asm__ ("xgetbv" : "=a" (__eax), "=d" (__edx) : "c" (__xcr_no));
+ return ((unsigned __int64)__edx << 32) | __eax;
+}
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+__halt(void) {
+ __asm__ volatile ("hlt");
+}
+#endif
+
+/*----------------------------------------------------------------------------*\
+|* Privileged intrinsics
+\*----------------------------------------------------------------------------*/
+#if defined(__i386__) || defined(__x86_64__)
+static __inline__ unsigned __int64 __attribute__((__always_inline__, __nodebug__))
+__readmsr(unsigned long __register) {
+ // Loads the contents of a 64-bit model specific register (MSR) specified in
+ // the ECX register into registers EDX:EAX. The EDX register is loaded with
+ // the high-order 32 bits of the MSR and the EAX register is loaded with the
+ // low-order 32 bits. If less than 64 bits are implemented in the MSR being
+ // read, the values returned to EDX:EAX in unimplemented bit locations are
+ // undefined.
+ unsigned long __edx;
+ unsigned long __eax;
+ __asm__ ("rdmsr" : "=d"(__edx), "=a"(__eax) : "c"(__register));
+ return (((unsigned __int64)__edx) << 32) | (unsigned __int64)__eax;
+}
+
+static __inline__ unsigned long __attribute__((__always_inline__, __nodebug__))
+__readcr3(void) {
+ unsigned long __cr3_val;
+ __asm__ __volatile__ ("mov %%cr3, %0" : "=q"(__cr3_val) : : "memory");
+ return __cr3_val;
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+__writecr3(unsigned int __cr3_val) {
+ __asm__ ("mov %0, %%cr3" : : "q"(__cr3_val) : "memory");
+}
+#endif
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* __INTRIN_H */
+#endif /* _MSC_VER */
diff --git a/contrib/llvm/tools/clang/lib/Headers/__stddef_max_align_t.h b/contrib/llvm/tools/clang/lib/Headers/__stddef_max_align_t.h
new file mode 100644
index 0000000..1e10ca9
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/__stddef_max_align_t.h
@@ -0,0 +1,43 @@
+/*===---- __stddef_max_align_t.h - Definition of max_align_t for modules ---===
+ *
+ * Copyright (c) 2014 Chandler Carruth
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#ifndef __CLANG_MAX_ALIGN_T_DEFINED
+#define __CLANG_MAX_ALIGN_T_DEFINED
+
+#if defined(_MSC_VER)
+typedef double max_align_t;
+#elif defined(__APPLE__)
+typedef long double max_align_t;
+#else
+// Define 'max_align_t' to match the GCC definition.
+typedef struct {
+ long long __clang_max_align_nonce1
+ __attribute__((__aligned__(__alignof__(long long))));
+ long double __clang_max_align_nonce2
+ __attribute__((__aligned__(__alignof__(long double))));
+} max_align_t;
+#endif
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/Headers/__wmmintrin_aes.h b/contrib/llvm/tools/clang/lib/Headers/__wmmintrin_aes.h
new file mode 100644
index 0000000..2bfa027
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/__wmmintrin_aes.h
@@ -0,0 +1,67 @@
+/*===---- __wmmintrin_aes.h - AES intrinsics -------------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+#ifndef _WMMINTRIN_AES_H
+#define _WMMINTRIN_AES_H
+
+#include <emmintrin.h>
+
+#if !defined (__AES__)
+# error "AES instructions not enabled"
+#else
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_aesenc_si128(__m128i __V, __m128i __R)
+{
+ return (__m128i)__builtin_ia32_aesenc128(__V, __R);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_aesenclast_si128(__m128i __V, __m128i __R)
+{
+ return (__m128i)__builtin_ia32_aesenclast128(__V, __R);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_aesdec_si128(__m128i __V, __m128i __R)
+{
+ return (__m128i)__builtin_ia32_aesdec128(__V, __R);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_aesdeclast_si128(__m128i __V, __m128i __R)
+{
+ return (__m128i)__builtin_ia32_aesdeclast128(__V, __R);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_aesimc_si128(__m128i __V)
+{
+ return (__m128i)__builtin_ia32_aesimc128(__V);
+}
+
+#define _mm_aeskeygenassist_si128(C, R) \
+ __builtin_ia32_aeskeygenassist128((C), (R))
+
+#endif
+
+#endif /* _WMMINTRIN_AES_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/__wmmintrin_pclmul.h b/contrib/llvm/tools/clang/lib/Headers/__wmmintrin_pclmul.h
new file mode 100644
index 0000000..8d1f1b7
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/__wmmintrin_pclmul.h
@@ -0,0 +1,34 @@
+/*===---- __wmmintrin_pclmul.h - AES intrinsics ----------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+#ifndef _WMMINTRIN_PCLMUL_H
+#define _WMMINTRIN_PCLMUL_H
+
+#if !defined (__PCLMUL__)
+# error "PCLMUL instruction is not enabled"
+#else
+#define _mm_clmulepi64_si128(__X, __Y, __I) \
+ ((__m128i)__builtin_ia32_pclmulqdq128((__v2di)(__m128i)(__X), \
+ (__v2di)(__m128i)(__Y), (char)(__I)))
+#endif
+
+#endif /* _WMMINTRIN_PCLMUL_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/adxintrin.h b/contrib/llvm/tools/clang/lib/Headers/adxintrin.h
new file mode 100644
index 0000000..9db8bcb
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/adxintrin.h
@@ -0,0 +1,83 @@
+/*===---- adxintrin.h - ADX intrinsics -------------------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#ifndef __IMMINTRIN_H
+#error "Never use <adxintrin.h> directly; include <immintrin.h> instead."
+#endif
+
+#ifndef __ADXINTRIN_H
+#define __ADXINTRIN_H
+
+/* Intrinsics that are available only if __ADX__ defined */
+#ifdef __ADX__
+static __inline unsigned char __attribute__((__always_inline__, __nodebug__))
+_addcarryx_u32(unsigned char __cf, unsigned int __x, unsigned int __y,
+ unsigned int *__p)
+{
+ return __builtin_ia32_addcarryx_u32(__cf, __x, __y, __p);
+}
+
+#ifdef __x86_64__
+static __inline unsigned char __attribute__((__always_inline__, __nodebug__))
+_addcarryx_u64(unsigned char __cf, unsigned long long __x,
+ unsigned long long __y, unsigned long long *__p)
+{
+ return __builtin_ia32_addcarryx_u64(__cf, __x, __y, __p);
+}
+#endif
+#endif
+
+/* Intrinsics that are also available if __ADX__ undefined */
+static __inline unsigned char __attribute__((__always_inline__, __nodebug__))
+_addcarry_u32(unsigned char __cf, unsigned int __x, unsigned int __y,
+ unsigned int *__p)
+{
+ return __builtin_ia32_addcarry_u32(__cf, __x, __y, __p);
+}
+
+#ifdef __x86_64__
+static __inline unsigned char __attribute__((__always_inline__, __nodebug__))
+_addcarry_u64(unsigned char __cf, unsigned long long __x,
+ unsigned long long __y, unsigned long long *__p)
+{
+ return __builtin_ia32_addcarry_u64(__cf, __x, __y, __p);
+}
+#endif
+
+static __inline unsigned char __attribute__((__always_inline__, __nodebug__))
+_subborrow_u32(unsigned char __cf, unsigned int __x, unsigned int __y,
+ unsigned int *__p)
+{
+ return __builtin_ia32_subborrow_u32(__cf, __x, __y, __p);
+}
+
+#ifdef __x86_64__
+static __inline unsigned char __attribute__((__always_inline__, __nodebug__))
+_subborrow_u64(unsigned char __cf, unsigned long long __x,
+ unsigned long long __y, unsigned long long *__p)
+{
+ return __builtin_ia32_subborrow_u64(__cf, __x, __y, __p);
+}
+#endif
+
+#endif /* __ADXINTRIN_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/altivec.h b/contrib/llvm/tools/clang/lib/Headers/altivec.h
new file mode 100644
index 0000000..1f8c831
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/altivec.h
@@ -0,0 +1,13982 @@
+/*===---- altivec.h - Standard header for type generic math ---------------===*\
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+\*===----------------------------------------------------------------------===*/
+
+#ifndef __ALTIVEC_H
+#define __ALTIVEC_H
+
+#ifndef __ALTIVEC__
+#error "AltiVec support not enabled"
+#endif
+
+/* constants for mapping CR6 bits to predicate result. */
+
+#define __CR6_EQ 0
+#define __CR6_EQ_REV 1
+#define __CR6_LT 2
+#define __CR6_LT_REV 3
+
+#define __ATTRS_o_ai __attribute__((__overloadable__, __always_inline__))
+
+static vector signed char __ATTRS_o_ai
+vec_perm(vector signed char __a, vector signed char __b, vector unsigned char __c);
+
+static vector unsigned char __ATTRS_o_ai
+vec_perm(vector unsigned char __a,
+ vector unsigned char __b,
+ vector unsigned char __c);
+
+static vector bool char __ATTRS_o_ai
+vec_perm(vector bool char __a, vector bool char __b, vector unsigned char __c);
+
+static vector short __ATTRS_o_ai
+vec_perm(vector short __a, vector short __b, vector unsigned char __c);
+
+static vector unsigned short __ATTRS_o_ai
+vec_perm(vector unsigned short __a,
+ vector unsigned short __b,
+ vector unsigned char __c);
+
+static vector bool short __ATTRS_o_ai
+vec_perm(vector bool short __a, vector bool short __b, vector unsigned char __c);
+
+static vector pixel __ATTRS_o_ai
+vec_perm(vector pixel __a, vector pixel __b, vector unsigned char __c);
+
+static vector int __ATTRS_o_ai
+vec_perm(vector int __a, vector int __b, vector unsigned char __c);
+
+static vector unsigned int __ATTRS_o_ai
+vec_perm(vector unsigned int __a, vector unsigned int __b, vector unsigned char __c);
+
+static vector bool int __ATTRS_o_ai
+vec_perm(vector bool int __a, vector bool int __b, vector unsigned char __c);
+
+static vector float __ATTRS_o_ai
+vec_perm(vector float __a, vector float __b, vector unsigned char __c);
+
+#ifdef __VSX__
+static vector long long __ATTRS_o_ai
+vec_perm(vector long long __a, vector long long __b, vector unsigned char __c);
+
+static vector unsigned long long __ATTRS_o_ai
+vec_perm(vector unsigned long long __a, vector unsigned long long __b,
+ vector unsigned char __c);
+
+static vector double __ATTRS_o_ai
+vec_perm(vector double __a, vector double __b, vector unsigned char __c);
+#endif
+
+static vector unsigned char __ATTRS_o_ai
+vec_xor(vector unsigned char __a, vector unsigned char __b);
+
+/* vec_abs */
+
+#define __builtin_altivec_abs_v16qi vec_abs
+#define __builtin_altivec_abs_v8hi vec_abs
+#define __builtin_altivec_abs_v4si vec_abs
+
+static vector signed char __ATTRS_o_ai
+vec_abs(vector signed char __a)
+{
+ return __builtin_altivec_vmaxsb(__a, -__a);
+}
+
+static vector signed short __ATTRS_o_ai
+vec_abs(vector signed short __a)
+{
+ return __builtin_altivec_vmaxsh(__a, -__a);
+}
+
+static vector signed int __ATTRS_o_ai
+vec_abs(vector signed int __a)
+{
+ return __builtin_altivec_vmaxsw(__a, -__a);
+}
+
+static vector float __ATTRS_o_ai
+vec_abs(vector float __a)
+{
+ vector unsigned int __res = (vector unsigned int)__a
+ & (vector unsigned int)(0x7FFFFFFF);
+ return (vector float)__res;
+}
+
+/* vec_abss */
+
+#define __builtin_altivec_abss_v16qi vec_abss
+#define __builtin_altivec_abss_v8hi vec_abss
+#define __builtin_altivec_abss_v4si vec_abss
+
+static vector signed char __ATTRS_o_ai
+vec_abss(vector signed char __a)
+{
+ return __builtin_altivec_vmaxsb
+ (__a, __builtin_altivec_vsubsbs((vector signed char)(0), __a));
+}
+
+static vector signed short __ATTRS_o_ai
+vec_abss(vector signed short __a)
+{
+ return __builtin_altivec_vmaxsh
+ (__a, __builtin_altivec_vsubshs((vector signed short)(0), __a));
+}
+
+static vector signed int __ATTRS_o_ai
+vec_abss(vector signed int __a)
+{
+ return __builtin_altivec_vmaxsw
+ (__a, __builtin_altivec_vsubsws((vector signed int)(0), __a));
+}
+
+/* vec_add */
+
+static vector signed char __ATTRS_o_ai
+vec_add(vector signed char __a, vector signed char __b)
+{
+ return __a + __b;
+}
+
+static vector signed char __ATTRS_o_ai
+vec_add(vector bool char __a, vector signed char __b)
+{
+ return (vector signed char)__a + __b;
+}
+
+static vector signed char __ATTRS_o_ai
+vec_add(vector signed char __a, vector bool char __b)
+{
+ return __a + (vector signed char)__b;
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_add(vector unsigned char __a, vector unsigned char __b)
+{
+ return __a + __b;
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_add(vector bool char __a, vector unsigned char __b)
+{
+ return (vector unsigned char)__a + __b;
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_add(vector unsigned char __a, vector bool char __b)
+{
+ return __a + (vector unsigned char)__b;
+}
+
+static vector short __ATTRS_o_ai
+vec_add(vector short __a, vector short __b)
+{
+ return __a + __b;
+}
+
+static vector short __ATTRS_o_ai
+vec_add(vector bool short __a, vector short __b)
+{
+ return (vector short)__a + __b;
+}
+
+static vector short __ATTRS_o_ai
+vec_add(vector short __a, vector bool short __b)
+{
+ return __a + (vector short)__b;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_add(vector unsigned short __a, vector unsigned short __b)
+{
+ return __a + __b;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_add(vector bool short __a, vector unsigned short __b)
+{
+ return (vector unsigned short)__a + __b;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_add(vector unsigned short __a, vector bool short __b)
+{
+ return __a + (vector unsigned short)__b;
+}
+
+static vector int __ATTRS_o_ai
+vec_add(vector int __a, vector int __b)
+{
+ return __a + __b;
+}
+
+static vector int __ATTRS_o_ai
+vec_add(vector bool int __a, vector int __b)
+{
+ return (vector int)__a + __b;
+}
+
+static vector int __ATTRS_o_ai
+vec_add(vector int __a, vector bool int __b)
+{
+ return __a + (vector int)__b;
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_add(vector unsigned int __a, vector unsigned int __b)
+{
+ return __a + __b;
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_add(vector bool int __a, vector unsigned int __b)
+{
+ return (vector unsigned int)__a + __b;
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_add(vector unsigned int __a, vector bool int __b)
+{
+ return __a + (vector unsigned int)__b;
+}
+
+#if defined(__POWER8_VECTOR__) && defined(__powerpc64__)
+static vector signed __int128 __ATTRS_o_ai
+vec_add(vector signed __int128 __a, vector signed __int128 __b)
+{
+ return __a + __b;
+}
+
+static vector unsigned __int128 __ATTRS_o_ai
+vec_add(vector unsigned __int128 __a, vector unsigned __int128 __b)
+{
+ return __a + __b;
+}
+#endif // defined(__POWER8_VECTOR__) && defined(__powerpc64__)
+
+static vector float __ATTRS_o_ai
+vec_add(vector float __a, vector float __b)
+{
+ return __a + __b;
+}
+
+/* vec_vaddubm */
+
+#define __builtin_altivec_vaddubm vec_vaddubm
+
+static vector signed char __ATTRS_o_ai
+vec_vaddubm(vector signed char __a, vector signed char __b)
+{
+ return __a + __b;
+}
+
+static vector signed char __ATTRS_o_ai
+vec_vaddubm(vector bool char __a, vector signed char __b)
+{
+ return (vector signed char)__a + __b;
+}
+
+static vector signed char __ATTRS_o_ai
+vec_vaddubm(vector signed char __a, vector bool char __b)
+{
+ return __a + (vector signed char)__b;
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vaddubm(vector unsigned char __a, vector unsigned char __b)
+{
+ return __a + __b;
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vaddubm(vector bool char __a, vector unsigned char __b)
+{
+ return (vector unsigned char)__a + __b;
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vaddubm(vector unsigned char __a, vector bool char __b)
+{
+ return __a + (vector unsigned char)__b;
+}
+
+/* vec_vadduhm */
+
+#define __builtin_altivec_vadduhm vec_vadduhm
+
+static vector short __ATTRS_o_ai
+vec_vadduhm(vector short __a, vector short __b)
+{
+ return __a + __b;
+}
+
+static vector short __ATTRS_o_ai
+vec_vadduhm(vector bool short __a, vector short __b)
+{
+ return (vector short)__a + __b;
+}
+
+static vector short __ATTRS_o_ai
+vec_vadduhm(vector short __a, vector bool short __b)
+{
+ return __a + (vector short)__b;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vadduhm(vector unsigned short __a, vector unsigned short __b)
+{
+ return __a + __b;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vadduhm(vector bool short __a, vector unsigned short __b)
+{
+ return (vector unsigned short)__a + __b;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vadduhm(vector unsigned short __a, vector bool short __b)
+{
+ return __a + (vector unsigned short)__b;
+}
+
+/* vec_vadduwm */
+
+#define __builtin_altivec_vadduwm vec_vadduwm
+
+static vector int __ATTRS_o_ai
+vec_vadduwm(vector int __a, vector int __b)
+{
+ return __a + __b;
+}
+
+static vector int __ATTRS_o_ai
+vec_vadduwm(vector bool int __a, vector int __b)
+{
+ return (vector int)__a + __b;
+}
+
+static vector int __ATTRS_o_ai
+vec_vadduwm(vector int __a, vector bool int __b)
+{
+ return __a + (vector int)__b;
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vadduwm(vector unsigned int __a, vector unsigned int __b)
+{
+ return __a + __b;
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vadduwm(vector bool int __a, vector unsigned int __b)
+{
+ return (vector unsigned int)__a + __b;
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vadduwm(vector unsigned int __a, vector bool int __b)
+{
+ return __a + (vector unsigned int)__b;
+}
+
+/* vec_vaddfp */
+
+#define __builtin_altivec_vaddfp vec_vaddfp
+
+static vector float __attribute__((__always_inline__))
+vec_vaddfp(vector float __a, vector float __b)
+{
+ return __a + __b;
+}
+
+/* vec_addc */
+
+static vector unsigned int __ATTRS_o_ai
+vec_addc(vector unsigned int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vaddcuw(__a, __b);
+}
+
+#if defined(__POWER8_VECTOR__) && defined(__powerpc64__)
+static vector signed __int128 __ATTRS_o_ai
+vec_addc(vector signed __int128 __a, vector signed __int128 __b) {
+ return __builtin_altivec_vaddcuq(__a, __b);
+}
+
+static vector unsigned __int128 __ATTRS_o_ai
+vec_addc(vector unsigned __int128 __a, vector unsigned __int128 __b) {
+ return __builtin_altivec_vaddcuq(__a, __b);
+}
+#endif // defined(__POWER8_VECTOR__) && defined(__powerpc64__)
+
+/* vec_vaddcuw */
+
+static vector unsigned int __attribute__((__always_inline__))
+vec_vaddcuw(vector unsigned int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vaddcuw(__a, __b);
+}
+
+/* vec_adds */
+
+static vector signed char __ATTRS_o_ai
+vec_adds(vector signed char __a, vector signed char __b)
+{
+ return __builtin_altivec_vaddsbs(__a, __b);
+}
+
+static vector signed char __ATTRS_o_ai
+vec_adds(vector bool char __a, vector signed char __b)
+{
+ return __builtin_altivec_vaddsbs((vector signed char)__a, __b);
+}
+
+static vector signed char __ATTRS_o_ai
+vec_adds(vector signed char __a, vector bool char __b)
+{
+ return __builtin_altivec_vaddsbs(__a, (vector signed char)__b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_adds(vector unsigned char __a, vector unsigned char __b)
+{
+ return __builtin_altivec_vaddubs(__a, __b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_adds(vector bool char __a, vector unsigned char __b)
+{
+ return __builtin_altivec_vaddubs((vector unsigned char)__a, __b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_adds(vector unsigned char __a, vector bool char __b)
+{
+ return __builtin_altivec_vaddubs(__a, (vector unsigned char)__b);
+}
+
+static vector short __ATTRS_o_ai
+vec_adds(vector short __a, vector short __b)
+{
+ return __builtin_altivec_vaddshs(__a, __b);
+}
+
+static vector short __ATTRS_o_ai
+vec_adds(vector bool short __a, vector short __b)
+{
+ return __builtin_altivec_vaddshs((vector short)__a, __b);
+}
+
+static vector short __ATTRS_o_ai
+vec_adds(vector short __a, vector bool short __b)
+{
+ return __builtin_altivec_vaddshs(__a, (vector short)__b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_adds(vector unsigned short __a, vector unsigned short __b)
+{
+ return __builtin_altivec_vadduhs(__a, __b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_adds(vector bool short __a, vector unsigned short __b)
+{
+ return __builtin_altivec_vadduhs((vector unsigned short)__a, __b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_adds(vector unsigned short __a, vector bool short __b)
+{
+ return __builtin_altivec_vadduhs(__a, (vector unsigned short)__b);
+}
+
+static vector int __ATTRS_o_ai
+vec_adds(vector int __a, vector int __b)
+{
+ return __builtin_altivec_vaddsws(__a, __b);
+}
+
+static vector int __ATTRS_o_ai
+vec_adds(vector bool int __a, vector int __b)
+{
+ return __builtin_altivec_vaddsws((vector int)__a, __b);
+}
+
+static vector int __ATTRS_o_ai
+vec_adds(vector int __a, vector bool int __b)
+{
+ return __builtin_altivec_vaddsws(__a, (vector int)__b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_adds(vector unsigned int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vadduws(__a, __b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_adds(vector bool int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vadduws((vector unsigned int)__a, __b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_adds(vector unsigned int __a, vector bool int __b)
+{
+ return __builtin_altivec_vadduws(__a, (vector unsigned int)__b);
+}
+
+/* vec_vaddsbs */
+
+static vector signed char __ATTRS_o_ai
+vec_vaddsbs(vector signed char __a, vector signed char __b)
+{
+ return __builtin_altivec_vaddsbs(__a, __b);
+}
+
+static vector signed char __ATTRS_o_ai
+vec_vaddsbs(vector bool char __a, vector signed char __b)
+{
+ return __builtin_altivec_vaddsbs((vector signed char)__a, __b);
+}
+
+static vector signed char __ATTRS_o_ai
+vec_vaddsbs(vector signed char __a, vector bool char __b)
+{
+ return __builtin_altivec_vaddsbs(__a, (vector signed char)__b);
+}
+
+/* vec_vaddubs */
+
+static vector unsigned char __ATTRS_o_ai
+vec_vaddubs(vector unsigned char __a, vector unsigned char __b)
+{
+ return __builtin_altivec_vaddubs(__a, __b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vaddubs(vector bool char __a, vector unsigned char __b)
+{
+ return __builtin_altivec_vaddubs((vector unsigned char)__a, __b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vaddubs(vector unsigned char __a, vector bool char __b)
+{
+ return __builtin_altivec_vaddubs(__a, (vector unsigned char)__b);
+}
+
+/* vec_vaddshs */
+
+static vector short __ATTRS_o_ai
+vec_vaddshs(vector short __a, vector short __b)
+{
+ return __builtin_altivec_vaddshs(__a, __b);
+}
+
+static vector short __ATTRS_o_ai
+vec_vaddshs(vector bool short __a, vector short __b)
+{
+ return __builtin_altivec_vaddshs((vector short)__a, __b);
+}
+
+static vector short __ATTRS_o_ai
+vec_vaddshs(vector short __a, vector bool short __b)
+{
+ return __builtin_altivec_vaddshs(__a, (vector short)__b);
+}
+
+/* vec_vadduhs */
+
+static vector unsigned short __ATTRS_o_ai
+vec_vadduhs(vector unsigned short __a, vector unsigned short __b)
+{
+ return __builtin_altivec_vadduhs(__a, __b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vadduhs(vector bool short __a, vector unsigned short __b)
+{
+ return __builtin_altivec_vadduhs((vector unsigned short)__a, __b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vadduhs(vector unsigned short __a, vector bool short __b)
+{
+ return __builtin_altivec_vadduhs(__a, (vector unsigned short)__b);
+}
+
+/* vec_vaddsws */
+
+static vector int __ATTRS_o_ai
+vec_vaddsws(vector int __a, vector int __b)
+{
+ return __builtin_altivec_vaddsws(__a, __b);
+}
+
+static vector int __ATTRS_o_ai
+vec_vaddsws(vector bool int __a, vector int __b)
+{
+ return __builtin_altivec_vaddsws((vector int)__a, __b);
+}
+
+static vector int __ATTRS_o_ai
+vec_vaddsws(vector int __a, vector bool int __b)
+{
+ return __builtin_altivec_vaddsws(__a, (vector int)__b);
+}
+
+/* vec_vadduws */
+
+static vector unsigned int __ATTRS_o_ai
+vec_vadduws(vector unsigned int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vadduws(__a, __b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vadduws(vector bool int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vadduws((vector unsigned int)__a, __b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vadduws(vector unsigned int __a, vector bool int __b)
+{
+ return __builtin_altivec_vadduws(__a, (vector unsigned int)__b);
+}
+
+#if defined(__POWER8_VECTOR__) && defined(__powerpc64__)
+/* vec_vadduqm */
+
+static vector signed __int128 __ATTRS_o_ai
+vec_vadduqm(vector signed __int128 __a, vector signed __int128 __b)
+{
+ return __a + __b;
+}
+
+static vector unsigned __int128 __ATTRS_o_ai
+vec_vadduqm(vector unsigned __int128 __a, vector unsigned __int128 __b)
+{
+ return __a + __b;
+}
+
+/* vec_vaddeuqm */
+
+static vector signed __int128 __ATTRS_o_ai
+vec_vaddeuqm(vector signed __int128 __a, vector signed __int128 __b,
+ vector signed __int128 __c) {
+ return __builtin_altivec_vaddeuqm(__a, __b, __c);
+}
+
+static vector unsigned __int128 __ATTRS_o_ai
+vec_vaddeuqm(vector unsigned __int128 __a, vector unsigned __int128 __b,
+ vector unsigned __int128 __c) {
+ return __builtin_altivec_vaddeuqm(__a, __b, __c);
+}
+
+/* vec_vaddcuq */
+
+static vector signed __int128 __ATTRS_o_ai
+vec_vaddcuq(vector signed __int128 __a, vector signed __int128 __b)
+{
+ return __builtin_altivec_vaddcuq(__a, __b);
+}
+
+static vector unsigned __int128 __ATTRS_o_ai
+vec_vaddcuq(vector unsigned __int128 __a, vector unsigned __int128 __b)
+{
+ return __builtin_altivec_vaddcuq(__a, __b);
+}
+
+/* vec_vaddecuq */
+
+static vector signed __int128 __ATTRS_o_ai
+vec_vaddecuq(vector signed __int128 __a, vector signed __int128 __b,
+ vector signed __int128 __c) {
+ return __builtin_altivec_vaddecuq(__a, __b, __c);
+}
+
+static vector unsigned __int128 __ATTRS_o_ai
+vec_vaddecuq(vector unsigned __int128 __a, vector unsigned __int128 __b,
+ vector unsigned __int128 __c) {
+ return __builtin_altivec_vaddecuq(__a, __b, __c);
+}
+#endif // defined(__POWER8_VECTOR__) && defined(__powerpc64__)
+
+/* vec_and */
+
+#define __builtin_altivec_vand vec_and
+
+static vector signed char __ATTRS_o_ai
+vec_and(vector signed char __a, vector signed char __b)
+{
+ return __a & __b;
+}
+
+static vector signed char __ATTRS_o_ai
+vec_and(vector bool char __a, vector signed char __b)
+{
+ return (vector signed char)__a & __b;
+}
+
+static vector signed char __ATTRS_o_ai
+vec_and(vector signed char __a, vector bool char __b)
+{
+ return __a & (vector signed char)__b;
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_and(vector unsigned char __a, vector unsigned char __b)
+{
+ return __a & __b;
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_and(vector bool char __a, vector unsigned char __b)
+{
+ return (vector unsigned char)__a & __b;
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_and(vector unsigned char __a, vector bool char __b)
+{
+ return __a & (vector unsigned char)__b;
+}
+
+static vector bool char __ATTRS_o_ai
+vec_and(vector bool char __a, vector bool char __b)
+{
+ return __a & __b;
+}
+
+static vector short __ATTRS_o_ai
+vec_and(vector short __a, vector short __b)
+{
+ return __a & __b;
+}
+
+static vector short __ATTRS_o_ai
+vec_and(vector bool short __a, vector short __b)
+{
+ return (vector short)__a & __b;
+}
+
+static vector short __ATTRS_o_ai
+vec_and(vector short __a, vector bool short __b)
+{
+ return __a & (vector short)__b;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_and(vector unsigned short __a, vector unsigned short __b)
+{
+ return __a & __b;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_and(vector bool short __a, vector unsigned short __b)
+{
+ return (vector unsigned short)__a & __b;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_and(vector unsigned short __a, vector bool short __b)
+{
+ return __a & (vector unsigned short)__b;
+}
+
+static vector bool short __ATTRS_o_ai
+vec_and(vector bool short __a, vector bool short __b)
+{
+ return __a & __b;
+}
+
+static vector int __ATTRS_o_ai
+vec_and(vector int __a, vector int __b)
+{
+ return __a & __b;
+}
+
+static vector int __ATTRS_o_ai
+vec_and(vector bool int __a, vector int __b)
+{
+ return (vector int)__a & __b;
+}
+
+static vector int __ATTRS_o_ai
+vec_and(vector int __a, vector bool int __b)
+{
+ return __a & (vector int)__b;
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_and(vector unsigned int __a, vector unsigned int __b)
+{
+ return __a & __b;
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_and(vector bool int __a, vector unsigned int __b)
+{
+ return (vector unsigned int)__a & __b;
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_and(vector unsigned int __a, vector bool int __b)
+{
+ return __a & (vector unsigned int)__b;
+}
+
+static vector bool int __ATTRS_o_ai
+vec_and(vector bool int __a, vector bool int __b)
+{
+ return __a & __b;
+}
+
+static vector float __ATTRS_o_ai
+vec_and(vector float __a, vector float __b)
+{
+ vector unsigned int __res = (vector unsigned int)__a & (vector unsigned int)__b;
+ return (vector float)__res;
+}
+
+static vector float __ATTRS_o_ai
+vec_and(vector bool int __a, vector float __b)
+{
+ vector unsigned int __res = (vector unsigned int)__a & (vector unsigned int)__b;
+ return (vector float)__res;
+}
+
+static vector float __ATTRS_o_ai
+vec_and(vector float __a, vector bool int __b)
+{
+ vector unsigned int __res = (vector unsigned int)__a & (vector unsigned int)__b;
+ return (vector float)__res;
+}
+
+/* vec_vand */
+
+static vector signed char __ATTRS_o_ai
+vec_vand(vector signed char __a, vector signed char __b)
+{
+ return __a & __b;
+}
+
+static vector signed char __ATTRS_o_ai
+vec_vand(vector bool char __a, vector signed char __b)
+{
+ return (vector signed char)__a & __b;
+}
+
+static vector signed char __ATTRS_o_ai
+vec_vand(vector signed char __a, vector bool char __b)
+{
+ return __a & (vector signed char)__b;
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vand(vector unsigned char __a, vector unsigned char __b)
+{
+ return __a & __b;
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vand(vector bool char __a, vector unsigned char __b)
+{
+ return (vector unsigned char)__a & __b;
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vand(vector unsigned char __a, vector bool char __b)
+{
+ return __a & (vector unsigned char)__b;
+}
+
+static vector bool char __ATTRS_o_ai
+vec_vand(vector bool char __a, vector bool char __b)
+{
+ return __a & __b;
+}
+
+static vector short __ATTRS_o_ai
+vec_vand(vector short __a, vector short __b)
+{
+ return __a & __b;
+}
+
+static vector short __ATTRS_o_ai
+vec_vand(vector bool short __a, vector short __b)
+{
+ return (vector short)__a & __b;
+}
+
+static vector short __ATTRS_o_ai
+vec_vand(vector short __a, vector bool short __b)
+{
+ return __a & (vector short)__b;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vand(vector unsigned short __a, vector unsigned short __b)
+{
+ return __a & __b;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vand(vector bool short __a, vector unsigned short __b)
+{
+ return (vector unsigned short)__a & __b;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vand(vector unsigned short __a, vector bool short __b)
+{
+ return __a & (vector unsigned short)__b;
+}
+
+static vector bool short __ATTRS_o_ai
+vec_vand(vector bool short __a, vector bool short __b)
+{
+ return __a & __b;
+}
+
+static vector int __ATTRS_o_ai
+vec_vand(vector int __a, vector int __b)
+{
+ return __a & __b;
+}
+
+static vector int __ATTRS_o_ai
+vec_vand(vector bool int __a, vector int __b)
+{
+ return (vector int)__a & __b;
+}
+
+static vector int __ATTRS_o_ai
+vec_vand(vector int __a, vector bool int __b)
+{
+ return __a & (vector int)__b;
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vand(vector unsigned int __a, vector unsigned int __b)
+{
+ return __a & __b;
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vand(vector bool int __a, vector unsigned int __b)
+{
+ return (vector unsigned int)__a & __b;
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vand(vector unsigned int __a, vector bool int __b)
+{
+ return __a & (vector unsigned int)__b;
+}
+
+static vector bool int __ATTRS_o_ai
+vec_vand(vector bool int __a, vector bool int __b)
+{
+ return __a & __b;
+}
+
+static vector float __ATTRS_o_ai
+vec_vand(vector float __a, vector float __b)
+{
+ vector unsigned int __res = (vector unsigned int)__a & (vector unsigned int)__b;
+ return (vector float)__res;
+}
+
+static vector float __ATTRS_o_ai
+vec_vand(vector bool int __a, vector float __b)
+{
+ vector unsigned int __res = (vector unsigned int)__a & (vector unsigned int)__b;
+ return (vector float)__res;
+}
+
+static vector float __ATTRS_o_ai
+vec_vand(vector float __a, vector bool int __b)
+{
+ vector unsigned int __res = (vector unsigned int)__a & (vector unsigned int)__b;
+ return (vector float)__res;
+}
+
+/* vec_andc */
+
+#define __builtin_altivec_vandc vec_andc
+
+static vector signed char __ATTRS_o_ai
+vec_andc(vector signed char __a, vector signed char __b)
+{
+ return __a & ~__b;
+}
+
+static vector signed char __ATTRS_o_ai
+vec_andc(vector bool char __a, vector signed char __b)
+{
+ return (vector signed char)__a & ~__b;
+}
+
+static vector signed char __ATTRS_o_ai
+vec_andc(vector signed char __a, vector bool char __b)
+{
+ return __a & ~(vector signed char)__b;
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_andc(vector unsigned char __a, vector unsigned char __b)
+{
+ return __a & ~__b;
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_andc(vector bool char __a, vector unsigned char __b)
+{
+ return (vector unsigned char)__a & ~__b;
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_andc(vector unsigned char __a, vector bool char __b)
+{
+ return __a & ~(vector unsigned char)__b;
+}
+
+static vector bool char __ATTRS_o_ai
+vec_andc(vector bool char __a, vector bool char __b)
+{
+ return __a & ~__b;
+}
+
+static vector short __ATTRS_o_ai
+vec_andc(vector short __a, vector short __b)
+{
+ return __a & ~__b;
+}
+
+static vector short __ATTRS_o_ai
+vec_andc(vector bool short __a, vector short __b)
+{
+ return (vector short)__a & ~__b;
+}
+
+static vector short __ATTRS_o_ai
+vec_andc(vector short __a, vector bool short __b)
+{
+ return __a & ~(vector short)__b;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_andc(vector unsigned short __a, vector unsigned short __b)
+{
+ return __a & ~__b;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_andc(vector bool short __a, vector unsigned short __b)
+{
+ return (vector unsigned short)__a & ~__b;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_andc(vector unsigned short __a, vector bool short __b)
+{
+ return __a & ~(vector unsigned short)__b;
+}
+
+static vector bool short __ATTRS_o_ai
+vec_andc(vector bool short __a, vector bool short __b)
+{
+ return __a & ~__b;
+}
+
+static vector int __ATTRS_o_ai
+vec_andc(vector int __a, vector int __b)
+{
+ return __a & ~__b;
+}
+
+static vector int __ATTRS_o_ai
+vec_andc(vector bool int __a, vector int __b)
+{
+ return (vector int)__a & ~__b;
+}
+
+static vector int __ATTRS_o_ai
+vec_andc(vector int __a, vector bool int __b)
+{
+ return __a & ~(vector int)__b;
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_andc(vector unsigned int __a, vector unsigned int __b)
+{
+ return __a & ~__b;
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_andc(vector bool int __a, vector unsigned int __b)
+{
+ return (vector unsigned int)__a & ~__b;
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_andc(vector unsigned int __a, vector bool int __b)
+{
+ return __a & ~(vector unsigned int)__b;
+}
+
+static vector bool int __ATTRS_o_ai
+vec_andc(vector bool int __a, vector bool int __b)
+{
+ return __a & ~__b;
+}
+
+static vector float __ATTRS_o_ai
+vec_andc(vector float __a, vector float __b)
+{
+ vector unsigned int __res = (vector unsigned int)__a & ~(vector unsigned int)__b;
+ return (vector float)__res;
+}
+
+static vector float __ATTRS_o_ai
+vec_andc(vector bool int __a, vector float __b)
+{
+ vector unsigned int __res = (vector unsigned int)__a & ~(vector unsigned int)__b;
+ return (vector float)__res;
+}
+
+static vector float __ATTRS_o_ai
+vec_andc(vector float __a, vector bool int __b)
+{
+ vector unsigned int __res = (vector unsigned int)__a & ~(vector unsigned int)__b;
+ return (vector float)__res;
+}
+
+/* vec_vandc */
+
+static vector signed char __ATTRS_o_ai
+vec_vandc(vector signed char __a, vector signed char __b)
+{
+ return __a & ~__b;
+}
+
+static vector signed char __ATTRS_o_ai
+vec_vandc(vector bool char __a, vector signed char __b)
+{
+ return (vector signed char)__a & ~__b;
+}
+
+static vector signed char __ATTRS_o_ai
+vec_vandc(vector signed char __a, vector bool char __b)
+{
+ return __a & ~(vector signed char)__b;
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vandc(vector unsigned char __a, vector unsigned char __b)
+{
+ return __a & ~__b;
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vandc(vector bool char __a, vector unsigned char __b)
+{
+ return (vector unsigned char)__a & ~__b;
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vandc(vector unsigned char __a, vector bool char __b)
+{
+ return __a & ~(vector unsigned char)__b;
+}
+
+static vector bool char __ATTRS_o_ai
+vec_vandc(vector bool char __a, vector bool char __b)
+{
+ return __a & ~__b;
+}
+
+static vector short __ATTRS_o_ai
+vec_vandc(vector short __a, vector short __b)
+{
+ return __a & ~__b;
+}
+
+static vector short __ATTRS_o_ai
+vec_vandc(vector bool short __a, vector short __b)
+{
+ return (vector short)__a & ~__b;
+}
+
+static vector short __ATTRS_o_ai
+vec_vandc(vector short __a, vector bool short __b)
+{
+ return __a & ~(vector short)__b;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vandc(vector unsigned short __a, vector unsigned short __b)
+{
+ return __a & ~__b;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vandc(vector bool short __a, vector unsigned short __b)
+{
+ return (vector unsigned short)__a & ~__b;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vandc(vector unsigned short __a, vector bool short __b)
+{
+ return __a & ~(vector unsigned short)__b;
+}
+
+static vector bool short __ATTRS_o_ai
+vec_vandc(vector bool short __a, vector bool short __b)
+{
+ return __a & ~__b;
+}
+
+static vector int __ATTRS_o_ai
+vec_vandc(vector int __a, vector int __b)
+{
+ return __a & ~__b;
+}
+
+static vector int __ATTRS_o_ai
+vec_vandc(vector bool int __a, vector int __b)
+{
+ return (vector int)__a & ~__b;
+}
+
+static vector int __ATTRS_o_ai
+vec_vandc(vector int __a, vector bool int __b)
+{
+ return __a & ~(vector int)__b;
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vandc(vector unsigned int __a, vector unsigned int __b)
+{
+ return __a & ~__b;
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vandc(vector bool int __a, vector unsigned int __b)
+{
+ return (vector unsigned int)__a & ~__b;
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vandc(vector unsigned int __a, vector bool int __b)
+{
+ return __a & ~(vector unsigned int)__b;
+}
+
+static vector bool int __ATTRS_o_ai
+vec_vandc(vector bool int __a, vector bool int __b)
+{
+ return __a & ~__b;
+}
+
+static vector float __ATTRS_o_ai
+vec_vandc(vector float __a, vector float __b)
+{
+ vector unsigned int __res = (vector unsigned int)__a & ~(vector unsigned int)__b;
+ return (vector float)__res;
+}
+
+static vector float __ATTRS_o_ai
+vec_vandc(vector bool int __a, vector float __b)
+{
+ vector unsigned int __res = (vector unsigned int)__a & ~(vector unsigned int)__b;
+ return (vector float)__res;
+}
+
+static vector float __ATTRS_o_ai
+vec_vandc(vector float __a, vector bool int __b)
+{
+ vector unsigned int __res = (vector unsigned int)__a & ~(vector unsigned int)__b;
+ return (vector float)__res;
+}
+
+/* vec_avg */
+
+static vector signed char __ATTRS_o_ai
+vec_avg(vector signed char __a, vector signed char __b)
+{
+ return __builtin_altivec_vavgsb(__a, __b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_avg(vector unsigned char __a, vector unsigned char __b)
+{
+ return __builtin_altivec_vavgub(__a, __b);
+}
+
+static vector short __ATTRS_o_ai
+vec_avg(vector short __a, vector short __b)
+{
+ return __builtin_altivec_vavgsh(__a, __b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_avg(vector unsigned short __a, vector unsigned short __b)
+{
+ return __builtin_altivec_vavguh(__a, __b);
+}
+
+static vector int __ATTRS_o_ai
+vec_avg(vector int __a, vector int __b)
+{
+ return __builtin_altivec_vavgsw(__a, __b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_avg(vector unsigned int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vavguw(__a, __b);
+}
+
+/* vec_vavgsb */
+
+static vector signed char __attribute__((__always_inline__))
+vec_vavgsb(vector signed char __a, vector signed char __b)
+{
+ return __builtin_altivec_vavgsb(__a, __b);
+}
+
+/* vec_vavgub */
+
+static vector unsigned char __attribute__((__always_inline__))
+vec_vavgub(vector unsigned char __a, vector unsigned char __b)
+{
+ return __builtin_altivec_vavgub(__a, __b);
+}
+
+/* vec_vavgsh */
+
+static vector short __attribute__((__always_inline__))
+vec_vavgsh(vector short __a, vector short __b)
+{
+ return __builtin_altivec_vavgsh(__a, __b);
+}
+
+/* vec_vavguh */
+
+static vector unsigned short __attribute__((__always_inline__))
+vec_vavguh(vector unsigned short __a, vector unsigned short __b)
+{
+ return __builtin_altivec_vavguh(__a, __b);
+}
+
+/* vec_vavgsw */
+
+static vector int __attribute__((__always_inline__))
+vec_vavgsw(vector int __a, vector int __b)
+{
+ return __builtin_altivec_vavgsw(__a, __b);
+}
+
+/* vec_vavguw */
+
+static vector unsigned int __attribute__((__always_inline__))
+vec_vavguw(vector unsigned int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vavguw(__a, __b);
+}
+
+/* vec_ceil */
+
+static vector float __attribute__((__always_inline__))
+vec_ceil(vector float __a)
+{
+ return __builtin_altivec_vrfip(__a);
+}
+
+/* vec_vrfip */
+
+static vector float __attribute__((__always_inline__))
+vec_vrfip(vector float __a)
+{
+ return __builtin_altivec_vrfip(__a);
+}
+
+/* vec_cmpb */
+
+static vector int __attribute__((__always_inline__))
+vec_cmpb(vector float __a, vector float __b)
+{
+ return __builtin_altivec_vcmpbfp(__a, __b);
+}
+
+/* vec_vcmpbfp */
+
+static vector int __attribute__((__always_inline__))
+vec_vcmpbfp(vector float __a, vector float __b)
+{
+ return __builtin_altivec_vcmpbfp(__a, __b);
+}
+
+/* vec_cmpeq */
+
+static vector bool char __ATTRS_o_ai
+vec_cmpeq(vector signed char __a, vector signed char __b)
+{
+ return (vector bool char)
+ __builtin_altivec_vcmpequb((vector char)__a, (vector char)__b);
+}
+
+static vector bool char __ATTRS_o_ai
+vec_cmpeq(vector unsigned char __a, vector unsigned char __b)
+{
+ return (vector bool char)
+ __builtin_altivec_vcmpequb((vector char)__a, (vector char)__b);
+}
+
+static vector bool short __ATTRS_o_ai
+vec_cmpeq(vector short __a, vector short __b)
+{
+ return (vector bool short)__builtin_altivec_vcmpequh(__a, __b);
+}
+
+static vector bool short __ATTRS_o_ai
+vec_cmpeq(vector unsigned short __a, vector unsigned short __b)
+{
+ return (vector bool short)
+ __builtin_altivec_vcmpequh((vector short)__a, (vector short)__b);
+}
+
+static vector bool int __ATTRS_o_ai
+vec_cmpeq(vector int __a, vector int __b)
+{
+ return (vector bool int)__builtin_altivec_vcmpequw(__a, __b);
+}
+
+static vector bool int __ATTRS_o_ai
+vec_cmpeq(vector unsigned int __a, vector unsigned int __b)
+{
+ return (vector bool int)
+ __builtin_altivec_vcmpequw((vector int)__a, (vector int)__b);
+}
+
+#ifdef __POWER8_VECTOR__
+static vector bool long long __ATTRS_o_ai
+vec_cmpeq(vector signed long long __a, vector signed long long __b)
+{
+ return (vector bool long long) __builtin_altivec_vcmpequd(__a, __b);
+}
+
+static vector bool long long __ATTRS_o_ai
+vec_cmpeq(vector unsigned long long __a, vector unsigned long long __b)
+{
+ return (vector bool long long)
+ __builtin_altivec_vcmpequd((vector long long)__a, (vector long long) __b);
+}
+#endif
+
+static vector bool int __ATTRS_o_ai
+vec_cmpeq(vector float __a, vector float __b)
+{
+ return (vector bool int)__builtin_altivec_vcmpeqfp(__a, __b);
+}
+
+/* vec_cmpge */
+
+static vector bool int __attribute__((__always_inline__))
+vec_cmpge(vector float __a, vector float __b)
+{
+ return (vector bool int)__builtin_altivec_vcmpgefp(__a, __b);
+}
+
+/* vec_vcmpgefp */
+
+static vector bool int __attribute__((__always_inline__))
+vec_vcmpgefp(vector float __a, vector float __b)
+{
+ return (vector bool int)__builtin_altivec_vcmpgefp(__a, __b);
+}
+
+/* vec_cmpgt */
+
+static vector bool char __ATTRS_o_ai
+vec_cmpgt(vector signed char __a, vector signed char __b)
+{
+ return (vector bool char)__builtin_altivec_vcmpgtsb(__a, __b);
+}
+
+static vector bool char __ATTRS_o_ai
+vec_cmpgt(vector unsigned char __a, vector unsigned char __b)
+{
+ return (vector bool char)__builtin_altivec_vcmpgtub(__a, __b);
+}
+
+static vector bool short __ATTRS_o_ai
+vec_cmpgt(vector short __a, vector short __b)
+{
+ return (vector bool short)__builtin_altivec_vcmpgtsh(__a, __b);
+}
+
+static vector bool short __ATTRS_o_ai
+vec_cmpgt(vector unsigned short __a, vector unsigned short __b)
+{
+ return (vector bool short)__builtin_altivec_vcmpgtuh(__a, __b);
+}
+
+static vector bool int __ATTRS_o_ai
+vec_cmpgt(vector int __a, vector int __b)
+{
+ return (vector bool int)__builtin_altivec_vcmpgtsw(__a, __b);
+}
+
+static vector bool int __ATTRS_o_ai
+vec_cmpgt(vector unsigned int __a, vector unsigned int __b)
+{
+ return (vector bool int)__builtin_altivec_vcmpgtuw(__a, __b);
+}
+
+#ifdef __POWER8_VECTOR__
+static vector bool long long __ATTRS_o_ai
+vec_cmpgt(vector signed long long __a, vector signed long long __b)
+{
+ return (vector bool long long)__builtin_altivec_vcmpgtsd(__a, __b);
+}
+
+static vector bool long long __ATTRS_o_ai
+vec_cmpgt(vector unsigned long long __a, vector unsigned long long __b)
+{
+ return (vector bool long long)__builtin_altivec_vcmpgtud(__a, __b);
+}
+#endif
+
+static vector bool int __ATTRS_o_ai
+vec_cmpgt(vector float __a, vector float __b)
+{
+ return (vector bool int)__builtin_altivec_vcmpgtfp(__a, __b);
+}
+
+/* vec_vcmpgtsb */
+
+static vector bool char __attribute__((__always_inline__))
+vec_vcmpgtsb(vector signed char __a, vector signed char __b)
+{
+ return (vector bool char)__builtin_altivec_vcmpgtsb(__a, __b);
+}
+
+/* vec_vcmpgtub */
+
+static vector bool char __attribute__((__always_inline__))
+vec_vcmpgtub(vector unsigned char __a, vector unsigned char __b)
+{
+ return (vector bool char)__builtin_altivec_vcmpgtub(__a, __b);
+}
+
+/* vec_vcmpgtsh */
+
+static vector bool short __attribute__((__always_inline__))
+vec_vcmpgtsh(vector short __a, vector short __b)
+{
+ return (vector bool short)__builtin_altivec_vcmpgtsh(__a, __b);
+}
+
+/* vec_vcmpgtuh */
+
+static vector bool short __attribute__((__always_inline__))
+vec_vcmpgtuh(vector unsigned short __a, vector unsigned short __b)
+{
+ return (vector bool short)__builtin_altivec_vcmpgtuh(__a, __b);
+}
+
+/* vec_vcmpgtsw */
+
+static vector bool int __attribute__((__always_inline__))
+vec_vcmpgtsw(vector int __a, vector int __b)
+{
+ return (vector bool int)__builtin_altivec_vcmpgtsw(__a, __b);
+}
+
+/* vec_vcmpgtuw */
+
+static vector bool int __attribute__((__always_inline__))
+vec_vcmpgtuw(vector unsigned int __a, vector unsigned int __b)
+{
+ return (vector bool int)__builtin_altivec_vcmpgtuw(__a, __b);
+}
+
+/* vec_vcmpgtfp */
+
+static vector bool int __attribute__((__always_inline__))
+vec_vcmpgtfp(vector float __a, vector float __b)
+{
+ return (vector bool int)__builtin_altivec_vcmpgtfp(__a, __b);
+}
+
+/* vec_cmple */
+
+static vector bool int __attribute__((__always_inline__))
+vec_cmple(vector float __a, vector float __b)
+{
+ return (vector bool int)__builtin_altivec_vcmpgefp(__b, __a);
+}
+
+/* vec_cmplt */
+
+static vector bool char __ATTRS_o_ai
+vec_cmplt(vector signed char __a, vector signed char __b)
+{
+ return (vector bool char)__builtin_altivec_vcmpgtsb(__b, __a);
+}
+
+static vector bool char __ATTRS_o_ai
+vec_cmplt(vector unsigned char __a, vector unsigned char __b)
+{
+ return (vector bool char)__builtin_altivec_vcmpgtub(__b, __a);
+}
+
+static vector bool short __ATTRS_o_ai
+vec_cmplt(vector short __a, vector short __b)
+{
+ return (vector bool short)__builtin_altivec_vcmpgtsh(__b, __a);
+}
+
+static vector bool short __ATTRS_o_ai
+vec_cmplt(vector unsigned short __a, vector unsigned short __b)
+{
+ return (vector bool short)__builtin_altivec_vcmpgtuh(__b, __a);
+}
+
+static vector bool int __ATTRS_o_ai
+vec_cmplt(vector int __a, vector int __b)
+{
+ return (vector bool int)__builtin_altivec_vcmpgtsw(__b, __a);
+}
+
+static vector bool int __ATTRS_o_ai
+vec_cmplt(vector unsigned int __a, vector unsigned int __b)
+{
+ return (vector bool int)__builtin_altivec_vcmpgtuw(__b, __a);
+}
+
+static vector bool int __ATTRS_o_ai
+vec_cmplt(vector float __a, vector float __b)
+{
+ return (vector bool int)__builtin_altivec_vcmpgtfp(__b, __a);
+}
+
+/* vec_ctf */
+
+static vector float __ATTRS_o_ai
+vec_ctf(vector int __a, int __b)
+{
+ return __builtin_altivec_vcfsx(__a, __b);
+}
+
+static vector float __ATTRS_o_ai
+vec_ctf(vector unsigned int __a, int __b)
+{
+ return __builtin_altivec_vcfux((vector int)__a, __b);
+}
+
+/* vec_vcfsx */
+
+static vector float __attribute__((__always_inline__))
+vec_vcfsx(vector int __a, int __b)
+{
+ return __builtin_altivec_vcfsx(__a, __b);
+}
+
+/* vec_vcfux */
+
+static vector float __attribute__((__always_inline__))
+vec_vcfux(vector unsigned int __a, int __b)
+{
+ return __builtin_altivec_vcfux((vector int)__a, __b);
+}
+
+/* vec_cts */
+
+static vector int __attribute__((__always_inline__))
+vec_cts(vector float __a, int __b)
+{
+ return __builtin_altivec_vctsxs(__a, __b);
+}
+
+/* vec_vctsxs */
+
+static vector int __attribute__((__always_inline__))
+vec_vctsxs(vector float __a, int __b)
+{
+ return __builtin_altivec_vctsxs(__a, __b);
+}
+
+/* vec_ctu */
+
+static vector unsigned int __attribute__((__always_inline__))
+vec_ctu(vector float __a, int __b)
+{
+ return __builtin_altivec_vctuxs(__a, __b);
+}
+
+/* vec_vctuxs */
+
+static vector unsigned int __attribute__((__always_inline__))
+vec_vctuxs(vector float __a, int __b)
+{
+ return __builtin_altivec_vctuxs(__a, __b);
+}
+
+/* vec_div */
+#ifdef __VSX__
+static vector float __ATTRS_o_ai
+vec_div(vector float __a, vector float __b)
+{
+ return __builtin_vsx_xvdivsp(__a, __b);
+}
+
+static vector double __ATTRS_o_ai
+vec_div(vector double __a, vector double __b)
+{
+ return __builtin_vsx_xvdivdp(__a, __b);
+}
+#endif
+
+/* vec_dss */
+
+static void __attribute__((__always_inline__))
+vec_dss(int __a)
+{
+ __builtin_altivec_dss(__a);
+}
+
+/* vec_dssall */
+
+static void __attribute__((__always_inline__))
+vec_dssall(void)
+{
+ __builtin_altivec_dssall();
+}
+
+/* vec_dst */
+
+static void __attribute__((__always_inline__))
+vec_dst(const void *__a, int __b, int __c)
+{
+ __builtin_altivec_dst(__a, __b, __c);
+}
+
+/* vec_dstst */
+
+static void __attribute__((__always_inline__))
+vec_dstst(const void *__a, int __b, int __c)
+{
+ __builtin_altivec_dstst(__a, __b, __c);
+}
+
+/* vec_dststt */
+
+static void __attribute__((__always_inline__))
+vec_dststt(const void *__a, int __b, int __c)
+{
+ __builtin_altivec_dststt(__a, __b, __c);
+}
+
+/* vec_dstt */
+
+static void __attribute__((__always_inline__))
+vec_dstt(const void *__a, int __b, int __c)
+{
+ __builtin_altivec_dstt(__a, __b, __c);
+}
+
+/* vec_expte */
+
+static vector float __attribute__((__always_inline__))
+vec_expte(vector float __a)
+{
+ return __builtin_altivec_vexptefp(__a);
+}
+
+/* vec_vexptefp */
+
+static vector float __attribute__((__always_inline__))
+vec_vexptefp(vector float __a)
+{
+ return __builtin_altivec_vexptefp(__a);
+}
+
+/* vec_floor */
+
+static vector float __attribute__((__always_inline__))
+vec_floor(vector float __a)
+{
+ return __builtin_altivec_vrfim(__a);
+}
+
+/* vec_vrfim */
+
+static vector float __attribute__((__always_inline__))
+vec_vrfim(vector float __a)
+{
+ return __builtin_altivec_vrfim(__a);
+}
+
+/* vec_ld */
+
+static vector signed char __ATTRS_o_ai
+vec_ld(int __a, const vector signed char *__b)
+{
+ return (vector signed char)__builtin_altivec_lvx(__a, __b);
+}
+
+static vector signed char __ATTRS_o_ai
+vec_ld(int __a, const signed char *__b)
+{
+ return (vector signed char)__builtin_altivec_lvx(__a, __b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_ld(int __a, const vector unsigned char *__b)
+{
+ return (vector unsigned char)__builtin_altivec_lvx(__a, __b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_ld(int __a, const unsigned char *__b)
+{
+ return (vector unsigned char)__builtin_altivec_lvx(__a, __b);
+}
+
+static vector bool char __ATTRS_o_ai
+vec_ld(int __a, const vector bool char *__b)
+{
+ return (vector bool char)__builtin_altivec_lvx(__a, __b);
+}
+
+static vector short __ATTRS_o_ai
+vec_ld(int __a, const vector short *__b)
+{
+ return (vector short)__builtin_altivec_lvx(__a, __b);
+}
+
+static vector short __ATTRS_o_ai
+vec_ld(int __a, const short *__b)
+{
+ return (vector short)__builtin_altivec_lvx(__a, __b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_ld(int __a, const vector unsigned short *__b)
+{
+ return (vector unsigned short)__builtin_altivec_lvx(__a, __b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_ld(int __a, const unsigned short *__b)
+{
+ return (vector unsigned short)__builtin_altivec_lvx(__a, __b);
+}
+
+static vector bool short __ATTRS_o_ai
+vec_ld(int __a, const vector bool short *__b)
+{
+ return (vector bool short)__builtin_altivec_lvx(__a, __b);
+}
+
+static vector pixel __ATTRS_o_ai
+vec_ld(int __a, const vector pixel *__b)
+{
+ return (vector pixel)__builtin_altivec_lvx(__a, __b);
+}
+
+static vector int __ATTRS_o_ai
+vec_ld(int __a, const vector int *__b)
+{
+ return (vector int)__builtin_altivec_lvx(__a, __b);
+}
+
+static vector int __ATTRS_o_ai
+vec_ld(int __a, const int *__b)
+{
+ return (vector int)__builtin_altivec_lvx(__a, __b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_ld(int __a, const vector unsigned int *__b)
+{
+ return (vector unsigned int)__builtin_altivec_lvx(__a, __b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_ld(int __a, const unsigned int *__b)
+{
+ return (vector unsigned int)__builtin_altivec_lvx(__a, __b);
+}
+
+static vector bool int __ATTRS_o_ai
+vec_ld(int __a, const vector bool int *__b)
+{
+ return (vector bool int)__builtin_altivec_lvx(__a, __b);
+}
+
+static vector float __ATTRS_o_ai
+vec_ld(int __a, const vector float *__b)
+{
+ return (vector float)__builtin_altivec_lvx(__a, __b);
+}
+
+static vector float __ATTRS_o_ai
+vec_ld(int __a, const float *__b)
+{
+ return (vector float)__builtin_altivec_lvx(__a, __b);
+}
+
+/* vec_lvx */
+
+static vector signed char __ATTRS_o_ai
+vec_lvx(int __a, const vector signed char *__b)
+{
+ return (vector signed char)__builtin_altivec_lvx(__a, __b);
+}
+
+static vector signed char __ATTRS_o_ai
+vec_lvx(int __a, const signed char *__b)
+{
+ return (vector signed char)__builtin_altivec_lvx(__a, __b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_lvx(int __a, const vector unsigned char *__b)
+{
+ return (vector unsigned char)__builtin_altivec_lvx(__a, __b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_lvx(int __a, const unsigned char *__b)
+{
+ return (vector unsigned char)__builtin_altivec_lvx(__a, __b);
+}
+
+static vector bool char __ATTRS_o_ai
+vec_lvx(int __a, const vector bool char *__b)
+{
+ return (vector bool char)__builtin_altivec_lvx(__a, __b);
+}
+
+static vector short __ATTRS_o_ai
+vec_lvx(int __a, const vector short *__b)
+{
+ return (vector short)__builtin_altivec_lvx(__a, __b);
+}
+
+static vector short __ATTRS_o_ai
+vec_lvx(int __a, const short *__b)
+{
+ return (vector short)__builtin_altivec_lvx(__a, __b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_lvx(int __a, const vector unsigned short *__b)
+{
+ return (vector unsigned short)__builtin_altivec_lvx(__a, __b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_lvx(int __a, const unsigned short *__b)
+{
+ return (vector unsigned short)__builtin_altivec_lvx(__a, __b);
+}
+
+static vector bool short __ATTRS_o_ai
+vec_lvx(int __a, const vector bool short *__b)
+{
+ return (vector bool short)__builtin_altivec_lvx(__a, __b);
+}
+
+static vector pixel __ATTRS_o_ai
+vec_lvx(int __a, const vector pixel *__b)
+{
+ return (vector pixel)__builtin_altivec_lvx(__a, __b);
+}
+
+static vector int __ATTRS_o_ai
+vec_lvx(int __a, const vector int *__b)
+{
+ return (vector int)__builtin_altivec_lvx(__a, __b);
+}
+
+static vector int __ATTRS_o_ai
+vec_lvx(int __a, const int *__b)
+{
+ return (vector int)__builtin_altivec_lvx(__a, __b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_lvx(int __a, const vector unsigned int *__b)
+{
+ return (vector unsigned int)__builtin_altivec_lvx(__a, __b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_lvx(int __a, const unsigned int *__b)
+{
+ return (vector unsigned int)__builtin_altivec_lvx(__a, __b);
+}
+
+static vector bool int __ATTRS_o_ai
+vec_lvx(int __a, const vector bool int *__b)
+{
+ return (vector bool int)__builtin_altivec_lvx(__a, __b);
+}
+
+static vector float __ATTRS_o_ai
+vec_lvx(int __a, const vector float *__b)
+{
+ return (vector float)__builtin_altivec_lvx(__a, __b);
+}
+
+static vector float __ATTRS_o_ai
+vec_lvx(int __a, const float *__b)
+{
+ return (vector float)__builtin_altivec_lvx(__a, __b);
+}
+
+/* vec_lde */
+
+static vector signed char __ATTRS_o_ai
+vec_lde(int __a, const signed char *__b)
+{
+ return (vector signed char)__builtin_altivec_lvebx(__a, __b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_lde(int __a, const unsigned char *__b)
+{
+ return (vector unsigned char)__builtin_altivec_lvebx(__a, __b);
+}
+
+static vector short __ATTRS_o_ai
+vec_lde(int __a, const short *__b)
+{
+ return (vector short)__builtin_altivec_lvehx(__a, __b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_lde(int __a, const unsigned short *__b)
+{
+ return (vector unsigned short)__builtin_altivec_lvehx(__a, __b);
+}
+
+static vector int __ATTRS_o_ai
+vec_lde(int __a, const int *__b)
+{
+ return (vector int)__builtin_altivec_lvewx(__a, __b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_lde(int __a, const unsigned int *__b)
+{
+ return (vector unsigned int)__builtin_altivec_lvewx(__a, __b);
+}
+
+static vector float __ATTRS_o_ai
+vec_lde(int __a, const float *__b)
+{
+ return (vector float)__builtin_altivec_lvewx(__a, __b);
+}
+
+/* vec_lvebx */
+
+static vector signed char __ATTRS_o_ai
+vec_lvebx(int __a, const signed char *__b)
+{
+ return (vector signed char)__builtin_altivec_lvebx(__a, __b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_lvebx(int __a, const unsigned char *__b)
+{
+ return (vector unsigned char)__builtin_altivec_lvebx(__a, __b);
+}
+
+/* vec_lvehx */
+
+static vector short __ATTRS_o_ai
+vec_lvehx(int __a, const short *__b)
+{
+ return (vector short)__builtin_altivec_lvehx(__a, __b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_lvehx(int __a, const unsigned short *__b)
+{
+ return (vector unsigned short)__builtin_altivec_lvehx(__a, __b);
+}
+
+/* vec_lvewx */
+
+static vector int __ATTRS_o_ai
+vec_lvewx(int __a, const int *__b)
+{
+ return (vector int)__builtin_altivec_lvewx(__a, __b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_lvewx(int __a, const unsigned int *__b)
+{
+ return (vector unsigned int)__builtin_altivec_lvewx(__a, __b);
+}
+
+static vector float __ATTRS_o_ai
+vec_lvewx(int __a, const float *__b)
+{
+ return (vector float)__builtin_altivec_lvewx(__a, __b);
+}
+
+/* vec_ldl */
+
+static vector signed char __ATTRS_o_ai
+vec_ldl(int __a, const vector signed char *__b)
+{
+ return (vector signed char)__builtin_altivec_lvxl(__a, __b);
+}
+
+static vector signed char __ATTRS_o_ai
+vec_ldl(int __a, const signed char *__b)
+{
+ return (vector signed char)__builtin_altivec_lvxl(__a, __b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_ldl(int __a, const vector unsigned char *__b)
+{
+ return (vector unsigned char)__builtin_altivec_lvxl(__a, __b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_ldl(int __a, const unsigned char *__b)
+{
+ return (vector unsigned char)__builtin_altivec_lvxl(__a, __b);
+}
+
+static vector bool char __ATTRS_o_ai
+vec_ldl(int __a, const vector bool char *__b)
+{
+ return (vector bool char)__builtin_altivec_lvxl(__a, __b);
+}
+
+static vector short __ATTRS_o_ai
+vec_ldl(int __a, const vector short *__b)
+{
+ return (vector short)__builtin_altivec_lvxl(__a, __b);
+}
+
+static vector short __ATTRS_o_ai
+vec_ldl(int __a, const short *__b)
+{
+ return (vector short)__builtin_altivec_lvxl(__a, __b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_ldl(int __a, const vector unsigned short *__b)
+{
+ return (vector unsigned short)__builtin_altivec_lvxl(__a, __b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_ldl(int __a, const unsigned short *__b)
+{
+ return (vector unsigned short)__builtin_altivec_lvxl(__a, __b);
+}
+
+static vector bool short __ATTRS_o_ai
+vec_ldl(int __a, const vector bool short *__b)
+{
+ return (vector bool short)__builtin_altivec_lvxl(__a, __b);
+}
+
+static vector pixel __ATTRS_o_ai
+vec_ldl(int __a, const vector pixel *__b)
+{
+ return (vector pixel short)__builtin_altivec_lvxl(__a, __b);
+}
+
+static vector int __ATTRS_o_ai
+vec_ldl(int __a, const vector int *__b)
+{
+ return (vector int)__builtin_altivec_lvxl(__a, __b);
+}
+
+static vector int __ATTRS_o_ai
+vec_ldl(int __a, const int *__b)
+{
+ return (vector int)__builtin_altivec_lvxl(__a, __b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_ldl(int __a, const vector unsigned int *__b)
+{
+ return (vector unsigned int)__builtin_altivec_lvxl(__a, __b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_ldl(int __a, const unsigned int *__b)
+{
+ return (vector unsigned int)__builtin_altivec_lvxl(__a, __b);
+}
+
+static vector bool int __ATTRS_o_ai
+vec_ldl(int __a, const vector bool int *__b)
+{
+ return (vector bool int)__builtin_altivec_lvxl(__a, __b);
+}
+
+static vector float __ATTRS_o_ai
+vec_ldl(int __a, const vector float *__b)
+{
+ return (vector float)__builtin_altivec_lvxl(__a, __b);
+}
+
+static vector float __ATTRS_o_ai
+vec_ldl(int __a, const float *__b)
+{
+ return (vector float)__builtin_altivec_lvxl(__a, __b);
+}
+
+/* vec_lvxl */
+
+static vector signed char __ATTRS_o_ai
+vec_lvxl(int __a, const vector signed char *__b)
+{
+ return (vector signed char)__builtin_altivec_lvxl(__a, __b);
+}
+
+static vector signed char __ATTRS_o_ai
+vec_lvxl(int __a, const signed char *__b)
+{
+ return (vector signed char)__builtin_altivec_lvxl(__a, __b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_lvxl(int __a, const vector unsigned char *__b)
+{
+ return (vector unsigned char)__builtin_altivec_lvxl(__a, __b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_lvxl(int __a, const unsigned char *__b)
+{
+ return (vector unsigned char)__builtin_altivec_lvxl(__a, __b);
+}
+
+static vector bool char __ATTRS_o_ai
+vec_lvxl(int __a, const vector bool char *__b)
+{
+ return (vector bool char)__builtin_altivec_lvxl(__a, __b);
+}
+
+static vector short __ATTRS_o_ai
+vec_lvxl(int __a, const vector short *__b)
+{
+ return (vector short)__builtin_altivec_lvxl(__a, __b);
+}
+
+static vector short __ATTRS_o_ai
+vec_lvxl(int __a, const short *__b)
+{
+ return (vector short)__builtin_altivec_lvxl(__a, __b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_lvxl(int __a, const vector unsigned short *__b)
+{
+ return (vector unsigned short)__builtin_altivec_lvxl(__a, __b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_lvxl(int __a, const unsigned short *__b)
+{
+ return (vector unsigned short)__builtin_altivec_lvxl(__a, __b);
+}
+
+static vector bool short __ATTRS_o_ai
+vec_lvxl(int __a, const vector bool short *__b)
+{
+ return (vector bool short)__builtin_altivec_lvxl(__a, __b);
+}
+
+static vector pixel __ATTRS_o_ai
+vec_lvxl(int __a, const vector pixel *__b)
+{
+ return (vector pixel)__builtin_altivec_lvxl(__a, __b);
+}
+
+static vector int __ATTRS_o_ai
+vec_lvxl(int __a, const vector int *__b)
+{
+ return (vector int)__builtin_altivec_lvxl(__a, __b);
+}
+
+static vector int __ATTRS_o_ai
+vec_lvxl(int __a, const int *__b)
+{
+ return (vector int)__builtin_altivec_lvxl(__a, __b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_lvxl(int __a, const vector unsigned int *__b)
+{
+ return (vector unsigned int)__builtin_altivec_lvxl(__a, __b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_lvxl(int __a, const unsigned int *__b)
+{
+ return (vector unsigned int)__builtin_altivec_lvxl(__a, __b);
+}
+
+static vector bool int __ATTRS_o_ai
+vec_lvxl(int __a, const vector bool int *__b)
+{
+ return (vector bool int)__builtin_altivec_lvxl(__a, __b);
+}
+
+static vector float __ATTRS_o_ai
+vec_lvxl(int __a, const vector float *__b)
+{
+ return (vector float)__builtin_altivec_lvxl(__a, __b);
+}
+
+static vector float __ATTRS_o_ai
+vec_lvxl(int __a, const float *__b)
+{
+ return (vector float)__builtin_altivec_lvxl(__a, __b);
+}
+
+/* vec_loge */
+
+static vector float __attribute__((__always_inline__))
+vec_loge(vector float __a)
+{
+ return __builtin_altivec_vlogefp(__a);
+}
+
+/* vec_vlogefp */
+
+static vector float __attribute__((__always_inline__))
+vec_vlogefp(vector float __a)
+{
+ return __builtin_altivec_vlogefp(__a);
+}
+
+/* vec_lvsl */
+
+#ifdef __LITTLE_ENDIAN__
+static vector unsigned char __ATTRS_o_ai
+__attribute__((__deprecated__("use assignment for unaligned little endian \
+loads/stores")))
+vec_lvsl(int __a, const signed char *__b)
+{
+ vector unsigned char mask =
+ (vector unsigned char)__builtin_altivec_lvsl(__a, __b);
+ vector unsigned char reverse = {15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0};
+ return vec_perm(mask, mask, reverse);
+}
+#else
+static vector unsigned char __ATTRS_o_ai
+vec_lvsl(int __a, const signed char *__b)
+{
+ return (vector unsigned char)__builtin_altivec_lvsl(__a, __b);
+}
+#endif
+
+#ifdef __LITTLE_ENDIAN__
+static vector unsigned char __ATTRS_o_ai
+__attribute__((__deprecated__("use assignment for unaligned little endian \
+loads/stores")))
+vec_lvsl(int __a, const unsigned char *__b)
+{
+ vector unsigned char mask =
+ (vector unsigned char)__builtin_altivec_lvsl(__a, __b);
+ vector unsigned char reverse = {15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0};
+ return vec_perm(mask, mask, reverse);
+}
+#else
+static vector unsigned char __ATTRS_o_ai
+vec_lvsl(int __a, const unsigned char *__b)
+{
+ return (vector unsigned char)__builtin_altivec_lvsl(__a, __b);
+}
+#endif
+
+#ifdef __LITTLE_ENDIAN__
+static vector unsigned char __ATTRS_o_ai
+__attribute__((__deprecated__("use assignment for unaligned little endian \
+loads/stores")))
+vec_lvsl(int __a, const short *__b)
+{
+ vector unsigned char mask =
+ (vector unsigned char)__builtin_altivec_lvsl(__a, __b);
+ vector unsigned char reverse = {15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0};
+ return vec_perm(mask, mask, reverse);
+}
+#else
+static vector unsigned char __ATTRS_o_ai
+vec_lvsl(int __a, const short *__b)
+{
+ return (vector unsigned char)__builtin_altivec_lvsl(__a, __b);
+}
+#endif
+
+#ifdef __LITTLE_ENDIAN__
+static vector unsigned char __ATTRS_o_ai
+__attribute__((__deprecated__("use assignment for unaligned little endian \
+loads/stores")))
+vec_lvsl(int __a, const unsigned short *__b)
+{
+ vector unsigned char mask =
+ (vector unsigned char)__builtin_altivec_lvsl(__a, __b);
+ vector unsigned char reverse = {15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0};
+ return vec_perm(mask, mask, reverse);
+}
+#else
+static vector unsigned char __ATTRS_o_ai
+vec_lvsl(int __a, const unsigned short *__b)
+{
+ return (vector unsigned char)__builtin_altivec_lvsl(__a, __b);
+}
+#endif
+
+#ifdef __LITTLE_ENDIAN__
+static vector unsigned char __ATTRS_o_ai
+__attribute__((__deprecated__("use assignment for unaligned little endian \
+loads/stores")))
+vec_lvsl(int __a, const int *__b)
+{
+ vector unsigned char mask =
+ (vector unsigned char)__builtin_altivec_lvsl(__a, __b);
+ vector unsigned char reverse = {15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0};
+ return vec_perm(mask, mask, reverse);
+}
+#else
+static vector unsigned char __ATTRS_o_ai
+vec_lvsl(int __a, const int *__b)
+{
+ return (vector unsigned char)__builtin_altivec_lvsl(__a, __b);
+}
+#endif
+
+#ifdef __LITTLE_ENDIAN__
+static vector unsigned char __ATTRS_o_ai
+__attribute__((__deprecated__("use assignment for unaligned little endian \
+loads/stores")))
+vec_lvsl(int __a, const unsigned int *__b)
+{
+ vector unsigned char mask =
+ (vector unsigned char)__builtin_altivec_lvsl(__a, __b);
+ vector unsigned char reverse = {15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0};
+ return vec_perm(mask, mask, reverse);
+}
+#else
+static vector unsigned char __ATTRS_o_ai
+vec_lvsl(int __a, const unsigned int *__b)
+{
+ return (vector unsigned char)__builtin_altivec_lvsl(__a, __b);
+}
+#endif
+
+#ifdef __LITTLE_ENDIAN__
+static vector unsigned char __ATTRS_o_ai
+__attribute__((__deprecated__("use assignment for unaligned little endian \
+loads/stores")))
+vec_lvsl(int __a, const float *__b)
+{
+ vector unsigned char mask =
+ (vector unsigned char)__builtin_altivec_lvsl(__a, __b);
+ vector unsigned char reverse = {15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0};
+ return vec_perm(mask, mask, reverse);
+}
+#else
+static vector unsigned char __ATTRS_o_ai
+vec_lvsl(int __a, const float *__b)
+{
+ return (vector unsigned char)__builtin_altivec_lvsl(__a, __b);
+}
+#endif
+
+/* vec_lvsr */
+
+#ifdef __LITTLE_ENDIAN__
+static vector unsigned char __ATTRS_o_ai
+__attribute__((__deprecated__("use assignment for unaligned little endian \
+loads/stores")))
+vec_lvsr(int __a, const signed char *__b)
+{
+ vector unsigned char mask =
+ (vector unsigned char)__builtin_altivec_lvsr(__a, __b);
+ vector unsigned char reverse = {15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0};
+ return vec_perm(mask, mask, reverse);
+}
+#else
+static vector unsigned char __ATTRS_o_ai
+vec_lvsr(int __a, const signed char *__b)
+{
+ return (vector unsigned char)__builtin_altivec_lvsr(__a, __b);
+}
+#endif
+
+#ifdef __LITTLE_ENDIAN__
+static vector unsigned char __ATTRS_o_ai
+__attribute__((__deprecated__("use assignment for unaligned little endian \
+loads/stores")))
+vec_lvsr(int __a, const unsigned char *__b)
+{
+ vector unsigned char mask =
+ (vector unsigned char)__builtin_altivec_lvsr(__a, __b);
+ vector unsigned char reverse = {15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0};
+ return vec_perm(mask, mask, reverse);
+}
+#else
+static vector unsigned char __ATTRS_o_ai
+vec_lvsr(int __a, const unsigned char *__b)
+{
+ return (vector unsigned char)__builtin_altivec_lvsr(__a, __b);
+}
+#endif
+
+#ifdef __LITTLE_ENDIAN__
+static vector unsigned char __ATTRS_o_ai
+__attribute__((__deprecated__("use assignment for unaligned little endian \
+loads/stores")))
+vec_lvsr(int __a, const short *__b)
+{
+ vector unsigned char mask =
+ (vector unsigned char)__builtin_altivec_lvsr(__a, __b);
+ vector unsigned char reverse = {15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0};
+ return vec_perm(mask, mask, reverse);
+}
+#else
+static vector unsigned char __ATTRS_o_ai
+vec_lvsr(int __a, const short *__b)
+{
+ return (vector unsigned char)__builtin_altivec_lvsr(__a, __b);
+}
+#endif
+
+#ifdef __LITTLE_ENDIAN__
+static vector unsigned char __ATTRS_o_ai
+__attribute__((__deprecated__("use assignment for unaligned little endian \
+loads/stores")))
+vec_lvsr(int __a, const unsigned short *__b)
+{
+ vector unsigned char mask =
+ (vector unsigned char)__builtin_altivec_lvsr(__a, __b);
+ vector unsigned char reverse = {15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0};
+ return vec_perm(mask, mask, reverse);
+}
+#else
+static vector unsigned char __ATTRS_o_ai
+vec_lvsr(int __a, const unsigned short *__b)
+{
+ return (vector unsigned char)__builtin_altivec_lvsr(__a, __b);
+}
+#endif
+
+#ifdef __LITTLE_ENDIAN__
+static vector unsigned char __ATTRS_o_ai
+__attribute__((__deprecated__("use assignment for unaligned little endian \
+loads/stores")))
+vec_lvsr(int __a, const int *__b)
+{
+ vector unsigned char mask =
+ (vector unsigned char)__builtin_altivec_lvsr(__a, __b);
+ vector unsigned char reverse = {15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0};
+ return vec_perm(mask, mask, reverse);
+}
+#else
+static vector unsigned char __ATTRS_o_ai
+vec_lvsr(int __a, const int *__b)
+{
+ return (vector unsigned char)__builtin_altivec_lvsr(__a, __b);
+}
+#endif
+
+#ifdef __LITTLE_ENDIAN__
+static vector unsigned char __ATTRS_o_ai
+__attribute__((__deprecated__("use assignment for unaligned little endian \
+loads/stores")))
+vec_lvsr(int __a, const unsigned int *__b)
+{
+ vector unsigned char mask =
+ (vector unsigned char)__builtin_altivec_lvsr(__a, __b);
+ vector unsigned char reverse = {15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0};
+ return vec_perm(mask, mask, reverse);
+}
+#else
+static vector unsigned char __ATTRS_o_ai
+vec_lvsr(int __a, const unsigned int *__b)
+{
+ return (vector unsigned char)__builtin_altivec_lvsr(__a, __b);
+}
+#endif
+
+#ifdef __LITTLE_ENDIAN__
+static vector unsigned char __ATTRS_o_ai
+__attribute__((__deprecated__("use assignment for unaligned little endian \
+loads/stores")))
+vec_lvsr(int __a, const float *__b)
+{
+ vector unsigned char mask =
+ (vector unsigned char)__builtin_altivec_lvsr(__a, __b);
+ vector unsigned char reverse = {15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0};
+ return vec_perm(mask, mask, reverse);
+}
+#else
+static vector unsigned char __ATTRS_o_ai
+vec_lvsr(int __a, const float *__b)
+{
+ return (vector unsigned char)__builtin_altivec_lvsr(__a, __b);
+}
+#endif
+
+/* vec_madd */
+
+static vector float __attribute__((__always_inline__))
+vec_madd(vector float __a, vector float __b, vector float __c)
+{
+ return __builtin_altivec_vmaddfp(__a, __b, __c);
+}
+
+/* vec_vmaddfp */
+
+static vector float __attribute__((__always_inline__))
+vec_vmaddfp(vector float __a, vector float __b, vector float __c)
+{
+ return __builtin_altivec_vmaddfp(__a, __b, __c);
+}
+
+/* vec_madds */
+
+static vector signed short __attribute__((__always_inline__))
+vec_madds(vector signed short __a, vector signed short __b, vector signed short __c)
+{
+ return __builtin_altivec_vmhaddshs(__a, __b, __c);
+}
+
+/* vec_vmhaddshs */
+static vector signed short __attribute__((__always_inline__))
+vec_vmhaddshs(vector signed short __a,
+ vector signed short __b,
+ vector signed short __c)
+{
+ return __builtin_altivec_vmhaddshs(__a, __b, __c);
+}
+
+/* vec_max */
+
+static vector signed char __ATTRS_o_ai
+vec_max(vector signed char __a, vector signed char __b)
+{
+ return __builtin_altivec_vmaxsb(__a, __b);
+}
+
+static vector signed char __ATTRS_o_ai
+vec_max(vector bool char __a, vector signed char __b)
+{
+ return __builtin_altivec_vmaxsb((vector signed char)__a, __b);
+}
+
+static vector signed char __ATTRS_o_ai
+vec_max(vector signed char __a, vector bool char __b)
+{
+ return __builtin_altivec_vmaxsb(__a, (vector signed char)__b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_max(vector unsigned char __a, vector unsigned char __b)
+{
+ return __builtin_altivec_vmaxub(__a, __b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_max(vector bool char __a, vector unsigned char __b)
+{
+ return __builtin_altivec_vmaxub((vector unsigned char)__a, __b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_max(vector unsigned char __a, vector bool char __b)
+{
+ return __builtin_altivec_vmaxub(__a, (vector unsigned char)__b);
+}
+
+static vector short __ATTRS_o_ai
+vec_max(vector short __a, vector short __b)
+{
+ return __builtin_altivec_vmaxsh(__a, __b);
+}
+
+static vector short __ATTRS_o_ai
+vec_max(vector bool short __a, vector short __b)
+{
+ return __builtin_altivec_vmaxsh((vector short)__a, __b);
+}
+
+static vector short __ATTRS_o_ai
+vec_max(vector short __a, vector bool short __b)
+{
+ return __builtin_altivec_vmaxsh(__a, (vector short)__b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_max(vector unsigned short __a, vector unsigned short __b)
+{
+ return __builtin_altivec_vmaxuh(__a, __b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_max(vector bool short __a, vector unsigned short __b)
+{
+ return __builtin_altivec_vmaxuh((vector unsigned short)__a, __b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_max(vector unsigned short __a, vector bool short __b)
+{
+ return __builtin_altivec_vmaxuh(__a, (vector unsigned short)__b);
+}
+
+static vector int __ATTRS_o_ai
+vec_max(vector int __a, vector int __b)
+{
+ return __builtin_altivec_vmaxsw(__a, __b);
+}
+
+static vector int __ATTRS_o_ai
+vec_max(vector bool int __a, vector int __b)
+{
+ return __builtin_altivec_vmaxsw((vector int)__a, __b);
+}
+
+static vector int __ATTRS_o_ai
+vec_max(vector int __a, vector bool int __b)
+{
+ return __builtin_altivec_vmaxsw(__a, (vector int)__b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_max(vector unsigned int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vmaxuw(__a, __b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_max(vector bool int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vmaxuw((vector unsigned int)__a, __b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_max(vector unsigned int __a, vector bool int __b)
+{
+ return __builtin_altivec_vmaxuw(__a, (vector unsigned int)__b);
+}
+
+#ifdef __POWER8_VECTOR__
+static vector signed long long __ATTRS_o_ai
+vec_max(vector signed long long __a, vector signed long long __b)
+{
+ return __builtin_altivec_vmaxsd(__a, __b);
+}
+
+static vector unsigned long long __ATTRS_o_ai
+vec_max(vector unsigned long long __a, vector unsigned long long __b)
+{
+ return __builtin_altivec_vmaxud(__a, __b);
+}
+#endif
+
+static vector float __ATTRS_o_ai
+vec_max(vector float __a, vector float __b)
+{
+#ifdef __VSX__
+ return __builtin_vsx_xvmaxsp(__a, __b);
+#else
+ return __builtin_altivec_vmaxfp(__a, __b);
+#endif
+}
+
+#ifdef __VSX__
+static vector double __ATTRS_o_ai
+vec_max(vector double __a, vector double __b)
+{
+ return __builtin_vsx_xvmaxdp(__a, __b);
+}
+#endif
+
+/* vec_vmaxsb */
+
+static vector signed char __ATTRS_o_ai
+vec_vmaxsb(vector signed char __a, vector signed char __b)
+{
+ return __builtin_altivec_vmaxsb(__a, __b);
+}
+
+static vector signed char __ATTRS_o_ai
+vec_vmaxsb(vector bool char __a, vector signed char __b)
+{
+ return __builtin_altivec_vmaxsb((vector signed char)__a, __b);
+}
+
+static vector signed char __ATTRS_o_ai
+vec_vmaxsb(vector signed char __a, vector bool char __b)
+{
+ return __builtin_altivec_vmaxsb(__a, (vector signed char)__b);
+}
+
+/* vec_vmaxub */
+
+static vector unsigned char __ATTRS_o_ai
+vec_vmaxub(vector unsigned char __a, vector unsigned char __b)
+{
+ return __builtin_altivec_vmaxub(__a, __b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vmaxub(vector bool char __a, vector unsigned char __b)
+{
+ return __builtin_altivec_vmaxub((vector unsigned char)__a, __b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vmaxub(vector unsigned char __a, vector bool char __b)
+{
+ return __builtin_altivec_vmaxub(__a, (vector unsigned char)__b);
+}
+
+/* vec_vmaxsh */
+
+static vector short __ATTRS_o_ai
+vec_vmaxsh(vector short __a, vector short __b)
+{
+ return __builtin_altivec_vmaxsh(__a, __b);
+}
+
+static vector short __ATTRS_o_ai
+vec_vmaxsh(vector bool short __a, vector short __b)
+{
+ return __builtin_altivec_vmaxsh((vector short)__a, __b);
+}
+
+static vector short __ATTRS_o_ai
+vec_vmaxsh(vector short __a, vector bool short __b)
+{
+ return __builtin_altivec_vmaxsh(__a, (vector short)__b);
+}
+
+/* vec_vmaxuh */
+
+static vector unsigned short __ATTRS_o_ai
+vec_vmaxuh(vector unsigned short __a, vector unsigned short __b)
+{
+ return __builtin_altivec_vmaxuh(__a, __b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vmaxuh(vector bool short __a, vector unsigned short __b)
+{
+ return __builtin_altivec_vmaxuh((vector unsigned short)__a, __b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vmaxuh(vector unsigned short __a, vector bool short __b)
+{
+ return __builtin_altivec_vmaxuh(__a, (vector unsigned short)__b);
+}
+
+/* vec_vmaxsw */
+
+static vector int __ATTRS_o_ai
+vec_vmaxsw(vector int __a, vector int __b)
+{
+ return __builtin_altivec_vmaxsw(__a, __b);
+}
+
+static vector int __ATTRS_o_ai
+vec_vmaxsw(vector bool int __a, vector int __b)
+{
+ return __builtin_altivec_vmaxsw((vector int)__a, __b);
+}
+
+static vector int __ATTRS_o_ai
+vec_vmaxsw(vector int __a, vector bool int __b)
+{
+ return __builtin_altivec_vmaxsw(__a, (vector int)__b);
+}
+
+/* vec_vmaxuw */
+
+static vector unsigned int __ATTRS_o_ai
+vec_vmaxuw(vector unsigned int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vmaxuw(__a, __b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vmaxuw(vector bool int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vmaxuw((vector unsigned int)__a, __b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vmaxuw(vector unsigned int __a, vector bool int __b)
+{
+ return __builtin_altivec_vmaxuw(__a, (vector unsigned int)__b);
+}
+
+/* vec_vmaxfp */
+
+static vector float __attribute__((__always_inline__))
+vec_vmaxfp(vector float __a, vector float __b)
+{
+#ifdef __VSX__
+ return __builtin_vsx_xvmaxsp(__a, __b);
+#else
+ return __builtin_altivec_vmaxfp(__a, __b);
+#endif
+}
+
+/* vec_mergeh */
+
+static vector signed char __ATTRS_o_ai
+vec_mergeh(vector signed char __a, vector signed char __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x00, 0x10, 0x01, 0x11, 0x02, 0x12, 0x03, 0x13,
+ 0x04, 0x14, 0x05, 0x15, 0x06, 0x16, 0x07, 0x17));
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_mergeh(vector unsigned char __a, vector unsigned char __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x00, 0x10, 0x01, 0x11, 0x02, 0x12, 0x03, 0x13,
+ 0x04, 0x14, 0x05, 0x15, 0x06, 0x16, 0x07, 0x17));
+}
+
+static vector bool char __ATTRS_o_ai
+vec_mergeh(vector bool char __a, vector bool char __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x00, 0x10, 0x01, 0x11, 0x02, 0x12, 0x03, 0x13,
+ 0x04, 0x14, 0x05, 0x15, 0x06, 0x16, 0x07, 0x17));
+}
+
+static vector short __ATTRS_o_ai
+vec_mergeh(vector short __a, vector short __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x00, 0x01, 0x10, 0x11, 0x02, 0x03, 0x12, 0x13,
+ 0x04, 0x05, 0x14, 0x15, 0x06, 0x07, 0x16, 0x17));
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_mergeh(vector unsigned short __a, vector unsigned short __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x00, 0x01, 0x10, 0x11, 0x02, 0x03, 0x12, 0x13,
+ 0x04, 0x05, 0x14, 0x15, 0x06, 0x07, 0x16, 0x17));
+}
+
+static vector bool short __ATTRS_o_ai
+vec_mergeh(vector bool short __a, vector bool short __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x00, 0x01, 0x10, 0x11, 0x02, 0x03, 0x12, 0x13,
+ 0x04, 0x05, 0x14, 0x15, 0x06, 0x07, 0x16, 0x17));
+}
+
+static vector pixel __ATTRS_o_ai
+vec_mergeh(vector pixel __a, vector pixel __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x00, 0x01, 0x10, 0x11, 0x02, 0x03, 0x12, 0x13,
+ 0x04, 0x05, 0x14, 0x15, 0x06, 0x07, 0x16, 0x17));
+}
+
+static vector int __ATTRS_o_ai
+vec_mergeh(vector int __a, vector int __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x00, 0x01, 0x02, 0x03, 0x10, 0x11, 0x12, 0x13,
+ 0x04, 0x05, 0x06, 0x07, 0x14, 0x15, 0x16, 0x17));
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_mergeh(vector unsigned int __a, vector unsigned int __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x00, 0x01, 0x02, 0x03, 0x10, 0x11, 0x12, 0x13,
+ 0x04, 0x05, 0x06, 0x07, 0x14, 0x15, 0x16, 0x17));
+}
+
+static vector bool int __ATTRS_o_ai
+vec_mergeh(vector bool int __a, vector bool int __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x00, 0x01, 0x02, 0x03, 0x10, 0x11, 0x12, 0x13,
+ 0x04, 0x05, 0x06, 0x07, 0x14, 0x15, 0x16, 0x17));
+}
+
+static vector float __ATTRS_o_ai
+vec_mergeh(vector float __a, vector float __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x00, 0x01, 0x02, 0x03, 0x10, 0x11, 0x12, 0x13,
+ 0x04, 0x05, 0x06, 0x07, 0x14, 0x15, 0x16, 0x17));
+}
+
+/* vec_vmrghb */
+
+#define __builtin_altivec_vmrghb vec_vmrghb
+
+static vector signed char __ATTRS_o_ai
+vec_vmrghb(vector signed char __a, vector signed char __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x00, 0x10, 0x01, 0x11, 0x02, 0x12, 0x03, 0x13,
+ 0x04, 0x14, 0x05, 0x15, 0x06, 0x16, 0x07, 0x17));
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vmrghb(vector unsigned char __a, vector unsigned char __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x00, 0x10, 0x01, 0x11, 0x02, 0x12, 0x03, 0x13,
+ 0x04, 0x14, 0x05, 0x15, 0x06, 0x16, 0x07, 0x17));
+}
+
+static vector bool char __ATTRS_o_ai
+vec_vmrghb(vector bool char __a, vector bool char __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x00, 0x10, 0x01, 0x11, 0x02, 0x12, 0x03, 0x13,
+ 0x04, 0x14, 0x05, 0x15, 0x06, 0x16, 0x07, 0x17));
+}
+
+/* vec_vmrghh */
+
+#define __builtin_altivec_vmrghh vec_vmrghh
+
+static vector short __ATTRS_o_ai
+vec_vmrghh(vector short __a, vector short __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x00, 0x01, 0x10, 0x11, 0x02, 0x03, 0x12, 0x13,
+ 0x04, 0x05, 0x14, 0x15, 0x06, 0x07, 0x16, 0x17));
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vmrghh(vector unsigned short __a, vector unsigned short __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x00, 0x01, 0x10, 0x11, 0x02, 0x03, 0x12, 0x13,
+ 0x04, 0x05, 0x14, 0x15, 0x06, 0x07, 0x16, 0x17));
+}
+
+static vector bool short __ATTRS_o_ai
+vec_vmrghh(vector bool short __a, vector bool short __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x00, 0x01, 0x10, 0x11, 0x02, 0x03, 0x12, 0x13,
+ 0x04, 0x05, 0x14, 0x15, 0x06, 0x07, 0x16, 0x17));
+}
+
+static vector pixel __ATTRS_o_ai
+vec_vmrghh(vector pixel __a, vector pixel __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x00, 0x01, 0x10, 0x11, 0x02, 0x03, 0x12, 0x13,
+ 0x04, 0x05, 0x14, 0x15, 0x06, 0x07, 0x16, 0x17));
+}
+
+/* vec_vmrghw */
+
+#define __builtin_altivec_vmrghw vec_vmrghw
+
+static vector int __ATTRS_o_ai
+vec_vmrghw(vector int __a, vector int __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x00, 0x01, 0x02, 0x03, 0x10, 0x11, 0x12, 0x13,
+ 0x04, 0x05, 0x06, 0x07, 0x14, 0x15, 0x16, 0x17));
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vmrghw(vector unsigned int __a, vector unsigned int __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x00, 0x01, 0x02, 0x03, 0x10, 0x11, 0x12, 0x13,
+ 0x04, 0x05, 0x06, 0x07, 0x14, 0x15, 0x16, 0x17));
+}
+
+static vector bool int __ATTRS_o_ai
+vec_vmrghw(vector bool int __a, vector bool int __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x00, 0x01, 0x02, 0x03, 0x10, 0x11, 0x12, 0x13,
+ 0x04, 0x05, 0x06, 0x07, 0x14, 0x15, 0x16, 0x17));
+}
+
+static vector float __ATTRS_o_ai
+vec_vmrghw(vector float __a, vector float __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x00, 0x01, 0x02, 0x03, 0x10, 0x11, 0x12, 0x13,
+ 0x04, 0x05, 0x06, 0x07, 0x14, 0x15, 0x16, 0x17));
+}
+
+/* vec_mergel */
+
+static vector signed char __ATTRS_o_ai
+vec_mergel(vector signed char __a, vector signed char __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x08, 0x18, 0x09, 0x19, 0x0A, 0x1A, 0x0B, 0x1B,
+ 0x0C, 0x1C, 0x0D, 0x1D, 0x0E, 0x1E, 0x0F, 0x1F));
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_mergel(vector unsigned char __a, vector unsigned char __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x08, 0x18, 0x09, 0x19, 0x0A, 0x1A, 0x0B, 0x1B,
+ 0x0C, 0x1C, 0x0D, 0x1D, 0x0E, 0x1E, 0x0F, 0x1F));
+}
+
+static vector bool char __ATTRS_o_ai
+vec_mergel(vector bool char __a, vector bool char __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x08, 0x18, 0x09, 0x19, 0x0A, 0x1A, 0x0B, 0x1B,
+ 0x0C, 0x1C, 0x0D, 0x1D, 0x0E, 0x1E, 0x0F, 0x1F));
+}
+
+static vector short __ATTRS_o_ai
+vec_mergel(vector short __a, vector short __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x08, 0x09, 0x18, 0x19, 0x0A, 0x0B, 0x1A, 0x1B,
+ 0x0C, 0x0D, 0x1C, 0x1D, 0x0E, 0x0F, 0x1E, 0x1F));
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_mergel(vector unsigned short __a, vector unsigned short __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x08, 0x09, 0x18, 0x19, 0x0A, 0x0B, 0x1A, 0x1B,
+ 0x0C, 0x0D, 0x1C, 0x1D, 0x0E, 0x0F, 0x1E, 0x1F));
+}
+
+static vector bool short __ATTRS_o_ai
+vec_mergel(vector bool short __a, vector bool short __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x08, 0x09, 0x18, 0x19, 0x0A, 0x0B, 0x1A, 0x1B,
+ 0x0C, 0x0D, 0x1C, 0x1D, 0x0E, 0x0F, 0x1E, 0x1F));
+}
+
+static vector pixel __ATTRS_o_ai
+vec_mergel(vector pixel __a, vector pixel __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x08, 0x09, 0x18, 0x19, 0x0A, 0x0B, 0x1A, 0x1B,
+ 0x0C, 0x0D, 0x1C, 0x1D, 0x0E, 0x0F, 0x1E, 0x1F));
+}
+
+static vector int __ATTRS_o_ai
+vec_mergel(vector int __a, vector int __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x08, 0x09, 0x0A, 0x0B, 0x18, 0x19, 0x1A, 0x1B,
+ 0x0C, 0x0D, 0x0E, 0x0F, 0x1C, 0x1D, 0x1E, 0x1F));
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_mergel(vector unsigned int __a, vector unsigned int __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x08, 0x09, 0x0A, 0x0B, 0x18, 0x19, 0x1A, 0x1B,
+ 0x0C, 0x0D, 0x0E, 0x0F, 0x1C, 0x1D, 0x1E, 0x1F));
+}
+
+static vector bool int __ATTRS_o_ai
+vec_mergel(vector bool int __a, vector bool int __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x08, 0x09, 0x0A, 0x0B, 0x18, 0x19, 0x1A, 0x1B,
+ 0x0C, 0x0D, 0x0E, 0x0F, 0x1C, 0x1D, 0x1E, 0x1F));
+}
+
+static vector float __ATTRS_o_ai
+vec_mergel(vector float __a, vector float __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x08, 0x09, 0x0A, 0x0B, 0x18, 0x19, 0x1A, 0x1B,
+ 0x0C, 0x0D, 0x0E, 0x0F, 0x1C, 0x1D, 0x1E, 0x1F));
+}
+
+/* vec_vmrglb */
+
+#define __builtin_altivec_vmrglb vec_vmrglb
+
+static vector signed char __ATTRS_o_ai
+vec_vmrglb(vector signed char __a, vector signed char __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x08, 0x18, 0x09, 0x19, 0x0A, 0x1A, 0x0B, 0x1B,
+ 0x0C, 0x1C, 0x0D, 0x1D, 0x0E, 0x1E, 0x0F, 0x1F));
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vmrglb(vector unsigned char __a, vector unsigned char __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x08, 0x18, 0x09, 0x19, 0x0A, 0x1A, 0x0B, 0x1B,
+ 0x0C, 0x1C, 0x0D, 0x1D, 0x0E, 0x1E, 0x0F, 0x1F));
+}
+
+static vector bool char __ATTRS_o_ai
+vec_vmrglb(vector bool char __a, vector bool char __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x08, 0x18, 0x09, 0x19, 0x0A, 0x1A, 0x0B, 0x1B,
+ 0x0C, 0x1C, 0x0D, 0x1D, 0x0E, 0x1E, 0x0F, 0x1F));
+}
+
+/* vec_vmrglh */
+
+#define __builtin_altivec_vmrglh vec_vmrglh
+
+static vector short __ATTRS_o_ai
+vec_vmrglh(vector short __a, vector short __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x08, 0x09, 0x18, 0x19, 0x0A, 0x0B, 0x1A, 0x1B,
+ 0x0C, 0x0D, 0x1C, 0x1D, 0x0E, 0x0F, 0x1E, 0x1F));
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vmrglh(vector unsigned short __a, vector unsigned short __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x08, 0x09, 0x18, 0x19, 0x0A, 0x0B, 0x1A, 0x1B,
+ 0x0C, 0x0D, 0x1C, 0x1D, 0x0E, 0x0F, 0x1E, 0x1F));
+}
+
+static vector bool short __ATTRS_o_ai
+vec_vmrglh(vector bool short __a, vector bool short __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x08, 0x09, 0x18, 0x19, 0x0A, 0x0B, 0x1A, 0x1B,
+ 0x0C, 0x0D, 0x1C, 0x1D, 0x0E, 0x0F, 0x1E, 0x1F));
+}
+
+static vector pixel __ATTRS_o_ai
+vec_vmrglh(vector pixel __a, vector pixel __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x08, 0x09, 0x18, 0x19, 0x0A, 0x0B, 0x1A, 0x1B,
+ 0x0C, 0x0D, 0x1C, 0x1D, 0x0E, 0x0F, 0x1E, 0x1F));
+}
+
+/* vec_vmrglw */
+
+#define __builtin_altivec_vmrglw vec_vmrglw
+
+static vector int __ATTRS_o_ai
+vec_vmrglw(vector int __a, vector int __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x08, 0x09, 0x0A, 0x0B, 0x18, 0x19, 0x1A, 0x1B,
+ 0x0C, 0x0D, 0x0E, 0x0F, 0x1C, 0x1D, 0x1E, 0x1F));
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vmrglw(vector unsigned int __a, vector unsigned int __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x08, 0x09, 0x0A, 0x0B, 0x18, 0x19, 0x1A, 0x1B,
+ 0x0C, 0x0D, 0x0E, 0x0F, 0x1C, 0x1D, 0x1E, 0x1F));
+}
+
+static vector bool int __ATTRS_o_ai
+vec_vmrglw(vector bool int __a, vector bool int __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x08, 0x09, 0x0A, 0x0B, 0x18, 0x19, 0x1A, 0x1B,
+ 0x0C, 0x0D, 0x0E, 0x0F, 0x1C, 0x1D, 0x1E, 0x1F));
+}
+
+static vector float __ATTRS_o_ai
+vec_vmrglw(vector float __a, vector float __b)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (0x08, 0x09, 0x0A, 0x0B, 0x18, 0x19, 0x1A, 0x1B,
+ 0x0C, 0x0D, 0x0E, 0x0F, 0x1C, 0x1D, 0x1E, 0x1F));
+}
+
+/* vec_mfvscr */
+
+static vector unsigned short __attribute__((__always_inline__))
+vec_mfvscr(void)
+{
+ return __builtin_altivec_mfvscr();
+}
+
+/* vec_min */
+
+static vector signed char __ATTRS_o_ai
+vec_min(vector signed char __a, vector signed char __b)
+{
+ return __builtin_altivec_vminsb(__a, __b);
+}
+
+static vector signed char __ATTRS_o_ai
+vec_min(vector bool char __a, vector signed char __b)
+{
+ return __builtin_altivec_vminsb((vector signed char)__a, __b);
+}
+
+static vector signed char __ATTRS_o_ai
+vec_min(vector signed char __a, vector bool char __b)
+{
+ return __builtin_altivec_vminsb(__a, (vector signed char)__b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_min(vector unsigned char __a, vector unsigned char __b)
+{
+ return __builtin_altivec_vminub(__a, __b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_min(vector bool char __a, vector unsigned char __b)
+{
+ return __builtin_altivec_vminub((vector unsigned char)__a, __b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_min(vector unsigned char __a, vector bool char __b)
+{
+ return __builtin_altivec_vminub(__a, (vector unsigned char)__b);
+}
+
+static vector short __ATTRS_o_ai
+vec_min(vector short __a, vector short __b)
+{
+ return __builtin_altivec_vminsh(__a, __b);
+}
+
+static vector short __ATTRS_o_ai
+vec_min(vector bool short __a, vector short __b)
+{
+ return __builtin_altivec_vminsh((vector short)__a, __b);
+}
+
+static vector short __ATTRS_o_ai
+vec_min(vector short __a, vector bool short __b)
+{
+ return __builtin_altivec_vminsh(__a, (vector short)__b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_min(vector unsigned short __a, vector unsigned short __b)
+{
+ return __builtin_altivec_vminuh(__a, __b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_min(vector bool short __a, vector unsigned short __b)
+{
+ return __builtin_altivec_vminuh((vector unsigned short)__a, __b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_min(vector unsigned short __a, vector bool short __b)
+{
+ return __builtin_altivec_vminuh(__a, (vector unsigned short)__b);
+}
+
+static vector int __ATTRS_o_ai
+vec_min(vector int __a, vector int __b)
+{
+ return __builtin_altivec_vminsw(__a, __b);
+}
+
+static vector int __ATTRS_o_ai
+vec_min(vector bool int __a, vector int __b)
+{
+ return __builtin_altivec_vminsw((vector int)__a, __b);
+}
+
+static vector int __ATTRS_o_ai
+vec_min(vector int __a, vector bool int __b)
+{
+ return __builtin_altivec_vminsw(__a, (vector int)__b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_min(vector unsigned int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vminuw(__a, __b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_min(vector bool int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vminuw((vector unsigned int)__a, __b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_min(vector unsigned int __a, vector bool int __b)
+{
+ return __builtin_altivec_vminuw(__a, (vector unsigned int)__b);
+}
+
+#ifdef __POWER8_VECTOR__
+static vector signed long long __ATTRS_o_ai
+vec_min(vector signed long long __a, vector signed long long __b)
+{
+ return __builtin_altivec_vminsd(__a, __b);
+}
+
+static vector unsigned long long __ATTRS_o_ai
+vec_min(vector unsigned long long __a, vector unsigned long long __b)
+{
+ return __builtin_altivec_vminud(__a, __b);
+}
+#endif
+
+static vector float __ATTRS_o_ai
+vec_min(vector float __a, vector float __b)
+{
+#ifdef __VSX__
+ return __builtin_vsx_xvminsp(__a, __b);
+#else
+ return __builtin_altivec_vminfp(__a, __b);
+#endif
+}
+
+#ifdef __VSX__
+static vector double __ATTRS_o_ai
+vec_min(vector double __a, vector double __b)
+{
+ return __builtin_vsx_xvmindp(__a, __b);
+}
+#endif
+
+/* vec_vminsb */
+
+static vector signed char __ATTRS_o_ai
+vec_vminsb(vector signed char __a, vector signed char __b)
+{
+ return __builtin_altivec_vminsb(__a, __b);
+}
+
+static vector signed char __ATTRS_o_ai
+vec_vminsb(vector bool char __a, vector signed char __b)
+{
+ return __builtin_altivec_vminsb((vector signed char)__a, __b);
+}
+
+static vector signed char __ATTRS_o_ai
+vec_vminsb(vector signed char __a, vector bool char __b)
+{
+ return __builtin_altivec_vminsb(__a, (vector signed char)__b);
+}
+
+/* vec_vminub */
+
+static vector unsigned char __ATTRS_o_ai
+vec_vminub(vector unsigned char __a, vector unsigned char __b)
+{
+ return __builtin_altivec_vminub(__a, __b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vminub(vector bool char __a, vector unsigned char __b)
+{
+ return __builtin_altivec_vminub((vector unsigned char)__a, __b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vminub(vector unsigned char __a, vector bool char __b)
+{
+ return __builtin_altivec_vminub(__a, (vector unsigned char)__b);
+}
+
+/* vec_vminsh */
+
+static vector short __ATTRS_o_ai
+vec_vminsh(vector short __a, vector short __b)
+{
+ return __builtin_altivec_vminsh(__a, __b);
+}
+
+static vector short __ATTRS_o_ai
+vec_vminsh(vector bool short __a, vector short __b)
+{
+ return __builtin_altivec_vminsh((vector short)__a, __b);
+}
+
+static vector short __ATTRS_o_ai
+vec_vminsh(vector short __a, vector bool short __b)
+{
+ return __builtin_altivec_vminsh(__a, (vector short)__b);
+}
+
+/* vec_vminuh */
+
+static vector unsigned short __ATTRS_o_ai
+vec_vminuh(vector unsigned short __a, vector unsigned short __b)
+{
+ return __builtin_altivec_vminuh(__a, __b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vminuh(vector bool short __a, vector unsigned short __b)
+{
+ return __builtin_altivec_vminuh((vector unsigned short)__a, __b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vminuh(vector unsigned short __a, vector bool short __b)
+{
+ return __builtin_altivec_vminuh(__a, (vector unsigned short)__b);
+}
+
+/* vec_vminsw */
+
+static vector int __ATTRS_o_ai
+vec_vminsw(vector int __a, vector int __b)
+{
+ return __builtin_altivec_vminsw(__a, __b);
+}
+
+static vector int __ATTRS_o_ai
+vec_vminsw(vector bool int __a, vector int __b)
+{
+ return __builtin_altivec_vminsw((vector int)__a, __b);
+}
+
+static vector int __ATTRS_o_ai
+vec_vminsw(vector int __a, vector bool int __b)
+{
+ return __builtin_altivec_vminsw(__a, (vector int)__b);
+}
+
+/* vec_vminuw */
+
+static vector unsigned int __ATTRS_o_ai
+vec_vminuw(vector unsigned int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vminuw(__a, __b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vminuw(vector bool int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vminuw((vector unsigned int)__a, __b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vminuw(vector unsigned int __a, vector bool int __b)
+{
+ return __builtin_altivec_vminuw(__a, (vector unsigned int)__b);
+}
+
+/* vec_vminfp */
+
+static vector float __attribute__((__always_inline__))
+vec_vminfp(vector float __a, vector float __b)
+{
+#ifdef __VSX__
+ return __builtin_vsx_xvminsp(__a, __b);
+#else
+ return __builtin_altivec_vminfp(__a, __b);
+#endif
+}
+
+/* vec_mladd */
+
+#define __builtin_altivec_vmladduhm vec_mladd
+
+static vector short __ATTRS_o_ai
+vec_mladd(vector short __a, vector short __b, vector short __c)
+{
+ return __a * __b + __c;
+}
+
+static vector short __ATTRS_o_ai
+vec_mladd(vector short __a, vector unsigned short __b, vector unsigned short __c)
+{
+ return __a * (vector short)__b + (vector short)__c;
+}
+
+static vector short __ATTRS_o_ai
+vec_mladd(vector unsigned short __a, vector short __b, vector short __c)
+{
+ return (vector short)__a * __b + __c;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_mladd(vector unsigned short __a,
+ vector unsigned short __b,
+ vector unsigned short __c)
+{
+ return __a * __b + __c;
+}
+
+/* vec_vmladduhm */
+
+static vector short __ATTRS_o_ai
+vec_vmladduhm(vector short __a, vector short __b, vector short __c)
+{
+ return __a * __b + __c;
+}
+
+static vector short __ATTRS_o_ai
+vec_vmladduhm(vector short __a, vector unsigned short __b, vector unsigned short __c)
+{
+ return __a * (vector short)__b + (vector short)__c;
+}
+
+static vector short __ATTRS_o_ai
+vec_vmladduhm(vector unsigned short __a, vector short __b, vector short __c)
+{
+ return (vector short)__a * __b + __c;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vmladduhm(vector unsigned short __a,
+ vector unsigned short __b,
+ vector unsigned short __c)
+{
+ return __a * __b + __c;
+}
+
+/* vec_mradds */
+
+static vector short __attribute__((__always_inline__))
+vec_mradds(vector short __a, vector short __b, vector short __c)
+{
+ return __builtin_altivec_vmhraddshs(__a, __b, __c);
+}
+
+/* vec_vmhraddshs */
+
+static vector short __attribute__((__always_inline__))
+vec_vmhraddshs(vector short __a, vector short __b, vector short __c)
+{
+ return __builtin_altivec_vmhraddshs(__a, __b, __c);
+}
+
+/* vec_msum */
+
+static vector int __ATTRS_o_ai
+vec_msum(vector signed char __a, vector unsigned char __b, vector int __c)
+{
+ return __builtin_altivec_vmsummbm(__a, __b, __c);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_msum(vector unsigned char __a, vector unsigned char __b, vector unsigned int __c)
+{
+ return __builtin_altivec_vmsumubm(__a, __b, __c);
+}
+
+static vector int __ATTRS_o_ai
+vec_msum(vector short __a, vector short __b, vector int __c)
+{
+ return __builtin_altivec_vmsumshm(__a, __b, __c);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_msum(vector unsigned short __a,
+ vector unsigned short __b,
+ vector unsigned int __c)
+{
+ return __builtin_altivec_vmsumuhm(__a, __b, __c);
+}
+
+/* vec_vmsummbm */
+
+static vector int __attribute__((__always_inline__))
+vec_vmsummbm(vector signed char __a, vector unsigned char __b, vector int __c)
+{
+ return __builtin_altivec_vmsummbm(__a, __b, __c);
+}
+
+/* vec_vmsumubm */
+
+static vector unsigned int __attribute__((__always_inline__))
+vec_vmsumubm(vector unsigned char __a,
+ vector unsigned char __b,
+ vector unsigned int __c)
+{
+ return __builtin_altivec_vmsumubm(__a, __b, __c);
+}
+
+/* vec_vmsumshm */
+
+static vector int __attribute__((__always_inline__))
+vec_vmsumshm(vector short __a, vector short __b, vector int __c)
+{
+ return __builtin_altivec_vmsumshm(__a, __b, __c);
+}
+
+/* vec_vmsumuhm */
+
+static vector unsigned int __attribute__((__always_inline__))
+vec_vmsumuhm(vector unsigned short __a,
+ vector unsigned short __b,
+ vector unsigned int __c)
+{
+ return __builtin_altivec_vmsumuhm(__a, __b, __c);
+}
+
+/* vec_msums */
+
+static vector int __ATTRS_o_ai
+vec_msums(vector short __a, vector short __b, vector int __c)
+{
+ return __builtin_altivec_vmsumshs(__a, __b, __c);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_msums(vector unsigned short __a,
+ vector unsigned short __b,
+ vector unsigned int __c)
+{
+ return __builtin_altivec_vmsumuhs(__a, __b, __c);
+}
+
+/* vec_vmsumshs */
+
+static vector int __attribute__((__always_inline__))
+vec_vmsumshs(vector short __a, vector short __b, vector int __c)
+{
+ return __builtin_altivec_vmsumshs(__a, __b, __c);
+}
+
+/* vec_vmsumuhs */
+
+static vector unsigned int __attribute__((__always_inline__))
+vec_vmsumuhs(vector unsigned short __a,
+ vector unsigned short __b,
+ vector unsigned int __c)
+{
+ return __builtin_altivec_vmsumuhs(__a, __b, __c);
+}
+
+/* vec_mtvscr */
+
+static void __ATTRS_o_ai
+vec_mtvscr(vector signed char __a)
+{
+ __builtin_altivec_mtvscr((vector int)__a);
+}
+
+static void __ATTRS_o_ai
+vec_mtvscr(vector unsigned char __a)
+{
+ __builtin_altivec_mtvscr((vector int)__a);
+}
+
+static void __ATTRS_o_ai
+vec_mtvscr(vector bool char __a)
+{
+ __builtin_altivec_mtvscr((vector int)__a);
+}
+
+static void __ATTRS_o_ai
+vec_mtvscr(vector short __a)
+{
+ __builtin_altivec_mtvscr((vector int)__a);
+}
+
+static void __ATTRS_o_ai
+vec_mtvscr(vector unsigned short __a)
+{
+ __builtin_altivec_mtvscr((vector int)__a);
+}
+
+static void __ATTRS_o_ai
+vec_mtvscr(vector bool short __a)
+{
+ __builtin_altivec_mtvscr((vector int)__a);
+}
+
+static void __ATTRS_o_ai
+vec_mtvscr(vector pixel __a)
+{
+ __builtin_altivec_mtvscr((vector int)__a);
+}
+
+static void __ATTRS_o_ai
+vec_mtvscr(vector int __a)
+{
+ __builtin_altivec_mtvscr((vector int)__a);
+}
+
+static void __ATTRS_o_ai
+vec_mtvscr(vector unsigned int __a)
+{
+ __builtin_altivec_mtvscr((vector int)__a);
+}
+
+static void __ATTRS_o_ai
+vec_mtvscr(vector bool int __a)
+{
+ __builtin_altivec_mtvscr((vector int)__a);
+}
+
+static void __ATTRS_o_ai
+vec_mtvscr(vector float __a)
+{
+ __builtin_altivec_mtvscr((vector int)__a);
+}
+
+/* The vmulos* and vmules* instructions have a big endian bias, so
+ we must reverse the meaning of "even" and "odd" for little endian. */
+
+/* vec_mule */
+
+static vector short __ATTRS_o_ai
+vec_mule(vector signed char __a, vector signed char __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vmulosb(__a, __b);
+#else
+ return __builtin_altivec_vmulesb(__a, __b);
+#endif
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_mule(vector unsigned char __a, vector unsigned char __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vmuloub(__a, __b);
+#else
+ return __builtin_altivec_vmuleub(__a, __b);
+#endif
+}
+
+static vector int __ATTRS_o_ai
+vec_mule(vector short __a, vector short __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vmulosh(__a, __b);
+#else
+ return __builtin_altivec_vmulesh(__a, __b);
+#endif
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_mule(vector unsigned short __a, vector unsigned short __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vmulouh(__a, __b);
+#else
+ return __builtin_altivec_vmuleuh(__a, __b);
+#endif
+}
+
+#ifdef __POWER8_VECTOR__
+static vector signed long long __ATTRS_o_ai
+vec_mule(vector signed int __a, vector signed int __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vmulosw(__a, __b);
+#else
+ return __builtin_altivec_vmulesw(__a, __b);
+#endif
+}
+
+static vector unsigned long long __ATTRS_o_ai
+vec_mule(vector unsigned int __a, vector unsigned int __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vmulouw(__a, __b);
+#else
+ return __builtin_altivec_vmuleuw(__a, __b);
+#endif
+}
+#endif
+
+/* vec_vmulesb */
+
+static vector short __attribute__((__always_inline__))
+vec_vmulesb(vector signed char __a, vector signed char __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vmulosb(__a, __b);
+#else
+ return __builtin_altivec_vmulesb(__a, __b);
+#endif
+}
+
+/* vec_vmuleub */
+
+static vector unsigned short __attribute__((__always_inline__))
+vec_vmuleub(vector unsigned char __a, vector unsigned char __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vmuloub(__a, __b);
+#else
+ return __builtin_altivec_vmuleub(__a, __b);
+#endif
+}
+
+/* vec_vmulesh */
+
+static vector int __attribute__((__always_inline__))
+vec_vmulesh(vector short __a, vector short __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vmulosh(__a, __b);
+#else
+ return __builtin_altivec_vmulesh(__a, __b);
+#endif
+}
+
+/* vec_vmuleuh */
+
+static vector unsigned int __attribute__((__always_inline__))
+vec_vmuleuh(vector unsigned short __a, vector unsigned short __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vmulouh(__a, __b);
+#else
+ return __builtin_altivec_vmuleuh(__a, __b);
+#endif
+}
+
+/* vec_mulo */
+
+static vector short __ATTRS_o_ai
+vec_mulo(vector signed char __a, vector signed char __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vmulesb(__a, __b);
+#else
+ return __builtin_altivec_vmulosb(__a, __b);
+#endif
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_mulo(vector unsigned char __a, vector unsigned char __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vmuleub(__a, __b);
+#else
+ return __builtin_altivec_vmuloub(__a, __b);
+#endif
+}
+
+static vector int __ATTRS_o_ai
+vec_mulo(vector short __a, vector short __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vmulesh(__a, __b);
+#else
+ return __builtin_altivec_vmulosh(__a, __b);
+#endif
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_mulo(vector unsigned short __a, vector unsigned short __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vmuleuh(__a, __b);
+#else
+ return __builtin_altivec_vmulouh(__a, __b);
+#endif
+}
+
+#ifdef __POWER8_VECTOR__
+static vector signed long long __ATTRS_o_ai
+vec_mulo(vector signed int __a, vector signed int __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vmulesw(__a, __b);
+#else
+ return __builtin_altivec_vmulosw(__a, __b);
+#endif
+}
+
+static vector unsigned long long __ATTRS_o_ai
+vec_mulo(vector unsigned int __a, vector unsigned int __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vmuleuw(__a, __b);
+#else
+ return __builtin_altivec_vmulouw(__a, __b);
+#endif
+}
+#endif
+
+/* vec_vmulosb */
+
+static vector short __attribute__((__always_inline__))
+vec_vmulosb(vector signed char __a, vector signed char __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vmulesb(__a, __b);
+#else
+ return __builtin_altivec_vmulosb(__a, __b);
+#endif
+}
+
+/* vec_vmuloub */
+
+static vector unsigned short __attribute__((__always_inline__))
+vec_vmuloub(vector unsigned char __a, vector unsigned char __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vmuleub(__a, __b);
+#else
+ return __builtin_altivec_vmuloub(__a, __b);
+#endif
+}
+
+/* vec_vmulosh */
+
+static vector int __attribute__((__always_inline__))
+vec_vmulosh(vector short __a, vector short __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vmulesh(__a, __b);
+#else
+ return __builtin_altivec_vmulosh(__a, __b);
+#endif
+}
+
+/* vec_vmulouh */
+
+static vector unsigned int __attribute__((__always_inline__))
+vec_vmulouh(vector unsigned short __a, vector unsigned short __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vmuleuh(__a, __b);
+#else
+ return __builtin_altivec_vmulouh(__a, __b);
+#endif
+}
+
+/* vec_nmsub */
+
+static vector float __attribute__((__always_inline__))
+vec_nmsub(vector float __a, vector float __b, vector float __c)
+{
+ return __builtin_altivec_vnmsubfp(__a, __b, __c);
+}
+
+/* vec_vnmsubfp */
+
+static vector float __attribute__((__always_inline__))
+vec_vnmsubfp(vector float __a, vector float __b, vector float __c)
+{
+ return __builtin_altivec_vnmsubfp(__a, __b, __c);
+}
+
+/* vec_nor */
+
+#define __builtin_altivec_vnor vec_nor
+
+static vector signed char __ATTRS_o_ai
+vec_nor(vector signed char __a, vector signed char __b)
+{
+ return ~(__a | __b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_nor(vector unsigned char __a, vector unsigned char __b)
+{
+ return ~(__a | __b);
+}
+
+static vector bool char __ATTRS_o_ai
+vec_nor(vector bool char __a, vector bool char __b)
+{
+ return ~(__a | __b);
+}
+
+static vector short __ATTRS_o_ai
+vec_nor(vector short __a, vector short __b)
+{
+ return ~(__a | __b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_nor(vector unsigned short __a, vector unsigned short __b)
+{
+ return ~(__a | __b);
+}
+
+static vector bool short __ATTRS_o_ai
+vec_nor(vector bool short __a, vector bool short __b)
+{
+ return ~(__a | __b);
+}
+
+static vector int __ATTRS_o_ai
+vec_nor(vector int __a, vector int __b)
+{
+ return ~(__a | __b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_nor(vector unsigned int __a, vector unsigned int __b)
+{
+ return ~(__a | __b);
+}
+
+static vector bool int __ATTRS_o_ai
+vec_nor(vector bool int __a, vector bool int __b)
+{
+ return ~(__a | __b);
+}
+
+static vector float __ATTRS_o_ai
+vec_nor(vector float __a, vector float __b)
+{
+ vector unsigned int __res = ~((vector unsigned int)__a | (vector unsigned int)__b);
+ return (vector float)__res;
+}
+
+/* vec_vnor */
+
+static vector signed char __ATTRS_o_ai
+vec_vnor(vector signed char __a, vector signed char __b)
+{
+ return ~(__a | __b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vnor(vector unsigned char __a, vector unsigned char __b)
+{
+ return ~(__a | __b);
+}
+
+static vector bool char __ATTRS_o_ai
+vec_vnor(vector bool char __a, vector bool char __b)
+{
+ return ~(__a | __b);
+}
+
+static vector short __ATTRS_o_ai
+vec_vnor(vector short __a, vector short __b)
+{
+ return ~(__a | __b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vnor(vector unsigned short __a, vector unsigned short __b)
+{
+ return ~(__a | __b);
+}
+
+static vector bool short __ATTRS_o_ai
+vec_vnor(vector bool short __a, vector bool short __b)
+{
+ return ~(__a | __b);
+}
+
+static vector int __ATTRS_o_ai
+vec_vnor(vector int __a, vector int __b)
+{
+ return ~(__a | __b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vnor(vector unsigned int __a, vector unsigned int __b)
+{
+ return ~(__a | __b);
+}
+
+static vector bool int __ATTRS_o_ai
+vec_vnor(vector bool int __a, vector bool int __b)
+{
+ return ~(__a | __b);
+}
+
+static vector float __ATTRS_o_ai
+vec_vnor(vector float __a, vector float __b)
+{
+ vector unsigned int __res = ~((vector unsigned int)__a | (vector unsigned int)__b);
+ return (vector float)__res;
+}
+
+/* vec_or */
+
+#define __builtin_altivec_vor vec_or
+
+static vector signed char __ATTRS_o_ai
+vec_or(vector signed char __a, vector signed char __b)
+{
+ return __a | __b;
+}
+
+static vector signed char __ATTRS_o_ai
+vec_or(vector bool char __a, vector signed char __b)
+{
+ return (vector signed char)__a | __b;
+}
+
+static vector signed char __ATTRS_o_ai
+vec_or(vector signed char __a, vector bool char __b)
+{
+ return __a | (vector signed char)__b;
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_or(vector unsigned char __a, vector unsigned char __b)
+{
+ return __a | __b;
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_or(vector bool char __a, vector unsigned char __b)
+{
+ return (vector unsigned char)__a | __b;
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_or(vector unsigned char __a, vector bool char __b)
+{
+ return __a | (vector unsigned char)__b;
+}
+
+static vector bool char __ATTRS_o_ai
+vec_or(vector bool char __a, vector bool char __b)
+{
+ return __a | __b;
+}
+
+static vector short __ATTRS_o_ai
+vec_or(vector short __a, vector short __b)
+{
+ return __a | __b;
+}
+
+static vector short __ATTRS_o_ai
+vec_or(vector bool short __a, vector short __b)
+{
+ return (vector short)__a | __b;
+}
+
+static vector short __ATTRS_o_ai
+vec_or(vector short __a, vector bool short __b)
+{
+ return __a | (vector short)__b;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_or(vector unsigned short __a, vector unsigned short __b)
+{
+ return __a | __b;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_or(vector bool short __a, vector unsigned short __b)
+{
+ return (vector unsigned short)__a | __b;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_or(vector unsigned short __a, vector bool short __b)
+{
+ return __a | (vector unsigned short)__b;
+}
+
+static vector bool short __ATTRS_o_ai
+vec_or(vector bool short __a, vector bool short __b)
+{
+ return __a | __b;
+}
+
+static vector int __ATTRS_o_ai
+vec_or(vector int __a, vector int __b)
+{
+ return __a | __b;
+}
+
+static vector int __ATTRS_o_ai
+vec_or(vector bool int __a, vector int __b)
+{
+ return (vector int)__a | __b;
+}
+
+static vector int __ATTRS_o_ai
+vec_or(vector int __a, vector bool int __b)
+{
+ return __a | (vector int)__b;
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_or(vector unsigned int __a, vector unsigned int __b)
+{
+ return __a | __b;
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_or(vector bool int __a, vector unsigned int __b)
+{
+ return (vector unsigned int)__a | __b;
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_or(vector unsigned int __a, vector bool int __b)
+{
+ return __a | (vector unsigned int)__b;
+}
+
+static vector bool int __ATTRS_o_ai
+vec_or(vector bool int __a, vector bool int __b)
+{
+ return __a | __b;
+}
+
+static vector float __ATTRS_o_ai
+vec_or(vector float __a, vector float __b)
+{
+ vector unsigned int __res = (vector unsigned int)__a | (vector unsigned int)__b;
+ return (vector float)__res;
+}
+
+static vector float __ATTRS_o_ai
+vec_or(vector bool int __a, vector float __b)
+{
+ vector unsigned int __res = (vector unsigned int)__a | (vector unsigned int)__b;
+ return (vector float)__res;
+}
+
+static vector float __ATTRS_o_ai
+vec_or(vector float __a, vector bool int __b)
+{
+ vector unsigned int __res = (vector unsigned int)__a | (vector unsigned int)__b;
+ return (vector float)__res;
+}
+
+/* vec_vor */
+
+static vector signed char __ATTRS_o_ai
+vec_vor(vector signed char __a, vector signed char __b)
+{
+ return __a | __b;
+}
+
+static vector signed char __ATTRS_o_ai
+vec_vor(vector bool char __a, vector signed char __b)
+{
+ return (vector signed char)__a | __b;
+}
+
+static vector signed char __ATTRS_o_ai
+vec_vor(vector signed char __a, vector bool char __b)
+{
+ return __a | (vector signed char)__b;
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vor(vector unsigned char __a, vector unsigned char __b)
+{
+ return __a | __b;
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vor(vector bool char __a, vector unsigned char __b)
+{
+ return (vector unsigned char)__a | __b;
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vor(vector unsigned char __a, vector bool char __b)
+{
+ return __a | (vector unsigned char)__b;
+}
+
+static vector bool char __ATTRS_o_ai
+vec_vor(vector bool char __a, vector bool char __b)
+{
+ return __a | __b;
+}
+
+static vector short __ATTRS_o_ai
+vec_vor(vector short __a, vector short __b)
+{
+ return __a | __b;
+}
+
+static vector short __ATTRS_o_ai
+vec_vor(vector bool short __a, vector short __b)
+{
+ return (vector short)__a | __b;
+}
+
+static vector short __ATTRS_o_ai
+vec_vor(vector short __a, vector bool short __b)
+{
+ return __a | (vector short)__b;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vor(vector unsigned short __a, vector unsigned short __b)
+{
+ return __a | __b;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vor(vector bool short __a, vector unsigned short __b)
+{
+ return (vector unsigned short)__a | __b;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vor(vector unsigned short __a, vector bool short __b)
+{
+ return __a | (vector unsigned short)__b;
+}
+
+static vector bool short __ATTRS_o_ai
+vec_vor(vector bool short __a, vector bool short __b)
+{
+ return __a | __b;
+}
+
+static vector int __ATTRS_o_ai
+vec_vor(vector int __a, vector int __b)
+{
+ return __a | __b;
+}
+
+static vector int __ATTRS_o_ai
+vec_vor(vector bool int __a, vector int __b)
+{
+ return (vector int)__a | __b;
+}
+
+static vector int __ATTRS_o_ai
+vec_vor(vector int __a, vector bool int __b)
+{
+ return __a | (vector int)__b;
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vor(vector unsigned int __a, vector unsigned int __b)
+{
+ return __a | __b;
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vor(vector bool int __a, vector unsigned int __b)
+{
+ return (vector unsigned int)__a | __b;
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vor(vector unsigned int __a, vector bool int __b)
+{
+ return __a | (vector unsigned int)__b;
+}
+
+static vector bool int __ATTRS_o_ai
+vec_vor(vector bool int __a, vector bool int __b)
+{
+ return __a | __b;
+}
+
+static vector float __ATTRS_o_ai
+vec_vor(vector float __a, vector float __b)
+{
+ vector unsigned int __res = (vector unsigned int)__a | (vector unsigned int)__b;
+ return (vector float)__res;
+}
+
+static vector float __ATTRS_o_ai
+vec_vor(vector bool int __a, vector float __b)
+{
+ vector unsigned int __res = (vector unsigned int)__a | (vector unsigned int)__b;
+ return (vector float)__res;
+}
+
+static vector float __ATTRS_o_ai
+vec_vor(vector float __a, vector bool int __b)
+{
+ vector unsigned int __res = (vector unsigned int)__a | (vector unsigned int)__b;
+ return (vector float)__res;
+}
+
+/* vec_pack */
+
+/* The various vector pack instructions have a big-endian bias, so for
+ little endian we must handle reversed element numbering. */
+
+static vector signed char __ATTRS_o_ai
+vec_pack(vector signed short __a, vector signed short __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return (vector signed char)vec_perm(__a, __b, (vector unsigned char)
+ (0x00, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0C, 0x0E,
+ 0x10, 0x12, 0x14, 0x16, 0x18, 0x1A, 0x1C, 0x1E));
+#else
+ return (vector signed char)vec_perm(__a, __b, (vector unsigned char)
+ (0x01, 0x03, 0x05, 0x07, 0x09, 0x0B, 0x0D, 0x0F,
+ 0x11, 0x13, 0x15, 0x17, 0x19, 0x1B, 0x1D, 0x1F));
+#endif
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_pack(vector unsigned short __a, vector unsigned short __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return (vector unsigned char)vec_perm(__a, __b, (vector unsigned char)
+ (0x00, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0C, 0x0E,
+ 0x10, 0x12, 0x14, 0x16, 0x18, 0x1A, 0x1C, 0x1E));
+#else
+ return (vector unsigned char)vec_perm(__a, __b, (vector unsigned char)
+ (0x01, 0x03, 0x05, 0x07, 0x09, 0x0B, 0x0D, 0x0F,
+ 0x11, 0x13, 0x15, 0x17, 0x19, 0x1B, 0x1D, 0x1F));
+#endif
+}
+
+static vector bool char __ATTRS_o_ai
+vec_pack(vector bool short __a, vector bool short __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return (vector bool char)vec_perm(__a, __b, (vector unsigned char)
+ (0x00, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0C, 0x0E,
+ 0x10, 0x12, 0x14, 0x16, 0x18, 0x1A, 0x1C, 0x1E));
+#else
+ return (vector bool char)vec_perm(__a, __b, (vector unsigned char)
+ (0x01, 0x03, 0x05, 0x07, 0x09, 0x0B, 0x0D, 0x0F,
+ 0x11, 0x13, 0x15, 0x17, 0x19, 0x1B, 0x1D, 0x1F));
+#endif
+}
+
+static vector short __ATTRS_o_ai
+vec_pack(vector int __a, vector int __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return (vector short)vec_perm(__a, __b, (vector unsigned char)
+ (0x00, 0x01, 0x04, 0x05, 0x08, 0x09, 0x0C, 0x0D,
+ 0x10, 0x11, 0x14, 0x15, 0x18, 0x19, 0x1C, 0x1D));
+#else
+ return (vector short)vec_perm(__a, __b, (vector unsigned char)
+ (0x02, 0x03, 0x06, 0x07, 0x0A, 0x0B, 0x0E, 0x0F,
+ 0x12, 0x13, 0x16, 0x17, 0x1A, 0x1B, 0x1E, 0x1F));
+#endif
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_pack(vector unsigned int __a, vector unsigned int __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return (vector unsigned short)vec_perm(__a, __b, (vector unsigned char)
+ (0x00, 0x01, 0x04, 0x05, 0x08, 0x09, 0x0C, 0x0D,
+ 0x10, 0x11, 0x14, 0x15, 0x18, 0x19, 0x1C, 0x1D));
+#else
+ return (vector unsigned short)vec_perm(__a, __b, (vector unsigned char)
+ (0x02, 0x03, 0x06, 0x07, 0x0A, 0x0B, 0x0E, 0x0F,
+ 0x12, 0x13, 0x16, 0x17, 0x1A, 0x1B, 0x1E, 0x1F));
+#endif
+}
+
+static vector bool short __ATTRS_o_ai
+vec_pack(vector bool int __a, vector bool int __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return (vector bool short)vec_perm(__a, __b, (vector unsigned char)
+ (0x00, 0x01, 0x04, 0x05, 0x08, 0x09, 0x0C, 0x0D,
+ 0x10, 0x11, 0x14, 0x15, 0x18, 0x19, 0x1C, 0x1D));
+#else
+ return (vector bool short)vec_perm(__a, __b, (vector unsigned char)
+ (0x02, 0x03, 0x06, 0x07, 0x0A, 0x0B, 0x0E, 0x0F,
+ 0x12, 0x13, 0x16, 0x17, 0x1A, 0x1B, 0x1E, 0x1F));
+#endif
+}
+
+/* vec_vpkuhum */
+
+#define __builtin_altivec_vpkuhum vec_vpkuhum
+
+static vector signed char __ATTRS_o_ai
+vec_vpkuhum(vector signed short __a, vector signed short __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return (vector signed char)vec_perm(__a, __b, (vector unsigned char)
+ (0x00, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0C, 0x0E,
+ 0x10, 0x12, 0x14, 0x16, 0x18, 0x1A, 0x1C, 0x1E));
+#else
+ return (vector signed char)vec_perm(__a, __b, (vector unsigned char)
+ (0x01, 0x03, 0x05, 0x07, 0x09, 0x0B, 0x0D, 0x0F,
+ 0x11, 0x13, 0x15, 0x17, 0x19, 0x1B, 0x1D, 0x1F));
+#endif
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vpkuhum(vector unsigned short __a, vector unsigned short __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return (vector unsigned char)vec_perm(__a, __b, (vector unsigned char)
+ (0x00, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0C, 0x0E,
+ 0x10, 0x12, 0x14, 0x16, 0x18, 0x1A, 0x1C, 0x1E));
+#else
+ return (vector unsigned char)vec_perm(__a, __b, (vector unsigned char)
+ (0x01, 0x03, 0x05, 0x07, 0x09, 0x0B, 0x0D, 0x0F,
+ 0x11, 0x13, 0x15, 0x17, 0x19, 0x1B, 0x1D, 0x1F));
+#endif
+}
+
+static vector bool char __ATTRS_o_ai
+vec_vpkuhum(vector bool short __a, vector bool short __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return (vector bool char)vec_perm(__a, __b, (vector unsigned char)
+ (0x00, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0C, 0x0E,
+ 0x10, 0x12, 0x14, 0x16, 0x18, 0x1A, 0x1C, 0x1E));
+#else
+ return (vector bool char)vec_perm(__a, __b, (vector unsigned char)
+ (0x01, 0x03, 0x05, 0x07, 0x09, 0x0B, 0x0D, 0x0F,
+ 0x11, 0x13, 0x15, 0x17, 0x19, 0x1B, 0x1D, 0x1F));
+#endif
+}
+
+/* vec_vpkuwum */
+
+#define __builtin_altivec_vpkuwum vec_vpkuwum
+
+static vector short __ATTRS_o_ai
+vec_vpkuwum(vector int __a, vector int __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return (vector short)vec_perm(__a, __b, (vector unsigned char)
+ (0x00, 0x01, 0x04, 0x05, 0x08, 0x09, 0x0C, 0x0D,
+ 0x10, 0x11, 0x14, 0x15, 0x18, 0x19, 0x1C, 0x1D));
+#else
+ return (vector short)vec_perm(__a, __b, (vector unsigned char)
+ (0x02, 0x03, 0x06, 0x07, 0x0A, 0x0B, 0x0E, 0x0F,
+ 0x12, 0x13, 0x16, 0x17, 0x1A, 0x1B, 0x1E, 0x1F));
+#endif
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vpkuwum(vector unsigned int __a, vector unsigned int __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return (vector unsigned short)vec_perm(__a, __b, (vector unsigned char)
+ (0x00, 0x01, 0x04, 0x05, 0x08, 0x09, 0x0C, 0x0D,
+ 0x10, 0x11, 0x14, 0x15, 0x18, 0x19, 0x1C, 0x1D));
+#else
+ return (vector unsigned short)vec_perm(__a, __b, (vector unsigned char)
+ (0x02, 0x03, 0x06, 0x07, 0x0A, 0x0B, 0x0E, 0x0F,
+ 0x12, 0x13, 0x16, 0x17, 0x1A, 0x1B, 0x1E, 0x1F));
+#endif
+}
+
+static vector bool short __ATTRS_o_ai
+vec_vpkuwum(vector bool int __a, vector bool int __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return (vector bool short)vec_perm(__a, __b, (vector unsigned char)
+ (0x00, 0x01, 0x04, 0x05, 0x08, 0x09, 0x0C, 0x0D,
+ 0x10, 0x11, 0x14, 0x15, 0x18, 0x19, 0x1C, 0x1D));
+#else
+ return (vector bool short)vec_perm(__a, __b, (vector unsigned char)
+ (0x02, 0x03, 0x06, 0x07, 0x0A, 0x0B, 0x0E, 0x0F,
+ 0x12, 0x13, 0x16, 0x17, 0x1A, 0x1B, 0x1E, 0x1F));
+#endif
+}
+
+/* vec_vpkudum */
+
+#ifdef __POWER8_VECTOR__
+#define __builtin_altivec_vpkudum vec_vpkudum
+
+static vector int __ATTRS_o_ai
+vec_vpkudum(vector long long __a, vector long long __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return (vector int)vec_perm(__a, __b, (vector unsigned char)
+ (0x00, 0x01, 0x02, 0x03, 0x08, 0x09, 0x0A, 0x0B,
+ 0x10, 0x11, 0x12, 0x13, 0x18, 0x19, 0x1A, 0x1B));
+#else
+ return (vector int)vec_perm(__a, __b, (vector unsigned char)
+ (0x04, 0x05, 0x06, 0x07, 0x0C, 0x0D, 0x0E, 0x0F,
+ 0x14, 0x15, 0x16, 0x17, 0x1C, 0x1D, 0x1E, 0x1F));
+#endif
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vpkudum(vector unsigned long long __a, vector unsigned long long __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return (vector unsigned int)vec_perm(__a, __b, (vector unsigned char)
+ (0x00, 0x01, 0x02, 0x03, 0x08, 0x09, 0x0A, 0x0B,
+ 0x10, 0x11, 0x12, 0x13, 0x18, 0x19, 0x1A, 0x1B));
+#else
+ return (vector unsigned int)vec_perm(__a, __b, (vector unsigned char)
+ (0x04, 0x05, 0x06, 0x07, 0x0C, 0x0D, 0x0E, 0x0F,
+ 0x14, 0x15, 0x16, 0x17, 0x1C, 0x1D, 0x1E, 0x1F));
+#endif
+}
+
+static vector bool int __ATTRS_o_ai
+vec_vpkudum(vector bool long long __a, vector bool long long __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return (vector bool int)vec_perm((vector long long)__a,
+ (vector long long)__b,
+ (vector unsigned char)
+ (0x00, 0x01, 0x02, 0x03, 0x08, 0x09, 0x0A, 0x0B,
+ 0x10, 0x11, 0x12, 0x13, 0x18, 0x19, 0x1A, 0x1B));
+#else
+ return (vector bool int)vec_perm((vector long long)__a,
+ (vector long long)__b,
+ (vector unsigned char)
+ (0x04, 0x05, 0x06, 0x07, 0x0C, 0x0D, 0x0E, 0x0F,
+ 0x14, 0x15, 0x16, 0x17, 0x1C, 0x1D, 0x1E, 0x1F));
+#endif
+}
+#endif
+
+/* vec_packpx */
+
+static vector pixel __attribute__((__always_inline__))
+vec_packpx(vector unsigned int __a, vector unsigned int __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return (vector pixel)__builtin_altivec_vpkpx(__b, __a);
+#else
+ return (vector pixel)__builtin_altivec_vpkpx(__a, __b);
+#endif
+}
+
+/* vec_vpkpx */
+
+static vector pixel __attribute__((__always_inline__))
+vec_vpkpx(vector unsigned int __a, vector unsigned int __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return (vector pixel)__builtin_altivec_vpkpx(__b, __a);
+#else
+ return (vector pixel)__builtin_altivec_vpkpx(__a, __b);
+#endif
+}
+
+/* vec_packs */
+
+static vector signed char __ATTRS_o_ai
+vec_packs(vector short __a, vector short __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vpkshss(__b, __a);
+#else
+ return __builtin_altivec_vpkshss(__a, __b);
+#endif
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_packs(vector unsigned short __a, vector unsigned short __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vpkuhus(__b, __a);
+#else
+ return __builtin_altivec_vpkuhus(__a, __b);
+#endif
+}
+
+static vector signed short __ATTRS_o_ai
+vec_packs(vector int __a, vector int __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vpkswss(__b, __a);
+#else
+ return __builtin_altivec_vpkswss(__a, __b);
+#endif
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_packs(vector unsigned int __a, vector unsigned int __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vpkuwus(__b, __a);
+#else
+ return __builtin_altivec_vpkuwus(__a, __b);
+#endif
+}
+
+#ifdef __POWER8_VECTOR__
+static vector int __ATTRS_o_ai
+vec_packs(vector long long __a, vector long long __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vpksdss(__b, __a);
+#else
+ return __builtin_altivec_vpksdss(__a, __b);
+#endif
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_packs(vector unsigned long long __a, vector unsigned long long __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vpkudus(__b, __a);
+#else
+ return __builtin_altivec_vpkudus(__a, __b);
+#endif
+}
+#endif
+
+/* vec_vpkshss */
+
+static vector signed char __attribute__((__always_inline__))
+vec_vpkshss(vector short __a, vector short __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vpkshss(__b, __a);
+#else
+ return __builtin_altivec_vpkshss(__a, __b);
+#endif
+}
+
+/* vec_vpksdss */
+
+#ifdef __POWER8_VECTOR__
+static vector int __ATTRS_o_ai
+vec_vpksdss(vector long long __a, vector long long __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vpksdss(__b, __a);
+#else
+ return __builtin_altivec_vpksdss(__a, __b);
+#endif
+}
+#endif
+
+/* vec_vpkuhus */
+
+static vector unsigned char __attribute__((__always_inline__))
+vec_vpkuhus(vector unsigned short __a, vector unsigned short __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vpkuhus(__b, __a);
+#else
+ return __builtin_altivec_vpkuhus(__a, __b);
+#endif
+}
+
+/* vec_vpkudus */
+
+#ifdef __POWER8_VECTOR__
+static vector unsigned int __attribute__((__always_inline__))
+vec_vpkudus(vector unsigned long long __a, vector unsigned long long __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vpkudus(__b, __a);
+#else
+ return __builtin_altivec_vpkudus(__a, __b);
+#endif
+}
+#endif
+
+/* vec_vpkswss */
+
+static vector signed short __attribute__((__always_inline__))
+vec_vpkswss(vector int __a, vector int __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vpkswss(__b, __a);
+#else
+ return __builtin_altivec_vpkswss(__a, __b);
+#endif
+}
+
+/* vec_vpkuwus */
+
+static vector unsigned short __attribute__((__always_inline__))
+vec_vpkuwus(vector unsigned int __a, vector unsigned int __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vpkuwus(__b, __a);
+#else
+ return __builtin_altivec_vpkuwus(__a, __b);
+#endif
+}
+
+/* vec_packsu */
+
+static vector unsigned char __ATTRS_o_ai
+vec_packsu(vector short __a, vector short __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vpkshus(__b, __a);
+#else
+ return __builtin_altivec_vpkshus(__a, __b);
+#endif
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_packsu(vector unsigned short __a, vector unsigned short __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vpkuhus(__b, __a);
+#else
+ return __builtin_altivec_vpkuhus(__a, __b);
+#endif
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_packsu(vector int __a, vector int __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vpkswus(__b, __a);
+#else
+ return __builtin_altivec_vpkswus(__a, __b);
+#endif
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_packsu(vector unsigned int __a, vector unsigned int __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vpkuwus(__b, __a);
+#else
+ return __builtin_altivec_vpkuwus(__a, __b);
+#endif
+}
+
+#ifdef __POWER8_VECTOR__
+static vector unsigned int __ATTRS_o_ai
+vec_packsu(vector long long __a, vector long long __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vpksdus(__b, __a);
+#else
+ return __builtin_altivec_vpksdus(__a, __b);
+#endif
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_packsu(vector unsigned long long __a, vector unsigned long long __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vpkudus(__b, __a);
+#else
+ return __builtin_altivec_vpkudus(__a, __b);
+#endif
+}
+#endif
+
+/* vec_vpkshus */
+
+static vector unsigned char __ATTRS_o_ai
+vec_vpkshus(vector short __a, vector short __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vpkshus(__b, __a);
+#else
+ return __builtin_altivec_vpkshus(__a, __b);
+#endif
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vpkshus(vector unsigned short __a, vector unsigned short __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vpkuhus(__b, __a);
+#else
+ return __builtin_altivec_vpkuhus(__a, __b);
+#endif
+}
+
+/* vec_vpkswus */
+
+static vector unsigned short __ATTRS_o_ai
+vec_vpkswus(vector int __a, vector int __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vpkswus(__b, __a);
+#else
+ return __builtin_altivec_vpkswus(__a, __b);
+#endif
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vpkswus(vector unsigned int __a, vector unsigned int __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vpkuwus(__b, __a);
+#else
+ return __builtin_altivec_vpkuwus(__a, __b);
+#endif
+}
+
+/* vec_vpksdus */
+
+#ifdef __POWER8_VECTOR__
+static vector unsigned int __ATTRS_o_ai
+vec_vpksdus(vector long long __a, vector long long __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vpksdus(__b, __a);
+#else
+ return __builtin_altivec_vpksdus(__a, __b);
+#endif
+}
+#endif
+
+/* vec_perm */
+
+// The vperm instruction is defined architecturally with a big-endian bias.
+// For little endian, we swap the input operands and invert the permute
+// control vector. Only the rightmost 5 bits matter, so we could use
+// a vector of all 31s instead of all 255s to perform the inversion.
+// However, when the PCV is not a constant, using 255 has an advantage
+// in that the vec_xor can be recognized as a vec_nor (and for P8 and
+// later, possibly a vec_nand).
+
+static vector signed char __ATTRS_o_ai
+vec_perm(vector signed char __a, vector signed char __b, vector unsigned char __c)
+{
+#ifdef __LITTLE_ENDIAN__
+ vector unsigned char __d = {255,255,255,255,255,255,255,255,
+ 255,255,255,255,255,255,255,255};
+ __d = vec_xor(__c, __d);
+ return (vector signed char)
+ __builtin_altivec_vperm_4si((vector int)__b, (vector int)__a, __d);
+#else
+ return (vector signed char)
+ __builtin_altivec_vperm_4si((vector int)__a, (vector int)__b, __c);
+#endif
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_perm(vector unsigned char __a,
+ vector unsigned char __b,
+ vector unsigned char __c)
+{
+#ifdef __LITTLE_ENDIAN__
+ vector unsigned char __d = {255,255,255,255,255,255,255,255,
+ 255,255,255,255,255,255,255,255};
+ __d = vec_xor(__c, __d);
+ return (vector unsigned char)
+ __builtin_altivec_vperm_4si((vector int)__b, (vector int)__a, __d);
+#else
+ return (vector unsigned char)
+ __builtin_altivec_vperm_4si((vector int)__a, (vector int)__b, __c);
+#endif
+}
+
+static vector bool char __ATTRS_o_ai
+vec_perm(vector bool char __a, vector bool char __b, vector unsigned char __c)
+{
+#ifdef __LITTLE_ENDIAN__
+ vector unsigned char __d = {255,255,255,255,255,255,255,255,
+ 255,255,255,255,255,255,255,255};
+ __d = vec_xor(__c, __d);
+ return (vector bool char)
+ __builtin_altivec_vperm_4si((vector int)__b, (vector int)__a, __d);
+#else
+ return (vector bool char)
+ __builtin_altivec_vperm_4si((vector int)__a, (vector int)__b, __c);
+#endif
+}
+
+static vector short __ATTRS_o_ai
+vec_perm(vector short __a, vector short __b, vector unsigned char __c)
+{
+#ifdef __LITTLE_ENDIAN__
+ vector unsigned char __d = {255,255,255,255,255,255,255,255,
+ 255,255,255,255,255,255,255,255};
+ __d = vec_xor(__c, __d);
+ return (vector short)
+ __builtin_altivec_vperm_4si((vector int)__b, (vector int)__a, __d);
+#else
+ return (vector short)
+ __builtin_altivec_vperm_4si((vector int)__a, (vector int)__b, __c);
+#endif
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_perm(vector unsigned short __a,
+ vector unsigned short __b,
+ vector unsigned char __c)
+{
+#ifdef __LITTLE_ENDIAN__
+ vector unsigned char __d = {255,255,255,255,255,255,255,255,
+ 255,255,255,255,255,255,255,255};
+ __d = vec_xor(__c, __d);
+ return (vector unsigned short)
+ __builtin_altivec_vperm_4si((vector int)__b, (vector int)__a, __d);
+#else
+ return (vector unsigned short)
+ __builtin_altivec_vperm_4si((vector int)__a, (vector int)__b, __c);
+#endif
+}
+
+static vector bool short __ATTRS_o_ai
+vec_perm(vector bool short __a, vector bool short __b, vector unsigned char __c)
+{
+#ifdef __LITTLE_ENDIAN__
+ vector unsigned char __d = {255,255,255,255,255,255,255,255,
+ 255,255,255,255,255,255,255,255};
+ __d = vec_xor(__c, __d);
+ return (vector bool short)
+ __builtin_altivec_vperm_4si((vector int)__b, (vector int)__a, __d);
+#else
+ return (vector bool short)
+ __builtin_altivec_vperm_4si((vector int)__a, (vector int)__b, __c);
+#endif
+}
+
+static vector pixel __ATTRS_o_ai
+vec_perm(vector pixel __a, vector pixel __b, vector unsigned char __c)
+{
+#ifdef __LITTLE_ENDIAN__
+ vector unsigned char __d = {255,255,255,255,255,255,255,255,
+ 255,255,255,255,255,255,255,255};
+ __d = vec_xor(__c, __d);
+ return (vector pixel)
+ __builtin_altivec_vperm_4si((vector int)__b, (vector int)__a, __d);
+#else
+ return (vector pixel)
+ __builtin_altivec_vperm_4si((vector int)__a, (vector int)__b, __c);
+#endif
+}
+
+static vector int __ATTRS_o_ai
+vec_perm(vector int __a, vector int __b, vector unsigned char __c)
+{
+#ifdef __LITTLE_ENDIAN__
+ vector unsigned char __d = {255,255,255,255,255,255,255,255,
+ 255,255,255,255,255,255,255,255};
+ __d = vec_xor(__c, __d);
+ return (vector int)__builtin_altivec_vperm_4si(__b, __a, __d);
+#else
+ return (vector int)__builtin_altivec_vperm_4si(__a, __b, __c);
+#endif
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_perm(vector unsigned int __a, vector unsigned int __b, vector unsigned char __c)
+{
+#ifdef __LITTLE_ENDIAN__
+ vector unsigned char __d = {255,255,255,255,255,255,255,255,
+ 255,255,255,255,255,255,255,255};
+ __d = vec_xor(__c, __d);
+ return (vector unsigned int)
+ __builtin_altivec_vperm_4si((vector int)__b, (vector int)__a, __d);
+#else
+ return (vector unsigned int)
+ __builtin_altivec_vperm_4si((vector int)__a, (vector int)__b, __c);
+#endif
+}
+
+static vector bool int __ATTRS_o_ai
+vec_perm(vector bool int __a, vector bool int __b, vector unsigned char __c)
+{
+#ifdef __LITTLE_ENDIAN__
+ vector unsigned char __d = {255,255,255,255,255,255,255,255,
+ 255,255,255,255,255,255,255,255};
+ __d = vec_xor(__c, __d);
+ return (vector bool int)
+ __builtin_altivec_vperm_4si((vector int)__b, (vector int)__a, __d);
+#else
+ return (vector bool int)
+ __builtin_altivec_vperm_4si((vector int)__a, (vector int)__b, __c);
+#endif
+}
+
+static vector float __ATTRS_o_ai
+vec_perm(vector float __a, vector float __b, vector unsigned char __c)
+{
+#ifdef __LITTLE_ENDIAN__
+ vector unsigned char __d = {255,255,255,255,255,255,255,255,
+ 255,255,255,255,255,255,255,255};
+ __d = vec_xor(__c, __d);
+ return (vector float)
+ __builtin_altivec_vperm_4si((vector int)__b, (vector int)__a, __d);
+#else
+ return (vector float)
+ __builtin_altivec_vperm_4si((vector int)__a, (vector int)__b, __c);
+#endif
+}
+
+#ifdef __VSX__
+static vector long long __ATTRS_o_ai
+vec_perm(vector long long __a, vector long long __b, vector unsigned char __c)
+{
+#ifdef __LITTLE_ENDIAN__
+ vector unsigned char __d = {255,255,255,255,255,255,255,255,
+ 255,255,255,255,255,255,255,255};
+ __d = vec_xor(__c, __d);
+ return (vector long long)__builtin_altivec_vperm_4si(__b, __a, __d);
+#else
+ return (vector long long)__builtin_altivec_vperm_4si(__a, __b, __c);
+#endif
+}
+
+static vector unsigned long long __ATTRS_o_ai
+vec_perm(vector unsigned long long __a, vector unsigned long long __b,
+ vector unsigned char __c)
+{
+#ifdef __LITTLE_ENDIAN__
+ vector unsigned char __d = {255,255,255,255,255,255,255,255,
+ 255,255,255,255,255,255,255,255};
+ __d = vec_xor(__c, __d);
+ return (vector unsigned long long)
+ __builtin_altivec_vperm_4si((vector int)__b, (vector int)__a, __d);
+#else
+ return (vector unsigned long long)
+ __builtin_altivec_vperm_4si((vector int)__a, (vector int)__b, __c);
+#endif
+}
+
+static vector double __ATTRS_o_ai
+vec_perm(vector double __a, vector double __b, vector unsigned char __c)
+{
+#ifdef __LITTLE_ENDIAN__
+ vector unsigned char __d = {255,255,255,255,255,255,255,255,
+ 255,255,255,255,255,255,255,255};
+ __d = vec_xor(__c, __d);
+ return (vector double)
+ __builtin_altivec_vperm_4si((vector int)__b, (vector int)__a, __d);
+#else
+ return (vector double)
+ __builtin_altivec_vperm_4si((vector int)__a, (vector int)__b, __c);
+#endif
+}
+#endif
+
+/* vec_vperm */
+
+static vector signed char __ATTRS_o_ai
+vec_vperm(vector signed char __a, vector signed char __b, vector unsigned char __c)
+{
+ return vec_perm(__a, __b, __c);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vperm(vector unsigned char __a,
+ vector unsigned char __b,
+ vector unsigned char __c)
+{
+ return vec_perm(__a, __b, __c);
+}
+
+static vector bool char __ATTRS_o_ai
+vec_vperm(vector bool char __a, vector bool char __b, vector unsigned char __c)
+{
+ return vec_perm(__a, __b, __c);
+}
+
+static vector short __ATTRS_o_ai
+vec_vperm(vector short __a, vector short __b, vector unsigned char __c)
+{
+ return vec_perm(__a, __b, __c);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vperm(vector unsigned short __a,
+ vector unsigned short __b,
+ vector unsigned char __c)
+{
+ return vec_perm(__a, __b, __c);
+}
+
+static vector bool short __ATTRS_o_ai
+vec_vperm(vector bool short __a, vector bool short __b, vector unsigned char __c)
+{
+ return vec_perm(__a, __b, __c);
+}
+
+static vector pixel __ATTRS_o_ai
+vec_vperm(vector pixel __a, vector pixel __b, vector unsigned char __c)
+{
+ return vec_perm(__a, __b, __c);
+}
+
+static vector int __ATTRS_o_ai
+vec_vperm(vector int __a, vector int __b, vector unsigned char __c)
+{
+ return vec_perm(__a, __b, __c);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vperm(vector unsigned int __a, vector unsigned int __b, vector unsigned char __c)
+{
+ return vec_perm(__a, __b, __c);
+}
+
+static vector bool int __ATTRS_o_ai
+vec_vperm(vector bool int __a, vector bool int __b, vector unsigned char __c)
+{
+ return vec_perm(__a, __b, __c);
+}
+
+static vector float __ATTRS_o_ai
+vec_vperm(vector float __a, vector float __b, vector unsigned char __c)
+{
+ return vec_perm(__a, __b, __c);
+}
+
+#ifdef __VSX__
+static vector long long __ATTRS_o_ai
+vec_vperm(vector long long __a, vector long long __b, vector unsigned char __c)
+{
+ return vec_perm(__a, __b, __c);
+}
+
+static vector unsigned long long __ATTRS_o_ai
+vec_vperm(vector unsigned long long __a, vector unsigned long long __b,
+ vector unsigned char __c)
+{
+ return vec_perm(__a, __b, __c);
+}
+
+static vector double __ATTRS_o_ai
+vec_vperm(vector double __a, vector double __b, vector unsigned char __c)
+{
+ return vec_perm(__a, __b, __c);
+}
+#endif
+
+/* vec_re */
+
+static vector float __attribute__((__always_inline__))
+vec_re(vector float __a)
+{
+ return __builtin_altivec_vrefp(__a);
+}
+
+/* vec_vrefp */
+
+static vector float __attribute__((__always_inline__))
+vec_vrefp(vector float __a)
+{
+ return __builtin_altivec_vrefp(__a);
+}
+
+/* vec_rl */
+
+static vector signed char __ATTRS_o_ai
+vec_rl(vector signed char __a, vector unsigned char __b)
+{
+ return (vector signed char)__builtin_altivec_vrlb((vector char)__a, __b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_rl(vector unsigned char __a, vector unsigned char __b)
+{
+ return (vector unsigned char)__builtin_altivec_vrlb((vector char)__a, __b);
+}
+
+static vector short __ATTRS_o_ai
+vec_rl(vector short __a, vector unsigned short __b)
+{
+ return __builtin_altivec_vrlh(__a, __b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_rl(vector unsigned short __a, vector unsigned short __b)
+{
+ return (vector unsigned short)__builtin_altivec_vrlh((vector short)__a, __b);
+}
+
+static vector int __ATTRS_o_ai
+vec_rl(vector int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vrlw(__a, __b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_rl(vector unsigned int __a, vector unsigned int __b)
+{
+ return (vector unsigned int)__builtin_altivec_vrlw((vector int)__a, __b);
+}
+
+#ifdef __POWER8_VECTOR__
+static vector signed long long __ATTRS_o_ai
+vec_rl(vector signed long long __a, vector unsigned long long __b)
+{
+ return __builtin_altivec_vrld(__a, __b);
+}
+
+static vector unsigned long long __ATTRS_o_ai
+vec_rl(vector unsigned long long __a, vector unsigned long long __b)
+{
+ return __builtin_altivec_vrld(__a, __b);
+}
+#endif
+
+/* vec_vrlb */
+
+static vector signed char __ATTRS_o_ai
+vec_vrlb(vector signed char __a, vector unsigned char __b)
+{
+ return (vector signed char)__builtin_altivec_vrlb((vector char)__a, __b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vrlb(vector unsigned char __a, vector unsigned char __b)
+{
+ return (vector unsigned char)__builtin_altivec_vrlb((vector char)__a, __b);
+}
+
+/* vec_vrlh */
+
+static vector short __ATTRS_o_ai
+vec_vrlh(vector short __a, vector unsigned short __b)
+{
+ return __builtin_altivec_vrlh(__a, __b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vrlh(vector unsigned short __a, vector unsigned short __b)
+{
+ return (vector unsigned short)__builtin_altivec_vrlh((vector short)__a, __b);
+}
+
+/* vec_vrlw */
+
+static vector int __ATTRS_o_ai
+vec_vrlw(vector int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vrlw(__a, __b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vrlw(vector unsigned int __a, vector unsigned int __b)
+{
+ return (vector unsigned int)__builtin_altivec_vrlw((vector int)__a, __b);
+}
+
+/* vec_round */
+
+static vector float __attribute__((__always_inline__))
+vec_round(vector float __a)
+{
+ return __builtin_altivec_vrfin(__a);
+}
+
+/* vec_vrfin */
+
+static vector float __attribute__((__always_inline__))
+vec_vrfin(vector float __a)
+{
+ return __builtin_altivec_vrfin(__a);
+}
+
+/* vec_rsqrte */
+
+static __vector float __attribute__((__always_inline__))
+vec_rsqrte(vector float __a)
+{
+ return __builtin_altivec_vrsqrtefp(__a);
+}
+
+/* vec_vrsqrtefp */
+
+static __vector float __attribute__((__always_inline__))
+vec_vrsqrtefp(vector float __a)
+{
+ return __builtin_altivec_vrsqrtefp(__a);
+}
+
+/* vec_sel */
+
+#define __builtin_altivec_vsel_4si vec_sel
+
+static vector signed char __ATTRS_o_ai
+vec_sel(vector signed char __a, vector signed char __b, vector unsigned char __c)
+{
+ return (__a & ~(vector signed char)__c) | (__b & (vector signed char)__c);
+}
+
+static vector signed char __ATTRS_o_ai
+vec_sel(vector signed char __a, vector signed char __b, vector bool char __c)
+{
+ return (__a & ~(vector signed char)__c) | (__b & (vector signed char)__c);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_sel(vector unsigned char __a, vector unsigned char __b, vector unsigned char __c)
+{
+ return (__a & ~__c) | (__b & __c);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_sel(vector unsigned char __a, vector unsigned char __b, vector bool char __c)
+{
+ return (__a & ~(vector unsigned char)__c) | (__b & (vector unsigned char)__c);
+}
+
+static vector bool char __ATTRS_o_ai
+vec_sel(vector bool char __a, vector bool char __b, vector unsigned char __c)
+{
+ return (__a & ~(vector bool char)__c) | (__b & (vector bool char)__c);
+}
+
+static vector bool char __ATTRS_o_ai
+vec_sel(vector bool char __a, vector bool char __b, vector bool char __c)
+{
+ return (__a & ~__c) | (__b & __c);
+}
+
+static vector short __ATTRS_o_ai
+vec_sel(vector short __a, vector short __b, vector unsigned short __c)
+{
+ return (__a & ~(vector short)__c) | (__b & (vector short)__c);
+}
+
+static vector short __ATTRS_o_ai
+vec_sel(vector short __a, vector short __b, vector bool short __c)
+{
+ return (__a & ~(vector short)__c) | (__b & (vector short)__c);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_sel(vector unsigned short __a,
+ vector unsigned short __b,
+ vector unsigned short __c)
+{
+ return (__a & ~__c) | (__b & __c);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_sel(vector unsigned short __a, vector unsigned short __b, vector bool short __c)
+{
+ return (__a & ~(vector unsigned short)__c) | (__b & (vector unsigned short)__c);
+}
+
+static vector bool short __ATTRS_o_ai
+vec_sel(vector bool short __a, vector bool short __b, vector unsigned short __c)
+{
+ return (__a & ~(vector bool short)__c) | (__b & (vector bool short)__c);
+}
+
+static vector bool short __ATTRS_o_ai
+vec_sel(vector bool short __a, vector bool short __b, vector bool short __c)
+{
+ return (__a & ~__c) | (__b & __c);
+}
+
+static vector int __ATTRS_o_ai
+vec_sel(vector int __a, vector int __b, vector unsigned int __c)
+{
+ return (__a & ~(vector int)__c) | (__b & (vector int)__c);
+}
+
+static vector int __ATTRS_o_ai
+vec_sel(vector int __a, vector int __b, vector bool int __c)
+{
+ return (__a & ~(vector int)__c) | (__b & (vector int)__c);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_sel(vector unsigned int __a, vector unsigned int __b, vector unsigned int __c)
+{
+ return (__a & ~__c) | (__b & __c);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_sel(vector unsigned int __a, vector unsigned int __b, vector bool int __c)
+{
+ return (__a & ~(vector unsigned int)__c) | (__b & (vector unsigned int)__c);
+}
+
+static vector bool int __ATTRS_o_ai
+vec_sel(vector bool int __a, vector bool int __b, vector unsigned int __c)
+{
+ return (__a & ~(vector bool int)__c) | (__b & (vector bool int)__c);
+}
+
+static vector bool int __ATTRS_o_ai
+vec_sel(vector bool int __a, vector bool int __b, vector bool int __c)
+{
+ return (__a & ~__c) | (__b & __c);
+}
+
+static vector float __ATTRS_o_ai
+vec_sel(vector float __a, vector float __b, vector unsigned int __c)
+{
+ vector int __res = ((vector int)__a & ~(vector int)__c)
+ | ((vector int)__b & (vector int)__c);
+ return (vector float)__res;
+}
+
+static vector float __ATTRS_o_ai
+vec_sel(vector float __a, vector float __b, vector bool int __c)
+{
+ vector int __res = ((vector int)__a & ~(vector int)__c)
+ | ((vector int)__b & (vector int)__c);
+ return (vector float)__res;
+}
+
+/* vec_vsel */
+
+static vector signed char __ATTRS_o_ai
+vec_vsel(vector signed char __a, vector signed char __b, vector unsigned char __c)
+{
+ return (__a & ~(vector signed char)__c) | (__b & (vector signed char)__c);
+}
+
+static vector signed char __ATTRS_o_ai
+vec_vsel(vector signed char __a, vector signed char __b, vector bool char __c)
+{
+ return (__a & ~(vector signed char)__c) | (__b & (vector signed char)__c);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vsel(vector unsigned char __a, vector unsigned char __b, vector unsigned char __c)
+{
+ return (__a & ~__c) | (__b & __c);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vsel(vector unsigned char __a, vector unsigned char __b, vector bool char __c)
+{
+ return (__a & ~(vector unsigned char)__c) | (__b & (vector unsigned char)__c);
+}
+
+static vector bool char __ATTRS_o_ai
+vec_vsel(vector bool char __a, vector bool char __b, vector unsigned char __c)
+{
+ return (__a & ~(vector bool char)__c) | (__b & (vector bool char)__c);
+}
+
+static vector bool char __ATTRS_o_ai
+vec_vsel(vector bool char __a, vector bool char __b, vector bool char __c)
+{
+ return (__a & ~__c) | (__b & __c);
+}
+
+static vector short __ATTRS_o_ai
+vec_vsel(vector short __a, vector short __b, vector unsigned short __c)
+{
+ return (__a & ~(vector short)__c) | (__b & (vector short)__c);
+}
+
+static vector short __ATTRS_o_ai
+vec_vsel(vector short __a, vector short __b, vector bool short __c)
+{
+ return (__a & ~(vector short)__c) | (__b & (vector short)__c);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vsel(vector unsigned short __a,
+ vector unsigned short __b,
+ vector unsigned short __c)
+{
+ return (__a & ~__c) | (__b & __c);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vsel(vector unsigned short __a, vector unsigned short __b, vector bool short __c)
+{
+ return (__a & ~(vector unsigned short)__c) | (__b & (vector unsigned short)__c);
+}
+
+static vector bool short __ATTRS_o_ai
+vec_vsel(vector bool short __a, vector bool short __b, vector unsigned short __c)
+{
+ return (__a & ~(vector bool short)__c) | (__b & (vector bool short)__c);
+}
+
+static vector bool short __ATTRS_o_ai
+vec_vsel(vector bool short __a, vector bool short __b, vector bool short __c)
+{
+ return (__a & ~__c) | (__b & __c);
+}
+
+static vector int __ATTRS_o_ai
+vec_vsel(vector int __a, vector int __b, vector unsigned int __c)
+{
+ return (__a & ~(vector int)__c) | (__b & (vector int)__c);
+}
+
+static vector int __ATTRS_o_ai
+vec_vsel(vector int __a, vector int __b, vector bool int __c)
+{
+ return (__a & ~(vector int)__c) | (__b & (vector int)__c);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vsel(vector unsigned int __a, vector unsigned int __b, vector unsigned int __c)
+{
+ return (__a & ~__c) | (__b & __c);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vsel(vector unsigned int __a, vector unsigned int __b, vector bool int __c)
+{
+ return (__a & ~(vector unsigned int)__c) | (__b & (vector unsigned int)__c);
+}
+
+static vector bool int __ATTRS_o_ai
+vec_vsel(vector bool int __a, vector bool int __b, vector unsigned int __c)
+{
+ return (__a & ~(vector bool int)__c) | (__b & (vector bool int)__c);
+}
+
+static vector bool int __ATTRS_o_ai
+vec_vsel(vector bool int __a, vector bool int __b, vector bool int __c)
+{
+ return (__a & ~__c) | (__b & __c);
+}
+
+static vector float __ATTRS_o_ai
+vec_vsel(vector float __a, vector float __b, vector unsigned int __c)
+{
+ vector int __res = ((vector int)__a & ~(vector int)__c)
+ | ((vector int)__b & (vector int)__c);
+ return (vector float)__res;
+}
+
+static vector float __ATTRS_o_ai
+vec_vsel(vector float __a, vector float __b, vector bool int __c)
+{
+ vector int __res = ((vector int)__a & ~(vector int)__c)
+ | ((vector int)__b & (vector int)__c);
+ return (vector float)__res;
+}
+
+/* vec_sl */
+
+static vector signed char __ATTRS_o_ai
+vec_sl(vector signed char __a, vector unsigned char __b)
+{
+ return __a << (vector signed char)__b;
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_sl(vector unsigned char __a, vector unsigned char __b)
+{
+ return __a << __b;
+}
+
+static vector short __ATTRS_o_ai
+vec_sl(vector short __a, vector unsigned short __b)
+{
+ return __a << (vector short)__b;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_sl(vector unsigned short __a, vector unsigned short __b)
+{
+ return __a << __b;
+}
+
+static vector int __ATTRS_o_ai
+vec_sl(vector int __a, vector unsigned int __b)
+{
+ return __a << (vector int)__b;
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_sl(vector unsigned int __a, vector unsigned int __b)
+{
+ return __a << __b;
+}
+
+#ifdef __POWER8_VECTOR__
+static vector signed long long __ATTRS_o_ai
+vec_sl(vector signed long long __a, vector unsigned long long __b)
+{
+ return __a << (vector long long)__b;
+}
+
+static vector unsigned long long __ATTRS_o_ai
+vec_sl(vector unsigned long long __a, vector unsigned long long __b)
+{
+ return __a << __b;
+}
+#endif
+
+/* vec_vslb */
+
+#define __builtin_altivec_vslb vec_vslb
+
+static vector signed char __ATTRS_o_ai
+vec_vslb(vector signed char __a, vector unsigned char __b)
+{
+ return vec_sl(__a, __b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vslb(vector unsigned char __a, vector unsigned char __b)
+{
+ return vec_sl(__a, __b);
+}
+
+/* vec_vslh */
+
+#define __builtin_altivec_vslh vec_vslh
+
+static vector short __ATTRS_o_ai
+vec_vslh(vector short __a, vector unsigned short __b)
+{
+ return vec_sl(__a, __b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vslh(vector unsigned short __a, vector unsigned short __b)
+{
+ return vec_sl(__a, __b);
+}
+
+/* vec_vslw */
+
+#define __builtin_altivec_vslw vec_vslw
+
+static vector int __ATTRS_o_ai
+vec_vslw(vector int __a, vector unsigned int __b)
+{
+ return vec_sl(__a, __b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vslw(vector unsigned int __a, vector unsigned int __b)
+{
+ return vec_sl(__a, __b);
+}
+
+/* vec_sld */
+
+#define __builtin_altivec_vsldoi_4si vec_sld
+
+static vector signed char __ATTRS_o_ai
+vec_sld(vector signed char __a, vector signed char __b, unsigned char __c)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (__c, __c+1, __c+2, __c+3, __c+4, __c+5, __c+6, __c+7,
+ __c+8, __c+9, __c+10, __c+11, __c+12, __c+13, __c+14, __c+15));
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_sld(vector unsigned char __a, vector unsigned char __b, unsigned char __c)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (__c, __c+1, __c+2, __c+3, __c+4, __c+5, __c+6, __c+7,
+ __c+8, __c+9, __c+10, __c+11, __c+12, __c+13, __c+14, __c+15));
+}
+
+static vector short __ATTRS_o_ai
+vec_sld(vector short __a, vector short __b, unsigned char __c)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (__c, __c+1, __c+2, __c+3, __c+4, __c+5, __c+6, __c+7,
+ __c+8, __c+9, __c+10, __c+11, __c+12, __c+13, __c+14, __c+15));
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_sld(vector unsigned short __a, vector unsigned short __b, unsigned char __c)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (__c, __c+1, __c+2, __c+3, __c+4, __c+5, __c+6, __c+7,
+ __c+8, __c+9, __c+10, __c+11, __c+12, __c+13, __c+14, __c+15));
+}
+
+static vector pixel __ATTRS_o_ai
+vec_sld(vector pixel __a, vector pixel __b, unsigned char __c)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (__c, __c+1, __c+2, __c+3, __c+4, __c+5, __c+6, __c+7,
+ __c+8, __c+9, __c+10, __c+11, __c+12, __c+13, __c+14, __c+15));
+}
+
+static vector int __ATTRS_o_ai
+vec_sld(vector int __a, vector int __b, unsigned char __c)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (__c, __c+1, __c+2, __c+3, __c+4, __c+5, __c+6, __c+7,
+ __c+8, __c+9, __c+10, __c+11, __c+12, __c+13, __c+14, __c+15));
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_sld(vector unsigned int __a, vector unsigned int __b, unsigned char __c)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (__c, __c+1, __c+2, __c+3, __c+4, __c+5, __c+6, __c+7,
+ __c+8, __c+9, __c+10, __c+11, __c+12, __c+13, __c+14, __c+15));
+}
+
+static vector float __ATTRS_o_ai
+vec_sld(vector float __a, vector float __b, unsigned char __c)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (__c, __c+1, __c+2, __c+3, __c+4, __c+5, __c+6, __c+7,
+ __c+8, __c+9, __c+10, __c+11, __c+12, __c+13, __c+14, __c+15));
+}
+
+/* vec_vsldoi */
+
+static vector signed char __ATTRS_o_ai
+vec_vsldoi(vector signed char __a, vector signed char __b, unsigned char __c)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (__c, __c+1, __c+2, __c+3, __c+4, __c+5, __c+6, __c+7,
+ __c+8, __c+9, __c+10, __c+11, __c+12, __c+13, __c+14, __c+15));
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vsldoi(vector unsigned char __a, vector unsigned char __b, unsigned char __c)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (__c, __c+1, __c+2, __c+3, __c+4, __c+5, __c+6, __c+7,
+ __c+8, __c+9, __c+10, __c+11, __c+12, __c+13, __c+14, __c+15));
+}
+
+static vector short __ATTRS_o_ai
+vec_vsldoi(vector short __a, vector short __b, unsigned char __c)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (__c, __c+1, __c+2, __c+3, __c+4, __c+5, __c+6, __c+7,
+ __c+8, __c+9, __c+10, __c+11, __c+12, __c+13, __c+14, __c+15));
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vsldoi(vector unsigned short __a, vector unsigned short __b, unsigned char __c)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (__c, __c+1, __c+2, __c+3, __c+4, __c+5, __c+6, __c+7,
+ __c+8, __c+9, __c+10, __c+11, __c+12, __c+13, __c+14, __c+15));
+}
+
+static vector pixel __ATTRS_o_ai
+vec_vsldoi(vector pixel __a, vector pixel __b, unsigned char __c)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (__c, __c+1, __c+2, __c+3, __c+4, __c+5, __c+6, __c+7,
+ __c+8, __c+9, __c+10, __c+11, __c+12, __c+13, __c+14, __c+15));
+}
+
+static vector int __ATTRS_o_ai
+vec_vsldoi(vector int __a, vector int __b, unsigned char __c)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (__c, __c+1, __c+2, __c+3, __c+4, __c+5, __c+6, __c+7,
+ __c+8, __c+9, __c+10, __c+11, __c+12, __c+13, __c+14, __c+15));
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vsldoi(vector unsigned int __a, vector unsigned int __b, unsigned char __c)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (__c, __c+1, __c+2, __c+3, __c+4, __c+5, __c+6, __c+7,
+ __c+8, __c+9, __c+10, __c+11, __c+12, __c+13, __c+14, __c+15));
+}
+
+static vector float __ATTRS_o_ai
+vec_vsldoi(vector float __a, vector float __b, unsigned char __c)
+{
+ return vec_perm(__a, __b, (vector unsigned char)
+ (__c, __c+1, __c+2, __c+3, __c+4, __c+5, __c+6, __c+7,
+ __c+8, __c+9, __c+10, __c+11, __c+12, __c+13, __c+14, __c+15));
+}
+
+/* vec_sll */
+
+static vector signed char __ATTRS_o_ai
+vec_sll(vector signed char __a, vector unsigned char __b)
+{
+ return (vector signed char)
+ __builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector signed char __ATTRS_o_ai
+vec_sll(vector signed char __a, vector unsigned short __b)
+{
+ return (vector signed char)
+ __builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector signed char __ATTRS_o_ai
+vec_sll(vector signed char __a, vector unsigned int __b)
+{
+ return (vector signed char)
+ __builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_sll(vector unsigned char __a, vector unsigned char __b)
+{
+ return (vector unsigned char)
+ __builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_sll(vector unsigned char __a, vector unsigned short __b)
+{
+ return (vector unsigned char)
+ __builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_sll(vector unsigned char __a, vector unsigned int __b)
+{
+ return (vector unsigned char)
+ __builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector bool char __ATTRS_o_ai
+vec_sll(vector bool char __a, vector unsigned char __b)
+{
+ return (vector bool char)__builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector bool char __ATTRS_o_ai
+vec_sll(vector bool char __a, vector unsigned short __b)
+{
+ return (vector bool char)__builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector bool char __ATTRS_o_ai
+vec_sll(vector bool char __a, vector unsigned int __b)
+{
+ return (vector bool char)__builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector short __ATTRS_o_ai
+vec_sll(vector short __a, vector unsigned char __b)
+{
+ return (vector short)__builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector short __ATTRS_o_ai
+vec_sll(vector short __a, vector unsigned short __b)
+{
+ return (vector short)__builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector short __ATTRS_o_ai
+vec_sll(vector short __a, vector unsigned int __b)
+{
+ return (vector short)__builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_sll(vector unsigned short __a, vector unsigned char __b)
+{
+ return (vector unsigned short)
+ __builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_sll(vector unsigned short __a, vector unsigned short __b)
+{
+ return (vector unsigned short)
+ __builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_sll(vector unsigned short __a, vector unsigned int __b)
+{
+ return (vector unsigned short)
+ __builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector bool short __ATTRS_o_ai
+vec_sll(vector bool short __a, vector unsigned char __b)
+{
+ return (vector bool short)__builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector bool short __ATTRS_o_ai
+vec_sll(vector bool short __a, vector unsigned short __b)
+{
+ return (vector bool short)__builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector bool short __ATTRS_o_ai
+vec_sll(vector bool short __a, vector unsigned int __b)
+{
+ return (vector bool short)__builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector pixel __ATTRS_o_ai
+vec_sll(vector pixel __a, vector unsigned char __b)
+{
+ return (vector pixel)__builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector pixel __ATTRS_o_ai
+vec_sll(vector pixel __a, vector unsigned short __b)
+{
+ return (vector pixel)__builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector pixel __ATTRS_o_ai
+vec_sll(vector pixel __a, vector unsigned int __b)
+{
+ return (vector pixel)__builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector int __ATTRS_o_ai
+vec_sll(vector int __a, vector unsigned char __b)
+{
+ return (vector int)__builtin_altivec_vsl(__a, (vector int)__b);
+}
+
+static vector int __ATTRS_o_ai
+vec_sll(vector int __a, vector unsigned short __b)
+{
+ return (vector int)__builtin_altivec_vsl(__a, (vector int)__b);
+}
+
+static vector int __ATTRS_o_ai
+vec_sll(vector int __a, vector unsigned int __b)
+{
+ return (vector int)__builtin_altivec_vsl(__a, (vector int)__b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_sll(vector unsigned int __a, vector unsigned char __b)
+{
+ return (vector unsigned int)
+ __builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_sll(vector unsigned int __a, vector unsigned short __b)
+{
+ return (vector unsigned int)
+ __builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_sll(vector unsigned int __a, vector unsigned int __b)
+{
+ return (vector unsigned int)
+ __builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector bool int __ATTRS_o_ai
+vec_sll(vector bool int __a, vector unsigned char __b)
+{
+ return (vector bool int)__builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector bool int __ATTRS_o_ai
+vec_sll(vector bool int __a, vector unsigned short __b)
+{
+ return (vector bool int)__builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector bool int __ATTRS_o_ai
+vec_sll(vector bool int __a, vector unsigned int __b)
+{
+ return (vector bool int)__builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+/* vec_vsl */
+
+static vector signed char __ATTRS_o_ai
+vec_vsl(vector signed char __a, vector unsigned char __b)
+{
+ return (vector signed char)
+ __builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector signed char __ATTRS_o_ai
+vec_vsl(vector signed char __a, vector unsigned short __b)
+{
+ return (vector signed char)
+ __builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector signed char __ATTRS_o_ai
+vec_vsl(vector signed char __a, vector unsigned int __b)
+{
+ return (vector signed char)
+ __builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vsl(vector unsigned char __a, vector unsigned char __b)
+{
+ return (vector unsigned char)
+ __builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vsl(vector unsigned char __a, vector unsigned short __b)
+{
+ return (vector unsigned char)
+ __builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vsl(vector unsigned char __a, vector unsigned int __b)
+{
+ return (vector unsigned char)
+ __builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector bool char __ATTRS_o_ai
+vec_vsl(vector bool char __a, vector unsigned char __b)
+{
+ return (vector bool char)__builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector bool char __ATTRS_o_ai
+vec_vsl(vector bool char __a, vector unsigned short __b)
+{
+ return (vector bool char)__builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector bool char __ATTRS_o_ai
+vec_vsl(vector bool char __a, vector unsigned int __b)
+{
+ return (vector bool char)__builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector short __ATTRS_o_ai
+vec_vsl(vector short __a, vector unsigned char __b)
+{
+ return (vector short)__builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector short __ATTRS_o_ai
+vec_vsl(vector short __a, vector unsigned short __b)
+{
+ return (vector short)__builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector short __ATTRS_o_ai
+vec_vsl(vector short __a, vector unsigned int __b)
+{
+ return (vector short)__builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vsl(vector unsigned short __a, vector unsigned char __b)
+{
+ return (vector unsigned short)
+ __builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vsl(vector unsigned short __a, vector unsigned short __b)
+{
+ return (vector unsigned short)
+ __builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vsl(vector unsigned short __a, vector unsigned int __b)
+{
+ return (vector unsigned short)
+ __builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector bool short __ATTRS_o_ai
+vec_vsl(vector bool short __a, vector unsigned char __b)
+{
+ return (vector bool short)__builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector bool short __ATTRS_o_ai
+vec_vsl(vector bool short __a, vector unsigned short __b)
+{
+ return (vector bool short)__builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector bool short __ATTRS_o_ai
+vec_vsl(vector bool short __a, vector unsigned int __b)
+{
+ return (vector bool short)__builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector pixel __ATTRS_o_ai
+vec_vsl(vector pixel __a, vector unsigned char __b)
+{
+ return (vector pixel)__builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector pixel __ATTRS_o_ai
+vec_vsl(vector pixel __a, vector unsigned short __b)
+{
+ return (vector pixel)__builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector pixel __ATTRS_o_ai
+vec_vsl(vector pixel __a, vector unsigned int __b)
+{
+ return (vector pixel)__builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector int __ATTRS_o_ai
+vec_vsl(vector int __a, vector unsigned char __b)
+{
+ return (vector int)__builtin_altivec_vsl(__a, (vector int)__b);
+}
+
+static vector int __ATTRS_o_ai
+vec_vsl(vector int __a, vector unsigned short __b)
+{
+ return (vector int)__builtin_altivec_vsl(__a, (vector int)__b);
+}
+
+static vector int __ATTRS_o_ai
+vec_vsl(vector int __a, vector unsigned int __b)
+{
+ return (vector int)__builtin_altivec_vsl(__a, (vector int)__b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vsl(vector unsigned int __a, vector unsigned char __b)
+{
+ return (vector unsigned int)
+ __builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vsl(vector unsigned int __a, vector unsigned short __b)
+{
+ return (vector unsigned int)
+ __builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vsl(vector unsigned int __a, vector unsigned int __b)
+{
+ return (vector unsigned int)
+ __builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector bool int __ATTRS_o_ai
+vec_vsl(vector bool int __a, vector unsigned char __b)
+{
+ return (vector bool int)__builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector bool int __ATTRS_o_ai
+vec_vsl(vector bool int __a, vector unsigned short __b)
+{
+ return (vector bool int)__builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+static vector bool int __ATTRS_o_ai
+vec_vsl(vector bool int __a, vector unsigned int __b)
+{
+ return (vector bool int)__builtin_altivec_vsl((vector int)__a, (vector int)__b);
+}
+
+/* vec_slo */
+
+static vector signed char __ATTRS_o_ai
+vec_slo(vector signed char __a, vector signed char __b)
+{
+ return (vector signed char)
+ __builtin_altivec_vslo((vector int)__a, (vector int)__b);
+}
+
+static vector signed char __ATTRS_o_ai
+vec_slo(vector signed char __a, vector unsigned char __b)
+{
+ return (vector signed char)
+ __builtin_altivec_vslo((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_slo(vector unsigned char __a, vector signed char __b)
+{
+ return (vector unsigned char)
+ __builtin_altivec_vslo((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_slo(vector unsigned char __a, vector unsigned char __b)
+{
+ return (vector unsigned char)
+ __builtin_altivec_vslo((vector int)__a, (vector int)__b);
+}
+
+static vector short __ATTRS_o_ai
+vec_slo(vector short __a, vector signed char __b)
+{
+ return (vector short)__builtin_altivec_vslo((vector int)__a, (vector int)__b);
+}
+
+static vector short __ATTRS_o_ai
+vec_slo(vector short __a, vector unsigned char __b)
+{
+ return (vector short)__builtin_altivec_vslo((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_slo(vector unsigned short __a, vector signed char __b)
+{
+ return (vector unsigned short)
+ __builtin_altivec_vslo((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_slo(vector unsigned short __a, vector unsigned char __b)
+{
+ return (vector unsigned short)
+ __builtin_altivec_vslo((vector int)__a, (vector int)__b);
+}
+
+static vector pixel __ATTRS_o_ai
+vec_slo(vector pixel __a, vector signed char __b)
+{
+ return (vector pixel)__builtin_altivec_vslo((vector int)__a, (vector int)__b);
+}
+
+static vector pixel __ATTRS_o_ai
+vec_slo(vector pixel __a, vector unsigned char __b)
+{
+ return (vector pixel)__builtin_altivec_vslo((vector int)__a, (vector int)__b);
+}
+
+static vector int __ATTRS_o_ai
+vec_slo(vector int __a, vector signed char __b)
+{
+ return (vector int)__builtin_altivec_vslo(__a, (vector int)__b);
+}
+
+static vector int __ATTRS_o_ai
+vec_slo(vector int __a, vector unsigned char __b)
+{
+ return (vector int)__builtin_altivec_vslo(__a, (vector int)__b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_slo(vector unsigned int __a, vector signed char __b)
+{
+ return (vector unsigned int)
+ __builtin_altivec_vslo((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_slo(vector unsigned int __a, vector unsigned char __b)
+{
+ return (vector unsigned int)
+ __builtin_altivec_vslo((vector int)__a, (vector int)__b);
+}
+
+static vector float __ATTRS_o_ai
+vec_slo(vector float __a, vector signed char __b)
+{
+ return (vector float)__builtin_altivec_vslo((vector int)__a, (vector int)__b);
+}
+
+static vector float __ATTRS_o_ai
+vec_slo(vector float __a, vector unsigned char __b)
+{
+ return (vector float)__builtin_altivec_vslo((vector int)__a, (vector int)__b);
+}
+
+/* vec_vslo */
+
+static vector signed char __ATTRS_o_ai
+vec_vslo(vector signed char __a, vector signed char __b)
+{
+ return (vector signed char)
+ __builtin_altivec_vslo((vector int)__a, (vector int)__b);
+}
+
+static vector signed char __ATTRS_o_ai
+vec_vslo(vector signed char __a, vector unsigned char __b)
+{
+ return (vector signed char)
+ __builtin_altivec_vslo((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vslo(vector unsigned char __a, vector signed char __b)
+{
+ return (vector unsigned char)
+ __builtin_altivec_vslo((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vslo(vector unsigned char __a, vector unsigned char __b)
+{
+ return (vector unsigned char)
+ __builtin_altivec_vslo((vector int)__a, (vector int)__b);
+}
+
+static vector short __ATTRS_o_ai
+vec_vslo(vector short __a, vector signed char __b)
+{
+ return (vector short)__builtin_altivec_vslo((vector int)__a, (vector int)__b);
+}
+
+static vector short __ATTRS_o_ai
+vec_vslo(vector short __a, vector unsigned char __b)
+{
+ return (vector short)__builtin_altivec_vslo((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vslo(vector unsigned short __a, vector signed char __b)
+{
+ return (vector unsigned short)
+ __builtin_altivec_vslo((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vslo(vector unsigned short __a, vector unsigned char __b)
+{
+ return (vector unsigned short)
+ __builtin_altivec_vslo((vector int)__a, (vector int)__b);
+}
+
+static vector pixel __ATTRS_o_ai
+vec_vslo(vector pixel __a, vector signed char __b)
+{
+ return (vector pixel)__builtin_altivec_vslo((vector int)__a, (vector int)__b);
+}
+
+static vector pixel __ATTRS_o_ai
+vec_vslo(vector pixel __a, vector unsigned char __b)
+{
+ return (vector pixel)__builtin_altivec_vslo((vector int)__a, (vector int)__b);
+}
+
+static vector int __ATTRS_o_ai
+vec_vslo(vector int __a, vector signed char __b)
+{
+ return (vector int)__builtin_altivec_vslo(__a, (vector int)__b);
+}
+
+static vector int __ATTRS_o_ai
+vec_vslo(vector int __a, vector unsigned char __b)
+{
+ return (vector int)__builtin_altivec_vslo(__a, (vector int)__b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vslo(vector unsigned int __a, vector signed char __b)
+{
+ return (vector unsigned int)
+ __builtin_altivec_vslo((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vslo(vector unsigned int __a, vector unsigned char __b)
+{
+ return (vector unsigned int)
+ __builtin_altivec_vslo((vector int)__a, (vector int)__b);
+}
+
+static vector float __ATTRS_o_ai
+vec_vslo(vector float __a, vector signed char __b)
+{
+ return (vector float)__builtin_altivec_vslo((vector int)__a, (vector int)__b);
+}
+
+static vector float __ATTRS_o_ai
+vec_vslo(vector float __a, vector unsigned char __b)
+{
+ return (vector float)__builtin_altivec_vslo((vector int)__a, (vector int)__b);
+}
+
+/* vec_splat */
+
+static vector signed char __ATTRS_o_ai
+vec_splat(vector signed char __a, unsigned char __b)
+{
+ return vec_perm(__a, __a, (vector unsigned char)(__b));
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_splat(vector unsigned char __a, unsigned char __b)
+{
+ return vec_perm(__a, __a, (vector unsigned char)(__b));
+}
+
+static vector bool char __ATTRS_o_ai
+vec_splat(vector bool char __a, unsigned char __b)
+{
+ return vec_perm(__a, __a, (vector unsigned char)(__b));
+}
+
+static vector short __ATTRS_o_ai
+vec_splat(vector short __a, unsigned char __b)
+{
+ __b *= 2;
+ unsigned char b1=__b+1;
+ return vec_perm(__a, __a, (vector unsigned char)
+ (__b, b1, __b, b1, __b, b1, __b, b1, __b, b1, __b, b1, __b, b1, __b, b1));
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_splat(vector unsigned short __a, unsigned char __b)
+{
+ __b *= 2;
+ unsigned char b1=__b+1;
+ return vec_perm(__a, __a, (vector unsigned char)
+ (__b, b1, __b, b1, __b, b1, __b, b1, __b, b1, __b, b1, __b, b1, __b, b1));
+}
+
+static vector bool short __ATTRS_o_ai
+vec_splat(vector bool short __a, unsigned char __b)
+{
+ __b *= 2;
+ unsigned char b1=__b+1;
+ return vec_perm(__a, __a, (vector unsigned char)
+ (__b, b1, __b, b1, __b, b1, __b, b1, __b, b1, __b, b1, __b, b1, __b, b1));
+}
+
+static vector pixel __ATTRS_o_ai
+vec_splat(vector pixel __a, unsigned char __b)
+{
+ __b *= 2;
+ unsigned char b1=__b+1;
+ return vec_perm(__a, __a, (vector unsigned char)
+ (__b, b1, __b, b1, __b, b1, __b, b1, __b, b1, __b, b1, __b, b1, __b, b1));
+}
+
+static vector int __ATTRS_o_ai
+vec_splat(vector int __a, unsigned char __b)
+{
+ __b *= 4;
+ unsigned char b1=__b+1, b2=__b+2, b3=__b+3;
+ return vec_perm(__a, __a, (vector unsigned char)
+ (__b, b1, b2, b3, __b, b1, b2, b3, __b, b1, b2, b3, __b, b1, b2, b3));
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_splat(vector unsigned int __a, unsigned char __b)
+{
+ __b *= 4;
+ unsigned char b1=__b+1, b2=__b+2, b3=__b+3;
+ return vec_perm(__a, __a, (vector unsigned char)
+ (__b, b1, b2, b3, __b, b1, b2, b3, __b, b1, b2, b3, __b, b1, b2, b3));
+}
+
+static vector bool int __ATTRS_o_ai
+vec_splat(vector bool int __a, unsigned char __b)
+{
+ __b *= 4;
+ unsigned char b1=__b+1, b2=__b+2, b3=__b+3;
+ return vec_perm(__a, __a, (vector unsigned char)
+ (__b, b1, b2, b3, __b, b1, b2, b3, __b, b1, b2, b3, __b, b1, b2, b3));
+}
+
+static vector float __ATTRS_o_ai
+vec_splat(vector float __a, unsigned char __b)
+{
+ __b *= 4;
+ unsigned char b1=__b+1, b2=__b+2, b3=__b+3;
+ return vec_perm(__a, __a, (vector unsigned char)
+ (__b, b1, b2, b3, __b, b1, b2, b3, __b, b1, b2, b3, __b, b1, b2, b3));
+}
+
+/* vec_vspltb */
+
+#define __builtin_altivec_vspltb vec_vspltb
+
+static vector signed char __ATTRS_o_ai
+vec_vspltb(vector signed char __a, unsigned char __b)
+{
+ return vec_perm(__a, __a, (vector unsigned char)(__b));
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vspltb(vector unsigned char __a, unsigned char __b)
+{
+ return vec_perm(__a, __a, (vector unsigned char)(__b));
+}
+
+static vector bool char __ATTRS_o_ai
+vec_vspltb(vector bool char __a, unsigned char __b)
+{
+ return vec_perm(__a, __a, (vector unsigned char)(__b));
+}
+
+/* vec_vsplth */
+
+#define __builtin_altivec_vsplth vec_vsplth
+
+static vector short __ATTRS_o_ai
+vec_vsplth(vector short __a, unsigned char __b)
+{
+ __b *= 2;
+ unsigned char b1=__b+1;
+ return vec_perm(__a, __a, (vector unsigned char)
+ (__b, b1, __b, b1, __b, b1, __b, b1, __b, b1, __b, b1, __b, b1, __b, b1));
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vsplth(vector unsigned short __a, unsigned char __b)
+{
+ __b *= 2;
+ unsigned char b1=__b+1;
+ return vec_perm(__a, __a, (vector unsigned char)
+ (__b, b1, __b, b1, __b, b1, __b, b1, __b, b1, __b, b1, __b, b1, __b, b1));
+}
+
+static vector bool short __ATTRS_o_ai
+vec_vsplth(vector bool short __a, unsigned char __b)
+{
+ __b *= 2;
+ unsigned char b1=__b+1;
+ return vec_perm(__a, __a, (vector unsigned char)
+ (__b, b1, __b, b1, __b, b1, __b, b1, __b, b1, __b, b1, __b, b1, __b, b1));
+}
+
+static vector pixel __ATTRS_o_ai
+vec_vsplth(vector pixel __a, unsigned char __b)
+{
+ __b *= 2;
+ unsigned char b1=__b+1;
+ return vec_perm(__a, __a, (vector unsigned char)
+ (__b, b1, __b, b1, __b, b1, __b, b1, __b, b1, __b, b1, __b, b1, __b, b1));
+}
+
+/* vec_vspltw */
+
+#define __builtin_altivec_vspltw vec_vspltw
+
+static vector int __ATTRS_o_ai
+vec_vspltw(vector int __a, unsigned char __b)
+{
+ __b *= 4;
+ unsigned char b1=__b+1, b2=__b+2, b3=__b+3;
+ return vec_perm(__a, __a, (vector unsigned char)
+ (__b, b1, b2, b3, __b, b1, b2, b3, __b, b1, b2, b3, __b, b1, b2, b3));
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vspltw(vector unsigned int __a, unsigned char __b)
+{
+ __b *= 4;
+ unsigned char b1=__b+1, b2=__b+2, b3=__b+3;
+ return vec_perm(__a, __a, (vector unsigned char)
+ (__b, b1, b2, b3, __b, b1, b2, b3, __b, b1, b2, b3, __b, b1, b2, b3));
+}
+
+static vector bool int __ATTRS_o_ai
+vec_vspltw(vector bool int __a, unsigned char __b)
+{
+ __b *= 4;
+ unsigned char b1=__b+1, b2=__b+2, b3=__b+3;
+ return vec_perm(__a, __a, (vector unsigned char)
+ (__b, b1, b2, b3, __b, b1, b2, b3, __b, b1, b2, b3, __b, b1, b2, b3));
+}
+
+static vector float __ATTRS_o_ai
+vec_vspltw(vector float __a, unsigned char __b)
+{
+ __b *= 4;
+ unsigned char b1=__b+1, b2=__b+2, b3=__b+3;
+ return vec_perm(__a, __a, (vector unsigned char)
+ (__b, b1, b2, b3, __b, b1, b2, b3, __b, b1, b2, b3, __b, b1, b2, b3));
+}
+
+/* vec_splat_s8 */
+
+#define __builtin_altivec_vspltisb vec_splat_s8
+
+// FIXME: parameter should be treated as 5-bit signed literal
+static vector signed char __ATTRS_o_ai
+vec_splat_s8(signed char __a)
+{
+ return (vector signed char)(__a);
+}
+
+/* vec_vspltisb */
+
+// FIXME: parameter should be treated as 5-bit signed literal
+static vector signed char __ATTRS_o_ai
+vec_vspltisb(signed char __a)
+{
+ return (vector signed char)(__a);
+}
+
+/* vec_splat_s16 */
+
+#define __builtin_altivec_vspltish vec_splat_s16
+
+// FIXME: parameter should be treated as 5-bit signed literal
+static vector short __ATTRS_o_ai
+vec_splat_s16(signed char __a)
+{
+ return (vector short)(__a);
+}
+
+/* vec_vspltish */
+
+// FIXME: parameter should be treated as 5-bit signed literal
+static vector short __ATTRS_o_ai
+vec_vspltish(signed char __a)
+{
+ return (vector short)(__a);
+}
+
+/* vec_splat_s32 */
+
+#define __builtin_altivec_vspltisw vec_splat_s32
+
+// FIXME: parameter should be treated as 5-bit signed literal
+static vector int __ATTRS_o_ai
+vec_splat_s32(signed char __a)
+{
+ return (vector int)(__a);
+}
+
+/* vec_vspltisw */
+
+// FIXME: parameter should be treated as 5-bit signed literal
+static vector int __ATTRS_o_ai
+vec_vspltisw(signed char __a)
+{
+ return (vector int)(__a);
+}
+
+/* vec_splat_u8 */
+
+// FIXME: parameter should be treated as 5-bit signed literal
+static vector unsigned char __ATTRS_o_ai
+vec_splat_u8(unsigned char __a)
+{
+ return (vector unsigned char)(__a);
+}
+
+/* vec_splat_u16 */
+
+// FIXME: parameter should be treated as 5-bit signed literal
+static vector unsigned short __ATTRS_o_ai
+vec_splat_u16(signed char __a)
+{
+ return (vector unsigned short)(__a);
+}
+
+/* vec_splat_u32 */
+
+// FIXME: parameter should be treated as 5-bit signed literal
+static vector unsigned int __ATTRS_o_ai
+vec_splat_u32(signed char __a)
+{
+ return (vector unsigned int)(__a);
+}
+
+/* vec_sr */
+
+static vector signed char __ATTRS_o_ai
+vec_sr(vector signed char __a, vector unsigned char __b)
+{
+ return __a >> (vector signed char)__b;
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_sr(vector unsigned char __a, vector unsigned char __b)
+{
+ return __a >> __b;
+}
+
+static vector short __ATTRS_o_ai
+vec_sr(vector short __a, vector unsigned short __b)
+{
+ return __a >> (vector short)__b;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_sr(vector unsigned short __a, vector unsigned short __b)
+{
+ return __a >> __b;
+}
+
+static vector int __ATTRS_o_ai
+vec_sr(vector int __a, vector unsigned int __b)
+{
+ return __a >> (vector int)__b;
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_sr(vector unsigned int __a, vector unsigned int __b)
+{
+ return __a >> __b;
+}
+
+#ifdef __POWER8_VECTOR__
+static vector signed long long __ATTRS_o_ai
+vec_sr(vector signed long long __a, vector unsigned long long __b)
+{
+ return __a >> (vector long long)__b;
+}
+
+static vector unsigned long long __ATTRS_o_ai
+vec_sr(vector unsigned long long __a, vector unsigned long long __b)
+{
+ return __a >> __b;
+}
+#endif
+
+/* vec_vsrb */
+
+#define __builtin_altivec_vsrb vec_vsrb
+
+static vector signed char __ATTRS_o_ai
+vec_vsrb(vector signed char __a, vector unsigned char __b)
+{
+ return __a >> (vector signed char)__b;
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vsrb(vector unsigned char __a, vector unsigned char __b)
+{
+ return __a >> __b;
+}
+
+/* vec_vsrh */
+
+#define __builtin_altivec_vsrh vec_vsrh
+
+static vector short __ATTRS_o_ai
+vec_vsrh(vector short __a, vector unsigned short __b)
+{
+ return __a >> (vector short)__b;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vsrh(vector unsigned short __a, vector unsigned short __b)
+{
+ return __a >> __b;
+}
+
+/* vec_vsrw */
+
+#define __builtin_altivec_vsrw vec_vsrw
+
+static vector int __ATTRS_o_ai
+vec_vsrw(vector int __a, vector unsigned int __b)
+{
+ return __a >> (vector int)__b;
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vsrw(vector unsigned int __a, vector unsigned int __b)
+{
+ return __a >> __b;
+}
+
+/* vec_sra */
+
+static vector signed char __ATTRS_o_ai
+vec_sra(vector signed char __a, vector unsigned char __b)
+{
+ return (vector signed char)__builtin_altivec_vsrab((vector char)__a, __b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_sra(vector unsigned char __a, vector unsigned char __b)
+{
+ return (vector unsigned char)__builtin_altivec_vsrab((vector char)__a, __b);
+}
+
+static vector short __ATTRS_o_ai
+vec_sra(vector short __a, vector unsigned short __b)
+{
+ return __builtin_altivec_vsrah(__a, (vector unsigned short)__b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_sra(vector unsigned short __a, vector unsigned short __b)
+{
+ return (vector unsigned short)__builtin_altivec_vsrah((vector short)__a, __b);
+}
+
+static vector int __ATTRS_o_ai
+vec_sra(vector int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vsraw(__a, __b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_sra(vector unsigned int __a, vector unsigned int __b)
+{
+ return (vector unsigned int)__builtin_altivec_vsraw((vector int)__a, __b);
+}
+
+#ifdef __POWER8_VECTOR__
+static vector signed long long __ATTRS_o_ai
+vec_sra(vector signed long long __a, vector unsigned long long __b)
+{
+ return __a >> __b;
+}
+
+static vector unsigned long long __ATTRS_o_ai
+vec_sra(vector unsigned long long __a, vector unsigned long long __b)
+{
+ return (vector unsigned long long) ( (vector signed long long) __a >> __b);
+}
+#endif
+
+/* vec_vsrab */
+
+static vector signed char __ATTRS_o_ai
+vec_vsrab(vector signed char __a, vector unsigned char __b)
+{
+ return (vector signed char)__builtin_altivec_vsrab((vector char)__a, __b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vsrab(vector unsigned char __a, vector unsigned char __b)
+{
+ return (vector unsigned char)__builtin_altivec_vsrab((vector char)__a, __b);
+}
+
+/* vec_vsrah */
+
+static vector short __ATTRS_o_ai
+vec_vsrah(vector short __a, vector unsigned short __b)
+{
+ return __builtin_altivec_vsrah(__a, (vector unsigned short)__b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vsrah(vector unsigned short __a, vector unsigned short __b)
+{
+ return (vector unsigned short)__builtin_altivec_vsrah((vector short)__a, __b);
+}
+
+/* vec_vsraw */
+
+static vector int __ATTRS_o_ai
+vec_vsraw(vector int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vsraw(__a, __b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vsraw(vector unsigned int __a, vector unsigned int __b)
+{
+ return (vector unsigned int)__builtin_altivec_vsraw((vector int)__a, __b);
+}
+
+/* vec_srl */
+
+static vector signed char __ATTRS_o_ai
+vec_srl(vector signed char __a, vector unsigned char __b)
+{
+ return (vector signed char)
+ __builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector signed char __ATTRS_o_ai
+vec_srl(vector signed char __a, vector unsigned short __b)
+{
+ return (vector signed char)
+ __builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector signed char __ATTRS_o_ai
+vec_srl(vector signed char __a, vector unsigned int __b)
+{
+ return (vector signed char)
+ __builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_srl(vector unsigned char __a, vector unsigned char __b)
+{
+ return (vector unsigned char)
+ __builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_srl(vector unsigned char __a, vector unsigned short __b)
+{
+ return (vector unsigned char)
+ __builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_srl(vector unsigned char __a, vector unsigned int __b)
+{
+ return (vector unsigned char)
+ __builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector bool char __ATTRS_o_ai
+vec_srl(vector bool char __a, vector unsigned char __b)
+{
+ return (vector bool char)__builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector bool char __ATTRS_o_ai
+vec_srl(vector bool char __a, vector unsigned short __b)
+{
+ return (vector bool char)__builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector bool char __ATTRS_o_ai
+vec_srl(vector bool char __a, vector unsigned int __b)
+{
+ return (vector bool char)__builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector short __ATTRS_o_ai
+vec_srl(vector short __a, vector unsigned char __b)
+{
+ return (vector short)__builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector short __ATTRS_o_ai
+vec_srl(vector short __a, vector unsigned short __b)
+{
+ return (vector short)__builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector short __ATTRS_o_ai
+vec_srl(vector short __a, vector unsigned int __b)
+{
+ return (vector short)__builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_srl(vector unsigned short __a, vector unsigned char __b)
+{
+ return (vector unsigned short)
+ __builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_srl(vector unsigned short __a, vector unsigned short __b)
+{
+ return (vector unsigned short)
+ __builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_srl(vector unsigned short __a, vector unsigned int __b)
+{
+ return (vector unsigned short)
+ __builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector bool short __ATTRS_o_ai
+vec_srl(vector bool short __a, vector unsigned char __b)
+{
+ return (vector bool short)__builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector bool short __ATTRS_o_ai
+vec_srl(vector bool short __a, vector unsigned short __b)
+{
+ return (vector bool short)__builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector bool short __ATTRS_o_ai
+vec_srl(vector bool short __a, vector unsigned int __b)
+{
+ return (vector bool short)__builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector pixel __ATTRS_o_ai
+vec_srl(vector pixel __a, vector unsigned char __b)
+{
+ return (vector pixel)__builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector pixel __ATTRS_o_ai
+vec_srl(vector pixel __a, vector unsigned short __b)
+{
+ return (vector pixel)__builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector pixel __ATTRS_o_ai
+vec_srl(vector pixel __a, vector unsigned int __b)
+{
+ return (vector pixel)__builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector int __ATTRS_o_ai
+vec_srl(vector int __a, vector unsigned char __b)
+{
+ return (vector int)__builtin_altivec_vsr(__a, (vector int)__b);
+}
+
+static vector int __ATTRS_o_ai
+vec_srl(vector int __a, vector unsigned short __b)
+{
+ return (vector int)__builtin_altivec_vsr(__a, (vector int)__b);
+}
+
+static vector int __ATTRS_o_ai
+vec_srl(vector int __a, vector unsigned int __b)
+{
+ return (vector int)__builtin_altivec_vsr(__a, (vector int)__b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_srl(vector unsigned int __a, vector unsigned char __b)
+{
+ return (vector unsigned int)
+ __builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_srl(vector unsigned int __a, vector unsigned short __b)
+{
+ return (vector unsigned int)
+ __builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_srl(vector unsigned int __a, vector unsigned int __b)
+{
+ return (vector unsigned int)
+ __builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector bool int __ATTRS_o_ai
+vec_srl(vector bool int __a, vector unsigned char __b)
+{
+ return (vector bool int)__builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector bool int __ATTRS_o_ai
+vec_srl(vector bool int __a, vector unsigned short __b)
+{
+ return (vector bool int)__builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector bool int __ATTRS_o_ai
+vec_srl(vector bool int __a, vector unsigned int __b)
+{
+ return (vector bool int)__builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+/* vec_vsr */
+
+static vector signed char __ATTRS_o_ai
+vec_vsr(vector signed char __a, vector unsigned char __b)
+{
+ return (vector signed char)
+ __builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector signed char __ATTRS_o_ai
+vec_vsr(vector signed char __a, vector unsigned short __b)
+{
+ return (vector signed char)
+ __builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector signed char __ATTRS_o_ai
+vec_vsr(vector signed char __a, vector unsigned int __b)
+{
+ return (vector signed char)
+ __builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vsr(vector unsigned char __a, vector unsigned char __b)
+{
+ return (vector unsigned char)
+ __builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vsr(vector unsigned char __a, vector unsigned short __b)
+{
+ return (vector unsigned char)
+ __builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vsr(vector unsigned char __a, vector unsigned int __b)
+{
+ return (vector unsigned char)
+ __builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector bool char __ATTRS_o_ai
+vec_vsr(vector bool char __a, vector unsigned char __b)
+{
+ return (vector bool char)__builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector bool char __ATTRS_o_ai
+vec_vsr(vector bool char __a, vector unsigned short __b)
+{
+ return (vector bool char)__builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector bool char __ATTRS_o_ai
+vec_vsr(vector bool char __a, vector unsigned int __b)
+{
+ return (vector bool char)__builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector short __ATTRS_o_ai
+vec_vsr(vector short __a, vector unsigned char __b)
+{
+ return (vector short)__builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector short __ATTRS_o_ai
+vec_vsr(vector short __a, vector unsigned short __b)
+{
+ return (vector short)__builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector short __ATTRS_o_ai
+vec_vsr(vector short __a, vector unsigned int __b)
+{
+ return (vector short)__builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vsr(vector unsigned short __a, vector unsigned char __b)
+{
+ return (vector unsigned short)
+ __builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vsr(vector unsigned short __a, vector unsigned short __b)
+{
+ return (vector unsigned short)
+ __builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vsr(vector unsigned short __a, vector unsigned int __b)
+{
+ return (vector unsigned short)
+ __builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector bool short __ATTRS_o_ai
+vec_vsr(vector bool short __a, vector unsigned char __b)
+{
+ return (vector bool short)__builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector bool short __ATTRS_o_ai
+vec_vsr(vector bool short __a, vector unsigned short __b)
+{
+ return (vector bool short)__builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector bool short __ATTRS_o_ai
+vec_vsr(vector bool short __a, vector unsigned int __b)
+{
+ return (vector bool short)__builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector pixel __ATTRS_o_ai
+vec_vsr(vector pixel __a, vector unsigned char __b)
+{
+ return (vector pixel)__builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector pixel __ATTRS_o_ai
+vec_vsr(vector pixel __a, vector unsigned short __b)
+{
+ return (vector pixel)__builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector pixel __ATTRS_o_ai
+vec_vsr(vector pixel __a, vector unsigned int __b)
+{
+ return (vector pixel)__builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector int __ATTRS_o_ai
+vec_vsr(vector int __a, vector unsigned char __b)
+{
+ return (vector int)__builtin_altivec_vsr(__a, (vector int)__b);
+}
+
+static vector int __ATTRS_o_ai
+vec_vsr(vector int __a, vector unsigned short __b)
+{
+ return (vector int)__builtin_altivec_vsr(__a, (vector int)__b);
+}
+
+static vector int __ATTRS_o_ai
+vec_vsr(vector int __a, vector unsigned int __b)
+{
+ return (vector int)__builtin_altivec_vsr(__a, (vector int)__b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vsr(vector unsigned int __a, vector unsigned char __b)
+{
+ return (vector unsigned int)
+ __builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vsr(vector unsigned int __a, vector unsigned short __b)
+{
+ return (vector unsigned int)
+ __builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vsr(vector unsigned int __a, vector unsigned int __b)
+{
+ return (vector unsigned int)
+ __builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector bool int __ATTRS_o_ai
+vec_vsr(vector bool int __a, vector unsigned char __b)
+{
+ return (vector bool int)__builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector bool int __ATTRS_o_ai
+vec_vsr(vector bool int __a, vector unsigned short __b)
+{
+ return (vector bool int)__builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+static vector bool int __ATTRS_o_ai
+vec_vsr(vector bool int __a, vector unsigned int __b)
+{
+ return (vector bool int)__builtin_altivec_vsr((vector int)__a, (vector int)__b);
+}
+
+/* vec_sro */
+
+static vector signed char __ATTRS_o_ai
+vec_sro(vector signed char __a, vector signed char __b)
+{
+ return (vector signed char)
+ __builtin_altivec_vsro((vector int)__a, (vector int)__b);
+}
+
+static vector signed char __ATTRS_o_ai
+vec_sro(vector signed char __a, vector unsigned char __b)
+{
+ return (vector signed char)
+ __builtin_altivec_vsro((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_sro(vector unsigned char __a, vector signed char __b)
+{
+ return (vector unsigned char)
+ __builtin_altivec_vsro((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_sro(vector unsigned char __a, vector unsigned char __b)
+{
+ return (vector unsigned char)
+ __builtin_altivec_vsro((vector int)__a, (vector int)__b);
+}
+
+static vector short __ATTRS_o_ai
+vec_sro(vector short __a, vector signed char __b)
+{
+ return (vector short)__builtin_altivec_vsro((vector int)__a, (vector int)__b);
+}
+
+static vector short __ATTRS_o_ai
+vec_sro(vector short __a, vector unsigned char __b)
+{
+ return (vector short)__builtin_altivec_vsro((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_sro(vector unsigned short __a, vector signed char __b)
+{
+ return (vector unsigned short)
+ __builtin_altivec_vsro((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_sro(vector unsigned short __a, vector unsigned char __b)
+{
+ return (vector unsigned short)
+ __builtin_altivec_vsro((vector int)__a, (vector int)__b);
+}
+
+static vector pixel __ATTRS_o_ai
+vec_sro(vector pixel __a, vector signed char __b)
+{
+ return (vector pixel)__builtin_altivec_vsro((vector int)__a, (vector int)__b);
+}
+
+static vector pixel __ATTRS_o_ai
+vec_sro(vector pixel __a, vector unsigned char __b)
+{
+ return (vector pixel)__builtin_altivec_vsro((vector int)__a, (vector int)__b);
+}
+
+static vector int __ATTRS_o_ai
+vec_sro(vector int __a, vector signed char __b)
+{
+ return (vector int)__builtin_altivec_vsro(__a, (vector int)__b);
+}
+
+static vector int __ATTRS_o_ai
+vec_sro(vector int __a, vector unsigned char __b)
+{
+ return (vector int)__builtin_altivec_vsro(__a, (vector int)__b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_sro(vector unsigned int __a, vector signed char __b)
+{
+ return (vector unsigned int)
+ __builtin_altivec_vsro((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_sro(vector unsigned int __a, vector unsigned char __b)
+{
+ return (vector unsigned int)
+ __builtin_altivec_vsro((vector int)__a, (vector int)__b);
+}
+
+static vector float __ATTRS_o_ai
+vec_sro(vector float __a, vector signed char __b)
+{
+ return (vector float)__builtin_altivec_vsro((vector int)__a, (vector int)__b);
+}
+
+static vector float __ATTRS_o_ai
+vec_sro(vector float __a, vector unsigned char __b)
+{
+ return (vector float)__builtin_altivec_vsro((vector int)__a, (vector int)__b);
+}
+
+/* vec_vsro */
+
+static vector signed char __ATTRS_o_ai
+vec_vsro(vector signed char __a, vector signed char __b)
+{
+ return (vector signed char)
+ __builtin_altivec_vsro((vector int)__a, (vector int)__b);
+}
+
+static vector signed char __ATTRS_o_ai
+vec_vsro(vector signed char __a, vector unsigned char __b)
+{
+ return (vector signed char)
+ __builtin_altivec_vsro((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vsro(vector unsigned char __a, vector signed char __b)
+{
+ return (vector unsigned char)
+ __builtin_altivec_vsro((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vsro(vector unsigned char __a, vector unsigned char __b)
+{
+ return (vector unsigned char)
+ __builtin_altivec_vsro((vector int)__a, (vector int)__b);
+}
+
+static vector short __ATTRS_o_ai
+vec_vsro(vector short __a, vector signed char __b)
+{
+ return (vector short)__builtin_altivec_vsro((vector int)__a, (vector int)__b);
+}
+
+static vector short __ATTRS_o_ai
+vec_vsro(vector short __a, vector unsigned char __b)
+{
+ return (vector short)__builtin_altivec_vsro((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vsro(vector unsigned short __a, vector signed char __b)
+{
+ return (vector unsigned short)
+ __builtin_altivec_vsro((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vsro(vector unsigned short __a, vector unsigned char __b)
+{
+ return (vector unsigned short)
+ __builtin_altivec_vsro((vector int)__a, (vector int)__b);
+}
+
+static vector pixel __ATTRS_o_ai
+vec_vsro(vector pixel __a, vector signed char __b)
+{
+ return (vector pixel)__builtin_altivec_vsro((vector int)__a, (vector int)__b);
+}
+
+static vector pixel __ATTRS_o_ai
+vec_vsro(vector pixel __a, vector unsigned char __b)
+{
+ return (vector pixel)__builtin_altivec_vsro((vector int)__a, (vector int)__b);
+}
+
+static vector int __ATTRS_o_ai
+vec_vsro(vector int __a, vector signed char __b)
+{
+ return (vector int)__builtin_altivec_vsro(__a, (vector int)__b);
+}
+
+static vector int __ATTRS_o_ai
+vec_vsro(vector int __a, vector unsigned char __b)
+{
+ return (vector int)__builtin_altivec_vsro(__a, (vector int)__b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vsro(vector unsigned int __a, vector signed char __b)
+{
+ return (vector unsigned int)
+ __builtin_altivec_vsro((vector int)__a, (vector int)__b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vsro(vector unsigned int __a, vector unsigned char __b)
+{
+ return (vector unsigned int)
+ __builtin_altivec_vsro((vector int)__a, (vector int)__b);
+}
+
+static vector float __ATTRS_o_ai
+vec_vsro(vector float __a, vector signed char __b)
+{
+ return (vector float)__builtin_altivec_vsro((vector int)__a, (vector int)__b);
+}
+
+static vector float __ATTRS_o_ai
+vec_vsro(vector float __a, vector unsigned char __b)
+{
+ return (vector float)__builtin_altivec_vsro((vector int)__a, (vector int)__b);
+}
+
+/* vec_st */
+
+static void __ATTRS_o_ai
+vec_st(vector signed char __a, int __b, vector signed char *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_st(vector signed char __a, int __b, signed char *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_st(vector unsigned char __a, int __b, vector unsigned char *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_st(vector unsigned char __a, int __b, unsigned char *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_st(vector bool char __a, int __b, signed char *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_st(vector bool char __a, int __b, unsigned char *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_st(vector bool char __a, int __b, vector bool char *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_st(vector short __a, int __b, vector short *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_st(vector short __a, int __b, short *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_st(vector unsigned short __a, int __b, vector unsigned short *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_st(vector unsigned short __a, int __b, unsigned short *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_st(vector bool short __a, int __b, short *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_st(vector bool short __a, int __b, unsigned short *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_st(vector bool short __a, int __b, vector bool short *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_st(vector pixel __a, int __b, short *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_st(vector pixel __a, int __b, unsigned short *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_st(vector pixel __a, int __b, vector pixel *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_st(vector int __a, int __b, vector int *__c)
+{
+ __builtin_altivec_stvx(__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_st(vector int __a, int __b, int *__c)
+{
+ __builtin_altivec_stvx(__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_st(vector unsigned int __a, int __b, vector unsigned int *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_st(vector unsigned int __a, int __b, unsigned int *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_st(vector bool int __a, int __b, int *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_st(vector bool int __a, int __b, unsigned int *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_st(vector bool int __a, int __b, vector bool int *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_st(vector float __a, int __b, vector float *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_st(vector float __a, int __b, float *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+/* vec_stvx */
+
+static void __ATTRS_o_ai
+vec_stvx(vector signed char __a, int __b, vector signed char *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvx(vector signed char __a, int __b, signed char *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvx(vector unsigned char __a, int __b, vector unsigned char *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvx(vector unsigned char __a, int __b, unsigned char *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvx(vector bool char __a, int __b, signed char *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvx(vector bool char __a, int __b, unsigned char *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvx(vector bool char __a, int __b, vector bool char *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvx(vector short __a, int __b, vector short *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvx(vector short __a, int __b, short *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvx(vector unsigned short __a, int __b, vector unsigned short *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvx(vector unsigned short __a, int __b, unsigned short *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvx(vector bool short __a, int __b, short *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvx(vector bool short __a, int __b, unsigned short *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvx(vector bool short __a, int __b, vector bool short *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvx(vector pixel __a, int __b, short *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvx(vector pixel __a, int __b, unsigned short *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvx(vector pixel __a, int __b, vector pixel *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvx(vector int __a, int __b, vector int *__c)
+{
+ __builtin_altivec_stvx(__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvx(vector int __a, int __b, int *__c)
+{
+ __builtin_altivec_stvx(__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvx(vector unsigned int __a, int __b, vector unsigned int *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvx(vector unsigned int __a, int __b, unsigned int *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvx(vector bool int __a, int __b, int *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvx(vector bool int __a, int __b, unsigned int *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvx(vector bool int __a, int __b, vector bool int *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvx(vector float __a, int __b, vector float *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvx(vector float __a, int __b, float *__c)
+{
+ __builtin_altivec_stvx((vector int)__a, __b, __c);
+}
+
+/* vec_ste */
+
+static void __ATTRS_o_ai
+vec_ste(vector signed char __a, int __b, signed char *__c)
+{
+ __builtin_altivec_stvebx((vector char)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_ste(vector unsigned char __a, int __b, unsigned char *__c)
+{
+ __builtin_altivec_stvebx((vector char)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_ste(vector bool char __a, int __b, signed char *__c)
+{
+ __builtin_altivec_stvebx((vector char)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_ste(vector bool char __a, int __b, unsigned char *__c)
+{
+ __builtin_altivec_stvebx((vector char)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_ste(vector short __a, int __b, short *__c)
+{
+ __builtin_altivec_stvehx(__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_ste(vector unsigned short __a, int __b, unsigned short *__c)
+{
+ __builtin_altivec_stvehx((vector short)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_ste(vector bool short __a, int __b, short *__c)
+{
+ __builtin_altivec_stvehx((vector short)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_ste(vector bool short __a, int __b, unsigned short *__c)
+{
+ __builtin_altivec_stvehx((vector short)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_ste(vector pixel __a, int __b, short *__c)
+{
+ __builtin_altivec_stvehx((vector short)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_ste(vector pixel __a, int __b, unsigned short *__c)
+{
+ __builtin_altivec_stvehx((vector short)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_ste(vector int __a, int __b, int *__c)
+{
+ __builtin_altivec_stvewx(__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_ste(vector unsigned int __a, int __b, unsigned int *__c)
+{
+ __builtin_altivec_stvewx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_ste(vector bool int __a, int __b, int *__c)
+{
+ __builtin_altivec_stvewx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_ste(vector bool int __a, int __b, unsigned int *__c)
+{
+ __builtin_altivec_stvewx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_ste(vector float __a, int __b, float *__c)
+{
+ __builtin_altivec_stvewx((vector int)__a, __b, __c);
+}
+
+/* vec_stvebx */
+
+static void __ATTRS_o_ai
+vec_stvebx(vector signed char __a, int __b, signed char *__c)
+{
+ __builtin_altivec_stvebx((vector char)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvebx(vector unsigned char __a, int __b, unsigned char *__c)
+{
+ __builtin_altivec_stvebx((vector char)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvebx(vector bool char __a, int __b, signed char *__c)
+{
+ __builtin_altivec_stvebx((vector char)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvebx(vector bool char __a, int __b, unsigned char *__c)
+{
+ __builtin_altivec_stvebx((vector char)__a, __b, __c);
+}
+
+/* vec_stvehx */
+
+static void __ATTRS_o_ai
+vec_stvehx(vector short __a, int __b, short *__c)
+{
+ __builtin_altivec_stvehx(__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvehx(vector unsigned short __a, int __b, unsigned short *__c)
+{
+ __builtin_altivec_stvehx((vector short)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvehx(vector bool short __a, int __b, short *__c)
+{
+ __builtin_altivec_stvehx((vector short)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvehx(vector bool short __a, int __b, unsigned short *__c)
+{
+ __builtin_altivec_stvehx((vector short)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvehx(vector pixel __a, int __b, short *__c)
+{
+ __builtin_altivec_stvehx((vector short)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvehx(vector pixel __a, int __b, unsigned short *__c)
+{
+ __builtin_altivec_stvehx((vector short)__a, __b, __c);
+}
+
+/* vec_stvewx */
+
+static void __ATTRS_o_ai
+vec_stvewx(vector int __a, int __b, int *__c)
+{
+ __builtin_altivec_stvewx(__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvewx(vector unsigned int __a, int __b, unsigned int *__c)
+{
+ __builtin_altivec_stvewx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvewx(vector bool int __a, int __b, int *__c)
+{
+ __builtin_altivec_stvewx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvewx(vector bool int __a, int __b, unsigned int *__c)
+{
+ __builtin_altivec_stvewx((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvewx(vector float __a, int __b, float *__c)
+{
+ __builtin_altivec_stvewx((vector int)__a, __b, __c);
+}
+
+/* vec_stl */
+
+static void __ATTRS_o_ai
+vec_stl(vector signed char __a, int __b, vector signed char *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stl(vector signed char __a, int __b, signed char *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stl(vector unsigned char __a, int __b, vector unsigned char *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stl(vector unsigned char __a, int __b, unsigned char *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stl(vector bool char __a, int __b, signed char *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stl(vector bool char __a, int __b, unsigned char *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stl(vector bool char __a, int __b, vector bool char *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stl(vector short __a, int __b, vector short *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stl(vector short __a, int __b, short *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stl(vector unsigned short __a, int __b, vector unsigned short *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stl(vector unsigned short __a, int __b, unsigned short *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stl(vector bool short __a, int __b, short *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stl(vector bool short __a, int __b, unsigned short *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stl(vector bool short __a, int __b, vector bool short *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stl(vector pixel __a, int __b, short *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stl(vector pixel __a, int __b, unsigned short *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stl(vector pixel __a, int __b, vector pixel *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stl(vector int __a, int __b, vector int *__c)
+{
+ __builtin_altivec_stvxl(__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stl(vector int __a, int __b, int *__c)
+{
+ __builtin_altivec_stvxl(__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stl(vector unsigned int __a, int __b, vector unsigned int *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stl(vector unsigned int __a, int __b, unsigned int *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stl(vector bool int __a, int __b, int *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stl(vector bool int __a, int __b, unsigned int *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stl(vector bool int __a, int __b, vector bool int *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stl(vector float __a, int __b, vector float *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stl(vector float __a, int __b, float *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+/* vec_stvxl */
+
+static void __ATTRS_o_ai
+vec_stvxl(vector signed char __a, int __b, vector signed char *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvxl(vector signed char __a, int __b, signed char *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvxl(vector unsigned char __a, int __b, vector unsigned char *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvxl(vector unsigned char __a, int __b, unsigned char *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvxl(vector bool char __a, int __b, signed char *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvxl(vector bool char __a, int __b, unsigned char *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvxl(vector bool char __a, int __b, vector bool char *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvxl(vector short __a, int __b, vector short *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvxl(vector short __a, int __b, short *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvxl(vector unsigned short __a, int __b, vector unsigned short *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvxl(vector unsigned short __a, int __b, unsigned short *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvxl(vector bool short __a, int __b, short *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvxl(vector bool short __a, int __b, unsigned short *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvxl(vector bool short __a, int __b, vector bool short *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvxl(vector pixel __a, int __b, short *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvxl(vector pixel __a, int __b, unsigned short *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvxl(vector pixel __a, int __b, vector pixel *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvxl(vector int __a, int __b, vector int *__c)
+{
+ __builtin_altivec_stvxl(__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvxl(vector int __a, int __b, int *__c)
+{
+ __builtin_altivec_stvxl(__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvxl(vector unsigned int __a, int __b, vector unsigned int *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvxl(vector unsigned int __a, int __b, unsigned int *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvxl(vector bool int __a, int __b, int *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvxl(vector bool int __a, int __b, unsigned int *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvxl(vector bool int __a, int __b, vector bool int *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvxl(vector float __a, int __b, vector float *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvxl(vector float __a, int __b, float *__c)
+{
+ __builtin_altivec_stvxl((vector int)__a, __b, __c);
+}
+
+/* vec_sub */
+
+static vector signed char __ATTRS_o_ai
+vec_sub(vector signed char __a, vector signed char __b)
+{
+ return __a - __b;
+}
+
+static vector signed char __ATTRS_o_ai
+vec_sub(vector bool char __a, vector signed char __b)
+{
+ return (vector signed char)__a - __b;
+}
+
+static vector signed char __ATTRS_o_ai
+vec_sub(vector signed char __a, vector bool char __b)
+{
+ return __a - (vector signed char)__b;
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_sub(vector unsigned char __a, vector unsigned char __b)
+{
+ return __a - __b;
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_sub(vector bool char __a, vector unsigned char __b)
+{
+ return (vector unsigned char)__a - __b;
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_sub(vector unsigned char __a, vector bool char __b)
+{
+ return __a - (vector unsigned char)__b;
+}
+
+static vector short __ATTRS_o_ai
+vec_sub(vector short __a, vector short __b)
+{
+ return __a - __b;
+}
+
+static vector short __ATTRS_o_ai
+vec_sub(vector bool short __a, vector short __b)
+{
+ return (vector short)__a - __b;
+}
+
+static vector short __ATTRS_o_ai
+vec_sub(vector short __a, vector bool short __b)
+{
+ return __a - (vector short)__b;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_sub(vector unsigned short __a, vector unsigned short __b)
+{
+ return __a - __b;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_sub(vector bool short __a, vector unsigned short __b)
+{
+ return (vector unsigned short)__a - __b;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_sub(vector unsigned short __a, vector bool short __b)
+{
+ return __a - (vector unsigned short)__b;
+}
+
+static vector int __ATTRS_o_ai
+vec_sub(vector int __a, vector int __b)
+{
+ return __a - __b;
+}
+
+static vector int __ATTRS_o_ai
+vec_sub(vector bool int __a, vector int __b)
+{
+ return (vector int)__a - __b;
+}
+
+static vector int __ATTRS_o_ai
+vec_sub(vector int __a, vector bool int __b)
+{
+ return __a - (vector int)__b;
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_sub(vector unsigned int __a, vector unsigned int __b)
+{
+ return __a - __b;
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_sub(vector bool int __a, vector unsigned int __b)
+{
+ return (vector unsigned int)__a - __b;
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_sub(vector unsigned int __a, vector bool int __b)
+{
+ return __a - (vector unsigned int)__b;
+}
+
+#if defined(__POWER8_VECTOR__) && defined(__powerpc64__)
+static vector signed __int128 __ATTRS_o_ai
+vec_sub(vector signed __int128 __a, vector signed __int128 __b)
+{
+ return __a - __b;
+}
+
+static vector unsigned __int128 __ATTRS_o_ai
+vec_sub(vector unsigned __int128 __a, vector unsigned __int128 __b)
+{
+ return __a - __b;
+}
+#endif // defined(__POWER8_VECTOR__) && defined(__powerpc64__)
+
+static vector float __ATTRS_o_ai
+vec_sub(vector float __a, vector float __b)
+{
+ return __a - __b;
+}
+
+/* vec_vsububm */
+
+#define __builtin_altivec_vsububm vec_vsububm
+
+static vector signed char __ATTRS_o_ai
+vec_vsububm(vector signed char __a, vector signed char __b)
+{
+ return __a - __b;
+}
+
+static vector signed char __ATTRS_o_ai
+vec_vsububm(vector bool char __a, vector signed char __b)
+{
+ return (vector signed char)__a - __b;
+}
+
+static vector signed char __ATTRS_o_ai
+vec_vsububm(vector signed char __a, vector bool char __b)
+{
+ return __a - (vector signed char)__b;
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vsububm(vector unsigned char __a, vector unsigned char __b)
+{
+ return __a - __b;
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vsububm(vector bool char __a, vector unsigned char __b)
+{
+ return (vector unsigned char)__a - __b;
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vsububm(vector unsigned char __a, vector bool char __b)
+{
+ return __a - (vector unsigned char)__b;
+}
+
+/* vec_vsubuhm */
+
+#define __builtin_altivec_vsubuhm vec_vsubuhm
+
+static vector short __ATTRS_o_ai
+vec_vsubuhm(vector short __a, vector short __b)
+{
+ return __a - __b;
+}
+
+static vector short __ATTRS_o_ai
+vec_vsubuhm(vector bool short __a, vector short __b)
+{
+ return (vector short)__a - __b;
+}
+
+static vector short __ATTRS_o_ai
+vec_vsubuhm(vector short __a, vector bool short __b)
+{
+ return __a - (vector short)__b;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vsubuhm(vector unsigned short __a, vector unsigned short __b)
+{
+ return __a - __b;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vsubuhm(vector bool short __a, vector unsigned short __b)
+{
+ return (vector unsigned short)__a - __b;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vsubuhm(vector unsigned short __a, vector bool short __b)
+{
+ return __a - (vector unsigned short)__b;
+}
+
+/* vec_vsubuwm */
+
+#define __builtin_altivec_vsubuwm vec_vsubuwm
+
+static vector int __ATTRS_o_ai
+vec_vsubuwm(vector int __a, vector int __b)
+{
+ return __a - __b;
+}
+
+static vector int __ATTRS_o_ai
+vec_vsubuwm(vector bool int __a, vector int __b)
+{
+ return (vector int)__a - __b;
+}
+
+static vector int __ATTRS_o_ai
+vec_vsubuwm(vector int __a, vector bool int __b)
+{
+ return __a - (vector int)__b;
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vsubuwm(vector unsigned int __a, vector unsigned int __b)
+{
+ return __a - __b;
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vsubuwm(vector bool int __a, vector unsigned int __b)
+{
+ return (vector unsigned int)__a - __b;
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vsubuwm(vector unsigned int __a, vector bool int __b)
+{
+ return __a - (vector unsigned int)__b;
+}
+
+/* vec_vsubfp */
+
+#define __builtin_altivec_vsubfp vec_vsubfp
+
+static vector float __attribute__((__always_inline__))
+vec_vsubfp(vector float __a, vector float __b)
+{
+ return __a - __b;
+}
+
+/* vec_subc */
+
+static vector unsigned int __ATTRS_o_ai
+vec_subc(vector unsigned int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vsubcuw(__a, __b);
+}
+
+#if defined(__POWER8_VECTOR__) && defined(__powerpc64__)
+static vector unsigned __int128 __ATTRS_o_ai
+vec_subc(vector unsigned __int128 __a, vector unsigned __int128 __b)
+{
+ return __builtin_altivec_vsubcuq(__a, __b);
+}
+
+static vector signed __int128 __ATTRS_o_ai
+vec_subc(vector signed __int128 __a, vector signed __int128 __b)
+{
+ return __builtin_altivec_vsubcuq(__a, __b);
+}
+#endif // defined(__POWER8_VECTOR__) && defined(__powerpc64__)
+
+/* vec_vsubcuw */
+
+static vector unsigned int __attribute__((__always_inline__))
+vec_vsubcuw(vector unsigned int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vsubcuw(__a, __b);
+}
+
+/* vec_subs */
+
+static vector signed char __ATTRS_o_ai
+vec_subs(vector signed char __a, vector signed char __b)
+{
+ return __builtin_altivec_vsubsbs(__a, __b);
+}
+
+static vector signed char __ATTRS_o_ai
+vec_subs(vector bool char __a, vector signed char __b)
+{
+ return __builtin_altivec_vsubsbs((vector signed char)__a, __b);
+}
+
+static vector signed char __ATTRS_o_ai
+vec_subs(vector signed char __a, vector bool char __b)
+{
+ return __builtin_altivec_vsubsbs(__a, (vector signed char)__b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_subs(vector unsigned char __a, vector unsigned char __b)
+{
+ return __builtin_altivec_vsububs(__a, __b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_subs(vector bool char __a, vector unsigned char __b)
+{
+ return __builtin_altivec_vsububs((vector unsigned char)__a, __b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_subs(vector unsigned char __a, vector bool char __b)
+{
+ return __builtin_altivec_vsububs(__a, (vector unsigned char)__b);
+}
+
+static vector short __ATTRS_o_ai
+vec_subs(vector short __a, vector short __b)
+{
+ return __builtin_altivec_vsubshs(__a, __b);
+}
+
+static vector short __ATTRS_o_ai
+vec_subs(vector bool short __a, vector short __b)
+{
+ return __builtin_altivec_vsubshs((vector short)__a, __b);
+}
+
+static vector short __ATTRS_o_ai
+vec_subs(vector short __a, vector bool short __b)
+{
+ return __builtin_altivec_vsubshs(__a, (vector short)__b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_subs(vector unsigned short __a, vector unsigned short __b)
+{
+ return __builtin_altivec_vsubuhs(__a, __b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_subs(vector bool short __a, vector unsigned short __b)
+{
+ return __builtin_altivec_vsubuhs((vector unsigned short)__a, __b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_subs(vector unsigned short __a, vector bool short __b)
+{
+ return __builtin_altivec_vsubuhs(__a, (vector unsigned short)__b);
+}
+
+static vector int __ATTRS_o_ai
+vec_subs(vector int __a, vector int __b)
+{
+ return __builtin_altivec_vsubsws(__a, __b);
+}
+
+static vector int __ATTRS_o_ai
+vec_subs(vector bool int __a, vector int __b)
+{
+ return __builtin_altivec_vsubsws((vector int)__a, __b);
+}
+
+static vector int __ATTRS_o_ai
+vec_subs(vector int __a, vector bool int __b)
+{
+ return __builtin_altivec_vsubsws(__a, (vector int)__b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_subs(vector unsigned int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vsubuws(__a, __b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_subs(vector bool int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vsubuws((vector unsigned int)__a, __b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_subs(vector unsigned int __a, vector bool int __b)
+{
+ return __builtin_altivec_vsubuws(__a, (vector unsigned int)__b);
+}
+
+/* vec_vsubsbs */
+
+static vector signed char __ATTRS_o_ai
+vec_vsubsbs(vector signed char __a, vector signed char __b)
+{
+ return __builtin_altivec_vsubsbs(__a, __b);
+}
+
+static vector signed char __ATTRS_o_ai
+vec_vsubsbs(vector bool char __a, vector signed char __b)
+{
+ return __builtin_altivec_vsubsbs((vector signed char)__a, __b);
+}
+
+static vector signed char __ATTRS_o_ai
+vec_vsubsbs(vector signed char __a, vector bool char __b)
+{
+ return __builtin_altivec_vsubsbs(__a, (vector signed char)__b);
+}
+
+/* vec_vsububs */
+
+static vector unsigned char __ATTRS_o_ai
+vec_vsububs(vector unsigned char __a, vector unsigned char __b)
+{
+ return __builtin_altivec_vsububs(__a, __b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vsububs(vector bool char __a, vector unsigned char __b)
+{
+ return __builtin_altivec_vsububs((vector unsigned char)__a, __b);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vsububs(vector unsigned char __a, vector bool char __b)
+{
+ return __builtin_altivec_vsububs(__a, (vector unsigned char)__b);
+}
+
+/* vec_vsubshs */
+
+static vector short __ATTRS_o_ai
+vec_vsubshs(vector short __a, vector short __b)
+{
+ return __builtin_altivec_vsubshs(__a, __b);
+}
+
+static vector short __ATTRS_o_ai
+vec_vsubshs(vector bool short __a, vector short __b)
+{
+ return __builtin_altivec_vsubshs((vector short)__a, __b);
+}
+
+static vector short __ATTRS_o_ai
+vec_vsubshs(vector short __a, vector bool short __b)
+{
+ return __builtin_altivec_vsubshs(__a, (vector short)__b);
+}
+
+/* vec_vsubuhs */
+
+static vector unsigned short __ATTRS_o_ai
+vec_vsubuhs(vector unsigned short __a, vector unsigned short __b)
+{
+ return __builtin_altivec_vsubuhs(__a, __b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vsubuhs(vector bool short __a, vector unsigned short __b)
+{
+ return __builtin_altivec_vsubuhs((vector unsigned short)__a, __b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vsubuhs(vector unsigned short __a, vector bool short __b)
+{
+ return __builtin_altivec_vsubuhs(__a, (vector unsigned short)__b);
+}
+
+/* vec_vsubsws */
+
+static vector int __ATTRS_o_ai
+vec_vsubsws(vector int __a, vector int __b)
+{
+ return __builtin_altivec_vsubsws(__a, __b);
+}
+
+static vector int __ATTRS_o_ai
+vec_vsubsws(vector bool int __a, vector int __b)
+{
+ return __builtin_altivec_vsubsws((vector int)__a, __b);
+}
+
+static vector int __ATTRS_o_ai
+vec_vsubsws(vector int __a, vector bool int __b)
+{
+ return __builtin_altivec_vsubsws(__a, (vector int)__b);
+}
+
+/* vec_vsubuws */
+
+static vector unsigned int __ATTRS_o_ai
+vec_vsubuws(vector unsigned int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vsubuws(__a, __b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vsubuws(vector bool int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vsubuws((vector unsigned int)__a, __b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vsubuws(vector unsigned int __a, vector bool int __b)
+{
+ return __builtin_altivec_vsubuws(__a, (vector unsigned int)__b);
+}
+
+#if defined(__POWER8_VECTOR__) && defined(__powerpc64__)
+/* vec_vsubuqm */
+
+static vector signed __int128 __ATTRS_o_ai
+vec_vsubuqm(vector signed __int128 __a, vector signed __int128 __b)
+{
+ return __a - __b;
+}
+
+static vector unsigned __int128 __ATTRS_o_ai
+vec_vsubuqm(vector unsigned __int128 __a, vector unsigned __int128 __b)
+{
+ return __a - __b;
+}
+
+/* vec_vsubeuqm */
+
+static vector signed __int128 __ATTRS_o_ai
+vec_vsubeuqm(vector signed __int128 __a, vector signed __int128 __b,
+ vector signed __int128 __c)
+{
+ return __builtin_altivec_vsubeuqm(__a, __b, __c);
+}
+
+static vector unsigned __int128 __ATTRS_o_ai
+vec_vsubeuqm(vector unsigned __int128 __a, vector unsigned __int128 __b,
+ vector unsigned __int128 __c)
+{
+ return __builtin_altivec_vsubeuqm(__a, __b, __c);
+}
+
+/* vec_vsubcuq */
+
+static vector signed __int128 __ATTRS_o_ai
+vec_vsubcuq(vector signed __int128 __a, vector signed __int128 __b)
+{
+ return __builtin_altivec_vsubcuq(__a, __b);
+}
+
+static vector unsigned __int128 __ATTRS_o_ai
+vec_vsubcuq(vector unsigned __int128 __a, vector unsigned __int128 __b)
+{
+ return __builtin_altivec_vsubcuq(__a, __b);
+}
+
+/* vec_vsubecuq */
+
+static vector signed __int128 __ATTRS_o_ai
+vec_vsubecuq(vector signed __int128 __a, vector signed __int128 __b,
+ vector signed __int128 __c)
+{
+ return __builtin_altivec_vsubecuq(__a, __b, __c);
+}
+
+static vector unsigned __int128 __ATTRS_o_ai
+vec_vsubecuq(vector unsigned __int128 __a, vector unsigned __int128 __b,
+ vector unsigned __int128 __c)
+{
+ return __builtin_altivec_vsubecuq(__a, __b, __c);
+}
+#endif // defined(__POWER8_VECTOR__) && defined(__powerpc64__)
+
+/* vec_sum4s */
+
+static vector int __ATTRS_o_ai
+vec_sum4s(vector signed char __a, vector int __b)
+{
+ return __builtin_altivec_vsum4sbs(__a, __b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_sum4s(vector unsigned char __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vsum4ubs(__a, __b);
+}
+
+static vector int __ATTRS_o_ai
+vec_sum4s(vector signed short __a, vector int __b)
+{
+ return __builtin_altivec_vsum4shs(__a, __b);
+}
+
+/* vec_vsum4sbs */
+
+static vector int __attribute__((__always_inline__))
+vec_vsum4sbs(vector signed char __a, vector int __b)
+{
+ return __builtin_altivec_vsum4sbs(__a, __b);
+}
+
+/* vec_vsum4ubs */
+
+static vector unsigned int __attribute__((__always_inline__))
+vec_vsum4ubs(vector unsigned char __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vsum4ubs(__a, __b);
+}
+
+/* vec_vsum4shs */
+
+static vector int __attribute__((__always_inline__))
+vec_vsum4shs(vector signed short __a, vector int __b)
+{
+ return __builtin_altivec_vsum4shs(__a, __b);
+}
+
+/* vec_sum2s */
+
+/* The vsum2sws instruction has a big-endian bias, so that the second
+ input vector and the result always reference big-endian elements
+ 1 and 3 (little-endian element 0 and 2). For ease of porting the
+ programmer wants elements 1 and 3 in both cases, so for little
+ endian we must perform some permutes. */
+
+static vector signed int __attribute__((__always_inline__))
+vec_sum2s(vector int __a, vector int __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ vector int __c = (vector signed int)
+ vec_perm(__b, __b, (vector unsigned char)
+ (4,5,6,7,0,1,2,3,12,13,14,15,8,9,10,11));
+ __c = __builtin_altivec_vsum2sws(__a, __c);
+ return (vector signed int)
+ vec_perm(__c, __c, (vector unsigned char)
+ (4,5,6,7,0,1,2,3,12,13,14,15,8,9,10,11));
+#else
+ return __builtin_altivec_vsum2sws(__a, __b);
+#endif
+}
+
+/* vec_vsum2sws */
+
+static vector signed int __attribute__((__always_inline__))
+vec_vsum2sws(vector int __a, vector int __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ vector int __c = (vector signed int)
+ vec_perm(__b, __b, (vector unsigned char)
+ (4,5,6,7,0,1,2,3,12,13,14,15,8,9,10,11));
+ __c = __builtin_altivec_vsum2sws(__a, __c);
+ return (vector signed int)
+ vec_perm(__c, __c, (vector unsigned char)
+ (4,5,6,7,0,1,2,3,12,13,14,15,8,9,10,11));
+#else
+ return __builtin_altivec_vsum2sws(__a, __b);
+#endif
+}
+
+/* vec_sums */
+
+/* The vsumsws instruction has a big-endian bias, so that the second
+ input vector and the result always reference big-endian element 3
+ (little-endian element 0). For ease of porting the programmer
+ wants element 3 in both cases, so for little endian we must perform
+ some permutes. */
+
+static vector signed int __attribute__((__always_inline__))
+vec_sums(vector signed int __a, vector signed int __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ __b = (vector signed int)vec_splat(__b, 3);
+ __b = __builtin_altivec_vsumsws(__a, __b);
+ return (vector signed int)(0, 0, 0, __b[0]);
+#else
+ return __builtin_altivec_vsumsws(__a, __b);
+#endif
+}
+
+/* vec_vsumsws */
+
+static vector signed int __attribute__((__always_inline__))
+vec_vsumsws(vector signed int __a, vector signed int __b)
+{
+#ifdef __LITTLE_ENDIAN__
+ __b = (vector signed int)vec_splat(__b, 3);
+ __b = __builtin_altivec_vsumsws(__a, __b);
+ return (vector signed int)(0, 0, 0, __b[0]);
+#else
+ return __builtin_altivec_vsumsws(__a, __b);
+#endif
+}
+
+/* vec_trunc */
+
+static vector float __attribute__((__always_inline__))
+vec_trunc(vector float __a)
+{
+ return __builtin_altivec_vrfiz(__a);
+}
+
+/* vec_vrfiz */
+
+static vector float __attribute__((__always_inline__))
+vec_vrfiz(vector float __a)
+{
+ return __builtin_altivec_vrfiz(__a);
+}
+
+/* vec_unpackh */
+
+/* The vector unpack instructions all have a big-endian bias, so for
+ little endian we must reverse the meanings of "high" and "low." */
+
+static vector short __ATTRS_o_ai
+vec_unpackh(vector signed char __a)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vupklsb((vector char)__a);
+#else
+ return __builtin_altivec_vupkhsb((vector char)__a);
+#endif
+}
+
+static vector bool short __ATTRS_o_ai
+vec_unpackh(vector bool char __a)
+{
+#ifdef __LITTLE_ENDIAN__
+ return (vector bool short)__builtin_altivec_vupklsb((vector char)__a);
+#else
+ return (vector bool short)__builtin_altivec_vupkhsb((vector char)__a);
+#endif
+}
+
+static vector int __ATTRS_o_ai
+vec_unpackh(vector short __a)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vupklsh(__a);
+#else
+ return __builtin_altivec_vupkhsh(__a);
+#endif
+}
+
+static vector bool int __ATTRS_o_ai
+vec_unpackh(vector bool short __a)
+{
+#ifdef __LITTLE_ENDIAN__
+ return (vector bool int)__builtin_altivec_vupklsh((vector short)__a);
+#else
+ return (vector bool int)__builtin_altivec_vupkhsh((vector short)__a);
+#endif
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_unpackh(vector pixel __a)
+{
+#ifdef __LITTLE_ENDIAN__
+ return (vector unsigned int)__builtin_altivec_vupklpx((vector short)__a);
+#else
+ return (vector unsigned int)__builtin_altivec_vupkhpx((vector short)__a);
+#endif
+}
+
+#ifdef __POWER8_VECTOR__
+static vector long long __ATTRS_o_ai
+vec_unpackh(vector int __a)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vupklsw(__a);
+#else
+ return __builtin_altivec_vupkhsw(__a);
+#endif
+}
+
+static vector bool long long __ATTRS_o_ai
+vec_unpackh(vector bool int __a)
+{
+#ifdef __LITTLE_ENDIAN__
+ return (vector bool long long)__builtin_altivec_vupklsw((vector int)__a);
+#else
+ return (vector bool long long)__builtin_altivec_vupkhsw((vector int)__a);
+#endif
+}
+#endif
+
+/* vec_vupkhsb */
+
+static vector short __ATTRS_o_ai
+vec_vupkhsb(vector signed char __a)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vupklsb((vector char)__a);
+#else
+ return __builtin_altivec_vupkhsb((vector char)__a);
+#endif
+}
+
+static vector bool short __ATTRS_o_ai
+vec_vupkhsb(vector bool char __a)
+{
+#ifdef __LITTLE_ENDIAN__
+ return (vector bool short)__builtin_altivec_vupklsb((vector char)__a);
+#else
+ return (vector bool short)__builtin_altivec_vupkhsb((vector char)__a);
+#endif
+}
+
+/* vec_vupkhsh */
+
+static vector int __ATTRS_o_ai
+vec_vupkhsh(vector short __a)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vupklsh(__a);
+#else
+ return __builtin_altivec_vupkhsh(__a);
+#endif
+}
+
+static vector bool int __ATTRS_o_ai
+vec_vupkhsh(vector bool short __a)
+{
+#ifdef __LITTLE_ENDIAN__
+ return (vector bool int)__builtin_altivec_vupklsh((vector short)__a);
+#else
+ return (vector bool int)__builtin_altivec_vupkhsh((vector short)__a);
+#endif
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vupkhsh(vector pixel __a)
+{
+#ifdef __LITTLE_ENDIAN__
+ return (vector unsigned int)__builtin_altivec_vupklpx((vector short)__a);
+#else
+ return (vector unsigned int)__builtin_altivec_vupkhpx((vector short)__a);
+#endif
+}
+
+/* vec_vupkhsw */
+
+#ifdef __POWER8_VECTOR__
+static vector long long __ATTRS_o_ai
+vec_vupkhsw(vector int __a)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vupklsw(__a);
+#else
+ return __builtin_altivec_vupkhsw(__a);
+#endif
+}
+
+static vector bool long long __ATTRS_o_ai
+vec_vupkhsw(vector bool int __a)
+{
+#ifdef __LITTLE_ENDIAN__
+ return (vector bool long long)__builtin_altivec_vupklsw((vector int)__a);
+#else
+ return (vector bool long long)__builtin_altivec_vupkhsw((vector int)__a);
+#endif
+}
+#endif
+
+/* vec_unpackl */
+
+static vector short __ATTRS_o_ai
+vec_unpackl(vector signed char __a)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vupkhsb((vector char)__a);
+#else
+ return __builtin_altivec_vupklsb((vector char)__a);
+#endif
+}
+
+static vector bool short __ATTRS_o_ai
+vec_unpackl(vector bool char __a)
+{
+#ifdef __LITTLE_ENDIAN__
+ return (vector bool short)__builtin_altivec_vupkhsb((vector char)__a);
+#else
+ return (vector bool short)__builtin_altivec_vupklsb((vector char)__a);
+#endif
+}
+
+static vector int __ATTRS_o_ai
+vec_unpackl(vector short __a)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vupkhsh(__a);
+#else
+ return __builtin_altivec_vupklsh(__a);
+#endif
+}
+
+static vector bool int __ATTRS_o_ai
+vec_unpackl(vector bool short __a)
+{
+#ifdef __LITTLE_ENDIAN__
+ return (vector bool int)__builtin_altivec_vupkhsh((vector short)__a);
+#else
+ return (vector bool int)__builtin_altivec_vupklsh((vector short)__a);
+#endif
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_unpackl(vector pixel __a)
+{
+#ifdef __LITTLE_ENDIAN__
+ return (vector unsigned int)__builtin_altivec_vupkhpx((vector short)__a);
+#else
+ return (vector unsigned int)__builtin_altivec_vupklpx((vector short)__a);
+#endif
+}
+
+#ifdef __POWER8_VECTOR__
+static vector long long __ATTRS_o_ai
+vec_unpackl(vector int __a)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vupkhsw(__a);
+#else
+ return __builtin_altivec_vupklsw(__a);
+#endif
+}
+
+static vector bool long long __ATTRS_o_ai
+vec_unpackl(vector bool int __a)
+{
+#ifdef __LITTLE_ENDIAN__
+ return (vector bool long long)__builtin_altivec_vupkhsw((vector int)__a);
+#else
+ return (vector bool long long)__builtin_altivec_vupklsw((vector int)__a);
+#endif
+}
+#endif
+
+/* vec_vupklsb */
+
+static vector short __ATTRS_o_ai
+vec_vupklsb(vector signed char __a)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vupkhsb((vector char)__a);
+#else
+ return __builtin_altivec_vupklsb((vector char)__a);
+#endif
+}
+
+static vector bool short __ATTRS_o_ai
+vec_vupklsb(vector bool char __a)
+{
+#ifdef __LITTLE_ENDIAN__
+ return (vector bool short)__builtin_altivec_vupkhsb((vector char)__a);
+#else
+ return (vector bool short)__builtin_altivec_vupklsb((vector char)__a);
+#endif
+}
+
+/* vec_vupklsh */
+
+static vector int __ATTRS_o_ai
+vec_vupklsh(vector short __a)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vupkhsh(__a);
+#else
+ return __builtin_altivec_vupklsh(__a);
+#endif
+}
+
+static vector bool int __ATTRS_o_ai
+vec_vupklsh(vector bool short __a)
+{
+#ifdef __LITTLE_ENDIAN__
+ return (vector bool int)__builtin_altivec_vupkhsh((vector short)__a);
+#else
+ return (vector bool int)__builtin_altivec_vupklsh((vector short)__a);
+#endif
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vupklsh(vector pixel __a)
+{
+#ifdef __LITTLE_ENDIAN__
+ return (vector unsigned int)__builtin_altivec_vupkhpx((vector short)__a);
+#else
+ return (vector unsigned int)__builtin_altivec_vupklpx((vector short)__a);
+#endif
+}
+
+/* vec_vupklsw */
+
+#ifdef __POWER8_VECTOR__
+static vector long long __ATTRS_o_ai
+vec_vupklsw(vector int __a)
+{
+#ifdef __LITTLE_ENDIAN__
+ return __builtin_altivec_vupkhsw(__a);
+#else
+ return __builtin_altivec_vupklsw(__a);
+#endif
+}
+
+static vector bool long long __ATTRS_o_ai
+vec_vupklsw(vector bool int __a)
+{
+#ifdef __LITTLE_ENDIAN__
+ return (vector bool long long)__builtin_altivec_vupkhsw((vector int)__a);
+#else
+ return (vector bool long long)__builtin_altivec_vupklsw((vector int)__a);
+#endif
+}
+#endif
+
+/* vec_vsx_ld */
+
+#ifdef __VSX__
+
+static vector signed int __ATTRS_o_ai
+vec_vsx_ld(int __a, const vector signed int *__b)
+{
+ return (vector signed int)__builtin_vsx_lxvw4x(__a, __b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vsx_ld(int __a, const vector unsigned int *__b)
+{
+ return (vector unsigned int)__builtin_vsx_lxvw4x(__a, __b);
+}
+
+static vector float __ATTRS_o_ai
+vec_vsx_ld(int __a, const vector float *__b)
+{
+ return (vector float)__builtin_vsx_lxvw4x(__a, __b);
+}
+
+static vector signed long long __ATTRS_o_ai
+vec_vsx_ld(int __a, const vector signed long long *__b)
+{
+ return (vector signed long long)__builtin_vsx_lxvd2x(__a, __b);
+}
+
+static vector unsigned long long __ATTRS_o_ai
+vec_vsx_ld(int __a, const vector unsigned long long *__b)
+{
+ return (vector unsigned long long)__builtin_vsx_lxvd2x(__a, __b);
+}
+
+static vector double __ATTRS_o_ai
+vec_vsx_ld(int __a, const vector double *__b)
+{
+ return (vector double)__builtin_vsx_lxvd2x(__a, __b);
+}
+
+#endif
+
+/* vec_vsx_st */
+
+#ifdef __VSX__
+
+static void __ATTRS_o_ai
+vec_vsx_st(vector signed int __a, int __b, vector signed int *__c)
+{
+ __builtin_vsx_stxvw4x((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_vsx_st(vector unsigned int __a, int __b, vector unsigned int *__c)
+{
+ __builtin_vsx_stxvw4x((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_vsx_st(vector float __a, int __b, vector float *__c)
+{
+ __builtin_vsx_stxvw4x((vector int)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_vsx_st(vector signed long long __a, int __b, vector signed long long *__c)
+{
+ __builtin_vsx_stxvd2x((vector double)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_vsx_st(vector unsigned long long __a, int __b,
+ vector unsigned long long *__c)
+{
+ __builtin_vsx_stxvd2x((vector double)__a, __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_vsx_st(vector double __a, int __b, vector double *__c)
+{
+ __builtin_vsx_stxvd2x((vector double)__a, __b, __c);
+}
+
+#endif
+
+/* vec_xor */
+
+#define __builtin_altivec_vxor vec_xor
+
+static vector signed char __ATTRS_o_ai
+vec_xor(vector signed char __a, vector signed char __b)
+{
+ return __a ^ __b;
+}
+
+static vector signed char __ATTRS_o_ai
+vec_xor(vector bool char __a, vector signed char __b)
+{
+ return (vector signed char)__a ^ __b;
+}
+
+static vector signed char __ATTRS_o_ai
+vec_xor(vector signed char __a, vector bool char __b)
+{
+ return __a ^ (vector signed char)__b;
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_xor(vector unsigned char __a, vector unsigned char __b)
+{
+ return __a ^ __b;
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_xor(vector bool char __a, vector unsigned char __b)
+{
+ return (vector unsigned char)__a ^ __b;
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_xor(vector unsigned char __a, vector bool char __b)
+{
+ return __a ^ (vector unsigned char)__b;
+}
+
+static vector bool char __ATTRS_o_ai
+vec_xor(vector bool char __a, vector bool char __b)
+{
+ return __a ^ __b;
+}
+
+static vector short __ATTRS_o_ai
+vec_xor(vector short __a, vector short __b)
+{
+ return __a ^ __b;
+}
+
+static vector short __ATTRS_o_ai
+vec_xor(vector bool short __a, vector short __b)
+{
+ return (vector short)__a ^ __b;
+}
+
+static vector short __ATTRS_o_ai
+vec_xor(vector short __a, vector bool short __b)
+{
+ return __a ^ (vector short)__b;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_xor(vector unsigned short __a, vector unsigned short __b)
+{
+ return __a ^ __b;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_xor(vector bool short __a, vector unsigned short __b)
+{
+ return (vector unsigned short)__a ^ __b;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_xor(vector unsigned short __a, vector bool short __b)
+{
+ return __a ^ (vector unsigned short)__b;
+}
+
+static vector bool short __ATTRS_o_ai
+vec_xor(vector bool short __a, vector bool short __b)
+{
+ return __a ^ __b;
+}
+
+static vector int __ATTRS_o_ai
+vec_xor(vector int __a, vector int __b)
+{
+ return __a ^ __b;
+}
+
+static vector int __ATTRS_o_ai
+vec_xor(vector bool int __a, vector int __b)
+{
+ return (vector int)__a ^ __b;
+}
+
+static vector int __ATTRS_o_ai
+vec_xor(vector int __a, vector bool int __b)
+{
+ return __a ^ (vector int)__b;
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_xor(vector unsigned int __a, vector unsigned int __b)
+{
+ return __a ^ __b;
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_xor(vector bool int __a, vector unsigned int __b)
+{
+ return (vector unsigned int)__a ^ __b;
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_xor(vector unsigned int __a, vector bool int __b)
+{
+ return __a ^ (vector unsigned int)__b;
+}
+
+static vector bool int __ATTRS_o_ai
+vec_xor(vector bool int __a, vector bool int __b)
+{
+ return __a ^ __b;
+}
+
+static vector float __ATTRS_o_ai
+vec_xor(vector float __a, vector float __b)
+{
+ vector unsigned int __res = (vector unsigned int)__a ^ (vector unsigned int)__b;
+ return (vector float)__res;
+}
+
+static vector float __ATTRS_o_ai
+vec_xor(vector bool int __a, vector float __b)
+{
+ vector unsigned int __res = (vector unsigned int)__a ^ (vector unsigned int)__b;
+ return (vector float)__res;
+}
+
+static vector float __ATTRS_o_ai
+vec_xor(vector float __a, vector bool int __b)
+{
+ vector unsigned int __res = (vector unsigned int)__a ^ (vector unsigned int)__b;
+ return (vector float)__res;
+}
+
+/* vec_vxor */
+
+static vector signed char __ATTRS_o_ai
+vec_vxor(vector signed char __a, vector signed char __b)
+{
+ return __a ^ __b;
+}
+
+static vector signed char __ATTRS_o_ai
+vec_vxor(vector bool char __a, vector signed char __b)
+{
+ return (vector signed char)__a ^ __b;
+}
+
+static vector signed char __ATTRS_o_ai
+vec_vxor(vector signed char __a, vector bool char __b)
+{
+ return __a ^ (vector signed char)__b;
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vxor(vector unsigned char __a, vector unsigned char __b)
+{
+ return __a ^ __b;
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vxor(vector bool char __a, vector unsigned char __b)
+{
+ return (vector unsigned char)__a ^ __b;
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_vxor(vector unsigned char __a, vector bool char __b)
+{
+ return __a ^ (vector unsigned char)__b;
+}
+
+static vector bool char __ATTRS_o_ai
+vec_vxor(vector bool char __a, vector bool char __b)
+{
+ return __a ^ __b;
+}
+
+static vector short __ATTRS_o_ai
+vec_vxor(vector short __a, vector short __b)
+{
+ return __a ^ __b;
+}
+
+static vector short __ATTRS_o_ai
+vec_vxor(vector bool short __a, vector short __b)
+{
+ return (vector short)__a ^ __b;
+}
+
+static vector short __ATTRS_o_ai
+vec_vxor(vector short __a, vector bool short __b)
+{
+ return __a ^ (vector short)__b;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vxor(vector unsigned short __a, vector unsigned short __b)
+{
+ return __a ^ __b;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vxor(vector bool short __a, vector unsigned short __b)
+{
+ return (vector unsigned short)__a ^ __b;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_vxor(vector unsigned short __a, vector bool short __b)
+{
+ return __a ^ (vector unsigned short)__b;
+}
+
+static vector bool short __ATTRS_o_ai
+vec_vxor(vector bool short __a, vector bool short __b)
+{
+ return __a ^ __b;
+}
+
+static vector int __ATTRS_o_ai
+vec_vxor(vector int __a, vector int __b)
+{
+ return __a ^ __b;
+}
+
+static vector int __ATTRS_o_ai
+vec_vxor(vector bool int __a, vector int __b)
+{
+ return (vector int)__a ^ __b;
+}
+
+static vector int __ATTRS_o_ai
+vec_vxor(vector int __a, vector bool int __b)
+{
+ return __a ^ (vector int)__b;
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vxor(vector unsigned int __a, vector unsigned int __b)
+{
+ return __a ^ __b;
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vxor(vector bool int __a, vector unsigned int __b)
+{
+ return (vector unsigned int)__a ^ __b;
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_vxor(vector unsigned int __a, vector bool int __b)
+{
+ return __a ^ (vector unsigned int)__b;
+}
+
+static vector bool int __ATTRS_o_ai
+vec_vxor(vector bool int __a, vector bool int __b)
+{
+ return __a ^ __b;
+}
+
+static vector float __ATTRS_o_ai
+vec_vxor(vector float __a, vector float __b)
+{
+ vector unsigned int __res = (vector unsigned int)__a ^ (vector unsigned int)__b;
+ return (vector float)__res;
+}
+
+static vector float __ATTRS_o_ai
+vec_vxor(vector bool int __a, vector float __b)
+{
+ vector unsigned int __res = (vector unsigned int)__a ^ (vector unsigned int)__b;
+ return (vector float)__res;
+}
+
+static vector float __ATTRS_o_ai
+vec_vxor(vector float __a, vector bool int __b)
+{
+ vector unsigned int __res = (vector unsigned int)__a ^ (vector unsigned int)__b;
+ return (vector float)__res;
+}
+
+/* ------------------------ extensions for CBEA ----------------------------- */
+
+/* vec_extract */
+
+static signed char __ATTRS_o_ai
+vec_extract(vector signed char __a, int __b)
+{
+ return __a[__b];
+}
+
+static unsigned char __ATTRS_o_ai
+vec_extract(vector unsigned char __a, int __b)
+{
+ return __a[__b];
+}
+
+static short __ATTRS_o_ai
+vec_extract(vector short __a, int __b)
+{
+ return __a[__b];
+}
+
+static unsigned short __ATTRS_o_ai
+vec_extract(vector unsigned short __a, int __b)
+{
+ return __a[__b];
+}
+
+static int __ATTRS_o_ai
+vec_extract(vector int __a, int __b)
+{
+ return __a[__b];
+}
+
+static unsigned int __ATTRS_o_ai
+vec_extract(vector unsigned int __a, int __b)
+{
+ return __a[__b];
+}
+
+static float __ATTRS_o_ai
+vec_extract(vector float __a, int __b)
+{
+ return __a[__b];
+}
+
+/* vec_insert */
+
+static vector signed char __ATTRS_o_ai
+vec_insert(signed char __a, vector signed char __b, int __c)
+{
+ __b[__c] = __a;
+ return __b;
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_insert(unsigned char __a, vector unsigned char __b, int __c)
+{
+ __b[__c] = __a;
+ return __b;
+}
+
+static vector short __ATTRS_o_ai
+vec_insert(short __a, vector short __b, int __c)
+{
+ __b[__c] = __a;
+ return __b;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_insert(unsigned short __a, vector unsigned short __b, int __c)
+{
+ __b[__c] = __a;
+ return __b;
+}
+
+static vector int __ATTRS_o_ai
+vec_insert(int __a, vector int __b, int __c)
+{
+ __b[__c] = __a;
+ return __b;
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_insert(unsigned int __a, vector unsigned int __b, int __c)
+{
+ __b[__c] = __a;
+ return __b;
+}
+
+static vector float __ATTRS_o_ai
+vec_insert(float __a, vector float __b, int __c)
+{
+ __b[__c] = __a;
+ return __b;
+}
+
+/* vec_lvlx */
+
+static vector signed char __ATTRS_o_ai
+vec_lvlx(int __a, const signed char *__b)
+{
+ return vec_perm(vec_ld(__a, __b),
+ (vector signed char)(0),
+ vec_lvsl(__a, __b));
+}
+
+static vector signed char __ATTRS_o_ai
+vec_lvlx(int __a, const vector signed char *__b)
+{
+ return vec_perm(vec_ld(__a, __b),
+ (vector signed char)(0),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_lvlx(int __a, const unsigned char *__b)
+{
+ return vec_perm(vec_ld(__a, __b),
+ (vector unsigned char)(0),
+ vec_lvsl(__a, __b));
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_lvlx(int __a, const vector unsigned char *__b)
+{
+ return vec_perm(vec_ld(__a, __b),
+ (vector unsigned char)(0),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+static vector bool char __ATTRS_o_ai
+vec_lvlx(int __a, const vector bool char *__b)
+{
+ return vec_perm(vec_ld(__a, __b),
+ (vector bool char)(0),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+static vector short __ATTRS_o_ai
+vec_lvlx(int __a, const short *__b)
+{
+ return vec_perm(vec_ld(__a, __b),
+ (vector short)(0),
+ vec_lvsl(__a, __b));
+}
+
+static vector short __ATTRS_o_ai
+vec_lvlx(int __a, const vector short *__b)
+{
+ return vec_perm(vec_ld(__a, __b),
+ (vector short)(0),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_lvlx(int __a, const unsigned short *__b)
+{
+ return vec_perm(vec_ld(__a, __b),
+ (vector unsigned short)(0),
+ vec_lvsl(__a, __b));
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_lvlx(int __a, const vector unsigned short *__b)
+{
+ return vec_perm(vec_ld(__a, __b),
+ (vector unsigned short)(0),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+static vector bool short __ATTRS_o_ai
+vec_lvlx(int __a, const vector bool short *__b)
+{
+ return vec_perm(vec_ld(__a, __b),
+ (vector bool short)(0),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+static vector pixel __ATTRS_o_ai
+vec_lvlx(int __a, const vector pixel *__b)
+{
+ return vec_perm(vec_ld(__a, __b),
+ (vector pixel)(0),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+static vector int __ATTRS_o_ai
+vec_lvlx(int __a, const int *__b)
+{
+ return vec_perm(vec_ld(__a, __b),
+ (vector int)(0),
+ vec_lvsl(__a, __b));
+}
+
+static vector int __ATTRS_o_ai
+vec_lvlx(int __a, const vector int *__b)
+{
+ return vec_perm(vec_ld(__a, __b),
+ (vector int)(0),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_lvlx(int __a, const unsigned int *__b)
+{
+ return vec_perm(vec_ld(__a, __b),
+ (vector unsigned int)(0),
+ vec_lvsl(__a, __b));
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_lvlx(int __a, const vector unsigned int *__b)
+{
+ return vec_perm(vec_ld(__a, __b),
+ (vector unsigned int)(0),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+static vector bool int __ATTRS_o_ai
+vec_lvlx(int __a, const vector bool int *__b)
+{
+ return vec_perm(vec_ld(__a, __b),
+ (vector bool int)(0),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+static vector float __ATTRS_o_ai
+vec_lvlx(int __a, const float *__b)
+{
+ return vec_perm(vec_ld(__a, __b),
+ (vector float)(0),
+ vec_lvsl(__a, __b));
+}
+
+static vector float __ATTRS_o_ai
+vec_lvlx(int __a, const vector float *__b)
+{
+ return vec_perm(vec_ld(__a, __b),
+ (vector float)(0),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+/* vec_lvlxl */
+
+static vector signed char __ATTRS_o_ai
+vec_lvlxl(int __a, const signed char *__b)
+{
+ return vec_perm(vec_ldl(__a, __b),
+ (vector signed char)(0),
+ vec_lvsl(__a, __b));
+}
+
+static vector signed char __ATTRS_o_ai
+vec_lvlxl(int __a, const vector signed char *__b)
+{
+ return vec_perm(vec_ldl(__a, __b),
+ (vector signed char)(0),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_lvlxl(int __a, const unsigned char *__b)
+{
+ return vec_perm(vec_ldl(__a, __b),
+ (vector unsigned char)(0),
+ vec_lvsl(__a, __b));
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_lvlxl(int __a, const vector unsigned char *__b)
+{
+ return vec_perm(vec_ldl(__a, __b),
+ (vector unsigned char)(0),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+static vector bool char __ATTRS_o_ai
+vec_lvlxl(int __a, const vector bool char *__b)
+{
+ return vec_perm(vec_ldl(__a, __b),
+ (vector bool char)(0),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+static vector short __ATTRS_o_ai
+vec_lvlxl(int __a, const short *__b)
+{
+ return vec_perm(vec_ldl(__a, __b),
+ (vector short)(0),
+ vec_lvsl(__a, __b));
+}
+
+static vector short __ATTRS_o_ai
+vec_lvlxl(int __a, const vector short *__b)
+{
+ return vec_perm(vec_ldl(__a, __b),
+ (vector short)(0),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_lvlxl(int __a, const unsigned short *__b)
+{
+ return vec_perm(vec_ldl(__a, __b),
+ (vector unsigned short)(0),
+ vec_lvsl(__a, __b));
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_lvlxl(int __a, const vector unsigned short *__b)
+{
+ return vec_perm(vec_ldl(__a, __b),
+ (vector unsigned short)(0),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+static vector bool short __ATTRS_o_ai
+vec_lvlxl(int __a, const vector bool short *__b)
+{
+ return vec_perm(vec_ldl(__a, __b),
+ (vector bool short)(0),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+static vector pixel __ATTRS_o_ai
+vec_lvlxl(int __a, const vector pixel *__b)
+{
+ return vec_perm(vec_ldl(__a, __b),
+ (vector pixel)(0),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+static vector int __ATTRS_o_ai
+vec_lvlxl(int __a, const int *__b)
+{
+ return vec_perm(vec_ldl(__a, __b),
+ (vector int)(0),
+ vec_lvsl(__a, __b));
+}
+
+static vector int __ATTRS_o_ai
+vec_lvlxl(int __a, const vector int *__b)
+{
+ return vec_perm(vec_ldl(__a, __b),
+ (vector int)(0),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_lvlxl(int __a, const unsigned int *__b)
+{
+ return vec_perm(vec_ldl(__a, __b),
+ (vector unsigned int)(0),
+ vec_lvsl(__a, __b));
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_lvlxl(int __a, const vector unsigned int *__b)
+{
+ return vec_perm(vec_ldl(__a, __b),
+ (vector unsigned int)(0),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+static vector bool int __ATTRS_o_ai
+vec_lvlxl(int __a, const vector bool int *__b)
+{
+ return vec_perm(vec_ldl(__a, __b),
+ (vector bool int)(0),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+static vector float __ATTRS_o_ai
+vec_lvlxl(int __a, const float *__b)
+{
+ return vec_perm(vec_ldl(__a, __b),
+ (vector float)(0),
+ vec_lvsl(__a, __b));
+}
+
+static vector float __ATTRS_o_ai
+vec_lvlxl(int __a, vector float *__b)
+{
+ return vec_perm(vec_ldl(__a, __b),
+ (vector float)(0),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+/* vec_lvrx */
+
+static vector signed char __ATTRS_o_ai
+vec_lvrx(int __a, const signed char *__b)
+{
+ return vec_perm((vector signed char)(0),
+ vec_ld(__a, __b),
+ vec_lvsl(__a, __b));
+}
+
+static vector signed char __ATTRS_o_ai
+vec_lvrx(int __a, const vector signed char *__b)
+{
+ return vec_perm((vector signed char)(0),
+ vec_ld(__a, __b),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_lvrx(int __a, const unsigned char *__b)
+{
+ return vec_perm((vector unsigned char)(0),
+ vec_ld(__a, __b),
+ vec_lvsl(__a, __b));
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_lvrx(int __a, const vector unsigned char *__b)
+{
+ return vec_perm((vector unsigned char)(0),
+ vec_ld(__a, __b),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+static vector bool char __ATTRS_o_ai
+vec_lvrx(int __a, const vector bool char *__b)
+{
+ return vec_perm((vector bool char)(0),
+ vec_ld(__a, __b),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+static vector short __ATTRS_o_ai
+vec_lvrx(int __a, const short *__b)
+{
+ return vec_perm((vector short)(0),
+ vec_ld(__a, __b),
+ vec_lvsl(__a, __b));
+}
+
+static vector short __ATTRS_o_ai
+vec_lvrx(int __a, const vector short *__b)
+{
+ return vec_perm((vector short)(0),
+ vec_ld(__a, __b),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_lvrx(int __a, const unsigned short *__b)
+{
+ return vec_perm((vector unsigned short)(0),
+ vec_ld(__a, __b),
+ vec_lvsl(__a, __b));
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_lvrx(int __a, const vector unsigned short *__b)
+{
+ return vec_perm((vector unsigned short)(0),
+ vec_ld(__a, __b),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+static vector bool short __ATTRS_o_ai
+vec_lvrx(int __a, const vector bool short *__b)
+{
+ return vec_perm((vector bool short)(0),
+ vec_ld(__a, __b),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+static vector pixel __ATTRS_o_ai
+vec_lvrx(int __a, const vector pixel *__b)
+{
+ return vec_perm((vector pixel)(0),
+ vec_ld(__a, __b),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+static vector int __ATTRS_o_ai
+vec_lvrx(int __a, const int *__b)
+{
+ return vec_perm((vector int)(0),
+ vec_ld(__a, __b),
+ vec_lvsl(__a, __b));
+}
+
+static vector int __ATTRS_o_ai
+vec_lvrx(int __a, const vector int *__b)
+{
+ return vec_perm((vector int)(0),
+ vec_ld(__a, __b),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_lvrx(int __a, const unsigned int *__b)
+{
+ return vec_perm((vector unsigned int)(0),
+ vec_ld(__a, __b),
+ vec_lvsl(__a, __b));
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_lvrx(int __a, const vector unsigned int *__b)
+{
+ return vec_perm((vector unsigned int)(0),
+ vec_ld(__a, __b),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+static vector bool int __ATTRS_o_ai
+vec_lvrx(int __a, const vector bool int *__b)
+{
+ return vec_perm((vector bool int)(0),
+ vec_ld(__a, __b),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+static vector float __ATTRS_o_ai
+vec_lvrx(int __a, const float *__b)
+{
+ return vec_perm((vector float)(0),
+ vec_ld(__a, __b),
+ vec_lvsl(__a, __b));
+}
+
+static vector float __ATTRS_o_ai
+vec_lvrx(int __a, const vector float *__b)
+{
+ return vec_perm((vector float)(0),
+ vec_ld(__a, __b),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+/* vec_lvrxl */
+
+static vector signed char __ATTRS_o_ai
+vec_lvrxl(int __a, const signed char *__b)
+{
+ return vec_perm((vector signed char)(0),
+ vec_ldl(__a, __b),
+ vec_lvsl(__a, __b));
+}
+
+static vector signed char __ATTRS_o_ai
+vec_lvrxl(int __a, const vector signed char *__b)
+{
+ return vec_perm((vector signed char)(0),
+ vec_ldl(__a, __b),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_lvrxl(int __a, const unsigned char *__b)
+{
+ return vec_perm((vector unsigned char)(0),
+ vec_ldl(__a, __b),
+ vec_lvsl(__a, __b));
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_lvrxl(int __a, const vector unsigned char *__b)
+{
+ return vec_perm((vector unsigned char)(0),
+ vec_ldl(__a, __b),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+static vector bool char __ATTRS_o_ai
+vec_lvrxl(int __a, const vector bool char *__b)
+{
+ return vec_perm((vector bool char)(0),
+ vec_ldl(__a, __b),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+static vector short __ATTRS_o_ai
+vec_lvrxl(int __a, const short *__b)
+{
+ return vec_perm((vector short)(0),
+ vec_ldl(__a, __b),
+ vec_lvsl(__a, __b));
+}
+
+static vector short __ATTRS_o_ai
+vec_lvrxl(int __a, const vector short *__b)
+{
+ return vec_perm((vector short)(0),
+ vec_ldl(__a, __b),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_lvrxl(int __a, const unsigned short *__b)
+{
+ return vec_perm((vector unsigned short)(0),
+ vec_ldl(__a, __b),
+ vec_lvsl(__a, __b));
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_lvrxl(int __a, const vector unsigned short *__b)
+{
+ return vec_perm((vector unsigned short)(0),
+ vec_ldl(__a, __b),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+static vector bool short __ATTRS_o_ai
+vec_lvrxl(int __a, const vector bool short *__b)
+{
+ return vec_perm((vector bool short)(0),
+ vec_ldl(__a, __b),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+static vector pixel __ATTRS_o_ai
+vec_lvrxl(int __a, const vector pixel *__b)
+{
+ return vec_perm((vector pixel)(0),
+ vec_ldl(__a, __b),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+static vector int __ATTRS_o_ai
+vec_lvrxl(int __a, const int *__b)
+{
+ return vec_perm((vector int)(0),
+ vec_ldl(__a, __b),
+ vec_lvsl(__a, __b));
+}
+
+static vector int __ATTRS_o_ai
+vec_lvrxl(int __a, const vector int *__b)
+{
+ return vec_perm((vector int)(0),
+ vec_ldl(__a, __b),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_lvrxl(int __a, const unsigned int *__b)
+{
+ return vec_perm((vector unsigned int)(0),
+ vec_ldl(__a, __b),
+ vec_lvsl(__a, __b));
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_lvrxl(int __a, const vector unsigned int *__b)
+{
+ return vec_perm((vector unsigned int)(0),
+ vec_ldl(__a, __b),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+static vector bool int __ATTRS_o_ai
+vec_lvrxl(int __a, const vector bool int *__b)
+{
+ return vec_perm((vector bool int)(0),
+ vec_ldl(__a, __b),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+static vector float __ATTRS_o_ai
+vec_lvrxl(int __a, const float *__b)
+{
+ return vec_perm((vector float)(0),
+ vec_ldl(__a, __b),
+ vec_lvsl(__a, __b));
+}
+
+static vector float __ATTRS_o_ai
+vec_lvrxl(int __a, const vector float *__b)
+{
+ return vec_perm((vector float)(0),
+ vec_ldl(__a, __b),
+ vec_lvsl(__a, (unsigned char *)__b));
+}
+
+/* vec_stvlx */
+
+static void __ATTRS_o_ai
+vec_stvlx(vector signed char __a, int __b, signed char *__c)
+{
+ return vec_st(vec_perm(vec_lvrx(__b, __c),
+ __a,
+ vec_lvsr(__b, __c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvlx(vector signed char __a, int __b, vector signed char *__c)
+{
+ return vec_st(vec_perm(vec_lvrx(__b, __c),
+ __a,
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvlx(vector unsigned char __a, int __b, unsigned char *__c)
+{
+ return vec_st(vec_perm(vec_lvrx(__b, __c),
+ __a,
+ vec_lvsr(__b, __c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvlx(vector unsigned char __a, int __b, vector unsigned char *__c)
+{
+ return vec_st(vec_perm(vec_lvrx(__b, __c),
+ __a,
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvlx(vector bool char __a, int __b, vector bool char *__c)
+{
+ return vec_st(vec_perm(vec_lvrx(__b, __c),
+ __a,
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvlx(vector short __a, int __b, short *__c)
+{
+ return vec_st(vec_perm(vec_lvrx(__b, __c),
+ __a,
+ vec_lvsr(__b, __c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvlx(vector short __a, int __b, vector short *__c)
+{
+ return vec_st(vec_perm(vec_lvrx(__b, __c),
+ __a,
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvlx(vector unsigned short __a, int __b, unsigned short *__c)
+{
+ return vec_st(vec_perm(vec_lvrx(__b, __c),
+ __a,
+ vec_lvsr(__b, __c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvlx(vector unsigned short __a, int __b, vector unsigned short *__c)
+{
+ return vec_st(vec_perm(vec_lvrx(__b, __c),
+ __a,
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvlx(vector bool short __a, int __b, vector bool short *__c)
+{
+ return vec_st(vec_perm(vec_lvrx(__b, __c),
+ __a,
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvlx(vector pixel __a, int __b, vector pixel *__c)
+{
+ return vec_st(vec_perm(vec_lvrx(__b, __c),
+ __a,
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvlx(vector int __a, int __b, int *__c)
+{
+ return vec_st(vec_perm(vec_lvrx(__b, __c),
+ __a,
+ vec_lvsr(__b, __c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvlx(vector int __a, int __b, vector int *__c)
+{
+ return vec_st(vec_perm(vec_lvrx(__b, __c),
+ __a,
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvlx(vector unsigned int __a, int __b, unsigned int *__c)
+{
+ return vec_st(vec_perm(vec_lvrx(__b, __c),
+ __a,
+ vec_lvsr(__b, __c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvlx(vector unsigned int __a, int __b, vector unsigned int *__c)
+{
+ return vec_st(vec_perm(vec_lvrx(__b, __c),
+ __a,
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvlx(vector bool int __a, int __b, vector bool int *__c)
+{
+ return vec_st(vec_perm(vec_lvrx(__b, __c),
+ __a,
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvlx(vector float __a, int __b, vector float *__c)
+{
+ return vec_st(vec_perm(vec_lvrx(__b, __c),
+ __a,
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+/* vec_stvlxl */
+
+static void __ATTRS_o_ai
+vec_stvlxl(vector signed char __a, int __b, signed char *__c)
+{
+ return vec_stl(vec_perm(vec_lvrx(__b, __c),
+ __a,
+ vec_lvsr(__b, __c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvlxl(vector signed char __a, int __b, vector signed char *__c)
+{
+ return vec_stl(vec_perm(vec_lvrx(__b, __c),
+ __a,
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvlxl(vector unsigned char __a, int __b, unsigned char *__c)
+{
+ return vec_stl(vec_perm(vec_lvrx(__b, __c),
+ __a,
+ vec_lvsr(__b, __c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvlxl(vector unsigned char __a, int __b, vector unsigned char *__c)
+{
+ return vec_stl(vec_perm(vec_lvrx(__b, __c),
+ __a,
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvlxl(vector bool char __a, int __b, vector bool char *__c)
+{
+ return vec_stl(vec_perm(vec_lvrx(__b, __c),
+ __a,
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvlxl(vector short __a, int __b, short *__c)
+{
+ return vec_stl(vec_perm(vec_lvrx(__b, __c),
+ __a,
+ vec_lvsr(__b, __c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvlxl(vector short __a, int __b, vector short *__c)
+{
+ return vec_stl(vec_perm(vec_lvrx(__b, __c),
+ __a,
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvlxl(vector unsigned short __a, int __b, unsigned short *__c)
+{
+ return vec_stl(vec_perm(vec_lvrx(__b, __c),
+ __a,
+ vec_lvsr(__b, __c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvlxl(vector unsigned short __a, int __b, vector unsigned short *__c)
+{
+ return vec_stl(vec_perm(vec_lvrx(__b, __c),
+ __a,
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvlxl(vector bool short __a, int __b, vector bool short *__c)
+{
+ return vec_stl(vec_perm(vec_lvrx(__b, __c),
+ __a,
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvlxl(vector pixel __a, int __b, vector pixel *__c)
+{
+ return vec_stl(vec_perm(vec_lvrx(__b, __c),
+ __a,
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvlxl(vector int __a, int __b, int *__c)
+{
+ return vec_stl(vec_perm(vec_lvrx(__b, __c),
+ __a,
+ vec_lvsr(__b, __c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvlxl(vector int __a, int __b, vector int *__c)
+{
+ return vec_stl(vec_perm(vec_lvrx(__b, __c),
+ __a,
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvlxl(vector unsigned int __a, int __b, unsigned int *__c)
+{
+ return vec_stl(vec_perm(vec_lvrx(__b, __c),
+ __a,
+ vec_lvsr(__b, __c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvlxl(vector unsigned int __a, int __b, vector unsigned int *__c)
+{
+ return vec_stl(vec_perm(vec_lvrx(__b, __c),
+ __a,
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvlxl(vector bool int __a, int __b, vector bool int *__c)
+{
+ return vec_stl(vec_perm(vec_lvrx(__b, __c),
+ __a,
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvlxl(vector float __a, int __b, vector float *__c)
+{
+ return vec_stl(vec_perm(vec_lvrx(__b, __c),
+ __a,
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+/* vec_stvrx */
+
+static void __ATTRS_o_ai
+vec_stvrx(vector signed char __a, int __b, signed char *__c)
+{
+ return vec_st(vec_perm(__a,
+ vec_lvlx(__b, __c),
+ vec_lvsr(__b, __c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvrx(vector signed char __a, int __b, vector signed char *__c)
+{
+ return vec_st(vec_perm(__a,
+ vec_lvlx(__b, __c),
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvrx(vector unsigned char __a, int __b, unsigned char *__c)
+{
+ return vec_st(vec_perm(__a,
+ vec_lvlx(__b, __c),
+ vec_lvsr(__b, __c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvrx(vector unsigned char __a, int __b, vector unsigned char *__c)
+{
+ return vec_st(vec_perm(__a,
+ vec_lvlx(__b, __c),
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvrx(vector bool char __a, int __b, vector bool char *__c)
+{
+ return vec_st(vec_perm(__a,
+ vec_lvlx(__b, __c),
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvrx(vector short __a, int __b, short *__c)
+{
+ return vec_st(vec_perm(__a,
+ vec_lvlx(__b, __c),
+ vec_lvsr(__b, __c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvrx(vector short __a, int __b, vector short *__c)
+{
+ return vec_st(vec_perm(__a,
+ vec_lvlx(__b, __c),
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvrx(vector unsigned short __a, int __b, unsigned short *__c)
+{
+ return vec_st(vec_perm(__a,
+ vec_lvlx(__b, __c),
+ vec_lvsr(__b, __c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvrx(vector unsigned short __a, int __b, vector unsigned short *__c)
+{
+ return vec_st(vec_perm(__a,
+ vec_lvlx(__b, __c),
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvrx(vector bool short __a, int __b, vector bool short *__c)
+{
+ return vec_st(vec_perm(__a,
+ vec_lvlx(__b, __c),
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvrx(vector pixel __a, int __b, vector pixel *__c)
+{
+ return vec_st(vec_perm(__a,
+ vec_lvlx(__b, __c),
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvrx(vector int __a, int __b, int *__c)
+{
+ return vec_st(vec_perm(__a,
+ vec_lvlx(__b, __c),
+ vec_lvsr(__b, __c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvrx(vector int __a, int __b, vector int *__c)
+{
+ return vec_st(vec_perm(__a,
+ vec_lvlx(__b, __c),
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvrx(vector unsigned int __a, int __b, unsigned int *__c)
+{
+ return vec_st(vec_perm(__a,
+ vec_lvlx(__b, __c),
+ vec_lvsr(__b, __c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvrx(vector unsigned int __a, int __b, vector unsigned int *__c)
+{
+ return vec_st(vec_perm(__a,
+ vec_lvlx(__b, __c),
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvrx(vector bool int __a, int __b, vector bool int *__c)
+{
+ return vec_st(vec_perm(__a,
+ vec_lvlx(__b, __c),
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvrx(vector float __a, int __b, vector float *__c)
+{
+ return vec_st(vec_perm(__a,
+ vec_lvlx(__b, __c),
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+/* vec_stvrxl */
+
+static void __ATTRS_o_ai
+vec_stvrxl(vector signed char __a, int __b, signed char *__c)
+{
+ return vec_stl(vec_perm(__a,
+ vec_lvlx(__b, __c),
+ vec_lvsr(__b, __c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvrxl(vector signed char __a, int __b, vector signed char *__c)
+{
+ return vec_stl(vec_perm(__a,
+ vec_lvlx(__b, __c),
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvrxl(vector unsigned char __a, int __b, unsigned char *__c)
+{
+ return vec_stl(vec_perm(__a,
+ vec_lvlx(__b, __c),
+ vec_lvsr(__b, __c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvrxl(vector unsigned char __a, int __b, vector unsigned char *__c)
+{
+ return vec_stl(vec_perm(__a,
+ vec_lvlx(__b, __c),
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvrxl(vector bool char __a, int __b, vector bool char *__c)
+{
+ return vec_stl(vec_perm(__a,
+ vec_lvlx(__b, __c),
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvrxl(vector short __a, int __b, short *__c)
+{
+ return vec_stl(vec_perm(__a,
+ vec_lvlx(__b, __c),
+ vec_lvsr(__b, __c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvrxl(vector short __a, int __b, vector short *__c)
+{
+ return vec_stl(vec_perm(__a,
+ vec_lvlx(__b, __c),
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvrxl(vector unsigned short __a, int __b, unsigned short *__c)
+{
+ return vec_stl(vec_perm(__a,
+ vec_lvlx(__b, __c),
+ vec_lvsr(__b, __c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvrxl(vector unsigned short __a, int __b, vector unsigned short *__c)
+{
+ return vec_stl(vec_perm(__a,
+ vec_lvlx(__b, __c),
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvrxl(vector bool short __a, int __b, vector bool short *__c)
+{
+ return vec_stl(vec_perm(__a,
+ vec_lvlx(__b, __c),
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvrxl(vector pixel __a, int __b, vector pixel *__c)
+{
+ return vec_stl(vec_perm(__a,
+ vec_lvlx(__b, __c),
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvrxl(vector int __a, int __b, int *__c)
+{
+ return vec_stl(vec_perm(__a,
+ vec_lvlx(__b, __c),
+ vec_lvsr(__b, __c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvrxl(vector int __a, int __b, vector int *__c)
+{
+ return vec_stl(vec_perm(__a,
+ vec_lvlx(__b, __c),
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvrxl(vector unsigned int __a, int __b, unsigned int *__c)
+{
+ return vec_stl(vec_perm(__a,
+ vec_lvlx(__b, __c),
+ vec_lvsr(__b, __c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvrxl(vector unsigned int __a, int __b, vector unsigned int *__c)
+{
+ return vec_stl(vec_perm(__a,
+ vec_lvlx(__b, __c),
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvrxl(vector bool int __a, int __b, vector bool int *__c)
+{
+ return vec_stl(vec_perm(__a,
+ vec_lvlx(__b, __c),
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+static void __ATTRS_o_ai
+vec_stvrxl(vector float __a, int __b, vector float *__c)
+{
+ return vec_stl(vec_perm(__a,
+ vec_lvlx(__b, __c),
+ vec_lvsr(__b, (unsigned char *)__c)),
+ __b, __c);
+}
+
+/* vec_promote */
+
+static vector signed char __ATTRS_o_ai
+vec_promote(signed char __a, int __b)
+{
+ vector signed char __res = (vector signed char)(0);
+ __res[__b] = __a;
+ return __res;
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_promote(unsigned char __a, int __b)
+{
+ vector unsigned char __res = (vector unsigned char)(0);
+ __res[__b] = __a;
+ return __res;
+}
+
+static vector short __ATTRS_o_ai
+vec_promote(short __a, int __b)
+{
+ vector short __res = (vector short)(0);
+ __res[__b] = __a;
+ return __res;
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_promote(unsigned short __a, int __b)
+{
+ vector unsigned short __res = (vector unsigned short)(0);
+ __res[__b] = __a;
+ return __res;
+}
+
+static vector int __ATTRS_o_ai
+vec_promote(int __a, int __b)
+{
+ vector int __res = (vector int)(0);
+ __res[__b] = __a;
+ return __res;
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_promote(unsigned int __a, int __b)
+{
+ vector unsigned int __res = (vector unsigned int)(0);
+ __res[__b] = __a;
+ return __res;
+}
+
+static vector float __ATTRS_o_ai
+vec_promote(float __a, int __b)
+{
+ vector float __res = (vector float)(0);
+ __res[__b] = __a;
+ return __res;
+}
+
+/* vec_splats */
+
+static vector signed char __ATTRS_o_ai
+vec_splats(signed char __a)
+{
+ return (vector signed char)(__a);
+}
+
+static vector unsigned char __ATTRS_o_ai
+vec_splats(unsigned char __a)
+{
+ return (vector unsigned char)(__a);
+}
+
+static vector short __ATTRS_o_ai
+vec_splats(short __a)
+{
+ return (vector short)(__a);
+}
+
+static vector unsigned short __ATTRS_o_ai
+vec_splats(unsigned short __a)
+{
+ return (vector unsigned short)(__a);
+}
+
+static vector int __ATTRS_o_ai
+vec_splats(int __a)
+{
+ return (vector int)(__a);
+}
+
+static vector unsigned int __ATTRS_o_ai
+vec_splats(unsigned int __a)
+{
+ return (vector unsigned int)(__a);
+}
+
+static vector float __ATTRS_o_ai
+vec_splats(float __a)
+{
+ return (vector float)(__a);
+}
+
+/* ----------------------------- predicates --------------------------------- */
+
+/* vec_all_eq */
+
+static int __ATTRS_o_ai
+vec_all_eq(vector signed char __a, vector signed char __b)
+{
+ return __builtin_altivec_vcmpequb_p(__CR6_LT, (vector char)__a, (vector char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_eq(vector signed char __a, vector bool char __b)
+{
+ return __builtin_altivec_vcmpequb_p(__CR6_LT, (vector char)__a, (vector char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_eq(vector unsigned char __a, vector unsigned char __b)
+{
+ return __builtin_altivec_vcmpequb_p(__CR6_LT, (vector char)__a, (vector char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_eq(vector unsigned char __a, vector bool char __b)
+{
+ return __builtin_altivec_vcmpequb_p(__CR6_LT, (vector char)__a, (vector char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_eq(vector bool char __a, vector signed char __b)
+{
+ return __builtin_altivec_vcmpequb_p(__CR6_LT, (vector char)__a, (vector char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_eq(vector bool char __a, vector unsigned char __b)
+{
+ return __builtin_altivec_vcmpequb_p(__CR6_LT, (vector char)__a, (vector char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_eq(vector bool char __a, vector bool char __b)
+{
+ return __builtin_altivec_vcmpequb_p(__CR6_LT, (vector char)__a, (vector char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_eq(vector short __a, vector short __b)
+{
+ return __builtin_altivec_vcmpequh_p(__CR6_LT, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_all_eq(vector short __a, vector bool short __b)
+{
+ return __builtin_altivec_vcmpequh_p(__CR6_LT, __a, (vector short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_eq(vector unsigned short __a, vector unsigned short __b)
+{
+ return
+ __builtin_altivec_vcmpequh_p(__CR6_LT, (vector short)__a, (vector short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_eq(vector unsigned short __a, vector bool short __b)
+{
+ return
+ __builtin_altivec_vcmpequh_p(__CR6_LT, (vector short)__a, (vector short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_eq(vector bool short __a, vector short __b)
+{
+ return
+ __builtin_altivec_vcmpequh_p(__CR6_LT, (vector short)__a, (vector short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_eq(vector bool short __a, vector unsigned short __b)
+{
+ return
+ __builtin_altivec_vcmpequh_p(__CR6_LT, (vector short)__a, (vector short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_eq(vector bool short __a, vector bool short __b)
+{
+ return
+ __builtin_altivec_vcmpequh_p(__CR6_LT, (vector short)__a, (vector short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_eq(vector pixel __a, vector pixel __b)
+{
+ return
+ __builtin_altivec_vcmpequh_p(__CR6_LT, (vector short)__a, (vector short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_eq(vector int __a, vector int __b)
+{
+ return __builtin_altivec_vcmpequw_p(__CR6_LT, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_all_eq(vector int __a, vector bool int __b)
+{
+ return __builtin_altivec_vcmpequw_p(__CR6_LT, __a, (vector int)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_eq(vector unsigned int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vcmpequw_p(__CR6_LT, (vector int)__a, (vector int)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_eq(vector unsigned int __a, vector bool int __b)
+{
+ return __builtin_altivec_vcmpequw_p(__CR6_LT, (vector int)__a, (vector int)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_eq(vector bool int __a, vector int __b)
+{
+ return __builtin_altivec_vcmpequw_p(__CR6_LT, (vector int)__a, (vector int)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_eq(vector bool int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vcmpequw_p(__CR6_LT, (vector int)__a, (vector int)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_eq(vector bool int __a, vector bool int __b)
+{
+ return __builtin_altivec_vcmpequw_p(__CR6_LT, (vector int)__a, (vector int)__b);
+}
+
+#ifdef __POWER8_VECTOR__
+static int __ATTRS_o_ai
+vec_all_eq(vector signed long long __a, vector signed long long __b)
+{
+ return __builtin_altivec_vcmpequd_p(__CR6_LT, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_all_eq(vector long long __a, vector bool long long __b)
+{
+ return __builtin_altivec_vcmpequd_p(__CR6_LT, __a, (vector long long)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_eq(vector unsigned long long __a, vector unsigned long long __b)
+{
+ return __builtin_altivec_vcmpequd_p(__CR6_LT, (vector long long)__a,
+ (vector long long)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_eq(vector unsigned long long __a, vector bool long long __b)
+{
+ return __builtin_altivec_vcmpequd_p(__CR6_LT, (vector long long)__a,
+ (vector long long)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_eq(vector bool long long __a, vector long long __b)
+{
+ return __builtin_altivec_vcmpequd_p(__CR6_LT, (vector long long)__a,
+ (vector long long)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_eq(vector bool long long __a, vector unsigned long long __b)
+{
+ return __builtin_altivec_vcmpequd_p(__CR6_LT, (vector long long)__a,
+ (vector long long)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_eq(vector bool long long __a, vector bool long long __b)
+{
+ return __builtin_altivec_vcmpequd_p(__CR6_LT, (vector long long)__a,
+ (vector long long)__b);
+}
+#endif
+
+static int __ATTRS_o_ai
+vec_all_eq(vector float __a, vector float __b)
+{
+ return __builtin_altivec_vcmpeqfp_p(__CR6_LT, __a, __b);
+}
+
+/* vec_all_ge */
+
+static int __ATTRS_o_ai
+vec_all_ge(vector signed char __a, vector signed char __b)
+{
+ return __builtin_altivec_vcmpgtsb_p(__CR6_EQ, __b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_all_ge(vector signed char __a, vector bool char __b)
+{
+ return __builtin_altivec_vcmpgtsb_p(__CR6_EQ, (vector signed char)__b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_all_ge(vector unsigned char __a, vector unsigned char __b)
+{
+ return __builtin_altivec_vcmpgtub_p(__CR6_EQ, __b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_all_ge(vector unsigned char __a, vector bool char __b)
+{
+ return __builtin_altivec_vcmpgtub_p(__CR6_EQ, (vector unsigned char)__b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_all_ge(vector bool char __a, vector signed char __b)
+{
+ return __builtin_altivec_vcmpgtub_p(__CR6_EQ,
+ (vector unsigned char)__b,
+ (vector unsigned char)__a);
+}
+
+static int __ATTRS_o_ai
+vec_all_ge(vector bool char __a, vector unsigned char __b)
+{
+ return __builtin_altivec_vcmpgtub_p(__CR6_EQ, __b, (vector unsigned char)__a);
+}
+
+static int __ATTRS_o_ai
+vec_all_ge(vector bool char __a, vector bool char __b)
+{
+ return __builtin_altivec_vcmpgtub_p(__CR6_EQ,
+ (vector unsigned char)__b,
+ (vector unsigned char)__a);
+}
+
+static int __ATTRS_o_ai
+vec_all_ge(vector short __a, vector short __b)
+{
+ return __builtin_altivec_vcmpgtsh_p(__CR6_EQ, __b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_all_ge(vector short __a, vector bool short __b)
+{
+ return __builtin_altivec_vcmpgtsh_p(__CR6_EQ, (vector short)__b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_all_ge(vector unsigned short __a, vector unsigned short __b)
+{
+ return __builtin_altivec_vcmpgtuh_p(__CR6_EQ, __b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_all_ge(vector unsigned short __a, vector bool short __b)
+{
+ return __builtin_altivec_vcmpgtuh_p(__CR6_EQ, (vector unsigned short)__b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_all_ge(vector bool short __a, vector short __b)
+{
+ return __builtin_altivec_vcmpgtuh_p(__CR6_EQ,
+ (vector unsigned short)__b,
+ (vector unsigned short)__a);
+}
+
+static int __ATTRS_o_ai
+vec_all_ge(vector bool short __a, vector unsigned short __b)
+{
+ return __builtin_altivec_vcmpgtuh_p(__CR6_EQ, __b, (vector unsigned short)__a);
+}
+
+static int __ATTRS_o_ai
+vec_all_ge(vector bool short __a, vector bool short __b)
+{
+ return __builtin_altivec_vcmpgtuh_p(__CR6_EQ,
+ (vector unsigned short)__b,
+ (vector unsigned short)__a);
+}
+
+static int __ATTRS_o_ai
+vec_all_ge(vector int __a, vector int __b)
+{
+ return __builtin_altivec_vcmpgtsw_p(__CR6_EQ, __b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_all_ge(vector int __a, vector bool int __b)
+{
+ return __builtin_altivec_vcmpgtsw_p(__CR6_EQ, (vector int)__b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_all_ge(vector unsigned int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vcmpgtuw_p(__CR6_EQ, __b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_all_ge(vector unsigned int __a, vector bool int __b)
+{
+ return __builtin_altivec_vcmpgtuw_p(__CR6_EQ, (vector unsigned int)__b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_all_ge(vector bool int __a, vector int __b)
+{
+ return __builtin_altivec_vcmpgtuw_p(__CR6_EQ,
+ (vector unsigned int)__b,
+ (vector unsigned int)__a);
+}
+
+static int __ATTRS_o_ai
+vec_all_ge(vector bool int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vcmpgtuw_p(__CR6_EQ, __b, (vector unsigned int)__a);
+}
+
+static int __ATTRS_o_ai
+vec_all_ge(vector bool int __a, vector bool int __b)
+{
+ return __builtin_altivec_vcmpgtuw_p(__CR6_EQ,
+ (vector unsigned int)__b,
+ (vector unsigned int)__a);
+}
+
+#ifdef __POWER8_VECTOR__
+static int __ATTRS_o_ai
+vec_all_ge(vector signed long long __a, vector signed long long __b)
+{
+ return __builtin_altivec_vcmpgtsd_p(__CR6_EQ, __b, __a);
+}
+static int __ATTRS_o_ai
+vec_all_ge(vector signed long long __a, vector bool long long __b)
+{
+ return __builtin_altivec_vcmpgtsd_p(__CR6_EQ, (vector signed long long)__b,
+ __a);
+}
+
+static int __ATTRS_o_ai
+vec_all_ge(vector unsigned long long __a, vector unsigned long long __b)
+{
+ return __builtin_altivec_vcmpgtud_p(__CR6_EQ, __b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_all_ge(vector unsigned long long __a, vector bool long long __b)
+{
+ return __builtin_altivec_vcmpgtud_p(__CR6_EQ, (vector unsigned long long)__b,
+ __a);
+}
+
+static int __ATTRS_o_ai
+vec_all_ge(vector bool long long __a, vector signed long long __b)
+{
+ return __builtin_altivec_vcmpgtud_p(__CR6_EQ,
+ (vector unsigned long long)__b,
+ (vector unsigned long long)__a);
+}
+
+static int __ATTRS_o_ai
+vec_all_ge(vector bool long long __a, vector unsigned long long __b)
+{
+ return __builtin_altivec_vcmpgtud_p(__CR6_EQ, __b,
+ (vector unsigned long long)__a);
+}
+
+static int __ATTRS_o_ai
+vec_all_ge(vector bool long long __a, vector bool long long __b)
+{
+ return __builtin_altivec_vcmpgtud_p(__CR6_EQ,
+ (vector unsigned long long)__b,
+ (vector unsigned long long)__a);
+}
+#endif
+
+static int __ATTRS_o_ai
+vec_all_ge(vector float __a, vector float __b)
+{
+ return __builtin_altivec_vcmpgefp_p(__CR6_LT, __a, __b);
+}
+
+/* vec_all_gt */
+
+static int __ATTRS_o_ai
+vec_all_gt(vector signed char __a, vector signed char __b)
+{
+ return __builtin_altivec_vcmpgtsb_p(__CR6_LT, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_all_gt(vector signed char __a, vector bool char __b)
+{
+ return __builtin_altivec_vcmpgtsb_p(__CR6_LT, __a, (vector signed char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_gt(vector unsigned char __a, vector unsigned char __b)
+{
+ return __builtin_altivec_vcmpgtub_p(__CR6_LT, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_all_gt(vector unsigned char __a, vector bool char __b)
+{
+ return __builtin_altivec_vcmpgtub_p(__CR6_LT, __a, (vector unsigned char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_gt(vector bool char __a, vector signed char __b)
+{
+ return __builtin_altivec_vcmpgtub_p(__CR6_LT,
+ (vector unsigned char)__a,
+ (vector unsigned char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_gt(vector bool char __a, vector unsigned char __b)
+{
+ return __builtin_altivec_vcmpgtub_p(__CR6_LT, (vector unsigned char)__a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_all_gt(vector bool char __a, vector bool char __b)
+{
+ return __builtin_altivec_vcmpgtub_p(__CR6_LT,
+ (vector unsigned char)__a,
+ (vector unsigned char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_gt(vector short __a, vector short __b)
+{
+ return __builtin_altivec_vcmpgtsh_p(__CR6_LT, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_all_gt(vector short __a, vector bool short __b)
+{
+ return __builtin_altivec_vcmpgtsh_p(__CR6_LT, __a, (vector short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_gt(vector unsigned short __a, vector unsigned short __b)
+{
+ return __builtin_altivec_vcmpgtuh_p(__CR6_LT, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_all_gt(vector unsigned short __a, vector bool short __b)
+{
+ return __builtin_altivec_vcmpgtuh_p(__CR6_LT, __a, (vector unsigned short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_gt(vector bool short __a, vector short __b)
+{
+ return __builtin_altivec_vcmpgtuh_p(__CR6_LT,
+ (vector unsigned short)__a,
+ (vector unsigned short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_gt(vector bool short __a, vector unsigned short __b)
+{
+ return __builtin_altivec_vcmpgtuh_p(__CR6_LT, (vector unsigned short)__a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_all_gt(vector bool short __a, vector bool short __b)
+{
+ return __builtin_altivec_vcmpgtuh_p(__CR6_LT,
+ (vector unsigned short)__a,
+ (vector unsigned short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_gt(vector int __a, vector int __b)
+{
+ return __builtin_altivec_vcmpgtsw_p(__CR6_LT, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_all_gt(vector int __a, vector bool int __b)
+{
+ return __builtin_altivec_vcmpgtsw_p(__CR6_LT, __a, (vector int)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_gt(vector unsigned int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vcmpgtuw_p(__CR6_LT, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_all_gt(vector unsigned int __a, vector bool int __b)
+{
+ return __builtin_altivec_vcmpgtuw_p(__CR6_LT, __a, (vector unsigned int)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_gt(vector bool int __a, vector int __b)
+{
+ return __builtin_altivec_vcmpgtuw_p(__CR6_LT,
+ (vector unsigned int)__a,
+ (vector unsigned int)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_gt(vector bool int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vcmpgtuw_p(__CR6_LT, (vector unsigned int)__a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_all_gt(vector bool int __a, vector bool int __b)
+{
+ return __builtin_altivec_vcmpgtuw_p(__CR6_LT,
+ (vector unsigned int)__a,
+ (vector unsigned int)__b);
+}
+
+#ifdef __POWER8_VECTOR__
+static int __ATTRS_o_ai
+vec_all_gt(vector signed long long __a, vector signed long long __b)
+{
+ return __builtin_altivec_vcmpgtsd_p(__CR6_LT, __a, __b);
+}
+static int __ATTRS_o_ai
+vec_all_gt(vector signed long long __a, vector bool long long __b)
+{
+ return __builtin_altivec_vcmpgtsd_p(__CR6_LT, __a,
+ (vector signed long long)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_gt(vector unsigned long long __a, vector unsigned long long __b)
+{
+ return __builtin_altivec_vcmpgtud_p(__CR6_LT, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_all_gt(vector unsigned long long __a, vector bool long long __b)
+{
+ return __builtin_altivec_vcmpgtud_p(__CR6_LT, __a,
+ (vector unsigned long long)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_gt(vector bool long long __a, vector signed long long __b)
+{
+ return __builtin_altivec_vcmpgtud_p(__CR6_LT,
+ (vector unsigned long long)__a,
+ (vector unsigned long long)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_gt(vector bool long long __a, vector unsigned long long __b)
+{
+ return __builtin_altivec_vcmpgtud_p(__CR6_LT, (vector unsigned long long)__a,
+ __b);
+}
+
+static int __ATTRS_o_ai
+vec_all_gt(vector bool long long __a, vector bool long long __b)
+{
+ return __builtin_altivec_vcmpgtud_p(__CR6_LT,
+ (vector unsigned long long)__a,
+ (vector unsigned long long)__b);
+}
+#endif
+
+static int __ATTRS_o_ai
+vec_all_gt(vector float __a, vector float __b)
+{
+ return __builtin_altivec_vcmpgtfp_p(__CR6_LT, __a, __b);
+}
+
+/* vec_all_in */
+
+static int __attribute__((__always_inline__))
+vec_all_in(vector float __a, vector float __b)
+{
+ return __builtin_altivec_vcmpbfp_p(__CR6_EQ, __a, __b);
+}
+
+/* vec_all_le */
+
+static int __ATTRS_o_ai
+vec_all_le(vector signed char __a, vector signed char __b)
+{
+ return __builtin_altivec_vcmpgtsb_p(__CR6_EQ, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_all_le(vector signed char __a, vector bool char __b)
+{
+ return __builtin_altivec_vcmpgtsb_p(__CR6_EQ, __a, (vector signed char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_le(vector unsigned char __a, vector unsigned char __b)
+{
+ return __builtin_altivec_vcmpgtub_p(__CR6_EQ, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_all_le(vector unsigned char __a, vector bool char __b)
+{
+ return __builtin_altivec_vcmpgtub_p(__CR6_EQ, __a, (vector unsigned char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_le(vector bool char __a, vector signed char __b)
+{
+ return __builtin_altivec_vcmpgtub_p(__CR6_EQ,
+ (vector unsigned char)__a,
+ (vector unsigned char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_le(vector bool char __a, vector unsigned char __b)
+{
+ return __builtin_altivec_vcmpgtub_p(__CR6_EQ, (vector unsigned char)__a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_all_le(vector bool char __a, vector bool char __b)
+{
+ return __builtin_altivec_vcmpgtub_p(__CR6_EQ,
+ (vector unsigned char)__a,
+ (vector unsigned char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_le(vector short __a, vector short __b)
+{
+ return __builtin_altivec_vcmpgtsh_p(__CR6_EQ, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_all_le(vector short __a, vector bool short __b)
+{
+ return __builtin_altivec_vcmpgtsh_p(__CR6_EQ, __a, (vector short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_le(vector unsigned short __a, vector unsigned short __b)
+{
+ return __builtin_altivec_vcmpgtuh_p(__CR6_EQ, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_all_le(vector unsigned short __a, vector bool short __b)
+{
+ return __builtin_altivec_vcmpgtuh_p(__CR6_EQ, __a, (vector unsigned short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_le(vector bool short __a, vector short __b)
+{
+ return __builtin_altivec_vcmpgtuh_p(__CR6_EQ,
+ (vector unsigned short)__a,
+ (vector unsigned short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_le(vector bool short __a, vector unsigned short __b)
+{
+ return __builtin_altivec_vcmpgtuh_p(__CR6_EQ, (vector unsigned short)__a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_all_le(vector bool short __a, vector bool short __b)
+{
+ return __builtin_altivec_vcmpgtuh_p(__CR6_EQ,
+ (vector unsigned short)__a,
+ (vector unsigned short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_le(vector int __a, vector int __b)
+{
+ return __builtin_altivec_vcmpgtsw_p(__CR6_EQ, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_all_le(vector int __a, vector bool int __b)
+{
+ return __builtin_altivec_vcmpgtsw_p(__CR6_EQ, __a, (vector int)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_le(vector unsigned int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vcmpgtuw_p(__CR6_EQ, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_all_le(vector unsigned int __a, vector bool int __b)
+{
+ return __builtin_altivec_vcmpgtuw_p(__CR6_EQ, __a, (vector unsigned int)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_le(vector bool int __a, vector int __b)
+{
+ return __builtin_altivec_vcmpgtuw_p(__CR6_EQ,
+ (vector unsigned int)__a,
+ (vector unsigned int)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_le(vector bool int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vcmpgtuw_p(__CR6_EQ, (vector unsigned int)__a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_all_le(vector bool int __a, vector bool int __b)
+{
+ return __builtin_altivec_vcmpgtuw_p(__CR6_EQ,
+ (vector unsigned int)__a,
+ (vector unsigned int)__b);
+}
+
+#ifdef __POWER8_VECTOR__
+static int __ATTRS_o_ai
+vec_all_le(vector signed long long __a, vector signed long long __b)
+{
+ return __builtin_altivec_vcmpgtsd_p(__CR6_EQ, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_all_le(vector unsigned long long __a, vector unsigned long long __b)
+{
+ return __builtin_altivec_vcmpgtud_p(__CR6_EQ, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_all_le(vector signed long long __a, vector bool long long __b)
+{
+ return __builtin_altivec_vcmpgtsd_p(__CR6_EQ, __a,
+ (vector signed long long)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_le(vector unsigned long long __a, vector bool long long __b)
+{
+ return __builtin_altivec_vcmpgtud_p(__CR6_EQ, __a,
+ (vector unsigned long long)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_le(vector bool long long __a, vector signed long long __b)
+{
+ return __builtin_altivec_vcmpgtud_p(__CR6_EQ,
+ (vector unsigned long long)__a,
+ (vector unsigned long long)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_le(vector bool long long __a, vector unsigned long long __b)
+{
+ return __builtin_altivec_vcmpgtud_p(__CR6_EQ, (vector unsigned long long)__a,
+ __b);
+}
+
+static int __ATTRS_o_ai
+vec_all_le(vector bool long long __a, vector bool long long __b)
+{
+ return __builtin_altivec_vcmpgtud_p(__CR6_EQ,
+ (vector unsigned long long)__a,
+ (vector unsigned long long)__b);
+}
+#endif
+
+static int __ATTRS_o_ai
+vec_all_le(vector float __a, vector float __b)
+{
+ return __builtin_altivec_vcmpgefp_p(__CR6_LT, __b, __a);
+}
+
+/* vec_all_lt */
+
+static int __ATTRS_o_ai
+vec_all_lt(vector signed char __a, vector signed char __b)
+{
+ return __builtin_altivec_vcmpgtsb_p(__CR6_LT, __b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_all_lt(vector signed char __a, vector bool char __b)
+{
+ return __builtin_altivec_vcmpgtsb_p(__CR6_LT, (vector signed char)__b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_all_lt(vector unsigned char __a, vector unsigned char __b)
+{
+ return __builtin_altivec_vcmpgtub_p(__CR6_LT, __b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_all_lt(vector unsigned char __a, vector bool char __b)
+{
+ return __builtin_altivec_vcmpgtub_p(__CR6_LT, (vector unsigned char)__b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_all_lt(vector bool char __a, vector signed char __b)
+{
+ return __builtin_altivec_vcmpgtub_p(__CR6_LT,
+ (vector unsigned char)__b,
+ (vector unsigned char)__a);
+}
+
+static int __ATTRS_o_ai
+vec_all_lt(vector bool char __a, vector unsigned char __b)
+{
+ return __builtin_altivec_vcmpgtub_p(__CR6_LT, __b, (vector unsigned char)__a);
+}
+
+static int __ATTRS_o_ai
+vec_all_lt(vector bool char __a, vector bool char __b)
+{
+ return __builtin_altivec_vcmpgtub_p(__CR6_LT,
+ (vector unsigned char)__b,
+ (vector unsigned char)__a);
+}
+
+static int __ATTRS_o_ai
+vec_all_lt(vector short __a, vector short __b)
+{
+ return __builtin_altivec_vcmpgtsh_p(__CR6_LT, __b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_all_lt(vector short __a, vector bool short __b)
+{
+ return __builtin_altivec_vcmpgtsh_p(__CR6_LT, (vector short)__b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_all_lt(vector unsigned short __a, vector unsigned short __b)
+{
+ return __builtin_altivec_vcmpgtuh_p(__CR6_LT, __b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_all_lt(vector unsigned short __a, vector bool short __b)
+{
+ return __builtin_altivec_vcmpgtuh_p(__CR6_LT, (vector unsigned short)__b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_all_lt(vector bool short __a, vector short __b)
+{
+ return __builtin_altivec_vcmpgtuh_p(__CR6_LT,
+ (vector unsigned short)__b,
+ (vector unsigned short)__a);
+}
+
+static int __ATTRS_o_ai
+vec_all_lt(vector bool short __a, vector unsigned short __b)
+{
+ return __builtin_altivec_vcmpgtuh_p(__CR6_LT, __b, (vector unsigned short)__a);
+}
+
+static int __ATTRS_o_ai
+vec_all_lt(vector bool short __a, vector bool short __b)
+{
+ return __builtin_altivec_vcmpgtuh_p(__CR6_LT,
+ (vector unsigned short)__b,
+ (vector unsigned short)__a);
+}
+
+static int __ATTRS_o_ai
+vec_all_lt(vector int __a, vector int __b)
+{
+ return __builtin_altivec_vcmpgtsw_p(__CR6_LT, __b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_all_lt(vector int __a, vector bool int __b)
+{
+ return __builtin_altivec_vcmpgtsw_p(__CR6_LT, (vector int)__b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_all_lt(vector unsigned int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vcmpgtuw_p(__CR6_LT, __b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_all_lt(vector unsigned int __a, vector bool int __b)
+{
+ return __builtin_altivec_vcmpgtuw_p(__CR6_LT, (vector unsigned int)__b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_all_lt(vector bool int __a, vector int __b)
+{
+ return __builtin_altivec_vcmpgtuw_p(__CR6_LT,
+ (vector unsigned int)__b,
+ (vector unsigned int)__a);
+}
+
+static int __ATTRS_o_ai
+vec_all_lt(vector bool int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vcmpgtuw_p(__CR6_LT, __b, (vector unsigned int)__a);
+}
+
+static int __ATTRS_o_ai
+vec_all_lt(vector bool int __a, vector bool int __b)
+{
+ return __builtin_altivec_vcmpgtuw_p(__CR6_LT,
+ (vector unsigned int)__b,
+ (vector unsigned int)__a);
+}
+
+#ifdef __POWER8_VECTOR__
+static int __ATTRS_o_ai
+vec_all_lt(vector signed long long __a, vector signed long long __b)
+{
+ return __builtin_altivec_vcmpgtsd_p(__CR6_LT, __b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_all_lt(vector unsigned long long __a, vector unsigned long long __b)
+{
+ return __builtin_altivec_vcmpgtud_p(__CR6_LT, __b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_all_lt(vector signed long long __a, vector bool long long __b)
+{
+ return __builtin_altivec_vcmpgtsd_p(__CR6_LT, (vector signed long long)__b,
+ __a);
+}
+
+static int __ATTRS_o_ai
+vec_all_lt(vector unsigned long long __a, vector bool long long __b)
+{
+ return __builtin_altivec_vcmpgtud_p(__CR6_LT, (vector unsigned long long)__b,
+ __a);
+}
+
+static int __ATTRS_o_ai
+vec_all_lt(vector bool long long __a, vector signed long long __b)
+{
+ return __builtin_altivec_vcmpgtud_p(__CR6_LT,
+ (vector unsigned long long)__b,
+ (vector unsigned long long)__a);
+}
+
+static int __ATTRS_o_ai
+vec_all_lt(vector bool long long __a, vector unsigned long long __b)
+{
+ return __builtin_altivec_vcmpgtud_p(__CR6_LT, __b,
+ (vector unsigned long long)__a);
+}
+
+static int __ATTRS_o_ai
+vec_all_lt(vector bool long long __a, vector bool long long __b)
+{
+ return __builtin_altivec_vcmpgtud_p(__CR6_LT,
+ (vector unsigned long long)__b,
+ (vector unsigned long long)__a);
+}
+#endif
+
+static int __ATTRS_o_ai
+vec_all_lt(vector float __a, vector float __b)
+{
+ return __builtin_altivec_vcmpgtfp_p(__CR6_LT, __b, __a);
+}
+
+/* vec_all_nan */
+
+static int __attribute__((__always_inline__))
+vec_all_nan(vector float __a)
+{
+ return __builtin_altivec_vcmpeqfp_p(__CR6_EQ, __a, __a);
+}
+
+/* vec_all_ne */
+
+static int __ATTRS_o_ai
+vec_all_ne(vector signed char __a, vector signed char __b)
+{
+ return __builtin_altivec_vcmpequb_p(__CR6_EQ, (vector char)__a, (vector char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_ne(vector signed char __a, vector bool char __b)
+{
+ return __builtin_altivec_vcmpequb_p(__CR6_EQ, (vector char)__a, (vector char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_ne(vector unsigned char __a, vector unsigned char __b)
+{
+ return __builtin_altivec_vcmpequb_p(__CR6_EQ, (vector char)__a, (vector char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_ne(vector unsigned char __a, vector bool char __b)
+{
+ return __builtin_altivec_vcmpequb_p(__CR6_EQ, (vector char)__a, (vector char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_ne(vector bool char __a, vector signed char __b)
+{
+ return __builtin_altivec_vcmpequb_p(__CR6_EQ, (vector char)__a, (vector char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_ne(vector bool char __a, vector unsigned char __b)
+{
+ return __builtin_altivec_vcmpequb_p(__CR6_EQ, (vector char)__a, (vector char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_ne(vector bool char __a, vector bool char __b)
+{
+ return __builtin_altivec_vcmpequb_p(__CR6_EQ, (vector char)__a, (vector char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_ne(vector short __a, vector short __b)
+{
+ return __builtin_altivec_vcmpequh_p(__CR6_EQ, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_all_ne(vector short __a, vector bool short __b)
+{
+ return __builtin_altivec_vcmpequh_p(__CR6_EQ, __a, (vector short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_ne(vector unsigned short __a, vector unsigned short __b)
+{
+ return
+ __builtin_altivec_vcmpequh_p(__CR6_EQ, (vector short)__a, (vector short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_ne(vector unsigned short __a, vector bool short __b)
+{
+ return
+ __builtin_altivec_vcmpequh_p(__CR6_EQ, (vector short)__a, (vector short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_ne(vector bool short __a, vector short __b)
+{
+ return
+ __builtin_altivec_vcmpequh_p(__CR6_EQ, (vector short)__a, (vector short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_ne(vector bool short __a, vector unsigned short __b)
+{
+ return
+ __builtin_altivec_vcmpequh_p(__CR6_EQ, (vector short)__a, (vector short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_ne(vector bool short __a, vector bool short __b)
+{
+ return
+ __builtin_altivec_vcmpequh_p(__CR6_EQ, (vector short)__a, (vector short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_ne(vector pixel __a, vector pixel __b)
+{
+ return
+ __builtin_altivec_vcmpequh_p(__CR6_EQ, (vector short)__a, (vector short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_ne(vector int __a, vector int __b)
+{
+ return __builtin_altivec_vcmpequw_p(__CR6_EQ, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_all_ne(vector int __a, vector bool int __b)
+{
+ return __builtin_altivec_vcmpequw_p(__CR6_EQ, __a, (vector int)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_ne(vector unsigned int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vcmpequw_p(__CR6_EQ, (vector int)__a, (vector int)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_ne(vector unsigned int __a, vector bool int __b)
+{
+ return __builtin_altivec_vcmpequw_p(__CR6_EQ, (vector int)__a, (vector int)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_ne(vector bool int __a, vector int __b)
+{
+ return __builtin_altivec_vcmpequw_p(__CR6_EQ, (vector int)__a, (vector int)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_ne(vector bool int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vcmpequw_p(__CR6_EQ, (vector int)__a, (vector int)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_ne(vector bool int __a, vector bool int __b)
+{
+ return __builtin_altivec_vcmpequw_p(__CR6_EQ, (vector int)__a, (vector int)__b);
+}
+
+#ifdef __POWER8_VECTOR__
+static int __ATTRS_o_ai
+vec_all_ne(vector signed long long __a, vector signed long long __b)
+{
+ return __builtin_altivec_vcmpequd_p(__CR6_EQ, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_all_ne(vector unsigned long long __a, vector unsigned long long __b)
+{
+ return __builtin_altivec_vcmpequd_p(__CR6_EQ, (vector long long)__a,
+ (vector long long)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_ne(vector signed long long __a, vector bool long long __b)
+{
+ return __builtin_altivec_vcmpequd_p(__CR6_EQ, __a,
+ (vector signed long long)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_ne(vector unsigned long long __a, vector bool long long __b)
+{
+ return __builtin_altivec_vcmpequd_p(__CR6_EQ, (vector signed long long)__a,
+ (vector signed long long)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_ne(vector bool long long __a, vector signed long long __b)
+{
+ return __builtin_altivec_vcmpequd_p(__CR6_EQ, (vector signed long long)__a,
+ (vector signed long long)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_ne(vector bool long long __a, vector unsigned long long __b)
+{
+ return __builtin_altivec_vcmpequd_p(__CR6_EQ, (vector signed long long)__a,
+ (vector signed long long)__b);
+}
+
+static int __ATTRS_o_ai
+vec_all_ne(vector bool long long __a, vector bool long long __b)
+{
+ return __builtin_altivec_vcmpequd_p(__CR6_EQ, (vector signed long long)__a,
+ (vector signed long long)__b);
+}
+#endif
+
+static int __ATTRS_o_ai
+vec_all_ne(vector float __a, vector float __b)
+{
+ return __builtin_altivec_vcmpeqfp_p(__CR6_EQ, __a, __b);
+}
+
+/* vec_all_nge */
+
+static int __attribute__((__always_inline__))
+vec_all_nge(vector float __a, vector float __b)
+{
+ return __builtin_altivec_vcmpgefp_p(__CR6_EQ, __a, __b);
+}
+
+/* vec_all_ngt */
+
+static int __attribute__((__always_inline__))
+vec_all_ngt(vector float __a, vector float __b)
+{
+ return __builtin_altivec_vcmpgtfp_p(__CR6_EQ, __a, __b);
+}
+
+/* vec_all_nle */
+
+static int __attribute__((__always_inline__))
+vec_all_nle(vector float __a, vector float __b)
+{
+ return __builtin_altivec_vcmpgefp_p(__CR6_EQ, __b, __a);
+}
+
+/* vec_all_nlt */
+
+static int __attribute__((__always_inline__))
+vec_all_nlt(vector float __a, vector float __b)
+{
+ return __builtin_altivec_vcmpgtfp_p(__CR6_EQ, __b, __a);
+}
+
+/* vec_all_numeric */
+
+static int __attribute__((__always_inline__))
+vec_all_numeric(vector float __a)
+{
+ return __builtin_altivec_vcmpeqfp_p(__CR6_LT, __a, __a);
+}
+
+/* vec_any_eq */
+
+static int __ATTRS_o_ai
+vec_any_eq(vector signed char __a, vector signed char __b)
+{
+ return
+ __builtin_altivec_vcmpequb_p(__CR6_EQ_REV, (vector char)__a, (vector char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_eq(vector signed char __a, vector bool char __b)
+{
+ return
+ __builtin_altivec_vcmpequb_p(__CR6_EQ_REV, (vector char)__a, (vector char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_eq(vector unsigned char __a, vector unsigned char __b)
+{
+ return
+ __builtin_altivec_vcmpequb_p(__CR6_EQ_REV, (vector char)__a, (vector char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_eq(vector unsigned char __a, vector bool char __b)
+{
+ return
+ __builtin_altivec_vcmpequb_p(__CR6_EQ_REV, (vector char)__a, (vector char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_eq(vector bool char __a, vector signed char __b)
+{
+ return
+ __builtin_altivec_vcmpequb_p(__CR6_EQ_REV, (vector char)__a, (vector char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_eq(vector bool char __a, vector unsigned char __b)
+{
+ return
+ __builtin_altivec_vcmpequb_p(__CR6_EQ_REV, (vector char)__a, (vector char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_eq(vector bool char __a, vector bool char __b)
+{
+ return
+ __builtin_altivec_vcmpequb_p(__CR6_EQ_REV, (vector char)__a, (vector char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_eq(vector short __a, vector short __b)
+{
+ return __builtin_altivec_vcmpequh_p(__CR6_EQ_REV, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_any_eq(vector short __a, vector bool short __b)
+{
+ return __builtin_altivec_vcmpequh_p(__CR6_EQ_REV, __a, (vector short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_eq(vector unsigned short __a, vector unsigned short __b)
+{
+ return __builtin_altivec_vcmpequh_p(__CR6_EQ_REV,
+ (vector short)__a,
+ (vector short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_eq(vector unsigned short __a, vector bool short __b)
+{
+ return __builtin_altivec_vcmpequh_p(__CR6_EQ_REV,
+ (vector short)__a,
+ (vector short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_eq(vector bool short __a, vector short __b)
+{
+ return __builtin_altivec_vcmpequh_p(__CR6_EQ_REV,
+ (vector short)__a,
+ (vector short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_eq(vector bool short __a, vector unsigned short __b)
+{
+ return __builtin_altivec_vcmpequh_p(__CR6_EQ_REV,
+ (vector short)__a,
+ (vector short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_eq(vector bool short __a, vector bool short __b)
+{
+ return __builtin_altivec_vcmpequh_p(__CR6_EQ_REV,
+ (vector short)__a,
+ (vector short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_eq(vector pixel __a, vector pixel __b)
+{
+ return __builtin_altivec_vcmpequh_p(__CR6_EQ_REV,
+ (vector short)__a,
+ (vector short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_eq(vector int __a, vector int __b)
+{
+ return __builtin_altivec_vcmpequw_p(__CR6_EQ_REV, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_any_eq(vector int __a, vector bool int __b)
+{
+ return __builtin_altivec_vcmpequw_p(__CR6_EQ_REV, __a, (vector int)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_eq(vector unsigned int __a, vector unsigned int __b)
+{
+ return
+ __builtin_altivec_vcmpequw_p(__CR6_EQ_REV, (vector int)__a, (vector int)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_eq(vector unsigned int __a, vector bool int __b)
+{
+ return
+ __builtin_altivec_vcmpequw_p(__CR6_EQ_REV, (vector int)__a, (vector int)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_eq(vector bool int __a, vector int __b)
+{
+ return
+ __builtin_altivec_vcmpequw_p(__CR6_EQ_REV, (vector int)__a, (vector int)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_eq(vector bool int __a, vector unsigned int __b)
+{
+ return
+ __builtin_altivec_vcmpequw_p(__CR6_EQ_REV, (vector int)__a, (vector int)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_eq(vector bool int __a, vector bool int __b)
+{
+ return
+ __builtin_altivec_vcmpequw_p(__CR6_EQ_REV, (vector int)__a, (vector int)__b);
+}
+
+#ifdef __POWER8_VECTOR__
+static int __ATTRS_o_ai
+vec_any_eq(vector signed long long __a, vector signed long long __b)
+{
+ return __builtin_altivec_vcmpequd_p(__CR6_EQ_REV, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_any_eq(vector unsigned long long __a, vector unsigned long long __b)
+{
+ return
+ __builtin_altivec_vcmpequd_p(__CR6_EQ_REV, (vector long long)__a,
+ (vector long long)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_eq(vector signed long long __a, vector bool long long __b)
+{
+ return __builtin_altivec_vcmpequd_p(__CR6_EQ_REV, __a,
+ (vector signed long long)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_eq(vector unsigned long long __a, vector bool long long __b)
+{
+ return
+ __builtin_altivec_vcmpequd_p(__CR6_EQ_REV, (vector signed long long)__a,
+ (vector signed long long)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_eq(vector bool long long __a, vector signed long long __b)
+{
+ return
+ __builtin_altivec_vcmpequd_p(__CR6_EQ_REV, (vector signed long long)__a,
+ (vector signed long long)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_eq(vector bool long long __a, vector unsigned long long __b)
+{
+ return
+ __builtin_altivec_vcmpequd_p(__CR6_EQ_REV, (vector signed long long)__a,
+ (vector signed long long)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_eq(vector bool long long __a, vector bool long long __b)
+{
+ return
+ __builtin_altivec_vcmpequd_p(__CR6_EQ_REV, (vector signed long long)__a,
+ (vector signed long long)__b);
+}
+#endif
+
+static int __ATTRS_o_ai
+vec_any_eq(vector float __a, vector float __b)
+{
+ return __builtin_altivec_vcmpeqfp_p(__CR6_EQ_REV, __a, __b);
+}
+
+/* vec_any_ge */
+
+static int __ATTRS_o_ai
+vec_any_ge(vector signed char __a, vector signed char __b)
+{
+ return __builtin_altivec_vcmpgtsb_p(__CR6_LT_REV, __b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_any_ge(vector signed char __a, vector bool char __b)
+{
+ return __builtin_altivec_vcmpgtsb_p(__CR6_LT_REV, (vector signed char)__b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_any_ge(vector unsigned char __a, vector unsigned char __b)
+{
+ return __builtin_altivec_vcmpgtub_p(__CR6_LT_REV, __b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_any_ge(vector unsigned char __a, vector bool char __b)
+{
+ return __builtin_altivec_vcmpgtub_p(__CR6_LT_REV, (vector unsigned char)__b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_any_ge(vector bool char __a, vector signed char __b)
+{
+ return __builtin_altivec_vcmpgtub_p(__CR6_LT_REV,
+ (vector unsigned char)__b,
+ (vector unsigned char)__a);
+}
+
+static int __ATTRS_o_ai
+vec_any_ge(vector bool char __a, vector unsigned char __b)
+{
+ return __builtin_altivec_vcmpgtub_p(__CR6_LT_REV, __b, (vector unsigned char)__a);
+}
+
+static int __ATTRS_o_ai
+vec_any_ge(vector bool char __a, vector bool char __b)
+{
+ return __builtin_altivec_vcmpgtub_p(__CR6_LT_REV,
+ (vector unsigned char)__b,
+ (vector unsigned char)__a);
+}
+
+static int __ATTRS_o_ai
+vec_any_ge(vector short __a, vector short __b)
+{
+ return __builtin_altivec_vcmpgtsh_p(__CR6_LT_REV, __b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_any_ge(vector short __a, vector bool short __b)
+{
+ return __builtin_altivec_vcmpgtsh_p(__CR6_LT_REV, (vector short)__b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_any_ge(vector unsigned short __a, vector unsigned short __b)
+{
+ return __builtin_altivec_vcmpgtuh_p(__CR6_LT_REV, __b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_any_ge(vector unsigned short __a, vector bool short __b)
+{
+ return
+ __builtin_altivec_vcmpgtuh_p(__CR6_LT_REV, (vector unsigned short)__b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_any_ge(vector bool short __a, vector short __b)
+{
+ return __builtin_altivec_vcmpgtuh_p(__CR6_LT_REV,
+ (vector unsigned short)__b,
+ (vector unsigned short)__a);
+}
+
+static int __ATTRS_o_ai
+vec_any_ge(vector bool short __a, vector unsigned short __b)
+{
+ return
+ __builtin_altivec_vcmpgtuh_p(__CR6_LT_REV, __b, (vector unsigned short)__a);
+}
+
+static int __ATTRS_o_ai
+vec_any_ge(vector bool short __a, vector bool short __b)
+{
+ return __builtin_altivec_vcmpgtuh_p(__CR6_LT_REV,
+ (vector unsigned short)__b,
+ (vector unsigned short)__a);
+}
+
+static int __ATTRS_o_ai
+vec_any_ge(vector int __a, vector int __b)
+{
+ return __builtin_altivec_vcmpgtsw_p(__CR6_LT_REV, __b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_any_ge(vector int __a, vector bool int __b)
+{
+ return __builtin_altivec_vcmpgtsw_p(__CR6_LT_REV, (vector int)__b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_any_ge(vector unsigned int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vcmpgtuw_p(__CR6_LT_REV, __b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_any_ge(vector unsigned int __a, vector bool int __b)
+{
+ return __builtin_altivec_vcmpgtuw_p(__CR6_LT_REV, (vector unsigned int)__b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_any_ge(vector bool int __a, vector int __b)
+{
+ return __builtin_altivec_vcmpgtuw_p(__CR6_LT_REV,
+ (vector unsigned int)__b,
+ (vector unsigned int)__a);
+}
+
+static int __ATTRS_o_ai
+vec_any_ge(vector bool int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vcmpgtuw_p(__CR6_LT_REV, __b, (vector unsigned int)__a);
+}
+
+static int __ATTRS_o_ai
+vec_any_ge(vector bool int __a, vector bool int __b)
+{
+ return __builtin_altivec_vcmpgtuw_p(__CR6_LT_REV,
+ (vector unsigned int)__b,
+ (vector unsigned int)__a);
+}
+
+#ifdef __POWER8_VECTOR__
+static int __ATTRS_o_ai
+vec_any_ge(vector signed long long __a, vector signed long long __b)
+{
+ return __builtin_altivec_vcmpgtsd_p(__CR6_LT_REV, __b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_any_ge(vector unsigned long long __a, vector unsigned long long __b)
+{
+ return __builtin_altivec_vcmpgtud_p(__CR6_LT_REV, __b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_any_ge(vector signed long long __a, vector bool long long __b)
+{
+ return __builtin_altivec_vcmpgtsd_p(__CR6_LT_REV,
+ (vector signed long long)__b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_any_ge(vector unsigned long long __a, vector bool long long __b)
+{
+ return __builtin_altivec_vcmpgtud_p(__CR6_LT_REV,
+ (vector unsigned long long)__b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_any_ge(vector bool long long __a, vector signed long long __b)
+{
+ return __builtin_altivec_vcmpgtud_p(__CR6_LT_REV,
+ (vector unsigned long long)__b,
+ (vector unsigned long long)__a);
+}
+
+static int __ATTRS_o_ai
+vec_any_ge(vector bool long long __a, vector unsigned long long __b)
+{
+ return __builtin_altivec_vcmpgtud_p(__CR6_LT_REV, __b,
+ (vector unsigned long long)__a);
+}
+
+static int __ATTRS_o_ai
+vec_any_ge(vector bool long long __a, vector bool long long __b)
+{
+ return __builtin_altivec_vcmpgtud_p(__CR6_LT_REV,
+ (vector unsigned long long)__b,
+ (vector unsigned long long)__a);
+}
+#endif
+
+static int __ATTRS_o_ai
+vec_any_ge(vector float __a, vector float __b)
+{
+ return __builtin_altivec_vcmpgefp_p(__CR6_EQ_REV, __a, __b);
+}
+
+/* vec_any_gt */
+
+static int __ATTRS_o_ai
+vec_any_gt(vector signed char __a, vector signed char __b)
+{
+ return __builtin_altivec_vcmpgtsb_p(__CR6_EQ_REV, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_any_gt(vector signed char __a, vector bool char __b)
+{
+ return __builtin_altivec_vcmpgtsb_p(__CR6_EQ_REV, __a, (vector signed char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_gt(vector unsigned char __a, vector unsigned char __b)
+{
+ return __builtin_altivec_vcmpgtub_p(__CR6_EQ_REV, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_any_gt(vector unsigned char __a, vector bool char __b)
+{
+ return
+ __builtin_altivec_vcmpgtub_p(__CR6_EQ_REV, __a, (vector unsigned char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_gt(vector bool char __a, vector signed char __b)
+{
+ return __builtin_altivec_vcmpgtub_p(__CR6_EQ_REV,
+ (vector unsigned char)__a,
+ (vector unsigned char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_gt(vector bool char __a, vector unsigned char __b)
+{
+ return
+ __builtin_altivec_vcmpgtub_p(__CR6_EQ_REV, (vector unsigned char)__a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_any_gt(vector bool char __a, vector bool char __b)
+{
+ return __builtin_altivec_vcmpgtub_p(__CR6_EQ_REV,
+ (vector unsigned char)__a,
+ (vector unsigned char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_gt(vector short __a, vector short __b)
+{
+ return __builtin_altivec_vcmpgtsh_p(__CR6_EQ_REV, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_any_gt(vector short __a, vector bool short __b)
+{
+ return __builtin_altivec_vcmpgtsh_p(__CR6_EQ_REV, __a, (vector short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_gt(vector unsigned short __a, vector unsigned short __b)
+{
+ return __builtin_altivec_vcmpgtuh_p(__CR6_EQ_REV, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_any_gt(vector unsigned short __a, vector bool short __b)
+{
+ return
+ __builtin_altivec_vcmpgtuh_p(__CR6_EQ_REV, __a, (vector unsigned short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_gt(vector bool short __a, vector short __b)
+{
+ return __builtin_altivec_vcmpgtuh_p(__CR6_EQ_REV,
+ (vector unsigned short)__a,
+ (vector unsigned short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_gt(vector bool short __a, vector unsigned short __b)
+{
+ return
+ __builtin_altivec_vcmpgtuh_p(__CR6_EQ_REV, (vector unsigned short)__a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_any_gt(vector bool short __a, vector bool short __b)
+{
+ return __builtin_altivec_vcmpgtuh_p(__CR6_EQ_REV,
+ (vector unsigned short)__a,
+ (vector unsigned short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_gt(vector int __a, vector int __b)
+{
+ return __builtin_altivec_vcmpgtsw_p(__CR6_EQ_REV, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_any_gt(vector int __a, vector bool int __b)
+{
+ return __builtin_altivec_vcmpgtsw_p(__CR6_EQ_REV, __a, (vector int)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_gt(vector unsigned int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vcmpgtuw_p(__CR6_EQ_REV, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_any_gt(vector unsigned int __a, vector bool int __b)
+{
+ return __builtin_altivec_vcmpgtuw_p(__CR6_EQ_REV, __a, (vector unsigned int)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_gt(vector bool int __a, vector int __b)
+{
+ return __builtin_altivec_vcmpgtuw_p(__CR6_EQ_REV,
+ (vector unsigned int)__a,
+ (vector unsigned int)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_gt(vector bool int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vcmpgtuw_p(__CR6_EQ_REV, (vector unsigned int)__a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_any_gt(vector bool int __a, vector bool int __b)
+{
+ return __builtin_altivec_vcmpgtuw_p(__CR6_EQ_REV,
+ (vector unsigned int)__a,
+ (vector unsigned int)__b);
+}
+
+#ifdef __POWER8_VECTOR__
+static int __ATTRS_o_ai
+vec_any_gt(vector signed long long __a, vector signed long long __b)
+{
+ return __builtin_altivec_vcmpgtsd_p(__CR6_EQ_REV, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_any_gt(vector unsigned long long __a, vector unsigned long long __b)
+{
+ return __builtin_altivec_vcmpgtud_p(__CR6_EQ_REV, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_any_gt(vector signed long long __a, vector bool long long __b)
+{
+ return __builtin_altivec_vcmpgtsd_p(__CR6_EQ_REV, __a,
+ (vector signed long long)__b);
+}
+
+
+static int __ATTRS_o_ai
+vec_any_gt(vector unsigned long long __a, vector bool long long __b)
+{
+ return __builtin_altivec_vcmpgtud_p(__CR6_EQ_REV, __a,
+ (vector unsigned long long)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_gt(vector bool long long __a, vector signed long long __b)
+{
+ return __builtin_altivec_vcmpgtud_p(__CR6_EQ_REV,
+ (vector unsigned long long)__a,
+ (vector unsigned long long)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_gt(vector bool long long __a, vector unsigned long long __b)
+{
+ return __builtin_altivec_vcmpgtud_p(__CR6_EQ_REV,
+ (vector unsigned long long)__a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_any_gt(vector bool long long __a, vector bool long long __b)
+{
+ return __builtin_altivec_vcmpgtud_p(__CR6_EQ_REV,
+ (vector unsigned long long)__a,
+ (vector unsigned long long)__b);
+}
+#endif
+
+static int __ATTRS_o_ai
+vec_any_gt(vector float __a, vector float __b)
+{
+ return __builtin_altivec_vcmpgtfp_p(__CR6_EQ_REV, __a, __b);
+}
+
+/* vec_any_le */
+
+static int __ATTRS_o_ai
+vec_any_le(vector signed char __a, vector signed char __b)
+{
+ return __builtin_altivec_vcmpgtsb_p(__CR6_LT_REV, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_any_le(vector signed char __a, vector bool char __b)
+{
+ return __builtin_altivec_vcmpgtsb_p(__CR6_LT_REV, __a, (vector signed char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_le(vector unsigned char __a, vector unsigned char __b)
+{
+ return __builtin_altivec_vcmpgtub_p(__CR6_LT_REV, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_any_le(vector unsigned char __a, vector bool char __b)
+{
+ return
+ __builtin_altivec_vcmpgtub_p(__CR6_LT_REV, __a, (vector unsigned char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_le(vector bool char __a, vector signed char __b)
+{
+ return __builtin_altivec_vcmpgtub_p(__CR6_LT_REV,
+ (vector unsigned char)__a,
+ (vector unsigned char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_le(vector bool char __a, vector unsigned char __b)
+{
+ return
+ __builtin_altivec_vcmpgtub_p(__CR6_LT_REV, (vector unsigned char)__a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_any_le(vector bool char __a, vector bool char __b)
+{
+ return __builtin_altivec_vcmpgtub_p(__CR6_LT_REV,
+ (vector unsigned char)__a,
+ (vector unsigned char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_le(vector short __a, vector short __b)
+{
+ return __builtin_altivec_vcmpgtsh_p(__CR6_LT_REV, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_any_le(vector short __a, vector bool short __b)
+{
+ return __builtin_altivec_vcmpgtsh_p(__CR6_LT_REV, __a, (vector short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_le(vector unsigned short __a, vector unsigned short __b)
+{
+ return __builtin_altivec_vcmpgtuh_p(__CR6_LT_REV, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_any_le(vector unsigned short __a, vector bool short __b)
+{
+ return
+ __builtin_altivec_vcmpgtuh_p(__CR6_LT_REV, __a, (vector unsigned short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_le(vector bool short __a, vector short __b)
+{
+ return __builtin_altivec_vcmpgtuh_p(__CR6_LT_REV,
+ (vector unsigned short)__a,
+ (vector unsigned short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_le(vector bool short __a, vector unsigned short __b)
+{
+ return
+ __builtin_altivec_vcmpgtuh_p(__CR6_LT_REV, (vector unsigned short)__a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_any_le(vector bool short __a, vector bool short __b)
+{
+ return __builtin_altivec_vcmpgtuh_p(__CR6_LT_REV,
+ (vector unsigned short)__a,
+ (vector unsigned short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_le(vector int __a, vector int __b)
+{
+ return __builtin_altivec_vcmpgtsw_p(__CR6_LT_REV, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_any_le(vector int __a, vector bool int __b)
+{
+ return __builtin_altivec_vcmpgtsw_p(__CR6_LT_REV, __a, (vector int)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_le(vector unsigned int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vcmpgtuw_p(__CR6_LT_REV, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_any_le(vector unsigned int __a, vector bool int __b)
+{
+ return __builtin_altivec_vcmpgtuw_p(__CR6_LT_REV, __a, (vector unsigned int)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_le(vector bool int __a, vector int __b)
+{
+ return __builtin_altivec_vcmpgtuw_p(__CR6_LT_REV,
+ (vector unsigned int)__a,
+ (vector unsigned int)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_le(vector bool int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vcmpgtuw_p(__CR6_LT_REV, (vector unsigned int)__a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_any_le(vector bool int __a, vector bool int __b)
+{
+ return __builtin_altivec_vcmpgtuw_p(__CR6_LT_REV,
+ (vector unsigned int)__a,
+ (vector unsigned int)__b);
+}
+
+#ifdef __POWER8_VECTOR__
+static int __ATTRS_o_ai
+vec_any_le(vector signed long long __a, vector signed long long __b)
+{
+ return __builtin_altivec_vcmpgtsd_p(__CR6_LT_REV, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_any_le(vector unsigned long long __a, vector unsigned long long __b)
+{
+ return __builtin_altivec_vcmpgtud_p(__CR6_LT_REV, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_any_le(vector signed long long __a, vector bool long long __b)
+{
+ return __builtin_altivec_vcmpgtsd_p(__CR6_LT_REV, __a,
+ (vector signed long long)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_le(vector unsigned long long __a, vector bool long long __b)
+{
+ return __builtin_altivec_vcmpgtud_p(__CR6_LT_REV, __a,
+ (vector unsigned long long)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_le(vector bool long long __a, vector signed long long __b)
+{
+ return __builtin_altivec_vcmpgtud_p(__CR6_LT_REV,
+ (vector unsigned long long)__a,
+ (vector unsigned long long)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_le(vector bool long long __a, vector unsigned long long __b)
+{
+ return __builtin_altivec_vcmpgtud_p(__CR6_LT_REV,
+ (vector unsigned long long)__a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_any_le(vector bool long long __a, vector bool long long __b)
+{
+ return __builtin_altivec_vcmpgtud_p(__CR6_LT_REV,
+ (vector unsigned long long)__a,
+ (vector unsigned long long)__b);
+}
+#endif
+
+static int __ATTRS_o_ai
+vec_any_le(vector float __a, vector float __b)
+{
+ return __builtin_altivec_vcmpgefp_p(__CR6_EQ_REV, __b, __a);
+}
+
+/* vec_any_lt */
+
+static int __ATTRS_o_ai
+vec_any_lt(vector signed char __a, vector signed char __b)
+{
+ return __builtin_altivec_vcmpgtsb_p(__CR6_EQ_REV, __b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_any_lt(vector signed char __a, vector bool char __b)
+{
+ return __builtin_altivec_vcmpgtsb_p(__CR6_EQ_REV, (vector signed char)__b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_any_lt(vector unsigned char __a, vector unsigned char __b)
+{
+ return __builtin_altivec_vcmpgtub_p(__CR6_EQ_REV, __b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_any_lt(vector unsigned char __a, vector bool char __b)
+{
+ return
+ __builtin_altivec_vcmpgtub_p(__CR6_EQ_REV, (vector unsigned char)__b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_any_lt(vector bool char __a, vector signed char __b)
+{
+ return __builtin_altivec_vcmpgtub_p(__CR6_EQ_REV,
+ (vector unsigned char)__b,
+ (vector unsigned char)__a);
+}
+
+static int __ATTRS_o_ai
+vec_any_lt(vector bool char __a, vector unsigned char __b)
+{
+ return
+ __builtin_altivec_vcmpgtub_p(__CR6_EQ_REV, __b, (vector unsigned char)__a);
+}
+
+static int __ATTRS_o_ai
+vec_any_lt(vector bool char __a, vector bool char __b)
+{
+ return __builtin_altivec_vcmpgtub_p(__CR6_EQ_REV,
+ (vector unsigned char)__b,
+ (vector unsigned char)__a);
+}
+
+static int __ATTRS_o_ai
+vec_any_lt(vector short __a, vector short __b)
+{
+ return __builtin_altivec_vcmpgtsh_p(__CR6_EQ_REV, __b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_any_lt(vector short __a, vector bool short __b)
+{
+ return __builtin_altivec_vcmpgtsh_p(__CR6_EQ_REV, (vector short)__b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_any_lt(vector unsigned short __a, vector unsigned short __b)
+{
+ return __builtin_altivec_vcmpgtuh_p(__CR6_EQ_REV, __b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_any_lt(vector unsigned short __a, vector bool short __b)
+{
+ return
+ __builtin_altivec_vcmpgtuh_p(__CR6_EQ_REV, (vector unsigned short)__b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_any_lt(vector bool short __a, vector short __b)
+{
+ return __builtin_altivec_vcmpgtuh_p(__CR6_EQ_REV,
+ (vector unsigned short)__b,
+ (vector unsigned short)__a);
+}
+
+static int __ATTRS_o_ai
+vec_any_lt(vector bool short __a, vector unsigned short __b)
+{
+ return
+ __builtin_altivec_vcmpgtuh_p(__CR6_EQ_REV, __b, (vector unsigned short)__a);
+}
+
+static int __ATTRS_o_ai
+vec_any_lt(vector bool short __a, vector bool short __b)
+{
+ return __builtin_altivec_vcmpgtuh_p(__CR6_EQ_REV,
+ (vector unsigned short)__b,
+ (vector unsigned short)__a);
+}
+
+static int __ATTRS_o_ai
+vec_any_lt(vector int __a, vector int __b)
+{
+ return __builtin_altivec_vcmpgtsw_p(__CR6_EQ_REV, __b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_any_lt(vector int __a, vector bool int __b)
+{
+ return __builtin_altivec_vcmpgtsw_p(__CR6_EQ_REV, (vector int)__b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_any_lt(vector unsigned int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vcmpgtuw_p(__CR6_EQ_REV, __b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_any_lt(vector unsigned int __a, vector bool int __b)
+{
+ return __builtin_altivec_vcmpgtuw_p(__CR6_EQ_REV, (vector unsigned int)__b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_any_lt(vector bool int __a, vector int __b)
+{
+ return __builtin_altivec_vcmpgtuw_p(__CR6_EQ_REV,
+ (vector unsigned int)__b,
+ (vector unsigned int)__a);
+}
+
+static int __ATTRS_o_ai
+vec_any_lt(vector bool int __a, vector unsigned int __b)
+{
+ return __builtin_altivec_vcmpgtuw_p(__CR6_EQ_REV, __b, (vector unsigned int)__a);
+}
+
+static int __ATTRS_o_ai
+vec_any_lt(vector bool int __a, vector bool int __b)
+{
+ return __builtin_altivec_vcmpgtuw_p(__CR6_EQ_REV,
+ (vector unsigned int)__b,
+ (vector unsigned int)__a);
+}
+
+#ifdef __POWER8_VECTOR__
+static int __ATTRS_o_ai
+vec_any_lt(vector signed long long __a, vector signed long long __b)
+{
+ return __builtin_altivec_vcmpgtsd_p(__CR6_EQ_REV, __b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_any_lt(vector unsigned long long __a, vector unsigned long long __b)
+{
+ return __builtin_altivec_vcmpgtud_p(__CR6_EQ_REV, __b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_any_lt(vector signed long long __a, vector bool long long __b)
+{
+ return __builtin_altivec_vcmpgtsd_p(__CR6_EQ_REV,
+ (vector signed long long)__b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_any_lt(vector unsigned long long __a, vector bool long long __b)
+{
+ return __builtin_altivec_vcmpgtud_p(__CR6_EQ_REV,
+ (vector unsigned long long)__b, __a);
+}
+
+static int __ATTRS_o_ai
+vec_any_lt(vector bool long long __a, vector signed long long __b)
+{
+ return __builtin_altivec_vcmpgtud_p(__CR6_EQ_REV,
+ (vector unsigned long long)__b,
+ (vector unsigned long long)__a);
+}
+
+static int __ATTRS_o_ai
+vec_any_lt(vector bool long long __a, vector unsigned long long __b)
+{
+ return __builtin_altivec_vcmpgtud_p(__CR6_EQ_REV, __b,
+ (vector unsigned long long)__a);
+}
+
+static int __ATTRS_o_ai
+vec_any_lt(vector bool long long __a, vector bool long long __b)
+{
+ return __builtin_altivec_vcmpgtud_p(__CR6_EQ_REV,
+ (vector unsigned long long)__b,
+ (vector unsigned long long)__a);
+}
+#endif
+
+static int __ATTRS_o_ai
+vec_any_lt(vector float __a, vector float __b)
+{
+ return __builtin_altivec_vcmpgtfp_p(__CR6_EQ_REV, __b, __a);
+}
+
+/* vec_any_nan */
+
+static int __attribute__((__always_inline__))
+vec_any_nan(vector float __a)
+{
+ return __builtin_altivec_vcmpeqfp_p(__CR6_LT_REV, __a, __a);
+}
+
+/* vec_any_ne */
+
+static int __ATTRS_o_ai
+vec_any_ne(vector signed char __a, vector signed char __b)
+{
+ return
+ __builtin_altivec_vcmpequb_p(__CR6_LT_REV, (vector char)__a, (vector char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_ne(vector signed char __a, vector bool char __b)
+{
+ return
+ __builtin_altivec_vcmpequb_p(__CR6_LT_REV, (vector char)__a, (vector char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_ne(vector unsigned char __a, vector unsigned char __b)
+{
+ return
+ __builtin_altivec_vcmpequb_p(__CR6_LT_REV, (vector char)__a, (vector char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_ne(vector unsigned char __a, vector bool char __b)
+{
+ return
+ __builtin_altivec_vcmpequb_p(__CR6_LT_REV, (vector char)__a, (vector char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_ne(vector bool char __a, vector signed char __b)
+{
+ return
+ __builtin_altivec_vcmpequb_p(__CR6_LT_REV, (vector char)__a, (vector char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_ne(vector bool char __a, vector unsigned char __b)
+{
+ return
+ __builtin_altivec_vcmpequb_p(__CR6_LT_REV, (vector char)__a, (vector char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_ne(vector bool char __a, vector bool char __b)
+{
+ return
+ __builtin_altivec_vcmpequb_p(__CR6_LT_REV, (vector char)__a, (vector char)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_ne(vector short __a, vector short __b)
+{
+ return __builtin_altivec_vcmpequh_p(__CR6_LT_REV, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_any_ne(vector short __a, vector bool short __b)
+{
+ return __builtin_altivec_vcmpequh_p(__CR6_LT_REV, __a, (vector short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_ne(vector unsigned short __a, vector unsigned short __b)
+{
+ return __builtin_altivec_vcmpequh_p(__CR6_LT_REV,
+ (vector short)__a,
+ (vector short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_ne(vector unsigned short __a, vector bool short __b)
+{
+ return __builtin_altivec_vcmpequh_p(__CR6_LT_REV,
+ (vector short)__a,
+ (vector short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_ne(vector bool short __a, vector short __b)
+{
+ return __builtin_altivec_vcmpequh_p(__CR6_LT_REV,
+ (vector short)__a,
+ (vector short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_ne(vector bool short __a, vector unsigned short __b)
+{
+ return __builtin_altivec_vcmpequh_p(__CR6_LT_REV,
+ (vector short)__a,
+ (vector short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_ne(vector bool short __a, vector bool short __b)
+{
+ return __builtin_altivec_vcmpequh_p(__CR6_LT_REV,
+ (vector short)__a,
+ (vector short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_ne(vector pixel __a, vector pixel __b)
+{
+ return __builtin_altivec_vcmpequh_p(__CR6_LT_REV,
+ (vector short)__a,
+ (vector short)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_ne(vector int __a, vector int __b)
+{
+ return __builtin_altivec_vcmpequw_p(__CR6_LT_REV, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_any_ne(vector int __a, vector bool int __b)
+{
+ return __builtin_altivec_vcmpequw_p(__CR6_LT_REV, __a, (vector int)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_ne(vector unsigned int __a, vector unsigned int __b)
+{
+ return
+ __builtin_altivec_vcmpequw_p(__CR6_LT_REV, (vector int)__a, (vector int)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_ne(vector unsigned int __a, vector bool int __b)
+{
+ return
+ __builtin_altivec_vcmpequw_p(__CR6_LT_REV, (vector int)__a, (vector int)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_ne(vector bool int __a, vector int __b)
+{
+ return
+ __builtin_altivec_vcmpequw_p(__CR6_LT_REV, (vector int)__a, (vector int)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_ne(vector bool int __a, vector unsigned int __b)
+{
+ return
+ __builtin_altivec_vcmpequw_p(__CR6_LT_REV, (vector int)__a, (vector int)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_ne(vector bool int __a, vector bool int __b)
+{
+ return
+ __builtin_altivec_vcmpequw_p(__CR6_LT_REV, (vector int)__a, (vector int)__b);
+}
+
+#ifdef __POWER8_VECTOR__
+static int __ATTRS_o_ai
+vec_any_ne(vector signed long long __a, vector signed long long __b)
+{
+ return __builtin_altivec_vcmpequd_p(__CR6_LT_REV, __a, __b);
+}
+
+static int __ATTRS_o_ai
+vec_any_ne(vector unsigned long long __a, vector unsigned long long __b)
+{
+ return
+ __builtin_altivec_vcmpequd_p(__CR6_LT_REV, (vector long long)__a,
+ (vector long long)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_ne(vector signed long long __a, vector bool long long __b)
+{
+ return __builtin_altivec_vcmpequd_p(__CR6_LT_REV, __a,
+ (vector signed long long)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_ne(vector unsigned long long __a, vector bool long long __b)
+{
+ return
+ __builtin_altivec_vcmpequd_p(__CR6_LT_REV, (vector signed long long)__a,
+ (vector signed long long)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_ne(vector bool long long __a, vector signed long long __b)
+{
+ return
+ __builtin_altivec_vcmpequd_p(__CR6_LT_REV, (vector signed long long)__a,
+ (vector signed long long)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_ne(vector bool long long __a, vector unsigned long long __b)
+{
+ return
+ __builtin_altivec_vcmpequd_p(__CR6_LT_REV, (vector signed long long)__a,
+ (vector signed long long)__b);
+}
+
+static int __ATTRS_o_ai
+vec_any_ne(vector bool long long __a, vector bool long long __b)
+{
+ return
+ __builtin_altivec_vcmpequd_p(__CR6_LT_REV, (vector signed long long)__a,
+ (vector signed long long)__b);
+}
+#endif
+
+static int __ATTRS_o_ai
+vec_any_ne(vector float __a, vector float __b)
+{
+ return __builtin_altivec_vcmpeqfp_p(__CR6_LT_REV, __a, __b);
+}
+
+/* vec_any_nge */
+
+static int __attribute__((__always_inline__))
+vec_any_nge(vector float __a, vector float __b)
+{
+ return __builtin_altivec_vcmpgefp_p(__CR6_LT_REV, __a, __b);
+}
+
+/* vec_any_ngt */
+
+static int __attribute__((__always_inline__))
+vec_any_ngt(vector float __a, vector float __b)
+{
+ return __builtin_altivec_vcmpgtfp_p(__CR6_LT_REV, __a, __b);
+}
+
+/* vec_any_nle */
+
+static int __attribute__((__always_inline__))
+vec_any_nle(vector float __a, vector float __b)
+{
+ return __builtin_altivec_vcmpgefp_p(__CR6_LT_REV, __b, __a);
+}
+
+/* vec_any_nlt */
+
+static int __attribute__((__always_inline__))
+vec_any_nlt(vector float __a, vector float __b)
+{
+ return __builtin_altivec_vcmpgtfp_p(__CR6_LT_REV, __b, __a);
+}
+
+/* vec_any_numeric */
+
+static int __attribute__((__always_inline__))
+vec_any_numeric(vector float __a)
+{
+ return __builtin_altivec_vcmpeqfp_p(__CR6_EQ_REV, __a, __a);
+}
+
+/* vec_any_out */
+
+static int __attribute__((__always_inline__))
+vec_any_out(vector float __a, vector float __b)
+{
+ return __builtin_altivec_vcmpbfp_p(__CR6_EQ_REV, __a, __b);
+}
+
+/* Power 8 Crypto functions
+Note: We diverge from the current GCC implementation with regard
+to cryptography and related functions as follows:
+- Only the SHA and AES instructions and builtins are disabled by -mno-crypto
+- The remaining ones are only available on Power8 and up so
+ require -mpower8-vector
+The justification for this is that export requirements require that
+Category:Vector.Crypto is optional (i.e. compliant hardware may not provide
+support). As a result, we need to be able to turn off support for those.
+The remaining ones (currently controlled by -mcrypto for GCC) still
+need to be provided on compliant hardware even if Vector.Crypto is not
+provided.
+FIXME: the naming convention for the builtins will be adjusted due
+to the inconsistency (__builtin_crypto_ prefix on builtins that cannot be
+removed with -mno-crypto). This is under development.
+*/
+#ifdef __CRYPTO__
+static vector unsigned long long __attribute__((__always_inline__))
+__builtin_crypto_vsbox (vector unsigned long long __a)
+{
+ return __builtin_altivec_crypto_vsbox(__a);
+}
+
+static vector unsigned long long __attribute__((__always_inline__))
+__builtin_crypto_vcipher (vector unsigned long long __a,
+ vector unsigned long long __b)
+{
+ return __builtin_altivec_crypto_vcipher(__a, __b);
+}
+
+static vector unsigned long long __attribute__((__always_inline__))
+__builtin_crypto_vcipherlast (vector unsigned long long __a,
+ vector unsigned long long __b)
+{
+ return __builtin_altivec_crypto_vcipherlast(__a, __b);
+}
+
+static vector unsigned long long __attribute__((__always_inline__))
+__builtin_crypto_vncipher (vector unsigned long long __a,
+ vector unsigned long long __b)
+{
+ return __builtin_altivec_crypto_vncipher(__a, __b);
+}
+
+static vector unsigned long long __attribute__((__always_inline__))
+__builtin_crypto_vncipherlast (vector unsigned long long __a,
+ vector unsigned long long __b)
+{
+ return __builtin_altivec_crypto_vncipherlast(__a, __b);
+}
+
+
+#define __builtin_crypto_vshasigmad __builtin_altivec_crypto_vshasigmad
+#define __builtin_crypto_vshasigmaw __builtin_altivec_crypto_vshasigmaw
+#endif
+
+#ifdef __POWER8_VECTOR__
+static vector unsigned char __ATTRS_o_ai
+__builtin_crypto_vpermxor (vector unsigned char __a,
+ vector unsigned char __b,
+ vector unsigned char __c)
+{
+ return __builtin_altivec_crypto_vpermxor(__a, __b, __c);
+}
+
+static vector unsigned short __ATTRS_o_ai
+__builtin_crypto_vpermxor (vector unsigned short __a,
+ vector unsigned short __b,
+ vector unsigned short __c)
+{
+ return (vector unsigned short)
+ __builtin_altivec_crypto_vpermxor((vector unsigned char) __a,
+ (vector unsigned char) __b,
+ (vector unsigned char) __c);
+}
+
+static vector unsigned int __ATTRS_o_ai
+__builtin_crypto_vpermxor (vector unsigned int __a,
+ vector unsigned int __b,
+ vector unsigned int __c)
+{
+ return (vector unsigned int)
+ __builtin_altivec_crypto_vpermxor((vector unsigned char) __a,
+ (vector unsigned char) __b,
+ (vector unsigned char) __c);
+}
+
+static vector unsigned long long __ATTRS_o_ai
+__builtin_crypto_vpermxor (vector unsigned long long __a,
+ vector unsigned long long __b,
+ vector unsigned long long __c)
+{
+ return (vector unsigned long long)
+ __builtin_altivec_crypto_vpermxor((vector unsigned char) __a,
+ (vector unsigned char) __b,
+ (vector unsigned char) __c);
+}
+
+static vector unsigned char __ATTRS_o_ai
+__builtin_crypto_vpmsumb (vector unsigned char __a,
+ vector unsigned char __b)
+{
+ return __builtin_altivec_crypto_vpmsumb(__a, __b);
+}
+
+static vector unsigned short __ATTRS_o_ai
+__builtin_crypto_vpmsumb (vector unsigned short __a,
+ vector unsigned short __b)
+{
+ return __builtin_altivec_crypto_vpmsumh(__a, __b);
+}
+
+static vector unsigned int __ATTRS_o_ai
+__builtin_crypto_vpmsumb (vector unsigned int __a,
+ vector unsigned int __b)
+{
+ return __builtin_altivec_crypto_vpmsumw(__a, __b);
+}
+
+static vector unsigned long long __ATTRS_o_ai
+__builtin_crypto_vpmsumb (vector unsigned long long __a,
+ vector unsigned long long __b)
+{
+ return __builtin_altivec_crypto_vpmsumd(__a, __b);
+}
+#endif
+
+#undef __ATTRS_o_ai
+
+#endif /* __ALTIVEC_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/ammintrin.h b/contrib/llvm/tools/clang/lib/Headers/ammintrin.h
new file mode 100644
index 0000000..d87b9cd
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/ammintrin.h
@@ -0,0 +1,68 @@
+/*===---- ammintrin.h - SSE4a intrinsics -----------------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#ifndef __AMMINTRIN_H
+#define __AMMINTRIN_H
+
+#ifndef __SSE4A__
+#error "SSE4A instruction set not enabled"
+#else
+
+#include <pmmintrin.h>
+
+#define _mm_extracti_si64(x, len, idx) \
+ ((__m128i)__builtin_ia32_extrqi((__v2di)(__m128i)(x), \
+ (char)(len), (char)(idx)))
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_extract_si64(__m128i __x, __m128i __y)
+{
+ return (__m128i)__builtin_ia32_extrq((__v2di)__x, (__v16qi)__y);
+}
+
+#define _mm_inserti_si64(x, y, len, idx) \
+ ((__m128i)__builtin_ia32_insertqi((__v2di)(__m128i)(x), \
+ (__v2di)(__m128i)(y), \
+ (char)(len), (char)(idx)))
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_insert_si64(__m128i __x, __m128i __y)
+{
+ return (__m128i)__builtin_ia32_insertq((__v2di)__x, (__v2di)__y);
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_mm_stream_sd(double *__p, __m128d __a)
+{
+ __builtin_ia32_movntsd(__p, (__v2df)__a);
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_mm_stream_ss(float *__p, __m128 __a)
+{
+ __builtin_ia32_movntss(__p, (__v4sf)__a);
+}
+
+#endif /* __SSE4A__ */
+
+#endif /* __AMMINTRIN_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/arm_acle.h b/contrib/llvm/tools/clang/lib/Headers/arm_acle.h
new file mode 100644
index 0000000..6c56f3b
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/arm_acle.h
@@ -0,0 +1,296 @@
+/*===---- arm_acle.h - ARM Non-Neon intrinsics -----------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#ifndef __ARM_ACLE_H
+#define __ARM_ACLE_H
+
+#ifndef __ARM_ACLE
+#error "ACLE intrinsics support not enabled."
+#endif
+
+#include <stdint.h>
+
+#if defined(__cplusplus)
+extern "C" {
+#endif
+
+/* 8 SYNCHRONIZATION, BARRIER AND HINT INTRINSICS */
+/* 8.3 Memory barriers */
+#if !defined(_MSC_VER)
+#define __dmb(i) __builtin_arm_dmb(i)
+#define __dsb(i) __builtin_arm_dsb(i)
+#define __isb(i) __builtin_arm_isb(i)
+#endif
+
+/* 8.4 Hints */
+
+#if !defined(_MSC_VER)
+static __inline__ void __attribute__((__always_inline__, __nodebug__)) __wfi(void) {
+ __builtin_arm_wfi();
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__)) __wfe(void) {
+ __builtin_arm_wfe();
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__)) __sev(void) {
+ __builtin_arm_sev();
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__)) __sevl(void) {
+ __builtin_arm_sevl();
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__)) __yield(void) {
+ __builtin_arm_yield();
+}
+#endif
+
+#if __ARM_32BIT_STATE
+#define __dbg(t) __builtin_arm_dbg(t)
+#endif
+
+/* 8.5 Swap */
+static __inline__ uint32_t __attribute__((__always_inline__, __nodebug__))
+ __swp(uint32_t x, volatile uint32_t *p) {
+ uint32_t v;
+ do v = __builtin_arm_ldrex(p); while (__builtin_arm_strex(x, p));
+ return v;
+}
+
+/* 8.6 Memory prefetch intrinsics */
+/* 8.6.1 Data prefetch */
+#define __pld(addr) __pldx(0, 0, 0, addr)
+
+#if __ARM_32BIT_STATE
+#define __pldx(access_kind, cache_level, retention_policy, addr) \
+ __builtin_arm_prefetch(addr, access_kind, 1)
+#else
+#define __pldx(access_kind, cache_level, retention_policy, addr) \
+ __builtin_arm_prefetch(addr, access_kind, cache_level, retention_policy, 1)
+#endif
+
+/* 8.6.2 Instruction prefetch */
+#define __pli(addr) __plix(0, 0, addr)
+
+#if __ARM_32BIT_STATE
+#define __plix(cache_level, retention_policy, addr) \
+ __builtin_arm_prefetch(addr, 0, 0)
+#else
+#define __plix(cache_level, retention_policy, addr) \
+ __builtin_arm_prefetch(addr, 0, cache_level, retention_policy, 0)
+#endif
+
+/* 8.7 NOP */
+static __inline__ void __attribute__((__always_inline__, __nodebug__)) __nop(void) {
+ __builtin_arm_nop();
+}
+
+/* 9 DATA-PROCESSING INTRINSICS */
+/* 9.2 Miscellaneous data-processing intrinsics */
+/* ROR */
+static __inline__ uint32_t __attribute__((__always_inline__, __nodebug__))
+ __ror(uint32_t x, uint32_t y) {
+ y %= 32;
+ if (y == 0) return x;
+ return (x >> y) | (x << (32 - y));
+}
+
+static __inline__ uint64_t __attribute__((__always_inline__, __nodebug__))
+ __rorll(uint64_t x, uint32_t y) {
+ y %= 64;
+ if (y == 0) return x;
+ return (x >> y) | (x << (64 - y));
+}
+
+static __inline__ unsigned long __attribute__((__always_inline__, __nodebug__))
+ __rorl(unsigned long x, uint32_t y) {
+#if __SIZEOF_LONG__ == 4
+ return __ror(x, y);
+#else
+ return __rorll(x, y);
+#endif
+}
+
+
+/* CLZ */
+static __inline__ uint32_t __attribute__((__always_inline__, __nodebug__))
+ __clz(uint32_t t) {
+ return __builtin_clz(t);
+}
+
+static __inline__ unsigned long __attribute__((__always_inline__, __nodebug__))
+ __clzl(unsigned long t) {
+ return __builtin_clzl(t);
+}
+
+static __inline__ uint64_t __attribute__((__always_inline__, __nodebug__))
+ __clzll(uint64_t t) {
+ return __builtin_clzll(t);
+}
+
+/* REV */
+static __inline__ uint32_t __attribute__((__always_inline__, __nodebug__))
+ __rev(uint32_t t) {
+ return __builtin_bswap32(t);
+}
+
+static __inline__ unsigned long __attribute__((__always_inline__, __nodebug__))
+ __revl(unsigned long t) {
+#if __SIZEOF_LONG__ == 4
+ return __builtin_bswap32(t);
+#else
+ return __builtin_bswap64(t);
+#endif
+}
+
+static __inline__ uint64_t __attribute__((__always_inline__, __nodebug__))
+ __revll(uint64_t t) {
+ return __builtin_bswap64(t);
+}
+
+/* REV16 */
+static __inline__ uint32_t __attribute__((__always_inline__, __nodebug__))
+ __rev16(uint32_t t) {
+ return __ror(__rev(t), 16);
+}
+
+static __inline__ unsigned long __attribute__((__always_inline__, __nodebug__))
+ __rev16l(unsigned long t) {
+ return __rorl(__revl(t), sizeof(long) / 2);
+}
+
+static __inline__ uint64_t __attribute__((__always_inline__, __nodebug__))
+ __rev16ll(uint64_t t) {
+ return __rorll(__revll(t), 32);
+}
+
+/* REVSH */
+static __inline__ int16_t __attribute__((__always_inline__, __nodebug__))
+ __revsh(int16_t t) {
+ return __builtin_bswap16(t);
+}
+
+/* RBIT */
+static __inline__ uint32_t __attribute__((__always_inline__, __nodebug__))
+ __rbit(uint32_t t) {
+ return __builtin_arm_rbit(t);
+}
+
+static __inline__ uint64_t __attribute__((__always_inline__, __nodebug__))
+ __rbitll(uint64_t t) {
+#if __ARM_32BIT_STATE
+ return (((uint64_t) __builtin_arm_rbit(t)) << 32) |
+ __builtin_arm_rbit(t >> 32);
+#else
+ return __builtin_arm_rbit64(t);
+#endif
+}
+
+static __inline__ unsigned long __attribute__((__always_inline__, __nodebug__))
+ __rbitl(unsigned long t) {
+#if __SIZEOF_LONG__ == 4
+ return __rbit(t);
+#else
+ return __rbitll(t);
+#endif
+}
+
+/*
+ * 9.4 Saturating intrinsics
+ *
+ * FIXME: Change guard to their corrosponding __ARM_FEATURE flag when Q flag
+ * intrinsics are implemented and the flag is enabled.
+ */
+/* 9.4.1 Width-specified saturation intrinsics */
+#if __ARM_32BIT_STATE
+#define __ssat(x, y) __builtin_arm_ssat(x, y)
+#define __usat(x, y) __builtin_arm_usat(x, y)
+#endif
+
+/* 9.4.2 Saturating addition and subtraction intrinsics */
+#if __ARM_32BIT_STATE
+static __inline__ int32_t __attribute__((__always_inline__, __nodebug__))
+ __qadd(int32_t t, int32_t v) {
+ return __builtin_arm_qadd(t, v);
+}
+
+static __inline__ int32_t __attribute__((__always_inline__, __nodebug__))
+ __qsub(int32_t t, int32_t v) {
+ return __builtin_arm_qsub(t, v);
+}
+
+static __inline__ int32_t __attribute__((__always_inline__, __nodebug__))
+__qdbl(int32_t t) {
+ return __builtin_arm_qadd(t, t);
+}
+#endif
+
+/* 9.7 CRC32 intrinsics */
+#if __ARM_FEATURE_CRC32
+static __inline__ uint32_t __attribute__((__always_inline__, __nodebug__))
+ __crc32b(uint32_t a, uint8_t b) {
+ return __builtin_arm_crc32b(a, b);
+}
+
+static __inline__ uint32_t __attribute__((__always_inline__, __nodebug__))
+ __crc32h(uint32_t a, uint16_t b) {
+ return __builtin_arm_crc32h(a, b);
+}
+
+static __inline__ uint32_t __attribute__((__always_inline__, __nodebug__))
+ __crc32w(uint32_t a, uint32_t b) {
+ return __builtin_arm_crc32w(a, b);
+}
+
+static __inline__ uint32_t __attribute__((__always_inline__, __nodebug__))
+ __crc32d(uint32_t a, uint64_t b) {
+ return __builtin_arm_crc32d(a, b);
+}
+
+static __inline__ uint32_t __attribute__((__always_inline__, __nodebug__))
+ __crc32cb(uint32_t a, uint8_t b) {
+ return __builtin_arm_crc32cb(a, b);
+}
+
+static __inline__ uint32_t __attribute__((__always_inline__, __nodebug__))
+ __crc32ch(uint32_t a, uint16_t b) {
+ return __builtin_arm_crc32ch(a, b);
+}
+
+static __inline__ uint32_t __attribute__((__always_inline__, __nodebug__))
+ __crc32cw(uint32_t a, uint32_t b) {
+ return __builtin_arm_crc32cw(a, b);
+}
+
+static __inline__ uint32_t __attribute__((__always_inline__, __nodebug__))
+ __crc32cd(uint32_t a, uint64_t b) {
+ return __builtin_arm_crc32cd(a, b);
+}
+#endif
+
+#if defined(__cplusplus)
+}
+#endif
+
+#endif /* __ARM_ACLE_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/avx2intrin.h b/contrib/llvm/tools/clang/lib/Headers/avx2intrin.h
new file mode 100644
index 0000000..e1e639d
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/avx2intrin.h
@@ -0,0 +1,1251 @@
+/*===---- avx2intrin.h - AVX2 intrinsics -----------------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#ifndef __IMMINTRIN_H
+#error "Never use <avx2intrin.h> directly; include <immintrin.h> instead."
+#endif
+
+#ifndef __AVX2INTRIN_H
+#define __AVX2INTRIN_H
+
+/* SSE4 Multiple Packed Sums of Absolute Difference. */
+#define _mm256_mpsadbw_epu8(X, Y, M) __builtin_ia32_mpsadbw256((X), (Y), (M))
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_abs_epi8(__m256i __a)
+{
+ return (__m256i)__builtin_ia32_pabsb256((__v32qi)__a);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_abs_epi16(__m256i __a)
+{
+ return (__m256i)__builtin_ia32_pabsw256((__v16hi)__a);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_abs_epi32(__m256i __a)
+{
+ return (__m256i)__builtin_ia32_pabsd256((__v8si)__a);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_packs_epi16(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_packsswb256((__v16hi)__a, (__v16hi)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_packs_epi32(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_packssdw256((__v8si)__a, (__v8si)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_packus_epi16(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_packuswb256((__v16hi)__a, (__v16hi)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_packus_epi32(__m256i __V1, __m256i __V2)
+{
+ return (__m256i) __builtin_ia32_packusdw256((__v8si)__V1, (__v8si)__V2);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_add_epi8(__m256i __a, __m256i __b)
+{
+ return (__m256i)((__v32qi)__a + (__v32qi)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_add_epi16(__m256i __a, __m256i __b)
+{
+ return (__m256i)((__v16hi)__a + (__v16hi)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_add_epi32(__m256i __a, __m256i __b)
+{
+ return (__m256i)((__v8si)__a + (__v8si)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_add_epi64(__m256i __a, __m256i __b)
+{
+ return __a + __b;
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_adds_epi8(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_paddsb256((__v32qi)__a, (__v32qi)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_adds_epi16(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_paddsw256((__v16hi)__a, (__v16hi)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_adds_epu8(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_paddusb256((__v32qi)__a, (__v32qi)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_adds_epu16(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_paddusw256((__v16hi)__a, (__v16hi)__b);
+}
+
+#define _mm256_alignr_epi8(a, b, n) __extension__ ({ \
+ __m256i __a = (a); \
+ __m256i __b = (b); \
+ (__m256i)__builtin_ia32_palignr256((__v32qi)__a, (__v32qi)__b, (n)); })
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_and_si256(__m256i __a, __m256i __b)
+{
+ return __a & __b;
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_andnot_si256(__m256i __a, __m256i __b)
+{
+ return ~__a & __b;
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_avg_epu8(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_pavgb256((__v32qi)__a, (__v32qi)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_avg_epu16(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_pavgw256((__v16hi)__a, (__v16hi)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_blendv_epi8(__m256i __V1, __m256i __V2, __m256i __M)
+{
+ return (__m256i)__builtin_ia32_pblendvb256((__v32qi)__V1, (__v32qi)__V2,
+ (__v32qi)__M);
+}
+
+#define _mm256_blend_epi16(V1, V2, M) __extension__ ({ \
+ __m256i __V1 = (V1); \
+ __m256i __V2 = (V2); \
+ (__m256i)__builtin_shufflevector((__v16hi)__V1, (__v16hi)__V2, \
+ (((M) & 0x01) ? 16 : 0), \
+ (((M) & 0x02) ? 17 : 1), \
+ (((M) & 0x04) ? 18 : 2), \
+ (((M) & 0x08) ? 19 : 3), \
+ (((M) & 0x10) ? 20 : 4), \
+ (((M) & 0x20) ? 21 : 5), \
+ (((M) & 0x40) ? 22 : 6), \
+ (((M) & 0x80) ? 23 : 7), \
+ (((M) & 0x01) ? 24 : 8), \
+ (((M) & 0x02) ? 25 : 9), \
+ (((M) & 0x04) ? 26 : 10), \
+ (((M) & 0x08) ? 27 : 11), \
+ (((M) & 0x10) ? 28 : 12), \
+ (((M) & 0x20) ? 29 : 13), \
+ (((M) & 0x40) ? 30 : 14), \
+ (((M) & 0x80) ? 31 : 15)); })
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_cmpeq_epi8(__m256i __a, __m256i __b)
+{
+ return (__m256i)((__v32qi)__a == (__v32qi)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_cmpeq_epi16(__m256i __a, __m256i __b)
+{
+ return (__m256i)((__v16hi)__a == (__v16hi)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_cmpeq_epi32(__m256i __a, __m256i __b)
+{
+ return (__m256i)((__v8si)__a == (__v8si)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_cmpeq_epi64(__m256i __a, __m256i __b)
+{
+ return (__m256i)(__a == __b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_cmpgt_epi8(__m256i __a, __m256i __b)
+{
+ return (__m256i)((__v32qi)__a > (__v32qi)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_cmpgt_epi16(__m256i __a, __m256i __b)
+{
+ return (__m256i)((__v16hi)__a > (__v16hi)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_cmpgt_epi32(__m256i __a, __m256i __b)
+{
+ return (__m256i)((__v8si)__a > (__v8si)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_cmpgt_epi64(__m256i __a, __m256i __b)
+{
+ return (__m256i)(__a > __b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_hadd_epi16(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_phaddw256((__v16hi)__a, (__v16hi)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_hadd_epi32(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_phaddd256((__v8si)__a, (__v8si)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_hadds_epi16(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_phaddsw256((__v16hi)__a, (__v16hi)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_hsub_epi16(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_phsubw256((__v16hi)__a, (__v16hi)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_hsub_epi32(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_phsubd256((__v8si)__a, (__v8si)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_hsubs_epi16(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_phsubsw256((__v16hi)__a, (__v16hi)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_maddubs_epi16(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_pmaddubsw256((__v32qi)__a, (__v32qi)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_madd_epi16(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_pmaddwd256((__v16hi)__a, (__v16hi)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_max_epi8(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_pmaxsb256((__v32qi)__a, (__v32qi)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_max_epi16(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_pmaxsw256((__v16hi)__a, (__v16hi)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_max_epi32(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_pmaxsd256((__v8si)__a, (__v8si)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_max_epu8(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_pmaxub256((__v32qi)__a, (__v32qi)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_max_epu16(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_pmaxuw256((__v16hi)__a, (__v16hi)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_max_epu32(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_pmaxud256((__v8si)__a, (__v8si)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_min_epi8(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_pminsb256((__v32qi)__a, (__v32qi)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_min_epi16(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_pminsw256((__v16hi)__a, (__v16hi)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_min_epi32(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_pminsd256((__v8si)__a, (__v8si)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_min_epu8(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_pminub256((__v32qi)__a, (__v32qi)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_min_epu16(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_pminuw256 ((__v16hi)__a, (__v16hi)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_min_epu32(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_pminud256((__v8si)__a, (__v8si)__b);
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm256_movemask_epi8(__m256i __a)
+{
+ return __builtin_ia32_pmovmskb256((__v32qi)__a);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_cvtepi8_epi16(__m128i __V)
+{
+ return (__m256i)__builtin_ia32_pmovsxbw256((__v16qi)__V);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_cvtepi8_epi32(__m128i __V)
+{
+ return (__m256i)__builtin_ia32_pmovsxbd256((__v16qi)__V);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_cvtepi8_epi64(__m128i __V)
+{
+ return (__m256i)__builtin_ia32_pmovsxbq256((__v16qi)__V);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_cvtepi16_epi32(__m128i __V)
+{
+ return (__m256i)__builtin_ia32_pmovsxwd256((__v8hi)__V);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_cvtepi16_epi64(__m128i __V)
+{
+ return (__m256i)__builtin_ia32_pmovsxwq256((__v8hi)__V);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_cvtepi32_epi64(__m128i __V)
+{
+ return (__m256i)__builtin_ia32_pmovsxdq256((__v4si)__V);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_cvtepu8_epi16(__m128i __V)
+{
+ return (__m256i)__builtin_ia32_pmovzxbw256((__v16qi)__V);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_cvtepu8_epi32(__m128i __V)
+{
+ return (__m256i)__builtin_ia32_pmovzxbd256((__v16qi)__V);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_cvtepu8_epi64(__m128i __V)
+{
+ return (__m256i)__builtin_ia32_pmovzxbq256((__v16qi)__V);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_cvtepu16_epi32(__m128i __V)
+{
+ return (__m256i)__builtin_ia32_pmovzxwd256((__v8hi)__V);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_cvtepu16_epi64(__m128i __V)
+{
+ return (__m256i)__builtin_ia32_pmovzxwq256((__v8hi)__V);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_cvtepu32_epi64(__m128i __V)
+{
+ return (__m256i)__builtin_ia32_pmovzxdq256((__v4si)__V);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_mul_epi32(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_pmuldq256((__v8si)__a, (__v8si)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_mulhrs_epi16(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_pmulhrsw256((__v16hi)__a, (__v16hi)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_mulhi_epu16(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_pmulhuw256((__v16hi)__a, (__v16hi)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_mulhi_epi16(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_pmulhw256((__v16hi)__a, (__v16hi)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_mullo_epi16(__m256i __a, __m256i __b)
+{
+ return (__m256i)((__v16hi)__a * (__v16hi)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_mullo_epi32 (__m256i __a, __m256i __b)
+{
+ return (__m256i)((__v8si)__a * (__v8si)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_mul_epu32(__m256i __a, __m256i __b)
+{
+ return __builtin_ia32_pmuludq256((__v8si)__a, (__v8si)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_or_si256(__m256i __a, __m256i __b)
+{
+ return __a | __b;
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_sad_epu8(__m256i __a, __m256i __b)
+{
+ return __builtin_ia32_psadbw256((__v32qi)__a, (__v32qi)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_shuffle_epi8(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_pshufb256((__v32qi)__a, (__v32qi)__b);
+}
+
+#define _mm256_shuffle_epi32(a, imm) __extension__ ({ \
+ __m256i __a = (a); \
+ (__m256i)__builtin_shufflevector((__v8si)__a, (__v8si)_mm256_set1_epi32(0), \
+ (imm) & 0x3, ((imm) & 0xc) >> 2, \
+ ((imm) & 0x30) >> 4, ((imm) & 0xc0) >> 6, \
+ 4 + (((imm) & 0x03) >> 0), \
+ 4 + (((imm) & 0x0c) >> 2), \
+ 4 + (((imm) & 0x30) >> 4), \
+ 4 + (((imm) & 0xc0) >> 6)); })
+
+#define _mm256_shufflehi_epi16(a, imm) __extension__ ({ \
+ __m256i __a = (a); \
+ (__m256i)__builtin_shufflevector((__v16hi)__a, (__v16hi)_mm256_set1_epi16(0), \
+ 0, 1, 2, 3, \
+ 4 + (((imm) & 0x03) >> 0), \
+ 4 + (((imm) & 0x0c) >> 2), \
+ 4 + (((imm) & 0x30) >> 4), \
+ 4 + (((imm) & 0xc0) >> 6), \
+ 8, 9, 10, 11, \
+ 12 + (((imm) & 0x03) >> 0), \
+ 12 + (((imm) & 0x0c) >> 2), \
+ 12 + (((imm) & 0x30) >> 4), \
+ 12 + (((imm) & 0xc0) >> 6)); })
+
+#define _mm256_shufflelo_epi16(a, imm) __extension__ ({ \
+ __m256i __a = (a); \
+ (__m256i)__builtin_shufflevector((__v16hi)__a, (__v16hi)_mm256_set1_epi16(0), \
+ (imm) & 0x3,((imm) & 0xc) >> 2, \
+ ((imm) & 0x30) >> 4, ((imm) & 0xc0) >> 6, \
+ 4, 5, 6, 7, \
+ 8 + (((imm) & 0x03) >> 0), \
+ 8 + (((imm) & 0x0c) >> 2), \
+ 8 + (((imm) & 0x30) >> 4), \
+ 8 + (((imm) & 0xc0) >> 6), \
+ 12, 13, 14, 15); })
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_sign_epi8(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_psignb256((__v32qi)__a, (__v32qi)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_sign_epi16(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_psignw256((__v16hi)__a, (__v16hi)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_sign_epi32(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_psignd256((__v8si)__a, (__v8si)__b);
+}
+
+#define _mm256_slli_si256(a, count) __extension__ ({ \
+ __m256i __a = (a); \
+ (__m256i)__builtin_ia32_pslldqi256(__a, (count)*8); })
+
+#define _mm256_bslli_epi128(a, count) _mm256_slli_si256((a), (count))
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_slli_epi16(__m256i __a, int __count)
+{
+ return (__m256i)__builtin_ia32_psllwi256((__v16hi)__a, __count);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_sll_epi16(__m256i __a, __m128i __count)
+{
+ return (__m256i)__builtin_ia32_psllw256((__v16hi)__a, (__v8hi)__count);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_slli_epi32(__m256i __a, int __count)
+{
+ return (__m256i)__builtin_ia32_pslldi256((__v8si)__a, __count);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_sll_epi32(__m256i __a, __m128i __count)
+{
+ return (__m256i)__builtin_ia32_pslld256((__v8si)__a, (__v4si)__count);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_slli_epi64(__m256i __a, int __count)
+{
+ return __builtin_ia32_psllqi256(__a, __count);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_sll_epi64(__m256i __a, __m128i __count)
+{
+ return __builtin_ia32_psllq256(__a, __count);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_srai_epi16(__m256i __a, int __count)
+{
+ return (__m256i)__builtin_ia32_psrawi256((__v16hi)__a, __count);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_sra_epi16(__m256i __a, __m128i __count)
+{
+ return (__m256i)__builtin_ia32_psraw256((__v16hi)__a, (__v8hi)__count);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_srai_epi32(__m256i __a, int __count)
+{
+ return (__m256i)__builtin_ia32_psradi256((__v8si)__a, __count);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_sra_epi32(__m256i __a, __m128i __count)
+{
+ return (__m256i)__builtin_ia32_psrad256((__v8si)__a, (__v4si)__count);
+}
+
+#define _mm256_srli_si256(a, count) __extension__ ({ \
+ __m256i __a = (a); \
+ (__m256i)__builtin_ia32_psrldqi256(__a, (count)*8); })
+
+#define _mm256_bsrli_epi128(a, count) _mm256_srli_si256((a), (count))
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_srli_epi16(__m256i __a, int __count)
+{
+ return (__m256i)__builtin_ia32_psrlwi256((__v16hi)__a, __count);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_srl_epi16(__m256i __a, __m128i __count)
+{
+ return (__m256i)__builtin_ia32_psrlw256((__v16hi)__a, (__v8hi)__count);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_srli_epi32(__m256i __a, int __count)
+{
+ return (__m256i)__builtin_ia32_psrldi256((__v8si)__a, __count);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_srl_epi32(__m256i __a, __m128i __count)
+{
+ return (__m256i)__builtin_ia32_psrld256((__v8si)__a, (__v4si)__count);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_srli_epi64(__m256i __a, int __count)
+{
+ return __builtin_ia32_psrlqi256(__a, __count);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_srl_epi64(__m256i __a, __m128i __count)
+{
+ return __builtin_ia32_psrlq256(__a, __count);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_sub_epi8(__m256i __a, __m256i __b)
+{
+ return (__m256i)((__v32qi)__a - (__v32qi)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_sub_epi16(__m256i __a, __m256i __b)
+{
+ return (__m256i)((__v16hi)__a - (__v16hi)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_sub_epi32(__m256i __a, __m256i __b)
+{
+ return (__m256i)((__v8si)__a - (__v8si)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_sub_epi64(__m256i __a, __m256i __b)
+{
+ return __a - __b;
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_subs_epi8(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_psubsb256((__v32qi)__a, (__v32qi)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_subs_epi16(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_psubsw256((__v16hi)__a, (__v16hi)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_subs_epu8(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_psubusb256((__v32qi)__a, (__v32qi)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_subs_epu16(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_psubusw256((__v16hi)__a, (__v16hi)__b);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_unpackhi_epi8(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_shufflevector((__v32qi)__a, (__v32qi)__b, 8, 32+8, 9, 32+9, 10, 32+10, 11, 32+11, 12, 32+12, 13, 32+13, 14, 32+14, 15, 32+15, 24, 32+24, 25, 32+25, 26, 32+26, 27, 32+27, 28, 32+28, 29, 32+29, 30, 32+30, 31, 32+31);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_unpackhi_epi16(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_shufflevector((__v16hi)__a, (__v16hi)__b, 4, 16+4, 5, 16+5, 6, 16+6, 7, 16+7, 12, 16+12, 13, 16+13, 14, 16+14, 15, 16+15);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_unpackhi_epi32(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_shufflevector((__v8si)__a, (__v8si)__b, 2, 8+2, 3, 8+3, 6, 8+6, 7, 8+7);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_unpackhi_epi64(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_shufflevector(__a, __b, 1, 4+1, 3, 4+3);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_unpacklo_epi8(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_shufflevector((__v32qi)__a, (__v32qi)__b, 0, 32+0, 1, 32+1, 2, 32+2, 3, 32+3, 4, 32+4, 5, 32+5, 6, 32+6, 7, 32+7, 16, 32+16, 17, 32+17, 18, 32+18, 19, 32+19, 20, 32+20, 21, 32+21, 22, 32+22, 23, 32+23);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_unpacklo_epi16(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_shufflevector((__v16hi)__a, (__v16hi)__b, 0, 16+0, 1, 16+1, 2, 16+2, 3, 16+3, 8, 16+8, 9, 16+9, 10, 16+10, 11, 16+11);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_unpacklo_epi32(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_shufflevector((__v8si)__a, (__v8si)__b, 0, 8+0, 1, 8+1, 4, 8+4, 5, 8+5);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_unpacklo_epi64(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_shufflevector(__a, __b, 0, 4+0, 2, 4+2);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_xor_si256(__m256i __a, __m256i __b)
+{
+ return __a ^ __b;
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_stream_load_si256(__m256i *__V)
+{
+ return (__m256i)__builtin_ia32_movntdqa256((__v4di *)__V);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_broadcastss_ps(__m128 __X)
+{
+ return (__m128)__builtin_ia32_vbroadcastss_ps((__v4sf)__X);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_broadcastsd_pd(__m128d __a)
+{
+ return __builtin_shufflevector(__a, __a, 0, 0);
+}
+
+static __inline__ __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_broadcastss_ps(__m128 __X)
+{
+ return (__m256)__builtin_ia32_vbroadcastss_ps256((__v4sf)__X);
+}
+
+static __inline__ __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_broadcastsd_pd(__m128d __X)
+{
+ return (__m256d)__builtin_ia32_vbroadcastsd_pd256((__v2df)__X);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_broadcastsi128_si256(__m128i __X)
+{
+ return (__m256i)__builtin_shufflevector(__X, __X, 0, 1, 0, 1);
+}
+
+#define _mm_blend_epi32(V1, V2, M) __extension__ ({ \
+ __m128i __V1 = (V1); \
+ __m128i __V2 = (V2); \
+ (__m128i)__builtin_shufflevector((__v4si)__V1, (__v4si)__V2, \
+ (((M) & 0x01) ? 4 : 0), \
+ (((M) & 0x02) ? 5 : 1), \
+ (((M) & 0x04) ? 6 : 2), \
+ (((M) & 0x08) ? 7 : 3)); })
+
+#define _mm256_blend_epi32(V1, V2, M) __extension__ ({ \
+ __m256i __V1 = (V1); \
+ __m256i __V2 = (V2); \
+ (__m256i)__builtin_shufflevector((__v8si)__V1, (__v8si)__V2, \
+ (((M) & 0x01) ? 8 : 0), \
+ (((M) & 0x02) ? 9 : 1), \
+ (((M) & 0x04) ? 10 : 2), \
+ (((M) & 0x08) ? 11 : 3), \
+ (((M) & 0x10) ? 12 : 4), \
+ (((M) & 0x20) ? 13 : 5), \
+ (((M) & 0x40) ? 14 : 6), \
+ (((M) & 0x80) ? 15 : 7)); })
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_broadcastb_epi8(__m128i __X)
+{
+ return (__m256i)__builtin_ia32_pbroadcastb256((__v16qi)__X);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_broadcastw_epi16(__m128i __X)
+{
+ return (__m256i)__builtin_ia32_pbroadcastw256((__v8hi)__X);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_broadcastd_epi32(__m128i __X)
+{
+ return (__m256i)__builtin_ia32_pbroadcastd256((__v4si)__X);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_broadcastq_epi64(__m128i __X)
+{
+ return (__m256i)__builtin_ia32_pbroadcastq256(__X);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_broadcastb_epi8(__m128i __X)
+{
+ return (__m128i)__builtin_ia32_pbroadcastb128((__v16qi)__X);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_broadcastw_epi16(__m128i __X)
+{
+ return (__m128i)__builtin_ia32_pbroadcastw128((__v8hi)__X);
+}
+
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_broadcastd_epi32(__m128i __X)
+{
+ return (__m128i)__builtin_ia32_pbroadcastd128((__v4si)__X);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_broadcastq_epi64(__m128i __X)
+{
+ return (__m128i)__builtin_ia32_pbroadcastq128(__X);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_permutevar8x32_epi32(__m256i __a, __m256i __b)
+{
+ return (__m256i)__builtin_ia32_permvarsi256((__v8si)__a, (__v8si)__b);
+}
+
+#define _mm256_permute4x64_pd(V, M) __extension__ ({ \
+ __m256d __V = (V); \
+ (__m256d)__builtin_shufflevector((__v4df)__V, (__v4df) _mm256_setzero_pd(), \
+ (M) & 0x3, ((M) & 0xc) >> 2, \
+ ((M) & 0x30) >> 4, ((M) & 0xc0) >> 6); })
+
+static __inline__ __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_permutevar8x32_ps(__m256 __a, __m256 __b)
+{
+ return (__m256)__builtin_ia32_permvarsf256((__v8sf)__a, (__v8sf)__b);
+}
+
+#define _mm256_permute4x64_epi64(V, M) __extension__ ({ \
+ __m256i __V = (V); \
+ (__m256i)__builtin_shufflevector((__v4di)__V, (__v4di) _mm256_setzero_si256(), \
+ (M) & 0x3, ((M) & 0xc) >> 2, \
+ ((M) & 0x30) >> 4, ((M) & 0xc0) >> 6); })
+
+#define _mm256_permute2x128_si256(V1, V2, M) __extension__ ({ \
+ __m256i __V1 = (V1); \
+ __m256i __V2 = (V2); \
+ (__m256i)__builtin_ia32_permti256(__V1, __V2, (M)); })
+
+#define _mm256_extracti128_si256(V, M) __extension__ ({ \
+ (__m128i)__builtin_shufflevector( \
+ (__v4di)(V), \
+ (__v4di)(_mm256_setzero_si256()), \
+ (((M) & 1) ? 2 : 0), \
+ (((M) & 1) ? 3 : 1) );})
+
+#define _mm256_inserti128_si256(V1, V2, M) __extension__ ({ \
+ (__m256i)__builtin_shufflevector( \
+ (__v4di)(V1), \
+ (__v4di)_mm256_castsi128_si256((__m128i)(V2)), \
+ (((M) & 1) ? 0 : 4), \
+ (((M) & 1) ? 1 : 5), \
+ (((M) & 1) ? 4 : 2), \
+ (((M) & 1) ? 5 : 3) );})
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_maskload_epi32(int const *__X, __m256i __M)
+{
+ return (__m256i)__builtin_ia32_maskloadd256((const __v8si *)__X, (__v8si)__M);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_maskload_epi64(long long const *__X, __m256i __M)
+{
+ return (__m256i)__builtin_ia32_maskloadq256((const __v4di *)__X, __M);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_maskload_epi32(int const *__X, __m128i __M)
+{
+ return (__m128i)__builtin_ia32_maskloadd((const __v4si *)__X, (__v4si)__M);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_maskload_epi64(long long const *__X, __m128i __M)
+{
+ return (__m128i)__builtin_ia32_maskloadq((const __v2di *)__X, (__v2di)__M);
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_mm256_maskstore_epi32(int *__X, __m256i __M, __m256i __Y)
+{
+ __builtin_ia32_maskstored256((__v8si *)__X, (__v8si)__M, (__v8si)__Y);
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_mm256_maskstore_epi64(long long *__X, __m256i __M, __m256i __Y)
+{
+ __builtin_ia32_maskstoreq256((__v4di *)__X, __M, __Y);
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_mm_maskstore_epi32(int *__X, __m128i __M, __m128i __Y)
+{
+ __builtin_ia32_maskstored((__v4si *)__X, (__v4si)__M, (__v4si)__Y);
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_mm_maskstore_epi64(long long *__X, __m128i __M, __m128i __Y)
+{
+ __builtin_ia32_maskstoreq(( __v2di *)__X, __M, __Y);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_sllv_epi32(__m256i __X, __m256i __Y)
+{
+ return (__m256i)__builtin_ia32_psllv8si((__v8si)__X, (__v8si)__Y);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_sllv_epi32(__m128i __X, __m128i __Y)
+{
+ return (__m128i)__builtin_ia32_psllv4si((__v4si)__X, (__v4si)__Y);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_sllv_epi64(__m256i __X, __m256i __Y)
+{
+ return (__m256i)__builtin_ia32_psllv4di(__X, __Y);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_sllv_epi64(__m128i __X, __m128i __Y)
+{
+ return (__m128i)__builtin_ia32_psllv2di(__X, __Y);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_srav_epi32(__m256i __X, __m256i __Y)
+{
+ return (__m256i)__builtin_ia32_psrav8si((__v8si)__X, (__v8si)__Y);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_srav_epi32(__m128i __X, __m128i __Y)
+{
+ return (__m128i)__builtin_ia32_psrav4si((__v4si)__X, (__v4si)__Y);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_srlv_epi32(__m256i __X, __m256i __Y)
+{
+ return (__m256i)__builtin_ia32_psrlv8si((__v8si)__X, (__v8si)__Y);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_srlv_epi32(__m128i __X, __m128i __Y)
+{
+ return (__m128i)__builtin_ia32_psrlv4si((__v4si)__X, (__v4si)__Y);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_srlv_epi64(__m256i __X, __m256i __Y)
+{
+ return (__m256i)__builtin_ia32_psrlv4di(__X, __Y);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_srlv_epi64(__m128i __X, __m128i __Y)
+{
+ return (__m128i)__builtin_ia32_psrlv2di(__X, __Y);
+}
+
+#define _mm_mask_i32gather_pd(a, m, i, mask, s) __extension__ ({ \
+ __m128d __a = (a); \
+ double const *__m = (m); \
+ __m128i __i = (i); \
+ __m128d __mask = (mask); \
+ (__m128d)__builtin_ia32_gatherd_pd((__v2df)__a, (const __v2df *)__m, \
+ (__v4si)__i, (__v2df)__mask, (s)); })
+
+#define _mm256_mask_i32gather_pd(a, m, i, mask, s) __extension__ ({ \
+ __m256d __a = (a); \
+ double const *__m = (m); \
+ __m128i __i = (i); \
+ __m256d __mask = (mask); \
+ (__m256d)__builtin_ia32_gatherd_pd256((__v4df)__a, (const __v4df *)__m, \
+ (__v4si)__i, (__v4df)__mask, (s)); })
+
+#define _mm_mask_i64gather_pd(a, m, i, mask, s) __extension__ ({ \
+ __m128d __a = (a); \
+ double const *__m = (m); \
+ __m128i __i = (i); \
+ __m128d __mask = (mask); \
+ (__m128d)__builtin_ia32_gatherq_pd((__v2df)__a, (const __v2df *)__m, \
+ (__v2di)__i, (__v2df)__mask, (s)); })
+
+#define _mm256_mask_i64gather_pd(a, m, i, mask, s) __extension__ ({ \
+ __m256d __a = (a); \
+ double const *__m = (m); \
+ __m256i __i = (i); \
+ __m256d __mask = (mask); \
+ (__m256d)__builtin_ia32_gatherq_pd256((__v4df)__a, (const __v4df *)__m, \
+ (__v4di)__i, (__v4df)__mask, (s)); })
+
+#define _mm_mask_i32gather_ps(a, m, i, mask, s) __extension__ ({ \
+ __m128 __a = (a); \
+ float const *__m = (m); \
+ __m128i __i = (i); \
+ __m128 __mask = (mask); \
+ (__m128)__builtin_ia32_gatherd_ps((__v4sf)__a, (const __v4sf *)__m, \
+ (__v4si)__i, (__v4sf)__mask, (s)); })
+
+#define _mm256_mask_i32gather_ps(a, m, i, mask, s) __extension__ ({ \
+ __m256 __a = (a); \
+ float const *__m = (m); \
+ __m256i __i = (i); \
+ __m256 __mask = (mask); \
+ (__m256)__builtin_ia32_gatherd_ps256((__v8sf)__a, (const __v8sf *)__m, \
+ (__v8si)__i, (__v8sf)__mask, (s)); })
+
+#define _mm_mask_i64gather_ps(a, m, i, mask, s) __extension__ ({ \
+ __m128 __a = (a); \
+ float const *__m = (m); \
+ __m128i __i = (i); \
+ __m128 __mask = (mask); \
+ (__m128)__builtin_ia32_gatherq_ps((__v4sf)__a, (const __v4sf *)__m, \
+ (__v2di)__i, (__v4sf)__mask, (s)); })
+
+#define _mm256_mask_i64gather_ps(a, m, i, mask, s) __extension__ ({ \
+ __m128 __a = (a); \
+ float const *__m = (m); \
+ __m256i __i = (i); \
+ __m128 __mask = (mask); \
+ (__m128)__builtin_ia32_gatherq_ps256((__v4sf)__a, (const __v4sf *)__m, \
+ (__v4di)__i, (__v4sf)__mask, (s)); })
+
+#define _mm_mask_i32gather_epi32(a, m, i, mask, s) __extension__ ({ \
+ __m128i __a = (a); \
+ int const *__m = (m); \
+ __m128i __i = (i); \
+ __m128i __mask = (mask); \
+ (__m128i)__builtin_ia32_gatherd_d((__v4si)__a, (const __v4si *)__m, \
+ (__v4si)__i, (__v4si)__mask, (s)); })
+
+#define _mm256_mask_i32gather_epi32(a, m, i, mask, s) __extension__ ({ \
+ __m256i __a = (a); \
+ int const *__m = (m); \
+ __m256i __i = (i); \
+ __m256i __mask = (mask); \
+ (__m256i)__builtin_ia32_gatherd_d256((__v8si)__a, (const __v8si *)__m, \
+ (__v8si)__i, (__v8si)__mask, (s)); })
+
+#define _mm_mask_i64gather_epi32(a, m, i, mask, s) __extension__ ({ \
+ __m128i __a = (a); \
+ int const *__m = (m); \
+ __m128i __i = (i); \
+ __m128i __mask = (mask); \
+ (__m128i)__builtin_ia32_gatherq_d((__v4si)__a, (const __v4si *)__m, \
+ (__v2di)__i, (__v4si)__mask, (s)); })
+
+#define _mm256_mask_i64gather_epi32(a, m, i, mask, s) __extension__ ({ \
+ __m128i __a = (a); \
+ int const *__m = (m); \
+ __m256i __i = (i); \
+ __m128i __mask = (mask); \
+ (__m128i)__builtin_ia32_gatherq_d256((__v4si)__a, (const __v4si *)__m, \
+ (__v4di)__i, (__v4si)__mask, (s)); })
+
+#define _mm_mask_i32gather_epi64(a, m, i, mask, s) __extension__ ({ \
+ __m128i __a = (a); \
+ long long const *__m = (m); \
+ __m128i __i = (i); \
+ __m128i __mask = (mask); \
+ (__m128i)__builtin_ia32_gatherd_q((__v2di)__a, (const __v2di *)__m, \
+ (__v4si)__i, (__v2di)__mask, (s)); })
+
+#define _mm256_mask_i32gather_epi64(a, m, i, mask, s) __extension__ ({ \
+ __m256i __a = (a); \
+ long long const *__m = (m); \
+ __m128i __i = (i); \
+ __m256i __mask = (mask); \
+ (__m256i)__builtin_ia32_gatherd_q256((__v4di)__a, (const __v4di *)__m, \
+ (__v4si)__i, (__v4di)__mask, (s)); })
+
+#define _mm_mask_i64gather_epi64(a, m, i, mask, s) __extension__ ({ \
+ __m128i __a = (a); \
+ long long const *__m = (m); \
+ __m128i __i = (i); \
+ __m128i __mask = (mask); \
+ (__m128i)__builtin_ia32_gatherq_q((__v2di)__a, (const __v2di *)__m, \
+ (__v2di)__i, (__v2di)__mask, (s)); })
+
+#define _mm256_mask_i64gather_epi64(a, m, i, mask, s) __extension__ ({ \
+ __m256i __a = (a); \
+ long long const *__m = (m); \
+ __m256i __i = (i); \
+ __m256i __mask = (mask); \
+ (__m256i)__builtin_ia32_gatherq_q256((__v4di)__a, (const __v4di *)__m, \
+ (__v4di)__i, (__v4di)__mask, (s)); })
+
+#define _mm_i32gather_pd(m, i, s) __extension__ ({ \
+ double const *__m = (m); \
+ __m128i __i = (i); \
+ (__m128d)__builtin_ia32_gatherd_pd((__v2df)_mm_setzero_pd(), \
+ (const __v2df *)__m, (__v4si)__i, \
+ (__v2df)_mm_set1_pd((double)(long long int)-1), (s)); })
+
+#define _mm256_i32gather_pd(m, i, s) __extension__ ({ \
+ double const *__m = (m); \
+ __m128i __i = (i); \
+ (__m256d)__builtin_ia32_gatherd_pd256((__v4df)_mm256_setzero_pd(), \
+ (const __v4df *)__m, (__v4si)__i, \
+ (__v4df)_mm256_set1_pd((double)(long long int)-1), (s)); })
+
+#define _mm_i64gather_pd(m, i, s) __extension__ ({ \
+ double const *__m = (m); \
+ __m128i __i = (i); \
+ (__m128d)__builtin_ia32_gatherq_pd((__v2df)_mm_setzero_pd(), \
+ (const __v2df *)__m, (__v2di)__i, \
+ (__v2df)_mm_set1_pd((double)(long long int)-1), (s)); })
+
+#define _mm256_i64gather_pd(m, i, s) __extension__ ({ \
+ double const *__m = (m); \
+ __m256i __i = (i); \
+ (__m256d)__builtin_ia32_gatherq_pd256((__v4df)_mm256_setzero_pd(), \
+ (const __v4df *)__m, (__v4di)__i, \
+ (__v4df)_mm256_set1_pd((double)(long long int)-1), (s)); })
+
+#define _mm_i32gather_ps(m, i, s) __extension__ ({ \
+ float const *__m = (m); \
+ __m128i __i = (i); \
+ (__m128)__builtin_ia32_gatherd_ps((__v4sf)_mm_setzero_ps(), \
+ (const __v4sf *)__m, (__v4si)__i, \
+ (__v4sf)_mm_set1_ps((float)(int)-1), (s)); })
+
+#define _mm256_i32gather_ps(m, i, s) __extension__ ({ \
+ float const *__m = (m); \
+ __m256i __i = (i); \
+ (__m256)__builtin_ia32_gatherd_ps256((__v8sf)_mm256_setzero_ps(), \
+ (const __v8sf *)__m, (__v8si)__i, \
+ (__v8sf)_mm256_set1_ps((float)(int)-1), (s)); })
+
+#define _mm_i64gather_ps(m, i, s) __extension__ ({ \
+ float const *__m = (m); \
+ __m128i __i = (i); \
+ (__m128)__builtin_ia32_gatherq_ps((__v4sf)_mm_setzero_ps(), \
+ (const __v4sf *)__m, (__v2di)__i, \
+ (__v4sf)_mm_set1_ps((float)(int)-1), (s)); })
+
+#define _mm256_i64gather_ps(m, i, s) __extension__ ({ \
+ float const *__m = (m); \
+ __m256i __i = (i); \
+ (__m128)__builtin_ia32_gatherq_ps256((__v4sf)_mm_setzero_ps(), \
+ (const __v4sf *)__m, (__v4di)__i, \
+ (__v4sf)_mm_set1_ps((float)(int)-1), (s)); })
+
+#define _mm_i32gather_epi32(m, i, s) __extension__ ({ \
+ int const *__m = (m); \
+ __m128i __i = (i); \
+ (__m128i)__builtin_ia32_gatherd_d((__v4si)_mm_setzero_si128(), \
+ (const __v4si *)__m, (__v4si)__i, \
+ (__v4si)_mm_set1_epi32(-1), (s)); })
+
+#define _mm256_i32gather_epi32(m, i, s) __extension__ ({ \
+ int const *__m = (m); \
+ __m256i __i = (i); \
+ (__m256i)__builtin_ia32_gatherd_d256((__v8si)_mm256_setzero_si256(), \
+ (const __v8si *)__m, (__v8si)__i, \
+ (__v8si)_mm256_set1_epi32(-1), (s)); })
+
+#define _mm_i64gather_epi32(m, i, s) __extension__ ({ \
+ int const *__m = (m); \
+ __m128i __i = (i); \
+ (__m128i)__builtin_ia32_gatherq_d((__v4si)_mm_setzero_si128(), \
+ (const __v4si *)__m, (__v2di)__i, \
+ (__v4si)_mm_set1_epi32(-1), (s)); })
+
+#define _mm256_i64gather_epi32(m, i, s) __extension__ ({ \
+ int const *__m = (m); \
+ __m256i __i = (i); \
+ (__m128i)__builtin_ia32_gatherq_d256((__v4si)_mm_setzero_si128(), \
+ (const __v4si *)__m, (__v4di)__i, \
+ (__v4si)_mm_set1_epi32(-1), (s)); })
+
+#define _mm_i32gather_epi64(m, i, s) __extension__ ({ \
+ long long const *__m = (m); \
+ __m128i __i = (i); \
+ (__m128i)__builtin_ia32_gatherd_q((__v2di)_mm_setzero_si128(), \
+ (const __v2di *)__m, (__v4si)__i, \
+ (__v2di)_mm_set1_epi64x(-1), (s)); })
+
+#define _mm256_i32gather_epi64(m, i, s) __extension__ ({ \
+ long long const *__m = (m); \
+ __m128i __i = (i); \
+ (__m256i)__builtin_ia32_gatherd_q256((__v4di)_mm256_setzero_si256(), \
+ (const __v4di *)__m, (__v4si)__i, \
+ (__v4di)_mm256_set1_epi64x(-1), (s)); })
+
+#define _mm_i64gather_epi64(m, i, s) __extension__ ({ \
+ long long const *__m = (m); \
+ __m128i __i = (i); \
+ (__m128i)__builtin_ia32_gatherq_q((__v2di)_mm_setzero_si128(), \
+ (const __v2di *)__m, (__v2di)__i, \
+ (__v2di)_mm_set1_epi64x(-1), (s)); })
+
+#define _mm256_i64gather_epi64(m, i, s) __extension__ ({ \
+ long long const *__m = (m); \
+ __m256i __i = (i); \
+ (__m256i)__builtin_ia32_gatherq_q256((__v4di)_mm256_setzero_si256(), \
+ (const __v4di *)__m, (__v4di)__i, \
+ (__v4di)_mm256_set1_epi64x(-1), (s)); })
+
+#endif /* __AVX2INTRIN_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/avx512bwintrin.h b/contrib/llvm/tools/clang/lib/Headers/avx512bwintrin.h
new file mode 100644
index 0000000..d0591e4
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/avx512bwintrin.h
@@ -0,0 +1,496 @@
+/*===------------- avx512bwintrin.h - AVX512BW intrinsics ------------------===
+ *
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+#ifndef __IMMINTRIN_H
+#error "Never use <avx512bwintrin.h> directly; include <immintrin.h> instead."
+#endif
+
+#ifndef __AVX512BWINTRIN_H
+#define __AVX512BWINTRIN_H
+
+typedef unsigned int __mmask32;
+typedef unsigned long long __mmask64;
+typedef char __v64qi __attribute__ ((__vector_size__ (64)));
+typedef short __v32hi __attribute__ ((__vector_size__ (64)));
+
+static __inline __v64qi __attribute__ ((__always_inline__, __nodebug__))
+_mm512_setzero_qi (void) {
+ return (__v64qi){ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0 };
+}
+
+static __inline __v32hi __attribute__ ((__always_inline__, __nodebug__))
+_mm512_setzero_hi (void) {
+ return (__v32hi){ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0 };
+}
+
+/* Integer compare */
+
+static __inline__ __mmask64 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmpeq_epi8_mask(__m512i __a, __m512i __b) {
+ return (__mmask64)__builtin_ia32_pcmpeqb512_mask((__v64qi)__a, (__v64qi)__b,
+ (__mmask64)-1);
+}
+
+static __inline__ __mmask64 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmpeq_epi8_mask(__mmask64 __u, __m512i __a, __m512i __b) {
+ return (__mmask64)__builtin_ia32_pcmpeqb512_mask((__v64qi)__a, (__v64qi)__b,
+ __u);
+}
+
+static __inline__ __mmask64 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmpeq_epu8_mask(__m512i __a, __m512i __b) {
+ return (__mmask64)__builtin_ia32_ucmpb512_mask((__v64qi)__a, (__v64qi)__b, 0,
+ (__mmask64)-1);
+}
+
+static __inline__ __mmask64 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmpeq_epu8_mask(__mmask64 __u, __m512i __a, __m512i __b) {
+ return (__mmask64)__builtin_ia32_ucmpb512_mask((__v64qi)__a, (__v64qi)__b, 0,
+ __u);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmpeq_epi16_mask(__m512i __a, __m512i __b) {
+ return (__mmask32)__builtin_ia32_pcmpeqw512_mask((__v32hi)__a, (__v32hi)__b,
+ (__mmask32)-1);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmpeq_epi16_mask(__mmask32 __u, __m512i __a, __m512i __b) {
+ return (__mmask32)__builtin_ia32_pcmpeqw512_mask((__v32hi)__a, (__v32hi)__b,
+ __u);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmpeq_epu16_mask(__m512i __a, __m512i __b) {
+ return (__mmask32)__builtin_ia32_ucmpw512_mask((__v32hi)__a, (__v32hi)__b, 0,
+ (__mmask32)-1);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmpeq_epu16_mask(__mmask32 __u, __m512i __a, __m512i __b) {
+ return (__mmask32)__builtin_ia32_ucmpw512_mask((__v32hi)__a, (__v32hi)__b, 0,
+ __u);
+}
+
+static __inline__ __mmask64 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmpge_epi8_mask(__m512i __a, __m512i __b) {
+ return (__mmask64)__builtin_ia32_cmpb512_mask((__v64qi)__a, (__v64qi)__b, 5,
+ (__mmask64)-1);
+}
+
+static __inline__ __mmask64 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmpge_epi8_mask(__mmask64 __u, __m512i __a, __m512i __b) {
+ return (__mmask64)__builtin_ia32_cmpb512_mask((__v64qi)__a, (__v64qi)__b, 5,
+ __u);
+}
+
+static __inline__ __mmask64 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmpge_epu8_mask(__m512i __a, __m512i __b) {
+ return (__mmask64)__builtin_ia32_ucmpb512_mask((__v64qi)__a, (__v64qi)__b, 5,
+ (__mmask64)-1);
+}
+
+static __inline__ __mmask64 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmpge_epu8_mask(__mmask64 __u, __m512i __a, __m512i __b) {
+ return (__mmask64)__builtin_ia32_ucmpb512_mask((__v64qi)__a, (__v64qi)__b, 5,
+ __u);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmpge_epi16_mask(__m512i __a, __m512i __b) {
+ return (__mmask32)__builtin_ia32_cmpw512_mask((__v32hi)__a, (__v32hi)__b, 5,
+ (__mmask32)-1);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmpge_epi16_mask(__mmask32 __u, __m512i __a, __m512i __b) {
+ return (__mmask32)__builtin_ia32_cmpw512_mask((__v32hi)__a, (__v32hi)__b, 5,
+ __u);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmpge_epu16_mask(__m512i __a, __m512i __b) {
+ return (__mmask32)__builtin_ia32_ucmpw512_mask((__v32hi)__a, (__v32hi)__b, 5,
+ (__mmask32)-1);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmpge_epu16_mask(__mmask32 __u, __m512i __a, __m512i __b) {
+ return (__mmask32)__builtin_ia32_ucmpw512_mask((__v32hi)__a, (__v32hi)__b, 5,
+ __u);
+}
+
+static __inline__ __mmask64 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmpgt_epi8_mask(__m512i __a, __m512i __b) {
+ return (__mmask64)__builtin_ia32_pcmpgtb512_mask((__v64qi)__a, (__v64qi)__b,
+ (__mmask64)-1);
+}
+
+static __inline__ __mmask64 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmpgt_epi8_mask(__mmask64 __u, __m512i __a, __m512i __b) {
+ return (__mmask64)__builtin_ia32_pcmpgtb512_mask((__v64qi)__a, (__v64qi)__b,
+ __u);
+}
+
+static __inline__ __mmask64 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmpgt_epu8_mask(__m512i __a, __m512i __b) {
+ return (__mmask64)__builtin_ia32_ucmpb512_mask((__v64qi)__a, (__v64qi)__b, 6,
+ (__mmask64)-1);
+}
+
+static __inline__ __mmask64 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmpgt_epu8_mask(__mmask64 __u, __m512i __a, __m512i __b) {
+ return (__mmask64)__builtin_ia32_ucmpb512_mask((__v64qi)__a, (__v64qi)__b, 6,
+ __u);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmpgt_epi16_mask(__m512i __a, __m512i __b) {
+ return (__mmask32)__builtin_ia32_pcmpgtw512_mask((__v32hi)__a, (__v32hi)__b,
+ (__mmask32)-1);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmpgt_epi16_mask(__mmask32 __u, __m512i __a, __m512i __b) {
+ return (__mmask32)__builtin_ia32_pcmpgtw512_mask((__v32hi)__a, (__v32hi)__b,
+ __u);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmpgt_epu16_mask(__m512i __a, __m512i __b) {
+ return (__mmask32)__builtin_ia32_ucmpw512_mask((__v32hi)__a, (__v32hi)__b, 6,
+ (__mmask32)-1);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmpgt_epu16_mask(__mmask32 __u, __m512i __a, __m512i __b) {
+ return (__mmask32)__builtin_ia32_ucmpw512_mask((__v32hi)__a, (__v32hi)__b, 6,
+ __u);
+}
+
+static __inline__ __mmask64 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmple_epi8_mask(__m512i __a, __m512i __b) {
+ return (__mmask64)__builtin_ia32_cmpb512_mask((__v64qi)__a, (__v64qi)__b, 2,
+ (__mmask64)-1);
+}
+
+static __inline__ __mmask64 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmple_epi8_mask(__mmask64 __u, __m512i __a, __m512i __b) {
+ return (__mmask64)__builtin_ia32_cmpb512_mask((__v64qi)__a, (__v64qi)__b, 2,
+ __u);
+}
+
+static __inline__ __mmask64 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmple_epu8_mask(__m512i __a, __m512i __b) {
+ return (__mmask64)__builtin_ia32_ucmpb512_mask((__v64qi)__a, (__v64qi)__b, 2,
+ (__mmask64)-1);
+}
+
+static __inline__ __mmask64 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmple_epu8_mask(__mmask64 __u, __m512i __a, __m512i __b) {
+ return (__mmask64)__builtin_ia32_ucmpb512_mask((__v64qi)__a, (__v64qi)__b, 2,
+ __u);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmple_epi16_mask(__m512i __a, __m512i __b) {
+ return (__mmask32)__builtin_ia32_cmpw512_mask((__v32hi)__a, (__v32hi)__b, 2,
+ (__mmask32)-1);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmple_epi16_mask(__mmask32 __u, __m512i __a, __m512i __b) {
+ return (__mmask32)__builtin_ia32_cmpw512_mask((__v32hi)__a, (__v32hi)__b, 2,
+ __u);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmple_epu16_mask(__m512i __a, __m512i __b) {
+ return (__mmask32)__builtin_ia32_ucmpw512_mask((__v32hi)__a, (__v32hi)__b, 2,
+ (__mmask32)-1);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmple_epu16_mask(__mmask32 __u, __m512i __a, __m512i __b) {
+ return (__mmask32)__builtin_ia32_ucmpw512_mask((__v32hi)__a, (__v32hi)__b, 2,
+ __u);
+}
+
+static __inline__ __mmask64 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmplt_epi8_mask(__m512i __a, __m512i __b) {
+ return (__mmask64)__builtin_ia32_cmpb512_mask((__v64qi)__a, (__v64qi)__b, 1,
+ (__mmask64)-1);
+}
+
+static __inline__ __mmask64 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmplt_epi8_mask(__mmask64 __u, __m512i __a, __m512i __b) {
+ return (__mmask64)__builtin_ia32_cmpb512_mask((__v64qi)__a, (__v64qi)__b, 1,
+ __u);
+}
+
+static __inline__ __mmask64 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmplt_epu8_mask(__m512i __a, __m512i __b) {
+ return (__mmask64)__builtin_ia32_ucmpb512_mask((__v64qi)__a, (__v64qi)__b, 1,
+ (__mmask64)-1);
+}
+
+static __inline__ __mmask64 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmplt_epu8_mask(__mmask64 __u, __m512i __a, __m512i __b) {
+ return (__mmask64)__builtin_ia32_ucmpb512_mask((__v64qi)__a, (__v64qi)__b, 1,
+ __u);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmplt_epi16_mask(__m512i __a, __m512i __b) {
+ return (__mmask32)__builtin_ia32_cmpw512_mask((__v32hi)__a, (__v32hi)__b, 1,
+ (__mmask32)-1);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmplt_epi16_mask(__mmask32 __u, __m512i __a, __m512i __b) {
+ return (__mmask32)__builtin_ia32_cmpw512_mask((__v32hi)__a, (__v32hi)__b, 1,
+ __u);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmplt_epu16_mask(__m512i __a, __m512i __b) {
+ return (__mmask32)__builtin_ia32_ucmpw512_mask((__v32hi)__a, (__v32hi)__b, 1,
+ (__mmask32)-1);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmplt_epu16_mask(__mmask32 __u, __m512i __a, __m512i __b) {
+ return (__mmask32)__builtin_ia32_ucmpw512_mask((__v32hi)__a, (__v32hi)__b, 1,
+ __u);
+}
+
+static __inline__ __mmask64 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmpneq_epi8_mask(__m512i __a, __m512i __b) {
+ return (__mmask64)__builtin_ia32_cmpb512_mask((__v64qi)__a, (__v64qi)__b, 4,
+ (__mmask64)-1);
+}
+
+static __inline__ __mmask64 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmpneq_epi8_mask(__mmask64 __u, __m512i __a, __m512i __b) {
+ return (__mmask64)__builtin_ia32_cmpb512_mask((__v64qi)__a, (__v64qi)__b, 4,
+ __u);
+}
+
+static __inline__ __mmask64 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmpneq_epu8_mask(__m512i __a, __m512i __b) {
+ return (__mmask64)__builtin_ia32_ucmpb512_mask((__v64qi)__a, (__v64qi)__b, 4,
+ (__mmask64)-1);
+}
+
+static __inline__ __mmask64 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmpneq_epu8_mask(__mmask64 __u, __m512i __a, __m512i __b) {
+ return (__mmask64)__builtin_ia32_ucmpb512_mask((__v64qi)__a, (__v64qi)__b, 4,
+ __u);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmpneq_epi16_mask(__m512i __a, __m512i __b) {
+ return (__mmask32)__builtin_ia32_cmpw512_mask((__v32hi)__a, (__v32hi)__b, 4,
+ (__mmask32)-1);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmpneq_epi16_mask(__mmask32 __u, __m512i __a, __m512i __b) {
+ return (__mmask32)__builtin_ia32_cmpw512_mask((__v32hi)__a, (__v32hi)__b, 4,
+ __u);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmpneq_epu16_mask(__m512i __a, __m512i __b) {
+ return (__mmask32)__builtin_ia32_ucmpw512_mask((__v32hi)__a, (__v32hi)__b, 4,
+ (__mmask32)-1);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmpneq_epu16_mask(__mmask32 __u, __m512i __a, __m512i __b) {
+ return (__mmask32)__builtin_ia32_ucmpw512_mask((__v32hi)__a, (__v32hi)__b, 4,
+ __u);
+}
+
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_add_epi8 (__m512i __A, __m512i __B) {
+ return (__m512i) ((__v64qi) __A + (__v64qi) __B);
+}
+
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_add_epi8 (__m512i __W, __mmask64 __U, __m512i __A, __m512i __B) {
+ return (__m512i) __builtin_ia32_paddb512_mask ((__v64qi) __A,
+ (__v64qi) __B,
+ (__v64qi) __W,
+ (__mmask64) __U);
+}
+
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_maskz_add_epi8 (__mmask64 __U, __m512i __A, __m512i __B) {
+ return (__m512i) __builtin_ia32_paddb512_mask ((__v64qi) __A,
+ (__v64qi) __B,
+ (__v64qi)
+ _mm512_setzero_qi (),
+ (__mmask64) __U);
+}
+
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_sub_epi8 (__m512i __A, __m512i __B) {
+ return (__m512i) ((__v64qi) __A - (__v64qi) __B);
+}
+
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_sub_epi8 (__m512i __W, __mmask64 __U, __m512i __A, __m512i __B) {
+ return (__m512i) __builtin_ia32_psubb512_mask ((__v64qi) __A,
+ (__v64qi) __B,
+ (__v64qi) __W,
+ (__mmask64) __U);
+}
+
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_maskz_sub_epi8 (__mmask64 __U, __m512i __A, __m512i __B) {
+ return (__m512i) __builtin_ia32_psubb512_mask ((__v64qi) __A,
+ (__v64qi) __B,
+ (__v64qi)
+ _mm512_setzero_qi (),
+ (__mmask64) __U);
+}
+
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_add_epi16 (__m512i __A, __m512i __B) {
+ return (__m512i) ((__v32hi) __A + (__v32hi) __B);
+}
+
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_add_epi16 (__m512i __W, __mmask32 __U, __m512i __A, __m512i __B) {
+ return (__m512i) __builtin_ia32_paddw512_mask ((__v32hi) __A,
+ (__v32hi) __B,
+ (__v32hi) __W,
+ (__mmask32) __U);
+}
+
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_maskz_add_epi16 (__mmask32 __U, __m512i __A, __m512i __B) {
+ return (__m512i) __builtin_ia32_paddw512_mask ((__v32hi) __A,
+ (__v32hi) __B,
+ (__v32hi)
+ _mm512_setzero_hi (),
+ (__mmask32) __U);
+}
+
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_sub_epi16 (__m512i __A, __m512i __B) {
+ return (__m512i) ((__v32hi) __A - (__v32hi) __B);
+}
+
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_sub_epi16 (__m512i __W, __mmask32 __U, __m512i __A, __m512i __B) {
+ return (__m512i) __builtin_ia32_psubw512_mask ((__v32hi) __A,
+ (__v32hi) __B,
+ (__v32hi) __W,
+ (__mmask32) __U);
+}
+
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_maskz_sub_epi16 (__mmask32 __U, __m512i __A, __m512i __B) {
+ return (__m512i) __builtin_ia32_psubw512_mask ((__v32hi) __A,
+ (__v32hi) __B,
+ (__v32hi)
+ _mm512_setzero_hi (),
+ (__mmask32) __U);
+}
+
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_mullo_epi16 (__m512i __A, __m512i __B) {
+ return (__m512i) ((__v32hi) __A * (__v32hi) __B);
+}
+
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_mullo_epi16 (__m512i __W, __mmask32 __U, __m512i __A, __m512i __B) {
+ return (__m512i) __builtin_ia32_pmullw512_mask ((__v32hi) __A,
+ (__v32hi) __B,
+ (__v32hi) __W,
+ (__mmask32) __U);
+}
+
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_maskz_mullo_epi16 (__mmask32 __U, __m512i __A, __m512i __B) {
+ return (__m512i) __builtin_ia32_pmullw512_mask ((__v32hi) __A,
+ (__v32hi) __B,
+ (__v32hi)
+ _mm512_setzero_hi (),
+ (__mmask32) __U);
+}
+
+#define _mm512_cmp_epi8_mask(a, b, p) __extension__ ({ \
+ (__mmask16)__builtin_ia32_cmpb512_mask((__v64qi)(__m512i)(a), \
+ (__v64qi)(__m512i)(b), \
+ (p), (__mmask64)-1); })
+
+#define _mm512_mask_cmp_epi8_mask(m, a, b, p) __extension__ ({ \
+ (__mmask16)__builtin_ia32_cmpb512_mask((__v64qi)(__m512i)(a), \
+ (__v64qi)(__m512i)(b), \
+ (p), (__mmask64)(m)); })
+
+#define _mm512_cmp_epu8_mask(a, b, p) __extension__ ({ \
+ (__mmask16)__builtin_ia32_ucmpb512_mask((__v64qi)(__m512i)(a), \
+ (__v64qi)(__m512i)(b), \
+ (p), (__mmask64)-1); })
+
+#define _mm512_mask_cmp_epu8_mask(m, a, b, p) __extension__ ({ \
+ (__mmask16)__builtin_ia32_ucmpb512_mask((__v64qi)(__m512i)(a), \
+ (__v64qi)(__m512i)(b), \
+ (p), (__mmask64)(m)); })
+
+#define _mm512_cmp_epi16_mask(a, b, p) __extension__ ({ \
+ (__mmask16)__builtin_ia32_cmpw512_mask((__v32hi)(__m512i)(a), \
+ (__v32hi)(__m512i)(b), \
+ (p), (__mmask32)-1); })
+
+#define _mm512_mask_cmp_epi16_mask(m, a, b, p) __extension__ ({ \
+ (__mmask16)__builtin_ia32_cmpw512_mask((__v32hi)(__m512i)(a), \
+ (__v32hi)(__m512i)(b), \
+ (p), (__mmask32)(m)); })
+
+#define _mm512_cmp_epu16_mask(a, b, p) __extension__ ({ \
+ (__mmask16)__builtin_ia32_ucmpw512_mask((__v32hi)(__m512i)(a), \
+ (__v32hi)(__m512i)(b), \
+ (p), (__mmask32)-1); })
+
+#define _mm512_mask_cmp_epu16_mask(m, a, b, p) __extension__ ({ \
+ (__mmask16)__builtin_ia32_ucmpw512_mask((__v32hi)(__m512i)(a), \
+ (__v32hi)(__m512i)(b), \
+ (p), (__mmask32)(m)); })
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/Headers/avx512dqintrin.h b/contrib/llvm/tools/clang/lib/Headers/avx512dqintrin.h
new file mode 100644
index 0000000..fd33be2
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/avx512dqintrin.h
@@ -0,0 +1,237 @@
+/*===---- avx512dqintrin.h - AVX512DQ intrinsics ---------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#ifndef __IMMINTRIN_H
+#error "Never use <avx512dqintrin.h> directly; include <immintrin.h> instead."
+#endif
+
+#ifndef __AVX512DQINTRIN_H
+#define __AVX512DQINTRIN_H
+
+static __inline__ __m512i __attribute__ ((__always_inline__, __nodebug__))
+_mm512_mullo_epi64 (__m512i __A, __m512i __B) {
+ return (__m512i) ((__v8di) __A * (__v8di) __B);
+}
+
+static __inline__ __m512i __attribute__ ((__always_inline__, __nodebug__))
+_mm512_mask_mullo_epi64 (__m512i __W, __mmask8 __U, __m512i __A, __m512i __B) {
+ return (__m512i) __builtin_ia32_pmullq512_mask ((__v8di) __A,
+ (__v8di) __B,
+ (__v8di) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m512i __attribute__ ((__always_inline__, __nodebug__))
+_mm512_maskz_mullo_epi64 (__mmask8 __U, __m512i __A, __m512i __B) {
+ return (__m512i) __builtin_ia32_pmullq512_mask ((__v8di) __A,
+ (__v8di) __B,
+ (__v8di)
+ _mm512_setzero_si512 (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m512d __attribute__ ((__always_inline__, __nodebug__))
+_mm512_xor_pd (__m512d __A, __m512d __B) {
+ return (__m512d) ((__v8di) __A ^ (__v8di) __B);
+}
+
+static __inline__ __m512d __attribute__ ((__always_inline__, __nodebug__))
+_mm512_mask_xor_pd (__m512d __W, __mmask8 __U, __m512d __A, __m512d __B) {
+ return (__m512d) __builtin_ia32_xorpd512_mask ((__v8df) __A,
+ (__v8df) __B,
+ (__v8df) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m512d __attribute__ ((__always_inline__, __nodebug__))
+_mm512_maskz_xor_pd (__mmask8 __U, __m512d __A, __m512d __B) {
+ return (__m512d) __builtin_ia32_xorpd512_mask ((__v8df) __A,
+ (__v8df) __B,
+ (__v8df)
+ _mm512_setzero_pd (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m512 __attribute__ ((__always_inline__, __nodebug__))
+_mm512_xor_ps (__m512 __A, __m512 __B) {
+ return (__m512) ((__v16si) __A ^ (__v16si) __B);
+}
+
+static __inline__ __m512 __attribute__ ((__always_inline__, __nodebug__))
+_mm512_mask_xor_ps (__m512 __W, __mmask16 __U, __m512 __A, __m512 __B) {
+ return (__m512) __builtin_ia32_xorps512_mask ((__v16sf) __A,
+ (__v16sf) __B,
+ (__v16sf) __W,
+ (__mmask16) __U);
+}
+
+static __inline__ __m512 __attribute__ ((__always_inline__, __nodebug__))
+_mm512_maskz_xor_ps (__mmask16 __U, __m512 __A, __m512 __B) {
+ return (__m512) __builtin_ia32_xorps512_mask ((__v16sf) __A,
+ (__v16sf) __B,
+ (__v16sf)
+ _mm512_setzero_ps (),
+ (__mmask16) __U);
+}
+
+static __inline__ __m512d __attribute__ ((__always_inline__, __nodebug__))
+_mm512_or_pd (__m512d __A, __m512d __B) {
+ return (__m512d) ((__v8di) __A | (__v8di) __B);
+}
+
+static __inline__ __m512d __attribute__ ((__always_inline__, __nodebug__))
+_mm512_mask_or_pd (__m512d __W, __mmask8 __U, __m512d __A, __m512d __B) {
+ return (__m512d) __builtin_ia32_orpd512_mask ((__v8df) __A,
+ (__v8df) __B,
+ (__v8df) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m512d __attribute__ ((__always_inline__, __nodebug__))
+_mm512_maskz_or_pd (__mmask8 __U, __m512d __A, __m512d __B) {
+ return (__m512d) __builtin_ia32_orpd512_mask ((__v8df) __A,
+ (__v8df) __B,
+ (__v8df)
+ _mm512_setzero_pd (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m512 __attribute__ ((__always_inline__, __nodebug__))
+_mm512_or_ps (__m512 __A, __m512 __B) {
+ return (__m512) ((__v16si) __A | (__v16si) __B);
+}
+
+static __inline__ __m512 __attribute__ ((__always_inline__, __nodebug__))
+_mm512_mask_or_ps (__m512 __W, __mmask16 __U, __m512 __A, __m512 __B) {
+ return (__m512) __builtin_ia32_orps512_mask ((__v16sf) __A,
+ (__v16sf) __B,
+ (__v16sf) __W,
+ (__mmask16) __U);
+}
+
+static __inline__ __m512 __attribute__ ((__always_inline__, __nodebug__))
+_mm512_maskz_or_ps (__mmask16 __U, __m512 __A, __m512 __B) {
+ return (__m512) __builtin_ia32_orps512_mask ((__v16sf) __A,
+ (__v16sf) __B,
+ (__v16sf)
+ _mm512_setzero_ps (),
+ (__mmask16) __U);
+}
+
+static __inline__ __m512d __attribute__ ((__always_inline__, __nodebug__))
+_mm512_and_pd (__m512d __A, __m512d __B) {
+ return (__m512d) ((__v8di) __A & (__v8di) __B);
+}
+
+static __inline__ __m512d __attribute__ ((__always_inline__, __nodebug__))
+_mm512_mask_and_pd (__m512d __W, __mmask8 __U, __m512d __A, __m512d __B) {
+ return (__m512d) __builtin_ia32_andpd512_mask ((__v8df) __A,
+ (__v8df) __B,
+ (__v8df) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m512d __attribute__ ((__always_inline__, __nodebug__))
+_mm512_maskz_and_pd (__mmask8 __U, __m512d __A, __m512d __B) {
+ return (__m512d) __builtin_ia32_andpd512_mask ((__v8df) __A,
+ (__v8df) __B,
+ (__v8df)
+ _mm512_setzero_pd (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m512 __attribute__ ((__always_inline__, __nodebug__))
+_mm512_and_ps (__m512 __A, __m512 __B) {
+ return (__m512) ((__v16si) __A & (__v16si) __B);
+}
+
+static __inline__ __m512 __attribute__ ((__always_inline__, __nodebug__))
+_mm512_mask_and_ps (__m512 __W, __mmask16 __U, __m512 __A, __m512 __B) {
+ return (__m512) __builtin_ia32_andps512_mask ((__v16sf) __A,
+ (__v16sf) __B,
+ (__v16sf) __W,
+ (__mmask16) __U);
+}
+
+static __inline__ __m512 __attribute__ ((__always_inline__, __nodebug__))
+_mm512_maskz_and_ps (__mmask16 __U, __m512 __A, __m512 __B) {
+ return (__m512) __builtin_ia32_andps512_mask ((__v16sf) __A,
+ (__v16sf) __B,
+ (__v16sf)
+ _mm512_setzero_ps (),
+ (__mmask16) __U);
+}
+
+static __inline__ __m512d __attribute__ ((__always_inline__, __nodebug__))
+_mm512_andnot_pd (__m512d __A, __m512d __B) {
+ return (__m512d) __builtin_ia32_andnpd512_mask ((__v8df) __A,
+ (__v8df) __B,
+ (__v8df)
+ _mm512_setzero_pd (),
+ (__mmask8) -1);
+}
+
+static __inline__ __m512d __attribute__ ((__always_inline__, __nodebug__))
+_mm512_mask_andnot_pd (__m512d __W, __mmask8 __U, __m512d __A, __m512d __B) {
+ return (__m512d) __builtin_ia32_andnpd512_mask ((__v8df) __A,
+ (__v8df) __B,
+ (__v8df) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m512d __attribute__ ((__always_inline__, __nodebug__))
+_mm512_maskz_andnot_pd (__mmask8 __U, __m512d __A, __m512d __B) {
+ return (__m512d) __builtin_ia32_andnpd512_mask ((__v8df) __A,
+ (__v8df) __B,
+ (__v8df)
+ _mm512_setzero_pd (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m512 __attribute__ ((__always_inline__, __nodebug__))
+_mm512_andnot_ps (__m512 __A, __m512 __B) {
+ return (__m512) __builtin_ia32_andnps512_mask ((__v16sf) __A,
+ (__v16sf) __B,
+ (__v16sf)
+ _mm512_setzero_ps (),
+ (__mmask16) -1);
+}
+
+static __inline__ __m512 __attribute__ ((__always_inline__, __nodebug__))
+_mm512_mask_andnot_ps (__m512 __W, __mmask16 __U, __m512 __A, __m512 __B) {
+ return (__m512) __builtin_ia32_andnps512_mask ((__v16sf) __A,
+ (__v16sf) __B,
+ (__v16sf) __W,
+ (__mmask16) __U);
+}
+
+static __inline__ __m512 __attribute__ ((__always_inline__, __nodebug__))
+_mm512_maskz_andnot_ps (__mmask16 __U, __m512 __A, __m512 __B) {
+ return (__m512) __builtin_ia32_andnps512_mask ((__v16sf) __A,
+ (__v16sf) __B,
+ (__v16sf)
+ _mm512_setzero_ps (),
+ (__mmask16) __U);
+}
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/Headers/avx512erintrin.h b/contrib/llvm/tools/clang/lib/Headers/avx512erintrin.h
new file mode 100644
index 0000000..57c61aa
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/avx512erintrin.h
@@ -0,0 +1,286 @@
+/*===---- avx512fintrin.h - AVX2 intrinsics -----------------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+#ifndef __IMMINTRIN_H
+#error "Never use <avx512erintrin.h> directly; include <immintrin.h> instead."
+#endif
+
+#ifndef __AVX512ERINTRIN_H
+#define __AVX512ERINTRIN_H
+
+
+// exp2a23
+#define _mm512_exp2a23_round_pd(A, R) __extension__ ({ \
+ (__m512d)__builtin_ia32_exp2pd_mask((__v8df)(__m512d)(A), \
+ (__v8df)_mm512_setzero_pd(), \
+ (__mmask8)-1, (R)); })
+
+#define _mm512_mask_exp2a23_round_pd(S, M, A, R) __extension__ ({ \
+ (__m512d)__builtin_ia32_exp2pd_mask((__v8df)(__m512d)(A), \
+ (__v8df)(__m512d)(S), \
+ (__mmask8)(M), (R)); })
+
+#define _mm512_maskz_exp2a23_round_pd(M, A, R) __extension__ ({ \
+ (__m512d)__builtin_ia32_exp2pd_mask((__v8df)(__m512d)(A), \
+ (__v8df)_mm512_setzero_pd(), \
+ (__mmask8)(M), (R)); })
+
+#define _mm512_exp2a23_pd(A) \
+ _mm512_exp2a23_round_pd((A), _MM_FROUND_CUR_DIRECTION)
+
+#define _mm512_mask_exp2a23_pd(S, M, A) \
+ _mm512_mask_exp2a23_round_pd((S), (M), (A), _MM_FROUND_CUR_DIRECTION)
+
+#define _mm512_maskz_exp2a23_pd(M, A) \
+ _mm512_maskz_exp2a23_round_pd((M), (A), _MM_FROUND_CUR_DIRECTION)
+
+#define _mm512_exp2a23_round_ps(A, R) __extension__ ({ \
+ (__m512)__builtin_ia32_exp2ps_mask((__v16sf)(__m512)(A), \
+ (__v16sf)_mm512_setzero_ps(), \
+ (__mmask8)-1, (R)); })
+
+#define _mm512_mask_exp2a23_round_ps(S, M, A, R) __extension__ ({ \
+ (__m512)__builtin_ia32_exp2ps_mask((__v16sf)(__m512)(A), \
+ (__v16sf)(__m512)(S), \
+ (__mmask8)(M), (R)); })
+
+#define _mm512_maskz_exp2a23_round_ps(M, A, R) __extension__ ({ \
+ (__m512)__builtin_ia32_exp2ps_mask((__v16sf)(__m512)(A), \
+ (__v16sf)_mm512_setzero_ps(), \
+ (__mmask8)(M), (R)); })
+
+#define _mm512_exp2a23_ps(A) \
+ _mm512_exp2a23_round_ps((A), _MM_FROUND_CUR_DIRECTION)
+
+#define _mm512_mask_exp2a23_ps(S, M, A) \
+ _mm512_mask_exp2a23_round_ps((S), (M), (A), _MM_FROUND_CUR_DIRECTION)
+
+#define _mm512_maskz_exp2a23_ps(M, A) \
+ _mm512_maskz_exp2a23_round_ps((M), (A), _MM_FROUND_CUR_DIRECTION)
+
+// rsqrt28
+#define _mm512_rsqrt28_round_pd(A, R) __extension__ ({ \
+ (__m512d)__builtin_ia32_rsqrt28pd_mask((__v8df)(__m512d)(A), \
+ (__v8df)_mm512_setzero_pd(), \
+ (__mmask8)-1, (R)); })
+
+#define _mm512_mask_rsqrt28_round_pd(S, M, A, R) __extension__ ({ \
+ (__m512d)__builtin_ia32_rsqrt28pd_mask((__v8df)(__m512d)(A), \
+ (__v8df)(__m512d)(S), \
+ (__mmask8)(M), (R)); })
+
+#define _mm512_maskz_rsqrt28_round_pd(M, A, R) __extension__ ({ \
+ (__m512d)__builtin_ia32_rsqrt28pd_mask((__v8df)(__m512d)(A), \
+ (__v8df)_mm512_setzero_pd(), \
+ (__mmask8)(M), (R)); })
+
+#define _mm512_rsqrt28_pd(A) \
+ _mm512_rsqrt28_round_pd((A), _MM_FROUND_CUR_DIRECTION)
+
+#define _mm512_mask_rsqrt28_pd(S, M, A) \
+ _mm512_mask_rsqrt28_round_pd((S), (M), (A), _MM_FROUND_CUR_DIRECTION)
+
+#define _mm512_maskz_rsqrt28_pd(M, A) \
+ _mm512_maskz_rsqrt28_round_pd((M), (A), _MM_FROUND_CUR_DIRECTION)
+
+#define _mm512_rsqrt28_round_ps(A, R) __extension__ ({ \
+ (__m512)__builtin_ia32_rsqrt28ps_mask((__v16sf)(__m512)(A), \
+ (__v16sf)_mm512_setzero_ps(), \
+ (__mmask16)-1, (R)); })
+
+#define _mm512_mask_rsqrt28_round_ps(S, M, A, R) __extension__ ({ \
+ (__m512)__builtin_ia32_rsqrt28ps_mask((__v16sf)(__m512)(A), \
+ (__v16sf)(__m512)(S), \
+ (__mmask16)(M), (R)); })
+
+#define _mm512_maskz_rsqrt28_round_ps(M, A, R) __extension__ ({ \
+ (__m512)__builtin_ia32_rsqrt28ps_mask((__v16sf)(__m512)(A), \
+ (__v16sf)_mm512_setzero_ps(), \
+ (__mmask16)(M), (R)); })
+
+#define _mm512_rsqrt28_ps(A) \
+ _mm512_rsqrt28_round_ps((A), _MM_FROUND_CUR_DIRECTION)
+
+#define _mm512_mask_rsqrt28_ps(S, M, A) \
+ _mm512_mask_rsqrt28_round_ps((S), (M), A, _MM_FROUND_CUR_DIRECTION)
+
+#define _mm512_maskz_rsqrt28_ps(M, A) \
+ _mm512_maskz_rsqrt28_round_ps((M), (A), _MM_FROUND_CUR_DIRECTION)
+
+#define _mm_rsqrt28_round_ss(A, B, R) __extension__ ({ \
+ (__m128)__builtin_ia32_rsqrt28ss_mask((__v4sf)(__m128)(A), \
+ (__v4sf)(__m128)(B), \
+ (__v4sf)_mm_setzero_ps(), \
+ (__mmask8)-1, (R)); })
+
+#define _mm_mask_rsqrt28_round_ss(S, M, A, B, R) __extension__ ({ \
+ (__m128)__builtin_ia32_rsqrt28ss_mask((__v4sf)(__m128)(A), \
+ (__v4sf)(__m128)(B), \
+ (__v4sf)(__m128)(S), \
+ (__mmask8)(M), (R)); })
+
+#define _mm_maskz_rsqrt28_round_ss(M, A, B, R) __extension__ ({ \
+ (__m128)__builtin_ia32_rsqrt28ss_mask((__v4sf)(__m128)(A), \
+ (__v4sf)(__m128)(B), \
+ (__v4sf)_mm_setzero_ps(), \
+ (__mmask8)(M), (R)); })
+
+#define _mm_rsqrt28_ss(A, B) \
+ _mm_rsqrt28_round_ss((A), (B), _MM_FROUND_CUR_DIRECTION)
+
+#define _mm_mask_rsqrt28_ss(S, M, A, B) \
+ _mm_mask_rsqrt28_round_ss((S), (M), (A), (B), _MM_FROUND_CUR_DIRECTION)
+
+#define _mm_maskz_rsqrt28_ss(M, A, B) \
+ _mm_maskz_rsqrt28_round_ss((M), (A), (B), _MM_FROUND_CUR_DIRECTION)
+
+#define _mm_rsqrt28_round_sd(A, B, R) __extension__ ({ \
+ (__m128d)__builtin_ia32_rsqrt28sd_mask((__v2df)(__m128d)(A), \
+ (__v2df)(__m128d)(B), \
+ (__v2df)_mm_setzero_pd(), \
+ (__mmask8)-1, (R)); })
+
+#define _mm_mask_rsqrt28_round_sd(S, M, A, B, R) __extension__ ({ \
+ (__m128d)__builtin_ia32_rsqrt28sd_mask((__v2df)(__m128d)(A), \
+ (__v2df)(__m128d)(B), \
+ (__v2df)(__m128d)(S), \
+ (__mmask8)(M), (R)); })
+
+#define _mm_maskz_rsqrt28_round_sd(M, A, B, R) __extension__ ({ \
+ (__m128d)__builtin_ia32_rsqrt28sd_mask((__v2df)(__m128d)(A), \
+ (__v2df)(__m128d)(B), \
+ (__v2df)_mm_setzero_pd(), \
+ (__mmask8)(M), (R)); })
+
+#define _mm_rsqrt28_sd(A, B) \
+ _mm_rsqrt28_round_sd((A), (B), _MM_FROUND_CUR_DIRECTION)
+
+#define _mm_mask_rsqrt28_sd(S, M, A, B) \
+ _mm_mask_rsqrt28_round_sd((S), (M), (A), (B), _MM_FROUND_CUR_DIRECTION)
+
+#define _mm_maskz_rsqrt28_sd(M, A, B) \
+ _mm_mask_rsqrt28_round_sd((M), (A), (B), _MM_FROUND_CUR_DIRECTION)
+
+// rcp28
+#define _mm512_rcp28_round_pd(A, R) __extension__ ({ \
+ (__m512d)__builtin_ia32_rcp28pd_mask((__v8df)(__m512d)(A), \
+ (__v8df)_mm512_setzero_pd(), \
+ (__mmask8)-1, (R)); })
+
+#define _mm512_mask_rcp28_round_pd(S, M, A, R) __extension__ ({ \
+ (__m512d)__builtin_ia32_rcp28pd_mask((__v8df)(__m512d)(A), \
+ (__v8df)(__m512d)(S), \
+ (__mmask8)(M), (R)); })
+
+#define _mm512_maskz_rcp28_round_pd(M, A, R) __extension__ ({ \
+ (__m512d)__builtin_ia32_rcp28pd_mask((__v8df)(__m512d)(A), \
+ (__v8df)_mm512_setzero_pd(), \
+ (__mmask8)(M), (R)); })
+
+#define _mm512_rcp28_pd(A) \
+ _mm512_rcp28_round_pd((A), _MM_FROUND_CUR_DIRECTION)
+
+#define _mm512_mask_rcp28_pd(S, M, A) \
+ _mm512_mask_rcp28_round_pd((S), (M), (A), _MM_FROUND_CUR_DIRECTION)
+
+#define _mm512_maskz_rcp28_pd(M, A) \
+ _mm512_maskz_rcp28_round_pd((M), (A), _MM_FROUND_CUR_DIRECTION)
+
+#define _mm512_rcp28_round_ps(A, R) __extension__ ({ \
+ (__m512)__builtin_ia32_rcp28ps_mask((__v16sf)(__m512)(A), \
+ (__v16sf)_mm512_setzero_ps(), \
+ (__mmask16)-1, (R)); })
+
+#define _mm512_mask_rcp28_round_ps(S, M, A, R) __extension__ ({ \
+ (__m512)__builtin_ia32_rcp28ps_mask((__v16sf)(__m512)(A), \
+ (__v16sf)(__m512)(S), \
+ (__mmask16)(M), (R)); })
+
+#define _mm512_maskz_rcp28_round_ps(M, A, R) __extension__ ({ \
+ (__m512)__builtin_ia32_rcp28ps_mask((__v16sf)(__m512)(A), \
+ (__v16sf)_mm512_setzero_ps(), \
+ (__mmask16)(M), (R)); })
+
+#define _mm512_rcp28_ps(A) \
+ _mm512_rcp28_round_ps((A), _MM_FROUND_CUR_DIRECTION)
+
+#define _mm512_mask_rcp28_ps(S, M, A) \
+ _mm512_mask_rcp28_round_ps((S), (M), (A), _MM_FROUND_CUR_DIRECTION)
+
+#define _mm512_maskz_rcp28_ps(M, A) \
+ _mm512_maskz_rcp28_round_ps((M), (A), _MM_FROUND_CUR_DIRECTION)
+
+#define _mm_rcp28_round_ss(A, B, R) __extension__ ({ \
+ (__m128)__builtin_ia32_rcp28ss_mask((__v4sf)(__m128)(A), \
+ (__v4sf)(__m128)(B), \
+ (__v4sf)_mm_setzero_ps(), \
+ (__mmask8)-1, (R)); })
+
+#define _mm_mask_rcp28_round_ss(S, M, A, B, R) __extension__ ({ \
+ (__m128)__builtin_ia32_rcp28ss_mask((__v4sf)(__m128)(A), \
+ (__v4sf)(__m128)(B), \
+ (__v4sf)(__m128)(S), \
+ (__mmask8)(M), (R)); })
+
+#define _mm_maskz_rcp28_round_ss(M, A, B, R) __extension__ ({ \
+ (__m128)__builtin_ia32_rcp28ss_mask((__v4sf)(__m128)(A), \
+ (__v4sf)(__m128)(B), \
+ (__v4sf)_mm_setzero_ps(), \
+ (__mmask8)(M), (R)); })
+
+#define _mm_rcp28_ss(A, B) \
+ _mm_rcp28_round_ss((A), (B), _MM_FROUND_CUR_DIRECTION)
+
+#define _mm_mask_rcp28_ss(S, M, A, B) \
+ _mm_mask_rcp28_round_ss((S), (M), (A), (B), _MM_FROUND_CUR_DIRECTION)
+
+#define _mm_maskz_rcp28_ss(M, A, B) \
+ _mm_maskz_rcp28_round_ss((M), (A), (B), _MM_FROUND_CUR_DIRECTION)
+
+#define _mm_rcp28_round_sd(A, B, R) __extension__ ({ \
+ (__m128d)__builtin_ia32_rcp28sd_mask((__v2df)(__m128d)(A), \
+ (__v2df)(__m128d)(B), \
+ (__v2df)_mm_setzero_pd(), \
+ (__mmask8)-1, (R)); })
+
+#define _mm_mask_rcp28_round_sd(S, M, A, B, R) __extension__ ({ \
+ (__m128d)__builtin_ia32_rcp28sd_mask((__v2df)(__m128d)(A), \
+ (__v2df)(__m128d)(B), \
+ (__v2df)(__m128d)(S), \
+ (__mmask8)(M), (R)); })
+
+#define _mm_maskz_rcp28_round_sd(M, A, B, R) __extension__ ({ \
+ (__m128d)__builtin_ia32_rcp28sd_mask((__v2df)(__m128d)(A), \
+ (__v2df)(__m128d)(B), \
+ (__v2df)_mm_setzero_pd(), \
+ (__mmask8)(M), (R)); })
+
+#define _mm_rcp28_sd(A, B) \
+ _mm_rcp28_round_sd((A), (B), _MM_FROUND_CUR_DIRECTION)
+
+#define _mm_mask_rcp28_sd(S, M, A, B) \
+ _mm_mask_rcp28_round_sd((S), (M), (A), (B), _MM_FROUND_CUR_DIRECTION)
+
+#define _mm_maskz_rcp28_sd(M, A, B) \
+ _mm_maskz_rcp28_round_sd((M), (A), (B), _MM_FROUND_CUR_DIRECTION)
+
+#endif // __AVX512ERINTRIN_H
diff --git a/contrib/llvm/tools/clang/lib/Headers/avx512fintrin.h b/contrib/llvm/tools/clang/lib/Headers/avx512fintrin.h
new file mode 100644
index 0000000..d299704
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/avx512fintrin.h
@@ -0,0 +1,1747 @@
+/*===---- avx512fintrin.h - AVX2 intrinsics --------------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+#ifndef __IMMINTRIN_H
+#error "Never use <avx512fintrin.h> directly; include <immintrin.h> instead."
+#endif
+
+#ifndef __AVX512FINTRIN_H
+#define __AVX512FINTRIN_H
+
+typedef double __v8df __attribute__((__vector_size__(64)));
+typedef float __v16sf __attribute__((__vector_size__(64)));
+typedef long long __v8di __attribute__((__vector_size__(64)));
+typedef int __v16si __attribute__((__vector_size__(64)));
+
+typedef float __m512 __attribute__((__vector_size__(64)));
+typedef double __m512d __attribute__((__vector_size__(64)));
+typedef long long __m512i __attribute__((__vector_size__(64)));
+
+typedef unsigned char __mmask8;
+typedef unsigned short __mmask16;
+
+/* Rounding mode macros. */
+#define _MM_FROUND_TO_NEAREST_INT 0x00
+#define _MM_FROUND_TO_NEG_INF 0x01
+#define _MM_FROUND_TO_POS_INF 0x02
+#define _MM_FROUND_TO_ZERO 0x03
+#define _MM_FROUND_CUR_DIRECTION 0x04
+
+/* Create vectors with repeated elements */
+
+static __inline __m512i __attribute__ ((__always_inline__, __nodebug__))
+_mm512_setzero_si512(void)
+{
+ return (__m512i)(__v8di){ 0, 0, 0, 0, 0, 0, 0, 0 };
+}
+
+static __inline __m512i __attribute__ ((__always_inline__, __nodebug__))
+_mm512_maskz_set1_epi32(__mmask16 __M, int __A)
+{
+ return (__m512i) __builtin_ia32_pbroadcastd512_gpr_mask (__A,
+ (__v16si)
+ _mm512_setzero_si512 (),
+ __M);
+}
+
+static __inline __m512i __attribute__ ((__always_inline__, __nodebug__))
+_mm512_maskz_set1_epi64(__mmask8 __M, long long __A)
+{
+#ifdef __x86_64__
+ return (__m512i) __builtin_ia32_pbroadcastq512_gpr_mask (__A,
+ (__v8di)
+ _mm512_setzero_si512 (),
+ __M);
+#else
+ return (__m512i) __builtin_ia32_pbroadcastq512_mem_mask (__A,
+ (__v8di)
+ _mm512_setzero_si512 (),
+ __M);
+#endif
+}
+
+static __inline __m512 __attribute__ ((__always_inline__, __nodebug__))
+_mm512_setzero_ps(void)
+{
+ return (__m512){ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
+ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
+}
+static __inline __m512d __attribute__ ((__always_inline__, __nodebug__))
+_mm512_setzero_pd(void)
+{
+ return (__m512d){ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
+}
+
+static __inline __m512 __attribute__((__always_inline__, __nodebug__))
+_mm512_set1_ps(float __w)
+{
+ return (__m512){ __w, __w, __w, __w, __w, __w, __w, __w,
+ __w, __w, __w, __w, __w, __w, __w, __w };
+}
+
+static __inline __m512d __attribute__((__always_inline__, __nodebug__))
+_mm512_set1_pd(double __w)
+{
+ return (__m512d){ __w, __w, __w, __w, __w, __w, __w, __w };
+}
+
+static __inline __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_set1_epi32(int __s)
+{
+ return (__m512i)(__v16si){ __s, __s, __s, __s, __s, __s, __s, __s,
+ __s, __s, __s, __s, __s, __s, __s, __s };
+}
+
+static __inline __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_set1_epi64(long long __d)
+{
+ return (__m512i)(__v8di){ __d, __d, __d, __d, __d, __d, __d, __d };
+}
+
+static __inline__ __m512 __attribute__((__always_inline__, __nodebug__))
+_mm512_broadcastss_ps(__m128 __X)
+{
+ float __f = __X[0];
+ return (__v16sf){ __f, __f, __f, __f,
+ __f, __f, __f, __f,
+ __f, __f, __f, __f,
+ __f, __f, __f, __f };
+}
+
+static __inline__ __m512d __attribute__((__always_inline__, __nodebug__))
+_mm512_broadcastsd_pd(__m128d __X)
+{
+ double __d = __X[0];
+ return (__v8df){ __d, __d, __d, __d,
+ __d, __d, __d, __d };
+}
+
+/* Cast between vector types */
+
+static __inline __m512d __attribute__((__always_inline__, __nodebug__))
+_mm512_castpd256_pd512(__m256d __a)
+{
+ return __builtin_shufflevector(__a, __a, 0, 1, 2, 3, -1, -1, -1, -1);
+}
+
+static __inline __m512 __attribute__((__always_inline__, __nodebug__))
+_mm512_castps256_ps512(__m256 __a)
+{
+ return __builtin_shufflevector(__a, __a, 0, 1, 2, 3, 4, 5, 6, 7,
+ -1, -1, -1, -1, -1, -1, -1, -1);
+}
+
+static __inline __m128d __attribute__((__always_inline__, __nodebug__))
+_mm512_castpd512_pd128(__m512d __a)
+{
+ return __builtin_shufflevector(__a, __a, 0, 1);
+}
+
+static __inline __m128 __attribute__((__always_inline__, __nodebug__))
+_mm512_castps512_ps128(__m512 __a)
+{
+ return __builtin_shufflevector(__a, __a, 0, 1, 2, 3);
+}
+
+/* Bitwise operators */
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_and_epi32(__m512i __a, __m512i __b)
+{
+ return __a & __b;
+}
+
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_and_epi32(__m512i __src, __mmask16 __k, __m512i __a, __m512i __b)
+{
+ return (__m512i) __builtin_ia32_pandd512_mask((__v16si) __a,
+ (__v16si) __b,
+ (__v16si) __src,
+ (__mmask16) __k);
+}
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_maskz_and_epi32(__mmask16 __k, __m512i __a, __m512i __b)
+{
+ return (__m512i) __builtin_ia32_pandd512_mask((__v16si) __a,
+ (__v16si) __b,
+ (__v16si)
+ _mm512_setzero_si512 (),
+ (__mmask16) __k);
+}
+
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_and_epi64(__m512i __a, __m512i __b)
+{
+ return __a & __b;
+}
+
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_and_epi64(__m512i __src, __mmask8 __k, __m512i __a, __m512i __b)
+{
+ return (__m512i) __builtin_ia32_pandq512_mask ((__v8di) __a,
+ (__v8di) __b,
+ (__v8di) __src,
+ (__mmask8) __k);
+}
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_maskz_and_epi64(__mmask8 __k, __m512i __a, __m512i __b)
+{
+ return (__m512i) __builtin_ia32_pandq512_mask ((__v8di) __a,
+ (__v8di) __b,
+ (__v8di)
+ _mm512_setzero_si512 (),
+ (__mmask8) __k);
+}
+
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_andnot_epi32 (__m512i __A, __m512i __B)
+{
+ return (__m512i) __builtin_ia32_pandnd512_mask ((__v16si) __A,
+ (__v16si) __B,
+ (__v16si)
+ _mm512_setzero_si512 (),
+ (__mmask16) -1);
+}
+
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_andnot_epi32 (__m512i __W, __mmask16 __U, __m512i __A, __m512i __B)
+{
+ return (__m512i) __builtin_ia32_pandnd512_mask ((__v16si) __A,
+ (__v16si) __B,
+ (__v16si) __W,
+ (__mmask16) __U);
+}
+
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_maskz_andnot_epi32 (__mmask16 __U, __m512i __A, __m512i __B)
+{
+ return (__m512i) __builtin_ia32_pandnd512_mask ((__v16si) __A,
+ (__v16si) __B,
+ (__v16si)
+ _mm512_setzero_si512 (),
+ (__mmask16) __U);
+}
+
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_andnot_epi64 (__m512i __A, __m512i __B)
+{
+ return (__m512i) __builtin_ia32_pandnq512_mask ((__v8di) __A,
+ (__v8di) __B,
+ (__v8di)
+ _mm512_setzero_si512 (),
+ (__mmask8) -1);
+}
+
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_andnot_epi64 (__m512i __W, __mmask8 __U, __m512i __A, __m512i __B)
+{
+ return (__m512i) __builtin_ia32_pandnq512_mask ((__v8di) __A,
+ (__v8di) __B,
+ (__v8di) __W, __U);
+}
+
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_maskz_andnot_epi64 (__mmask8 __U, __m512i __A, __m512i __B)
+{
+ return (__m512i) __builtin_ia32_pandnq512_mask ((__v8di) __A,
+ (__v8di) __B,
+ (__v8di)
+ _mm512_setzero_pd (),
+ __U);
+}
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_or_epi32(__m512i __a, __m512i __b)
+{
+ return __a | __b;
+}
+
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_or_epi32(__m512i __src, __mmask16 __k, __m512i __a, __m512i __b)
+{
+ return (__m512i) __builtin_ia32_pord512_mask((__v16si) __a,
+ (__v16si) __b,
+ (__v16si) __src,
+ (__mmask16) __k);
+}
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_maskz_or_epi32(__mmask16 __k, __m512i __a, __m512i __b)
+{
+ return (__m512i) __builtin_ia32_pord512_mask((__v16si) __a,
+ (__v16si) __b,
+ (__v16si)
+ _mm512_setzero_si512 (),
+ (__mmask16) __k);
+}
+
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_or_epi64(__m512i __a, __m512i __b)
+{
+ return __a | __b;
+}
+
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_or_epi64(__m512i __src, __mmask8 __k, __m512i __a, __m512i __b)
+{
+ return (__m512i) __builtin_ia32_porq512_mask ((__v8di) __a,
+ (__v8di) __b,
+ (__v8di) __src,
+ (__mmask8) __k);
+}
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_maskz_or_epi64(__mmask8 __k, __m512i __a, __m512i __b)
+{
+ return (__m512i) __builtin_ia32_porq512_mask ((__v8di) __a,
+ (__v8di) __b,
+ (__v8di)
+ _mm512_setzero_si512 (),
+ (__mmask8) __k);
+}
+
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_xor_epi32(__m512i __a, __m512i __b)
+{
+ return __a ^ __b;
+}
+
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_xor_epi32(__m512i __src, __mmask16 __k, __m512i __a, __m512i __b)
+{
+ return (__m512i) __builtin_ia32_pxord512_mask((__v16si) __a,
+ (__v16si) __b,
+ (__v16si) __src,
+ (__mmask16) __k);
+}
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_maskz_xor_epi32(__mmask16 __k, __m512i __a, __m512i __b)
+{
+ return (__m512i) __builtin_ia32_pxord512_mask((__v16si) __a,
+ (__v16si) __b,
+ (__v16si)
+ _mm512_setzero_si512 (),
+ (__mmask16) __k);
+}
+
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_xor_epi64(__m512i __a, __m512i __b)
+{
+ return __a ^ __b;
+}
+
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_xor_epi64(__m512i __src, __mmask8 __k, __m512i __a, __m512i __b)
+{
+ return (__m512i) __builtin_ia32_pxorq512_mask ((__v8di) __a,
+ (__v8di) __b,
+ (__v8di) __src,
+ (__mmask8) __k);
+}
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_maskz_xor_epi64(__mmask8 __k, __m512i __a, __m512i __b)
+{
+ return (__m512i) __builtin_ia32_pxorq512_mask ((__v8di) __a,
+ (__v8di) __b,
+ (__v8di)
+ _mm512_setzero_si512 (),
+ (__mmask8) __k);
+}
+
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_and_si512(__m512i __a, __m512i __b)
+{
+ return __a & __b;
+}
+
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_or_si512(__m512i __a, __m512i __b)
+{
+ return __a | __b;
+}
+
+static __inline__ __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_xor_si512(__m512i __a, __m512i __b)
+{
+ return __a ^ __b;
+}
+/* Arithmetic */
+
+static __inline __m512d __attribute__((__always_inline__, __nodebug__))
+_mm512_add_pd(__m512d __a, __m512d __b)
+{
+ return __a + __b;
+}
+
+static __inline __m512 __attribute__((__always_inline__, __nodebug__))
+_mm512_add_ps(__m512 __a, __m512 __b)
+{
+ return __a + __b;
+}
+
+static __inline __m512d __attribute__((__always_inline__, __nodebug__))
+_mm512_mul_pd(__m512d __a, __m512d __b)
+{
+ return __a * __b;
+}
+
+static __inline __m512 __attribute__((__always_inline__, __nodebug__))
+_mm512_mul_ps(__m512 __a, __m512 __b)
+{
+ return __a * __b;
+}
+
+static __inline __m512d __attribute__((__always_inline__, __nodebug__))
+_mm512_sub_pd(__m512d __a, __m512d __b)
+{
+ return __a - __b;
+}
+
+static __inline __m512 __attribute__((__always_inline__, __nodebug__))
+_mm512_sub_ps(__m512 __a, __m512 __b)
+{
+ return __a - __b;
+}
+
+static __inline__ __m512i __attribute__ ((__always_inline__, __nodebug__))
+_mm512_add_epi64 (__m512i __A, __m512i __B)
+{
+ return (__m512i) ((__v8di) __A + (__v8di) __B);
+}
+
+static __inline__ __m512i __attribute__ ((__always_inline__, __nodebug__))
+_mm512_mask_add_epi64 (__m512i __W, __mmask8 __U, __m512i __A, __m512i __B)
+{
+ return (__m512i) __builtin_ia32_paddq512_mask ((__v8di) __A,
+ (__v8di) __B,
+ (__v8di) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m512i __attribute__ ((__always_inline__, __nodebug__))
+_mm512_maskz_add_epi64 (__mmask8 __U, __m512i __A, __m512i __B)
+{
+ return (__m512i) __builtin_ia32_paddq512_mask ((__v8di) __A,
+ (__v8di) __B,
+ (__v8di)
+ _mm512_setzero_si512 (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m512i __attribute__ ((__always_inline__, __nodebug__))
+_mm512_sub_epi64 (__m512i __A, __m512i __B)
+{
+ return (__m512i) ((__v8di) __A - (__v8di) __B);
+}
+
+static __inline__ __m512i __attribute__ ((__always_inline__, __nodebug__))
+_mm512_mask_sub_epi64 (__m512i __W, __mmask8 __U, __m512i __A, __m512i __B)
+{
+ return (__m512i) __builtin_ia32_psubq512_mask ((__v8di) __A,
+ (__v8di) __B,
+ (__v8di) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m512i __attribute__ ((__always_inline__, __nodebug__))
+_mm512_maskz_sub_epi64 (__mmask8 __U, __m512i __A, __m512i __B)
+{
+ return (__m512i) __builtin_ia32_psubq512_mask ((__v8di) __A,
+ (__v8di) __B,
+ (__v8di)
+ _mm512_setzero_si512 (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m512i __attribute__ ((__always_inline__, __nodebug__))
+_mm512_add_epi32 (__m512i __A, __m512i __B)
+{
+ return (__m512i) ((__v16si) __A + (__v16si) __B);
+}
+
+static __inline__ __m512i __attribute__ ((__always_inline__, __nodebug__))
+_mm512_mask_add_epi32 (__m512i __W, __mmask16 __U, __m512i __A, __m512i __B)
+{
+ return (__m512i) __builtin_ia32_paddd512_mask ((__v16si) __A,
+ (__v16si) __B,
+ (__v16si) __W,
+ (__mmask16) __U);
+}
+
+static __inline__ __m512i __attribute__ ((__always_inline__, __nodebug__))
+_mm512_maskz_add_epi32 (__mmask16 __U, __m512i __A, __m512i __B)
+{
+ return (__m512i) __builtin_ia32_paddd512_mask ((__v16si) __A,
+ (__v16si) __B,
+ (__v16si)
+ _mm512_setzero_si512 (),
+ (__mmask16) __U);
+}
+
+static __inline__ __m512i __attribute__ ((__always_inline__, __nodebug__))
+_mm512_sub_epi32 (__m512i __A, __m512i __B)
+{
+ return (__m512i) ((__v16si) __A - (__v16si) __B);
+}
+
+static __inline__ __m512i __attribute__ ((__always_inline__, __nodebug__))
+_mm512_mask_sub_epi32 (__m512i __W, __mmask16 __U, __m512i __A, __m512i __B)
+{
+ return (__m512i) __builtin_ia32_psubd512_mask ((__v16si) __A,
+ (__v16si) __B,
+ (__v16si) __W,
+ (__mmask16) __U);
+}
+
+static __inline__ __m512i __attribute__ ((__always_inline__, __nodebug__))
+_mm512_maskz_sub_epi32 (__mmask16 __U, __m512i __A, __m512i __B)
+{
+ return (__m512i) __builtin_ia32_psubd512_mask ((__v16si) __A,
+ (__v16si) __B,
+ (__v16si)
+ _mm512_setzero_si512 (),
+ (__mmask16) __U);
+}
+
+static __inline__ __m512d __attribute__((__always_inline__, __nodebug__))
+_mm512_max_pd(__m512d __A, __m512d __B)
+{
+ return (__m512d) __builtin_ia32_maxpd512_mask ((__v8df) __A,
+ (__v8df) __B,
+ (__v8df)
+ _mm512_setzero_pd (),
+ (__mmask8) -1,
+ _MM_FROUND_CUR_DIRECTION);
+}
+
+static __inline__ __m512 __attribute__((__always_inline__, __nodebug__))
+_mm512_max_ps(__m512 __A, __m512 __B)
+{
+ return (__m512) __builtin_ia32_maxps512_mask ((__v16sf) __A,
+ (__v16sf) __B,
+ (__v16sf)
+ _mm512_setzero_ps (),
+ (__mmask16) -1,
+ _MM_FROUND_CUR_DIRECTION);
+}
+
+static __inline __m512i
+__attribute__ ((__always_inline__, __nodebug__))
+_mm512_max_epi32(__m512i __A, __m512i __B)
+{
+ return (__m512i) __builtin_ia32_pmaxsd512_mask ((__v16si) __A,
+ (__v16si) __B,
+ (__v16si)
+ _mm512_setzero_si512 (),
+ (__mmask16) -1);
+}
+
+static __inline __m512i __attribute__ ((__always_inline__, __nodebug__))
+_mm512_max_epu32(__m512i __A, __m512i __B)
+{
+ return (__m512i) __builtin_ia32_pmaxud512_mask ((__v16si) __A,
+ (__v16si) __B,
+ (__v16si)
+ _mm512_setzero_si512 (),
+ (__mmask16) -1);
+}
+
+static __inline __m512i __attribute__ ((__always_inline__, __nodebug__))
+_mm512_max_epi64(__m512i __A, __m512i __B)
+{
+ return (__m512i) __builtin_ia32_pmaxsq512_mask ((__v8di) __A,
+ (__v8di) __B,
+ (__v8di)
+ _mm512_setzero_si512 (),
+ (__mmask8) -1);
+}
+
+static __inline __m512i __attribute__ ((__always_inline__, __nodebug__))
+_mm512_max_epu64(__m512i __A, __m512i __B)
+{
+ return (__m512i) __builtin_ia32_pmaxuq512_mask ((__v8di) __A,
+ (__v8di) __B,
+ (__v8di)
+ _mm512_setzero_si512 (),
+ (__mmask8) -1);
+}
+
+static __inline__ __m512d __attribute__((__always_inline__, __nodebug__))
+_mm512_min_pd(__m512d __A, __m512d __B)
+{
+ return (__m512d) __builtin_ia32_minpd512_mask ((__v8df) __A,
+ (__v8df) __B,
+ (__v8df)
+ _mm512_setzero_pd (),
+ (__mmask8) -1,
+ _MM_FROUND_CUR_DIRECTION);
+}
+
+static __inline__ __m512 __attribute__((__always_inline__, __nodebug__))
+_mm512_min_ps(__m512 __A, __m512 __B)
+{
+ return (__m512) __builtin_ia32_minps512_mask ((__v16sf) __A,
+ (__v16sf) __B,
+ (__v16sf)
+ _mm512_setzero_ps (),
+ (__mmask16) -1,
+ _MM_FROUND_CUR_DIRECTION);
+}
+
+static __inline __m512i
+__attribute__ ((__always_inline__, __nodebug__))
+_mm512_min_epi32(__m512i __A, __m512i __B)
+{
+ return (__m512i) __builtin_ia32_pminsd512_mask ((__v16si) __A,
+ (__v16si) __B,
+ (__v16si)
+ _mm512_setzero_si512 (),
+ (__mmask16) -1);
+}
+
+static __inline __m512i __attribute__ ((__always_inline__, __nodebug__))
+_mm512_min_epu32(__m512i __A, __m512i __B)
+{
+ return (__m512i) __builtin_ia32_pminud512_mask ((__v16si) __A,
+ (__v16si) __B,
+ (__v16si)
+ _mm512_setzero_si512 (),
+ (__mmask16) -1);
+}
+
+static __inline __m512i __attribute__ ((__always_inline__, __nodebug__))
+_mm512_min_epi64(__m512i __A, __m512i __B)
+{
+ return (__m512i) __builtin_ia32_pminsq512_mask ((__v8di) __A,
+ (__v8di) __B,
+ (__v8di)
+ _mm512_setzero_si512 (),
+ (__mmask8) -1);
+}
+
+static __inline __m512i __attribute__ ((__always_inline__, __nodebug__))
+_mm512_min_epu64(__m512i __A, __m512i __B)
+{
+ return (__m512i) __builtin_ia32_pminuq512_mask ((__v8di) __A,
+ (__v8di) __B,
+ (__v8di)
+ _mm512_setzero_si512 (),
+ (__mmask8) -1);
+}
+
+static __inline __m512i __attribute__ ((__always_inline__, __nodebug__))
+_mm512_mul_epi32(__m512i __X, __m512i __Y)
+{
+ return (__m512i) __builtin_ia32_pmuldq512_mask ((__v16si) __X,
+ (__v16si) __Y,
+ (__v8di)
+ _mm512_setzero_si512 (),
+ (__mmask8) -1);
+}
+
+static __inline __m512i __attribute__ ((__always_inline__, __nodebug__))
+_mm512_mask_mul_epi32 (__m512i __W, __mmask8 __M, __m512i __X, __m512i __Y)
+{
+ return (__m512i) __builtin_ia32_pmuldq512_mask ((__v16si) __X,
+ (__v16si) __Y,
+ (__v8di) __W, __M);
+}
+
+static __inline __m512i __attribute__ ((__always_inline__, __nodebug__))
+_mm512_maskz_mul_epi32 (__mmask8 __M, __m512i __X, __m512i __Y)
+{
+ return (__m512i) __builtin_ia32_pmuldq512_mask ((__v16si) __X,
+ (__v16si) __Y,
+ (__v8di)
+ _mm512_setzero_si512 (),
+ __M);
+}
+
+static __inline __m512i __attribute__ ((__always_inline__, __nodebug__))
+_mm512_mul_epu32(__m512i __X, __m512i __Y)
+{
+ return (__m512i) __builtin_ia32_pmuludq512_mask ((__v16si) __X,
+ (__v16si) __Y,
+ (__v8di)
+ _mm512_setzero_si512 (),
+ (__mmask8) -1);
+}
+
+static __inline __m512i __attribute__ ((__always_inline__, __nodebug__))
+_mm512_mask_mul_epu32 (__m512i __W, __mmask8 __M, __m512i __X, __m512i __Y)
+{
+ return (__m512i) __builtin_ia32_pmuludq512_mask ((__v16si) __X,
+ (__v16si) __Y,
+ (__v8di) __W, __M);
+}
+
+static __inline __m512i __attribute__ ((__always_inline__, __nodebug__))
+_mm512_maskz_mul_epu32 (__mmask8 __M, __m512i __X, __m512i __Y)
+{
+ return (__m512i) __builtin_ia32_pmuludq512_mask ((__v16si) __X,
+ (__v16si) __Y,
+ (__v8di)
+ _mm512_setzero_si512 (),
+ __M);
+}
+
+static __inline __m512i __attribute__ ((__always_inline__, __nodebug__))
+_mm512_mullo_epi32 (__m512i __A, __m512i __B)
+{
+ return (__m512i) ((__v16si) __A * (__v16si) __B);
+}
+
+static __inline __m512i __attribute__ ((__always_inline__, __nodebug__))
+_mm512_maskz_mullo_epi32 (__mmask16 __M, __m512i __A, __m512i __B)
+{
+ return (__m512i) __builtin_ia32_pmulld512_mask ((__v16si) __A,
+ (__v16si) __B,
+ (__v16si)
+ _mm512_setzero_si512 (),
+ __M);
+}
+
+static __inline __m512i __attribute__ ((__always_inline__, __nodebug__))
+_mm512_mask_mullo_epi32 (__m512i __W, __mmask16 __M, __m512i __A, __m512i __B)
+{
+ return (__m512i) __builtin_ia32_pmulld512_mask ((__v16si) __A,
+ (__v16si) __B,
+ (__v16si) __W, __M);
+}
+
+static __inline__ __m512d __attribute__((__always_inline__, __nodebug__))
+_mm512_sqrt_pd(__m512d a)
+{
+ return (__m512d)__builtin_ia32_sqrtpd512_mask((__v8df)a,
+ (__v8df) _mm512_setzero_pd (),
+ (__mmask8) -1,
+ _MM_FROUND_CUR_DIRECTION);
+}
+
+static __inline__ __m512 __attribute__((__always_inline__, __nodebug__))
+_mm512_sqrt_ps(__m512 a)
+{
+ return (__m512)__builtin_ia32_sqrtps512_mask((__v16sf)a,
+ (__v16sf) _mm512_setzero_ps (),
+ (__mmask16) -1,
+ _MM_FROUND_CUR_DIRECTION);
+}
+
+static __inline__ __m512d __attribute__((__always_inline__, __nodebug__))
+_mm512_rsqrt14_pd(__m512d __A)
+{
+ return (__m512d) __builtin_ia32_rsqrt14pd512_mask ((__v8df) __A,
+ (__v8df)
+ _mm512_setzero_pd (),
+ (__mmask8) -1);}
+
+static __inline__ __m512 __attribute__((__always_inline__, __nodebug__))
+_mm512_rsqrt14_ps(__m512 __A)
+{
+ return (__m512) __builtin_ia32_rsqrt14ps512_mask ((__v16sf) __A,
+ (__v16sf)
+ _mm512_setzero_ps (),
+ (__mmask16) -1);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_rsqrt14_ss(__m128 __A, __m128 __B)
+{
+ return (__m128) __builtin_ia32_rsqrt14ss_mask ((__v4sf) __A,
+ (__v4sf) __B,
+ (__v4sf)
+ _mm_setzero_ps (),
+ (__mmask8) -1);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_rsqrt14_sd(__m128d __A, __m128d __B)
+{
+ return (__m128d) __builtin_ia32_rsqrt14sd_mask ((__v2df) __A,
+ (__v2df) __B,
+ (__v2df)
+ _mm_setzero_pd (),
+ (__mmask8) -1);
+}
+
+static __inline__ __m512d __attribute__((__always_inline__, __nodebug__))
+_mm512_rcp14_pd(__m512d __A)
+{
+ return (__m512d) __builtin_ia32_rcp14pd512_mask ((__v8df) __A,
+ (__v8df)
+ _mm512_setzero_pd (),
+ (__mmask8) -1);
+}
+
+static __inline__ __m512 __attribute__((__always_inline__, __nodebug__))
+_mm512_rcp14_ps(__m512 __A)
+{
+ return (__m512) __builtin_ia32_rcp14ps512_mask ((__v16sf) __A,
+ (__v16sf)
+ _mm512_setzero_ps (),
+ (__mmask16) -1);
+}
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_rcp14_ss(__m128 __A, __m128 __B)
+{
+ return (__m128) __builtin_ia32_rcp14ss_mask ((__v4sf) __A,
+ (__v4sf) __B,
+ (__v4sf)
+ _mm_setzero_ps (),
+ (__mmask8) -1);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_rcp14_sd(__m128d __A, __m128d __B)
+{
+ return (__m128d) __builtin_ia32_rcp14sd_mask ((__v2df) __A,
+ (__v2df) __B,
+ (__v2df)
+ _mm_setzero_pd (),
+ (__mmask8) -1);
+}
+
+static __inline __m512 __attribute__ ((__always_inline__, __nodebug__))
+_mm512_floor_ps(__m512 __A)
+{
+ return (__m512) __builtin_ia32_rndscaleps_mask ((__v16sf) __A,
+ _MM_FROUND_FLOOR,
+ (__v16sf) __A, -1,
+ _MM_FROUND_CUR_DIRECTION);
+}
+
+static __inline __m512d __attribute__ ((__always_inline__, __nodebug__))
+_mm512_floor_pd(__m512d __A)
+{
+ return (__m512d) __builtin_ia32_rndscalepd_mask ((__v8df) __A,
+ _MM_FROUND_FLOOR,
+ (__v8df) __A, -1,
+ _MM_FROUND_CUR_DIRECTION);
+}
+
+static __inline __m512 __attribute__ ((__always_inline__, __nodebug__))
+_mm512_ceil_ps(__m512 __A)
+{
+ return (__m512) __builtin_ia32_rndscaleps_mask ((__v16sf) __A,
+ _MM_FROUND_CEIL,
+ (__v16sf) __A, -1,
+ _MM_FROUND_CUR_DIRECTION);
+}
+
+static __inline __m512d __attribute__ ((__always_inline__, __nodebug__))
+_mm512_ceil_pd(__m512d __A)
+{
+ return (__m512d) __builtin_ia32_rndscalepd_mask ((__v8df) __A,
+ _MM_FROUND_CEIL,
+ (__v8df) __A, -1,
+ _MM_FROUND_CUR_DIRECTION);
+}
+
+static __inline __m512i __attribute__ (( __always_inline__, __nodebug__))
+_mm512_abs_epi64(__m512i __A)
+{
+ return (__m512i) __builtin_ia32_pabsq512_mask ((__v8di) __A,
+ (__v8di)
+ _mm512_setzero_si512 (),
+ (__mmask8) -1);
+}
+
+static __inline __m512i __attribute__ (( __always_inline__, __nodebug__))
+_mm512_abs_epi32(__m512i __A)
+{
+ return (__m512i) __builtin_ia32_pabsd512_mask ((__v16si) __A,
+ (__v16si)
+ _mm512_setzero_si512 (),
+ (__mmask16) -1);
+}
+
+#define _mm512_roundscale_ps(A, B) __extension__ ({ \
+ (__m512)__builtin_ia32_rndscaleps_mask((__v16sf)(A), (B), (__v16sf)(A), \
+ -1, _MM_FROUND_CUR_DIRECTION); })
+
+#define _mm512_roundscale_pd(A, B) __extension__ ({ \
+ (__m512d)__builtin_ia32_rndscalepd_mask((__v8df)(A), (B), (__v8df)(A), \
+ -1, _MM_FROUND_CUR_DIRECTION); })
+
+static __inline__ __m512d __attribute__((__always_inline__, __nodebug__))
+_mm512_fmadd_pd(__m512d __A, __m512d __B, __m512d __C)
+{
+ return (__m512d)
+ __builtin_ia32_vfmaddpd512_mask(__A,
+ __B,
+ __C,
+ (__mmask8) -1,
+ _MM_FROUND_CUR_DIRECTION);
+}
+
+static __inline__ __m512d __attribute__((__always_inline__, __nodebug__))
+_mm512_fmsub_pd(__m512d __A, __m512d __B, __m512d __C)
+{
+ return (__m512d)
+ __builtin_ia32_vfmsubpd512_mask(__A,
+ __B,
+ __C,
+ (__mmask8) -1,
+ _MM_FROUND_CUR_DIRECTION);
+}
+
+static __inline__ __m512d __attribute__((__always_inline__, __nodebug__))
+_mm512_fnmadd_pd(__m512d __A, __m512d __B, __m512d __C)
+{
+ return (__m512d)
+ __builtin_ia32_vfnmaddpd512_mask(__A,
+ __B,
+ __C,
+ (__mmask8) -1,
+ _MM_FROUND_CUR_DIRECTION);
+}
+
+static __inline__ __m512 __attribute__((__always_inline__, __nodebug__))
+_mm512_fmadd_ps(__m512 __A, __m512 __B, __m512 __C)
+{
+ return (__m512)
+ __builtin_ia32_vfmaddps512_mask(__A,
+ __B,
+ __C,
+ (__mmask16) -1,
+ _MM_FROUND_CUR_DIRECTION);
+}
+
+static __inline__ __m512 __attribute__((__always_inline__, __nodebug__))
+_mm512_fmsub_ps(__m512 __A, __m512 __B, __m512 __C)
+{
+ return (__m512)
+ __builtin_ia32_vfmsubps512_mask(__A,
+ __B,
+ __C,
+ (__mmask16) -1,
+ _MM_FROUND_CUR_DIRECTION);
+}
+
+static __inline__ __m512 __attribute__((__always_inline__, __nodebug__))
+_mm512_fnmadd_ps(__m512 __A, __m512 __B, __m512 __C)
+{
+ return (__m512)
+ __builtin_ia32_vfnmaddps512_mask(__A,
+ __B,
+ __C,
+ (__mmask16) -1,
+ _MM_FROUND_CUR_DIRECTION);
+}
+
+/* Vector permutations */
+
+static __inline __m512i __attribute__ ((__always_inline__, __nodebug__))
+_mm512_permutex2var_epi32(__m512i __A, __m512i __I, __m512i __B)
+{
+ return (__m512i) __builtin_ia32_vpermt2vard512_mask ((__v16si) __I
+ /* idx */ ,
+ (__v16si) __A,
+ (__v16si) __B,
+ (__mmask16) -1);
+}
+static __inline __m512i __attribute__ ((__always_inline__, __nodebug__))
+_mm512_permutex2var_epi64(__m512i __A, __m512i __I, __m512i __B)
+{
+ return (__m512i) __builtin_ia32_vpermt2varq512_mask ((__v8di) __I
+ /* idx */ ,
+ (__v8di) __A,
+ (__v8di) __B,
+ (__mmask8) -1);
+}
+
+static __inline __m512d __attribute__ ((__always_inline__, __nodebug__))
+_mm512_permutex2var_pd(__m512d __A, __m512i __I, __m512d __B)
+{
+ return (__m512d) __builtin_ia32_vpermt2varpd512_mask ((__v8di) __I
+ /* idx */ ,
+ (__v8df) __A,
+ (__v8df) __B,
+ (__mmask8) -1);
+}
+static __inline __m512 __attribute__ ((__always_inline__, __nodebug__))
+_mm512_permutex2var_ps(__m512 __A, __m512i __I, __m512 __B)
+{
+ return (__m512) __builtin_ia32_vpermt2varps512_mask ((__v16si) __I
+ /* idx */ ,
+ (__v16sf) __A,
+ (__v16sf) __B,
+ (__mmask16) -1);
+}
+
+#define _mm512_alignr_epi64(A, B, I) __extension__ ({ \
+ (__m512i)__builtin_ia32_alignq512_mask((__v8di)(__m512i)(A), \
+ (__v8di)(__m512i)(B), \
+ (I), (__v8di)_mm512_setzero_si512(), \
+ (__mmask8)-1); })
+
+#define _mm512_alignr_epi32(A, B, I) __extension__ ({ \
+ (__m512i)__builtin_ia32_alignd512_mask((__v16si)(__m512i)(A), \
+ (__v16si)(__m512i)(B), \
+ (I), (__v16si)_mm512_setzero_si512(), \
+ (__mmask16)-1); })
+
+/* Vector Extract */
+
+#define _mm512_extractf64x4_pd(A, I) __extension__ ({ \
+ __m512d __A = (A); \
+ (__m256d) \
+ __builtin_ia32_extractf64x4_mask((__v8df)__A, \
+ (I), \
+ (__v4df)_mm256_setzero_si256(), \
+ (__mmask8) -1); })
+
+#define _mm512_extractf32x4_ps(A, I) __extension__ ({ \
+ __m512 __A = (A); \
+ (__m128) \
+ __builtin_ia32_extractf32x4_mask((__v16sf)__A, \
+ (I), \
+ (__v4sf)_mm_setzero_ps(), \
+ (__mmask8) -1); })
+
+/* Vector Blend */
+
+static __inline __m512d __attribute__ ((__always_inline__, __nodebug__))
+_mm512_mask_blend_pd(__mmask8 __U, __m512d __A, __m512d __W)
+{
+ return (__m512d) __builtin_ia32_blendmpd_512_mask ((__v8df) __A,
+ (__v8df) __W,
+ (__mmask8) __U);
+}
+
+static __inline __m512 __attribute__ ((__always_inline__, __nodebug__))
+_mm512_mask_blend_ps(__mmask16 __U, __m512 __A, __m512 __W)
+{
+ return (__m512) __builtin_ia32_blendmps_512_mask ((__v16sf) __A,
+ (__v16sf) __W,
+ (__mmask16) __U);
+}
+
+static __inline __m512i __attribute__ ((__always_inline__, __nodebug__))
+_mm512_mask_blend_epi64(__mmask8 __U, __m512i __A, __m512i __W)
+{
+ return (__m512i) __builtin_ia32_blendmq_512_mask ((__v8di) __A,
+ (__v8di) __W,
+ (__mmask8) __U);
+}
+
+static __inline __m512i __attribute__ ((__always_inline__, __nodebug__))
+_mm512_mask_blend_epi32(__mmask16 __U, __m512i __A, __m512i __W)
+{
+ return (__m512i) __builtin_ia32_blendmd_512_mask ((__v16si) __A,
+ (__v16si) __W,
+ (__mmask16) __U);
+}
+
+/* Compare */
+
+#define _mm512_cmp_round_ps_mask(A, B, P, R) __extension__ ({ \
+ (__mmask16)__builtin_ia32_cmpps512_mask((__v16sf)(__m512)(A), \
+ (__v16sf)(__m512)(B), \
+ (P), (__mmask16)-1, (R)); })
+
+#define _mm512_mask_cmp_round_ps_mask(U, A, B, P, R) __extension__ ({ \
+ (__mmask16)__builtin_ia32_cmpps512_mask((__v16sf)(__m512)(A), \
+ (__v16sf)(__m512)(B), \
+ (P), (__mmask16)(U), (R)); })
+
+#define _mm512_cmp_ps_mask(A, B, P) \
+ _mm512_cmp_round_ps_mask((A), (B), (P), _MM_FROUND_CUR_DIRECTION)
+
+#define _mm512_mask_cmp_ps_mask(U, A, B, P) \
+ _mm512_mask_cmp_round_ps_mask((U), (A), (B), (P), _MM_FROUND_CUR_DIRECTION)
+
+#define _mm512_cmp_round_pd_mask(A, B, P, R) __extension__ ({ \
+ (__mmask8)__builtin_ia32_cmppd512_mask((__v8df)(__m512d)(A), \
+ (__v8df)(__m512d)(B), \
+ (P), (__mmask8)-1, (R)); })
+
+#define _mm512_mask_cmp_round_pd_mask(U, A, B, P, R) __extension__ ({ \
+ (__mmask8)__builtin_ia32_cmppd512_mask((__v8df)(__m512d)(A), \
+ (__v8df)(__m512d)(B), \
+ (P), (__mmask8)(U), (R)); })
+
+#define _mm512_cmp_pd_mask(A, B, P) \
+ _mm512_cmp_round_pd_mask((A), (B), (P), _MM_FROUND_CUR_DIRECTION)
+
+#define _mm512_mask_cmp_pd_mask(U, A, B, P) \
+ _mm512_mask_cmp_round_pd_mask((U), (A), (B), (P), _MM_FROUND_CUR_DIRECTION)
+
+/* Conversion */
+
+static __inline __m512i __attribute__ ((__always_inline__, __nodebug__))
+_mm512_cvttps_epu32(__m512 __A)
+{
+ return (__m512i) __builtin_ia32_cvttps2udq512_mask ((__v16sf) __A,
+ (__v16si)
+ _mm512_setzero_si512 (),
+ (__mmask16) -1,
+ _MM_FROUND_CUR_DIRECTION);
+}
+
+#define _mm512_cvt_roundepi32_ps(A, R) __extension__ ({ \
+ (__m512)__builtin_ia32_cvtdq2ps512_mask((__v16si)(A), \
+ (__v16sf)_mm512_setzero_ps(), \
+ (__mmask16)-1, (R)); })
+
+#define _mm512_cvt_roundepu32_ps(A, R) __extension__ ({ \
+ (__m512)__builtin_ia32_cvtudq2ps512_mask((__v16si)(A), \
+ (__v16sf)_mm512_setzero_ps(), \
+ (__mmask16)-1, (R)); })
+
+static __inline __m512d __attribute__ (( __always_inline__, __nodebug__))
+_mm512_cvtepi32_pd(__m256i __A)
+{
+ return (__m512d) __builtin_ia32_cvtdq2pd512_mask ((__v8si) __A,
+ (__v8df)
+ _mm512_setzero_pd (),
+ (__mmask8) -1);
+}
+
+static __inline __m512d __attribute__ (( __always_inline__, __nodebug__))
+_mm512_cvtepu32_pd(__m256i __A)
+{
+ return (__m512d) __builtin_ia32_cvtudq2pd512_mask ((__v8si) __A,
+ (__v8df)
+ _mm512_setzero_pd (),
+ (__mmask8) -1);
+}
+
+#define _mm512_cvt_roundpd_ps(A, R) __extension__ ({ \
+ (__m256)__builtin_ia32_cvtpd2ps512_mask((__v8df)(A), \
+ (__v8sf)_mm256_setzero_ps(), \
+ (__mmask8)-1, (R)); })
+
+#define _mm512_cvtps_ph(A, I) __extension__ ({ \
+ (__m256i)__builtin_ia32_vcvtps2ph512_mask((__v16sf)(A), (I), \
+ (__v16hi)_mm256_setzero_si256(), \
+ -1); })
+
+static __inline __m512 __attribute__ ((__always_inline__, __nodebug__))
+_mm512_cvtph_ps(__m256i __A)
+{
+ return (__m512) __builtin_ia32_vcvtph2ps512_mask ((__v16hi) __A,
+ (__v16sf)
+ _mm512_setzero_ps (),
+ (__mmask16) -1,
+ _MM_FROUND_CUR_DIRECTION);
+}
+
+static __inline __m512i __attribute__((__always_inline__, __nodebug__))
+_mm512_cvttps_epi32(__m512 a)
+{
+ return (__m512i)
+ __builtin_ia32_cvttps2dq512_mask((__v16sf) a,
+ (__v16si) _mm512_setzero_si512 (),
+ (__mmask16) -1, _MM_FROUND_CUR_DIRECTION);
+}
+
+static __inline __m256i __attribute__((__always_inline__, __nodebug__))
+_mm512_cvttpd_epi32(__m512d a)
+{
+ return (__m256i)__builtin_ia32_cvttpd2dq512_mask((__v8df) a,
+ (__v8si)_mm256_setzero_si256(),
+ (__mmask8) -1,
+ _MM_FROUND_CUR_DIRECTION);
+}
+
+#define _mm512_cvtt_roundpd_epi32(A, R) __extension__ ({ \
+ (__m256i)__builtin_ia32_cvttpd2dq512_mask((__v8df)(A), \
+ (__v8si)_mm256_setzero_si256(), \
+ (__mmask8)-1, (R)); })
+
+#define _mm512_cvtt_roundps_epi32(A, R) __extension__ ({ \
+ (__m512i)__builtin_ia32_cvttps2dq512_mask((__v16sf)(A), \
+ (__v16si)_mm512_setzero_si512(), \
+ (__mmask16)-1, (R)); })
+
+#define _mm512_cvt_roundps_epi32(A, R) __extension__ ({ \
+ (__m512i)__builtin_ia32_cvtps2dq512_mask((__v16sf)(A), \
+ (__v16si)_mm512_setzero_si512(), \
+ (__mmask16)-1, (R)); })
+
+#define _mm512_cvt_roundpd_epi32(A, R) __extension__ ({ \
+ (__m256i)__builtin_ia32_cvtpd2dq512_mask((__v8df)(A), \
+ (__v8si)_mm256_setzero_si256(), \
+ (__mmask8)-1, (R)); })
+
+#define _mm512_cvt_roundps_epu32(A, R) __extension__ ({ \
+ (__m512i)__builtin_ia32_cvtps2udq512_mask((__v16sf)(A), \
+ (__v16si)_mm512_setzero_si512(), \
+ (__mmask16)-1, (R)); })
+
+#define _mm512_cvt_roundpd_epu32(A, R) __extension__ ({ \
+ (__m256i)__builtin_ia32_cvtpd2udq512_mask((__v8df)(A), \
+ (__v8si)_mm256_setzero_si256(), \
+ (__mmask8) -1, (R)); })
+
+/* Unpack and Interleave */
+static __inline __m512d __attribute__((__always_inline__, __nodebug__))
+_mm512_unpackhi_pd(__m512d __a, __m512d __b)
+{
+ return __builtin_shufflevector(__a, __b, 1, 9, 1+2, 9+2, 1+4, 9+4, 1+6, 9+6);
+}
+
+static __inline __m512d __attribute__((__always_inline__, __nodebug__))
+_mm512_unpacklo_pd(__m512d __a, __m512d __b)
+{
+ return __builtin_shufflevector(__a, __b, 0, 8, 0+2, 8+2, 0+4, 8+4, 0+6, 8+6);
+}
+
+static __inline __m512 __attribute__((__always_inline__, __nodebug__))
+_mm512_unpackhi_ps(__m512 __a, __m512 __b)
+{
+ return __builtin_shufflevector(__a, __b,
+ 2, 18, 3, 19,
+ 2+4, 18+4, 3+4, 19+4,
+ 2+8, 18+8, 3+8, 19+8,
+ 2+12, 18+12, 3+12, 19+12);
+}
+
+static __inline __m512 __attribute__((__always_inline__, __nodebug__))
+_mm512_unpacklo_ps(__m512 __a, __m512 __b)
+{
+ return __builtin_shufflevector(__a, __b,
+ 0, 16, 1, 17,
+ 0+4, 16+4, 1+4, 17+4,
+ 0+8, 16+8, 1+8, 17+8,
+ 0+12, 16+12, 1+12, 17+12);
+}
+
+/* Bit Test */
+
+static __inline __mmask16 __attribute__ ((__always_inline__, __nodebug__))
+_mm512_test_epi32_mask(__m512i __A, __m512i __B)
+{
+ return (__mmask16) __builtin_ia32_ptestmd512 ((__v16si) __A,
+ (__v16si) __B,
+ (__mmask16) -1);
+}
+
+static __inline __mmask8 __attribute__ ((__always_inline__, __nodebug__))
+_mm512_test_epi64_mask(__m512i __A, __m512i __B)
+{
+ return (__mmask8) __builtin_ia32_ptestmq512 ((__v8di) __A,
+ (__v8di) __B,
+ (__mmask8) -1);
+}
+
+/* SIMD load ops */
+
+static __inline __m512i __attribute__ ((__always_inline__, __nodebug__))
+_mm512_maskz_loadu_epi32(__mmask16 __U, void const *__P)
+{
+ return (__m512i) __builtin_ia32_loaddqusi512_mask ((const __v16si *)__P,
+ (__v16si)
+ _mm512_setzero_si512 (),
+ (__mmask16) __U);
+}
+
+static __inline __m512i __attribute__ ((__always_inline__, __nodebug__))
+_mm512_maskz_loadu_epi64(__mmask8 __U, void const *__P)
+{
+ return (__m512i) __builtin_ia32_loaddqudi512_mask ((const __v8di *)__P,
+ (__v8di)
+ _mm512_setzero_si512 (),
+ (__mmask8) __U);
+}
+
+static __inline __m512 __attribute__ ((__always_inline__, __nodebug__))
+_mm512_maskz_loadu_ps(__mmask16 __U, void const *__P)
+{
+ return (__m512) __builtin_ia32_loadups512_mask ((const __v16sf *)__P,
+ (__v16sf)
+ _mm512_setzero_ps (),
+ (__mmask16) __U);
+}
+
+static __inline __m512d __attribute__ ((__always_inline__, __nodebug__))
+_mm512_maskz_loadu_pd(__mmask8 __U, void const *__P)
+{
+ return (__m512d) __builtin_ia32_loadupd512_mask ((const __v8df *)__P,
+ (__v8df)
+ _mm512_setzero_pd (),
+ (__mmask8) __U);
+}
+
+static __inline __m512 __attribute__ ((__always_inline__, __nodebug__))
+_mm512_maskz_load_ps(__mmask16 __U, void const *__P)
+{
+ return (__m512) __builtin_ia32_loadaps512_mask ((const __v16sf *)__P,
+ (__v16sf)
+ _mm512_setzero_ps (),
+ (__mmask16) __U);
+}
+
+static __inline __m512d __attribute__ ((__always_inline__, __nodebug__))
+_mm512_maskz_load_pd(__mmask8 __U, void const *__P)
+{
+ return (__m512d) __builtin_ia32_loadapd512_mask ((const __v8df *)__P,
+ (__v8df)
+ _mm512_setzero_pd (),
+ (__mmask8) __U);
+}
+
+static __inline __m512d __attribute__((__always_inline__, __nodebug__))
+_mm512_loadu_pd(double const *__p)
+{
+ struct __loadu_pd {
+ __m512d __v;
+ } __attribute__((__packed__, __may_alias__));
+ return ((struct __loadu_pd*)__p)->__v;
+}
+
+static __inline __m512 __attribute__((__always_inline__, __nodebug__))
+_mm512_loadu_ps(float const *__p)
+{
+ struct __loadu_ps {
+ __m512 __v;
+ } __attribute__((__packed__, __may_alias__));
+ return ((struct __loadu_ps*)__p)->__v;
+}
+
+static __inline __m512 __attribute__((__always_inline__, __nodebug__))
+_mm512_load_ps(double const *__p)
+{
+ return (__m512) __builtin_ia32_loadaps512_mask ((const __v16sf *)__p,
+ (__v16sf)
+ _mm512_setzero_ps (),
+ (__mmask16) -1);
+}
+
+static __inline __m512d __attribute__((__always_inline__, __nodebug__))
+_mm512_load_pd(float const *__p)
+{
+ return (__m512d) __builtin_ia32_loadapd512_mask ((const __v8df *)__p,
+ (__v8df)
+ _mm512_setzero_pd (),
+ (__mmask8) -1);
+}
+
+/* SIMD store ops */
+
+static __inline void __attribute__ ((__always_inline__, __nodebug__))
+_mm512_mask_storeu_epi64(void *__P, __mmask8 __U, __m512i __A)
+{
+ __builtin_ia32_storedqudi512_mask ((__v8di *)__P, (__v8di) __A,
+ (__mmask8) __U);
+}
+
+static __inline void __attribute__ ((__always_inline__, __nodebug__))
+_mm512_mask_storeu_epi32(void *__P, __mmask16 __U, __m512i __A)
+{
+ __builtin_ia32_storedqusi512_mask ((__v16si *)__P, (__v16si) __A,
+ (__mmask16) __U);
+}
+
+static __inline void __attribute__ ((__always_inline__, __nodebug__))
+_mm512_mask_storeu_pd(void *__P, __mmask8 __U, __m512d __A)
+{
+ __builtin_ia32_storeupd512_mask ((__v8df *)__P, (__v8df) __A, (__mmask8) __U);
+}
+
+static __inline void __attribute__ ((__always_inline__, __nodebug__))
+_mm512_storeu_pd(void *__P, __m512d __A)
+{
+ __builtin_ia32_storeupd512_mask((__v8df *)__P, (__v8df)__A, (__mmask8)-1);
+}
+
+static __inline void __attribute__ ((__always_inline__, __nodebug__))
+_mm512_mask_storeu_ps(void *__P, __mmask16 __U, __m512 __A)
+{
+ __builtin_ia32_storeups512_mask ((__v16sf *)__P, (__v16sf) __A,
+ (__mmask16) __U);
+}
+
+static __inline void __attribute__ ((__always_inline__, __nodebug__))
+_mm512_storeu_ps(void *__P, __m512 __A)
+{
+ __builtin_ia32_storeups512_mask((__v16sf *)__P, (__v16sf)__A, (__mmask16)-1);
+}
+
+static __inline void __attribute__ ((__always_inline__, __nodebug__))
+_mm512_mask_store_pd(void *__P, __mmask8 __U, __m512d __A)
+{
+ __builtin_ia32_storeapd512_mask ((__v8df *)__P, (__v8df) __A, (__mmask8) __U);
+}
+
+static __inline void __attribute__ ((__always_inline__, __nodebug__))
+_mm512_store_pd(void *__P, __m512d __A)
+{
+ *(__m512d*)__P = __A;
+}
+
+static __inline void __attribute__ ((__always_inline__, __nodebug__))
+_mm512_mask_store_ps(void *__P, __mmask16 __U, __m512 __A)
+{
+ __builtin_ia32_storeaps512_mask ((__v16sf *)__P, (__v16sf) __A,
+ (__mmask16) __U);
+}
+
+static __inline void __attribute__ ((__always_inline__, __nodebug__))
+_mm512_store_ps(void *__P, __m512 __A)
+{
+ *(__m512*)__P = __A;
+}
+
+/* Mask ops */
+
+static __inline __mmask16 __attribute__ ((__always_inline__, __nodebug__))
+_mm512_knot(__mmask16 __M)
+{
+ return __builtin_ia32_knothi(__M);
+}
+
+/* Integer compare */
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmpeq_epi32_mask(__m512i __a, __m512i __b) {
+ return (__mmask16)__builtin_ia32_pcmpeqd512_mask((__v16si)__a, (__v16si)__b,
+ (__mmask16)-1);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmpeq_epi32_mask(__mmask16 __u, __m512i __a, __m512i __b) {
+ return (__mmask16)__builtin_ia32_pcmpeqd512_mask((__v16si)__a, (__v16si)__b,
+ __u);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmpeq_epu32_mask(__m512i __a, __m512i __b) {
+ return (__mmask16)__builtin_ia32_ucmpd512_mask((__v16si)__a, (__v16si)__b, 0,
+ (__mmask16)-1);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmpeq_epu32_mask(__mmask16 __u, __m512i __a, __m512i __b) {
+ return (__mmask16)__builtin_ia32_ucmpd512_mask((__v16si)__a, (__v16si)__b, 0,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmpeq_epi64_mask(__mmask8 __u, __m512i __a, __m512i __b) {
+ return (__mmask8)__builtin_ia32_pcmpeqq512_mask((__v8di)__a, (__v8di)__b,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmpeq_epi64_mask(__m512i __a, __m512i __b) {
+ return (__mmask8)__builtin_ia32_pcmpeqq512_mask((__v8di)__a, (__v8di)__b,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmpeq_epu64_mask(__m512i __a, __m512i __b) {
+ return (__mmask8)__builtin_ia32_ucmpq512_mask((__v8di)__a, (__v8di)__b, 0,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmpeq_epu64_mask(__mmask8 __u, __m512i __a, __m512i __b) {
+ return (__mmask8)__builtin_ia32_ucmpq512_mask((__v8di)__a, (__v8di)__b, 0,
+ __u);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmpge_epi32_mask(__m512i __a, __m512i __b) {
+ return (__mmask16)__builtin_ia32_cmpd512_mask((__v16si)__a, (__v16si)__b, 5,
+ (__mmask16)-1);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmpge_epi32_mask(__mmask16 __u, __m512i __a, __m512i __b) {
+ return (__mmask16)__builtin_ia32_cmpd512_mask((__v16si)__a, (__v16si)__b, 5,
+ __u);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmpge_epu32_mask(__m512i __a, __m512i __b) {
+ return (__mmask16)__builtin_ia32_ucmpd512_mask((__v16si)__a, (__v16si)__b, 5,
+ (__mmask16)-1);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmpge_epu32_mask(__mmask16 __u, __m512i __a, __m512i __b) {
+ return (__mmask16)__builtin_ia32_ucmpd512_mask((__v16si)__a, (__v16si)__b, 5,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmpge_epi64_mask(__m512i __a, __m512i __b) {
+ return (__mmask8)__builtin_ia32_cmpq512_mask((__v8di)__a, (__v8di)__b, 5,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmpge_epi64_mask(__mmask8 __u, __m512i __a, __m512i __b) {
+ return (__mmask8)__builtin_ia32_cmpq512_mask((__v8di)__a, (__v8di)__b, 5,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmpge_epu64_mask(__m512i __a, __m512i __b) {
+ return (__mmask8)__builtin_ia32_ucmpq512_mask((__v8di)__a, (__v8di)__b, 5,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmpge_epu64_mask(__mmask8 __u, __m512i __a, __m512i __b) {
+ return (__mmask8)__builtin_ia32_ucmpq512_mask((__v8di)__a, (__v8di)__b, 5,
+ __u);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmpgt_epi32_mask(__m512i __a, __m512i __b) {
+ return (__mmask16)__builtin_ia32_pcmpgtd512_mask((__v16si)__a, (__v16si)__b,
+ (__mmask16)-1);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmpgt_epi32_mask(__mmask16 __u, __m512i __a, __m512i __b) {
+ return (__mmask16)__builtin_ia32_pcmpgtd512_mask((__v16si)__a, (__v16si)__b,
+ __u);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmpgt_epu32_mask(__m512i __a, __m512i __b) {
+ return (__mmask16)__builtin_ia32_ucmpd512_mask((__v16si)__a, (__v16si)__b, 6,
+ (__mmask16)-1);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmpgt_epu32_mask(__mmask16 __u, __m512i __a, __m512i __b) {
+ return (__mmask16)__builtin_ia32_ucmpd512_mask((__v16si)__a, (__v16si)__b, 6,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmpgt_epi64_mask(__mmask8 __u, __m512i __a, __m512i __b) {
+ return (__mmask8)__builtin_ia32_pcmpgtq512_mask((__v8di)__a, (__v8di)__b,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmpgt_epi64_mask(__m512i __a, __m512i __b) {
+ return (__mmask8)__builtin_ia32_pcmpgtq512_mask((__v8di)__a, (__v8di)__b,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmpgt_epu64_mask(__m512i __a, __m512i __b) {
+ return (__mmask8)__builtin_ia32_ucmpq512_mask((__v8di)__a, (__v8di)__b, 6,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmpgt_epu64_mask(__mmask8 __u, __m512i __a, __m512i __b) {
+ return (__mmask8)__builtin_ia32_ucmpq512_mask((__v8di)__a, (__v8di)__b, 6,
+ __u);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmple_epi32_mask(__m512i __a, __m512i __b) {
+ return (__mmask16)__builtin_ia32_cmpd512_mask((__v16si)__a, (__v16si)__b, 2,
+ (__mmask16)-1);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmple_epi32_mask(__mmask16 __u, __m512i __a, __m512i __b) {
+ return (__mmask16)__builtin_ia32_cmpd512_mask((__v16si)__a, (__v16si)__b, 2,
+ __u);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmple_epu32_mask(__m512i __a, __m512i __b) {
+ return (__mmask16)__builtin_ia32_ucmpd512_mask((__v16si)__a, (__v16si)__b, 2,
+ (__mmask16)-1);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmple_epu32_mask(__mmask16 __u, __m512i __a, __m512i __b) {
+ return (__mmask16)__builtin_ia32_ucmpd512_mask((__v16si)__a, (__v16si)__b, 2,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmple_epi64_mask(__m512i __a, __m512i __b) {
+ return (__mmask8)__builtin_ia32_cmpq512_mask((__v8di)__a, (__v8di)__b, 2,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmple_epi64_mask(__mmask8 __u, __m512i __a, __m512i __b) {
+ return (__mmask8)__builtin_ia32_cmpq512_mask((__v8di)__a, (__v8di)__b, 2,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmple_epu64_mask(__m512i __a, __m512i __b) {
+ return (__mmask8)__builtin_ia32_ucmpq512_mask((__v8di)__a, (__v8di)__b, 2,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmple_epu64_mask(__mmask8 __u, __m512i __a, __m512i __b) {
+ return (__mmask8)__builtin_ia32_ucmpq512_mask((__v8di)__a, (__v8di)__b, 2,
+ __u);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmplt_epi32_mask(__m512i __a, __m512i __b) {
+ return (__mmask16)__builtin_ia32_cmpd512_mask((__v16si)__a, (__v16si)__b, 1,
+ (__mmask16)-1);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmplt_epi32_mask(__mmask16 __u, __m512i __a, __m512i __b) {
+ return (__mmask16)__builtin_ia32_cmpd512_mask((__v16si)__a, (__v16si)__b, 1,
+ __u);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmplt_epu32_mask(__m512i __a, __m512i __b) {
+ return (__mmask16)__builtin_ia32_ucmpd512_mask((__v16si)__a, (__v16si)__b, 1,
+ (__mmask16)-1);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmplt_epu32_mask(__mmask16 __u, __m512i __a, __m512i __b) {
+ return (__mmask16)__builtin_ia32_ucmpd512_mask((__v16si)__a, (__v16si)__b, 1,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmplt_epi64_mask(__m512i __a, __m512i __b) {
+ return (__mmask8)__builtin_ia32_cmpq512_mask((__v8di)__a, (__v8di)__b, 1,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmplt_epi64_mask(__mmask8 __u, __m512i __a, __m512i __b) {
+ return (__mmask8)__builtin_ia32_cmpq512_mask((__v8di)__a, (__v8di)__b, 1,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmplt_epu64_mask(__m512i __a, __m512i __b) {
+ return (__mmask8)__builtin_ia32_ucmpq512_mask((__v8di)__a, (__v8di)__b, 1,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmplt_epu64_mask(__mmask8 __u, __m512i __a, __m512i __b) {
+ return (__mmask8)__builtin_ia32_ucmpq512_mask((__v8di)__a, (__v8di)__b, 1,
+ __u);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmpneq_epi32_mask(__m512i __a, __m512i __b) {
+ return (__mmask16)__builtin_ia32_cmpd512_mask((__v16si)__a, (__v16si)__b, 4,
+ (__mmask16)-1);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmpneq_epi32_mask(__mmask16 __u, __m512i __a, __m512i __b) {
+ return (__mmask16)__builtin_ia32_cmpd512_mask((__v16si)__a, (__v16si)__b, 4,
+ __u);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmpneq_epu32_mask(__m512i __a, __m512i __b) {
+ return (__mmask16)__builtin_ia32_ucmpd512_mask((__v16si)__a, (__v16si)__b, 4,
+ (__mmask16)-1);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmpneq_epu32_mask(__mmask16 __u, __m512i __a, __m512i __b) {
+ return (__mmask16)__builtin_ia32_ucmpd512_mask((__v16si)__a, (__v16si)__b, 4,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmpneq_epi64_mask(__m512i __a, __m512i __b) {
+ return (__mmask8)__builtin_ia32_cmpq512_mask((__v8di)__a, (__v8di)__b, 4,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmpneq_epi64_mask(__mmask8 __u, __m512i __a, __m512i __b) {
+ return (__mmask8)__builtin_ia32_cmpq512_mask((__v8di)__a, (__v8di)__b, 4,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm512_cmpneq_epu64_mask(__m512i __a, __m512i __b) {
+ return (__mmask8)__builtin_ia32_ucmpq512_mask((__v8di)__a, (__v8di)__b, 4,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm512_mask_cmpneq_epu64_mask(__mmask8 __u, __m512i __a, __m512i __b) {
+ return (__mmask8)__builtin_ia32_ucmpq512_mask((__v8di)__a, (__v8di)__b, 4,
+ __u);
+}
+
+#define _mm512_cmp_epi32_mask(a, b, p) __extension__ ({ \
+ __m512i __a = (a); \
+ __m512i __b = (b); \
+ (__mmask16)__builtin_ia32_cmpd512_mask((__v16si)__a, (__v16si)__b, (p), \
+ (__mmask16)-1); })
+
+#define _mm512_cmp_epu32_mask(a, b, p) __extension__ ({ \
+ __m512i __a = (a); \
+ __m512i __b = (b); \
+ (__mmask16)__builtin_ia32_ucmpd512_mask((__v16si)__a, (__v16si)__b, (p), \
+ (__mmask16)-1); })
+
+#define _mm512_cmp_epi64_mask(a, b, p) __extension__ ({ \
+ __m512i __a = (a); \
+ __m512i __b = (b); \
+ (__mmask8)__builtin_ia32_cmpq512_mask((__v8di)__a, (__v8di)__b, (p), \
+ (__mmask8)-1); })
+
+#define _mm512_cmp_epu64_mask(a, b, p) __extension__ ({ \
+ __m512i __a = (a); \
+ __m512i __b = (b); \
+ (__mmask8)__builtin_ia32_ucmpq512_mask((__v8di)__a, (__v8di)__b, (p), \
+ (__mmask8)-1); })
+
+#define _mm512_mask_cmp_epi32_mask(m, a, b, p) __extension__ ({ \
+ __m512i __a = (a); \
+ __m512i __b = (b); \
+ (__mmask16)__builtin_ia32_cmpd512_mask((__v16si)__a, (__v16si)__b, (p), \
+ (__mmask16)(m)); })
+
+#define _mm512_mask_cmp_epu32_mask(m, a, b, p) __extension__ ({ \
+ __m512i __a = (a); \
+ __m512i __b = (b); \
+ (__mmask16)__builtin_ia32_ucmpd512_mask((__v16si)__a, (__v16si)__b, (p), \
+ (__mmask16)(m)); })
+
+#define _mm512_mask_cmp_epi64_mask(m, a, b, p) __extension__ ({ \
+ __m512i __a = (a); \
+ __m512i __b = (b); \
+ (__mmask8)__builtin_ia32_cmpq512_mask((__v8di)__a, (__v8di)__b, (p), \
+ (__mmask8)(m)); })
+
+#define _mm512_mask_cmp_epu64_mask(m, a, b, p) __extension__ ({ \
+ __m512i __a = (a); \
+ __m512i __b = (b); \
+ (__mmask8)__builtin_ia32_ucmpq512_mask((__v8di)__a, (__v8di)__b, (p), \
+ (__mmask8)(m)); })
+#endif // __AVX512FINTRIN_H
diff --git a/contrib/llvm/tools/clang/lib/Headers/avx512vlbwintrin.h b/contrib/llvm/tools/clang/lib/Headers/avx512vlbwintrin.h
new file mode 100644
index 0000000..c3b087e
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/avx512vlbwintrin.h
@@ -0,0 +1,857 @@
+/*===---- avx512vlbwintrin.h - AVX512VL and AVX512BW intrinsics ----------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#ifndef __IMMINTRIN_H
+#error "Never use <avx512vlbwintrin.h> directly; include <immintrin.h> instead."
+#endif
+
+#ifndef __AVX512VLBWINTRIN_H
+#define __AVX512VLBWINTRIN_H
+
+/* Integer compare */
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpeq_epi8_mask(__m128i __a, __m128i __b) {
+ return (__mmask16)__builtin_ia32_pcmpeqb128_mask((__v16qi)__a, (__v16qi)__b,
+ (__mmask16)-1);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmpeq_epi8_mask(__mmask16 __u, __m128i __a, __m128i __b) {
+ return (__mmask16)__builtin_ia32_pcmpeqb128_mask((__v16qi)__a, (__v16qi)__b,
+ __u);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpeq_epu8_mask(__m128i __a, __m128i __b) {
+ return (__mmask16)__builtin_ia32_ucmpb128_mask((__v16qi)__a, (__v16qi)__b, 0,
+ (__mmask16)-1);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmpeq_epu8_mask(__mmask16 __u, __m128i __a, __m128i __b) {
+ return (__mmask16)__builtin_ia32_ucmpb128_mask((__v16qi)__a, (__v16qi)__b, 0,
+ __u);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmpeq_epi8_mask(__m256i __a, __m256i __b) {
+ return (__mmask32)__builtin_ia32_pcmpeqb256_mask((__v32qi)__a, (__v32qi)__b,
+ (__mmask32)-1);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmpeq_epi8_mask(__mmask32 __u, __m256i __a, __m256i __b) {
+ return (__mmask32)__builtin_ia32_pcmpeqb256_mask((__v32qi)__a, (__v32qi)__b,
+ __u);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmpeq_epu8_mask(__m256i __a, __m256i __b) {
+ return (__mmask32)__builtin_ia32_ucmpb256_mask((__v32qi)__a, (__v32qi)__b, 0,
+ (__mmask32)-1);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmpeq_epu8_mask(__mmask32 __u, __m256i __a, __m256i __b) {
+ return (__mmask32)__builtin_ia32_ucmpb256_mask((__v32qi)__a, (__v32qi)__b, 0,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpeq_epi16_mask(__m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_pcmpeqw128_mask((__v8hi)__a, (__v8hi)__b,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmpeq_epi16_mask(__mmask8 __u, __m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_pcmpeqw128_mask((__v8hi)__a, (__v8hi)__b,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpeq_epu16_mask(__m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_ucmpw128_mask((__v8hi)__a, (__v8hi)__b, 0,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmpeq_epu16_mask(__mmask8 __u, __m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_ucmpw128_mask((__v8hi)__a, (__v8hi)__b, 0,
+ __u);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmpeq_epi16_mask(__m256i __a, __m256i __b) {
+ return (__mmask16)__builtin_ia32_pcmpeqw256_mask((__v16hi)__a, (__v16hi)__b,
+ (__mmask16)-1);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmpeq_epi16_mask(__mmask16 __u, __m256i __a, __m256i __b) {
+ return (__mmask16)__builtin_ia32_pcmpeqw256_mask((__v16hi)__a, (__v16hi)__b,
+ __u);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmpeq_epu16_mask(__m256i __a, __m256i __b) {
+ return (__mmask16)__builtin_ia32_ucmpw256_mask((__v16hi)__a, (__v16hi)__b, 0,
+ (__mmask16)-1);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmpeq_epu16_mask(__mmask16 __u, __m256i __a, __m256i __b) {
+ return (__mmask16)__builtin_ia32_ucmpw256_mask((__v16hi)__a, (__v16hi)__b, 0,
+ __u);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpge_epi8_mask(__m128i __a, __m128i __b) {
+ return (__mmask16)__builtin_ia32_cmpb128_mask((__v16qi)__a, (__v16qi)__b, 5,
+ (__mmask16)-1);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmpge_epi8_mask(__mmask16 __u, __m128i __a, __m128i __b) {
+ return (__mmask16)__builtin_ia32_cmpb128_mask((__v16qi)__a, (__v16qi)__b, 5,
+ __u);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpge_epu8_mask(__m128i __a, __m128i __b) {
+ return (__mmask16)__builtin_ia32_ucmpb128_mask((__v16qi)__a, (__v16qi)__b, 5,
+ (__mmask16)-1);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmpge_epu8_mask(__mmask16 __u, __m128i __a, __m128i __b) {
+ return (__mmask16)__builtin_ia32_ucmpb128_mask((__v16qi)__a, (__v16qi)__b, 5,
+ __u);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmpge_epi8_mask(__m256i __a, __m256i __b) {
+ return (__mmask32)__builtin_ia32_cmpb256_mask((__v32qi)__a, (__v32qi)__b, 5,
+ (__mmask32)-1);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmpge_epi8_mask(__mmask32 __u, __m256i __a, __m256i __b) {
+ return (__mmask32)__builtin_ia32_cmpb256_mask((__v32qi)__a, (__v32qi)__b, 5,
+ __u);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmpge_epu8_mask(__m256i __a, __m256i __b) {
+ return (__mmask32)__builtin_ia32_ucmpb256_mask((__v32qi)__a, (__v32qi)__b, 5,
+ (__mmask32)-1);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmpge_epu8_mask(__mmask32 __u, __m256i __a, __m256i __b) {
+ return (__mmask32)__builtin_ia32_ucmpb256_mask((__v32qi)__a, (__v32qi)__b, 5,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpge_epi16_mask(__m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_cmpw128_mask((__v8hi)__a, (__v8hi)__b, 5,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmpge_epi16_mask(__mmask8 __u, __m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_cmpw128_mask((__v8hi)__a, (__v8hi)__b, 5,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpge_epu16_mask(__m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_ucmpw128_mask((__v8hi)__a, (__v8hi)__b, 5,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmpge_epu16_mask(__mmask8 __u, __m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_ucmpw128_mask((__v8hi)__a, (__v8hi)__b, 5,
+ __u);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmpge_epi16_mask(__m256i __a, __m256i __b) {
+ return (__mmask16)__builtin_ia32_cmpw256_mask((__v16hi)__a, (__v16hi)__b, 5,
+ (__mmask16)-1);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmpge_epi16_mask(__mmask16 __u, __m256i __a, __m256i __b) {
+ return (__mmask16)__builtin_ia32_cmpw256_mask((__v16hi)__a, (__v16hi)__b, 5,
+ __u);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmpge_epu16_mask(__m256i __a, __m256i __b) {
+ return (__mmask16)__builtin_ia32_ucmpw256_mask((__v16hi)__a, (__v16hi)__b, 5,
+ (__mmask16)-1);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmpge_epu16_mask(__mmask16 __u, __m256i __a, __m256i __b) {
+ return (__mmask16)__builtin_ia32_ucmpw256_mask((__v16hi)__a, (__v16hi)__b, 5,
+ __u);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpgt_epi8_mask(__m128i __a, __m128i __b) {
+ return (__mmask16)__builtin_ia32_pcmpgtb128_mask((__v16qi)__a, (__v16qi)__b,
+ (__mmask16)-1);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmpgt_epi8_mask(__mmask16 __u, __m128i __a, __m128i __b) {
+ return (__mmask16)__builtin_ia32_pcmpgtb128_mask((__v16qi)__a, (__v16qi)__b,
+ __u);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpgt_epu8_mask(__m128i __a, __m128i __b) {
+ return (__mmask16)__builtin_ia32_ucmpb128_mask((__v16qi)__a, (__v16qi)__b, 6,
+ (__mmask16)-1);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmpgt_epu8_mask(__mmask16 __u, __m128i __a, __m128i __b) {
+ return (__mmask16)__builtin_ia32_ucmpb128_mask((__v16qi)__a, (__v16qi)__b, 6,
+ __u);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmpgt_epi8_mask(__m256i __a, __m256i __b) {
+ return (__mmask32)__builtin_ia32_pcmpgtb256_mask((__v32qi)__a, (__v32qi)__b,
+ (__mmask32)-1);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmpgt_epi8_mask(__mmask32 __u, __m256i __a, __m256i __b) {
+ return (__mmask32)__builtin_ia32_pcmpgtb256_mask((__v32qi)__a, (__v32qi)__b,
+ __u);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmpgt_epu8_mask(__m256i __a, __m256i __b) {
+ return (__mmask32)__builtin_ia32_ucmpb256_mask((__v32qi)__a, (__v32qi)__b, 6,
+ (__mmask32)-1);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmpgt_epu8_mask(__mmask32 __u, __m256i __a, __m256i __b) {
+ return (__mmask32)__builtin_ia32_ucmpb256_mask((__v32qi)__a, (__v32qi)__b, 6,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpgt_epi16_mask(__m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_pcmpgtw128_mask((__v8hi)__a, (__v8hi)__b,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmpgt_epi16_mask(__mmask8 __u, __m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_pcmpgtw128_mask((__v8hi)__a, (__v8hi)__b,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpgt_epu16_mask(__m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_ucmpw128_mask((__v8hi)__a, (__v8hi)__b, 6,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmpgt_epu16_mask(__mmask8 __u, __m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_ucmpw128_mask((__v8hi)__a, (__v8hi)__b, 6,
+ __u);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmpgt_epi16_mask(__m256i __a, __m256i __b) {
+ return (__mmask16)__builtin_ia32_pcmpgtw256_mask((__v16hi)__a, (__v16hi)__b,
+ (__mmask16)-1);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmpgt_epi16_mask(__mmask16 __u, __m256i __a, __m256i __b) {
+ return (__mmask16)__builtin_ia32_pcmpgtw256_mask((__v16hi)__a, (__v16hi)__b,
+ __u);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmpgt_epu16_mask(__m256i __a, __m256i __b) {
+ return (__mmask16)__builtin_ia32_ucmpw256_mask((__v16hi)__a, (__v16hi)__b, 6,
+ (__mmask16)-1);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmpgt_epu16_mask(__mmask16 __u, __m256i __a, __m256i __b) {
+ return (__mmask16)__builtin_ia32_ucmpw256_mask((__v16hi)__a, (__v16hi)__b, 6,
+ __u);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm_cmple_epi8_mask(__m128i __a, __m128i __b) {
+ return (__mmask16)__builtin_ia32_cmpb128_mask((__v16qi)__a, (__v16qi)__b, 2,
+ (__mmask16)-1);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmple_epi8_mask(__mmask16 __u, __m128i __a, __m128i __b) {
+ return (__mmask16)__builtin_ia32_cmpb128_mask((__v16qi)__a, (__v16qi)__b, 2,
+ __u);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm_cmple_epu8_mask(__m128i __a, __m128i __b) {
+ return (__mmask16)__builtin_ia32_ucmpb128_mask((__v16qi)__a, (__v16qi)__b, 2,
+ (__mmask16)-1);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmple_epu8_mask(__mmask16 __u, __m128i __a, __m128i __b) {
+ return (__mmask16)__builtin_ia32_ucmpb128_mask((__v16qi)__a, (__v16qi)__b, 2,
+ __u);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmple_epi8_mask(__m256i __a, __m256i __b) {
+ return (__mmask32)__builtin_ia32_cmpb256_mask((__v32qi)__a, (__v32qi)__b, 2,
+ (__mmask32)-1);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmple_epi8_mask(__mmask32 __u, __m256i __a, __m256i __b) {
+ return (__mmask32)__builtin_ia32_cmpb256_mask((__v32qi)__a, (__v32qi)__b, 2,
+ __u);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmple_epu8_mask(__m256i __a, __m256i __b) {
+ return (__mmask32)__builtin_ia32_ucmpb256_mask((__v32qi)__a, (__v32qi)__b, 2,
+ (__mmask32)-1);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmple_epu8_mask(__mmask32 __u, __m256i __a, __m256i __b) {
+ return (__mmask32)__builtin_ia32_ucmpb256_mask((__v32qi)__a, (__v32qi)__b, 2,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_cmple_epi16_mask(__m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_cmpw128_mask((__v8hi)__a, (__v8hi)__b, 2,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmple_epi16_mask(__mmask8 __u, __m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_cmpw128_mask((__v8hi)__a, (__v8hi)__b, 2,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_cmple_epu16_mask(__m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_ucmpw128_mask((__v8hi)__a, (__v8hi)__b, 2,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmple_epu16_mask(__mmask8 __u, __m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_ucmpw128_mask((__v8hi)__a, (__v8hi)__b, 2,
+ __u);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmple_epi16_mask(__m256i __a, __m256i __b) {
+ return (__mmask16)__builtin_ia32_cmpw256_mask((__v16hi)__a, (__v16hi)__b, 2,
+ (__mmask16)-1);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmple_epi16_mask(__mmask16 __u, __m256i __a, __m256i __b) {
+ return (__mmask16)__builtin_ia32_cmpw256_mask((__v16hi)__a, (__v16hi)__b, 2,
+ __u);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmple_epu16_mask(__m256i __a, __m256i __b) {
+ return (__mmask16)__builtin_ia32_ucmpw256_mask((__v16hi)__a, (__v16hi)__b, 2,
+ (__mmask16)-1);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmple_epu16_mask(__mmask16 __u, __m256i __a, __m256i __b) {
+ return (__mmask16)__builtin_ia32_ucmpw256_mask((__v16hi)__a, (__v16hi)__b, 2,
+ __u);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm_cmplt_epi8_mask(__m128i __a, __m128i __b) {
+ return (__mmask16)__builtin_ia32_cmpb128_mask((__v16qi)__a, (__v16qi)__b, 1,
+ (__mmask16)-1);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmplt_epi8_mask(__mmask16 __u, __m128i __a, __m128i __b) {
+ return (__mmask16)__builtin_ia32_cmpb128_mask((__v16qi)__a, (__v16qi)__b, 1,
+ __u);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm_cmplt_epu8_mask(__m128i __a, __m128i __b) {
+ return (__mmask16)__builtin_ia32_ucmpb128_mask((__v16qi)__a, (__v16qi)__b, 1,
+ (__mmask16)-1);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmplt_epu8_mask(__mmask16 __u, __m128i __a, __m128i __b) {
+ return (__mmask16)__builtin_ia32_ucmpb128_mask((__v16qi)__a, (__v16qi)__b, 1,
+ __u);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmplt_epi8_mask(__m256i __a, __m256i __b) {
+ return (__mmask32)__builtin_ia32_cmpb256_mask((__v32qi)__a, (__v32qi)__b, 1,
+ (__mmask32)-1);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmplt_epi8_mask(__mmask32 __u, __m256i __a, __m256i __b) {
+ return (__mmask32)__builtin_ia32_cmpb256_mask((__v32qi)__a, (__v32qi)__b, 1,
+ __u);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmplt_epu8_mask(__m256i __a, __m256i __b) {
+ return (__mmask32)__builtin_ia32_ucmpb256_mask((__v32qi)__a, (__v32qi)__b, 1,
+ (__mmask32)-1);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmplt_epu8_mask(__mmask32 __u, __m256i __a, __m256i __b) {
+ return (__mmask32)__builtin_ia32_ucmpb256_mask((__v32qi)__a, (__v32qi)__b, 1,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_cmplt_epi16_mask(__m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_cmpw128_mask((__v8hi)__a, (__v8hi)__b, 1,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmplt_epi16_mask(__mmask8 __u, __m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_cmpw128_mask((__v8hi)__a, (__v8hi)__b, 1,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_cmplt_epu16_mask(__m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_ucmpw128_mask((__v8hi)__a, (__v8hi)__b, 1,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmplt_epu16_mask(__mmask8 __u, __m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_ucmpw128_mask((__v8hi)__a, (__v8hi)__b, 1,
+ __u);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmplt_epi16_mask(__m256i __a, __m256i __b) {
+ return (__mmask16)__builtin_ia32_cmpw256_mask((__v16hi)__a, (__v16hi)__b, 1,
+ (__mmask16)-1);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmplt_epi16_mask(__mmask16 __u, __m256i __a, __m256i __b) {
+ return (__mmask16)__builtin_ia32_cmpw256_mask((__v16hi)__a, (__v16hi)__b, 1,
+ __u);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmplt_epu16_mask(__m256i __a, __m256i __b) {
+ return (__mmask16)__builtin_ia32_ucmpw256_mask((__v16hi)__a, (__v16hi)__b, 1,
+ (__mmask16)-1);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmplt_epu16_mask(__mmask16 __u, __m256i __a, __m256i __b) {
+ return (__mmask16)__builtin_ia32_ucmpw256_mask((__v16hi)__a, (__v16hi)__b, 1,
+ __u);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpneq_epi8_mask(__m128i __a, __m128i __b) {
+ return (__mmask16)__builtin_ia32_cmpb128_mask((__v16qi)__a, (__v16qi)__b, 4,
+ (__mmask16)-1);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmpneq_epi8_mask(__mmask16 __u, __m128i __a, __m128i __b) {
+ return (__mmask16)__builtin_ia32_cmpb128_mask((__v16qi)__a, (__v16qi)__b, 4,
+ __u);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpneq_epu8_mask(__m128i __a, __m128i __b) {
+ return (__mmask16)__builtin_ia32_ucmpb128_mask((__v16qi)__a, (__v16qi)__b, 4,
+ (__mmask16)-1);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmpneq_epu8_mask(__mmask16 __u, __m128i __a, __m128i __b) {
+ return (__mmask16)__builtin_ia32_ucmpb128_mask((__v16qi)__a, (__v16qi)__b, 4,
+ __u);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmpneq_epi8_mask(__m256i __a, __m256i __b) {
+ return (__mmask32)__builtin_ia32_cmpb256_mask((__v32qi)__a, (__v32qi)__b, 4,
+ (__mmask32)-1);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmpneq_epi8_mask(__mmask32 __u, __m256i __a, __m256i __b) {
+ return (__mmask32)__builtin_ia32_cmpb256_mask((__v32qi)__a, (__v32qi)__b, 4,
+ __u);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmpneq_epu8_mask(__m256i __a, __m256i __b) {
+ return (__mmask32)__builtin_ia32_ucmpb256_mask((__v32qi)__a, (__v32qi)__b, 4,
+ (__mmask32)-1);
+}
+
+static __inline__ __mmask32 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmpneq_epu8_mask(__mmask32 __u, __m256i __a, __m256i __b) {
+ return (__mmask32)__builtin_ia32_ucmpb256_mask((__v32qi)__a, (__v32qi)__b, 4,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpneq_epi16_mask(__m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_cmpw128_mask((__v8hi)__a, (__v8hi)__b, 4,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmpneq_epi16_mask(__mmask8 __u, __m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_cmpw128_mask((__v8hi)__a, (__v8hi)__b, 4,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpneq_epu16_mask(__m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_ucmpw128_mask((__v8hi)__a, (__v8hi)__b, 4,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmpneq_epu16_mask(__mmask8 __u, __m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_ucmpw128_mask((__v8hi)__a, (__v8hi)__b, 4,
+ __u);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmpneq_epi16_mask(__m256i __a, __m256i __b) {
+ return (__mmask16)__builtin_ia32_cmpw256_mask((__v16hi)__a, (__v16hi)__b, 4,
+ (__mmask16)-1);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmpneq_epi16_mask(__mmask16 __u, __m256i __a, __m256i __b) {
+ return (__mmask16)__builtin_ia32_cmpw256_mask((__v16hi)__a, (__v16hi)__b, 4,
+ __u);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmpneq_epu16_mask(__m256i __a, __m256i __b) {
+ return (__mmask16)__builtin_ia32_ucmpw256_mask((__v16hi)__a, (__v16hi)__b, 4,
+ (__mmask16)-1);
+}
+
+static __inline__ __mmask16 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmpneq_epu16_mask(__mmask16 __u, __m256i __a, __m256i __b) {
+ return (__mmask16)__builtin_ia32_ucmpw256_mask((__v16hi)__a, (__v16hi)__b, 4,
+ __u);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_add_epi8 (__m256i __W, __mmask32 __U, __m256i __A, __m256i __B){
+ return (__m256i) __builtin_ia32_paddb256_mask ((__v32qi) __A,
+ (__v32qi) __B,
+ (__v32qi) __W,
+ (__mmask32) __U);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_maskz_add_epi8 (__mmask32 __U, __m256i __A, __m256i __B) {
+ return (__m256i) __builtin_ia32_paddb256_mask ((__v32qi) __A,
+ (__v32qi) __B,
+ (__v32qi)
+ _mm256_setzero_si256 (),
+ (__mmask32) __U);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_add_epi16 (__m256i __W, __mmask16 __U, __m256i __A, __m256i __B) {
+ return (__m256i) __builtin_ia32_paddw256_mask ((__v16hi) __A,
+ (__v16hi) __B,
+ (__v16hi) __W,
+ (__mmask16) __U);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_maskz_add_epi16 (__mmask16 __U, __m256i __A, __m256i __B) {
+ return (__m256i) __builtin_ia32_paddw256_mask ((__v16hi) __A,
+ (__v16hi) __B,
+ (__v16hi)
+ _mm256_setzero_si256 (),
+ (__mmask16) __U);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_sub_epi8 (__m256i __W, __mmask32 __U, __m256i __A, __m256i __B) {
+ return (__m256i) __builtin_ia32_psubb256_mask ((__v32qi) __A,
+ (__v32qi) __B,
+ (__v32qi) __W,
+ (__mmask32) __U);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_maskz_sub_epi8 (__mmask32 __U, __m256i __A, __m256i __B) {
+ return (__m256i) __builtin_ia32_psubb256_mask ((__v32qi) __A,
+ (__v32qi) __B,
+ (__v32qi)
+ _mm256_setzero_si256 (),
+ (__mmask32) __U);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_sub_epi16 (__m256i __W, __mmask16 __U, __m256i __A, __m256i __B) {
+ return (__m256i) __builtin_ia32_psubw256_mask ((__v16hi) __A,
+ (__v16hi) __B,
+ (__v16hi) __W,
+ (__mmask16) __U);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_maskz_sub_epi16 (__mmask16 __U, __m256i __A, __m256i __B) {
+ return (__m256i) __builtin_ia32_psubw256_mask ((__v16hi) __A,
+ (__v16hi) __B,
+ (__v16hi)
+ _mm256_setzero_si256 (),
+ (__mmask16) __U);
+}
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_mask_add_epi8 (__m128i __W, __mmask16 __U, __m128i __A, __m128i __B) {
+ return (__m128i) __builtin_ia32_paddb128_mask ((__v16qi) __A,
+ (__v16qi) __B,
+ (__v16qi) __W,
+ (__mmask16) __U);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_maskz_add_epi8 (__mmask16 __U, __m128i __A, __m128i __B) {
+ return (__m128i) __builtin_ia32_paddb128_mask ((__v16qi) __A,
+ (__v16qi) __B,
+ (__v16qi)
+ _mm_setzero_si128 (),
+ (__mmask16) __U);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_mask_add_epi16 (__m128i __W, __mmask8 __U, __m128i __A, __m128i __B) {
+ return (__m128i) __builtin_ia32_paddw128_mask ((__v8hi) __A,
+ (__v8hi) __B,
+ (__v8hi) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_maskz_add_epi16 (__mmask8 __U, __m128i __A, __m128i __B) {
+ return (__m128i) __builtin_ia32_paddw128_mask ((__v8hi) __A,
+ (__v8hi) __B,
+ (__v8hi)
+ _mm_setzero_si128 (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_mask_sub_epi8 (__m128i __W, __mmask16 __U, __m128i __A, __m128i __B) {
+ return (__m128i) __builtin_ia32_psubb128_mask ((__v16qi) __A,
+ (__v16qi) __B,
+ (__v16qi) __W,
+ (__mmask16) __U);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_maskz_sub_epi8 (__mmask16 __U, __m128i __A, __m128i __B) {
+ return (__m128i) __builtin_ia32_psubb128_mask ((__v16qi) __A,
+ (__v16qi) __B,
+ (__v16qi)
+ _mm_setzero_si128 (),
+ (__mmask16) __U);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_mask_sub_epi16 (__m128i __W, __mmask8 __U, __m128i __A, __m128i __B) {
+ return (__m128i) __builtin_ia32_psubw128_mask ((__v8hi) __A,
+ (__v8hi) __B,
+ (__v8hi) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_maskz_sub_epi16 (__mmask8 __U, __m128i __A, __m128i __B) {
+ return (__m128i) __builtin_ia32_psubw128_mask ((__v8hi) __A,
+ (__v8hi) __B,
+ (__v8hi)
+ _mm_setzero_si128 (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m256i __attribute__ ((__always_inline__, __nodebug__))
+_mm256_mask_mullo_epi16 (__m256i __W, __mmask16 __U, __m256i __A, __m256i __B) {
+ return (__m256i) __builtin_ia32_pmullw256_mask ((__v16hi) __A,
+ (__v16hi) __B,
+ (__v16hi) __W,
+ (__mmask16) __U);
+}
+
+static __inline__ __m256i __attribute__ ((__always_inline__, __nodebug__))
+_mm256_maskz_mullo_epi16 (__mmask16 __U, __m256i __A, __m256i __B) {
+ return (__m256i) __builtin_ia32_pmullw256_mask ((__v16hi) __A,
+ (__v16hi) __B,
+ (__v16hi)
+ _mm256_setzero_si256 (),
+ (__mmask16) __U);
+}
+
+static __inline__ __m128i __attribute__ ((__always_inline__, __nodebug__))
+_mm_mask_mullo_epi16 (__m128i __W, __mmask8 __U, __m128i __A, __m128i __B) {
+ return (__m128i) __builtin_ia32_pmullw128_mask ((__v8hi) __A,
+ (__v8hi) __B,
+ (__v8hi) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m128i __attribute__ ((__always_inline__, __nodebug__))
+_mm_maskz_mullo_epi16 (__mmask8 __U, __m128i __A, __m128i __B) {
+ return (__m128i) __builtin_ia32_pmullw128_mask ((__v8hi) __A,
+ (__v8hi) __B,
+ (__v8hi)
+ _mm_setzero_si128 (),
+ (__mmask8) __U);
+}
+#define _mm_cmp_epi8_mask(a, b, p) __extension__ ({ \
+ (__mmask16)__builtin_ia32_cmpb128_mask((__v16qi)(__m128i)(a), \
+ (__v16qi)(__m128i)(b), \
+ (p), (__mmask16)-1); })
+
+#define _mm_mask_cmp_epi8_mask(m, a, b, p) __extension__ ({ \
+ (__mmask16)__builtin_ia32_cmpb128_mask((__v16qi)(__m128i)(a), \
+ (__v16qi)(__m128i)(b), \
+ (p), (__mmask16)(m)); })
+
+#define _mm_cmp_epu8_mask(a, b, p) __extension__ ({ \
+ (__mmask16)__builtin_ia32_ucmpb128_mask((__v16qi)(__m128i)(a), \
+ (__v16qi)(__m128i)(b), \
+ (p), (__mmask16)-1); })
+
+#define _mm_mask_cmp_epu8_mask(m, a, b, p) __extension__ ({ \
+ (__mmask16)__builtin_ia32_ucmpb128_mask((__v16qi)(__m128i)(a), \
+ (__v16qi)(__m128i)(b), \
+ (p), (__mmask16)(m)); })
+
+#define _mm256_cmp_epi8_mask(a, b, p) __extension__ ({ \
+ (__mmask32)__builtin_ia32_cmpb256_mask((__v32qi)(__m256i)(a), \
+ (__v32qi)(__m256i)(b), \
+ (p), (__mmask32)-1); })
+
+#define _mm256_mask_cmp_epi8_mask(m, a, b, p) __extension__ ({ \
+ (__mmask32)__builtin_ia32_cmpb256_mask((__v32qi)(__m256i)(a), \
+ (__v32qi)(__m256i)(b), \
+ (p), (__mmask32)(m)); })
+
+#define _mm256_cmp_epu8_mask(a, b, p) __extension__ ({ \
+ (__mmask32)__builtin_ia32_ucmpb256_mask((__v32qi)(__m256i)(a), \
+ (__v32qi)(__m256i)(b), \
+ (p), (__mmask32)-1); })
+
+#define _mm256_mask_cmp_epu8_mask(m, a, b, p) __extension__ ({ \
+ (__mmask32)__builtin_ia32_ucmpb256_mask((__v32qi)(__m256i)(a), \
+ (__v32qi)(__m256i)(b), \
+ (p), (__mmask32)(m)); })
+
+#define _mm_cmp_epi16_mask(a, b, p) __extension__ ({ \
+ (__mmask8)__builtin_ia32_cmpw128_mask((__v8hi)(__m128i)(a), \
+ (__v8hi)(__m128i)(b), \
+ (p), (__mmask8)-1); })
+
+#define _mm_mask_cmp_epi16_mask(m, a, b, p) __extension__ ({ \
+ (__mmask8)__builtin_ia32_cmpw128_mask((__v8hi)(__m128i)(a), \
+ (__v8hi)(__m128i)(b), \
+ (p), (__mmask8)(m)); })
+
+#define _mm_cmp_epu16_mask(a, b, p) __extension__ ({ \
+ (__mmask8)__builtin_ia32_ucmpw128_mask((__v8hi)(__m128i)(a), \
+ (__v8hi)(__m128i)(b), \
+ (p), (__mmask8)-1); })
+
+#define _mm_mask_cmp_epu16_mask(m, a, b, p) __extension__ ({ \
+ (__mmask8)__builtin_ia32_ucmpw128_mask((__v8hi)(__m128i)(a), \
+ (__v8hi)(__m128i)(b), \
+ (p), (__mmask8)(m)); })
+
+#define _mm256_cmp_epi16_mask(a, b, p) __extension__ ({ \
+ (__mmask16)__builtin_ia32_cmpw256_mask((__v16hi)(__m256i)(a), \
+ (__v16hi)(__m256i)(b), \
+ (p), (__mmask16)-1); })
+
+#define _mm256_mask_cmp_epi16_mask(m, a, b, p) __extension__ ({ \
+ (__mmask16)__builtin_ia32_cmpw256_mask((__v16hi)(__m256i)(a), \
+ (__v16hi)(__m256i)(b), \
+ (p), (__mmask16)(m)); })
+
+#define _mm256_cmp_epu16_mask(a, b, p) __extension__ ({ \
+ (__mmask16)__builtin_ia32_ucmpw256_mask((__v16hi)(__m256i)(a), \
+ (__v16hi)(__m256i)(b), \
+ (p), (__mmask16)-1); })
+
+#define _mm256_mask_cmp_epu16_mask(m, a, b, p) __extension__ ({ \
+ (__mmask16)__builtin_ia32_ucmpw256_mask((__v16hi)(__m256i)(a), \
+ (__v16hi)(__m256i)(b), \
+ (p), (__mmask16)(m)); })
+
+#endif /* __AVX512VLBWINTRIN_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/avx512vldqintrin.h b/contrib/llvm/tools/clang/lib/Headers/avx512vldqintrin.h
new file mode 100644
index 0000000..4024446
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/avx512vldqintrin.h
@@ -0,0 +1,349 @@
+/*===---- avx512vldqintrin.h - AVX512VL and AVX512DQ intrinsics ---------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#ifndef __IMMINTRIN_H
+#error "Never use <avx512vldqintrin.h> directly; include <immintrin.h> instead."
+#endif
+
+#ifndef __AVX512VLDQINTRIN_H
+#define __AVX512VLDQINTRIN_H
+
+
+static __inline__ __m256i __attribute__ ((__always_inline__, __nodebug__))
+_mm256_mullo_epi64 (__m256i __A, __m256i __B) {
+ return (__m256i) ((__v4di) __A * (__v4di) __B);
+}
+
+static __inline__ __m256i __attribute__ ((__always_inline__, __nodebug__))
+_mm256_mask_mullo_epi64 (__m256i __W, __mmask8 __U, __m256i __A, __m256i __B) {
+ return (__m256i) __builtin_ia32_pmullq256_mask ((__v4di) __A,
+ (__v4di) __B,
+ (__v4di) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m256i __attribute__ ((__always_inline__, __nodebug__))
+_mm256_maskz_mullo_epi64 (__mmask8 __U, __m256i __A, __m256i __B) {
+ return (__m256i) __builtin_ia32_pmullq256_mask ((__v4di) __A,
+ (__v4di) __B,
+ (__v4di)
+ _mm256_setzero_si256 (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m128i __attribute__ ((__always_inline__, __nodebug__))
+_mm_mullo_epi64 (__m128i __A, __m128i __B) {
+ return (__m128i) ((__v2di) __A * (__v2di) __B);
+}
+
+static __inline__ __m128i __attribute__ ((__always_inline__, __nodebug__))
+_mm_mask_mullo_epi64 (__m128i __W, __mmask8 __U, __m128i __A, __m128i __B) {
+ return (__m128i) __builtin_ia32_pmullq128_mask ((__v2di) __A,
+ (__v2di) __B,
+ (__v2di) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m128i __attribute__ ((__always_inline__, __nodebug__))
+_mm_maskz_mullo_epi64 (__mmask8 __U, __m128i __A, __m128i __B) {
+ return (__m128i) __builtin_ia32_pmullq128_mask ((__v2di) __A,
+ (__v2di) __B,
+ (__v2di)
+ _mm_setzero_si128 (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m256d __attribute__ ((__always_inline__, __nodebug__))
+_mm256_mask_andnot_pd (__m256d __W, __mmask8 __U, __m256d __A, __m256d __B) {
+ return (__m256d) __builtin_ia32_andnpd256_mask ((__v4df) __A,
+ (__v4df) __B,
+ (__v4df) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m256d __attribute__ ((__always_inline__, __nodebug__))
+_mm256_maskz_andnot_pd (__mmask8 __U, __m256d __A, __m256d __B) {
+ return (__m256d) __builtin_ia32_andnpd256_mask ((__v4df) __A,
+ (__v4df) __B,
+ (__v4df)
+ _mm256_setzero_pd (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m128d __attribute__ ((__always_inline__, __nodebug__))
+_mm_mask_andnot_pd (__m128d __W, __mmask8 __U, __m128d __A, __m128d __B) {
+ return (__m128d) __builtin_ia32_andnpd128_mask ((__v2df) __A,
+ (__v2df) __B,
+ (__v2df) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m128d __attribute__ ((__always_inline__, __nodebug__))
+_mm_maskz_andnot_pd (__mmask8 __U, __m128d __A, __m128d __B) {
+ return (__m128d) __builtin_ia32_andnpd128_mask ((__v2df) __A,
+ (__v2df) __B,
+ (__v2df)
+ _mm_setzero_pd (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m256 __attribute__ ((__always_inline__, __nodebug__))
+_mm256_mask_andnot_ps (__m256 __W, __mmask8 __U, __m256 __A, __m256 __B) {
+ return (__m256) __builtin_ia32_andnps256_mask ((__v8sf) __A,
+ (__v8sf) __B,
+ (__v8sf) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m256 __attribute__ ((__always_inline__, __nodebug__))
+_mm256_maskz_andnot_ps (__mmask8 __U, __m256 __A, __m256 __B) {
+ return (__m256) __builtin_ia32_andnps256_mask ((__v8sf) __A,
+ (__v8sf) __B,
+ (__v8sf)
+ _mm256_setzero_ps (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m128 __attribute__ ((__always_inline__, __nodebug__))
+_mm_mask_andnot_ps (__m128 __W, __mmask8 __U, __m128 __A, __m128 __B) {
+ return (__m128) __builtin_ia32_andnps128_mask ((__v4sf) __A,
+ (__v4sf) __B,
+ (__v4sf) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m128 __attribute__ ((__always_inline__, __nodebug__))
+_mm_maskz_andnot_ps (__mmask8 __U, __m128 __A, __m128 __B) {
+ return (__m128) __builtin_ia32_andnps128_mask ((__v4sf) __A,
+ (__v4sf) __B,
+ (__v4sf)
+ _mm_setzero_ps (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m256d __attribute__ ((__always_inline__, __nodebug__))
+_mm256_mask_and_pd (__m256d __W, __mmask8 __U, __m256d __A, __m256d __B) {
+ return (__m256d) __builtin_ia32_andpd256_mask ((__v4df) __A,
+ (__v4df) __B,
+ (__v4df) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m256d __attribute__ ((__always_inline__, __nodebug__))
+_mm256_maskz_and_pd (__mmask8 __U, __m256d __A, __m256d __B) {
+ return (__m256d) __builtin_ia32_andpd256_mask ((__v4df) __A,
+ (__v4df) __B,
+ (__v4df)
+ _mm256_setzero_pd (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m128d __attribute__ ((__always_inline__, __nodebug__))
+_mm_mask_and_pd (__m128d __W, __mmask8 __U, __m128d __A, __m128d __B) {
+ return (__m128d) __builtin_ia32_andpd128_mask ((__v2df) __A,
+ (__v2df) __B,
+ (__v2df) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m128d __attribute__ ((__always_inline__, __nodebug__))
+_mm_maskz_and_pd (__mmask8 __U, __m128d __A, __m128d __B) {
+ return (__m128d) __builtin_ia32_andpd128_mask ((__v2df) __A,
+ (__v2df) __B,
+ (__v2df)
+ _mm_setzero_pd (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m256 __attribute__ ((__always_inline__, __nodebug__))
+_mm256_mask_and_ps (__m256 __W, __mmask8 __U, __m256 __A, __m256 __B) {
+ return (__m256) __builtin_ia32_andps256_mask ((__v8sf) __A,
+ (__v8sf) __B,
+ (__v8sf) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m256 __attribute__ ((__always_inline__, __nodebug__))
+_mm256_maskz_and_ps (__mmask8 __U, __m256 __A, __m256 __B) {
+ return (__m256) __builtin_ia32_andps256_mask ((__v8sf) __A,
+ (__v8sf) __B,
+ (__v8sf)
+ _mm256_setzero_ps (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m128 __attribute__ ((__always_inline__, __nodebug__))
+_mm_mask_and_ps (__m128 __W, __mmask8 __U, __m128 __A, __m128 __B) {
+ return (__m128) __builtin_ia32_andps128_mask ((__v4sf) __A,
+ (__v4sf) __B,
+ (__v4sf) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m128 __attribute__ ((__always_inline__, __nodebug__))
+_mm_maskz_and_ps (__mmask8 __U, __m128 __A, __m128 __B) {
+ return (__m128) __builtin_ia32_andps128_mask ((__v4sf) __A,
+ (__v4sf) __B,
+ (__v4sf)
+ _mm_setzero_ps (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m256d __attribute__ ((__always_inline__, __nodebug__))
+_mm256_mask_xor_pd (__m256d __W, __mmask8 __U, __m256d __A,
+ __m256d __B) {
+ return (__m256d) __builtin_ia32_xorpd256_mask ((__v4df) __A,
+ (__v4df) __B,
+ (__v4df) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m256d __attribute__ ((__always_inline__, __nodebug__))
+_mm256_maskz_xor_pd (__mmask8 __U, __m256d __A, __m256d __B) {
+ return (__m256d) __builtin_ia32_xorpd256_mask ((__v4df) __A,
+ (__v4df) __B,
+ (__v4df)
+ _mm256_setzero_pd (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m128d __attribute__ ((__always_inline__, __nodebug__))
+_mm_mask_xor_pd (__m128d __W, __mmask8 __U, __m128d __A, __m128d __B) {
+ return (__m128d) __builtin_ia32_xorpd128_mask ((__v2df) __A,
+ (__v2df) __B,
+ (__v2df) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m128d __attribute__ ((__always_inline__, __nodebug__))
+_mm_maskz_xor_pd (__mmask8 __U, __m128d __A, __m128d __B) {
+ return (__m128d) __builtin_ia32_xorpd128_mask ((__v2df) __A,
+ (__v2df) __B,
+ (__v2df)
+ _mm_setzero_pd (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m256 __attribute__ ((__always_inline__, __nodebug__))
+_mm256_mask_xor_ps (__m256 __W, __mmask8 __U, __m256 __A, __m256 __B) {
+ return (__m256) __builtin_ia32_xorps256_mask ((__v8sf) __A,
+ (__v8sf) __B,
+ (__v8sf) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m256 __attribute__ ((__always_inline__, __nodebug__))
+_mm256_maskz_xor_ps (__mmask8 __U, __m256 __A, __m256 __B) {
+ return (__m256) __builtin_ia32_xorps256_mask ((__v8sf) __A,
+ (__v8sf) __B,
+ (__v8sf)
+ _mm256_setzero_ps (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m128 __attribute__ ((__always_inline__, __nodebug__))
+_mm_mask_xor_ps (__m128 __W, __mmask8 __U, __m128 __A, __m128 __B) {
+ return (__m128) __builtin_ia32_xorps128_mask ((__v4sf) __A,
+ (__v4sf) __B,
+ (__v4sf) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m128 __attribute__ ((__always_inline__, __nodebug__))
+_mm_maskz_xor_ps (__mmask8 __U, __m128 __A, __m128 __B) {
+ return (__m128) __builtin_ia32_xorps128_mask ((__v4sf) __A,
+ (__v4sf) __B,
+ (__v4sf)
+ _mm_setzero_ps (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m256d __attribute__ ((__always_inline__, __nodebug__))
+_mm256_mask_or_pd (__m256d __W, __mmask8 __U, __m256d __A, __m256d __B) {
+ return (__m256d) __builtin_ia32_orpd256_mask ((__v4df) __A,
+ (__v4df) __B,
+ (__v4df) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m256d __attribute__ ((__always_inline__, __nodebug__))
+_mm256_maskz_or_pd (__mmask8 __U, __m256d __A, __m256d __B) {
+ return (__m256d) __builtin_ia32_orpd256_mask ((__v4df) __A,
+ (__v4df) __B,
+ (__v4df)
+ _mm256_setzero_pd (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m128d __attribute__ ((__always_inline__, __nodebug__))
+_mm_mask_or_pd (__m128d __W, __mmask8 __U, __m128d __A, __m128d __B) {
+ return (__m128d) __builtin_ia32_orpd128_mask ((__v2df) __A,
+ (__v2df) __B,
+ (__v2df) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m128d __attribute__ ((__always_inline__, __nodebug__))
+_mm_maskz_or_pd (__mmask8 __U, __m128d __A, __m128d __B) {
+ return (__m128d) __builtin_ia32_orpd128_mask ((__v2df) __A,
+ (__v2df) __B,
+ (__v2df)
+ _mm_setzero_pd (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m256 __attribute__ ((__always_inline__, __nodebug__))
+_mm256_mask_or_ps (__m256 __W, __mmask8 __U, __m256 __A, __m256 __B) {
+ return (__m256) __builtin_ia32_orps256_mask ((__v8sf) __A,
+ (__v8sf) __B,
+ (__v8sf) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m256 __attribute__ ((__always_inline__, __nodebug__))
+_mm256_maskz_or_ps (__mmask8 __U, __m256 __A, __m256 __B) {
+ return (__m256) __builtin_ia32_orps256_mask ((__v8sf) __A,
+ (__v8sf) __B,
+ (__v8sf)
+ _mm256_setzero_ps (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m128 __attribute__ ((__always_inline__, __nodebug__))
+_mm_mask_or_ps (__m128 __W, __mmask8 __U, __m128 __A, __m128 __B) {
+ return (__m128) __builtin_ia32_orps128_mask ((__v4sf) __A,
+ (__v4sf) __B,
+ (__v4sf) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m128 __attribute__ ((__always_inline__, __nodebug__))
+_mm_maskz_or_ps (__mmask8 __U, __m128 __A, __m128 __B) {
+ return (__m128) __builtin_ia32_orps128_mask ((__v4sf) __A,
+ (__v4sf) __B,
+ (__v4sf)
+ _mm_setzero_ps (),
+ (__mmask8) __U);
+}
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/Headers/avx512vlintrin.h b/contrib/llvm/tools/clang/lib/Headers/avx512vlintrin.h
new file mode 100644
index 0000000..9de0cf4
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/avx512vlintrin.h
@@ -0,0 +1,1319 @@
+/*===---- avx512vlintrin.h - AVX512VL intrinsics ---------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#ifndef __IMMINTRIN_H
+#error "Never use <avx512vlintrin.h> directly; include <immintrin.h> instead."
+#endif
+
+#ifndef __AVX512VLINTRIN_H
+#define __AVX512VLINTRIN_H
+
+/* Integer compare */
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpeq_epi32_mask(__m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_pcmpeqd128_mask((__v4si)__a, (__v4si)__b,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmpeq_epi32_mask(__mmask8 __u, __m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_pcmpeqd128_mask((__v4si)__a, (__v4si)__b,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpeq_epu32_mask(__m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_ucmpd128_mask((__v4si)__a, (__v4si)__b, 0,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmpeq_epu32_mask(__mmask8 __u, __m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_ucmpd128_mask((__v4si)__a, (__v4si)__b, 0,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmpeq_epi32_mask(__m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_pcmpeqd256_mask((__v8si)__a, (__v8si)__b,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmpeq_epi32_mask(__mmask8 __u, __m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_pcmpeqd256_mask((__v8si)__a, (__v8si)__b,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmpeq_epu32_mask(__m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_ucmpd256_mask((__v8si)__a, (__v8si)__b, 0,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmpeq_epu32_mask(__mmask8 __u, __m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_ucmpd256_mask((__v8si)__a, (__v8si)__b, 0,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpeq_epi64_mask(__m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_pcmpeqq128_mask((__v2di)__a, (__v2di)__b,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmpeq_epi64_mask(__mmask8 __u, __m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_pcmpeqq128_mask((__v2di)__a, (__v2di)__b,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpeq_epu64_mask(__m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_ucmpq128_mask((__v2di)__a, (__v2di)__b, 0,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmpeq_epu64_mask(__mmask8 __u, __m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_ucmpq128_mask((__v2di)__a, (__v2di)__b, 0,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmpeq_epi64_mask(__m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_pcmpeqq256_mask((__v4di)__a, (__v4di)__b,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmpeq_epi64_mask(__mmask8 __u, __m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_pcmpeqq256_mask((__v4di)__a, (__v4di)__b,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmpeq_epu64_mask(__m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_ucmpq256_mask((__v4di)__a, (__v4di)__b, 0,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmpeq_epu64_mask(__mmask8 __u, __m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_ucmpq256_mask((__v4di)__a, (__v4di)__b, 0,
+ __u);
+}
+
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpge_epi32_mask(__m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_cmpd128_mask((__v4si)__a, (__v4si)__b, 5,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmpge_epi32_mask(__mmask8 __u, __m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_cmpd128_mask((__v4si)__a, (__v4si)__b, 5,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpge_epu32_mask(__m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_ucmpd128_mask((__v4si)__a, (__v4si)__b, 5,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmpge_epu32_mask(__mmask8 __u, __m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_ucmpd128_mask((__v4si)__a, (__v4si)__b, 5,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmpge_epi32_mask(__m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_cmpd256_mask((__v8si)__a, (__v8si)__b, 5,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmpge_epi32_mask(__mmask8 __u, __m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_cmpd256_mask((__v8si)__a, (__v8si)__b, 5,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmpge_epu32_mask(__m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_ucmpd256_mask((__v8si)__a, (__v8si)__b, 5,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmpge_epu32_mask(__mmask8 __u, __m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_ucmpd256_mask((__v8si)__a, (__v8si)__b, 5,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpge_epi64_mask(__m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_cmpq128_mask((__v2di)__a, (__v2di)__b, 5,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmpge_epi64_mask(__mmask8 __u, __m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_cmpq128_mask((__v2di)__a, (__v2di)__b, 5,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpge_epu64_mask(__m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_ucmpq128_mask((__v2di)__a, (__v2di)__b, 5,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmpge_epu64_mask(__mmask8 __u, __m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_ucmpq128_mask((__v2di)__a, (__v2di)__b, 5,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmpge_epi64_mask(__m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_cmpq256_mask((__v4di)__a, (__v4di)__b, 5,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmpge_epi64_mask(__mmask8 __u, __m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_cmpq256_mask((__v4di)__a, (__v4di)__b, 5,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmpge_epu64_mask(__m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_ucmpq256_mask((__v4di)__a, (__v4di)__b, 5,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmpge_epu64_mask(__mmask8 __u, __m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_ucmpq256_mask((__v4di)__a, (__v4di)__b, 5,
+ __u);
+}
+
+
+
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpgt_epi32_mask(__m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_pcmpgtd128_mask((__v4si)__a, (__v4si)__b,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmpgt_epi32_mask(__mmask8 __u, __m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_pcmpgtd128_mask((__v4si)__a, (__v4si)__b,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpgt_epu32_mask(__m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_ucmpd128_mask((__v4si)__a, (__v4si)__b, 6,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmpgt_epu32_mask(__mmask8 __u, __m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_ucmpd128_mask((__v4si)__a, (__v4si)__b, 6,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmpgt_epi32_mask(__m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_pcmpgtd256_mask((__v8si)__a, (__v8si)__b,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmpgt_epi32_mask(__mmask8 __u, __m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_pcmpgtd256_mask((__v8si)__a, (__v8si)__b,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmpgt_epu32_mask(__m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_ucmpd256_mask((__v8si)__a, (__v8si)__b, 6,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmpgt_epu32_mask(__mmask8 __u, __m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_ucmpd256_mask((__v8si)__a, (__v8si)__b, 6,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpgt_epi64_mask(__m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_pcmpgtq128_mask((__v2di)__a, (__v2di)__b,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmpgt_epi64_mask(__mmask8 __u, __m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_pcmpgtq128_mask((__v2di)__a, (__v2di)__b,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpgt_epu64_mask(__m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_ucmpq128_mask((__v2di)__a, (__v2di)__b, 6,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmpgt_epu64_mask(__mmask8 __u, __m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_ucmpq128_mask((__v2di)__a, (__v2di)__b, 6,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmpgt_epi64_mask(__m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_pcmpgtq256_mask((__v4di)__a, (__v4di)__b,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmpgt_epi64_mask(__mmask8 __u, __m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_pcmpgtq256_mask((__v4di)__a, (__v4di)__b,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmpgt_epu64_mask(__m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_ucmpq256_mask((__v4di)__a, (__v4di)__b, 6,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmpgt_epu64_mask(__mmask8 __u, __m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_ucmpq256_mask((__v4di)__a, (__v4di)__b, 6,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_cmple_epi32_mask(__m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_cmpd128_mask((__v4si)__a, (__v4si)__b, 2,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmple_epi32_mask(__mmask8 __u, __m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_cmpd128_mask((__v4si)__a, (__v4si)__b, 2,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_cmple_epu32_mask(__m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_ucmpd128_mask((__v4si)__a, (__v4si)__b, 2,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmple_epu32_mask(__mmask8 __u, __m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_ucmpd128_mask((__v4si)__a, (__v4si)__b, 2,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmple_epi32_mask(__m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_cmpd256_mask((__v8si)__a, (__v8si)__b, 2,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmple_epi32_mask(__mmask8 __u, __m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_cmpd256_mask((__v8si)__a, (__v8si)__b, 2,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmple_epu32_mask(__m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_ucmpd256_mask((__v8si)__a, (__v8si)__b, 2,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmple_epu32_mask(__mmask8 __u, __m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_ucmpd256_mask((__v8si)__a, (__v8si)__b, 2,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_cmple_epi64_mask(__m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_cmpq128_mask((__v2di)__a, (__v2di)__b, 2,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmple_epi64_mask(__mmask8 __u, __m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_cmpq128_mask((__v2di)__a, (__v2di)__b, 2,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_cmple_epu64_mask(__m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_ucmpq128_mask((__v2di)__a, (__v2di)__b, 2,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmple_epu64_mask(__mmask8 __u, __m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_ucmpq128_mask((__v2di)__a, (__v2di)__b, 2,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmple_epi64_mask(__m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_cmpq256_mask((__v4di)__a, (__v4di)__b, 2,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmple_epi64_mask(__mmask8 __u, __m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_cmpq256_mask((__v4di)__a, (__v4di)__b, 2,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmple_epu64_mask(__m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_ucmpq256_mask((__v4di)__a, (__v4di)__b, 2,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmple_epu64_mask(__mmask8 __u, __m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_ucmpq256_mask((__v4di)__a, (__v4di)__b, 2,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_cmplt_epi32_mask(__m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_cmpd128_mask((__v4si)__a, (__v4si)__b, 1,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmplt_epi32_mask(__mmask8 __u, __m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_cmpd128_mask((__v4si)__a, (__v4si)__b, 1,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_cmplt_epu32_mask(__m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_ucmpd128_mask((__v4si)__a, (__v4si)__b, 1,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmplt_epu32_mask(__mmask8 __u, __m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_ucmpd128_mask((__v4si)__a, (__v4si)__b, 1,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmplt_epi32_mask(__m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_cmpd256_mask((__v8si)__a, (__v8si)__b, 1,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmplt_epi32_mask(__mmask8 __u, __m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_cmpd256_mask((__v8si)__a, (__v8si)__b, 1,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmplt_epu32_mask(__m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_ucmpd256_mask((__v8si)__a, (__v8si)__b, 1,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmplt_epu32_mask(__mmask8 __u, __m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_ucmpd256_mask((__v8si)__a, (__v8si)__b, 1,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_cmplt_epi64_mask(__m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_cmpq128_mask((__v2di)__a, (__v2di)__b, 1,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmplt_epi64_mask(__mmask8 __u, __m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_cmpq128_mask((__v2di)__a, (__v2di)__b, 1,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_cmplt_epu64_mask(__m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_ucmpq128_mask((__v2di)__a, (__v2di)__b, 1,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmplt_epu64_mask(__mmask8 __u, __m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_ucmpq128_mask((__v2di)__a, (__v2di)__b, 1,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmplt_epi64_mask(__m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_cmpq256_mask((__v4di)__a, (__v4di)__b, 1,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmplt_epi64_mask(__mmask8 __u, __m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_cmpq256_mask((__v4di)__a, (__v4di)__b, 1,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmplt_epu64_mask(__m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_ucmpq256_mask((__v4di)__a, (__v4di)__b, 1,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmplt_epu64_mask(__mmask8 __u, __m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_ucmpq256_mask((__v4di)__a, (__v4di)__b, 1,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpneq_epi32_mask(__m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_cmpd128_mask((__v4si)__a, (__v4si)__b, 4,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmpneq_epi32_mask(__mmask8 __u, __m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_cmpd128_mask((__v4si)__a, (__v4si)__b, 4,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpneq_epu32_mask(__m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_ucmpd128_mask((__v4si)__a, (__v4si)__b, 4,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmpneq_epu32_mask(__mmask8 __u, __m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_ucmpd128_mask((__v4si)__a, (__v4si)__b, 4,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmpneq_epi32_mask(__m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_cmpd256_mask((__v8si)__a, (__v8si)__b, 4,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmpneq_epi32_mask(__mmask8 __u, __m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_cmpd256_mask((__v8si)__a, (__v8si)__b, 4,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmpneq_epu32_mask(__m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_ucmpd256_mask((__v8si)__a, (__v8si)__b, 4,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmpneq_epu32_mask(__mmask8 __u, __m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_ucmpd256_mask((__v8si)__a, (__v8si)__b, 4,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpneq_epi64_mask(__m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_cmpq128_mask((__v2di)__a, (__v2di)__b, 4,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmpneq_epi64_mask(__mmask8 __u, __m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_cmpq128_mask((__v2di)__a, (__v2di)__b, 4,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpneq_epu64_mask(__m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_ucmpq128_mask((__v2di)__a, (__v2di)__b, 4,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm_mask_cmpneq_epu64_mask(__mmask8 __u, __m128i __a, __m128i __b) {
+ return (__mmask8)__builtin_ia32_ucmpq128_mask((__v2di)__a, (__v2di)__b, 4,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmpneq_epi64_mask(__m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_cmpq256_mask((__v4di)__a, (__v4di)__b, 4,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmpneq_epi64_mask(__mmask8 __u, __m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_cmpq256_mask((__v4di)__a, (__v4di)__b, 4,
+ __u);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_cmpneq_epu64_mask(__m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_ucmpq256_mask((__v4di)__a, (__v4di)__b, 4,
+ (__mmask8)-1);
+}
+
+static __inline__ __mmask8 __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_cmpneq_epu64_mask(__mmask8 __u, __m256i __a, __m256i __b) {
+ return (__mmask8)__builtin_ia32_ucmpq256_mask((__v4di)__a, (__v4di)__b, 4,
+ __u);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_add_epi32 (__m256i __W, __mmask8 __U, __m256i __A,
+ __m256i __B)
+{
+ return (__m256i) __builtin_ia32_paddd256_mask ((__v8si) __A,
+ (__v8si) __B,
+ (__v8si) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_maskz_add_epi32 (__mmask8 __U, __m256i __A, __m256i __B)
+{
+ return (__m256i) __builtin_ia32_paddd256_mask ((__v8si) __A,
+ (__v8si) __B,
+ (__v8si)
+ _mm256_setzero_si256 (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_add_epi64 (__m256i __W, __mmask8 __U, __m256i __A,
+ __m256i __B)
+{
+ return (__m256i) __builtin_ia32_paddq256_mask ((__v4di) __A,
+ (__v4di) __B,
+ (__v4di) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_maskz_add_epi64 (__mmask8 __U, __m256i __A, __m256i __B)
+{
+ return (__m256i) __builtin_ia32_paddq256_mask ((__v4di) __A,
+ (__v4di) __B,
+ (__v4di)
+ _mm256_setzero_si256 (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_sub_epi32 (__m256i __W, __mmask8 __U, __m256i __A,
+ __m256i __B)
+{
+ return (__m256i) __builtin_ia32_psubd256_mask ((__v8si) __A,
+ (__v8si) __B,
+ (__v8si) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_maskz_sub_epi32 (__mmask8 __U, __m256i __A, __m256i __B)
+{
+ return (__m256i) __builtin_ia32_psubd256_mask ((__v8si) __A,
+ (__v8si) __B,
+ (__v8si)
+ _mm256_setzero_si256 (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_sub_epi64 (__m256i __W, __mmask8 __U, __m256i __A,
+ __m256i __B)
+{
+ return (__m256i) __builtin_ia32_psubq256_mask ((__v4di) __A,
+ (__v4di) __B,
+ (__v4di) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_maskz_sub_epi64 (__mmask8 __U, __m256i __A, __m256i __B)
+{
+ return (__m256i) __builtin_ia32_psubq256_mask ((__v4di) __A,
+ (__v4di) __B,
+ (__v4di)
+ _mm256_setzero_si256 (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_mask_add_epi32 (__m128i __W, __mmask8 __U, __m128i __A,
+ __m128i __B)
+{
+ return (__m128i) __builtin_ia32_paddd128_mask ((__v4si) __A,
+ (__v4si) __B,
+ (__v4si) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_maskz_add_epi32 (__mmask8 __U, __m128i __A, __m128i __B)
+{
+ return (__m128i) __builtin_ia32_paddd128_mask ((__v4si) __A,
+ (__v4si) __B,
+ (__v4si)
+ _mm_setzero_si128 (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_mask_add_epi64 (__m128i __W, __mmask8 __U, __m128i __A,
+ __m128i __B)
+{
+ return (__m128i) __builtin_ia32_paddq128_mask ((__v2di) __A,
+ (__v2di) __B,
+ (__v2di) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_maskz_add_epi64 (__mmask8 __U, __m128i __A, __m128i __B)
+{
+ return (__m128i) __builtin_ia32_paddq128_mask ((__v2di) __A,
+ (__v2di) __B,
+ (__v2di)
+ _mm_setzero_si128 (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_mask_sub_epi32 (__m128i __W, __mmask8 __U, __m128i __A,
+ __m128i __B)
+{
+ return (__m128i) __builtin_ia32_psubd128_mask ((__v4si) __A,
+ (__v4si) __B,
+ (__v4si) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_maskz_sub_epi32 (__mmask8 __U, __m128i __A, __m128i __B)
+{
+ return (__m128i) __builtin_ia32_psubd128_mask ((__v4si) __A,
+ (__v4si) __B,
+ (__v4si)
+ _mm_setzero_si128 (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_mask_sub_epi64 (__m128i __W, __mmask8 __U, __m128i __A,
+ __m128i __B)
+{
+ return (__m128i) __builtin_ia32_psubq128_mask ((__v2di) __A,
+ (__v2di) __B,
+ (__v2di) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_maskz_sub_epi64 (__mmask8 __U, __m128i __A, __m128i __B)
+{
+ return (__m128i) __builtin_ia32_psubq128_mask ((__v2di) __A,
+ (__v2di) __B,
+ (__v2di)
+ _mm_setzero_si128 (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_mul_epi32 (__m256i __W, __mmask8 __M, __m256i __X,
+ __m256i __Y)
+{
+ return (__m256i) __builtin_ia32_pmuldq256_mask ((__v8si) __X,
+ (__v8si) __Y,
+ (__v4di) __W, __M);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_maskz_mul_epi32 (__mmask8 __M, __m256i __X, __m256i __Y)
+{
+ return (__m256i) __builtin_ia32_pmuldq256_mask ((__v8si) __X,
+ (__v8si) __Y,
+ (__v4di)
+ _mm256_setzero_si256 (),
+ __M);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_mask_mul_epi32 (__m128i __W, __mmask8 __M, __m128i __X,
+ __m128i __Y)
+{
+ return (__m128i) __builtin_ia32_pmuldq128_mask ((__v4si) __X,
+ (__v4si) __Y,
+ (__v2di) __W, __M);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_maskz_mul_epi32 (__mmask8 __M, __m128i __X, __m128i __Y)
+{
+ return (__m128i) __builtin_ia32_pmuldq128_mask ((__v4si) __X,
+ (__v4si) __Y,
+ (__v2di)
+ _mm_setzero_si128 (),
+ __M);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_mask_mul_epu32 (__m256i __W, __mmask8 __M, __m256i __X,
+ __m256i __Y)
+{
+ return (__m256i) __builtin_ia32_pmuludq256_mask ((__v8si) __X,
+ (__v8si) __Y,
+ (__v4di) __W, __M);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_maskz_mul_epu32 (__mmask8 __M, __m256i __X, __m256i __Y)
+{
+ return (__m256i) __builtin_ia32_pmuludq256_mask ((__v8si) __X,
+ (__v8si) __Y,
+ (__v4di)
+ _mm256_setzero_si256 (),
+ __M);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_mask_mul_epu32 (__m128i __W, __mmask8 __M, __m128i __X,
+ __m128i __Y)
+{
+ return (__m128i) __builtin_ia32_pmuludq128_mask ((__v4si) __X,
+ (__v4si) __Y,
+ (__v2di) __W, __M);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_maskz_mul_epu32 (__mmask8 __M, __m128i __X, __m128i __Y)
+{
+ return (__m128i) __builtin_ia32_pmuludq128_mask ((__v4si) __X,
+ (__v4si) __Y,
+ (__v2di)
+ _mm_setzero_si128 (),
+ __M);
+}
+
+static __inline__ __m256i __attribute__ ((__always_inline__, __nodebug__))
+_mm256_maskz_mullo_epi32 (__mmask8 __M, __m256i __A, __m256i __B)
+{
+ return (__m256i) __builtin_ia32_pmulld256_mask ((__v8si) __A,
+ (__v8si) __B,
+ (__v8si)
+ _mm256_setzero_si256 (),
+ __M);
+}
+
+static __inline__ __m256i __attribute__ ((__always_inline__, __nodebug__))
+_mm256_mask_mullo_epi32 (__m256i __W, __mmask8 __M, __m256i __A,
+ __m256i __B)
+{
+ return (__m256i) __builtin_ia32_pmulld256_mask ((__v8si) __A,
+ (__v8si) __B,
+ (__v8si) __W, __M);
+}
+
+static __inline__ __m128i __attribute__ ((__always_inline__, __nodebug__))
+_mm_maskz_mullo_epi32 (__mmask8 __M, __m128i __A, __m128i __B)
+{
+ return (__m128i) __builtin_ia32_pmulld128_mask ((__v4si) __A,
+ (__v4si) __B,
+ (__v4si)
+ _mm_setzero_si128 (),
+ __M);
+}
+
+static __inline__ __m128i __attribute__ ((__always_inline__, __nodebug__))
+_mm_mask_mullo_epi32 (__m128i __W, __mmask16 __M, __m128i __A,
+ __m128i __B)
+{
+ return (__m128i) __builtin_ia32_pmulld128_mask ((__v4si) __A,
+ (__v4si) __B,
+ (__v4si) __W, __M);
+}
+
+static __inline__ __m256i __attribute__ ((__always_inline__, __nodebug__))
+_mm256_mask_and_epi32 (__m256i __W, __mmask8 __U, __m256i __A,
+ __m256i __B)
+{
+ return (__m256i) __builtin_ia32_pandd256_mask ((__v8si) __A,
+ (__v8si) __B,
+ (__v8si) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m256i __attribute__ ((__always_inline__, __nodebug__))
+_mm256_maskz_and_epi32 (__mmask8 __U, __m256i __A, __m256i __B)
+{
+ return (__m256i) __builtin_ia32_pandd256_mask ((__v8si) __A,
+ (__v8si) __B,
+ (__v8si)
+ _mm256_setzero_si256 (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m128i __attribute__ ((__always_inline__, __nodebug__))
+_mm_mask_and_epi32 (__m128i __W, __mmask8 __U, __m128i __A, __m128i __B)
+{
+ return (__m128i) __builtin_ia32_pandd128_mask ((__v4si) __A,
+ (__v4si) __B,
+ (__v4si) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m128i __attribute__ ((__always_inline__, __nodebug__))
+_mm_maskz_and_epi32 (__mmask8 __U, __m128i __A, __m128i __B)
+{
+ return (__m128i) __builtin_ia32_pandd128_mask ((__v4si) __A,
+ (__v4si) __B,
+ (__v4si)
+ _mm_setzero_si128 (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m256i __attribute__ ((__always_inline__, __nodebug__))
+_mm256_mask_andnot_epi32 (__m256i __W, __mmask8 __U, __m256i __A,
+ __m256i __B)
+{
+ return (__m256i) __builtin_ia32_pandnd256_mask ((__v8si) __A,
+ (__v8si) __B,
+ (__v8si) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m256i __attribute__ ((__always_inline__, __nodebug__))
+_mm256_maskz_andnot_epi32 (__mmask8 __U, __m256i __A, __m256i __B)
+{
+ return (__m256i) __builtin_ia32_pandnd256_mask ((__v8si) __A,
+ (__v8si) __B,
+ (__v8si)
+ _mm256_setzero_si256 (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m128i __attribute__ ((__always_inline__, __nodebug__))
+_mm_mask_andnot_epi32 (__m128i __W, __mmask8 __U, __m128i __A,
+ __m128i __B)
+{
+ return (__m128i) __builtin_ia32_pandnd128_mask ((__v4si) __A,
+ (__v4si) __B,
+ (__v4si) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m128i __attribute__ ((__always_inline__, __nodebug__))
+_mm_maskz_andnot_epi32 (__mmask8 __U, __m128i __A, __m128i __B)
+{
+ return (__m128i) __builtin_ia32_pandnd128_mask ((__v4si) __A,
+ (__v4si) __B,
+ (__v4si)
+ _mm_setzero_si128 (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m256i __attribute__ ((__always_inline__, __nodebug__))
+_mm256_mask_or_epi32 (__m256i __W, __mmask8 __U, __m256i __A,
+ __m256i __B)
+{
+ return (__m256i) __builtin_ia32_pord256_mask ((__v8si) __A,
+ (__v8si) __B,
+ (__v8si) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m256i __attribute__ ((__always_inline__, __nodebug__))
+_mm256_maskz_or_epi32 (__mmask8 __U, __m256i __A, __m256i __B)
+{
+ return (__m256i) __builtin_ia32_pord256_mask ((__v8si) __A,
+ (__v8si) __B,
+ (__v8si)
+ _mm256_setzero_si256 (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m128i __attribute__ ((__always_inline__, __nodebug__))
+_mm_mask_or_epi32 (__m128i __W, __mmask8 __U, __m128i __A, __m128i __B)
+{
+ return (__m128i) __builtin_ia32_pord128_mask ((__v4si) __A,
+ (__v4si) __B,
+ (__v4si) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m128i __attribute__ ((__always_inline__, __nodebug__))
+_mm_maskz_or_epi32 (__mmask8 __U, __m128i __A, __m128i __B)
+{
+ return (__m128i) __builtin_ia32_pord128_mask ((__v4si) __A,
+ (__v4si) __B,
+ (__v4si)
+ _mm_setzero_si128 (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m256i __attribute__ ((__always_inline__, __nodebug__))
+_mm256_mask_xor_epi32 (__m256i __W, __mmask8 __U, __m256i __A,
+ __m256i __B)
+{
+ return (__m256i) __builtin_ia32_pxord256_mask ((__v8si) __A,
+ (__v8si) __B,
+ (__v8si) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m256i __attribute__ ((__always_inline__, __nodebug__))
+_mm256_maskz_xor_epi32 (__mmask8 __U, __m256i __A, __m256i __B)
+{
+ return (__m256i) __builtin_ia32_pxord256_mask ((__v8si) __A,
+ (__v8si) __B,
+ (__v8si)
+ _mm256_setzero_si256 (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m128i __attribute__ ((__always_inline__, __nodebug__))
+_mm_mask_xor_epi32 (__m128i __W, __mmask8 __U, __m128i __A,
+ __m128i __B)
+{
+ return (__m128i) __builtin_ia32_pxord128_mask ((__v4si) __A,
+ (__v4si) __B,
+ (__v4si) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m128i __attribute__ ((__always_inline__, __nodebug__))
+_mm_maskz_xor_epi32 (__mmask8 __U, __m128i __A, __m128i __B)
+{
+ return (__m128i) __builtin_ia32_pxord128_mask ((__v4si) __A,
+ (__v4si) __B,
+ (__v4si)
+ _mm_setzero_si128 (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m256i __attribute__ ((__always_inline__, __nodebug__))
+_mm256_mask_and_epi64 (__m256i __W, __mmask8 __U, __m256i __A,
+ __m256i __B)
+{
+ return (__m256i) __builtin_ia32_pandq256_mask ((__v4di) __A,
+ (__v4di) __B,
+ (__v4di) __W, __U);
+}
+
+static __inline__ __m256i __attribute__ ((__always_inline__, __nodebug__))
+_mm256_maskz_and_epi64 (__mmask8 __U, __m256i __A, __m256i __B)
+{
+ return (__m256i) __builtin_ia32_pandq256_mask ((__v4di) __A,
+ (__v4di) __B,
+ (__v4di)
+ _mm256_setzero_pd (),
+ __U);
+}
+
+static __inline__ __m128i __attribute__ ((__always_inline__, __nodebug__))
+_mm_mask_and_epi64 (__m128i __W, __mmask8 __U, __m128i __A,
+ __m128i __B)
+{
+ return (__m128i) __builtin_ia32_pandq128_mask ((__v2di) __A,
+ (__v2di) __B,
+ (__v2di) __W, __U);
+}
+
+static __inline__ __m128i __attribute__ ((__always_inline__, __nodebug__))
+_mm_maskz_and_epi64 (__mmask8 __U, __m128i __A, __m128i __B)
+{
+ return (__m128i) __builtin_ia32_pandq128_mask ((__v2di) __A,
+ (__v2di) __B,
+ (__v2di)
+ _mm_setzero_pd (),
+ __U);
+}
+
+static __inline__ __m256i __attribute__ ((__always_inline__, __nodebug__))
+_mm256_mask_andnot_epi64 (__m256i __W, __mmask8 __U, __m256i __A,
+ __m256i __B)
+{
+ return (__m256i) __builtin_ia32_pandnq256_mask ((__v4di) __A,
+ (__v4di) __B,
+ (__v4di) __W, __U);
+}
+
+static __inline__ __m256i __attribute__ ((__always_inline__, __nodebug__))
+_mm256_maskz_andnot_epi64 (__mmask8 __U, __m256i __A, __m256i __B)
+{
+ return (__m256i) __builtin_ia32_pandnq256_mask ((__v4di) __A,
+ (__v4di) __B,
+ (__v4di)
+ _mm256_setzero_pd (),
+ __U);
+}
+
+static __inline__ __m128i __attribute__ ((__always_inline__, __nodebug__))
+_mm_mask_andnot_epi64 (__m128i __W, __mmask8 __U, __m128i __A,
+ __m128i __B)
+{
+ return (__m128i) __builtin_ia32_pandnq128_mask ((__v2di) __A,
+ (__v2di) __B,
+ (__v2di) __W, __U);
+}
+
+static __inline__ __m128i __attribute__ ((__always_inline__, __nodebug__))
+_mm_maskz_andnot_epi64 (__mmask8 __U, __m128i __A, __m128i __B)
+{
+ return (__m128i) __builtin_ia32_pandnq128_mask ((__v2di) __A,
+ (__v2di) __B,
+ (__v2di)
+ _mm_setzero_pd (),
+ __U);
+}
+
+static __inline__ __m256i __attribute__ ((__always_inline__, __nodebug__))
+_mm256_mask_or_epi64 (__m256i __W, __mmask8 __U, __m256i __A,
+ __m256i __B)
+{
+ return (__m256i) __builtin_ia32_porq256_mask ((__v4di) __A,
+ (__v4di) __B,
+ (__v4di) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m256i __attribute__ ((__always_inline__, __nodebug__))
+_mm256_maskz_or_epi64 (__mmask8 __U, __m256i __A, __m256i __B)
+{
+ return (__m256i) __builtin_ia32_porq256_mask ((__v4di) __A,
+ (__v4di) __B,
+ (__v4di)
+ _mm256_setzero_si256 (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m128i __attribute__ ((__always_inline__, __nodebug__))
+_mm_mask_or_epi64 (__m128i __W, __mmask8 __U, __m128i __A, __m128i __B)
+{
+ return (__m128i) __builtin_ia32_porq128_mask ((__v2di) __A,
+ (__v2di) __B,
+ (__v2di) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m128i __attribute__ ((__always_inline__, __nodebug__))
+_mm_maskz_or_epi64 (__mmask8 __U, __m128i __A, __m128i __B)
+{
+ return (__m128i) __builtin_ia32_porq128_mask ((__v2di) __A,
+ (__v2di) __B,
+ (__v2di)
+ _mm_setzero_si128 (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m256i __attribute__ ((__always_inline__, __nodebug__))
+_mm256_mask_xor_epi64 (__m256i __W, __mmask8 __U, __m256i __A,
+ __m256i __B)
+{
+ return (__m256i) __builtin_ia32_pxorq256_mask ((__v4di) __A,
+ (__v4di) __B,
+ (__v4di) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m256i __attribute__ ((__always_inline__, __nodebug__))
+_mm256_maskz_xor_epi64 (__mmask8 __U, __m256i __A, __m256i __B)
+{
+ return (__m256i) __builtin_ia32_pxorq256_mask ((__v4di) __A,
+ (__v4di) __B,
+ (__v4di)
+ _mm256_setzero_si256 (),
+ (__mmask8) __U);
+}
+
+static __inline__ __m128i __attribute__ ((__always_inline__, __nodebug__))
+_mm_mask_xor_epi64 (__m128i __W, __mmask8 __U, __m128i __A,
+ __m128i __B)
+{
+ return (__m128i) __builtin_ia32_pxorq128_mask ((__v2di) __A,
+ (__v2di) __B,
+ (__v2di) __W,
+ (__mmask8) __U);
+}
+
+static __inline__ __m128i __attribute__ ((__always_inline__, __nodebug__))
+_mm_maskz_xor_epi64 (__mmask8 __U, __m128i __A, __m128i __B)
+{
+ return (__m128i) __builtin_ia32_pxorq128_mask ((__v2di) __A,
+ (__v2di) __B,
+ (__v2di)
+ _mm_setzero_si128 (),
+ (__mmask8) __U);
+}
+
+#define _mm_cmp_epi32_mask(a, b, p) __extension__ ({ \
+ (__mmask8)__builtin_ia32_cmpd128_mask((__v4si)(__m128i)(a), \
+ (__v4si)(__m128i)(b), \
+ (p), (__mmask8)-1); })
+
+#define _mm_mask_cmp_epi32_mask(m, a, b, p) __extension__ ({ \
+ (__mmask8)__builtin_ia32_cmpd128_mask((__v4si)(__m128i)(a), \
+ (__v4si)(__m128i)(b), \
+ (p), (__mmask8)(m)); })
+
+#define _mm_cmp_epu32_mask(a, b, p) __extension__ ({ \
+ (__mmask8)__builtin_ia32_ucmpd128_mask((__v4si)(__m128i)(a), \
+ (__v4si)(__m128i)(b), \
+ (p), (__mmask8)-1); })
+
+#define _mm_mask_cmp_epu32_mask(m, a, b, p) __extension__ ({ \
+ (__mmask8)__builtin_ia32_ucmpd128_mask((__v4si)(__m128i)(a), \
+ (__v4si)(__m128i)(b), \
+ (p), (__mmask8)(m)); })
+
+#define _mm256_cmp_epi32_mask(a, b, p) __extension__ ({ \
+ (__mmask8)__builtin_ia32_cmpd256_mask((__v8si)(__m256i)(a), \
+ (__v8si)(__m256i)(b), \
+ (p), (__mmask8)-1); })
+
+#define _mm256_mask_cmp_epi32_mask(m, a, b, p) __extension__ ({ \
+ (__mmask8)__builtin_ia32_cmpd256_mask((__v8si)(__m256i)(a), \
+ (__v8si)(__m256i)(b), \
+ (p), (__mmask8)(m)); })
+
+#define _mm256_cmp_epu32_mask(a, b, p) __extension__ ({ \
+ (__mmask8)__builtin_ia32_ucmpd256_mask((__v8si)(__m256i)(a), \
+ (__v8si)(__m256i)(b), \
+ (p), (__mmask8)-1); })
+
+#define _mm256_mask_cmp_epu32_mask(m, a, b, p) __extension__ ({ \
+ (__mmask8)__builtin_ia32_ucmpd256_mask((__v8si)(__m256i)(a), \
+ (__v8si)(__m256i)(b), \
+ (p), (__mmask8)(m)); })
+
+#define _mm_cmp_epi64_mask(a, b, p) __extension__ ({ \
+ (__mmask8)__builtin_ia32_cmpq128_mask((__v2di)(__m128i)(a), \
+ (__v2di)(__m128i)(b), \
+ (p), (__mmask8)-1); })
+
+#define _mm_mask_cmp_epi64_mask(m, a, b, p) __extension__ ({ \
+ (__mmask8)__builtin_ia32_cmpq128_mask((__v2di)(__m128i)(a), \
+ (__v2di)(__m128i)(b), \
+ (p), (__mmask8)(m)); })
+
+#define _mm_cmp_epu64_mask(a, b, p) __extension__ ({ \
+ (__mmask8)__builtin_ia32_ucmpq128_mask((__v2di)(__m128i)(a), \
+ (__v2di)(__m128i)(b), \
+ (p), (__mmask8)-1); })
+
+#define _mm_mask_cmp_epu64_mask(m, a, b, p) __extension__ ({ \
+ (__mmask8)__builtin_ia32_ucmpq128_mask((__v2di)(__m128i)(a), \
+ (__v2di)(__m128i)(b), \
+ (p), (__mmask8)(m)); })
+
+#define _mm256_cmp_epi64_mask(a, b, p) __extension__ ({ \
+ (__mmask8)__builtin_ia32_cmpq256_mask((__v4di)(__m256i)(a), \
+ (__v4di)(__m256i)(b), \
+ (p), (__mmask8)-1); })
+
+#define _mm256_mask_cmp_epi64_mask(m, a, b, p) __extension__ ({ \
+ (__mmask8)__builtin_ia32_cmpq256_mask((__v4di)(__m256i)(a), \
+ (__v4di)(__m256i)(b), \
+ (p), (__mmask8)(m)); })
+
+#define _mm256_cmp_epu64_mask(a, b, p) __extension__ ({ \
+ (__mmask8)__builtin_ia32_ucmpq256_mask((__v4di)(__m256i)(a), \
+ (__v4di)(__m256i)(b), \
+ (p), (__mmask8)-1); })
+
+#define _mm256_mask_cmp_epu64_mask(m, a, b, p) __extension__ ({ \
+ (__mmask8)__builtin_ia32_ucmpq256_mask((__v4di)(__m256i)(a), \
+ (__v4di)(__m256i)(b), \
+ (p), (__mmask8)(m)); })
+
+#define _mm256_cmp_ps_mask(a, b, p) __extension__ ({ \
+ (__mmask8)__builtin_ia32_cmpps256_mask((__v8sf)(__m256)(a), \
+ (__v8sf)(__m256)(b), \
+ (p), (__mmask8)-1); })
+
+#define _mm256_mask_cmp_ps_mask(m, a, b, p) __extension__ ({ \
+ (__mmask8)__builtin_ia32_cmpps256_mask((__v8sf)(__m256)(a), \
+ (__v8sf)(__m256)(b), \
+ (p), (__mmask8)(m)); })
+
+#define _mm256_cmp_pd_mask(a, b, p) __extension__ ({ \
+ (__mmask8)__builtin_ia32_cmppd256_mask((__v4df)(__m256)(a), \
+ (__v4df)(__m256)(b), \
+ (p), (__mmask8)-1); })
+
+#define _mm256_mask_cmp_pd_mask(m, a, b, p) __extension__ ({ \
+ (__mmask8)__builtin_ia32_cmppd256_mask((__v4df)(__m256)(a), \
+ (__v4df)(__m256)(b), \
+ (p), (__mmask8)(m)); })
+
+#define _mm128_cmp_ps_mask(a, b, p) __extension__ ({ \
+ (__mmask8)__builtin_ia32_cmpps128_mask((__v4sf)(__m128)(a), \
+ (__v4sf)(__m128)(b), \
+ (p), (__mmask8)-1); })
+
+#define _mm128_mask_cmp_ps_mask(m, a, b, p) __extension__ ({ \
+ (__mmask8)__builtin_ia32_cmpps128_mask((__v4sf)(__m128)(a), \
+ (__v4sf)(__m128)(b), \
+ (p), (__mmask8)(m)); })
+
+#define _mm128_cmp_pd_mask(a, b, p) __extension__ ({ \
+ (__mmask8)__builtin_ia32_cmppd128_mask((__v2df)(__m128)(a), \
+ (__v2df)(__m128)(b), \
+ (p), (__mmask8)-1); })
+
+#define _mm128_mask_cmp_pd_mask(m, a, b, p) __extension__ ({ \
+ (__mmask8)__builtin_ia32_cmppd128_mask((__v2df)(__m128)(a), \
+ (__v2df)(__m128)(b), \
+ (p), (__mmask8)(m)); })
+#endif /* __AVX512VLINTRIN_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/avxintrin.h b/contrib/llvm/tools/clang/lib/Headers/avxintrin.h
new file mode 100644
index 0000000..4907965
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/avxintrin.h
@@ -0,0 +1,1303 @@
+/*===---- avxintrin.h - AVX intrinsics -------------------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#ifndef __IMMINTRIN_H
+#error "Never use <avxintrin.h> directly; include <immintrin.h> instead."
+#endif
+
+#ifndef __AVXINTRIN_H
+#define __AVXINTRIN_H
+
+typedef double __v4df __attribute__ ((__vector_size__ (32)));
+typedef float __v8sf __attribute__ ((__vector_size__ (32)));
+typedef long long __v4di __attribute__ ((__vector_size__ (32)));
+typedef int __v8si __attribute__ ((__vector_size__ (32)));
+typedef short __v16hi __attribute__ ((__vector_size__ (32)));
+typedef char __v32qi __attribute__ ((__vector_size__ (32)));
+
+typedef float __m256 __attribute__ ((__vector_size__ (32)));
+typedef double __m256d __attribute__((__vector_size__(32)));
+typedef long long __m256i __attribute__((__vector_size__(32)));
+
+/* Arithmetic */
+static __inline __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_add_pd(__m256d __a, __m256d __b)
+{
+ return __a+__b;
+}
+
+static __inline __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_add_ps(__m256 __a, __m256 __b)
+{
+ return __a+__b;
+}
+
+static __inline __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_sub_pd(__m256d __a, __m256d __b)
+{
+ return __a-__b;
+}
+
+static __inline __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_sub_ps(__m256 __a, __m256 __b)
+{
+ return __a-__b;
+}
+
+static __inline __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_addsub_pd(__m256d __a, __m256d __b)
+{
+ return (__m256d)__builtin_ia32_addsubpd256((__v4df)__a, (__v4df)__b);
+}
+
+static __inline __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_addsub_ps(__m256 __a, __m256 __b)
+{
+ return (__m256)__builtin_ia32_addsubps256((__v8sf)__a, (__v8sf)__b);
+}
+
+static __inline __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_div_pd(__m256d __a, __m256d __b)
+{
+ return __a / __b;
+}
+
+static __inline __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_div_ps(__m256 __a, __m256 __b)
+{
+ return __a / __b;
+}
+
+static __inline __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_max_pd(__m256d __a, __m256d __b)
+{
+ return (__m256d)__builtin_ia32_maxpd256((__v4df)__a, (__v4df)__b);
+}
+
+static __inline __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_max_ps(__m256 __a, __m256 __b)
+{
+ return (__m256)__builtin_ia32_maxps256((__v8sf)__a, (__v8sf)__b);
+}
+
+static __inline __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_min_pd(__m256d __a, __m256d __b)
+{
+ return (__m256d)__builtin_ia32_minpd256((__v4df)__a, (__v4df)__b);
+}
+
+static __inline __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_min_ps(__m256 __a, __m256 __b)
+{
+ return (__m256)__builtin_ia32_minps256((__v8sf)__a, (__v8sf)__b);
+}
+
+static __inline __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_mul_pd(__m256d __a, __m256d __b)
+{
+ return __a * __b;
+}
+
+static __inline __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_mul_ps(__m256 __a, __m256 __b)
+{
+ return __a * __b;
+}
+
+static __inline __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_sqrt_pd(__m256d __a)
+{
+ return (__m256d)__builtin_ia32_sqrtpd256((__v4df)__a);
+}
+
+static __inline __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_sqrt_ps(__m256 __a)
+{
+ return (__m256)__builtin_ia32_sqrtps256((__v8sf)__a);
+}
+
+static __inline __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_rsqrt_ps(__m256 __a)
+{
+ return (__m256)__builtin_ia32_rsqrtps256((__v8sf)__a);
+}
+
+static __inline __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_rcp_ps(__m256 __a)
+{
+ return (__m256)__builtin_ia32_rcpps256((__v8sf)__a);
+}
+
+#define _mm256_round_pd(V, M) __extension__ ({ \
+ __m256d __V = (V); \
+ (__m256d)__builtin_ia32_roundpd256((__v4df)__V, (M)); })
+
+#define _mm256_round_ps(V, M) __extension__ ({ \
+ __m256 __V = (V); \
+ (__m256)__builtin_ia32_roundps256((__v8sf)__V, (M)); })
+
+#define _mm256_ceil_pd(V) _mm256_round_pd((V), _MM_FROUND_CEIL)
+#define _mm256_floor_pd(V) _mm256_round_pd((V), _MM_FROUND_FLOOR)
+#define _mm256_ceil_ps(V) _mm256_round_ps((V), _MM_FROUND_CEIL)
+#define _mm256_floor_ps(V) _mm256_round_ps((V), _MM_FROUND_FLOOR)
+
+/* Logical */
+static __inline __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_and_pd(__m256d __a, __m256d __b)
+{
+ return (__m256d)((__v4di)__a & (__v4di)__b);
+}
+
+static __inline __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_and_ps(__m256 __a, __m256 __b)
+{
+ return (__m256)((__v8si)__a & (__v8si)__b);
+}
+
+static __inline __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_andnot_pd(__m256d __a, __m256d __b)
+{
+ return (__m256d)(~(__v4di)__a & (__v4di)__b);
+}
+
+static __inline __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_andnot_ps(__m256 __a, __m256 __b)
+{
+ return (__m256)(~(__v8si)__a & (__v8si)__b);
+}
+
+static __inline __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_or_pd(__m256d __a, __m256d __b)
+{
+ return (__m256d)((__v4di)__a | (__v4di)__b);
+}
+
+static __inline __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_or_ps(__m256 __a, __m256 __b)
+{
+ return (__m256)((__v8si)__a | (__v8si)__b);
+}
+
+static __inline __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_xor_pd(__m256d __a, __m256d __b)
+{
+ return (__m256d)((__v4di)__a ^ (__v4di)__b);
+}
+
+static __inline __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_xor_ps(__m256 __a, __m256 __b)
+{
+ return (__m256)((__v8si)__a ^ (__v8si)__b);
+}
+
+/* Horizontal arithmetic */
+static __inline __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_hadd_pd(__m256d __a, __m256d __b)
+{
+ return (__m256d)__builtin_ia32_haddpd256((__v4df)__a, (__v4df)__b);
+}
+
+static __inline __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_hadd_ps(__m256 __a, __m256 __b)
+{
+ return (__m256)__builtin_ia32_haddps256((__v8sf)__a, (__v8sf)__b);
+}
+
+static __inline __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_hsub_pd(__m256d __a, __m256d __b)
+{
+ return (__m256d)__builtin_ia32_hsubpd256((__v4df)__a, (__v4df)__b);
+}
+
+static __inline __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_hsub_ps(__m256 __a, __m256 __b)
+{
+ return (__m256)__builtin_ia32_hsubps256((__v8sf)__a, (__v8sf)__b);
+}
+
+/* Vector permutations */
+static __inline __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_permutevar_pd(__m128d __a, __m128i __c)
+{
+ return (__m128d)__builtin_ia32_vpermilvarpd((__v2df)__a, (__v2di)__c);
+}
+
+static __inline __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_permutevar_pd(__m256d __a, __m256i __c)
+{
+ return (__m256d)__builtin_ia32_vpermilvarpd256((__v4df)__a, (__v4di)__c);
+}
+
+static __inline __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_permutevar_ps(__m128 __a, __m128i __c)
+{
+ return (__m128)__builtin_ia32_vpermilvarps((__v4sf)__a, (__v4si)__c);
+}
+
+static __inline __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_permutevar_ps(__m256 __a, __m256i __c)
+{
+ return (__m256)__builtin_ia32_vpermilvarps256((__v8sf)__a, (__v8si)__c);
+}
+
+#define _mm_permute_pd(A, C) __extension__ ({ \
+ __m128d __A = (A); \
+ (__m128d)__builtin_shufflevector((__v2df)__A, (__v2df) _mm_setzero_pd(), \
+ (C) & 0x1, ((C) & 0x2) >> 1); })
+
+#define _mm256_permute_pd(A, C) __extension__ ({ \
+ __m256d __A = (A); \
+ (__m256d)__builtin_shufflevector((__v4df)__A, (__v4df) _mm256_setzero_pd(), \
+ (C) & 0x1, ((C) & 0x2) >> 1, \
+ 2 + (((C) & 0x4) >> 2), \
+ 2 + (((C) & 0x8) >> 3)); })
+
+#define _mm_permute_ps(A, C) __extension__ ({ \
+ __m128 __A = (A); \
+ (__m128)__builtin_shufflevector((__v4sf)__A, (__v4sf) _mm_setzero_ps(), \
+ (C) & 0x3, ((C) & 0xc) >> 2, \
+ ((C) & 0x30) >> 4, ((C) & 0xc0) >> 6); })
+
+#define _mm256_permute_ps(A, C) __extension__ ({ \
+ __m256 __A = (A); \
+ (__m256)__builtin_shufflevector((__v8sf)__A, (__v8sf) _mm256_setzero_ps(), \
+ (C) & 0x3, ((C) & 0xc) >> 2, \
+ ((C) & 0x30) >> 4, ((C) & 0xc0) >> 6, \
+ 4 + (((C) & 0x03) >> 0), \
+ 4 + (((C) & 0x0c) >> 2), \
+ 4 + (((C) & 0x30) >> 4), \
+ 4 + (((C) & 0xc0) >> 6)); })
+
+#define _mm256_permute2f128_pd(V1, V2, M) __extension__ ({ \
+ __m256d __V1 = (V1); \
+ __m256d __V2 = (V2); \
+ (__m256d)__builtin_ia32_vperm2f128_pd256((__v4df)__V1, (__v4df)__V2, (M)); })
+
+#define _mm256_permute2f128_ps(V1, V2, M) __extension__ ({ \
+ __m256 __V1 = (V1); \
+ __m256 __V2 = (V2); \
+ (__m256)__builtin_ia32_vperm2f128_ps256((__v8sf)__V1, (__v8sf)__V2, (M)); })
+
+#define _mm256_permute2f128_si256(V1, V2, M) __extension__ ({ \
+ __m256i __V1 = (V1); \
+ __m256i __V2 = (V2); \
+ (__m256i)__builtin_ia32_vperm2f128_si256((__v8si)__V1, (__v8si)__V2, (M)); })
+
+/* Vector Blend */
+#define _mm256_blend_pd(V1, V2, M) __extension__ ({ \
+ __m256d __V1 = (V1); \
+ __m256d __V2 = (V2); \
+ (__m256d)__builtin_shufflevector((__v4df)__V1, (__v4df)__V2, \
+ (((M) & 0x01) ? 4 : 0), \
+ (((M) & 0x02) ? 5 : 1), \
+ (((M) & 0x04) ? 6 : 2), \
+ (((M) & 0x08) ? 7 : 3)); })
+
+#define _mm256_blend_ps(V1, V2, M) __extension__ ({ \
+ __m256 __V1 = (V1); \
+ __m256 __V2 = (V2); \
+ (__m256)__builtin_shufflevector((__v8sf)__V1, (__v8sf)__V2, \
+ (((M) & 0x01) ? 8 : 0), \
+ (((M) & 0x02) ? 9 : 1), \
+ (((M) & 0x04) ? 10 : 2), \
+ (((M) & 0x08) ? 11 : 3), \
+ (((M) & 0x10) ? 12 : 4), \
+ (((M) & 0x20) ? 13 : 5), \
+ (((M) & 0x40) ? 14 : 6), \
+ (((M) & 0x80) ? 15 : 7)); })
+
+static __inline __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_blendv_pd(__m256d __a, __m256d __b, __m256d __c)
+{
+ return (__m256d)__builtin_ia32_blendvpd256(
+ (__v4df)__a, (__v4df)__b, (__v4df)__c);
+}
+
+static __inline __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_blendv_ps(__m256 __a, __m256 __b, __m256 __c)
+{
+ return (__m256)__builtin_ia32_blendvps256(
+ (__v8sf)__a, (__v8sf)__b, (__v8sf)__c);
+}
+
+/* Vector Dot Product */
+#define _mm256_dp_ps(V1, V2, M) __extension__ ({ \
+ __m256 __V1 = (V1); \
+ __m256 __V2 = (V2); \
+ (__m256)__builtin_ia32_dpps256((__v8sf)__V1, (__v8sf)__V2, (M)); })
+
+/* Vector shuffle */
+#define _mm256_shuffle_ps(a, b, mask) __extension__ ({ \
+ __m256 __a = (a); \
+ __m256 __b = (b); \
+ (__m256)__builtin_shufflevector((__v8sf)__a, (__v8sf)__b, \
+ (mask) & 0x3, ((mask) & 0xc) >> 2, \
+ (((mask) & 0x30) >> 4) + 8, (((mask) & 0xc0) >> 6) + 8, \
+ ((mask) & 0x3) + 4, (((mask) & 0xc) >> 2) + 4, \
+ (((mask) & 0x30) >> 4) + 12, (((mask) & 0xc0) >> 6) + 12); })
+
+#define _mm256_shuffle_pd(a, b, mask) __extension__ ({ \
+ __m256d __a = (a); \
+ __m256d __b = (b); \
+ (__m256d)__builtin_shufflevector((__v4df)__a, (__v4df)__b, \
+ (mask) & 0x1, \
+ (((mask) & 0x2) >> 1) + 4, \
+ (((mask) & 0x4) >> 2) + 2, \
+ (((mask) & 0x8) >> 3) + 6); })
+
+/* Compare */
+#define _CMP_EQ_OQ 0x00 /* Equal (ordered, non-signaling) */
+#define _CMP_LT_OS 0x01 /* Less-than (ordered, signaling) */
+#define _CMP_LE_OS 0x02 /* Less-than-or-equal (ordered, signaling) */
+#define _CMP_UNORD_Q 0x03 /* Unordered (non-signaling) */
+#define _CMP_NEQ_UQ 0x04 /* Not-equal (unordered, non-signaling) */
+#define _CMP_NLT_US 0x05 /* Not-less-than (unordered, signaling) */
+#define _CMP_NLE_US 0x06 /* Not-less-than-or-equal (unordered, signaling) */
+#define _CMP_ORD_Q 0x07 /* Ordered (nonsignaling) */
+#define _CMP_EQ_UQ 0x08 /* Equal (unordered, non-signaling) */
+#define _CMP_NGE_US 0x09 /* Not-greater-than-or-equal (unord, signaling) */
+#define _CMP_NGT_US 0x0a /* Not-greater-than (unordered, signaling) */
+#define _CMP_FALSE_OQ 0x0b /* False (ordered, non-signaling) */
+#define _CMP_NEQ_OQ 0x0c /* Not-equal (ordered, non-signaling) */
+#define _CMP_GE_OS 0x0d /* Greater-than-or-equal (ordered, signaling) */
+#define _CMP_GT_OS 0x0e /* Greater-than (ordered, signaling) */
+#define _CMP_TRUE_UQ 0x0f /* True (unordered, non-signaling) */
+#define _CMP_EQ_OS 0x10 /* Equal (ordered, signaling) */
+#define _CMP_LT_OQ 0x11 /* Less-than (ordered, non-signaling) */
+#define _CMP_LE_OQ 0x12 /* Less-than-or-equal (ordered, non-signaling) */
+#define _CMP_UNORD_S 0x13 /* Unordered (signaling) */
+#define _CMP_NEQ_US 0x14 /* Not-equal (unordered, signaling) */
+#define _CMP_NLT_UQ 0x15 /* Not-less-than (unordered, non-signaling) */
+#define _CMP_NLE_UQ 0x16 /* Not-less-than-or-equal (unord, non-signaling) */
+#define _CMP_ORD_S 0x17 /* Ordered (signaling) */
+#define _CMP_EQ_US 0x18 /* Equal (unordered, signaling) */
+#define _CMP_NGE_UQ 0x19 /* Not-greater-than-or-equal (unord, non-sign) */
+#define _CMP_NGT_UQ 0x1a /* Not-greater-than (unordered, non-signaling) */
+#define _CMP_FALSE_OS 0x1b /* False (ordered, signaling) */
+#define _CMP_NEQ_OS 0x1c /* Not-equal (ordered, signaling) */
+#define _CMP_GE_OQ 0x1d /* Greater-than-or-equal (ordered, non-signaling) */
+#define _CMP_GT_OQ 0x1e /* Greater-than (ordered, non-signaling) */
+#define _CMP_TRUE_US 0x1f /* True (unordered, signaling) */
+
+#define _mm_cmp_pd(a, b, c) __extension__ ({ \
+ __m128d __a = (a); \
+ __m128d __b = (b); \
+ (__m128d)__builtin_ia32_cmppd((__v2df)__a, (__v2df)__b, (c)); })
+
+#define _mm_cmp_ps(a, b, c) __extension__ ({ \
+ __m128 __a = (a); \
+ __m128 __b = (b); \
+ (__m128)__builtin_ia32_cmpps((__v4sf)__a, (__v4sf)__b, (c)); })
+
+#define _mm256_cmp_pd(a, b, c) __extension__ ({ \
+ __m256d __a = (a); \
+ __m256d __b = (b); \
+ (__m256d)__builtin_ia32_cmppd256((__v4df)__a, (__v4df)__b, (c)); })
+
+#define _mm256_cmp_ps(a, b, c) __extension__ ({ \
+ __m256 __a = (a); \
+ __m256 __b = (b); \
+ (__m256)__builtin_ia32_cmpps256((__v8sf)__a, (__v8sf)__b, (c)); })
+
+#define _mm_cmp_sd(a, b, c) __extension__ ({ \
+ __m128d __a = (a); \
+ __m128d __b = (b); \
+ (__m128d)__builtin_ia32_cmpsd((__v2df)__a, (__v2df)__b, (c)); })
+
+#define _mm_cmp_ss(a, b, c) __extension__ ({ \
+ __m128 __a = (a); \
+ __m128 __b = (b); \
+ (__m128)__builtin_ia32_cmpss((__v4sf)__a, (__v4sf)__b, (c)); })
+
+static __inline int __attribute__((__always_inline__, __nodebug__))
+_mm256_extract_epi32(__m256i __a, const int __imm)
+{
+ __v8si __b = (__v8si)__a;
+ return __b[__imm & 7];
+}
+
+static __inline int __attribute__((__always_inline__, __nodebug__))
+_mm256_extract_epi16(__m256i __a, const int __imm)
+{
+ __v16hi __b = (__v16hi)__a;
+ return __b[__imm & 15];
+}
+
+static __inline int __attribute__((__always_inline__, __nodebug__))
+_mm256_extract_epi8(__m256i __a, const int __imm)
+{
+ __v32qi __b = (__v32qi)__a;
+ return __b[__imm & 31];
+}
+
+#ifdef __x86_64__
+static __inline long long __attribute__((__always_inline__, __nodebug__))
+_mm256_extract_epi64(__m256i __a, const int __imm)
+{
+ __v4di __b = (__v4di)__a;
+ return __b[__imm & 3];
+}
+#endif
+
+static __inline __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_insert_epi32(__m256i __a, int __b, int const __imm)
+{
+ __v8si __c = (__v8si)__a;
+ __c[__imm & 7] = __b;
+ return (__m256i)__c;
+}
+
+static __inline __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_insert_epi16(__m256i __a, int __b, int const __imm)
+{
+ __v16hi __c = (__v16hi)__a;
+ __c[__imm & 15] = __b;
+ return (__m256i)__c;
+}
+
+static __inline __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_insert_epi8(__m256i __a, int __b, int const __imm)
+{
+ __v32qi __c = (__v32qi)__a;
+ __c[__imm & 31] = __b;
+ return (__m256i)__c;
+}
+
+#ifdef __x86_64__
+static __inline __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_insert_epi64(__m256i __a, long long __b, int const __imm)
+{
+ __v4di __c = (__v4di)__a;
+ __c[__imm & 3] = __b;
+ return (__m256i)__c;
+}
+#endif
+
+/* Conversion */
+static __inline __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_cvtepi32_pd(__m128i __a)
+{
+ return (__m256d)__builtin_ia32_cvtdq2pd256((__v4si) __a);
+}
+
+static __inline __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_cvtepi32_ps(__m256i __a)
+{
+ return (__m256)__builtin_ia32_cvtdq2ps256((__v8si) __a);
+}
+
+static __inline __m128 __attribute__((__always_inline__, __nodebug__))
+_mm256_cvtpd_ps(__m256d __a)
+{
+ return (__m128)__builtin_ia32_cvtpd2ps256((__v4df) __a);
+}
+
+static __inline __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_cvtps_epi32(__m256 __a)
+{
+ return (__m256i)__builtin_ia32_cvtps2dq256((__v8sf) __a);
+}
+
+static __inline __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_cvtps_pd(__m128 __a)
+{
+ return (__m256d)__builtin_ia32_cvtps2pd256((__v4sf) __a);
+}
+
+static __inline __m128i __attribute__((__always_inline__, __nodebug__))
+_mm256_cvttpd_epi32(__m256d __a)
+{
+ return (__m128i)__builtin_ia32_cvttpd2dq256((__v4df) __a);
+}
+
+static __inline __m128i __attribute__((__always_inline__, __nodebug__))
+_mm256_cvtpd_epi32(__m256d __a)
+{
+ return (__m128i)__builtin_ia32_cvtpd2dq256((__v4df) __a);
+}
+
+static __inline __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_cvttps_epi32(__m256 __a)
+{
+ return (__m256i)__builtin_ia32_cvttps2dq256((__v8sf) __a);
+}
+
+/* Vector replicate */
+static __inline __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_movehdup_ps(__m256 __a)
+{
+ return __builtin_shufflevector(__a, __a, 1, 1, 3, 3, 5, 5, 7, 7);
+}
+
+static __inline __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_moveldup_ps(__m256 __a)
+{
+ return __builtin_shufflevector(__a, __a, 0, 0, 2, 2, 4, 4, 6, 6);
+}
+
+static __inline __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_movedup_pd(__m256d __a)
+{
+ return __builtin_shufflevector(__a, __a, 0, 0, 2, 2);
+}
+
+/* Unpack and Interleave */
+static __inline __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_unpackhi_pd(__m256d __a, __m256d __b)
+{
+ return __builtin_shufflevector(__a, __b, 1, 5, 1+2, 5+2);
+}
+
+static __inline __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_unpacklo_pd(__m256d __a, __m256d __b)
+{
+ return __builtin_shufflevector(__a, __b, 0, 4, 0+2, 4+2);
+}
+
+static __inline __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_unpackhi_ps(__m256 __a, __m256 __b)
+{
+ return __builtin_shufflevector(__a, __b, 2, 10, 2+1, 10+1, 6, 14, 6+1, 14+1);
+}
+
+static __inline __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_unpacklo_ps(__m256 __a, __m256 __b)
+{
+ return __builtin_shufflevector(__a, __b, 0, 8, 0+1, 8+1, 4, 12, 4+1, 12+1);
+}
+
+/* Bit Test */
+static __inline int __attribute__((__always_inline__, __nodebug__))
+_mm_testz_pd(__m128d __a, __m128d __b)
+{
+ return __builtin_ia32_vtestzpd((__v2df)__a, (__v2df)__b);
+}
+
+static __inline int __attribute__((__always_inline__, __nodebug__))
+_mm_testc_pd(__m128d __a, __m128d __b)
+{
+ return __builtin_ia32_vtestcpd((__v2df)__a, (__v2df)__b);
+}
+
+static __inline int __attribute__((__always_inline__, __nodebug__))
+_mm_testnzc_pd(__m128d __a, __m128d __b)
+{
+ return __builtin_ia32_vtestnzcpd((__v2df)__a, (__v2df)__b);
+}
+
+static __inline int __attribute__((__always_inline__, __nodebug__))
+_mm_testz_ps(__m128 __a, __m128 __b)
+{
+ return __builtin_ia32_vtestzps((__v4sf)__a, (__v4sf)__b);
+}
+
+static __inline int __attribute__((__always_inline__, __nodebug__))
+_mm_testc_ps(__m128 __a, __m128 __b)
+{
+ return __builtin_ia32_vtestcps((__v4sf)__a, (__v4sf)__b);
+}
+
+static __inline int __attribute__((__always_inline__, __nodebug__))
+_mm_testnzc_ps(__m128 __a, __m128 __b)
+{
+ return __builtin_ia32_vtestnzcps((__v4sf)__a, (__v4sf)__b);
+}
+
+static __inline int __attribute__((__always_inline__, __nodebug__))
+_mm256_testz_pd(__m256d __a, __m256d __b)
+{
+ return __builtin_ia32_vtestzpd256((__v4df)__a, (__v4df)__b);
+}
+
+static __inline int __attribute__((__always_inline__, __nodebug__))
+_mm256_testc_pd(__m256d __a, __m256d __b)
+{
+ return __builtin_ia32_vtestcpd256((__v4df)__a, (__v4df)__b);
+}
+
+static __inline int __attribute__((__always_inline__, __nodebug__))
+_mm256_testnzc_pd(__m256d __a, __m256d __b)
+{
+ return __builtin_ia32_vtestnzcpd256((__v4df)__a, (__v4df)__b);
+}
+
+static __inline int __attribute__((__always_inline__, __nodebug__))
+_mm256_testz_ps(__m256 __a, __m256 __b)
+{
+ return __builtin_ia32_vtestzps256((__v8sf)__a, (__v8sf)__b);
+}
+
+static __inline int __attribute__((__always_inline__, __nodebug__))
+_mm256_testc_ps(__m256 __a, __m256 __b)
+{
+ return __builtin_ia32_vtestcps256((__v8sf)__a, (__v8sf)__b);
+}
+
+static __inline int __attribute__((__always_inline__, __nodebug__))
+_mm256_testnzc_ps(__m256 __a, __m256 __b)
+{
+ return __builtin_ia32_vtestnzcps256((__v8sf)__a, (__v8sf)__b);
+}
+
+static __inline int __attribute__((__always_inline__, __nodebug__))
+_mm256_testz_si256(__m256i __a, __m256i __b)
+{
+ return __builtin_ia32_ptestz256((__v4di)__a, (__v4di)__b);
+}
+
+static __inline int __attribute__((__always_inline__, __nodebug__))
+_mm256_testc_si256(__m256i __a, __m256i __b)
+{
+ return __builtin_ia32_ptestc256((__v4di)__a, (__v4di)__b);
+}
+
+static __inline int __attribute__((__always_inline__, __nodebug__))
+_mm256_testnzc_si256(__m256i __a, __m256i __b)
+{
+ return __builtin_ia32_ptestnzc256((__v4di)__a, (__v4di)__b);
+}
+
+/* Vector extract sign mask */
+static __inline int __attribute__((__always_inline__, __nodebug__))
+_mm256_movemask_pd(__m256d __a)
+{
+ return __builtin_ia32_movmskpd256((__v4df)__a);
+}
+
+static __inline int __attribute__((__always_inline__, __nodebug__))
+_mm256_movemask_ps(__m256 __a)
+{
+ return __builtin_ia32_movmskps256((__v8sf)__a);
+}
+
+/* Vector __zero */
+static __inline void __attribute__((__always_inline__, __nodebug__))
+_mm256_zeroall(void)
+{
+ __builtin_ia32_vzeroall();
+}
+
+static __inline void __attribute__((__always_inline__, __nodebug__))
+_mm256_zeroupper(void)
+{
+ __builtin_ia32_vzeroupper();
+}
+
+/* Vector load with broadcast */
+static __inline __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_broadcast_ss(float const *__a)
+{
+ float __f = *__a;
+ return (__m128)(__v4sf){ __f, __f, __f, __f };
+}
+
+static __inline __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_broadcast_sd(double const *__a)
+{
+ double __d = *__a;
+ return (__m256d)(__v4df){ __d, __d, __d, __d };
+}
+
+static __inline __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_broadcast_ss(float const *__a)
+{
+ float __f = *__a;
+ return (__m256)(__v8sf){ __f, __f, __f, __f, __f, __f, __f, __f };
+}
+
+static __inline __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_broadcast_pd(__m128d const *__a)
+{
+ return (__m256d)__builtin_ia32_vbroadcastf128_pd256(__a);
+}
+
+static __inline __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_broadcast_ps(__m128 const *__a)
+{
+ return (__m256)__builtin_ia32_vbroadcastf128_ps256(__a);
+}
+
+/* SIMD load ops */
+static __inline __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_load_pd(double const *__p)
+{
+ return *(__m256d *)__p;
+}
+
+static __inline __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_load_ps(float const *__p)
+{
+ return *(__m256 *)__p;
+}
+
+static __inline __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_loadu_pd(double const *__p)
+{
+ struct __loadu_pd {
+ __m256d __v;
+ } __attribute__((__packed__, __may_alias__));
+ return ((struct __loadu_pd*)__p)->__v;
+}
+
+static __inline __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_loadu_ps(float const *__p)
+{
+ struct __loadu_ps {
+ __m256 __v;
+ } __attribute__((__packed__, __may_alias__));
+ return ((struct __loadu_ps*)__p)->__v;
+}
+
+static __inline __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_load_si256(__m256i const *__p)
+{
+ return *__p;
+}
+
+static __inline __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_loadu_si256(__m256i const *__p)
+{
+ struct __loadu_si256 {
+ __m256i __v;
+ } __attribute__((__packed__, __may_alias__));
+ return ((struct __loadu_si256*)__p)->__v;
+}
+
+static __inline __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_lddqu_si256(__m256i const *__p)
+{
+ return (__m256i)__builtin_ia32_lddqu256((char const *)__p);
+}
+
+/* SIMD store ops */
+static __inline void __attribute__((__always_inline__, __nodebug__))
+_mm256_store_pd(double *__p, __m256d __a)
+{
+ *(__m256d *)__p = __a;
+}
+
+static __inline void __attribute__((__always_inline__, __nodebug__))
+_mm256_store_ps(float *__p, __m256 __a)
+{
+ *(__m256 *)__p = __a;
+}
+
+static __inline void __attribute__((__always_inline__, __nodebug__))
+_mm256_storeu_pd(double *__p, __m256d __a)
+{
+ __builtin_ia32_storeupd256(__p, (__v4df)__a);
+}
+
+static __inline void __attribute__((__always_inline__, __nodebug__))
+_mm256_storeu_ps(float *__p, __m256 __a)
+{
+ __builtin_ia32_storeups256(__p, (__v8sf)__a);
+}
+
+static __inline void __attribute__((__always_inline__, __nodebug__))
+_mm256_store_si256(__m256i *__p, __m256i __a)
+{
+ *__p = __a;
+}
+
+static __inline void __attribute__((__always_inline__, __nodebug__))
+_mm256_storeu_si256(__m256i *__p, __m256i __a)
+{
+ __builtin_ia32_storedqu256((char *)__p, (__v32qi)__a);
+}
+
+/* Conditional load ops */
+static __inline __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_maskload_pd(double const *__p, __m128d __m)
+{
+ return (__m128d)__builtin_ia32_maskloadpd((const __v2df *)__p, (__v2df)__m);
+}
+
+static __inline __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_maskload_pd(double const *__p, __m256d __m)
+{
+ return (__m256d)__builtin_ia32_maskloadpd256((const __v4df *)__p,
+ (__v4df)__m);
+}
+
+static __inline __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_maskload_ps(float const *__p, __m128 __m)
+{
+ return (__m128)__builtin_ia32_maskloadps((const __v4sf *)__p, (__v4sf)__m);
+}
+
+static __inline __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_maskload_ps(float const *__p, __m256 __m)
+{
+ return (__m256)__builtin_ia32_maskloadps256((const __v8sf *)__p, (__v8sf)__m);
+}
+
+/* Conditional store ops */
+static __inline void __attribute__((__always_inline__, __nodebug__))
+_mm256_maskstore_ps(float *__p, __m256 __m, __m256 __a)
+{
+ __builtin_ia32_maskstoreps256((__v8sf *)__p, (__v8sf)__m, (__v8sf)__a);
+}
+
+static __inline void __attribute__((__always_inline__, __nodebug__))
+_mm_maskstore_pd(double *__p, __m128d __m, __m128d __a)
+{
+ __builtin_ia32_maskstorepd((__v2df *)__p, (__v2df)__m, (__v2df)__a);
+}
+
+static __inline void __attribute__((__always_inline__, __nodebug__))
+_mm256_maskstore_pd(double *__p, __m256d __m, __m256d __a)
+{
+ __builtin_ia32_maskstorepd256((__v4df *)__p, (__v4df)__m, (__v4df)__a);
+}
+
+static __inline void __attribute__((__always_inline__, __nodebug__))
+_mm_maskstore_ps(float *__p, __m128 __m, __m128 __a)
+{
+ __builtin_ia32_maskstoreps((__v4sf *)__p, (__v4sf)__m, (__v4sf)__a);
+}
+
+/* Cacheability support ops */
+static __inline void __attribute__((__always_inline__, __nodebug__))
+_mm256_stream_si256(__m256i *__a, __m256i __b)
+{
+ __builtin_ia32_movntdq256((__v4di *)__a, (__v4di)__b);
+}
+
+static __inline void __attribute__((__always_inline__, __nodebug__))
+_mm256_stream_pd(double *__a, __m256d __b)
+{
+ __builtin_ia32_movntpd256(__a, (__v4df)__b);
+}
+
+static __inline void __attribute__((__always_inline__, __nodebug__))
+_mm256_stream_ps(float *__p, __m256 __a)
+{
+ __builtin_ia32_movntps256(__p, (__v8sf)__a);
+}
+
+/* Create vectors */
+static __inline __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_set_pd(double __a, double __b, double __c, double __d)
+{
+ return (__m256d){ __d, __c, __b, __a };
+}
+
+static __inline __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_set_ps(float __a, float __b, float __c, float __d,
+ float __e, float __f, float __g, float __h)
+{
+ return (__m256){ __h, __g, __f, __e, __d, __c, __b, __a };
+}
+
+static __inline __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_set_epi32(int __i0, int __i1, int __i2, int __i3,
+ int __i4, int __i5, int __i6, int __i7)
+{
+ return (__m256i)(__v8si){ __i7, __i6, __i5, __i4, __i3, __i2, __i1, __i0 };
+}
+
+static __inline __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_set_epi16(short __w15, short __w14, short __w13, short __w12,
+ short __w11, short __w10, short __w09, short __w08,
+ short __w07, short __w06, short __w05, short __w04,
+ short __w03, short __w02, short __w01, short __w00)
+{
+ return (__m256i)(__v16hi){ __w00, __w01, __w02, __w03, __w04, __w05, __w06,
+ __w07, __w08, __w09, __w10, __w11, __w12, __w13, __w14, __w15 };
+}
+
+static __inline __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_set_epi8(char __b31, char __b30, char __b29, char __b28,
+ char __b27, char __b26, char __b25, char __b24,
+ char __b23, char __b22, char __b21, char __b20,
+ char __b19, char __b18, char __b17, char __b16,
+ char __b15, char __b14, char __b13, char __b12,
+ char __b11, char __b10, char __b09, char __b08,
+ char __b07, char __b06, char __b05, char __b04,
+ char __b03, char __b02, char __b01, char __b00)
+{
+ return (__m256i)(__v32qi){
+ __b00, __b01, __b02, __b03, __b04, __b05, __b06, __b07,
+ __b08, __b09, __b10, __b11, __b12, __b13, __b14, __b15,
+ __b16, __b17, __b18, __b19, __b20, __b21, __b22, __b23,
+ __b24, __b25, __b26, __b27, __b28, __b29, __b30, __b31
+ };
+}
+
+static __inline __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_set_epi64x(long long __a, long long __b, long long __c, long long __d)
+{
+ return (__m256i)(__v4di){ __d, __c, __b, __a };
+}
+
+/* Create vectors with elements in reverse order */
+static __inline __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_setr_pd(double __a, double __b, double __c, double __d)
+{
+ return (__m256d){ __a, __b, __c, __d };
+}
+
+static __inline __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_setr_ps(float __a, float __b, float __c, float __d,
+ float __e, float __f, float __g, float __h)
+{
+ return (__m256){ __a, __b, __c, __d, __e, __f, __g, __h };
+}
+
+static __inline __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_setr_epi32(int __i0, int __i1, int __i2, int __i3,
+ int __i4, int __i5, int __i6, int __i7)
+{
+ return (__m256i)(__v8si){ __i0, __i1, __i2, __i3, __i4, __i5, __i6, __i7 };
+}
+
+static __inline __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_setr_epi16(short __w15, short __w14, short __w13, short __w12,
+ short __w11, short __w10, short __w09, short __w08,
+ short __w07, short __w06, short __w05, short __w04,
+ short __w03, short __w02, short __w01, short __w00)
+{
+ return (__m256i)(__v16hi){ __w15, __w14, __w13, __w12, __w11, __w10, __w09,
+ __w08, __w07, __w06, __w05, __w04, __w03, __w02, __w01, __w00 };
+}
+
+static __inline __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_setr_epi8(char __b31, char __b30, char __b29, char __b28,
+ char __b27, char __b26, char __b25, char __b24,
+ char __b23, char __b22, char __b21, char __b20,
+ char __b19, char __b18, char __b17, char __b16,
+ char __b15, char __b14, char __b13, char __b12,
+ char __b11, char __b10, char __b09, char __b08,
+ char __b07, char __b06, char __b05, char __b04,
+ char __b03, char __b02, char __b01, char __b00)
+{
+ return (__m256i)(__v32qi){
+ __b31, __b30, __b29, __b28, __b27, __b26, __b25, __b24,
+ __b23, __b22, __b21, __b20, __b19, __b18, __b17, __b16,
+ __b15, __b14, __b13, __b12, __b11, __b10, __b09, __b08,
+ __b07, __b06, __b05, __b04, __b03, __b02, __b01, __b00 };
+}
+
+static __inline __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_setr_epi64x(long long __a, long long __b, long long __c, long long __d)
+{
+ return (__m256i)(__v4di){ __a, __b, __c, __d };
+}
+
+/* Create vectors with repeated elements */
+static __inline __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_set1_pd(double __w)
+{
+ return (__m256d){ __w, __w, __w, __w };
+}
+
+static __inline __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_set1_ps(float __w)
+{
+ return (__m256){ __w, __w, __w, __w, __w, __w, __w, __w };
+}
+
+static __inline __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_set1_epi32(int __i)
+{
+ return (__m256i)(__v8si){ __i, __i, __i, __i, __i, __i, __i, __i };
+}
+
+static __inline __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_set1_epi16(short __w)
+{
+ return (__m256i)(__v16hi){ __w, __w, __w, __w, __w, __w, __w, __w, __w, __w,
+ __w, __w, __w, __w, __w, __w };
+}
+
+static __inline __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_set1_epi8(char __b)
+{
+ return (__m256i)(__v32qi){ __b, __b, __b, __b, __b, __b, __b, __b, __b, __b,
+ __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b,
+ __b, __b, __b, __b, __b, __b, __b };
+}
+
+static __inline __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_set1_epi64x(long long __q)
+{
+ return (__m256i)(__v4di){ __q, __q, __q, __q };
+}
+
+/* Create __zeroed vectors */
+static __inline __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_setzero_pd(void)
+{
+ return (__m256d){ 0, 0, 0, 0 };
+}
+
+static __inline __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_setzero_ps(void)
+{
+ return (__m256){ 0, 0, 0, 0, 0, 0, 0, 0 };
+}
+
+static __inline __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_setzero_si256(void)
+{
+ return (__m256i){ 0LL, 0LL, 0LL, 0LL };
+}
+
+/* Cast between vector types */
+static __inline __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_castpd_ps(__m256d __a)
+{
+ return (__m256)__a;
+}
+
+static __inline __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_castpd_si256(__m256d __a)
+{
+ return (__m256i)__a;
+}
+
+static __inline __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_castps_pd(__m256 __a)
+{
+ return (__m256d)__a;
+}
+
+static __inline __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_castps_si256(__m256 __a)
+{
+ return (__m256i)__a;
+}
+
+static __inline __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_castsi256_ps(__m256i __a)
+{
+ return (__m256)__a;
+}
+
+static __inline __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_castsi256_pd(__m256i __a)
+{
+ return (__m256d)__a;
+}
+
+static __inline __m128d __attribute__((__always_inline__, __nodebug__))
+_mm256_castpd256_pd128(__m256d __a)
+{
+ return __builtin_shufflevector(__a, __a, 0, 1);
+}
+
+static __inline __m128 __attribute__((__always_inline__, __nodebug__))
+_mm256_castps256_ps128(__m256 __a)
+{
+ return __builtin_shufflevector(__a, __a, 0, 1, 2, 3);
+}
+
+static __inline __m128i __attribute__((__always_inline__, __nodebug__))
+_mm256_castsi256_si128(__m256i __a)
+{
+ return __builtin_shufflevector(__a, __a, 0, 1);
+}
+
+static __inline __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_castpd128_pd256(__m128d __a)
+{
+ return __builtin_shufflevector(__a, __a, 0, 1, -1, -1);
+}
+
+static __inline __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_castps128_ps256(__m128 __a)
+{
+ return __builtin_shufflevector(__a, __a, 0, 1, 2, 3, -1, -1, -1, -1);
+}
+
+static __inline __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_castsi128_si256(__m128i __a)
+{
+ return __builtin_shufflevector(__a, __a, 0, 1, -1, -1);
+}
+
+/*
+ Vector insert.
+ We use macros rather than inlines because we only want to accept
+ invocations where the immediate M is a constant expression.
+*/
+#define _mm256_insertf128_ps(V1, V2, M) __extension__ ({ \
+ (__m256)__builtin_shufflevector( \
+ (__v8sf)(V1), \
+ (__v8sf)_mm256_castps128_ps256((__m128)(V2)), \
+ (((M) & 1) ? 0 : 8), \
+ (((M) & 1) ? 1 : 9), \
+ (((M) & 1) ? 2 : 10), \
+ (((M) & 1) ? 3 : 11), \
+ (((M) & 1) ? 8 : 4), \
+ (((M) & 1) ? 9 : 5), \
+ (((M) & 1) ? 10 : 6), \
+ (((M) & 1) ? 11 : 7) );})
+
+#define _mm256_insertf128_pd(V1, V2, M) __extension__ ({ \
+ (__m256d)__builtin_shufflevector( \
+ (__v4df)(V1), \
+ (__v4df)_mm256_castpd128_pd256((__m128d)(V2)), \
+ (((M) & 1) ? 0 : 4), \
+ (((M) & 1) ? 1 : 5), \
+ (((M) & 1) ? 4 : 2), \
+ (((M) & 1) ? 5 : 3) );})
+
+#define _mm256_insertf128_si256(V1, V2, M) __extension__ ({ \
+ (__m256i)__builtin_shufflevector( \
+ (__v4di)(V1), \
+ (__v4di)_mm256_castsi128_si256((__m128i)(V2)), \
+ (((M) & 1) ? 0 : 4), \
+ (((M) & 1) ? 1 : 5), \
+ (((M) & 1) ? 4 : 2), \
+ (((M) & 1) ? 5 : 3) );})
+
+/*
+ Vector extract.
+ We use macros rather than inlines because we only want to accept
+ invocations where the immediate M is a constant expression.
+*/
+#define _mm256_extractf128_ps(V, M) __extension__ ({ \
+ (__m128)__builtin_shufflevector( \
+ (__v8sf)(V), \
+ (__v8sf)(_mm256_setzero_ps()), \
+ (((M) & 1) ? 4 : 0), \
+ (((M) & 1) ? 5 : 1), \
+ (((M) & 1) ? 6 : 2), \
+ (((M) & 1) ? 7 : 3) );})
+
+#define _mm256_extractf128_pd(V, M) __extension__ ({ \
+ (__m128d)__builtin_shufflevector( \
+ (__v4df)(V), \
+ (__v4df)(_mm256_setzero_pd()), \
+ (((M) & 1) ? 2 : 0), \
+ (((M) & 1) ? 3 : 1) );})
+
+#define _mm256_extractf128_si256(V, M) __extension__ ({ \
+ (__m128i)__builtin_shufflevector( \
+ (__v4di)(V), \
+ (__v4di)(_mm256_setzero_si256()), \
+ (((M) & 1) ? 2 : 0), \
+ (((M) & 1) ? 3 : 1) );})
+
+/* SIMD load ops (unaligned) */
+static __inline __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_loadu2_m128(float const *__addr_hi, float const *__addr_lo)
+{
+ struct __loadu_ps {
+ __m128 __v;
+ } __attribute__((__packed__, __may_alias__));
+
+ __m256 __v256 = _mm256_castps128_ps256(((struct __loadu_ps*)__addr_lo)->__v);
+ return _mm256_insertf128_ps(__v256, ((struct __loadu_ps*)__addr_hi)->__v, 1);
+}
+
+static __inline __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_loadu2_m128d(double const *__addr_hi, double const *__addr_lo)
+{
+ struct __loadu_pd {
+ __m128d __v;
+ } __attribute__((__packed__, __may_alias__));
+
+ __m256d __v256 = _mm256_castpd128_pd256(((struct __loadu_pd*)__addr_lo)->__v);
+ return _mm256_insertf128_pd(__v256, ((struct __loadu_pd*)__addr_hi)->__v, 1);
+}
+
+static __inline __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_loadu2_m128i(__m128i const *__addr_hi, __m128i const *__addr_lo)
+{
+ struct __loadu_si128 {
+ __m128i __v;
+ } __attribute__((__packed__, __may_alias__));
+ __m256i __v256 = _mm256_castsi128_si256(
+ ((struct __loadu_si128*)__addr_lo)->__v);
+ return _mm256_insertf128_si256(__v256,
+ ((struct __loadu_si128*)__addr_hi)->__v, 1);
+}
+
+/* SIMD store ops (unaligned) */
+static __inline void __attribute__((__always_inline__, __nodebug__))
+_mm256_storeu2_m128(float *__addr_hi, float *__addr_lo, __m256 __a)
+{
+ __m128 __v128;
+
+ __v128 = _mm256_castps256_ps128(__a);
+ __builtin_ia32_storeups(__addr_lo, __v128);
+ __v128 = _mm256_extractf128_ps(__a, 1);
+ __builtin_ia32_storeups(__addr_hi, __v128);
+}
+
+static __inline void __attribute__((__always_inline__, __nodebug__))
+_mm256_storeu2_m128d(double *__addr_hi, double *__addr_lo, __m256d __a)
+{
+ __m128d __v128;
+
+ __v128 = _mm256_castpd256_pd128(__a);
+ __builtin_ia32_storeupd(__addr_lo, __v128);
+ __v128 = _mm256_extractf128_pd(__a, 1);
+ __builtin_ia32_storeupd(__addr_hi, __v128);
+}
+
+static __inline void __attribute__((__always_inline__, __nodebug__))
+_mm256_storeu2_m128i(__m128i *__addr_hi, __m128i *__addr_lo, __m256i __a)
+{
+ __m128i __v128;
+
+ __v128 = _mm256_castsi256_si128(__a);
+ __builtin_ia32_storedqu((char *)__addr_lo, (__v16qi)__v128);
+ __v128 = _mm256_extractf128_si256(__a, 1);
+ __builtin_ia32_storedqu((char *)__addr_hi, (__v16qi)__v128);
+}
+
+static __inline __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_set_m128 (__m128 __hi, __m128 __lo) {
+ return (__m256) __builtin_shufflevector(__lo, __hi, 0, 1, 2, 3, 4, 5, 6, 7);
+}
+
+static __inline __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_set_m128d (__m128d __hi, __m128d __lo) {
+ return (__m256d)_mm256_set_m128((__m128)__hi, (__m128)__lo);
+}
+
+static __inline __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_set_m128i (__m128i __hi, __m128i __lo) {
+ return (__m256i)_mm256_set_m128((__m128)__hi, (__m128)__lo);
+}
+
+static __inline __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_setr_m128 (__m128 __lo, __m128 __hi) {
+ return _mm256_set_m128(__hi, __lo);
+}
+
+static __inline __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_setr_m128d (__m128d __lo, __m128d __hi) {
+ return (__m256d)_mm256_set_m128((__m128)__hi, (__m128)__lo);
+}
+
+static __inline __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_setr_m128i (__m128i __lo, __m128i __hi) {
+ return (__m256i)_mm256_set_m128((__m128)__hi, (__m128)__lo);
+}
+
+#endif /* __AVXINTRIN_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/bmi2intrin.h b/contrib/llvm/tools/clang/lib/Headers/bmi2intrin.h
new file mode 100644
index 0000000..a05cfad
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/bmi2intrin.h
@@ -0,0 +1,94 @@
+/*===---- bmi2intrin.h - BMI2 intrinsics -----------------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#if !defined __X86INTRIN_H && !defined __IMMINTRIN_H
+#error "Never use <bmi2intrin.h> directly; include <x86intrin.h> instead."
+#endif
+
+#ifndef __BMI2__
+# error "BMI2 instruction set not enabled"
+#endif /* __BMI2__ */
+
+#ifndef __BMI2INTRIN_H
+#define __BMI2INTRIN_H
+
+static __inline__ unsigned int __attribute__((__always_inline__, __nodebug__))
+_bzhi_u32(unsigned int __X, unsigned int __Y)
+{
+ return __builtin_ia32_bzhi_si(__X, __Y);
+}
+
+static __inline__ unsigned int __attribute__((__always_inline__, __nodebug__))
+_pdep_u32(unsigned int __X, unsigned int __Y)
+{
+ return __builtin_ia32_pdep_si(__X, __Y);
+}
+
+static __inline__ unsigned int __attribute__((__always_inline__, __nodebug__))
+_pext_u32(unsigned int __X, unsigned int __Y)
+{
+ return __builtin_ia32_pext_si(__X, __Y);
+}
+
+#ifdef __x86_64__
+
+static __inline__ unsigned long long __attribute__((__always_inline__, __nodebug__))
+_bzhi_u64(unsigned long long __X, unsigned long long __Y)
+{
+ return __builtin_ia32_bzhi_di(__X, __Y);
+}
+
+static __inline__ unsigned long long __attribute__((__always_inline__, __nodebug__))
+_pdep_u64(unsigned long long __X, unsigned long long __Y)
+{
+ return __builtin_ia32_pdep_di(__X, __Y);
+}
+
+static __inline__ unsigned long long __attribute__((__always_inline__, __nodebug__))
+_pext_u64(unsigned long long __X, unsigned long long __Y)
+{
+ return __builtin_ia32_pext_di(__X, __Y);
+}
+
+static __inline__ unsigned long long __attribute__((__always_inline__, __nodebug__))
+_mulx_u64 (unsigned long long __X, unsigned long long __Y,
+ unsigned long long *__P)
+{
+ unsigned __int128 __res = (unsigned __int128) __X * __Y;
+ *__P = (unsigned long long) (__res >> 64);
+ return (unsigned long long) __res;
+}
+
+#else /* !__x86_64__ */
+
+static __inline__ unsigned int __attribute__((__always_inline__, __nodebug__))
+_mulx_u32 (unsigned int __X, unsigned int __Y, unsigned int *__P)
+{
+ unsigned long long __res = (unsigned long long) __X * __Y;
+ *__P = (unsigned int) (__res >> 32);
+ return (unsigned int) __res;
+}
+
+#endif /* !__x86_64__ */
+
+#endif /* __BMI2INTRIN_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/bmiintrin.h b/contrib/llvm/tools/clang/lib/Headers/bmiintrin.h
new file mode 100644
index 0000000..0e5fd55
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/bmiintrin.h
@@ -0,0 +1,148 @@
+/*===---- bmiintrin.h - BMI intrinsics -------------------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#if !defined __X86INTRIN_H && !defined __IMMINTRIN_H
+#error "Never use <bmiintrin.h> directly; include <x86intrin.h> instead."
+#endif
+
+#ifndef __BMI__
+# error "BMI instruction set not enabled"
+#endif /* __BMI__ */
+
+#ifndef __BMIINTRIN_H
+#define __BMIINTRIN_H
+
+#define _tzcnt_u16(a) (__tzcnt_u16((a)))
+#define _andn_u32(a, b) (__andn_u32((a), (b)))
+/* _bextr_u32 != __bextr_u32 */
+#define _blsi_u32(a) (__blsi_u32((a)))
+#define _blsmsk_u32(a) (__blsmsk_u32((a)))
+#define _blsr_u32(a) (__blsr_u32((a)))
+#define _tzcnt_u32(a) (__tzcnt_u32((a)))
+
+static __inline__ unsigned short __attribute__((__always_inline__, __nodebug__))
+__tzcnt_u16(unsigned short __X)
+{
+ return __X ? __builtin_ctzs(__X) : 16;
+}
+
+static __inline__ unsigned int __attribute__((__always_inline__, __nodebug__))
+__andn_u32(unsigned int __X, unsigned int __Y)
+{
+ return ~__X & __Y;
+}
+
+/* AMD-specified, double-leading-underscore version of BEXTR */
+static __inline__ unsigned int __attribute__((__always_inline__, __nodebug__))
+__bextr_u32(unsigned int __X, unsigned int __Y)
+{
+ return __builtin_ia32_bextr_u32(__X, __Y);
+}
+
+/* Intel-specified, single-leading-underscore version of BEXTR */
+static __inline__ unsigned int __attribute__((__always_inline__, __nodebug__))
+_bextr_u32(unsigned int __X, unsigned int __Y, unsigned int __Z)
+{
+ return __builtin_ia32_bextr_u32 (__X, ((__Y & 0xff) | ((__Z & 0xff) << 8)));
+}
+
+static __inline__ unsigned int __attribute__((__always_inline__, __nodebug__))
+__blsi_u32(unsigned int __X)
+{
+ return __X & -__X;
+}
+
+static __inline__ unsigned int __attribute__((__always_inline__, __nodebug__))
+__blsmsk_u32(unsigned int __X)
+{
+ return __X ^ (__X - 1);
+}
+
+static __inline__ unsigned int __attribute__((__always_inline__, __nodebug__))
+__blsr_u32(unsigned int __X)
+{
+ return __X & (__X - 1);
+}
+
+static __inline__ unsigned int __attribute__((__always_inline__, __nodebug__))
+__tzcnt_u32(unsigned int __X)
+{
+ return __X ? __builtin_ctz(__X) : 32;
+}
+
+#ifdef __x86_64__
+
+#define _andn_u64(a, b) (__andn_u64((a), (b)))
+/* _bextr_u64 != __bextr_u64 */
+#define _blsi_u64(a) (__blsi_u64((a)))
+#define _blsmsk_u64(a) (__blsmsk_u64((a)))
+#define _blsr_u64(a) (__blsr_u64((a)))
+#define _tzcnt_u64(a) (__tzcnt_u64((a)))
+
+static __inline__ unsigned long long __attribute__((__always_inline__, __nodebug__))
+__andn_u64 (unsigned long long __X, unsigned long long __Y)
+{
+ return ~__X & __Y;
+}
+
+/* AMD-specified, double-leading-underscore version of BEXTR */
+static __inline__ unsigned long long __attribute__((__always_inline__, __nodebug__))
+__bextr_u64(unsigned long long __X, unsigned long long __Y)
+{
+ return __builtin_ia32_bextr_u64(__X, __Y);
+}
+
+/* Intel-specified, single-leading-underscore version of BEXTR */
+static __inline__ unsigned long long __attribute__((__always_inline__, __nodebug__))
+_bextr_u64(unsigned long long __X, unsigned int __Y, unsigned int __Z)
+{
+ return __builtin_ia32_bextr_u64 (__X, ((__Y & 0xff) | ((__Z & 0xff) << 8)));
+}
+
+static __inline__ unsigned long long __attribute__((__always_inline__, __nodebug__))
+__blsi_u64(unsigned long long __X)
+{
+ return __X & -__X;
+}
+
+static __inline__ unsigned long long __attribute__((__always_inline__, __nodebug__))
+__blsmsk_u64(unsigned long long __X)
+{
+ return __X ^ (__X - 1);
+}
+
+static __inline__ unsigned long long __attribute__((__always_inline__, __nodebug__))
+__blsr_u64(unsigned long long __X)
+{
+ return __X & (__X - 1);
+}
+
+static __inline__ unsigned long long __attribute__((__always_inline__, __nodebug__))
+__tzcnt_u64(unsigned long long __X)
+{
+ return __X ? __builtin_ctzll(__X) : 64;
+}
+
+#endif /* __x86_64__ */
+
+#endif /* __BMIINTRIN_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/cpuid.h b/contrib/llvm/tools/clang/lib/Headers/cpuid.h
new file mode 100644
index 0000000..5da02e0
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/cpuid.h
@@ -0,0 +1,209 @@
+/*===---- cpuid.h - X86 cpu model detection --------------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#if !(__x86_64__ || __i386__)
+#error this header is for x86 only
+#endif
+
+/* Responses identification request with %eax 0 */
+/* AMD: "AuthenticAMD" */
+#define signature_AMD_ebx 0x68747541
+#define signature_AMD_edx 0x69746e65
+#define signature_AMD_ecx 0x444d4163
+/* CENTAUR: "CentaurHauls" */
+#define signature_CENTAUR_ebx 0x746e6543
+#define signature_CENTAUR_edx 0x48727561
+#define signature_CENTAUR_ecx 0x736c7561
+/* CYRIX: "CyrixInstead" */
+#define signature_CYRIX_ebx 0x69727943
+#define signature_CYRIX_edx 0x736e4978
+#define signature_CYRIX_ecx 0x64616574
+/* INTEL: "GenuineIntel" */
+#define signature_INTEL_ebx 0x756e6547
+#define signature_INTEL_edx 0x49656e69
+#define signature_INTEL_ecx 0x6c65746e
+/* TM1: "TransmetaCPU" */
+#define signature_TM1_ebx 0x6e617254
+#define signature_TM1_edx 0x74656d73
+#define signature_TM1_ecx 0x55504361
+/* TM2: "GenuineTMx86" */
+#define signature_TM2_ebx 0x756e6547
+#define signature_TM2_edx 0x54656e69
+#define signature_TM2_ecx 0x3638784d
+/* NSC: "Geode by NSC" */
+#define signature_NSC_ebx 0x646f6547
+#define signature_NSC_edx 0x43534e20
+#define signature_NSC_ecx 0x79622065
+/* NEXGEN: "NexGenDriven" */
+#define signature_NEXGEN_ebx 0x4778654e
+#define signature_NEXGEN_edx 0x72446e65
+#define signature_NEXGEN_ecx 0x6e657669
+/* RISE: "RiseRiseRise" */
+#define signature_RISE_ebx 0x65736952
+#define signature_RISE_edx 0x65736952
+#define signature_RISE_ecx 0x65736952
+/* SIS: "SiS SiS SiS " */
+#define signature_SIS_ebx 0x20536953
+#define signature_SIS_edx 0x20536953
+#define signature_SIS_ecx 0x20536953
+/* UMC: "UMC UMC UMC " */
+#define signature_UMC_ebx 0x20434d55
+#define signature_UMC_edx 0x20434d55
+#define signature_UMC_ecx 0x20434d55
+/* VIA: "VIA VIA VIA " */
+#define signature_VIA_ebx 0x20414956
+#define signature_VIA_edx 0x20414956
+#define signature_VIA_ecx 0x20414956
+/* VORTEX: "Vortex86 SoC" */
+#define signature_VORTEX_ebx 0x74726f56
+#define signature_VORTEX_edx 0x36387865
+#define signature_VORTEX_ecx 0x436f5320
+
+/* Features in %ecx for level 1 */
+#define bit_SSE3 0x00000001
+#define bit_PCLMULQDQ 0x00000002
+#define bit_DTES64 0x00000004
+#define bit_MONITOR 0x00000008
+#define bit_DSCPL 0x00000010
+#define bit_VMX 0x00000020
+#define bit_SMX 0x00000040
+#define bit_EIST 0x00000080
+#define bit_TM2 0x00000100
+#define bit_SSSE3 0x00000200
+#define bit_CNXTID 0x00000400
+#define bit_FMA 0x00001000
+#define bit_CMPXCHG16B 0x00002000
+#define bit_xTPR 0x00004000
+#define bit_PDCM 0x00008000
+#define bit_PCID 0x00020000
+#define bit_DCA 0x00040000
+#define bit_SSE41 0x00080000
+#define bit_SSE42 0x00100000
+#define bit_x2APIC 0x00200000
+#define bit_MOVBE 0x00400000
+#define bit_POPCNT 0x00800000
+#define bit_TSCDeadline 0x01000000
+#define bit_AESNI 0x02000000
+#define bit_XSAVE 0x04000000
+#define bit_OSXSAVE 0x08000000
+#define bit_AVX 0x10000000
+#define bit_RDRND 0x40000000
+
+/* Features in %edx for level 1 */
+#define bit_FPU 0x00000001
+#define bit_VME 0x00000002
+#define bit_DE 0x00000004
+#define bit_PSE 0x00000008
+#define bit_TSC 0x00000010
+#define bit_MSR 0x00000020
+#define bit_PAE 0x00000040
+#define bit_MCE 0x00000080
+#define bit_CX8 0x00000100
+#define bit_APIC 0x00000200
+#define bit_SEP 0x00000800
+#define bit_MTRR 0x00001000
+#define bit_PGE 0x00002000
+#define bit_MCA 0x00004000
+#define bit_CMOV 0x00008000
+#define bit_PAT 0x00010000
+#define bit_PSE36 0x00020000
+#define bit_PSN 0x00040000
+#define bit_CLFSH 0x00080000
+#define bit_DS 0x00200000
+#define bit_ACPI 0x00400000
+#define bit_MMX 0x00800000
+#define bit_FXSR 0x01000000
+#define bit_FXSAVE bit_FXSR /* for gcc compat */
+#define bit_SSE 0x02000000
+#define bit_SSE2 0x04000000
+#define bit_SS 0x08000000
+#define bit_HTT 0x10000000
+#define bit_TM 0x20000000
+#define bit_PBE 0x80000000
+
+/* Features in %ebx for level 7 sub-leaf 0 */
+#define bit_FSGSBASE 0x00000001
+#define bit_SMEP 0x00000080
+#define bit_ENH_MOVSB 0x00000200
+
+#if __i386__
+#define __cpuid(__level, __eax, __ebx, __ecx, __edx) \
+ __asm("cpuid" : "=a"(__eax), "=b" (__ebx), "=c"(__ecx), "=d"(__edx) \
+ : "0"(__level))
+
+#define __cpuid_count(__level, __count, __eax, __ebx, __ecx, __edx) \
+ __asm("cpuid" : "=a"(__eax), "=b" (__ebx), "=c"(__ecx), "=d"(__edx) \
+ : "0"(__level), "2"(__count))
+#else
+/* x86-64 uses %rbx as the base register, so preserve it. */
+#define __cpuid(__level, __eax, __ebx, __ecx, __edx) \
+ __asm(" xchgq %%rbx,%q1\n" \
+ " cpuid\n" \
+ " xchgq %%rbx,%q1" \
+ : "=a"(__eax), "=r" (__ebx), "=c"(__ecx), "=d"(__edx) \
+ : "0"(__level))
+
+#define __cpuid_count(__level, __count, __eax, __ebx, __ecx, __edx) \
+ __asm(" xchgq %%rbx,%q1\n" \
+ " cpuid\n" \
+ " xchgq %%rbx,%q1" \
+ : "=a"(__eax), "=r" (__ebx), "=c"(__ecx), "=d"(__edx) \
+ : "0"(__level), "2"(__count))
+#endif
+
+static __inline int __get_cpuid (unsigned int __level, unsigned int *__eax,
+ unsigned int *__ebx, unsigned int *__ecx,
+ unsigned int *__edx) {
+ __cpuid(__level, *__eax, *__ebx, *__ecx, *__edx);
+ return 1;
+}
+
+static __inline int __get_cpuid_max (unsigned int __level, unsigned int *__sig)
+{
+ unsigned int __eax, __ebx, __ecx, __edx;
+#if __i386__
+ int __cpuid_supported;
+
+ __asm(" pushfl\n"
+ " popl %%eax\n"
+ " movl %%eax,%%ecx\n"
+ " xorl $0x00200000,%%eax\n"
+ " pushl %%eax\n"
+ " popfl\n"
+ " pushfl\n"
+ " popl %%eax\n"
+ " movl $0,%0\n"
+ " cmpl %%eax,%%ecx\n"
+ " je 1f\n"
+ " movl $1,%0\n"
+ "1:"
+ : "=r" (__cpuid_supported) : : "eax", "ecx");
+ if (!__cpuid_supported)
+ return 0;
+#endif
+
+ __cpuid(__level, __eax, __ebx, __ecx, __edx);
+ if (__sig)
+ *__sig = __ebx;
+ return __eax;
+}
diff --git a/contrib/llvm/tools/clang/lib/Headers/cuda_builtin_vars.h b/contrib/llvm/tools/clang/lib/Headers/cuda_builtin_vars.h
new file mode 100644
index 0000000..901356b
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/cuda_builtin_vars.h
@@ -0,0 +1,110 @@
+/*===---- cuda_builtin_vars.h - CUDA built-in variables ---------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#ifndef __CUDA_BUILTIN_VARS_H
+#define __CUDA_BUILTIN_VARS_H
+
+// The file implements built-in CUDA variables using __declspec(property).
+// https://msdn.microsoft.com/en-us/library/yhfk0thd.aspx
+// All read accesses of built-in variable fields get converted into calls to a
+// getter function which in turn would call appropriate builtin to fetch the
+// value.
+//
+// Example:
+// int x = threadIdx.x;
+// IR output:
+// %0 = call i32 @llvm.ptx.read.tid.x() #3
+// PTX output:
+// mov.u32 %r2, %tid.x;
+
+#define __CUDA_DEVICE_BUILTIN(FIELD, INTRINSIC) \
+ __declspec(property(get = __fetch_builtin_##FIELD)) unsigned int FIELD; \
+ static inline __attribute__((always_inline)) \
+ __attribute__((device)) unsigned int __fetch_builtin_##FIELD(void) { \
+ return INTRINSIC; \
+ }
+
+#if __cplusplus >= 201103L
+#define __DELETE =delete
+#else
+#define __DELETE
+#endif
+
+// Make sure nobody can create instances of the special varible types. nvcc
+// also disallows taking address of special variables, so we disable address-of
+// operator as well.
+#define __CUDA_DISALLOW_BUILTINVAR_ACCESS(TypeName) \
+ __attribute__((device)) TypeName() __DELETE; \
+ __attribute__((device)) TypeName(const TypeName &) __DELETE; \
+ __attribute__((device)) void operator=(const TypeName &) const __DELETE; \
+ __attribute__((device)) TypeName *operator&() const __DELETE
+
+struct __cuda_builtin_threadIdx_t {
+ __CUDA_DEVICE_BUILTIN(x,__builtin_ptx_read_tid_x());
+ __CUDA_DEVICE_BUILTIN(y,__builtin_ptx_read_tid_y());
+ __CUDA_DEVICE_BUILTIN(z,__builtin_ptx_read_tid_z());
+private:
+ __CUDA_DISALLOW_BUILTINVAR_ACCESS(__cuda_builtin_threadIdx_t);
+};
+
+struct __cuda_builtin_blockIdx_t {
+ __CUDA_DEVICE_BUILTIN(x,__builtin_ptx_read_ctaid_x());
+ __CUDA_DEVICE_BUILTIN(y,__builtin_ptx_read_ctaid_y());
+ __CUDA_DEVICE_BUILTIN(z,__builtin_ptx_read_ctaid_z());
+private:
+ __CUDA_DISALLOW_BUILTINVAR_ACCESS(__cuda_builtin_blockIdx_t);
+};
+
+struct __cuda_builtin_blockDim_t {
+ __CUDA_DEVICE_BUILTIN(x,__builtin_ptx_read_ntid_x());
+ __CUDA_DEVICE_BUILTIN(y,__builtin_ptx_read_ntid_y());
+ __CUDA_DEVICE_BUILTIN(z,__builtin_ptx_read_ntid_z());
+private:
+ __CUDA_DISALLOW_BUILTINVAR_ACCESS(__cuda_builtin_blockDim_t);
+};
+
+struct __cuda_builtin_gridDim_t {
+ __CUDA_DEVICE_BUILTIN(x,__builtin_ptx_read_nctaid_x());
+ __CUDA_DEVICE_BUILTIN(y,__builtin_ptx_read_nctaid_y());
+ __CUDA_DEVICE_BUILTIN(z,__builtin_ptx_read_nctaid_z());
+private:
+ __CUDA_DISALLOW_BUILTINVAR_ACCESS(__cuda_builtin_gridDim_t);
+};
+
+#define __CUDA_BUILTIN_VAR \
+ extern const __attribute__((device)) __attribute__((weak))
+__CUDA_BUILTIN_VAR __cuda_builtin_threadIdx_t threadIdx;
+__CUDA_BUILTIN_VAR __cuda_builtin_blockIdx_t blockIdx;
+__CUDA_BUILTIN_VAR __cuda_builtin_blockDim_t blockDim;
+__CUDA_BUILTIN_VAR __cuda_builtin_gridDim_t gridDim;
+
+// warpSize should translate to read of %WARP_SZ but there's currently no
+// builtin to do so. According to PTX v4.2 docs 'to date, all target
+// architectures have a WARP_SZ value of 32'.
+__attribute__((device)) const int warpSize = 32;
+
+#undef __CUDA_DEVICE_BUILTIN
+#undef __CUDA_BUILTIN_VAR
+#undef __CUDA_DISALLOW_BUILTINVAR_ACCESS
+
+#endif /* __CUDA_BUILTIN_VARS_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/emmintrin.h b/contrib/llvm/tools/clang/lib/Headers/emmintrin.h
new file mode 100644
index 0000000..c764d68
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/emmintrin.h
@@ -0,0 +1,1475 @@
+/*===---- emmintrin.h - SSE2 intrinsics ------------------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#ifndef __EMMINTRIN_H
+#define __EMMINTRIN_H
+
+#ifndef __SSE2__
+#error "SSE2 instruction set not enabled"
+#else
+
+#include <xmmintrin.h>
+
+typedef double __m128d __attribute__((__vector_size__(16)));
+typedef long long __m128i __attribute__((__vector_size__(16)));
+
+/* Type defines. */
+typedef double __v2df __attribute__ ((__vector_size__ (16)));
+typedef long long __v2di __attribute__ ((__vector_size__ (16)));
+typedef short __v8hi __attribute__((__vector_size__(16)));
+typedef char __v16qi __attribute__((__vector_size__(16)));
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_add_sd(__m128d __a, __m128d __b)
+{
+ __a[0] += __b[0];
+ return __a;
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_add_pd(__m128d __a, __m128d __b)
+{
+ return __a + __b;
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_sub_sd(__m128d __a, __m128d __b)
+{
+ __a[0] -= __b[0];
+ return __a;
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_sub_pd(__m128d __a, __m128d __b)
+{
+ return __a - __b;
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_mul_sd(__m128d __a, __m128d __b)
+{
+ __a[0] *= __b[0];
+ return __a;
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_mul_pd(__m128d __a, __m128d __b)
+{
+ return __a * __b;
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_div_sd(__m128d __a, __m128d __b)
+{
+ __a[0] /= __b[0];
+ return __a;
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_div_pd(__m128d __a, __m128d __b)
+{
+ return __a / __b;
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_sqrt_sd(__m128d __a, __m128d __b)
+{
+ __m128d __c = __builtin_ia32_sqrtsd(__b);
+ return (__m128d) { __c[0], __a[1] };
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_sqrt_pd(__m128d __a)
+{
+ return __builtin_ia32_sqrtpd(__a);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_min_sd(__m128d __a, __m128d __b)
+{
+ return __builtin_ia32_minsd(__a, __b);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_min_pd(__m128d __a, __m128d __b)
+{
+ return __builtin_ia32_minpd(__a, __b);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_max_sd(__m128d __a, __m128d __b)
+{
+ return __builtin_ia32_maxsd(__a, __b);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_max_pd(__m128d __a, __m128d __b)
+{
+ return __builtin_ia32_maxpd(__a, __b);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_and_pd(__m128d __a, __m128d __b)
+{
+ return (__m128d)((__v4si)__a & (__v4si)__b);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_andnot_pd(__m128d __a, __m128d __b)
+{
+ return (__m128d)(~(__v4si)__a & (__v4si)__b);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_or_pd(__m128d __a, __m128d __b)
+{
+ return (__m128d)((__v4si)__a | (__v4si)__b);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_xor_pd(__m128d __a, __m128d __b)
+{
+ return (__m128d)((__v4si)__a ^ (__v4si)__b);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_cmpeq_pd(__m128d __a, __m128d __b)
+{
+ return (__m128d)__builtin_ia32_cmpeqpd(__a, __b);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_cmplt_pd(__m128d __a, __m128d __b)
+{
+ return (__m128d)__builtin_ia32_cmpltpd(__a, __b);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_cmple_pd(__m128d __a, __m128d __b)
+{
+ return (__m128d)__builtin_ia32_cmplepd(__a, __b);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_cmpgt_pd(__m128d __a, __m128d __b)
+{
+ return (__m128d)__builtin_ia32_cmpltpd(__b, __a);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_cmpge_pd(__m128d __a, __m128d __b)
+{
+ return (__m128d)__builtin_ia32_cmplepd(__b, __a);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_cmpord_pd(__m128d __a, __m128d __b)
+{
+ return (__m128d)__builtin_ia32_cmpordpd(__a, __b);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_cmpunord_pd(__m128d __a, __m128d __b)
+{
+ return (__m128d)__builtin_ia32_cmpunordpd(__a, __b);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_cmpneq_pd(__m128d __a, __m128d __b)
+{
+ return (__m128d)__builtin_ia32_cmpneqpd(__a, __b);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_cmpnlt_pd(__m128d __a, __m128d __b)
+{
+ return (__m128d)__builtin_ia32_cmpnltpd(__a, __b);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_cmpnle_pd(__m128d __a, __m128d __b)
+{
+ return (__m128d)__builtin_ia32_cmpnlepd(__a, __b);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_cmpngt_pd(__m128d __a, __m128d __b)
+{
+ return (__m128d)__builtin_ia32_cmpnltpd(__b, __a);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_cmpnge_pd(__m128d __a, __m128d __b)
+{
+ return (__m128d)__builtin_ia32_cmpnlepd(__b, __a);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_cmpeq_sd(__m128d __a, __m128d __b)
+{
+ return (__m128d)__builtin_ia32_cmpeqsd(__a, __b);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_cmplt_sd(__m128d __a, __m128d __b)
+{
+ return (__m128d)__builtin_ia32_cmpltsd(__a, __b);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_cmple_sd(__m128d __a, __m128d __b)
+{
+ return (__m128d)__builtin_ia32_cmplesd(__a, __b);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_cmpgt_sd(__m128d __a, __m128d __b)
+{
+ __m128d __c = __builtin_ia32_cmpltsd(__b, __a);
+ return (__m128d) { __c[0], __a[1] };
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_cmpge_sd(__m128d __a, __m128d __b)
+{
+ __m128d __c = __builtin_ia32_cmplesd(__b, __a);
+ return (__m128d) { __c[0], __a[1] };
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_cmpord_sd(__m128d __a, __m128d __b)
+{
+ return (__m128d)__builtin_ia32_cmpordsd(__a, __b);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_cmpunord_sd(__m128d __a, __m128d __b)
+{
+ return (__m128d)__builtin_ia32_cmpunordsd(__a, __b);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_cmpneq_sd(__m128d __a, __m128d __b)
+{
+ return (__m128d)__builtin_ia32_cmpneqsd(__a, __b);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_cmpnlt_sd(__m128d __a, __m128d __b)
+{
+ return (__m128d)__builtin_ia32_cmpnltsd(__a, __b);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_cmpnle_sd(__m128d __a, __m128d __b)
+{
+ return (__m128d)__builtin_ia32_cmpnlesd(__a, __b);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_cmpngt_sd(__m128d __a, __m128d __b)
+{
+ __m128d __c = __builtin_ia32_cmpnltsd(__b, __a);
+ return (__m128d) { __c[0], __a[1] };
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_cmpnge_sd(__m128d __a, __m128d __b)
+{
+ __m128d __c = __builtin_ia32_cmpnlesd(__b, __a);
+ return (__m128d) { __c[0], __a[1] };
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_comieq_sd(__m128d __a, __m128d __b)
+{
+ return __builtin_ia32_comisdeq(__a, __b);
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_comilt_sd(__m128d __a, __m128d __b)
+{
+ return __builtin_ia32_comisdlt(__a, __b);
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_comile_sd(__m128d __a, __m128d __b)
+{
+ return __builtin_ia32_comisdle(__a, __b);
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_comigt_sd(__m128d __a, __m128d __b)
+{
+ return __builtin_ia32_comisdgt(__a, __b);
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_comige_sd(__m128d __a, __m128d __b)
+{
+ return __builtin_ia32_comisdge(__a, __b);
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_comineq_sd(__m128d __a, __m128d __b)
+{
+ return __builtin_ia32_comisdneq(__a, __b);
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_ucomieq_sd(__m128d __a, __m128d __b)
+{
+ return __builtin_ia32_ucomisdeq(__a, __b);
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_ucomilt_sd(__m128d __a, __m128d __b)
+{
+ return __builtin_ia32_ucomisdlt(__a, __b);
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_ucomile_sd(__m128d __a, __m128d __b)
+{
+ return __builtin_ia32_ucomisdle(__a, __b);
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_ucomigt_sd(__m128d __a, __m128d __b)
+{
+ return __builtin_ia32_ucomisdgt(__a, __b);
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_ucomige_sd(__m128d __a, __m128d __b)
+{
+ return __builtin_ia32_ucomisdge(__a, __b);
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_ucomineq_sd(__m128d __a, __m128d __b)
+{
+ return __builtin_ia32_ucomisdneq(__a, __b);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_cvtpd_ps(__m128d __a)
+{
+ return __builtin_ia32_cvtpd2ps(__a);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_cvtps_pd(__m128 __a)
+{
+ return __builtin_ia32_cvtps2pd(__a);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_cvtepi32_pd(__m128i __a)
+{
+ return __builtin_ia32_cvtdq2pd((__v4si)__a);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_cvtpd_epi32(__m128d __a)
+{
+ return __builtin_ia32_cvtpd2dq(__a);
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_cvtsd_si32(__m128d __a)
+{
+ return __builtin_ia32_cvtsd2si(__a);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_cvtsd_ss(__m128 __a, __m128d __b)
+{
+ __a[0] = __b[0];
+ return __a;
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_cvtsi32_sd(__m128d __a, int __b)
+{
+ __a[0] = __b;
+ return __a;
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_cvtss_sd(__m128d __a, __m128 __b)
+{
+ __a[0] = __b[0];
+ return __a;
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_cvttpd_epi32(__m128d __a)
+{
+ return (__m128i)__builtin_ia32_cvttpd2dq(__a);
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_cvttsd_si32(__m128d __a)
+{
+ return __a[0];
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_cvtpd_pi32(__m128d __a)
+{
+ return (__m64)__builtin_ia32_cvtpd2pi(__a);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_cvttpd_pi32(__m128d __a)
+{
+ return (__m64)__builtin_ia32_cvttpd2pi(__a);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_cvtpi32_pd(__m64 __a)
+{
+ return __builtin_ia32_cvtpi2pd((__v2si)__a);
+}
+
+static __inline__ double __attribute__((__always_inline__, __nodebug__))
+_mm_cvtsd_f64(__m128d __a)
+{
+ return __a[0];
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_load_pd(double const *__dp)
+{
+ return *(__m128d*)__dp;
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_load1_pd(double const *__dp)
+{
+ struct __mm_load1_pd_struct {
+ double __u;
+ } __attribute__((__packed__, __may_alias__));
+ double __u = ((struct __mm_load1_pd_struct*)__dp)->__u;
+ return (__m128d){ __u, __u };
+}
+
+#define _mm_load_pd1(dp) _mm_load1_pd(dp)
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_loadr_pd(double const *__dp)
+{
+ __m128d __u = *(__m128d*)__dp;
+ return __builtin_shufflevector(__u, __u, 1, 0);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_loadu_pd(double const *__dp)
+{
+ struct __loadu_pd {
+ __m128d __v;
+ } __attribute__((__packed__, __may_alias__));
+ return ((struct __loadu_pd*)__dp)->__v;
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_load_sd(double const *__dp)
+{
+ struct __mm_load_sd_struct {
+ double __u;
+ } __attribute__((__packed__, __may_alias__));
+ double __u = ((struct __mm_load_sd_struct*)__dp)->__u;
+ return (__m128d){ __u, 0 };
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_loadh_pd(__m128d __a, double const *__dp)
+{
+ struct __mm_loadh_pd_struct {
+ double __u;
+ } __attribute__((__packed__, __may_alias__));
+ double __u = ((struct __mm_loadh_pd_struct*)__dp)->__u;
+ return (__m128d){ __a[0], __u };
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_loadl_pd(__m128d __a, double const *__dp)
+{
+ struct __mm_loadl_pd_struct {
+ double __u;
+ } __attribute__((__packed__, __may_alias__));
+ double __u = ((struct __mm_loadl_pd_struct*)__dp)->__u;
+ return (__m128d){ __u, __a[1] };
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_set_sd(double __w)
+{
+ return (__m128d){ __w, 0 };
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_set1_pd(double __w)
+{
+ return (__m128d){ __w, __w };
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_set_pd(double __w, double __x)
+{
+ return (__m128d){ __x, __w };
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_setr_pd(double __w, double __x)
+{
+ return (__m128d){ __w, __x };
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_setzero_pd(void)
+{
+ return (__m128d){ 0, 0 };
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_move_sd(__m128d __a, __m128d __b)
+{
+ return (__m128d){ __b[0], __a[1] };
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_mm_store_sd(double *__dp, __m128d __a)
+{
+ struct __mm_store_sd_struct {
+ double __u;
+ } __attribute__((__packed__, __may_alias__));
+ ((struct __mm_store_sd_struct*)__dp)->__u = __a[0];
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_mm_store1_pd(double *__dp, __m128d __a)
+{
+ struct __mm_store1_pd_struct {
+ double __u[2];
+ } __attribute__((__packed__, __may_alias__));
+ ((struct __mm_store1_pd_struct*)__dp)->__u[0] = __a[0];
+ ((struct __mm_store1_pd_struct*)__dp)->__u[1] = __a[0];
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_mm_store_pd(double *__dp, __m128d __a)
+{
+ *(__m128d *)__dp = __a;
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_mm_storeu_pd(double *__dp, __m128d __a)
+{
+ __builtin_ia32_storeupd(__dp, __a);
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_mm_storer_pd(double *__dp, __m128d __a)
+{
+ __a = __builtin_shufflevector(__a, __a, 1, 0);
+ *(__m128d *)__dp = __a;
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_mm_storeh_pd(double *__dp, __m128d __a)
+{
+ struct __mm_storeh_pd_struct {
+ double __u;
+ } __attribute__((__packed__, __may_alias__));
+ ((struct __mm_storeh_pd_struct*)__dp)->__u = __a[1];
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_mm_storel_pd(double *__dp, __m128d __a)
+{
+ struct __mm_storeh_pd_struct {
+ double __u;
+ } __attribute__((__packed__, __may_alias__));
+ ((struct __mm_storeh_pd_struct*)__dp)->__u = __a[0];
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_add_epi8(__m128i __a, __m128i __b)
+{
+ return (__m128i)((__v16qi)__a + (__v16qi)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_add_epi16(__m128i __a, __m128i __b)
+{
+ return (__m128i)((__v8hi)__a + (__v8hi)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_add_epi32(__m128i __a, __m128i __b)
+{
+ return (__m128i)((__v4si)__a + (__v4si)__b);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_add_si64(__m64 __a, __m64 __b)
+{
+ return __a + __b;
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_add_epi64(__m128i __a, __m128i __b)
+{
+ return __a + __b;
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_adds_epi8(__m128i __a, __m128i __b)
+{
+ return (__m128i)__builtin_ia32_paddsb128((__v16qi)__a, (__v16qi)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_adds_epi16(__m128i __a, __m128i __b)
+{
+ return (__m128i)__builtin_ia32_paddsw128((__v8hi)__a, (__v8hi)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_adds_epu8(__m128i __a, __m128i __b)
+{
+ return (__m128i)__builtin_ia32_paddusb128((__v16qi)__a, (__v16qi)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_adds_epu16(__m128i __a, __m128i __b)
+{
+ return (__m128i)__builtin_ia32_paddusw128((__v8hi)__a, (__v8hi)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_avg_epu8(__m128i __a, __m128i __b)
+{
+ return (__m128i)__builtin_ia32_pavgb128((__v16qi)__a, (__v16qi)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_avg_epu16(__m128i __a, __m128i __b)
+{
+ return (__m128i)__builtin_ia32_pavgw128((__v8hi)__a, (__v8hi)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_madd_epi16(__m128i __a, __m128i __b)
+{
+ return (__m128i)__builtin_ia32_pmaddwd128((__v8hi)__a, (__v8hi)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_max_epi16(__m128i __a, __m128i __b)
+{
+ return (__m128i)__builtin_ia32_pmaxsw128((__v8hi)__a, (__v8hi)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_max_epu8(__m128i __a, __m128i __b)
+{
+ return (__m128i)__builtin_ia32_pmaxub128((__v16qi)__a, (__v16qi)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_min_epi16(__m128i __a, __m128i __b)
+{
+ return (__m128i)__builtin_ia32_pminsw128((__v8hi)__a, (__v8hi)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_min_epu8(__m128i __a, __m128i __b)
+{
+ return (__m128i)__builtin_ia32_pminub128((__v16qi)__a, (__v16qi)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_mulhi_epi16(__m128i __a, __m128i __b)
+{
+ return (__m128i)__builtin_ia32_pmulhw128((__v8hi)__a, (__v8hi)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_mulhi_epu16(__m128i __a, __m128i __b)
+{
+ return (__m128i)__builtin_ia32_pmulhuw128((__v8hi)__a, (__v8hi)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_mullo_epi16(__m128i __a, __m128i __b)
+{
+ return (__m128i)((__v8hi)__a * (__v8hi)__b);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_mul_su32(__m64 __a, __m64 __b)
+{
+ return __builtin_ia32_pmuludq((__v2si)__a, (__v2si)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_mul_epu32(__m128i __a, __m128i __b)
+{
+ return __builtin_ia32_pmuludq128((__v4si)__a, (__v4si)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_sad_epu8(__m128i __a, __m128i __b)
+{
+ return __builtin_ia32_psadbw128((__v16qi)__a, (__v16qi)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_sub_epi8(__m128i __a, __m128i __b)
+{
+ return (__m128i)((__v16qi)__a - (__v16qi)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_sub_epi16(__m128i __a, __m128i __b)
+{
+ return (__m128i)((__v8hi)__a - (__v8hi)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_sub_epi32(__m128i __a, __m128i __b)
+{
+ return (__m128i)((__v4si)__a - (__v4si)__b);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_sub_si64(__m64 __a, __m64 __b)
+{
+ return __a - __b;
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_sub_epi64(__m128i __a, __m128i __b)
+{
+ return __a - __b;
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_subs_epi8(__m128i __a, __m128i __b)
+{
+ return (__m128i)__builtin_ia32_psubsb128((__v16qi)__a, (__v16qi)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_subs_epi16(__m128i __a, __m128i __b)
+{
+ return (__m128i)__builtin_ia32_psubsw128((__v8hi)__a, (__v8hi)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_subs_epu8(__m128i __a, __m128i __b)
+{
+ return (__m128i)__builtin_ia32_psubusb128((__v16qi)__a, (__v16qi)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_subs_epu16(__m128i __a, __m128i __b)
+{
+ return (__m128i)__builtin_ia32_psubusw128((__v8hi)__a, (__v8hi)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_and_si128(__m128i __a, __m128i __b)
+{
+ return __a & __b;
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_andnot_si128(__m128i __a, __m128i __b)
+{
+ return ~__a & __b;
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_or_si128(__m128i __a, __m128i __b)
+{
+ return __a | __b;
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_xor_si128(__m128i __a, __m128i __b)
+{
+ return __a ^ __b;
+}
+
+#define _mm_slli_si128(a, imm) __extension__ ({ \
+ (__m128i)__builtin_shufflevector((__v16qi)_mm_setzero_si128(), \
+ (__v16qi)(__m128i)(a), \
+ ((imm)&0xF0) ? 0 : 16 - ((imm)&0xF), \
+ ((imm)&0xF0) ? 0 : 17 - ((imm)&0xF), \
+ ((imm)&0xF0) ? 0 : 18 - ((imm)&0xF), \
+ ((imm)&0xF0) ? 0 : 19 - ((imm)&0xF), \
+ ((imm)&0xF0) ? 0 : 20 - ((imm)&0xF), \
+ ((imm)&0xF0) ? 0 : 21 - ((imm)&0xF), \
+ ((imm)&0xF0) ? 0 : 22 - ((imm)&0xF), \
+ ((imm)&0xF0) ? 0 : 23 - ((imm)&0xF), \
+ ((imm)&0xF0) ? 0 : 24 - ((imm)&0xF), \
+ ((imm)&0xF0) ? 0 : 25 - ((imm)&0xF), \
+ ((imm)&0xF0) ? 0 : 26 - ((imm)&0xF), \
+ ((imm)&0xF0) ? 0 : 27 - ((imm)&0xF), \
+ ((imm)&0xF0) ? 0 : 28 - ((imm)&0xF), \
+ ((imm)&0xF0) ? 0 : 29 - ((imm)&0xF), \
+ ((imm)&0xF0) ? 0 : 30 - ((imm)&0xF), \
+ ((imm)&0xF0) ? 0 : 31 - ((imm)&0xF)); })
+
+#define _mm_bslli_si128(a, imm) \
+ _mm_slli_si128((a), (imm))
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_slli_epi16(__m128i __a, int __count)
+{
+ return (__m128i)__builtin_ia32_psllwi128((__v8hi)__a, __count);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_sll_epi16(__m128i __a, __m128i __count)
+{
+ return (__m128i)__builtin_ia32_psllw128((__v8hi)__a, (__v8hi)__count);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_slli_epi32(__m128i __a, int __count)
+{
+ return (__m128i)__builtin_ia32_pslldi128((__v4si)__a, __count);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_sll_epi32(__m128i __a, __m128i __count)
+{
+ return (__m128i)__builtin_ia32_pslld128((__v4si)__a, (__v4si)__count);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_slli_epi64(__m128i __a, int __count)
+{
+ return __builtin_ia32_psllqi128(__a, __count);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_sll_epi64(__m128i __a, __m128i __count)
+{
+ return __builtin_ia32_psllq128(__a, __count);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_srai_epi16(__m128i __a, int __count)
+{
+ return (__m128i)__builtin_ia32_psrawi128((__v8hi)__a, __count);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_sra_epi16(__m128i __a, __m128i __count)
+{
+ return (__m128i)__builtin_ia32_psraw128((__v8hi)__a, (__v8hi)__count);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_srai_epi32(__m128i __a, int __count)
+{
+ return (__m128i)__builtin_ia32_psradi128((__v4si)__a, __count);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_sra_epi32(__m128i __a, __m128i __count)
+{
+ return (__m128i)__builtin_ia32_psrad128((__v4si)__a, (__v4si)__count);
+}
+
+#define _mm_srli_si128(a, imm) __extension__ ({ \
+ (__m128i)__builtin_shufflevector((__v16qi)(__m128i)(a), \
+ (__v16qi)_mm_setzero_si128(), \
+ ((imm)&0xF0) ? 16 : ((imm)&0xF) + 0, \
+ ((imm)&0xF0) ? 16 : ((imm)&0xF) + 1, \
+ ((imm)&0xF0) ? 16 : ((imm)&0xF) + 2, \
+ ((imm)&0xF0) ? 16 : ((imm)&0xF) + 3, \
+ ((imm)&0xF0) ? 16 : ((imm)&0xF) + 4, \
+ ((imm)&0xF0) ? 16 : ((imm)&0xF) + 5, \
+ ((imm)&0xF0) ? 16 : ((imm)&0xF) + 6, \
+ ((imm)&0xF0) ? 16 : ((imm)&0xF) + 7, \
+ ((imm)&0xF0) ? 16 : ((imm)&0xF) + 8, \
+ ((imm)&0xF0) ? 16 : ((imm)&0xF) + 9, \
+ ((imm)&0xF0) ? 16 : ((imm)&0xF) + 10, \
+ ((imm)&0xF0) ? 16 : ((imm)&0xF) + 11, \
+ ((imm)&0xF0) ? 16 : ((imm)&0xF) + 12, \
+ ((imm)&0xF0) ? 16 : ((imm)&0xF) + 13, \
+ ((imm)&0xF0) ? 16 : ((imm)&0xF) + 14, \
+ ((imm)&0xF0) ? 16 : ((imm)&0xF) + 15); })
+
+#define _mm_bsrli_si128(a, imm) \
+ _mm_srli_si128((a), (imm))
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_srli_epi16(__m128i __a, int __count)
+{
+ return (__m128i)__builtin_ia32_psrlwi128((__v8hi)__a, __count);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_srl_epi16(__m128i __a, __m128i __count)
+{
+ return (__m128i)__builtin_ia32_psrlw128((__v8hi)__a, (__v8hi)__count);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_srli_epi32(__m128i __a, int __count)
+{
+ return (__m128i)__builtin_ia32_psrldi128((__v4si)__a, __count);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_srl_epi32(__m128i __a, __m128i __count)
+{
+ return (__m128i)__builtin_ia32_psrld128((__v4si)__a, (__v4si)__count);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_srli_epi64(__m128i __a, int __count)
+{
+ return __builtin_ia32_psrlqi128(__a, __count);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_srl_epi64(__m128i __a, __m128i __count)
+{
+ return __builtin_ia32_psrlq128(__a, __count);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_cmpeq_epi8(__m128i __a, __m128i __b)
+{
+ return (__m128i)((__v16qi)__a == (__v16qi)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_cmpeq_epi16(__m128i __a, __m128i __b)
+{
+ return (__m128i)((__v8hi)__a == (__v8hi)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_cmpeq_epi32(__m128i __a, __m128i __b)
+{
+ return (__m128i)((__v4si)__a == (__v4si)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_cmpgt_epi8(__m128i __a, __m128i __b)
+{
+ /* This function always performs a signed comparison, but __v16qi is a char
+ which may be signed or unsigned. */
+ typedef signed char __v16qs __attribute__((__vector_size__(16)));
+ return (__m128i)((__v16qs)__a > (__v16qs)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_cmpgt_epi16(__m128i __a, __m128i __b)
+{
+ return (__m128i)((__v8hi)__a > (__v8hi)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_cmpgt_epi32(__m128i __a, __m128i __b)
+{
+ return (__m128i)((__v4si)__a > (__v4si)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_cmplt_epi8(__m128i __a, __m128i __b)
+{
+ return _mm_cmpgt_epi8(__b, __a);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_cmplt_epi16(__m128i __a, __m128i __b)
+{
+ return _mm_cmpgt_epi16(__b, __a);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_cmplt_epi32(__m128i __a, __m128i __b)
+{
+ return _mm_cmpgt_epi32(__b, __a);
+}
+
+#ifdef __x86_64__
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_cvtsi64_sd(__m128d __a, long long __b)
+{
+ __a[0] = __b;
+ return __a;
+}
+
+static __inline__ long long __attribute__((__always_inline__, __nodebug__))
+_mm_cvtsd_si64(__m128d __a)
+{
+ return __builtin_ia32_cvtsd2si64(__a);
+}
+
+static __inline__ long long __attribute__((__always_inline__, __nodebug__))
+_mm_cvttsd_si64(__m128d __a)
+{
+ return __a[0];
+}
+#endif
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_cvtepi32_ps(__m128i __a)
+{
+ return __builtin_ia32_cvtdq2ps((__v4si)__a);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_cvtps_epi32(__m128 __a)
+{
+ return (__m128i)__builtin_ia32_cvtps2dq(__a);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_cvttps_epi32(__m128 __a)
+{
+ return (__m128i)__builtin_ia32_cvttps2dq(__a);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_cvtsi32_si128(int __a)
+{
+ return (__m128i)(__v4si){ __a, 0, 0, 0 };
+}
+
+#ifdef __x86_64__
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_cvtsi64_si128(long long __a)
+{
+ return (__m128i){ __a, 0 };
+}
+#endif
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_cvtsi128_si32(__m128i __a)
+{
+ __v4si __b = (__v4si)__a;
+ return __b[0];
+}
+
+#ifdef __x86_64__
+static __inline__ long long __attribute__((__always_inline__, __nodebug__))
+_mm_cvtsi128_si64(__m128i __a)
+{
+ return __a[0];
+}
+#endif
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_load_si128(__m128i const *__p)
+{
+ return *__p;
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_loadu_si128(__m128i const *__p)
+{
+ struct __loadu_si128 {
+ __m128i __v;
+ } __attribute__((__packed__, __may_alias__));
+ return ((struct __loadu_si128*)__p)->__v;
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_loadl_epi64(__m128i const *__p)
+{
+ struct __mm_loadl_epi64_struct {
+ long long __u;
+ } __attribute__((__packed__, __may_alias__));
+ return (__m128i) { ((struct __mm_loadl_epi64_struct*)__p)->__u, 0};
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_set_epi64x(long long q1, long long q0)
+{
+ return (__m128i){ q0, q1 };
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_set_epi64(__m64 q1, __m64 q0)
+{
+ return (__m128i){ (long long)q0, (long long)q1 };
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_set_epi32(int i3, int i2, int i1, int i0)
+{
+ return (__m128i)(__v4si){ i0, i1, i2, i3};
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_set_epi16(short w7, short w6, short w5, short w4, short w3, short w2, short w1, short w0)
+{
+ return (__m128i)(__v8hi){ w0, w1, w2, w3, w4, w5, w6, w7 };
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_set_epi8(char b15, char b14, char b13, char b12, char b11, char b10, char b9, char b8, char b7, char b6, char b5, char b4, char b3, char b2, char b1, char b0)
+{
+ return (__m128i)(__v16qi){ b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14, b15 };
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_set1_epi64x(long long __q)
+{
+ return (__m128i){ __q, __q };
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_set1_epi64(__m64 __q)
+{
+ return (__m128i){ (long long)__q, (long long)__q };
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_set1_epi32(int __i)
+{
+ return (__m128i)(__v4si){ __i, __i, __i, __i };
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_set1_epi16(short __w)
+{
+ return (__m128i)(__v8hi){ __w, __w, __w, __w, __w, __w, __w, __w };
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_set1_epi8(char __b)
+{
+ return (__m128i)(__v16qi){ __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b };
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_setr_epi64(__m64 q0, __m64 q1)
+{
+ return (__m128i){ (long long)q0, (long long)q1 };
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_setr_epi32(int i0, int i1, int i2, int i3)
+{
+ return (__m128i)(__v4si){ i0, i1, i2, i3};
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_setr_epi16(short w0, short w1, short w2, short w3, short w4, short w5, short w6, short w7)
+{
+ return (__m128i)(__v8hi){ w0, w1, w2, w3, w4, w5, w6, w7 };
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_setr_epi8(char b0, char b1, char b2, char b3, char b4, char b5, char b6, char b7, char b8, char b9, char b10, char b11, char b12, char b13, char b14, char b15)
+{
+ return (__m128i)(__v16qi){ b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14, b15 };
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_setzero_si128(void)
+{
+ return (__m128i){ 0LL, 0LL };
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_mm_store_si128(__m128i *__p, __m128i __b)
+{
+ *__p = __b;
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_mm_storeu_si128(__m128i *__p, __m128i __b)
+{
+ __builtin_ia32_storedqu((char *)__p, (__v16qi)__b);
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_mm_maskmoveu_si128(__m128i __d, __m128i __n, char *__p)
+{
+ __builtin_ia32_maskmovdqu((__v16qi)__d, (__v16qi)__n, __p);
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_mm_storel_epi64(__m128i *__p, __m128i __a)
+{
+ struct __mm_storel_epi64_struct {
+ long long __u;
+ } __attribute__((__packed__, __may_alias__));
+ ((struct __mm_storel_epi64_struct*)__p)->__u = __a[0];
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_mm_stream_pd(double *__p, __m128d __a)
+{
+ __builtin_ia32_movntpd(__p, __a);
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_mm_stream_si128(__m128i *__p, __m128i __a)
+{
+ __builtin_ia32_movntdq(__p, __a);
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_mm_stream_si32(int *__p, int __a)
+{
+ __builtin_ia32_movnti(__p, __a);
+}
+
+#ifdef __x86_64__
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_mm_stream_si64(long long *__p, long long __a)
+{
+ __builtin_ia32_movnti64(__p, __a);
+}
+#endif
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_mm_clflush(void const *__p)
+{
+ __builtin_ia32_clflush(__p);
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_mm_lfence(void)
+{
+ __builtin_ia32_lfence();
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_mm_mfence(void)
+{
+ __builtin_ia32_mfence();
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_packs_epi16(__m128i __a, __m128i __b)
+{
+ return (__m128i)__builtin_ia32_packsswb128((__v8hi)__a, (__v8hi)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_packs_epi32(__m128i __a, __m128i __b)
+{
+ return (__m128i)__builtin_ia32_packssdw128((__v4si)__a, (__v4si)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_packus_epi16(__m128i __a, __m128i __b)
+{
+ return (__m128i)__builtin_ia32_packuswb128((__v8hi)__a, (__v8hi)__b);
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_extract_epi16(__m128i __a, int __imm)
+{
+ __v8hi __b = (__v8hi)__a;
+ return (unsigned short)__b[__imm & 7];
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_insert_epi16(__m128i __a, int __b, int __imm)
+{
+ __v8hi __c = (__v8hi)__a;
+ __c[__imm & 7] = __b;
+ return (__m128i)__c;
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_movemask_epi8(__m128i __a)
+{
+ return __builtin_ia32_pmovmskb128((__v16qi)__a);
+}
+
+#define _mm_shuffle_epi32(a, imm) __extension__ ({ \
+ (__m128i)__builtin_shufflevector((__v4si)(__m128i)(a), \
+ (__v4si)_mm_set1_epi32(0), \
+ (imm) & 0x3, ((imm) & 0xc) >> 2, \
+ ((imm) & 0x30) >> 4, ((imm) & 0xc0) >> 6); })
+
+#define _mm_shufflelo_epi16(a, imm) __extension__ ({ \
+ (__m128i)__builtin_shufflevector((__v8hi)(__m128i)(a), \
+ (__v8hi)_mm_set1_epi16(0), \
+ (imm) & 0x3, ((imm) & 0xc) >> 2, \
+ ((imm) & 0x30) >> 4, ((imm) & 0xc0) >> 6, \
+ 4, 5, 6, 7); })
+
+#define _mm_shufflehi_epi16(a, imm) __extension__ ({ \
+ (__m128i)__builtin_shufflevector((__v8hi)(__m128i)(a), \
+ (__v8hi)_mm_set1_epi16(0), \
+ 0, 1, 2, 3, \
+ 4 + (((imm) & 0x03) >> 0), \
+ 4 + (((imm) & 0x0c) >> 2), \
+ 4 + (((imm) & 0x30) >> 4), \
+ 4 + (((imm) & 0xc0) >> 6)); })
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_unpackhi_epi8(__m128i __a, __m128i __b)
+{
+ return (__m128i)__builtin_shufflevector((__v16qi)__a, (__v16qi)__b, 8, 16+8, 9, 16+9, 10, 16+10, 11, 16+11, 12, 16+12, 13, 16+13, 14, 16+14, 15, 16+15);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_unpackhi_epi16(__m128i __a, __m128i __b)
+{
+ return (__m128i)__builtin_shufflevector((__v8hi)__a, (__v8hi)__b, 4, 8+4, 5, 8+5, 6, 8+6, 7, 8+7);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_unpackhi_epi32(__m128i __a, __m128i __b)
+{
+ return (__m128i)__builtin_shufflevector((__v4si)__a, (__v4si)__b, 2, 4+2, 3, 4+3);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_unpackhi_epi64(__m128i __a, __m128i __b)
+{
+ return (__m128i)__builtin_shufflevector(__a, __b, 1, 2+1);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_unpacklo_epi8(__m128i __a, __m128i __b)
+{
+ return (__m128i)__builtin_shufflevector((__v16qi)__a, (__v16qi)__b, 0, 16+0, 1, 16+1, 2, 16+2, 3, 16+3, 4, 16+4, 5, 16+5, 6, 16+6, 7, 16+7);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_unpacklo_epi16(__m128i __a, __m128i __b)
+{
+ return (__m128i)__builtin_shufflevector((__v8hi)__a, (__v8hi)__b, 0, 8+0, 1, 8+1, 2, 8+2, 3, 8+3);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_unpacklo_epi32(__m128i __a, __m128i __b)
+{
+ return (__m128i)__builtin_shufflevector((__v4si)__a, (__v4si)__b, 0, 4+0, 1, 4+1);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_unpacklo_epi64(__m128i __a, __m128i __b)
+{
+ return (__m128i)__builtin_shufflevector(__a, __b, 0, 2+0);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_movepi64_pi64(__m128i __a)
+{
+ return (__m64)__a[0];
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_movpi64_epi64(__m64 __a)
+{
+ return (__m128i){ (long long)__a, 0 };
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_move_epi64(__m128i __a)
+{
+ return __builtin_shufflevector(__a, (__m128i){ 0 }, 0, 2);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_unpackhi_pd(__m128d __a, __m128d __b)
+{
+ return __builtin_shufflevector(__a, __b, 1, 2+1);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_unpacklo_pd(__m128d __a, __m128d __b)
+{
+ return __builtin_shufflevector(__a, __b, 0, 2+0);
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_movemask_pd(__m128d __a)
+{
+ return __builtin_ia32_movmskpd(__a);
+}
+
+#define _mm_shuffle_pd(a, b, i) __extension__ ({ \
+ __builtin_shufflevector((__m128d)(a), (__m128d)(b), \
+ (i) & 1, (((i) & 2) >> 1) + 2); })
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_castpd_ps(__m128d __a)
+{
+ return (__m128)__a;
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_castpd_si128(__m128d __a)
+{
+ return (__m128i)__a;
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_castps_pd(__m128 __a)
+{
+ return (__m128d)__a;
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_castps_si128(__m128 __a)
+{
+ return (__m128i)__a;
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_castsi128_ps(__m128i __a)
+{
+ return (__m128)__a;
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_castsi128_pd(__m128i __a)
+{
+ return (__m128d)__a;
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_mm_pause(void)
+{
+ __asm__ volatile ("pause");
+}
+
+#define _MM_SHUFFLE2(x, y) (((x) << 1) | (y))
+
+#endif /* __SSE2__ */
+
+#endif /* __EMMINTRIN_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/f16cintrin.h b/contrib/llvm/tools/clang/lib/Headers/f16cintrin.h
new file mode 100644
index 0000000..f3614c0
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/f16cintrin.h
@@ -0,0 +1,58 @@
+/*===---- f16cintrin.h - F16C intrinsics -----------------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#if !defined __X86INTRIN_H && !defined __IMMINTRIN_H
+#error "Never use <f16cintrin.h> directly; include <x86intrin.h> instead."
+#endif
+
+#ifndef __F16C__
+# error "F16C instruction is not enabled"
+#endif /* __F16C__ */
+
+#ifndef __F16CINTRIN_H
+#define __F16CINTRIN_H
+
+typedef float __v8sf __attribute__ ((__vector_size__ (32)));
+typedef float __m256 __attribute__ ((__vector_size__ (32)));
+
+#define _mm_cvtps_ph(a, imm) __extension__ ({ \
+ __m128 __a = (a); \
+ (__m128i)__builtin_ia32_vcvtps2ph((__v4sf)__a, (imm)); })
+
+#define _mm256_cvtps_ph(a, imm) __extension__ ({ \
+ __m256 __a = (a); \
+ (__m128i)__builtin_ia32_vcvtps2ph256((__v8sf)__a, (imm)); })
+
+static __inline __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_cvtph_ps(__m128i __a)
+{
+ return (__m128)__builtin_ia32_vcvtph2ps((__v8hi)__a);
+}
+
+static __inline __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_cvtph_ps(__m128i __a)
+{
+ return (__m256)__builtin_ia32_vcvtph2ps256((__v8hi)__a);
+}
+
+#endif /* __F16CINTRIN_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/float.h b/contrib/llvm/tools/clang/lib/Headers/float.h
new file mode 100644
index 0000000..238cf76
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/float.h
@@ -0,0 +1,124 @@
+/*===---- float.h - Characteristics of floating point types ----------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#ifndef __FLOAT_H
+#define __FLOAT_H
+
+/* If we're on MinGW, fall back to the system's float.h, which might have
+ * additional definitions provided for Windows.
+ * For more details see http://msdn.microsoft.com/en-us/library/y0ybw9fy.aspx
+ */
+#if (defined(__MINGW32__) || defined(_MSC_VER)) && __STDC_HOSTED__ && \
+ __has_include_next(<float.h>)
+# include_next <float.h>
+
+/* Undefine anything that we'll be redefining below. */
+# undef FLT_EVAL_METHOD
+# undef FLT_ROUNDS
+# undef FLT_RADIX
+# undef FLT_MANT_DIG
+# undef DBL_MANT_DIG
+# undef LDBL_MANT_DIG
+# undef DECIMAL_DIG
+# undef FLT_DIG
+# undef DBL_DIG
+# undef LDBL_DIG
+# undef FLT_MIN_EXP
+# undef DBL_MIN_EXP
+# undef LDBL_MIN_EXP
+# undef FLT_MIN_10_EXP
+# undef DBL_MIN_10_EXP
+# undef LDBL_MIN_10_EXP
+# undef FLT_MAX_EXP
+# undef DBL_MAX_EXP
+# undef LDBL_MAX_EXP
+# undef FLT_MAX_10_EXP
+# undef DBL_MAX_10_EXP
+# undef LDBL_MAX_10_EXP
+# undef FLT_MAX
+# undef DBL_MAX
+# undef LDBL_MAX
+# undef FLT_EPSILON
+# undef DBL_EPSILON
+# undef LDBL_EPSILON
+# undef FLT_MIN
+# undef DBL_MIN
+# undef LDBL_MIN
+# if __STDC_VERSION__ >= 201112L || !defined(__STRICT_ANSI__)
+# undef FLT_TRUE_MIN
+# undef DBL_TRUE_MIN
+# undef LDBL_TRUE_MIN
+# endif
+#endif
+
+/* Characteristics of floating point types, C99 5.2.4.2.2 */
+
+#define FLT_EVAL_METHOD __FLT_EVAL_METHOD__
+#define FLT_ROUNDS (__builtin_flt_rounds())
+#define FLT_RADIX __FLT_RADIX__
+
+#define FLT_MANT_DIG __FLT_MANT_DIG__
+#define DBL_MANT_DIG __DBL_MANT_DIG__
+#define LDBL_MANT_DIG __LDBL_MANT_DIG__
+
+#define DECIMAL_DIG __DECIMAL_DIG__
+
+#define FLT_DIG __FLT_DIG__
+#define DBL_DIG __DBL_DIG__
+#define LDBL_DIG __LDBL_DIG__
+
+#define FLT_MIN_EXP __FLT_MIN_EXP__
+#define DBL_MIN_EXP __DBL_MIN_EXP__
+#define LDBL_MIN_EXP __LDBL_MIN_EXP__
+
+#define FLT_MIN_10_EXP __FLT_MIN_10_EXP__
+#define DBL_MIN_10_EXP __DBL_MIN_10_EXP__
+#define LDBL_MIN_10_EXP __LDBL_MIN_10_EXP__
+
+#define FLT_MAX_EXP __FLT_MAX_EXP__
+#define DBL_MAX_EXP __DBL_MAX_EXP__
+#define LDBL_MAX_EXP __LDBL_MAX_EXP__
+
+#define FLT_MAX_10_EXP __FLT_MAX_10_EXP__
+#define DBL_MAX_10_EXP __DBL_MAX_10_EXP__
+#define LDBL_MAX_10_EXP __LDBL_MAX_10_EXP__
+
+#define FLT_MAX __FLT_MAX__
+#define DBL_MAX __DBL_MAX__
+#define LDBL_MAX __LDBL_MAX__
+
+#define FLT_EPSILON __FLT_EPSILON__
+#define DBL_EPSILON __DBL_EPSILON__
+#define LDBL_EPSILON __LDBL_EPSILON__
+
+#define FLT_MIN __FLT_MIN__
+#define DBL_MIN __DBL_MIN__
+#define LDBL_MIN __LDBL_MIN__
+
+#if __STDC_VERSION__ >= 201112L || !defined(__STRICT_ANSI__)
+# define FLT_TRUE_MIN __FLT_DENORM_MIN__
+# define DBL_TRUE_MIN __DBL_DENORM_MIN__
+# define LDBL_TRUE_MIN __LDBL_DENORM_MIN__
+#endif
+
+#endif /* __FLOAT_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/fma4intrin.h b/contrib/llvm/tools/clang/lib/Headers/fma4intrin.h
new file mode 100644
index 0000000..c30920d
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/fma4intrin.h
@@ -0,0 +1,231 @@
+/*===---- fma4intrin.h - FMA4 intrinsics -----------------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#ifndef __X86INTRIN_H
+#error "Never use <fma4intrin.h> directly; include <x86intrin.h> instead."
+#endif
+
+#ifndef __FMA4INTRIN_H
+#define __FMA4INTRIN_H
+
+#ifndef __FMA4__
+# error "FMA4 instruction set is not enabled"
+#else
+
+#include <pmmintrin.h>
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_macc_ps(__m128 __A, __m128 __B, __m128 __C)
+{
+ return (__m128)__builtin_ia32_vfmaddps(__A, __B, __C);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_macc_pd(__m128d __A, __m128d __B, __m128d __C)
+{
+ return (__m128d)__builtin_ia32_vfmaddpd(__A, __B, __C);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_macc_ss(__m128 __A, __m128 __B, __m128 __C)
+{
+ return (__m128)__builtin_ia32_vfmaddss(__A, __B, __C);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_macc_sd(__m128d __A, __m128d __B, __m128d __C)
+{
+ return (__m128d)__builtin_ia32_vfmaddsd(__A, __B, __C);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_msub_ps(__m128 __A, __m128 __B, __m128 __C)
+{
+ return (__m128)__builtin_ia32_vfmsubps(__A, __B, __C);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_msub_pd(__m128d __A, __m128d __B, __m128d __C)
+{
+ return (__m128d)__builtin_ia32_vfmsubpd(__A, __B, __C);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_msub_ss(__m128 __A, __m128 __B, __m128 __C)
+{
+ return (__m128)__builtin_ia32_vfmsubss(__A, __B, __C);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_msub_sd(__m128d __A, __m128d __B, __m128d __C)
+{
+ return (__m128d)__builtin_ia32_vfmsubsd(__A, __B, __C);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_nmacc_ps(__m128 __A, __m128 __B, __m128 __C)
+{
+ return (__m128)__builtin_ia32_vfnmaddps(__A, __B, __C);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_nmacc_pd(__m128d __A, __m128d __B, __m128d __C)
+{
+ return (__m128d)__builtin_ia32_vfnmaddpd(__A, __B, __C);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_nmacc_ss(__m128 __A, __m128 __B, __m128 __C)
+{
+ return (__m128)__builtin_ia32_vfnmaddss(__A, __B, __C);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_nmacc_sd(__m128d __A, __m128d __B, __m128d __C)
+{
+ return (__m128d)__builtin_ia32_vfnmaddsd(__A, __B, __C);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_nmsub_ps(__m128 __A, __m128 __B, __m128 __C)
+{
+ return (__m128)__builtin_ia32_vfnmsubps(__A, __B, __C);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_nmsub_pd(__m128d __A, __m128d __B, __m128d __C)
+{
+ return (__m128d)__builtin_ia32_vfnmsubpd(__A, __B, __C);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_nmsub_ss(__m128 __A, __m128 __B, __m128 __C)
+{
+ return (__m128)__builtin_ia32_vfnmsubss(__A, __B, __C);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_nmsub_sd(__m128d __A, __m128d __B, __m128d __C)
+{
+ return (__m128d)__builtin_ia32_vfnmsubsd(__A, __B, __C);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_maddsub_ps(__m128 __A, __m128 __B, __m128 __C)
+{
+ return (__m128)__builtin_ia32_vfmaddsubps(__A, __B, __C);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_maddsub_pd(__m128d __A, __m128d __B, __m128d __C)
+{
+ return (__m128d)__builtin_ia32_vfmaddsubpd(__A, __B, __C);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_msubadd_ps(__m128 __A, __m128 __B, __m128 __C)
+{
+ return (__m128)__builtin_ia32_vfmsubaddps(__A, __B, __C);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_msubadd_pd(__m128d __A, __m128d __B, __m128d __C)
+{
+ return (__m128d)__builtin_ia32_vfmsubaddpd(__A, __B, __C);
+}
+
+static __inline__ __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_macc_ps(__m256 __A, __m256 __B, __m256 __C)
+{
+ return (__m256)__builtin_ia32_vfmaddps256(__A, __B, __C);
+}
+
+static __inline__ __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_macc_pd(__m256d __A, __m256d __B, __m256d __C)
+{
+ return (__m256d)__builtin_ia32_vfmaddpd256(__A, __B, __C);
+}
+
+static __inline__ __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_msub_ps(__m256 __A, __m256 __B, __m256 __C)
+{
+ return (__m256)__builtin_ia32_vfmsubps256(__A, __B, __C);
+}
+
+static __inline__ __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_msub_pd(__m256d __A, __m256d __B, __m256d __C)
+{
+ return (__m256d)__builtin_ia32_vfmsubpd256(__A, __B, __C);
+}
+
+static __inline__ __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_nmacc_ps(__m256 __A, __m256 __B, __m256 __C)
+{
+ return (__m256)__builtin_ia32_vfnmaddps256(__A, __B, __C);
+}
+
+static __inline__ __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_nmacc_pd(__m256d __A, __m256d __B, __m256d __C)
+{
+ return (__m256d)__builtin_ia32_vfnmaddpd256(__A, __B, __C);
+}
+
+static __inline__ __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_nmsub_ps(__m256 __A, __m256 __B, __m256 __C)
+{
+ return (__m256)__builtin_ia32_vfnmsubps256(__A, __B, __C);
+}
+
+static __inline__ __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_nmsub_pd(__m256d __A, __m256d __B, __m256d __C)
+{
+ return (__m256d)__builtin_ia32_vfnmsubpd256(__A, __B, __C);
+}
+
+static __inline__ __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_maddsub_ps(__m256 __A, __m256 __B, __m256 __C)
+{
+ return (__m256)__builtin_ia32_vfmaddsubps256(__A, __B, __C);
+}
+
+static __inline__ __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_maddsub_pd(__m256d __A, __m256d __B, __m256d __C)
+{
+ return (__m256d)__builtin_ia32_vfmaddsubpd256(__A, __B, __C);
+}
+
+static __inline__ __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_msubadd_ps(__m256 __A, __m256 __B, __m256 __C)
+{
+ return (__m256)__builtin_ia32_vfmsubaddps256(__A, __B, __C);
+}
+
+static __inline__ __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_msubadd_pd(__m256d __A, __m256d __B, __m256d __C)
+{
+ return (__m256d)__builtin_ia32_vfmsubaddpd256(__A, __B, __C);
+}
+
+#endif /* __FMA4__ */
+
+#endif /* __FMA4INTRIN_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/fmaintrin.h b/contrib/llvm/tools/clang/lib/Headers/fmaintrin.h
new file mode 100644
index 0000000..6bfd5a8
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/fmaintrin.h
@@ -0,0 +1,229 @@
+/*===---- fma4intrin.h - FMA4 intrinsics -----------------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#ifndef __IMMINTRIN_H
+#error "Never use <fmaintrin.h> directly; include <immintrin.h> instead."
+#endif
+
+#ifndef __FMAINTRIN_H
+#define __FMAINTRIN_H
+
+#ifndef __FMA__
+# error "FMA instruction set is not enabled"
+#else
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_fmadd_ps(__m128 __A, __m128 __B, __m128 __C)
+{
+ return (__m128)__builtin_ia32_vfmaddps(__A, __B, __C);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_fmadd_pd(__m128d __A, __m128d __B, __m128d __C)
+{
+ return (__m128d)__builtin_ia32_vfmaddpd(__A, __B, __C);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_fmadd_ss(__m128 __A, __m128 __B, __m128 __C)
+{
+ return (__m128)__builtin_ia32_vfmaddss(__A, __B, __C);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_fmadd_sd(__m128d __A, __m128d __B, __m128d __C)
+{
+ return (__m128d)__builtin_ia32_vfmaddsd(__A, __B, __C);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_fmsub_ps(__m128 __A, __m128 __B, __m128 __C)
+{
+ return (__m128)__builtin_ia32_vfmsubps(__A, __B, __C);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_fmsub_pd(__m128d __A, __m128d __B, __m128d __C)
+{
+ return (__m128d)__builtin_ia32_vfmsubpd(__A, __B, __C);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_fmsub_ss(__m128 __A, __m128 __B, __m128 __C)
+{
+ return (__m128)__builtin_ia32_vfmsubss(__A, __B, __C);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_fmsub_sd(__m128d __A, __m128d __B, __m128d __C)
+{
+ return (__m128d)__builtin_ia32_vfmsubsd(__A, __B, __C);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_fnmadd_ps(__m128 __A, __m128 __B, __m128 __C)
+{
+ return (__m128)__builtin_ia32_vfnmaddps(__A, __B, __C);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_fnmadd_pd(__m128d __A, __m128d __B, __m128d __C)
+{
+ return (__m128d)__builtin_ia32_vfnmaddpd(__A, __B, __C);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_fnmadd_ss(__m128 __A, __m128 __B, __m128 __C)
+{
+ return (__m128)__builtin_ia32_vfnmaddss(__A, __B, __C);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_fnmadd_sd(__m128d __A, __m128d __B, __m128d __C)
+{
+ return (__m128d)__builtin_ia32_vfnmaddsd(__A, __B, __C);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_fnmsub_ps(__m128 __A, __m128 __B, __m128 __C)
+{
+ return (__m128)__builtin_ia32_vfnmsubps(__A, __B, __C);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_fnmsub_pd(__m128d __A, __m128d __B, __m128d __C)
+{
+ return (__m128d)__builtin_ia32_vfnmsubpd(__A, __B, __C);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_fnmsub_ss(__m128 __A, __m128 __B, __m128 __C)
+{
+ return (__m128)__builtin_ia32_vfnmsubss(__A, __B, __C);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_fnmsub_sd(__m128d __A, __m128d __B, __m128d __C)
+{
+ return (__m128d)__builtin_ia32_vfnmsubsd(__A, __B, __C);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_fmaddsub_ps(__m128 __A, __m128 __B, __m128 __C)
+{
+ return (__m128)__builtin_ia32_vfmaddsubps(__A, __B, __C);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_fmaddsub_pd(__m128d __A, __m128d __B, __m128d __C)
+{
+ return (__m128d)__builtin_ia32_vfmaddsubpd(__A, __B, __C);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_fmsubadd_ps(__m128 __A, __m128 __B, __m128 __C)
+{
+ return (__m128)__builtin_ia32_vfmsubaddps(__A, __B, __C);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_fmsubadd_pd(__m128d __A, __m128d __B, __m128d __C)
+{
+ return (__m128d)__builtin_ia32_vfmsubaddpd(__A, __B, __C);
+}
+
+static __inline__ __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_fmadd_ps(__m256 __A, __m256 __B, __m256 __C)
+{
+ return (__m256)__builtin_ia32_vfmaddps256(__A, __B, __C);
+}
+
+static __inline__ __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_fmadd_pd(__m256d __A, __m256d __B, __m256d __C)
+{
+ return (__m256d)__builtin_ia32_vfmaddpd256(__A, __B, __C);
+}
+
+static __inline__ __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_fmsub_ps(__m256 __A, __m256 __B, __m256 __C)
+{
+ return (__m256)__builtin_ia32_vfmsubps256(__A, __B, __C);
+}
+
+static __inline__ __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_fmsub_pd(__m256d __A, __m256d __B, __m256d __C)
+{
+ return (__m256d)__builtin_ia32_vfmsubpd256(__A, __B, __C);
+}
+
+static __inline__ __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_fnmadd_ps(__m256 __A, __m256 __B, __m256 __C)
+{
+ return (__m256)__builtin_ia32_vfnmaddps256(__A, __B, __C);
+}
+
+static __inline__ __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_fnmadd_pd(__m256d __A, __m256d __B, __m256d __C)
+{
+ return (__m256d)__builtin_ia32_vfnmaddpd256(__A, __B, __C);
+}
+
+static __inline__ __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_fnmsub_ps(__m256 __A, __m256 __B, __m256 __C)
+{
+ return (__m256)__builtin_ia32_vfnmsubps256(__A, __B, __C);
+}
+
+static __inline__ __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_fnmsub_pd(__m256d __A, __m256d __B, __m256d __C)
+{
+ return (__m256d)__builtin_ia32_vfnmsubpd256(__A, __B, __C);
+}
+
+static __inline__ __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_fmaddsub_ps(__m256 __A, __m256 __B, __m256 __C)
+{
+ return (__m256)__builtin_ia32_vfmaddsubps256(__A, __B, __C);
+}
+
+static __inline__ __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_fmaddsub_pd(__m256d __A, __m256d __B, __m256d __C)
+{
+ return (__m256d)__builtin_ia32_vfmaddsubpd256(__A, __B, __C);
+}
+
+static __inline__ __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_fmsubadd_ps(__m256 __A, __m256 __B, __m256 __C)
+{
+ return (__m256)__builtin_ia32_vfmsubaddps256(__A, __B, __C);
+}
+
+static __inline__ __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_fmsubadd_pd(__m256d __A, __m256d __B, __m256d __C)
+{
+ return (__m256d)__builtin_ia32_vfmsubaddpd256(__A, __B, __C);
+}
+
+#endif /* __FMA__ */
+
+#endif /* __FMAINTRIN_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/htmintrin.h b/contrib/llvm/tools/clang/lib/Headers/htmintrin.h
new file mode 100644
index 0000000..0088c7c
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/htmintrin.h
@@ -0,0 +1,226 @@
+/*===---- htmintrin.h - Standard header for PowerPC HTM ---------------===*\
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+\*===----------------------------------------------------------------------===*/
+
+#ifndef __HTMINTRIN_H
+#define __HTMINTRIN_H
+
+#ifndef __HTM__
+#error "HTM instruction set not enabled"
+#endif
+
+#ifdef __powerpc__
+
+#include <stdint.h>
+
+typedef uint64_t texasr_t;
+typedef uint32_t texasru_t;
+typedef uint32_t texasrl_t;
+typedef uintptr_t tfiar_t;
+typedef uintptr_t tfhar_t;
+
+#define _HTM_STATE(CR0) ((CR0 >> 1) & 0x3)
+#define _HTM_NONTRANSACTIONAL 0x0
+#define _HTM_SUSPENDED 0x1
+#define _HTM_TRANSACTIONAL 0x2
+
+#define _TEXASR_EXTRACT_BITS(TEXASR,BITNUM,SIZE) \
+ (((TEXASR) >> (63-(BITNUM))) & ((1<<(SIZE))-1))
+#define _TEXASRU_EXTRACT_BITS(TEXASR,BITNUM,SIZE) \
+ (((TEXASR) >> (31-(BITNUM))) & ((1<<(SIZE))-1))
+
+#define _TEXASR_FAILURE_CODE(TEXASR) \
+ _TEXASR_EXTRACT_BITS(TEXASR, 7, 8)
+#define _TEXASRU_FAILURE_CODE(TEXASRU) \
+ _TEXASRU_EXTRACT_BITS(TEXASRU, 7, 8)
+
+#define _TEXASR_FAILURE_PERSISTENT(TEXASR) \
+ _TEXASR_EXTRACT_BITS(TEXASR, 7, 1)
+#define _TEXASRU_FAILURE_PERSISTENT(TEXASRU) \
+ _TEXASRU_EXTRACT_BITS(TEXASRU, 7, 1)
+
+#define _TEXASR_DISALLOWED(TEXASR) \
+ _TEXASR_EXTRACT_BITS(TEXASR, 8, 1)
+#define _TEXASRU_DISALLOWED(TEXASRU) \
+ _TEXASRU_EXTRACT_BITS(TEXASRU, 8, 1)
+
+#define _TEXASR_NESTING_OVERFLOW(TEXASR) \
+ _TEXASR_EXTRACT_BITS(TEXASR, 9, 1)
+#define _TEXASRU_NESTING_OVERFLOW(TEXASRU) \
+ _TEXASRU_EXTRACT_BITS(TEXASRU, 9, 1)
+
+#define _TEXASR_FOOTPRINT_OVERFLOW(TEXASR) \
+ _TEXASR_EXTRACT_BITS(TEXASR, 10, 1)
+#define _TEXASRU_FOOTPRINT_OVERFLOW(TEXASRU) \
+ _TEXASRU_EXTRACT_BITS(TEXASRU, 10, 1)
+
+#define _TEXASR_SELF_INDUCED_CONFLICT(TEXASR) \
+ _TEXASR_EXTRACT_BITS(TEXASR, 11, 1)
+#define _TEXASRU_SELF_INDUCED_CONFLICT(TEXASRU) \
+ _TEXASRU_EXTRACT_BITS(TEXASRU, 11, 1)
+
+#define _TEXASR_NON_TRANSACTIONAL_CONFLICT(TEXASR) \
+ _TEXASR_EXTRACT_BITS(TEXASR, 12, 1)
+#define _TEXASRU_NON_TRANSACTIONAL_CONFLICT(TEXASRU) \
+ _TEXASRU_EXTRACT_BITS(TEXASRU, 12, 1)
+
+#define _TEXASR_TRANSACTION_CONFLICT(TEXASR) \
+ _TEXASR_EXTRACT_BITS(TEXASR, 13, 1)
+#define _TEXASRU_TRANSACTION_CONFLICT(TEXASRU) \
+ _TEXASRU_EXTRACT_BITS(TEXASRU, 13, 1)
+
+#define _TEXASR_TRANSLATION_INVALIDATION_CONFLICT(TEXASR) \
+ _TEXASR_EXTRACT_BITS(TEXASR, 14, 1)
+#define _TEXASRU_TRANSLATION_INVALIDATION_CONFLICT(TEXASRU) \
+ _TEXASRU_EXTRACT_BITS(TEXASRU, 14, 1)
+
+#define _TEXASR_IMPLEMENTAION_SPECIFIC(TEXASR) \
+ _TEXASR_EXTRACT_BITS(TEXASR, 15, 1)
+#define _TEXASRU_IMPLEMENTAION_SPECIFIC(TEXASRU) \
+ _TEXASRU_EXTRACT_BITS(TEXASRU, 15, 1)
+
+#define _TEXASR_INSTRUCTION_FETCH_CONFLICT(TEXASR) \
+ _TEXASR_EXTRACT_BITS(TEXASR, 16, 1)
+#define _TEXASRU_INSTRUCTION_FETCH_CONFLICT(TEXASRU) \
+ _TEXASRU_EXTRACT_BITS(TEXASRU, 16, 1)
+
+#define _TEXASR_ABORT(TEXASR) \
+ _TEXASR_EXTRACT_BITS(TEXASR, 31, 1)
+#define _TEXASRU_ABORT(TEXASRU) \
+ _TEXASRU_EXTRACT_BITS(TEXASRU, 31, 1)
+
+
+#define _TEXASR_SUSPENDED(TEXASR) \
+ _TEXASR_EXTRACT_BITS(TEXASR, 32, 1)
+
+#define _TEXASR_PRIVILEGE(TEXASR) \
+ _TEXASR_EXTRACT_BITS(TEXASR, 35, 2)
+
+#define _TEXASR_FAILURE_SUMMARY(TEXASR) \
+ _TEXASR_EXTRACT_BITS(TEXASR, 36, 1)
+
+#define _TEXASR_TFIAR_EXACT(TEXASR) \
+ _TEXASR_EXTRACT_BITS(TEXASR, 37, 1)
+
+#define _TEXASR_ROT(TEXASR) \
+ _TEXASR_EXTRACT_BITS(TEXASR, 38, 1)
+
+#define _TEXASR_TRANSACTION_LEVEL(TEXASR) \
+ _TEXASR_EXTRACT_BITS(TEXASR, 63, 12)
+
+#endif /* __powerpc */
+
+#ifdef __s390__
+
+/* Condition codes generated by tbegin */
+#define _HTM_TBEGIN_STARTED 0
+#define _HTM_TBEGIN_INDETERMINATE 1
+#define _HTM_TBEGIN_TRANSIENT 2
+#define _HTM_TBEGIN_PERSISTENT 3
+
+/* The abort codes below this threshold are reserved for machine use. */
+#define _HTM_FIRST_USER_ABORT_CODE 256
+
+/* The transaction diagnostic block is it is defined in the Principles
+ of Operation chapter 5-91. */
+
+struct __htm_tdb {
+ unsigned char format; /* 0 */
+ unsigned char flags;
+ unsigned char reserved1[4];
+ unsigned short nesting_depth;
+ unsigned long long abort_code; /* 8 */
+ unsigned long long conflict_token; /* 16 */
+ unsigned long long atia; /* 24 */
+ unsigned char eaid; /* 32 */
+ unsigned char dxc;
+ unsigned char reserved2[2];
+ unsigned int program_int_id;
+ unsigned long long exception_id; /* 40 */
+ unsigned long long bea; /* 48 */
+ unsigned char reserved3[72]; /* 56 */
+ unsigned long long gprs[16]; /* 128 */
+} __attribute__((__packed__, __aligned__ (8)));
+
+
+/* Helper intrinsics to retry tbegin in case of transient failure. */
+
+static __inline int __attribute__((__always_inline__, __nodebug__))
+__builtin_tbegin_retry_null (int retry)
+{
+ int cc, i = 0;
+
+ while ((cc = __builtin_tbegin(0)) == _HTM_TBEGIN_TRANSIENT
+ && i++ < retry)
+ __builtin_tx_assist(i);
+
+ return cc;
+}
+
+static __inline int __attribute__((__always_inline__, __nodebug__))
+__builtin_tbegin_retry_tdb (void *tdb, int retry)
+{
+ int cc, i = 0;
+
+ while ((cc = __builtin_tbegin(tdb)) == _HTM_TBEGIN_TRANSIENT
+ && i++ < retry)
+ __builtin_tx_assist(i);
+
+ return cc;
+}
+
+#define __builtin_tbegin_retry(tdb, retry) \
+ (__builtin_constant_p(tdb == 0) && tdb == 0 ? \
+ __builtin_tbegin_retry_null(retry) : \
+ __builtin_tbegin_retry_tdb(tdb, retry))
+
+static __inline int __attribute__((__always_inline__, __nodebug__))
+__builtin_tbegin_retry_nofloat_null (int retry)
+{
+ int cc, i = 0;
+
+ while ((cc = __builtin_tbegin_nofloat(0)) == _HTM_TBEGIN_TRANSIENT
+ && i++ < retry)
+ __builtin_tx_assist(i);
+
+ return cc;
+}
+
+static __inline int __attribute__((__always_inline__, __nodebug__))
+__builtin_tbegin_retry_nofloat_tdb (void *tdb, int retry)
+{
+ int cc, i = 0;
+
+ while ((cc = __builtin_tbegin_nofloat(tdb)) == _HTM_TBEGIN_TRANSIENT
+ && i++ < retry)
+ __builtin_tx_assist(i);
+
+ return cc;
+}
+
+#define __builtin_tbegin_retry_nofloat(tdb, retry) \
+ (__builtin_constant_p(tdb == 0) && tdb == 0 ? \
+ __builtin_tbegin_retry_nofloat_null(retry) : \
+ __builtin_tbegin_retry_nofloat_tdb(tdb, retry))
+
+#endif /* __s390__ */
+
+#endif /* __HTMINTRIN_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/htmxlintrin.h b/contrib/llvm/tools/clang/lib/Headers/htmxlintrin.h
new file mode 100644
index 0000000..30f524d
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/htmxlintrin.h
@@ -0,0 +1,363 @@
+/*===---- htmxlintrin.h - XL compiler HTM execution intrinsics-------------===*\
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+\*===----------------------------------------------------------------------===*/
+
+#ifndef __HTMXLINTRIN_H
+#define __HTMXLINTRIN_H
+
+#ifndef __HTM__
+#error "HTM instruction set not enabled"
+#endif
+
+#include <htmintrin.h>
+
+#ifdef __powerpc__
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#define _TEXASR_PTR(TM_BUF) \
+ ((texasr_t *)((TM_BUF)+0))
+#define _TEXASRU_PTR(TM_BUF) \
+ ((texasru_t *)((TM_BUF)+0))
+#define _TEXASRL_PTR(TM_BUF) \
+ ((texasrl_t *)((TM_BUF)+4))
+#define _TFIAR_PTR(TM_BUF) \
+ ((tfiar_t *)((TM_BUF)+8))
+
+typedef char TM_buff_type[16];
+
+/* This macro can be used to determine whether a transaction was successfully
+ started from the __TM_begin() and __TM_simple_begin() intrinsic functions
+ below. */
+#define _HTM_TBEGIN_STARTED 1
+
+extern __inline long
+__attribute__ ((__gnu_inline__, __always_inline__, __artificial__))
+__TM_simple_begin (void)
+{
+ if (__builtin_expect (__builtin_tbegin (0), 1))
+ return _HTM_TBEGIN_STARTED;
+ return 0;
+}
+
+extern __inline long
+__attribute__ ((__gnu_inline__, __always_inline__, __artificial__))
+__TM_begin (void* const TM_buff)
+{
+ *_TEXASRL_PTR (TM_buff) = 0;
+ if (__builtin_expect (__builtin_tbegin (0), 1))
+ return _HTM_TBEGIN_STARTED;
+#ifdef __powerpc64__
+ *_TEXASR_PTR (TM_buff) = __builtin_get_texasr ();
+#else
+ *_TEXASRU_PTR (TM_buff) = __builtin_get_texasru ();
+ *_TEXASRL_PTR (TM_buff) = __builtin_get_texasr ();
+#endif
+ *_TFIAR_PTR (TM_buff) = __builtin_get_tfiar ();
+ return 0;
+}
+
+extern __inline long
+__attribute__ ((__gnu_inline__, __always_inline__, __artificial__))
+__TM_end (void)
+{
+ if (__builtin_expect (__builtin_tend (0), 1))
+ return 1;
+ return 0;
+}
+
+extern __inline void
+__attribute__ ((__gnu_inline__, __always_inline__, __artificial__))
+__TM_abort (void)
+{
+ __builtin_tabort (0);
+}
+
+extern __inline void
+__attribute__ ((__gnu_inline__, __always_inline__, __artificial__))
+__TM_named_abort (unsigned char const code)
+{
+ __builtin_tabort (code);
+}
+
+extern __inline void
+__attribute__ ((__gnu_inline__, __always_inline__, __artificial__))
+__TM_resume (void)
+{
+ __builtin_tresume ();
+}
+
+extern __inline void
+__attribute__ ((__gnu_inline__, __always_inline__, __artificial__))
+__TM_suspend (void)
+{
+ __builtin_tsuspend ();
+}
+
+extern __inline long
+__attribute__ ((__gnu_inline__, __always_inline__, __artificial__))
+__TM_is_user_abort (void* const TM_buff)
+{
+ texasru_t texasru = *_TEXASRU_PTR (TM_buff);
+ return _TEXASRU_ABORT (texasru);
+}
+
+extern __inline long
+__attribute__ ((__gnu_inline__, __always_inline__, __artificial__))
+__TM_is_named_user_abort (void* const TM_buff, unsigned char *code)
+{
+ texasru_t texasru = *_TEXASRU_PTR (TM_buff);
+
+ *code = _TEXASRU_FAILURE_CODE (texasru);
+ return _TEXASRU_ABORT (texasru);
+}
+
+extern __inline long
+__attribute__ ((__gnu_inline__, __always_inline__, __artificial__))
+__TM_is_illegal (void* const TM_buff)
+{
+ texasru_t texasru = *_TEXASRU_PTR (TM_buff);
+ return _TEXASRU_DISALLOWED (texasru);
+}
+
+extern __inline long
+__attribute__ ((__gnu_inline__, __always_inline__, __artificial__))
+__TM_is_footprint_exceeded (void* const TM_buff)
+{
+ texasru_t texasru = *_TEXASRU_PTR (TM_buff);
+ return _TEXASRU_FOOTPRINT_OVERFLOW (texasru);
+}
+
+extern __inline long
+__attribute__ ((__gnu_inline__, __always_inline__, __artificial__))
+__TM_nesting_depth (void* const TM_buff)
+{
+ texasrl_t texasrl;
+
+ if (_HTM_STATE (__builtin_ttest ()) == _HTM_NONTRANSACTIONAL)
+ {
+ texasrl = *_TEXASRL_PTR (TM_buff);
+ if (!_TEXASR_FAILURE_SUMMARY (texasrl))
+ texasrl = 0;
+ }
+ else
+ texasrl = (texasrl_t) __builtin_get_texasr ();
+
+ return _TEXASR_TRANSACTION_LEVEL (texasrl);
+}
+
+extern __inline long
+__attribute__ ((__gnu_inline__, __always_inline__, __artificial__))
+__TM_is_nested_too_deep(void* const TM_buff)
+{
+ texasru_t texasru = *_TEXASRU_PTR (TM_buff);
+ return _TEXASRU_NESTING_OVERFLOW (texasru);
+}
+
+extern __inline long
+__attribute__ ((__gnu_inline__, __always_inline__, __artificial__))
+__TM_is_conflict(void* const TM_buff)
+{
+ texasru_t texasru = *_TEXASRU_PTR (TM_buff);
+ /* Return TEXASR bits 11 (Self-Induced Conflict) through
+ 14 (Translation Invalidation Conflict). */
+ return (_TEXASRU_EXTRACT_BITS (texasru, 14, 4)) ? 1 : 0;
+}
+
+extern __inline long
+__attribute__ ((__gnu_inline__, __always_inline__, __artificial__))
+__TM_is_failure_persistent(void* const TM_buff)
+{
+ texasru_t texasru = *_TEXASRU_PTR (TM_buff);
+ return _TEXASRU_FAILURE_PERSISTENT (texasru);
+}
+
+extern __inline long
+__attribute__ ((__gnu_inline__, __always_inline__, __artificial__))
+__TM_failure_address(void* const TM_buff)
+{
+ return *_TFIAR_PTR (TM_buff);
+}
+
+extern __inline long long
+__attribute__ ((__gnu_inline__, __always_inline__, __artificial__))
+__TM_failure_code(void* const TM_buff)
+{
+ return *_TEXASR_PTR (TM_buff);
+}
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* __powerpc__ */
+
+#ifdef __s390__
+
+#include <stdint.h>
+
+/* These intrinsics are being made available for compatibility with
+ the IBM XL compiler. For documentation please see the "z/OS XL
+ C/C++ Programming Guide" publically available on the web. */
+
+static __inline long __attribute__((__always_inline__, __nodebug__))
+__TM_simple_begin ()
+{
+ return __builtin_tbegin_nofloat (0);
+}
+
+static __inline long __attribute__((__always_inline__, __nodebug__))
+__TM_begin (void* const tdb)
+{
+ return __builtin_tbegin_nofloat (tdb);
+}
+
+static __inline long __attribute__((__always_inline__, __nodebug__))
+__TM_end ()
+{
+ return __builtin_tend ();
+}
+
+static __inline void __attribute__((__always_inline__))
+__TM_abort ()
+{
+ return __builtin_tabort (_HTM_FIRST_USER_ABORT_CODE);
+}
+
+static __inline void __attribute__((__always_inline__, __nodebug__))
+__TM_named_abort (unsigned char const code)
+{
+ return __builtin_tabort ((int)_HTM_FIRST_USER_ABORT_CODE + code);
+}
+
+static __inline void __attribute__((__always_inline__, __nodebug__))
+__TM_non_transactional_store (void* const addr, long long const value)
+{
+ __builtin_non_tx_store ((uint64_t*)addr, (uint64_t)value);
+}
+
+static __inline long __attribute__((__always_inline__, __nodebug__))
+__TM_nesting_depth (void* const tdb_ptr)
+{
+ int depth = __builtin_tx_nesting_depth ();
+ struct __htm_tdb *tdb = (struct __htm_tdb*)tdb_ptr;
+
+ if (depth != 0)
+ return depth;
+
+ if (tdb->format != 1)
+ return 0;
+ return tdb->nesting_depth;
+}
+
+/* Transaction failure diagnostics */
+
+static __inline long __attribute__((__always_inline__, __nodebug__))
+__TM_is_user_abort (void* const tdb_ptr)
+{
+ struct __htm_tdb *tdb = (struct __htm_tdb*)tdb_ptr;
+
+ if (tdb->format != 1)
+ return 0;
+
+ return !!(tdb->abort_code >= _HTM_FIRST_USER_ABORT_CODE);
+}
+
+static __inline long __attribute__((__always_inline__, __nodebug__))
+__TM_is_named_user_abort (void* const tdb_ptr, unsigned char* code)
+{
+ struct __htm_tdb *tdb = (struct __htm_tdb*)tdb_ptr;
+
+ if (tdb->format != 1)
+ return 0;
+
+ if (tdb->abort_code >= _HTM_FIRST_USER_ABORT_CODE)
+ {
+ *code = tdb->abort_code - _HTM_FIRST_USER_ABORT_CODE;
+ return 1;
+ }
+ return 0;
+}
+
+static __inline long __attribute__((__always_inline__, __nodebug__))
+__TM_is_illegal (void* const tdb_ptr)
+{
+ struct __htm_tdb *tdb = (struct __htm_tdb*)tdb_ptr;
+
+ return (tdb->format == 1
+ && (tdb->abort_code == 4 /* unfiltered program interruption */
+ || tdb->abort_code == 11 /* restricted instruction */));
+}
+
+static __inline long __attribute__((__always_inline__, __nodebug__))
+__TM_is_footprint_exceeded (void* const tdb_ptr)
+{
+ struct __htm_tdb *tdb = (struct __htm_tdb*)tdb_ptr;
+
+ return (tdb->format == 1
+ && (tdb->abort_code == 7 /* fetch overflow */
+ || tdb->abort_code == 8 /* store overflow */));
+}
+
+static __inline long __attribute__((__always_inline__, __nodebug__))
+__TM_is_nested_too_deep (void* const tdb_ptr)
+{
+ struct __htm_tdb *tdb = (struct __htm_tdb*)tdb_ptr;
+
+ return tdb->format == 1 && tdb->abort_code == 13; /* depth exceeded */
+}
+
+static __inline long __attribute__((__always_inline__, __nodebug__))
+__TM_is_conflict (void* const tdb_ptr)
+{
+ struct __htm_tdb *tdb = (struct __htm_tdb*)tdb_ptr;
+
+ return (tdb->format == 1
+ && (tdb->abort_code == 9 /* fetch conflict */
+ || tdb->abort_code == 10 /* store conflict */));
+}
+
+static __inline long __attribute__((__always_inline__, __nodebug__))
+__TM_is_failure_persistent (long const result)
+{
+ return result == _HTM_TBEGIN_PERSISTENT;
+}
+
+static __inline long __attribute__((__always_inline__, __nodebug__))
+__TM_failure_address (void* const tdb_ptr)
+{
+ struct __htm_tdb *tdb = (struct __htm_tdb*)tdb_ptr;
+ return tdb->atia;
+}
+
+static __inline long __attribute__((__always_inline__, __nodebug__))
+__TM_failure_code (void* const tdb_ptr)
+{
+ struct __htm_tdb *tdb = (struct __htm_tdb*)tdb_ptr;
+
+ return tdb->abort_code;
+}
+
+#endif /* __s390__ */
+
+#endif /* __HTMXLINTRIN_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/ia32intrin.h b/contrib/llvm/tools/clang/lib/Headers/ia32intrin.h
new file mode 100644
index 0000000..5adf3f1
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/ia32intrin.h
@@ -0,0 +1,101 @@
+/* ===-------- ia32intrin.h ---------------------------------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#ifndef __X86INTRIN_H
+#error "Never use <ia32intrin.h> directly; include <x86intrin.h> instead."
+#endif
+
+#ifndef __IA32INTRIN_H
+#define __IA32INTRIN_H
+
+#ifdef __x86_64__
+static __inline__ unsigned long long __attribute__((__always_inline__, __nodebug__))
+__readeflags(void)
+{
+ unsigned long long __res = 0;
+ __asm__ __volatile__ ("pushf\n\t"
+ "popq %0\n"
+ :"=r"(__res)
+ :
+ :
+ );
+ return __res;
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+__writeeflags(unsigned long long __f)
+{
+ __asm__ __volatile__ ("pushq %0\n\t"
+ "popf\n"
+ :
+ :"r"(__f)
+ :"flags"
+ );
+}
+
+#else /* !__x86_64__ */
+static __inline__ unsigned int __attribute__((__always_inline__, __nodebug__))
+__readeflags(void)
+{
+ unsigned int __res = 0;
+ __asm__ __volatile__ ("pushf\n\t"
+ "popl %0\n"
+ :"=r"(__res)
+ :
+ :
+ );
+ return __res;
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+__writeeflags(unsigned int __f)
+{
+ __asm__ __volatile__ ("pushl %0\n\t"
+ "popf\n"
+ :
+ :"r"(__f)
+ :"flags"
+ );
+}
+#endif /* !__x86_64__ */
+
+static __inline__ unsigned long long __attribute__((__always_inline__, __nodebug__))
+__rdpmc(int __A) {
+ return __builtin_ia32_rdpmc(__A);
+}
+
+/* __rdtsc */
+static __inline__ unsigned long long __attribute__((__always_inline__, __nodebug__))
+__rdtsc(void) {
+ return __builtin_ia32_rdtsc();
+}
+
+/* __rdtscp */
+static __inline__ unsigned long long __attribute__((__always_inline__, __nodebug__))
+__rdtscp(unsigned int *__A) {
+ return __builtin_ia32_rdtscp(__A);
+}
+
+#define _rdtsc() __rdtsc()
+
+#endif /* __IA32INTRIN_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/immintrin.h b/contrib/llvm/tools/clang/lib/Headers/immintrin.h
new file mode 100644
index 0000000..ac7d54a
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/immintrin.h
@@ -0,0 +1,202 @@
+/*===---- immintrin.h - Intel intrinsics -----------------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#ifndef __IMMINTRIN_H
+#define __IMMINTRIN_H
+
+#ifdef __MMX__
+#include <mmintrin.h>
+#endif
+
+#ifdef __SSE__
+#include <xmmintrin.h>
+#endif
+
+#ifdef __SSE2__
+#include <emmintrin.h>
+#endif
+
+#ifdef __SSE3__
+#include <pmmintrin.h>
+#endif
+
+#ifdef __SSSE3__
+#include <tmmintrin.h>
+#endif
+
+#if defined (__SSE4_2__) || defined (__SSE4_1__)
+#include <smmintrin.h>
+#endif
+
+#if defined (__AES__) || defined (__PCLMUL__)
+#include <wmmintrin.h>
+#endif
+
+#ifdef __AVX__
+#include <avxintrin.h>
+#endif
+
+#ifdef __AVX2__
+#include <avx2intrin.h>
+#endif
+
+#ifdef __BMI__
+#include <bmiintrin.h>
+#endif
+
+#ifdef __BMI2__
+#include <bmi2intrin.h>
+#endif
+
+#ifdef __LZCNT__
+#include <lzcntintrin.h>
+#endif
+
+#ifdef __FMA__
+#include <fmaintrin.h>
+#endif
+
+#ifdef __AVX512F__
+#include <avx512fintrin.h>
+#endif
+
+#ifdef __AVX512VL__
+#include <avx512vlintrin.h>
+#endif
+
+#ifdef __AVX512BW__
+#include <avx512bwintrin.h>
+#endif
+
+#ifdef __AVX512DQ__
+#include <avx512dqintrin.h>
+#endif
+
+#if defined (__AVX512VL__) && defined (__AVX512BW__)
+#include <avx512vlbwintrin.h>
+#endif
+
+#if defined (__AVX512VL__) && defined (__AVX512DQ__)
+#include <avx512vldqintrin.h>
+#endif
+
+#ifdef __AVX512ER__
+#include <avx512erintrin.h>
+#endif
+
+#ifdef __RDRND__
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_rdrand16_step(unsigned short *__p)
+{
+ return __builtin_ia32_rdrand16_step(__p);
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_rdrand32_step(unsigned int *__p)
+{
+ return __builtin_ia32_rdrand32_step(__p);
+}
+
+#ifdef __x86_64__
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_rdrand64_step(unsigned long long *__p)
+{
+ return __builtin_ia32_rdrand64_step(__p);
+}
+#endif
+#endif /* __RDRND__ */
+
+#ifdef __FSGSBASE__
+#ifdef __x86_64__
+static __inline__ unsigned int __attribute__((__always_inline__, __nodebug__))
+_readfsbase_u32(void)
+{
+ return __builtin_ia32_rdfsbase32();
+}
+
+static __inline__ unsigned long long __attribute__((__always_inline__, __nodebug__))
+_readfsbase_u64(void)
+{
+ return __builtin_ia32_rdfsbase64();
+}
+
+static __inline__ unsigned int __attribute__((__always_inline__, __nodebug__))
+_readgsbase_u32(void)
+{
+ return __builtin_ia32_rdgsbase32();
+}
+
+static __inline__ unsigned long long __attribute__((__always_inline__, __nodebug__))
+_readgsbase_u64(void)
+{
+ return __builtin_ia32_rdgsbase64();
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_writefsbase_u32(unsigned int __V)
+{
+ return __builtin_ia32_wrfsbase32(__V);
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_writefsbase_u64(unsigned long long __V)
+{
+ return __builtin_ia32_wrfsbase64(__V);
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_writegsbase_u32(unsigned int __V)
+{
+ return __builtin_ia32_wrgsbase32(__V);
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_writegsbase_u64(unsigned long long __V)
+{
+ return __builtin_ia32_wrgsbase64(__V);
+}
+#endif
+#endif /* __FSGSBASE__ */
+
+#ifdef __RTM__
+#include <rtmintrin.h>
+#endif
+
+/* FIXME: check __HLE__ as well when HLE is supported. */
+#if defined (__RTM__)
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_xtest(void)
+{
+ return __builtin_ia32_xtest();
+}
+#endif
+
+#ifdef __SHA__
+#include <shaintrin.h>
+#endif
+
+/* Some intrinsics inside adxintrin.h are available only if __ADX__ defined,
+ * whereas others are also available if __ADX__ undefined */
+#include <adxintrin.h>
+
+#endif /* __IMMINTRIN_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/iso646.h b/contrib/llvm/tools/clang/lib/Headers/iso646.h
new file mode 100644
index 0000000..dca13c5
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/iso646.h
@@ -0,0 +1,43 @@
+/*===---- iso646.h - Standard header for alternate spellings of operators---===
+ *
+ * Copyright (c) 2008 Eli Friedman
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#ifndef __ISO646_H
+#define __ISO646_H
+
+#ifndef __cplusplus
+#define and &&
+#define and_eq &=
+#define bitand &
+#define bitor |
+#define compl ~
+#define not !
+#define not_eq !=
+#define or ||
+#define or_eq |=
+#define xor ^
+#define xor_eq ^=
+#endif
+
+#endif /* __ISO646_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/limits.h b/contrib/llvm/tools/clang/lib/Headers/limits.h
new file mode 100644
index 0000000..f04187c
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/limits.h
@@ -0,0 +1,118 @@
+/*===---- limits.h - Standard header for integer sizes --------------------===*\
+ *
+ * Copyright (c) 2009 Chris Lattner
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+\*===----------------------------------------------------------------------===*/
+
+#ifndef __CLANG_LIMITS_H
+#define __CLANG_LIMITS_H
+
+/* The system's limits.h may, in turn, try to #include_next GCC's limits.h.
+ Avert this #include_next madness. */
+#if defined __GNUC__ && !defined _GCC_LIMITS_H_
+#define _GCC_LIMITS_H_
+#endif
+
+/* System headers include a number of constants from POSIX in <limits.h>.
+ Include it if we're hosted. */
+#if __STDC_HOSTED__ && __has_include_next(<limits.h>)
+#include_next <limits.h>
+#endif
+
+/* Many system headers try to "help us out" by defining these. No really, we
+ know how big each datatype is. */
+#undef SCHAR_MIN
+#undef SCHAR_MAX
+#undef UCHAR_MAX
+#undef SHRT_MIN
+#undef SHRT_MAX
+#undef USHRT_MAX
+#undef INT_MIN
+#undef INT_MAX
+#undef UINT_MAX
+#undef LONG_MIN
+#undef LONG_MAX
+#undef ULONG_MAX
+
+#undef CHAR_BIT
+#undef CHAR_MIN
+#undef CHAR_MAX
+
+/* C90/99 5.2.4.2.1 */
+#define SCHAR_MAX __SCHAR_MAX__
+#define SHRT_MAX __SHRT_MAX__
+#define INT_MAX __INT_MAX__
+#define LONG_MAX __LONG_MAX__
+
+#define SCHAR_MIN (-__SCHAR_MAX__-1)
+#define SHRT_MIN (-__SHRT_MAX__ -1)
+#define INT_MIN (-__INT_MAX__ -1)
+#define LONG_MIN (-__LONG_MAX__ -1L)
+
+#define UCHAR_MAX (__SCHAR_MAX__*2 +1)
+#define USHRT_MAX (__SHRT_MAX__ *2 +1)
+#define UINT_MAX (__INT_MAX__ *2U +1U)
+#define ULONG_MAX (__LONG_MAX__ *2UL+1UL)
+
+#ifndef MB_LEN_MAX
+#define MB_LEN_MAX 1
+#endif
+
+#define CHAR_BIT __CHAR_BIT__
+
+#ifdef __CHAR_UNSIGNED__ /* -funsigned-char */
+#define CHAR_MIN 0
+#define CHAR_MAX UCHAR_MAX
+#else
+#define CHAR_MIN SCHAR_MIN
+#define CHAR_MAX __SCHAR_MAX__
+#endif
+
+/* C99 5.2.4.2.1: Added long long.
+ C++11 18.3.3.2: same contents as the Standard C Library header <limits.h>.
+ */
+#if __STDC_VERSION__ >= 199901L || __cplusplus >= 201103L
+
+#undef LLONG_MIN
+#undef LLONG_MAX
+#undef ULLONG_MAX
+
+#define LLONG_MAX __LONG_LONG_MAX__
+#define LLONG_MIN (-__LONG_LONG_MAX__-1LL)
+#define ULLONG_MAX (__LONG_LONG_MAX__*2ULL+1ULL)
+#endif
+
+/* LONG_LONG_MIN/LONG_LONG_MAX/ULONG_LONG_MAX are a GNU extension. It's too bad
+ that we don't have something like #pragma poison that could be used to
+ deprecate a macro - the code should just use LLONG_MAX and friends.
+ */
+#if defined(__GNU_LIBRARY__) ? defined(__USE_GNU) : !defined(__STRICT_ANSI__)
+
+#undef LONG_LONG_MIN
+#undef LONG_LONG_MAX
+#undef ULONG_LONG_MAX
+
+#define LONG_LONG_MAX __LONG_LONG_MAX__
+#define LONG_LONG_MIN (-__LONG_LONG_MAX__-1LL)
+#define ULONG_LONG_MAX (__LONG_LONG_MAX__*2ULL+1ULL)
+#endif
+
+#endif /* __CLANG_LIMITS_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/lzcntintrin.h b/contrib/llvm/tools/clang/lib/Headers/lzcntintrin.h
new file mode 100644
index 0000000..35d6659
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/lzcntintrin.h
@@ -0,0 +1,67 @@
+/*===---- lzcntintrin.h - LZCNT intrinsics ---------------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#if !defined __X86INTRIN_H && !defined __IMMINTRIN_H
+#error "Never use <lzcntintrin.h> directly; include <x86intrin.h> instead."
+#endif
+
+#ifndef __LZCNT__
+# error "LZCNT instruction is not enabled"
+#endif /* __LZCNT__ */
+
+#ifndef __LZCNTINTRIN_H
+#define __LZCNTINTRIN_H
+
+static __inline__ unsigned short __attribute__((__always_inline__, __nodebug__))
+__lzcnt16(unsigned short __X)
+{
+ return __X ? __builtin_clzs(__X) : 16;
+}
+
+static __inline__ unsigned int __attribute__((__always_inline__, __nodebug__))
+__lzcnt32(unsigned int __X)
+{
+ return __X ? __builtin_clz(__X) : 32;
+}
+
+static __inline__ unsigned int __attribute__((__always_inline__, __nodebug__))
+_lzcnt_u32(unsigned int __X)
+{
+ return __X ? __builtin_clz(__X) : 32;
+}
+
+#ifdef __x86_64__
+static __inline__ unsigned long long __attribute__((__always_inline__, __nodebug__))
+__lzcnt64(unsigned long long __X)
+{
+ return __X ? __builtin_clzll(__X) : 64;
+}
+
+static __inline__ unsigned long long __attribute__((__always_inline__, __nodebug__))
+_lzcnt_u64(unsigned long long __X)
+{
+ return __X ? __builtin_clzll(__X) : 64;
+}
+#endif
+
+#endif /* __LZCNTINTRIN_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/mm3dnow.h b/contrib/llvm/tools/clang/lib/Headers/mm3dnow.h
new file mode 100644
index 0000000..5242d99
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/mm3dnow.h
@@ -0,0 +1,162 @@
+/*===---- mm3dnow.h - 3DNow! intrinsics ------------------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#ifndef _MM3DNOW_H_INCLUDED
+#define _MM3DNOW_H_INCLUDED
+
+#include <mmintrin.h>
+#include <prfchwintrin.h>
+
+typedef float __v2sf __attribute__((__vector_size__(8)));
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_m_femms() {
+ __builtin_ia32_femms();
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_m_pavgusb(__m64 __m1, __m64 __m2) {
+ return (__m64)__builtin_ia32_pavgusb((__v8qi)__m1, (__v8qi)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_m_pf2id(__m64 __m) {
+ return (__m64)__builtin_ia32_pf2id((__v2sf)__m);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_m_pfacc(__m64 __m1, __m64 __m2) {
+ return (__m64)__builtin_ia32_pfacc((__v2sf)__m1, (__v2sf)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_m_pfadd(__m64 __m1, __m64 __m2) {
+ return (__m64)__builtin_ia32_pfadd((__v2sf)__m1, (__v2sf)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_m_pfcmpeq(__m64 __m1, __m64 __m2) {
+ return (__m64)__builtin_ia32_pfcmpeq((__v2sf)__m1, (__v2sf)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_m_pfcmpge(__m64 __m1, __m64 __m2) {
+ return (__m64)__builtin_ia32_pfcmpge((__v2sf)__m1, (__v2sf)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_m_pfcmpgt(__m64 __m1, __m64 __m2) {
+ return (__m64)__builtin_ia32_pfcmpgt((__v2sf)__m1, (__v2sf)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_m_pfmax(__m64 __m1, __m64 __m2) {
+ return (__m64)__builtin_ia32_pfmax((__v2sf)__m1, (__v2sf)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_m_pfmin(__m64 __m1, __m64 __m2) {
+ return (__m64)__builtin_ia32_pfmin((__v2sf)__m1, (__v2sf)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_m_pfmul(__m64 __m1, __m64 __m2) {
+ return (__m64)__builtin_ia32_pfmul((__v2sf)__m1, (__v2sf)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_m_pfrcp(__m64 __m) {
+ return (__m64)__builtin_ia32_pfrcp((__v2sf)__m);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_m_pfrcpit1(__m64 __m1, __m64 __m2) {
+ return (__m64)__builtin_ia32_pfrcpit1((__v2sf)__m1, (__v2sf)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_m_pfrcpit2(__m64 __m1, __m64 __m2) {
+ return (__m64)__builtin_ia32_pfrcpit2((__v2sf)__m1, (__v2sf)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_m_pfrsqrt(__m64 __m) {
+ return (__m64)__builtin_ia32_pfrsqrt((__v2sf)__m);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_m_pfrsqrtit1(__m64 __m1, __m64 __m2) {
+ return (__m64)__builtin_ia32_pfrsqit1((__v2sf)__m1, (__v2sf)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_m_pfsub(__m64 __m1, __m64 __m2) {
+ return (__m64)__builtin_ia32_pfsub((__v2sf)__m1, (__v2sf)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_m_pfsubr(__m64 __m1, __m64 __m2) {
+ return (__m64)__builtin_ia32_pfsubr((__v2sf)__m1, (__v2sf)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_m_pi2fd(__m64 __m) {
+ return (__m64)__builtin_ia32_pi2fd((__v2si)__m);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_m_pmulhrw(__m64 __m1, __m64 __m2) {
+ return (__m64)__builtin_ia32_pmulhrw((__v4hi)__m1, (__v4hi)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_m_pf2iw(__m64 __m) {
+ return (__m64)__builtin_ia32_pf2iw((__v2sf)__m);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_m_pfnacc(__m64 __m1, __m64 __m2) {
+ return (__m64)__builtin_ia32_pfnacc((__v2sf)__m1, (__v2sf)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_m_pfpnacc(__m64 __m1, __m64 __m2) {
+ return (__m64)__builtin_ia32_pfpnacc((__v2sf)__m1, (__v2sf)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_m_pi2fw(__m64 __m) {
+ return (__m64)__builtin_ia32_pi2fw((__v2si)__m);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_m_pswapdsf(__m64 __m) {
+ return (__m64)__builtin_ia32_pswapdsf((__v2sf)__m);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_m_pswapdsi(__m64 __m) {
+ return (__m64)__builtin_ia32_pswapdsi((__v2si)__m);
+}
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/Headers/mm_malloc.h b/contrib/llvm/tools/clang/lib/Headers/mm_malloc.h
new file mode 100644
index 0000000..305afd3
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/mm_malloc.h
@@ -0,0 +1,75 @@
+/*===---- mm_malloc.h - Allocating and Freeing Aligned Memory Blocks -------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#ifndef __MM_MALLOC_H
+#define __MM_MALLOC_H
+
+#include <stdlib.h>
+
+#ifdef _WIN32
+#include <malloc.h>
+#else
+#ifndef __cplusplus
+extern int posix_memalign(void **__memptr, size_t __alignment, size_t __size);
+#else
+// Some systems (e.g. those with GNU libc) declare posix_memalign with an
+// exception specifier. Via an "egregious workaround" in
+// Sema::CheckEquivalentExceptionSpec, Clang accepts the following as a valid
+// redeclaration of glibc's declaration.
+extern "C" int posix_memalign(void **__memptr, size_t __alignment, size_t __size);
+#endif
+#endif
+
+#if !(defined(_WIN32) && defined(_mm_malloc))
+static __inline__ void *__attribute__((__always_inline__, __nodebug__,
+ __malloc__))
+_mm_malloc(size_t __size, size_t __align)
+{
+ if (__align == 1) {
+ return malloc(__size);
+ }
+
+ if (!(__align & (__align - 1)) && __align < sizeof(void *))
+ __align = sizeof(void *);
+
+ void *__mallocedMemory;
+#if defined(__MINGW32__)
+ __mallocedMemory = __mingw_aligned_malloc(__size, __align);
+#elif defined(_WIN32)
+ __mallocedMemory = _aligned_malloc(__size, __align);
+#else
+ if (posix_memalign(&__mallocedMemory, __align, __size))
+ return 0;
+#endif
+
+ return __mallocedMemory;
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_mm_free(void *__p)
+{
+ free(__p);
+}
+#endif
+
+#endif /* __MM_MALLOC_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/mmintrin.h b/contrib/llvm/tools/clang/lib/Headers/mmintrin.h
new file mode 100644
index 0000000..986870a
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/mmintrin.h
@@ -0,0 +1,503 @@
+/*===---- mmintrin.h - MMX intrinsics --------------------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#ifndef __MMINTRIN_H
+#define __MMINTRIN_H
+
+#ifndef __MMX__
+#error "MMX instruction set not enabled"
+#else
+
+typedef long long __m64 __attribute__((__vector_size__(8)));
+
+typedef int __v2si __attribute__((__vector_size__(8)));
+typedef short __v4hi __attribute__((__vector_size__(8)));
+typedef char __v8qi __attribute__((__vector_size__(8)));
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_mm_empty(void)
+{
+ __builtin_ia32_emms();
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_cvtsi32_si64(int __i)
+{
+ return (__m64)__builtin_ia32_vec_init_v2si(__i, 0);
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_cvtsi64_si32(__m64 __m)
+{
+ return __builtin_ia32_vec_ext_v2si((__v2si)__m, 0);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_cvtsi64_m64(long long __i)
+{
+ return (__m64)__i;
+}
+
+static __inline__ long long __attribute__((__always_inline__, __nodebug__))
+_mm_cvtm64_si64(__m64 __m)
+{
+ return (long long)__m;
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_packs_pi16(__m64 __m1, __m64 __m2)
+{
+ return (__m64)__builtin_ia32_packsswb((__v4hi)__m1, (__v4hi)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_packs_pi32(__m64 __m1, __m64 __m2)
+{
+ return (__m64)__builtin_ia32_packssdw((__v2si)__m1, (__v2si)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_packs_pu16(__m64 __m1, __m64 __m2)
+{
+ return (__m64)__builtin_ia32_packuswb((__v4hi)__m1, (__v4hi)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_unpackhi_pi8(__m64 __m1, __m64 __m2)
+{
+ return (__m64)__builtin_ia32_punpckhbw((__v8qi)__m1, (__v8qi)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_unpackhi_pi16(__m64 __m1, __m64 __m2)
+{
+ return (__m64)__builtin_ia32_punpckhwd((__v4hi)__m1, (__v4hi)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_unpackhi_pi32(__m64 __m1, __m64 __m2)
+{
+ return (__m64)__builtin_ia32_punpckhdq((__v2si)__m1, (__v2si)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_unpacklo_pi8(__m64 __m1, __m64 __m2)
+{
+ return (__m64)__builtin_ia32_punpcklbw((__v8qi)__m1, (__v8qi)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_unpacklo_pi16(__m64 __m1, __m64 __m2)
+{
+ return (__m64)__builtin_ia32_punpcklwd((__v4hi)__m1, (__v4hi)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_unpacklo_pi32(__m64 __m1, __m64 __m2)
+{
+ return (__m64)__builtin_ia32_punpckldq((__v2si)__m1, (__v2si)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_add_pi8(__m64 __m1, __m64 __m2)
+{
+ return (__m64)__builtin_ia32_paddb((__v8qi)__m1, (__v8qi)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_add_pi16(__m64 __m1, __m64 __m2)
+{
+ return (__m64)__builtin_ia32_paddw((__v4hi)__m1, (__v4hi)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_add_pi32(__m64 __m1, __m64 __m2)
+{
+ return (__m64)__builtin_ia32_paddd((__v2si)__m1, (__v2si)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_adds_pi8(__m64 __m1, __m64 __m2)
+{
+ return (__m64)__builtin_ia32_paddsb((__v8qi)__m1, (__v8qi)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_adds_pi16(__m64 __m1, __m64 __m2)
+{
+ return (__m64)__builtin_ia32_paddsw((__v4hi)__m1, (__v4hi)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_adds_pu8(__m64 __m1, __m64 __m2)
+{
+ return (__m64)__builtin_ia32_paddusb((__v8qi)__m1, (__v8qi)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_adds_pu16(__m64 __m1, __m64 __m2)
+{
+ return (__m64)__builtin_ia32_paddusw((__v4hi)__m1, (__v4hi)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_sub_pi8(__m64 __m1, __m64 __m2)
+{
+ return (__m64)__builtin_ia32_psubb((__v8qi)__m1, (__v8qi)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_sub_pi16(__m64 __m1, __m64 __m2)
+{
+ return (__m64)__builtin_ia32_psubw((__v4hi)__m1, (__v4hi)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_sub_pi32(__m64 __m1, __m64 __m2)
+{
+ return (__m64)__builtin_ia32_psubd((__v2si)__m1, (__v2si)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_subs_pi8(__m64 __m1, __m64 __m2)
+{
+ return (__m64)__builtin_ia32_psubsb((__v8qi)__m1, (__v8qi)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_subs_pi16(__m64 __m1, __m64 __m2)
+{
+ return (__m64)__builtin_ia32_psubsw((__v4hi)__m1, (__v4hi)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_subs_pu8(__m64 __m1, __m64 __m2)
+{
+ return (__m64)__builtin_ia32_psubusb((__v8qi)__m1, (__v8qi)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_subs_pu16(__m64 __m1, __m64 __m2)
+{
+ return (__m64)__builtin_ia32_psubusw((__v4hi)__m1, (__v4hi)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_madd_pi16(__m64 __m1, __m64 __m2)
+{
+ return (__m64)__builtin_ia32_pmaddwd((__v4hi)__m1, (__v4hi)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_mulhi_pi16(__m64 __m1, __m64 __m2)
+{
+ return (__m64)__builtin_ia32_pmulhw((__v4hi)__m1, (__v4hi)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_mullo_pi16(__m64 __m1, __m64 __m2)
+{
+ return (__m64)__builtin_ia32_pmullw((__v4hi)__m1, (__v4hi)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_sll_pi16(__m64 __m, __m64 __count)
+{
+ return (__m64)__builtin_ia32_psllw((__v4hi)__m, __count);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_slli_pi16(__m64 __m, int __count)
+{
+ return (__m64)__builtin_ia32_psllwi((__v4hi)__m, __count);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_sll_pi32(__m64 __m, __m64 __count)
+{
+ return (__m64)__builtin_ia32_pslld((__v2si)__m, __count);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_slli_pi32(__m64 __m, int __count)
+{
+ return (__m64)__builtin_ia32_pslldi((__v2si)__m, __count);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_sll_si64(__m64 __m, __m64 __count)
+{
+ return (__m64)__builtin_ia32_psllq(__m, __count);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_slli_si64(__m64 __m, int __count)
+{
+ return (__m64)__builtin_ia32_psllqi(__m, __count);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_sra_pi16(__m64 __m, __m64 __count)
+{
+ return (__m64)__builtin_ia32_psraw((__v4hi)__m, __count);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_srai_pi16(__m64 __m, int __count)
+{
+ return (__m64)__builtin_ia32_psrawi((__v4hi)__m, __count);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_sra_pi32(__m64 __m, __m64 __count)
+{
+ return (__m64)__builtin_ia32_psrad((__v2si)__m, __count);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_srai_pi32(__m64 __m, int __count)
+{
+ return (__m64)__builtin_ia32_psradi((__v2si)__m, __count);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_srl_pi16(__m64 __m, __m64 __count)
+{
+ return (__m64)__builtin_ia32_psrlw((__v4hi)__m, __count);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_srli_pi16(__m64 __m, int __count)
+{
+ return (__m64)__builtin_ia32_psrlwi((__v4hi)__m, __count);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_srl_pi32(__m64 __m, __m64 __count)
+{
+ return (__m64)__builtin_ia32_psrld((__v2si)__m, __count);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_srli_pi32(__m64 __m, int __count)
+{
+ return (__m64)__builtin_ia32_psrldi((__v2si)__m, __count);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_srl_si64(__m64 __m, __m64 __count)
+{
+ return (__m64)__builtin_ia32_psrlq(__m, __count);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_srli_si64(__m64 __m, int __count)
+{
+ return (__m64)__builtin_ia32_psrlqi(__m, __count);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_and_si64(__m64 __m1, __m64 __m2)
+{
+ return __builtin_ia32_pand(__m1, __m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_andnot_si64(__m64 __m1, __m64 __m2)
+{
+ return __builtin_ia32_pandn(__m1, __m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_or_si64(__m64 __m1, __m64 __m2)
+{
+ return __builtin_ia32_por(__m1, __m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_xor_si64(__m64 __m1, __m64 __m2)
+{
+ return __builtin_ia32_pxor(__m1, __m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpeq_pi8(__m64 __m1, __m64 __m2)
+{
+ return (__m64)__builtin_ia32_pcmpeqb((__v8qi)__m1, (__v8qi)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpeq_pi16(__m64 __m1, __m64 __m2)
+{
+ return (__m64)__builtin_ia32_pcmpeqw((__v4hi)__m1, (__v4hi)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpeq_pi32(__m64 __m1, __m64 __m2)
+{
+ return (__m64)__builtin_ia32_pcmpeqd((__v2si)__m1, (__v2si)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpgt_pi8(__m64 __m1, __m64 __m2)
+{
+ return (__m64)__builtin_ia32_pcmpgtb((__v8qi)__m1, (__v8qi)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpgt_pi16(__m64 __m1, __m64 __m2)
+{
+ return (__m64)__builtin_ia32_pcmpgtw((__v4hi)__m1, (__v4hi)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpgt_pi32(__m64 __m1, __m64 __m2)
+{
+ return (__m64)__builtin_ia32_pcmpgtd((__v2si)__m1, (__v2si)__m2);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_setzero_si64(void)
+{
+ return (__m64){ 0LL };
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_set_pi32(int __i1, int __i0)
+{
+ return (__m64)__builtin_ia32_vec_init_v2si(__i0, __i1);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_set_pi16(short __s3, short __s2, short __s1, short __s0)
+{
+ return (__m64)__builtin_ia32_vec_init_v4hi(__s0, __s1, __s2, __s3);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_set_pi8(char __b7, char __b6, char __b5, char __b4, char __b3, char __b2,
+ char __b1, char __b0)
+{
+ return (__m64)__builtin_ia32_vec_init_v8qi(__b0, __b1, __b2, __b3,
+ __b4, __b5, __b6, __b7);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_set1_pi32(int __i)
+{
+ return _mm_set_pi32(__i, __i);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_set1_pi16(short __w)
+{
+ return _mm_set_pi16(__w, __w, __w, __w);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_set1_pi8(char __b)
+{
+ return _mm_set_pi8(__b, __b, __b, __b, __b, __b, __b, __b);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_setr_pi32(int __i0, int __i1)
+{
+ return _mm_set_pi32(__i1, __i0);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_setr_pi16(short __w0, short __w1, short __w2, short __w3)
+{
+ return _mm_set_pi16(__w3, __w2, __w1, __w0);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_setr_pi8(char __b0, char __b1, char __b2, char __b3, char __b4, char __b5,
+ char __b6, char __b7)
+{
+ return _mm_set_pi8(__b7, __b6, __b5, __b4, __b3, __b2, __b1, __b0);
+}
+
+
+/* Aliases for compatibility. */
+#define _m_empty _mm_empty
+#define _m_from_int _mm_cvtsi32_si64
+#define _m_to_int _mm_cvtsi64_si32
+#define _m_packsswb _mm_packs_pi16
+#define _m_packssdw _mm_packs_pi32
+#define _m_packuswb _mm_packs_pu16
+#define _m_punpckhbw _mm_unpackhi_pi8
+#define _m_punpckhwd _mm_unpackhi_pi16
+#define _m_punpckhdq _mm_unpackhi_pi32
+#define _m_punpcklbw _mm_unpacklo_pi8
+#define _m_punpcklwd _mm_unpacklo_pi16
+#define _m_punpckldq _mm_unpacklo_pi32
+#define _m_paddb _mm_add_pi8
+#define _m_paddw _mm_add_pi16
+#define _m_paddd _mm_add_pi32
+#define _m_paddsb _mm_adds_pi8
+#define _m_paddsw _mm_adds_pi16
+#define _m_paddusb _mm_adds_pu8
+#define _m_paddusw _mm_adds_pu16
+#define _m_psubb _mm_sub_pi8
+#define _m_psubw _mm_sub_pi16
+#define _m_psubd _mm_sub_pi32
+#define _m_psubsb _mm_subs_pi8
+#define _m_psubsw _mm_subs_pi16
+#define _m_psubusb _mm_subs_pu8
+#define _m_psubusw _mm_subs_pu16
+#define _m_pmaddwd _mm_madd_pi16
+#define _m_pmulhw _mm_mulhi_pi16
+#define _m_pmullw _mm_mullo_pi16
+#define _m_psllw _mm_sll_pi16
+#define _m_psllwi _mm_slli_pi16
+#define _m_pslld _mm_sll_pi32
+#define _m_pslldi _mm_slli_pi32
+#define _m_psllq _mm_sll_si64
+#define _m_psllqi _mm_slli_si64
+#define _m_psraw _mm_sra_pi16
+#define _m_psrawi _mm_srai_pi16
+#define _m_psrad _mm_sra_pi32
+#define _m_psradi _mm_srai_pi32
+#define _m_psrlw _mm_srl_pi16
+#define _m_psrlwi _mm_srli_pi16
+#define _m_psrld _mm_srl_pi32
+#define _m_psrldi _mm_srli_pi32
+#define _m_psrlq _mm_srl_si64
+#define _m_psrlqi _mm_srli_si64
+#define _m_pand _mm_and_si64
+#define _m_pandn _mm_andnot_si64
+#define _m_por _mm_or_si64
+#define _m_pxor _mm_xor_si64
+#define _m_pcmpeqb _mm_cmpeq_pi8
+#define _m_pcmpeqw _mm_cmpeq_pi16
+#define _m_pcmpeqd _mm_cmpeq_pi32
+#define _m_pcmpgtb _mm_cmpgt_pi8
+#define _m_pcmpgtw _mm_cmpgt_pi16
+#define _m_pcmpgtd _mm_cmpgt_pi32
+
+#endif /* __MMX__ */
+
+#endif /* __MMINTRIN_H */
+
diff --git a/contrib/llvm/tools/clang/lib/Headers/module.modulemap b/contrib/llvm/tools/clang/lib/Headers/module.modulemap
new file mode 100644
index 0000000..ac5876f
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/module.modulemap
@@ -0,0 +1,189 @@
+module _Builtin_intrinsics [system] [extern_c] {
+ explicit module altivec {
+ requires altivec
+ header "altivec.h"
+ }
+
+ explicit module arm {
+ requires arm
+
+ explicit module acle {
+ header "arm_acle.h"
+ export *
+ }
+
+ explicit module neon {
+ requires neon
+ header "arm_neon.h"
+ export *
+ }
+ }
+
+ explicit module intel {
+ requires x86
+ export *
+
+ header "immintrin.h"
+ header "x86intrin.h"
+
+ explicit module mm_malloc {
+ header "mm_malloc.h"
+ export * // note: for <stdlib.h> dependency
+ }
+
+ explicit module cpuid {
+ requires x86
+ header "cpuid.h"
+ }
+
+ explicit module mmx {
+ requires mmx
+ header "mmintrin.h"
+ }
+
+ explicit module f16c {
+ requires f16c
+ header "f16cintrin.h"
+ }
+
+ explicit module sse {
+ requires sse
+ export mmx
+ export sse2 // note: for hackish <emmintrin.h> dependency
+ header "xmmintrin.h"
+ }
+
+ explicit module sse2 {
+ requires sse2
+ export sse
+ header "emmintrin.h"
+ }
+
+ explicit module sse3 {
+ requires sse3
+ export sse2
+ header "pmmintrin.h"
+ }
+
+ explicit module ssse3 {
+ requires ssse3
+ export sse3
+ header "tmmintrin.h"
+ }
+
+ explicit module sse4_1 {
+ requires sse41
+ export ssse3
+ header "smmintrin.h"
+ }
+
+ explicit module sse4_2 {
+ requires sse42
+ export sse4_1
+ header "nmmintrin.h"
+ }
+
+ explicit module sse4a {
+ requires sse4a
+ export sse3
+ header "ammintrin.h"
+ }
+
+ explicit module avx {
+ requires avx
+ export sse4_2
+ header "avxintrin.h"
+ }
+
+ explicit module avx2 {
+ requires avx2
+ export avx
+ header "avx2intrin.h"
+ }
+
+ explicit module avx512f {
+ requires avx512f
+ export avx2
+ header "avx512fintrin.h"
+ }
+
+ explicit module avx512er {
+ requires avx512er
+ header "avx512erintrin.h"
+ }
+
+ explicit module bmi {
+ requires bmi
+ header "bmiintrin.h"
+ }
+
+ explicit module bmi2 {
+ requires bmi2
+ header "bmi2intrin.h"
+ }
+
+ explicit module fma {
+ requires fma
+ header "fmaintrin.h"
+ }
+
+ explicit module fma4 {
+ requires fma4
+ export sse3
+ header "fma4intrin.h"
+ }
+
+ explicit module lzcnt {
+ requires lzcnt
+ header "lzcntintrin.h"
+ }
+
+ explicit module popcnt {
+ requires popcnt
+ header "popcntintrin.h"
+ }
+
+ explicit module mm3dnow {
+ requires mm3dnow
+ header "mm3dnow.h"
+ }
+
+ explicit module xop {
+ requires xop
+ export fma4
+ header "xopintrin.h"
+ }
+
+ explicit module aes_pclmul {
+ requires aes, pclmul
+ header "wmmintrin.h"
+ }
+
+ explicit module aes {
+ requires aes
+ header "__wmmintrin_aes.h"
+ }
+
+ explicit module pclmul {
+ requires pclmul
+ header "__wmmintrin_pclmul.h"
+ }
+ }
+
+ explicit module systemz {
+ requires systemz
+ export *
+
+ header "s390intrin.h"
+
+ explicit module htm {
+ requires htm
+ header "htmintrin.h"
+ header "htmxlintrin.h"
+ }
+ }
+}
+
+module _Builtin_stddef_max_align_t [system] [extern_c] {
+ header "__stddef_max_align_t.h"
+}
diff --git a/contrib/llvm/tools/clang/lib/Headers/nmmintrin.h b/contrib/llvm/tools/clang/lib/Headers/nmmintrin.h
new file mode 100644
index 0000000..f12622d
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/nmmintrin.h
@@ -0,0 +1,35 @@
+/*===---- nmmintrin.h - SSE4 intrinsics ------------------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#ifndef _NMMINTRIN_H
+#define _NMMINTRIN_H
+
+#ifndef __SSE4_2__
+#error "SSE4.2 instruction set not enabled"
+#else
+
+/* To match expectations of gcc we put the sse4.2 definitions into smmintrin.h,
+ just include it now then. */
+#include <smmintrin.h>
+#endif /* __SSE4_2__ */
+#endif /* _NMMINTRIN_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/pmmintrin.h b/contrib/llvm/tools/clang/lib/Headers/pmmintrin.h
new file mode 100644
index 0000000..6f1fc32
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/pmmintrin.h
@@ -0,0 +1,117 @@
+/*===---- pmmintrin.h - SSE3 intrinsics ------------------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#ifndef __PMMINTRIN_H
+#define __PMMINTRIN_H
+
+#ifndef __SSE3__
+#error "SSE3 instruction set not enabled"
+#else
+
+#include <emmintrin.h>
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_lddqu_si128(__m128i const *__p)
+{
+ return (__m128i)__builtin_ia32_lddqu((char const *)__p);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_addsub_ps(__m128 __a, __m128 __b)
+{
+ return __builtin_ia32_addsubps(__a, __b);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_hadd_ps(__m128 __a, __m128 __b)
+{
+ return __builtin_ia32_haddps(__a, __b);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_hsub_ps(__m128 __a, __m128 __b)
+{
+ return __builtin_ia32_hsubps(__a, __b);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_movehdup_ps(__m128 __a)
+{
+ return __builtin_shufflevector(__a, __a, 1, 1, 3, 3);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_moveldup_ps(__m128 __a)
+{
+ return __builtin_shufflevector(__a, __a, 0, 0, 2, 2);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_addsub_pd(__m128d __a, __m128d __b)
+{
+ return __builtin_ia32_addsubpd(__a, __b);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_hadd_pd(__m128d __a, __m128d __b)
+{
+ return __builtin_ia32_haddpd(__a, __b);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_hsub_pd(__m128d __a, __m128d __b)
+{
+ return __builtin_ia32_hsubpd(__a, __b);
+}
+
+#define _mm_loaddup_pd(dp) _mm_load1_pd(dp)
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_movedup_pd(__m128d __a)
+{
+ return __builtin_shufflevector(__a, __a, 0, 0);
+}
+
+#define _MM_DENORMALS_ZERO_ON (0x0040)
+#define _MM_DENORMALS_ZERO_OFF (0x0000)
+
+#define _MM_DENORMALS_ZERO_MASK (0x0040)
+
+#define _MM_GET_DENORMALS_ZERO_MODE() (_mm_getcsr() & _MM_DENORMALS_ZERO_MASK)
+#define _MM_SET_DENORMALS_ZERO_MODE(x) (_mm_setcsr((_mm_getcsr() & ~_MM_DENORMALS_ZERO_MASK) | (x)))
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_mm_monitor(void const *__p, unsigned __extensions, unsigned __hints)
+{
+ __builtin_ia32_monitor((void *)__p, __extensions, __hints);
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_mm_mwait(unsigned __extensions, unsigned __hints)
+{
+ __builtin_ia32_mwait(__extensions, __hints);
+}
+
+#endif /* __SSE3__ */
+
+#endif /* __PMMINTRIN_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/popcntintrin.h b/contrib/llvm/tools/clang/lib/Headers/popcntintrin.h
new file mode 100644
index 0000000..d439daa
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/popcntintrin.h
@@ -0,0 +1,45 @@
+/*===---- popcntintrin.h - POPCNT intrinsics -------------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#ifndef __POPCNT__
+#error "POPCNT instruction set not enabled"
+#endif
+
+#ifndef _POPCNTINTRIN_H
+#define _POPCNTINTRIN_H
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_popcnt_u32(unsigned int __A)
+{
+ return __builtin_popcount(__A);
+}
+
+#ifdef __x86_64__
+static __inline__ long long __attribute__((__always_inline__, __nodebug__))
+_mm_popcnt_u64(unsigned long long __A)
+{
+ return __builtin_popcountll(__A);
+}
+#endif /* __x86_64__ */
+
+#endif /* _POPCNTINTRIN_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/prfchwintrin.h b/contrib/llvm/tools/clang/lib/Headers/prfchwintrin.h
new file mode 100644
index 0000000..9825bd8
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/prfchwintrin.h
@@ -0,0 +1,39 @@
+/*===---- prfchwintrin.h - PREFETCHW intrinsic -----------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#if !defined(__X86INTRIN_H) && !defined(_MM3DNOW_H_INCLUDED)
+#error "Never use <prfchwintrin.h> directly; include <x86intrin.h> or <mm3dnow.h> instead."
+#endif
+
+#ifndef __PRFCHWINTRIN_H
+#define __PRFCHWINTRIN_H
+
+#if defined(__PRFCHW__) || defined(__3dNOW__)
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_m_prefetchw(void *__P)
+{
+ __builtin_prefetch (__P, 1, 3 /* _MM_HINT_T0 */);
+}
+#endif
+
+#endif /* __PRFCHWINTRIN_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/rdseedintrin.h b/contrib/llvm/tools/clang/lib/Headers/rdseedintrin.h
new file mode 100644
index 0000000..0fef1fa
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/rdseedintrin.h
@@ -0,0 +1,52 @@
+/*===---- rdseedintrin.h - RDSEED intrinsics -------------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#ifndef __X86INTRIN_H
+#error "Never use <rdseedintrin.h> directly; include <x86intrin.h> instead."
+#endif
+
+#ifndef __RDSEEDINTRIN_H
+#define __RDSEEDINTRIN_H
+
+#ifdef __RDSEED__
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_rdseed16_step(unsigned short *__p)
+{
+ return __builtin_ia32_rdseed16_step(__p);
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_rdseed32_step(unsigned int *__p)
+{
+ return __builtin_ia32_rdseed32_step(__p);
+}
+
+#ifdef __x86_64__
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_rdseed64_step(unsigned long long *__p)
+{
+ return __builtin_ia32_rdseed64_step(__p);
+}
+#endif
+#endif /* __RDSEED__ */
+#endif /* __RDSEEDINTRIN_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/rtmintrin.h b/contrib/llvm/tools/clang/lib/Headers/rtmintrin.h
new file mode 100644
index 0000000..26149ca
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/rtmintrin.h
@@ -0,0 +1,54 @@
+/*===---- rtmintrin.h - RTM intrinsics -------------------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#ifndef __IMMINTRIN_H
+#error "Never use <rtmintrin.h> directly; include <immintrin.h> instead."
+#endif
+
+#ifndef __RTMINTRIN_H
+#define __RTMINTRIN_H
+
+#define _XBEGIN_STARTED (~0u)
+#define _XABORT_EXPLICIT (1 << 0)
+#define _XABORT_RETRY (1 << 1)
+#define _XABORT_CONFLICT (1 << 2)
+#define _XABORT_CAPACITY (1 << 3)
+#define _XABORT_DEBUG (1 << 4)
+#define _XABORT_NESTED (1 << 5)
+#define _XABORT_CODE(x) (((x) >> 24) & 0xFF)
+
+static __inline__ unsigned int __attribute__((__always_inline__, __nodebug__))
+_xbegin(void)
+{
+ return __builtin_ia32_xbegin();
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_xend(void)
+{
+ __builtin_ia32_xend();
+}
+
+#define _xabort(imm) __builtin_ia32_xabort((imm))
+
+#endif /* __RTMINTRIN_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/s390intrin.h b/contrib/llvm/tools/clang/lib/Headers/s390intrin.h
new file mode 100644
index 0000000..b209895
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/s390intrin.h
@@ -0,0 +1,35 @@
+/*===---- s390intrin.h - SystemZ intrinsics --------------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#ifndef __S390INTRIN_H
+#define __S390INTRIN_H
+
+#ifndef __s390__
+#error "<s390intrin.h> is for s390 only"
+#endif
+
+#ifdef __HTM__
+#include <htmintrin.h>
+#endif
+
+#endif /* __S390INTRIN_H*/
diff --git a/contrib/llvm/tools/clang/lib/Headers/shaintrin.h b/contrib/llvm/tools/clang/lib/Headers/shaintrin.h
new file mode 100644
index 0000000..391a4bb
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/shaintrin.h
@@ -0,0 +1,74 @@
+/*===---- shaintrin.h - SHA intrinsics -------------------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#ifndef __IMMINTRIN_H
+#error "Never use <shaintrin.h> directly; include <immintrin.h> instead."
+#endif
+
+#ifndef __SHAINTRIN_H
+#define __SHAINTRIN_H
+
+#if !defined (__SHA__)
+# error "SHA instructions not enabled"
+#endif
+
+#define _mm_sha1rnds4_epu32(V1, V2, M) __extension__ ({ \
+ __builtin_ia32_sha1rnds4((V1), (V2), (M)); })
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_sha1nexte_epu32(__m128i __X, __m128i __Y)
+{
+ return (__m128i)__builtin_ia32_sha1nexte((__v4si)__X, (__v4si)__Y);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_sha1msg1_epu32(__m128i __X, __m128i __Y)
+{
+ return (__m128i)__builtin_ia32_sha1msg1((__v4si)__X, (__v4si)__Y);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_sha1msg2_epu32(__m128i __X, __m128i __Y)
+{
+ return (__m128i)__builtin_ia32_sha1msg2((__v4si)__X, (__v4si)__Y);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_sha256rnds2_epu32(__m128i __X, __m128i __Y, __m128i __Z)
+{
+ return (__m128i)__builtin_ia32_sha256rnds2((__v4si)__X, (__v4si)__Y, (__v4si)__Z);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_sha256msg1_epu32(__m128i __X, __m128i __Y)
+{
+ return (__m128i)__builtin_ia32_sha256msg1((__v4si)__X, (__v4si)__Y);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_sha256msg2_epu32(__m128i __X, __m128i __Y)
+{
+ return (__m128i)__builtin_ia32_sha256msg2((__v4si)__X, (__v4si)__Y);
+}
+
+#endif /* __SHAINTRIN_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/smmintrin.h b/contrib/llvm/tools/clang/lib/Headers/smmintrin.h
new file mode 100644
index 0000000..6e35734
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/smmintrin.h
@@ -0,0 +1,482 @@
+/*===---- smmintrin.h - SSE4 intrinsics ------------------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#ifndef _SMMINTRIN_H
+#define _SMMINTRIN_H
+
+#ifndef __SSE4_1__
+#error "SSE4.1 instruction set not enabled"
+#else
+
+#include <tmmintrin.h>
+
+/* SSE4 Rounding macros. */
+#define _MM_FROUND_TO_NEAREST_INT 0x00
+#define _MM_FROUND_TO_NEG_INF 0x01
+#define _MM_FROUND_TO_POS_INF 0x02
+#define _MM_FROUND_TO_ZERO 0x03
+#define _MM_FROUND_CUR_DIRECTION 0x04
+
+#define _MM_FROUND_RAISE_EXC 0x00
+#define _MM_FROUND_NO_EXC 0x08
+
+#define _MM_FROUND_NINT (_MM_FROUND_RAISE_EXC | _MM_FROUND_TO_NEAREST_INT)
+#define _MM_FROUND_FLOOR (_MM_FROUND_RAISE_EXC | _MM_FROUND_TO_NEG_INF)
+#define _MM_FROUND_CEIL (_MM_FROUND_RAISE_EXC | _MM_FROUND_TO_POS_INF)
+#define _MM_FROUND_TRUNC (_MM_FROUND_RAISE_EXC | _MM_FROUND_TO_ZERO)
+#define _MM_FROUND_RINT (_MM_FROUND_RAISE_EXC | _MM_FROUND_CUR_DIRECTION)
+#define _MM_FROUND_NEARBYINT (_MM_FROUND_NO_EXC | _MM_FROUND_CUR_DIRECTION)
+
+#define _mm_ceil_ps(X) _mm_round_ps((X), _MM_FROUND_CEIL)
+#define _mm_ceil_pd(X) _mm_round_pd((X), _MM_FROUND_CEIL)
+#define _mm_ceil_ss(X, Y) _mm_round_ss((X), (Y), _MM_FROUND_CEIL)
+#define _mm_ceil_sd(X, Y) _mm_round_sd((X), (Y), _MM_FROUND_CEIL)
+
+#define _mm_floor_ps(X) _mm_round_ps((X), _MM_FROUND_FLOOR)
+#define _mm_floor_pd(X) _mm_round_pd((X), _MM_FROUND_FLOOR)
+#define _mm_floor_ss(X, Y) _mm_round_ss((X), (Y), _MM_FROUND_FLOOR)
+#define _mm_floor_sd(X, Y) _mm_round_sd((X), (Y), _MM_FROUND_FLOOR)
+
+#define _mm_round_ps(X, M) __extension__ ({ \
+ __m128 __X = (X); \
+ (__m128) __builtin_ia32_roundps((__v4sf)__X, (M)); })
+
+#define _mm_round_ss(X, Y, M) __extension__ ({ \
+ __m128 __X = (X); \
+ __m128 __Y = (Y); \
+ (__m128) __builtin_ia32_roundss((__v4sf)__X, (__v4sf)__Y, (M)); })
+
+#define _mm_round_pd(X, M) __extension__ ({ \
+ __m128d __X = (X); \
+ (__m128d) __builtin_ia32_roundpd((__v2df)__X, (M)); })
+
+#define _mm_round_sd(X, Y, M) __extension__ ({ \
+ __m128d __X = (X); \
+ __m128d __Y = (Y); \
+ (__m128d) __builtin_ia32_roundsd((__v2df)__X, (__v2df)__Y, (M)); })
+
+/* SSE4 Packed Blending Intrinsics. */
+#define _mm_blend_pd(V1, V2, M) __extension__ ({ \
+ __m128d __V1 = (V1); \
+ __m128d __V2 = (V2); \
+ (__m128d)__builtin_shufflevector((__v2df)__V1, (__v2df)__V2, \
+ (((M) & 0x01) ? 2 : 0), \
+ (((M) & 0x02) ? 3 : 1)); })
+
+#define _mm_blend_ps(V1, V2, M) __extension__ ({ \
+ __m128 __V1 = (V1); \
+ __m128 __V2 = (V2); \
+ (__m128)__builtin_shufflevector((__v4sf)__V1, (__v4sf)__V2, \
+ (((M) & 0x01) ? 4 : 0), \
+ (((M) & 0x02) ? 5 : 1), \
+ (((M) & 0x04) ? 6 : 2), \
+ (((M) & 0x08) ? 7 : 3)); })
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_blendv_pd (__m128d __V1, __m128d __V2, __m128d __M)
+{
+ return (__m128d) __builtin_ia32_blendvpd ((__v2df)__V1, (__v2df)__V2,
+ (__v2df)__M);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_blendv_ps (__m128 __V1, __m128 __V2, __m128 __M)
+{
+ return (__m128) __builtin_ia32_blendvps ((__v4sf)__V1, (__v4sf)__V2,
+ (__v4sf)__M);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_blendv_epi8 (__m128i __V1, __m128i __V2, __m128i __M)
+{
+ return (__m128i) __builtin_ia32_pblendvb128 ((__v16qi)__V1, (__v16qi)__V2,
+ (__v16qi)__M);
+}
+
+#define _mm_blend_epi16(V1, V2, M) __extension__ ({ \
+ __m128i __V1 = (V1); \
+ __m128i __V2 = (V2); \
+ (__m128i)__builtin_shufflevector((__v8hi)__V1, (__v8hi)__V2, \
+ (((M) & 0x01) ? 8 : 0), \
+ (((M) & 0x02) ? 9 : 1), \
+ (((M) & 0x04) ? 10 : 2), \
+ (((M) & 0x08) ? 11 : 3), \
+ (((M) & 0x10) ? 12 : 4), \
+ (((M) & 0x20) ? 13 : 5), \
+ (((M) & 0x40) ? 14 : 6), \
+ (((M) & 0x80) ? 15 : 7)); })
+
+/* SSE4 Dword Multiply Instructions. */
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_mullo_epi32 (__m128i __V1, __m128i __V2)
+{
+ return (__m128i) ((__v4si)__V1 * (__v4si)__V2);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_mul_epi32 (__m128i __V1, __m128i __V2)
+{
+ return (__m128i) __builtin_ia32_pmuldq128 ((__v4si)__V1, (__v4si)__V2);
+}
+
+/* SSE4 Floating Point Dot Product Instructions. */
+#define _mm_dp_ps(X, Y, M) __extension__ ({ \
+ __m128 __X = (X); \
+ __m128 __Y = (Y); \
+ (__m128) __builtin_ia32_dpps((__v4sf)__X, (__v4sf)__Y, (M)); })
+
+#define _mm_dp_pd(X, Y, M) __extension__ ({\
+ __m128d __X = (X); \
+ __m128d __Y = (Y); \
+ (__m128d) __builtin_ia32_dppd((__v2df)__X, (__v2df)__Y, (M)); })
+
+/* SSE4 Streaming Load Hint Instruction. */
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_stream_load_si128 (__m128i *__V)
+{
+ return (__m128i) __builtin_ia32_movntdqa ((__v2di *) __V);
+}
+
+/* SSE4 Packed Integer Min/Max Instructions. */
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_min_epi8 (__m128i __V1, __m128i __V2)
+{
+ return (__m128i) __builtin_ia32_pminsb128 ((__v16qi) __V1, (__v16qi) __V2);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_max_epi8 (__m128i __V1, __m128i __V2)
+{
+ return (__m128i) __builtin_ia32_pmaxsb128 ((__v16qi) __V1, (__v16qi) __V2);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_min_epu16 (__m128i __V1, __m128i __V2)
+{
+ return (__m128i) __builtin_ia32_pminuw128 ((__v8hi) __V1, (__v8hi) __V2);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_max_epu16 (__m128i __V1, __m128i __V2)
+{
+ return (__m128i) __builtin_ia32_pmaxuw128 ((__v8hi) __V1, (__v8hi) __V2);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_min_epi32 (__m128i __V1, __m128i __V2)
+{
+ return (__m128i) __builtin_ia32_pminsd128 ((__v4si) __V1, (__v4si) __V2);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_max_epi32 (__m128i __V1, __m128i __V2)
+{
+ return (__m128i) __builtin_ia32_pmaxsd128 ((__v4si) __V1, (__v4si) __V2);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_min_epu32 (__m128i __V1, __m128i __V2)
+{
+ return (__m128i) __builtin_ia32_pminud128((__v4si) __V1, (__v4si) __V2);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_max_epu32 (__m128i __V1, __m128i __V2)
+{
+ return (__m128i) __builtin_ia32_pmaxud128((__v4si) __V1, (__v4si) __V2);
+}
+
+/* SSE4 Insertion and Extraction from XMM Register Instructions. */
+#define _mm_insert_ps(X, Y, N) __builtin_ia32_insertps128((X), (Y), (N))
+#define _mm_extract_ps(X, N) (__extension__ \
+ ({ union { int __i; float __f; } __t; \
+ __v4sf __a = (__v4sf)(X); \
+ __t.__f = __a[(N) & 3]; \
+ __t.__i;}))
+
+/* Miscellaneous insert and extract macros. */
+/* Extract a single-precision float from X at index N into D. */
+#define _MM_EXTRACT_FLOAT(D, X, N) (__extension__ ({ __v4sf __a = (__v4sf)(X); \
+ (D) = __a[N]; }))
+
+/* Or together 2 sets of indexes (X and Y) with the zeroing bits (Z) to create
+ an index suitable for _mm_insert_ps. */
+#define _MM_MK_INSERTPS_NDX(X, Y, Z) (((X) << 6) | ((Y) << 4) | (Z))
+
+/* Extract a float from X at index N into the first index of the return. */
+#define _MM_PICK_OUT_PS(X, N) _mm_insert_ps (_mm_setzero_ps(), (X), \
+ _MM_MK_INSERTPS_NDX((N), 0, 0x0e))
+
+/* Insert int into packed integer array at index. */
+#define _mm_insert_epi8(X, I, N) (__extension__ ({ __v16qi __a = (__v16qi)(X); \
+ __a[(N) & 15] = (I); \
+ __a;}))
+#define _mm_insert_epi32(X, I, N) (__extension__ ({ __v4si __a = (__v4si)(X); \
+ __a[(N) & 3] = (I); \
+ __a;}))
+#ifdef __x86_64__
+#define _mm_insert_epi64(X, I, N) (__extension__ ({ __v2di __a = (__v2di)(X); \
+ __a[(N) & 1] = (I); \
+ __a;}))
+#endif /* __x86_64__ */
+
+/* Extract int from packed integer array at index. This returns the element
+ * as a zero extended value, so it is unsigned.
+ */
+#define _mm_extract_epi8(X, N) (__extension__ ({ __v16qi __a = (__v16qi)(X); \
+ (int)(unsigned char) \
+ __a[(N) & 15];}))
+#define _mm_extract_epi32(X, N) (__extension__ ({ __v4si __a = (__v4si)(X); \
+ __a[(N) & 3];}))
+#ifdef __x86_64__
+#define _mm_extract_epi64(X, N) (__extension__ ({ __v2di __a = (__v2di)(X); \
+ __a[(N) & 1];}))
+#endif /* __x86_64 */
+
+/* SSE4 128-bit Packed Integer Comparisons. */
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_testz_si128(__m128i __M, __m128i __V)
+{
+ return __builtin_ia32_ptestz128((__v2di)__M, (__v2di)__V);
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_testc_si128(__m128i __M, __m128i __V)
+{
+ return __builtin_ia32_ptestc128((__v2di)__M, (__v2di)__V);
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_testnzc_si128(__m128i __M, __m128i __V)
+{
+ return __builtin_ia32_ptestnzc128((__v2di)__M, (__v2di)__V);
+}
+
+#define _mm_test_all_ones(V) _mm_testc_si128((V), _mm_cmpeq_epi32((V), (V)))
+#define _mm_test_mix_ones_zeros(M, V) _mm_testnzc_si128((M), (V))
+#define _mm_test_all_zeros(M, V) _mm_testz_si128 ((M), (V))
+
+/* SSE4 64-bit Packed Integer Comparisons. */
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_cmpeq_epi64(__m128i __V1, __m128i __V2)
+{
+ return (__m128i)((__v2di)__V1 == (__v2di)__V2);
+}
+
+/* SSE4 Packed Integer Sign-Extension. */
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_cvtepi8_epi16(__m128i __V)
+{
+ return (__m128i) __builtin_ia32_pmovsxbw128((__v16qi) __V);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_cvtepi8_epi32(__m128i __V)
+{
+ return (__m128i) __builtin_ia32_pmovsxbd128((__v16qi) __V);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_cvtepi8_epi64(__m128i __V)
+{
+ return (__m128i) __builtin_ia32_pmovsxbq128((__v16qi) __V);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_cvtepi16_epi32(__m128i __V)
+{
+ return (__m128i) __builtin_ia32_pmovsxwd128((__v8hi) __V);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_cvtepi16_epi64(__m128i __V)
+{
+ return (__m128i) __builtin_ia32_pmovsxwq128((__v8hi)__V);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_cvtepi32_epi64(__m128i __V)
+{
+ return (__m128i) __builtin_ia32_pmovsxdq128((__v4si)__V);
+}
+
+/* SSE4 Packed Integer Zero-Extension. */
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_cvtepu8_epi16(__m128i __V)
+{
+ return (__m128i) __builtin_ia32_pmovzxbw128((__v16qi) __V);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_cvtepu8_epi32(__m128i __V)
+{
+ return (__m128i) __builtin_ia32_pmovzxbd128((__v16qi)__V);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_cvtepu8_epi64(__m128i __V)
+{
+ return (__m128i) __builtin_ia32_pmovzxbq128((__v16qi)__V);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_cvtepu16_epi32(__m128i __V)
+{
+ return (__m128i) __builtin_ia32_pmovzxwd128((__v8hi)__V);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_cvtepu16_epi64(__m128i __V)
+{
+ return (__m128i) __builtin_ia32_pmovzxwq128((__v8hi)__V);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_cvtepu32_epi64(__m128i __V)
+{
+ return (__m128i) __builtin_ia32_pmovzxdq128((__v4si)__V);
+}
+
+/* SSE4 Pack with Unsigned Saturation. */
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_packus_epi32(__m128i __V1, __m128i __V2)
+{
+ return (__m128i) __builtin_ia32_packusdw128((__v4si)__V1, (__v4si)__V2);
+}
+
+/* SSE4 Multiple Packed Sums of Absolute Difference. */
+#define _mm_mpsadbw_epu8(X, Y, M) __extension__ ({ \
+ __m128i __X = (X); \
+ __m128i __Y = (Y); \
+ (__m128i) __builtin_ia32_mpsadbw128((__v16qi)__X, (__v16qi)__Y, (M)); })
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_minpos_epu16(__m128i __V)
+{
+ return (__m128i) __builtin_ia32_phminposuw128((__v8hi)__V);
+}
+
+/* These definitions are normally in nmmintrin.h, but gcc puts them in here
+ so we'll do the same. */
+#ifdef __SSE4_2__
+
+/* These specify the type of data that we're comparing. */
+#define _SIDD_UBYTE_OPS 0x00
+#define _SIDD_UWORD_OPS 0x01
+#define _SIDD_SBYTE_OPS 0x02
+#define _SIDD_SWORD_OPS 0x03
+
+/* These specify the type of comparison operation. */
+#define _SIDD_CMP_EQUAL_ANY 0x00
+#define _SIDD_CMP_RANGES 0x04
+#define _SIDD_CMP_EQUAL_EACH 0x08
+#define _SIDD_CMP_EQUAL_ORDERED 0x0c
+
+/* These macros specify the polarity of the operation. */
+#define _SIDD_POSITIVE_POLARITY 0x00
+#define _SIDD_NEGATIVE_POLARITY 0x10
+#define _SIDD_MASKED_POSITIVE_POLARITY 0x20
+#define _SIDD_MASKED_NEGATIVE_POLARITY 0x30
+
+/* These macros are used in _mm_cmpXstri() to specify the return. */
+#define _SIDD_LEAST_SIGNIFICANT 0x00
+#define _SIDD_MOST_SIGNIFICANT 0x40
+
+/* These macros are used in _mm_cmpXstri() to specify the return. */
+#define _SIDD_BIT_MASK 0x00
+#define _SIDD_UNIT_MASK 0x40
+
+/* SSE4.2 Packed Comparison Intrinsics. */
+#define _mm_cmpistrm(A, B, M) __builtin_ia32_pcmpistrm128((A), (B), (M))
+#define _mm_cmpistri(A, B, M) __builtin_ia32_pcmpistri128((A), (B), (M))
+
+#define _mm_cmpestrm(A, LA, B, LB, M) \
+ __builtin_ia32_pcmpestrm128((A), (LA), (B), (LB), (M))
+#define _mm_cmpestri(A, LA, B, LB, M) \
+ __builtin_ia32_pcmpestri128((A), (LA), (B), (LB), (M))
+
+/* SSE4.2 Packed Comparison Intrinsics and EFlag Reading. */
+#define _mm_cmpistra(A, B, M) \
+ __builtin_ia32_pcmpistria128((A), (B), (M))
+#define _mm_cmpistrc(A, B, M) \
+ __builtin_ia32_pcmpistric128((A), (B), (M))
+#define _mm_cmpistro(A, B, M) \
+ __builtin_ia32_pcmpistrio128((A), (B), (M))
+#define _mm_cmpistrs(A, B, M) \
+ __builtin_ia32_pcmpistris128((A), (B), (M))
+#define _mm_cmpistrz(A, B, M) \
+ __builtin_ia32_pcmpistriz128((A), (B), (M))
+
+#define _mm_cmpestra(A, LA, B, LB, M) \
+ __builtin_ia32_pcmpestria128((A), (LA), (B), (LB), (M))
+#define _mm_cmpestrc(A, LA, B, LB, M) \
+ __builtin_ia32_pcmpestric128((A), (LA), (B), (LB), (M))
+#define _mm_cmpestro(A, LA, B, LB, M) \
+ __builtin_ia32_pcmpestrio128((A), (LA), (B), (LB), (M))
+#define _mm_cmpestrs(A, LA, B, LB, M) \
+ __builtin_ia32_pcmpestris128((A), (LA), (B), (LB), (M))
+#define _mm_cmpestrz(A, LA, B, LB, M) \
+ __builtin_ia32_pcmpestriz128((A), (LA), (B), (LB), (M))
+
+/* SSE4.2 Compare Packed Data -- Greater Than. */
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_cmpgt_epi64(__m128i __V1, __m128i __V2)
+{
+ return (__m128i)((__v2di)__V1 > (__v2di)__V2);
+}
+
+/* SSE4.2 Accumulate CRC32. */
+static __inline__ unsigned int __attribute__((__always_inline__, __nodebug__))
+_mm_crc32_u8(unsigned int __C, unsigned char __D)
+{
+ return __builtin_ia32_crc32qi(__C, __D);
+}
+
+static __inline__ unsigned int __attribute__((__always_inline__, __nodebug__))
+_mm_crc32_u16(unsigned int __C, unsigned short __D)
+{
+ return __builtin_ia32_crc32hi(__C, __D);
+}
+
+static __inline__ unsigned int __attribute__((__always_inline__, __nodebug__))
+_mm_crc32_u32(unsigned int __C, unsigned int __D)
+{
+ return __builtin_ia32_crc32si(__C, __D);
+}
+
+#ifdef __x86_64__
+static __inline__ unsigned long long __attribute__((__always_inline__, __nodebug__))
+_mm_crc32_u64(unsigned long long __C, unsigned long long __D)
+{
+ return __builtin_ia32_crc32di(__C, __D);
+}
+#endif /* __x86_64__ */
+
+#ifdef __POPCNT__
+#include <popcntintrin.h>
+#endif
+
+#endif /* __SSE4_2__ */
+#endif /* __SSE4_1__ */
+
+#endif /* _SMMINTRIN_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/stdalign.h b/contrib/llvm/tools/clang/lib/Headers/stdalign.h
new file mode 100644
index 0000000..3738d12
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/stdalign.h
@@ -0,0 +1,35 @@
+/*===---- stdalign.h - Standard header for alignment ------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#ifndef __STDALIGN_H
+#define __STDALIGN_H
+
+#ifndef __cplusplus
+#define alignas _Alignas
+#define alignof _Alignof
+#endif
+
+#define __alignas_is_defined 1
+#define __alignof_is_defined 1
+
+#endif /* __STDALIGN_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/stdarg.h b/contrib/llvm/tools/clang/lib/Headers/stdarg.h
new file mode 100644
index 0000000..a57e183
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/stdarg.h
@@ -0,0 +1,52 @@
+/*===---- stdarg.h - Variable argument handling ----------------------------===
+ *
+ * Copyright (c) 2008 Eli Friedman
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#ifndef __STDARG_H
+#define __STDARG_H
+
+#ifndef _VA_LIST
+typedef __builtin_va_list va_list;
+#define _VA_LIST
+#endif
+#define va_start(ap, param) __builtin_va_start(ap, param)
+#define va_end(ap) __builtin_va_end(ap)
+#define va_arg(ap, type) __builtin_va_arg(ap, type)
+
+/* GCC always defines __va_copy, but does not define va_copy unless in c99 mode
+ * or -ansi is not specified, since it was not part of C90.
+ */
+#define __va_copy(d,s) __builtin_va_copy(d,s)
+
+#if __STDC_VERSION__ >= 199901L || __cplusplus >= 201103L || !defined(__STRICT_ANSI__)
+#define va_copy(dest, src) __builtin_va_copy(dest, src)
+#endif
+
+/* Hack required to make standard headers work, at least on Ubuntu */
+#ifndef __GNUC_VA_LIST
+#define __GNUC_VA_LIST 1
+#endif
+typedef __builtin_va_list __gnuc_va_list;
+
+#endif /* __STDARG_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/stdatomic.h b/contrib/llvm/tools/clang/lib/Headers/stdatomic.h
new file mode 100644
index 0000000..e037987
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/stdatomic.h
@@ -0,0 +1,190 @@
+/*===---- stdatomic.h - Standard header for atomic types and operations -----===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#ifndef __CLANG_STDATOMIC_H
+#define __CLANG_STDATOMIC_H
+
+/* If we're hosted, fall back to the system's stdatomic.h. FreeBSD, for
+ * example, already has a Clang-compatible stdatomic.h header.
+ */
+#if __STDC_HOSTED__ && __has_include_next(<stdatomic.h>)
+# include_next <stdatomic.h>
+#else
+
+#include <stddef.h>
+#include <stdint.h>
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* 7.17.1 Introduction */
+
+#define ATOMIC_BOOL_LOCK_FREE __GCC_ATOMIC_BOOL_LOCK_FREE
+#define ATOMIC_CHAR_LOCK_FREE __GCC_ATOMIC_CHAR_LOCK_FREE
+#define ATOMIC_CHAR16_T_LOCK_FREE __GCC_ATOMIC_CHAR16_T_LOCK_FREE
+#define ATOMIC_CHAR32_T_LOCK_FREE __GCC_ATOMIC_CHAR32_T_LOCK_FREE
+#define ATOMIC_WCHAR_T_LOCK_FREE __GCC_ATOMIC_WCHAR_T_LOCK_FREE
+#define ATOMIC_SHORT_T_LOCK_FREE __GCC_ATOMIC_SHORT_T_LOCK_FREE
+#define ATOMIC_INT_T_LOCK_FREE __GCC_ATOMIC_INT_T_LOCK_FREE
+#define ATOMIC_LONG_T_LOCK_FREE __GCC_ATOMIC_LONG_T_LOCK_FREE
+#define ATOMIC_LLONG_T_LOCK_FREE __GCC_ATOMIC_LLONG_T_LOCK_FREE
+#define ATOMIC_POINTER_T_LOCK_FREE __GCC_ATOMIC_POINTER_T_LOCK_FREE
+
+/* 7.17.2 Initialization */
+
+#define ATOMIC_VAR_INIT(value) (value)
+#define atomic_init __c11_atomic_init
+
+/* 7.17.3 Order and consistency */
+
+typedef enum memory_order {
+ memory_order_relaxed = __ATOMIC_RELAXED,
+ memory_order_consume = __ATOMIC_CONSUME,
+ memory_order_acquire = __ATOMIC_ACQUIRE,
+ memory_order_release = __ATOMIC_RELEASE,
+ memory_order_acq_rel = __ATOMIC_ACQ_REL,
+ memory_order_seq_cst = __ATOMIC_SEQ_CST
+} memory_order;
+
+#define kill_dependency(y) (y)
+
+/* 7.17.4 Fences */
+
+/* These should be provided by the libc implementation. */
+void atomic_thread_fence(memory_order);
+void atomic_signal_fence(memory_order);
+
+#define atomic_thread_fence(order) __c11_atomic_thread_fence(order)
+#define atomic_signal_fence(order) __c11_atomic_signal_fence(order)
+
+/* 7.17.5 Lock-free property */
+
+#define atomic_is_lock_free(obj) __c11_atomic_is_lock_free(sizeof(*(obj)))
+
+/* 7.17.6 Atomic integer types */
+
+#ifdef __cplusplus
+typedef _Atomic(bool) atomic_bool;
+#else
+typedef _Atomic(_Bool) atomic_bool;
+#endif
+typedef _Atomic(char) atomic_char;
+typedef _Atomic(signed char) atomic_schar;
+typedef _Atomic(unsigned char) atomic_uchar;
+typedef _Atomic(short) atomic_short;
+typedef _Atomic(unsigned short) atomic_ushort;
+typedef _Atomic(int) atomic_int;
+typedef _Atomic(unsigned int) atomic_uint;
+typedef _Atomic(long) atomic_long;
+typedef _Atomic(unsigned long) atomic_ulong;
+typedef _Atomic(long long) atomic_llong;
+typedef _Atomic(unsigned long long) atomic_ullong;
+typedef _Atomic(uint_least16_t) atomic_char16_t;
+typedef _Atomic(uint_least32_t) atomic_char32_t;
+typedef _Atomic(wchar_t) atomic_wchar_t;
+typedef _Atomic(int_least8_t) atomic_int_least8_t;
+typedef _Atomic(uint_least8_t) atomic_uint_least8_t;
+typedef _Atomic(int_least16_t) atomic_int_least16_t;
+typedef _Atomic(uint_least16_t) atomic_uint_least16_t;
+typedef _Atomic(int_least32_t) atomic_int_least32_t;
+typedef _Atomic(uint_least32_t) atomic_uint_least32_t;
+typedef _Atomic(int_least64_t) atomic_int_least64_t;
+typedef _Atomic(uint_least64_t) atomic_uint_least64_t;
+typedef _Atomic(int_fast8_t) atomic_int_fast8_t;
+typedef _Atomic(uint_fast8_t) atomic_uint_fast8_t;
+typedef _Atomic(int_fast16_t) atomic_int_fast16_t;
+typedef _Atomic(uint_fast16_t) atomic_uint_fast16_t;
+typedef _Atomic(int_fast32_t) atomic_int_fast32_t;
+typedef _Atomic(uint_fast32_t) atomic_uint_fast32_t;
+typedef _Atomic(int_fast64_t) atomic_int_fast64_t;
+typedef _Atomic(uint_fast64_t) atomic_uint_fast64_t;
+typedef _Atomic(intptr_t) atomic_intptr_t;
+typedef _Atomic(uintptr_t) atomic_uintptr_t;
+typedef _Atomic(size_t) atomic_size_t;
+typedef _Atomic(ptrdiff_t) atomic_ptrdiff_t;
+typedef _Atomic(intmax_t) atomic_intmax_t;
+typedef _Atomic(uintmax_t) atomic_uintmax_t;
+
+/* 7.17.7 Operations on atomic types */
+
+#define atomic_store(object, desired) __c11_atomic_store(object, desired, __ATOMIC_SEQ_CST)
+#define atomic_store_explicit __c11_atomic_store
+
+#define atomic_load(object) __c11_atomic_load(object, __ATOMIC_SEQ_CST)
+#define atomic_load_explicit __c11_atomic_load
+
+#define atomic_exchange(object, desired) __c11_atomic_exchange(object, desired, __ATOMIC_SEQ_CST)
+#define atomic_exchange_explicit __c11_atomic_exchange
+
+#define atomic_compare_exchange_strong(object, expected, desired) __c11_atomic_compare_exchange_strong(object, expected, desired, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)
+#define atomic_compare_exchange_strong_explicit __c11_atomic_compare_exchange_strong
+
+#define atomic_compare_exchange_weak(object, expected, desired) __c11_atomic_compare_exchange_weak(object, expected, desired, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)
+#define atomic_compare_exchange_weak_explicit __c11_atomic_compare_exchange_weak
+
+#define atomic_fetch_add(object, operand) __c11_atomic_fetch_add(object, operand, __ATOMIC_SEQ_CST)
+#define atomic_fetch_add_explicit __c11_atomic_fetch_add
+
+#define atomic_fetch_sub(object, operand) __c11_atomic_fetch_sub(object, operand, __ATOMIC_SEQ_CST)
+#define atomic_fetch_sub_explicit __c11_atomic_fetch_sub
+
+#define atomic_fetch_or(object, operand) __c11_atomic_fetch_or(object, operand, __ATOMIC_SEQ_CST)
+#define atomic_fetch_or_explicit __c11_atomic_fetch_or
+
+#define atomic_fetch_xor(object, operand) __c11_atomic_fetch_xor(object, operand, __ATOMIC_SEQ_CST)
+#define atomic_fetch_xor_explicit __c11_atomic_fetch_xor
+
+#define atomic_fetch_and(object, operand) __c11_atomic_fetch_and(object, operand, __ATOMIC_SEQ_CST)
+#define atomic_fetch_and_explicit __c11_atomic_fetch_and
+
+/* 7.17.8 Atomic flag type and operations */
+
+typedef struct atomic_flag { atomic_bool _Value; } atomic_flag;
+
+#define ATOMIC_FLAG_INIT { 0 }
+
+/* These should be provided by the libc implementation. */
+#ifdef __cplusplus
+bool atomic_flag_test_and_set(volatile atomic_flag *);
+bool atomic_flag_test_and_set_explicit(volatile atomic_flag *, memory_order);
+#else
+_Bool atomic_flag_test_and_set(volatile atomic_flag *);
+_Bool atomic_flag_test_and_set_explicit(volatile atomic_flag *, memory_order);
+#endif
+void atomic_flag_clear(volatile atomic_flag *);
+void atomic_flag_clear_explicit(volatile atomic_flag *, memory_order);
+
+#define atomic_flag_test_and_set(object) __c11_atomic_exchange(&(object)->_Value, 1, __ATOMIC_SEQ_CST)
+#define atomic_flag_test_and_set_explicit(object, order) __c11_atomic_exchange(&(object)->_Value, 1, order)
+
+#define atomic_flag_clear(object) __c11_atomic_store(&(object)->_Value, 0, __ATOMIC_SEQ_CST)
+#define atomic_flag_clear_explicit(object, order) __c11_atomic_store(&(object)->_Value, 0, order)
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* __STDC_HOSTED__ */
+#endif /* __CLANG_STDATOMIC_H */
+
diff --git a/contrib/llvm/tools/clang/lib/Headers/stdbool.h b/contrib/llvm/tools/clang/lib/Headers/stdbool.h
new file mode 100644
index 0000000..0467893
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/stdbool.h
@@ -0,0 +1,44 @@
+/*===---- stdbool.h - Standard header for booleans -------------------------===
+ *
+ * Copyright (c) 2008 Eli Friedman
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#ifndef __STDBOOL_H
+#define __STDBOOL_H
+
+/* Don't define bool, true, and false in C++, except as a GNU extension. */
+#ifndef __cplusplus
+#define bool _Bool
+#define true 1
+#define false 0
+#elif defined(__GNUC__) && !defined(__STRICT_ANSI__)
+/* Define _Bool, bool, false, true as a GNU extension. */
+#define _Bool bool
+#define bool bool
+#define false false
+#define true true
+#endif
+
+#define __bool_true_false_are_defined 1
+
+#endif /* __STDBOOL_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/stddef.h b/contrib/llvm/tools/clang/lib/Headers/stddef.h
new file mode 100644
index 0000000..7354996
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/stddef.h
@@ -0,0 +1,137 @@
+/*===---- stddef.h - Basic type definitions --------------------------------===
+ *
+ * Copyright (c) 2008 Eli Friedman
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#if !defined(__STDDEF_H) || defined(__need_ptrdiff_t) || \
+ defined(__need_size_t) || defined(__need_wchar_t) || \
+ defined(__need_NULL) || defined(__need_wint_t)
+
+#if !defined(__need_ptrdiff_t) && !defined(__need_size_t) && \
+ !defined(__need_wchar_t) && !defined(__need_NULL) && \
+ !defined(__need_wint_t)
+/* Always define miscellaneous pieces when modules are available. */
+#if !__has_feature(modules)
+#define __STDDEF_H
+#endif
+#define __need_ptrdiff_t
+#define __need_size_t
+#define __need_wchar_t
+#define __need_NULL
+#define __need_STDDEF_H_misc
+/* __need_wint_t is intentionally not defined here. */
+#endif
+
+#if defined(__need_ptrdiff_t)
+#if !defined(_PTRDIFF_T) || __has_feature(modules)
+/* Always define ptrdiff_t when modules are available. */
+#if !__has_feature(modules)
+#define _PTRDIFF_T
+#endif
+typedef __PTRDIFF_TYPE__ ptrdiff_t;
+#endif
+#undef __need_ptrdiff_t
+#endif /* defined(__need_ptrdiff_t) */
+
+#if defined(__need_size_t)
+#if !defined(_SIZE_T) || __has_feature(modules)
+/* Always define size_t when modules are available. */
+#if !__has_feature(modules)
+#define _SIZE_T
+#endif
+typedef __SIZE_TYPE__ size_t;
+#endif
+#undef __need_size_t
+#endif /*defined(__need_size_t) */
+
+#if defined(__need_STDDEF_H_misc)
+/* ISO9899:2011 7.20 (C11 Annex K): Define rsize_t if __STDC_WANT_LIB_EXT1__ is
+ * enabled. */
+#if (defined(__STDC_WANT_LIB_EXT1__) && __STDC_WANT_LIB_EXT1__ >= 1 && \
+ !defined(_RSIZE_T)) || __has_feature(modules)
+/* Always define rsize_t when modules are available. */
+#if !__has_feature(modules)
+#define _RSIZE_T
+#endif
+typedef __SIZE_TYPE__ rsize_t;
+#endif
+#endif /* defined(__need_STDDEF_H_misc) */
+
+#if defined(__need_wchar_t)
+#ifndef __cplusplus
+/* Always define wchar_t when modules are available. */
+#if !defined(_WCHAR_T) || __has_feature(modules)
+#if !__has_feature(modules)
+#define _WCHAR_T
+#if defined(_MSC_EXTENSIONS)
+#define _WCHAR_T_DEFINED
+#endif
+#endif
+typedef __WCHAR_TYPE__ wchar_t;
+#endif
+#endif
+#undef __need_wchar_t
+#endif /* defined(__need_wchar_t) */
+
+#if defined(__need_NULL)
+#undef NULL
+#ifdef __cplusplus
+# if !defined(__MINGW32__) && !defined(_MSC_VER)
+# define NULL __null
+# else
+# define NULL 0
+# endif
+#else
+# define NULL ((void*)0)
+#endif
+#ifdef __cplusplus
+#if defined(_MSC_EXTENSIONS) && defined(_NATIVE_NULLPTR_SUPPORTED)
+namespace std { typedef decltype(nullptr) nullptr_t; }
+using ::std::nullptr_t;
+#endif
+#endif
+#undef __need_NULL
+#endif /* defined(__need_NULL) */
+
+#if defined(__need_STDDEF_H_misc)
+#if __STDC_VERSION__ >= 201112L || __cplusplus >= 201103L
+#include "__stddef_max_align_t.h"
+#endif
+#define offsetof(t, d) __builtin_offsetof(t, d)
+#undef __need_STDDEF_H_misc
+#endif /* defined(__need_STDDEF_H_misc) */
+
+/* Some C libraries expect to see a wint_t here. Others (notably MinGW) will use
+__WINT_TYPE__ directly; accommodate both by requiring __need_wint_t */
+#if defined(__need_wint_t)
+/* Always define wint_t when modules are available. */
+#if !defined(_WINT_T) || __has_feature(modules)
+#if !__has_feature(modules)
+#define _WINT_T
+#endif
+typedef __WINT_TYPE__ wint_t;
+#endif
+#undef __need_wint_t
+#endif /* __need_wint_t */
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/Headers/stdint.h b/contrib/llvm/tools/clang/lib/Headers/stdint.h
new file mode 100644
index 0000000..0303db9
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/stdint.h
@@ -0,0 +1,707 @@
+/*===---- stdint.h - Standard header for sized integer types --------------===*\
+ *
+ * Copyright (c) 2009 Chris Lattner
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+\*===----------------------------------------------------------------------===*/
+
+#ifndef __CLANG_STDINT_H
+#define __CLANG_STDINT_H
+
+/* If we're hosted, fall back to the system's stdint.h, which might have
+ * additional definitions.
+ */
+#if __STDC_HOSTED__ && __has_include_next(<stdint.h>)
+
+// C99 7.18.3 Limits of other integer types
+//
+// Footnote 219, 220: C++ implementations should define these macros only when
+// __STDC_LIMIT_MACROS is defined before <stdint.h> is included.
+//
+// Footnote 222: C++ implementations should define these macros only when
+// __STDC_CONSTANT_MACROS is defined before <stdint.h> is included.
+//
+// C++11 [cstdint.syn]p2:
+//
+// The macros defined by <cstdint> are provided unconditionally. In particular,
+// the symbols __STDC_LIMIT_MACROS and __STDC_CONSTANT_MACROS (mentioned in
+// footnotes 219, 220, and 222 in the C standard) play no role in C++.
+//
+// C11 removed the problematic footnotes.
+//
+// Work around this inconsistency by always defining those macros in C++ mode,
+// so that a C library implementation which follows the C99 standard can be
+// used in C++.
+# ifdef __cplusplus
+# if !defined(__STDC_LIMIT_MACROS)
+# define __STDC_LIMIT_MACROS
+# define __STDC_LIMIT_MACROS_DEFINED_BY_CLANG
+# endif
+# if !defined(__STDC_CONSTANT_MACROS)
+# define __STDC_CONSTANT_MACROS
+# define __STDC_CONSTANT_MACROS_DEFINED_BY_CLANG
+# endif
+# endif
+
+# include_next <stdint.h>
+
+# ifdef __STDC_LIMIT_MACROS_DEFINED_BY_CLANG
+# undef __STDC_LIMIT_MACROS
+# undef __STDC_LIMIT_MACROS_DEFINED_BY_CLANG
+# endif
+# ifdef __STDC_CONSTANT_MACROS_DEFINED_BY_CLANG
+# undef __STDC_CONSTANT_MACROS
+# undef __STDC_CONSTANT_MACROS_DEFINED_BY_CLANG
+# endif
+
+#else
+
+/* C99 7.18.1.1 Exact-width integer types.
+ * C99 7.18.1.2 Minimum-width integer types.
+ * C99 7.18.1.3 Fastest minimum-width integer types.
+ *
+ * The standard requires that exact-width type be defined for 8-, 16-, 32-, and
+ * 64-bit types if they are implemented. Other exact width types are optional.
+ * This implementation defines an exact-width types for every integer width
+ * that is represented in the standard integer types.
+ *
+ * The standard also requires minimum-width types be defined for 8-, 16-, 32-,
+ * and 64-bit widths regardless of whether there are corresponding exact-width
+ * types.
+ *
+ * To accommodate targets that are missing types that are exactly 8, 16, 32, or
+ * 64 bits wide, this implementation takes an approach of cascading
+ * redefintions, redefining __int_leastN_t to successively smaller exact-width
+ * types. It is therefore important that the types are defined in order of
+ * descending widths.
+ *
+ * We currently assume that the minimum-width types and the fastest
+ * minimum-width types are the same. This is allowed by the standard, but is
+ * suboptimal.
+ *
+ * In violation of the standard, some targets do not implement a type that is
+ * wide enough to represent all of the required widths (8-, 16-, 32-, 64-bit).
+ * To accommodate these targets, a required minimum-width type is only
+ * defined if there exists an exact-width type of equal or greater width.
+ */
+
+#ifdef __INT64_TYPE__
+# ifndef __int8_t_defined /* glibc sys/types.h also defines int64_t*/
+typedef __INT64_TYPE__ int64_t;
+# endif /* __int8_t_defined */
+typedef __UINT64_TYPE__ uint64_t;
+# define __int_least64_t int64_t
+# define __uint_least64_t uint64_t
+# define __int_least32_t int64_t
+# define __uint_least32_t uint64_t
+# define __int_least16_t int64_t
+# define __uint_least16_t uint64_t
+# define __int_least8_t int64_t
+# define __uint_least8_t uint64_t
+#endif /* __INT64_TYPE__ */
+
+#ifdef __int_least64_t
+typedef __int_least64_t int_least64_t;
+typedef __uint_least64_t uint_least64_t;
+typedef __int_least64_t int_fast64_t;
+typedef __uint_least64_t uint_fast64_t;
+#endif /* __int_least64_t */
+
+#ifdef __INT56_TYPE__
+typedef __INT56_TYPE__ int56_t;
+typedef __UINT56_TYPE__ uint56_t;
+typedef int56_t int_least56_t;
+typedef uint56_t uint_least56_t;
+typedef int56_t int_fast56_t;
+typedef uint56_t uint_fast56_t;
+# define __int_least32_t int56_t
+# define __uint_least32_t uint56_t
+# define __int_least16_t int56_t
+# define __uint_least16_t uint56_t
+# define __int_least8_t int56_t
+# define __uint_least8_t uint56_t
+#endif /* __INT56_TYPE__ */
+
+
+#ifdef __INT48_TYPE__
+typedef __INT48_TYPE__ int48_t;
+typedef __UINT48_TYPE__ uint48_t;
+typedef int48_t int_least48_t;
+typedef uint48_t uint_least48_t;
+typedef int48_t int_fast48_t;
+typedef uint48_t uint_fast48_t;
+# define __int_least32_t int48_t
+# define __uint_least32_t uint48_t
+# define __int_least16_t int48_t
+# define __uint_least16_t uint48_t
+# define __int_least8_t int48_t
+# define __uint_least8_t uint48_t
+#endif /* __INT48_TYPE__ */
+
+
+#ifdef __INT40_TYPE__
+typedef __INT40_TYPE__ int40_t;
+typedef __UINT40_TYPE__ uint40_t;
+typedef int40_t int_least40_t;
+typedef uint40_t uint_least40_t;
+typedef int40_t int_fast40_t;
+typedef uint40_t uint_fast40_t;
+# define __int_least32_t int40_t
+# define __uint_least32_t uint40_t
+# define __int_least16_t int40_t
+# define __uint_least16_t uint40_t
+# define __int_least8_t int40_t
+# define __uint_least8_t uint40_t
+#endif /* __INT40_TYPE__ */
+
+
+#ifdef __INT32_TYPE__
+
+# ifndef __int8_t_defined /* glibc sys/types.h also defines int32_t*/
+typedef __INT32_TYPE__ int32_t;
+# endif /* __int8_t_defined */
+
+# ifndef __uint32_t_defined /* more glibc compatibility */
+# define __uint32_t_defined
+typedef __UINT32_TYPE__ uint32_t;
+# endif /* __uint32_t_defined */
+
+# define __int_least32_t int32_t
+# define __uint_least32_t uint32_t
+# define __int_least16_t int32_t
+# define __uint_least16_t uint32_t
+# define __int_least8_t int32_t
+# define __uint_least8_t uint32_t
+#endif /* __INT32_TYPE__ */
+
+#ifdef __int_least32_t
+typedef __int_least32_t int_least32_t;
+typedef __uint_least32_t uint_least32_t;
+typedef __int_least32_t int_fast32_t;
+typedef __uint_least32_t uint_fast32_t;
+#endif /* __int_least32_t */
+
+#ifdef __INT24_TYPE__
+typedef __INT24_TYPE__ int24_t;
+typedef __UINT24_TYPE__ uint24_t;
+typedef int24_t int_least24_t;
+typedef uint24_t uint_least24_t;
+typedef int24_t int_fast24_t;
+typedef uint24_t uint_fast24_t;
+# define __int_least16_t int24_t
+# define __uint_least16_t uint24_t
+# define __int_least8_t int24_t
+# define __uint_least8_t uint24_t
+#endif /* __INT24_TYPE__ */
+
+#ifdef __INT16_TYPE__
+#ifndef __int8_t_defined /* glibc sys/types.h also defines int16_t*/
+typedef __INT16_TYPE__ int16_t;
+#endif /* __int8_t_defined */
+typedef __UINT16_TYPE__ uint16_t;
+# define __int_least16_t int16_t
+# define __uint_least16_t uint16_t
+# define __int_least8_t int16_t
+# define __uint_least8_t uint16_t
+#endif /* __INT16_TYPE__ */
+
+#ifdef __int_least16_t
+typedef __int_least16_t int_least16_t;
+typedef __uint_least16_t uint_least16_t;
+typedef __int_least16_t int_fast16_t;
+typedef __uint_least16_t uint_fast16_t;
+#endif /* __int_least16_t */
+
+
+#ifdef __INT8_TYPE__
+#ifndef __int8_t_defined /* glibc sys/types.h also defines int8_t*/
+typedef __INT8_TYPE__ int8_t;
+#endif /* __int8_t_defined */
+typedef __UINT8_TYPE__ uint8_t;
+# define __int_least8_t int8_t
+# define __uint_least8_t uint8_t
+#endif /* __INT8_TYPE__ */
+
+#ifdef __int_least8_t
+typedef __int_least8_t int_least8_t;
+typedef __uint_least8_t uint_least8_t;
+typedef __int_least8_t int_fast8_t;
+typedef __uint_least8_t uint_fast8_t;
+#endif /* __int_least8_t */
+
+/* prevent glibc sys/types.h from defining conflicting types */
+#ifndef __int8_t_defined
+# define __int8_t_defined
+#endif /* __int8_t_defined */
+
+/* C99 7.18.1.4 Integer types capable of holding object pointers.
+ */
+#define __stdint_join3(a,b,c) a ## b ## c
+
+#define __intn_t(n) __stdint_join3( int, n, _t)
+#define __uintn_t(n) __stdint_join3(uint, n, _t)
+
+#ifndef _INTPTR_T
+#ifndef __intptr_t_defined
+typedef __intn_t(__INTPTR_WIDTH__) intptr_t;
+#define __intptr_t_defined
+#define _INTPTR_T
+#endif
+#endif
+
+#ifndef _UINTPTR_T
+typedef __uintn_t(__INTPTR_WIDTH__) uintptr_t;
+#define _UINTPTR_T
+#endif
+
+/* C99 7.18.1.5 Greatest-width integer types.
+ */
+typedef __INTMAX_TYPE__ intmax_t;
+typedef __UINTMAX_TYPE__ uintmax_t;
+
+/* C99 7.18.4 Macros for minimum-width integer constants.
+ *
+ * The standard requires that integer constant macros be defined for all the
+ * minimum-width types defined above. As 8-, 16-, 32-, and 64-bit minimum-width
+ * types are required, the corresponding integer constant macros are defined
+ * here. This implementation also defines minimum-width types for every other
+ * integer width that the target implements, so corresponding macros are
+ * defined below, too.
+ *
+ * These macros are defined using the same successive-shrinking approach as
+ * the type definitions above. It is likewise important that macros are defined
+ * in order of decending width.
+ *
+ * Note that C++ should not check __STDC_CONSTANT_MACROS here, contrary to the
+ * claims of the C standard (see C++ 18.3.1p2, [cstdint.syn]).
+ */
+
+#define __int_c_join(a, b) a ## b
+#define __int_c(v, suffix) __int_c_join(v, suffix)
+#define __uint_c(v, suffix) __int_c_join(v##U, suffix)
+
+
+#ifdef __INT64_TYPE__
+# ifdef __INT64_C_SUFFIX__
+# define __int64_c_suffix __INT64_C_SUFFIX__
+# define __int32_c_suffix __INT64_C_SUFFIX__
+# define __int16_c_suffix __INT64_C_SUFFIX__
+# define __int8_c_suffix __INT64_C_SUFFIX__
+# else
+# undef __int64_c_suffix
+# undef __int32_c_suffix
+# undef __int16_c_suffix
+# undef __int8_c_suffix
+# endif /* __INT64_C_SUFFIX__ */
+#endif /* __INT64_TYPE__ */
+
+#ifdef __int_least64_t
+# ifdef __int64_c_suffix
+# define INT64_C(v) __int_c(v, __int64_c_suffix)
+# define UINT64_C(v) __uint_c(v, __int64_c_suffix)
+# else
+# define INT64_C(v) v
+# define UINT64_C(v) v ## U
+# endif /* __int64_c_suffix */
+#endif /* __int_least64_t */
+
+
+#ifdef __INT56_TYPE__
+# ifdef __INT56_C_SUFFIX__
+# define INT56_C(v) __int_c(v, __INT56_C_SUFFIX__)
+# define UINT56_C(v) __uint_c(v, __INT56_C_SUFFIX__)
+# define __int32_c_suffix __INT56_C_SUFFIX__
+# define __int16_c_suffix __INT56_C_SUFFIX__
+# define __int8_c_suffix __INT56_C_SUFFIX__
+# else
+# define INT56_C(v) v
+# define UINT56_C(v) v ## U
+# undef __int32_c_suffix
+# undef __int16_c_suffix
+# undef __int8_c_suffix
+# endif /* __INT56_C_SUFFIX__ */
+#endif /* __INT56_TYPE__ */
+
+
+#ifdef __INT48_TYPE__
+# ifdef __INT48_C_SUFFIX__
+# define INT48_C(v) __int_c(v, __INT48_C_SUFFIX__)
+# define UINT48_C(v) __uint_c(v, __INT48_C_SUFFIX__)
+# define __int32_c_suffix __INT48_C_SUFFIX__
+# define __int16_c_suffix __INT48_C_SUFFIX__
+# define __int8_c_suffix __INT48_C_SUFFIX__
+# else
+# define INT48_C(v) v
+# define UINT48_C(v) v ## U
+# undef __int32_c_suffix
+# undef __int16_c_suffix
+# undef __int8_c_suffix
+# endif /* __INT48_C_SUFFIX__ */
+#endif /* __INT48_TYPE__ */
+
+
+#ifdef __INT40_TYPE__
+# ifdef __INT40_C_SUFFIX__
+# define INT40_C(v) __int_c(v, __INT40_C_SUFFIX__)
+# define UINT40_C(v) __uint_c(v, __INT40_C_SUFFIX__)
+# define __int32_c_suffix __INT40_C_SUFFIX__
+# define __int16_c_suffix __INT40_C_SUFFIX__
+# define __int8_c_suffix __INT40_C_SUFFIX__
+# else
+# define INT40_C(v) v
+# define UINT40_C(v) v ## U
+# undef __int32_c_suffix
+# undef __int16_c_suffix
+# undef __int8_c_suffix
+# endif /* __INT40_C_SUFFIX__ */
+#endif /* __INT40_TYPE__ */
+
+
+#ifdef __INT32_TYPE__
+# ifdef __INT32_C_SUFFIX__
+# define __int32_c_suffix __INT32_C_SUFFIX__
+# define __int16_c_suffix __INT32_C_SUFFIX__
+# define __int8_c_suffix __INT32_C_SUFFIX__
+#else
+# undef __int32_c_suffix
+# undef __int16_c_suffix
+# undef __int8_c_suffix
+# endif /* __INT32_C_SUFFIX__ */
+#endif /* __INT32_TYPE__ */
+
+#ifdef __int_least32_t
+# ifdef __int32_c_suffix
+# define INT32_C(v) __int_c(v, __int32_c_suffix)
+# define UINT32_C(v) __uint_c(v, __int32_c_suffix)
+# else
+# define INT32_C(v) v
+# define UINT32_C(v) v ## U
+# endif /* __int32_c_suffix */
+#endif /* __int_least32_t */
+
+
+#ifdef __INT24_TYPE__
+# ifdef __INT24_C_SUFFIX__
+# define INT24_C(v) __int_c(v, __INT24_C_SUFFIX__)
+# define UINT24_C(v) __uint_c(v, __INT24_C_SUFFIX__)
+# define __int16_c_suffix __INT24_C_SUFFIX__
+# define __int8_c_suffix __INT24_C_SUFFIX__
+# else
+# define INT24_C(v) v
+# define UINT24_C(v) v ## U
+# undef __int16_c_suffix
+# undef __int8_c_suffix
+# endif /* __INT24_C_SUFFIX__ */
+#endif /* __INT24_TYPE__ */
+
+
+#ifdef __INT16_TYPE__
+# ifdef __INT16_C_SUFFIX__
+# define __int16_c_suffix __INT16_C_SUFFIX__
+# define __int8_c_suffix __INT16_C_SUFFIX__
+#else
+# undef __int16_c_suffix
+# undef __int8_c_suffix
+# endif /* __INT16_C_SUFFIX__ */
+#endif /* __INT16_TYPE__ */
+
+#ifdef __int_least16_t
+# ifdef __int16_c_suffix
+# define INT16_C(v) __int_c(v, __int16_c_suffix)
+# define UINT16_C(v) __uint_c(v, __int16_c_suffix)
+# else
+# define INT16_C(v) v
+# define UINT16_C(v) v ## U
+# endif /* __int16_c_suffix */
+#endif /* __int_least16_t */
+
+
+#ifdef __INT8_TYPE__
+# ifdef __INT8_C_SUFFIX__
+# define __int8_c_suffix __INT8_C_SUFFIX__
+#else
+# undef __int8_c_suffix
+# endif /* __INT8_C_SUFFIX__ */
+#endif /* __INT8_TYPE__ */
+
+#ifdef __int_least8_t
+# ifdef __int8_c_suffix
+# define INT8_C(v) __int_c(v, __int8_c_suffix)
+# define UINT8_C(v) __uint_c(v, __int8_c_suffix)
+# else
+# define INT8_C(v) v
+# define UINT8_C(v) v ## U
+# endif /* __int8_c_suffix */
+#endif /* __int_least8_t */
+
+
+/* C99 7.18.2.1 Limits of exact-width integer types.
+ * C99 7.18.2.2 Limits of minimum-width integer types.
+ * C99 7.18.2.3 Limits of fastest minimum-width integer types.
+ *
+ * The presence of limit macros are completely optional in C99. This
+ * implementation defines limits for all of the types (exact- and
+ * minimum-width) that it defines above, using the limits of the minimum-width
+ * type for any types that do not have exact-width representations.
+ *
+ * As in the type definitions, this section takes an approach of
+ * successive-shrinking to determine which limits to use for the standard (8,
+ * 16, 32, 64) bit widths when they don't have exact representations. It is
+ * therefore important that the defintions be kept in order of decending
+ * widths.
+ *
+ * Note that C++ should not check __STDC_LIMIT_MACROS here, contrary to the
+ * claims of the C standard (see C++ 18.3.1p2, [cstdint.syn]).
+ */
+
+#ifdef __INT64_TYPE__
+# define INT64_MAX INT64_C( 9223372036854775807)
+# define INT64_MIN (-INT64_C( 9223372036854775807)-1)
+# define UINT64_MAX UINT64_C(18446744073709551615)
+# define __INT_LEAST64_MIN INT64_MIN
+# define __INT_LEAST64_MAX INT64_MAX
+# define __UINT_LEAST64_MAX UINT64_MAX
+# define __INT_LEAST32_MIN INT64_MIN
+# define __INT_LEAST32_MAX INT64_MAX
+# define __UINT_LEAST32_MAX UINT64_MAX
+# define __INT_LEAST16_MIN INT64_MIN
+# define __INT_LEAST16_MAX INT64_MAX
+# define __UINT_LEAST16_MAX UINT64_MAX
+# define __INT_LEAST8_MIN INT64_MIN
+# define __INT_LEAST8_MAX INT64_MAX
+# define __UINT_LEAST8_MAX UINT64_MAX
+#endif /* __INT64_TYPE__ */
+
+#ifdef __INT_LEAST64_MIN
+# define INT_LEAST64_MIN __INT_LEAST64_MIN
+# define INT_LEAST64_MAX __INT_LEAST64_MAX
+# define UINT_LEAST64_MAX __UINT_LEAST64_MAX
+# define INT_FAST64_MIN __INT_LEAST64_MIN
+# define INT_FAST64_MAX __INT_LEAST64_MAX
+# define UINT_FAST64_MAX __UINT_LEAST64_MAX
+#endif /* __INT_LEAST64_MIN */
+
+
+#ifdef __INT56_TYPE__
+# define INT56_MAX INT56_C(36028797018963967)
+# define INT56_MIN (-INT56_C(36028797018963967)-1)
+# define UINT56_MAX UINT56_C(72057594037927935)
+# define INT_LEAST56_MIN INT56_MIN
+# define INT_LEAST56_MAX INT56_MAX
+# define UINT_LEAST56_MAX UINT56_MAX
+# define INT_FAST56_MIN INT56_MIN
+# define INT_FAST56_MAX INT56_MAX
+# define UINT_FAST56_MAX UINT56_MAX
+# define __INT_LEAST32_MIN INT56_MIN
+# define __INT_LEAST32_MAX INT56_MAX
+# define __UINT_LEAST32_MAX UINT56_MAX
+# define __INT_LEAST16_MIN INT56_MIN
+# define __INT_LEAST16_MAX INT56_MAX
+# define __UINT_LEAST16_MAX UINT56_MAX
+# define __INT_LEAST8_MIN INT56_MIN
+# define __INT_LEAST8_MAX INT56_MAX
+# define __UINT_LEAST8_MAX UINT56_MAX
+#endif /* __INT56_TYPE__ */
+
+
+#ifdef __INT48_TYPE__
+# define INT48_MAX INT48_C(140737488355327)
+# define INT48_MIN (-INT48_C(140737488355327)-1)
+# define UINT48_MAX UINT48_C(281474976710655)
+# define INT_LEAST48_MIN INT48_MIN
+# define INT_LEAST48_MAX INT48_MAX
+# define UINT_LEAST48_MAX UINT48_MAX
+# define INT_FAST48_MIN INT48_MIN
+# define INT_FAST48_MAX INT48_MAX
+# define UINT_FAST48_MAX UINT48_MAX
+# define __INT_LEAST32_MIN INT48_MIN
+# define __INT_LEAST32_MAX INT48_MAX
+# define __UINT_LEAST32_MAX UINT48_MAX
+# define __INT_LEAST16_MIN INT48_MIN
+# define __INT_LEAST16_MAX INT48_MAX
+# define __UINT_LEAST16_MAX UINT48_MAX
+# define __INT_LEAST8_MIN INT48_MIN
+# define __INT_LEAST8_MAX INT48_MAX
+# define __UINT_LEAST8_MAX UINT48_MAX
+#endif /* __INT48_TYPE__ */
+
+
+#ifdef __INT40_TYPE__
+# define INT40_MAX INT40_C(549755813887)
+# define INT40_MIN (-INT40_C(549755813887)-1)
+# define UINT40_MAX UINT40_C(1099511627775)
+# define INT_LEAST40_MIN INT40_MIN
+# define INT_LEAST40_MAX INT40_MAX
+# define UINT_LEAST40_MAX UINT40_MAX
+# define INT_FAST40_MIN INT40_MIN
+# define INT_FAST40_MAX INT40_MAX
+# define UINT_FAST40_MAX UINT40_MAX
+# define __INT_LEAST32_MIN INT40_MIN
+# define __INT_LEAST32_MAX INT40_MAX
+# define __UINT_LEAST32_MAX UINT40_MAX
+# define __INT_LEAST16_MIN INT40_MIN
+# define __INT_LEAST16_MAX INT40_MAX
+# define __UINT_LEAST16_MAX UINT40_MAX
+# define __INT_LEAST8_MIN INT40_MIN
+# define __INT_LEAST8_MAX INT40_MAX
+# define __UINT_LEAST8_MAX UINT40_MAX
+#endif /* __INT40_TYPE__ */
+
+
+#ifdef __INT32_TYPE__
+# define INT32_MAX INT32_C(2147483647)
+# define INT32_MIN (-INT32_C(2147483647)-1)
+# define UINT32_MAX UINT32_C(4294967295)
+# define __INT_LEAST32_MIN INT32_MIN
+# define __INT_LEAST32_MAX INT32_MAX
+# define __UINT_LEAST32_MAX UINT32_MAX
+# define __INT_LEAST16_MIN INT32_MIN
+# define __INT_LEAST16_MAX INT32_MAX
+# define __UINT_LEAST16_MAX UINT32_MAX
+# define __INT_LEAST8_MIN INT32_MIN
+# define __INT_LEAST8_MAX INT32_MAX
+# define __UINT_LEAST8_MAX UINT32_MAX
+#endif /* __INT32_TYPE__ */
+
+#ifdef __INT_LEAST32_MIN
+# define INT_LEAST32_MIN __INT_LEAST32_MIN
+# define INT_LEAST32_MAX __INT_LEAST32_MAX
+# define UINT_LEAST32_MAX __UINT_LEAST32_MAX
+# define INT_FAST32_MIN __INT_LEAST32_MIN
+# define INT_FAST32_MAX __INT_LEAST32_MAX
+# define UINT_FAST32_MAX __UINT_LEAST32_MAX
+#endif /* __INT_LEAST32_MIN */
+
+
+#ifdef __INT24_TYPE__
+# define INT24_MAX INT24_C(8388607)
+# define INT24_MIN (-INT24_C(8388607)-1)
+# define UINT24_MAX UINT24_C(16777215)
+# define INT_LEAST24_MIN INT24_MIN
+# define INT_LEAST24_MAX INT24_MAX
+# define UINT_LEAST24_MAX UINT24_MAX
+# define INT_FAST24_MIN INT24_MIN
+# define INT_FAST24_MAX INT24_MAX
+# define UINT_FAST24_MAX UINT24_MAX
+# define __INT_LEAST16_MIN INT24_MIN
+# define __INT_LEAST16_MAX INT24_MAX
+# define __UINT_LEAST16_MAX UINT24_MAX
+# define __INT_LEAST8_MIN INT24_MIN
+# define __INT_LEAST8_MAX INT24_MAX
+# define __UINT_LEAST8_MAX UINT24_MAX
+#endif /* __INT24_TYPE__ */
+
+
+#ifdef __INT16_TYPE__
+#define INT16_MAX INT16_C(32767)
+#define INT16_MIN (-INT16_C(32767)-1)
+#define UINT16_MAX UINT16_C(65535)
+# define __INT_LEAST16_MIN INT16_MIN
+# define __INT_LEAST16_MAX INT16_MAX
+# define __UINT_LEAST16_MAX UINT16_MAX
+# define __INT_LEAST8_MIN INT16_MIN
+# define __INT_LEAST8_MAX INT16_MAX
+# define __UINT_LEAST8_MAX UINT16_MAX
+#endif /* __INT16_TYPE__ */
+
+#ifdef __INT_LEAST16_MIN
+# define INT_LEAST16_MIN __INT_LEAST16_MIN
+# define INT_LEAST16_MAX __INT_LEAST16_MAX
+# define UINT_LEAST16_MAX __UINT_LEAST16_MAX
+# define INT_FAST16_MIN __INT_LEAST16_MIN
+# define INT_FAST16_MAX __INT_LEAST16_MAX
+# define UINT_FAST16_MAX __UINT_LEAST16_MAX
+#endif /* __INT_LEAST16_MIN */
+
+
+#ifdef __INT8_TYPE__
+# define INT8_MAX INT8_C(127)
+# define INT8_MIN (-INT8_C(127)-1)
+# define UINT8_MAX UINT8_C(255)
+# define __INT_LEAST8_MIN INT8_MIN
+# define __INT_LEAST8_MAX INT8_MAX
+# define __UINT_LEAST8_MAX UINT8_MAX
+#endif /* __INT8_TYPE__ */
+
+#ifdef __INT_LEAST8_MIN
+# define INT_LEAST8_MIN __INT_LEAST8_MIN
+# define INT_LEAST8_MAX __INT_LEAST8_MAX
+# define UINT_LEAST8_MAX __UINT_LEAST8_MAX
+# define INT_FAST8_MIN __INT_LEAST8_MIN
+# define INT_FAST8_MAX __INT_LEAST8_MAX
+# define UINT_FAST8_MAX __UINT_LEAST8_MAX
+#endif /* __INT_LEAST8_MIN */
+
+/* Some utility macros */
+#define __INTN_MIN(n) __stdint_join3( INT, n, _MIN)
+#define __INTN_MAX(n) __stdint_join3( INT, n, _MAX)
+#define __UINTN_MAX(n) __stdint_join3(UINT, n, _MAX)
+#define __INTN_C(n, v) __stdint_join3( INT, n, _C(v))
+#define __UINTN_C(n, v) __stdint_join3(UINT, n, _C(v))
+
+/* C99 7.18.2.4 Limits of integer types capable of holding object pointers. */
+/* C99 7.18.3 Limits of other integer types. */
+
+#define INTPTR_MIN __INTN_MIN(__INTPTR_WIDTH__)
+#define INTPTR_MAX __INTN_MAX(__INTPTR_WIDTH__)
+#define UINTPTR_MAX __UINTN_MAX(__INTPTR_WIDTH__)
+#define PTRDIFF_MIN __INTN_MIN(__PTRDIFF_WIDTH__)
+#define PTRDIFF_MAX __INTN_MAX(__PTRDIFF_WIDTH__)
+#define SIZE_MAX __UINTN_MAX(__SIZE_WIDTH__)
+
+/* ISO9899:2011 7.20 (C11 Annex K): Define RSIZE_MAX if __STDC_WANT_LIB_EXT1__
+ * is enabled. */
+#if defined(__STDC_WANT_LIB_EXT1__) && __STDC_WANT_LIB_EXT1__ >= 1
+#define RSIZE_MAX (SIZE_MAX >> 1)
+#endif
+
+/* C99 7.18.2.5 Limits of greatest-width integer types. */
+#define INTMAX_MIN __INTN_MIN(__INTMAX_WIDTH__)
+#define INTMAX_MAX __INTN_MAX(__INTMAX_WIDTH__)
+#define UINTMAX_MAX __UINTN_MAX(__INTMAX_WIDTH__)
+
+/* C99 7.18.3 Limits of other integer types. */
+#define SIG_ATOMIC_MIN __INTN_MIN(__SIG_ATOMIC_WIDTH__)
+#define SIG_ATOMIC_MAX __INTN_MAX(__SIG_ATOMIC_WIDTH__)
+#ifdef __WINT_UNSIGNED__
+# define WINT_MIN __UINTN_C(__WINT_WIDTH__, 0)
+# define WINT_MAX __UINTN_MAX(__WINT_WIDTH__)
+#else
+# define WINT_MIN __INTN_MIN(__WINT_WIDTH__)
+# define WINT_MAX __INTN_MAX(__WINT_WIDTH__)
+#endif
+
+#ifndef WCHAR_MAX
+# define WCHAR_MAX __WCHAR_MAX__
+#endif
+#ifndef WCHAR_MIN
+# if __WCHAR_MAX__ == __INTN_MAX(__WCHAR_WIDTH__)
+# define WCHAR_MIN __INTN_MIN(__WCHAR_WIDTH__)
+# else
+# define WCHAR_MIN __UINTN_C(__WCHAR_WIDTH__, 0)
+# endif
+#endif
+
+/* 7.18.4.2 Macros for greatest-width integer constants. */
+#define INTMAX_C(v) __INTN_C(__INTMAX_WIDTH__, v)
+#define UINTMAX_C(v) __UINTN_C(__INTMAX_WIDTH__, v)
+
+#endif /* __STDC_HOSTED__ */
+#endif /* __CLANG_STDINT_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/stdnoreturn.h b/contrib/llvm/tools/clang/lib/Headers/stdnoreturn.h
new file mode 100644
index 0000000..a7a301d
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/stdnoreturn.h
@@ -0,0 +1,30 @@
+/*===---- stdnoreturn.h - Standard header for noreturn macro ---------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#ifndef __STDNORETURN_H
+#define __STDNORETURN_H
+
+#define noreturn _Noreturn
+#define __noreturn_is_defined 1
+
+#endif /* __STDNORETURN_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/tbmintrin.h b/contrib/llvm/tools/clang/lib/Headers/tbmintrin.h
new file mode 100644
index 0000000..f95e34f
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/tbmintrin.h
@@ -0,0 +1,158 @@
+/*===---- tbmintrin.h - TBM intrinsics -------------------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#ifndef __TBM__
+#error "TBM instruction set is not enabled"
+#endif
+
+#ifndef __X86INTRIN_H
+#error "Never use <tbmintrin.h> directly; include <x86intrin.h> instead."
+#endif
+
+#ifndef __TBMINTRIN_H
+#define __TBMINTRIN_H
+
+#define __bextri_u32(a, b) (__builtin_ia32_bextri_u32((a), (b)))
+
+static __inline__ unsigned int __attribute__((__always_inline__, __nodebug__))
+__blcfill_u32(unsigned int a)
+{
+ return a & (a + 1);
+}
+
+static __inline__ unsigned int __attribute__((__always_inline__, __nodebug__))
+__blci_u32(unsigned int a)
+{
+ return a | ~(a + 1);
+}
+
+static __inline__ unsigned int __attribute__((__always_inline__, __nodebug__))
+__blcic_u32(unsigned int a)
+{
+ return ~a & (a + 1);
+}
+
+static __inline__ unsigned int __attribute__((__always_inline__, __nodebug__))
+__blcmsk_u32(unsigned int a)
+{
+ return a ^ (a + 1);
+}
+
+static __inline__ unsigned int __attribute__((__always_inline__, __nodebug__))
+__blcs_u32(unsigned int a)
+{
+ return a | (a + 1);
+}
+
+static __inline__ unsigned int __attribute__((__always_inline__, __nodebug__))
+__blsfill_u32(unsigned int a)
+{
+ return a | (a - 1);
+}
+
+static __inline__ unsigned int __attribute__((__always_inline__, __nodebug__))
+__blsic_u32(unsigned int a)
+{
+ return ~a | (a - 1);
+}
+
+static __inline__ unsigned int __attribute__((__always_inline__, __nodebug__))
+__t1mskc_u32(unsigned int a)
+{
+ return ~a | (a + 1);
+}
+
+static __inline__ unsigned int __attribute__((__always_inline__, __nodebug__))
+__tzmsk_u32(unsigned int a)
+{
+ return ~a & (a - 1);
+}
+
+#ifdef __x86_64__
+#define __bextri_u64(a, b) (__builtin_ia32_bextri_u64((a), (int)(b)))
+
+static __inline__ unsigned long long __attribute__((__always_inline__,
+ __nodebug__))
+__blcfill_u64(unsigned long long a)
+{
+ return a & (a + 1);
+}
+
+static __inline__ unsigned long long __attribute__((__always_inline__,
+ __nodebug__))
+__blci_u64(unsigned long long a)
+{
+ return a | ~(a + 1);
+}
+
+static __inline__ unsigned long long __attribute__((__always_inline__,
+ __nodebug__))
+__blcic_u64(unsigned long long a)
+{
+ return ~a & (a + 1);
+}
+
+static __inline__ unsigned long long __attribute__((__always_inline__,
+ __nodebug__))
+__blcmsk_u64(unsigned long long a)
+{
+ return a ^ (a + 1);
+}
+
+static __inline__ unsigned long long __attribute__((__always_inline__,
+ __nodebug__))
+__blcs_u64(unsigned long long a)
+{
+ return a | (a + 1);
+}
+
+static __inline__ unsigned long long __attribute__((__always_inline__,
+ __nodebug__))
+__blsfill_u64(unsigned long long a)
+{
+ return a | (a - 1);
+}
+
+static __inline__ unsigned long long __attribute__((__always_inline__,
+ __nodebug__))
+__blsic_u64(unsigned long long a)
+{
+ return ~a | (a - 1);
+}
+
+static __inline__ unsigned long long __attribute__((__always_inline__,
+ __nodebug__))
+__t1mskc_u64(unsigned long long a)
+{
+ return ~a | (a + 1);
+}
+
+static __inline__ unsigned long long __attribute__((__always_inline__,
+ __nodebug__))
+__tzmsk_u64(unsigned long long a)
+{
+ return ~a & (a - 1);
+}
+#endif
+
+#endif /* __TBMINTRIN_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/tgmath.h b/contrib/llvm/tools/clang/lib/Headers/tgmath.h
new file mode 100644
index 0000000..a48e267
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/tgmath.h
@@ -0,0 +1,1374 @@
+/*===---- tgmath.h - Standard header for type generic math ----------------===*\
+ *
+ * Copyright (c) 2009 Howard Hinnant
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+\*===----------------------------------------------------------------------===*/
+
+#ifndef __TGMATH_H
+#define __TGMATH_H
+
+/* C99 7.22 Type-generic math <tgmath.h>. */
+#include <math.h>
+
+/* C++ handles type genericity with overloading in math.h. */
+#ifndef __cplusplus
+#include <complex.h>
+
+#define _TG_ATTRSp __attribute__((__overloadable__))
+#define _TG_ATTRS __attribute__((__overloadable__, __always_inline__))
+
+// promotion
+
+typedef void _Argument_type_is_not_arithmetic;
+static _Argument_type_is_not_arithmetic __tg_promote(...)
+ __attribute__((__unavailable__,__overloadable__));
+static double _TG_ATTRSp __tg_promote(int);
+static double _TG_ATTRSp __tg_promote(unsigned int);
+static double _TG_ATTRSp __tg_promote(long);
+static double _TG_ATTRSp __tg_promote(unsigned long);
+static double _TG_ATTRSp __tg_promote(long long);
+static double _TG_ATTRSp __tg_promote(unsigned long long);
+static float _TG_ATTRSp __tg_promote(float);
+static double _TG_ATTRSp __tg_promote(double);
+static long double _TG_ATTRSp __tg_promote(long double);
+static float _Complex _TG_ATTRSp __tg_promote(float _Complex);
+static double _Complex _TG_ATTRSp __tg_promote(double _Complex);
+static long double _Complex _TG_ATTRSp __tg_promote(long double _Complex);
+
+#define __tg_promote1(__x) (__typeof__(__tg_promote(__x)))
+#define __tg_promote2(__x, __y) (__typeof__(__tg_promote(__x) + \
+ __tg_promote(__y)))
+#define __tg_promote3(__x, __y, __z) (__typeof__(__tg_promote(__x) + \
+ __tg_promote(__y) + \
+ __tg_promote(__z)))
+
+// acos
+
+static float
+ _TG_ATTRS
+ __tg_acos(float __x) {return acosf(__x);}
+
+static double
+ _TG_ATTRS
+ __tg_acos(double __x) {return acos(__x);}
+
+static long double
+ _TG_ATTRS
+ __tg_acos(long double __x) {return acosl(__x);}
+
+static float _Complex
+ _TG_ATTRS
+ __tg_acos(float _Complex __x) {return cacosf(__x);}
+
+static double _Complex
+ _TG_ATTRS
+ __tg_acos(double _Complex __x) {return cacos(__x);}
+
+static long double _Complex
+ _TG_ATTRS
+ __tg_acos(long double _Complex __x) {return cacosl(__x);}
+
+#undef acos
+#define acos(__x) __tg_acos(__tg_promote1((__x))(__x))
+
+// asin
+
+static float
+ _TG_ATTRS
+ __tg_asin(float __x) {return asinf(__x);}
+
+static double
+ _TG_ATTRS
+ __tg_asin(double __x) {return asin(__x);}
+
+static long double
+ _TG_ATTRS
+ __tg_asin(long double __x) {return asinl(__x);}
+
+static float _Complex
+ _TG_ATTRS
+ __tg_asin(float _Complex __x) {return casinf(__x);}
+
+static double _Complex
+ _TG_ATTRS
+ __tg_asin(double _Complex __x) {return casin(__x);}
+
+static long double _Complex
+ _TG_ATTRS
+ __tg_asin(long double _Complex __x) {return casinl(__x);}
+
+#undef asin
+#define asin(__x) __tg_asin(__tg_promote1((__x))(__x))
+
+// atan
+
+static float
+ _TG_ATTRS
+ __tg_atan(float __x) {return atanf(__x);}
+
+static double
+ _TG_ATTRS
+ __tg_atan(double __x) {return atan(__x);}
+
+static long double
+ _TG_ATTRS
+ __tg_atan(long double __x) {return atanl(__x);}
+
+static float _Complex
+ _TG_ATTRS
+ __tg_atan(float _Complex __x) {return catanf(__x);}
+
+static double _Complex
+ _TG_ATTRS
+ __tg_atan(double _Complex __x) {return catan(__x);}
+
+static long double _Complex
+ _TG_ATTRS
+ __tg_atan(long double _Complex __x) {return catanl(__x);}
+
+#undef atan
+#define atan(__x) __tg_atan(__tg_promote1((__x))(__x))
+
+// acosh
+
+static float
+ _TG_ATTRS
+ __tg_acosh(float __x) {return acoshf(__x);}
+
+static double
+ _TG_ATTRS
+ __tg_acosh(double __x) {return acosh(__x);}
+
+static long double
+ _TG_ATTRS
+ __tg_acosh(long double __x) {return acoshl(__x);}
+
+static float _Complex
+ _TG_ATTRS
+ __tg_acosh(float _Complex __x) {return cacoshf(__x);}
+
+static double _Complex
+ _TG_ATTRS
+ __tg_acosh(double _Complex __x) {return cacosh(__x);}
+
+static long double _Complex
+ _TG_ATTRS
+ __tg_acosh(long double _Complex __x) {return cacoshl(__x);}
+
+#undef acosh
+#define acosh(__x) __tg_acosh(__tg_promote1((__x))(__x))
+
+// asinh
+
+static float
+ _TG_ATTRS
+ __tg_asinh(float __x) {return asinhf(__x);}
+
+static double
+ _TG_ATTRS
+ __tg_asinh(double __x) {return asinh(__x);}
+
+static long double
+ _TG_ATTRS
+ __tg_asinh(long double __x) {return asinhl(__x);}
+
+static float _Complex
+ _TG_ATTRS
+ __tg_asinh(float _Complex __x) {return casinhf(__x);}
+
+static double _Complex
+ _TG_ATTRS
+ __tg_asinh(double _Complex __x) {return casinh(__x);}
+
+static long double _Complex
+ _TG_ATTRS
+ __tg_asinh(long double _Complex __x) {return casinhl(__x);}
+
+#undef asinh
+#define asinh(__x) __tg_asinh(__tg_promote1((__x))(__x))
+
+// atanh
+
+static float
+ _TG_ATTRS
+ __tg_atanh(float __x) {return atanhf(__x);}
+
+static double
+ _TG_ATTRS
+ __tg_atanh(double __x) {return atanh(__x);}
+
+static long double
+ _TG_ATTRS
+ __tg_atanh(long double __x) {return atanhl(__x);}
+
+static float _Complex
+ _TG_ATTRS
+ __tg_atanh(float _Complex __x) {return catanhf(__x);}
+
+static double _Complex
+ _TG_ATTRS
+ __tg_atanh(double _Complex __x) {return catanh(__x);}
+
+static long double _Complex
+ _TG_ATTRS
+ __tg_atanh(long double _Complex __x) {return catanhl(__x);}
+
+#undef atanh
+#define atanh(__x) __tg_atanh(__tg_promote1((__x))(__x))
+
+// cos
+
+static float
+ _TG_ATTRS
+ __tg_cos(float __x) {return cosf(__x);}
+
+static double
+ _TG_ATTRS
+ __tg_cos(double __x) {return cos(__x);}
+
+static long double
+ _TG_ATTRS
+ __tg_cos(long double __x) {return cosl(__x);}
+
+static float _Complex
+ _TG_ATTRS
+ __tg_cos(float _Complex __x) {return ccosf(__x);}
+
+static double _Complex
+ _TG_ATTRS
+ __tg_cos(double _Complex __x) {return ccos(__x);}
+
+static long double _Complex
+ _TG_ATTRS
+ __tg_cos(long double _Complex __x) {return ccosl(__x);}
+
+#undef cos
+#define cos(__x) __tg_cos(__tg_promote1((__x))(__x))
+
+// sin
+
+static float
+ _TG_ATTRS
+ __tg_sin(float __x) {return sinf(__x);}
+
+static double
+ _TG_ATTRS
+ __tg_sin(double __x) {return sin(__x);}
+
+static long double
+ _TG_ATTRS
+ __tg_sin(long double __x) {return sinl(__x);}
+
+static float _Complex
+ _TG_ATTRS
+ __tg_sin(float _Complex __x) {return csinf(__x);}
+
+static double _Complex
+ _TG_ATTRS
+ __tg_sin(double _Complex __x) {return csin(__x);}
+
+static long double _Complex
+ _TG_ATTRS
+ __tg_sin(long double _Complex __x) {return csinl(__x);}
+
+#undef sin
+#define sin(__x) __tg_sin(__tg_promote1((__x))(__x))
+
+// tan
+
+static float
+ _TG_ATTRS
+ __tg_tan(float __x) {return tanf(__x);}
+
+static double
+ _TG_ATTRS
+ __tg_tan(double __x) {return tan(__x);}
+
+static long double
+ _TG_ATTRS
+ __tg_tan(long double __x) {return tanl(__x);}
+
+static float _Complex
+ _TG_ATTRS
+ __tg_tan(float _Complex __x) {return ctanf(__x);}
+
+static double _Complex
+ _TG_ATTRS
+ __tg_tan(double _Complex __x) {return ctan(__x);}
+
+static long double _Complex
+ _TG_ATTRS
+ __tg_tan(long double _Complex __x) {return ctanl(__x);}
+
+#undef tan
+#define tan(__x) __tg_tan(__tg_promote1((__x))(__x))
+
+// cosh
+
+static float
+ _TG_ATTRS
+ __tg_cosh(float __x) {return coshf(__x);}
+
+static double
+ _TG_ATTRS
+ __tg_cosh(double __x) {return cosh(__x);}
+
+static long double
+ _TG_ATTRS
+ __tg_cosh(long double __x) {return coshl(__x);}
+
+static float _Complex
+ _TG_ATTRS
+ __tg_cosh(float _Complex __x) {return ccoshf(__x);}
+
+static double _Complex
+ _TG_ATTRS
+ __tg_cosh(double _Complex __x) {return ccosh(__x);}
+
+static long double _Complex
+ _TG_ATTRS
+ __tg_cosh(long double _Complex __x) {return ccoshl(__x);}
+
+#undef cosh
+#define cosh(__x) __tg_cosh(__tg_promote1((__x))(__x))
+
+// sinh
+
+static float
+ _TG_ATTRS
+ __tg_sinh(float __x) {return sinhf(__x);}
+
+static double
+ _TG_ATTRS
+ __tg_sinh(double __x) {return sinh(__x);}
+
+static long double
+ _TG_ATTRS
+ __tg_sinh(long double __x) {return sinhl(__x);}
+
+static float _Complex
+ _TG_ATTRS
+ __tg_sinh(float _Complex __x) {return csinhf(__x);}
+
+static double _Complex
+ _TG_ATTRS
+ __tg_sinh(double _Complex __x) {return csinh(__x);}
+
+static long double _Complex
+ _TG_ATTRS
+ __tg_sinh(long double _Complex __x) {return csinhl(__x);}
+
+#undef sinh
+#define sinh(__x) __tg_sinh(__tg_promote1((__x))(__x))
+
+// tanh
+
+static float
+ _TG_ATTRS
+ __tg_tanh(float __x) {return tanhf(__x);}
+
+static double
+ _TG_ATTRS
+ __tg_tanh(double __x) {return tanh(__x);}
+
+static long double
+ _TG_ATTRS
+ __tg_tanh(long double __x) {return tanhl(__x);}
+
+static float _Complex
+ _TG_ATTRS
+ __tg_tanh(float _Complex __x) {return ctanhf(__x);}
+
+static double _Complex
+ _TG_ATTRS
+ __tg_tanh(double _Complex __x) {return ctanh(__x);}
+
+static long double _Complex
+ _TG_ATTRS
+ __tg_tanh(long double _Complex __x) {return ctanhl(__x);}
+
+#undef tanh
+#define tanh(__x) __tg_tanh(__tg_promote1((__x))(__x))
+
+// exp
+
+static float
+ _TG_ATTRS
+ __tg_exp(float __x) {return expf(__x);}
+
+static double
+ _TG_ATTRS
+ __tg_exp(double __x) {return exp(__x);}
+
+static long double
+ _TG_ATTRS
+ __tg_exp(long double __x) {return expl(__x);}
+
+static float _Complex
+ _TG_ATTRS
+ __tg_exp(float _Complex __x) {return cexpf(__x);}
+
+static double _Complex
+ _TG_ATTRS
+ __tg_exp(double _Complex __x) {return cexp(__x);}
+
+static long double _Complex
+ _TG_ATTRS
+ __tg_exp(long double _Complex __x) {return cexpl(__x);}
+
+#undef exp
+#define exp(__x) __tg_exp(__tg_promote1((__x))(__x))
+
+// log
+
+static float
+ _TG_ATTRS
+ __tg_log(float __x) {return logf(__x);}
+
+static double
+ _TG_ATTRS
+ __tg_log(double __x) {return log(__x);}
+
+static long double
+ _TG_ATTRS
+ __tg_log(long double __x) {return logl(__x);}
+
+static float _Complex
+ _TG_ATTRS
+ __tg_log(float _Complex __x) {return clogf(__x);}
+
+static double _Complex
+ _TG_ATTRS
+ __tg_log(double _Complex __x) {return clog(__x);}
+
+static long double _Complex
+ _TG_ATTRS
+ __tg_log(long double _Complex __x) {return clogl(__x);}
+
+#undef log
+#define log(__x) __tg_log(__tg_promote1((__x))(__x))
+
+// pow
+
+static float
+ _TG_ATTRS
+ __tg_pow(float __x, float __y) {return powf(__x, __y);}
+
+static double
+ _TG_ATTRS
+ __tg_pow(double __x, double __y) {return pow(__x, __y);}
+
+static long double
+ _TG_ATTRS
+ __tg_pow(long double __x, long double __y) {return powl(__x, __y);}
+
+static float _Complex
+ _TG_ATTRS
+ __tg_pow(float _Complex __x, float _Complex __y) {return cpowf(__x, __y);}
+
+static double _Complex
+ _TG_ATTRS
+ __tg_pow(double _Complex __x, double _Complex __y) {return cpow(__x, __y);}
+
+static long double _Complex
+ _TG_ATTRS
+ __tg_pow(long double _Complex __x, long double _Complex __y)
+ {return cpowl(__x, __y);}
+
+#undef pow
+#define pow(__x, __y) __tg_pow(__tg_promote2((__x), (__y))(__x), \
+ __tg_promote2((__x), (__y))(__y))
+
+// sqrt
+
+static float
+ _TG_ATTRS
+ __tg_sqrt(float __x) {return sqrtf(__x);}
+
+static double
+ _TG_ATTRS
+ __tg_sqrt(double __x) {return sqrt(__x);}
+
+static long double
+ _TG_ATTRS
+ __tg_sqrt(long double __x) {return sqrtl(__x);}
+
+static float _Complex
+ _TG_ATTRS
+ __tg_sqrt(float _Complex __x) {return csqrtf(__x);}
+
+static double _Complex
+ _TG_ATTRS
+ __tg_sqrt(double _Complex __x) {return csqrt(__x);}
+
+static long double _Complex
+ _TG_ATTRS
+ __tg_sqrt(long double _Complex __x) {return csqrtl(__x);}
+
+#undef sqrt
+#define sqrt(__x) __tg_sqrt(__tg_promote1((__x))(__x))
+
+// fabs
+
+static float
+ _TG_ATTRS
+ __tg_fabs(float __x) {return fabsf(__x);}
+
+static double
+ _TG_ATTRS
+ __tg_fabs(double __x) {return fabs(__x);}
+
+static long double
+ _TG_ATTRS
+ __tg_fabs(long double __x) {return fabsl(__x);}
+
+static float
+ _TG_ATTRS
+ __tg_fabs(float _Complex __x) {return cabsf(__x);}
+
+static double
+ _TG_ATTRS
+ __tg_fabs(double _Complex __x) {return cabs(__x);}
+
+static long double
+ _TG_ATTRS
+ __tg_fabs(long double _Complex __x) {return cabsl(__x);}
+
+#undef fabs
+#define fabs(__x) __tg_fabs(__tg_promote1((__x))(__x))
+
+// atan2
+
+static float
+ _TG_ATTRS
+ __tg_atan2(float __x, float __y) {return atan2f(__x, __y);}
+
+static double
+ _TG_ATTRS
+ __tg_atan2(double __x, double __y) {return atan2(__x, __y);}
+
+static long double
+ _TG_ATTRS
+ __tg_atan2(long double __x, long double __y) {return atan2l(__x, __y);}
+
+#undef atan2
+#define atan2(__x, __y) __tg_atan2(__tg_promote2((__x), (__y))(__x), \
+ __tg_promote2((__x), (__y))(__y))
+
+// cbrt
+
+static float
+ _TG_ATTRS
+ __tg_cbrt(float __x) {return cbrtf(__x);}
+
+static double
+ _TG_ATTRS
+ __tg_cbrt(double __x) {return cbrt(__x);}
+
+static long double
+ _TG_ATTRS
+ __tg_cbrt(long double __x) {return cbrtl(__x);}
+
+#undef cbrt
+#define cbrt(__x) __tg_cbrt(__tg_promote1((__x))(__x))
+
+// ceil
+
+static float
+ _TG_ATTRS
+ __tg_ceil(float __x) {return ceilf(__x);}
+
+static double
+ _TG_ATTRS
+ __tg_ceil(double __x) {return ceil(__x);}
+
+static long double
+ _TG_ATTRS
+ __tg_ceil(long double __x) {return ceill(__x);}
+
+#undef ceil
+#define ceil(__x) __tg_ceil(__tg_promote1((__x))(__x))
+
+// copysign
+
+static float
+ _TG_ATTRS
+ __tg_copysign(float __x, float __y) {return copysignf(__x, __y);}
+
+static double
+ _TG_ATTRS
+ __tg_copysign(double __x, double __y) {return copysign(__x, __y);}
+
+static long double
+ _TG_ATTRS
+ __tg_copysign(long double __x, long double __y) {return copysignl(__x, __y);}
+
+#undef copysign
+#define copysign(__x, __y) __tg_copysign(__tg_promote2((__x), (__y))(__x), \
+ __tg_promote2((__x), (__y))(__y))
+
+// erf
+
+static float
+ _TG_ATTRS
+ __tg_erf(float __x) {return erff(__x);}
+
+static double
+ _TG_ATTRS
+ __tg_erf(double __x) {return erf(__x);}
+
+static long double
+ _TG_ATTRS
+ __tg_erf(long double __x) {return erfl(__x);}
+
+#undef erf
+#define erf(__x) __tg_erf(__tg_promote1((__x))(__x))
+
+// erfc
+
+static float
+ _TG_ATTRS
+ __tg_erfc(float __x) {return erfcf(__x);}
+
+static double
+ _TG_ATTRS
+ __tg_erfc(double __x) {return erfc(__x);}
+
+static long double
+ _TG_ATTRS
+ __tg_erfc(long double __x) {return erfcl(__x);}
+
+#undef erfc
+#define erfc(__x) __tg_erfc(__tg_promote1((__x))(__x))
+
+// exp2
+
+static float
+ _TG_ATTRS
+ __tg_exp2(float __x) {return exp2f(__x);}
+
+static double
+ _TG_ATTRS
+ __tg_exp2(double __x) {return exp2(__x);}
+
+static long double
+ _TG_ATTRS
+ __tg_exp2(long double __x) {return exp2l(__x);}
+
+#undef exp2
+#define exp2(__x) __tg_exp2(__tg_promote1((__x))(__x))
+
+// expm1
+
+static float
+ _TG_ATTRS
+ __tg_expm1(float __x) {return expm1f(__x);}
+
+static double
+ _TG_ATTRS
+ __tg_expm1(double __x) {return expm1(__x);}
+
+static long double
+ _TG_ATTRS
+ __tg_expm1(long double __x) {return expm1l(__x);}
+
+#undef expm1
+#define expm1(__x) __tg_expm1(__tg_promote1((__x))(__x))
+
+// fdim
+
+static float
+ _TG_ATTRS
+ __tg_fdim(float __x, float __y) {return fdimf(__x, __y);}
+
+static double
+ _TG_ATTRS
+ __tg_fdim(double __x, double __y) {return fdim(__x, __y);}
+
+static long double
+ _TG_ATTRS
+ __tg_fdim(long double __x, long double __y) {return fdiml(__x, __y);}
+
+#undef fdim
+#define fdim(__x, __y) __tg_fdim(__tg_promote2((__x), (__y))(__x), \
+ __tg_promote2((__x), (__y))(__y))
+
+// floor
+
+static float
+ _TG_ATTRS
+ __tg_floor(float __x) {return floorf(__x);}
+
+static double
+ _TG_ATTRS
+ __tg_floor(double __x) {return floor(__x);}
+
+static long double
+ _TG_ATTRS
+ __tg_floor(long double __x) {return floorl(__x);}
+
+#undef floor
+#define floor(__x) __tg_floor(__tg_promote1((__x))(__x))
+
+// fma
+
+static float
+ _TG_ATTRS
+ __tg_fma(float __x, float __y, float __z)
+ {return fmaf(__x, __y, __z);}
+
+static double
+ _TG_ATTRS
+ __tg_fma(double __x, double __y, double __z)
+ {return fma(__x, __y, __z);}
+
+static long double
+ _TG_ATTRS
+ __tg_fma(long double __x,long double __y, long double __z)
+ {return fmal(__x, __y, __z);}
+
+#undef fma
+#define fma(__x, __y, __z) \
+ __tg_fma(__tg_promote3((__x), (__y), (__z))(__x), \
+ __tg_promote3((__x), (__y), (__z))(__y), \
+ __tg_promote3((__x), (__y), (__z))(__z))
+
+// fmax
+
+static float
+ _TG_ATTRS
+ __tg_fmax(float __x, float __y) {return fmaxf(__x, __y);}
+
+static double
+ _TG_ATTRS
+ __tg_fmax(double __x, double __y) {return fmax(__x, __y);}
+
+static long double
+ _TG_ATTRS
+ __tg_fmax(long double __x, long double __y) {return fmaxl(__x, __y);}
+
+#undef fmax
+#define fmax(__x, __y) __tg_fmax(__tg_promote2((__x), (__y))(__x), \
+ __tg_promote2((__x), (__y))(__y))
+
+// fmin
+
+static float
+ _TG_ATTRS
+ __tg_fmin(float __x, float __y) {return fminf(__x, __y);}
+
+static double
+ _TG_ATTRS
+ __tg_fmin(double __x, double __y) {return fmin(__x, __y);}
+
+static long double
+ _TG_ATTRS
+ __tg_fmin(long double __x, long double __y) {return fminl(__x, __y);}
+
+#undef fmin
+#define fmin(__x, __y) __tg_fmin(__tg_promote2((__x), (__y))(__x), \
+ __tg_promote2((__x), (__y))(__y))
+
+// fmod
+
+static float
+ _TG_ATTRS
+ __tg_fmod(float __x, float __y) {return fmodf(__x, __y);}
+
+static double
+ _TG_ATTRS
+ __tg_fmod(double __x, double __y) {return fmod(__x, __y);}
+
+static long double
+ _TG_ATTRS
+ __tg_fmod(long double __x, long double __y) {return fmodl(__x, __y);}
+
+#undef fmod
+#define fmod(__x, __y) __tg_fmod(__tg_promote2((__x), (__y))(__x), \
+ __tg_promote2((__x), (__y))(__y))
+
+// frexp
+
+static float
+ _TG_ATTRS
+ __tg_frexp(float __x, int* __y) {return frexpf(__x, __y);}
+
+static double
+ _TG_ATTRS
+ __tg_frexp(double __x, int* __y) {return frexp(__x, __y);}
+
+static long double
+ _TG_ATTRS
+ __tg_frexp(long double __x, int* __y) {return frexpl(__x, __y);}
+
+#undef frexp
+#define frexp(__x, __y) __tg_frexp(__tg_promote1((__x))(__x), __y)
+
+// hypot
+
+static float
+ _TG_ATTRS
+ __tg_hypot(float __x, float __y) {return hypotf(__x, __y);}
+
+static double
+ _TG_ATTRS
+ __tg_hypot(double __x, double __y) {return hypot(__x, __y);}
+
+static long double
+ _TG_ATTRS
+ __tg_hypot(long double __x, long double __y) {return hypotl(__x, __y);}
+
+#undef hypot
+#define hypot(__x, __y) __tg_hypot(__tg_promote2((__x), (__y))(__x), \
+ __tg_promote2((__x), (__y))(__y))
+
+// ilogb
+
+static int
+ _TG_ATTRS
+ __tg_ilogb(float __x) {return ilogbf(__x);}
+
+static int
+ _TG_ATTRS
+ __tg_ilogb(double __x) {return ilogb(__x);}
+
+static int
+ _TG_ATTRS
+ __tg_ilogb(long double __x) {return ilogbl(__x);}
+
+#undef ilogb
+#define ilogb(__x) __tg_ilogb(__tg_promote1((__x))(__x))
+
+// ldexp
+
+static float
+ _TG_ATTRS
+ __tg_ldexp(float __x, int __y) {return ldexpf(__x, __y);}
+
+static double
+ _TG_ATTRS
+ __tg_ldexp(double __x, int __y) {return ldexp(__x, __y);}
+
+static long double
+ _TG_ATTRS
+ __tg_ldexp(long double __x, int __y) {return ldexpl(__x, __y);}
+
+#undef ldexp
+#define ldexp(__x, __y) __tg_ldexp(__tg_promote1((__x))(__x), __y)
+
+// lgamma
+
+static float
+ _TG_ATTRS
+ __tg_lgamma(float __x) {return lgammaf(__x);}
+
+static double
+ _TG_ATTRS
+ __tg_lgamma(double __x) {return lgamma(__x);}
+
+static long double
+ _TG_ATTRS
+ __tg_lgamma(long double __x) {return lgammal(__x);}
+
+#undef lgamma
+#define lgamma(__x) __tg_lgamma(__tg_promote1((__x))(__x))
+
+// llrint
+
+static long long
+ _TG_ATTRS
+ __tg_llrint(float __x) {return llrintf(__x);}
+
+static long long
+ _TG_ATTRS
+ __tg_llrint(double __x) {return llrint(__x);}
+
+static long long
+ _TG_ATTRS
+ __tg_llrint(long double __x) {return llrintl(__x);}
+
+#undef llrint
+#define llrint(__x) __tg_llrint(__tg_promote1((__x))(__x))
+
+// llround
+
+static long long
+ _TG_ATTRS
+ __tg_llround(float __x) {return llroundf(__x);}
+
+static long long
+ _TG_ATTRS
+ __tg_llround(double __x) {return llround(__x);}
+
+static long long
+ _TG_ATTRS
+ __tg_llround(long double __x) {return llroundl(__x);}
+
+#undef llround
+#define llround(__x) __tg_llround(__tg_promote1((__x))(__x))
+
+// log10
+
+static float
+ _TG_ATTRS
+ __tg_log10(float __x) {return log10f(__x);}
+
+static double
+ _TG_ATTRS
+ __tg_log10(double __x) {return log10(__x);}
+
+static long double
+ _TG_ATTRS
+ __tg_log10(long double __x) {return log10l(__x);}
+
+#undef log10
+#define log10(__x) __tg_log10(__tg_promote1((__x))(__x))
+
+// log1p
+
+static float
+ _TG_ATTRS
+ __tg_log1p(float __x) {return log1pf(__x);}
+
+static double
+ _TG_ATTRS
+ __tg_log1p(double __x) {return log1p(__x);}
+
+static long double
+ _TG_ATTRS
+ __tg_log1p(long double __x) {return log1pl(__x);}
+
+#undef log1p
+#define log1p(__x) __tg_log1p(__tg_promote1((__x))(__x))
+
+// log2
+
+static float
+ _TG_ATTRS
+ __tg_log2(float __x) {return log2f(__x);}
+
+static double
+ _TG_ATTRS
+ __tg_log2(double __x) {return log2(__x);}
+
+static long double
+ _TG_ATTRS
+ __tg_log2(long double __x) {return log2l(__x);}
+
+#undef log2
+#define log2(__x) __tg_log2(__tg_promote1((__x))(__x))
+
+// logb
+
+static float
+ _TG_ATTRS
+ __tg_logb(float __x) {return logbf(__x);}
+
+static double
+ _TG_ATTRS
+ __tg_logb(double __x) {return logb(__x);}
+
+static long double
+ _TG_ATTRS
+ __tg_logb(long double __x) {return logbl(__x);}
+
+#undef logb
+#define logb(__x) __tg_logb(__tg_promote1((__x))(__x))
+
+// lrint
+
+static long
+ _TG_ATTRS
+ __tg_lrint(float __x) {return lrintf(__x);}
+
+static long
+ _TG_ATTRS
+ __tg_lrint(double __x) {return lrint(__x);}
+
+static long
+ _TG_ATTRS
+ __tg_lrint(long double __x) {return lrintl(__x);}
+
+#undef lrint
+#define lrint(__x) __tg_lrint(__tg_promote1((__x))(__x))
+
+// lround
+
+static long
+ _TG_ATTRS
+ __tg_lround(float __x) {return lroundf(__x);}
+
+static long
+ _TG_ATTRS
+ __tg_lround(double __x) {return lround(__x);}
+
+static long
+ _TG_ATTRS
+ __tg_lround(long double __x) {return lroundl(__x);}
+
+#undef lround
+#define lround(__x) __tg_lround(__tg_promote1((__x))(__x))
+
+// nearbyint
+
+static float
+ _TG_ATTRS
+ __tg_nearbyint(float __x) {return nearbyintf(__x);}
+
+static double
+ _TG_ATTRS
+ __tg_nearbyint(double __x) {return nearbyint(__x);}
+
+static long double
+ _TG_ATTRS
+ __tg_nearbyint(long double __x) {return nearbyintl(__x);}
+
+#undef nearbyint
+#define nearbyint(__x) __tg_nearbyint(__tg_promote1((__x))(__x))
+
+// nextafter
+
+static float
+ _TG_ATTRS
+ __tg_nextafter(float __x, float __y) {return nextafterf(__x, __y);}
+
+static double
+ _TG_ATTRS
+ __tg_nextafter(double __x, double __y) {return nextafter(__x, __y);}
+
+static long double
+ _TG_ATTRS
+ __tg_nextafter(long double __x, long double __y) {return nextafterl(__x, __y);}
+
+#undef nextafter
+#define nextafter(__x, __y) __tg_nextafter(__tg_promote2((__x), (__y))(__x), \
+ __tg_promote2((__x), (__y))(__y))
+
+// nexttoward
+
+static float
+ _TG_ATTRS
+ __tg_nexttoward(float __x, long double __y) {return nexttowardf(__x, __y);}
+
+static double
+ _TG_ATTRS
+ __tg_nexttoward(double __x, long double __y) {return nexttoward(__x, __y);}
+
+static long double
+ _TG_ATTRS
+ __tg_nexttoward(long double __x, long double __y) {return nexttowardl(__x, __y);}
+
+#undef nexttoward
+#define nexttoward(__x, __y) __tg_nexttoward(__tg_promote1((__x))(__x), (__y))
+
+// remainder
+
+static float
+ _TG_ATTRS
+ __tg_remainder(float __x, float __y) {return remainderf(__x, __y);}
+
+static double
+ _TG_ATTRS
+ __tg_remainder(double __x, double __y) {return remainder(__x, __y);}
+
+static long double
+ _TG_ATTRS
+ __tg_remainder(long double __x, long double __y) {return remainderl(__x, __y);}
+
+#undef remainder
+#define remainder(__x, __y) __tg_remainder(__tg_promote2((__x), (__y))(__x), \
+ __tg_promote2((__x), (__y))(__y))
+
+// remquo
+
+static float
+ _TG_ATTRS
+ __tg_remquo(float __x, float __y, int* __z)
+ {return remquof(__x, __y, __z);}
+
+static double
+ _TG_ATTRS
+ __tg_remquo(double __x, double __y, int* __z)
+ {return remquo(__x, __y, __z);}
+
+static long double
+ _TG_ATTRS
+ __tg_remquo(long double __x,long double __y, int* __z)
+ {return remquol(__x, __y, __z);}
+
+#undef remquo
+#define remquo(__x, __y, __z) \
+ __tg_remquo(__tg_promote2((__x), (__y))(__x), \
+ __tg_promote2((__x), (__y))(__y), \
+ (__z))
+
+// rint
+
+static float
+ _TG_ATTRS
+ __tg_rint(float __x) {return rintf(__x);}
+
+static double
+ _TG_ATTRS
+ __tg_rint(double __x) {return rint(__x);}
+
+static long double
+ _TG_ATTRS
+ __tg_rint(long double __x) {return rintl(__x);}
+
+#undef rint
+#define rint(__x) __tg_rint(__tg_promote1((__x))(__x))
+
+// round
+
+static float
+ _TG_ATTRS
+ __tg_round(float __x) {return roundf(__x);}
+
+static double
+ _TG_ATTRS
+ __tg_round(double __x) {return round(__x);}
+
+static long double
+ _TG_ATTRS
+ __tg_round(long double __x) {return roundl(__x);}
+
+#undef round
+#define round(__x) __tg_round(__tg_promote1((__x))(__x))
+
+// scalbn
+
+static float
+ _TG_ATTRS
+ __tg_scalbn(float __x, int __y) {return scalbnf(__x, __y);}
+
+static double
+ _TG_ATTRS
+ __tg_scalbn(double __x, int __y) {return scalbn(__x, __y);}
+
+static long double
+ _TG_ATTRS
+ __tg_scalbn(long double __x, int __y) {return scalbnl(__x, __y);}
+
+#undef scalbn
+#define scalbn(__x, __y) __tg_scalbn(__tg_promote1((__x))(__x), __y)
+
+// scalbln
+
+static float
+ _TG_ATTRS
+ __tg_scalbln(float __x, long __y) {return scalblnf(__x, __y);}
+
+static double
+ _TG_ATTRS
+ __tg_scalbln(double __x, long __y) {return scalbln(__x, __y);}
+
+static long double
+ _TG_ATTRS
+ __tg_scalbln(long double __x, long __y) {return scalblnl(__x, __y);}
+
+#undef scalbln
+#define scalbln(__x, __y) __tg_scalbln(__tg_promote1((__x))(__x), __y)
+
+// tgamma
+
+static float
+ _TG_ATTRS
+ __tg_tgamma(float __x) {return tgammaf(__x);}
+
+static double
+ _TG_ATTRS
+ __tg_tgamma(double __x) {return tgamma(__x);}
+
+static long double
+ _TG_ATTRS
+ __tg_tgamma(long double __x) {return tgammal(__x);}
+
+#undef tgamma
+#define tgamma(__x) __tg_tgamma(__tg_promote1((__x))(__x))
+
+// trunc
+
+static float
+ _TG_ATTRS
+ __tg_trunc(float __x) {return truncf(__x);}
+
+static double
+ _TG_ATTRS
+ __tg_trunc(double __x) {return trunc(__x);}
+
+static long double
+ _TG_ATTRS
+ __tg_trunc(long double __x) {return truncl(__x);}
+
+#undef trunc
+#define trunc(__x) __tg_trunc(__tg_promote1((__x))(__x))
+
+// carg
+
+static float
+ _TG_ATTRS
+ __tg_carg(float __x) {return atan2f(0.F, __x);}
+
+static double
+ _TG_ATTRS
+ __tg_carg(double __x) {return atan2(0., __x);}
+
+static long double
+ _TG_ATTRS
+ __tg_carg(long double __x) {return atan2l(0.L, __x);}
+
+static float
+ _TG_ATTRS
+ __tg_carg(float _Complex __x) {return cargf(__x);}
+
+static double
+ _TG_ATTRS
+ __tg_carg(double _Complex __x) {return carg(__x);}
+
+static long double
+ _TG_ATTRS
+ __tg_carg(long double _Complex __x) {return cargl(__x);}
+
+#undef carg
+#define carg(__x) __tg_carg(__tg_promote1((__x))(__x))
+
+// cimag
+
+static float
+ _TG_ATTRS
+ __tg_cimag(float __x) {return 0;}
+
+static double
+ _TG_ATTRS
+ __tg_cimag(double __x) {return 0;}
+
+static long double
+ _TG_ATTRS
+ __tg_cimag(long double __x) {return 0;}
+
+static float
+ _TG_ATTRS
+ __tg_cimag(float _Complex __x) {return cimagf(__x);}
+
+static double
+ _TG_ATTRS
+ __tg_cimag(double _Complex __x) {return cimag(__x);}
+
+static long double
+ _TG_ATTRS
+ __tg_cimag(long double _Complex __x) {return cimagl(__x);}
+
+#undef cimag
+#define cimag(__x) __tg_cimag(__tg_promote1((__x))(__x))
+
+// conj
+
+static float _Complex
+ _TG_ATTRS
+ __tg_conj(float __x) {return __x;}
+
+static double _Complex
+ _TG_ATTRS
+ __tg_conj(double __x) {return __x;}
+
+static long double _Complex
+ _TG_ATTRS
+ __tg_conj(long double __x) {return __x;}
+
+static float _Complex
+ _TG_ATTRS
+ __tg_conj(float _Complex __x) {return conjf(__x);}
+
+static double _Complex
+ _TG_ATTRS
+ __tg_conj(double _Complex __x) {return conj(__x);}
+
+static long double _Complex
+ _TG_ATTRS
+ __tg_conj(long double _Complex __x) {return conjl(__x);}
+
+#undef conj
+#define conj(__x) __tg_conj(__tg_promote1((__x))(__x))
+
+// cproj
+
+static float _Complex
+ _TG_ATTRS
+ __tg_cproj(float __x) {return cprojf(__x);}
+
+static double _Complex
+ _TG_ATTRS
+ __tg_cproj(double __x) {return cproj(__x);}
+
+static long double _Complex
+ _TG_ATTRS
+ __tg_cproj(long double __x) {return cprojl(__x);}
+
+static float _Complex
+ _TG_ATTRS
+ __tg_cproj(float _Complex __x) {return cprojf(__x);}
+
+static double _Complex
+ _TG_ATTRS
+ __tg_cproj(double _Complex __x) {return cproj(__x);}
+
+static long double _Complex
+ _TG_ATTRS
+ __tg_cproj(long double _Complex __x) {return cprojl(__x);}
+
+#undef cproj
+#define cproj(__x) __tg_cproj(__tg_promote1((__x))(__x))
+
+// creal
+
+static float
+ _TG_ATTRS
+ __tg_creal(float __x) {return __x;}
+
+static double
+ _TG_ATTRS
+ __tg_creal(double __x) {return __x;}
+
+static long double
+ _TG_ATTRS
+ __tg_creal(long double __x) {return __x;}
+
+static float
+ _TG_ATTRS
+ __tg_creal(float _Complex __x) {return crealf(__x);}
+
+static double
+ _TG_ATTRS
+ __tg_creal(double _Complex __x) {return creal(__x);}
+
+static long double
+ _TG_ATTRS
+ __tg_creal(long double _Complex __x) {return creall(__x);}
+
+#undef creal
+#define creal(__x) __tg_creal(__tg_promote1((__x))(__x))
+
+#undef _TG_ATTRSp
+#undef _TG_ATTRS
+
+#endif /* __cplusplus */
+#endif /* __TGMATH_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/tmmintrin.h b/contrib/llvm/tools/clang/lib/Headers/tmmintrin.h
new file mode 100644
index 0000000..4238f5b
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/tmmintrin.h
@@ -0,0 +1,225 @@
+/*===---- tmmintrin.h - SSSE3 intrinsics -----------------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#ifndef __TMMINTRIN_H
+#define __TMMINTRIN_H
+
+#ifndef __SSSE3__
+#error "SSSE3 instruction set not enabled"
+#else
+
+#include <pmmintrin.h>
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_abs_pi8(__m64 __a)
+{
+ return (__m64)__builtin_ia32_pabsb((__v8qi)__a);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_abs_epi8(__m128i __a)
+{
+ return (__m128i)__builtin_ia32_pabsb128((__v16qi)__a);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_abs_pi16(__m64 __a)
+{
+ return (__m64)__builtin_ia32_pabsw((__v4hi)__a);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_abs_epi16(__m128i __a)
+{
+ return (__m128i)__builtin_ia32_pabsw128((__v8hi)__a);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_abs_pi32(__m64 __a)
+{
+ return (__m64)__builtin_ia32_pabsd((__v2si)__a);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_abs_epi32(__m128i __a)
+{
+ return (__m128i)__builtin_ia32_pabsd128((__v4si)__a);
+}
+
+#define _mm_alignr_epi8(a, b, n) __extension__ ({ \
+ __m128i __a = (a); \
+ __m128i __b = (b); \
+ (__m128i)__builtin_ia32_palignr128((__v16qi)__a, (__v16qi)__b, (n)); })
+
+#define _mm_alignr_pi8(a, b, n) __extension__ ({ \
+ __m64 __a = (a); \
+ __m64 __b = (b); \
+ (__m64)__builtin_ia32_palignr((__v8qi)__a, (__v8qi)__b, (n)); })
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_hadd_epi16(__m128i __a, __m128i __b)
+{
+ return (__m128i)__builtin_ia32_phaddw128((__v8hi)__a, (__v8hi)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_hadd_epi32(__m128i __a, __m128i __b)
+{
+ return (__m128i)__builtin_ia32_phaddd128((__v4si)__a, (__v4si)__b);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_hadd_pi16(__m64 __a, __m64 __b)
+{
+ return (__m64)__builtin_ia32_phaddw((__v4hi)__a, (__v4hi)__b);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_hadd_pi32(__m64 __a, __m64 __b)
+{
+ return (__m64)__builtin_ia32_phaddd((__v2si)__a, (__v2si)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_hadds_epi16(__m128i __a, __m128i __b)
+{
+ return (__m128i)__builtin_ia32_phaddsw128((__v8hi)__a, (__v8hi)__b);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_hadds_pi16(__m64 __a, __m64 __b)
+{
+ return (__m64)__builtin_ia32_phaddsw((__v4hi)__a, (__v4hi)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_hsub_epi16(__m128i __a, __m128i __b)
+{
+ return (__m128i)__builtin_ia32_phsubw128((__v8hi)__a, (__v8hi)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_hsub_epi32(__m128i __a, __m128i __b)
+{
+ return (__m128i)__builtin_ia32_phsubd128((__v4si)__a, (__v4si)__b);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_hsub_pi16(__m64 __a, __m64 __b)
+{
+ return (__m64)__builtin_ia32_phsubw((__v4hi)__a, (__v4hi)__b);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_hsub_pi32(__m64 __a, __m64 __b)
+{
+ return (__m64)__builtin_ia32_phsubd((__v2si)__a, (__v2si)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_hsubs_epi16(__m128i __a, __m128i __b)
+{
+ return (__m128i)__builtin_ia32_phsubsw128((__v8hi)__a, (__v8hi)__b);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_hsubs_pi16(__m64 __a, __m64 __b)
+{
+ return (__m64)__builtin_ia32_phsubsw((__v4hi)__a, (__v4hi)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_maddubs_epi16(__m128i __a, __m128i __b)
+{
+ return (__m128i)__builtin_ia32_pmaddubsw128((__v16qi)__a, (__v16qi)__b);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_maddubs_pi16(__m64 __a, __m64 __b)
+{
+ return (__m64)__builtin_ia32_pmaddubsw((__v8qi)__a, (__v8qi)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_mulhrs_epi16(__m128i __a, __m128i __b)
+{
+ return (__m128i)__builtin_ia32_pmulhrsw128((__v8hi)__a, (__v8hi)__b);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_mulhrs_pi16(__m64 __a, __m64 __b)
+{
+ return (__m64)__builtin_ia32_pmulhrsw((__v4hi)__a, (__v4hi)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_shuffle_epi8(__m128i __a, __m128i __b)
+{
+ return (__m128i)__builtin_ia32_pshufb128((__v16qi)__a, (__v16qi)__b);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_shuffle_pi8(__m64 __a, __m64 __b)
+{
+ return (__m64)__builtin_ia32_pshufb((__v8qi)__a, (__v8qi)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_sign_epi8(__m128i __a, __m128i __b)
+{
+ return (__m128i)__builtin_ia32_psignb128((__v16qi)__a, (__v16qi)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_sign_epi16(__m128i __a, __m128i __b)
+{
+ return (__m128i)__builtin_ia32_psignw128((__v8hi)__a, (__v8hi)__b);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_sign_epi32(__m128i __a, __m128i __b)
+{
+ return (__m128i)__builtin_ia32_psignd128((__v4si)__a, (__v4si)__b);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_sign_pi8(__m64 __a, __m64 __b)
+{
+ return (__m64)__builtin_ia32_psignb((__v8qi)__a, (__v8qi)__b);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_sign_pi16(__m64 __a, __m64 __b)
+{
+ return (__m64)__builtin_ia32_psignw((__v4hi)__a, (__v4hi)__b);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_sign_pi32(__m64 __a, __m64 __b)
+{
+ return (__m64)__builtin_ia32_psignd((__v2si)__a, (__v2si)__b);
+}
+
+#endif /* __SSSE3__ */
+
+#endif /* __TMMINTRIN_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/unwind.h b/contrib/llvm/tools/clang/lib/Headers/unwind.h
new file mode 100644
index 0000000..303d792
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/unwind.h
@@ -0,0 +1,282 @@
+/*===---- unwind.h - Stack unwinding ----------------------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+/* See "Data Definitions for libgcc_s" in the Linux Standard Base.*/
+
+#ifndef __CLANG_UNWIND_H
+#define __CLANG_UNWIND_H
+
+#if defined(__APPLE__) && __has_include_next(<unwind.h>)
+/* Darwin (from 11.x on) provide an unwind.h. If that's available,
+ * use it. libunwind wraps some of its definitions in #ifdef _GNU_SOURCE,
+ * so define that around the include.*/
+# ifndef _GNU_SOURCE
+# define _SHOULD_UNDEFINE_GNU_SOURCE
+# define _GNU_SOURCE
+# endif
+// libunwind's unwind.h reflects the current visibility. However, Mozilla
+// builds with -fvisibility=hidden and relies on gcc's unwind.h to reset the
+// visibility to default and export its contents. gcc also allows users to
+// override its override by #defining HIDE_EXPORTS (but note, this only obeys
+// the user's -fvisibility setting; it doesn't hide any exports on its own). We
+// imitate gcc's header here:
+# ifdef HIDE_EXPORTS
+# include_next <unwind.h>
+# else
+# pragma GCC visibility push(default)
+# include_next <unwind.h>
+# pragma GCC visibility pop
+# endif
+# ifdef _SHOULD_UNDEFINE_GNU_SOURCE
+# undef _GNU_SOURCE
+# undef _SHOULD_UNDEFINE_GNU_SOURCE
+# endif
+#else
+
+#include <stdint.h>
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* It is a bit strange for a header to play with the visibility of the
+ symbols it declares, but this matches gcc's behavior and some programs
+ depend on it */
+#ifndef HIDE_EXPORTS
+#pragma GCC visibility push(default)
+#endif
+
+typedef uintptr_t _Unwind_Word;
+typedef intptr_t _Unwind_Sword;
+typedef uintptr_t _Unwind_Ptr;
+typedef uintptr_t _Unwind_Internal_Ptr;
+typedef uint64_t _Unwind_Exception_Class;
+
+typedef intptr_t _sleb128_t;
+typedef uintptr_t _uleb128_t;
+
+struct _Unwind_Context;
+struct _Unwind_Exception;
+typedef enum {
+ _URC_NO_REASON = 0,
+ _URC_FOREIGN_EXCEPTION_CAUGHT = 1,
+
+ _URC_FATAL_PHASE2_ERROR = 2,
+ _URC_FATAL_PHASE1_ERROR = 3,
+ _URC_NORMAL_STOP = 4,
+
+ _URC_END_OF_STACK = 5,
+ _URC_HANDLER_FOUND = 6,
+ _URC_INSTALL_CONTEXT = 7,
+ _URC_CONTINUE_UNWIND = 8
+} _Unwind_Reason_Code;
+
+typedef enum {
+ _UA_SEARCH_PHASE = 1,
+ _UA_CLEANUP_PHASE = 2,
+
+ _UA_HANDLER_FRAME = 4,
+ _UA_FORCE_UNWIND = 8,
+ _UA_END_OF_STACK = 16 /* gcc extension to C++ ABI */
+} _Unwind_Action;
+
+typedef void (*_Unwind_Exception_Cleanup_Fn)(_Unwind_Reason_Code,
+ struct _Unwind_Exception *);
+
+struct _Unwind_Exception {
+ _Unwind_Exception_Class exception_class;
+ _Unwind_Exception_Cleanup_Fn exception_cleanup;
+ _Unwind_Word private_1;
+ _Unwind_Word private_2;
+ /* The Itanium ABI requires that _Unwind_Exception objects are "double-word
+ * aligned". GCC has interpreted this to mean "use the maximum useful
+ * alignment for the target"; so do we. */
+} __attribute__((__aligned__));
+
+typedef _Unwind_Reason_Code (*_Unwind_Stop_Fn)(int, _Unwind_Action,
+ _Unwind_Exception_Class,
+ struct _Unwind_Exception *,
+ struct _Unwind_Context *,
+ void *);
+
+typedef _Unwind_Reason_Code (*_Unwind_Personality_Fn)(
+ int, _Unwind_Action, _Unwind_Exception_Class, struct _Unwind_Exception *,
+ struct _Unwind_Context *);
+typedef _Unwind_Personality_Fn __personality_routine;
+
+typedef _Unwind_Reason_Code (*_Unwind_Trace_Fn)(struct _Unwind_Context *,
+ void *);
+
+#if defined(__arm__) && !defined(__APPLE__)
+
+typedef enum {
+ _UVRSC_CORE = 0, /* integer register */
+ _UVRSC_VFP = 1, /* vfp */
+ _UVRSC_WMMXD = 3, /* Intel WMMX data register */
+ _UVRSC_WMMXC = 4 /* Intel WMMX control register */
+} _Unwind_VRS_RegClass;
+
+typedef enum {
+ _UVRSD_UINT32 = 0,
+ _UVRSD_VFPX = 1,
+ _UVRSD_UINT64 = 3,
+ _UVRSD_FLOAT = 4,
+ _UVRSD_DOUBLE = 5
+} _Unwind_VRS_DataRepresentation;
+
+typedef enum {
+ _UVRSR_OK = 0,
+ _UVRSR_NOT_IMPLEMENTED = 1,
+ _UVRSR_FAILED = 2
+} _Unwind_VRS_Result;
+
+_Unwind_VRS_Result _Unwind_VRS_Get(struct _Unwind_Context *__context,
+ _Unwind_VRS_RegClass __regclass,
+ uint32_t __regno,
+ _Unwind_VRS_DataRepresentation __representation,
+ void *__valuep);
+
+_Unwind_VRS_Result _Unwind_VRS_Set(struct _Unwind_Context *__context,
+ _Unwind_VRS_RegClass __regclass,
+ uint32_t __regno,
+ _Unwind_VRS_DataRepresentation __representation,
+ void *__valuep);
+
+static __inline__
+_Unwind_Word _Unwind_GetGR(struct _Unwind_Context *__context, int __index) {
+ _Unwind_Word __value;
+ _Unwind_VRS_Get(__context, _UVRSC_CORE, __index, _UVRSD_UINT32, &__value);
+ return __value;
+}
+
+static __inline__
+void _Unwind_SetGR(struct _Unwind_Context *__context, int __index,
+ _Unwind_Word __value) {
+ _Unwind_VRS_Set(__context, _UVRSC_CORE, __index, _UVRSD_UINT32, &__value);
+}
+
+static __inline__
+_Unwind_Word _Unwind_GetIP(struct _Unwind_Context *__context) {
+ _Unwind_Word __ip = _Unwind_GetGR(__context, 15);
+ return __ip & ~(_Unwind_Word)(0x1); /* Remove thumb mode bit. */
+}
+
+static __inline__
+void _Unwind_SetIP(struct _Unwind_Context *__context, _Unwind_Word __value) {
+ _Unwind_Word __thumb_mode_bit = _Unwind_GetGR(__context, 15) & 0x1;
+ _Unwind_SetGR(__context, 15, __value | __thumb_mode_bit);
+}
+#else
+_Unwind_Word _Unwind_GetGR(struct _Unwind_Context *, int);
+void _Unwind_SetGR(struct _Unwind_Context *, int, _Unwind_Word);
+
+_Unwind_Word _Unwind_GetIP(struct _Unwind_Context *);
+void _Unwind_SetIP(struct _Unwind_Context *, _Unwind_Word);
+#endif
+
+
+_Unwind_Word _Unwind_GetIPInfo(struct _Unwind_Context *, int *);
+
+_Unwind_Word _Unwind_GetCFA(struct _Unwind_Context *);
+
+_Unwind_Word _Unwind_GetBSP(struct _Unwind_Context *);
+
+void *_Unwind_GetLanguageSpecificData(struct _Unwind_Context *);
+
+_Unwind_Ptr _Unwind_GetRegionStart(struct _Unwind_Context *);
+
+/* DWARF EH functions; currently not available on Darwin/ARM */
+#if !defined(__APPLE__) || !defined(__arm__)
+
+_Unwind_Reason_Code _Unwind_RaiseException(struct _Unwind_Exception *);
+_Unwind_Reason_Code _Unwind_ForcedUnwind(struct _Unwind_Exception *,
+ _Unwind_Stop_Fn, void *);
+void _Unwind_DeleteException(struct _Unwind_Exception *);
+void _Unwind_Resume(struct _Unwind_Exception *);
+_Unwind_Reason_Code _Unwind_Resume_or_Rethrow(struct _Unwind_Exception *);
+
+#endif
+
+_Unwind_Reason_Code _Unwind_Backtrace(_Unwind_Trace_Fn, void *);
+
+/* setjmp(3)/longjmp(3) stuff */
+typedef struct SjLj_Function_Context *_Unwind_FunctionContext_t;
+
+void _Unwind_SjLj_Register(_Unwind_FunctionContext_t);
+void _Unwind_SjLj_Unregister(_Unwind_FunctionContext_t);
+_Unwind_Reason_Code _Unwind_SjLj_RaiseException(struct _Unwind_Exception *);
+_Unwind_Reason_Code _Unwind_SjLj_ForcedUnwind(struct _Unwind_Exception *,
+ _Unwind_Stop_Fn, void *);
+void _Unwind_SjLj_Resume(struct _Unwind_Exception *);
+_Unwind_Reason_Code _Unwind_SjLj_Resume_or_Rethrow(struct _Unwind_Exception *);
+
+void *_Unwind_FindEnclosingFunction(void *);
+
+#ifdef __APPLE__
+
+_Unwind_Ptr _Unwind_GetDataRelBase(struct _Unwind_Context *)
+ __attribute__((__unavailable__));
+_Unwind_Ptr _Unwind_GetTextRelBase(struct _Unwind_Context *)
+ __attribute__((__unavailable__));
+
+/* Darwin-specific functions */
+void __register_frame(const void *);
+void __deregister_frame(const void *);
+
+struct dwarf_eh_bases {
+ uintptr_t tbase;
+ uintptr_t dbase;
+ uintptr_t func;
+};
+void *_Unwind_Find_FDE(const void *, struct dwarf_eh_bases *);
+
+void __register_frame_info_bases(const void *, void *, void *, void *)
+ __attribute__((__unavailable__));
+void __register_frame_info(const void *, void *) __attribute__((__unavailable__));
+void __register_frame_info_table_bases(const void *, void*, void *, void *)
+ __attribute__((__unavailable__));
+void __register_frame_info_table(const void *, void *)
+ __attribute__((__unavailable__));
+void __register_frame_table(const void *) __attribute__((__unavailable__));
+void __deregister_frame_info(const void *) __attribute__((__unavailable__));
+void __deregister_frame_info_bases(const void *)__attribute__((__unavailable__));
+
+#else
+
+_Unwind_Ptr _Unwind_GetDataRelBase(struct _Unwind_Context *);
+_Unwind_Ptr _Unwind_GetTextRelBase(struct _Unwind_Context *);
+
+#endif
+
+
+#ifndef HIDE_EXPORTS
+#pragma GCC visibility pop
+#endif
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif
+
+#endif /* __CLANG_UNWIND_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/vadefs.h b/contrib/llvm/tools/clang/lib/Headers/vadefs.h
new file mode 100644
index 0000000..7fe9a74
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/vadefs.h
@@ -0,0 +1,65 @@
+/* ===-------- vadefs.h ---------------------------------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+/* Only include this if we are aiming for MSVC compatibility. */
+#ifndef _MSC_VER
+#include_next <vadefs.h>
+#else
+
+#ifndef __clang_vadefs_h
+#define __clang_vadefs_h
+
+#include_next <vadefs.h>
+
+/* Override macros from vadefs.h with definitions that work with Clang. */
+#ifdef _crt_va_start
+#undef _crt_va_start
+#define _crt_va_start(ap, param) __builtin_va_start(ap, param)
+#endif
+#ifdef _crt_va_end
+#undef _crt_va_end
+#define _crt_va_end(ap) __builtin_va_end(ap)
+#endif
+#ifdef _crt_va_arg
+#undef _crt_va_arg
+#define _crt_va_arg(ap, type) __builtin_va_arg(ap, type)
+#endif
+
+/* VS 2015 switched to double underscore names, which is an improvement, but now
+ * we have to intercept those names too.
+ */
+#ifdef __crt_va_start
+#undef __crt_va_start
+#define __crt_va_start(ap, param) __builtin_va_start(ap, param)
+#endif
+#ifdef __crt_va_end
+#undef __crt_va_end
+#define __crt_va_end(ap) __builtin_va_end(ap)
+#endif
+#ifdef __crt_va_arg
+#undef __crt_va_arg
+#define __crt_va_arg(ap, type) __builtin_va_arg(ap, type)
+#endif
+
+#endif
+#endif
diff --git a/contrib/llvm/tools/clang/lib/Headers/varargs.h b/contrib/llvm/tools/clang/lib/Headers/varargs.h
new file mode 100644
index 0000000..b5477d0
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/varargs.h
@@ -0,0 +1,26 @@
+/*===---- varargs.h - Variable argument handling -------------------------------------===
+*
+* Permission is hereby granted, free of charge, to any person obtaining a copy
+* of this software and associated documentation files (the "Software"), to deal
+* in the Software without restriction, including without limitation the rights
+* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+* copies of the Software, and to permit persons to whom the Software is
+* furnished to do so, subject to the following conditions:
+*
+* The above copyright notice and this permission notice shall be included in
+* all copies or substantial portions of the Software.
+*
+* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+* THE SOFTWARE.
+*
+*===-----------------------------------------------------------------------===
+*/
+#ifndef __VARARGS_H
+#define __VARARGS_H
+ #error "Please use <stdarg.h> instead of <varargs.h>"
+#endif
diff --git a/contrib/llvm/tools/clang/lib/Headers/wmmintrin.h b/contrib/llvm/tools/clang/lib/Headers/wmmintrin.h
new file mode 100644
index 0000000..369e3c2
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/wmmintrin.h
@@ -0,0 +1,42 @@
+/*===---- wmmintrin.h - AES intrinsics ------------------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#ifndef _WMMINTRIN_H
+#define _WMMINTRIN_H
+
+#include <emmintrin.h>
+
+#if !defined (__AES__) && !defined (__PCLMUL__)
+# error "AES/PCLMUL instructions not enabled"
+#else
+
+#ifdef __AES__
+#include <__wmmintrin_aes.h>
+#endif /* __AES__ */
+
+#ifdef __PCLMUL__
+#include <__wmmintrin_pclmul.h>
+#endif /* __PCLMUL__ */
+
+#endif /* __AES__ || __PCLMUL__ */
+#endif /* _WMMINTRIN_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/x86intrin.h b/contrib/llvm/tools/clang/lib/Headers/x86intrin.h
new file mode 100644
index 0000000..21a43da
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/x86intrin.h
@@ -0,0 +1,81 @@
+/*===---- x86intrin.h - X86 intrinsics -------------------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#ifndef __X86INTRIN_H
+#define __X86INTRIN_H
+
+#include <ia32intrin.h>
+
+#include <immintrin.h>
+
+#ifdef __3dNOW__
+#include <mm3dnow.h>
+#endif
+
+#ifdef __BMI__
+#include <bmiintrin.h>
+#endif
+
+#ifdef __BMI2__
+#include <bmi2intrin.h>
+#endif
+
+#ifdef __LZCNT__
+#include <lzcntintrin.h>
+#endif
+
+#ifdef __POPCNT__
+#include <popcntintrin.h>
+#endif
+
+#ifdef __RDSEED__
+#include <rdseedintrin.h>
+#endif
+
+#ifdef __PRFCHW__
+#include <prfchwintrin.h>
+#endif
+
+#ifdef __SSE4A__
+#include <ammintrin.h>
+#endif
+
+#ifdef __FMA4__
+#include <fma4intrin.h>
+#endif
+
+#ifdef __XOP__
+#include <xopintrin.h>
+#endif
+
+#ifdef __TBM__
+#include <tbmintrin.h>
+#endif
+
+#ifdef __F16C__
+#include <f16cintrin.h>
+#endif
+
+/* FIXME: LWP */
+
+#endif /* __X86INTRIN_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/xmmintrin.h b/contrib/llvm/tools/clang/lib/Headers/xmmintrin.h
new file mode 100644
index 0000000..3a6b95e
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/xmmintrin.h
@@ -0,0 +1,1003 @@
+/*===---- xmmintrin.h - SSE intrinsics -------------------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#ifndef __XMMINTRIN_H
+#define __XMMINTRIN_H
+
+#ifndef __SSE__
+#error "SSE instruction set not enabled"
+#else
+
+#include <mmintrin.h>
+
+typedef int __v4si __attribute__((__vector_size__(16)));
+typedef float __v4sf __attribute__((__vector_size__(16)));
+typedef float __m128 __attribute__((__vector_size__(16)));
+
+/* This header should only be included in a hosted environment as it depends on
+ * a standard library to provide allocation routines. */
+#if __STDC_HOSTED__
+#include <mm_malloc.h>
+#endif
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_add_ss(__m128 __a, __m128 __b)
+{
+ __a[0] += __b[0];
+ return __a;
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_add_ps(__m128 __a, __m128 __b)
+{
+ return __a + __b;
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_sub_ss(__m128 __a, __m128 __b)
+{
+ __a[0] -= __b[0];
+ return __a;
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_sub_ps(__m128 __a, __m128 __b)
+{
+ return __a - __b;
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_mul_ss(__m128 __a, __m128 __b)
+{
+ __a[0] *= __b[0];
+ return __a;
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_mul_ps(__m128 __a, __m128 __b)
+{
+ return __a * __b;
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_div_ss(__m128 __a, __m128 __b)
+{
+ __a[0] /= __b[0];
+ return __a;
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_div_ps(__m128 __a, __m128 __b)
+{
+ return __a / __b;
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_sqrt_ss(__m128 __a)
+{
+ __m128 __c = __builtin_ia32_sqrtss(__a);
+ return (__m128) { __c[0], __a[1], __a[2], __a[3] };
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_sqrt_ps(__m128 __a)
+{
+ return __builtin_ia32_sqrtps(__a);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_rcp_ss(__m128 __a)
+{
+ __m128 __c = __builtin_ia32_rcpss(__a);
+ return (__m128) { __c[0], __a[1], __a[2], __a[3] };
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_rcp_ps(__m128 __a)
+{
+ return __builtin_ia32_rcpps(__a);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_rsqrt_ss(__m128 __a)
+{
+ __m128 __c = __builtin_ia32_rsqrtss(__a);
+ return (__m128) { __c[0], __a[1], __a[2], __a[3] };
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_rsqrt_ps(__m128 __a)
+{
+ return __builtin_ia32_rsqrtps(__a);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_min_ss(__m128 __a, __m128 __b)
+{
+ return __builtin_ia32_minss(__a, __b);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_min_ps(__m128 __a, __m128 __b)
+{
+ return __builtin_ia32_minps(__a, __b);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_max_ss(__m128 __a, __m128 __b)
+{
+ return __builtin_ia32_maxss(__a, __b);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_max_ps(__m128 __a, __m128 __b)
+{
+ return __builtin_ia32_maxps(__a, __b);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_and_ps(__m128 __a, __m128 __b)
+{
+ return (__m128)((__v4si)__a & (__v4si)__b);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_andnot_ps(__m128 __a, __m128 __b)
+{
+ return (__m128)(~(__v4si)__a & (__v4si)__b);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_or_ps(__m128 __a, __m128 __b)
+{
+ return (__m128)((__v4si)__a | (__v4si)__b);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_xor_ps(__m128 __a, __m128 __b)
+{
+ return (__m128)((__v4si)__a ^ (__v4si)__b);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpeq_ss(__m128 __a, __m128 __b)
+{
+ return (__m128)__builtin_ia32_cmpeqss(__a, __b);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpeq_ps(__m128 __a, __m128 __b)
+{
+ return (__m128)__builtin_ia32_cmpeqps(__a, __b);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_cmplt_ss(__m128 __a, __m128 __b)
+{
+ return (__m128)__builtin_ia32_cmpltss(__a, __b);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_cmplt_ps(__m128 __a, __m128 __b)
+{
+ return (__m128)__builtin_ia32_cmpltps(__a, __b);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_cmple_ss(__m128 __a, __m128 __b)
+{
+ return (__m128)__builtin_ia32_cmpless(__a, __b);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_cmple_ps(__m128 __a, __m128 __b)
+{
+ return (__m128)__builtin_ia32_cmpleps(__a, __b);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpgt_ss(__m128 __a, __m128 __b)
+{
+ return (__m128)__builtin_shufflevector(__a,
+ __builtin_ia32_cmpltss(__b, __a),
+ 4, 1, 2, 3);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpgt_ps(__m128 __a, __m128 __b)
+{
+ return (__m128)__builtin_ia32_cmpltps(__b, __a);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpge_ss(__m128 __a, __m128 __b)
+{
+ return (__m128)__builtin_shufflevector(__a,
+ __builtin_ia32_cmpless(__b, __a),
+ 4, 1, 2, 3);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpge_ps(__m128 __a, __m128 __b)
+{
+ return (__m128)__builtin_ia32_cmpleps(__b, __a);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpneq_ss(__m128 __a, __m128 __b)
+{
+ return (__m128)__builtin_ia32_cmpneqss(__a, __b);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpneq_ps(__m128 __a, __m128 __b)
+{
+ return (__m128)__builtin_ia32_cmpneqps(__a, __b);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpnlt_ss(__m128 __a, __m128 __b)
+{
+ return (__m128)__builtin_ia32_cmpnltss(__a, __b);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpnlt_ps(__m128 __a, __m128 __b)
+{
+ return (__m128)__builtin_ia32_cmpnltps(__a, __b);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpnle_ss(__m128 __a, __m128 __b)
+{
+ return (__m128)__builtin_ia32_cmpnless(__a, __b);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpnle_ps(__m128 __a, __m128 __b)
+{
+ return (__m128)__builtin_ia32_cmpnleps(__a, __b);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpngt_ss(__m128 __a, __m128 __b)
+{
+ return (__m128)__builtin_shufflevector(__a,
+ __builtin_ia32_cmpnltss(__b, __a),
+ 4, 1, 2, 3);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpngt_ps(__m128 __a, __m128 __b)
+{
+ return (__m128)__builtin_ia32_cmpnltps(__b, __a);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpnge_ss(__m128 __a, __m128 __b)
+{
+ return (__m128)__builtin_shufflevector(__a,
+ __builtin_ia32_cmpnless(__b, __a),
+ 4, 1, 2, 3);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpnge_ps(__m128 __a, __m128 __b)
+{
+ return (__m128)__builtin_ia32_cmpnleps(__b, __a);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpord_ss(__m128 __a, __m128 __b)
+{
+ return (__m128)__builtin_ia32_cmpordss(__a, __b);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpord_ps(__m128 __a, __m128 __b)
+{
+ return (__m128)__builtin_ia32_cmpordps(__a, __b);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpunord_ss(__m128 __a, __m128 __b)
+{
+ return (__m128)__builtin_ia32_cmpunordss(__a, __b);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_cmpunord_ps(__m128 __a, __m128 __b)
+{
+ return (__m128)__builtin_ia32_cmpunordps(__a, __b);
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_comieq_ss(__m128 __a, __m128 __b)
+{
+ return __builtin_ia32_comieq(__a, __b);
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_comilt_ss(__m128 __a, __m128 __b)
+{
+ return __builtin_ia32_comilt(__a, __b);
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_comile_ss(__m128 __a, __m128 __b)
+{
+ return __builtin_ia32_comile(__a, __b);
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_comigt_ss(__m128 __a, __m128 __b)
+{
+ return __builtin_ia32_comigt(__a, __b);
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_comige_ss(__m128 __a, __m128 __b)
+{
+ return __builtin_ia32_comige(__a, __b);
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_comineq_ss(__m128 __a, __m128 __b)
+{
+ return __builtin_ia32_comineq(__a, __b);
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_ucomieq_ss(__m128 __a, __m128 __b)
+{
+ return __builtin_ia32_ucomieq(__a, __b);
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_ucomilt_ss(__m128 __a, __m128 __b)
+{
+ return __builtin_ia32_ucomilt(__a, __b);
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_ucomile_ss(__m128 __a, __m128 __b)
+{
+ return __builtin_ia32_ucomile(__a, __b);
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_ucomigt_ss(__m128 __a, __m128 __b)
+{
+ return __builtin_ia32_ucomigt(__a, __b);
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_ucomige_ss(__m128 __a, __m128 __b)
+{
+ return __builtin_ia32_ucomige(__a, __b);
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_ucomineq_ss(__m128 __a, __m128 __b)
+{
+ return __builtin_ia32_ucomineq(__a, __b);
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_cvtss_si32(__m128 __a)
+{
+ return __builtin_ia32_cvtss2si(__a);
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_cvt_ss2si(__m128 __a)
+{
+ return _mm_cvtss_si32(__a);
+}
+
+#ifdef __x86_64__
+
+static __inline__ long long __attribute__((__always_inline__, __nodebug__))
+_mm_cvtss_si64(__m128 __a)
+{
+ return __builtin_ia32_cvtss2si64(__a);
+}
+
+#endif
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_cvtps_pi32(__m128 __a)
+{
+ return (__m64)__builtin_ia32_cvtps2pi(__a);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_cvt_ps2pi(__m128 __a)
+{
+ return _mm_cvtps_pi32(__a);
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_cvttss_si32(__m128 __a)
+{
+ return __a[0];
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_cvtt_ss2si(__m128 __a)
+{
+ return _mm_cvttss_si32(__a);
+}
+
+static __inline__ long long __attribute__((__always_inline__, __nodebug__))
+_mm_cvttss_si64(__m128 __a)
+{
+ return __a[0];
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_cvttps_pi32(__m128 __a)
+{
+ return (__m64)__builtin_ia32_cvttps2pi(__a);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_cvtt_ps2pi(__m128 __a)
+{
+ return _mm_cvttps_pi32(__a);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_cvtsi32_ss(__m128 __a, int __b)
+{
+ __a[0] = __b;
+ return __a;
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_cvt_si2ss(__m128 __a, int __b)
+{
+ return _mm_cvtsi32_ss(__a, __b);
+}
+
+#ifdef __x86_64__
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_cvtsi64_ss(__m128 __a, long long __b)
+{
+ __a[0] = __b;
+ return __a;
+}
+
+#endif
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_cvtpi32_ps(__m128 __a, __m64 __b)
+{
+ return __builtin_ia32_cvtpi2ps(__a, (__v2si)__b);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_cvt_pi2ps(__m128 __a, __m64 __b)
+{
+ return _mm_cvtpi32_ps(__a, __b);
+}
+
+static __inline__ float __attribute__((__always_inline__, __nodebug__))
+_mm_cvtss_f32(__m128 __a)
+{
+ return __a[0];
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_loadh_pi(__m128 __a, const __m64 *__p)
+{
+ typedef float __mm_loadh_pi_v2f32 __attribute__((__vector_size__(8)));
+ struct __mm_loadh_pi_struct {
+ __mm_loadh_pi_v2f32 __u;
+ } __attribute__((__packed__, __may_alias__));
+ __mm_loadh_pi_v2f32 __b = ((struct __mm_loadh_pi_struct*)__p)->__u;
+ __m128 __bb = __builtin_shufflevector(__b, __b, 0, 1, 0, 1);
+ return __builtin_shufflevector(__a, __bb, 0, 1, 4, 5);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_loadl_pi(__m128 __a, const __m64 *__p)
+{
+ typedef float __mm_loadl_pi_v2f32 __attribute__((__vector_size__(8)));
+ struct __mm_loadl_pi_struct {
+ __mm_loadl_pi_v2f32 __u;
+ } __attribute__((__packed__, __may_alias__));
+ __mm_loadl_pi_v2f32 __b = ((struct __mm_loadl_pi_struct*)__p)->__u;
+ __m128 __bb = __builtin_shufflevector(__b, __b, 0, 1, 0, 1);
+ return __builtin_shufflevector(__a, __bb, 4, 5, 2, 3);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_load_ss(const float *__p)
+{
+ struct __mm_load_ss_struct {
+ float __u;
+ } __attribute__((__packed__, __may_alias__));
+ float __u = ((struct __mm_load_ss_struct*)__p)->__u;
+ return (__m128){ __u, 0, 0, 0 };
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_load1_ps(const float *__p)
+{
+ struct __mm_load1_ps_struct {
+ float __u;
+ } __attribute__((__packed__, __may_alias__));
+ float __u = ((struct __mm_load1_ps_struct*)__p)->__u;
+ return (__m128){ __u, __u, __u, __u };
+}
+
+#define _mm_load_ps1(p) _mm_load1_ps(p)
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_load_ps(const float *__p)
+{
+ return *(__m128*)__p;
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_loadu_ps(const float *__p)
+{
+ struct __loadu_ps {
+ __m128 __v;
+ } __attribute__((__packed__, __may_alias__));
+ return ((struct __loadu_ps*)__p)->__v;
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_loadr_ps(const float *__p)
+{
+ __m128 __a = _mm_load_ps(__p);
+ return __builtin_shufflevector(__a, __a, 3, 2, 1, 0);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_set_ss(float __w)
+{
+ return (__m128){ __w, 0, 0, 0 };
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_set1_ps(float __w)
+{
+ return (__m128){ __w, __w, __w, __w };
+}
+
+/* Microsoft specific. */
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_set_ps1(float __w)
+{
+ return _mm_set1_ps(__w);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_set_ps(float __z, float __y, float __x, float __w)
+{
+ return (__m128){ __w, __x, __y, __z };
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_setr_ps(float __z, float __y, float __x, float __w)
+{
+ return (__m128){ __z, __y, __x, __w };
+}
+
+static __inline__ __m128 __attribute__((__always_inline__))
+_mm_setzero_ps(void)
+{
+ return (__m128){ 0, 0, 0, 0 };
+}
+
+static __inline__ void __attribute__((__always_inline__))
+_mm_storeh_pi(__m64 *__p, __m128 __a)
+{
+ __builtin_ia32_storehps((__v2si *)__p, __a);
+}
+
+static __inline__ void __attribute__((__always_inline__))
+_mm_storel_pi(__m64 *__p, __m128 __a)
+{
+ __builtin_ia32_storelps((__v2si *)__p, __a);
+}
+
+static __inline__ void __attribute__((__always_inline__))
+_mm_store_ss(float *__p, __m128 __a)
+{
+ struct __mm_store_ss_struct {
+ float __u;
+ } __attribute__((__packed__, __may_alias__));
+ ((struct __mm_store_ss_struct*)__p)->__u = __a[0];
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_mm_storeu_ps(float *__p, __m128 __a)
+{
+ __builtin_ia32_storeups(__p, __a);
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_mm_store1_ps(float *__p, __m128 __a)
+{
+ __a = __builtin_shufflevector(__a, __a, 0, 0, 0, 0);
+ _mm_storeu_ps(__p, __a);
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_mm_store_ps1(float *__p, __m128 __a)
+{
+ return _mm_store1_ps(__p, __a);
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_mm_store_ps(float *__p, __m128 __a)
+{
+ *(__m128 *)__p = __a;
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_mm_storer_ps(float *__p, __m128 __a)
+{
+ __a = __builtin_shufflevector(__a, __a, 3, 2, 1, 0);
+ _mm_store_ps(__p, __a);
+}
+
+#define _MM_HINT_T0 3
+#define _MM_HINT_T1 2
+#define _MM_HINT_T2 1
+#define _MM_HINT_NTA 0
+
+#ifndef _MSC_VER
+/* FIXME: We have to #define this because "sel" must be a constant integer, and
+ Sema doesn't do any form of constant propagation yet. */
+
+#define _mm_prefetch(a, sel) (__builtin_prefetch((void *)(a), 0, (sel)))
+#endif
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_mm_stream_pi(__m64 *__p, __m64 __a)
+{
+ __builtin_ia32_movntq(__p, __a);
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_mm_stream_ps(float *__p, __m128 __a)
+{
+ __builtin_ia32_movntps(__p, __a);
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_mm_sfence(void)
+{
+ __builtin_ia32_sfence();
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_extract_pi16(__m64 __a, int __n)
+{
+ __v4hi __b = (__v4hi)__a;
+ return (unsigned short)__b[__n & 3];
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_insert_pi16(__m64 __a, int __d, int __n)
+{
+ __v4hi __b = (__v4hi)__a;
+ __b[__n & 3] = __d;
+ return (__m64)__b;
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_max_pi16(__m64 __a, __m64 __b)
+{
+ return (__m64)__builtin_ia32_pmaxsw((__v4hi)__a, (__v4hi)__b);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_max_pu8(__m64 __a, __m64 __b)
+{
+ return (__m64)__builtin_ia32_pmaxub((__v8qi)__a, (__v8qi)__b);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_min_pi16(__m64 __a, __m64 __b)
+{
+ return (__m64)__builtin_ia32_pminsw((__v4hi)__a, (__v4hi)__b);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_min_pu8(__m64 __a, __m64 __b)
+{
+ return (__m64)__builtin_ia32_pminub((__v8qi)__a, (__v8qi)__b);
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_movemask_pi8(__m64 __a)
+{
+ return __builtin_ia32_pmovmskb((__v8qi)__a);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_mulhi_pu16(__m64 __a, __m64 __b)
+{
+ return (__m64)__builtin_ia32_pmulhuw((__v4hi)__a, (__v4hi)__b);
+}
+
+#define _mm_shuffle_pi16(a, n) __extension__ ({ \
+ __m64 __a = (a); \
+ (__m64)__builtin_ia32_pshufw((__v4hi)__a, (n)); })
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_mm_maskmove_si64(__m64 __d, __m64 __n, char *__p)
+{
+ __builtin_ia32_maskmovq((__v8qi)__d, (__v8qi)__n, __p);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_avg_pu8(__m64 __a, __m64 __b)
+{
+ return (__m64)__builtin_ia32_pavgb((__v8qi)__a, (__v8qi)__b);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_avg_pu16(__m64 __a, __m64 __b)
+{
+ return (__m64)__builtin_ia32_pavgw((__v4hi)__a, (__v4hi)__b);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_sad_pu8(__m64 __a, __m64 __b)
+{
+ return (__m64)__builtin_ia32_psadbw((__v8qi)__a, (__v8qi)__b);
+}
+
+static __inline__ unsigned int __attribute__((__always_inline__, __nodebug__))
+_mm_getcsr(void)
+{
+ return __builtin_ia32_stmxcsr();
+}
+
+static __inline__ void __attribute__((__always_inline__, __nodebug__))
+_mm_setcsr(unsigned int __i)
+{
+ __builtin_ia32_ldmxcsr(__i);
+}
+
+#define _mm_shuffle_ps(a, b, mask) __extension__ ({ \
+ __m128 __a = (a); \
+ __m128 __b = (b); \
+ (__m128)__builtin_shufflevector((__v4sf)__a, (__v4sf)__b, \
+ (mask) & 0x3, ((mask) & 0xc) >> 2, \
+ (((mask) & 0x30) >> 4) + 4, \
+ (((mask) & 0xc0) >> 6) + 4); })
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_unpackhi_ps(__m128 __a, __m128 __b)
+{
+ return __builtin_shufflevector(__a, __b, 2, 6, 3, 7);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_unpacklo_ps(__m128 __a, __m128 __b)
+{
+ return __builtin_shufflevector(__a, __b, 0, 4, 1, 5);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_move_ss(__m128 __a, __m128 __b)
+{
+ return __builtin_shufflevector(__a, __b, 4, 1, 2, 3);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_movehl_ps(__m128 __a, __m128 __b)
+{
+ return __builtin_shufflevector(__a, __b, 6, 7, 2, 3);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_movelh_ps(__m128 __a, __m128 __b)
+{
+ return __builtin_shufflevector(__a, __b, 0, 1, 4, 5);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_cvtpi16_ps(__m64 __a)
+{
+ __m64 __b, __c;
+ __m128 __r;
+
+ __b = _mm_setzero_si64();
+ __b = _mm_cmpgt_pi16(__b, __a);
+ __c = _mm_unpackhi_pi16(__a, __b);
+ __r = _mm_setzero_ps();
+ __r = _mm_cvtpi32_ps(__r, __c);
+ __r = _mm_movelh_ps(__r, __r);
+ __c = _mm_unpacklo_pi16(__a, __b);
+ __r = _mm_cvtpi32_ps(__r, __c);
+
+ return __r;
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_cvtpu16_ps(__m64 __a)
+{
+ __m64 __b, __c;
+ __m128 __r;
+
+ __b = _mm_setzero_si64();
+ __c = _mm_unpackhi_pi16(__a, __b);
+ __r = _mm_setzero_ps();
+ __r = _mm_cvtpi32_ps(__r, __c);
+ __r = _mm_movelh_ps(__r, __r);
+ __c = _mm_unpacklo_pi16(__a, __b);
+ __r = _mm_cvtpi32_ps(__r, __c);
+
+ return __r;
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_cvtpi8_ps(__m64 __a)
+{
+ __m64 __b;
+
+ __b = _mm_setzero_si64();
+ __b = _mm_cmpgt_pi8(__b, __a);
+ __b = _mm_unpacklo_pi8(__a, __b);
+
+ return _mm_cvtpi16_ps(__b);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_cvtpu8_ps(__m64 __a)
+{
+ __m64 __b;
+
+ __b = _mm_setzero_si64();
+ __b = _mm_unpacklo_pi8(__a, __b);
+
+ return _mm_cvtpi16_ps(__b);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_cvtpi32x2_ps(__m64 __a, __m64 __b)
+{
+ __m128 __c;
+
+ __c = _mm_setzero_ps();
+ __c = _mm_cvtpi32_ps(__c, __b);
+ __c = _mm_movelh_ps(__c, __c);
+
+ return _mm_cvtpi32_ps(__c, __a);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_cvtps_pi16(__m128 __a)
+{
+ __m64 __b, __c;
+
+ __b = _mm_cvtps_pi32(__a);
+ __a = _mm_movehl_ps(__a, __a);
+ __c = _mm_cvtps_pi32(__a);
+
+ return _mm_packs_pi32(__b, __c);
+}
+
+static __inline__ __m64 __attribute__((__always_inline__, __nodebug__))
+_mm_cvtps_pi8(__m128 __a)
+{
+ __m64 __b, __c;
+
+ __b = _mm_cvtps_pi16(__a);
+ __c = _mm_setzero_si64();
+
+ return _mm_packs_pi16(__b, __c);
+}
+
+static __inline__ int __attribute__((__always_inline__, __nodebug__))
+_mm_movemask_ps(__m128 __a)
+{
+ return __builtin_ia32_movmskps(__a);
+}
+
+#define _MM_SHUFFLE(z, y, x, w) (((z) << 6) | ((y) << 4) | ((x) << 2) | (w))
+
+#define _MM_EXCEPT_INVALID (0x0001)
+#define _MM_EXCEPT_DENORM (0x0002)
+#define _MM_EXCEPT_DIV_ZERO (0x0004)
+#define _MM_EXCEPT_OVERFLOW (0x0008)
+#define _MM_EXCEPT_UNDERFLOW (0x0010)
+#define _MM_EXCEPT_INEXACT (0x0020)
+#define _MM_EXCEPT_MASK (0x003f)
+
+#define _MM_MASK_INVALID (0x0080)
+#define _MM_MASK_DENORM (0x0100)
+#define _MM_MASK_DIV_ZERO (0x0200)
+#define _MM_MASK_OVERFLOW (0x0400)
+#define _MM_MASK_UNDERFLOW (0x0800)
+#define _MM_MASK_INEXACT (0x1000)
+#define _MM_MASK_MASK (0x1f80)
+
+#define _MM_ROUND_NEAREST (0x0000)
+#define _MM_ROUND_DOWN (0x2000)
+#define _MM_ROUND_UP (0x4000)
+#define _MM_ROUND_TOWARD_ZERO (0x6000)
+#define _MM_ROUND_MASK (0x6000)
+
+#define _MM_FLUSH_ZERO_MASK (0x8000)
+#define _MM_FLUSH_ZERO_ON (0x8000)
+#define _MM_FLUSH_ZERO_OFF (0x0000)
+
+#define _MM_GET_EXCEPTION_MASK() (_mm_getcsr() & _MM_MASK_MASK)
+#define _MM_GET_EXCEPTION_STATE() (_mm_getcsr() & _MM_EXCEPT_MASK)
+#define _MM_GET_FLUSH_ZERO_MODE() (_mm_getcsr() & _MM_FLUSH_ZERO_MASK)
+#define _MM_GET_ROUNDING_MODE() (_mm_getcsr() & _MM_ROUND_MASK)
+
+#define _MM_SET_EXCEPTION_MASK(x) (_mm_setcsr((_mm_getcsr() & ~_MM_MASK_MASK) | (x)))
+#define _MM_SET_EXCEPTION_STATE(x) (_mm_setcsr((_mm_getcsr() & ~_MM_EXCEPT_MASK) | (x)))
+#define _MM_SET_FLUSH_ZERO_MODE(x) (_mm_setcsr((_mm_getcsr() & ~_MM_FLUSH_ZERO_MASK) | (x)))
+#define _MM_SET_ROUNDING_MODE(x) (_mm_setcsr((_mm_getcsr() & ~_MM_ROUND_MASK) | (x)))
+
+#define _MM_TRANSPOSE4_PS(row0, row1, row2, row3) \
+do { \
+ __m128 tmp3, tmp2, tmp1, tmp0; \
+ tmp0 = _mm_unpacklo_ps((row0), (row1)); \
+ tmp2 = _mm_unpacklo_ps((row2), (row3)); \
+ tmp1 = _mm_unpackhi_ps((row0), (row1)); \
+ tmp3 = _mm_unpackhi_ps((row2), (row3)); \
+ (row0) = _mm_movelh_ps(tmp0, tmp2); \
+ (row1) = _mm_movehl_ps(tmp2, tmp0); \
+ (row2) = _mm_movelh_ps(tmp1, tmp3); \
+ (row3) = _mm_movehl_ps(tmp3, tmp1); \
+} while (0)
+
+/* Aliases for compatibility. */
+#define _m_pextrw _mm_extract_pi16
+#define _m_pinsrw _mm_insert_pi16
+#define _m_pmaxsw _mm_max_pi16
+#define _m_pmaxub _mm_max_pu8
+#define _m_pminsw _mm_min_pi16
+#define _m_pminub _mm_min_pu8
+#define _m_pmovmskb _mm_movemask_pi8
+#define _m_pmulhuw _mm_mulhi_pu16
+#define _m_pshufw _mm_shuffle_pi16
+#define _m_maskmovq _mm_maskmove_si64
+#define _m_pavgb _mm_avg_pu8
+#define _m_pavgw _mm_avg_pu16
+#define _m_psadbw _mm_sad_pu8
+#define _m_ _mm_
+#define _m_ _mm_
+
+/* Ugly hack for backwards-compatibility (compatible with gcc) */
+#if defined(__SSE2__) && !__has_feature(modules)
+#include <emmintrin.h>
+#endif
+
+#endif /* __SSE__ */
+
+#endif /* __XMMINTRIN_H */
diff --git a/contrib/llvm/tools/clang/lib/Headers/xopintrin.h b/contrib/llvm/tools/clang/lib/Headers/xopintrin.h
new file mode 100644
index 0000000..cc94ca0
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Headers/xopintrin.h
@@ -0,0 +1,804 @@
+/*===---- xopintrin.h - XOP intrinsics -------------------------------------===
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ *===-----------------------------------------------------------------------===
+ */
+
+#ifndef __X86INTRIN_H
+#error "Never use <xopintrin.h> directly; include <x86intrin.h> instead."
+#endif
+
+#ifndef __XOPINTRIN_H
+#define __XOPINTRIN_H
+
+#ifndef __XOP__
+# error "XOP instruction set is not enabled"
+#else
+
+#include <fma4intrin.h>
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_maccs_epi16(__m128i __A, __m128i __B, __m128i __C)
+{
+ return (__m128i)__builtin_ia32_vpmacssww((__v8hi)__A, (__v8hi)__B, (__v8hi)__C);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_macc_epi16(__m128i __A, __m128i __B, __m128i __C)
+{
+ return (__m128i)__builtin_ia32_vpmacsww((__v8hi)__A, (__v8hi)__B, (__v8hi)__C);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_maccsd_epi16(__m128i __A, __m128i __B, __m128i __C)
+{
+ return (__m128i)__builtin_ia32_vpmacsswd((__v8hi)__A, (__v8hi)__B, (__v4si)__C);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_maccd_epi16(__m128i __A, __m128i __B, __m128i __C)
+{
+ return (__m128i)__builtin_ia32_vpmacswd((__v8hi)__A, (__v8hi)__B, (__v4si)__C);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_maccs_epi32(__m128i __A, __m128i __B, __m128i __C)
+{
+ return (__m128i)__builtin_ia32_vpmacssdd((__v4si)__A, (__v4si)__B, (__v4si)__C);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_macc_epi32(__m128i __A, __m128i __B, __m128i __C)
+{
+ return (__m128i)__builtin_ia32_vpmacsdd((__v4si)__A, (__v4si)__B, (__v4si)__C);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_maccslo_epi32(__m128i __A, __m128i __B, __m128i __C)
+{
+ return (__m128i)__builtin_ia32_vpmacssdql((__v4si)__A, (__v4si)__B, (__v2di)__C);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_macclo_epi32(__m128i __A, __m128i __B, __m128i __C)
+{
+ return (__m128i)__builtin_ia32_vpmacsdql((__v4si)__A, (__v4si)__B, (__v2di)__C);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_maccshi_epi32(__m128i __A, __m128i __B, __m128i __C)
+{
+ return (__m128i)__builtin_ia32_vpmacssdqh((__v4si)__A, (__v4si)__B, (__v2di)__C);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_macchi_epi32(__m128i __A, __m128i __B, __m128i __C)
+{
+ return (__m128i)__builtin_ia32_vpmacsdqh((__v4si)__A, (__v4si)__B, (__v2di)__C);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_maddsd_epi16(__m128i __A, __m128i __B, __m128i __C)
+{
+ return (__m128i)__builtin_ia32_vpmadcsswd((__v8hi)__A, (__v8hi)__B, (__v4si)__C);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_maddd_epi16(__m128i __A, __m128i __B, __m128i __C)
+{
+ return (__m128i)__builtin_ia32_vpmadcswd((__v8hi)__A, (__v8hi)__B, (__v4si)__C);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_haddw_epi8(__m128i __A)
+{
+ return (__m128i)__builtin_ia32_vphaddbw((__v16qi)__A);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_haddd_epi8(__m128i __A)
+{
+ return (__m128i)__builtin_ia32_vphaddbd((__v16qi)__A);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_haddq_epi8(__m128i __A)
+{
+ return (__m128i)__builtin_ia32_vphaddbq((__v16qi)__A);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_haddd_epi16(__m128i __A)
+{
+ return (__m128i)__builtin_ia32_vphaddwd((__v8hi)__A);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_haddq_epi16(__m128i __A)
+{
+ return (__m128i)__builtin_ia32_vphaddwq((__v8hi)__A);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_haddq_epi32(__m128i __A)
+{
+ return (__m128i)__builtin_ia32_vphadddq((__v4si)__A);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_haddw_epu8(__m128i __A)
+{
+ return (__m128i)__builtin_ia32_vphaddubw((__v16qi)__A);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_haddd_epu8(__m128i __A)
+{
+ return (__m128i)__builtin_ia32_vphaddubd((__v16qi)__A);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_haddq_epu8(__m128i __A)
+{
+ return (__m128i)__builtin_ia32_vphaddubq((__v16qi)__A);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_haddd_epu16(__m128i __A)
+{
+ return (__m128i)__builtin_ia32_vphadduwd((__v8hi)__A);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_haddq_epu16(__m128i __A)
+{
+ return (__m128i)__builtin_ia32_vphadduwq((__v8hi)__A);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_haddq_epu32(__m128i __A)
+{
+ return (__m128i)__builtin_ia32_vphaddudq((__v4si)__A);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_hsubw_epi8(__m128i __A)
+{
+ return (__m128i)__builtin_ia32_vphsubbw((__v16qi)__A);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_hsubd_epi16(__m128i __A)
+{
+ return (__m128i)__builtin_ia32_vphsubwd((__v8hi)__A);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_hsubq_epi32(__m128i __A)
+{
+ return (__m128i)__builtin_ia32_vphsubdq((__v4si)__A);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_cmov_si128(__m128i __A, __m128i __B, __m128i __C)
+{
+ return (__m128i)__builtin_ia32_vpcmov(__A, __B, __C);
+}
+
+static __inline__ __m256i __attribute__((__always_inline__, __nodebug__))
+_mm256_cmov_si256(__m256i __A, __m256i __B, __m256i __C)
+{
+ return (__m256i)__builtin_ia32_vpcmov_256(__A, __B, __C);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_perm_epi8(__m128i __A, __m128i __B, __m128i __C)
+{
+ return (__m128i)__builtin_ia32_vpperm((__v16qi)__A, (__v16qi)__B, (__v16qi)__C);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_rot_epi8(__m128i __A, __m128i __B)
+{
+ return (__m128i)__builtin_ia32_vprotb((__v16qi)__A, (__v16qi)__B);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_rot_epi16(__m128i __A, __m128i __B)
+{
+ return (__m128i)__builtin_ia32_vprotw((__v8hi)__A, (__v8hi)__B);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_rot_epi32(__m128i __A, __m128i __B)
+{
+ return (__m128i)__builtin_ia32_vprotd((__v4si)__A, (__v4si)__B);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_rot_epi64(__m128i __A, __m128i __B)
+{
+ return (__m128i)__builtin_ia32_vprotq((__v2di)__A, (__v2di)__B);
+}
+
+#define _mm_roti_epi8(A, N) __extension__ ({ \
+ __m128i __A = (A); \
+ (__m128i)__builtin_ia32_vprotbi((__v16qi)__A, (N)); })
+
+#define _mm_roti_epi16(A, N) __extension__ ({ \
+ __m128i __A = (A); \
+ (__m128i)__builtin_ia32_vprotwi((__v8hi)__A, (N)); })
+
+#define _mm_roti_epi32(A, N) __extension__ ({ \
+ __m128i __A = (A); \
+ (__m128i)__builtin_ia32_vprotdi((__v4si)__A, (N)); })
+
+#define _mm_roti_epi64(A, N) __extension__ ({ \
+ __m128i __A = (A); \
+ (__m128i)__builtin_ia32_vprotqi((__v2di)__A, (N)); })
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_shl_epi8(__m128i __A, __m128i __B)
+{
+ return (__m128i)__builtin_ia32_vpshlb((__v16qi)__A, (__v16qi)__B);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_shl_epi16(__m128i __A, __m128i __B)
+{
+ return (__m128i)__builtin_ia32_vpshlw((__v8hi)__A, (__v8hi)__B);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_shl_epi32(__m128i __A, __m128i __B)
+{
+ return (__m128i)__builtin_ia32_vpshld((__v4si)__A, (__v4si)__B);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_shl_epi64(__m128i __A, __m128i __B)
+{
+ return (__m128i)__builtin_ia32_vpshlq((__v2di)__A, (__v2di)__B);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_sha_epi8(__m128i __A, __m128i __B)
+{
+ return (__m128i)__builtin_ia32_vpshab((__v16qi)__A, (__v16qi)__B);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_sha_epi16(__m128i __A, __m128i __B)
+{
+ return (__m128i)__builtin_ia32_vpshaw((__v8hi)__A, (__v8hi)__B);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_sha_epi32(__m128i __A, __m128i __B)
+{
+ return (__m128i)__builtin_ia32_vpshad((__v4si)__A, (__v4si)__B);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_sha_epi64(__m128i __A, __m128i __B)
+{
+ return (__m128i)__builtin_ia32_vpshaq((__v2di)__A, (__v2di)__B);
+}
+
+#define _mm_com_epu8(A, B, N) __extension__ ({ \
+ __m128i __A = (A); \
+ __m128i __B = (B); \
+ (__m128i)__builtin_ia32_vpcomub((__v16qi)__A, (__v16qi)__B, (N)); })
+
+#define _mm_com_epu16(A, B, N) __extension__ ({ \
+ __m128i __A = (A); \
+ __m128i __B = (B); \
+ (__m128i)__builtin_ia32_vpcomuw((__v8hi)__A, (__v8hi)__B, (N)); })
+
+#define _mm_com_epu32(A, B, N) __extension__ ({ \
+ __m128i __A = (A); \
+ __m128i __B = (B); \
+ (__m128i)__builtin_ia32_vpcomud((__v4si)__A, (__v4si)__B, (N)); })
+
+#define _mm_com_epu64(A, B, N) __extension__ ({ \
+ __m128i __A = (A); \
+ __m128i __B = (B); \
+ (__m128i)__builtin_ia32_vpcomuq((__v2di)__A, (__v2di)__B, (N)); })
+
+#define _mm_com_epi8(A, B, N) __extension__ ({ \
+ __m128i __A = (A); \
+ __m128i __B = (B); \
+ (__m128i)__builtin_ia32_vpcomb((__v16qi)__A, (__v16qi)__B, (N)); })
+
+#define _mm_com_epi16(A, B, N) __extension__ ({ \
+ __m128i __A = (A); \
+ __m128i __B = (B); \
+ (__m128i)__builtin_ia32_vpcomw((__v8hi)__A, (__v8hi)__B, (N)); })
+
+#define _mm_com_epi32(A, B, N) __extension__ ({ \
+ __m128i __A = (A); \
+ __m128i __B = (B); \
+ (__m128i)__builtin_ia32_vpcomd((__v4si)__A, (__v4si)__B, (N)); })
+
+#define _mm_com_epi64(A, B, N) __extension__ ({ \
+ __m128i __A = (A); \
+ __m128i __B = (B); \
+ (__m128i)__builtin_ia32_vpcomq((__v2di)__A, (__v2di)__B, (N)); })
+
+#define _MM_PCOMCTRL_LT 0
+#define _MM_PCOMCTRL_LE 1
+#define _MM_PCOMCTRL_GT 2
+#define _MM_PCOMCTRL_GE 3
+#define _MM_PCOMCTRL_EQ 4
+#define _MM_PCOMCTRL_NEQ 5
+#define _MM_PCOMCTRL_FALSE 6
+#define _MM_PCOMCTRL_TRUE 7
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comlt_epu8(__m128i __A, __m128i __B)
+{
+ return _mm_com_epu8(__A, __B, _MM_PCOMCTRL_LT);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comle_epu8(__m128i __A, __m128i __B)
+{
+ return _mm_com_epu8(__A, __B, _MM_PCOMCTRL_LE);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comgt_epu8(__m128i __A, __m128i __B)
+{
+ return _mm_com_epu8(__A, __B, _MM_PCOMCTRL_GT);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comge_epu8(__m128i __A, __m128i __B)
+{
+ return _mm_com_epu8(__A, __B, _MM_PCOMCTRL_GE);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comeq_epu8(__m128i __A, __m128i __B)
+{
+ return _mm_com_epu8(__A, __B, _MM_PCOMCTRL_EQ);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comneq_epu8(__m128i __A, __m128i __B)
+{
+ return _mm_com_epu8(__A, __B, _MM_PCOMCTRL_NEQ);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comfalse_epu8(__m128i __A, __m128i __B)
+{
+ return _mm_com_epu8(__A, __B, _MM_PCOMCTRL_FALSE);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comtrue_epu8(__m128i __A, __m128i __B)
+{
+ return _mm_com_epu8(__A, __B, _MM_PCOMCTRL_TRUE);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comlt_epu16(__m128i __A, __m128i __B)
+{
+ return _mm_com_epu16(__A, __B, _MM_PCOMCTRL_LT);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comle_epu16(__m128i __A, __m128i __B)
+{
+ return _mm_com_epu16(__A, __B, _MM_PCOMCTRL_LE);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comgt_epu16(__m128i __A, __m128i __B)
+{
+ return _mm_com_epu16(__A, __B, _MM_PCOMCTRL_GT);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comge_epu16(__m128i __A, __m128i __B)
+{
+ return _mm_com_epu16(__A, __B, _MM_PCOMCTRL_GE);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comeq_epu16(__m128i __A, __m128i __B)
+{
+ return _mm_com_epu16(__A, __B, _MM_PCOMCTRL_EQ);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comneq_epu16(__m128i __A, __m128i __B)
+{
+ return _mm_com_epu16(__A, __B, _MM_PCOMCTRL_NEQ);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comfalse_epu16(__m128i __A, __m128i __B)
+{
+ return _mm_com_epu16(__A, __B, _MM_PCOMCTRL_FALSE);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comtrue_epu16(__m128i __A, __m128i __B)
+{
+ return _mm_com_epu16(__A, __B, _MM_PCOMCTRL_TRUE);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comlt_epu32(__m128i __A, __m128i __B)
+{
+ return _mm_com_epu32(__A, __B, _MM_PCOMCTRL_LT);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comle_epu32(__m128i __A, __m128i __B)
+{
+ return _mm_com_epu32(__A, __B, _MM_PCOMCTRL_LE);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comgt_epu32(__m128i __A, __m128i __B)
+{
+ return _mm_com_epu32(__A, __B, _MM_PCOMCTRL_GT);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comge_epu32(__m128i __A, __m128i __B)
+{
+ return _mm_com_epu32(__A, __B, _MM_PCOMCTRL_GE);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comeq_epu32(__m128i __A, __m128i __B)
+{
+ return _mm_com_epu32(__A, __B, _MM_PCOMCTRL_EQ);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comneq_epu32(__m128i __A, __m128i __B)
+{
+ return _mm_com_epu32(__A, __B, _MM_PCOMCTRL_NEQ);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comfalse_epu32(__m128i __A, __m128i __B)
+{
+ return _mm_com_epu32(__A, __B, _MM_PCOMCTRL_FALSE);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comtrue_epu32(__m128i __A, __m128i __B)
+{
+ return _mm_com_epu32(__A, __B, _MM_PCOMCTRL_TRUE);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comlt_epu64(__m128i __A, __m128i __B)
+{
+ return _mm_com_epu64(__A, __B, _MM_PCOMCTRL_LT);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comle_epu64(__m128i __A, __m128i __B)
+{
+ return _mm_com_epu64(__A, __B, _MM_PCOMCTRL_LE);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comgt_epu64(__m128i __A, __m128i __B)
+{
+ return _mm_com_epu64(__A, __B, _MM_PCOMCTRL_GT);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comge_epu64(__m128i __A, __m128i __B)
+{
+ return _mm_com_epu64(__A, __B, _MM_PCOMCTRL_GE);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comeq_epu64(__m128i __A, __m128i __B)
+{
+ return _mm_com_epu64(__A, __B, _MM_PCOMCTRL_EQ);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comneq_epu64(__m128i __A, __m128i __B)
+{
+ return _mm_com_epu64(__A, __B, _MM_PCOMCTRL_NEQ);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comfalse_epu64(__m128i __A, __m128i __B)
+{
+ return _mm_com_epu64(__A, __B, _MM_PCOMCTRL_FALSE);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comtrue_epu64(__m128i __A, __m128i __B)
+{
+ return _mm_com_epu64(__A, __B, _MM_PCOMCTRL_TRUE);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comlt_epi8(__m128i __A, __m128i __B)
+{
+ return _mm_com_epi8(__A, __B, _MM_PCOMCTRL_LT);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comle_epi8(__m128i __A, __m128i __B)
+{
+ return _mm_com_epi8(__A, __B, _MM_PCOMCTRL_LE);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comgt_epi8(__m128i __A, __m128i __B)
+{
+ return _mm_com_epi8(__A, __B, _MM_PCOMCTRL_GT);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comge_epi8(__m128i __A, __m128i __B)
+{
+ return _mm_com_epi8(__A, __B, _MM_PCOMCTRL_GE);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comeq_epi8(__m128i __A, __m128i __B)
+{
+ return _mm_com_epi8(__A, __B, _MM_PCOMCTRL_EQ);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comneq_epi8(__m128i __A, __m128i __B)
+{
+ return _mm_com_epi8(__A, __B, _MM_PCOMCTRL_NEQ);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comfalse_epi8(__m128i __A, __m128i __B)
+{
+ return _mm_com_epi8(__A, __B, _MM_PCOMCTRL_FALSE);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comtrue_epi8(__m128i __A, __m128i __B)
+{
+ return _mm_com_epi8(__A, __B, _MM_PCOMCTRL_TRUE);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comlt_epi16(__m128i __A, __m128i __B)
+{
+ return _mm_com_epi16(__A, __B, _MM_PCOMCTRL_LT);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comle_epi16(__m128i __A, __m128i __B)
+{
+ return _mm_com_epi16(__A, __B, _MM_PCOMCTRL_LE);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comgt_epi16(__m128i __A, __m128i __B)
+{
+ return _mm_com_epi16(__A, __B, _MM_PCOMCTRL_GT);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comge_epi16(__m128i __A, __m128i __B)
+{
+ return _mm_com_epi16(__A, __B, _MM_PCOMCTRL_GE);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comeq_epi16(__m128i __A, __m128i __B)
+{
+ return _mm_com_epi16(__A, __B, _MM_PCOMCTRL_EQ);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comneq_epi16(__m128i __A, __m128i __B)
+{
+ return _mm_com_epi16(__A, __B, _MM_PCOMCTRL_NEQ);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comfalse_epi16(__m128i __A, __m128i __B)
+{
+ return _mm_com_epi16(__A, __B, _MM_PCOMCTRL_FALSE);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comtrue_epi16(__m128i __A, __m128i __B)
+{
+ return _mm_com_epi16(__A, __B, _MM_PCOMCTRL_TRUE);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comlt_epi32(__m128i __A, __m128i __B)
+{
+ return _mm_com_epi32(__A, __B, _MM_PCOMCTRL_LT);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comle_epi32(__m128i __A, __m128i __B)
+{
+ return _mm_com_epi32(__A, __B, _MM_PCOMCTRL_LE);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comgt_epi32(__m128i __A, __m128i __B)
+{
+ return _mm_com_epi32(__A, __B, _MM_PCOMCTRL_GT);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comge_epi32(__m128i __A, __m128i __B)
+{
+ return _mm_com_epi32(__A, __B, _MM_PCOMCTRL_GE);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comeq_epi32(__m128i __A, __m128i __B)
+{
+ return _mm_com_epi32(__A, __B, _MM_PCOMCTRL_EQ);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comneq_epi32(__m128i __A, __m128i __B)
+{
+ return _mm_com_epi32(__A, __B, _MM_PCOMCTRL_NEQ);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comfalse_epi32(__m128i __A, __m128i __B)
+{
+ return _mm_com_epi32(__A, __B, _MM_PCOMCTRL_FALSE);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comtrue_epi32(__m128i __A, __m128i __B)
+{
+ return _mm_com_epi32(__A, __B, _MM_PCOMCTRL_TRUE);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comlt_epi64(__m128i __A, __m128i __B)
+{
+ return _mm_com_epi64(__A, __B, _MM_PCOMCTRL_LT);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comle_epi64(__m128i __A, __m128i __B)
+{
+ return _mm_com_epi64(__A, __B, _MM_PCOMCTRL_LE);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comgt_epi64(__m128i __A, __m128i __B)
+{
+ return _mm_com_epi64(__A, __B, _MM_PCOMCTRL_GT);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comge_epi64(__m128i __A, __m128i __B)
+{
+ return _mm_com_epi64(__A, __B, _MM_PCOMCTRL_GE);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comeq_epi64(__m128i __A, __m128i __B)
+{
+ return _mm_com_epi64(__A, __B, _MM_PCOMCTRL_EQ);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comneq_epi64(__m128i __A, __m128i __B)
+{
+ return _mm_com_epi64(__A, __B, _MM_PCOMCTRL_NEQ);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comfalse_epi64(__m128i __A, __m128i __B)
+{
+ return _mm_com_epi64(__A, __B, _MM_PCOMCTRL_FALSE);
+}
+
+static __inline__ __m128i __attribute__((__always_inline__, __nodebug__))
+_mm_comtrue_epi64(__m128i __A, __m128i __B)
+{
+ return _mm_com_epi64(__A, __B, _MM_PCOMCTRL_TRUE);
+}
+
+#define _mm_permute2_pd(X, Y, C, I) __extension__ ({ \
+ __m128d __X = (X); \
+ __m128d __Y = (Y); \
+ __m128i __C = (C); \
+ (__m128d)__builtin_ia32_vpermil2pd((__v2df)__X, (__v2df)__Y, \
+ (__v2di)__C, (I)); })
+
+#define _mm256_permute2_pd(X, Y, C, I) __extension__ ({ \
+ __m256d __X = (X); \
+ __m256d __Y = (Y); \
+ __m256i __C = (C); \
+ (__m256d)__builtin_ia32_vpermil2pd256((__v4df)__X, (__v4df)__Y, \
+ (__v4di)__C, (I)); })
+
+#define _mm_permute2_ps(X, Y, C, I) __extension__ ({ \
+ __m128 __X = (X); \
+ __m128 __Y = (Y); \
+ __m128i __C = (C); \
+ (__m128)__builtin_ia32_vpermil2ps((__v4sf)__X, (__v4sf)__Y, \
+ (__v4si)__C, (I)); })
+
+#define _mm256_permute2_ps(X, Y, C, I) __extension__ ({ \
+ __m256 __X = (X); \
+ __m256 __Y = (Y); \
+ __m256i __C = (C); \
+ (__m256)__builtin_ia32_vpermil2ps256((__v8sf)__X, (__v8sf)__Y, \
+ (__v8si)__C, (I)); })
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_frcz_ss(__m128 __A)
+{
+ return (__m128)__builtin_ia32_vfrczss((__v4sf)__A);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_frcz_sd(__m128d __A)
+{
+ return (__m128d)__builtin_ia32_vfrczsd((__v2df)__A);
+}
+
+static __inline__ __m128 __attribute__((__always_inline__, __nodebug__))
+_mm_frcz_ps(__m128 __A)
+{
+ return (__m128)__builtin_ia32_vfrczps((__v4sf)__A);
+}
+
+static __inline__ __m128d __attribute__((__always_inline__, __nodebug__))
+_mm_frcz_pd(__m128d __A)
+{
+ return (__m128d)__builtin_ia32_vfrczpd((__v2df)__A);
+}
+
+static __inline__ __m256 __attribute__((__always_inline__, __nodebug__))
+_mm256_frcz_ps(__m256 __A)
+{
+ return (__m256)__builtin_ia32_vfrczps256((__v8sf)__A);
+}
+
+static __inline__ __m256d __attribute__((__always_inline__, __nodebug__))
+_mm256_frcz_pd(__m256d __A)
+{
+ return (__m256d)__builtin_ia32_vfrczpd256((__v4df)__A);
+}
+
+#endif /* __XOP__ */
+
+#endif /* __XOPINTRIN_H */
diff --git a/contrib/llvm/tools/clang/lib/Index/CommentToXML.cpp b/contrib/llvm/tools/clang/lib/Index/CommentToXML.cpp
new file mode 100644
index 0000000..ef6aeef
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Index/CommentToXML.cpp
@@ -0,0 +1,1166 @@
+//===--- CommentToXML.cpp - Convert comments to XML representation --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Index/CommentToXML.h"
+#include "SimpleFormatContext.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/Comment.h"
+#include "clang/AST/CommentVisitor.h"
+#include "clang/Format/Format.h"
+#include "clang/Index/USRGeneration.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/TinyPtrVector.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace clang::comments;
+using namespace clang::index;
+
+namespace {
+
+/// This comparison will sort parameters with valid index by index, then vararg
+/// parameters, and invalid (unresolved) parameters last.
+class ParamCommandCommentCompareIndex {
+public:
+ bool operator()(const ParamCommandComment *LHS,
+ const ParamCommandComment *RHS) const {
+ unsigned LHSIndex = UINT_MAX;
+ unsigned RHSIndex = UINT_MAX;
+
+ if (LHS->isParamIndexValid()) {
+ if (LHS->isVarArgParam())
+ LHSIndex = UINT_MAX - 1;
+ else
+ LHSIndex = LHS->getParamIndex();
+ }
+ if (RHS->isParamIndexValid()) {
+ if (RHS->isVarArgParam())
+ RHSIndex = UINT_MAX - 1;
+ else
+ RHSIndex = RHS->getParamIndex();
+ }
+ return LHSIndex < RHSIndex;
+ }
+};
+
+/// This comparison will sort template parameters in the following order:
+/// \li real template parameters (depth = 1) in index order;
+/// \li all other names (depth > 1);
+/// \li unresolved names.
+class TParamCommandCommentComparePosition {
+public:
+ bool operator()(const TParamCommandComment *LHS,
+ const TParamCommandComment *RHS) const {
+ // Sort unresolved names last.
+ if (!LHS->isPositionValid())
+ return false;
+ if (!RHS->isPositionValid())
+ return true;
+
+ if (LHS->getDepth() > 1)
+ return false;
+ if (RHS->getDepth() > 1)
+ return true;
+
+ // Sort template parameters in index order.
+ if (LHS->getDepth() == 1 && RHS->getDepth() == 1)
+ return LHS->getIndex(0) < RHS->getIndex(0);
+
+ // Leave all other names in source order.
+ return true;
+ }
+};
+
+/// Separate parts of a FullComment.
+struct FullCommentParts {
+ /// Take a full comment apart and initialize members accordingly.
+ FullCommentParts(const FullComment *C,
+ const CommandTraits &Traits);
+
+ const BlockContentComment *Brief;
+ const BlockContentComment *Headerfile;
+ const ParagraphComment *FirstParagraph;
+ SmallVector<const BlockCommandComment *, 4> Returns;
+ SmallVector<const ParamCommandComment *, 8> Params;
+ SmallVector<const TParamCommandComment *, 4> TParams;
+ llvm::TinyPtrVector<const BlockCommandComment *> Exceptions;
+ SmallVector<const BlockContentComment *, 8> MiscBlocks;
+};
+
+FullCommentParts::FullCommentParts(const FullComment *C,
+ const CommandTraits &Traits) :
+ Brief(nullptr), Headerfile(nullptr), FirstParagraph(nullptr) {
+ for (Comment::child_iterator I = C->child_begin(), E = C->child_end();
+ I != E; ++I) {
+ const Comment *Child = *I;
+ if (!Child)
+ continue;
+ switch (Child->getCommentKind()) {
+ case Comment::NoCommentKind:
+ continue;
+
+ case Comment::ParagraphCommentKind: {
+ const ParagraphComment *PC = cast<ParagraphComment>(Child);
+ if (PC->isWhitespace())
+ break;
+ if (!FirstParagraph)
+ FirstParagraph = PC;
+
+ MiscBlocks.push_back(PC);
+ break;
+ }
+
+ case Comment::BlockCommandCommentKind: {
+ const BlockCommandComment *BCC = cast<BlockCommandComment>(Child);
+ const CommandInfo *Info = Traits.getCommandInfo(BCC->getCommandID());
+ if (!Brief && Info->IsBriefCommand) {
+ Brief = BCC;
+ break;
+ }
+ if (!Headerfile && Info->IsHeaderfileCommand) {
+ Headerfile = BCC;
+ break;
+ }
+ if (Info->IsReturnsCommand) {
+ Returns.push_back(BCC);
+ break;
+ }
+ if (Info->IsThrowsCommand) {
+ Exceptions.push_back(BCC);
+ break;
+ }
+ MiscBlocks.push_back(BCC);
+ break;
+ }
+
+ case Comment::ParamCommandCommentKind: {
+ const ParamCommandComment *PCC = cast<ParamCommandComment>(Child);
+ if (!PCC->hasParamName())
+ break;
+
+ if (!PCC->isDirectionExplicit() && !PCC->hasNonWhitespaceParagraph())
+ break;
+
+ Params.push_back(PCC);
+ break;
+ }
+
+ case Comment::TParamCommandCommentKind: {
+ const TParamCommandComment *TPCC = cast<TParamCommandComment>(Child);
+ if (!TPCC->hasParamName())
+ break;
+
+ if (!TPCC->hasNonWhitespaceParagraph())
+ break;
+
+ TParams.push_back(TPCC);
+ break;
+ }
+
+ case Comment::VerbatimBlockCommentKind:
+ MiscBlocks.push_back(cast<BlockCommandComment>(Child));
+ break;
+
+ case Comment::VerbatimLineCommentKind: {
+ const VerbatimLineComment *VLC = cast<VerbatimLineComment>(Child);
+ const CommandInfo *Info = Traits.getCommandInfo(VLC->getCommandID());
+ if (!Info->IsDeclarationCommand)
+ MiscBlocks.push_back(VLC);
+ break;
+ }
+
+ case Comment::TextCommentKind:
+ case Comment::InlineCommandCommentKind:
+ case Comment::HTMLStartTagCommentKind:
+ case Comment::HTMLEndTagCommentKind:
+ case Comment::VerbatimBlockLineCommentKind:
+ case Comment::FullCommentKind:
+ llvm_unreachable("AST node of this kind can't be a child of "
+ "a FullComment");
+ }
+ }
+
+ // Sort params in order they are declared in the function prototype.
+ // Unresolved parameters are put at the end of the list in the same order
+ // they were seen in the comment.
+ std::stable_sort(Params.begin(), Params.end(),
+ ParamCommandCommentCompareIndex());
+
+ std::stable_sort(TParams.begin(), TParams.end(),
+ TParamCommandCommentComparePosition());
+}
+
+void printHTMLStartTagComment(const HTMLStartTagComment *C,
+ llvm::raw_svector_ostream &Result) {
+ Result << "<" << C->getTagName();
+
+ if (C->getNumAttrs() != 0) {
+ for (unsigned i = 0, e = C->getNumAttrs(); i != e; i++) {
+ Result << " ";
+ const HTMLStartTagComment::Attribute &Attr = C->getAttr(i);
+ Result << Attr.Name;
+ if (!Attr.Value.empty())
+ Result << "=\"" << Attr.Value << "\"";
+ }
+ }
+
+ if (!C->isSelfClosing())
+ Result << ">";
+ else
+ Result << "/>";
+}
+
+class CommentASTToHTMLConverter :
+ public ConstCommentVisitor<CommentASTToHTMLConverter> {
+public:
+ /// \param Str accumulator for HTML.
+ CommentASTToHTMLConverter(const FullComment *FC,
+ SmallVectorImpl<char> &Str,
+ const CommandTraits &Traits) :
+ FC(FC), Result(Str), Traits(Traits)
+ { }
+
+ // Inline content.
+ void visitTextComment(const TextComment *C);
+ void visitInlineCommandComment(const InlineCommandComment *C);
+ void visitHTMLStartTagComment(const HTMLStartTagComment *C);
+ void visitHTMLEndTagComment(const HTMLEndTagComment *C);
+
+ // Block content.
+ void visitParagraphComment(const ParagraphComment *C);
+ void visitBlockCommandComment(const BlockCommandComment *C);
+ void visitParamCommandComment(const ParamCommandComment *C);
+ void visitTParamCommandComment(const TParamCommandComment *C);
+ void visitVerbatimBlockComment(const VerbatimBlockComment *C);
+ void visitVerbatimBlockLineComment(const VerbatimBlockLineComment *C);
+ void visitVerbatimLineComment(const VerbatimLineComment *C);
+
+ void visitFullComment(const FullComment *C);
+
+ // Helpers.
+
+ /// Convert a paragraph that is not a block by itself (an argument to some
+ /// command).
+ void visitNonStandaloneParagraphComment(const ParagraphComment *C);
+
+ void appendToResultWithHTMLEscaping(StringRef S);
+
+private:
+ const FullComment *FC;
+ /// Output stream for HTML.
+ llvm::raw_svector_ostream Result;
+
+ const CommandTraits &Traits;
+};
+} // end unnamed namespace
+
+void CommentASTToHTMLConverter::visitTextComment(const TextComment *C) {
+ appendToResultWithHTMLEscaping(C->getText());
+}
+
+void CommentASTToHTMLConverter::visitInlineCommandComment(
+ const InlineCommandComment *C) {
+ // Nothing to render if no arguments supplied.
+ if (C->getNumArgs() == 0)
+ return;
+
+ // Nothing to render if argument is empty.
+ StringRef Arg0 = C->getArgText(0);
+ if (Arg0.empty())
+ return;
+
+ switch (C->getRenderKind()) {
+ case InlineCommandComment::RenderNormal:
+ for (unsigned i = 0, e = C->getNumArgs(); i != e; ++i) {
+ appendToResultWithHTMLEscaping(C->getArgText(i));
+ Result << " ";
+ }
+ return;
+
+ case InlineCommandComment::RenderBold:
+ assert(C->getNumArgs() == 1);
+ Result << "<b>";
+ appendToResultWithHTMLEscaping(Arg0);
+ Result << "</b>";
+ return;
+ case InlineCommandComment::RenderMonospaced:
+ assert(C->getNumArgs() == 1);
+ Result << "<tt>";
+ appendToResultWithHTMLEscaping(Arg0);
+ Result<< "</tt>";
+ return;
+ case InlineCommandComment::RenderEmphasized:
+ assert(C->getNumArgs() == 1);
+ Result << "<em>";
+ appendToResultWithHTMLEscaping(Arg0);
+ Result << "</em>";
+ return;
+ }
+}
+
+void CommentASTToHTMLConverter::visitHTMLStartTagComment(
+ const HTMLStartTagComment *C) {
+ printHTMLStartTagComment(C, Result);
+}
+
+void CommentASTToHTMLConverter::visitHTMLEndTagComment(
+ const HTMLEndTagComment *C) {
+ Result << "</" << C->getTagName() << ">";
+}
+
+void CommentASTToHTMLConverter::visitParagraphComment(
+ const ParagraphComment *C) {
+ if (C->isWhitespace())
+ return;
+
+ Result << "<p>";
+ for (Comment::child_iterator I = C->child_begin(), E = C->child_end();
+ I != E; ++I) {
+ visit(*I);
+ }
+ Result << "</p>";
+}
+
+void CommentASTToHTMLConverter::visitBlockCommandComment(
+ const BlockCommandComment *C) {
+ const CommandInfo *Info = Traits.getCommandInfo(C->getCommandID());
+ if (Info->IsBriefCommand) {
+ Result << "<p class=\"para-brief\">";
+ visitNonStandaloneParagraphComment(C->getParagraph());
+ Result << "</p>";
+ return;
+ }
+ if (Info->IsReturnsCommand) {
+ Result << "<p class=\"para-returns\">"
+ "<span class=\"word-returns\">Returns</span> ";
+ visitNonStandaloneParagraphComment(C->getParagraph());
+ Result << "</p>";
+ return;
+ }
+ // We don't know anything about this command. Just render the paragraph.
+ visit(C->getParagraph());
+}
+
+void CommentASTToHTMLConverter::visitParamCommandComment(
+ const ParamCommandComment *C) {
+ if (C->isParamIndexValid()) {
+ if (C->isVarArgParam()) {
+ Result << "<dt class=\"param-name-index-vararg\">";
+ appendToResultWithHTMLEscaping(C->getParamNameAsWritten());
+ } else {
+ Result << "<dt class=\"param-name-index-"
+ << C->getParamIndex()
+ << "\">";
+ appendToResultWithHTMLEscaping(C->getParamName(FC));
+ }
+ } else {
+ Result << "<dt class=\"param-name-index-invalid\">";
+ appendToResultWithHTMLEscaping(C->getParamNameAsWritten());
+ }
+ Result << "</dt>";
+
+ if (C->isParamIndexValid()) {
+ if (C->isVarArgParam())
+ Result << "<dd class=\"param-descr-index-vararg\">";
+ else
+ Result << "<dd class=\"param-descr-index-"
+ << C->getParamIndex()
+ << "\">";
+ } else
+ Result << "<dd class=\"param-descr-index-invalid\">";
+
+ visitNonStandaloneParagraphComment(C->getParagraph());
+ Result << "</dd>";
+}
+
+void CommentASTToHTMLConverter::visitTParamCommandComment(
+ const TParamCommandComment *C) {
+ if (C->isPositionValid()) {
+ if (C->getDepth() == 1)
+ Result << "<dt class=\"tparam-name-index-"
+ << C->getIndex(0)
+ << "\">";
+ else
+ Result << "<dt class=\"tparam-name-index-other\">";
+ appendToResultWithHTMLEscaping(C->getParamName(FC));
+ } else {
+ Result << "<dt class=\"tparam-name-index-invalid\">";
+ appendToResultWithHTMLEscaping(C->getParamNameAsWritten());
+ }
+
+ Result << "</dt>";
+
+ if (C->isPositionValid()) {
+ if (C->getDepth() == 1)
+ Result << "<dd class=\"tparam-descr-index-"
+ << C->getIndex(0)
+ << "\">";
+ else
+ Result << "<dd class=\"tparam-descr-index-other\">";
+ } else
+ Result << "<dd class=\"tparam-descr-index-invalid\">";
+
+ visitNonStandaloneParagraphComment(C->getParagraph());
+ Result << "</dd>";
+}
+
+void CommentASTToHTMLConverter::visitVerbatimBlockComment(
+ const VerbatimBlockComment *C) {
+ unsigned NumLines = C->getNumLines();
+ if (NumLines == 0)
+ return;
+
+ Result << "<pre>";
+ for (unsigned i = 0; i != NumLines; ++i) {
+ appendToResultWithHTMLEscaping(C->getText(i));
+ if (i + 1 != NumLines)
+ Result << '\n';
+ }
+ Result << "</pre>";
+}
+
+void CommentASTToHTMLConverter::visitVerbatimBlockLineComment(
+ const VerbatimBlockLineComment *C) {
+ llvm_unreachable("should not see this AST node");
+}
+
+void CommentASTToHTMLConverter::visitVerbatimLineComment(
+ const VerbatimLineComment *C) {
+ Result << "<pre>";
+ appendToResultWithHTMLEscaping(C->getText());
+ Result << "</pre>";
+}
+
+void CommentASTToHTMLConverter::visitFullComment(const FullComment *C) {
+ FullCommentParts Parts(C, Traits);
+
+ bool FirstParagraphIsBrief = false;
+ if (Parts.Headerfile)
+ visit(Parts.Headerfile);
+ if (Parts.Brief)
+ visit(Parts.Brief);
+ else if (Parts.FirstParagraph) {
+ Result << "<p class=\"para-brief\">";
+ visitNonStandaloneParagraphComment(Parts.FirstParagraph);
+ Result << "</p>";
+ FirstParagraphIsBrief = true;
+ }
+
+ for (unsigned i = 0, e = Parts.MiscBlocks.size(); i != e; ++i) {
+ const Comment *C = Parts.MiscBlocks[i];
+ if (FirstParagraphIsBrief && C == Parts.FirstParagraph)
+ continue;
+ visit(C);
+ }
+
+ if (Parts.TParams.size() != 0) {
+ Result << "<dl>";
+ for (unsigned i = 0, e = Parts.TParams.size(); i != e; ++i)
+ visit(Parts.TParams[i]);
+ Result << "</dl>";
+ }
+
+ if (Parts.Params.size() != 0) {
+ Result << "<dl>";
+ for (unsigned i = 0, e = Parts.Params.size(); i != e; ++i)
+ visit(Parts.Params[i]);
+ Result << "</dl>";
+ }
+
+ if (Parts.Returns.size() != 0) {
+ Result << "<div class=\"result-discussion\">";
+ for (unsigned i = 0, e = Parts.Returns.size(); i != e; ++i)
+ visit(Parts.Returns[i]);
+ Result << "</div>";
+ }
+
+ Result.flush();
+}
+
+void CommentASTToHTMLConverter::visitNonStandaloneParagraphComment(
+ const ParagraphComment *C) {
+ if (!C)
+ return;
+
+ for (Comment::child_iterator I = C->child_begin(), E = C->child_end();
+ I != E; ++I) {
+ visit(*I);
+ }
+}
+
+void CommentASTToHTMLConverter::appendToResultWithHTMLEscaping(StringRef S) {
+ for (StringRef::iterator I = S.begin(), E = S.end(); I != E; ++I) {
+ const char C = *I;
+ switch (C) {
+ case '&':
+ Result << "&amp;";
+ break;
+ case '<':
+ Result << "&lt;";
+ break;
+ case '>':
+ Result << "&gt;";
+ break;
+ case '"':
+ Result << "&quot;";
+ break;
+ case '\'':
+ Result << "&#39;";
+ break;
+ case '/':
+ Result << "&#47;";
+ break;
+ default:
+ Result << C;
+ break;
+ }
+ }
+}
+
+namespace {
+class CommentASTToXMLConverter :
+ public ConstCommentVisitor<CommentASTToXMLConverter> {
+public:
+ /// \param Str accumulator for XML.
+ CommentASTToXMLConverter(const FullComment *FC,
+ SmallVectorImpl<char> &Str,
+ const CommandTraits &Traits,
+ const SourceManager &SM,
+ SimpleFormatContext &SFC,
+ unsigned FUID) :
+ FC(FC), Result(Str), Traits(Traits), SM(SM),
+ FormatRewriterContext(SFC),
+ FormatInMemoryUniqueId(FUID) { }
+
+ // Inline content.
+ void visitTextComment(const TextComment *C);
+ void visitInlineCommandComment(const InlineCommandComment *C);
+ void visitHTMLStartTagComment(const HTMLStartTagComment *C);
+ void visitHTMLEndTagComment(const HTMLEndTagComment *C);
+
+ // Block content.
+ void visitParagraphComment(const ParagraphComment *C);
+
+ void appendParagraphCommentWithKind(const ParagraphComment *C,
+ StringRef Kind);
+
+ void visitBlockCommandComment(const BlockCommandComment *C);
+ void visitParamCommandComment(const ParamCommandComment *C);
+ void visitTParamCommandComment(const TParamCommandComment *C);
+ void visitVerbatimBlockComment(const VerbatimBlockComment *C);
+ void visitVerbatimBlockLineComment(const VerbatimBlockLineComment *C);
+ void visitVerbatimLineComment(const VerbatimLineComment *C);
+
+ void visitFullComment(const FullComment *C);
+
+ // Helpers.
+ void appendToResultWithXMLEscaping(StringRef S);
+ void appendToResultWithCDATAEscaping(StringRef S);
+
+ void formatTextOfDeclaration(const DeclInfo *DI,
+ SmallString<128> &Declaration);
+
+private:
+ const FullComment *FC;
+
+ /// Output stream for XML.
+ llvm::raw_svector_ostream Result;
+
+ const CommandTraits &Traits;
+ const SourceManager &SM;
+ SimpleFormatContext &FormatRewriterContext;
+ unsigned FormatInMemoryUniqueId;
+};
+
+void getSourceTextOfDeclaration(const DeclInfo *ThisDecl,
+ SmallVectorImpl<char> &Str) {
+ ASTContext &Context = ThisDecl->CurrentDecl->getASTContext();
+ const LangOptions &LangOpts = Context.getLangOpts();
+ llvm::raw_svector_ostream OS(Str);
+ PrintingPolicy PPolicy(LangOpts);
+ PPolicy.PolishForDeclaration = true;
+ PPolicy.TerseOutput = true;
+ ThisDecl->CurrentDecl->print(OS, PPolicy,
+ /*Indentation*/0, /*PrintInstantiation*/false);
+}
+
+void CommentASTToXMLConverter::formatTextOfDeclaration(
+ const DeclInfo *DI, SmallString<128> &Declaration) {
+ // FIXME. formatting API expects null terminated input string.
+ // There might be more efficient way of doing this.
+ std::string StringDecl = Declaration.str();
+
+ // Formatter specific code.
+ // Form a unique in memory buffer name.
+ SmallString<128> filename;
+ filename += "xmldecl";
+ filename += llvm::utostr(FormatInMemoryUniqueId);
+ filename += ".xd";
+ FileID ID = FormatRewriterContext.createInMemoryFile(filename, StringDecl);
+ SourceLocation Start = FormatRewriterContext.Sources.getLocForStartOfFile(ID)
+ .getLocWithOffset(0);
+ unsigned Length = Declaration.size();
+
+ tooling::Replacements Replace = reformat(
+ format::getLLVMStyle(), FormatRewriterContext.Sources, ID,
+ CharSourceRange::getCharRange(Start, Start.getLocWithOffset(Length)));
+ applyAllReplacements(Replace, FormatRewriterContext.Rewrite);
+ Declaration = FormatRewriterContext.getRewrittenText(ID);
+}
+
+} // end unnamed namespace
+
+void CommentASTToXMLConverter::visitTextComment(const TextComment *C) {
+ appendToResultWithXMLEscaping(C->getText());
+}
+
+void CommentASTToXMLConverter::visitInlineCommandComment(
+ const InlineCommandComment *C) {
+ // Nothing to render if no arguments supplied.
+ if (C->getNumArgs() == 0)
+ return;
+
+ // Nothing to render if argument is empty.
+ StringRef Arg0 = C->getArgText(0);
+ if (Arg0.empty())
+ return;
+
+ switch (C->getRenderKind()) {
+ case InlineCommandComment::RenderNormal:
+ for (unsigned i = 0, e = C->getNumArgs(); i != e; ++i) {
+ appendToResultWithXMLEscaping(C->getArgText(i));
+ Result << " ";
+ }
+ return;
+ case InlineCommandComment::RenderBold:
+ assert(C->getNumArgs() == 1);
+ Result << "<bold>";
+ appendToResultWithXMLEscaping(Arg0);
+ Result << "</bold>";
+ return;
+ case InlineCommandComment::RenderMonospaced:
+ assert(C->getNumArgs() == 1);
+ Result << "<monospaced>";
+ appendToResultWithXMLEscaping(Arg0);
+ Result << "</monospaced>";
+ return;
+ case InlineCommandComment::RenderEmphasized:
+ assert(C->getNumArgs() == 1);
+ Result << "<emphasized>";
+ appendToResultWithXMLEscaping(Arg0);
+ Result << "</emphasized>";
+ return;
+ }
+}
+
+void CommentASTToXMLConverter::visitHTMLStartTagComment(
+ const HTMLStartTagComment *C) {
+ Result << "<rawHTML";
+ if (C->isMalformed())
+ Result << " isMalformed=\"1\"";
+ Result << ">";
+ {
+ SmallString<32> Tag;
+ {
+ llvm::raw_svector_ostream TagOS(Tag);
+ printHTMLStartTagComment(C, TagOS);
+ }
+ appendToResultWithCDATAEscaping(Tag);
+ }
+ Result << "</rawHTML>";
+}
+
+void
+CommentASTToXMLConverter::visitHTMLEndTagComment(const HTMLEndTagComment *C) {
+ Result << "<rawHTML";
+ if (C->isMalformed())
+ Result << " isMalformed=\"1\"";
+ Result << ">&lt;/" << C->getTagName() << "&gt;</rawHTML>";
+}
+
+void
+CommentASTToXMLConverter::visitParagraphComment(const ParagraphComment *C) {
+ appendParagraphCommentWithKind(C, StringRef());
+}
+
+void CommentASTToXMLConverter::appendParagraphCommentWithKind(
+ const ParagraphComment *C,
+ StringRef ParagraphKind) {
+ if (C->isWhitespace())
+ return;
+
+ if (ParagraphKind.empty())
+ Result << "<Para>";
+ else
+ Result << "<Para kind=\"" << ParagraphKind << "\">";
+
+ for (Comment::child_iterator I = C->child_begin(), E = C->child_end();
+ I != E; ++I) {
+ visit(*I);
+ }
+ Result << "</Para>";
+}
+
+void CommentASTToXMLConverter::visitBlockCommandComment(
+ const BlockCommandComment *C) {
+ StringRef ParagraphKind;
+
+ switch (C->getCommandID()) {
+ case CommandTraits::KCI_attention:
+ case CommandTraits::KCI_author:
+ case CommandTraits::KCI_authors:
+ case CommandTraits::KCI_bug:
+ case CommandTraits::KCI_copyright:
+ case CommandTraits::KCI_date:
+ case CommandTraits::KCI_invariant:
+ case CommandTraits::KCI_note:
+ case CommandTraits::KCI_post:
+ case CommandTraits::KCI_pre:
+ case CommandTraits::KCI_remark:
+ case CommandTraits::KCI_remarks:
+ case CommandTraits::KCI_sa:
+ case CommandTraits::KCI_see:
+ case CommandTraits::KCI_since:
+ case CommandTraits::KCI_todo:
+ case CommandTraits::KCI_version:
+ case CommandTraits::KCI_warning:
+ ParagraphKind = C->getCommandName(Traits);
+ default:
+ break;
+ }
+
+ appendParagraphCommentWithKind(C->getParagraph(), ParagraphKind);
+}
+
+void CommentASTToXMLConverter::visitParamCommandComment(
+ const ParamCommandComment *C) {
+ Result << "<Parameter><Name>";
+ appendToResultWithXMLEscaping(C->isParamIndexValid()
+ ? C->getParamName(FC)
+ : C->getParamNameAsWritten());
+ Result << "</Name>";
+
+ if (C->isParamIndexValid()) {
+ if (C->isVarArgParam())
+ Result << "<IsVarArg />";
+ else
+ Result << "<Index>" << C->getParamIndex() << "</Index>";
+ }
+
+ Result << "<Direction isExplicit=\"" << C->isDirectionExplicit() << "\">";
+ switch (C->getDirection()) {
+ case ParamCommandComment::In:
+ Result << "in";
+ break;
+ case ParamCommandComment::Out:
+ Result << "out";
+ break;
+ case ParamCommandComment::InOut:
+ Result << "in,out";
+ break;
+ }
+ Result << "</Direction><Discussion>";
+ visit(C->getParagraph());
+ Result << "</Discussion></Parameter>";
+}
+
+void CommentASTToXMLConverter::visitTParamCommandComment(
+ const TParamCommandComment *C) {
+ Result << "<Parameter><Name>";
+ appendToResultWithXMLEscaping(C->isPositionValid() ? C->getParamName(FC)
+ : C->getParamNameAsWritten());
+ Result << "</Name>";
+
+ if (C->isPositionValid() && C->getDepth() == 1) {
+ Result << "<Index>" << C->getIndex(0) << "</Index>";
+ }
+
+ Result << "<Discussion>";
+ visit(C->getParagraph());
+ Result << "</Discussion></Parameter>";
+}
+
+void CommentASTToXMLConverter::visitVerbatimBlockComment(
+ const VerbatimBlockComment *C) {
+ unsigned NumLines = C->getNumLines();
+ if (NumLines == 0)
+ return;
+
+ switch (C->getCommandID()) {
+ case CommandTraits::KCI_code:
+ Result << "<Verbatim xml:space=\"preserve\" kind=\"code\">";
+ break;
+ default:
+ Result << "<Verbatim xml:space=\"preserve\" kind=\"verbatim\">";
+ break;
+ }
+ for (unsigned i = 0; i != NumLines; ++i) {
+ appendToResultWithXMLEscaping(C->getText(i));
+ if (i + 1 != NumLines)
+ Result << '\n';
+ }
+ Result << "</Verbatim>";
+}
+
+void CommentASTToXMLConverter::visitVerbatimBlockLineComment(
+ const VerbatimBlockLineComment *C) {
+ llvm_unreachable("should not see this AST node");
+}
+
+void CommentASTToXMLConverter::visitVerbatimLineComment(
+ const VerbatimLineComment *C) {
+ Result << "<Verbatim xml:space=\"preserve\" kind=\"verbatim\">";
+ appendToResultWithXMLEscaping(C->getText());
+ Result << "</Verbatim>";
+}
+
+void CommentASTToXMLConverter::visitFullComment(const FullComment *C) {
+ FullCommentParts Parts(C, Traits);
+
+ const DeclInfo *DI = C->getDeclInfo();
+ StringRef RootEndTag;
+ if (DI) {
+ switch (DI->getKind()) {
+ case DeclInfo::OtherKind:
+ RootEndTag = "</Other>";
+ Result << "<Other";
+ break;
+ case DeclInfo::FunctionKind:
+ RootEndTag = "</Function>";
+ Result << "<Function";
+ switch (DI->TemplateKind) {
+ case DeclInfo::NotTemplate:
+ break;
+ case DeclInfo::Template:
+ Result << " templateKind=\"template\"";
+ break;
+ case DeclInfo::TemplateSpecialization:
+ Result << " templateKind=\"specialization\"";
+ break;
+ case DeclInfo::TemplatePartialSpecialization:
+ llvm_unreachable("partial specializations of functions "
+ "are not allowed in C++");
+ }
+ if (DI->IsInstanceMethod)
+ Result << " isInstanceMethod=\"1\"";
+ if (DI->IsClassMethod)
+ Result << " isClassMethod=\"1\"";
+ break;
+ case DeclInfo::ClassKind:
+ RootEndTag = "</Class>";
+ Result << "<Class";
+ switch (DI->TemplateKind) {
+ case DeclInfo::NotTemplate:
+ break;
+ case DeclInfo::Template:
+ Result << " templateKind=\"template\"";
+ break;
+ case DeclInfo::TemplateSpecialization:
+ Result << " templateKind=\"specialization\"";
+ break;
+ case DeclInfo::TemplatePartialSpecialization:
+ Result << " templateKind=\"partialSpecialization\"";
+ break;
+ }
+ break;
+ case DeclInfo::VariableKind:
+ RootEndTag = "</Variable>";
+ Result << "<Variable";
+ break;
+ case DeclInfo::NamespaceKind:
+ RootEndTag = "</Namespace>";
+ Result << "<Namespace";
+ break;
+ case DeclInfo::TypedefKind:
+ RootEndTag = "</Typedef>";
+ Result << "<Typedef";
+ break;
+ case DeclInfo::EnumKind:
+ RootEndTag = "</Enum>";
+ Result << "<Enum";
+ break;
+ }
+
+ {
+ // Print line and column number.
+ SourceLocation Loc = DI->CurrentDecl->getLocation();
+ std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
+ FileID FID = LocInfo.first;
+ unsigned FileOffset = LocInfo.second;
+
+ if (!FID.isInvalid()) {
+ if (const FileEntry *FE = SM.getFileEntryForID(FID)) {
+ Result << " file=\"";
+ appendToResultWithXMLEscaping(FE->getName());
+ Result << "\"";
+ }
+ Result << " line=\"" << SM.getLineNumber(FID, FileOffset)
+ << "\" column=\"" << SM.getColumnNumber(FID, FileOffset)
+ << "\"";
+ }
+ }
+
+ // Finish the root tag.
+ Result << ">";
+
+ bool FoundName = false;
+ if (const NamedDecl *ND = dyn_cast<NamedDecl>(DI->CommentDecl)) {
+ if (DeclarationName DeclName = ND->getDeclName()) {
+ Result << "<Name>";
+ std::string Name = DeclName.getAsString();
+ appendToResultWithXMLEscaping(Name);
+ FoundName = true;
+ Result << "</Name>";
+ }
+ }
+ if (!FoundName)
+ Result << "<Name>&lt;anonymous&gt;</Name>";
+
+ {
+ // Print USR.
+ SmallString<128> USR;
+ generateUSRForDecl(DI->CommentDecl, USR);
+ if (!USR.empty()) {
+ Result << "<USR>";
+ appendToResultWithXMLEscaping(USR);
+ Result << "</USR>";
+ }
+ }
+ } else {
+ // No DeclInfo -- just emit some root tag and name tag.
+ RootEndTag = "</Other>";
+ Result << "<Other><Name>unknown</Name>";
+ }
+
+ if (Parts.Headerfile) {
+ Result << "<Headerfile>";
+ visit(Parts.Headerfile);
+ Result << "</Headerfile>";
+ }
+
+ {
+ // Pretty-print the declaration.
+ Result << "<Declaration>";
+ SmallString<128> Declaration;
+ getSourceTextOfDeclaration(DI, Declaration);
+ formatTextOfDeclaration(DI, Declaration);
+ appendToResultWithXMLEscaping(Declaration);
+ Result << "</Declaration>";
+ }
+
+ bool FirstParagraphIsBrief = false;
+ if (Parts.Brief) {
+ Result << "<Abstract>";
+ visit(Parts.Brief);
+ Result << "</Abstract>";
+ } else if (Parts.FirstParagraph) {
+ Result << "<Abstract>";
+ visit(Parts.FirstParagraph);
+ Result << "</Abstract>";
+ FirstParagraphIsBrief = true;
+ }
+
+ if (Parts.TParams.size() != 0) {
+ Result << "<TemplateParameters>";
+ for (unsigned i = 0, e = Parts.TParams.size(); i != e; ++i)
+ visit(Parts.TParams[i]);
+ Result << "</TemplateParameters>";
+ }
+
+ if (Parts.Params.size() != 0) {
+ Result << "<Parameters>";
+ for (unsigned i = 0, e = Parts.Params.size(); i != e; ++i)
+ visit(Parts.Params[i]);
+ Result << "</Parameters>";
+ }
+
+ if (Parts.Exceptions.size() != 0) {
+ Result << "<Exceptions>";
+ for (unsigned i = 0, e = Parts.Exceptions.size(); i != e; ++i)
+ visit(Parts.Exceptions[i]);
+ Result << "</Exceptions>";
+ }
+
+ if (Parts.Returns.size() != 0) {
+ Result << "<ResultDiscussion>";
+ for (unsigned i = 0, e = Parts.Returns.size(); i != e; ++i)
+ visit(Parts.Returns[i]);
+ Result << "</ResultDiscussion>";
+ }
+
+ if (DI->CommentDecl->hasAttrs()) {
+ const AttrVec &Attrs = DI->CommentDecl->getAttrs();
+ for (unsigned i = 0, e = Attrs.size(); i != e; i++) {
+ const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attrs[i]);
+ if (!AA) {
+ if (const DeprecatedAttr *DA = dyn_cast<DeprecatedAttr>(Attrs[i])) {
+ if (DA->getMessage().empty())
+ Result << "<Deprecated/>";
+ else {
+ Result << "<Deprecated>";
+ appendToResultWithXMLEscaping(DA->getMessage());
+ Result << "</Deprecated>";
+ }
+ }
+ else if (const UnavailableAttr *UA = dyn_cast<UnavailableAttr>(Attrs[i])) {
+ if (UA->getMessage().empty())
+ Result << "<Unavailable/>";
+ else {
+ Result << "<Unavailable>";
+ appendToResultWithXMLEscaping(UA->getMessage());
+ Result << "</Unavailable>";
+ }
+ }
+ continue;
+ }
+
+ // 'availability' attribute.
+ Result << "<Availability";
+ StringRef Distribution;
+ if (AA->getPlatform()) {
+ Distribution = AvailabilityAttr::getPrettyPlatformName(
+ AA->getPlatform()->getName());
+ if (Distribution.empty())
+ Distribution = AA->getPlatform()->getName();
+ }
+ Result << " distribution=\"" << Distribution << "\">";
+ VersionTuple IntroducedInVersion = AA->getIntroduced();
+ if (!IntroducedInVersion.empty()) {
+ Result << "<IntroducedInVersion>"
+ << IntroducedInVersion.getAsString()
+ << "</IntroducedInVersion>";
+ }
+ VersionTuple DeprecatedInVersion = AA->getDeprecated();
+ if (!DeprecatedInVersion.empty()) {
+ Result << "<DeprecatedInVersion>"
+ << DeprecatedInVersion.getAsString()
+ << "</DeprecatedInVersion>";
+ }
+ VersionTuple RemovedAfterVersion = AA->getObsoleted();
+ if (!RemovedAfterVersion.empty()) {
+ Result << "<RemovedAfterVersion>"
+ << RemovedAfterVersion.getAsString()
+ << "</RemovedAfterVersion>";
+ }
+ StringRef DeprecationSummary = AA->getMessage();
+ if (!DeprecationSummary.empty()) {
+ Result << "<DeprecationSummary>";
+ appendToResultWithXMLEscaping(DeprecationSummary);
+ Result << "</DeprecationSummary>";
+ }
+ if (AA->getUnavailable())
+ Result << "<Unavailable/>";
+ Result << "</Availability>";
+ }
+ }
+
+ {
+ bool StartTagEmitted = false;
+ for (unsigned i = 0, e = Parts.MiscBlocks.size(); i != e; ++i) {
+ const Comment *C = Parts.MiscBlocks[i];
+ if (FirstParagraphIsBrief && C == Parts.FirstParagraph)
+ continue;
+ if (!StartTagEmitted) {
+ Result << "<Discussion>";
+ StartTagEmitted = true;
+ }
+ visit(C);
+ }
+ if (StartTagEmitted)
+ Result << "</Discussion>";
+ }
+
+ Result << RootEndTag;
+
+ Result.flush();
+}
+
+void CommentASTToXMLConverter::appendToResultWithXMLEscaping(StringRef S) {
+ for (StringRef::iterator I = S.begin(), E = S.end(); I != E; ++I) {
+ const char C = *I;
+ switch (C) {
+ case '&':
+ Result << "&amp;";
+ break;
+ case '<':
+ Result << "&lt;";
+ break;
+ case '>':
+ Result << "&gt;";
+ break;
+ case '"':
+ Result << "&quot;";
+ break;
+ case '\'':
+ Result << "&apos;";
+ break;
+ default:
+ Result << C;
+ break;
+ }
+ }
+}
+
+void CommentASTToXMLConverter::appendToResultWithCDATAEscaping(StringRef S) {
+ if (S.empty())
+ return;
+
+ Result << "<![CDATA[";
+ while (!S.empty()) {
+ size_t Pos = S.find("]]>");
+ if (Pos == 0) {
+ Result << "]]]]><![CDATA[>";
+ S = S.drop_front(3);
+ continue;
+ }
+ if (Pos == StringRef::npos)
+ Pos = S.size();
+
+ Result << S.substr(0, Pos);
+
+ S = S.drop_front(Pos);
+ }
+ Result << "]]>";
+}
+
+CommentToXMLConverter::CommentToXMLConverter() : FormatInMemoryUniqueId(0) {}
+CommentToXMLConverter::~CommentToXMLConverter() {}
+
+void CommentToXMLConverter::convertCommentToHTML(const FullComment *FC,
+ SmallVectorImpl<char> &HTML,
+ const ASTContext &Context) {
+ CommentASTToHTMLConverter Converter(FC, HTML,
+ Context.getCommentCommandTraits());
+ Converter.visit(FC);
+}
+
+void CommentToXMLConverter::convertHTMLTagNodeToText(
+ const comments::HTMLTagComment *HTC, SmallVectorImpl<char> &Text,
+ const ASTContext &Context) {
+ CommentASTToHTMLConverter Converter(nullptr, Text,
+ Context.getCommentCommandTraits());
+ Converter.visit(HTC);
+}
+
+void CommentToXMLConverter::convertCommentToXML(const FullComment *FC,
+ SmallVectorImpl<char> &XML,
+ const ASTContext &Context) {
+ if (!FormatContext || (FormatInMemoryUniqueId % 1000) == 0) {
+ // Create a new format context, or re-create it after some number of
+ // iterations, so the buffers don't grow too large.
+ FormatContext.reset(new SimpleFormatContext(Context.getLangOpts()));
+ }
+
+ CommentASTToXMLConverter Converter(FC, XML, Context.getCommentCommandTraits(),
+ Context.getSourceManager(), *FormatContext,
+ FormatInMemoryUniqueId++);
+ Converter.visit(FC);
+}
+
diff --git a/contrib/llvm/tools/clang/lib/Index/SimpleFormatContext.h b/contrib/llvm/tools/clang/lib/Index/SimpleFormatContext.h
new file mode 100644
index 0000000..b884214
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Index/SimpleFormatContext.h
@@ -0,0 +1,75 @@
+//===--- SimpleFormatContext.h ----------------------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+///
+/// \brief Defines a utility class for use of clang-format in libclang
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_INDEX_SIMPLEFORMATCONTEXT_H
+#define LLVM_CLANG_LIB_INDEX_SIMPLEFORMATCONTEXT_H
+
+#include "clang/Basic/Diagnostic.h"
+#include "clang/Basic/DiagnosticOptions.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/LangOptions.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Rewrite/Core/Rewriter.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/raw_ostream.h"
+
+namespace clang {
+namespace index {
+
+/// \brief A small class to be used by libclang clients to format
+/// a declaration string in memory. This object is instantiated once
+/// and used each time a formatting is needed.
+class SimpleFormatContext {
+public:
+ SimpleFormatContext(LangOptions Options)
+ : DiagOpts(new DiagnosticOptions()),
+ Diagnostics(new DiagnosticsEngine(new DiagnosticIDs,
+ DiagOpts.get())),
+ Files((FileSystemOptions())),
+ Sources(*Diagnostics, Files),
+ Rewrite(Sources, Options) {
+ Diagnostics->setClient(new IgnoringDiagConsumer, true);
+ }
+
+ FileID createInMemoryFile(StringRef Name, StringRef Content) {
+ std::unique_ptr<llvm::MemoryBuffer> Source =
+ llvm::MemoryBuffer::getMemBuffer(Content);
+ const FileEntry *Entry =
+ Files.getVirtualFile(Name, Source->getBufferSize(), 0);
+ Sources.overrideFileContents(Entry, std::move(Source));
+ assert(Entry != nullptr);
+ return Sources.createFileID(Entry, SourceLocation(), SrcMgr::C_User);
+ }
+
+ std::string getRewrittenText(FileID ID) {
+ std::string Result;
+ llvm::raw_string_ostream OS(Result);
+ Rewrite.getEditBuffer(ID).write(OS);
+ OS.flush();
+ return Result;
+ }
+
+ IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts;
+ IntrusiveRefCntPtr<DiagnosticsEngine> Diagnostics;
+ FileManager Files;
+ SourceManager Sources;
+ Rewriter Rewrite;
+};
+
+} // end namespace index
+} // end namespace clang
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/Index/USRGeneration.cpp b/contrib/llvm/tools/clang/lib/Index/USRGeneration.cpp
new file mode 100644
index 0000000..8cdd283
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Index/USRGeneration.cpp
@@ -0,0 +1,871 @@
+//===- USRGeneration.cpp - Routines for USR generation --------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Index/USRGeneration.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/DeclVisitor.h"
+#include "clang/Lex/PreprocessingRecord.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace clang::index;
+
+//===----------------------------------------------------------------------===//
+// USR generation.
+//===----------------------------------------------------------------------===//
+
+/// \returns true on error.
+static bool printLoc(llvm::raw_ostream &OS, SourceLocation Loc,
+ const SourceManager &SM, bool IncludeOffset) {
+ if (Loc.isInvalid()) {
+ return true;
+ }
+ Loc = SM.getExpansionLoc(Loc);
+ const std::pair<FileID, unsigned> &Decomposed = SM.getDecomposedLoc(Loc);
+ const FileEntry *FE = SM.getFileEntryForID(Decomposed.first);
+ if (FE) {
+ OS << llvm::sys::path::filename(FE->getName());
+ } else {
+ // This case really isn't interesting.
+ return true;
+ }
+ if (IncludeOffset) {
+ // Use the offest into the FileID to represent the location. Using
+ // a line/column can cause us to look back at the original source file,
+ // which is expensive.
+ OS << '@' << Decomposed.second;
+ }
+ return false;
+}
+
+namespace {
+class USRGenerator : public ConstDeclVisitor<USRGenerator> {
+ SmallVectorImpl<char> &Buf;
+ llvm::raw_svector_ostream Out;
+ bool IgnoreResults;
+ ASTContext *Context;
+ bool generatedLoc;
+
+ llvm::DenseMap<const Type *, unsigned> TypeSubstitutions;
+
+public:
+ explicit USRGenerator(ASTContext *Ctx, SmallVectorImpl<char> &Buf)
+ : Buf(Buf),
+ Out(Buf),
+ IgnoreResults(false),
+ Context(Ctx),
+ generatedLoc(false)
+ {
+ // Add the USR space prefix.
+ Out << getUSRSpacePrefix();
+ }
+
+ bool ignoreResults() const { return IgnoreResults; }
+
+ // Visitation methods from generating USRs from AST elements.
+ void VisitDeclContext(const DeclContext *D);
+ void VisitFieldDecl(const FieldDecl *D);
+ void VisitFunctionDecl(const FunctionDecl *D);
+ void VisitNamedDecl(const NamedDecl *D);
+ void VisitNamespaceDecl(const NamespaceDecl *D);
+ void VisitNamespaceAliasDecl(const NamespaceAliasDecl *D);
+ void VisitFunctionTemplateDecl(const FunctionTemplateDecl *D);
+ void VisitClassTemplateDecl(const ClassTemplateDecl *D);
+ void VisitObjCContainerDecl(const ObjCContainerDecl *CD);
+ void VisitObjCMethodDecl(const ObjCMethodDecl *MD);
+ void VisitObjCPropertyDecl(const ObjCPropertyDecl *D);
+ void VisitObjCPropertyImplDecl(const ObjCPropertyImplDecl *D);
+ void VisitTagDecl(const TagDecl *D);
+ void VisitTypedefDecl(const TypedefDecl *D);
+ void VisitTemplateTypeParmDecl(const TemplateTypeParmDecl *D);
+ void VisitVarDecl(const VarDecl *D);
+ void VisitNonTypeTemplateParmDecl(const NonTypeTemplateParmDecl *D);
+ void VisitTemplateTemplateParmDecl(const TemplateTemplateParmDecl *D);
+ void VisitLinkageSpecDecl(const LinkageSpecDecl *D) {
+ IgnoreResults = true;
+ }
+ void VisitUsingDirectiveDecl(const UsingDirectiveDecl *D) {
+ IgnoreResults = true;
+ }
+ void VisitUsingDecl(const UsingDecl *D) {
+ IgnoreResults = true;
+ }
+ void VisitUnresolvedUsingValueDecl(const UnresolvedUsingValueDecl *D) {
+ IgnoreResults = true;
+ }
+ void VisitUnresolvedUsingTypenameDecl(const UnresolvedUsingTypenameDecl *D) {
+ IgnoreResults = true;
+ }
+
+ bool ShouldGenerateLocation(const NamedDecl *D);
+
+ bool isLocal(const NamedDecl *D) {
+ return D->getParentFunctionOrMethod() != nullptr;
+ }
+
+ /// Generate the string component containing the location of the
+ /// declaration.
+ bool GenLoc(const Decl *D, bool IncludeOffset);
+
+ /// String generation methods used both by the visitation methods
+ /// and from other clients that want to directly generate USRs. These
+ /// methods do not construct complete USRs (which incorporate the parents
+ /// of an AST element), but only the fragments concerning the AST element
+ /// itself.
+
+ /// Generate a USR for an Objective-C class.
+ void GenObjCClass(StringRef cls) {
+ generateUSRForObjCClass(cls, Out);
+ }
+ /// Generate a USR for an Objective-C class category.
+ void GenObjCCategory(StringRef cls, StringRef cat) {
+ generateUSRForObjCCategory(cls, cat, Out);
+ }
+ /// Generate a USR fragment for an Objective-C property.
+ void GenObjCProperty(StringRef prop) {
+ generateUSRForObjCProperty(prop, Out);
+ }
+ /// Generate a USR for an Objective-C protocol.
+ void GenObjCProtocol(StringRef prot) {
+ generateUSRForObjCProtocol(prot, Out);
+ }
+
+ void VisitType(QualType T);
+ void VisitTemplateParameterList(const TemplateParameterList *Params);
+ void VisitTemplateName(TemplateName Name);
+ void VisitTemplateArgument(const TemplateArgument &Arg);
+
+ /// Emit a Decl's name using NamedDecl::printName() and return true if
+ /// the decl had no name.
+ bool EmitDeclName(const NamedDecl *D);
+};
+
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// Generating USRs from ASTS.
+//===----------------------------------------------------------------------===//
+
+bool USRGenerator::EmitDeclName(const NamedDecl *D) {
+ Out.flush();
+ const unsigned startSize = Buf.size();
+ D->printName(Out);
+ Out.flush();
+ const unsigned endSize = Buf.size();
+ return startSize == endSize;
+}
+
+bool USRGenerator::ShouldGenerateLocation(const NamedDecl *D) {
+ if (D->isExternallyVisible())
+ return false;
+ if (D->getParentFunctionOrMethod())
+ return true;
+ const SourceManager &SM = Context->getSourceManager();
+ return !SM.isInSystemHeader(D->getLocation());
+}
+
+void USRGenerator::VisitDeclContext(const DeclContext *DC) {
+ if (const NamedDecl *D = dyn_cast<NamedDecl>(DC))
+ Visit(D);
+}
+
+void USRGenerator::VisitFieldDecl(const FieldDecl *D) {
+ // The USR for an ivar declared in a class extension is based on the
+ // ObjCInterfaceDecl, not the ObjCCategoryDecl.
+ if (const ObjCInterfaceDecl *ID = Context->getObjContainingInterface(D))
+ Visit(ID);
+ else
+ VisitDeclContext(D->getDeclContext());
+ Out << (isa<ObjCIvarDecl>(D) ? "@" : "@FI@");
+ if (EmitDeclName(D)) {
+ // Bit fields can be anonymous.
+ IgnoreResults = true;
+ return;
+ }
+}
+
+void USRGenerator::VisitFunctionDecl(const FunctionDecl *D) {
+ if (ShouldGenerateLocation(D) && GenLoc(D, /*IncludeOffset=*/isLocal(D)))
+ return;
+
+ VisitDeclContext(D->getDeclContext());
+ bool IsTemplate = false;
+ if (FunctionTemplateDecl *FunTmpl = D->getDescribedFunctionTemplate()) {
+ IsTemplate = true;
+ Out << "@FT@";
+ VisitTemplateParameterList(FunTmpl->getTemplateParameters());
+ } else
+ Out << "@F@";
+ D->printName(Out);
+
+ ASTContext &Ctx = *Context;
+ if (!Ctx.getLangOpts().CPlusPlus || D->isExternC())
+ return;
+
+ if (const TemplateArgumentList *
+ SpecArgs = D->getTemplateSpecializationArgs()) {
+ Out << '<';
+ for (unsigned I = 0, N = SpecArgs->size(); I != N; ++I) {
+ Out << '#';
+ VisitTemplateArgument(SpecArgs->get(I));
+ }
+ Out << '>';
+ }
+
+ // Mangle in type information for the arguments.
+ for (auto PD : D->params()) {
+ Out << '#';
+ VisitType(PD->getType());
+ }
+ if (D->isVariadic())
+ Out << '.';
+ if (IsTemplate) {
+ // Function templates can be overloaded by return type, for example:
+ // \code
+ // template <class T> typename T::A foo() {}
+ // template <class T> typename T::B foo() {}
+ // \endcode
+ Out << '#';
+ VisitType(D->getReturnType());
+ }
+ Out << '#';
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
+ if (MD->isStatic())
+ Out << 'S';
+ if (unsigned quals = MD->getTypeQualifiers())
+ Out << (char)('0' + quals);
+ switch (MD->getRefQualifier()) {
+ case RQ_None: break;
+ case RQ_LValue: Out << '&'; break;
+ case RQ_RValue: Out << "&&"; break;
+ }
+ }
+}
+
+void USRGenerator::VisitNamedDecl(const NamedDecl *D) {
+ VisitDeclContext(D->getDeclContext());
+ Out << "@";
+
+ if (EmitDeclName(D)) {
+ // The string can be empty if the declaration has no name; e.g., it is
+ // the ParmDecl with no name for declaration of a function pointer type,
+ // e.g.: void (*f)(void *);
+ // In this case, don't generate a USR.
+ IgnoreResults = true;
+ }
+}
+
+void USRGenerator::VisitVarDecl(const VarDecl *D) {
+ // VarDecls can be declared 'extern' within a function or method body,
+ // but their enclosing DeclContext is the function, not the TU. We need
+ // to check the storage class to correctly generate the USR.
+ if (ShouldGenerateLocation(D) && GenLoc(D, /*IncludeOffset=*/isLocal(D)))
+ return;
+
+ VisitDeclContext(D->getDeclContext());
+
+ // Variables always have simple names.
+ StringRef s = D->getName();
+
+ // The string can be empty if the declaration has no name; e.g., it is
+ // the ParmDecl with no name for declaration of a function pointer type, e.g.:
+ // void (*f)(void *);
+ // In this case, don't generate a USR.
+ if (s.empty())
+ IgnoreResults = true;
+ else
+ Out << '@' << s;
+}
+
+void USRGenerator::VisitNonTypeTemplateParmDecl(
+ const NonTypeTemplateParmDecl *D) {
+ GenLoc(D, /*IncludeOffset=*/true);
+ return;
+}
+
+void USRGenerator::VisitTemplateTemplateParmDecl(
+ const TemplateTemplateParmDecl *D) {
+ GenLoc(D, /*IncludeOffset=*/true);
+ return;
+}
+
+void USRGenerator::VisitNamespaceDecl(const NamespaceDecl *D) {
+ if (D->isAnonymousNamespace()) {
+ Out << "@aN";
+ return;
+ }
+
+ VisitDeclContext(D->getDeclContext());
+ if (!IgnoreResults)
+ Out << "@N@" << D->getName();
+}
+
+void USRGenerator::VisitFunctionTemplateDecl(const FunctionTemplateDecl *D) {
+ VisitFunctionDecl(D->getTemplatedDecl());
+}
+
+void USRGenerator::VisitClassTemplateDecl(const ClassTemplateDecl *D) {
+ VisitTagDecl(D->getTemplatedDecl());
+}
+
+void USRGenerator::VisitNamespaceAliasDecl(const NamespaceAliasDecl *D) {
+ VisitDeclContext(D->getDeclContext());
+ if (!IgnoreResults)
+ Out << "@NA@" << D->getName();
+}
+
+void USRGenerator::VisitObjCMethodDecl(const ObjCMethodDecl *D) {
+ const DeclContext *container = D->getDeclContext();
+ if (const ObjCProtocolDecl *pd = dyn_cast<ObjCProtocolDecl>(container)) {
+ Visit(pd);
+ }
+ else {
+ // The USR for a method declared in a class extension or category is based on
+ // the ObjCInterfaceDecl, not the ObjCCategoryDecl.
+ const ObjCInterfaceDecl *ID = D->getClassInterface();
+ if (!ID) {
+ IgnoreResults = true;
+ return;
+ }
+ Visit(ID);
+ }
+ // Ideally we would use 'GenObjCMethod', but this is such a hot path
+ // for Objective-C code that we don't want to use
+ // DeclarationName::getAsString().
+ Out << (D->isInstanceMethod() ? "(im)" : "(cm)")
+ << DeclarationName(D->getSelector());
+}
+
+void USRGenerator::VisitObjCContainerDecl(const ObjCContainerDecl *D) {
+ switch (D->getKind()) {
+ default:
+ llvm_unreachable("Invalid ObjC container.");
+ case Decl::ObjCInterface:
+ case Decl::ObjCImplementation:
+ GenObjCClass(D->getName());
+ break;
+ case Decl::ObjCCategory: {
+ const ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
+ const ObjCInterfaceDecl *ID = CD->getClassInterface();
+ if (!ID) {
+ // Handle invalid code where the @interface might not
+ // have been specified.
+ // FIXME: We should be able to generate this USR even if the
+ // @interface isn't available.
+ IgnoreResults = true;
+ return;
+ }
+ // Specially handle class extensions, which are anonymous categories.
+ // We want to mangle in the location to uniquely distinguish them.
+ if (CD->IsClassExtension()) {
+ Out << "objc(ext)" << ID->getName() << '@';
+ GenLoc(CD, /*IncludeOffset=*/true);
+ }
+ else
+ GenObjCCategory(ID->getName(), CD->getName());
+
+ break;
+ }
+ case Decl::ObjCCategoryImpl: {
+ const ObjCCategoryImplDecl *CD = cast<ObjCCategoryImplDecl>(D);
+ const ObjCInterfaceDecl *ID = CD->getClassInterface();
+ if (!ID) {
+ // Handle invalid code where the @interface might not
+ // have been specified.
+ // FIXME: We should be able to generate this USR even if the
+ // @interface isn't available.
+ IgnoreResults = true;
+ return;
+ }
+ GenObjCCategory(ID->getName(), CD->getName());
+ break;
+ }
+ case Decl::ObjCProtocol:
+ GenObjCProtocol(cast<ObjCProtocolDecl>(D)->getName());
+ break;
+ }
+}
+
+void USRGenerator::VisitObjCPropertyDecl(const ObjCPropertyDecl *D) {
+ // The USR for a property declared in a class extension or category is based
+ // on the ObjCInterfaceDecl, not the ObjCCategoryDecl.
+ if (const ObjCInterfaceDecl *ID = Context->getObjContainingInterface(D))
+ Visit(ID);
+ else
+ Visit(cast<Decl>(D->getDeclContext()));
+ GenObjCProperty(D->getName());
+}
+
+void USRGenerator::VisitObjCPropertyImplDecl(const ObjCPropertyImplDecl *D) {
+ if (ObjCPropertyDecl *PD = D->getPropertyDecl()) {
+ VisitObjCPropertyDecl(PD);
+ return;
+ }
+
+ IgnoreResults = true;
+}
+
+void USRGenerator::VisitTagDecl(const TagDecl *D) {
+ // Add the location of the tag decl to handle resolution across
+ // translation units.
+ if (ShouldGenerateLocation(D) && GenLoc(D, /*IncludeOffset=*/isLocal(D)))
+ return;
+
+ D = D->getCanonicalDecl();
+ VisitDeclContext(D->getDeclContext());
+
+ bool AlreadyStarted = false;
+ if (const CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(D)) {
+ if (ClassTemplateDecl *ClassTmpl = CXXRecord->getDescribedClassTemplate()) {
+ AlreadyStarted = true;
+
+ switch (D->getTagKind()) {
+ case TTK_Interface:
+ case TTK_Class:
+ case TTK_Struct: Out << "@ST"; break;
+ case TTK_Union: Out << "@UT"; break;
+ case TTK_Enum: llvm_unreachable("enum template");
+ }
+ VisitTemplateParameterList(ClassTmpl->getTemplateParameters());
+ } else if (const ClassTemplatePartialSpecializationDecl *PartialSpec
+ = dyn_cast<ClassTemplatePartialSpecializationDecl>(CXXRecord)) {
+ AlreadyStarted = true;
+
+ switch (D->getTagKind()) {
+ case TTK_Interface:
+ case TTK_Class:
+ case TTK_Struct: Out << "@SP"; break;
+ case TTK_Union: Out << "@UP"; break;
+ case TTK_Enum: llvm_unreachable("enum partial specialization");
+ }
+ VisitTemplateParameterList(PartialSpec->getTemplateParameters());
+ }
+ }
+
+ if (!AlreadyStarted) {
+ switch (D->getTagKind()) {
+ case TTK_Interface:
+ case TTK_Class:
+ case TTK_Struct: Out << "@S"; break;
+ case TTK_Union: Out << "@U"; break;
+ case TTK_Enum: Out << "@E"; break;
+ }
+ }
+
+ Out << '@';
+ Out.flush();
+ assert(Buf.size() > 0);
+ const unsigned off = Buf.size() - 1;
+
+ if (EmitDeclName(D)) {
+ if (const TypedefNameDecl *TD = D->getTypedefNameForAnonDecl()) {
+ Buf[off] = 'A';
+ Out << '@' << *TD;
+ }
+ else {
+ if (D->isEmbeddedInDeclarator() && !D->isFreeStanding()) {
+ printLoc(Out, D->getLocation(), Context->getSourceManager(), true);
+ } else
+ Buf[off] = 'a';
+ }
+ }
+
+ // For a class template specialization, mangle the template arguments.
+ if (const ClassTemplateSpecializationDecl *Spec
+ = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
+ const TemplateArgumentList &Args = Spec->getTemplateInstantiationArgs();
+ Out << '>';
+ for (unsigned I = 0, N = Args.size(); I != N; ++I) {
+ Out << '#';
+ VisitTemplateArgument(Args.get(I));
+ }
+ }
+}
+
+void USRGenerator::VisitTypedefDecl(const TypedefDecl *D) {
+ if (ShouldGenerateLocation(D) && GenLoc(D, /*IncludeOffset=*/isLocal(D)))
+ return;
+ const DeclContext *DC = D->getDeclContext();
+ if (const NamedDecl *DCN = dyn_cast<NamedDecl>(DC))
+ Visit(DCN);
+ Out << "@T@";
+ Out << D->getName();
+}
+
+void USRGenerator::VisitTemplateTypeParmDecl(const TemplateTypeParmDecl *D) {
+ GenLoc(D, /*IncludeOffset=*/true);
+ return;
+}
+
+bool USRGenerator::GenLoc(const Decl *D, bool IncludeOffset) {
+ if (generatedLoc)
+ return IgnoreResults;
+ generatedLoc = true;
+
+ // Guard against null declarations in invalid code.
+ if (!D) {
+ IgnoreResults = true;
+ return true;
+ }
+
+ // Use the location of canonical decl.
+ D = D->getCanonicalDecl();
+
+ IgnoreResults =
+ IgnoreResults || printLoc(Out, D->getLocStart(),
+ Context->getSourceManager(), IncludeOffset);
+
+ return IgnoreResults;
+}
+
+void USRGenerator::VisitType(QualType T) {
+ // This method mangles in USR information for types. It can possibly
+ // just reuse the naming-mangling logic used by codegen, although the
+ // requirements for USRs might not be the same.
+ ASTContext &Ctx = *Context;
+
+ do {
+ T = Ctx.getCanonicalType(T);
+ Qualifiers Q = T.getQualifiers();
+ unsigned qVal = 0;
+ if (Q.hasConst())
+ qVal |= 0x1;
+ if (Q.hasVolatile())
+ qVal |= 0x2;
+ if (Q.hasRestrict())
+ qVal |= 0x4;
+ if(qVal)
+ Out << ((char) ('0' + qVal));
+
+ // Mangle in ObjC GC qualifiers?
+
+ if (const PackExpansionType *Expansion = T->getAs<PackExpansionType>()) {
+ Out << 'P';
+ T = Expansion->getPattern();
+ }
+
+ if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
+ unsigned char c = '\0';
+ switch (BT->getKind()) {
+ case BuiltinType::Void:
+ c = 'v'; break;
+ case BuiltinType::Bool:
+ c = 'b'; break;
+ case BuiltinType::UChar:
+ c = 'c'; break;
+ case BuiltinType::Char16:
+ c = 'q'; break;
+ case BuiltinType::Char32:
+ c = 'w'; break;
+ case BuiltinType::UShort:
+ c = 's'; break;
+ case BuiltinType::UInt:
+ c = 'i'; break;
+ case BuiltinType::ULong:
+ c = 'l'; break;
+ case BuiltinType::ULongLong:
+ c = 'k'; break;
+ case BuiltinType::UInt128:
+ c = 'j'; break;
+ case BuiltinType::Char_U:
+ case BuiltinType::Char_S:
+ c = 'C'; break;
+ case BuiltinType::SChar:
+ c = 'r'; break;
+ case BuiltinType::WChar_S:
+ case BuiltinType::WChar_U:
+ c = 'W'; break;
+ case BuiltinType::Short:
+ c = 'S'; break;
+ case BuiltinType::Int:
+ c = 'I'; break;
+ case BuiltinType::Long:
+ c = 'L'; break;
+ case BuiltinType::LongLong:
+ c = 'K'; break;
+ case BuiltinType::Int128:
+ c = 'J'; break;
+ case BuiltinType::Half:
+ c = 'h'; break;
+ case BuiltinType::Float:
+ c = 'f'; break;
+ case BuiltinType::Double:
+ c = 'd'; break;
+ case BuiltinType::LongDouble:
+ c = 'D'; break;
+ case BuiltinType::NullPtr:
+ c = 'n'; break;
+#define BUILTIN_TYPE(Id, SingletonId)
+#define PLACEHOLDER_TYPE(Id, SingletonId) case BuiltinType::Id:
+#include "clang/AST/BuiltinTypes.def"
+ case BuiltinType::Dependent:
+ case BuiltinType::OCLImage1d:
+ case BuiltinType::OCLImage1dArray:
+ case BuiltinType::OCLImage1dBuffer:
+ case BuiltinType::OCLImage2d:
+ case BuiltinType::OCLImage2dArray:
+ case BuiltinType::OCLImage3d:
+ case BuiltinType::OCLEvent:
+ case BuiltinType::OCLSampler:
+ IgnoreResults = true;
+ return;
+ case BuiltinType::ObjCId:
+ c = 'o'; break;
+ case BuiltinType::ObjCClass:
+ c = 'O'; break;
+ case BuiltinType::ObjCSel:
+ c = 'e'; break;
+ }
+ Out << c;
+ return;
+ }
+
+ // If we have already seen this (non-built-in) type, use a substitution
+ // encoding.
+ llvm::DenseMap<const Type *, unsigned>::iterator Substitution
+ = TypeSubstitutions.find(T.getTypePtr());
+ if (Substitution != TypeSubstitutions.end()) {
+ Out << 'S' << Substitution->second << '_';
+ return;
+ } else {
+ // Record this as a substitution.
+ unsigned Number = TypeSubstitutions.size();
+ TypeSubstitutions[T.getTypePtr()] = Number;
+ }
+
+ if (const PointerType *PT = T->getAs<PointerType>()) {
+ Out << '*';
+ T = PT->getPointeeType();
+ continue;
+ }
+ if (const RValueReferenceType *RT = T->getAs<RValueReferenceType>()) {
+ Out << "&&";
+ T = RT->getPointeeType();
+ continue;
+ }
+ if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
+ Out << '&';
+ T = RT->getPointeeType();
+ continue;
+ }
+ if (const FunctionProtoType *FT = T->getAs<FunctionProtoType>()) {
+ Out << 'F';
+ VisitType(FT->getReturnType());
+ for (const auto &I : FT->param_types())
+ VisitType(I);
+ if (FT->isVariadic())
+ Out << '.';
+ return;
+ }
+ if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) {
+ Out << 'B';
+ T = BT->getPointeeType();
+ continue;
+ }
+ if (const ComplexType *CT = T->getAs<ComplexType>()) {
+ Out << '<';
+ T = CT->getElementType();
+ continue;
+ }
+ if (const TagType *TT = T->getAs<TagType>()) {
+ Out << '$';
+ VisitTagDecl(TT->getDecl());
+ return;
+ }
+ if (const TemplateTypeParmType *TTP = T->getAs<TemplateTypeParmType>()) {
+ Out << 't' << TTP->getDepth() << '.' << TTP->getIndex();
+ return;
+ }
+ if (const TemplateSpecializationType *Spec
+ = T->getAs<TemplateSpecializationType>()) {
+ Out << '>';
+ VisitTemplateName(Spec->getTemplateName());
+ Out << Spec->getNumArgs();
+ for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
+ VisitTemplateArgument(Spec->getArg(I));
+ return;
+ }
+ if (const DependentNameType *DNT = T->getAs<DependentNameType>()) {
+ Out << '^';
+ // FIXME: Encode the qualifier, don't just print it.
+ PrintingPolicy PO(Ctx.getLangOpts());
+ PO.SuppressTagKeyword = true;
+ PO.SuppressUnwrittenScope = true;
+ PO.ConstantArraySizeAsWritten = false;
+ PO.AnonymousTagLocations = false;
+ DNT->getQualifier()->print(Out, PO);
+ Out << ':' << DNT->getIdentifier()->getName();
+ return;
+ }
+ if (const InjectedClassNameType *InjT = T->getAs<InjectedClassNameType>()) {
+ T = InjT->getInjectedSpecializationType();
+ continue;
+ }
+
+ // Unhandled type.
+ Out << ' ';
+ break;
+ } while (true);
+}
+
+void USRGenerator::VisitTemplateParameterList(
+ const TemplateParameterList *Params) {
+ if (!Params)
+ return;
+ Out << '>' << Params->size();
+ for (TemplateParameterList::const_iterator P = Params->begin(),
+ PEnd = Params->end();
+ P != PEnd; ++P) {
+ Out << '#';
+ if (isa<TemplateTypeParmDecl>(*P)) {
+ if (cast<TemplateTypeParmDecl>(*P)->isParameterPack())
+ Out<< 'p';
+ Out << 'T';
+ continue;
+ }
+
+ if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
+ if (NTTP->isParameterPack())
+ Out << 'p';
+ Out << 'N';
+ VisitType(NTTP->getType());
+ continue;
+ }
+
+ TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
+ if (TTP->isParameterPack())
+ Out << 'p';
+ Out << 't';
+ VisitTemplateParameterList(TTP->getTemplateParameters());
+ }
+}
+
+void USRGenerator::VisitTemplateName(TemplateName Name) {
+ if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
+ if (TemplateTemplateParmDecl *TTP
+ = dyn_cast<TemplateTemplateParmDecl>(Template)) {
+ Out << 't' << TTP->getDepth() << '.' << TTP->getIndex();
+ return;
+ }
+
+ Visit(Template);
+ return;
+ }
+
+ // FIXME: Visit dependent template names.
+}
+
+void USRGenerator::VisitTemplateArgument(const TemplateArgument &Arg) {
+ switch (Arg.getKind()) {
+ case TemplateArgument::Null:
+ break;
+
+ case TemplateArgument::Declaration:
+ Visit(Arg.getAsDecl());
+ break;
+
+ case TemplateArgument::NullPtr:
+ break;
+
+ case TemplateArgument::TemplateExpansion:
+ Out << 'P'; // pack expansion of...
+ // Fall through
+ case TemplateArgument::Template:
+ VisitTemplateName(Arg.getAsTemplateOrTemplatePattern());
+ break;
+
+ case TemplateArgument::Expression:
+ // FIXME: Visit expressions.
+ break;
+
+ case TemplateArgument::Pack:
+ Out << 'p' << Arg.pack_size();
+ for (const auto &P : Arg.pack_elements())
+ VisitTemplateArgument(P);
+ break;
+
+ case TemplateArgument::Type:
+ VisitType(Arg.getAsType());
+ break;
+
+ case TemplateArgument::Integral:
+ Out << 'V';
+ VisitType(Arg.getIntegralType());
+ Out << Arg.getAsIntegral();
+ break;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// USR generation functions.
+//===----------------------------------------------------------------------===//
+
+void clang::index::generateUSRForObjCClass(StringRef Cls, raw_ostream &OS) {
+ OS << "objc(cs)" << Cls;
+}
+
+void clang::index::generateUSRForObjCCategory(StringRef Cls, StringRef Cat,
+ raw_ostream &OS) {
+ OS << "objc(cy)" << Cls << '@' << Cat;
+}
+
+void clang::index::generateUSRForObjCIvar(StringRef Ivar, raw_ostream &OS) {
+ OS << '@' << Ivar;
+}
+
+void clang::index::generateUSRForObjCMethod(StringRef Sel,
+ bool IsInstanceMethod,
+ raw_ostream &OS) {
+ OS << (IsInstanceMethod ? "(im)" : "(cm)") << Sel;
+}
+
+void clang::index::generateUSRForObjCProperty(StringRef Prop, raw_ostream &OS) {
+ OS << "(py)" << Prop;
+}
+
+void clang::index::generateUSRForObjCProtocol(StringRef Prot, raw_ostream &OS) {
+ OS << "objc(pl)" << Prot;
+}
+
+bool clang::index::generateUSRForDecl(const Decl *D,
+ SmallVectorImpl<char> &Buf) {
+ // Don't generate USRs for things with invalid locations.
+ if (!D || D->getLocStart().isInvalid())
+ return true;
+
+ USRGenerator UG(&D->getASTContext(), Buf);
+ UG.Visit(D);
+ return UG.ignoreResults();
+}
+
+bool clang::index::generateUSRForMacro(const MacroDefinitionRecord *MD,
+ const SourceManager &SM,
+ SmallVectorImpl<char> &Buf) {
+ // Don't generate USRs for things with invalid locations.
+ if (!MD || MD->getLocation().isInvalid())
+ return true;
+
+ llvm::raw_svector_ostream Out(Buf);
+
+ // Assume that system headers are sane. Don't put source location
+ // information into the USR if the macro comes from a system header.
+ SourceLocation Loc = MD->getLocation();
+ bool ShouldGenerateLocation = !SM.isInSystemHeader(Loc);
+
+ Out << getUSRSpacePrefix();
+ if (ShouldGenerateLocation)
+ printLoc(Out, Loc, SM, /*IncludeOffset=*/true);
+ Out << "@macro@";
+ Out << MD->getName()->getName();
+ return false;
+}
+
diff --git a/contrib/llvm/tools/clang/lib/Lex/HeaderMap.cpp b/contrib/llvm/tools/clang/lib/Lex/HeaderMap.cpp
new file mode 100644
index 0000000..09d5384
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Lex/HeaderMap.cpp
@@ -0,0 +1,237 @@
+//===--- HeaderMap.cpp - A file that acts like dir of symlinks ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the HeaderMap interface.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Lex/HeaderMap.h"
+#include "clang/Basic/CharInfo.h"
+#include "clang/Basic/FileManager.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/DataTypes.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include <cstdio>
+#include <memory>
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// Data Structures and Manifest Constants
+//===----------------------------------------------------------------------===//
+
+enum {
+ HMAP_HeaderMagicNumber = ('h' << 24) | ('m' << 16) | ('a' << 8) | 'p',
+ HMAP_HeaderVersion = 1,
+
+ HMAP_EmptyBucketKey = 0
+};
+
+namespace clang {
+struct HMapBucket {
+ uint32_t Key; // Offset (into strings) of key.
+
+ uint32_t Prefix; // Offset (into strings) of value prefix.
+ uint32_t Suffix; // Offset (into strings) of value suffix.
+};
+
+struct HMapHeader {
+ uint32_t Magic; // Magic word, also indicates byte order.
+ uint16_t Version; // Version number -- currently 1.
+ uint16_t Reserved; // Reserved for future use - zero for now.
+ uint32_t StringsOffset; // Offset to start of string pool.
+ uint32_t NumEntries; // Number of entries in the string table.
+ uint32_t NumBuckets; // Number of buckets (always a power of 2).
+ uint32_t MaxValueLength; // Length of longest result path (excluding nul).
+ // An array of 'NumBuckets' HMapBucket objects follows this header.
+ // Strings follow the buckets, at StringsOffset.
+};
+} // end namespace clang.
+
+/// HashHMapKey - This is the 'well known' hash function required by the file
+/// format, used to look up keys in the hash table. The hash table uses simple
+/// linear probing based on this function.
+static inline unsigned HashHMapKey(StringRef Str) {
+ unsigned Result = 0;
+ const char *S = Str.begin(), *End = Str.end();
+
+ for (; S != End; S++)
+ Result += toLowercase(*S) * 13;
+ return Result;
+}
+
+
+
+//===----------------------------------------------------------------------===//
+// Verification and Construction
+//===----------------------------------------------------------------------===//
+
+/// HeaderMap::Create - This attempts to load the specified file as a header
+/// map. If it doesn't look like a HeaderMap, it gives up and returns null.
+/// If it looks like a HeaderMap but is obviously corrupted, it puts a reason
+/// into the string error argument and returns null.
+const HeaderMap *HeaderMap::Create(const FileEntry *FE, FileManager &FM) {
+ // If the file is too small to be a header map, ignore it.
+ unsigned FileSize = FE->getSize();
+ if (FileSize <= sizeof(HMapHeader)) return nullptr;
+
+ auto FileBuffer = FM.getBufferForFile(FE);
+ if (!FileBuffer) return nullptr; // Unreadable file?
+ const char *FileStart = (*FileBuffer)->getBufferStart();
+
+ // We know the file is at least as big as the header, check it now.
+ const HMapHeader *Header = reinterpret_cast<const HMapHeader*>(FileStart);
+
+ // Sniff it to see if it's a headermap by checking the magic number and
+ // version.
+ bool NeedsByteSwap;
+ if (Header->Magic == HMAP_HeaderMagicNumber &&
+ Header->Version == HMAP_HeaderVersion)
+ NeedsByteSwap = false;
+ else if (Header->Magic == llvm::ByteSwap_32(HMAP_HeaderMagicNumber) &&
+ Header->Version == llvm::ByteSwap_16(HMAP_HeaderVersion))
+ NeedsByteSwap = true; // Mixed endianness headermap.
+ else
+ return nullptr; // Not a header map.
+
+ if (Header->Reserved != 0) return nullptr;
+
+ // Okay, everything looks good, create the header map.
+ return new HeaderMap(std::move(*FileBuffer), NeedsByteSwap);
+}
+
+//===----------------------------------------------------------------------===//
+// Utility Methods
+//===----------------------------------------------------------------------===//
+
+
+/// getFileName - Return the filename of the headermap.
+const char *HeaderMap::getFileName() const {
+ return FileBuffer->getBufferIdentifier();
+}
+
+unsigned HeaderMap::getEndianAdjustedWord(unsigned X) const {
+ if (!NeedsBSwap) return X;
+ return llvm::ByteSwap_32(X);
+}
+
+/// getHeader - Return a reference to the file header, in unbyte-swapped form.
+/// This method cannot fail.
+const HMapHeader &HeaderMap::getHeader() const {
+ // We know the file is at least as big as the header. Return it.
+ return *reinterpret_cast<const HMapHeader*>(FileBuffer->getBufferStart());
+}
+
+/// getBucket - Return the specified hash table bucket from the header map,
+/// bswap'ing its fields as appropriate. If the bucket number is not valid,
+/// this return a bucket with an empty key (0).
+HMapBucket HeaderMap::getBucket(unsigned BucketNo) const {
+ HMapBucket Result;
+ Result.Key = HMAP_EmptyBucketKey;
+
+ const HMapBucket *BucketArray =
+ reinterpret_cast<const HMapBucket*>(FileBuffer->getBufferStart() +
+ sizeof(HMapHeader));
+
+ const HMapBucket *BucketPtr = BucketArray+BucketNo;
+ if ((const char*)(BucketPtr+1) > FileBuffer->getBufferEnd()) {
+ Result.Prefix = 0;
+ Result.Suffix = 0;
+ return Result; // Invalid buffer, corrupt hmap.
+ }
+
+ // Otherwise, the bucket is valid. Load the values, bswapping as needed.
+ Result.Key = getEndianAdjustedWord(BucketPtr->Key);
+ Result.Prefix = getEndianAdjustedWord(BucketPtr->Prefix);
+ Result.Suffix = getEndianAdjustedWord(BucketPtr->Suffix);
+ return Result;
+}
+
+/// getString - Look up the specified string in the string table. If the string
+/// index is not valid, it returns an empty string.
+const char *HeaderMap::getString(unsigned StrTabIdx) const {
+ // Add the start of the string table to the idx.
+ StrTabIdx += getEndianAdjustedWord(getHeader().StringsOffset);
+
+ // Check for invalid index.
+ if (StrTabIdx >= FileBuffer->getBufferSize())
+ return nullptr;
+
+ // Otherwise, we have a valid pointer into the file. Just return it. We know
+ // that the "string" can not overrun the end of the file, because the buffer
+ // is nul terminated by virtue of being a MemoryBuffer.
+ return FileBuffer->getBufferStart()+StrTabIdx;
+}
+
+//===----------------------------------------------------------------------===//
+// The Main Drivers
+//===----------------------------------------------------------------------===//
+
+/// dump - Print the contents of this headermap to stderr.
+void HeaderMap::dump() const {
+ const HMapHeader &Hdr = getHeader();
+ unsigned NumBuckets = getEndianAdjustedWord(Hdr.NumBuckets);
+
+ fprintf(stderr, "Header Map %s:\n %d buckets, %d entries\n",
+ getFileName(), NumBuckets,
+ getEndianAdjustedWord(Hdr.NumEntries));
+
+ for (unsigned i = 0; i != NumBuckets; ++i) {
+ HMapBucket B = getBucket(i);
+ if (B.Key == HMAP_EmptyBucketKey) continue;
+
+ const char *Key = getString(B.Key);
+ const char *Prefix = getString(B.Prefix);
+ const char *Suffix = getString(B.Suffix);
+ fprintf(stderr, " %d. %s -> '%s' '%s'\n", i, Key, Prefix, Suffix);
+ }
+}
+
+/// LookupFile - Check to see if the specified relative filename is located in
+/// this HeaderMap. If so, open it and return its FileEntry.
+const FileEntry *HeaderMap::LookupFile(
+ StringRef Filename, FileManager &FM) const {
+
+ SmallString<1024> Path;
+ StringRef Dest = lookupFilename(Filename, Path);
+ if (Dest.empty())
+ return nullptr;
+
+ return FM.getFile(Dest);
+}
+
+StringRef HeaderMap::lookupFilename(StringRef Filename,
+ SmallVectorImpl<char> &DestPath) const {
+ const HMapHeader &Hdr = getHeader();
+ unsigned NumBuckets = getEndianAdjustedWord(Hdr.NumBuckets);
+
+ // If the number of buckets is not a power of two, the headermap is corrupt.
+ // Don't probe infinitely.
+ if (NumBuckets & (NumBuckets-1))
+ return StringRef();
+
+ // Linearly probe the hash table.
+ for (unsigned Bucket = HashHMapKey(Filename);; ++Bucket) {
+ HMapBucket B = getBucket(Bucket & (NumBuckets-1));
+ if (B.Key == HMAP_EmptyBucketKey) return StringRef(); // Hash miss.
+
+ // See if the key matches. If not, probe on.
+ if (!Filename.equals_lower(getString(B.Key)))
+ continue;
+
+ // If so, we have a match in the hash table. Construct the destination
+ // path.
+ StringRef Prefix = getString(B.Prefix);
+ StringRef Suffix = getString(B.Suffix);
+ DestPath.clear();
+ DestPath.append(Prefix.begin(), Prefix.end());
+ DestPath.append(Suffix.begin(), Suffix.end());
+ return StringRef(DestPath.begin(), DestPath.size());
+ }
+}
diff --git a/contrib/llvm/tools/clang/lib/Lex/HeaderSearch.cpp b/contrib/llvm/tools/clang/lib/Lex/HeaderSearch.cpp
new file mode 100644
index 0000000..ad7d344
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Lex/HeaderSearch.cpp
@@ -0,0 +1,1372 @@
+//===--- HeaderSearch.cpp - Resolve Header File Locations ---===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the DirectoryLookup and HeaderSearch interfaces.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Lex/HeaderSearch.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/IdentifierTable.h"
+#include "clang/Lex/HeaderMap.h"
+#include "clang/Lex/HeaderSearchOptions.h"
+#include "clang/Lex/LexDiagnostic.h"
+#include "clang/Lex/Lexer.h"
+#include "clang/Lex/Preprocessor.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/Hashing.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/Capacity.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cstdio>
+#if defined(LLVM_ON_UNIX)
+#include <limits.h>
+#endif
+using namespace clang;
+
+const IdentifierInfo *
+HeaderFileInfo::getControllingMacro(ExternalIdentifierLookup *External) {
+ if (ControllingMacro)
+ return ControllingMacro;
+
+ if (!ControllingMacroID || !External)
+ return nullptr;
+
+ ControllingMacro = External->GetIdentifier(ControllingMacroID);
+ return ControllingMacro;
+}
+
+ExternalHeaderFileInfoSource::~ExternalHeaderFileInfoSource() {}
+
+HeaderSearch::HeaderSearch(IntrusiveRefCntPtr<HeaderSearchOptions> HSOpts,
+ SourceManager &SourceMgr, DiagnosticsEngine &Diags,
+ const LangOptions &LangOpts,
+ const TargetInfo *Target)
+ : HSOpts(HSOpts), Diags(Diags), FileMgr(SourceMgr.getFileManager()),
+ FrameworkMap(64), ModMap(SourceMgr, Diags, LangOpts, Target, *this),
+ LangOpts(LangOpts) {
+ AngledDirIdx = 0;
+ SystemDirIdx = 0;
+ NoCurDirSearch = false;
+
+ ExternalLookup = nullptr;
+ ExternalSource = nullptr;
+ NumIncluded = 0;
+ NumMultiIncludeFileOptzn = 0;
+ NumFrameworkLookups = NumSubFrameworkLookups = 0;
+}
+
+HeaderSearch::~HeaderSearch() {
+ // Delete headermaps.
+ for (unsigned i = 0, e = HeaderMaps.size(); i != e; ++i)
+ delete HeaderMaps[i].second;
+}
+
+void HeaderSearch::PrintStats() {
+ fprintf(stderr, "\n*** HeaderSearch Stats:\n");
+ fprintf(stderr, "%d files tracked.\n", (int)FileInfo.size());
+ unsigned NumOnceOnlyFiles = 0, MaxNumIncludes = 0, NumSingleIncludedFiles = 0;
+ for (unsigned i = 0, e = FileInfo.size(); i != e; ++i) {
+ NumOnceOnlyFiles += FileInfo[i].isImport;
+ if (MaxNumIncludes < FileInfo[i].NumIncludes)
+ MaxNumIncludes = FileInfo[i].NumIncludes;
+ NumSingleIncludedFiles += FileInfo[i].NumIncludes == 1;
+ }
+ fprintf(stderr, " %d #import/#pragma once files.\n", NumOnceOnlyFiles);
+ fprintf(stderr, " %d included exactly once.\n", NumSingleIncludedFiles);
+ fprintf(stderr, " %d max times a file is included.\n", MaxNumIncludes);
+
+ fprintf(stderr, " %d #include/#include_next/#import.\n", NumIncluded);
+ fprintf(stderr, " %d #includes skipped due to"
+ " the multi-include optimization.\n", NumMultiIncludeFileOptzn);
+
+ fprintf(stderr, "%d framework lookups.\n", NumFrameworkLookups);
+ fprintf(stderr, "%d subframework lookups.\n", NumSubFrameworkLookups);
+}
+
+/// CreateHeaderMap - This method returns a HeaderMap for the specified
+/// FileEntry, uniquing them through the 'HeaderMaps' datastructure.
+const HeaderMap *HeaderSearch::CreateHeaderMap(const FileEntry *FE) {
+ // We expect the number of headermaps to be small, and almost always empty.
+ // If it ever grows, use of a linear search should be re-evaluated.
+ if (!HeaderMaps.empty()) {
+ for (unsigned i = 0, e = HeaderMaps.size(); i != e; ++i)
+ // Pointer equality comparison of FileEntries works because they are
+ // already uniqued by inode.
+ if (HeaderMaps[i].first == FE)
+ return HeaderMaps[i].second;
+ }
+
+ if (const HeaderMap *HM = HeaderMap::Create(FE, FileMgr)) {
+ HeaderMaps.push_back(std::make_pair(FE, HM));
+ return HM;
+ }
+
+ return nullptr;
+}
+
+std::string HeaderSearch::getModuleFileName(Module *Module) {
+ const FileEntry *ModuleMap =
+ getModuleMap().getModuleMapFileForUniquing(Module);
+ return getModuleFileName(Module->Name, ModuleMap->getName());
+}
+
+std::string HeaderSearch::getModuleFileName(StringRef ModuleName,
+ StringRef ModuleMapPath) {
+ // If we don't have a module cache path, we can't do anything.
+ if (ModuleCachePath.empty())
+ return std::string();
+
+ SmallString<256> Result(ModuleCachePath);
+ llvm::sys::fs::make_absolute(Result);
+
+ if (HSOpts->DisableModuleHash) {
+ llvm::sys::path::append(Result, ModuleName + ".pcm");
+ } else {
+ // Construct the name <ModuleName>-<hash of ModuleMapPath>.pcm which should
+ // ideally be globally unique to this particular module. Name collisions
+ // in the hash are safe (because any translation unit can only import one
+ // module with each name), but result in a loss of caching.
+ //
+ // To avoid false-negatives, we form as canonical a path as we can, and map
+ // to lower-case in case we're on a case-insensitive file system.
+ auto *Dir =
+ FileMgr.getDirectory(llvm::sys::path::parent_path(ModuleMapPath));
+ if (!Dir)
+ return std::string();
+ auto DirName = FileMgr.getCanonicalName(Dir);
+ auto FileName = llvm::sys::path::filename(ModuleMapPath);
+
+ llvm::hash_code Hash =
+ llvm::hash_combine(DirName.lower(), FileName.lower());
+
+ SmallString<128> HashStr;
+ llvm::APInt(64, size_t(Hash)).toStringUnsigned(HashStr, /*Radix*/36);
+ llvm::sys::path::append(Result, ModuleName + "-" + HashStr + ".pcm");
+ }
+ return Result.str().str();
+}
+
+Module *HeaderSearch::lookupModule(StringRef ModuleName, bool AllowSearch) {
+ // Look in the module map to determine if there is a module by this name.
+ Module *Module = ModMap.findModule(ModuleName);
+ if (Module || !AllowSearch || !LangOpts.ModulesImplicitMaps)
+ return Module;
+
+ // Look through the various header search paths to load any available module
+ // maps, searching for a module map that describes this module.
+ for (unsigned Idx = 0, N = SearchDirs.size(); Idx != N; ++Idx) {
+ if (SearchDirs[Idx].isFramework()) {
+ // Search for or infer a module map for a framework.
+ SmallString<128> FrameworkDirName;
+ FrameworkDirName += SearchDirs[Idx].getFrameworkDir()->getName();
+ llvm::sys::path::append(FrameworkDirName, ModuleName + ".framework");
+ if (const DirectoryEntry *FrameworkDir
+ = FileMgr.getDirectory(FrameworkDirName)) {
+ bool IsSystem
+ = SearchDirs[Idx].getDirCharacteristic() != SrcMgr::C_User;
+ Module = loadFrameworkModule(ModuleName, FrameworkDir, IsSystem);
+ if (Module)
+ break;
+ }
+ }
+
+ // FIXME: Figure out how header maps and module maps will work together.
+
+ // Only deal with normal search directories.
+ if (!SearchDirs[Idx].isNormalDir())
+ continue;
+
+ bool IsSystem = SearchDirs[Idx].isSystemHeaderDirectory();
+ // Search for a module map file in this directory.
+ if (loadModuleMapFile(SearchDirs[Idx].getDir(), IsSystem,
+ /*IsFramework*/false) == LMM_NewlyLoaded) {
+ // We just loaded a module map file; check whether the module is
+ // available now.
+ Module = ModMap.findModule(ModuleName);
+ if (Module)
+ break;
+ }
+
+ // Search for a module map in a subdirectory with the same name as the
+ // module.
+ SmallString<128> NestedModuleMapDirName;
+ NestedModuleMapDirName = SearchDirs[Idx].getDir()->getName();
+ llvm::sys::path::append(NestedModuleMapDirName, ModuleName);
+ if (loadModuleMapFile(NestedModuleMapDirName, IsSystem,
+ /*IsFramework*/false) == LMM_NewlyLoaded){
+ // If we just loaded a module map file, look for the module again.
+ Module = ModMap.findModule(ModuleName);
+ if (Module)
+ break;
+ }
+
+ // If we've already performed the exhaustive search for module maps in this
+ // search directory, don't do it again.
+ if (SearchDirs[Idx].haveSearchedAllModuleMaps())
+ continue;
+
+ // Load all module maps in the immediate subdirectories of this search
+ // directory.
+ loadSubdirectoryModuleMaps(SearchDirs[Idx]);
+
+ // Look again for the module.
+ Module = ModMap.findModule(ModuleName);
+ if (Module)
+ break;
+ }
+
+ return Module;
+}
+
+//===----------------------------------------------------------------------===//
+// File lookup within a DirectoryLookup scope
+//===----------------------------------------------------------------------===//
+
+/// getName - Return the directory or filename corresponding to this lookup
+/// object.
+const char *DirectoryLookup::getName() const {
+ if (isNormalDir())
+ return getDir()->getName();
+ if (isFramework())
+ return getFrameworkDir()->getName();
+ assert(isHeaderMap() && "Unknown DirectoryLookup");
+ return getHeaderMap()->getFileName();
+}
+
+static const FileEntry *
+getFileAndSuggestModule(HeaderSearch &HS, StringRef FileName,
+ const DirectoryEntry *Dir, bool IsSystemHeaderDir,
+ ModuleMap::KnownHeader *SuggestedModule) {
+ // If we have a module map that might map this header, load it and
+ // check whether we'll have a suggestion for a module.
+ HS.hasModuleMap(FileName, Dir, IsSystemHeaderDir);
+ if (SuggestedModule) {
+ const FileEntry *File = HS.getFileMgr().getFile(FileName,
+ /*OpenFile=*/false);
+ if (File) {
+ // If there is a module that corresponds to this header, suggest it.
+ *SuggestedModule = HS.findModuleForHeader(File);
+
+ // FIXME: This appears to be a no-op. We loaded the module map for this
+ // directory at the start of this function.
+ if (!SuggestedModule->getModule() &&
+ HS.hasModuleMap(FileName, Dir, IsSystemHeaderDir))
+ *SuggestedModule = HS.findModuleForHeader(File);
+ }
+
+ return File;
+ }
+
+ return HS.getFileMgr().getFile(FileName, /*openFile=*/true);
+}
+
+/// LookupFile - Lookup the specified file in this search path, returning it
+/// if it exists or returning null if not.
+const FileEntry *DirectoryLookup::LookupFile(
+ StringRef &Filename,
+ HeaderSearch &HS,
+ SmallVectorImpl<char> *SearchPath,
+ SmallVectorImpl<char> *RelativePath,
+ ModuleMap::KnownHeader *SuggestedModule,
+ bool &InUserSpecifiedSystemFramework,
+ bool &HasBeenMapped,
+ SmallVectorImpl<char> &MappedName) const {
+ InUserSpecifiedSystemFramework = false;
+ HasBeenMapped = false;
+
+ SmallString<1024> TmpDir;
+ if (isNormalDir()) {
+ // Concatenate the requested file onto the directory.
+ TmpDir = getDir()->getName();
+ llvm::sys::path::append(TmpDir, Filename);
+ if (SearchPath) {
+ StringRef SearchPathRef(getDir()->getName());
+ SearchPath->clear();
+ SearchPath->append(SearchPathRef.begin(), SearchPathRef.end());
+ }
+ if (RelativePath) {
+ RelativePath->clear();
+ RelativePath->append(Filename.begin(), Filename.end());
+ }
+
+ return getFileAndSuggestModule(HS, TmpDir, getDir(),
+ isSystemHeaderDirectory(),
+ SuggestedModule);
+ }
+
+ if (isFramework())
+ return DoFrameworkLookup(Filename, HS, SearchPath, RelativePath,
+ SuggestedModule, InUserSpecifiedSystemFramework);
+
+ assert(isHeaderMap() && "Unknown directory lookup");
+ const HeaderMap *HM = getHeaderMap();
+ SmallString<1024> Path;
+ StringRef Dest = HM->lookupFilename(Filename, Path);
+ if (Dest.empty())
+ return nullptr;
+
+ const FileEntry *Result;
+
+ // Check if the headermap maps the filename to a framework include
+ // ("Foo.h" -> "Foo/Foo.h"), in which case continue header lookup using the
+ // framework include.
+ if (llvm::sys::path::is_relative(Dest)) {
+ MappedName.clear();
+ MappedName.append(Dest.begin(), Dest.end());
+ Filename = StringRef(MappedName.begin(), MappedName.size());
+ HasBeenMapped = true;
+ Result = HM->LookupFile(Filename, HS.getFileMgr());
+
+ } else {
+ Result = HS.getFileMgr().getFile(Dest);
+ }
+
+ if (Result) {
+ if (SearchPath) {
+ StringRef SearchPathRef(getName());
+ SearchPath->clear();
+ SearchPath->append(SearchPathRef.begin(), SearchPathRef.end());
+ }
+ if (RelativePath) {
+ RelativePath->clear();
+ RelativePath->append(Filename.begin(), Filename.end());
+ }
+ }
+ return Result;
+}
+
+/// \brief Given a framework directory, find the top-most framework directory.
+///
+/// \param FileMgr The file manager to use for directory lookups.
+/// \param DirName The name of the framework directory.
+/// \param SubmodulePath Will be populated with the submodule path from the
+/// returned top-level module to the originally named framework.
+static const DirectoryEntry *
+getTopFrameworkDir(FileManager &FileMgr, StringRef DirName,
+ SmallVectorImpl<std::string> &SubmodulePath) {
+ assert(llvm::sys::path::extension(DirName) == ".framework" &&
+ "Not a framework directory");
+
+ // Note: as an egregious but useful hack we use the real path here, because
+ // frameworks moving between top-level frameworks to embedded frameworks tend
+ // to be symlinked, and we base the logical structure of modules on the
+ // physical layout. In particular, we need to deal with crazy includes like
+ //
+ // #include <Foo/Frameworks/Bar.framework/Headers/Wibble.h>
+ //
+ // where 'Bar' used to be embedded in 'Foo', is now a top-level framework
+ // which one should access with, e.g.,
+ //
+ // #include <Bar/Wibble.h>
+ //
+ // Similar issues occur when a top-level framework has moved into an
+ // embedded framework.
+ const DirectoryEntry *TopFrameworkDir = FileMgr.getDirectory(DirName);
+ DirName = FileMgr.getCanonicalName(TopFrameworkDir);
+ do {
+ // Get the parent directory name.
+ DirName = llvm::sys::path::parent_path(DirName);
+ if (DirName.empty())
+ break;
+
+ // Determine whether this directory exists.
+ const DirectoryEntry *Dir = FileMgr.getDirectory(DirName);
+ if (!Dir)
+ break;
+
+ // If this is a framework directory, then we're a subframework of this
+ // framework.
+ if (llvm::sys::path::extension(DirName) == ".framework") {
+ SubmodulePath.push_back(llvm::sys::path::stem(DirName));
+ TopFrameworkDir = Dir;
+ }
+ } while (true);
+
+ return TopFrameworkDir;
+}
+
+/// DoFrameworkLookup - Do a lookup of the specified file in the current
+/// DirectoryLookup, which is a framework directory.
+const FileEntry *DirectoryLookup::DoFrameworkLookup(
+ StringRef Filename,
+ HeaderSearch &HS,
+ SmallVectorImpl<char> *SearchPath,
+ SmallVectorImpl<char> *RelativePath,
+ ModuleMap::KnownHeader *SuggestedModule,
+ bool &InUserSpecifiedSystemFramework) const
+{
+ FileManager &FileMgr = HS.getFileMgr();
+
+ // Framework names must have a '/' in the filename.
+ size_t SlashPos = Filename.find('/');
+ if (SlashPos == StringRef::npos) return nullptr;
+
+ // Find out if this is the home for the specified framework, by checking
+ // HeaderSearch. Possible answers are yes/no and unknown.
+ HeaderSearch::FrameworkCacheEntry &CacheEntry =
+ HS.LookupFrameworkCache(Filename.substr(0, SlashPos));
+
+ // If it is known and in some other directory, fail.
+ if (CacheEntry.Directory && CacheEntry.Directory != getFrameworkDir())
+ return nullptr;
+
+ // Otherwise, construct the path to this framework dir.
+
+ // FrameworkName = "/System/Library/Frameworks/"
+ SmallString<1024> FrameworkName;
+ FrameworkName += getFrameworkDir()->getName();
+ if (FrameworkName.empty() || FrameworkName.back() != '/')
+ FrameworkName.push_back('/');
+
+ // FrameworkName = "/System/Library/Frameworks/Cocoa"
+ StringRef ModuleName(Filename.begin(), SlashPos);
+ FrameworkName += ModuleName;
+
+ // FrameworkName = "/System/Library/Frameworks/Cocoa.framework/"
+ FrameworkName += ".framework/";
+
+ // If the cache entry was unresolved, populate it now.
+ if (!CacheEntry.Directory) {
+ HS.IncrementFrameworkLookupCount();
+
+ // If the framework dir doesn't exist, we fail.
+ const DirectoryEntry *Dir = FileMgr.getDirectory(FrameworkName);
+ if (!Dir) return nullptr;
+
+ // Otherwise, if it does, remember that this is the right direntry for this
+ // framework.
+ CacheEntry.Directory = getFrameworkDir();
+
+ // If this is a user search directory, check if the framework has been
+ // user-specified as a system framework.
+ if (getDirCharacteristic() == SrcMgr::C_User) {
+ SmallString<1024> SystemFrameworkMarker(FrameworkName);
+ SystemFrameworkMarker += ".system_framework";
+ if (llvm::sys::fs::exists(SystemFrameworkMarker)) {
+ CacheEntry.IsUserSpecifiedSystemFramework = true;
+ }
+ }
+ }
+
+ // Set the 'user-specified system framework' flag.
+ InUserSpecifiedSystemFramework = CacheEntry.IsUserSpecifiedSystemFramework;
+
+ if (RelativePath) {
+ RelativePath->clear();
+ RelativePath->append(Filename.begin()+SlashPos+1, Filename.end());
+ }
+
+ // Check "/System/Library/Frameworks/Cocoa.framework/Headers/file.h"
+ unsigned OrigSize = FrameworkName.size();
+
+ FrameworkName += "Headers/";
+
+ if (SearchPath) {
+ SearchPath->clear();
+ // Without trailing '/'.
+ SearchPath->append(FrameworkName.begin(), FrameworkName.end()-1);
+ }
+
+ FrameworkName.append(Filename.begin()+SlashPos+1, Filename.end());
+ const FileEntry *FE = FileMgr.getFile(FrameworkName,
+ /*openFile=*/!SuggestedModule);
+ if (!FE) {
+ // Check "/System/Library/Frameworks/Cocoa.framework/PrivateHeaders/file.h"
+ const char *Private = "Private";
+ FrameworkName.insert(FrameworkName.begin()+OrigSize, Private,
+ Private+strlen(Private));
+ if (SearchPath)
+ SearchPath->insert(SearchPath->begin()+OrigSize, Private,
+ Private+strlen(Private));
+
+ FE = FileMgr.getFile(FrameworkName, /*openFile=*/!SuggestedModule);
+ }
+
+ // If we found the header and are allowed to suggest a module, do so now.
+ if (FE && SuggestedModule) {
+ // Find the framework in which this header occurs.
+ StringRef FrameworkPath = FE->getDir()->getName();
+ bool FoundFramework = false;
+ do {
+ // Determine whether this directory exists.
+ const DirectoryEntry *Dir = FileMgr.getDirectory(FrameworkPath);
+ if (!Dir)
+ break;
+
+ // If this is a framework directory, then we're a subframework of this
+ // framework.
+ if (llvm::sys::path::extension(FrameworkPath) == ".framework") {
+ FoundFramework = true;
+ break;
+ }
+
+ // Get the parent directory name.
+ FrameworkPath = llvm::sys::path::parent_path(FrameworkPath);
+ if (FrameworkPath.empty())
+ break;
+ } while (true);
+
+ if (FoundFramework) {
+ // Find the top-level framework based on this framework.
+ SmallVector<std::string, 4> SubmodulePath;
+ const DirectoryEntry *TopFrameworkDir
+ = ::getTopFrameworkDir(FileMgr, FrameworkPath, SubmodulePath);
+
+ // Determine the name of the top-level framework.
+ StringRef ModuleName = llvm::sys::path::stem(TopFrameworkDir->getName());
+
+ // Load this framework module. If that succeeds, find the suggested module
+ // for this header, if any.
+ bool IsSystem = getDirCharacteristic() != SrcMgr::C_User;
+ if (HS.loadFrameworkModule(ModuleName, TopFrameworkDir, IsSystem)) {
+ *SuggestedModule = HS.findModuleForHeader(FE);
+ }
+ } else {
+ *SuggestedModule = HS.findModuleForHeader(FE);
+ }
+ }
+ return FE;
+}
+
+void HeaderSearch::setTarget(const TargetInfo &Target) {
+ ModMap.setTarget(Target);
+}
+
+
+//===----------------------------------------------------------------------===//
+// Header File Location.
+//===----------------------------------------------------------------------===//
+
+/// \brief Return true with a diagnostic if the file that MSVC would have found
+/// fails to match the one that Clang would have found with MSVC header search
+/// disabled.
+static bool checkMSVCHeaderSearch(DiagnosticsEngine &Diags,
+ const FileEntry *MSFE, const FileEntry *FE,
+ SourceLocation IncludeLoc) {
+ if (MSFE && FE != MSFE) {
+ Diags.Report(IncludeLoc, diag::ext_pp_include_search_ms) << MSFE->getName();
+ return true;
+ }
+ return false;
+}
+
+static const char *copyString(StringRef Str, llvm::BumpPtrAllocator &Alloc) {
+ assert(!Str.empty());
+ char *CopyStr = Alloc.Allocate<char>(Str.size()+1);
+ std::copy(Str.begin(), Str.end(), CopyStr);
+ CopyStr[Str.size()] = '\0';
+ return CopyStr;
+}
+
+/// LookupFile - Given a "foo" or \<foo> reference, look up the indicated file,
+/// return null on failure. isAngled indicates whether the file reference is
+/// for system \#include's or not (i.e. using <> instead of ""). Includers, if
+/// non-empty, indicates where the \#including file(s) are, in case a relative
+/// search is needed. Microsoft mode will pass all \#including files.
+const FileEntry *HeaderSearch::LookupFile(
+ StringRef Filename, SourceLocation IncludeLoc, bool isAngled,
+ const DirectoryLookup *FromDir, const DirectoryLookup *&CurDir,
+ ArrayRef<std::pair<const FileEntry *, const DirectoryEntry *>> Includers,
+ SmallVectorImpl<char> *SearchPath, SmallVectorImpl<char> *RelativePath,
+ ModuleMap::KnownHeader *SuggestedModule, bool SkipCache) {
+ if (SuggestedModule)
+ *SuggestedModule = ModuleMap::KnownHeader();
+
+ // If 'Filename' is absolute, check to see if it exists and no searching.
+ if (llvm::sys::path::is_absolute(Filename)) {
+ CurDir = nullptr;
+
+ // If this was an #include_next "/absolute/file", fail.
+ if (FromDir) return nullptr;
+
+ if (SearchPath)
+ SearchPath->clear();
+ if (RelativePath) {
+ RelativePath->clear();
+ RelativePath->append(Filename.begin(), Filename.end());
+ }
+ // Otherwise, just return the file.
+ const FileEntry *File = FileMgr.getFile(Filename, /*openFile=*/true);
+ if (File && SuggestedModule) {
+ // If there is a module that corresponds to this header, suggest it.
+ hasModuleMap(Filename, File->getDir(), /*SystemHeaderDir*/false);
+ *SuggestedModule = findModuleForHeader(File);
+ }
+ return File;
+ }
+
+ // This is the header that MSVC's header search would have found.
+ const FileEntry *MSFE = nullptr;
+ ModuleMap::KnownHeader MSSuggestedModule;
+
+ // Unless disabled, check to see if the file is in the #includer's
+ // directory. This cannot be based on CurDir, because each includer could be
+ // a #include of a subdirectory (#include "foo/bar.h") and a subsequent
+ // include of "baz.h" should resolve to "whatever/foo/baz.h".
+ // This search is not done for <> headers.
+ if (!Includers.empty() && !isAngled && !NoCurDirSearch) {
+ SmallString<1024> TmpDir;
+ bool First = true;
+ for (const auto &IncluderAndDir : Includers) {
+ const FileEntry *Includer = IncluderAndDir.first;
+
+ // Concatenate the requested file onto the directory.
+ // FIXME: Portability. Filename concatenation should be in sys::Path.
+ TmpDir = IncluderAndDir.second->getName();
+ TmpDir.push_back('/');
+ TmpDir.append(Filename.begin(), Filename.end());
+
+ // FIXME: We don't cache the result of getFileInfo across the call to
+ // getFileAndSuggestModule, because it's a reference to an element of
+ // a container that could be reallocated across this call.
+ //
+ // FIXME: If we have no includer, that means we're processing a #include
+ // from a module build. We should treat this as a system header if we're
+ // building a [system] module.
+ bool IncluderIsSystemHeader =
+ Includer && getFileInfo(Includer).DirInfo != SrcMgr::C_User;
+ if (const FileEntry *FE = getFileAndSuggestModule(
+ *this, TmpDir, IncluderAndDir.second,
+ IncluderIsSystemHeader, SuggestedModule)) {
+ if (!Includer) {
+ assert(First && "only first includer can have no file");
+ return FE;
+ }
+
+ // Leave CurDir unset.
+ // This file is a system header or C++ unfriendly if the old file is.
+ //
+ // Note that we only use one of FromHFI/ToHFI at once, due to potential
+ // reallocation of the underlying vector potentially making the first
+ // reference binding dangling.
+ HeaderFileInfo &FromHFI = getFileInfo(Includer);
+ unsigned DirInfo = FromHFI.DirInfo;
+ bool IndexHeaderMapHeader = FromHFI.IndexHeaderMapHeader;
+ StringRef Framework = FromHFI.Framework;
+
+ HeaderFileInfo &ToHFI = getFileInfo(FE);
+ ToHFI.DirInfo = DirInfo;
+ ToHFI.IndexHeaderMapHeader = IndexHeaderMapHeader;
+ ToHFI.Framework = Framework;
+
+ if (SearchPath) {
+ StringRef SearchPathRef(IncluderAndDir.second->getName());
+ SearchPath->clear();
+ SearchPath->append(SearchPathRef.begin(), SearchPathRef.end());
+ }
+ if (RelativePath) {
+ RelativePath->clear();
+ RelativePath->append(Filename.begin(), Filename.end());
+ }
+ if (First)
+ return FE;
+
+ // Otherwise, we found the path via MSVC header search rules. If
+ // -Wmsvc-include is enabled, we have to keep searching to see if we
+ // would've found this header in -I or -isystem directories.
+ if (Diags.isIgnored(diag::ext_pp_include_search_ms, IncludeLoc)) {
+ return FE;
+ } else {
+ MSFE = FE;
+ if (SuggestedModule) {
+ MSSuggestedModule = *SuggestedModule;
+ *SuggestedModule = ModuleMap::KnownHeader();
+ }
+ break;
+ }
+ }
+ First = false;
+ }
+ }
+
+ CurDir = nullptr;
+
+ // If this is a system #include, ignore the user #include locs.
+ unsigned i = isAngled ? AngledDirIdx : 0;
+
+ // If this is a #include_next request, start searching after the directory the
+ // file was found in.
+ if (FromDir)
+ i = FromDir-&SearchDirs[0];
+
+ // Cache all of the lookups performed by this method. Many headers are
+ // multiply included, and the "pragma once" optimization prevents them from
+ // being relex/pp'd, but they would still have to search through a
+ // (potentially huge) series of SearchDirs to find it.
+ LookupFileCacheInfo &CacheLookup = LookupFileCache[Filename];
+
+ // If the entry has been previously looked up, the first value will be
+ // non-zero. If the value is equal to i (the start point of our search), then
+ // this is a matching hit.
+ if (!SkipCache && CacheLookup.StartIdx == i+1) {
+ // Skip querying potentially lots of directories for this lookup.
+ i = CacheLookup.HitIdx;
+ if (CacheLookup.MappedName)
+ Filename = CacheLookup.MappedName;
+ } else {
+ // Otherwise, this is the first query, or the previous query didn't match
+ // our search start. We will fill in our found location below, so prime the
+ // start point value.
+ CacheLookup.reset(/*StartIdx=*/i+1);
+ }
+
+ SmallString<64> MappedName;
+
+ // Check each directory in sequence to see if it contains this file.
+ for (; i != SearchDirs.size(); ++i) {
+ bool InUserSpecifiedSystemFramework = false;
+ bool HasBeenMapped = false;
+ const FileEntry *FE =
+ SearchDirs[i].LookupFile(Filename, *this, SearchPath, RelativePath,
+ SuggestedModule, InUserSpecifiedSystemFramework,
+ HasBeenMapped, MappedName);
+ if (HasBeenMapped) {
+ CacheLookup.MappedName =
+ copyString(Filename, LookupFileCache.getAllocator());
+ }
+ if (!FE) continue;
+
+ CurDir = &SearchDirs[i];
+
+ // This file is a system header or C++ unfriendly if the dir is.
+ HeaderFileInfo &HFI = getFileInfo(FE);
+ HFI.DirInfo = CurDir->getDirCharacteristic();
+
+ // If the directory characteristic is User but this framework was
+ // user-specified to be treated as a system framework, promote the
+ // characteristic.
+ if (HFI.DirInfo == SrcMgr::C_User && InUserSpecifiedSystemFramework)
+ HFI.DirInfo = SrcMgr::C_System;
+
+ // If the filename matches a known system header prefix, override
+ // whether the file is a system header.
+ for (unsigned j = SystemHeaderPrefixes.size(); j; --j) {
+ if (Filename.startswith(SystemHeaderPrefixes[j-1].first)) {
+ HFI.DirInfo = SystemHeaderPrefixes[j-1].second ? SrcMgr::C_System
+ : SrcMgr::C_User;
+ break;
+ }
+ }
+
+ // If this file is found in a header map and uses the framework style of
+ // includes, then this header is part of a framework we're building.
+ if (CurDir->isIndexHeaderMap()) {
+ size_t SlashPos = Filename.find('/');
+ if (SlashPos != StringRef::npos) {
+ HFI.IndexHeaderMapHeader = 1;
+ HFI.Framework = getUniqueFrameworkName(StringRef(Filename.begin(),
+ SlashPos));
+ }
+ }
+
+ if (checkMSVCHeaderSearch(Diags, MSFE, FE, IncludeLoc)) {
+ if (SuggestedModule)
+ *SuggestedModule = MSSuggestedModule;
+ return MSFE;
+ }
+
+ // Remember this location for the next lookup we do.
+ CacheLookup.HitIdx = i;
+ return FE;
+ }
+
+ // If we are including a file with a quoted include "foo.h" from inside
+ // a header in a framework that is currently being built, and we couldn't
+ // resolve "foo.h" any other way, change the include to <Foo/foo.h>, where
+ // "Foo" is the name of the framework in which the including header was found.
+ if (!Includers.empty() && Includers.front().first && !isAngled &&
+ Filename.find('/') == StringRef::npos) {
+ HeaderFileInfo &IncludingHFI = getFileInfo(Includers.front().first);
+ if (IncludingHFI.IndexHeaderMapHeader) {
+ SmallString<128> ScratchFilename;
+ ScratchFilename += IncludingHFI.Framework;
+ ScratchFilename += '/';
+ ScratchFilename += Filename;
+
+ const FileEntry *FE = LookupFile(
+ ScratchFilename, IncludeLoc, /*isAngled=*/true, FromDir, CurDir,
+ Includers.front(), SearchPath, RelativePath, SuggestedModule);
+
+ if (checkMSVCHeaderSearch(Diags, MSFE, FE, IncludeLoc)) {
+ if (SuggestedModule)
+ *SuggestedModule = MSSuggestedModule;
+ return MSFE;
+ }
+
+ LookupFileCacheInfo &CacheLookup = LookupFileCache[Filename];
+ CacheLookup.HitIdx = LookupFileCache[ScratchFilename].HitIdx;
+ // FIXME: SuggestedModule.
+ return FE;
+ }
+ }
+
+ if (checkMSVCHeaderSearch(Diags, MSFE, nullptr, IncludeLoc)) {
+ if (SuggestedModule)
+ *SuggestedModule = MSSuggestedModule;
+ return MSFE;
+ }
+
+ // Otherwise, didn't find it. Remember we didn't find this.
+ CacheLookup.HitIdx = SearchDirs.size();
+ return nullptr;
+}
+
+/// LookupSubframeworkHeader - Look up a subframework for the specified
+/// \#include file. For example, if \#include'ing <HIToolbox/HIToolbox.h> from
+/// within ".../Carbon.framework/Headers/Carbon.h", check to see if HIToolbox
+/// is a subframework within Carbon.framework. If so, return the FileEntry
+/// for the designated file, otherwise return null.
+const FileEntry *HeaderSearch::
+LookupSubframeworkHeader(StringRef Filename,
+ const FileEntry *ContextFileEnt,
+ SmallVectorImpl<char> *SearchPath,
+ SmallVectorImpl<char> *RelativePath,
+ ModuleMap::KnownHeader *SuggestedModule) {
+ assert(ContextFileEnt && "No context file?");
+
+ // Framework names must have a '/' in the filename. Find it.
+ // FIXME: Should we permit '\' on Windows?
+ size_t SlashPos = Filename.find('/');
+ if (SlashPos == StringRef::npos) return nullptr;
+
+ // Look up the base framework name of the ContextFileEnt.
+ const char *ContextName = ContextFileEnt->getName();
+
+ // If the context info wasn't a framework, couldn't be a subframework.
+ const unsigned DotFrameworkLen = 10;
+ const char *FrameworkPos = strstr(ContextName, ".framework");
+ if (FrameworkPos == nullptr ||
+ (FrameworkPos[DotFrameworkLen] != '/' &&
+ FrameworkPos[DotFrameworkLen] != '\\'))
+ return nullptr;
+
+ SmallString<1024> FrameworkName(ContextName, FrameworkPos+DotFrameworkLen+1);
+
+ // Append Frameworks/HIToolbox.framework/
+ FrameworkName += "Frameworks/";
+ FrameworkName.append(Filename.begin(), Filename.begin()+SlashPos);
+ FrameworkName += ".framework/";
+
+ auto &CacheLookup =
+ *FrameworkMap.insert(std::make_pair(Filename.substr(0, SlashPos),
+ FrameworkCacheEntry())).first;
+
+ // Some other location?
+ if (CacheLookup.second.Directory &&
+ CacheLookup.first().size() == FrameworkName.size() &&
+ memcmp(CacheLookup.first().data(), &FrameworkName[0],
+ CacheLookup.first().size()) != 0)
+ return nullptr;
+
+ // Cache subframework.
+ if (!CacheLookup.second.Directory) {
+ ++NumSubFrameworkLookups;
+
+ // If the framework dir doesn't exist, we fail.
+ const DirectoryEntry *Dir = FileMgr.getDirectory(FrameworkName);
+ if (!Dir) return nullptr;
+
+ // Otherwise, if it does, remember that this is the right direntry for this
+ // framework.
+ CacheLookup.second.Directory = Dir;
+ }
+
+ const FileEntry *FE = nullptr;
+
+ if (RelativePath) {
+ RelativePath->clear();
+ RelativePath->append(Filename.begin()+SlashPos+1, Filename.end());
+ }
+
+ // Check ".../Frameworks/HIToolbox.framework/Headers/HIToolbox.h"
+ SmallString<1024> HeadersFilename(FrameworkName);
+ HeadersFilename += "Headers/";
+ if (SearchPath) {
+ SearchPath->clear();
+ // Without trailing '/'.
+ SearchPath->append(HeadersFilename.begin(), HeadersFilename.end()-1);
+ }
+
+ HeadersFilename.append(Filename.begin()+SlashPos+1, Filename.end());
+ if (!(FE = FileMgr.getFile(HeadersFilename, /*openFile=*/true))) {
+
+ // Check ".../Frameworks/HIToolbox.framework/PrivateHeaders/HIToolbox.h"
+ HeadersFilename = FrameworkName;
+ HeadersFilename += "PrivateHeaders/";
+ if (SearchPath) {
+ SearchPath->clear();
+ // Without trailing '/'.
+ SearchPath->append(HeadersFilename.begin(), HeadersFilename.end()-1);
+ }
+
+ HeadersFilename.append(Filename.begin()+SlashPos+1, Filename.end());
+ if (!(FE = FileMgr.getFile(HeadersFilename, /*openFile=*/true)))
+ return nullptr;
+ }
+
+ // This file is a system header or C++ unfriendly if the old file is.
+ //
+ // Note that the temporary 'DirInfo' is required here, as either call to
+ // getFileInfo could resize the vector and we don't want to rely on order
+ // of evaluation.
+ unsigned DirInfo = getFileInfo(ContextFileEnt).DirInfo;
+ getFileInfo(FE).DirInfo = DirInfo;
+
+ // If we're supposed to suggest a module, look for one now.
+ if (SuggestedModule) {
+ // Find the top-level framework based on this framework.
+ FrameworkName.pop_back(); // remove the trailing '/'
+ SmallVector<std::string, 4> SubmodulePath;
+ const DirectoryEntry *TopFrameworkDir
+ = ::getTopFrameworkDir(FileMgr, FrameworkName, SubmodulePath);
+
+ // Determine the name of the top-level framework.
+ StringRef ModuleName = llvm::sys::path::stem(TopFrameworkDir->getName());
+
+ // Load this framework module. If that succeeds, find the suggested module
+ // for this header, if any.
+ bool IsSystem = false;
+ if (loadFrameworkModule(ModuleName, TopFrameworkDir, IsSystem)) {
+ *SuggestedModule = findModuleForHeader(FE);
+ }
+ }
+
+ return FE;
+}
+
+//===----------------------------------------------------------------------===//
+// File Info Management.
+//===----------------------------------------------------------------------===//
+
+/// \brief Merge the header file info provided by \p OtherHFI into the current
+/// header file info (\p HFI)
+static void mergeHeaderFileInfo(HeaderFileInfo &HFI,
+ const HeaderFileInfo &OtherHFI) {
+ HFI.isImport |= OtherHFI.isImport;
+ HFI.isPragmaOnce |= OtherHFI.isPragmaOnce;
+ HFI.isModuleHeader |= OtherHFI.isModuleHeader;
+ HFI.NumIncludes += OtherHFI.NumIncludes;
+
+ if (!HFI.ControllingMacro && !HFI.ControllingMacroID) {
+ HFI.ControllingMacro = OtherHFI.ControllingMacro;
+ HFI.ControllingMacroID = OtherHFI.ControllingMacroID;
+ }
+
+ if (OtherHFI.External) {
+ HFI.DirInfo = OtherHFI.DirInfo;
+ HFI.External = OtherHFI.External;
+ HFI.IndexHeaderMapHeader = OtherHFI.IndexHeaderMapHeader;
+ }
+
+ if (HFI.Framework.empty())
+ HFI.Framework = OtherHFI.Framework;
+
+ HFI.Resolved = true;
+}
+
+/// getFileInfo - Return the HeaderFileInfo structure for the specified
+/// FileEntry.
+HeaderFileInfo &HeaderSearch::getFileInfo(const FileEntry *FE) {
+ if (FE->getUID() >= FileInfo.size())
+ FileInfo.resize(FE->getUID()+1);
+
+ HeaderFileInfo &HFI = FileInfo[FE->getUID()];
+ if (ExternalSource && !HFI.Resolved)
+ mergeHeaderFileInfo(HFI, ExternalSource->GetHeaderFileInfo(FE));
+ HFI.IsValid = 1;
+ return HFI;
+}
+
+bool HeaderSearch::tryGetFileInfo(const FileEntry *FE, HeaderFileInfo &Result) const {
+ if (FE->getUID() >= FileInfo.size())
+ return false;
+ const HeaderFileInfo &HFI = FileInfo[FE->getUID()];
+ if (HFI.IsValid) {
+ Result = HFI;
+ return true;
+ }
+ return false;
+}
+
+bool HeaderSearch::isFileMultipleIncludeGuarded(const FileEntry *File) {
+ // Check if we've ever seen this file as a header.
+ if (File->getUID() >= FileInfo.size())
+ return false;
+
+ // Resolve header file info from the external source, if needed.
+ HeaderFileInfo &HFI = FileInfo[File->getUID()];
+ if (ExternalSource && !HFI.Resolved)
+ mergeHeaderFileInfo(HFI, ExternalSource->GetHeaderFileInfo(File));
+
+ return HFI.isPragmaOnce || HFI.isImport ||
+ HFI.ControllingMacro || HFI.ControllingMacroID;
+}
+
+void HeaderSearch::MarkFileModuleHeader(const FileEntry *FE,
+ ModuleMap::ModuleHeaderRole Role,
+ bool isCompilingModuleHeader) {
+ if (FE->getUID() >= FileInfo.size())
+ FileInfo.resize(FE->getUID()+1);
+
+ HeaderFileInfo &HFI = FileInfo[FE->getUID()];
+ HFI.isModuleHeader = true;
+ HFI.isCompilingModuleHeader = isCompilingModuleHeader;
+ HFI.setHeaderRole(Role);
+}
+
+bool HeaderSearch::ShouldEnterIncludeFile(Preprocessor &PP,
+ const FileEntry *File,
+ bool isImport) {
+ ++NumIncluded; // Count # of attempted #includes.
+
+ // Get information about this file.
+ HeaderFileInfo &FileInfo = getFileInfo(File);
+
+ // If this is a #import directive, check that we have not already imported
+ // this header.
+ if (isImport) {
+ // If this has already been imported, don't import it again.
+ FileInfo.isImport = true;
+
+ // Has this already been #import'ed or #include'd?
+ if (FileInfo.NumIncludes) return false;
+ } else {
+ // Otherwise, if this is a #include of a file that was previously #import'd
+ // or if this is the second #include of a #pragma once file, ignore it.
+ if (FileInfo.isImport)
+ return false;
+ }
+
+ // Next, check to see if the file is wrapped with #ifndef guards. If so, and
+ // if the macro that guards it is defined, we know the #include has no effect.
+ if (const IdentifierInfo *ControllingMacro
+ = FileInfo.getControllingMacro(ExternalLookup))
+ if (PP.isMacroDefined(ControllingMacro)) {
+ ++NumMultiIncludeFileOptzn;
+ return false;
+ }
+
+ // Increment the number of times this file has been included.
+ ++FileInfo.NumIncludes;
+
+ return true;
+}
+
+size_t HeaderSearch::getTotalMemory() const {
+ return SearchDirs.capacity()
+ + llvm::capacity_in_bytes(FileInfo)
+ + llvm::capacity_in_bytes(HeaderMaps)
+ + LookupFileCache.getAllocator().getTotalMemory()
+ + FrameworkMap.getAllocator().getTotalMemory();
+}
+
+StringRef HeaderSearch::getUniqueFrameworkName(StringRef Framework) {
+ return FrameworkNames.insert(Framework).first->first();
+}
+
+bool HeaderSearch::hasModuleMap(StringRef FileName,
+ const DirectoryEntry *Root,
+ bool IsSystem) {
+ if (!HSOpts->ModuleMaps || !LangOpts.ModulesImplicitMaps)
+ return false;
+
+ SmallVector<const DirectoryEntry *, 2> FixUpDirectories;
+
+ StringRef DirName = FileName;
+ do {
+ // Get the parent directory name.
+ DirName = llvm::sys::path::parent_path(DirName);
+ if (DirName.empty())
+ return false;
+
+ // Determine whether this directory exists.
+ const DirectoryEntry *Dir = FileMgr.getDirectory(DirName);
+ if (!Dir)
+ return false;
+
+ // Try to load the module map file in this directory.
+ switch (loadModuleMapFile(Dir, IsSystem,
+ llvm::sys::path::extension(Dir->getName()) ==
+ ".framework")) {
+ case LMM_NewlyLoaded:
+ case LMM_AlreadyLoaded:
+ // Success. All of the directories we stepped through inherit this module
+ // map file.
+ for (unsigned I = 0, N = FixUpDirectories.size(); I != N; ++I)
+ DirectoryHasModuleMap[FixUpDirectories[I]] = true;
+ return true;
+
+ case LMM_NoDirectory:
+ case LMM_InvalidModuleMap:
+ break;
+ }
+
+ // If we hit the top of our search, we're done.
+ if (Dir == Root)
+ return false;
+
+ // Keep track of all of the directories we checked, so we can mark them as
+ // having module maps if we eventually do find a module map.
+ FixUpDirectories.push_back(Dir);
+ } while (true);
+}
+
+ModuleMap::KnownHeader
+HeaderSearch::findModuleForHeader(const FileEntry *File) const {
+ if (ExternalSource) {
+ // Make sure the external source has handled header info about this file,
+ // which includes whether the file is part of a module.
+ (void)getFileInfo(File);
+ }
+ return ModMap.findModuleForHeader(File);
+}
+
+static const FileEntry *getPrivateModuleMap(const FileEntry *File,
+ FileManager &FileMgr) {
+ StringRef Filename = llvm::sys::path::filename(File->getName());
+ SmallString<128> PrivateFilename(File->getDir()->getName());
+ if (Filename == "module.map")
+ llvm::sys::path::append(PrivateFilename, "module_private.map");
+ else if (Filename == "module.modulemap")
+ llvm::sys::path::append(PrivateFilename, "module.private.modulemap");
+ else
+ return nullptr;
+ return FileMgr.getFile(PrivateFilename);
+}
+
+bool HeaderSearch::loadModuleMapFile(const FileEntry *File, bool IsSystem) {
+ // Find the directory for the module. For frameworks, that may require going
+ // up from the 'Modules' directory.
+ const DirectoryEntry *Dir = nullptr;
+ if (getHeaderSearchOpts().ModuleMapFileHomeIsCwd)
+ Dir = FileMgr.getDirectory(".");
+ else {
+ Dir = File->getDir();
+ StringRef DirName(Dir->getName());
+ if (llvm::sys::path::filename(DirName) == "Modules") {
+ DirName = llvm::sys::path::parent_path(DirName);
+ if (DirName.endswith(".framework"))
+ Dir = FileMgr.getDirectory(DirName);
+ // FIXME: This assert can fail if there's a race between the above check
+ // and the removal of the directory.
+ assert(Dir && "parent must exist");
+ }
+ }
+
+ switch (loadModuleMapFileImpl(File, IsSystem, Dir)) {
+ case LMM_AlreadyLoaded:
+ case LMM_NewlyLoaded:
+ return false;
+ case LMM_NoDirectory:
+ case LMM_InvalidModuleMap:
+ return true;
+ }
+ llvm_unreachable("Unknown load module map result");
+}
+
+HeaderSearch::LoadModuleMapResult
+HeaderSearch::loadModuleMapFileImpl(const FileEntry *File, bool IsSystem,
+ const DirectoryEntry *Dir) {
+ assert(File && "expected FileEntry");
+
+ // Check whether we've already loaded this module map, and mark it as being
+ // loaded in case we recursively try to load it from itself.
+ auto AddResult = LoadedModuleMaps.insert(std::make_pair(File, true));
+ if (!AddResult.second)
+ return AddResult.first->second ? LMM_AlreadyLoaded : LMM_InvalidModuleMap;
+
+ if (ModMap.parseModuleMapFile(File, IsSystem, Dir)) {
+ LoadedModuleMaps[File] = false;
+ return LMM_InvalidModuleMap;
+ }
+
+ // Try to load a corresponding private module map.
+ if (const FileEntry *PMMFile = getPrivateModuleMap(File, FileMgr)) {
+ if (ModMap.parseModuleMapFile(PMMFile, IsSystem, Dir)) {
+ LoadedModuleMaps[File] = false;
+ return LMM_InvalidModuleMap;
+ }
+ }
+
+ // This directory has a module map.
+ return LMM_NewlyLoaded;
+}
+
+const FileEntry *
+HeaderSearch::lookupModuleMapFile(const DirectoryEntry *Dir, bool IsFramework) {
+ if (!LangOpts.ModulesImplicitMaps)
+ return nullptr;
+ // For frameworks, the preferred spelling is Modules/module.modulemap, but
+ // module.map at the framework root is also accepted.
+ SmallString<128> ModuleMapFileName(Dir->getName());
+ if (IsFramework)
+ llvm::sys::path::append(ModuleMapFileName, "Modules");
+ llvm::sys::path::append(ModuleMapFileName, "module.modulemap");
+ if (const FileEntry *F = FileMgr.getFile(ModuleMapFileName))
+ return F;
+
+ // Continue to allow module.map
+ ModuleMapFileName = Dir->getName();
+ llvm::sys::path::append(ModuleMapFileName, "module.map");
+ return FileMgr.getFile(ModuleMapFileName);
+}
+
+Module *HeaderSearch::loadFrameworkModule(StringRef Name,
+ const DirectoryEntry *Dir,
+ bool IsSystem) {
+ if (Module *Module = ModMap.findModule(Name))
+ return Module;
+
+ // Try to load a module map file.
+ switch (loadModuleMapFile(Dir, IsSystem, /*IsFramework*/true)) {
+ case LMM_InvalidModuleMap:
+ break;
+
+ case LMM_AlreadyLoaded:
+ case LMM_NoDirectory:
+ return nullptr;
+
+ case LMM_NewlyLoaded:
+ return ModMap.findModule(Name);
+ }
+
+
+ // Try to infer a module map from the framework directory.
+ if (LangOpts.ModulesImplicitMaps)
+ return ModMap.inferFrameworkModule(Name, Dir, IsSystem, /*Parent=*/nullptr);
+
+ return nullptr;
+}
+
+
+HeaderSearch::LoadModuleMapResult
+HeaderSearch::loadModuleMapFile(StringRef DirName, bool IsSystem,
+ bool IsFramework) {
+ if (const DirectoryEntry *Dir = FileMgr.getDirectory(DirName))
+ return loadModuleMapFile(Dir, IsSystem, IsFramework);
+
+ return LMM_NoDirectory;
+}
+
+HeaderSearch::LoadModuleMapResult
+HeaderSearch::loadModuleMapFile(const DirectoryEntry *Dir, bool IsSystem,
+ bool IsFramework) {
+ auto KnownDir = DirectoryHasModuleMap.find(Dir);
+ if (KnownDir != DirectoryHasModuleMap.end())
+ return KnownDir->second ? LMM_AlreadyLoaded : LMM_InvalidModuleMap;
+
+ if (const FileEntry *ModuleMapFile = lookupModuleMapFile(Dir, IsFramework)) {
+ LoadModuleMapResult Result =
+ loadModuleMapFileImpl(ModuleMapFile, IsSystem, Dir);
+ // Add Dir explicitly in case ModuleMapFile is in a subdirectory.
+ // E.g. Foo.framework/Modules/module.modulemap
+ // ^Dir ^ModuleMapFile
+ if (Result == LMM_NewlyLoaded)
+ DirectoryHasModuleMap[Dir] = true;
+ else if (Result == LMM_InvalidModuleMap)
+ DirectoryHasModuleMap[Dir] = false;
+ return Result;
+ }
+ return LMM_InvalidModuleMap;
+}
+
+void HeaderSearch::collectAllModules(SmallVectorImpl<Module *> &Modules) {
+ Modules.clear();
+
+ if (LangOpts.ModulesImplicitMaps) {
+ // Load module maps for each of the header search directories.
+ for (unsigned Idx = 0, N = SearchDirs.size(); Idx != N; ++Idx) {
+ bool IsSystem = SearchDirs[Idx].isSystemHeaderDirectory();
+ if (SearchDirs[Idx].isFramework()) {
+ std::error_code EC;
+ SmallString<128> DirNative;
+ llvm::sys::path::native(SearchDirs[Idx].getFrameworkDir()->getName(),
+ DirNative);
+
+ // Search each of the ".framework" directories to load them as modules.
+ for (llvm::sys::fs::directory_iterator Dir(DirNative, EC), DirEnd;
+ Dir != DirEnd && !EC; Dir.increment(EC)) {
+ if (llvm::sys::path::extension(Dir->path()) != ".framework")
+ continue;
+
+ const DirectoryEntry *FrameworkDir =
+ FileMgr.getDirectory(Dir->path());
+ if (!FrameworkDir)
+ continue;
+
+ // Load this framework module.
+ loadFrameworkModule(llvm::sys::path::stem(Dir->path()), FrameworkDir,
+ IsSystem);
+ }
+ continue;
+ }
+
+ // FIXME: Deal with header maps.
+ if (SearchDirs[Idx].isHeaderMap())
+ continue;
+
+ // Try to load a module map file for the search directory.
+ loadModuleMapFile(SearchDirs[Idx].getDir(), IsSystem,
+ /*IsFramework*/ false);
+
+ // Try to load module map files for immediate subdirectories of this
+ // search directory.
+ loadSubdirectoryModuleMaps(SearchDirs[Idx]);
+ }
+ }
+
+ // Populate the list of modules.
+ for (ModuleMap::module_iterator M = ModMap.module_begin(),
+ MEnd = ModMap.module_end();
+ M != MEnd; ++M) {
+ Modules.push_back(M->getValue());
+ }
+}
+
+void HeaderSearch::loadTopLevelSystemModules() {
+ if (!LangOpts.ModulesImplicitMaps)
+ return;
+
+ // Load module maps for each of the header search directories.
+ for (unsigned Idx = 0, N = SearchDirs.size(); Idx != N; ++Idx) {
+ // We only care about normal header directories.
+ if (!SearchDirs[Idx].isNormalDir()) {
+ continue;
+ }
+
+ // Try to load a module map file for the search directory.
+ loadModuleMapFile(SearchDirs[Idx].getDir(),
+ SearchDirs[Idx].isSystemHeaderDirectory(),
+ SearchDirs[Idx].isFramework());
+ }
+}
+
+void HeaderSearch::loadSubdirectoryModuleMaps(DirectoryLookup &SearchDir) {
+ assert(LangOpts.ModulesImplicitMaps &&
+ "Should not be loading subdirectory module maps");
+
+ if (SearchDir.haveSearchedAllModuleMaps())
+ return;
+
+ std::error_code EC;
+ SmallString<128> DirNative;
+ llvm::sys::path::native(SearchDir.getDir()->getName(), DirNative);
+ for (llvm::sys::fs::directory_iterator Dir(DirNative, EC), DirEnd;
+ Dir != DirEnd && !EC; Dir.increment(EC)) {
+ bool IsFramework = llvm::sys::path::extension(Dir->path()) == ".framework";
+ if (IsFramework == SearchDir.isFramework())
+ loadModuleMapFile(Dir->path(), SearchDir.isSystemHeaderDirectory(),
+ SearchDir.isFramework());
+ }
+
+ SearchDir.setSearchedAllModuleMaps(true);
+}
diff --git a/contrib/llvm/tools/clang/lib/Lex/Lexer.cpp b/contrib/llvm/tools/clang/lib/Lex/Lexer.cpp
new file mode 100644
index 0000000..3f89ea6
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Lex/Lexer.cpp
@@ -0,0 +1,3643 @@
+//===--- Lexer.cpp - C Language Family Lexer ------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Lexer and Token interfaces.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Lex/Lexer.h"
+#include "UnicodeCharSets.h"
+#include "clang/Basic/CharInfo.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Lex/CodeCompletionHandler.h"
+#include "clang/Lex/LexDiagnostic.h"
+#include "clang/Lex/LiteralSupport.h"
+#include "clang/Lex/Preprocessor.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ConvertUTF.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include <cstring>
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// Token Class Implementation
+//===----------------------------------------------------------------------===//
+
+/// isObjCAtKeyword - Return true if we have an ObjC keyword identifier.
+bool Token::isObjCAtKeyword(tok::ObjCKeywordKind objcKey) const {
+ if (IdentifierInfo *II = getIdentifierInfo())
+ return II->getObjCKeywordID() == objcKey;
+ return false;
+}
+
+/// getObjCKeywordID - Return the ObjC keyword kind.
+tok::ObjCKeywordKind Token::getObjCKeywordID() const {
+ IdentifierInfo *specId = getIdentifierInfo();
+ return specId ? specId->getObjCKeywordID() : tok::objc_not_keyword;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Lexer Class Implementation
+//===----------------------------------------------------------------------===//
+
+void Lexer::anchor() { }
+
+void Lexer::InitLexer(const char *BufStart, const char *BufPtr,
+ const char *BufEnd) {
+ BufferStart = BufStart;
+ BufferPtr = BufPtr;
+ BufferEnd = BufEnd;
+
+ assert(BufEnd[0] == 0 &&
+ "We assume that the input buffer has a null character at the end"
+ " to simplify lexing!");
+
+ // Check whether we have a BOM in the beginning of the buffer. If yes - act
+ // accordingly. Right now we support only UTF-8 with and without BOM, so, just
+ // skip the UTF-8 BOM if it's present.
+ if (BufferStart == BufferPtr) {
+ // Determine the size of the BOM.
+ StringRef Buf(BufferStart, BufferEnd - BufferStart);
+ size_t BOMLength = llvm::StringSwitch<size_t>(Buf)
+ .StartsWith("\xEF\xBB\xBF", 3) // UTF-8 BOM
+ .Default(0);
+
+ // Skip the BOM.
+ BufferPtr += BOMLength;
+ }
+
+ Is_PragmaLexer = false;
+ CurrentConflictMarkerState = CMK_None;
+
+ // Start of the file is a start of line.
+ IsAtStartOfLine = true;
+ IsAtPhysicalStartOfLine = true;
+
+ HasLeadingSpace = false;
+ HasLeadingEmptyMacro = false;
+
+ // We are not after parsing a #.
+ ParsingPreprocessorDirective = false;
+
+ // We are not after parsing #include.
+ ParsingFilename = false;
+
+ // We are not in raw mode. Raw mode disables diagnostics and interpretation
+ // of tokens (e.g. identifiers, thus disabling macro expansion). It is used
+ // to quickly lex the tokens of the buffer, e.g. when handling a "#if 0" block
+ // or otherwise skipping over tokens.
+ LexingRawMode = false;
+
+ // Default to not keeping comments.
+ ExtendedTokenMode = 0;
+}
+
+/// Lexer constructor - Create a new lexer object for the specified buffer
+/// with the specified preprocessor managing the lexing process. This lexer
+/// assumes that the associated file buffer and Preprocessor objects will
+/// outlive it, so it doesn't take ownership of either of them.
+Lexer::Lexer(FileID FID, const llvm::MemoryBuffer *InputFile, Preprocessor &PP)
+ : PreprocessorLexer(&PP, FID),
+ FileLoc(PP.getSourceManager().getLocForStartOfFile(FID)),
+ LangOpts(PP.getLangOpts()) {
+
+ InitLexer(InputFile->getBufferStart(), InputFile->getBufferStart(),
+ InputFile->getBufferEnd());
+
+ resetExtendedTokenMode();
+}
+
+void Lexer::resetExtendedTokenMode() {
+ assert(PP && "Cannot reset token mode without a preprocessor");
+ if (LangOpts.TraditionalCPP)
+ SetKeepWhitespaceMode(true);
+ else
+ SetCommentRetentionState(PP->getCommentRetentionState());
+}
+
+/// Lexer constructor - Create a new raw lexer object. This object is only
+/// suitable for calls to 'LexFromRawLexer'. This lexer assumes that the text
+/// range will outlive it, so it doesn't take ownership of it.
+Lexer::Lexer(SourceLocation fileloc, const LangOptions &langOpts,
+ const char *BufStart, const char *BufPtr, const char *BufEnd)
+ : FileLoc(fileloc), LangOpts(langOpts) {
+
+ InitLexer(BufStart, BufPtr, BufEnd);
+
+ // We *are* in raw mode.
+ LexingRawMode = true;
+}
+
+/// Lexer constructor - Create a new raw lexer object. This object is only
+/// suitable for calls to 'LexFromRawLexer'. This lexer assumes that the text
+/// range will outlive it, so it doesn't take ownership of it.
+Lexer::Lexer(FileID FID, const llvm::MemoryBuffer *FromFile,
+ const SourceManager &SM, const LangOptions &langOpts)
+ : Lexer(SM.getLocForStartOfFile(FID), langOpts, FromFile->getBufferStart(),
+ FromFile->getBufferStart(), FromFile->getBufferEnd()) {}
+
+/// Create_PragmaLexer: Lexer constructor - Create a new lexer object for
+/// _Pragma expansion. This has a variety of magic semantics that this method
+/// sets up. It returns a new'd Lexer that must be delete'd when done.
+///
+/// On entrance to this routine, TokStartLoc is a macro location which has a
+/// spelling loc that indicates the bytes to be lexed for the token and an
+/// expansion location that indicates where all lexed tokens should be
+/// "expanded from".
+///
+/// TODO: It would really be nice to make _Pragma just be a wrapper around a
+/// normal lexer that remaps tokens as they fly by. This would require making
+/// Preprocessor::Lex virtual. Given that, we could just dump in a magic lexer
+/// interface that could handle this stuff. This would pull GetMappedTokenLoc
+/// out of the critical path of the lexer!
+///
+Lexer *Lexer::Create_PragmaLexer(SourceLocation SpellingLoc,
+ SourceLocation ExpansionLocStart,
+ SourceLocation ExpansionLocEnd,
+ unsigned TokLen, Preprocessor &PP) {
+ SourceManager &SM = PP.getSourceManager();
+
+ // Create the lexer as if we were going to lex the file normally.
+ FileID SpellingFID = SM.getFileID(SpellingLoc);
+ const llvm::MemoryBuffer *InputFile = SM.getBuffer(SpellingFID);
+ Lexer *L = new Lexer(SpellingFID, InputFile, PP);
+
+ // Now that the lexer is created, change the start/end locations so that we
+ // just lex the subsection of the file that we want. This is lexing from a
+ // scratch buffer.
+ const char *StrData = SM.getCharacterData(SpellingLoc);
+
+ L->BufferPtr = StrData;
+ L->BufferEnd = StrData+TokLen;
+ assert(L->BufferEnd[0] == 0 && "Buffer is not nul terminated!");
+
+ // Set the SourceLocation with the remapping information. This ensures that
+ // GetMappedTokenLoc will remap the tokens as they are lexed.
+ L->FileLoc = SM.createExpansionLoc(SM.getLocForStartOfFile(SpellingFID),
+ ExpansionLocStart,
+ ExpansionLocEnd, TokLen);
+
+ // Ensure that the lexer thinks it is inside a directive, so that end \n will
+ // return an EOD token.
+ L->ParsingPreprocessorDirective = true;
+
+ // This lexer really is for _Pragma.
+ L->Is_PragmaLexer = true;
+ return L;
+}
+
+
+/// Stringify - Convert the specified string into a C string, with surrounding
+/// ""'s, and with escaped \ and " characters.
+std::string Lexer::Stringify(const std::string &Str, bool Charify) {
+ std::string Result = Str;
+ char Quote = Charify ? '\'' : '"';
+ for (unsigned i = 0, e = Result.size(); i != e; ++i) {
+ if (Result[i] == '\\' || Result[i] == Quote) {
+ Result.insert(Result.begin()+i, '\\');
+ ++i; ++e;
+ }
+ }
+ return Result;
+}
+
+/// Stringify - Convert the specified string into a C string by escaping '\'
+/// and " characters. This does not add surrounding ""'s to the string.
+void Lexer::Stringify(SmallVectorImpl<char> &Str) {
+ for (unsigned i = 0, e = Str.size(); i != e; ++i) {
+ if (Str[i] == '\\' || Str[i] == '"') {
+ Str.insert(Str.begin()+i, '\\');
+ ++i; ++e;
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Token Spelling
+//===----------------------------------------------------------------------===//
+
+/// \brief Slow case of getSpelling. Extract the characters comprising the
+/// spelling of this token from the provided input buffer.
+static size_t getSpellingSlow(const Token &Tok, const char *BufPtr,
+ const LangOptions &LangOpts, char *Spelling) {
+ assert(Tok.needsCleaning() && "getSpellingSlow called on simple token");
+
+ size_t Length = 0;
+ const char *BufEnd = BufPtr + Tok.getLength();
+
+ if (Tok.is(tok::string_literal)) {
+ // Munch the encoding-prefix and opening double-quote.
+ while (BufPtr < BufEnd) {
+ unsigned Size;
+ Spelling[Length++] = Lexer::getCharAndSizeNoWarn(BufPtr, Size, LangOpts);
+ BufPtr += Size;
+
+ if (Spelling[Length - 1] == '"')
+ break;
+ }
+
+ // Raw string literals need special handling; trigraph expansion and line
+ // splicing do not occur within their d-char-sequence nor within their
+ // r-char-sequence.
+ if (Length >= 2 &&
+ Spelling[Length - 2] == 'R' && Spelling[Length - 1] == '"') {
+ // Search backwards from the end of the token to find the matching closing
+ // quote.
+ const char *RawEnd = BufEnd;
+ do --RawEnd; while (*RawEnd != '"');
+ size_t RawLength = RawEnd - BufPtr + 1;
+
+ // Everything between the quotes is included verbatim in the spelling.
+ memcpy(Spelling + Length, BufPtr, RawLength);
+ Length += RawLength;
+ BufPtr += RawLength;
+
+ // The rest of the token is lexed normally.
+ }
+ }
+
+ while (BufPtr < BufEnd) {
+ unsigned Size;
+ Spelling[Length++] = Lexer::getCharAndSizeNoWarn(BufPtr, Size, LangOpts);
+ BufPtr += Size;
+ }
+
+ assert(Length < Tok.getLength() &&
+ "NeedsCleaning flag set on token that didn't need cleaning!");
+ return Length;
+}
+
+/// getSpelling() - Return the 'spelling' of this token. The spelling of a
+/// token are the characters used to represent the token in the source file
+/// after trigraph expansion and escaped-newline folding. In particular, this
+/// wants to get the true, uncanonicalized, spelling of things like digraphs
+/// UCNs, etc.
+StringRef Lexer::getSpelling(SourceLocation loc,
+ SmallVectorImpl<char> &buffer,
+ const SourceManager &SM,
+ const LangOptions &options,
+ bool *invalid) {
+ // Break down the source location.
+ std::pair<FileID, unsigned> locInfo = SM.getDecomposedLoc(loc);
+
+ // Try to the load the file buffer.
+ bool invalidTemp = false;
+ StringRef file = SM.getBufferData(locInfo.first, &invalidTemp);
+ if (invalidTemp) {
+ if (invalid) *invalid = true;
+ return StringRef();
+ }
+
+ const char *tokenBegin = file.data() + locInfo.second;
+
+ // Lex from the start of the given location.
+ Lexer lexer(SM.getLocForStartOfFile(locInfo.first), options,
+ file.begin(), tokenBegin, file.end());
+ Token token;
+ lexer.LexFromRawLexer(token);
+
+ unsigned length = token.getLength();
+
+ // Common case: no need for cleaning.
+ if (!token.needsCleaning())
+ return StringRef(tokenBegin, length);
+
+ // Hard case, we need to relex the characters into the string.
+ buffer.resize(length);
+ buffer.resize(getSpellingSlow(token, tokenBegin, options, buffer.data()));
+ return StringRef(buffer.data(), buffer.size());
+}
+
+/// getSpelling() - Return the 'spelling' of this token. The spelling of a
+/// token are the characters used to represent the token in the source file
+/// after trigraph expansion and escaped-newline folding. In particular, this
+/// wants to get the true, uncanonicalized, spelling of things like digraphs
+/// UCNs, etc.
+std::string Lexer::getSpelling(const Token &Tok, const SourceManager &SourceMgr,
+ const LangOptions &LangOpts, bool *Invalid) {
+ assert((int)Tok.getLength() >= 0 && "Token character range is bogus!");
+
+ bool CharDataInvalid = false;
+ const char *TokStart = SourceMgr.getCharacterData(Tok.getLocation(),
+ &CharDataInvalid);
+ if (Invalid)
+ *Invalid = CharDataInvalid;
+ if (CharDataInvalid)
+ return std::string();
+
+ // If this token contains nothing interesting, return it directly.
+ if (!Tok.needsCleaning())
+ return std::string(TokStart, TokStart + Tok.getLength());
+
+ std::string Result;
+ Result.resize(Tok.getLength());
+ Result.resize(getSpellingSlow(Tok, TokStart, LangOpts, &*Result.begin()));
+ return Result;
+}
+
+/// getSpelling - This method is used to get the spelling of a token into a
+/// preallocated buffer, instead of as an std::string. The caller is required
+/// to allocate enough space for the token, which is guaranteed to be at least
+/// Tok.getLength() bytes long. The actual length of the token is returned.
+///
+/// Note that this method may do two possible things: it may either fill in
+/// the buffer specified with characters, or it may *change the input pointer*
+/// to point to a constant buffer with the data already in it (avoiding a
+/// copy). The caller is not allowed to modify the returned buffer pointer
+/// if an internal buffer is returned.
+unsigned Lexer::getSpelling(const Token &Tok, const char *&Buffer,
+ const SourceManager &SourceMgr,
+ const LangOptions &LangOpts, bool *Invalid) {
+ assert((int)Tok.getLength() >= 0 && "Token character range is bogus!");
+
+ const char *TokStart = nullptr;
+ // NOTE: this has to be checked *before* testing for an IdentifierInfo.
+ if (Tok.is(tok::raw_identifier))
+ TokStart = Tok.getRawIdentifier().data();
+ else if (!Tok.hasUCN()) {
+ if (const IdentifierInfo *II = Tok.getIdentifierInfo()) {
+ // Just return the string from the identifier table, which is very quick.
+ Buffer = II->getNameStart();
+ return II->getLength();
+ }
+ }
+
+ // NOTE: this can be checked even after testing for an IdentifierInfo.
+ if (Tok.isLiteral())
+ TokStart = Tok.getLiteralData();
+
+ if (!TokStart) {
+ // Compute the start of the token in the input lexer buffer.
+ bool CharDataInvalid = false;
+ TokStart = SourceMgr.getCharacterData(Tok.getLocation(), &CharDataInvalid);
+ if (Invalid)
+ *Invalid = CharDataInvalid;
+ if (CharDataInvalid) {
+ Buffer = "";
+ return 0;
+ }
+ }
+
+ // If this token contains nothing interesting, return it directly.
+ if (!Tok.needsCleaning()) {
+ Buffer = TokStart;
+ return Tok.getLength();
+ }
+
+ // Otherwise, hard case, relex the characters into the string.
+ return getSpellingSlow(Tok, TokStart, LangOpts, const_cast<char*>(Buffer));
+}
+
+
+/// MeasureTokenLength - Relex the token at the specified location and return
+/// its length in bytes in the input file. If the token needs cleaning (e.g.
+/// includes a trigraph or an escaped newline) then this count includes bytes
+/// that are part of that.
+unsigned Lexer::MeasureTokenLength(SourceLocation Loc,
+ const SourceManager &SM,
+ const LangOptions &LangOpts) {
+ Token TheTok;
+ if (getRawToken(Loc, TheTok, SM, LangOpts))
+ return 0;
+ return TheTok.getLength();
+}
+
+/// \brief Relex the token at the specified location.
+/// \returns true if there was a failure, false on success.
+bool Lexer::getRawToken(SourceLocation Loc, Token &Result,
+ const SourceManager &SM,
+ const LangOptions &LangOpts,
+ bool IgnoreWhiteSpace) {
+ // TODO: this could be special cased for common tokens like identifiers, ')',
+ // etc to make this faster, if it mattered. Just look at StrData[0] to handle
+ // all obviously single-char tokens. This could use
+ // Lexer::isObviouslySimpleCharacter for example to handle identifiers or
+ // something.
+
+ // If this comes from a macro expansion, we really do want the macro name, not
+ // the token this macro expanded to.
+ Loc = SM.getExpansionLoc(Loc);
+ std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
+ bool Invalid = false;
+ StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
+ if (Invalid)
+ return true;
+
+ const char *StrData = Buffer.data()+LocInfo.second;
+
+ if (!IgnoreWhiteSpace && isWhitespace(StrData[0]))
+ return true;
+
+ // Create a lexer starting at the beginning of this token.
+ Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), LangOpts,
+ Buffer.begin(), StrData, Buffer.end());
+ TheLexer.SetCommentRetentionState(true);
+ TheLexer.LexFromRawLexer(Result);
+ return false;
+}
+
+static SourceLocation getBeginningOfFileToken(SourceLocation Loc,
+ const SourceManager &SM,
+ const LangOptions &LangOpts) {
+ assert(Loc.isFileID());
+ std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
+ if (LocInfo.first.isInvalid())
+ return Loc;
+
+ bool Invalid = false;
+ StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
+ if (Invalid)
+ return Loc;
+
+ // Back up from the current location until we hit the beginning of a line
+ // (or the buffer). We'll relex from that point.
+ const char *BufStart = Buffer.data();
+ if (LocInfo.second >= Buffer.size())
+ return Loc;
+
+ const char *StrData = BufStart+LocInfo.second;
+ if (StrData[0] == '\n' || StrData[0] == '\r')
+ return Loc;
+
+ const char *LexStart = StrData;
+ while (LexStart != BufStart) {
+ if (LexStart[0] == '\n' || LexStart[0] == '\r') {
+ ++LexStart;
+ break;
+ }
+
+ --LexStart;
+ }
+
+ // Create a lexer starting at the beginning of this token.
+ SourceLocation LexerStartLoc = Loc.getLocWithOffset(-LocInfo.second);
+ Lexer TheLexer(LexerStartLoc, LangOpts, BufStart, LexStart, Buffer.end());
+ TheLexer.SetCommentRetentionState(true);
+
+ // Lex tokens until we find the token that contains the source location.
+ Token TheTok;
+ do {
+ TheLexer.LexFromRawLexer(TheTok);
+
+ if (TheLexer.getBufferLocation() > StrData) {
+ // Lexing this token has taken the lexer past the source location we're
+ // looking for. If the current token encompasses our source location,
+ // return the beginning of that token.
+ if (TheLexer.getBufferLocation() - TheTok.getLength() <= StrData)
+ return TheTok.getLocation();
+
+ // We ended up skipping over the source location entirely, which means
+ // that it points into whitespace. We're done here.
+ break;
+ }
+ } while (TheTok.getKind() != tok::eof);
+
+ // We've passed our source location; just return the original source location.
+ return Loc;
+}
+
+SourceLocation Lexer::GetBeginningOfToken(SourceLocation Loc,
+ const SourceManager &SM,
+ const LangOptions &LangOpts) {
+ if (Loc.isFileID())
+ return getBeginningOfFileToken(Loc, SM, LangOpts);
+
+ if (!SM.isMacroArgExpansion(Loc))
+ return Loc;
+
+ SourceLocation FileLoc = SM.getSpellingLoc(Loc);
+ SourceLocation BeginFileLoc = getBeginningOfFileToken(FileLoc, SM, LangOpts);
+ std::pair<FileID, unsigned> FileLocInfo = SM.getDecomposedLoc(FileLoc);
+ std::pair<FileID, unsigned> BeginFileLocInfo
+ = SM.getDecomposedLoc(BeginFileLoc);
+ assert(FileLocInfo.first == BeginFileLocInfo.first &&
+ FileLocInfo.second >= BeginFileLocInfo.second);
+ return Loc.getLocWithOffset(BeginFileLocInfo.second - FileLocInfo.second);
+}
+
+namespace {
+ enum PreambleDirectiveKind {
+ PDK_Skipped,
+ PDK_StartIf,
+ PDK_EndIf,
+ PDK_Unknown
+ };
+}
+
+std::pair<unsigned, bool> Lexer::ComputePreamble(StringRef Buffer,
+ const LangOptions &LangOpts,
+ unsigned MaxLines) {
+ // Create a lexer starting at the beginning of the file. Note that we use a
+ // "fake" file source location at offset 1 so that the lexer will track our
+ // position within the file.
+ const unsigned StartOffset = 1;
+ SourceLocation FileLoc = SourceLocation::getFromRawEncoding(StartOffset);
+ Lexer TheLexer(FileLoc, LangOpts, Buffer.begin(), Buffer.begin(),
+ Buffer.end());
+ TheLexer.SetCommentRetentionState(true);
+
+ // StartLoc will differ from FileLoc if there is a BOM that was skipped.
+ SourceLocation StartLoc = TheLexer.getSourceLocation();
+
+ bool InPreprocessorDirective = false;
+ Token TheTok;
+ Token IfStartTok;
+ unsigned IfCount = 0;
+ SourceLocation ActiveCommentLoc;
+
+ unsigned MaxLineOffset = 0;
+ if (MaxLines) {
+ const char *CurPtr = Buffer.begin();
+ unsigned CurLine = 0;
+ while (CurPtr != Buffer.end()) {
+ char ch = *CurPtr++;
+ if (ch == '\n') {
+ ++CurLine;
+ if (CurLine == MaxLines)
+ break;
+ }
+ }
+ if (CurPtr != Buffer.end())
+ MaxLineOffset = CurPtr - Buffer.begin();
+ }
+
+ do {
+ TheLexer.LexFromRawLexer(TheTok);
+
+ if (InPreprocessorDirective) {
+ // If we've hit the end of the file, we're done.
+ if (TheTok.getKind() == tok::eof) {
+ break;
+ }
+
+ // If we haven't hit the end of the preprocessor directive, skip this
+ // token.
+ if (!TheTok.isAtStartOfLine())
+ continue;
+
+ // We've passed the end of the preprocessor directive, and will look
+ // at this token again below.
+ InPreprocessorDirective = false;
+ }
+
+ // Keep track of the # of lines in the preamble.
+ if (TheTok.isAtStartOfLine()) {
+ unsigned TokOffset = TheTok.getLocation().getRawEncoding() - StartOffset;
+
+ // If we were asked to limit the number of lines in the preamble,
+ // and we're about to exceed that limit, we're done.
+ if (MaxLineOffset && TokOffset >= MaxLineOffset)
+ break;
+ }
+
+ // Comments are okay; skip over them.
+ if (TheTok.getKind() == tok::comment) {
+ if (ActiveCommentLoc.isInvalid())
+ ActiveCommentLoc = TheTok.getLocation();
+ continue;
+ }
+
+ if (TheTok.isAtStartOfLine() && TheTok.getKind() == tok::hash) {
+ // This is the start of a preprocessor directive.
+ Token HashTok = TheTok;
+ InPreprocessorDirective = true;
+ ActiveCommentLoc = SourceLocation();
+
+ // Figure out which directive this is. Since we're lexing raw tokens,
+ // we don't have an identifier table available. Instead, just look at
+ // the raw identifier to recognize and categorize preprocessor directives.
+ TheLexer.LexFromRawLexer(TheTok);
+ if (TheTok.getKind() == tok::raw_identifier && !TheTok.needsCleaning()) {
+ StringRef Keyword = TheTok.getRawIdentifier();
+ PreambleDirectiveKind PDK
+ = llvm::StringSwitch<PreambleDirectiveKind>(Keyword)
+ .Case("include", PDK_Skipped)
+ .Case("__include_macros", PDK_Skipped)
+ .Case("define", PDK_Skipped)
+ .Case("undef", PDK_Skipped)
+ .Case("line", PDK_Skipped)
+ .Case("error", PDK_Skipped)
+ .Case("pragma", PDK_Skipped)
+ .Case("import", PDK_Skipped)
+ .Case("include_next", PDK_Skipped)
+ .Case("warning", PDK_Skipped)
+ .Case("ident", PDK_Skipped)
+ .Case("sccs", PDK_Skipped)
+ .Case("assert", PDK_Skipped)
+ .Case("unassert", PDK_Skipped)
+ .Case("if", PDK_StartIf)
+ .Case("ifdef", PDK_StartIf)
+ .Case("ifndef", PDK_StartIf)
+ .Case("elif", PDK_Skipped)
+ .Case("else", PDK_Skipped)
+ .Case("endif", PDK_EndIf)
+ .Default(PDK_Unknown);
+
+ switch (PDK) {
+ case PDK_Skipped:
+ continue;
+
+ case PDK_StartIf:
+ if (IfCount == 0)
+ IfStartTok = HashTok;
+
+ ++IfCount;
+ continue;
+
+ case PDK_EndIf:
+ // Mismatched #endif. The preamble ends here.
+ if (IfCount == 0)
+ break;
+
+ --IfCount;
+ continue;
+
+ case PDK_Unknown:
+ // We don't know what this directive is; stop at the '#'.
+ break;
+ }
+ }
+
+ // We only end up here if we didn't recognize the preprocessor
+ // directive or it was one that can't occur in the preamble at this
+ // point. Roll back the current token to the location of the '#'.
+ InPreprocessorDirective = false;
+ TheTok = HashTok;
+ }
+
+ // We hit a token that we don't recognize as being in the
+ // "preprocessing only" part of the file, so we're no longer in
+ // the preamble.
+ break;
+ } while (true);
+
+ SourceLocation End;
+ if (IfCount)
+ End = IfStartTok.getLocation();
+ else if (ActiveCommentLoc.isValid())
+ End = ActiveCommentLoc; // don't truncate a decl comment.
+ else
+ End = TheTok.getLocation();
+
+ return std::make_pair(End.getRawEncoding() - StartLoc.getRawEncoding(),
+ IfCount? IfStartTok.isAtStartOfLine()
+ : TheTok.isAtStartOfLine());
+}
+
+
+/// AdvanceToTokenCharacter - Given a location that specifies the start of a
+/// token, return a new location that specifies a character within the token.
+SourceLocation Lexer::AdvanceToTokenCharacter(SourceLocation TokStart,
+ unsigned CharNo,
+ const SourceManager &SM,
+ const LangOptions &LangOpts) {
+ // Figure out how many physical characters away the specified expansion
+ // character is. This needs to take into consideration newlines and
+ // trigraphs.
+ bool Invalid = false;
+ const char *TokPtr = SM.getCharacterData(TokStart, &Invalid);
+
+ // If they request the first char of the token, we're trivially done.
+ if (Invalid || (CharNo == 0 && Lexer::isObviouslySimpleCharacter(*TokPtr)))
+ return TokStart;
+
+ unsigned PhysOffset = 0;
+
+ // The usual case is that tokens don't contain anything interesting. Skip
+ // over the uninteresting characters. If a token only consists of simple
+ // chars, this method is extremely fast.
+ while (Lexer::isObviouslySimpleCharacter(*TokPtr)) {
+ if (CharNo == 0)
+ return TokStart.getLocWithOffset(PhysOffset);
+ ++TokPtr, --CharNo, ++PhysOffset;
+ }
+
+ // If we have a character that may be a trigraph or escaped newline, use a
+ // lexer to parse it correctly.
+ for (; CharNo; --CharNo) {
+ unsigned Size;
+ Lexer::getCharAndSizeNoWarn(TokPtr, Size, LangOpts);
+ TokPtr += Size;
+ PhysOffset += Size;
+ }
+
+ // Final detail: if we end up on an escaped newline, we want to return the
+ // location of the actual byte of the token. For example foo\<newline>bar
+ // advanced by 3 should return the location of b, not of \\. One compounding
+ // detail of this is that the escape may be made by a trigraph.
+ if (!Lexer::isObviouslySimpleCharacter(*TokPtr))
+ PhysOffset += Lexer::SkipEscapedNewLines(TokPtr)-TokPtr;
+
+ return TokStart.getLocWithOffset(PhysOffset);
+}
+
+/// \brief Computes the source location just past the end of the
+/// token at this source location.
+///
+/// This routine can be used to produce a source location that
+/// points just past the end of the token referenced by \p Loc, and
+/// is generally used when a diagnostic needs to point just after a
+/// token where it expected something different that it received. If
+/// the returned source location would not be meaningful (e.g., if
+/// it points into a macro), this routine returns an invalid
+/// source location.
+///
+/// \param Offset an offset from the end of the token, where the source
+/// location should refer to. The default offset (0) produces a source
+/// location pointing just past the end of the token; an offset of 1 produces
+/// a source location pointing to the last character in the token, etc.
+SourceLocation Lexer::getLocForEndOfToken(SourceLocation Loc, unsigned Offset,
+ const SourceManager &SM,
+ const LangOptions &LangOpts) {
+ if (Loc.isInvalid())
+ return SourceLocation();
+
+ if (Loc.isMacroID()) {
+ if (Offset > 0 || !isAtEndOfMacroExpansion(Loc, SM, LangOpts, &Loc))
+ return SourceLocation(); // Points inside the macro expansion.
+ }
+
+ unsigned Len = Lexer::MeasureTokenLength(Loc, SM, LangOpts);
+ if (Len > Offset)
+ Len = Len - Offset;
+ else
+ return Loc;
+
+ return Loc.getLocWithOffset(Len);
+}
+
+/// \brief Returns true if the given MacroID location points at the first
+/// token of the macro expansion.
+bool Lexer::isAtStartOfMacroExpansion(SourceLocation loc,
+ const SourceManager &SM,
+ const LangOptions &LangOpts,
+ SourceLocation *MacroBegin) {
+ assert(loc.isValid() && loc.isMacroID() && "Expected a valid macro loc");
+
+ SourceLocation expansionLoc;
+ if (!SM.isAtStartOfImmediateMacroExpansion(loc, &expansionLoc))
+ return false;
+
+ if (expansionLoc.isFileID()) {
+ // No other macro expansions, this is the first.
+ if (MacroBegin)
+ *MacroBegin = expansionLoc;
+ return true;
+ }
+
+ return isAtStartOfMacroExpansion(expansionLoc, SM, LangOpts, MacroBegin);
+}
+
+/// \brief Returns true if the given MacroID location points at the last
+/// token of the macro expansion.
+bool Lexer::isAtEndOfMacroExpansion(SourceLocation loc,
+ const SourceManager &SM,
+ const LangOptions &LangOpts,
+ SourceLocation *MacroEnd) {
+ assert(loc.isValid() && loc.isMacroID() && "Expected a valid macro loc");
+
+ SourceLocation spellLoc = SM.getSpellingLoc(loc);
+ unsigned tokLen = MeasureTokenLength(spellLoc, SM, LangOpts);
+ if (tokLen == 0)
+ return false;
+
+ SourceLocation afterLoc = loc.getLocWithOffset(tokLen);
+ SourceLocation expansionLoc;
+ if (!SM.isAtEndOfImmediateMacroExpansion(afterLoc, &expansionLoc))
+ return false;
+
+ if (expansionLoc.isFileID()) {
+ // No other macro expansions.
+ if (MacroEnd)
+ *MacroEnd = expansionLoc;
+ return true;
+ }
+
+ return isAtEndOfMacroExpansion(expansionLoc, SM, LangOpts, MacroEnd);
+}
+
+static CharSourceRange makeRangeFromFileLocs(CharSourceRange Range,
+ const SourceManager &SM,
+ const LangOptions &LangOpts) {
+ SourceLocation Begin = Range.getBegin();
+ SourceLocation End = Range.getEnd();
+ assert(Begin.isFileID() && End.isFileID());
+ if (Range.isTokenRange()) {
+ End = Lexer::getLocForEndOfToken(End, 0, SM,LangOpts);
+ if (End.isInvalid())
+ return CharSourceRange();
+ }
+
+ // Break down the source locations.
+ FileID FID;
+ unsigned BeginOffs;
+ std::tie(FID, BeginOffs) = SM.getDecomposedLoc(Begin);
+ if (FID.isInvalid())
+ return CharSourceRange();
+
+ unsigned EndOffs;
+ if (!SM.isInFileID(End, FID, &EndOffs) ||
+ BeginOffs > EndOffs)
+ return CharSourceRange();
+
+ return CharSourceRange::getCharRange(Begin, End);
+}
+
+CharSourceRange Lexer::makeFileCharRange(CharSourceRange Range,
+ const SourceManager &SM,
+ const LangOptions &LangOpts) {
+ SourceLocation Begin = Range.getBegin();
+ SourceLocation End = Range.getEnd();
+ if (Begin.isInvalid() || End.isInvalid())
+ return CharSourceRange();
+
+ if (Begin.isFileID() && End.isFileID())
+ return makeRangeFromFileLocs(Range, SM, LangOpts);
+
+ if (Begin.isMacroID() && End.isFileID()) {
+ if (!isAtStartOfMacroExpansion(Begin, SM, LangOpts, &Begin))
+ return CharSourceRange();
+ Range.setBegin(Begin);
+ return makeRangeFromFileLocs(Range, SM, LangOpts);
+ }
+
+ if (Begin.isFileID() && End.isMacroID()) {
+ if ((Range.isTokenRange() && !isAtEndOfMacroExpansion(End, SM, LangOpts,
+ &End)) ||
+ (Range.isCharRange() && !isAtStartOfMacroExpansion(End, SM, LangOpts,
+ &End)))
+ return CharSourceRange();
+ Range.setEnd(End);
+ return makeRangeFromFileLocs(Range, SM, LangOpts);
+ }
+
+ assert(Begin.isMacroID() && End.isMacroID());
+ SourceLocation MacroBegin, MacroEnd;
+ if (isAtStartOfMacroExpansion(Begin, SM, LangOpts, &MacroBegin) &&
+ ((Range.isTokenRange() && isAtEndOfMacroExpansion(End, SM, LangOpts,
+ &MacroEnd)) ||
+ (Range.isCharRange() && isAtStartOfMacroExpansion(End, SM, LangOpts,
+ &MacroEnd)))) {
+ Range.setBegin(MacroBegin);
+ Range.setEnd(MacroEnd);
+ return makeRangeFromFileLocs(Range, SM, LangOpts);
+ }
+
+ bool Invalid = false;
+ const SrcMgr::SLocEntry &BeginEntry = SM.getSLocEntry(SM.getFileID(Begin),
+ &Invalid);
+ if (Invalid)
+ return CharSourceRange();
+
+ if (BeginEntry.getExpansion().isMacroArgExpansion()) {
+ const SrcMgr::SLocEntry &EndEntry = SM.getSLocEntry(SM.getFileID(End),
+ &Invalid);
+ if (Invalid)
+ return CharSourceRange();
+
+ if (EndEntry.getExpansion().isMacroArgExpansion() &&
+ BeginEntry.getExpansion().getExpansionLocStart() ==
+ EndEntry.getExpansion().getExpansionLocStart()) {
+ Range.setBegin(SM.getImmediateSpellingLoc(Begin));
+ Range.setEnd(SM.getImmediateSpellingLoc(End));
+ return makeFileCharRange(Range, SM, LangOpts);
+ }
+ }
+
+ return CharSourceRange();
+}
+
+StringRef Lexer::getSourceText(CharSourceRange Range,
+ const SourceManager &SM,
+ const LangOptions &LangOpts,
+ bool *Invalid) {
+ Range = makeFileCharRange(Range, SM, LangOpts);
+ if (Range.isInvalid()) {
+ if (Invalid) *Invalid = true;
+ return StringRef();
+ }
+
+ // Break down the source location.
+ std::pair<FileID, unsigned> beginInfo = SM.getDecomposedLoc(Range.getBegin());
+ if (beginInfo.first.isInvalid()) {
+ if (Invalid) *Invalid = true;
+ return StringRef();
+ }
+
+ unsigned EndOffs;
+ if (!SM.isInFileID(Range.getEnd(), beginInfo.first, &EndOffs) ||
+ beginInfo.second > EndOffs) {
+ if (Invalid) *Invalid = true;
+ return StringRef();
+ }
+
+ // Try to the load the file buffer.
+ bool invalidTemp = false;
+ StringRef file = SM.getBufferData(beginInfo.first, &invalidTemp);
+ if (invalidTemp) {
+ if (Invalid) *Invalid = true;
+ return StringRef();
+ }
+
+ if (Invalid) *Invalid = false;
+ return file.substr(beginInfo.second, EndOffs - beginInfo.second);
+}
+
+StringRef Lexer::getImmediateMacroName(SourceLocation Loc,
+ const SourceManager &SM,
+ const LangOptions &LangOpts) {
+ assert(Loc.isMacroID() && "Only reasonble to call this on macros");
+
+ // Find the location of the immediate macro expansion.
+ while (1) {
+ FileID FID = SM.getFileID(Loc);
+ const SrcMgr::SLocEntry *E = &SM.getSLocEntry(FID);
+ const SrcMgr::ExpansionInfo &Expansion = E->getExpansion();
+ Loc = Expansion.getExpansionLocStart();
+ if (!Expansion.isMacroArgExpansion())
+ break;
+
+ // For macro arguments we need to check that the argument did not come
+ // from an inner macro, e.g: "MAC1( MAC2(foo) )"
+
+ // Loc points to the argument id of the macro definition, move to the
+ // macro expansion.
+ Loc = SM.getImmediateExpansionRange(Loc).first;
+ SourceLocation SpellLoc = Expansion.getSpellingLoc();
+ if (SpellLoc.isFileID())
+ break; // No inner macro.
+
+ // If spelling location resides in the same FileID as macro expansion
+ // location, it means there is no inner macro.
+ FileID MacroFID = SM.getFileID(Loc);
+ if (SM.isInFileID(SpellLoc, MacroFID))
+ break;
+
+ // Argument came from inner macro.
+ Loc = SpellLoc;
+ }
+
+ // Find the spelling location of the start of the non-argument expansion
+ // range. This is where the macro name was spelled in order to begin
+ // expanding this macro.
+ Loc = SM.getSpellingLoc(Loc);
+
+ // Dig out the buffer where the macro name was spelled and the extents of the
+ // name so that we can render it into the expansion note.
+ std::pair<FileID, unsigned> ExpansionInfo = SM.getDecomposedLoc(Loc);
+ unsigned MacroTokenLength = Lexer::MeasureTokenLength(Loc, SM, LangOpts);
+ StringRef ExpansionBuffer = SM.getBufferData(ExpansionInfo.first);
+ return ExpansionBuffer.substr(ExpansionInfo.second, MacroTokenLength);
+}
+
+bool Lexer::isIdentifierBodyChar(char c, const LangOptions &LangOpts) {
+ return isIdentifierBody(c, LangOpts.DollarIdents);
+}
+
+
+//===----------------------------------------------------------------------===//
+// Diagnostics forwarding code.
+//===----------------------------------------------------------------------===//
+
+/// GetMappedTokenLoc - If lexing out of a 'mapped buffer', where we pretend the
+/// lexer buffer was all expanded at a single point, perform the mapping.
+/// This is currently only used for _Pragma implementation, so it is the slow
+/// path of the hot getSourceLocation method. Do not allow it to be inlined.
+static LLVM_ATTRIBUTE_NOINLINE SourceLocation GetMappedTokenLoc(
+ Preprocessor &PP, SourceLocation FileLoc, unsigned CharNo, unsigned TokLen);
+static SourceLocation GetMappedTokenLoc(Preprocessor &PP,
+ SourceLocation FileLoc,
+ unsigned CharNo, unsigned TokLen) {
+ assert(FileLoc.isMacroID() && "Must be a macro expansion");
+
+ // Otherwise, we're lexing "mapped tokens". This is used for things like
+ // _Pragma handling. Combine the expansion location of FileLoc with the
+ // spelling location.
+ SourceManager &SM = PP.getSourceManager();
+
+ // Create a new SLoc which is expanded from Expansion(FileLoc) but whose
+ // characters come from spelling(FileLoc)+Offset.
+ SourceLocation SpellingLoc = SM.getSpellingLoc(FileLoc);
+ SpellingLoc = SpellingLoc.getLocWithOffset(CharNo);
+
+ // Figure out the expansion loc range, which is the range covered by the
+ // original _Pragma(...) sequence.
+ std::pair<SourceLocation,SourceLocation> II =
+ SM.getImmediateExpansionRange(FileLoc);
+
+ return SM.createExpansionLoc(SpellingLoc, II.first, II.second, TokLen);
+}
+
+/// getSourceLocation - Return a source location identifier for the specified
+/// offset in the current file.
+SourceLocation Lexer::getSourceLocation(const char *Loc,
+ unsigned TokLen) const {
+ assert(Loc >= BufferStart && Loc <= BufferEnd &&
+ "Location out of range for this buffer!");
+
+ // In the normal case, we're just lexing from a simple file buffer, return
+ // the file id from FileLoc with the offset specified.
+ unsigned CharNo = Loc-BufferStart;
+ if (FileLoc.isFileID())
+ return FileLoc.getLocWithOffset(CharNo);
+
+ // Otherwise, this is the _Pragma lexer case, which pretends that all of the
+ // tokens are lexed from where the _Pragma was defined.
+ assert(PP && "This doesn't work on raw lexers");
+ return GetMappedTokenLoc(*PP, FileLoc, CharNo, TokLen);
+}
+
+/// Diag - Forwarding function for diagnostics. This translate a source
+/// position in the current buffer into a SourceLocation object for rendering.
+DiagnosticBuilder Lexer::Diag(const char *Loc, unsigned DiagID) const {
+ return PP->Diag(getSourceLocation(Loc), DiagID);
+}
+
+//===----------------------------------------------------------------------===//
+// Trigraph and Escaped Newline Handling Code.
+//===----------------------------------------------------------------------===//
+
+/// GetTrigraphCharForLetter - Given a character that occurs after a ?? pair,
+/// return the decoded trigraph letter it corresponds to, or '\0' if nothing.
+static char GetTrigraphCharForLetter(char Letter) {
+ switch (Letter) {
+ default: return 0;
+ case '=': return '#';
+ case ')': return ']';
+ case '(': return '[';
+ case '!': return '|';
+ case '\'': return '^';
+ case '>': return '}';
+ case '/': return '\\';
+ case '<': return '{';
+ case '-': return '~';
+ }
+}
+
+/// DecodeTrigraphChar - If the specified character is a legal trigraph when
+/// prefixed with ??, emit a trigraph warning. If trigraphs are enabled,
+/// return the result character. Finally, emit a warning about trigraph use
+/// whether trigraphs are enabled or not.
+static char DecodeTrigraphChar(const char *CP, Lexer *L) {
+ char Res = GetTrigraphCharForLetter(*CP);
+ if (!Res || !L) return Res;
+
+ if (!L->getLangOpts().Trigraphs) {
+ if (!L->isLexingRawMode())
+ L->Diag(CP-2, diag::trigraph_ignored);
+ return 0;
+ }
+
+ if (!L->isLexingRawMode())
+ L->Diag(CP-2, diag::trigraph_converted) << StringRef(&Res, 1);
+ return Res;
+}
+
+/// getEscapedNewLineSize - Return the size of the specified escaped newline,
+/// or 0 if it is not an escaped newline. P[-1] is known to be a "\" or a
+/// trigraph equivalent on entry to this function.
+unsigned Lexer::getEscapedNewLineSize(const char *Ptr) {
+ unsigned Size = 0;
+ while (isWhitespace(Ptr[Size])) {
+ ++Size;
+
+ if (Ptr[Size-1] != '\n' && Ptr[Size-1] != '\r')
+ continue;
+
+ // If this is a \r\n or \n\r, skip the other half.
+ if ((Ptr[Size] == '\r' || Ptr[Size] == '\n') &&
+ Ptr[Size-1] != Ptr[Size])
+ ++Size;
+
+ return Size;
+ }
+
+ // Not an escaped newline, must be a \t or something else.
+ return 0;
+}
+
+/// SkipEscapedNewLines - If P points to an escaped newline (or a series of
+/// them), skip over them and return the first non-escaped-newline found,
+/// otherwise return P.
+const char *Lexer::SkipEscapedNewLines(const char *P) {
+ while (1) {
+ const char *AfterEscape;
+ if (*P == '\\') {
+ AfterEscape = P+1;
+ } else if (*P == '?') {
+ // If not a trigraph for escape, bail out.
+ if (P[1] != '?' || P[2] != '/')
+ return P;
+ AfterEscape = P+3;
+ } else {
+ return P;
+ }
+
+ unsigned NewLineSize = Lexer::getEscapedNewLineSize(AfterEscape);
+ if (NewLineSize == 0) return P;
+ P = AfterEscape+NewLineSize;
+ }
+}
+
+/// \brief Checks that the given token is the first token that occurs after the
+/// given location (this excludes comments and whitespace). Returns the location
+/// immediately after the specified token. If the token is not found or the
+/// location is inside a macro, the returned source location will be invalid.
+SourceLocation Lexer::findLocationAfterToken(SourceLocation Loc,
+ tok::TokenKind TKind,
+ const SourceManager &SM,
+ const LangOptions &LangOpts,
+ bool SkipTrailingWhitespaceAndNewLine) {
+ if (Loc.isMacroID()) {
+ if (!Lexer::isAtEndOfMacroExpansion(Loc, SM, LangOpts, &Loc))
+ return SourceLocation();
+ }
+ Loc = Lexer::getLocForEndOfToken(Loc, 0, SM, LangOpts);
+
+ // Break down the source location.
+ std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
+
+ // Try to load the file buffer.
+ bool InvalidTemp = false;
+ StringRef File = SM.getBufferData(LocInfo.first, &InvalidTemp);
+ if (InvalidTemp)
+ return SourceLocation();
+
+ const char *TokenBegin = File.data() + LocInfo.second;
+
+ // Lex from the start of the given location.
+ Lexer lexer(SM.getLocForStartOfFile(LocInfo.first), LangOpts, File.begin(),
+ TokenBegin, File.end());
+ // Find the token.
+ Token Tok;
+ lexer.LexFromRawLexer(Tok);
+ if (Tok.isNot(TKind))
+ return SourceLocation();
+ SourceLocation TokenLoc = Tok.getLocation();
+
+ // Calculate how much whitespace needs to be skipped if any.
+ unsigned NumWhitespaceChars = 0;
+ if (SkipTrailingWhitespaceAndNewLine) {
+ const char *TokenEnd = SM.getCharacterData(TokenLoc) +
+ Tok.getLength();
+ unsigned char C = *TokenEnd;
+ while (isHorizontalWhitespace(C)) {
+ C = *(++TokenEnd);
+ NumWhitespaceChars++;
+ }
+
+ // Skip \r, \n, \r\n, or \n\r
+ if (C == '\n' || C == '\r') {
+ char PrevC = C;
+ C = *(++TokenEnd);
+ NumWhitespaceChars++;
+ if ((C == '\n' || C == '\r') && C != PrevC)
+ NumWhitespaceChars++;
+ }
+ }
+
+ return TokenLoc.getLocWithOffset(Tok.getLength() + NumWhitespaceChars);
+}
+
+/// getCharAndSizeSlow - Peek a single 'character' from the specified buffer,
+/// get its size, and return it. This is tricky in several cases:
+/// 1. If currently at the start of a trigraph, we warn about the trigraph,
+/// then either return the trigraph (skipping 3 chars) or the '?',
+/// depending on whether trigraphs are enabled or not.
+/// 2. If this is an escaped newline (potentially with whitespace between
+/// the backslash and newline), implicitly skip the newline and return
+/// the char after it.
+///
+/// This handles the slow/uncommon case of the getCharAndSize method. Here we
+/// know that we can accumulate into Size, and that we have already incremented
+/// Ptr by Size bytes.
+///
+/// NOTE: When this method is updated, getCharAndSizeSlowNoWarn (below) should
+/// be updated to match.
+///
+char Lexer::getCharAndSizeSlow(const char *Ptr, unsigned &Size,
+ Token *Tok) {
+ // If we have a slash, look for an escaped newline.
+ if (Ptr[0] == '\\') {
+ ++Size;
+ ++Ptr;
+Slash:
+ // Common case, backslash-char where the char is not whitespace.
+ if (!isWhitespace(Ptr[0])) return '\\';
+
+ // See if we have optional whitespace characters between the slash and
+ // newline.
+ if (unsigned EscapedNewLineSize = getEscapedNewLineSize(Ptr)) {
+ // Remember that this token needs to be cleaned.
+ if (Tok) Tok->setFlag(Token::NeedsCleaning);
+
+ // Warn if there was whitespace between the backslash and newline.
+ if (Ptr[0] != '\n' && Ptr[0] != '\r' && Tok && !isLexingRawMode())
+ Diag(Ptr, diag::backslash_newline_space);
+
+ // Found backslash<whitespace><newline>. Parse the char after it.
+ Size += EscapedNewLineSize;
+ Ptr += EscapedNewLineSize;
+
+ // If the char that we finally got was a \n, then we must have had
+ // something like \<newline><newline>. We don't want to consume the
+ // second newline.
+ if (*Ptr == '\n' || *Ptr == '\r' || *Ptr == '\0')
+ return ' ';
+
+ // Use slow version to accumulate a correct size field.
+ return getCharAndSizeSlow(Ptr, Size, Tok);
+ }
+
+ // Otherwise, this is not an escaped newline, just return the slash.
+ return '\\';
+ }
+
+ // If this is a trigraph, process it.
+ if (Ptr[0] == '?' && Ptr[1] == '?') {
+ // If this is actually a legal trigraph (not something like "??x"), emit
+ // a trigraph warning. If so, and if trigraphs are enabled, return it.
+ if (char C = DecodeTrigraphChar(Ptr+2, Tok ? this : nullptr)) {
+ // Remember that this token needs to be cleaned.
+ if (Tok) Tok->setFlag(Token::NeedsCleaning);
+
+ Ptr += 3;
+ Size += 3;
+ if (C == '\\') goto Slash;
+ return C;
+ }
+ }
+
+ // If this is neither, return a single character.
+ ++Size;
+ return *Ptr;
+}
+
+
+/// getCharAndSizeSlowNoWarn - Handle the slow/uncommon case of the
+/// getCharAndSizeNoWarn method. Here we know that we can accumulate into Size,
+/// and that we have already incremented Ptr by Size bytes.
+///
+/// NOTE: When this method is updated, getCharAndSizeSlow (above) should
+/// be updated to match.
+char Lexer::getCharAndSizeSlowNoWarn(const char *Ptr, unsigned &Size,
+ const LangOptions &LangOpts) {
+ // If we have a slash, look for an escaped newline.
+ if (Ptr[0] == '\\') {
+ ++Size;
+ ++Ptr;
+Slash:
+ // Common case, backslash-char where the char is not whitespace.
+ if (!isWhitespace(Ptr[0])) return '\\';
+
+ // See if we have optional whitespace characters followed by a newline.
+ if (unsigned EscapedNewLineSize = getEscapedNewLineSize(Ptr)) {
+ // Found backslash<whitespace><newline>. Parse the char after it.
+ Size += EscapedNewLineSize;
+ Ptr += EscapedNewLineSize;
+
+ // If the char that we finally got was a \n, then we must have had
+ // something like \<newline><newline>. We don't want to consume the
+ // second newline.
+ if (*Ptr == '\n' || *Ptr == '\r' || *Ptr == '\0')
+ return ' ';
+
+ // Use slow version to accumulate a correct size field.
+ return getCharAndSizeSlowNoWarn(Ptr, Size, LangOpts);
+ }
+
+ // Otherwise, this is not an escaped newline, just return the slash.
+ return '\\';
+ }
+
+ // If this is a trigraph, process it.
+ if (LangOpts.Trigraphs && Ptr[0] == '?' && Ptr[1] == '?') {
+ // If this is actually a legal trigraph (not something like "??x"), return
+ // it.
+ if (char C = GetTrigraphCharForLetter(Ptr[2])) {
+ Ptr += 3;
+ Size += 3;
+ if (C == '\\') goto Slash;
+ return C;
+ }
+ }
+
+ // If this is neither, return a single character.
+ ++Size;
+ return *Ptr;
+}
+
+//===----------------------------------------------------------------------===//
+// Helper methods for lexing.
+//===----------------------------------------------------------------------===//
+
+/// \brief Routine that indiscriminately skips bytes in the source file.
+void Lexer::SkipBytes(unsigned Bytes, bool StartOfLine) {
+ BufferPtr += Bytes;
+ if (BufferPtr > BufferEnd)
+ BufferPtr = BufferEnd;
+ // FIXME: What exactly does the StartOfLine bit mean? There are two
+ // possible meanings for the "start" of the line: the first token on the
+ // unexpanded line, or the first token on the expanded line.
+ IsAtStartOfLine = StartOfLine;
+ IsAtPhysicalStartOfLine = StartOfLine;
+}
+
+static bool isAllowedIDChar(uint32_t C, const LangOptions &LangOpts) {
+ if (LangOpts.CPlusPlus11 || LangOpts.C11) {
+ static const llvm::sys::UnicodeCharSet C11AllowedIDChars(
+ C11AllowedIDCharRanges);
+ return C11AllowedIDChars.contains(C);
+ } else if (LangOpts.CPlusPlus) {
+ static const llvm::sys::UnicodeCharSet CXX03AllowedIDChars(
+ CXX03AllowedIDCharRanges);
+ return CXX03AllowedIDChars.contains(C);
+ } else {
+ static const llvm::sys::UnicodeCharSet C99AllowedIDChars(
+ C99AllowedIDCharRanges);
+ return C99AllowedIDChars.contains(C);
+ }
+}
+
+static bool isAllowedInitiallyIDChar(uint32_t C, const LangOptions &LangOpts) {
+ assert(isAllowedIDChar(C, LangOpts));
+ if (LangOpts.CPlusPlus11 || LangOpts.C11) {
+ static const llvm::sys::UnicodeCharSet C11DisallowedInitialIDChars(
+ C11DisallowedInitialIDCharRanges);
+ return !C11DisallowedInitialIDChars.contains(C);
+ } else if (LangOpts.CPlusPlus) {
+ return true;
+ } else {
+ static const llvm::sys::UnicodeCharSet C99DisallowedInitialIDChars(
+ C99DisallowedInitialIDCharRanges);
+ return !C99DisallowedInitialIDChars.contains(C);
+ }
+}
+
+static inline CharSourceRange makeCharRange(Lexer &L, const char *Begin,
+ const char *End) {
+ return CharSourceRange::getCharRange(L.getSourceLocation(Begin),
+ L.getSourceLocation(End));
+}
+
+static void maybeDiagnoseIDCharCompat(DiagnosticsEngine &Diags, uint32_t C,
+ CharSourceRange Range, bool IsFirst) {
+ // Check C99 compatibility.
+ if (!Diags.isIgnored(diag::warn_c99_compat_unicode_id, Range.getBegin())) {
+ enum {
+ CannotAppearInIdentifier = 0,
+ CannotStartIdentifier
+ };
+
+ static const llvm::sys::UnicodeCharSet C99AllowedIDChars(
+ C99AllowedIDCharRanges);
+ static const llvm::sys::UnicodeCharSet C99DisallowedInitialIDChars(
+ C99DisallowedInitialIDCharRanges);
+ if (!C99AllowedIDChars.contains(C)) {
+ Diags.Report(Range.getBegin(), diag::warn_c99_compat_unicode_id)
+ << Range
+ << CannotAppearInIdentifier;
+ } else if (IsFirst && C99DisallowedInitialIDChars.contains(C)) {
+ Diags.Report(Range.getBegin(), diag::warn_c99_compat_unicode_id)
+ << Range
+ << CannotStartIdentifier;
+ }
+ }
+
+ // Check C++98 compatibility.
+ if (!Diags.isIgnored(diag::warn_cxx98_compat_unicode_id, Range.getBegin())) {
+ static const llvm::sys::UnicodeCharSet CXX03AllowedIDChars(
+ CXX03AllowedIDCharRanges);
+ if (!CXX03AllowedIDChars.contains(C)) {
+ Diags.Report(Range.getBegin(), diag::warn_cxx98_compat_unicode_id)
+ << Range;
+ }
+ }
+}
+
+bool Lexer::tryConsumeIdentifierUCN(const char *&CurPtr, unsigned Size,
+ Token &Result) {
+ const char *UCNPtr = CurPtr + Size;
+ uint32_t CodePoint = tryReadUCN(UCNPtr, CurPtr, /*Token=*/nullptr);
+ if (CodePoint == 0 || !isAllowedIDChar(CodePoint, LangOpts))
+ return false;
+
+ if (!isLexingRawMode())
+ maybeDiagnoseIDCharCompat(PP->getDiagnostics(), CodePoint,
+ makeCharRange(*this, CurPtr, UCNPtr),
+ /*IsFirst=*/false);
+
+ Result.setFlag(Token::HasUCN);
+ if ((UCNPtr - CurPtr == 6 && CurPtr[1] == 'u') ||
+ (UCNPtr - CurPtr == 10 && CurPtr[1] == 'U'))
+ CurPtr = UCNPtr;
+ else
+ while (CurPtr != UCNPtr)
+ (void)getAndAdvanceChar(CurPtr, Result);
+ return true;
+}
+
+bool Lexer::tryConsumeIdentifierUTF8Char(const char *&CurPtr) {
+ const char *UnicodePtr = CurPtr;
+ UTF32 CodePoint;
+ ConversionResult Result =
+ llvm::convertUTF8Sequence((const UTF8 **)&UnicodePtr,
+ (const UTF8 *)BufferEnd,
+ &CodePoint,
+ strictConversion);
+ if (Result != conversionOK ||
+ !isAllowedIDChar(static_cast<uint32_t>(CodePoint), LangOpts))
+ return false;
+
+ if (!isLexingRawMode())
+ maybeDiagnoseIDCharCompat(PP->getDiagnostics(), CodePoint,
+ makeCharRange(*this, CurPtr, UnicodePtr),
+ /*IsFirst=*/false);
+
+ CurPtr = UnicodePtr;
+ return true;
+}
+
+bool Lexer::LexIdentifier(Token &Result, const char *CurPtr) {
+ // Match [_A-Za-z0-9]*, we have already matched [_A-Za-z$]
+ unsigned Size;
+ unsigned char C = *CurPtr++;
+ while (isIdentifierBody(C))
+ C = *CurPtr++;
+
+ --CurPtr; // Back up over the skipped character.
+
+ // Fast path, no $,\,? in identifier found. '\' might be an escaped newline
+ // or UCN, and ? might be a trigraph for '\', an escaped newline or UCN.
+ //
+ // TODO: Could merge these checks into an InfoTable flag to make the
+ // comparison cheaper
+ if (isASCII(C) && C != '\\' && C != '?' &&
+ (C != '$' || !LangOpts.DollarIdents)) {
+FinishIdentifier:
+ const char *IdStart = BufferPtr;
+ FormTokenWithChars(Result, CurPtr, tok::raw_identifier);
+ Result.setRawIdentifierData(IdStart);
+
+ // If we are in raw mode, return this identifier raw. There is no need to
+ // look up identifier information or attempt to macro expand it.
+ if (LexingRawMode)
+ return true;
+
+ // Fill in Result.IdentifierInfo and update the token kind,
+ // looking up the identifier in the identifier table.
+ IdentifierInfo *II = PP->LookUpIdentifierInfo(Result);
+
+ // Finally, now that we know we have an identifier, pass this off to the
+ // preprocessor, which may macro expand it or something.
+ if (II->isHandleIdentifierCase())
+ return PP->HandleIdentifier(Result);
+
+ return true;
+ }
+
+ // Otherwise, $,\,? in identifier found. Enter slower path.
+
+ C = getCharAndSize(CurPtr, Size);
+ while (1) {
+ if (C == '$') {
+ // If we hit a $ and they are not supported in identifiers, we are done.
+ if (!LangOpts.DollarIdents) goto FinishIdentifier;
+
+ // Otherwise, emit a diagnostic and continue.
+ if (!isLexingRawMode())
+ Diag(CurPtr, diag::ext_dollar_in_identifier);
+ CurPtr = ConsumeChar(CurPtr, Size, Result);
+ C = getCharAndSize(CurPtr, Size);
+ continue;
+
+ } else if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result)) {
+ C = getCharAndSize(CurPtr, Size);
+ continue;
+ } else if (!isASCII(C) && tryConsumeIdentifierUTF8Char(CurPtr)) {
+ C = getCharAndSize(CurPtr, Size);
+ continue;
+ } else if (!isIdentifierBody(C)) {
+ goto FinishIdentifier;
+ }
+
+ // Otherwise, this character is good, consume it.
+ CurPtr = ConsumeChar(CurPtr, Size, Result);
+
+ C = getCharAndSize(CurPtr, Size);
+ while (isIdentifierBody(C)) {
+ CurPtr = ConsumeChar(CurPtr, Size, Result);
+ C = getCharAndSize(CurPtr, Size);
+ }
+ }
+}
+
+/// isHexaLiteral - Return true if Start points to a hex constant.
+/// in microsoft mode (where this is supposed to be several different tokens).
+bool Lexer::isHexaLiteral(const char *Start, const LangOptions &LangOpts) {
+ unsigned Size;
+ char C1 = Lexer::getCharAndSizeNoWarn(Start, Size, LangOpts);
+ if (C1 != '0')
+ return false;
+ char C2 = Lexer::getCharAndSizeNoWarn(Start + Size, Size, LangOpts);
+ return (C2 == 'x' || C2 == 'X');
+}
+
+/// LexNumericConstant - Lex the remainder of a integer or floating point
+/// constant. From[-1] is the first character lexed. Return the end of the
+/// constant.
+bool Lexer::LexNumericConstant(Token &Result, const char *CurPtr) {
+ unsigned Size;
+ char C = getCharAndSize(CurPtr, Size);
+ char PrevCh = 0;
+ while (isPreprocessingNumberBody(C)) {
+ CurPtr = ConsumeChar(CurPtr, Size, Result);
+ PrevCh = C;
+ C = getCharAndSize(CurPtr, Size);
+ }
+
+ // If we fell out, check for a sign, due to 1e+12. If we have one, continue.
+ if ((C == '-' || C == '+') && (PrevCh == 'E' || PrevCh == 'e')) {
+ // If we are in Microsoft mode, don't continue if the constant is hex.
+ // For example, MSVC will accept the following as 3 tokens: 0x1234567e+1
+ if (!LangOpts.MicrosoftExt || !isHexaLiteral(BufferPtr, LangOpts))
+ return LexNumericConstant(Result, ConsumeChar(CurPtr, Size, Result));
+ }
+
+ // If we have a hex FP constant, continue.
+ if ((C == '-' || C == '+') && (PrevCh == 'P' || PrevCh == 'p')) {
+ // Outside C99, we accept hexadecimal floating point numbers as a
+ // not-quite-conforming extension. Only do so if this looks like it's
+ // actually meant to be a hexfloat, and not if it has a ud-suffix.
+ bool IsHexFloat = true;
+ if (!LangOpts.C99) {
+ if (!isHexaLiteral(BufferPtr, LangOpts))
+ IsHexFloat = false;
+ else if (std::find(BufferPtr, CurPtr, '_') != CurPtr)
+ IsHexFloat = false;
+ }
+ if (IsHexFloat)
+ return LexNumericConstant(Result, ConsumeChar(CurPtr, Size, Result));
+ }
+
+ // If we have a digit separator, continue.
+ if (C == '\'' && getLangOpts().CPlusPlus14) {
+ unsigned NextSize;
+ char Next = getCharAndSizeNoWarn(CurPtr + Size, NextSize, getLangOpts());
+ if (isIdentifierBody(Next)) {
+ if (!isLexingRawMode())
+ Diag(CurPtr, diag::warn_cxx11_compat_digit_separator);
+ CurPtr = ConsumeChar(CurPtr, Size, Result);
+ CurPtr = ConsumeChar(CurPtr, NextSize, Result);
+ return LexNumericConstant(Result, CurPtr);
+ }
+ }
+
+ // If we have a UCN or UTF-8 character (perhaps in a ud-suffix), continue.
+ if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result))
+ return LexNumericConstant(Result, CurPtr);
+ if (!isASCII(C) && tryConsumeIdentifierUTF8Char(CurPtr))
+ return LexNumericConstant(Result, CurPtr);
+
+ // Update the location of token as well as BufferPtr.
+ const char *TokStart = BufferPtr;
+ FormTokenWithChars(Result, CurPtr, tok::numeric_constant);
+ Result.setLiteralData(TokStart);
+ return true;
+}
+
+/// LexUDSuffix - Lex the ud-suffix production for user-defined literal suffixes
+/// in C++11, or warn on a ud-suffix in C++98.
+const char *Lexer::LexUDSuffix(Token &Result, const char *CurPtr,
+ bool IsStringLiteral) {
+ assert(getLangOpts().CPlusPlus);
+
+ // Maximally munch an identifier.
+ unsigned Size;
+ char C = getCharAndSize(CurPtr, Size);
+ bool Consumed = false;
+
+ if (!isIdentifierHead(C)) {
+ if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result))
+ Consumed = true;
+ else if (!isASCII(C) && tryConsumeIdentifierUTF8Char(CurPtr))
+ Consumed = true;
+ else
+ return CurPtr;
+ }
+
+ if (!getLangOpts().CPlusPlus11) {
+ if (!isLexingRawMode())
+ Diag(CurPtr,
+ C == '_' ? diag::warn_cxx11_compat_user_defined_literal
+ : diag::warn_cxx11_compat_reserved_user_defined_literal)
+ << FixItHint::CreateInsertion(getSourceLocation(CurPtr), " ");
+ return CurPtr;
+ }
+
+ // C++11 [lex.ext]p10, [usrlit.suffix]p1: A program containing a ud-suffix
+ // that does not start with an underscore is ill-formed. As a conforming
+ // extension, we treat all such suffixes as if they had whitespace before
+ // them. We assume a suffix beginning with a UCN or UTF-8 character is more
+ // likely to be a ud-suffix than a macro, however, and accept that.
+ if (!Consumed) {
+ bool IsUDSuffix = false;
+ if (C == '_')
+ IsUDSuffix = true;
+ else if (IsStringLiteral && getLangOpts().CPlusPlus14) {
+ // In C++1y, we need to look ahead a few characters to see if this is a
+ // valid suffix for a string literal or a numeric literal (this could be
+ // the 'operator""if' defining a numeric literal operator).
+ const unsigned MaxStandardSuffixLength = 3;
+ char Buffer[MaxStandardSuffixLength] = { C };
+ unsigned Consumed = Size;
+ unsigned Chars = 1;
+ while (true) {
+ unsigned NextSize;
+ char Next = getCharAndSizeNoWarn(CurPtr + Consumed, NextSize,
+ getLangOpts());
+ if (!isIdentifierBody(Next)) {
+ // End of suffix. Check whether this is on the whitelist.
+ IsUDSuffix = (Chars == 1 && Buffer[0] == 's') ||
+ NumericLiteralParser::isValidUDSuffix(
+ getLangOpts(), StringRef(Buffer, Chars));
+ break;
+ }
+
+ if (Chars == MaxStandardSuffixLength)
+ // Too long: can't be a standard suffix.
+ break;
+
+ Buffer[Chars++] = Next;
+ Consumed += NextSize;
+ }
+ }
+
+ if (!IsUDSuffix) {
+ if (!isLexingRawMode())
+ Diag(CurPtr, getLangOpts().MSVCCompat
+ ? diag::ext_ms_reserved_user_defined_literal
+ : diag::ext_reserved_user_defined_literal)
+ << FixItHint::CreateInsertion(getSourceLocation(CurPtr), " ");
+ return CurPtr;
+ }
+
+ CurPtr = ConsumeChar(CurPtr, Size, Result);
+ }
+
+ Result.setFlag(Token::HasUDSuffix);
+ while (true) {
+ C = getCharAndSize(CurPtr, Size);
+ if (isIdentifierBody(C)) { CurPtr = ConsumeChar(CurPtr, Size, Result); }
+ else if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result)) {}
+ else if (!isASCII(C) && tryConsumeIdentifierUTF8Char(CurPtr)) {}
+ else break;
+ }
+
+ return CurPtr;
+}
+
+/// LexStringLiteral - Lex the remainder of a string literal, after having lexed
+/// either " or L" or u8" or u" or U".
+bool Lexer::LexStringLiteral(Token &Result, const char *CurPtr,
+ tok::TokenKind Kind) {
+ // Does this string contain the \0 character?
+ const char *NulCharacter = nullptr;
+
+ if (!isLexingRawMode() &&
+ (Kind == tok::utf8_string_literal ||
+ Kind == tok::utf16_string_literal ||
+ Kind == tok::utf32_string_literal))
+ Diag(BufferPtr, getLangOpts().CPlusPlus
+ ? diag::warn_cxx98_compat_unicode_literal
+ : diag::warn_c99_compat_unicode_literal);
+
+ char C = getAndAdvanceChar(CurPtr, Result);
+ while (C != '"') {
+ // Skip escaped characters. Escaped newlines will already be processed by
+ // getAndAdvanceChar.
+ if (C == '\\')
+ C = getAndAdvanceChar(CurPtr, Result);
+
+ if (C == '\n' || C == '\r' || // Newline.
+ (C == 0 && CurPtr-1 == BufferEnd)) { // End of file.
+ if (!isLexingRawMode() && !LangOpts.AsmPreprocessor)
+ Diag(BufferPtr, diag::ext_unterminated_string);
+ FormTokenWithChars(Result, CurPtr-1, tok::unknown);
+ return true;
+ }
+
+ if (C == 0) {
+ if (isCodeCompletionPoint(CurPtr-1)) {
+ PP->CodeCompleteNaturalLanguage();
+ FormTokenWithChars(Result, CurPtr-1, tok::unknown);
+ cutOffLexing();
+ return true;
+ }
+
+ NulCharacter = CurPtr-1;
+ }
+ C = getAndAdvanceChar(CurPtr, Result);
+ }
+
+ // If we are in C++11, lex the optional ud-suffix.
+ if (getLangOpts().CPlusPlus)
+ CurPtr = LexUDSuffix(Result, CurPtr, true);
+
+ // If a nul character existed in the string, warn about it.
+ if (NulCharacter && !isLexingRawMode())
+ Diag(NulCharacter, diag::null_in_string);
+
+ // Update the location of the token as well as the BufferPtr instance var.
+ const char *TokStart = BufferPtr;
+ FormTokenWithChars(Result, CurPtr, Kind);
+ Result.setLiteralData(TokStart);
+ return true;
+}
+
+/// LexRawStringLiteral - Lex the remainder of a raw string literal, after
+/// having lexed R", LR", u8R", uR", or UR".
+bool Lexer::LexRawStringLiteral(Token &Result, const char *CurPtr,
+ tok::TokenKind Kind) {
+ // This function doesn't use getAndAdvanceChar because C++0x [lex.pptoken]p3:
+ // Between the initial and final double quote characters of the raw string,
+ // any transformations performed in phases 1 and 2 (trigraphs,
+ // universal-character-names, and line splicing) are reverted.
+
+ if (!isLexingRawMode())
+ Diag(BufferPtr, diag::warn_cxx98_compat_raw_string_literal);
+
+ unsigned PrefixLen = 0;
+
+ while (PrefixLen != 16 && isRawStringDelimBody(CurPtr[PrefixLen]))
+ ++PrefixLen;
+
+ // If the last character was not a '(', then we didn't lex a valid delimiter.
+ if (CurPtr[PrefixLen] != '(') {
+ if (!isLexingRawMode()) {
+ const char *PrefixEnd = &CurPtr[PrefixLen];
+ if (PrefixLen == 16) {
+ Diag(PrefixEnd, diag::err_raw_delim_too_long);
+ } else {
+ Diag(PrefixEnd, diag::err_invalid_char_raw_delim)
+ << StringRef(PrefixEnd, 1);
+ }
+ }
+
+ // Search for the next '"' in hopes of salvaging the lexer. Unfortunately,
+ // it's possible the '"' was intended to be part of the raw string, but
+ // there's not much we can do about that.
+ while (1) {
+ char C = *CurPtr++;
+
+ if (C == '"')
+ break;
+ if (C == 0 && CurPtr-1 == BufferEnd) {
+ --CurPtr;
+ break;
+ }
+ }
+
+ FormTokenWithChars(Result, CurPtr, tok::unknown);
+ return true;
+ }
+
+ // Save prefix and move CurPtr past it
+ const char *Prefix = CurPtr;
+ CurPtr += PrefixLen + 1; // skip over prefix and '('
+
+ while (1) {
+ char C = *CurPtr++;
+
+ if (C == ')') {
+ // Check for prefix match and closing quote.
+ if (strncmp(CurPtr, Prefix, PrefixLen) == 0 && CurPtr[PrefixLen] == '"') {
+ CurPtr += PrefixLen + 1; // skip over prefix and '"'
+ break;
+ }
+ } else if (C == 0 && CurPtr-1 == BufferEnd) { // End of file.
+ if (!isLexingRawMode())
+ Diag(BufferPtr, diag::err_unterminated_raw_string)
+ << StringRef(Prefix, PrefixLen);
+ FormTokenWithChars(Result, CurPtr-1, tok::unknown);
+ return true;
+ }
+ }
+
+ // If we are in C++11, lex the optional ud-suffix.
+ if (getLangOpts().CPlusPlus)
+ CurPtr = LexUDSuffix(Result, CurPtr, true);
+
+ // Update the location of token as well as BufferPtr.
+ const char *TokStart = BufferPtr;
+ FormTokenWithChars(Result, CurPtr, Kind);
+ Result.setLiteralData(TokStart);
+ return true;
+}
+
+/// LexAngledStringLiteral - Lex the remainder of an angled string literal,
+/// after having lexed the '<' character. This is used for #include filenames.
+bool Lexer::LexAngledStringLiteral(Token &Result, const char *CurPtr) {
+ // Does this string contain the \0 character?
+ const char *NulCharacter = nullptr;
+ const char *AfterLessPos = CurPtr;
+ char C = getAndAdvanceChar(CurPtr, Result);
+ while (C != '>') {
+ // Skip escaped characters.
+ if (C == '\\' && CurPtr < BufferEnd) {
+ // Skip the escaped character.
+ getAndAdvanceChar(CurPtr, Result);
+ } else if (C == '\n' || C == '\r' || // Newline.
+ (C == 0 && (CurPtr-1 == BufferEnd || // End of file.
+ isCodeCompletionPoint(CurPtr-1)))) {
+ // If the filename is unterminated, then it must just be a lone <
+ // character. Return this as such.
+ FormTokenWithChars(Result, AfterLessPos, tok::less);
+ return true;
+ } else if (C == 0) {
+ NulCharacter = CurPtr-1;
+ }
+ C = getAndAdvanceChar(CurPtr, Result);
+ }
+
+ // If a nul character existed in the string, warn about it.
+ if (NulCharacter && !isLexingRawMode())
+ Diag(NulCharacter, diag::null_in_string);
+
+ // Update the location of token as well as BufferPtr.
+ const char *TokStart = BufferPtr;
+ FormTokenWithChars(Result, CurPtr, tok::angle_string_literal);
+ Result.setLiteralData(TokStart);
+ return true;
+}
+
+
+/// LexCharConstant - Lex the remainder of a character constant, after having
+/// lexed either ' or L' or u8' or u' or U'.
+bool Lexer::LexCharConstant(Token &Result, const char *CurPtr,
+ tok::TokenKind Kind) {
+ // Does this character contain the \0 character?
+ const char *NulCharacter = nullptr;
+
+ if (!isLexingRawMode()) {
+ if (Kind == tok::utf16_char_constant || Kind == tok::utf32_char_constant)
+ Diag(BufferPtr, getLangOpts().CPlusPlus
+ ? diag::warn_cxx98_compat_unicode_literal
+ : diag::warn_c99_compat_unicode_literal);
+ else if (Kind == tok::utf8_char_constant)
+ Diag(BufferPtr, diag::warn_cxx14_compat_u8_character_literal);
+ }
+
+ char C = getAndAdvanceChar(CurPtr, Result);
+ if (C == '\'') {
+ if (!isLexingRawMode() && !LangOpts.AsmPreprocessor)
+ Diag(BufferPtr, diag::ext_empty_character);
+ FormTokenWithChars(Result, CurPtr, tok::unknown);
+ return true;
+ }
+
+ while (C != '\'') {
+ // Skip escaped characters.
+ if (C == '\\')
+ C = getAndAdvanceChar(CurPtr, Result);
+
+ if (C == '\n' || C == '\r' || // Newline.
+ (C == 0 && CurPtr-1 == BufferEnd)) { // End of file.
+ if (!isLexingRawMode() && !LangOpts.AsmPreprocessor)
+ Diag(BufferPtr, diag::ext_unterminated_char);
+ FormTokenWithChars(Result, CurPtr-1, tok::unknown);
+ return true;
+ }
+
+ if (C == 0) {
+ if (isCodeCompletionPoint(CurPtr-1)) {
+ PP->CodeCompleteNaturalLanguage();
+ FormTokenWithChars(Result, CurPtr-1, tok::unknown);
+ cutOffLexing();
+ return true;
+ }
+
+ NulCharacter = CurPtr-1;
+ }
+ C = getAndAdvanceChar(CurPtr, Result);
+ }
+
+ // If we are in C++11, lex the optional ud-suffix.
+ if (getLangOpts().CPlusPlus)
+ CurPtr = LexUDSuffix(Result, CurPtr, false);
+
+ // If a nul character existed in the character, warn about it.
+ if (NulCharacter && !isLexingRawMode())
+ Diag(NulCharacter, diag::null_in_char);
+
+ // Update the location of token as well as BufferPtr.
+ const char *TokStart = BufferPtr;
+ FormTokenWithChars(Result, CurPtr, Kind);
+ Result.setLiteralData(TokStart);
+ return true;
+}
+
+/// SkipWhitespace - Efficiently skip over a series of whitespace characters.
+/// Update BufferPtr to point to the next non-whitespace character and return.
+///
+/// This method forms a token and returns true if KeepWhitespaceMode is enabled.
+///
+bool Lexer::SkipWhitespace(Token &Result, const char *CurPtr,
+ bool &TokAtPhysicalStartOfLine) {
+ // Whitespace - Skip it, then return the token after the whitespace.
+ bool SawNewline = isVerticalWhitespace(CurPtr[-1]);
+
+ unsigned char Char = *CurPtr;
+
+ // Skip consecutive spaces efficiently.
+ while (1) {
+ // Skip horizontal whitespace very aggressively.
+ while (isHorizontalWhitespace(Char))
+ Char = *++CurPtr;
+
+ // Otherwise if we have something other than whitespace, we're done.
+ if (!isVerticalWhitespace(Char))
+ break;
+
+ if (ParsingPreprocessorDirective) {
+ // End of preprocessor directive line, let LexTokenInternal handle this.
+ BufferPtr = CurPtr;
+ return false;
+ }
+
+ // OK, but handle newline.
+ SawNewline = true;
+ Char = *++CurPtr;
+ }
+
+ // If the client wants us to return whitespace, return it now.
+ if (isKeepWhitespaceMode()) {
+ FormTokenWithChars(Result, CurPtr, tok::unknown);
+ if (SawNewline) {
+ IsAtStartOfLine = true;
+ IsAtPhysicalStartOfLine = true;
+ }
+ // FIXME: The next token will not have LeadingSpace set.
+ return true;
+ }
+
+ // If this isn't immediately after a newline, there is leading space.
+ char PrevChar = CurPtr[-1];
+ bool HasLeadingSpace = !isVerticalWhitespace(PrevChar);
+
+ Result.setFlagValue(Token::LeadingSpace, HasLeadingSpace);
+ if (SawNewline) {
+ Result.setFlag(Token::StartOfLine);
+ TokAtPhysicalStartOfLine = true;
+ }
+
+ BufferPtr = CurPtr;
+ return false;
+}
+
+/// We have just read the // characters from input. Skip until we find the
+/// newline character thats terminate the comment. Then update BufferPtr and
+/// return.
+///
+/// If we're in KeepCommentMode or any CommentHandler has inserted
+/// some tokens, this will store the first token and return true.
+bool Lexer::SkipLineComment(Token &Result, const char *CurPtr,
+ bool &TokAtPhysicalStartOfLine) {
+ // If Line comments aren't explicitly enabled for this language, emit an
+ // extension warning.
+ if (!LangOpts.LineComment && !isLexingRawMode()) {
+ Diag(BufferPtr, diag::ext_line_comment);
+
+ // Mark them enabled so we only emit one warning for this translation
+ // unit.
+ LangOpts.LineComment = true;
+ }
+
+ // Scan over the body of the comment. The common case, when scanning, is that
+ // the comment contains normal ascii characters with nothing interesting in
+ // them. As such, optimize for this case with the inner loop.
+ char C;
+ do {
+ C = *CurPtr;
+ // Skip over characters in the fast loop.
+ while (C != 0 && // Potentially EOF.
+ C != '\n' && C != '\r') // Newline or DOS-style newline.
+ C = *++CurPtr;
+
+ const char *NextLine = CurPtr;
+ if (C != 0) {
+ // We found a newline, see if it's escaped.
+ const char *EscapePtr = CurPtr-1;
+ bool HasSpace = false;
+ while (isHorizontalWhitespace(*EscapePtr)) { // Skip whitespace.
+ --EscapePtr;
+ HasSpace = true;
+ }
+
+ if (*EscapePtr == '\\') // Escaped newline.
+ CurPtr = EscapePtr;
+ else if (EscapePtr[0] == '/' && EscapePtr[-1] == '?' &&
+ EscapePtr[-2] == '?') // Trigraph-escaped newline.
+ CurPtr = EscapePtr-2;
+ else
+ break; // This is a newline, we're done.
+
+ // If there was space between the backslash and newline, warn about it.
+ if (HasSpace && !isLexingRawMode())
+ Diag(EscapePtr, diag::backslash_newline_space);
+ }
+
+ // Otherwise, this is a hard case. Fall back on getAndAdvanceChar to
+ // properly decode the character. Read it in raw mode to avoid emitting
+ // diagnostics about things like trigraphs. If we see an escaped newline,
+ // we'll handle it below.
+ const char *OldPtr = CurPtr;
+ bool OldRawMode = isLexingRawMode();
+ LexingRawMode = true;
+ C = getAndAdvanceChar(CurPtr, Result);
+ LexingRawMode = OldRawMode;
+
+ // If we only read only one character, then no special handling is needed.
+ // We're done and can skip forward to the newline.
+ if (C != 0 && CurPtr == OldPtr+1) {
+ CurPtr = NextLine;
+ break;
+ }
+
+ // If we read multiple characters, and one of those characters was a \r or
+ // \n, then we had an escaped newline within the comment. Emit diagnostic
+ // unless the next line is also a // comment.
+ if (CurPtr != OldPtr+1 && C != '/' && CurPtr[0] != '/') {
+ for (; OldPtr != CurPtr; ++OldPtr)
+ if (OldPtr[0] == '\n' || OldPtr[0] == '\r') {
+ // Okay, we found a // comment that ends in a newline, if the next
+ // line is also a // comment, but has spaces, don't emit a diagnostic.
+ if (isWhitespace(C)) {
+ const char *ForwardPtr = CurPtr;
+ while (isWhitespace(*ForwardPtr)) // Skip whitespace.
+ ++ForwardPtr;
+ if (ForwardPtr[0] == '/' && ForwardPtr[1] == '/')
+ break;
+ }
+
+ if (!isLexingRawMode())
+ Diag(OldPtr-1, diag::ext_multi_line_line_comment);
+ break;
+ }
+ }
+
+ if (CurPtr == BufferEnd+1) {
+ --CurPtr;
+ break;
+ }
+
+ if (C == '\0' && isCodeCompletionPoint(CurPtr-1)) {
+ PP->CodeCompleteNaturalLanguage();
+ cutOffLexing();
+ return false;
+ }
+
+ } while (C != '\n' && C != '\r');
+
+ // Found but did not consume the newline. Notify comment handlers about the
+ // comment unless we're in a #if 0 block.
+ if (PP && !isLexingRawMode() &&
+ PP->HandleComment(Result, SourceRange(getSourceLocation(BufferPtr),
+ getSourceLocation(CurPtr)))) {
+ BufferPtr = CurPtr;
+ return true; // A token has to be returned.
+ }
+
+ // If we are returning comments as tokens, return this comment as a token.
+ if (inKeepCommentMode())
+ return SaveLineComment(Result, CurPtr);
+
+ // If we are inside a preprocessor directive and we see the end of line,
+ // return immediately, so that the lexer can return this as an EOD token.
+ if (ParsingPreprocessorDirective || CurPtr == BufferEnd) {
+ BufferPtr = CurPtr;
+ return false;
+ }
+
+ // Otherwise, eat the \n character. We don't care if this is a \n\r or
+ // \r\n sequence. This is an efficiency hack (because we know the \n can't
+ // contribute to another token), it isn't needed for correctness. Note that
+ // this is ok even in KeepWhitespaceMode, because we would have returned the
+ /// comment above in that mode.
+ ++CurPtr;
+
+ // The next returned token is at the start of the line.
+ Result.setFlag(Token::StartOfLine);
+ TokAtPhysicalStartOfLine = true;
+ // No leading whitespace seen so far.
+ Result.clearFlag(Token::LeadingSpace);
+ BufferPtr = CurPtr;
+ return false;
+}
+
+/// If in save-comment mode, package up this Line comment in an appropriate
+/// way and return it.
+bool Lexer::SaveLineComment(Token &Result, const char *CurPtr) {
+ // If we're not in a preprocessor directive, just return the // comment
+ // directly.
+ FormTokenWithChars(Result, CurPtr, tok::comment);
+
+ if (!ParsingPreprocessorDirective || LexingRawMode)
+ return true;
+
+ // If this Line-style comment is in a macro definition, transmogrify it into
+ // a C-style block comment.
+ bool Invalid = false;
+ std::string Spelling = PP->getSpelling(Result, &Invalid);
+ if (Invalid)
+ return true;
+
+ assert(Spelling[0] == '/' && Spelling[1] == '/' && "Not line comment?");
+ Spelling[1] = '*'; // Change prefix to "/*".
+ Spelling += "*/"; // add suffix.
+
+ Result.setKind(tok::comment);
+ PP->CreateString(Spelling, Result,
+ Result.getLocation(), Result.getLocation());
+ return true;
+}
+
+/// isBlockCommentEndOfEscapedNewLine - Return true if the specified newline
+/// character (either \\n or \\r) is part of an escaped newline sequence. Issue
+/// a diagnostic if so. We know that the newline is inside of a block comment.
+static bool isEndOfBlockCommentWithEscapedNewLine(const char *CurPtr,
+ Lexer *L) {
+ assert(CurPtr[0] == '\n' || CurPtr[0] == '\r');
+
+ // Back up off the newline.
+ --CurPtr;
+
+ // If this is a two-character newline sequence, skip the other character.
+ if (CurPtr[0] == '\n' || CurPtr[0] == '\r') {
+ // \n\n or \r\r -> not escaped newline.
+ if (CurPtr[0] == CurPtr[1])
+ return false;
+ // \n\r or \r\n -> skip the newline.
+ --CurPtr;
+ }
+
+ // If we have horizontal whitespace, skip over it. We allow whitespace
+ // between the slash and newline.
+ bool HasSpace = false;
+ while (isHorizontalWhitespace(*CurPtr) || *CurPtr == 0) {
+ --CurPtr;
+ HasSpace = true;
+ }
+
+ // If we have a slash, we know this is an escaped newline.
+ if (*CurPtr == '\\') {
+ if (CurPtr[-1] != '*') return false;
+ } else {
+ // It isn't a slash, is it the ?? / trigraph?
+ if (CurPtr[0] != '/' || CurPtr[-1] != '?' || CurPtr[-2] != '?' ||
+ CurPtr[-3] != '*')
+ return false;
+
+ // This is the trigraph ending the comment. Emit a stern warning!
+ CurPtr -= 2;
+
+ // If no trigraphs are enabled, warn that we ignored this trigraph and
+ // ignore this * character.
+ if (!L->getLangOpts().Trigraphs) {
+ if (!L->isLexingRawMode())
+ L->Diag(CurPtr, diag::trigraph_ignored_block_comment);
+ return false;
+ }
+ if (!L->isLexingRawMode())
+ L->Diag(CurPtr, diag::trigraph_ends_block_comment);
+ }
+
+ // Warn about having an escaped newline between the */ characters.
+ if (!L->isLexingRawMode())
+ L->Diag(CurPtr, diag::escaped_newline_block_comment_end);
+
+ // If there was space between the backslash and newline, warn about it.
+ if (HasSpace && !L->isLexingRawMode())
+ L->Diag(CurPtr, diag::backslash_newline_space);
+
+ return true;
+}
+
+#ifdef __SSE2__
+#include <emmintrin.h>
+#elif __ALTIVEC__
+#include <altivec.h>
+#undef bool
+#endif
+
+/// We have just read from input the / and * characters that started a comment.
+/// Read until we find the * and / characters that terminate the comment.
+/// Note that we don't bother decoding trigraphs or escaped newlines in block
+/// comments, because they cannot cause the comment to end. The only thing
+/// that can happen is the comment could end with an escaped newline between
+/// the terminating * and /.
+///
+/// If we're in KeepCommentMode or any CommentHandler has inserted
+/// some tokens, this will store the first token and return true.
+bool Lexer::SkipBlockComment(Token &Result, const char *CurPtr,
+ bool &TokAtPhysicalStartOfLine) {
+ // Scan one character past where we should, looking for a '/' character. Once
+ // we find it, check to see if it was preceded by a *. This common
+ // optimization helps people who like to put a lot of * characters in their
+ // comments.
+
+ // The first character we get with newlines and trigraphs skipped to handle
+ // the degenerate /*/ case below correctly if the * has an escaped newline
+ // after it.
+ unsigned CharSize;
+ unsigned char C = getCharAndSize(CurPtr, CharSize);
+ CurPtr += CharSize;
+ if (C == 0 && CurPtr == BufferEnd+1) {
+ if (!isLexingRawMode())
+ Diag(BufferPtr, diag::err_unterminated_block_comment);
+ --CurPtr;
+
+ // KeepWhitespaceMode should return this broken comment as a token. Since
+ // it isn't a well formed comment, just return it as an 'unknown' token.
+ if (isKeepWhitespaceMode()) {
+ FormTokenWithChars(Result, CurPtr, tok::unknown);
+ return true;
+ }
+
+ BufferPtr = CurPtr;
+ return false;
+ }
+
+ // Check to see if the first character after the '/*' is another /. If so,
+ // then this slash does not end the block comment, it is part of it.
+ if (C == '/')
+ C = *CurPtr++;
+
+ while (1) {
+ // Skip over all non-interesting characters until we find end of buffer or a
+ // (probably ending) '/' character.
+ if (CurPtr + 24 < BufferEnd &&
+ // If there is a code-completion point avoid the fast scan because it
+ // doesn't check for '\0'.
+ !(PP && PP->getCodeCompletionFileLoc() == FileLoc)) {
+ // While not aligned to a 16-byte boundary.
+ while (C != '/' && ((intptr_t)CurPtr & 0x0F) != 0)
+ C = *CurPtr++;
+
+ if (C == '/') goto FoundSlash;
+
+#ifdef __SSE2__
+ __m128i Slashes = _mm_set1_epi8('/');
+ while (CurPtr+16 <= BufferEnd) {
+ int cmp = _mm_movemask_epi8(_mm_cmpeq_epi8(*(const __m128i*)CurPtr,
+ Slashes));
+ if (cmp != 0) {
+ // Adjust the pointer to point directly after the first slash. It's
+ // not necessary to set C here, it will be overwritten at the end of
+ // the outer loop.
+ CurPtr += llvm::countTrailingZeros<unsigned>(cmp) + 1;
+ goto FoundSlash;
+ }
+ CurPtr += 16;
+ }
+#elif __ALTIVEC__
+ __vector unsigned char Slashes = {
+ '/', '/', '/', '/', '/', '/', '/', '/',
+ '/', '/', '/', '/', '/', '/', '/', '/'
+ };
+ while (CurPtr+16 <= BufferEnd &&
+ !vec_any_eq(*(const vector unsigned char*)CurPtr, Slashes))
+ CurPtr += 16;
+#else
+ // Scan for '/' quickly. Many block comments are very large.
+ while (CurPtr[0] != '/' &&
+ CurPtr[1] != '/' &&
+ CurPtr[2] != '/' &&
+ CurPtr[3] != '/' &&
+ CurPtr+4 < BufferEnd) {
+ CurPtr += 4;
+ }
+#endif
+
+ // It has to be one of the bytes scanned, increment to it and read one.
+ C = *CurPtr++;
+ }
+
+ // Loop to scan the remainder.
+ while (C != '/' && C != '\0')
+ C = *CurPtr++;
+
+ if (C == '/') {
+ FoundSlash:
+ if (CurPtr[-2] == '*') // We found the final */. We're done!
+ break;
+
+ if ((CurPtr[-2] == '\n' || CurPtr[-2] == '\r')) {
+ if (isEndOfBlockCommentWithEscapedNewLine(CurPtr-2, this)) {
+ // We found the final */, though it had an escaped newline between the
+ // * and /. We're done!
+ break;
+ }
+ }
+ if (CurPtr[0] == '*' && CurPtr[1] != '/') {
+ // If this is a /* inside of the comment, emit a warning. Don't do this
+ // if this is a /*/, which will end the comment. This misses cases with
+ // embedded escaped newlines, but oh well.
+ if (!isLexingRawMode())
+ Diag(CurPtr-1, diag::warn_nested_block_comment);
+ }
+ } else if (C == 0 && CurPtr == BufferEnd+1) {
+ if (!isLexingRawMode())
+ Diag(BufferPtr, diag::err_unterminated_block_comment);
+ // Note: the user probably forgot a */. We could continue immediately
+ // after the /*, but this would involve lexing a lot of what really is the
+ // comment, which surely would confuse the parser.
+ --CurPtr;
+
+ // KeepWhitespaceMode should return this broken comment as a token. Since
+ // it isn't a well formed comment, just return it as an 'unknown' token.
+ if (isKeepWhitespaceMode()) {
+ FormTokenWithChars(Result, CurPtr, tok::unknown);
+ return true;
+ }
+
+ BufferPtr = CurPtr;
+ return false;
+ } else if (C == '\0' && isCodeCompletionPoint(CurPtr-1)) {
+ PP->CodeCompleteNaturalLanguage();
+ cutOffLexing();
+ return false;
+ }
+
+ C = *CurPtr++;
+ }
+
+ // Notify comment handlers about the comment unless we're in a #if 0 block.
+ if (PP && !isLexingRawMode() &&
+ PP->HandleComment(Result, SourceRange(getSourceLocation(BufferPtr),
+ getSourceLocation(CurPtr)))) {
+ BufferPtr = CurPtr;
+ return true; // A token has to be returned.
+ }
+
+ // If we are returning comments as tokens, return this comment as a token.
+ if (inKeepCommentMode()) {
+ FormTokenWithChars(Result, CurPtr, tok::comment);
+ return true;
+ }
+
+ // It is common for the tokens immediately after a /**/ comment to be
+ // whitespace. Instead of going through the big switch, handle it
+ // efficiently now. This is safe even in KeepWhitespaceMode because we would
+ // have already returned above with the comment as a token.
+ if (isHorizontalWhitespace(*CurPtr)) {
+ SkipWhitespace(Result, CurPtr+1, TokAtPhysicalStartOfLine);
+ return false;
+ }
+
+ // Otherwise, just return so that the next character will be lexed as a token.
+ BufferPtr = CurPtr;
+ Result.setFlag(Token::LeadingSpace);
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Primary Lexing Entry Points
+//===----------------------------------------------------------------------===//
+
+/// ReadToEndOfLine - Read the rest of the current preprocessor line as an
+/// uninterpreted string. This switches the lexer out of directive mode.
+void Lexer::ReadToEndOfLine(SmallVectorImpl<char> *Result) {
+ assert(ParsingPreprocessorDirective && ParsingFilename == false &&
+ "Must be in a preprocessing directive!");
+ Token Tmp;
+
+ // CurPtr - Cache BufferPtr in an automatic variable.
+ const char *CurPtr = BufferPtr;
+ while (1) {
+ char Char = getAndAdvanceChar(CurPtr, Tmp);
+ switch (Char) {
+ default:
+ if (Result)
+ Result->push_back(Char);
+ break;
+ case 0: // Null.
+ // Found end of file?
+ if (CurPtr-1 != BufferEnd) {
+ if (isCodeCompletionPoint(CurPtr-1)) {
+ PP->CodeCompleteNaturalLanguage();
+ cutOffLexing();
+ return;
+ }
+
+ // Nope, normal character, continue.
+ if (Result)
+ Result->push_back(Char);
+ break;
+ }
+ // FALL THROUGH.
+ case '\r':
+ case '\n':
+ // Okay, we found the end of the line. First, back up past the \0, \r, \n.
+ assert(CurPtr[-1] == Char && "Trigraphs for newline?");
+ BufferPtr = CurPtr-1;
+
+ // Next, lex the character, which should handle the EOD transition.
+ Lex(Tmp);
+ if (Tmp.is(tok::code_completion)) {
+ if (PP)
+ PP->CodeCompleteNaturalLanguage();
+ Lex(Tmp);
+ }
+ assert(Tmp.is(tok::eod) && "Unexpected token!");
+
+ // Finally, we're done;
+ return;
+ }
+ }
+}
+
+/// LexEndOfFile - CurPtr points to the end of this file. Handle this
+/// condition, reporting diagnostics and handling other edge cases as required.
+/// This returns true if Result contains a token, false if PP.Lex should be
+/// called again.
+bool Lexer::LexEndOfFile(Token &Result, const char *CurPtr) {
+ // If we hit the end of the file while parsing a preprocessor directive,
+ // end the preprocessor directive first. The next token returned will
+ // then be the end of file.
+ if (ParsingPreprocessorDirective) {
+ // Done parsing the "line".
+ ParsingPreprocessorDirective = false;
+ // Update the location of token as well as BufferPtr.
+ FormTokenWithChars(Result, CurPtr, tok::eod);
+
+ // Restore comment saving mode, in case it was disabled for directive.
+ if (PP)
+ resetExtendedTokenMode();
+ return true; // Have a token.
+ }
+
+ // If we are in raw mode, return this event as an EOF token. Let the caller
+ // that put us in raw mode handle the event.
+ if (isLexingRawMode()) {
+ Result.startToken();
+ BufferPtr = BufferEnd;
+ FormTokenWithChars(Result, BufferEnd, tok::eof);
+ return true;
+ }
+
+ // Issue diagnostics for unterminated #if and missing newline.
+
+ // If we are in a #if directive, emit an error.
+ while (!ConditionalStack.empty()) {
+ if (PP->getCodeCompletionFileLoc() != FileLoc)
+ PP->Diag(ConditionalStack.back().IfLoc,
+ diag::err_pp_unterminated_conditional);
+ ConditionalStack.pop_back();
+ }
+
+ // C99 5.1.1.2p2: If the file is non-empty and didn't end in a newline, issue
+ // a pedwarn.
+ if (CurPtr != BufferStart && (CurPtr[-1] != '\n' && CurPtr[-1] != '\r')) {
+ DiagnosticsEngine &Diags = PP->getDiagnostics();
+ SourceLocation EndLoc = getSourceLocation(BufferEnd);
+ unsigned DiagID;
+
+ if (LangOpts.CPlusPlus11) {
+ // C++11 [lex.phases] 2.2 p2
+ // Prefer the C++98 pedantic compatibility warning over the generic,
+ // non-extension, user-requested "missing newline at EOF" warning.
+ if (!Diags.isIgnored(diag::warn_cxx98_compat_no_newline_eof, EndLoc)) {
+ DiagID = diag::warn_cxx98_compat_no_newline_eof;
+ } else {
+ DiagID = diag::warn_no_newline_eof;
+ }
+ } else {
+ DiagID = diag::ext_no_newline_eof;
+ }
+
+ Diag(BufferEnd, DiagID)
+ << FixItHint::CreateInsertion(EndLoc, "\n");
+ }
+
+ BufferPtr = CurPtr;
+
+ // Finally, let the preprocessor handle this.
+ return PP->HandleEndOfFile(Result, isPragmaLexer());
+}
+
+/// isNextPPTokenLParen - Return 1 if the next unexpanded token lexed from
+/// the specified lexer will return a tok::l_paren token, 0 if it is something
+/// else and 2 if there are no more tokens in the buffer controlled by the
+/// lexer.
+unsigned Lexer::isNextPPTokenLParen() {
+ assert(!LexingRawMode && "How can we expand a macro from a skipping buffer?");
+
+ // Switch to 'skipping' mode. This will ensure that we can lex a token
+ // without emitting diagnostics, disables macro expansion, and will cause EOF
+ // to return an EOF token instead of popping the include stack.
+ LexingRawMode = true;
+
+ // Save state that can be changed while lexing so that we can restore it.
+ const char *TmpBufferPtr = BufferPtr;
+ bool inPPDirectiveMode = ParsingPreprocessorDirective;
+ bool atStartOfLine = IsAtStartOfLine;
+ bool atPhysicalStartOfLine = IsAtPhysicalStartOfLine;
+ bool leadingSpace = HasLeadingSpace;
+
+ Token Tok;
+ Lex(Tok);
+
+ // Restore state that may have changed.
+ BufferPtr = TmpBufferPtr;
+ ParsingPreprocessorDirective = inPPDirectiveMode;
+ HasLeadingSpace = leadingSpace;
+ IsAtStartOfLine = atStartOfLine;
+ IsAtPhysicalStartOfLine = atPhysicalStartOfLine;
+
+ // Restore the lexer back to non-skipping mode.
+ LexingRawMode = false;
+
+ if (Tok.is(tok::eof))
+ return 2;
+ return Tok.is(tok::l_paren);
+}
+
+/// \brief Find the end of a version control conflict marker.
+static const char *FindConflictEnd(const char *CurPtr, const char *BufferEnd,
+ ConflictMarkerKind CMK) {
+ const char *Terminator = CMK == CMK_Perforce ? "<<<<\n" : ">>>>>>>";
+ size_t TermLen = CMK == CMK_Perforce ? 5 : 7;
+ StringRef RestOfBuffer(CurPtr+TermLen, BufferEnd-CurPtr-TermLen);
+ size_t Pos = RestOfBuffer.find(Terminator);
+ while (Pos != StringRef::npos) {
+ // Must occur at start of line.
+ if (Pos == 0 ||
+ (RestOfBuffer[Pos - 1] != '\r' && RestOfBuffer[Pos - 1] != '\n')) {
+ RestOfBuffer = RestOfBuffer.substr(Pos+TermLen);
+ Pos = RestOfBuffer.find(Terminator);
+ continue;
+ }
+ return RestOfBuffer.data()+Pos;
+ }
+ return nullptr;
+}
+
+/// IsStartOfConflictMarker - If the specified pointer is the start of a version
+/// control conflict marker like '<<<<<<<', recognize it as such, emit an error
+/// and recover nicely. This returns true if it is a conflict marker and false
+/// if not.
+bool Lexer::IsStartOfConflictMarker(const char *CurPtr) {
+ // Only a conflict marker if it starts at the beginning of a line.
+ if (CurPtr != BufferStart &&
+ CurPtr[-1] != '\n' && CurPtr[-1] != '\r')
+ return false;
+
+ // Check to see if we have <<<<<<< or >>>>.
+ if ((BufferEnd-CurPtr < 8 || StringRef(CurPtr, 7) != "<<<<<<<") &&
+ (BufferEnd-CurPtr < 6 || StringRef(CurPtr, 5) != ">>>> "))
+ return false;
+
+ // If we have a situation where we don't care about conflict markers, ignore
+ // it.
+ if (CurrentConflictMarkerState || isLexingRawMode())
+ return false;
+
+ ConflictMarkerKind Kind = *CurPtr == '<' ? CMK_Normal : CMK_Perforce;
+
+ // Check to see if there is an ending marker somewhere in the buffer at the
+ // start of a line to terminate this conflict marker.
+ if (FindConflictEnd(CurPtr, BufferEnd, Kind)) {
+ // We found a match. We are really in a conflict marker.
+ // Diagnose this, and ignore to the end of line.
+ Diag(CurPtr, diag::err_conflict_marker);
+ CurrentConflictMarkerState = Kind;
+
+ // Skip ahead to the end of line. We know this exists because the
+ // end-of-conflict marker starts with \r or \n.
+ while (*CurPtr != '\r' && *CurPtr != '\n') {
+ assert(CurPtr != BufferEnd && "Didn't find end of line");
+ ++CurPtr;
+ }
+ BufferPtr = CurPtr;
+ return true;
+ }
+
+ // No end of conflict marker found.
+ return false;
+}
+
+
+/// HandleEndOfConflictMarker - If this is a '====' or '||||' or '>>>>', or if
+/// it is '<<<<' and the conflict marker started with a '>>>>' marker, then it
+/// is the end of a conflict marker. Handle it by ignoring up until the end of
+/// the line. This returns true if it is a conflict marker and false if not.
+bool Lexer::HandleEndOfConflictMarker(const char *CurPtr) {
+ // Only a conflict marker if it starts at the beginning of a line.
+ if (CurPtr != BufferStart &&
+ CurPtr[-1] != '\n' && CurPtr[-1] != '\r')
+ return false;
+
+ // If we have a situation where we don't care about conflict markers, ignore
+ // it.
+ if (!CurrentConflictMarkerState || isLexingRawMode())
+ return false;
+
+ // Check to see if we have the marker (4 characters in a row).
+ for (unsigned i = 1; i != 4; ++i)
+ if (CurPtr[i] != CurPtr[0])
+ return false;
+
+ // If we do have it, search for the end of the conflict marker. This could
+ // fail if it got skipped with a '#if 0' or something. Note that CurPtr might
+ // be the end of conflict marker.
+ if (const char *End = FindConflictEnd(CurPtr, BufferEnd,
+ CurrentConflictMarkerState)) {
+ CurPtr = End;
+
+ // Skip ahead to the end of line.
+ while (CurPtr != BufferEnd && *CurPtr != '\r' && *CurPtr != '\n')
+ ++CurPtr;
+
+ BufferPtr = CurPtr;
+
+ // No longer in the conflict marker.
+ CurrentConflictMarkerState = CMK_None;
+ return true;
+ }
+
+ return false;
+}
+
+bool Lexer::isCodeCompletionPoint(const char *CurPtr) const {
+ if (PP && PP->isCodeCompletionEnabled()) {
+ SourceLocation Loc = FileLoc.getLocWithOffset(CurPtr-BufferStart);
+ return Loc == PP->getCodeCompletionLoc();
+ }
+
+ return false;
+}
+
+uint32_t Lexer::tryReadUCN(const char *&StartPtr, const char *SlashLoc,
+ Token *Result) {
+ unsigned CharSize;
+ char Kind = getCharAndSize(StartPtr, CharSize);
+
+ unsigned NumHexDigits;
+ if (Kind == 'u')
+ NumHexDigits = 4;
+ else if (Kind == 'U')
+ NumHexDigits = 8;
+ else
+ return 0;
+
+ if (!LangOpts.CPlusPlus && !LangOpts.C99) {
+ if (Result && !isLexingRawMode())
+ Diag(SlashLoc, diag::warn_ucn_not_valid_in_c89);
+ return 0;
+ }
+
+ const char *CurPtr = StartPtr + CharSize;
+ const char *KindLoc = &CurPtr[-1];
+
+ uint32_t CodePoint = 0;
+ for (unsigned i = 0; i < NumHexDigits; ++i) {
+ char C = getCharAndSize(CurPtr, CharSize);
+
+ unsigned Value = llvm::hexDigitValue(C);
+ if (Value == -1U) {
+ if (Result && !isLexingRawMode()) {
+ if (i == 0) {
+ Diag(BufferPtr, diag::warn_ucn_escape_no_digits)
+ << StringRef(KindLoc, 1);
+ } else {
+ Diag(BufferPtr, diag::warn_ucn_escape_incomplete);
+
+ // If the user wrote \U1234, suggest a fixit to \u.
+ if (i == 4 && NumHexDigits == 8) {
+ CharSourceRange URange = makeCharRange(*this, KindLoc, KindLoc + 1);
+ Diag(KindLoc, diag::note_ucn_four_not_eight)
+ << FixItHint::CreateReplacement(URange, "u");
+ }
+ }
+ }
+
+ return 0;
+ }
+
+ CodePoint <<= 4;
+ CodePoint += Value;
+
+ CurPtr += CharSize;
+ }
+
+ if (Result) {
+ Result->setFlag(Token::HasUCN);
+ if (CurPtr - StartPtr == (ptrdiff_t)NumHexDigits + 2)
+ StartPtr = CurPtr;
+ else
+ while (StartPtr != CurPtr)
+ (void)getAndAdvanceChar(StartPtr, *Result);
+ } else {
+ StartPtr = CurPtr;
+ }
+
+ // Don't apply C family restrictions to UCNs in assembly mode
+ if (LangOpts.AsmPreprocessor)
+ return CodePoint;
+
+ // C99 6.4.3p2: A universal character name shall not specify a character whose
+ // short identifier is less than 00A0 other than 0024 ($), 0040 (@), or
+ // 0060 (`), nor one in the range D800 through DFFF inclusive.)
+ // C++11 [lex.charset]p2: If the hexadecimal value for a
+ // universal-character-name corresponds to a surrogate code point (in the
+ // range 0xD800-0xDFFF, inclusive), the program is ill-formed. Additionally,
+ // if the hexadecimal value for a universal-character-name outside the
+ // c-char-sequence, s-char-sequence, or r-char-sequence of a character or
+ // string literal corresponds to a control character (in either of the
+ // ranges 0x00-0x1F or 0x7F-0x9F, both inclusive) or to a character in the
+ // basic source character set, the program is ill-formed.
+ if (CodePoint < 0xA0) {
+ if (CodePoint == 0x24 || CodePoint == 0x40 || CodePoint == 0x60)
+ return CodePoint;
+
+ // We don't use isLexingRawMode() here because we need to warn about bad
+ // UCNs even when skipping preprocessing tokens in a #if block.
+ if (Result && PP) {
+ if (CodePoint < 0x20 || CodePoint >= 0x7F)
+ Diag(BufferPtr, diag::err_ucn_control_character);
+ else {
+ char C = static_cast<char>(CodePoint);
+ Diag(BufferPtr, diag::err_ucn_escape_basic_scs) << StringRef(&C, 1);
+ }
+ }
+
+ return 0;
+
+ } else if (CodePoint >= 0xD800 && CodePoint <= 0xDFFF) {
+ // C++03 allows UCNs representing surrogate characters. C99 and C++11 don't.
+ // We don't use isLexingRawMode() here because we need to diagnose bad
+ // UCNs even when skipping preprocessing tokens in a #if block.
+ if (Result && PP) {
+ if (LangOpts.CPlusPlus && !LangOpts.CPlusPlus11)
+ Diag(BufferPtr, diag::warn_ucn_escape_surrogate);
+ else
+ Diag(BufferPtr, diag::err_ucn_escape_invalid);
+ }
+ return 0;
+ }
+
+ return CodePoint;
+}
+
+bool Lexer::CheckUnicodeWhitespace(Token &Result, uint32_t C,
+ const char *CurPtr) {
+ static const llvm::sys::UnicodeCharSet UnicodeWhitespaceChars(
+ UnicodeWhitespaceCharRanges);
+ if (!isLexingRawMode() && !PP->isPreprocessedOutput() &&
+ UnicodeWhitespaceChars.contains(C)) {
+ Diag(BufferPtr, diag::ext_unicode_whitespace)
+ << makeCharRange(*this, BufferPtr, CurPtr);
+
+ Result.setFlag(Token::LeadingSpace);
+ return true;
+ }
+ return false;
+}
+
+bool Lexer::LexUnicode(Token &Result, uint32_t C, const char *CurPtr) {
+ if (isAllowedIDChar(C, LangOpts) && isAllowedInitiallyIDChar(C, LangOpts)) {
+ if (!isLexingRawMode() && !ParsingPreprocessorDirective &&
+ !PP->isPreprocessedOutput()) {
+ maybeDiagnoseIDCharCompat(PP->getDiagnostics(), C,
+ makeCharRange(*this, BufferPtr, CurPtr),
+ /*IsFirst=*/true);
+ }
+
+ MIOpt.ReadToken();
+ return LexIdentifier(Result, CurPtr);
+ }
+
+ if (!isLexingRawMode() && !ParsingPreprocessorDirective &&
+ !PP->isPreprocessedOutput() &&
+ !isASCII(*BufferPtr) && !isAllowedIDChar(C, LangOpts)) {
+ // Non-ASCII characters tend to creep into source code unintentionally.
+ // Instead of letting the parser complain about the unknown token,
+ // just drop the character.
+ // Note that we can /only/ do this when the non-ASCII character is actually
+ // spelled as Unicode, not written as a UCN. The standard requires that
+ // we not throw away any possible preprocessor tokens, but there's a
+ // loophole in the mapping of Unicode characters to basic character set
+ // characters that allows us to map these particular characters to, say,
+ // whitespace.
+ Diag(BufferPtr, diag::err_non_ascii)
+ << FixItHint::CreateRemoval(makeCharRange(*this, BufferPtr, CurPtr));
+
+ BufferPtr = CurPtr;
+ return false;
+ }
+
+ // Otherwise, we have an explicit UCN or a character that's unlikely to show
+ // up by accident.
+ MIOpt.ReadToken();
+ FormTokenWithChars(Result, CurPtr, tok::unknown);
+ return true;
+}
+
+void Lexer::PropagateLineStartLeadingSpaceInfo(Token &Result) {
+ IsAtStartOfLine = Result.isAtStartOfLine();
+ HasLeadingSpace = Result.hasLeadingSpace();
+ HasLeadingEmptyMacro = Result.hasLeadingEmptyMacro();
+ // Note that this doesn't affect IsAtPhysicalStartOfLine.
+}
+
+bool Lexer::Lex(Token &Result) {
+ // Start a new token.
+ Result.startToken();
+
+ // Set up misc whitespace flags for LexTokenInternal.
+ if (IsAtStartOfLine) {
+ Result.setFlag(Token::StartOfLine);
+ IsAtStartOfLine = false;
+ }
+
+ if (HasLeadingSpace) {
+ Result.setFlag(Token::LeadingSpace);
+ HasLeadingSpace = false;
+ }
+
+ if (HasLeadingEmptyMacro) {
+ Result.setFlag(Token::LeadingEmptyMacro);
+ HasLeadingEmptyMacro = false;
+ }
+
+ bool atPhysicalStartOfLine = IsAtPhysicalStartOfLine;
+ IsAtPhysicalStartOfLine = false;
+ bool isRawLex = isLexingRawMode();
+ (void) isRawLex;
+ bool returnedToken = LexTokenInternal(Result, atPhysicalStartOfLine);
+ // (After the LexTokenInternal call, the lexer might be destroyed.)
+ assert((returnedToken || !isRawLex) && "Raw lex must succeed");
+ return returnedToken;
+}
+
+/// LexTokenInternal - This implements a simple C family lexer. It is an
+/// extremely performance critical piece of code. This assumes that the buffer
+/// has a null character at the end of the file. This returns a preprocessing
+/// token, not a normal token, as such, it is an internal interface. It assumes
+/// that the Flags of result have been cleared before calling this.
+bool Lexer::LexTokenInternal(Token &Result, bool TokAtPhysicalStartOfLine) {
+LexNextToken:
+ // New token, can't need cleaning yet.
+ Result.clearFlag(Token::NeedsCleaning);
+ Result.setIdentifierInfo(nullptr);
+
+ // CurPtr - Cache BufferPtr in an automatic variable.
+ const char *CurPtr = BufferPtr;
+
+ // Small amounts of horizontal whitespace is very common between tokens.
+ if ((*CurPtr == ' ') || (*CurPtr == '\t')) {
+ ++CurPtr;
+ while ((*CurPtr == ' ') || (*CurPtr == '\t'))
+ ++CurPtr;
+
+ // If we are keeping whitespace and other tokens, just return what we just
+ // skipped. The next lexer invocation will return the token after the
+ // whitespace.
+ if (isKeepWhitespaceMode()) {
+ FormTokenWithChars(Result, CurPtr, tok::unknown);
+ // FIXME: The next token will not have LeadingSpace set.
+ return true;
+ }
+
+ BufferPtr = CurPtr;
+ Result.setFlag(Token::LeadingSpace);
+ }
+
+ unsigned SizeTmp, SizeTmp2; // Temporaries for use in cases below.
+
+ // Read a character, advancing over it.
+ char Char = getAndAdvanceChar(CurPtr, Result);
+ tok::TokenKind Kind;
+
+ switch (Char) {
+ case 0: // Null.
+ // Found end of file?
+ if (CurPtr-1 == BufferEnd)
+ return LexEndOfFile(Result, CurPtr-1);
+
+ // Check if we are performing code completion.
+ if (isCodeCompletionPoint(CurPtr-1)) {
+ // Return the code-completion token.
+ Result.startToken();
+ FormTokenWithChars(Result, CurPtr, tok::code_completion);
+ return true;
+ }
+
+ if (!isLexingRawMode())
+ Diag(CurPtr-1, diag::null_in_file);
+ Result.setFlag(Token::LeadingSpace);
+ if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine))
+ return true; // KeepWhitespaceMode
+
+ // We know the lexer hasn't changed, so just try again with this lexer.
+ // (We manually eliminate the tail call to avoid recursion.)
+ goto LexNextToken;
+
+ case 26: // DOS & CP/M EOF: "^Z".
+ // If we're in Microsoft extensions mode, treat this as end of file.
+ if (LangOpts.MicrosoftExt)
+ return LexEndOfFile(Result, CurPtr-1);
+
+ // If Microsoft extensions are disabled, this is just random garbage.
+ Kind = tok::unknown;
+ break;
+
+ case '\n':
+ case '\r':
+ // If we are inside a preprocessor directive and we see the end of line,
+ // we know we are done with the directive, so return an EOD token.
+ if (ParsingPreprocessorDirective) {
+ // Done parsing the "line".
+ ParsingPreprocessorDirective = false;
+
+ // Restore comment saving mode, in case it was disabled for directive.
+ if (PP)
+ resetExtendedTokenMode();
+
+ // Since we consumed a newline, we are back at the start of a line.
+ IsAtStartOfLine = true;
+ IsAtPhysicalStartOfLine = true;
+
+ Kind = tok::eod;
+ break;
+ }
+
+ // No leading whitespace seen so far.
+ Result.clearFlag(Token::LeadingSpace);
+
+ if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine))
+ return true; // KeepWhitespaceMode
+
+ // We only saw whitespace, so just try again with this lexer.
+ // (We manually eliminate the tail call to avoid recursion.)
+ goto LexNextToken;
+ case ' ':
+ case '\t':
+ case '\f':
+ case '\v':
+ SkipHorizontalWhitespace:
+ Result.setFlag(Token::LeadingSpace);
+ if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine))
+ return true; // KeepWhitespaceMode
+
+ SkipIgnoredUnits:
+ CurPtr = BufferPtr;
+
+ // If the next token is obviously a // or /* */ comment, skip it efficiently
+ // too (without going through the big switch stmt).
+ if (CurPtr[0] == '/' && CurPtr[1] == '/' && !inKeepCommentMode() &&
+ LangOpts.LineComment &&
+ (LangOpts.CPlusPlus || !LangOpts.TraditionalCPP)) {
+ if (SkipLineComment(Result, CurPtr+2, TokAtPhysicalStartOfLine))
+ return true; // There is a token to return.
+ goto SkipIgnoredUnits;
+ } else if (CurPtr[0] == '/' && CurPtr[1] == '*' && !inKeepCommentMode()) {
+ if (SkipBlockComment(Result, CurPtr+2, TokAtPhysicalStartOfLine))
+ return true; // There is a token to return.
+ goto SkipIgnoredUnits;
+ } else if (isHorizontalWhitespace(*CurPtr)) {
+ goto SkipHorizontalWhitespace;
+ }
+ // We only saw whitespace, so just try again with this lexer.
+ // (We manually eliminate the tail call to avoid recursion.)
+ goto LexNextToken;
+
+ // C99 6.4.4.1: Integer Constants.
+ // C99 6.4.4.2: Floating Constants.
+ case '0': case '1': case '2': case '3': case '4':
+ case '5': case '6': case '7': case '8': case '9':
+ // Notify MIOpt that we read a non-whitespace/non-comment token.
+ MIOpt.ReadToken();
+ return LexNumericConstant(Result, CurPtr);
+
+ case 'u': // Identifier (uber) or C11/C++11 UTF-8 or UTF-16 string literal
+ // Notify MIOpt that we read a non-whitespace/non-comment token.
+ MIOpt.ReadToken();
+
+ if (LangOpts.CPlusPlus11 || LangOpts.C11) {
+ Char = getCharAndSize(CurPtr, SizeTmp);
+
+ // UTF-16 string literal
+ if (Char == '"')
+ return LexStringLiteral(Result, ConsumeChar(CurPtr, SizeTmp, Result),
+ tok::utf16_string_literal);
+
+ // UTF-16 character constant
+ if (Char == '\'')
+ return LexCharConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result),
+ tok::utf16_char_constant);
+
+ // UTF-16 raw string literal
+ if (Char == 'R' && LangOpts.CPlusPlus11 &&
+ getCharAndSize(CurPtr + SizeTmp, SizeTmp2) == '"')
+ return LexRawStringLiteral(Result,
+ ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
+ SizeTmp2, Result),
+ tok::utf16_string_literal);
+
+ if (Char == '8') {
+ char Char2 = getCharAndSize(CurPtr + SizeTmp, SizeTmp2);
+
+ // UTF-8 string literal
+ if (Char2 == '"')
+ return LexStringLiteral(Result,
+ ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
+ SizeTmp2, Result),
+ tok::utf8_string_literal);
+ if (Char2 == '\'' && LangOpts.CPlusPlus1z)
+ return LexCharConstant(
+ Result, ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
+ SizeTmp2, Result),
+ tok::utf8_char_constant);
+
+ if (Char2 == 'R' && LangOpts.CPlusPlus11) {
+ unsigned SizeTmp3;
+ char Char3 = getCharAndSize(CurPtr + SizeTmp + SizeTmp2, SizeTmp3);
+ // UTF-8 raw string literal
+ if (Char3 == '"') {
+ return LexRawStringLiteral(Result,
+ ConsumeChar(ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
+ SizeTmp2, Result),
+ SizeTmp3, Result),
+ tok::utf8_string_literal);
+ }
+ }
+ }
+ }
+
+ // treat u like the start of an identifier.
+ return LexIdentifier(Result, CurPtr);
+
+ case 'U': // Identifier (Uber) or C11/C++11 UTF-32 string literal
+ // Notify MIOpt that we read a non-whitespace/non-comment token.
+ MIOpt.ReadToken();
+
+ if (LangOpts.CPlusPlus11 || LangOpts.C11) {
+ Char = getCharAndSize(CurPtr, SizeTmp);
+
+ // UTF-32 string literal
+ if (Char == '"')
+ return LexStringLiteral(Result, ConsumeChar(CurPtr, SizeTmp, Result),
+ tok::utf32_string_literal);
+
+ // UTF-32 character constant
+ if (Char == '\'')
+ return LexCharConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result),
+ tok::utf32_char_constant);
+
+ // UTF-32 raw string literal
+ if (Char == 'R' && LangOpts.CPlusPlus11 &&
+ getCharAndSize(CurPtr + SizeTmp, SizeTmp2) == '"')
+ return LexRawStringLiteral(Result,
+ ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
+ SizeTmp2, Result),
+ tok::utf32_string_literal);
+ }
+
+ // treat U like the start of an identifier.
+ return LexIdentifier(Result, CurPtr);
+
+ case 'R': // Identifier or C++0x raw string literal
+ // Notify MIOpt that we read a non-whitespace/non-comment token.
+ MIOpt.ReadToken();
+
+ if (LangOpts.CPlusPlus11) {
+ Char = getCharAndSize(CurPtr, SizeTmp);
+
+ if (Char == '"')
+ return LexRawStringLiteral(Result,
+ ConsumeChar(CurPtr, SizeTmp, Result),
+ tok::string_literal);
+ }
+
+ // treat R like the start of an identifier.
+ return LexIdentifier(Result, CurPtr);
+
+ case 'L': // Identifier (Loony) or wide literal (L'x' or L"xyz").
+ // Notify MIOpt that we read a non-whitespace/non-comment token.
+ MIOpt.ReadToken();
+ Char = getCharAndSize(CurPtr, SizeTmp);
+
+ // Wide string literal.
+ if (Char == '"')
+ return LexStringLiteral(Result, ConsumeChar(CurPtr, SizeTmp, Result),
+ tok::wide_string_literal);
+
+ // Wide raw string literal.
+ if (LangOpts.CPlusPlus11 && Char == 'R' &&
+ getCharAndSize(CurPtr + SizeTmp, SizeTmp2) == '"')
+ return LexRawStringLiteral(Result,
+ ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
+ SizeTmp2, Result),
+ tok::wide_string_literal);
+
+ // Wide character constant.
+ if (Char == '\'')
+ return LexCharConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result),
+ tok::wide_char_constant);
+ // FALL THROUGH, treating L like the start of an identifier.
+
+ // C99 6.4.2: Identifiers.
+ case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': case 'G':
+ case 'H': case 'I': case 'J': case 'K': /*'L'*/case 'M': case 'N':
+ case 'O': case 'P': case 'Q': /*'R'*/case 'S': case 'T': /*'U'*/
+ case 'V': case 'W': case 'X': case 'Y': case 'Z':
+ case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'g':
+ case 'h': case 'i': case 'j': case 'k': case 'l': case 'm': case 'n':
+ case 'o': case 'p': case 'q': case 'r': case 's': case 't': /*'u'*/
+ case 'v': case 'w': case 'x': case 'y': case 'z':
+ case '_':
+ // Notify MIOpt that we read a non-whitespace/non-comment token.
+ MIOpt.ReadToken();
+ return LexIdentifier(Result, CurPtr);
+
+ case '$': // $ in identifiers.
+ if (LangOpts.DollarIdents) {
+ if (!isLexingRawMode())
+ Diag(CurPtr-1, diag::ext_dollar_in_identifier);
+ // Notify MIOpt that we read a non-whitespace/non-comment token.
+ MIOpt.ReadToken();
+ return LexIdentifier(Result, CurPtr);
+ }
+
+ Kind = tok::unknown;
+ break;
+
+ // C99 6.4.4: Character Constants.
+ case '\'':
+ // Notify MIOpt that we read a non-whitespace/non-comment token.
+ MIOpt.ReadToken();
+ return LexCharConstant(Result, CurPtr, tok::char_constant);
+
+ // C99 6.4.5: String Literals.
+ case '"':
+ // Notify MIOpt that we read a non-whitespace/non-comment token.
+ MIOpt.ReadToken();
+ return LexStringLiteral(Result, CurPtr, tok::string_literal);
+
+ // C99 6.4.6: Punctuators.
+ case '?':
+ Kind = tok::question;
+ break;
+ case '[':
+ Kind = tok::l_square;
+ break;
+ case ']':
+ Kind = tok::r_square;
+ break;
+ case '(':
+ Kind = tok::l_paren;
+ break;
+ case ')':
+ Kind = tok::r_paren;
+ break;
+ case '{':
+ Kind = tok::l_brace;
+ break;
+ case '}':
+ Kind = tok::r_brace;
+ break;
+ case '.':
+ Char = getCharAndSize(CurPtr, SizeTmp);
+ if (Char >= '0' && Char <= '9') {
+ // Notify MIOpt that we read a non-whitespace/non-comment token.
+ MIOpt.ReadToken();
+
+ return LexNumericConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result));
+ } else if (LangOpts.CPlusPlus && Char == '*') {
+ Kind = tok::periodstar;
+ CurPtr += SizeTmp;
+ } else if (Char == '.' &&
+ getCharAndSize(CurPtr+SizeTmp, SizeTmp2) == '.') {
+ Kind = tok::ellipsis;
+ CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
+ SizeTmp2, Result);
+ } else {
+ Kind = tok::period;
+ }
+ break;
+ case '&':
+ Char = getCharAndSize(CurPtr, SizeTmp);
+ if (Char == '&') {
+ Kind = tok::ampamp;
+ CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
+ } else if (Char == '=') {
+ Kind = tok::ampequal;
+ CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
+ } else {
+ Kind = tok::amp;
+ }
+ break;
+ case '*':
+ if (getCharAndSize(CurPtr, SizeTmp) == '=') {
+ Kind = tok::starequal;
+ CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
+ } else {
+ Kind = tok::star;
+ }
+ break;
+ case '+':
+ Char = getCharAndSize(CurPtr, SizeTmp);
+ if (Char == '+') {
+ CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
+ Kind = tok::plusplus;
+ } else if (Char == '=') {
+ CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
+ Kind = tok::plusequal;
+ } else {
+ Kind = tok::plus;
+ }
+ break;
+ case '-':
+ Char = getCharAndSize(CurPtr, SizeTmp);
+ if (Char == '-') { // --
+ CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
+ Kind = tok::minusminus;
+ } else if (Char == '>' && LangOpts.CPlusPlus &&
+ getCharAndSize(CurPtr+SizeTmp, SizeTmp2) == '*') { // C++ ->*
+ CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
+ SizeTmp2, Result);
+ Kind = tok::arrowstar;
+ } else if (Char == '>') { // ->
+ CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
+ Kind = tok::arrow;
+ } else if (Char == '=') { // -=
+ CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
+ Kind = tok::minusequal;
+ } else {
+ Kind = tok::minus;
+ }
+ break;
+ case '~':
+ Kind = tok::tilde;
+ break;
+ case '!':
+ if (getCharAndSize(CurPtr, SizeTmp) == '=') {
+ Kind = tok::exclaimequal;
+ CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
+ } else {
+ Kind = tok::exclaim;
+ }
+ break;
+ case '/':
+ // 6.4.9: Comments
+ Char = getCharAndSize(CurPtr, SizeTmp);
+ if (Char == '/') { // Line comment.
+ // Even if Line comments are disabled (e.g. in C89 mode), we generally
+ // want to lex this as a comment. There is one problem with this though,
+ // that in one particular corner case, this can change the behavior of the
+ // resultant program. For example, In "foo //**/ bar", C89 would lex
+ // this as "foo / bar" and langauges with Line comments would lex it as
+ // "foo". Check to see if the character after the second slash is a '*'.
+ // If so, we will lex that as a "/" instead of the start of a comment.
+ // However, we never do this if we are just preprocessing.
+ bool TreatAsComment = LangOpts.LineComment &&
+ (LangOpts.CPlusPlus || !LangOpts.TraditionalCPP);
+ if (!TreatAsComment)
+ if (!(PP && PP->isPreprocessedOutput()))
+ TreatAsComment = getCharAndSize(CurPtr+SizeTmp, SizeTmp2) != '*';
+
+ if (TreatAsComment) {
+ if (SkipLineComment(Result, ConsumeChar(CurPtr, SizeTmp, Result),
+ TokAtPhysicalStartOfLine))
+ return true; // There is a token to return.
+
+ // It is common for the tokens immediately after a // comment to be
+ // whitespace (indentation for the next line). Instead of going through
+ // the big switch, handle it efficiently now.
+ goto SkipIgnoredUnits;
+ }
+ }
+
+ if (Char == '*') { // /**/ comment.
+ if (SkipBlockComment(Result, ConsumeChar(CurPtr, SizeTmp, Result),
+ TokAtPhysicalStartOfLine))
+ return true; // There is a token to return.
+
+ // We only saw whitespace, so just try again with this lexer.
+ // (We manually eliminate the tail call to avoid recursion.)
+ goto LexNextToken;
+ }
+
+ if (Char == '=') {
+ CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
+ Kind = tok::slashequal;
+ } else {
+ Kind = tok::slash;
+ }
+ break;
+ case '%':
+ Char = getCharAndSize(CurPtr, SizeTmp);
+ if (Char == '=') {
+ Kind = tok::percentequal;
+ CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
+ } else if (LangOpts.Digraphs && Char == '>') {
+ Kind = tok::r_brace; // '%>' -> '}'
+ CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
+ } else if (LangOpts.Digraphs && Char == ':') {
+ CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
+ Char = getCharAndSize(CurPtr, SizeTmp);
+ if (Char == '%' && getCharAndSize(CurPtr+SizeTmp, SizeTmp2) == ':') {
+ Kind = tok::hashhash; // '%:%:' -> '##'
+ CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
+ SizeTmp2, Result);
+ } else if (Char == '@' && LangOpts.MicrosoftExt) {// %:@ -> #@ -> Charize
+ CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
+ if (!isLexingRawMode())
+ Diag(BufferPtr, diag::ext_charize_microsoft);
+ Kind = tok::hashat;
+ } else { // '%:' -> '#'
+ // We parsed a # character. If this occurs at the start of the line,
+ // it's actually the start of a preprocessing directive. Callback to
+ // the preprocessor to handle it.
+ // TODO: -fpreprocessed mode??
+ if (TokAtPhysicalStartOfLine && !LexingRawMode && !Is_PragmaLexer)
+ goto HandleDirective;
+
+ Kind = tok::hash;
+ }
+ } else {
+ Kind = tok::percent;
+ }
+ break;
+ case '<':
+ Char = getCharAndSize(CurPtr, SizeTmp);
+ if (ParsingFilename) {
+ return LexAngledStringLiteral(Result, CurPtr);
+ } else if (Char == '<') {
+ char After = getCharAndSize(CurPtr+SizeTmp, SizeTmp2);
+ if (After == '=') {
+ Kind = tok::lesslessequal;
+ CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
+ SizeTmp2, Result);
+ } else if (After == '<' && IsStartOfConflictMarker(CurPtr-1)) {
+ // If this is actually a '<<<<<<<' version control conflict marker,
+ // recognize it as such and recover nicely.
+ goto LexNextToken;
+ } else if (After == '<' && HandleEndOfConflictMarker(CurPtr-1)) {
+ // If this is '<<<<' and we're in a Perforce-style conflict marker,
+ // ignore it.
+ goto LexNextToken;
+ } else if (LangOpts.CUDA && After == '<') {
+ Kind = tok::lesslessless;
+ CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
+ SizeTmp2, Result);
+ } else {
+ CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
+ Kind = tok::lessless;
+ }
+ } else if (Char == '=') {
+ CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
+ Kind = tok::lessequal;
+ } else if (LangOpts.Digraphs && Char == ':') { // '<:' -> '['
+ if (LangOpts.CPlusPlus11 &&
+ getCharAndSize(CurPtr + SizeTmp, SizeTmp2) == ':') {
+ // C++0x [lex.pptoken]p3:
+ // Otherwise, if the next three characters are <:: and the subsequent
+ // character is neither : nor >, the < is treated as a preprocessor
+ // token by itself and not as the first character of the alternative
+ // token <:.
+ unsigned SizeTmp3;
+ char After = getCharAndSize(CurPtr + SizeTmp + SizeTmp2, SizeTmp3);
+ if (After != ':' && After != '>') {
+ Kind = tok::less;
+ if (!isLexingRawMode())
+ Diag(BufferPtr, diag::warn_cxx98_compat_less_colon_colon);
+ break;
+ }
+ }
+
+ CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
+ Kind = tok::l_square;
+ } else if (LangOpts.Digraphs && Char == '%') { // '<%' -> '{'
+ CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
+ Kind = tok::l_brace;
+ } else {
+ Kind = tok::less;
+ }
+ break;
+ case '>':
+ Char = getCharAndSize(CurPtr, SizeTmp);
+ if (Char == '=') {
+ CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
+ Kind = tok::greaterequal;
+ } else if (Char == '>') {
+ char After = getCharAndSize(CurPtr+SizeTmp, SizeTmp2);
+ if (After == '=') {
+ CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
+ SizeTmp2, Result);
+ Kind = tok::greatergreaterequal;
+ } else if (After == '>' && IsStartOfConflictMarker(CurPtr-1)) {
+ // If this is actually a '>>>>' conflict marker, recognize it as such
+ // and recover nicely.
+ goto LexNextToken;
+ } else if (After == '>' && HandleEndOfConflictMarker(CurPtr-1)) {
+ // If this is '>>>>>>>' and we're in a conflict marker, ignore it.
+ goto LexNextToken;
+ } else if (LangOpts.CUDA && After == '>') {
+ Kind = tok::greatergreatergreater;
+ CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
+ SizeTmp2, Result);
+ } else {
+ CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
+ Kind = tok::greatergreater;
+ }
+
+ } else {
+ Kind = tok::greater;
+ }
+ break;
+ case '^':
+ Char = getCharAndSize(CurPtr, SizeTmp);
+ if (Char == '=') {
+ CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
+ Kind = tok::caretequal;
+ } else {
+ Kind = tok::caret;
+ }
+ break;
+ case '|':
+ Char = getCharAndSize(CurPtr, SizeTmp);
+ if (Char == '=') {
+ Kind = tok::pipeequal;
+ CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
+ } else if (Char == '|') {
+ // If this is '|||||||' and we're in a conflict marker, ignore it.
+ if (CurPtr[1] == '|' && HandleEndOfConflictMarker(CurPtr-1))
+ goto LexNextToken;
+ Kind = tok::pipepipe;
+ CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
+ } else {
+ Kind = tok::pipe;
+ }
+ break;
+ case ':':
+ Char = getCharAndSize(CurPtr, SizeTmp);
+ if (LangOpts.Digraphs && Char == '>') {
+ Kind = tok::r_square; // ':>' -> ']'
+ CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
+ } else if (LangOpts.CPlusPlus && Char == ':') {
+ Kind = tok::coloncolon;
+ CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
+ } else {
+ Kind = tok::colon;
+ }
+ break;
+ case ';':
+ Kind = tok::semi;
+ break;
+ case '=':
+ Char = getCharAndSize(CurPtr, SizeTmp);
+ if (Char == '=') {
+ // If this is '====' and we're in a conflict marker, ignore it.
+ if (CurPtr[1] == '=' && HandleEndOfConflictMarker(CurPtr-1))
+ goto LexNextToken;
+
+ Kind = tok::equalequal;
+ CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
+ } else {
+ Kind = tok::equal;
+ }
+ break;
+ case ',':
+ Kind = tok::comma;
+ break;
+ case '#':
+ Char = getCharAndSize(CurPtr, SizeTmp);
+ if (Char == '#') {
+ Kind = tok::hashhash;
+ CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
+ } else if (Char == '@' && LangOpts.MicrosoftExt) { // #@ -> Charize
+ Kind = tok::hashat;
+ if (!isLexingRawMode())
+ Diag(BufferPtr, diag::ext_charize_microsoft);
+ CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
+ } else {
+ // We parsed a # character. If this occurs at the start of the line,
+ // it's actually the start of a preprocessing directive. Callback to
+ // the preprocessor to handle it.
+ // TODO: -fpreprocessed mode??
+ if (TokAtPhysicalStartOfLine && !LexingRawMode && !Is_PragmaLexer)
+ goto HandleDirective;
+
+ Kind = tok::hash;
+ }
+ break;
+
+ case '@':
+ // Objective C support.
+ if (CurPtr[-1] == '@' && LangOpts.ObjC1)
+ Kind = tok::at;
+ else
+ Kind = tok::unknown;
+ break;
+
+ // UCNs (C99 6.4.3, C++11 [lex.charset]p2)
+ case '\\':
+ if (uint32_t CodePoint = tryReadUCN(CurPtr, BufferPtr, &Result)) {
+ if (CheckUnicodeWhitespace(Result, CodePoint, CurPtr)) {
+ if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine))
+ return true; // KeepWhitespaceMode
+
+ // We only saw whitespace, so just try again with this lexer.
+ // (We manually eliminate the tail call to avoid recursion.)
+ goto LexNextToken;
+ }
+
+ return LexUnicode(Result, CodePoint, CurPtr);
+ }
+
+ Kind = tok::unknown;
+ break;
+
+ default: {
+ if (isASCII(Char)) {
+ Kind = tok::unknown;
+ break;
+ }
+
+ UTF32 CodePoint;
+
+ // We can't just reset CurPtr to BufferPtr because BufferPtr may point to
+ // an escaped newline.
+ --CurPtr;
+ ConversionResult Status =
+ llvm::convertUTF8Sequence((const UTF8 **)&CurPtr,
+ (const UTF8 *)BufferEnd,
+ &CodePoint,
+ strictConversion);
+ if (Status == conversionOK) {
+ if (CheckUnicodeWhitespace(Result, CodePoint, CurPtr)) {
+ if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine))
+ return true; // KeepWhitespaceMode
+
+ // We only saw whitespace, so just try again with this lexer.
+ // (We manually eliminate the tail call to avoid recursion.)
+ goto LexNextToken;
+ }
+ return LexUnicode(Result, CodePoint, CurPtr);
+ }
+
+ if (isLexingRawMode() || ParsingPreprocessorDirective ||
+ PP->isPreprocessedOutput()) {
+ ++CurPtr;
+ Kind = tok::unknown;
+ break;
+ }
+
+ // Non-ASCII characters tend to creep into source code unintentionally.
+ // Instead of letting the parser complain about the unknown token,
+ // just diagnose the invalid UTF-8, then drop the character.
+ Diag(CurPtr, diag::err_invalid_utf8);
+
+ BufferPtr = CurPtr+1;
+ // We're pretending the character didn't exist, so just try again with
+ // this lexer.
+ // (We manually eliminate the tail call to avoid recursion.)
+ goto LexNextToken;
+ }
+ }
+
+ // Notify MIOpt that we read a non-whitespace/non-comment token.
+ MIOpt.ReadToken();
+
+ // Update the location of token as well as BufferPtr.
+ FormTokenWithChars(Result, CurPtr, Kind);
+ return true;
+
+HandleDirective:
+ // We parsed a # character and it's the start of a preprocessing directive.
+
+ FormTokenWithChars(Result, CurPtr, tok::hash);
+ PP->HandleDirective(Result);
+
+ if (PP->hadModuleLoaderFatalFailure()) {
+ // With a fatal failure in the module loader, we abort parsing.
+ assert(Result.is(tok::eof) && "Preprocessor did not set tok:eof");
+ return true;
+ }
+
+ // We parsed the directive; lex a token with the new state.
+ return false;
+}
diff --git a/contrib/llvm/tools/clang/lib/Lex/LiteralSupport.cpp b/contrib/llvm/tools/clang/lib/Lex/LiteralSupport.cpp
new file mode 100644
index 0000000..aed9164
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Lex/LiteralSupport.cpp
@@ -0,0 +1,1676 @@
+//===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the NumericLiteralParser, CharLiteralParser, and
+// StringLiteralParser interfaces.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Lex/LiteralSupport.h"
+#include "clang/Basic/CharInfo.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Lex/LexDiagnostic.h"
+#include "clang/Lex/Preprocessor.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/ConvertUTF.h"
+#include "llvm/Support/ErrorHandling.h"
+
+using namespace clang;
+
+static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target) {
+ switch (kind) {
+ default: llvm_unreachable("Unknown token type!");
+ case tok::char_constant:
+ case tok::string_literal:
+ case tok::utf8_char_constant:
+ case tok::utf8_string_literal:
+ return Target.getCharWidth();
+ case tok::wide_char_constant:
+ case tok::wide_string_literal:
+ return Target.getWCharWidth();
+ case tok::utf16_char_constant:
+ case tok::utf16_string_literal:
+ return Target.getChar16Width();
+ case tok::utf32_char_constant:
+ case tok::utf32_string_literal:
+ return Target.getChar32Width();
+ }
+}
+
+static CharSourceRange MakeCharSourceRange(const LangOptions &Features,
+ FullSourceLoc TokLoc,
+ const char *TokBegin,
+ const char *TokRangeBegin,
+ const char *TokRangeEnd) {
+ SourceLocation Begin =
+ Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
+ TokLoc.getManager(), Features);
+ SourceLocation End =
+ Lexer::AdvanceToTokenCharacter(Begin, TokRangeEnd - TokRangeBegin,
+ TokLoc.getManager(), Features);
+ return CharSourceRange::getCharRange(Begin, End);
+}
+
+/// \brief Produce a diagnostic highlighting some portion of a literal.
+///
+/// Emits the diagnostic \p DiagID, highlighting the range of characters from
+/// \p TokRangeBegin (inclusive) to \p TokRangeEnd (exclusive), which must be
+/// a substring of a spelling buffer for the token beginning at \p TokBegin.
+static DiagnosticBuilder Diag(DiagnosticsEngine *Diags,
+ const LangOptions &Features, FullSourceLoc TokLoc,
+ const char *TokBegin, const char *TokRangeBegin,
+ const char *TokRangeEnd, unsigned DiagID) {
+ SourceLocation Begin =
+ Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
+ TokLoc.getManager(), Features);
+ return Diags->Report(Begin, DiagID) <<
+ MakeCharSourceRange(Features, TokLoc, TokBegin, TokRangeBegin, TokRangeEnd);
+}
+
+/// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
+/// either a character or a string literal.
+static unsigned ProcessCharEscape(const char *ThisTokBegin,
+ const char *&ThisTokBuf,
+ const char *ThisTokEnd, bool &HadError,
+ FullSourceLoc Loc, unsigned CharWidth,
+ DiagnosticsEngine *Diags,
+ const LangOptions &Features) {
+ const char *EscapeBegin = ThisTokBuf;
+
+ // Skip the '\' char.
+ ++ThisTokBuf;
+
+ // We know that this character can't be off the end of the buffer, because
+ // that would have been \", which would not have been the end of string.
+ unsigned ResultChar = *ThisTokBuf++;
+ switch (ResultChar) {
+ // These map to themselves.
+ case '\\': case '\'': case '"': case '?': break;
+
+ // These have fixed mappings.
+ case 'a':
+ // TODO: K&R: the meaning of '\\a' is different in traditional C
+ ResultChar = 7;
+ break;
+ case 'b':
+ ResultChar = 8;
+ break;
+ case 'e':
+ if (Diags)
+ Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
+ diag::ext_nonstandard_escape) << "e";
+ ResultChar = 27;
+ break;
+ case 'E':
+ if (Diags)
+ Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
+ diag::ext_nonstandard_escape) << "E";
+ ResultChar = 27;
+ break;
+ case 'f':
+ ResultChar = 12;
+ break;
+ case 'n':
+ ResultChar = 10;
+ break;
+ case 'r':
+ ResultChar = 13;
+ break;
+ case 't':
+ ResultChar = 9;
+ break;
+ case 'v':
+ ResultChar = 11;
+ break;
+ case 'x': { // Hex escape.
+ ResultChar = 0;
+ if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
+ if (Diags)
+ Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
+ diag::err_hex_escape_no_digits) << "x";
+ HadError = 1;
+ break;
+ }
+
+ // Hex escapes are a maximal series of hex digits.
+ bool Overflow = false;
+ for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) {
+ int CharVal = llvm::hexDigitValue(ThisTokBuf[0]);
+ if (CharVal == -1) break;
+ // About to shift out a digit?
+ if (ResultChar & 0xF0000000)
+ Overflow = true;
+ ResultChar <<= 4;
+ ResultChar |= CharVal;
+ }
+
+ // See if any bits will be truncated when evaluated as a character.
+ if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
+ Overflow = true;
+ ResultChar &= ~0U >> (32-CharWidth);
+ }
+
+ // Check for overflow.
+ if (Overflow && Diags) // Too many digits to fit in
+ Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
+ diag::err_hex_escape_too_large);
+ break;
+ }
+ case '0': case '1': case '2': case '3':
+ case '4': case '5': case '6': case '7': {
+ // Octal escapes.
+ --ThisTokBuf;
+ ResultChar = 0;
+
+ // Octal escapes are a series of octal digits with maximum length 3.
+ // "\0123" is a two digit sequence equal to "\012" "3".
+ unsigned NumDigits = 0;
+ do {
+ ResultChar <<= 3;
+ ResultChar |= *ThisTokBuf++ - '0';
+ ++NumDigits;
+ } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 &&
+ ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7');
+
+ // Check for overflow. Reject '\777', but not L'\777'.
+ if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
+ if (Diags)
+ Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
+ diag::err_octal_escape_too_large);
+ ResultChar &= ~0U >> (32-CharWidth);
+ }
+ break;
+ }
+
+ // Otherwise, these are not valid escapes.
+ case '(': case '{': case '[': case '%':
+ // GCC accepts these as extensions. We warn about them as such though.
+ if (Diags)
+ Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
+ diag::ext_nonstandard_escape)
+ << std::string(1, ResultChar);
+ break;
+ default:
+ if (!Diags)
+ break;
+
+ if (isPrintable(ResultChar))
+ Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
+ diag::ext_unknown_escape)
+ << std::string(1, ResultChar);
+ else
+ Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
+ diag::ext_unknown_escape)
+ << "x" + llvm::utohexstr(ResultChar);
+ break;
+ }
+
+ return ResultChar;
+}
+
+static void appendCodePoint(unsigned Codepoint,
+ llvm::SmallVectorImpl<char> &Str) {
+ char ResultBuf[4];
+ char *ResultPtr = ResultBuf;
+ bool Res = llvm::ConvertCodePointToUTF8(Codepoint, ResultPtr);
+ (void)Res;
+ assert(Res && "Unexpected conversion failure");
+ Str.append(ResultBuf, ResultPtr);
+}
+
+void clang::expandUCNs(SmallVectorImpl<char> &Buf, StringRef Input) {
+ for (StringRef::iterator I = Input.begin(), E = Input.end(); I != E; ++I) {
+ if (*I != '\\') {
+ Buf.push_back(*I);
+ continue;
+ }
+
+ ++I;
+ assert(*I == 'u' || *I == 'U');
+
+ unsigned NumHexDigits;
+ if (*I == 'u')
+ NumHexDigits = 4;
+ else
+ NumHexDigits = 8;
+
+ assert(I + NumHexDigits <= E);
+
+ uint32_t CodePoint = 0;
+ for (++I; NumHexDigits != 0; ++I, --NumHexDigits) {
+ unsigned Value = llvm::hexDigitValue(*I);
+ assert(Value != -1U);
+
+ CodePoint <<= 4;
+ CodePoint += Value;
+ }
+
+ appendCodePoint(CodePoint, Buf);
+ --I;
+ }
+}
+
+/// ProcessUCNEscape - Read the Universal Character Name, check constraints and
+/// return the UTF32.
+static bool ProcessUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
+ const char *ThisTokEnd,
+ uint32_t &UcnVal, unsigned short &UcnLen,
+ FullSourceLoc Loc, DiagnosticsEngine *Diags,
+ const LangOptions &Features,
+ bool in_char_string_literal = false) {
+ const char *UcnBegin = ThisTokBuf;
+
+ // Skip the '\u' char's.
+ ThisTokBuf += 2;
+
+ if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
+ if (Diags)
+ Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
+ diag::err_hex_escape_no_digits) << StringRef(&ThisTokBuf[-1], 1);
+ return false;
+ }
+ UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8);
+ unsigned short UcnLenSave = UcnLen;
+ for (; ThisTokBuf != ThisTokEnd && UcnLenSave; ++ThisTokBuf, UcnLenSave--) {
+ int CharVal = llvm::hexDigitValue(ThisTokBuf[0]);
+ if (CharVal == -1) break;
+ UcnVal <<= 4;
+ UcnVal |= CharVal;
+ }
+ // If we didn't consume the proper number of digits, there is a problem.
+ if (UcnLenSave) {
+ if (Diags)
+ Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
+ diag::err_ucn_escape_incomplete);
+ return false;
+ }
+
+ // Check UCN constraints (C99 6.4.3p2) [C++11 lex.charset p2]
+ if ((0xD800 <= UcnVal && UcnVal <= 0xDFFF) || // surrogate codepoints
+ UcnVal > 0x10FFFF) { // maximum legal UTF32 value
+ if (Diags)
+ Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
+ diag::err_ucn_escape_invalid);
+ return false;
+ }
+
+ // C++11 allows UCNs that refer to control characters and basic source
+ // characters inside character and string literals
+ if (UcnVal < 0xa0 &&
+ (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60)) { // $, @, `
+ bool IsError = (!Features.CPlusPlus11 || !in_char_string_literal);
+ if (Diags) {
+ char BasicSCSChar = UcnVal;
+ if (UcnVal >= 0x20 && UcnVal < 0x7f)
+ Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
+ IsError ? diag::err_ucn_escape_basic_scs :
+ diag::warn_cxx98_compat_literal_ucn_escape_basic_scs)
+ << StringRef(&BasicSCSChar, 1);
+ else
+ Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
+ IsError ? diag::err_ucn_control_character :
+ diag::warn_cxx98_compat_literal_ucn_control_character);
+ }
+ if (IsError)
+ return false;
+ }
+
+ if (!Features.CPlusPlus && !Features.C99 && Diags)
+ Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
+ diag::warn_ucn_not_valid_in_c89_literal);
+
+ return true;
+}
+
+/// MeasureUCNEscape - Determine the number of bytes within the resulting string
+/// which this UCN will occupy.
+static int MeasureUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
+ const char *ThisTokEnd, unsigned CharByteWidth,
+ const LangOptions &Features, bool &HadError) {
+ // UTF-32: 4 bytes per escape.
+ if (CharByteWidth == 4)
+ return 4;
+
+ uint32_t UcnVal = 0;
+ unsigned short UcnLen = 0;
+ FullSourceLoc Loc;
+
+ if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal,
+ UcnLen, Loc, nullptr, Features, true)) {
+ HadError = true;
+ return 0;
+ }
+
+ // UTF-16: 2 bytes for BMP, 4 bytes otherwise.
+ if (CharByteWidth == 2)
+ return UcnVal <= 0xFFFF ? 2 : 4;
+
+ // UTF-8.
+ if (UcnVal < 0x80)
+ return 1;
+ if (UcnVal < 0x800)
+ return 2;
+ if (UcnVal < 0x10000)
+ return 3;
+ return 4;
+}
+
+/// EncodeUCNEscape - Read the Universal Character Name, check constraints and
+/// convert the UTF32 to UTF8 or UTF16. This is a subroutine of
+/// StringLiteralParser. When we decide to implement UCN's for identifiers,
+/// we will likely rework our support for UCN's.
+static void EncodeUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
+ const char *ThisTokEnd,
+ char *&ResultBuf, bool &HadError,
+ FullSourceLoc Loc, unsigned CharByteWidth,
+ DiagnosticsEngine *Diags,
+ const LangOptions &Features) {
+ typedef uint32_t UTF32;
+ UTF32 UcnVal = 0;
+ unsigned short UcnLen = 0;
+ if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, UcnLen,
+ Loc, Diags, Features, true)) {
+ HadError = true;
+ return;
+ }
+
+ assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
+ "only character widths of 1, 2, or 4 bytes supported");
+
+ (void)UcnLen;
+ assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported");
+
+ if (CharByteWidth == 4) {
+ // FIXME: Make the type of the result buffer correct instead of
+ // using reinterpret_cast.
+ UTF32 *ResultPtr = reinterpret_cast<UTF32*>(ResultBuf);
+ *ResultPtr = UcnVal;
+ ResultBuf += 4;
+ return;
+ }
+
+ if (CharByteWidth == 2) {
+ // FIXME: Make the type of the result buffer correct instead of
+ // using reinterpret_cast.
+ UTF16 *ResultPtr = reinterpret_cast<UTF16*>(ResultBuf);
+
+ if (UcnVal <= (UTF32)0xFFFF) {
+ *ResultPtr = UcnVal;
+ ResultBuf += 2;
+ return;
+ }
+
+ // Convert to UTF16.
+ UcnVal -= 0x10000;
+ *ResultPtr = 0xD800 + (UcnVal >> 10);
+ *(ResultPtr+1) = 0xDC00 + (UcnVal & 0x3FF);
+ ResultBuf += 4;
+ return;
+ }
+
+ assert(CharByteWidth == 1 && "UTF-8 encoding is only for 1 byte characters");
+
+ // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8.
+ // The conversion below was inspired by:
+ // http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c
+ // First, we determine how many bytes the result will require.
+ typedef uint8_t UTF8;
+
+ unsigned short bytesToWrite = 0;
+ if (UcnVal < (UTF32)0x80)
+ bytesToWrite = 1;
+ else if (UcnVal < (UTF32)0x800)
+ bytesToWrite = 2;
+ else if (UcnVal < (UTF32)0x10000)
+ bytesToWrite = 3;
+ else
+ bytesToWrite = 4;
+
+ const unsigned byteMask = 0xBF;
+ const unsigned byteMark = 0x80;
+
+ // Once the bits are split out into bytes of UTF8, this is a mask OR-ed
+ // into the first byte, depending on how many bytes follow.
+ static const UTF8 firstByteMark[5] = {
+ 0x00, 0x00, 0xC0, 0xE0, 0xF0
+ };
+ // Finally, we write the bytes into ResultBuf.
+ ResultBuf += bytesToWrite;
+ switch (bytesToWrite) { // note: everything falls through.
+ case 4: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
+ case 3: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
+ case 2: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
+ case 1: *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]);
+ }
+ // Update the buffer.
+ ResultBuf += bytesToWrite;
+}
+
+
+/// integer-constant: [C99 6.4.4.1]
+/// decimal-constant integer-suffix
+/// octal-constant integer-suffix
+/// hexadecimal-constant integer-suffix
+/// binary-literal integer-suffix [GNU, C++1y]
+/// user-defined-integer-literal: [C++11 lex.ext]
+/// decimal-literal ud-suffix
+/// octal-literal ud-suffix
+/// hexadecimal-literal ud-suffix
+/// binary-literal ud-suffix [GNU, C++1y]
+/// decimal-constant:
+/// nonzero-digit
+/// decimal-constant digit
+/// octal-constant:
+/// 0
+/// octal-constant octal-digit
+/// hexadecimal-constant:
+/// hexadecimal-prefix hexadecimal-digit
+/// hexadecimal-constant hexadecimal-digit
+/// hexadecimal-prefix: one of
+/// 0x 0X
+/// binary-literal:
+/// 0b binary-digit
+/// 0B binary-digit
+/// binary-literal binary-digit
+/// integer-suffix:
+/// unsigned-suffix [long-suffix]
+/// unsigned-suffix [long-long-suffix]
+/// long-suffix [unsigned-suffix]
+/// long-long-suffix [unsigned-sufix]
+/// nonzero-digit:
+/// 1 2 3 4 5 6 7 8 9
+/// octal-digit:
+/// 0 1 2 3 4 5 6 7
+/// hexadecimal-digit:
+/// 0 1 2 3 4 5 6 7 8 9
+/// a b c d e f
+/// A B C D E F
+/// binary-digit:
+/// 0
+/// 1
+/// unsigned-suffix: one of
+/// u U
+/// long-suffix: one of
+/// l L
+/// long-long-suffix: one of
+/// ll LL
+///
+/// floating-constant: [C99 6.4.4.2]
+/// TODO: add rules...
+///
+NumericLiteralParser::NumericLiteralParser(StringRef TokSpelling,
+ SourceLocation TokLoc,
+ Preprocessor &PP)
+ : PP(PP), ThisTokBegin(TokSpelling.begin()), ThisTokEnd(TokSpelling.end()) {
+
+ // This routine assumes that the range begin/end matches the regex for integer
+ // and FP constants (specifically, the 'pp-number' regex), and assumes that
+ // the byte at "*end" is both valid and not part of the regex. Because of
+ // this, it doesn't have to check for 'overscan' in various places.
+ assert(!isPreprocessingNumberBody(*ThisTokEnd) && "didn't maximally munch?");
+
+ s = DigitsBegin = ThisTokBegin;
+ saw_exponent = false;
+ saw_period = false;
+ saw_ud_suffix = false;
+ isLong = false;
+ isUnsigned = false;
+ isLongLong = false;
+ isFloat = false;
+ isImaginary = false;
+ MicrosoftInteger = 0;
+ hadError = false;
+
+ if (*s == '0') { // parse radix
+ ParseNumberStartingWithZero(TokLoc);
+ if (hadError)
+ return;
+ } else { // the first digit is non-zero
+ radix = 10;
+ s = SkipDigits(s);
+ if (s == ThisTokEnd) {
+ // Done.
+ } else if (isHexDigit(*s) && !(*s == 'e' || *s == 'E')) {
+ PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin),
+ diag::err_invalid_decimal_digit) << StringRef(s, 1);
+ hadError = true;
+ return;
+ } else if (*s == '.') {
+ checkSeparator(TokLoc, s, CSK_AfterDigits);
+ s++;
+ saw_period = true;
+ checkSeparator(TokLoc, s, CSK_BeforeDigits);
+ s = SkipDigits(s);
+ }
+ if ((*s == 'e' || *s == 'E')) { // exponent
+ checkSeparator(TokLoc, s, CSK_AfterDigits);
+ const char *Exponent = s;
+ s++;
+ saw_exponent = true;
+ if (*s == '+' || *s == '-') s++; // sign
+ checkSeparator(TokLoc, s, CSK_BeforeDigits);
+ const char *first_non_digit = SkipDigits(s);
+ if (first_non_digit != s) {
+ s = first_non_digit;
+ } else {
+ PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent - ThisTokBegin),
+ diag::err_exponent_has_no_digits);
+ hadError = true;
+ return;
+ }
+ }
+ }
+
+ SuffixBegin = s;
+ checkSeparator(TokLoc, s, CSK_AfterDigits);
+
+ // Parse the suffix. At this point we can classify whether we have an FP or
+ // integer constant.
+ bool isFPConstant = isFloatingLiteral();
+ const char *ImaginarySuffixLoc = nullptr;
+
+ // Loop over all of the characters of the suffix. If we see something bad,
+ // we break out of the loop.
+ for (; s != ThisTokEnd; ++s) {
+ switch (*s) {
+ case 'f': // FP Suffix for "float"
+ case 'F':
+ if (!isFPConstant) break; // Error for integer constant.
+ if (isFloat || isLong) break; // FF, LF invalid.
+ isFloat = true;
+ continue; // Success.
+ case 'u':
+ case 'U':
+ if (isFPConstant) break; // Error for floating constant.
+ if (isUnsigned) break; // Cannot be repeated.
+ isUnsigned = true;
+ continue; // Success.
+ case 'l':
+ case 'L':
+ if (isLong || isLongLong) break; // Cannot be repeated.
+ if (isFloat) break; // LF invalid.
+
+ // Check for long long. The L's need to be adjacent and the same case.
+ if (s[1] == s[0]) {
+ assert(s + 1 < ThisTokEnd && "didn't maximally munch?");
+ if (isFPConstant) break; // long long invalid for floats.
+ isLongLong = true;
+ ++s; // Eat both of them.
+ } else {
+ isLong = true;
+ }
+ continue; // Success.
+ case 'i':
+ case 'I':
+ if (PP.getLangOpts().MicrosoftExt) {
+ if (isLong || isLongLong || MicrosoftInteger)
+ break;
+
+ if (!isFPConstant) {
+ // Allow i8, i16, i32, i64, and i128.
+ switch (s[1]) {
+ case '8':
+ s += 2; // i8 suffix
+ MicrosoftInteger = 8;
+ break;
+ case '1':
+ if (s[2] == '6') {
+ s += 3; // i16 suffix
+ MicrosoftInteger = 16;
+ } else if (s[2] == '2' && s[3] == '8') {
+ s += 4; // i128 suffix
+ MicrosoftInteger = 128;
+ }
+ break;
+ case '3':
+ if (s[2] == '2') {
+ s += 3; // i32 suffix
+ MicrosoftInteger = 32;
+ }
+ break;
+ case '6':
+ if (s[2] == '4') {
+ s += 3; // i64 suffix
+ MicrosoftInteger = 64;
+ }
+ break;
+ default:
+ break;
+ }
+ }
+ if (MicrosoftInteger) {
+ assert(s <= ThisTokEnd && "didn't maximally munch?");
+ break;
+ }
+ }
+ // "i", "if", and "il" are user-defined suffixes in C++1y.
+ if (*s == 'i' && PP.getLangOpts().CPlusPlus14)
+ break;
+ // fall through.
+ case 'j':
+ case 'J':
+ if (isImaginary) break; // Cannot be repeated.
+ isImaginary = true;
+ ImaginarySuffixLoc = s;
+ continue; // Success.
+ }
+ // If we reached here, there was an error or a ud-suffix.
+ break;
+ }
+
+ if (s != ThisTokEnd) {
+ // FIXME: Don't bother expanding UCNs if !tok.hasUCN().
+ expandUCNs(UDSuffixBuf, StringRef(SuffixBegin, ThisTokEnd - SuffixBegin));
+ if (isValidUDSuffix(PP.getLangOpts(), UDSuffixBuf)) {
+ // Any suffix pieces we might have parsed are actually part of the
+ // ud-suffix.
+ isLong = false;
+ isUnsigned = false;
+ isLongLong = false;
+ isFloat = false;
+ isImaginary = false;
+ MicrosoftInteger = 0;
+
+ saw_ud_suffix = true;
+ return;
+ }
+
+ // Report an error if there are any.
+ PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, SuffixBegin - ThisTokBegin),
+ isFPConstant ? diag::err_invalid_suffix_float_constant :
+ diag::err_invalid_suffix_integer_constant)
+ << StringRef(SuffixBegin, ThisTokEnd-SuffixBegin);
+ hadError = true;
+ return;
+ }
+
+ if (isImaginary) {
+ PP.Diag(PP.AdvanceToTokenCharacter(TokLoc,
+ ImaginarySuffixLoc - ThisTokBegin),
+ diag::ext_imaginary_constant);
+ }
+}
+
+/// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
+/// suffixes as ud-suffixes, because the diagnostic experience is better if we
+/// treat it as an invalid suffix.
+bool NumericLiteralParser::isValidUDSuffix(const LangOptions &LangOpts,
+ StringRef Suffix) {
+ if (!LangOpts.CPlusPlus11 || Suffix.empty())
+ return false;
+
+ // By C++11 [lex.ext]p10, ud-suffixes starting with an '_' are always valid.
+ if (Suffix[0] == '_')
+ return true;
+
+ // In C++11, there are no library suffixes.
+ if (!LangOpts.CPlusPlus14)
+ return false;
+
+ // In C++1y, "s", "h", "min", "ms", "us", and "ns" are used in the library.
+ // Per tweaked N3660, "il", "i", and "if" are also used in the library.
+ return llvm::StringSwitch<bool>(Suffix)
+ .Cases("h", "min", "s", true)
+ .Cases("ms", "us", "ns", true)
+ .Cases("il", "i", "if", true)
+ .Default(false);
+}
+
+void NumericLiteralParser::checkSeparator(SourceLocation TokLoc,
+ const char *Pos,
+ CheckSeparatorKind IsAfterDigits) {
+ if (IsAfterDigits == CSK_AfterDigits) {
+ if (Pos == ThisTokBegin)
+ return;
+ --Pos;
+ } else if (Pos == ThisTokEnd)
+ return;
+
+ if (isDigitSeparator(*Pos))
+ PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Pos - ThisTokBegin),
+ diag::err_digit_separator_not_between_digits)
+ << IsAfterDigits;
+}
+
+/// ParseNumberStartingWithZero - This method is called when the first character
+/// of the number is found to be a zero. This means it is either an octal
+/// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or
+/// a floating point number (01239.123e4). Eat the prefix, determining the
+/// radix etc.
+void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
+ assert(s[0] == '0' && "Invalid method call");
+ s++;
+
+ int c1 = s[0];
+
+ // Handle a hex number like 0x1234.
+ if ((c1 == 'x' || c1 == 'X') && (isHexDigit(s[1]) || s[1] == '.')) {
+ s++;
+ assert(s < ThisTokEnd && "didn't maximally munch?");
+ radix = 16;
+ DigitsBegin = s;
+ s = SkipHexDigits(s);
+ bool noSignificand = (s == DigitsBegin);
+ if (s == ThisTokEnd) {
+ // Done.
+ } else if (*s == '.') {
+ s++;
+ saw_period = true;
+ const char *floatDigitsBegin = s;
+ checkSeparator(TokLoc, s, CSK_BeforeDigits);
+ s = SkipHexDigits(s);
+ noSignificand &= (floatDigitsBegin == s);
+ }
+
+ if (noSignificand) {
+ PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin),
+ diag::err_hexconstant_requires_digits);
+ hadError = true;
+ return;
+ }
+
+ // A binary exponent can appear with or with a '.'. If dotted, the
+ // binary exponent is required.
+ if (*s == 'p' || *s == 'P') {
+ checkSeparator(TokLoc, s, CSK_AfterDigits);
+ const char *Exponent = s;
+ s++;
+ saw_exponent = true;
+ if (*s == '+' || *s == '-') s++; // sign
+ const char *first_non_digit = SkipDigits(s);
+ if (first_non_digit == s) {
+ PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
+ diag::err_exponent_has_no_digits);
+ hadError = true;
+ return;
+ }
+ checkSeparator(TokLoc, s, CSK_BeforeDigits);
+ s = first_non_digit;
+
+ if (!PP.getLangOpts().HexFloats)
+ PP.Diag(TokLoc, diag::ext_hexconstant_invalid);
+ } else if (saw_period) {
+ PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
+ diag::err_hexconstant_requires_exponent);
+ hadError = true;
+ }
+ return;
+ }
+
+ // Handle simple binary numbers 0b01010
+ if ((c1 == 'b' || c1 == 'B') && (s[1] == '0' || s[1] == '1')) {
+ // 0b101010 is a C++1y / GCC extension.
+ PP.Diag(TokLoc,
+ PP.getLangOpts().CPlusPlus14
+ ? diag::warn_cxx11_compat_binary_literal
+ : PP.getLangOpts().CPlusPlus
+ ? diag::ext_binary_literal_cxx14
+ : diag::ext_binary_literal);
+ ++s;
+ assert(s < ThisTokEnd && "didn't maximally munch?");
+ radix = 2;
+ DigitsBegin = s;
+ s = SkipBinaryDigits(s);
+ if (s == ThisTokEnd) {
+ // Done.
+ } else if (isHexDigit(*s)) {
+ PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
+ diag::err_invalid_binary_digit) << StringRef(s, 1);
+ hadError = true;
+ }
+ // Other suffixes will be diagnosed by the caller.
+ return;
+ }
+
+ // For now, the radix is set to 8. If we discover that we have a
+ // floating point constant, the radix will change to 10. Octal floating
+ // point constants are not permitted (only decimal and hexadecimal).
+ radix = 8;
+ DigitsBegin = s;
+ s = SkipOctalDigits(s);
+ if (s == ThisTokEnd)
+ return; // Done, simple octal number like 01234
+
+ // If we have some other non-octal digit that *is* a decimal digit, see if
+ // this is part of a floating point number like 094.123 or 09e1.
+ if (isDigit(*s)) {
+ const char *EndDecimal = SkipDigits(s);
+ if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') {
+ s = EndDecimal;
+ radix = 10;
+ }
+ }
+
+ // If we have a hex digit other than 'e' (which denotes a FP exponent) then
+ // the code is using an incorrect base.
+ if (isHexDigit(*s) && *s != 'e' && *s != 'E') {
+ PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
+ diag::err_invalid_octal_digit) << StringRef(s, 1);
+ hadError = true;
+ return;
+ }
+
+ if (*s == '.') {
+ s++;
+ radix = 10;
+ saw_period = true;
+ checkSeparator(TokLoc, s, CSK_BeforeDigits);
+ s = SkipDigits(s); // Skip suffix.
+ }
+ if (*s == 'e' || *s == 'E') { // exponent
+ checkSeparator(TokLoc, s, CSK_AfterDigits);
+ const char *Exponent = s;
+ s++;
+ radix = 10;
+ saw_exponent = true;
+ if (*s == '+' || *s == '-') s++; // sign
+ const char *first_non_digit = SkipDigits(s);
+ if (first_non_digit != s) {
+ checkSeparator(TokLoc, s, CSK_BeforeDigits);
+ s = first_non_digit;
+ } else {
+ PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
+ diag::err_exponent_has_no_digits);
+ hadError = true;
+ return;
+ }
+ }
+}
+
+static bool alwaysFitsInto64Bits(unsigned Radix, unsigned NumDigits) {
+ switch (Radix) {
+ case 2:
+ return NumDigits <= 64;
+ case 8:
+ return NumDigits <= 64 / 3; // Digits are groups of 3 bits.
+ case 10:
+ return NumDigits <= 19; // floor(log10(2^64))
+ case 16:
+ return NumDigits <= 64 / 4; // Digits are groups of 4 bits.
+ default:
+ llvm_unreachable("impossible Radix");
+ }
+}
+
+/// GetIntegerValue - Convert this numeric literal value to an APInt that
+/// matches Val's input width. If there is an overflow, set Val to the low bits
+/// of the result and return true. Otherwise, return false.
+bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) {
+ // Fast path: Compute a conservative bound on the maximum number of
+ // bits per digit in this radix. If we can't possibly overflow a
+ // uint64 based on that bound then do the simple conversion to
+ // integer. This avoids the expensive overflow checking below, and
+ // handles the common cases that matter (small decimal integers and
+ // hex/octal values which don't overflow).
+ const unsigned NumDigits = SuffixBegin - DigitsBegin;
+ if (alwaysFitsInto64Bits(radix, NumDigits)) {
+ uint64_t N = 0;
+ for (const char *Ptr = DigitsBegin; Ptr != SuffixBegin; ++Ptr)
+ if (!isDigitSeparator(*Ptr))
+ N = N * radix + llvm::hexDigitValue(*Ptr);
+
+ // This will truncate the value to Val's input width. Simply check
+ // for overflow by comparing.
+ Val = N;
+ return Val.getZExtValue() != N;
+ }
+
+ Val = 0;
+ const char *Ptr = DigitsBegin;
+
+ llvm::APInt RadixVal(Val.getBitWidth(), radix);
+ llvm::APInt CharVal(Val.getBitWidth(), 0);
+ llvm::APInt OldVal = Val;
+
+ bool OverflowOccurred = false;
+ while (Ptr < SuffixBegin) {
+ if (isDigitSeparator(*Ptr)) {
+ ++Ptr;
+ continue;
+ }
+
+ unsigned C = llvm::hexDigitValue(*Ptr++);
+
+ // If this letter is out of bound for this radix, reject it.
+ assert(C < radix && "NumericLiteralParser ctor should have rejected this");
+
+ CharVal = C;
+
+ // Add the digit to the value in the appropriate radix. If adding in digits
+ // made the value smaller, then this overflowed.
+ OldVal = Val;
+
+ // Multiply by radix, did overflow occur on the multiply?
+ Val *= RadixVal;
+ OverflowOccurred |= Val.udiv(RadixVal) != OldVal;
+
+ // Add value, did overflow occur on the value?
+ // (a + b) ult b <=> overflow
+ Val += CharVal;
+ OverflowOccurred |= Val.ult(CharVal);
+ }
+ return OverflowOccurred;
+}
+
+llvm::APFloat::opStatus
+NumericLiteralParser::GetFloatValue(llvm::APFloat &Result) {
+ using llvm::APFloat;
+
+ unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin);
+
+ llvm::SmallString<16> Buffer;
+ StringRef Str(ThisTokBegin, n);
+ if (Str.find('\'') != StringRef::npos) {
+ Buffer.reserve(n);
+ std::remove_copy_if(Str.begin(), Str.end(), std::back_inserter(Buffer),
+ &isDigitSeparator);
+ Str = Buffer;
+ }
+
+ return Result.convertFromString(Str, APFloat::rmNearestTiesToEven);
+}
+
+
+/// \verbatim
+/// user-defined-character-literal: [C++11 lex.ext]
+/// character-literal ud-suffix
+/// ud-suffix:
+/// identifier
+/// character-literal: [C++11 lex.ccon]
+/// ' c-char-sequence '
+/// u' c-char-sequence '
+/// U' c-char-sequence '
+/// L' c-char-sequence '
+/// c-char-sequence:
+/// c-char
+/// c-char-sequence c-char
+/// c-char:
+/// any member of the source character set except the single-quote ',
+/// backslash \, or new-line character
+/// escape-sequence
+/// universal-character-name
+/// escape-sequence:
+/// simple-escape-sequence
+/// octal-escape-sequence
+/// hexadecimal-escape-sequence
+/// simple-escape-sequence:
+/// one of \' \" \? \\ \a \b \f \n \r \t \v
+/// octal-escape-sequence:
+/// \ octal-digit
+/// \ octal-digit octal-digit
+/// \ octal-digit octal-digit octal-digit
+/// hexadecimal-escape-sequence:
+/// \x hexadecimal-digit
+/// hexadecimal-escape-sequence hexadecimal-digit
+/// universal-character-name: [C++11 lex.charset]
+/// \u hex-quad
+/// \U hex-quad hex-quad
+/// hex-quad:
+/// hex-digit hex-digit hex-digit hex-digit
+/// \endverbatim
+///
+CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
+ SourceLocation Loc, Preprocessor &PP,
+ tok::TokenKind kind) {
+ // At this point we know that the character matches the regex "(L|u|U)?'.*'".
+ HadError = false;
+
+ Kind = kind;
+
+ const char *TokBegin = begin;
+
+ // Skip over wide character determinant.
+ if (Kind != tok::char_constant)
+ ++begin;
+ if (Kind == tok::utf8_char_constant)
+ ++begin;
+
+ // Skip over the entry quote.
+ assert(begin[0] == '\'' && "Invalid token lexed");
+ ++begin;
+
+ // Remove an optional ud-suffix.
+ if (end[-1] != '\'') {
+ const char *UDSuffixEnd = end;
+ do {
+ --end;
+ } while (end[-1] != '\'');
+ // FIXME: Don't bother with this if !tok.hasUCN().
+ expandUCNs(UDSuffixBuf, StringRef(end, UDSuffixEnd - end));
+ UDSuffixOffset = end - TokBegin;
+ }
+
+ // Trim the ending quote.
+ assert(end != begin && "Invalid token lexed");
+ --end;
+
+ // FIXME: The "Value" is an uint64_t so we can handle char literals of
+ // up to 64-bits.
+ // FIXME: This extensively assumes that 'char' is 8-bits.
+ assert(PP.getTargetInfo().getCharWidth() == 8 &&
+ "Assumes char is 8 bits");
+ assert(PP.getTargetInfo().getIntWidth() <= 64 &&
+ (PP.getTargetInfo().getIntWidth() & 7) == 0 &&
+ "Assumes sizeof(int) on target is <= 64 and a multiple of char");
+ assert(PP.getTargetInfo().getWCharWidth() <= 64 &&
+ "Assumes sizeof(wchar) on target is <= 64");
+
+ SmallVector<uint32_t, 4> codepoint_buffer;
+ codepoint_buffer.resize(end - begin);
+ uint32_t *buffer_begin = &codepoint_buffer.front();
+ uint32_t *buffer_end = buffer_begin + codepoint_buffer.size();
+
+ // Unicode escapes representing characters that cannot be correctly
+ // represented in a single code unit are disallowed in character literals
+ // by this implementation.
+ uint32_t largest_character_for_kind;
+ if (tok::wide_char_constant == Kind) {
+ largest_character_for_kind =
+ 0xFFFFFFFFu >> (32-PP.getTargetInfo().getWCharWidth());
+ } else if (tok::utf8_char_constant == Kind) {
+ largest_character_for_kind = 0x7F;
+ } else if (tok::utf16_char_constant == Kind) {
+ largest_character_for_kind = 0xFFFF;
+ } else if (tok::utf32_char_constant == Kind) {
+ largest_character_for_kind = 0x10FFFF;
+ } else {
+ largest_character_for_kind = 0x7Fu;
+ }
+
+ while (begin != end) {
+ // Is this a span of non-escape characters?
+ if (begin[0] != '\\') {
+ char const *start = begin;
+ do {
+ ++begin;
+ } while (begin != end && *begin != '\\');
+
+ char const *tmp_in_start = start;
+ uint32_t *tmp_out_start = buffer_begin;
+ ConversionResult res =
+ ConvertUTF8toUTF32(reinterpret_cast<UTF8 const **>(&start),
+ reinterpret_cast<UTF8 const *>(begin),
+ &buffer_begin, buffer_end, strictConversion);
+ if (res != conversionOK) {
+ // If we see bad encoding for unprefixed character literals, warn and
+ // simply copy the byte values, for compatibility with gcc and
+ // older versions of clang.
+ bool NoErrorOnBadEncoding = isAscii();
+ unsigned Msg = diag::err_bad_character_encoding;
+ if (NoErrorOnBadEncoding)
+ Msg = diag::warn_bad_character_encoding;
+ PP.Diag(Loc, Msg);
+ if (NoErrorOnBadEncoding) {
+ start = tmp_in_start;
+ buffer_begin = tmp_out_start;
+ for (; start != begin; ++start, ++buffer_begin)
+ *buffer_begin = static_cast<uint8_t>(*start);
+ } else {
+ HadError = true;
+ }
+ } else {
+ for (; tmp_out_start < buffer_begin; ++tmp_out_start) {
+ if (*tmp_out_start > largest_character_for_kind) {
+ HadError = true;
+ PP.Diag(Loc, diag::err_character_too_large);
+ }
+ }
+ }
+
+ continue;
+ }
+ // Is this a Universal Character Name escape?
+ if (begin[1] == 'u' || begin[1] == 'U') {
+ unsigned short UcnLen = 0;
+ if (!ProcessUCNEscape(TokBegin, begin, end, *buffer_begin, UcnLen,
+ FullSourceLoc(Loc, PP.getSourceManager()),
+ &PP.getDiagnostics(), PP.getLangOpts(), true)) {
+ HadError = true;
+ } else if (*buffer_begin > largest_character_for_kind) {
+ HadError = true;
+ PP.Diag(Loc, diag::err_character_too_large);
+ }
+
+ ++buffer_begin;
+ continue;
+ }
+ unsigned CharWidth = getCharWidth(Kind, PP.getTargetInfo());
+ uint64_t result =
+ ProcessCharEscape(TokBegin, begin, end, HadError,
+ FullSourceLoc(Loc,PP.getSourceManager()),
+ CharWidth, &PP.getDiagnostics(), PP.getLangOpts());
+ *buffer_begin++ = result;
+ }
+
+ unsigned NumCharsSoFar = buffer_begin - &codepoint_buffer.front();
+
+ if (NumCharsSoFar > 1) {
+ if (isWide())
+ PP.Diag(Loc, diag::warn_extraneous_char_constant);
+ else if (isAscii() && NumCharsSoFar == 4)
+ PP.Diag(Loc, diag::ext_four_char_character_literal);
+ else if (isAscii())
+ PP.Diag(Loc, diag::ext_multichar_character_literal);
+ else
+ PP.Diag(Loc, diag::err_multichar_utf_character_literal);
+ IsMultiChar = true;
+ } else {
+ IsMultiChar = false;
+ }
+
+ llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0);
+
+ // Narrow character literals act as though their value is concatenated
+ // in this implementation, but warn on overflow.
+ bool multi_char_too_long = false;
+ if (isAscii() && isMultiChar()) {
+ LitVal = 0;
+ for (size_t i = 0; i < NumCharsSoFar; ++i) {
+ // check for enough leading zeros to shift into
+ multi_char_too_long |= (LitVal.countLeadingZeros() < 8);
+ LitVal <<= 8;
+ LitVal = LitVal + (codepoint_buffer[i] & 0xFF);
+ }
+ } else if (NumCharsSoFar > 0) {
+ // otherwise just take the last character
+ LitVal = buffer_begin[-1];
+ }
+
+ if (!HadError && multi_char_too_long) {
+ PP.Diag(Loc, diag::warn_char_constant_too_large);
+ }
+
+ // Transfer the value from APInt to uint64_t
+ Value = LitVal.getZExtValue();
+
+ // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
+ // if 'char' is signed for this target (C99 6.4.4.4p10). Note that multiple
+ // character constants are not sign extended in the this implementation:
+ // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
+ if (isAscii() && NumCharsSoFar == 1 && (Value & 128) &&
+ PP.getLangOpts().CharIsSigned)
+ Value = (signed char)Value;
+}
+
+/// \verbatim
+/// string-literal: [C++0x lex.string]
+/// encoding-prefix " [s-char-sequence] "
+/// encoding-prefix R raw-string
+/// encoding-prefix:
+/// u8
+/// u
+/// U
+/// L
+/// s-char-sequence:
+/// s-char
+/// s-char-sequence s-char
+/// s-char:
+/// any member of the source character set except the double-quote ",
+/// backslash \, or new-line character
+/// escape-sequence
+/// universal-character-name
+/// raw-string:
+/// " d-char-sequence ( r-char-sequence ) d-char-sequence "
+/// r-char-sequence:
+/// r-char
+/// r-char-sequence r-char
+/// r-char:
+/// any member of the source character set, except a right parenthesis )
+/// followed by the initial d-char-sequence (which may be empty)
+/// followed by a double quote ".
+/// d-char-sequence:
+/// d-char
+/// d-char-sequence d-char
+/// d-char:
+/// any member of the basic source character set except:
+/// space, the left parenthesis (, the right parenthesis ),
+/// the backslash \, and the control characters representing horizontal
+/// tab, vertical tab, form feed, and newline.
+/// escape-sequence: [C++0x lex.ccon]
+/// simple-escape-sequence
+/// octal-escape-sequence
+/// hexadecimal-escape-sequence
+/// simple-escape-sequence:
+/// one of \' \" \? \\ \a \b \f \n \r \t \v
+/// octal-escape-sequence:
+/// \ octal-digit
+/// \ octal-digit octal-digit
+/// \ octal-digit octal-digit octal-digit
+/// hexadecimal-escape-sequence:
+/// \x hexadecimal-digit
+/// hexadecimal-escape-sequence hexadecimal-digit
+/// universal-character-name:
+/// \u hex-quad
+/// \U hex-quad hex-quad
+/// hex-quad:
+/// hex-digit hex-digit hex-digit hex-digit
+/// \endverbatim
+///
+StringLiteralParser::
+StringLiteralParser(ArrayRef<Token> StringToks,
+ Preprocessor &PP, bool Complain)
+ : SM(PP.getSourceManager()), Features(PP.getLangOpts()),
+ Target(PP.getTargetInfo()), Diags(Complain ? &PP.getDiagnostics() :nullptr),
+ MaxTokenLength(0), SizeBound(0), CharByteWidth(0), Kind(tok::unknown),
+ ResultPtr(ResultBuf.data()), hadError(false), Pascal(false) {
+ init(StringToks);
+}
+
+void StringLiteralParser::init(ArrayRef<Token> StringToks){
+ // The literal token may have come from an invalid source location (e.g. due
+ // to a PCH error), in which case the token length will be 0.
+ if (StringToks.empty() || StringToks[0].getLength() < 2)
+ return DiagnoseLexingError(SourceLocation());
+
+ // Scan all of the string portions, remember the max individual token length,
+ // computing a bound on the concatenated string length, and see whether any
+ // piece is a wide-string. If any of the string portions is a wide-string
+ // literal, the result is a wide-string literal [C99 6.4.5p4].
+ assert(!StringToks.empty() && "expected at least one token");
+ MaxTokenLength = StringToks[0].getLength();
+ assert(StringToks[0].getLength() >= 2 && "literal token is invalid!");
+ SizeBound = StringToks[0].getLength()-2; // -2 for "".
+ Kind = StringToks[0].getKind();
+
+ hadError = false;
+
+ // Implement Translation Phase #6: concatenation of string literals
+ /// (C99 5.1.1.2p1). The common case is only one string fragment.
+ for (unsigned i = 1; i != StringToks.size(); ++i) {
+ if (StringToks[i].getLength() < 2)
+ return DiagnoseLexingError(StringToks[i].getLocation());
+
+ // The string could be shorter than this if it needs cleaning, but this is a
+ // reasonable bound, which is all we need.
+ assert(StringToks[i].getLength() >= 2 && "literal token is invalid!");
+ SizeBound += StringToks[i].getLength()-2; // -2 for "".
+
+ // Remember maximum string piece length.
+ if (StringToks[i].getLength() > MaxTokenLength)
+ MaxTokenLength = StringToks[i].getLength();
+
+ // Remember if we see any wide or utf-8/16/32 strings.
+ // Also check for illegal concatenations.
+ if (StringToks[i].isNot(Kind) && StringToks[i].isNot(tok::string_literal)) {
+ if (isAscii()) {
+ Kind = StringToks[i].getKind();
+ } else {
+ if (Diags)
+ Diags->Report(StringToks[i].getLocation(),
+ diag::err_unsupported_string_concat);
+ hadError = true;
+ }
+ }
+ }
+
+ // Include space for the null terminator.
+ ++SizeBound;
+
+ // TODO: K&R warning: "traditional C rejects string constant concatenation"
+
+ // Get the width in bytes of char/wchar_t/char16_t/char32_t
+ CharByteWidth = getCharWidth(Kind, Target);
+ assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
+ CharByteWidth /= 8;
+
+ // The output buffer size needs to be large enough to hold wide characters.
+ // This is a worst-case assumption which basically corresponds to L"" "long".
+ SizeBound *= CharByteWidth;
+
+ // Size the temporary buffer to hold the result string data.
+ ResultBuf.resize(SizeBound);
+
+ // Likewise, but for each string piece.
+ SmallString<512> TokenBuf;
+ TokenBuf.resize(MaxTokenLength);
+
+ // Loop over all the strings, getting their spelling, and expanding them to
+ // wide strings as appropriate.
+ ResultPtr = &ResultBuf[0]; // Next byte to fill in.
+
+ Pascal = false;
+
+ SourceLocation UDSuffixTokLoc;
+
+ for (unsigned i = 0, e = StringToks.size(); i != e; ++i) {
+ const char *ThisTokBuf = &TokenBuf[0];
+ // Get the spelling of the token, which eliminates trigraphs, etc. We know
+ // that ThisTokBuf points to a buffer that is big enough for the whole token
+ // and 'spelled' tokens can only shrink.
+ bool StringInvalid = false;
+ unsigned ThisTokLen =
+ Lexer::getSpelling(StringToks[i], ThisTokBuf, SM, Features,
+ &StringInvalid);
+ if (StringInvalid)
+ return DiagnoseLexingError(StringToks[i].getLocation());
+
+ const char *ThisTokBegin = ThisTokBuf;
+ const char *ThisTokEnd = ThisTokBuf+ThisTokLen;
+
+ // Remove an optional ud-suffix.
+ if (ThisTokEnd[-1] != '"') {
+ const char *UDSuffixEnd = ThisTokEnd;
+ do {
+ --ThisTokEnd;
+ } while (ThisTokEnd[-1] != '"');
+
+ StringRef UDSuffix(ThisTokEnd, UDSuffixEnd - ThisTokEnd);
+
+ if (UDSuffixBuf.empty()) {
+ if (StringToks[i].hasUCN())
+ expandUCNs(UDSuffixBuf, UDSuffix);
+ else
+ UDSuffixBuf.assign(UDSuffix);
+ UDSuffixToken = i;
+ UDSuffixOffset = ThisTokEnd - ThisTokBuf;
+ UDSuffixTokLoc = StringToks[i].getLocation();
+ } else {
+ SmallString<32> ExpandedUDSuffix;
+ if (StringToks[i].hasUCN()) {
+ expandUCNs(ExpandedUDSuffix, UDSuffix);
+ UDSuffix = ExpandedUDSuffix;
+ }
+
+ // C++11 [lex.ext]p8: At the end of phase 6, if a string literal is the
+ // result of a concatenation involving at least one user-defined-string-
+ // literal, all the participating user-defined-string-literals shall
+ // have the same ud-suffix.
+ if (UDSuffixBuf != UDSuffix) {
+ if (Diags) {
+ SourceLocation TokLoc = StringToks[i].getLocation();
+ Diags->Report(TokLoc, diag::err_string_concat_mixed_suffix)
+ << UDSuffixBuf << UDSuffix
+ << SourceRange(UDSuffixTokLoc, UDSuffixTokLoc)
+ << SourceRange(TokLoc, TokLoc);
+ }
+ hadError = true;
+ }
+ }
+ }
+
+ // Strip the end quote.
+ --ThisTokEnd;
+
+ // TODO: Input character set mapping support.
+
+ // Skip marker for wide or unicode strings.
+ if (ThisTokBuf[0] == 'L' || ThisTokBuf[0] == 'u' || ThisTokBuf[0] == 'U') {
+ ++ThisTokBuf;
+ // Skip 8 of u8 marker for utf8 strings.
+ if (ThisTokBuf[0] == '8')
+ ++ThisTokBuf;
+ }
+
+ // Check for raw string
+ if (ThisTokBuf[0] == 'R') {
+ ThisTokBuf += 2; // skip R"
+
+ const char *Prefix = ThisTokBuf;
+ while (ThisTokBuf[0] != '(')
+ ++ThisTokBuf;
+ ++ThisTokBuf; // skip '('
+
+ // Remove same number of characters from the end
+ ThisTokEnd -= ThisTokBuf - Prefix;
+ assert(ThisTokEnd >= ThisTokBuf && "malformed raw string literal");
+
+ // Copy the string over
+ if (CopyStringFragment(StringToks[i], ThisTokBegin,
+ StringRef(ThisTokBuf, ThisTokEnd - ThisTokBuf)))
+ hadError = true;
+ } else {
+ if (ThisTokBuf[0] != '"') {
+ // The file may have come from PCH and then changed after loading the
+ // PCH; Fail gracefully.
+ return DiagnoseLexingError(StringToks[i].getLocation());
+ }
+ ++ThisTokBuf; // skip "
+
+ // Check if this is a pascal string
+ if (Features.PascalStrings && ThisTokBuf + 1 != ThisTokEnd &&
+ ThisTokBuf[0] == '\\' && ThisTokBuf[1] == 'p') {
+
+ // If the \p sequence is found in the first token, we have a pascal string
+ // Otherwise, if we already have a pascal string, ignore the first \p
+ if (i == 0) {
+ ++ThisTokBuf;
+ Pascal = true;
+ } else if (Pascal)
+ ThisTokBuf += 2;
+ }
+
+ while (ThisTokBuf != ThisTokEnd) {
+ // Is this a span of non-escape characters?
+ if (ThisTokBuf[0] != '\\') {
+ const char *InStart = ThisTokBuf;
+ do {
+ ++ThisTokBuf;
+ } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
+
+ // Copy the character span over.
+ if (CopyStringFragment(StringToks[i], ThisTokBegin,
+ StringRef(InStart, ThisTokBuf - InStart)))
+ hadError = true;
+ continue;
+ }
+ // Is this a Universal Character Name escape?
+ if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U') {
+ EncodeUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd,
+ ResultPtr, hadError,
+ FullSourceLoc(StringToks[i].getLocation(), SM),
+ CharByteWidth, Diags, Features);
+ continue;
+ }
+ // Otherwise, this is a non-UCN escape character. Process it.
+ unsigned ResultChar =
+ ProcessCharEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, hadError,
+ FullSourceLoc(StringToks[i].getLocation(), SM),
+ CharByteWidth*8, Diags, Features);
+
+ if (CharByteWidth == 4) {
+ // FIXME: Make the type of the result buffer correct instead of
+ // using reinterpret_cast.
+ UTF32 *ResultWidePtr = reinterpret_cast<UTF32*>(ResultPtr);
+ *ResultWidePtr = ResultChar;
+ ResultPtr += 4;
+ } else if (CharByteWidth == 2) {
+ // FIXME: Make the type of the result buffer correct instead of
+ // using reinterpret_cast.
+ UTF16 *ResultWidePtr = reinterpret_cast<UTF16*>(ResultPtr);
+ *ResultWidePtr = ResultChar & 0xFFFF;
+ ResultPtr += 2;
+ } else {
+ assert(CharByteWidth == 1 && "Unexpected char width");
+ *ResultPtr++ = ResultChar & 0xFF;
+ }
+ }
+ }
+ }
+
+ if (Pascal) {
+ if (CharByteWidth == 4) {
+ // FIXME: Make the type of the result buffer correct instead of
+ // using reinterpret_cast.
+ UTF32 *ResultWidePtr = reinterpret_cast<UTF32*>(ResultBuf.data());
+ ResultWidePtr[0] = GetNumStringChars() - 1;
+ } else if (CharByteWidth == 2) {
+ // FIXME: Make the type of the result buffer correct instead of
+ // using reinterpret_cast.
+ UTF16 *ResultWidePtr = reinterpret_cast<UTF16*>(ResultBuf.data());
+ ResultWidePtr[0] = GetNumStringChars() - 1;
+ } else {
+ assert(CharByteWidth == 1 && "Unexpected char width");
+ ResultBuf[0] = GetNumStringChars() - 1;
+ }
+
+ // Verify that pascal strings aren't too large.
+ if (GetStringLength() > 256) {
+ if (Diags)
+ Diags->Report(StringToks.front().getLocation(),
+ diag::err_pascal_string_too_long)
+ << SourceRange(StringToks.front().getLocation(),
+ StringToks.back().getLocation());
+ hadError = true;
+ return;
+ }
+ } else if (Diags) {
+ // Complain if this string literal has too many characters.
+ unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509;
+
+ if (GetNumStringChars() > MaxChars)
+ Diags->Report(StringToks.front().getLocation(),
+ diag::ext_string_too_long)
+ << GetNumStringChars() << MaxChars
+ << (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0)
+ << SourceRange(StringToks.front().getLocation(),
+ StringToks.back().getLocation());
+ }
+}
+
+static const char *resyncUTF8(const char *Err, const char *End) {
+ if (Err == End)
+ return End;
+ End = Err + std::min<unsigned>(getNumBytesForUTF8(*Err), End-Err);
+ while (++Err != End && (*Err & 0xC0) == 0x80)
+ ;
+ return Err;
+}
+
+/// \brief This function copies from Fragment, which is a sequence of bytes
+/// within Tok's contents (which begin at TokBegin) into ResultPtr.
+/// Performs widening for multi-byte characters.
+bool StringLiteralParser::CopyStringFragment(const Token &Tok,
+ const char *TokBegin,
+ StringRef Fragment) {
+ const UTF8 *ErrorPtrTmp;
+ if (ConvertUTF8toWide(CharByteWidth, Fragment, ResultPtr, ErrorPtrTmp))
+ return false;
+
+ // If we see bad encoding for unprefixed string literals, warn and
+ // simply copy the byte values, for compatibility with gcc and older
+ // versions of clang.
+ bool NoErrorOnBadEncoding = isAscii();
+ if (NoErrorOnBadEncoding) {
+ memcpy(ResultPtr, Fragment.data(), Fragment.size());
+ ResultPtr += Fragment.size();
+ }
+
+ if (Diags) {
+ const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
+
+ FullSourceLoc SourceLoc(Tok.getLocation(), SM);
+ const DiagnosticBuilder &Builder =
+ Diag(Diags, Features, SourceLoc, TokBegin,
+ ErrorPtr, resyncUTF8(ErrorPtr, Fragment.end()),
+ NoErrorOnBadEncoding ? diag::warn_bad_string_encoding
+ : diag::err_bad_string_encoding);
+
+ const char *NextStart = resyncUTF8(ErrorPtr, Fragment.end());
+ StringRef NextFragment(NextStart, Fragment.end()-NextStart);
+
+ // Decode into a dummy buffer.
+ SmallString<512> Dummy;
+ Dummy.reserve(Fragment.size() * CharByteWidth);
+ char *Ptr = Dummy.data();
+
+ while (!ConvertUTF8toWide(CharByteWidth, NextFragment, Ptr, ErrorPtrTmp)) {
+ const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
+ NextStart = resyncUTF8(ErrorPtr, Fragment.end());
+ Builder << MakeCharSourceRange(Features, SourceLoc, TokBegin,
+ ErrorPtr, NextStart);
+ NextFragment = StringRef(NextStart, Fragment.end()-NextStart);
+ }
+ }
+ return !NoErrorOnBadEncoding;
+}
+
+void StringLiteralParser::DiagnoseLexingError(SourceLocation Loc) {
+ hadError = true;
+ if (Diags)
+ Diags->Report(Loc, diag::err_lexing_string);
+}
+
+/// getOffsetOfStringByte - This function returns the offset of the
+/// specified byte of the string data represented by Token. This handles
+/// advancing over escape sequences in the string.
+unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok,
+ unsigned ByteNo) const {
+ // Get the spelling of the token.
+ SmallString<32> SpellingBuffer;
+ SpellingBuffer.resize(Tok.getLength());
+
+ bool StringInvalid = false;
+ const char *SpellingPtr = &SpellingBuffer[0];
+ unsigned TokLen = Lexer::getSpelling(Tok, SpellingPtr, SM, Features,
+ &StringInvalid);
+ if (StringInvalid)
+ return 0;
+
+ const char *SpellingStart = SpellingPtr;
+ const char *SpellingEnd = SpellingPtr+TokLen;
+
+ // Handle UTF-8 strings just like narrow strings.
+ if (SpellingPtr[0] == 'u' && SpellingPtr[1] == '8')
+ SpellingPtr += 2;
+
+ assert(SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' &&
+ SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet");
+
+ // For raw string literals, this is easy.
+ if (SpellingPtr[0] == 'R') {
+ assert(SpellingPtr[1] == '"' && "Should be a raw string literal!");
+ // Skip 'R"'.
+ SpellingPtr += 2;
+ while (*SpellingPtr != '(') {
+ ++SpellingPtr;
+ assert(SpellingPtr < SpellingEnd && "Missing ( for raw string literal");
+ }
+ // Skip '('.
+ ++SpellingPtr;
+ return SpellingPtr - SpellingStart + ByteNo;
+ }
+
+ // Skip over the leading quote
+ assert(SpellingPtr[0] == '"' && "Should be a string literal!");
+ ++SpellingPtr;
+
+ // Skip over bytes until we find the offset we're looking for.
+ while (ByteNo) {
+ assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!");
+
+ // Step over non-escapes simply.
+ if (*SpellingPtr != '\\') {
+ ++SpellingPtr;
+ --ByteNo;
+ continue;
+ }
+
+ // Otherwise, this is an escape character. Advance over it.
+ bool HadError = false;
+ if (SpellingPtr[1] == 'u' || SpellingPtr[1] == 'U') {
+ const char *EscapePtr = SpellingPtr;
+ unsigned Len = MeasureUCNEscape(SpellingStart, SpellingPtr, SpellingEnd,
+ 1, Features, HadError);
+ if (Len > ByteNo) {
+ // ByteNo is somewhere within the escape sequence.
+ SpellingPtr = EscapePtr;
+ break;
+ }
+ ByteNo -= Len;
+ } else {
+ ProcessCharEscape(SpellingStart, SpellingPtr, SpellingEnd, HadError,
+ FullSourceLoc(Tok.getLocation(), SM),
+ CharByteWidth*8, Diags, Features);
+ --ByteNo;
+ }
+ assert(!HadError && "This method isn't valid on erroneous strings");
+ }
+
+ return SpellingPtr-SpellingStart;
+}
diff --git a/contrib/llvm/tools/clang/lib/Lex/MacroArgs.cpp b/contrib/llvm/tools/clang/lib/Lex/MacroArgs.cpp
new file mode 100644
index 0000000..1c1979d
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Lex/MacroArgs.cpp
@@ -0,0 +1,313 @@
+//===--- MacroArgs.cpp - Formal argument info for Macros ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the MacroArgs interface.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Lex/MacroArgs.h"
+#include "clang/Lex/LexDiagnostic.h"
+#include "clang/Lex/MacroInfo.h"
+#include "clang/Lex/Preprocessor.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/SaveAndRestore.h"
+#include <algorithm>
+
+using namespace clang;
+
+/// MacroArgs ctor function - This destroys the vector passed in.
+MacroArgs *MacroArgs::create(const MacroInfo *MI,
+ ArrayRef<Token> UnexpArgTokens,
+ bool VarargsElided, Preprocessor &PP) {
+ assert(MI->isFunctionLike() &&
+ "Can't have args for an object-like macro!");
+ MacroArgs **ResultEnt = nullptr;
+ unsigned ClosestMatch = ~0U;
+
+ // See if we have an entry with a big enough argument list to reuse on the
+ // free list. If so, reuse it.
+ for (MacroArgs **Entry = &PP.MacroArgCache; *Entry;
+ Entry = &(*Entry)->ArgCache)
+ if ((*Entry)->NumUnexpArgTokens >= UnexpArgTokens.size() &&
+ (*Entry)->NumUnexpArgTokens < ClosestMatch) {
+ ResultEnt = Entry;
+
+ // If we have an exact match, use it.
+ if ((*Entry)->NumUnexpArgTokens == UnexpArgTokens.size())
+ break;
+ // Otherwise, use the best fit.
+ ClosestMatch = (*Entry)->NumUnexpArgTokens;
+ }
+
+ MacroArgs *Result;
+ if (!ResultEnt) {
+ // Allocate memory for a MacroArgs object with the lexer tokens at the end.
+ Result = (MacroArgs*)malloc(sizeof(MacroArgs) +
+ UnexpArgTokens.size() * sizeof(Token));
+ // Construct the MacroArgs object.
+ new (Result) MacroArgs(UnexpArgTokens.size(), VarargsElided);
+ } else {
+ Result = *ResultEnt;
+ // Unlink this node from the preprocessors singly linked list.
+ *ResultEnt = Result->ArgCache;
+ Result->NumUnexpArgTokens = UnexpArgTokens.size();
+ Result->VarargsElided = VarargsElided;
+ }
+
+ // Copy the actual unexpanded tokens to immediately after the result ptr.
+ if (!UnexpArgTokens.empty())
+ std::copy(UnexpArgTokens.begin(), UnexpArgTokens.end(),
+ const_cast<Token*>(Result->getUnexpArgument(0)));
+
+ return Result;
+}
+
+/// destroy - Destroy and deallocate the memory for this object.
+///
+void MacroArgs::destroy(Preprocessor &PP) {
+ StringifiedArgs.clear();
+
+ // Don't clear PreExpArgTokens, just clear the entries. Clearing the entries
+ // would deallocate the element vectors.
+ for (unsigned i = 0, e = PreExpArgTokens.size(); i != e; ++i)
+ PreExpArgTokens[i].clear();
+
+ // Add this to the preprocessor's free list.
+ ArgCache = PP.MacroArgCache;
+ PP.MacroArgCache = this;
+}
+
+/// deallocate - This should only be called by the Preprocessor when managing
+/// its freelist.
+MacroArgs *MacroArgs::deallocate() {
+ MacroArgs *Next = ArgCache;
+
+ // Run the dtor to deallocate the vectors.
+ this->~MacroArgs();
+ // Release the memory for the object.
+ free(this);
+
+ return Next;
+}
+
+
+/// getArgLength - Given a pointer to an expanded or unexpanded argument,
+/// return the number of tokens, not counting the EOF, that make up the
+/// argument.
+unsigned MacroArgs::getArgLength(const Token *ArgPtr) {
+ unsigned NumArgTokens = 0;
+ for (; ArgPtr->isNot(tok::eof); ++ArgPtr)
+ ++NumArgTokens;
+ return NumArgTokens;
+}
+
+
+/// getUnexpArgument - Return the unexpanded tokens for the specified formal.
+///
+const Token *MacroArgs::getUnexpArgument(unsigned Arg) const {
+ // The unexpanded argument tokens start immediately after the MacroArgs object
+ // in memory.
+ const Token *Start = (const Token *)(this+1);
+ const Token *Result = Start;
+ // Scan to find Arg.
+ for (; Arg; ++Result) {
+ assert(Result < Start+NumUnexpArgTokens && "Invalid arg #");
+ if (Result->is(tok::eof))
+ --Arg;
+ }
+ assert(Result < Start+NumUnexpArgTokens && "Invalid arg #");
+ return Result;
+}
+
+
+/// ArgNeedsPreexpansion - If we can prove that the argument won't be affected
+/// by pre-expansion, return false. Otherwise, conservatively return true.
+bool MacroArgs::ArgNeedsPreexpansion(const Token *ArgTok,
+ Preprocessor &PP) const {
+ // If there are no identifiers in the argument list, or if the identifiers are
+ // known to not be macros, pre-expansion won't modify it.
+ for (; ArgTok->isNot(tok::eof); ++ArgTok)
+ if (IdentifierInfo *II = ArgTok->getIdentifierInfo())
+ if (II->hasMacroDefinition())
+ // Return true even though the macro could be a function-like macro
+ // without a following '(' token, or could be disabled, or not visible.
+ return true;
+ return false;
+}
+
+/// getPreExpArgument - Return the pre-expanded form of the specified
+/// argument.
+const std::vector<Token> &
+MacroArgs::getPreExpArgument(unsigned Arg, const MacroInfo *MI,
+ Preprocessor &PP) {
+ assert(Arg < MI->getNumArgs() && "Invalid argument number!");
+
+ // If we have already computed this, return it.
+ if (PreExpArgTokens.size() < MI->getNumArgs())
+ PreExpArgTokens.resize(MI->getNumArgs());
+
+ std::vector<Token> &Result = PreExpArgTokens[Arg];
+ if (!Result.empty()) return Result;
+
+ SaveAndRestore<bool> PreExpandingMacroArgs(PP.InMacroArgPreExpansion, true);
+
+ const Token *AT = getUnexpArgument(Arg);
+ unsigned NumToks = getArgLength(AT)+1; // Include the EOF.
+
+ // Otherwise, we have to pre-expand this argument, populating Result. To do
+ // this, we set up a fake TokenLexer to lex from the unexpanded argument
+ // list. With this installed, we lex expanded tokens until we hit the EOF
+ // token at the end of the unexp list.
+ PP.EnterTokenStream(AT, NumToks, false /*disable expand*/,
+ false /*owns tokens*/);
+
+ // Lex all of the macro-expanded tokens into Result.
+ do {
+ Result.push_back(Token());
+ Token &Tok = Result.back();
+ PP.Lex(Tok);
+ } while (Result.back().isNot(tok::eof));
+
+ // Pop the token stream off the top of the stack. We know that the internal
+ // pointer inside of it is to the "end" of the token stream, but the stack
+ // will not otherwise be popped until the next token is lexed. The problem is
+ // that the token may be lexed sometime after the vector of tokens itself is
+ // destroyed, which would be badness.
+ if (PP.InCachingLexMode())
+ PP.ExitCachingLexMode();
+ PP.RemoveTopOfLexerStack();
+ return Result;
+}
+
+
+/// StringifyArgument - Implement C99 6.10.3.2p2, converting a sequence of
+/// tokens into the literal string token that should be produced by the C #
+/// preprocessor operator. If Charify is true, then it should be turned into
+/// a character literal for the Microsoft charize (#@) extension.
+///
+Token MacroArgs::StringifyArgument(const Token *ArgToks,
+ Preprocessor &PP, bool Charify,
+ SourceLocation ExpansionLocStart,
+ SourceLocation ExpansionLocEnd) {
+ Token Tok;
+ Tok.startToken();
+ Tok.setKind(Charify ? tok::char_constant : tok::string_literal);
+
+ const Token *ArgTokStart = ArgToks;
+
+ // Stringify all the tokens.
+ SmallString<128> Result;
+ Result += "\"";
+
+ bool isFirst = true;
+ for (; ArgToks->isNot(tok::eof); ++ArgToks) {
+ const Token &Tok = *ArgToks;
+ if (!isFirst && (Tok.hasLeadingSpace() || Tok.isAtStartOfLine()))
+ Result += ' ';
+ isFirst = false;
+
+ // If this is a string or character constant, escape the token as specified
+ // by 6.10.3.2p2.
+ if (tok::isStringLiteral(Tok.getKind()) || // "foo", u8R"x(foo)x"_bar, etc.
+ Tok.is(tok::char_constant) || // 'x'
+ Tok.is(tok::wide_char_constant) || // L'x'.
+ Tok.is(tok::utf8_char_constant) || // u8'x'.
+ Tok.is(tok::utf16_char_constant) || // u'x'.
+ Tok.is(tok::utf32_char_constant)) { // U'x'.
+ bool Invalid = false;
+ std::string TokStr = PP.getSpelling(Tok, &Invalid);
+ if (!Invalid) {
+ std::string Str = Lexer::Stringify(TokStr);
+ Result.append(Str.begin(), Str.end());
+ }
+ } else if (Tok.is(tok::code_completion)) {
+ PP.CodeCompleteNaturalLanguage();
+ } else {
+ // Otherwise, just append the token. Do some gymnastics to get the token
+ // in place and avoid copies where possible.
+ unsigned CurStrLen = Result.size();
+ Result.resize(CurStrLen+Tok.getLength());
+ const char *BufPtr = Result.data() + CurStrLen;
+ bool Invalid = false;
+ unsigned ActualTokLen = PP.getSpelling(Tok, BufPtr, &Invalid);
+
+ if (!Invalid) {
+ // If getSpelling returned a pointer to an already uniqued version of
+ // the string instead of filling in BufPtr, memcpy it onto our string.
+ if (ActualTokLen && BufPtr != &Result[CurStrLen])
+ memcpy(&Result[CurStrLen], BufPtr, ActualTokLen);
+
+ // If the token was dirty, the spelling may be shorter than the token.
+ if (ActualTokLen != Tok.getLength())
+ Result.resize(CurStrLen+ActualTokLen);
+ }
+ }
+ }
+
+ // If the last character of the string is a \, and if it isn't escaped, this
+ // is an invalid string literal, diagnose it as specified in C99.
+ if (Result.back() == '\\') {
+ // Count the number of consequtive \ characters. If even, then they are
+ // just escaped backslashes, otherwise it's an error.
+ unsigned FirstNonSlash = Result.size()-2;
+ // Guaranteed to find the starting " if nothing else.
+ while (Result[FirstNonSlash] == '\\')
+ --FirstNonSlash;
+ if ((Result.size()-1-FirstNonSlash) & 1) {
+ // Diagnose errors for things like: #define F(X) #X / F(\)
+ PP.Diag(ArgToks[-1], diag::pp_invalid_string_literal);
+ Result.pop_back(); // remove one of the \'s.
+ }
+ }
+ Result += '"';
+
+ // If this is the charify operation and the result is not a legal character
+ // constant, diagnose it.
+ if (Charify) {
+ // First step, turn double quotes into single quotes:
+ Result[0] = '\'';
+ Result[Result.size()-1] = '\'';
+
+ // Check for bogus character.
+ bool isBad = false;
+ if (Result.size() == 3)
+ isBad = Result[1] == '\''; // ''' is not legal. '\' already fixed above.
+ else
+ isBad = (Result.size() != 4 || Result[1] != '\\'); // Not '\x'
+
+ if (isBad) {
+ PP.Diag(ArgTokStart[0], diag::err_invalid_character_to_charify);
+ Result = "' '"; // Use something arbitrary, but legal.
+ }
+ }
+
+ PP.CreateString(Result, Tok,
+ ExpansionLocStart, ExpansionLocEnd);
+ return Tok;
+}
+
+/// getStringifiedArgument - Compute, cache, and return the specified argument
+/// that has been 'stringified' as required by the # operator.
+const Token &MacroArgs::getStringifiedArgument(unsigned ArgNo,
+ Preprocessor &PP,
+ SourceLocation ExpansionLocStart,
+ SourceLocation ExpansionLocEnd) {
+ assert(ArgNo < NumUnexpArgTokens && "Invalid argument number!");
+ if (StringifiedArgs.empty()) {
+ StringifiedArgs.resize(getNumArguments());
+ memset((void*)&StringifiedArgs[0], 0,
+ sizeof(StringifiedArgs[0])*getNumArguments());
+ }
+ if (StringifiedArgs[ArgNo].isNot(tok::string_literal))
+ StringifiedArgs[ArgNo] = StringifyArgument(getUnexpArgument(ArgNo), PP,
+ /*Charify=*/false,
+ ExpansionLocStart,
+ ExpansionLocEnd);
+ return StringifiedArgs[ArgNo];
+}
diff --git a/contrib/llvm/tools/clang/lib/Lex/MacroInfo.cpp b/contrib/llvm/tools/clang/lib/Lex/MacroInfo.cpp
new file mode 100644
index 0000000..109b6c1
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Lex/MacroInfo.cpp
@@ -0,0 +1,241 @@
+//===--- MacroInfo.cpp - Information about #defined identifiers -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the MacroInfo interface.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Lex/MacroInfo.h"
+#include "clang/Lex/Preprocessor.h"
+using namespace clang;
+
+MacroInfo::MacroInfo(SourceLocation DefLoc)
+ : Location(DefLoc),
+ ArgumentList(nullptr),
+ NumArguments(0),
+ IsDefinitionLengthCached(false),
+ IsFunctionLike(false),
+ IsC99Varargs(false),
+ IsGNUVarargs(false),
+ IsBuiltinMacro(false),
+ HasCommaPasting(false),
+ IsDisabled(false),
+ IsUsed(false),
+ IsAllowRedefinitionsWithoutWarning(false),
+ IsWarnIfUnused(false),
+ FromASTFile(false),
+ UsedForHeaderGuard(false) {
+}
+
+unsigned MacroInfo::getDefinitionLengthSlow(SourceManager &SM) const {
+ assert(!IsDefinitionLengthCached);
+ IsDefinitionLengthCached = true;
+
+ if (ReplacementTokens.empty())
+ return (DefinitionLength = 0);
+
+ const Token &firstToken = ReplacementTokens.front();
+ const Token &lastToken = ReplacementTokens.back();
+ SourceLocation macroStart = firstToken.getLocation();
+ SourceLocation macroEnd = lastToken.getLocation();
+ assert(macroStart.isValid() && macroEnd.isValid());
+ assert((macroStart.isFileID() || firstToken.is(tok::comment)) &&
+ "Macro defined in macro?");
+ assert((macroEnd.isFileID() || lastToken.is(tok::comment)) &&
+ "Macro defined in macro?");
+ std::pair<FileID, unsigned>
+ startInfo = SM.getDecomposedExpansionLoc(macroStart);
+ std::pair<FileID, unsigned>
+ endInfo = SM.getDecomposedExpansionLoc(macroEnd);
+ assert(startInfo.first == endInfo.first &&
+ "Macro definition spanning multiple FileIDs ?");
+ assert(startInfo.second <= endInfo.second);
+ DefinitionLength = endInfo.second - startInfo.second;
+ DefinitionLength += lastToken.getLength();
+
+ return DefinitionLength;
+}
+
+/// \brief Return true if the specified macro definition is equal to
+/// this macro in spelling, arguments, and whitespace.
+///
+/// \param Syntactically if true, the macro definitions can be identical even
+/// if they use different identifiers for the function macro parameters.
+/// Otherwise the comparison is lexical and this implements the rules in
+/// C99 6.10.3.
+bool MacroInfo::isIdenticalTo(const MacroInfo &Other, Preprocessor &PP,
+ bool Syntactically) const {
+ bool Lexically = !Syntactically;
+
+ // Check # tokens in replacement, number of args, and various flags all match.
+ if (ReplacementTokens.size() != Other.ReplacementTokens.size() ||
+ getNumArgs() != Other.getNumArgs() ||
+ isFunctionLike() != Other.isFunctionLike() ||
+ isC99Varargs() != Other.isC99Varargs() ||
+ isGNUVarargs() != Other.isGNUVarargs())
+ return false;
+
+ if (Lexically) {
+ // Check arguments.
+ for (arg_iterator I = arg_begin(), OI = Other.arg_begin(), E = arg_end();
+ I != E; ++I, ++OI)
+ if (*I != *OI) return false;
+ }
+
+ // Check all the tokens.
+ for (unsigned i = 0, e = ReplacementTokens.size(); i != e; ++i) {
+ const Token &A = ReplacementTokens[i];
+ const Token &B = Other.ReplacementTokens[i];
+ if (A.getKind() != B.getKind())
+ return false;
+
+ // If this isn't the first first token, check that the whitespace and
+ // start-of-line characteristics match.
+ if (i != 0 &&
+ (A.isAtStartOfLine() != B.isAtStartOfLine() ||
+ A.hasLeadingSpace() != B.hasLeadingSpace()))
+ return false;
+
+ // If this is an identifier, it is easy.
+ if (A.getIdentifierInfo() || B.getIdentifierInfo()) {
+ if (A.getIdentifierInfo() == B.getIdentifierInfo())
+ continue;
+ if (Lexically)
+ return false;
+ // With syntactic equivalence the parameter names can be different as long
+ // as they are used in the same place.
+ int AArgNum = getArgumentNum(A.getIdentifierInfo());
+ if (AArgNum == -1)
+ return false;
+ if (AArgNum != Other.getArgumentNum(B.getIdentifierInfo()))
+ return false;
+ continue;
+ }
+
+ // Otherwise, check the spelling.
+ if (PP.getSpelling(A) != PP.getSpelling(B))
+ return false;
+ }
+
+ return true;
+}
+
+void MacroInfo::dump() const {
+ llvm::raw_ostream &Out = llvm::errs();
+
+ // FIXME: Dump locations.
+ Out << "MacroInfo " << this;
+ if (IsBuiltinMacro) Out << " builtin";
+ if (IsDisabled) Out << " disabled";
+ if (IsUsed) Out << " used";
+ if (IsAllowRedefinitionsWithoutWarning)
+ Out << " allow_redefinitions_without_warning";
+ if (IsWarnIfUnused) Out << " warn_if_unused";
+ if (FromASTFile) Out << " imported";
+ if (UsedForHeaderGuard) Out << " header_guard";
+
+ Out << "\n #define <macro>";
+ if (IsFunctionLike) {
+ Out << "(";
+ for (unsigned I = 0; I != NumArguments; ++I) {
+ if (I) Out << ", ";
+ Out << ArgumentList[I]->getName();
+ }
+ if (IsC99Varargs || IsGNUVarargs) {
+ if (NumArguments && IsC99Varargs) Out << ", ";
+ Out << "...";
+ }
+ Out << ")";
+ }
+
+ for (const Token &Tok : ReplacementTokens) {
+ Out << " ";
+ if (const char *Punc = tok::getPunctuatorSpelling(Tok.getKind()))
+ Out << Punc;
+ else if (const char *Kwd = tok::getKeywordSpelling(Tok.getKind()))
+ Out << Kwd;
+ else if (Tok.is(tok::identifier))
+ Out << Tok.getIdentifierInfo()->getName();
+ else if (Tok.isLiteral() && Tok.getLiteralData())
+ Out << StringRef(Tok.getLiteralData(), Tok.getLength());
+ else
+ Out << Tok.getName();
+ }
+}
+
+MacroDirective::DefInfo MacroDirective::getDefinition() {
+ MacroDirective *MD = this;
+ SourceLocation UndefLoc;
+ Optional<bool> isPublic;
+ for (; MD; MD = MD->getPrevious()) {
+ if (DefMacroDirective *DefMD = dyn_cast<DefMacroDirective>(MD))
+ return DefInfo(DefMD, UndefLoc,
+ !isPublic.hasValue() || isPublic.getValue());
+
+ if (UndefMacroDirective *UndefMD = dyn_cast<UndefMacroDirective>(MD)) {
+ UndefLoc = UndefMD->getLocation();
+ continue;
+ }
+
+ VisibilityMacroDirective *VisMD = cast<VisibilityMacroDirective>(MD);
+ if (!isPublic.hasValue())
+ isPublic = VisMD->isPublic();
+ }
+
+ return DefInfo(nullptr, UndefLoc,
+ !isPublic.hasValue() || isPublic.getValue());
+}
+
+const MacroDirective::DefInfo
+MacroDirective::findDirectiveAtLoc(SourceLocation L, SourceManager &SM) const {
+ assert(L.isValid() && "SourceLocation is invalid.");
+ for (DefInfo Def = getDefinition(); Def; Def = Def.getPreviousDefinition()) {
+ if (Def.getLocation().isInvalid() || // For macros defined on the command line.
+ SM.isBeforeInTranslationUnit(Def.getLocation(), L))
+ return (!Def.isUndefined() ||
+ SM.isBeforeInTranslationUnit(L, Def.getUndefLocation()))
+ ? Def : DefInfo();
+ }
+ return DefInfo();
+}
+
+void MacroDirective::dump() const {
+ llvm::raw_ostream &Out = llvm::errs();
+
+ switch (getKind()) {
+ case MD_Define: Out << "DefMacroDirective"; break;
+ case MD_Undefine: Out << "UndefMacroDirective"; break;
+ case MD_Visibility: Out << "VisibilityMacroDirective"; break;
+ }
+ Out << " " << this;
+ // FIXME: Dump SourceLocation.
+ if (auto *Prev = getPrevious())
+ Out << " prev " << Prev;
+ if (IsFromPCH) Out << " from_pch";
+
+ if (isa<VisibilityMacroDirective>(this))
+ Out << (IsPublic ? " public" : " private");
+
+ if (auto *DMD = dyn_cast<DefMacroDirective>(this)) {
+ if (auto *Info = DMD->getInfo()) {
+ Out << "\n ";
+ Info->dump();
+ }
+ }
+ Out << "\n";
+}
+
+ModuleMacro *ModuleMacro::create(Preprocessor &PP, Module *OwningModule,
+ IdentifierInfo *II, MacroInfo *Macro,
+ ArrayRef<ModuleMacro *> Overrides) {
+ void *Mem = PP.getPreprocessorAllocator().Allocate(
+ sizeof(ModuleMacro) + sizeof(ModuleMacro *) * Overrides.size(),
+ llvm::alignOf<ModuleMacro>());
+ return new (Mem) ModuleMacro(OwningModule, II, Macro, Overrides);
+}
diff --git a/contrib/llvm/tools/clang/lib/Lex/ModuleMap.cpp b/contrib/llvm/tools/clang/lib/Lex/ModuleMap.cpp
new file mode 100644
index 0000000..4129183
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Lex/ModuleMap.cpp
@@ -0,0 +1,2362 @@
+//===--- ModuleMap.cpp - Describe the layout of modules ---------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the ModuleMap implementation, which describes the layout
+// of a module as it relates to headers.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/Lex/ModuleMap.h"
+#include "clang/Basic/CharInfo.h"
+#include "clang/Basic/Diagnostic.h"
+#include "clang/Basic/DiagnosticOptions.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Basic/TargetOptions.h"
+#include "clang/Lex/HeaderSearch.h"
+#include "clang/Lex/HeaderSearchOptions.h"
+#include "clang/Lex/LexDiagnostic.h"
+#include "clang/Lex/Lexer.h"
+#include "clang/Lex/LiteralSupport.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/Support/Allocator.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/Host.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/raw_ostream.h"
+#include <stdlib.h>
+#if defined(LLVM_ON_UNIX)
+#include <limits.h>
+#endif
+using namespace clang;
+
+Module::ExportDecl
+ModuleMap::resolveExport(Module *Mod,
+ const Module::UnresolvedExportDecl &Unresolved,
+ bool Complain) const {
+ // We may have just a wildcard.
+ if (Unresolved.Id.empty()) {
+ assert(Unresolved.Wildcard && "Invalid unresolved export");
+ return Module::ExportDecl(nullptr, true);
+ }
+
+ // Resolve the module-id.
+ Module *Context = resolveModuleId(Unresolved.Id, Mod, Complain);
+ if (!Context)
+ return Module::ExportDecl();
+
+ return Module::ExportDecl(Context, Unresolved.Wildcard);
+}
+
+Module *ModuleMap::resolveModuleId(const ModuleId &Id, Module *Mod,
+ bool Complain) const {
+ // Find the starting module.
+ Module *Context = lookupModuleUnqualified(Id[0].first, Mod);
+ if (!Context) {
+ if (Complain)
+ Diags.Report(Id[0].second, diag::err_mmap_missing_module_unqualified)
+ << Id[0].first << Mod->getFullModuleName();
+
+ return nullptr;
+ }
+
+ // Dig into the module path.
+ for (unsigned I = 1, N = Id.size(); I != N; ++I) {
+ Module *Sub = lookupModuleQualified(Id[I].first, Context);
+ if (!Sub) {
+ if (Complain)
+ Diags.Report(Id[I].second, diag::err_mmap_missing_module_qualified)
+ << Id[I].first << Context->getFullModuleName()
+ << SourceRange(Id[0].second, Id[I-1].second);
+
+ return nullptr;
+ }
+
+ Context = Sub;
+ }
+
+ return Context;
+}
+
+ModuleMap::ModuleMap(SourceManager &SourceMgr, DiagnosticsEngine &Diags,
+ const LangOptions &LangOpts, const TargetInfo *Target,
+ HeaderSearch &HeaderInfo)
+ : SourceMgr(SourceMgr), Diags(Diags), LangOpts(LangOpts), Target(Target),
+ HeaderInfo(HeaderInfo), BuiltinIncludeDir(nullptr),
+ CompilingModule(nullptr), SourceModule(nullptr), NumCreatedModules(0) {
+ MMapLangOpts.LineComment = true;
+}
+
+ModuleMap::~ModuleMap() {
+ for (llvm::StringMap<Module *>::iterator I = Modules.begin(),
+ IEnd = Modules.end();
+ I != IEnd; ++I) {
+ delete I->getValue();
+ }
+}
+
+void ModuleMap::setTarget(const TargetInfo &Target) {
+ assert((!this->Target || this->Target == &Target) &&
+ "Improper target override");
+ this->Target = &Target;
+}
+
+/// \brief "Sanitize" a filename so that it can be used as an identifier.
+static StringRef sanitizeFilenameAsIdentifier(StringRef Name,
+ SmallVectorImpl<char> &Buffer) {
+ if (Name.empty())
+ return Name;
+
+ if (!isValidIdentifier(Name)) {
+ // If we don't already have something with the form of an identifier,
+ // create a buffer with the sanitized name.
+ Buffer.clear();
+ if (isDigit(Name[0]))
+ Buffer.push_back('_');
+ Buffer.reserve(Buffer.size() + Name.size());
+ for (unsigned I = 0, N = Name.size(); I != N; ++I) {
+ if (isIdentifierBody(Name[I]))
+ Buffer.push_back(Name[I]);
+ else
+ Buffer.push_back('_');
+ }
+
+ Name = StringRef(Buffer.data(), Buffer.size());
+ }
+
+ while (llvm::StringSwitch<bool>(Name)
+#define KEYWORD(Keyword,Conditions) .Case(#Keyword, true)
+#define ALIAS(Keyword, AliasOf, Conditions) .Case(Keyword, true)
+#include "clang/Basic/TokenKinds.def"
+ .Default(false)) {
+ if (Name.data() != Buffer.data())
+ Buffer.append(Name.begin(), Name.end());
+ Buffer.push_back('_');
+ Name = StringRef(Buffer.data(), Buffer.size());
+ }
+
+ return Name;
+}
+
+/// \brief Determine whether the given file name is the name of a builtin
+/// header, supplied by Clang to replace, override, or augment existing system
+/// headers.
+static bool isBuiltinHeader(StringRef FileName) {
+ return llvm::StringSwitch<bool>(FileName)
+ .Case("float.h", true)
+ .Case("iso646.h", true)
+ .Case("limits.h", true)
+ .Case("stdalign.h", true)
+ .Case("stdarg.h", true)
+ .Case("stdbool.h", true)
+ .Case("stddef.h", true)
+ .Case("stdint.h", true)
+ .Case("tgmath.h", true)
+ .Case("unwind.h", true)
+ .Default(false);
+}
+
+ModuleMap::HeadersMap::iterator
+ModuleMap::findKnownHeader(const FileEntry *File) {
+ HeadersMap::iterator Known = Headers.find(File);
+ if (Known == Headers.end() && File->getDir() == BuiltinIncludeDir &&
+ isBuiltinHeader(llvm::sys::path::filename(File->getName()))) {
+ HeaderInfo.loadTopLevelSystemModules();
+ return Headers.find(File);
+ }
+ return Known;
+}
+
+ModuleMap::KnownHeader
+ModuleMap::findHeaderInUmbrellaDirs(const FileEntry *File,
+ SmallVectorImpl<const DirectoryEntry *> &IntermediateDirs) {
+ const DirectoryEntry *Dir = File->getDir();
+ assert(Dir && "file in no directory");
+
+ // Note: as an egregious but useful hack we use the real path here, because
+ // frameworks moving from top-level frameworks to embedded frameworks tend
+ // to be symlinked from the top-level location to the embedded location,
+ // and we need to resolve lookups as if we had found the embedded location.
+ StringRef DirName = SourceMgr.getFileManager().getCanonicalName(Dir);
+
+ // Keep walking up the directory hierarchy, looking for a directory with
+ // an umbrella header.
+ do {
+ auto KnownDir = UmbrellaDirs.find(Dir);
+ if (KnownDir != UmbrellaDirs.end())
+ return KnownHeader(KnownDir->second, NormalHeader);
+
+ IntermediateDirs.push_back(Dir);
+
+ // Retrieve our parent path.
+ DirName = llvm::sys::path::parent_path(DirName);
+ if (DirName.empty())
+ break;
+
+ // Resolve the parent path to a directory entry.
+ Dir = SourceMgr.getFileManager().getDirectory(DirName);
+ } while (Dir);
+ return KnownHeader();
+}
+
+static bool violatesPrivateInclude(Module *RequestingModule,
+ const FileEntry *IncFileEnt,
+ ModuleMap::ModuleHeaderRole Role,
+ Module *RequestedModule) {
+ bool IsPrivateRole = Role & ModuleMap::PrivateHeader;
+#ifndef NDEBUG
+ if (IsPrivateRole) {
+ // Check for consistency between the module header role
+ // as obtained from the lookup and as obtained from the module.
+ // This check is not cheap, so enable it only for debugging.
+ bool IsPrivate = false;
+ SmallVectorImpl<Module::Header> *HeaderList[] = {
+ &RequestedModule->Headers[Module::HK_Private],
+ &RequestedModule->Headers[Module::HK_PrivateTextual]};
+ for (auto *Hs : HeaderList)
+ IsPrivate |=
+ std::find_if(Hs->begin(), Hs->end(), [&](const Module::Header &H) {
+ return H.Entry == IncFileEnt;
+ }) != Hs->end();
+ assert((!IsPrivateRole || IsPrivate) && "inconsistent headers and roles");
+ }
+#endif
+ return IsPrivateRole &&
+ // FIXME: Should we map RequestingModule to its top-level module here
+ // too? This check is redundant with the isSubModuleOf check in
+ // diagnoseHeaderInclusion.
+ RequestedModule->getTopLevelModule() != RequestingModule;
+}
+
+static Module *getTopLevelOrNull(Module *M) {
+ return M ? M->getTopLevelModule() : nullptr;
+}
+
+void ModuleMap::diagnoseHeaderInclusion(Module *RequestingModule,
+ SourceLocation FilenameLoc,
+ StringRef Filename,
+ const FileEntry *File) {
+ // No errors for indirect modules. This may be a bit of a problem for modules
+ // with no source files.
+ if (getTopLevelOrNull(RequestingModule) != getTopLevelOrNull(SourceModule))
+ return;
+
+ if (RequestingModule)
+ resolveUses(RequestingModule, /*Complain=*/false);
+
+ bool Excluded = false;
+ Module *Private = nullptr;
+ Module *NotUsed = nullptr;
+
+ HeadersMap::iterator Known = findKnownHeader(File);
+ if (Known != Headers.end()) {
+ for (const KnownHeader &Header : Known->second) {
+ // If 'File' is part of 'RequestingModule' we can definitely include it.
+ if (Header.getModule() &&
+ Header.getModule()->isSubModuleOf(RequestingModule))
+ return;
+
+ // Remember private headers for later printing of a diagnostic.
+ if (violatesPrivateInclude(RequestingModule, File, Header.getRole(),
+ Header.getModule())) {
+ Private = Header.getModule();
+ continue;
+ }
+
+ // If uses need to be specified explicitly, we are only allowed to return
+ // modules that are explicitly used by the requesting module.
+ if (RequestingModule && LangOpts.ModulesDeclUse &&
+ !RequestingModule->directlyUses(Header.getModule())) {
+ NotUsed = Header.getModule();
+ continue;
+ }
+
+ // We have found a module that we can happily use.
+ return;
+ }
+
+ Excluded = true;
+ }
+
+ // We have found a header, but it is private.
+ if (Private) {
+ Diags.Report(FilenameLoc, diag::warn_use_of_private_header_outside_module)
+ << Filename;
+ return;
+ }
+
+ // We have found a module, but we don't use it.
+ if (NotUsed) {
+ Diags.Report(FilenameLoc, diag::err_undeclared_use_of_module)
+ << RequestingModule->getFullModuleName() << Filename;
+ return;
+ }
+
+ if (Excluded || isHeaderInUmbrellaDirs(File))
+ return;
+
+ // At this point, only non-modular includes remain.
+
+ if (LangOpts.ModulesStrictDeclUse) {
+ Diags.Report(FilenameLoc, diag::err_undeclared_use_of_module)
+ << RequestingModule->getFullModuleName() << Filename;
+ } else if (RequestingModule) {
+ diag::kind DiagID = RequestingModule->getTopLevelModule()->IsFramework ?
+ diag::warn_non_modular_include_in_framework_module :
+ diag::warn_non_modular_include_in_module;
+ Diags.Report(FilenameLoc, DiagID) << RequestingModule->getFullModuleName();
+ }
+}
+
+static bool isBetterKnownHeader(const ModuleMap::KnownHeader &New,
+ const ModuleMap::KnownHeader &Old) {
+ // Prefer a public header over a private header.
+ if ((New.getRole() & ModuleMap::PrivateHeader) !=
+ (Old.getRole() & ModuleMap::PrivateHeader))
+ return !(New.getRole() & ModuleMap::PrivateHeader);
+
+ // Prefer a non-textual header over a textual header.
+ if ((New.getRole() & ModuleMap::TextualHeader) !=
+ (Old.getRole() & ModuleMap::TextualHeader))
+ return !(New.getRole() & ModuleMap::TextualHeader);
+
+ // Don't have a reason to choose between these. Just keep the first one.
+ return false;
+}
+
+ModuleMap::KnownHeader
+ModuleMap::findModuleForHeader(const FileEntry *File,
+ Module *RequestingModule,
+ bool IncludeTextualHeaders) {
+ HeadersMap::iterator Known = findKnownHeader(File);
+
+ auto MakeResult = [&](ModuleMap::KnownHeader R) -> ModuleMap::KnownHeader {
+ if (!IncludeTextualHeaders && (R.getRole() & ModuleMap::TextualHeader))
+ return ModuleMap::KnownHeader();
+ return R;
+ };
+
+ if (Known != Headers.end()) {
+ ModuleMap::KnownHeader Result;
+
+ // Iterate over all modules that 'File' is part of to find the best fit.
+ for (SmallVectorImpl<KnownHeader>::iterator I = Known->second.begin(),
+ E = Known->second.end();
+ I != E; ++I) {
+ // Cannot use a module if it is unavailable.
+ if (!I->getModule()->isAvailable())
+ continue;
+
+ // If 'File' is part of 'RequestingModule', 'RequestingModule' is the
+ // module we are looking for.
+ if (I->getModule() == RequestingModule)
+ return MakeResult(*I);
+
+ // If uses need to be specified explicitly, we are only allowed to return
+ // modules that are explicitly used by the requesting module.
+ if (RequestingModule && LangOpts.ModulesDeclUse &&
+ !RequestingModule->directlyUses(I->getModule()))
+ continue;
+
+ if (!Result || isBetterKnownHeader(*I, Result))
+ Result = *I;
+ }
+ return MakeResult(Result);
+ }
+
+ SmallVector<const DirectoryEntry *, 2> SkippedDirs;
+ KnownHeader H = findHeaderInUmbrellaDirs(File, SkippedDirs);
+ if (H) {
+ Module *Result = H.getModule();
+
+ // Search up the module stack until we find a module with an umbrella
+ // directory.
+ Module *UmbrellaModule = Result;
+ while (!UmbrellaModule->getUmbrellaDir() && UmbrellaModule->Parent)
+ UmbrellaModule = UmbrellaModule->Parent;
+
+ if (UmbrellaModule->InferSubmodules) {
+ const FileEntry *UmbrellaModuleMap =
+ getModuleMapFileForUniquing(UmbrellaModule);
+
+ // Infer submodules for each of the directories we found between
+ // the directory of the umbrella header and the directory where
+ // the actual header is located.
+ bool Explicit = UmbrellaModule->InferExplicitSubmodules;
+
+ for (unsigned I = SkippedDirs.size(); I != 0; --I) {
+ // Find or create the module that corresponds to this directory name.
+ SmallString<32> NameBuf;
+ StringRef Name = sanitizeFilenameAsIdentifier(
+ llvm::sys::path::stem(SkippedDirs[I-1]->getName()), NameBuf);
+ Result = findOrCreateModule(Name, Result, /*IsFramework=*/false,
+ Explicit).first;
+ InferredModuleAllowedBy[Result] = UmbrellaModuleMap;
+ Result->IsInferred = true;
+
+ // Associate the module and the directory.
+ UmbrellaDirs[SkippedDirs[I-1]] = Result;
+
+ // If inferred submodules export everything they import, add a
+ // wildcard to the set of exports.
+ if (UmbrellaModule->InferExportWildcard && Result->Exports.empty())
+ Result->Exports.push_back(Module::ExportDecl(nullptr, true));
+ }
+
+ // Infer a submodule with the same name as this header file.
+ SmallString<32> NameBuf;
+ StringRef Name = sanitizeFilenameAsIdentifier(
+ llvm::sys::path::stem(File->getName()), NameBuf);
+ Result = findOrCreateModule(Name, Result, /*IsFramework=*/false,
+ Explicit).first;
+ InferredModuleAllowedBy[Result] = UmbrellaModuleMap;
+ Result->IsInferred = true;
+ Result->addTopHeader(File);
+
+ // If inferred submodules export everything they import, add a
+ // wildcard to the set of exports.
+ if (UmbrellaModule->InferExportWildcard && Result->Exports.empty())
+ Result->Exports.push_back(Module::ExportDecl(nullptr, true));
+ } else {
+ // Record each of the directories we stepped through as being part of
+ // the module we found, since the umbrella header covers them all.
+ for (unsigned I = 0, N = SkippedDirs.size(); I != N; ++I)
+ UmbrellaDirs[SkippedDirs[I]] = Result;
+ }
+
+ Headers[File].push_back(KnownHeader(Result, NormalHeader));
+
+ // If a header corresponds to an unavailable module, don't report
+ // that it maps to anything.
+ if (!Result->isAvailable())
+ return KnownHeader();
+
+ return MakeResult(Headers[File].back());
+ }
+
+ return KnownHeader();
+}
+
+bool ModuleMap::isHeaderInUnavailableModule(const FileEntry *Header) const {
+ return isHeaderUnavailableInModule(Header, nullptr);
+}
+
+bool
+ModuleMap::isHeaderUnavailableInModule(const FileEntry *Header,
+ const Module *RequestingModule) const {
+ HeadersMap::const_iterator Known = Headers.find(Header);
+ if (Known != Headers.end()) {
+ for (SmallVectorImpl<KnownHeader>::const_iterator
+ I = Known->second.begin(),
+ E = Known->second.end();
+ I != E; ++I) {
+ if (I->isAvailable() && (!RequestingModule ||
+ I->getModule()->isSubModuleOf(RequestingModule)))
+ return false;
+ }
+ return true;
+ }
+
+ const DirectoryEntry *Dir = Header->getDir();
+ SmallVector<const DirectoryEntry *, 2> SkippedDirs;
+ StringRef DirName = Dir->getName();
+
+ auto IsUnavailable = [&](const Module *M) {
+ return !M->isAvailable() && (!RequestingModule ||
+ M->isSubModuleOf(RequestingModule));
+ };
+
+ // Keep walking up the directory hierarchy, looking for a directory with
+ // an umbrella header.
+ do {
+ llvm::DenseMap<const DirectoryEntry *, Module *>::const_iterator KnownDir
+ = UmbrellaDirs.find(Dir);
+ if (KnownDir != UmbrellaDirs.end()) {
+ Module *Found = KnownDir->second;
+ if (IsUnavailable(Found))
+ return true;
+
+ // Search up the module stack until we find a module with an umbrella
+ // directory.
+ Module *UmbrellaModule = Found;
+ while (!UmbrellaModule->getUmbrellaDir() && UmbrellaModule->Parent)
+ UmbrellaModule = UmbrellaModule->Parent;
+
+ if (UmbrellaModule->InferSubmodules) {
+ for (unsigned I = SkippedDirs.size(); I != 0; --I) {
+ // Find or create the module that corresponds to this directory name.
+ SmallString<32> NameBuf;
+ StringRef Name = sanitizeFilenameAsIdentifier(
+ llvm::sys::path::stem(SkippedDirs[I-1]->getName()),
+ NameBuf);
+ Found = lookupModuleQualified(Name, Found);
+ if (!Found)
+ return false;
+ if (IsUnavailable(Found))
+ return true;
+ }
+
+ // Infer a submodule with the same name as this header file.
+ SmallString<32> NameBuf;
+ StringRef Name = sanitizeFilenameAsIdentifier(
+ llvm::sys::path::stem(Header->getName()),
+ NameBuf);
+ Found = lookupModuleQualified(Name, Found);
+ if (!Found)
+ return false;
+ }
+
+ return IsUnavailable(Found);
+ }
+
+ SkippedDirs.push_back(Dir);
+
+ // Retrieve our parent path.
+ DirName = llvm::sys::path::parent_path(DirName);
+ if (DirName.empty())
+ break;
+
+ // Resolve the parent path to a directory entry.
+ Dir = SourceMgr.getFileManager().getDirectory(DirName);
+ } while (Dir);
+
+ return false;
+}
+
+Module *ModuleMap::findModule(StringRef Name) const {
+ llvm::StringMap<Module *>::const_iterator Known = Modules.find(Name);
+ if (Known != Modules.end())
+ return Known->getValue();
+
+ return nullptr;
+}
+
+Module *ModuleMap::lookupModuleUnqualified(StringRef Name,
+ Module *Context) const {
+ for(; Context; Context = Context->Parent) {
+ if (Module *Sub = lookupModuleQualified(Name, Context))
+ return Sub;
+ }
+
+ return findModule(Name);
+}
+
+Module *ModuleMap::lookupModuleQualified(StringRef Name, Module *Context) const{
+ if (!Context)
+ return findModule(Name);
+
+ return Context->findSubmodule(Name);
+}
+
+std::pair<Module *, bool>
+ModuleMap::findOrCreateModule(StringRef Name, Module *Parent, bool IsFramework,
+ bool IsExplicit) {
+ // Try to find an existing module with this name.
+ if (Module *Sub = lookupModuleQualified(Name, Parent))
+ return std::make_pair(Sub, false);
+
+ // Create a new module with this name.
+ Module *Result = new Module(Name, SourceLocation(), Parent,
+ IsFramework, IsExplicit, NumCreatedModules++);
+ if (LangOpts.CurrentModule == Name) {
+ SourceModule = Result;
+ SourceModuleName = Name;
+ }
+ if (!Parent) {
+ Modules[Name] = Result;
+ if (!LangOpts.CurrentModule.empty() && !CompilingModule &&
+ Name == LangOpts.CurrentModule) {
+ CompilingModule = Result;
+ }
+ }
+ return std::make_pair(Result, true);
+}
+
+/// \brief For a framework module, infer the framework against which we
+/// should link.
+static void inferFrameworkLink(Module *Mod, const DirectoryEntry *FrameworkDir,
+ FileManager &FileMgr) {
+ assert(Mod->IsFramework && "Can only infer linking for framework modules");
+ assert(!Mod->isSubFramework() &&
+ "Can only infer linking for top-level frameworks");
+
+ SmallString<128> LibName;
+ LibName += FrameworkDir->getName();
+ llvm::sys::path::append(LibName, Mod->Name);
+ if (FileMgr.getFile(LibName)) {
+ Mod->LinkLibraries.push_back(Module::LinkLibrary(Mod->Name,
+ /*IsFramework=*/true));
+ }
+}
+
+Module *
+ModuleMap::inferFrameworkModule(StringRef ModuleName,
+ const DirectoryEntry *FrameworkDir,
+ bool IsSystem,
+ Module *Parent) {
+ Attributes Attrs;
+ Attrs.IsSystem = IsSystem;
+ return inferFrameworkModule(ModuleName, FrameworkDir, Attrs, Parent);
+}
+
+Module *ModuleMap::inferFrameworkModule(StringRef ModuleName,
+ const DirectoryEntry *FrameworkDir,
+ Attributes Attrs, Module *Parent) {
+
+ // Check whether we've already found this module.
+ if (Module *Mod = lookupModuleQualified(ModuleName, Parent))
+ return Mod;
+
+ FileManager &FileMgr = SourceMgr.getFileManager();
+
+ // If the framework has a parent path from which we're allowed to infer
+ // a framework module, do so.
+ const FileEntry *ModuleMapFile = nullptr;
+ if (!Parent) {
+ // Determine whether we're allowed to infer a module map.
+
+ // Note: as an egregious but useful hack we use the real path here, because
+ // we might be looking at an embedded framework that symlinks out to a
+ // top-level framework, and we need to infer as if we were naming the
+ // top-level framework.
+ StringRef FrameworkDirName
+ = SourceMgr.getFileManager().getCanonicalName(FrameworkDir);
+
+ // In case this is a case-insensitive filesystem, make sure the canonical
+ // directory name matches ModuleName exactly. Modules are case-sensitive.
+ // FIXME: we should be able to give a fix-it hint for the correct spelling.
+ if (llvm::sys::path::stem(FrameworkDirName) != ModuleName)
+ return nullptr;
+
+ bool canInfer = false;
+ if (llvm::sys::path::has_parent_path(FrameworkDirName)) {
+ // Figure out the parent path.
+ StringRef Parent = llvm::sys::path::parent_path(FrameworkDirName);
+ if (const DirectoryEntry *ParentDir = FileMgr.getDirectory(Parent)) {
+ // Check whether we have already looked into the parent directory
+ // for a module map.
+ llvm::DenseMap<const DirectoryEntry *, InferredDirectory>::const_iterator
+ inferred = InferredDirectories.find(ParentDir);
+ if (inferred == InferredDirectories.end()) {
+ // We haven't looked here before. Load a module map, if there is
+ // one.
+ bool IsFrameworkDir = Parent.endswith(".framework");
+ if (const FileEntry *ModMapFile =
+ HeaderInfo.lookupModuleMapFile(ParentDir, IsFrameworkDir)) {
+ parseModuleMapFile(ModMapFile, Attrs.IsSystem, ParentDir);
+ inferred = InferredDirectories.find(ParentDir);
+ }
+
+ if (inferred == InferredDirectories.end())
+ inferred = InferredDirectories.insert(
+ std::make_pair(ParentDir, InferredDirectory())).first;
+ }
+
+ if (inferred->second.InferModules) {
+ // We're allowed to infer for this directory, but make sure it's okay
+ // to infer this particular module.
+ StringRef Name = llvm::sys::path::stem(FrameworkDirName);
+ canInfer = std::find(inferred->second.ExcludedModules.begin(),
+ inferred->second.ExcludedModules.end(),
+ Name) == inferred->second.ExcludedModules.end();
+
+ Attrs.IsSystem |= inferred->second.Attrs.IsSystem;
+ Attrs.IsExternC |= inferred->second.Attrs.IsExternC;
+ Attrs.IsExhaustive |= inferred->second.Attrs.IsExhaustive;
+ ModuleMapFile = inferred->second.ModuleMapFile;
+ }
+ }
+ }
+
+ // If we're not allowed to infer a framework module, don't.
+ if (!canInfer)
+ return nullptr;
+ } else
+ ModuleMapFile = getModuleMapFileForUniquing(Parent);
+
+
+ // Look for an umbrella header.
+ SmallString<128> UmbrellaName = StringRef(FrameworkDir->getName());
+ llvm::sys::path::append(UmbrellaName, "Headers", ModuleName + ".h");
+ const FileEntry *UmbrellaHeader = FileMgr.getFile(UmbrellaName);
+
+ // FIXME: If there's no umbrella header, we could probably scan the
+ // framework to load *everything*. But, it's not clear that this is a good
+ // idea.
+ if (!UmbrellaHeader)
+ return nullptr;
+
+ Module *Result = new Module(ModuleName, SourceLocation(), Parent,
+ /*IsFramework=*/true, /*IsExplicit=*/false,
+ NumCreatedModules++);
+ InferredModuleAllowedBy[Result] = ModuleMapFile;
+ Result->IsInferred = true;
+ if (LangOpts.CurrentModule == ModuleName) {
+ SourceModule = Result;
+ SourceModuleName = ModuleName;
+ }
+
+ Result->IsSystem |= Attrs.IsSystem;
+ Result->IsExternC |= Attrs.IsExternC;
+ Result->ConfigMacrosExhaustive |= Attrs.IsExhaustive;
+ Result->Directory = FrameworkDir;
+
+ if (!Parent)
+ Modules[ModuleName] = Result;
+
+ // umbrella header "umbrella-header-name"
+ //
+ // The "Headers/" component of the name is implied because this is
+ // a framework module.
+ setUmbrellaHeader(Result, UmbrellaHeader, ModuleName + ".h");
+
+ // export *
+ Result->Exports.push_back(Module::ExportDecl(nullptr, true));
+
+ // module * { export * }
+ Result->InferSubmodules = true;
+ Result->InferExportWildcard = true;
+
+ // Look for subframeworks.
+ std::error_code EC;
+ SmallString<128> SubframeworksDirName
+ = StringRef(FrameworkDir->getName());
+ llvm::sys::path::append(SubframeworksDirName, "Frameworks");
+ llvm::sys::path::native(SubframeworksDirName);
+ for (llvm::sys::fs::directory_iterator Dir(SubframeworksDirName, EC), DirEnd;
+ Dir != DirEnd && !EC; Dir.increment(EC)) {
+ if (!StringRef(Dir->path()).endswith(".framework"))
+ continue;
+
+ if (const DirectoryEntry *SubframeworkDir
+ = FileMgr.getDirectory(Dir->path())) {
+ // Note: as an egregious but useful hack, we use the real path here and
+ // check whether it is actually a subdirectory of the parent directory.
+ // This will not be the case if the 'subframework' is actually a symlink
+ // out to a top-level framework.
+ StringRef SubframeworkDirName = FileMgr.getCanonicalName(SubframeworkDir);
+ bool FoundParent = false;
+ do {
+ // Get the parent directory name.
+ SubframeworkDirName
+ = llvm::sys::path::parent_path(SubframeworkDirName);
+ if (SubframeworkDirName.empty())
+ break;
+
+ if (FileMgr.getDirectory(SubframeworkDirName) == FrameworkDir) {
+ FoundParent = true;
+ break;
+ }
+ } while (true);
+
+ if (!FoundParent)
+ continue;
+
+ // FIXME: Do we want to warn about subframeworks without umbrella headers?
+ SmallString<32> NameBuf;
+ inferFrameworkModule(sanitizeFilenameAsIdentifier(
+ llvm::sys::path::stem(Dir->path()), NameBuf),
+ SubframeworkDir, Attrs, Result);
+ }
+ }
+
+ // If the module is a top-level framework, automatically link against the
+ // framework.
+ if (!Result->isSubFramework()) {
+ inferFrameworkLink(Result, FrameworkDir, FileMgr);
+ }
+
+ return Result;
+}
+
+void ModuleMap::setUmbrellaHeader(Module *Mod, const FileEntry *UmbrellaHeader,
+ Twine NameAsWritten) {
+ Headers[UmbrellaHeader].push_back(KnownHeader(Mod, NormalHeader));
+ Mod->Umbrella = UmbrellaHeader;
+ Mod->UmbrellaAsWritten = NameAsWritten.str();
+ UmbrellaDirs[UmbrellaHeader->getDir()] = Mod;
+}
+
+void ModuleMap::setUmbrellaDir(Module *Mod, const DirectoryEntry *UmbrellaDir,
+ Twine NameAsWritten) {
+ Mod->Umbrella = UmbrellaDir;
+ Mod->UmbrellaAsWritten = NameAsWritten.str();
+ UmbrellaDirs[UmbrellaDir] = Mod;
+}
+
+static Module::HeaderKind headerRoleToKind(ModuleMap::ModuleHeaderRole Role) {
+ switch ((int)Role) {
+ default: llvm_unreachable("unknown header role");
+ case ModuleMap::NormalHeader:
+ return Module::HK_Normal;
+ case ModuleMap::PrivateHeader:
+ return Module::HK_Private;
+ case ModuleMap::TextualHeader:
+ return Module::HK_Textual;
+ case ModuleMap::PrivateHeader | ModuleMap::TextualHeader:
+ return Module::HK_PrivateTextual;
+ }
+}
+
+void ModuleMap::addHeader(Module *Mod, Module::Header Header,
+ ModuleHeaderRole Role) {
+ if (!(Role & TextualHeader)) {
+ bool isCompilingModuleHeader = Mod->getTopLevelModule() == CompilingModule;
+ HeaderInfo.MarkFileModuleHeader(Header.Entry, Role,
+ isCompilingModuleHeader);
+ }
+ Headers[Header.Entry].push_back(KnownHeader(Mod, Role));
+
+ Mod->Headers[headerRoleToKind(Role)].push_back(std::move(Header));
+}
+
+void ModuleMap::excludeHeader(Module *Mod, Module::Header Header) {
+ // Add this as a known header so we won't implicitly add it to any
+ // umbrella directory module.
+ // FIXME: Should we only exclude it from umbrella modules within the
+ // specified module?
+ (void) Headers[Header.Entry];
+
+ Mod->Headers[Module::HK_Excluded].push_back(std::move(Header));
+}
+
+const FileEntry *
+ModuleMap::getContainingModuleMapFile(const Module *Module) const {
+ if (Module->DefinitionLoc.isInvalid())
+ return nullptr;
+
+ return SourceMgr.getFileEntryForID(
+ SourceMgr.getFileID(Module->DefinitionLoc));
+}
+
+const FileEntry *ModuleMap::getModuleMapFileForUniquing(const Module *M) const {
+ if (M->IsInferred) {
+ assert(InferredModuleAllowedBy.count(M) && "missing inferred module map");
+ return InferredModuleAllowedBy.find(M)->second;
+ }
+ return getContainingModuleMapFile(M);
+}
+
+void ModuleMap::setInferredModuleAllowedBy(Module *M, const FileEntry *ModMap) {
+ assert(M->IsInferred && "module not inferred");
+ InferredModuleAllowedBy[M] = ModMap;
+}
+
+void ModuleMap::dump() {
+ llvm::errs() << "Modules:";
+ for (llvm::StringMap<Module *>::iterator M = Modules.begin(),
+ MEnd = Modules.end();
+ M != MEnd; ++M)
+ M->getValue()->print(llvm::errs(), 2);
+
+ llvm::errs() << "Headers:";
+ for (HeadersMap::iterator H = Headers.begin(), HEnd = Headers.end();
+ H != HEnd; ++H) {
+ llvm::errs() << " \"" << H->first->getName() << "\" -> ";
+ for (SmallVectorImpl<KnownHeader>::const_iterator I = H->second.begin(),
+ E = H->second.end();
+ I != E; ++I) {
+ if (I != H->second.begin())
+ llvm::errs() << ",";
+ llvm::errs() << I->getModule()->getFullModuleName();
+ }
+ llvm::errs() << "\n";
+ }
+}
+
+bool ModuleMap::resolveExports(Module *Mod, bool Complain) {
+ auto Unresolved = std::move(Mod->UnresolvedExports);
+ Mod->UnresolvedExports.clear();
+ for (auto &UE : Unresolved) {
+ Module::ExportDecl Export = resolveExport(Mod, UE, Complain);
+ if (Export.getPointer() || Export.getInt())
+ Mod->Exports.push_back(Export);
+ else
+ Mod->UnresolvedExports.push_back(UE);
+ }
+ return !Mod->UnresolvedExports.empty();
+}
+
+bool ModuleMap::resolveUses(Module *Mod, bool Complain) {
+ auto Unresolved = std::move(Mod->UnresolvedDirectUses);
+ Mod->UnresolvedDirectUses.clear();
+ for (auto &UDU : Unresolved) {
+ Module *DirectUse = resolveModuleId(UDU, Mod, Complain);
+ if (DirectUse)
+ Mod->DirectUses.push_back(DirectUse);
+ else
+ Mod->UnresolvedDirectUses.push_back(UDU);
+ }
+ return !Mod->UnresolvedDirectUses.empty();
+}
+
+bool ModuleMap::resolveConflicts(Module *Mod, bool Complain) {
+ auto Unresolved = std::move(Mod->UnresolvedConflicts);
+ Mod->UnresolvedConflicts.clear();
+ for (auto &UC : Unresolved) {
+ if (Module *OtherMod = resolveModuleId(UC.Id, Mod, Complain)) {
+ Module::Conflict Conflict;
+ Conflict.Other = OtherMod;
+ Conflict.Message = UC.Message;
+ Mod->Conflicts.push_back(Conflict);
+ } else
+ Mod->UnresolvedConflicts.push_back(UC);
+ }
+ return !Mod->UnresolvedConflicts.empty();
+}
+
+Module *ModuleMap::inferModuleFromLocation(FullSourceLoc Loc) {
+ if (Loc.isInvalid())
+ return nullptr;
+
+ // Use the expansion location to determine which module we're in.
+ FullSourceLoc ExpansionLoc = Loc.getExpansionLoc();
+ if (!ExpansionLoc.isFileID())
+ return nullptr;
+
+ const SourceManager &SrcMgr = Loc.getManager();
+ FileID ExpansionFileID = ExpansionLoc.getFileID();
+
+ while (const FileEntry *ExpansionFile
+ = SrcMgr.getFileEntryForID(ExpansionFileID)) {
+ // Find the module that owns this header (if any).
+ if (Module *Mod = findModuleForHeader(ExpansionFile).getModule())
+ return Mod;
+
+ // No module owns this header, so look up the inclusion chain to see if
+ // any included header has an associated module.
+ SourceLocation IncludeLoc = SrcMgr.getIncludeLoc(ExpansionFileID);
+ if (IncludeLoc.isInvalid())
+ return nullptr;
+
+ ExpansionFileID = SrcMgr.getFileID(IncludeLoc);
+ }
+
+ return nullptr;
+}
+
+//----------------------------------------------------------------------------//
+// Module map file parser
+//----------------------------------------------------------------------------//
+
+namespace clang {
+ /// \brief A token in a module map file.
+ struct MMToken {
+ enum TokenKind {
+ Comma,
+ ConfigMacros,
+ Conflict,
+ EndOfFile,
+ HeaderKeyword,
+ Identifier,
+ Exclaim,
+ ExcludeKeyword,
+ ExplicitKeyword,
+ ExportKeyword,
+ ExternKeyword,
+ FrameworkKeyword,
+ LinkKeyword,
+ ModuleKeyword,
+ Period,
+ PrivateKeyword,
+ UmbrellaKeyword,
+ UseKeyword,
+ RequiresKeyword,
+ Star,
+ StringLiteral,
+ TextualKeyword,
+ LBrace,
+ RBrace,
+ LSquare,
+ RSquare
+ } Kind;
+
+ unsigned Location;
+ unsigned StringLength;
+ const char *StringData;
+
+ void clear() {
+ Kind = EndOfFile;
+ Location = 0;
+ StringLength = 0;
+ StringData = nullptr;
+ }
+
+ bool is(TokenKind K) const { return Kind == K; }
+
+ SourceLocation getLocation() const {
+ return SourceLocation::getFromRawEncoding(Location);
+ }
+
+ StringRef getString() const {
+ return StringRef(StringData, StringLength);
+ }
+ };
+
+ class ModuleMapParser {
+ Lexer &L;
+ SourceManager &SourceMgr;
+
+ /// \brief Default target information, used only for string literal
+ /// parsing.
+ const TargetInfo *Target;
+
+ DiagnosticsEngine &Diags;
+ ModuleMap &Map;
+
+ /// \brief The current module map file.
+ const FileEntry *ModuleMapFile;
+
+ /// \brief The directory that file names in this module map file should
+ /// be resolved relative to.
+ const DirectoryEntry *Directory;
+
+ /// \brief The directory containing Clang-supplied headers.
+ const DirectoryEntry *BuiltinIncludeDir;
+
+ /// \brief Whether this module map is in a system header directory.
+ bool IsSystem;
+
+ /// \brief Whether an error occurred.
+ bool HadError;
+
+ /// \brief Stores string data for the various string literals referenced
+ /// during parsing.
+ llvm::BumpPtrAllocator StringData;
+
+ /// \brief The current token.
+ MMToken Tok;
+
+ /// \brief The active module.
+ Module *ActiveModule;
+
+ /// \brief Consume the current token and return its location.
+ SourceLocation consumeToken();
+
+ /// \brief Skip tokens until we reach the a token with the given kind
+ /// (or the end of the file).
+ void skipUntil(MMToken::TokenKind K);
+
+ typedef SmallVector<std::pair<std::string, SourceLocation>, 2> ModuleId;
+ bool parseModuleId(ModuleId &Id);
+ void parseModuleDecl();
+ void parseExternModuleDecl();
+ void parseRequiresDecl();
+ void parseHeaderDecl(clang::MMToken::TokenKind,
+ SourceLocation LeadingLoc);
+ void parseUmbrellaDirDecl(SourceLocation UmbrellaLoc);
+ void parseExportDecl();
+ void parseUseDecl();
+ void parseLinkDecl();
+ void parseConfigMacros();
+ void parseConflict();
+ void parseInferredModuleDecl(bool Framework, bool Explicit);
+
+ typedef ModuleMap::Attributes Attributes;
+ bool parseOptionalAttributes(Attributes &Attrs);
+
+ public:
+ explicit ModuleMapParser(Lexer &L, SourceManager &SourceMgr,
+ const TargetInfo *Target,
+ DiagnosticsEngine &Diags,
+ ModuleMap &Map,
+ const FileEntry *ModuleMapFile,
+ const DirectoryEntry *Directory,
+ const DirectoryEntry *BuiltinIncludeDir,
+ bool IsSystem)
+ : L(L), SourceMgr(SourceMgr), Target(Target), Diags(Diags), Map(Map),
+ ModuleMapFile(ModuleMapFile), Directory(Directory),
+ BuiltinIncludeDir(BuiltinIncludeDir), IsSystem(IsSystem),
+ HadError(false), ActiveModule(nullptr)
+ {
+ Tok.clear();
+ consumeToken();
+ }
+
+ bool parseModuleMapFile();
+ };
+}
+
+SourceLocation ModuleMapParser::consumeToken() {
+retry:
+ SourceLocation Result = Tok.getLocation();
+ Tok.clear();
+
+ Token LToken;
+ L.LexFromRawLexer(LToken);
+ Tok.Location = LToken.getLocation().getRawEncoding();
+ switch (LToken.getKind()) {
+ case tok::raw_identifier: {
+ StringRef RI = LToken.getRawIdentifier();
+ Tok.StringData = RI.data();
+ Tok.StringLength = RI.size();
+ Tok.Kind = llvm::StringSwitch<MMToken::TokenKind>(RI)
+ .Case("config_macros", MMToken::ConfigMacros)
+ .Case("conflict", MMToken::Conflict)
+ .Case("exclude", MMToken::ExcludeKeyword)
+ .Case("explicit", MMToken::ExplicitKeyword)
+ .Case("export", MMToken::ExportKeyword)
+ .Case("extern", MMToken::ExternKeyword)
+ .Case("framework", MMToken::FrameworkKeyword)
+ .Case("header", MMToken::HeaderKeyword)
+ .Case("link", MMToken::LinkKeyword)
+ .Case("module", MMToken::ModuleKeyword)
+ .Case("private", MMToken::PrivateKeyword)
+ .Case("requires", MMToken::RequiresKeyword)
+ .Case("textual", MMToken::TextualKeyword)
+ .Case("umbrella", MMToken::UmbrellaKeyword)
+ .Case("use", MMToken::UseKeyword)
+ .Default(MMToken::Identifier);
+ break;
+ }
+
+ case tok::comma:
+ Tok.Kind = MMToken::Comma;
+ break;
+
+ case tok::eof:
+ Tok.Kind = MMToken::EndOfFile;
+ break;
+
+ case tok::l_brace:
+ Tok.Kind = MMToken::LBrace;
+ break;
+
+ case tok::l_square:
+ Tok.Kind = MMToken::LSquare;
+ break;
+
+ case tok::period:
+ Tok.Kind = MMToken::Period;
+ break;
+
+ case tok::r_brace:
+ Tok.Kind = MMToken::RBrace;
+ break;
+
+ case tok::r_square:
+ Tok.Kind = MMToken::RSquare;
+ break;
+
+ case tok::star:
+ Tok.Kind = MMToken::Star;
+ break;
+
+ case tok::exclaim:
+ Tok.Kind = MMToken::Exclaim;
+ break;
+
+ case tok::string_literal: {
+ if (LToken.hasUDSuffix()) {
+ Diags.Report(LToken.getLocation(), diag::err_invalid_string_udl);
+ HadError = true;
+ goto retry;
+ }
+
+ // Parse the string literal.
+ LangOptions LangOpts;
+ StringLiteralParser StringLiteral(LToken, SourceMgr, LangOpts, *Target);
+ if (StringLiteral.hadError)
+ goto retry;
+
+ // Copy the string literal into our string data allocator.
+ unsigned Length = StringLiteral.GetStringLength();
+ char *Saved = StringData.Allocate<char>(Length + 1);
+ memcpy(Saved, StringLiteral.GetString().data(), Length);
+ Saved[Length] = 0;
+
+ // Form the token.
+ Tok.Kind = MMToken::StringLiteral;
+ Tok.StringData = Saved;
+ Tok.StringLength = Length;
+ break;
+ }
+
+ case tok::comment:
+ goto retry;
+
+ default:
+ Diags.Report(LToken.getLocation(), diag::err_mmap_unknown_token);
+ HadError = true;
+ goto retry;
+ }
+
+ return Result;
+}
+
+void ModuleMapParser::skipUntil(MMToken::TokenKind K) {
+ unsigned braceDepth = 0;
+ unsigned squareDepth = 0;
+ do {
+ switch (Tok.Kind) {
+ case MMToken::EndOfFile:
+ return;
+
+ case MMToken::LBrace:
+ if (Tok.is(K) && braceDepth == 0 && squareDepth == 0)
+ return;
+
+ ++braceDepth;
+ break;
+
+ case MMToken::LSquare:
+ if (Tok.is(K) && braceDepth == 0 && squareDepth == 0)
+ return;
+
+ ++squareDepth;
+ break;
+
+ case MMToken::RBrace:
+ if (braceDepth > 0)
+ --braceDepth;
+ else if (Tok.is(K))
+ return;
+ break;
+
+ case MMToken::RSquare:
+ if (squareDepth > 0)
+ --squareDepth;
+ else if (Tok.is(K))
+ return;
+ break;
+
+ default:
+ if (braceDepth == 0 && squareDepth == 0 && Tok.is(K))
+ return;
+ break;
+ }
+
+ consumeToken();
+ } while (true);
+}
+
+/// \brief Parse a module-id.
+///
+/// module-id:
+/// identifier
+/// identifier '.' module-id
+///
+/// \returns true if an error occurred, false otherwise.
+bool ModuleMapParser::parseModuleId(ModuleId &Id) {
+ Id.clear();
+ do {
+ if (Tok.is(MMToken::Identifier) || Tok.is(MMToken::StringLiteral)) {
+ Id.push_back(std::make_pair(Tok.getString(), Tok.getLocation()));
+ consumeToken();
+ } else {
+ Diags.Report(Tok.getLocation(), diag::err_mmap_expected_module_name);
+ return true;
+ }
+
+ if (!Tok.is(MMToken::Period))
+ break;
+
+ consumeToken();
+ } while (true);
+
+ return false;
+}
+
+namespace {
+ /// \brief Enumerates the known attributes.
+ enum AttributeKind {
+ /// \brief An unknown attribute.
+ AT_unknown,
+ /// \brief The 'system' attribute.
+ AT_system,
+ /// \brief The 'extern_c' attribute.
+ AT_extern_c,
+ /// \brief The 'exhaustive' attribute.
+ AT_exhaustive
+ };
+}
+
+/// \brief Parse a module declaration.
+///
+/// module-declaration:
+/// 'extern' 'module' module-id string-literal
+/// 'explicit'[opt] 'framework'[opt] 'module' module-id attributes[opt]
+/// { module-member* }
+///
+/// module-member:
+/// requires-declaration
+/// header-declaration
+/// submodule-declaration
+/// export-declaration
+/// link-declaration
+///
+/// submodule-declaration:
+/// module-declaration
+/// inferred-submodule-declaration
+void ModuleMapParser::parseModuleDecl() {
+ assert(Tok.is(MMToken::ExplicitKeyword) || Tok.is(MMToken::ModuleKeyword) ||
+ Tok.is(MMToken::FrameworkKeyword) || Tok.is(MMToken::ExternKeyword));
+ if (Tok.is(MMToken::ExternKeyword)) {
+ parseExternModuleDecl();
+ return;
+ }
+
+ // Parse 'explicit' or 'framework' keyword, if present.
+ SourceLocation ExplicitLoc;
+ bool Explicit = false;
+ bool Framework = false;
+
+ // Parse 'explicit' keyword, if present.
+ if (Tok.is(MMToken::ExplicitKeyword)) {
+ ExplicitLoc = consumeToken();
+ Explicit = true;
+ }
+
+ // Parse 'framework' keyword, if present.
+ if (Tok.is(MMToken::FrameworkKeyword)) {
+ consumeToken();
+ Framework = true;
+ }
+
+ // Parse 'module' keyword.
+ if (!Tok.is(MMToken::ModuleKeyword)) {
+ Diags.Report(Tok.getLocation(), diag::err_mmap_expected_module);
+ consumeToken();
+ HadError = true;
+ return;
+ }
+ consumeToken(); // 'module' keyword
+
+ // If we have a wildcard for the module name, this is an inferred submodule.
+ // Parse it.
+ if (Tok.is(MMToken::Star))
+ return parseInferredModuleDecl(Framework, Explicit);
+
+ // Parse the module name.
+ ModuleId Id;
+ if (parseModuleId(Id)) {
+ HadError = true;
+ return;
+ }
+
+ if (ActiveModule) {
+ if (Id.size() > 1) {
+ Diags.Report(Id.front().second, diag::err_mmap_nested_submodule_id)
+ << SourceRange(Id.front().second, Id.back().second);
+
+ HadError = true;
+ return;
+ }
+ } else if (Id.size() == 1 && Explicit) {
+ // Top-level modules can't be explicit.
+ Diags.Report(ExplicitLoc, diag::err_mmap_explicit_top_level);
+ Explicit = false;
+ ExplicitLoc = SourceLocation();
+ HadError = true;
+ }
+
+ Module *PreviousActiveModule = ActiveModule;
+ if (Id.size() > 1) {
+ // This module map defines a submodule. Go find the module of which it
+ // is a submodule.
+ ActiveModule = nullptr;
+ const Module *TopLevelModule = nullptr;
+ for (unsigned I = 0, N = Id.size() - 1; I != N; ++I) {
+ if (Module *Next = Map.lookupModuleQualified(Id[I].first, ActiveModule)) {
+ if (I == 0)
+ TopLevelModule = Next;
+ ActiveModule = Next;
+ continue;
+ }
+
+ if (ActiveModule) {
+ Diags.Report(Id[I].second, diag::err_mmap_missing_module_qualified)
+ << Id[I].first
+ << ActiveModule->getTopLevelModule()->getFullModuleName();
+ } else {
+ Diags.Report(Id[I].second, diag::err_mmap_expected_module_name);
+ }
+ HadError = true;
+ return;
+ }
+
+ if (ModuleMapFile != Map.getContainingModuleMapFile(TopLevelModule)) {
+ assert(ModuleMapFile != Map.getModuleMapFileForUniquing(TopLevelModule) &&
+ "submodule defined in same file as 'module *' that allowed its "
+ "top-level module");
+ Map.addAdditionalModuleMapFile(TopLevelModule, ModuleMapFile);
+ }
+ }
+
+ StringRef ModuleName = Id.back().first;
+ SourceLocation ModuleNameLoc = Id.back().second;
+
+ // Parse the optional attribute list.
+ Attributes Attrs;
+ parseOptionalAttributes(Attrs);
+
+ // Parse the opening brace.
+ if (!Tok.is(MMToken::LBrace)) {
+ Diags.Report(Tok.getLocation(), diag::err_mmap_expected_lbrace)
+ << ModuleName;
+ HadError = true;
+ return;
+ }
+ SourceLocation LBraceLoc = consumeToken();
+
+ // Determine whether this (sub)module has already been defined.
+ if (Module *Existing = Map.lookupModuleQualified(ModuleName, ActiveModule)) {
+ if (Existing->DefinitionLoc.isInvalid() && !ActiveModule) {
+ // Skip the module definition.
+ skipUntil(MMToken::RBrace);
+ if (Tok.is(MMToken::RBrace))
+ consumeToken();
+ else {
+ Diags.Report(Tok.getLocation(), diag::err_mmap_expected_rbrace);
+ Diags.Report(LBraceLoc, diag::note_mmap_lbrace_match);
+ HadError = true;
+ }
+ return;
+ }
+
+ Diags.Report(ModuleNameLoc, diag::err_mmap_module_redefinition)
+ << ModuleName;
+ Diags.Report(Existing->DefinitionLoc, diag::note_mmap_prev_definition);
+
+ // Skip the module definition.
+ skipUntil(MMToken::RBrace);
+ if (Tok.is(MMToken::RBrace))
+ consumeToken();
+
+ HadError = true;
+ return;
+ }
+
+ // Start defining this module.
+ ActiveModule = Map.findOrCreateModule(ModuleName, ActiveModule, Framework,
+ Explicit).first;
+ ActiveModule->DefinitionLoc = ModuleNameLoc;
+ if (Attrs.IsSystem || IsSystem)
+ ActiveModule->IsSystem = true;
+ if (Attrs.IsExternC)
+ ActiveModule->IsExternC = true;
+ ActiveModule->Directory = Directory;
+
+ bool Done = false;
+ do {
+ switch (Tok.Kind) {
+ case MMToken::EndOfFile:
+ case MMToken::RBrace:
+ Done = true;
+ break;
+
+ case MMToken::ConfigMacros:
+ parseConfigMacros();
+ break;
+
+ case MMToken::Conflict:
+ parseConflict();
+ break;
+
+ case MMToken::ExplicitKeyword:
+ case MMToken::ExternKeyword:
+ case MMToken::FrameworkKeyword:
+ case MMToken::ModuleKeyword:
+ parseModuleDecl();
+ break;
+
+ case MMToken::ExportKeyword:
+ parseExportDecl();
+ break;
+
+ case MMToken::UseKeyword:
+ parseUseDecl();
+ break;
+
+ case MMToken::RequiresKeyword:
+ parseRequiresDecl();
+ break;
+
+ case MMToken::TextualKeyword:
+ parseHeaderDecl(MMToken::TextualKeyword, consumeToken());
+ break;
+
+ case MMToken::UmbrellaKeyword: {
+ SourceLocation UmbrellaLoc = consumeToken();
+ if (Tok.is(MMToken::HeaderKeyword))
+ parseHeaderDecl(MMToken::UmbrellaKeyword, UmbrellaLoc);
+ else
+ parseUmbrellaDirDecl(UmbrellaLoc);
+ break;
+ }
+
+ case MMToken::ExcludeKeyword:
+ parseHeaderDecl(MMToken::ExcludeKeyword, consumeToken());
+ break;
+
+ case MMToken::PrivateKeyword:
+ parseHeaderDecl(MMToken::PrivateKeyword, consumeToken());
+ break;
+
+ case MMToken::HeaderKeyword:
+ parseHeaderDecl(MMToken::HeaderKeyword, consumeToken());
+ break;
+
+ case MMToken::LinkKeyword:
+ parseLinkDecl();
+ break;
+
+ default:
+ Diags.Report(Tok.getLocation(), diag::err_mmap_expected_member);
+ consumeToken();
+ break;
+ }
+ } while (!Done);
+
+ if (Tok.is(MMToken::RBrace))
+ consumeToken();
+ else {
+ Diags.Report(Tok.getLocation(), diag::err_mmap_expected_rbrace);
+ Diags.Report(LBraceLoc, diag::note_mmap_lbrace_match);
+ HadError = true;
+ }
+
+ // If the active module is a top-level framework, and there are no link
+ // libraries, automatically link against the framework.
+ if (ActiveModule->IsFramework && !ActiveModule->isSubFramework() &&
+ ActiveModule->LinkLibraries.empty()) {
+ inferFrameworkLink(ActiveModule, Directory, SourceMgr.getFileManager());
+ }
+
+ // If the module meets all requirements but is still unavailable, mark the
+ // whole tree as unavailable to prevent it from building.
+ if (!ActiveModule->IsAvailable && !ActiveModule->IsMissingRequirement &&
+ ActiveModule->Parent) {
+ ActiveModule->getTopLevelModule()->markUnavailable();
+ ActiveModule->getTopLevelModule()->MissingHeaders.append(
+ ActiveModule->MissingHeaders.begin(), ActiveModule->MissingHeaders.end());
+ }
+
+ // We're done parsing this module. Pop back to the previous module.
+ ActiveModule = PreviousActiveModule;
+}
+
+/// \brief Parse an extern module declaration.
+///
+/// extern module-declaration:
+/// 'extern' 'module' module-id string-literal
+void ModuleMapParser::parseExternModuleDecl() {
+ assert(Tok.is(MMToken::ExternKeyword));
+ consumeToken(); // 'extern' keyword
+
+ // Parse 'module' keyword.
+ if (!Tok.is(MMToken::ModuleKeyword)) {
+ Diags.Report(Tok.getLocation(), diag::err_mmap_expected_module);
+ consumeToken();
+ HadError = true;
+ return;
+ }
+ consumeToken(); // 'module' keyword
+
+ // Parse the module name.
+ ModuleId Id;
+ if (parseModuleId(Id)) {
+ HadError = true;
+ return;
+ }
+
+ // Parse the referenced module map file name.
+ if (!Tok.is(MMToken::StringLiteral)) {
+ Diags.Report(Tok.getLocation(), diag::err_mmap_expected_mmap_file);
+ HadError = true;
+ return;
+ }
+ std::string FileName = Tok.getString();
+ consumeToken(); // filename
+
+ StringRef FileNameRef = FileName;
+ SmallString<128> ModuleMapFileName;
+ if (llvm::sys::path::is_relative(FileNameRef)) {
+ ModuleMapFileName += Directory->getName();
+ llvm::sys::path::append(ModuleMapFileName, FileName);
+ FileNameRef = ModuleMapFileName;
+ }
+ if (const FileEntry *File = SourceMgr.getFileManager().getFile(FileNameRef))
+ Map.parseModuleMapFile(
+ File, /*IsSystem=*/false,
+ Map.HeaderInfo.getHeaderSearchOpts().ModuleMapFileHomeIsCwd
+ ? Directory
+ : File->getDir());
+}
+
+/// \brief Parse a requires declaration.
+///
+/// requires-declaration:
+/// 'requires' feature-list
+///
+/// feature-list:
+/// feature ',' feature-list
+/// feature
+///
+/// feature:
+/// '!'[opt] identifier
+void ModuleMapParser::parseRequiresDecl() {
+ assert(Tok.is(MMToken::RequiresKeyword));
+
+ // Parse 'requires' keyword.
+ consumeToken();
+
+ // Parse the feature-list.
+ do {
+ bool RequiredState = true;
+ if (Tok.is(MMToken::Exclaim)) {
+ RequiredState = false;
+ consumeToken();
+ }
+
+ if (!Tok.is(MMToken::Identifier)) {
+ Diags.Report(Tok.getLocation(), diag::err_mmap_expected_feature);
+ HadError = true;
+ return;
+ }
+
+ // Consume the feature name.
+ std::string Feature = Tok.getString();
+ consumeToken();
+
+ // Add this feature.
+ ActiveModule->addRequirement(Feature, RequiredState,
+ Map.LangOpts, *Map.Target);
+
+ if (!Tok.is(MMToken::Comma))
+ break;
+
+ // Consume the comma.
+ consumeToken();
+ } while (true);
+}
+
+/// \brief Append to \p Paths the set of paths needed to get to the
+/// subframework in which the given module lives.
+static void appendSubframeworkPaths(Module *Mod,
+ SmallVectorImpl<char> &Path) {
+ // Collect the framework names from the given module to the top-level module.
+ SmallVector<StringRef, 2> Paths;
+ for (; Mod; Mod = Mod->Parent) {
+ if (Mod->IsFramework)
+ Paths.push_back(Mod->Name);
+ }
+
+ if (Paths.empty())
+ return;
+
+ // Add Frameworks/Name.framework for each subframework.
+ for (unsigned I = Paths.size() - 1; I != 0; --I)
+ llvm::sys::path::append(Path, "Frameworks", Paths[I-1] + ".framework");
+}
+
+/// \brief Parse a header declaration.
+///
+/// header-declaration:
+/// 'textual'[opt] 'header' string-literal
+/// 'private' 'textual'[opt] 'header' string-literal
+/// 'exclude' 'header' string-literal
+/// 'umbrella' 'header' string-literal
+///
+/// FIXME: Support 'private textual header'.
+void ModuleMapParser::parseHeaderDecl(MMToken::TokenKind LeadingToken,
+ SourceLocation LeadingLoc) {
+ // We've already consumed the first token.
+ ModuleMap::ModuleHeaderRole Role = ModuleMap::NormalHeader;
+ if (LeadingToken == MMToken::PrivateKeyword) {
+ Role = ModuleMap::PrivateHeader;
+ // 'private' may optionally be followed by 'textual'.
+ if (Tok.is(MMToken::TextualKeyword)) {
+ LeadingToken = Tok.Kind;
+ consumeToken();
+ }
+ }
+ if (LeadingToken == MMToken::TextualKeyword)
+ Role = ModuleMap::ModuleHeaderRole(Role | ModuleMap::TextualHeader);
+
+ if (LeadingToken != MMToken::HeaderKeyword) {
+ if (!Tok.is(MMToken::HeaderKeyword)) {
+ Diags.Report(Tok.getLocation(), diag::err_mmap_expected_header)
+ << (LeadingToken == MMToken::PrivateKeyword ? "private" :
+ LeadingToken == MMToken::ExcludeKeyword ? "exclude" :
+ LeadingToken == MMToken::TextualKeyword ? "textual" : "umbrella");
+ return;
+ }
+ consumeToken();
+ }
+
+ // Parse the header name.
+ if (!Tok.is(MMToken::StringLiteral)) {
+ Diags.Report(Tok.getLocation(), diag::err_mmap_expected_header)
+ << "header";
+ HadError = true;
+ return;
+ }
+ Module::UnresolvedHeaderDirective Header;
+ Header.FileName = Tok.getString();
+ Header.FileNameLoc = consumeToken();
+
+ // Check whether we already have an umbrella.
+ if (LeadingToken == MMToken::UmbrellaKeyword && ActiveModule->Umbrella) {
+ Diags.Report(Header.FileNameLoc, diag::err_mmap_umbrella_clash)
+ << ActiveModule->getFullModuleName();
+ HadError = true;
+ return;
+ }
+
+ // Look for this file.
+ const FileEntry *File = nullptr;
+ const FileEntry *BuiltinFile = nullptr;
+ SmallString<128> RelativePathName;
+ if (llvm::sys::path::is_absolute(Header.FileName)) {
+ RelativePathName = Header.FileName;
+ File = SourceMgr.getFileManager().getFile(RelativePathName);
+ } else {
+ // Search for the header file within the search directory.
+ SmallString<128> FullPathName(Directory->getName());
+ unsigned FullPathLength = FullPathName.size();
+
+ if (ActiveModule->isPartOfFramework()) {
+ appendSubframeworkPaths(ActiveModule, RelativePathName);
+
+ // Check whether this file is in the public headers.
+ llvm::sys::path::append(RelativePathName, "Headers", Header.FileName);
+ llvm::sys::path::append(FullPathName, RelativePathName);
+ File = SourceMgr.getFileManager().getFile(FullPathName);
+
+ if (!File) {
+ // Check whether this file is in the private headers.
+ // FIXME: Should we retain the subframework paths here?
+ RelativePathName.clear();
+ FullPathName.resize(FullPathLength);
+ llvm::sys::path::append(RelativePathName, "PrivateHeaders",
+ Header.FileName);
+ llvm::sys::path::append(FullPathName, RelativePathName);
+ File = SourceMgr.getFileManager().getFile(FullPathName);
+ }
+ } else {
+ // Lookup for normal headers.
+ llvm::sys::path::append(RelativePathName, Header.FileName);
+ llvm::sys::path::append(FullPathName, RelativePathName);
+ File = SourceMgr.getFileManager().getFile(FullPathName);
+
+ // If this is a system module with a top-level header, this header
+ // may have a counterpart (or replacement) in the set of headers
+ // supplied by Clang. Find that builtin header.
+ if (ActiveModule->IsSystem && LeadingToken != MMToken::UmbrellaKeyword &&
+ BuiltinIncludeDir && BuiltinIncludeDir != Directory &&
+ isBuiltinHeader(Header.FileName)) {
+ SmallString<128> BuiltinPathName(BuiltinIncludeDir->getName());
+ llvm::sys::path::append(BuiltinPathName, Header.FileName);
+ BuiltinFile = SourceMgr.getFileManager().getFile(BuiltinPathName);
+
+ // If Clang supplies this header but the underlying system does not,
+ // just silently swap in our builtin version. Otherwise, we'll end
+ // up adding both (later).
+ //
+ // For local visibility, entirely replace the system file with our
+ // one and textually include the system one. We need to pass macros
+ // from our header to the system one if we #include_next it.
+ //
+ // FIXME: Can we do this in all cases?
+ if (BuiltinFile && (!File || Map.LangOpts.ModulesLocalVisibility)) {
+ File = BuiltinFile;
+ RelativePathName = BuiltinPathName;
+ BuiltinFile = nullptr;
+ }
+ }
+ }
+ }
+
+ // FIXME: We shouldn't be eagerly stat'ing every file named in a module map.
+ // Come up with a lazy way to do this.
+ if (File) {
+ if (LeadingToken == MMToken::UmbrellaKeyword) {
+ const DirectoryEntry *UmbrellaDir = File->getDir();
+ if (Module *UmbrellaModule = Map.UmbrellaDirs[UmbrellaDir]) {
+ Diags.Report(LeadingLoc, diag::err_mmap_umbrella_clash)
+ << UmbrellaModule->getFullModuleName();
+ HadError = true;
+ } else {
+ // Record this umbrella header.
+ Map.setUmbrellaHeader(ActiveModule, File, RelativePathName.str());
+ }
+ } else if (LeadingToken == MMToken::ExcludeKeyword) {
+ Module::Header H = {RelativePathName.str(), File};
+ Map.excludeHeader(ActiveModule, H);
+ } else {
+ // If there is a builtin counterpart to this file, add it now, before
+ // the "real" header, so we build the built-in one first when building
+ // the module.
+ if (BuiltinFile) {
+ // FIXME: Taking the name from the FileEntry is unstable and can give
+ // different results depending on how we've previously named that file
+ // in this build.
+ Module::Header H = { BuiltinFile->getName(), BuiltinFile };
+ Map.addHeader(ActiveModule, H, Role);
+ }
+
+ // Record this header.
+ Module::Header H = { RelativePathName.str(), File };
+ Map.addHeader(ActiveModule, H, Role);
+ }
+ } else if (LeadingToken != MMToken::ExcludeKeyword) {
+ // Ignore excluded header files. They're optional anyway.
+
+ // If we find a module that has a missing header, we mark this module as
+ // unavailable and store the header directive for displaying diagnostics.
+ Header.IsUmbrella = LeadingToken == MMToken::UmbrellaKeyword;
+ ActiveModule->markUnavailable();
+ ActiveModule->MissingHeaders.push_back(Header);
+ }
+}
+
+/// \brief Parse an umbrella directory declaration.
+///
+/// umbrella-dir-declaration:
+/// umbrella string-literal
+void ModuleMapParser::parseUmbrellaDirDecl(SourceLocation UmbrellaLoc) {
+ // Parse the directory name.
+ if (!Tok.is(MMToken::StringLiteral)) {
+ Diags.Report(Tok.getLocation(), diag::err_mmap_expected_header)
+ << "umbrella";
+ HadError = true;
+ return;
+ }
+
+ std::string DirName = Tok.getString();
+ SourceLocation DirNameLoc = consumeToken();
+
+ // Check whether we already have an umbrella.
+ if (ActiveModule->Umbrella) {
+ Diags.Report(DirNameLoc, diag::err_mmap_umbrella_clash)
+ << ActiveModule->getFullModuleName();
+ HadError = true;
+ return;
+ }
+
+ // Look for this file.
+ const DirectoryEntry *Dir = nullptr;
+ if (llvm::sys::path::is_absolute(DirName))
+ Dir = SourceMgr.getFileManager().getDirectory(DirName);
+ else {
+ SmallString<128> PathName;
+ PathName = Directory->getName();
+ llvm::sys::path::append(PathName, DirName);
+ Dir = SourceMgr.getFileManager().getDirectory(PathName);
+ }
+
+ if (!Dir) {
+ Diags.Report(DirNameLoc, diag::err_mmap_umbrella_dir_not_found)
+ << DirName;
+ HadError = true;
+ return;
+ }
+
+ if (Module *OwningModule = Map.UmbrellaDirs[Dir]) {
+ Diags.Report(UmbrellaLoc, diag::err_mmap_umbrella_clash)
+ << OwningModule->getFullModuleName();
+ HadError = true;
+ return;
+ }
+
+ // Record this umbrella directory.
+ Map.setUmbrellaDir(ActiveModule, Dir, DirName);
+}
+
+/// \brief Parse a module export declaration.
+///
+/// export-declaration:
+/// 'export' wildcard-module-id
+///
+/// wildcard-module-id:
+/// identifier
+/// '*'
+/// identifier '.' wildcard-module-id
+void ModuleMapParser::parseExportDecl() {
+ assert(Tok.is(MMToken::ExportKeyword));
+ SourceLocation ExportLoc = consumeToken();
+
+ // Parse the module-id with an optional wildcard at the end.
+ ModuleId ParsedModuleId;
+ bool Wildcard = false;
+ do {
+ // FIXME: Support string-literal module names here.
+ if (Tok.is(MMToken::Identifier)) {
+ ParsedModuleId.push_back(std::make_pair(Tok.getString(),
+ Tok.getLocation()));
+ consumeToken();
+
+ if (Tok.is(MMToken::Period)) {
+ consumeToken();
+ continue;
+ }
+
+ break;
+ }
+
+ if(Tok.is(MMToken::Star)) {
+ Wildcard = true;
+ consumeToken();
+ break;
+ }
+
+ Diags.Report(Tok.getLocation(), diag::err_mmap_module_id);
+ HadError = true;
+ return;
+ } while (true);
+
+ Module::UnresolvedExportDecl Unresolved = {
+ ExportLoc, ParsedModuleId, Wildcard
+ };
+ ActiveModule->UnresolvedExports.push_back(Unresolved);
+}
+
+/// \brief Parse a module use declaration.
+///
+/// use-declaration:
+/// 'use' wildcard-module-id
+void ModuleMapParser::parseUseDecl() {
+ assert(Tok.is(MMToken::UseKeyword));
+ auto KWLoc = consumeToken();
+ // Parse the module-id.
+ ModuleId ParsedModuleId;
+ parseModuleId(ParsedModuleId);
+
+ if (ActiveModule->Parent)
+ Diags.Report(KWLoc, diag::err_mmap_use_decl_submodule);
+ else
+ ActiveModule->UnresolvedDirectUses.push_back(ParsedModuleId);
+}
+
+/// \brief Parse a link declaration.
+///
+/// module-declaration:
+/// 'link' 'framework'[opt] string-literal
+void ModuleMapParser::parseLinkDecl() {
+ assert(Tok.is(MMToken::LinkKeyword));
+ SourceLocation LinkLoc = consumeToken();
+
+ // Parse the optional 'framework' keyword.
+ bool IsFramework = false;
+ if (Tok.is(MMToken::FrameworkKeyword)) {
+ consumeToken();
+ IsFramework = true;
+ }
+
+ // Parse the library name
+ if (!Tok.is(MMToken::StringLiteral)) {
+ Diags.Report(Tok.getLocation(), diag::err_mmap_expected_library_name)
+ << IsFramework << SourceRange(LinkLoc);
+ HadError = true;
+ return;
+ }
+
+ std::string LibraryName = Tok.getString();
+ consumeToken();
+ ActiveModule->LinkLibraries.push_back(Module::LinkLibrary(LibraryName,
+ IsFramework));
+}
+
+/// \brief Parse a configuration macro declaration.
+///
+/// module-declaration:
+/// 'config_macros' attributes[opt] config-macro-list?
+///
+/// config-macro-list:
+/// identifier (',' identifier)?
+void ModuleMapParser::parseConfigMacros() {
+ assert(Tok.is(MMToken::ConfigMacros));
+ SourceLocation ConfigMacrosLoc = consumeToken();
+
+ // Only top-level modules can have configuration macros.
+ if (ActiveModule->Parent) {
+ Diags.Report(ConfigMacrosLoc, diag::err_mmap_config_macro_submodule);
+ }
+
+ // Parse the optional attributes.
+ Attributes Attrs;
+ parseOptionalAttributes(Attrs);
+ if (Attrs.IsExhaustive && !ActiveModule->Parent) {
+ ActiveModule->ConfigMacrosExhaustive = true;
+ }
+
+ // If we don't have an identifier, we're done.
+ // FIXME: Support macros with the same name as a keyword here.
+ if (!Tok.is(MMToken::Identifier))
+ return;
+
+ // Consume the first identifier.
+ if (!ActiveModule->Parent) {
+ ActiveModule->ConfigMacros.push_back(Tok.getString().str());
+ }
+ consumeToken();
+
+ do {
+ // If there's a comma, consume it.
+ if (!Tok.is(MMToken::Comma))
+ break;
+ consumeToken();
+
+ // We expect to see a macro name here.
+ // FIXME: Support macros with the same name as a keyword here.
+ if (!Tok.is(MMToken::Identifier)) {
+ Diags.Report(Tok.getLocation(), diag::err_mmap_expected_config_macro);
+ break;
+ }
+
+ // Consume the macro name.
+ if (!ActiveModule->Parent) {
+ ActiveModule->ConfigMacros.push_back(Tok.getString().str());
+ }
+ consumeToken();
+ } while (true);
+}
+
+/// \brief Format a module-id into a string.
+static std::string formatModuleId(const ModuleId &Id) {
+ std::string result;
+ {
+ llvm::raw_string_ostream OS(result);
+
+ for (unsigned I = 0, N = Id.size(); I != N; ++I) {
+ if (I)
+ OS << ".";
+ OS << Id[I].first;
+ }
+ }
+
+ return result;
+}
+
+/// \brief Parse a conflict declaration.
+///
+/// module-declaration:
+/// 'conflict' module-id ',' string-literal
+void ModuleMapParser::parseConflict() {
+ assert(Tok.is(MMToken::Conflict));
+ SourceLocation ConflictLoc = consumeToken();
+ Module::UnresolvedConflict Conflict;
+
+ // Parse the module-id.
+ if (parseModuleId(Conflict.Id))
+ return;
+
+ // Parse the ','.
+ if (!Tok.is(MMToken::Comma)) {
+ Diags.Report(Tok.getLocation(), diag::err_mmap_expected_conflicts_comma)
+ << SourceRange(ConflictLoc);
+ return;
+ }
+ consumeToken();
+
+ // Parse the message.
+ if (!Tok.is(MMToken::StringLiteral)) {
+ Diags.Report(Tok.getLocation(), diag::err_mmap_expected_conflicts_message)
+ << formatModuleId(Conflict.Id);
+ return;
+ }
+ Conflict.Message = Tok.getString().str();
+ consumeToken();
+
+ // Add this unresolved conflict.
+ ActiveModule->UnresolvedConflicts.push_back(Conflict);
+}
+
+/// \brief Parse an inferred module declaration (wildcard modules).
+///
+/// module-declaration:
+/// 'explicit'[opt] 'framework'[opt] 'module' * attributes[opt]
+/// { inferred-module-member* }
+///
+/// inferred-module-member:
+/// 'export' '*'
+/// 'exclude' identifier
+void ModuleMapParser::parseInferredModuleDecl(bool Framework, bool Explicit) {
+ assert(Tok.is(MMToken::Star));
+ SourceLocation StarLoc = consumeToken();
+ bool Failed = false;
+
+ // Inferred modules must be submodules.
+ if (!ActiveModule && !Framework) {
+ Diags.Report(StarLoc, diag::err_mmap_top_level_inferred_submodule);
+ Failed = true;
+ }
+
+ if (ActiveModule) {
+ // Inferred modules must have umbrella directories.
+ if (!Failed && ActiveModule->IsAvailable &&
+ !ActiveModule->getUmbrellaDir()) {
+ Diags.Report(StarLoc, diag::err_mmap_inferred_no_umbrella);
+ Failed = true;
+ }
+
+ // Check for redefinition of an inferred module.
+ if (!Failed && ActiveModule->InferSubmodules) {
+ Diags.Report(StarLoc, diag::err_mmap_inferred_redef);
+ if (ActiveModule->InferredSubmoduleLoc.isValid())
+ Diags.Report(ActiveModule->InferredSubmoduleLoc,
+ diag::note_mmap_prev_definition);
+ Failed = true;
+ }
+
+ // Check for the 'framework' keyword, which is not permitted here.
+ if (Framework) {
+ Diags.Report(StarLoc, diag::err_mmap_inferred_framework_submodule);
+ Framework = false;
+ }
+ } else if (Explicit) {
+ Diags.Report(StarLoc, diag::err_mmap_explicit_inferred_framework);
+ Explicit = false;
+ }
+
+ // If there were any problems with this inferred submodule, skip its body.
+ if (Failed) {
+ if (Tok.is(MMToken::LBrace)) {
+ consumeToken();
+ skipUntil(MMToken::RBrace);
+ if (Tok.is(MMToken::RBrace))
+ consumeToken();
+ }
+ HadError = true;
+ return;
+ }
+
+ // Parse optional attributes.
+ Attributes Attrs;
+ parseOptionalAttributes(Attrs);
+
+ if (ActiveModule) {
+ // Note that we have an inferred submodule.
+ ActiveModule->InferSubmodules = true;
+ ActiveModule->InferredSubmoduleLoc = StarLoc;
+ ActiveModule->InferExplicitSubmodules = Explicit;
+ } else {
+ // We'll be inferring framework modules for this directory.
+ Map.InferredDirectories[Directory].InferModules = true;
+ Map.InferredDirectories[Directory].Attrs = Attrs;
+ Map.InferredDirectories[Directory].ModuleMapFile = ModuleMapFile;
+ // FIXME: Handle the 'framework' keyword.
+ }
+
+ // Parse the opening brace.
+ if (!Tok.is(MMToken::LBrace)) {
+ Diags.Report(Tok.getLocation(), diag::err_mmap_expected_lbrace_wildcard);
+ HadError = true;
+ return;
+ }
+ SourceLocation LBraceLoc = consumeToken();
+
+ // Parse the body of the inferred submodule.
+ bool Done = false;
+ do {
+ switch (Tok.Kind) {
+ case MMToken::EndOfFile:
+ case MMToken::RBrace:
+ Done = true;
+ break;
+
+ case MMToken::ExcludeKeyword: {
+ if (ActiveModule) {
+ Diags.Report(Tok.getLocation(), diag::err_mmap_expected_inferred_member)
+ << (ActiveModule != nullptr);
+ consumeToken();
+ break;
+ }
+
+ consumeToken();
+ // FIXME: Support string-literal module names here.
+ if (!Tok.is(MMToken::Identifier)) {
+ Diags.Report(Tok.getLocation(), diag::err_mmap_missing_exclude_name);
+ break;
+ }
+
+ Map.InferredDirectories[Directory].ExcludedModules
+ .push_back(Tok.getString());
+ consumeToken();
+ break;
+ }
+
+ case MMToken::ExportKeyword:
+ if (!ActiveModule) {
+ Diags.Report(Tok.getLocation(), diag::err_mmap_expected_inferred_member)
+ << (ActiveModule != nullptr);
+ consumeToken();
+ break;
+ }
+
+ consumeToken();
+ if (Tok.is(MMToken::Star))
+ ActiveModule->InferExportWildcard = true;
+ else
+ Diags.Report(Tok.getLocation(),
+ diag::err_mmap_expected_export_wildcard);
+ consumeToken();
+ break;
+
+ case MMToken::ExplicitKeyword:
+ case MMToken::ModuleKeyword:
+ case MMToken::HeaderKeyword:
+ case MMToken::PrivateKeyword:
+ case MMToken::UmbrellaKeyword:
+ default:
+ Diags.Report(Tok.getLocation(), diag::err_mmap_expected_inferred_member)
+ << (ActiveModule != nullptr);
+ consumeToken();
+ break;
+ }
+ } while (!Done);
+
+ if (Tok.is(MMToken::RBrace))
+ consumeToken();
+ else {
+ Diags.Report(Tok.getLocation(), diag::err_mmap_expected_rbrace);
+ Diags.Report(LBraceLoc, diag::note_mmap_lbrace_match);
+ HadError = true;
+ }
+}
+
+/// \brief Parse optional attributes.
+///
+/// attributes:
+/// attribute attributes
+/// attribute
+///
+/// attribute:
+/// [ identifier ]
+///
+/// \param Attrs Will be filled in with the parsed attributes.
+///
+/// \returns true if an error occurred, false otherwise.
+bool ModuleMapParser::parseOptionalAttributes(Attributes &Attrs) {
+ bool HadError = false;
+
+ while (Tok.is(MMToken::LSquare)) {
+ // Consume the '['.
+ SourceLocation LSquareLoc = consumeToken();
+
+ // Check whether we have an attribute name here.
+ if (!Tok.is(MMToken::Identifier)) {
+ Diags.Report(Tok.getLocation(), diag::err_mmap_expected_attribute);
+ skipUntil(MMToken::RSquare);
+ if (Tok.is(MMToken::RSquare))
+ consumeToken();
+ HadError = true;
+ }
+
+ // Decode the attribute name.
+ AttributeKind Attribute
+ = llvm::StringSwitch<AttributeKind>(Tok.getString())
+ .Case("exhaustive", AT_exhaustive)
+ .Case("extern_c", AT_extern_c)
+ .Case("system", AT_system)
+ .Default(AT_unknown);
+ switch (Attribute) {
+ case AT_unknown:
+ Diags.Report(Tok.getLocation(), diag::warn_mmap_unknown_attribute)
+ << Tok.getString();
+ break;
+
+ case AT_system:
+ Attrs.IsSystem = true;
+ break;
+
+ case AT_extern_c:
+ Attrs.IsExternC = true;
+ break;
+
+ case AT_exhaustive:
+ Attrs.IsExhaustive = true;
+ break;
+ }
+ consumeToken();
+
+ // Consume the ']'.
+ if (!Tok.is(MMToken::RSquare)) {
+ Diags.Report(Tok.getLocation(), diag::err_mmap_expected_rsquare);
+ Diags.Report(LSquareLoc, diag::note_mmap_lsquare_match);
+ skipUntil(MMToken::RSquare);
+ HadError = true;
+ }
+
+ if (Tok.is(MMToken::RSquare))
+ consumeToken();
+ }
+
+ return HadError;
+}
+
+/// \brief Parse a module map file.
+///
+/// module-map-file:
+/// module-declaration*
+bool ModuleMapParser::parseModuleMapFile() {
+ do {
+ switch (Tok.Kind) {
+ case MMToken::EndOfFile:
+ return HadError;
+
+ case MMToken::ExplicitKeyword:
+ case MMToken::ExternKeyword:
+ case MMToken::ModuleKeyword:
+ case MMToken::FrameworkKeyword:
+ parseModuleDecl();
+ break;
+
+ case MMToken::Comma:
+ case MMToken::ConfigMacros:
+ case MMToken::Conflict:
+ case MMToken::Exclaim:
+ case MMToken::ExcludeKeyword:
+ case MMToken::ExportKeyword:
+ case MMToken::HeaderKeyword:
+ case MMToken::Identifier:
+ case MMToken::LBrace:
+ case MMToken::LinkKeyword:
+ case MMToken::LSquare:
+ case MMToken::Period:
+ case MMToken::PrivateKeyword:
+ case MMToken::RBrace:
+ case MMToken::RSquare:
+ case MMToken::RequiresKeyword:
+ case MMToken::Star:
+ case MMToken::StringLiteral:
+ case MMToken::TextualKeyword:
+ case MMToken::UmbrellaKeyword:
+ case MMToken::UseKeyword:
+ Diags.Report(Tok.getLocation(), diag::err_mmap_expected_module);
+ HadError = true;
+ consumeToken();
+ break;
+ }
+ } while (true);
+}
+
+bool ModuleMap::parseModuleMapFile(const FileEntry *File, bool IsSystem,
+ const DirectoryEntry *Dir) {
+ llvm::DenseMap<const FileEntry *, bool>::iterator Known
+ = ParsedModuleMap.find(File);
+ if (Known != ParsedModuleMap.end())
+ return Known->second;
+
+ assert(Target && "Missing target information");
+ auto FileCharacter = IsSystem ? SrcMgr::C_System : SrcMgr::C_User;
+ FileID ID = SourceMgr.createFileID(File, SourceLocation(), FileCharacter);
+ const llvm::MemoryBuffer *Buffer = SourceMgr.getBuffer(ID);
+ if (!Buffer)
+ return ParsedModuleMap[File] = true;
+
+ // Parse this module map file.
+ Lexer L(ID, SourceMgr.getBuffer(ID), SourceMgr, MMapLangOpts);
+ ModuleMapParser Parser(L, SourceMgr, Target, Diags, *this, File, Dir,
+ BuiltinIncludeDir, IsSystem);
+ bool Result = Parser.parseModuleMapFile();
+ ParsedModuleMap[File] = Result;
+ return Result;
+}
diff --git a/contrib/llvm/tools/clang/lib/Lex/PPCaching.cpp b/contrib/llvm/tools/clang/lib/Lex/PPCaching.cpp
new file mode 100644
index 0000000..bd48ae64
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Lex/PPCaching.cpp
@@ -0,0 +1,118 @@
+//===--- PPCaching.cpp - Handle caching lexed tokens ----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements pieces of the Preprocessor interface that manage the
+// caching of lexed tokens.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Lex/Preprocessor.h"
+using namespace clang;
+
+// EnableBacktrackAtThisPos - From the point that this method is called, and
+// until CommitBacktrackedTokens() or Backtrack() is called, the Preprocessor
+// keeps track of the lexed tokens so that a subsequent Backtrack() call will
+// make the Preprocessor re-lex the same tokens.
+//
+// Nested backtracks are allowed, meaning that EnableBacktrackAtThisPos can
+// be called multiple times and CommitBacktrackedTokens/Backtrack calls will
+// be combined with the EnableBacktrackAtThisPos calls in reverse order.
+void Preprocessor::EnableBacktrackAtThisPos() {
+ BacktrackPositions.push_back(CachedLexPos);
+ EnterCachingLexMode();
+}
+
+// Disable the last EnableBacktrackAtThisPos call.
+void Preprocessor::CommitBacktrackedTokens() {
+ assert(!BacktrackPositions.empty()
+ && "EnableBacktrackAtThisPos was not called!");
+ BacktrackPositions.pop_back();
+}
+
+// Make Preprocessor re-lex the tokens that were lexed since
+// EnableBacktrackAtThisPos() was previously called.
+void Preprocessor::Backtrack() {
+ assert(!BacktrackPositions.empty()
+ && "EnableBacktrackAtThisPos was not called!");
+ CachedLexPos = BacktrackPositions.back();
+ BacktrackPositions.pop_back();
+ recomputeCurLexerKind();
+}
+
+void Preprocessor::CachingLex(Token &Result) {
+ if (!InCachingLexMode())
+ return;
+
+ if (CachedLexPos < CachedTokens.size()) {
+ Result = CachedTokens[CachedLexPos++];
+ return;
+ }
+
+ ExitCachingLexMode();
+ Lex(Result);
+
+ if (isBacktrackEnabled()) {
+ // Cache the lexed token.
+ EnterCachingLexMode();
+ CachedTokens.push_back(Result);
+ ++CachedLexPos;
+ return;
+ }
+
+ if (CachedLexPos < CachedTokens.size()) {
+ EnterCachingLexMode();
+ } else {
+ // All cached tokens were consumed.
+ CachedTokens.clear();
+ CachedLexPos = 0;
+ }
+}
+
+void Preprocessor::EnterCachingLexMode() {
+ if (InCachingLexMode())
+ return;
+
+ PushIncludeMacroStack();
+ CurLexerKind = CLK_CachingLexer;
+}
+
+
+const Token &Preprocessor::PeekAhead(unsigned N) {
+ assert(CachedLexPos + N > CachedTokens.size() && "Confused caching.");
+ ExitCachingLexMode();
+ for (unsigned C = CachedLexPos + N - CachedTokens.size(); C > 0; --C) {
+ CachedTokens.push_back(Token());
+ Lex(CachedTokens.back());
+ }
+ EnterCachingLexMode();
+ return CachedTokens.back();
+}
+
+void Preprocessor::AnnotatePreviousCachedTokens(const Token &Tok) {
+ assert(Tok.isAnnotation() && "Expected annotation token");
+ assert(CachedLexPos != 0 && "Expected to have some cached tokens");
+ assert(CachedTokens[CachedLexPos-1].getLastLoc() == Tok.getAnnotationEndLoc()
+ && "The annotation should be until the most recent cached token");
+
+ // Start from the end of the cached tokens list and look for the token
+ // that is the beginning of the annotation token.
+ for (CachedTokensTy::size_type i = CachedLexPos; i != 0; --i) {
+ CachedTokensTy::iterator AnnotBegin = CachedTokens.begin() + i-1;
+ if (AnnotBegin->getLocation() == Tok.getLocation()) {
+ assert((BacktrackPositions.empty() || BacktrackPositions.back() < i) &&
+ "The backtrack pos points inside the annotated tokens!");
+ // Replace the cached tokens with the single annotation token.
+ if (i < CachedLexPos)
+ CachedTokens.erase(AnnotBegin + 1, CachedTokens.begin() + CachedLexPos);
+ *AnnotBegin = Tok;
+ CachedLexPos = i;
+ return;
+ }
+ }
+}
diff --git a/contrib/llvm/tools/clang/lib/Lex/PPCallbacks.cpp b/contrib/llvm/tools/clang/lib/Lex/PPCallbacks.cpp
new file mode 100644
index 0000000..952b926
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Lex/PPCallbacks.cpp
@@ -0,0 +1,14 @@
+//===--- PPCallbacks.cpp - Callbacks for Preprocessor actions ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Lex/PPCallbacks.h"
+
+using namespace clang;
+
+void PPChainedCallbacks::anchor() { }
diff --git a/contrib/llvm/tools/clang/lib/Lex/PPConditionalDirectiveRecord.cpp b/contrib/llvm/tools/clang/lib/Lex/PPConditionalDirectiveRecord.cpp
new file mode 100644
index 0000000..12a7784
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Lex/PPConditionalDirectiveRecord.cpp
@@ -0,0 +1,122 @@
+//===--- PPConditionalDirectiveRecord.h - Preprocessing Directives-*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the PPConditionalDirectiveRecord class, which maintains
+// a record of conditional directive regions.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/Lex/PPConditionalDirectiveRecord.h"
+#include "llvm/Support/Capacity.h"
+
+using namespace clang;
+
+PPConditionalDirectiveRecord::PPConditionalDirectiveRecord(SourceManager &SM)
+ : SourceMgr(SM) {
+ CondDirectiveStack.push_back(SourceLocation());
+}
+
+bool PPConditionalDirectiveRecord::rangeIntersectsConditionalDirective(
+ SourceRange Range) const {
+ if (Range.isInvalid())
+ return false;
+
+ CondDirectiveLocsTy::const_iterator
+ low = std::lower_bound(CondDirectiveLocs.begin(), CondDirectiveLocs.end(),
+ Range.getBegin(), CondDirectiveLoc::Comp(SourceMgr));
+ if (low == CondDirectiveLocs.end())
+ return false;
+
+ if (SourceMgr.isBeforeInTranslationUnit(Range.getEnd(), low->getLoc()))
+ return false;
+
+ CondDirectiveLocsTy::const_iterator
+ upp = std::upper_bound(low, CondDirectiveLocs.end(),
+ Range.getEnd(), CondDirectiveLoc::Comp(SourceMgr));
+ SourceLocation uppRegion;
+ if (upp != CondDirectiveLocs.end())
+ uppRegion = upp->getRegionLoc();
+
+ return low->getRegionLoc() != uppRegion;
+}
+
+SourceLocation PPConditionalDirectiveRecord::findConditionalDirectiveRegionLoc(
+ SourceLocation Loc) const {
+ if (Loc.isInvalid())
+ return SourceLocation();
+ if (CondDirectiveLocs.empty())
+ return SourceLocation();
+
+ if (SourceMgr.isBeforeInTranslationUnit(CondDirectiveLocs.back().getLoc(),
+ Loc))
+ return CondDirectiveStack.back();
+
+ CondDirectiveLocsTy::const_iterator
+ low = std::lower_bound(CondDirectiveLocs.begin(), CondDirectiveLocs.end(),
+ Loc, CondDirectiveLoc::Comp(SourceMgr));
+ assert(low != CondDirectiveLocs.end());
+ return low->getRegionLoc();
+}
+
+void PPConditionalDirectiveRecord::addCondDirectiveLoc(
+ CondDirectiveLoc DirLoc) {
+ // Ignore directives in system headers.
+ if (SourceMgr.isInSystemHeader(DirLoc.getLoc()))
+ return;
+
+ assert(CondDirectiveLocs.empty() ||
+ SourceMgr.isBeforeInTranslationUnit(CondDirectiveLocs.back().getLoc(),
+ DirLoc.getLoc()));
+ CondDirectiveLocs.push_back(DirLoc);
+}
+
+void PPConditionalDirectiveRecord::If(SourceLocation Loc,
+ SourceRange ConditionRange,
+ ConditionValueKind ConditionValue) {
+ addCondDirectiveLoc(CondDirectiveLoc(Loc, CondDirectiveStack.back()));
+ CondDirectiveStack.push_back(Loc);
+}
+
+void PPConditionalDirectiveRecord::Ifdef(SourceLocation Loc,
+ const Token &MacroNameTok,
+ const MacroDefinition &MD) {
+ addCondDirectiveLoc(CondDirectiveLoc(Loc, CondDirectiveStack.back()));
+ CondDirectiveStack.push_back(Loc);
+}
+
+void PPConditionalDirectiveRecord::Ifndef(SourceLocation Loc,
+ const Token &MacroNameTok,
+ const MacroDefinition &MD) {
+ addCondDirectiveLoc(CondDirectiveLoc(Loc, CondDirectiveStack.back()));
+ CondDirectiveStack.push_back(Loc);
+}
+
+void PPConditionalDirectiveRecord::Elif(SourceLocation Loc,
+ SourceRange ConditionRange,
+ ConditionValueKind ConditionValue,
+ SourceLocation IfLoc) {
+ addCondDirectiveLoc(CondDirectiveLoc(Loc, CondDirectiveStack.back()));
+ CondDirectiveStack.back() = Loc;
+}
+
+void PPConditionalDirectiveRecord::Else(SourceLocation Loc,
+ SourceLocation IfLoc) {
+ addCondDirectiveLoc(CondDirectiveLoc(Loc, CondDirectiveStack.back()));
+ CondDirectiveStack.back() = Loc;
+}
+
+void PPConditionalDirectiveRecord::Endif(SourceLocation Loc,
+ SourceLocation IfLoc) {
+ addCondDirectiveLoc(CondDirectiveLoc(Loc, CondDirectiveStack.back()));
+ assert(!CondDirectiveStack.empty());
+ CondDirectiveStack.pop_back();
+}
+
+size_t PPConditionalDirectiveRecord::getTotalMemory() const {
+ return llvm::capacity_in_bytes(CondDirectiveLocs);
+}
diff --git a/contrib/llvm/tools/clang/lib/Lex/PPDirectives.cpp b/contrib/llvm/tools/clang/lib/Lex/PPDirectives.cpp
new file mode 100644
index 0000000..ec06e79
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Lex/PPDirectives.cpp
@@ -0,0 +1,2516 @@
+//===--- PPDirectives.cpp - Directive Handling for Preprocessor -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// \brief Implements # directive processing for the Preprocessor.
+///
+//===----------------------------------------------------------------------===//
+
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Lex/CodeCompletionHandler.h"
+#include "clang/Lex/HeaderSearch.h"
+#include "clang/Lex/HeaderSearchOptions.h"
+#include "clang/Lex/LexDiagnostic.h"
+#include "clang/Lex/LiteralSupport.h"
+#include "clang/Lex/MacroInfo.h"
+#include "clang/Lex/ModuleLoader.h"
+#include "clang/Lex/Pragma.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/SaveAndRestore.h"
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// Utility Methods for Preprocessor Directive Handling.
+//===----------------------------------------------------------------------===//
+
+MacroInfo *Preprocessor::AllocateMacroInfo() {
+ MacroInfoChain *MIChain = BP.Allocate<MacroInfoChain>();
+ MIChain->Next = MIChainHead;
+ MIChainHead = MIChain;
+ return &MIChain->MI;
+}
+
+MacroInfo *Preprocessor::AllocateMacroInfo(SourceLocation L) {
+ MacroInfo *MI = AllocateMacroInfo();
+ new (MI) MacroInfo(L);
+ return MI;
+}
+
+MacroInfo *Preprocessor::AllocateDeserializedMacroInfo(SourceLocation L,
+ unsigned SubModuleID) {
+ static_assert(llvm::AlignOf<MacroInfo>::Alignment >= sizeof(SubModuleID),
+ "alignment for MacroInfo is less than the ID");
+ DeserializedMacroInfoChain *MIChain =
+ BP.Allocate<DeserializedMacroInfoChain>();
+ MIChain->Next = DeserialMIChainHead;
+ DeserialMIChainHead = MIChain;
+
+ MacroInfo *MI = &MIChain->MI;
+ new (MI) MacroInfo(L);
+ MI->FromASTFile = true;
+ MI->setOwningModuleID(SubModuleID);
+ return MI;
+}
+
+DefMacroDirective *Preprocessor::AllocateDefMacroDirective(MacroInfo *MI,
+ SourceLocation Loc) {
+ return new (BP) DefMacroDirective(MI, Loc);
+}
+
+UndefMacroDirective *
+Preprocessor::AllocateUndefMacroDirective(SourceLocation UndefLoc) {
+ return new (BP) UndefMacroDirective(UndefLoc);
+}
+
+VisibilityMacroDirective *
+Preprocessor::AllocateVisibilityMacroDirective(SourceLocation Loc,
+ bool isPublic) {
+ return new (BP) VisibilityMacroDirective(Loc, isPublic);
+}
+
+/// \brief Read and discard all tokens remaining on the current line until
+/// the tok::eod token is found.
+void Preprocessor::DiscardUntilEndOfDirective() {
+ Token Tmp;
+ do {
+ LexUnexpandedToken(Tmp);
+ assert(Tmp.isNot(tok::eof) && "EOF seen while discarding directive tokens");
+ } while (Tmp.isNot(tok::eod));
+}
+
+/// \brief Enumerates possible cases of #define/#undef a reserved identifier.
+enum MacroDiag {
+ MD_NoWarn, //> Not a reserved identifier
+ MD_KeywordDef, //> Macro hides keyword, enabled by default
+ MD_ReservedMacro //> #define of #undef reserved id, disabled by default
+};
+
+/// \brief Checks if the specified identifier is reserved in the specified
+/// language.
+/// This function does not check if the identifier is a keyword.
+static bool isReservedId(StringRef Text, const LangOptions &Lang) {
+ // C++ [macro.names], C11 7.1.3:
+ // All identifiers that begin with an underscore and either an uppercase
+ // letter or another underscore are always reserved for any use.
+ if (Text.size() >= 2 && Text[0] == '_' &&
+ (isUppercase(Text[1]) || Text[1] == '_'))
+ return true;
+ // C++ [global.names]
+ // Each name that contains a double underscore ... is reserved to the
+ // implementation for any use.
+ if (Lang.CPlusPlus) {
+ if (Text.find("__") != StringRef::npos)
+ return true;
+ }
+ return false;
+}
+
+static MacroDiag shouldWarnOnMacroDef(Preprocessor &PP, IdentifierInfo *II) {
+ const LangOptions &Lang = PP.getLangOpts();
+ StringRef Text = II->getName();
+ if (isReservedId(Text, Lang))
+ return MD_ReservedMacro;
+ if (II->isKeyword(Lang))
+ return MD_KeywordDef;
+ if (Lang.CPlusPlus11 && (Text.equals("override") || Text.equals("final")))
+ return MD_KeywordDef;
+ return MD_NoWarn;
+}
+
+static MacroDiag shouldWarnOnMacroUndef(Preprocessor &PP, IdentifierInfo *II) {
+ const LangOptions &Lang = PP.getLangOpts();
+ StringRef Text = II->getName();
+ // Do not warn on keyword undef. It is generally harmless and widely used.
+ if (isReservedId(Text, Lang))
+ return MD_ReservedMacro;
+ return MD_NoWarn;
+}
+
+bool Preprocessor::CheckMacroName(Token &MacroNameTok, MacroUse isDefineUndef,
+ bool *ShadowFlag) {
+ // Missing macro name?
+ if (MacroNameTok.is(tok::eod))
+ return Diag(MacroNameTok, diag::err_pp_missing_macro_name);
+
+ IdentifierInfo *II = MacroNameTok.getIdentifierInfo();
+ if (!II) {
+ bool Invalid = false;
+ std::string Spelling = getSpelling(MacroNameTok, &Invalid);
+ if (Invalid)
+ return Diag(MacroNameTok, diag::err_pp_macro_not_identifier);
+ II = getIdentifierInfo(Spelling);
+
+ if (!II->isCPlusPlusOperatorKeyword())
+ return Diag(MacroNameTok, diag::err_pp_macro_not_identifier);
+
+ // C++ 2.5p2: Alternative tokens behave the same as its primary token
+ // except for their spellings.
+ Diag(MacroNameTok, getLangOpts().MicrosoftExt
+ ? diag::ext_pp_operator_used_as_macro_name
+ : diag::err_pp_operator_used_as_macro_name)
+ << II << MacroNameTok.getKind();
+
+ // Allow #defining |and| and friends for Microsoft compatibility or
+ // recovery when legacy C headers are included in C++.
+ MacroNameTok.setIdentifierInfo(II);
+ }
+
+ if ((isDefineUndef != MU_Other) && II->getPPKeywordID() == tok::pp_defined) {
+ // Error if defining "defined": C99 6.10.8/4, C++ [cpp.predefined]p4.
+ return Diag(MacroNameTok, diag::err_defined_macro_name);
+ }
+
+ if (isDefineUndef == MU_Undef) {
+ auto *MI = getMacroInfo(II);
+ if (MI && MI->isBuiltinMacro()) {
+ // Warn if undefining "__LINE__" and other builtins, per C99 6.10.8/4
+ // and C++ [cpp.predefined]p4], but allow it as an extension.
+ Diag(MacroNameTok, diag::ext_pp_undef_builtin_macro);
+ }
+ }
+
+ // If defining/undefining reserved identifier or a keyword, we need to issue
+ // a warning.
+ SourceLocation MacroNameLoc = MacroNameTok.getLocation();
+ if (ShadowFlag)
+ *ShadowFlag = false;
+ if (!SourceMgr.isInSystemHeader(MacroNameLoc) &&
+ (strcmp(SourceMgr.getBufferName(MacroNameLoc), "<built-in>") != 0)) {
+ MacroDiag D = MD_NoWarn;
+ if (isDefineUndef == MU_Define) {
+ D = shouldWarnOnMacroDef(*this, II);
+ }
+ else if (isDefineUndef == MU_Undef)
+ D = shouldWarnOnMacroUndef(*this, II);
+ if (D == MD_KeywordDef) {
+ // We do not want to warn on some patterns widely used in configuration
+ // scripts. This requires analyzing next tokens, so do not issue warnings
+ // now, only inform caller.
+ if (ShadowFlag)
+ *ShadowFlag = true;
+ }
+ if (D == MD_ReservedMacro)
+ Diag(MacroNameTok, diag::warn_pp_macro_is_reserved_id);
+ }
+
+ // Okay, we got a good identifier.
+ return false;
+}
+
+/// \brief Lex and validate a macro name, which occurs after a
+/// \#define or \#undef.
+///
+/// This sets the token kind to eod and discards the rest of the macro line if
+/// the macro name is invalid.
+///
+/// \param MacroNameTok Token that is expected to be a macro name.
+/// \param isDefineUndef Context in which macro is used.
+/// \param ShadowFlag Points to a flag that is set if macro shadows a keyword.
+void Preprocessor::ReadMacroName(Token &MacroNameTok, MacroUse isDefineUndef,
+ bool *ShadowFlag) {
+ // Read the token, don't allow macro expansion on it.
+ LexUnexpandedToken(MacroNameTok);
+
+ if (MacroNameTok.is(tok::code_completion)) {
+ if (CodeComplete)
+ CodeComplete->CodeCompleteMacroName(isDefineUndef == MU_Define);
+ setCodeCompletionReached();
+ LexUnexpandedToken(MacroNameTok);
+ }
+
+ if (!CheckMacroName(MacroNameTok, isDefineUndef, ShadowFlag))
+ return;
+
+ // Invalid macro name, read and discard the rest of the line and set the
+ // token kind to tok::eod if necessary.
+ if (MacroNameTok.isNot(tok::eod)) {
+ MacroNameTok.setKind(tok::eod);
+ DiscardUntilEndOfDirective();
+ }
+}
+
+/// \brief Ensure that the next token is a tok::eod token.
+///
+/// If not, emit a diagnostic and consume up until the eod. If EnableMacros is
+/// true, then we consider macros that expand to zero tokens as being ok.
+void Preprocessor::CheckEndOfDirective(const char *DirType, bool EnableMacros) {
+ Token Tmp;
+ // Lex unexpanded tokens for most directives: macros might expand to zero
+ // tokens, causing us to miss diagnosing invalid lines. Some directives (like
+ // #line) allow empty macros.
+ if (EnableMacros)
+ Lex(Tmp);
+ else
+ LexUnexpandedToken(Tmp);
+
+ // There should be no tokens after the directive, but we allow them as an
+ // extension.
+ while (Tmp.is(tok::comment)) // Skip comments in -C mode.
+ LexUnexpandedToken(Tmp);
+
+ if (Tmp.isNot(tok::eod)) {
+ // Add a fixit in GNU/C99/C++ mode. Don't offer a fixit for strict-C89,
+ // or if this is a macro-style preprocessing directive, because it is more
+ // trouble than it is worth to insert /**/ and check that there is no /**/
+ // in the range also.
+ FixItHint Hint;
+ if ((LangOpts.GNUMode || LangOpts.C99 || LangOpts.CPlusPlus) &&
+ !CurTokenLexer)
+ Hint = FixItHint::CreateInsertion(Tmp.getLocation(),"//");
+ Diag(Tmp, diag::ext_pp_extra_tokens_at_eol) << DirType << Hint;
+ DiscardUntilEndOfDirective();
+ }
+}
+
+
+
+/// SkipExcludedConditionalBlock - We just read a \#if or related directive and
+/// decided that the subsequent tokens are in the \#if'd out portion of the
+/// file. Lex the rest of the file, until we see an \#endif. If
+/// FoundNonSkipPortion is true, then we have already emitted code for part of
+/// this \#if directive, so \#else/\#elif blocks should never be entered.
+/// If ElseOk is true, then \#else directives are ok, if not, then we have
+/// already seen one so a \#else directive is a duplicate. When this returns,
+/// the caller can lex the first valid token.
+void Preprocessor::SkipExcludedConditionalBlock(SourceLocation IfTokenLoc,
+ bool FoundNonSkipPortion,
+ bool FoundElse,
+ SourceLocation ElseLoc) {
+ ++NumSkipped;
+ assert(!CurTokenLexer && CurPPLexer && "Lexing a macro, not a file?");
+
+ CurPPLexer->pushConditionalLevel(IfTokenLoc, /*isSkipping*/false,
+ FoundNonSkipPortion, FoundElse);
+
+ if (CurPTHLexer) {
+ PTHSkipExcludedConditionalBlock();
+ return;
+ }
+
+ // Enter raw mode to disable identifier lookup (and thus macro expansion),
+ // disabling warnings, etc.
+ CurPPLexer->LexingRawMode = true;
+ Token Tok;
+ while (1) {
+ CurLexer->Lex(Tok);
+
+ if (Tok.is(tok::code_completion)) {
+ if (CodeComplete)
+ CodeComplete->CodeCompleteInConditionalExclusion();
+ setCodeCompletionReached();
+ continue;
+ }
+
+ // If this is the end of the buffer, we have an error.
+ if (Tok.is(tok::eof)) {
+ // Emit errors for each unterminated conditional on the stack, including
+ // the current one.
+ while (!CurPPLexer->ConditionalStack.empty()) {
+ if (CurLexer->getFileLoc() != CodeCompletionFileLoc)
+ Diag(CurPPLexer->ConditionalStack.back().IfLoc,
+ diag::err_pp_unterminated_conditional);
+ CurPPLexer->ConditionalStack.pop_back();
+ }
+
+ // Just return and let the caller lex after this #include.
+ break;
+ }
+
+ // If this token is not a preprocessor directive, just skip it.
+ if (Tok.isNot(tok::hash) || !Tok.isAtStartOfLine())
+ continue;
+
+ // We just parsed a # character at the start of a line, so we're in
+ // directive mode. Tell the lexer this so any newlines we see will be
+ // converted into an EOD token (this terminates the macro).
+ CurPPLexer->ParsingPreprocessorDirective = true;
+ if (CurLexer) CurLexer->SetKeepWhitespaceMode(false);
+
+
+ // Read the next token, the directive flavor.
+ LexUnexpandedToken(Tok);
+
+ // If this isn't an identifier directive (e.g. is "# 1\n" or "#\n", or
+ // something bogus), skip it.
+ if (Tok.isNot(tok::raw_identifier)) {
+ CurPPLexer->ParsingPreprocessorDirective = false;
+ // Restore comment saving mode.
+ if (CurLexer) CurLexer->resetExtendedTokenMode();
+ continue;
+ }
+
+ // If the first letter isn't i or e, it isn't intesting to us. We know that
+ // this is safe in the face of spelling differences, because there is no way
+ // to spell an i/e in a strange way that is another letter. Skipping this
+ // allows us to avoid looking up the identifier info for #define/#undef and
+ // other common directives.
+ StringRef RI = Tok.getRawIdentifier();
+
+ char FirstChar = RI[0];
+ if (FirstChar >= 'a' && FirstChar <= 'z' &&
+ FirstChar != 'i' && FirstChar != 'e') {
+ CurPPLexer->ParsingPreprocessorDirective = false;
+ // Restore comment saving mode.
+ if (CurLexer) CurLexer->resetExtendedTokenMode();
+ continue;
+ }
+
+ // Get the identifier name without trigraphs or embedded newlines. Note
+ // that we can't use Tok.getIdentifierInfo() because its lookup is disabled
+ // when skipping.
+ char DirectiveBuf[20];
+ StringRef Directive;
+ if (!Tok.needsCleaning() && RI.size() < 20) {
+ Directive = RI;
+ } else {
+ std::string DirectiveStr = getSpelling(Tok);
+ unsigned IdLen = DirectiveStr.size();
+ if (IdLen >= 20) {
+ CurPPLexer->ParsingPreprocessorDirective = false;
+ // Restore comment saving mode.
+ if (CurLexer) CurLexer->resetExtendedTokenMode();
+ continue;
+ }
+ memcpy(DirectiveBuf, &DirectiveStr[0], IdLen);
+ Directive = StringRef(DirectiveBuf, IdLen);
+ }
+
+ if (Directive.startswith("if")) {
+ StringRef Sub = Directive.substr(2);
+ if (Sub.empty() || // "if"
+ Sub == "def" || // "ifdef"
+ Sub == "ndef") { // "ifndef"
+ // We know the entire #if/#ifdef/#ifndef block will be skipped, don't
+ // bother parsing the condition.
+ DiscardUntilEndOfDirective();
+ CurPPLexer->pushConditionalLevel(Tok.getLocation(), /*wasskipping*/true,
+ /*foundnonskip*/false,
+ /*foundelse*/false);
+ }
+ } else if (Directive[0] == 'e') {
+ StringRef Sub = Directive.substr(1);
+ if (Sub == "ndif") { // "endif"
+ PPConditionalInfo CondInfo;
+ CondInfo.WasSkipping = true; // Silence bogus warning.
+ bool InCond = CurPPLexer->popConditionalLevel(CondInfo);
+ (void)InCond; // Silence warning in no-asserts mode.
+ assert(!InCond && "Can't be skipping if not in a conditional!");
+
+ // If we popped the outermost skipping block, we're done skipping!
+ if (!CondInfo.WasSkipping) {
+ // Restore the value of LexingRawMode so that trailing comments
+ // are handled correctly, if we've reached the outermost block.
+ CurPPLexer->LexingRawMode = false;
+ CheckEndOfDirective("endif");
+ CurPPLexer->LexingRawMode = true;
+ if (Callbacks)
+ Callbacks->Endif(Tok.getLocation(), CondInfo.IfLoc);
+ break;
+ } else {
+ DiscardUntilEndOfDirective();
+ }
+ } else if (Sub == "lse") { // "else".
+ // #else directive in a skipping conditional. If not in some other
+ // skipping conditional, and if #else hasn't already been seen, enter it
+ // as a non-skipping conditional.
+ PPConditionalInfo &CondInfo = CurPPLexer->peekConditionalLevel();
+
+ // If this is a #else with a #else before it, report the error.
+ if (CondInfo.FoundElse) Diag(Tok, diag::pp_err_else_after_else);
+
+ // Note that we've seen a #else in this conditional.
+ CondInfo.FoundElse = true;
+
+ // If the conditional is at the top level, and the #if block wasn't
+ // entered, enter the #else block now.
+ if (!CondInfo.WasSkipping && !CondInfo.FoundNonSkip) {
+ CondInfo.FoundNonSkip = true;
+ // Restore the value of LexingRawMode so that trailing comments
+ // are handled correctly.
+ CurPPLexer->LexingRawMode = false;
+ CheckEndOfDirective("else");
+ CurPPLexer->LexingRawMode = true;
+ if (Callbacks)
+ Callbacks->Else(Tok.getLocation(), CondInfo.IfLoc);
+ break;
+ } else {
+ DiscardUntilEndOfDirective(); // C99 6.10p4.
+ }
+ } else if (Sub == "lif") { // "elif".
+ PPConditionalInfo &CondInfo = CurPPLexer->peekConditionalLevel();
+
+ // If this is a #elif with a #else before it, report the error.
+ if (CondInfo.FoundElse) Diag(Tok, diag::pp_err_elif_after_else);
+
+ // If this is in a skipping block or if we're already handled this #if
+ // block, don't bother parsing the condition.
+ if (CondInfo.WasSkipping || CondInfo.FoundNonSkip) {
+ DiscardUntilEndOfDirective();
+ } else {
+ const SourceLocation CondBegin = CurPPLexer->getSourceLocation();
+ // Restore the value of LexingRawMode so that identifiers are
+ // looked up, etc, inside the #elif expression.
+ assert(CurPPLexer->LexingRawMode && "We have to be skipping here!");
+ CurPPLexer->LexingRawMode = false;
+ IdentifierInfo *IfNDefMacro = nullptr;
+ const bool CondValue = EvaluateDirectiveExpression(IfNDefMacro);
+ CurPPLexer->LexingRawMode = true;
+ if (Callbacks) {
+ const SourceLocation CondEnd = CurPPLexer->getSourceLocation();
+ Callbacks->Elif(Tok.getLocation(),
+ SourceRange(CondBegin, CondEnd),
+ (CondValue ? PPCallbacks::CVK_True : PPCallbacks::CVK_False), CondInfo.IfLoc);
+ }
+ // If this condition is true, enter it!
+ if (CondValue) {
+ CondInfo.FoundNonSkip = true;
+ break;
+ }
+ }
+ }
+ }
+
+ CurPPLexer->ParsingPreprocessorDirective = false;
+ // Restore comment saving mode.
+ if (CurLexer) CurLexer->resetExtendedTokenMode();
+ }
+
+ // Finally, if we are out of the conditional (saw an #endif or ran off the end
+ // of the file, just stop skipping and return to lexing whatever came after
+ // the #if block.
+ CurPPLexer->LexingRawMode = false;
+
+ if (Callbacks) {
+ SourceLocation BeginLoc = ElseLoc.isValid() ? ElseLoc : IfTokenLoc;
+ Callbacks->SourceRangeSkipped(SourceRange(BeginLoc, Tok.getLocation()));
+ }
+}
+
+void Preprocessor::PTHSkipExcludedConditionalBlock() {
+
+ while (1) {
+ assert(CurPTHLexer);
+ assert(CurPTHLexer->LexingRawMode == false);
+
+ // Skip to the next '#else', '#elif', or #endif.
+ if (CurPTHLexer->SkipBlock()) {
+ // We have reached an #endif. Both the '#' and 'endif' tokens
+ // have been consumed by the PTHLexer. Just pop off the condition level.
+ PPConditionalInfo CondInfo;
+ bool InCond = CurPTHLexer->popConditionalLevel(CondInfo);
+ (void)InCond; // Silence warning in no-asserts mode.
+ assert(!InCond && "Can't be skipping if not in a conditional!");
+ break;
+ }
+
+ // We have reached a '#else' or '#elif'. Lex the next token to get
+ // the directive flavor.
+ Token Tok;
+ LexUnexpandedToken(Tok);
+
+ // We can actually look up the IdentifierInfo here since we aren't in
+ // raw mode.
+ tok::PPKeywordKind K = Tok.getIdentifierInfo()->getPPKeywordID();
+
+ if (K == tok::pp_else) {
+ // #else: Enter the else condition. We aren't in a nested condition
+ // since we skip those. We're always in the one matching the last
+ // blocked we skipped.
+ PPConditionalInfo &CondInfo = CurPTHLexer->peekConditionalLevel();
+ // Note that we've seen a #else in this conditional.
+ CondInfo.FoundElse = true;
+
+ // If the #if block wasn't entered then enter the #else block now.
+ if (!CondInfo.FoundNonSkip) {
+ CondInfo.FoundNonSkip = true;
+
+ // Scan until the eod token.
+ CurPTHLexer->ParsingPreprocessorDirective = true;
+ DiscardUntilEndOfDirective();
+ CurPTHLexer->ParsingPreprocessorDirective = false;
+
+ break;
+ }
+
+ // Otherwise skip this block.
+ continue;
+ }
+
+ assert(K == tok::pp_elif);
+ PPConditionalInfo &CondInfo = CurPTHLexer->peekConditionalLevel();
+
+ // If this is a #elif with a #else before it, report the error.
+ if (CondInfo.FoundElse)
+ Diag(Tok, diag::pp_err_elif_after_else);
+
+ // If this is in a skipping block or if we're already handled this #if
+ // block, don't bother parsing the condition. We just skip this block.
+ if (CondInfo.FoundNonSkip)
+ continue;
+
+ // Evaluate the condition of the #elif.
+ IdentifierInfo *IfNDefMacro = nullptr;
+ CurPTHLexer->ParsingPreprocessorDirective = true;
+ bool ShouldEnter = EvaluateDirectiveExpression(IfNDefMacro);
+ CurPTHLexer->ParsingPreprocessorDirective = false;
+
+ // If this condition is true, enter it!
+ if (ShouldEnter) {
+ CondInfo.FoundNonSkip = true;
+ break;
+ }
+
+ // Otherwise, skip this block and go to the next one.
+ continue;
+ }
+}
+
+Module *Preprocessor::getModuleForLocation(SourceLocation Loc) {
+ ModuleMap &ModMap = HeaderInfo.getModuleMap();
+ if (SourceMgr.isInMainFile(Loc)) {
+ if (Module *CurMod = getCurrentModule())
+ return CurMod; // Compiling a module.
+ return HeaderInfo.getModuleMap().SourceModule; // Compiling a source.
+ }
+ // Try to determine the module of the include directive.
+ // FIXME: Look into directly passing the FileEntry from LookupFile instead.
+ FileID IDOfIncl = SourceMgr.getFileID(SourceMgr.getExpansionLoc(Loc));
+ if (const FileEntry *EntryOfIncl = SourceMgr.getFileEntryForID(IDOfIncl)) {
+ // The include comes from a file.
+ return ModMap.findModuleForHeader(EntryOfIncl).getModule();
+ } else {
+ // The include does not come from a file,
+ // so it is probably a module compilation.
+ return getCurrentModule();
+ }
+}
+
+Module *Preprocessor::getModuleContainingLocation(SourceLocation Loc) {
+ return HeaderInfo.getModuleMap().inferModuleFromLocation(
+ FullSourceLoc(Loc, SourceMgr));
+}
+
+const FileEntry *Preprocessor::LookupFile(
+ SourceLocation FilenameLoc,
+ StringRef Filename,
+ bool isAngled,
+ const DirectoryLookup *FromDir,
+ const FileEntry *FromFile,
+ const DirectoryLookup *&CurDir,
+ SmallVectorImpl<char> *SearchPath,
+ SmallVectorImpl<char> *RelativePath,
+ ModuleMap::KnownHeader *SuggestedModule,
+ bool SkipCache) {
+ // If the header lookup mechanism may be relative to the current inclusion
+ // stack, record the parent #includes.
+ SmallVector<std::pair<const FileEntry *, const DirectoryEntry *>, 16>
+ Includers;
+ if (!FromDir && !FromFile) {
+ FileID FID = getCurrentFileLexer()->getFileID();
+ const FileEntry *FileEnt = SourceMgr.getFileEntryForID(FID);
+
+ // If there is no file entry associated with this file, it must be the
+ // predefines buffer or the module includes buffer. Any other file is not
+ // lexed with a normal lexer, so it won't be scanned for preprocessor
+ // directives.
+ //
+ // If we have the predefines buffer, resolve #include references (which come
+ // from the -include command line argument) from the current working
+ // directory instead of relative to the main file.
+ //
+ // If we have the module includes buffer, resolve #include references (which
+ // come from header declarations in the module map) relative to the module
+ // map file.
+ if (!FileEnt) {
+ if (FID == SourceMgr.getMainFileID() && MainFileDir)
+ Includers.push_back(std::make_pair(nullptr, MainFileDir));
+ else if ((FileEnt =
+ SourceMgr.getFileEntryForID(SourceMgr.getMainFileID())))
+ Includers.push_back(std::make_pair(FileEnt, FileMgr.getDirectory(".")));
+ } else {
+ Includers.push_back(std::make_pair(FileEnt, FileEnt->getDir()));
+ }
+
+ // MSVC searches the current include stack from top to bottom for
+ // headers included by quoted include directives.
+ // See: http://msdn.microsoft.com/en-us/library/36k2cdd4.aspx
+ if (LangOpts.MSVCCompat && !isAngled) {
+ for (unsigned i = 0, e = IncludeMacroStack.size(); i != e; ++i) {
+ IncludeStackInfo &ISEntry = IncludeMacroStack[e - i - 1];
+ if (IsFileLexer(ISEntry))
+ if ((FileEnt = SourceMgr.getFileEntryForID(
+ ISEntry.ThePPLexer->getFileID())))
+ Includers.push_back(std::make_pair(FileEnt, FileEnt->getDir()));
+ }
+ }
+ }
+
+ CurDir = CurDirLookup;
+
+ if (FromFile) {
+ // We're supposed to start looking from after a particular file. Search
+ // the include path until we find that file or run out of files.
+ const DirectoryLookup *TmpCurDir = CurDir;
+ const DirectoryLookup *TmpFromDir = nullptr;
+ while (const FileEntry *FE = HeaderInfo.LookupFile(
+ Filename, FilenameLoc, isAngled, TmpFromDir, TmpCurDir,
+ Includers, SearchPath, RelativePath, SuggestedModule,
+ SkipCache)) {
+ // Keep looking as if this file did a #include_next.
+ TmpFromDir = TmpCurDir;
+ ++TmpFromDir;
+ if (FE == FromFile) {
+ // Found it.
+ FromDir = TmpFromDir;
+ CurDir = TmpCurDir;
+ break;
+ }
+ }
+ }
+
+ // Do a standard file entry lookup.
+ const FileEntry *FE = HeaderInfo.LookupFile(
+ Filename, FilenameLoc, isAngled, FromDir, CurDir, Includers, SearchPath,
+ RelativePath, SuggestedModule, SkipCache);
+ if (FE) {
+ if (SuggestedModule && !LangOpts.AsmPreprocessor)
+ HeaderInfo.getModuleMap().diagnoseHeaderInclusion(
+ getModuleForLocation(FilenameLoc), FilenameLoc, Filename, FE);
+ return FE;
+ }
+
+ const FileEntry *CurFileEnt;
+ // Otherwise, see if this is a subframework header. If so, this is relative
+ // to one of the headers on the #include stack. Walk the list of the current
+ // headers on the #include stack and pass them to HeaderInfo.
+ if (IsFileLexer()) {
+ if ((CurFileEnt = SourceMgr.getFileEntryForID(CurPPLexer->getFileID()))) {
+ if ((FE = HeaderInfo.LookupSubframeworkHeader(Filename, CurFileEnt,
+ SearchPath, RelativePath,
+ SuggestedModule))) {
+ if (SuggestedModule && !LangOpts.AsmPreprocessor)
+ HeaderInfo.getModuleMap().diagnoseHeaderInclusion(
+ getModuleForLocation(FilenameLoc), FilenameLoc, Filename, FE);
+ return FE;
+ }
+ }
+ }
+
+ for (unsigned i = 0, e = IncludeMacroStack.size(); i != e; ++i) {
+ IncludeStackInfo &ISEntry = IncludeMacroStack[e-i-1];
+ if (IsFileLexer(ISEntry)) {
+ if ((CurFileEnt =
+ SourceMgr.getFileEntryForID(ISEntry.ThePPLexer->getFileID()))) {
+ if ((FE = HeaderInfo.LookupSubframeworkHeader(
+ Filename, CurFileEnt, SearchPath, RelativePath,
+ SuggestedModule))) {
+ if (SuggestedModule && !LangOpts.AsmPreprocessor)
+ HeaderInfo.getModuleMap().diagnoseHeaderInclusion(
+ getModuleForLocation(FilenameLoc), FilenameLoc, Filename, FE);
+ return FE;
+ }
+ }
+ }
+ }
+
+ // Otherwise, we really couldn't find the file.
+ return nullptr;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Preprocessor Directive Handling.
+//===----------------------------------------------------------------------===//
+
+class Preprocessor::ResetMacroExpansionHelper {
+public:
+ ResetMacroExpansionHelper(Preprocessor *pp)
+ : PP(pp), save(pp->DisableMacroExpansion) {
+ if (pp->MacroExpansionInDirectivesOverride)
+ pp->DisableMacroExpansion = false;
+ }
+ ~ResetMacroExpansionHelper() {
+ PP->DisableMacroExpansion = save;
+ }
+private:
+ Preprocessor *PP;
+ bool save;
+};
+
+/// HandleDirective - This callback is invoked when the lexer sees a # token
+/// at the start of a line. This consumes the directive, modifies the
+/// lexer/preprocessor state, and advances the lexer(s) so that the next token
+/// read is the correct one.
+void Preprocessor::HandleDirective(Token &Result) {
+ // FIXME: Traditional: # with whitespace before it not recognized by K&R?
+
+ // We just parsed a # character at the start of a line, so we're in directive
+ // mode. Tell the lexer this so any newlines we see will be converted into an
+ // EOD token (which terminates the directive).
+ CurPPLexer->ParsingPreprocessorDirective = true;
+ if (CurLexer) CurLexer->SetKeepWhitespaceMode(false);
+
+ bool ImmediatelyAfterTopLevelIfndef =
+ CurPPLexer->MIOpt.getImmediatelyAfterTopLevelIfndef();
+ CurPPLexer->MIOpt.resetImmediatelyAfterTopLevelIfndef();
+
+ ++NumDirectives;
+
+ // We are about to read a token. For the multiple-include optimization FA to
+ // work, we have to remember if we had read any tokens *before* this
+ // pp-directive.
+ bool ReadAnyTokensBeforeDirective =CurPPLexer->MIOpt.getHasReadAnyTokensVal();
+
+ // Save the '#' token in case we need to return it later.
+ Token SavedHash = Result;
+
+ // Read the next token, the directive flavor. This isn't expanded due to
+ // C99 6.10.3p8.
+ LexUnexpandedToken(Result);
+
+ // C99 6.10.3p11: Is this preprocessor directive in macro invocation? e.g.:
+ // #define A(x) #x
+ // A(abc
+ // #warning blah
+ // def)
+ // If so, the user is relying on undefined behavior, emit a diagnostic. Do
+ // not support this for #include-like directives, since that can result in
+ // terrible diagnostics, and does not work in GCC.
+ if (InMacroArgs) {
+ if (IdentifierInfo *II = Result.getIdentifierInfo()) {
+ switch (II->getPPKeywordID()) {
+ case tok::pp_include:
+ case tok::pp_import:
+ case tok::pp_include_next:
+ case tok::pp___include_macros:
+ case tok::pp_pragma:
+ Diag(Result, diag::err_embedded_directive) << II->getName();
+ DiscardUntilEndOfDirective();
+ return;
+ default:
+ break;
+ }
+ }
+ Diag(Result, diag::ext_embedded_directive);
+ }
+
+ // Temporarily enable macro expansion if set so
+ // and reset to previous state when returning from this function.
+ ResetMacroExpansionHelper helper(this);
+
+ switch (Result.getKind()) {
+ case tok::eod:
+ return; // null directive.
+ case tok::code_completion:
+ if (CodeComplete)
+ CodeComplete->CodeCompleteDirective(
+ CurPPLexer->getConditionalStackDepth() > 0);
+ setCodeCompletionReached();
+ return;
+ case tok::numeric_constant: // # 7 GNU line marker directive.
+ if (getLangOpts().AsmPreprocessor)
+ break; // # 4 is not a preprocessor directive in .S files.
+ return HandleDigitDirective(Result);
+ default:
+ IdentifierInfo *II = Result.getIdentifierInfo();
+ if (!II) break; // Not an identifier.
+
+ // Ask what the preprocessor keyword ID is.
+ switch (II->getPPKeywordID()) {
+ default: break;
+ // C99 6.10.1 - Conditional Inclusion.
+ case tok::pp_if:
+ return HandleIfDirective(Result, ReadAnyTokensBeforeDirective);
+ case tok::pp_ifdef:
+ return HandleIfdefDirective(Result, false, true/*not valid for miopt*/);
+ case tok::pp_ifndef:
+ return HandleIfdefDirective(Result, true, ReadAnyTokensBeforeDirective);
+ case tok::pp_elif:
+ return HandleElifDirective(Result);
+ case tok::pp_else:
+ return HandleElseDirective(Result);
+ case tok::pp_endif:
+ return HandleEndifDirective(Result);
+
+ // C99 6.10.2 - Source File Inclusion.
+ case tok::pp_include:
+ // Handle #include.
+ return HandleIncludeDirective(SavedHash.getLocation(), Result);
+ case tok::pp___include_macros:
+ // Handle -imacros.
+ return HandleIncludeMacrosDirective(SavedHash.getLocation(), Result);
+
+ // C99 6.10.3 - Macro Replacement.
+ case tok::pp_define:
+ return HandleDefineDirective(Result, ImmediatelyAfterTopLevelIfndef);
+ case tok::pp_undef:
+ return HandleUndefDirective(Result);
+
+ // C99 6.10.4 - Line Control.
+ case tok::pp_line:
+ return HandleLineDirective(Result);
+
+ // C99 6.10.5 - Error Directive.
+ case tok::pp_error:
+ return HandleUserDiagnosticDirective(Result, false);
+
+ // C99 6.10.6 - Pragma Directive.
+ case tok::pp_pragma:
+ return HandlePragmaDirective(SavedHash.getLocation(), PIK_HashPragma);
+
+ // GNU Extensions.
+ case tok::pp_import:
+ return HandleImportDirective(SavedHash.getLocation(), Result);
+ case tok::pp_include_next:
+ return HandleIncludeNextDirective(SavedHash.getLocation(), Result);
+
+ case tok::pp_warning:
+ Diag(Result, diag::ext_pp_warning_directive);
+ return HandleUserDiagnosticDirective(Result, true);
+ case tok::pp_ident:
+ return HandleIdentSCCSDirective(Result);
+ case tok::pp_sccs:
+ return HandleIdentSCCSDirective(Result);
+ case tok::pp_assert:
+ //isExtension = true; // FIXME: implement #assert
+ break;
+ case tok::pp_unassert:
+ //isExtension = true; // FIXME: implement #unassert
+ break;
+
+ case tok::pp___public_macro:
+ if (getLangOpts().Modules)
+ return HandleMacroPublicDirective(Result);
+ break;
+
+ case tok::pp___private_macro:
+ if (getLangOpts().Modules)
+ return HandleMacroPrivateDirective(Result);
+ break;
+ }
+ break;
+ }
+
+ // If this is a .S file, treat unknown # directives as non-preprocessor
+ // directives. This is important because # may be a comment or introduce
+ // various pseudo-ops. Just return the # token and push back the following
+ // token to be lexed next time.
+ if (getLangOpts().AsmPreprocessor) {
+ Token *Toks = new Token[2];
+ // Return the # and the token after it.
+ Toks[0] = SavedHash;
+ Toks[1] = Result;
+
+ // If the second token is a hashhash token, then we need to translate it to
+ // unknown so the token lexer doesn't try to perform token pasting.
+ if (Result.is(tok::hashhash))
+ Toks[1].setKind(tok::unknown);
+
+ // Enter this token stream so that we re-lex the tokens. Make sure to
+ // enable macro expansion, in case the token after the # is an identifier
+ // that is expanded.
+ EnterTokenStream(Toks, 2, false, true);
+ return;
+ }
+
+ // If we reached here, the preprocessing token is not valid!
+ Diag(Result, diag::err_pp_invalid_directive);
+
+ // Read the rest of the PP line.
+ DiscardUntilEndOfDirective();
+
+ // Okay, we're done parsing the directive.
+}
+
+/// GetLineValue - Convert a numeric token into an unsigned value, emitting
+/// Diagnostic DiagID if it is invalid, and returning the value in Val.
+static bool GetLineValue(Token &DigitTok, unsigned &Val,
+ unsigned DiagID, Preprocessor &PP,
+ bool IsGNULineDirective=false) {
+ if (DigitTok.isNot(tok::numeric_constant)) {
+ PP.Diag(DigitTok, DiagID);
+
+ if (DigitTok.isNot(tok::eod))
+ PP.DiscardUntilEndOfDirective();
+ return true;
+ }
+
+ SmallString<64> IntegerBuffer;
+ IntegerBuffer.resize(DigitTok.getLength());
+ const char *DigitTokBegin = &IntegerBuffer[0];
+ bool Invalid = false;
+ unsigned ActualLength = PP.getSpelling(DigitTok, DigitTokBegin, &Invalid);
+ if (Invalid)
+ return true;
+
+ // Verify that we have a simple digit-sequence, and compute the value. This
+ // is always a simple digit string computed in decimal, so we do this manually
+ // here.
+ Val = 0;
+ for (unsigned i = 0; i != ActualLength; ++i) {
+ // C++1y [lex.fcon]p1:
+ // Optional separating single quotes in a digit-sequence are ignored
+ if (DigitTokBegin[i] == '\'')
+ continue;
+
+ if (!isDigit(DigitTokBegin[i])) {
+ PP.Diag(PP.AdvanceToTokenCharacter(DigitTok.getLocation(), i),
+ diag::err_pp_line_digit_sequence) << IsGNULineDirective;
+ PP.DiscardUntilEndOfDirective();
+ return true;
+ }
+
+ unsigned NextVal = Val*10+(DigitTokBegin[i]-'0');
+ if (NextVal < Val) { // overflow.
+ PP.Diag(DigitTok, DiagID);
+ PP.DiscardUntilEndOfDirective();
+ return true;
+ }
+ Val = NextVal;
+ }
+
+ if (DigitTokBegin[0] == '0' && Val)
+ PP.Diag(DigitTok.getLocation(), diag::warn_pp_line_decimal)
+ << IsGNULineDirective;
+
+ return false;
+}
+
+/// \brief Handle a \#line directive: C99 6.10.4.
+///
+/// The two acceptable forms are:
+/// \verbatim
+/// # line digit-sequence
+/// # line digit-sequence "s-char-sequence"
+/// \endverbatim
+void Preprocessor::HandleLineDirective(Token &Tok) {
+ // Read the line # and string argument. Per C99 6.10.4p5, these tokens are
+ // expanded.
+ Token DigitTok;
+ Lex(DigitTok);
+
+ // Validate the number and convert it to an unsigned.
+ unsigned LineNo;
+ if (GetLineValue(DigitTok, LineNo, diag::err_pp_line_requires_integer,*this))
+ return;
+
+ if (LineNo == 0)
+ Diag(DigitTok, diag::ext_pp_line_zero);
+
+ // Enforce C99 6.10.4p3: "The digit sequence shall not specify ... a
+ // number greater than 2147483647". C90 requires that the line # be <= 32767.
+ unsigned LineLimit = 32768U;
+ if (LangOpts.C99 || LangOpts.CPlusPlus11)
+ LineLimit = 2147483648U;
+ if (LineNo >= LineLimit)
+ Diag(DigitTok, diag::ext_pp_line_too_big) << LineLimit;
+ else if (LangOpts.CPlusPlus11 && LineNo >= 32768U)
+ Diag(DigitTok, diag::warn_cxx98_compat_pp_line_too_big);
+
+ int FilenameID = -1;
+ Token StrTok;
+ Lex(StrTok);
+
+ // If the StrTok is "eod", then it wasn't present. Otherwise, it must be a
+ // string followed by eod.
+ if (StrTok.is(tok::eod))
+ ; // ok
+ else if (StrTok.isNot(tok::string_literal)) {
+ Diag(StrTok, diag::err_pp_line_invalid_filename);
+ return DiscardUntilEndOfDirective();
+ } else if (StrTok.hasUDSuffix()) {
+ Diag(StrTok, diag::err_invalid_string_udl);
+ return DiscardUntilEndOfDirective();
+ } else {
+ // Parse and validate the string, converting it into a unique ID.
+ StringLiteralParser Literal(StrTok, *this);
+ assert(Literal.isAscii() && "Didn't allow wide strings in");
+ if (Literal.hadError)
+ return DiscardUntilEndOfDirective();
+ if (Literal.Pascal) {
+ Diag(StrTok, diag::err_pp_linemarker_invalid_filename);
+ return DiscardUntilEndOfDirective();
+ }
+ FilenameID = SourceMgr.getLineTableFilenameID(Literal.GetString());
+
+ // Verify that there is nothing after the string, other than EOD. Because
+ // of C99 6.10.4p5, macros that expand to empty tokens are ok.
+ CheckEndOfDirective("line", true);
+ }
+
+ SourceMgr.AddLineNote(DigitTok.getLocation(), LineNo, FilenameID);
+
+ if (Callbacks)
+ Callbacks->FileChanged(CurPPLexer->getSourceLocation(),
+ PPCallbacks::RenameFile,
+ SrcMgr::C_User);
+}
+
+/// ReadLineMarkerFlags - Parse and validate any flags at the end of a GNU line
+/// marker directive.
+static bool ReadLineMarkerFlags(bool &IsFileEntry, bool &IsFileExit,
+ bool &IsSystemHeader, bool &IsExternCHeader,
+ Preprocessor &PP) {
+ unsigned FlagVal;
+ Token FlagTok;
+ PP.Lex(FlagTok);
+ if (FlagTok.is(tok::eod)) return false;
+ if (GetLineValue(FlagTok, FlagVal, diag::err_pp_linemarker_invalid_flag, PP))
+ return true;
+
+ if (FlagVal == 1) {
+ IsFileEntry = true;
+
+ PP.Lex(FlagTok);
+ if (FlagTok.is(tok::eod)) return false;
+ if (GetLineValue(FlagTok, FlagVal, diag::err_pp_linemarker_invalid_flag,PP))
+ return true;
+ } else if (FlagVal == 2) {
+ IsFileExit = true;
+
+ SourceManager &SM = PP.getSourceManager();
+ // If we are leaving the current presumed file, check to make sure the
+ // presumed include stack isn't empty!
+ FileID CurFileID =
+ SM.getDecomposedExpansionLoc(FlagTok.getLocation()).first;
+ PresumedLoc PLoc = SM.getPresumedLoc(FlagTok.getLocation());
+ if (PLoc.isInvalid())
+ return true;
+
+ // If there is no include loc (main file) or if the include loc is in a
+ // different physical file, then we aren't in a "1" line marker flag region.
+ SourceLocation IncLoc = PLoc.getIncludeLoc();
+ if (IncLoc.isInvalid() ||
+ SM.getDecomposedExpansionLoc(IncLoc).first != CurFileID) {
+ PP.Diag(FlagTok, diag::err_pp_linemarker_invalid_pop);
+ PP.DiscardUntilEndOfDirective();
+ return true;
+ }
+
+ PP.Lex(FlagTok);
+ if (FlagTok.is(tok::eod)) return false;
+ if (GetLineValue(FlagTok, FlagVal, diag::err_pp_linemarker_invalid_flag,PP))
+ return true;
+ }
+
+ // We must have 3 if there are still flags.
+ if (FlagVal != 3) {
+ PP.Diag(FlagTok, diag::err_pp_linemarker_invalid_flag);
+ PP.DiscardUntilEndOfDirective();
+ return true;
+ }
+
+ IsSystemHeader = true;
+
+ PP.Lex(FlagTok);
+ if (FlagTok.is(tok::eod)) return false;
+ if (GetLineValue(FlagTok, FlagVal, diag::err_pp_linemarker_invalid_flag, PP))
+ return true;
+
+ // We must have 4 if there is yet another flag.
+ if (FlagVal != 4) {
+ PP.Diag(FlagTok, diag::err_pp_linemarker_invalid_flag);
+ PP.DiscardUntilEndOfDirective();
+ return true;
+ }
+
+ IsExternCHeader = true;
+
+ PP.Lex(FlagTok);
+ if (FlagTok.is(tok::eod)) return false;
+
+ // There are no more valid flags here.
+ PP.Diag(FlagTok, diag::err_pp_linemarker_invalid_flag);
+ PP.DiscardUntilEndOfDirective();
+ return true;
+}
+
+/// HandleDigitDirective - Handle a GNU line marker directive, whose syntax is
+/// one of the following forms:
+///
+/// # 42
+/// # 42 "file" ('1' | '2')?
+/// # 42 "file" ('1' | '2')? '3' '4'?
+///
+void Preprocessor::HandleDigitDirective(Token &DigitTok) {
+ // Validate the number and convert it to an unsigned. GNU does not have a
+ // line # limit other than it fit in 32-bits.
+ unsigned LineNo;
+ if (GetLineValue(DigitTok, LineNo, diag::err_pp_linemarker_requires_integer,
+ *this, true))
+ return;
+
+ Token StrTok;
+ Lex(StrTok);
+
+ bool IsFileEntry = false, IsFileExit = false;
+ bool IsSystemHeader = false, IsExternCHeader = false;
+ int FilenameID = -1;
+
+ // If the StrTok is "eod", then it wasn't present. Otherwise, it must be a
+ // string followed by eod.
+ if (StrTok.is(tok::eod))
+ ; // ok
+ else if (StrTok.isNot(tok::string_literal)) {
+ Diag(StrTok, diag::err_pp_linemarker_invalid_filename);
+ return DiscardUntilEndOfDirective();
+ } else if (StrTok.hasUDSuffix()) {
+ Diag(StrTok, diag::err_invalid_string_udl);
+ return DiscardUntilEndOfDirective();
+ } else {
+ // Parse and validate the string, converting it into a unique ID.
+ StringLiteralParser Literal(StrTok, *this);
+ assert(Literal.isAscii() && "Didn't allow wide strings in");
+ if (Literal.hadError)
+ return DiscardUntilEndOfDirective();
+ if (Literal.Pascal) {
+ Diag(StrTok, diag::err_pp_linemarker_invalid_filename);
+ return DiscardUntilEndOfDirective();
+ }
+ FilenameID = SourceMgr.getLineTableFilenameID(Literal.GetString());
+
+ // If a filename was present, read any flags that are present.
+ if (ReadLineMarkerFlags(IsFileEntry, IsFileExit,
+ IsSystemHeader, IsExternCHeader, *this))
+ return;
+ }
+
+ // Create a line note with this information.
+ SourceMgr.AddLineNote(DigitTok.getLocation(), LineNo, FilenameID,
+ IsFileEntry, IsFileExit,
+ IsSystemHeader, IsExternCHeader);
+
+ // If the preprocessor has callbacks installed, notify them of the #line
+ // change. This is used so that the line marker comes out in -E mode for
+ // example.
+ if (Callbacks) {
+ PPCallbacks::FileChangeReason Reason = PPCallbacks::RenameFile;
+ if (IsFileEntry)
+ Reason = PPCallbacks::EnterFile;
+ else if (IsFileExit)
+ Reason = PPCallbacks::ExitFile;
+ SrcMgr::CharacteristicKind FileKind = SrcMgr::C_User;
+ if (IsExternCHeader)
+ FileKind = SrcMgr::C_ExternCSystem;
+ else if (IsSystemHeader)
+ FileKind = SrcMgr::C_System;
+
+ Callbacks->FileChanged(CurPPLexer->getSourceLocation(), Reason, FileKind);
+ }
+}
+
+
+/// HandleUserDiagnosticDirective - Handle a #warning or #error directive.
+///
+void Preprocessor::HandleUserDiagnosticDirective(Token &Tok,
+ bool isWarning) {
+ // PTH doesn't emit #warning or #error directives.
+ if (CurPTHLexer)
+ return CurPTHLexer->DiscardToEndOfLine();
+
+ // Read the rest of the line raw. We do this because we don't want macros
+ // to be expanded and we don't require that the tokens be valid preprocessing
+ // tokens. For example, this is allowed: "#warning ` 'foo". GCC does
+ // collapse multiple consequtive white space between tokens, but this isn't
+ // specified by the standard.
+ SmallString<128> Message;
+ CurLexer->ReadToEndOfLine(&Message);
+
+ // Find the first non-whitespace character, so that we can make the
+ // diagnostic more succinct.
+ StringRef Msg = StringRef(Message).ltrim(" ");
+
+ if (isWarning)
+ Diag(Tok, diag::pp_hash_warning) << Msg;
+ else
+ Diag(Tok, diag::err_pp_hash_error) << Msg;
+}
+
+/// HandleIdentSCCSDirective - Handle a #ident/#sccs directive.
+///
+void Preprocessor::HandleIdentSCCSDirective(Token &Tok) {
+ // Yes, this directive is an extension.
+ Diag(Tok, diag::ext_pp_ident_directive);
+
+ // Read the string argument.
+ Token StrTok;
+ Lex(StrTok);
+
+ // If the token kind isn't a string, it's a malformed directive.
+ if (StrTok.isNot(tok::string_literal) &&
+ StrTok.isNot(tok::wide_string_literal)) {
+ Diag(StrTok, diag::err_pp_malformed_ident);
+ if (StrTok.isNot(tok::eod))
+ DiscardUntilEndOfDirective();
+ return;
+ }
+
+ if (StrTok.hasUDSuffix()) {
+ Diag(StrTok, diag::err_invalid_string_udl);
+ return DiscardUntilEndOfDirective();
+ }
+
+ // Verify that there is nothing after the string, other than EOD.
+ CheckEndOfDirective("ident");
+
+ if (Callbacks) {
+ bool Invalid = false;
+ std::string Str = getSpelling(StrTok, &Invalid);
+ if (!Invalid)
+ Callbacks->Ident(Tok.getLocation(), Str);
+ }
+}
+
+/// \brief Handle a #public directive.
+void Preprocessor::HandleMacroPublicDirective(Token &Tok) {
+ Token MacroNameTok;
+ ReadMacroName(MacroNameTok, MU_Undef);
+
+ // Error reading macro name? If so, diagnostic already issued.
+ if (MacroNameTok.is(tok::eod))
+ return;
+
+ // Check to see if this is the last token on the #__public_macro line.
+ CheckEndOfDirective("__public_macro");
+
+ IdentifierInfo *II = MacroNameTok.getIdentifierInfo();
+ // Okay, we finally have a valid identifier to undef.
+ MacroDirective *MD = getLocalMacroDirective(II);
+
+ // If the macro is not defined, this is an error.
+ if (!MD) {
+ Diag(MacroNameTok, diag::err_pp_visibility_non_macro) << II;
+ return;
+ }
+
+ // Note that this macro has now been exported.
+ appendMacroDirective(II, AllocateVisibilityMacroDirective(
+ MacroNameTok.getLocation(), /*IsPublic=*/true));
+}
+
+/// \brief Handle a #private directive.
+void Preprocessor::HandleMacroPrivateDirective(Token &Tok) {
+ Token MacroNameTok;
+ ReadMacroName(MacroNameTok, MU_Undef);
+
+ // Error reading macro name? If so, diagnostic already issued.
+ if (MacroNameTok.is(tok::eod))
+ return;
+
+ // Check to see if this is the last token on the #__private_macro line.
+ CheckEndOfDirective("__private_macro");
+
+ IdentifierInfo *II = MacroNameTok.getIdentifierInfo();
+ // Okay, we finally have a valid identifier to undef.
+ MacroDirective *MD = getLocalMacroDirective(II);
+
+ // If the macro is not defined, this is an error.
+ if (!MD) {
+ Diag(MacroNameTok, diag::err_pp_visibility_non_macro) << II;
+ return;
+ }
+
+ // Note that this macro has now been marked private.
+ appendMacroDirective(II, AllocateVisibilityMacroDirective(
+ MacroNameTok.getLocation(), /*IsPublic=*/false));
+}
+
+//===----------------------------------------------------------------------===//
+// Preprocessor Include Directive Handling.
+//===----------------------------------------------------------------------===//
+
+/// GetIncludeFilenameSpelling - Turn the specified lexer token into a fully
+/// checked and spelled filename, e.g. as an operand of \#include. This returns
+/// true if the input filename was in <>'s or false if it were in ""'s. The
+/// caller is expected to provide a buffer that is large enough to hold the
+/// spelling of the filename, but is also expected to handle the case when
+/// this method decides to use a different buffer.
+bool Preprocessor::GetIncludeFilenameSpelling(SourceLocation Loc,
+ StringRef &Buffer) {
+ // Get the text form of the filename.
+ assert(!Buffer.empty() && "Can't have tokens with empty spellings!");
+
+ // Make sure the filename is <x> or "x".
+ bool isAngled;
+ if (Buffer[0] == '<') {
+ if (Buffer.back() != '>') {
+ Diag(Loc, diag::err_pp_expects_filename);
+ Buffer = StringRef();
+ return true;
+ }
+ isAngled = true;
+ } else if (Buffer[0] == '"') {
+ if (Buffer.back() != '"') {
+ Diag(Loc, diag::err_pp_expects_filename);
+ Buffer = StringRef();
+ return true;
+ }
+ isAngled = false;
+ } else {
+ Diag(Loc, diag::err_pp_expects_filename);
+ Buffer = StringRef();
+ return true;
+ }
+
+ // Diagnose #include "" as invalid.
+ if (Buffer.size() <= 2) {
+ Diag(Loc, diag::err_pp_empty_filename);
+ Buffer = StringRef();
+ return true;
+ }
+
+ // Skip the brackets.
+ Buffer = Buffer.substr(1, Buffer.size()-2);
+ return isAngled;
+}
+
+// \brief Handle cases where the \#include name is expanded from a macro
+// as multiple tokens, which need to be glued together.
+//
+// This occurs for code like:
+// \code
+// \#define FOO <a/b.h>
+// \#include FOO
+// \endcode
+// because in this case, "<a/b.h>" is returned as 7 tokens, not one.
+//
+// This code concatenates and consumes tokens up to the '>' token. It returns
+// false if the > was found, otherwise it returns true if it finds and consumes
+// the EOD marker.
+bool Preprocessor::ConcatenateIncludeName(SmallString<128> &FilenameBuffer,
+ SourceLocation &End) {
+ Token CurTok;
+
+ Lex(CurTok);
+ while (CurTok.isNot(tok::eod)) {
+ End = CurTok.getLocation();
+
+ // FIXME: Provide code completion for #includes.
+ if (CurTok.is(tok::code_completion)) {
+ setCodeCompletionReached();
+ Lex(CurTok);
+ continue;
+ }
+
+ // Append the spelling of this token to the buffer. If there was a space
+ // before it, add it now.
+ if (CurTok.hasLeadingSpace())
+ FilenameBuffer.push_back(' ');
+
+ // Get the spelling of the token, directly into FilenameBuffer if possible.
+ unsigned PreAppendSize = FilenameBuffer.size();
+ FilenameBuffer.resize(PreAppendSize+CurTok.getLength());
+
+ const char *BufPtr = &FilenameBuffer[PreAppendSize];
+ unsigned ActualLen = getSpelling(CurTok, BufPtr);
+
+ // If the token was spelled somewhere else, copy it into FilenameBuffer.
+ if (BufPtr != &FilenameBuffer[PreAppendSize])
+ memcpy(&FilenameBuffer[PreAppendSize], BufPtr, ActualLen);
+
+ // Resize FilenameBuffer to the correct size.
+ if (CurTok.getLength() != ActualLen)
+ FilenameBuffer.resize(PreAppendSize+ActualLen);
+
+ // If we found the '>' marker, return success.
+ if (CurTok.is(tok::greater))
+ return false;
+
+ Lex(CurTok);
+ }
+
+ // If we hit the eod marker, emit an error and return true so that the caller
+ // knows the EOD has been read.
+ Diag(CurTok.getLocation(), diag::err_pp_expects_filename);
+ return true;
+}
+
+/// \brief Push a token onto the token stream containing an annotation.
+static void EnterAnnotationToken(Preprocessor &PP,
+ SourceLocation Begin, SourceLocation End,
+ tok::TokenKind Kind, void *AnnotationVal) {
+ // FIXME: Produce this as the current token directly, rather than
+ // allocating a new token for it.
+ Token *Tok = new Token[1];
+ Tok[0].startToken();
+ Tok[0].setKind(Kind);
+ Tok[0].setLocation(Begin);
+ Tok[0].setAnnotationEndLoc(End);
+ Tok[0].setAnnotationValue(AnnotationVal);
+ PP.EnterTokenStream(Tok, 1, true, true);
+}
+
+/// \brief Produce a diagnostic informing the user that a #include or similar
+/// was implicitly treated as a module import.
+static void diagnoseAutoModuleImport(
+ Preprocessor &PP, SourceLocation HashLoc, Token &IncludeTok,
+ ArrayRef<std::pair<IdentifierInfo *, SourceLocation>> Path,
+ SourceLocation PathEnd) {
+ assert(PP.getLangOpts().ObjC2 && "no import syntax available");
+
+ SmallString<128> PathString;
+ for (unsigned I = 0, N = Path.size(); I != N; ++I) {
+ if (I)
+ PathString += '.';
+ PathString += Path[I].first->getName();
+ }
+ int IncludeKind = 0;
+
+ switch (IncludeTok.getIdentifierInfo()->getPPKeywordID()) {
+ case tok::pp_include:
+ IncludeKind = 0;
+ break;
+
+ case tok::pp_import:
+ IncludeKind = 1;
+ break;
+
+ case tok::pp_include_next:
+ IncludeKind = 2;
+ break;
+
+ case tok::pp___include_macros:
+ IncludeKind = 3;
+ break;
+
+ default:
+ llvm_unreachable("unknown include directive kind");
+ }
+
+ CharSourceRange ReplaceRange(SourceRange(HashLoc, PathEnd),
+ /*IsTokenRange=*/false);
+ PP.Diag(HashLoc, diag::warn_auto_module_import)
+ << IncludeKind << PathString
+ << FixItHint::CreateReplacement(ReplaceRange,
+ ("@import " + PathString + ";").str());
+}
+
+/// HandleIncludeDirective - The "\#include" tokens have just been read, read
+/// the file to be included from the lexer, then include it! This is a common
+/// routine with functionality shared between \#include, \#include_next and
+/// \#import. LookupFrom is set when this is a \#include_next directive, it
+/// specifies the file to start searching from.
+void Preprocessor::HandleIncludeDirective(SourceLocation HashLoc,
+ Token &IncludeTok,
+ const DirectoryLookup *LookupFrom,
+ const FileEntry *LookupFromFile,
+ bool isImport) {
+
+ Token FilenameTok;
+ CurPPLexer->LexIncludeFilename(FilenameTok);
+
+ // Reserve a buffer to get the spelling.
+ SmallString<128> FilenameBuffer;
+ StringRef Filename;
+ SourceLocation End;
+ SourceLocation CharEnd; // the end of this directive, in characters
+
+ switch (FilenameTok.getKind()) {
+ case tok::eod:
+ // If the token kind is EOD, the error has already been diagnosed.
+ return;
+
+ case tok::angle_string_literal:
+ case tok::string_literal:
+ Filename = getSpelling(FilenameTok, FilenameBuffer);
+ End = FilenameTok.getLocation();
+ CharEnd = End.getLocWithOffset(FilenameTok.getLength());
+ break;
+
+ case tok::less:
+ // This could be a <foo/bar.h> file coming from a macro expansion. In this
+ // case, glue the tokens together into FilenameBuffer and interpret those.
+ FilenameBuffer.push_back('<');
+ if (ConcatenateIncludeName(FilenameBuffer, End))
+ return; // Found <eod> but no ">"? Diagnostic already emitted.
+ Filename = FilenameBuffer;
+ CharEnd = End.getLocWithOffset(1);
+ break;
+ default:
+ Diag(FilenameTok.getLocation(), diag::err_pp_expects_filename);
+ DiscardUntilEndOfDirective();
+ return;
+ }
+
+ CharSourceRange FilenameRange
+ = CharSourceRange::getCharRange(FilenameTok.getLocation(), CharEnd);
+ StringRef OriginalFilename = Filename;
+ bool isAngled =
+ GetIncludeFilenameSpelling(FilenameTok.getLocation(), Filename);
+ // If GetIncludeFilenameSpelling set the start ptr to null, there was an
+ // error.
+ if (Filename.empty()) {
+ DiscardUntilEndOfDirective();
+ return;
+ }
+
+ // Verify that there is nothing after the filename, other than EOD. Note that
+ // we allow macros that expand to nothing after the filename, because this
+ // falls into the category of "#include pp-tokens new-line" specified in
+ // C99 6.10.2p4.
+ CheckEndOfDirective(IncludeTok.getIdentifierInfo()->getNameStart(), true);
+
+ // Check that we don't have infinite #include recursion.
+ if (IncludeMacroStack.size() == MaxAllowedIncludeStackDepth-1) {
+ Diag(FilenameTok, diag::err_pp_include_too_deep);
+ return;
+ }
+
+ // Complain about attempts to #include files in an audit pragma.
+ if (PragmaARCCFCodeAuditedLoc.isValid()) {
+ Diag(HashLoc, diag::err_pp_include_in_arc_cf_code_audited);
+ Diag(PragmaARCCFCodeAuditedLoc, diag::note_pragma_entered_here);
+
+ // Immediately leave the pragma.
+ PragmaARCCFCodeAuditedLoc = SourceLocation();
+ }
+
+ if (HeaderInfo.HasIncludeAliasMap()) {
+ // Map the filename with the brackets still attached. If the name doesn't
+ // map to anything, fall back on the filename we've already gotten the
+ // spelling for.
+ StringRef NewName = HeaderInfo.MapHeaderToIncludeAlias(OriginalFilename);
+ if (!NewName.empty())
+ Filename = NewName;
+ }
+
+ // Search include directories.
+ const DirectoryLookup *CurDir;
+ SmallString<1024> SearchPath;
+ SmallString<1024> RelativePath;
+ // We get the raw path only if we have 'Callbacks' to which we later pass
+ // the path.
+ ModuleMap::KnownHeader SuggestedModule;
+ SourceLocation FilenameLoc = FilenameTok.getLocation();
+ SmallString<128> NormalizedPath;
+ if (LangOpts.MSVCCompat) {
+ NormalizedPath = Filename.str();
+#ifndef LLVM_ON_WIN32
+ llvm::sys::path::native(NormalizedPath);
+#endif
+ }
+ const FileEntry *File = LookupFile(
+ FilenameLoc, LangOpts.MSVCCompat ? NormalizedPath.c_str() : Filename,
+ isAngled, LookupFrom, LookupFromFile, CurDir,
+ Callbacks ? &SearchPath : nullptr, Callbacks ? &RelativePath : nullptr,
+ HeaderInfo.getHeaderSearchOpts().ModuleMaps ? &SuggestedModule : nullptr);
+
+ if (!File) {
+ if (Callbacks) {
+ // Give the clients a chance to recover.
+ SmallString<128> RecoveryPath;
+ if (Callbacks->FileNotFound(Filename, RecoveryPath)) {
+ if (const DirectoryEntry *DE = FileMgr.getDirectory(RecoveryPath)) {
+ // Add the recovery path to the list of search paths.
+ DirectoryLookup DL(DE, SrcMgr::C_User, false);
+ HeaderInfo.AddSearchPath(DL, isAngled);
+
+ // Try the lookup again, skipping the cache.
+ File = LookupFile(
+ FilenameLoc,
+ LangOpts.MSVCCompat ? NormalizedPath.c_str() : Filename, isAngled,
+ LookupFrom, LookupFromFile, CurDir, nullptr, nullptr,
+ HeaderInfo.getHeaderSearchOpts().ModuleMaps ? &SuggestedModule
+ : nullptr,
+ /*SkipCache*/ true);
+ }
+ }
+ }
+
+ if (!SuppressIncludeNotFoundError) {
+ // If the file could not be located and it was included via angle
+ // brackets, we can attempt a lookup as though it were a quoted path to
+ // provide the user with a possible fixit.
+ if (isAngled) {
+ File = LookupFile(
+ FilenameLoc,
+ LangOpts.MSVCCompat ? NormalizedPath.c_str() : Filename, false,
+ LookupFrom, LookupFromFile, CurDir,
+ Callbacks ? &SearchPath : nullptr,
+ Callbacks ? &RelativePath : nullptr,
+ HeaderInfo.getHeaderSearchOpts().ModuleMaps ? &SuggestedModule
+ : nullptr);
+ if (File) {
+ SourceRange Range(FilenameTok.getLocation(), CharEnd);
+ Diag(FilenameTok, diag::err_pp_file_not_found_not_fatal) <<
+ Filename <<
+ FixItHint::CreateReplacement(Range, "\"" + Filename.str() + "\"");
+ }
+ }
+
+ // If the file is still not found, just go with the vanilla diagnostic
+ if (!File)
+ Diag(FilenameTok, diag::err_pp_file_not_found) << Filename;
+ }
+ }
+
+ // Should we enter the source file? Set to false if either the source file is
+ // known to have no effect beyond its effect on module visibility -- that is,
+ // if it's got an include guard that is already defined or is a modular header
+ // we've imported or already built.
+ bool ShouldEnter = true;
+
+ // Determine whether we should try to import the module for this #include, if
+ // there is one. Don't do so if precompiled module support is disabled or we
+ // are processing this module textually (because we're building the module).
+ if (File && SuggestedModule && getLangOpts().Modules &&
+ SuggestedModule.getModule()->getTopLevelModuleName() !=
+ getLangOpts().CurrentModule &&
+ SuggestedModule.getModule()->getTopLevelModuleName() !=
+ getLangOpts().ImplementationOfModule) {
+ // Compute the module access path corresponding to this module.
+ // FIXME: Should we have a second loadModule() overload to avoid this
+ // extra lookup step?
+ SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> Path;
+ for (Module *Mod = SuggestedModule.getModule(); Mod; Mod = Mod->Parent)
+ Path.push_back(std::make_pair(getIdentifierInfo(Mod->Name),
+ FilenameTok.getLocation()));
+ std::reverse(Path.begin(), Path.end());
+
+ // Warn that we're replacing the include/import with a module import.
+ // We only do this in Objective-C, where we have a module-import syntax.
+ if (getLangOpts().ObjC2)
+ diagnoseAutoModuleImport(*this, HashLoc, IncludeTok, Path, CharEnd);
+
+ // Load the module to import its macros. We'll make the declarations
+ // visible when the parser gets here.
+ // FIXME: Pass SuggestedModule in here rather than converting it to a path
+ // and making the module loader convert it back again.
+ ModuleLoadResult Imported = TheModuleLoader.loadModule(
+ IncludeTok.getLocation(), Path, Module::Hidden,
+ /*IsIncludeDirective=*/true);
+ assert((Imported == nullptr || Imported == SuggestedModule.getModule()) &&
+ "the imported module is different than the suggested one");
+
+ if (Imported)
+ ShouldEnter = false;
+ else if (Imported.isMissingExpected()) {
+ // We failed to find a submodule that we assumed would exist (because it
+ // was in the directory of an umbrella header, for instance), but no
+ // actual module exists for it (because the umbrella header is
+ // incomplete). Treat this as a textual inclusion.
+ SuggestedModule = ModuleMap::KnownHeader();
+ } else {
+ // We hit an error processing the import. Bail out.
+ if (hadModuleLoaderFatalFailure()) {
+ // With a fatal failure in the module loader, we abort parsing.
+ Token &Result = IncludeTok;
+ if (CurLexer) {
+ Result.startToken();
+ CurLexer->FormTokenWithChars(Result, CurLexer->BufferEnd, tok::eof);
+ CurLexer->cutOffLexing();
+ } else {
+ assert(CurPTHLexer && "#include but no current lexer set!");
+ CurPTHLexer->getEOF(Result);
+ }
+ }
+ return;
+ }
+ }
+
+ if (Callbacks) {
+ // Notify the callback object that we've seen an inclusion directive.
+ Callbacks->InclusionDirective(
+ HashLoc, IncludeTok,
+ LangOpts.MSVCCompat ? NormalizedPath.c_str() : Filename, isAngled,
+ FilenameRange, File, SearchPath, RelativePath,
+ ShouldEnter ? nullptr : SuggestedModule.getModule());
+ }
+
+ if (!File)
+ return;
+
+ // The #included file will be considered to be a system header if either it is
+ // in a system include directory, or if the #includer is a system include
+ // header.
+ SrcMgr::CharacteristicKind FileCharacter =
+ std::max(HeaderInfo.getFileDirFlavor(File),
+ SourceMgr.getFileCharacteristic(FilenameTok.getLocation()));
+
+ // FIXME: If we have a suggested module, and we've already visited this file,
+ // don't bother entering it again. We know it has no further effect.
+
+ // Ask HeaderInfo if we should enter this #include file. If not, #including
+ // this file will have no effect.
+ if (ShouldEnter &&
+ !HeaderInfo.ShouldEnterIncludeFile(*this, File, isImport)) {
+ ShouldEnter = false;
+ if (Callbacks)
+ Callbacks->FileSkipped(*File, FilenameTok, FileCharacter);
+ }
+
+ // If we don't need to enter the file, stop now.
+ if (!ShouldEnter) {
+ // If this is a module import, make it visible if needed.
+ if (auto *M = SuggestedModule.getModule()) {
+ makeModuleVisible(M, HashLoc);
+
+ if (IncludeTok.getIdentifierInfo()->getPPKeywordID() !=
+ tok::pp___include_macros)
+ EnterAnnotationToken(*this, HashLoc, End, tok::annot_module_include, M);
+ }
+ return;
+ }
+
+ // Look up the file, create a File ID for it.
+ SourceLocation IncludePos = End;
+ // If the filename string was the result of macro expansions, set the include
+ // position on the file where it will be included and after the expansions.
+ if (IncludePos.isMacroID())
+ IncludePos = SourceMgr.getExpansionRange(IncludePos).second;
+ FileID FID = SourceMgr.createFileID(File, IncludePos, FileCharacter);
+ assert(!FID.isInvalid() && "Expected valid file ID");
+
+ // If all is good, enter the new file!
+ if (EnterSourceFile(FID, CurDir, FilenameTok.getLocation()))
+ return;
+
+ // Determine if we're switching to building a new submodule, and which one.
+ if (auto *M = SuggestedModule.getModule()) {
+ assert(!CurSubmodule && "should not have marked this as a module yet");
+ CurSubmodule = M;
+
+ // Let the macro handling code know that any future macros are within
+ // the new submodule.
+ EnterSubmodule(M, HashLoc);
+
+ // Let the parser know that any future declarations are within the new
+ // submodule.
+ // FIXME: There's no point doing this if we're handling a #__include_macros
+ // directive.
+ EnterAnnotationToken(*this, HashLoc, End, tok::annot_module_begin, M);
+ }
+}
+
+/// HandleIncludeNextDirective - Implements \#include_next.
+///
+void Preprocessor::HandleIncludeNextDirective(SourceLocation HashLoc,
+ Token &IncludeNextTok) {
+ Diag(IncludeNextTok, diag::ext_pp_include_next_directive);
+
+ // #include_next is like #include, except that we start searching after
+ // the current found directory. If we can't do this, issue a
+ // diagnostic.
+ const DirectoryLookup *Lookup = CurDirLookup;
+ const FileEntry *LookupFromFile = nullptr;
+ if (isInPrimaryFile()) {
+ Lookup = nullptr;
+ Diag(IncludeNextTok, diag::pp_include_next_in_primary);
+ } else if (CurSubmodule) {
+ // Start looking up in the directory *after* the one in which the current
+ // file would be found, if any.
+ assert(CurPPLexer && "#include_next directive in macro?");
+ LookupFromFile = CurPPLexer->getFileEntry();
+ Lookup = nullptr;
+ } else if (!Lookup) {
+ Diag(IncludeNextTok, diag::pp_include_next_absolute_path);
+ } else {
+ // Start looking up in the next directory.
+ ++Lookup;
+ }
+
+ return HandleIncludeDirective(HashLoc, IncludeNextTok, Lookup,
+ LookupFromFile);
+}
+
+/// HandleMicrosoftImportDirective - Implements \#import for Microsoft Mode
+void Preprocessor::HandleMicrosoftImportDirective(Token &Tok) {
+ // The Microsoft #import directive takes a type library and generates header
+ // files from it, and includes those. This is beyond the scope of what clang
+ // does, so we ignore it and error out. However, #import can optionally have
+ // trailing attributes that span multiple lines. We're going to eat those
+ // so we can continue processing from there.
+ Diag(Tok, diag::err_pp_import_directive_ms );
+
+ // Read tokens until we get to the end of the directive. Note that the
+ // directive can be split over multiple lines using the backslash character.
+ DiscardUntilEndOfDirective();
+}
+
+/// HandleImportDirective - Implements \#import.
+///
+void Preprocessor::HandleImportDirective(SourceLocation HashLoc,
+ Token &ImportTok) {
+ if (!LangOpts.ObjC1) { // #import is standard for ObjC.
+ if (LangOpts.MSVCCompat)
+ return HandleMicrosoftImportDirective(ImportTok);
+ Diag(ImportTok, diag::ext_pp_import_directive);
+ }
+ return HandleIncludeDirective(HashLoc, ImportTok, nullptr, nullptr, true);
+}
+
+/// HandleIncludeMacrosDirective - The -imacros command line option turns into a
+/// pseudo directive in the predefines buffer. This handles it by sucking all
+/// tokens through the preprocessor and discarding them (only keeping the side
+/// effects on the preprocessor).
+void Preprocessor::HandleIncludeMacrosDirective(SourceLocation HashLoc,
+ Token &IncludeMacrosTok) {
+ // This directive should only occur in the predefines buffer. If not, emit an
+ // error and reject it.
+ SourceLocation Loc = IncludeMacrosTok.getLocation();
+ if (strcmp(SourceMgr.getBufferName(Loc), "<built-in>") != 0) {
+ Diag(IncludeMacrosTok.getLocation(),
+ diag::pp_include_macros_out_of_predefines);
+ DiscardUntilEndOfDirective();
+ return;
+ }
+
+ // Treat this as a normal #include for checking purposes. If this is
+ // successful, it will push a new lexer onto the include stack.
+ HandleIncludeDirective(HashLoc, IncludeMacrosTok);
+
+ Token TmpTok;
+ do {
+ Lex(TmpTok);
+ assert(TmpTok.isNot(tok::eof) && "Didn't find end of -imacros!");
+ } while (TmpTok.isNot(tok::hashhash));
+}
+
+//===----------------------------------------------------------------------===//
+// Preprocessor Macro Directive Handling.
+//===----------------------------------------------------------------------===//
+
+/// ReadMacroDefinitionArgList - The ( starting an argument list of a macro
+/// definition has just been read. Lex the rest of the arguments and the
+/// closing ), updating MI with what we learn. Return true if an error occurs
+/// parsing the arg list.
+bool Preprocessor::ReadMacroDefinitionArgList(MacroInfo *MI, Token &Tok) {
+ SmallVector<IdentifierInfo*, 32> Arguments;
+
+ while (1) {
+ LexUnexpandedToken(Tok);
+ switch (Tok.getKind()) {
+ case tok::r_paren:
+ // Found the end of the argument list.
+ if (Arguments.empty()) // #define FOO()
+ return false;
+ // Otherwise we have #define FOO(A,)
+ Diag(Tok, diag::err_pp_expected_ident_in_arg_list);
+ return true;
+ case tok::ellipsis: // #define X(... -> C99 varargs
+ if (!LangOpts.C99)
+ Diag(Tok, LangOpts.CPlusPlus11 ?
+ diag::warn_cxx98_compat_variadic_macro :
+ diag::ext_variadic_macro);
+
+ // OpenCL v1.2 s6.9.e: variadic macros are not supported.
+ if (LangOpts.OpenCL) {
+ Diag(Tok, diag::err_pp_opencl_variadic_macros);
+ return true;
+ }
+
+ // Lex the token after the identifier.
+ LexUnexpandedToken(Tok);
+ if (Tok.isNot(tok::r_paren)) {
+ Diag(Tok, diag::err_pp_missing_rparen_in_macro_def);
+ return true;
+ }
+ // Add the __VA_ARGS__ identifier as an argument.
+ Arguments.push_back(Ident__VA_ARGS__);
+ MI->setIsC99Varargs();
+ MI->setArgumentList(&Arguments[0], Arguments.size(), BP);
+ return false;
+ case tok::eod: // #define X(
+ Diag(Tok, diag::err_pp_missing_rparen_in_macro_def);
+ return true;
+ default:
+ // Handle keywords and identifiers here to accept things like
+ // #define Foo(for) for.
+ IdentifierInfo *II = Tok.getIdentifierInfo();
+ if (!II) {
+ // #define X(1
+ Diag(Tok, diag::err_pp_invalid_tok_in_arg_list);
+ return true;
+ }
+
+ // If this is already used as an argument, it is used multiple times (e.g.
+ // #define X(A,A.
+ if (std::find(Arguments.begin(), Arguments.end(), II) !=
+ Arguments.end()) { // C99 6.10.3p6
+ Diag(Tok, diag::err_pp_duplicate_name_in_arg_list) << II;
+ return true;
+ }
+
+ // Add the argument to the macro info.
+ Arguments.push_back(II);
+
+ // Lex the token after the identifier.
+ LexUnexpandedToken(Tok);
+
+ switch (Tok.getKind()) {
+ default: // #define X(A B
+ Diag(Tok, diag::err_pp_expected_comma_in_arg_list);
+ return true;
+ case tok::r_paren: // #define X(A)
+ MI->setArgumentList(&Arguments[0], Arguments.size(), BP);
+ return false;
+ case tok::comma: // #define X(A,
+ break;
+ case tok::ellipsis: // #define X(A... -> GCC extension
+ // Diagnose extension.
+ Diag(Tok, diag::ext_named_variadic_macro);
+
+ // Lex the token after the identifier.
+ LexUnexpandedToken(Tok);
+ if (Tok.isNot(tok::r_paren)) {
+ Diag(Tok, diag::err_pp_missing_rparen_in_macro_def);
+ return true;
+ }
+
+ MI->setIsGNUVarargs();
+ MI->setArgumentList(&Arguments[0], Arguments.size(), BP);
+ return false;
+ }
+ }
+ }
+}
+
+static bool isConfigurationPattern(Token &MacroName, MacroInfo *MI,
+ const LangOptions &LOptions) {
+ if (MI->getNumTokens() == 1) {
+ const Token &Value = MI->getReplacementToken(0);
+
+ // Macro that is identity, like '#define inline inline' is a valid pattern.
+ if (MacroName.getKind() == Value.getKind())
+ return true;
+
+ // Macro that maps a keyword to the same keyword decorated with leading/
+ // trailing underscores is a valid pattern:
+ // #define inline __inline
+ // #define inline __inline__
+ // #define inline _inline (in MS compatibility mode)
+ StringRef MacroText = MacroName.getIdentifierInfo()->getName();
+ if (IdentifierInfo *II = Value.getIdentifierInfo()) {
+ if (!II->isKeyword(LOptions))
+ return false;
+ StringRef ValueText = II->getName();
+ StringRef TrimmedValue = ValueText;
+ if (!ValueText.startswith("__")) {
+ if (ValueText.startswith("_"))
+ TrimmedValue = TrimmedValue.drop_front(1);
+ else
+ return false;
+ } else {
+ TrimmedValue = TrimmedValue.drop_front(2);
+ if (TrimmedValue.endswith("__"))
+ TrimmedValue = TrimmedValue.drop_back(2);
+ }
+ return TrimmedValue.equals(MacroText);
+ } else {
+ return false;
+ }
+ }
+
+ // #define inline
+ if ((MacroName.is(tok::kw_extern) || MacroName.is(tok::kw_inline) ||
+ MacroName.is(tok::kw_static) || MacroName.is(tok::kw_const)) &&
+ MI->getNumTokens() == 0) {
+ return true;
+ }
+
+ return false;
+}
+
+/// HandleDefineDirective - Implements \#define. This consumes the entire macro
+/// line then lets the caller lex the next real token.
+void Preprocessor::HandleDefineDirective(Token &DefineTok,
+ bool ImmediatelyAfterHeaderGuard) {
+ ++NumDefined;
+
+ Token MacroNameTok;
+ bool MacroShadowsKeyword;
+ ReadMacroName(MacroNameTok, MU_Define, &MacroShadowsKeyword);
+
+ // Error reading macro name? If so, diagnostic already issued.
+ if (MacroNameTok.is(tok::eod))
+ return;
+
+ Token LastTok = MacroNameTok;
+
+ // If we are supposed to keep comments in #defines, reenable comment saving
+ // mode.
+ if (CurLexer) CurLexer->SetCommentRetentionState(KeepMacroComments);
+
+ // Create the new macro.
+ MacroInfo *MI = AllocateMacroInfo(MacroNameTok.getLocation());
+
+ Token Tok;
+ LexUnexpandedToken(Tok);
+
+ // If this is a function-like macro definition, parse the argument list,
+ // marking each of the identifiers as being used as macro arguments. Also,
+ // check other constraints on the first token of the macro body.
+ if (Tok.is(tok::eod)) {
+ if (ImmediatelyAfterHeaderGuard) {
+ // Save this macro information since it may part of a header guard.
+ CurPPLexer->MIOpt.SetDefinedMacro(MacroNameTok.getIdentifierInfo(),
+ MacroNameTok.getLocation());
+ }
+ // If there is no body to this macro, we have no special handling here.
+ } else if (Tok.hasLeadingSpace()) {
+ // This is a normal token with leading space. Clear the leading space
+ // marker on the first token to get proper expansion.
+ Tok.clearFlag(Token::LeadingSpace);
+ } else if (Tok.is(tok::l_paren)) {
+ // This is a function-like macro definition. Read the argument list.
+ MI->setIsFunctionLike();
+ if (ReadMacroDefinitionArgList(MI, LastTok)) {
+ // Throw away the rest of the line.
+ if (CurPPLexer->ParsingPreprocessorDirective)
+ DiscardUntilEndOfDirective();
+ return;
+ }
+
+ // If this is a definition of a variadic C99 function-like macro, not using
+ // the GNU named varargs extension, enabled __VA_ARGS__.
+
+ // "Poison" __VA_ARGS__, which can only appear in the expansion of a macro.
+ // This gets unpoisoned where it is allowed.
+ assert(Ident__VA_ARGS__->isPoisoned() && "__VA_ARGS__ should be poisoned!");
+ if (MI->isC99Varargs())
+ Ident__VA_ARGS__->setIsPoisoned(false);
+
+ // Read the first token after the arg list for down below.
+ LexUnexpandedToken(Tok);
+ } else if (LangOpts.C99 || LangOpts.CPlusPlus11) {
+ // C99 requires whitespace between the macro definition and the body. Emit
+ // a diagnostic for something like "#define X+".
+ Diag(Tok, diag::ext_c99_whitespace_required_after_macro_name);
+ } else {
+ // C90 6.8 TC1 says: "In the definition of an object-like macro, if the
+ // first character of a replacement list is not a character required by
+ // subclause 5.2.1, then there shall be white-space separation between the
+ // identifier and the replacement list.". 5.2.1 lists this set:
+ // "A-Za-z0-9!"#%&'()*+,_./:;<=>?[\]^_{|}~" as well as whitespace, which
+ // is irrelevant here.
+ bool isInvalid = false;
+ if (Tok.is(tok::at)) // @ is not in the list above.
+ isInvalid = true;
+ else if (Tok.is(tok::unknown)) {
+ // If we have an unknown token, it is something strange like "`". Since
+ // all of valid characters would have lexed into a single character
+ // token of some sort, we know this is not a valid case.
+ isInvalid = true;
+ }
+ if (isInvalid)
+ Diag(Tok, diag::ext_missing_whitespace_after_macro_name);
+ else
+ Diag(Tok, diag::warn_missing_whitespace_after_macro_name);
+ }
+
+ if (!Tok.is(tok::eod))
+ LastTok = Tok;
+
+ // Read the rest of the macro body.
+ if (MI->isObjectLike()) {
+ // Object-like macros are very simple, just read their body.
+ while (Tok.isNot(tok::eod)) {
+ LastTok = Tok;
+ MI->AddTokenToBody(Tok);
+ // Get the next token of the macro.
+ LexUnexpandedToken(Tok);
+ }
+
+ } else {
+ // Otherwise, read the body of a function-like macro. While we are at it,
+ // check C99 6.10.3.2p1: ensure that # operators are followed by macro
+ // parameters in function-like macro expansions.
+ while (Tok.isNot(tok::eod)) {
+ LastTok = Tok;
+
+ if (Tok.isNot(tok::hash) && Tok.isNot(tok::hashhash)) {
+ MI->AddTokenToBody(Tok);
+
+ // Get the next token of the macro.
+ LexUnexpandedToken(Tok);
+ continue;
+ }
+
+ // If we're in -traditional mode, then we should ignore stringification
+ // and token pasting. Mark the tokens as unknown so as not to confuse
+ // things.
+ if (getLangOpts().TraditionalCPP) {
+ Tok.setKind(tok::unknown);
+ MI->AddTokenToBody(Tok);
+
+ // Get the next token of the macro.
+ LexUnexpandedToken(Tok);
+ continue;
+ }
+
+ if (Tok.is(tok::hashhash)) {
+
+ // If we see token pasting, check if it looks like the gcc comma
+ // pasting extension. We'll use this information to suppress
+ // diagnostics later on.
+
+ // Get the next token of the macro.
+ LexUnexpandedToken(Tok);
+
+ if (Tok.is(tok::eod)) {
+ MI->AddTokenToBody(LastTok);
+ break;
+ }
+
+ unsigned NumTokens = MI->getNumTokens();
+ if (NumTokens && Tok.getIdentifierInfo() == Ident__VA_ARGS__ &&
+ MI->getReplacementToken(NumTokens-1).is(tok::comma))
+ MI->setHasCommaPasting();
+
+ // Things look ok, add the '##' token to the macro.
+ MI->AddTokenToBody(LastTok);
+ continue;
+ }
+
+ // Get the next token of the macro.
+ LexUnexpandedToken(Tok);
+
+ // Check for a valid macro arg identifier.
+ if (Tok.getIdentifierInfo() == nullptr ||
+ MI->getArgumentNum(Tok.getIdentifierInfo()) == -1) {
+
+ // If this is assembler-with-cpp mode, we accept random gibberish after
+ // the '#' because '#' is often a comment character. However, change
+ // the kind of the token to tok::unknown so that the preprocessor isn't
+ // confused.
+ if (getLangOpts().AsmPreprocessor && Tok.isNot(tok::eod)) {
+ LastTok.setKind(tok::unknown);
+ MI->AddTokenToBody(LastTok);
+ continue;
+ } else {
+ Diag(Tok, diag::err_pp_stringize_not_parameter);
+
+ // Disable __VA_ARGS__ again.
+ Ident__VA_ARGS__->setIsPoisoned(true);
+ return;
+ }
+ }
+
+ // Things look ok, add the '#' and param name tokens to the macro.
+ MI->AddTokenToBody(LastTok);
+ MI->AddTokenToBody(Tok);
+ LastTok = Tok;
+
+ // Get the next token of the macro.
+ LexUnexpandedToken(Tok);
+ }
+ }
+
+ if (MacroShadowsKeyword &&
+ !isConfigurationPattern(MacroNameTok, MI, getLangOpts())) {
+ Diag(MacroNameTok, diag::warn_pp_macro_hides_keyword);
+ }
+
+ // Disable __VA_ARGS__ again.
+ Ident__VA_ARGS__->setIsPoisoned(true);
+
+ // Check that there is no paste (##) operator at the beginning or end of the
+ // replacement list.
+ unsigned NumTokens = MI->getNumTokens();
+ if (NumTokens != 0) {
+ if (MI->getReplacementToken(0).is(tok::hashhash)) {
+ Diag(MI->getReplacementToken(0), diag::err_paste_at_start);
+ return;
+ }
+ if (MI->getReplacementToken(NumTokens-1).is(tok::hashhash)) {
+ Diag(MI->getReplacementToken(NumTokens-1), diag::err_paste_at_end);
+ return;
+ }
+ }
+
+ MI->setDefinitionEndLoc(LastTok.getLocation());
+
+ // Finally, if this identifier already had a macro defined for it, verify that
+ // the macro bodies are identical, and issue diagnostics if they are not.
+ if (const MacroInfo *OtherMI=getMacroInfo(MacroNameTok.getIdentifierInfo())) {
+ // It is very common for system headers to have tons of macro redefinitions
+ // and for warnings to be disabled in system headers. If this is the case,
+ // then don't bother calling MacroInfo::isIdenticalTo.
+ if (!getDiagnostics().getSuppressSystemWarnings() ||
+ !SourceMgr.isInSystemHeader(DefineTok.getLocation())) {
+ if (!OtherMI->isUsed() && OtherMI->isWarnIfUnused())
+ Diag(OtherMI->getDefinitionLoc(), diag::pp_macro_not_used);
+
+ // Warn if defining "__LINE__" and other builtins, per C99 6.10.8/4 and
+ // C++ [cpp.predefined]p4, but allow it as an extension.
+ if (OtherMI->isBuiltinMacro())
+ Diag(MacroNameTok, diag::ext_pp_redef_builtin_macro);
+ // Macros must be identical. This means all tokens and whitespace
+ // separation must be the same. C99 6.10.3p2.
+ else if (!OtherMI->isAllowRedefinitionsWithoutWarning() &&
+ !MI->isIdenticalTo(*OtherMI, *this, /*Syntactic=*/LangOpts.MicrosoftExt)) {
+ Diag(MI->getDefinitionLoc(), diag::ext_pp_macro_redef)
+ << MacroNameTok.getIdentifierInfo();
+ Diag(OtherMI->getDefinitionLoc(), diag::note_previous_definition);
+ }
+ }
+ if (OtherMI->isWarnIfUnused())
+ WarnUnusedMacroLocs.erase(OtherMI->getDefinitionLoc());
+ }
+
+ DefMacroDirective *MD =
+ appendDefMacroDirective(MacroNameTok.getIdentifierInfo(), MI);
+
+ assert(!MI->isUsed());
+ // If we need warning for not using the macro, add its location in the
+ // warn-because-unused-macro set. If it gets used it will be removed from set.
+ if (getSourceManager().isInMainFile(MI->getDefinitionLoc()) &&
+ !Diags->isIgnored(diag::pp_macro_not_used, MI->getDefinitionLoc())) {
+ MI->setIsWarnIfUnused(true);
+ WarnUnusedMacroLocs.insert(MI->getDefinitionLoc());
+ }
+
+ // If the callbacks want to know, tell them about the macro definition.
+ if (Callbacks)
+ Callbacks->MacroDefined(MacroNameTok, MD);
+}
+
+/// HandleUndefDirective - Implements \#undef.
+///
+void Preprocessor::HandleUndefDirective(Token &UndefTok) {
+ ++NumUndefined;
+
+ Token MacroNameTok;
+ ReadMacroName(MacroNameTok, MU_Undef);
+
+ // Error reading macro name? If so, diagnostic already issued.
+ if (MacroNameTok.is(tok::eod))
+ return;
+
+ // Check to see if this is the last token on the #undef line.
+ CheckEndOfDirective("undef");
+
+ // Okay, we have a valid identifier to undef.
+ auto *II = MacroNameTok.getIdentifierInfo();
+ auto MD = getMacroDefinition(II);
+
+ // If the callbacks want to know, tell them about the macro #undef.
+ // Note: no matter if the macro was defined or not.
+ if (Callbacks)
+ Callbacks->MacroUndefined(MacroNameTok, MD);
+
+ // If the macro is not defined, this is a noop undef, just return.
+ const MacroInfo *MI = MD.getMacroInfo();
+ if (!MI)
+ return;
+
+ if (!MI->isUsed() && MI->isWarnIfUnused())
+ Diag(MI->getDefinitionLoc(), diag::pp_macro_not_used);
+
+ if (MI->isWarnIfUnused())
+ WarnUnusedMacroLocs.erase(MI->getDefinitionLoc());
+
+ appendMacroDirective(MacroNameTok.getIdentifierInfo(),
+ AllocateUndefMacroDirective(MacroNameTok.getLocation()));
+}
+
+
+//===----------------------------------------------------------------------===//
+// Preprocessor Conditional Directive Handling.
+//===----------------------------------------------------------------------===//
+
+/// HandleIfdefDirective - Implements the \#ifdef/\#ifndef directive. isIfndef
+/// is true when this is a \#ifndef directive. ReadAnyTokensBeforeDirective is
+/// true if any tokens have been returned or pp-directives activated before this
+/// \#ifndef has been lexed.
+///
+void Preprocessor::HandleIfdefDirective(Token &Result, bool isIfndef,
+ bool ReadAnyTokensBeforeDirective) {
+ ++NumIf;
+ Token DirectiveTok = Result;
+
+ Token MacroNameTok;
+ ReadMacroName(MacroNameTok);
+
+ // Error reading macro name? If so, diagnostic already issued.
+ if (MacroNameTok.is(tok::eod)) {
+ // Skip code until we get to #endif. This helps with recovery by not
+ // emitting an error when the #endif is reached.
+ SkipExcludedConditionalBlock(DirectiveTok.getLocation(),
+ /*Foundnonskip*/false, /*FoundElse*/false);
+ return;
+ }
+
+ // Check to see if this is the last token on the #if[n]def line.
+ CheckEndOfDirective(isIfndef ? "ifndef" : "ifdef");
+
+ IdentifierInfo *MII = MacroNameTok.getIdentifierInfo();
+ auto MD = getMacroDefinition(MII);
+ MacroInfo *MI = MD.getMacroInfo();
+
+ if (CurPPLexer->getConditionalStackDepth() == 0) {
+ // If the start of a top-level #ifdef and if the macro is not defined,
+ // inform MIOpt that this might be the start of a proper include guard.
+ // Otherwise it is some other form of unknown conditional which we can't
+ // handle.
+ if (!ReadAnyTokensBeforeDirective && !MI) {
+ assert(isIfndef && "#ifdef shouldn't reach here");
+ CurPPLexer->MIOpt.EnterTopLevelIfndef(MII, MacroNameTok.getLocation());
+ } else
+ CurPPLexer->MIOpt.EnterTopLevelConditional();
+ }
+
+ // If there is a macro, process it.
+ if (MI) // Mark it used.
+ markMacroAsUsed(MI);
+
+ if (Callbacks) {
+ if (isIfndef)
+ Callbacks->Ifndef(DirectiveTok.getLocation(), MacroNameTok, MD);
+ else
+ Callbacks->Ifdef(DirectiveTok.getLocation(), MacroNameTok, MD);
+ }
+
+ // Should we include the stuff contained by this directive?
+ if (!MI == isIfndef) {
+ // Yes, remember that we are inside a conditional, then lex the next token.
+ CurPPLexer->pushConditionalLevel(DirectiveTok.getLocation(),
+ /*wasskip*/false, /*foundnonskip*/true,
+ /*foundelse*/false);
+ } else {
+ // No, skip the contents of this block.
+ SkipExcludedConditionalBlock(DirectiveTok.getLocation(),
+ /*Foundnonskip*/false,
+ /*FoundElse*/false);
+ }
+}
+
+/// HandleIfDirective - Implements the \#if directive.
+///
+void Preprocessor::HandleIfDirective(Token &IfToken,
+ bool ReadAnyTokensBeforeDirective) {
+ ++NumIf;
+
+ // Parse and evaluate the conditional expression.
+ IdentifierInfo *IfNDefMacro = nullptr;
+ const SourceLocation ConditionalBegin = CurPPLexer->getSourceLocation();
+ const bool ConditionalTrue = EvaluateDirectiveExpression(IfNDefMacro);
+ const SourceLocation ConditionalEnd = CurPPLexer->getSourceLocation();
+
+ // If this condition is equivalent to #ifndef X, and if this is the first
+ // directive seen, handle it for the multiple-include optimization.
+ if (CurPPLexer->getConditionalStackDepth() == 0) {
+ if (!ReadAnyTokensBeforeDirective && IfNDefMacro && ConditionalTrue)
+ // FIXME: Pass in the location of the macro name, not the 'if' token.
+ CurPPLexer->MIOpt.EnterTopLevelIfndef(IfNDefMacro, IfToken.getLocation());
+ else
+ CurPPLexer->MIOpt.EnterTopLevelConditional();
+ }
+
+ if (Callbacks)
+ Callbacks->If(IfToken.getLocation(),
+ SourceRange(ConditionalBegin, ConditionalEnd),
+ (ConditionalTrue ? PPCallbacks::CVK_True : PPCallbacks::CVK_False));
+
+ // Should we include the stuff contained by this directive?
+ if (ConditionalTrue) {
+ // Yes, remember that we are inside a conditional, then lex the next token.
+ CurPPLexer->pushConditionalLevel(IfToken.getLocation(), /*wasskip*/false,
+ /*foundnonskip*/true, /*foundelse*/false);
+ } else {
+ // No, skip the contents of this block.
+ SkipExcludedConditionalBlock(IfToken.getLocation(), /*Foundnonskip*/false,
+ /*FoundElse*/false);
+ }
+}
+
+/// HandleEndifDirective - Implements the \#endif directive.
+///
+void Preprocessor::HandleEndifDirective(Token &EndifToken) {
+ ++NumEndif;
+
+ // Check that this is the whole directive.
+ CheckEndOfDirective("endif");
+
+ PPConditionalInfo CondInfo;
+ if (CurPPLexer->popConditionalLevel(CondInfo)) {
+ // No conditionals on the stack: this is an #endif without an #if.
+ Diag(EndifToken, diag::err_pp_endif_without_if);
+ return;
+ }
+
+ // If this the end of a top-level #endif, inform MIOpt.
+ if (CurPPLexer->getConditionalStackDepth() == 0)
+ CurPPLexer->MIOpt.ExitTopLevelConditional();
+
+ assert(!CondInfo.WasSkipping && !CurPPLexer->LexingRawMode &&
+ "This code should only be reachable in the non-skipping case!");
+
+ if (Callbacks)
+ Callbacks->Endif(EndifToken.getLocation(), CondInfo.IfLoc);
+}
+
+/// HandleElseDirective - Implements the \#else directive.
+///
+void Preprocessor::HandleElseDirective(Token &Result) {
+ ++NumElse;
+
+ // #else directive in a non-skipping conditional... start skipping.
+ CheckEndOfDirective("else");
+
+ PPConditionalInfo CI;
+ if (CurPPLexer->popConditionalLevel(CI)) {
+ Diag(Result, diag::pp_err_else_without_if);
+ return;
+ }
+
+ // If this is a top-level #else, inform the MIOpt.
+ if (CurPPLexer->getConditionalStackDepth() == 0)
+ CurPPLexer->MIOpt.EnterTopLevelConditional();
+
+ // If this is a #else with a #else before it, report the error.
+ if (CI.FoundElse) Diag(Result, diag::pp_err_else_after_else);
+
+ if (Callbacks)
+ Callbacks->Else(Result.getLocation(), CI.IfLoc);
+
+ // Finally, skip the rest of the contents of this block.
+ SkipExcludedConditionalBlock(CI.IfLoc, /*Foundnonskip*/true,
+ /*FoundElse*/true, Result.getLocation());
+}
+
+/// HandleElifDirective - Implements the \#elif directive.
+///
+void Preprocessor::HandleElifDirective(Token &ElifToken) {
+ ++NumElse;
+
+ // #elif directive in a non-skipping conditional... start skipping.
+ // We don't care what the condition is, because we will always skip it (since
+ // the block immediately before it was included).
+ const SourceLocation ConditionalBegin = CurPPLexer->getSourceLocation();
+ DiscardUntilEndOfDirective();
+ const SourceLocation ConditionalEnd = CurPPLexer->getSourceLocation();
+
+ PPConditionalInfo CI;
+ if (CurPPLexer->popConditionalLevel(CI)) {
+ Diag(ElifToken, diag::pp_err_elif_without_if);
+ return;
+ }
+
+ // If this is a top-level #elif, inform the MIOpt.
+ if (CurPPLexer->getConditionalStackDepth() == 0)
+ CurPPLexer->MIOpt.EnterTopLevelConditional();
+
+ // If this is a #elif with a #else before it, report the error.
+ if (CI.FoundElse) Diag(ElifToken, diag::pp_err_elif_after_else);
+
+ if (Callbacks)
+ Callbacks->Elif(ElifToken.getLocation(),
+ SourceRange(ConditionalBegin, ConditionalEnd),
+ PPCallbacks::CVK_NotEvaluated, CI.IfLoc);
+
+ // Finally, skip the rest of the contents of this block.
+ SkipExcludedConditionalBlock(CI.IfLoc, /*Foundnonskip*/true,
+ /*FoundElse*/CI.FoundElse,
+ ElifToken.getLocation());
+}
diff --git a/contrib/llvm/tools/clang/lib/Lex/PPExpressions.cpp b/contrib/llvm/tools/clang/lib/Lex/PPExpressions.cpp
new file mode 100644
index 0000000..4451302
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Lex/PPExpressions.cpp
@@ -0,0 +1,798 @@
+//===--- PPExpressions.cpp - Preprocessor Expression Evaluation -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Preprocessor::EvaluateDirectiveExpression method,
+// which parses and evaluates integer constant expressions for #if directives.
+//
+//===----------------------------------------------------------------------===//
+//
+// FIXME: implement testing for #assert's.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Lex/CodeCompletionHandler.h"
+#include "clang/Lex/LexDiagnostic.h"
+#include "clang/Lex/LiteralSupport.h"
+#include "clang/Lex/MacroInfo.h"
+#include "llvm/ADT/APSInt.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/SaveAndRestore.h"
+using namespace clang;
+
+namespace {
+
+/// PPValue - Represents the value of a subexpression of a preprocessor
+/// conditional and the source range covered by it.
+class PPValue {
+ SourceRange Range;
+public:
+ llvm::APSInt Val;
+
+ // Default ctor - Construct an 'invalid' PPValue.
+ PPValue(unsigned BitWidth) : Val(BitWidth) {}
+
+ unsigned getBitWidth() const { return Val.getBitWidth(); }
+ bool isUnsigned() const { return Val.isUnsigned(); }
+
+ const SourceRange &getRange() const { return Range; }
+
+ void setRange(SourceLocation L) { Range.setBegin(L); Range.setEnd(L); }
+ void setRange(SourceLocation B, SourceLocation E) {
+ Range.setBegin(B); Range.setEnd(E);
+ }
+ void setBegin(SourceLocation L) { Range.setBegin(L); }
+ void setEnd(SourceLocation L) { Range.setEnd(L); }
+};
+
+}
+
+static bool EvaluateDirectiveSubExpr(PPValue &LHS, unsigned MinPrec,
+ Token &PeekTok, bool ValueLive,
+ Preprocessor &PP);
+
+/// DefinedTracker - This struct is used while parsing expressions to keep track
+/// of whether !defined(X) has been seen.
+///
+/// With this simple scheme, we handle the basic forms:
+/// !defined(X) and !defined X
+/// but we also trivially handle (silly) stuff like:
+/// !!!defined(X) and +!defined(X) and !+!+!defined(X) and !(defined(X)).
+struct DefinedTracker {
+ /// Each time a Value is evaluated, it returns information about whether the
+ /// parsed value is of the form defined(X), !defined(X) or is something else.
+ enum TrackerState {
+ DefinedMacro, // defined(X)
+ NotDefinedMacro, // !defined(X)
+ Unknown // Something else.
+ } State;
+ /// TheMacro - When the state is DefinedMacro or NotDefinedMacro, this
+ /// indicates the macro that was checked.
+ IdentifierInfo *TheMacro;
+};
+
+/// EvaluateDefined - Process a 'defined(sym)' expression.
+static bool EvaluateDefined(PPValue &Result, Token &PeekTok, DefinedTracker &DT,
+ bool ValueLive, Preprocessor &PP) {
+ SourceLocation beginLoc(PeekTok.getLocation());
+ Result.setBegin(beginLoc);
+
+ // Get the next token, don't expand it.
+ PP.LexUnexpandedNonComment(PeekTok);
+
+ // Two options, it can either be a pp-identifier or a (.
+ SourceLocation LParenLoc;
+ if (PeekTok.is(tok::l_paren)) {
+ // Found a paren, remember we saw it and skip it.
+ LParenLoc = PeekTok.getLocation();
+ PP.LexUnexpandedNonComment(PeekTok);
+ }
+
+ if (PeekTok.is(tok::code_completion)) {
+ if (PP.getCodeCompletionHandler())
+ PP.getCodeCompletionHandler()->CodeCompleteMacroName(false);
+ PP.setCodeCompletionReached();
+ PP.LexUnexpandedNonComment(PeekTok);
+ }
+
+ // If we don't have a pp-identifier now, this is an error.
+ if (PP.CheckMacroName(PeekTok, MU_Other))
+ return true;
+
+ // Otherwise, we got an identifier, is it defined to something?
+ IdentifierInfo *II = PeekTok.getIdentifierInfo();
+ MacroDefinition Macro = PP.getMacroDefinition(II);
+ Result.Val = !!Macro;
+ Result.Val.setIsUnsigned(false); // Result is signed intmax_t.
+
+ // If there is a macro, mark it used.
+ if (Result.Val != 0 && ValueLive)
+ PP.markMacroAsUsed(Macro.getMacroInfo());
+
+ // Save macro token for callback.
+ Token macroToken(PeekTok);
+
+ // If we are in parens, ensure we have a trailing ).
+ if (LParenLoc.isValid()) {
+ // Consume identifier.
+ Result.setEnd(PeekTok.getLocation());
+ PP.LexUnexpandedNonComment(PeekTok);
+
+ if (PeekTok.isNot(tok::r_paren)) {
+ PP.Diag(PeekTok.getLocation(), diag::err_pp_expected_after)
+ << "'defined'" << tok::r_paren;
+ PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren;
+ return true;
+ }
+ // Consume the ).
+ Result.setEnd(PeekTok.getLocation());
+ PP.LexNonComment(PeekTok);
+ } else {
+ // Consume identifier.
+ Result.setEnd(PeekTok.getLocation());
+ PP.LexNonComment(PeekTok);
+ }
+
+ // Invoke the 'defined' callback.
+ if (PPCallbacks *Callbacks = PP.getPPCallbacks()) {
+ Callbacks->Defined(macroToken, Macro,
+ SourceRange(beginLoc, PeekTok.getLocation()));
+ }
+
+ // Success, remember that we saw defined(X).
+ DT.State = DefinedTracker::DefinedMacro;
+ DT.TheMacro = II;
+ return false;
+}
+
+/// EvaluateValue - Evaluate the token PeekTok (and any others needed) and
+/// return the computed value in Result. Return true if there was an error
+/// parsing. This function also returns information about the form of the
+/// expression in DT. See above for information on what DT means.
+///
+/// If ValueLive is false, then this value is being evaluated in a context where
+/// the result is not used. As such, avoid diagnostics that relate to
+/// evaluation.
+static bool EvaluateValue(PPValue &Result, Token &PeekTok, DefinedTracker &DT,
+ bool ValueLive, Preprocessor &PP) {
+ DT.State = DefinedTracker::Unknown;
+
+ if (PeekTok.is(tok::code_completion)) {
+ if (PP.getCodeCompletionHandler())
+ PP.getCodeCompletionHandler()->CodeCompletePreprocessorExpression();
+ PP.setCodeCompletionReached();
+ PP.LexNonComment(PeekTok);
+ }
+
+ // If this token's spelling is a pp-identifier, check to see if it is
+ // 'defined' or if it is a macro. Note that we check here because many
+ // keywords are pp-identifiers, so we can't check the kind.
+ if (IdentifierInfo *II = PeekTok.getIdentifierInfo()) {
+ // Handle "defined X" and "defined(X)".
+ if (II->isStr("defined"))
+ return(EvaluateDefined(Result, PeekTok, DT, ValueLive, PP));
+
+ // If this identifier isn't 'defined' or one of the special
+ // preprocessor keywords and it wasn't macro expanded, it turns
+ // into a simple 0, unless it is the C++ keyword "true", in which case it
+ // turns into "1".
+ if (ValueLive &&
+ II->getTokenID() != tok::kw_true &&
+ II->getTokenID() != tok::kw_false)
+ PP.Diag(PeekTok, diag::warn_pp_undef_identifier) << II;
+ Result.Val = II->getTokenID() == tok::kw_true;
+ Result.Val.setIsUnsigned(false); // "0" is signed intmax_t 0.
+ Result.setRange(PeekTok.getLocation());
+ PP.LexNonComment(PeekTok);
+ return false;
+ }
+
+ switch (PeekTok.getKind()) {
+ default: // Non-value token.
+ PP.Diag(PeekTok, diag::err_pp_expr_bad_token_start_expr);
+ return true;
+ case tok::eod:
+ case tok::r_paren:
+ // If there is no expression, report and exit.
+ PP.Diag(PeekTok, diag::err_pp_expected_value_in_expr);
+ return true;
+ case tok::numeric_constant: {
+ SmallString<64> IntegerBuffer;
+ bool NumberInvalid = false;
+ StringRef Spelling = PP.getSpelling(PeekTok, IntegerBuffer,
+ &NumberInvalid);
+ if (NumberInvalid)
+ return true; // a diagnostic was already reported
+
+ NumericLiteralParser Literal(Spelling, PeekTok.getLocation(), PP);
+ if (Literal.hadError)
+ return true; // a diagnostic was already reported.
+
+ if (Literal.isFloatingLiteral() || Literal.isImaginary) {
+ PP.Diag(PeekTok, diag::err_pp_illegal_floating_literal);
+ return true;
+ }
+ assert(Literal.isIntegerLiteral() && "Unknown ppnumber");
+
+ // Complain about, and drop, any ud-suffix.
+ if (Literal.hasUDSuffix())
+ PP.Diag(PeekTok, diag::err_pp_invalid_udl) << /*integer*/1;
+
+ // 'long long' is a C99 or C++11 feature.
+ if (!PP.getLangOpts().C99 && Literal.isLongLong) {
+ if (PP.getLangOpts().CPlusPlus)
+ PP.Diag(PeekTok,
+ PP.getLangOpts().CPlusPlus11 ?
+ diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
+ else
+ PP.Diag(PeekTok, diag::ext_c99_longlong);
+ }
+
+ // Parse the integer literal into Result.
+ if (Literal.GetIntegerValue(Result.Val)) {
+ // Overflow parsing integer literal.
+ if (ValueLive)
+ PP.Diag(PeekTok, diag::err_integer_literal_too_large)
+ << /* Unsigned */ 1;
+ Result.Val.setIsUnsigned(true);
+ } else {
+ // Set the signedness of the result to match whether there was a U suffix
+ // or not.
+ Result.Val.setIsUnsigned(Literal.isUnsigned);
+
+ // Detect overflow based on whether the value is signed. If signed
+ // and if the value is too large, emit a warning "integer constant is so
+ // large that it is unsigned" e.g. on 12345678901234567890 where intmax_t
+ // is 64-bits.
+ if (!Literal.isUnsigned && Result.Val.isNegative()) {
+ // Octal, hexadecimal, and binary literals are implicitly unsigned if
+ // the value does not fit into a signed integer type.
+ if (ValueLive && Literal.getRadix() == 10)
+ PP.Diag(PeekTok, diag::ext_integer_literal_too_large_for_signed);
+ Result.Val.setIsUnsigned(true);
+ }
+ }
+
+ // Consume the token.
+ Result.setRange(PeekTok.getLocation());
+ PP.LexNonComment(PeekTok);
+ return false;
+ }
+ case tok::char_constant: // 'x'
+ case tok::wide_char_constant: // L'x'
+ case tok::utf8_char_constant: // u8'x'
+ case tok::utf16_char_constant: // u'x'
+ case tok::utf32_char_constant: { // U'x'
+ // Complain about, and drop, any ud-suffix.
+ if (PeekTok.hasUDSuffix())
+ PP.Diag(PeekTok, diag::err_pp_invalid_udl) << /*character*/0;
+
+ SmallString<32> CharBuffer;
+ bool CharInvalid = false;
+ StringRef ThisTok = PP.getSpelling(PeekTok, CharBuffer, &CharInvalid);
+ if (CharInvalid)
+ return true;
+
+ CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(),
+ PeekTok.getLocation(), PP, PeekTok.getKind());
+ if (Literal.hadError())
+ return true; // A diagnostic was already emitted.
+
+ // Character literals are always int or wchar_t, expand to intmax_t.
+ const TargetInfo &TI = PP.getTargetInfo();
+ unsigned NumBits;
+ if (Literal.isMultiChar())
+ NumBits = TI.getIntWidth();
+ else if (Literal.isWide())
+ NumBits = TI.getWCharWidth();
+ else if (Literal.isUTF16())
+ NumBits = TI.getChar16Width();
+ else if (Literal.isUTF32())
+ NumBits = TI.getChar32Width();
+ else
+ NumBits = TI.getCharWidth();
+
+ // Set the width.
+ llvm::APSInt Val(NumBits);
+ // Set the value.
+ Val = Literal.getValue();
+ // Set the signedness. UTF-16 and UTF-32 are always unsigned
+ if (Literal.isWide())
+ Val.setIsUnsigned(!TargetInfo::isTypeSigned(TI.getWCharType()));
+ else if (!Literal.isUTF16() && !Literal.isUTF32())
+ Val.setIsUnsigned(!PP.getLangOpts().CharIsSigned);
+
+ if (Result.Val.getBitWidth() > Val.getBitWidth()) {
+ Result.Val = Val.extend(Result.Val.getBitWidth());
+ } else {
+ assert(Result.Val.getBitWidth() == Val.getBitWidth() &&
+ "intmax_t smaller than char/wchar_t?");
+ Result.Val = Val;
+ }
+
+ // Consume the token.
+ Result.setRange(PeekTok.getLocation());
+ PP.LexNonComment(PeekTok);
+ return false;
+ }
+ case tok::l_paren: {
+ SourceLocation Start = PeekTok.getLocation();
+ PP.LexNonComment(PeekTok); // Eat the (.
+ // Parse the value and if there are any binary operators involved, parse
+ // them.
+ if (EvaluateValue(Result, PeekTok, DT, ValueLive, PP)) return true;
+
+ // If this is a silly value like (X), which doesn't need parens, check for
+ // !(defined X).
+ if (PeekTok.is(tok::r_paren)) {
+ // Just use DT unmodified as our result.
+ } else {
+ // Otherwise, we have something like (x+y), and we consumed '(x'.
+ if (EvaluateDirectiveSubExpr(Result, 1, PeekTok, ValueLive, PP))
+ return true;
+
+ if (PeekTok.isNot(tok::r_paren)) {
+ PP.Diag(PeekTok.getLocation(), diag::err_pp_expected_rparen)
+ << Result.getRange();
+ PP.Diag(Start, diag::note_matching) << tok::l_paren;
+ return true;
+ }
+ DT.State = DefinedTracker::Unknown;
+ }
+ Result.setRange(Start, PeekTok.getLocation());
+ PP.LexNonComment(PeekTok); // Eat the ).
+ return false;
+ }
+ case tok::plus: {
+ SourceLocation Start = PeekTok.getLocation();
+ // Unary plus doesn't modify the value.
+ PP.LexNonComment(PeekTok);
+ if (EvaluateValue(Result, PeekTok, DT, ValueLive, PP)) return true;
+ Result.setBegin(Start);
+ return false;
+ }
+ case tok::minus: {
+ SourceLocation Loc = PeekTok.getLocation();
+ PP.LexNonComment(PeekTok);
+ if (EvaluateValue(Result, PeekTok, DT, ValueLive, PP)) return true;
+ Result.setBegin(Loc);
+
+ // C99 6.5.3.3p3: The sign of the result matches the sign of the operand.
+ Result.Val = -Result.Val;
+
+ // -MININT is the only thing that overflows. Unsigned never overflows.
+ bool Overflow = !Result.isUnsigned() && Result.Val.isMinSignedValue();
+
+ // If this operator is live and overflowed, report the issue.
+ if (Overflow && ValueLive)
+ PP.Diag(Loc, diag::warn_pp_expr_overflow) << Result.getRange();
+
+ DT.State = DefinedTracker::Unknown;
+ return false;
+ }
+
+ case tok::tilde: {
+ SourceLocation Start = PeekTok.getLocation();
+ PP.LexNonComment(PeekTok);
+ if (EvaluateValue(Result, PeekTok, DT, ValueLive, PP)) return true;
+ Result.setBegin(Start);
+
+ // C99 6.5.3.3p4: The sign of the result matches the sign of the operand.
+ Result.Val = ~Result.Val;
+ DT.State = DefinedTracker::Unknown;
+ return false;
+ }
+
+ case tok::exclaim: {
+ SourceLocation Start = PeekTok.getLocation();
+ PP.LexNonComment(PeekTok);
+ if (EvaluateValue(Result, PeekTok, DT, ValueLive, PP)) return true;
+ Result.setBegin(Start);
+ Result.Val = !Result.Val;
+ // C99 6.5.3.3p5: The sign of the result is 'int', aka it is signed.
+ Result.Val.setIsUnsigned(false);
+
+ if (DT.State == DefinedTracker::DefinedMacro)
+ DT.State = DefinedTracker::NotDefinedMacro;
+ else if (DT.State == DefinedTracker::NotDefinedMacro)
+ DT.State = DefinedTracker::DefinedMacro;
+ return false;
+ }
+
+ // FIXME: Handle #assert
+ }
+}
+
+
+
+/// getPrecedence - Return the precedence of the specified binary operator
+/// token. This returns:
+/// ~0 - Invalid token.
+/// 14 -> 3 - various operators.
+/// 0 - 'eod' or ')'
+static unsigned getPrecedence(tok::TokenKind Kind) {
+ switch (Kind) {
+ default: return ~0U;
+ case tok::percent:
+ case tok::slash:
+ case tok::star: return 14;
+ case tok::plus:
+ case tok::minus: return 13;
+ case tok::lessless:
+ case tok::greatergreater: return 12;
+ case tok::lessequal:
+ case tok::less:
+ case tok::greaterequal:
+ case tok::greater: return 11;
+ case tok::exclaimequal:
+ case tok::equalequal: return 10;
+ case tok::amp: return 9;
+ case tok::caret: return 8;
+ case tok::pipe: return 7;
+ case tok::ampamp: return 6;
+ case tok::pipepipe: return 5;
+ case tok::question: return 4;
+ case tok::comma: return 3;
+ case tok::colon: return 2;
+ case tok::r_paren: return 0;// Lowest priority, end of expr.
+ case tok::eod: return 0;// Lowest priority, end of directive.
+ }
+}
+
+
+/// EvaluateDirectiveSubExpr - Evaluate the subexpression whose first token is
+/// PeekTok, and whose precedence is PeekPrec. This returns the result in LHS.
+///
+/// If ValueLive is false, then this value is being evaluated in a context where
+/// the result is not used. As such, avoid diagnostics that relate to
+/// evaluation, such as division by zero warnings.
+static bool EvaluateDirectiveSubExpr(PPValue &LHS, unsigned MinPrec,
+ Token &PeekTok, bool ValueLive,
+ Preprocessor &PP) {
+ unsigned PeekPrec = getPrecedence(PeekTok.getKind());
+ // If this token isn't valid, report the error.
+ if (PeekPrec == ~0U) {
+ PP.Diag(PeekTok.getLocation(), diag::err_pp_expr_bad_token_binop)
+ << LHS.getRange();
+ return true;
+ }
+
+ while (1) {
+ // If this token has a lower precedence than we are allowed to parse, return
+ // it so that higher levels of the recursion can parse it.
+ if (PeekPrec < MinPrec)
+ return false;
+
+ tok::TokenKind Operator = PeekTok.getKind();
+
+ // If this is a short-circuiting operator, see if the RHS of the operator is
+ // dead. Note that this cannot just clobber ValueLive. Consider
+ // "0 && 1 ? 4 : 1 / 0", which is parsed as "(0 && 1) ? 4 : (1 / 0)". In
+ // this example, the RHS of the && being dead does not make the rest of the
+ // expr dead.
+ bool RHSIsLive;
+ if (Operator == tok::ampamp && LHS.Val == 0)
+ RHSIsLive = false; // RHS of "0 && x" is dead.
+ else if (Operator == tok::pipepipe && LHS.Val != 0)
+ RHSIsLive = false; // RHS of "1 || x" is dead.
+ else if (Operator == tok::question && LHS.Val == 0)
+ RHSIsLive = false; // RHS (x) of "0 ? x : y" is dead.
+ else
+ RHSIsLive = ValueLive;
+
+ // Consume the operator, remembering the operator's location for reporting.
+ SourceLocation OpLoc = PeekTok.getLocation();
+ PP.LexNonComment(PeekTok);
+
+ PPValue RHS(LHS.getBitWidth());
+ // Parse the RHS of the operator.
+ DefinedTracker DT;
+ if (EvaluateValue(RHS, PeekTok, DT, RHSIsLive, PP)) return true;
+
+ // Remember the precedence of this operator and get the precedence of the
+ // operator immediately to the right of the RHS.
+ unsigned ThisPrec = PeekPrec;
+ PeekPrec = getPrecedence(PeekTok.getKind());
+
+ // If this token isn't valid, report the error.
+ if (PeekPrec == ~0U) {
+ PP.Diag(PeekTok.getLocation(), diag::err_pp_expr_bad_token_binop)
+ << RHS.getRange();
+ return true;
+ }
+
+ // Decide whether to include the next binop in this subexpression. For
+ // example, when parsing x+y*z and looking at '*', we want to recursively
+ // handle y*z as a single subexpression. We do this because the precedence
+ // of * is higher than that of +. The only strange case we have to handle
+ // here is for the ?: operator, where the precedence is actually lower than
+ // the LHS of the '?'. The grammar rule is:
+ //
+ // conditional-expression ::=
+ // logical-OR-expression ? expression : conditional-expression
+ // where 'expression' is actually comma-expression.
+ unsigned RHSPrec;
+ if (Operator == tok::question)
+ // The RHS of "?" should be maximally consumed as an expression.
+ RHSPrec = getPrecedence(tok::comma);
+ else // All others should munch while higher precedence.
+ RHSPrec = ThisPrec+1;
+
+ if (PeekPrec >= RHSPrec) {
+ if (EvaluateDirectiveSubExpr(RHS, RHSPrec, PeekTok, RHSIsLive, PP))
+ return true;
+ PeekPrec = getPrecedence(PeekTok.getKind());
+ }
+ assert(PeekPrec <= ThisPrec && "Recursion didn't work!");
+
+ // Usual arithmetic conversions (C99 6.3.1.8p1): result is unsigned if
+ // either operand is unsigned.
+ llvm::APSInt Res(LHS.getBitWidth());
+ switch (Operator) {
+ case tok::question: // No UAC for x and y in "x ? y : z".
+ case tok::lessless: // Shift amount doesn't UAC with shift value.
+ case tok::greatergreater: // Shift amount doesn't UAC with shift value.
+ case tok::comma: // Comma operands are not subject to UACs.
+ case tok::pipepipe: // Logical || does not do UACs.
+ case tok::ampamp: // Logical && does not do UACs.
+ break; // No UAC
+ default:
+ Res.setIsUnsigned(LHS.isUnsigned()|RHS.isUnsigned());
+ // If this just promoted something from signed to unsigned, and if the
+ // value was negative, warn about it.
+ if (ValueLive && Res.isUnsigned()) {
+ if (!LHS.isUnsigned() && LHS.Val.isNegative())
+ PP.Diag(OpLoc, diag::warn_pp_convert_lhs_to_positive)
+ << LHS.Val.toString(10, true) + " to " +
+ LHS.Val.toString(10, false)
+ << LHS.getRange() << RHS.getRange();
+ if (!RHS.isUnsigned() && RHS.Val.isNegative())
+ PP.Diag(OpLoc, diag::warn_pp_convert_rhs_to_positive)
+ << RHS.Val.toString(10, true) + " to " +
+ RHS.Val.toString(10, false)
+ << LHS.getRange() << RHS.getRange();
+ }
+ LHS.Val.setIsUnsigned(Res.isUnsigned());
+ RHS.Val.setIsUnsigned(Res.isUnsigned());
+ }
+
+ bool Overflow = false;
+ switch (Operator) {
+ default: llvm_unreachable("Unknown operator token!");
+ case tok::percent:
+ if (RHS.Val != 0)
+ Res = LHS.Val % RHS.Val;
+ else if (ValueLive) {
+ PP.Diag(OpLoc, diag::err_pp_remainder_by_zero)
+ << LHS.getRange() << RHS.getRange();
+ return true;
+ }
+ break;
+ case tok::slash:
+ if (RHS.Val != 0) {
+ if (LHS.Val.isSigned())
+ Res = llvm::APSInt(LHS.Val.sdiv_ov(RHS.Val, Overflow), false);
+ else
+ Res = LHS.Val / RHS.Val;
+ } else if (ValueLive) {
+ PP.Diag(OpLoc, diag::err_pp_division_by_zero)
+ << LHS.getRange() << RHS.getRange();
+ return true;
+ }
+ break;
+
+ case tok::star:
+ if (Res.isSigned())
+ Res = llvm::APSInt(LHS.Val.smul_ov(RHS.Val, Overflow), false);
+ else
+ Res = LHS.Val * RHS.Val;
+ break;
+ case tok::lessless: {
+ // Determine whether overflow is about to happen.
+ if (LHS.isUnsigned())
+ Res = LHS.Val.ushl_ov(RHS.Val, Overflow);
+ else
+ Res = llvm::APSInt(LHS.Val.sshl_ov(RHS.Val, Overflow), false);
+ break;
+ }
+ case tok::greatergreater: {
+ // Determine whether overflow is about to happen.
+ unsigned ShAmt = static_cast<unsigned>(RHS.Val.getLimitedValue());
+ if (ShAmt >= LHS.getBitWidth())
+ Overflow = true, ShAmt = LHS.getBitWidth()-1;
+ Res = LHS.Val >> ShAmt;
+ break;
+ }
+ case tok::plus:
+ if (LHS.isUnsigned())
+ Res = LHS.Val + RHS.Val;
+ else
+ Res = llvm::APSInt(LHS.Val.sadd_ov(RHS.Val, Overflow), false);
+ break;
+ case tok::minus:
+ if (LHS.isUnsigned())
+ Res = LHS.Val - RHS.Val;
+ else
+ Res = llvm::APSInt(LHS.Val.ssub_ov(RHS.Val, Overflow), false);
+ break;
+ case tok::lessequal:
+ Res = LHS.Val <= RHS.Val;
+ Res.setIsUnsigned(false); // C99 6.5.8p6, result is always int (signed)
+ break;
+ case tok::less:
+ Res = LHS.Val < RHS.Val;
+ Res.setIsUnsigned(false); // C99 6.5.8p6, result is always int (signed)
+ break;
+ case tok::greaterequal:
+ Res = LHS.Val >= RHS.Val;
+ Res.setIsUnsigned(false); // C99 6.5.8p6, result is always int (signed)
+ break;
+ case tok::greater:
+ Res = LHS.Val > RHS.Val;
+ Res.setIsUnsigned(false); // C99 6.5.8p6, result is always int (signed)
+ break;
+ case tok::exclaimequal:
+ Res = LHS.Val != RHS.Val;
+ Res.setIsUnsigned(false); // C99 6.5.9p3, result is always int (signed)
+ break;
+ case tok::equalequal:
+ Res = LHS.Val == RHS.Val;
+ Res.setIsUnsigned(false); // C99 6.5.9p3, result is always int (signed)
+ break;
+ case tok::amp:
+ Res = LHS.Val & RHS.Val;
+ break;
+ case tok::caret:
+ Res = LHS.Val ^ RHS.Val;
+ break;
+ case tok::pipe:
+ Res = LHS.Val | RHS.Val;
+ break;
+ case tok::ampamp:
+ Res = (LHS.Val != 0 && RHS.Val != 0);
+ Res.setIsUnsigned(false); // C99 6.5.13p3, result is always int (signed)
+ break;
+ case tok::pipepipe:
+ Res = (LHS.Val != 0 || RHS.Val != 0);
+ Res.setIsUnsigned(false); // C99 6.5.14p3, result is always int (signed)
+ break;
+ case tok::comma:
+ // Comma is invalid in pp expressions in c89/c++ mode, but is valid in C99
+ // if not being evaluated.
+ if (!PP.getLangOpts().C99 || ValueLive)
+ PP.Diag(OpLoc, diag::ext_pp_comma_expr)
+ << LHS.getRange() << RHS.getRange();
+ Res = RHS.Val; // LHS = LHS,RHS -> RHS.
+ break;
+ case tok::question: {
+ // Parse the : part of the expression.
+ if (PeekTok.isNot(tok::colon)) {
+ PP.Diag(PeekTok.getLocation(), diag::err_expected)
+ << tok::colon << LHS.getRange() << RHS.getRange();
+ PP.Diag(OpLoc, diag::note_matching) << tok::question;
+ return true;
+ }
+ // Consume the :.
+ PP.LexNonComment(PeekTok);
+
+ // Evaluate the value after the :.
+ bool AfterColonLive = ValueLive && LHS.Val == 0;
+ PPValue AfterColonVal(LHS.getBitWidth());
+ DefinedTracker DT;
+ if (EvaluateValue(AfterColonVal, PeekTok, DT, AfterColonLive, PP))
+ return true;
+
+ // Parse anything after the : with the same precedence as ?. We allow
+ // things of equal precedence because ?: is right associative.
+ if (EvaluateDirectiveSubExpr(AfterColonVal, ThisPrec,
+ PeekTok, AfterColonLive, PP))
+ return true;
+
+ // Now that we have the condition, the LHS and the RHS of the :, evaluate.
+ Res = LHS.Val != 0 ? RHS.Val : AfterColonVal.Val;
+ RHS.setEnd(AfterColonVal.getRange().getEnd());
+
+ // Usual arithmetic conversions (C99 6.3.1.8p1): result is unsigned if
+ // either operand is unsigned.
+ Res.setIsUnsigned(RHS.isUnsigned() | AfterColonVal.isUnsigned());
+
+ // Figure out the precedence of the token after the : part.
+ PeekPrec = getPrecedence(PeekTok.getKind());
+ break;
+ }
+ case tok::colon:
+ // Don't allow :'s to float around without being part of ?: exprs.
+ PP.Diag(OpLoc, diag::err_pp_colon_without_question)
+ << LHS.getRange() << RHS.getRange();
+ return true;
+ }
+
+ // If this operator is live and overflowed, report the issue.
+ if (Overflow && ValueLive)
+ PP.Diag(OpLoc, diag::warn_pp_expr_overflow)
+ << LHS.getRange() << RHS.getRange();
+
+ // Put the result back into 'LHS' for our next iteration.
+ LHS.Val = Res;
+ LHS.setEnd(RHS.getRange().getEnd());
+ }
+}
+
+/// EvaluateDirectiveExpression - Evaluate an integer constant expression that
+/// may occur after a #if or #elif directive. If the expression is equivalent
+/// to "!defined(X)" return X in IfNDefMacro.
+bool Preprocessor::EvaluateDirectiveExpression(IdentifierInfo *&IfNDefMacro) {
+ SaveAndRestore<bool> PPDir(ParsingIfOrElifDirective, true);
+ // Save the current state of 'DisableMacroExpansion' and reset it to false. If
+ // 'DisableMacroExpansion' is true, then we must be in a macro argument list
+ // in which case a directive is undefined behavior. We want macros to be able
+ // to recursively expand in order to get more gcc-list behavior, so we force
+ // DisableMacroExpansion to false and restore it when we're done parsing the
+ // expression.
+ bool DisableMacroExpansionAtStartOfDirective = DisableMacroExpansion;
+ DisableMacroExpansion = false;
+
+ // Peek ahead one token.
+ Token Tok;
+ LexNonComment(Tok);
+
+ // C99 6.10.1p3 - All expressions are evaluated as intmax_t or uintmax_t.
+ unsigned BitWidth = getTargetInfo().getIntMaxTWidth();
+
+ PPValue ResVal(BitWidth);
+ DefinedTracker DT;
+ if (EvaluateValue(ResVal, Tok, DT, true, *this)) {
+ // Parse error, skip the rest of the macro line.
+ if (Tok.isNot(tok::eod))
+ DiscardUntilEndOfDirective();
+
+ // Restore 'DisableMacroExpansion'.
+ DisableMacroExpansion = DisableMacroExpansionAtStartOfDirective;
+ return false;
+ }
+
+ // If we are at the end of the expression after just parsing a value, there
+ // must be no (unparenthesized) binary operators involved, so we can exit
+ // directly.
+ if (Tok.is(tok::eod)) {
+ // If the expression we parsed was of the form !defined(macro), return the
+ // macro in IfNDefMacro.
+ if (DT.State == DefinedTracker::NotDefinedMacro)
+ IfNDefMacro = DT.TheMacro;
+
+ // Restore 'DisableMacroExpansion'.
+ DisableMacroExpansion = DisableMacroExpansionAtStartOfDirective;
+ return ResVal.Val != 0;
+ }
+
+ // Otherwise, we must have a binary operator (e.g. "#if 1 < 2"), so parse the
+ // operator and the stuff after it.
+ if (EvaluateDirectiveSubExpr(ResVal, getPrecedence(tok::question),
+ Tok, true, *this)) {
+ // Parse error, skip the rest of the macro line.
+ if (Tok.isNot(tok::eod))
+ DiscardUntilEndOfDirective();
+
+ // Restore 'DisableMacroExpansion'.
+ DisableMacroExpansion = DisableMacroExpansionAtStartOfDirective;
+ return false;
+ }
+
+ // If we aren't at the tok::eod token, something bad happened, like an extra
+ // ')' token.
+ if (Tok.isNot(tok::eod)) {
+ Diag(Tok, diag::err_pp_expected_eol);
+ DiscardUntilEndOfDirective();
+ }
+
+ // Restore 'DisableMacroExpansion'.
+ DisableMacroExpansion = DisableMacroExpansionAtStartOfDirective;
+ return ResVal.Val != 0;
+}
diff --git a/contrib/llvm/tools/clang/lib/Lex/PPLexerChange.cpp b/contrib/llvm/tools/clang/lib/Lex/PPLexerChange.cpp
new file mode 100644
index 0000000..e68fb7d
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Lex/PPLexerChange.cpp
@@ -0,0 +1,733 @@
+//===--- PPLexerChange.cpp - Handle changing lexers in the preprocessor ---===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements pieces of the Preprocessor interface that manage the
+// current lexer stack.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Lex/HeaderSearch.h"
+#include "clang/Lex/LexDiagnostic.h"
+#include "clang/Lex/MacroInfo.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/Path.h"
+using namespace clang;
+
+PPCallbacks::~PPCallbacks() {}
+
+//===----------------------------------------------------------------------===//
+// Miscellaneous Methods.
+//===----------------------------------------------------------------------===//
+
+/// isInPrimaryFile - Return true if we're in the top-level file, not in a
+/// \#include. This looks through macro expansions and active _Pragma lexers.
+bool Preprocessor::isInPrimaryFile() const {
+ if (IsFileLexer())
+ return IncludeMacroStack.empty();
+
+ // If there are any stacked lexers, we're in a #include.
+ assert(IsFileLexer(IncludeMacroStack[0]) &&
+ "Top level include stack isn't our primary lexer?");
+ for (unsigned i = 1, e = IncludeMacroStack.size(); i != e; ++i)
+ if (IsFileLexer(IncludeMacroStack[i]))
+ return false;
+ return true;
+}
+
+/// getCurrentLexer - Return the current file lexer being lexed from. Note
+/// that this ignores any potentially active macro expansions and _Pragma
+/// expansions going on at the time.
+PreprocessorLexer *Preprocessor::getCurrentFileLexer() const {
+ if (IsFileLexer())
+ return CurPPLexer;
+
+ // Look for a stacked lexer.
+ for (unsigned i = IncludeMacroStack.size(); i != 0; --i) {
+ const IncludeStackInfo& ISI = IncludeMacroStack[i-1];
+ if (IsFileLexer(ISI))
+ return ISI.ThePPLexer;
+ }
+ return nullptr;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Methods for Entering and Callbacks for leaving various contexts
+//===----------------------------------------------------------------------===//
+
+/// EnterSourceFile - Add a source file to the top of the include stack and
+/// start lexing tokens from it instead of the current buffer.
+bool Preprocessor::EnterSourceFile(FileID FID, const DirectoryLookup *CurDir,
+ SourceLocation Loc) {
+ assert(!CurTokenLexer && "Cannot #include a file inside a macro!");
+ ++NumEnteredSourceFiles;
+
+ if (MaxIncludeStackDepth < IncludeMacroStack.size())
+ MaxIncludeStackDepth = IncludeMacroStack.size();
+
+ if (PTH) {
+ if (PTHLexer *PL = PTH->CreateLexer(FID)) {
+ EnterSourceFileWithPTH(PL, CurDir);
+ return false;
+ }
+ }
+
+ // Get the MemoryBuffer for this FID, if it fails, we fail.
+ bool Invalid = false;
+ const llvm::MemoryBuffer *InputFile =
+ getSourceManager().getBuffer(FID, Loc, &Invalid);
+ if (Invalid) {
+ SourceLocation FileStart = SourceMgr.getLocForStartOfFile(FID);
+ Diag(Loc, diag::err_pp_error_opening_file)
+ << std::string(SourceMgr.getBufferName(FileStart)) << "";
+ return true;
+ }
+
+ if (isCodeCompletionEnabled() &&
+ SourceMgr.getFileEntryForID(FID) == CodeCompletionFile) {
+ CodeCompletionFileLoc = SourceMgr.getLocForStartOfFile(FID);
+ CodeCompletionLoc =
+ CodeCompletionFileLoc.getLocWithOffset(CodeCompletionOffset);
+ }
+
+ EnterSourceFileWithLexer(new Lexer(FID, InputFile, *this), CurDir);
+ return false;
+}
+
+/// EnterSourceFileWithLexer - Add a source file to the top of the include stack
+/// and start lexing tokens from it instead of the current buffer.
+void Preprocessor::EnterSourceFileWithLexer(Lexer *TheLexer,
+ const DirectoryLookup *CurDir) {
+
+ // Add the current lexer to the include stack.
+ if (CurPPLexer || CurTokenLexer)
+ PushIncludeMacroStack();
+
+ CurLexer.reset(TheLexer);
+ CurPPLexer = TheLexer;
+ CurDirLookup = CurDir;
+ CurSubmodule = nullptr;
+ if (CurLexerKind != CLK_LexAfterModuleImport)
+ CurLexerKind = CLK_Lexer;
+
+ // Notify the client, if desired, that we are in a new source file.
+ if (Callbacks && !CurLexer->Is_PragmaLexer) {
+ SrcMgr::CharacteristicKind FileType =
+ SourceMgr.getFileCharacteristic(CurLexer->getFileLoc());
+
+ Callbacks->FileChanged(CurLexer->getFileLoc(),
+ PPCallbacks::EnterFile, FileType);
+ }
+}
+
+/// EnterSourceFileWithPTH - Add a source file to the top of the include stack
+/// and start getting tokens from it using the PTH cache.
+void Preprocessor::EnterSourceFileWithPTH(PTHLexer *PL,
+ const DirectoryLookup *CurDir) {
+
+ if (CurPPLexer || CurTokenLexer)
+ PushIncludeMacroStack();
+
+ CurDirLookup = CurDir;
+ CurPTHLexer.reset(PL);
+ CurPPLexer = CurPTHLexer.get();
+ CurSubmodule = nullptr;
+ if (CurLexerKind != CLK_LexAfterModuleImport)
+ CurLexerKind = CLK_PTHLexer;
+
+ // Notify the client, if desired, that we are in a new source file.
+ if (Callbacks) {
+ FileID FID = CurPPLexer->getFileID();
+ SourceLocation EnterLoc = SourceMgr.getLocForStartOfFile(FID);
+ SrcMgr::CharacteristicKind FileType =
+ SourceMgr.getFileCharacteristic(EnterLoc);
+ Callbacks->FileChanged(EnterLoc, PPCallbacks::EnterFile, FileType);
+ }
+}
+
+/// EnterMacro - Add a Macro to the top of the include stack and start lexing
+/// tokens from it instead of the current buffer.
+void Preprocessor::EnterMacro(Token &Tok, SourceLocation ILEnd,
+ MacroInfo *Macro, MacroArgs *Args) {
+ std::unique_ptr<TokenLexer> TokLexer;
+ if (NumCachedTokenLexers == 0) {
+ TokLexer = llvm::make_unique<TokenLexer>(Tok, ILEnd, Macro, Args, *this);
+ } else {
+ TokLexer = std::move(TokenLexerCache[--NumCachedTokenLexers]);
+ TokLexer->Init(Tok, ILEnd, Macro, Args);
+ }
+
+ PushIncludeMacroStack();
+ CurDirLookup = nullptr;
+ CurTokenLexer = std::move(TokLexer);
+ if (CurLexerKind != CLK_LexAfterModuleImport)
+ CurLexerKind = CLK_TokenLexer;
+}
+
+/// EnterTokenStream - Add a "macro" context to the top of the include stack,
+/// which will cause the lexer to start returning the specified tokens.
+///
+/// If DisableMacroExpansion is true, tokens lexed from the token stream will
+/// not be subject to further macro expansion. Otherwise, these tokens will
+/// be re-macro-expanded when/if expansion is enabled.
+///
+/// If OwnsTokens is false, this method assumes that the specified stream of
+/// tokens has a permanent owner somewhere, so they do not need to be copied.
+/// If it is true, it assumes the array of tokens is allocated with new[] and
+/// must be freed.
+///
+void Preprocessor::EnterTokenStream(const Token *Toks, unsigned NumToks,
+ bool DisableMacroExpansion,
+ bool OwnsTokens) {
+ if (CurLexerKind == CLK_CachingLexer) {
+ if (CachedLexPos < CachedTokens.size()) {
+ // We're entering tokens into the middle of our cached token stream. We
+ // can't represent that, so just insert the tokens into the buffer.
+ CachedTokens.insert(CachedTokens.begin() + CachedLexPos,
+ Toks, Toks + NumToks);
+ if (OwnsTokens)
+ delete [] Toks;
+ return;
+ }
+
+ // New tokens are at the end of the cached token sequnece; insert the
+ // token stream underneath the caching lexer.
+ ExitCachingLexMode();
+ EnterTokenStream(Toks, NumToks, DisableMacroExpansion, OwnsTokens);
+ EnterCachingLexMode();
+ return;
+ }
+
+ // Create a macro expander to expand from the specified token stream.
+ std::unique_ptr<TokenLexer> TokLexer;
+ if (NumCachedTokenLexers == 0) {
+ TokLexer = llvm::make_unique<TokenLexer>(
+ Toks, NumToks, DisableMacroExpansion, OwnsTokens, *this);
+ } else {
+ TokLexer = std::move(TokenLexerCache[--NumCachedTokenLexers]);
+ TokLexer->Init(Toks, NumToks, DisableMacroExpansion, OwnsTokens);
+ }
+
+ // Save our current state.
+ PushIncludeMacroStack();
+ CurDirLookup = nullptr;
+ CurTokenLexer = std::move(TokLexer);
+ if (CurLexerKind != CLK_LexAfterModuleImport)
+ CurLexerKind = CLK_TokenLexer;
+}
+
+/// \brief Compute the relative path that names the given file relative to
+/// the given directory.
+static void computeRelativePath(FileManager &FM, const DirectoryEntry *Dir,
+ const FileEntry *File,
+ SmallString<128> &Result) {
+ Result.clear();
+
+ StringRef FilePath = File->getDir()->getName();
+ StringRef Path = FilePath;
+ while (!Path.empty()) {
+ if (const DirectoryEntry *CurDir = FM.getDirectory(Path)) {
+ if (CurDir == Dir) {
+ Result = FilePath.substr(Path.size());
+ llvm::sys::path::append(Result,
+ llvm::sys::path::filename(File->getName()));
+ return;
+ }
+ }
+
+ Path = llvm::sys::path::parent_path(Path);
+ }
+
+ Result = File->getName();
+}
+
+void Preprocessor::PropagateLineStartLeadingSpaceInfo(Token &Result) {
+ if (CurTokenLexer) {
+ CurTokenLexer->PropagateLineStartLeadingSpaceInfo(Result);
+ return;
+ }
+ if (CurLexer) {
+ CurLexer->PropagateLineStartLeadingSpaceInfo(Result);
+ return;
+ }
+ // FIXME: Handle other kinds of lexers? It generally shouldn't matter,
+ // but it might if they're empty?
+}
+
+/// \brief Determine the location to use as the end of the buffer for a lexer.
+///
+/// If the file ends with a newline, form the EOF token on the newline itself,
+/// rather than "on the line following it", which doesn't exist. This makes
+/// diagnostics relating to the end of file include the last file that the user
+/// actually typed, which is goodness.
+const char *Preprocessor::getCurLexerEndPos() {
+ const char *EndPos = CurLexer->BufferEnd;
+ if (EndPos != CurLexer->BufferStart &&
+ (EndPos[-1] == '\n' || EndPos[-1] == '\r')) {
+ --EndPos;
+
+ // Handle \n\r and \r\n:
+ if (EndPos != CurLexer->BufferStart &&
+ (EndPos[-1] == '\n' || EndPos[-1] == '\r') &&
+ EndPos[-1] != EndPos[0])
+ --EndPos;
+ }
+
+ return EndPos;
+}
+
+
+/// HandleEndOfFile - This callback is invoked when the lexer hits the end of
+/// the current file. This either returns the EOF token or pops a level off
+/// the include stack and keeps going.
+bool Preprocessor::HandleEndOfFile(Token &Result, bool isEndOfMacro) {
+ assert(!CurTokenLexer &&
+ "Ending a file when currently in a macro!");
+
+ // See if this file had a controlling macro.
+ if (CurPPLexer) { // Not ending a macro, ignore it.
+ if (const IdentifierInfo *ControllingMacro =
+ CurPPLexer->MIOpt.GetControllingMacroAtEndOfFile()) {
+ // Okay, this has a controlling macro, remember in HeaderFileInfo.
+ if (const FileEntry *FE =
+ SourceMgr.getFileEntryForID(CurPPLexer->getFileID())) {
+ HeaderInfo.SetFileControllingMacro(FE, ControllingMacro);
+ if (MacroInfo *MI =
+ getMacroInfo(const_cast<IdentifierInfo*>(ControllingMacro))) {
+ MI->UsedForHeaderGuard = true;
+ }
+ if (const IdentifierInfo *DefinedMacro =
+ CurPPLexer->MIOpt.GetDefinedMacro()) {
+ if (!isMacroDefined(ControllingMacro) &&
+ DefinedMacro != ControllingMacro &&
+ HeaderInfo.FirstTimeLexingFile(FE)) {
+
+ // If the edit distance between the two macros is more than 50%,
+ // DefinedMacro may not be header guard, or can be header guard of
+ // another header file. Therefore, it maybe defining something
+ // completely different. This can be observed in the wild when
+ // handling feature macros or header guards in different files.
+
+ const StringRef ControllingMacroName = ControllingMacro->getName();
+ const StringRef DefinedMacroName = DefinedMacro->getName();
+ const size_t MaxHalfLength = std::max(ControllingMacroName.size(),
+ DefinedMacroName.size()) / 2;
+ const unsigned ED = ControllingMacroName.edit_distance(
+ DefinedMacroName, true, MaxHalfLength);
+ if (ED <= MaxHalfLength) {
+ // Emit a warning for a bad header guard.
+ Diag(CurPPLexer->MIOpt.GetMacroLocation(),
+ diag::warn_header_guard)
+ << CurPPLexer->MIOpt.GetMacroLocation() << ControllingMacro;
+ Diag(CurPPLexer->MIOpt.GetDefinedLocation(),
+ diag::note_header_guard)
+ << CurPPLexer->MIOpt.GetDefinedLocation() << DefinedMacro
+ << ControllingMacro
+ << FixItHint::CreateReplacement(
+ CurPPLexer->MIOpt.GetDefinedLocation(),
+ ControllingMacro->getName());
+ }
+ }
+ }
+ }
+ }
+ }
+
+ // Complain about reaching a true EOF within arc_cf_code_audited.
+ // We don't want to complain about reaching the end of a macro
+ // instantiation or a _Pragma.
+ if (PragmaARCCFCodeAuditedLoc.isValid() &&
+ !isEndOfMacro && !(CurLexer && CurLexer->Is_PragmaLexer)) {
+ Diag(PragmaARCCFCodeAuditedLoc, diag::err_pp_eof_in_arc_cf_code_audited);
+
+ // Recover by leaving immediately.
+ PragmaARCCFCodeAuditedLoc = SourceLocation();
+ }
+
+ // If this is a #include'd file, pop it off the include stack and continue
+ // lexing the #includer file.
+ if (!IncludeMacroStack.empty()) {
+
+ // If we lexed the code-completion file, act as if we reached EOF.
+ if (isCodeCompletionEnabled() && CurPPLexer &&
+ SourceMgr.getLocForStartOfFile(CurPPLexer->getFileID()) ==
+ CodeCompletionFileLoc) {
+ if (CurLexer) {
+ Result.startToken();
+ CurLexer->FormTokenWithChars(Result, CurLexer->BufferEnd, tok::eof);
+ CurLexer.reset();
+ } else {
+ assert(CurPTHLexer && "Got EOF but no current lexer set!");
+ CurPTHLexer->getEOF(Result);
+ CurPTHLexer.reset();
+ }
+
+ CurPPLexer = nullptr;
+ return true;
+ }
+
+ if (!isEndOfMacro && CurPPLexer &&
+ SourceMgr.getIncludeLoc(CurPPLexer->getFileID()).isValid()) {
+ // Notify SourceManager to record the number of FileIDs that were created
+ // during lexing of the #include'd file.
+ unsigned NumFIDs =
+ SourceMgr.local_sloc_entry_size() -
+ CurPPLexer->getInitialNumSLocEntries() + 1/*#include'd file*/;
+ SourceMgr.setNumCreatedFIDsForFileID(CurPPLexer->getFileID(), NumFIDs);
+ }
+
+ FileID ExitedFID;
+ if (Callbacks && !isEndOfMacro && CurPPLexer)
+ ExitedFID = CurPPLexer->getFileID();
+
+ bool LeavingSubmodule = CurSubmodule && CurLexer;
+ if (LeavingSubmodule) {
+ // Notify the parser that we've left the module.
+ const char *EndPos = getCurLexerEndPos();
+ Result.startToken();
+ CurLexer->BufferPtr = EndPos;
+ CurLexer->FormTokenWithChars(Result, EndPos, tok::annot_module_end);
+ Result.setAnnotationEndLoc(Result.getLocation());
+ Result.setAnnotationValue(CurSubmodule);
+
+ // We're done with this submodule.
+ LeaveSubmodule();
+ }
+
+ // We're done with the #included file.
+ RemoveTopOfLexerStack();
+
+ // Propagate info about start-of-line/leading white-space/etc.
+ PropagateLineStartLeadingSpaceInfo(Result);
+
+ // Notify the client, if desired, that we are in a new source file.
+ if (Callbacks && !isEndOfMacro && CurPPLexer) {
+ SrcMgr::CharacteristicKind FileType =
+ SourceMgr.getFileCharacteristic(CurPPLexer->getSourceLocation());
+ Callbacks->FileChanged(CurPPLexer->getSourceLocation(),
+ PPCallbacks::ExitFile, FileType, ExitedFID);
+ }
+
+ // Client should lex another token unless we generated an EOM.
+ return LeavingSubmodule;
+ }
+
+ // If this is the end of the main file, form an EOF token.
+ if (CurLexer) {
+ const char *EndPos = getCurLexerEndPos();
+ Result.startToken();
+ CurLexer->BufferPtr = EndPos;
+ CurLexer->FormTokenWithChars(Result, EndPos, tok::eof);
+
+ if (isCodeCompletionEnabled()) {
+ // Inserting the code-completion point increases the source buffer by 1,
+ // but the main FileID was created before inserting the point.
+ // Compensate by reducing the EOF location by 1, otherwise the location
+ // will point to the next FileID.
+ // FIXME: This is hacky, the code-completion point should probably be
+ // inserted before the main FileID is created.
+ if (CurLexer->getFileLoc() == CodeCompletionFileLoc)
+ Result.setLocation(Result.getLocation().getLocWithOffset(-1));
+ }
+
+ if (!isIncrementalProcessingEnabled())
+ // We're done with lexing.
+ CurLexer.reset();
+ } else {
+ assert(CurPTHLexer && "Got EOF but no current lexer set!");
+ CurPTHLexer->getEOF(Result);
+ CurPTHLexer.reset();
+ }
+
+ if (!isIncrementalProcessingEnabled())
+ CurPPLexer = nullptr;
+
+ if (TUKind == TU_Complete) {
+ // This is the end of the top-level file. 'WarnUnusedMacroLocs' has
+ // collected all macro locations that we need to warn because they are not
+ // used.
+ for (WarnUnusedMacroLocsTy::iterator
+ I=WarnUnusedMacroLocs.begin(), E=WarnUnusedMacroLocs.end();
+ I!=E; ++I)
+ Diag(*I, diag::pp_macro_not_used);
+ }
+
+ // If we are building a module that has an umbrella header, make sure that
+ // each of the headers within the directory covered by the umbrella header
+ // was actually included by the umbrella header.
+ if (Module *Mod = getCurrentModule()) {
+ if (Mod->getUmbrellaHeader()) {
+ SourceLocation StartLoc
+ = SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID());
+
+ if (!getDiagnostics().isIgnored(diag::warn_uncovered_module_header,
+ StartLoc)) {
+ ModuleMap &ModMap = getHeaderSearchInfo().getModuleMap();
+ const DirectoryEntry *Dir = Mod->getUmbrellaDir().Entry;
+ vfs::FileSystem &FS = *FileMgr.getVirtualFileSystem();
+ std::error_code EC;
+ for (vfs::recursive_directory_iterator Entry(FS, Dir->getName(), EC), End;
+ Entry != End && !EC; Entry.increment(EC)) {
+ using llvm::StringSwitch;
+
+ // Check whether this entry has an extension typically associated with
+ // headers.
+ if (!StringSwitch<bool>(llvm::sys::path::extension(Entry->getName()))
+ .Cases(".h", ".H", ".hh", ".hpp", true)
+ .Default(false))
+ continue;
+
+ if (const FileEntry *Header =
+ getFileManager().getFile(Entry->getName()))
+ if (!getSourceManager().hasFileInfo(Header)) {
+ if (!ModMap.isHeaderInUnavailableModule(Header)) {
+ // Find the relative path that would access this header.
+ SmallString<128> RelativePath;
+ computeRelativePath(FileMgr, Dir, Header, RelativePath);
+ Diag(StartLoc, diag::warn_uncovered_module_header)
+ << Mod->getFullModuleName() << RelativePath;
+ }
+ }
+ }
+ }
+ }
+ }
+
+ return true;
+}
+
+/// HandleEndOfTokenLexer - This callback is invoked when the current TokenLexer
+/// hits the end of its token stream.
+bool Preprocessor::HandleEndOfTokenLexer(Token &Result) {
+ assert(CurTokenLexer && !CurPPLexer &&
+ "Ending a macro when currently in a #include file!");
+
+ if (!MacroExpandingLexersStack.empty() &&
+ MacroExpandingLexersStack.back().first == CurTokenLexer.get())
+ removeCachedMacroExpandedTokensOfLastLexer();
+
+ // Delete or cache the now-dead macro expander.
+ if (NumCachedTokenLexers == TokenLexerCacheSize)
+ CurTokenLexer.reset();
+ else
+ TokenLexerCache[NumCachedTokenLexers++] = std::move(CurTokenLexer);
+
+ // Handle this like a #include file being popped off the stack.
+ return HandleEndOfFile(Result, true);
+}
+
+/// RemoveTopOfLexerStack - Pop the current lexer/macro exp off the top of the
+/// lexer stack. This should only be used in situations where the current
+/// state of the top-of-stack lexer is unknown.
+void Preprocessor::RemoveTopOfLexerStack() {
+ assert(!IncludeMacroStack.empty() && "Ran out of stack entries to load");
+
+ if (CurTokenLexer) {
+ // Delete or cache the now-dead macro expander.
+ if (NumCachedTokenLexers == TokenLexerCacheSize)
+ CurTokenLexer.reset();
+ else
+ TokenLexerCache[NumCachedTokenLexers++] = std::move(CurTokenLexer);
+ }
+
+ PopIncludeMacroStack();
+}
+
+/// HandleMicrosoftCommentPaste - When the macro expander pastes together a
+/// comment (/##/) in microsoft mode, this method handles updating the current
+/// state, returning the token on the next source line.
+void Preprocessor::HandleMicrosoftCommentPaste(Token &Tok) {
+ assert(CurTokenLexer && !CurPPLexer &&
+ "Pasted comment can only be formed from macro");
+
+ // We handle this by scanning for the closest real lexer, switching it to
+ // raw mode and preprocessor mode. This will cause it to return \n as an
+ // explicit EOD token.
+ PreprocessorLexer *FoundLexer = nullptr;
+ bool LexerWasInPPMode = false;
+ for (unsigned i = 0, e = IncludeMacroStack.size(); i != e; ++i) {
+ IncludeStackInfo &ISI = *(IncludeMacroStack.end()-i-1);
+ if (ISI.ThePPLexer == nullptr) continue; // Scan for a real lexer.
+
+ // Once we find a real lexer, mark it as raw mode (disabling macro
+ // expansions) and preprocessor mode (return EOD). We know that the lexer
+ // was *not* in raw mode before, because the macro that the comment came
+ // from was expanded. However, it could have already been in preprocessor
+ // mode (#if COMMENT) in which case we have to return it to that mode and
+ // return EOD.
+ FoundLexer = ISI.ThePPLexer;
+ FoundLexer->LexingRawMode = true;
+ LexerWasInPPMode = FoundLexer->ParsingPreprocessorDirective;
+ FoundLexer->ParsingPreprocessorDirective = true;
+ break;
+ }
+
+ // Okay, we either found and switched over the lexer, or we didn't find a
+ // lexer. In either case, finish off the macro the comment came from, getting
+ // the next token.
+ if (!HandleEndOfTokenLexer(Tok)) Lex(Tok);
+
+ // Discarding comments as long as we don't have EOF or EOD. This 'comments
+ // out' the rest of the line, including any tokens that came from other macros
+ // that were active, as in:
+ // #define submacro a COMMENT b
+ // submacro c
+ // which should lex to 'a' only: 'b' and 'c' should be removed.
+ while (Tok.isNot(tok::eod) && Tok.isNot(tok::eof))
+ Lex(Tok);
+
+ // If we got an eod token, then we successfully found the end of the line.
+ if (Tok.is(tok::eod)) {
+ assert(FoundLexer && "Can't get end of line without an active lexer");
+ // Restore the lexer back to normal mode instead of raw mode.
+ FoundLexer->LexingRawMode = false;
+
+ // If the lexer was already in preprocessor mode, just return the EOD token
+ // to finish the preprocessor line.
+ if (LexerWasInPPMode) return;
+
+ // Otherwise, switch out of PP mode and return the next lexed token.
+ FoundLexer->ParsingPreprocessorDirective = false;
+ return Lex(Tok);
+ }
+
+ // If we got an EOF token, then we reached the end of the token stream but
+ // didn't find an explicit \n. This can only happen if there was no lexer
+ // active (an active lexer would return EOD at EOF if there was no \n in
+ // preprocessor directive mode), so just return EOF as our token.
+ assert(!FoundLexer && "Lexer should return EOD before EOF in PP mode");
+}
+
+void Preprocessor::EnterSubmodule(Module *M, SourceLocation ImportLoc) {
+ if (!getLangOpts().ModulesLocalVisibility) {
+ // Just track that we entered this submodule.
+ BuildingSubmoduleStack.push_back(
+ BuildingSubmoduleInfo(M, ImportLoc, CurSubmoduleState));
+ return;
+ }
+
+ // Resolve as much of the module definition as we can now, before we enter
+ // one of its headers.
+ // FIXME: Can we enable Complain here?
+ // FIXME: Can we do this when local visibility is disabled?
+ ModuleMap &ModMap = getHeaderSearchInfo().getModuleMap();
+ ModMap.resolveExports(M, /*Complain=*/false);
+ ModMap.resolveUses(M, /*Complain=*/false);
+ ModMap.resolveConflicts(M, /*Complain=*/false);
+
+ // If this is the first time we've entered this module, set up its state.
+ auto R = Submodules.insert(std::make_pair(M, SubmoduleState()));
+ auto &State = R.first->second;
+ bool FirstTime = R.second;
+ if (FirstTime) {
+ // Determine the set of starting macros for this submodule; take these
+ // from the "null" module (the predefines buffer).
+ auto &StartingMacros = NullSubmoduleState.Macros;
+
+ // Restore to the starting state.
+ // FIXME: Do this lazily, when each macro name is first referenced.
+ for (auto &Macro : StartingMacros) {
+ MacroState MS(Macro.second.getLatest());
+ MS.setOverriddenMacros(*this, Macro.second.getOverriddenMacros());
+ State.Macros.insert(std::make_pair(Macro.first, std::move(MS)));
+ }
+ }
+
+ // Track that we entered this module.
+ BuildingSubmoduleStack.push_back(
+ BuildingSubmoduleInfo(M, ImportLoc, CurSubmoduleState));
+
+ // Switch to this submodule as the current submodule.
+ CurSubmoduleState = &State;
+
+ // This module is visible to itself.
+ if (FirstTime)
+ makeModuleVisible(M, ImportLoc);
+}
+
+void Preprocessor::LeaveSubmodule() {
+ auto &Info = BuildingSubmoduleStack.back();
+
+ Module *LeavingMod = Info.M;
+ SourceLocation ImportLoc = Info.ImportLoc;
+
+ // Create ModuleMacros for any macros defined in this submodule.
+ for (auto &Macro : CurSubmoduleState->Macros) {
+ auto *II = const_cast<IdentifierInfo*>(Macro.first);
+
+ // Find the starting point for the MacroDirective chain in this submodule.
+ MacroDirective *OldMD = nullptr;
+ if (getLangOpts().ModulesLocalVisibility) {
+ // FIXME: It'd be better to start at the state from when we most recently
+ // entered this submodule, but it doesn't really matter.
+ auto &PredefMacros = NullSubmoduleState.Macros;
+ auto PredefMacroIt = PredefMacros.find(Macro.first);
+ if (PredefMacroIt == PredefMacros.end())
+ OldMD = nullptr;
+ else
+ OldMD = PredefMacroIt->second.getLatest();
+ }
+
+ // This module may have exported a new macro. If so, create a ModuleMacro
+ // representing that fact.
+ bool ExplicitlyPublic = false;
+ for (auto *MD = Macro.second.getLatest(); MD != OldMD;
+ MD = MD->getPrevious()) {
+ assert(MD && "broken macro directive chain");
+
+ // Stop on macros defined in other submodules we #included along the way.
+ // There's no point doing this if we're tracking local submodule
+ // visibility, since there can be no such directives in our list.
+ if (!getLangOpts().ModulesLocalVisibility) {
+ Module *Mod = getModuleContainingLocation(MD->getLocation());
+ if (Mod != LeavingMod)
+ break;
+ }
+
+ if (auto *VisMD = dyn_cast<VisibilityMacroDirective>(MD)) {
+ // The latest visibility directive for a name in a submodule affects
+ // all the directives that come before it.
+ if (VisMD->isPublic())
+ ExplicitlyPublic = true;
+ else if (!ExplicitlyPublic)
+ // Private with no following public directive: not exported.
+ break;
+ } else {
+ MacroInfo *Def = nullptr;
+ if (DefMacroDirective *DefMD = dyn_cast<DefMacroDirective>(MD))
+ Def = DefMD->getInfo();
+
+ // FIXME: Issue a warning if multiple headers for the same submodule
+ // define a macro, rather than silently ignoring all but the first.
+ bool IsNew;
+ // Don't bother creating a module macro if it would represent a #undef
+ // that doesn't override anything.
+ if (Def || !Macro.second.getOverriddenMacros().empty())
+ addModuleMacro(LeavingMod, II, Def,
+ Macro.second.getOverriddenMacros(), IsNew);
+ break;
+ }
+ }
+ }
+
+ // Put back the outer module's state, if we're tracking it.
+ if (getLangOpts().ModulesLocalVisibility)
+ CurSubmoduleState = Info.OuterSubmoduleState;
+
+ BuildingSubmoduleStack.pop_back();
+
+ // A nested #include makes the included submodule visible.
+ if (!BuildingSubmoduleStack.empty() || !getLangOpts().ModulesLocalVisibility)
+ makeModuleVisible(LeavingMod, ImportLoc);
+}
diff --git a/contrib/llvm/tools/clang/lib/Lex/PPMacroExpansion.cpp b/contrib/llvm/tools/clang/lib/Lex/PPMacroExpansion.cpp
new file mode 100644
index 0000000..9046ad5
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Lex/PPMacroExpansion.cpp
@@ -0,0 +1,1778 @@
+//===--- MacroExpansion.cpp - Top level Macro Expansion -------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the top level handling of macro expansion for the
+// preprocessor.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Basic/Attributes.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Lex/CodeCompletionHandler.h"
+#include "clang/Lex/ExternalPreprocessorSource.h"
+#include "clang/Lex/LexDiagnostic.h"
+#include "clang/Lex/MacroArgs.h"
+#include "clang/Lex/MacroInfo.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/Config/llvm-config.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cstdio>
+#include <ctime>
+using namespace clang;
+
+MacroDirective *
+Preprocessor::getLocalMacroDirectiveHistory(const IdentifierInfo *II) const {
+ if (!II->hadMacroDefinition())
+ return nullptr;
+ auto Pos = CurSubmoduleState->Macros.find(II);
+ return Pos == CurSubmoduleState->Macros.end() ? nullptr
+ : Pos->second.getLatest();
+}
+
+void Preprocessor::appendMacroDirective(IdentifierInfo *II, MacroDirective *MD){
+ assert(MD && "MacroDirective should be non-zero!");
+ assert(!MD->getPrevious() && "Already attached to a MacroDirective history.");
+
+ MacroState &StoredMD = CurSubmoduleState->Macros[II];
+ auto *OldMD = StoredMD.getLatest();
+ MD->setPrevious(OldMD);
+ StoredMD.setLatest(MD);
+ StoredMD.overrideActiveModuleMacros(*this, II);
+
+ // Set up the identifier as having associated macro history.
+ II->setHasMacroDefinition(true);
+ if (!MD->isDefined() && LeafModuleMacros.find(II) == LeafModuleMacros.end())
+ II->setHasMacroDefinition(false);
+ if (II->isFromAST())
+ II->setChangedSinceDeserialization();
+}
+
+void Preprocessor::setLoadedMacroDirective(IdentifierInfo *II,
+ MacroDirective *MD) {
+ assert(II && MD);
+ MacroState &StoredMD = CurSubmoduleState->Macros[II];
+ assert(!StoredMD.getLatest() &&
+ "the macro history was modified before initializing it from a pch");
+ StoredMD = MD;
+ // Setup the identifier as having associated macro history.
+ II->setHasMacroDefinition(true);
+ if (!MD->isDefined() && LeafModuleMacros.find(II) == LeafModuleMacros.end())
+ II->setHasMacroDefinition(false);
+}
+
+ModuleMacro *Preprocessor::addModuleMacro(Module *Mod, IdentifierInfo *II,
+ MacroInfo *Macro,
+ ArrayRef<ModuleMacro *> Overrides,
+ bool &New) {
+ llvm::FoldingSetNodeID ID;
+ ModuleMacro::Profile(ID, Mod, II);
+
+ void *InsertPos;
+ if (auto *MM = ModuleMacros.FindNodeOrInsertPos(ID, InsertPos)) {
+ New = false;
+ return MM;
+ }
+
+ auto *MM = ModuleMacro::create(*this, Mod, II, Macro, Overrides);
+ ModuleMacros.InsertNode(MM, InsertPos);
+
+ // Each overridden macro is now overridden by one more macro.
+ bool HidAny = false;
+ for (auto *O : Overrides) {
+ HidAny |= (O->NumOverriddenBy == 0);
+ ++O->NumOverriddenBy;
+ }
+
+ // If we were the first overrider for any macro, it's no longer a leaf.
+ auto &LeafMacros = LeafModuleMacros[II];
+ if (HidAny) {
+ LeafMacros.erase(std::remove_if(LeafMacros.begin(), LeafMacros.end(),
+ [](ModuleMacro *MM) {
+ return MM->NumOverriddenBy != 0;
+ }),
+ LeafMacros.end());
+ }
+
+ // The new macro is always a leaf macro.
+ LeafMacros.push_back(MM);
+ // The identifier now has defined macros (that may or may not be visible).
+ II->setHasMacroDefinition(true);
+
+ New = true;
+ return MM;
+}
+
+ModuleMacro *Preprocessor::getModuleMacro(Module *Mod, IdentifierInfo *II) {
+ llvm::FoldingSetNodeID ID;
+ ModuleMacro::Profile(ID, Mod, II);
+
+ void *InsertPos;
+ return ModuleMacros.FindNodeOrInsertPos(ID, InsertPos);
+}
+
+void Preprocessor::updateModuleMacroInfo(const IdentifierInfo *II,
+ ModuleMacroInfo &Info) {
+ assert(Info.ActiveModuleMacrosGeneration !=
+ CurSubmoduleState->VisibleModules.getGeneration() &&
+ "don't need to update this macro name info");
+ Info.ActiveModuleMacrosGeneration =
+ CurSubmoduleState->VisibleModules.getGeneration();
+
+ auto Leaf = LeafModuleMacros.find(II);
+ if (Leaf == LeafModuleMacros.end()) {
+ // No imported macros at all: nothing to do.
+ return;
+ }
+
+ Info.ActiveModuleMacros.clear();
+
+ // Every macro that's locally overridden is overridden by a visible macro.
+ llvm::DenseMap<ModuleMacro *, int> NumHiddenOverrides;
+ for (auto *O : Info.OverriddenMacros)
+ NumHiddenOverrides[O] = -1;
+
+ // Collect all macros that are not overridden by a visible macro.
+ llvm::SmallVector<ModuleMacro *, 16> Worklist(Leaf->second.begin(),
+ Leaf->second.end());
+ while (!Worklist.empty()) {
+ auto *MM = Worklist.pop_back_val();
+ if (CurSubmoduleState->VisibleModules.isVisible(MM->getOwningModule())) {
+ // We only care about collecting definitions; undefinitions only act
+ // to override other definitions.
+ if (MM->getMacroInfo())
+ Info.ActiveModuleMacros.push_back(MM);
+ } else {
+ for (auto *O : MM->overrides())
+ if ((unsigned)++NumHiddenOverrides[O] == O->getNumOverridingMacros())
+ Worklist.push_back(O);
+ }
+ }
+ // Our reverse postorder walk found the macros in reverse order.
+ std::reverse(Info.ActiveModuleMacros.begin(), Info.ActiveModuleMacros.end());
+
+ // Determine whether the macro name is ambiguous.
+ MacroInfo *MI = nullptr;
+ bool IsSystemMacro = true;
+ bool IsAmbiguous = false;
+ if (auto *MD = Info.MD) {
+ while (MD && isa<VisibilityMacroDirective>(MD))
+ MD = MD->getPrevious();
+ if (auto *DMD = dyn_cast_or_null<DefMacroDirective>(MD)) {
+ MI = DMD->getInfo();
+ IsSystemMacro &= SourceMgr.isInSystemHeader(DMD->getLocation());
+ }
+ }
+ for (auto *Active : Info.ActiveModuleMacros) {
+ auto *NewMI = Active->getMacroInfo();
+
+ // Before marking the macro as ambiguous, check if this is a case where
+ // both macros are in system headers. If so, we trust that the system
+ // did not get it wrong. This also handles cases where Clang's own
+ // headers have a different spelling of certain system macros:
+ // #define LONG_MAX __LONG_MAX__ (clang's limits.h)
+ // #define LONG_MAX 0x7fffffffffffffffL (system's limits.h)
+ //
+ // FIXME: Remove the defined-in-system-headers check. clang's limits.h
+ // overrides the system limits.h's macros, so there's no conflict here.
+ if (MI && NewMI != MI &&
+ !MI->isIdenticalTo(*NewMI, *this, /*Syntactically=*/true))
+ IsAmbiguous = true;
+ IsSystemMacro &= Active->getOwningModule()->IsSystem ||
+ SourceMgr.isInSystemHeader(NewMI->getDefinitionLoc());
+ MI = NewMI;
+ }
+ Info.IsAmbiguous = IsAmbiguous && !IsSystemMacro;
+}
+
+void Preprocessor::dumpMacroInfo(const IdentifierInfo *II) {
+ ArrayRef<ModuleMacro*> Leaf;
+ auto LeafIt = LeafModuleMacros.find(II);
+ if (LeafIt != LeafModuleMacros.end())
+ Leaf = LeafIt->second;
+ const MacroState *State = nullptr;
+ auto Pos = CurSubmoduleState->Macros.find(II);
+ if (Pos != CurSubmoduleState->Macros.end())
+ State = &Pos->second;
+
+ llvm::errs() << "MacroState " << State << " " << II->getNameStart();
+ if (State && State->isAmbiguous(*this, II))
+ llvm::errs() << " ambiguous";
+ if (State && !State->getOverriddenMacros().empty()) {
+ llvm::errs() << " overrides";
+ for (auto *O : State->getOverriddenMacros())
+ llvm::errs() << " " << O->getOwningModule()->getFullModuleName();
+ }
+ llvm::errs() << "\n";
+
+ // Dump local macro directives.
+ for (auto *MD = State ? State->getLatest() : nullptr; MD;
+ MD = MD->getPrevious()) {
+ llvm::errs() << " ";
+ MD->dump();
+ }
+
+ // Dump module macros.
+ llvm::DenseSet<ModuleMacro*> Active;
+ for (auto *MM : State ? State->getActiveModuleMacros(*this, II) : None)
+ Active.insert(MM);
+ llvm::DenseSet<ModuleMacro*> Visited;
+ llvm::SmallVector<ModuleMacro *, 16> Worklist(Leaf.begin(), Leaf.end());
+ while (!Worklist.empty()) {
+ auto *MM = Worklist.pop_back_val();
+ llvm::errs() << " ModuleMacro " << MM << " "
+ << MM->getOwningModule()->getFullModuleName();
+ if (!MM->getMacroInfo())
+ llvm::errs() << " undef";
+
+ if (Active.count(MM))
+ llvm::errs() << " active";
+ else if (!CurSubmoduleState->VisibleModules.isVisible(
+ MM->getOwningModule()))
+ llvm::errs() << " hidden";
+ else if (MM->getMacroInfo())
+ llvm::errs() << " overridden";
+
+ if (!MM->overrides().empty()) {
+ llvm::errs() << " overrides";
+ for (auto *O : MM->overrides()) {
+ llvm::errs() << " " << O->getOwningModule()->getFullModuleName();
+ if (Visited.insert(O).second)
+ Worklist.push_back(O);
+ }
+ }
+ llvm::errs() << "\n";
+ if (auto *MI = MM->getMacroInfo()) {
+ llvm::errs() << " ";
+ MI->dump();
+ llvm::errs() << "\n";
+ }
+ }
+}
+
+/// RegisterBuiltinMacro - Register the specified identifier in the identifier
+/// table and mark it as a builtin macro to be expanded.
+static IdentifierInfo *RegisterBuiltinMacro(Preprocessor &PP, const char *Name){
+ // Get the identifier.
+ IdentifierInfo *Id = PP.getIdentifierInfo(Name);
+
+ // Mark it as being a macro that is builtin.
+ MacroInfo *MI = PP.AllocateMacroInfo(SourceLocation());
+ MI->setIsBuiltinMacro();
+ PP.appendDefMacroDirective(Id, MI);
+ return Id;
+}
+
+
+/// RegisterBuiltinMacros - Register builtin macros, such as __LINE__ with the
+/// identifier table.
+void Preprocessor::RegisterBuiltinMacros() {
+ Ident__LINE__ = RegisterBuiltinMacro(*this, "__LINE__");
+ Ident__FILE__ = RegisterBuiltinMacro(*this, "__FILE__");
+ Ident__DATE__ = RegisterBuiltinMacro(*this, "__DATE__");
+ Ident__TIME__ = RegisterBuiltinMacro(*this, "__TIME__");
+ Ident__COUNTER__ = RegisterBuiltinMacro(*this, "__COUNTER__");
+ Ident_Pragma = RegisterBuiltinMacro(*this, "_Pragma");
+
+ // C++ Standing Document Extensions.
+ if (LangOpts.CPlusPlus)
+ Ident__has_cpp_attribute =
+ RegisterBuiltinMacro(*this, "__has_cpp_attribute");
+ else
+ Ident__has_cpp_attribute = nullptr;
+
+ // GCC Extensions.
+ Ident__BASE_FILE__ = RegisterBuiltinMacro(*this, "__BASE_FILE__");
+ Ident__INCLUDE_LEVEL__ = RegisterBuiltinMacro(*this, "__INCLUDE_LEVEL__");
+ Ident__TIMESTAMP__ = RegisterBuiltinMacro(*this, "__TIMESTAMP__");
+
+ // Microsoft Extensions.
+ if (LangOpts.MicrosoftExt) {
+ Ident__identifier = RegisterBuiltinMacro(*this, "__identifier");
+ Ident__pragma = RegisterBuiltinMacro(*this, "__pragma");
+ } else {
+ Ident__identifier = nullptr;
+ Ident__pragma = nullptr;
+ }
+
+ // Clang Extensions.
+ Ident__has_feature = RegisterBuiltinMacro(*this, "__has_feature");
+ Ident__has_extension = RegisterBuiltinMacro(*this, "__has_extension");
+ Ident__has_builtin = RegisterBuiltinMacro(*this, "__has_builtin");
+ Ident__has_attribute = RegisterBuiltinMacro(*this, "__has_attribute");
+ Ident__has_declspec = RegisterBuiltinMacro(*this, "__has_declspec_attribute");
+ Ident__has_include = RegisterBuiltinMacro(*this, "__has_include");
+ Ident__has_include_next = RegisterBuiltinMacro(*this, "__has_include_next");
+ Ident__has_warning = RegisterBuiltinMacro(*this, "__has_warning");
+ Ident__is_identifier = RegisterBuiltinMacro(*this, "__is_identifier");
+
+ // Modules.
+ if (LangOpts.Modules) {
+ Ident__building_module = RegisterBuiltinMacro(*this, "__building_module");
+
+ // __MODULE__
+ if (!LangOpts.CurrentModule.empty())
+ Ident__MODULE__ = RegisterBuiltinMacro(*this, "__MODULE__");
+ else
+ Ident__MODULE__ = nullptr;
+ } else {
+ Ident__building_module = nullptr;
+ Ident__MODULE__ = nullptr;
+ }
+}
+
+/// isTrivialSingleTokenExpansion - Return true if MI, which has a single token
+/// in its expansion, currently expands to that token literally.
+static bool isTrivialSingleTokenExpansion(const MacroInfo *MI,
+ const IdentifierInfo *MacroIdent,
+ Preprocessor &PP) {
+ IdentifierInfo *II = MI->getReplacementToken(0).getIdentifierInfo();
+
+ // If the token isn't an identifier, it's always literally expanded.
+ if (!II) return true;
+
+ // If the information about this identifier is out of date, update it from
+ // the external source.
+ if (II->isOutOfDate())
+ PP.getExternalSource()->updateOutOfDateIdentifier(*II);
+
+ // If the identifier is a macro, and if that macro is enabled, it may be
+ // expanded so it's not a trivial expansion.
+ if (auto *ExpansionMI = PP.getMacroInfo(II))
+ if (ExpansionMI->isEnabled() &&
+ // Fast expanding "#define X X" is ok, because X would be disabled.
+ II != MacroIdent)
+ return false;
+
+ // If this is an object-like macro invocation, it is safe to trivially expand
+ // it.
+ if (MI->isObjectLike()) return true;
+
+ // If this is a function-like macro invocation, it's safe to trivially expand
+ // as long as the identifier is not a macro argument.
+ for (MacroInfo::arg_iterator I = MI->arg_begin(), E = MI->arg_end();
+ I != E; ++I)
+ if (*I == II)
+ return false; // Identifier is a macro argument.
+
+ return true;
+}
+
+
+/// isNextPPTokenLParen - Determine whether the next preprocessor token to be
+/// lexed is a '('. If so, consume the token and return true, if not, this
+/// method should have no observable side-effect on the lexed tokens.
+bool Preprocessor::isNextPPTokenLParen() {
+ // Do some quick tests for rejection cases.
+ unsigned Val;
+ if (CurLexer)
+ Val = CurLexer->isNextPPTokenLParen();
+ else if (CurPTHLexer)
+ Val = CurPTHLexer->isNextPPTokenLParen();
+ else
+ Val = CurTokenLexer->isNextTokenLParen();
+
+ if (Val == 2) {
+ // We have run off the end. If it's a source file we don't
+ // examine enclosing ones (C99 5.1.1.2p4). Otherwise walk up the
+ // macro stack.
+ if (CurPPLexer)
+ return false;
+ for (unsigned i = IncludeMacroStack.size(); i != 0; --i) {
+ IncludeStackInfo &Entry = IncludeMacroStack[i-1];
+ if (Entry.TheLexer)
+ Val = Entry.TheLexer->isNextPPTokenLParen();
+ else if (Entry.ThePTHLexer)
+ Val = Entry.ThePTHLexer->isNextPPTokenLParen();
+ else
+ Val = Entry.TheTokenLexer->isNextTokenLParen();
+
+ if (Val != 2)
+ break;
+
+ // Ran off the end of a source file?
+ if (Entry.ThePPLexer)
+ return false;
+ }
+ }
+
+ // Okay, if we know that the token is a '(', lex it and return. Otherwise we
+ // have found something that isn't a '(' or we found the end of the
+ // translation unit. In either case, return false.
+ return Val == 1;
+}
+
+/// HandleMacroExpandedIdentifier - If an identifier token is read that is to be
+/// expanded as a macro, handle it and return the next token as 'Identifier'.
+bool Preprocessor::HandleMacroExpandedIdentifier(Token &Identifier,
+ const MacroDefinition &M) {
+ MacroInfo *MI = M.getMacroInfo();
+
+ // If this is a macro expansion in the "#if !defined(x)" line for the file,
+ // then the macro could expand to different things in other contexts, we need
+ // to disable the optimization in this case.
+ if (CurPPLexer) CurPPLexer->MIOpt.ExpandedMacro();
+
+ // If this is a builtin macro, like __LINE__ or _Pragma, handle it specially.
+ if (MI->isBuiltinMacro()) {
+ if (Callbacks)
+ Callbacks->MacroExpands(Identifier, M, Identifier.getLocation(),
+ /*Args=*/nullptr);
+ ExpandBuiltinMacro(Identifier);
+ return true;
+ }
+
+ /// Args - If this is a function-like macro expansion, this contains,
+ /// for each macro argument, the list of tokens that were provided to the
+ /// invocation.
+ MacroArgs *Args = nullptr;
+
+ // Remember where the end of the expansion occurred. For an object-like
+ // macro, this is the identifier. For a function-like macro, this is the ')'.
+ SourceLocation ExpansionEnd = Identifier.getLocation();
+
+ // If this is a function-like macro, read the arguments.
+ if (MI->isFunctionLike()) {
+ // Remember that we are now parsing the arguments to a macro invocation.
+ // Preprocessor directives used inside macro arguments are not portable, and
+ // this enables the warning.
+ InMacroArgs = true;
+ Args = ReadFunctionLikeMacroArgs(Identifier, MI, ExpansionEnd);
+
+ // Finished parsing args.
+ InMacroArgs = false;
+
+ // If there was an error parsing the arguments, bail out.
+ if (!Args) return true;
+
+ ++NumFnMacroExpanded;
+ } else {
+ ++NumMacroExpanded;
+ }
+
+ // Notice that this macro has been used.
+ markMacroAsUsed(MI);
+
+ // Remember where the token is expanded.
+ SourceLocation ExpandLoc = Identifier.getLocation();
+ SourceRange ExpansionRange(ExpandLoc, ExpansionEnd);
+
+ if (Callbacks) {
+ if (InMacroArgs) {
+ // We can have macro expansion inside a conditional directive while
+ // reading the function macro arguments. To ensure, in that case, that
+ // MacroExpands callbacks still happen in source order, queue this
+ // callback to have it happen after the function macro callback.
+ DelayedMacroExpandsCallbacks.push_back(
+ MacroExpandsInfo(Identifier, M, ExpansionRange));
+ } else {
+ Callbacks->MacroExpands(Identifier, M, ExpansionRange, Args);
+ if (!DelayedMacroExpandsCallbacks.empty()) {
+ for (unsigned i=0, e = DelayedMacroExpandsCallbacks.size(); i!=e; ++i) {
+ MacroExpandsInfo &Info = DelayedMacroExpandsCallbacks[i];
+ // FIXME: We lose macro args info with delayed callback.
+ Callbacks->MacroExpands(Info.Tok, Info.MD, Info.Range,
+ /*Args=*/nullptr);
+ }
+ DelayedMacroExpandsCallbacks.clear();
+ }
+ }
+ }
+
+ // If the macro definition is ambiguous, complain.
+ if (M.isAmbiguous()) {
+ Diag(Identifier, diag::warn_pp_ambiguous_macro)
+ << Identifier.getIdentifierInfo();
+ Diag(MI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_chosen)
+ << Identifier.getIdentifierInfo();
+ M.forAllDefinitions([&](const MacroInfo *OtherMI) {
+ if (OtherMI != MI)
+ Diag(OtherMI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_other)
+ << Identifier.getIdentifierInfo();
+ });
+ }
+
+ // If we started lexing a macro, enter the macro expansion body.
+
+ // If this macro expands to no tokens, don't bother to push it onto the
+ // expansion stack, only to take it right back off.
+ if (MI->getNumTokens() == 0) {
+ // No need for arg info.
+ if (Args) Args->destroy(*this);
+
+ // Propagate whitespace info as if we had pushed, then popped,
+ // a macro context.
+ Identifier.setFlag(Token::LeadingEmptyMacro);
+ PropagateLineStartLeadingSpaceInfo(Identifier);
+ ++NumFastMacroExpanded;
+ return false;
+ } else if (MI->getNumTokens() == 1 &&
+ isTrivialSingleTokenExpansion(MI, Identifier.getIdentifierInfo(),
+ *this)) {
+ // Otherwise, if this macro expands into a single trivially-expanded
+ // token: expand it now. This handles common cases like
+ // "#define VAL 42".
+
+ // No need for arg info.
+ if (Args) Args->destroy(*this);
+
+ // Propagate the isAtStartOfLine/hasLeadingSpace markers of the macro
+ // identifier to the expanded token.
+ bool isAtStartOfLine = Identifier.isAtStartOfLine();
+ bool hasLeadingSpace = Identifier.hasLeadingSpace();
+
+ // Replace the result token.
+ Identifier = MI->getReplacementToken(0);
+
+ // Restore the StartOfLine/LeadingSpace markers.
+ Identifier.setFlagValue(Token::StartOfLine , isAtStartOfLine);
+ Identifier.setFlagValue(Token::LeadingSpace, hasLeadingSpace);
+
+ // Update the tokens location to include both its expansion and physical
+ // locations.
+ SourceLocation Loc =
+ SourceMgr.createExpansionLoc(Identifier.getLocation(), ExpandLoc,
+ ExpansionEnd,Identifier.getLength());
+ Identifier.setLocation(Loc);
+
+ // If this is a disabled macro or #define X X, we must mark the result as
+ // unexpandable.
+ if (IdentifierInfo *NewII = Identifier.getIdentifierInfo()) {
+ if (MacroInfo *NewMI = getMacroInfo(NewII))
+ if (!NewMI->isEnabled() || NewMI == MI) {
+ Identifier.setFlag(Token::DisableExpand);
+ // Don't warn for "#define X X" like "#define bool bool" from
+ // stdbool.h.
+ if (NewMI != MI || MI->isFunctionLike())
+ Diag(Identifier, diag::pp_disabled_macro_expansion);
+ }
+ }
+
+ // Since this is not an identifier token, it can't be macro expanded, so
+ // we're done.
+ ++NumFastMacroExpanded;
+ return true;
+ }
+
+ // Start expanding the macro.
+ EnterMacro(Identifier, ExpansionEnd, MI, Args);
+ return false;
+}
+
+enum Bracket {
+ Brace,
+ Paren
+};
+
+/// CheckMatchedBrackets - Returns true if the braces and parentheses in the
+/// token vector are properly nested.
+static bool CheckMatchedBrackets(const SmallVectorImpl<Token> &Tokens) {
+ SmallVector<Bracket, 8> Brackets;
+ for (SmallVectorImpl<Token>::const_iterator I = Tokens.begin(),
+ E = Tokens.end();
+ I != E; ++I) {
+ if (I->is(tok::l_paren)) {
+ Brackets.push_back(Paren);
+ } else if (I->is(tok::r_paren)) {
+ if (Brackets.empty() || Brackets.back() == Brace)
+ return false;
+ Brackets.pop_back();
+ } else if (I->is(tok::l_brace)) {
+ Brackets.push_back(Brace);
+ } else if (I->is(tok::r_brace)) {
+ if (Brackets.empty() || Brackets.back() == Paren)
+ return false;
+ Brackets.pop_back();
+ }
+ }
+ if (!Brackets.empty())
+ return false;
+ return true;
+}
+
+/// GenerateNewArgTokens - Returns true if OldTokens can be converted to a new
+/// vector of tokens in NewTokens. The new number of arguments will be placed
+/// in NumArgs and the ranges which need to surrounded in parentheses will be
+/// in ParenHints.
+/// Returns false if the token stream cannot be changed. If this is because
+/// of an initializer list starting a macro argument, the range of those
+/// initializer lists will be place in InitLists.
+static bool GenerateNewArgTokens(Preprocessor &PP,
+ SmallVectorImpl<Token> &OldTokens,
+ SmallVectorImpl<Token> &NewTokens,
+ unsigned &NumArgs,
+ SmallVectorImpl<SourceRange> &ParenHints,
+ SmallVectorImpl<SourceRange> &InitLists) {
+ if (!CheckMatchedBrackets(OldTokens))
+ return false;
+
+ // Once it is known that the brackets are matched, only a simple count of the
+ // braces is needed.
+ unsigned Braces = 0;
+
+ // First token of a new macro argument.
+ SmallVectorImpl<Token>::iterator ArgStartIterator = OldTokens.begin();
+
+ // First closing brace in a new macro argument. Used to generate
+ // SourceRanges for InitLists.
+ SmallVectorImpl<Token>::iterator ClosingBrace = OldTokens.end();
+ NumArgs = 0;
+ Token TempToken;
+ // Set to true when a macro separator token is found inside a braced list.
+ // If true, the fixed argument spans multiple old arguments and ParenHints
+ // will be updated.
+ bool FoundSeparatorToken = false;
+ for (SmallVectorImpl<Token>::iterator I = OldTokens.begin(),
+ E = OldTokens.end();
+ I != E; ++I) {
+ if (I->is(tok::l_brace)) {
+ ++Braces;
+ } else if (I->is(tok::r_brace)) {
+ --Braces;
+ if (Braces == 0 && ClosingBrace == E && FoundSeparatorToken)
+ ClosingBrace = I;
+ } else if (I->is(tok::eof)) {
+ // EOF token is used to separate macro arguments
+ if (Braces != 0) {
+ // Assume comma separator is actually braced list separator and change
+ // it back to a comma.
+ FoundSeparatorToken = true;
+ I->setKind(tok::comma);
+ I->setLength(1);
+ } else { // Braces == 0
+ // Separator token still separates arguments.
+ ++NumArgs;
+
+ // If the argument starts with a brace, it can't be fixed with
+ // parentheses. A different diagnostic will be given.
+ if (FoundSeparatorToken && ArgStartIterator->is(tok::l_brace)) {
+ InitLists.push_back(
+ SourceRange(ArgStartIterator->getLocation(),
+ PP.getLocForEndOfToken(ClosingBrace->getLocation())));
+ ClosingBrace = E;
+ }
+
+ // Add left paren
+ if (FoundSeparatorToken) {
+ TempToken.startToken();
+ TempToken.setKind(tok::l_paren);
+ TempToken.setLocation(ArgStartIterator->getLocation());
+ TempToken.setLength(0);
+ NewTokens.push_back(TempToken);
+ }
+
+ // Copy over argument tokens
+ NewTokens.insert(NewTokens.end(), ArgStartIterator, I);
+
+ // Add right paren and store the paren locations in ParenHints
+ if (FoundSeparatorToken) {
+ SourceLocation Loc = PP.getLocForEndOfToken((I - 1)->getLocation());
+ TempToken.startToken();
+ TempToken.setKind(tok::r_paren);
+ TempToken.setLocation(Loc);
+ TempToken.setLength(0);
+ NewTokens.push_back(TempToken);
+ ParenHints.push_back(SourceRange(ArgStartIterator->getLocation(),
+ Loc));
+ }
+
+ // Copy separator token
+ NewTokens.push_back(*I);
+
+ // Reset values
+ ArgStartIterator = I + 1;
+ FoundSeparatorToken = false;
+ }
+ }
+ }
+
+ return !ParenHints.empty() && InitLists.empty();
+}
+
+/// ReadFunctionLikeMacroArgs - After reading "MACRO" and knowing that the next
+/// token is the '(' of the macro, this method is invoked to read all of the
+/// actual arguments specified for the macro invocation. This returns null on
+/// error.
+MacroArgs *Preprocessor::ReadFunctionLikeMacroArgs(Token &MacroName,
+ MacroInfo *MI,
+ SourceLocation &MacroEnd) {
+ // The number of fixed arguments to parse.
+ unsigned NumFixedArgsLeft = MI->getNumArgs();
+ bool isVariadic = MI->isVariadic();
+
+ // Outer loop, while there are more arguments, keep reading them.
+ Token Tok;
+
+ // Read arguments as unexpanded tokens. This avoids issues, e.g., where
+ // an argument value in a macro could expand to ',' or '(' or ')'.
+ LexUnexpandedToken(Tok);
+ assert(Tok.is(tok::l_paren) && "Error computing l-paren-ness?");
+
+ // ArgTokens - Build up a list of tokens that make up each argument. Each
+ // argument is separated by an EOF token. Use a SmallVector so we can avoid
+ // heap allocations in the common case.
+ SmallVector<Token, 64> ArgTokens;
+ bool ContainsCodeCompletionTok = false;
+
+ SourceLocation TooManyArgsLoc;
+
+ unsigned NumActuals = 0;
+ while (Tok.isNot(tok::r_paren)) {
+ if (ContainsCodeCompletionTok && (Tok.is(tok::eof) || Tok.is(tok::eod)))
+ break;
+
+ assert((Tok.is(tok::l_paren) || Tok.is(tok::comma)) &&
+ "only expect argument separators here");
+
+ unsigned ArgTokenStart = ArgTokens.size();
+ SourceLocation ArgStartLoc = Tok.getLocation();
+
+ // C99 6.10.3p11: Keep track of the number of l_parens we have seen. Note
+ // that we already consumed the first one.
+ unsigned NumParens = 0;
+
+ while (1) {
+ // Read arguments as unexpanded tokens. This avoids issues, e.g., where
+ // an argument value in a macro could expand to ',' or '(' or ')'.
+ LexUnexpandedToken(Tok);
+
+ if (Tok.is(tok::eof) || Tok.is(tok::eod)) { // "#if f(<eof>" & "#if f(\n"
+ if (!ContainsCodeCompletionTok) {
+ Diag(MacroName, diag::err_unterm_macro_invoc);
+ Diag(MI->getDefinitionLoc(), diag::note_macro_here)
+ << MacroName.getIdentifierInfo();
+ // Do not lose the EOF/EOD. Return it to the client.
+ MacroName = Tok;
+ return nullptr;
+ } else {
+ // Do not lose the EOF/EOD.
+ Token *Toks = new Token[1];
+ Toks[0] = Tok;
+ EnterTokenStream(Toks, 1, true, true);
+ break;
+ }
+ } else if (Tok.is(tok::r_paren)) {
+ // If we found the ) token, the macro arg list is done.
+ if (NumParens-- == 0) {
+ MacroEnd = Tok.getLocation();
+ break;
+ }
+ } else if (Tok.is(tok::l_paren)) {
+ ++NumParens;
+ } else if (Tok.is(tok::comma) && NumParens == 0 &&
+ !(Tok.getFlags() & Token::IgnoredComma)) {
+ // In Microsoft-compatibility mode, single commas from nested macro
+ // expansions should not be considered as argument separators. We test
+ // for this with the IgnoredComma token flag above.
+
+ // Comma ends this argument if there are more fixed arguments expected.
+ // However, if this is a variadic macro, and this is part of the
+ // variadic part, then the comma is just an argument token.
+ if (!isVariadic) break;
+ if (NumFixedArgsLeft > 1)
+ break;
+ } else if (Tok.is(tok::comment) && !KeepMacroComments) {
+ // If this is a comment token in the argument list and we're just in
+ // -C mode (not -CC mode), discard the comment.
+ continue;
+ } else if (!Tok.isAnnotation() && Tok.getIdentifierInfo() != nullptr) {
+ // Reading macro arguments can cause macros that we are currently
+ // expanding from to be popped off the expansion stack. Doing so causes
+ // them to be reenabled for expansion. Here we record whether any
+ // identifiers we lex as macro arguments correspond to disabled macros.
+ // If so, we mark the token as noexpand. This is a subtle aspect of
+ // C99 6.10.3.4p2.
+ if (MacroInfo *MI = getMacroInfo(Tok.getIdentifierInfo()))
+ if (!MI->isEnabled())
+ Tok.setFlag(Token::DisableExpand);
+ } else if (Tok.is(tok::code_completion)) {
+ ContainsCodeCompletionTok = true;
+ if (CodeComplete)
+ CodeComplete->CodeCompleteMacroArgument(MacroName.getIdentifierInfo(),
+ MI, NumActuals);
+ // Don't mark that we reached the code-completion point because the
+ // parser is going to handle the token and there will be another
+ // code-completion callback.
+ }
+
+ ArgTokens.push_back(Tok);
+ }
+
+ // If this was an empty argument list foo(), don't add this as an empty
+ // argument.
+ if (ArgTokens.empty() && Tok.getKind() == tok::r_paren)
+ break;
+
+ // If this is not a variadic macro, and too many args were specified, emit
+ // an error.
+ if (!isVariadic && NumFixedArgsLeft == 0 && TooManyArgsLoc.isInvalid()) {
+ if (ArgTokens.size() != ArgTokenStart)
+ TooManyArgsLoc = ArgTokens[ArgTokenStart].getLocation();
+ else
+ TooManyArgsLoc = ArgStartLoc;
+ }
+
+ // Empty arguments are standard in C99 and C++0x, and are supported as an
+ // extension in other modes.
+ if (ArgTokens.size() == ArgTokenStart && !LangOpts.C99)
+ Diag(Tok, LangOpts.CPlusPlus11 ?
+ diag::warn_cxx98_compat_empty_fnmacro_arg :
+ diag::ext_empty_fnmacro_arg);
+
+ // Add a marker EOF token to the end of the token list for this argument.
+ Token EOFTok;
+ EOFTok.startToken();
+ EOFTok.setKind(tok::eof);
+ EOFTok.setLocation(Tok.getLocation());
+ EOFTok.setLength(0);
+ ArgTokens.push_back(EOFTok);
+ ++NumActuals;
+ if (!ContainsCodeCompletionTok && NumFixedArgsLeft != 0)
+ --NumFixedArgsLeft;
+ }
+
+ // Okay, we either found the r_paren. Check to see if we parsed too few
+ // arguments.
+ unsigned MinArgsExpected = MI->getNumArgs();
+
+ // If this is not a variadic macro, and too many args were specified, emit
+ // an error.
+ if (!isVariadic && NumActuals > MinArgsExpected &&
+ !ContainsCodeCompletionTok) {
+ // Emit the diagnostic at the macro name in case there is a missing ).
+ // Emitting it at the , could be far away from the macro name.
+ Diag(TooManyArgsLoc, diag::err_too_many_args_in_macro_invoc);
+ Diag(MI->getDefinitionLoc(), diag::note_macro_here)
+ << MacroName.getIdentifierInfo();
+
+ // Commas from braced initializer lists will be treated as argument
+ // separators inside macros. Attempt to correct for this with parentheses.
+ // TODO: See if this can be generalized to angle brackets for templates
+ // inside macro arguments.
+
+ SmallVector<Token, 4> FixedArgTokens;
+ unsigned FixedNumArgs = 0;
+ SmallVector<SourceRange, 4> ParenHints, InitLists;
+ if (!GenerateNewArgTokens(*this, ArgTokens, FixedArgTokens, FixedNumArgs,
+ ParenHints, InitLists)) {
+ if (!InitLists.empty()) {
+ DiagnosticBuilder DB =
+ Diag(MacroName,
+ diag::note_init_list_at_beginning_of_macro_argument);
+ for (const SourceRange &Range : InitLists)
+ DB << Range;
+ }
+ return nullptr;
+ }
+ if (FixedNumArgs != MinArgsExpected)
+ return nullptr;
+
+ DiagnosticBuilder DB = Diag(MacroName, diag::note_suggest_parens_for_macro);
+ for (const SourceRange &ParenLocation : ParenHints) {
+ DB << FixItHint::CreateInsertion(ParenLocation.getBegin(), "(");
+ DB << FixItHint::CreateInsertion(ParenLocation.getEnd(), ")");
+ }
+ ArgTokens.swap(FixedArgTokens);
+ NumActuals = FixedNumArgs;
+ }
+
+ // See MacroArgs instance var for description of this.
+ bool isVarargsElided = false;
+
+ if (ContainsCodeCompletionTok) {
+ // Recover from not-fully-formed macro invocation during code-completion.
+ Token EOFTok;
+ EOFTok.startToken();
+ EOFTok.setKind(tok::eof);
+ EOFTok.setLocation(Tok.getLocation());
+ EOFTok.setLength(0);
+ for (; NumActuals < MinArgsExpected; ++NumActuals)
+ ArgTokens.push_back(EOFTok);
+ }
+
+ if (NumActuals < MinArgsExpected) {
+ // There are several cases where too few arguments is ok, handle them now.
+ if (NumActuals == 0 && MinArgsExpected == 1) {
+ // #define A(X) or #define A(...) ---> A()
+
+ // If there is exactly one argument, and that argument is missing,
+ // then we have an empty "()" argument empty list. This is fine, even if
+ // the macro expects one argument (the argument is just empty).
+ isVarargsElided = MI->isVariadic();
+ } else if (MI->isVariadic() &&
+ (NumActuals+1 == MinArgsExpected || // A(x, ...) -> A(X)
+ (NumActuals == 0 && MinArgsExpected == 2))) {// A(x,...) -> A()
+ // Varargs where the named vararg parameter is missing: OK as extension.
+ // #define A(x, ...)
+ // A("blah")
+ //
+ // If the macro contains the comma pasting extension, the diagnostic
+ // is suppressed; we know we'll get another diagnostic later.
+ if (!MI->hasCommaPasting()) {
+ Diag(Tok, diag::ext_missing_varargs_arg);
+ Diag(MI->getDefinitionLoc(), diag::note_macro_here)
+ << MacroName.getIdentifierInfo();
+ }
+
+ // Remember this occurred, allowing us to elide the comma when used for
+ // cases like:
+ // #define A(x, foo...) blah(a, ## foo)
+ // #define B(x, ...) blah(a, ## __VA_ARGS__)
+ // #define C(...) blah(a, ## __VA_ARGS__)
+ // A(x) B(x) C()
+ isVarargsElided = true;
+ } else if (!ContainsCodeCompletionTok) {
+ // Otherwise, emit the error.
+ Diag(Tok, diag::err_too_few_args_in_macro_invoc);
+ Diag(MI->getDefinitionLoc(), diag::note_macro_here)
+ << MacroName.getIdentifierInfo();
+ return nullptr;
+ }
+
+ // Add a marker EOF token to the end of the token list for this argument.
+ SourceLocation EndLoc = Tok.getLocation();
+ Tok.startToken();
+ Tok.setKind(tok::eof);
+ Tok.setLocation(EndLoc);
+ Tok.setLength(0);
+ ArgTokens.push_back(Tok);
+
+ // If we expect two arguments, add both as empty.
+ if (NumActuals == 0 && MinArgsExpected == 2)
+ ArgTokens.push_back(Tok);
+
+ } else if (NumActuals > MinArgsExpected && !MI->isVariadic() &&
+ !ContainsCodeCompletionTok) {
+ // Emit the diagnostic at the macro name in case there is a missing ).
+ // Emitting it at the , could be far away from the macro name.
+ Diag(MacroName, diag::err_too_many_args_in_macro_invoc);
+ Diag(MI->getDefinitionLoc(), diag::note_macro_here)
+ << MacroName.getIdentifierInfo();
+ return nullptr;
+ }
+
+ return MacroArgs::create(MI, ArgTokens, isVarargsElided, *this);
+}
+
+/// \brief Keeps macro expanded tokens for TokenLexers.
+//
+/// Works like a stack; a TokenLexer adds the macro expanded tokens that is
+/// going to lex in the cache and when it finishes the tokens are removed
+/// from the end of the cache.
+Token *Preprocessor::cacheMacroExpandedTokens(TokenLexer *tokLexer,
+ ArrayRef<Token> tokens) {
+ assert(tokLexer);
+ if (tokens.empty())
+ return nullptr;
+
+ size_t newIndex = MacroExpandedTokens.size();
+ bool cacheNeedsToGrow = tokens.size() >
+ MacroExpandedTokens.capacity()-MacroExpandedTokens.size();
+ MacroExpandedTokens.append(tokens.begin(), tokens.end());
+
+ if (cacheNeedsToGrow) {
+ // Go through all the TokenLexers whose 'Tokens' pointer points in the
+ // buffer and update the pointers to the (potential) new buffer array.
+ for (unsigned i = 0, e = MacroExpandingLexersStack.size(); i != e; ++i) {
+ TokenLexer *prevLexer;
+ size_t tokIndex;
+ std::tie(prevLexer, tokIndex) = MacroExpandingLexersStack[i];
+ prevLexer->Tokens = MacroExpandedTokens.data() + tokIndex;
+ }
+ }
+
+ MacroExpandingLexersStack.push_back(std::make_pair(tokLexer, newIndex));
+ return MacroExpandedTokens.data() + newIndex;
+}
+
+void Preprocessor::removeCachedMacroExpandedTokensOfLastLexer() {
+ assert(!MacroExpandingLexersStack.empty());
+ size_t tokIndex = MacroExpandingLexersStack.back().second;
+ assert(tokIndex < MacroExpandedTokens.size());
+ // Pop the cached macro expanded tokens from the end.
+ MacroExpandedTokens.resize(tokIndex);
+ MacroExpandingLexersStack.pop_back();
+}
+
+/// ComputeDATE_TIME - Compute the current time, enter it into the specified
+/// scratch buffer, then return DATELoc/TIMELoc locations with the position of
+/// the identifier tokens inserted.
+static void ComputeDATE_TIME(SourceLocation &DATELoc, SourceLocation &TIMELoc,
+ Preprocessor &PP) {
+ time_t TT = time(nullptr);
+ struct tm *TM = localtime(&TT);
+
+ static const char * const Months[] = {
+ "Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"
+ };
+
+ {
+ SmallString<32> TmpBuffer;
+ llvm::raw_svector_ostream TmpStream(TmpBuffer);
+ TmpStream << llvm::format("\"%s %2d %4d\"", Months[TM->tm_mon],
+ TM->tm_mday, TM->tm_year + 1900);
+ Token TmpTok;
+ TmpTok.startToken();
+ PP.CreateString(TmpStream.str(), TmpTok);
+ DATELoc = TmpTok.getLocation();
+ }
+
+ {
+ SmallString<32> TmpBuffer;
+ llvm::raw_svector_ostream TmpStream(TmpBuffer);
+ TmpStream << llvm::format("\"%02d:%02d:%02d\"",
+ TM->tm_hour, TM->tm_min, TM->tm_sec);
+ Token TmpTok;
+ TmpTok.startToken();
+ PP.CreateString(TmpStream.str(), TmpTok);
+ TIMELoc = TmpTok.getLocation();
+ }
+}
+
+
+/// HasFeature - Return true if we recognize and implement the feature
+/// specified by the identifier as a standard language feature.
+static bool HasFeature(const Preprocessor &PP, const IdentifierInfo *II) {
+ const LangOptions &LangOpts = PP.getLangOpts();
+ StringRef Feature = II->getName();
+
+ // Normalize the feature name, __foo__ becomes foo.
+ if (Feature.startswith("__") && Feature.endswith("__") && Feature.size() >= 4)
+ Feature = Feature.substr(2, Feature.size() - 4);
+
+ return llvm::StringSwitch<bool>(Feature)
+ .Case("address_sanitizer", LangOpts.Sanitize.has(SanitizerKind::Address))
+ .Case("attribute_analyzer_noreturn", true)
+ .Case("attribute_availability", true)
+ .Case("attribute_availability_with_message", true)
+ .Case("attribute_availability_app_extension", true)
+ .Case("attribute_cf_returns_not_retained", true)
+ .Case("attribute_cf_returns_retained", true)
+ .Case("attribute_deprecated_with_message", true)
+ .Case("attribute_ext_vector_type", true)
+ .Case("attribute_ns_returns_not_retained", true)
+ .Case("attribute_ns_returns_retained", true)
+ .Case("attribute_ns_consumes_self", true)
+ .Case("attribute_ns_consumed", true)
+ .Case("attribute_cf_consumed", true)
+ .Case("attribute_objc_ivar_unused", true)
+ .Case("attribute_objc_method_family", true)
+ .Case("attribute_overloadable", true)
+ .Case("attribute_unavailable_with_message", true)
+ .Case("attribute_unused_on_fields", true)
+ .Case("blocks", LangOpts.Blocks)
+ .Case("c_thread_safety_attributes", true)
+ .Case("cxx_exceptions", LangOpts.CXXExceptions)
+ .Case("cxx_rtti", LangOpts.RTTI)
+ .Case("enumerator_attributes", true)
+ .Case("memory_sanitizer", LangOpts.Sanitize.has(SanitizerKind::Memory))
+ .Case("thread_sanitizer", LangOpts.Sanitize.has(SanitizerKind::Thread))
+ .Case("dataflow_sanitizer", LangOpts.Sanitize.has(SanitizerKind::DataFlow))
+ // Objective-C features
+ .Case("objc_arr", LangOpts.ObjCAutoRefCount) // FIXME: REMOVE?
+ .Case("objc_arc", LangOpts.ObjCAutoRefCount)
+ .Case("objc_arc_weak", LangOpts.ObjCARCWeak)
+ .Case("objc_default_synthesize_properties", LangOpts.ObjC2)
+ .Case("objc_fixed_enum", LangOpts.ObjC2)
+ .Case("objc_instancetype", LangOpts.ObjC2)
+ .Case("objc_modules", LangOpts.ObjC2 && LangOpts.Modules)
+ .Case("objc_nonfragile_abi", LangOpts.ObjCRuntime.isNonFragile())
+ .Case("objc_property_explicit_atomic",
+ true) // Does clang support explicit "atomic" keyword?
+ .Case("objc_protocol_qualifier_mangling", true)
+ .Case("objc_weak_class", LangOpts.ObjCRuntime.hasWeakClassImport())
+ .Case("ownership_holds", true)
+ .Case("ownership_returns", true)
+ .Case("ownership_takes", true)
+ .Case("objc_bool", true)
+ .Case("objc_subscripting", LangOpts.ObjCRuntime.isNonFragile())
+ .Case("objc_array_literals", LangOpts.ObjC2)
+ .Case("objc_dictionary_literals", LangOpts.ObjC2)
+ .Case("objc_boxed_expressions", LangOpts.ObjC2)
+ .Case("arc_cf_code_audited", true)
+ .Case("objc_bridge_id", true)
+ .Case("objc_bridge_id_on_typedefs", true)
+ // C11 features
+ .Case("c_alignas", LangOpts.C11)
+ .Case("c_alignof", LangOpts.C11)
+ .Case("c_atomic", LangOpts.C11)
+ .Case("c_generic_selections", LangOpts.C11)
+ .Case("c_static_assert", LangOpts.C11)
+ .Case("c_thread_local",
+ LangOpts.C11 && PP.getTargetInfo().isTLSSupported())
+ // C++11 features
+ .Case("cxx_access_control_sfinae", LangOpts.CPlusPlus11)
+ .Case("cxx_alias_templates", LangOpts.CPlusPlus11)
+ .Case("cxx_alignas", LangOpts.CPlusPlus11)
+ .Case("cxx_alignof", LangOpts.CPlusPlus11)
+ .Case("cxx_atomic", LangOpts.CPlusPlus11)
+ .Case("cxx_attributes", LangOpts.CPlusPlus11)
+ .Case("cxx_auto_type", LangOpts.CPlusPlus11)
+ .Case("cxx_constexpr", LangOpts.CPlusPlus11)
+ .Case("cxx_decltype", LangOpts.CPlusPlus11)
+ .Case("cxx_decltype_incomplete_return_types", LangOpts.CPlusPlus11)
+ .Case("cxx_default_function_template_args", LangOpts.CPlusPlus11)
+ .Case("cxx_defaulted_functions", LangOpts.CPlusPlus11)
+ .Case("cxx_delegating_constructors", LangOpts.CPlusPlus11)
+ .Case("cxx_deleted_functions", LangOpts.CPlusPlus11)
+ .Case("cxx_explicit_conversions", LangOpts.CPlusPlus11)
+ .Case("cxx_generalized_initializers", LangOpts.CPlusPlus11)
+ .Case("cxx_implicit_moves", LangOpts.CPlusPlus11)
+ .Case("cxx_inheriting_constructors", LangOpts.CPlusPlus11)
+ .Case("cxx_inline_namespaces", LangOpts.CPlusPlus11)
+ .Case("cxx_lambdas", LangOpts.CPlusPlus11)
+ .Case("cxx_local_type_template_args", LangOpts.CPlusPlus11)
+ .Case("cxx_nonstatic_member_init", LangOpts.CPlusPlus11)
+ .Case("cxx_noexcept", LangOpts.CPlusPlus11)
+ .Case("cxx_nullptr", LangOpts.CPlusPlus11)
+ .Case("cxx_override_control", LangOpts.CPlusPlus11)
+ .Case("cxx_range_for", LangOpts.CPlusPlus11)
+ .Case("cxx_raw_string_literals", LangOpts.CPlusPlus11)
+ .Case("cxx_reference_qualified_functions", LangOpts.CPlusPlus11)
+ .Case("cxx_rvalue_references", LangOpts.CPlusPlus11)
+ .Case("cxx_strong_enums", LangOpts.CPlusPlus11)
+ .Case("cxx_static_assert", LangOpts.CPlusPlus11)
+ .Case("cxx_thread_local",
+ LangOpts.CPlusPlus11 && PP.getTargetInfo().isTLSSupported())
+ .Case("cxx_trailing_return", LangOpts.CPlusPlus11)
+ .Case("cxx_unicode_literals", LangOpts.CPlusPlus11)
+ .Case("cxx_unrestricted_unions", LangOpts.CPlusPlus11)
+ .Case("cxx_user_literals", LangOpts.CPlusPlus11)
+ .Case("cxx_variadic_templates", LangOpts.CPlusPlus11)
+ // C++1y features
+ .Case("cxx_aggregate_nsdmi", LangOpts.CPlusPlus14)
+ .Case("cxx_binary_literals", LangOpts.CPlusPlus14)
+ .Case("cxx_contextual_conversions", LangOpts.CPlusPlus14)
+ .Case("cxx_decltype_auto", LangOpts.CPlusPlus14)
+ .Case("cxx_generic_lambdas", LangOpts.CPlusPlus14)
+ .Case("cxx_init_captures", LangOpts.CPlusPlus14)
+ .Case("cxx_relaxed_constexpr", LangOpts.CPlusPlus14)
+ .Case("cxx_return_type_deduction", LangOpts.CPlusPlus14)
+ .Case("cxx_variable_templates", LangOpts.CPlusPlus14)
+ // C++ TSes
+ //.Case("cxx_runtime_arrays", LangOpts.CPlusPlusTSArrays)
+ //.Case("cxx_concepts", LangOpts.CPlusPlusTSConcepts)
+ // FIXME: Should this be __has_feature or __has_extension?
+ //.Case("raw_invocation_type", LangOpts.CPlusPlus)
+ // Type traits
+ .Case("has_nothrow_assign", LangOpts.CPlusPlus)
+ .Case("has_nothrow_copy", LangOpts.CPlusPlus)
+ .Case("has_nothrow_constructor", LangOpts.CPlusPlus)
+ .Case("has_trivial_assign", LangOpts.CPlusPlus)
+ .Case("has_trivial_copy", LangOpts.CPlusPlus)
+ .Case("has_trivial_constructor", LangOpts.CPlusPlus)
+ .Case("has_trivial_destructor", LangOpts.CPlusPlus)
+ .Case("has_virtual_destructor", LangOpts.CPlusPlus)
+ .Case("is_abstract", LangOpts.CPlusPlus)
+ .Case("is_base_of", LangOpts.CPlusPlus)
+ .Case("is_class", LangOpts.CPlusPlus)
+ .Case("is_constructible", LangOpts.CPlusPlus)
+ .Case("is_convertible_to", LangOpts.CPlusPlus)
+ .Case("is_empty", LangOpts.CPlusPlus)
+ .Case("is_enum", LangOpts.CPlusPlus)
+ .Case("is_final", LangOpts.CPlusPlus)
+ .Case("is_literal", LangOpts.CPlusPlus)
+ .Case("is_standard_layout", LangOpts.CPlusPlus)
+ .Case("is_pod", LangOpts.CPlusPlus)
+ .Case("is_polymorphic", LangOpts.CPlusPlus)
+ .Case("is_sealed", LangOpts.MicrosoftExt)
+ .Case("is_trivial", LangOpts.CPlusPlus)
+ .Case("is_trivially_assignable", LangOpts.CPlusPlus)
+ .Case("is_trivially_constructible", LangOpts.CPlusPlus)
+ .Case("is_trivially_copyable", LangOpts.CPlusPlus)
+ .Case("is_union", LangOpts.CPlusPlus)
+ .Case("modules", LangOpts.Modules)
+ .Case("tls", PP.getTargetInfo().isTLSSupported())
+ .Case("underlying_type", LangOpts.CPlusPlus)
+ .Default(false);
+}
+
+/// HasExtension - Return true if we recognize and implement the feature
+/// specified by the identifier, either as an extension or a standard language
+/// feature.
+static bool HasExtension(const Preprocessor &PP, const IdentifierInfo *II) {
+ if (HasFeature(PP, II))
+ return true;
+
+ // If the use of an extension results in an error diagnostic, extensions are
+ // effectively unavailable, so just return false here.
+ if (PP.getDiagnostics().getExtensionHandlingBehavior() >=
+ diag::Severity::Error)
+ return false;
+
+ const LangOptions &LangOpts = PP.getLangOpts();
+ StringRef Extension = II->getName();
+
+ // Normalize the extension name, __foo__ becomes foo.
+ if (Extension.startswith("__") && Extension.endswith("__") &&
+ Extension.size() >= 4)
+ Extension = Extension.substr(2, Extension.size() - 4);
+
+ // Because we inherit the feature list from HasFeature, this string switch
+ // must be less restrictive than HasFeature's.
+ return llvm::StringSwitch<bool>(Extension)
+ // C11 features supported by other languages as extensions.
+ .Case("c_alignas", true)
+ .Case("c_alignof", true)
+ .Case("c_atomic", true)
+ .Case("c_generic_selections", true)
+ .Case("c_static_assert", true)
+ .Case("c_thread_local", PP.getTargetInfo().isTLSSupported())
+ // C++11 features supported by other languages as extensions.
+ .Case("cxx_atomic", LangOpts.CPlusPlus)
+ .Case("cxx_deleted_functions", LangOpts.CPlusPlus)
+ .Case("cxx_explicit_conversions", LangOpts.CPlusPlus)
+ .Case("cxx_inline_namespaces", LangOpts.CPlusPlus)
+ .Case("cxx_local_type_template_args", LangOpts.CPlusPlus)
+ .Case("cxx_nonstatic_member_init", LangOpts.CPlusPlus)
+ .Case("cxx_override_control", LangOpts.CPlusPlus)
+ .Case("cxx_range_for", LangOpts.CPlusPlus)
+ .Case("cxx_reference_qualified_functions", LangOpts.CPlusPlus)
+ .Case("cxx_rvalue_references", LangOpts.CPlusPlus)
+ .Case("cxx_variadic_templates", LangOpts.CPlusPlus)
+ // C++1y features supported by other languages as extensions.
+ .Case("cxx_binary_literals", true)
+ .Case("cxx_init_captures", LangOpts.CPlusPlus11)
+ .Case("cxx_variable_templates", LangOpts.CPlusPlus)
+ .Default(false);
+}
+
+/// EvaluateHasIncludeCommon - Process a '__has_include("path")'
+/// or '__has_include_next("path")' expression.
+/// Returns true if successful.
+static bool EvaluateHasIncludeCommon(Token &Tok,
+ IdentifierInfo *II, Preprocessor &PP,
+ const DirectoryLookup *LookupFrom,
+ const FileEntry *LookupFromFile) {
+ // Save the location of the current token. If a '(' is later found, use
+ // that location. If not, use the end of this location instead.
+ SourceLocation LParenLoc = Tok.getLocation();
+
+ // These expressions are only allowed within a preprocessor directive.
+ if (!PP.isParsingIfOrElifDirective()) {
+ PP.Diag(LParenLoc, diag::err_pp_directive_required) << II->getName();
+ // Return a valid identifier token.
+ assert(Tok.is(tok::identifier));
+ Tok.setIdentifierInfo(II);
+ return false;
+ }
+
+ // Get '('.
+ PP.LexNonComment(Tok);
+
+ // Ensure we have a '('.
+ if (Tok.isNot(tok::l_paren)) {
+ // No '(', use end of last token.
+ LParenLoc = PP.getLocForEndOfToken(LParenLoc);
+ PP.Diag(LParenLoc, diag::err_pp_expected_after) << II << tok::l_paren;
+ // If the next token looks like a filename or the start of one,
+ // assume it is and process it as such.
+ if (!Tok.is(tok::angle_string_literal) && !Tok.is(tok::string_literal) &&
+ !Tok.is(tok::less))
+ return false;
+ } else {
+ // Save '(' location for possible missing ')' message.
+ LParenLoc = Tok.getLocation();
+
+ if (PP.getCurrentLexer()) {
+ // Get the file name.
+ PP.getCurrentLexer()->LexIncludeFilename(Tok);
+ } else {
+ // We're in a macro, so we can't use LexIncludeFilename; just
+ // grab the next token.
+ PP.Lex(Tok);
+ }
+ }
+
+ // Reserve a buffer to get the spelling.
+ SmallString<128> FilenameBuffer;
+ StringRef Filename;
+ SourceLocation EndLoc;
+
+ switch (Tok.getKind()) {
+ case tok::eod:
+ // If the token kind is EOD, the error has already been diagnosed.
+ return false;
+
+ case tok::angle_string_literal:
+ case tok::string_literal: {
+ bool Invalid = false;
+ Filename = PP.getSpelling(Tok, FilenameBuffer, &Invalid);
+ if (Invalid)
+ return false;
+ break;
+ }
+
+ case tok::less:
+ // This could be a <foo/bar.h> file coming from a macro expansion. In this
+ // case, glue the tokens together into FilenameBuffer and interpret those.
+ FilenameBuffer.push_back('<');
+ if (PP.ConcatenateIncludeName(FilenameBuffer, EndLoc)) {
+ // Let the caller know a <eod> was found by changing the Token kind.
+ Tok.setKind(tok::eod);
+ return false; // Found <eod> but no ">"? Diagnostic already emitted.
+ }
+ Filename = FilenameBuffer;
+ break;
+ default:
+ PP.Diag(Tok.getLocation(), diag::err_pp_expects_filename);
+ return false;
+ }
+
+ SourceLocation FilenameLoc = Tok.getLocation();
+
+ // Get ')'.
+ PP.LexNonComment(Tok);
+
+ // Ensure we have a trailing ).
+ if (Tok.isNot(tok::r_paren)) {
+ PP.Diag(PP.getLocForEndOfToken(FilenameLoc), diag::err_pp_expected_after)
+ << II << tok::r_paren;
+ PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren;
+ return false;
+ }
+
+ bool isAngled = PP.GetIncludeFilenameSpelling(Tok.getLocation(), Filename);
+ // If GetIncludeFilenameSpelling set the start ptr to null, there was an
+ // error.
+ if (Filename.empty())
+ return false;
+
+ // Search include directories.
+ const DirectoryLookup *CurDir;
+ const FileEntry *File =
+ PP.LookupFile(FilenameLoc, Filename, isAngled, LookupFrom, LookupFromFile,
+ CurDir, nullptr, nullptr, nullptr);
+
+ // Get the result value. A result of true means the file exists.
+ return File != nullptr;
+}
+
+/// EvaluateHasInclude - Process a '__has_include("path")' expression.
+/// Returns true if successful.
+static bool EvaluateHasInclude(Token &Tok, IdentifierInfo *II,
+ Preprocessor &PP) {
+ return EvaluateHasIncludeCommon(Tok, II, PP, nullptr, nullptr);
+}
+
+/// EvaluateHasIncludeNext - Process '__has_include_next("path")' expression.
+/// Returns true if successful.
+static bool EvaluateHasIncludeNext(Token &Tok,
+ IdentifierInfo *II, Preprocessor &PP) {
+ // __has_include_next is like __has_include, except that we start
+ // searching after the current found directory. If we can't do this,
+ // issue a diagnostic.
+ // FIXME: Factor out duplication with
+ // Preprocessor::HandleIncludeNextDirective.
+ const DirectoryLookup *Lookup = PP.GetCurDirLookup();
+ const FileEntry *LookupFromFile = nullptr;
+ if (PP.isInPrimaryFile()) {
+ Lookup = nullptr;
+ PP.Diag(Tok, diag::pp_include_next_in_primary);
+ } else if (PP.getCurrentSubmodule()) {
+ // Start looking up in the directory *after* the one in which the current
+ // file would be found, if any.
+ assert(PP.getCurrentLexer() && "#include_next directive in macro?");
+ LookupFromFile = PP.getCurrentLexer()->getFileEntry();
+ Lookup = nullptr;
+ } else if (!Lookup) {
+ PP.Diag(Tok, diag::pp_include_next_absolute_path);
+ } else {
+ // Start looking up in the next directory.
+ ++Lookup;
+ }
+
+ return EvaluateHasIncludeCommon(Tok, II, PP, Lookup, LookupFromFile);
+}
+
+/// \brief Process __building_module(identifier) expression.
+/// \returns true if we are building the named module, false otherwise.
+static bool EvaluateBuildingModule(Token &Tok,
+ IdentifierInfo *II, Preprocessor &PP) {
+ // Get '('.
+ PP.LexNonComment(Tok);
+
+ // Ensure we have a '('.
+ if (Tok.isNot(tok::l_paren)) {
+ PP.Diag(Tok.getLocation(), diag::err_pp_expected_after) << II
+ << tok::l_paren;
+ return false;
+ }
+
+ // Save '(' location for possible missing ')' message.
+ SourceLocation LParenLoc = Tok.getLocation();
+
+ // Get the module name.
+ PP.LexNonComment(Tok);
+
+ // Ensure that we have an identifier.
+ if (Tok.isNot(tok::identifier)) {
+ PP.Diag(Tok.getLocation(), diag::err_expected_id_building_module);
+ return false;
+ }
+
+ bool Result
+ = Tok.getIdentifierInfo()->getName() == PP.getLangOpts().CurrentModule;
+
+ // Get ')'.
+ PP.LexNonComment(Tok);
+
+ // Ensure we have a trailing ).
+ if (Tok.isNot(tok::r_paren)) {
+ PP.Diag(Tok.getLocation(), diag::err_pp_expected_after) << II
+ << tok::r_paren;
+ PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren;
+ return false;
+ }
+
+ return Result;
+}
+
+/// ExpandBuiltinMacro - If an identifier token is read that is to be expanded
+/// as a builtin macro, handle it and return the next token as 'Tok'.
+void Preprocessor::ExpandBuiltinMacro(Token &Tok) {
+ // Figure out which token this is.
+ IdentifierInfo *II = Tok.getIdentifierInfo();
+ assert(II && "Can't be a macro without id info!");
+
+ // If this is an _Pragma or Microsoft __pragma directive, expand it,
+ // invoke the pragma handler, then lex the token after it.
+ if (II == Ident_Pragma)
+ return Handle_Pragma(Tok);
+ else if (II == Ident__pragma) // in non-MS mode this is null
+ return HandleMicrosoft__pragma(Tok);
+
+ ++NumBuiltinMacroExpanded;
+
+ SmallString<128> TmpBuffer;
+ llvm::raw_svector_ostream OS(TmpBuffer);
+
+ // Set up the return result.
+ Tok.setIdentifierInfo(nullptr);
+ Tok.clearFlag(Token::NeedsCleaning);
+
+ if (II == Ident__LINE__) {
+ // C99 6.10.8: "__LINE__: The presumed line number (within the current
+ // source file) of the current source line (an integer constant)". This can
+ // be affected by #line.
+ SourceLocation Loc = Tok.getLocation();
+
+ // Advance to the location of the first _, this might not be the first byte
+ // of the token if it starts with an escaped newline.
+ Loc = AdvanceToTokenCharacter(Loc, 0);
+
+ // One wrinkle here is that GCC expands __LINE__ to location of the *end* of
+ // a macro expansion. This doesn't matter for object-like macros, but
+ // can matter for a function-like macro that expands to contain __LINE__.
+ // Skip down through expansion points until we find a file loc for the
+ // end of the expansion history.
+ Loc = SourceMgr.getExpansionRange(Loc).second;
+ PresumedLoc PLoc = SourceMgr.getPresumedLoc(Loc);
+
+ // __LINE__ expands to a simple numeric value.
+ OS << (PLoc.isValid()? PLoc.getLine() : 1);
+ Tok.setKind(tok::numeric_constant);
+ } else if (II == Ident__FILE__ || II == Ident__BASE_FILE__) {
+ // C99 6.10.8: "__FILE__: The presumed name of the current source file (a
+ // character string literal)". This can be affected by #line.
+ PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation());
+
+ // __BASE_FILE__ is a GNU extension that returns the top of the presumed
+ // #include stack instead of the current file.
+ if (II == Ident__BASE_FILE__ && PLoc.isValid()) {
+ SourceLocation NextLoc = PLoc.getIncludeLoc();
+ while (NextLoc.isValid()) {
+ PLoc = SourceMgr.getPresumedLoc(NextLoc);
+ if (PLoc.isInvalid())
+ break;
+
+ NextLoc = PLoc.getIncludeLoc();
+ }
+ }
+
+ // Escape this filename. Turn '\' -> '\\' '"' -> '\"'
+ SmallString<128> FN;
+ if (PLoc.isValid()) {
+ FN += PLoc.getFilename();
+ Lexer::Stringify(FN);
+ OS << '"' << FN << '"';
+ }
+ Tok.setKind(tok::string_literal);
+ } else if (II == Ident__DATE__) {
+ Diag(Tok.getLocation(), diag::warn_pp_date_time);
+ if (!DATELoc.isValid())
+ ComputeDATE_TIME(DATELoc, TIMELoc, *this);
+ Tok.setKind(tok::string_literal);
+ Tok.setLength(strlen("\"Mmm dd yyyy\""));
+ Tok.setLocation(SourceMgr.createExpansionLoc(DATELoc, Tok.getLocation(),
+ Tok.getLocation(),
+ Tok.getLength()));
+ return;
+ } else if (II == Ident__TIME__) {
+ Diag(Tok.getLocation(), diag::warn_pp_date_time);
+ if (!TIMELoc.isValid())
+ ComputeDATE_TIME(DATELoc, TIMELoc, *this);
+ Tok.setKind(tok::string_literal);
+ Tok.setLength(strlen("\"hh:mm:ss\""));
+ Tok.setLocation(SourceMgr.createExpansionLoc(TIMELoc, Tok.getLocation(),
+ Tok.getLocation(),
+ Tok.getLength()));
+ return;
+ } else if (II == Ident__INCLUDE_LEVEL__) {
+ // Compute the presumed include depth of this token. This can be affected
+ // by GNU line markers.
+ unsigned Depth = 0;
+
+ PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation());
+ if (PLoc.isValid()) {
+ PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc());
+ for (; PLoc.isValid(); ++Depth)
+ PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc());
+ }
+
+ // __INCLUDE_LEVEL__ expands to a simple numeric value.
+ OS << Depth;
+ Tok.setKind(tok::numeric_constant);
+ } else if (II == Ident__TIMESTAMP__) {
+ Diag(Tok.getLocation(), diag::warn_pp_date_time);
+ // MSVC, ICC, GCC, VisualAge C++ extension. The generated string should be
+ // of the form "Ddd Mmm dd hh::mm::ss yyyy", which is returned by asctime.
+
+ // Get the file that we are lexing out of. If we're currently lexing from
+ // a macro, dig into the include stack.
+ const FileEntry *CurFile = nullptr;
+ PreprocessorLexer *TheLexer = getCurrentFileLexer();
+
+ if (TheLexer)
+ CurFile = SourceMgr.getFileEntryForID(TheLexer->getFileID());
+
+ const char *Result;
+ if (CurFile) {
+ time_t TT = CurFile->getModificationTime();
+ struct tm *TM = localtime(&TT);
+ Result = asctime(TM);
+ } else {
+ Result = "??? ??? ?? ??:??:?? ????\n";
+ }
+ // Surround the string with " and strip the trailing newline.
+ OS << '"' << StringRef(Result).drop_back() << '"';
+ Tok.setKind(tok::string_literal);
+ } else if (II == Ident__COUNTER__) {
+ // __COUNTER__ expands to a simple numeric value.
+ OS << CounterValue++;
+ Tok.setKind(tok::numeric_constant);
+ } else if (II == Ident__has_feature ||
+ II == Ident__has_extension ||
+ II == Ident__has_builtin ||
+ II == Ident__is_identifier ||
+ II == Ident__has_attribute ||
+ II == Ident__has_declspec ||
+ II == Ident__has_cpp_attribute) {
+ // The argument to these builtins should be a parenthesized identifier.
+ SourceLocation StartLoc = Tok.getLocation();
+
+ bool IsValid = false;
+ IdentifierInfo *FeatureII = nullptr;
+ IdentifierInfo *ScopeII = nullptr;
+
+ // Read the '('.
+ LexUnexpandedToken(Tok);
+ if (Tok.is(tok::l_paren)) {
+ // Read the identifier
+ LexUnexpandedToken(Tok);
+ if ((FeatureII = Tok.getIdentifierInfo())) {
+ // If we're checking __has_cpp_attribute, it is possible to receive a
+ // scope token. Read the "::", if it's available.
+ LexUnexpandedToken(Tok);
+ bool IsScopeValid = true;
+ if (II == Ident__has_cpp_attribute && Tok.is(tok::coloncolon)) {
+ LexUnexpandedToken(Tok);
+ // The first thing we read was not the feature, it was the scope.
+ ScopeII = FeatureII;
+ if ((FeatureII = Tok.getIdentifierInfo()))
+ LexUnexpandedToken(Tok);
+ else
+ IsScopeValid = false;
+ }
+ // Read the closing paren.
+ if (IsScopeValid && Tok.is(tok::r_paren))
+ IsValid = true;
+ }
+ // Eat tokens until ')'.
+ while (Tok.isNot(tok::r_paren) && Tok.isNot(tok::eod) &&
+ Tok.isNot(tok::eof))
+ LexUnexpandedToken(Tok);
+ }
+
+ int Value = 0;
+ if (!IsValid)
+ Diag(StartLoc, diag::err_feature_check_malformed);
+ else if (II == Ident__is_identifier)
+ Value = FeatureII->getTokenID() == tok::identifier;
+ else if (II == Ident__has_builtin) {
+ // Check for a builtin is trivial.
+ Value = FeatureII->getBuiltinID() != 0;
+ } else if (II == Ident__has_attribute)
+ Value = hasAttribute(AttrSyntax::GNU, nullptr, FeatureII,
+ getTargetInfo().getTriple(), getLangOpts());
+ else if (II == Ident__has_cpp_attribute)
+ Value = hasAttribute(AttrSyntax::CXX, ScopeII, FeatureII,
+ getTargetInfo().getTriple(), getLangOpts());
+ else if (II == Ident__has_declspec)
+ Value = hasAttribute(AttrSyntax::Declspec, nullptr, FeatureII,
+ getTargetInfo().getTriple(), getLangOpts());
+ else if (II == Ident__has_extension)
+ Value = HasExtension(*this, FeatureII);
+ else {
+ assert(II == Ident__has_feature && "Must be feature check");
+ Value = HasFeature(*this, FeatureII);
+ }
+
+ if (!IsValid)
+ return;
+ OS << Value;
+ Tok.setKind(tok::numeric_constant);
+ } else if (II == Ident__has_include ||
+ II == Ident__has_include_next) {
+ // The argument to these two builtins should be a parenthesized
+ // file name string literal using angle brackets (<>) or
+ // double-quotes ("").
+ bool Value;
+ if (II == Ident__has_include)
+ Value = EvaluateHasInclude(Tok, II, *this);
+ else
+ Value = EvaluateHasIncludeNext(Tok, II, *this);
+
+ if (Tok.isNot(tok::r_paren))
+ return;
+ OS << (int)Value;
+ Tok.setKind(tok::numeric_constant);
+ } else if (II == Ident__has_warning) {
+ // The argument should be a parenthesized string literal.
+ // The argument to these builtins should be a parenthesized identifier.
+ SourceLocation StartLoc = Tok.getLocation();
+ bool IsValid = false;
+ bool Value = false;
+ // Read the '('.
+ LexUnexpandedToken(Tok);
+ do {
+ if (Tok.isNot(tok::l_paren)) {
+ Diag(StartLoc, diag::err_warning_check_malformed);
+ break;
+ }
+
+ LexUnexpandedToken(Tok);
+ std::string WarningName;
+ SourceLocation StrStartLoc = Tok.getLocation();
+ if (!FinishLexStringLiteral(Tok, WarningName, "'__has_warning'",
+ /*MacroExpansion=*/false)) {
+ // Eat tokens until ')'.
+ while (Tok.isNot(tok::r_paren) && Tok.isNot(tok::eod) &&
+ Tok.isNot(tok::eof))
+ LexUnexpandedToken(Tok);
+ break;
+ }
+
+ // Is the end a ')'?
+ if (!(IsValid = Tok.is(tok::r_paren))) {
+ Diag(StartLoc, diag::err_warning_check_malformed);
+ break;
+ }
+
+ // FIXME: Should we accept "-R..." flags here, or should that be handled
+ // by a separate __has_remark?
+ if (WarningName.size() < 3 || WarningName[0] != '-' ||
+ WarningName[1] != 'W') {
+ Diag(StrStartLoc, diag::warn_has_warning_invalid_option);
+ break;
+ }
+
+ // Finally, check if the warning flags maps to a diagnostic group.
+ // We construct a SmallVector here to talk to getDiagnosticIDs().
+ // Although we don't use the result, this isn't a hot path, and not
+ // worth special casing.
+ SmallVector<diag::kind, 10> Diags;
+ Value = !getDiagnostics().getDiagnosticIDs()->
+ getDiagnosticsInGroup(diag::Flavor::WarningOrError,
+ WarningName.substr(2), Diags);
+ } while (false);
+
+ if (!IsValid)
+ return;
+ OS << (int)Value;
+ Tok.setKind(tok::numeric_constant);
+ } else if (II == Ident__building_module) {
+ // The argument to this builtin should be an identifier. The
+ // builtin evaluates to 1 when that identifier names the module we are
+ // currently building.
+ OS << (int)EvaluateBuildingModule(Tok, II, *this);
+ Tok.setKind(tok::numeric_constant);
+ } else if (II == Ident__MODULE__) {
+ // The current module as an identifier.
+ OS << getLangOpts().CurrentModule;
+ IdentifierInfo *ModuleII = getIdentifierInfo(getLangOpts().CurrentModule);
+ Tok.setIdentifierInfo(ModuleII);
+ Tok.setKind(ModuleII->getTokenID());
+ } else if (II == Ident__identifier) {
+ SourceLocation Loc = Tok.getLocation();
+
+ // We're expecting '__identifier' '(' identifier ')'. Try to recover
+ // if the parens are missing.
+ LexNonComment(Tok);
+ if (Tok.isNot(tok::l_paren)) {
+ // No '(', use end of last token.
+ Diag(getLocForEndOfToken(Loc), diag::err_pp_expected_after)
+ << II << tok::l_paren;
+ // If the next token isn't valid as our argument, we can't recover.
+ if (!Tok.isAnnotation() && Tok.getIdentifierInfo())
+ Tok.setKind(tok::identifier);
+ return;
+ }
+
+ SourceLocation LParenLoc = Tok.getLocation();
+ LexNonComment(Tok);
+
+ if (!Tok.isAnnotation() && Tok.getIdentifierInfo())
+ Tok.setKind(tok::identifier);
+ else {
+ Diag(Tok.getLocation(), diag::err_pp_identifier_arg_not_identifier)
+ << Tok.getKind();
+ // Don't walk past anything that's not a real token.
+ if (Tok.is(tok::eof) || Tok.is(tok::eod) || Tok.isAnnotation())
+ return;
+ }
+
+ // Discard the ')', preserving 'Tok' as our result.
+ Token RParen;
+ LexNonComment(RParen);
+ if (RParen.isNot(tok::r_paren)) {
+ Diag(getLocForEndOfToken(Tok.getLocation()), diag::err_pp_expected_after)
+ << Tok.getKind() << tok::r_paren;
+ Diag(LParenLoc, diag::note_matching) << tok::l_paren;
+ }
+ return;
+ } else {
+ llvm_unreachable("Unknown identifier!");
+ }
+ CreateString(OS.str(), Tok, Tok.getLocation(), Tok.getLocation());
+}
+
+void Preprocessor::markMacroAsUsed(MacroInfo *MI) {
+ // If the 'used' status changed, and the macro requires 'unused' warning,
+ // remove its SourceLocation from the warn-for-unused-macro locations.
+ if (MI->isWarnIfUnused() && !MI->isUsed())
+ WarnUnusedMacroLocs.erase(MI->getDefinitionLoc());
+ MI->setIsUsed(true);
+}
diff --git a/contrib/llvm/tools/clang/lib/Lex/PTHLexer.cpp b/contrib/llvm/tools/clang/lib/Lex/PTHLexer.cpp
new file mode 100644
index 0000000..af7a153
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Lex/PTHLexer.cpp
@@ -0,0 +1,729 @@
+//===--- PTHLexer.cpp - Lex from a token stream ---------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the PTHLexer interface.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Lex/PTHLexer.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/FileSystemStatCache.h"
+#include "clang/Basic/IdentifierTable.h"
+#include "clang/Basic/TokenKinds.h"
+#include "clang/Lex/LexDiagnostic.h"
+#include "clang/Lex/PTHManager.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Lex/Token.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringMap.h"
+#include "llvm/Support/EndianStream.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include <memory>
+#include <system_error>
+using namespace clang;
+
+static const unsigned StoredTokenSize = 1 + 1 + 2 + 4 + 4;
+
+//===----------------------------------------------------------------------===//
+// PTHLexer methods.
+//===----------------------------------------------------------------------===//
+
+PTHLexer::PTHLexer(Preprocessor &PP, FileID FID, const unsigned char *D,
+ const unsigned char *ppcond, PTHManager &PM)
+ : PreprocessorLexer(&PP, FID), TokBuf(D), CurPtr(D), LastHashTokPtr(nullptr),
+ PPCond(ppcond), CurPPCondPtr(ppcond), PTHMgr(PM) {
+
+ FileStartLoc = PP.getSourceManager().getLocForStartOfFile(FID);
+}
+
+bool PTHLexer::Lex(Token& Tok) {
+ //===--------------------------------------==//
+ // Read the raw token data.
+ //===--------------------------------------==//
+ using namespace llvm::support;
+
+ // Shadow CurPtr into an automatic variable.
+ const unsigned char *CurPtrShadow = CurPtr;
+
+ // Read in the data for the token.
+ unsigned Word0 = endian::readNext<uint32_t, little, aligned>(CurPtrShadow);
+ uint32_t IdentifierID =
+ endian::readNext<uint32_t, little, aligned>(CurPtrShadow);
+ uint32_t FileOffset =
+ endian::readNext<uint32_t, little, aligned>(CurPtrShadow);
+
+ tok::TokenKind TKind = (tok::TokenKind) (Word0 & 0xFF);
+ Token::TokenFlags TFlags = (Token::TokenFlags) ((Word0 >> 8) & 0xFF);
+ uint32_t Len = Word0 >> 16;
+
+ CurPtr = CurPtrShadow;
+
+ //===--------------------------------------==//
+ // Construct the token itself.
+ //===--------------------------------------==//
+
+ Tok.startToken();
+ Tok.setKind(TKind);
+ Tok.setFlag(TFlags);
+ assert(!LexingRawMode);
+ Tok.setLocation(FileStartLoc.getLocWithOffset(FileOffset));
+ Tok.setLength(Len);
+
+ // Handle identifiers.
+ if (Tok.isLiteral()) {
+ Tok.setLiteralData((const char*) (PTHMgr.SpellingBase + IdentifierID));
+ }
+ else if (IdentifierID) {
+ MIOpt.ReadToken();
+ IdentifierInfo *II = PTHMgr.GetIdentifierInfo(IdentifierID-1);
+
+ Tok.setIdentifierInfo(II);
+
+ // Change the kind of this identifier to the appropriate token kind, e.g.
+ // turning "for" into a keyword.
+ Tok.setKind(II->getTokenID());
+
+ if (II->isHandleIdentifierCase())
+ return PP->HandleIdentifier(Tok);
+
+ return true;
+ }
+
+ //===--------------------------------------==//
+ // Process the token.
+ //===--------------------------------------==//
+ if (TKind == tok::eof) {
+ // Save the end-of-file token.
+ EofToken = Tok;
+
+ assert(!ParsingPreprocessorDirective);
+ assert(!LexingRawMode);
+
+ return LexEndOfFile(Tok);
+ }
+
+ if (TKind == tok::hash && Tok.isAtStartOfLine()) {
+ LastHashTokPtr = CurPtr - StoredTokenSize;
+ assert(!LexingRawMode);
+ PP->HandleDirective(Tok);
+
+ return false;
+ }
+
+ if (TKind == tok::eod) {
+ assert(ParsingPreprocessorDirective);
+ ParsingPreprocessorDirective = false;
+ return true;
+ }
+
+ MIOpt.ReadToken();
+ return true;
+}
+
+bool PTHLexer::LexEndOfFile(Token &Result) {
+ // If we hit the end of the file while parsing a preprocessor directive,
+ // end the preprocessor directive first. The next token returned will
+ // then be the end of file.
+ if (ParsingPreprocessorDirective) {
+ ParsingPreprocessorDirective = false; // Done parsing the "line".
+ return true; // Have a token.
+ }
+
+ assert(!LexingRawMode);
+
+ // If we are in a #if directive, emit an error.
+ while (!ConditionalStack.empty()) {
+ if (PP->getCodeCompletionFileLoc() != FileStartLoc)
+ PP->Diag(ConditionalStack.back().IfLoc,
+ diag::err_pp_unterminated_conditional);
+ ConditionalStack.pop_back();
+ }
+
+ // Finally, let the preprocessor handle this.
+ return PP->HandleEndOfFile(Result);
+}
+
+// FIXME: We can just grab the last token instead of storing a copy
+// into EofToken.
+void PTHLexer::getEOF(Token& Tok) {
+ assert(EofToken.is(tok::eof));
+ Tok = EofToken;
+}
+
+void PTHLexer::DiscardToEndOfLine() {
+ assert(ParsingPreprocessorDirective && ParsingFilename == false &&
+ "Must be in a preprocessing directive!");
+
+ // We assume that if the preprocessor wishes to discard to the end of
+ // the line that it also means to end the current preprocessor directive.
+ ParsingPreprocessorDirective = false;
+
+ // Skip tokens by only peeking at their token kind and the flags.
+ // We don't need to actually reconstruct full tokens from the token buffer.
+ // This saves some copies and it also reduces IdentifierInfo* lookup.
+ const unsigned char* p = CurPtr;
+ while (1) {
+ // Read the token kind. Are we at the end of the file?
+ tok::TokenKind x = (tok::TokenKind) (uint8_t) *p;
+ if (x == tok::eof) break;
+
+ // Read the token flags. Are we at the start of the next line?
+ Token::TokenFlags y = (Token::TokenFlags) (uint8_t) p[1];
+ if (y & Token::StartOfLine) break;
+
+ // Skip to the next token.
+ p += StoredTokenSize;
+ }
+
+ CurPtr = p;
+}
+
+/// SkipBlock - Used by Preprocessor to skip the current conditional block.
+bool PTHLexer::SkipBlock() {
+ using namespace llvm::support;
+ assert(CurPPCondPtr && "No cached PP conditional information.");
+ assert(LastHashTokPtr && "No known '#' token.");
+
+ const unsigned char *HashEntryI = nullptr;
+ uint32_t TableIdx;
+
+ do {
+ // Read the token offset from the side-table.
+ uint32_t Offset = endian::readNext<uint32_t, little, aligned>(CurPPCondPtr);
+
+ // Read the target table index from the side-table.
+ TableIdx = endian::readNext<uint32_t, little, aligned>(CurPPCondPtr);
+
+ // Compute the actual memory address of the '#' token data for this entry.
+ HashEntryI = TokBuf + Offset;
+
+ // Optmization: "Sibling jumping". #if...#else...#endif blocks can
+ // contain nested blocks. In the side-table we can jump over these
+ // nested blocks instead of doing a linear search if the next "sibling"
+ // entry is not at a location greater than LastHashTokPtr.
+ if (HashEntryI < LastHashTokPtr && TableIdx) {
+ // In the side-table we are still at an entry for a '#' token that
+ // is earlier than the last one we saw. Check if the location we would
+ // stride gets us closer.
+ const unsigned char* NextPPCondPtr =
+ PPCond + TableIdx*(sizeof(uint32_t)*2);
+ assert(NextPPCondPtr >= CurPPCondPtr);
+ // Read where we should jump to.
+ const unsigned char *HashEntryJ =
+ TokBuf + endian::readNext<uint32_t, little, aligned>(NextPPCondPtr);
+
+ if (HashEntryJ <= LastHashTokPtr) {
+ // Jump directly to the next entry in the side table.
+ HashEntryI = HashEntryJ;
+ TableIdx = endian::readNext<uint32_t, little, aligned>(NextPPCondPtr);
+ CurPPCondPtr = NextPPCondPtr;
+ }
+ }
+ }
+ while (HashEntryI < LastHashTokPtr);
+ assert(HashEntryI == LastHashTokPtr && "No PP-cond entry found for '#'");
+ assert(TableIdx && "No jumping from #endifs.");
+
+ // Update our side-table iterator.
+ const unsigned char* NextPPCondPtr = PPCond + TableIdx*(sizeof(uint32_t)*2);
+ assert(NextPPCondPtr >= CurPPCondPtr);
+ CurPPCondPtr = NextPPCondPtr;
+
+ // Read where we should jump to.
+ HashEntryI =
+ TokBuf + endian::readNext<uint32_t, little, aligned>(NextPPCondPtr);
+ uint32_t NextIdx = endian::readNext<uint32_t, little, aligned>(NextPPCondPtr);
+
+ // By construction NextIdx will be zero if this is a #endif. This is useful
+ // to know to obviate lexing another token.
+ bool isEndif = NextIdx == 0;
+
+ // This case can occur when we see something like this:
+ //
+ // #if ...
+ // /* a comment or nothing */
+ // #elif
+ //
+ // If we are skipping the first #if block it will be the case that CurPtr
+ // already points 'elif'. Just return.
+
+ if (CurPtr > HashEntryI) {
+ assert(CurPtr == HashEntryI + StoredTokenSize);
+ // Did we reach a #endif? If so, go ahead and consume that token as well.
+ if (isEndif)
+ CurPtr += StoredTokenSize * 2;
+ else
+ LastHashTokPtr = HashEntryI;
+
+ return isEndif;
+ }
+
+ // Otherwise, we need to advance. Update CurPtr to point to the '#' token.
+ CurPtr = HashEntryI;
+
+ // Update the location of the last observed '#'. This is useful if we
+ // are skipping multiple blocks.
+ LastHashTokPtr = CurPtr;
+
+ // Skip the '#' token.
+ assert(((tok::TokenKind)*CurPtr) == tok::hash);
+ CurPtr += StoredTokenSize;
+
+ // Did we reach a #endif? If so, go ahead and consume that token as well.
+ if (isEndif) {
+ CurPtr += StoredTokenSize * 2;
+ }
+
+ return isEndif;
+}
+
+SourceLocation PTHLexer::getSourceLocation() {
+ // getSourceLocation is not on the hot path. It is used to get the location
+ // of the next token when transitioning back to this lexer when done
+ // handling a #included file. Just read the necessary data from the token
+ // data buffer to construct the SourceLocation object.
+ // NOTE: This is a virtual function; hence it is defined out-of-line.
+ using namespace llvm::support;
+
+ const unsigned char *OffsetPtr = CurPtr + (StoredTokenSize - 4);
+ uint32_t Offset = endian::readNext<uint32_t, little, aligned>(OffsetPtr);
+ return FileStartLoc.getLocWithOffset(Offset);
+}
+
+//===----------------------------------------------------------------------===//
+// PTH file lookup: map from strings to file data.
+//===----------------------------------------------------------------------===//
+
+/// PTHFileLookup - This internal data structure is used by the PTHManager
+/// to map from FileEntry objects managed by FileManager to offsets within
+/// the PTH file.
+namespace {
+class PTHFileData {
+ const uint32_t TokenOff;
+ const uint32_t PPCondOff;
+public:
+ PTHFileData(uint32_t tokenOff, uint32_t ppCondOff)
+ : TokenOff(tokenOff), PPCondOff(ppCondOff) {}
+
+ uint32_t getTokenOffset() const { return TokenOff; }
+ uint32_t getPPCondOffset() const { return PPCondOff; }
+};
+
+
+class PTHFileLookupCommonTrait {
+public:
+ typedef std::pair<unsigned char, const char*> internal_key_type;
+ typedef unsigned hash_value_type;
+ typedef unsigned offset_type;
+
+ static hash_value_type ComputeHash(internal_key_type x) {
+ return llvm::HashString(x.second);
+ }
+
+ static std::pair<unsigned, unsigned>
+ ReadKeyDataLength(const unsigned char*& d) {
+ using namespace llvm::support;
+ unsigned keyLen =
+ (unsigned)endian::readNext<uint16_t, little, unaligned>(d);
+ unsigned dataLen = (unsigned) *(d++);
+ return std::make_pair(keyLen, dataLen);
+ }
+
+ static internal_key_type ReadKey(const unsigned char* d, unsigned) {
+ unsigned char k = *(d++); // Read the entry kind.
+ return std::make_pair(k, (const char*) d);
+ }
+};
+
+} // end anonymous namespace
+
+class PTHManager::PTHFileLookupTrait : public PTHFileLookupCommonTrait {
+public:
+ typedef const FileEntry* external_key_type;
+ typedef PTHFileData data_type;
+
+ static internal_key_type GetInternalKey(const FileEntry* FE) {
+ return std::make_pair((unsigned char) 0x1, FE->getName());
+ }
+
+ static bool EqualKey(internal_key_type a, internal_key_type b) {
+ return a.first == b.first && strcmp(a.second, b.second) == 0;
+ }
+
+ static PTHFileData ReadData(const internal_key_type& k,
+ const unsigned char* d, unsigned) {
+ assert(k.first == 0x1 && "Only file lookups can match!");
+ using namespace llvm::support;
+ uint32_t x = endian::readNext<uint32_t, little, unaligned>(d);
+ uint32_t y = endian::readNext<uint32_t, little, unaligned>(d);
+ return PTHFileData(x, y);
+ }
+};
+
+class PTHManager::PTHStringLookupTrait {
+public:
+ typedef uint32_t data_type;
+ typedef const std::pair<const char*, unsigned> external_key_type;
+ typedef external_key_type internal_key_type;
+ typedef uint32_t hash_value_type;
+ typedef unsigned offset_type;
+
+ static bool EqualKey(const internal_key_type& a,
+ const internal_key_type& b) {
+ return (a.second == b.second) ? memcmp(a.first, b.first, a.second) == 0
+ : false;
+ }
+
+ static hash_value_type ComputeHash(const internal_key_type& a) {
+ return llvm::HashString(StringRef(a.first, a.second));
+ }
+
+ // This hopefully will just get inlined and removed by the optimizer.
+ static const internal_key_type&
+ GetInternalKey(const external_key_type& x) { return x; }
+
+ static std::pair<unsigned, unsigned>
+ ReadKeyDataLength(const unsigned char*& d) {
+ using namespace llvm::support;
+ return std::make_pair(
+ (unsigned)endian::readNext<uint16_t, little, unaligned>(d),
+ sizeof(uint32_t));
+ }
+
+ static std::pair<const char*, unsigned>
+ ReadKey(const unsigned char* d, unsigned n) {
+ assert(n >= 2 && d[n-1] == '\0');
+ return std::make_pair((const char*) d, n-1);
+ }
+
+ static uint32_t ReadData(const internal_key_type& k, const unsigned char* d,
+ unsigned) {
+ using namespace llvm::support;
+ return endian::readNext<uint32_t, little, unaligned>(d);
+ }
+};
+
+//===----------------------------------------------------------------------===//
+// PTHManager methods.
+//===----------------------------------------------------------------------===//
+
+PTHManager::PTHManager(
+ std::unique_ptr<const llvm::MemoryBuffer> buf,
+ std::unique_ptr<PTHFileLookup> fileLookup, const unsigned char *idDataTable,
+ std::unique_ptr<IdentifierInfo *[], llvm::FreeDeleter> perIDCache,
+ std::unique_ptr<PTHStringIdLookup> stringIdLookup, unsigned numIds,
+ const unsigned char *spellingBase, const char *originalSourceFile)
+ : Buf(std::move(buf)), PerIDCache(std::move(perIDCache)),
+ FileLookup(std::move(fileLookup)), IdDataTable(idDataTable),
+ StringIdLookup(std::move(stringIdLookup)), NumIds(numIds), PP(nullptr),
+ SpellingBase(spellingBase), OriginalSourceFile(originalSourceFile) {}
+
+PTHManager::~PTHManager() {
+}
+
+static void InvalidPTH(DiagnosticsEngine &Diags, const char *Msg) {
+ Diags.Report(Diags.getCustomDiagID(DiagnosticsEngine::Error, "%0")) << Msg;
+}
+
+PTHManager *PTHManager::Create(const std::string &file,
+ DiagnosticsEngine &Diags) {
+ // Memory map the PTH file.
+ llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> FileOrErr =
+ llvm::MemoryBuffer::getFile(file);
+
+ if (!FileOrErr) {
+ // FIXME: Add ec.message() to this diag.
+ Diags.Report(diag::err_invalid_pth_file) << file;
+ return nullptr;
+ }
+ std::unique_ptr<llvm::MemoryBuffer> File = std::move(FileOrErr.get());
+
+ using namespace llvm::support;
+
+ // Get the buffer ranges and check if there are at least three 32-bit
+ // words at the end of the file.
+ const unsigned char *BufBeg = (const unsigned char*)File->getBufferStart();
+ const unsigned char *BufEnd = (const unsigned char*)File->getBufferEnd();
+
+ // Check the prologue of the file.
+ if ((BufEnd - BufBeg) < (signed)(sizeof("cfe-pth") + 4 + 4) ||
+ memcmp(BufBeg, "cfe-pth", sizeof("cfe-pth")) != 0) {
+ Diags.Report(diag::err_invalid_pth_file) << file;
+ return nullptr;
+ }
+
+ // Read the PTH version.
+ const unsigned char *p = BufBeg + (sizeof("cfe-pth"));
+ unsigned Version = endian::readNext<uint32_t, little, aligned>(p);
+
+ if (Version < PTHManager::Version) {
+ InvalidPTH(Diags,
+ Version < PTHManager::Version
+ ? "PTH file uses an older PTH format that is no longer supported"
+ : "PTH file uses a newer PTH format that cannot be read");
+ return nullptr;
+ }
+
+ // Compute the address of the index table at the end of the PTH file.
+ const unsigned char *PrologueOffset = p;
+
+ if (PrologueOffset >= BufEnd) {
+ Diags.Report(diag::err_invalid_pth_file) << file;
+ return nullptr;
+ }
+
+ // Construct the file lookup table. This will be used for mapping from
+ // FileEntry*'s to cached tokens.
+ const unsigned char* FileTableOffset = PrologueOffset + sizeof(uint32_t)*2;
+ const unsigned char *FileTable =
+ BufBeg + endian::readNext<uint32_t, little, aligned>(FileTableOffset);
+
+ if (!(FileTable > BufBeg && FileTable < BufEnd)) {
+ Diags.Report(diag::err_invalid_pth_file) << file;
+ return nullptr; // FIXME: Proper error diagnostic?
+ }
+
+ std::unique_ptr<PTHFileLookup> FL(PTHFileLookup::Create(FileTable, BufBeg));
+
+ // Warn if the PTH file is empty. We still want to create a PTHManager
+ // as the PTH could be used with -include-pth.
+ if (FL->isEmpty())
+ InvalidPTH(Diags, "PTH file contains no cached source data");
+
+ // Get the location of the table mapping from persistent ids to the
+ // data needed to reconstruct identifiers.
+ const unsigned char* IDTableOffset = PrologueOffset + sizeof(uint32_t)*0;
+ const unsigned char *IData =
+ BufBeg + endian::readNext<uint32_t, little, aligned>(IDTableOffset);
+
+ if (!(IData >= BufBeg && IData < BufEnd)) {
+ Diags.Report(diag::err_invalid_pth_file) << file;
+ return nullptr;
+ }
+
+ // Get the location of the hashtable mapping between strings and
+ // persistent IDs.
+ const unsigned char* StringIdTableOffset = PrologueOffset + sizeof(uint32_t)*1;
+ const unsigned char *StringIdTable =
+ BufBeg + endian::readNext<uint32_t, little, aligned>(StringIdTableOffset);
+ if (!(StringIdTable >= BufBeg && StringIdTable < BufEnd)) {
+ Diags.Report(diag::err_invalid_pth_file) << file;
+ return nullptr;
+ }
+
+ std::unique_ptr<PTHStringIdLookup> SL(
+ PTHStringIdLookup::Create(StringIdTable, BufBeg));
+
+ // Get the location of the spelling cache.
+ const unsigned char* spellingBaseOffset = PrologueOffset + sizeof(uint32_t)*3;
+ const unsigned char *spellingBase =
+ BufBeg + endian::readNext<uint32_t, little, aligned>(spellingBaseOffset);
+ if (!(spellingBase >= BufBeg && spellingBase < BufEnd)) {
+ Diags.Report(diag::err_invalid_pth_file) << file;
+ return nullptr;
+ }
+
+ // Get the number of IdentifierInfos and pre-allocate the identifier cache.
+ uint32_t NumIds = endian::readNext<uint32_t, little, aligned>(IData);
+
+ // Pre-allocate the persistent ID -> IdentifierInfo* cache. We use calloc()
+ // so that we in the best case only zero out memory once when the OS returns
+ // us new pages.
+ std::unique_ptr<IdentifierInfo *[], llvm::FreeDeleter> PerIDCache;
+
+ if (NumIds) {
+ PerIDCache.reset((IdentifierInfo **)calloc(NumIds, sizeof(PerIDCache[0])));
+ if (!PerIDCache) {
+ InvalidPTH(Diags, "Could not allocate memory for processing PTH file");
+ return nullptr;
+ }
+ }
+
+ // Compute the address of the original source file.
+ const unsigned char* originalSourceBase = PrologueOffset + sizeof(uint32_t)*4;
+ unsigned len =
+ endian::readNext<uint16_t, little, unaligned>(originalSourceBase);
+ if (!len) originalSourceBase = nullptr;
+
+ // Create the new PTHManager.
+ return new PTHManager(std::move(File), std::move(FL), IData,
+ std::move(PerIDCache), std::move(SL), NumIds,
+ spellingBase, (const char *)originalSourceBase);
+}
+
+IdentifierInfo* PTHManager::LazilyCreateIdentifierInfo(unsigned PersistentID) {
+ using namespace llvm::support;
+ // Look in the PTH file for the string data for the IdentifierInfo object.
+ const unsigned char* TableEntry = IdDataTable + sizeof(uint32_t)*PersistentID;
+ const unsigned char *IDData =
+ (const unsigned char *)Buf->getBufferStart() +
+ endian::readNext<uint32_t, little, aligned>(TableEntry);
+ assert(IDData < (const unsigned char*)Buf->getBufferEnd());
+
+ // Allocate the object.
+ std::pair<IdentifierInfo,const unsigned char*> *Mem =
+ Alloc.Allocate<std::pair<IdentifierInfo,const unsigned char*> >();
+
+ Mem->second = IDData;
+ assert(IDData[0] != '\0');
+ IdentifierInfo *II = new ((void*) Mem) IdentifierInfo();
+
+ // Store the new IdentifierInfo in the cache.
+ PerIDCache[PersistentID] = II;
+ assert(II->getNameStart() && II->getNameStart()[0] != '\0');
+ return II;
+}
+
+IdentifierInfo* PTHManager::get(StringRef Name) {
+ // Double check our assumption that the last character isn't '\0'.
+ assert(Name.empty() || Name.back() != '\0');
+ PTHStringIdLookup::iterator I =
+ StringIdLookup->find(std::make_pair(Name.data(), Name.size()));
+ if (I == StringIdLookup->end()) // No identifier found?
+ return nullptr;
+
+ // Match found. Return the identifier!
+ assert(*I > 0);
+ return GetIdentifierInfo(*I-1);
+}
+
+PTHLexer *PTHManager::CreateLexer(FileID FID) {
+ const FileEntry *FE = PP->getSourceManager().getFileEntryForID(FID);
+ if (!FE)
+ return nullptr;
+
+ using namespace llvm::support;
+
+ // Lookup the FileEntry object in our file lookup data structure. It will
+ // return a variant that indicates whether or not there is an offset within
+ // the PTH file that contains cached tokens.
+ PTHFileLookup::iterator I = FileLookup->find(FE);
+
+ if (I == FileLookup->end()) // No tokens available?
+ return nullptr;
+
+ const PTHFileData& FileData = *I;
+
+ const unsigned char *BufStart = (const unsigned char *)Buf->getBufferStart();
+ // Compute the offset of the token data within the buffer.
+ const unsigned char* data = BufStart + FileData.getTokenOffset();
+
+ // Get the location of pp-conditional table.
+ const unsigned char* ppcond = BufStart + FileData.getPPCondOffset();
+ uint32_t Len = endian::readNext<uint32_t, little, aligned>(ppcond);
+ if (Len == 0) ppcond = nullptr;
+
+ assert(PP && "No preprocessor set yet!");
+ return new PTHLexer(*PP, FID, data, ppcond, *this);
+}
+
+//===----------------------------------------------------------------------===//
+// 'stat' caching.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class PTHStatData {
+public:
+ const bool HasData;
+ uint64_t Size;
+ time_t ModTime;
+ llvm::sys::fs::UniqueID UniqueID;
+ bool IsDirectory;
+
+ PTHStatData(uint64_t Size, time_t ModTime, llvm::sys::fs::UniqueID UniqueID,
+ bool IsDirectory)
+ : HasData(true), Size(Size), ModTime(ModTime), UniqueID(UniqueID),
+ IsDirectory(IsDirectory) {}
+
+ PTHStatData() : HasData(false) {}
+};
+
+class PTHStatLookupTrait : public PTHFileLookupCommonTrait {
+public:
+ typedef const char* external_key_type; // const char*
+ typedef PTHStatData data_type;
+
+ static internal_key_type GetInternalKey(const char *path) {
+ // The key 'kind' doesn't matter here because it is ignored in EqualKey.
+ return std::make_pair((unsigned char) 0x0, path);
+ }
+
+ static bool EqualKey(internal_key_type a, internal_key_type b) {
+ // When doing 'stat' lookups we don't care about the kind of 'a' and 'b',
+ // just the paths.
+ return strcmp(a.second, b.second) == 0;
+ }
+
+ static data_type ReadData(const internal_key_type& k, const unsigned char* d,
+ unsigned) {
+
+ if (k.first /* File or Directory */) {
+ bool IsDirectory = true;
+ if (k.first == 0x1 /* File */) {
+ IsDirectory = false;
+ d += 4 * 2; // Skip the first 2 words.
+ }
+
+ using namespace llvm::support;
+
+ uint64_t File = endian::readNext<uint64_t, little, unaligned>(d);
+ uint64_t Device = endian::readNext<uint64_t, little, unaligned>(d);
+ llvm::sys::fs::UniqueID UniqueID(Device, File);
+ time_t ModTime = endian::readNext<uint64_t, little, unaligned>(d);
+ uint64_t Size = endian::readNext<uint64_t, little, unaligned>(d);
+ return data_type(Size, ModTime, UniqueID, IsDirectory);
+ }
+
+ // Negative stat. Don't read anything.
+ return data_type();
+ }
+};
+} // end anonymous namespace
+
+namespace clang {
+class PTHStatCache : public FileSystemStatCache {
+ typedef llvm::OnDiskChainedHashTable<PTHStatLookupTrait> CacheTy;
+ CacheTy Cache;
+
+public:
+ PTHStatCache(PTHManager::PTHFileLookup &FL)
+ : Cache(FL.getNumBuckets(), FL.getNumEntries(), FL.getBuckets(),
+ FL.getBase()) {}
+
+ LookupResult getStat(const char *Path, FileData &Data, bool isFile,
+ std::unique_ptr<vfs::File> *F,
+ vfs::FileSystem &FS) override {
+ // Do the lookup for the file's data in the PTH file.
+ CacheTy::iterator I = Cache.find(Path);
+
+ // If we don't get a hit in the PTH file just forward to 'stat'.
+ if (I == Cache.end())
+ return statChained(Path, Data, isFile, F, FS);
+
+ const PTHStatData &D = *I;
+
+ if (!D.HasData)
+ return CacheMissing;
+
+ Data.Name = Path;
+ Data.Size = D.Size;
+ Data.ModTime = D.ModTime;
+ Data.UniqueID = D.UniqueID;
+ Data.IsDirectory = D.IsDirectory;
+ Data.IsNamedPipe = false;
+ Data.InPCH = true;
+
+ return CacheExists;
+ }
+};
+}
+
+std::unique_ptr<FileSystemStatCache> PTHManager::createStatCache() {
+ return llvm::make_unique<PTHStatCache>(*FileLookup);
+}
diff --git a/contrib/llvm/tools/clang/lib/Lex/Pragma.cpp b/contrib/llvm/tools/clang/lib/Lex/Pragma.cpp
new file mode 100644
index 0000000..26ed674
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Lex/Pragma.cpp
@@ -0,0 +1,1431 @@
+//===--- Pragma.cpp - Pragma registration and handling --------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the PragmaHandler/PragmaTable interfaces and implements
+// pragma related methods of the Preprocessor class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Lex/Pragma.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Lex/HeaderSearch.h"
+#include "clang/Lex/LexDiagnostic.h"
+#include "clang/Lex/LiteralSupport.h"
+#include "clang/Lex/MacroInfo.h"
+#include "clang/Lex/Preprocessor.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/CrashRecoveryContext.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <algorithm>
+using namespace clang;
+
+#include "llvm/Support/raw_ostream.h"
+
+// Out-of-line destructor to provide a home for the class.
+PragmaHandler::~PragmaHandler() {
+}
+
+//===----------------------------------------------------------------------===//
+// EmptyPragmaHandler Implementation.
+//===----------------------------------------------------------------------===//
+
+EmptyPragmaHandler::EmptyPragmaHandler() {}
+
+void EmptyPragmaHandler::HandlePragma(Preprocessor &PP,
+ PragmaIntroducerKind Introducer,
+ Token &FirstToken) {}
+
+//===----------------------------------------------------------------------===//
+// PragmaNamespace Implementation.
+//===----------------------------------------------------------------------===//
+
+PragmaNamespace::~PragmaNamespace() {
+ llvm::DeleteContainerSeconds(Handlers);
+}
+
+/// FindHandler - Check to see if there is already a handler for the
+/// specified name. If not, return the handler for the null identifier if it
+/// exists, otherwise return null. If IgnoreNull is true (the default) then
+/// the null handler isn't returned on failure to match.
+PragmaHandler *PragmaNamespace::FindHandler(StringRef Name,
+ bool IgnoreNull) const {
+ if (PragmaHandler *Handler = Handlers.lookup(Name))
+ return Handler;
+ return IgnoreNull ? nullptr : Handlers.lookup(StringRef());
+}
+
+void PragmaNamespace::AddPragma(PragmaHandler *Handler) {
+ assert(!Handlers.lookup(Handler->getName()) &&
+ "A handler with this name is already registered in this namespace");
+ Handlers[Handler->getName()] = Handler;
+}
+
+void PragmaNamespace::RemovePragmaHandler(PragmaHandler *Handler) {
+ assert(Handlers.lookup(Handler->getName()) &&
+ "Handler not registered in this namespace");
+ Handlers.erase(Handler->getName());
+}
+
+void PragmaNamespace::HandlePragma(Preprocessor &PP,
+ PragmaIntroducerKind Introducer,
+ Token &Tok) {
+ // Read the 'namespace' that the directive is in, e.g. STDC. Do not macro
+ // expand it, the user can have a STDC #define, that should not affect this.
+ PP.LexUnexpandedToken(Tok);
+
+ // Get the handler for this token. If there is no handler, ignore the pragma.
+ PragmaHandler *Handler
+ = FindHandler(Tok.getIdentifierInfo() ? Tok.getIdentifierInfo()->getName()
+ : StringRef(),
+ /*IgnoreNull=*/false);
+ if (!Handler) {
+ PP.Diag(Tok, diag::warn_pragma_ignored);
+ return;
+ }
+
+ // Otherwise, pass it down.
+ Handler->HandlePragma(PP, Introducer, Tok);
+}
+
+//===----------------------------------------------------------------------===//
+// Preprocessor Pragma Directive Handling.
+//===----------------------------------------------------------------------===//
+
+/// HandlePragmaDirective - The "\#pragma" directive has been parsed. Lex the
+/// rest of the pragma, passing it to the registered pragma handlers.
+void Preprocessor::HandlePragmaDirective(SourceLocation IntroducerLoc,
+ PragmaIntroducerKind Introducer) {
+ if (Callbacks)
+ Callbacks->PragmaDirective(IntroducerLoc, Introducer);
+
+ if (!PragmasEnabled)
+ return;
+
+ ++NumPragma;
+
+ // Invoke the first level of pragma handlers which reads the namespace id.
+ Token Tok;
+ PragmaHandlers->HandlePragma(*this, Introducer, Tok);
+
+ // If the pragma handler didn't read the rest of the line, consume it now.
+ if ((CurTokenLexer && CurTokenLexer->isParsingPreprocessorDirective())
+ || (CurPPLexer && CurPPLexer->ParsingPreprocessorDirective))
+ DiscardUntilEndOfDirective();
+}
+
+namespace {
+/// \brief Helper class for \see Preprocessor::Handle_Pragma.
+class LexingFor_PragmaRAII {
+ Preprocessor &PP;
+ bool InMacroArgPreExpansion;
+ bool Failed;
+ Token &OutTok;
+ Token PragmaTok;
+
+public:
+ LexingFor_PragmaRAII(Preprocessor &PP, bool InMacroArgPreExpansion,
+ Token &Tok)
+ : PP(PP), InMacroArgPreExpansion(InMacroArgPreExpansion),
+ Failed(false), OutTok(Tok) {
+ if (InMacroArgPreExpansion) {
+ PragmaTok = OutTok;
+ PP.EnableBacktrackAtThisPos();
+ }
+ }
+
+ ~LexingFor_PragmaRAII() {
+ if (InMacroArgPreExpansion) {
+ if (Failed) {
+ PP.CommitBacktrackedTokens();
+ } else {
+ PP.Backtrack();
+ OutTok = PragmaTok;
+ }
+ }
+ }
+
+ void failed() {
+ Failed = true;
+ }
+};
+}
+
+/// Handle_Pragma - Read a _Pragma directive, slice it up, process it, then
+/// return the first token after the directive. The _Pragma token has just
+/// been read into 'Tok'.
+void Preprocessor::Handle_Pragma(Token &Tok) {
+
+ // This works differently if we are pre-expanding a macro argument.
+ // In that case we don't actually "activate" the pragma now, we only lex it
+ // until we are sure it is lexically correct and then we backtrack so that
+ // we activate the pragma whenever we encounter the tokens again in the token
+ // stream. This ensures that we will activate it in the correct location
+ // or that we will ignore it if it never enters the token stream, e.g:
+ //
+ // #define EMPTY(x)
+ // #define INACTIVE(x) EMPTY(x)
+ // INACTIVE(_Pragma("clang diagnostic ignored \"-Wconversion\""))
+
+ LexingFor_PragmaRAII _PragmaLexing(*this, InMacroArgPreExpansion, Tok);
+
+ // Remember the pragma token location.
+ SourceLocation PragmaLoc = Tok.getLocation();
+
+ // Read the '('.
+ Lex(Tok);
+ if (Tok.isNot(tok::l_paren)) {
+ Diag(PragmaLoc, diag::err__Pragma_malformed);
+ return _PragmaLexing.failed();
+ }
+
+ // Read the '"..."'.
+ Lex(Tok);
+ if (!tok::isStringLiteral(Tok.getKind())) {
+ Diag(PragmaLoc, diag::err__Pragma_malformed);
+ // Skip this token, and the ')', if present.
+ if (Tok.isNot(tok::r_paren) && Tok.isNot(tok::eof))
+ Lex(Tok);
+ if (Tok.is(tok::r_paren))
+ Lex(Tok);
+ return _PragmaLexing.failed();
+ }
+
+ if (Tok.hasUDSuffix()) {
+ Diag(Tok, diag::err_invalid_string_udl);
+ // Skip this token, and the ')', if present.
+ Lex(Tok);
+ if (Tok.is(tok::r_paren))
+ Lex(Tok);
+ return _PragmaLexing.failed();
+ }
+
+ // Remember the string.
+ Token StrTok = Tok;
+
+ // Read the ')'.
+ Lex(Tok);
+ if (Tok.isNot(tok::r_paren)) {
+ Diag(PragmaLoc, diag::err__Pragma_malformed);
+ return _PragmaLexing.failed();
+ }
+
+ if (InMacroArgPreExpansion)
+ return;
+
+ SourceLocation RParenLoc = Tok.getLocation();
+ std::string StrVal = getSpelling(StrTok);
+
+ // The _Pragma is lexically sound. Destringize according to C11 6.10.9.1:
+ // "The string literal is destringized by deleting any encoding prefix,
+ // deleting the leading and trailing double-quotes, replacing each escape
+ // sequence \" by a double-quote, and replacing each escape sequence \\ by a
+ // single backslash."
+ if (StrVal[0] == 'L' || StrVal[0] == 'U' ||
+ (StrVal[0] == 'u' && StrVal[1] != '8'))
+ StrVal.erase(StrVal.begin());
+ else if (StrVal[0] == 'u')
+ StrVal.erase(StrVal.begin(), StrVal.begin() + 2);
+
+ if (StrVal[0] == 'R') {
+ // FIXME: C++11 does not specify how to handle raw-string-literals here.
+ // We strip off the 'R', the quotes, the d-char-sequences, and the parens.
+ assert(StrVal[1] == '"' && StrVal[StrVal.size() - 1] == '"' &&
+ "Invalid raw string token!");
+
+ // Measure the length of the d-char-sequence.
+ unsigned NumDChars = 0;
+ while (StrVal[2 + NumDChars] != '(') {
+ assert(NumDChars < (StrVal.size() - 5) / 2 &&
+ "Invalid raw string token!");
+ ++NumDChars;
+ }
+ assert(StrVal[StrVal.size() - 2 - NumDChars] == ')');
+
+ // Remove 'R " d-char-sequence' and 'd-char-sequence "'. We'll replace the
+ // parens below.
+ StrVal.erase(0, 2 + NumDChars);
+ StrVal.erase(StrVal.size() - 1 - NumDChars);
+ } else {
+ assert(StrVal[0] == '"' && StrVal[StrVal.size()-1] == '"' &&
+ "Invalid string token!");
+
+ // Remove escaped quotes and escapes.
+ unsigned ResultPos = 1;
+ for (unsigned i = 1, e = StrVal.size() - 1; i != e; ++i) {
+ // Skip escapes. \\ -> '\' and \" -> '"'.
+ if (StrVal[i] == '\\' && i + 1 < e &&
+ (StrVal[i + 1] == '\\' || StrVal[i + 1] == '"'))
+ ++i;
+ StrVal[ResultPos++] = StrVal[i];
+ }
+ StrVal.erase(StrVal.begin() + ResultPos, StrVal.end() - 1);
+ }
+
+ // Remove the front quote, replacing it with a space, so that the pragma
+ // contents appear to have a space before them.
+ StrVal[0] = ' ';
+
+ // Replace the terminating quote with a \n.
+ StrVal[StrVal.size()-1] = '\n';
+
+ // Plop the string (including the newline and trailing null) into a buffer
+ // where we can lex it.
+ Token TmpTok;
+ TmpTok.startToken();
+ CreateString(StrVal, TmpTok);
+ SourceLocation TokLoc = TmpTok.getLocation();
+
+ // Make and enter a lexer object so that we lex and expand the tokens just
+ // like any others.
+ Lexer *TL = Lexer::Create_PragmaLexer(TokLoc, PragmaLoc, RParenLoc,
+ StrVal.size(), *this);
+
+ EnterSourceFileWithLexer(TL, nullptr);
+
+ // With everything set up, lex this as a #pragma directive.
+ HandlePragmaDirective(PragmaLoc, PIK__Pragma);
+
+ // Finally, return whatever came after the pragma directive.
+ return Lex(Tok);
+}
+
+/// HandleMicrosoft__pragma - Like Handle_Pragma except the pragma text
+/// is not enclosed within a string literal.
+void Preprocessor::HandleMicrosoft__pragma(Token &Tok) {
+ // Remember the pragma token location.
+ SourceLocation PragmaLoc = Tok.getLocation();
+
+ // Read the '('.
+ Lex(Tok);
+ if (Tok.isNot(tok::l_paren)) {
+ Diag(PragmaLoc, diag::err__Pragma_malformed);
+ return;
+ }
+
+ // Get the tokens enclosed within the __pragma(), as well as the final ')'.
+ SmallVector<Token, 32> PragmaToks;
+ int NumParens = 0;
+ Lex(Tok);
+ while (Tok.isNot(tok::eof)) {
+ PragmaToks.push_back(Tok);
+ if (Tok.is(tok::l_paren))
+ NumParens++;
+ else if (Tok.is(tok::r_paren) && NumParens-- == 0)
+ break;
+ Lex(Tok);
+ }
+
+ if (Tok.is(tok::eof)) {
+ Diag(PragmaLoc, diag::err_unterminated___pragma);
+ return;
+ }
+
+ PragmaToks.front().setFlag(Token::LeadingSpace);
+
+ // Replace the ')' with an EOD to mark the end of the pragma.
+ PragmaToks.back().setKind(tok::eod);
+
+ Token *TokArray = new Token[PragmaToks.size()];
+ std::copy(PragmaToks.begin(), PragmaToks.end(), TokArray);
+
+ // Push the tokens onto the stack.
+ EnterTokenStream(TokArray, PragmaToks.size(), true, true);
+
+ // With everything set up, lex this as a #pragma directive.
+ HandlePragmaDirective(PragmaLoc, PIK___pragma);
+
+ // Finally, return whatever came after the pragma directive.
+ return Lex(Tok);
+}
+
+/// HandlePragmaOnce - Handle \#pragma once. OnceTok is the 'once'.
+///
+void Preprocessor::HandlePragmaOnce(Token &OnceTok) {
+ if (isInPrimaryFile()) {
+ Diag(OnceTok, diag::pp_pragma_once_in_main_file);
+ return;
+ }
+
+ // Get the current file lexer we're looking at. Ignore _Pragma 'files' etc.
+ // Mark the file as a once-only file now.
+ HeaderInfo.MarkFileIncludeOnce(getCurrentFileLexer()->getFileEntry());
+}
+
+void Preprocessor::HandlePragmaMark() {
+ assert(CurPPLexer && "No current lexer?");
+ if (CurLexer)
+ CurLexer->ReadToEndOfLine();
+ else
+ CurPTHLexer->DiscardToEndOfLine();
+}
+
+
+/// HandlePragmaPoison - Handle \#pragma GCC poison. PoisonTok is the 'poison'.
+///
+void Preprocessor::HandlePragmaPoison(Token &PoisonTok) {
+ Token Tok;
+
+ while (1) {
+ // Read the next token to poison. While doing this, pretend that we are
+ // skipping while reading the identifier to poison.
+ // This avoids errors on code like:
+ // #pragma GCC poison X
+ // #pragma GCC poison X
+ if (CurPPLexer) CurPPLexer->LexingRawMode = true;
+ LexUnexpandedToken(Tok);
+ if (CurPPLexer) CurPPLexer->LexingRawMode = false;
+
+ // If we reached the end of line, we're done.
+ if (Tok.is(tok::eod)) return;
+
+ // Can only poison identifiers.
+ if (Tok.isNot(tok::raw_identifier)) {
+ Diag(Tok, diag::err_pp_invalid_poison);
+ return;
+ }
+
+ // Look up the identifier info for the token. We disabled identifier lookup
+ // by saying we're skipping contents, so we need to do this manually.
+ IdentifierInfo *II = LookUpIdentifierInfo(Tok);
+
+ // Already poisoned.
+ if (II->isPoisoned()) continue;
+
+ // If this is a macro identifier, emit a warning.
+ if (isMacroDefined(II))
+ Diag(Tok, diag::pp_poisoning_existing_macro);
+
+ // Finally, poison it!
+ II->setIsPoisoned();
+ if (II->isFromAST())
+ II->setChangedSinceDeserialization();
+ }
+}
+
+/// HandlePragmaSystemHeader - Implement \#pragma GCC system_header. We know
+/// that the whole directive has been parsed.
+void Preprocessor::HandlePragmaSystemHeader(Token &SysHeaderTok) {
+ if (isInPrimaryFile()) {
+ Diag(SysHeaderTok, diag::pp_pragma_sysheader_in_main_file);
+ return;
+ }
+
+ // Get the current file lexer we're looking at. Ignore _Pragma 'files' etc.
+ PreprocessorLexer *TheLexer = getCurrentFileLexer();
+
+ // Mark the file as a system header.
+ HeaderInfo.MarkFileSystemHeader(TheLexer->getFileEntry());
+
+
+ PresumedLoc PLoc = SourceMgr.getPresumedLoc(SysHeaderTok.getLocation());
+ if (PLoc.isInvalid())
+ return;
+
+ unsigned FilenameID = SourceMgr.getLineTableFilenameID(PLoc.getFilename());
+
+ // Notify the client, if desired, that we are in a new source file.
+ if (Callbacks)
+ Callbacks->FileChanged(SysHeaderTok.getLocation(),
+ PPCallbacks::SystemHeaderPragma, SrcMgr::C_System);
+
+ // Emit a line marker. This will change any source locations from this point
+ // forward to realize they are in a system header.
+ // Create a line note with this information.
+ SourceMgr.AddLineNote(SysHeaderTok.getLocation(), PLoc.getLine()+1,
+ FilenameID, /*IsEntry=*/false, /*IsExit=*/false,
+ /*IsSystem=*/true, /*IsExternC=*/false);
+}
+
+/// HandlePragmaDependency - Handle \#pragma GCC dependency "foo" blah.
+///
+void Preprocessor::HandlePragmaDependency(Token &DependencyTok) {
+ Token FilenameTok;
+ CurPPLexer->LexIncludeFilename(FilenameTok);
+
+ // If the token kind is EOD, the error has already been diagnosed.
+ if (FilenameTok.is(tok::eod))
+ return;
+
+ // Reserve a buffer to get the spelling.
+ SmallString<128> FilenameBuffer;
+ bool Invalid = false;
+ StringRef Filename = getSpelling(FilenameTok, FilenameBuffer, &Invalid);
+ if (Invalid)
+ return;
+
+ bool isAngled =
+ GetIncludeFilenameSpelling(FilenameTok.getLocation(), Filename);
+ // If GetIncludeFilenameSpelling set the start ptr to null, there was an
+ // error.
+ if (Filename.empty())
+ return;
+
+ // Search include directories for this file.
+ const DirectoryLookup *CurDir;
+ const FileEntry *File =
+ LookupFile(FilenameTok.getLocation(), Filename, isAngled, nullptr,
+ nullptr, CurDir, nullptr, nullptr, nullptr);
+ if (!File) {
+ if (!SuppressIncludeNotFoundError)
+ Diag(FilenameTok, diag::err_pp_file_not_found) << Filename;
+ return;
+ }
+
+ const FileEntry *CurFile = getCurrentFileLexer()->getFileEntry();
+
+ // If this file is older than the file it depends on, emit a diagnostic.
+ if (CurFile && CurFile->getModificationTime() < File->getModificationTime()) {
+ // Lex tokens at the end of the message and include them in the message.
+ std::string Message;
+ Lex(DependencyTok);
+ while (DependencyTok.isNot(tok::eod)) {
+ Message += getSpelling(DependencyTok) + " ";
+ Lex(DependencyTok);
+ }
+
+ // Remove the trailing ' ' if present.
+ if (!Message.empty())
+ Message.erase(Message.end()-1);
+ Diag(FilenameTok, diag::pp_out_of_date_dependency) << Message;
+ }
+}
+
+/// ParsePragmaPushOrPopMacro - Handle parsing of pragma push_macro/pop_macro.
+/// Return the IdentifierInfo* associated with the macro to push or pop.
+IdentifierInfo *Preprocessor::ParsePragmaPushOrPopMacro(Token &Tok) {
+ // Remember the pragma token location.
+ Token PragmaTok = Tok;
+
+ // Read the '('.
+ Lex(Tok);
+ if (Tok.isNot(tok::l_paren)) {
+ Diag(PragmaTok.getLocation(), diag::err_pragma_push_pop_macro_malformed)
+ << getSpelling(PragmaTok);
+ return nullptr;
+ }
+
+ // Read the macro name string.
+ Lex(Tok);
+ if (Tok.isNot(tok::string_literal)) {
+ Diag(PragmaTok.getLocation(), diag::err_pragma_push_pop_macro_malformed)
+ << getSpelling(PragmaTok);
+ return nullptr;
+ }
+
+ if (Tok.hasUDSuffix()) {
+ Diag(Tok, diag::err_invalid_string_udl);
+ return nullptr;
+ }
+
+ // Remember the macro string.
+ std::string StrVal = getSpelling(Tok);
+
+ // Read the ')'.
+ Lex(Tok);
+ if (Tok.isNot(tok::r_paren)) {
+ Diag(PragmaTok.getLocation(), diag::err_pragma_push_pop_macro_malformed)
+ << getSpelling(PragmaTok);
+ return nullptr;
+ }
+
+ assert(StrVal[0] == '"' && StrVal[StrVal.size()-1] == '"' &&
+ "Invalid string token!");
+
+ // Create a Token from the string.
+ Token MacroTok;
+ MacroTok.startToken();
+ MacroTok.setKind(tok::raw_identifier);
+ CreateString(StringRef(&StrVal[1], StrVal.size() - 2), MacroTok);
+
+ // Get the IdentifierInfo of MacroToPushTok.
+ return LookUpIdentifierInfo(MacroTok);
+}
+
+/// \brief Handle \#pragma push_macro.
+///
+/// The syntax is:
+/// \code
+/// #pragma push_macro("macro")
+/// \endcode
+void Preprocessor::HandlePragmaPushMacro(Token &PushMacroTok) {
+ // Parse the pragma directive and get the macro IdentifierInfo*.
+ IdentifierInfo *IdentInfo = ParsePragmaPushOrPopMacro(PushMacroTok);
+ if (!IdentInfo) return;
+
+ // Get the MacroInfo associated with IdentInfo.
+ MacroInfo *MI = getMacroInfo(IdentInfo);
+
+ if (MI) {
+ // Allow the original MacroInfo to be redefined later.
+ MI->setIsAllowRedefinitionsWithoutWarning(true);
+ }
+
+ // Push the cloned MacroInfo so we can retrieve it later.
+ PragmaPushMacroInfo[IdentInfo].push_back(MI);
+}
+
+/// \brief Handle \#pragma pop_macro.
+///
+/// The syntax is:
+/// \code
+/// #pragma pop_macro("macro")
+/// \endcode
+void Preprocessor::HandlePragmaPopMacro(Token &PopMacroTok) {
+ SourceLocation MessageLoc = PopMacroTok.getLocation();
+
+ // Parse the pragma directive and get the macro IdentifierInfo*.
+ IdentifierInfo *IdentInfo = ParsePragmaPushOrPopMacro(PopMacroTok);
+ if (!IdentInfo) return;
+
+ // Find the vector<MacroInfo*> associated with the macro.
+ llvm::DenseMap<IdentifierInfo*, std::vector<MacroInfo*> >::iterator iter =
+ PragmaPushMacroInfo.find(IdentInfo);
+ if (iter != PragmaPushMacroInfo.end()) {
+ // Forget the MacroInfo currently associated with IdentInfo.
+ if (MacroInfo *MI = getMacroInfo(IdentInfo)) {
+ if (MI->isWarnIfUnused())
+ WarnUnusedMacroLocs.erase(MI->getDefinitionLoc());
+ appendMacroDirective(IdentInfo, AllocateUndefMacroDirective(MessageLoc));
+ }
+
+ // Get the MacroInfo we want to reinstall.
+ MacroInfo *MacroToReInstall = iter->second.back();
+
+ if (MacroToReInstall)
+ // Reinstall the previously pushed macro.
+ appendDefMacroDirective(IdentInfo, MacroToReInstall, MessageLoc);
+
+ // Pop PragmaPushMacroInfo stack.
+ iter->second.pop_back();
+ if (iter->second.size() == 0)
+ PragmaPushMacroInfo.erase(iter);
+ } else {
+ Diag(MessageLoc, diag::warn_pragma_pop_macro_no_push)
+ << IdentInfo->getName();
+ }
+}
+
+void Preprocessor::HandlePragmaIncludeAlias(Token &Tok) {
+ // We will either get a quoted filename or a bracketed filename, and we
+ // have to track which we got. The first filename is the source name,
+ // and the second name is the mapped filename. If the first is quoted,
+ // the second must be as well (cannot mix and match quotes and brackets).
+
+ // Get the open paren
+ Lex(Tok);
+ if (Tok.isNot(tok::l_paren)) {
+ Diag(Tok, diag::warn_pragma_include_alias_expected) << "(";
+ return;
+ }
+
+ // We expect either a quoted string literal, or a bracketed name
+ Token SourceFilenameTok;
+ CurPPLexer->LexIncludeFilename(SourceFilenameTok);
+ if (SourceFilenameTok.is(tok::eod)) {
+ // The diagnostic has already been handled
+ return;
+ }
+
+ StringRef SourceFileName;
+ SmallString<128> FileNameBuffer;
+ if (SourceFilenameTok.is(tok::string_literal) ||
+ SourceFilenameTok.is(tok::angle_string_literal)) {
+ SourceFileName = getSpelling(SourceFilenameTok, FileNameBuffer);
+ } else if (SourceFilenameTok.is(tok::less)) {
+ // This could be a path instead of just a name
+ FileNameBuffer.push_back('<');
+ SourceLocation End;
+ if (ConcatenateIncludeName(FileNameBuffer, End))
+ return; // Diagnostic already emitted
+ SourceFileName = FileNameBuffer;
+ } else {
+ Diag(Tok, diag::warn_pragma_include_alias_expected_filename);
+ return;
+ }
+ FileNameBuffer.clear();
+
+ // Now we expect a comma, followed by another include name
+ Lex(Tok);
+ if (Tok.isNot(tok::comma)) {
+ Diag(Tok, diag::warn_pragma_include_alias_expected) << ",";
+ return;
+ }
+
+ Token ReplaceFilenameTok;
+ CurPPLexer->LexIncludeFilename(ReplaceFilenameTok);
+ if (ReplaceFilenameTok.is(tok::eod)) {
+ // The diagnostic has already been handled
+ return;
+ }
+
+ StringRef ReplaceFileName;
+ if (ReplaceFilenameTok.is(tok::string_literal) ||
+ ReplaceFilenameTok.is(tok::angle_string_literal)) {
+ ReplaceFileName = getSpelling(ReplaceFilenameTok, FileNameBuffer);
+ } else if (ReplaceFilenameTok.is(tok::less)) {
+ // This could be a path instead of just a name
+ FileNameBuffer.push_back('<');
+ SourceLocation End;
+ if (ConcatenateIncludeName(FileNameBuffer, End))
+ return; // Diagnostic already emitted
+ ReplaceFileName = FileNameBuffer;
+ } else {
+ Diag(Tok, diag::warn_pragma_include_alias_expected_filename);
+ return;
+ }
+
+ // Finally, we expect the closing paren
+ Lex(Tok);
+ if (Tok.isNot(tok::r_paren)) {
+ Diag(Tok, diag::warn_pragma_include_alias_expected) << ")";
+ return;
+ }
+
+ // Now that we have the source and target filenames, we need to make sure
+ // they're both of the same type (angled vs non-angled)
+ StringRef OriginalSource = SourceFileName;
+
+ bool SourceIsAngled =
+ GetIncludeFilenameSpelling(SourceFilenameTok.getLocation(),
+ SourceFileName);
+ bool ReplaceIsAngled =
+ GetIncludeFilenameSpelling(ReplaceFilenameTok.getLocation(),
+ ReplaceFileName);
+ if (!SourceFileName.empty() && !ReplaceFileName.empty() &&
+ (SourceIsAngled != ReplaceIsAngled)) {
+ unsigned int DiagID;
+ if (SourceIsAngled)
+ DiagID = diag::warn_pragma_include_alias_mismatch_angle;
+ else
+ DiagID = diag::warn_pragma_include_alias_mismatch_quote;
+
+ Diag(SourceFilenameTok.getLocation(), DiagID)
+ << SourceFileName
+ << ReplaceFileName;
+
+ return;
+ }
+
+ // Now we can let the include handler know about this mapping
+ getHeaderSearchInfo().AddIncludeAlias(OriginalSource, ReplaceFileName);
+}
+
+/// AddPragmaHandler - Add the specified pragma handler to the preprocessor.
+/// If 'Namespace' is non-null, then it is a token required to exist on the
+/// pragma line before the pragma string starts, e.g. "STDC" or "GCC".
+void Preprocessor::AddPragmaHandler(StringRef Namespace,
+ PragmaHandler *Handler) {
+ PragmaNamespace *InsertNS = PragmaHandlers.get();
+
+ // If this is specified to be in a namespace, step down into it.
+ if (!Namespace.empty()) {
+ // If there is already a pragma handler with the name of this namespace,
+ // we either have an error (directive with the same name as a namespace) or
+ // we already have the namespace to insert into.
+ if (PragmaHandler *Existing = PragmaHandlers->FindHandler(Namespace)) {
+ InsertNS = Existing->getIfNamespace();
+ assert(InsertNS != nullptr && "Cannot have a pragma namespace and pragma"
+ " handler with the same name!");
+ } else {
+ // Otherwise, this namespace doesn't exist yet, create and insert the
+ // handler for it.
+ InsertNS = new PragmaNamespace(Namespace);
+ PragmaHandlers->AddPragma(InsertNS);
+ }
+ }
+
+ // Check to make sure we don't already have a pragma for this identifier.
+ assert(!InsertNS->FindHandler(Handler->getName()) &&
+ "Pragma handler already exists for this identifier!");
+ InsertNS->AddPragma(Handler);
+}
+
+/// RemovePragmaHandler - Remove the specific pragma handler from the
+/// preprocessor. If \arg Namespace is non-null, then it should be the
+/// namespace that \arg Handler was added to. It is an error to remove
+/// a handler that has not been registered.
+void Preprocessor::RemovePragmaHandler(StringRef Namespace,
+ PragmaHandler *Handler) {
+ PragmaNamespace *NS = PragmaHandlers.get();
+
+ // If this is specified to be in a namespace, step down into it.
+ if (!Namespace.empty()) {
+ PragmaHandler *Existing = PragmaHandlers->FindHandler(Namespace);
+ assert(Existing && "Namespace containing handler does not exist!");
+
+ NS = Existing->getIfNamespace();
+ assert(NS && "Invalid namespace, registered as a regular pragma handler!");
+ }
+
+ NS->RemovePragmaHandler(Handler);
+
+ // If this is a non-default namespace and it is now empty, remove it.
+ if (NS != PragmaHandlers.get() && NS->IsEmpty()) {
+ PragmaHandlers->RemovePragmaHandler(NS);
+ delete NS;
+ }
+}
+
+bool Preprocessor::LexOnOffSwitch(tok::OnOffSwitch &Result) {
+ Token Tok;
+ LexUnexpandedToken(Tok);
+
+ if (Tok.isNot(tok::identifier)) {
+ Diag(Tok, diag::ext_on_off_switch_syntax);
+ return true;
+ }
+ IdentifierInfo *II = Tok.getIdentifierInfo();
+ if (II->isStr("ON"))
+ Result = tok::OOS_ON;
+ else if (II->isStr("OFF"))
+ Result = tok::OOS_OFF;
+ else if (II->isStr("DEFAULT"))
+ Result = tok::OOS_DEFAULT;
+ else {
+ Diag(Tok, diag::ext_on_off_switch_syntax);
+ return true;
+ }
+
+ // Verify that this is followed by EOD.
+ LexUnexpandedToken(Tok);
+ if (Tok.isNot(tok::eod))
+ Diag(Tok, diag::ext_pragma_syntax_eod);
+ return false;
+}
+
+namespace {
+/// PragmaOnceHandler - "\#pragma once" marks the file as atomically included.
+struct PragmaOnceHandler : public PragmaHandler {
+ PragmaOnceHandler() : PragmaHandler("once") {}
+ void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,
+ Token &OnceTok) override {
+ PP.CheckEndOfDirective("pragma once");
+ PP.HandlePragmaOnce(OnceTok);
+ }
+};
+
+/// PragmaMarkHandler - "\#pragma mark ..." is ignored by the compiler, and the
+/// rest of the line is not lexed.
+struct PragmaMarkHandler : public PragmaHandler {
+ PragmaMarkHandler() : PragmaHandler("mark") {}
+ void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,
+ Token &MarkTok) override {
+ PP.HandlePragmaMark();
+ }
+};
+
+/// PragmaPoisonHandler - "\#pragma poison x" marks x as not usable.
+struct PragmaPoisonHandler : public PragmaHandler {
+ PragmaPoisonHandler() : PragmaHandler("poison") {}
+ void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,
+ Token &PoisonTok) override {
+ PP.HandlePragmaPoison(PoisonTok);
+ }
+};
+
+/// PragmaSystemHeaderHandler - "\#pragma system_header" marks the current file
+/// as a system header, which silences warnings in it.
+struct PragmaSystemHeaderHandler : public PragmaHandler {
+ PragmaSystemHeaderHandler() : PragmaHandler("system_header") {}
+ void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,
+ Token &SHToken) override {
+ PP.HandlePragmaSystemHeader(SHToken);
+ PP.CheckEndOfDirective("pragma");
+ }
+};
+struct PragmaDependencyHandler : public PragmaHandler {
+ PragmaDependencyHandler() : PragmaHandler("dependency") {}
+ void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,
+ Token &DepToken) override {
+ PP.HandlePragmaDependency(DepToken);
+ }
+};
+
+struct PragmaDebugHandler : public PragmaHandler {
+ PragmaDebugHandler() : PragmaHandler("__debug") {}
+ void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,
+ Token &DepToken) override {
+ Token Tok;
+ PP.LexUnexpandedToken(Tok);
+ if (Tok.isNot(tok::identifier)) {
+ PP.Diag(Tok, diag::warn_pragma_diagnostic_invalid);
+ return;
+ }
+ IdentifierInfo *II = Tok.getIdentifierInfo();
+
+ if (II->isStr("assert")) {
+ llvm_unreachable("This is an assertion!");
+ } else if (II->isStr("crash")) {
+ LLVM_BUILTIN_TRAP;
+ } else if (II->isStr("parser_crash")) {
+ Token Crasher;
+ Crasher.startToken();
+ Crasher.setKind(tok::annot_pragma_parser_crash);
+ Crasher.setAnnotationRange(SourceRange(Tok.getLocation()));
+ PP.EnterToken(Crasher);
+ } else if (II->isStr("llvm_fatal_error")) {
+ llvm::report_fatal_error("#pragma clang __debug llvm_fatal_error");
+ } else if (II->isStr("llvm_unreachable")) {
+ llvm_unreachable("#pragma clang __debug llvm_unreachable");
+ } else if (II->isStr("macro")) {
+ Token MacroName;
+ PP.LexUnexpandedToken(MacroName);
+ auto *MacroII = MacroName.getIdentifierInfo();
+ if (MacroII)
+ PP.dumpMacroInfo(MacroII);
+ else
+ PP.Diag(MacroName, diag::warn_pragma_diagnostic_invalid);
+ } else if (II->isStr("overflow_stack")) {
+ DebugOverflowStack();
+ } else if (II->isStr("handle_crash")) {
+ llvm::CrashRecoveryContext *CRC =llvm::CrashRecoveryContext::GetCurrent();
+ if (CRC)
+ CRC->HandleCrash();
+ } else if (II->isStr("captured")) {
+ HandleCaptured(PP);
+ } else {
+ PP.Diag(Tok, diag::warn_pragma_debug_unexpected_command)
+ << II->getName();
+ }
+
+ PPCallbacks *Callbacks = PP.getPPCallbacks();
+ if (Callbacks)
+ Callbacks->PragmaDebug(Tok.getLocation(), II->getName());
+ }
+
+ void HandleCaptured(Preprocessor &PP) {
+ // Skip if emitting preprocessed output.
+ if (PP.isPreprocessedOutput())
+ return;
+
+ Token Tok;
+ PP.LexUnexpandedToken(Tok);
+
+ if (Tok.isNot(tok::eod)) {
+ PP.Diag(Tok, diag::ext_pp_extra_tokens_at_eol)
+ << "pragma clang __debug captured";
+ return;
+ }
+
+ SourceLocation NameLoc = Tok.getLocation();
+ Token *Toks = PP.getPreprocessorAllocator().Allocate<Token>(1);
+ Toks->startToken();
+ Toks->setKind(tok::annot_pragma_captured);
+ Toks->setLocation(NameLoc);
+
+ PP.EnterTokenStream(Toks, 1, /*DisableMacroExpansion=*/true,
+ /*OwnsTokens=*/false);
+ }
+
+// Disable MSVC warning about runtime stack overflow.
+#ifdef _MSC_VER
+ #pragma warning(disable : 4717)
+#endif
+ static void DebugOverflowStack() {
+ void (*volatile Self)() = DebugOverflowStack;
+ Self();
+ }
+#ifdef _MSC_VER
+ #pragma warning(default : 4717)
+#endif
+
+};
+
+/// PragmaDiagnosticHandler - e.g. '\#pragma GCC diagnostic ignored "-Wformat"'
+struct PragmaDiagnosticHandler : public PragmaHandler {
+private:
+ const char *Namespace;
+public:
+ explicit PragmaDiagnosticHandler(const char *NS) :
+ PragmaHandler("diagnostic"), Namespace(NS) {}
+ void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,
+ Token &DiagToken) override {
+ SourceLocation DiagLoc = DiagToken.getLocation();
+ Token Tok;
+ PP.LexUnexpandedToken(Tok);
+ if (Tok.isNot(tok::identifier)) {
+ PP.Diag(Tok, diag::warn_pragma_diagnostic_invalid);
+ return;
+ }
+ IdentifierInfo *II = Tok.getIdentifierInfo();
+ PPCallbacks *Callbacks = PP.getPPCallbacks();
+
+ if (II->isStr("pop")) {
+ if (!PP.getDiagnostics().popMappings(DiagLoc))
+ PP.Diag(Tok, diag::warn_pragma_diagnostic_cannot_pop);
+ else if (Callbacks)
+ Callbacks->PragmaDiagnosticPop(DiagLoc, Namespace);
+ return;
+ } else if (II->isStr("push")) {
+ PP.getDiagnostics().pushMappings(DiagLoc);
+ if (Callbacks)
+ Callbacks->PragmaDiagnosticPush(DiagLoc, Namespace);
+ return;
+ }
+
+ diag::Severity SV = llvm::StringSwitch<diag::Severity>(II->getName())
+ .Case("ignored", diag::Severity::Ignored)
+ .Case("warning", diag::Severity::Warning)
+ .Case("error", diag::Severity::Error)
+ .Case("fatal", diag::Severity::Fatal)
+ .Default(diag::Severity());
+
+ if (SV == diag::Severity()) {
+ PP.Diag(Tok, diag::warn_pragma_diagnostic_invalid);
+ return;
+ }
+
+ PP.LexUnexpandedToken(Tok);
+ SourceLocation StringLoc = Tok.getLocation();
+
+ std::string WarningName;
+ if (!PP.FinishLexStringLiteral(Tok, WarningName, "pragma diagnostic",
+ /*MacroExpansion=*/false))
+ return;
+
+ if (Tok.isNot(tok::eod)) {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_diagnostic_invalid_token);
+ return;
+ }
+
+ if (WarningName.size() < 3 || WarningName[0] != '-' ||
+ (WarningName[1] != 'W' && WarningName[1] != 'R')) {
+ PP.Diag(StringLoc, diag::warn_pragma_diagnostic_invalid_option);
+ return;
+ }
+
+ if (PP.getDiagnostics().setSeverityForGroup(
+ WarningName[1] == 'W' ? diag::Flavor::WarningOrError
+ : diag::Flavor::Remark,
+ WarningName.substr(2), SV, DiagLoc))
+ PP.Diag(StringLoc, diag::warn_pragma_diagnostic_unknown_warning)
+ << WarningName;
+ else if (Callbacks)
+ Callbacks->PragmaDiagnostic(DiagLoc, Namespace, SV, WarningName);
+ }
+};
+
+/// "\#pragma warning(...)". MSVC's diagnostics do not map cleanly to clang's
+/// diagnostics, so we don't really implement this pragma. We parse it and
+/// ignore it to avoid -Wunknown-pragma warnings.
+struct PragmaWarningHandler : public PragmaHandler {
+ PragmaWarningHandler() : PragmaHandler("warning") {}
+
+ void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,
+ Token &Tok) override {
+ // Parse things like:
+ // warning(push, 1)
+ // warning(pop)
+ // warning(disable : 1 2 3 ; error : 4 5 6 ; suppress : 7 8 9)
+ SourceLocation DiagLoc = Tok.getLocation();
+ PPCallbacks *Callbacks = PP.getPPCallbacks();
+
+ PP.Lex(Tok);
+ if (Tok.isNot(tok::l_paren)) {
+ PP.Diag(Tok, diag::warn_pragma_warning_expected) << "(";
+ return;
+ }
+
+ PP.Lex(Tok);
+ IdentifierInfo *II = Tok.getIdentifierInfo();
+
+ if (II && II->isStr("push")) {
+ // #pragma warning( push[ ,n ] )
+ int Level = -1;
+ PP.Lex(Tok);
+ if (Tok.is(tok::comma)) {
+ PP.Lex(Tok);
+ uint64_t Value;
+ if (Tok.is(tok::numeric_constant) &&
+ PP.parseSimpleIntegerLiteral(Tok, Value))
+ Level = int(Value);
+ if (Level < 0 || Level > 4) {
+ PP.Diag(Tok, diag::warn_pragma_warning_push_level);
+ return;
+ }
+ }
+ if (Callbacks)
+ Callbacks->PragmaWarningPush(DiagLoc, Level);
+ } else if (II && II->isStr("pop")) {
+ // #pragma warning( pop )
+ PP.Lex(Tok);
+ if (Callbacks)
+ Callbacks->PragmaWarningPop(DiagLoc);
+ } else {
+ // #pragma warning( warning-specifier : warning-number-list
+ // [; warning-specifier : warning-number-list...] )
+ while (true) {
+ II = Tok.getIdentifierInfo();
+ if (!II && !Tok.is(tok::numeric_constant)) {
+ PP.Diag(Tok, diag::warn_pragma_warning_spec_invalid);
+ return;
+ }
+
+ // Figure out which warning specifier this is.
+ bool SpecifierValid;
+ StringRef Specifier;
+ llvm::SmallString<1> SpecifierBuf;
+ if (II) {
+ Specifier = II->getName();
+ SpecifierValid = llvm::StringSwitch<bool>(Specifier)
+ .Cases("default", "disable", "error", "once",
+ "suppress", true)
+ .Default(false);
+ // If we read a correct specifier, snatch next token (that should be
+ // ":", checked later).
+ if (SpecifierValid)
+ PP.Lex(Tok);
+ } else {
+ // Token is a numeric constant. It should be either 1, 2, 3 or 4.
+ uint64_t Value;
+ Specifier = PP.getSpelling(Tok, SpecifierBuf);
+ if (PP.parseSimpleIntegerLiteral(Tok, Value)) {
+ SpecifierValid = (Value >= 1) && (Value <= 4);
+ } else
+ SpecifierValid = false;
+ // Next token already snatched by parseSimpleIntegerLiteral.
+ }
+
+ if (!SpecifierValid) {
+ PP.Diag(Tok, diag::warn_pragma_warning_spec_invalid);
+ return;
+ }
+ if (Tok.isNot(tok::colon)) {
+ PP.Diag(Tok, diag::warn_pragma_warning_expected) << ":";
+ return;
+ }
+
+ // Collect the warning ids.
+ SmallVector<int, 4> Ids;
+ PP.Lex(Tok);
+ while (Tok.is(tok::numeric_constant)) {
+ uint64_t Value;
+ if (!PP.parseSimpleIntegerLiteral(Tok, Value) || Value == 0 ||
+ Value > INT_MAX) {
+ PP.Diag(Tok, diag::warn_pragma_warning_expected_number);
+ return;
+ }
+ Ids.push_back(int(Value));
+ }
+ if (Callbacks)
+ Callbacks->PragmaWarning(DiagLoc, Specifier, Ids);
+
+ // Parse the next specifier if there is a semicolon.
+ if (Tok.isNot(tok::semi))
+ break;
+ PP.Lex(Tok);
+ }
+ }
+
+ if (Tok.isNot(tok::r_paren)) {
+ PP.Diag(Tok, diag::warn_pragma_warning_expected) << ")";
+ return;
+ }
+
+ PP.Lex(Tok);
+ if (Tok.isNot(tok::eod))
+ PP.Diag(Tok, diag::ext_pp_extra_tokens_at_eol) << "pragma warning";
+ }
+};
+
+/// PragmaIncludeAliasHandler - "\#pragma include_alias("...")".
+struct PragmaIncludeAliasHandler : public PragmaHandler {
+ PragmaIncludeAliasHandler() : PragmaHandler("include_alias") {}
+ void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,
+ Token &IncludeAliasTok) override {
+ PP.HandlePragmaIncludeAlias(IncludeAliasTok);
+ }
+};
+
+/// PragmaMessageHandler - Handle the microsoft and gcc \#pragma message
+/// extension. The syntax is:
+/// \code
+/// #pragma message(string)
+/// \endcode
+/// OR, in GCC mode:
+/// \code
+/// #pragma message string
+/// \endcode
+/// string is a string, which is fully macro expanded, and permits string
+/// concatenation, embedded escape characters, etc... See MSDN for more details.
+/// Also handles \#pragma GCC warning and \#pragma GCC error which take the same
+/// form as \#pragma message.
+struct PragmaMessageHandler : public PragmaHandler {
+private:
+ const PPCallbacks::PragmaMessageKind Kind;
+ const StringRef Namespace;
+
+ static const char* PragmaKind(PPCallbacks::PragmaMessageKind Kind,
+ bool PragmaNameOnly = false) {
+ switch (Kind) {
+ case PPCallbacks::PMK_Message:
+ return PragmaNameOnly ? "message" : "pragma message";
+ case PPCallbacks::PMK_Warning:
+ return PragmaNameOnly ? "warning" : "pragma warning";
+ case PPCallbacks::PMK_Error:
+ return PragmaNameOnly ? "error" : "pragma error";
+ }
+ llvm_unreachable("Unknown PragmaMessageKind!");
+ }
+
+public:
+ PragmaMessageHandler(PPCallbacks::PragmaMessageKind Kind,
+ StringRef Namespace = StringRef())
+ : PragmaHandler(PragmaKind(Kind, true)), Kind(Kind), Namespace(Namespace) {}
+
+ void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,
+ Token &Tok) override {
+ SourceLocation MessageLoc = Tok.getLocation();
+ PP.Lex(Tok);
+ bool ExpectClosingParen = false;
+ switch (Tok.getKind()) {
+ case tok::l_paren:
+ // We have a MSVC style pragma message.
+ ExpectClosingParen = true;
+ // Read the string.
+ PP.Lex(Tok);
+ break;
+ case tok::string_literal:
+ // We have a GCC style pragma message, and we just read the string.
+ break;
+ default:
+ PP.Diag(MessageLoc, diag::err_pragma_message_malformed) << Kind;
+ return;
+ }
+
+ std::string MessageString;
+ if (!PP.FinishLexStringLiteral(Tok, MessageString, PragmaKind(Kind),
+ /*MacroExpansion=*/true))
+ return;
+
+ if (ExpectClosingParen) {
+ if (Tok.isNot(tok::r_paren)) {
+ PP.Diag(Tok.getLocation(), diag::err_pragma_message_malformed) << Kind;
+ return;
+ }
+ PP.Lex(Tok); // eat the r_paren.
+ }
+
+ if (Tok.isNot(tok::eod)) {
+ PP.Diag(Tok.getLocation(), diag::err_pragma_message_malformed) << Kind;
+ return;
+ }
+
+ // Output the message.
+ PP.Diag(MessageLoc, (Kind == PPCallbacks::PMK_Error)
+ ? diag::err_pragma_message
+ : diag::warn_pragma_message) << MessageString;
+
+ // If the pragma is lexically sound, notify any interested PPCallbacks.
+ if (PPCallbacks *Callbacks = PP.getPPCallbacks())
+ Callbacks->PragmaMessage(MessageLoc, Namespace, Kind, MessageString);
+ }
+};
+
+/// PragmaPushMacroHandler - "\#pragma push_macro" saves the value of the
+/// macro on the top of the stack.
+struct PragmaPushMacroHandler : public PragmaHandler {
+ PragmaPushMacroHandler() : PragmaHandler("push_macro") {}
+ void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,
+ Token &PushMacroTok) override {
+ PP.HandlePragmaPushMacro(PushMacroTok);
+ }
+};
+
+
+/// PragmaPopMacroHandler - "\#pragma pop_macro" sets the value of the
+/// macro to the value on the top of the stack.
+struct PragmaPopMacroHandler : public PragmaHandler {
+ PragmaPopMacroHandler() : PragmaHandler("pop_macro") {}
+ void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,
+ Token &PopMacroTok) override {
+ PP.HandlePragmaPopMacro(PopMacroTok);
+ }
+};
+
+// Pragma STDC implementations.
+
+/// PragmaSTDC_FENV_ACCESSHandler - "\#pragma STDC FENV_ACCESS ...".
+struct PragmaSTDC_FENV_ACCESSHandler : public PragmaHandler {
+ PragmaSTDC_FENV_ACCESSHandler() : PragmaHandler("FENV_ACCESS") {}
+ void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,
+ Token &Tok) override {
+ tok::OnOffSwitch OOS;
+ if (PP.LexOnOffSwitch(OOS))
+ return;
+ if (OOS == tok::OOS_ON)
+ PP.Diag(Tok, diag::warn_stdc_fenv_access_not_supported);
+ }
+};
+
+/// PragmaSTDC_CX_LIMITED_RANGEHandler - "\#pragma STDC CX_LIMITED_RANGE ...".
+struct PragmaSTDC_CX_LIMITED_RANGEHandler : public PragmaHandler {
+ PragmaSTDC_CX_LIMITED_RANGEHandler()
+ : PragmaHandler("CX_LIMITED_RANGE") {}
+ void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,
+ Token &Tok) override {
+ tok::OnOffSwitch OOS;
+ PP.LexOnOffSwitch(OOS);
+ }
+};
+
+/// PragmaSTDC_UnknownHandler - "\#pragma STDC ...".
+struct PragmaSTDC_UnknownHandler : public PragmaHandler {
+ PragmaSTDC_UnknownHandler() {}
+ void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,
+ Token &UnknownTok) override {
+ // C99 6.10.6p2, unknown forms are not allowed.
+ PP.Diag(UnknownTok, diag::ext_stdc_pragma_ignored);
+ }
+};
+
+/// PragmaARCCFCodeAuditedHandler -
+/// \#pragma clang arc_cf_code_audited begin/end
+struct PragmaARCCFCodeAuditedHandler : public PragmaHandler {
+ PragmaARCCFCodeAuditedHandler() : PragmaHandler("arc_cf_code_audited") {}
+ void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,
+ Token &NameTok) override {
+ SourceLocation Loc = NameTok.getLocation();
+ bool IsBegin;
+
+ Token Tok;
+
+ // Lex the 'begin' or 'end'.
+ PP.LexUnexpandedToken(Tok);
+ const IdentifierInfo *BeginEnd = Tok.getIdentifierInfo();
+ if (BeginEnd && BeginEnd->isStr("begin")) {
+ IsBegin = true;
+ } else if (BeginEnd && BeginEnd->isStr("end")) {
+ IsBegin = false;
+ } else {
+ PP.Diag(Tok.getLocation(), diag::err_pp_arc_cf_code_audited_syntax);
+ return;
+ }
+
+ // Verify that this is followed by EOD.
+ PP.LexUnexpandedToken(Tok);
+ if (Tok.isNot(tok::eod))
+ PP.Diag(Tok, diag::ext_pp_extra_tokens_at_eol) << "pragma";
+
+ // The start location of the active audit.
+ SourceLocation BeginLoc = PP.getPragmaARCCFCodeAuditedLoc();
+
+ // The start location we want after processing this.
+ SourceLocation NewLoc;
+
+ if (IsBegin) {
+ // Complain about attempts to re-enter an audit.
+ if (BeginLoc.isValid()) {
+ PP.Diag(Loc, diag::err_pp_double_begin_of_arc_cf_code_audited);
+ PP.Diag(BeginLoc, diag::note_pragma_entered_here);
+ }
+ NewLoc = Loc;
+ } else {
+ // Complain about attempts to leave an audit that doesn't exist.
+ if (!BeginLoc.isValid()) {
+ PP.Diag(Loc, diag::err_pp_unmatched_end_of_arc_cf_code_audited);
+ return;
+ }
+ NewLoc = SourceLocation();
+ }
+
+ PP.setPragmaARCCFCodeAuditedLoc(NewLoc);
+ }
+};
+
+/// \brief Handle "\#pragma region [...]"
+///
+/// The syntax is
+/// \code
+/// #pragma region [optional name]
+/// #pragma endregion [optional comment]
+/// \endcode
+///
+/// \note This is
+/// <a href="http://msdn.microsoft.com/en-us/library/b6xkz944(v=vs.80).aspx">editor-only</a>
+/// pragma, just skipped by compiler.
+struct PragmaRegionHandler : public PragmaHandler {
+ PragmaRegionHandler(const char *pragma) : PragmaHandler(pragma) { }
+
+ void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,
+ Token &NameTok) override {
+ // #pragma region: endregion matches can be verified
+ // __pragma(region): no sense, but ignored by msvc
+ // _Pragma is not valid for MSVC, but there isn't any point
+ // to handle a _Pragma differently.
+ }
+};
+
+} // end anonymous namespace
+
+
+/// RegisterBuiltinPragmas - Install the standard preprocessor pragmas:
+/// \#pragma GCC poison/system_header/dependency and \#pragma once.
+void Preprocessor::RegisterBuiltinPragmas() {
+ AddPragmaHandler(new PragmaOnceHandler());
+ AddPragmaHandler(new PragmaMarkHandler());
+ AddPragmaHandler(new PragmaPushMacroHandler());
+ AddPragmaHandler(new PragmaPopMacroHandler());
+ AddPragmaHandler(new PragmaMessageHandler(PPCallbacks::PMK_Message));
+
+ // #pragma GCC ...
+ AddPragmaHandler("GCC", new PragmaPoisonHandler());
+ AddPragmaHandler("GCC", new PragmaSystemHeaderHandler());
+ AddPragmaHandler("GCC", new PragmaDependencyHandler());
+ AddPragmaHandler("GCC", new PragmaDiagnosticHandler("GCC"));
+ AddPragmaHandler("GCC", new PragmaMessageHandler(PPCallbacks::PMK_Warning,
+ "GCC"));
+ AddPragmaHandler("GCC", new PragmaMessageHandler(PPCallbacks::PMK_Error,
+ "GCC"));
+ // #pragma clang ...
+ AddPragmaHandler("clang", new PragmaPoisonHandler());
+ AddPragmaHandler("clang", new PragmaSystemHeaderHandler());
+ AddPragmaHandler("clang", new PragmaDebugHandler());
+ AddPragmaHandler("clang", new PragmaDependencyHandler());
+ AddPragmaHandler("clang", new PragmaDiagnosticHandler("clang"));
+ AddPragmaHandler("clang", new PragmaARCCFCodeAuditedHandler());
+
+ AddPragmaHandler("STDC", new PragmaSTDC_FENV_ACCESSHandler());
+ AddPragmaHandler("STDC", new PragmaSTDC_CX_LIMITED_RANGEHandler());
+ AddPragmaHandler("STDC", new PragmaSTDC_UnknownHandler());
+
+ // MS extensions.
+ if (LangOpts.MicrosoftExt) {
+ AddPragmaHandler(new PragmaWarningHandler());
+ AddPragmaHandler(new PragmaIncludeAliasHandler());
+ AddPragmaHandler(new PragmaRegionHandler("region"));
+ AddPragmaHandler(new PragmaRegionHandler("endregion"));
+ }
+}
+
+/// Ignore all pragmas, useful for modes such as -Eonly which would otherwise
+/// warn about those pragmas being unknown.
+void Preprocessor::IgnorePragmas() {
+ AddPragmaHandler(new EmptyPragmaHandler());
+ // Also ignore all pragmas in all namespaces created
+ // in Preprocessor::RegisterBuiltinPragmas().
+ AddPragmaHandler("GCC", new EmptyPragmaHandler());
+ AddPragmaHandler("clang", new EmptyPragmaHandler());
+ if (PragmaHandler *NS = PragmaHandlers->FindHandler("STDC")) {
+ // Preprocessor::RegisterBuiltinPragmas() already registers
+ // PragmaSTDC_UnknownHandler as the empty handler, so remove it first,
+ // otherwise there will be an assert about a duplicate handler.
+ PragmaNamespace *STDCNamespace = NS->getIfNamespace();
+ assert(STDCNamespace &&
+ "Invalid namespace, registered as a regular pragma handler!");
+ if (PragmaHandler *Existing = STDCNamespace->FindHandler("", false)) {
+ RemovePragmaHandler("STDC", Existing);
+ delete Existing;
+ }
+ }
+ AddPragmaHandler("STDC", new EmptyPragmaHandler());
+}
diff --git a/contrib/llvm/tools/clang/lib/Lex/PreprocessingRecord.cpp b/contrib/llvm/tools/clang/lib/Lex/PreprocessingRecord.cpp
new file mode 100644
index 0000000..a423041
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Lex/PreprocessingRecord.cpp
@@ -0,0 +1,488 @@
+//===--- PreprocessingRecord.cpp - Record of Preprocessing ------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the PreprocessingRecord class, which maintains a record
+// of what occurred during preprocessing, and its helpers.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/Lex/PreprocessingRecord.h"
+#include "clang/Lex/MacroInfo.h"
+#include "clang/Lex/Token.h"
+#include "llvm/Support/Capacity.h"
+#include "llvm/Support/ErrorHandling.h"
+
+using namespace clang;
+
+ExternalPreprocessingRecordSource::~ExternalPreprocessingRecordSource() { }
+
+
+InclusionDirective::InclusionDirective(PreprocessingRecord &PPRec,
+ InclusionKind Kind,
+ StringRef FileName,
+ bool InQuotes, bool ImportedModule,
+ const FileEntry *File,
+ SourceRange Range)
+ : PreprocessingDirective(InclusionDirectiveKind, Range),
+ InQuotes(InQuotes), Kind(Kind), ImportedModule(ImportedModule), File(File)
+{
+ char *Memory
+ = (char*)PPRec.Allocate(FileName.size() + 1, llvm::alignOf<char>());
+ memcpy(Memory, FileName.data(), FileName.size());
+ Memory[FileName.size()] = 0;
+ this->FileName = StringRef(Memory, FileName.size());
+}
+
+PreprocessingRecord::PreprocessingRecord(SourceManager &SM)
+ : SourceMgr(SM),
+ ExternalSource(nullptr) {
+}
+
+/// \brief Returns a pair of [Begin, End) iterators of preprocessed entities
+/// that source range \p Range encompasses.
+llvm::iterator_range<PreprocessingRecord::iterator>
+PreprocessingRecord::getPreprocessedEntitiesInRange(SourceRange Range) {
+ if (Range.isInvalid())
+ return llvm::make_range(iterator(), iterator());
+
+ if (CachedRangeQuery.Range == Range) {
+ return llvm::make_range(iterator(this, CachedRangeQuery.Result.first),
+ iterator(this, CachedRangeQuery.Result.second));
+ }
+
+ std::pair<int, int> Res = getPreprocessedEntitiesInRangeSlow(Range);
+
+ CachedRangeQuery.Range = Range;
+ CachedRangeQuery.Result = Res;
+
+ return llvm::make_range(iterator(this, Res.first),
+ iterator(this, Res.second));
+}
+
+static bool isPreprocessedEntityIfInFileID(PreprocessedEntity *PPE, FileID FID,
+ SourceManager &SM) {
+ assert(!FID.isInvalid());
+ if (!PPE)
+ return false;
+
+ SourceLocation Loc = PPE->getSourceRange().getBegin();
+ if (Loc.isInvalid())
+ return false;
+
+ return SM.isInFileID(SM.getFileLoc(Loc), FID);
+}
+
+/// \brief Returns true if the preprocessed entity that \arg PPEI iterator
+/// points to is coming from the file \arg FID.
+///
+/// Can be used to avoid implicit deserializations of preallocated
+/// preprocessed entities if we only care about entities of a specific file
+/// and not from files \#included in the range given at
+/// \see getPreprocessedEntitiesInRange.
+bool PreprocessingRecord::isEntityInFileID(iterator PPEI, FileID FID) {
+ if (FID.isInvalid())
+ return false;
+
+ int Pos = std::distance(iterator(this, 0), PPEI);
+ if (Pos < 0) {
+ if (unsigned(-Pos-1) >= LoadedPreprocessedEntities.size()) {
+ assert(0 && "Out-of bounds loaded preprocessed entity");
+ return false;
+ }
+ assert(ExternalSource && "No external source to load from");
+ unsigned LoadedIndex = LoadedPreprocessedEntities.size()+Pos;
+ if (PreprocessedEntity *PPE = LoadedPreprocessedEntities[LoadedIndex])
+ return isPreprocessedEntityIfInFileID(PPE, FID, SourceMgr);
+
+ // See if the external source can see if the entity is in the file without
+ // deserializing it.
+ Optional<bool> IsInFile =
+ ExternalSource->isPreprocessedEntityInFileID(LoadedIndex, FID);
+ if (IsInFile.hasValue())
+ return IsInFile.getValue();
+
+ // The external source did not provide a definite answer, go and deserialize
+ // the entity to check it.
+ return isPreprocessedEntityIfInFileID(
+ getLoadedPreprocessedEntity(LoadedIndex),
+ FID, SourceMgr);
+ }
+
+ if (unsigned(Pos) >= PreprocessedEntities.size()) {
+ assert(0 && "Out-of bounds local preprocessed entity");
+ return false;
+ }
+ return isPreprocessedEntityIfInFileID(PreprocessedEntities[Pos],
+ FID, SourceMgr);
+}
+
+/// \brief Returns a pair of [Begin, End) iterators of preprocessed entities
+/// that source range \arg R encompasses.
+std::pair<int, int>
+PreprocessingRecord::getPreprocessedEntitiesInRangeSlow(SourceRange Range) {
+ assert(Range.isValid());
+ assert(!SourceMgr.isBeforeInTranslationUnit(Range.getEnd(),Range.getBegin()));
+
+ std::pair<unsigned, unsigned>
+ Local = findLocalPreprocessedEntitiesInRange(Range);
+
+ // Check if range spans local entities.
+ if (!ExternalSource || SourceMgr.isLocalSourceLocation(Range.getBegin()))
+ return std::make_pair(Local.first, Local.second);
+
+ std::pair<unsigned, unsigned>
+ Loaded = ExternalSource->findPreprocessedEntitiesInRange(Range);
+
+ // Check if range spans local entities.
+ if (Loaded.first == Loaded.second)
+ return std::make_pair(Local.first, Local.second);
+
+ unsigned TotalLoaded = LoadedPreprocessedEntities.size();
+
+ // Check if range spans loaded entities.
+ if (Local.first == Local.second)
+ return std::make_pair(int(Loaded.first)-TotalLoaded,
+ int(Loaded.second)-TotalLoaded);
+
+ // Range spands loaded and local entities.
+ return std::make_pair(int(Loaded.first)-TotalLoaded, Local.second);
+}
+
+std::pair<unsigned, unsigned>
+PreprocessingRecord::findLocalPreprocessedEntitiesInRange(
+ SourceRange Range) const {
+ if (Range.isInvalid())
+ return std::make_pair(0,0);
+ assert(!SourceMgr.isBeforeInTranslationUnit(Range.getEnd(),Range.getBegin()));
+
+ unsigned Begin = findBeginLocalPreprocessedEntity(Range.getBegin());
+ unsigned End = findEndLocalPreprocessedEntity(Range.getEnd());
+ return std::make_pair(Begin, End);
+}
+
+namespace {
+
+template <SourceLocation (SourceRange::*getRangeLoc)() const>
+struct PPEntityComp {
+ const SourceManager &SM;
+
+ explicit PPEntityComp(const SourceManager &SM) : SM(SM) { }
+
+ bool operator()(PreprocessedEntity *L, PreprocessedEntity *R) const {
+ SourceLocation LHS = getLoc(L);
+ SourceLocation RHS = getLoc(R);
+ return SM.isBeforeInTranslationUnit(LHS, RHS);
+ }
+
+ bool operator()(PreprocessedEntity *L, SourceLocation RHS) const {
+ SourceLocation LHS = getLoc(L);
+ return SM.isBeforeInTranslationUnit(LHS, RHS);
+ }
+
+ bool operator()(SourceLocation LHS, PreprocessedEntity *R) const {
+ SourceLocation RHS = getLoc(R);
+ return SM.isBeforeInTranslationUnit(LHS, RHS);
+ }
+
+ SourceLocation getLoc(PreprocessedEntity *PPE) const {
+ SourceRange Range = PPE->getSourceRange();
+ return (Range.*getRangeLoc)();
+ }
+};
+
+}
+
+unsigned PreprocessingRecord::findBeginLocalPreprocessedEntity(
+ SourceLocation Loc) const {
+ if (SourceMgr.isLoadedSourceLocation(Loc))
+ return 0;
+
+ size_t Count = PreprocessedEntities.size();
+ size_t Half;
+ std::vector<PreprocessedEntity *>::const_iterator
+ First = PreprocessedEntities.begin();
+ std::vector<PreprocessedEntity *>::const_iterator I;
+
+ // Do a binary search manually instead of using std::lower_bound because
+ // The end locations of entities may be unordered (when a macro expansion
+ // is inside another macro argument), but for this case it is not important
+ // whether we get the first macro expansion or its containing macro.
+ while (Count > 0) {
+ Half = Count/2;
+ I = First;
+ std::advance(I, Half);
+ if (SourceMgr.isBeforeInTranslationUnit((*I)->getSourceRange().getEnd(),
+ Loc)){
+ First = I;
+ ++First;
+ Count = Count - Half - 1;
+ } else
+ Count = Half;
+ }
+
+ return First - PreprocessedEntities.begin();
+}
+
+unsigned PreprocessingRecord::findEndLocalPreprocessedEntity(
+ SourceLocation Loc) const {
+ if (SourceMgr.isLoadedSourceLocation(Loc))
+ return 0;
+
+ std::vector<PreprocessedEntity *>::const_iterator
+ I = std::upper_bound(PreprocessedEntities.begin(),
+ PreprocessedEntities.end(),
+ Loc,
+ PPEntityComp<&SourceRange::getBegin>(SourceMgr));
+ return I - PreprocessedEntities.begin();
+}
+
+PreprocessingRecord::PPEntityID
+PreprocessingRecord::addPreprocessedEntity(PreprocessedEntity *Entity) {
+ assert(Entity);
+ SourceLocation BeginLoc = Entity->getSourceRange().getBegin();
+
+ if (isa<MacroDefinitionRecord>(Entity)) {
+ assert((PreprocessedEntities.empty() ||
+ !SourceMgr.isBeforeInTranslationUnit(
+ BeginLoc,
+ PreprocessedEntities.back()->getSourceRange().getBegin())) &&
+ "a macro definition was encountered out-of-order");
+ PreprocessedEntities.push_back(Entity);
+ return getPPEntityID(PreprocessedEntities.size()-1, /*isLoaded=*/false);
+ }
+
+ // Check normal case, this entity begin location is after the previous one.
+ if (PreprocessedEntities.empty() ||
+ !SourceMgr.isBeforeInTranslationUnit(BeginLoc,
+ PreprocessedEntities.back()->getSourceRange().getBegin())) {
+ PreprocessedEntities.push_back(Entity);
+ return getPPEntityID(PreprocessedEntities.size()-1, /*isLoaded=*/false);
+ }
+
+ // The entity's location is not after the previous one; this can happen with
+ // include directives that form the filename using macros, e.g:
+ // "#include MACRO(STUFF)"
+ // or with macro expansions inside macro arguments where the arguments are
+ // not expanded in the same order as listed, e.g:
+ // \code
+ // #define M1 1
+ // #define M2 2
+ // #define FM(x,y) y x
+ // FM(M1, M2)
+ // \endcode
+
+ typedef std::vector<PreprocessedEntity *>::iterator pp_iter;
+
+ // Usually there are few macro expansions when defining the filename, do a
+ // linear search for a few entities.
+ unsigned count = 0;
+ for (pp_iter RI = PreprocessedEntities.end(),
+ Begin = PreprocessedEntities.begin();
+ RI != Begin && count < 4; --RI, ++count) {
+ pp_iter I = RI;
+ --I;
+ if (!SourceMgr.isBeforeInTranslationUnit(BeginLoc,
+ (*I)->getSourceRange().getBegin())) {
+ pp_iter insertI = PreprocessedEntities.insert(RI, Entity);
+ return getPPEntityID(insertI - PreprocessedEntities.begin(),
+ /*isLoaded=*/false);
+ }
+ }
+
+ // Linear search unsuccessful. Do a binary search.
+ pp_iter I = std::upper_bound(PreprocessedEntities.begin(),
+ PreprocessedEntities.end(),
+ BeginLoc,
+ PPEntityComp<&SourceRange::getBegin>(SourceMgr));
+ pp_iter insertI = PreprocessedEntities.insert(I, Entity);
+ return getPPEntityID(insertI - PreprocessedEntities.begin(),
+ /*isLoaded=*/false);
+}
+
+void PreprocessingRecord::SetExternalSource(
+ ExternalPreprocessingRecordSource &Source) {
+ assert(!ExternalSource &&
+ "Preprocessing record already has an external source");
+ ExternalSource = &Source;
+}
+
+unsigned PreprocessingRecord::allocateLoadedEntities(unsigned NumEntities) {
+ unsigned Result = LoadedPreprocessedEntities.size();
+ LoadedPreprocessedEntities.resize(LoadedPreprocessedEntities.size()
+ + NumEntities);
+ return Result;
+}
+
+void PreprocessingRecord::RegisterMacroDefinition(MacroInfo *Macro,
+ MacroDefinitionRecord *Def) {
+ MacroDefinitions[Macro] = Def;
+}
+
+/// \brief Retrieve the preprocessed entity at the given ID.
+PreprocessedEntity *PreprocessingRecord::getPreprocessedEntity(PPEntityID PPID){
+ if (PPID.ID < 0) {
+ unsigned Index = -PPID.ID - 1;
+ assert(Index < LoadedPreprocessedEntities.size() &&
+ "Out-of bounds loaded preprocessed entity");
+ return getLoadedPreprocessedEntity(Index);
+ }
+
+ if (PPID.ID == 0)
+ return nullptr;
+ unsigned Index = PPID.ID - 1;
+ assert(Index < PreprocessedEntities.size() &&
+ "Out-of bounds local preprocessed entity");
+ return PreprocessedEntities[Index];
+}
+
+/// \brief Retrieve the loaded preprocessed entity at the given index.
+PreprocessedEntity *
+PreprocessingRecord::getLoadedPreprocessedEntity(unsigned Index) {
+ assert(Index < LoadedPreprocessedEntities.size() &&
+ "Out-of bounds loaded preprocessed entity");
+ assert(ExternalSource && "No external source to load from");
+ PreprocessedEntity *&Entity = LoadedPreprocessedEntities[Index];
+ if (!Entity) {
+ Entity = ExternalSource->ReadPreprocessedEntity(Index);
+ if (!Entity) // Failed to load.
+ Entity = new (*this)
+ PreprocessedEntity(PreprocessedEntity::InvalidKind, SourceRange());
+ }
+ return Entity;
+}
+
+MacroDefinitionRecord *
+PreprocessingRecord::findMacroDefinition(const MacroInfo *MI) {
+ llvm::DenseMap<const MacroInfo *, MacroDefinitionRecord *>::iterator Pos =
+ MacroDefinitions.find(MI);
+ if (Pos == MacroDefinitions.end())
+ return nullptr;
+
+ return Pos->second;
+}
+
+void PreprocessingRecord::addMacroExpansion(const Token &Id,
+ const MacroInfo *MI,
+ SourceRange Range) {
+ // We don't record nested macro expansions.
+ if (Id.getLocation().isMacroID())
+ return;
+
+ if (MI->isBuiltinMacro())
+ addPreprocessedEntity(new (*this)
+ MacroExpansion(Id.getIdentifierInfo(), Range));
+ else if (MacroDefinitionRecord *Def = findMacroDefinition(MI))
+ addPreprocessedEntity(new (*this) MacroExpansion(Def, Range));
+}
+
+void PreprocessingRecord::Ifdef(SourceLocation Loc, const Token &MacroNameTok,
+ const MacroDefinition &MD) {
+ // This is not actually a macro expansion but record it as a macro reference.
+ if (MD)
+ addMacroExpansion(MacroNameTok, MD.getMacroInfo(),
+ MacroNameTok.getLocation());
+}
+
+void PreprocessingRecord::Ifndef(SourceLocation Loc, const Token &MacroNameTok,
+ const MacroDefinition &MD) {
+ // This is not actually a macro expansion but record it as a macro reference.
+ if (MD)
+ addMacroExpansion(MacroNameTok, MD.getMacroInfo(),
+ MacroNameTok.getLocation());
+}
+
+void PreprocessingRecord::Defined(const Token &MacroNameTok,
+ const MacroDefinition &MD,
+ SourceRange Range) {
+ // This is not actually a macro expansion but record it as a macro reference.
+ if (MD)
+ addMacroExpansion(MacroNameTok, MD.getMacroInfo(),
+ MacroNameTok.getLocation());
+}
+
+void PreprocessingRecord::SourceRangeSkipped(SourceRange Range) {
+ SkippedRanges.push_back(Range);
+}
+
+void PreprocessingRecord::MacroExpands(const Token &Id,
+ const MacroDefinition &MD,
+ SourceRange Range,
+ const MacroArgs *Args) {
+ addMacroExpansion(Id, MD.getMacroInfo(), Range);
+}
+
+void PreprocessingRecord::MacroDefined(const Token &Id,
+ const MacroDirective *MD) {
+ const MacroInfo *MI = MD->getMacroInfo();
+ SourceRange R(MI->getDefinitionLoc(), MI->getDefinitionEndLoc());
+ MacroDefinitionRecord *Def =
+ new (*this) MacroDefinitionRecord(Id.getIdentifierInfo(), R);
+ addPreprocessedEntity(Def);
+ MacroDefinitions[MI] = Def;
+}
+
+void PreprocessingRecord::MacroUndefined(const Token &Id,
+ const MacroDefinition &MD) {
+ MD.forAllDefinitions([&](MacroInfo *MI) { MacroDefinitions.erase(MI); });
+}
+
+void PreprocessingRecord::InclusionDirective(
+ SourceLocation HashLoc,
+ const clang::Token &IncludeTok,
+ StringRef FileName,
+ bool IsAngled,
+ CharSourceRange FilenameRange,
+ const FileEntry *File,
+ StringRef SearchPath,
+ StringRef RelativePath,
+ const Module *Imported) {
+ InclusionDirective::InclusionKind Kind = InclusionDirective::Include;
+
+ switch (IncludeTok.getIdentifierInfo()->getPPKeywordID()) {
+ case tok::pp_include:
+ Kind = InclusionDirective::Include;
+ break;
+
+ case tok::pp_import:
+ Kind = InclusionDirective::Import;
+ break;
+
+ case tok::pp_include_next:
+ Kind = InclusionDirective::IncludeNext;
+ break;
+
+ case tok::pp___include_macros:
+ Kind = InclusionDirective::IncludeMacros;
+ break;
+
+ default:
+ llvm_unreachable("Unknown include directive kind");
+ }
+
+ SourceLocation EndLoc;
+ if (!IsAngled) {
+ EndLoc = FilenameRange.getBegin();
+ } else {
+ EndLoc = FilenameRange.getEnd();
+ if (FilenameRange.isCharRange())
+ EndLoc = EndLoc.getLocWithOffset(-1); // the InclusionDirective expects
+ // a token range.
+ }
+ clang::InclusionDirective *ID
+ = new (*this) clang::InclusionDirective(*this, Kind, FileName, !IsAngled,
+ (bool)Imported,
+ File, SourceRange(HashLoc, EndLoc));
+ addPreprocessedEntity(ID);
+}
+
+size_t PreprocessingRecord::getTotalMemory() const {
+ return BumpAlloc.getTotalMemory()
+ + llvm::capacity_in_bytes(MacroDefinitions)
+ + llvm::capacity_in_bytes(PreprocessedEntities)
+ + llvm::capacity_in_bytes(LoadedPreprocessedEntities);
+}
diff --git a/contrib/llvm/tools/clang/lib/Lex/Preprocessor.cpp b/contrib/llvm/tools/clang/lib/Lex/Preprocessor.cpp
new file mode 100644
index 0000000..7e33f1c
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Lex/Preprocessor.cpp
@@ -0,0 +1,904 @@
+//===--- Preprocess.cpp - C Language Family Preprocessor Implementation ---===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Preprocessor interface.
+//
+//===----------------------------------------------------------------------===//
+//
+// Options to support:
+// -H - Print the name of each header file used.
+// -d[DNI] - Dump various things.
+// -fworking-directory - #line's with preprocessor's working dir.
+// -fpreprocessed
+// -dependency-file,-M,-MM,-MF,-MG,-MP,-MT,-MQ,-MD,-MMD
+// -W*
+// -w
+//
+// Messages to emit:
+// "Multiple include guards may be useful for:\n"
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/FileSystemStatCache.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Lex/CodeCompletionHandler.h"
+#include "clang/Lex/ExternalPreprocessorSource.h"
+#include "clang/Lex/HeaderSearch.h"
+#include "clang/Lex/LexDiagnostic.h"
+#include "clang/Lex/LiteralSupport.h"
+#include "clang/Lex/MacroArgs.h"
+#include "clang/Lex/MacroInfo.h"
+#include "clang/Lex/ModuleLoader.h"
+#include "clang/Lex/Pragma.h"
+#include "clang/Lex/PreprocessingRecord.h"
+#include "clang/Lex/PreprocessorOptions.h"
+#include "clang/Lex/ScratchBuffer.h"
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/Capacity.h"
+#include "llvm/Support/ConvertUTF.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+ExternalPreprocessorSource::~ExternalPreprocessorSource() { }
+
+Preprocessor::Preprocessor(IntrusiveRefCntPtr<PreprocessorOptions> PPOpts,
+ DiagnosticsEngine &diags, LangOptions &opts,
+ SourceManager &SM, HeaderSearch &Headers,
+ ModuleLoader &TheModuleLoader,
+ IdentifierInfoLookup *IILookup, bool OwnsHeaders,
+ TranslationUnitKind TUKind)
+ : PPOpts(PPOpts), Diags(&diags), LangOpts(opts), Target(nullptr),
+ FileMgr(Headers.getFileMgr()), SourceMgr(SM),
+ ScratchBuf(new ScratchBuffer(SourceMgr)),HeaderInfo(Headers),
+ TheModuleLoader(TheModuleLoader), ExternalSource(nullptr),
+ Identifiers(opts, IILookup),
+ PragmaHandlers(new PragmaNamespace(StringRef())),
+ IncrementalProcessing(false), TUKind(TUKind),
+ CodeComplete(nullptr), CodeCompletionFile(nullptr),
+ CodeCompletionOffset(0), LastTokenWasAt(false),
+ ModuleImportExpectsIdentifier(false), CodeCompletionReached(0),
+ MainFileDir(nullptr), SkipMainFilePreamble(0, true), CurPPLexer(nullptr),
+ CurDirLookup(nullptr), CurLexerKind(CLK_Lexer), CurSubmodule(nullptr),
+ Callbacks(nullptr), CurSubmoduleState(&NullSubmoduleState),
+ MacroArgCache(nullptr), Record(nullptr),
+ MIChainHead(nullptr), DeserialMIChainHead(nullptr) {
+ OwnsHeaderSearch = OwnsHeaders;
+
+ CounterValue = 0; // __COUNTER__ starts at 0.
+
+ // Clear stats.
+ NumDirectives = NumDefined = NumUndefined = NumPragma = 0;
+ NumIf = NumElse = NumEndif = 0;
+ NumEnteredSourceFiles = 0;
+ NumMacroExpanded = NumFnMacroExpanded = NumBuiltinMacroExpanded = 0;
+ NumFastMacroExpanded = NumTokenPaste = NumFastTokenPaste = 0;
+ MaxIncludeStackDepth = 0;
+ NumSkipped = 0;
+
+ // Default to discarding comments.
+ KeepComments = false;
+ KeepMacroComments = false;
+ SuppressIncludeNotFoundError = false;
+
+ // Macro expansion is enabled.
+ DisableMacroExpansion = false;
+ MacroExpansionInDirectivesOverride = false;
+ InMacroArgs = false;
+ InMacroArgPreExpansion = false;
+ NumCachedTokenLexers = 0;
+ PragmasEnabled = true;
+ ParsingIfOrElifDirective = false;
+ PreprocessedOutput = false;
+
+ CachedLexPos = 0;
+
+ // We haven't read anything from the external source.
+ ReadMacrosFromExternalSource = false;
+
+ // "Poison" __VA_ARGS__, which can only appear in the expansion of a macro.
+ // This gets unpoisoned where it is allowed.
+ (Ident__VA_ARGS__ = getIdentifierInfo("__VA_ARGS__"))->setIsPoisoned();
+ SetPoisonReason(Ident__VA_ARGS__,diag::ext_pp_bad_vaargs_use);
+
+ // Initialize the pragma handlers.
+ RegisterBuiltinPragmas();
+
+ // Initialize builtin macros like __LINE__ and friends.
+ RegisterBuiltinMacros();
+
+ if(LangOpts.Borland) {
+ Ident__exception_info = getIdentifierInfo("_exception_info");
+ Ident___exception_info = getIdentifierInfo("__exception_info");
+ Ident_GetExceptionInfo = getIdentifierInfo("GetExceptionInformation");
+ Ident__exception_code = getIdentifierInfo("_exception_code");
+ Ident___exception_code = getIdentifierInfo("__exception_code");
+ Ident_GetExceptionCode = getIdentifierInfo("GetExceptionCode");
+ Ident__abnormal_termination = getIdentifierInfo("_abnormal_termination");
+ Ident___abnormal_termination = getIdentifierInfo("__abnormal_termination");
+ Ident_AbnormalTermination = getIdentifierInfo("AbnormalTermination");
+ } else {
+ Ident__exception_info = Ident__exception_code = nullptr;
+ Ident__abnormal_termination = Ident___exception_info = nullptr;
+ Ident___exception_code = Ident___abnormal_termination = nullptr;
+ Ident_GetExceptionInfo = Ident_GetExceptionCode = nullptr;
+ Ident_AbnormalTermination = nullptr;
+ }
+}
+
+Preprocessor::~Preprocessor() {
+ assert(BacktrackPositions.empty() && "EnableBacktrack/Backtrack imbalance!");
+
+ IncludeMacroStack.clear();
+
+ // Destroy any macro definitions.
+ while (MacroInfoChain *I = MIChainHead) {
+ MIChainHead = I->Next;
+ I->~MacroInfoChain();
+ }
+
+ // Free any cached macro expanders.
+ // This populates MacroArgCache, so all TokenLexers need to be destroyed
+ // before the code below that frees up the MacroArgCache list.
+ std::fill(TokenLexerCache, TokenLexerCache + NumCachedTokenLexers, nullptr);
+ CurTokenLexer.reset();
+
+ while (DeserializedMacroInfoChain *I = DeserialMIChainHead) {
+ DeserialMIChainHead = I->Next;
+ I->~DeserializedMacroInfoChain();
+ }
+
+ // Free any cached MacroArgs.
+ for (MacroArgs *ArgList = MacroArgCache; ArgList;)
+ ArgList = ArgList->deallocate();
+
+ // Delete the header search info, if we own it.
+ if (OwnsHeaderSearch)
+ delete &HeaderInfo;
+}
+
+void Preprocessor::Initialize(const TargetInfo &Target) {
+ assert((!this->Target || this->Target == &Target) &&
+ "Invalid override of target information");
+ this->Target = &Target;
+
+ // Initialize information about built-ins.
+ BuiltinInfo.InitializeTarget(Target);
+ HeaderInfo.setTarget(Target);
+}
+
+void Preprocessor::InitializeForModelFile() {
+ NumEnteredSourceFiles = 0;
+
+ // Reset pragmas
+ PragmaHandlersBackup = std::move(PragmaHandlers);
+ PragmaHandlers = llvm::make_unique<PragmaNamespace>(StringRef());
+ RegisterBuiltinPragmas();
+
+ // Reset PredefinesFileID
+ PredefinesFileID = FileID();
+}
+
+void Preprocessor::FinalizeForModelFile() {
+ NumEnteredSourceFiles = 1;
+
+ PragmaHandlers = std::move(PragmaHandlersBackup);
+}
+
+void Preprocessor::setPTHManager(PTHManager* pm) {
+ PTH.reset(pm);
+ FileMgr.addStatCache(PTH->createStatCache());
+}
+
+void Preprocessor::DumpToken(const Token &Tok, bool DumpFlags) const {
+ llvm::errs() << tok::getTokenName(Tok.getKind()) << " '"
+ << getSpelling(Tok) << "'";
+
+ if (!DumpFlags) return;
+
+ llvm::errs() << "\t";
+ if (Tok.isAtStartOfLine())
+ llvm::errs() << " [StartOfLine]";
+ if (Tok.hasLeadingSpace())
+ llvm::errs() << " [LeadingSpace]";
+ if (Tok.isExpandDisabled())
+ llvm::errs() << " [ExpandDisabled]";
+ if (Tok.needsCleaning()) {
+ const char *Start = SourceMgr.getCharacterData(Tok.getLocation());
+ llvm::errs() << " [UnClean='" << StringRef(Start, Tok.getLength())
+ << "']";
+ }
+
+ llvm::errs() << "\tLoc=<";
+ DumpLocation(Tok.getLocation());
+ llvm::errs() << ">";
+}
+
+void Preprocessor::DumpLocation(SourceLocation Loc) const {
+ Loc.dump(SourceMgr);
+}
+
+void Preprocessor::DumpMacro(const MacroInfo &MI) const {
+ llvm::errs() << "MACRO: ";
+ for (unsigned i = 0, e = MI.getNumTokens(); i != e; ++i) {
+ DumpToken(MI.getReplacementToken(i));
+ llvm::errs() << " ";
+ }
+ llvm::errs() << "\n";
+}
+
+void Preprocessor::PrintStats() {
+ llvm::errs() << "\n*** Preprocessor Stats:\n";
+ llvm::errs() << NumDirectives << " directives found:\n";
+ llvm::errs() << " " << NumDefined << " #define.\n";
+ llvm::errs() << " " << NumUndefined << " #undef.\n";
+ llvm::errs() << " #include/#include_next/#import:\n";
+ llvm::errs() << " " << NumEnteredSourceFiles << " source files entered.\n";
+ llvm::errs() << " " << MaxIncludeStackDepth << " max include stack depth\n";
+ llvm::errs() << " " << NumIf << " #if/#ifndef/#ifdef.\n";
+ llvm::errs() << " " << NumElse << " #else/#elif.\n";
+ llvm::errs() << " " << NumEndif << " #endif.\n";
+ llvm::errs() << " " << NumPragma << " #pragma.\n";
+ llvm::errs() << NumSkipped << " #if/#ifndef#ifdef regions skipped\n";
+
+ llvm::errs() << NumMacroExpanded << "/" << NumFnMacroExpanded << "/"
+ << NumBuiltinMacroExpanded << " obj/fn/builtin macros expanded, "
+ << NumFastMacroExpanded << " on the fast path.\n";
+ llvm::errs() << (NumFastTokenPaste+NumTokenPaste)
+ << " token paste (##) operations performed, "
+ << NumFastTokenPaste << " on the fast path.\n";
+
+ llvm::errs() << "\nPreprocessor Memory: " << getTotalMemory() << "B total";
+
+ llvm::errs() << "\n BumpPtr: " << BP.getTotalMemory();
+ llvm::errs() << "\n Macro Expanded Tokens: "
+ << llvm::capacity_in_bytes(MacroExpandedTokens);
+ llvm::errs() << "\n Predefines Buffer: " << Predefines.capacity();
+ // FIXME: List information for all submodules.
+ llvm::errs() << "\n Macros: "
+ << llvm::capacity_in_bytes(CurSubmoduleState->Macros);
+ llvm::errs() << "\n #pragma push_macro Info: "
+ << llvm::capacity_in_bytes(PragmaPushMacroInfo);
+ llvm::errs() << "\n Poison Reasons: "
+ << llvm::capacity_in_bytes(PoisonReasons);
+ llvm::errs() << "\n Comment Handlers: "
+ << llvm::capacity_in_bytes(CommentHandlers) << "\n";
+}
+
+Preprocessor::macro_iterator
+Preprocessor::macro_begin(bool IncludeExternalMacros) const {
+ if (IncludeExternalMacros && ExternalSource &&
+ !ReadMacrosFromExternalSource) {
+ ReadMacrosFromExternalSource = true;
+ ExternalSource->ReadDefinedMacros();
+ }
+
+ return CurSubmoduleState->Macros.begin();
+}
+
+size_t Preprocessor::getTotalMemory() const {
+ return BP.getTotalMemory()
+ + llvm::capacity_in_bytes(MacroExpandedTokens)
+ + Predefines.capacity() /* Predefines buffer. */
+ // FIXME: Include sizes from all submodules, and include MacroInfo sizes,
+ // and ModuleMacros.
+ + llvm::capacity_in_bytes(CurSubmoduleState->Macros)
+ + llvm::capacity_in_bytes(PragmaPushMacroInfo)
+ + llvm::capacity_in_bytes(PoisonReasons)
+ + llvm::capacity_in_bytes(CommentHandlers);
+}
+
+Preprocessor::macro_iterator
+Preprocessor::macro_end(bool IncludeExternalMacros) const {
+ if (IncludeExternalMacros && ExternalSource &&
+ !ReadMacrosFromExternalSource) {
+ ReadMacrosFromExternalSource = true;
+ ExternalSource->ReadDefinedMacros();
+ }
+
+ return CurSubmoduleState->Macros.end();
+}
+
+/// \brief Compares macro tokens with a specified token value sequence.
+static bool MacroDefinitionEquals(const MacroInfo *MI,
+ ArrayRef<TokenValue> Tokens) {
+ return Tokens.size() == MI->getNumTokens() &&
+ std::equal(Tokens.begin(), Tokens.end(), MI->tokens_begin());
+}
+
+StringRef Preprocessor::getLastMacroWithSpelling(
+ SourceLocation Loc,
+ ArrayRef<TokenValue> Tokens) const {
+ SourceLocation BestLocation;
+ StringRef BestSpelling;
+ for (Preprocessor::macro_iterator I = macro_begin(), E = macro_end();
+ I != E; ++I) {
+ const MacroDirective::DefInfo
+ Def = I->second.findDirectiveAtLoc(Loc, SourceMgr);
+ if (!Def || !Def.getMacroInfo())
+ continue;
+ if (!Def.getMacroInfo()->isObjectLike())
+ continue;
+ if (!MacroDefinitionEquals(Def.getMacroInfo(), Tokens))
+ continue;
+ SourceLocation Location = Def.getLocation();
+ // Choose the macro defined latest.
+ if (BestLocation.isInvalid() ||
+ (Location.isValid() &&
+ SourceMgr.isBeforeInTranslationUnit(BestLocation, Location))) {
+ BestLocation = Location;
+ BestSpelling = I->first->getName();
+ }
+ }
+ return BestSpelling;
+}
+
+void Preprocessor::recomputeCurLexerKind() {
+ if (CurLexer)
+ CurLexerKind = CLK_Lexer;
+ else if (CurPTHLexer)
+ CurLexerKind = CLK_PTHLexer;
+ else if (CurTokenLexer)
+ CurLexerKind = CLK_TokenLexer;
+ else
+ CurLexerKind = CLK_CachingLexer;
+}
+
+bool Preprocessor::SetCodeCompletionPoint(const FileEntry *File,
+ unsigned CompleteLine,
+ unsigned CompleteColumn) {
+ assert(File);
+ assert(CompleteLine && CompleteColumn && "Starts from 1:1");
+ assert(!CodeCompletionFile && "Already set");
+
+ using llvm::MemoryBuffer;
+
+ // Load the actual file's contents.
+ bool Invalid = false;
+ const MemoryBuffer *Buffer = SourceMgr.getMemoryBufferForFile(File, &Invalid);
+ if (Invalid)
+ return true;
+
+ // Find the byte position of the truncation point.
+ const char *Position = Buffer->getBufferStart();
+ for (unsigned Line = 1; Line < CompleteLine; ++Line) {
+ for (; *Position; ++Position) {
+ if (*Position != '\r' && *Position != '\n')
+ continue;
+
+ // Eat \r\n or \n\r as a single line.
+ if ((Position[1] == '\r' || Position[1] == '\n') &&
+ Position[0] != Position[1])
+ ++Position;
+ ++Position;
+ break;
+ }
+ }
+
+ Position += CompleteColumn - 1;
+
+ // If pointing inside the preamble, adjust the position at the beginning of
+ // the file after the preamble.
+ if (SkipMainFilePreamble.first &&
+ SourceMgr.getFileEntryForID(SourceMgr.getMainFileID()) == File) {
+ if (Position - Buffer->getBufferStart() < SkipMainFilePreamble.first)
+ Position = Buffer->getBufferStart() + SkipMainFilePreamble.first;
+ }
+
+ if (Position > Buffer->getBufferEnd())
+ Position = Buffer->getBufferEnd();
+
+ CodeCompletionFile = File;
+ CodeCompletionOffset = Position - Buffer->getBufferStart();
+
+ std::unique_ptr<MemoryBuffer> NewBuffer =
+ MemoryBuffer::getNewUninitMemBuffer(Buffer->getBufferSize() + 1,
+ Buffer->getBufferIdentifier());
+ char *NewBuf = const_cast<char*>(NewBuffer->getBufferStart());
+ char *NewPos = std::copy(Buffer->getBufferStart(), Position, NewBuf);
+ *NewPos = '\0';
+ std::copy(Position, Buffer->getBufferEnd(), NewPos+1);
+ SourceMgr.overrideFileContents(File, std::move(NewBuffer));
+
+ return false;
+}
+
+void Preprocessor::CodeCompleteNaturalLanguage() {
+ if (CodeComplete)
+ CodeComplete->CodeCompleteNaturalLanguage();
+ setCodeCompletionReached();
+}
+
+/// getSpelling - This method is used to get the spelling of a token into a
+/// SmallVector. Note that the returned StringRef may not point to the
+/// supplied buffer if a copy can be avoided.
+StringRef Preprocessor::getSpelling(const Token &Tok,
+ SmallVectorImpl<char> &Buffer,
+ bool *Invalid) const {
+ // NOTE: this has to be checked *before* testing for an IdentifierInfo.
+ if (Tok.isNot(tok::raw_identifier) && !Tok.hasUCN()) {
+ // Try the fast path.
+ if (const IdentifierInfo *II = Tok.getIdentifierInfo())
+ return II->getName();
+ }
+
+ // Resize the buffer if we need to copy into it.
+ if (Tok.needsCleaning())
+ Buffer.resize(Tok.getLength());
+
+ const char *Ptr = Buffer.data();
+ unsigned Len = getSpelling(Tok, Ptr, Invalid);
+ return StringRef(Ptr, Len);
+}
+
+/// CreateString - Plop the specified string into a scratch buffer and return a
+/// location for it. If specified, the source location provides a source
+/// location for the token.
+void Preprocessor::CreateString(StringRef Str, Token &Tok,
+ SourceLocation ExpansionLocStart,
+ SourceLocation ExpansionLocEnd) {
+ Tok.setLength(Str.size());
+
+ const char *DestPtr;
+ SourceLocation Loc = ScratchBuf->getToken(Str.data(), Str.size(), DestPtr);
+
+ if (ExpansionLocStart.isValid())
+ Loc = SourceMgr.createExpansionLoc(Loc, ExpansionLocStart,
+ ExpansionLocEnd, Str.size());
+ Tok.setLocation(Loc);
+
+ // If this is a raw identifier or a literal token, set the pointer data.
+ if (Tok.is(tok::raw_identifier))
+ Tok.setRawIdentifierData(DestPtr);
+ else if (Tok.isLiteral())
+ Tok.setLiteralData(DestPtr);
+}
+
+Module *Preprocessor::getCurrentModule() {
+ if (getLangOpts().CurrentModule.empty())
+ return nullptr;
+
+ return getHeaderSearchInfo().lookupModule(getLangOpts().CurrentModule);
+}
+
+//===----------------------------------------------------------------------===//
+// Preprocessor Initialization Methods
+//===----------------------------------------------------------------------===//
+
+
+/// EnterMainSourceFile - Enter the specified FileID as the main source file,
+/// which implicitly adds the builtin defines etc.
+void Preprocessor::EnterMainSourceFile() {
+ // We do not allow the preprocessor to reenter the main file. Doing so will
+ // cause FileID's to accumulate information from both runs (e.g. #line
+ // information) and predefined macros aren't guaranteed to be set properly.
+ assert(NumEnteredSourceFiles == 0 && "Cannot reenter the main file!");
+ FileID MainFileID = SourceMgr.getMainFileID();
+
+ // If MainFileID is loaded it means we loaded an AST file, no need to enter
+ // a main file.
+ if (!SourceMgr.isLoadedFileID(MainFileID)) {
+ // Enter the main file source buffer.
+ EnterSourceFile(MainFileID, nullptr, SourceLocation());
+
+ // If we've been asked to skip bytes in the main file (e.g., as part of a
+ // precompiled preamble), do so now.
+ if (SkipMainFilePreamble.first > 0)
+ CurLexer->SkipBytes(SkipMainFilePreamble.first,
+ SkipMainFilePreamble.second);
+
+ // Tell the header info that the main file was entered. If the file is later
+ // #imported, it won't be re-entered.
+ if (const FileEntry *FE = SourceMgr.getFileEntryForID(MainFileID))
+ HeaderInfo.IncrementIncludeCount(FE);
+ }
+
+ // Preprocess Predefines to populate the initial preprocessor state.
+ std::unique_ptr<llvm::MemoryBuffer> SB =
+ llvm::MemoryBuffer::getMemBufferCopy(Predefines, "<built-in>");
+ assert(SB && "Cannot create predefined source buffer");
+ FileID FID = SourceMgr.createFileID(std::move(SB));
+ assert(!FID.isInvalid() && "Could not create FileID for predefines?");
+ setPredefinesFileID(FID);
+
+ // Start parsing the predefines.
+ EnterSourceFile(FID, nullptr, SourceLocation());
+}
+
+void Preprocessor::EndSourceFile() {
+ // Notify the client that we reached the end of the source file.
+ if (Callbacks)
+ Callbacks->EndOfMainFile();
+}
+
+//===----------------------------------------------------------------------===//
+// Lexer Event Handling.
+//===----------------------------------------------------------------------===//
+
+/// LookUpIdentifierInfo - Given a tok::raw_identifier token, look up the
+/// identifier information for the token and install it into the token,
+/// updating the token kind accordingly.
+IdentifierInfo *Preprocessor::LookUpIdentifierInfo(Token &Identifier) const {
+ assert(!Identifier.getRawIdentifier().empty() && "No raw identifier data!");
+
+ // Look up this token, see if it is a macro, or if it is a language keyword.
+ IdentifierInfo *II;
+ if (!Identifier.needsCleaning() && !Identifier.hasUCN()) {
+ // No cleaning needed, just use the characters from the lexed buffer.
+ II = getIdentifierInfo(Identifier.getRawIdentifier());
+ } else {
+ // Cleaning needed, alloca a buffer, clean into it, then use the buffer.
+ SmallString<64> IdentifierBuffer;
+ StringRef CleanedStr = getSpelling(Identifier, IdentifierBuffer);
+
+ if (Identifier.hasUCN()) {
+ SmallString<64> UCNIdentifierBuffer;
+ expandUCNs(UCNIdentifierBuffer, CleanedStr);
+ II = getIdentifierInfo(UCNIdentifierBuffer);
+ } else {
+ II = getIdentifierInfo(CleanedStr);
+ }
+ }
+
+ // Update the token info (identifier info and appropriate token kind).
+ Identifier.setIdentifierInfo(II);
+ Identifier.setKind(II->getTokenID());
+
+ return II;
+}
+
+void Preprocessor::SetPoisonReason(IdentifierInfo *II, unsigned DiagID) {
+ PoisonReasons[II] = DiagID;
+}
+
+void Preprocessor::PoisonSEHIdentifiers(bool Poison) {
+ assert(Ident__exception_code && Ident__exception_info);
+ assert(Ident___exception_code && Ident___exception_info);
+ Ident__exception_code->setIsPoisoned(Poison);
+ Ident___exception_code->setIsPoisoned(Poison);
+ Ident_GetExceptionCode->setIsPoisoned(Poison);
+ Ident__exception_info->setIsPoisoned(Poison);
+ Ident___exception_info->setIsPoisoned(Poison);
+ Ident_GetExceptionInfo->setIsPoisoned(Poison);
+ Ident__abnormal_termination->setIsPoisoned(Poison);
+ Ident___abnormal_termination->setIsPoisoned(Poison);
+ Ident_AbnormalTermination->setIsPoisoned(Poison);
+}
+
+void Preprocessor::HandlePoisonedIdentifier(Token & Identifier) {
+ assert(Identifier.getIdentifierInfo() &&
+ "Can't handle identifiers without identifier info!");
+ llvm::DenseMap<IdentifierInfo*,unsigned>::const_iterator it =
+ PoisonReasons.find(Identifier.getIdentifierInfo());
+ if(it == PoisonReasons.end())
+ Diag(Identifier, diag::err_pp_used_poisoned_id);
+ else
+ Diag(Identifier,it->second) << Identifier.getIdentifierInfo();
+}
+
+/// \brief Returns a diagnostic message kind for reporting a future keyword as
+/// appropriate for the identifier and specified language.
+static diag::kind getFutureCompatDiagKind(const IdentifierInfo &II,
+ const LangOptions &LangOpts) {
+ assert(II.isFutureCompatKeyword() && "diagnostic should not be needed");
+
+ if (LangOpts.CPlusPlus)
+ return llvm::StringSwitch<diag::kind>(II.getName())
+#define CXX11_KEYWORD(NAME, FLAGS) \
+ .Case(#NAME, diag::warn_cxx11_keyword)
+#include "clang/Basic/TokenKinds.def"
+ ;
+
+ llvm_unreachable(
+ "Keyword not known to come from a newer Standard or proposed Standard");
+}
+
+/// HandleIdentifier - This callback is invoked when the lexer reads an
+/// identifier. This callback looks up the identifier in the map and/or
+/// potentially macro expands it or turns it into a named token (like 'for').
+///
+/// Note that callers of this method are guarded by checking the
+/// IdentifierInfo's 'isHandleIdentifierCase' bit. If this method changes, the
+/// IdentifierInfo methods that compute these properties will need to change to
+/// match.
+bool Preprocessor::HandleIdentifier(Token &Identifier) {
+ assert(Identifier.getIdentifierInfo() &&
+ "Can't handle identifiers without identifier info!");
+
+ IdentifierInfo &II = *Identifier.getIdentifierInfo();
+
+ // If the information about this identifier is out of date, update it from
+ // the external source.
+ // We have to treat __VA_ARGS__ in a special way, since it gets
+ // serialized with isPoisoned = true, but our preprocessor may have
+ // unpoisoned it if we're defining a C99 macro.
+ if (II.isOutOfDate()) {
+ bool CurrentIsPoisoned = false;
+ if (&II == Ident__VA_ARGS__)
+ CurrentIsPoisoned = Ident__VA_ARGS__->isPoisoned();
+
+ ExternalSource->updateOutOfDateIdentifier(II);
+ Identifier.setKind(II.getTokenID());
+
+ if (&II == Ident__VA_ARGS__)
+ II.setIsPoisoned(CurrentIsPoisoned);
+ }
+
+ // If this identifier was poisoned, and if it was not produced from a macro
+ // expansion, emit an error.
+ if (II.isPoisoned() && CurPPLexer) {
+ HandlePoisonedIdentifier(Identifier);
+ }
+
+ // If this is a macro to be expanded, do it.
+ if (MacroDefinition MD = getMacroDefinition(&II)) {
+ auto *MI = MD.getMacroInfo();
+ assert(MI && "macro definition with no macro info?");
+ if (!DisableMacroExpansion) {
+ if (!Identifier.isExpandDisabled() && MI->isEnabled()) {
+ // C99 6.10.3p10: If the preprocessing token immediately after the
+ // macro name isn't a '(', this macro should not be expanded.
+ if (!MI->isFunctionLike() || isNextPPTokenLParen())
+ return HandleMacroExpandedIdentifier(Identifier, MD);
+ } else {
+ // C99 6.10.3.4p2 says that a disabled macro may never again be
+ // expanded, even if it's in a context where it could be expanded in the
+ // future.
+ Identifier.setFlag(Token::DisableExpand);
+ if (MI->isObjectLike() || isNextPPTokenLParen())
+ Diag(Identifier, diag::pp_disabled_macro_expansion);
+ }
+ }
+ }
+
+ // If this identifier is a keyword in a newer Standard or proposed Standard,
+ // produce a warning. Don't warn if we're not considering macro expansion,
+ // since this identifier might be the name of a macro.
+ // FIXME: This warning is disabled in cases where it shouldn't be, like
+ // "#define constexpr constexpr", "int constexpr;"
+ if (II.isFutureCompatKeyword() && !DisableMacroExpansion) {
+ Diag(Identifier, getFutureCompatDiagKind(II, getLangOpts()))
+ << II.getName();
+ // Don't diagnose this keyword again in this translation unit.
+ II.setIsFutureCompatKeyword(false);
+ }
+
+ // C++ 2.11p2: If this is an alternative representation of a C++ operator,
+ // then we act as if it is the actual operator and not the textual
+ // representation of it.
+ if (II.isCPlusPlusOperatorKeyword())
+ Identifier.setIdentifierInfo(nullptr);
+
+ // If this is an extension token, diagnose its use.
+ // We avoid diagnosing tokens that originate from macro definitions.
+ // FIXME: This warning is disabled in cases where it shouldn't be,
+ // like "#define TY typeof", "TY(1) x".
+ if (II.isExtensionToken() && !DisableMacroExpansion)
+ Diag(Identifier, diag::ext_token_used);
+
+ // If this is the 'import' contextual keyword following an '@', note
+ // that the next token indicates a module name.
+ //
+ // Note that we do not treat 'import' as a contextual
+ // keyword when we're in a caching lexer, because caching lexers only get
+ // used in contexts where import declarations are disallowed.
+ if (LastTokenWasAt && II.isModulesImport() && !InMacroArgs &&
+ !DisableMacroExpansion &&
+ (getLangOpts().Modules || getLangOpts().DebuggerSupport) &&
+ CurLexerKind != CLK_CachingLexer) {
+ ModuleImportLoc = Identifier.getLocation();
+ ModuleImportPath.clear();
+ ModuleImportExpectsIdentifier = true;
+ CurLexerKind = CLK_LexAfterModuleImport;
+ }
+ return true;
+}
+
+void Preprocessor::Lex(Token &Result) {
+ // We loop here until a lex function retuns a token; this avoids recursion.
+ bool ReturnedToken;
+ do {
+ switch (CurLexerKind) {
+ case CLK_Lexer:
+ ReturnedToken = CurLexer->Lex(Result);
+ break;
+ case CLK_PTHLexer:
+ ReturnedToken = CurPTHLexer->Lex(Result);
+ break;
+ case CLK_TokenLexer:
+ ReturnedToken = CurTokenLexer->Lex(Result);
+ break;
+ case CLK_CachingLexer:
+ CachingLex(Result);
+ ReturnedToken = true;
+ break;
+ case CLK_LexAfterModuleImport:
+ LexAfterModuleImport(Result);
+ ReturnedToken = true;
+ break;
+ }
+ } while (!ReturnedToken);
+
+ LastTokenWasAt = Result.is(tok::at);
+}
+
+
+/// \brief Lex a token following the 'import' contextual keyword.
+///
+void Preprocessor::LexAfterModuleImport(Token &Result) {
+ // Figure out what kind of lexer we actually have.
+ recomputeCurLexerKind();
+
+ // Lex the next token.
+ Lex(Result);
+
+ // The token sequence
+ //
+ // import identifier (. identifier)*
+ //
+ // indicates a module import directive. We already saw the 'import'
+ // contextual keyword, so now we're looking for the identifiers.
+ if (ModuleImportExpectsIdentifier && Result.getKind() == tok::identifier) {
+ // We expected to see an identifier here, and we did; continue handling
+ // identifiers.
+ ModuleImportPath.push_back(std::make_pair(Result.getIdentifierInfo(),
+ Result.getLocation()));
+ ModuleImportExpectsIdentifier = false;
+ CurLexerKind = CLK_LexAfterModuleImport;
+ return;
+ }
+
+ // If we're expecting a '.' or a ';', and we got a '.', then wait until we
+ // see the next identifier.
+ if (!ModuleImportExpectsIdentifier && Result.getKind() == tok::period) {
+ ModuleImportExpectsIdentifier = true;
+ CurLexerKind = CLK_LexAfterModuleImport;
+ return;
+ }
+
+ // If we have a non-empty module path, load the named module.
+ if (!ModuleImportPath.empty()) {
+ Module *Imported = nullptr;
+ if (getLangOpts().Modules) {
+ Imported = TheModuleLoader.loadModule(ModuleImportLoc,
+ ModuleImportPath,
+ Module::Hidden,
+ /*IsIncludeDirective=*/false);
+ if (Imported)
+ makeModuleVisible(Imported, ModuleImportLoc);
+ }
+ if (Callbacks && (getLangOpts().Modules || getLangOpts().DebuggerSupport))
+ Callbacks->moduleImport(ModuleImportLoc, ModuleImportPath, Imported);
+ }
+}
+
+void Preprocessor::makeModuleVisible(Module *M, SourceLocation Loc) {
+ CurSubmoduleState->VisibleModules.setVisible(
+ M, Loc, [](Module *) {},
+ [&](ArrayRef<Module *> Path, Module *Conflict, StringRef Message) {
+ // FIXME: Include the path in the diagnostic.
+ // FIXME: Include the import location for the conflicting module.
+ Diag(ModuleImportLoc, diag::warn_module_conflict)
+ << Path[0]->getFullModuleName()
+ << Conflict->getFullModuleName()
+ << Message;
+ });
+
+ // Add this module to the imports list of the currently-built submodule.
+ if (!BuildingSubmoduleStack.empty() && M != BuildingSubmoduleStack.back().M)
+ BuildingSubmoduleStack.back().M->Imports.insert(M);
+}
+
+bool Preprocessor::FinishLexStringLiteral(Token &Result, std::string &String,
+ const char *DiagnosticTag,
+ bool AllowMacroExpansion) {
+ // We need at least one string literal.
+ if (Result.isNot(tok::string_literal)) {
+ Diag(Result, diag::err_expected_string_literal)
+ << /*Source='in...'*/0 << DiagnosticTag;
+ return false;
+ }
+
+ // Lex string literal tokens, optionally with macro expansion.
+ SmallVector<Token, 4> StrToks;
+ do {
+ StrToks.push_back(Result);
+
+ if (Result.hasUDSuffix())
+ Diag(Result, diag::err_invalid_string_udl);
+
+ if (AllowMacroExpansion)
+ Lex(Result);
+ else
+ LexUnexpandedToken(Result);
+ } while (Result.is(tok::string_literal));
+
+ // Concatenate and parse the strings.
+ StringLiteralParser Literal(StrToks, *this);
+ assert(Literal.isAscii() && "Didn't allow wide strings in");
+
+ if (Literal.hadError)
+ return false;
+
+ if (Literal.Pascal) {
+ Diag(StrToks[0].getLocation(), diag::err_expected_string_literal)
+ << /*Source='in...'*/0 << DiagnosticTag;
+ return false;
+ }
+
+ String = Literal.GetString();
+ return true;
+}
+
+bool Preprocessor::parseSimpleIntegerLiteral(Token &Tok, uint64_t &Value) {
+ assert(Tok.is(tok::numeric_constant));
+ SmallString<8> IntegerBuffer;
+ bool NumberInvalid = false;
+ StringRef Spelling = getSpelling(Tok, IntegerBuffer, &NumberInvalid);
+ if (NumberInvalid)
+ return false;
+ NumericLiteralParser Literal(Spelling, Tok.getLocation(), *this);
+ if (Literal.hadError || !Literal.isIntegerLiteral() || Literal.hasUDSuffix())
+ return false;
+ llvm::APInt APVal(64, 0);
+ if (Literal.GetIntegerValue(APVal))
+ return false;
+ Lex(Tok);
+ Value = APVal.getLimitedValue();
+ return true;
+}
+
+void Preprocessor::addCommentHandler(CommentHandler *Handler) {
+ assert(Handler && "NULL comment handler");
+ assert(std::find(CommentHandlers.begin(), CommentHandlers.end(), Handler) ==
+ CommentHandlers.end() && "Comment handler already registered");
+ CommentHandlers.push_back(Handler);
+}
+
+void Preprocessor::removeCommentHandler(CommentHandler *Handler) {
+ std::vector<CommentHandler *>::iterator Pos
+ = std::find(CommentHandlers.begin(), CommentHandlers.end(), Handler);
+ assert(Pos != CommentHandlers.end() && "Comment handler not registered");
+ CommentHandlers.erase(Pos);
+}
+
+bool Preprocessor::HandleComment(Token &result, SourceRange Comment) {
+ bool AnyPendingTokens = false;
+ for (std::vector<CommentHandler *>::iterator H = CommentHandlers.begin(),
+ HEnd = CommentHandlers.end();
+ H != HEnd; ++H) {
+ if ((*H)->HandleComment(*this, Comment))
+ AnyPendingTokens = true;
+ }
+ if (!AnyPendingTokens || getCommentRetentionState())
+ return false;
+ Lex(result);
+ return true;
+}
+
+ModuleLoader::~ModuleLoader() { }
+
+CommentHandler::~CommentHandler() { }
+
+CodeCompletionHandler::~CodeCompletionHandler() { }
+
+void Preprocessor::createPreprocessingRecord() {
+ if (Record)
+ return;
+
+ Record = new PreprocessingRecord(getSourceManager());
+ addPPCallbacks(std::unique_ptr<PPCallbacks>(Record));
+}
diff --git a/contrib/llvm/tools/clang/lib/Lex/PreprocessorLexer.cpp b/contrib/llvm/tools/clang/lib/Lex/PreprocessorLexer.cpp
new file mode 100644
index 0000000..33ccbc0
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Lex/PreprocessorLexer.cpp
@@ -0,0 +1,58 @@
+//===--- PreprocessorLexer.cpp - C Language Family Lexer ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the PreprocessorLexer and Token interfaces.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Lex/PreprocessorLexer.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Lex/LexDiagnostic.h"
+#include "clang/Lex/Preprocessor.h"
+using namespace clang;
+
+void PreprocessorLexer::anchor() { }
+
+PreprocessorLexer::PreprocessorLexer(Preprocessor *pp, FileID fid)
+ : PP(pp), FID(fid), InitialNumSLocEntries(0),
+ ParsingPreprocessorDirective(false),
+ ParsingFilename(false), LexingRawMode(false) {
+ if (pp)
+ InitialNumSLocEntries = pp->getSourceManager().local_sloc_entry_size();
+}
+
+/// \brief After the preprocessor has parsed a \#include, lex and
+/// (potentially) macro expand the filename.
+void PreprocessorLexer::LexIncludeFilename(Token &FilenameTok) {
+ assert(ParsingPreprocessorDirective &&
+ ParsingFilename == false &&
+ "Must be in a preprocessing directive!");
+
+ // We are now parsing a filename!
+ ParsingFilename = true;
+
+ // Lex the filename.
+ if (LexingRawMode)
+ IndirectLex(FilenameTok);
+ else
+ PP->Lex(FilenameTok);
+
+ // We should have obtained the filename now.
+ ParsingFilename = false;
+
+ // No filename?
+ if (FilenameTok.is(tok::eod))
+ PP->Diag(FilenameTok.getLocation(), diag::err_pp_expects_filename);
+}
+
+/// getFileEntry - Return the FileEntry corresponding to this FileID. Like
+/// getFileID(), this only works for lexers with attached preprocessors.
+const FileEntry *PreprocessorLexer::getFileEntry() const {
+ return PP->getSourceManager().getFileEntryForID(getFileID());
+}
diff --git a/contrib/llvm/tools/clang/lib/Lex/ScratchBuffer.cpp b/contrib/llvm/tools/clang/lib/Lex/ScratchBuffer.cpp
new file mode 100644
index 0000000..cd8a27e
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Lex/ScratchBuffer.cpp
@@ -0,0 +1,76 @@
+//===--- ScratchBuffer.cpp - Scratch space for forming tokens -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the ScratchBuffer interface.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Lex/ScratchBuffer.h"
+#include "clang/Basic/SourceManager.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include <cstring>
+using namespace clang;
+
+// ScratchBufSize - The size of each chunk of scratch memory. Slightly less
+//than a page, almost certainly enough for anything. :)
+static const unsigned ScratchBufSize = 4060;
+
+ScratchBuffer::ScratchBuffer(SourceManager &SM)
+ : SourceMgr(SM), CurBuffer(nullptr) {
+ // Set BytesUsed so that the first call to getToken will require an alloc.
+ BytesUsed = ScratchBufSize;
+}
+
+/// getToken - Splat the specified text into a temporary MemoryBuffer and
+/// return a SourceLocation that refers to the token. This is just like the
+/// method below, but returns a location that indicates the physloc of the
+/// token.
+SourceLocation ScratchBuffer::getToken(const char *Buf, unsigned Len,
+ const char *&DestPtr) {
+ if (BytesUsed+Len+2 > ScratchBufSize)
+ AllocScratchBuffer(Len+2);
+
+ // Prefix the token with a \n, so that it looks like it is the first thing on
+ // its own virtual line in caret diagnostics.
+ CurBuffer[BytesUsed++] = '\n';
+
+ // Return a pointer to the character data.
+ DestPtr = CurBuffer+BytesUsed;
+
+ // Copy the token data into the buffer.
+ memcpy(CurBuffer+BytesUsed, Buf, Len);
+
+ // Remember that we used these bytes.
+ BytesUsed += Len+1;
+
+ // Add a NUL terminator to the token. This keeps the tokens separated, in
+ // case they get relexed, and puts them on their own virtual lines in case a
+ // diagnostic points to one.
+ CurBuffer[BytesUsed-1] = '\0';
+
+ return BufferStartLoc.getLocWithOffset(BytesUsed-Len-1);
+}
+
+void ScratchBuffer::AllocScratchBuffer(unsigned RequestLen) {
+ // Only pay attention to the requested length if it is larger than our default
+ // page size. If it is, we allocate an entire chunk for it. This is to
+ // support gigantic tokens, which almost certainly won't happen. :)
+ if (RequestLen < ScratchBufSize)
+ RequestLen = ScratchBufSize;
+
+ // Get scratch buffer. Zero-initialize it so it can be dumped into a PCH file
+ // deterministically.
+ std::unique_ptr<llvm::MemoryBuffer> OwnBuf =
+ llvm::MemoryBuffer::getNewMemBuffer(RequestLen, "<scratch space>");
+ llvm::MemoryBuffer &Buf = *OwnBuf;
+ FileID FID = SourceMgr.createFileID(std::move(OwnBuf));
+ BufferStartLoc = SourceMgr.getLocForStartOfFile(FID);
+ CurBuffer = const_cast<char*>(Buf.getBufferStart());
+ BytesUsed = 0;
+}
diff --git a/contrib/llvm/tools/clang/lib/Lex/TokenConcatenation.cpp b/contrib/llvm/tools/clang/lib/Lex/TokenConcatenation.cpp
new file mode 100644
index 0000000..0832749
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Lex/TokenConcatenation.cpp
@@ -0,0 +1,287 @@
+//===--- TokenConcatenation.cpp - Token Concatenation Avoidance -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the TokenConcatenation class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Lex/TokenConcatenation.h"
+#include "clang/Basic/CharInfo.h"
+#include "clang/Lex/Preprocessor.h"
+#include "llvm/Support/ErrorHandling.h"
+using namespace clang;
+
+
+/// IsStringPrefix - Return true if Str is a string prefix.
+/// 'L', 'u', 'U', or 'u8'. Including raw versions.
+static bool IsStringPrefix(StringRef Str, bool CPlusPlus11) {
+
+ if (Str[0] == 'L' ||
+ (CPlusPlus11 && (Str[0] == 'u' || Str[0] == 'U' || Str[0] == 'R'))) {
+
+ if (Str.size() == 1)
+ return true; // "L", "u", "U", and "R"
+
+ // Check for raw flavors. Need to make sure the first character wasn't
+ // already R. Need CPlusPlus11 check for "LR".
+ if (Str[1] == 'R' && Str[0] != 'R' && Str.size() == 2 && CPlusPlus11)
+ return true; // "LR", "uR", "UR"
+
+ // Check for "u8" and "u8R"
+ if (Str[0] == 'u' && Str[1] == '8') {
+ if (Str.size() == 2) return true; // "u8"
+ if (Str.size() == 3 && Str[2] == 'R') return true; // "u8R"
+ }
+ }
+
+ return false;
+}
+
+/// IsIdentifierStringPrefix - Return true if the spelling of the token
+/// is literally 'L', 'u', 'U', or 'u8'. Including raw versions.
+bool TokenConcatenation::IsIdentifierStringPrefix(const Token &Tok) const {
+ const LangOptions &LangOpts = PP.getLangOpts();
+
+ if (!Tok.needsCleaning()) {
+ if (Tok.getLength() < 1 || Tok.getLength() > 3)
+ return false;
+ SourceManager &SM = PP.getSourceManager();
+ const char *Ptr = SM.getCharacterData(SM.getSpellingLoc(Tok.getLocation()));
+ return IsStringPrefix(StringRef(Ptr, Tok.getLength()),
+ LangOpts.CPlusPlus11);
+ }
+
+ if (Tok.getLength() < 256) {
+ char Buffer[256];
+ const char *TokPtr = Buffer;
+ unsigned length = PP.getSpelling(Tok, TokPtr);
+ return IsStringPrefix(StringRef(TokPtr, length), LangOpts.CPlusPlus11);
+ }
+
+ return IsStringPrefix(StringRef(PP.getSpelling(Tok)), LangOpts.CPlusPlus11);
+}
+
+TokenConcatenation::TokenConcatenation(Preprocessor &pp) : PP(pp) {
+ memset(TokenInfo, 0, sizeof(TokenInfo));
+
+ // These tokens have custom code in AvoidConcat.
+ TokenInfo[tok::identifier ] |= aci_custom;
+ TokenInfo[tok::numeric_constant] |= aci_custom_firstchar;
+ TokenInfo[tok::period ] |= aci_custom_firstchar;
+ TokenInfo[tok::amp ] |= aci_custom_firstchar;
+ TokenInfo[tok::plus ] |= aci_custom_firstchar;
+ TokenInfo[tok::minus ] |= aci_custom_firstchar;
+ TokenInfo[tok::slash ] |= aci_custom_firstchar;
+ TokenInfo[tok::less ] |= aci_custom_firstchar;
+ TokenInfo[tok::greater ] |= aci_custom_firstchar;
+ TokenInfo[tok::pipe ] |= aci_custom_firstchar;
+ TokenInfo[tok::percent ] |= aci_custom_firstchar;
+ TokenInfo[tok::colon ] |= aci_custom_firstchar;
+ TokenInfo[tok::hash ] |= aci_custom_firstchar;
+ TokenInfo[tok::arrow ] |= aci_custom_firstchar;
+
+ // These tokens have custom code in C++11 mode.
+ if (PP.getLangOpts().CPlusPlus11) {
+ TokenInfo[tok::string_literal ] |= aci_custom;
+ TokenInfo[tok::wide_string_literal ] |= aci_custom;
+ TokenInfo[tok::utf8_string_literal ] |= aci_custom;
+ TokenInfo[tok::utf16_string_literal] |= aci_custom;
+ TokenInfo[tok::utf32_string_literal] |= aci_custom;
+ TokenInfo[tok::char_constant ] |= aci_custom;
+ TokenInfo[tok::wide_char_constant ] |= aci_custom;
+ TokenInfo[tok::utf16_char_constant ] |= aci_custom;
+ TokenInfo[tok::utf32_char_constant ] |= aci_custom;
+ }
+
+ // These tokens have custom code in C++1z mode.
+ if (PP.getLangOpts().CPlusPlus1z)
+ TokenInfo[tok::utf8_char_constant] |= aci_custom;
+
+ // These tokens change behavior if followed by an '='.
+ TokenInfo[tok::amp ] |= aci_avoid_equal; // &=
+ TokenInfo[tok::plus ] |= aci_avoid_equal; // +=
+ TokenInfo[tok::minus ] |= aci_avoid_equal; // -=
+ TokenInfo[tok::slash ] |= aci_avoid_equal; // /=
+ TokenInfo[tok::less ] |= aci_avoid_equal; // <=
+ TokenInfo[tok::greater ] |= aci_avoid_equal; // >=
+ TokenInfo[tok::pipe ] |= aci_avoid_equal; // |=
+ TokenInfo[tok::percent ] |= aci_avoid_equal; // %=
+ TokenInfo[tok::star ] |= aci_avoid_equal; // *=
+ TokenInfo[tok::exclaim ] |= aci_avoid_equal; // !=
+ TokenInfo[tok::lessless ] |= aci_avoid_equal; // <<=
+ TokenInfo[tok::greatergreater] |= aci_avoid_equal; // >>=
+ TokenInfo[tok::caret ] |= aci_avoid_equal; // ^=
+ TokenInfo[tok::equal ] |= aci_avoid_equal; // ==
+}
+
+/// GetFirstChar - Get the first character of the token \arg Tok,
+/// avoiding calls to getSpelling where possible.
+static char GetFirstChar(Preprocessor &PP, const Token &Tok) {
+ if (IdentifierInfo *II = Tok.getIdentifierInfo()) {
+ // Avoid spelling identifiers, the most common form of token.
+ return II->getNameStart()[0];
+ } else if (!Tok.needsCleaning()) {
+ if (Tok.isLiteral() && Tok.getLiteralData()) {
+ return *Tok.getLiteralData();
+ } else {
+ SourceManager &SM = PP.getSourceManager();
+ return *SM.getCharacterData(SM.getSpellingLoc(Tok.getLocation()));
+ }
+ } else if (Tok.getLength() < 256) {
+ char Buffer[256];
+ const char *TokPtr = Buffer;
+ PP.getSpelling(Tok, TokPtr);
+ return TokPtr[0];
+ } else {
+ return PP.getSpelling(Tok)[0];
+ }
+}
+
+/// AvoidConcat - If printing PrevTok immediately followed by Tok would cause
+/// the two individual tokens to be lexed as a single token, return true
+/// (which causes a space to be printed between them). This allows the output
+/// of -E mode to be lexed to the same token stream as lexing the input
+/// directly would.
+///
+/// This code must conservatively return true if it doesn't want to be 100%
+/// accurate. This will cause the output to include extra space characters,
+/// but the resulting output won't have incorrect concatenations going on.
+/// Examples include "..", which we print with a space between, because we
+/// don't want to track enough to tell "x.." from "...".
+bool TokenConcatenation::AvoidConcat(const Token &PrevPrevTok,
+ const Token &PrevTok,
+ const Token &Tok) const {
+ // First, check to see if the tokens were directly adjacent in the original
+ // source. If they were, it must be okay to stick them together: if there
+ // were an issue, the tokens would have been lexed differently.
+ SourceManager &SM = PP.getSourceManager();
+ SourceLocation PrevSpellLoc = SM.getSpellingLoc(PrevTok.getLocation());
+ SourceLocation SpellLoc = SM.getSpellingLoc(Tok.getLocation());
+ if (PrevSpellLoc.getLocWithOffset(PrevTok.getLength()) == SpellLoc)
+ return false;
+
+ tok::TokenKind PrevKind = PrevTok.getKind();
+ if (!PrevTok.isAnnotation() && PrevTok.getIdentifierInfo())
+ PrevKind = tok::identifier; // Language keyword or named operator.
+
+ // Look up information on when we should avoid concatenation with prevtok.
+ unsigned ConcatInfo = TokenInfo[PrevKind];
+
+ // If prevtok never causes a problem for anything after it, return quickly.
+ if (ConcatInfo == 0) return false;
+
+ if (ConcatInfo & aci_avoid_equal) {
+ // If the next token is '=' or '==', avoid concatenation.
+ if (Tok.is(tok::equal) || Tok.is(tok::equalequal))
+ return true;
+ ConcatInfo &= ~aci_avoid_equal;
+ }
+ if (Tok.isAnnotation()) {
+ // Modules annotation can show up when generated automatically for includes.
+ assert((Tok.is(tok::annot_module_include) ||
+ Tok.is(tok::annot_module_begin) ||
+ Tok.is(tok::annot_module_end)) &&
+ "unexpected annotation in AvoidConcat");
+ ConcatInfo = 0;
+ }
+
+ if (ConcatInfo == 0) return false;
+
+ // Basic algorithm: we look at the first character of the second token, and
+ // determine whether it, if appended to the first token, would form (or
+ // would contribute) to a larger token if concatenated.
+ char FirstChar = 0;
+ if (ConcatInfo & aci_custom) {
+ // If the token does not need to know the first character, don't get it.
+ } else {
+ FirstChar = GetFirstChar(PP, Tok);
+ }
+
+ switch (PrevKind) {
+ default:
+ llvm_unreachable("InitAvoidConcatTokenInfo built wrong");
+
+ case tok::raw_identifier:
+ llvm_unreachable("tok::raw_identifier in non-raw lexing mode!");
+
+ case tok::string_literal:
+ case tok::wide_string_literal:
+ case tok::utf8_string_literal:
+ case tok::utf16_string_literal:
+ case tok::utf32_string_literal:
+ case tok::char_constant:
+ case tok::wide_char_constant:
+ case tok::utf8_char_constant:
+ case tok::utf16_char_constant:
+ case tok::utf32_char_constant:
+ if (!PP.getLangOpts().CPlusPlus11)
+ return false;
+
+ // In C++11, a string or character literal followed by an identifier is a
+ // single token.
+ if (Tok.getIdentifierInfo())
+ return true;
+
+ // A ud-suffix is an identifier. If the previous token ends with one, treat
+ // it as an identifier.
+ if (!PrevTok.hasUDSuffix())
+ return false;
+ // FALL THROUGH.
+ case tok::identifier: // id+id or id+number or id+L"foo".
+ // id+'.'... will not append.
+ if (Tok.is(tok::numeric_constant))
+ return GetFirstChar(PP, Tok) != '.';
+
+ if (Tok.getIdentifierInfo() || Tok.is(tok::wide_string_literal) ||
+ Tok.is(tok::utf8_string_literal) || Tok.is(tok::utf16_string_literal) ||
+ Tok.is(tok::utf32_string_literal) || Tok.is(tok::wide_char_constant) ||
+ Tok.is(tok::utf8_char_constant) || Tok.is(tok::utf16_char_constant) ||
+ Tok.is(tok::utf32_char_constant))
+ return true;
+
+ // If this isn't identifier + string, we're done.
+ if (Tok.isNot(tok::char_constant) && Tok.isNot(tok::string_literal))
+ return false;
+
+ // Otherwise, this is a narrow character or string. If the *identifier*
+ // is a literal 'L', 'u8', 'u' or 'U', avoid pasting L "foo" -> L"foo".
+ return IsIdentifierStringPrefix(PrevTok);
+
+ case tok::numeric_constant:
+ return isPreprocessingNumberBody(FirstChar) ||
+ FirstChar == '+' || FirstChar == '-';
+ case tok::period: // ..., .*, .1234
+ return (FirstChar == '.' && PrevPrevTok.is(tok::period)) ||
+ isDigit(FirstChar) ||
+ (PP.getLangOpts().CPlusPlus && FirstChar == '*');
+ case tok::amp: // &&
+ return FirstChar == '&';
+ case tok::plus: // ++
+ return FirstChar == '+';
+ case tok::minus: // --, ->, ->*
+ return FirstChar == '-' || FirstChar == '>';
+ case tok::slash: //, /*, //
+ return FirstChar == '*' || FirstChar == '/';
+ case tok::less: // <<, <<=, <:, <%
+ return FirstChar == '<' || FirstChar == ':' || FirstChar == '%';
+ case tok::greater: // >>, >>=
+ return FirstChar == '>';
+ case tok::pipe: // ||
+ return FirstChar == '|';
+ case tok::percent: // %>, %:
+ return FirstChar == '>' || FirstChar == ':';
+ case tok::colon: // ::, :>
+ return FirstChar == '>' ||
+ (PP.getLangOpts().CPlusPlus && FirstChar == ':');
+ case tok::hash: // ##, #@, %:%:
+ return FirstChar == '#' || FirstChar == '@' || FirstChar == '%';
+ case tok::arrow: // ->*
+ return PP.getLangOpts().CPlusPlus && FirstChar == '*';
+ }
+}
diff --git a/contrib/llvm/tools/clang/lib/Lex/TokenLexer.cpp b/contrib/llvm/tools/clang/lib/Lex/TokenLexer.cpp
new file mode 100644
index 0000000..83efbab
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Lex/TokenLexer.cpp
@@ -0,0 +1,850 @@
+//===--- TokenLexer.cpp - Lex from a token stream -------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the TokenLexer interface.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Lex/TokenLexer.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Lex/LexDiagnostic.h"
+#include "clang/Lex/MacroArgs.h"
+#include "clang/Lex/MacroInfo.h"
+#include "clang/Lex/Preprocessor.h"
+#include "llvm/ADT/SmallString.h"
+using namespace clang;
+
+
+/// Create a TokenLexer for the specified macro with the specified actual
+/// arguments. Note that this ctor takes ownership of the ActualArgs pointer.
+void TokenLexer::Init(Token &Tok, SourceLocation ELEnd, MacroInfo *MI,
+ MacroArgs *Actuals) {
+ // If the client is reusing a TokenLexer, make sure to free any memory
+ // associated with it.
+ destroy();
+
+ Macro = MI;
+ ActualArgs = Actuals;
+ CurToken = 0;
+
+ ExpandLocStart = Tok.getLocation();
+ ExpandLocEnd = ELEnd;
+ AtStartOfLine = Tok.isAtStartOfLine();
+ HasLeadingSpace = Tok.hasLeadingSpace();
+ NextTokGetsSpace = false;
+ Tokens = &*Macro->tokens_begin();
+ OwnsTokens = false;
+ DisableMacroExpansion = false;
+ NumTokens = Macro->tokens_end()-Macro->tokens_begin();
+ MacroExpansionStart = SourceLocation();
+
+ SourceManager &SM = PP.getSourceManager();
+ MacroStartSLocOffset = SM.getNextLocalOffset();
+
+ if (NumTokens > 0) {
+ assert(Tokens[0].getLocation().isValid());
+ assert((Tokens[0].getLocation().isFileID() || Tokens[0].is(tok::comment)) &&
+ "Macro defined in macro?");
+ assert(ExpandLocStart.isValid());
+
+ // Reserve a source location entry chunk for the length of the macro
+ // definition. Tokens that get lexed directly from the definition will
+ // have their locations pointing inside this chunk. This is to avoid
+ // creating separate source location entries for each token.
+ MacroDefStart = SM.getExpansionLoc(Tokens[0].getLocation());
+ MacroDefLength = Macro->getDefinitionLength(SM);
+ MacroExpansionStart = SM.createExpansionLoc(MacroDefStart,
+ ExpandLocStart,
+ ExpandLocEnd,
+ MacroDefLength);
+ }
+
+ // If this is a function-like macro, expand the arguments and change
+ // Tokens to point to the expanded tokens.
+ if (Macro->isFunctionLike() && Macro->getNumArgs())
+ ExpandFunctionArguments();
+
+ // Mark the macro as currently disabled, so that it is not recursively
+ // expanded. The macro must be disabled only after argument pre-expansion of
+ // function-like macro arguments occurs.
+ Macro->DisableMacro();
+}
+
+
+
+/// Create a TokenLexer for the specified token stream. This does not
+/// take ownership of the specified token vector.
+void TokenLexer::Init(const Token *TokArray, unsigned NumToks,
+ bool disableMacroExpansion, bool ownsTokens) {
+ // If the client is reusing a TokenLexer, make sure to free any memory
+ // associated with it.
+ destroy();
+
+ Macro = nullptr;
+ ActualArgs = nullptr;
+ Tokens = TokArray;
+ OwnsTokens = ownsTokens;
+ DisableMacroExpansion = disableMacroExpansion;
+ NumTokens = NumToks;
+ CurToken = 0;
+ ExpandLocStart = ExpandLocEnd = SourceLocation();
+ AtStartOfLine = false;
+ HasLeadingSpace = false;
+ NextTokGetsSpace = false;
+ MacroExpansionStart = SourceLocation();
+
+ // Set HasLeadingSpace/AtStartOfLine so that the first token will be
+ // returned unmodified.
+ if (NumToks != 0) {
+ AtStartOfLine = TokArray[0].isAtStartOfLine();
+ HasLeadingSpace = TokArray[0].hasLeadingSpace();
+ }
+}
+
+
+void TokenLexer::destroy() {
+ // If this was a function-like macro that actually uses its arguments, delete
+ // the expanded tokens.
+ if (OwnsTokens) {
+ delete [] Tokens;
+ Tokens = nullptr;
+ OwnsTokens = false;
+ }
+
+ // TokenLexer owns its formal arguments.
+ if (ActualArgs) ActualArgs->destroy(PP);
+}
+
+bool TokenLexer::MaybeRemoveCommaBeforeVaArgs(
+ SmallVectorImpl<Token> &ResultToks, bool HasPasteOperator, MacroInfo *Macro,
+ unsigned MacroArgNo, Preprocessor &PP) {
+ // Is the macro argument __VA_ARGS__?
+ if (!Macro->isVariadic() || MacroArgNo != Macro->getNumArgs()-1)
+ return false;
+
+ // In Microsoft-compatibility mode, a comma is removed in the expansion
+ // of " ... , __VA_ARGS__ " if __VA_ARGS__ is empty. This extension is
+ // not supported by gcc.
+ if (!HasPasteOperator && !PP.getLangOpts().MSVCCompat)
+ return false;
+
+ // GCC removes the comma in the expansion of " ... , ## __VA_ARGS__ " if
+ // __VA_ARGS__ is empty, but not in strict C99 mode where there are no
+ // named arguments, where it remains. In all other modes, including C99
+ // with GNU extensions, it is removed regardless of named arguments.
+ // Microsoft also appears to support this extension, unofficially.
+ if (PP.getLangOpts().C99 && !PP.getLangOpts().GNUMode
+ && Macro->getNumArgs() < 2)
+ return false;
+
+ // Is a comma available to be removed?
+ if (ResultToks.empty() || !ResultToks.back().is(tok::comma))
+ return false;
+
+ // Issue an extension diagnostic for the paste operator.
+ if (HasPasteOperator)
+ PP.Diag(ResultToks.back().getLocation(), diag::ext_paste_comma);
+
+ // Remove the comma.
+ ResultToks.pop_back();
+
+ // If the comma was right after another paste (e.g. "X##,##__VA_ARGS__"),
+ // then removal of the comma should produce a placemarker token (in C99
+ // terms) which we model by popping off the previous ##, giving us a plain
+ // "X" when __VA_ARGS__ is empty.
+ if (!ResultToks.empty() && ResultToks.back().is(tok::hashhash))
+ ResultToks.pop_back();
+
+ // Never add a space, even if the comma, ##, or arg had a space.
+ NextTokGetsSpace = false;
+ return true;
+}
+
+/// Expand the arguments of a function-like macro so that we can quickly
+/// return preexpanded tokens from Tokens.
+void TokenLexer::ExpandFunctionArguments() {
+
+ SmallVector<Token, 128> ResultToks;
+
+ // Loop through 'Tokens', expanding them into ResultToks. Keep
+ // track of whether we change anything. If not, no need to keep them. If so,
+ // we install the newly expanded sequence as the new 'Tokens' list.
+ bool MadeChange = false;
+
+ for (unsigned i = 0, e = NumTokens; i != e; ++i) {
+ // If we found the stringify operator, get the argument stringified. The
+ // preprocessor already verified that the following token is a macro name
+ // when the #define was parsed.
+ const Token &CurTok = Tokens[i];
+ if (i != 0 && !Tokens[i-1].is(tok::hashhash) && CurTok.hasLeadingSpace())
+ NextTokGetsSpace = true;
+
+ if (CurTok.is(tok::hash) || CurTok.is(tok::hashat)) {
+ int ArgNo = Macro->getArgumentNum(Tokens[i+1].getIdentifierInfo());
+ assert(ArgNo != -1 && "Token following # is not an argument?");
+
+ SourceLocation ExpansionLocStart =
+ getExpansionLocForMacroDefLoc(CurTok.getLocation());
+ SourceLocation ExpansionLocEnd =
+ getExpansionLocForMacroDefLoc(Tokens[i+1].getLocation());
+
+ Token Res;
+ if (CurTok.is(tok::hash)) // Stringify
+ Res = ActualArgs->getStringifiedArgument(ArgNo, PP,
+ ExpansionLocStart,
+ ExpansionLocEnd);
+ else {
+ // 'charify': don't bother caching these.
+ Res = MacroArgs::StringifyArgument(ActualArgs->getUnexpArgument(ArgNo),
+ PP, true,
+ ExpansionLocStart,
+ ExpansionLocEnd);
+ }
+ Res.setFlag(Token::StringifiedInMacro);
+
+ // The stringified/charified string leading space flag gets set to match
+ // the #/#@ operator.
+ if (NextTokGetsSpace)
+ Res.setFlag(Token::LeadingSpace);
+
+ ResultToks.push_back(Res);
+ MadeChange = true;
+ ++i; // Skip arg name.
+ NextTokGetsSpace = false;
+ continue;
+ }
+
+ // Find out if there is a paste (##) operator before or after the token.
+ bool NonEmptyPasteBefore =
+ !ResultToks.empty() && ResultToks.back().is(tok::hashhash);
+ bool PasteBefore = i != 0 && Tokens[i-1].is(tok::hashhash);
+ bool PasteAfter = i+1 != e && Tokens[i+1].is(tok::hashhash);
+ assert(!NonEmptyPasteBefore || PasteBefore);
+
+ // Otherwise, if this is not an argument token, just add the token to the
+ // output buffer.
+ IdentifierInfo *II = CurTok.getIdentifierInfo();
+ int ArgNo = II ? Macro->getArgumentNum(II) : -1;
+ if (ArgNo == -1) {
+ // This isn't an argument, just add it.
+ ResultToks.push_back(CurTok);
+
+ if (NextTokGetsSpace) {
+ ResultToks.back().setFlag(Token::LeadingSpace);
+ NextTokGetsSpace = false;
+ } else if (PasteBefore && !NonEmptyPasteBefore)
+ ResultToks.back().clearFlag(Token::LeadingSpace);
+
+ continue;
+ }
+
+ // An argument is expanded somehow, the result is different than the
+ // input.
+ MadeChange = true;
+
+ // Otherwise, this is a use of the argument.
+
+ // In Microsoft mode, remove the comma before __VA_ARGS__ to ensure there
+ // are no trailing commas if __VA_ARGS__ is empty.
+ if (!PasteBefore && ActualArgs->isVarargsElidedUse() &&
+ MaybeRemoveCommaBeforeVaArgs(ResultToks,
+ /*HasPasteOperator=*/false,
+ Macro, ArgNo, PP))
+ continue;
+
+ // If it is not the LHS/RHS of a ## operator, we must pre-expand the
+ // argument and substitute the expanded tokens into the result. This is
+ // C99 6.10.3.1p1.
+ if (!PasteBefore && !PasteAfter) {
+ const Token *ResultArgToks;
+
+ // Only preexpand the argument if it could possibly need it. This
+ // avoids some work in common cases.
+ const Token *ArgTok = ActualArgs->getUnexpArgument(ArgNo);
+ if (ActualArgs->ArgNeedsPreexpansion(ArgTok, PP))
+ ResultArgToks = &ActualArgs->getPreExpArgument(ArgNo, Macro, PP)[0];
+ else
+ ResultArgToks = ArgTok; // Use non-preexpanded tokens.
+
+ // If the arg token expanded into anything, append it.
+ if (ResultArgToks->isNot(tok::eof)) {
+ unsigned FirstResult = ResultToks.size();
+ unsigned NumToks = MacroArgs::getArgLength(ResultArgToks);
+ ResultToks.append(ResultArgToks, ResultArgToks+NumToks);
+
+ // In Microsoft-compatibility mode, we follow MSVC's preprocessing
+ // behavior by not considering single commas from nested macro
+ // expansions as argument separators. Set a flag on the token so we can
+ // test for this later when the macro expansion is processed.
+ if (PP.getLangOpts().MSVCCompat && NumToks == 1 &&
+ ResultToks.back().is(tok::comma))
+ ResultToks.back().setFlag(Token::IgnoredComma);
+
+ // If the '##' came from expanding an argument, turn it into 'unknown'
+ // to avoid pasting.
+ for (unsigned i = FirstResult, e = ResultToks.size(); i != e; ++i) {
+ Token &Tok = ResultToks[i];
+ if (Tok.is(tok::hashhash))
+ Tok.setKind(tok::unknown);
+ }
+
+ if(ExpandLocStart.isValid()) {
+ updateLocForMacroArgTokens(CurTok.getLocation(),
+ ResultToks.begin()+FirstResult,
+ ResultToks.end());
+ }
+
+ // If any tokens were substituted from the argument, the whitespace
+ // before the first token should match the whitespace of the arg
+ // identifier.
+ ResultToks[FirstResult].setFlagValue(Token::LeadingSpace,
+ NextTokGetsSpace);
+ NextTokGetsSpace = false;
+ }
+ continue;
+ }
+
+ // Okay, we have a token that is either the LHS or RHS of a paste (##)
+ // argument. It gets substituted as its non-pre-expanded tokens.
+ const Token *ArgToks = ActualArgs->getUnexpArgument(ArgNo);
+ unsigned NumToks = MacroArgs::getArgLength(ArgToks);
+ if (NumToks) { // Not an empty argument?
+ // If this is the GNU ", ## __VA_ARGS__" extension, and we just learned
+ // that __VA_ARGS__ expands to multiple tokens, avoid a pasting error when
+ // the expander trys to paste ',' with the first token of the __VA_ARGS__
+ // expansion.
+ if (NonEmptyPasteBefore && ResultToks.size() >= 2 &&
+ ResultToks[ResultToks.size()-2].is(tok::comma) &&
+ (unsigned)ArgNo == Macro->getNumArgs()-1 &&
+ Macro->isVariadic()) {
+ // Remove the paste operator, report use of the extension.
+ PP.Diag(ResultToks.pop_back_val().getLocation(), diag::ext_paste_comma);
+ }
+
+ ResultToks.append(ArgToks, ArgToks+NumToks);
+
+ // If the '##' came from expanding an argument, turn it into 'unknown'
+ // to avoid pasting.
+ for (unsigned i = ResultToks.size() - NumToks, e = ResultToks.size();
+ i != e; ++i) {
+ Token &Tok = ResultToks[i];
+ if (Tok.is(tok::hashhash))
+ Tok.setKind(tok::unknown);
+ }
+
+ if (ExpandLocStart.isValid()) {
+ updateLocForMacroArgTokens(CurTok.getLocation(),
+ ResultToks.end()-NumToks, ResultToks.end());
+ }
+
+ // If this token (the macro argument) was supposed to get leading
+ // whitespace, transfer this information onto the first token of the
+ // expansion.
+ //
+ // Do not do this if the paste operator occurs before the macro argument,
+ // as in "A ## MACROARG". In valid code, the first token will get
+ // smooshed onto the preceding one anyway (forming AMACROARG). In
+ // assembler-with-cpp mode, invalid pastes are allowed through: in this
+ // case, we do not want the extra whitespace to be added. For example,
+ // we want ". ## foo" -> ".foo" not ". foo".
+ if (NextTokGetsSpace)
+ ResultToks[ResultToks.size()-NumToks].setFlag(Token::LeadingSpace);
+
+ NextTokGetsSpace = false;
+ continue;
+ }
+
+ // If an empty argument is on the LHS or RHS of a paste, the standard (C99
+ // 6.10.3.3p2,3) calls for a bunch of placemarker stuff to occur. We
+ // implement this by eating ## operators when a LHS or RHS expands to
+ // empty.
+ if (PasteAfter) {
+ // Discard the argument token and skip (don't copy to the expansion
+ // buffer) the paste operator after it.
+ ++i;
+ continue;
+ }
+
+ // If this is on the RHS of a paste operator, we've already copied the
+ // paste operator to the ResultToks list, unless the LHS was empty too.
+ // Remove it.
+ assert(PasteBefore);
+ if (NonEmptyPasteBefore) {
+ assert(ResultToks.back().is(tok::hashhash));
+ ResultToks.pop_back();
+ }
+
+ // If this is the __VA_ARGS__ token, and if the argument wasn't provided,
+ // and if the macro had at least one real argument, and if the token before
+ // the ## was a comma, remove the comma. This is a GCC extension which is
+ // disabled when using -std=c99.
+ if (ActualArgs->isVarargsElidedUse())
+ MaybeRemoveCommaBeforeVaArgs(ResultToks,
+ /*HasPasteOperator=*/true,
+ Macro, ArgNo, PP);
+
+ continue;
+ }
+
+ // If anything changed, install this as the new Tokens list.
+ if (MadeChange) {
+ assert(!OwnsTokens && "This would leak if we already own the token list");
+ // This is deleted in the dtor.
+ NumTokens = ResultToks.size();
+ // The tokens will be added to Preprocessor's cache and will be removed
+ // when this TokenLexer finishes lexing them.
+ Tokens = PP.cacheMacroExpandedTokens(this, ResultToks);
+
+ // The preprocessor cache of macro expanded tokens owns these tokens,not us.
+ OwnsTokens = false;
+ }
+}
+
+/// \brief Checks if two tokens form wide string literal.
+static bool isWideStringLiteralFromMacro(const Token &FirstTok,
+ const Token &SecondTok) {
+ return FirstTok.is(tok::identifier) &&
+ FirstTok.getIdentifierInfo()->isStr("L") && SecondTok.isLiteral() &&
+ SecondTok.stringifiedInMacro();
+}
+
+/// Lex - Lex and return a token from this macro stream.
+///
+bool TokenLexer::Lex(Token &Tok) {
+ // Lexing off the end of the macro, pop this macro off the expansion stack.
+ if (isAtEnd()) {
+ // If this is a macro (not a token stream), mark the macro enabled now
+ // that it is no longer being expanded.
+ if (Macro) Macro->EnableMacro();
+
+ Tok.startToken();
+ Tok.setFlagValue(Token::StartOfLine , AtStartOfLine);
+ Tok.setFlagValue(Token::LeadingSpace, HasLeadingSpace || NextTokGetsSpace);
+ if (CurToken == 0)
+ Tok.setFlag(Token::LeadingEmptyMacro);
+ return PP.HandleEndOfTokenLexer(Tok);
+ }
+
+ SourceManager &SM = PP.getSourceManager();
+
+ // If this is the first token of the expanded result, we inherit spacing
+ // properties later.
+ bool isFirstToken = CurToken == 0;
+
+ // Get the next token to return.
+ Tok = Tokens[CurToken++];
+
+ bool TokenIsFromPaste = false;
+
+ // If this token is followed by a token paste (##) operator, paste the tokens!
+ // Note that ## is a normal token when not expanding a macro.
+ if (!isAtEnd() && Macro &&
+ (Tokens[CurToken].is(tok::hashhash) ||
+ // Special processing of L#x macros in -fms-compatibility mode.
+ // Microsoft compiler is able to form a wide string literal from
+ // 'L#macro_arg' construct in a function-like macro.
+ (PP.getLangOpts().MSVCCompat &&
+ isWideStringLiteralFromMacro(Tok, Tokens[CurToken])))) {
+ // When handling the microsoft /##/ extension, the final token is
+ // returned by PasteTokens, not the pasted token.
+ if (PasteTokens(Tok))
+ return true;
+
+ TokenIsFromPaste = true;
+ }
+
+ // The token's current location indicate where the token was lexed from. We
+ // need this information to compute the spelling of the token, but any
+ // diagnostics for the expanded token should appear as if they came from
+ // ExpansionLoc. Pull this information together into a new SourceLocation
+ // that captures all of this.
+ if (ExpandLocStart.isValid() && // Don't do this for token streams.
+ // Check that the token's location was not already set properly.
+ SM.isBeforeInSLocAddrSpace(Tok.getLocation(), MacroStartSLocOffset)) {
+ SourceLocation instLoc;
+ if (Tok.is(tok::comment)) {
+ instLoc = SM.createExpansionLoc(Tok.getLocation(),
+ ExpandLocStart,
+ ExpandLocEnd,
+ Tok.getLength());
+ } else {
+ instLoc = getExpansionLocForMacroDefLoc(Tok.getLocation());
+ }
+
+ Tok.setLocation(instLoc);
+ }
+
+ // If this is the first token, set the lexical properties of the token to
+ // match the lexical properties of the macro identifier.
+ if (isFirstToken) {
+ Tok.setFlagValue(Token::StartOfLine , AtStartOfLine);
+ Tok.setFlagValue(Token::LeadingSpace, HasLeadingSpace);
+ } else {
+ // If this is not the first token, we may still need to pass through
+ // leading whitespace if we've expanded a macro.
+ if (AtStartOfLine) Tok.setFlag(Token::StartOfLine);
+ if (HasLeadingSpace) Tok.setFlag(Token::LeadingSpace);
+ }
+ AtStartOfLine = false;
+ HasLeadingSpace = false;
+
+ // Handle recursive expansion!
+ if (!Tok.isAnnotation() && Tok.getIdentifierInfo() != nullptr) {
+ // Change the kind of this identifier to the appropriate token kind, e.g.
+ // turning "for" into a keyword.
+ IdentifierInfo *II = Tok.getIdentifierInfo();
+ Tok.setKind(II->getTokenID());
+
+ // If this identifier was poisoned and from a paste, emit an error. This
+ // won't be handled by Preprocessor::HandleIdentifier because this is coming
+ // from a macro expansion.
+ if (II->isPoisoned() && TokenIsFromPaste) {
+ PP.HandlePoisonedIdentifier(Tok);
+ }
+
+ if (!DisableMacroExpansion && II->isHandleIdentifierCase())
+ return PP.HandleIdentifier(Tok);
+ }
+
+ // Otherwise, return a normal token.
+ return true;
+}
+
+/// PasteTokens - Tok is the LHS of a ## operator, and CurToken is the ##
+/// operator. Read the ## and RHS, and paste the LHS/RHS together. If there
+/// are more ## after it, chomp them iteratively. Return the result as Tok.
+/// If this returns true, the caller should immediately return the token.
+bool TokenLexer::PasteTokens(Token &Tok) {
+ // MSVC: If previous token was pasted, this must be a recovery from an invalid
+ // paste operation. Ignore spaces before this token to mimic MSVC output.
+ // Required for generating valid UUID strings in some MS headers.
+ if (PP.getLangOpts().MicrosoftExt && (CurToken >= 2) &&
+ Tokens[CurToken - 2].is(tok::hashhash))
+ Tok.clearFlag(Token::LeadingSpace);
+
+ SmallString<128> Buffer;
+ const char *ResultTokStrPtr = nullptr;
+ SourceLocation StartLoc = Tok.getLocation();
+ SourceLocation PasteOpLoc;
+ do {
+ // Consume the ## operator if any.
+ PasteOpLoc = Tokens[CurToken].getLocation();
+ if (Tokens[CurToken].is(tok::hashhash))
+ ++CurToken;
+ assert(!isAtEnd() && "No token on the RHS of a paste operator!");
+
+ // Get the RHS token.
+ const Token &RHS = Tokens[CurToken];
+
+ // Allocate space for the result token. This is guaranteed to be enough for
+ // the two tokens.
+ Buffer.resize(Tok.getLength() + RHS.getLength());
+
+ // Get the spelling of the LHS token in Buffer.
+ const char *BufPtr = &Buffer[0];
+ bool Invalid = false;
+ unsigned LHSLen = PP.getSpelling(Tok, BufPtr, &Invalid);
+ if (BufPtr != &Buffer[0]) // Really, we want the chars in Buffer!
+ memcpy(&Buffer[0], BufPtr, LHSLen);
+ if (Invalid)
+ return true;
+
+ BufPtr = Buffer.data() + LHSLen;
+ unsigned RHSLen = PP.getSpelling(RHS, BufPtr, &Invalid);
+ if (Invalid)
+ return true;
+ if (RHSLen && BufPtr != &Buffer[LHSLen])
+ // Really, we want the chars in Buffer!
+ memcpy(&Buffer[LHSLen], BufPtr, RHSLen);
+
+ // Trim excess space.
+ Buffer.resize(LHSLen+RHSLen);
+
+ // Plop the pasted result (including the trailing newline and null) into a
+ // scratch buffer where we can lex it.
+ Token ResultTokTmp;
+ ResultTokTmp.startToken();
+
+ // Claim that the tmp token is a string_literal so that we can get the
+ // character pointer back from CreateString in getLiteralData().
+ ResultTokTmp.setKind(tok::string_literal);
+ PP.CreateString(Buffer, ResultTokTmp);
+ SourceLocation ResultTokLoc = ResultTokTmp.getLocation();
+ ResultTokStrPtr = ResultTokTmp.getLiteralData();
+
+ // Lex the resultant pasted token into Result.
+ Token Result;
+
+ if (Tok.isAnyIdentifier() && RHS.isAnyIdentifier()) {
+ // Common paste case: identifier+identifier = identifier. Avoid creating
+ // a lexer and other overhead.
+ PP.IncrementPasteCounter(true);
+ Result.startToken();
+ Result.setKind(tok::raw_identifier);
+ Result.setRawIdentifierData(ResultTokStrPtr);
+ Result.setLocation(ResultTokLoc);
+ Result.setLength(LHSLen+RHSLen);
+ } else {
+ PP.IncrementPasteCounter(false);
+
+ assert(ResultTokLoc.isFileID() &&
+ "Should be a raw location into scratch buffer");
+ SourceManager &SourceMgr = PP.getSourceManager();
+ FileID LocFileID = SourceMgr.getFileID(ResultTokLoc);
+
+ bool Invalid = false;
+ const char *ScratchBufStart
+ = SourceMgr.getBufferData(LocFileID, &Invalid).data();
+ if (Invalid)
+ return false;
+
+ // Make a lexer to lex this string from. Lex just this one token.
+ // Make a lexer object so that we lex and expand the paste result.
+ Lexer TL(SourceMgr.getLocForStartOfFile(LocFileID),
+ PP.getLangOpts(), ScratchBufStart,
+ ResultTokStrPtr, ResultTokStrPtr+LHSLen+RHSLen);
+
+ // Lex a token in raw mode. This way it won't look up identifiers
+ // automatically, lexing off the end will return an eof token, and
+ // warnings are disabled. This returns true if the result token is the
+ // entire buffer.
+ bool isInvalid = !TL.LexFromRawLexer(Result);
+
+ // If we got an EOF token, we didn't form even ONE token. For example, we
+ // did "/ ## /" to get "//".
+ isInvalid |= Result.is(tok::eof);
+
+ // If pasting the two tokens didn't form a full new token, this is an
+ // error. This occurs with "x ## +" and other stuff. Return with Tok
+ // unmodified and with RHS as the next token to lex.
+ if (isInvalid) {
+ // Test for the Microsoft extension of /##/ turning into // here on the
+ // error path.
+ if (PP.getLangOpts().MicrosoftExt && Tok.is(tok::slash) &&
+ RHS.is(tok::slash)) {
+ HandleMicrosoftCommentPaste(Tok);
+ return true;
+ }
+
+ // Do not emit the error when preprocessing assembler code.
+ if (!PP.getLangOpts().AsmPreprocessor) {
+ // Explicitly convert the token location to have proper expansion
+ // information so that the user knows where it came from.
+ SourceManager &SM = PP.getSourceManager();
+ SourceLocation Loc =
+ SM.createExpansionLoc(PasteOpLoc, ExpandLocStart, ExpandLocEnd, 2);
+ // If we're in microsoft extensions mode, downgrade this from a hard
+ // error to an extension that defaults to an error. This allows
+ // disabling it.
+ PP.Diag(Loc, PP.getLangOpts().MicrosoftExt ? diag::ext_pp_bad_paste_ms
+ : diag::err_pp_bad_paste)
+ << Buffer;
+ }
+
+ // An error has occurred so exit loop.
+ break;
+ }
+
+ // Turn ## into 'unknown' to avoid # ## # from looking like a paste
+ // operator.
+ if (Result.is(tok::hashhash))
+ Result.setKind(tok::unknown);
+ }
+
+ // Transfer properties of the LHS over the Result.
+ Result.setFlagValue(Token::StartOfLine , Tok.isAtStartOfLine());
+ Result.setFlagValue(Token::LeadingSpace, Tok.hasLeadingSpace());
+
+ // Finally, replace LHS with the result, consume the RHS, and iterate.
+ ++CurToken;
+ Tok = Result;
+ } while (!isAtEnd() && Tokens[CurToken].is(tok::hashhash));
+
+ SourceLocation EndLoc = Tokens[CurToken - 1].getLocation();
+
+ // The token's current location indicate where the token was lexed from. We
+ // need this information to compute the spelling of the token, but any
+ // diagnostics for the expanded token should appear as if the token was
+ // expanded from the full ## expression. Pull this information together into
+ // a new SourceLocation that captures all of this.
+ SourceManager &SM = PP.getSourceManager();
+ if (StartLoc.isFileID())
+ StartLoc = getExpansionLocForMacroDefLoc(StartLoc);
+ if (EndLoc.isFileID())
+ EndLoc = getExpansionLocForMacroDefLoc(EndLoc);
+ FileID MacroFID = SM.getFileID(MacroExpansionStart);
+ while (SM.getFileID(StartLoc) != MacroFID)
+ StartLoc = SM.getImmediateExpansionRange(StartLoc).first;
+ while (SM.getFileID(EndLoc) != MacroFID)
+ EndLoc = SM.getImmediateExpansionRange(EndLoc).second;
+
+ Tok.setLocation(SM.createExpansionLoc(Tok.getLocation(), StartLoc, EndLoc,
+ Tok.getLength()));
+
+ // Now that we got the result token, it will be subject to expansion. Since
+ // token pasting re-lexes the result token in raw mode, identifier information
+ // isn't looked up. As such, if the result is an identifier, look up id info.
+ if (Tok.is(tok::raw_identifier)) {
+ // Look up the identifier info for the token. We disabled identifier lookup
+ // by saying we're skipping contents, so we need to do this manually.
+ PP.LookUpIdentifierInfo(Tok);
+ }
+ return false;
+}
+
+/// isNextTokenLParen - If the next token lexed will pop this macro off the
+/// expansion stack, return 2. If the next unexpanded token is a '(', return
+/// 1, otherwise return 0.
+unsigned TokenLexer::isNextTokenLParen() const {
+ // Out of tokens?
+ if (isAtEnd())
+ return 2;
+ return Tokens[CurToken].is(tok::l_paren);
+}
+
+/// isParsingPreprocessorDirective - Return true if we are in the middle of a
+/// preprocessor directive.
+bool TokenLexer::isParsingPreprocessorDirective() const {
+ return Tokens[NumTokens-1].is(tok::eod) && !isAtEnd();
+}
+
+/// HandleMicrosoftCommentPaste - In microsoft compatibility mode, /##/ pastes
+/// together to form a comment that comments out everything in the current
+/// macro, other active macros, and anything left on the current physical
+/// source line of the expanded buffer. Handle this by returning the
+/// first token on the next line.
+void TokenLexer::HandleMicrosoftCommentPaste(Token &Tok) {
+ // We 'comment out' the rest of this macro by just ignoring the rest of the
+ // tokens that have not been lexed yet, if any.
+
+ // Since this must be a macro, mark the macro enabled now that it is no longer
+ // being expanded.
+ assert(Macro && "Token streams can't paste comments");
+ Macro->EnableMacro();
+
+ PP.HandleMicrosoftCommentPaste(Tok);
+}
+
+/// \brief If \arg loc is a file ID and points inside the current macro
+/// definition, returns the appropriate source location pointing at the
+/// macro expansion source location entry, otherwise it returns an invalid
+/// SourceLocation.
+SourceLocation
+TokenLexer::getExpansionLocForMacroDefLoc(SourceLocation loc) const {
+ assert(ExpandLocStart.isValid() && MacroExpansionStart.isValid() &&
+ "Not appropriate for token streams");
+ assert(loc.isValid() && loc.isFileID());
+
+ SourceManager &SM = PP.getSourceManager();
+ assert(SM.isInSLocAddrSpace(loc, MacroDefStart, MacroDefLength) &&
+ "Expected loc to come from the macro definition");
+
+ unsigned relativeOffset = 0;
+ SM.isInSLocAddrSpace(loc, MacroDefStart, MacroDefLength, &relativeOffset);
+ return MacroExpansionStart.getLocWithOffset(relativeOffset);
+}
+
+/// \brief Finds the tokens that are consecutive (from the same FileID)
+/// creates a single SLocEntry, and assigns SourceLocations to each token that
+/// point to that SLocEntry. e.g for
+/// assert(foo == bar);
+/// There will be a single SLocEntry for the "foo == bar" chunk and locations
+/// for the 'foo', '==', 'bar' tokens will point inside that chunk.
+///
+/// \arg begin_tokens will be updated to a position past all the found
+/// consecutive tokens.
+static void updateConsecutiveMacroArgTokens(SourceManager &SM,
+ SourceLocation InstLoc,
+ Token *&begin_tokens,
+ Token * end_tokens) {
+ assert(begin_tokens < end_tokens);
+
+ SourceLocation FirstLoc = begin_tokens->getLocation();
+ SourceLocation CurLoc = FirstLoc;
+
+ // Compare the source location offset of tokens and group together tokens that
+ // are close, even if their locations point to different FileIDs. e.g.
+ //
+ // |bar | foo | cake | (3 tokens from 3 consecutive FileIDs)
+ // ^ ^
+ // |bar foo cake| (one SLocEntry chunk for all tokens)
+ //
+ // we can perform this "merge" since the token's spelling location depends
+ // on the relative offset.
+
+ Token *NextTok = begin_tokens + 1;
+ for (; NextTok < end_tokens; ++NextTok) {
+ SourceLocation NextLoc = NextTok->getLocation();
+ if (CurLoc.isFileID() != NextLoc.isFileID())
+ break; // Token from different kind of FileID.
+
+ int RelOffs;
+ if (!SM.isInSameSLocAddrSpace(CurLoc, NextLoc, &RelOffs))
+ break; // Token from different local/loaded location.
+ // Check that token is not before the previous token or more than 50
+ // "characters" away.
+ if (RelOffs < 0 || RelOffs > 50)
+ break;
+ CurLoc = NextLoc;
+ }
+
+ // For the consecutive tokens, find the length of the SLocEntry to contain
+ // all of them.
+ Token &LastConsecutiveTok = *(NextTok-1);
+ int LastRelOffs = 0;
+ SM.isInSameSLocAddrSpace(FirstLoc, LastConsecutiveTok.getLocation(),
+ &LastRelOffs);
+ unsigned FullLength = LastRelOffs + LastConsecutiveTok.getLength();
+
+ // Create a macro expansion SLocEntry that will "contain" all of the tokens.
+ SourceLocation Expansion =
+ SM.createMacroArgExpansionLoc(FirstLoc, InstLoc,FullLength);
+
+ // Change the location of the tokens from the spelling location to the new
+ // expanded location.
+ for (; begin_tokens < NextTok; ++begin_tokens) {
+ Token &Tok = *begin_tokens;
+ int RelOffs = 0;
+ SM.isInSameSLocAddrSpace(FirstLoc, Tok.getLocation(), &RelOffs);
+ Tok.setLocation(Expansion.getLocWithOffset(RelOffs));
+ }
+}
+
+/// \brief Creates SLocEntries and updates the locations of macro argument
+/// tokens to their new expanded locations.
+///
+/// \param ArgIdDefLoc the location of the macro argument id inside the macro
+/// definition.
+/// \param Tokens the macro argument tokens to update.
+void TokenLexer::updateLocForMacroArgTokens(SourceLocation ArgIdSpellLoc,
+ Token *begin_tokens,
+ Token *end_tokens) {
+ SourceManager &SM = PP.getSourceManager();
+
+ SourceLocation InstLoc =
+ getExpansionLocForMacroDefLoc(ArgIdSpellLoc);
+
+ while (begin_tokens < end_tokens) {
+ // If there's only one token just create a SLocEntry for it.
+ if (end_tokens - begin_tokens == 1) {
+ Token &Tok = *begin_tokens;
+ Tok.setLocation(SM.createMacroArgExpansionLoc(Tok.getLocation(),
+ InstLoc,
+ Tok.getLength()));
+ return;
+ }
+
+ updateConsecutiveMacroArgTokens(SM, InstLoc, begin_tokens, end_tokens);
+ }
+}
+
+void TokenLexer::PropagateLineStartLeadingSpaceInfo(Token &Result) {
+ AtStartOfLine = Result.isAtStartOfLine();
+ HasLeadingSpace = Result.hasLeadingSpace();
+}
diff --git a/contrib/llvm/tools/clang/lib/Lex/UnicodeCharSets.h b/contrib/llvm/tools/clang/lib/Lex/UnicodeCharSets.h
new file mode 100644
index 0000000..116d553
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Lex/UnicodeCharSets.h
@@ -0,0 +1,408 @@
+//===--- UnicodeCharSets.h - Contains important sets of characters --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+#ifndef LLVM_CLANG_LIB_LEX_UNICODECHARSETS_H
+#define LLVM_CLANG_LIB_LEX_UNICODECHARSETS_H
+
+#include "llvm/Support/UnicodeCharRanges.h"
+
+// C11 D.1, C++11 [charname.allowed]
+static const llvm::sys::UnicodeCharRange C11AllowedIDCharRanges[] = {
+ // 1
+ { 0x00A8, 0x00A8 }, { 0x00AA, 0x00AA }, { 0x00AD, 0x00AD },
+ { 0x00AF, 0x00AF }, { 0x00B2, 0x00B5 }, { 0x00B7, 0x00BA },
+ { 0x00BC, 0x00BE }, { 0x00C0, 0x00D6 }, { 0x00D8, 0x00F6 },
+ { 0x00F8, 0x00FF },
+ // 2
+ { 0x0100, 0x167F }, { 0x1681, 0x180D }, { 0x180F, 0x1FFF },
+ // 3
+ { 0x200B, 0x200D }, { 0x202A, 0x202E }, { 0x203F, 0x2040 },
+ { 0x2054, 0x2054 }, { 0x2060, 0x206F },
+ // 4
+ { 0x2070, 0x218F }, { 0x2460, 0x24FF }, { 0x2776, 0x2793 },
+ { 0x2C00, 0x2DFF }, { 0x2E80, 0x2FFF },
+ // 5
+ { 0x3004, 0x3007 }, { 0x3021, 0x302F }, { 0x3031, 0x303F },
+ // 6
+ { 0x3040, 0xD7FF },
+ // 7
+ { 0xF900, 0xFD3D }, { 0xFD40, 0xFDCF }, { 0xFDF0, 0xFE44 },
+ { 0xFE47, 0xFFFD },
+ // 8
+ { 0x10000, 0x1FFFD }, { 0x20000, 0x2FFFD }, { 0x30000, 0x3FFFD },
+ { 0x40000, 0x4FFFD }, { 0x50000, 0x5FFFD }, { 0x60000, 0x6FFFD },
+ { 0x70000, 0x7FFFD }, { 0x80000, 0x8FFFD }, { 0x90000, 0x9FFFD },
+ { 0xA0000, 0xAFFFD }, { 0xB0000, 0xBFFFD }, { 0xC0000, 0xCFFFD },
+ { 0xD0000, 0xDFFFD }, { 0xE0000, 0xEFFFD }
+};
+
+// C++03 [extendid]
+// Note that this is not the same as C++98, but we don't distinguish C++98
+// and C++03 in Clang.
+static const llvm::sys::UnicodeCharRange CXX03AllowedIDCharRanges[] = {
+ // Latin
+ { 0x00C0, 0x00D6 }, { 0x00D8, 0x00F6 }, { 0x00F8, 0x01F5 },
+ { 0x01FA, 0x0217 }, { 0x0250, 0x02A8 },
+
+ // Greek
+ { 0x0384, 0x0384 }, { 0x0388, 0x038A }, { 0x038C, 0x038C },
+ { 0x038E, 0x03A1 }, { 0x03A3, 0x03CE }, { 0x03D0, 0x03D6 },
+ { 0x03DA, 0x03DA }, { 0x03DC, 0x03DC }, { 0x03DE, 0x03DE },
+ { 0x03E0, 0x03E0 }, { 0x03E2, 0x03F3 },
+
+ // Cyrillic
+ { 0x0401, 0x040D }, { 0x040F, 0x044F }, { 0x0451, 0x045C },
+ { 0x045E, 0x0481 }, { 0x0490, 0x04C4 }, { 0x04C7, 0x04C8 },
+ { 0x04CB, 0x04CC }, { 0x04D0, 0x04EB }, { 0x04EE, 0x04F5 },
+ { 0x04F8, 0x04F9 },
+
+ // Armenian
+ { 0x0531, 0x0556 }, { 0x0561, 0x0587 },
+
+ // Hebrew
+ { 0x05D0, 0x05EA }, { 0x05F0, 0x05F4 },
+
+ // Arabic
+ { 0x0621, 0x063A }, { 0x0640, 0x0652 }, { 0x0670, 0x06B7 },
+ { 0x06BA, 0x06BE }, { 0x06C0, 0x06CE }, { 0x06E5, 0x06E7 },
+
+ // Devanagari
+ { 0x0905, 0x0939 }, { 0x0958, 0x0962 },
+
+ // Bengali
+ { 0x0985, 0x098C }, { 0x098F, 0x0990 }, { 0x0993, 0x09A8 },
+ { 0x09AA, 0x09B0 }, { 0x09B2, 0x09B2 }, { 0x09B6, 0x09B9 },
+ { 0x09DC, 0x09DD }, { 0x09DF, 0x09E1 }, { 0x09F0, 0x09F1 },
+
+ // Gurmukhi
+ { 0x0A05, 0x0A0A }, { 0x0A0F, 0x0A10 }, { 0x0A13, 0x0A28 },
+ { 0x0A2A, 0x0A30 }, { 0x0A32, 0x0A33 }, { 0x0A35, 0x0A36 },
+ { 0x0A38, 0x0A39 }, { 0x0A59, 0x0A5C }, { 0x0A5E, 0x0A5E },
+
+ // Gujarti
+ { 0x0A85, 0x0A8B }, { 0x0A8D, 0x0A8D }, { 0x0A8F, 0x0A91 },
+ { 0x0A93, 0x0AA8 }, { 0x0AAA, 0x0AB0 }, { 0x0AB2, 0x0AB3 },
+ { 0x0AB5, 0x0AB9 }, { 0x0AE0, 0x0AE0 },
+
+ // Oriya
+ { 0x0B05, 0x0B0C }, { 0x0B0F, 0x0B10 }, { 0x0B13, 0x0B28 },
+ { 0x0B2A, 0x0B30 }, { 0x0B32, 0x0B33 }, { 0x0B36, 0x0B39 },
+ { 0x0B5C, 0x0B5D }, { 0x0B5F, 0x0B61 },
+
+ // Tamil
+ { 0x0B85, 0x0B8A }, { 0x0B8E, 0x0B90 }, { 0x0B92, 0x0B95 },
+ { 0x0B99, 0x0B9A }, { 0x0B9C, 0x0B9C }, { 0x0B9E, 0x0B9F },
+ { 0x0BA3, 0x0BA4 }, { 0x0BA8, 0x0BAA }, { 0x0BAE, 0x0BB5 },
+ { 0x0BB7, 0x0BB9 },
+
+ // Telugu
+ { 0x0C05, 0x0C0C }, { 0x0C0E, 0x0C10 }, { 0x0C12, 0x0C28 },
+ { 0x0C2A, 0x0C33 }, { 0x0C35, 0x0C39 }, { 0x0C60, 0x0C61 },
+
+ // Kannada
+ { 0x0C85, 0x0C8C }, { 0x0C8E, 0x0C90 }, { 0x0C92, 0x0CA8 },
+ { 0x0CAA, 0x0CB3 }, { 0x0CB5, 0x0CB9 }, { 0x0CE0, 0x0CE1 },
+
+ // Malayam
+ { 0x0D05, 0x0D0C }, { 0x0D0E, 0x0D10 }, { 0x0D12, 0x0D28 },
+ { 0x0D2A, 0x0D39 }, { 0x0D60, 0x0D61 },
+
+ // Thai
+ { 0x0E01, 0x0E30 }, { 0x0E32, 0x0E33 }, { 0x0E40, 0x0E46 },
+ { 0x0E4F, 0x0E5B },
+
+ // Lao
+ { 0x0E81, 0x0E82 }, { 0x0E84, 0x0E84 }, { 0x0E87, 0x0E87 },
+ { 0x0E88, 0x0E88 }, { 0x0E8A, 0x0E8A }, { 0x0E8D, 0x0E8D },
+ { 0x0E94, 0x0E97 }, { 0x0E99, 0x0E9F }, { 0x0EA1, 0x0EA3 },
+ { 0x0EA5, 0x0EA5 }, { 0x0EA7, 0x0EA7 }, { 0x0EAA, 0x0EAA },
+ { 0x0EAB, 0x0EAB }, { 0x0EAD, 0x0EB0 }, { 0x0EB2, 0x0EB2 },
+ { 0x0EB3, 0x0EB3 }, { 0x0EBD, 0x0EBD }, { 0x0EC0, 0x0EC4 },
+ { 0x0EC6, 0x0EC6 },
+
+ // Georgian
+ { 0x10A0, 0x10C5 }, { 0x10D0, 0x10F6 },
+
+ // Hangul
+ { 0x1100, 0x1159 }, { 0x1161, 0x11A2 }, { 0x11A8, 0x11F9 },
+
+ // Latin (2)
+ { 0x1E00, 0x1E9A }, { 0x1EA0, 0x1EF9 },
+
+ // Greek (2)
+ { 0x1F00, 0x1F15 }, { 0x1F18, 0x1F1D }, { 0x1F20, 0x1F45 },
+ { 0x1F48, 0x1F4D }, { 0x1F50, 0x1F57 }, { 0x1F59, 0x1F59 },
+ { 0x1F5B, 0x1F5B }, { 0x1F5D, 0x1F5D }, { 0x1F5F, 0x1F7D },
+ { 0x1F80, 0x1FB4 }, { 0x1FB6, 0x1FBC }, { 0x1FC2, 0x1FC4 },
+ { 0x1FC6, 0x1FCC }, { 0x1FD0, 0x1FD3 }, { 0x1FD6, 0x1FDB },
+ { 0x1FE0, 0x1FEC }, { 0x1FF2, 0x1FF4 }, { 0x1FF6, 0x1FFC },
+
+ // Hiragana
+ { 0x3041, 0x3094 }, { 0x309B, 0x309E },
+
+ // Katakana
+ { 0x30A1, 0x30FE },
+
+ // Bopmofo [sic]
+ { 0x3105, 0x312C },
+
+ // CJK Unified Ideographs
+ { 0x4E00, 0x9FA5 }, { 0xF900, 0xFA2D }, { 0xFB1F, 0xFB36 },
+ { 0xFB38, 0xFB3C }, { 0xFB3E, 0xFB3E }, { 0xFB40, 0xFB41 },
+ { 0xFB42, 0xFB44 }, { 0xFB46, 0xFBB1 }, { 0xFBD3, 0xFD3F },
+ { 0xFD50, 0xFD8F }, { 0xFD92, 0xFDC7 }, { 0xFDF0, 0xFDFB },
+ { 0xFE70, 0xFE72 }, { 0xFE74, 0xFE74 }, { 0xFE76, 0xFEFC },
+ { 0xFF21, 0xFF3A }, { 0xFF41, 0xFF5A }, { 0xFF66, 0xFFBE },
+ { 0xFFC2, 0xFFC7 }, { 0xFFCA, 0xFFCF }, { 0xFFD2, 0xFFD7 },
+ { 0xFFDA, 0xFFDC }
+};
+
+// C99 Annex D
+static const llvm::sys::UnicodeCharRange C99AllowedIDCharRanges[] = {
+ // Latin (1)
+ { 0x00AA, 0x00AA },
+
+ // Special characters (1)
+ { 0x00B5, 0x00B5 }, { 0x00B7, 0x00B7 },
+
+ // Latin (2)
+ { 0x00BA, 0x00BA }, { 0x00C0, 0x00D6 }, { 0x00D8, 0x00F6 },
+ { 0x00F8, 0x01F5 }, { 0x01FA, 0x0217 }, { 0x0250, 0x02A8 },
+
+ // Special characters (2)
+ { 0x02B0, 0x02B8 }, { 0x02BB, 0x02BB }, { 0x02BD, 0x02C1 },
+ { 0x02D0, 0x02D1 }, { 0x02E0, 0x02E4 }, { 0x037A, 0x037A },
+
+ // Greek (1)
+ { 0x0386, 0x0386 }, { 0x0388, 0x038A }, { 0x038C, 0x038C },
+ { 0x038E, 0x03A1 }, { 0x03A3, 0x03CE }, { 0x03D0, 0x03D6 },
+ { 0x03DA, 0x03DA }, { 0x03DC, 0x03DC }, { 0x03DE, 0x03DE },
+ { 0x03E0, 0x03E0 }, { 0x03E2, 0x03F3 },
+
+ // Cyrillic
+ { 0x0401, 0x040C }, { 0x040E, 0x044F }, { 0x0451, 0x045C },
+ { 0x045E, 0x0481 }, { 0x0490, 0x04C4 }, { 0x04C7, 0x04C8 },
+ { 0x04CB, 0x04CC }, { 0x04D0, 0x04EB }, { 0x04EE, 0x04F5 },
+ { 0x04F8, 0x04F9 },
+
+ // Armenian (1)
+ { 0x0531, 0x0556 },
+
+ // Special characters (3)
+ { 0x0559, 0x0559 },
+
+ // Armenian (2)
+ { 0x0561, 0x0587 },
+
+ // Hebrew
+ { 0x05B0, 0x05B9 }, { 0x05BB, 0x05BD }, { 0x05BF, 0x05BF },
+ { 0x05C1, 0x05C2 }, { 0x05D0, 0x05EA }, { 0x05F0, 0x05F2 },
+
+ // Arabic (1)
+ { 0x0621, 0x063A }, { 0x0640, 0x0652 },
+
+ // Digits (1)
+ { 0x0660, 0x0669 },
+
+ // Arabic (2)
+ { 0x0670, 0x06B7 }, { 0x06BA, 0x06BE }, { 0x06C0, 0x06CE },
+ { 0x06D0, 0x06DC }, { 0x06E5, 0x06E8 }, { 0x06EA, 0x06ED },
+
+ // Digits (2)
+ { 0x06F0, 0x06F9 },
+
+ // Devanagari and Special characeter 0x093D.
+ { 0x0901, 0x0903 }, { 0x0905, 0x0939 }, { 0x093D, 0x094D },
+ { 0x0950, 0x0952 }, { 0x0958, 0x0963 },
+
+ // Digits (3)
+ { 0x0966, 0x096F },
+
+ // Bengali (1)
+ { 0x0981, 0x0983 }, { 0x0985, 0x098C }, { 0x098F, 0x0990 },
+ { 0x0993, 0x09A8 }, { 0x09AA, 0x09B0 }, { 0x09B2, 0x09B2 },
+ { 0x09B6, 0x09B9 }, { 0x09BE, 0x09C4 }, { 0x09C7, 0x09C8 },
+ { 0x09CB, 0x09CD }, { 0x09DC, 0x09DD }, { 0x09DF, 0x09E3 },
+
+ // Digits (4)
+ { 0x09E6, 0x09EF },
+
+ // Bengali (2)
+ { 0x09F0, 0x09F1 },
+
+ // Gurmukhi (1)
+ { 0x0A02, 0x0A02 }, { 0x0A05, 0x0A0A }, { 0x0A0F, 0x0A10 },
+ { 0x0A13, 0x0A28 }, { 0x0A2A, 0x0A30 }, { 0x0A32, 0x0A33 },
+ { 0x0A35, 0x0A36 }, { 0x0A38, 0x0A39 }, { 0x0A3E, 0x0A42 },
+ { 0x0A47, 0x0A48 }, { 0x0A4B, 0x0A4D }, { 0x0A59, 0x0A5C },
+ { 0x0A5E, 0x0A5E },
+
+ // Digits (5)
+ { 0x0A66, 0x0A6F },
+
+ // Gurmukhi (2)
+ { 0x0A74, 0x0A74 },
+
+ // Gujarti
+ { 0x0A81, 0x0A83 }, { 0x0A85, 0x0A8B }, { 0x0A8D, 0x0A8D },
+ { 0x0A8F, 0x0A91 }, { 0x0A93, 0x0AA8 }, { 0x0AAA, 0x0AB0 },
+ { 0x0AB2, 0x0AB3 }, { 0x0AB5, 0x0AB9 }, { 0x0ABD, 0x0AC5 },
+ { 0x0AC7, 0x0AC9 }, { 0x0ACB, 0x0ACD }, { 0x0AD0, 0x0AD0 },
+ { 0x0AE0, 0x0AE0 },
+
+ // Digits (6)
+ { 0x0AE6, 0x0AEF },
+
+ // Oriya and Special character 0x0B3D
+ { 0x0B01, 0x0B03 }, { 0x0B05, 0x0B0C }, { 0x0B0F, 0x0B10 },
+ { 0x0B13, 0x0B28 }, { 0x0B2A, 0x0B30 }, { 0x0B32, 0x0B33 },
+ { 0x0B36, 0x0B39 }, { 0x0B3D, 0x0B43 }, { 0x0B47, 0x0B48 },
+ { 0x0B4B, 0x0B4D }, { 0x0B5C, 0x0B5D }, { 0x0B5F, 0x0B61 },
+
+ // Digits (7)
+ { 0x0B66, 0x0B6F },
+
+ // Tamil
+ { 0x0B82, 0x0B83 }, { 0x0B85, 0x0B8A }, { 0x0B8E, 0x0B90 },
+ { 0x0B92, 0x0B95 }, { 0x0B99, 0x0B9A }, { 0x0B9C, 0x0B9C },
+ { 0x0B9E, 0x0B9F }, { 0x0BA3, 0x0BA4 }, { 0x0BA8, 0x0BAA },
+ { 0x0BAE, 0x0BB5 }, { 0x0BB7, 0x0BB9 }, { 0x0BBE, 0x0BC2 },
+ { 0x0BC6, 0x0BC8 }, { 0x0BCA, 0x0BCD },
+
+ // Digits (8)
+ { 0x0BE7, 0x0BEF },
+
+ // Telugu
+ { 0x0C01, 0x0C03 }, { 0x0C05, 0x0C0C }, { 0x0C0E, 0x0C10 },
+ { 0x0C12, 0x0C28 }, { 0x0C2A, 0x0C33 }, { 0x0C35, 0x0C39 },
+ { 0x0C3E, 0x0C44 }, { 0x0C46, 0x0C48 }, { 0x0C4A, 0x0C4D },
+ { 0x0C60, 0x0C61 },
+
+ // Digits (9)
+ { 0x0C66, 0x0C6F },
+
+ // Kannada
+ { 0x0C82, 0x0C83 }, { 0x0C85, 0x0C8C }, { 0x0C8E, 0x0C90 },
+ { 0x0C92, 0x0CA8 }, { 0x0CAA, 0x0CB3 }, { 0x0CB5, 0x0CB9 },
+ { 0x0CBE, 0x0CC4 }, { 0x0CC6, 0x0CC8 }, { 0x0CCA, 0x0CCD },
+ { 0x0CDE, 0x0CDE }, { 0x0CE0, 0x0CE1 },
+
+ // Digits (10)
+ { 0x0CE6, 0x0CEF },
+
+ // Malayam
+ { 0x0D02, 0x0D03 }, { 0x0D05, 0x0D0C }, { 0x0D0E, 0x0D10 },
+ { 0x0D12, 0x0D28 }, { 0x0D2A, 0x0D39 }, { 0x0D3E, 0x0D43 },
+ { 0x0D46, 0x0D48 }, { 0x0D4A, 0x0D4D }, { 0x0D60, 0x0D61 },
+
+ // Digits (11)
+ { 0x0D66, 0x0D6F },
+
+ // Thai...including Digits { 0x0E50, 0x0E59 }
+ { 0x0E01, 0x0E3A }, { 0x0E40, 0x0E5B },
+
+ // Lao (1)
+ { 0x0E81, 0x0E82 }, { 0x0E84, 0x0E84 }, { 0x0E87, 0x0E88 },
+ { 0x0E8A, 0x0E8A }, { 0x0E8D, 0x0E8D }, { 0x0E94, 0x0E97 },
+ { 0x0E99, 0x0E9F }, { 0x0EA1, 0x0EA3 }, { 0x0EA5, 0x0EA5 },
+ { 0x0EA7, 0x0EA7 }, { 0x0EAA, 0x0EAB }, { 0x0EAD, 0x0EAE },
+ { 0x0EB0, 0x0EB9 }, { 0x0EBB, 0x0EBD }, { 0x0EC0, 0x0EC4 },
+ { 0x0EC6, 0x0EC6 }, { 0x0EC8, 0x0ECD },
+
+ // Digits (12)
+ { 0x0ED0, 0x0ED9 },
+
+ // Lao (2)
+ { 0x0EDC, 0x0EDD },
+
+ // Tibetan (1)
+ { 0x0F00, 0x0F00 }, { 0x0F18, 0x0F19 },
+
+ // Digits (13)
+ { 0x0F20, 0x0F33 },
+
+ // Tibetan (2)
+ { 0x0F35, 0x0F35 }, { 0x0F37, 0x0F37 }, { 0x0F39, 0x0F39 },
+ { 0x0F3E, 0x0F47 }, { 0x0F49, 0x0F69 }, { 0x0F71, 0x0F84 },
+ { 0x0F86, 0x0F8B }, { 0x0F90, 0x0F95 }, { 0x0F97, 0x0F97 },
+ { 0x0F99, 0x0FAD }, { 0x0FB1, 0x0FB7 }, { 0x0FB9, 0x0FB9 },
+
+ // Georgian
+ { 0x10A0, 0x10C5 }, { 0x10D0, 0x10F6 },
+
+ // Latin (3)
+ { 0x1E00, 0x1E9B }, { 0x1EA0, 0x1EF9 },
+
+ // Greek (2)
+ { 0x1F00, 0x1F15 }, { 0x1F18, 0x1F1D }, { 0x1F20, 0x1F45 },
+ { 0x1F48, 0x1F4D }, { 0x1F50, 0x1F57 }, { 0x1F59, 0x1F59 },
+ { 0x1F5B, 0x1F5B }, { 0x1F5D, 0x1F5D }, { 0x1F5F, 0x1F7D },
+ { 0x1F80, 0x1FB4 }, { 0x1FB6, 0x1FBC },
+
+ // Special characters (4)
+ { 0x1FBE, 0x1FBE },
+
+ // Greek (3)
+ { 0x1FC2, 0x1FC4 }, { 0x1FC6, 0x1FCC }, { 0x1FD0, 0x1FD3 },
+ { 0x1FD6, 0x1FDB }, { 0x1FE0, 0x1FEC }, { 0x1FF2, 0x1FF4 },
+ { 0x1FF6, 0x1FFC },
+
+ // Special characters (5)
+ { 0x203F, 0x2040 },
+
+ // Latin (4)
+ { 0x207F, 0x207F },
+
+ // Special characters (6)
+ { 0x2102, 0x2102 }, { 0x2107, 0x2107 }, { 0x210A, 0x2113 },
+ { 0x2115, 0x2115 }, { 0x2118, 0x211D }, { 0x2124, 0x2124 },
+ { 0x2126, 0x2126 }, { 0x2128, 0x2128 }, { 0x212A, 0x2131 },
+ { 0x2133, 0x2138 }, { 0x2160, 0x2182 }, { 0x3005, 0x3007 },
+ { 0x3021, 0x3029 },
+
+ // Hiragana
+ { 0x3041, 0x3093 }, { 0x309B, 0x309C },
+
+ // Katakana
+ { 0x30A1, 0x30F6 }, { 0x30FB, 0x30FC },
+
+ // Bopmofo [sic]
+ { 0x3105, 0x312C },
+
+ // CJK Unified Ideographs
+ { 0x4E00, 0x9FA5 },
+
+ // Hangul,
+ { 0xAC00, 0xD7A3 }
+};
+
+// C11 D.2, C++11 [charname.disallowed]
+static const llvm::sys::UnicodeCharRange C11DisallowedInitialIDCharRanges[] = {
+ { 0x0300, 0x036F }, { 0x1DC0, 0x1DFF }, { 0x20D0, 0x20FF },
+ { 0xFE20, 0xFE2F }
+};
+
+// C99 6.4.2.1p3: The initial character [of an identifier] shall not be a
+// universal character name designating a digit.
+// C99 Annex D defines these characters as "Digits".
+static const llvm::sys::UnicodeCharRange C99DisallowedInitialIDCharRanges[] = {
+ { 0x0660, 0x0669 }, { 0x06F0, 0x06F9 }, { 0x0966, 0x096F },
+ { 0x09E6, 0x09EF }, { 0x0A66, 0x0A6F }, { 0x0AE6, 0x0AEF },
+ { 0x0B66, 0x0B6F }, { 0x0BE7, 0x0BEF }, { 0x0C66, 0x0C6F },
+ { 0x0CE6, 0x0CEF }, { 0x0D66, 0x0D6F }, { 0x0E50, 0x0E59 },
+ { 0x0ED0, 0x0ED9 }, { 0x0F20, 0x0F33 }
+};
+
+// Unicode v6.2, chapter 6.2, table 6-2.
+static const llvm::sys::UnicodeCharRange UnicodeWhitespaceCharRanges[] = {
+ { 0x0085, 0x0085 }, { 0x00A0, 0x00A0 }, { 0x1680, 0x1680 },
+ { 0x180E, 0x180E }, { 0x2000, 0x200A }, { 0x2028, 0x2029 },
+ { 0x202F, 0x202F }, { 0x205F, 0x205F }, { 0x3000, 0x3000 }
+};
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/Parse/ParseAST.cpp b/contrib/llvm/tools/clang/lib/Parse/ParseAST.cpp
new file mode 100644
index 0000000..6727afc
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Parse/ParseAST.cpp
@@ -0,0 +1,162 @@
+//===--- ParseAST.cpp - Provide the clang::ParseAST method ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the clang::ParseAST method.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Parse/ParseAST.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ExternalASTSource.h"
+#include "clang/AST/Stmt.h"
+#include "clang/Parse/ParseDiagnostic.h"
+#include "clang/Parse/Parser.h"
+#include "clang/Sema/CodeCompleteConsumer.h"
+#include "clang/Sema/ExternalSemaSource.h"
+#include "clang/Sema/Sema.h"
+#include "clang/Sema/SemaConsumer.h"
+#include "llvm/Support/CrashRecoveryContext.h"
+#include <cstdio>
+#include <memory>
+
+using namespace clang;
+
+namespace {
+
+/// If a crash happens while the parser is active, an entry is printed for it.
+class PrettyStackTraceParserEntry : public llvm::PrettyStackTraceEntry {
+ const Parser &P;
+public:
+ PrettyStackTraceParserEntry(const Parser &p) : P(p) {}
+ void print(raw_ostream &OS) const override;
+};
+
+/// If a crash happens while the parser is active, print out a line indicating
+/// what the current token is.
+void PrettyStackTraceParserEntry::print(raw_ostream &OS) const {
+ const Token &Tok = P.getCurToken();
+ if (Tok.is(tok::eof)) {
+ OS << "<eof> parser at end of file\n";
+ return;
+ }
+
+ if (Tok.getLocation().isInvalid()) {
+ OS << "<unknown> parser at unknown location\n";
+ return;
+ }
+
+ const Preprocessor &PP = P.getPreprocessor();
+ Tok.getLocation().print(OS, PP.getSourceManager());
+ if (Tok.isAnnotation()) {
+ OS << ": at annotation token\n";
+ } else {
+ // Do the equivalent of PP.getSpelling(Tok) except for the parts that would
+ // allocate memory.
+ bool Invalid = false;
+ const SourceManager &SM = P.getPreprocessor().getSourceManager();
+ unsigned Length = Tok.getLength();
+ const char *Spelling = SM.getCharacterData(Tok.getLocation(), &Invalid);
+ if (Invalid) {
+ OS << ": unknown current parser token\n";
+ return;
+ }
+ OS << ": current parser token '" << StringRef(Spelling, Length) << "'\n";
+ }
+}
+
+} // namespace
+
+//===----------------------------------------------------------------------===//
+// Public interface to the file
+//===----------------------------------------------------------------------===//
+
+/// ParseAST - Parse the entire file specified, notifying the ASTConsumer as
+/// the file is parsed. This inserts the parsed decls into the translation unit
+/// held by Ctx.
+///
+void clang::ParseAST(Preprocessor &PP, ASTConsumer *Consumer,
+ ASTContext &Ctx, bool PrintStats,
+ TranslationUnitKind TUKind,
+ CodeCompleteConsumer *CompletionConsumer,
+ bool SkipFunctionBodies) {
+
+ std::unique_ptr<Sema> S(
+ new Sema(PP, Ctx, *Consumer, TUKind, CompletionConsumer));
+
+ // Recover resources if we crash before exiting this method.
+ llvm::CrashRecoveryContextCleanupRegistrar<Sema> CleanupSema(S.get());
+
+ ParseAST(*S.get(), PrintStats, SkipFunctionBodies);
+}
+
+void clang::ParseAST(Sema &S, bool PrintStats, bool SkipFunctionBodies) {
+ // Collect global stats on Decls/Stmts (until we have a module streamer).
+ if (PrintStats) {
+ Decl::EnableStatistics();
+ Stmt::EnableStatistics();
+ }
+
+ // Also turn on collection of stats inside of the Sema object.
+ bool OldCollectStats = PrintStats;
+ std::swap(OldCollectStats, S.CollectStats);
+
+ ASTConsumer *Consumer = &S.getASTConsumer();
+
+ std::unique_ptr<Parser> ParseOP(
+ new Parser(S.getPreprocessor(), S, SkipFunctionBodies));
+ Parser &P = *ParseOP.get();
+
+ PrettyStackTraceParserEntry CrashInfo(P);
+
+ // Recover resources if we crash before exiting this method.
+ llvm::CrashRecoveryContextCleanupRegistrar<Parser>
+ CleanupParser(ParseOP.get());
+
+ S.getPreprocessor().EnterMainSourceFile();
+ P.Initialize();
+
+ // C11 6.9p1 says translation units must have at least one top-level
+ // declaration. C++ doesn't have this restriction. We also don't want to
+ // complain if we have a precompiled header, although technically if the PCH
+ // is empty we should still emit the (pedantic) diagnostic.
+ Parser::DeclGroupPtrTy ADecl;
+ ExternalASTSource *External = S.getASTContext().getExternalSource();
+ if (External)
+ External->StartTranslationUnit(Consumer);
+
+ if (P.ParseTopLevelDecl(ADecl)) {
+ if (!External && !S.getLangOpts().CPlusPlus)
+ P.Diag(diag::ext_empty_translation_unit);
+ } else {
+ do {
+ // If we got a null return and something *was* parsed, ignore it. This
+ // is due to a top-level semicolon, an action override, or a parse error
+ // skipping something.
+ if (ADecl && !Consumer->HandleTopLevelDecl(ADecl.get()))
+ return;
+ } while (!P.ParseTopLevelDecl(ADecl));
+ }
+
+ // Process any TopLevelDecls generated by #pragma weak.
+ for (Decl *D : S.WeakTopLevelDecls())
+ Consumer->HandleTopLevelDecl(DeclGroupRef(D));
+
+ Consumer->HandleTranslationUnit(S.getASTContext());
+
+ std::swap(OldCollectStats, S.CollectStats);
+ if (PrintStats) {
+ llvm::errs() << "\nSTATISTICS:\n";
+ P.getActions().PrintStats();
+ S.getASTContext().PrintStats();
+ Decl::PrintStats();
+ Stmt::PrintStats();
+ Consumer->PrintStats();
+ }
+}
diff --git a/contrib/llvm/tools/clang/lib/Parse/ParseCXXInlineMethods.cpp b/contrib/llvm/tools/clang/lib/Parse/ParseCXXInlineMethods.cpp
new file mode 100644
index 0000000..5da70d0
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Parse/ParseCXXInlineMethods.cpp
@@ -0,0 +1,1218 @@
+//===--- ParseCXXInlineMethods.cpp - C++ class inline methods parsing------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements parsing for C++ class inline methods.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Parse/Parser.h"
+#include "RAIIObjectsForParser.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/Parse/ParseDiagnostic.h"
+#include "clang/Sema/DeclSpec.h"
+#include "clang/Sema/Scope.h"
+using namespace clang;
+
+/// ParseCXXInlineMethodDef - We parsed and verified that the specified
+/// Declarator is a well formed C++ inline method definition. Now lex its body
+/// and store its tokens for parsing after the C++ class is complete.
+NamedDecl *Parser::ParseCXXInlineMethodDef(AccessSpecifier AS,
+ AttributeList *AccessAttrs,
+ ParsingDeclarator &D,
+ const ParsedTemplateInfo &TemplateInfo,
+ const VirtSpecifiers& VS,
+ ExprResult& Init) {
+ assert(D.isFunctionDeclarator() && "This isn't a function declarator!");
+ assert((Tok.is(tok::l_brace) || Tok.is(tok::colon) || Tok.is(tok::kw_try) ||
+ Tok.is(tok::equal)) &&
+ "Current token not a '{', ':', '=', or 'try'!");
+
+ MultiTemplateParamsArg TemplateParams(
+ TemplateInfo.TemplateParams ? TemplateInfo.TemplateParams->data()
+ : nullptr,
+ TemplateInfo.TemplateParams ? TemplateInfo.TemplateParams->size() : 0);
+
+ NamedDecl *FnD;
+ if (D.getDeclSpec().isFriendSpecified())
+ FnD = Actions.ActOnFriendFunctionDecl(getCurScope(), D,
+ TemplateParams);
+ else {
+ FnD = Actions.ActOnCXXMemberDeclarator(getCurScope(), AS, D,
+ TemplateParams, nullptr,
+ VS, ICIS_NoInit);
+ if (FnD) {
+ Actions.ProcessDeclAttributeList(getCurScope(), FnD, AccessAttrs);
+ bool TypeSpecContainsAuto = D.getDeclSpec().containsPlaceholderType();
+ if (Init.isUsable())
+ Actions.AddInitializerToDecl(FnD, Init.get(), false,
+ TypeSpecContainsAuto);
+ else
+ Actions.ActOnUninitializedDecl(FnD, TypeSpecContainsAuto);
+ }
+ }
+
+ HandleMemberFunctionDeclDelays(D, FnD);
+
+ D.complete(FnD);
+
+ if (TryConsumeToken(tok::equal)) {
+ if (!FnD) {
+ SkipUntil(tok::semi);
+ return nullptr;
+ }
+
+ bool Delete = false;
+ SourceLocation KWLoc;
+ SourceLocation KWEndLoc = Tok.getEndLoc().getLocWithOffset(-1);
+ if (TryConsumeToken(tok::kw_delete, KWLoc)) {
+ Diag(KWLoc, getLangOpts().CPlusPlus11
+ ? diag::warn_cxx98_compat_deleted_function
+ : diag::ext_deleted_function);
+ Actions.SetDeclDeleted(FnD, KWLoc);
+ Delete = true;
+ if (auto *DeclAsFunction = dyn_cast<FunctionDecl>(FnD)) {
+ DeclAsFunction->setRangeEnd(KWEndLoc);
+ }
+ } else if (TryConsumeToken(tok::kw_default, KWLoc)) {
+ Diag(KWLoc, getLangOpts().CPlusPlus11
+ ? diag::warn_cxx98_compat_defaulted_function
+ : diag::ext_defaulted_function);
+ Actions.SetDeclDefaulted(FnD, KWLoc);
+ if (auto *DeclAsFunction = dyn_cast<FunctionDecl>(FnD)) {
+ DeclAsFunction->setRangeEnd(KWEndLoc);
+ }
+ } else {
+ llvm_unreachable("function definition after = not 'delete' or 'default'");
+ }
+
+ if (Tok.is(tok::comma)) {
+ Diag(KWLoc, diag::err_default_delete_in_multiple_declaration)
+ << Delete;
+ SkipUntil(tok::semi);
+ } else if (ExpectAndConsume(tok::semi, diag::err_expected_after,
+ Delete ? "delete" : "default")) {
+ SkipUntil(tok::semi);
+ }
+
+ return FnD;
+ }
+
+ // In delayed template parsing mode, if we are within a class template
+ // or if we are about to parse function member template then consume
+ // the tokens and store them for parsing at the end of the translation unit.
+ if (getLangOpts().DelayedTemplateParsing &&
+ D.getFunctionDefinitionKind() == FDK_Definition &&
+ !D.getDeclSpec().isConstexprSpecified() &&
+ !(FnD && FnD->getAsFunction() &&
+ FnD->getAsFunction()->getReturnType()->getContainedAutoType()) &&
+ ((Actions.CurContext->isDependentContext() ||
+ (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
+ TemplateInfo.Kind != ParsedTemplateInfo::ExplicitSpecialization)) &&
+ !Actions.IsInsideALocalClassWithinATemplateFunction())) {
+
+ CachedTokens Toks;
+ LexTemplateFunctionForLateParsing(Toks);
+
+ if (FnD) {
+ FunctionDecl *FD = FnD->getAsFunction();
+ Actions.CheckForFunctionRedefinition(FD);
+ Actions.MarkAsLateParsedTemplate(FD, FnD, Toks);
+ }
+
+ return FnD;
+ }
+
+ // Consume the tokens and store them for later parsing.
+
+ LexedMethod* LM = new LexedMethod(this, FnD);
+ getCurrentClass().LateParsedDeclarations.push_back(LM);
+ LM->TemplateScope = getCurScope()->isTemplateParamScope();
+ CachedTokens &Toks = LM->Toks;
+
+ tok::TokenKind kind = Tok.getKind();
+ // Consume everything up to (and including) the left brace of the
+ // function body.
+ if (ConsumeAndStoreFunctionPrologue(Toks)) {
+ // We didn't find the left-brace we expected after the
+ // constructor initializer; we already printed an error, and it's likely
+ // impossible to recover, so don't try to parse this method later.
+ // Skip over the rest of the decl and back to somewhere that looks
+ // reasonable.
+ SkipMalformedDecl();
+ delete getCurrentClass().LateParsedDeclarations.back();
+ getCurrentClass().LateParsedDeclarations.pop_back();
+ return FnD;
+ } else {
+ // Consume everything up to (and including) the matching right brace.
+ ConsumeAndStoreUntil(tok::r_brace, Toks, /*StopAtSemi=*/false);
+ }
+
+ // If we're in a function-try-block, we need to store all the catch blocks.
+ if (kind == tok::kw_try) {
+ while (Tok.is(tok::kw_catch)) {
+ ConsumeAndStoreUntil(tok::l_brace, Toks, /*StopAtSemi=*/false);
+ ConsumeAndStoreUntil(tok::r_brace, Toks, /*StopAtSemi=*/false);
+ }
+ }
+
+ if (FnD) {
+ // If this is a friend function, mark that it's late-parsed so that
+ // it's still known to be a definition even before we attach the
+ // parsed body. Sema needs to treat friend function definitions
+ // differently during template instantiation, and it's possible for
+ // the containing class to be instantiated before all its member
+ // function definitions are parsed.
+ //
+ // If you remove this, you can remove the code that clears the flag
+ // after parsing the member.
+ if (D.getDeclSpec().isFriendSpecified()) {
+ FunctionDecl *FD = FnD->getAsFunction();
+ Actions.CheckForFunctionRedefinition(FD);
+ FD->setLateTemplateParsed(true);
+ }
+ } else {
+ // If semantic analysis could not build a function declaration,
+ // just throw away the late-parsed declaration.
+ delete getCurrentClass().LateParsedDeclarations.back();
+ getCurrentClass().LateParsedDeclarations.pop_back();
+ }
+
+ return FnD;
+}
+
+/// ParseCXXNonStaticMemberInitializer - We parsed and verified that the
+/// specified Declarator is a well formed C++ non-static data member
+/// declaration. Now lex its initializer and store its tokens for parsing
+/// after the class is complete.
+void Parser::ParseCXXNonStaticMemberInitializer(Decl *VarD) {
+ assert((Tok.is(tok::l_brace) || Tok.is(tok::equal)) &&
+ "Current token not a '{' or '='!");
+
+ LateParsedMemberInitializer *MI =
+ new LateParsedMemberInitializer(this, VarD);
+ getCurrentClass().LateParsedDeclarations.push_back(MI);
+ CachedTokens &Toks = MI->Toks;
+
+ tok::TokenKind kind = Tok.getKind();
+ if (kind == tok::equal) {
+ Toks.push_back(Tok);
+ ConsumeToken();
+ }
+
+ if (kind == tok::l_brace) {
+ // Begin by storing the '{' token.
+ Toks.push_back(Tok);
+ ConsumeBrace();
+
+ // Consume everything up to (and including) the matching right brace.
+ ConsumeAndStoreUntil(tok::r_brace, Toks, /*StopAtSemi=*/true);
+ } else {
+ // Consume everything up to (but excluding) the comma or semicolon.
+ ConsumeAndStoreInitializer(Toks, CIK_DefaultInitializer);
+ }
+
+ // Store an artificial EOF token to ensure that we don't run off the end of
+ // the initializer when we come to parse it.
+ Token Eof;
+ Eof.startToken();
+ Eof.setKind(tok::eof);
+ Eof.setLocation(Tok.getLocation());
+ Eof.setEofData(VarD);
+ Toks.push_back(Eof);
+}
+
+Parser::LateParsedDeclaration::~LateParsedDeclaration() {}
+void Parser::LateParsedDeclaration::ParseLexedMethodDeclarations() {}
+void Parser::LateParsedDeclaration::ParseLexedMemberInitializers() {}
+void Parser::LateParsedDeclaration::ParseLexedMethodDefs() {}
+
+Parser::LateParsedClass::LateParsedClass(Parser *P, ParsingClass *C)
+ : Self(P), Class(C) {}
+
+Parser::LateParsedClass::~LateParsedClass() {
+ Self->DeallocateParsedClasses(Class);
+}
+
+void Parser::LateParsedClass::ParseLexedMethodDeclarations() {
+ Self->ParseLexedMethodDeclarations(*Class);
+}
+
+void Parser::LateParsedClass::ParseLexedMemberInitializers() {
+ Self->ParseLexedMemberInitializers(*Class);
+}
+
+void Parser::LateParsedClass::ParseLexedMethodDefs() {
+ Self->ParseLexedMethodDefs(*Class);
+}
+
+void Parser::LateParsedMethodDeclaration::ParseLexedMethodDeclarations() {
+ Self->ParseLexedMethodDeclaration(*this);
+}
+
+void Parser::LexedMethod::ParseLexedMethodDefs() {
+ Self->ParseLexedMethodDef(*this);
+}
+
+void Parser::LateParsedMemberInitializer::ParseLexedMemberInitializers() {
+ Self->ParseLexedMemberInitializer(*this);
+}
+
+/// ParseLexedMethodDeclarations - We finished parsing the member
+/// specification of a top (non-nested) C++ class. Now go over the
+/// stack of method declarations with some parts for which parsing was
+/// delayed (such as default arguments) and parse them.
+void Parser::ParseLexedMethodDeclarations(ParsingClass &Class) {
+ bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope;
+ ParseScope ClassTemplateScope(this, Scope::TemplateParamScope,
+ HasTemplateScope);
+ TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth);
+ if (HasTemplateScope) {
+ Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate);
+ ++CurTemplateDepthTracker;
+ }
+
+ // The current scope is still active if we're the top-level class.
+ // Otherwise we'll need to push and enter a new scope.
+ bool HasClassScope = !Class.TopLevelClass;
+ ParseScope ClassScope(this, Scope::ClassScope|Scope::DeclScope,
+ HasClassScope);
+ if (HasClassScope)
+ Actions.ActOnStartDelayedMemberDeclarations(getCurScope(),
+ Class.TagOrTemplate);
+
+ for (size_t i = 0; i < Class.LateParsedDeclarations.size(); ++i) {
+ Class.LateParsedDeclarations[i]->ParseLexedMethodDeclarations();
+ }
+
+ if (HasClassScope)
+ Actions.ActOnFinishDelayedMemberDeclarations(getCurScope(),
+ Class.TagOrTemplate);
+}
+
+void Parser::ParseLexedMethodDeclaration(LateParsedMethodDeclaration &LM) {
+ // If this is a member template, introduce the template parameter scope.
+ ParseScope TemplateScope(this, Scope::TemplateParamScope, LM.TemplateScope);
+ TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth);
+ if (LM.TemplateScope) {
+ Actions.ActOnReenterTemplateScope(getCurScope(), LM.Method);
+ ++CurTemplateDepthTracker;
+ }
+ // Start the delayed C++ method declaration
+ Actions.ActOnStartDelayedCXXMethodDeclaration(getCurScope(), LM.Method);
+
+ // Introduce the parameters into scope and parse their default
+ // arguments.
+ ParseScope PrototypeScope(this, Scope::FunctionPrototypeScope |
+ Scope::FunctionDeclarationScope | Scope::DeclScope);
+ for (unsigned I = 0, N = LM.DefaultArgs.size(); I != N; ++I) {
+ auto Param = cast<ParmVarDecl>(LM.DefaultArgs[I].Param);
+ // Introduce the parameter into scope.
+ bool HasUnparsed = Param->hasUnparsedDefaultArg();
+ Actions.ActOnDelayedCXXMethodParameter(getCurScope(), Param);
+ if (CachedTokens *Toks = LM.DefaultArgs[I].Toks) {
+ // Mark the end of the default argument so that we know when to stop when
+ // we parse it later on.
+ Token LastDefaultArgToken = Toks->back();
+ Token DefArgEnd;
+ DefArgEnd.startToken();
+ DefArgEnd.setKind(tok::eof);
+ DefArgEnd.setLocation(LastDefaultArgToken.getEndLoc());
+ DefArgEnd.setEofData(Param);
+ Toks->push_back(DefArgEnd);
+
+ // Parse the default argument from its saved token stream.
+ Toks->push_back(Tok); // So that the current token doesn't get lost
+ PP.EnterTokenStream(&Toks->front(), Toks->size(), true, false);
+
+ // Consume the previously-pushed token.
+ ConsumeAnyToken();
+
+ // Consume the '='.
+ assert(Tok.is(tok::equal) && "Default argument not starting with '='");
+ SourceLocation EqualLoc = ConsumeToken();
+
+ // The argument isn't actually potentially evaluated unless it is
+ // used.
+ EnterExpressionEvaluationContext Eval(Actions,
+ Sema::PotentiallyEvaluatedIfUsed,
+ Param);
+
+ ExprResult DefArgResult;
+ if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
+ Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
+ DefArgResult = ParseBraceInitializer();
+ } else
+ DefArgResult = ParseAssignmentExpression();
+ DefArgResult = Actions.CorrectDelayedTyposInExpr(DefArgResult);
+ if (DefArgResult.isInvalid()) {
+ Actions.ActOnParamDefaultArgumentError(Param, EqualLoc);
+ } else {
+ if (Tok.isNot(tok::eof) || Tok.getEofData() != Param) {
+ // The last two tokens are the terminator and the saved value of
+ // Tok; the last token in the default argument is the one before
+ // those.
+ assert(Toks->size() >= 3 && "expected a token in default arg");
+ Diag(Tok.getLocation(), diag::err_default_arg_unparsed)
+ << SourceRange(Tok.getLocation(),
+ (*Toks)[Toks->size() - 3].getLocation());
+ }
+ Actions.ActOnParamDefaultArgument(Param, EqualLoc,
+ DefArgResult.get());
+ }
+
+ // There could be leftover tokens (e.g. because of an error).
+ // Skip through until we reach the 'end of default argument' token.
+ while (Tok.isNot(tok::eof))
+ ConsumeAnyToken();
+
+ if (Tok.is(tok::eof) && Tok.getEofData() == Param)
+ ConsumeAnyToken();
+
+ delete Toks;
+ LM.DefaultArgs[I].Toks = nullptr;
+ } else if (HasUnparsed) {
+ assert(Param->hasInheritedDefaultArg());
+ FunctionDecl *Old = cast<FunctionDecl>(LM.Method)->getPreviousDecl();
+ ParmVarDecl *OldParam = Old->getParamDecl(I);
+ assert (!OldParam->hasUnparsedDefaultArg());
+ if (OldParam->hasUninstantiatedDefaultArg())
+ Param->setUninstantiatedDefaultArg(
+ Param->getUninstantiatedDefaultArg());
+ else
+ Param->setDefaultArg(OldParam->getInit());
+ }
+ }
+
+ // Parse a delayed exception-specification, if there is one.
+ if (CachedTokens *Toks = LM.ExceptionSpecTokens) {
+ // Add the 'stop' token.
+ Token LastExceptionSpecToken = Toks->back();
+ Token ExceptionSpecEnd;
+ ExceptionSpecEnd.startToken();
+ ExceptionSpecEnd.setKind(tok::eof);
+ ExceptionSpecEnd.setLocation(LastExceptionSpecToken.getEndLoc());
+ ExceptionSpecEnd.setEofData(LM.Method);
+ Toks->push_back(ExceptionSpecEnd);
+
+ // Parse the default argument from its saved token stream.
+ Toks->push_back(Tok); // So that the current token doesn't get lost
+ PP.EnterTokenStream(&Toks->front(), Toks->size(), true, false);
+
+ // Consume the previously-pushed token.
+ ConsumeAnyToken();
+
+ // C++11 [expr.prim.general]p3:
+ // If a declaration declares a member function or member function
+ // template of a class X, the expression this is a prvalue of type
+ // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
+ // and the end of the function-definition, member-declarator, or
+ // declarator.
+ CXXMethodDecl *Method;
+ if (FunctionTemplateDecl *FunTmpl
+ = dyn_cast<FunctionTemplateDecl>(LM.Method))
+ Method = cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
+ else
+ Method = cast<CXXMethodDecl>(LM.Method);
+
+ Sema::CXXThisScopeRAII ThisScope(Actions, Method->getParent(),
+ Method->getTypeQualifiers(),
+ getLangOpts().CPlusPlus11);
+
+ // Parse the exception-specification.
+ SourceRange SpecificationRange;
+ SmallVector<ParsedType, 4> DynamicExceptions;
+ SmallVector<SourceRange, 4> DynamicExceptionRanges;
+ ExprResult NoexceptExpr;
+ CachedTokens *ExceptionSpecTokens;
+
+ ExceptionSpecificationType EST
+ = tryParseExceptionSpecification(/*Delayed=*/false, SpecificationRange,
+ DynamicExceptions,
+ DynamicExceptionRanges, NoexceptExpr,
+ ExceptionSpecTokens);
+
+ if (Tok.isNot(tok::eof) || Tok.getEofData() != LM.Method)
+ Diag(Tok.getLocation(), diag::err_except_spec_unparsed);
+
+ // Attach the exception-specification to the method.
+ Actions.actOnDelayedExceptionSpecification(LM.Method, EST,
+ SpecificationRange,
+ DynamicExceptions,
+ DynamicExceptionRanges,
+ NoexceptExpr.isUsable()?
+ NoexceptExpr.get() : nullptr);
+
+ // There could be leftover tokens (e.g. because of an error).
+ // Skip through until we reach the original token position.
+ while (Tok.isNot(tok::eof))
+ ConsumeAnyToken();
+
+ // Clean up the remaining EOF token.
+ if (Tok.is(tok::eof) && Tok.getEofData() == LM.Method)
+ ConsumeAnyToken();
+
+ delete Toks;
+ LM.ExceptionSpecTokens = nullptr;
+ }
+
+ PrototypeScope.Exit();
+
+ // Finish the delayed C++ method declaration.
+ Actions.ActOnFinishDelayedCXXMethodDeclaration(getCurScope(), LM.Method);
+}
+
+/// ParseLexedMethodDefs - We finished parsing the member specification of a top
+/// (non-nested) C++ class. Now go over the stack of lexed methods that were
+/// collected during its parsing and parse them all.
+void Parser::ParseLexedMethodDefs(ParsingClass &Class) {
+ bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope;
+ ParseScope ClassTemplateScope(this, Scope::TemplateParamScope, HasTemplateScope);
+ TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth);
+ if (HasTemplateScope) {
+ Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate);
+ ++CurTemplateDepthTracker;
+ }
+ bool HasClassScope = !Class.TopLevelClass;
+ ParseScope ClassScope(this, Scope::ClassScope|Scope::DeclScope,
+ HasClassScope);
+
+ for (size_t i = 0; i < Class.LateParsedDeclarations.size(); ++i) {
+ Class.LateParsedDeclarations[i]->ParseLexedMethodDefs();
+ }
+}
+
+void Parser::ParseLexedMethodDef(LexedMethod &LM) {
+ // If this is a member template, introduce the template parameter scope.
+ ParseScope TemplateScope(this, Scope::TemplateParamScope, LM.TemplateScope);
+ TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth);
+ if (LM.TemplateScope) {
+ Actions.ActOnReenterTemplateScope(getCurScope(), LM.D);
+ ++CurTemplateDepthTracker;
+ }
+
+ assert(!LM.Toks.empty() && "Empty body!");
+ Token LastBodyToken = LM.Toks.back();
+ Token BodyEnd;
+ BodyEnd.startToken();
+ BodyEnd.setKind(tok::eof);
+ BodyEnd.setLocation(LastBodyToken.getEndLoc());
+ BodyEnd.setEofData(LM.D);
+ LM.Toks.push_back(BodyEnd);
+ // Append the current token at the end of the new token stream so that it
+ // doesn't get lost.
+ LM.Toks.push_back(Tok);
+ PP.EnterTokenStream(LM.Toks.data(), LM.Toks.size(), true, false);
+
+ // Consume the previously pushed token.
+ ConsumeAnyToken(/*ConsumeCodeCompletionTok=*/true);
+ assert((Tok.is(tok::l_brace) || Tok.is(tok::colon) || Tok.is(tok::kw_try))
+ && "Inline method not starting with '{', ':' or 'try'");
+
+ // Parse the method body. Function body parsing code is similar enough
+ // to be re-used for method bodies as well.
+ ParseScope FnScope(this, Scope::FnScope|Scope::DeclScope);
+ Actions.ActOnStartOfFunctionDef(getCurScope(), LM.D);
+
+ if (Tok.is(tok::kw_try)) {
+ ParseFunctionTryBlock(LM.D, FnScope);
+
+ while (Tok.isNot(tok::eof))
+ ConsumeAnyToken();
+
+ if (Tok.is(tok::eof) && Tok.getEofData() == LM.D)
+ ConsumeAnyToken();
+ return;
+ }
+ if (Tok.is(tok::colon)) {
+ ParseConstructorInitializer(LM.D);
+
+ // Error recovery.
+ if (!Tok.is(tok::l_brace)) {
+ FnScope.Exit();
+ Actions.ActOnFinishFunctionBody(LM.D, nullptr);
+
+ while (Tok.isNot(tok::eof))
+ ConsumeAnyToken();
+
+ if (Tok.is(tok::eof) && Tok.getEofData() == LM.D)
+ ConsumeAnyToken();
+ return;
+ }
+ } else
+ Actions.ActOnDefaultCtorInitializers(LM.D);
+
+ assert((Actions.getDiagnostics().hasErrorOccurred() ||
+ !isa<FunctionTemplateDecl>(LM.D) ||
+ cast<FunctionTemplateDecl>(LM.D)->getTemplateParameters()->getDepth()
+ < TemplateParameterDepth) &&
+ "TemplateParameterDepth should be greater than the depth of "
+ "current template being instantiated!");
+
+ ParseFunctionStatementBody(LM.D, FnScope);
+
+ // Clear the late-template-parsed bit if we set it before.
+ if (LM.D)
+ LM.D->getAsFunction()->setLateTemplateParsed(false);
+
+ while (Tok.isNot(tok::eof))
+ ConsumeAnyToken();
+
+ if (Tok.is(tok::eof) && Tok.getEofData() == LM.D)
+ ConsumeAnyToken();
+
+ if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(LM.D))
+ Actions.ActOnFinishInlineMethodDef(MD);
+}
+
+/// ParseLexedMemberInitializers - We finished parsing the member specification
+/// of a top (non-nested) C++ class. Now go over the stack of lexed data member
+/// initializers that were collected during its parsing and parse them all.
+void Parser::ParseLexedMemberInitializers(ParsingClass &Class) {
+ bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope;
+ ParseScope ClassTemplateScope(this, Scope::TemplateParamScope,
+ HasTemplateScope);
+ TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth);
+ if (HasTemplateScope) {
+ Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate);
+ ++CurTemplateDepthTracker;
+ }
+ // Set or update the scope flags.
+ bool AlreadyHasClassScope = Class.TopLevelClass;
+ unsigned ScopeFlags = Scope::ClassScope|Scope::DeclScope;
+ ParseScope ClassScope(this, ScopeFlags, !AlreadyHasClassScope);
+ ParseScopeFlags ClassScopeFlags(this, ScopeFlags, AlreadyHasClassScope);
+
+ if (!AlreadyHasClassScope)
+ Actions.ActOnStartDelayedMemberDeclarations(getCurScope(),
+ Class.TagOrTemplate);
+
+ if (!Class.LateParsedDeclarations.empty()) {
+ // C++11 [expr.prim.general]p4:
+ // Otherwise, if a member-declarator declares a non-static data member
+ // (9.2) of a class X, the expression this is a prvalue of type "pointer
+ // to X" within the optional brace-or-equal-initializer. It shall not
+ // appear elsewhere in the member-declarator.
+ Sema::CXXThisScopeRAII ThisScope(Actions, Class.TagOrTemplate,
+ /*TypeQuals=*/(unsigned)0);
+
+ for (size_t i = 0; i < Class.LateParsedDeclarations.size(); ++i) {
+ Class.LateParsedDeclarations[i]->ParseLexedMemberInitializers();
+ }
+ }
+
+ if (!AlreadyHasClassScope)
+ Actions.ActOnFinishDelayedMemberDeclarations(getCurScope(),
+ Class.TagOrTemplate);
+
+ Actions.ActOnFinishDelayedMemberInitializers(Class.TagOrTemplate);
+}
+
+void Parser::ParseLexedMemberInitializer(LateParsedMemberInitializer &MI) {
+ if (!MI.Field || MI.Field->isInvalidDecl())
+ return;
+
+ // Append the current token at the end of the new token stream so that it
+ // doesn't get lost.
+ MI.Toks.push_back(Tok);
+ PP.EnterTokenStream(MI.Toks.data(), MI.Toks.size(), true, false);
+
+ // Consume the previously pushed token.
+ ConsumeAnyToken(/*ConsumeCodeCompletionTok=*/true);
+
+ SourceLocation EqualLoc;
+
+ Actions.ActOnStartCXXInClassMemberInitializer();
+
+ ExprResult Init = ParseCXXMemberInitializer(MI.Field, /*IsFunction=*/false,
+ EqualLoc);
+
+ Actions.ActOnFinishCXXInClassMemberInitializer(MI.Field, EqualLoc,
+ Init.get());
+
+ // The next token should be our artificial terminating EOF token.
+ if (Tok.isNot(tok::eof)) {
+ if (!Init.isInvalid()) {
+ SourceLocation EndLoc = PP.getLocForEndOfToken(PrevTokLocation);
+ if (!EndLoc.isValid())
+ EndLoc = Tok.getLocation();
+ // No fixit; we can't recover as if there were a semicolon here.
+ Diag(EndLoc, diag::err_expected_semi_decl_list);
+ }
+
+ // Consume tokens until we hit the artificial EOF.
+ while (Tok.isNot(tok::eof))
+ ConsumeAnyToken();
+ }
+ // Make sure this is *our* artificial EOF token.
+ if (Tok.getEofData() == MI.Field)
+ ConsumeAnyToken();
+}
+
+/// ConsumeAndStoreUntil - Consume and store the token at the passed token
+/// container until the token 'T' is reached (which gets
+/// consumed/stored too, if ConsumeFinalToken).
+/// If StopAtSemi is true, then we will stop early at a ';' character.
+/// Returns true if token 'T1' or 'T2' was found.
+/// NOTE: This is a specialized version of Parser::SkipUntil.
+bool Parser::ConsumeAndStoreUntil(tok::TokenKind T1, tok::TokenKind T2,
+ CachedTokens &Toks,
+ bool StopAtSemi, bool ConsumeFinalToken) {
+ // We always want this function to consume at least one token if the first
+ // token isn't T and if not at EOF.
+ bool isFirstTokenConsumed = true;
+ while (1) {
+ // If we found one of the tokens, stop and return true.
+ if (Tok.is(T1) || Tok.is(T2)) {
+ if (ConsumeFinalToken) {
+ Toks.push_back(Tok);
+ ConsumeAnyToken();
+ }
+ return true;
+ }
+
+ switch (Tok.getKind()) {
+ case tok::eof:
+ case tok::annot_module_begin:
+ case tok::annot_module_end:
+ case tok::annot_module_include:
+ // Ran out of tokens.
+ return false;
+
+ case tok::l_paren:
+ // Recursively consume properly-nested parens.
+ Toks.push_back(Tok);
+ ConsumeParen();
+ ConsumeAndStoreUntil(tok::r_paren, Toks, /*StopAtSemi=*/false);
+ break;
+ case tok::l_square:
+ // Recursively consume properly-nested square brackets.
+ Toks.push_back(Tok);
+ ConsumeBracket();
+ ConsumeAndStoreUntil(tok::r_square, Toks, /*StopAtSemi=*/false);
+ break;
+ case tok::l_brace:
+ // Recursively consume properly-nested braces.
+ Toks.push_back(Tok);
+ ConsumeBrace();
+ ConsumeAndStoreUntil(tok::r_brace, Toks, /*StopAtSemi=*/false);
+ break;
+
+ // Okay, we found a ']' or '}' or ')', which we think should be balanced.
+ // Since the user wasn't looking for this token (if they were, it would
+ // already be handled), this isn't balanced. If there is a LHS token at a
+ // higher level, we will assume that this matches the unbalanced token
+ // and return it. Otherwise, this is a spurious RHS token, which we skip.
+ case tok::r_paren:
+ if (ParenCount && !isFirstTokenConsumed)
+ return false; // Matches something.
+ Toks.push_back(Tok);
+ ConsumeParen();
+ break;
+ case tok::r_square:
+ if (BracketCount && !isFirstTokenConsumed)
+ return false; // Matches something.
+ Toks.push_back(Tok);
+ ConsumeBracket();
+ break;
+ case tok::r_brace:
+ if (BraceCount && !isFirstTokenConsumed)
+ return false; // Matches something.
+ Toks.push_back(Tok);
+ ConsumeBrace();
+ break;
+
+ case tok::code_completion:
+ Toks.push_back(Tok);
+ ConsumeCodeCompletionToken();
+ break;
+
+ case tok::string_literal:
+ case tok::wide_string_literal:
+ case tok::utf8_string_literal:
+ case tok::utf16_string_literal:
+ case tok::utf32_string_literal:
+ Toks.push_back(Tok);
+ ConsumeStringToken();
+ break;
+ case tok::semi:
+ if (StopAtSemi)
+ return false;
+ // FALL THROUGH.
+ default:
+ // consume this token.
+ Toks.push_back(Tok);
+ ConsumeToken();
+ break;
+ }
+ isFirstTokenConsumed = false;
+ }
+}
+
+/// \brief Consume tokens and store them in the passed token container until
+/// we've passed the try keyword and constructor initializers and have consumed
+/// the opening brace of the function body. The opening brace will be consumed
+/// if and only if there was no error.
+///
+/// \return True on error.
+bool Parser::ConsumeAndStoreFunctionPrologue(CachedTokens &Toks) {
+ if (Tok.is(tok::kw_try)) {
+ Toks.push_back(Tok);
+ ConsumeToken();
+ }
+
+ if (Tok.isNot(tok::colon)) {
+ // Easy case, just a function body.
+
+ // Grab any remaining garbage to be diagnosed later. We stop when we reach a
+ // brace: an opening one is the function body, while a closing one probably
+ // means we've reached the end of the class.
+ ConsumeAndStoreUntil(tok::l_brace, tok::r_brace, Toks,
+ /*StopAtSemi=*/true,
+ /*ConsumeFinalToken=*/false);
+ if (Tok.isNot(tok::l_brace))
+ return Diag(Tok.getLocation(), diag::err_expected) << tok::l_brace;
+
+ Toks.push_back(Tok);
+ ConsumeBrace();
+ return false;
+ }
+
+ Toks.push_back(Tok);
+ ConsumeToken();
+
+ // We can't reliably skip over a mem-initializer-id, because it could be
+ // a template-id involving not-yet-declared names. Given:
+ //
+ // S ( ) : a < b < c > ( e )
+ //
+ // 'e' might be an initializer or part of a template argument, depending
+ // on whether 'b' is a template.
+
+ // Track whether we might be inside a template argument. We can give
+ // significantly better diagnostics if we know that we're not.
+ bool MightBeTemplateArgument = false;
+
+ while (true) {
+ // Skip over the mem-initializer-id, if possible.
+ if (Tok.is(tok::kw_decltype)) {
+ Toks.push_back(Tok);
+ SourceLocation OpenLoc = ConsumeToken();
+ if (Tok.isNot(tok::l_paren))
+ return Diag(Tok.getLocation(), diag::err_expected_lparen_after)
+ << "decltype";
+ Toks.push_back(Tok);
+ ConsumeParen();
+ if (!ConsumeAndStoreUntil(tok::r_paren, Toks, /*StopAtSemi=*/true)) {
+ Diag(Tok.getLocation(), diag::err_expected) << tok::r_paren;
+ Diag(OpenLoc, diag::note_matching) << tok::l_paren;
+ return true;
+ }
+ }
+ do {
+ // Walk over a component of a nested-name-specifier.
+ if (Tok.is(tok::coloncolon)) {
+ Toks.push_back(Tok);
+ ConsumeToken();
+
+ if (Tok.is(tok::kw_template)) {
+ Toks.push_back(Tok);
+ ConsumeToken();
+ }
+ }
+
+ if (Tok.is(tok::identifier) || Tok.is(tok::kw_template)) {
+ Toks.push_back(Tok);
+ ConsumeToken();
+ } else if (Tok.is(tok::code_completion)) {
+ Toks.push_back(Tok);
+ ConsumeCodeCompletionToken();
+ // Consume the rest of the initializers permissively.
+ // FIXME: We should be able to perform code-completion here even if
+ // there isn't a subsequent '{' token.
+ MightBeTemplateArgument = true;
+ break;
+ } else {
+ break;
+ }
+ } while (Tok.is(tok::coloncolon));
+
+ if (Tok.is(tok::less))
+ MightBeTemplateArgument = true;
+
+ if (MightBeTemplateArgument) {
+ // We may be inside a template argument list. Grab up to the start of the
+ // next parenthesized initializer or braced-init-list. This *might* be the
+ // initializer, or it might be a subexpression in the template argument
+ // list.
+ // FIXME: Count angle brackets, and clear MightBeTemplateArgument
+ // if all angles are closed.
+ if (!ConsumeAndStoreUntil(tok::l_paren, tok::l_brace, Toks,
+ /*StopAtSemi=*/true,
+ /*ConsumeFinalToken=*/false)) {
+ // We're not just missing the initializer, we're also missing the
+ // function body!
+ return Diag(Tok.getLocation(), diag::err_expected) << tok::l_brace;
+ }
+ } else if (Tok.isNot(tok::l_paren) && Tok.isNot(tok::l_brace)) {
+ // We found something weird in a mem-initializer-id.
+ if (getLangOpts().CPlusPlus11)
+ return Diag(Tok.getLocation(), diag::err_expected_either)
+ << tok::l_paren << tok::l_brace;
+ else
+ return Diag(Tok.getLocation(), diag::err_expected) << tok::l_paren;
+ }
+
+ tok::TokenKind kind = Tok.getKind();
+ Toks.push_back(Tok);
+ bool IsLParen = (kind == tok::l_paren);
+ SourceLocation OpenLoc = Tok.getLocation();
+
+ if (IsLParen) {
+ ConsumeParen();
+ } else {
+ assert(kind == tok::l_brace && "Must be left paren or brace here.");
+ ConsumeBrace();
+ // In C++03, this has to be the start of the function body, which
+ // means the initializer is malformed; we'll diagnose it later.
+ if (!getLangOpts().CPlusPlus11)
+ return false;
+ }
+
+ // Grab the initializer (or the subexpression of the template argument).
+ // FIXME: If we support lambdas here, we'll need to set StopAtSemi to false
+ // if we might be inside the braces of a lambda-expression.
+ tok::TokenKind CloseKind = IsLParen ? tok::r_paren : tok::r_brace;
+ if (!ConsumeAndStoreUntil(CloseKind, Toks, /*StopAtSemi=*/true)) {
+ Diag(Tok, diag::err_expected) << CloseKind;
+ Diag(OpenLoc, diag::note_matching) << kind;
+ return true;
+ }
+
+ // Grab pack ellipsis, if present.
+ if (Tok.is(tok::ellipsis)) {
+ Toks.push_back(Tok);
+ ConsumeToken();
+ }
+
+ // If we know we just consumed a mem-initializer, we must have ',' or '{'
+ // next.
+ if (Tok.is(tok::comma)) {
+ Toks.push_back(Tok);
+ ConsumeToken();
+ } else if (Tok.is(tok::l_brace)) {
+ // This is the function body if the ')' or '}' is immediately followed by
+ // a '{'. That cannot happen within a template argument, apart from the
+ // case where a template argument contains a compound literal:
+ //
+ // S ( ) : a < b < c > ( d ) { }
+ // // End of declaration, or still inside the template argument?
+ //
+ // ... and the case where the template argument contains a lambda:
+ //
+ // S ( ) : a < 0 && b < c > ( d ) + [ ] ( ) { return 0; }
+ // ( ) > ( ) { }
+ //
+ // FIXME: Disambiguate these cases. Note that the latter case is probably
+ // going to be made ill-formed by core issue 1607.
+ Toks.push_back(Tok);
+ ConsumeBrace();
+ return false;
+ } else if (!MightBeTemplateArgument) {
+ return Diag(Tok.getLocation(), diag::err_expected_either) << tok::l_brace
+ << tok::comma;
+ }
+ }
+}
+
+/// \brief Consume and store tokens from the '?' to the ':' in a conditional
+/// expression.
+bool Parser::ConsumeAndStoreConditional(CachedTokens &Toks) {
+ // Consume '?'.
+ assert(Tok.is(tok::question));
+ Toks.push_back(Tok);
+ ConsumeToken();
+
+ while (Tok.isNot(tok::colon)) {
+ if (!ConsumeAndStoreUntil(tok::question, tok::colon, Toks,
+ /*StopAtSemi=*/true,
+ /*ConsumeFinalToken=*/false))
+ return false;
+
+ // If we found a nested conditional, consume it.
+ if (Tok.is(tok::question) && !ConsumeAndStoreConditional(Toks))
+ return false;
+ }
+
+ // Consume ':'.
+ Toks.push_back(Tok);
+ ConsumeToken();
+ return true;
+}
+
+/// \brief A tentative parsing action that can also revert token annotations.
+class Parser::UnannotatedTentativeParsingAction : public TentativeParsingAction {
+public:
+ explicit UnannotatedTentativeParsingAction(Parser &Self,
+ tok::TokenKind EndKind)
+ : TentativeParsingAction(Self), Self(Self), EndKind(EndKind) {
+ // Stash away the old token stream, so we can restore it once the
+ // tentative parse is complete.
+ TentativeParsingAction Inner(Self);
+ Self.ConsumeAndStoreUntil(EndKind, Toks, true, /*ConsumeFinalToken*/false);
+ Inner.Revert();
+ }
+
+ void RevertAnnotations() {
+ Revert();
+
+ // Put back the original tokens.
+ Self.SkipUntil(EndKind, StopAtSemi | StopBeforeMatch);
+ if (Toks.size()) {
+ Token *Buffer = new Token[Toks.size()];
+ std::copy(Toks.begin() + 1, Toks.end(), Buffer);
+ Buffer[Toks.size() - 1] = Self.Tok;
+ Self.PP.EnterTokenStream(Buffer, Toks.size(), true, /*Owned*/true);
+
+ Self.Tok = Toks.front();
+ }
+ }
+
+private:
+ Parser &Self;
+ CachedTokens Toks;
+ tok::TokenKind EndKind;
+};
+
+/// ConsumeAndStoreInitializer - Consume and store the token at the passed token
+/// container until the end of the current initializer expression (either a
+/// default argument or an in-class initializer for a non-static data member).
+///
+/// Returns \c true if we reached the end of something initializer-shaped,
+/// \c false if we bailed out.
+bool Parser::ConsumeAndStoreInitializer(CachedTokens &Toks,
+ CachedInitKind CIK) {
+ // We always want this function to consume at least one token if not at EOF.
+ bool IsFirstToken = true;
+
+ // Number of possible unclosed <s we've seen so far. These might be templates,
+ // and might not, but if there were none of them (or we know for sure that
+ // we're within a template), we can avoid a tentative parse.
+ unsigned AngleCount = 0;
+ unsigned KnownTemplateCount = 0;
+
+ while (1) {
+ switch (Tok.getKind()) {
+ case tok::comma:
+ // If we might be in a template, perform a tentative parse to check.
+ if (!AngleCount)
+ // Not a template argument: this is the end of the initializer.
+ return true;
+ if (KnownTemplateCount)
+ goto consume_token;
+
+ // We hit a comma inside angle brackets. This is the hard case. The
+ // rule we follow is:
+ // * For a default argument, if the tokens after the comma form a
+ // syntactically-valid parameter-declaration-clause, in which each
+ // parameter has an initializer, then this comma ends the default
+ // argument.
+ // * For a default initializer, if the tokens after the comma form a
+ // syntactically-valid init-declarator-list, then this comma ends
+ // the default initializer.
+ {
+ UnannotatedTentativeParsingAction PA(*this,
+ CIK == CIK_DefaultInitializer
+ ? tok::semi : tok::r_paren);
+ Sema::TentativeAnalysisScope Scope(Actions);
+
+ TPResult Result = TPResult::Error;
+ ConsumeToken();
+ switch (CIK) {
+ case CIK_DefaultInitializer:
+ Result = TryParseInitDeclaratorList();
+ // If we parsed a complete, ambiguous init-declarator-list, this
+ // is only syntactically-valid if it's followed by a semicolon.
+ if (Result == TPResult::Ambiguous && Tok.isNot(tok::semi))
+ Result = TPResult::False;
+ break;
+
+ case CIK_DefaultArgument:
+ bool InvalidAsDeclaration = false;
+ Result = TryParseParameterDeclarationClause(
+ &InvalidAsDeclaration, /*VersusTemplateArgument=*/true);
+ // If this is an expression or a declaration with a missing
+ // 'typename', assume it's not a declaration.
+ if (Result == TPResult::Ambiguous && InvalidAsDeclaration)
+ Result = TPResult::False;
+ break;
+ }
+
+ // If what follows could be a declaration, it is a declaration.
+ if (Result != TPResult::False && Result != TPResult::Error) {
+ PA.Revert();
+ return true;
+ }
+
+ // In the uncommon case that we decide the following tokens are part
+ // of a template argument, revert any annotations we've performed in
+ // those tokens. We're not going to look them up until we've parsed
+ // the rest of the class, and that might add more declarations.
+ PA.RevertAnnotations();
+ }
+
+ // Keep going. We know we're inside a template argument list now.
+ ++KnownTemplateCount;
+ goto consume_token;
+
+ case tok::eof:
+ case tok::annot_module_begin:
+ case tok::annot_module_end:
+ case tok::annot_module_include:
+ // Ran out of tokens.
+ return false;
+
+ case tok::less:
+ // FIXME: A '<' can only start a template-id if it's preceded by an
+ // identifier, an operator-function-id, or a literal-operator-id.
+ ++AngleCount;
+ goto consume_token;
+
+ case tok::question:
+ // In 'a ? b : c', 'b' can contain an unparenthesized comma. If it does,
+ // that is *never* the end of the initializer. Skip to the ':'.
+ if (!ConsumeAndStoreConditional(Toks))
+ return false;
+ break;
+
+ case tok::greatergreatergreater:
+ if (!getLangOpts().CPlusPlus11)
+ goto consume_token;
+ if (AngleCount) --AngleCount;
+ if (KnownTemplateCount) --KnownTemplateCount;
+ // Fall through.
+ case tok::greatergreater:
+ if (!getLangOpts().CPlusPlus11)
+ goto consume_token;
+ if (AngleCount) --AngleCount;
+ if (KnownTemplateCount) --KnownTemplateCount;
+ // Fall through.
+ case tok::greater:
+ if (AngleCount) --AngleCount;
+ if (KnownTemplateCount) --KnownTemplateCount;
+ goto consume_token;
+
+ case tok::kw_template:
+ // 'template' identifier '<' is known to start a template argument list,
+ // and can be used to disambiguate the parse.
+ // FIXME: Support all forms of 'template' unqualified-id '<'.
+ Toks.push_back(Tok);
+ ConsumeToken();
+ if (Tok.is(tok::identifier)) {
+ Toks.push_back(Tok);
+ ConsumeToken();
+ if (Tok.is(tok::less)) {
+ ++AngleCount;
+ ++KnownTemplateCount;
+ Toks.push_back(Tok);
+ ConsumeToken();
+ }
+ }
+ break;
+
+ case tok::kw_operator:
+ // If 'operator' precedes other punctuation, that punctuation loses
+ // its special behavior.
+ Toks.push_back(Tok);
+ ConsumeToken();
+ switch (Tok.getKind()) {
+ case tok::comma:
+ case tok::greatergreatergreater:
+ case tok::greatergreater:
+ case tok::greater:
+ case tok::less:
+ Toks.push_back(Tok);
+ ConsumeToken();
+ break;
+ default:
+ break;
+ }
+ break;
+
+ case tok::l_paren:
+ // Recursively consume properly-nested parens.
+ Toks.push_back(Tok);
+ ConsumeParen();
+ ConsumeAndStoreUntil(tok::r_paren, Toks, /*StopAtSemi=*/false);
+ break;
+ case tok::l_square:
+ // Recursively consume properly-nested square brackets.
+ Toks.push_back(Tok);
+ ConsumeBracket();
+ ConsumeAndStoreUntil(tok::r_square, Toks, /*StopAtSemi=*/false);
+ break;
+ case tok::l_brace:
+ // Recursively consume properly-nested braces.
+ Toks.push_back(Tok);
+ ConsumeBrace();
+ ConsumeAndStoreUntil(tok::r_brace, Toks, /*StopAtSemi=*/false);
+ break;
+
+ // Okay, we found a ']' or '}' or ')', which we think should be balanced.
+ // Since the user wasn't looking for this token (if they were, it would
+ // already be handled), this isn't balanced. If there is a LHS token at a
+ // higher level, we will assume that this matches the unbalanced token
+ // and return it. Otherwise, this is a spurious RHS token, which we
+ // consume and pass on to downstream code to diagnose.
+ case tok::r_paren:
+ if (CIK == CIK_DefaultArgument)
+ return true; // End of the default argument.
+ if (ParenCount && !IsFirstToken)
+ return false;
+ Toks.push_back(Tok);
+ ConsumeParen();
+ continue;
+ case tok::r_square:
+ if (BracketCount && !IsFirstToken)
+ return false;
+ Toks.push_back(Tok);
+ ConsumeBracket();
+ continue;
+ case tok::r_brace:
+ if (BraceCount && !IsFirstToken)
+ return false;
+ Toks.push_back(Tok);
+ ConsumeBrace();
+ continue;
+
+ case tok::code_completion:
+ Toks.push_back(Tok);
+ ConsumeCodeCompletionToken();
+ break;
+
+ case tok::string_literal:
+ case tok::wide_string_literal:
+ case tok::utf8_string_literal:
+ case tok::utf16_string_literal:
+ case tok::utf32_string_literal:
+ Toks.push_back(Tok);
+ ConsumeStringToken();
+ break;
+ case tok::semi:
+ if (CIK == CIK_DefaultInitializer)
+ return true; // End of the default initializer.
+ // FALL THROUGH.
+ default:
+ consume_token:
+ Toks.push_back(Tok);
+ ConsumeToken();
+ break;
+ }
+ IsFirstToken = false;
+ }
+}
diff --git a/contrib/llvm/tools/clang/lib/Parse/ParseDecl.cpp b/contrib/llvm/tools/clang/lib/Parse/ParseDecl.cpp
new file mode 100644
index 0000000..bd114d7
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Parse/ParseDecl.cpp
@@ -0,0 +1,6205 @@
+//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Declaration portions of the Parser interfaces.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Parse/Parser.h"
+#include "RAIIObjectsForParser.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/Basic/AddressSpaces.h"
+#include "clang/Basic/Attributes.h"
+#include "clang/Basic/CharInfo.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Parse/ParseDiagnostic.h"
+#include "clang/Sema/Lookup.h"
+#include "clang/Sema/ParsedTemplate.h"
+#include "clang/Sema/PrettyDeclStackTrace.h"
+#include "clang/Sema/Scope.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringSwitch.h"
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// C99 6.7: Declarations.
+//===----------------------------------------------------------------------===//
+
+/// ParseTypeName
+/// type-name: [C99 6.7.6]
+/// specifier-qualifier-list abstract-declarator[opt]
+///
+/// Called type-id in C++.
+TypeResult Parser::ParseTypeName(SourceRange *Range,
+ Declarator::TheContext Context,
+ AccessSpecifier AS,
+ Decl **OwnedType,
+ ParsedAttributes *Attrs) {
+ DeclSpecContext DSC = getDeclSpecContextFromDeclaratorContext(Context);
+ if (DSC == DSC_normal)
+ DSC = DSC_type_specifier;
+
+ // Parse the common declaration-specifiers piece.
+ DeclSpec DS(AttrFactory);
+ if (Attrs)
+ DS.addAttributes(Attrs->getList());
+ ParseSpecifierQualifierList(DS, AS, DSC);
+ if (OwnedType)
+ *OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : nullptr;
+
+ // Parse the abstract-declarator, if present.
+ Declarator DeclaratorInfo(DS, Context);
+ ParseDeclarator(DeclaratorInfo);
+ if (Range)
+ *Range = DeclaratorInfo.getSourceRange();
+
+ if (DeclaratorInfo.isInvalidType())
+ return true;
+
+ return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
+}
+
+
+/// isAttributeLateParsed - Return true if the attribute has arguments that
+/// require late parsing.
+static bool isAttributeLateParsed(const IdentifierInfo &II) {
+#define CLANG_ATTR_LATE_PARSED_LIST
+ return llvm::StringSwitch<bool>(II.getName())
+#include "clang/Parse/AttrParserStringSwitches.inc"
+ .Default(false);
+#undef CLANG_ATTR_LATE_PARSED_LIST
+}
+
+/// ParseGNUAttributes - Parse a non-empty attributes list.
+///
+/// [GNU] attributes:
+/// attribute
+/// attributes attribute
+///
+/// [GNU] attribute:
+/// '__attribute__' '(' '(' attribute-list ')' ')'
+///
+/// [GNU] attribute-list:
+/// attrib
+/// attribute_list ',' attrib
+///
+/// [GNU] attrib:
+/// empty
+/// attrib-name
+/// attrib-name '(' identifier ')'
+/// attrib-name '(' identifier ',' nonempty-expr-list ')'
+/// attrib-name '(' argument-expression-list [C99 6.5.2] ')'
+///
+/// [GNU] attrib-name:
+/// identifier
+/// typespec
+/// typequal
+/// storageclass
+///
+/// Whether an attribute takes an 'identifier' is determined by the
+/// attrib-name. GCC's behavior here is not worth imitating:
+///
+/// * In C mode, if the attribute argument list starts with an identifier
+/// followed by a ',' or an ')', and the identifier doesn't resolve to
+/// a type, it is parsed as an identifier. If the attribute actually
+/// wanted an expression, it's out of luck (but it turns out that no
+/// attributes work that way, because C constant expressions are very
+/// limited).
+/// * In C++ mode, if the attribute argument list starts with an identifier,
+/// and the attribute *wants* an identifier, it is parsed as an identifier.
+/// At block scope, any additional tokens between the identifier and the
+/// ',' or ')' are ignored, otherwise they produce a parse error.
+///
+/// We follow the C++ model, but don't allow junk after the identifier.
+void Parser::ParseGNUAttributes(ParsedAttributes &attrs,
+ SourceLocation *endLoc,
+ LateParsedAttrList *LateAttrs,
+ Declarator *D) {
+ assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
+
+ while (Tok.is(tok::kw___attribute)) {
+ ConsumeToken();
+ if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
+ "attribute")) {
+ SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
+ return;
+ }
+ if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
+ SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
+ return;
+ }
+ // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
+ while (true) {
+ // Allow empty/non-empty attributes. ((__vector_size__(16),,,,))
+ if (TryConsumeToken(tok::comma))
+ continue;
+
+ // Expect an identifier or declaration specifier (const, int, etc.)
+ if (Tok.isAnnotation())
+ break;
+ IdentifierInfo *AttrName = Tok.getIdentifierInfo();
+ if (!AttrName)
+ break;
+
+ SourceLocation AttrNameLoc = ConsumeToken();
+
+ if (Tok.isNot(tok::l_paren)) {
+ attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
+ AttributeList::AS_GNU);
+ continue;
+ }
+
+ // Handle "parameterized" attributes
+ if (!LateAttrs || !isAttributeLateParsed(*AttrName)) {
+ ParseGNUAttributeArgs(AttrName, AttrNameLoc, attrs, endLoc, nullptr,
+ SourceLocation(), AttributeList::AS_GNU, D);
+ continue;
+ }
+
+ // Handle attributes with arguments that require late parsing.
+ LateParsedAttribute *LA =
+ new LateParsedAttribute(this, *AttrName, AttrNameLoc);
+ LateAttrs->push_back(LA);
+
+ // Attributes in a class are parsed at the end of the class, along
+ // with other late-parsed declarations.
+ if (!ClassStack.empty() && !LateAttrs->parseSoon())
+ getCurrentClass().LateParsedDeclarations.push_back(LA);
+
+ // consume everything up to and including the matching right parens
+ ConsumeAndStoreUntil(tok::r_paren, LA->Toks, true, false);
+
+ Token Eof;
+ Eof.startToken();
+ Eof.setLocation(Tok.getLocation());
+ LA->Toks.push_back(Eof);
+ }
+
+ if (ExpectAndConsume(tok::r_paren))
+ SkipUntil(tok::r_paren, StopAtSemi);
+ SourceLocation Loc = Tok.getLocation();
+ if (ExpectAndConsume(tok::r_paren))
+ SkipUntil(tok::r_paren, StopAtSemi);
+ if (endLoc)
+ *endLoc = Loc;
+ }
+}
+
+/// \brief Normalizes an attribute name by dropping prefixed and suffixed __.
+static StringRef normalizeAttrName(StringRef Name) {
+ if (Name.size() >= 4 && Name.startswith("__") && Name.endswith("__"))
+ Name = Name.drop_front(2).drop_back(2);
+ return Name;
+}
+
+/// \brief Determine whether the given attribute has an identifier argument.
+static bool attributeHasIdentifierArg(const IdentifierInfo &II) {
+#define CLANG_ATTR_IDENTIFIER_ARG_LIST
+ return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
+#include "clang/Parse/AttrParserStringSwitches.inc"
+ .Default(false);
+#undef CLANG_ATTR_IDENTIFIER_ARG_LIST
+}
+
+/// \brief Determine whether the given attribute parses a type argument.
+static bool attributeIsTypeArgAttr(const IdentifierInfo &II) {
+#define CLANG_ATTR_TYPE_ARG_LIST
+ return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
+#include "clang/Parse/AttrParserStringSwitches.inc"
+ .Default(false);
+#undef CLANG_ATTR_TYPE_ARG_LIST
+}
+
+/// \brief Determine whether the given attribute requires parsing its arguments
+/// in an unevaluated context or not.
+static bool attributeParsedArgsUnevaluated(const IdentifierInfo &II) {
+#define CLANG_ATTR_ARG_CONTEXT_LIST
+ return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
+#include "clang/Parse/AttrParserStringSwitches.inc"
+ .Default(false);
+#undef CLANG_ATTR_ARG_CONTEXT_LIST
+}
+
+IdentifierLoc *Parser::ParseIdentifierLoc() {
+ assert(Tok.is(tok::identifier) && "expected an identifier");
+ IdentifierLoc *IL = IdentifierLoc::create(Actions.Context,
+ Tok.getLocation(),
+ Tok.getIdentifierInfo());
+ ConsumeToken();
+ return IL;
+}
+
+void Parser::ParseAttributeWithTypeArg(IdentifierInfo &AttrName,
+ SourceLocation AttrNameLoc,
+ ParsedAttributes &Attrs,
+ SourceLocation *EndLoc,
+ IdentifierInfo *ScopeName,
+ SourceLocation ScopeLoc,
+ AttributeList::Syntax Syntax) {
+ BalancedDelimiterTracker Parens(*this, tok::l_paren);
+ Parens.consumeOpen();
+
+ TypeResult T;
+ if (Tok.isNot(tok::r_paren))
+ T = ParseTypeName();
+
+ if (Parens.consumeClose())
+ return;
+
+ if (T.isInvalid())
+ return;
+
+ if (T.isUsable())
+ Attrs.addNewTypeAttr(&AttrName,
+ SourceRange(AttrNameLoc, Parens.getCloseLocation()),
+ ScopeName, ScopeLoc, T.get(), Syntax);
+ else
+ Attrs.addNew(&AttrName, SourceRange(AttrNameLoc, Parens.getCloseLocation()),
+ ScopeName, ScopeLoc, nullptr, 0, Syntax);
+}
+
+unsigned Parser::ParseAttributeArgsCommon(
+ IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
+ ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
+ SourceLocation ScopeLoc, AttributeList::Syntax Syntax) {
+ // Ignore the left paren location for now.
+ ConsumeParen();
+
+ ArgsVector ArgExprs;
+ if (Tok.is(tok::identifier)) {
+ // If this attribute wants an 'identifier' argument, make it so.
+ bool IsIdentifierArg = attributeHasIdentifierArg(*AttrName);
+ AttributeList::Kind AttrKind =
+ AttributeList::getKind(AttrName, ScopeName, Syntax);
+
+ // If we don't know how to parse this attribute, but this is the only
+ // token in this argument, assume it's meant to be an identifier.
+ if (AttrKind == AttributeList::UnknownAttribute ||
+ AttrKind == AttributeList::IgnoredAttribute) {
+ const Token &Next = NextToken();
+ IsIdentifierArg = Next.is(tok::r_paren) || Next.is(tok::comma);
+ }
+
+ if (IsIdentifierArg)
+ ArgExprs.push_back(ParseIdentifierLoc());
+ }
+
+ if (!ArgExprs.empty() ? Tok.is(tok::comma) : Tok.isNot(tok::r_paren)) {
+ // Eat the comma.
+ if (!ArgExprs.empty())
+ ConsumeToken();
+
+ // Parse the non-empty comma-separated list of expressions.
+ do {
+ std::unique_ptr<EnterExpressionEvaluationContext> Unevaluated;
+ if (attributeParsedArgsUnevaluated(*AttrName))
+ Unevaluated.reset(
+ new EnterExpressionEvaluationContext(Actions, Sema::Unevaluated));
+
+ ExprResult ArgExpr(
+ Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
+ if (ArgExpr.isInvalid()) {
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return 0;
+ }
+ ArgExprs.push_back(ArgExpr.get());
+ // Eat the comma, move to the next argument
+ } while (TryConsumeToken(tok::comma));
+ }
+
+ SourceLocation RParen = Tok.getLocation();
+ if (!ExpectAndConsume(tok::r_paren)) {
+ SourceLocation AttrLoc = ScopeLoc.isValid() ? ScopeLoc : AttrNameLoc;
+ Attrs.addNew(AttrName, SourceRange(AttrLoc, RParen), ScopeName, ScopeLoc,
+ ArgExprs.data(), ArgExprs.size(), Syntax);
+ }
+
+ if (EndLoc)
+ *EndLoc = RParen;
+
+ return static_cast<unsigned>(ArgExprs.size());
+}
+
+/// Parse the arguments to a parameterized GNU attribute or
+/// a C++11 attribute in "gnu" namespace.
+void Parser::ParseGNUAttributeArgs(IdentifierInfo *AttrName,
+ SourceLocation AttrNameLoc,
+ ParsedAttributes &Attrs,
+ SourceLocation *EndLoc,
+ IdentifierInfo *ScopeName,
+ SourceLocation ScopeLoc,
+ AttributeList::Syntax Syntax,
+ Declarator *D) {
+
+ assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
+
+ AttributeList::Kind AttrKind =
+ AttributeList::getKind(AttrName, ScopeName, Syntax);
+
+ if (AttrKind == AttributeList::AT_Availability) {
+ ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
+ ScopeLoc, Syntax);
+ return;
+ } else if (AttrKind == AttributeList::AT_ObjCBridgeRelated) {
+ ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
+ ScopeName, ScopeLoc, Syntax);
+ return;
+ } else if (AttrKind == AttributeList::AT_TypeTagForDatatype) {
+ ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
+ ScopeName, ScopeLoc, Syntax);
+ return;
+ } else if (attributeIsTypeArgAttr(*AttrName)) {
+ ParseAttributeWithTypeArg(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
+ ScopeLoc, Syntax);
+ return;
+ }
+
+ // These may refer to the function arguments, but need to be parsed early to
+ // participate in determining whether it's a redeclaration.
+ std::unique_ptr<ParseScope> PrototypeScope;
+ if (AttrName->isStr("enable_if") && D && D->isFunctionDeclarator()) {
+ DeclaratorChunk::FunctionTypeInfo FTI = D->getFunctionTypeInfo();
+ PrototypeScope.reset(new ParseScope(this, Scope::FunctionPrototypeScope |
+ Scope::FunctionDeclarationScope |
+ Scope::DeclScope));
+ for (unsigned i = 0; i != FTI.NumParams; ++i) {
+ ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
+ Actions.ActOnReenterCXXMethodParameter(getCurScope(), Param);
+ }
+ }
+
+ ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
+ ScopeLoc, Syntax);
+}
+
+bool Parser::ParseMicrosoftDeclSpecArgs(IdentifierInfo *AttrName,
+ SourceLocation AttrNameLoc,
+ ParsedAttributes &Attrs) {
+ // If the attribute isn't known, we will not attempt to parse any
+ // arguments.
+ if (!hasAttribute(AttrSyntax::Declspec, nullptr, AttrName,
+ getTargetInfo().getTriple(), getLangOpts())) {
+ // Eat the left paren, then skip to the ending right paren.
+ ConsumeParen();
+ SkipUntil(tok::r_paren);
+ return false;
+ }
+
+ SourceLocation OpenParenLoc = Tok.getLocation();
+
+ if (AttrName->getName() == "property") {
+ // The property declspec is more complex in that it can take one or two
+ // assignment expressions as a parameter, but the lhs of the assignment
+ // must be named get or put.
+
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ T.expectAndConsume(diag::err_expected_lparen_after,
+ AttrName->getNameStart(), tok::r_paren);
+
+ enum AccessorKind {
+ AK_Invalid = -1,
+ AK_Put = 0,
+ AK_Get = 1 // indices into AccessorNames
+ };
+ IdentifierInfo *AccessorNames[] = {nullptr, nullptr};
+ bool HasInvalidAccessor = false;
+
+ // Parse the accessor specifications.
+ while (true) {
+ // Stop if this doesn't look like an accessor spec.
+ if (!Tok.is(tok::identifier)) {
+ // If the user wrote a completely empty list, use a special diagnostic.
+ if (Tok.is(tok::r_paren) && !HasInvalidAccessor &&
+ AccessorNames[AK_Put] == nullptr &&
+ AccessorNames[AK_Get] == nullptr) {
+ Diag(AttrNameLoc, diag::err_ms_property_no_getter_or_putter);
+ break;
+ }
+
+ Diag(Tok.getLocation(), diag::err_ms_property_unknown_accessor);
+ break;
+ }
+
+ AccessorKind Kind;
+ SourceLocation KindLoc = Tok.getLocation();
+ StringRef KindStr = Tok.getIdentifierInfo()->getName();
+ if (KindStr == "get") {
+ Kind = AK_Get;
+ } else if (KindStr == "put") {
+ Kind = AK_Put;
+
+ // Recover from the common mistake of using 'set' instead of 'put'.
+ } else if (KindStr == "set") {
+ Diag(KindLoc, diag::err_ms_property_has_set_accessor)
+ << FixItHint::CreateReplacement(KindLoc, "put");
+ Kind = AK_Put;
+
+ // Handle the mistake of forgetting the accessor kind by skipping
+ // this accessor.
+ } else if (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)) {
+ Diag(KindLoc, diag::err_ms_property_missing_accessor_kind);
+ ConsumeToken();
+ HasInvalidAccessor = true;
+ goto next_property_accessor;
+
+ // Otherwise, complain about the unknown accessor kind.
+ } else {
+ Diag(KindLoc, diag::err_ms_property_unknown_accessor);
+ HasInvalidAccessor = true;
+ Kind = AK_Invalid;
+
+ // Try to keep parsing unless it doesn't look like an accessor spec.
+ if (!NextToken().is(tok::equal))
+ break;
+ }
+
+ // Consume the identifier.
+ ConsumeToken();
+
+ // Consume the '='.
+ if (!TryConsumeToken(tok::equal)) {
+ Diag(Tok.getLocation(), diag::err_ms_property_expected_equal)
+ << KindStr;
+ break;
+ }
+
+ // Expect the method name.
+ if (!Tok.is(tok::identifier)) {
+ Diag(Tok.getLocation(), diag::err_ms_property_expected_accessor_name);
+ break;
+ }
+
+ if (Kind == AK_Invalid) {
+ // Just drop invalid accessors.
+ } else if (AccessorNames[Kind] != nullptr) {
+ // Complain about the repeated accessor, ignore it, and keep parsing.
+ Diag(KindLoc, diag::err_ms_property_duplicate_accessor) << KindStr;
+ } else {
+ AccessorNames[Kind] = Tok.getIdentifierInfo();
+ }
+ ConsumeToken();
+
+ next_property_accessor:
+ // Keep processing accessors until we run out.
+ if (TryConsumeToken(tok::comma))
+ continue;
+
+ // If we run into the ')', stop without consuming it.
+ if (Tok.is(tok::r_paren))
+ break;
+
+ Diag(Tok.getLocation(), diag::err_ms_property_expected_comma_or_rparen);
+ break;
+ }
+
+ // Only add the property attribute if it was well-formed.
+ if (!HasInvalidAccessor)
+ Attrs.addNewPropertyAttr(AttrName, AttrNameLoc, nullptr, SourceLocation(),
+ AccessorNames[AK_Get], AccessorNames[AK_Put],
+ AttributeList::AS_Declspec);
+ T.skipToEnd();
+ return !HasInvalidAccessor;
+ }
+
+ unsigned NumArgs =
+ ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, nullptr, nullptr,
+ SourceLocation(), AttributeList::AS_Declspec);
+
+ // If this attribute's args were parsed, and it was expected to have
+ // arguments but none were provided, emit a diagnostic.
+ const AttributeList *Attr = Attrs.getList();
+ if (Attr && Attr->getMaxArgs() && !NumArgs) {
+ Diag(OpenParenLoc, diag::err_attribute_requires_arguments) << AttrName;
+ return false;
+ }
+ return true;
+}
+
+/// [MS] decl-specifier:
+/// __declspec ( extended-decl-modifier-seq )
+///
+/// [MS] extended-decl-modifier-seq:
+/// extended-decl-modifier[opt]
+/// extended-decl-modifier extended-decl-modifier-seq
+void Parser::ParseMicrosoftDeclSpecs(ParsedAttributes &Attrs,
+ SourceLocation *End) {
+ assert((getLangOpts().MicrosoftExt || getLangOpts().Borland ||
+ getLangOpts().CUDA) &&
+ "Incorrect language options for parsing __declspec");
+ assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
+
+ while (Tok.is(tok::kw___declspec)) {
+ ConsumeToken();
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ if (T.expectAndConsume(diag::err_expected_lparen_after, "__declspec",
+ tok::r_paren))
+ return;
+
+ // An empty declspec is perfectly legal and should not warn. Additionally,
+ // you can specify multiple attributes per declspec.
+ while (Tok.isNot(tok::r_paren)) {
+ // Attribute not present.
+ if (TryConsumeToken(tok::comma))
+ continue;
+
+ // We expect either a well-known identifier or a generic string. Anything
+ // else is a malformed declspec.
+ bool IsString = Tok.getKind() == tok::string_literal;
+ if (!IsString && Tok.getKind() != tok::identifier &&
+ Tok.getKind() != tok::kw_restrict) {
+ Diag(Tok, diag::err_ms_declspec_type);
+ T.skipToEnd();
+ return;
+ }
+
+ IdentifierInfo *AttrName;
+ SourceLocation AttrNameLoc;
+ if (IsString) {
+ SmallString<8> StrBuffer;
+ bool Invalid = false;
+ StringRef Str = PP.getSpelling(Tok, StrBuffer, &Invalid);
+ if (Invalid) {
+ T.skipToEnd();
+ return;
+ }
+ AttrName = PP.getIdentifierInfo(Str);
+ AttrNameLoc = ConsumeStringToken();
+ } else {
+ AttrName = Tok.getIdentifierInfo();
+ AttrNameLoc = ConsumeToken();
+ }
+
+ bool AttrHandled = false;
+
+ // Parse attribute arguments.
+ if (Tok.is(tok::l_paren))
+ AttrHandled = ParseMicrosoftDeclSpecArgs(AttrName, AttrNameLoc, Attrs);
+ else if (AttrName->getName() == "property")
+ // The property attribute must have an argument list.
+ Diag(Tok.getLocation(), diag::err_expected_lparen_after)
+ << AttrName->getName();
+
+ if (!AttrHandled)
+ Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
+ AttributeList::AS_Declspec);
+ }
+ T.consumeClose();
+ if (End)
+ *End = T.getCloseLocation();
+ }
+}
+
+void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
+ // Treat these like attributes
+ while (true) {
+ switch (Tok.getKind()) {
+ case tok::kw___fastcall:
+ case tok::kw___stdcall:
+ case tok::kw___thiscall:
+ case tok::kw___cdecl:
+ case tok::kw___vectorcall:
+ case tok::kw___ptr64:
+ case tok::kw___w64:
+ case tok::kw___ptr32:
+ case tok::kw___unaligned:
+ case tok::kw___sptr:
+ case tok::kw___uptr: {
+ IdentifierInfo *AttrName = Tok.getIdentifierInfo();
+ SourceLocation AttrNameLoc = ConsumeToken();
+ attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
+ AttributeList::AS_Keyword);
+ break;
+ }
+ default:
+ return;
+ }
+ }
+}
+
+void Parser::DiagnoseAndSkipExtendedMicrosoftTypeAttributes() {
+ SourceLocation StartLoc = Tok.getLocation();
+ SourceLocation EndLoc = SkipExtendedMicrosoftTypeAttributes();
+
+ if (EndLoc.isValid()) {
+ SourceRange Range(StartLoc, EndLoc);
+ Diag(StartLoc, diag::warn_microsoft_qualifiers_ignored) << Range;
+ }
+}
+
+SourceLocation Parser::SkipExtendedMicrosoftTypeAttributes() {
+ SourceLocation EndLoc;
+
+ while (true) {
+ switch (Tok.getKind()) {
+ case tok::kw_const:
+ case tok::kw_volatile:
+ case tok::kw___fastcall:
+ case tok::kw___stdcall:
+ case tok::kw___thiscall:
+ case tok::kw___cdecl:
+ case tok::kw___vectorcall:
+ case tok::kw___ptr32:
+ case tok::kw___ptr64:
+ case tok::kw___w64:
+ case tok::kw___unaligned:
+ case tok::kw___sptr:
+ case tok::kw___uptr:
+ EndLoc = ConsumeToken();
+ break;
+ default:
+ return EndLoc;
+ }
+ }
+}
+
+void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
+ // Treat these like attributes
+ while (Tok.is(tok::kw___pascal)) {
+ IdentifierInfo *AttrName = Tok.getIdentifierInfo();
+ SourceLocation AttrNameLoc = ConsumeToken();
+ attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
+ AttributeList::AS_Keyword);
+ }
+}
+
+void Parser::ParseOpenCLAttributes(ParsedAttributes &attrs) {
+ // Treat these like attributes
+ while (Tok.is(tok::kw___kernel)) {
+ IdentifierInfo *AttrName = Tok.getIdentifierInfo();
+ SourceLocation AttrNameLoc = ConsumeToken();
+ attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
+ AttributeList::AS_Keyword);
+ }
+}
+
+void Parser::ParseOpenCLQualifiers(ParsedAttributes &Attrs) {
+ IdentifierInfo *AttrName = Tok.getIdentifierInfo();
+ SourceLocation AttrNameLoc = Tok.getLocation();
+ Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
+ AttributeList::AS_Keyword);
+}
+
+static bool VersionNumberSeparator(const char Separator) {
+ return (Separator == '.' || Separator == '_');
+}
+
+/// \brief Parse a version number.
+///
+/// version:
+/// simple-integer
+/// simple-integer ',' simple-integer
+/// simple-integer ',' simple-integer ',' simple-integer
+VersionTuple Parser::ParseVersionTuple(SourceRange &Range) {
+ Range = Tok.getLocation();
+
+ if (!Tok.is(tok::numeric_constant)) {
+ Diag(Tok, diag::err_expected_version);
+ SkipUntil(tok::comma, tok::r_paren,
+ StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
+ return VersionTuple();
+ }
+
+ // Parse the major (and possibly minor and subminor) versions, which
+ // are stored in the numeric constant. We utilize a quirk of the
+ // lexer, which is that it handles something like 1.2.3 as a single
+ // numeric constant, rather than two separate tokens.
+ SmallString<512> Buffer;
+ Buffer.resize(Tok.getLength()+1);
+ const char *ThisTokBegin = &Buffer[0];
+
+ // Get the spelling of the token, which eliminates trigraphs, etc.
+ bool Invalid = false;
+ unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
+ if (Invalid)
+ return VersionTuple();
+
+ // Parse the major version.
+ unsigned AfterMajor = 0;
+ unsigned Major = 0;
+ while (AfterMajor < ActualLength && isDigit(ThisTokBegin[AfterMajor])) {
+ Major = Major * 10 + ThisTokBegin[AfterMajor] - '0';
+ ++AfterMajor;
+ }
+
+ if (AfterMajor == 0) {
+ Diag(Tok, diag::err_expected_version);
+ SkipUntil(tok::comma, tok::r_paren,
+ StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
+ return VersionTuple();
+ }
+
+ if (AfterMajor == ActualLength) {
+ ConsumeToken();
+
+ // We only had a single version component.
+ if (Major == 0) {
+ Diag(Tok, diag::err_zero_version);
+ return VersionTuple();
+ }
+
+ return VersionTuple(Major);
+ }
+
+ const char AfterMajorSeparator = ThisTokBegin[AfterMajor];
+ if (!VersionNumberSeparator(AfterMajorSeparator)
+ || (AfterMajor + 1 == ActualLength)) {
+ Diag(Tok, diag::err_expected_version);
+ SkipUntil(tok::comma, tok::r_paren,
+ StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
+ return VersionTuple();
+ }
+
+ // Parse the minor version.
+ unsigned AfterMinor = AfterMajor + 1;
+ unsigned Minor = 0;
+ while (AfterMinor < ActualLength && isDigit(ThisTokBegin[AfterMinor])) {
+ Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0';
+ ++AfterMinor;
+ }
+
+ if (AfterMinor == ActualLength) {
+ ConsumeToken();
+
+ // We had major.minor.
+ if (Major == 0 && Minor == 0) {
+ Diag(Tok, diag::err_zero_version);
+ return VersionTuple();
+ }
+
+ return VersionTuple(Major, Minor, (AfterMajorSeparator == '_'));
+ }
+
+ const char AfterMinorSeparator = ThisTokBegin[AfterMinor];
+ // If what follows is not a '.' or '_', we have a problem.
+ if (!VersionNumberSeparator(AfterMinorSeparator)) {
+ Diag(Tok, diag::err_expected_version);
+ SkipUntil(tok::comma, tok::r_paren,
+ StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
+ return VersionTuple();
+ }
+
+ // Warn if separators, be it '.' or '_', do not match.
+ if (AfterMajorSeparator != AfterMinorSeparator)
+ Diag(Tok, diag::warn_expected_consistent_version_separator);
+
+ // Parse the subminor version.
+ unsigned AfterSubminor = AfterMinor + 1;
+ unsigned Subminor = 0;
+ while (AfterSubminor < ActualLength && isDigit(ThisTokBegin[AfterSubminor])) {
+ Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0';
+ ++AfterSubminor;
+ }
+
+ if (AfterSubminor != ActualLength) {
+ Diag(Tok, diag::err_expected_version);
+ SkipUntil(tok::comma, tok::r_paren,
+ StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
+ return VersionTuple();
+ }
+ ConsumeToken();
+ return VersionTuple(Major, Minor, Subminor, (AfterMajorSeparator == '_'));
+}
+
+/// \brief Parse the contents of the "availability" attribute.
+///
+/// availability-attribute:
+/// 'availability' '(' platform ',' version-arg-list, opt-message')'
+///
+/// platform:
+/// identifier
+///
+/// version-arg-list:
+/// version-arg
+/// version-arg ',' version-arg-list
+///
+/// version-arg:
+/// 'introduced' '=' version
+/// 'deprecated' '=' version
+/// 'obsoleted' = version
+/// 'unavailable'
+/// opt-message:
+/// 'message' '=' <string>
+void Parser::ParseAvailabilityAttribute(IdentifierInfo &Availability,
+ SourceLocation AvailabilityLoc,
+ ParsedAttributes &attrs,
+ SourceLocation *endLoc,
+ IdentifierInfo *ScopeName,
+ SourceLocation ScopeLoc,
+ AttributeList::Syntax Syntax) {
+ enum { Introduced, Deprecated, Obsoleted, Unknown };
+ AvailabilityChange Changes[Unknown];
+ ExprResult MessageExpr;
+
+ // Opening '('.
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ if (T.consumeOpen()) {
+ Diag(Tok, diag::err_expected) << tok::l_paren;
+ return;
+ }
+
+ // Parse the platform name,
+ if (Tok.isNot(tok::identifier)) {
+ Diag(Tok, diag::err_availability_expected_platform);
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return;
+ }
+ IdentifierLoc *Platform = ParseIdentifierLoc();
+
+ // Parse the ',' following the platform name.
+ if (ExpectAndConsume(tok::comma)) {
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return;
+ }
+
+ // If we haven't grabbed the pointers for the identifiers
+ // "introduced", "deprecated", and "obsoleted", do so now.
+ if (!Ident_introduced) {
+ Ident_introduced = PP.getIdentifierInfo("introduced");
+ Ident_deprecated = PP.getIdentifierInfo("deprecated");
+ Ident_obsoleted = PP.getIdentifierInfo("obsoleted");
+ Ident_unavailable = PP.getIdentifierInfo("unavailable");
+ Ident_message = PP.getIdentifierInfo("message");
+ }
+
+ // Parse the set of introductions/deprecations/removals.
+ SourceLocation UnavailableLoc;
+ do {
+ if (Tok.isNot(tok::identifier)) {
+ Diag(Tok, diag::err_availability_expected_change);
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return;
+ }
+ IdentifierInfo *Keyword = Tok.getIdentifierInfo();
+ SourceLocation KeywordLoc = ConsumeToken();
+
+ if (Keyword == Ident_unavailable) {
+ if (UnavailableLoc.isValid()) {
+ Diag(KeywordLoc, diag::err_availability_redundant)
+ << Keyword << SourceRange(UnavailableLoc);
+ }
+ UnavailableLoc = KeywordLoc;
+ continue;
+ }
+
+ if (Tok.isNot(tok::equal)) {
+ Diag(Tok, diag::err_expected_after) << Keyword << tok::equal;
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return;
+ }
+ ConsumeToken();
+ if (Keyword == Ident_message) {
+ if (Tok.isNot(tok::string_literal)) {
+ Diag(Tok, diag::err_expected_string_literal)
+ << /*Source='availability attribute'*/2;
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return;
+ }
+ MessageExpr = ParseStringLiteralExpression();
+ // Also reject wide string literals.
+ if (StringLiteral *MessageStringLiteral =
+ cast_or_null<StringLiteral>(MessageExpr.get())) {
+ if (MessageStringLiteral->getCharByteWidth() != 1) {
+ Diag(MessageStringLiteral->getSourceRange().getBegin(),
+ diag::err_expected_string_literal)
+ << /*Source='availability attribute'*/ 2;
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return;
+ }
+ }
+ break;
+ }
+
+ // Special handling of 'NA' only when applied to introduced or
+ // deprecated.
+ if ((Keyword == Ident_introduced || Keyword == Ident_deprecated) &&
+ Tok.is(tok::identifier)) {
+ IdentifierInfo *NA = Tok.getIdentifierInfo();
+ if (NA->getName() == "NA") {
+ ConsumeToken();
+ if (Keyword == Ident_introduced)
+ UnavailableLoc = KeywordLoc;
+ continue;
+ }
+ }
+
+ SourceRange VersionRange;
+ VersionTuple Version = ParseVersionTuple(VersionRange);
+
+ if (Version.empty()) {
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return;
+ }
+
+ unsigned Index;
+ if (Keyword == Ident_introduced)
+ Index = Introduced;
+ else if (Keyword == Ident_deprecated)
+ Index = Deprecated;
+ else if (Keyword == Ident_obsoleted)
+ Index = Obsoleted;
+ else
+ Index = Unknown;
+
+ if (Index < Unknown) {
+ if (!Changes[Index].KeywordLoc.isInvalid()) {
+ Diag(KeywordLoc, diag::err_availability_redundant)
+ << Keyword
+ << SourceRange(Changes[Index].KeywordLoc,
+ Changes[Index].VersionRange.getEnd());
+ }
+
+ Changes[Index].KeywordLoc = KeywordLoc;
+ Changes[Index].Version = Version;
+ Changes[Index].VersionRange = VersionRange;
+ } else {
+ Diag(KeywordLoc, diag::err_availability_unknown_change)
+ << Keyword << VersionRange;
+ }
+
+ } while (TryConsumeToken(tok::comma));
+
+ // Closing ')'.
+ if (T.consumeClose())
+ return;
+
+ if (endLoc)
+ *endLoc = T.getCloseLocation();
+
+ // The 'unavailable' availability cannot be combined with any other
+ // availability changes. Make sure that hasn't happened.
+ if (UnavailableLoc.isValid()) {
+ bool Complained = false;
+ for (unsigned Index = Introduced; Index != Unknown; ++Index) {
+ if (Changes[Index].KeywordLoc.isValid()) {
+ if (!Complained) {
+ Diag(UnavailableLoc, diag::warn_availability_and_unavailable)
+ << SourceRange(Changes[Index].KeywordLoc,
+ Changes[Index].VersionRange.getEnd());
+ Complained = true;
+ }
+
+ // Clear out the availability.
+ Changes[Index] = AvailabilityChange();
+ }
+ }
+ }
+
+ // Record this attribute
+ attrs.addNew(&Availability,
+ SourceRange(AvailabilityLoc, T.getCloseLocation()),
+ ScopeName, ScopeLoc,
+ Platform,
+ Changes[Introduced],
+ Changes[Deprecated],
+ Changes[Obsoleted],
+ UnavailableLoc, MessageExpr.get(),
+ Syntax);
+}
+
+/// \brief Parse the contents of the "objc_bridge_related" attribute.
+/// objc_bridge_related '(' related_class ',' opt-class_method ',' opt-instance_method ')'
+/// related_class:
+/// Identifier
+///
+/// opt-class_method:
+/// Identifier: | <empty>
+///
+/// opt-instance_method:
+/// Identifier | <empty>
+///
+void Parser::ParseObjCBridgeRelatedAttribute(IdentifierInfo &ObjCBridgeRelated,
+ SourceLocation ObjCBridgeRelatedLoc,
+ ParsedAttributes &attrs,
+ SourceLocation *endLoc,
+ IdentifierInfo *ScopeName,
+ SourceLocation ScopeLoc,
+ AttributeList::Syntax Syntax) {
+ // Opening '('.
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ if (T.consumeOpen()) {
+ Diag(Tok, diag::err_expected) << tok::l_paren;
+ return;
+ }
+
+ // Parse the related class name.
+ if (Tok.isNot(tok::identifier)) {
+ Diag(Tok, diag::err_objcbridge_related_expected_related_class);
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return;
+ }
+ IdentifierLoc *RelatedClass = ParseIdentifierLoc();
+ if (ExpectAndConsume(tok::comma)) {
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return;
+ }
+
+ // Parse optional class method name.
+ IdentifierLoc *ClassMethod = nullptr;
+ if (Tok.is(tok::identifier)) {
+ ClassMethod = ParseIdentifierLoc();
+ if (!TryConsumeToken(tok::colon)) {
+ Diag(Tok, diag::err_objcbridge_related_selector_name);
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return;
+ }
+ }
+ if (!TryConsumeToken(tok::comma)) {
+ if (Tok.is(tok::colon))
+ Diag(Tok, diag::err_objcbridge_related_selector_name);
+ else
+ Diag(Tok, diag::err_expected) << tok::comma;
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return;
+ }
+
+ // Parse optional instance method name.
+ IdentifierLoc *InstanceMethod = nullptr;
+ if (Tok.is(tok::identifier))
+ InstanceMethod = ParseIdentifierLoc();
+ else if (Tok.isNot(tok::r_paren)) {
+ Diag(Tok, diag::err_expected) << tok::r_paren;
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return;
+ }
+
+ // Closing ')'.
+ if (T.consumeClose())
+ return;
+
+ if (endLoc)
+ *endLoc = T.getCloseLocation();
+
+ // Record this attribute
+ attrs.addNew(&ObjCBridgeRelated,
+ SourceRange(ObjCBridgeRelatedLoc, T.getCloseLocation()),
+ ScopeName, ScopeLoc,
+ RelatedClass,
+ ClassMethod,
+ InstanceMethod,
+ Syntax);
+}
+
+// Late Parsed Attributes:
+// See other examples of late parsing in lib/Parse/ParseCXXInlineMethods
+
+void Parser::LateParsedDeclaration::ParseLexedAttributes() {}
+
+void Parser::LateParsedClass::ParseLexedAttributes() {
+ Self->ParseLexedAttributes(*Class);
+}
+
+void Parser::LateParsedAttribute::ParseLexedAttributes() {
+ Self->ParseLexedAttribute(*this, true, false);
+}
+
+/// Wrapper class which calls ParseLexedAttribute, after setting up the
+/// scope appropriately.
+void Parser::ParseLexedAttributes(ParsingClass &Class) {
+ // Deal with templates
+ // FIXME: Test cases to make sure this does the right thing for templates.
+ bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope;
+ ParseScope ClassTemplateScope(this, Scope::TemplateParamScope,
+ HasTemplateScope);
+ if (HasTemplateScope)
+ Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate);
+
+ // Set or update the scope flags.
+ bool AlreadyHasClassScope = Class.TopLevelClass;
+ unsigned ScopeFlags = Scope::ClassScope|Scope::DeclScope;
+ ParseScope ClassScope(this, ScopeFlags, !AlreadyHasClassScope);
+ ParseScopeFlags ClassScopeFlags(this, ScopeFlags, AlreadyHasClassScope);
+
+ // Enter the scope of nested classes
+ if (!AlreadyHasClassScope)
+ Actions.ActOnStartDelayedMemberDeclarations(getCurScope(),
+ Class.TagOrTemplate);
+ if (!Class.LateParsedDeclarations.empty()) {
+ for (unsigned i = 0, ni = Class.LateParsedDeclarations.size(); i < ni; ++i){
+ Class.LateParsedDeclarations[i]->ParseLexedAttributes();
+ }
+ }
+
+ if (!AlreadyHasClassScope)
+ Actions.ActOnFinishDelayedMemberDeclarations(getCurScope(),
+ Class.TagOrTemplate);
+}
+
+
+/// \brief Parse all attributes in LAs, and attach them to Decl D.
+void Parser::ParseLexedAttributeList(LateParsedAttrList &LAs, Decl *D,
+ bool EnterScope, bool OnDefinition) {
+ assert(LAs.parseSoon() &&
+ "Attribute list should be marked for immediate parsing.");
+ for (unsigned i = 0, ni = LAs.size(); i < ni; ++i) {
+ if (D)
+ LAs[i]->addDecl(D);
+ ParseLexedAttribute(*LAs[i], EnterScope, OnDefinition);
+ delete LAs[i];
+ }
+ LAs.clear();
+}
+
+
+/// \brief Finish parsing an attribute for which parsing was delayed.
+/// This will be called at the end of parsing a class declaration
+/// for each LateParsedAttribute. We consume the saved tokens and
+/// create an attribute with the arguments filled in. We add this
+/// to the Attribute list for the decl.
+void Parser::ParseLexedAttribute(LateParsedAttribute &LA,
+ bool EnterScope, bool OnDefinition) {
+ // Create a fake EOF so that attribute parsing won't go off the end of the
+ // attribute.
+ Token AttrEnd;
+ AttrEnd.startToken();
+ AttrEnd.setKind(tok::eof);
+ AttrEnd.setLocation(Tok.getLocation());
+ AttrEnd.setEofData(LA.Toks.data());
+ LA.Toks.push_back(AttrEnd);
+
+ // Append the current token at the end of the new token stream so that it
+ // doesn't get lost.
+ LA.Toks.push_back(Tok);
+ PP.EnterTokenStream(LA.Toks.data(), LA.Toks.size(), true, false);
+ // Consume the previously pushed token.
+ ConsumeAnyToken(/*ConsumeCodeCompletionTok=*/true);
+
+ ParsedAttributes Attrs(AttrFactory);
+ SourceLocation endLoc;
+
+ if (LA.Decls.size() > 0) {
+ Decl *D = LA.Decls[0];
+ NamedDecl *ND = dyn_cast<NamedDecl>(D);
+ RecordDecl *RD = dyn_cast_or_null<RecordDecl>(D->getDeclContext());
+
+ // Allow 'this' within late-parsed attributes.
+ Sema::CXXThisScopeRAII ThisScope(Actions, RD, /*TypeQuals=*/0,
+ ND && ND->isCXXInstanceMember());
+
+ if (LA.Decls.size() == 1) {
+ // If the Decl is templatized, add template parameters to scope.
+ bool HasTemplateScope = EnterScope && D->isTemplateDecl();
+ ParseScope TempScope(this, Scope::TemplateParamScope, HasTemplateScope);
+ if (HasTemplateScope)
+ Actions.ActOnReenterTemplateScope(Actions.CurScope, D);
+
+ // If the Decl is on a function, add function parameters to the scope.
+ bool HasFunScope = EnterScope && D->isFunctionOrFunctionTemplate();
+ ParseScope FnScope(this, Scope::FnScope|Scope::DeclScope, HasFunScope);
+ if (HasFunScope)
+ Actions.ActOnReenterFunctionContext(Actions.CurScope, D);
+
+ ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc,
+ nullptr, SourceLocation(), AttributeList::AS_GNU,
+ nullptr);
+
+ if (HasFunScope) {
+ Actions.ActOnExitFunctionContext();
+ FnScope.Exit(); // Pop scope, and remove Decls from IdResolver
+ }
+ if (HasTemplateScope) {
+ TempScope.Exit();
+ }
+ } else {
+ // If there are multiple decls, then the decl cannot be within the
+ // function scope.
+ ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc,
+ nullptr, SourceLocation(), AttributeList::AS_GNU,
+ nullptr);
+ }
+ } else {
+ Diag(Tok, diag::warn_attribute_no_decl) << LA.AttrName.getName();
+ }
+
+ const AttributeList *AL = Attrs.getList();
+ if (OnDefinition && AL && !AL->isCXX11Attribute() &&
+ AL->isKnownToGCC())
+ Diag(Tok, diag::warn_attribute_on_function_definition)
+ << &LA.AttrName;
+
+ for (unsigned i = 0, ni = LA.Decls.size(); i < ni; ++i)
+ Actions.ActOnFinishDelayedAttribute(getCurScope(), LA.Decls[i], Attrs);
+
+ // Due to a parsing error, we either went over the cached tokens or
+ // there are still cached tokens left, so we skip the leftover tokens.
+ while (Tok.isNot(tok::eof))
+ ConsumeAnyToken();
+
+ if (Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData())
+ ConsumeAnyToken();
+}
+
+void Parser::ParseTypeTagForDatatypeAttribute(IdentifierInfo &AttrName,
+ SourceLocation AttrNameLoc,
+ ParsedAttributes &Attrs,
+ SourceLocation *EndLoc,
+ IdentifierInfo *ScopeName,
+ SourceLocation ScopeLoc,
+ AttributeList::Syntax Syntax) {
+ assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
+
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ T.consumeOpen();
+
+ if (Tok.isNot(tok::identifier)) {
+ Diag(Tok, diag::err_expected) << tok::identifier;
+ T.skipToEnd();
+ return;
+ }
+ IdentifierLoc *ArgumentKind = ParseIdentifierLoc();
+
+ if (ExpectAndConsume(tok::comma)) {
+ T.skipToEnd();
+ return;
+ }
+
+ SourceRange MatchingCTypeRange;
+ TypeResult MatchingCType = ParseTypeName(&MatchingCTypeRange);
+ if (MatchingCType.isInvalid()) {
+ T.skipToEnd();
+ return;
+ }
+
+ bool LayoutCompatible = false;
+ bool MustBeNull = false;
+ while (TryConsumeToken(tok::comma)) {
+ if (Tok.isNot(tok::identifier)) {
+ Diag(Tok, diag::err_expected) << tok::identifier;
+ T.skipToEnd();
+ return;
+ }
+ IdentifierInfo *Flag = Tok.getIdentifierInfo();
+ if (Flag->isStr("layout_compatible"))
+ LayoutCompatible = true;
+ else if (Flag->isStr("must_be_null"))
+ MustBeNull = true;
+ else {
+ Diag(Tok, diag::err_type_safety_unknown_flag) << Flag;
+ T.skipToEnd();
+ return;
+ }
+ ConsumeToken(); // consume flag
+ }
+
+ if (!T.consumeClose()) {
+ Attrs.addNewTypeTagForDatatype(&AttrName, AttrNameLoc, ScopeName, ScopeLoc,
+ ArgumentKind, MatchingCType.get(),
+ LayoutCompatible, MustBeNull, Syntax);
+ }
+
+ if (EndLoc)
+ *EndLoc = T.getCloseLocation();
+}
+
+/// DiagnoseProhibitedCXX11Attribute - We have found the opening square brackets
+/// of a C++11 attribute-specifier in a location where an attribute is not
+/// permitted. By C++11 [dcl.attr.grammar]p6, this is ill-formed. Diagnose this
+/// situation.
+///
+/// \return \c true if we skipped an attribute-like chunk of tokens, \c false if
+/// this doesn't appear to actually be an attribute-specifier, and the caller
+/// should try to parse it.
+bool Parser::DiagnoseProhibitedCXX11Attribute() {
+ assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square));
+
+ switch (isCXX11AttributeSpecifier(/*Disambiguate*/true)) {
+ case CAK_NotAttributeSpecifier:
+ // No diagnostic: we're in Obj-C++11 and this is not actually an attribute.
+ return false;
+
+ case CAK_InvalidAttributeSpecifier:
+ Diag(Tok.getLocation(), diag::err_l_square_l_square_not_attribute);
+ return false;
+
+ case CAK_AttributeSpecifier:
+ // Parse and discard the attributes.
+ SourceLocation BeginLoc = ConsumeBracket();
+ ConsumeBracket();
+ SkipUntil(tok::r_square);
+ assert(Tok.is(tok::r_square) && "isCXX11AttributeSpecifier lied");
+ SourceLocation EndLoc = ConsumeBracket();
+ Diag(BeginLoc, diag::err_attributes_not_allowed)
+ << SourceRange(BeginLoc, EndLoc);
+ return true;
+ }
+ llvm_unreachable("All cases handled above.");
+}
+
+/// \brief We have found the opening square brackets of a C++11
+/// attribute-specifier in a location where an attribute is not permitted, but
+/// we know where the attributes ought to be written. Parse them anyway, and
+/// provide a fixit moving them to the right place.
+void Parser::DiagnoseMisplacedCXX11Attribute(ParsedAttributesWithRange &Attrs,
+ SourceLocation CorrectLocation) {
+ assert((Tok.is(tok::l_square) && NextToken().is(tok::l_square)) ||
+ Tok.is(tok::kw_alignas));
+
+ // Consume the attributes.
+ SourceLocation Loc = Tok.getLocation();
+ ParseCXX11Attributes(Attrs);
+ CharSourceRange AttrRange(SourceRange(Loc, Attrs.Range.getEnd()), true);
+
+ Diag(Loc, diag::err_attributes_not_allowed)
+ << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange)
+ << FixItHint::CreateRemoval(AttrRange);
+}
+
+void Parser::DiagnoseProhibitedAttributes(ParsedAttributesWithRange &attrs) {
+ Diag(attrs.Range.getBegin(), diag::err_attributes_not_allowed)
+ << attrs.Range;
+}
+
+void Parser::ProhibitCXX11Attributes(ParsedAttributesWithRange &attrs) {
+ AttributeList *AttrList = attrs.getList();
+ while (AttrList) {
+ if (AttrList->isCXX11Attribute()) {
+ Diag(AttrList->getLoc(), diag::err_attribute_not_type_attr)
+ << AttrList->getName();
+ AttrList->setInvalid();
+ }
+ AttrList = AttrList->getNext();
+ }
+}
+
+// As an exception to the rule, __declspec(align(...)) before the
+// class-key affects the type instead of the variable.
+void Parser::handleDeclspecAlignBeforeClassKey(ParsedAttributesWithRange &Attrs,
+ DeclSpec &DS,
+ Sema::TagUseKind TUK) {
+ if (TUK == Sema::TUK_Reference)
+ return;
+
+ ParsedAttributes &PA = DS.getAttributes();
+ AttributeList *AL = PA.getList();
+ AttributeList *Prev = nullptr;
+ while (AL) {
+ AttributeList *Next = AL->getNext();
+
+ // We only consider attributes using the appropriate '__declspec' spelling,
+ // this behavior doesn't extend to any other spellings.
+ if (AL->getKind() == AttributeList::AT_Aligned &&
+ AL->isDeclspecAttribute()) {
+ // Stitch the attribute into the tag's attribute list.
+ AL->setNext(nullptr);
+ Attrs.add(AL);
+
+ // Remove the attribute from the variable's attribute list.
+ if (Prev) {
+ // Set the last variable attribute's next attribute to be the attribute
+ // after the current one.
+ Prev->setNext(Next);
+ } else {
+ // Removing the head of the list requires us to reset the head to the
+ // next attribute.
+ PA.set(Next);
+ }
+ } else {
+ Prev = AL;
+ }
+
+ AL = Next;
+ }
+}
+
+/// ParseDeclaration - Parse a full 'declaration', which consists of
+/// declaration-specifiers, some number of declarators, and a semicolon.
+/// 'Context' should be a Declarator::TheContext value. This returns the
+/// location of the semicolon in DeclEnd.
+///
+/// declaration: [C99 6.7]
+/// block-declaration ->
+/// simple-declaration
+/// others [FIXME]
+/// [C++] template-declaration
+/// [C++] namespace-definition
+/// [C++] using-directive
+/// [C++] using-declaration
+/// [C++11/C11] static_assert-declaration
+/// others... [FIXME]
+///
+Parser::DeclGroupPtrTy Parser::ParseDeclaration(unsigned Context,
+ SourceLocation &DeclEnd,
+ ParsedAttributesWithRange &attrs) {
+ ParenBraceBracketBalancer BalancerRAIIObj(*this);
+ // Must temporarily exit the objective-c container scope for
+ // parsing c none objective-c decls.
+ ObjCDeclContextSwitch ObjCDC(*this);
+
+ Decl *SingleDecl = nullptr;
+ Decl *OwnedType = nullptr;
+ switch (Tok.getKind()) {
+ case tok::kw_template:
+ case tok::kw_export:
+ ProhibitAttributes(attrs);
+ SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd);
+ break;
+ case tok::kw_inline:
+ // Could be the start of an inline namespace. Allowed as an ext in C++03.
+ if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_namespace)) {
+ ProhibitAttributes(attrs);
+ SourceLocation InlineLoc = ConsumeToken();
+ SingleDecl = ParseNamespace(Context, DeclEnd, InlineLoc);
+ break;
+ }
+ return ParseSimpleDeclaration(Context, DeclEnd, attrs,
+ true);
+ case tok::kw_namespace:
+ ProhibitAttributes(attrs);
+ SingleDecl = ParseNamespace(Context, DeclEnd);
+ break;
+ case tok::kw_using:
+ SingleDecl = ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
+ DeclEnd, attrs, &OwnedType);
+ break;
+ case tok::kw_static_assert:
+ case tok::kw__Static_assert:
+ ProhibitAttributes(attrs);
+ SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
+ break;
+ default:
+ return ParseSimpleDeclaration(Context, DeclEnd, attrs, true);
+ }
+
+ // This routine returns a DeclGroup, if the thing we parsed only contains a
+ // single decl, convert it now. Alias declarations can also declare a type;
+ // include that too if it is present.
+ return Actions.ConvertDeclToDeclGroup(SingleDecl, OwnedType);
+}
+
+/// simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
+/// declaration-specifiers init-declarator-list[opt] ';'
+/// [C++11] attribute-specifier-seq decl-specifier-seq[opt]
+/// init-declarator-list ';'
+///[C90/C++]init-declarator-list ';' [TODO]
+/// [OMP] threadprivate-directive [TODO]
+///
+/// for-range-declaration: [C++11 6.5p1: stmt.ranged]
+/// attribute-specifier-seq[opt] type-specifier-seq declarator
+///
+/// If RequireSemi is false, this does not check for a ';' at the end of the
+/// declaration. If it is true, it checks for and eats it.
+///
+/// If FRI is non-null, we might be parsing a for-range-declaration instead
+/// of a simple-declaration. If we find that we are, we also parse the
+/// for-range-initializer, and place it here.
+Parser::DeclGroupPtrTy
+Parser::ParseSimpleDeclaration(unsigned Context,
+ SourceLocation &DeclEnd,
+ ParsedAttributesWithRange &Attrs,
+ bool RequireSemi, ForRangeInit *FRI) {
+ // Parse the common declaration-specifiers piece.
+ ParsingDeclSpec DS(*this);
+
+ DeclSpecContext DSContext = getDeclSpecContextFromDeclaratorContext(Context);
+ ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none, DSContext);
+
+ // If we had a free-standing type definition with a missing semicolon, we
+ // may get this far before the problem becomes obvious.
+ if (DS.hasTagDefinition() &&
+ DiagnoseMissingSemiAfterTagDefinition(DS, AS_none, DSContext))
+ return DeclGroupPtrTy();
+
+ // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
+ // declaration-specifiers init-declarator-list[opt] ';'
+ if (Tok.is(tok::semi)) {
+ ProhibitAttributes(Attrs);
+ DeclEnd = Tok.getLocation();
+ if (RequireSemi) ConsumeToken();
+ Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
+ DS);
+ DS.complete(TheDecl);
+ return Actions.ConvertDeclToDeclGroup(TheDecl);
+ }
+
+ DS.takeAttributesFrom(Attrs);
+ return ParseDeclGroup(DS, Context, &DeclEnd, FRI);
+}
+
+/// Returns true if this might be the start of a declarator, or a common typo
+/// for a declarator.
+bool Parser::MightBeDeclarator(unsigned Context) {
+ switch (Tok.getKind()) {
+ case tok::annot_cxxscope:
+ case tok::annot_template_id:
+ case tok::caret:
+ case tok::code_completion:
+ case tok::coloncolon:
+ case tok::ellipsis:
+ case tok::kw___attribute:
+ case tok::kw_operator:
+ case tok::l_paren:
+ case tok::star:
+ return true;
+
+ case tok::amp:
+ case tok::ampamp:
+ return getLangOpts().CPlusPlus;
+
+ case tok::l_square: // Might be an attribute on an unnamed bit-field.
+ return Context == Declarator::MemberContext && getLangOpts().CPlusPlus11 &&
+ NextToken().is(tok::l_square);
+
+ case tok::colon: // Might be a typo for '::' or an unnamed bit-field.
+ return Context == Declarator::MemberContext || getLangOpts().CPlusPlus;
+
+ case tok::identifier:
+ switch (NextToken().getKind()) {
+ case tok::code_completion:
+ case tok::coloncolon:
+ case tok::comma:
+ case tok::equal:
+ case tok::equalequal: // Might be a typo for '='.
+ case tok::kw_alignas:
+ case tok::kw_asm:
+ case tok::kw___attribute:
+ case tok::l_brace:
+ case tok::l_paren:
+ case tok::l_square:
+ case tok::less:
+ case tok::r_brace:
+ case tok::r_paren:
+ case tok::r_square:
+ case tok::semi:
+ return true;
+
+ case tok::colon:
+ // At namespace scope, 'identifier:' is probably a typo for 'identifier::'
+ // and in block scope it's probably a label. Inside a class definition,
+ // this is a bit-field.
+ return Context == Declarator::MemberContext ||
+ (getLangOpts().CPlusPlus && Context == Declarator::FileContext);
+
+ case tok::identifier: // Possible virt-specifier.
+ return getLangOpts().CPlusPlus11 && isCXX11VirtSpecifier(NextToken());
+
+ default:
+ return false;
+ }
+
+ default:
+ return false;
+ }
+}
+
+/// Skip until we reach something which seems like a sensible place to pick
+/// up parsing after a malformed declaration. This will sometimes stop sooner
+/// than SkipUntil(tok::r_brace) would, but will never stop later.
+void Parser::SkipMalformedDecl() {
+ while (true) {
+ switch (Tok.getKind()) {
+ case tok::l_brace:
+ // Skip until matching }, then stop. We've probably skipped over
+ // a malformed class or function definition or similar.
+ ConsumeBrace();
+ SkipUntil(tok::r_brace);
+ if (Tok.is(tok::comma) || Tok.is(tok::l_brace) || Tok.is(tok::kw_try)) {
+ // This declaration isn't over yet. Keep skipping.
+ continue;
+ }
+ TryConsumeToken(tok::semi);
+ return;
+
+ case tok::l_square:
+ ConsumeBracket();
+ SkipUntil(tok::r_square);
+ continue;
+
+ case tok::l_paren:
+ ConsumeParen();
+ SkipUntil(tok::r_paren);
+ continue;
+
+ case tok::r_brace:
+ return;
+
+ case tok::semi:
+ ConsumeToken();
+ return;
+
+ case tok::kw_inline:
+ // 'inline namespace' at the start of a line is almost certainly
+ // a good place to pick back up parsing, except in an Objective-C
+ // @interface context.
+ if (Tok.isAtStartOfLine() && NextToken().is(tok::kw_namespace) &&
+ (!ParsingInObjCContainer || CurParsedObjCImpl))
+ return;
+ break;
+
+ case tok::kw_namespace:
+ // 'namespace' at the start of a line is almost certainly a good
+ // place to pick back up parsing, except in an Objective-C
+ // @interface context.
+ if (Tok.isAtStartOfLine() &&
+ (!ParsingInObjCContainer || CurParsedObjCImpl))
+ return;
+ break;
+
+ case tok::at:
+ // @end is very much like } in Objective-C contexts.
+ if (NextToken().isObjCAtKeyword(tok::objc_end) &&
+ ParsingInObjCContainer)
+ return;
+ break;
+
+ case tok::minus:
+ case tok::plus:
+ // - and + probably start new method declarations in Objective-C contexts.
+ if (Tok.isAtStartOfLine() && ParsingInObjCContainer)
+ return;
+ break;
+
+ case tok::eof:
+ case tok::annot_module_begin:
+ case tok::annot_module_end:
+ case tok::annot_module_include:
+ return;
+
+ default:
+ break;
+ }
+
+ ConsumeAnyToken();
+ }
+}
+
+/// ParseDeclGroup - Having concluded that this is either a function
+/// definition or a group of object declarations, actually parse the
+/// result.
+Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
+ unsigned Context,
+ SourceLocation *DeclEnd,
+ ForRangeInit *FRI) {
+ // Parse the first declarator.
+ ParsingDeclarator D(*this, DS, static_cast<Declarator::TheContext>(Context));
+ ParseDeclarator(D);
+
+ // Bail out if the first declarator didn't seem well-formed.
+ if (!D.hasName() && !D.mayOmitIdentifier()) {
+ SkipMalformedDecl();
+ return DeclGroupPtrTy();
+ }
+
+ // Save late-parsed attributes for now; they need to be parsed in the
+ // appropriate function scope after the function Decl has been constructed.
+ // These will be parsed in ParseFunctionDefinition or ParseLexedAttrList.
+ LateParsedAttrList LateParsedAttrs(true);
+ if (D.isFunctionDeclarator()) {
+ MaybeParseGNUAttributes(D, &LateParsedAttrs);
+
+ // The _Noreturn keyword can't appear here, unlike the GNU noreturn
+ // attribute. If we find the keyword here, tell the user to put it
+ // at the start instead.
+ if (Tok.is(tok::kw__Noreturn)) {
+ SourceLocation Loc = ConsumeToken();
+ const char *PrevSpec;
+ unsigned DiagID;
+
+ // We can offer a fixit if it's valid to mark this function as _Noreturn
+ // and we don't have any other declarators in this declaration.
+ bool Fixit = !DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
+ MaybeParseGNUAttributes(D, &LateParsedAttrs);
+ Fixit &= Tok.is(tok::semi) || Tok.is(tok::l_brace) || Tok.is(tok::kw_try);
+
+ Diag(Loc, diag::err_c11_noreturn_misplaced)
+ << (Fixit ? FixItHint::CreateRemoval(Loc) : FixItHint())
+ << (Fixit ? FixItHint::CreateInsertion(D.getLocStart(), "_Noreturn ")
+ : FixItHint());
+ }
+ }
+
+ // Check to see if we have a function *definition* which must have a body.
+ if (D.isFunctionDeclarator() &&
+ // Look at the next token to make sure that this isn't a function
+ // declaration. We have to check this because __attribute__ might be the
+ // start of a function definition in GCC-extended K&R C.
+ !isDeclarationAfterDeclarator()) {
+
+ // Function definitions are only allowed at file scope and in C++ classes.
+ // The C++ inline method definition case is handled elsewhere, so we only
+ // need to handle the file scope definition case.
+ if (Context == Declarator::FileContext) {
+ if (isStartOfFunctionDefinition(D)) {
+ if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
+ Diag(Tok, diag::err_function_declared_typedef);
+
+ // Recover by treating the 'typedef' as spurious.
+ DS.ClearStorageClassSpecs();
+ }
+
+ Decl *TheDecl =
+ ParseFunctionDefinition(D, ParsedTemplateInfo(), &LateParsedAttrs);
+ return Actions.ConvertDeclToDeclGroup(TheDecl);
+ }
+
+ if (isDeclarationSpecifier()) {
+ // If there is an invalid declaration specifier right after the
+ // function prototype, then we must be in a missing semicolon case
+ // where this isn't actually a body. Just fall through into the code
+ // that handles it as a prototype, and let the top-level code handle
+ // the erroneous declspec where it would otherwise expect a comma or
+ // semicolon.
+ } else {
+ Diag(Tok, diag::err_expected_fn_body);
+ SkipUntil(tok::semi);
+ return DeclGroupPtrTy();
+ }
+ } else {
+ if (Tok.is(tok::l_brace)) {
+ Diag(Tok, diag::err_function_definition_not_allowed);
+ SkipMalformedDecl();
+ return DeclGroupPtrTy();
+ }
+ }
+ }
+
+ if (ParseAsmAttributesAfterDeclarator(D))
+ return DeclGroupPtrTy();
+
+ // C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we
+ // must parse and analyze the for-range-initializer before the declaration is
+ // analyzed.
+ //
+ // Handle the Objective-C for-in loop variable similarly, although we
+ // don't need to parse the container in advance.
+ if (FRI && (Tok.is(tok::colon) || isTokIdentifier_in())) {
+ bool IsForRangeLoop = false;
+ if (TryConsumeToken(tok::colon, FRI->ColonLoc)) {
+ IsForRangeLoop = true;
+ if (Tok.is(tok::l_brace))
+ FRI->RangeExpr = ParseBraceInitializer();
+ else
+ FRI->RangeExpr = ParseExpression();
+ }
+
+ Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
+ if (IsForRangeLoop)
+ Actions.ActOnCXXForRangeDecl(ThisDecl);
+ Actions.FinalizeDeclaration(ThisDecl);
+ D.complete(ThisDecl);
+ return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, ThisDecl);
+ }
+
+ SmallVector<Decl *, 8> DeclsInGroup;
+ Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes(
+ D, ParsedTemplateInfo(), FRI);
+ if (LateParsedAttrs.size() > 0)
+ ParseLexedAttributeList(LateParsedAttrs, FirstDecl, true, false);
+ D.complete(FirstDecl);
+ if (FirstDecl)
+ DeclsInGroup.push_back(FirstDecl);
+
+ bool ExpectSemi = Context != Declarator::ForContext;
+
+ // If we don't have a comma, it is either the end of the list (a ';') or an
+ // error, bail out.
+ SourceLocation CommaLoc;
+ while (TryConsumeToken(tok::comma, CommaLoc)) {
+ if (Tok.isAtStartOfLine() && ExpectSemi && !MightBeDeclarator(Context)) {
+ // This comma was followed by a line-break and something which can't be
+ // the start of a declarator. The comma was probably a typo for a
+ // semicolon.
+ Diag(CommaLoc, diag::err_expected_semi_declaration)
+ << FixItHint::CreateReplacement(CommaLoc, ";");
+ ExpectSemi = false;
+ break;
+ }
+
+ // Parse the next declarator.
+ D.clear();
+ D.setCommaLoc(CommaLoc);
+
+ // Accept attributes in an init-declarator. In the first declarator in a
+ // declaration, these would be part of the declspec. In subsequent
+ // declarators, they become part of the declarator itself, so that they
+ // don't apply to declarators after *this* one. Examples:
+ // short __attribute__((common)) var; -> declspec
+ // short var __attribute__((common)); -> declarator
+ // short x, __attribute__((common)) var; -> declarator
+ MaybeParseGNUAttributes(D);
+
+ // MSVC parses but ignores qualifiers after the comma as an extension.
+ if (getLangOpts().MicrosoftExt)
+ DiagnoseAndSkipExtendedMicrosoftTypeAttributes();
+
+ ParseDeclarator(D);
+ if (!D.isInvalidType()) {
+ Decl *ThisDecl = ParseDeclarationAfterDeclarator(D);
+ D.complete(ThisDecl);
+ if (ThisDecl)
+ DeclsInGroup.push_back(ThisDecl);
+ }
+ }
+
+ if (DeclEnd)
+ *DeclEnd = Tok.getLocation();
+
+ if (ExpectSemi &&
+ ExpectAndConsumeSemi(Context == Declarator::FileContext
+ ? diag::err_invalid_token_after_toplevel_declarator
+ : diag::err_expected_semi_declaration)) {
+ // Okay, there was no semicolon and one was expected. If we see a
+ // declaration specifier, just assume it was missing and continue parsing.
+ // Otherwise things are very confused and we skip to recover.
+ if (!isDeclarationSpecifier()) {
+ SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
+ TryConsumeToken(tok::semi);
+ }
+ }
+
+ return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup);
+}
+
+/// Parse an optional simple-asm-expr and attributes, and attach them to a
+/// declarator. Returns true on an error.
+bool Parser::ParseAsmAttributesAfterDeclarator(Declarator &D) {
+ // If a simple-asm-expr is present, parse it.
+ if (Tok.is(tok::kw_asm)) {
+ SourceLocation Loc;
+ ExprResult AsmLabel(ParseSimpleAsm(&Loc));
+ if (AsmLabel.isInvalid()) {
+ SkipUntil(tok::semi, StopBeforeMatch);
+ return true;
+ }
+
+ D.setAsmLabel(AsmLabel.get());
+ D.SetRangeEnd(Loc);
+ }
+
+ MaybeParseGNUAttributes(D);
+ return false;
+}
+
+/// \brief Parse 'declaration' after parsing 'declaration-specifiers
+/// declarator'. This method parses the remainder of the declaration
+/// (including any attributes or initializer, among other things) and
+/// finalizes the declaration.
+///
+/// init-declarator: [C99 6.7]
+/// declarator
+/// declarator '=' initializer
+/// [GNU] declarator simple-asm-expr[opt] attributes[opt]
+/// [GNU] declarator simple-asm-expr[opt] attributes[opt] '=' initializer
+/// [C++] declarator initializer[opt]
+///
+/// [C++] initializer:
+/// [C++] '=' initializer-clause
+/// [C++] '(' expression-list ')'
+/// [C++0x] '=' 'default' [TODO]
+/// [C++0x] '=' 'delete'
+/// [C++0x] braced-init-list
+///
+/// According to the standard grammar, =default and =delete are function
+/// definitions, but that definitely doesn't fit with the parser here.
+///
+Decl *Parser::ParseDeclarationAfterDeclarator(
+ Declarator &D, const ParsedTemplateInfo &TemplateInfo) {
+ if (ParseAsmAttributesAfterDeclarator(D))
+ return nullptr;
+
+ return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo);
+}
+
+Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes(
+ Declarator &D, const ParsedTemplateInfo &TemplateInfo, ForRangeInit *FRI) {
+ // Inform the current actions module that we just parsed this declarator.
+ Decl *ThisDecl = nullptr;
+ switch (TemplateInfo.Kind) {
+ case ParsedTemplateInfo::NonTemplate:
+ ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
+ break;
+
+ case ParsedTemplateInfo::Template:
+ case ParsedTemplateInfo::ExplicitSpecialization: {
+ ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
+ *TemplateInfo.TemplateParams,
+ D);
+ if (VarTemplateDecl *VT = dyn_cast_or_null<VarTemplateDecl>(ThisDecl))
+ // Re-direct this decl to refer to the templated decl so that we can
+ // initialize it.
+ ThisDecl = VT->getTemplatedDecl();
+ break;
+ }
+ case ParsedTemplateInfo::ExplicitInstantiation: {
+ if (Tok.is(tok::semi)) {
+ DeclResult ThisRes = Actions.ActOnExplicitInstantiation(
+ getCurScope(), TemplateInfo.ExternLoc, TemplateInfo.TemplateLoc, D);
+ if (ThisRes.isInvalid()) {
+ SkipUntil(tok::semi, StopBeforeMatch);
+ return nullptr;
+ }
+ ThisDecl = ThisRes.get();
+ } else {
+ // FIXME: This check should be for a variable template instantiation only.
+
+ // Check that this is a valid instantiation
+ if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
+ // If the declarator-id is not a template-id, issue a diagnostic and
+ // recover by ignoring the 'template' keyword.
+ Diag(Tok, diag::err_template_defn_explicit_instantiation)
+ << 2 << FixItHint::CreateRemoval(TemplateInfo.TemplateLoc);
+ ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
+ } else {
+ SourceLocation LAngleLoc =
+ PP.getLocForEndOfToken(TemplateInfo.TemplateLoc);
+ Diag(D.getIdentifierLoc(),
+ diag::err_explicit_instantiation_with_definition)
+ << SourceRange(TemplateInfo.TemplateLoc)
+ << FixItHint::CreateInsertion(LAngleLoc, "<>");
+
+ // Recover as if it were an explicit specialization.
+ TemplateParameterLists FakedParamLists;
+ FakedParamLists.push_back(Actions.ActOnTemplateParameterList(
+ 0, SourceLocation(), TemplateInfo.TemplateLoc, LAngleLoc, nullptr,
+ 0, LAngleLoc));
+
+ ThisDecl =
+ Actions.ActOnTemplateDeclarator(getCurScope(), FakedParamLists, D);
+ }
+ }
+ break;
+ }
+ }
+
+ bool TypeContainsAuto = D.getDeclSpec().containsPlaceholderType();
+
+ // Parse declarator '=' initializer.
+ // If a '==' or '+=' is found, suggest a fixit to '='.
+ if (isTokenEqualOrEqualTypo()) {
+ SourceLocation EqualLoc = ConsumeToken();
+
+ if (Tok.is(tok::kw_delete)) {
+ if (D.isFunctionDeclarator())
+ Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
+ << 1 /* delete */;
+ else
+ Diag(ConsumeToken(), diag::err_deleted_non_function);
+ } else if (Tok.is(tok::kw_default)) {
+ if (D.isFunctionDeclarator())
+ Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
+ << 0 /* default */;
+ else
+ Diag(ConsumeToken(), diag::err_default_special_members);
+ } else {
+ if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
+ EnterScope(0);
+ Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
+ }
+
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
+ Actions.FinalizeDeclaration(ThisDecl);
+ cutOffParsing();
+ return nullptr;
+ }
+
+ ExprResult Init(ParseInitializer());
+
+ // If this is the only decl in (possibly) range based for statement,
+ // our best guess is that the user meant ':' instead of '='.
+ if (Tok.is(tok::r_paren) && FRI && D.isFirstDeclarator()) {
+ Diag(EqualLoc, diag::err_single_decl_assign_in_for_range)
+ << FixItHint::CreateReplacement(EqualLoc, ":");
+ // We are trying to stop parser from looking for ';' in this for
+ // statement, therefore preventing spurious errors to be issued.
+ FRI->ColonLoc = EqualLoc;
+ Init = ExprError();
+ FRI->RangeExpr = Init;
+ }
+
+ if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
+ Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
+ ExitScope();
+ }
+
+ if (Init.isInvalid()) {
+ SmallVector<tok::TokenKind, 2> StopTokens;
+ StopTokens.push_back(tok::comma);
+ if (D.getContext() == Declarator::ForContext)
+ StopTokens.push_back(tok::r_paren);
+ SkipUntil(StopTokens, StopAtSemi | StopBeforeMatch);
+ Actions.ActOnInitializerError(ThisDecl);
+ } else
+ Actions.AddInitializerToDecl(ThisDecl, Init.get(),
+ /*DirectInit=*/false, TypeContainsAuto);
+ }
+ } else if (Tok.is(tok::l_paren)) {
+ // Parse C++ direct initializer: '(' expression-list ')'
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ T.consumeOpen();
+
+ ExprVector Exprs;
+ CommaLocsTy CommaLocs;
+
+ if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
+ EnterScope(0);
+ Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
+ }
+
+ if (ParseExpressionList(Exprs, CommaLocs, [&] {
+ Actions.CodeCompleteConstructor(getCurScope(),
+ cast<VarDecl>(ThisDecl)->getType()->getCanonicalTypeInternal(),
+ ThisDecl->getLocation(), Exprs);
+ })) {
+ Actions.ActOnInitializerError(ThisDecl);
+ SkipUntil(tok::r_paren, StopAtSemi);
+
+ if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
+ Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
+ ExitScope();
+ }
+ } else {
+ // Match the ')'.
+ T.consumeClose();
+
+ assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
+ "Unexpected number of commas!");
+
+ if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
+ Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
+ ExitScope();
+ }
+
+ ExprResult Initializer = Actions.ActOnParenListExpr(T.getOpenLocation(),
+ T.getCloseLocation(),
+ Exprs);
+ Actions.AddInitializerToDecl(ThisDecl, Initializer.get(),
+ /*DirectInit=*/true, TypeContainsAuto);
+ }
+ } else if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace) &&
+ (!CurParsedObjCImpl || !D.isFunctionDeclarator())) {
+ // Parse C++0x braced-init-list.
+ Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
+
+ if (D.getCXXScopeSpec().isSet()) {
+ EnterScope(0);
+ Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
+ }
+
+ ExprResult Init(ParseBraceInitializer());
+
+ if (D.getCXXScopeSpec().isSet()) {
+ Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
+ ExitScope();
+ }
+
+ if (Init.isInvalid()) {
+ Actions.ActOnInitializerError(ThisDecl);
+ } else
+ Actions.AddInitializerToDecl(ThisDecl, Init.get(),
+ /*DirectInit=*/true, TypeContainsAuto);
+
+ } else {
+ Actions.ActOnUninitializedDecl(ThisDecl, TypeContainsAuto);
+ }
+
+ Actions.FinalizeDeclaration(ThisDecl);
+
+ return ThisDecl;
+}
+
+/// ParseSpecifierQualifierList
+/// specifier-qualifier-list:
+/// type-specifier specifier-qualifier-list[opt]
+/// type-qualifier specifier-qualifier-list[opt]
+/// [GNU] attributes specifier-qualifier-list[opt]
+///
+void Parser::ParseSpecifierQualifierList(DeclSpec &DS, AccessSpecifier AS,
+ DeclSpecContext DSC) {
+ /// specifier-qualifier-list is a subset of declaration-specifiers. Just
+ /// parse declaration-specifiers and complain about extra stuff.
+ /// TODO: diagnose attribute-specifiers and alignment-specifiers.
+ ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS, DSC);
+
+ // Validate declspec for type-name.
+ unsigned Specs = DS.getParsedSpecifiers();
+ if (isTypeSpecifier(DSC) && !DS.hasTypeSpecifier()) {
+ Diag(Tok, diag::err_expected_type);
+ DS.SetTypeSpecError();
+ } else if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers() &&
+ !DS.hasAttributes()) {
+ Diag(Tok, diag::err_typename_requires_specqual);
+ if (!DS.hasTypeSpecifier())
+ DS.SetTypeSpecError();
+ }
+
+ // Issue diagnostic and remove storage class if present.
+ if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
+ if (DS.getStorageClassSpecLoc().isValid())
+ Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
+ else
+ Diag(DS.getThreadStorageClassSpecLoc(),
+ diag::err_typename_invalid_storageclass);
+ DS.ClearStorageClassSpecs();
+ }
+
+ // Issue diagnostic and remove function specfier if present.
+ if (Specs & DeclSpec::PQ_FunctionSpecifier) {
+ if (DS.isInlineSpecified())
+ Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
+ if (DS.isVirtualSpecified())
+ Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
+ if (DS.isExplicitSpecified())
+ Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
+ DS.ClearFunctionSpecs();
+ }
+
+ // Issue diagnostic and remove constexpr specfier if present.
+ if (DS.isConstexprSpecified()) {
+ Diag(DS.getConstexprSpecLoc(), diag::err_typename_invalid_constexpr);
+ DS.ClearConstexprSpec();
+ }
+}
+
+/// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
+/// specified token is valid after the identifier in a declarator which
+/// immediately follows the declspec. For example, these things are valid:
+///
+/// int x [ 4]; // direct-declarator
+/// int x ( int y); // direct-declarator
+/// int(int x ) // direct-declarator
+/// int x ; // simple-declaration
+/// int x = 17; // init-declarator-list
+/// int x , y; // init-declarator-list
+/// int x __asm__ ("foo"); // init-declarator-list
+/// int x : 4; // struct-declarator
+/// int x { 5}; // C++'0x unified initializers
+///
+/// This is not, because 'x' does not immediately follow the declspec (though
+/// ')' happens to be valid anyway).
+/// int (x)
+///
+static bool isValidAfterIdentifierInDeclarator(const Token &T) {
+ return T.is(tok::l_square) || T.is(tok::l_paren) || T.is(tok::r_paren) ||
+ T.is(tok::semi) || T.is(tok::comma) || T.is(tok::equal) ||
+ T.is(tok::kw_asm) || T.is(tok::l_brace) || T.is(tok::colon);
+}
+
+
+/// ParseImplicitInt - This method is called when we have an non-typename
+/// identifier in a declspec (which normally terminates the decl spec) when
+/// the declspec has no type specifier. In this case, the declspec is either
+/// malformed or is "implicit int" (in K&R and C89).
+///
+/// This method handles diagnosing this prettily and returns false if the
+/// declspec is done being processed. If it recovers and thinks there may be
+/// other pieces of declspec after it, it returns true.
+///
+bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
+ const ParsedTemplateInfo &TemplateInfo,
+ AccessSpecifier AS, DeclSpecContext DSC,
+ ParsedAttributesWithRange &Attrs) {
+ assert(Tok.is(tok::identifier) && "should have identifier");
+
+ SourceLocation Loc = Tok.getLocation();
+ // If we see an identifier that is not a type name, we normally would
+ // parse it as the identifer being declared. However, when a typename
+ // is typo'd or the definition is not included, this will incorrectly
+ // parse the typename as the identifier name and fall over misparsing
+ // later parts of the diagnostic.
+ //
+ // As such, we try to do some look-ahead in cases where this would
+ // otherwise be an "implicit-int" case to see if this is invalid. For
+ // example: "static foo_t x = 4;" In this case, if we parsed foo_t as
+ // an identifier with implicit int, we'd get a parse error because the
+ // next token is obviously invalid for a type. Parse these as a case
+ // with an invalid type specifier.
+ assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
+
+ // Since we know that this either implicit int (which is rare) or an
+ // error, do lookahead to try to do better recovery. This never applies
+ // within a type specifier. Outside of C++, we allow this even if the
+ // language doesn't "officially" support implicit int -- we support
+ // implicit int as an extension in C99 and C11.
+ if (!isTypeSpecifier(DSC) && !getLangOpts().CPlusPlus &&
+ isValidAfterIdentifierInDeclarator(NextToken())) {
+ // If this token is valid for implicit int, e.g. "static x = 4", then
+ // we just avoid eating the identifier, so it will be parsed as the
+ // identifier in the declarator.
+ return false;
+ }
+
+ if (getLangOpts().CPlusPlus &&
+ DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
+ // Don't require a type specifier if we have the 'auto' storage class
+ // specifier in C++98 -- we'll promote it to a type specifier.
+ if (SS)
+ AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
+ return false;
+ }
+
+ // Otherwise, if we don't consume this token, we are going to emit an
+ // error anyway. Try to recover from various common problems. Check
+ // to see if this was a reference to a tag name without a tag specified.
+ // This is a common problem in C (saying 'foo' instead of 'struct foo').
+ //
+ // C++ doesn't need this, and isTagName doesn't take SS.
+ if (SS == nullptr) {
+ const char *TagName = nullptr, *FixitTagName = nullptr;
+ tok::TokenKind TagKind = tok::unknown;
+
+ switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
+ default: break;
+ case DeclSpec::TST_enum:
+ TagName="enum" ; FixitTagName = "enum " ; TagKind=tok::kw_enum ;break;
+ case DeclSpec::TST_union:
+ TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break;
+ case DeclSpec::TST_struct:
+ TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break;
+ case DeclSpec::TST_interface:
+ TagName="__interface"; FixitTagName = "__interface ";
+ TagKind=tok::kw___interface;break;
+ case DeclSpec::TST_class:
+ TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break;
+ }
+
+ if (TagName) {
+ IdentifierInfo *TokenName = Tok.getIdentifierInfo();
+ LookupResult R(Actions, TokenName, SourceLocation(),
+ Sema::LookupOrdinaryName);
+
+ Diag(Loc, diag::err_use_of_tag_name_without_tag)
+ << TokenName << TagName << getLangOpts().CPlusPlus
+ << FixItHint::CreateInsertion(Tok.getLocation(), FixitTagName);
+
+ if (Actions.LookupParsedName(R, getCurScope(), SS)) {
+ for (LookupResult::iterator I = R.begin(), IEnd = R.end();
+ I != IEnd; ++I)
+ Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
+ << TokenName << TagName;
+ }
+
+ // Parse this as a tag as if the missing tag were present.
+ if (TagKind == tok::kw_enum)
+ ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSC_normal);
+ else
+ ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS,
+ /*EnteringContext*/ false, DSC_normal, Attrs);
+ return true;
+ }
+ }
+
+ // Determine whether this identifier could plausibly be the name of something
+ // being declared (with a missing type).
+ if (!isTypeSpecifier(DSC) &&
+ (!SS || DSC == DSC_top_level || DSC == DSC_class)) {
+ // Look ahead to the next token to try to figure out what this declaration
+ // was supposed to be.
+ switch (NextToken().getKind()) {
+ case tok::l_paren: {
+ // static x(4); // 'x' is not a type
+ // x(int n); // 'x' is not a type
+ // x (*p)[]; // 'x' is a type
+ //
+ // Since we're in an error case, we can afford to perform a tentative
+ // parse to determine which case we're in.
+ TentativeParsingAction PA(*this);
+ ConsumeToken();
+ TPResult TPR = TryParseDeclarator(/*mayBeAbstract*/false);
+ PA.Revert();
+
+ if (TPR != TPResult::False) {
+ // The identifier is followed by a parenthesized declarator.
+ // It's supposed to be a type.
+ break;
+ }
+
+ // If we're in a context where we could be declaring a constructor,
+ // check whether this is a constructor declaration with a bogus name.
+ if (DSC == DSC_class || (DSC == DSC_top_level && SS)) {
+ IdentifierInfo *II = Tok.getIdentifierInfo();
+ if (Actions.isCurrentClassNameTypo(II, SS)) {
+ Diag(Loc, diag::err_constructor_bad_name)
+ << Tok.getIdentifierInfo() << II
+ << FixItHint::CreateReplacement(Tok.getLocation(), II->getName());
+ Tok.setIdentifierInfo(II);
+ }
+ }
+ // Fall through.
+ }
+ case tok::comma:
+ case tok::equal:
+ case tok::kw_asm:
+ case tok::l_brace:
+ case tok::l_square:
+ case tok::semi:
+ // This looks like a variable or function declaration. The type is
+ // probably missing. We're done parsing decl-specifiers.
+ if (SS)
+ AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
+ return false;
+
+ default:
+ // This is probably supposed to be a type. This includes cases like:
+ // int f(itn);
+ // struct S { unsinged : 4; };
+ break;
+ }
+ }
+
+ // This is almost certainly an invalid type name. Let Sema emit a diagnostic
+ // and attempt to recover.
+ ParsedType T;
+ IdentifierInfo *II = Tok.getIdentifierInfo();
+ Actions.DiagnoseUnknownTypeName(II, Loc, getCurScope(), SS, T,
+ getLangOpts().CPlusPlus &&
+ NextToken().is(tok::less));
+ if (T) {
+ // The action has suggested that the type T could be used. Set that as
+ // the type in the declaration specifiers, consume the would-be type
+ // name token, and we're done.
+ const char *PrevSpec;
+ unsigned DiagID;
+ DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
+ Actions.getASTContext().getPrintingPolicy());
+ DS.SetRangeEnd(Tok.getLocation());
+ ConsumeToken();
+ // There may be other declaration specifiers after this.
+ return true;
+ } else if (II != Tok.getIdentifierInfo()) {
+ // If no type was suggested, the correction is to a keyword
+ Tok.setKind(II->getTokenID());
+ // There may be other declaration specifiers after this.
+ return true;
+ }
+
+ // Otherwise, the action had no suggestion for us. Mark this as an error.
+ DS.SetTypeSpecError();
+ DS.SetRangeEnd(Tok.getLocation());
+ ConsumeToken();
+
+ // TODO: Could inject an invalid typedef decl in an enclosing scope to
+ // avoid rippling error messages on subsequent uses of the same type,
+ // could be useful if #include was forgotten.
+ return false;
+}
+
+/// \brief Determine the declaration specifier context from the declarator
+/// context.
+///
+/// \param Context the declarator context, which is one of the
+/// Declarator::TheContext enumerator values.
+Parser::DeclSpecContext
+Parser::getDeclSpecContextFromDeclaratorContext(unsigned Context) {
+ if (Context == Declarator::MemberContext)
+ return DSC_class;
+ if (Context == Declarator::FileContext)
+ return DSC_top_level;
+ if (Context == Declarator::TemplateTypeArgContext)
+ return DSC_template_type_arg;
+ if (Context == Declarator::TrailingReturnContext)
+ return DSC_trailing;
+ if (Context == Declarator::AliasDeclContext ||
+ Context == Declarator::AliasTemplateContext)
+ return DSC_alias_declaration;
+ return DSC_normal;
+}
+
+/// ParseAlignArgument - Parse the argument to an alignment-specifier.
+///
+/// FIXME: Simply returns an alignof() expression if the argument is a
+/// type. Ideally, the type should be propagated directly into Sema.
+///
+/// [C11] type-id
+/// [C11] constant-expression
+/// [C++0x] type-id ...[opt]
+/// [C++0x] assignment-expression ...[opt]
+ExprResult Parser::ParseAlignArgument(SourceLocation Start,
+ SourceLocation &EllipsisLoc) {
+ ExprResult ER;
+ if (isTypeIdInParens()) {
+ SourceLocation TypeLoc = Tok.getLocation();
+ ParsedType Ty = ParseTypeName().get();
+ SourceRange TypeRange(Start, Tok.getLocation());
+ ER = Actions.ActOnUnaryExprOrTypeTraitExpr(TypeLoc, UETT_AlignOf, true,
+ Ty.getAsOpaquePtr(), TypeRange);
+ } else
+ ER = ParseConstantExpression();
+
+ if (getLangOpts().CPlusPlus11)
+ TryConsumeToken(tok::ellipsis, EllipsisLoc);
+
+ return ER;
+}
+
+/// ParseAlignmentSpecifier - Parse an alignment-specifier, and add the
+/// attribute to Attrs.
+///
+/// alignment-specifier:
+/// [C11] '_Alignas' '(' type-id ')'
+/// [C11] '_Alignas' '(' constant-expression ')'
+/// [C++11] 'alignas' '(' type-id ...[opt] ')'
+/// [C++11] 'alignas' '(' assignment-expression ...[opt] ')'
+void Parser::ParseAlignmentSpecifier(ParsedAttributes &Attrs,
+ SourceLocation *EndLoc) {
+ assert((Tok.is(tok::kw_alignas) || Tok.is(tok::kw__Alignas)) &&
+ "Not an alignment-specifier!");
+
+ IdentifierInfo *KWName = Tok.getIdentifierInfo();
+ SourceLocation KWLoc = ConsumeToken();
+
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ if (T.expectAndConsume())
+ return;
+
+ SourceLocation EllipsisLoc;
+ ExprResult ArgExpr = ParseAlignArgument(T.getOpenLocation(), EllipsisLoc);
+ if (ArgExpr.isInvalid()) {
+ T.skipToEnd();
+ return;
+ }
+
+ T.consumeClose();
+ if (EndLoc)
+ *EndLoc = T.getCloseLocation();
+
+ ArgsVector ArgExprs;
+ ArgExprs.push_back(ArgExpr.get());
+ Attrs.addNew(KWName, KWLoc, nullptr, KWLoc, ArgExprs.data(), 1,
+ AttributeList::AS_Keyword, EllipsisLoc);
+}
+
+/// Determine whether we're looking at something that might be a declarator
+/// in a simple-declaration. If it can't possibly be a declarator, maybe
+/// diagnose a missing semicolon after a prior tag definition in the decl
+/// specifier.
+///
+/// \return \c true if an error occurred and this can't be any kind of
+/// declaration.
+bool
+Parser::DiagnoseMissingSemiAfterTagDefinition(DeclSpec &DS, AccessSpecifier AS,
+ DeclSpecContext DSContext,
+ LateParsedAttrList *LateAttrs) {
+ assert(DS.hasTagDefinition() && "shouldn't call this");
+
+ bool EnteringContext = (DSContext == DSC_class || DSContext == DSC_top_level);
+
+ if (getLangOpts().CPlusPlus &&
+ (Tok.is(tok::identifier) || Tok.is(tok::coloncolon) ||
+ Tok.is(tok::kw_decltype) || Tok.is(tok::annot_template_id)) &&
+ TryAnnotateCXXScopeToken(EnteringContext)) {
+ SkipMalformedDecl();
+ return true;
+ }
+
+ bool HasScope = Tok.is(tok::annot_cxxscope);
+ // Make a copy in case GetLookAheadToken invalidates the result of NextToken.
+ Token AfterScope = HasScope ? NextToken() : Tok;
+
+ // Determine whether the following tokens could possibly be a
+ // declarator.
+ bool MightBeDeclarator = true;
+ if (Tok.is(tok::kw_typename) || Tok.is(tok::annot_typename)) {
+ // A declarator-id can't start with 'typename'.
+ MightBeDeclarator = false;
+ } else if (AfterScope.is(tok::annot_template_id)) {
+ // If we have a type expressed as a template-id, this cannot be a
+ // declarator-id (such a type cannot be redeclared in a simple-declaration).
+ TemplateIdAnnotation *Annot =
+ static_cast<TemplateIdAnnotation *>(AfterScope.getAnnotationValue());
+ if (Annot->Kind == TNK_Type_template)
+ MightBeDeclarator = false;
+ } else if (AfterScope.is(tok::identifier)) {
+ const Token &Next = HasScope ? GetLookAheadToken(2) : NextToken();
+
+ // These tokens cannot come after the declarator-id in a
+ // simple-declaration, and are likely to come after a type-specifier.
+ if (Next.is(tok::star) || Next.is(tok::amp) || Next.is(tok::ampamp) ||
+ Next.is(tok::identifier) || Next.is(tok::annot_cxxscope) ||
+ Next.is(tok::coloncolon)) {
+ // Missing a semicolon.
+ MightBeDeclarator = false;
+ } else if (HasScope) {
+ // If the declarator-id has a scope specifier, it must redeclare a
+ // previously-declared entity. If that's a type (and this is not a
+ // typedef), that's an error.
+ CXXScopeSpec SS;
+ Actions.RestoreNestedNameSpecifierAnnotation(
+ Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS);
+ IdentifierInfo *Name = AfterScope.getIdentifierInfo();
+ Sema::NameClassification Classification = Actions.ClassifyName(
+ getCurScope(), SS, Name, AfterScope.getLocation(), Next,
+ /*IsAddressOfOperand*/false);
+ switch (Classification.getKind()) {
+ case Sema::NC_Error:
+ SkipMalformedDecl();
+ return true;
+
+ case Sema::NC_Keyword:
+ case Sema::NC_NestedNameSpecifier:
+ llvm_unreachable("typo correction and nested name specifiers not "
+ "possible here");
+
+ case Sema::NC_Type:
+ case Sema::NC_TypeTemplate:
+ // Not a previously-declared non-type entity.
+ MightBeDeclarator = false;
+ break;
+
+ case Sema::NC_Unknown:
+ case Sema::NC_Expression:
+ case Sema::NC_VarTemplate:
+ case Sema::NC_FunctionTemplate:
+ // Might be a redeclaration of a prior entity.
+ break;
+ }
+ }
+ }
+
+ if (MightBeDeclarator)
+ return false;
+
+ const PrintingPolicy &PPol = Actions.getASTContext().getPrintingPolicy();
+ Diag(PP.getLocForEndOfToken(DS.getRepAsDecl()->getLocEnd()),
+ diag::err_expected_after)
+ << DeclSpec::getSpecifierName(DS.getTypeSpecType(), PPol) << tok::semi;
+
+ // Try to recover from the typo, by dropping the tag definition and parsing
+ // the problematic tokens as a type.
+ //
+ // FIXME: Split the DeclSpec into pieces for the standalone
+ // declaration and pieces for the following declaration, instead
+ // of assuming that all the other pieces attach to new declaration,
+ // and call ParsedFreeStandingDeclSpec as appropriate.
+ DS.ClearTypeSpecType();
+ ParsedTemplateInfo NotATemplate;
+ ParseDeclarationSpecifiers(DS, NotATemplate, AS, DSContext, LateAttrs);
+ return false;
+}
+
+/// ParseDeclarationSpecifiers
+/// declaration-specifiers: [C99 6.7]
+/// storage-class-specifier declaration-specifiers[opt]
+/// type-specifier declaration-specifiers[opt]
+/// [C99] function-specifier declaration-specifiers[opt]
+/// [C11] alignment-specifier declaration-specifiers[opt]
+/// [GNU] attributes declaration-specifiers[opt]
+/// [Clang] '__module_private__' declaration-specifiers[opt]
+///
+/// storage-class-specifier: [C99 6.7.1]
+/// 'typedef'
+/// 'extern'
+/// 'static'
+/// 'auto'
+/// 'register'
+/// [C++] 'mutable'
+/// [C++11] 'thread_local'
+/// [C11] '_Thread_local'
+/// [GNU] '__thread'
+/// function-specifier: [C99 6.7.4]
+/// [C99] 'inline'
+/// [C++] 'virtual'
+/// [C++] 'explicit'
+/// [OpenCL] '__kernel'
+/// 'friend': [C++ dcl.friend]
+/// 'constexpr': [C++0x dcl.constexpr]
+
+///
+void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
+ const ParsedTemplateInfo &TemplateInfo,
+ AccessSpecifier AS,
+ DeclSpecContext DSContext,
+ LateParsedAttrList *LateAttrs) {
+ if (DS.getSourceRange().isInvalid()) {
+ // Start the range at the current token but make the end of the range
+ // invalid. This will make the entire range invalid unless we successfully
+ // consume a token.
+ DS.SetRangeStart(Tok.getLocation());
+ DS.SetRangeEnd(SourceLocation());
+ }
+
+ bool EnteringContext = (DSContext == DSC_class || DSContext == DSC_top_level);
+ bool AttrsLastTime = false;
+ ParsedAttributesWithRange attrs(AttrFactory);
+ // We use Sema's policy to get bool macros right.
+ const PrintingPolicy &Policy = Actions.getPrintingPolicy();
+ while (1) {
+ bool isInvalid = false;
+ bool isStorageClass = false;
+ const char *PrevSpec = nullptr;
+ unsigned DiagID = 0;
+
+ SourceLocation Loc = Tok.getLocation();
+
+ switch (Tok.getKind()) {
+ default:
+ DoneWithDeclSpec:
+ if (!AttrsLastTime)
+ ProhibitAttributes(attrs);
+ else {
+ // Reject C++11 attributes that appertain to decl specifiers as
+ // we don't support any C++11 attributes that appertain to decl
+ // specifiers. This also conforms to what g++ 4.8 is doing.
+ ProhibitCXX11Attributes(attrs);
+
+ DS.takeAttributesFrom(attrs);
+ }
+
+ // If this is not a declaration specifier token, we're done reading decl
+ // specifiers. First verify that DeclSpec's are consistent.
+ DS.Finish(Diags, PP, Policy);
+ return;
+
+ case tok::l_square:
+ case tok::kw_alignas:
+ if (!getLangOpts().CPlusPlus11 || !isCXX11AttributeSpecifier())
+ goto DoneWithDeclSpec;
+
+ ProhibitAttributes(attrs);
+ // FIXME: It would be good to recover by accepting the attributes,
+ // but attempting to do that now would cause serious
+ // madness in terms of diagnostics.
+ attrs.clear();
+ attrs.Range = SourceRange();
+
+ ParseCXX11Attributes(attrs);
+ AttrsLastTime = true;
+ continue;
+
+ case tok::code_completion: {
+ Sema::ParserCompletionContext CCC = Sema::PCC_Namespace;
+ if (DS.hasTypeSpecifier()) {
+ bool AllowNonIdentifiers
+ = (getCurScope()->getFlags() & (Scope::ControlScope |
+ Scope::BlockScope |
+ Scope::TemplateParamScope |
+ Scope::FunctionPrototypeScope |
+ Scope::AtCatchScope)) == 0;
+ bool AllowNestedNameSpecifiers
+ = DSContext == DSC_top_level ||
+ (DSContext == DSC_class && DS.isFriendSpecified());
+
+ Actions.CodeCompleteDeclSpec(getCurScope(), DS,
+ AllowNonIdentifiers,
+ AllowNestedNameSpecifiers);
+ return cutOffParsing();
+ }
+
+ if (getCurScope()->getFnParent() || getCurScope()->getBlockParent())
+ CCC = Sema::PCC_LocalDeclarationSpecifiers;
+ else if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
+ CCC = DSContext == DSC_class? Sema::PCC_MemberTemplate
+ : Sema::PCC_Template;
+ else if (DSContext == DSC_class)
+ CCC = Sema::PCC_Class;
+ else if (CurParsedObjCImpl)
+ CCC = Sema::PCC_ObjCImplementation;
+
+ Actions.CodeCompleteOrdinaryName(getCurScope(), CCC);
+ return cutOffParsing();
+ }
+
+ case tok::coloncolon: // ::foo::bar
+ // C++ scope specifier. Annotate and loop, or bail out on error.
+ if (TryAnnotateCXXScopeToken(EnteringContext)) {
+ if (!DS.hasTypeSpecifier())
+ DS.SetTypeSpecError();
+ goto DoneWithDeclSpec;
+ }
+ if (Tok.is(tok::coloncolon)) // ::new or ::delete
+ goto DoneWithDeclSpec;
+ continue;
+
+ case tok::annot_cxxscope: {
+ if (DS.hasTypeSpecifier() || DS.isTypeAltiVecVector())
+ goto DoneWithDeclSpec;
+
+ CXXScopeSpec SS;
+ Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
+ Tok.getAnnotationRange(),
+ SS);
+
+ // We are looking for a qualified typename.
+ Token Next = NextToken();
+ if (Next.is(tok::annot_template_id) &&
+ static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
+ ->Kind == TNK_Type_template) {
+ // We have a qualified template-id, e.g., N::A<int>
+
+ // C++ [class.qual]p2:
+ // In a lookup in which the constructor is an acceptable lookup
+ // result and the nested-name-specifier nominates a class C:
+ //
+ // - if the name specified after the
+ // nested-name-specifier, when looked up in C, is the
+ // injected-class-name of C (Clause 9), or
+ //
+ // - if the name specified after the nested-name-specifier
+ // is the same as the identifier or the
+ // simple-template-id's template-name in the last
+ // component of the nested-name-specifier,
+ //
+ // the name is instead considered to name the constructor of
+ // class C.
+ //
+ // Thus, if the template-name is actually the constructor
+ // name, then the code is ill-formed; this interpretation is
+ // reinforced by the NAD status of core issue 635.
+ TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
+ if ((DSContext == DSC_top_level || DSContext == DSC_class) &&
+ TemplateId->Name &&
+ Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
+ if (isConstructorDeclarator(/*Unqualified*/false)) {
+ // The user meant this to be an out-of-line constructor
+ // definition, but template arguments are not allowed
+ // there. Just allow this as a constructor; we'll
+ // complain about it later.
+ goto DoneWithDeclSpec;
+ }
+
+ // The user meant this to name a type, but it actually names
+ // a constructor with some extraneous template
+ // arguments. Complain, then parse it as a type as the user
+ // intended.
+ Diag(TemplateId->TemplateNameLoc,
+ diag::err_out_of_line_template_id_names_constructor)
+ << TemplateId->Name;
+ }
+
+ DS.getTypeSpecScope() = SS;
+ ConsumeToken(); // The C++ scope.
+ assert(Tok.is(tok::annot_template_id) &&
+ "ParseOptionalCXXScopeSpecifier not working");
+ AnnotateTemplateIdTokenAsType();
+ continue;
+ }
+
+ if (Next.is(tok::annot_typename)) {
+ DS.getTypeSpecScope() = SS;
+ ConsumeToken(); // The C++ scope.
+ if (Tok.getAnnotationValue()) {
+ ParsedType T = getTypeAnnotation(Tok);
+ isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
+ Tok.getAnnotationEndLoc(),
+ PrevSpec, DiagID, T, Policy);
+ if (isInvalid)
+ break;
+ }
+ else
+ DS.SetTypeSpecError();
+ DS.SetRangeEnd(Tok.getAnnotationEndLoc());
+ ConsumeToken(); // The typename
+ }
+
+ if (Next.isNot(tok::identifier))
+ goto DoneWithDeclSpec;
+
+ // If we're in a context where the identifier could be a class name,
+ // check whether this is a constructor declaration.
+ if ((DSContext == DSC_top_level || DSContext == DSC_class) &&
+ Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
+ &SS)) {
+ if (isConstructorDeclarator(/*Unqualified*/false))
+ goto DoneWithDeclSpec;
+
+ // As noted in C++ [class.qual]p2 (cited above), when the name
+ // of the class is qualified in a context where it could name
+ // a constructor, its a constructor name. However, we've
+ // looked at the declarator, and the user probably meant this
+ // to be a type. Complain that it isn't supposed to be treated
+ // as a type, then proceed to parse it as a type.
+ Diag(Next.getLocation(), diag::err_out_of_line_type_names_constructor)
+ << Next.getIdentifierInfo();
+ }
+
+ ParsedType TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
+ Next.getLocation(),
+ getCurScope(), &SS,
+ false, false, ParsedType(),
+ /*IsCtorOrDtorName=*/false,
+ /*NonTrivialSourceInfo=*/true);
+
+ // If the referenced identifier is not a type, then this declspec is
+ // erroneous: We already checked about that it has no type specifier, and
+ // C++ doesn't have implicit int. Diagnose it as a typo w.r.t. to the
+ // typename.
+ if (!TypeRep) {
+ ConsumeToken(); // Eat the scope spec so the identifier is current.
+ ParsedAttributesWithRange Attrs(AttrFactory);
+ if (ParseImplicitInt(DS, &SS, TemplateInfo, AS, DSContext, Attrs)) {
+ if (!Attrs.empty()) {
+ AttrsLastTime = true;
+ attrs.takeAllFrom(Attrs);
+ }
+ continue;
+ }
+ goto DoneWithDeclSpec;
+ }
+
+ DS.getTypeSpecScope() = SS;
+ ConsumeToken(); // The C++ scope.
+
+ isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
+ DiagID, TypeRep, Policy);
+ if (isInvalid)
+ break;
+
+ DS.SetRangeEnd(Tok.getLocation());
+ ConsumeToken(); // The typename.
+
+ continue;
+ }
+
+ case tok::annot_typename: {
+ // If we've previously seen a tag definition, we were almost surely
+ // missing a semicolon after it.
+ if (DS.hasTypeSpecifier() && DS.hasTagDefinition())
+ goto DoneWithDeclSpec;
+
+ if (Tok.getAnnotationValue()) {
+ ParsedType T = getTypeAnnotation(Tok);
+ isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
+ DiagID, T, Policy);
+ } else
+ DS.SetTypeSpecError();
+
+ if (isInvalid)
+ break;
+
+ DS.SetRangeEnd(Tok.getAnnotationEndLoc());
+ ConsumeToken(); // The typename
+
+ // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
+ // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
+ // Objective-C interface.
+ if (Tok.is(tok::less) && getLangOpts().ObjC1)
+ ParseObjCProtocolQualifiers(DS);
+
+ continue;
+ }
+
+ case tok::kw___is_signed:
+ // GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang
+ // typically treats it as a trait. If we see __is_signed as it appears
+ // in libstdc++, e.g.,
+ //
+ // static const bool __is_signed;
+ //
+ // then treat __is_signed as an identifier rather than as a keyword.
+ if (DS.getTypeSpecType() == TST_bool &&
+ DS.getTypeQualifiers() == DeclSpec::TQ_const &&
+ DS.getStorageClassSpec() == DeclSpec::SCS_static)
+ TryKeywordIdentFallback(true);
+
+ // We're done with the declaration-specifiers.
+ goto DoneWithDeclSpec;
+
+ // typedef-name
+ case tok::kw___super:
+ case tok::kw_decltype:
+ case tok::identifier: {
+ // This identifier can only be a typedef name if we haven't already seen
+ // a type-specifier. Without this check we misparse:
+ // typedef int X; struct Y { short X; }; as 'short int'.
+ if (DS.hasTypeSpecifier())
+ goto DoneWithDeclSpec;
+
+ // In C++, check to see if this is a scope specifier like foo::bar::, if
+ // so handle it as such. This is important for ctor parsing.
+ if (getLangOpts().CPlusPlus) {
+ if (TryAnnotateCXXScopeToken(EnteringContext)) {
+ DS.SetTypeSpecError();
+ goto DoneWithDeclSpec;
+ }
+ if (!Tok.is(tok::identifier))
+ continue;
+ }
+
+ // Check for need to substitute AltiVec keyword tokens.
+ if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
+ break;
+
+ // [AltiVec] 2.2: [If the 'vector' specifier is used] The syntax does not
+ // allow the use of a typedef name as a type specifier.
+ if (DS.isTypeAltiVecVector())
+ goto DoneWithDeclSpec;
+
+ ParsedType TypeRep =
+ Actions.getTypeName(*Tok.getIdentifierInfo(),
+ Tok.getLocation(), getCurScope());
+
+ // MSVC: If we weren't able to parse a default template argument, and it's
+ // just a simple identifier, create a DependentNameType. This will allow
+ // us to defer the name lookup to template instantiation time, as long we
+ // forge a NestedNameSpecifier for the current context.
+ if (!TypeRep && DSContext == DSC_template_type_arg &&
+ getLangOpts().MSVCCompat && getCurScope()->isTemplateParamScope()) {
+ TypeRep = Actions.ActOnDelayedDefaultTemplateArg(
+ *Tok.getIdentifierInfo(), Tok.getLocation());
+ }
+
+ // If this is not a typedef name, don't parse it as part of the declspec,
+ // it must be an implicit int or an error.
+ if (!TypeRep) {
+ ParsedAttributesWithRange Attrs(AttrFactory);
+ if (ParseImplicitInt(DS, nullptr, TemplateInfo, AS, DSContext, Attrs)) {
+ if (!Attrs.empty()) {
+ AttrsLastTime = true;
+ attrs.takeAllFrom(Attrs);
+ }
+ continue;
+ }
+ goto DoneWithDeclSpec;
+ }
+
+ // If we're in a context where the identifier could be a class name,
+ // check whether this is a constructor declaration.
+ if (getLangOpts().CPlusPlus && DSContext == DSC_class &&
+ Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
+ isConstructorDeclarator(/*Unqualified*/true))
+ goto DoneWithDeclSpec;
+
+ isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
+ DiagID, TypeRep, Policy);
+ if (isInvalid)
+ break;
+
+ DS.SetRangeEnd(Tok.getLocation());
+ ConsumeToken(); // The identifier
+
+ // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
+ // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
+ // Objective-C interface.
+ if (Tok.is(tok::less) && getLangOpts().ObjC1)
+ ParseObjCProtocolQualifiers(DS);
+
+ // Need to support trailing type qualifiers (e.g. "id<p> const").
+ // If a type specifier follows, it will be diagnosed elsewhere.
+ continue;
+ }
+
+ // type-name
+ case tok::annot_template_id: {
+ TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
+ if (TemplateId->Kind != TNK_Type_template) {
+ // This template-id does not refer to a type name, so we're
+ // done with the type-specifiers.
+ goto DoneWithDeclSpec;
+ }
+
+ // If we're in a context where the template-id could be a
+ // constructor name or specialization, check whether this is a
+ // constructor declaration.
+ if (getLangOpts().CPlusPlus && DSContext == DSC_class &&
+ Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
+ isConstructorDeclarator(TemplateId->SS.isEmpty()))
+ goto DoneWithDeclSpec;
+
+ // Turn the template-id annotation token into a type annotation
+ // token, then try again to parse it as a type-specifier.
+ AnnotateTemplateIdTokenAsType();
+ continue;
+ }
+
+ // GNU attributes support.
+ case tok::kw___attribute:
+ ParseGNUAttributes(DS.getAttributes(), nullptr, LateAttrs);
+ continue;
+
+ // Microsoft declspec support.
+ case tok::kw___declspec:
+ ParseMicrosoftDeclSpecs(DS.getAttributes());
+ continue;
+
+ // Microsoft single token adornments.
+ case tok::kw___forceinline: {
+ isInvalid = DS.setFunctionSpecForceInline(Loc, PrevSpec, DiagID);
+ IdentifierInfo *AttrName = Tok.getIdentifierInfo();
+ SourceLocation AttrNameLoc = Tok.getLocation();
+ DS.getAttributes().addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc,
+ nullptr, 0, AttributeList::AS_Keyword);
+ break;
+ }
+
+ case tok::kw___sptr:
+ case tok::kw___uptr:
+ case tok::kw___ptr64:
+ case tok::kw___ptr32:
+ case tok::kw___w64:
+ case tok::kw___cdecl:
+ case tok::kw___stdcall:
+ case tok::kw___fastcall:
+ case tok::kw___thiscall:
+ case tok::kw___vectorcall:
+ case tok::kw___unaligned:
+ ParseMicrosoftTypeAttributes(DS.getAttributes());
+ continue;
+
+ // Borland single token adornments.
+ case tok::kw___pascal:
+ ParseBorlandTypeAttributes(DS.getAttributes());
+ continue;
+
+ // OpenCL single token adornments.
+ case tok::kw___kernel:
+ ParseOpenCLAttributes(DS.getAttributes());
+ continue;
+
+ // storage-class-specifier
+ case tok::kw_typedef:
+ isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_typedef, Loc,
+ PrevSpec, DiagID, Policy);
+ isStorageClass = true;
+ break;
+ case tok::kw_extern:
+ if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
+ Diag(Tok, diag::ext_thread_before) << "extern";
+ isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_extern, Loc,
+ PrevSpec, DiagID, Policy);
+ isStorageClass = true;
+ break;
+ case tok::kw___private_extern__:
+ isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_private_extern,
+ Loc, PrevSpec, DiagID, Policy);
+ isStorageClass = true;
+ break;
+ case tok::kw_static:
+ if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
+ Diag(Tok, diag::ext_thread_before) << "static";
+ isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_static, Loc,
+ PrevSpec, DiagID, Policy);
+ isStorageClass = true;
+ break;
+ case tok::kw_auto:
+ if (getLangOpts().CPlusPlus11) {
+ if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) {
+ isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
+ PrevSpec, DiagID, Policy);
+ if (!isInvalid)
+ Diag(Tok, diag::ext_auto_storage_class)
+ << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
+ } else
+ isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
+ DiagID, Policy);
+ } else
+ isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
+ PrevSpec, DiagID, Policy);
+ isStorageClass = true;
+ break;
+ case tok::kw_register:
+ isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_register, Loc,
+ PrevSpec, DiagID, Policy);
+ isStorageClass = true;
+ break;
+ case tok::kw_mutable:
+ isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_mutable, Loc,
+ PrevSpec, DiagID, Policy);
+ isStorageClass = true;
+ break;
+ case tok::kw___thread:
+ isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS___thread, Loc,
+ PrevSpec, DiagID);
+ isStorageClass = true;
+ break;
+ case tok::kw_thread_local:
+ isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS_thread_local, Loc,
+ PrevSpec, DiagID);
+ break;
+ case tok::kw__Thread_local:
+ isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS__Thread_local,
+ Loc, PrevSpec, DiagID);
+ isStorageClass = true;
+ break;
+
+ // function-specifier
+ case tok::kw_inline:
+ isInvalid = DS.setFunctionSpecInline(Loc, PrevSpec, DiagID);
+ break;
+ case tok::kw_virtual:
+ isInvalid = DS.setFunctionSpecVirtual(Loc, PrevSpec, DiagID);
+ break;
+ case tok::kw_explicit:
+ isInvalid = DS.setFunctionSpecExplicit(Loc, PrevSpec, DiagID);
+ break;
+ case tok::kw__Noreturn:
+ if (!getLangOpts().C11)
+ Diag(Loc, diag::ext_c11_noreturn);
+ isInvalid = DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
+ break;
+
+ // alignment-specifier
+ case tok::kw__Alignas:
+ if (!getLangOpts().C11)
+ Diag(Tok, diag::ext_c11_alignment) << Tok.getName();
+ ParseAlignmentSpecifier(DS.getAttributes());
+ continue;
+
+ // friend
+ case tok::kw_friend:
+ if (DSContext == DSC_class)
+ isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
+ else {
+ PrevSpec = ""; // not actually used by the diagnostic
+ DiagID = diag::err_friend_invalid_in_context;
+ isInvalid = true;
+ }
+ break;
+
+ // Modules
+ case tok::kw___module_private__:
+ isInvalid = DS.setModulePrivateSpec(Loc, PrevSpec, DiagID);
+ break;
+
+ // constexpr
+ case tok::kw_constexpr:
+ isInvalid = DS.SetConstexprSpec(Loc, PrevSpec, DiagID);
+ break;
+
+ // type-specifier
+ case tok::kw_short:
+ isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
+ DiagID, Policy);
+ break;
+ case tok::kw_long:
+ if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
+ isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
+ DiagID, Policy);
+ else
+ isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
+ DiagID, Policy);
+ break;
+ case tok::kw___int64:
+ isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
+ DiagID, Policy);
+ break;
+ case tok::kw_signed:
+ isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
+ DiagID);
+ break;
+ case tok::kw_unsigned:
+ isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
+ DiagID);
+ break;
+ case tok::kw__Complex:
+ isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
+ DiagID);
+ break;
+ case tok::kw__Imaginary:
+ isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
+ DiagID);
+ break;
+ case tok::kw_void:
+ isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
+ DiagID, Policy);
+ break;
+ case tok::kw_char:
+ isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
+ DiagID, Policy);
+ break;
+ case tok::kw_int:
+ isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
+ DiagID, Policy);
+ break;
+ case tok::kw___int128:
+ isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec,
+ DiagID, Policy);
+ break;
+ case tok::kw_half:
+ isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec,
+ DiagID, Policy);
+ break;
+ case tok::kw_float:
+ isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
+ DiagID, Policy);
+ break;
+ case tok::kw_double:
+ isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
+ DiagID, Policy);
+ break;
+ case tok::kw_wchar_t:
+ isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
+ DiagID, Policy);
+ break;
+ case tok::kw_char16_t:
+ isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
+ DiagID, Policy);
+ break;
+ case tok::kw_char32_t:
+ isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
+ DiagID, Policy);
+ break;
+ case tok::kw_bool:
+ case tok::kw__Bool:
+ if (Tok.is(tok::kw_bool) &&
+ DS.getTypeSpecType() != DeclSpec::TST_unspecified &&
+ DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
+ PrevSpec = ""; // Not used by the diagnostic.
+ DiagID = diag::err_bool_redeclaration;
+ // For better error recovery.
+ Tok.setKind(tok::identifier);
+ isInvalid = true;
+ } else {
+ isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
+ DiagID, Policy);
+ }
+ break;
+ case tok::kw__Decimal32:
+ isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
+ DiagID, Policy);
+ break;
+ case tok::kw__Decimal64:
+ isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
+ DiagID, Policy);
+ break;
+ case tok::kw__Decimal128:
+ isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
+ DiagID, Policy);
+ break;
+ case tok::kw___vector:
+ isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
+ break;
+ case tok::kw___pixel:
+ isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
+ break;
+ case tok::kw___bool:
+ isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
+ break;
+ case tok::kw___unknown_anytype:
+ isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc,
+ PrevSpec, DiagID, Policy);
+ break;
+
+ // class-specifier:
+ case tok::kw_class:
+ case tok::kw_struct:
+ case tok::kw___interface:
+ case tok::kw_union: {
+ tok::TokenKind Kind = Tok.getKind();
+ ConsumeToken();
+
+ // These are attributes following class specifiers.
+ // To produce better diagnostic, we parse them when
+ // parsing class specifier.
+ ParsedAttributesWithRange Attributes(AttrFactory);
+ ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS,
+ EnteringContext, DSContext, Attributes);
+
+ // If there are attributes following class specifier,
+ // take them over and handle them here.
+ if (!Attributes.empty()) {
+ AttrsLastTime = true;
+ attrs.takeAllFrom(Attributes);
+ }
+ continue;
+ }
+
+ // enum-specifier:
+ case tok::kw_enum:
+ ConsumeToken();
+ ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSContext);
+ continue;
+
+ // cv-qualifier:
+ case tok::kw_const:
+ isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
+ getLangOpts());
+ break;
+ case tok::kw_volatile:
+ isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
+ getLangOpts());
+ break;
+ case tok::kw_restrict:
+ isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
+ getLangOpts());
+ break;
+
+ // C++ typename-specifier:
+ case tok::kw_typename:
+ if (TryAnnotateTypeOrScopeToken()) {
+ DS.SetTypeSpecError();
+ goto DoneWithDeclSpec;
+ }
+ if (!Tok.is(tok::kw_typename))
+ continue;
+ break;
+
+ // GNU typeof support.
+ case tok::kw_typeof:
+ ParseTypeofSpecifier(DS);
+ continue;
+
+ case tok::annot_decltype:
+ ParseDecltypeSpecifier(DS);
+ continue;
+
+ case tok::kw___underlying_type:
+ ParseUnderlyingTypeSpecifier(DS);
+ continue;
+
+ case tok::kw__Atomic:
+ // C11 6.7.2.4/4:
+ // If the _Atomic keyword is immediately followed by a left parenthesis,
+ // it is interpreted as a type specifier (with a type name), not as a
+ // type qualifier.
+ if (NextToken().is(tok::l_paren)) {
+ ParseAtomicSpecifier(DS);
+ continue;
+ }
+ isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
+ getLangOpts());
+ break;
+
+ // OpenCL qualifiers:
+ case tok::kw___generic:
+ // generic address space is introduced only in OpenCL v2.0
+ // see OpenCL C Spec v2.0 s6.5.5
+ if (Actions.getLangOpts().OpenCLVersion < 200) {
+ DiagID = diag::err_opencl_unknown_type_specifier;
+ PrevSpec = Tok.getIdentifierInfo()->getNameStart();
+ isInvalid = true;
+ break;
+ };
+ case tok::kw___private:
+ case tok::kw___global:
+ case tok::kw___local:
+ case tok::kw___constant:
+ case tok::kw___read_only:
+ case tok::kw___write_only:
+ case tok::kw___read_write:
+ ParseOpenCLQualifiers(DS.getAttributes());
+ break;
+
+ case tok::less:
+ // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
+ // "id<SomeProtocol>". This is hopelessly old fashioned and dangerous,
+ // but we support it.
+ if (DS.hasTypeSpecifier() || !getLangOpts().ObjC1)
+ goto DoneWithDeclSpec;
+
+ if (!ParseObjCProtocolQualifiers(DS))
+ Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
+ << FixItHint::CreateInsertion(Loc, "id")
+ << SourceRange(Loc, DS.getSourceRange().getEnd());
+
+ // Need to support trailing type qualifiers (e.g. "id<p> const").
+ // If a type specifier follows, it will be diagnosed elsewhere.
+ continue;
+ }
+ // If the specifier wasn't legal, issue a diagnostic.
+ if (isInvalid) {
+ assert(PrevSpec && "Method did not return previous specifier!");
+ assert(DiagID);
+
+ if (DiagID == diag::ext_duplicate_declspec)
+ Diag(Tok, DiagID)
+ << PrevSpec << FixItHint::CreateRemoval(Tok.getLocation());
+ else if (DiagID == diag::err_opencl_unknown_type_specifier)
+ Diag(Tok, DiagID) << PrevSpec << isStorageClass;
+ else
+ Diag(Tok, DiagID) << PrevSpec;
+ }
+
+ DS.SetRangeEnd(Tok.getLocation());
+ if (DiagID != diag::err_bool_redeclaration)
+ ConsumeToken();
+
+ AttrsLastTime = false;
+ }
+}
+
+/// ParseStructDeclaration - Parse a struct declaration without the terminating
+/// semicolon.
+///
+/// struct-declaration:
+/// specifier-qualifier-list struct-declarator-list
+/// [GNU] __extension__ struct-declaration
+/// [GNU] specifier-qualifier-list
+/// struct-declarator-list:
+/// struct-declarator
+/// struct-declarator-list ',' struct-declarator
+/// [GNU] struct-declarator-list ',' attributes[opt] struct-declarator
+/// struct-declarator:
+/// declarator
+/// [GNU] declarator attributes[opt]
+/// declarator[opt] ':' constant-expression
+/// [GNU] declarator[opt] ':' constant-expression attributes[opt]
+///
+void Parser::ParseStructDeclaration(
+ ParsingDeclSpec &DS,
+ llvm::function_ref<void(ParsingFieldDeclarator &)> FieldsCallback) {
+
+ if (Tok.is(tok::kw___extension__)) {
+ // __extension__ silences extension warnings in the subexpression.
+ ExtensionRAIIObject O(Diags); // Use RAII to do this.
+ ConsumeToken();
+ return ParseStructDeclaration(DS, FieldsCallback);
+ }
+
+ // Parse the common specifier-qualifiers-list piece.
+ ParseSpecifierQualifierList(DS);
+
+ // If there are no declarators, this is a free-standing declaration
+ // specifier. Let the actions module cope with it.
+ if (Tok.is(tok::semi)) {
+ Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
+ DS);
+ DS.complete(TheDecl);
+ return;
+ }
+
+ // Read struct-declarators until we find the semicolon.
+ bool FirstDeclarator = true;
+ SourceLocation CommaLoc;
+ while (1) {
+ ParsingFieldDeclarator DeclaratorInfo(*this, DS);
+ DeclaratorInfo.D.setCommaLoc(CommaLoc);
+
+ // Attributes are only allowed here on successive declarators.
+ if (!FirstDeclarator)
+ MaybeParseGNUAttributes(DeclaratorInfo.D);
+
+ /// struct-declarator: declarator
+ /// struct-declarator: declarator[opt] ':' constant-expression
+ if (Tok.isNot(tok::colon)) {
+ // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
+ ColonProtectionRAIIObject X(*this);
+ ParseDeclarator(DeclaratorInfo.D);
+ } else
+ DeclaratorInfo.D.SetIdentifier(nullptr, Tok.getLocation());
+
+ if (TryConsumeToken(tok::colon)) {
+ ExprResult Res(ParseConstantExpression());
+ if (Res.isInvalid())
+ SkipUntil(tok::semi, StopBeforeMatch);
+ else
+ DeclaratorInfo.BitfieldSize = Res.get();
+ }
+
+ // If attributes exist after the declarator, parse them.
+ MaybeParseGNUAttributes(DeclaratorInfo.D);
+
+ // We're done with this declarator; invoke the callback.
+ FieldsCallback(DeclaratorInfo);
+
+ // If we don't have a comma, it is either the end of the list (a ';')
+ // or an error, bail out.
+ if (!TryConsumeToken(tok::comma, CommaLoc))
+ return;
+
+ FirstDeclarator = false;
+ }
+}
+
+/// ParseStructUnionBody
+/// struct-contents:
+/// struct-declaration-list
+/// [EXT] empty
+/// [GNU] "struct-declaration-list" without terminatoring ';'
+/// struct-declaration-list:
+/// struct-declaration
+/// struct-declaration-list struct-declaration
+/// [OBC] '@' 'defs' '(' class-name ')'
+///
+void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
+ unsigned TagType, Decl *TagDecl) {
+ PrettyDeclStackTraceEntry CrashInfo(Actions, TagDecl, RecordLoc,
+ "parsing struct/union body");
+ assert(!getLangOpts().CPlusPlus && "C++ declarations not supported");
+
+ BalancedDelimiterTracker T(*this, tok::l_brace);
+ if (T.consumeOpen())
+ return;
+
+ ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
+ Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
+
+ SmallVector<Decl *, 32> FieldDecls;
+
+ // While we still have something to read, read the declarations in the struct.
+ while (Tok.isNot(tok::r_brace) && !isEofOrEom()) {
+ // Each iteration of this loop reads one struct-declaration.
+
+ // Check for extraneous top-level semicolon.
+ if (Tok.is(tok::semi)) {
+ ConsumeExtraSemi(InsideStruct, TagType);
+ continue;
+ }
+
+ // Parse _Static_assert declaration.
+ if (Tok.is(tok::kw__Static_assert)) {
+ SourceLocation DeclEnd;
+ ParseStaticAssertDeclaration(DeclEnd);
+ continue;
+ }
+
+ if (Tok.is(tok::annot_pragma_pack)) {
+ HandlePragmaPack();
+ continue;
+ }
+
+ if (Tok.is(tok::annot_pragma_align)) {
+ HandlePragmaAlign();
+ continue;
+ }
+
+ if (!Tok.is(tok::at)) {
+ auto CFieldCallback = [&](ParsingFieldDeclarator &FD) {
+ // Install the declarator into the current TagDecl.
+ Decl *Field =
+ Actions.ActOnField(getCurScope(), TagDecl,
+ FD.D.getDeclSpec().getSourceRange().getBegin(),
+ FD.D, FD.BitfieldSize);
+ FieldDecls.push_back(Field);
+ FD.complete(Field);
+ };
+
+ // Parse all the comma separated declarators.
+ ParsingDeclSpec DS(*this);
+ ParseStructDeclaration(DS, CFieldCallback);
+ } else { // Handle @defs
+ ConsumeToken();
+ if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
+ Diag(Tok, diag::err_unexpected_at);
+ SkipUntil(tok::semi);
+ continue;
+ }
+ ConsumeToken();
+ ExpectAndConsume(tok::l_paren);
+ if (!Tok.is(tok::identifier)) {
+ Diag(Tok, diag::err_expected) << tok::identifier;
+ SkipUntil(tok::semi);
+ continue;
+ }
+ SmallVector<Decl *, 16> Fields;
+ Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
+ Tok.getIdentifierInfo(), Fields);
+ FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
+ ConsumeToken();
+ ExpectAndConsume(tok::r_paren);
+ }
+
+ if (TryConsumeToken(tok::semi))
+ continue;
+
+ if (Tok.is(tok::r_brace)) {
+ ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
+ break;
+ }
+
+ ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
+ // Skip to end of block or statement to avoid ext-warning on extra ';'.
+ SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
+ // If we stopped at a ';', eat it.
+ TryConsumeToken(tok::semi);
+ }
+
+ T.consumeClose();
+
+ ParsedAttributes attrs(AttrFactory);
+ // If attributes exist after struct contents, parse them.
+ MaybeParseGNUAttributes(attrs);
+
+ Actions.ActOnFields(getCurScope(),
+ RecordLoc, TagDecl, FieldDecls,
+ T.getOpenLocation(), T.getCloseLocation(),
+ attrs.getList());
+ StructScope.Exit();
+ Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl,
+ T.getCloseLocation());
+}
+
+/// ParseEnumSpecifier
+/// enum-specifier: [C99 6.7.2.2]
+/// 'enum' identifier[opt] '{' enumerator-list '}'
+///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
+/// [GNU] 'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
+/// '}' attributes[opt]
+/// [MS] 'enum' __declspec[opt] identifier[opt] '{' enumerator-list ',' [opt]
+/// '}'
+/// 'enum' identifier
+/// [GNU] 'enum' attributes[opt] identifier
+///
+/// [C++11] enum-head '{' enumerator-list[opt] '}'
+/// [C++11] enum-head '{' enumerator-list ',' '}'
+///
+/// enum-head: [C++11]
+/// enum-key attribute-specifier-seq[opt] identifier[opt] enum-base[opt]
+/// enum-key attribute-specifier-seq[opt] nested-name-specifier
+/// identifier enum-base[opt]
+///
+/// enum-key: [C++11]
+/// 'enum'
+/// 'enum' 'class'
+/// 'enum' 'struct'
+///
+/// enum-base: [C++11]
+/// ':' type-specifier-seq
+///
+/// [C++] elaborated-type-specifier:
+/// [C++] 'enum' '::'[opt] nested-name-specifier[opt] identifier
+///
+void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
+ const ParsedTemplateInfo &TemplateInfo,
+ AccessSpecifier AS, DeclSpecContext DSC) {
+ // Parse the tag portion of this.
+ if (Tok.is(tok::code_completion)) {
+ // Code completion for an enum name.
+ Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
+ return cutOffParsing();
+ }
+
+ // If attributes exist after tag, parse them.
+ ParsedAttributesWithRange attrs(AttrFactory);
+ MaybeParseGNUAttributes(attrs);
+ MaybeParseCXX11Attributes(attrs);
+ MaybeParseMicrosoftDeclSpecs(attrs);
+
+ SourceLocation ScopedEnumKWLoc;
+ bool IsScopedUsingClassTag = false;
+
+ // In C++11, recognize 'enum class' and 'enum struct'.
+ if (Tok.is(tok::kw_class) || Tok.is(tok::kw_struct)) {
+ Diag(Tok, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_scoped_enum
+ : diag::ext_scoped_enum);
+ IsScopedUsingClassTag = Tok.is(tok::kw_class);
+ ScopedEnumKWLoc = ConsumeToken();
+
+ // Attributes are not allowed between these keywords. Diagnose,
+ // but then just treat them like they appeared in the right place.
+ ProhibitAttributes(attrs);
+
+ // They are allowed afterwards, though.
+ MaybeParseGNUAttributes(attrs);
+ MaybeParseCXX11Attributes(attrs);
+ MaybeParseMicrosoftDeclSpecs(attrs);
+ }
+
+ // C++11 [temp.explicit]p12:
+ // The usual access controls do not apply to names used to specify
+ // explicit instantiations.
+ // We extend this to also cover explicit specializations. Note that
+ // we don't suppress if this turns out to be an elaborated type
+ // specifier.
+ bool shouldDelayDiagsInTag =
+ (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
+ TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
+ SuppressAccessChecks diagsFromTag(*this, shouldDelayDiagsInTag);
+
+ // Enum definitions should not be parsed in a trailing-return-type.
+ bool AllowDeclaration = DSC != DSC_trailing;
+
+ bool AllowFixedUnderlyingType = AllowDeclaration &&
+ (getLangOpts().CPlusPlus11 || getLangOpts().MicrosoftExt ||
+ getLangOpts().ObjC2);
+
+ CXXScopeSpec &SS = DS.getTypeSpecScope();
+ if (getLangOpts().CPlusPlus) {
+ // "enum foo : bar;" is not a potential typo for "enum foo::bar;"
+ // if a fixed underlying type is allowed.
+ ColonProtectionRAIIObject X(*this, AllowFixedUnderlyingType);
+
+ CXXScopeSpec Spec;
+ if (ParseOptionalCXXScopeSpecifier(Spec, ParsedType(),
+ /*EnteringContext=*/true))
+ return;
+
+ if (Spec.isSet() && Tok.isNot(tok::identifier)) {
+ Diag(Tok, diag::err_expected) << tok::identifier;
+ if (Tok.isNot(tok::l_brace)) {
+ // Has no name and is not a definition.
+ // Skip the rest of this declarator, up until the comma or semicolon.
+ SkipUntil(tok::comma, StopAtSemi);
+ return;
+ }
+ }
+
+ SS = Spec;
+ }
+
+ // Must have either 'enum name' or 'enum {...}'.
+ if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) &&
+ !(AllowFixedUnderlyingType && Tok.is(tok::colon))) {
+ Diag(Tok, diag::err_expected_either) << tok::identifier << tok::l_brace;
+
+ // Skip the rest of this declarator, up until the comma or semicolon.
+ SkipUntil(tok::comma, StopAtSemi);
+ return;
+ }
+
+ // If an identifier is present, consume and remember it.
+ IdentifierInfo *Name = nullptr;
+ SourceLocation NameLoc;
+ if (Tok.is(tok::identifier)) {
+ Name = Tok.getIdentifierInfo();
+ NameLoc = ConsumeToken();
+ }
+
+ if (!Name && ScopedEnumKWLoc.isValid()) {
+ // C++0x 7.2p2: The optional identifier shall not be omitted in the
+ // declaration of a scoped enumeration.
+ Diag(Tok, diag::err_scoped_enum_missing_identifier);
+ ScopedEnumKWLoc = SourceLocation();
+ IsScopedUsingClassTag = false;
+ }
+
+ // Okay, end the suppression area. We'll decide whether to emit the
+ // diagnostics in a second.
+ if (shouldDelayDiagsInTag)
+ diagsFromTag.done();
+
+ TypeResult BaseType;
+
+ // Parse the fixed underlying type.
+ bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope;
+ if (AllowFixedUnderlyingType && Tok.is(tok::colon)) {
+ bool PossibleBitfield = false;
+ if (CanBeBitfield) {
+ // If we're in class scope, this can either be an enum declaration with
+ // an underlying type, or a declaration of a bitfield member. We try to
+ // use a simple disambiguation scheme first to catch the common cases
+ // (integer literal, sizeof); if it's still ambiguous, we then consider
+ // anything that's a simple-type-specifier followed by '(' as an
+ // expression. This suffices because function types are not valid
+ // underlying types anyway.
+ EnterExpressionEvaluationContext Unevaluated(Actions,
+ Sema::ConstantEvaluated);
+ TPResult TPR = isExpressionOrTypeSpecifierSimple(NextToken().getKind());
+ // If the next token starts an expression, we know we're parsing a
+ // bit-field. This is the common case.
+ if (TPR == TPResult::True)
+ PossibleBitfield = true;
+ // If the next token starts a type-specifier-seq, it may be either a
+ // a fixed underlying type or the start of a function-style cast in C++;
+ // lookahead one more token to see if it's obvious that we have a
+ // fixed underlying type.
+ else if (TPR == TPResult::False &&
+ GetLookAheadToken(2).getKind() == tok::semi) {
+ // Consume the ':'.
+ ConsumeToken();
+ } else {
+ // We have the start of a type-specifier-seq, so we have to perform
+ // tentative parsing to determine whether we have an expression or a
+ // type.
+ TentativeParsingAction TPA(*this);
+
+ // Consume the ':'.
+ ConsumeToken();
+
+ // If we see a type specifier followed by an open-brace, we have an
+ // ambiguity between an underlying type and a C++11 braced
+ // function-style cast. Resolve this by always treating it as an
+ // underlying type.
+ // FIXME: The standard is not entirely clear on how to disambiguate in
+ // this case.
+ if ((getLangOpts().CPlusPlus &&
+ isCXXDeclarationSpecifier(TPResult::True) != TPResult::True) ||
+ (!getLangOpts().CPlusPlus && !isDeclarationSpecifier(true))) {
+ // We'll parse this as a bitfield later.
+ PossibleBitfield = true;
+ TPA.Revert();
+ } else {
+ // We have a type-specifier-seq.
+ TPA.Commit();
+ }
+ }
+ } else {
+ // Consume the ':'.
+ ConsumeToken();
+ }
+
+ if (!PossibleBitfield) {
+ SourceRange Range;
+ BaseType = ParseTypeName(&Range);
+
+ if (getLangOpts().CPlusPlus11) {
+ Diag(StartLoc, diag::warn_cxx98_compat_enum_fixed_underlying_type);
+ } else if (!getLangOpts().ObjC2) {
+ if (getLangOpts().CPlusPlus)
+ Diag(StartLoc, diag::ext_cxx11_enum_fixed_underlying_type) << Range;
+ else
+ Diag(StartLoc, diag::ext_c_enum_fixed_underlying_type) << Range;
+ }
+ }
+ }
+
+ // There are four options here. If we have 'friend enum foo;' then this is a
+ // friend declaration, and cannot have an accompanying definition. If we have
+ // 'enum foo;', then this is a forward declaration. If we have
+ // 'enum foo {...' then this is a definition. Otherwise we have something
+ // like 'enum foo xyz', a reference.
+ //
+ // This is needed to handle stuff like this right (C99 6.7.2.3p11):
+ // enum foo {..}; void bar() { enum foo; } <- new foo in bar.
+ // enum foo {..}; void bar() { enum foo x; } <- use of old foo.
+ //
+ Sema::TagUseKind TUK;
+ if (!AllowDeclaration) {
+ TUK = Sema::TUK_Reference;
+ } else if (Tok.is(tok::l_brace)) {
+ if (DS.isFriendSpecified()) {
+ Diag(Tok.getLocation(), diag::err_friend_decl_defines_type)
+ << SourceRange(DS.getFriendSpecLoc());
+ ConsumeBrace();
+ SkipUntil(tok::r_brace, StopAtSemi);
+ TUK = Sema::TUK_Friend;
+ } else {
+ TUK = Sema::TUK_Definition;
+ }
+ } else if (!isTypeSpecifier(DSC) &&
+ (Tok.is(tok::semi) ||
+ (Tok.isAtStartOfLine() &&
+ !isValidAfterTypeSpecifier(CanBeBitfield)))) {
+ TUK = DS.isFriendSpecified() ? Sema::TUK_Friend : Sema::TUK_Declaration;
+ if (Tok.isNot(tok::semi)) {
+ // A semicolon was missing after this declaration. Diagnose and recover.
+ ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
+ PP.EnterToken(Tok);
+ Tok.setKind(tok::semi);
+ }
+ } else {
+ TUK = Sema::TUK_Reference;
+ }
+
+ // If this is an elaborated type specifier, and we delayed
+ // diagnostics before, just merge them into the current pool.
+ if (TUK == Sema::TUK_Reference && shouldDelayDiagsInTag) {
+ diagsFromTag.redelay();
+ }
+
+ MultiTemplateParamsArg TParams;
+ if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
+ TUK != Sema::TUK_Reference) {
+ if (!getLangOpts().CPlusPlus11 || !SS.isSet()) {
+ // Skip the rest of this declarator, up until the comma or semicolon.
+ Diag(Tok, diag::err_enum_template);
+ SkipUntil(tok::comma, StopAtSemi);
+ return;
+ }
+
+ if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
+ // Enumerations can't be explicitly instantiated.
+ DS.SetTypeSpecError();
+ Diag(StartLoc, diag::err_explicit_instantiation_enum);
+ return;
+ }
+
+ assert(TemplateInfo.TemplateParams && "no template parameters");
+ TParams = MultiTemplateParamsArg(TemplateInfo.TemplateParams->data(),
+ TemplateInfo.TemplateParams->size());
+ }
+
+ if (TUK == Sema::TUK_Reference)
+ ProhibitAttributes(attrs);
+
+ if (!Name && TUK != Sema::TUK_Definition) {
+ Diag(Tok, diag::err_enumerator_unnamed_no_def);
+
+ // Skip the rest of this declarator, up until the comma or semicolon.
+ SkipUntil(tok::comma, StopAtSemi);
+ return;
+ }
+
+ handleDeclspecAlignBeforeClassKey(attrs, DS, TUK);
+
+ Sema::SkipBodyInfo SkipBody;
+ if (!Name && TUK == Sema::TUK_Definition && Tok.is(tok::l_brace) &&
+ NextToken().is(tok::identifier))
+ SkipBody = Actions.shouldSkipAnonEnumBody(getCurScope(),
+ NextToken().getIdentifierInfo(),
+ NextToken().getLocation());
+
+ bool Owned = false;
+ bool IsDependent = false;
+ const char *PrevSpec = nullptr;
+ unsigned DiagID;
+ Decl *TagDecl = Actions.ActOnTag(getCurScope(), DeclSpec::TST_enum, TUK,
+ StartLoc, SS, Name, NameLoc, attrs.getList(),
+ AS, DS.getModulePrivateSpecLoc(), TParams,
+ Owned, IsDependent, ScopedEnumKWLoc,
+ IsScopedUsingClassTag, BaseType,
+ DSC == DSC_type_specifier, &SkipBody);
+
+ if (SkipBody.ShouldSkip) {
+ assert(TUK == Sema::TUK_Definition && "can only skip a definition");
+
+ BalancedDelimiterTracker T(*this, tok::l_brace);
+ T.consumeOpen();
+ T.skipToEnd();
+
+ if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
+ NameLoc.isValid() ? NameLoc : StartLoc,
+ PrevSpec, DiagID, TagDecl, Owned,
+ Actions.getASTContext().getPrintingPolicy()))
+ Diag(StartLoc, DiagID) << PrevSpec;
+ return;
+ }
+
+ if (IsDependent) {
+ // This enum has a dependent nested-name-specifier. Handle it as a
+ // dependent tag.
+ if (!Name) {
+ DS.SetTypeSpecError();
+ Diag(Tok, diag::err_expected_type_name_after_typename);
+ return;
+ }
+
+ TypeResult Type = Actions.ActOnDependentTag(
+ getCurScope(), DeclSpec::TST_enum, TUK, SS, Name, StartLoc, NameLoc);
+ if (Type.isInvalid()) {
+ DS.SetTypeSpecError();
+ return;
+ }
+
+ if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
+ NameLoc.isValid() ? NameLoc : StartLoc,
+ PrevSpec, DiagID, Type.get(),
+ Actions.getASTContext().getPrintingPolicy()))
+ Diag(StartLoc, DiagID) << PrevSpec;
+
+ return;
+ }
+
+ if (!TagDecl) {
+ // The action failed to produce an enumeration tag. If this is a
+ // definition, consume the entire definition.
+ if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) {
+ ConsumeBrace();
+ SkipUntil(tok::r_brace, StopAtSemi);
+ }
+
+ DS.SetTypeSpecError();
+ return;
+ }
+
+ if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference)
+ ParseEnumBody(StartLoc, TagDecl);
+
+ if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
+ NameLoc.isValid() ? NameLoc : StartLoc,
+ PrevSpec, DiagID, TagDecl, Owned,
+ Actions.getASTContext().getPrintingPolicy()))
+ Diag(StartLoc, DiagID) << PrevSpec;
+}
+
+/// ParseEnumBody - Parse a {} enclosed enumerator-list.
+/// enumerator-list:
+/// enumerator
+/// enumerator-list ',' enumerator
+/// enumerator:
+/// enumeration-constant attributes[opt]
+/// enumeration-constant attributes[opt] '=' constant-expression
+/// enumeration-constant:
+/// identifier
+///
+void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
+ // Enter the scope of the enum body and start the definition.
+ ParseScope EnumScope(this, Scope::DeclScope | Scope::EnumScope);
+ Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
+
+ BalancedDelimiterTracker T(*this, tok::l_brace);
+ T.consumeOpen();
+
+ // C does not allow an empty enumerator-list, C++ does [dcl.enum].
+ if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus)
+ Diag(Tok, diag::error_empty_enum);
+
+ SmallVector<Decl *, 32> EnumConstantDecls;
+ SmallVector<SuppressAccessChecks, 32> EnumAvailabilityDiags;
+
+ Decl *LastEnumConstDecl = nullptr;
+
+ // Parse the enumerator-list.
+ while (Tok.isNot(tok::r_brace)) {
+ // Parse enumerator. If failed, try skipping till the start of the next
+ // enumerator definition.
+ if (Tok.isNot(tok::identifier)) {
+ Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
+ if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch) &&
+ TryConsumeToken(tok::comma))
+ continue;
+ break;
+ }
+ IdentifierInfo *Ident = Tok.getIdentifierInfo();
+ SourceLocation IdentLoc = ConsumeToken();
+
+ // If attributes exist after the enumerator, parse them.
+ ParsedAttributesWithRange attrs(AttrFactory);
+ MaybeParseGNUAttributes(attrs);
+ ProhibitAttributes(attrs); // GNU-style attributes are prohibited.
+ if (getLangOpts().CPlusPlus11 && isCXX11AttributeSpecifier()) {
+ if (!getLangOpts().CPlusPlus1z)
+ Diag(Tok.getLocation(), diag::warn_cxx14_compat_attribute)
+ << 1 /*enumerator*/;
+ ParseCXX11Attributes(attrs);
+ }
+
+ SourceLocation EqualLoc;
+ ExprResult AssignedVal;
+ EnumAvailabilityDiags.emplace_back(*this);
+
+ if (TryConsumeToken(tok::equal, EqualLoc)) {
+ AssignedVal = ParseConstantExpression();
+ if (AssignedVal.isInvalid())
+ SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch);
+ }
+
+ // Install the enumerator constant into EnumDecl.
+ Decl *EnumConstDecl = Actions.ActOnEnumConstant(getCurScope(), EnumDecl,
+ LastEnumConstDecl,
+ IdentLoc, Ident,
+ attrs.getList(), EqualLoc,
+ AssignedVal.get());
+ EnumAvailabilityDiags.back().done();
+
+ EnumConstantDecls.push_back(EnumConstDecl);
+ LastEnumConstDecl = EnumConstDecl;
+
+ if (Tok.is(tok::identifier)) {
+ // We're missing a comma between enumerators.
+ SourceLocation Loc = PP.getLocForEndOfToken(PrevTokLocation);
+ Diag(Loc, diag::err_enumerator_list_missing_comma)
+ << FixItHint::CreateInsertion(Loc, ", ");
+ continue;
+ }
+
+ // Emumerator definition must be finished, only comma or r_brace are
+ // allowed here.
+ SourceLocation CommaLoc;
+ if (Tok.isNot(tok::r_brace) && !TryConsumeToken(tok::comma, CommaLoc)) {
+ if (EqualLoc.isValid())
+ Diag(Tok.getLocation(), diag::err_expected_either) << tok::r_brace
+ << tok::comma;
+ else
+ Diag(Tok.getLocation(), diag::err_expected_end_of_enumerator);
+ if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch)) {
+ if (TryConsumeToken(tok::comma, CommaLoc))
+ continue;
+ } else {
+ break;
+ }
+ }
+
+ // If comma is followed by r_brace, emit appropriate warning.
+ if (Tok.is(tok::r_brace) && CommaLoc.isValid()) {
+ if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11)
+ Diag(CommaLoc, getLangOpts().CPlusPlus ?
+ diag::ext_enumerator_list_comma_cxx :
+ diag::ext_enumerator_list_comma_c)
+ << FixItHint::CreateRemoval(CommaLoc);
+ else if (getLangOpts().CPlusPlus11)
+ Diag(CommaLoc, diag::warn_cxx98_compat_enumerator_list_comma)
+ << FixItHint::CreateRemoval(CommaLoc);
+ break;
+ }
+ }
+
+ // Eat the }.
+ T.consumeClose();
+
+ // If attributes exist after the identifier list, parse them.
+ ParsedAttributes attrs(AttrFactory);
+ MaybeParseGNUAttributes(attrs);
+
+ Actions.ActOnEnumBody(StartLoc, T.getOpenLocation(), T.getCloseLocation(),
+ EnumDecl, EnumConstantDecls,
+ getCurScope(),
+ attrs.getList());
+
+ // Now handle enum constant availability diagnostics.
+ assert(EnumConstantDecls.size() == EnumAvailabilityDiags.size());
+ for (size_t i = 0, e = EnumConstantDecls.size(); i != e; ++i) {
+ ParsingDeclRAIIObject PD(*this, ParsingDeclRAIIObject::NoParent);
+ EnumAvailabilityDiags[i].redelay();
+ PD.complete(EnumConstantDecls[i]);
+ }
+
+ EnumScope.Exit();
+ Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl,
+ T.getCloseLocation());
+
+ // The next token must be valid after an enum definition. If not, a ';'
+ // was probably forgotten.
+ bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope;
+ if (!isValidAfterTypeSpecifier(CanBeBitfield)) {
+ ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
+ // Push this token back into the preprocessor and change our current token
+ // to ';' so that the rest of the code recovers as though there were an
+ // ';' after the definition.
+ PP.EnterToken(Tok);
+ Tok.setKind(tok::semi);
+ }
+}
+
+/// isTypeSpecifierQualifier - Return true if the current token could be the
+/// start of a type-qualifier-list.
+bool Parser::isTypeQualifier() const {
+ switch (Tok.getKind()) {
+ default: return false;
+ // type-qualifier
+ case tok::kw_const:
+ case tok::kw_volatile:
+ case tok::kw_restrict:
+ case tok::kw___private:
+ case tok::kw___local:
+ case tok::kw___global:
+ case tok::kw___constant:
+ case tok::kw___generic:
+ case tok::kw___read_only:
+ case tok::kw___read_write:
+ case tok::kw___write_only:
+ return true;
+ }
+}
+
+/// isKnownToBeTypeSpecifier - Return true if we know that the specified token
+/// is definitely a type-specifier. Return false if it isn't part of a type
+/// specifier or if we're not sure.
+bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
+ switch (Tok.getKind()) {
+ default: return false;
+ // type-specifiers
+ case tok::kw_short:
+ case tok::kw_long:
+ case tok::kw___int64:
+ case tok::kw___int128:
+ case tok::kw_signed:
+ case tok::kw_unsigned:
+ case tok::kw__Complex:
+ case tok::kw__Imaginary:
+ case tok::kw_void:
+ case tok::kw_char:
+ case tok::kw_wchar_t:
+ case tok::kw_char16_t:
+ case tok::kw_char32_t:
+ case tok::kw_int:
+ case tok::kw_half:
+ case tok::kw_float:
+ case tok::kw_double:
+ case tok::kw_bool:
+ case tok::kw__Bool:
+ case tok::kw__Decimal32:
+ case tok::kw__Decimal64:
+ case tok::kw__Decimal128:
+ case tok::kw___vector:
+
+ // struct-or-union-specifier (C99) or class-specifier (C++)
+ case tok::kw_class:
+ case tok::kw_struct:
+ case tok::kw___interface:
+ case tok::kw_union:
+ // enum-specifier
+ case tok::kw_enum:
+
+ // typedef-name
+ case tok::annot_typename:
+ return true;
+ }
+}
+
+/// isTypeSpecifierQualifier - Return true if the current token could be the
+/// start of a specifier-qualifier-list.
+bool Parser::isTypeSpecifierQualifier() {
+ switch (Tok.getKind()) {
+ default: return false;
+
+ case tok::identifier: // foo::bar
+ if (TryAltiVecVectorToken())
+ return true;
+ // Fall through.
+ case tok::kw_typename: // typename T::type
+ // Annotate typenames and C++ scope specifiers. If we get one, just
+ // recurse to handle whatever we get.
+ if (TryAnnotateTypeOrScopeToken())
+ return true;
+ if (Tok.is(tok::identifier))
+ return false;
+ return isTypeSpecifierQualifier();
+
+ case tok::coloncolon: // ::foo::bar
+ if (NextToken().is(tok::kw_new) || // ::new
+ NextToken().is(tok::kw_delete)) // ::delete
+ return false;
+
+ if (TryAnnotateTypeOrScopeToken())
+ return true;
+ return isTypeSpecifierQualifier();
+
+ // GNU attributes support.
+ case tok::kw___attribute:
+ // GNU typeof support.
+ case tok::kw_typeof:
+
+ // type-specifiers
+ case tok::kw_short:
+ case tok::kw_long:
+ case tok::kw___int64:
+ case tok::kw___int128:
+ case tok::kw_signed:
+ case tok::kw_unsigned:
+ case tok::kw__Complex:
+ case tok::kw__Imaginary:
+ case tok::kw_void:
+ case tok::kw_char:
+ case tok::kw_wchar_t:
+ case tok::kw_char16_t:
+ case tok::kw_char32_t:
+ case tok::kw_int:
+ case tok::kw_half:
+ case tok::kw_float:
+ case tok::kw_double:
+ case tok::kw_bool:
+ case tok::kw__Bool:
+ case tok::kw__Decimal32:
+ case tok::kw__Decimal64:
+ case tok::kw__Decimal128:
+ case tok::kw___vector:
+
+ // struct-or-union-specifier (C99) or class-specifier (C++)
+ case tok::kw_class:
+ case tok::kw_struct:
+ case tok::kw___interface:
+ case tok::kw_union:
+ // enum-specifier
+ case tok::kw_enum:
+
+ // type-qualifier
+ case tok::kw_const:
+ case tok::kw_volatile:
+ case tok::kw_restrict:
+
+ // Debugger support.
+ case tok::kw___unknown_anytype:
+
+ // typedef-name
+ case tok::annot_typename:
+ return true;
+
+ // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
+ case tok::less:
+ return getLangOpts().ObjC1;
+
+ case tok::kw___cdecl:
+ case tok::kw___stdcall:
+ case tok::kw___fastcall:
+ case tok::kw___thiscall:
+ case tok::kw___vectorcall:
+ case tok::kw___w64:
+ case tok::kw___ptr64:
+ case tok::kw___ptr32:
+ case tok::kw___pascal:
+ case tok::kw___unaligned:
+
+ case tok::kw___private:
+ case tok::kw___local:
+ case tok::kw___global:
+ case tok::kw___constant:
+ case tok::kw___generic:
+ case tok::kw___read_only:
+ case tok::kw___read_write:
+ case tok::kw___write_only:
+
+ return true;
+
+ // C11 _Atomic
+ case tok::kw__Atomic:
+ return true;
+ }
+}
+
+/// isDeclarationSpecifier() - Return true if the current token is part of a
+/// declaration specifier.
+///
+/// \param DisambiguatingWithExpression True to indicate that the purpose of
+/// this check is to disambiguate between an expression and a declaration.
+bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) {
+ switch (Tok.getKind()) {
+ default: return false;
+
+ case tok::identifier: // foo::bar
+ // Unfortunate hack to support "Class.factoryMethod" notation.
+ if (getLangOpts().ObjC1 && NextToken().is(tok::period))
+ return false;
+ if (TryAltiVecVectorToken())
+ return true;
+ // Fall through.
+ case tok::kw_decltype: // decltype(T())::type
+ case tok::kw_typename: // typename T::type
+ // Annotate typenames and C++ scope specifiers. If we get one, just
+ // recurse to handle whatever we get.
+ if (TryAnnotateTypeOrScopeToken())
+ return true;
+ if (Tok.is(tok::identifier))
+ return false;
+
+ // If we're in Objective-C and we have an Objective-C class type followed
+ // by an identifier and then either ':' or ']', in a place where an
+ // expression is permitted, then this is probably a class message send
+ // missing the initial '['. In this case, we won't consider this to be
+ // the start of a declaration.
+ if (DisambiguatingWithExpression &&
+ isStartOfObjCClassMessageMissingOpenBracket())
+ return false;
+
+ return isDeclarationSpecifier();
+
+ case tok::coloncolon: // ::foo::bar
+ if (NextToken().is(tok::kw_new) || // ::new
+ NextToken().is(tok::kw_delete)) // ::delete
+ return false;
+
+ // Annotate typenames and C++ scope specifiers. If we get one, just
+ // recurse to handle whatever we get.
+ if (TryAnnotateTypeOrScopeToken())
+ return true;
+ return isDeclarationSpecifier();
+
+ // storage-class-specifier
+ case tok::kw_typedef:
+ case tok::kw_extern:
+ case tok::kw___private_extern__:
+ case tok::kw_static:
+ case tok::kw_auto:
+ case tok::kw_register:
+ case tok::kw___thread:
+ case tok::kw_thread_local:
+ case tok::kw__Thread_local:
+
+ // Modules
+ case tok::kw___module_private__:
+
+ // Debugger support
+ case tok::kw___unknown_anytype:
+
+ // type-specifiers
+ case tok::kw_short:
+ case tok::kw_long:
+ case tok::kw___int64:
+ case tok::kw___int128:
+ case tok::kw_signed:
+ case tok::kw_unsigned:
+ case tok::kw__Complex:
+ case tok::kw__Imaginary:
+ case tok::kw_void:
+ case tok::kw_char:
+ case tok::kw_wchar_t:
+ case tok::kw_char16_t:
+ case tok::kw_char32_t:
+
+ case tok::kw_int:
+ case tok::kw_half:
+ case tok::kw_float:
+ case tok::kw_double:
+ case tok::kw_bool:
+ case tok::kw__Bool:
+ case tok::kw__Decimal32:
+ case tok::kw__Decimal64:
+ case tok::kw__Decimal128:
+ case tok::kw___vector:
+
+ // struct-or-union-specifier (C99) or class-specifier (C++)
+ case tok::kw_class:
+ case tok::kw_struct:
+ case tok::kw_union:
+ case tok::kw___interface:
+ // enum-specifier
+ case tok::kw_enum:
+
+ // type-qualifier
+ case tok::kw_const:
+ case tok::kw_volatile:
+ case tok::kw_restrict:
+
+ // function-specifier
+ case tok::kw_inline:
+ case tok::kw_virtual:
+ case tok::kw_explicit:
+ case tok::kw__Noreturn:
+
+ // alignment-specifier
+ case tok::kw__Alignas:
+
+ // friend keyword.
+ case tok::kw_friend:
+
+ // static_assert-declaration
+ case tok::kw__Static_assert:
+
+ // GNU typeof support.
+ case tok::kw_typeof:
+
+ // GNU attributes.
+ case tok::kw___attribute:
+
+ // C++11 decltype and constexpr.
+ case tok::annot_decltype:
+ case tok::kw_constexpr:
+
+ // C11 _Atomic
+ case tok::kw__Atomic:
+ return true;
+
+ // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
+ case tok::less:
+ return getLangOpts().ObjC1;
+
+ // typedef-name
+ case tok::annot_typename:
+ return !DisambiguatingWithExpression ||
+ !isStartOfObjCClassMessageMissingOpenBracket();
+
+ case tok::kw___declspec:
+ case tok::kw___cdecl:
+ case tok::kw___stdcall:
+ case tok::kw___fastcall:
+ case tok::kw___thiscall:
+ case tok::kw___vectorcall:
+ case tok::kw___w64:
+ case tok::kw___sptr:
+ case tok::kw___uptr:
+ case tok::kw___ptr64:
+ case tok::kw___ptr32:
+ case tok::kw___forceinline:
+ case tok::kw___pascal:
+ case tok::kw___unaligned:
+
+ case tok::kw___private:
+ case tok::kw___local:
+ case tok::kw___global:
+ case tok::kw___constant:
+ case tok::kw___generic:
+ case tok::kw___read_only:
+ case tok::kw___read_write:
+ case tok::kw___write_only:
+
+ return true;
+ }
+}
+
+bool Parser::isConstructorDeclarator(bool IsUnqualified) {
+ TentativeParsingAction TPA(*this);
+
+ // Parse the C++ scope specifier.
+ CXXScopeSpec SS;
+ if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
+ /*EnteringContext=*/true)) {
+ TPA.Revert();
+ return false;
+ }
+
+ // Parse the constructor name.
+ if (Tok.is(tok::identifier) || Tok.is(tok::annot_template_id)) {
+ // We already know that we have a constructor name; just consume
+ // the token.
+ ConsumeToken();
+ } else {
+ TPA.Revert();
+ return false;
+ }
+
+ // Current class name must be followed by a left parenthesis.
+ if (Tok.isNot(tok::l_paren)) {
+ TPA.Revert();
+ return false;
+ }
+ ConsumeParen();
+
+ // A right parenthesis, or ellipsis followed by a right parenthesis signals
+ // that we have a constructor.
+ if (Tok.is(tok::r_paren) ||
+ (Tok.is(tok::ellipsis) && NextToken().is(tok::r_paren))) {
+ TPA.Revert();
+ return true;
+ }
+
+ // A C++11 attribute here signals that we have a constructor, and is an
+ // attribute on the first constructor parameter.
+ if (getLangOpts().CPlusPlus11 &&
+ isCXX11AttributeSpecifier(/*Disambiguate*/ false,
+ /*OuterMightBeMessageSend*/ true)) {
+ TPA.Revert();
+ return true;
+ }
+
+ // If we need to, enter the specified scope.
+ DeclaratorScopeObj DeclScopeObj(*this, SS);
+ if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
+ DeclScopeObj.EnterDeclaratorScope();
+
+ // Optionally skip Microsoft attributes.
+ ParsedAttributes Attrs(AttrFactory);
+ MaybeParseMicrosoftAttributes(Attrs);
+
+ // Check whether the next token(s) are part of a declaration
+ // specifier, in which case we have the start of a parameter and,
+ // therefore, we know that this is a constructor.
+ bool IsConstructor = false;
+ if (isDeclarationSpecifier())
+ IsConstructor = true;
+ else if (Tok.is(tok::identifier) ||
+ (Tok.is(tok::annot_cxxscope) && NextToken().is(tok::identifier))) {
+ // We've seen "C ( X" or "C ( X::Y", but "X" / "X::Y" is not a type.
+ // This might be a parenthesized member name, but is more likely to
+ // be a constructor declaration with an invalid argument type. Keep
+ // looking.
+ if (Tok.is(tok::annot_cxxscope))
+ ConsumeToken();
+ ConsumeToken();
+
+ // If this is not a constructor, we must be parsing a declarator,
+ // which must have one of the following syntactic forms (see the
+ // grammar extract at the start of ParseDirectDeclarator):
+ switch (Tok.getKind()) {
+ case tok::l_paren:
+ // C(X ( int));
+ case tok::l_square:
+ // C(X [ 5]);
+ // C(X [ [attribute]]);
+ case tok::coloncolon:
+ // C(X :: Y);
+ // C(X :: *p);
+ // Assume this isn't a constructor, rather than assuming it's a
+ // constructor with an unnamed parameter of an ill-formed type.
+ break;
+
+ case tok::r_paren:
+ // C(X )
+ if (NextToken().is(tok::colon) || NextToken().is(tok::kw_try)) {
+ // Assume these were meant to be constructors:
+ // C(X) : (the name of a bit-field cannot be parenthesized).
+ // C(X) try (this is otherwise ill-formed).
+ IsConstructor = true;
+ }
+ if (NextToken().is(tok::semi) || NextToken().is(tok::l_brace)) {
+ // If we have a constructor name within the class definition,
+ // assume these were meant to be constructors:
+ // C(X) {
+ // C(X) ;
+ // ... because otherwise we would be declaring a non-static data
+ // member that is ill-formed because it's of the same type as its
+ // surrounding class.
+ //
+ // FIXME: We can actually do this whether or not the name is qualified,
+ // because if it is qualified in this context it must be being used as
+ // a constructor name. However, we do not implement that rule correctly
+ // currently, so we're somewhat conservative here.
+ IsConstructor = IsUnqualified;
+ }
+ break;
+
+ default:
+ IsConstructor = true;
+ break;
+ }
+ }
+
+ TPA.Revert();
+ return IsConstructor;
+}
+
+/// ParseTypeQualifierListOpt
+/// type-qualifier-list: [C99 6.7.5]
+/// type-qualifier
+/// [vendor] attributes
+/// [ only if AttrReqs & AR_VendorAttributesParsed ]
+/// type-qualifier-list type-qualifier
+/// [vendor] type-qualifier-list attributes
+/// [ only if AttrReqs & AR_VendorAttributesParsed ]
+/// [C++0x] attribute-specifier[opt] is allowed before cv-qualifier-seq
+/// [ only if AttReqs & AR_CXX11AttributesParsed ]
+/// Note: vendor can be GNU, MS, etc and can be explicitly controlled via
+/// AttrRequirements bitmask values.
+void Parser::ParseTypeQualifierListOpt(DeclSpec &DS, unsigned AttrReqs,
+ bool AtomicAllowed,
+ bool IdentifierRequired) {
+ if (getLangOpts().CPlusPlus11 && (AttrReqs & AR_CXX11AttributesParsed) &&
+ isCXX11AttributeSpecifier()) {
+ ParsedAttributesWithRange attrs(AttrFactory);
+ ParseCXX11Attributes(attrs);
+ DS.takeAttributesFrom(attrs);
+ }
+
+ SourceLocation EndLoc;
+
+ while (1) {
+ bool isInvalid = false;
+ const char *PrevSpec = nullptr;
+ unsigned DiagID = 0;
+ SourceLocation Loc = Tok.getLocation();
+
+ switch (Tok.getKind()) {
+ case tok::code_completion:
+ Actions.CodeCompleteTypeQualifiers(DS);
+ return cutOffParsing();
+
+ case tok::kw_const:
+ isInvalid = DS.SetTypeQual(DeclSpec::TQ_const , Loc, PrevSpec, DiagID,
+ getLangOpts());
+ break;
+ case tok::kw_volatile:
+ isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
+ getLangOpts());
+ break;
+ case tok::kw_restrict:
+ isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
+ getLangOpts());
+ break;
+ case tok::kw__Atomic:
+ if (!AtomicAllowed)
+ goto DoneWithTypeQuals;
+ isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
+ getLangOpts());
+ break;
+
+ // OpenCL qualifiers:
+ case tok::kw___private:
+ case tok::kw___global:
+ case tok::kw___local:
+ case tok::kw___constant:
+ case tok::kw___generic:
+ case tok::kw___read_only:
+ case tok::kw___write_only:
+ case tok::kw___read_write:
+ ParseOpenCLQualifiers(DS.getAttributes());
+ break;
+
+ case tok::kw___uptr:
+ // GNU libc headers in C mode use '__uptr' as an identifer which conflicts
+ // with the MS modifier keyword.
+ if ((AttrReqs & AR_DeclspecAttributesParsed) && !getLangOpts().CPlusPlus &&
+ IdentifierRequired && DS.isEmpty() && NextToken().is(tok::semi)) {
+ if (TryKeywordIdentFallback(false))
+ continue;
+ }
+ case tok::kw___sptr:
+ case tok::kw___w64:
+ case tok::kw___ptr64:
+ case tok::kw___ptr32:
+ case tok::kw___cdecl:
+ case tok::kw___stdcall:
+ case tok::kw___fastcall:
+ case tok::kw___thiscall:
+ case tok::kw___vectorcall:
+ case tok::kw___unaligned:
+ if (AttrReqs & AR_DeclspecAttributesParsed) {
+ ParseMicrosoftTypeAttributes(DS.getAttributes());
+ continue;
+ }
+ goto DoneWithTypeQuals;
+ case tok::kw___pascal:
+ if (AttrReqs & AR_VendorAttributesParsed) {
+ ParseBorlandTypeAttributes(DS.getAttributes());
+ continue;
+ }
+ goto DoneWithTypeQuals;
+ case tok::kw___attribute:
+ if (AttrReqs & AR_GNUAttributesParsedAndRejected)
+ // When GNU attributes are expressly forbidden, diagnose their usage.
+ Diag(Tok, diag::err_attributes_not_allowed);
+
+ // Parse the attributes even if they are rejected to ensure that error
+ // recovery is graceful.
+ if (AttrReqs & AR_GNUAttributesParsed ||
+ AttrReqs & AR_GNUAttributesParsedAndRejected) {
+ ParseGNUAttributes(DS.getAttributes());
+ continue; // do *not* consume the next token!
+ }
+ // otherwise, FALL THROUGH!
+ default:
+ DoneWithTypeQuals:
+ // If this is not a type-qualifier token, we're done reading type
+ // qualifiers. First verify that DeclSpec's are consistent.
+ DS.Finish(Diags, PP, Actions.getASTContext().getPrintingPolicy());
+ if (EndLoc.isValid())
+ DS.SetRangeEnd(EndLoc);
+ return;
+ }
+
+ // If the specifier combination wasn't legal, issue a diagnostic.
+ if (isInvalid) {
+ assert(PrevSpec && "Method did not return previous specifier!");
+ Diag(Tok, DiagID) << PrevSpec;
+ }
+ EndLoc = ConsumeToken();
+ }
+}
+
+
+/// ParseDeclarator - Parse and verify a newly-initialized declarator.
+///
+void Parser::ParseDeclarator(Declarator &D) {
+ /// This implements the 'declarator' production in the C grammar, then checks
+ /// for well-formedness and issues diagnostics.
+ ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
+}
+
+static bool isPtrOperatorToken(tok::TokenKind Kind, const LangOptions &Lang,
+ unsigned TheContext) {
+ if (Kind == tok::star || Kind == tok::caret)
+ return true;
+
+ if (!Lang.CPlusPlus)
+ return false;
+
+ if (Kind == tok::amp)
+ return true;
+
+ // We parse rvalue refs in C++03, because otherwise the errors are scary.
+ // But we must not parse them in conversion-type-ids and new-type-ids, since
+ // those can be legitimately followed by a && operator.
+ // (The same thing can in theory happen after a trailing-return-type, but
+ // since those are a C++11 feature, there is no rejects-valid issue there.)
+ if (Kind == tok::ampamp)
+ return Lang.CPlusPlus11 || (TheContext != Declarator::ConversionIdContext &&
+ TheContext != Declarator::CXXNewContext);
+
+ return false;
+}
+
+/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
+/// is parsed by the function passed to it. Pass null, and the direct-declarator
+/// isn't parsed at all, making this function effectively parse the C++
+/// ptr-operator production.
+///
+/// If the grammar of this construct is extended, matching changes must also be
+/// made to TryParseDeclarator and MightBeDeclarator, and possibly to
+/// isConstructorDeclarator.
+///
+/// declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
+/// [C] pointer[opt] direct-declarator
+/// [C++] direct-declarator
+/// [C++] ptr-operator declarator
+///
+/// pointer: [C99 6.7.5]
+/// '*' type-qualifier-list[opt]
+/// '*' type-qualifier-list[opt] pointer
+///
+/// ptr-operator:
+/// '*' cv-qualifier-seq[opt]
+/// '&'
+/// [C++0x] '&&'
+/// [GNU] '&' restrict[opt] attributes[opt]
+/// [GNU?] '&&' restrict[opt] attributes[opt]
+/// '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
+void Parser::ParseDeclaratorInternal(Declarator &D,
+ DirectDeclParseFunction DirectDeclParser) {
+ if (Diags.hasAllExtensionsSilenced())
+ D.setExtension();
+
+ // C++ member pointers start with a '::' or a nested-name.
+ // Member pointers get special handling, since there's no place for the
+ // scope spec in the generic path below.
+ if (getLangOpts().CPlusPlus &&
+ (Tok.is(tok::coloncolon) ||
+ (Tok.is(tok::identifier) &&
+ (NextToken().is(tok::coloncolon) || NextToken().is(tok::less))) ||
+ Tok.is(tok::annot_cxxscope))) {
+ bool EnteringContext = D.getContext() == Declarator::FileContext ||
+ D.getContext() == Declarator::MemberContext;
+ CXXScopeSpec SS;
+ ParseOptionalCXXScopeSpecifier(SS, ParsedType(), EnteringContext);
+
+ if (SS.isNotEmpty()) {
+ if (Tok.isNot(tok::star)) {
+ // The scope spec really belongs to the direct-declarator.
+ if (D.mayHaveIdentifier())
+ D.getCXXScopeSpec() = SS;
+ else
+ AnnotateScopeToken(SS, true);
+
+ if (DirectDeclParser)
+ (this->*DirectDeclParser)(D);
+ return;
+ }
+
+ SourceLocation Loc = ConsumeToken();
+ D.SetRangeEnd(Loc);
+ DeclSpec DS(AttrFactory);
+ ParseTypeQualifierListOpt(DS);
+ D.ExtendWithDeclSpec(DS);
+
+ // Recurse to parse whatever is left.
+ ParseDeclaratorInternal(D, DirectDeclParser);
+
+ // Sema will have to catch (syntactically invalid) pointers into global
+ // scope. It has to catch pointers into namespace scope anyway.
+ D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
+ DS.getLocEnd()),
+ DS.getAttributes(),
+ /* Don't replace range end. */SourceLocation());
+ return;
+ }
+ }
+
+ tok::TokenKind Kind = Tok.getKind();
+ // Not a pointer, C++ reference, or block.
+ if (!isPtrOperatorToken(Kind, getLangOpts(), D.getContext())) {
+ if (DirectDeclParser)
+ (this->*DirectDeclParser)(D);
+ return;
+ }
+
+ // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
+ // '&&' -> rvalue reference
+ SourceLocation Loc = ConsumeToken(); // Eat the *, ^, & or &&.
+ D.SetRangeEnd(Loc);
+
+ if (Kind == tok::star || Kind == tok::caret) {
+ // Is a pointer.
+ DeclSpec DS(AttrFactory);
+
+ // GNU attributes are not allowed here in a new-type-id, but Declspec and
+ // C++11 attributes are allowed.
+ unsigned Reqs = AR_CXX11AttributesParsed | AR_DeclspecAttributesParsed |
+ ((D.getContext() != Declarator::CXXNewContext)
+ ? AR_GNUAttributesParsed
+ : AR_GNUAttributesParsedAndRejected);
+ ParseTypeQualifierListOpt(DS, Reqs, true, !D.mayOmitIdentifier());
+ D.ExtendWithDeclSpec(DS);
+
+ // Recursively parse the declarator.
+ ParseDeclaratorInternal(D, DirectDeclParser);
+ if (Kind == tok::star)
+ // Remember that we parsed a pointer type, and remember the type-quals.
+ D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
+ DS.getConstSpecLoc(),
+ DS.getVolatileSpecLoc(),
+ DS.getRestrictSpecLoc(),
+ DS.getAtomicSpecLoc()),
+ DS.getAttributes(),
+ SourceLocation());
+ else
+ // Remember that we parsed a Block type, and remember the type-quals.
+ D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
+ Loc),
+ DS.getAttributes(),
+ SourceLocation());
+ } else {
+ // Is a reference
+ DeclSpec DS(AttrFactory);
+
+ // Complain about rvalue references in C++03, but then go on and build
+ // the declarator.
+ if (Kind == tok::ampamp)
+ Diag(Loc, getLangOpts().CPlusPlus11 ?
+ diag::warn_cxx98_compat_rvalue_reference :
+ diag::ext_rvalue_reference);
+
+ // GNU-style and C++11 attributes are allowed here, as is restrict.
+ ParseTypeQualifierListOpt(DS);
+ D.ExtendWithDeclSpec(DS);
+
+ // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
+ // cv-qualifiers are introduced through the use of a typedef or of a
+ // template type argument, in which case the cv-qualifiers are ignored.
+ if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
+ if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
+ Diag(DS.getConstSpecLoc(),
+ diag::err_invalid_reference_qualifier_application) << "const";
+ if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
+ Diag(DS.getVolatileSpecLoc(),
+ diag::err_invalid_reference_qualifier_application) << "volatile";
+ // 'restrict' is permitted as an extension.
+ if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
+ Diag(DS.getAtomicSpecLoc(),
+ diag::err_invalid_reference_qualifier_application) << "_Atomic";
+ }
+
+ // Recursively parse the declarator.
+ ParseDeclaratorInternal(D, DirectDeclParser);
+
+ if (D.getNumTypeObjects() > 0) {
+ // C++ [dcl.ref]p4: There shall be no references to references.
+ DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
+ if (InnerChunk.Kind == DeclaratorChunk::Reference) {
+ if (const IdentifierInfo *II = D.getIdentifier())
+ Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
+ << II;
+ else
+ Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
+ << "type name";
+
+ // Once we've complained about the reference-to-reference, we
+ // can go ahead and build the (technically ill-formed)
+ // declarator: reference collapsing will take care of it.
+ }
+ }
+
+ // Remember that we parsed a reference type.
+ D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
+ Kind == tok::amp),
+ DS.getAttributes(),
+ SourceLocation());
+ }
+}
+
+// When correcting from misplaced brackets before the identifier, the location
+// is saved inside the declarator so that other diagnostic messages can use
+// them. This extracts and returns that location, or returns the provided
+// location if a stored location does not exist.
+static SourceLocation getMissingDeclaratorIdLoc(Declarator &D,
+ SourceLocation Loc) {
+ if (D.getName().StartLocation.isInvalid() &&
+ D.getName().EndLocation.isValid())
+ return D.getName().EndLocation;
+
+ return Loc;
+}
+
+/// ParseDirectDeclarator
+/// direct-declarator: [C99 6.7.5]
+/// [C99] identifier
+/// '(' declarator ')'
+/// [GNU] '(' attributes declarator ')'
+/// [C90] direct-declarator '[' constant-expression[opt] ']'
+/// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
+/// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
+/// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']'
+/// [C99] direct-declarator '[' type-qual-list[opt] '*' ']'
+/// [C++11] direct-declarator '[' constant-expression[opt] ']'
+/// attribute-specifier-seq[opt]
+/// direct-declarator '(' parameter-type-list ')'
+/// direct-declarator '(' identifier-list[opt] ')'
+/// [GNU] direct-declarator '(' parameter-forward-declarations
+/// parameter-type-list[opt] ')'
+/// [C++] direct-declarator '(' parameter-declaration-clause ')'
+/// cv-qualifier-seq[opt] exception-specification[opt]
+/// [C++11] direct-declarator '(' parameter-declaration-clause ')'
+/// attribute-specifier-seq[opt] cv-qualifier-seq[opt]
+/// ref-qualifier[opt] exception-specification[opt]
+/// [C++] declarator-id
+/// [C++11] declarator-id attribute-specifier-seq[opt]
+///
+/// declarator-id: [C++ 8]
+/// '...'[opt] id-expression
+/// '::'[opt] nested-name-specifier[opt] type-name
+///
+/// id-expression: [C++ 5.1]
+/// unqualified-id
+/// qualified-id
+///
+/// unqualified-id: [C++ 5.1]
+/// identifier
+/// operator-function-id
+/// conversion-function-id
+/// '~' class-name
+/// template-id
+///
+/// Note, any additional constructs added here may need corresponding changes
+/// in isConstructorDeclarator.
+void Parser::ParseDirectDeclarator(Declarator &D) {
+ DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
+
+ if (getLangOpts().CPlusPlus && D.mayHaveIdentifier()) {
+ // Don't parse FOO:BAR as if it were a typo for FOO::BAR inside a class, in
+ // this context it is a bitfield. Also in range-based for statement colon
+ // may delimit for-range-declaration.
+ ColonProtectionRAIIObject X(*this,
+ D.getContext() == Declarator::MemberContext ||
+ (D.getContext() == Declarator::ForContext &&
+ getLangOpts().CPlusPlus11));
+
+ // ParseDeclaratorInternal might already have parsed the scope.
+ if (D.getCXXScopeSpec().isEmpty()) {
+ bool EnteringContext = D.getContext() == Declarator::FileContext ||
+ D.getContext() == Declarator::MemberContext;
+ ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), ParsedType(),
+ EnteringContext);
+ }
+
+ if (D.getCXXScopeSpec().isValid()) {
+ if (Actions.ShouldEnterDeclaratorScope(getCurScope(),
+ D.getCXXScopeSpec()))
+ // Change the declaration context for name lookup, until this function
+ // is exited (and the declarator has been parsed).
+ DeclScopeObj.EnterDeclaratorScope();
+ }
+
+ // C++0x [dcl.fct]p14:
+ // There is a syntactic ambiguity when an ellipsis occurs at the end of a
+ // parameter-declaration-clause without a preceding comma. In this case,
+ // the ellipsis is parsed as part of the abstract-declarator if the type
+ // of the parameter either names a template parameter pack that has not
+ // been expanded or contains auto; otherwise, it is parsed as part of the
+ // parameter-declaration-clause.
+ if (Tok.is(tok::ellipsis) && D.getCXXScopeSpec().isEmpty() &&
+ !((D.getContext() == Declarator::PrototypeContext ||
+ D.getContext() == Declarator::LambdaExprParameterContext ||
+ D.getContext() == Declarator::BlockLiteralContext) &&
+ NextToken().is(tok::r_paren) &&
+ !D.hasGroupingParens() &&
+ !Actions.containsUnexpandedParameterPacks(D) &&
+ D.getDeclSpec().getTypeSpecType() != TST_auto)) {
+ SourceLocation EllipsisLoc = ConsumeToken();
+ if (isPtrOperatorToken(Tok.getKind(), getLangOpts(), D.getContext())) {
+ // The ellipsis was put in the wrong place. Recover, and explain to
+ // the user what they should have done.
+ ParseDeclarator(D);
+ if (EllipsisLoc.isValid())
+ DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
+ return;
+ } else
+ D.setEllipsisLoc(EllipsisLoc);
+
+ // The ellipsis can't be followed by a parenthesized declarator. We
+ // check for that in ParseParenDeclarator, after we have disambiguated
+ // the l_paren token.
+ }
+
+ if (Tok.is(tok::identifier) || Tok.is(tok::kw_operator) ||
+ Tok.is(tok::annot_template_id) || Tok.is(tok::tilde)) {
+ // We found something that indicates the start of an unqualified-id.
+ // Parse that unqualified-id.
+ bool AllowConstructorName;
+ if (D.getDeclSpec().hasTypeSpecifier())
+ AllowConstructorName = false;
+ else if (D.getCXXScopeSpec().isSet())
+ AllowConstructorName =
+ (D.getContext() == Declarator::FileContext ||
+ D.getContext() == Declarator::MemberContext);
+ else
+ AllowConstructorName = (D.getContext() == Declarator::MemberContext);
+
+ SourceLocation TemplateKWLoc;
+ bool HadScope = D.getCXXScopeSpec().isValid();
+ if (ParseUnqualifiedId(D.getCXXScopeSpec(),
+ /*EnteringContext=*/true,
+ /*AllowDestructorName=*/true,
+ AllowConstructorName,
+ ParsedType(),
+ TemplateKWLoc,
+ D.getName()) ||
+ // Once we're past the identifier, if the scope was bad, mark the
+ // whole declarator bad.
+ D.getCXXScopeSpec().isInvalid()) {
+ D.SetIdentifier(nullptr, Tok.getLocation());
+ D.setInvalidType(true);
+ } else {
+ // ParseUnqualifiedId might have parsed a scope specifier during error
+ // recovery. If it did so, enter that scope.
+ if (!HadScope && D.getCXXScopeSpec().isValid() &&
+ Actions.ShouldEnterDeclaratorScope(getCurScope(),
+ D.getCXXScopeSpec()))
+ DeclScopeObj.EnterDeclaratorScope();
+
+ // Parsed the unqualified-id; update range information and move along.
+ if (D.getSourceRange().getBegin().isInvalid())
+ D.SetRangeBegin(D.getName().getSourceRange().getBegin());
+ D.SetRangeEnd(D.getName().getSourceRange().getEnd());
+ }
+ goto PastIdentifier;
+ }
+ } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
+ assert(!getLangOpts().CPlusPlus &&
+ "There's a C++-specific check for tok::identifier above");
+ assert(Tok.getIdentifierInfo() && "Not an identifier?");
+ D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
+ D.SetRangeEnd(Tok.getLocation());
+ ConsumeToken();
+ goto PastIdentifier;
+ } else if (Tok.is(tok::identifier) && D.diagnoseIdentifier()) {
+ // A virt-specifier isn't treated as an identifier if it appears after a
+ // trailing-return-type.
+ if (D.getContext() != Declarator::TrailingReturnContext ||
+ !isCXX11VirtSpecifier(Tok)) {
+ Diag(Tok.getLocation(), diag::err_unexpected_unqualified_id)
+ << FixItHint::CreateRemoval(Tok.getLocation());
+ D.SetIdentifier(nullptr, Tok.getLocation());
+ ConsumeToken();
+ goto PastIdentifier;
+ }
+ }
+
+ if (Tok.is(tok::l_paren)) {
+ // direct-declarator: '(' declarator ')'
+ // direct-declarator: '(' attributes declarator ')'
+ // Example: 'char (*X)' or 'int (*XX)(void)'
+ ParseParenDeclarator(D);
+
+ // If the declarator was parenthesized, we entered the declarator
+ // scope when parsing the parenthesized declarator, then exited
+ // the scope already. Re-enter the scope, if we need to.
+ if (D.getCXXScopeSpec().isSet()) {
+ // If there was an error parsing parenthesized declarator, declarator
+ // scope may have been entered before. Don't do it again.
+ if (!D.isInvalidType() &&
+ Actions.ShouldEnterDeclaratorScope(getCurScope(),
+ D.getCXXScopeSpec()))
+ // Change the declaration context for name lookup, until this function
+ // is exited (and the declarator has been parsed).
+ DeclScopeObj.EnterDeclaratorScope();
+ }
+ } else if (D.mayOmitIdentifier()) {
+ // This could be something simple like "int" (in which case the declarator
+ // portion is empty), if an abstract-declarator is allowed.
+ D.SetIdentifier(nullptr, Tok.getLocation());
+
+ // The grammar for abstract-pack-declarator does not allow grouping parens.
+ // FIXME: Revisit this once core issue 1488 is resolved.
+ if (D.hasEllipsis() && D.hasGroupingParens())
+ Diag(PP.getLocForEndOfToken(D.getEllipsisLoc()),
+ diag::ext_abstract_pack_declarator_parens);
+ } else {
+ if (Tok.getKind() == tok::annot_pragma_parser_crash)
+ LLVM_BUILTIN_TRAP;
+ if (Tok.is(tok::l_square))
+ return ParseMisplacedBracketDeclarator(D);
+ if (D.getContext() == Declarator::MemberContext) {
+ Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
+ diag::err_expected_member_name_or_semi)
+ << (D.getDeclSpec().isEmpty() ? SourceRange()
+ : D.getDeclSpec().getSourceRange());
+ } else if (getLangOpts().CPlusPlus) {
+ if (Tok.is(tok::period) || Tok.is(tok::arrow))
+ Diag(Tok, diag::err_invalid_operator_on_type) << Tok.is(tok::arrow);
+ else {
+ SourceLocation Loc = D.getCXXScopeSpec().getEndLoc();
+ if (Tok.isAtStartOfLine() && Loc.isValid())
+ Diag(PP.getLocForEndOfToken(Loc), diag::err_expected_unqualified_id)
+ << getLangOpts().CPlusPlus;
+ else
+ Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
+ diag::err_expected_unqualified_id)
+ << getLangOpts().CPlusPlus;
+ }
+ } else {
+ Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
+ diag::err_expected_either)
+ << tok::identifier << tok::l_paren;
+ }
+ D.SetIdentifier(nullptr, Tok.getLocation());
+ D.setInvalidType(true);
+ }
+
+ PastIdentifier:
+ assert(D.isPastIdentifier() &&
+ "Haven't past the location of the identifier yet?");
+
+ // Don't parse attributes unless we have parsed an unparenthesized name.
+ if (D.hasName() && !D.getNumTypeObjects())
+ MaybeParseCXX11Attributes(D);
+
+ while (1) {
+ if (Tok.is(tok::l_paren)) {
+ // Enter function-declaration scope, limiting any declarators to the
+ // function prototype scope, including parameter declarators.
+ ParseScope PrototypeScope(this,
+ Scope::FunctionPrototypeScope|Scope::DeclScope|
+ (D.isFunctionDeclaratorAFunctionDeclaration()
+ ? Scope::FunctionDeclarationScope : 0));
+
+ // The paren may be part of a C++ direct initializer, eg. "int x(1);".
+ // In such a case, check if we actually have a function declarator; if it
+ // is not, the declarator has been fully parsed.
+ bool IsAmbiguous = false;
+ if (getLangOpts().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
+ // The name of the declarator, if any, is tentatively declared within
+ // a possible direct initializer.
+ TentativelyDeclaredIdentifiers.push_back(D.getIdentifier());
+ bool IsFunctionDecl = isCXXFunctionDeclarator(&IsAmbiguous);
+ TentativelyDeclaredIdentifiers.pop_back();
+ if (!IsFunctionDecl)
+ break;
+ }
+ ParsedAttributes attrs(AttrFactory);
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ T.consumeOpen();
+ ParseFunctionDeclarator(D, attrs, T, IsAmbiguous);
+ PrototypeScope.Exit();
+ } else if (Tok.is(tok::l_square)) {
+ ParseBracketDeclarator(D);
+ } else {
+ break;
+ }
+ }
+}
+
+/// ParseParenDeclarator - We parsed the declarator D up to a paren. This is
+/// only called before the identifier, so these are most likely just grouping
+/// parens for precedence. If we find that these are actually function
+/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
+///
+/// direct-declarator:
+/// '(' declarator ')'
+/// [GNU] '(' attributes declarator ')'
+/// direct-declarator '(' parameter-type-list ')'
+/// direct-declarator '(' identifier-list[opt] ')'
+/// [GNU] direct-declarator '(' parameter-forward-declarations
+/// parameter-type-list[opt] ')'
+///
+void Parser::ParseParenDeclarator(Declarator &D) {
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ T.consumeOpen();
+
+ assert(!D.isPastIdentifier() && "Should be called before passing identifier");
+
+ // Eat any attributes before we look at whether this is a grouping or function
+ // declarator paren. If this is a grouping paren, the attribute applies to
+ // the type being built up, for example:
+ // int (__attribute__(()) *x)(long y)
+ // If this ends up not being a grouping paren, the attribute applies to the
+ // first argument, for example:
+ // int (__attribute__(()) int x)
+ // In either case, we need to eat any attributes to be able to determine what
+ // sort of paren this is.
+ //
+ ParsedAttributes attrs(AttrFactory);
+ bool RequiresArg = false;
+ if (Tok.is(tok::kw___attribute)) {
+ ParseGNUAttributes(attrs);
+
+ // We require that the argument list (if this is a non-grouping paren) be
+ // present even if the attribute list was empty.
+ RequiresArg = true;
+ }
+
+ // Eat any Microsoft extensions.
+ ParseMicrosoftTypeAttributes(attrs);
+
+ // Eat any Borland extensions.
+ if (Tok.is(tok::kw___pascal))
+ ParseBorlandTypeAttributes(attrs);
+
+ // If we haven't past the identifier yet (or where the identifier would be
+ // stored, if this is an abstract declarator), then this is probably just
+ // grouping parens. However, if this could be an abstract-declarator, then
+ // this could also be the start of function arguments (consider 'void()').
+ bool isGrouping;
+
+ if (!D.mayOmitIdentifier()) {
+ // If this can't be an abstract-declarator, this *must* be a grouping
+ // paren, because we haven't seen the identifier yet.
+ isGrouping = true;
+ } else if (Tok.is(tok::r_paren) || // 'int()' is a function.
+ (getLangOpts().CPlusPlus && Tok.is(tok::ellipsis) &&
+ NextToken().is(tok::r_paren)) || // C++ int(...)
+ isDeclarationSpecifier() || // 'int(int)' is a function.
+ isCXX11AttributeSpecifier()) { // 'int([[]]int)' is a function.
+ // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
+ // considered to be a type, not a K&R identifier-list.
+ isGrouping = false;
+ } else {
+ // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
+ isGrouping = true;
+ }
+
+ // If this is a grouping paren, handle:
+ // direct-declarator: '(' declarator ')'
+ // direct-declarator: '(' attributes declarator ')'
+ if (isGrouping) {
+ SourceLocation EllipsisLoc = D.getEllipsisLoc();
+ D.setEllipsisLoc(SourceLocation());
+
+ bool hadGroupingParens = D.hasGroupingParens();
+ D.setGroupingParens(true);
+ ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
+ // Match the ')'.
+ T.consumeClose();
+ D.AddTypeInfo(DeclaratorChunk::getParen(T.getOpenLocation(),
+ T.getCloseLocation()),
+ attrs, T.getCloseLocation());
+
+ D.setGroupingParens(hadGroupingParens);
+
+ // An ellipsis cannot be placed outside parentheses.
+ if (EllipsisLoc.isValid())
+ DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
+
+ return;
+ }
+
+ // Okay, if this wasn't a grouping paren, it must be the start of a function
+ // argument list. Recognize that this declarator will never have an
+ // identifier (and remember where it would have been), then call into
+ // ParseFunctionDeclarator to handle of argument list.
+ D.SetIdentifier(nullptr, Tok.getLocation());
+
+ // Enter function-declaration scope, limiting any declarators to the
+ // function prototype scope, including parameter declarators.
+ ParseScope PrototypeScope(this,
+ Scope::FunctionPrototypeScope | Scope::DeclScope |
+ (D.isFunctionDeclaratorAFunctionDeclaration()
+ ? Scope::FunctionDeclarationScope : 0));
+ ParseFunctionDeclarator(D, attrs, T, false, RequiresArg);
+ PrototypeScope.Exit();
+}
+
+/// ParseFunctionDeclarator - We are after the identifier and have parsed the
+/// declarator D up to a paren, which indicates that we are parsing function
+/// arguments.
+///
+/// If FirstArgAttrs is non-null, then the caller parsed those arguments
+/// immediately after the open paren - they should be considered to be the
+/// first argument of a parameter.
+///
+/// If RequiresArg is true, then the first argument of the function is required
+/// to be present and required to not be an identifier list.
+///
+/// For C++, after the parameter-list, it also parses the cv-qualifier-seq[opt],
+/// (C++11) ref-qualifier[opt], exception-specification[opt],
+/// (C++11) attribute-specifier-seq[opt], and (C++11) trailing-return-type[opt].
+///
+/// [C++11] exception-specification:
+/// dynamic-exception-specification
+/// noexcept-specification
+///
+void Parser::ParseFunctionDeclarator(Declarator &D,
+ ParsedAttributes &FirstArgAttrs,
+ BalancedDelimiterTracker &Tracker,
+ bool IsAmbiguous,
+ bool RequiresArg) {
+ assert(getCurScope()->isFunctionPrototypeScope() &&
+ "Should call from a Function scope");
+ // lparen is already consumed!
+ assert(D.isPastIdentifier() && "Should not call before identifier!");
+
+ // This should be true when the function has typed arguments.
+ // Otherwise, it is treated as a K&R-style function.
+ bool HasProto = false;
+ // Build up an array of information about the parsed arguments.
+ SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
+ // Remember where we see an ellipsis, if any.
+ SourceLocation EllipsisLoc;
+
+ DeclSpec DS(AttrFactory);
+ bool RefQualifierIsLValueRef = true;
+ SourceLocation RefQualifierLoc;
+ SourceLocation ConstQualifierLoc;
+ SourceLocation VolatileQualifierLoc;
+ SourceLocation RestrictQualifierLoc;
+ ExceptionSpecificationType ESpecType = EST_None;
+ SourceRange ESpecRange;
+ SmallVector<ParsedType, 2> DynamicExceptions;
+ SmallVector<SourceRange, 2> DynamicExceptionRanges;
+ ExprResult NoexceptExpr;
+ CachedTokens *ExceptionSpecTokens = 0;
+ ParsedAttributes FnAttrs(AttrFactory);
+ TypeResult TrailingReturnType;
+
+ /* LocalEndLoc is the end location for the local FunctionTypeLoc.
+ EndLoc is the end location for the function declarator.
+ They differ for trailing return types. */
+ SourceLocation StartLoc, LocalEndLoc, EndLoc;
+ SourceLocation LParenLoc, RParenLoc;
+ LParenLoc = Tracker.getOpenLocation();
+ StartLoc = LParenLoc;
+
+ if (isFunctionDeclaratorIdentifierList()) {
+ if (RequiresArg)
+ Diag(Tok, diag::err_argument_required_after_attribute);
+
+ ParseFunctionDeclaratorIdentifierList(D, ParamInfo);
+
+ Tracker.consumeClose();
+ RParenLoc = Tracker.getCloseLocation();
+ LocalEndLoc = RParenLoc;
+ EndLoc = RParenLoc;
+ } else {
+ if (Tok.isNot(tok::r_paren))
+ ParseParameterDeclarationClause(D, FirstArgAttrs, ParamInfo,
+ EllipsisLoc);
+ else if (RequiresArg)
+ Diag(Tok, diag::err_argument_required_after_attribute);
+
+ HasProto = ParamInfo.size() || getLangOpts().CPlusPlus;
+
+ // If we have the closing ')', eat it.
+ Tracker.consumeClose();
+ RParenLoc = Tracker.getCloseLocation();
+ LocalEndLoc = RParenLoc;
+ EndLoc = RParenLoc;
+
+ if (getLangOpts().CPlusPlus) {
+ // FIXME: Accept these components in any order, and produce fixits to
+ // correct the order if the user gets it wrong. Ideally we should deal
+ // with the pure-specifier in the same way.
+
+ // Parse cv-qualifier-seq[opt].
+ ParseTypeQualifierListOpt(DS, AR_NoAttributesParsed,
+ /*AtomicAllowed*/ false);
+ if (!DS.getSourceRange().getEnd().isInvalid()) {
+ EndLoc = DS.getSourceRange().getEnd();
+ ConstQualifierLoc = DS.getConstSpecLoc();
+ VolatileQualifierLoc = DS.getVolatileSpecLoc();
+ RestrictQualifierLoc = DS.getRestrictSpecLoc();
+ }
+
+ // Parse ref-qualifier[opt].
+ if (ParseRefQualifier(RefQualifierIsLValueRef, RefQualifierLoc))
+ EndLoc = RefQualifierLoc;
+
+ // C++11 [expr.prim.general]p3:
+ // If a declaration declares a member function or member function
+ // template of a class X, the expression this is a prvalue of type
+ // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
+ // and the end of the function-definition, member-declarator, or
+ // declarator.
+ // FIXME: currently, "static" case isn't handled correctly.
+ bool IsCXX11MemberFunction =
+ getLangOpts().CPlusPlus11 &&
+ D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
+ (D.getContext() == Declarator::MemberContext
+ ? !D.getDeclSpec().isFriendSpecified()
+ : D.getContext() == Declarator::FileContext &&
+ D.getCXXScopeSpec().isValid() &&
+ Actions.CurContext->isRecord());
+ Sema::CXXThisScopeRAII ThisScope(Actions,
+ dyn_cast<CXXRecordDecl>(Actions.CurContext),
+ DS.getTypeQualifiers() |
+ (D.getDeclSpec().isConstexprSpecified() &&
+ !getLangOpts().CPlusPlus14
+ ? Qualifiers::Const : 0),
+ IsCXX11MemberFunction);
+
+ // Parse exception-specification[opt].
+ bool Delayed = D.isFirstDeclarationOfMember() &&
+ D.isFunctionDeclaratorAFunctionDeclaration();
+ if (Delayed && Actions.isLibstdcxxEagerExceptionSpecHack(D) &&
+ GetLookAheadToken(0).is(tok::kw_noexcept) &&
+ GetLookAheadToken(1).is(tok::l_paren) &&
+ GetLookAheadToken(2).is(tok::kw_noexcept) &&
+ GetLookAheadToken(3).is(tok::l_paren) &&
+ GetLookAheadToken(4).is(tok::identifier) &&
+ GetLookAheadToken(4).getIdentifierInfo()->isStr("swap")) {
+ // HACK: We've got an exception-specification
+ // noexcept(noexcept(swap(...)))
+ // or
+ // noexcept(noexcept(swap(...)) && noexcept(swap(...)))
+ // on a 'swap' member function. This is a libstdc++ bug; the lookup
+ // for 'swap' will only find the function we're currently declaring,
+ // whereas it expects to find a non-member swap through ADL. Turn off
+ // delayed parsing to give it a chance to find what it expects.
+ Delayed = false;
+ }
+ ESpecType = tryParseExceptionSpecification(Delayed,
+ ESpecRange,
+ DynamicExceptions,
+ DynamicExceptionRanges,
+ NoexceptExpr,
+ ExceptionSpecTokens);
+ if (ESpecType != EST_None)
+ EndLoc = ESpecRange.getEnd();
+
+ // Parse attribute-specifier-seq[opt]. Per DR 979 and DR 1297, this goes
+ // after the exception-specification.
+ MaybeParseCXX11Attributes(FnAttrs);
+
+ // Parse trailing-return-type[opt].
+ LocalEndLoc = EndLoc;
+ if (getLangOpts().CPlusPlus11 && Tok.is(tok::arrow)) {
+ Diag(Tok, diag::warn_cxx98_compat_trailing_return_type);
+ if (D.getDeclSpec().getTypeSpecType() == TST_auto)
+ StartLoc = D.getDeclSpec().getTypeSpecTypeLoc();
+ LocalEndLoc = Tok.getLocation();
+ SourceRange Range;
+ TrailingReturnType = ParseTrailingReturnType(Range);
+ EndLoc = Range.getEnd();
+ }
+ }
+ }
+
+ // Remember that we parsed a function type, and remember the attributes.
+ D.AddTypeInfo(DeclaratorChunk::getFunction(HasProto,
+ IsAmbiguous,
+ LParenLoc,
+ ParamInfo.data(), ParamInfo.size(),
+ EllipsisLoc, RParenLoc,
+ DS.getTypeQualifiers(),
+ RefQualifierIsLValueRef,
+ RefQualifierLoc, ConstQualifierLoc,
+ VolatileQualifierLoc,
+ RestrictQualifierLoc,
+ /*MutableLoc=*/SourceLocation(),
+ ESpecType, ESpecRange.getBegin(),
+ DynamicExceptions.data(),
+ DynamicExceptionRanges.data(),
+ DynamicExceptions.size(),
+ NoexceptExpr.isUsable() ?
+ NoexceptExpr.get() : nullptr,
+ ExceptionSpecTokens,
+ StartLoc, LocalEndLoc, D,
+ TrailingReturnType),
+ FnAttrs, EndLoc);
+}
+
+/// ParseRefQualifier - Parses a member function ref-qualifier. Returns
+/// true if a ref-qualifier is found.
+bool Parser::ParseRefQualifier(bool &RefQualifierIsLValueRef,
+ SourceLocation &RefQualifierLoc) {
+ if (Tok.is(tok::amp) || Tok.is(tok::ampamp)) {
+ Diag(Tok, getLangOpts().CPlusPlus11 ?
+ diag::warn_cxx98_compat_ref_qualifier :
+ diag::ext_ref_qualifier);
+
+ RefQualifierIsLValueRef = Tok.is(tok::amp);
+ RefQualifierLoc = ConsumeToken();
+ return true;
+ }
+ return false;
+}
+
+/// isFunctionDeclaratorIdentifierList - This parameter list may have an
+/// identifier list form for a K&R-style function: void foo(a,b,c)
+///
+/// Note that identifier-lists are only allowed for normal declarators, not for
+/// abstract-declarators.
+bool Parser::isFunctionDeclaratorIdentifierList() {
+ return !getLangOpts().CPlusPlus
+ && Tok.is(tok::identifier)
+ && !TryAltiVecVectorToken()
+ // K&R identifier lists can't have typedefs as identifiers, per C99
+ // 6.7.5.3p11.
+ && (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename))
+ // Identifier lists follow a really simple grammar: the identifiers can
+ // be followed *only* by a ", identifier" or ")". However, K&R
+ // identifier lists are really rare in the brave new modern world, and
+ // it is very common for someone to typo a type in a non-K&R style
+ // list. If we are presented with something like: "void foo(intptr x,
+ // float y)", we don't want to start parsing the function declarator as
+ // though it is a K&R style declarator just because intptr is an
+ // invalid type.
+ //
+ // To handle this, we check to see if the token after the first
+ // identifier is a "," or ")". Only then do we parse it as an
+ // identifier list.
+ && (NextToken().is(tok::comma) || NextToken().is(tok::r_paren));
+}
+
+/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
+/// we found a K&R-style identifier list instead of a typed parameter list.
+///
+/// After returning, ParamInfo will hold the parsed parameters.
+///
+/// identifier-list: [C99 6.7.5]
+/// identifier
+/// identifier-list ',' identifier
+///
+void Parser::ParseFunctionDeclaratorIdentifierList(
+ Declarator &D,
+ SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo) {
+ // If there was no identifier specified for the declarator, either we are in
+ // an abstract-declarator, or we are in a parameter declarator which was found
+ // to be abstract. In abstract-declarators, identifier lists are not valid:
+ // diagnose this.
+ if (!D.getIdentifier())
+ Diag(Tok, diag::ext_ident_list_in_param);
+
+ // Maintain an efficient lookup of params we have seen so far.
+ llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
+
+ do {
+ // If this isn't an identifier, report the error and skip until ')'.
+ if (Tok.isNot(tok::identifier)) {
+ Diag(Tok, diag::err_expected) << tok::identifier;
+ SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch);
+ // Forget we parsed anything.
+ ParamInfo.clear();
+ return;
+ }
+
+ IdentifierInfo *ParmII = Tok.getIdentifierInfo();
+
+ // Reject 'typedef int y; int test(x, y)', but continue parsing.
+ if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope()))
+ Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
+
+ // Verify that the argument identifier has not already been mentioned.
+ if (!ParamsSoFar.insert(ParmII).second) {
+ Diag(Tok, diag::err_param_redefinition) << ParmII;
+ } else {
+ // Remember this identifier in ParamInfo.
+ ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
+ Tok.getLocation(),
+ nullptr));
+ }
+
+ // Eat the identifier.
+ ConsumeToken();
+ // The list continues if we see a comma.
+ } while (TryConsumeToken(tok::comma));
+}
+
+/// ParseParameterDeclarationClause - Parse a (possibly empty) parameter-list
+/// after the opening parenthesis. This function will not parse a K&R-style
+/// identifier list.
+///
+/// D is the declarator being parsed. If FirstArgAttrs is non-null, then the
+/// caller parsed those arguments immediately after the open paren - they should
+/// be considered to be part of the first parameter.
+///
+/// After returning, ParamInfo will hold the parsed parameters. EllipsisLoc will
+/// be the location of the ellipsis, if any was parsed.
+///
+/// parameter-type-list: [C99 6.7.5]
+/// parameter-list
+/// parameter-list ',' '...'
+/// [C++] parameter-list '...'
+///
+/// parameter-list: [C99 6.7.5]
+/// parameter-declaration
+/// parameter-list ',' parameter-declaration
+///
+/// parameter-declaration: [C99 6.7.5]
+/// declaration-specifiers declarator
+/// [C++] declaration-specifiers declarator '=' assignment-expression
+/// [C++11] initializer-clause
+/// [GNU] declaration-specifiers declarator attributes
+/// declaration-specifiers abstract-declarator[opt]
+/// [C++] declaration-specifiers abstract-declarator[opt]
+/// '=' assignment-expression
+/// [GNU] declaration-specifiers abstract-declarator[opt] attributes
+/// [C++11] attribute-specifier-seq parameter-declaration
+///
+void Parser::ParseParameterDeclarationClause(
+ Declarator &D,
+ ParsedAttributes &FirstArgAttrs,
+ SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo,
+ SourceLocation &EllipsisLoc) {
+ do {
+ // FIXME: Issue a diagnostic if we parsed an attribute-specifier-seq
+ // before deciding this was a parameter-declaration-clause.
+ if (TryConsumeToken(tok::ellipsis, EllipsisLoc))
+ break;
+
+ // Parse the declaration-specifiers.
+ // Just use the ParsingDeclaration "scope" of the declarator.
+ DeclSpec DS(AttrFactory);
+
+ // Parse any C++11 attributes.
+ MaybeParseCXX11Attributes(DS.getAttributes());
+
+ // Skip any Microsoft attributes before a param.
+ MaybeParseMicrosoftAttributes(DS.getAttributes());
+
+ SourceLocation DSStart = Tok.getLocation();
+
+ // If the caller parsed attributes for the first argument, add them now.
+ // Take them so that we only apply the attributes to the first parameter.
+ // FIXME: If we can leave the attributes in the token stream somehow, we can
+ // get rid of a parameter (FirstArgAttrs) and this statement. It might be
+ // too much hassle.
+ DS.takeAttributesFrom(FirstArgAttrs);
+
+ ParseDeclarationSpecifiers(DS);
+
+
+ // Parse the declarator. This is "PrototypeContext" or
+ // "LambdaExprParameterContext", because we must accept either
+ // 'declarator' or 'abstract-declarator' here.
+ Declarator ParmDeclarator(DS,
+ D.getContext() == Declarator::LambdaExprContext ?
+ Declarator::LambdaExprParameterContext :
+ Declarator::PrototypeContext);
+ ParseDeclarator(ParmDeclarator);
+
+ // Parse GNU attributes, if present.
+ MaybeParseGNUAttributes(ParmDeclarator);
+
+ // Remember this parsed parameter in ParamInfo.
+ IdentifierInfo *ParmII = ParmDeclarator.getIdentifier();
+
+ // DefArgToks is used when the parsing of default arguments needs
+ // to be delayed.
+ CachedTokens *DefArgToks = nullptr;
+
+ // If no parameter was specified, verify that *something* was specified,
+ // otherwise we have a missing type and identifier.
+ if (DS.isEmpty() && ParmDeclarator.getIdentifier() == nullptr &&
+ ParmDeclarator.getNumTypeObjects() == 0) {
+ // Completely missing, emit error.
+ Diag(DSStart, diag::err_missing_param);
+ } else {
+ // Otherwise, we have something. Add it and let semantic analysis try
+ // to grok it and add the result to the ParamInfo we are building.
+
+ // Last chance to recover from a misplaced ellipsis in an attempted
+ // parameter pack declaration.
+ if (Tok.is(tok::ellipsis) &&
+ (NextToken().isNot(tok::r_paren) ||
+ (!ParmDeclarator.getEllipsisLoc().isValid() &&
+ !Actions.isUnexpandedParameterPackPermitted())) &&
+ Actions.containsUnexpandedParameterPacks(ParmDeclarator))
+ DiagnoseMisplacedEllipsisInDeclarator(ConsumeToken(), ParmDeclarator);
+
+ // Inform the actions module about the parameter declarator, so it gets
+ // added to the current scope.
+ Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDeclarator);
+ // Parse the default argument, if any. We parse the default
+ // arguments in all dialects; the semantic analysis in
+ // ActOnParamDefaultArgument will reject the default argument in
+ // C.
+ if (Tok.is(tok::equal)) {
+ SourceLocation EqualLoc = Tok.getLocation();
+
+ // Parse the default argument
+ if (D.getContext() == Declarator::MemberContext) {
+ // If we're inside a class definition, cache the tokens
+ // corresponding to the default argument. We'll actually parse
+ // them when we see the end of the class definition.
+ // FIXME: Can we use a smart pointer for Toks?
+ DefArgToks = new CachedTokens;
+
+ SourceLocation ArgStartLoc = NextToken().getLocation();
+ if (!ConsumeAndStoreInitializer(*DefArgToks, CIK_DefaultArgument)) {
+ delete DefArgToks;
+ DefArgToks = nullptr;
+ Actions.ActOnParamDefaultArgumentError(Param, EqualLoc);
+ } else {
+ Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
+ ArgStartLoc);
+ }
+ } else {
+ // Consume the '='.
+ ConsumeToken();
+
+ // The argument isn't actually potentially evaluated unless it is
+ // used.
+ EnterExpressionEvaluationContext Eval(Actions,
+ Sema::PotentiallyEvaluatedIfUsed,
+ Param);
+
+ ExprResult DefArgResult;
+ if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
+ Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
+ DefArgResult = ParseBraceInitializer();
+ } else
+ DefArgResult = ParseAssignmentExpression();
+ DefArgResult = Actions.CorrectDelayedTyposInExpr(DefArgResult);
+ if (DefArgResult.isInvalid()) {
+ Actions.ActOnParamDefaultArgumentError(Param, EqualLoc);
+ SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch);
+ } else {
+ // Inform the actions module about the default argument
+ Actions.ActOnParamDefaultArgument(Param, EqualLoc,
+ DefArgResult.get());
+ }
+ }
+ }
+
+ ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
+ ParmDeclarator.getIdentifierLoc(),
+ Param, DefArgToks));
+ }
+
+ if (TryConsumeToken(tok::ellipsis, EllipsisLoc)) {
+ if (!getLangOpts().CPlusPlus) {
+ // We have ellipsis without a preceding ',', which is ill-formed
+ // in C. Complain and provide the fix.
+ Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
+ << FixItHint::CreateInsertion(EllipsisLoc, ", ");
+ } else if (ParmDeclarator.getEllipsisLoc().isValid() ||
+ Actions.containsUnexpandedParameterPacks(ParmDeclarator)) {
+ // It looks like this was supposed to be a parameter pack. Warn and
+ // point out where the ellipsis should have gone.
+ SourceLocation ParmEllipsis = ParmDeclarator.getEllipsisLoc();
+ Diag(EllipsisLoc, diag::warn_misplaced_ellipsis_vararg)
+ << ParmEllipsis.isValid() << ParmEllipsis;
+ if (ParmEllipsis.isValid()) {
+ Diag(ParmEllipsis,
+ diag::note_misplaced_ellipsis_vararg_existing_ellipsis);
+ } else {
+ Diag(ParmDeclarator.getIdentifierLoc(),
+ diag::note_misplaced_ellipsis_vararg_add_ellipsis)
+ << FixItHint::CreateInsertion(ParmDeclarator.getIdentifierLoc(),
+ "...")
+ << !ParmDeclarator.hasName();
+ }
+ Diag(EllipsisLoc, diag::note_misplaced_ellipsis_vararg_add_comma)
+ << FixItHint::CreateInsertion(EllipsisLoc, ", ");
+ }
+
+ // We can't have any more parameters after an ellipsis.
+ break;
+ }
+
+ // If the next token is a comma, consume it and keep reading arguments.
+ } while (TryConsumeToken(tok::comma));
+}
+
+/// [C90] direct-declarator '[' constant-expression[opt] ']'
+/// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
+/// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
+/// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']'
+/// [C99] direct-declarator '[' type-qual-list[opt] '*' ']'
+/// [C++11] direct-declarator '[' constant-expression[opt] ']'
+/// attribute-specifier-seq[opt]
+void Parser::ParseBracketDeclarator(Declarator &D) {
+ if (CheckProhibitedCXX11Attribute())
+ return;
+
+ BalancedDelimiterTracker T(*this, tok::l_square);
+ T.consumeOpen();
+
+ // C array syntax has many features, but by-far the most common is [] and [4].
+ // This code does a fast path to handle some of the most obvious cases.
+ if (Tok.getKind() == tok::r_square) {
+ T.consumeClose();
+ ParsedAttributes attrs(AttrFactory);
+ MaybeParseCXX11Attributes(attrs);
+
+ // Remember that we parsed the empty array type.
+ D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, nullptr,
+ T.getOpenLocation(),
+ T.getCloseLocation()),
+ attrs, T.getCloseLocation());
+ return;
+ } else if (Tok.getKind() == tok::numeric_constant &&
+ GetLookAheadToken(1).is(tok::r_square)) {
+ // [4] is very common. Parse the numeric constant expression.
+ ExprResult ExprRes(Actions.ActOnNumericConstant(Tok, getCurScope()));
+ ConsumeToken();
+
+ T.consumeClose();
+ ParsedAttributes attrs(AttrFactory);
+ MaybeParseCXX11Attributes(attrs);
+
+ // Remember that we parsed a array type, and remember its features.
+ D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false,
+ ExprRes.get(),
+ T.getOpenLocation(),
+ T.getCloseLocation()),
+ attrs, T.getCloseLocation());
+ return;
+ }
+
+ // If valid, this location is the position where we read the 'static' keyword.
+ SourceLocation StaticLoc;
+ TryConsumeToken(tok::kw_static, StaticLoc);
+
+ // If there is a type-qualifier-list, read it now.
+ // Type qualifiers in an array subscript are a C99 feature.
+ DeclSpec DS(AttrFactory);
+ ParseTypeQualifierListOpt(DS, AR_CXX11AttributesParsed);
+
+ // If we haven't already read 'static', check to see if there is one after the
+ // type-qualifier-list.
+ if (!StaticLoc.isValid())
+ TryConsumeToken(tok::kw_static, StaticLoc);
+
+ // Handle "direct-declarator [ type-qual-list[opt] * ]".
+ bool isStar = false;
+ ExprResult NumElements;
+
+ // Handle the case where we have '[*]' as the array size. However, a leading
+ // star could be the start of an expression, for example 'X[*p + 4]'. Verify
+ // the token after the star is a ']'. Since stars in arrays are
+ // infrequent, use of lookahead is not costly here.
+ if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
+ ConsumeToken(); // Eat the '*'.
+
+ if (StaticLoc.isValid()) {
+ Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
+ StaticLoc = SourceLocation(); // Drop the static.
+ }
+ isStar = true;
+ } else if (Tok.isNot(tok::r_square)) {
+ // Note, in C89, this production uses the constant-expr production instead
+ // of assignment-expr. The only difference is that assignment-expr allows
+ // things like '=' and '*='. Sema rejects these in C89 mode because they
+ // are not i-c-e's, so we don't need to distinguish between the two here.
+
+ // Parse the constant-expression or assignment-expression now (depending
+ // on dialect).
+ if (getLangOpts().CPlusPlus) {
+ NumElements = ParseConstantExpression();
+ } else {
+ EnterExpressionEvaluationContext Unevaluated(Actions,
+ Sema::ConstantEvaluated);
+ NumElements =
+ Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
+ }
+ } else {
+ if (StaticLoc.isValid()) {
+ Diag(StaticLoc, diag::err_unspecified_size_with_static);
+ StaticLoc = SourceLocation(); // Drop the static.
+ }
+ }
+
+ // If there was an error parsing the assignment-expression, recover.
+ if (NumElements.isInvalid()) {
+ D.setInvalidType(true);
+ // If the expression was invalid, skip it.
+ SkipUntil(tok::r_square, StopAtSemi);
+ return;
+ }
+
+ T.consumeClose();
+
+ ParsedAttributes attrs(AttrFactory);
+ MaybeParseCXX11Attributes(attrs);
+
+ // Remember that we parsed a array type, and remember its features.
+ D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
+ StaticLoc.isValid(), isStar,
+ NumElements.get(),
+ T.getOpenLocation(),
+ T.getCloseLocation()),
+ attrs, T.getCloseLocation());
+}
+
+/// Diagnose brackets before an identifier.
+void Parser::ParseMisplacedBracketDeclarator(Declarator &D) {
+ assert(Tok.is(tok::l_square) && "Missing opening bracket");
+ assert(!D.mayOmitIdentifier() && "Declarator cannot omit identifier");
+
+ SourceLocation StartBracketLoc = Tok.getLocation();
+ Declarator TempDeclarator(D.getDeclSpec(), D.getContext());
+
+ while (Tok.is(tok::l_square)) {
+ ParseBracketDeclarator(TempDeclarator);
+ }
+
+ // Stuff the location of the start of the brackets into the Declarator.
+ // The diagnostics from ParseDirectDeclarator will make more sense if
+ // they use this location instead.
+ if (Tok.is(tok::semi))
+ D.getName().EndLocation = StartBracketLoc;
+
+ SourceLocation SuggestParenLoc = Tok.getLocation();
+
+ // Now that the brackets are removed, try parsing the declarator again.
+ ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
+
+ // Something went wrong parsing the brackets, in which case,
+ // ParseBracketDeclarator has emitted an error, and we don't need to emit
+ // one here.
+ if (TempDeclarator.getNumTypeObjects() == 0)
+ return;
+
+ // Determine if parens will need to be suggested in the diagnostic.
+ bool NeedParens = false;
+ if (D.getNumTypeObjects() != 0) {
+ switch (D.getTypeObject(D.getNumTypeObjects() - 1).Kind) {
+ case DeclaratorChunk::Pointer:
+ case DeclaratorChunk::Reference:
+ case DeclaratorChunk::BlockPointer:
+ case DeclaratorChunk::MemberPointer:
+ NeedParens = true;
+ break;
+ case DeclaratorChunk::Array:
+ case DeclaratorChunk::Function:
+ case DeclaratorChunk::Paren:
+ break;
+ }
+ }
+
+ if (NeedParens) {
+ // Create a DeclaratorChunk for the inserted parens.
+ ParsedAttributes attrs(AttrFactory);
+ SourceLocation EndLoc = PP.getLocForEndOfToken(D.getLocEnd());
+ D.AddTypeInfo(DeclaratorChunk::getParen(SuggestParenLoc, EndLoc), attrs,
+ SourceLocation());
+ }
+
+ // Adding back the bracket info to the end of the Declarator.
+ for (unsigned i = 0, e = TempDeclarator.getNumTypeObjects(); i < e; ++i) {
+ const DeclaratorChunk &Chunk = TempDeclarator.getTypeObject(i);
+ ParsedAttributes attrs(AttrFactory);
+ attrs.set(Chunk.Common.AttrList);
+ D.AddTypeInfo(Chunk, attrs, SourceLocation());
+ }
+
+ // The missing identifier would have been diagnosed in ParseDirectDeclarator.
+ // If parentheses are required, always suggest them.
+ if (!D.getIdentifier() && !NeedParens)
+ return;
+
+ SourceLocation EndBracketLoc = TempDeclarator.getLocEnd();
+
+ // Generate the move bracket error message.
+ SourceRange BracketRange(StartBracketLoc, EndBracketLoc);
+ SourceLocation EndLoc = PP.getLocForEndOfToken(D.getLocEnd());
+
+ if (NeedParens) {
+ Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
+ << getLangOpts().CPlusPlus
+ << FixItHint::CreateInsertion(SuggestParenLoc, "(")
+ << FixItHint::CreateInsertion(EndLoc, ")")
+ << FixItHint::CreateInsertionFromRange(
+ EndLoc, CharSourceRange(BracketRange, true))
+ << FixItHint::CreateRemoval(BracketRange);
+ } else {
+ Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
+ << getLangOpts().CPlusPlus
+ << FixItHint::CreateInsertionFromRange(
+ EndLoc, CharSourceRange(BracketRange, true))
+ << FixItHint::CreateRemoval(BracketRange);
+ }
+}
+
+/// [GNU] typeof-specifier:
+/// typeof ( expressions )
+/// typeof ( type-name )
+/// [GNU/C++] typeof unary-expression
+///
+void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
+ assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
+ Token OpTok = Tok;
+ SourceLocation StartLoc = ConsumeToken();
+
+ const bool hasParens = Tok.is(tok::l_paren);
+
+ EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
+ Sema::ReuseLambdaContextDecl);
+
+ bool isCastExpr;
+ ParsedType CastTy;
+ SourceRange CastRange;
+ ExprResult Operand = Actions.CorrectDelayedTyposInExpr(
+ ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr, CastTy, CastRange));
+ if (hasParens)
+ DS.setTypeofParensRange(CastRange);
+
+ if (CastRange.getEnd().isInvalid())
+ // FIXME: Not accurate, the range gets one token more than it should.
+ DS.SetRangeEnd(Tok.getLocation());
+ else
+ DS.SetRangeEnd(CastRange.getEnd());
+
+ if (isCastExpr) {
+ if (!CastTy) {
+ DS.SetTypeSpecError();
+ return;
+ }
+
+ const char *PrevSpec = nullptr;
+ unsigned DiagID;
+ // Check for duplicate type specifiers (e.g. "int typeof(int)").
+ if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
+ DiagID, CastTy,
+ Actions.getASTContext().getPrintingPolicy()))
+ Diag(StartLoc, DiagID) << PrevSpec;
+ return;
+ }
+
+ // If we get here, the operand to the typeof was an expresion.
+ if (Operand.isInvalid()) {
+ DS.SetTypeSpecError();
+ return;
+ }
+
+ // We might need to transform the operand if it is potentially evaluated.
+ Operand = Actions.HandleExprEvaluationContextForTypeof(Operand.get());
+ if (Operand.isInvalid()) {
+ DS.SetTypeSpecError();
+ return;
+ }
+
+ const char *PrevSpec = nullptr;
+ unsigned DiagID;
+ // Check for duplicate type specifiers (e.g. "int typeof(int)").
+ if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
+ DiagID, Operand.get(),
+ Actions.getASTContext().getPrintingPolicy()))
+ Diag(StartLoc, DiagID) << PrevSpec;
+}
+
+/// [C11] atomic-specifier:
+/// _Atomic ( type-name )
+///
+void Parser::ParseAtomicSpecifier(DeclSpec &DS) {
+ assert(Tok.is(tok::kw__Atomic) && NextToken().is(tok::l_paren) &&
+ "Not an atomic specifier");
+
+ SourceLocation StartLoc = ConsumeToken();
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ if (T.consumeOpen())
+ return;
+
+ TypeResult Result = ParseTypeName();
+ if (Result.isInvalid()) {
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return;
+ }
+
+ // Match the ')'
+ T.consumeClose();
+
+ if (T.getCloseLocation().isInvalid())
+ return;
+
+ DS.setTypeofParensRange(T.getRange());
+ DS.SetRangeEnd(T.getCloseLocation());
+
+ const char *PrevSpec = nullptr;
+ unsigned DiagID;
+ if (DS.SetTypeSpecType(DeclSpec::TST_atomic, StartLoc, PrevSpec,
+ DiagID, Result.get(),
+ Actions.getASTContext().getPrintingPolicy()))
+ Diag(StartLoc, DiagID) << PrevSpec;
+}
+
+
+/// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
+/// from TryAltiVecVectorToken.
+bool Parser::TryAltiVecVectorTokenOutOfLine() {
+ Token Next = NextToken();
+ switch (Next.getKind()) {
+ default: return false;
+ case tok::kw_short:
+ case tok::kw_long:
+ case tok::kw_signed:
+ case tok::kw_unsigned:
+ case tok::kw_void:
+ case tok::kw_char:
+ case tok::kw_int:
+ case tok::kw_float:
+ case tok::kw_double:
+ case tok::kw_bool:
+ case tok::kw___bool:
+ case tok::kw___pixel:
+ Tok.setKind(tok::kw___vector);
+ return true;
+ case tok::identifier:
+ if (Next.getIdentifierInfo() == Ident_pixel) {
+ Tok.setKind(tok::kw___vector);
+ return true;
+ }
+ if (Next.getIdentifierInfo() == Ident_bool) {
+ Tok.setKind(tok::kw___vector);
+ return true;
+ }
+ return false;
+ }
+}
+
+bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
+ const char *&PrevSpec, unsigned &DiagID,
+ bool &isInvalid) {
+ const PrintingPolicy &Policy = Actions.getASTContext().getPrintingPolicy();
+ if (Tok.getIdentifierInfo() == Ident_vector) {
+ Token Next = NextToken();
+ switch (Next.getKind()) {
+ case tok::kw_short:
+ case tok::kw_long:
+ case tok::kw_signed:
+ case tok::kw_unsigned:
+ case tok::kw_void:
+ case tok::kw_char:
+ case tok::kw_int:
+ case tok::kw_float:
+ case tok::kw_double:
+ case tok::kw_bool:
+ case tok::kw___bool:
+ case tok::kw___pixel:
+ isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
+ return true;
+ case tok::identifier:
+ if (Next.getIdentifierInfo() == Ident_pixel) {
+ isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy);
+ return true;
+ }
+ if (Next.getIdentifierInfo() == Ident_bool) {
+ isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy);
+ return true;
+ }
+ break;
+ default:
+ break;
+ }
+ } else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
+ DS.isTypeAltiVecVector()) {
+ isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
+ return true;
+ } else if ((Tok.getIdentifierInfo() == Ident_bool) &&
+ DS.isTypeAltiVecVector()) {
+ isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
+ return true;
+ }
+ return false;
+}
diff --git a/contrib/llvm/tools/clang/lib/Parse/ParseDeclCXX.cpp b/contrib/llvm/tools/clang/lib/Parse/ParseDeclCXX.cpp
new file mode 100644
index 0000000..53e4a41
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Parse/ParseDeclCXX.cpp
@@ -0,0 +1,3862 @@
+//===--- ParseDeclCXX.cpp - C++ Declaration Parsing -----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the C++ Declaration portions of the Parser interfaces.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Parse/Parser.h"
+#include "RAIIObjectsForParser.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/Basic/Attributes.h"
+#include "clang/Basic/CharInfo.h"
+#include "clang/Basic/OperatorKinds.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Parse/ParseDiagnostic.h"
+#include "clang/Sema/DeclSpec.h"
+#include "clang/Sema/ParsedTemplate.h"
+#include "clang/Sema/PrettyDeclStackTrace.h"
+#include "clang/Sema/Scope.h"
+#include "clang/Sema/SemaDiagnostic.h"
+#include "llvm/ADT/SmallString.h"
+using namespace clang;
+
+/// ParseNamespace - We know that the current token is a namespace keyword. This
+/// may either be a top level namespace or a block-level namespace alias. If
+/// there was an inline keyword, it has already been parsed.
+///
+/// namespace-definition: [C++ 7.3: basic.namespace]
+/// named-namespace-definition
+/// unnamed-namespace-definition
+///
+/// unnamed-namespace-definition:
+/// 'inline'[opt] 'namespace' attributes[opt] '{' namespace-body '}'
+///
+/// named-namespace-definition:
+/// original-namespace-definition
+/// extension-namespace-definition
+///
+/// original-namespace-definition:
+/// 'inline'[opt] 'namespace' identifier attributes[opt]
+/// '{' namespace-body '}'
+///
+/// extension-namespace-definition:
+/// 'inline'[opt] 'namespace' original-namespace-name
+/// '{' namespace-body '}'
+///
+/// namespace-alias-definition: [C++ 7.3.2: namespace.alias]
+/// 'namespace' identifier '=' qualified-namespace-specifier ';'
+///
+Decl *Parser::ParseNamespace(unsigned Context,
+ SourceLocation &DeclEnd,
+ SourceLocation InlineLoc) {
+ assert(Tok.is(tok::kw_namespace) && "Not a namespace!");
+ SourceLocation NamespaceLoc = ConsumeToken(); // eat the 'namespace'.
+ ObjCDeclContextSwitch ObjCDC(*this);
+
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteNamespaceDecl(getCurScope());
+ cutOffParsing();
+ return nullptr;
+ }
+
+ SourceLocation IdentLoc;
+ IdentifierInfo *Ident = nullptr;
+ std::vector<SourceLocation> ExtraIdentLoc;
+ std::vector<IdentifierInfo*> ExtraIdent;
+ std::vector<SourceLocation> ExtraNamespaceLoc;
+
+ ParsedAttributesWithRange attrs(AttrFactory);
+ SourceLocation attrLoc;
+ if (getLangOpts().CPlusPlus11 && isCXX11AttributeSpecifier()) {
+ if (!getLangOpts().CPlusPlus1z)
+ Diag(Tok.getLocation(), diag::warn_cxx14_compat_attribute)
+ << 0 /*namespace*/;
+ attrLoc = Tok.getLocation();
+ ParseCXX11Attributes(attrs);
+ }
+
+ if (Tok.is(tok::identifier)) {
+ Ident = Tok.getIdentifierInfo();
+ IdentLoc = ConsumeToken(); // eat the identifier.
+ while (Tok.is(tok::coloncolon) && NextToken().is(tok::identifier)) {
+ ExtraNamespaceLoc.push_back(ConsumeToken());
+ ExtraIdent.push_back(Tok.getIdentifierInfo());
+ ExtraIdentLoc.push_back(ConsumeToken());
+ }
+ }
+
+ // A nested namespace definition cannot have attributes.
+ if (!ExtraNamespaceLoc.empty() && attrLoc.isValid())
+ Diag(attrLoc, diag::err_unexpected_nested_namespace_attribute);
+
+ // Read label attributes, if present.
+ if (Tok.is(tok::kw___attribute)) {
+ attrLoc = Tok.getLocation();
+ ParseGNUAttributes(attrs);
+ }
+
+ if (Tok.is(tok::equal)) {
+ if (!Ident) {
+ Diag(Tok, diag::err_expected) << tok::identifier;
+ // Skip to end of the definition and eat the ';'.
+ SkipUntil(tok::semi);
+ return nullptr;
+ }
+ if (attrLoc.isValid())
+ Diag(attrLoc, diag::err_unexpected_namespace_attributes_alias);
+ if (InlineLoc.isValid())
+ Diag(InlineLoc, diag::err_inline_namespace_alias)
+ << FixItHint::CreateRemoval(InlineLoc);
+ return ParseNamespaceAlias(NamespaceLoc, IdentLoc, Ident, DeclEnd);
+ }
+
+
+ BalancedDelimiterTracker T(*this, tok::l_brace);
+ if (T.consumeOpen()) {
+ if (Ident)
+ Diag(Tok, diag::err_expected) << tok::l_brace;
+ else
+ Diag(Tok, diag::err_expected_either) << tok::identifier << tok::l_brace;
+ return nullptr;
+ }
+
+ if (getCurScope()->isClassScope() || getCurScope()->isTemplateParamScope() ||
+ getCurScope()->isInObjcMethodScope() || getCurScope()->getBlockParent() ||
+ getCurScope()->getFnParent()) {
+ Diag(T.getOpenLocation(), diag::err_namespace_nonnamespace_scope);
+ SkipUntil(tok::r_brace);
+ return nullptr;
+ }
+
+ if (ExtraIdent.empty()) {
+ // Normal namespace definition, not a nested-namespace-definition.
+ } else if (InlineLoc.isValid()) {
+ Diag(InlineLoc, diag::err_inline_nested_namespace_definition);
+ } else if (getLangOpts().CPlusPlus1z) {
+ Diag(ExtraNamespaceLoc[0],
+ diag::warn_cxx14_compat_nested_namespace_definition);
+ } else {
+ TentativeParsingAction TPA(*this);
+ SkipUntil(tok::r_brace, StopBeforeMatch);
+ Token rBraceToken = Tok;
+ TPA.Revert();
+
+ if (!rBraceToken.is(tok::r_brace)) {
+ Diag(ExtraNamespaceLoc[0], diag::ext_nested_namespace_definition)
+ << SourceRange(ExtraNamespaceLoc.front(), ExtraIdentLoc.back());
+ } else {
+ std::string NamespaceFix;
+ for (std::vector<IdentifierInfo*>::iterator I = ExtraIdent.begin(),
+ E = ExtraIdent.end(); I != E; ++I) {
+ NamespaceFix += " { namespace ";
+ NamespaceFix += (*I)->getName();
+ }
+
+ std::string RBraces;
+ for (unsigned i = 0, e = ExtraIdent.size(); i != e; ++i)
+ RBraces += "} ";
+
+ Diag(ExtraNamespaceLoc[0], diag::ext_nested_namespace_definition)
+ << FixItHint::CreateReplacement(SourceRange(ExtraNamespaceLoc.front(),
+ ExtraIdentLoc.back()),
+ NamespaceFix)
+ << FixItHint::CreateInsertion(rBraceToken.getLocation(), RBraces);
+ }
+ }
+
+ // If we're still good, complain about inline namespaces in non-C++0x now.
+ if (InlineLoc.isValid())
+ Diag(InlineLoc, getLangOpts().CPlusPlus11 ?
+ diag::warn_cxx98_compat_inline_namespace : diag::ext_inline_namespace);
+
+ // Enter a scope for the namespace.
+ ParseScope NamespaceScope(this, Scope::DeclScope);
+
+ Decl *NamespcDecl =
+ Actions.ActOnStartNamespaceDef(getCurScope(), InlineLoc, NamespaceLoc,
+ IdentLoc, Ident, T.getOpenLocation(),
+ attrs.getList());
+
+ PrettyDeclStackTraceEntry CrashInfo(Actions, NamespcDecl, NamespaceLoc,
+ "parsing namespace");
+
+ // Parse the contents of the namespace. This includes parsing recovery on
+ // any improperly nested namespaces.
+ ParseInnerNamespace(ExtraIdentLoc, ExtraIdent, ExtraNamespaceLoc, 0,
+ InlineLoc, attrs, T);
+
+ // Leave the namespace scope.
+ NamespaceScope.Exit();
+
+ DeclEnd = T.getCloseLocation();
+ Actions.ActOnFinishNamespaceDef(NamespcDecl, DeclEnd);
+
+ return NamespcDecl;
+}
+
+/// ParseInnerNamespace - Parse the contents of a namespace.
+void Parser::ParseInnerNamespace(std::vector<SourceLocation> &IdentLoc,
+ std::vector<IdentifierInfo *> &Ident,
+ std::vector<SourceLocation> &NamespaceLoc,
+ unsigned int index, SourceLocation &InlineLoc,
+ ParsedAttributes &attrs,
+ BalancedDelimiterTracker &Tracker) {
+ if (index == Ident.size()) {
+ while (Tok.isNot(tok::r_brace) && !isEofOrEom()) {
+ ParsedAttributesWithRange attrs(AttrFactory);
+ MaybeParseCXX11Attributes(attrs);
+ MaybeParseMicrosoftAttributes(attrs);
+ ParseExternalDeclaration(attrs);
+ }
+
+ // The caller is what called check -- we are simply calling
+ // the close for it.
+ Tracker.consumeClose();
+
+ return;
+ }
+
+ // Handle a nested namespace definition.
+ // FIXME: Preserve the source information through to the AST rather than
+ // desugaring it here.
+ ParseScope NamespaceScope(this, Scope::DeclScope);
+ Decl *NamespcDecl =
+ Actions.ActOnStartNamespaceDef(getCurScope(), SourceLocation(),
+ NamespaceLoc[index], IdentLoc[index],
+ Ident[index], Tracker.getOpenLocation(),
+ attrs.getList());
+
+ ParseInnerNamespace(IdentLoc, Ident, NamespaceLoc, ++index, InlineLoc,
+ attrs, Tracker);
+
+ NamespaceScope.Exit();
+
+ Actions.ActOnFinishNamespaceDef(NamespcDecl, Tracker.getCloseLocation());
+}
+
+/// ParseNamespaceAlias - Parse the part after the '=' in a namespace
+/// alias definition.
+///
+Decl *Parser::ParseNamespaceAlias(SourceLocation NamespaceLoc,
+ SourceLocation AliasLoc,
+ IdentifierInfo *Alias,
+ SourceLocation &DeclEnd) {
+ assert(Tok.is(tok::equal) && "Not equal token");
+
+ ConsumeToken(); // eat the '='.
+
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteNamespaceAliasDecl(getCurScope());
+ cutOffParsing();
+ return nullptr;
+ }
+
+ CXXScopeSpec SS;
+ // Parse (optional) nested-name-specifier.
+ ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
+
+ if (SS.isInvalid() || Tok.isNot(tok::identifier)) {
+ Diag(Tok, diag::err_expected_namespace_name);
+ // Skip to end of the definition and eat the ';'.
+ SkipUntil(tok::semi);
+ return nullptr;
+ }
+
+ // Parse identifier.
+ IdentifierInfo *Ident = Tok.getIdentifierInfo();
+ SourceLocation IdentLoc = ConsumeToken();
+
+ // Eat the ';'.
+ DeclEnd = Tok.getLocation();
+ if (ExpectAndConsume(tok::semi, diag::err_expected_semi_after_namespace_name))
+ SkipUntil(tok::semi);
+
+ return Actions.ActOnNamespaceAliasDef(getCurScope(), NamespaceLoc, AliasLoc, Alias,
+ SS, IdentLoc, Ident);
+}
+
+/// ParseLinkage - We know that the current token is a string_literal
+/// and just before that, that extern was seen.
+///
+/// linkage-specification: [C++ 7.5p2: dcl.link]
+/// 'extern' string-literal '{' declaration-seq[opt] '}'
+/// 'extern' string-literal declaration
+///
+Decl *Parser::ParseLinkage(ParsingDeclSpec &DS, unsigned Context) {
+ assert(isTokenStringLiteral() && "Not a string literal!");
+ ExprResult Lang = ParseStringLiteralExpression(false);
+
+ ParseScope LinkageScope(this, Scope::DeclScope);
+ Decl *LinkageSpec =
+ Lang.isInvalid()
+ ? nullptr
+ : Actions.ActOnStartLinkageSpecification(
+ getCurScope(), DS.getSourceRange().getBegin(), Lang.get(),
+ Tok.is(tok::l_brace) ? Tok.getLocation() : SourceLocation());
+
+ ParsedAttributesWithRange attrs(AttrFactory);
+ MaybeParseCXX11Attributes(attrs);
+ MaybeParseMicrosoftAttributes(attrs);
+
+ if (Tok.isNot(tok::l_brace)) {
+ // Reset the source range in DS, as the leading "extern"
+ // does not really belong to the inner declaration ...
+ DS.SetRangeStart(SourceLocation());
+ DS.SetRangeEnd(SourceLocation());
+ // ... but anyway remember that such an "extern" was seen.
+ DS.setExternInLinkageSpec(true);
+ ParseExternalDeclaration(attrs, &DS);
+ return LinkageSpec ? Actions.ActOnFinishLinkageSpecification(
+ getCurScope(), LinkageSpec, SourceLocation())
+ : nullptr;
+ }
+
+ DS.abort();
+
+ ProhibitAttributes(attrs);
+
+ BalancedDelimiterTracker T(*this, tok::l_brace);
+ T.consumeOpen();
+
+ unsigned NestedModules = 0;
+ while (true) {
+ switch (Tok.getKind()) {
+ case tok::annot_module_begin:
+ ++NestedModules;
+ ParseTopLevelDecl();
+ continue;
+
+ case tok::annot_module_end:
+ if (!NestedModules)
+ break;
+ --NestedModules;
+ ParseTopLevelDecl();
+ continue;
+
+ case tok::annot_module_include:
+ ParseTopLevelDecl();
+ continue;
+
+ case tok::eof:
+ break;
+
+ case tok::r_brace:
+ if (!NestedModules)
+ break;
+ // Fall through.
+ default:
+ ParsedAttributesWithRange attrs(AttrFactory);
+ MaybeParseCXX11Attributes(attrs);
+ MaybeParseMicrosoftAttributes(attrs);
+ ParseExternalDeclaration(attrs);
+ continue;
+ }
+
+ break;
+ }
+
+ T.consumeClose();
+ return LinkageSpec ? Actions.ActOnFinishLinkageSpecification(
+ getCurScope(), LinkageSpec, T.getCloseLocation())
+ : nullptr;
+}
+
+/// ParseUsingDirectiveOrDeclaration - Parse C++ using using-declaration or
+/// using-directive. Assumes that current token is 'using'.
+Decl *Parser::ParseUsingDirectiveOrDeclaration(unsigned Context,
+ const ParsedTemplateInfo &TemplateInfo,
+ SourceLocation &DeclEnd,
+ ParsedAttributesWithRange &attrs,
+ Decl **OwnedType) {
+ assert(Tok.is(tok::kw_using) && "Not using token");
+ ObjCDeclContextSwitch ObjCDC(*this);
+
+ // Eat 'using'.
+ SourceLocation UsingLoc = ConsumeToken();
+
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteUsing(getCurScope());
+ cutOffParsing();
+ return nullptr;
+ }
+
+ // 'using namespace' means this is a using-directive.
+ if (Tok.is(tok::kw_namespace)) {
+ // Template parameters are always an error here.
+ if (TemplateInfo.Kind) {
+ SourceRange R = TemplateInfo.getSourceRange();
+ Diag(UsingLoc, diag::err_templated_using_directive)
+ << R << FixItHint::CreateRemoval(R);
+ }
+
+ return ParseUsingDirective(Context, UsingLoc, DeclEnd, attrs);
+ }
+
+ // Otherwise, it must be a using-declaration or an alias-declaration.
+
+ // Using declarations can't have attributes.
+ ProhibitAttributes(attrs);
+
+ return ParseUsingDeclaration(Context, TemplateInfo, UsingLoc, DeclEnd,
+ AS_none, OwnedType);
+}
+
+/// ParseUsingDirective - Parse C++ using-directive, assumes
+/// that current token is 'namespace' and 'using' was already parsed.
+///
+/// using-directive: [C++ 7.3.p4: namespace.udir]
+/// 'using' 'namespace' ::[opt] nested-name-specifier[opt]
+/// namespace-name ;
+/// [GNU] using-directive:
+/// 'using' 'namespace' ::[opt] nested-name-specifier[opt]
+/// namespace-name attributes[opt] ;
+///
+Decl *Parser::ParseUsingDirective(unsigned Context,
+ SourceLocation UsingLoc,
+ SourceLocation &DeclEnd,
+ ParsedAttributes &attrs) {
+ assert(Tok.is(tok::kw_namespace) && "Not 'namespace' token");
+
+ // Eat 'namespace'.
+ SourceLocation NamespcLoc = ConsumeToken();
+
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteUsingDirective(getCurScope());
+ cutOffParsing();
+ return nullptr;
+ }
+
+ CXXScopeSpec SS;
+ // Parse (optional) nested-name-specifier.
+ ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
+
+ IdentifierInfo *NamespcName = nullptr;
+ SourceLocation IdentLoc = SourceLocation();
+
+ // Parse namespace-name.
+ if (SS.isInvalid() || Tok.isNot(tok::identifier)) {
+ Diag(Tok, diag::err_expected_namespace_name);
+ // If there was invalid namespace name, skip to end of decl, and eat ';'.
+ SkipUntil(tok::semi);
+ // FIXME: Are there cases, when we would like to call ActOnUsingDirective?
+ return nullptr;
+ }
+
+ // Parse identifier.
+ NamespcName = Tok.getIdentifierInfo();
+ IdentLoc = ConsumeToken();
+
+ // Parse (optional) attributes (most likely GNU strong-using extension).
+ bool GNUAttr = false;
+ if (Tok.is(tok::kw___attribute)) {
+ GNUAttr = true;
+ ParseGNUAttributes(attrs);
+ }
+
+ // Eat ';'.
+ DeclEnd = Tok.getLocation();
+ if (ExpectAndConsume(tok::semi,
+ GNUAttr ? diag::err_expected_semi_after_attribute_list
+ : diag::err_expected_semi_after_namespace_name))
+ SkipUntil(tok::semi);
+
+ return Actions.ActOnUsingDirective(getCurScope(), UsingLoc, NamespcLoc, SS,
+ IdentLoc, NamespcName, attrs.getList());
+}
+
+/// ParseUsingDeclaration - Parse C++ using-declaration or alias-declaration.
+/// Assumes that 'using' was already seen.
+///
+/// using-declaration: [C++ 7.3.p3: namespace.udecl]
+/// 'using' 'typename'[opt] ::[opt] nested-name-specifier
+/// unqualified-id
+/// 'using' :: unqualified-id
+///
+/// alias-declaration: C++11 [dcl.dcl]p1
+/// 'using' identifier attribute-specifier-seq[opt] = type-id ;
+///
+Decl *Parser::ParseUsingDeclaration(unsigned Context,
+ const ParsedTemplateInfo &TemplateInfo,
+ SourceLocation UsingLoc,
+ SourceLocation &DeclEnd,
+ AccessSpecifier AS,
+ Decl **OwnedType) {
+ CXXScopeSpec SS;
+ SourceLocation TypenameLoc;
+ bool HasTypenameKeyword = false;
+
+ // Check for misplaced attributes before the identifier in an
+ // alias-declaration.
+ ParsedAttributesWithRange MisplacedAttrs(AttrFactory);
+ MaybeParseCXX11Attributes(MisplacedAttrs);
+
+ // Ignore optional 'typename'.
+ // FIXME: This is wrong; we should parse this as a typename-specifier.
+ if (TryConsumeToken(tok::kw_typename, TypenameLoc))
+ HasTypenameKeyword = true;
+
+ if (Tok.is(tok::kw___super)) {
+ Diag(Tok.getLocation(), diag::err_super_in_using_declaration);
+ SkipUntil(tok::semi);
+ return nullptr;
+ }
+
+ // Parse nested-name-specifier.
+ IdentifierInfo *LastII = nullptr;
+ ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false,
+ /*MayBePseudoDtor=*/nullptr,
+ /*IsTypename=*/false,
+ /*LastII=*/&LastII);
+
+ // Check nested-name specifier.
+ if (SS.isInvalid()) {
+ SkipUntil(tok::semi);
+ return nullptr;
+ }
+
+ SourceLocation TemplateKWLoc;
+ UnqualifiedId Name;
+
+ // Parse the unqualified-id. We allow parsing of both constructor and
+ // destructor names and allow the action module to diagnose any semantic
+ // errors.
+ //
+ // C++11 [class.qual]p2:
+ // [...] in a using-declaration that is a member-declaration, if the name
+ // specified after the nested-name-specifier is the same as the identifier
+ // or the simple-template-id's template-name in the last component of the
+ // nested-name-specifier, the name is [...] considered to name the
+ // constructor.
+ if (getLangOpts().CPlusPlus11 && Context == Declarator::MemberContext &&
+ Tok.is(tok::identifier) && NextToken().is(tok::semi) &&
+ SS.isNotEmpty() && LastII == Tok.getIdentifierInfo() &&
+ !SS.getScopeRep()->getAsNamespace() &&
+ !SS.getScopeRep()->getAsNamespaceAlias()) {
+ SourceLocation IdLoc = ConsumeToken();
+ ParsedType Type = Actions.getInheritingConstructorName(SS, IdLoc, *LastII);
+ Name.setConstructorName(Type, IdLoc, IdLoc);
+ } else if (ParseUnqualifiedId(SS, /*EnteringContext=*/ false,
+ /*AllowDestructorName=*/ true,
+ /*AllowConstructorName=*/ true, ParsedType(),
+ TemplateKWLoc, Name)) {
+ SkipUntil(tok::semi);
+ return nullptr;
+ }
+
+ ParsedAttributesWithRange Attrs(AttrFactory);
+ MaybeParseGNUAttributes(Attrs);
+ MaybeParseCXX11Attributes(Attrs);
+
+ // Maybe this is an alias-declaration.
+ TypeResult TypeAlias;
+ bool IsAliasDecl = Tok.is(tok::equal);
+ Decl *DeclFromDeclSpec = nullptr;
+ if (IsAliasDecl) {
+ // If we had any misplaced attributes from earlier, this is where they
+ // should have been written.
+ if (MisplacedAttrs.Range.isValid()) {
+ Diag(MisplacedAttrs.Range.getBegin(), diag::err_attributes_not_allowed)
+ << FixItHint::CreateInsertionFromRange(
+ Tok.getLocation(),
+ CharSourceRange::getTokenRange(MisplacedAttrs.Range))
+ << FixItHint::CreateRemoval(MisplacedAttrs.Range);
+ Attrs.takeAllFrom(MisplacedAttrs);
+ }
+
+ ConsumeToken();
+
+ Diag(Tok.getLocation(), getLangOpts().CPlusPlus11 ?
+ diag::warn_cxx98_compat_alias_declaration :
+ diag::ext_alias_declaration);
+
+ // Type alias templates cannot be specialized.
+ int SpecKind = -1;
+ if (TemplateInfo.Kind == ParsedTemplateInfo::Template &&
+ Name.getKind() == UnqualifiedId::IK_TemplateId)
+ SpecKind = 0;
+ if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization)
+ SpecKind = 1;
+ if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation)
+ SpecKind = 2;
+ if (SpecKind != -1) {
+ SourceRange Range;
+ if (SpecKind == 0)
+ Range = SourceRange(Name.TemplateId->LAngleLoc,
+ Name.TemplateId->RAngleLoc);
+ else
+ Range = TemplateInfo.getSourceRange();
+ Diag(Range.getBegin(), diag::err_alias_declaration_specialization)
+ << SpecKind << Range;
+ SkipUntil(tok::semi);
+ return nullptr;
+ }
+
+ // Name must be an identifier.
+ if (Name.getKind() != UnqualifiedId::IK_Identifier) {
+ Diag(Name.StartLocation, diag::err_alias_declaration_not_identifier);
+ // No removal fixit: can't recover from this.
+ SkipUntil(tok::semi);
+ return nullptr;
+ } else if (HasTypenameKeyword)
+ Diag(TypenameLoc, diag::err_alias_declaration_not_identifier)
+ << FixItHint::CreateRemoval(SourceRange(TypenameLoc,
+ SS.isNotEmpty() ? SS.getEndLoc() : TypenameLoc));
+ else if (SS.isNotEmpty())
+ Diag(SS.getBeginLoc(), diag::err_alias_declaration_not_identifier)
+ << FixItHint::CreateRemoval(SS.getRange());
+
+ TypeAlias = ParseTypeName(nullptr, TemplateInfo.Kind
+ ? Declarator::AliasTemplateContext
+ : Declarator::AliasDeclContext,
+ AS, &DeclFromDeclSpec, &Attrs);
+ if (OwnedType)
+ *OwnedType = DeclFromDeclSpec;
+ } else {
+ // C++11 attributes are not allowed on a using-declaration, but GNU ones
+ // are.
+ ProhibitAttributes(MisplacedAttrs);
+ ProhibitAttributes(Attrs);
+
+ // Parse (optional) attributes (most likely GNU strong-using extension).
+ MaybeParseGNUAttributes(Attrs);
+ }
+
+ // Eat ';'.
+ DeclEnd = Tok.getLocation();
+ if (ExpectAndConsume(tok::semi, diag::err_expected_after,
+ !Attrs.empty() ? "attributes list"
+ : IsAliasDecl ? "alias declaration"
+ : "using declaration"))
+ SkipUntil(tok::semi);
+
+ // Diagnose an attempt to declare a templated using-declaration.
+ // In C++11, alias-declarations can be templates:
+ // template <...> using id = type;
+ if (TemplateInfo.Kind && !IsAliasDecl) {
+ SourceRange R = TemplateInfo.getSourceRange();
+ Diag(UsingLoc, diag::err_templated_using_declaration)
+ << R << FixItHint::CreateRemoval(R);
+
+ // Unfortunately, we have to bail out instead of recovering by
+ // ignoring the parameters, just in case the nested name specifier
+ // depends on the parameters.
+ return nullptr;
+ }
+
+ // "typename" keyword is allowed for identifiers only,
+ // because it may be a type definition.
+ if (HasTypenameKeyword && Name.getKind() != UnqualifiedId::IK_Identifier) {
+ Diag(Name.getSourceRange().getBegin(), diag::err_typename_identifiers_only)
+ << FixItHint::CreateRemoval(SourceRange(TypenameLoc));
+ // Proceed parsing, but reset the HasTypenameKeyword flag.
+ HasTypenameKeyword = false;
+ }
+
+ if (IsAliasDecl) {
+ TemplateParameterLists *TemplateParams = TemplateInfo.TemplateParams;
+ MultiTemplateParamsArg TemplateParamsArg(
+ TemplateParams ? TemplateParams->data() : nullptr,
+ TemplateParams ? TemplateParams->size() : 0);
+ return Actions.ActOnAliasDeclaration(getCurScope(), AS, TemplateParamsArg,
+ UsingLoc, Name, Attrs.getList(),
+ TypeAlias, DeclFromDeclSpec);
+ }
+
+ return Actions.ActOnUsingDeclaration(getCurScope(), AS,
+ /* HasUsingKeyword */ true, UsingLoc,
+ SS, Name, Attrs.getList(),
+ HasTypenameKeyword, TypenameLoc);
+}
+
+/// ParseStaticAssertDeclaration - Parse C++0x or C11 static_assert-declaration.
+///
+/// [C++0x] static_assert-declaration:
+/// static_assert ( constant-expression , string-literal ) ;
+///
+/// [C11] static_assert-declaration:
+/// _Static_assert ( constant-expression , string-literal ) ;
+///
+Decl *Parser::ParseStaticAssertDeclaration(SourceLocation &DeclEnd){
+ assert((Tok.is(tok::kw_static_assert) || Tok.is(tok::kw__Static_assert)) &&
+ "Not a static_assert declaration");
+
+ if (Tok.is(tok::kw__Static_assert) && !getLangOpts().C11)
+ Diag(Tok, diag::ext_c11_static_assert);
+ if (Tok.is(tok::kw_static_assert))
+ Diag(Tok, diag::warn_cxx98_compat_static_assert);
+
+ SourceLocation StaticAssertLoc = ConsumeToken();
+
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ if (T.consumeOpen()) {
+ Diag(Tok, diag::err_expected) << tok::l_paren;
+ SkipMalformedDecl();
+ return nullptr;
+ }
+
+ ExprResult AssertExpr(ParseConstantExpression());
+ if (AssertExpr.isInvalid()) {
+ SkipMalformedDecl();
+ return nullptr;
+ }
+
+ ExprResult AssertMessage;
+ if (Tok.is(tok::r_paren)) {
+ Diag(Tok, getLangOpts().CPlusPlus1z
+ ? diag::warn_cxx14_compat_static_assert_no_message
+ : diag::ext_static_assert_no_message)
+ << (getLangOpts().CPlusPlus1z
+ ? FixItHint()
+ : FixItHint::CreateInsertion(Tok.getLocation(), ", \"\""));
+ } else {
+ if (ExpectAndConsume(tok::comma)) {
+ SkipUntil(tok::semi);
+ return nullptr;
+ }
+
+ if (!isTokenStringLiteral()) {
+ Diag(Tok, diag::err_expected_string_literal)
+ << /*Source='static_assert'*/1;
+ SkipMalformedDecl();
+ return nullptr;
+ }
+
+ AssertMessage = ParseStringLiteralExpression();
+ if (AssertMessage.isInvalid()) {
+ SkipMalformedDecl();
+ return nullptr;
+ }
+ }
+
+ T.consumeClose();
+
+ DeclEnd = Tok.getLocation();
+ ExpectAndConsumeSemi(diag::err_expected_semi_after_static_assert);
+
+ return Actions.ActOnStaticAssertDeclaration(StaticAssertLoc,
+ AssertExpr.get(),
+ AssertMessage.get(),
+ T.getCloseLocation());
+}
+
+/// ParseDecltypeSpecifier - Parse a C++11 decltype specifier.
+///
+/// 'decltype' ( expression )
+/// 'decltype' ( 'auto' ) [C++1y]
+///
+SourceLocation Parser::ParseDecltypeSpecifier(DeclSpec &DS) {
+ assert((Tok.is(tok::kw_decltype) || Tok.is(tok::annot_decltype))
+ && "Not a decltype specifier");
+
+ ExprResult Result;
+ SourceLocation StartLoc = Tok.getLocation();
+ SourceLocation EndLoc;
+
+ if (Tok.is(tok::annot_decltype)) {
+ Result = getExprAnnotation(Tok);
+ EndLoc = Tok.getAnnotationEndLoc();
+ ConsumeToken();
+ if (Result.isInvalid()) {
+ DS.SetTypeSpecError();
+ return EndLoc;
+ }
+ } else {
+ if (Tok.getIdentifierInfo()->isStr("decltype"))
+ Diag(Tok, diag::warn_cxx98_compat_decltype);
+
+ ConsumeToken();
+
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ if (T.expectAndConsume(diag::err_expected_lparen_after,
+ "decltype", tok::r_paren)) {
+ DS.SetTypeSpecError();
+ return T.getOpenLocation() == Tok.getLocation() ?
+ StartLoc : T.getOpenLocation();
+ }
+
+ // Check for C++1y 'decltype(auto)'.
+ if (Tok.is(tok::kw_auto)) {
+ // No need to disambiguate here: an expression can't start with 'auto',
+ // because the typename-specifier in a function-style cast operation can't
+ // be 'auto'.
+ Diag(Tok.getLocation(),
+ getLangOpts().CPlusPlus14
+ ? diag::warn_cxx11_compat_decltype_auto_type_specifier
+ : diag::ext_decltype_auto_type_specifier);
+ ConsumeToken();
+ } else {
+ // Parse the expression
+
+ // C++11 [dcl.type.simple]p4:
+ // The operand of the decltype specifier is an unevaluated operand.
+ EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
+ nullptr,/*IsDecltype=*/true);
+ Result =
+ Actions.CorrectDelayedTyposInExpr(ParseExpression(), [](Expr *E) {
+ return E->hasPlaceholderType() ? ExprError() : E;
+ });
+ if (Result.isInvalid()) {
+ DS.SetTypeSpecError();
+ if (SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch)) {
+ EndLoc = ConsumeParen();
+ } else {
+ if (PP.isBacktrackEnabled() && Tok.is(tok::semi)) {
+ // Backtrack to get the location of the last token before the semi.
+ PP.RevertCachedTokens(2);
+ ConsumeToken(); // the semi.
+ EndLoc = ConsumeAnyToken();
+ assert(Tok.is(tok::semi));
+ } else {
+ EndLoc = Tok.getLocation();
+ }
+ }
+ return EndLoc;
+ }
+
+ Result = Actions.ActOnDecltypeExpression(Result.get());
+ }
+
+ // Match the ')'
+ T.consumeClose();
+ if (T.getCloseLocation().isInvalid()) {
+ DS.SetTypeSpecError();
+ // FIXME: this should return the location of the last token
+ // that was consumed (by "consumeClose()")
+ return T.getCloseLocation();
+ }
+
+ if (Result.isInvalid()) {
+ DS.SetTypeSpecError();
+ return T.getCloseLocation();
+ }
+
+ EndLoc = T.getCloseLocation();
+ }
+ assert(!Result.isInvalid());
+
+ const char *PrevSpec = nullptr;
+ unsigned DiagID;
+ const PrintingPolicy &Policy = Actions.getASTContext().getPrintingPolicy();
+ // Check for duplicate type specifiers (e.g. "int decltype(a)").
+ if (Result.get()
+ ? DS.SetTypeSpecType(DeclSpec::TST_decltype, StartLoc, PrevSpec,
+ DiagID, Result.get(), Policy)
+ : DS.SetTypeSpecType(DeclSpec::TST_decltype_auto, StartLoc, PrevSpec,
+ DiagID, Policy)) {
+ Diag(StartLoc, DiagID) << PrevSpec;
+ DS.SetTypeSpecError();
+ }
+ return EndLoc;
+}
+
+void Parser::AnnotateExistingDecltypeSpecifier(const DeclSpec& DS,
+ SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+ // make sure we have a token we can turn into an annotation token
+ if (PP.isBacktrackEnabled())
+ PP.RevertCachedTokens(1);
+ else
+ PP.EnterToken(Tok);
+
+ Tok.setKind(tok::annot_decltype);
+ setExprAnnotation(Tok,
+ DS.getTypeSpecType() == TST_decltype ? DS.getRepAsExpr() :
+ DS.getTypeSpecType() == TST_decltype_auto ? ExprResult() :
+ ExprError());
+ Tok.setAnnotationEndLoc(EndLoc);
+ Tok.setLocation(StartLoc);
+ PP.AnnotateCachedTokens(Tok);
+}
+
+void Parser::ParseUnderlyingTypeSpecifier(DeclSpec &DS) {
+ assert(Tok.is(tok::kw___underlying_type) &&
+ "Not an underlying type specifier");
+
+ SourceLocation StartLoc = ConsumeToken();
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ if (T.expectAndConsume(diag::err_expected_lparen_after,
+ "__underlying_type", tok::r_paren)) {
+ return;
+ }
+
+ TypeResult Result = ParseTypeName();
+ if (Result.isInvalid()) {
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return;
+ }
+
+ // Match the ')'
+ T.consumeClose();
+ if (T.getCloseLocation().isInvalid())
+ return;
+
+ const char *PrevSpec = nullptr;
+ unsigned DiagID;
+ if (DS.SetTypeSpecType(DeclSpec::TST_underlyingType, StartLoc, PrevSpec,
+ DiagID, Result.get(),
+ Actions.getASTContext().getPrintingPolicy()))
+ Diag(StartLoc, DiagID) << PrevSpec;
+ DS.setTypeofParensRange(T.getRange());
+}
+
+/// ParseBaseTypeSpecifier - Parse a C++ base-type-specifier which is either a
+/// class name or decltype-specifier. Note that we only check that the result
+/// names a type; semantic analysis will need to verify that the type names a
+/// class. The result is either a type or null, depending on whether a type
+/// name was found.
+///
+/// base-type-specifier: [C++11 class.derived]
+/// class-or-decltype
+/// class-or-decltype: [C++11 class.derived]
+/// nested-name-specifier[opt] class-name
+/// decltype-specifier
+/// class-name: [C++ class.name]
+/// identifier
+/// simple-template-id
+///
+/// In C++98, instead of base-type-specifier, we have:
+///
+/// ::[opt] nested-name-specifier[opt] class-name
+TypeResult Parser::ParseBaseTypeSpecifier(SourceLocation &BaseLoc,
+ SourceLocation &EndLocation) {
+ // Ignore attempts to use typename
+ if (Tok.is(tok::kw_typename)) {
+ Diag(Tok, diag::err_expected_class_name_not_template)
+ << FixItHint::CreateRemoval(Tok.getLocation());
+ ConsumeToken();
+ }
+
+ // Parse optional nested-name-specifier
+ CXXScopeSpec SS;
+ ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
+
+ BaseLoc = Tok.getLocation();
+
+ // Parse decltype-specifier
+ // tok == kw_decltype is just error recovery, it can only happen when SS
+ // isn't empty
+ if (Tok.is(tok::kw_decltype) || Tok.is(tok::annot_decltype)) {
+ if (SS.isNotEmpty())
+ Diag(SS.getBeginLoc(), diag::err_unexpected_scope_on_base_decltype)
+ << FixItHint::CreateRemoval(SS.getRange());
+ // Fake up a Declarator to use with ActOnTypeName.
+ DeclSpec DS(AttrFactory);
+
+ EndLocation = ParseDecltypeSpecifier(DS);
+
+ Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
+ return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
+ }
+
+ // Check whether we have a template-id that names a type.
+ if (Tok.is(tok::annot_template_id)) {
+ TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
+ if (TemplateId->Kind == TNK_Type_template ||
+ TemplateId->Kind == TNK_Dependent_template_name) {
+ AnnotateTemplateIdTokenAsType();
+
+ assert(Tok.is(tok::annot_typename) && "template-id -> type failed");
+ ParsedType Type = getTypeAnnotation(Tok);
+ EndLocation = Tok.getAnnotationEndLoc();
+ ConsumeToken();
+
+ if (Type)
+ return Type;
+ return true;
+ }
+
+ // Fall through to produce an error below.
+ }
+
+ if (Tok.isNot(tok::identifier)) {
+ Diag(Tok, diag::err_expected_class_name);
+ return true;
+ }
+
+ IdentifierInfo *Id = Tok.getIdentifierInfo();
+ SourceLocation IdLoc = ConsumeToken();
+
+ if (Tok.is(tok::less)) {
+ // It looks the user intended to write a template-id here, but the
+ // template-name was wrong. Try to fix that.
+ TemplateNameKind TNK = TNK_Type_template;
+ TemplateTy Template;
+ if (!Actions.DiagnoseUnknownTemplateName(*Id, IdLoc, getCurScope(),
+ &SS, Template, TNK)) {
+ Diag(IdLoc, diag::err_unknown_template_name)
+ << Id;
+ }
+
+ if (!Template) {
+ TemplateArgList TemplateArgs;
+ SourceLocation LAngleLoc, RAngleLoc;
+ ParseTemplateIdAfterTemplateName(TemplateTy(), IdLoc, SS,
+ true, LAngleLoc, TemplateArgs, RAngleLoc);
+ return true;
+ }
+
+ // Form the template name
+ UnqualifiedId TemplateName;
+ TemplateName.setIdentifier(Id, IdLoc);
+
+ // Parse the full template-id, then turn it into a type.
+ if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
+ TemplateName, true))
+ return true;
+ if (TNK == TNK_Dependent_template_name)
+ AnnotateTemplateIdTokenAsType();
+
+ // If we didn't end up with a typename token, there's nothing more we
+ // can do.
+ if (Tok.isNot(tok::annot_typename))
+ return true;
+
+ // Retrieve the type from the annotation token, consume that token, and
+ // return.
+ EndLocation = Tok.getAnnotationEndLoc();
+ ParsedType Type = getTypeAnnotation(Tok);
+ ConsumeToken();
+ return Type;
+ }
+
+ // We have an identifier; check whether it is actually a type.
+ IdentifierInfo *CorrectedII = nullptr;
+ ParsedType Type = Actions.getTypeName(*Id, IdLoc, getCurScope(), &SS, true,
+ false, ParsedType(),
+ /*IsCtorOrDtorName=*/false,
+ /*NonTrivialTypeSourceInfo=*/true,
+ &CorrectedII);
+ if (!Type) {
+ Diag(IdLoc, diag::err_expected_class_name);
+ return true;
+ }
+
+ // Consume the identifier.
+ EndLocation = IdLoc;
+
+ // Fake up a Declarator to use with ActOnTypeName.
+ DeclSpec DS(AttrFactory);
+ DS.SetRangeStart(IdLoc);
+ DS.SetRangeEnd(EndLocation);
+ DS.getTypeSpecScope() = SS;
+
+ const char *PrevSpec = nullptr;
+ unsigned DiagID;
+ DS.SetTypeSpecType(TST_typename, IdLoc, PrevSpec, DiagID, Type,
+ Actions.getASTContext().getPrintingPolicy());
+
+ Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
+ return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
+}
+
+void Parser::ParseMicrosoftInheritanceClassAttributes(ParsedAttributes &attrs) {
+ while (Tok.is(tok::kw___single_inheritance) ||
+ Tok.is(tok::kw___multiple_inheritance) ||
+ Tok.is(tok::kw___virtual_inheritance)) {
+ IdentifierInfo *AttrName = Tok.getIdentifierInfo();
+ SourceLocation AttrNameLoc = ConsumeToken();
+ attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
+ AttributeList::AS_Keyword);
+ }
+}
+
+/// Determine whether the following tokens are valid after a type-specifier
+/// which could be a standalone declaration. This will conservatively return
+/// true if there's any doubt, and is appropriate for insert-';' fixits.
+bool Parser::isValidAfterTypeSpecifier(bool CouldBeBitfield) {
+ // This switch enumerates the valid "follow" set for type-specifiers.
+ switch (Tok.getKind()) {
+ default: break;
+ case tok::semi: // struct foo {...} ;
+ case tok::star: // struct foo {...} * P;
+ case tok::amp: // struct foo {...} & R = ...
+ case tok::ampamp: // struct foo {...} && R = ...
+ case tok::identifier: // struct foo {...} V ;
+ case tok::r_paren: //(struct foo {...} ) {4}
+ case tok::annot_cxxscope: // struct foo {...} a:: b;
+ case tok::annot_typename: // struct foo {...} a ::b;
+ case tok::annot_template_id: // struct foo {...} a<int> ::b;
+ case tok::l_paren: // struct foo {...} ( x);
+ case tok::comma: // __builtin_offsetof(struct foo{...} ,
+ case tok::kw_operator: // struct foo operator ++() {...}
+ case tok::kw___declspec: // struct foo {...} __declspec(...)
+ case tok::l_square: // void f(struct f [ 3])
+ case tok::ellipsis: // void f(struct f ... [Ns])
+ // FIXME: we should emit semantic diagnostic when declaration
+ // attribute is in type attribute position.
+ case tok::kw___attribute: // struct foo __attribute__((used)) x;
+ return true;
+ case tok::colon:
+ return CouldBeBitfield; // enum E { ... } : 2;
+ // Type qualifiers
+ case tok::kw_const: // struct foo {...} const x;
+ case tok::kw_volatile: // struct foo {...} volatile x;
+ case tok::kw_restrict: // struct foo {...} restrict x;
+ case tok::kw__Atomic: // struct foo {...} _Atomic x;
+ case tok::kw___unaligned: // struct foo {...} __unaligned *x;
+ // Function specifiers
+ // Note, no 'explicit'. An explicit function must be either a conversion
+ // operator or a constructor. Either way, it can't have a return type.
+ case tok::kw_inline: // struct foo inline f();
+ case tok::kw_virtual: // struct foo virtual f();
+ case tok::kw_friend: // struct foo friend f();
+ // Storage-class specifiers
+ case tok::kw_static: // struct foo {...} static x;
+ case tok::kw_extern: // struct foo {...} extern x;
+ case tok::kw_typedef: // struct foo {...} typedef x;
+ case tok::kw_register: // struct foo {...} register x;
+ case tok::kw_auto: // struct foo {...} auto x;
+ case tok::kw_mutable: // struct foo {...} mutable x;
+ case tok::kw_thread_local: // struct foo {...} thread_local x;
+ case tok::kw_constexpr: // struct foo {...} constexpr x;
+ // As shown above, type qualifiers and storage class specifiers absolutely
+ // can occur after class specifiers according to the grammar. However,
+ // almost no one actually writes code like this. If we see one of these,
+ // it is much more likely that someone missed a semi colon and the
+ // type/storage class specifier we're seeing is part of the *next*
+ // intended declaration, as in:
+ //
+ // struct foo { ... }
+ // typedef int X;
+ //
+ // We'd really like to emit a missing semicolon error instead of emitting
+ // an error on the 'int' saying that you can't have two type specifiers in
+ // the same declaration of X. Because of this, we look ahead past this
+ // token to see if it's a type specifier. If so, we know the code is
+ // otherwise invalid, so we can produce the expected semi error.
+ if (!isKnownToBeTypeSpecifier(NextToken()))
+ return true;
+ break;
+ case tok::r_brace: // struct bar { struct foo {...} }
+ // Missing ';' at end of struct is accepted as an extension in C mode.
+ if (!getLangOpts().CPlusPlus)
+ return true;
+ break;
+ case tok::greater:
+ // template<class T = class X>
+ return getLangOpts().CPlusPlus;
+ }
+ return false;
+}
+
+/// ParseClassSpecifier - Parse a C++ class-specifier [C++ class] or
+/// elaborated-type-specifier [C++ dcl.type.elab]; we can't tell which
+/// until we reach the start of a definition or see a token that
+/// cannot start a definition.
+///
+/// class-specifier: [C++ class]
+/// class-head '{' member-specification[opt] '}'
+/// class-head '{' member-specification[opt] '}' attributes[opt]
+/// class-head:
+/// class-key identifier[opt] base-clause[opt]
+/// class-key nested-name-specifier identifier base-clause[opt]
+/// class-key nested-name-specifier[opt] simple-template-id
+/// base-clause[opt]
+/// [GNU] class-key attributes[opt] identifier[opt] base-clause[opt]
+/// [GNU] class-key attributes[opt] nested-name-specifier
+/// identifier base-clause[opt]
+/// [GNU] class-key attributes[opt] nested-name-specifier[opt]
+/// simple-template-id base-clause[opt]
+/// class-key:
+/// 'class'
+/// 'struct'
+/// 'union'
+///
+/// elaborated-type-specifier: [C++ dcl.type.elab]
+/// class-key ::[opt] nested-name-specifier[opt] identifier
+/// class-key ::[opt] nested-name-specifier[opt] 'template'[opt]
+/// simple-template-id
+///
+/// Note that the C++ class-specifier and elaborated-type-specifier,
+/// together, subsume the C99 struct-or-union-specifier:
+///
+/// struct-or-union-specifier: [C99 6.7.2.1]
+/// struct-or-union identifier[opt] '{' struct-contents '}'
+/// struct-or-union identifier
+/// [GNU] struct-or-union attributes[opt] identifier[opt] '{' struct-contents
+/// '}' attributes[opt]
+/// [GNU] struct-or-union attributes[opt] identifier
+/// struct-or-union:
+/// 'struct'
+/// 'union'
+void Parser::ParseClassSpecifier(tok::TokenKind TagTokKind,
+ SourceLocation StartLoc, DeclSpec &DS,
+ const ParsedTemplateInfo &TemplateInfo,
+ AccessSpecifier AS,
+ bool EnteringContext, DeclSpecContext DSC,
+ ParsedAttributesWithRange &Attributes) {
+ DeclSpec::TST TagType;
+ if (TagTokKind == tok::kw_struct)
+ TagType = DeclSpec::TST_struct;
+ else if (TagTokKind == tok::kw___interface)
+ TagType = DeclSpec::TST_interface;
+ else if (TagTokKind == tok::kw_class)
+ TagType = DeclSpec::TST_class;
+ else {
+ assert(TagTokKind == tok::kw_union && "Not a class specifier");
+ TagType = DeclSpec::TST_union;
+ }
+
+ if (Tok.is(tok::code_completion)) {
+ // Code completion for a struct, class, or union name.
+ Actions.CodeCompleteTag(getCurScope(), TagType);
+ return cutOffParsing();
+ }
+
+ // C++03 [temp.explicit] 14.7.2/8:
+ // The usual access checking rules do not apply to names used to specify
+ // explicit instantiations.
+ //
+ // As an extension we do not perform access checking on the names used to
+ // specify explicit specializations either. This is important to allow
+ // specializing traits classes for private types.
+ //
+ // Note that we don't suppress if this turns out to be an elaborated
+ // type specifier.
+ bool shouldDelayDiagsInTag =
+ (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
+ TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
+ SuppressAccessChecks diagsFromTag(*this, shouldDelayDiagsInTag);
+
+ ParsedAttributesWithRange attrs(AttrFactory);
+ // If attributes exist after tag, parse them.
+ MaybeParseGNUAttributes(attrs);
+ MaybeParseMicrosoftDeclSpecs(attrs);
+
+ // Parse inheritance specifiers.
+ if (Tok.is(tok::kw___single_inheritance) ||
+ Tok.is(tok::kw___multiple_inheritance) ||
+ Tok.is(tok::kw___virtual_inheritance))
+ ParseMicrosoftInheritanceClassAttributes(attrs);
+
+ // If C++0x attributes exist here, parse them.
+ // FIXME: Are we consistent with the ordering of parsing of different
+ // styles of attributes?
+ MaybeParseCXX11Attributes(attrs);
+
+ // Source location used by FIXIT to insert misplaced
+ // C++11 attributes
+ SourceLocation AttrFixitLoc = Tok.getLocation();
+
+ if (TagType == DeclSpec::TST_struct &&
+ Tok.isNot(tok::identifier) &&
+ !Tok.isAnnotation() &&
+ Tok.getIdentifierInfo() &&
+ (Tok.is(tok::kw___is_abstract) ||
+ Tok.is(tok::kw___is_arithmetic) ||
+ Tok.is(tok::kw___is_array) ||
+ Tok.is(tok::kw___is_base_of) ||
+ Tok.is(tok::kw___is_class) ||
+ Tok.is(tok::kw___is_complete_type) ||
+ Tok.is(tok::kw___is_compound) ||
+ Tok.is(tok::kw___is_const) ||
+ Tok.is(tok::kw___is_constructible) ||
+ Tok.is(tok::kw___is_convertible) ||
+ Tok.is(tok::kw___is_convertible_to) ||
+ Tok.is(tok::kw___is_destructible) ||
+ Tok.is(tok::kw___is_empty) ||
+ Tok.is(tok::kw___is_enum) ||
+ Tok.is(tok::kw___is_floating_point) ||
+ Tok.is(tok::kw___is_final) ||
+ Tok.is(tok::kw___is_function) ||
+ Tok.is(tok::kw___is_fundamental) ||
+ Tok.is(tok::kw___is_integral) ||
+ Tok.is(tok::kw___is_interface_class) ||
+ Tok.is(tok::kw___is_literal) ||
+ Tok.is(tok::kw___is_lvalue_expr) ||
+ Tok.is(tok::kw___is_lvalue_reference) ||
+ Tok.is(tok::kw___is_member_function_pointer) ||
+ Tok.is(tok::kw___is_member_object_pointer) ||
+ Tok.is(tok::kw___is_member_pointer) ||
+ Tok.is(tok::kw___is_nothrow_assignable) ||
+ Tok.is(tok::kw___is_nothrow_constructible) ||
+ Tok.is(tok::kw___is_nothrow_destructible) ||
+ Tok.is(tok::kw___is_object) ||
+ Tok.is(tok::kw___is_pod) ||
+ Tok.is(tok::kw___is_pointer) ||
+ Tok.is(tok::kw___is_polymorphic) ||
+ Tok.is(tok::kw___is_reference) ||
+ Tok.is(tok::kw___is_rvalue_expr) ||
+ Tok.is(tok::kw___is_rvalue_reference) ||
+ Tok.is(tok::kw___is_same) ||
+ Tok.is(tok::kw___is_scalar) ||
+ Tok.is(tok::kw___is_sealed) ||
+ Tok.is(tok::kw___is_signed) ||
+ Tok.is(tok::kw___is_standard_layout) ||
+ Tok.is(tok::kw___is_trivial) ||
+ Tok.is(tok::kw___is_trivially_assignable) ||
+ Tok.is(tok::kw___is_trivially_constructible) ||
+ Tok.is(tok::kw___is_trivially_copyable) ||
+ Tok.is(tok::kw___is_union) ||
+ Tok.is(tok::kw___is_unsigned) ||
+ Tok.is(tok::kw___is_void) ||
+ Tok.is(tok::kw___is_volatile)))
+ // GNU libstdc++ 4.2 and libc++ use certain intrinsic names as the
+ // name of struct templates, but some are keywords in GCC >= 4.3
+ // and Clang. Therefore, when we see the token sequence "struct
+ // X", make X into a normal identifier rather than a keyword, to
+ // allow libstdc++ 4.2 and libc++ to work properly.
+ TryKeywordIdentFallback(true);
+
+ // Parse the (optional) nested-name-specifier.
+ CXXScopeSpec &SS = DS.getTypeSpecScope();
+ if (getLangOpts().CPlusPlus) {
+ // "FOO : BAR" is not a potential typo for "FOO::BAR". In this context it
+ // is a base-specifier-list.
+ ColonProtectionRAIIObject X(*this);
+
+ CXXScopeSpec Spec;
+ bool HasValidSpec = true;
+ if (ParseOptionalCXXScopeSpecifier(Spec, ParsedType(), EnteringContext)) {
+ DS.SetTypeSpecError();
+ HasValidSpec = false;
+ }
+ if (Spec.isSet())
+ if (Tok.isNot(tok::identifier) && Tok.isNot(tok::annot_template_id)) {
+ Diag(Tok, diag::err_expected) << tok::identifier;
+ HasValidSpec = false;
+ }
+ if (HasValidSpec)
+ SS = Spec;
+ }
+
+ TemplateParameterLists *TemplateParams = TemplateInfo.TemplateParams;
+
+ // Parse the (optional) class name or simple-template-id.
+ IdentifierInfo *Name = nullptr;
+ SourceLocation NameLoc;
+ TemplateIdAnnotation *TemplateId = nullptr;
+ if (Tok.is(tok::identifier)) {
+ Name = Tok.getIdentifierInfo();
+ NameLoc = ConsumeToken();
+
+ if (Tok.is(tok::less) && getLangOpts().CPlusPlus) {
+ // The name was supposed to refer to a template, but didn't.
+ // Eat the template argument list and try to continue parsing this as
+ // a class (or template thereof).
+ TemplateArgList TemplateArgs;
+ SourceLocation LAngleLoc, RAngleLoc;
+ if (ParseTemplateIdAfterTemplateName(TemplateTy(), NameLoc, SS,
+ true, LAngleLoc,
+ TemplateArgs, RAngleLoc)) {
+ // We couldn't parse the template argument list at all, so don't
+ // try to give any location information for the list.
+ LAngleLoc = RAngleLoc = SourceLocation();
+ }
+
+ Diag(NameLoc, diag::err_explicit_spec_non_template)
+ << (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation)
+ << TagTokKind << Name << SourceRange(LAngleLoc, RAngleLoc);
+
+ // Strip off the last template parameter list if it was empty, since
+ // we've removed its template argument list.
+ if (TemplateParams && TemplateInfo.LastParameterListWasEmpty) {
+ if (TemplateParams && TemplateParams->size() > 1) {
+ TemplateParams->pop_back();
+ } else {
+ TemplateParams = nullptr;
+ const_cast<ParsedTemplateInfo&>(TemplateInfo).Kind
+ = ParsedTemplateInfo::NonTemplate;
+ }
+ } else if (TemplateInfo.Kind
+ == ParsedTemplateInfo::ExplicitInstantiation) {
+ // Pretend this is just a forward declaration.
+ TemplateParams = nullptr;
+ const_cast<ParsedTemplateInfo&>(TemplateInfo).Kind
+ = ParsedTemplateInfo::NonTemplate;
+ const_cast<ParsedTemplateInfo&>(TemplateInfo).TemplateLoc
+ = SourceLocation();
+ const_cast<ParsedTemplateInfo&>(TemplateInfo).ExternLoc
+ = SourceLocation();
+ }
+ }
+ } else if (Tok.is(tok::annot_template_id)) {
+ TemplateId = takeTemplateIdAnnotation(Tok);
+ NameLoc = ConsumeToken();
+
+ if (TemplateId->Kind != TNK_Type_template &&
+ TemplateId->Kind != TNK_Dependent_template_name) {
+ // The template-name in the simple-template-id refers to
+ // something other than a class template. Give an appropriate
+ // error message and skip to the ';'.
+ SourceRange Range(NameLoc);
+ if (SS.isNotEmpty())
+ Range.setBegin(SS.getBeginLoc());
+
+ // FIXME: Name may be null here.
+ Diag(TemplateId->LAngleLoc, diag::err_template_spec_syntax_non_template)
+ << TemplateId->Name << static_cast<int>(TemplateId->Kind) << Range;
+
+ DS.SetTypeSpecError();
+ SkipUntil(tok::semi, StopBeforeMatch);
+ return;
+ }
+ }
+
+ // There are four options here.
+ // - If we are in a trailing return type, this is always just a reference,
+ // and we must not try to parse a definition. For instance,
+ // [] () -> struct S { };
+ // does not define a type.
+ // - If we have 'struct foo {...', 'struct foo :...',
+ // 'struct foo final :' or 'struct foo final {', then this is a definition.
+ // - If we have 'struct foo;', then this is either a forward declaration
+ // or a friend declaration, which have to be treated differently.
+ // - Otherwise we have something like 'struct foo xyz', a reference.
+ //
+ // We also detect these erroneous cases to provide better diagnostic for
+ // C++11 attributes parsing.
+ // - attributes follow class name:
+ // struct foo [[]] {};
+ // - attributes appear before or after 'final':
+ // struct foo [[]] final [[]] {};
+ //
+ // However, in type-specifier-seq's, things look like declarations but are
+ // just references, e.g.
+ // new struct s;
+ // or
+ // &T::operator struct s;
+ // For these, DSC is DSC_type_specifier or DSC_alias_declaration.
+
+ // If there are attributes after class name, parse them.
+ MaybeParseCXX11Attributes(Attributes);
+
+ const PrintingPolicy &Policy = Actions.getASTContext().getPrintingPolicy();
+ Sema::TagUseKind TUK;
+ if (DSC == DSC_trailing)
+ TUK = Sema::TUK_Reference;
+ else if (Tok.is(tok::l_brace) ||
+ (getLangOpts().CPlusPlus && Tok.is(tok::colon)) ||
+ (isCXX11FinalKeyword() &&
+ (NextToken().is(tok::l_brace) || NextToken().is(tok::colon)))) {
+ if (DS.isFriendSpecified()) {
+ // C++ [class.friend]p2:
+ // A class shall not be defined in a friend declaration.
+ Diag(Tok.getLocation(), diag::err_friend_decl_defines_type)
+ << SourceRange(DS.getFriendSpecLoc());
+
+ // Skip everything up to the semicolon, so that this looks like a proper
+ // friend class (or template thereof) declaration.
+ SkipUntil(tok::semi, StopBeforeMatch);
+ TUK = Sema::TUK_Friend;
+ } else {
+ // Okay, this is a class definition.
+ TUK = Sema::TUK_Definition;
+ }
+ } else if (isCXX11FinalKeyword() && (NextToken().is(tok::l_square) ||
+ NextToken().is(tok::kw_alignas))) {
+ // We can't tell if this is a definition or reference
+ // until we skipped the 'final' and C++11 attribute specifiers.
+ TentativeParsingAction PA(*this);
+
+ // Skip the 'final' keyword.
+ ConsumeToken();
+
+ // Skip C++11 attribute specifiers.
+ while (true) {
+ if (Tok.is(tok::l_square) && NextToken().is(tok::l_square)) {
+ ConsumeBracket();
+ if (!SkipUntil(tok::r_square, StopAtSemi))
+ break;
+ } else if (Tok.is(tok::kw_alignas) && NextToken().is(tok::l_paren)) {
+ ConsumeToken();
+ ConsumeParen();
+ if (!SkipUntil(tok::r_paren, StopAtSemi))
+ break;
+ } else {
+ break;
+ }
+ }
+
+ if (Tok.is(tok::l_brace) || Tok.is(tok::colon))
+ TUK = Sema::TUK_Definition;
+ else
+ TUK = Sema::TUK_Reference;
+
+ PA.Revert();
+ } else if (!isTypeSpecifier(DSC) &&
+ (Tok.is(tok::semi) ||
+ (Tok.isAtStartOfLine() && !isValidAfterTypeSpecifier(false)))) {
+ TUK = DS.isFriendSpecified() ? Sema::TUK_Friend : Sema::TUK_Declaration;
+ if (Tok.isNot(tok::semi)) {
+ const PrintingPolicy &PPol = Actions.getASTContext().getPrintingPolicy();
+ // A semicolon was missing after this declaration. Diagnose and recover.
+ ExpectAndConsume(tok::semi, diag::err_expected_after,
+ DeclSpec::getSpecifierName(TagType, PPol));
+ PP.EnterToken(Tok);
+ Tok.setKind(tok::semi);
+ }
+ } else
+ TUK = Sema::TUK_Reference;
+
+ // Forbid misplaced attributes. In cases of a reference, we pass attributes
+ // to caller to handle.
+ if (TUK != Sema::TUK_Reference) {
+ // If this is not a reference, then the only possible
+ // valid place for C++11 attributes to appear here
+ // is between class-key and class-name. If there are
+ // any attributes after class-name, we try a fixit to move
+ // them to the right place.
+ SourceRange AttrRange = Attributes.Range;
+ if (AttrRange.isValid()) {
+ Diag(AttrRange.getBegin(), diag::err_attributes_not_allowed)
+ << AttrRange
+ << FixItHint::CreateInsertionFromRange(AttrFixitLoc,
+ CharSourceRange(AttrRange, true))
+ << FixItHint::CreateRemoval(AttrRange);
+
+ // Recover by adding misplaced attributes to the attribute list
+ // of the class so they can be applied on the class later.
+ attrs.takeAllFrom(Attributes);
+ }
+ }
+
+ // If this is an elaborated type specifier, and we delayed
+ // diagnostics before, just merge them into the current pool.
+ if (shouldDelayDiagsInTag) {
+ diagsFromTag.done();
+ if (TUK == Sema::TUK_Reference)
+ diagsFromTag.redelay();
+ }
+
+ if (!Name && !TemplateId && (DS.getTypeSpecType() == DeclSpec::TST_error ||
+ TUK != Sema::TUK_Definition)) {
+ if (DS.getTypeSpecType() != DeclSpec::TST_error) {
+ // We have a declaration or reference to an anonymous class.
+ Diag(StartLoc, diag::err_anon_type_definition)
+ << DeclSpec::getSpecifierName(TagType, Policy);
+ }
+
+ // If we are parsing a definition and stop at a base-clause, continue on
+ // until the semicolon. Continuing from the comma will just trick us into
+ // thinking we are seeing a variable declaration.
+ if (TUK == Sema::TUK_Definition && Tok.is(tok::colon))
+ SkipUntil(tok::semi, StopBeforeMatch);
+ else
+ SkipUntil(tok::comma, StopAtSemi);
+ return;
+ }
+
+ // Create the tag portion of the class or class template.
+ DeclResult TagOrTempResult = true; // invalid
+ TypeResult TypeResult = true; // invalid
+
+ bool Owned = false;
+ Sema::SkipBodyInfo SkipBody;
+ if (TemplateId) {
+ // Explicit specialization, class template partial specialization,
+ // or explicit instantiation.
+ ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
+ TemplateId->NumArgs);
+ if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation &&
+ TUK == Sema::TUK_Declaration) {
+ // This is an explicit instantiation of a class template.
+ ProhibitAttributes(attrs);
+
+ TagOrTempResult
+ = Actions.ActOnExplicitInstantiation(getCurScope(),
+ TemplateInfo.ExternLoc,
+ TemplateInfo.TemplateLoc,
+ TagType,
+ StartLoc,
+ SS,
+ TemplateId->Template,
+ TemplateId->TemplateNameLoc,
+ TemplateId->LAngleLoc,
+ TemplateArgsPtr,
+ TemplateId->RAngleLoc,
+ attrs.getList());
+
+ // Friend template-ids are treated as references unless
+ // they have template headers, in which case they're ill-formed
+ // (FIXME: "template <class T> friend class A<T>::B<int>;").
+ // We diagnose this error in ActOnClassTemplateSpecialization.
+ } else if (TUK == Sema::TUK_Reference ||
+ (TUK == Sema::TUK_Friend &&
+ TemplateInfo.Kind == ParsedTemplateInfo::NonTemplate)) {
+ ProhibitAttributes(attrs);
+ TypeResult = Actions.ActOnTagTemplateIdType(TUK, TagType, StartLoc,
+ TemplateId->SS,
+ TemplateId->TemplateKWLoc,
+ TemplateId->Template,
+ TemplateId->TemplateNameLoc,
+ TemplateId->LAngleLoc,
+ TemplateArgsPtr,
+ TemplateId->RAngleLoc);
+ } else {
+ // This is an explicit specialization or a class template
+ // partial specialization.
+ TemplateParameterLists FakedParamLists;
+ if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
+ // This looks like an explicit instantiation, because we have
+ // something like
+ //
+ // template class Foo<X>
+ //
+ // but it actually has a definition. Most likely, this was
+ // meant to be an explicit specialization, but the user forgot
+ // the '<>' after 'template'.
+ // It this is friend declaration however, since it cannot have a
+ // template header, it is most likely that the user meant to
+ // remove the 'template' keyword.
+ assert((TUK == Sema::TUK_Definition || TUK == Sema::TUK_Friend) &&
+ "Expected a definition here");
+
+ if (TUK == Sema::TUK_Friend) {
+ Diag(DS.getFriendSpecLoc(), diag::err_friend_explicit_instantiation);
+ TemplateParams = nullptr;
+ } else {
+ SourceLocation LAngleLoc =
+ PP.getLocForEndOfToken(TemplateInfo.TemplateLoc);
+ Diag(TemplateId->TemplateNameLoc,
+ diag::err_explicit_instantiation_with_definition)
+ << SourceRange(TemplateInfo.TemplateLoc)
+ << FixItHint::CreateInsertion(LAngleLoc, "<>");
+
+ // Create a fake template parameter list that contains only
+ // "template<>", so that we treat this construct as a class
+ // template specialization.
+ FakedParamLists.push_back(Actions.ActOnTemplateParameterList(
+ 0, SourceLocation(), TemplateInfo.TemplateLoc, LAngleLoc, nullptr,
+ 0, LAngleLoc));
+ TemplateParams = &FakedParamLists;
+ }
+ }
+
+ // Build the class template specialization.
+ TagOrTempResult = Actions.ActOnClassTemplateSpecialization(
+ getCurScope(), TagType, TUK, StartLoc, DS.getModulePrivateSpecLoc(),
+ *TemplateId, attrs.getList(),
+ MultiTemplateParamsArg(TemplateParams ? &(*TemplateParams)[0]
+ : nullptr,
+ TemplateParams ? TemplateParams->size() : 0),
+ &SkipBody);
+ }
+ } else if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation &&
+ TUK == Sema::TUK_Declaration) {
+ // Explicit instantiation of a member of a class template
+ // specialization, e.g.,
+ //
+ // template struct Outer<int>::Inner;
+ //
+ ProhibitAttributes(attrs);
+
+ TagOrTempResult
+ = Actions.ActOnExplicitInstantiation(getCurScope(),
+ TemplateInfo.ExternLoc,
+ TemplateInfo.TemplateLoc,
+ TagType, StartLoc, SS, Name,
+ NameLoc, attrs.getList());
+ } else if (TUK == Sema::TUK_Friend &&
+ TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate) {
+ ProhibitAttributes(attrs);
+
+ TagOrTempResult =
+ Actions.ActOnTemplatedFriendTag(getCurScope(), DS.getFriendSpecLoc(),
+ TagType, StartLoc, SS,
+ Name, NameLoc, attrs.getList(),
+ MultiTemplateParamsArg(
+ TemplateParams? &(*TemplateParams)[0]
+ : nullptr,
+ TemplateParams? TemplateParams->size() : 0));
+ } else {
+ if (TUK != Sema::TUK_Declaration && TUK != Sema::TUK_Definition)
+ ProhibitAttributes(attrs);
+
+ if (TUK == Sema::TUK_Definition &&
+ TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
+ // If the declarator-id is not a template-id, issue a diagnostic and
+ // recover by ignoring the 'template' keyword.
+ Diag(Tok, diag::err_template_defn_explicit_instantiation)
+ << 1 << FixItHint::CreateRemoval(TemplateInfo.TemplateLoc);
+ TemplateParams = nullptr;
+ }
+
+ bool IsDependent = false;
+
+ // Don't pass down template parameter lists if this is just a tag
+ // reference. For example, we don't need the template parameters here:
+ // template <class T> class A *makeA(T t);
+ MultiTemplateParamsArg TParams;
+ if (TUK != Sema::TUK_Reference && TemplateParams)
+ TParams =
+ MultiTemplateParamsArg(&(*TemplateParams)[0], TemplateParams->size());
+
+ handleDeclspecAlignBeforeClassKey(attrs, DS, TUK);
+
+ // Declaration or definition of a class type
+ TagOrTempResult = Actions.ActOnTag(getCurScope(), TagType, TUK, StartLoc,
+ SS, Name, NameLoc, attrs.getList(), AS,
+ DS.getModulePrivateSpecLoc(),
+ TParams, Owned, IsDependent,
+ SourceLocation(), false,
+ clang::TypeResult(),
+ DSC == DSC_type_specifier,
+ &SkipBody);
+
+ // If ActOnTag said the type was dependent, try again with the
+ // less common call.
+ if (IsDependent) {
+ assert(TUK == Sema::TUK_Reference || TUK == Sema::TUK_Friend);
+ TypeResult = Actions.ActOnDependentTag(getCurScope(), TagType, TUK,
+ SS, Name, StartLoc, NameLoc);
+ }
+ }
+
+ // If there is a body, parse it and inform the actions module.
+ if (TUK == Sema::TUK_Definition) {
+ assert(Tok.is(tok::l_brace) ||
+ (getLangOpts().CPlusPlus && Tok.is(tok::colon)) ||
+ isCXX11FinalKeyword());
+ if (SkipBody.ShouldSkip)
+ SkipCXXMemberSpecification(StartLoc, AttrFixitLoc, TagType,
+ TagOrTempResult.get());
+ else if (getLangOpts().CPlusPlus)
+ ParseCXXMemberSpecification(StartLoc, AttrFixitLoc, attrs, TagType,
+ TagOrTempResult.get());
+ else
+ ParseStructUnionBody(StartLoc, TagType, TagOrTempResult.get());
+ }
+
+ const char *PrevSpec = nullptr;
+ unsigned DiagID;
+ bool Result;
+ if (!TypeResult.isInvalid()) {
+ Result = DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
+ NameLoc.isValid() ? NameLoc : StartLoc,
+ PrevSpec, DiagID, TypeResult.get(), Policy);
+ } else if (!TagOrTempResult.isInvalid()) {
+ Result = DS.SetTypeSpecType(TagType, StartLoc,
+ NameLoc.isValid() ? NameLoc : StartLoc,
+ PrevSpec, DiagID, TagOrTempResult.get(), Owned,
+ Policy);
+ } else {
+ DS.SetTypeSpecError();
+ return;
+ }
+
+ if (Result)
+ Diag(StartLoc, DiagID) << PrevSpec;
+
+ // At this point, we've successfully parsed a class-specifier in 'definition'
+ // form (e.g. "struct foo { int x; }". While we could just return here, we're
+ // going to look at what comes after it to improve error recovery. If an
+ // impossible token occurs next, we assume that the programmer forgot a ; at
+ // the end of the declaration and recover that way.
+ //
+ // Also enforce C++ [temp]p3:
+ // In a template-declaration which defines a class, no declarator
+ // is permitted.
+ //
+ // After a type-specifier, we don't expect a semicolon. This only happens in
+ // C, since definitions are not permitted in this context in C++.
+ if (TUK == Sema::TUK_Definition &&
+ (getLangOpts().CPlusPlus || !isTypeSpecifier(DSC)) &&
+ (TemplateInfo.Kind || !isValidAfterTypeSpecifier(false))) {
+ if (Tok.isNot(tok::semi)) {
+ const PrintingPolicy &PPol = Actions.getASTContext().getPrintingPolicy();
+ ExpectAndConsume(tok::semi, diag::err_expected_after,
+ DeclSpec::getSpecifierName(TagType, PPol));
+ // Push this token back into the preprocessor and change our current token
+ // to ';' so that the rest of the code recovers as though there were an
+ // ';' after the definition.
+ PP.EnterToken(Tok);
+ Tok.setKind(tok::semi);
+ }
+ }
+}
+
+/// ParseBaseClause - Parse the base-clause of a C++ class [C++ class.derived].
+///
+/// base-clause : [C++ class.derived]
+/// ':' base-specifier-list
+/// base-specifier-list:
+/// base-specifier '...'[opt]
+/// base-specifier-list ',' base-specifier '...'[opt]
+void Parser::ParseBaseClause(Decl *ClassDecl) {
+ assert(Tok.is(tok::colon) && "Not a base clause");
+ ConsumeToken();
+
+ // Build up an array of parsed base specifiers.
+ SmallVector<CXXBaseSpecifier *, 8> BaseInfo;
+
+ while (true) {
+ // Parse a base-specifier.
+ BaseResult Result = ParseBaseSpecifier(ClassDecl);
+ if (Result.isInvalid()) {
+ // Skip the rest of this base specifier, up until the comma or
+ // opening brace.
+ SkipUntil(tok::comma, tok::l_brace, StopAtSemi | StopBeforeMatch);
+ } else {
+ // Add this to our array of base specifiers.
+ BaseInfo.push_back(Result.get());
+ }
+
+ // If the next token is a comma, consume it and keep reading
+ // base-specifiers.
+ if (!TryConsumeToken(tok::comma))
+ break;
+ }
+
+ // Attach the base specifiers
+ Actions.ActOnBaseSpecifiers(ClassDecl, BaseInfo.data(), BaseInfo.size());
+}
+
+/// ParseBaseSpecifier - Parse a C++ base-specifier. A base-specifier is
+/// one entry in the base class list of a class specifier, for example:
+/// class foo : public bar, virtual private baz {
+/// 'public bar' and 'virtual private baz' are each base-specifiers.
+///
+/// base-specifier: [C++ class.derived]
+/// attribute-specifier-seq[opt] base-type-specifier
+/// attribute-specifier-seq[opt] 'virtual' access-specifier[opt]
+/// base-type-specifier
+/// attribute-specifier-seq[opt] access-specifier 'virtual'[opt]
+/// base-type-specifier
+BaseResult Parser::ParseBaseSpecifier(Decl *ClassDecl) {
+ bool IsVirtual = false;
+ SourceLocation StartLoc = Tok.getLocation();
+
+ ParsedAttributesWithRange Attributes(AttrFactory);
+ MaybeParseCXX11Attributes(Attributes);
+
+ // Parse the 'virtual' keyword.
+ if (TryConsumeToken(tok::kw_virtual))
+ IsVirtual = true;
+
+ CheckMisplacedCXX11Attribute(Attributes, StartLoc);
+
+ // Parse an (optional) access specifier.
+ AccessSpecifier Access = getAccessSpecifierIfPresent();
+ if (Access != AS_none)
+ ConsumeToken();
+
+ CheckMisplacedCXX11Attribute(Attributes, StartLoc);
+
+ // Parse the 'virtual' keyword (again!), in case it came after the
+ // access specifier.
+ if (Tok.is(tok::kw_virtual)) {
+ SourceLocation VirtualLoc = ConsumeToken();
+ if (IsVirtual) {
+ // Complain about duplicate 'virtual'
+ Diag(VirtualLoc, diag::err_dup_virtual)
+ << FixItHint::CreateRemoval(VirtualLoc);
+ }
+
+ IsVirtual = true;
+ }
+
+ CheckMisplacedCXX11Attribute(Attributes, StartLoc);
+
+ // Parse the class-name.
+ SourceLocation EndLocation;
+ SourceLocation BaseLoc;
+ TypeResult BaseType = ParseBaseTypeSpecifier(BaseLoc, EndLocation);
+ if (BaseType.isInvalid())
+ return true;
+
+ // Parse the optional ellipsis (for a pack expansion). The ellipsis is
+ // actually part of the base-specifier-list grammar productions, but we
+ // parse it here for convenience.
+ SourceLocation EllipsisLoc;
+ TryConsumeToken(tok::ellipsis, EllipsisLoc);
+
+ // Find the complete source range for the base-specifier.
+ SourceRange Range(StartLoc, EndLocation);
+
+ // Notify semantic analysis that we have parsed a complete
+ // base-specifier.
+ return Actions.ActOnBaseSpecifier(ClassDecl, Range, Attributes, IsVirtual,
+ Access, BaseType.get(), BaseLoc,
+ EllipsisLoc);
+}
+
+/// getAccessSpecifierIfPresent - Determine whether the next token is
+/// a C++ access-specifier.
+///
+/// access-specifier: [C++ class.derived]
+/// 'private'
+/// 'protected'
+/// 'public'
+AccessSpecifier Parser::getAccessSpecifierIfPresent() const {
+ switch (Tok.getKind()) {
+ default: return AS_none;
+ case tok::kw_private: return AS_private;
+ case tok::kw_protected: return AS_protected;
+ case tok::kw_public: return AS_public;
+ }
+}
+
+/// \brief If the given declarator has any parts for which parsing has to be
+/// delayed, e.g., default arguments or an exception-specification, create a
+/// late-parsed method declaration record to handle the parsing at the end of
+/// the class definition.
+void Parser::HandleMemberFunctionDeclDelays(Declarator& DeclaratorInfo,
+ Decl *ThisDecl) {
+ DeclaratorChunk::FunctionTypeInfo &FTI
+ = DeclaratorInfo.getFunctionTypeInfo();
+ // If there was a late-parsed exception-specification, we'll need a
+ // late parse
+ bool NeedLateParse = FTI.getExceptionSpecType() == EST_Unparsed;
+
+ if (!NeedLateParse) {
+ // Look ahead to see if there are any default args
+ for (unsigned ParamIdx = 0; ParamIdx < FTI.NumParams; ++ParamIdx) {
+ auto Param = cast<ParmVarDecl>(FTI.Params[ParamIdx].Param);
+ if (Param->hasUnparsedDefaultArg()) {
+ NeedLateParse = true;
+ break;
+ }
+ }
+ }
+
+ if (NeedLateParse) {
+ // Push this method onto the stack of late-parsed method
+ // declarations.
+ auto LateMethod = new LateParsedMethodDeclaration(this, ThisDecl);
+ getCurrentClass().LateParsedDeclarations.push_back(LateMethod);
+ LateMethod->TemplateScope = getCurScope()->isTemplateParamScope();
+
+ // Stash the exception-specification tokens in the late-pased method.
+ LateMethod->ExceptionSpecTokens = FTI.ExceptionSpecTokens;
+ FTI.ExceptionSpecTokens = 0;
+
+ // Push tokens for each parameter. Those that do not have
+ // defaults will be NULL.
+ LateMethod->DefaultArgs.reserve(FTI.NumParams);
+ for (unsigned ParamIdx = 0; ParamIdx < FTI.NumParams; ++ParamIdx)
+ LateMethod->DefaultArgs.push_back(LateParsedDefaultArgument(
+ FTI.Params[ParamIdx].Param, FTI.Params[ParamIdx].DefaultArgTokens));
+ }
+}
+
+/// isCXX11VirtSpecifier - Determine whether the given token is a C++11
+/// virt-specifier.
+///
+/// virt-specifier:
+/// override
+/// final
+VirtSpecifiers::Specifier Parser::isCXX11VirtSpecifier(const Token &Tok) const {
+ if (!getLangOpts().CPlusPlus || Tok.isNot(tok::identifier))
+ return VirtSpecifiers::VS_None;
+
+ IdentifierInfo *II = Tok.getIdentifierInfo();
+
+ // Initialize the contextual keywords.
+ if (!Ident_final) {
+ Ident_final = &PP.getIdentifierTable().get("final");
+ if (getLangOpts().MicrosoftExt)
+ Ident_sealed = &PP.getIdentifierTable().get("sealed");
+ Ident_override = &PP.getIdentifierTable().get("override");
+ }
+
+ if (II == Ident_override)
+ return VirtSpecifiers::VS_Override;
+
+ if (II == Ident_sealed)
+ return VirtSpecifiers::VS_Sealed;
+
+ if (II == Ident_final)
+ return VirtSpecifiers::VS_Final;
+
+ return VirtSpecifiers::VS_None;
+}
+
+/// ParseOptionalCXX11VirtSpecifierSeq - Parse a virt-specifier-seq.
+///
+/// virt-specifier-seq:
+/// virt-specifier
+/// virt-specifier-seq virt-specifier
+void Parser::ParseOptionalCXX11VirtSpecifierSeq(VirtSpecifiers &VS,
+ bool IsInterface,
+ SourceLocation FriendLoc) {
+ while (true) {
+ VirtSpecifiers::Specifier Specifier = isCXX11VirtSpecifier();
+ if (Specifier == VirtSpecifiers::VS_None)
+ return;
+
+ if (FriendLoc.isValid()) {
+ Diag(Tok.getLocation(), diag::err_friend_decl_spec)
+ << VirtSpecifiers::getSpecifierName(Specifier)
+ << FixItHint::CreateRemoval(Tok.getLocation())
+ << SourceRange(FriendLoc, FriendLoc);
+ ConsumeToken();
+ continue;
+ }
+
+ // C++ [class.mem]p8:
+ // A virt-specifier-seq shall contain at most one of each virt-specifier.
+ const char *PrevSpec = nullptr;
+ if (VS.SetSpecifier(Specifier, Tok.getLocation(), PrevSpec))
+ Diag(Tok.getLocation(), diag::err_duplicate_virt_specifier)
+ << PrevSpec
+ << FixItHint::CreateRemoval(Tok.getLocation());
+
+ if (IsInterface && (Specifier == VirtSpecifiers::VS_Final ||
+ Specifier == VirtSpecifiers::VS_Sealed)) {
+ Diag(Tok.getLocation(), diag::err_override_control_interface)
+ << VirtSpecifiers::getSpecifierName(Specifier);
+ } else if (Specifier == VirtSpecifiers::VS_Sealed) {
+ Diag(Tok.getLocation(), diag::ext_ms_sealed_keyword);
+ } else {
+ Diag(Tok.getLocation(),
+ getLangOpts().CPlusPlus11
+ ? diag::warn_cxx98_compat_override_control_keyword
+ : diag::ext_override_control_keyword)
+ << VirtSpecifiers::getSpecifierName(Specifier);
+ }
+ ConsumeToken();
+ }
+}
+
+/// isCXX11FinalKeyword - Determine whether the next token is a C++11
+/// 'final' or Microsoft 'sealed' contextual keyword.
+bool Parser::isCXX11FinalKeyword() const {
+ VirtSpecifiers::Specifier Specifier = isCXX11VirtSpecifier();
+ return Specifier == VirtSpecifiers::VS_Final ||
+ Specifier == VirtSpecifiers::VS_Sealed;
+}
+
+/// \brief Parse a C++ member-declarator up to, but not including, the optional
+/// brace-or-equal-initializer or pure-specifier.
+bool Parser::ParseCXXMemberDeclaratorBeforeInitializer(
+ Declarator &DeclaratorInfo, VirtSpecifiers &VS, ExprResult &BitfieldSize,
+ LateParsedAttrList &LateParsedAttrs) {
+ // member-declarator:
+ // declarator pure-specifier[opt]
+ // declarator brace-or-equal-initializer[opt]
+ // identifier[opt] ':' constant-expression
+ if (Tok.isNot(tok::colon))
+ ParseDeclarator(DeclaratorInfo);
+ else
+ DeclaratorInfo.SetIdentifier(nullptr, Tok.getLocation());
+
+ if (!DeclaratorInfo.isFunctionDeclarator() && TryConsumeToken(tok::colon)) {
+ assert(DeclaratorInfo.isPastIdentifier() &&
+ "don't know where identifier would go yet?");
+ BitfieldSize = ParseConstantExpression();
+ if (BitfieldSize.isInvalid())
+ SkipUntil(tok::comma, StopAtSemi | StopBeforeMatch);
+ } else {
+ ParseOptionalCXX11VirtSpecifierSeq(
+ VS, getCurrentClass().IsInterface,
+ DeclaratorInfo.getDeclSpec().getFriendSpecLoc());
+ if (!VS.isUnset())
+ MaybeParseAndDiagnoseDeclSpecAfterCXX11VirtSpecifierSeq(DeclaratorInfo, VS);
+ }
+
+ // If a simple-asm-expr is present, parse it.
+ if (Tok.is(tok::kw_asm)) {
+ SourceLocation Loc;
+ ExprResult AsmLabel(ParseSimpleAsm(&Loc));
+ if (AsmLabel.isInvalid())
+ SkipUntil(tok::comma, StopAtSemi | StopBeforeMatch);
+
+ DeclaratorInfo.setAsmLabel(AsmLabel.get());
+ DeclaratorInfo.SetRangeEnd(Loc);
+ }
+
+ // If attributes exist after the declarator, but before an '{', parse them.
+ MaybeParseGNUAttributes(DeclaratorInfo, &LateParsedAttrs);
+
+ // For compatibility with code written to older Clang, also accept a
+ // virt-specifier *after* the GNU attributes.
+ if (BitfieldSize.isUnset() && VS.isUnset()) {
+ ParseOptionalCXX11VirtSpecifierSeq(
+ VS, getCurrentClass().IsInterface,
+ DeclaratorInfo.getDeclSpec().getFriendSpecLoc());
+ if (!VS.isUnset()) {
+ // If we saw any GNU-style attributes that are known to GCC followed by a
+ // virt-specifier, issue a GCC-compat warning.
+ const AttributeList *Attr = DeclaratorInfo.getAttributes();
+ while (Attr) {
+ if (Attr->isKnownToGCC() && !Attr->isCXX11Attribute())
+ Diag(Attr->getLoc(), diag::warn_gcc_attribute_location);
+ Attr = Attr->getNext();
+ }
+ MaybeParseAndDiagnoseDeclSpecAfterCXX11VirtSpecifierSeq(DeclaratorInfo, VS);
+ }
+ }
+
+ // If this has neither a name nor a bit width, something has gone seriously
+ // wrong. Skip until the semi-colon or }.
+ if (!DeclaratorInfo.hasName() && BitfieldSize.isUnset()) {
+ // If so, skip until the semi-colon or a }.
+ SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
+ return true;
+ }
+ return false;
+}
+
+/// \brief Look for declaration specifiers possibly occurring after C++11
+/// virt-specifier-seq and diagnose them.
+void Parser::MaybeParseAndDiagnoseDeclSpecAfterCXX11VirtSpecifierSeq(
+ Declarator &D,
+ VirtSpecifiers &VS) {
+ DeclSpec DS(AttrFactory);
+
+ // GNU-style and C++11 attributes are not allowed here, but they will be
+ // handled by the caller. Diagnose everything else.
+ ParseTypeQualifierListOpt(DS, AR_NoAttributesParsed, false);
+ D.ExtendWithDeclSpec(DS);
+
+ if (D.isFunctionDeclarator()) {
+ auto &Function = D.getFunctionTypeInfo();
+ if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
+ auto DeclSpecCheck = [&] (DeclSpec::TQ TypeQual,
+ const char *FixItName,
+ SourceLocation SpecLoc,
+ unsigned* QualifierLoc) {
+ FixItHint Insertion;
+ if (DS.getTypeQualifiers() & TypeQual) {
+ if (!(Function.TypeQuals & TypeQual)) {
+ std::string Name(FixItName);
+ Name += " ";
+ Insertion = FixItHint::CreateInsertion(VS.getFirstLocation(), Name.c_str());
+ Function.TypeQuals |= TypeQual;
+ *QualifierLoc = SpecLoc.getRawEncoding();
+ }
+ Diag(SpecLoc, diag::err_declspec_after_virtspec)
+ << FixItName
+ << VirtSpecifiers::getSpecifierName(VS.getLastSpecifier())
+ << FixItHint::CreateRemoval(SpecLoc)
+ << Insertion;
+ }
+ };
+ DeclSpecCheck(DeclSpec::TQ_const, "const", DS.getConstSpecLoc(),
+ &Function.ConstQualifierLoc);
+ DeclSpecCheck(DeclSpec::TQ_volatile, "volatile", DS.getVolatileSpecLoc(),
+ &Function.VolatileQualifierLoc);
+ DeclSpecCheck(DeclSpec::TQ_restrict, "restrict", DS.getRestrictSpecLoc(),
+ &Function.RestrictQualifierLoc);
+ }
+
+ // Parse ref-qualifiers.
+ bool RefQualifierIsLValueRef = true;
+ SourceLocation RefQualifierLoc;
+ if (ParseRefQualifier(RefQualifierIsLValueRef, RefQualifierLoc)) {
+ const char *Name = (RefQualifierIsLValueRef ? "& " : "&& ");
+ FixItHint Insertion = FixItHint::CreateInsertion(VS.getFirstLocation(), Name);
+ Function.RefQualifierIsLValueRef = RefQualifierIsLValueRef;
+ Function.RefQualifierLoc = RefQualifierLoc.getRawEncoding();
+
+ Diag(RefQualifierLoc, diag::err_declspec_after_virtspec)
+ << (RefQualifierIsLValueRef ? "&" : "&&")
+ << VirtSpecifiers::getSpecifierName(VS.getLastSpecifier())
+ << FixItHint::CreateRemoval(RefQualifierLoc)
+ << Insertion;
+ D.SetRangeEnd(RefQualifierLoc);
+ }
+ }
+}
+
+/// ParseCXXClassMemberDeclaration - Parse a C++ class member declaration.
+///
+/// member-declaration:
+/// decl-specifier-seq[opt] member-declarator-list[opt] ';'
+/// function-definition ';'[opt]
+/// ::[opt] nested-name-specifier template[opt] unqualified-id ';'[TODO]
+/// using-declaration [TODO]
+/// [C++0x] static_assert-declaration
+/// template-declaration
+/// [GNU] '__extension__' member-declaration
+///
+/// member-declarator-list:
+/// member-declarator
+/// member-declarator-list ',' member-declarator
+///
+/// member-declarator:
+/// declarator virt-specifier-seq[opt] pure-specifier[opt]
+/// declarator constant-initializer[opt]
+/// [C++11] declarator brace-or-equal-initializer[opt]
+/// identifier[opt] ':' constant-expression
+///
+/// virt-specifier-seq:
+/// virt-specifier
+/// virt-specifier-seq virt-specifier
+///
+/// virt-specifier:
+/// override
+/// final
+/// [MS] sealed
+///
+/// pure-specifier:
+/// '= 0'
+///
+/// constant-initializer:
+/// '=' constant-expression
+///
+void Parser::ParseCXXClassMemberDeclaration(AccessSpecifier AS,
+ AttributeList *AccessAttrs,
+ const ParsedTemplateInfo &TemplateInfo,
+ ParsingDeclRAIIObject *TemplateDiags) {
+ if (Tok.is(tok::at)) {
+ if (getLangOpts().ObjC1 && NextToken().isObjCAtKeyword(tok::objc_defs))
+ Diag(Tok, diag::err_at_defs_cxx);
+ else
+ Diag(Tok, diag::err_at_in_class);
+
+ ConsumeToken();
+ SkipUntil(tok::r_brace, StopAtSemi);
+ return;
+ }
+
+ // Turn on colon protection early, while parsing declspec, although there is
+ // nothing to protect there. It prevents from false errors if error recovery
+ // incorrectly determines where the declspec ends, as in the example:
+ // struct A { enum class B { C }; };
+ // const int C = 4;
+ // struct D { A::B : C; };
+ ColonProtectionRAIIObject X(*this);
+
+ // Access declarations.
+ bool MalformedTypeSpec = false;
+ if (!TemplateInfo.Kind &&
+ (Tok.is(tok::identifier) || Tok.is(tok::coloncolon) ||
+ Tok.is(tok::kw___super))) {
+ if (TryAnnotateCXXScopeToken())
+ MalformedTypeSpec = true;
+
+ bool isAccessDecl;
+ if (Tok.isNot(tok::annot_cxxscope))
+ isAccessDecl = false;
+ else if (NextToken().is(tok::identifier))
+ isAccessDecl = GetLookAheadToken(2).is(tok::semi);
+ else
+ isAccessDecl = NextToken().is(tok::kw_operator);
+
+ if (isAccessDecl) {
+ // Collect the scope specifier token we annotated earlier.
+ CXXScopeSpec SS;
+ ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
+ /*EnteringContext=*/false);
+
+ if (SS.isInvalid()) {
+ SkipUntil(tok::semi);
+ return;
+ }
+
+ // Try to parse an unqualified-id.
+ SourceLocation TemplateKWLoc;
+ UnqualifiedId Name;
+ if (ParseUnqualifiedId(SS, false, true, true, ParsedType(),
+ TemplateKWLoc, Name)) {
+ SkipUntil(tok::semi);
+ return;
+ }
+
+ // TODO: recover from mistakenly-qualified operator declarations.
+ if (ExpectAndConsume(tok::semi, diag::err_expected_after,
+ "access declaration")) {
+ SkipUntil(tok::semi);
+ return;
+ }
+
+ Actions.ActOnUsingDeclaration(getCurScope(), AS,
+ /* HasUsingKeyword */ false,
+ SourceLocation(),
+ SS, Name,
+ /* AttrList */ nullptr,
+ /* HasTypenameKeyword */ false,
+ SourceLocation());
+ return;
+ }
+ }
+
+ // static_assert-declaration. A templated static_assert declaration is
+ // diagnosed in Parser::ParseSingleDeclarationAfterTemplate.
+ if (!TemplateInfo.Kind &&
+ (Tok.is(tok::kw_static_assert) || Tok.is(tok::kw__Static_assert))) {
+ SourceLocation DeclEnd;
+ ParseStaticAssertDeclaration(DeclEnd);
+ return;
+ }
+
+ if (Tok.is(tok::kw_template)) {
+ assert(!TemplateInfo.TemplateParams &&
+ "Nested template improperly parsed?");
+ SourceLocation DeclEnd;
+ ParseDeclarationStartingWithTemplate(Declarator::MemberContext, DeclEnd,
+ AS, AccessAttrs);
+ return;
+ }
+
+ // Handle: member-declaration ::= '__extension__' member-declaration
+ if (Tok.is(tok::kw___extension__)) {
+ // __extension__ silences extension warnings in the subexpression.
+ ExtensionRAIIObject O(Diags); // Use RAII to do this.
+ ConsumeToken();
+ return ParseCXXClassMemberDeclaration(AS, AccessAttrs,
+ TemplateInfo, TemplateDiags);
+ }
+
+ ParsedAttributesWithRange attrs(AttrFactory);
+ ParsedAttributesWithRange FnAttrs(AttrFactory);
+ // Optional C++11 attribute-specifier
+ MaybeParseCXX11Attributes(attrs);
+ // We need to keep these attributes for future diagnostic
+ // before they are taken over by declaration specifier.
+ FnAttrs.addAll(attrs.getList());
+ FnAttrs.Range = attrs.Range;
+
+ MaybeParseMicrosoftAttributes(attrs);
+
+ if (Tok.is(tok::kw_using)) {
+ ProhibitAttributes(attrs);
+
+ // Eat 'using'.
+ SourceLocation UsingLoc = ConsumeToken();
+
+ if (Tok.is(tok::kw_namespace)) {
+ Diag(UsingLoc, diag::err_using_namespace_in_class);
+ SkipUntil(tok::semi, StopBeforeMatch);
+ } else {
+ SourceLocation DeclEnd;
+ // Otherwise, it must be a using-declaration or an alias-declaration.
+ ParseUsingDeclaration(Declarator::MemberContext, TemplateInfo,
+ UsingLoc, DeclEnd, AS);
+ }
+ return;
+ }
+
+ // Hold late-parsed attributes so we can attach a Decl to them later.
+ LateParsedAttrList CommonLateParsedAttrs;
+
+ // decl-specifier-seq:
+ // Parse the common declaration-specifiers piece.
+ ParsingDeclSpec DS(*this, TemplateDiags);
+ DS.takeAttributesFrom(attrs);
+ if (MalformedTypeSpec)
+ DS.SetTypeSpecError();
+
+ ParseDeclarationSpecifiers(DS, TemplateInfo, AS, DSC_class,
+ &CommonLateParsedAttrs);
+
+ // Turn off colon protection that was set for declspec.
+ X.restore();
+
+ // If we had a free-standing type definition with a missing semicolon, we
+ // may get this far before the problem becomes obvious.
+ if (DS.hasTagDefinition() &&
+ TemplateInfo.Kind == ParsedTemplateInfo::NonTemplate &&
+ DiagnoseMissingSemiAfterTagDefinition(DS, AS, DSC_class,
+ &CommonLateParsedAttrs))
+ return;
+
+ MultiTemplateParamsArg TemplateParams(
+ TemplateInfo.TemplateParams? TemplateInfo.TemplateParams->data()
+ : nullptr,
+ TemplateInfo.TemplateParams? TemplateInfo.TemplateParams->size() : 0);
+
+ if (TryConsumeToken(tok::semi)) {
+ if (DS.isFriendSpecified())
+ ProhibitAttributes(FnAttrs);
+
+ Decl *TheDecl =
+ Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS, DS, TemplateParams);
+ DS.complete(TheDecl);
+ return;
+ }
+
+ ParsingDeclarator DeclaratorInfo(*this, DS, Declarator::MemberContext);
+ VirtSpecifiers VS;
+
+ // Hold late-parsed attributes so we can attach a Decl to them later.
+ LateParsedAttrList LateParsedAttrs;
+
+ SourceLocation EqualLoc;
+ bool HasInitializer = false;
+ ExprResult Init;
+
+ SmallVector<Decl *, 8> DeclsInGroup;
+ ExprResult BitfieldSize;
+ bool ExpectSemi = true;
+
+ // Parse the first declarator.
+ if (ParseCXXMemberDeclaratorBeforeInitializer(
+ DeclaratorInfo, VS, BitfieldSize, LateParsedAttrs)) {
+ TryConsumeToken(tok::semi);
+ return;
+ }
+
+ // Check for a member function definition.
+ if (BitfieldSize.isUnset()) {
+ // MSVC permits pure specifier on inline functions defined at class scope.
+ // Hence check for =0 before checking for function definition.
+ if (getLangOpts().MicrosoftExt && Tok.is(tok::equal) &&
+ DeclaratorInfo.isFunctionDeclarator() &&
+ NextToken().is(tok::numeric_constant)) {
+ EqualLoc = ConsumeToken();
+ Init = ParseInitializer();
+ if (Init.isInvalid())
+ SkipUntil(tok::comma, StopAtSemi | StopBeforeMatch);
+ else
+ HasInitializer = true;
+ }
+
+ FunctionDefinitionKind DefinitionKind = FDK_Declaration;
+ // function-definition:
+ //
+ // In C++11, a non-function declarator followed by an open brace is a
+ // braced-init-list for an in-class member initialization, not an
+ // erroneous function definition.
+ if (Tok.is(tok::l_brace) && !getLangOpts().CPlusPlus11) {
+ DefinitionKind = FDK_Definition;
+ } else if (DeclaratorInfo.isFunctionDeclarator()) {
+ if (Tok.is(tok::l_brace) || Tok.is(tok::colon) || Tok.is(tok::kw_try)) {
+ DefinitionKind = FDK_Definition;
+ } else if (Tok.is(tok::equal)) {
+ const Token &KW = NextToken();
+ if (KW.is(tok::kw_default))
+ DefinitionKind = FDK_Defaulted;
+ else if (KW.is(tok::kw_delete))
+ DefinitionKind = FDK_Deleted;
+ }
+ }
+ DeclaratorInfo.setFunctionDefinitionKind(DefinitionKind);
+
+ // C++11 [dcl.attr.grammar] p4: If an attribute-specifier-seq appertains
+ // to a friend declaration, that declaration shall be a definition.
+ if (DeclaratorInfo.isFunctionDeclarator() &&
+ DefinitionKind != FDK_Definition && DS.isFriendSpecified()) {
+ // Diagnose attributes that appear before decl specifier:
+ // [[]] friend int foo();
+ ProhibitAttributes(FnAttrs);
+ }
+
+ if (DefinitionKind != FDK_Declaration) {
+ if (!DeclaratorInfo.isFunctionDeclarator()) {
+ Diag(DeclaratorInfo.getIdentifierLoc(), diag::err_func_def_no_params);
+ ConsumeBrace();
+ SkipUntil(tok::r_brace);
+
+ // Consume the optional ';'
+ TryConsumeToken(tok::semi);
+
+ return;
+ }
+
+ if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
+ Diag(DeclaratorInfo.getIdentifierLoc(),
+ diag::err_function_declared_typedef);
+
+ // Recover by treating the 'typedef' as spurious.
+ DS.ClearStorageClassSpecs();
+ }
+
+ Decl *FunDecl =
+ ParseCXXInlineMethodDef(AS, AccessAttrs, DeclaratorInfo, TemplateInfo,
+ VS, Init);
+
+ if (FunDecl) {
+ for (unsigned i = 0, ni = CommonLateParsedAttrs.size(); i < ni; ++i) {
+ CommonLateParsedAttrs[i]->addDecl(FunDecl);
+ }
+ for (unsigned i = 0, ni = LateParsedAttrs.size(); i < ni; ++i) {
+ LateParsedAttrs[i]->addDecl(FunDecl);
+ }
+ }
+ LateParsedAttrs.clear();
+
+ // Consume the ';' - it's optional unless we have a delete or default
+ if (Tok.is(tok::semi))
+ ConsumeExtraSemi(AfterMemberFunctionDefinition);
+
+ return;
+ }
+ }
+
+ // member-declarator-list:
+ // member-declarator
+ // member-declarator-list ',' member-declarator
+
+ while (1) {
+ InClassInitStyle HasInClassInit = ICIS_NoInit;
+ if ((Tok.is(tok::equal) || Tok.is(tok::l_brace)) && !HasInitializer) {
+ if (BitfieldSize.get()) {
+ Diag(Tok, diag::err_bitfield_member_init);
+ SkipUntil(tok::comma, StopAtSemi | StopBeforeMatch);
+ } else {
+ HasInitializer = true;
+ if (!DeclaratorInfo.isDeclarationOfFunction() &&
+ DeclaratorInfo.getDeclSpec().getStorageClassSpec()
+ != DeclSpec::SCS_typedef)
+ HasInClassInit = Tok.is(tok::equal) ? ICIS_CopyInit : ICIS_ListInit;
+ }
+ }
+
+ // NOTE: If Sema is the Action module and declarator is an instance field,
+ // this call will *not* return the created decl; It will return null.
+ // See Sema::ActOnCXXMemberDeclarator for details.
+
+ NamedDecl *ThisDecl = nullptr;
+ if (DS.isFriendSpecified()) {
+ // C++11 [dcl.attr.grammar] p4: If an attribute-specifier-seq appertains
+ // to a friend declaration, that declaration shall be a definition.
+ //
+ // Diagnose attributes that appear in a friend member function declarator:
+ // friend int foo [[]] ();
+ SmallVector<SourceRange, 4> Ranges;
+ DeclaratorInfo.getCXX11AttributeRanges(Ranges);
+ for (SmallVectorImpl<SourceRange>::iterator I = Ranges.begin(),
+ E = Ranges.end(); I != E; ++I)
+ Diag((*I).getBegin(), diag::err_attributes_not_allowed) << *I;
+
+ ThisDecl = Actions.ActOnFriendFunctionDecl(getCurScope(), DeclaratorInfo,
+ TemplateParams);
+ } else {
+ ThisDecl = Actions.ActOnCXXMemberDeclarator(getCurScope(), AS,
+ DeclaratorInfo,
+ TemplateParams,
+ BitfieldSize.get(),
+ VS, HasInClassInit);
+
+ if (VarTemplateDecl *VT =
+ ThisDecl ? dyn_cast<VarTemplateDecl>(ThisDecl) : nullptr)
+ // Re-direct this decl to refer to the templated decl so that we can
+ // initialize it.
+ ThisDecl = VT->getTemplatedDecl();
+
+ if (ThisDecl && AccessAttrs)
+ Actions.ProcessDeclAttributeList(getCurScope(), ThisDecl, AccessAttrs);
+ }
+
+ // Handle the initializer.
+ if (HasInClassInit != ICIS_NoInit &&
+ DeclaratorInfo.getDeclSpec().getStorageClassSpec() !=
+ DeclSpec::SCS_static) {
+ // The initializer was deferred; parse it and cache the tokens.
+ Diag(Tok, getLangOpts().CPlusPlus11
+ ? diag::warn_cxx98_compat_nonstatic_member_init
+ : diag::ext_nonstatic_member_init);
+
+ if (DeclaratorInfo.isArrayOfUnknownBound()) {
+ // C++11 [dcl.array]p3: An array bound may also be omitted when the
+ // declarator is followed by an initializer.
+ //
+ // A brace-or-equal-initializer for a member-declarator is not an
+ // initializer in the grammar, so this is ill-formed.
+ Diag(Tok, diag::err_incomplete_array_member_init);
+ SkipUntil(tok::comma, StopAtSemi | StopBeforeMatch);
+
+ // Avoid later warnings about a class member of incomplete type.
+ if (ThisDecl)
+ ThisDecl->setInvalidDecl();
+ } else
+ ParseCXXNonStaticMemberInitializer(ThisDecl);
+ } else if (HasInitializer) {
+ // Normal initializer.
+ if (!Init.isUsable())
+ Init = ParseCXXMemberInitializer(
+ ThisDecl, DeclaratorInfo.isDeclarationOfFunction(), EqualLoc);
+
+ if (Init.isInvalid())
+ SkipUntil(tok::comma, StopAtSemi | StopBeforeMatch);
+ else if (ThisDecl)
+ Actions.AddInitializerToDecl(ThisDecl, Init.get(), EqualLoc.isInvalid(),
+ DS.containsPlaceholderType());
+ } else if (ThisDecl && DS.getStorageClassSpec() == DeclSpec::SCS_static)
+ // No initializer.
+ Actions.ActOnUninitializedDecl(ThisDecl, DS.containsPlaceholderType());
+
+ if (ThisDecl) {
+ if (!ThisDecl->isInvalidDecl()) {
+ // Set the Decl for any late parsed attributes
+ for (unsigned i = 0, ni = CommonLateParsedAttrs.size(); i < ni; ++i)
+ CommonLateParsedAttrs[i]->addDecl(ThisDecl);
+
+ for (unsigned i = 0, ni = LateParsedAttrs.size(); i < ni; ++i)
+ LateParsedAttrs[i]->addDecl(ThisDecl);
+ }
+ Actions.FinalizeDeclaration(ThisDecl);
+ DeclsInGroup.push_back(ThisDecl);
+
+ if (DeclaratorInfo.isFunctionDeclarator() &&
+ DeclaratorInfo.getDeclSpec().getStorageClassSpec() !=
+ DeclSpec::SCS_typedef)
+ HandleMemberFunctionDeclDelays(DeclaratorInfo, ThisDecl);
+ }
+ LateParsedAttrs.clear();
+
+ DeclaratorInfo.complete(ThisDecl);
+
+ // If we don't have a comma, it is either the end of the list (a ';')
+ // or an error, bail out.
+ SourceLocation CommaLoc;
+ if (!TryConsumeToken(tok::comma, CommaLoc))
+ break;
+
+ if (Tok.isAtStartOfLine() &&
+ !MightBeDeclarator(Declarator::MemberContext)) {
+ // This comma was followed by a line-break and something which can't be
+ // the start of a declarator. The comma was probably a typo for a
+ // semicolon.
+ Diag(CommaLoc, diag::err_expected_semi_declaration)
+ << FixItHint::CreateReplacement(CommaLoc, ";");
+ ExpectSemi = false;
+ break;
+ }
+
+ // Parse the next declarator.
+ DeclaratorInfo.clear();
+ VS.clear();
+ BitfieldSize = ExprResult(/*Invalid=*/false);
+ Init = ExprResult(/*Invalid=*/false);
+ HasInitializer = false;
+ DeclaratorInfo.setCommaLoc(CommaLoc);
+
+ // GNU attributes are allowed before the second and subsequent declarator.
+ MaybeParseGNUAttributes(DeclaratorInfo);
+
+ if (ParseCXXMemberDeclaratorBeforeInitializer(
+ DeclaratorInfo, VS, BitfieldSize, LateParsedAttrs))
+ break;
+ }
+
+ if (ExpectSemi &&
+ ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list)) {
+ // Skip to end of block or statement.
+ SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
+ // If we stopped at a ';', eat it.
+ TryConsumeToken(tok::semi);
+ return;
+ }
+
+ Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup);
+}
+
+/// ParseCXXMemberInitializer - Parse the brace-or-equal-initializer or
+/// pure-specifier. Also detect and reject any attempted defaulted/deleted
+/// function definition. The location of the '=', if any, will be placed in
+/// EqualLoc.
+///
+/// pure-specifier:
+/// '= 0'
+///
+/// brace-or-equal-initializer:
+/// '=' initializer-expression
+/// braced-init-list
+///
+/// initializer-clause:
+/// assignment-expression
+/// braced-init-list
+///
+/// defaulted/deleted function-definition:
+/// '=' 'default'
+/// '=' 'delete'
+///
+/// Prior to C++0x, the assignment-expression in an initializer-clause must
+/// be a constant-expression.
+ExprResult Parser::ParseCXXMemberInitializer(Decl *D, bool IsFunction,
+ SourceLocation &EqualLoc) {
+ assert((Tok.is(tok::equal) || Tok.is(tok::l_brace))
+ && "Data member initializer not starting with '=' or '{'");
+
+ EnterExpressionEvaluationContext Context(Actions,
+ Sema::PotentiallyEvaluated,
+ D);
+ if (TryConsumeToken(tok::equal, EqualLoc)) {
+ if (Tok.is(tok::kw_delete)) {
+ // In principle, an initializer of '= delete p;' is legal, but it will
+ // never type-check. It's better to diagnose it as an ill-formed expression
+ // than as an ill-formed deleted non-function member.
+ // An initializer of '= delete p, foo' will never be parsed, because
+ // a top-level comma always ends the initializer expression.
+ const Token &Next = NextToken();
+ if (IsFunction || Next.is(tok::semi) || Next.is(tok::comma) ||
+ Next.is(tok::eof)) {
+ if (IsFunction)
+ Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
+ << 1 /* delete */;
+ else
+ Diag(ConsumeToken(), diag::err_deleted_non_function);
+ return ExprError();
+ }
+ } else if (Tok.is(tok::kw_default)) {
+ if (IsFunction)
+ Diag(Tok, diag::err_default_delete_in_multiple_declaration)
+ << 0 /* default */;
+ else
+ Diag(ConsumeToken(), diag::err_default_special_members);
+ return ExprError();
+ }
+ }
+ if (const auto *PD = dyn_cast_or_null<MSPropertyDecl>(D)) {
+ Diag(Tok, diag::err_ms_property_initializer) << PD;
+ return ExprError();
+ }
+ return ParseInitializer();
+}
+
+void Parser::SkipCXXMemberSpecification(SourceLocation RecordLoc,
+ SourceLocation AttrFixitLoc,
+ unsigned TagType, Decl *TagDecl) {
+ // Skip the optional 'final' keyword.
+ if (getLangOpts().CPlusPlus && Tok.is(tok::identifier)) {
+ assert(isCXX11FinalKeyword() && "not a class definition");
+ ConsumeToken();
+
+ // Diagnose any C++11 attributes after 'final' keyword.
+ // We deliberately discard these attributes.
+ ParsedAttributesWithRange Attrs(AttrFactory);
+ CheckMisplacedCXX11Attribute(Attrs, AttrFixitLoc);
+
+ // This can only happen if we had malformed misplaced attributes;
+ // we only get called if there is a colon or left-brace after the
+ // attributes.
+ if (Tok.isNot(tok::colon) && Tok.isNot(tok::l_brace))
+ return;
+ }
+
+ // Skip the base clauses. This requires actually parsing them, because
+ // otherwise we can't be sure where they end (a left brace may appear
+ // within a template argument).
+ if (Tok.is(tok::colon)) {
+ // Enter the scope of the class so that we can correctly parse its bases.
+ ParseScope ClassScope(this, Scope::ClassScope|Scope::DeclScope);
+ ParsingClassDefinition ParsingDef(*this, TagDecl, /*NonNestedClass*/ true,
+ TagType == DeclSpec::TST_interface);
+ Actions.ActOnTagStartSkippedDefinition(getCurScope(), TagDecl);
+
+ // Parse the bases but don't attach them to the class.
+ ParseBaseClause(nullptr);
+
+ Actions.ActOnTagFinishSkippedDefinition();
+
+ if (!Tok.is(tok::l_brace)) {
+ Diag(PP.getLocForEndOfToken(PrevTokLocation),
+ diag::err_expected_lbrace_after_base_specifiers);
+ return;
+ }
+ }
+
+ // Skip the body.
+ assert(Tok.is(tok::l_brace));
+ BalancedDelimiterTracker T(*this, tok::l_brace);
+ T.consumeOpen();
+ T.skipToEnd();
+}
+
+/// ParseCXXMemberSpecification - Parse the class definition.
+///
+/// member-specification:
+/// member-declaration member-specification[opt]
+/// access-specifier ':' member-specification[opt]
+///
+void Parser::ParseCXXMemberSpecification(SourceLocation RecordLoc,
+ SourceLocation AttrFixitLoc,
+ ParsedAttributesWithRange &Attrs,
+ unsigned TagType, Decl *TagDecl) {
+ assert((TagType == DeclSpec::TST_struct ||
+ TagType == DeclSpec::TST_interface ||
+ TagType == DeclSpec::TST_union ||
+ TagType == DeclSpec::TST_class) && "Invalid TagType!");
+
+ PrettyDeclStackTraceEntry CrashInfo(Actions, TagDecl, RecordLoc,
+ "parsing struct/union/class body");
+
+ // Determine whether this is a non-nested class. Note that local
+ // classes are *not* considered to be nested classes.
+ bool NonNestedClass = true;
+ if (!ClassStack.empty()) {
+ for (const Scope *S = getCurScope(); S; S = S->getParent()) {
+ if (S->isClassScope()) {
+ // We're inside a class scope, so this is a nested class.
+ NonNestedClass = false;
+
+ // The Microsoft extension __interface does not permit nested classes.
+ if (getCurrentClass().IsInterface) {
+ Diag(RecordLoc, diag::err_invalid_member_in_interface)
+ << /*ErrorType=*/6
+ << (isa<NamedDecl>(TagDecl)
+ ? cast<NamedDecl>(TagDecl)->getQualifiedNameAsString()
+ : "(anonymous)");
+ }
+ break;
+ }
+
+ if ((S->getFlags() & Scope::FnScope)) {
+ // If we're in a function or function template declared in the
+ // body of a class, then this is a local class rather than a
+ // nested class.
+ const Scope *Parent = S->getParent();
+ if (Parent->isTemplateParamScope())
+ Parent = Parent->getParent();
+ if (Parent->isClassScope())
+ break;
+ }
+ }
+ }
+
+ // Enter a scope for the class.
+ ParseScope ClassScope(this, Scope::ClassScope|Scope::DeclScope);
+
+ // Note that we are parsing a new (potentially-nested) class definition.
+ ParsingClassDefinition ParsingDef(*this, TagDecl, NonNestedClass,
+ TagType == DeclSpec::TST_interface);
+
+ if (TagDecl)
+ Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
+
+ SourceLocation FinalLoc;
+ bool IsFinalSpelledSealed = false;
+
+ // Parse the optional 'final' keyword.
+ if (getLangOpts().CPlusPlus && Tok.is(tok::identifier)) {
+ VirtSpecifiers::Specifier Specifier = isCXX11VirtSpecifier(Tok);
+ assert((Specifier == VirtSpecifiers::VS_Final ||
+ Specifier == VirtSpecifiers::VS_Sealed) &&
+ "not a class definition");
+ FinalLoc = ConsumeToken();
+ IsFinalSpelledSealed = Specifier == VirtSpecifiers::VS_Sealed;
+
+ if (TagType == DeclSpec::TST_interface)
+ Diag(FinalLoc, diag::err_override_control_interface)
+ << VirtSpecifiers::getSpecifierName(Specifier);
+ else if (Specifier == VirtSpecifiers::VS_Final)
+ Diag(FinalLoc, getLangOpts().CPlusPlus11
+ ? diag::warn_cxx98_compat_override_control_keyword
+ : diag::ext_override_control_keyword)
+ << VirtSpecifiers::getSpecifierName(Specifier);
+ else if (Specifier == VirtSpecifiers::VS_Sealed)
+ Diag(FinalLoc, diag::ext_ms_sealed_keyword);
+
+ // Parse any C++11 attributes after 'final' keyword.
+ // These attributes are not allowed to appear here,
+ // and the only possible place for them to appertain
+ // to the class would be between class-key and class-name.
+ CheckMisplacedCXX11Attribute(Attrs, AttrFixitLoc);
+
+ // ParseClassSpecifier() does only a superficial check for attributes before
+ // deciding to call this method. For example, for
+ // `class C final alignas ([l) {` it will decide that this looks like a
+ // misplaced attribute since it sees `alignas '(' ')'`. But the actual
+ // attribute parsing code will try to parse the '[' as a constexpr lambda
+ // and consume enough tokens that the alignas parsing code will eat the
+ // opening '{'. So bail out if the next token isn't one we expect.
+ if (!Tok.is(tok::colon) && !Tok.is(tok::l_brace)) {
+ if (TagDecl)
+ Actions.ActOnTagDefinitionError(getCurScope(), TagDecl);
+ return;
+ }
+ }
+
+ if (Tok.is(tok::colon)) {
+ ParseBaseClause(TagDecl);
+ if (!Tok.is(tok::l_brace)) {
+ bool SuggestFixIt = false;
+ SourceLocation BraceLoc = PP.getLocForEndOfToken(PrevTokLocation);
+ if (Tok.isAtStartOfLine()) {
+ switch (Tok.getKind()) {
+ case tok::kw_private:
+ case tok::kw_protected:
+ case tok::kw_public:
+ SuggestFixIt = NextToken().getKind() == tok::colon;
+ break;
+ case tok::kw_static_assert:
+ case tok::r_brace:
+ case tok::kw_using:
+ // base-clause can have simple-template-id; 'template' can't be there
+ case tok::kw_template:
+ SuggestFixIt = true;
+ break;
+ case tok::identifier:
+ SuggestFixIt = isConstructorDeclarator(true);
+ break;
+ default:
+ SuggestFixIt = isCXXSimpleDeclaration(/*AllowForRangeDecl=*/false);
+ break;
+ }
+ }
+ DiagnosticBuilder LBraceDiag =
+ Diag(BraceLoc, diag::err_expected_lbrace_after_base_specifiers);
+ if (SuggestFixIt) {
+ LBraceDiag << FixItHint::CreateInsertion(BraceLoc, " {");
+ // Try recovering from missing { after base-clause.
+ PP.EnterToken(Tok);
+ Tok.setKind(tok::l_brace);
+ } else {
+ if (TagDecl)
+ Actions.ActOnTagDefinitionError(getCurScope(), TagDecl);
+ return;
+ }
+ }
+ }
+
+ assert(Tok.is(tok::l_brace));
+ BalancedDelimiterTracker T(*this, tok::l_brace);
+ T.consumeOpen();
+
+ if (TagDecl)
+ Actions.ActOnStartCXXMemberDeclarations(getCurScope(), TagDecl, FinalLoc,
+ IsFinalSpelledSealed,
+ T.getOpenLocation());
+
+ // C++ 11p3: Members of a class defined with the keyword class are private
+ // by default. Members of a class defined with the keywords struct or union
+ // are public by default.
+ AccessSpecifier CurAS;
+ if (TagType == DeclSpec::TST_class)
+ CurAS = AS_private;
+ else
+ CurAS = AS_public;
+ ParsedAttributes AccessAttrs(AttrFactory);
+
+ if (TagDecl) {
+ // While we still have something to read, read the member-declarations.
+ while (Tok.isNot(tok::r_brace) && !isEofOrEom()) {
+ // Each iteration of this loop reads one member-declaration.
+
+ if (getLangOpts().MicrosoftExt && (Tok.is(tok::kw___if_exists) ||
+ Tok.is(tok::kw___if_not_exists))) {
+ ParseMicrosoftIfExistsClassDeclaration((DeclSpec::TST)TagType, CurAS);
+ continue;
+ }
+
+ // Check for extraneous top-level semicolon.
+ if (Tok.is(tok::semi)) {
+ ConsumeExtraSemi(InsideStruct, TagType);
+ continue;
+ }
+
+ if (Tok.is(tok::annot_pragma_vis)) {
+ HandlePragmaVisibility();
+ continue;
+ }
+
+ if (Tok.is(tok::annot_pragma_pack)) {
+ HandlePragmaPack();
+ continue;
+ }
+
+ if (Tok.is(tok::annot_pragma_align)) {
+ HandlePragmaAlign();
+ continue;
+ }
+
+ if (Tok.is(tok::annot_pragma_openmp)) {
+ ParseOpenMPDeclarativeDirective();
+ continue;
+ }
+
+ if (Tok.is(tok::annot_pragma_ms_pointers_to_members)) {
+ HandlePragmaMSPointersToMembers();
+ continue;
+ }
+
+ if (Tok.is(tok::annot_pragma_ms_pragma)) {
+ HandlePragmaMSPragma();
+ continue;
+ }
+
+ // If we see a namespace here, a close brace was missing somewhere.
+ if (Tok.is(tok::kw_namespace)) {
+ DiagnoseUnexpectedNamespace(cast<NamedDecl>(TagDecl));
+ break;
+ }
+
+ AccessSpecifier AS = getAccessSpecifierIfPresent();
+ if (AS != AS_none) {
+ // Current token is a C++ access specifier.
+ CurAS = AS;
+ SourceLocation ASLoc = Tok.getLocation();
+ unsigned TokLength = Tok.getLength();
+ ConsumeToken();
+ AccessAttrs.clear();
+ MaybeParseGNUAttributes(AccessAttrs);
+
+ SourceLocation EndLoc;
+ if (TryConsumeToken(tok::colon, EndLoc)) {
+ } else if (TryConsumeToken(tok::semi, EndLoc)) {
+ Diag(EndLoc, diag::err_expected)
+ << tok::colon << FixItHint::CreateReplacement(EndLoc, ":");
+ } else {
+ EndLoc = ASLoc.getLocWithOffset(TokLength);
+ Diag(EndLoc, diag::err_expected)
+ << tok::colon << FixItHint::CreateInsertion(EndLoc, ":");
+ }
+
+ // The Microsoft extension __interface does not permit non-public
+ // access specifiers.
+ if (TagType == DeclSpec::TST_interface && CurAS != AS_public) {
+ Diag(ASLoc, diag::err_access_specifier_interface)
+ << (CurAS == AS_protected);
+ }
+
+ if (Actions.ActOnAccessSpecifier(AS, ASLoc, EndLoc,
+ AccessAttrs.getList())) {
+ // found another attribute than only annotations
+ AccessAttrs.clear();
+ }
+
+ continue;
+ }
+
+ // Parse all the comma separated declarators.
+ ParseCXXClassMemberDeclaration(CurAS, AccessAttrs.getList());
+ }
+
+ T.consumeClose();
+ } else {
+ SkipUntil(tok::r_brace);
+ }
+
+ // If attributes exist after class contents, parse them.
+ ParsedAttributes attrs(AttrFactory);
+ MaybeParseGNUAttributes(attrs);
+
+ if (TagDecl)
+ Actions.ActOnFinishCXXMemberSpecification(getCurScope(), RecordLoc, TagDecl,
+ T.getOpenLocation(),
+ T.getCloseLocation(),
+ attrs.getList());
+
+ // C++11 [class.mem]p2:
+ // Within the class member-specification, the class is regarded as complete
+ // within function bodies, default arguments, exception-specifications, and
+ // brace-or-equal-initializers for non-static data members (including such
+ // things in nested classes).
+ if (TagDecl && NonNestedClass) {
+ // We are not inside a nested class. This class and its nested classes
+ // are complete and we can parse the delayed portions of method
+ // declarations and the lexed inline method definitions, along with any
+ // delayed attributes.
+ SourceLocation SavedPrevTokLocation = PrevTokLocation;
+ ParseLexedAttributes(getCurrentClass());
+ ParseLexedMethodDeclarations(getCurrentClass());
+
+ // We've finished with all pending member declarations.
+ Actions.ActOnFinishCXXMemberDecls();
+
+ ParseLexedMemberInitializers(getCurrentClass());
+ ParseLexedMethodDefs(getCurrentClass());
+ PrevTokLocation = SavedPrevTokLocation;
+
+ // We've finished parsing everything, including default argument
+ // initializers.
+ Actions.ActOnFinishCXXMemberDefaultArgs(TagDecl);
+ }
+
+ if (TagDecl)
+ Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl,
+ T.getCloseLocation());
+
+ // Leave the class scope.
+ ParsingDef.Pop();
+ ClassScope.Exit();
+}
+
+void Parser::DiagnoseUnexpectedNamespace(NamedDecl *D) {
+ assert(Tok.is(tok::kw_namespace));
+
+ // FIXME: Suggest where the close brace should have gone by looking
+ // at indentation changes within the definition body.
+ Diag(D->getLocation(),
+ diag::err_missing_end_of_definition) << D;
+ Diag(Tok.getLocation(),
+ diag::note_missing_end_of_definition_before) << D;
+
+ // Push '};' onto the token stream to recover.
+ PP.EnterToken(Tok);
+
+ Tok.startToken();
+ Tok.setLocation(PP.getLocForEndOfToken(PrevTokLocation));
+ Tok.setKind(tok::semi);
+ PP.EnterToken(Tok);
+
+ Tok.setKind(tok::r_brace);
+}
+
+/// ParseConstructorInitializer - Parse a C++ constructor initializer,
+/// which explicitly initializes the members or base classes of a
+/// class (C++ [class.base.init]). For example, the three initializers
+/// after the ':' in the Derived constructor below:
+///
+/// @code
+/// class Base { };
+/// class Derived : Base {
+/// int x;
+/// float f;
+/// public:
+/// Derived(float f) : Base(), x(17), f(f) { }
+/// };
+/// @endcode
+///
+/// [C++] ctor-initializer:
+/// ':' mem-initializer-list
+///
+/// [C++] mem-initializer-list:
+/// mem-initializer ...[opt]
+/// mem-initializer ...[opt] , mem-initializer-list
+void Parser::ParseConstructorInitializer(Decl *ConstructorDecl) {
+ assert(Tok.is(tok::colon) &&
+ "Constructor initializer always starts with ':'");
+
+ // Poison the SEH identifiers so they are flagged as illegal in constructor
+ // initializers.
+ PoisonSEHIdentifiersRAIIObject PoisonSEHIdentifiers(*this, true);
+ SourceLocation ColonLoc = ConsumeToken();
+
+ SmallVector<CXXCtorInitializer*, 4> MemInitializers;
+ bool AnyErrors = false;
+
+ do {
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteConstructorInitializer(ConstructorDecl,
+ MemInitializers);
+ return cutOffParsing();
+ } else {
+ MemInitResult MemInit = ParseMemInitializer(ConstructorDecl);
+ if (!MemInit.isInvalid())
+ MemInitializers.push_back(MemInit.get());
+ else
+ AnyErrors = true;
+ }
+
+ if (Tok.is(tok::comma))
+ ConsumeToken();
+ else if (Tok.is(tok::l_brace))
+ break;
+ // If the next token looks like a base or member initializer, assume that
+ // we're just missing a comma.
+ else if (Tok.is(tok::identifier) || Tok.is(tok::coloncolon)) {
+ SourceLocation Loc = PP.getLocForEndOfToken(PrevTokLocation);
+ Diag(Loc, diag::err_ctor_init_missing_comma)
+ << FixItHint::CreateInsertion(Loc, ", ");
+ } else {
+ // Skip over garbage, until we get to '{'. Don't eat the '{'.
+ Diag(Tok.getLocation(), diag::err_expected_either) << tok::l_brace
+ << tok::comma;
+ SkipUntil(tok::l_brace, StopAtSemi | StopBeforeMatch);
+ break;
+ }
+ } while (true);
+
+ Actions.ActOnMemInitializers(ConstructorDecl, ColonLoc, MemInitializers,
+ AnyErrors);
+}
+
+/// ParseMemInitializer - Parse a C++ member initializer, which is
+/// part of a constructor initializer that explicitly initializes one
+/// member or base class (C++ [class.base.init]). See
+/// ParseConstructorInitializer for an example.
+///
+/// [C++] mem-initializer:
+/// mem-initializer-id '(' expression-list[opt] ')'
+/// [C++0x] mem-initializer-id braced-init-list
+///
+/// [C++] mem-initializer-id:
+/// '::'[opt] nested-name-specifier[opt] class-name
+/// identifier
+MemInitResult Parser::ParseMemInitializer(Decl *ConstructorDecl) {
+ // parse '::'[opt] nested-name-specifier[opt]
+ CXXScopeSpec SS;
+ ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
+ ParsedType TemplateTypeTy;
+ if (Tok.is(tok::annot_template_id)) {
+ TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
+ if (TemplateId->Kind == TNK_Type_template ||
+ TemplateId->Kind == TNK_Dependent_template_name) {
+ AnnotateTemplateIdTokenAsType();
+ assert(Tok.is(tok::annot_typename) && "template-id -> type failed");
+ TemplateTypeTy = getTypeAnnotation(Tok);
+ }
+ }
+ // Uses of decltype will already have been converted to annot_decltype by
+ // ParseOptionalCXXScopeSpecifier at this point.
+ if (!TemplateTypeTy && Tok.isNot(tok::identifier)
+ && Tok.isNot(tok::annot_decltype)) {
+ Diag(Tok, diag::err_expected_member_or_base_name);
+ return true;
+ }
+
+ IdentifierInfo *II = nullptr;
+ DeclSpec DS(AttrFactory);
+ SourceLocation IdLoc = Tok.getLocation();
+ if (Tok.is(tok::annot_decltype)) {
+ // Get the decltype expression, if there is one.
+ ParseDecltypeSpecifier(DS);
+ } else {
+ if (Tok.is(tok::identifier))
+ // Get the identifier. This may be a member name or a class name,
+ // but we'll let the semantic analysis determine which it is.
+ II = Tok.getIdentifierInfo();
+ ConsumeToken();
+ }
+
+
+ // Parse the '('.
+ if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
+ Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
+
+ ExprResult InitList = ParseBraceInitializer();
+ if (InitList.isInvalid())
+ return true;
+
+ SourceLocation EllipsisLoc;
+ TryConsumeToken(tok::ellipsis, EllipsisLoc);
+
+ return Actions.ActOnMemInitializer(ConstructorDecl, getCurScope(), SS, II,
+ TemplateTypeTy, DS, IdLoc,
+ InitList.get(), EllipsisLoc);
+ } else if(Tok.is(tok::l_paren)) {
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ T.consumeOpen();
+
+ // Parse the optional expression-list.
+ ExprVector ArgExprs;
+ CommaLocsTy CommaLocs;
+ if (Tok.isNot(tok::r_paren) && ParseExpressionList(ArgExprs, CommaLocs)) {
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return true;
+ }
+
+ T.consumeClose();
+
+ SourceLocation EllipsisLoc;
+ TryConsumeToken(tok::ellipsis, EllipsisLoc);
+
+ return Actions.ActOnMemInitializer(ConstructorDecl, getCurScope(), SS, II,
+ TemplateTypeTy, DS, IdLoc,
+ T.getOpenLocation(), ArgExprs,
+ T.getCloseLocation(), EllipsisLoc);
+ }
+
+ if (getLangOpts().CPlusPlus11)
+ return Diag(Tok, diag::err_expected_either) << tok::l_paren << tok::l_brace;
+ else
+ return Diag(Tok, diag::err_expected) << tok::l_paren;
+}
+
+/// \brief Parse a C++ exception-specification if present (C++0x [except.spec]).
+///
+/// exception-specification:
+/// dynamic-exception-specification
+/// noexcept-specification
+///
+/// noexcept-specification:
+/// 'noexcept'
+/// 'noexcept' '(' constant-expression ')'
+ExceptionSpecificationType
+Parser::tryParseExceptionSpecification(bool Delayed,
+ SourceRange &SpecificationRange,
+ SmallVectorImpl<ParsedType> &DynamicExceptions,
+ SmallVectorImpl<SourceRange> &DynamicExceptionRanges,
+ ExprResult &NoexceptExpr,
+ CachedTokens *&ExceptionSpecTokens) {
+ ExceptionSpecificationType Result = EST_None;
+ ExceptionSpecTokens = 0;
+
+ // Handle delayed parsing of exception-specifications.
+ if (Delayed) {
+ if (Tok.isNot(tok::kw_throw) && Tok.isNot(tok::kw_noexcept))
+ return EST_None;
+
+ // Consume and cache the starting token.
+ bool IsNoexcept = Tok.is(tok::kw_noexcept);
+ Token StartTok = Tok;
+ SpecificationRange = SourceRange(ConsumeToken());
+
+ // Check for a '('.
+ if (!Tok.is(tok::l_paren)) {
+ // If this is a bare 'noexcept', we're done.
+ if (IsNoexcept) {
+ Diag(Tok, diag::warn_cxx98_compat_noexcept_decl);
+ NoexceptExpr = 0;
+ return EST_BasicNoexcept;
+ }
+
+ Diag(Tok, diag::err_expected_lparen_after) << "throw";
+ return EST_DynamicNone;
+ }
+
+ // Cache the tokens for the exception-specification.
+ ExceptionSpecTokens = new CachedTokens;
+ ExceptionSpecTokens->push_back(StartTok); // 'throw' or 'noexcept'
+ ExceptionSpecTokens->push_back(Tok); // '('
+ SpecificationRange.setEnd(ConsumeParen()); // '('
+
+ ConsumeAndStoreUntil(tok::r_paren, *ExceptionSpecTokens,
+ /*StopAtSemi=*/true,
+ /*ConsumeFinalToken=*/true);
+ SpecificationRange.setEnd(Tok.getLocation());
+ return EST_Unparsed;
+ }
+
+ // See if there's a dynamic specification.
+ if (Tok.is(tok::kw_throw)) {
+ Result = ParseDynamicExceptionSpecification(SpecificationRange,
+ DynamicExceptions,
+ DynamicExceptionRanges);
+ assert(DynamicExceptions.size() == DynamicExceptionRanges.size() &&
+ "Produced different number of exception types and ranges.");
+ }
+
+ // If there's no noexcept specification, we're done.
+ if (Tok.isNot(tok::kw_noexcept))
+ return Result;
+
+ Diag(Tok, diag::warn_cxx98_compat_noexcept_decl);
+
+ // If we already had a dynamic specification, parse the noexcept for,
+ // recovery, but emit a diagnostic and don't store the results.
+ SourceRange NoexceptRange;
+ ExceptionSpecificationType NoexceptType = EST_None;
+
+ SourceLocation KeywordLoc = ConsumeToken();
+ if (Tok.is(tok::l_paren)) {
+ // There is an argument.
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ T.consumeOpen();
+ NoexceptType = EST_ComputedNoexcept;
+ NoexceptExpr = ParseConstantExpression();
+ // The argument must be contextually convertible to bool. We use
+ // ActOnBooleanCondition for this purpose.
+ if (!NoexceptExpr.isInvalid())
+ NoexceptExpr = Actions.ActOnBooleanCondition(getCurScope(), KeywordLoc,
+ NoexceptExpr.get());
+ T.consumeClose();
+ NoexceptRange = SourceRange(KeywordLoc, T.getCloseLocation());
+ } else {
+ // There is no argument.
+ NoexceptType = EST_BasicNoexcept;
+ NoexceptRange = SourceRange(KeywordLoc, KeywordLoc);
+ }
+
+ if (Result == EST_None) {
+ SpecificationRange = NoexceptRange;
+ Result = NoexceptType;
+
+ // If there's a dynamic specification after a noexcept specification,
+ // parse that and ignore the results.
+ if (Tok.is(tok::kw_throw)) {
+ Diag(Tok.getLocation(), diag::err_dynamic_and_noexcept_specification);
+ ParseDynamicExceptionSpecification(NoexceptRange, DynamicExceptions,
+ DynamicExceptionRanges);
+ }
+ } else {
+ Diag(Tok.getLocation(), diag::err_dynamic_and_noexcept_specification);
+ }
+
+ return Result;
+}
+
+static void diagnoseDynamicExceptionSpecification(
+ Parser &P, const SourceRange &Range, bool IsNoexcept) {
+ if (P.getLangOpts().CPlusPlus11) {
+ const char *Replacement = IsNoexcept ? "noexcept" : "noexcept(false)";
+ P.Diag(Range.getBegin(), diag::warn_exception_spec_deprecated) << Range;
+ P.Diag(Range.getBegin(), diag::note_exception_spec_deprecated)
+ << Replacement << FixItHint::CreateReplacement(Range, Replacement);
+ }
+}
+
+/// ParseDynamicExceptionSpecification - Parse a C++
+/// dynamic-exception-specification (C++ [except.spec]).
+///
+/// dynamic-exception-specification:
+/// 'throw' '(' type-id-list [opt] ')'
+/// [MS] 'throw' '(' '...' ')'
+///
+/// type-id-list:
+/// type-id ... [opt]
+/// type-id-list ',' type-id ... [opt]
+///
+ExceptionSpecificationType Parser::ParseDynamicExceptionSpecification(
+ SourceRange &SpecificationRange,
+ SmallVectorImpl<ParsedType> &Exceptions,
+ SmallVectorImpl<SourceRange> &Ranges) {
+ assert(Tok.is(tok::kw_throw) && "expected throw");
+
+ SpecificationRange.setBegin(ConsumeToken());
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ if (T.consumeOpen()) {
+ Diag(Tok, diag::err_expected_lparen_after) << "throw";
+ SpecificationRange.setEnd(SpecificationRange.getBegin());
+ return EST_DynamicNone;
+ }
+
+ // Parse throw(...), a Microsoft extension that means "this function
+ // can throw anything".
+ if (Tok.is(tok::ellipsis)) {
+ SourceLocation EllipsisLoc = ConsumeToken();
+ if (!getLangOpts().MicrosoftExt)
+ Diag(EllipsisLoc, diag::ext_ellipsis_exception_spec);
+ T.consumeClose();
+ SpecificationRange.setEnd(T.getCloseLocation());
+ diagnoseDynamicExceptionSpecification(*this, SpecificationRange, false);
+ return EST_MSAny;
+ }
+
+ // Parse the sequence of type-ids.
+ SourceRange Range;
+ while (Tok.isNot(tok::r_paren)) {
+ TypeResult Res(ParseTypeName(&Range));
+
+ if (Tok.is(tok::ellipsis)) {
+ // C++0x [temp.variadic]p5:
+ // - In a dynamic-exception-specification (15.4); the pattern is a
+ // type-id.
+ SourceLocation Ellipsis = ConsumeToken();
+ Range.setEnd(Ellipsis);
+ if (!Res.isInvalid())
+ Res = Actions.ActOnPackExpansion(Res.get(), Ellipsis);
+ }
+
+ if (!Res.isInvalid()) {
+ Exceptions.push_back(Res.get());
+ Ranges.push_back(Range);
+ }
+
+ if (!TryConsumeToken(tok::comma))
+ break;
+ }
+
+ T.consumeClose();
+ SpecificationRange.setEnd(T.getCloseLocation());
+ diagnoseDynamicExceptionSpecification(*this, SpecificationRange,
+ Exceptions.empty());
+ return Exceptions.empty() ? EST_DynamicNone : EST_Dynamic;
+}
+
+/// ParseTrailingReturnType - Parse a trailing return type on a new-style
+/// function declaration.
+TypeResult Parser::ParseTrailingReturnType(SourceRange &Range) {
+ assert(Tok.is(tok::arrow) && "expected arrow");
+
+ ConsumeToken();
+
+ return ParseTypeName(&Range, Declarator::TrailingReturnContext);
+}
+
+/// \brief We have just started parsing the definition of a new class,
+/// so push that class onto our stack of classes that is currently
+/// being parsed.
+Sema::ParsingClassState
+Parser::PushParsingClass(Decl *ClassDecl, bool NonNestedClass,
+ bool IsInterface) {
+ assert((NonNestedClass || !ClassStack.empty()) &&
+ "Nested class without outer class");
+ ClassStack.push(new ParsingClass(ClassDecl, NonNestedClass, IsInterface));
+ return Actions.PushParsingClass();
+}
+
+/// \brief Deallocate the given parsed class and all of its nested
+/// classes.
+void Parser::DeallocateParsedClasses(Parser::ParsingClass *Class) {
+ for (unsigned I = 0, N = Class->LateParsedDeclarations.size(); I != N; ++I)
+ delete Class->LateParsedDeclarations[I];
+ delete Class;
+}
+
+/// \brief Pop the top class of the stack of classes that are
+/// currently being parsed.
+///
+/// This routine should be called when we have finished parsing the
+/// definition of a class, but have not yet popped the Scope
+/// associated with the class's definition.
+void Parser::PopParsingClass(Sema::ParsingClassState state) {
+ assert(!ClassStack.empty() && "Mismatched push/pop for class parsing");
+
+ Actions.PopParsingClass(state);
+
+ ParsingClass *Victim = ClassStack.top();
+ ClassStack.pop();
+ if (Victim->TopLevelClass) {
+ // Deallocate all of the nested classes of this class,
+ // recursively: we don't need to keep any of this information.
+ DeallocateParsedClasses(Victim);
+ return;
+ }
+ assert(!ClassStack.empty() && "Missing top-level class?");
+
+ if (Victim->LateParsedDeclarations.empty()) {
+ // The victim is a nested class, but we will not need to perform
+ // any processing after the definition of this class since it has
+ // no members whose handling was delayed. Therefore, we can just
+ // remove this nested class.
+ DeallocateParsedClasses(Victim);
+ return;
+ }
+
+ // This nested class has some members that will need to be processed
+ // after the top-level class is completely defined. Therefore, add
+ // it to the list of nested classes within its parent.
+ assert(getCurScope()->isClassScope() && "Nested class outside of class scope?");
+ ClassStack.top()->LateParsedDeclarations.push_back(new LateParsedClass(this, Victim));
+ Victim->TemplateScope = getCurScope()->getParent()->isTemplateParamScope();
+}
+
+/// \brief Try to parse an 'identifier' which appears within an attribute-token.
+///
+/// \return the parsed identifier on success, and 0 if the next token is not an
+/// attribute-token.
+///
+/// C++11 [dcl.attr.grammar]p3:
+/// If a keyword or an alternative token that satisfies the syntactic
+/// requirements of an identifier is contained in an attribute-token,
+/// it is considered an identifier.
+IdentifierInfo *Parser::TryParseCXX11AttributeIdentifier(SourceLocation &Loc) {
+ switch (Tok.getKind()) {
+ default:
+ // Identifiers and keywords have identifier info attached.
+ if (!Tok.isAnnotation()) {
+ if (IdentifierInfo *II = Tok.getIdentifierInfo()) {
+ Loc = ConsumeToken();
+ return II;
+ }
+ }
+ return nullptr;
+
+ case tok::ampamp: // 'and'
+ case tok::pipe: // 'bitor'
+ case tok::pipepipe: // 'or'
+ case tok::caret: // 'xor'
+ case tok::tilde: // 'compl'
+ case tok::amp: // 'bitand'
+ case tok::ampequal: // 'and_eq'
+ case tok::pipeequal: // 'or_eq'
+ case tok::caretequal: // 'xor_eq'
+ case tok::exclaim: // 'not'
+ case tok::exclaimequal: // 'not_eq'
+ // Alternative tokens do not have identifier info, but their spelling
+ // starts with an alphabetical character.
+ SmallString<8> SpellingBuf;
+ SourceLocation SpellingLoc =
+ PP.getSourceManager().getSpellingLoc(Tok.getLocation());
+ StringRef Spelling = PP.getSpelling(SpellingLoc, SpellingBuf);
+ if (isLetter(Spelling[0])) {
+ Loc = ConsumeToken();
+ return &PP.getIdentifierTable().get(Spelling);
+ }
+ return nullptr;
+ }
+}
+
+static bool IsBuiltInOrStandardCXX11Attribute(IdentifierInfo *AttrName,
+ IdentifierInfo *ScopeName) {
+ switch (AttributeList::getKind(AttrName, ScopeName,
+ AttributeList::AS_CXX11)) {
+ case AttributeList::AT_CarriesDependency:
+ case AttributeList::AT_Deprecated:
+ case AttributeList::AT_FallThrough:
+ case AttributeList::AT_CXX11NoReturn: {
+ return true;
+ }
+
+ default:
+ return false;
+ }
+}
+
+/// ParseCXX11AttributeArgs -- Parse a C++11 attribute-argument-clause.
+///
+/// [C++11] attribute-argument-clause:
+/// '(' balanced-token-seq ')'
+///
+/// [C++11] balanced-token-seq:
+/// balanced-token
+/// balanced-token-seq balanced-token
+///
+/// [C++11] balanced-token:
+/// '(' balanced-token-seq ')'
+/// '[' balanced-token-seq ']'
+/// '{' balanced-token-seq '}'
+/// any token but '(', ')', '[', ']', '{', or '}'
+bool Parser::ParseCXX11AttributeArgs(IdentifierInfo *AttrName,
+ SourceLocation AttrNameLoc,
+ ParsedAttributes &Attrs,
+ SourceLocation *EndLoc,
+ IdentifierInfo *ScopeName,
+ SourceLocation ScopeLoc) {
+ assert(Tok.is(tok::l_paren) && "Not a C++11 attribute argument list");
+ SourceLocation LParenLoc = Tok.getLocation();
+
+ // If the attribute isn't known, we will not attempt to parse any
+ // arguments.
+ if (!hasAttribute(AttrSyntax::CXX, ScopeName, AttrName,
+ getTargetInfo().getTriple(), getLangOpts())) {
+ // Eat the left paren, then skip to the ending right paren.
+ ConsumeParen();
+ SkipUntil(tok::r_paren);
+ return false;
+ }
+
+ if (ScopeName && ScopeName->getName() == "gnu")
+ // GNU-scoped attributes have some special cases to handle GNU-specific
+ // behaviors.
+ ParseGNUAttributeArgs(AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
+ ScopeLoc, AttributeList::AS_CXX11, nullptr);
+ else {
+ unsigned NumArgs =
+ ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc,
+ ScopeName, ScopeLoc, AttributeList::AS_CXX11);
+
+ const AttributeList *Attr = Attrs.getList();
+ if (Attr && IsBuiltInOrStandardCXX11Attribute(AttrName, ScopeName)) {
+ // If the attribute is a standard or built-in attribute and we are
+ // parsing an argument list, we need to determine whether this attribute
+ // was allowed to have an argument list (such as [[deprecated]]), and how
+ // many arguments were parsed (so we can diagnose on [[deprecated()]]).
+ if (Attr->getMaxArgs() && !NumArgs) {
+ // The attribute was allowed to have arguments, but none were provided
+ // even though the attribute parsed successfully. This is an error.
+ Diag(LParenLoc, diag::err_attribute_requires_arguments) << AttrName;
+ } else if (!Attr->getMaxArgs()) {
+ // The attribute parsed successfully, but was not allowed to have any
+ // arguments. It doesn't matter whether any were provided -- the
+ // presence of the argument list (even if empty) is diagnosed.
+ Diag(LParenLoc, diag::err_cxx11_attribute_forbids_arguments)
+ << AttrName
+ << FixItHint::CreateRemoval(SourceRange(LParenLoc, *EndLoc));
+ }
+ }
+ }
+ return true;
+}
+
+/// ParseCXX11AttributeSpecifier - Parse a C++11 attribute-specifier.
+///
+/// [C++11] attribute-specifier:
+/// '[' '[' attribute-list ']' ']'
+/// alignment-specifier
+///
+/// [C++11] attribute-list:
+/// attribute[opt]
+/// attribute-list ',' attribute[opt]
+/// attribute '...'
+/// attribute-list ',' attribute '...'
+///
+/// [C++11] attribute:
+/// attribute-token attribute-argument-clause[opt]
+///
+/// [C++11] attribute-token:
+/// identifier
+/// attribute-scoped-token
+///
+/// [C++11] attribute-scoped-token:
+/// attribute-namespace '::' identifier
+///
+/// [C++11] attribute-namespace:
+/// identifier
+void Parser::ParseCXX11AttributeSpecifier(ParsedAttributes &attrs,
+ SourceLocation *endLoc) {
+ if (Tok.is(tok::kw_alignas)) {
+ Diag(Tok.getLocation(), diag::warn_cxx98_compat_alignas);
+ ParseAlignmentSpecifier(attrs, endLoc);
+ return;
+ }
+
+ assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square)
+ && "Not a C++11 attribute list");
+
+ Diag(Tok.getLocation(), diag::warn_cxx98_compat_attribute);
+
+ ConsumeBracket();
+ ConsumeBracket();
+
+ llvm::SmallDenseMap<IdentifierInfo*, SourceLocation, 4> SeenAttrs;
+
+ while (Tok.isNot(tok::r_square)) {
+ // attribute not present
+ if (TryConsumeToken(tok::comma))
+ continue;
+
+ SourceLocation ScopeLoc, AttrLoc;
+ IdentifierInfo *ScopeName = nullptr, *AttrName = nullptr;
+
+ AttrName = TryParseCXX11AttributeIdentifier(AttrLoc);
+ if (!AttrName)
+ // Break out to the "expected ']'" diagnostic.
+ break;
+
+ // scoped attribute
+ if (TryConsumeToken(tok::coloncolon)) {
+ ScopeName = AttrName;
+ ScopeLoc = AttrLoc;
+
+ AttrName = TryParseCXX11AttributeIdentifier(AttrLoc);
+ if (!AttrName) {
+ Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
+ SkipUntil(tok::r_square, tok::comma, StopAtSemi | StopBeforeMatch);
+ continue;
+ }
+ }
+
+ bool StandardAttr = IsBuiltInOrStandardCXX11Attribute(AttrName, ScopeName);
+ bool AttrParsed = false;
+
+ if (StandardAttr &&
+ !SeenAttrs.insert(std::make_pair(AttrName, AttrLoc)).second)
+ Diag(AttrLoc, diag::err_cxx11_attribute_repeated)
+ << AttrName << SourceRange(SeenAttrs[AttrName]);
+
+ // Parse attribute arguments
+ if (Tok.is(tok::l_paren))
+ AttrParsed = ParseCXX11AttributeArgs(AttrName, AttrLoc, attrs, endLoc,
+ ScopeName, ScopeLoc);
+
+ if (!AttrParsed)
+ attrs.addNew(AttrName,
+ SourceRange(ScopeLoc.isValid() ? ScopeLoc : AttrLoc,
+ AttrLoc),
+ ScopeName, ScopeLoc, nullptr, 0, AttributeList::AS_CXX11);
+
+ if (TryConsumeToken(tok::ellipsis))
+ Diag(Tok, diag::err_cxx11_attribute_forbids_ellipsis)
+ << AttrName->getName();
+ }
+
+ if (ExpectAndConsume(tok::r_square))
+ SkipUntil(tok::r_square);
+ if (endLoc)
+ *endLoc = Tok.getLocation();
+ if (ExpectAndConsume(tok::r_square))
+ SkipUntil(tok::r_square);
+}
+
+/// ParseCXX11Attributes - Parse a C++11 attribute-specifier-seq.
+///
+/// attribute-specifier-seq:
+/// attribute-specifier-seq[opt] attribute-specifier
+void Parser::ParseCXX11Attributes(ParsedAttributesWithRange &attrs,
+ SourceLocation *endLoc) {
+ assert(getLangOpts().CPlusPlus11);
+
+ SourceLocation StartLoc = Tok.getLocation(), Loc;
+ if (!endLoc)
+ endLoc = &Loc;
+
+ do {
+ ParseCXX11AttributeSpecifier(attrs, endLoc);
+ } while (isCXX11AttributeSpecifier());
+
+ attrs.Range = SourceRange(StartLoc, *endLoc);
+}
+
+void Parser::DiagnoseAndSkipCXX11Attributes() {
+ // Start and end location of an attribute or an attribute list.
+ SourceLocation StartLoc = Tok.getLocation();
+ SourceLocation EndLoc = SkipCXX11Attributes();
+
+ if (EndLoc.isValid()) {
+ SourceRange Range(StartLoc, EndLoc);
+ Diag(StartLoc, diag::err_attributes_not_allowed)
+ << Range;
+ }
+}
+
+SourceLocation Parser::SkipCXX11Attributes() {
+ SourceLocation EndLoc;
+
+ if (!isCXX11AttributeSpecifier())
+ return EndLoc;
+
+ do {
+ if (Tok.is(tok::l_square)) {
+ BalancedDelimiterTracker T(*this, tok::l_square);
+ T.consumeOpen();
+ T.skipToEnd();
+ EndLoc = T.getCloseLocation();
+ } else {
+ assert(Tok.is(tok::kw_alignas) && "not an attribute specifier");
+ ConsumeToken();
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ if (!T.consumeOpen())
+ T.skipToEnd();
+ EndLoc = T.getCloseLocation();
+ }
+ } while (isCXX11AttributeSpecifier());
+
+ return EndLoc;
+}
+
+/// ParseMicrosoftAttributes - Parse a Microsoft attribute [Attr]
+///
+/// [MS] ms-attribute:
+/// '[' token-seq ']'
+///
+/// [MS] ms-attribute-seq:
+/// ms-attribute[opt]
+/// ms-attribute ms-attribute-seq
+void Parser::ParseMicrosoftAttributes(ParsedAttributes &attrs,
+ SourceLocation *endLoc) {
+ assert(Tok.is(tok::l_square) && "Not a Microsoft attribute list");
+
+ while (Tok.is(tok::l_square)) {
+ // FIXME: If this is actually a C++11 attribute, parse it as one.
+ ConsumeBracket();
+ SkipUntil(tok::r_square, StopAtSemi | StopBeforeMatch);
+ if (endLoc) *endLoc = Tok.getLocation();
+ ExpectAndConsume(tok::r_square);
+ }
+}
+
+void Parser::ParseMicrosoftIfExistsClassDeclaration(DeclSpec::TST TagType,
+ AccessSpecifier& CurAS) {
+ IfExistsCondition Result;
+ if (ParseMicrosoftIfExistsCondition(Result))
+ return;
+
+ BalancedDelimiterTracker Braces(*this, tok::l_brace);
+ if (Braces.consumeOpen()) {
+ Diag(Tok, diag::err_expected) << tok::l_brace;
+ return;
+ }
+
+ switch (Result.Behavior) {
+ case IEB_Parse:
+ // Parse the declarations below.
+ break;
+
+ case IEB_Dependent:
+ Diag(Result.KeywordLoc, diag::warn_microsoft_dependent_exists)
+ << Result.IsIfExists;
+ // Fall through to skip.
+
+ case IEB_Skip:
+ Braces.skipToEnd();
+ return;
+ }
+
+ while (Tok.isNot(tok::r_brace) && !isEofOrEom()) {
+ // __if_exists, __if_not_exists can nest.
+ if ((Tok.is(tok::kw___if_exists) || Tok.is(tok::kw___if_not_exists))) {
+ ParseMicrosoftIfExistsClassDeclaration((DeclSpec::TST)TagType, CurAS);
+ continue;
+ }
+
+ // Check for extraneous top-level semicolon.
+ if (Tok.is(tok::semi)) {
+ ConsumeExtraSemi(InsideStruct, TagType);
+ continue;
+ }
+
+ AccessSpecifier AS = getAccessSpecifierIfPresent();
+ if (AS != AS_none) {
+ // Current token is a C++ access specifier.
+ CurAS = AS;
+ SourceLocation ASLoc = Tok.getLocation();
+ ConsumeToken();
+ if (Tok.is(tok::colon))
+ Actions.ActOnAccessSpecifier(AS, ASLoc, Tok.getLocation());
+ else
+ Diag(Tok, diag::err_expected) << tok::colon;
+ ConsumeToken();
+ continue;
+ }
+
+ // Parse all the comma separated declarators.
+ ParseCXXClassMemberDeclaration(CurAS, nullptr);
+ }
+
+ Braces.consumeClose();
+}
diff --git a/contrib/llvm/tools/clang/lib/Parse/ParseExpr.cpp b/contrib/llvm/tools/clang/lib/Parse/ParseExpr.cpp
new file mode 100644
index 0000000..95a28a8
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Parse/ParseExpr.cpp
@@ -0,0 +1,2776 @@
+//===--- ParseExpr.cpp - Expression Parsing -------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// \brief Provides the Expression parsing implementation.
+///
+/// Expressions in C99 basically consist of a bunch of binary operators with
+/// unary operators and other random stuff at the leaves.
+///
+/// In the C99 grammar, these unary operators bind tightest and are represented
+/// as the 'cast-expression' production. Everything else is either a binary
+/// operator (e.g. '/') or a ternary operator ("?:"). The unary leaves are
+/// handled by ParseCastExpression, the higher level pieces are handled by
+/// ParseBinaryExpression.
+///
+//===----------------------------------------------------------------------===//
+
+#include "clang/Parse/Parser.h"
+#include "RAIIObjectsForParser.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/Basic/PrettyStackTrace.h"
+#include "clang/Sema/DeclSpec.h"
+#include "clang/Sema/ParsedTemplate.h"
+#include "clang/Sema/Scope.h"
+#include "clang/Sema/TypoCorrection.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/SmallVector.h"
+using namespace clang;
+
+/// \brief Simple precedence-based parser for binary/ternary operators.
+///
+/// Note: we diverge from the C99 grammar when parsing the assignment-expression
+/// production. C99 specifies that the LHS of an assignment operator should be
+/// parsed as a unary-expression, but consistency dictates that it be a
+/// conditional-expession. In practice, the important thing here is that the
+/// LHS of an assignment has to be an l-value, which productions between
+/// unary-expression and conditional-expression don't produce. Because we want
+/// consistency, we parse the LHS as a conditional-expression, then check for
+/// l-value-ness in semantic analysis stages.
+///
+/// \verbatim
+/// pm-expression: [C++ 5.5]
+/// cast-expression
+/// pm-expression '.*' cast-expression
+/// pm-expression '->*' cast-expression
+///
+/// multiplicative-expression: [C99 6.5.5]
+/// Note: in C++, apply pm-expression instead of cast-expression
+/// cast-expression
+/// multiplicative-expression '*' cast-expression
+/// multiplicative-expression '/' cast-expression
+/// multiplicative-expression '%' cast-expression
+///
+/// additive-expression: [C99 6.5.6]
+/// multiplicative-expression
+/// additive-expression '+' multiplicative-expression
+/// additive-expression '-' multiplicative-expression
+///
+/// shift-expression: [C99 6.5.7]
+/// additive-expression
+/// shift-expression '<<' additive-expression
+/// shift-expression '>>' additive-expression
+///
+/// relational-expression: [C99 6.5.8]
+/// shift-expression
+/// relational-expression '<' shift-expression
+/// relational-expression '>' shift-expression
+/// relational-expression '<=' shift-expression
+/// relational-expression '>=' shift-expression
+///
+/// equality-expression: [C99 6.5.9]
+/// relational-expression
+/// equality-expression '==' relational-expression
+/// equality-expression '!=' relational-expression
+///
+/// AND-expression: [C99 6.5.10]
+/// equality-expression
+/// AND-expression '&' equality-expression
+///
+/// exclusive-OR-expression: [C99 6.5.11]
+/// AND-expression
+/// exclusive-OR-expression '^' AND-expression
+///
+/// inclusive-OR-expression: [C99 6.5.12]
+/// exclusive-OR-expression
+/// inclusive-OR-expression '|' exclusive-OR-expression
+///
+/// logical-AND-expression: [C99 6.5.13]
+/// inclusive-OR-expression
+/// logical-AND-expression '&&' inclusive-OR-expression
+///
+/// logical-OR-expression: [C99 6.5.14]
+/// logical-AND-expression
+/// logical-OR-expression '||' logical-AND-expression
+///
+/// conditional-expression: [C99 6.5.15]
+/// logical-OR-expression
+/// logical-OR-expression '?' expression ':' conditional-expression
+/// [GNU] logical-OR-expression '?' ':' conditional-expression
+/// [C++] the third operand is an assignment-expression
+///
+/// assignment-expression: [C99 6.5.16]
+/// conditional-expression
+/// unary-expression assignment-operator assignment-expression
+/// [C++] throw-expression [C++ 15]
+///
+/// assignment-operator: one of
+/// = *= /= %= += -= <<= >>= &= ^= |=
+///
+/// expression: [C99 6.5.17]
+/// assignment-expression ...[opt]
+/// expression ',' assignment-expression ...[opt]
+/// \endverbatim
+ExprResult Parser::ParseExpression(TypeCastState isTypeCast) {
+ ExprResult LHS(ParseAssignmentExpression(isTypeCast));
+ return ParseRHSOfBinaryExpression(LHS, prec::Comma);
+}
+
+/// This routine is called when the '@' is seen and consumed.
+/// Current token is an Identifier and is not a 'try'. This
+/// routine is necessary to disambiguate \@try-statement from,
+/// for example, \@encode-expression.
+///
+ExprResult
+Parser::ParseExpressionWithLeadingAt(SourceLocation AtLoc) {
+ ExprResult LHS(ParseObjCAtExpression(AtLoc));
+ return ParseRHSOfBinaryExpression(LHS, prec::Comma);
+}
+
+/// This routine is called when a leading '__extension__' is seen and
+/// consumed. This is necessary because the token gets consumed in the
+/// process of disambiguating between an expression and a declaration.
+ExprResult
+Parser::ParseExpressionWithLeadingExtension(SourceLocation ExtLoc) {
+ ExprResult LHS(true);
+ {
+ // Silence extension warnings in the sub-expression
+ ExtensionRAIIObject O(Diags);
+
+ LHS = ParseCastExpression(false);
+ }
+
+ if (!LHS.isInvalid())
+ LHS = Actions.ActOnUnaryOp(getCurScope(), ExtLoc, tok::kw___extension__,
+ LHS.get());
+
+ return ParseRHSOfBinaryExpression(LHS, prec::Comma);
+}
+
+/// \brief Parse an expr that doesn't include (top-level) commas.
+ExprResult Parser::ParseAssignmentExpression(TypeCastState isTypeCast) {
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
+ cutOffParsing();
+ return ExprError();
+ }
+
+ if (Tok.is(tok::kw_throw))
+ return ParseThrowExpression();
+
+ ExprResult LHS = ParseCastExpression(/*isUnaryExpression=*/false,
+ /*isAddressOfOperand=*/false,
+ isTypeCast);
+ return ParseRHSOfBinaryExpression(LHS, prec::Assignment);
+}
+
+/// \brief Parse an assignment expression where part of an Objective-C message
+/// send has already been parsed.
+///
+/// In this case \p LBracLoc indicates the location of the '[' of the message
+/// send, and either \p ReceiverName or \p ReceiverExpr is non-null indicating
+/// the receiver of the message.
+///
+/// Since this handles full assignment-expression's, it handles postfix
+/// expressions and other binary operators for these expressions as well.
+ExprResult
+Parser::ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc,
+ SourceLocation SuperLoc,
+ ParsedType ReceiverType,
+ Expr *ReceiverExpr) {
+ ExprResult R
+ = ParseObjCMessageExpressionBody(LBracLoc, SuperLoc,
+ ReceiverType, ReceiverExpr);
+ R = ParsePostfixExpressionSuffix(R);
+ return ParseRHSOfBinaryExpression(R, prec::Assignment);
+}
+
+
+ExprResult Parser::ParseConstantExpression(TypeCastState isTypeCast) {
+ // C++03 [basic.def.odr]p2:
+ // An expression is potentially evaluated unless it appears where an
+ // integral constant expression is required (see 5.19) [...].
+ // C++98 and C++11 have no such rule, but this is only a defect in C++98.
+ EnterExpressionEvaluationContext Unevaluated(Actions,
+ Sema::ConstantEvaluated);
+
+ ExprResult LHS(ParseCastExpression(false, false, isTypeCast));
+ ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
+ return Actions.ActOnConstantExpression(Res);
+}
+
+bool Parser::isNotExpressionStart() {
+ tok::TokenKind K = Tok.getKind();
+ if (K == tok::l_brace || K == tok::r_brace ||
+ K == tok::kw_for || K == tok::kw_while ||
+ K == tok::kw_if || K == tok::kw_else ||
+ K == tok::kw_goto || K == tok::kw_try)
+ return true;
+ // If this is a decl-specifier, we can't be at the start of an expression.
+ return isKnownToBeDeclarationSpecifier();
+}
+
+static bool isFoldOperator(prec::Level Level) {
+ return Level > prec::Unknown && Level != prec::Conditional;
+}
+static bool isFoldOperator(tok::TokenKind Kind) {
+ return isFoldOperator(getBinOpPrecedence(Kind, false, true));
+}
+
+/// \brief Parse a binary expression that starts with \p LHS and has a
+/// precedence of at least \p MinPrec.
+ExprResult
+Parser::ParseRHSOfBinaryExpression(ExprResult LHS, prec::Level MinPrec) {
+ prec::Level NextTokPrec = getBinOpPrecedence(Tok.getKind(),
+ GreaterThanIsOperator,
+ getLangOpts().CPlusPlus11);
+ SourceLocation ColonLoc;
+
+ while (1) {
+ // If this token has a lower precedence than we are allowed to parse (e.g.
+ // because we are called recursively, or because the token is not a binop),
+ // then we are done!
+ if (NextTokPrec < MinPrec)
+ return LHS;
+
+ // Consume the operator, saving the operator token for error reporting.
+ Token OpToken = Tok;
+ ConsumeToken();
+
+ // Bail out when encountering a comma followed by a token which can't
+ // possibly be the start of an expression. For instance:
+ // int f() { return 1, }
+ // We can't do this before consuming the comma, because
+ // isNotExpressionStart() looks at the token stream.
+ if (OpToken.is(tok::comma) && isNotExpressionStart()) {
+ PP.EnterToken(Tok);
+ Tok = OpToken;
+ return LHS;
+ }
+
+ // If the next token is an ellipsis, then this is a fold-expression. Leave
+ // it alone so we can handle it in the paren expression.
+ if (isFoldOperator(NextTokPrec) && Tok.is(tok::ellipsis)) {
+ // FIXME: We can't check this via lookahead before we consume the token
+ // because that tickles a lexer bug.
+ PP.EnterToken(Tok);
+ Tok = OpToken;
+ return LHS;
+ }
+
+ // Special case handling for the ternary operator.
+ ExprResult TernaryMiddle(true);
+ if (NextTokPrec == prec::Conditional) {
+ if (Tok.isNot(tok::colon)) {
+ // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
+ ColonProtectionRAIIObject X(*this);
+
+ // Handle this production specially:
+ // logical-OR-expression '?' expression ':' conditional-expression
+ // In particular, the RHS of the '?' is 'expression', not
+ // 'logical-OR-expression' as we might expect.
+ TernaryMiddle = ParseExpression();
+ if (TernaryMiddle.isInvalid()) {
+ Actions.CorrectDelayedTyposInExpr(LHS);
+ LHS = ExprError();
+ TernaryMiddle = nullptr;
+ }
+ } else {
+ // Special case handling of "X ? Y : Z" where Y is empty:
+ // logical-OR-expression '?' ':' conditional-expression [GNU]
+ TernaryMiddle = nullptr;
+ Diag(Tok, diag::ext_gnu_conditional_expr);
+ }
+
+ if (!TryConsumeToken(tok::colon, ColonLoc)) {
+ // Otherwise, we're missing a ':'. Assume that this was a typo that
+ // the user forgot. If we're not in a macro expansion, we can suggest
+ // a fixit hint. If there were two spaces before the current token,
+ // suggest inserting the colon in between them, otherwise insert ": ".
+ SourceLocation FILoc = Tok.getLocation();
+ const char *FIText = ": ";
+ const SourceManager &SM = PP.getSourceManager();
+ if (FILoc.isFileID() || PP.isAtStartOfMacroExpansion(FILoc, &FILoc)) {
+ assert(FILoc.isFileID());
+ bool IsInvalid = false;
+ const char *SourcePtr =
+ SM.getCharacterData(FILoc.getLocWithOffset(-1), &IsInvalid);
+ if (!IsInvalid && *SourcePtr == ' ') {
+ SourcePtr =
+ SM.getCharacterData(FILoc.getLocWithOffset(-2), &IsInvalid);
+ if (!IsInvalid && *SourcePtr == ' ') {
+ FILoc = FILoc.getLocWithOffset(-1);
+ FIText = ":";
+ }
+ }
+ }
+
+ Diag(Tok, diag::err_expected)
+ << tok::colon << FixItHint::CreateInsertion(FILoc, FIText);
+ Diag(OpToken, diag::note_matching) << tok::question;
+ ColonLoc = Tok.getLocation();
+ }
+ }
+
+ // Code completion for the right-hand side of an assignment expression
+ // goes through a special hook that takes the left-hand side into account.
+ if (Tok.is(tok::code_completion) && NextTokPrec == prec::Assignment) {
+ Actions.CodeCompleteAssignmentRHS(getCurScope(), LHS.get());
+ cutOffParsing();
+ return ExprError();
+ }
+
+ // Parse another leaf here for the RHS of the operator.
+ // ParseCastExpression works here because all RHS expressions in C have it
+ // as a prefix, at least. However, in C++, an assignment-expression could
+ // be a throw-expression, which is not a valid cast-expression.
+ // Therefore we need some special-casing here.
+ // Also note that the third operand of the conditional operator is
+ // an assignment-expression in C++, and in C++11, we can have a
+ // braced-init-list on the RHS of an assignment. For better diagnostics,
+ // parse as if we were allowed braced-init-lists everywhere, and check that
+ // they only appear on the RHS of assignments later.
+ ExprResult RHS;
+ bool RHSIsInitList = false;
+ if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
+ RHS = ParseBraceInitializer();
+ RHSIsInitList = true;
+ } else if (getLangOpts().CPlusPlus && NextTokPrec <= prec::Conditional)
+ RHS = ParseAssignmentExpression();
+ else
+ RHS = ParseCastExpression(false);
+
+ if (RHS.isInvalid()) {
+ // FIXME: Errors generated by the delayed typo correction should be
+ // printed before errors from parsing the RHS, not after.
+ Actions.CorrectDelayedTyposInExpr(LHS);
+ if (TernaryMiddle.isUsable())
+ TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
+ LHS = ExprError();
+ }
+
+ // Remember the precedence of this operator and get the precedence of the
+ // operator immediately to the right of the RHS.
+ prec::Level ThisPrec = NextTokPrec;
+ NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
+ getLangOpts().CPlusPlus11);
+
+ // Assignment and conditional expressions are right-associative.
+ bool isRightAssoc = ThisPrec == prec::Conditional ||
+ ThisPrec == prec::Assignment;
+
+ // Get the precedence of the operator to the right of the RHS. If it binds
+ // more tightly with RHS than we do, evaluate it completely first.
+ if (ThisPrec < NextTokPrec ||
+ (ThisPrec == NextTokPrec && isRightAssoc)) {
+ if (!RHS.isInvalid() && RHSIsInitList) {
+ Diag(Tok, diag::err_init_list_bin_op)
+ << /*LHS*/0 << PP.getSpelling(Tok) << Actions.getExprRange(RHS.get());
+ RHS = ExprError();
+ }
+ // If this is left-associative, only parse things on the RHS that bind
+ // more tightly than the current operator. If it is left-associative, it
+ // is okay, to bind exactly as tightly. For example, compile A=B=C=D as
+ // A=(B=(C=D)), where each paren is a level of recursion here.
+ // The function takes ownership of the RHS.
+ RHS = ParseRHSOfBinaryExpression(RHS,
+ static_cast<prec::Level>(ThisPrec + !isRightAssoc));
+ RHSIsInitList = false;
+
+ if (RHS.isInvalid()) {
+ // FIXME: Errors generated by the delayed typo correction should be
+ // printed before errors from ParseRHSOfBinaryExpression, not after.
+ Actions.CorrectDelayedTyposInExpr(LHS);
+ if (TernaryMiddle.isUsable())
+ TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
+ LHS = ExprError();
+ }
+
+ NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
+ getLangOpts().CPlusPlus11);
+ }
+
+ if (!RHS.isInvalid() && RHSIsInitList) {
+ if (ThisPrec == prec::Assignment) {
+ Diag(OpToken, diag::warn_cxx98_compat_generalized_initializer_lists)
+ << Actions.getExprRange(RHS.get());
+ } else {
+ Diag(OpToken, diag::err_init_list_bin_op)
+ << /*RHS*/1 << PP.getSpelling(OpToken)
+ << Actions.getExprRange(RHS.get());
+ LHS = ExprError();
+ }
+ }
+
+ if (!LHS.isInvalid()) {
+ // Combine the LHS and RHS into the LHS (e.g. build AST).
+ if (TernaryMiddle.isInvalid()) {
+ // If we're using '>>' as an operator within a template
+ // argument list (in C++98), suggest the addition of
+ // parentheses so that the code remains well-formed in C++0x.
+ if (!GreaterThanIsOperator && OpToken.is(tok::greatergreater))
+ SuggestParentheses(OpToken.getLocation(),
+ diag::warn_cxx11_right_shift_in_template_arg,
+ SourceRange(Actions.getExprRange(LHS.get()).getBegin(),
+ Actions.getExprRange(RHS.get()).getEnd()));
+
+ LHS = Actions.ActOnBinOp(getCurScope(), OpToken.getLocation(),
+ OpToken.getKind(), LHS.get(), RHS.get());
+ } else
+ LHS = Actions.ActOnConditionalOp(OpToken.getLocation(), ColonLoc,
+ LHS.get(), TernaryMiddle.get(),
+ RHS.get());
+ } else
+ // Ensure potential typos in the RHS aren't left undiagnosed.
+ Actions.CorrectDelayedTyposInExpr(RHS);
+ }
+}
+
+/// \brief Parse a cast-expression, or, if \p isUnaryExpression is true,
+/// parse a unary-expression.
+///
+/// \p isAddressOfOperand exists because an id-expression that is the
+/// operand of address-of gets special treatment due to member pointers.
+///
+ExprResult Parser::ParseCastExpression(bool isUnaryExpression,
+ bool isAddressOfOperand,
+ TypeCastState isTypeCast) {
+ bool NotCastExpr;
+ ExprResult Res = ParseCastExpression(isUnaryExpression,
+ isAddressOfOperand,
+ NotCastExpr,
+ isTypeCast);
+ if (NotCastExpr)
+ Diag(Tok, diag::err_expected_expression);
+ return Res;
+}
+
+namespace {
+class CastExpressionIdValidator : public CorrectionCandidateCallback {
+ public:
+ CastExpressionIdValidator(Token Next, bool AllowTypes, bool AllowNonTypes)
+ : NextToken(Next), AllowNonTypes(AllowNonTypes) {
+ WantTypeSpecifiers = WantFunctionLikeCasts = AllowTypes;
+ }
+
+ bool ValidateCandidate(const TypoCorrection &candidate) override {
+ NamedDecl *ND = candidate.getCorrectionDecl();
+ if (!ND)
+ return candidate.isKeyword();
+
+ if (isa<TypeDecl>(ND))
+ return WantTypeSpecifiers;
+
+ if (!AllowNonTypes || !CorrectionCandidateCallback::ValidateCandidate(candidate))
+ return false;
+
+ if (!(NextToken.is(tok::equal) || NextToken.is(tok::arrow) ||
+ NextToken.is(tok::period)))
+ return true;
+
+ for (auto *C : candidate) {
+ NamedDecl *ND = C->getUnderlyingDecl();
+ if (isa<ValueDecl>(ND) && !isa<FunctionDecl>(ND))
+ return true;
+ }
+ return false;
+ }
+
+ private:
+ Token NextToken;
+ bool AllowNonTypes;
+};
+}
+
+/// \brief Parse a cast-expression, or, if \pisUnaryExpression is true, parse
+/// a unary-expression.
+///
+/// \p isAddressOfOperand exists because an id-expression that is the operand
+/// of address-of gets special treatment due to member pointers. NotCastExpr
+/// is set to true if the token is not the start of a cast-expression, and no
+/// diagnostic is emitted in this case.
+///
+/// \verbatim
+/// cast-expression: [C99 6.5.4]
+/// unary-expression
+/// '(' type-name ')' cast-expression
+///
+/// unary-expression: [C99 6.5.3]
+/// postfix-expression
+/// '++' unary-expression
+/// '--' unary-expression
+/// unary-operator cast-expression
+/// 'sizeof' unary-expression
+/// 'sizeof' '(' type-name ')'
+/// [C++11] 'sizeof' '...' '(' identifier ')'
+/// [GNU] '__alignof' unary-expression
+/// [GNU] '__alignof' '(' type-name ')'
+/// [C11] '_Alignof' '(' type-name ')'
+/// [C++11] 'alignof' '(' type-id ')'
+/// [GNU] '&&' identifier
+/// [C++11] 'noexcept' '(' expression ')' [C++11 5.3.7]
+/// [C++] new-expression
+/// [C++] delete-expression
+///
+/// unary-operator: one of
+/// '&' '*' '+' '-' '~' '!'
+/// [GNU] '__extension__' '__real' '__imag'
+///
+/// primary-expression: [C99 6.5.1]
+/// [C99] identifier
+/// [C++] id-expression
+/// constant
+/// string-literal
+/// [C++] boolean-literal [C++ 2.13.5]
+/// [C++11] 'nullptr' [C++11 2.14.7]
+/// [C++11] user-defined-literal
+/// '(' expression ')'
+/// [C11] generic-selection
+/// '__func__' [C99 6.4.2.2]
+/// [GNU] '__FUNCTION__'
+/// [MS] '__FUNCDNAME__'
+/// [MS] 'L__FUNCTION__'
+/// [GNU] '__PRETTY_FUNCTION__'
+/// [GNU] '(' compound-statement ')'
+/// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
+/// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
+/// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
+/// assign-expr ')'
+/// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
+/// [GNU] '__null'
+/// [OBJC] '[' objc-message-expr ']'
+/// [OBJC] '\@selector' '(' objc-selector-arg ')'
+/// [OBJC] '\@protocol' '(' identifier ')'
+/// [OBJC] '\@encode' '(' type-name ')'
+/// [OBJC] objc-string-literal
+/// [C++] simple-type-specifier '(' expression-list[opt] ')' [C++ 5.2.3]
+/// [C++11] simple-type-specifier braced-init-list [C++11 5.2.3]
+/// [C++] typename-specifier '(' expression-list[opt] ')' [C++ 5.2.3]
+/// [C++11] typename-specifier braced-init-list [C++11 5.2.3]
+/// [C++] 'const_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
+/// [C++] 'dynamic_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
+/// [C++] 'reinterpret_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
+/// [C++] 'static_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
+/// [C++] 'typeid' '(' expression ')' [C++ 5.2p1]
+/// [C++] 'typeid' '(' type-id ')' [C++ 5.2p1]
+/// [C++] 'this' [C++ 9.3.2]
+/// [G++] unary-type-trait '(' type-id ')'
+/// [G++] binary-type-trait '(' type-id ',' type-id ')' [TODO]
+/// [EMBT] array-type-trait '(' type-id ',' integer ')'
+/// [clang] '^' block-literal
+///
+/// constant: [C99 6.4.4]
+/// integer-constant
+/// floating-constant
+/// enumeration-constant -> identifier
+/// character-constant
+///
+/// id-expression: [C++ 5.1]
+/// unqualified-id
+/// qualified-id
+///
+/// unqualified-id: [C++ 5.1]
+/// identifier
+/// operator-function-id
+/// conversion-function-id
+/// '~' class-name
+/// template-id
+///
+/// new-expression: [C++ 5.3.4]
+/// '::'[opt] 'new' new-placement[opt] new-type-id
+/// new-initializer[opt]
+/// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
+/// new-initializer[opt]
+///
+/// delete-expression: [C++ 5.3.5]
+/// '::'[opt] 'delete' cast-expression
+/// '::'[opt] 'delete' '[' ']' cast-expression
+///
+/// [GNU/Embarcadero] unary-type-trait:
+/// '__is_arithmetic'
+/// '__is_floating_point'
+/// '__is_integral'
+/// '__is_lvalue_expr'
+/// '__is_rvalue_expr'
+/// '__is_complete_type'
+/// '__is_void'
+/// '__is_array'
+/// '__is_function'
+/// '__is_reference'
+/// '__is_lvalue_reference'
+/// '__is_rvalue_reference'
+/// '__is_fundamental'
+/// '__is_object'
+/// '__is_scalar'
+/// '__is_compound'
+/// '__is_pointer'
+/// '__is_member_object_pointer'
+/// '__is_member_function_pointer'
+/// '__is_member_pointer'
+/// '__is_const'
+/// '__is_volatile'
+/// '__is_trivial'
+/// '__is_standard_layout'
+/// '__is_signed'
+/// '__is_unsigned'
+///
+/// [GNU] unary-type-trait:
+/// '__has_nothrow_assign'
+/// '__has_nothrow_copy'
+/// '__has_nothrow_constructor'
+/// '__has_trivial_assign' [TODO]
+/// '__has_trivial_copy' [TODO]
+/// '__has_trivial_constructor'
+/// '__has_trivial_destructor'
+/// '__has_virtual_destructor'
+/// '__is_abstract' [TODO]
+/// '__is_class'
+/// '__is_empty' [TODO]
+/// '__is_enum'
+/// '__is_final'
+/// '__is_pod'
+/// '__is_polymorphic'
+/// '__is_sealed' [MS]
+/// '__is_trivial'
+/// '__is_union'
+///
+/// [Clang] unary-type-trait:
+/// '__trivially_copyable'
+///
+/// binary-type-trait:
+/// [GNU] '__is_base_of'
+/// [MS] '__is_convertible_to'
+/// '__is_convertible'
+/// '__is_same'
+///
+/// [Embarcadero] array-type-trait:
+/// '__array_rank'
+/// '__array_extent'
+///
+/// [Embarcadero] expression-trait:
+/// '__is_lvalue_expr'
+/// '__is_rvalue_expr'
+/// \endverbatim
+///
+ExprResult Parser::ParseCastExpression(bool isUnaryExpression,
+ bool isAddressOfOperand,
+ bool &NotCastExpr,
+ TypeCastState isTypeCast) {
+ ExprResult Res;
+ tok::TokenKind SavedKind = Tok.getKind();
+ NotCastExpr = false;
+
+ // This handles all of cast-expression, unary-expression, postfix-expression,
+ // and primary-expression. We handle them together like this for efficiency
+ // and to simplify handling of an expression starting with a '(' token: which
+ // may be one of a parenthesized expression, cast-expression, compound literal
+ // expression, or statement expression.
+ //
+ // If the parsed tokens consist of a primary-expression, the cases below
+ // break out of the switch; at the end we call ParsePostfixExpressionSuffix
+ // to handle the postfix expression suffixes. Cases that cannot be followed
+ // by postfix exprs should return without invoking
+ // ParsePostfixExpressionSuffix.
+ switch (SavedKind) {
+ case tok::l_paren: {
+ // If this expression is limited to being a unary-expression, the parent can
+ // not start a cast expression.
+ ParenParseOption ParenExprType =
+ (isUnaryExpression && !getLangOpts().CPlusPlus) ? CompoundLiteral
+ : CastExpr;
+ ParsedType CastTy;
+ SourceLocation RParenLoc;
+ Res = ParseParenExpression(ParenExprType, false/*stopIfCastExr*/,
+ isTypeCast == IsTypeCast, CastTy, RParenLoc);
+
+ switch (ParenExprType) {
+ case SimpleExpr: break; // Nothing else to do.
+ case CompoundStmt: break; // Nothing else to do.
+ case CompoundLiteral:
+ // We parsed '(' type-name ')' '{' ... '}'. If any suffixes of
+ // postfix-expression exist, parse them now.
+ break;
+ case CastExpr:
+ // We have parsed the cast-expression and no postfix-expr pieces are
+ // following.
+ return Res;
+ }
+
+ break;
+ }
+
+ // primary-expression
+ case tok::numeric_constant:
+ // constant: integer-constant
+ // constant: floating-constant
+
+ Res = Actions.ActOnNumericConstant(Tok, /*UDLScope*/getCurScope());
+ ConsumeToken();
+ break;
+
+ case tok::kw_true:
+ case tok::kw_false:
+ return ParseCXXBoolLiteral();
+
+ case tok::kw___objc_yes:
+ case tok::kw___objc_no:
+ return ParseObjCBoolLiteral();
+
+ case tok::kw_nullptr:
+ Diag(Tok, diag::warn_cxx98_compat_nullptr);
+ return Actions.ActOnCXXNullPtrLiteral(ConsumeToken());
+
+ case tok::annot_primary_expr:
+ assert(Res.get() == nullptr && "Stray primary-expression annotation?");
+ Res = getExprAnnotation(Tok);
+ ConsumeToken();
+ break;
+
+ case tok::kw___super:
+ case tok::kw_decltype:
+ // Annotate the token and tail recurse.
+ if (TryAnnotateTypeOrScopeToken())
+ return ExprError();
+ assert(Tok.isNot(tok::kw_decltype) && Tok.isNot(tok::kw___super));
+ return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
+
+ case tok::identifier: { // primary-expression: identifier
+ // unqualified-id: identifier
+ // constant: enumeration-constant
+ // Turn a potentially qualified name into a annot_typename or
+ // annot_cxxscope if it would be valid. This handles things like x::y, etc.
+ if (getLangOpts().CPlusPlus) {
+ // Avoid the unnecessary parse-time lookup in the common case
+ // where the syntax forbids a type.
+ const Token &Next = NextToken();
+
+ // If this identifier was reverted from a token ID, and the next token
+ // is a parenthesis, this is likely to be a use of a type trait. Check
+ // those tokens.
+ if (Next.is(tok::l_paren) &&
+ Tok.is(tok::identifier) &&
+ Tok.getIdentifierInfo()->hasRevertedTokenIDToIdentifier()) {
+ IdentifierInfo *II = Tok.getIdentifierInfo();
+ // Build up the mapping of revertible type traits, for future use.
+ if (RevertibleTypeTraits.empty()) {
+#define RTT_JOIN(X,Y) X##Y
+#define REVERTIBLE_TYPE_TRAIT(Name) \
+ RevertibleTypeTraits[PP.getIdentifierInfo(#Name)] \
+ = RTT_JOIN(tok::kw_,Name)
+
+ REVERTIBLE_TYPE_TRAIT(__is_abstract);
+ REVERTIBLE_TYPE_TRAIT(__is_arithmetic);
+ REVERTIBLE_TYPE_TRAIT(__is_array);
+ REVERTIBLE_TYPE_TRAIT(__is_base_of);
+ REVERTIBLE_TYPE_TRAIT(__is_class);
+ REVERTIBLE_TYPE_TRAIT(__is_complete_type);
+ REVERTIBLE_TYPE_TRAIT(__is_compound);
+ REVERTIBLE_TYPE_TRAIT(__is_const);
+ REVERTIBLE_TYPE_TRAIT(__is_constructible);
+ REVERTIBLE_TYPE_TRAIT(__is_convertible);
+ REVERTIBLE_TYPE_TRAIT(__is_convertible_to);
+ REVERTIBLE_TYPE_TRAIT(__is_destructible);
+ REVERTIBLE_TYPE_TRAIT(__is_empty);
+ REVERTIBLE_TYPE_TRAIT(__is_enum);
+ REVERTIBLE_TYPE_TRAIT(__is_floating_point);
+ REVERTIBLE_TYPE_TRAIT(__is_final);
+ REVERTIBLE_TYPE_TRAIT(__is_function);
+ REVERTIBLE_TYPE_TRAIT(__is_fundamental);
+ REVERTIBLE_TYPE_TRAIT(__is_integral);
+ REVERTIBLE_TYPE_TRAIT(__is_interface_class);
+ REVERTIBLE_TYPE_TRAIT(__is_literal);
+ REVERTIBLE_TYPE_TRAIT(__is_lvalue_expr);
+ REVERTIBLE_TYPE_TRAIT(__is_lvalue_reference);
+ REVERTIBLE_TYPE_TRAIT(__is_member_function_pointer);
+ REVERTIBLE_TYPE_TRAIT(__is_member_object_pointer);
+ REVERTIBLE_TYPE_TRAIT(__is_member_pointer);
+ REVERTIBLE_TYPE_TRAIT(__is_nothrow_assignable);
+ REVERTIBLE_TYPE_TRAIT(__is_nothrow_constructible);
+ REVERTIBLE_TYPE_TRAIT(__is_nothrow_destructible);
+ REVERTIBLE_TYPE_TRAIT(__is_object);
+ REVERTIBLE_TYPE_TRAIT(__is_pod);
+ REVERTIBLE_TYPE_TRAIT(__is_pointer);
+ REVERTIBLE_TYPE_TRAIT(__is_polymorphic);
+ REVERTIBLE_TYPE_TRAIT(__is_reference);
+ REVERTIBLE_TYPE_TRAIT(__is_rvalue_expr);
+ REVERTIBLE_TYPE_TRAIT(__is_rvalue_reference);
+ REVERTIBLE_TYPE_TRAIT(__is_same);
+ REVERTIBLE_TYPE_TRAIT(__is_scalar);
+ REVERTIBLE_TYPE_TRAIT(__is_sealed);
+ REVERTIBLE_TYPE_TRAIT(__is_signed);
+ REVERTIBLE_TYPE_TRAIT(__is_standard_layout);
+ REVERTIBLE_TYPE_TRAIT(__is_trivial);
+ REVERTIBLE_TYPE_TRAIT(__is_trivially_assignable);
+ REVERTIBLE_TYPE_TRAIT(__is_trivially_constructible);
+ REVERTIBLE_TYPE_TRAIT(__is_trivially_copyable);
+ REVERTIBLE_TYPE_TRAIT(__is_union);
+ REVERTIBLE_TYPE_TRAIT(__is_unsigned);
+ REVERTIBLE_TYPE_TRAIT(__is_void);
+ REVERTIBLE_TYPE_TRAIT(__is_volatile);
+#undef REVERTIBLE_TYPE_TRAIT
+#undef RTT_JOIN
+ }
+
+ // If we find that this is in fact the name of a type trait,
+ // update the token kind in place and parse again to treat it as
+ // the appropriate kind of type trait.
+ llvm::SmallDenseMap<IdentifierInfo *, tok::TokenKind>::iterator Known
+ = RevertibleTypeTraits.find(II);
+ if (Known != RevertibleTypeTraits.end()) {
+ Tok.setKind(Known->second);
+ return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
+ NotCastExpr, isTypeCast);
+ }
+ }
+
+ if (Next.is(tok::coloncolon) ||
+ (!ColonIsSacred && Next.is(tok::colon)) ||
+ Next.is(tok::less) ||
+ Next.is(tok::l_paren) ||
+ Next.is(tok::l_brace)) {
+ // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
+ if (TryAnnotateTypeOrScopeToken())
+ return ExprError();
+ if (!Tok.is(tok::identifier))
+ return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
+ }
+ }
+
+ // Consume the identifier so that we can see if it is followed by a '(' or
+ // '.'.
+ IdentifierInfo &II = *Tok.getIdentifierInfo();
+ SourceLocation ILoc = ConsumeToken();
+
+ // Support 'Class.property' and 'super.property' notation.
+ if (getLangOpts().ObjC1 && Tok.is(tok::period) &&
+ (Actions.getTypeName(II, ILoc, getCurScope()) ||
+ // Allow the base to be 'super' if in an objc-method.
+ (&II == Ident_super && getCurScope()->isInObjcMethodScope()))) {
+ ConsumeToken();
+
+ // Allow either an identifier or the keyword 'class' (in C++).
+ if (Tok.isNot(tok::identifier) &&
+ !(getLangOpts().CPlusPlus && Tok.is(tok::kw_class))) {
+ Diag(Tok, diag::err_expected_property_name);
+ return ExprError();
+ }
+ IdentifierInfo &PropertyName = *Tok.getIdentifierInfo();
+ SourceLocation PropertyLoc = ConsumeToken();
+
+ Res = Actions.ActOnClassPropertyRefExpr(II, PropertyName,
+ ILoc, PropertyLoc);
+ break;
+ }
+
+ // In an Objective-C method, if we have "super" followed by an identifier,
+ // the token sequence is ill-formed. However, if there's a ':' or ']' after
+ // that identifier, this is probably a message send with a missing open
+ // bracket. Treat it as such.
+ if (getLangOpts().ObjC1 && &II == Ident_super && !InMessageExpression &&
+ getCurScope()->isInObjcMethodScope() &&
+ ((Tok.is(tok::identifier) &&
+ (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) ||
+ Tok.is(tok::code_completion))) {
+ Res = ParseObjCMessageExpressionBody(SourceLocation(), ILoc, ParsedType(),
+ nullptr);
+ break;
+ }
+
+ // If we have an Objective-C class name followed by an identifier
+ // and either ':' or ']', this is an Objective-C class message
+ // send that's missing the opening '['. Recovery
+ // appropriately. Also take this path if we're performing code
+ // completion after an Objective-C class name.
+ if (getLangOpts().ObjC1 &&
+ ((Tok.is(tok::identifier) && !InMessageExpression) ||
+ Tok.is(tok::code_completion))) {
+ const Token& Next = NextToken();
+ if (Tok.is(tok::code_completion) ||
+ Next.is(tok::colon) || Next.is(tok::r_square))
+ if (ParsedType Typ = Actions.getTypeName(II, ILoc, getCurScope()))
+ if (Typ.get()->isObjCObjectOrInterfaceType()) {
+ // Fake up a Declarator to use with ActOnTypeName.
+ DeclSpec DS(AttrFactory);
+ DS.SetRangeStart(ILoc);
+ DS.SetRangeEnd(ILoc);
+ const char *PrevSpec = nullptr;
+ unsigned DiagID;
+ DS.SetTypeSpecType(TST_typename, ILoc, PrevSpec, DiagID, Typ,
+ Actions.getASTContext().getPrintingPolicy());
+
+ Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
+ TypeResult Ty = Actions.ActOnTypeName(getCurScope(),
+ DeclaratorInfo);
+ if (Ty.isInvalid())
+ break;
+
+ Res = ParseObjCMessageExpressionBody(SourceLocation(),
+ SourceLocation(),
+ Ty.get(), nullptr);
+ break;
+ }
+ }
+
+ // Make sure to pass down the right value for isAddressOfOperand.
+ if (isAddressOfOperand && isPostfixExpressionSuffixStart())
+ isAddressOfOperand = false;
+
+ // Function designators are allowed to be undeclared (C99 6.5.1p2), so we
+ // need to know whether or not this identifier is a function designator or
+ // not.
+ UnqualifiedId Name;
+ CXXScopeSpec ScopeSpec;
+ SourceLocation TemplateKWLoc;
+ Token Replacement;
+ auto Validator = llvm::make_unique<CastExpressionIdValidator>(
+ Tok, isTypeCast != NotTypeCast, isTypeCast != IsTypeCast);
+ Validator->IsAddressOfOperand = isAddressOfOperand;
+ if (Tok.is(tok::periodstar) || Tok.is(tok::arrowstar)) {
+ Validator->WantExpressionKeywords = false;
+ Validator->WantRemainingKeywords = false;
+ } else {
+ Validator->WantRemainingKeywords = Tok.isNot(tok::r_paren);
+ }
+ Name.setIdentifier(&II, ILoc);
+ Res = Actions.ActOnIdExpression(
+ getCurScope(), ScopeSpec, TemplateKWLoc, Name, Tok.is(tok::l_paren),
+ isAddressOfOperand, std::move(Validator),
+ /*IsInlineAsmIdentifier=*/false,
+ Tok.is(tok::r_paren) ? nullptr : &Replacement);
+ if (!Res.isInvalid() && !Res.get()) {
+ UnconsumeToken(Replacement);
+ return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
+ NotCastExpr, isTypeCast);
+ }
+ break;
+ }
+ case tok::char_constant: // constant: character-constant
+ case tok::wide_char_constant:
+ case tok::utf8_char_constant:
+ case tok::utf16_char_constant:
+ case tok::utf32_char_constant:
+ Res = Actions.ActOnCharacterConstant(Tok, /*UDLScope*/getCurScope());
+ ConsumeToken();
+ break;
+ case tok::kw___func__: // primary-expression: __func__ [C99 6.4.2.2]
+ case tok::kw___FUNCTION__: // primary-expression: __FUNCTION__ [GNU]
+ case tok::kw___FUNCDNAME__: // primary-expression: __FUNCDNAME__ [MS]
+ case tok::kw___FUNCSIG__: // primary-expression: __FUNCSIG__ [MS]
+ case tok::kw_L__FUNCTION__: // primary-expression: L__FUNCTION__ [MS]
+ case tok::kw___PRETTY_FUNCTION__: // primary-expression: __P..Y_F..N__ [GNU]
+ Res = Actions.ActOnPredefinedExpr(Tok.getLocation(), SavedKind);
+ ConsumeToken();
+ break;
+ case tok::string_literal: // primary-expression: string-literal
+ case tok::wide_string_literal:
+ case tok::utf8_string_literal:
+ case tok::utf16_string_literal:
+ case tok::utf32_string_literal:
+ Res = ParseStringLiteralExpression(true);
+ break;
+ case tok::kw__Generic: // primary-expression: generic-selection [C11 6.5.1]
+ Res = ParseGenericSelectionExpression();
+ break;
+ case tok::kw___builtin_va_arg:
+ case tok::kw___builtin_offsetof:
+ case tok::kw___builtin_choose_expr:
+ case tok::kw___builtin_astype: // primary-expression: [OCL] as_type()
+ case tok::kw___builtin_convertvector:
+ return ParseBuiltinPrimaryExpression();
+ case tok::kw___null:
+ return Actions.ActOnGNUNullExpr(ConsumeToken());
+
+ case tok::plusplus: // unary-expression: '++' unary-expression [C99]
+ case tok::minusminus: { // unary-expression: '--' unary-expression [C99]
+ // C++ [expr.unary] has:
+ // unary-expression:
+ // ++ cast-expression
+ // -- cast-expression
+ SourceLocation SavedLoc = ConsumeToken();
+ // One special case is implicitly handled here: if the preceding tokens are
+ // an ambiguous cast expression, such as "(T())++", then we recurse to
+ // determine whether the '++' is prefix or postfix.
+ Res = ParseCastExpression(!getLangOpts().CPlusPlus,
+ /*isAddressOfOperand*/false, NotCastExpr,
+ NotTypeCast);
+ if (!Res.isInvalid())
+ Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
+ return Res;
+ }
+ case tok::amp: { // unary-expression: '&' cast-expression
+ // Special treatment because of member pointers
+ SourceLocation SavedLoc = ConsumeToken();
+ Res = ParseCastExpression(false, true);
+ if (!Res.isInvalid())
+ Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
+ return Res;
+ }
+
+ case tok::star: // unary-expression: '*' cast-expression
+ case tok::plus: // unary-expression: '+' cast-expression
+ case tok::minus: // unary-expression: '-' cast-expression
+ case tok::tilde: // unary-expression: '~' cast-expression
+ case tok::exclaim: // unary-expression: '!' cast-expression
+ case tok::kw___real: // unary-expression: '__real' cast-expression [GNU]
+ case tok::kw___imag: { // unary-expression: '__imag' cast-expression [GNU]
+ SourceLocation SavedLoc = ConsumeToken();
+ Res = ParseCastExpression(false);
+ if (!Res.isInvalid())
+ Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
+ return Res;
+ }
+
+ case tok::kw___extension__:{//unary-expression:'__extension__' cast-expr [GNU]
+ // __extension__ silences extension warnings in the subexpression.
+ ExtensionRAIIObject O(Diags); // Use RAII to do this.
+ SourceLocation SavedLoc = ConsumeToken();
+ Res = ParseCastExpression(false);
+ if (!Res.isInvalid())
+ Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
+ return Res;
+ }
+ case tok::kw__Alignof: // unary-expression: '_Alignof' '(' type-name ')'
+ if (!getLangOpts().C11)
+ Diag(Tok, diag::ext_c11_alignment) << Tok.getName();
+ // fallthrough
+ case tok::kw_alignof: // unary-expression: 'alignof' '(' type-id ')'
+ case tok::kw___alignof: // unary-expression: '__alignof' unary-expression
+ // unary-expression: '__alignof' '(' type-name ')'
+ case tok::kw_sizeof: // unary-expression: 'sizeof' unary-expression
+ // unary-expression: 'sizeof' '(' type-name ')'
+ case tok::kw_vec_step: // unary-expression: OpenCL 'vec_step' expression
+ return ParseUnaryExprOrTypeTraitExpression();
+ case tok::ampamp: { // unary-expression: '&&' identifier
+ SourceLocation AmpAmpLoc = ConsumeToken();
+ if (Tok.isNot(tok::identifier))
+ return ExprError(Diag(Tok, diag::err_expected) << tok::identifier);
+
+ if (getCurScope()->getFnParent() == nullptr)
+ return ExprError(Diag(Tok, diag::err_address_of_label_outside_fn));
+
+ Diag(AmpAmpLoc, diag::ext_gnu_address_of_label);
+ LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(),
+ Tok.getLocation());
+ Res = Actions.ActOnAddrLabel(AmpAmpLoc, Tok.getLocation(), LD);
+ ConsumeToken();
+ return Res;
+ }
+ case tok::kw_const_cast:
+ case tok::kw_dynamic_cast:
+ case tok::kw_reinterpret_cast:
+ case tok::kw_static_cast:
+ Res = ParseCXXCasts();
+ break;
+ case tok::kw_typeid:
+ Res = ParseCXXTypeid();
+ break;
+ case tok::kw___uuidof:
+ Res = ParseCXXUuidof();
+ break;
+ case tok::kw_this:
+ Res = ParseCXXThis();
+ break;
+
+ case tok::annot_typename:
+ if (isStartOfObjCClassMessageMissingOpenBracket()) {
+ ParsedType Type = getTypeAnnotation(Tok);
+
+ // Fake up a Declarator to use with ActOnTypeName.
+ DeclSpec DS(AttrFactory);
+ DS.SetRangeStart(Tok.getLocation());
+ DS.SetRangeEnd(Tok.getLastLoc());
+
+ const char *PrevSpec = nullptr;
+ unsigned DiagID;
+ DS.SetTypeSpecType(TST_typename, Tok.getAnnotationEndLoc(),
+ PrevSpec, DiagID, Type,
+ Actions.getASTContext().getPrintingPolicy());
+
+ Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
+ TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
+ if (Ty.isInvalid())
+ break;
+
+ ConsumeToken();
+ Res = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
+ Ty.get(), nullptr);
+ break;
+ }
+ // Fall through
+
+ case tok::annot_decltype:
+ case tok::kw_char:
+ case tok::kw_wchar_t:
+ case tok::kw_char16_t:
+ case tok::kw_char32_t:
+ case tok::kw_bool:
+ case tok::kw_short:
+ case tok::kw_int:
+ case tok::kw_long:
+ case tok::kw___int64:
+ case tok::kw___int128:
+ case tok::kw_signed:
+ case tok::kw_unsigned:
+ case tok::kw_half:
+ case tok::kw_float:
+ case tok::kw_double:
+ case tok::kw_void:
+ case tok::kw_typename:
+ case tok::kw_typeof:
+ case tok::kw___vector: {
+ if (!getLangOpts().CPlusPlus) {
+ Diag(Tok, diag::err_expected_expression);
+ return ExprError();
+ }
+
+ if (SavedKind == tok::kw_typename) {
+ // postfix-expression: typename-specifier '(' expression-list[opt] ')'
+ // typename-specifier braced-init-list
+ if (TryAnnotateTypeOrScopeToken())
+ return ExprError();
+
+ if (!Actions.isSimpleTypeSpecifier(Tok.getKind()))
+ // We are trying to parse a simple-type-specifier but might not get such
+ // a token after error recovery.
+ return ExprError();
+ }
+
+ // postfix-expression: simple-type-specifier '(' expression-list[opt] ')'
+ // simple-type-specifier braced-init-list
+ //
+ DeclSpec DS(AttrFactory);
+
+ ParseCXXSimpleTypeSpecifier(DS);
+ if (Tok.isNot(tok::l_paren) &&
+ (!getLangOpts().CPlusPlus11 || Tok.isNot(tok::l_brace)))
+ return ExprError(Diag(Tok, diag::err_expected_lparen_after_type)
+ << DS.getSourceRange());
+
+ if (Tok.is(tok::l_brace))
+ Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
+
+ Res = ParseCXXTypeConstructExpression(DS);
+ break;
+ }
+
+ case tok::annot_cxxscope: { // [C++] id-expression: qualified-id
+ // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
+ // (We can end up in this situation after tentative parsing.)
+ if (TryAnnotateTypeOrScopeToken())
+ return ExprError();
+ if (!Tok.is(tok::annot_cxxscope))
+ return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
+ NotCastExpr, isTypeCast);
+
+ Token Next = NextToken();
+ if (Next.is(tok::annot_template_id)) {
+ TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
+ if (TemplateId->Kind == TNK_Type_template) {
+ // We have a qualified template-id that we know refers to a
+ // type, translate it into a type and continue parsing as a
+ // cast expression.
+ CXXScopeSpec SS;
+ ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
+ /*EnteringContext=*/false);
+ AnnotateTemplateIdTokenAsType();
+ return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
+ NotCastExpr, isTypeCast);
+ }
+ }
+
+ // Parse as an id-expression.
+ Res = ParseCXXIdExpression(isAddressOfOperand);
+ break;
+ }
+
+ case tok::annot_template_id: { // [C++] template-id
+ TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
+ if (TemplateId->Kind == TNK_Type_template) {
+ // We have a template-id that we know refers to a type,
+ // translate it into a type and continue parsing as a cast
+ // expression.
+ AnnotateTemplateIdTokenAsType();
+ return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
+ NotCastExpr, isTypeCast);
+ }
+
+ // Fall through to treat the template-id as an id-expression.
+ }
+
+ case tok::kw_operator: // [C++] id-expression: operator/conversion-function-id
+ Res = ParseCXXIdExpression(isAddressOfOperand);
+ break;
+
+ case tok::coloncolon: {
+ // ::foo::bar -> global qualified name etc. If TryAnnotateTypeOrScopeToken
+ // annotates the token, tail recurse.
+ if (TryAnnotateTypeOrScopeToken())
+ return ExprError();
+ if (!Tok.is(tok::coloncolon))
+ return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
+
+ // ::new -> [C++] new-expression
+ // ::delete -> [C++] delete-expression
+ SourceLocation CCLoc = ConsumeToken();
+ if (Tok.is(tok::kw_new))
+ return ParseCXXNewExpression(true, CCLoc);
+ if (Tok.is(tok::kw_delete))
+ return ParseCXXDeleteExpression(true, CCLoc);
+
+ // This is not a type name or scope specifier, it is an invalid expression.
+ Diag(CCLoc, diag::err_expected_expression);
+ return ExprError();
+ }
+
+ case tok::kw_new: // [C++] new-expression
+ return ParseCXXNewExpression(false, Tok.getLocation());
+
+ case tok::kw_delete: // [C++] delete-expression
+ return ParseCXXDeleteExpression(false, Tok.getLocation());
+
+ case tok::kw_noexcept: { // [C++0x] 'noexcept' '(' expression ')'
+ Diag(Tok, diag::warn_cxx98_compat_noexcept_expr);
+ SourceLocation KeyLoc = ConsumeToken();
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+
+ if (T.expectAndConsume(diag::err_expected_lparen_after, "noexcept"))
+ return ExprError();
+ // C++11 [expr.unary.noexcept]p1:
+ // The noexcept operator determines whether the evaluation of its operand,
+ // which is an unevaluated operand, can throw an exception.
+ EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
+ ExprResult Result = ParseExpression();
+
+ T.consumeClose();
+
+ if (!Result.isInvalid())
+ Result = Actions.ActOnNoexceptExpr(KeyLoc, T.getOpenLocation(),
+ Result.get(), T.getCloseLocation());
+ return Result;
+ }
+
+#define TYPE_TRAIT(N,Spelling,K) \
+ case tok::kw_##Spelling:
+#include "clang/Basic/TokenKinds.def"
+ return ParseTypeTrait();
+
+ case tok::kw___array_rank:
+ case tok::kw___array_extent:
+ return ParseArrayTypeTrait();
+
+ case tok::kw___is_lvalue_expr:
+ case tok::kw___is_rvalue_expr:
+ return ParseExpressionTrait();
+
+ case tok::at: {
+ SourceLocation AtLoc = ConsumeToken();
+ return ParseObjCAtExpression(AtLoc);
+ }
+ case tok::caret:
+ Res = ParseBlockLiteralExpression();
+ break;
+ case tok::code_completion: {
+ Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
+ cutOffParsing();
+ return ExprError();
+ }
+ case tok::l_square:
+ if (getLangOpts().CPlusPlus11) {
+ if (getLangOpts().ObjC1) {
+ // C++11 lambda expressions and Objective-C message sends both start with a
+ // square bracket. There are three possibilities here:
+ // we have a valid lambda expression, we have an invalid lambda
+ // expression, or we have something that doesn't appear to be a lambda.
+ // If we're in the last case, we fall back to ParseObjCMessageExpression.
+ Res = TryParseLambdaExpression();
+ if (!Res.isInvalid() && !Res.get())
+ Res = ParseObjCMessageExpression();
+ break;
+ }
+ Res = ParseLambdaExpression();
+ break;
+ }
+ if (getLangOpts().ObjC1) {
+ Res = ParseObjCMessageExpression();
+ break;
+ }
+ // FALL THROUGH.
+ default:
+ NotCastExpr = true;
+ return ExprError();
+ }
+
+ // These can be followed by postfix-expr pieces.
+ return ParsePostfixExpressionSuffix(Res);
+}
+
+/// \brief Once the leading part of a postfix-expression is parsed, this
+/// method parses any suffixes that apply.
+///
+/// \verbatim
+/// postfix-expression: [C99 6.5.2]
+/// primary-expression
+/// postfix-expression '[' expression ']'
+/// postfix-expression '[' braced-init-list ']'
+/// postfix-expression '(' argument-expression-list[opt] ')'
+/// postfix-expression '.' identifier
+/// postfix-expression '->' identifier
+/// postfix-expression '++'
+/// postfix-expression '--'
+/// '(' type-name ')' '{' initializer-list '}'
+/// '(' type-name ')' '{' initializer-list ',' '}'
+///
+/// argument-expression-list: [C99 6.5.2]
+/// argument-expression ...[opt]
+/// argument-expression-list ',' assignment-expression ...[opt]
+/// \endverbatim
+ExprResult
+Parser::ParsePostfixExpressionSuffix(ExprResult LHS) {
+ // Now that the primary-expression piece of the postfix-expression has been
+ // parsed, see if there are any postfix-expression pieces here.
+ SourceLocation Loc;
+ while (1) {
+ switch (Tok.getKind()) {
+ case tok::code_completion:
+ if (InMessageExpression)
+ return LHS;
+
+ Actions.CodeCompletePostfixExpression(getCurScope(), LHS);
+ cutOffParsing();
+ return ExprError();
+
+ case tok::identifier:
+ // If we see identifier: after an expression, and we're not already in a
+ // message send, then this is probably a message send with a missing
+ // opening bracket '['.
+ if (getLangOpts().ObjC1 && !InMessageExpression &&
+ (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
+ LHS = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
+ ParsedType(), LHS.get());
+ break;
+ }
+
+ // Fall through; this isn't a message send.
+
+ default: // Not a postfix-expression suffix.
+ return LHS;
+ case tok::l_square: { // postfix-expression: p-e '[' expression ']'
+ // If we have a array postfix expression that starts on a new line and
+ // Objective-C is enabled, it is highly likely that the user forgot a
+ // semicolon after the base expression and that the array postfix-expr is
+ // actually another message send. In this case, do some look-ahead to see
+ // if the contents of the square brackets are obviously not a valid
+ // expression and recover by pretending there is no suffix.
+ if (getLangOpts().ObjC1 && Tok.isAtStartOfLine() &&
+ isSimpleObjCMessageExpression())
+ return LHS;
+
+ // Reject array indices starting with a lambda-expression. '[[' is
+ // reserved for attributes.
+ if (CheckProhibitedCXX11Attribute())
+ return ExprError();
+
+ BalancedDelimiterTracker T(*this, tok::l_square);
+ T.consumeOpen();
+ Loc = T.getOpenLocation();
+ ExprResult Idx;
+ if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
+ Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
+ Idx = ParseBraceInitializer();
+ } else
+ Idx = ParseExpression();
+
+ SourceLocation RLoc = Tok.getLocation();
+
+ if (!LHS.isInvalid() && !Idx.isInvalid() && Tok.is(tok::r_square)) {
+ LHS = Actions.ActOnArraySubscriptExpr(getCurScope(), LHS.get(), Loc,
+ Idx.get(), RLoc);
+ } else {
+ (void)Actions.CorrectDelayedTyposInExpr(LHS);
+ (void)Actions.CorrectDelayedTyposInExpr(Idx);
+ LHS = ExprError();
+ Idx = ExprError();
+ }
+
+ // Match the ']'.
+ T.consumeClose();
+ break;
+ }
+
+ case tok::l_paren: // p-e: p-e '(' argument-expression-list[opt] ')'
+ case tok::lesslessless: { // p-e: p-e '<<<' argument-expression-list '>>>'
+ // '(' argument-expression-list[opt] ')'
+ tok::TokenKind OpKind = Tok.getKind();
+ InMessageExpressionRAIIObject InMessage(*this, false);
+
+ Expr *ExecConfig = nullptr;
+
+ BalancedDelimiterTracker PT(*this, tok::l_paren);
+
+ if (OpKind == tok::lesslessless) {
+ ExprVector ExecConfigExprs;
+ CommaLocsTy ExecConfigCommaLocs;
+ SourceLocation OpenLoc = ConsumeToken();
+
+ if (ParseSimpleExpressionList(ExecConfigExprs, ExecConfigCommaLocs)) {
+ (void)Actions.CorrectDelayedTyposInExpr(LHS);
+ LHS = ExprError();
+ }
+
+ SourceLocation CloseLoc;
+ if (TryConsumeToken(tok::greatergreatergreater, CloseLoc)) {
+ } else if (LHS.isInvalid()) {
+ SkipUntil(tok::greatergreatergreater, StopAtSemi);
+ } else {
+ // There was an error closing the brackets
+ Diag(Tok, diag::err_expected) << tok::greatergreatergreater;
+ Diag(OpenLoc, diag::note_matching) << tok::lesslessless;
+ SkipUntil(tok::greatergreatergreater, StopAtSemi);
+ LHS = ExprError();
+ }
+
+ if (!LHS.isInvalid()) {
+ if (ExpectAndConsume(tok::l_paren))
+ LHS = ExprError();
+ else
+ Loc = PrevTokLocation;
+ }
+
+ if (!LHS.isInvalid()) {
+ ExprResult ECResult = Actions.ActOnCUDAExecConfigExpr(getCurScope(),
+ OpenLoc,
+ ExecConfigExprs,
+ CloseLoc);
+ if (ECResult.isInvalid())
+ LHS = ExprError();
+ else
+ ExecConfig = ECResult.get();
+ }
+ } else {
+ PT.consumeOpen();
+ Loc = PT.getOpenLocation();
+ }
+
+ ExprVector ArgExprs;
+ CommaLocsTy CommaLocs;
+
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteCall(getCurScope(), LHS.get(), None);
+ cutOffParsing();
+ return ExprError();
+ }
+
+ if (OpKind == tok::l_paren || !LHS.isInvalid()) {
+ if (Tok.isNot(tok::r_paren)) {
+ if (ParseExpressionList(ArgExprs, CommaLocs, [&] {
+ Actions.CodeCompleteCall(getCurScope(), LHS.get(), ArgExprs);
+ })) {
+ (void)Actions.CorrectDelayedTyposInExpr(LHS);
+ LHS = ExprError();
+ } else if (LHS.isInvalid()) {
+ for (auto &E : ArgExprs)
+ Actions.CorrectDelayedTyposInExpr(E);
+ }
+ }
+ }
+
+ // Match the ')'.
+ if (LHS.isInvalid()) {
+ SkipUntil(tok::r_paren, StopAtSemi);
+ } else if (Tok.isNot(tok::r_paren)) {
+ bool HadDelayedTypo = false;
+ if (Actions.CorrectDelayedTyposInExpr(LHS).get() != LHS.get())
+ HadDelayedTypo = true;
+ for (auto &E : ArgExprs)
+ if (Actions.CorrectDelayedTyposInExpr(E).get() != E)
+ HadDelayedTypo = true;
+ // If there were delayed typos in the LHS or ArgExprs, call SkipUntil
+ // instead of PT.consumeClose() to avoid emitting extra diagnostics for
+ // the unmatched l_paren.
+ if (HadDelayedTypo)
+ SkipUntil(tok::r_paren, StopAtSemi);
+ else
+ PT.consumeClose();
+ LHS = ExprError();
+ } else {
+ assert((ArgExprs.size() == 0 ||
+ ArgExprs.size()-1 == CommaLocs.size())&&
+ "Unexpected number of commas!");
+ LHS = Actions.ActOnCallExpr(getCurScope(), LHS.get(), Loc,
+ ArgExprs, Tok.getLocation(),
+ ExecConfig);
+ PT.consumeClose();
+ }
+
+ break;
+ }
+ case tok::arrow:
+ case tok::period: {
+ // postfix-expression: p-e '->' template[opt] id-expression
+ // postfix-expression: p-e '.' template[opt] id-expression
+ tok::TokenKind OpKind = Tok.getKind();
+ SourceLocation OpLoc = ConsumeToken(); // Eat the "." or "->" token.
+
+ CXXScopeSpec SS;
+ ParsedType ObjectType;
+ bool MayBePseudoDestructor = false;
+ if (getLangOpts().CPlusPlus && !LHS.isInvalid()) {
+ Expr *Base = LHS.get();
+ const Type* BaseType = Base->getType().getTypePtrOrNull();
+ if (BaseType && Tok.is(tok::l_paren) &&
+ (BaseType->isFunctionType() ||
+ BaseType->isSpecificPlaceholderType(BuiltinType::BoundMember))) {
+ Diag(OpLoc, diag::err_function_is_not_record)
+ << OpKind << Base->getSourceRange()
+ << FixItHint::CreateRemoval(OpLoc);
+ return ParsePostfixExpressionSuffix(Base);
+ }
+
+ LHS = Actions.ActOnStartCXXMemberReference(getCurScope(), Base,
+ OpLoc, OpKind, ObjectType,
+ MayBePseudoDestructor);
+ if (LHS.isInvalid())
+ break;
+
+ ParseOptionalCXXScopeSpecifier(SS, ObjectType,
+ /*EnteringContext=*/false,
+ &MayBePseudoDestructor);
+ if (SS.isNotEmpty())
+ ObjectType = ParsedType();
+ }
+
+ if (Tok.is(tok::code_completion)) {
+ // Code completion for a member access expression.
+ Actions.CodeCompleteMemberReferenceExpr(getCurScope(), LHS.get(),
+ OpLoc, OpKind == tok::arrow);
+
+ cutOffParsing();
+ return ExprError();
+ }
+
+ if (MayBePseudoDestructor && !LHS.isInvalid()) {
+ LHS = ParseCXXPseudoDestructor(LHS.get(), OpLoc, OpKind, SS,
+ ObjectType);
+ break;
+ }
+
+ // Either the action has told us that this cannot be a
+ // pseudo-destructor expression (based on the type of base
+ // expression), or we didn't see a '~' in the right place. We
+ // can still parse a destructor name here, but in that case it
+ // names a real destructor.
+ // Allow explicit constructor calls in Microsoft mode.
+ // FIXME: Add support for explicit call of template constructor.
+ SourceLocation TemplateKWLoc;
+ UnqualifiedId Name;
+ if (getLangOpts().ObjC2 && OpKind == tok::period &&
+ Tok.is(tok::kw_class)) {
+ // Objective-C++:
+ // After a '.' in a member access expression, treat the keyword
+ // 'class' as if it were an identifier.
+ //
+ // This hack allows property access to the 'class' method because it is
+ // such a common method name. For other C++ keywords that are
+ // Objective-C method names, one must use the message send syntax.
+ IdentifierInfo *Id = Tok.getIdentifierInfo();
+ SourceLocation Loc = ConsumeToken();
+ Name.setIdentifier(Id, Loc);
+ } else if (ParseUnqualifiedId(SS,
+ /*EnteringContext=*/false,
+ /*AllowDestructorName=*/true,
+ /*AllowConstructorName=*/
+ getLangOpts().MicrosoftExt,
+ ObjectType, TemplateKWLoc, Name)) {
+ (void)Actions.CorrectDelayedTyposInExpr(LHS);
+ LHS = ExprError();
+ }
+
+ if (!LHS.isInvalid())
+ LHS = Actions.ActOnMemberAccessExpr(getCurScope(), LHS.get(), OpLoc,
+ OpKind, SS, TemplateKWLoc, Name,
+ CurParsedObjCImpl ? CurParsedObjCImpl->Dcl
+ : nullptr);
+ break;
+ }
+ case tok::plusplus: // postfix-expression: postfix-expression '++'
+ case tok::minusminus: // postfix-expression: postfix-expression '--'
+ if (!LHS.isInvalid()) {
+ LHS = Actions.ActOnPostfixUnaryOp(getCurScope(), Tok.getLocation(),
+ Tok.getKind(), LHS.get());
+ }
+ ConsumeToken();
+ break;
+ }
+ }
+}
+
+/// ParseExprAfterUnaryExprOrTypeTrait - We parsed a typeof/sizeof/alignof/
+/// vec_step and we are at the start of an expression or a parenthesized
+/// type-id. OpTok is the operand token (typeof/sizeof/alignof). Returns the
+/// expression (isCastExpr == false) or the type (isCastExpr == true).
+///
+/// \verbatim
+/// unary-expression: [C99 6.5.3]
+/// 'sizeof' unary-expression
+/// 'sizeof' '(' type-name ')'
+/// [GNU] '__alignof' unary-expression
+/// [GNU] '__alignof' '(' type-name ')'
+/// [C11] '_Alignof' '(' type-name ')'
+/// [C++0x] 'alignof' '(' type-id ')'
+///
+/// [GNU] typeof-specifier:
+/// typeof ( expressions )
+/// typeof ( type-name )
+/// [GNU/C++] typeof unary-expression
+///
+/// [OpenCL 1.1 6.11.12] vec_step built-in function:
+/// vec_step ( expressions )
+/// vec_step ( type-name )
+/// \endverbatim
+ExprResult
+Parser::ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok,
+ bool &isCastExpr,
+ ParsedType &CastTy,
+ SourceRange &CastRange) {
+
+ assert((OpTok.is(tok::kw_typeof) || OpTok.is(tok::kw_sizeof) ||
+ OpTok.is(tok::kw___alignof) || OpTok.is(tok::kw_alignof) ||
+ OpTok.is(tok::kw__Alignof) || OpTok.is(tok::kw_vec_step)) &&
+ "Not a typeof/sizeof/alignof/vec_step expression!");
+
+ ExprResult Operand;
+
+ // If the operand doesn't start with an '(', it must be an expression.
+ if (Tok.isNot(tok::l_paren)) {
+ // If construct allows a form without parenthesis, user may forget to put
+ // pathenthesis around type name.
+ if (OpTok.is(tok::kw_sizeof) || OpTok.is(tok::kw___alignof) ||
+ OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw__Alignof)) {
+ if (isTypeIdUnambiguously()) {
+ DeclSpec DS(AttrFactory);
+ ParseSpecifierQualifierList(DS);
+ Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
+ ParseDeclarator(DeclaratorInfo);
+
+ SourceLocation LParenLoc = PP.getLocForEndOfToken(OpTok.getLocation());
+ SourceLocation RParenLoc = PP.getLocForEndOfToken(PrevTokLocation);
+ Diag(LParenLoc, diag::err_expected_parentheses_around_typename)
+ << OpTok.getName()
+ << FixItHint::CreateInsertion(LParenLoc, "(")
+ << FixItHint::CreateInsertion(RParenLoc, ")");
+ isCastExpr = true;
+ return ExprEmpty();
+ }
+ }
+
+ isCastExpr = false;
+ if (OpTok.is(tok::kw_typeof) && !getLangOpts().CPlusPlus) {
+ Diag(Tok, diag::err_expected_after) << OpTok.getIdentifierInfo()
+ << tok::l_paren;
+ return ExprError();
+ }
+
+ Operand = ParseCastExpression(true/*isUnaryExpression*/);
+ } else {
+ // If it starts with a '(', we know that it is either a parenthesized
+ // type-name, or it is a unary-expression that starts with a compound
+ // literal, or starts with a primary-expression that is a parenthesized
+ // expression.
+ ParenParseOption ExprType = CastExpr;
+ SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
+
+ Operand = ParseParenExpression(ExprType, true/*stopIfCastExpr*/,
+ false, CastTy, RParenLoc);
+ CastRange = SourceRange(LParenLoc, RParenLoc);
+
+ // If ParseParenExpression parsed a '(typename)' sequence only, then this is
+ // a type.
+ if (ExprType == CastExpr) {
+ isCastExpr = true;
+ return ExprEmpty();
+ }
+
+ if (getLangOpts().CPlusPlus || OpTok.isNot(tok::kw_typeof)) {
+ // GNU typeof in C requires the expression to be parenthesized. Not so for
+ // sizeof/alignof or in C++. Therefore, the parenthesized expression is
+ // the start of a unary-expression, but doesn't include any postfix
+ // pieces. Parse these now if present.
+ if (!Operand.isInvalid())
+ Operand = ParsePostfixExpressionSuffix(Operand.get());
+ }
+ }
+
+ // If we get here, the operand to the typeof/sizeof/alignof was an expresion.
+ isCastExpr = false;
+ return Operand;
+}
+
+
+/// \brief Parse a sizeof or alignof expression.
+///
+/// \verbatim
+/// unary-expression: [C99 6.5.3]
+/// 'sizeof' unary-expression
+/// 'sizeof' '(' type-name ')'
+/// [C++11] 'sizeof' '...' '(' identifier ')'
+/// [GNU] '__alignof' unary-expression
+/// [GNU] '__alignof' '(' type-name ')'
+/// [C11] '_Alignof' '(' type-name ')'
+/// [C++11] 'alignof' '(' type-id ')'
+/// \endverbatim
+ExprResult Parser::ParseUnaryExprOrTypeTraitExpression() {
+ assert((Tok.is(tok::kw_sizeof) || Tok.is(tok::kw___alignof) ||
+ Tok.is(tok::kw_alignof) || Tok.is(tok::kw__Alignof) ||
+ Tok.is(tok::kw_vec_step)) &&
+ "Not a sizeof/alignof/vec_step expression!");
+ Token OpTok = Tok;
+ ConsumeToken();
+
+ // [C++11] 'sizeof' '...' '(' identifier ')'
+ if (Tok.is(tok::ellipsis) && OpTok.is(tok::kw_sizeof)) {
+ SourceLocation EllipsisLoc = ConsumeToken();
+ SourceLocation LParenLoc, RParenLoc;
+ IdentifierInfo *Name = nullptr;
+ SourceLocation NameLoc;
+ if (Tok.is(tok::l_paren)) {
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ T.consumeOpen();
+ LParenLoc = T.getOpenLocation();
+ if (Tok.is(tok::identifier)) {
+ Name = Tok.getIdentifierInfo();
+ NameLoc = ConsumeToken();
+ T.consumeClose();
+ RParenLoc = T.getCloseLocation();
+ if (RParenLoc.isInvalid())
+ RParenLoc = PP.getLocForEndOfToken(NameLoc);
+ } else {
+ Diag(Tok, diag::err_expected_parameter_pack);
+ SkipUntil(tok::r_paren, StopAtSemi);
+ }
+ } else if (Tok.is(tok::identifier)) {
+ Name = Tok.getIdentifierInfo();
+ NameLoc = ConsumeToken();
+ LParenLoc = PP.getLocForEndOfToken(EllipsisLoc);
+ RParenLoc = PP.getLocForEndOfToken(NameLoc);
+ Diag(LParenLoc, diag::err_paren_sizeof_parameter_pack)
+ << Name
+ << FixItHint::CreateInsertion(LParenLoc, "(")
+ << FixItHint::CreateInsertion(RParenLoc, ")");
+ } else {
+ Diag(Tok, diag::err_sizeof_parameter_pack);
+ }
+
+ if (!Name)
+ return ExprError();
+
+ EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
+ Sema::ReuseLambdaContextDecl);
+
+ return Actions.ActOnSizeofParameterPackExpr(getCurScope(),
+ OpTok.getLocation(),
+ *Name, NameLoc,
+ RParenLoc);
+ }
+
+ if (OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw__Alignof))
+ Diag(OpTok, diag::warn_cxx98_compat_alignof);
+
+ EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
+ Sema::ReuseLambdaContextDecl);
+
+ bool isCastExpr;
+ ParsedType CastTy;
+ SourceRange CastRange;
+ ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok,
+ isCastExpr,
+ CastTy,
+ CastRange);
+
+ UnaryExprOrTypeTrait ExprKind = UETT_SizeOf;
+ if (OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw___alignof) ||
+ OpTok.is(tok::kw__Alignof))
+ ExprKind = UETT_AlignOf;
+ else if (OpTok.is(tok::kw_vec_step))
+ ExprKind = UETT_VecStep;
+
+ if (isCastExpr)
+ return Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
+ ExprKind,
+ /*isType=*/true,
+ CastTy.getAsOpaquePtr(),
+ CastRange);
+
+ if (OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw__Alignof))
+ Diag(OpTok, diag::ext_alignof_expr) << OpTok.getIdentifierInfo();
+
+ // If we get here, the operand to the sizeof/alignof was an expresion.
+ if (!Operand.isInvalid())
+ Operand = Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
+ ExprKind,
+ /*isType=*/false,
+ Operand.get(),
+ CastRange);
+ return Operand;
+}
+
+/// ParseBuiltinPrimaryExpression
+///
+/// \verbatim
+/// primary-expression: [C99 6.5.1]
+/// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
+/// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
+/// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
+/// assign-expr ')'
+/// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
+/// [OCL] '__builtin_astype' '(' assignment-expression ',' type-name ')'
+///
+/// [GNU] offsetof-member-designator:
+/// [GNU] identifier
+/// [GNU] offsetof-member-designator '.' identifier
+/// [GNU] offsetof-member-designator '[' expression ']'
+/// \endverbatim
+ExprResult Parser::ParseBuiltinPrimaryExpression() {
+ ExprResult Res;
+ const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
+
+ tok::TokenKind T = Tok.getKind();
+ SourceLocation StartLoc = ConsumeToken(); // Eat the builtin identifier.
+
+ // All of these start with an open paren.
+ if (Tok.isNot(tok::l_paren))
+ return ExprError(Diag(Tok, diag::err_expected_after) << BuiltinII
+ << tok::l_paren);
+
+ BalancedDelimiterTracker PT(*this, tok::l_paren);
+ PT.consumeOpen();
+
+ // TODO: Build AST.
+
+ switch (T) {
+ default: llvm_unreachable("Not a builtin primary expression!");
+ case tok::kw___builtin_va_arg: {
+ ExprResult Expr(ParseAssignmentExpression());
+
+ if (ExpectAndConsume(tok::comma)) {
+ SkipUntil(tok::r_paren, StopAtSemi);
+ Expr = ExprError();
+ }
+
+ TypeResult Ty = ParseTypeName();
+
+ if (Tok.isNot(tok::r_paren)) {
+ Diag(Tok, diag::err_expected) << tok::r_paren;
+ Expr = ExprError();
+ }
+
+ if (Expr.isInvalid() || Ty.isInvalid())
+ Res = ExprError();
+ else
+ Res = Actions.ActOnVAArg(StartLoc, Expr.get(), Ty.get(), ConsumeParen());
+ break;
+ }
+ case tok::kw___builtin_offsetof: {
+ SourceLocation TypeLoc = Tok.getLocation();
+ TypeResult Ty = ParseTypeName();
+ if (Ty.isInvalid()) {
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return ExprError();
+ }
+
+ if (ExpectAndConsume(tok::comma)) {
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return ExprError();
+ }
+
+ // We must have at least one identifier here.
+ if (Tok.isNot(tok::identifier)) {
+ Diag(Tok, diag::err_expected) << tok::identifier;
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return ExprError();
+ }
+
+ // Keep track of the various subcomponents we see.
+ SmallVector<Sema::OffsetOfComponent, 4> Comps;
+
+ Comps.push_back(Sema::OffsetOfComponent());
+ Comps.back().isBrackets = false;
+ Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
+ Comps.back().LocStart = Comps.back().LocEnd = ConsumeToken();
+
+ // FIXME: This loop leaks the index expressions on error.
+ while (1) {
+ if (Tok.is(tok::period)) {
+ // offsetof-member-designator: offsetof-member-designator '.' identifier
+ Comps.push_back(Sema::OffsetOfComponent());
+ Comps.back().isBrackets = false;
+ Comps.back().LocStart = ConsumeToken();
+
+ if (Tok.isNot(tok::identifier)) {
+ Diag(Tok, diag::err_expected) << tok::identifier;
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return ExprError();
+ }
+ Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
+ Comps.back().LocEnd = ConsumeToken();
+
+ } else if (Tok.is(tok::l_square)) {
+ if (CheckProhibitedCXX11Attribute())
+ return ExprError();
+
+ // offsetof-member-designator: offsetof-member-design '[' expression ']'
+ Comps.push_back(Sema::OffsetOfComponent());
+ Comps.back().isBrackets = true;
+ BalancedDelimiterTracker ST(*this, tok::l_square);
+ ST.consumeOpen();
+ Comps.back().LocStart = ST.getOpenLocation();
+ Res = ParseExpression();
+ if (Res.isInvalid()) {
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return Res;
+ }
+ Comps.back().U.E = Res.get();
+
+ ST.consumeClose();
+ Comps.back().LocEnd = ST.getCloseLocation();
+ } else {
+ if (Tok.isNot(tok::r_paren)) {
+ PT.consumeClose();
+ Res = ExprError();
+ } else if (Ty.isInvalid()) {
+ Res = ExprError();
+ } else {
+ PT.consumeClose();
+ Res = Actions.ActOnBuiltinOffsetOf(getCurScope(), StartLoc, TypeLoc,
+ Ty.get(), &Comps[0], Comps.size(),
+ PT.getCloseLocation());
+ }
+ break;
+ }
+ }
+ break;
+ }
+ case tok::kw___builtin_choose_expr: {
+ ExprResult Cond(ParseAssignmentExpression());
+ if (Cond.isInvalid()) {
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return Cond;
+ }
+ if (ExpectAndConsume(tok::comma)) {
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return ExprError();
+ }
+
+ ExprResult Expr1(ParseAssignmentExpression());
+ if (Expr1.isInvalid()) {
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return Expr1;
+ }
+ if (ExpectAndConsume(tok::comma)) {
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return ExprError();
+ }
+
+ ExprResult Expr2(ParseAssignmentExpression());
+ if (Expr2.isInvalid()) {
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return Expr2;
+ }
+ if (Tok.isNot(tok::r_paren)) {
+ Diag(Tok, diag::err_expected) << tok::r_paren;
+ return ExprError();
+ }
+ Res = Actions.ActOnChooseExpr(StartLoc, Cond.get(), Expr1.get(),
+ Expr2.get(), ConsumeParen());
+ break;
+ }
+ case tok::kw___builtin_astype: {
+ // The first argument is an expression to be converted, followed by a comma.
+ ExprResult Expr(ParseAssignmentExpression());
+ if (Expr.isInvalid()) {
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return ExprError();
+ }
+
+ if (ExpectAndConsume(tok::comma)) {
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return ExprError();
+ }
+
+ // Second argument is the type to bitcast to.
+ TypeResult DestTy = ParseTypeName();
+ if (DestTy.isInvalid())
+ return ExprError();
+
+ // Attempt to consume the r-paren.
+ if (Tok.isNot(tok::r_paren)) {
+ Diag(Tok, diag::err_expected) << tok::r_paren;
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return ExprError();
+ }
+
+ Res = Actions.ActOnAsTypeExpr(Expr.get(), DestTy.get(), StartLoc,
+ ConsumeParen());
+ break;
+ }
+ case tok::kw___builtin_convertvector: {
+ // The first argument is an expression to be converted, followed by a comma.
+ ExprResult Expr(ParseAssignmentExpression());
+ if (Expr.isInvalid()) {
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return ExprError();
+ }
+
+ if (ExpectAndConsume(tok::comma)) {
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return ExprError();
+ }
+
+ // Second argument is the type to bitcast to.
+ TypeResult DestTy = ParseTypeName();
+ if (DestTy.isInvalid())
+ return ExprError();
+
+ // Attempt to consume the r-paren.
+ if (Tok.isNot(tok::r_paren)) {
+ Diag(Tok, diag::err_expected) << tok::r_paren;
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return ExprError();
+ }
+
+ Res = Actions.ActOnConvertVectorExpr(Expr.get(), DestTy.get(), StartLoc,
+ ConsumeParen());
+ break;
+ }
+ }
+
+ if (Res.isInvalid())
+ return ExprError();
+
+ // These can be followed by postfix-expr pieces because they are
+ // primary-expressions.
+ return ParsePostfixExpressionSuffix(Res.get());
+}
+
+/// ParseParenExpression - This parses the unit that starts with a '(' token,
+/// based on what is allowed by ExprType. The actual thing parsed is returned
+/// in ExprType. If stopIfCastExpr is true, it will only return the parsed type,
+/// not the parsed cast-expression.
+///
+/// \verbatim
+/// primary-expression: [C99 6.5.1]
+/// '(' expression ')'
+/// [GNU] '(' compound-statement ')' (if !ParenExprOnly)
+/// postfix-expression: [C99 6.5.2]
+/// '(' type-name ')' '{' initializer-list '}'
+/// '(' type-name ')' '{' initializer-list ',' '}'
+/// cast-expression: [C99 6.5.4]
+/// '(' type-name ')' cast-expression
+/// [ARC] bridged-cast-expression
+/// [ARC] bridged-cast-expression:
+/// (__bridge type-name) cast-expression
+/// (__bridge_transfer type-name) cast-expression
+/// (__bridge_retained type-name) cast-expression
+/// fold-expression: [C++1z]
+/// '(' cast-expression fold-operator '...' ')'
+/// '(' '...' fold-operator cast-expression ')'
+/// '(' cast-expression fold-operator '...'
+/// fold-operator cast-expression ')'
+/// \endverbatim
+ExprResult
+Parser::ParseParenExpression(ParenParseOption &ExprType, bool stopIfCastExpr,
+ bool isTypeCast, ParsedType &CastTy,
+ SourceLocation &RParenLoc) {
+ assert(Tok.is(tok::l_paren) && "Not a paren expr!");
+ ColonProtectionRAIIObject ColonProtection(*this, false);
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ if (T.consumeOpen())
+ return ExprError();
+ SourceLocation OpenLoc = T.getOpenLocation();
+
+ ExprResult Result(true);
+ bool isAmbiguousTypeId;
+ CastTy = ParsedType();
+
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteOrdinaryName(getCurScope(),
+ ExprType >= CompoundLiteral? Sema::PCC_ParenthesizedExpression
+ : Sema::PCC_Expression);
+ cutOffParsing();
+ return ExprError();
+ }
+
+ // Diagnose use of bridge casts in non-arc mode.
+ bool BridgeCast = (getLangOpts().ObjC2 &&
+ (Tok.is(tok::kw___bridge) ||
+ Tok.is(tok::kw___bridge_transfer) ||
+ Tok.is(tok::kw___bridge_retained) ||
+ Tok.is(tok::kw___bridge_retain)));
+ if (BridgeCast && !getLangOpts().ObjCAutoRefCount) {
+ if (!TryConsumeToken(tok::kw___bridge)) {
+ StringRef BridgeCastName = Tok.getName();
+ SourceLocation BridgeKeywordLoc = ConsumeToken();
+ if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
+ Diag(BridgeKeywordLoc, diag::warn_arc_bridge_cast_nonarc)
+ << BridgeCastName
+ << FixItHint::CreateReplacement(BridgeKeywordLoc, "");
+ }
+ BridgeCast = false;
+ }
+
+ // None of these cases should fall through with an invalid Result
+ // unless they've already reported an error.
+ if (ExprType >= CompoundStmt && Tok.is(tok::l_brace)) {
+ Diag(Tok, diag::ext_gnu_statement_expr);
+
+ if (!getCurScope()->getFnParent() && !getCurScope()->getBlockParent()) {
+ Result = ExprError(Diag(OpenLoc, diag::err_stmtexpr_file_scope));
+ } else {
+ // Find the nearest non-record decl context. Variables declared in a
+ // statement expression behave as if they were declared in the enclosing
+ // function, block, or other code construct.
+ DeclContext *CodeDC = Actions.CurContext;
+ while (CodeDC->isRecord() || isa<EnumDecl>(CodeDC)) {
+ CodeDC = CodeDC->getParent();
+ assert(CodeDC && !CodeDC->isFileContext() &&
+ "statement expr not in code context");
+ }
+ Sema::ContextRAII SavedContext(Actions, CodeDC, /*NewThisContext=*/false);
+
+ Actions.ActOnStartStmtExpr();
+
+ StmtResult Stmt(ParseCompoundStatement(true));
+ ExprType = CompoundStmt;
+
+ // If the substmt parsed correctly, build the AST node.
+ if (!Stmt.isInvalid()) {
+ Result = Actions.ActOnStmtExpr(OpenLoc, Stmt.get(), Tok.getLocation());
+ } else {
+ Actions.ActOnStmtExprError();
+ }
+ }
+ } else if (ExprType >= CompoundLiteral && BridgeCast) {
+ tok::TokenKind tokenKind = Tok.getKind();
+ SourceLocation BridgeKeywordLoc = ConsumeToken();
+
+ // Parse an Objective-C ARC ownership cast expression.
+ ObjCBridgeCastKind Kind;
+ if (tokenKind == tok::kw___bridge)
+ Kind = OBC_Bridge;
+ else if (tokenKind == tok::kw___bridge_transfer)
+ Kind = OBC_BridgeTransfer;
+ else if (tokenKind == tok::kw___bridge_retained)
+ Kind = OBC_BridgeRetained;
+ else {
+ // As a hopefully temporary workaround, allow __bridge_retain as
+ // a synonym for __bridge_retained, but only in system headers.
+ assert(tokenKind == tok::kw___bridge_retain);
+ Kind = OBC_BridgeRetained;
+ if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
+ Diag(BridgeKeywordLoc, diag::err_arc_bridge_retain)
+ << FixItHint::CreateReplacement(BridgeKeywordLoc,
+ "__bridge_retained");
+ }
+
+ TypeResult Ty = ParseTypeName();
+ T.consumeClose();
+ ColonProtection.restore();
+ RParenLoc = T.getCloseLocation();
+ ExprResult SubExpr = ParseCastExpression(/*isUnaryExpression=*/false);
+
+ if (Ty.isInvalid() || SubExpr.isInvalid())
+ return ExprError();
+
+ return Actions.ActOnObjCBridgedCast(getCurScope(), OpenLoc, Kind,
+ BridgeKeywordLoc, Ty.get(),
+ RParenLoc, SubExpr.get());
+ } else if (ExprType >= CompoundLiteral &&
+ isTypeIdInParens(isAmbiguousTypeId)) {
+
+ // Otherwise, this is a compound literal expression or cast expression.
+
+ // In C++, if the type-id is ambiguous we disambiguate based on context.
+ // If stopIfCastExpr is true the context is a typeof/sizeof/alignof
+ // in which case we should treat it as type-id.
+ // if stopIfCastExpr is false, we need to determine the context past the
+ // parens, so we defer to ParseCXXAmbiguousParenExpression for that.
+ if (isAmbiguousTypeId && !stopIfCastExpr) {
+ ExprResult res = ParseCXXAmbiguousParenExpression(ExprType, CastTy, T,
+ ColonProtection);
+ RParenLoc = T.getCloseLocation();
+ return res;
+ }
+
+ // Parse the type declarator.
+ DeclSpec DS(AttrFactory);
+ ParseSpecifierQualifierList(DS);
+ Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
+ ParseDeclarator(DeclaratorInfo);
+
+ // If our type is followed by an identifier and either ':' or ']', then
+ // this is probably an Objective-C message send where the leading '[' is
+ // missing. Recover as if that were the case.
+ if (!DeclaratorInfo.isInvalidType() && Tok.is(tok::identifier) &&
+ !InMessageExpression && getLangOpts().ObjC1 &&
+ (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
+ TypeResult Ty;
+ {
+ InMessageExpressionRAIIObject InMessage(*this, false);
+ Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
+ }
+ Result = ParseObjCMessageExpressionBody(SourceLocation(),
+ SourceLocation(),
+ Ty.get(), nullptr);
+ } else {
+ // Match the ')'.
+ T.consumeClose();
+ ColonProtection.restore();
+ RParenLoc = T.getCloseLocation();
+ if (Tok.is(tok::l_brace)) {
+ ExprType = CompoundLiteral;
+ TypeResult Ty;
+ {
+ InMessageExpressionRAIIObject InMessage(*this, false);
+ Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
+ }
+ return ParseCompoundLiteralExpression(Ty.get(), OpenLoc, RParenLoc);
+ }
+
+ if (ExprType == CastExpr) {
+ // We parsed '(' type-name ')' and the thing after it wasn't a '{'.
+
+ if (DeclaratorInfo.isInvalidType())
+ return ExprError();
+
+ // Note that this doesn't parse the subsequent cast-expression, it just
+ // returns the parsed type to the callee.
+ if (stopIfCastExpr) {
+ TypeResult Ty;
+ {
+ InMessageExpressionRAIIObject InMessage(*this, false);
+ Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
+ }
+ CastTy = Ty.get();
+ return ExprResult();
+ }
+
+ // Reject the cast of super idiom in ObjC.
+ if (Tok.is(tok::identifier) && getLangOpts().ObjC1 &&
+ Tok.getIdentifierInfo() == Ident_super &&
+ getCurScope()->isInObjcMethodScope() &&
+ GetLookAheadToken(1).isNot(tok::period)) {
+ Diag(Tok.getLocation(), diag::err_illegal_super_cast)
+ << SourceRange(OpenLoc, RParenLoc);
+ return ExprError();
+ }
+
+ // Parse the cast-expression that follows it next.
+ // TODO: For cast expression with CastTy.
+ Result = ParseCastExpression(/*isUnaryExpression=*/false,
+ /*isAddressOfOperand=*/false,
+ /*isTypeCast=*/IsTypeCast);
+ if (!Result.isInvalid()) {
+ Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
+ DeclaratorInfo, CastTy,
+ RParenLoc, Result.get());
+ }
+ return Result;
+ }
+
+ Diag(Tok, diag::err_expected_lbrace_in_compound_literal);
+ return ExprError();
+ }
+ } else if (Tok.is(tok::ellipsis) &&
+ isFoldOperator(NextToken().getKind())) {
+ return ParseFoldExpression(ExprResult(), T);
+ } else if (isTypeCast) {
+ // Parse the expression-list.
+ InMessageExpressionRAIIObject InMessage(*this, false);
+
+ ExprVector ArgExprs;
+ CommaLocsTy CommaLocs;
+
+ if (!ParseSimpleExpressionList(ArgExprs, CommaLocs)) {
+ // FIXME: If we ever support comma expressions as operands to
+ // fold-expressions, we'll need to allow multiple ArgExprs here.
+ if (ArgExprs.size() == 1 && isFoldOperator(Tok.getKind()) &&
+ NextToken().is(tok::ellipsis))
+ return ParseFoldExpression(Result, T);
+
+ ExprType = SimpleExpr;
+ Result = Actions.ActOnParenListExpr(OpenLoc, Tok.getLocation(),
+ ArgExprs);
+ }
+ } else {
+ InMessageExpressionRAIIObject InMessage(*this, false);
+
+ Result = ParseExpression(MaybeTypeCast);
+ if (!getLangOpts().CPlusPlus && MaybeTypeCast && Result.isUsable()) {
+ // Correct typos in non-C++ code earlier so that implicit-cast-like
+ // expressions are parsed correctly.
+ Result = Actions.CorrectDelayedTyposInExpr(Result);
+ }
+ ExprType = SimpleExpr;
+
+ if (isFoldOperator(Tok.getKind()) && NextToken().is(tok::ellipsis))
+ return ParseFoldExpression(Result, T);
+
+ // Don't build a paren expression unless we actually match a ')'.
+ if (!Result.isInvalid() && Tok.is(tok::r_paren))
+ Result =
+ Actions.ActOnParenExpr(OpenLoc, Tok.getLocation(), Result.get());
+ }
+
+ // Match the ')'.
+ if (Result.isInvalid()) {
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return ExprError();
+ }
+
+ T.consumeClose();
+ RParenLoc = T.getCloseLocation();
+ return Result;
+}
+
+/// ParseCompoundLiteralExpression - We have parsed the parenthesized type-name
+/// and we are at the left brace.
+///
+/// \verbatim
+/// postfix-expression: [C99 6.5.2]
+/// '(' type-name ')' '{' initializer-list '}'
+/// '(' type-name ')' '{' initializer-list ',' '}'
+/// \endverbatim
+ExprResult
+Parser::ParseCompoundLiteralExpression(ParsedType Ty,
+ SourceLocation LParenLoc,
+ SourceLocation RParenLoc) {
+ assert(Tok.is(tok::l_brace) && "Not a compound literal!");
+ if (!getLangOpts().C99) // Compound literals don't exist in C90.
+ Diag(LParenLoc, diag::ext_c99_compound_literal);
+ ExprResult Result = ParseInitializer();
+ if (!Result.isInvalid() && Ty)
+ return Actions.ActOnCompoundLiteral(LParenLoc, Ty, RParenLoc, Result.get());
+ return Result;
+}
+
+/// ParseStringLiteralExpression - This handles the various token types that
+/// form string literals, and also handles string concatenation [C99 5.1.1.2,
+/// translation phase #6].
+///
+/// \verbatim
+/// primary-expression: [C99 6.5.1]
+/// string-literal
+/// \verbatim
+ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral) {
+ assert(isTokenStringLiteral() && "Not a string literal!");
+
+ // String concat. Note that keywords like __func__ and __FUNCTION__ are not
+ // considered to be strings for concatenation purposes.
+ SmallVector<Token, 4> StringToks;
+
+ do {
+ StringToks.push_back(Tok);
+ ConsumeStringToken();
+ } while (isTokenStringLiteral());
+
+ // Pass the set of string tokens, ready for concatenation, to the actions.
+ return Actions.ActOnStringLiteral(StringToks,
+ AllowUserDefinedLiteral ? getCurScope()
+ : nullptr);
+}
+
+/// ParseGenericSelectionExpression - Parse a C11 generic-selection
+/// [C11 6.5.1.1].
+///
+/// \verbatim
+/// generic-selection:
+/// _Generic ( assignment-expression , generic-assoc-list )
+/// generic-assoc-list:
+/// generic-association
+/// generic-assoc-list , generic-association
+/// generic-association:
+/// type-name : assignment-expression
+/// default : assignment-expression
+/// \endverbatim
+ExprResult Parser::ParseGenericSelectionExpression() {
+ assert(Tok.is(tok::kw__Generic) && "_Generic keyword expected");
+ SourceLocation KeyLoc = ConsumeToken();
+
+ if (!getLangOpts().C11)
+ Diag(KeyLoc, diag::ext_c11_generic_selection);
+
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ if (T.expectAndConsume())
+ return ExprError();
+
+ ExprResult ControllingExpr;
+ {
+ // C11 6.5.1.1p3 "The controlling expression of a generic selection is
+ // not evaluated."
+ EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
+ ControllingExpr =
+ Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
+ if (ControllingExpr.isInvalid()) {
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return ExprError();
+ }
+ }
+
+ if (ExpectAndConsume(tok::comma)) {
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return ExprError();
+ }
+
+ SourceLocation DefaultLoc;
+ TypeVector Types;
+ ExprVector Exprs;
+ do {
+ ParsedType Ty;
+ if (Tok.is(tok::kw_default)) {
+ // C11 6.5.1.1p2 "A generic selection shall have no more than one default
+ // generic association."
+ if (!DefaultLoc.isInvalid()) {
+ Diag(Tok, diag::err_duplicate_default_assoc);
+ Diag(DefaultLoc, diag::note_previous_default_assoc);
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return ExprError();
+ }
+ DefaultLoc = ConsumeToken();
+ Ty = ParsedType();
+ } else {
+ ColonProtectionRAIIObject X(*this);
+ TypeResult TR = ParseTypeName();
+ if (TR.isInvalid()) {
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return ExprError();
+ }
+ Ty = TR.get();
+ }
+ Types.push_back(Ty);
+
+ if (ExpectAndConsume(tok::colon)) {
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return ExprError();
+ }
+
+ // FIXME: These expressions should be parsed in a potentially potentially
+ // evaluated context.
+ ExprResult ER(
+ Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
+ if (ER.isInvalid()) {
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return ExprError();
+ }
+ Exprs.push_back(ER.get());
+ } while (TryConsumeToken(tok::comma));
+
+ T.consumeClose();
+ if (T.getCloseLocation().isInvalid())
+ return ExprError();
+
+ return Actions.ActOnGenericSelectionExpr(KeyLoc, DefaultLoc,
+ T.getCloseLocation(),
+ ControllingExpr.get(),
+ Types, Exprs);
+}
+
+/// \brief Parse A C++1z fold-expression after the opening paren and optional
+/// left-hand-side expression.
+///
+/// \verbatim
+/// fold-expression:
+/// ( cast-expression fold-operator ... )
+/// ( ... fold-operator cast-expression )
+/// ( cast-expression fold-operator ... fold-operator cast-expression )
+ExprResult Parser::ParseFoldExpression(ExprResult LHS,
+ BalancedDelimiterTracker &T) {
+ if (LHS.isInvalid()) {
+ T.skipToEnd();
+ return true;
+ }
+
+ tok::TokenKind Kind = tok::unknown;
+ SourceLocation FirstOpLoc;
+ if (LHS.isUsable()) {
+ Kind = Tok.getKind();
+ assert(isFoldOperator(Kind) && "missing fold-operator");
+ FirstOpLoc = ConsumeToken();
+ }
+
+ assert(Tok.is(tok::ellipsis) && "not a fold-expression");
+ SourceLocation EllipsisLoc = ConsumeToken();
+
+ ExprResult RHS;
+ if (Tok.isNot(tok::r_paren)) {
+ if (!isFoldOperator(Tok.getKind()))
+ return Diag(Tok.getLocation(), diag::err_expected_fold_operator);
+
+ if (Kind != tok::unknown && Tok.getKind() != Kind)
+ Diag(Tok.getLocation(), diag::err_fold_operator_mismatch)
+ << SourceRange(FirstOpLoc);
+ Kind = Tok.getKind();
+ ConsumeToken();
+
+ RHS = ParseExpression();
+ if (RHS.isInvalid()) {
+ T.skipToEnd();
+ return true;
+ }
+ }
+
+ Diag(EllipsisLoc, getLangOpts().CPlusPlus1z
+ ? diag::warn_cxx14_compat_fold_expression
+ : diag::ext_fold_expression);
+
+ T.consumeClose();
+ return Actions.ActOnCXXFoldExpr(T.getOpenLocation(), LHS.get(), Kind,
+ EllipsisLoc, RHS.get(), T.getCloseLocation());
+}
+
+/// ParseExpressionList - Used for C/C++ (argument-)expression-list.
+///
+/// \verbatim
+/// argument-expression-list:
+/// assignment-expression
+/// argument-expression-list , assignment-expression
+///
+/// [C++] expression-list:
+/// [C++] assignment-expression
+/// [C++] expression-list , assignment-expression
+///
+/// [C++0x] expression-list:
+/// [C++0x] initializer-list
+///
+/// [C++0x] initializer-list
+/// [C++0x] initializer-clause ...[opt]
+/// [C++0x] initializer-list , initializer-clause ...[opt]
+///
+/// [C++0x] initializer-clause:
+/// [C++0x] assignment-expression
+/// [C++0x] braced-init-list
+/// \endverbatim
+bool Parser::ParseExpressionList(SmallVectorImpl<Expr *> &Exprs,
+ SmallVectorImpl<SourceLocation> &CommaLocs,
+ std::function<void()> Completer) {
+ bool SawError = false;
+ while (1) {
+ if (Tok.is(tok::code_completion)) {
+ if (Completer)
+ Completer();
+ else
+ Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
+ cutOffParsing();
+ return true;
+ }
+
+ ExprResult Expr;
+ if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
+ Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
+ Expr = ParseBraceInitializer();
+ } else
+ Expr = ParseAssignmentExpression();
+
+ if (Tok.is(tok::ellipsis))
+ Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken());
+ if (Expr.isInvalid()) {
+ SkipUntil(tok::comma, tok::r_paren, StopBeforeMatch);
+ SawError = true;
+ } else {
+ Exprs.push_back(Expr.get());
+ }
+
+ if (Tok.isNot(tok::comma))
+ break;
+ // Move to the next argument, remember where the comma was.
+ CommaLocs.push_back(ConsumeToken());
+ }
+ if (SawError) {
+ // Ensure typos get diagnosed when errors were encountered while parsing the
+ // expression list.
+ for (auto &E : Exprs) {
+ ExprResult Expr = Actions.CorrectDelayedTyposInExpr(E);
+ if (Expr.isUsable()) E = Expr.get();
+ }
+ }
+ return SawError;
+}
+
+/// ParseSimpleExpressionList - A simple comma-separated list of expressions,
+/// used for misc language extensions.
+///
+/// \verbatim
+/// simple-expression-list:
+/// assignment-expression
+/// simple-expression-list , assignment-expression
+/// \endverbatim
+bool
+Parser::ParseSimpleExpressionList(SmallVectorImpl<Expr*> &Exprs,
+ SmallVectorImpl<SourceLocation> &CommaLocs) {
+ while (1) {
+ ExprResult Expr = ParseAssignmentExpression();
+ if (Expr.isInvalid())
+ return true;
+
+ Exprs.push_back(Expr.get());
+
+ if (Tok.isNot(tok::comma))
+ return false;
+
+ // Move to the next argument, remember where the comma was.
+ CommaLocs.push_back(ConsumeToken());
+ }
+}
+
+/// ParseBlockId - Parse a block-id, which roughly looks like int (int x).
+///
+/// \verbatim
+/// [clang] block-id:
+/// [clang] specifier-qualifier-list block-declarator
+/// \endverbatim
+void Parser::ParseBlockId(SourceLocation CaretLoc) {
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Type);
+ return cutOffParsing();
+ }
+
+ // Parse the specifier-qualifier-list piece.
+ DeclSpec DS(AttrFactory);
+ ParseSpecifierQualifierList(DS);
+
+ // Parse the block-declarator.
+ Declarator DeclaratorInfo(DS, Declarator::BlockLiteralContext);
+ ParseDeclarator(DeclaratorInfo);
+
+ // We do this for: ^ __attribute__((noreturn)) {, as DS has the attributes.
+ DeclaratorInfo.takeAttributes(DS.getAttributes(), SourceLocation());
+
+ MaybeParseGNUAttributes(DeclaratorInfo);
+
+ // Inform sema that we are starting a block.
+ Actions.ActOnBlockArguments(CaretLoc, DeclaratorInfo, getCurScope());
+}
+
+/// ParseBlockLiteralExpression - Parse a block literal, which roughly looks
+/// like ^(int x){ return x+1; }
+///
+/// \verbatim
+/// block-literal:
+/// [clang] '^' block-args[opt] compound-statement
+/// [clang] '^' block-id compound-statement
+/// [clang] block-args:
+/// [clang] '(' parameter-list ')'
+/// \endverbatim
+ExprResult Parser::ParseBlockLiteralExpression() {
+ assert(Tok.is(tok::caret) && "block literal starts with ^");
+ SourceLocation CaretLoc = ConsumeToken();
+
+ PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), CaretLoc,
+ "block literal parsing");
+
+ // Enter a scope to hold everything within the block. This includes the
+ // argument decls, decls within the compound expression, etc. This also
+ // allows determining whether a variable reference inside the block is
+ // within or outside of the block.
+ ParseScope BlockScope(this, Scope::BlockScope | Scope::FnScope |
+ Scope::DeclScope);
+
+ // Inform sema that we are starting a block.
+ Actions.ActOnBlockStart(CaretLoc, getCurScope());
+
+ // Parse the return type if present.
+ DeclSpec DS(AttrFactory);
+ Declarator ParamInfo(DS, Declarator::BlockLiteralContext);
+ // FIXME: Since the return type isn't actually parsed, it can't be used to
+ // fill ParamInfo with an initial valid range, so do it manually.
+ ParamInfo.SetSourceRange(SourceRange(Tok.getLocation(), Tok.getLocation()));
+
+ // If this block has arguments, parse them. There is no ambiguity here with
+ // the expression case, because the expression case requires a parameter list.
+ if (Tok.is(tok::l_paren)) {
+ ParseParenDeclarator(ParamInfo);
+ // Parse the pieces after the identifier as if we had "int(...)".
+ // SetIdentifier sets the source range end, but in this case we're past
+ // that location.
+ SourceLocation Tmp = ParamInfo.getSourceRange().getEnd();
+ ParamInfo.SetIdentifier(nullptr, CaretLoc);
+ ParamInfo.SetRangeEnd(Tmp);
+ if (ParamInfo.isInvalidType()) {
+ // If there was an error parsing the arguments, they may have
+ // tried to use ^(x+y) which requires an argument list. Just
+ // skip the whole block literal.
+ Actions.ActOnBlockError(CaretLoc, getCurScope());
+ return ExprError();
+ }
+
+ MaybeParseGNUAttributes(ParamInfo);
+
+ // Inform sema that we are starting a block.
+ Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
+ } else if (!Tok.is(tok::l_brace)) {
+ ParseBlockId(CaretLoc);
+ } else {
+ // Otherwise, pretend we saw (void).
+ ParsedAttributes attrs(AttrFactory);
+ SourceLocation NoLoc;
+ ParamInfo.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/true,
+ /*IsAmbiguous=*/false,
+ /*RParenLoc=*/NoLoc,
+ /*ArgInfo=*/nullptr,
+ /*NumArgs=*/0,
+ /*EllipsisLoc=*/NoLoc,
+ /*RParenLoc=*/NoLoc,
+ /*TypeQuals=*/0,
+ /*RefQualifierIsLvalueRef=*/true,
+ /*RefQualifierLoc=*/NoLoc,
+ /*ConstQualifierLoc=*/NoLoc,
+ /*VolatileQualifierLoc=*/NoLoc,
+ /*RestrictQualifierLoc=*/NoLoc,
+ /*MutableLoc=*/NoLoc,
+ EST_None,
+ /*ESpecLoc=*/NoLoc,
+ /*Exceptions=*/nullptr,
+ /*ExceptionRanges=*/nullptr,
+ /*NumExceptions=*/0,
+ /*NoexceptExpr=*/nullptr,
+ /*ExceptionSpecTokens=*/nullptr,
+ CaretLoc, CaretLoc,
+ ParamInfo),
+ attrs, CaretLoc);
+
+ MaybeParseGNUAttributes(ParamInfo);
+
+ // Inform sema that we are starting a block.
+ Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
+ }
+
+
+ ExprResult Result(true);
+ if (!Tok.is(tok::l_brace)) {
+ // Saw something like: ^expr
+ Diag(Tok, diag::err_expected_expression);
+ Actions.ActOnBlockError(CaretLoc, getCurScope());
+ return ExprError();
+ }
+
+ StmtResult Stmt(ParseCompoundStatementBody());
+ BlockScope.Exit();
+ if (!Stmt.isInvalid())
+ Result = Actions.ActOnBlockStmtExpr(CaretLoc, Stmt.get(), getCurScope());
+ else
+ Actions.ActOnBlockError(CaretLoc, getCurScope());
+ return Result;
+}
+
+/// ParseObjCBoolLiteral - This handles the objective-c Boolean literals.
+///
+/// '__objc_yes'
+/// '__objc_no'
+ExprResult Parser::ParseObjCBoolLiteral() {
+ tok::TokenKind Kind = Tok.getKind();
+ return Actions.ActOnObjCBoolLiteral(ConsumeToken(), Kind);
+}
diff --git a/contrib/llvm/tools/clang/lib/Parse/ParseExprCXX.cpp b/contrib/llvm/tools/clang/lib/Parse/ParseExprCXX.cpp
new file mode 100644
index 0000000..ed9f75d
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Parse/ParseExprCXX.cpp
@@ -0,0 +1,3144 @@
+//===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Expression parsing implementation for C++.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/AST/ASTContext.h"
+#include "RAIIObjectsForParser.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/Basic/PrettyStackTrace.h"
+#include "clang/Lex/LiteralSupport.h"
+#include "clang/Parse/ParseDiagnostic.h"
+#include "clang/Parse/Parser.h"
+#include "clang/Sema/DeclSpec.h"
+#include "clang/Sema/ParsedTemplate.h"
+#include "clang/Sema/Scope.h"
+#include "llvm/Support/ErrorHandling.h"
+
+
+using namespace clang;
+
+static int SelectDigraphErrorMessage(tok::TokenKind Kind) {
+ switch (Kind) {
+ // template name
+ case tok::unknown: return 0;
+ // casts
+ case tok::kw_const_cast: return 1;
+ case tok::kw_dynamic_cast: return 2;
+ case tok::kw_reinterpret_cast: return 3;
+ case tok::kw_static_cast: return 4;
+ default:
+ llvm_unreachable("Unknown type for digraph error message.");
+ }
+}
+
+// Are the two tokens adjacent in the same source file?
+bool Parser::areTokensAdjacent(const Token &First, const Token &Second) {
+ SourceManager &SM = PP.getSourceManager();
+ SourceLocation FirstLoc = SM.getSpellingLoc(First.getLocation());
+ SourceLocation FirstEnd = FirstLoc.getLocWithOffset(First.getLength());
+ return FirstEnd == SM.getSpellingLoc(Second.getLocation());
+}
+
+// Suggest fixit for "<::" after a cast.
+static void FixDigraph(Parser &P, Preprocessor &PP, Token &DigraphToken,
+ Token &ColonToken, tok::TokenKind Kind, bool AtDigraph) {
+ // Pull '<:' and ':' off token stream.
+ if (!AtDigraph)
+ PP.Lex(DigraphToken);
+ PP.Lex(ColonToken);
+
+ SourceRange Range;
+ Range.setBegin(DigraphToken.getLocation());
+ Range.setEnd(ColonToken.getLocation());
+ P.Diag(DigraphToken.getLocation(), diag::err_missing_whitespace_digraph)
+ << SelectDigraphErrorMessage(Kind)
+ << FixItHint::CreateReplacement(Range, "< ::");
+
+ // Update token information to reflect their change in token type.
+ ColonToken.setKind(tok::coloncolon);
+ ColonToken.setLocation(ColonToken.getLocation().getLocWithOffset(-1));
+ ColonToken.setLength(2);
+ DigraphToken.setKind(tok::less);
+ DigraphToken.setLength(1);
+
+ // Push new tokens back to token stream.
+ PP.EnterToken(ColonToken);
+ if (!AtDigraph)
+ PP.EnterToken(DigraphToken);
+}
+
+// Check for '<::' which should be '< ::' instead of '[:' when following
+// a template name.
+void Parser::CheckForTemplateAndDigraph(Token &Next, ParsedType ObjectType,
+ bool EnteringContext,
+ IdentifierInfo &II, CXXScopeSpec &SS) {
+ if (!Next.is(tok::l_square) || Next.getLength() != 2)
+ return;
+
+ Token SecondToken = GetLookAheadToken(2);
+ if (!SecondToken.is(tok::colon) || !areTokensAdjacent(Next, SecondToken))
+ return;
+
+ TemplateTy Template;
+ UnqualifiedId TemplateName;
+ TemplateName.setIdentifier(&II, Tok.getLocation());
+ bool MemberOfUnknownSpecialization;
+ if (!Actions.isTemplateName(getCurScope(), SS, /*hasTemplateKeyword=*/false,
+ TemplateName, ObjectType, EnteringContext,
+ Template, MemberOfUnknownSpecialization))
+ return;
+
+ FixDigraph(*this, PP, Next, SecondToken, tok::unknown,
+ /*AtDigraph*/false);
+}
+
+/// \brief Emits an error for a left parentheses after a double colon.
+///
+/// When a '(' is found after a '::', emit an error. Attempt to fix the token
+/// stream by removing the '(', and the matching ')' if found.
+void Parser::CheckForLParenAfterColonColon() {
+ if (!Tok.is(tok::l_paren))
+ return;
+
+ Token LParen = Tok;
+ Token NextTok = GetLookAheadToken(1);
+ Token StarTok = NextTok;
+ // Check for (identifier or (*identifier
+ Token IdentifierTok = StarTok.is(tok::star) ? GetLookAheadToken(2) : StarTok;
+ if (IdentifierTok.isNot(tok::identifier))
+ return;
+ // Eat the '('.
+ ConsumeParen();
+ Token RParen;
+ RParen.setLocation(SourceLocation());
+ // Do we have a ')' ?
+ NextTok = StarTok.is(tok::star) ? GetLookAheadToken(2) : GetLookAheadToken(1);
+ if (NextTok.is(tok::r_paren)) {
+ RParen = NextTok;
+ // Eat the '*' if it is present.
+ if (StarTok.is(tok::star))
+ ConsumeToken();
+ // Eat the identifier.
+ ConsumeToken();
+ // Add the identifier token back.
+ PP.EnterToken(IdentifierTok);
+ // Add the '*' back if it was present.
+ if (StarTok.is(tok::star))
+ PP.EnterToken(StarTok);
+ // Eat the ')'.
+ ConsumeParen();
+ }
+
+ Diag(LParen.getLocation(), diag::err_paren_after_colon_colon)
+ << FixItHint::CreateRemoval(LParen.getLocation())
+ << FixItHint::CreateRemoval(RParen.getLocation());
+}
+
+/// \brief Parse global scope or nested-name-specifier if present.
+///
+/// Parses a C++ global scope specifier ('::') or nested-name-specifier (which
+/// may be preceded by '::'). Note that this routine will not parse ::new or
+/// ::delete; it will just leave them in the token stream.
+///
+/// '::'[opt] nested-name-specifier
+/// '::'
+///
+/// nested-name-specifier:
+/// type-name '::'
+/// namespace-name '::'
+/// nested-name-specifier identifier '::'
+/// nested-name-specifier 'template'[opt] simple-template-id '::'
+///
+///
+/// \param SS the scope specifier that will be set to the parsed
+/// nested-name-specifier (or empty)
+///
+/// \param ObjectType if this nested-name-specifier is being parsed following
+/// the "." or "->" of a member access expression, this parameter provides the
+/// type of the object whose members are being accessed.
+///
+/// \param EnteringContext whether we will be entering into the context of
+/// the nested-name-specifier after parsing it.
+///
+/// \param MayBePseudoDestructor When non-NULL, points to a flag that
+/// indicates whether this nested-name-specifier may be part of a
+/// pseudo-destructor name. In this case, the flag will be set false
+/// if we don't actually end up parsing a destructor name. Moreorover,
+/// if we do end up determining that we are parsing a destructor name,
+/// the last component of the nested-name-specifier is not parsed as
+/// part of the scope specifier.
+///
+/// \param IsTypename If \c true, this nested-name-specifier is known to be
+/// part of a type name. This is used to improve error recovery.
+///
+/// \param LastII When non-NULL, points to an IdentifierInfo* that will be
+/// filled in with the leading identifier in the last component of the
+/// nested-name-specifier, if any.
+///
+/// \returns true if there was an error parsing a scope specifier
+bool Parser::ParseOptionalCXXScopeSpecifier(CXXScopeSpec &SS,
+ ParsedType ObjectType,
+ bool EnteringContext,
+ bool *MayBePseudoDestructor,
+ bool IsTypename,
+ IdentifierInfo **LastII) {
+ assert(getLangOpts().CPlusPlus &&
+ "Call sites of this function should be guarded by checking for C++");
+
+ if (Tok.is(tok::annot_cxxscope)) {
+ assert(!LastII && "want last identifier but have already annotated scope");
+ assert(!MayBePseudoDestructor && "unexpected annot_cxxscope");
+ Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
+ Tok.getAnnotationRange(),
+ SS);
+ ConsumeToken();
+ return false;
+ }
+
+ if (Tok.is(tok::annot_template_id)) {
+ // If the current token is an annotated template id, it may already have
+ // a scope specifier. Restore it.
+ TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
+ SS = TemplateId->SS;
+ }
+
+ // Has to happen before any "return false"s in this function.
+ bool CheckForDestructor = false;
+ if (MayBePseudoDestructor && *MayBePseudoDestructor) {
+ CheckForDestructor = true;
+ *MayBePseudoDestructor = false;
+ }
+
+ if (LastII)
+ *LastII = nullptr;
+
+ bool HasScopeSpecifier = false;
+
+ if (Tok.is(tok::coloncolon)) {
+ // ::new and ::delete aren't nested-name-specifiers.
+ tok::TokenKind NextKind = NextToken().getKind();
+ if (NextKind == tok::kw_new || NextKind == tok::kw_delete)
+ return false;
+
+ if (NextKind == tok::l_brace) {
+ // It is invalid to have :: {, consume the scope qualifier and pretend
+ // like we never saw it.
+ Diag(ConsumeToken(), diag::err_expected) << tok::identifier;
+ } else {
+ // '::' - Global scope qualifier.
+ if (Actions.ActOnCXXGlobalScopeSpecifier(ConsumeToken(), SS))
+ return true;
+
+ CheckForLParenAfterColonColon();
+
+ HasScopeSpecifier = true;
+ }
+ }
+
+ if (Tok.is(tok::kw___super)) {
+ SourceLocation SuperLoc = ConsumeToken();
+ if (!Tok.is(tok::coloncolon)) {
+ Diag(Tok.getLocation(), diag::err_expected_coloncolon_after_super);
+ return true;
+ }
+
+ return Actions.ActOnSuperScopeSpecifier(SuperLoc, ConsumeToken(), SS);
+ }
+
+ if (!HasScopeSpecifier &&
+ (Tok.is(tok::kw_decltype) || Tok.is(tok::annot_decltype))) {
+ DeclSpec DS(AttrFactory);
+ SourceLocation DeclLoc = Tok.getLocation();
+ SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
+
+ SourceLocation CCLoc;
+ if (!TryConsumeToken(tok::coloncolon, CCLoc)) {
+ AnnotateExistingDecltypeSpecifier(DS, DeclLoc, EndLoc);
+ return false;
+ }
+
+ if (Actions.ActOnCXXNestedNameSpecifierDecltype(SS, DS, CCLoc))
+ SS.SetInvalid(SourceRange(DeclLoc, CCLoc));
+
+ HasScopeSpecifier = true;
+ }
+
+ while (true) {
+ if (HasScopeSpecifier) {
+ // C++ [basic.lookup.classref]p5:
+ // If the qualified-id has the form
+ //
+ // ::class-name-or-namespace-name::...
+ //
+ // the class-name-or-namespace-name is looked up in global scope as a
+ // class-name or namespace-name.
+ //
+ // To implement this, we clear out the object type as soon as we've
+ // seen a leading '::' or part of a nested-name-specifier.
+ ObjectType = ParsedType();
+
+ if (Tok.is(tok::code_completion)) {
+ // Code completion for a nested-name-specifier, where the code
+ // code completion token follows the '::'.
+ Actions.CodeCompleteQualifiedId(getCurScope(), SS, EnteringContext);
+ // Include code completion token into the range of the scope otherwise
+ // when we try to annotate the scope tokens the dangling code completion
+ // token will cause assertion in
+ // Preprocessor::AnnotatePreviousCachedTokens.
+ SS.setEndLoc(Tok.getLocation());
+ cutOffParsing();
+ return true;
+ }
+ }
+
+ // nested-name-specifier:
+ // nested-name-specifier 'template'[opt] simple-template-id '::'
+
+ // Parse the optional 'template' keyword, then make sure we have
+ // 'identifier <' after it.
+ if (Tok.is(tok::kw_template)) {
+ // If we don't have a scope specifier or an object type, this isn't a
+ // nested-name-specifier, since they aren't allowed to start with
+ // 'template'.
+ if (!HasScopeSpecifier && !ObjectType)
+ break;
+
+ TentativeParsingAction TPA(*this);
+ SourceLocation TemplateKWLoc = ConsumeToken();
+
+ UnqualifiedId TemplateName;
+ if (Tok.is(tok::identifier)) {
+ // Consume the identifier.
+ TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
+ ConsumeToken();
+ } else if (Tok.is(tok::kw_operator)) {
+ // We don't need to actually parse the unqualified-id in this case,
+ // because a simple-template-id cannot start with 'operator', but
+ // go ahead and parse it anyway for consistency with the case where
+ // we already annotated the template-id.
+ if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType,
+ TemplateName)) {
+ TPA.Commit();
+ break;
+ }
+
+ if (TemplateName.getKind() != UnqualifiedId::IK_OperatorFunctionId &&
+ TemplateName.getKind() != UnqualifiedId::IK_LiteralOperatorId) {
+ Diag(TemplateName.getSourceRange().getBegin(),
+ diag::err_id_after_template_in_nested_name_spec)
+ << TemplateName.getSourceRange();
+ TPA.Commit();
+ break;
+ }
+ } else {
+ TPA.Revert();
+ break;
+ }
+
+ // If the next token is not '<', we have a qualified-id that refers
+ // to a template name, such as T::template apply, but is not a
+ // template-id.
+ if (Tok.isNot(tok::less)) {
+ TPA.Revert();
+ break;
+ }
+
+ // Commit to parsing the template-id.
+ TPA.Commit();
+ TemplateTy Template;
+ if (TemplateNameKind TNK
+ = Actions.ActOnDependentTemplateName(getCurScope(),
+ SS, TemplateKWLoc, TemplateName,
+ ObjectType, EnteringContext,
+ Template)) {
+ if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateKWLoc,
+ TemplateName, false))
+ return true;
+ } else
+ return true;
+
+ continue;
+ }
+
+ if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) {
+ // We have
+ //
+ // template-id '::'
+ //
+ // So we need to check whether the template-id is a simple-template-id of
+ // the right kind (it should name a type or be dependent), and then
+ // convert it into a type within the nested-name-specifier.
+ TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
+ if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
+ *MayBePseudoDestructor = true;
+ return false;
+ }
+
+ if (LastII)
+ *LastII = TemplateId->Name;
+
+ // Consume the template-id token.
+ ConsumeToken();
+
+ assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
+ SourceLocation CCLoc = ConsumeToken();
+
+ HasScopeSpecifier = true;
+
+ ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
+ TemplateId->NumArgs);
+
+ if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(),
+ SS,
+ TemplateId->TemplateKWLoc,
+ TemplateId->Template,
+ TemplateId->TemplateNameLoc,
+ TemplateId->LAngleLoc,
+ TemplateArgsPtr,
+ TemplateId->RAngleLoc,
+ CCLoc,
+ EnteringContext)) {
+ SourceLocation StartLoc
+ = SS.getBeginLoc().isValid()? SS.getBeginLoc()
+ : TemplateId->TemplateNameLoc;
+ SS.SetInvalid(SourceRange(StartLoc, CCLoc));
+ }
+
+ continue;
+ }
+
+ // The rest of the nested-name-specifier possibilities start with
+ // tok::identifier.
+ if (Tok.isNot(tok::identifier))
+ break;
+
+ IdentifierInfo &II = *Tok.getIdentifierInfo();
+
+ // nested-name-specifier:
+ // type-name '::'
+ // namespace-name '::'
+ // nested-name-specifier identifier '::'
+ Token Next = NextToken();
+
+ // If we get foo:bar, this is almost certainly a typo for foo::bar. Recover
+ // and emit a fixit hint for it.
+ if (Next.is(tok::colon) && !ColonIsSacred) {
+ if (Actions.IsInvalidUnlessNestedName(getCurScope(), SS, II,
+ Tok.getLocation(),
+ Next.getLocation(), ObjectType,
+ EnteringContext) &&
+ // If the token after the colon isn't an identifier, it's still an
+ // error, but they probably meant something else strange so don't
+ // recover like this.
+ PP.LookAhead(1).is(tok::identifier)) {
+ Diag(Next, diag::err_unexpected_colon_in_nested_name_spec)
+ << FixItHint::CreateReplacement(Next.getLocation(), "::");
+ // Recover as if the user wrote '::'.
+ Next.setKind(tok::coloncolon);
+ }
+ }
+
+ if (Next.is(tok::coloncolon) && GetLookAheadToken(2).is(tok::l_brace)) {
+ // It is invalid to have :: {, consume the scope qualifier and pretend
+ // like we never saw it.
+ Token Identifier = Tok; // Stash away the identifier.
+ ConsumeToken(); // Eat the identifier, current token is now '::'.
+ Diag(PP.getLocForEndOfToken(ConsumeToken()), diag::err_expected)
+ << tok::identifier;
+ UnconsumeToken(Identifier); // Stick the identifier back.
+ Next = NextToken(); // Point Next at the '{' token.
+ }
+
+ if (Next.is(tok::coloncolon)) {
+ if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde) &&
+ !Actions.isNonTypeNestedNameSpecifier(
+ getCurScope(), SS, Tok.getLocation(), II, ObjectType)) {
+ *MayBePseudoDestructor = true;
+ return false;
+ }
+
+ if (ColonIsSacred) {
+ const Token &Next2 = GetLookAheadToken(2);
+ if (Next2.is(tok::kw_private) || Next2.is(tok::kw_protected) ||
+ Next2.is(tok::kw_public) || Next2.is(tok::kw_virtual)) {
+ Diag(Next2, diag::err_unexpected_token_in_nested_name_spec)
+ << Next2.getName()
+ << FixItHint::CreateReplacement(Next.getLocation(), ":");
+ Token ColonColon;
+ PP.Lex(ColonColon);
+ ColonColon.setKind(tok::colon);
+ PP.EnterToken(ColonColon);
+ break;
+ }
+ }
+
+ if (LastII)
+ *LastII = &II;
+
+ // We have an identifier followed by a '::'. Lookup this name
+ // as the name in a nested-name-specifier.
+ Token Identifier = Tok;
+ SourceLocation IdLoc = ConsumeToken();
+ assert((Tok.is(tok::coloncolon) || Tok.is(tok::colon)) &&
+ "NextToken() not working properly!");
+ Token ColonColon = Tok;
+ SourceLocation CCLoc = ConsumeToken();
+
+ CheckForLParenAfterColonColon();
+
+ bool IsCorrectedToColon = false;
+ bool *CorrectionFlagPtr = ColonIsSacred ? &IsCorrectedToColon : nullptr;
+ if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(), II, IdLoc, CCLoc,
+ ObjectType, EnteringContext, SS,
+ false, CorrectionFlagPtr)) {
+ // Identifier is not recognized as a nested name, but we can have
+ // mistyped '::' instead of ':'.
+ if (CorrectionFlagPtr && IsCorrectedToColon) {
+ ColonColon.setKind(tok::colon);
+ PP.EnterToken(Tok);
+ PP.EnterToken(ColonColon);
+ Tok = Identifier;
+ break;
+ }
+ SS.SetInvalid(SourceRange(IdLoc, CCLoc));
+ }
+ HasScopeSpecifier = true;
+ continue;
+ }
+
+ CheckForTemplateAndDigraph(Next, ObjectType, EnteringContext, II, SS);
+
+ // nested-name-specifier:
+ // type-name '<'
+ if (Next.is(tok::less)) {
+ TemplateTy Template;
+ UnqualifiedId TemplateName;
+ TemplateName.setIdentifier(&II, Tok.getLocation());
+ bool MemberOfUnknownSpecialization;
+ if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS,
+ /*hasTemplateKeyword=*/false,
+ TemplateName,
+ ObjectType,
+ EnteringContext,
+ Template,
+ MemberOfUnknownSpecialization)) {
+ // We have found a template name, so annotate this token
+ // with a template-id annotation. We do not permit the
+ // template-id to be translated into a type annotation,
+ // because some clients (e.g., the parsing of class template
+ // specializations) still want to see the original template-id
+ // token.
+ ConsumeToken();
+ if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
+ TemplateName, false))
+ return true;
+ continue;
+ }
+
+ if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) &&
+ (IsTypename || IsTemplateArgumentList(1))) {
+ // We have something like t::getAs<T>, where getAs is a
+ // member of an unknown specialization. However, this will only
+ // parse correctly as a template, so suggest the keyword 'template'
+ // before 'getAs' and treat this as a dependent template name.
+ unsigned DiagID = diag::err_missing_dependent_template_keyword;
+ if (getLangOpts().MicrosoftExt)
+ DiagID = diag::warn_missing_dependent_template_keyword;
+
+ Diag(Tok.getLocation(), DiagID)
+ << II.getName()
+ << FixItHint::CreateInsertion(Tok.getLocation(), "template ");
+
+ if (TemplateNameKind TNK
+ = Actions.ActOnDependentTemplateName(getCurScope(),
+ SS, SourceLocation(),
+ TemplateName, ObjectType,
+ EnteringContext, Template)) {
+ // Consume the identifier.
+ ConsumeToken();
+ if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
+ TemplateName, false))
+ return true;
+ }
+ else
+ return true;
+
+ continue;
+ }
+ }
+
+ // We don't have any tokens that form the beginning of a
+ // nested-name-specifier, so we're done.
+ break;
+ }
+
+ // Even if we didn't see any pieces of a nested-name-specifier, we
+ // still check whether there is a tilde in this position, which
+ // indicates a potential pseudo-destructor.
+ if (CheckForDestructor && Tok.is(tok::tilde))
+ *MayBePseudoDestructor = true;
+
+ return false;
+}
+
+ExprResult Parser::tryParseCXXIdExpression(CXXScopeSpec &SS, bool isAddressOfOperand,
+ Token &Replacement) {
+ SourceLocation TemplateKWLoc;
+ UnqualifiedId Name;
+ if (ParseUnqualifiedId(SS,
+ /*EnteringContext=*/false,
+ /*AllowDestructorName=*/false,
+ /*AllowConstructorName=*/false,
+ /*ObjectType=*/ParsedType(), TemplateKWLoc, Name))
+ return ExprError();
+
+ // This is only the direct operand of an & operator if it is not
+ // followed by a postfix-expression suffix.
+ if (isAddressOfOperand && isPostfixExpressionSuffixStart())
+ isAddressOfOperand = false;
+
+ return Actions.ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Name,
+ Tok.is(tok::l_paren), isAddressOfOperand,
+ nullptr, /*IsInlineAsmIdentifier=*/false,
+ &Replacement);
+}
+
+/// ParseCXXIdExpression - Handle id-expression.
+///
+/// id-expression:
+/// unqualified-id
+/// qualified-id
+///
+/// qualified-id:
+/// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
+/// '::' identifier
+/// '::' operator-function-id
+/// '::' template-id
+///
+/// NOTE: The standard specifies that, for qualified-id, the parser does not
+/// expect:
+///
+/// '::' conversion-function-id
+/// '::' '~' class-name
+///
+/// This may cause a slight inconsistency on diagnostics:
+///
+/// class C {};
+/// namespace A {}
+/// void f() {
+/// :: A :: ~ C(); // Some Sema error about using destructor with a
+/// // namespace.
+/// :: ~ C(); // Some Parser error like 'unexpected ~'.
+/// }
+///
+/// We simplify the parser a bit and make it work like:
+///
+/// qualified-id:
+/// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
+/// '::' unqualified-id
+///
+/// That way Sema can handle and report similar errors for namespaces and the
+/// global scope.
+///
+/// The isAddressOfOperand parameter indicates that this id-expression is a
+/// direct operand of the address-of operator. This is, besides member contexts,
+/// the only place where a qualified-id naming a non-static class member may
+/// appear.
+///
+ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) {
+ // qualified-id:
+ // '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
+ // '::' unqualified-id
+ //
+ CXXScopeSpec SS;
+ ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
+
+ Token Replacement;
+ ExprResult Result =
+ tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
+ if (Result.isUnset()) {
+ // If the ExprResult is valid but null, then typo correction suggested a
+ // keyword replacement that needs to be reparsed.
+ UnconsumeToken(Replacement);
+ Result = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
+ }
+ assert(!Result.isUnset() && "Typo correction suggested a keyword replacement "
+ "for a previous keyword suggestion");
+ return Result;
+}
+
+/// ParseLambdaExpression - Parse a C++11 lambda expression.
+///
+/// lambda-expression:
+/// lambda-introducer lambda-declarator[opt] compound-statement
+///
+/// lambda-introducer:
+/// '[' lambda-capture[opt] ']'
+///
+/// lambda-capture:
+/// capture-default
+/// capture-list
+/// capture-default ',' capture-list
+///
+/// capture-default:
+/// '&'
+/// '='
+///
+/// capture-list:
+/// capture
+/// capture-list ',' capture
+///
+/// capture:
+/// simple-capture
+/// init-capture [C++1y]
+///
+/// simple-capture:
+/// identifier
+/// '&' identifier
+/// 'this'
+///
+/// init-capture: [C++1y]
+/// identifier initializer
+/// '&' identifier initializer
+///
+/// lambda-declarator:
+/// '(' parameter-declaration-clause ')' attribute-specifier[opt]
+/// 'mutable'[opt] exception-specification[opt]
+/// trailing-return-type[opt]
+///
+ExprResult Parser::ParseLambdaExpression() {
+ // Parse lambda-introducer.
+ LambdaIntroducer Intro;
+ Optional<unsigned> DiagID = ParseLambdaIntroducer(Intro);
+ if (DiagID) {
+ Diag(Tok, DiagID.getValue());
+ SkipUntil(tok::r_square, StopAtSemi);
+ SkipUntil(tok::l_brace, StopAtSemi);
+ SkipUntil(tok::r_brace, StopAtSemi);
+ return ExprError();
+ }
+
+ return ParseLambdaExpressionAfterIntroducer(Intro);
+}
+
+/// TryParseLambdaExpression - Use lookahead and potentially tentative
+/// parsing to determine if we are looking at a C++0x lambda expression, and parse
+/// it if we are.
+///
+/// If we are not looking at a lambda expression, returns ExprError().
+ExprResult Parser::TryParseLambdaExpression() {
+ assert(getLangOpts().CPlusPlus11
+ && Tok.is(tok::l_square)
+ && "Not at the start of a possible lambda expression.");
+
+ const Token Next = NextToken(), After = GetLookAheadToken(2);
+
+ // If lookahead indicates this is a lambda...
+ if (Next.is(tok::r_square) || // []
+ Next.is(tok::equal) || // [=
+ (Next.is(tok::amp) && // [&] or [&,
+ (After.is(tok::r_square) ||
+ After.is(tok::comma))) ||
+ (Next.is(tok::identifier) && // [identifier]
+ After.is(tok::r_square))) {
+ return ParseLambdaExpression();
+ }
+
+ // If lookahead indicates an ObjC message send...
+ // [identifier identifier
+ if (Next.is(tok::identifier) && After.is(tok::identifier)) {
+ return ExprEmpty();
+ }
+
+ // Here, we're stuck: lambda introducers and Objective-C message sends are
+ // unambiguous, but it requires arbitrary lookhead. [a,b,c,d,e,f,g] is a
+ // lambda, and [a,b,c,d,e,f,g h] is a Objective-C message send. Instead of
+ // writing two routines to parse a lambda introducer, just try to parse
+ // a lambda introducer first, and fall back if that fails.
+ // (TryParseLambdaIntroducer never produces any diagnostic output.)
+ LambdaIntroducer Intro;
+ if (TryParseLambdaIntroducer(Intro))
+ return ExprEmpty();
+
+ return ParseLambdaExpressionAfterIntroducer(Intro);
+}
+
+/// \brief Parse a lambda introducer.
+/// \param Intro A LambdaIntroducer filled in with information about the
+/// contents of the lambda-introducer.
+/// \param SkippedInits If non-null, we are disambiguating between an Obj-C
+/// message send and a lambda expression. In this mode, we will
+/// sometimes skip the initializers for init-captures and not fully
+/// populate \p Intro. This flag will be set to \c true if we do so.
+/// \return A DiagnosticID if it hit something unexpected. The location for
+/// for the diagnostic is that of the current token.
+Optional<unsigned> Parser::ParseLambdaIntroducer(LambdaIntroducer &Intro,
+ bool *SkippedInits) {
+ typedef Optional<unsigned> DiagResult;
+
+ assert(Tok.is(tok::l_square) && "Lambda expressions begin with '['.");
+ BalancedDelimiterTracker T(*this, tok::l_square);
+ T.consumeOpen();
+
+ Intro.Range.setBegin(T.getOpenLocation());
+
+ bool first = true;
+
+ // Parse capture-default.
+ if (Tok.is(tok::amp) &&
+ (NextToken().is(tok::comma) || NextToken().is(tok::r_square))) {
+ Intro.Default = LCD_ByRef;
+ Intro.DefaultLoc = ConsumeToken();
+ first = false;
+ } else if (Tok.is(tok::equal)) {
+ Intro.Default = LCD_ByCopy;
+ Intro.DefaultLoc = ConsumeToken();
+ first = false;
+ }
+
+ while (Tok.isNot(tok::r_square)) {
+ if (!first) {
+ if (Tok.isNot(tok::comma)) {
+ // Provide a completion for a lambda introducer here. Except
+ // in Objective-C, where this is Almost Surely meant to be a message
+ // send. In that case, fail here and let the ObjC message
+ // expression parser perform the completion.
+ if (Tok.is(tok::code_completion) &&
+ !(getLangOpts().ObjC1 && Intro.Default == LCD_None &&
+ !Intro.Captures.empty())) {
+ Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
+ /*AfterAmpersand=*/false);
+ cutOffParsing();
+ break;
+ }
+
+ return DiagResult(diag::err_expected_comma_or_rsquare);
+ }
+ ConsumeToken();
+ }
+
+ if (Tok.is(tok::code_completion)) {
+ // If we're in Objective-C++ and we have a bare '[', then this is more
+ // likely to be a message receiver.
+ if (getLangOpts().ObjC1 && first)
+ Actions.CodeCompleteObjCMessageReceiver(getCurScope());
+ else
+ Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
+ /*AfterAmpersand=*/false);
+ cutOffParsing();
+ break;
+ }
+
+ first = false;
+
+ // Parse capture.
+ LambdaCaptureKind Kind = LCK_ByCopy;
+ SourceLocation Loc;
+ IdentifierInfo *Id = nullptr;
+ SourceLocation EllipsisLoc;
+ ExprResult Init;
+
+ if (Tok.is(tok::kw_this)) {
+ Kind = LCK_This;
+ Loc = ConsumeToken();
+ } else {
+ if (Tok.is(tok::amp)) {
+ Kind = LCK_ByRef;
+ ConsumeToken();
+
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
+ /*AfterAmpersand=*/true);
+ cutOffParsing();
+ break;
+ }
+ }
+
+ if (Tok.is(tok::identifier)) {
+ Id = Tok.getIdentifierInfo();
+ Loc = ConsumeToken();
+ } else if (Tok.is(tok::kw_this)) {
+ // FIXME: If we want to suggest a fixit here, will need to return more
+ // than just DiagnosticID. Perhaps full DiagnosticBuilder that can be
+ // Clear()ed to prevent emission in case of tentative parsing?
+ return DiagResult(diag::err_this_captured_by_reference);
+ } else {
+ return DiagResult(diag::err_expected_capture);
+ }
+
+ if (Tok.is(tok::l_paren)) {
+ BalancedDelimiterTracker Parens(*this, tok::l_paren);
+ Parens.consumeOpen();
+
+ ExprVector Exprs;
+ CommaLocsTy Commas;
+ if (SkippedInits) {
+ Parens.skipToEnd();
+ *SkippedInits = true;
+ } else if (ParseExpressionList(Exprs, Commas)) {
+ Parens.skipToEnd();
+ Init = ExprError();
+ } else {
+ Parens.consumeClose();
+ Init = Actions.ActOnParenListExpr(Parens.getOpenLocation(),
+ Parens.getCloseLocation(),
+ Exprs);
+ }
+ } else if (Tok.is(tok::l_brace) || Tok.is(tok::equal)) {
+ // Each lambda init-capture forms its own full expression, which clears
+ // Actions.MaybeODRUseExprs. So create an expression evaluation context
+ // to save the necessary state, and restore it later.
+ EnterExpressionEvaluationContext EC(Actions,
+ Sema::PotentiallyEvaluated);
+ bool HadEquals = TryConsumeToken(tok::equal);
+
+ if (!SkippedInits) {
+ // Warn on constructs that will change meaning when we implement N3922
+ if (!HadEquals && Tok.is(tok::l_brace)) {
+ Diag(Tok, diag::warn_init_capture_direct_list_init)
+ << FixItHint::CreateInsertion(Tok.getLocation(), "=");
+ }
+ Init = ParseInitializer();
+ } else if (Tok.is(tok::l_brace)) {
+ BalancedDelimiterTracker Braces(*this, tok::l_brace);
+ Braces.consumeOpen();
+ Braces.skipToEnd();
+ *SkippedInits = true;
+ } else {
+ // We're disambiguating this:
+ //
+ // [..., x = expr
+ //
+ // We need to find the end of the following expression in order to
+ // determine whether this is an Obj-C message send's receiver, a
+ // C99 designator, or a lambda init-capture.
+ //
+ // Parse the expression to find where it ends, and annotate it back
+ // onto the tokens. We would have parsed this expression the same way
+ // in either case: both the RHS of an init-capture and the RHS of an
+ // assignment expression are parsed as an initializer-clause, and in
+ // neither case can anything be added to the scope between the '[' and
+ // here.
+ //
+ // FIXME: This is horrible. Adding a mechanism to skip an expression
+ // would be much cleaner.
+ // FIXME: If there is a ',' before the next ']' or ':', we can skip to
+ // that instead. (And if we see a ':' with no matching '?', we can
+ // classify this as an Obj-C message send.)
+ SourceLocation StartLoc = Tok.getLocation();
+ InMessageExpressionRAIIObject MaybeInMessageExpression(*this, true);
+ Init = ParseInitializer();
+
+ if (Tok.getLocation() != StartLoc) {
+ // Back out the lexing of the token after the initializer.
+ PP.RevertCachedTokens(1);
+
+ // Replace the consumed tokens with an appropriate annotation.
+ Tok.setLocation(StartLoc);
+ Tok.setKind(tok::annot_primary_expr);
+ setExprAnnotation(Tok, Init);
+ Tok.setAnnotationEndLoc(PP.getLastCachedTokenLocation());
+ PP.AnnotateCachedTokens(Tok);
+
+ // Consume the annotated initializer.
+ ConsumeToken();
+ }
+ }
+ } else
+ TryConsumeToken(tok::ellipsis, EllipsisLoc);
+ }
+ // If this is an init capture, process the initialization expression
+ // right away. For lambda init-captures such as the following:
+ // const int x = 10;
+ // auto L = [i = x+1](int a) {
+ // return [j = x+2,
+ // &k = x](char b) { };
+ // };
+ // keep in mind that each lambda init-capture has to have:
+ // - its initialization expression executed in the context
+ // of the enclosing/parent decl-context.
+ // - but the variable itself has to be 'injected' into the
+ // decl-context of its lambda's call-operator (which has
+ // not yet been created).
+ // Each init-expression is a full-expression that has to get
+ // Sema-analyzed (for capturing etc.) before its lambda's
+ // call-operator's decl-context, scope & scopeinfo are pushed on their
+ // respective stacks. Thus if any variable is odr-used in the init-capture
+ // it will correctly get captured in the enclosing lambda, if one exists.
+ // The init-variables above are created later once the lambdascope and
+ // call-operators decl-context is pushed onto its respective stack.
+
+ // Since the lambda init-capture's initializer expression occurs in the
+ // context of the enclosing function or lambda, therefore we can not wait
+ // till a lambda scope has been pushed on before deciding whether the
+ // variable needs to be captured. We also need to process all
+ // lvalue-to-rvalue conversions and discarded-value conversions,
+ // so that we can avoid capturing certain constant variables.
+ // For e.g.,
+ // void test() {
+ // const int x = 10;
+ // auto L = [&z = x](char a) { <-- don't capture by the current lambda
+ // return [y = x](int i) { <-- don't capture by enclosing lambda
+ // return y;
+ // }
+ // };
+ // If x was not const, the second use would require 'L' to capture, and
+ // that would be an error.
+
+ ParsedType InitCaptureParsedType;
+ if (Init.isUsable()) {
+ // Get the pointer and store it in an lvalue, so we can use it as an
+ // out argument.
+ Expr *InitExpr = Init.get();
+ // This performs any lvalue-to-rvalue conversions if necessary, which
+ // can affect what gets captured in the containing decl-context.
+ QualType InitCaptureType = Actions.performLambdaInitCaptureInitialization(
+ Loc, Kind == LCK_ByRef, Id, InitExpr);
+ Init = InitExpr;
+ InitCaptureParsedType.set(InitCaptureType);
+ }
+ Intro.addCapture(Kind, Loc, Id, EllipsisLoc, Init, InitCaptureParsedType);
+ }
+
+ T.consumeClose();
+ Intro.Range.setEnd(T.getCloseLocation());
+ return DiagResult();
+}
+
+/// TryParseLambdaIntroducer - Tentatively parse a lambda introducer.
+///
+/// Returns true if it hit something unexpected.
+bool Parser::TryParseLambdaIntroducer(LambdaIntroducer &Intro) {
+ TentativeParsingAction PA(*this);
+
+ bool SkippedInits = false;
+ Optional<unsigned> DiagID(ParseLambdaIntroducer(Intro, &SkippedInits));
+
+ if (DiagID) {
+ PA.Revert();
+ return true;
+ }
+
+ if (SkippedInits) {
+ // Parse it again, but this time parse the init-captures too.
+ PA.Revert();
+ Intro = LambdaIntroducer();
+ DiagID = ParseLambdaIntroducer(Intro);
+ assert(!DiagID && "parsing lambda-introducer failed on reparse");
+ return false;
+ }
+
+ PA.Commit();
+ return false;
+}
+
+/// ParseLambdaExpressionAfterIntroducer - Parse the rest of a lambda
+/// expression.
+ExprResult Parser::ParseLambdaExpressionAfterIntroducer(
+ LambdaIntroducer &Intro) {
+ SourceLocation LambdaBeginLoc = Intro.Range.getBegin();
+ Diag(LambdaBeginLoc, diag::warn_cxx98_compat_lambda);
+
+ PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), LambdaBeginLoc,
+ "lambda expression parsing");
+
+
+
+ // FIXME: Call into Actions to add any init-capture declarations to the
+ // scope while parsing the lambda-declarator and compound-statement.
+
+ // Parse lambda-declarator[opt].
+ DeclSpec DS(AttrFactory);
+ Declarator D(DS, Declarator::LambdaExprContext);
+ TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth);
+ Actions.PushLambdaScope();
+
+ TypeResult TrailingReturnType;
+ if (Tok.is(tok::l_paren)) {
+ ParseScope PrototypeScope(this,
+ Scope::FunctionPrototypeScope |
+ Scope::FunctionDeclarationScope |
+ Scope::DeclScope);
+
+ SourceLocation DeclEndLoc;
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ T.consumeOpen();
+ SourceLocation LParenLoc = T.getOpenLocation();
+
+ // Parse parameter-declaration-clause.
+ ParsedAttributes Attr(AttrFactory);
+ SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
+ SourceLocation EllipsisLoc;
+
+ if (Tok.isNot(tok::r_paren)) {
+ Actions.RecordParsingTemplateParameterDepth(TemplateParameterDepth);
+ ParseParameterDeclarationClause(D, Attr, ParamInfo, EllipsisLoc);
+ // For a generic lambda, each 'auto' within the parameter declaration
+ // clause creates a template type parameter, so increment the depth.
+ if (Actions.getCurGenericLambda())
+ ++CurTemplateDepthTracker;
+ }
+ T.consumeClose();
+ SourceLocation RParenLoc = T.getCloseLocation();
+ DeclEndLoc = RParenLoc;
+
+ // GNU-style attributes must be parsed before the mutable specifier to be
+ // compatible with GCC.
+ MaybeParseGNUAttributes(Attr, &DeclEndLoc);
+
+ // MSVC-style attributes must be parsed before the mutable specifier to be
+ // compatible with MSVC.
+ MaybeParseMicrosoftDeclSpecs(Attr, &DeclEndLoc);
+
+ // Parse 'mutable'[opt].
+ SourceLocation MutableLoc;
+ if (TryConsumeToken(tok::kw_mutable, MutableLoc))
+ DeclEndLoc = MutableLoc;
+
+ // Parse exception-specification[opt].
+ ExceptionSpecificationType ESpecType = EST_None;
+ SourceRange ESpecRange;
+ SmallVector<ParsedType, 2> DynamicExceptions;
+ SmallVector<SourceRange, 2> DynamicExceptionRanges;
+ ExprResult NoexceptExpr;
+ CachedTokens *ExceptionSpecTokens;
+ ESpecType = tryParseExceptionSpecification(/*Delayed=*/false,
+ ESpecRange,
+ DynamicExceptions,
+ DynamicExceptionRanges,
+ NoexceptExpr,
+ ExceptionSpecTokens);
+
+ if (ESpecType != EST_None)
+ DeclEndLoc = ESpecRange.getEnd();
+
+ // Parse attribute-specifier[opt].
+ MaybeParseCXX11Attributes(Attr, &DeclEndLoc);
+
+ SourceLocation FunLocalRangeEnd = DeclEndLoc;
+
+ // Parse trailing-return-type[opt].
+ if (Tok.is(tok::arrow)) {
+ FunLocalRangeEnd = Tok.getLocation();
+ SourceRange Range;
+ TrailingReturnType = ParseTrailingReturnType(Range);
+ if (Range.getEnd().isValid())
+ DeclEndLoc = Range.getEnd();
+ }
+
+ PrototypeScope.Exit();
+
+ SourceLocation NoLoc;
+ D.AddTypeInfo(DeclaratorChunk::getFunction(/*hasProto=*/true,
+ /*isAmbiguous=*/false,
+ LParenLoc,
+ ParamInfo.data(), ParamInfo.size(),
+ EllipsisLoc, RParenLoc,
+ DS.getTypeQualifiers(),
+ /*RefQualifierIsLValueRef=*/true,
+ /*RefQualifierLoc=*/NoLoc,
+ /*ConstQualifierLoc=*/NoLoc,
+ /*VolatileQualifierLoc=*/NoLoc,
+ /*RestrictQualifierLoc=*/NoLoc,
+ MutableLoc,
+ ESpecType, ESpecRange.getBegin(),
+ DynamicExceptions.data(),
+ DynamicExceptionRanges.data(),
+ DynamicExceptions.size(),
+ NoexceptExpr.isUsable() ?
+ NoexceptExpr.get() : nullptr,
+ /*ExceptionSpecTokens*/nullptr,
+ LParenLoc, FunLocalRangeEnd, D,
+ TrailingReturnType),
+ Attr, DeclEndLoc);
+ } else if (Tok.is(tok::kw_mutable) || Tok.is(tok::arrow) ||
+ Tok.is(tok::kw___attribute) ||
+ (Tok.is(tok::l_square) && NextToken().is(tok::l_square))) {
+ // It's common to forget that one needs '()' before 'mutable', an attribute
+ // specifier, or the result type. Deal with this.
+ unsigned TokKind = 0;
+ switch (Tok.getKind()) {
+ case tok::kw_mutable: TokKind = 0; break;
+ case tok::arrow: TokKind = 1; break;
+ case tok::kw___attribute:
+ case tok::l_square: TokKind = 2; break;
+ default: llvm_unreachable("Unknown token kind");
+ }
+
+ Diag(Tok, diag::err_lambda_missing_parens)
+ << TokKind
+ << FixItHint::CreateInsertion(Tok.getLocation(), "() ");
+ SourceLocation DeclLoc = Tok.getLocation();
+ SourceLocation DeclEndLoc = DeclLoc;
+
+ // GNU-style attributes must be parsed before the mutable specifier to be
+ // compatible with GCC.
+ ParsedAttributes Attr(AttrFactory);
+ MaybeParseGNUAttributes(Attr, &DeclEndLoc);
+
+ // Parse 'mutable', if it's there.
+ SourceLocation MutableLoc;
+ if (Tok.is(tok::kw_mutable)) {
+ MutableLoc = ConsumeToken();
+ DeclEndLoc = MutableLoc;
+ }
+
+ // Parse attribute-specifier[opt].
+ MaybeParseCXX11Attributes(Attr, &DeclEndLoc);
+
+ // Parse the return type, if there is one.
+ if (Tok.is(tok::arrow)) {
+ SourceRange Range;
+ TrailingReturnType = ParseTrailingReturnType(Range);
+ if (Range.getEnd().isValid())
+ DeclEndLoc = Range.getEnd();
+ }
+
+ SourceLocation NoLoc;
+ D.AddTypeInfo(DeclaratorChunk::getFunction(/*hasProto=*/true,
+ /*isAmbiguous=*/false,
+ /*LParenLoc=*/NoLoc,
+ /*Params=*/nullptr,
+ /*NumParams=*/0,
+ /*EllipsisLoc=*/NoLoc,
+ /*RParenLoc=*/NoLoc,
+ /*TypeQuals=*/0,
+ /*RefQualifierIsLValueRef=*/true,
+ /*RefQualifierLoc=*/NoLoc,
+ /*ConstQualifierLoc=*/NoLoc,
+ /*VolatileQualifierLoc=*/NoLoc,
+ /*RestrictQualifierLoc=*/NoLoc,
+ MutableLoc,
+ EST_None,
+ /*ESpecLoc=*/NoLoc,
+ /*Exceptions=*/nullptr,
+ /*ExceptionRanges=*/nullptr,
+ /*NumExceptions=*/0,
+ /*NoexceptExpr=*/nullptr,
+ /*ExceptionSpecTokens=*/nullptr,
+ DeclLoc, DeclEndLoc, D,
+ TrailingReturnType),
+ Attr, DeclEndLoc);
+ }
+
+
+ // FIXME: Rename BlockScope -> ClosureScope if we decide to continue using
+ // it.
+ unsigned ScopeFlags = Scope::BlockScope | Scope::FnScope | Scope::DeclScope;
+ ParseScope BodyScope(this, ScopeFlags);
+
+ Actions.ActOnStartOfLambdaDefinition(Intro, D, getCurScope());
+
+ // Parse compound-statement.
+ if (!Tok.is(tok::l_brace)) {
+ Diag(Tok, diag::err_expected_lambda_body);
+ Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
+ return ExprError();
+ }
+
+ StmtResult Stmt(ParseCompoundStatementBody());
+ BodyScope.Exit();
+
+ if (!Stmt.isInvalid() && !TrailingReturnType.isInvalid())
+ return Actions.ActOnLambdaExpr(LambdaBeginLoc, Stmt.get(), getCurScope());
+
+ Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
+ return ExprError();
+}
+
+/// ParseCXXCasts - This handles the various ways to cast expressions to another
+/// type.
+///
+/// postfix-expression: [C++ 5.2p1]
+/// 'dynamic_cast' '<' type-name '>' '(' expression ')'
+/// 'static_cast' '<' type-name '>' '(' expression ')'
+/// 'reinterpret_cast' '<' type-name '>' '(' expression ')'
+/// 'const_cast' '<' type-name '>' '(' expression ')'
+///
+ExprResult Parser::ParseCXXCasts() {
+ tok::TokenKind Kind = Tok.getKind();
+ const char *CastName = nullptr; // For error messages
+
+ switch (Kind) {
+ default: llvm_unreachable("Unknown C++ cast!");
+ case tok::kw_const_cast: CastName = "const_cast"; break;
+ case tok::kw_dynamic_cast: CastName = "dynamic_cast"; break;
+ case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
+ case tok::kw_static_cast: CastName = "static_cast"; break;
+ }
+
+ SourceLocation OpLoc = ConsumeToken();
+ SourceLocation LAngleBracketLoc = Tok.getLocation();
+
+ // Check for "<::" which is parsed as "[:". If found, fix token stream,
+ // diagnose error, suggest fix, and recover parsing.
+ if (Tok.is(tok::l_square) && Tok.getLength() == 2) {
+ Token Next = NextToken();
+ if (Next.is(tok::colon) && areTokensAdjacent(Tok, Next))
+ FixDigraph(*this, PP, Tok, Next, Kind, /*AtDigraph*/true);
+ }
+
+ if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
+ return ExprError();
+
+ // Parse the common declaration-specifiers piece.
+ DeclSpec DS(AttrFactory);
+ ParseSpecifierQualifierList(DS);
+
+ // Parse the abstract-declarator, if present.
+ Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
+ ParseDeclarator(DeclaratorInfo);
+
+ SourceLocation RAngleBracketLoc = Tok.getLocation();
+
+ if (ExpectAndConsume(tok::greater))
+ return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << tok::less);
+
+ SourceLocation LParenLoc, RParenLoc;
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+
+ if (T.expectAndConsume(diag::err_expected_lparen_after, CastName))
+ return ExprError();
+
+ ExprResult Result = ParseExpression();
+
+ // Match the ')'.
+ T.consumeClose();
+
+ if (!Result.isInvalid() && !DeclaratorInfo.isInvalidType())
+ Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
+ LAngleBracketLoc, DeclaratorInfo,
+ RAngleBracketLoc,
+ T.getOpenLocation(), Result.get(),
+ T.getCloseLocation());
+
+ return Result;
+}
+
+/// ParseCXXTypeid - This handles the C++ typeid expression.
+///
+/// postfix-expression: [C++ 5.2p1]
+/// 'typeid' '(' expression ')'
+/// 'typeid' '(' type-id ')'
+///
+ExprResult Parser::ParseCXXTypeid() {
+ assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!");
+
+ SourceLocation OpLoc = ConsumeToken();
+ SourceLocation LParenLoc, RParenLoc;
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+
+ // typeid expressions are always parenthesized.
+ if (T.expectAndConsume(diag::err_expected_lparen_after, "typeid"))
+ return ExprError();
+ LParenLoc = T.getOpenLocation();
+
+ ExprResult Result;
+
+ // C++0x [expr.typeid]p3:
+ // When typeid is applied to an expression other than an lvalue of a
+ // polymorphic class type [...] The expression is an unevaluated
+ // operand (Clause 5).
+ //
+ // Note that we can't tell whether the expression is an lvalue of a
+ // polymorphic class type until after we've parsed the expression; we
+ // speculatively assume the subexpression is unevaluated, and fix it up
+ // later.
+ //
+ // We enter the unevaluated context before trying to determine whether we
+ // have a type-id, because the tentative parse logic will try to resolve
+ // names, and must treat them as unevaluated.
+ EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
+ Sema::ReuseLambdaContextDecl);
+
+ if (isTypeIdInParens()) {
+ TypeResult Ty = ParseTypeName();
+
+ // Match the ')'.
+ T.consumeClose();
+ RParenLoc = T.getCloseLocation();
+ if (Ty.isInvalid() || RParenLoc.isInvalid())
+ return ExprError();
+
+ Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
+ Ty.get().getAsOpaquePtr(), RParenLoc);
+ } else {
+ Result = ParseExpression();
+
+ // Match the ')'.
+ if (Result.isInvalid())
+ SkipUntil(tok::r_paren, StopAtSemi);
+ else {
+ T.consumeClose();
+ RParenLoc = T.getCloseLocation();
+ if (RParenLoc.isInvalid())
+ return ExprError();
+
+ Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
+ Result.get(), RParenLoc);
+ }
+ }
+
+ return Result;
+}
+
+/// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression.
+///
+/// '__uuidof' '(' expression ')'
+/// '__uuidof' '(' type-id ')'
+///
+ExprResult Parser::ParseCXXUuidof() {
+ assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!");
+
+ SourceLocation OpLoc = ConsumeToken();
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+
+ // __uuidof expressions are always parenthesized.
+ if (T.expectAndConsume(diag::err_expected_lparen_after, "__uuidof"))
+ return ExprError();
+
+ ExprResult Result;
+
+ if (isTypeIdInParens()) {
+ TypeResult Ty = ParseTypeName();
+
+ // Match the ')'.
+ T.consumeClose();
+
+ if (Ty.isInvalid())
+ return ExprError();
+
+ Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), /*isType=*/true,
+ Ty.get().getAsOpaquePtr(),
+ T.getCloseLocation());
+ } else {
+ EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
+ Result = ParseExpression();
+
+ // Match the ')'.
+ if (Result.isInvalid())
+ SkipUntil(tok::r_paren, StopAtSemi);
+ else {
+ T.consumeClose();
+
+ Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(),
+ /*isType=*/false,
+ Result.get(), T.getCloseLocation());
+ }
+ }
+
+ return Result;
+}
+
+/// \brief Parse a C++ pseudo-destructor expression after the base,
+/// . or -> operator, and nested-name-specifier have already been
+/// parsed.
+///
+/// postfix-expression: [C++ 5.2]
+/// postfix-expression . pseudo-destructor-name
+/// postfix-expression -> pseudo-destructor-name
+///
+/// pseudo-destructor-name:
+/// ::[opt] nested-name-specifier[opt] type-name :: ~type-name
+/// ::[opt] nested-name-specifier template simple-template-id ::
+/// ~type-name
+/// ::[opt] nested-name-specifier[opt] ~type-name
+///
+ExprResult
+Parser::ParseCXXPseudoDestructor(Expr *Base, SourceLocation OpLoc,
+ tok::TokenKind OpKind,
+ CXXScopeSpec &SS,
+ ParsedType ObjectType) {
+ // We're parsing either a pseudo-destructor-name or a dependent
+ // member access that has the same form as a
+ // pseudo-destructor-name. We parse both in the same way and let
+ // the action model sort them out.
+ //
+ // Note that the ::[opt] nested-name-specifier[opt] has already
+ // been parsed, and if there was a simple-template-id, it has
+ // been coalesced into a template-id annotation token.
+ UnqualifiedId FirstTypeName;
+ SourceLocation CCLoc;
+ if (Tok.is(tok::identifier)) {
+ FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
+ ConsumeToken();
+ assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
+ CCLoc = ConsumeToken();
+ } else if (Tok.is(tok::annot_template_id)) {
+ // FIXME: retrieve TemplateKWLoc from template-id annotation and
+ // store it in the pseudo-dtor node (to be used when instantiating it).
+ FirstTypeName.setTemplateId(
+ (TemplateIdAnnotation *)Tok.getAnnotationValue());
+ ConsumeToken();
+ assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
+ CCLoc = ConsumeToken();
+ } else {
+ FirstTypeName.setIdentifier(nullptr, SourceLocation());
+ }
+
+ // Parse the tilde.
+ assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail");
+ SourceLocation TildeLoc = ConsumeToken();
+
+ if (Tok.is(tok::kw_decltype) && !FirstTypeName.isValid() && SS.isEmpty()) {
+ DeclSpec DS(AttrFactory);
+ ParseDecltypeSpecifier(DS);
+ if (DS.getTypeSpecType() == TST_error)
+ return ExprError();
+ return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
+ TildeLoc, DS);
+ }
+
+ if (!Tok.is(tok::identifier)) {
+ Diag(Tok, diag::err_destructor_tilde_identifier);
+ return ExprError();
+ }
+
+ // Parse the second type.
+ UnqualifiedId SecondTypeName;
+ IdentifierInfo *Name = Tok.getIdentifierInfo();
+ SourceLocation NameLoc = ConsumeToken();
+ SecondTypeName.setIdentifier(Name, NameLoc);
+
+ // If there is a '<', the second type name is a template-id. Parse
+ // it as such.
+ if (Tok.is(tok::less) &&
+ ParseUnqualifiedIdTemplateId(SS, SourceLocation(),
+ Name, NameLoc,
+ false, ObjectType, SecondTypeName,
+ /*AssumeTemplateName=*/true))
+ return ExprError();
+
+ return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
+ SS, FirstTypeName, CCLoc, TildeLoc,
+ SecondTypeName);
+}
+
+/// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
+///
+/// boolean-literal: [C++ 2.13.5]
+/// 'true'
+/// 'false'
+ExprResult Parser::ParseCXXBoolLiteral() {
+ tok::TokenKind Kind = Tok.getKind();
+ return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind);
+}
+
+/// ParseThrowExpression - This handles the C++ throw expression.
+///
+/// throw-expression: [C++ 15]
+/// 'throw' assignment-expression[opt]
+ExprResult Parser::ParseThrowExpression() {
+ assert(Tok.is(tok::kw_throw) && "Not throw!");
+ SourceLocation ThrowLoc = ConsumeToken(); // Eat the throw token.
+
+ // If the current token isn't the start of an assignment-expression,
+ // then the expression is not present. This handles things like:
+ // "C ? throw : (void)42", which is crazy but legal.
+ switch (Tok.getKind()) { // FIXME: move this predicate somewhere common.
+ case tok::semi:
+ case tok::r_paren:
+ case tok::r_square:
+ case tok::r_brace:
+ case tok::colon:
+ case tok::comma:
+ return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, nullptr);
+
+ default:
+ ExprResult Expr(ParseAssignmentExpression());
+ if (Expr.isInvalid()) return Expr;
+ return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, Expr.get());
+ }
+}
+
+/// ParseCXXThis - This handles the C++ 'this' pointer.
+///
+/// C++ 9.3.2: In the body of a non-static member function, the keyword this is
+/// a non-lvalue expression whose value is the address of the object for which
+/// the function is called.
+ExprResult Parser::ParseCXXThis() {
+ assert(Tok.is(tok::kw_this) && "Not 'this'!");
+ SourceLocation ThisLoc = ConsumeToken();
+ return Actions.ActOnCXXThis(ThisLoc);
+}
+
+/// ParseCXXTypeConstructExpression - Parse construction of a specified type.
+/// Can be interpreted either as function-style casting ("int(x)")
+/// or class type construction ("ClassType(x,y,z)")
+/// or creation of a value-initialized type ("int()").
+/// See [C++ 5.2.3].
+///
+/// postfix-expression: [C++ 5.2p1]
+/// simple-type-specifier '(' expression-list[opt] ')'
+/// [C++0x] simple-type-specifier braced-init-list
+/// typename-specifier '(' expression-list[opt] ')'
+/// [C++0x] typename-specifier braced-init-list
+///
+ExprResult
+Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
+ Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
+ ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
+
+ assert((Tok.is(tok::l_paren) ||
+ (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)))
+ && "Expected '(' or '{'!");
+
+ if (Tok.is(tok::l_brace)) {
+ ExprResult Init = ParseBraceInitializer();
+ if (Init.isInvalid())
+ return Init;
+ Expr *InitList = Init.get();
+ return Actions.ActOnCXXTypeConstructExpr(TypeRep, SourceLocation(),
+ MultiExprArg(&InitList, 1),
+ SourceLocation());
+ } else {
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ T.consumeOpen();
+
+ ExprVector Exprs;
+ CommaLocsTy CommaLocs;
+
+ if (Tok.isNot(tok::r_paren)) {
+ if (ParseExpressionList(Exprs, CommaLocs, [&] {
+ Actions.CodeCompleteConstructor(getCurScope(),
+ TypeRep.get()->getCanonicalTypeInternal(),
+ DS.getLocEnd(), Exprs);
+ })) {
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return ExprError();
+ }
+ }
+
+ // Match the ')'.
+ T.consumeClose();
+
+ // TypeRep could be null, if it references an invalid typedef.
+ if (!TypeRep)
+ return ExprError();
+
+ assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&&
+ "Unexpected number of commas!");
+ return Actions.ActOnCXXTypeConstructExpr(TypeRep, T.getOpenLocation(),
+ Exprs,
+ T.getCloseLocation());
+ }
+}
+
+/// ParseCXXCondition - if/switch/while condition expression.
+///
+/// condition:
+/// expression
+/// type-specifier-seq declarator '=' assignment-expression
+/// [C++11] type-specifier-seq declarator '=' initializer-clause
+/// [C++11] type-specifier-seq declarator braced-init-list
+/// [GNU] type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
+/// '=' assignment-expression
+///
+/// \param ExprOut if the condition was parsed as an expression, the parsed
+/// expression.
+///
+/// \param DeclOut if the condition was parsed as a declaration, the parsed
+/// declaration.
+///
+/// \param Loc The location of the start of the statement that requires this
+/// condition, e.g., the "for" in a for loop.
+///
+/// \param ConvertToBoolean Whether the condition expression should be
+/// converted to a boolean value.
+///
+/// \returns true if there was a parsing, false otherwise.
+bool Parser::ParseCXXCondition(ExprResult &ExprOut,
+ Decl *&DeclOut,
+ SourceLocation Loc,
+ bool ConvertToBoolean) {
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Condition);
+ cutOffParsing();
+ return true;
+ }
+
+ ParsedAttributesWithRange attrs(AttrFactory);
+ MaybeParseCXX11Attributes(attrs);
+
+ if (!isCXXConditionDeclaration()) {
+ ProhibitAttributes(attrs);
+
+ // Parse the expression.
+ ExprOut = ParseExpression(); // expression
+ DeclOut = nullptr;
+ if (ExprOut.isInvalid())
+ return true;
+
+ // If required, convert to a boolean value.
+ if (ConvertToBoolean)
+ ExprOut
+ = Actions.ActOnBooleanCondition(getCurScope(), Loc, ExprOut.get());
+ return ExprOut.isInvalid();
+ }
+
+ // type-specifier-seq
+ DeclSpec DS(AttrFactory);
+ DS.takeAttributesFrom(attrs);
+ ParseSpecifierQualifierList(DS);
+
+ // declarator
+ Declarator DeclaratorInfo(DS, Declarator::ConditionContext);
+ ParseDeclarator(DeclaratorInfo);
+
+ // simple-asm-expr[opt]
+ if (Tok.is(tok::kw_asm)) {
+ SourceLocation Loc;
+ ExprResult AsmLabel(ParseSimpleAsm(&Loc));
+ if (AsmLabel.isInvalid()) {
+ SkipUntil(tok::semi, StopAtSemi);
+ return true;
+ }
+ DeclaratorInfo.setAsmLabel(AsmLabel.get());
+ DeclaratorInfo.SetRangeEnd(Loc);
+ }
+
+ // If attributes are present, parse them.
+ MaybeParseGNUAttributes(DeclaratorInfo);
+
+ // Type-check the declaration itself.
+ DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(getCurScope(),
+ DeclaratorInfo);
+ DeclOut = Dcl.get();
+ ExprOut = ExprError();
+
+ // '=' assignment-expression
+ // If a '==' or '+=' is found, suggest a fixit to '='.
+ bool CopyInitialization = isTokenEqualOrEqualTypo();
+ if (CopyInitialization)
+ ConsumeToken();
+
+ ExprResult InitExpr = ExprError();
+ if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
+ Diag(Tok.getLocation(),
+ diag::warn_cxx98_compat_generalized_initializer_lists);
+ InitExpr = ParseBraceInitializer();
+ } else if (CopyInitialization) {
+ InitExpr = ParseAssignmentExpression();
+ } else if (Tok.is(tok::l_paren)) {
+ // This was probably an attempt to initialize the variable.
+ SourceLocation LParen = ConsumeParen(), RParen = LParen;
+ if (SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch))
+ RParen = ConsumeParen();
+ Diag(DeclOut ? DeclOut->getLocation() : LParen,
+ diag::err_expected_init_in_condition_lparen)
+ << SourceRange(LParen, RParen);
+ } else {
+ Diag(DeclOut ? DeclOut->getLocation() : Tok.getLocation(),
+ diag::err_expected_init_in_condition);
+ }
+
+ if (!InitExpr.isInvalid())
+ Actions.AddInitializerToDecl(DeclOut, InitExpr.get(), !CopyInitialization,
+ DS.containsPlaceholderType());
+ else
+ Actions.ActOnInitializerError(DeclOut);
+
+ // FIXME: Build a reference to this declaration? Convert it to bool?
+ // (This is currently handled by Sema).
+
+ Actions.FinalizeDeclaration(DeclOut);
+
+ return false;
+}
+
+/// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
+/// This should only be called when the current token is known to be part of
+/// simple-type-specifier.
+///
+/// simple-type-specifier:
+/// '::'[opt] nested-name-specifier[opt] type-name
+/// '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
+/// char
+/// wchar_t
+/// bool
+/// short
+/// int
+/// long
+/// signed
+/// unsigned
+/// float
+/// double
+/// void
+/// [GNU] typeof-specifier
+/// [C++0x] auto [TODO]
+///
+/// type-name:
+/// class-name
+/// enum-name
+/// typedef-name
+///
+void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
+ DS.SetRangeStart(Tok.getLocation());
+ const char *PrevSpec;
+ unsigned DiagID;
+ SourceLocation Loc = Tok.getLocation();
+ const clang::PrintingPolicy &Policy =
+ Actions.getASTContext().getPrintingPolicy();
+
+ switch (Tok.getKind()) {
+ case tok::identifier: // foo::bar
+ case tok::coloncolon: // ::foo::bar
+ llvm_unreachable("Annotation token should already be formed!");
+ default:
+ llvm_unreachable("Not a simple-type-specifier token!");
+
+ // type-name
+ case tok::annot_typename: {
+ if (getTypeAnnotation(Tok))
+ DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID,
+ getTypeAnnotation(Tok), Policy);
+ else
+ DS.SetTypeSpecError();
+
+ DS.SetRangeEnd(Tok.getAnnotationEndLoc());
+ ConsumeToken();
+
+ // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
+ // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
+ // Objective-C interface. If we don't have Objective-C or a '<', this is
+ // just a normal reference to a typedef name.
+ if (Tok.is(tok::less) && getLangOpts().ObjC1)
+ ParseObjCProtocolQualifiers(DS);
+
+ DS.Finish(Diags, PP, Policy);
+ return;
+ }
+
+ // builtin types
+ case tok::kw_short:
+ DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID, Policy);
+ break;
+ case tok::kw_long:
+ DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec, DiagID, Policy);
+ break;
+ case tok::kw___int64:
+ DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec, DiagID, Policy);
+ break;
+ case tok::kw_signed:
+ DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
+ break;
+ case tok::kw_unsigned:
+ DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec, DiagID);
+ break;
+ case tok::kw_void:
+ DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID, Policy);
+ break;
+ case tok::kw_char:
+ DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID, Policy);
+ break;
+ case tok::kw_int:
+ DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID, Policy);
+ break;
+ case tok::kw___int128:
+ DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec, DiagID, Policy);
+ break;
+ case tok::kw_half:
+ DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID, Policy);
+ break;
+ case tok::kw_float:
+ DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID, Policy);
+ break;
+ case tok::kw_double:
+ DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID, Policy);
+ break;
+ case tok::kw_wchar_t:
+ DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID, Policy);
+ break;
+ case tok::kw_char16_t:
+ DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID, Policy);
+ break;
+ case tok::kw_char32_t:
+ DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID, Policy);
+ break;
+ case tok::kw_bool:
+ DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID, Policy);
+ break;
+ case tok::annot_decltype:
+ case tok::kw_decltype:
+ DS.SetRangeEnd(ParseDecltypeSpecifier(DS));
+ return DS.Finish(Diags, PP, Policy);
+
+ // GNU typeof support.
+ case tok::kw_typeof:
+ ParseTypeofSpecifier(DS);
+ DS.Finish(Diags, PP, Policy);
+ return;
+ }
+ if (Tok.is(tok::annot_typename))
+ DS.SetRangeEnd(Tok.getAnnotationEndLoc());
+ else
+ DS.SetRangeEnd(Tok.getLocation());
+ ConsumeToken();
+ DS.Finish(Diags, PP, Policy);
+}
+
+/// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
+/// [dcl.name]), which is a non-empty sequence of type-specifiers,
+/// e.g., "const short int". Note that the DeclSpec is *not* finished
+/// by parsing the type-specifier-seq, because these sequences are
+/// typically followed by some form of declarator. Returns true and
+/// emits diagnostics if this is not a type-specifier-seq, false
+/// otherwise.
+///
+/// type-specifier-seq: [C++ 8.1]
+/// type-specifier type-specifier-seq[opt]
+///
+bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) {
+ ParseSpecifierQualifierList(DS, AS_none, DSC_type_specifier);
+ DS.Finish(Diags, PP, Actions.getASTContext().getPrintingPolicy());
+ return false;
+}
+
+/// \brief Finish parsing a C++ unqualified-id that is a template-id of
+/// some form.
+///
+/// This routine is invoked when a '<' is encountered after an identifier or
+/// operator-function-id is parsed by \c ParseUnqualifiedId() to determine
+/// whether the unqualified-id is actually a template-id. This routine will
+/// then parse the template arguments and form the appropriate template-id to
+/// return to the caller.
+///
+/// \param SS the nested-name-specifier that precedes this template-id, if
+/// we're actually parsing a qualified-id.
+///
+/// \param Name for constructor and destructor names, this is the actual
+/// identifier that may be a template-name.
+///
+/// \param NameLoc the location of the class-name in a constructor or
+/// destructor.
+///
+/// \param EnteringContext whether we're entering the scope of the
+/// nested-name-specifier.
+///
+/// \param ObjectType if this unqualified-id occurs within a member access
+/// expression, the type of the base object whose member is being accessed.
+///
+/// \param Id as input, describes the template-name or operator-function-id
+/// that precedes the '<'. If template arguments were parsed successfully,
+/// will be updated with the template-id.
+///
+/// \param AssumeTemplateId When true, this routine will assume that the name
+/// refers to a template without performing name lookup to verify.
+///
+/// \returns true if a parse error occurred, false otherwise.
+bool Parser::ParseUnqualifiedIdTemplateId(CXXScopeSpec &SS,
+ SourceLocation TemplateKWLoc,
+ IdentifierInfo *Name,
+ SourceLocation NameLoc,
+ bool EnteringContext,
+ ParsedType ObjectType,
+ UnqualifiedId &Id,
+ bool AssumeTemplateId) {
+ assert((AssumeTemplateId || Tok.is(tok::less)) &&
+ "Expected '<' to finish parsing a template-id");
+
+ TemplateTy Template;
+ TemplateNameKind TNK = TNK_Non_template;
+ switch (Id.getKind()) {
+ case UnqualifiedId::IK_Identifier:
+ case UnqualifiedId::IK_OperatorFunctionId:
+ case UnqualifiedId::IK_LiteralOperatorId:
+ if (AssumeTemplateId) {
+ TNK = Actions.ActOnDependentTemplateName(getCurScope(), SS, TemplateKWLoc,
+ Id, ObjectType, EnteringContext,
+ Template);
+ if (TNK == TNK_Non_template)
+ return true;
+ } else {
+ bool MemberOfUnknownSpecialization;
+ TNK = Actions.isTemplateName(getCurScope(), SS,
+ TemplateKWLoc.isValid(), Id,
+ ObjectType, EnteringContext, Template,
+ MemberOfUnknownSpecialization);
+
+ if (TNK == TNK_Non_template && MemberOfUnknownSpecialization &&
+ ObjectType && IsTemplateArgumentList()) {
+ // We have something like t->getAs<T>(), where getAs is a
+ // member of an unknown specialization. However, this will only
+ // parse correctly as a template, so suggest the keyword 'template'
+ // before 'getAs' and treat this as a dependent template name.
+ std::string Name;
+ if (Id.getKind() == UnqualifiedId::IK_Identifier)
+ Name = Id.Identifier->getName();
+ else {
+ Name = "operator ";
+ if (Id.getKind() == UnqualifiedId::IK_OperatorFunctionId)
+ Name += getOperatorSpelling(Id.OperatorFunctionId.Operator);
+ else
+ Name += Id.Identifier->getName();
+ }
+ Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword)
+ << Name
+ << FixItHint::CreateInsertion(Id.StartLocation, "template ");
+ TNK = Actions.ActOnDependentTemplateName(getCurScope(),
+ SS, TemplateKWLoc, Id,
+ ObjectType, EnteringContext,
+ Template);
+ if (TNK == TNK_Non_template)
+ return true;
+ }
+ }
+ break;
+
+ case UnqualifiedId::IK_ConstructorName: {
+ UnqualifiedId TemplateName;
+ bool MemberOfUnknownSpecialization;
+ TemplateName.setIdentifier(Name, NameLoc);
+ TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
+ TemplateName, ObjectType,
+ EnteringContext, Template,
+ MemberOfUnknownSpecialization);
+ break;
+ }
+
+ case UnqualifiedId::IK_DestructorName: {
+ UnqualifiedId TemplateName;
+ bool MemberOfUnknownSpecialization;
+ TemplateName.setIdentifier(Name, NameLoc);
+ if (ObjectType) {
+ TNK = Actions.ActOnDependentTemplateName(getCurScope(),
+ SS, TemplateKWLoc, TemplateName,
+ ObjectType, EnteringContext,
+ Template);
+ if (TNK == TNK_Non_template)
+ return true;
+ } else {
+ TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
+ TemplateName, ObjectType,
+ EnteringContext, Template,
+ MemberOfUnknownSpecialization);
+
+ if (TNK == TNK_Non_template && !Id.DestructorName.get()) {
+ Diag(NameLoc, diag::err_destructor_template_id)
+ << Name << SS.getRange();
+ return true;
+ }
+ }
+ break;
+ }
+
+ default:
+ return false;
+ }
+
+ if (TNK == TNK_Non_template)
+ return false;
+
+ // Parse the enclosed template argument list.
+ SourceLocation LAngleLoc, RAngleLoc;
+ TemplateArgList TemplateArgs;
+ if (Tok.is(tok::less) &&
+ ParseTemplateIdAfterTemplateName(Template, Id.StartLocation,
+ SS, true, LAngleLoc,
+ TemplateArgs,
+ RAngleLoc))
+ return true;
+
+ if (Id.getKind() == UnqualifiedId::IK_Identifier ||
+ Id.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
+ Id.getKind() == UnqualifiedId::IK_LiteralOperatorId) {
+ // Form a parsed representation of the template-id to be stored in the
+ // UnqualifiedId.
+ TemplateIdAnnotation *TemplateId
+ = TemplateIdAnnotation::Allocate(TemplateArgs.size(), TemplateIds);
+
+ // FIXME: Store name for literal operator too.
+ if (Id.getKind() == UnqualifiedId::IK_Identifier) {
+ TemplateId->Name = Id.Identifier;
+ TemplateId->Operator = OO_None;
+ TemplateId->TemplateNameLoc = Id.StartLocation;
+ } else {
+ TemplateId->Name = nullptr;
+ TemplateId->Operator = Id.OperatorFunctionId.Operator;
+ TemplateId->TemplateNameLoc = Id.StartLocation;
+ }
+
+ TemplateId->SS = SS;
+ TemplateId->TemplateKWLoc = TemplateKWLoc;
+ TemplateId->Template = Template;
+ TemplateId->Kind = TNK;
+ TemplateId->LAngleLoc = LAngleLoc;
+ TemplateId->RAngleLoc = RAngleLoc;
+ ParsedTemplateArgument *Args = TemplateId->getTemplateArgs();
+ for (unsigned Arg = 0, ArgEnd = TemplateArgs.size();
+ Arg != ArgEnd; ++Arg)
+ Args[Arg] = TemplateArgs[Arg];
+
+ Id.setTemplateId(TemplateId);
+ return false;
+ }
+
+ // Bundle the template arguments together.
+ ASTTemplateArgsPtr TemplateArgsPtr(TemplateArgs);
+
+ // Constructor and destructor names.
+ TypeResult Type
+ = Actions.ActOnTemplateIdType(SS, TemplateKWLoc,
+ Template, NameLoc,
+ LAngleLoc, TemplateArgsPtr, RAngleLoc,
+ /*IsCtorOrDtorName=*/true);
+ if (Type.isInvalid())
+ return true;
+
+ if (Id.getKind() == UnqualifiedId::IK_ConstructorName)
+ Id.setConstructorName(Type.get(), NameLoc, RAngleLoc);
+ else
+ Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc);
+
+ return false;
+}
+
+/// \brief Parse an operator-function-id or conversion-function-id as part
+/// of a C++ unqualified-id.
+///
+/// This routine is responsible only for parsing the operator-function-id or
+/// conversion-function-id; it does not handle template arguments in any way.
+///
+/// \code
+/// operator-function-id: [C++ 13.5]
+/// 'operator' operator
+///
+/// operator: one of
+/// new delete new[] delete[]
+/// + - * / % ^ & | ~
+/// ! = < > += -= *= /= %=
+/// ^= &= |= << >> >>= <<= == !=
+/// <= >= && || ++ -- , ->* ->
+/// () []
+///
+/// conversion-function-id: [C++ 12.3.2]
+/// operator conversion-type-id
+///
+/// conversion-type-id:
+/// type-specifier-seq conversion-declarator[opt]
+///
+/// conversion-declarator:
+/// ptr-operator conversion-declarator[opt]
+/// \endcode
+///
+/// \param SS The nested-name-specifier that preceded this unqualified-id. If
+/// non-empty, then we are parsing the unqualified-id of a qualified-id.
+///
+/// \param EnteringContext whether we are entering the scope of the
+/// nested-name-specifier.
+///
+/// \param ObjectType if this unqualified-id occurs within a member access
+/// expression, the type of the base object whose member is being accessed.
+///
+/// \param Result on a successful parse, contains the parsed unqualified-id.
+///
+/// \returns true if parsing fails, false otherwise.
+bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
+ ParsedType ObjectType,
+ UnqualifiedId &Result) {
+ assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");
+
+ // Consume the 'operator' keyword.
+ SourceLocation KeywordLoc = ConsumeToken();
+
+ // Determine what kind of operator name we have.
+ unsigned SymbolIdx = 0;
+ SourceLocation SymbolLocations[3];
+ OverloadedOperatorKind Op = OO_None;
+ switch (Tok.getKind()) {
+ case tok::kw_new:
+ case tok::kw_delete: {
+ bool isNew = Tok.getKind() == tok::kw_new;
+ // Consume the 'new' or 'delete'.
+ SymbolLocations[SymbolIdx++] = ConsumeToken();
+ // Check for array new/delete.
+ if (Tok.is(tok::l_square) &&
+ (!getLangOpts().CPlusPlus11 || NextToken().isNot(tok::l_square))) {
+ // Consume the '[' and ']'.
+ BalancedDelimiterTracker T(*this, tok::l_square);
+ T.consumeOpen();
+ T.consumeClose();
+ if (T.getCloseLocation().isInvalid())
+ return true;
+
+ SymbolLocations[SymbolIdx++] = T.getOpenLocation();
+ SymbolLocations[SymbolIdx++] = T.getCloseLocation();
+ Op = isNew? OO_Array_New : OO_Array_Delete;
+ } else {
+ Op = isNew? OO_New : OO_Delete;
+ }
+ break;
+ }
+
+#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
+ case tok::Token: \
+ SymbolLocations[SymbolIdx++] = ConsumeToken(); \
+ Op = OO_##Name; \
+ break;
+#define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
+#include "clang/Basic/OperatorKinds.def"
+
+ case tok::l_paren: {
+ // Consume the '(' and ')'.
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ T.consumeOpen();
+ T.consumeClose();
+ if (T.getCloseLocation().isInvalid())
+ return true;
+
+ SymbolLocations[SymbolIdx++] = T.getOpenLocation();
+ SymbolLocations[SymbolIdx++] = T.getCloseLocation();
+ Op = OO_Call;
+ break;
+ }
+
+ case tok::l_square: {
+ // Consume the '[' and ']'.
+ BalancedDelimiterTracker T(*this, tok::l_square);
+ T.consumeOpen();
+ T.consumeClose();
+ if (T.getCloseLocation().isInvalid())
+ return true;
+
+ SymbolLocations[SymbolIdx++] = T.getOpenLocation();
+ SymbolLocations[SymbolIdx++] = T.getCloseLocation();
+ Op = OO_Subscript;
+ break;
+ }
+
+ case tok::code_completion: {
+ // Code completion for the operator name.
+ Actions.CodeCompleteOperatorName(getCurScope());
+ cutOffParsing();
+ // Don't try to parse any further.
+ return true;
+ }
+
+ default:
+ break;
+ }
+
+ if (Op != OO_None) {
+ // We have parsed an operator-function-id.
+ Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations);
+ return false;
+ }
+
+ // Parse a literal-operator-id.
+ //
+ // literal-operator-id: C++11 [over.literal]
+ // operator string-literal identifier
+ // operator user-defined-string-literal
+
+ if (getLangOpts().CPlusPlus11 && isTokenStringLiteral()) {
+ Diag(Tok.getLocation(), diag::warn_cxx98_compat_literal_operator);
+
+ SourceLocation DiagLoc;
+ unsigned DiagId = 0;
+
+ // We're past translation phase 6, so perform string literal concatenation
+ // before checking for "".
+ SmallVector<Token, 4> Toks;
+ SmallVector<SourceLocation, 4> TokLocs;
+ while (isTokenStringLiteral()) {
+ if (!Tok.is(tok::string_literal) && !DiagId) {
+ // C++11 [over.literal]p1:
+ // The string-literal or user-defined-string-literal in a
+ // literal-operator-id shall have no encoding-prefix [...].
+ DiagLoc = Tok.getLocation();
+ DiagId = diag::err_literal_operator_string_prefix;
+ }
+ Toks.push_back(Tok);
+ TokLocs.push_back(ConsumeStringToken());
+ }
+
+ StringLiteralParser Literal(Toks, PP);
+ if (Literal.hadError)
+ return true;
+
+ // Grab the literal operator's suffix, which will be either the next token
+ // or a ud-suffix from the string literal.
+ IdentifierInfo *II = nullptr;
+ SourceLocation SuffixLoc;
+ if (!Literal.getUDSuffix().empty()) {
+ II = &PP.getIdentifierTable().get(Literal.getUDSuffix());
+ SuffixLoc =
+ Lexer::AdvanceToTokenCharacter(TokLocs[Literal.getUDSuffixToken()],
+ Literal.getUDSuffixOffset(),
+ PP.getSourceManager(), getLangOpts());
+ } else if (Tok.is(tok::identifier)) {
+ II = Tok.getIdentifierInfo();
+ SuffixLoc = ConsumeToken();
+ TokLocs.push_back(SuffixLoc);
+ } else {
+ Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
+ return true;
+ }
+
+ // The string literal must be empty.
+ if (!Literal.GetString().empty() || Literal.Pascal) {
+ // C++11 [over.literal]p1:
+ // The string-literal or user-defined-string-literal in a
+ // literal-operator-id shall [...] contain no characters
+ // other than the implicit terminating '\0'.
+ DiagLoc = TokLocs.front();
+ DiagId = diag::err_literal_operator_string_not_empty;
+ }
+
+ if (DiagId) {
+ // This isn't a valid literal-operator-id, but we think we know
+ // what the user meant. Tell them what they should have written.
+ SmallString<32> Str;
+ Str += "\"\" ";
+ Str += II->getName();
+ Diag(DiagLoc, DiagId) << FixItHint::CreateReplacement(
+ SourceRange(TokLocs.front(), TokLocs.back()), Str);
+ }
+
+ Result.setLiteralOperatorId(II, KeywordLoc, SuffixLoc);
+
+ return Actions.checkLiteralOperatorId(SS, Result);
+ }
+
+ // Parse a conversion-function-id.
+ //
+ // conversion-function-id: [C++ 12.3.2]
+ // operator conversion-type-id
+ //
+ // conversion-type-id:
+ // type-specifier-seq conversion-declarator[opt]
+ //
+ // conversion-declarator:
+ // ptr-operator conversion-declarator[opt]
+
+ // Parse the type-specifier-seq.
+ DeclSpec DS(AttrFactory);
+ if (ParseCXXTypeSpecifierSeq(DS)) // FIXME: ObjectType?
+ return true;
+
+ // Parse the conversion-declarator, which is merely a sequence of
+ // ptr-operators.
+ Declarator D(DS, Declarator::ConversionIdContext);
+ ParseDeclaratorInternal(D, /*DirectDeclParser=*/nullptr);
+
+ // Finish up the type.
+ TypeResult Ty = Actions.ActOnTypeName(getCurScope(), D);
+ if (Ty.isInvalid())
+ return true;
+
+ // Note that this is a conversion-function-id.
+ Result.setConversionFunctionId(KeywordLoc, Ty.get(),
+ D.getSourceRange().getEnd());
+ return false;
+}
+
+/// \brief Parse a C++ unqualified-id (or a C identifier), which describes the
+/// name of an entity.
+///
+/// \code
+/// unqualified-id: [C++ expr.prim.general]
+/// identifier
+/// operator-function-id
+/// conversion-function-id
+/// [C++0x] literal-operator-id [TODO]
+/// ~ class-name
+/// template-id
+///
+/// \endcode
+///
+/// \param SS The nested-name-specifier that preceded this unqualified-id. If
+/// non-empty, then we are parsing the unqualified-id of a qualified-id.
+///
+/// \param EnteringContext whether we are entering the scope of the
+/// nested-name-specifier.
+///
+/// \param AllowDestructorName whether we allow parsing of a destructor name.
+///
+/// \param AllowConstructorName whether we allow parsing a constructor name.
+///
+/// \param ObjectType if this unqualified-id occurs within a member access
+/// expression, the type of the base object whose member is being accessed.
+///
+/// \param Result on a successful parse, contains the parsed unqualified-id.
+///
+/// \returns true if parsing fails, false otherwise.
+bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, bool EnteringContext,
+ bool AllowDestructorName,
+ bool AllowConstructorName,
+ ParsedType ObjectType,
+ SourceLocation& TemplateKWLoc,
+ UnqualifiedId &Result) {
+
+ // Handle 'A::template B'. This is for template-ids which have not
+ // already been annotated by ParseOptionalCXXScopeSpecifier().
+ bool TemplateSpecified = false;
+ if (getLangOpts().CPlusPlus && Tok.is(tok::kw_template) &&
+ (ObjectType || SS.isSet())) {
+ TemplateSpecified = true;
+ TemplateKWLoc = ConsumeToken();
+ }
+
+ // unqualified-id:
+ // identifier
+ // template-id (when it hasn't already been annotated)
+ if (Tok.is(tok::identifier)) {
+ // Consume the identifier.
+ IdentifierInfo *Id = Tok.getIdentifierInfo();
+ SourceLocation IdLoc = ConsumeToken();
+
+ if (!getLangOpts().CPlusPlus) {
+ // If we're not in C++, only identifiers matter. Record the
+ // identifier and return.
+ Result.setIdentifier(Id, IdLoc);
+ return false;
+ }
+
+ if (AllowConstructorName &&
+ Actions.isCurrentClassName(*Id, getCurScope(), &SS)) {
+ // We have parsed a constructor name.
+ ParsedType Ty = Actions.getTypeName(*Id, IdLoc, getCurScope(),
+ &SS, false, false,
+ ParsedType(),
+ /*IsCtorOrDtorName=*/true,
+ /*NonTrivialTypeSourceInfo=*/true);
+ Result.setConstructorName(Ty, IdLoc, IdLoc);
+ } else {
+ // We have parsed an identifier.
+ Result.setIdentifier(Id, IdLoc);
+ }
+
+ // If the next token is a '<', we may have a template.
+ if (TemplateSpecified || Tok.is(tok::less))
+ return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc, Id, IdLoc,
+ EnteringContext, ObjectType,
+ Result, TemplateSpecified);
+
+ return false;
+ }
+
+ // unqualified-id:
+ // template-id (already parsed and annotated)
+ if (Tok.is(tok::annot_template_id)) {
+ TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
+
+ // If the template-name names the current class, then this is a constructor
+ if (AllowConstructorName && TemplateId->Name &&
+ Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
+ if (SS.isSet()) {
+ // C++ [class.qual]p2 specifies that a qualified template-name
+ // is taken as the constructor name where a constructor can be
+ // declared. Thus, the template arguments are extraneous, so
+ // complain about them and remove them entirely.
+ Diag(TemplateId->TemplateNameLoc,
+ diag::err_out_of_line_constructor_template_id)
+ << TemplateId->Name
+ << FixItHint::CreateRemoval(
+ SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc));
+ ParsedType Ty = Actions.getTypeName(*TemplateId->Name,
+ TemplateId->TemplateNameLoc,
+ getCurScope(),
+ &SS, false, false,
+ ParsedType(),
+ /*IsCtorOrDtorName=*/true,
+ /*NontrivialTypeSourceInfo=*/true);
+ Result.setConstructorName(Ty, TemplateId->TemplateNameLoc,
+ TemplateId->RAngleLoc);
+ ConsumeToken();
+ return false;
+ }
+
+ Result.setConstructorTemplateId(TemplateId);
+ ConsumeToken();
+ return false;
+ }
+
+ // We have already parsed a template-id; consume the annotation token as
+ // our unqualified-id.
+ Result.setTemplateId(TemplateId);
+ TemplateKWLoc = TemplateId->TemplateKWLoc;
+ ConsumeToken();
+ return false;
+ }
+
+ // unqualified-id:
+ // operator-function-id
+ // conversion-function-id
+ if (Tok.is(tok::kw_operator)) {
+ if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result))
+ return true;
+
+ // If we have an operator-function-id or a literal-operator-id and the next
+ // token is a '<', we may have a
+ //
+ // template-id:
+ // operator-function-id < template-argument-list[opt] >
+ if ((Result.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
+ Result.getKind() == UnqualifiedId::IK_LiteralOperatorId) &&
+ (TemplateSpecified || Tok.is(tok::less)))
+ return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc,
+ nullptr, SourceLocation(),
+ EnteringContext, ObjectType,
+ Result, TemplateSpecified);
+
+ return false;
+ }
+
+ if (getLangOpts().CPlusPlus &&
+ (AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) {
+ // C++ [expr.unary.op]p10:
+ // There is an ambiguity in the unary-expression ~X(), where X is a
+ // class-name. The ambiguity is resolved in favor of treating ~ as a
+ // unary complement rather than treating ~X as referring to a destructor.
+
+ // Parse the '~'.
+ SourceLocation TildeLoc = ConsumeToken();
+
+ if (SS.isEmpty() && Tok.is(tok::kw_decltype)) {
+ DeclSpec DS(AttrFactory);
+ SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
+ if (ParsedType Type = Actions.getDestructorType(DS, ObjectType)) {
+ Result.setDestructorName(TildeLoc, Type, EndLoc);
+ return false;
+ }
+ return true;
+ }
+
+ // Parse the class-name.
+ if (Tok.isNot(tok::identifier)) {
+ Diag(Tok, diag::err_destructor_tilde_identifier);
+ return true;
+ }
+
+ // If the user wrote ~T::T, correct it to T::~T.
+ DeclaratorScopeObj DeclScopeObj(*this, SS);
+ if (!TemplateSpecified && NextToken().is(tok::coloncolon)) {
+ // Don't let ParseOptionalCXXScopeSpecifier() "correct"
+ // `int A; struct { ~A::A(); };` to `int A; struct { ~A:A(); };`,
+ // it will confuse this recovery logic.
+ ColonProtectionRAIIObject ColonRAII(*this, false);
+
+ if (SS.isSet()) {
+ AnnotateScopeToken(SS, /*NewAnnotation*/true);
+ SS.clear();
+ }
+ if (ParseOptionalCXXScopeSpecifier(SS, ObjectType, EnteringContext))
+ return true;
+ if (SS.isNotEmpty())
+ ObjectType = ParsedType();
+ if (Tok.isNot(tok::identifier) || NextToken().is(tok::coloncolon) ||
+ !SS.isSet()) {
+ Diag(TildeLoc, diag::err_destructor_tilde_scope);
+ return true;
+ }
+
+ // Recover as if the tilde had been written before the identifier.
+ Diag(TildeLoc, diag::err_destructor_tilde_scope)
+ << FixItHint::CreateRemoval(TildeLoc)
+ << FixItHint::CreateInsertion(Tok.getLocation(), "~");
+
+ // Temporarily enter the scope for the rest of this function.
+ if (Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
+ DeclScopeObj.EnterDeclaratorScope();
+ }
+
+ // Parse the class-name (or template-name in a simple-template-id).
+ IdentifierInfo *ClassName = Tok.getIdentifierInfo();
+ SourceLocation ClassNameLoc = ConsumeToken();
+
+ if (TemplateSpecified || Tok.is(tok::less)) {
+ Result.setDestructorName(TildeLoc, ParsedType(), ClassNameLoc);
+ return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc,
+ ClassName, ClassNameLoc,
+ EnteringContext, ObjectType,
+ Result, TemplateSpecified);
+ }
+
+ // Note that this is a destructor name.
+ ParsedType Ty = Actions.getDestructorName(TildeLoc, *ClassName,
+ ClassNameLoc, getCurScope(),
+ SS, ObjectType,
+ EnteringContext);
+ if (!Ty)
+ return true;
+
+ Result.setDestructorName(TildeLoc, Ty, ClassNameLoc);
+ return false;
+ }
+
+ Diag(Tok, diag::err_expected_unqualified_id)
+ << getLangOpts().CPlusPlus;
+ return true;
+}
+
+/// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
+/// memory in a typesafe manner and call constructors.
+///
+/// This method is called to parse the new expression after the optional :: has
+/// been already parsed. If the :: was present, "UseGlobal" is true and "Start"
+/// is its location. Otherwise, "Start" is the location of the 'new' token.
+///
+/// new-expression:
+/// '::'[opt] 'new' new-placement[opt] new-type-id
+/// new-initializer[opt]
+/// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
+/// new-initializer[opt]
+///
+/// new-placement:
+/// '(' expression-list ')'
+///
+/// new-type-id:
+/// type-specifier-seq new-declarator[opt]
+/// [GNU] attributes type-specifier-seq new-declarator[opt]
+///
+/// new-declarator:
+/// ptr-operator new-declarator[opt]
+/// direct-new-declarator
+///
+/// new-initializer:
+/// '(' expression-list[opt] ')'
+/// [C++0x] braced-init-list
+///
+ExprResult
+Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
+ assert(Tok.is(tok::kw_new) && "expected 'new' token");
+ ConsumeToken(); // Consume 'new'
+
+ // A '(' now can be a new-placement or the '(' wrapping the type-id in the
+ // second form of new-expression. It can't be a new-type-id.
+
+ ExprVector PlacementArgs;
+ SourceLocation PlacementLParen, PlacementRParen;
+
+ SourceRange TypeIdParens;
+ DeclSpec DS(AttrFactory);
+ Declarator DeclaratorInfo(DS, Declarator::CXXNewContext);
+ if (Tok.is(tok::l_paren)) {
+ // If it turns out to be a placement, we change the type location.
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ T.consumeOpen();
+ PlacementLParen = T.getOpenLocation();
+ if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) {
+ SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
+ return ExprError();
+ }
+
+ T.consumeClose();
+ PlacementRParen = T.getCloseLocation();
+ if (PlacementRParen.isInvalid()) {
+ SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
+ return ExprError();
+ }
+
+ if (PlacementArgs.empty()) {
+ // Reset the placement locations. There was no placement.
+ TypeIdParens = T.getRange();
+ PlacementLParen = PlacementRParen = SourceLocation();
+ } else {
+ // We still need the type.
+ if (Tok.is(tok::l_paren)) {
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ T.consumeOpen();
+ MaybeParseGNUAttributes(DeclaratorInfo);
+ ParseSpecifierQualifierList(DS);
+ DeclaratorInfo.SetSourceRange(DS.getSourceRange());
+ ParseDeclarator(DeclaratorInfo);
+ T.consumeClose();
+ TypeIdParens = T.getRange();
+ } else {
+ MaybeParseGNUAttributes(DeclaratorInfo);
+ if (ParseCXXTypeSpecifierSeq(DS))
+ DeclaratorInfo.setInvalidType(true);
+ else {
+ DeclaratorInfo.SetSourceRange(DS.getSourceRange());
+ ParseDeclaratorInternal(DeclaratorInfo,
+ &Parser::ParseDirectNewDeclarator);
+ }
+ }
+ }
+ } else {
+ // A new-type-id is a simplified type-id, where essentially the
+ // direct-declarator is replaced by a direct-new-declarator.
+ MaybeParseGNUAttributes(DeclaratorInfo);
+ if (ParseCXXTypeSpecifierSeq(DS))
+ DeclaratorInfo.setInvalidType(true);
+ else {
+ DeclaratorInfo.SetSourceRange(DS.getSourceRange());
+ ParseDeclaratorInternal(DeclaratorInfo,
+ &Parser::ParseDirectNewDeclarator);
+ }
+ }
+ if (DeclaratorInfo.isInvalidType()) {
+ SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
+ return ExprError();
+ }
+
+ ExprResult Initializer;
+
+ if (Tok.is(tok::l_paren)) {
+ SourceLocation ConstructorLParen, ConstructorRParen;
+ ExprVector ConstructorArgs;
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ T.consumeOpen();
+ ConstructorLParen = T.getOpenLocation();
+ if (Tok.isNot(tok::r_paren)) {
+ CommaLocsTy CommaLocs;
+ if (ParseExpressionList(ConstructorArgs, CommaLocs, [&] {
+ ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(),
+ DeclaratorInfo).get();
+ Actions.CodeCompleteConstructor(getCurScope(),
+ TypeRep.get()->getCanonicalTypeInternal(),
+ DeclaratorInfo.getLocEnd(),
+ ConstructorArgs);
+ })) {
+ SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
+ return ExprError();
+ }
+ }
+ T.consumeClose();
+ ConstructorRParen = T.getCloseLocation();
+ if (ConstructorRParen.isInvalid()) {
+ SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
+ return ExprError();
+ }
+ Initializer = Actions.ActOnParenListExpr(ConstructorLParen,
+ ConstructorRParen,
+ ConstructorArgs);
+ } else if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus11) {
+ Diag(Tok.getLocation(),
+ diag::warn_cxx98_compat_generalized_initializer_lists);
+ Initializer = ParseBraceInitializer();
+ }
+ if (Initializer.isInvalid())
+ return Initializer;
+
+ return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen,
+ PlacementArgs, PlacementRParen,
+ TypeIdParens, DeclaratorInfo, Initializer.get());
+}
+
+/// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
+/// passed to ParseDeclaratorInternal.
+///
+/// direct-new-declarator:
+/// '[' expression ']'
+/// direct-new-declarator '[' constant-expression ']'
+///
+void Parser::ParseDirectNewDeclarator(Declarator &D) {
+ // Parse the array dimensions.
+ bool first = true;
+ while (Tok.is(tok::l_square)) {
+ // An array-size expression can't start with a lambda.
+ if (CheckProhibitedCXX11Attribute())
+ continue;
+
+ BalancedDelimiterTracker T(*this, tok::l_square);
+ T.consumeOpen();
+
+ ExprResult Size(first ? ParseExpression()
+ : ParseConstantExpression());
+ if (Size.isInvalid()) {
+ // Recover
+ SkipUntil(tok::r_square, StopAtSemi);
+ return;
+ }
+ first = false;
+
+ T.consumeClose();
+
+ // Attributes here appertain to the array type. C++11 [expr.new]p5.
+ ParsedAttributes Attrs(AttrFactory);
+ MaybeParseCXX11Attributes(Attrs);
+
+ D.AddTypeInfo(DeclaratorChunk::getArray(0,
+ /*static=*/false, /*star=*/false,
+ Size.get(),
+ T.getOpenLocation(),
+ T.getCloseLocation()),
+ Attrs, T.getCloseLocation());
+
+ if (T.getCloseLocation().isInvalid())
+ return;
+ }
+}
+
+/// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
+/// This ambiguity appears in the syntax of the C++ new operator.
+///
+/// new-expression:
+/// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
+/// new-initializer[opt]
+///
+/// new-placement:
+/// '(' expression-list ')'
+///
+bool Parser::ParseExpressionListOrTypeId(
+ SmallVectorImpl<Expr*> &PlacementArgs,
+ Declarator &D) {
+ // The '(' was already consumed.
+ if (isTypeIdInParens()) {
+ ParseSpecifierQualifierList(D.getMutableDeclSpec());
+ D.SetSourceRange(D.getDeclSpec().getSourceRange());
+ ParseDeclarator(D);
+ return D.isInvalidType();
+ }
+
+ // It's not a type, it has to be an expression list.
+ // Discard the comma locations - ActOnCXXNew has enough parameters.
+ CommaLocsTy CommaLocs;
+ return ParseExpressionList(PlacementArgs, CommaLocs);
+}
+
+/// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
+/// to free memory allocated by new.
+///
+/// This method is called to parse the 'delete' expression after the optional
+/// '::' has been already parsed. If the '::' was present, "UseGlobal" is true
+/// and "Start" is its location. Otherwise, "Start" is the location of the
+/// 'delete' token.
+///
+/// delete-expression:
+/// '::'[opt] 'delete' cast-expression
+/// '::'[opt] 'delete' '[' ']' cast-expression
+ExprResult
+Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
+ assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword");
+ ConsumeToken(); // Consume 'delete'
+
+ // Array delete?
+ bool ArrayDelete = false;
+ if (Tok.is(tok::l_square) && NextToken().is(tok::r_square)) {
+ // C++11 [expr.delete]p1:
+ // Whenever the delete keyword is followed by empty square brackets, it
+ // shall be interpreted as [array delete].
+ // [Footnote: A lambda expression with a lambda-introducer that consists
+ // of empty square brackets can follow the delete keyword if
+ // the lambda expression is enclosed in parentheses.]
+ // FIXME: Produce a better diagnostic if the '[]' is unambiguously a
+ // lambda-introducer.
+ ArrayDelete = true;
+ BalancedDelimiterTracker T(*this, tok::l_square);
+
+ T.consumeOpen();
+ T.consumeClose();
+ if (T.getCloseLocation().isInvalid())
+ return ExprError();
+ }
+
+ ExprResult Operand(ParseCastExpression(false));
+ if (Operand.isInvalid())
+ return Operand;
+
+ return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, Operand.get());
+}
+
+static TypeTrait TypeTraitFromTokKind(tok::TokenKind kind) {
+ switch (kind) {
+ default: llvm_unreachable("Not a known type trait");
+#define TYPE_TRAIT_1(Spelling, Name, Key) \
+case tok::kw_ ## Spelling: return UTT_ ## Name;
+#define TYPE_TRAIT_2(Spelling, Name, Key) \
+case tok::kw_ ## Spelling: return BTT_ ## Name;
+#include "clang/Basic/TokenKinds.def"
+#define TYPE_TRAIT_N(Spelling, Name, Key) \
+ case tok::kw_ ## Spelling: return TT_ ## Name;
+#include "clang/Basic/TokenKinds.def"
+ }
+}
+
+static ArrayTypeTrait ArrayTypeTraitFromTokKind(tok::TokenKind kind) {
+ switch(kind) {
+ default: llvm_unreachable("Not a known binary type trait");
+ case tok::kw___array_rank: return ATT_ArrayRank;
+ case tok::kw___array_extent: return ATT_ArrayExtent;
+ }
+}
+
+static ExpressionTrait ExpressionTraitFromTokKind(tok::TokenKind kind) {
+ switch(kind) {
+ default: llvm_unreachable("Not a known unary expression trait.");
+ case tok::kw___is_lvalue_expr: return ET_IsLValueExpr;
+ case tok::kw___is_rvalue_expr: return ET_IsRValueExpr;
+ }
+}
+
+static unsigned TypeTraitArity(tok::TokenKind kind) {
+ switch (kind) {
+ default: llvm_unreachable("Not a known type trait");
+#define TYPE_TRAIT(N,Spelling,K) case tok::kw_##Spelling: return N;
+#include "clang/Basic/TokenKinds.def"
+ }
+}
+
+/// \brief Parse the built-in type-trait pseudo-functions that allow
+/// implementation of the TR1/C++11 type traits templates.
+///
+/// primary-expression:
+/// unary-type-trait '(' type-id ')'
+/// binary-type-trait '(' type-id ',' type-id ')'
+/// type-trait '(' type-id-seq ')'
+///
+/// type-id-seq:
+/// type-id ...[opt] type-id-seq[opt]
+///
+ExprResult Parser::ParseTypeTrait() {
+ tok::TokenKind Kind = Tok.getKind();
+ unsigned Arity = TypeTraitArity(Kind);
+
+ SourceLocation Loc = ConsumeToken();
+
+ BalancedDelimiterTracker Parens(*this, tok::l_paren);
+ if (Parens.expectAndConsume())
+ return ExprError();
+
+ SmallVector<ParsedType, 2> Args;
+ do {
+ // Parse the next type.
+ TypeResult Ty = ParseTypeName();
+ if (Ty.isInvalid()) {
+ Parens.skipToEnd();
+ return ExprError();
+ }
+
+ // Parse the ellipsis, if present.
+ if (Tok.is(tok::ellipsis)) {
+ Ty = Actions.ActOnPackExpansion(Ty.get(), ConsumeToken());
+ if (Ty.isInvalid()) {
+ Parens.skipToEnd();
+ return ExprError();
+ }
+ }
+
+ // Add this type to the list of arguments.
+ Args.push_back(Ty.get());
+ } while (TryConsumeToken(tok::comma));
+
+ if (Parens.consumeClose())
+ return ExprError();
+
+ SourceLocation EndLoc = Parens.getCloseLocation();
+
+ if (Arity && Args.size() != Arity) {
+ Diag(EndLoc, diag::err_type_trait_arity)
+ << Arity << 0 << (Arity > 1) << (int)Args.size() << SourceRange(Loc);
+ return ExprError();
+ }
+
+ if (!Arity && Args.empty()) {
+ Diag(EndLoc, diag::err_type_trait_arity)
+ << 1 << 1 << 1 << (int)Args.size() << SourceRange(Loc);
+ return ExprError();
+ }
+
+ return Actions.ActOnTypeTrait(TypeTraitFromTokKind(Kind), Loc, Args, EndLoc);
+}
+
+/// ParseArrayTypeTrait - Parse the built-in array type-trait
+/// pseudo-functions.
+///
+/// primary-expression:
+/// [Embarcadero] '__array_rank' '(' type-id ')'
+/// [Embarcadero] '__array_extent' '(' type-id ',' expression ')'
+///
+ExprResult Parser::ParseArrayTypeTrait() {
+ ArrayTypeTrait ATT = ArrayTypeTraitFromTokKind(Tok.getKind());
+ SourceLocation Loc = ConsumeToken();
+
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ if (T.expectAndConsume())
+ return ExprError();
+
+ TypeResult Ty = ParseTypeName();
+ if (Ty.isInvalid()) {
+ SkipUntil(tok::comma, StopAtSemi);
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return ExprError();
+ }
+
+ switch (ATT) {
+ case ATT_ArrayRank: {
+ T.consumeClose();
+ return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), nullptr,
+ T.getCloseLocation());
+ }
+ case ATT_ArrayExtent: {
+ if (ExpectAndConsume(tok::comma)) {
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return ExprError();
+ }
+
+ ExprResult DimExpr = ParseExpression();
+ T.consumeClose();
+
+ return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), DimExpr.get(),
+ T.getCloseLocation());
+ }
+ }
+ llvm_unreachable("Invalid ArrayTypeTrait!");
+}
+
+/// ParseExpressionTrait - Parse built-in expression-trait
+/// pseudo-functions like __is_lvalue_expr( xxx ).
+///
+/// primary-expression:
+/// [Embarcadero] expression-trait '(' expression ')'
+///
+ExprResult Parser::ParseExpressionTrait() {
+ ExpressionTrait ET = ExpressionTraitFromTokKind(Tok.getKind());
+ SourceLocation Loc = ConsumeToken();
+
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ if (T.expectAndConsume())
+ return ExprError();
+
+ ExprResult Expr = ParseExpression();
+
+ T.consumeClose();
+
+ return Actions.ActOnExpressionTrait(ET, Loc, Expr.get(),
+ T.getCloseLocation());
+}
+
+
+/// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a
+/// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate
+/// based on the context past the parens.
+ExprResult
+Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType,
+ ParsedType &CastTy,
+ BalancedDelimiterTracker &Tracker,
+ ColonProtectionRAIIObject &ColonProt) {
+ assert(getLangOpts().CPlusPlus && "Should only be called for C++!");
+ assert(ExprType == CastExpr && "Compound literals are not ambiguous!");
+ assert(isTypeIdInParens() && "Not a type-id!");
+
+ ExprResult Result(true);
+ CastTy = ParsedType();
+
+ // We need to disambiguate a very ugly part of the C++ syntax:
+ //
+ // (T())x; - type-id
+ // (T())*x; - type-id
+ // (T())/x; - expression
+ // (T()); - expression
+ //
+ // The bad news is that we cannot use the specialized tentative parser, since
+ // it can only verify that the thing inside the parens can be parsed as
+ // type-id, it is not useful for determining the context past the parens.
+ //
+ // The good news is that the parser can disambiguate this part without
+ // making any unnecessary Action calls.
+ //
+ // It uses a scheme similar to parsing inline methods. The parenthesized
+ // tokens are cached, the context that follows is determined (possibly by
+ // parsing a cast-expression), and then we re-introduce the cached tokens
+ // into the token stream and parse them appropriately.
+
+ ParenParseOption ParseAs;
+ CachedTokens Toks;
+
+ // Store the tokens of the parentheses. We will parse them after we determine
+ // the context that follows them.
+ if (!ConsumeAndStoreUntil(tok::r_paren, Toks)) {
+ // We didn't find the ')' we expected.
+ Tracker.consumeClose();
+ return ExprError();
+ }
+
+ if (Tok.is(tok::l_brace)) {
+ ParseAs = CompoundLiteral;
+ } else {
+ bool NotCastExpr;
+ if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) {
+ NotCastExpr = true;
+ } else {
+ // Try parsing the cast-expression that may follow.
+ // If it is not a cast-expression, NotCastExpr will be true and no token
+ // will be consumed.
+ ColonProt.restore();
+ Result = ParseCastExpression(false/*isUnaryExpression*/,
+ false/*isAddressofOperand*/,
+ NotCastExpr,
+ // type-id has priority.
+ IsTypeCast);
+ }
+
+ // If we parsed a cast-expression, it's really a type-id, otherwise it's
+ // an expression.
+ ParseAs = NotCastExpr ? SimpleExpr : CastExpr;
+ }
+
+ // The current token should go after the cached tokens.
+ Toks.push_back(Tok);
+ // Re-enter the stored parenthesized tokens into the token stream, so we may
+ // parse them now.
+ PP.EnterTokenStream(Toks.data(), Toks.size(),
+ true/*DisableMacroExpansion*/, false/*OwnsTokens*/);
+ // Drop the current token and bring the first cached one. It's the same token
+ // as when we entered this function.
+ ConsumeAnyToken();
+
+ if (ParseAs >= CompoundLiteral) {
+ // Parse the type declarator.
+ DeclSpec DS(AttrFactory);
+ Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
+ {
+ ColonProtectionRAIIObject InnerColonProtection(*this);
+ ParseSpecifierQualifierList(DS);
+ ParseDeclarator(DeclaratorInfo);
+ }
+
+ // Match the ')'.
+ Tracker.consumeClose();
+ ColonProt.restore();
+
+ if (ParseAs == CompoundLiteral) {
+ ExprType = CompoundLiteral;
+ if (DeclaratorInfo.isInvalidType())
+ return ExprError();
+
+ TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
+ return ParseCompoundLiteralExpression(Ty.get(),
+ Tracker.getOpenLocation(),
+ Tracker.getCloseLocation());
+ }
+
+ // We parsed '(' type-id ')' and the thing after it wasn't a '{'.
+ assert(ParseAs == CastExpr);
+
+ if (DeclaratorInfo.isInvalidType())
+ return ExprError();
+
+ // Result is what ParseCastExpression returned earlier.
+ if (!Result.isInvalid())
+ Result = Actions.ActOnCastExpr(getCurScope(), Tracker.getOpenLocation(),
+ DeclaratorInfo, CastTy,
+ Tracker.getCloseLocation(), Result.get());
+ return Result;
+ }
+
+ // Not a compound literal, and not followed by a cast-expression.
+ assert(ParseAs == SimpleExpr);
+
+ ExprType = SimpleExpr;
+ Result = ParseExpression();
+ if (!Result.isInvalid() && Tok.is(tok::r_paren))
+ Result = Actions.ActOnParenExpr(Tracker.getOpenLocation(),
+ Tok.getLocation(), Result.get());
+
+ // Match the ')'.
+ if (Result.isInvalid()) {
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return ExprError();
+ }
+
+ Tracker.consumeClose();
+ return Result;
+}
diff --git a/contrib/llvm/tools/clang/lib/Parse/ParseInit.cpp b/contrib/llvm/tools/clang/lib/Parse/ParseInit.cpp
new file mode 100644
index 0000000..42287d6
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Parse/ParseInit.cpp
@@ -0,0 +1,530 @@
+//===--- ParseInit.cpp - Initializer Parsing ------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements initializer parsing as specified by C99 6.7.8.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Parse/Parser.h"
+#include "RAIIObjectsForParser.h"
+#include "clang/Parse/ParseDiagnostic.h"
+#include "clang/Sema/Designator.h"
+#include "clang/Sema/Scope.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace clang;
+
+
+/// MayBeDesignationStart - Return true if the current token might be the start
+/// of a designator. If we can tell it is impossible that it is a designator,
+/// return false.
+bool Parser::MayBeDesignationStart() {
+ switch (Tok.getKind()) {
+ default:
+ return false;
+
+ case tok::period: // designator: '.' identifier
+ return true;
+
+ case tok::l_square: { // designator: array-designator
+ if (!PP.getLangOpts().CPlusPlus11)
+ return true;
+
+ // C++11 lambda expressions and C99 designators can be ambiguous all the
+ // way through the closing ']' and to the next character. Handle the easy
+ // cases here, and fall back to tentative parsing if those fail.
+ switch (PP.LookAhead(0).getKind()) {
+ case tok::equal:
+ case tok::r_square:
+ // Definitely starts a lambda expression.
+ return false;
+
+ case tok::amp:
+ case tok::kw_this:
+ case tok::identifier:
+ // We have to do additional analysis, because these could be the
+ // start of a constant expression or a lambda capture list.
+ break;
+
+ default:
+ // Anything not mentioned above cannot occur following a '[' in a
+ // lambda expression.
+ return true;
+ }
+
+ // Handle the complicated case below.
+ break;
+ }
+ case tok::identifier: // designation: identifier ':'
+ return PP.LookAhead(0).is(tok::colon);
+ }
+
+ // Parse up to (at most) the token after the closing ']' to determine
+ // whether this is a C99 designator or a lambda.
+ TentativeParsingAction Tentative(*this);
+
+ LambdaIntroducer Intro;
+ bool SkippedInits = false;
+ Optional<unsigned> DiagID(ParseLambdaIntroducer(Intro, &SkippedInits));
+
+ if (DiagID) {
+ // If this can't be a lambda capture list, it's a designator.
+ Tentative.Revert();
+ return true;
+ }
+
+ // Once we hit the closing square bracket, we look at the next
+ // token. If it's an '=', this is a designator. Otherwise, it's a
+ // lambda expression. This decision favors lambdas over the older
+ // GNU designator syntax, which allows one to omit the '=', but is
+ // consistent with GCC.
+ tok::TokenKind Kind = Tok.getKind();
+ // FIXME: If we didn't skip any inits, parse the lambda from here
+ // rather than throwing away then reparsing the LambdaIntroducer.
+ Tentative.Revert();
+ return Kind == tok::equal;
+}
+
+static void CheckArrayDesignatorSyntax(Parser &P, SourceLocation Loc,
+ Designation &Desig) {
+ // If we have exactly one array designator, this used the GNU
+ // 'designation: array-designator' extension, otherwise there should be no
+ // designators at all!
+ if (Desig.getNumDesignators() == 1 &&
+ (Desig.getDesignator(0).isArrayDesignator() ||
+ Desig.getDesignator(0).isArrayRangeDesignator()))
+ P.Diag(Loc, diag::ext_gnu_missing_equal_designator);
+ else if (Desig.getNumDesignators() > 0)
+ P.Diag(Loc, diag::err_expected_equal_designator);
+}
+
+/// ParseInitializerWithPotentialDesignator - Parse the 'initializer' production
+/// checking to see if the token stream starts with a designator.
+///
+/// designation:
+/// designator-list '='
+/// [GNU] array-designator
+/// [GNU] identifier ':'
+///
+/// designator-list:
+/// designator
+/// designator-list designator
+///
+/// designator:
+/// array-designator
+/// '.' identifier
+///
+/// array-designator:
+/// '[' constant-expression ']'
+/// [GNU] '[' constant-expression '...' constant-expression ']'
+///
+/// NOTE: [OBC] allows '[ objc-receiver objc-message-args ]' as an
+/// initializer (because it is an expression). We need to consider this case
+/// when parsing array designators.
+///
+ExprResult Parser::ParseInitializerWithPotentialDesignator() {
+
+ // If this is the old-style GNU extension:
+ // designation ::= identifier ':'
+ // Handle it as a field designator. Otherwise, this must be the start of a
+ // normal expression.
+ if (Tok.is(tok::identifier)) {
+ const IdentifierInfo *FieldName = Tok.getIdentifierInfo();
+
+ SmallString<256> NewSyntax;
+ llvm::raw_svector_ostream(NewSyntax) << '.' << FieldName->getName()
+ << " = ";
+
+ SourceLocation NameLoc = ConsumeToken(); // Eat the identifier.
+
+ assert(Tok.is(tok::colon) && "MayBeDesignationStart not working properly!");
+ SourceLocation ColonLoc = ConsumeToken();
+
+ Diag(NameLoc, diag::ext_gnu_old_style_field_designator)
+ << FixItHint::CreateReplacement(SourceRange(NameLoc, ColonLoc),
+ NewSyntax);
+
+ Designation D;
+ D.AddDesignator(Designator::getField(FieldName, SourceLocation(), NameLoc));
+ return Actions.ActOnDesignatedInitializer(D, ColonLoc, true,
+ ParseInitializer());
+ }
+
+ // Desig - This is initialized when we see our first designator. We may have
+ // an objc message send with no designator, so we don't want to create this
+ // eagerly.
+ Designation Desig;
+
+ // Parse each designator in the designator list until we find an initializer.
+ while (Tok.is(tok::period) || Tok.is(tok::l_square)) {
+ if (Tok.is(tok::period)) {
+ // designator: '.' identifier
+ SourceLocation DotLoc = ConsumeToken();
+
+ if (Tok.isNot(tok::identifier)) {
+ Diag(Tok.getLocation(), diag::err_expected_field_designator);
+ return ExprError();
+ }
+
+ Desig.AddDesignator(Designator::getField(Tok.getIdentifierInfo(), DotLoc,
+ Tok.getLocation()));
+ ConsumeToken(); // Eat the identifier.
+ continue;
+ }
+
+ // We must have either an array designator now or an objc message send.
+ assert(Tok.is(tok::l_square) && "Unexpected token!");
+
+ // Handle the two forms of array designator:
+ // array-designator: '[' constant-expression ']'
+ // array-designator: '[' constant-expression '...' constant-expression ']'
+ //
+ // Also, we have to handle the case where the expression after the
+ // designator an an objc message send: '[' objc-message-expr ']'.
+ // Interesting cases are:
+ // [foo bar] -> objc message send
+ // [foo] -> array designator
+ // [foo ... bar] -> array designator
+ // [4][foo bar] -> obsolete GNU designation with objc message send.
+ //
+ // We do not need to check for an expression starting with [[ here. If it
+ // contains an Objective-C message send, then it is not an ill-formed
+ // attribute. If it is a lambda-expression within an array-designator, then
+ // it will be rejected because a constant-expression cannot begin with a
+ // lambda-expression.
+ InMessageExpressionRAIIObject InMessage(*this, true);
+
+ BalancedDelimiterTracker T(*this, tok::l_square);
+ T.consumeOpen();
+ SourceLocation StartLoc = T.getOpenLocation();
+
+ ExprResult Idx;
+
+ // If Objective-C is enabled and this is a typename (class message
+ // send) or send to 'super', parse this as a message send
+ // expression. We handle C++ and C separately, since C++ requires
+ // much more complicated parsing.
+ if (getLangOpts().ObjC1 && getLangOpts().CPlusPlus) {
+ // Send to 'super'.
+ if (Tok.is(tok::identifier) && Tok.getIdentifierInfo() == Ident_super &&
+ NextToken().isNot(tok::period) &&
+ getCurScope()->isInObjcMethodScope()) {
+ CheckArrayDesignatorSyntax(*this, StartLoc, Desig);
+ return ParseAssignmentExprWithObjCMessageExprStart(StartLoc,
+ ConsumeToken(),
+ ParsedType(),
+ nullptr);
+ }
+
+ // Parse the receiver, which is either a type or an expression.
+ bool IsExpr;
+ void *TypeOrExpr;
+ if (ParseObjCXXMessageReceiver(IsExpr, TypeOrExpr)) {
+ SkipUntil(tok::r_square, StopAtSemi);
+ return ExprError();
+ }
+
+ // If the receiver was a type, we have a class message; parse
+ // the rest of it.
+ if (!IsExpr) {
+ CheckArrayDesignatorSyntax(*this, StartLoc, Desig);
+ return ParseAssignmentExprWithObjCMessageExprStart(StartLoc,
+ SourceLocation(),
+ ParsedType::getFromOpaquePtr(TypeOrExpr),
+ nullptr);
+ }
+
+ // If the receiver was an expression, we still don't know
+ // whether we have a message send or an array designator; just
+ // adopt the expression for further analysis below.
+ // FIXME: potentially-potentially evaluated expression above?
+ Idx = ExprResult(static_cast<Expr*>(TypeOrExpr));
+ } else if (getLangOpts().ObjC1 && Tok.is(tok::identifier)) {
+ IdentifierInfo *II = Tok.getIdentifierInfo();
+ SourceLocation IILoc = Tok.getLocation();
+ ParsedType ReceiverType;
+ // Three cases. This is a message send to a type: [type foo]
+ // This is a message send to super: [super foo]
+ // This is a message sent to an expr: [super.bar foo]
+ switch (Sema::ObjCMessageKind Kind
+ = Actions.getObjCMessageKind(getCurScope(), II, IILoc,
+ II == Ident_super,
+ NextToken().is(tok::period),
+ ReceiverType)) {
+ case Sema::ObjCSuperMessage:
+ case Sema::ObjCClassMessage:
+ CheckArrayDesignatorSyntax(*this, StartLoc, Desig);
+ if (Kind == Sema::ObjCSuperMessage)
+ return ParseAssignmentExprWithObjCMessageExprStart(StartLoc,
+ ConsumeToken(),
+ ParsedType(),
+ nullptr);
+ ConsumeToken(); // the identifier
+ if (!ReceiverType) {
+ SkipUntil(tok::r_square, StopAtSemi);
+ return ExprError();
+ }
+
+ return ParseAssignmentExprWithObjCMessageExprStart(StartLoc,
+ SourceLocation(),
+ ReceiverType,
+ nullptr);
+
+ case Sema::ObjCInstanceMessage:
+ // Fall through; we'll just parse the expression and
+ // (possibly) treat this like an Objective-C message send
+ // later.
+ break;
+ }
+ }
+
+ // Parse the index expression, if we haven't already gotten one
+ // above (which can only happen in Objective-C++).
+ // Note that we parse this as an assignment expression, not a constant
+ // expression (allowing *=, =, etc) to handle the objc case. Sema needs
+ // to validate that the expression is a constant.
+ // FIXME: We also need to tell Sema that we're in a
+ // potentially-potentially evaluated context.
+ if (!Idx.get()) {
+ Idx = ParseAssignmentExpression();
+ if (Idx.isInvalid()) {
+ SkipUntil(tok::r_square, StopAtSemi);
+ return Idx;
+ }
+ }
+
+ // Given an expression, we could either have a designator (if the next
+ // tokens are '...' or ']' or an objc message send. If this is an objc
+ // message send, handle it now. An objc-message send is the start of
+ // an assignment-expression production.
+ if (getLangOpts().ObjC1 && Tok.isNot(tok::ellipsis) &&
+ Tok.isNot(tok::r_square)) {
+ CheckArrayDesignatorSyntax(*this, Tok.getLocation(), Desig);
+ return ParseAssignmentExprWithObjCMessageExprStart(StartLoc,
+ SourceLocation(),
+ ParsedType(),
+ Idx.get());
+ }
+
+ // If this is a normal array designator, remember it.
+ if (Tok.isNot(tok::ellipsis)) {
+ Desig.AddDesignator(Designator::getArray(Idx.get(), StartLoc));
+ } else {
+ // Handle the gnu array range extension.
+ Diag(Tok, diag::ext_gnu_array_range);
+ SourceLocation EllipsisLoc = ConsumeToken();
+
+ ExprResult RHS(ParseConstantExpression());
+ if (RHS.isInvalid()) {
+ SkipUntil(tok::r_square, StopAtSemi);
+ return RHS;
+ }
+ Desig.AddDesignator(Designator::getArrayRange(Idx.get(),
+ RHS.get(),
+ StartLoc, EllipsisLoc));
+ }
+
+ T.consumeClose();
+ Desig.getDesignator(Desig.getNumDesignators() - 1).setRBracketLoc(
+ T.getCloseLocation());
+ }
+
+ // Okay, we're done with the designator sequence. We know that there must be
+ // at least one designator, because the only case we can get into this method
+ // without a designator is when we have an objc message send. That case is
+ // handled and returned from above.
+ assert(!Desig.empty() && "Designator is empty?");
+
+ // Handle a normal designator sequence end, which is an equal.
+ if (Tok.is(tok::equal)) {
+ SourceLocation EqualLoc = ConsumeToken();
+ return Actions.ActOnDesignatedInitializer(Desig, EqualLoc, false,
+ ParseInitializer());
+ }
+
+ // We read some number of designators and found something that isn't an = or
+ // an initializer. If we have exactly one array designator, this
+ // is the GNU 'designation: array-designator' extension. Otherwise, it is a
+ // parse error.
+ if (Desig.getNumDesignators() == 1 &&
+ (Desig.getDesignator(0).isArrayDesignator() ||
+ Desig.getDesignator(0).isArrayRangeDesignator())) {
+ Diag(Tok, diag::ext_gnu_missing_equal_designator)
+ << FixItHint::CreateInsertion(Tok.getLocation(), "= ");
+ return Actions.ActOnDesignatedInitializer(Desig, Tok.getLocation(),
+ true, ParseInitializer());
+ }
+
+ Diag(Tok, diag::err_expected_equal_designator);
+ return ExprError();
+}
+
+
+/// ParseBraceInitializer - Called when parsing an initializer that has a
+/// leading open brace.
+///
+/// initializer: [C99 6.7.8]
+/// '{' initializer-list '}'
+/// '{' initializer-list ',' '}'
+/// [GNU] '{' '}'
+///
+/// initializer-list:
+/// designation[opt] initializer ...[opt]
+/// initializer-list ',' designation[opt] initializer ...[opt]
+///
+ExprResult Parser::ParseBraceInitializer() {
+ InMessageExpressionRAIIObject InMessage(*this, false);
+
+ BalancedDelimiterTracker T(*this, tok::l_brace);
+ T.consumeOpen();
+ SourceLocation LBraceLoc = T.getOpenLocation();
+
+ /// InitExprs - This is the actual list of expressions contained in the
+ /// initializer.
+ ExprVector InitExprs;
+
+ if (Tok.is(tok::r_brace)) {
+ // Empty initializers are a C++ feature and a GNU extension to C.
+ if (!getLangOpts().CPlusPlus)
+ Diag(LBraceLoc, diag::ext_gnu_empty_initializer);
+ // Match the '}'.
+ return Actions.ActOnInitList(LBraceLoc, None, ConsumeBrace());
+ }
+
+ bool InitExprsOk = true;
+
+ while (1) {
+ // Handle Microsoft __if_exists/if_not_exists if necessary.
+ if (getLangOpts().MicrosoftExt && (Tok.is(tok::kw___if_exists) ||
+ Tok.is(tok::kw___if_not_exists))) {
+ if (ParseMicrosoftIfExistsBraceInitializer(InitExprs, InitExprsOk)) {
+ if (Tok.isNot(tok::comma)) break;
+ ConsumeToken();
+ }
+ if (Tok.is(tok::r_brace)) break;
+ continue;
+ }
+
+ // Parse: designation[opt] initializer
+
+ // If we know that this cannot be a designation, just parse the nested
+ // initializer directly.
+ ExprResult SubElt;
+ if (MayBeDesignationStart())
+ SubElt = ParseInitializerWithPotentialDesignator();
+ else
+ SubElt = ParseInitializer();
+
+ if (Tok.is(tok::ellipsis))
+ SubElt = Actions.ActOnPackExpansion(SubElt.get(), ConsumeToken());
+
+ SubElt = Actions.CorrectDelayedTyposInExpr(SubElt.get());
+
+ // If we couldn't parse the subelement, bail out.
+ if (SubElt.isUsable()) {
+ InitExprs.push_back(SubElt.get());
+ } else {
+ InitExprsOk = false;
+
+ // We have two ways to try to recover from this error: if the code looks
+ // grammatically ok (i.e. we have a comma coming up) try to continue
+ // parsing the rest of the initializer. This allows us to emit
+ // diagnostics for later elements that we find. If we don't see a comma,
+ // assume there is a parse error, and just skip to recover.
+ // FIXME: This comment doesn't sound right. If there is a r_brace
+ // immediately, it can't be an error, since there is no other way of
+ // leaving this loop except through this if.
+ if (Tok.isNot(tok::comma)) {
+ SkipUntil(tok::r_brace, StopBeforeMatch);
+ break;
+ }
+ }
+
+ // If we don't have a comma continued list, we're done.
+ if (Tok.isNot(tok::comma)) break;
+
+ // TODO: save comma locations if some client cares.
+ ConsumeToken();
+
+ // Handle trailing comma.
+ if (Tok.is(tok::r_brace)) break;
+ }
+
+ bool closed = !T.consumeClose();
+
+ if (InitExprsOk && closed)
+ return Actions.ActOnInitList(LBraceLoc, InitExprs,
+ T.getCloseLocation());
+
+ return ExprError(); // an error occurred.
+}
+
+
+// Return true if a comma (or closing brace) is necessary after the
+// __if_exists/if_not_exists statement.
+bool Parser::ParseMicrosoftIfExistsBraceInitializer(ExprVector &InitExprs,
+ bool &InitExprsOk) {
+ bool trailingComma = false;
+ IfExistsCondition Result;
+ if (ParseMicrosoftIfExistsCondition(Result))
+ return false;
+
+ BalancedDelimiterTracker Braces(*this, tok::l_brace);
+ if (Braces.consumeOpen()) {
+ Diag(Tok, diag::err_expected) << tok::l_brace;
+ return false;
+ }
+
+ switch (Result.Behavior) {
+ case IEB_Parse:
+ // Parse the declarations below.
+ break;
+
+ case IEB_Dependent:
+ Diag(Result.KeywordLoc, diag::warn_microsoft_dependent_exists)
+ << Result.IsIfExists;
+ // Fall through to skip.
+
+ case IEB_Skip:
+ Braces.skipToEnd();
+ return false;
+ }
+
+ while (!isEofOrEom()) {
+ trailingComma = false;
+ // If we know that this cannot be a designation, just parse the nested
+ // initializer directly.
+ ExprResult SubElt;
+ if (MayBeDesignationStart())
+ SubElt = ParseInitializerWithPotentialDesignator();
+ else
+ SubElt = ParseInitializer();
+
+ if (Tok.is(tok::ellipsis))
+ SubElt = Actions.ActOnPackExpansion(SubElt.get(), ConsumeToken());
+
+ // If we couldn't parse the subelement, bail out.
+ if (!SubElt.isInvalid())
+ InitExprs.push_back(SubElt.get());
+ else
+ InitExprsOk = false;
+
+ if (Tok.is(tok::comma)) {
+ ConsumeToken();
+ trailingComma = true;
+ }
+
+ if (Tok.is(tok::r_brace))
+ break;
+ }
+
+ Braces.consumeClose();
+
+ return !trailingComma;
+}
diff --git a/contrib/llvm/tools/clang/lib/Parse/ParseObjc.cpp b/contrib/llvm/tools/clang/lib/Parse/ParseObjc.cpp
new file mode 100644
index 0000000..691f53f
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Parse/ParseObjc.cpp
@@ -0,0 +1,2930 @@
+//===--- ParseObjC.cpp - Objective C Parsing ------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Objective-C portions of the Parser interface.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Parse/Parser.h"
+#include "RAIIObjectsForParser.h"
+#include "clang/Basic/CharInfo.h"
+#include "clang/Parse/ParseDiagnostic.h"
+#include "clang/Sema/DeclSpec.h"
+#include "clang/Sema/PrettyDeclStackTrace.h"
+#include "clang/Sema/Scope.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringExtras.h"
+using namespace clang;
+
+/// Skips attributes after an Objective-C @ directive. Emits a diagnostic.
+void Parser::MaybeSkipAttributes(tok::ObjCKeywordKind Kind) {
+ ParsedAttributes attrs(AttrFactory);
+ if (Tok.is(tok::kw___attribute)) {
+ if (Kind == tok::objc_interface || Kind == tok::objc_protocol)
+ Diag(Tok, diag::err_objc_postfix_attribute_hint)
+ << (Kind == tok::objc_protocol);
+ else
+ Diag(Tok, diag::err_objc_postfix_attribute);
+ ParseGNUAttributes(attrs);
+ }
+}
+
+/// ParseObjCAtDirectives - Handle parts of the external-declaration production:
+/// external-declaration: [C99 6.9]
+/// [OBJC] objc-class-definition
+/// [OBJC] objc-class-declaration
+/// [OBJC] objc-alias-declaration
+/// [OBJC] objc-protocol-definition
+/// [OBJC] objc-method-definition
+/// [OBJC] '@' 'end'
+Parser::DeclGroupPtrTy Parser::ParseObjCAtDirectives() {
+ SourceLocation AtLoc = ConsumeToken(); // the "@"
+
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteObjCAtDirective(getCurScope());
+ cutOffParsing();
+ return DeclGroupPtrTy();
+ }
+
+ Decl *SingleDecl = nullptr;
+ switch (Tok.getObjCKeywordID()) {
+ case tok::objc_class:
+ return ParseObjCAtClassDeclaration(AtLoc);
+ case tok::objc_interface: {
+ ParsedAttributes attrs(AttrFactory);
+ SingleDecl = ParseObjCAtInterfaceDeclaration(AtLoc, attrs);
+ break;
+ }
+ case tok::objc_protocol: {
+ ParsedAttributes attrs(AttrFactory);
+ return ParseObjCAtProtocolDeclaration(AtLoc, attrs);
+ }
+ case tok::objc_implementation:
+ return ParseObjCAtImplementationDeclaration(AtLoc);
+ case tok::objc_end:
+ return ParseObjCAtEndDeclaration(AtLoc);
+ case tok::objc_compatibility_alias:
+ SingleDecl = ParseObjCAtAliasDeclaration(AtLoc);
+ break;
+ case tok::objc_synthesize:
+ SingleDecl = ParseObjCPropertySynthesize(AtLoc);
+ break;
+ case tok::objc_dynamic:
+ SingleDecl = ParseObjCPropertyDynamic(AtLoc);
+ break;
+ case tok::objc_import:
+ if (getLangOpts().Modules || getLangOpts().DebuggerSupport)
+ return ParseModuleImport(AtLoc);
+ Diag(AtLoc, diag::err_atimport);
+ SkipUntil(tok::semi);
+ return Actions.ConvertDeclToDeclGroup(nullptr);
+ default:
+ Diag(AtLoc, diag::err_unexpected_at);
+ SkipUntil(tok::semi);
+ SingleDecl = nullptr;
+ break;
+ }
+ return Actions.ConvertDeclToDeclGroup(SingleDecl);
+}
+
+///
+/// objc-class-declaration:
+/// '@' 'class' identifier-list ';'
+///
+Parser::DeclGroupPtrTy
+Parser::ParseObjCAtClassDeclaration(SourceLocation atLoc) {
+ ConsumeToken(); // the identifier "class"
+ SmallVector<IdentifierInfo *, 8> ClassNames;
+ SmallVector<SourceLocation, 8> ClassLocs;
+
+
+ while (1) {
+ MaybeSkipAttributes(tok::objc_class);
+ if (Tok.isNot(tok::identifier)) {
+ Diag(Tok, diag::err_expected) << tok::identifier;
+ SkipUntil(tok::semi);
+ return Actions.ConvertDeclToDeclGroup(nullptr);
+ }
+ ClassNames.push_back(Tok.getIdentifierInfo());
+ ClassLocs.push_back(Tok.getLocation());
+ ConsumeToken();
+
+ if (!TryConsumeToken(tok::comma))
+ break;
+ }
+
+ // Consume the ';'.
+ if (ExpectAndConsume(tok::semi, diag::err_expected_after, "@class"))
+ return Actions.ConvertDeclToDeclGroup(nullptr);
+
+ return Actions.ActOnForwardClassDeclaration(atLoc, ClassNames.data(),
+ ClassLocs.data(),
+ ClassNames.size());
+}
+
+void Parser::CheckNestedObjCContexts(SourceLocation AtLoc)
+{
+ Sema::ObjCContainerKind ock = Actions.getObjCContainerKind();
+ if (ock == Sema::OCK_None)
+ return;
+
+ Decl *Decl = Actions.getObjCDeclContext();
+ if (CurParsedObjCImpl) {
+ CurParsedObjCImpl->finish(AtLoc);
+ } else {
+ Actions.ActOnAtEnd(getCurScope(), AtLoc);
+ }
+ Diag(AtLoc, diag::err_objc_missing_end)
+ << FixItHint::CreateInsertion(AtLoc, "@end\n");
+ if (Decl)
+ Diag(Decl->getLocStart(), diag::note_objc_container_start)
+ << (int) ock;
+}
+
+///
+/// objc-interface:
+/// objc-class-interface-attributes[opt] objc-class-interface
+/// objc-category-interface
+///
+/// objc-class-interface:
+/// '@' 'interface' identifier objc-superclass[opt]
+/// objc-protocol-refs[opt]
+/// objc-class-instance-variables[opt]
+/// objc-interface-decl-list
+/// @end
+///
+/// objc-category-interface:
+/// '@' 'interface' identifier '(' identifier[opt] ')'
+/// objc-protocol-refs[opt]
+/// objc-interface-decl-list
+/// @end
+///
+/// objc-superclass:
+/// ':' identifier
+///
+/// objc-class-interface-attributes:
+/// __attribute__((visibility("default")))
+/// __attribute__((visibility("hidden")))
+/// __attribute__((deprecated))
+/// __attribute__((unavailable))
+/// __attribute__((objc_exception)) - used by NSException on 64-bit
+/// __attribute__((objc_root_class))
+///
+Decl *Parser::ParseObjCAtInterfaceDeclaration(SourceLocation AtLoc,
+ ParsedAttributes &attrs) {
+ assert(Tok.isObjCAtKeyword(tok::objc_interface) &&
+ "ParseObjCAtInterfaceDeclaration(): Expected @interface");
+ CheckNestedObjCContexts(AtLoc);
+ ConsumeToken(); // the "interface" identifier
+
+ // Code completion after '@interface'.
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteObjCInterfaceDecl(getCurScope());
+ cutOffParsing();
+ return nullptr;
+ }
+
+ MaybeSkipAttributes(tok::objc_interface);
+
+ if (Tok.isNot(tok::identifier)) {
+ Diag(Tok, diag::err_expected)
+ << tok::identifier; // missing class or category name.
+ return nullptr;
+ }
+
+ // We have a class or category name - consume it.
+ IdentifierInfo *nameId = Tok.getIdentifierInfo();
+ SourceLocation nameLoc = ConsumeToken();
+ if (Tok.is(tok::l_paren) &&
+ !isKnownToBeTypeSpecifier(GetLookAheadToken(1))) { // we have a category.
+
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ T.consumeOpen();
+
+ SourceLocation categoryLoc;
+ IdentifierInfo *categoryId = nullptr;
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteObjCInterfaceCategory(getCurScope(), nameId, nameLoc);
+ cutOffParsing();
+ return nullptr;
+ }
+
+ // For ObjC2, the category name is optional (not an error).
+ if (Tok.is(tok::identifier)) {
+ categoryId = Tok.getIdentifierInfo();
+ categoryLoc = ConsumeToken();
+ }
+ else if (!getLangOpts().ObjC2) {
+ Diag(Tok, diag::err_expected)
+ << tok::identifier; // missing category name.
+ return nullptr;
+ }
+
+ T.consumeClose();
+ if (T.getCloseLocation().isInvalid())
+ return nullptr;
+
+ if (!attrs.empty()) { // categories don't support attributes.
+ Diag(nameLoc, diag::err_objc_no_attributes_on_category);
+ attrs.clear();
+ }
+
+ // Next, we need to check for any protocol references.
+ SourceLocation LAngleLoc, EndProtoLoc;
+ SmallVector<Decl *, 8> ProtocolRefs;
+ SmallVector<SourceLocation, 8> ProtocolLocs;
+ if (Tok.is(tok::less) &&
+ ParseObjCProtocolReferences(ProtocolRefs, ProtocolLocs, true, true,
+ LAngleLoc, EndProtoLoc))
+ return nullptr;
+
+ Decl *CategoryType =
+ Actions.ActOnStartCategoryInterface(AtLoc,
+ nameId, nameLoc,
+ categoryId, categoryLoc,
+ ProtocolRefs.data(),
+ ProtocolRefs.size(),
+ ProtocolLocs.data(),
+ EndProtoLoc);
+
+ if (Tok.is(tok::l_brace))
+ ParseObjCClassInstanceVariables(CategoryType, tok::objc_private, AtLoc);
+
+ ParseObjCInterfaceDeclList(tok::objc_not_keyword, CategoryType);
+ return CategoryType;
+ }
+ // Parse a class interface.
+ IdentifierInfo *superClassId = nullptr;
+ SourceLocation superClassLoc;
+
+ if (Tok.is(tok::colon)) { // a super class is specified.
+ ConsumeToken();
+
+ // Code completion of superclass names.
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteObjCSuperclass(getCurScope(), nameId, nameLoc);
+ cutOffParsing();
+ return nullptr;
+ }
+
+ if (Tok.isNot(tok::identifier)) {
+ Diag(Tok, diag::err_expected)
+ << tok::identifier; // missing super class name.
+ return nullptr;
+ }
+ superClassId = Tok.getIdentifierInfo();
+ superClassLoc = ConsumeToken();
+ }
+ // Next, we need to check for any protocol references.
+ SmallVector<Decl *, 8> ProtocolRefs;
+ SmallVector<SourceLocation, 8> ProtocolLocs;
+ SourceLocation LAngleLoc, EndProtoLoc;
+ if (Tok.is(tok::less) &&
+ ParseObjCProtocolReferences(ProtocolRefs, ProtocolLocs, true, true,
+ LAngleLoc, EndProtoLoc))
+ return nullptr;
+
+ if (Tok.isNot(tok::less))
+ Actions.ActOnTypedefedProtocols(ProtocolRefs, superClassId, superClassLoc);
+
+ Decl *ClsType =
+ Actions.ActOnStartClassInterface(AtLoc, nameId, nameLoc,
+ superClassId, superClassLoc,
+ ProtocolRefs.data(), ProtocolRefs.size(),
+ ProtocolLocs.data(),
+ EndProtoLoc, attrs.getList());
+
+ if (Tok.is(tok::l_brace))
+ ParseObjCClassInstanceVariables(ClsType, tok::objc_protected, AtLoc);
+
+ ParseObjCInterfaceDeclList(tok::objc_interface, ClsType);
+ return ClsType;
+}
+
+/// objc-interface-decl-list:
+/// empty
+/// objc-interface-decl-list objc-property-decl [OBJC2]
+/// objc-interface-decl-list objc-method-requirement [OBJC2]
+/// objc-interface-decl-list objc-method-proto ';'
+/// objc-interface-decl-list declaration
+/// objc-interface-decl-list ';'
+///
+/// objc-method-requirement: [OBJC2]
+/// @required
+/// @optional
+///
+void Parser::ParseObjCInterfaceDeclList(tok::ObjCKeywordKind contextKey,
+ Decl *CDecl) {
+ SmallVector<Decl *, 32> allMethods;
+ SmallVector<Decl *, 16> allProperties;
+ SmallVector<DeclGroupPtrTy, 8> allTUVariables;
+ tok::ObjCKeywordKind MethodImplKind = tok::objc_not_keyword;
+
+ SourceRange AtEnd;
+
+ while (1) {
+ // If this is a method prototype, parse it.
+ if (Tok.is(tok::minus) || Tok.is(tok::plus)) {
+ if (Decl *methodPrototype =
+ ParseObjCMethodPrototype(MethodImplKind, false))
+ allMethods.push_back(methodPrototype);
+ // Consume the ';' here, since ParseObjCMethodPrototype() is re-used for
+ // method definitions.
+ if (ExpectAndConsumeSemi(diag::err_expected_semi_after_method_proto)) {
+ // We didn't find a semi and we error'ed out. Skip until a ';' or '@'.
+ SkipUntil(tok::at, StopAtSemi | StopBeforeMatch);
+ if (Tok.is(tok::semi))
+ ConsumeToken();
+ }
+ continue;
+ }
+ if (Tok.is(tok::l_paren)) {
+ Diag(Tok, diag::err_expected_minus_or_plus);
+ ParseObjCMethodDecl(Tok.getLocation(),
+ tok::minus,
+ MethodImplKind, false);
+ continue;
+ }
+ // Ignore excess semicolons.
+ if (Tok.is(tok::semi)) {
+ ConsumeToken();
+ continue;
+ }
+
+ // If we got to the end of the file, exit the loop.
+ if (isEofOrEom())
+ break;
+
+ // Code completion within an Objective-C interface.
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteOrdinaryName(getCurScope(),
+ CurParsedObjCImpl? Sema::PCC_ObjCImplementation
+ : Sema::PCC_ObjCInterface);
+ return cutOffParsing();
+ }
+
+ // If we don't have an @ directive, parse it as a function definition.
+ if (Tok.isNot(tok::at)) {
+ // The code below does not consume '}'s because it is afraid of eating the
+ // end of a namespace. Because of the way this code is structured, an
+ // erroneous r_brace would cause an infinite loop if not handled here.
+ if (Tok.is(tok::r_brace))
+ break;
+ ParsedAttributesWithRange attrs(AttrFactory);
+ allTUVariables.push_back(ParseDeclarationOrFunctionDefinition(attrs));
+ continue;
+ }
+
+ // Otherwise, we have an @ directive, eat the @.
+ SourceLocation AtLoc = ConsumeToken(); // the "@"
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteObjCAtDirective(getCurScope());
+ return cutOffParsing();
+ }
+
+ tok::ObjCKeywordKind DirectiveKind = Tok.getObjCKeywordID();
+
+ if (DirectiveKind == tok::objc_end) { // @end -> terminate list
+ AtEnd.setBegin(AtLoc);
+ AtEnd.setEnd(Tok.getLocation());
+ break;
+ } else if (DirectiveKind == tok::objc_not_keyword) {
+ Diag(Tok, diag::err_objc_unknown_at);
+ SkipUntil(tok::semi);
+ continue;
+ }
+
+ // Eat the identifier.
+ ConsumeToken();
+
+ switch (DirectiveKind) {
+ default:
+ // FIXME: If someone forgets an @end on a protocol, this loop will
+ // continue to eat up tons of stuff and spew lots of nonsense errors. It
+ // would probably be better to bail out if we saw an @class or @interface
+ // or something like that.
+ Diag(AtLoc, diag::err_objc_illegal_interface_qual);
+ // Skip until we see an '@' or '}' or ';'.
+ SkipUntil(tok::r_brace, tok::at, StopAtSemi);
+ break;
+
+ case tok::objc_implementation:
+ case tok::objc_interface:
+ Diag(AtLoc, diag::err_objc_missing_end)
+ << FixItHint::CreateInsertion(AtLoc, "@end\n");
+ Diag(CDecl->getLocStart(), diag::note_objc_container_start)
+ << (int) Actions.getObjCContainerKind();
+ ConsumeToken();
+ break;
+
+ case tok::objc_required:
+ case tok::objc_optional:
+ // This is only valid on protocols.
+ // FIXME: Should this check for ObjC2 being enabled?
+ if (contextKey != tok::objc_protocol)
+ Diag(AtLoc, diag::err_objc_directive_only_in_protocol);
+ else
+ MethodImplKind = DirectiveKind;
+ break;
+
+ case tok::objc_property:
+ if (!getLangOpts().ObjC2)
+ Diag(AtLoc, diag::err_objc_properties_require_objc2);
+
+ ObjCDeclSpec OCDS;
+ SourceLocation LParenLoc;
+ // Parse property attribute list, if any.
+ if (Tok.is(tok::l_paren)) {
+ LParenLoc = Tok.getLocation();
+ ParseObjCPropertyAttribute(OCDS);
+ }
+
+ auto ObjCPropertyCallback = [&](ParsingFieldDeclarator &FD) {
+ if (FD.D.getIdentifier() == nullptr) {
+ Diag(AtLoc, diag::err_objc_property_requires_field_name)
+ << FD.D.getSourceRange();
+ return;
+ }
+ if (FD.BitfieldSize) {
+ Diag(AtLoc, diag::err_objc_property_bitfield)
+ << FD.D.getSourceRange();
+ return;
+ }
+
+ // Install the property declarator into interfaceDecl.
+ IdentifierInfo *SelName =
+ OCDS.getGetterName() ? OCDS.getGetterName() : FD.D.getIdentifier();
+
+ Selector GetterSel = PP.getSelectorTable().getNullarySelector(SelName);
+ IdentifierInfo *SetterName = OCDS.getSetterName();
+ Selector SetterSel;
+ if (SetterName)
+ SetterSel = PP.getSelectorTable().getSelector(1, &SetterName);
+ else
+ SetterSel = SelectorTable::constructSetterSelector(
+ PP.getIdentifierTable(), PP.getSelectorTable(),
+ FD.D.getIdentifier());
+ bool isOverridingProperty = false;
+ Decl *Property = Actions.ActOnProperty(
+ getCurScope(), AtLoc, LParenLoc, FD, OCDS, GetterSel, SetterSel,
+ &isOverridingProperty, MethodImplKind);
+ if (!isOverridingProperty)
+ allProperties.push_back(Property);
+
+ FD.complete(Property);
+ };
+
+ // Parse all the comma separated declarators.
+ ParsingDeclSpec DS(*this);
+ ParseStructDeclaration(DS, ObjCPropertyCallback);
+
+ ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
+ break;
+ }
+ }
+
+ // We break out of the big loop in two cases: when we see @end or when we see
+ // EOF. In the former case, eat the @end. In the later case, emit an error.
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteObjCAtDirective(getCurScope());
+ return cutOffParsing();
+ } else if (Tok.isObjCAtKeyword(tok::objc_end)) {
+ ConsumeToken(); // the "end" identifier
+ } else {
+ Diag(Tok, diag::err_objc_missing_end)
+ << FixItHint::CreateInsertion(Tok.getLocation(), "\n@end\n");
+ Diag(CDecl->getLocStart(), diag::note_objc_container_start)
+ << (int) Actions.getObjCContainerKind();
+ AtEnd.setBegin(Tok.getLocation());
+ AtEnd.setEnd(Tok.getLocation());
+ }
+
+ // Insert collected methods declarations into the @interface object.
+ // This passes in an invalid SourceLocation for AtEndLoc when EOF is hit.
+ Actions.ActOnAtEnd(getCurScope(), AtEnd, allMethods, allTUVariables);
+}
+
+/// Parse property attribute declarations.
+///
+/// property-attr-decl: '(' property-attrlist ')'
+/// property-attrlist:
+/// property-attribute
+/// property-attrlist ',' property-attribute
+/// property-attribute:
+/// getter '=' identifier
+/// setter '=' identifier ':'
+/// readonly
+/// readwrite
+/// assign
+/// retain
+/// copy
+/// nonatomic
+/// atomic
+/// strong
+/// weak
+/// unsafe_unretained
+///
+void Parser::ParseObjCPropertyAttribute(ObjCDeclSpec &DS) {
+ assert(Tok.getKind() == tok::l_paren);
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ T.consumeOpen();
+
+ while (1) {
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteObjCPropertyFlags(getCurScope(), DS);
+ return cutOffParsing();
+ }
+ const IdentifierInfo *II = Tok.getIdentifierInfo();
+
+ // If this is not an identifier at all, bail out early.
+ if (!II) {
+ T.consumeClose();
+ return;
+ }
+
+ SourceLocation AttrName = ConsumeToken(); // consume last attribute name
+
+ if (II->isStr("readonly"))
+ DS.setPropertyAttributes(ObjCDeclSpec::DQ_PR_readonly);
+ else if (II->isStr("assign"))
+ DS.setPropertyAttributes(ObjCDeclSpec::DQ_PR_assign);
+ else if (II->isStr("unsafe_unretained"))
+ DS.setPropertyAttributes(ObjCDeclSpec::DQ_PR_unsafe_unretained);
+ else if (II->isStr("readwrite"))
+ DS.setPropertyAttributes(ObjCDeclSpec::DQ_PR_readwrite);
+ else if (II->isStr("retain"))
+ DS.setPropertyAttributes(ObjCDeclSpec::DQ_PR_retain);
+ else if (II->isStr("strong"))
+ DS.setPropertyAttributes(ObjCDeclSpec::DQ_PR_strong);
+ else if (II->isStr("copy"))
+ DS.setPropertyAttributes(ObjCDeclSpec::DQ_PR_copy);
+ else if (II->isStr("nonatomic"))
+ DS.setPropertyAttributes(ObjCDeclSpec::DQ_PR_nonatomic);
+ else if (II->isStr("atomic"))
+ DS.setPropertyAttributes(ObjCDeclSpec::DQ_PR_atomic);
+ else if (II->isStr("weak"))
+ DS.setPropertyAttributes(ObjCDeclSpec::DQ_PR_weak);
+ else if (II->isStr("getter") || II->isStr("setter")) {
+ bool IsSetter = II->getNameStart()[0] == 's';
+
+ // getter/setter require extra treatment.
+ unsigned DiagID = IsSetter ? diag::err_objc_expected_equal_for_setter :
+ diag::err_objc_expected_equal_for_getter;
+
+ if (ExpectAndConsume(tok::equal, DiagID)) {
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return;
+ }
+
+ if (Tok.is(tok::code_completion)) {
+ if (IsSetter)
+ Actions.CodeCompleteObjCPropertySetter(getCurScope());
+ else
+ Actions.CodeCompleteObjCPropertyGetter(getCurScope());
+ return cutOffParsing();
+ }
+
+
+ SourceLocation SelLoc;
+ IdentifierInfo *SelIdent = ParseObjCSelectorPiece(SelLoc);
+
+ if (!SelIdent) {
+ Diag(Tok, diag::err_objc_expected_selector_for_getter_setter)
+ << IsSetter;
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return;
+ }
+
+ if (IsSetter) {
+ DS.setPropertyAttributes(ObjCDeclSpec::DQ_PR_setter);
+ DS.setSetterName(SelIdent);
+
+ if (ExpectAndConsume(tok::colon,
+ diag::err_expected_colon_after_setter_name)) {
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return;
+ }
+ } else {
+ DS.setPropertyAttributes(ObjCDeclSpec::DQ_PR_getter);
+ DS.setGetterName(SelIdent);
+ }
+ } else {
+ Diag(AttrName, diag::err_objc_expected_property_attr) << II;
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return;
+ }
+
+ if (Tok.isNot(tok::comma))
+ break;
+
+ ConsumeToken();
+ }
+
+ T.consumeClose();
+}
+
+/// objc-method-proto:
+/// objc-instance-method objc-method-decl objc-method-attributes[opt]
+/// objc-class-method objc-method-decl objc-method-attributes[opt]
+///
+/// objc-instance-method: '-'
+/// objc-class-method: '+'
+///
+/// objc-method-attributes: [OBJC2]
+/// __attribute__((deprecated))
+///
+Decl *Parser::ParseObjCMethodPrototype(tok::ObjCKeywordKind MethodImplKind,
+ bool MethodDefinition) {
+ assert((Tok.is(tok::minus) || Tok.is(tok::plus)) && "expected +/-");
+
+ tok::TokenKind methodType = Tok.getKind();
+ SourceLocation mLoc = ConsumeToken();
+ Decl *MDecl = ParseObjCMethodDecl(mLoc, methodType, MethodImplKind,
+ MethodDefinition);
+ // Since this rule is used for both method declarations and definitions,
+ // the caller is (optionally) responsible for consuming the ';'.
+ return MDecl;
+}
+
+/// objc-selector:
+/// identifier
+/// one of
+/// enum struct union if else while do for switch case default
+/// break continue return goto asm sizeof typeof __alignof
+/// unsigned long const short volatile signed restrict _Complex
+/// in out inout bycopy byref oneway int char float double void _Bool
+///
+IdentifierInfo *Parser::ParseObjCSelectorPiece(SourceLocation &SelectorLoc) {
+
+ switch (Tok.getKind()) {
+ default:
+ return nullptr;
+ case tok::ampamp:
+ case tok::ampequal:
+ case tok::amp:
+ case tok::pipe:
+ case tok::tilde:
+ case tok::exclaim:
+ case tok::exclaimequal:
+ case tok::pipepipe:
+ case tok::pipeequal:
+ case tok::caret:
+ case tok::caretequal: {
+ std::string ThisTok(PP.getSpelling(Tok));
+ if (isLetter(ThisTok[0])) {
+ IdentifierInfo *II = &PP.getIdentifierTable().get(ThisTok.data());
+ Tok.setKind(tok::identifier);
+ SelectorLoc = ConsumeToken();
+ return II;
+ }
+ return nullptr;
+ }
+
+ case tok::identifier:
+ case tok::kw_asm:
+ case tok::kw_auto:
+ case tok::kw_bool:
+ case tok::kw_break:
+ case tok::kw_case:
+ case tok::kw_catch:
+ case tok::kw_char:
+ case tok::kw_class:
+ case tok::kw_const:
+ case tok::kw_const_cast:
+ case tok::kw_continue:
+ case tok::kw_default:
+ case tok::kw_delete:
+ case tok::kw_do:
+ case tok::kw_double:
+ case tok::kw_dynamic_cast:
+ case tok::kw_else:
+ case tok::kw_enum:
+ case tok::kw_explicit:
+ case tok::kw_export:
+ case tok::kw_extern:
+ case tok::kw_false:
+ case tok::kw_float:
+ case tok::kw_for:
+ case tok::kw_friend:
+ case tok::kw_goto:
+ case tok::kw_if:
+ case tok::kw_inline:
+ case tok::kw_int:
+ case tok::kw_long:
+ case tok::kw_mutable:
+ case tok::kw_namespace:
+ case tok::kw_new:
+ case tok::kw_operator:
+ case tok::kw_private:
+ case tok::kw_protected:
+ case tok::kw_public:
+ case tok::kw_register:
+ case tok::kw_reinterpret_cast:
+ case tok::kw_restrict:
+ case tok::kw_return:
+ case tok::kw_short:
+ case tok::kw_signed:
+ case tok::kw_sizeof:
+ case tok::kw_static:
+ case tok::kw_static_cast:
+ case tok::kw_struct:
+ case tok::kw_switch:
+ case tok::kw_template:
+ case tok::kw_this:
+ case tok::kw_throw:
+ case tok::kw_true:
+ case tok::kw_try:
+ case tok::kw_typedef:
+ case tok::kw_typeid:
+ case tok::kw_typename:
+ case tok::kw_typeof:
+ case tok::kw_union:
+ case tok::kw_unsigned:
+ case tok::kw_using:
+ case tok::kw_virtual:
+ case tok::kw_void:
+ case tok::kw_volatile:
+ case tok::kw_wchar_t:
+ case tok::kw_while:
+ case tok::kw__Bool:
+ case tok::kw__Complex:
+ case tok::kw___alignof:
+ IdentifierInfo *II = Tok.getIdentifierInfo();
+ SelectorLoc = ConsumeToken();
+ return II;
+ }
+}
+
+/// objc-for-collection-in: 'in'
+///
+bool Parser::isTokIdentifier_in() const {
+ // FIXME: May have to do additional look-ahead to only allow for
+ // valid tokens following an 'in'; such as an identifier, unary operators,
+ // '[' etc.
+ return (getLangOpts().ObjC2 && Tok.is(tok::identifier) &&
+ Tok.getIdentifierInfo() == ObjCTypeQuals[objc_in]);
+}
+
+/// ParseObjCTypeQualifierList - This routine parses the objective-c's type
+/// qualifier list and builds their bitmask representation in the input
+/// argument.
+///
+/// objc-type-qualifiers:
+/// objc-type-qualifier
+/// objc-type-qualifiers objc-type-qualifier
+///
+void Parser::ParseObjCTypeQualifierList(ObjCDeclSpec &DS,
+ Declarator::TheContext Context) {
+ assert(Context == Declarator::ObjCParameterContext ||
+ Context == Declarator::ObjCResultContext);
+
+ while (1) {
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteObjCPassingType(getCurScope(), DS,
+ Context == Declarator::ObjCParameterContext);
+ return cutOffParsing();
+ }
+
+ if (Tok.isNot(tok::identifier))
+ return;
+
+ const IdentifierInfo *II = Tok.getIdentifierInfo();
+ for (unsigned i = 0; i != objc_NumQuals; ++i) {
+ if (II != ObjCTypeQuals[i])
+ continue;
+
+ ObjCDeclSpec::ObjCDeclQualifier Qual;
+ switch (i) {
+ default: llvm_unreachable("Unknown decl qualifier");
+ case objc_in: Qual = ObjCDeclSpec::DQ_In; break;
+ case objc_out: Qual = ObjCDeclSpec::DQ_Out; break;
+ case objc_inout: Qual = ObjCDeclSpec::DQ_Inout; break;
+ case objc_oneway: Qual = ObjCDeclSpec::DQ_Oneway; break;
+ case objc_bycopy: Qual = ObjCDeclSpec::DQ_Bycopy; break;
+ case objc_byref: Qual = ObjCDeclSpec::DQ_Byref; break;
+ }
+ DS.setObjCDeclQualifier(Qual);
+ ConsumeToken();
+ II = nullptr;
+ break;
+ }
+
+ // If this wasn't a recognized qualifier, bail out.
+ if (II) return;
+ }
+}
+
+/// Take all the decl attributes out of the given list and add
+/// them to the given attribute set.
+static void takeDeclAttributes(ParsedAttributes &attrs,
+ AttributeList *list) {
+ while (list) {
+ AttributeList *cur = list;
+ list = cur->getNext();
+
+ if (!cur->isUsedAsTypeAttr()) {
+ // Clear out the next pointer. We're really completely
+ // destroying the internal invariants of the declarator here,
+ // but it doesn't matter because we're done with it.
+ cur->setNext(nullptr);
+ attrs.add(cur);
+ }
+ }
+}
+
+/// takeDeclAttributes - Take all the decl attributes from the given
+/// declarator and add them to the given list.
+static void takeDeclAttributes(ParsedAttributes &attrs,
+ Declarator &D) {
+ // First, take ownership of all attributes.
+ attrs.getPool().takeAllFrom(D.getAttributePool());
+ attrs.getPool().takeAllFrom(D.getDeclSpec().getAttributePool());
+
+ // Now actually move the attributes over.
+ takeDeclAttributes(attrs, D.getDeclSpec().getAttributes().getList());
+ takeDeclAttributes(attrs, D.getAttributes());
+ for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i)
+ takeDeclAttributes(attrs,
+ const_cast<AttributeList*>(D.getTypeObject(i).getAttrs()));
+}
+
+/// objc-type-name:
+/// '(' objc-type-qualifiers[opt] type-name ')'
+/// '(' objc-type-qualifiers[opt] ')'
+///
+ParsedType Parser::ParseObjCTypeName(ObjCDeclSpec &DS,
+ Declarator::TheContext context,
+ ParsedAttributes *paramAttrs) {
+ assert(context == Declarator::ObjCParameterContext ||
+ context == Declarator::ObjCResultContext);
+ assert((paramAttrs != nullptr) ==
+ (context == Declarator::ObjCParameterContext));
+
+ assert(Tok.is(tok::l_paren) && "expected (");
+
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ T.consumeOpen();
+
+ SourceLocation TypeStartLoc = Tok.getLocation();
+ ObjCDeclContextSwitch ObjCDC(*this);
+
+ // Parse type qualifiers, in, inout, etc.
+ ParseObjCTypeQualifierList(DS, context);
+
+ ParsedType Ty;
+ if (isTypeSpecifierQualifier()) {
+ // Parse an abstract declarator.
+ DeclSpec declSpec(AttrFactory);
+ declSpec.setObjCQualifiers(&DS);
+ ParseSpecifierQualifierList(declSpec);
+ declSpec.SetRangeEnd(Tok.getLocation());
+ Declarator declarator(declSpec, context);
+ ParseDeclarator(declarator);
+
+ // If that's not invalid, extract a type.
+ if (!declarator.isInvalidType()) {
+ TypeResult type = Actions.ActOnTypeName(getCurScope(), declarator);
+ if (!type.isInvalid())
+ Ty = type.get();
+
+ // If we're parsing a parameter, steal all the decl attributes
+ // and add them to the decl spec.
+ if (context == Declarator::ObjCParameterContext)
+ takeDeclAttributes(*paramAttrs, declarator);
+ }
+ } else if (context == Declarator::ObjCResultContext &&
+ Tok.is(tok::identifier)) {
+ if (!Ident_instancetype)
+ Ident_instancetype = PP.getIdentifierInfo("instancetype");
+
+ if (Tok.getIdentifierInfo() == Ident_instancetype) {
+ Ty = Actions.ActOnObjCInstanceType(Tok.getLocation());
+ ConsumeToken();
+ }
+ }
+
+ if (Tok.is(tok::r_paren))
+ T.consumeClose();
+ else if (Tok.getLocation() == TypeStartLoc) {
+ // If we didn't eat any tokens, then this isn't a type.
+ Diag(Tok, diag::err_expected_type);
+ SkipUntil(tok::r_paren, StopAtSemi);
+ } else {
+ // Otherwise, we found *something*, but didn't get a ')' in the right
+ // place. Emit an error then return what we have as the type.
+ T.consumeClose();
+ }
+ return Ty;
+}
+
+/// objc-method-decl:
+/// objc-selector
+/// objc-keyword-selector objc-parmlist[opt]
+/// objc-type-name objc-selector
+/// objc-type-name objc-keyword-selector objc-parmlist[opt]
+///
+/// objc-keyword-selector:
+/// objc-keyword-decl
+/// objc-keyword-selector objc-keyword-decl
+///
+/// objc-keyword-decl:
+/// objc-selector ':' objc-type-name objc-keyword-attributes[opt] identifier
+/// objc-selector ':' objc-keyword-attributes[opt] identifier
+/// ':' objc-type-name objc-keyword-attributes[opt] identifier
+/// ':' objc-keyword-attributes[opt] identifier
+///
+/// objc-parmlist:
+/// objc-parms objc-ellipsis[opt]
+///
+/// objc-parms:
+/// objc-parms , parameter-declaration
+///
+/// objc-ellipsis:
+/// , ...
+///
+/// objc-keyword-attributes: [OBJC2]
+/// __attribute__((unused))
+///
+Decl *Parser::ParseObjCMethodDecl(SourceLocation mLoc,
+ tok::TokenKind mType,
+ tok::ObjCKeywordKind MethodImplKind,
+ bool MethodDefinition) {
+ ParsingDeclRAIIObject PD(*this, ParsingDeclRAIIObject::NoParent);
+
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteObjCMethodDecl(getCurScope(), mType == tok::minus,
+ /*ReturnType=*/ ParsedType());
+ cutOffParsing();
+ return nullptr;
+ }
+
+ // Parse the return type if present.
+ ParsedType ReturnType;
+ ObjCDeclSpec DSRet;
+ if (Tok.is(tok::l_paren))
+ ReturnType = ParseObjCTypeName(DSRet, Declarator::ObjCResultContext,
+ nullptr);
+
+ // If attributes exist before the method, parse them.
+ ParsedAttributes methodAttrs(AttrFactory);
+ if (getLangOpts().ObjC2)
+ MaybeParseGNUAttributes(methodAttrs);
+
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteObjCMethodDecl(getCurScope(), mType == tok::minus,
+ ReturnType);
+ cutOffParsing();
+ return nullptr;
+ }
+
+ // Now parse the selector.
+ SourceLocation selLoc;
+ IdentifierInfo *SelIdent = ParseObjCSelectorPiece(selLoc);
+
+ // An unnamed colon is valid.
+ if (!SelIdent && Tok.isNot(tok::colon)) { // missing selector name.
+ Diag(Tok, diag::err_expected_selector_for_method)
+ << SourceRange(mLoc, Tok.getLocation());
+ // Skip until we get a ; or @.
+ SkipUntil(tok::at, StopAtSemi | StopBeforeMatch);
+ return nullptr;
+ }
+
+ SmallVector<DeclaratorChunk::ParamInfo, 8> CParamInfo;
+ if (Tok.isNot(tok::colon)) {
+ // If attributes exist after the method, parse them.
+ if (getLangOpts().ObjC2)
+ MaybeParseGNUAttributes(methodAttrs);
+
+ Selector Sel = PP.getSelectorTable().getNullarySelector(SelIdent);
+ Decl *Result
+ = Actions.ActOnMethodDeclaration(getCurScope(), mLoc, Tok.getLocation(),
+ mType, DSRet, ReturnType,
+ selLoc, Sel, nullptr,
+ CParamInfo.data(), CParamInfo.size(),
+ methodAttrs.getList(), MethodImplKind,
+ false, MethodDefinition);
+ PD.complete(Result);
+ return Result;
+ }
+
+ SmallVector<IdentifierInfo *, 12> KeyIdents;
+ SmallVector<SourceLocation, 12> KeyLocs;
+ SmallVector<Sema::ObjCArgInfo, 12> ArgInfos;
+ ParseScope PrototypeScope(this, Scope::FunctionPrototypeScope |
+ Scope::FunctionDeclarationScope | Scope::DeclScope);
+
+ AttributePool allParamAttrs(AttrFactory);
+ while (1) {
+ ParsedAttributes paramAttrs(AttrFactory);
+ Sema::ObjCArgInfo ArgInfo;
+
+ // Each iteration parses a single keyword argument.
+ if (ExpectAndConsume(tok::colon))
+ break;
+
+ ArgInfo.Type = ParsedType();
+ if (Tok.is(tok::l_paren)) // Parse the argument type if present.
+ ArgInfo.Type = ParseObjCTypeName(ArgInfo.DeclSpec,
+ Declarator::ObjCParameterContext,
+ &paramAttrs);
+
+ // If attributes exist before the argument name, parse them.
+ // Regardless, collect all the attributes we've parsed so far.
+ ArgInfo.ArgAttrs = nullptr;
+ if (getLangOpts().ObjC2) {
+ MaybeParseGNUAttributes(paramAttrs);
+ ArgInfo.ArgAttrs = paramAttrs.getList();
+ }
+
+ // Code completion for the next piece of the selector.
+ if (Tok.is(tok::code_completion)) {
+ KeyIdents.push_back(SelIdent);
+ Actions.CodeCompleteObjCMethodDeclSelector(getCurScope(),
+ mType == tok::minus,
+ /*AtParameterName=*/true,
+ ReturnType, KeyIdents);
+ cutOffParsing();
+ return nullptr;
+ }
+
+ if (Tok.isNot(tok::identifier)) {
+ Diag(Tok, diag::err_expected)
+ << tok::identifier; // missing argument name.
+ break;
+ }
+
+ ArgInfo.Name = Tok.getIdentifierInfo();
+ ArgInfo.NameLoc = Tok.getLocation();
+ ConsumeToken(); // Eat the identifier.
+
+ ArgInfos.push_back(ArgInfo);
+ KeyIdents.push_back(SelIdent);
+ KeyLocs.push_back(selLoc);
+
+ // Make sure the attributes persist.
+ allParamAttrs.takeAllFrom(paramAttrs.getPool());
+
+ // Code completion for the next piece of the selector.
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteObjCMethodDeclSelector(getCurScope(),
+ mType == tok::minus,
+ /*AtParameterName=*/false,
+ ReturnType, KeyIdents);
+ cutOffParsing();
+ return nullptr;
+ }
+
+ // Check for another keyword selector.
+ SelIdent = ParseObjCSelectorPiece(selLoc);
+ if (!SelIdent && Tok.isNot(tok::colon))
+ break;
+ if (!SelIdent) {
+ SourceLocation ColonLoc = Tok.getLocation();
+ if (PP.getLocForEndOfToken(ArgInfo.NameLoc) == ColonLoc) {
+ Diag(ArgInfo.NameLoc, diag::warn_missing_selector_name) << ArgInfo.Name;
+ Diag(ArgInfo.NameLoc, diag::note_missing_selector_name) << ArgInfo.Name;
+ Diag(ColonLoc, diag::note_force_empty_selector_name) << ArgInfo.Name;
+ }
+ }
+ // We have a selector or a colon, continue parsing.
+ }
+
+ bool isVariadic = false;
+ bool cStyleParamWarned = false;
+ // Parse the (optional) parameter list.
+ while (Tok.is(tok::comma)) {
+ ConsumeToken();
+ if (Tok.is(tok::ellipsis)) {
+ isVariadic = true;
+ ConsumeToken();
+ break;
+ }
+ if (!cStyleParamWarned) {
+ Diag(Tok, diag::warn_cstyle_param);
+ cStyleParamWarned = true;
+ }
+ DeclSpec DS(AttrFactory);
+ ParseDeclarationSpecifiers(DS);
+ // Parse the declarator.
+ Declarator ParmDecl(DS, Declarator::PrototypeContext);
+ ParseDeclarator(ParmDecl);
+ IdentifierInfo *ParmII = ParmDecl.getIdentifier();
+ Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDecl);
+ CParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
+ ParmDecl.getIdentifierLoc(),
+ Param,
+ nullptr));
+ }
+
+ // FIXME: Add support for optional parameter list...
+ // If attributes exist after the method, parse them.
+ if (getLangOpts().ObjC2)
+ MaybeParseGNUAttributes(methodAttrs);
+
+ if (KeyIdents.size() == 0)
+ return nullptr;
+
+ Selector Sel = PP.getSelectorTable().getSelector(KeyIdents.size(),
+ &KeyIdents[0]);
+ Decl *Result
+ = Actions.ActOnMethodDeclaration(getCurScope(), mLoc, Tok.getLocation(),
+ mType, DSRet, ReturnType,
+ KeyLocs, Sel, &ArgInfos[0],
+ CParamInfo.data(), CParamInfo.size(),
+ methodAttrs.getList(),
+ MethodImplKind, isVariadic, MethodDefinition);
+
+ PD.complete(Result);
+ return Result;
+}
+
+/// objc-protocol-refs:
+/// '<' identifier-list '>'
+///
+bool Parser::
+ParseObjCProtocolReferences(SmallVectorImpl<Decl *> &Protocols,
+ SmallVectorImpl<SourceLocation> &ProtocolLocs,
+ bool WarnOnDeclarations, bool ForObjCContainer,
+ SourceLocation &LAngleLoc, SourceLocation &EndLoc) {
+ assert(Tok.is(tok::less) && "expected <");
+
+ LAngleLoc = ConsumeToken(); // the "<"
+
+ SmallVector<IdentifierLocPair, 8> ProtocolIdents;
+
+ while (1) {
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteObjCProtocolReferences(ProtocolIdents.data(),
+ ProtocolIdents.size());
+ cutOffParsing();
+ return true;
+ }
+
+ if (Tok.isNot(tok::identifier)) {
+ Diag(Tok, diag::err_expected) << tok::identifier;
+ SkipUntil(tok::greater, StopAtSemi);
+ return true;
+ }
+ ProtocolIdents.push_back(std::make_pair(Tok.getIdentifierInfo(),
+ Tok.getLocation()));
+ ProtocolLocs.push_back(Tok.getLocation());
+ ConsumeToken();
+
+ if (!TryConsumeToken(tok::comma))
+ break;
+ }
+
+ // Consume the '>'.
+ if (ParseGreaterThanInTemplateList(EndLoc, /*ConsumeLastToken=*/true))
+ return true;
+
+ // Convert the list of protocols identifiers into a list of protocol decls.
+ Actions.FindProtocolDeclaration(WarnOnDeclarations, ForObjCContainer,
+ &ProtocolIdents[0], ProtocolIdents.size(),
+ Protocols);
+ return false;
+}
+
+/// \brief Parse the Objective-C protocol qualifiers that follow a typename
+/// in a decl-specifier-seq, starting at the '<'.
+bool Parser::ParseObjCProtocolQualifiers(DeclSpec &DS) {
+ assert(Tok.is(tok::less) && "Protocol qualifiers start with '<'");
+ assert(getLangOpts().ObjC1 && "Protocol qualifiers only exist in Objective-C");
+ SourceLocation LAngleLoc, EndProtoLoc;
+ SmallVector<Decl *, 8> ProtocolDecl;
+ SmallVector<SourceLocation, 8> ProtocolLocs;
+ bool Result = ParseObjCProtocolReferences(ProtocolDecl, ProtocolLocs, false,
+ false,
+ LAngleLoc, EndProtoLoc);
+ DS.setProtocolQualifiers(ProtocolDecl.data(), ProtocolDecl.size(),
+ ProtocolLocs.data(), LAngleLoc);
+ if (EndProtoLoc.isValid())
+ DS.SetRangeEnd(EndProtoLoc);
+ return Result;
+}
+
+void Parser::HelperActionsForIvarDeclarations(Decl *interfaceDecl, SourceLocation atLoc,
+ BalancedDelimiterTracker &T,
+ SmallVectorImpl<Decl *> &AllIvarDecls,
+ bool RBraceMissing) {
+ if (!RBraceMissing)
+ T.consumeClose();
+
+ Actions.ActOnObjCContainerStartDefinition(interfaceDecl);
+ Actions.ActOnLastBitfield(T.getCloseLocation(), AllIvarDecls);
+ Actions.ActOnObjCContainerFinishDefinition();
+ // Call ActOnFields() even if we don't have any decls. This is useful
+ // for code rewriting tools that need to be aware of the empty list.
+ Actions.ActOnFields(getCurScope(), atLoc, interfaceDecl,
+ AllIvarDecls,
+ T.getOpenLocation(), T.getCloseLocation(), nullptr);
+}
+
+/// objc-class-instance-variables:
+/// '{' objc-instance-variable-decl-list[opt] '}'
+///
+/// objc-instance-variable-decl-list:
+/// objc-visibility-spec
+/// objc-instance-variable-decl ';'
+/// ';'
+/// objc-instance-variable-decl-list objc-visibility-spec
+/// objc-instance-variable-decl-list objc-instance-variable-decl ';'
+/// objc-instance-variable-decl-list ';'
+///
+/// objc-visibility-spec:
+/// @private
+/// @protected
+/// @public
+/// @package [OBJC2]
+///
+/// objc-instance-variable-decl:
+/// struct-declaration
+///
+void Parser::ParseObjCClassInstanceVariables(Decl *interfaceDecl,
+ tok::ObjCKeywordKind visibility,
+ SourceLocation atLoc) {
+ assert(Tok.is(tok::l_brace) && "expected {");
+ SmallVector<Decl *, 32> AllIvarDecls;
+
+ ParseScope ClassScope(this, Scope::DeclScope|Scope::ClassScope);
+ ObjCDeclContextSwitch ObjCDC(*this);
+
+ BalancedDelimiterTracker T(*this, tok::l_brace);
+ T.consumeOpen();
+ // While we still have something to read, read the instance variables.
+ while (Tok.isNot(tok::r_brace) && !isEofOrEom()) {
+ // Each iteration of this loop reads one objc-instance-variable-decl.
+
+ // Check for extraneous top-level semicolon.
+ if (Tok.is(tok::semi)) {
+ ConsumeExtraSemi(InstanceVariableList);
+ continue;
+ }
+
+ // Set the default visibility to private.
+ if (TryConsumeToken(tok::at)) { // parse objc-visibility-spec
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteObjCAtVisibility(getCurScope());
+ return cutOffParsing();
+ }
+
+ switch (Tok.getObjCKeywordID()) {
+ case tok::objc_private:
+ case tok::objc_public:
+ case tok::objc_protected:
+ case tok::objc_package:
+ visibility = Tok.getObjCKeywordID();
+ ConsumeToken();
+ continue;
+
+ case tok::objc_end:
+ Diag(Tok, diag::err_objc_unexpected_atend);
+ Tok.setLocation(Tok.getLocation().getLocWithOffset(-1));
+ Tok.setKind(tok::at);
+ Tok.setLength(1);
+ PP.EnterToken(Tok);
+ HelperActionsForIvarDeclarations(interfaceDecl, atLoc,
+ T, AllIvarDecls, true);
+ return;
+
+ default:
+ Diag(Tok, diag::err_objc_illegal_visibility_spec);
+ continue;
+ }
+ }
+
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteOrdinaryName(getCurScope(),
+ Sema::PCC_ObjCInstanceVariableList);
+ return cutOffParsing();
+ }
+
+ auto ObjCIvarCallback = [&](ParsingFieldDeclarator &FD) {
+ Actions.ActOnObjCContainerStartDefinition(interfaceDecl);
+ // Install the declarator into the interface decl.
+ Decl *Field = Actions.ActOnIvar(
+ getCurScope(), FD.D.getDeclSpec().getSourceRange().getBegin(), FD.D,
+ FD.BitfieldSize, visibility);
+ Actions.ActOnObjCContainerFinishDefinition();
+ if (Field)
+ AllIvarDecls.push_back(Field);
+ FD.complete(Field);
+ };
+
+ // Parse all the comma separated declarators.
+ ParsingDeclSpec DS(*this);
+ ParseStructDeclaration(DS, ObjCIvarCallback);
+
+ if (Tok.is(tok::semi)) {
+ ConsumeToken();
+ } else {
+ Diag(Tok, diag::err_expected_semi_decl_list);
+ // Skip to end of block or statement
+ SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
+ }
+ }
+ HelperActionsForIvarDeclarations(interfaceDecl, atLoc,
+ T, AllIvarDecls, false);
+ return;
+}
+
+/// objc-protocol-declaration:
+/// objc-protocol-definition
+/// objc-protocol-forward-reference
+///
+/// objc-protocol-definition:
+/// \@protocol identifier
+/// objc-protocol-refs[opt]
+/// objc-interface-decl-list
+/// \@end
+///
+/// objc-protocol-forward-reference:
+/// \@protocol identifier-list ';'
+///
+/// "\@protocol identifier ;" should be resolved as "\@protocol
+/// identifier-list ;": objc-interface-decl-list may not start with a
+/// semicolon in the first alternative if objc-protocol-refs are omitted.
+Parser::DeclGroupPtrTy
+Parser::ParseObjCAtProtocolDeclaration(SourceLocation AtLoc,
+ ParsedAttributes &attrs) {
+ assert(Tok.isObjCAtKeyword(tok::objc_protocol) &&
+ "ParseObjCAtProtocolDeclaration(): Expected @protocol");
+ ConsumeToken(); // the "protocol" identifier
+
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteObjCProtocolDecl(getCurScope());
+ cutOffParsing();
+ return DeclGroupPtrTy();
+ }
+
+ MaybeSkipAttributes(tok::objc_protocol);
+
+ if (Tok.isNot(tok::identifier)) {
+ Diag(Tok, diag::err_expected) << tok::identifier; // missing protocol name.
+ return DeclGroupPtrTy();
+ }
+ // Save the protocol name, then consume it.
+ IdentifierInfo *protocolName = Tok.getIdentifierInfo();
+ SourceLocation nameLoc = ConsumeToken();
+
+ if (TryConsumeToken(tok::semi)) { // forward declaration of one protocol.
+ IdentifierLocPair ProtoInfo(protocolName, nameLoc);
+ return Actions.ActOnForwardProtocolDeclaration(AtLoc, &ProtoInfo, 1,
+ attrs.getList());
+ }
+
+ CheckNestedObjCContexts(AtLoc);
+
+ if (Tok.is(tok::comma)) { // list of forward declarations.
+ SmallVector<IdentifierLocPair, 8> ProtocolRefs;
+ ProtocolRefs.push_back(std::make_pair(protocolName, nameLoc));
+
+ // Parse the list of forward declarations.
+ while (1) {
+ ConsumeToken(); // the ','
+ if (Tok.isNot(tok::identifier)) {
+ Diag(Tok, diag::err_expected) << tok::identifier;
+ SkipUntil(tok::semi);
+ return DeclGroupPtrTy();
+ }
+ ProtocolRefs.push_back(IdentifierLocPair(Tok.getIdentifierInfo(),
+ Tok.getLocation()));
+ ConsumeToken(); // the identifier
+
+ if (Tok.isNot(tok::comma))
+ break;
+ }
+ // Consume the ';'.
+ if (ExpectAndConsume(tok::semi, diag::err_expected_after, "@protocol"))
+ return DeclGroupPtrTy();
+
+ return Actions.ActOnForwardProtocolDeclaration(AtLoc,
+ &ProtocolRefs[0],
+ ProtocolRefs.size(),
+ attrs.getList());
+ }
+
+ // Last, and definitely not least, parse a protocol declaration.
+ SourceLocation LAngleLoc, EndProtoLoc;
+
+ SmallVector<Decl *, 8> ProtocolRefs;
+ SmallVector<SourceLocation, 8> ProtocolLocs;
+ if (Tok.is(tok::less) &&
+ ParseObjCProtocolReferences(ProtocolRefs, ProtocolLocs, false, true,
+ LAngleLoc, EndProtoLoc))
+ return DeclGroupPtrTy();
+
+ Decl *ProtoType =
+ Actions.ActOnStartProtocolInterface(AtLoc, protocolName, nameLoc,
+ ProtocolRefs.data(),
+ ProtocolRefs.size(),
+ ProtocolLocs.data(),
+ EndProtoLoc, attrs.getList());
+
+ ParseObjCInterfaceDeclList(tok::objc_protocol, ProtoType);
+ return Actions.ConvertDeclToDeclGroup(ProtoType);
+}
+
+/// objc-implementation:
+/// objc-class-implementation-prologue
+/// objc-category-implementation-prologue
+///
+/// objc-class-implementation-prologue:
+/// @implementation identifier objc-superclass[opt]
+/// objc-class-instance-variables[opt]
+///
+/// objc-category-implementation-prologue:
+/// @implementation identifier ( identifier )
+Parser::DeclGroupPtrTy
+Parser::ParseObjCAtImplementationDeclaration(SourceLocation AtLoc) {
+ assert(Tok.isObjCAtKeyword(tok::objc_implementation) &&
+ "ParseObjCAtImplementationDeclaration(): Expected @implementation");
+ CheckNestedObjCContexts(AtLoc);
+ ConsumeToken(); // the "implementation" identifier
+
+ // Code completion after '@implementation'.
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteObjCImplementationDecl(getCurScope());
+ cutOffParsing();
+ return DeclGroupPtrTy();
+ }
+
+ MaybeSkipAttributes(tok::objc_implementation);
+
+ if (Tok.isNot(tok::identifier)) {
+ Diag(Tok, diag::err_expected)
+ << tok::identifier; // missing class or category name.
+ return DeclGroupPtrTy();
+ }
+ // We have a class or category name - consume it.
+ IdentifierInfo *nameId = Tok.getIdentifierInfo();
+ SourceLocation nameLoc = ConsumeToken(); // consume class or category name
+ Decl *ObjCImpDecl = nullptr;
+
+ if (Tok.is(tok::l_paren)) {
+ // we have a category implementation.
+ ConsumeParen();
+ SourceLocation categoryLoc, rparenLoc;
+ IdentifierInfo *categoryId = nullptr;
+
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteObjCImplementationCategory(getCurScope(), nameId, nameLoc);
+ cutOffParsing();
+ return DeclGroupPtrTy();
+ }
+
+ if (Tok.is(tok::identifier)) {
+ categoryId = Tok.getIdentifierInfo();
+ categoryLoc = ConsumeToken();
+ } else {
+ Diag(Tok, diag::err_expected)
+ << tok::identifier; // missing category name.
+ return DeclGroupPtrTy();
+ }
+ if (Tok.isNot(tok::r_paren)) {
+ Diag(Tok, diag::err_expected) << tok::r_paren;
+ SkipUntil(tok::r_paren); // don't stop at ';'
+ return DeclGroupPtrTy();
+ }
+ rparenLoc = ConsumeParen();
+ if (Tok.is(tok::less)) { // we have illegal '<' try to recover
+ Diag(Tok, diag::err_unexpected_protocol_qualifier);
+ AttributeFactory attr;
+ DeclSpec DS(attr);
+ (void)ParseObjCProtocolQualifiers(DS);
+ }
+ ObjCImpDecl = Actions.ActOnStartCategoryImplementation(
+ AtLoc, nameId, nameLoc, categoryId,
+ categoryLoc);
+
+ } else {
+ // We have a class implementation
+ SourceLocation superClassLoc;
+ IdentifierInfo *superClassId = nullptr;
+ if (TryConsumeToken(tok::colon)) {
+ // We have a super class
+ if (Tok.isNot(tok::identifier)) {
+ Diag(Tok, diag::err_expected)
+ << tok::identifier; // missing super class name.
+ return DeclGroupPtrTy();
+ }
+ superClassId = Tok.getIdentifierInfo();
+ superClassLoc = ConsumeToken(); // Consume super class name
+ }
+ ObjCImpDecl = Actions.ActOnStartClassImplementation(
+ AtLoc, nameId, nameLoc,
+ superClassId, superClassLoc);
+
+ if (Tok.is(tok::l_brace)) // we have ivars
+ ParseObjCClassInstanceVariables(ObjCImpDecl, tok::objc_private, AtLoc);
+ else if (Tok.is(tok::less)) { // we have illegal '<' try to recover
+ Diag(Tok, diag::err_unexpected_protocol_qualifier);
+ // try to recover.
+ AttributeFactory attr;
+ DeclSpec DS(attr);
+ (void)ParseObjCProtocolQualifiers(DS);
+ }
+ }
+ assert(ObjCImpDecl);
+
+ SmallVector<Decl *, 8> DeclsInGroup;
+
+ {
+ ObjCImplParsingDataRAII ObjCImplParsing(*this, ObjCImpDecl);
+ while (!ObjCImplParsing.isFinished() && !isEofOrEom()) {
+ ParsedAttributesWithRange attrs(AttrFactory);
+ MaybeParseCXX11Attributes(attrs);
+ MaybeParseMicrosoftAttributes(attrs);
+ if (DeclGroupPtrTy DGP = ParseExternalDeclaration(attrs)) {
+ DeclGroupRef DG = DGP.get();
+ DeclsInGroup.append(DG.begin(), DG.end());
+ }
+ }
+ }
+
+ return Actions.ActOnFinishObjCImplementation(ObjCImpDecl, DeclsInGroup);
+}
+
+Parser::DeclGroupPtrTy
+Parser::ParseObjCAtEndDeclaration(SourceRange atEnd) {
+ assert(Tok.isObjCAtKeyword(tok::objc_end) &&
+ "ParseObjCAtEndDeclaration(): Expected @end");
+ ConsumeToken(); // the "end" identifier
+ if (CurParsedObjCImpl)
+ CurParsedObjCImpl->finish(atEnd);
+ else
+ // missing @implementation
+ Diag(atEnd.getBegin(), diag::err_expected_objc_container);
+ return DeclGroupPtrTy();
+}
+
+Parser::ObjCImplParsingDataRAII::~ObjCImplParsingDataRAII() {
+ if (!Finished) {
+ finish(P.Tok.getLocation());
+ if (P.isEofOrEom()) {
+ P.Diag(P.Tok, diag::err_objc_missing_end)
+ << FixItHint::CreateInsertion(P.Tok.getLocation(), "\n@end\n");
+ P.Diag(Dcl->getLocStart(), diag::note_objc_container_start)
+ << Sema::OCK_Implementation;
+ }
+ }
+ P.CurParsedObjCImpl = nullptr;
+ assert(LateParsedObjCMethods.empty());
+}
+
+void Parser::ObjCImplParsingDataRAII::finish(SourceRange AtEnd) {
+ assert(!Finished);
+ P.Actions.DefaultSynthesizeProperties(P.getCurScope(), Dcl);
+ for (size_t i = 0; i < LateParsedObjCMethods.size(); ++i)
+ P.ParseLexedObjCMethodDefs(*LateParsedObjCMethods[i],
+ true/*Methods*/);
+
+ P.Actions.ActOnAtEnd(P.getCurScope(), AtEnd);
+
+ if (HasCFunction)
+ for (size_t i = 0; i < LateParsedObjCMethods.size(); ++i)
+ P.ParseLexedObjCMethodDefs(*LateParsedObjCMethods[i],
+ false/*c-functions*/);
+
+ /// \brief Clear and free the cached objc methods.
+ for (LateParsedObjCMethodContainer::iterator
+ I = LateParsedObjCMethods.begin(),
+ E = LateParsedObjCMethods.end(); I != E; ++I)
+ delete *I;
+ LateParsedObjCMethods.clear();
+
+ Finished = true;
+}
+
+/// compatibility-alias-decl:
+/// @compatibility_alias alias-name class-name ';'
+///
+Decl *Parser::ParseObjCAtAliasDeclaration(SourceLocation atLoc) {
+ assert(Tok.isObjCAtKeyword(tok::objc_compatibility_alias) &&
+ "ParseObjCAtAliasDeclaration(): Expected @compatibility_alias");
+ ConsumeToken(); // consume compatibility_alias
+ if (Tok.isNot(tok::identifier)) {
+ Diag(Tok, diag::err_expected) << tok::identifier;
+ return nullptr;
+ }
+ IdentifierInfo *aliasId = Tok.getIdentifierInfo();
+ SourceLocation aliasLoc = ConsumeToken(); // consume alias-name
+ if (Tok.isNot(tok::identifier)) {
+ Diag(Tok, diag::err_expected) << tok::identifier;
+ return nullptr;
+ }
+ IdentifierInfo *classId = Tok.getIdentifierInfo();
+ SourceLocation classLoc = ConsumeToken(); // consume class-name;
+ ExpectAndConsume(tok::semi, diag::err_expected_after, "@compatibility_alias");
+ return Actions.ActOnCompatibilityAlias(atLoc, aliasId, aliasLoc,
+ classId, classLoc);
+}
+
+/// property-synthesis:
+/// @synthesize property-ivar-list ';'
+///
+/// property-ivar-list:
+/// property-ivar
+/// property-ivar-list ',' property-ivar
+///
+/// property-ivar:
+/// identifier
+/// identifier '=' identifier
+///
+Decl *Parser::ParseObjCPropertySynthesize(SourceLocation atLoc) {
+ assert(Tok.isObjCAtKeyword(tok::objc_synthesize) &&
+ "ParseObjCPropertySynthesize(): Expected '@synthesize'");
+ ConsumeToken(); // consume synthesize
+
+ while (true) {
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteObjCPropertyDefinition(getCurScope());
+ cutOffParsing();
+ return nullptr;
+ }
+
+ if (Tok.isNot(tok::identifier)) {
+ Diag(Tok, diag::err_synthesized_property_name);
+ SkipUntil(tok::semi);
+ return nullptr;
+ }
+
+ IdentifierInfo *propertyIvar = nullptr;
+ IdentifierInfo *propertyId = Tok.getIdentifierInfo();
+ SourceLocation propertyLoc = ConsumeToken(); // consume property name
+ SourceLocation propertyIvarLoc;
+ if (TryConsumeToken(tok::equal)) {
+ // property '=' ivar-name
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteObjCPropertySynthesizeIvar(getCurScope(), propertyId);
+ cutOffParsing();
+ return nullptr;
+ }
+
+ if (Tok.isNot(tok::identifier)) {
+ Diag(Tok, diag::err_expected) << tok::identifier;
+ break;
+ }
+ propertyIvar = Tok.getIdentifierInfo();
+ propertyIvarLoc = ConsumeToken(); // consume ivar-name
+ }
+ Actions.ActOnPropertyImplDecl(getCurScope(), atLoc, propertyLoc, true,
+ propertyId, propertyIvar, propertyIvarLoc);
+ if (Tok.isNot(tok::comma))
+ break;
+ ConsumeToken(); // consume ','
+ }
+ ExpectAndConsume(tok::semi, diag::err_expected_after, "@synthesize");
+ return nullptr;
+}
+
+/// property-dynamic:
+/// @dynamic property-list
+///
+/// property-list:
+/// identifier
+/// property-list ',' identifier
+///
+Decl *Parser::ParseObjCPropertyDynamic(SourceLocation atLoc) {
+ assert(Tok.isObjCAtKeyword(tok::objc_dynamic) &&
+ "ParseObjCPropertyDynamic(): Expected '@dynamic'");
+ ConsumeToken(); // consume dynamic
+ while (true) {
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteObjCPropertyDefinition(getCurScope());
+ cutOffParsing();
+ return nullptr;
+ }
+
+ if (Tok.isNot(tok::identifier)) {
+ Diag(Tok, diag::err_expected) << tok::identifier;
+ SkipUntil(tok::semi);
+ return nullptr;
+ }
+
+ IdentifierInfo *propertyId = Tok.getIdentifierInfo();
+ SourceLocation propertyLoc = ConsumeToken(); // consume property name
+ Actions.ActOnPropertyImplDecl(getCurScope(), atLoc, propertyLoc, false,
+ propertyId, nullptr, SourceLocation());
+
+ if (Tok.isNot(tok::comma))
+ break;
+ ConsumeToken(); // consume ','
+ }
+ ExpectAndConsume(tok::semi, diag::err_expected_after, "@dynamic");
+ return nullptr;
+}
+
+/// objc-throw-statement:
+/// throw expression[opt];
+///
+StmtResult Parser::ParseObjCThrowStmt(SourceLocation atLoc) {
+ ExprResult Res;
+ ConsumeToken(); // consume throw
+ if (Tok.isNot(tok::semi)) {
+ Res = ParseExpression();
+ if (Res.isInvalid()) {
+ SkipUntil(tok::semi);
+ return StmtError();
+ }
+ }
+ // consume ';'
+ ExpectAndConsume(tok::semi, diag::err_expected_after, "@throw");
+ return Actions.ActOnObjCAtThrowStmt(atLoc, Res.get(), getCurScope());
+}
+
+/// objc-synchronized-statement:
+/// @synchronized '(' expression ')' compound-statement
+///
+StmtResult
+Parser::ParseObjCSynchronizedStmt(SourceLocation atLoc) {
+ ConsumeToken(); // consume synchronized
+ if (Tok.isNot(tok::l_paren)) {
+ Diag(Tok, diag::err_expected_lparen_after) << "@synchronized";
+ return StmtError();
+ }
+
+ // The operand is surrounded with parentheses.
+ ConsumeParen(); // '('
+ ExprResult operand(ParseExpression());
+
+ if (Tok.is(tok::r_paren)) {
+ ConsumeParen(); // ')'
+ } else {
+ if (!operand.isInvalid())
+ Diag(Tok, diag::err_expected) << tok::r_paren;
+
+ // Skip forward until we see a left brace, but don't consume it.
+ SkipUntil(tok::l_brace, StopAtSemi | StopBeforeMatch);
+ }
+
+ // Require a compound statement.
+ if (Tok.isNot(tok::l_brace)) {
+ if (!operand.isInvalid())
+ Diag(Tok, diag::err_expected) << tok::l_brace;
+ return StmtError();
+ }
+
+ // Check the @synchronized operand now.
+ if (!operand.isInvalid())
+ operand = Actions.ActOnObjCAtSynchronizedOperand(atLoc, operand.get());
+
+ // Parse the compound statement within a new scope.
+ ParseScope bodyScope(this, Scope::DeclScope);
+ StmtResult body(ParseCompoundStatementBody());
+ bodyScope.Exit();
+
+ // If there was a semantic or parse error earlier with the
+ // operand, fail now.
+ if (operand.isInvalid())
+ return StmtError();
+
+ if (body.isInvalid())
+ body = Actions.ActOnNullStmt(Tok.getLocation());
+
+ return Actions.ActOnObjCAtSynchronizedStmt(atLoc, operand.get(), body.get());
+}
+
+/// objc-try-catch-statement:
+/// @try compound-statement objc-catch-list[opt]
+/// @try compound-statement objc-catch-list[opt] @finally compound-statement
+///
+/// objc-catch-list:
+/// @catch ( parameter-declaration ) compound-statement
+/// objc-catch-list @catch ( catch-parameter-declaration ) compound-statement
+/// catch-parameter-declaration:
+/// parameter-declaration
+/// '...' [OBJC2]
+///
+StmtResult Parser::ParseObjCTryStmt(SourceLocation atLoc) {
+ bool catch_or_finally_seen = false;
+
+ ConsumeToken(); // consume try
+ if (Tok.isNot(tok::l_brace)) {
+ Diag(Tok, diag::err_expected) << tok::l_brace;
+ return StmtError();
+ }
+ StmtVector CatchStmts;
+ StmtResult FinallyStmt;
+ ParseScope TryScope(this, Scope::DeclScope);
+ StmtResult TryBody(ParseCompoundStatementBody());
+ TryScope.Exit();
+ if (TryBody.isInvalid())
+ TryBody = Actions.ActOnNullStmt(Tok.getLocation());
+
+ while (Tok.is(tok::at)) {
+ // At this point, we need to lookahead to determine if this @ is the start
+ // of an @catch or @finally. We don't want to consume the @ token if this
+ // is an @try or @encode or something else.
+ Token AfterAt = GetLookAheadToken(1);
+ if (!AfterAt.isObjCAtKeyword(tok::objc_catch) &&
+ !AfterAt.isObjCAtKeyword(tok::objc_finally))
+ break;
+
+ SourceLocation AtCatchFinallyLoc = ConsumeToken();
+ if (Tok.isObjCAtKeyword(tok::objc_catch)) {
+ Decl *FirstPart = nullptr;
+ ConsumeToken(); // consume catch
+ if (Tok.is(tok::l_paren)) {
+ ConsumeParen();
+ ParseScope CatchScope(this, Scope::DeclScope|Scope::AtCatchScope);
+ if (Tok.isNot(tok::ellipsis)) {
+ DeclSpec DS(AttrFactory);
+ ParseDeclarationSpecifiers(DS);
+ Declarator ParmDecl(DS, Declarator::ObjCCatchContext);
+ ParseDeclarator(ParmDecl);
+
+ // Inform the actions module about the declarator, so it
+ // gets added to the current scope.
+ FirstPart = Actions.ActOnObjCExceptionDecl(getCurScope(), ParmDecl);
+ } else
+ ConsumeToken(); // consume '...'
+
+ SourceLocation RParenLoc;
+
+ if (Tok.is(tok::r_paren))
+ RParenLoc = ConsumeParen();
+ else // Skip over garbage, until we get to ')'. Eat the ')'.
+ SkipUntil(tok::r_paren, StopAtSemi);
+
+ StmtResult CatchBody(true);
+ if (Tok.is(tok::l_brace))
+ CatchBody = ParseCompoundStatementBody();
+ else
+ Diag(Tok, diag::err_expected) << tok::l_brace;
+ if (CatchBody.isInvalid())
+ CatchBody = Actions.ActOnNullStmt(Tok.getLocation());
+
+ StmtResult Catch = Actions.ActOnObjCAtCatchStmt(AtCatchFinallyLoc,
+ RParenLoc,
+ FirstPart,
+ CatchBody.get());
+ if (!Catch.isInvalid())
+ CatchStmts.push_back(Catch.get());
+
+ } else {
+ Diag(AtCatchFinallyLoc, diag::err_expected_lparen_after)
+ << "@catch clause";
+ return StmtError();
+ }
+ catch_or_finally_seen = true;
+ } else {
+ assert(Tok.isObjCAtKeyword(tok::objc_finally) && "Lookahead confused?");
+ ConsumeToken(); // consume finally
+ ParseScope FinallyScope(this, Scope::DeclScope);
+
+ StmtResult FinallyBody(true);
+ if (Tok.is(tok::l_brace))
+ FinallyBody = ParseCompoundStatementBody();
+ else
+ Diag(Tok, diag::err_expected) << tok::l_brace;
+ if (FinallyBody.isInvalid())
+ FinallyBody = Actions.ActOnNullStmt(Tok.getLocation());
+ FinallyStmt = Actions.ActOnObjCAtFinallyStmt(AtCatchFinallyLoc,
+ FinallyBody.get());
+ catch_or_finally_seen = true;
+ break;
+ }
+ }
+ if (!catch_or_finally_seen) {
+ Diag(atLoc, diag::err_missing_catch_finally);
+ return StmtError();
+ }
+
+ return Actions.ActOnObjCAtTryStmt(atLoc, TryBody.get(),
+ CatchStmts,
+ FinallyStmt.get());
+}
+
+/// objc-autoreleasepool-statement:
+/// @autoreleasepool compound-statement
+///
+StmtResult
+Parser::ParseObjCAutoreleasePoolStmt(SourceLocation atLoc) {
+ ConsumeToken(); // consume autoreleasepool
+ if (Tok.isNot(tok::l_brace)) {
+ Diag(Tok, diag::err_expected) << tok::l_brace;
+ return StmtError();
+ }
+ // Enter a scope to hold everything within the compound stmt. Compound
+ // statements can always hold declarations.
+ ParseScope BodyScope(this, Scope::DeclScope);
+
+ StmtResult AutoreleasePoolBody(ParseCompoundStatementBody());
+
+ BodyScope.Exit();
+ if (AutoreleasePoolBody.isInvalid())
+ AutoreleasePoolBody = Actions.ActOnNullStmt(Tok.getLocation());
+ return Actions.ActOnObjCAutoreleasePoolStmt(atLoc,
+ AutoreleasePoolBody.get());
+}
+
+/// StashAwayMethodOrFunctionBodyTokens - Consume the tokens and store them
+/// for later parsing.
+void Parser::StashAwayMethodOrFunctionBodyTokens(Decl *MDecl) {
+ LexedMethod* LM = new LexedMethod(this, MDecl);
+ CurParsedObjCImpl->LateParsedObjCMethods.push_back(LM);
+ CachedTokens &Toks = LM->Toks;
+ // Begin by storing the '{' or 'try' or ':' token.
+ Toks.push_back(Tok);
+ if (Tok.is(tok::kw_try)) {
+ ConsumeToken();
+ if (Tok.is(tok::colon)) {
+ Toks.push_back(Tok);
+ ConsumeToken();
+ while (Tok.isNot(tok::l_brace)) {
+ ConsumeAndStoreUntil(tok::l_paren, Toks, /*StopAtSemi=*/false);
+ ConsumeAndStoreUntil(tok::r_paren, Toks, /*StopAtSemi=*/false);
+ }
+ }
+ Toks.push_back(Tok); // also store '{'
+ }
+ else if (Tok.is(tok::colon)) {
+ ConsumeToken();
+ while (Tok.isNot(tok::l_brace)) {
+ ConsumeAndStoreUntil(tok::l_paren, Toks, /*StopAtSemi=*/false);
+ ConsumeAndStoreUntil(tok::r_paren, Toks, /*StopAtSemi=*/false);
+ }
+ Toks.push_back(Tok); // also store '{'
+ }
+ ConsumeBrace();
+ // Consume everything up to (and including) the matching right brace.
+ ConsumeAndStoreUntil(tok::r_brace, Toks, /*StopAtSemi=*/false);
+ while (Tok.is(tok::kw_catch)) {
+ ConsumeAndStoreUntil(tok::l_brace, Toks, /*StopAtSemi=*/false);
+ ConsumeAndStoreUntil(tok::r_brace, Toks, /*StopAtSemi=*/false);
+ }
+}
+
+/// objc-method-def: objc-method-proto ';'[opt] '{' body '}'
+///
+Decl *Parser::ParseObjCMethodDefinition() {
+ Decl *MDecl = ParseObjCMethodPrototype();
+
+ PrettyDeclStackTraceEntry CrashInfo(Actions, MDecl, Tok.getLocation(),
+ "parsing Objective-C method");
+
+ // parse optional ';'
+ if (Tok.is(tok::semi)) {
+ if (CurParsedObjCImpl) {
+ Diag(Tok, diag::warn_semicolon_before_method_body)
+ << FixItHint::CreateRemoval(Tok.getLocation());
+ }
+ ConsumeToken();
+ }
+
+ // We should have an opening brace now.
+ if (Tok.isNot(tok::l_brace)) {
+ Diag(Tok, diag::err_expected_method_body);
+
+ // Skip over garbage, until we get to '{'. Don't eat the '{'.
+ SkipUntil(tok::l_brace, StopAtSemi | StopBeforeMatch);
+
+ // If we didn't find the '{', bail out.
+ if (Tok.isNot(tok::l_brace))
+ return nullptr;
+ }
+
+ if (!MDecl) {
+ ConsumeBrace();
+ SkipUntil(tok::r_brace);
+ return nullptr;
+ }
+
+ // Allow the rest of sema to find private method decl implementations.
+ Actions.AddAnyMethodToGlobalPool(MDecl);
+ assert (CurParsedObjCImpl
+ && "ParseObjCMethodDefinition - Method out of @implementation");
+ // Consume the tokens and store them for later parsing.
+ StashAwayMethodOrFunctionBodyTokens(MDecl);
+ return MDecl;
+}
+
+StmtResult Parser::ParseObjCAtStatement(SourceLocation AtLoc) {
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteObjCAtStatement(getCurScope());
+ cutOffParsing();
+ return StmtError();
+ }
+
+ if (Tok.isObjCAtKeyword(tok::objc_try))
+ return ParseObjCTryStmt(AtLoc);
+
+ if (Tok.isObjCAtKeyword(tok::objc_throw))
+ return ParseObjCThrowStmt(AtLoc);
+
+ if (Tok.isObjCAtKeyword(tok::objc_synchronized))
+ return ParseObjCSynchronizedStmt(AtLoc);
+
+ if (Tok.isObjCAtKeyword(tok::objc_autoreleasepool))
+ return ParseObjCAutoreleasePoolStmt(AtLoc);
+
+ if (Tok.isObjCAtKeyword(tok::objc_import) &&
+ getLangOpts().DebuggerSupport) {
+ SkipUntil(tok::semi);
+ return Actions.ActOnNullStmt(Tok.getLocation());
+ }
+
+ ExprResult Res(ParseExpressionWithLeadingAt(AtLoc));
+ if (Res.isInvalid()) {
+ // If the expression is invalid, skip ahead to the next semicolon. Not
+ // doing this opens us up to the possibility of infinite loops if
+ // ParseExpression does not consume any tokens.
+ SkipUntil(tok::semi);
+ return StmtError();
+ }
+
+ // Otherwise, eat the semicolon.
+ ExpectAndConsumeSemi(diag::err_expected_semi_after_expr);
+ return Actions.ActOnExprStmt(Res);
+}
+
+ExprResult Parser::ParseObjCAtExpression(SourceLocation AtLoc) {
+ switch (Tok.getKind()) {
+ case tok::code_completion:
+ Actions.CodeCompleteObjCAtExpression(getCurScope());
+ cutOffParsing();
+ return ExprError();
+
+ case tok::minus:
+ case tok::plus: {
+ tok::TokenKind Kind = Tok.getKind();
+ SourceLocation OpLoc = ConsumeToken();
+
+ if (!Tok.is(tok::numeric_constant)) {
+ const char *Symbol = nullptr;
+ switch (Kind) {
+ case tok::minus: Symbol = "-"; break;
+ case tok::plus: Symbol = "+"; break;
+ default: llvm_unreachable("missing unary operator case");
+ }
+ Diag(Tok, diag::err_nsnumber_nonliteral_unary)
+ << Symbol;
+ return ExprError();
+ }
+
+ ExprResult Lit(Actions.ActOnNumericConstant(Tok));
+ if (Lit.isInvalid()) {
+ return Lit;
+ }
+ ConsumeToken(); // Consume the literal token.
+
+ Lit = Actions.ActOnUnaryOp(getCurScope(), OpLoc, Kind, Lit.get());
+ if (Lit.isInvalid())
+ return Lit;
+
+ return ParsePostfixExpressionSuffix(
+ Actions.BuildObjCNumericLiteral(AtLoc, Lit.get()));
+ }
+
+ case tok::string_literal: // primary-expression: string-literal
+ case tok::wide_string_literal:
+ return ParsePostfixExpressionSuffix(ParseObjCStringLiteral(AtLoc));
+
+ case tok::char_constant:
+ return ParsePostfixExpressionSuffix(ParseObjCCharacterLiteral(AtLoc));
+
+ case tok::numeric_constant:
+ return ParsePostfixExpressionSuffix(ParseObjCNumericLiteral(AtLoc));
+
+ case tok::kw_true: // Objective-C++, etc.
+ case tok::kw___objc_yes: // c/c++/objc/objc++ __objc_yes
+ return ParsePostfixExpressionSuffix(ParseObjCBooleanLiteral(AtLoc, true));
+ case tok::kw_false: // Objective-C++, etc.
+ case tok::kw___objc_no: // c/c++/objc/objc++ __objc_no
+ return ParsePostfixExpressionSuffix(ParseObjCBooleanLiteral(AtLoc, false));
+
+ case tok::l_square:
+ // Objective-C array literal
+ return ParsePostfixExpressionSuffix(ParseObjCArrayLiteral(AtLoc));
+
+ case tok::l_brace:
+ // Objective-C dictionary literal
+ return ParsePostfixExpressionSuffix(ParseObjCDictionaryLiteral(AtLoc));
+
+ case tok::l_paren:
+ // Objective-C boxed expression
+ return ParsePostfixExpressionSuffix(ParseObjCBoxedExpr(AtLoc));
+
+ default:
+ if (Tok.getIdentifierInfo() == nullptr)
+ return ExprError(Diag(AtLoc, diag::err_unexpected_at));
+
+ switch (Tok.getIdentifierInfo()->getObjCKeywordID()) {
+ case tok::objc_encode:
+ return ParsePostfixExpressionSuffix(ParseObjCEncodeExpression(AtLoc));
+ case tok::objc_protocol:
+ return ParsePostfixExpressionSuffix(ParseObjCProtocolExpression(AtLoc));
+ case tok::objc_selector:
+ return ParsePostfixExpressionSuffix(ParseObjCSelectorExpression(AtLoc));
+ default: {
+ const char *str = nullptr;
+ if (GetLookAheadToken(1).is(tok::l_brace)) {
+ char ch = Tok.getIdentifierInfo()->getNameStart()[0];
+ str =
+ ch == 't' ? "try"
+ : (ch == 'f' ? "finally"
+ : (ch == 'a' ? "autoreleasepool" : nullptr));
+ }
+ if (str) {
+ SourceLocation kwLoc = Tok.getLocation();
+ return ExprError(Diag(AtLoc, diag::err_unexpected_at) <<
+ FixItHint::CreateReplacement(kwLoc, str));
+ }
+ else
+ return ExprError(Diag(AtLoc, diag::err_unexpected_at));
+ }
+ }
+ }
+}
+
+/// \brief Parse the receiver of an Objective-C++ message send.
+///
+/// This routine parses the receiver of a message send in
+/// Objective-C++ either as a type or as an expression. Note that this
+/// routine must not be called to parse a send to 'super', since it
+/// has no way to return such a result.
+///
+/// \param IsExpr Whether the receiver was parsed as an expression.
+///
+/// \param TypeOrExpr If the receiver was parsed as an expression (\c
+/// IsExpr is true), the parsed expression. If the receiver was parsed
+/// as a type (\c IsExpr is false), the parsed type.
+///
+/// \returns True if an error occurred during parsing or semantic
+/// analysis, in which case the arguments do not have valid
+/// values. Otherwise, returns false for a successful parse.
+///
+/// objc-receiver: [C++]
+/// 'super' [not parsed here]
+/// expression
+/// simple-type-specifier
+/// typename-specifier
+bool Parser::ParseObjCXXMessageReceiver(bool &IsExpr, void *&TypeOrExpr) {
+ InMessageExpressionRAIIObject InMessage(*this, true);
+
+ if (Tok.is(tok::identifier) || Tok.is(tok::coloncolon) ||
+ Tok.is(tok::kw_typename) || Tok.is(tok::annot_cxxscope))
+ TryAnnotateTypeOrScopeToken();
+
+ if (!Actions.isSimpleTypeSpecifier(Tok.getKind())) {
+ // objc-receiver:
+ // expression
+ // Make sure any typos in the receiver are corrected or diagnosed, so that
+ // proper recovery can happen. FIXME: Perhaps filter the corrected expr to
+ // only the things that are valid ObjC receivers?
+ ExprResult Receiver = Actions.CorrectDelayedTyposInExpr(ParseExpression());
+ if (Receiver.isInvalid())
+ return true;
+
+ IsExpr = true;
+ TypeOrExpr = Receiver.get();
+ return false;
+ }
+
+ // objc-receiver:
+ // typename-specifier
+ // simple-type-specifier
+ // expression (that starts with one of the above)
+ DeclSpec DS(AttrFactory);
+ ParseCXXSimpleTypeSpecifier(DS);
+
+ if (Tok.is(tok::l_paren)) {
+ // If we see an opening parentheses at this point, we are
+ // actually parsing an expression that starts with a
+ // function-style cast, e.g.,
+ //
+ // postfix-expression:
+ // simple-type-specifier ( expression-list [opt] )
+ // typename-specifier ( expression-list [opt] )
+ //
+ // Parse the remainder of this case, then the (optional)
+ // postfix-expression suffix, followed by the (optional)
+ // right-hand side of the binary expression. We have an
+ // instance method.
+ ExprResult Receiver = ParseCXXTypeConstructExpression(DS);
+ if (!Receiver.isInvalid())
+ Receiver = ParsePostfixExpressionSuffix(Receiver.get());
+ if (!Receiver.isInvalid())
+ Receiver = ParseRHSOfBinaryExpression(Receiver.get(), prec::Comma);
+ if (Receiver.isInvalid())
+ return true;
+
+ IsExpr = true;
+ TypeOrExpr = Receiver.get();
+ return false;
+ }
+
+ // We have a class message. Turn the simple-type-specifier or
+ // typename-specifier we parsed into a type and parse the
+ // remainder of the class message.
+ Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
+ TypeResult Type = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
+ if (Type.isInvalid())
+ return true;
+
+ IsExpr = false;
+ TypeOrExpr = Type.get().getAsOpaquePtr();
+ return false;
+}
+
+/// \brief Determine whether the parser is currently referring to a an
+/// Objective-C message send, using a simplified heuristic to avoid overhead.
+///
+/// This routine will only return true for a subset of valid message-send
+/// expressions.
+bool Parser::isSimpleObjCMessageExpression() {
+ assert(Tok.is(tok::l_square) && getLangOpts().ObjC1 &&
+ "Incorrect start for isSimpleObjCMessageExpression");
+ return GetLookAheadToken(1).is(tok::identifier) &&
+ GetLookAheadToken(2).is(tok::identifier);
+}
+
+bool Parser::isStartOfObjCClassMessageMissingOpenBracket() {
+ if (!getLangOpts().ObjC1 || !NextToken().is(tok::identifier) ||
+ InMessageExpression)
+ return false;
+
+
+ ParsedType Type;
+
+ if (Tok.is(tok::annot_typename))
+ Type = getTypeAnnotation(Tok);
+ else if (Tok.is(tok::identifier))
+ Type = Actions.getTypeName(*Tok.getIdentifierInfo(), Tok.getLocation(),
+ getCurScope());
+ else
+ return false;
+
+ if (!Type.get().isNull() && Type.get()->isObjCObjectOrInterfaceType()) {
+ const Token &AfterNext = GetLookAheadToken(2);
+ if (AfterNext.is(tok::colon) || AfterNext.is(tok::r_square)) {
+ if (Tok.is(tok::identifier))
+ TryAnnotateTypeOrScopeToken();
+
+ return Tok.is(tok::annot_typename);
+ }
+ }
+
+ return false;
+}
+
+/// objc-message-expr:
+/// '[' objc-receiver objc-message-args ']'
+///
+/// objc-receiver: [C]
+/// 'super'
+/// expression
+/// class-name
+/// type-name
+///
+ExprResult Parser::ParseObjCMessageExpression() {
+ assert(Tok.is(tok::l_square) && "'[' expected");
+ SourceLocation LBracLoc = ConsumeBracket(); // consume '['
+
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteObjCMessageReceiver(getCurScope());
+ cutOffParsing();
+ return ExprError();
+ }
+
+ InMessageExpressionRAIIObject InMessage(*this, true);
+
+ if (getLangOpts().CPlusPlus) {
+ // We completely separate the C and C++ cases because C++ requires
+ // more complicated (read: slower) parsing.
+
+ // Handle send to super.
+ // FIXME: This doesn't benefit from the same typo-correction we
+ // get in Objective-C.
+ if (Tok.is(tok::identifier) && Tok.getIdentifierInfo() == Ident_super &&
+ NextToken().isNot(tok::period) && getCurScope()->isInObjcMethodScope())
+ return ParseObjCMessageExpressionBody(LBracLoc, ConsumeToken(),
+ ParsedType(), nullptr);
+
+ // Parse the receiver, which is either a type or an expression.
+ bool IsExpr;
+ void *TypeOrExpr = nullptr;
+ if (ParseObjCXXMessageReceiver(IsExpr, TypeOrExpr)) {
+ SkipUntil(tok::r_square, StopAtSemi);
+ return ExprError();
+ }
+
+ if (IsExpr)
+ return ParseObjCMessageExpressionBody(LBracLoc, SourceLocation(),
+ ParsedType(),
+ static_cast<Expr*>(TypeOrExpr));
+
+ return ParseObjCMessageExpressionBody(LBracLoc, SourceLocation(),
+ ParsedType::getFromOpaquePtr(TypeOrExpr),
+ nullptr);
+ }
+
+ if (Tok.is(tok::identifier)) {
+ IdentifierInfo *Name = Tok.getIdentifierInfo();
+ SourceLocation NameLoc = Tok.getLocation();
+ ParsedType ReceiverType;
+ switch (Actions.getObjCMessageKind(getCurScope(), Name, NameLoc,
+ Name == Ident_super,
+ NextToken().is(tok::period),
+ ReceiverType)) {
+ case Sema::ObjCSuperMessage:
+ return ParseObjCMessageExpressionBody(LBracLoc, ConsumeToken(),
+ ParsedType(), nullptr);
+
+ case Sema::ObjCClassMessage:
+ if (!ReceiverType) {
+ SkipUntil(tok::r_square, StopAtSemi);
+ return ExprError();
+ }
+
+ ConsumeToken(); // the type name
+
+ return ParseObjCMessageExpressionBody(LBracLoc, SourceLocation(),
+ ReceiverType, nullptr);
+
+ case Sema::ObjCInstanceMessage:
+ // Fall through to parse an expression.
+ break;
+ }
+ }
+
+ // Otherwise, an arbitrary expression can be the receiver of a send.
+ ExprResult Res = Actions.CorrectDelayedTyposInExpr(ParseExpression());
+ if (Res.isInvalid()) {
+ SkipUntil(tok::r_square, StopAtSemi);
+ return Res;
+ }
+
+ return ParseObjCMessageExpressionBody(LBracLoc, SourceLocation(),
+ ParsedType(), Res.get());
+}
+
+/// \brief Parse the remainder of an Objective-C message following the
+/// '[' objc-receiver.
+///
+/// This routine handles sends to super, class messages (sent to a
+/// class name), and instance messages (sent to an object), and the
+/// target is represented by \p SuperLoc, \p ReceiverType, or \p
+/// ReceiverExpr, respectively. Only one of these parameters may have
+/// a valid value.
+///
+/// \param LBracLoc The location of the opening '['.
+///
+/// \param SuperLoc If this is a send to 'super', the location of the
+/// 'super' keyword that indicates a send to the superclass.
+///
+/// \param ReceiverType If this is a class message, the type of the
+/// class we are sending a message to.
+///
+/// \param ReceiverExpr If this is an instance message, the expression
+/// used to compute the receiver object.
+///
+/// objc-message-args:
+/// objc-selector
+/// objc-keywordarg-list
+///
+/// objc-keywordarg-list:
+/// objc-keywordarg
+/// objc-keywordarg-list objc-keywordarg
+///
+/// objc-keywordarg:
+/// selector-name[opt] ':' objc-keywordexpr
+///
+/// objc-keywordexpr:
+/// nonempty-expr-list
+///
+/// nonempty-expr-list:
+/// assignment-expression
+/// nonempty-expr-list , assignment-expression
+///
+ExprResult
+Parser::ParseObjCMessageExpressionBody(SourceLocation LBracLoc,
+ SourceLocation SuperLoc,
+ ParsedType ReceiverType,
+ Expr *ReceiverExpr) {
+ InMessageExpressionRAIIObject InMessage(*this, true);
+
+ if (Tok.is(tok::code_completion)) {
+ if (SuperLoc.isValid())
+ Actions.CodeCompleteObjCSuperMessage(getCurScope(), SuperLoc, None,
+ false);
+ else if (ReceiverType)
+ Actions.CodeCompleteObjCClassMessage(getCurScope(), ReceiverType, None,
+ false);
+ else
+ Actions.CodeCompleteObjCInstanceMessage(getCurScope(), ReceiverExpr,
+ None, false);
+ cutOffParsing();
+ return ExprError();
+ }
+
+ // Parse objc-selector
+ SourceLocation Loc;
+ IdentifierInfo *selIdent = ParseObjCSelectorPiece(Loc);
+
+ SmallVector<IdentifierInfo *, 12> KeyIdents;
+ SmallVector<SourceLocation, 12> KeyLocs;
+ ExprVector KeyExprs;
+
+ if (Tok.is(tok::colon)) {
+ while (1) {
+ // Each iteration parses a single keyword argument.
+ KeyIdents.push_back(selIdent);
+ KeyLocs.push_back(Loc);
+
+ if (ExpectAndConsume(tok::colon)) {
+ // We must manually skip to a ']', otherwise the expression skipper will
+ // stop at the ']' when it skips to the ';'. We want it to skip beyond
+ // the enclosing expression.
+ SkipUntil(tok::r_square, StopAtSemi);
+ return ExprError();
+ }
+
+ /// Parse the expression after ':'
+
+ if (Tok.is(tok::code_completion)) {
+ if (SuperLoc.isValid())
+ Actions.CodeCompleteObjCSuperMessage(getCurScope(), SuperLoc,
+ KeyIdents,
+ /*AtArgumentEpression=*/true);
+ else if (ReceiverType)
+ Actions.CodeCompleteObjCClassMessage(getCurScope(), ReceiverType,
+ KeyIdents,
+ /*AtArgumentEpression=*/true);
+ else
+ Actions.CodeCompleteObjCInstanceMessage(getCurScope(), ReceiverExpr,
+ KeyIdents,
+ /*AtArgumentEpression=*/true);
+
+ cutOffParsing();
+ return ExprError();
+ }
+
+ ExprResult Expr;
+ if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
+ Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
+ Expr = ParseBraceInitializer();
+ } else
+ Expr = ParseAssignmentExpression();
+
+ ExprResult Res(Expr);
+ if (Res.isInvalid()) {
+ // We must manually skip to a ']', otherwise the expression skipper will
+ // stop at the ']' when it skips to the ';'. We want it to skip beyond
+ // the enclosing expression.
+ SkipUntil(tok::r_square, StopAtSemi);
+ return Res;
+ }
+
+ // We have a valid expression.
+ KeyExprs.push_back(Res.get());
+
+ // Code completion after each argument.
+ if (Tok.is(tok::code_completion)) {
+ if (SuperLoc.isValid())
+ Actions.CodeCompleteObjCSuperMessage(getCurScope(), SuperLoc,
+ KeyIdents,
+ /*AtArgumentEpression=*/false);
+ else if (ReceiverType)
+ Actions.CodeCompleteObjCClassMessage(getCurScope(), ReceiverType,
+ KeyIdents,
+ /*AtArgumentEpression=*/false);
+ else
+ Actions.CodeCompleteObjCInstanceMessage(getCurScope(), ReceiverExpr,
+ KeyIdents,
+ /*AtArgumentEpression=*/false);
+ cutOffParsing();
+ return ExprError();
+ }
+
+ // Check for another keyword selector.
+ selIdent = ParseObjCSelectorPiece(Loc);
+ if (!selIdent && Tok.isNot(tok::colon))
+ break;
+ // We have a selector or a colon, continue parsing.
+ }
+ // Parse the, optional, argument list, comma separated.
+ while (Tok.is(tok::comma)) {
+ SourceLocation commaLoc = ConsumeToken(); // Eat the ','.
+ /// Parse the expression after ','
+ ExprResult Res(ParseAssignmentExpression());
+ if (Tok.is(tok::colon))
+ Res = Actions.CorrectDelayedTyposInExpr(Res);
+ if (Res.isInvalid()) {
+ if (Tok.is(tok::colon)) {
+ Diag(commaLoc, diag::note_extra_comma_message_arg) <<
+ FixItHint::CreateRemoval(commaLoc);
+ }
+ // We must manually skip to a ']', otherwise the expression skipper will
+ // stop at the ']' when it skips to the ';'. We want it to skip beyond
+ // the enclosing expression.
+ SkipUntil(tok::r_square, StopAtSemi);
+ return Res;
+ }
+
+ // We have a valid expression.
+ KeyExprs.push_back(Res.get());
+ }
+ } else if (!selIdent) {
+ Diag(Tok, diag::err_expected) << tok::identifier; // missing selector name.
+
+ // We must manually skip to a ']', otherwise the expression skipper will
+ // stop at the ']' when it skips to the ';'. We want it to skip beyond
+ // the enclosing expression.
+ SkipUntil(tok::r_square, StopAtSemi);
+ return ExprError();
+ }
+
+ if (Tok.isNot(tok::r_square)) {
+ Diag(Tok, diag::err_expected)
+ << (Tok.is(tok::identifier) ? tok::colon : tok::r_square);
+ // We must manually skip to a ']', otherwise the expression skipper will
+ // stop at the ']' when it skips to the ';'. We want it to skip beyond
+ // the enclosing expression.
+ SkipUntil(tok::r_square, StopAtSemi);
+ return ExprError();
+ }
+
+ SourceLocation RBracLoc = ConsumeBracket(); // consume ']'
+
+ unsigned nKeys = KeyIdents.size();
+ if (nKeys == 0) {
+ KeyIdents.push_back(selIdent);
+ KeyLocs.push_back(Loc);
+ }
+ Selector Sel = PP.getSelectorTable().getSelector(nKeys, &KeyIdents[0]);
+
+ if (SuperLoc.isValid())
+ return Actions.ActOnSuperMessage(getCurScope(), SuperLoc, Sel,
+ LBracLoc, KeyLocs, RBracLoc, KeyExprs);
+ else if (ReceiverType)
+ return Actions.ActOnClassMessage(getCurScope(), ReceiverType, Sel,
+ LBracLoc, KeyLocs, RBracLoc, KeyExprs);
+ return Actions.ActOnInstanceMessage(getCurScope(), ReceiverExpr, Sel,
+ LBracLoc, KeyLocs, RBracLoc, KeyExprs);
+}
+
+ExprResult Parser::ParseObjCStringLiteral(SourceLocation AtLoc) {
+ ExprResult Res(ParseStringLiteralExpression());
+ if (Res.isInvalid()) return Res;
+
+ // @"foo" @"bar" is a valid concatenated string. Eat any subsequent string
+ // expressions. At this point, we know that the only valid thing that starts
+ // with '@' is an @"".
+ SmallVector<SourceLocation, 4> AtLocs;
+ ExprVector AtStrings;
+ AtLocs.push_back(AtLoc);
+ AtStrings.push_back(Res.get());
+
+ while (Tok.is(tok::at)) {
+ AtLocs.push_back(ConsumeToken()); // eat the @.
+
+ // Invalid unless there is a string literal.
+ if (!isTokenStringLiteral())
+ return ExprError(Diag(Tok, diag::err_objc_concat_string));
+
+ ExprResult Lit(ParseStringLiteralExpression());
+ if (Lit.isInvalid())
+ return Lit;
+
+ AtStrings.push_back(Lit.get());
+ }
+
+ return Actions.ParseObjCStringLiteral(&AtLocs[0], AtStrings.data(),
+ AtStrings.size());
+}
+
+/// ParseObjCBooleanLiteral -
+/// objc-scalar-literal : '@' boolean-keyword
+/// ;
+/// boolean-keyword: 'true' | 'false' | '__objc_yes' | '__objc_no'
+/// ;
+ExprResult Parser::ParseObjCBooleanLiteral(SourceLocation AtLoc,
+ bool ArgValue) {
+ SourceLocation EndLoc = ConsumeToken(); // consume the keyword.
+ return Actions.ActOnObjCBoolLiteral(AtLoc, EndLoc, ArgValue);
+}
+
+/// ParseObjCCharacterLiteral -
+/// objc-scalar-literal : '@' character-literal
+/// ;
+ExprResult Parser::ParseObjCCharacterLiteral(SourceLocation AtLoc) {
+ ExprResult Lit(Actions.ActOnCharacterConstant(Tok));
+ if (Lit.isInvalid()) {
+ return Lit;
+ }
+ ConsumeToken(); // Consume the literal token.
+ return Actions.BuildObjCNumericLiteral(AtLoc, Lit.get());
+}
+
+/// ParseObjCNumericLiteral -
+/// objc-scalar-literal : '@' scalar-literal
+/// ;
+/// scalar-literal : | numeric-constant /* any numeric constant. */
+/// ;
+ExprResult Parser::ParseObjCNumericLiteral(SourceLocation AtLoc) {
+ ExprResult Lit(Actions.ActOnNumericConstant(Tok));
+ if (Lit.isInvalid()) {
+ return Lit;
+ }
+ ConsumeToken(); // Consume the literal token.
+ return Actions.BuildObjCNumericLiteral(AtLoc, Lit.get());
+}
+
+/// ParseObjCBoxedExpr -
+/// objc-box-expression:
+/// @( assignment-expression )
+ExprResult
+Parser::ParseObjCBoxedExpr(SourceLocation AtLoc) {
+ if (Tok.isNot(tok::l_paren))
+ return ExprError(Diag(Tok, diag::err_expected_lparen_after) << "@");
+
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ T.consumeOpen();
+ ExprResult ValueExpr(ParseAssignmentExpression());
+ if (T.consumeClose())
+ return ExprError();
+
+ if (ValueExpr.isInvalid())
+ return ExprError();
+
+ // Wrap the sub-expression in a parenthesized expression, to distinguish
+ // a boxed expression from a literal.
+ SourceLocation LPLoc = T.getOpenLocation(), RPLoc = T.getCloseLocation();
+ ValueExpr = Actions.ActOnParenExpr(LPLoc, RPLoc, ValueExpr.get());
+ return Actions.BuildObjCBoxedExpr(SourceRange(AtLoc, RPLoc),
+ ValueExpr.get());
+}
+
+ExprResult Parser::ParseObjCArrayLiteral(SourceLocation AtLoc) {
+ ExprVector ElementExprs; // array elements.
+ ConsumeBracket(); // consume the l_square.
+
+ while (Tok.isNot(tok::r_square)) {
+ // Parse list of array element expressions (all must be id types).
+ ExprResult Res(ParseAssignmentExpression());
+ if (Res.isInvalid()) {
+ // We must manually skip to a ']', otherwise the expression skipper will
+ // stop at the ']' when it skips to the ';'. We want it to skip beyond
+ // the enclosing expression.
+ SkipUntil(tok::r_square, StopAtSemi);
+ return Res;
+ }
+
+ // Parse the ellipsis that indicates a pack expansion.
+ if (Tok.is(tok::ellipsis))
+ Res = Actions.ActOnPackExpansion(Res.get(), ConsumeToken());
+ if (Res.isInvalid())
+ return true;
+
+ ElementExprs.push_back(Res.get());
+
+ if (Tok.is(tok::comma))
+ ConsumeToken(); // Eat the ','.
+ else if (Tok.isNot(tok::r_square))
+ return ExprError(Diag(Tok, diag::err_expected_either) << tok::r_square
+ << tok::comma);
+ }
+ SourceLocation EndLoc = ConsumeBracket(); // location of ']'
+ MultiExprArg Args(ElementExprs);
+ return Actions.BuildObjCArrayLiteral(SourceRange(AtLoc, EndLoc), Args);
+}
+
+ExprResult Parser::ParseObjCDictionaryLiteral(SourceLocation AtLoc) {
+ SmallVector<ObjCDictionaryElement, 4> Elements; // dictionary elements.
+ ConsumeBrace(); // consume the l_square.
+ while (Tok.isNot(tok::r_brace)) {
+ // Parse the comma separated key : value expressions.
+ ExprResult KeyExpr;
+ {
+ ColonProtectionRAIIObject X(*this);
+ KeyExpr = ParseAssignmentExpression();
+ if (KeyExpr.isInvalid()) {
+ // We must manually skip to a '}', otherwise the expression skipper will
+ // stop at the '}' when it skips to the ';'. We want it to skip beyond
+ // the enclosing expression.
+ SkipUntil(tok::r_brace, StopAtSemi);
+ return KeyExpr;
+ }
+ }
+
+ if (ExpectAndConsume(tok::colon)) {
+ SkipUntil(tok::r_brace, StopAtSemi);
+ return ExprError();
+ }
+
+ ExprResult ValueExpr(ParseAssignmentExpression());
+ if (ValueExpr.isInvalid()) {
+ // We must manually skip to a '}', otherwise the expression skipper will
+ // stop at the '}' when it skips to the ';'. We want it to skip beyond
+ // the enclosing expression.
+ SkipUntil(tok::r_brace, StopAtSemi);
+ return ValueExpr;
+ }
+
+ // Parse the ellipsis that designates this as a pack expansion.
+ SourceLocation EllipsisLoc;
+ if (getLangOpts().CPlusPlus)
+ TryConsumeToken(tok::ellipsis, EllipsisLoc);
+
+ // We have a valid expression. Collect it in a vector so we can
+ // build the argument list.
+ ObjCDictionaryElement Element = {
+ KeyExpr.get(), ValueExpr.get(), EllipsisLoc, None
+ };
+ Elements.push_back(Element);
+
+ if (!TryConsumeToken(tok::comma) && Tok.isNot(tok::r_brace))
+ return ExprError(Diag(Tok, diag::err_expected_either) << tok::r_brace
+ << tok::comma);
+ }
+ SourceLocation EndLoc = ConsumeBrace();
+
+ // Create the ObjCDictionaryLiteral.
+ return Actions.BuildObjCDictionaryLiteral(SourceRange(AtLoc, EndLoc),
+ Elements.data(), Elements.size());
+}
+
+/// objc-encode-expression:
+/// \@encode ( type-name )
+ExprResult
+Parser::ParseObjCEncodeExpression(SourceLocation AtLoc) {
+ assert(Tok.isObjCAtKeyword(tok::objc_encode) && "Not an @encode expression!");
+
+ SourceLocation EncLoc = ConsumeToken();
+
+ if (Tok.isNot(tok::l_paren))
+ return ExprError(Diag(Tok, diag::err_expected_lparen_after) << "@encode");
+
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ T.consumeOpen();
+
+ TypeResult Ty = ParseTypeName();
+
+ T.consumeClose();
+
+ if (Ty.isInvalid())
+ return ExprError();
+
+ return Actions.ParseObjCEncodeExpression(AtLoc, EncLoc, T.getOpenLocation(),
+ Ty.get(), T.getCloseLocation());
+}
+
+/// objc-protocol-expression
+/// \@protocol ( protocol-name )
+ExprResult
+Parser::ParseObjCProtocolExpression(SourceLocation AtLoc) {
+ SourceLocation ProtoLoc = ConsumeToken();
+
+ if (Tok.isNot(tok::l_paren))
+ return ExprError(Diag(Tok, diag::err_expected_lparen_after) << "@protocol");
+
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ T.consumeOpen();
+
+ if (Tok.isNot(tok::identifier))
+ return ExprError(Diag(Tok, diag::err_expected) << tok::identifier);
+
+ IdentifierInfo *protocolId = Tok.getIdentifierInfo();
+ SourceLocation ProtoIdLoc = ConsumeToken();
+
+ T.consumeClose();
+
+ return Actions.ParseObjCProtocolExpression(protocolId, AtLoc, ProtoLoc,
+ T.getOpenLocation(), ProtoIdLoc,
+ T.getCloseLocation());
+}
+
+/// objc-selector-expression
+/// @selector '(' '('[opt] objc-keyword-selector ')'[opt] ')'
+ExprResult Parser::ParseObjCSelectorExpression(SourceLocation AtLoc) {
+ SourceLocation SelectorLoc = ConsumeToken();
+
+ if (Tok.isNot(tok::l_paren))
+ return ExprError(Diag(Tok, diag::err_expected_lparen_after) << "@selector");
+
+ SmallVector<IdentifierInfo *, 12> KeyIdents;
+ SourceLocation sLoc;
+
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ T.consumeOpen();
+ bool HasOptionalParen = Tok.is(tok::l_paren);
+ if (HasOptionalParen)
+ ConsumeParen();
+
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteObjCSelector(getCurScope(), KeyIdents);
+ cutOffParsing();
+ return ExprError();
+ }
+
+ IdentifierInfo *SelIdent = ParseObjCSelectorPiece(sLoc);
+ if (!SelIdent && // missing selector name.
+ Tok.isNot(tok::colon) && Tok.isNot(tok::coloncolon))
+ return ExprError(Diag(Tok, diag::err_expected) << tok::identifier);
+
+ KeyIdents.push_back(SelIdent);
+
+ unsigned nColons = 0;
+ if (Tok.isNot(tok::r_paren)) {
+ while (1) {
+ if (TryConsumeToken(tok::coloncolon)) { // Handle :: in C++.
+ ++nColons;
+ KeyIdents.push_back(nullptr);
+ } else if (ExpectAndConsume(tok::colon)) // Otherwise expect ':'.
+ return ExprError();
+ ++nColons;
+
+ if (Tok.is(tok::r_paren))
+ break;
+
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteObjCSelector(getCurScope(), KeyIdents);
+ cutOffParsing();
+ return ExprError();
+ }
+
+ // Check for another keyword selector.
+ SourceLocation Loc;
+ SelIdent = ParseObjCSelectorPiece(Loc);
+ KeyIdents.push_back(SelIdent);
+ if (!SelIdent && Tok.isNot(tok::colon) && Tok.isNot(tok::coloncolon))
+ break;
+ }
+ }
+ if (HasOptionalParen && Tok.is(tok::r_paren))
+ ConsumeParen(); // ')'
+ T.consumeClose();
+ Selector Sel = PP.getSelectorTable().getSelector(nColons, &KeyIdents[0]);
+ return Actions.ParseObjCSelectorExpression(Sel, AtLoc, SelectorLoc,
+ T.getOpenLocation(),
+ T.getCloseLocation(),
+ !HasOptionalParen);
+ }
+
+void Parser::ParseLexedObjCMethodDefs(LexedMethod &LM, bool parseMethod) {
+ // MCDecl might be null due to error in method or c-function prototype, etc.
+ Decl *MCDecl = LM.D;
+ bool skip = MCDecl &&
+ ((parseMethod && !Actions.isObjCMethodDecl(MCDecl)) ||
+ (!parseMethod && Actions.isObjCMethodDecl(MCDecl)));
+ if (skip)
+ return;
+
+ // Save the current token position.
+ SourceLocation OrigLoc = Tok.getLocation();
+
+ assert(!LM.Toks.empty() && "ParseLexedObjCMethodDef - Empty body!");
+ // Append the current token at the end of the new token stream so that it
+ // doesn't get lost.
+ LM.Toks.push_back(Tok);
+ PP.EnterTokenStream(LM.Toks.data(), LM.Toks.size(), true, false);
+
+ // Consume the previously pushed token.
+ ConsumeAnyToken(/*ConsumeCodeCompletionTok=*/true);
+
+ assert((Tok.is(tok::l_brace) || Tok.is(tok::kw_try) ||
+ Tok.is(tok::colon)) &&
+ "Inline objective-c method not starting with '{' or 'try' or ':'");
+ // Enter a scope for the method or c-function body.
+ ParseScope BodyScope(this,
+ parseMethod
+ ? Scope::ObjCMethodScope|Scope::FnScope|Scope::DeclScope
+ : Scope::FnScope|Scope::DeclScope);
+
+ // Tell the actions module that we have entered a method or c-function definition
+ // with the specified Declarator for the method/function.
+ if (parseMethod)
+ Actions.ActOnStartOfObjCMethodDef(getCurScope(), MCDecl);
+ else
+ Actions.ActOnStartOfFunctionDef(getCurScope(), MCDecl);
+ if (Tok.is(tok::kw_try))
+ ParseFunctionTryBlock(MCDecl, BodyScope);
+ else {
+ if (Tok.is(tok::colon))
+ ParseConstructorInitializer(MCDecl);
+ ParseFunctionStatementBody(MCDecl, BodyScope);
+ }
+
+ if (Tok.getLocation() != OrigLoc) {
+ // Due to parsing error, we either went over the cached tokens or
+ // there are still cached tokens left. If it's the latter case skip the
+ // leftover tokens.
+ // Since this is an uncommon situation that should be avoided, use the
+ // expensive isBeforeInTranslationUnit call.
+ if (PP.getSourceManager().isBeforeInTranslationUnit(Tok.getLocation(),
+ OrigLoc))
+ while (Tok.getLocation() != OrigLoc && Tok.isNot(tok::eof))
+ ConsumeAnyToken();
+ }
+
+ return;
+}
diff --git a/contrib/llvm/tools/clang/lib/Parse/ParseOpenMP.cpp b/contrib/llvm/tools/clang/lib/Parse/ParseOpenMP.cpp
new file mode 100644
index 0000000..187289ee
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Parse/ParseOpenMP.cpp
@@ -0,0 +1,762 @@
+//===--- ParseOpenMP.cpp - OpenMP directives parsing ----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// \brief This file implements parsing of all OpenMP directives and clauses.
+///
+//===----------------------------------------------------------------------===//
+
+#include "RAIIObjectsForParser.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/StmtOpenMP.h"
+#include "clang/Parse/ParseDiagnostic.h"
+#include "clang/Parse/Parser.h"
+#include "clang/Sema/Scope.h"
+#include "llvm/ADT/PointerIntPair.h"
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// OpenMP declarative directives.
+//===----------------------------------------------------------------------===//
+
+static OpenMPDirectiveKind ParseOpenMPDirectiveKind(Parser &P) {
+ // Array of foldings: F[i][0] F[i][1] ===> F[i][2].
+ // E.g.: OMPD_for OMPD_simd ===> OMPD_for_simd
+ // TODO: add other combined directives in topological order.
+ const OpenMPDirectiveKind F[][3] = {
+ { OMPD_for, OMPD_simd, OMPD_for_simd },
+ { OMPD_parallel, OMPD_for, OMPD_parallel_for },
+ { OMPD_parallel_for, OMPD_simd, OMPD_parallel_for_simd },
+ { OMPD_parallel, OMPD_sections, OMPD_parallel_sections }
+ };
+ auto Tok = P.getCurToken();
+ auto DKind =
+ Tok.isAnnotation()
+ ? OMPD_unknown
+ : getOpenMPDirectiveKind(P.getPreprocessor().getSpelling(Tok));
+ for (unsigned i = 0; i < llvm::array_lengthof(F); ++i) {
+ if (DKind == F[i][0]) {
+ Tok = P.getPreprocessor().LookAhead(0);
+ auto SDKind =
+ Tok.isAnnotation()
+ ? OMPD_unknown
+ : getOpenMPDirectiveKind(P.getPreprocessor().getSpelling(Tok));
+ if (SDKind == F[i][1]) {
+ P.ConsumeToken();
+ DKind = F[i][2];
+ }
+ }
+ }
+ return DKind;
+}
+
+/// \brief Parsing of declarative OpenMP directives.
+///
+/// threadprivate-directive:
+/// annot_pragma_openmp 'threadprivate' simple-variable-list
+///
+Parser::DeclGroupPtrTy Parser::ParseOpenMPDeclarativeDirective() {
+ assert(Tok.is(tok::annot_pragma_openmp) && "Not an OpenMP directive!");
+ ParenBraceBracketBalancer BalancerRAIIObj(*this);
+
+ SourceLocation Loc = ConsumeToken();
+ SmallVector<Expr *, 5> Identifiers;
+ auto DKind = ParseOpenMPDirectiveKind(*this);
+
+ switch (DKind) {
+ case OMPD_threadprivate:
+ ConsumeToken();
+ if (!ParseOpenMPSimpleVarList(OMPD_threadprivate, Identifiers, true)) {
+ // The last seen token is annot_pragma_openmp_end - need to check for
+ // extra tokens.
+ if (Tok.isNot(tok::annot_pragma_openmp_end)) {
+ Diag(Tok, diag::warn_omp_extra_tokens_at_eol)
+ << getOpenMPDirectiveName(OMPD_threadprivate);
+ SkipUntil(tok::annot_pragma_openmp_end, StopBeforeMatch);
+ }
+ // Skip the last annot_pragma_openmp_end.
+ ConsumeToken();
+ return Actions.ActOnOpenMPThreadprivateDirective(Loc, Identifiers);
+ }
+ break;
+ case OMPD_unknown:
+ Diag(Tok, diag::err_omp_unknown_directive);
+ break;
+ case OMPD_parallel:
+ case OMPD_simd:
+ case OMPD_task:
+ case OMPD_taskyield:
+ case OMPD_barrier:
+ case OMPD_taskwait:
+ case OMPD_flush:
+ case OMPD_for:
+ case OMPD_for_simd:
+ case OMPD_sections:
+ case OMPD_section:
+ case OMPD_single:
+ case OMPD_master:
+ case OMPD_ordered:
+ case OMPD_critical:
+ case OMPD_parallel_for:
+ case OMPD_parallel_for_simd:
+ case OMPD_parallel_sections:
+ case OMPD_atomic:
+ case OMPD_target:
+ case OMPD_teams:
+ Diag(Tok, diag::err_omp_unexpected_directive)
+ << getOpenMPDirectiveName(DKind);
+ break;
+ }
+ SkipUntil(tok::annot_pragma_openmp_end);
+ return DeclGroupPtrTy();
+}
+
+/// \brief Parsing of declarative or executable OpenMP directives.
+///
+/// threadprivate-directive:
+/// annot_pragma_openmp 'threadprivate' simple-variable-list
+/// annot_pragma_openmp_end
+///
+/// executable-directive:
+/// annot_pragma_openmp 'parallel' | 'simd' | 'for' | 'sections' |
+/// 'section' | 'single' | 'master' | 'critical' [ '(' <name> ')' ] |
+/// 'parallel for' | 'parallel sections' | 'task' | 'taskyield' |
+/// 'barrier' | 'taskwait' | 'flush' | 'ordered' | 'atomic' |
+/// 'for simd' | 'parallel for simd' | 'target' | 'teams' {clause}
+/// annot_pragma_openmp_end
+///
+StmtResult
+Parser::ParseOpenMPDeclarativeOrExecutableDirective(bool StandAloneAllowed) {
+ assert(Tok.is(tok::annot_pragma_openmp) && "Not an OpenMP directive!");
+ ParenBraceBracketBalancer BalancerRAIIObj(*this);
+ SmallVector<Expr *, 5> Identifiers;
+ SmallVector<OMPClause *, 5> Clauses;
+ SmallVector<llvm::PointerIntPair<OMPClause *, 1, bool>, OMPC_unknown + 1>
+ FirstClauses(OMPC_unknown + 1);
+ unsigned ScopeFlags =
+ Scope::FnScope | Scope::DeclScope | Scope::OpenMPDirectiveScope;
+ SourceLocation Loc = ConsumeToken(), EndLoc;
+ auto DKind = ParseOpenMPDirectiveKind(*this);
+ // Name of critical directive.
+ DeclarationNameInfo DirName;
+ StmtResult Directive = StmtError();
+ bool HasAssociatedStatement = true;
+ bool FlushHasClause = false;
+
+ switch (DKind) {
+ case OMPD_threadprivate:
+ ConsumeToken();
+ if (!ParseOpenMPSimpleVarList(OMPD_threadprivate, Identifiers, false)) {
+ // The last seen token is annot_pragma_openmp_end - need to check for
+ // extra tokens.
+ if (Tok.isNot(tok::annot_pragma_openmp_end)) {
+ Diag(Tok, diag::warn_omp_extra_tokens_at_eol)
+ << getOpenMPDirectiveName(OMPD_threadprivate);
+ SkipUntil(tok::annot_pragma_openmp_end, StopBeforeMatch);
+ }
+ DeclGroupPtrTy Res =
+ Actions.ActOnOpenMPThreadprivateDirective(Loc, Identifiers);
+ Directive = Actions.ActOnDeclStmt(Res, Loc, Tok.getLocation());
+ }
+ SkipUntil(tok::annot_pragma_openmp_end);
+ break;
+ case OMPD_flush:
+ if (PP.LookAhead(0).is(tok::l_paren)) {
+ FlushHasClause = true;
+ // Push copy of the current token back to stream to properly parse
+ // pseudo-clause OMPFlushClause.
+ PP.EnterToken(Tok);
+ }
+ case OMPD_taskyield:
+ case OMPD_barrier:
+ case OMPD_taskwait:
+ if (!StandAloneAllowed) {
+ Diag(Tok, diag::err_omp_immediate_directive)
+ << getOpenMPDirectiveName(DKind);
+ }
+ HasAssociatedStatement = false;
+ // Fall through for further analysis.
+ case OMPD_parallel:
+ case OMPD_simd:
+ case OMPD_for:
+ case OMPD_for_simd:
+ case OMPD_sections:
+ case OMPD_single:
+ case OMPD_section:
+ case OMPD_master:
+ case OMPD_critical:
+ case OMPD_parallel_for:
+ case OMPD_parallel_for_simd:
+ case OMPD_parallel_sections:
+ case OMPD_task:
+ case OMPD_ordered:
+ case OMPD_atomic:
+ case OMPD_target:
+ case OMPD_teams: {
+ ConsumeToken();
+ // Parse directive name of the 'critical' directive if any.
+ if (DKind == OMPD_critical) {
+ BalancedDelimiterTracker T(*this, tok::l_paren,
+ tok::annot_pragma_openmp_end);
+ if (!T.consumeOpen()) {
+ if (Tok.isAnyIdentifier()) {
+ DirName =
+ DeclarationNameInfo(Tok.getIdentifierInfo(), Tok.getLocation());
+ ConsumeAnyToken();
+ } else {
+ Diag(Tok, diag::err_omp_expected_identifier_for_critical);
+ }
+ T.consumeClose();
+ }
+ }
+
+ if (isOpenMPLoopDirective(DKind))
+ ScopeFlags |= Scope::OpenMPLoopDirectiveScope;
+ if (isOpenMPSimdDirective(DKind))
+ ScopeFlags |= Scope::OpenMPSimdDirectiveScope;
+ ParseScope OMPDirectiveScope(this, ScopeFlags);
+ Actions.StartOpenMPDSABlock(DKind, DirName, Actions.getCurScope(), Loc);
+
+ Actions.StartOpenMPClauses();
+ while (Tok.isNot(tok::annot_pragma_openmp_end)) {
+ OpenMPClauseKind CKind =
+ Tok.isAnnotation()
+ ? OMPC_unknown
+ : FlushHasClause ? OMPC_flush
+ : getOpenMPClauseKind(PP.getSpelling(Tok));
+ FlushHasClause = false;
+ OMPClause *Clause =
+ ParseOpenMPClause(DKind, CKind, !FirstClauses[CKind].getInt());
+ FirstClauses[CKind].setInt(true);
+ if (Clause) {
+ FirstClauses[CKind].setPointer(Clause);
+ Clauses.push_back(Clause);
+ }
+
+ // Skip ',' if any.
+ if (Tok.is(tok::comma))
+ ConsumeToken();
+ }
+ Actions.EndOpenMPClauses();
+ // End location of the directive.
+ EndLoc = Tok.getLocation();
+ // Consume final annot_pragma_openmp_end.
+ ConsumeToken();
+
+ StmtResult AssociatedStmt;
+ bool CreateDirective = true;
+ if (HasAssociatedStatement) {
+ // The body is a block scope like in Lambdas and Blocks.
+ Sema::CompoundScopeRAII CompoundScope(Actions);
+ Actions.ActOnOpenMPRegionStart(DKind, getCurScope());
+ Actions.ActOnStartOfCompoundStmt();
+ // Parse statement
+ AssociatedStmt = ParseStatement();
+ Actions.ActOnFinishOfCompoundStmt();
+ AssociatedStmt = Actions.ActOnOpenMPRegionEnd(AssociatedStmt, Clauses);
+ CreateDirective = AssociatedStmt.isUsable();
+ }
+ if (CreateDirective)
+ Directive = Actions.ActOnOpenMPExecutableDirective(
+ DKind, DirName, Clauses, AssociatedStmt.get(), Loc, EndLoc);
+
+ // Exit scope.
+ Actions.EndOpenMPDSABlock(Directive.get());
+ OMPDirectiveScope.Exit();
+ break;
+ }
+ case OMPD_unknown:
+ Diag(Tok, diag::err_omp_unknown_directive);
+ SkipUntil(tok::annot_pragma_openmp_end);
+ break;
+ }
+ return Directive;
+}
+
+/// \brief Parses list of simple variables for '#pragma omp threadprivate'
+/// directive.
+///
+/// simple-variable-list:
+/// '(' id-expression {, id-expression} ')'
+///
+bool Parser::ParseOpenMPSimpleVarList(OpenMPDirectiveKind Kind,
+ SmallVectorImpl<Expr *> &VarList,
+ bool AllowScopeSpecifier) {
+ VarList.clear();
+ // Parse '('.
+ BalancedDelimiterTracker T(*this, tok::l_paren, tok::annot_pragma_openmp_end);
+ if (T.expectAndConsume(diag::err_expected_lparen_after,
+ getOpenMPDirectiveName(Kind)))
+ return true;
+ bool IsCorrect = true;
+ bool NoIdentIsFound = true;
+
+ // Read tokens while ')' or annot_pragma_openmp_end is not found.
+ while (Tok.isNot(tok::r_paren) && Tok.isNot(tok::annot_pragma_openmp_end)) {
+ CXXScopeSpec SS;
+ SourceLocation TemplateKWLoc;
+ UnqualifiedId Name;
+ // Read var name.
+ Token PrevTok = Tok;
+ NoIdentIsFound = false;
+
+ if (AllowScopeSpecifier && getLangOpts().CPlusPlus &&
+ ParseOptionalCXXScopeSpecifier(SS, ParsedType(), false)) {
+ IsCorrect = false;
+ SkipUntil(tok::comma, tok::r_paren, tok::annot_pragma_openmp_end,
+ StopBeforeMatch);
+ } else if (ParseUnqualifiedId(SS, false, false, false, ParsedType(),
+ TemplateKWLoc, Name)) {
+ IsCorrect = false;
+ SkipUntil(tok::comma, tok::r_paren, tok::annot_pragma_openmp_end,
+ StopBeforeMatch);
+ } else if (Tok.isNot(tok::comma) && Tok.isNot(tok::r_paren) &&
+ Tok.isNot(tok::annot_pragma_openmp_end)) {
+ IsCorrect = false;
+ SkipUntil(tok::comma, tok::r_paren, tok::annot_pragma_openmp_end,
+ StopBeforeMatch);
+ Diag(PrevTok.getLocation(), diag::err_expected)
+ << tok::identifier
+ << SourceRange(PrevTok.getLocation(), PrevTokLocation);
+ } else {
+ DeclarationNameInfo NameInfo = Actions.GetNameFromUnqualifiedId(Name);
+ ExprResult Res =
+ Actions.ActOnOpenMPIdExpression(getCurScope(), SS, NameInfo);
+ if (Res.isUsable())
+ VarList.push_back(Res.get());
+ }
+ // Consume ','.
+ if (Tok.is(tok::comma)) {
+ ConsumeToken();
+ }
+ }
+
+ if (NoIdentIsFound) {
+ Diag(Tok, diag::err_expected) << tok::identifier;
+ IsCorrect = false;
+ }
+
+ // Parse ')'.
+ IsCorrect = !T.consumeClose() && IsCorrect;
+
+ return !IsCorrect && VarList.empty();
+}
+
+/// \brief Parsing of OpenMP clauses.
+///
+/// clause:
+/// if-clause | final-clause | num_threads-clause | safelen-clause |
+/// default-clause | private-clause | firstprivate-clause | shared-clause
+/// | linear-clause | aligned-clause | collapse-clause |
+/// lastprivate-clause | reduction-clause | proc_bind-clause |
+/// schedule-clause | copyin-clause | copyprivate-clause | untied-clause |
+/// mergeable-clause | flush-clause | read-clause | write-clause |
+/// update-clause | capture-clause | seq_cst-clause
+///
+OMPClause *Parser::ParseOpenMPClause(OpenMPDirectiveKind DKind,
+ OpenMPClauseKind CKind, bool FirstClause) {
+ OMPClause *Clause = nullptr;
+ bool ErrorFound = false;
+ // Check if clause is allowed for the given directive.
+ if (CKind != OMPC_unknown && !isAllowedClauseForDirective(DKind, CKind)) {
+ Diag(Tok, diag::err_omp_unexpected_clause) << getOpenMPClauseName(CKind)
+ << getOpenMPDirectiveName(DKind);
+ ErrorFound = true;
+ }
+
+ switch (CKind) {
+ case OMPC_if:
+ case OMPC_final:
+ case OMPC_num_threads:
+ case OMPC_safelen:
+ case OMPC_collapse:
+ // OpenMP [2.5, Restrictions]
+ // At most one if clause can appear on the directive.
+ // At most one num_threads clause can appear on the directive.
+ // OpenMP [2.8.1, simd construct, Restrictions]
+ // Only one safelen clause can appear on a simd directive.
+ // Only one collapse clause can appear on a simd directive.
+ // OpenMP [2.11.1, task Construct, Restrictions]
+ // At most one if clause can appear on the directive.
+ // At most one final clause can appear on the directive.
+ if (!FirstClause) {
+ Diag(Tok, diag::err_omp_more_one_clause) << getOpenMPDirectiveName(DKind)
+ << getOpenMPClauseName(CKind);
+ ErrorFound = true;
+ }
+
+ Clause = ParseOpenMPSingleExprClause(CKind);
+ break;
+ case OMPC_default:
+ case OMPC_proc_bind:
+ // OpenMP [2.14.3.1, Restrictions]
+ // Only a single default clause may be specified on a parallel, task or
+ // teams directive.
+ // OpenMP [2.5, parallel Construct, Restrictions]
+ // At most one proc_bind clause can appear on the directive.
+ if (!FirstClause) {
+ Diag(Tok, diag::err_omp_more_one_clause) << getOpenMPDirectiveName(DKind)
+ << getOpenMPClauseName(CKind);
+ ErrorFound = true;
+ }
+
+ Clause = ParseOpenMPSimpleClause(CKind);
+ break;
+ case OMPC_schedule:
+ // OpenMP [2.7.1, Restrictions, p. 3]
+ // Only one schedule clause can appear on a loop directive.
+ if (!FirstClause) {
+ Diag(Tok, diag::err_omp_more_one_clause) << getOpenMPDirectiveName(DKind)
+ << getOpenMPClauseName(CKind);
+ ErrorFound = true;
+ }
+
+ Clause = ParseOpenMPSingleExprWithArgClause(CKind);
+ break;
+ case OMPC_ordered:
+ case OMPC_nowait:
+ case OMPC_untied:
+ case OMPC_mergeable:
+ case OMPC_read:
+ case OMPC_write:
+ case OMPC_update:
+ case OMPC_capture:
+ case OMPC_seq_cst:
+ // OpenMP [2.7.1, Restrictions, p. 9]
+ // Only one ordered clause can appear on a loop directive.
+ // OpenMP [2.7.1, Restrictions, C/C++, p. 4]
+ // Only one nowait clause can appear on a for directive.
+ if (!FirstClause) {
+ Diag(Tok, diag::err_omp_more_one_clause) << getOpenMPDirectiveName(DKind)
+ << getOpenMPClauseName(CKind);
+ ErrorFound = true;
+ }
+
+ Clause = ParseOpenMPClause(CKind);
+ break;
+ case OMPC_private:
+ case OMPC_firstprivate:
+ case OMPC_lastprivate:
+ case OMPC_shared:
+ case OMPC_reduction:
+ case OMPC_linear:
+ case OMPC_aligned:
+ case OMPC_copyin:
+ case OMPC_copyprivate:
+ case OMPC_flush:
+ Clause = ParseOpenMPVarListClause(CKind);
+ break;
+ case OMPC_unknown:
+ Diag(Tok, diag::warn_omp_extra_tokens_at_eol)
+ << getOpenMPDirectiveName(DKind);
+ SkipUntil(tok::annot_pragma_openmp_end, StopBeforeMatch);
+ break;
+ case OMPC_threadprivate:
+ Diag(Tok, diag::err_omp_unexpected_clause) << getOpenMPClauseName(CKind)
+ << getOpenMPDirectiveName(DKind);
+ SkipUntil(tok::comma, tok::annot_pragma_openmp_end, StopBeforeMatch);
+ break;
+ }
+ return ErrorFound ? nullptr : Clause;
+}
+
+/// \brief Parsing of OpenMP clauses with single expressions like 'if',
+/// 'final', 'collapse', 'safelen', 'num_threads', 'simdlen', 'num_teams' or
+/// 'thread_limit'.
+///
+/// if-clause:
+/// 'if' '(' expression ')'
+///
+/// final-clause:
+/// 'final' '(' expression ')'
+///
+/// num_threads-clause:
+/// 'num_threads' '(' expression ')'
+///
+/// safelen-clause:
+/// 'safelen' '(' expression ')'
+///
+/// collapse-clause:
+/// 'collapse' '(' expression ')'
+///
+OMPClause *Parser::ParseOpenMPSingleExprClause(OpenMPClauseKind Kind) {
+ SourceLocation Loc = ConsumeToken();
+
+ BalancedDelimiterTracker T(*this, tok::l_paren, tok::annot_pragma_openmp_end);
+ if (T.expectAndConsume(diag::err_expected_lparen_after,
+ getOpenMPClauseName(Kind)))
+ return nullptr;
+
+ ExprResult LHS(ParseCastExpression(false, false, NotTypeCast));
+ ExprResult Val(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
+
+ // Parse ')'.
+ T.consumeClose();
+
+ if (Val.isInvalid())
+ return nullptr;
+
+ return Actions.ActOnOpenMPSingleExprClause(
+ Kind, Val.get(), Loc, T.getOpenLocation(), T.getCloseLocation());
+}
+
+/// \brief Parsing of simple OpenMP clauses like 'default' or 'proc_bind'.
+///
+/// default-clause:
+/// 'default' '(' 'none' | 'shared' ')
+///
+/// proc_bind-clause:
+/// 'proc_bind' '(' 'master' | 'close' | 'spread' ')
+///
+OMPClause *Parser::ParseOpenMPSimpleClause(OpenMPClauseKind Kind) {
+ SourceLocation Loc = Tok.getLocation();
+ SourceLocation LOpen = ConsumeToken();
+ // Parse '('.
+ BalancedDelimiterTracker T(*this, tok::l_paren, tok::annot_pragma_openmp_end);
+ if (T.expectAndConsume(diag::err_expected_lparen_after,
+ getOpenMPClauseName(Kind)))
+ return nullptr;
+
+ unsigned Type = getOpenMPSimpleClauseType(
+ Kind, Tok.isAnnotation() ? "" : PP.getSpelling(Tok));
+ SourceLocation TypeLoc = Tok.getLocation();
+ if (Tok.isNot(tok::r_paren) && Tok.isNot(tok::comma) &&
+ Tok.isNot(tok::annot_pragma_openmp_end))
+ ConsumeAnyToken();
+
+ // Parse ')'.
+ T.consumeClose();
+
+ return Actions.ActOnOpenMPSimpleClause(Kind, Type, TypeLoc, LOpen, Loc,
+ Tok.getLocation());
+}
+
+/// \brief Parsing of OpenMP clauses like 'ordered'.
+///
+/// ordered-clause:
+/// 'ordered'
+///
+/// nowait-clause:
+/// 'nowait'
+///
+/// untied-clause:
+/// 'untied'
+///
+/// mergeable-clause:
+/// 'mergeable'
+///
+/// read-clause:
+/// 'read'
+///
+OMPClause *Parser::ParseOpenMPClause(OpenMPClauseKind Kind) {
+ SourceLocation Loc = Tok.getLocation();
+ ConsumeAnyToken();
+
+ return Actions.ActOnOpenMPClause(Kind, Loc, Tok.getLocation());
+}
+
+
+/// \brief Parsing of OpenMP clauses with single expressions and some additional
+/// argument like 'schedule' or 'dist_schedule'.
+///
+/// schedule-clause:
+/// 'schedule' '(' kind [',' expression ] ')'
+///
+OMPClause *Parser::ParseOpenMPSingleExprWithArgClause(OpenMPClauseKind Kind) {
+ SourceLocation Loc = ConsumeToken();
+ SourceLocation CommaLoc;
+ // Parse '('.
+ BalancedDelimiterTracker T(*this, tok::l_paren, tok::annot_pragma_openmp_end);
+ if (T.expectAndConsume(diag::err_expected_lparen_after,
+ getOpenMPClauseName(Kind)))
+ return nullptr;
+
+ ExprResult Val;
+ unsigned Type = getOpenMPSimpleClauseType(
+ Kind, Tok.isAnnotation() ? "" : PP.getSpelling(Tok));
+ SourceLocation KLoc = Tok.getLocation();
+ if (Tok.isNot(tok::r_paren) && Tok.isNot(tok::comma) &&
+ Tok.isNot(tok::annot_pragma_openmp_end))
+ ConsumeAnyToken();
+
+ if (Kind == OMPC_schedule &&
+ (Type == OMPC_SCHEDULE_static || Type == OMPC_SCHEDULE_dynamic ||
+ Type == OMPC_SCHEDULE_guided) &&
+ Tok.is(tok::comma)) {
+ CommaLoc = ConsumeAnyToken();
+ ExprResult LHS(ParseCastExpression(false, false, NotTypeCast));
+ Val = ParseRHSOfBinaryExpression(LHS, prec::Conditional);
+ if (Val.isInvalid())
+ return nullptr;
+ }
+
+ // Parse ')'.
+ T.consumeClose();
+
+ return Actions.ActOnOpenMPSingleExprWithArgClause(
+ Kind, Type, Val.get(), Loc, T.getOpenLocation(), KLoc, CommaLoc,
+ T.getCloseLocation());
+}
+
+static bool ParseReductionId(Parser &P, CXXScopeSpec &ReductionIdScopeSpec,
+ UnqualifiedId &ReductionId) {
+ SourceLocation TemplateKWLoc;
+ if (ReductionIdScopeSpec.isEmpty()) {
+ auto OOK = OO_None;
+ switch (P.getCurToken().getKind()) {
+ case tok::plus:
+ OOK = OO_Plus;
+ break;
+ case tok::minus:
+ OOK = OO_Minus;
+ break;
+ case tok::star:
+ OOK = OO_Star;
+ break;
+ case tok::amp:
+ OOK = OO_Amp;
+ break;
+ case tok::pipe:
+ OOK = OO_Pipe;
+ break;
+ case tok::caret:
+ OOK = OO_Caret;
+ break;
+ case tok::ampamp:
+ OOK = OO_AmpAmp;
+ break;
+ case tok::pipepipe:
+ OOK = OO_PipePipe;
+ break;
+ default:
+ break;
+ }
+ if (OOK != OO_None) {
+ SourceLocation OpLoc = P.ConsumeToken();
+ SourceLocation SymbolLocations[] = {OpLoc, OpLoc, SourceLocation()};
+ ReductionId.setOperatorFunctionId(OpLoc, OOK, SymbolLocations);
+ return false;
+ }
+ }
+ return P.ParseUnqualifiedId(ReductionIdScopeSpec, /*EnteringContext*/ false,
+ /*AllowDestructorName*/ false,
+ /*AllowConstructorName*/ false, ParsedType(),
+ TemplateKWLoc, ReductionId);
+}
+
+/// \brief Parsing of OpenMP clause 'private', 'firstprivate', 'lastprivate',
+/// 'shared', 'copyin', 'copyprivate', 'flush' or 'reduction'.
+///
+/// private-clause:
+/// 'private' '(' list ')'
+/// firstprivate-clause:
+/// 'firstprivate' '(' list ')'
+/// lastprivate-clause:
+/// 'lastprivate' '(' list ')'
+/// shared-clause:
+/// 'shared' '(' list ')'
+/// linear-clause:
+/// 'linear' '(' list [ ':' linear-step ] ')'
+/// aligned-clause:
+/// 'aligned' '(' list [ ':' alignment ] ')'
+/// reduction-clause:
+/// 'reduction' '(' reduction-identifier ':' list ')'
+/// copyprivate-clause:
+/// 'copyprivate' '(' list ')'
+/// flush-clause:
+/// 'flush' '(' list ')'
+///
+OMPClause *Parser::ParseOpenMPVarListClause(OpenMPClauseKind Kind) {
+ SourceLocation Loc = Tok.getLocation();
+ SourceLocation LOpen = ConsumeToken();
+ SourceLocation ColonLoc = SourceLocation();
+ // Optional scope specifier and unqualified id for reduction identifier.
+ CXXScopeSpec ReductionIdScopeSpec;
+ UnqualifiedId ReductionId;
+ bool InvalidReductionId = false;
+ // Parse '('.
+ BalancedDelimiterTracker T(*this, tok::l_paren, tok::annot_pragma_openmp_end);
+ if (T.expectAndConsume(diag::err_expected_lparen_after,
+ getOpenMPClauseName(Kind)))
+ return nullptr;
+
+ // Handle reduction-identifier for reduction clause.
+ if (Kind == OMPC_reduction) {
+ ColonProtectionRAIIObject ColonRAII(*this);
+ if (getLangOpts().CPlusPlus) {
+ ParseOptionalCXXScopeSpecifier(ReductionIdScopeSpec, ParsedType(), false);
+ }
+ InvalidReductionId =
+ ParseReductionId(*this, ReductionIdScopeSpec, ReductionId);
+ if (InvalidReductionId) {
+ SkipUntil(tok::colon, tok::r_paren, tok::annot_pragma_openmp_end,
+ StopBeforeMatch);
+ }
+ if (Tok.is(tok::colon)) {
+ ColonLoc = ConsumeToken();
+ } else {
+ Diag(Tok, diag::warn_pragma_expected_colon) << "reduction identifier";
+ }
+ }
+
+ SmallVector<Expr *, 5> Vars;
+ bool IsComma = !InvalidReductionId;
+ const bool MayHaveTail = (Kind == OMPC_linear || Kind == OMPC_aligned);
+ while (IsComma || (Tok.isNot(tok::r_paren) && Tok.isNot(tok::colon) &&
+ Tok.isNot(tok::annot_pragma_openmp_end))) {
+ ColonProtectionRAIIObject ColonRAII(*this, MayHaveTail);
+ // Parse variable
+ ExprResult VarExpr =
+ Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
+ if (VarExpr.isUsable()) {
+ Vars.push_back(VarExpr.get());
+ } else {
+ SkipUntil(tok::comma, tok::r_paren, tok::annot_pragma_openmp_end,
+ StopBeforeMatch);
+ }
+ // Skip ',' if any
+ IsComma = Tok.is(tok::comma);
+ if (IsComma)
+ ConsumeToken();
+ else if (Tok.isNot(tok::r_paren) &&
+ Tok.isNot(tok::annot_pragma_openmp_end) &&
+ (!MayHaveTail || Tok.isNot(tok::colon)))
+ Diag(Tok, diag::err_omp_expected_punc)
+ << ((Kind == OMPC_flush) ? getOpenMPDirectiveName(OMPD_flush)
+ : getOpenMPClauseName(Kind))
+ << (Kind == OMPC_flush);
+ }
+
+ // Parse ':' linear-step (or ':' alignment).
+ Expr *TailExpr = nullptr;
+ const bool MustHaveTail = MayHaveTail && Tok.is(tok::colon);
+ if (MustHaveTail) {
+ ColonLoc = Tok.getLocation();
+ ConsumeToken();
+ ExprResult Tail =
+ Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
+ if (Tail.isUsable())
+ TailExpr = Tail.get();
+ else
+ SkipUntil(tok::comma, tok::r_paren, tok::annot_pragma_openmp_end,
+ StopBeforeMatch);
+ }
+
+ // Parse ')'.
+ T.consumeClose();
+ if (Vars.empty() || (MustHaveTail && !TailExpr) || InvalidReductionId)
+ return nullptr;
+
+ return Actions.ActOnOpenMPVarListClause(
+ Kind, Vars, TailExpr, Loc, LOpen, ColonLoc, Tok.getLocation(),
+ ReductionIdScopeSpec,
+ ReductionId.isValid() ? Actions.GetNameFromUnqualifiedId(ReductionId)
+ : DeclarationNameInfo());
+}
+
diff --git a/contrib/llvm/tools/clang/lib/Parse/ParsePragma.cpp b/contrib/llvm/tools/clang/lib/Parse/ParsePragma.cpp
new file mode 100644
index 0000000..a8641ef
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Parse/ParsePragma.cpp
@@ -0,0 +1,2117 @@
+//===--- ParsePragma.cpp - Language specific pragma parsing ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the language specific #pragma handlers.
+//
+//===----------------------------------------------------------------------===//
+
+#include "RAIIObjectsForParser.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Parse/ParseDiagnostic.h"
+#include "clang/Parse/Parser.h"
+#include "clang/Sema/LoopHint.h"
+#include "clang/Sema/Scope.h"
+#include "llvm/ADT/StringSwitch.h"
+using namespace clang;
+
+namespace {
+
+struct PragmaAlignHandler : public PragmaHandler {
+ explicit PragmaAlignHandler() : PragmaHandler("align") {}
+ void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,
+ Token &FirstToken) override;
+};
+
+struct PragmaGCCVisibilityHandler : public PragmaHandler {
+ explicit PragmaGCCVisibilityHandler() : PragmaHandler("visibility") {}
+ void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,
+ Token &FirstToken) override;
+};
+
+struct PragmaOptionsHandler : public PragmaHandler {
+ explicit PragmaOptionsHandler() : PragmaHandler("options") {}
+ void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,
+ Token &FirstToken) override;
+};
+
+struct PragmaPackHandler : public PragmaHandler {
+ explicit PragmaPackHandler() : PragmaHandler("pack") {}
+ void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,
+ Token &FirstToken) override;
+};
+
+struct PragmaMSStructHandler : public PragmaHandler {
+ explicit PragmaMSStructHandler() : PragmaHandler("ms_struct") {}
+ void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,
+ Token &FirstToken) override;
+};
+
+struct PragmaUnusedHandler : public PragmaHandler {
+ PragmaUnusedHandler() : PragmaHandler("unused") {}
+ void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,
+ Token &FirstToken) override;
+};
+
+struct PragmaWeakHandler : public PragmaHandler {
+ explicit PragmaWeakHandler() : PragmaHandler("weak") {}
+ void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,
+ Token &FirstToken) override;
+};
+
+struct PragmaRedefineExtnameHandler : public PragmaHandler {
+ explicit PragmaRedefineExtnameHandler() : PragmaHandler("redefine_extname") {}
+ void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,
+ Token &FirstToken) override;
+};
+
+struct PragmaOpenCLExtensionHandler : public PragmaHandler {
+ PragmaOpenCLExtensionHandler() : PragmaHandler("EXTENSION") {}
+ void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,
+ Token &FirstToken) override;
+};
+
+
+struct PragmaFPContractHandler : public PragmaHandler {
+ PragmaFPContractHandler() : PragmaHandler("FP_CONTRACT") {}
+ void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,
+ Token &FirstToken) override;
+};
+
+struct PragmaNoOpenMPHandler : public PragmaHandler {
+ PragmaNoOpenMPHandler() : PragmaHandler("omp") { }
+ void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,
+ Token &FirstToken) override;
+};
+
+struct PragmaOpenMPHandler : public PragmaHandler {
+ PragmaOpenMPHandler() : PragmaHandler("omp") { }
+ void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,
+ Token &FirstToken) override;
+};
+
+/// PragmaCommentHandler - "\#pragma comment ...".
+struct PragmaCommentHandler : public PragmaHandler {
+ PragmaCommentHandler(Sema &Actions)
+ : PragmaHandler("comment"), Actions(Actions) {}
+ void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,
+ Token &FirstToken) override;
+private:
+ Sema &Actions;
+};
+
+struct PragmaDetectMismatchHandler : public PragmaHandler {
+ PragmaDetectMismatchHandler(Sema &Actions)
+ : PragmaHandler("detect_mismatch"), Actions(Actions) {}
+ void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,
+ Token &FirstToken) override;
+private:
+ Sema &Actions;
+};
+
+struct PragmaMSPointersToMembers : public PragmaHandler {
+ explicit PragmaMSPointersToMembers() : PragmaHandler("pointers_to_members") {}
+ void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,
+ Token &FirstToken) override;
+};
+
+struct PragmaMSVtorDisp : public PragmaHandler {
+ explicit PragmaMSVtorDisp() : PragmaHandler("vtordisp") {}
+ void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,
+ Token &FirstToken) override;
+};
+
+struct PragmaMSPragma : public PragmaHandler {
+ explicit PragmaMSPragma(const char *name) : PragmaHandler(name) {}
+ void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,
+ Token &FirstToken) override;
+};
+
+/// PragmaOptimizeHandler - "\#pragma clang optimize on/off".
+struct PragmaOptimizeHandler : public PragmaHandler {
+ PragmaOptimizeHandler(Sema &S)
+ : PragmaHandler("optimize"), Actions(S) {}
+ void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,
+ Token &FirstToken) override;
+private:
+ Sema &Actions;
+};
+
+struct PragmaLoopHintHandler : public PragmaHandler {
+ PragmaLoopHintHandler() : PragmaHandler("loop") {}
+ void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,
+ Token &FirstToken) override;
+};
+
+struct PragmaUnrollHintHandler : public PragmaHandler {
+ PragmaUnrollHintHandler(const char *name) : PragmaHandler(name) {}
+ void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,
+ Token &FirstToken) override;
+};
+
+} // end namespace
+
+void Parser::initializePragmaHandlers() {
+ AlignHandler.reset(new PragmaAlignHandler());
+ PP.AddPragmaHandler(AlignHandler.get());
+
+ GCCVisibilityHandler.reset(new PragmaGCCVisibilityHandler());
+ PP.AddPragmaHandler("GCC", GCCVisibilityHandler.get());
+
+ OptionsHandler.reset(new PragmaOptionsHandler());
+ PP.AddPragmaHandler(OptionsHandler.get());
+
+ PackHandler.reset(new PragmaPackHandler());
+ PP.AddPragmaHandler(PackHandler.get());
+
+ MSStructHandler.reset(new PragmaMSStructHandler());
+ PP.AddPragmaHandler(MSStructHandler.get());
+
+ UnusedHandler.reset(new PragmaUnusedHandler());
+ PP.AddPragmaHandler(UnusedHandler.get());
+
+ WeakHandler.reset(new PragmaWeakHandler());
+ PP.AddPragmaHandler(WeakHandler.get());
+
+ RedefineExtnameHandler.reset(new PragmaRedefineExtnameHandler());
+ PP.AddPragmaHandler(RedefineExtnameHandler.get());
+
+ FPContractHandler.reset(new PragmaFPContractHandler());
+ PP.AddPragmaHandler("STDC", FPContractHandler.get());
+
+ if (getLangOpts().OpenCL) {
+ OpenCLExtensionHandler.reset(new PragmaOpenCLExtensionHandler());
+ PP.AddPragmaHandler("OPENCL", OpenCLExtensionHandler.get());
+
+ PP.AddPragmaHandler("OPENCL", FPContractHandler.get());
+ }
+ if (getLangOpts().OpenMP)
+ OpenMPHandler.reset(new PragmaOpenMPHandler());
+ else
+ OpenMPHandler.reset(new PragmaNoOpenMPHandler());
+ PP.AddPragmaHandler(OpenMPHandler.get());
+
+ if (getLangOpts().MicrosoftExt || getTargetInfo().getTriple().isPS4()) {
+ MSCommentHandler.reset(new PragmaCommentHandler(Actions));
+ PP.AddPragmaHandler(MSCommentHandler.get());
+ }
+
+ if (getLangOpts().MicrosoftExt) {
+ MSDetectMismatchHandler.reset(new PragmaDetectMismatchHandler(Actions));
+ PP.AddPragmaHandler(MSDetectMismatchHandler.get());
+ MSPointersToMembers.reset(new PragmaMSPointersToMembers());
+ PP.AddPragmaHandler(MSPointersToMembers.get());
+ MSVtorDisp.reset(new PragmaMSVtorDisp());
+ PP.AddPragmaHandler(MSVtorDisp.get());
+ MSInitSeg.reset(new PragmaMSPragma("init_seg"));
+ PP.AddPragmaHandler(MSInitSeg.get());
+ MSDataSeg.reset(new PragmaMSPragma("data_seg"));
+ PP.AddPragmaHandler(MSDataSeg.get());
+ MSBSSSeg.reset(new PragmaMSPragma("bss_seg"));
+ PP.AddPragmaHandler(MSBSSSeg.get());
+ MSConstSeg.reset(new PragmaMSPragma("const_seg"));
+ PP.AddPragmaHandler(MSConstSeg.get());
+ MSCodeSeg.reset(new PragmaMSPragma("code_seg"));
+ PP.AddPragmaHandler(MSCodeSeg.get());
+ MSSection.reset(new PragmaMSPragma("section"));
+ PP.AddPragmaHandler(MSSection.get());
+ }
+
+ OptimizeHandler.reset(new PragmaOptimizeHandler(Actions));
+ PP.AddPragmaHandler("clang", OptimizeHandler.get());
+
+ LoopHintHandler.reset(new PragmaLoopHintHandler());
+ PP.AddPragmaHandler("clang", LoopHintHandler.get());
+
+ UnrollHintHandler.reset(new PragmaUnrollHintHandler("unroll"));
+ PP.AddPragmaHandler(UnrollHintHandler.get());
+
+ NoUnrollHintHandler.reset(new PragmaUnrollHintHandler("nounroll"));
+ PP.AddPragmaHandler(NoUnrollHintHandler.get());
+}
+
+void Parser::resetPragmaHandlers() {
+ // Remove the pragma handlers we installed.
+ PP.RemovePragmaHandler(AlignHandler.get());
+ AlignHandler.reset();
+ PP.RemovePragmaHandler("GCC", GCCVisibilityHandler.get());
+ GCCVisibilityHandler.reset();
+ PP.RemovePragmaHandler(OptionsHandler.get());
+ OptionsHandler.reset();
+ PP.RemovePragmaHandler(PackHandler.get());
+ PackHandler.reset();
+ PP.RemovePragmaHandler(MSStructHandler.get());
+ MSStructHandler.reset();
+ PP.RemovePragmaHandler(UnusedHandler.get());
+ UnusedHandler.reset();
+ PP.RemovePragmaHandler(WeakHandler.get());
+ WeakHandler.reset();
+ PP.RemovePragmaHandler(RedefineExtnameHandler.get());
+ RedefineExtnameHandler.reset();
+
+ if (getLangOpts().OpenCL) {
+ PP.RemovePragmaHandler("OPENCL", OpenCLExtensionHandler.get());
+ OpenCLExtensionHandler.reset();
+ PP.RemovePragmaHandler("OPENCL", FPContractHandler.get());
+ }
+ PP.RemovePragmaHandler(OpenMPHandler.get());
+ OpenMPHandler.reset();
+
+ if (getLangOpts().MicrosoftExt || getTargetInfo().getTriple().isPS4()) {
+ PP.RemovePragmaHandler(MSCommentHandler.get());
+ MSCommentHandler.reset();
+ }
+
+ if (getLangOpts().MicrosoftExt) {
+ PP.RemovePragmaHandler(MSDetectMismatchHandler.get());
+ MSDetectMismatchHandler.reset();
+ PP.RemovePragmaHandler(MSPointersToMembers.get());
+ MSPointersToMembers.reset();
+ PP.RemovePragmaHandler(MSVtorDisp.get());
+ MSVtorDisp.reset();
+ PP.RemovePragmaHandler(MSInitSeg.get());
+ MSInitSeg.reset();
+ PP.RemovePragmaHandler(MSDataSeg.get());
+ MSDataSeg.reset();
+ PP.RemovePragmaHandler(MSBSSSeg.get());
+ MSBSSSeg.reset();
+ PP.RemovePragmaHandler(MSConstSeg.get());
+ MSConstSeg.reset();
+ PP.RemovePragmaHandler(MSCodeSeg.get());
+ MSCodeSeg.reset();
+ PP.RemovePragmaHandler(MSSection.get());
+ MSSection.reset();
+ }
+
+ PP.RemovePragmaHandler("STDC", FPContractHandler.get());
+ FPContractHandler.reset();
+
+ PP.RemovePragmaHandler("clang", OptimizeHandler.get());
+ OptimizeHandler.reset();
+
+ PP.RemovePragmaHandler("clang", LoopHintHandler.get());
+ LoopHintHandler.reset();
+
+ PP.RemovePragmaHandler(UnrollHintHandler.get());
+ UnrollHintHandler.reset();
+
+ PP.RemovePragmaHandler(NoUnrollHintHandler.get());
+ NoUnrollHintHandler.reset();
+}
+
+/// \brief Handle the annotation token produced for #pragma unused(...)
+///
+/// Each annot_pragma_unused is followed by the argument token so e.g.
+/// "#pragma unused(x,y)" becomes:
+/// annot_pragma_unused 'x' annot_pragma_unused 'y'
+void Parser::HandlePragmaUnused() {
+ assert(Tok.is(tok::annot_pragma_unused));
+ SourceLocation UnusedLoc = ConsumeToken();
+ Actions.ActOnPragmaUnused(Tok, getCurScope(), UnusedLoc);
+ ConsumeToken(); // The argument token.
+}
+
+void Parser::HandlePragmaVisibility() {
+ assert(Tok.is(tok::annot_pragma_vis));
+ const IdentifierInfo *VisType =
+ static_cast<IdentifierInfo *>(Tok.getAnnotationValue());
+ SourceLocation VisLoc = ConsumeToken();
+ Actions.ActOnPragmaVisibility(VisType, VisLoc);
+}
+
+struct PragmaPackInfo {
+ Sema::PragmaPackKind Kind;
+ IdentifierInfo *Name;
+ Token Alignment;
+ SourceLocation LParenLoc;
+ SourceLocation RParenLoc;
+};
+
+void Parser::HandlePragmaPack() {
+ assert(Tok.is(tok::annot_pragma_pack));
+ PragmaPackInfo *Info =
+ static_cast<PragmaPackInfo *>(Tok.getAnnotationValue());
+ SourceLocation PragmaLoc = ConsumeToken();
+ ExprResult Alignment;
+ if (Info->Alignment.is(tok::numeric_constant)) {
+ Alignment = Actions.ActOnNumericConstant(Info->Alignment);
+ if (Alignment.isInvalid())
+ return;
+ }
+ Actions.ActOnPragmaPack(Info->Kind, Info->Name, Alignment.get(), PragmaLoc,
+ Info->LParenLoc, Info->RParenLoc);
+}
+
+void Parser::HandlePragmaMSStruct() {
+ assert(Tok.is(tok::annot_pragma_msstruct));
+ Sema::PragmaMSStructKind Kind =
+ static_cast<Sema::PragmaMSStructKind>(
+ reinterpret_cast<uintptr_t>(Tok.getAnnotationValue()));
+ Actions.ActOnPragmaMSStruct(Kind);
+ ConsumeToken(); // The annotation token.
+}
+
+void Parser::HandlePragmaAlign() {
+ assert(Tok.is(tok::annot_pragma_align));
+ Sema::PragmaOptionsAlignKind Kind =
+ static_cast<Sema::PragmaOptionsAlignKind>(
+ reinterpret_cast<uintptr_t>(Tok.getAnnotationValue()));
+ SourceLocation PragmaLoc = ConsumeToken();
+ Actions.ActOnPragmaOptionsAlign(Kind, PragmaLoc);
+}
+
+void Parser::HandlePragmaWeak() {
+ assert(Tok.is(tok::annot_pragma_weak));
+ SourceLocation PragmaLoc = ConsumeToken();
+ Actions.ActOnPragmaWeakID(Tok.getIdentifierInfo(), PragmaLoc,
+ Tok.getLocation());
+ ConsumeToken(); // The weak name.
+}
+
+void Parser::HandlePragmaWeakAlias() {
+ assert(Tok.is(tok::annot_pragma_weakalias));
+ SourceLocation PragmaLoc = ConsumeToken();
+ IdentifierInfo *WeakName = Tok.getIdentifierInfo();
+ SourceLocation WeakNameLoc = Tok.getLocation();
+ ConsumeToken();
+ IdentifierInfo *AliasName = Tok.getIdentifierInfo();
+ SourceLocation AliasNameLoc = Tok.getLocation();
+ ConsumeToken();
+ Actions.ActOnPragmaWeakAlias(WeakName, AliasName, PragmaLoc,
+ WeakNameLoc, AliasNameLoc);
+
+}
+
+void Parser::HandlePragmaRedefineExtname() {
+ assert(Tok.is(tok::annot_pragma_redefine_extname));
+ SourceLocation RedefLoc = ConsumeToken();
+ IdentifierInfo *RedefName = Tok.getIdentifierInfo();
+ SourceLocation RedefNameLoc = Tok.getLocation();
+ ConsumeToken();
+ IdentifierInfo *AliasName = Tok.getIdentifierInfo();
+ SourceLocation AliasNameLoc = Tok.getLocation();
+ ConsumeToken();
+ Actions.ActOnPragmaRedefineExtname(RedefName, AliasName, RedefLoc,
+ RedefNameLoc, AliasNameLoc);
+}
+
+void Parser::HandlePragmaFPContract() {
+ assert(Tok.is(tok::annot_pragma_fp_contract));
+ tok::OnOffSwitch OOS =
+ static_cast<tok::OnOffSwitch>(
+ reinterpret_cast<uintptr_t>(Tok.getAnnotationValue()));
+ Actions.ActOnPragmaFPContract(OOS);
+ ConsumeToken(); // The annotation token.
+}
+
+StmtResult Parser::HandlePragmaCaptured()
+{
+ assert(Tok.is(tok::annot_pragma_captured));
+ ConsumeToken();
+
+ if (Tok.isNot(tok::l_brace)) {
+ PP.Diag(Tok, diag::err_expected) << tok::l_brace;
+ return StmtError();
+ }
+
+ SourceLocation Loc = Tok.getLocation();
+
+ ParseScope CapturedRegionScope(this, Scope::FnScope | Scope::DeclScope);
+ Actions.ActOnCapturedRegionStart(Loc, getCurScope(), CR_Default,
+ /*NumParams=*/1);
+
+ StmtResult R = ParseCompoundStatement();
+ CapturedRegionScope.Exit();
+
+ if (R.isInvalid()) {
+ Actions.ActOnCapturedRegionError();
+ return StmtError();
+ }
+
+ return Actions.ActOnCapturedRegionEnd(R.get());
+}
+
+namespace {
+ typedef llvm::PointerIntPair<IdentifierInfo *, 1, bool> OpenCLExtData;
+}
+
+void Parser::HandlePragmaOpenCLExtension() {
+ assert(Tok.is(tok::annot_pragma_opencl_extension));
+ OpenCLExtData data =
+ OpenCLExtData::getFromOpaqueValue(Tok.getAnnotationValue());
+ unsigned state = data.getInt();
+ IdentifierInfo *ename = data.getPointer();
+ SourceLocation NameLoc = Tok.getLocation();
+ ConsumeToken(); // The annotation token.
+
+ OpenCLOptions &f = Actions.getOpenCLOptions();
+ // OpenCL 1.1 9.1: "The all variant sets the behavior for all extensions,
+ // overriding all previously issued extension directives, but only if the
+ // behavior is set to disable."
+ if (state == 0 && ename->isStr("all")) {
+#define OPENCLEXT(nm) f.nm = 0;
+#include "clang/Basic/OpenCLExtensions.def"
+ }
+#define OPENCLEXT(nm) else if (ename->isStr(#nm)) { f.nm = state; }
+#include "clang/Basic/OpenCLExtensions.def"
+ else {
+ PP.Diag(NameLoc, diag::warn_pragma_unknown_extension) << ename;
+ return;
+ }
+}
+
+void Parser::HandlePragmaMSPointersToMembers() {
+ assert(Tok.is(tok::annot_pragma_ms_pointers_to_members));
+ LangOptions::PragmaMSPointersToMembersKind RepresentationMethod =
+ static_cast<LangOptions::PragmaMSPointersToMembersKind>(
+ reinterpret_cast<uintptr_t>(Tok.getAnnotationValue()));
+ SourceLocation PragmaLoc = ConsumeToken(); // The annotation token.
+ Actions.ActOnPragmaMSPointersToMembers(RepresentationMethod, PragmaLoc);
+}
+
+void Parser::HandlePragmaMSVtorDisp() {
+ assert(Tok.is(tok::annot_pragma_ms_vtordisp));
+ uintptr_t Value = reinterpret_cast<uintptr_t>(Tok.getAnnotationValue());
+ Sema::PragmaVtorDispKind Kind =
+ static_cast<Sema::PragmaVtorDispKind>((Value >> 16) & 0xFFFF);
+ MSVtorDispAttr::Mode Mode = MSVtorDispAttr::Mode(Value & 0xFFFF);
+ SourceLocation PragmaLoc = ConsumeToken(); // The annotation token.
+ Actions.ActOnPragmaMSVtorDisp(Kind, PragmaLoc, Mode);
+}
+
+void Parser::HandlePragmaMSPragma() {
+ assert(Tok.is(tok::annot_pragma_ms_pragma));
+ // Grab the tokens out of the annotation and enter them into the stream.
+ auto TheTokens = (std::pair<Token*, size_t> *)Tok.getAnnotationValue();
+ PP.EnterTokenStream(TheTokens->first, TheTokens->second, true, true);
+ SourceLocation PragmaLocation = ConsumeToken(); // The annotation token.
+ assert(Tok.isAnyIdentifier());
+ StringRef PragmaName = Tok.getIdentifierInfo()->getName();
+ PP.Lex(Tok); // pragma kind
+
+ // Figure out which #pragma we're dealing with. The switch has no default
+ // because lex shouldn't emit the annotation token for unrecognized pragmas.
+ typedef bool (Parser::*PragmaHandler)(StringRef, SourceLocation);
+ PragmaHandler Handler = llvm::StringSwitch<PragmaHandler>(PragmaName)
+ .Case("data_seg", &Parser::HandlePragmaMSSegment)
+ .Case("bss_seg", &Parser::HandlePragmaMSSegment)
+ .Case("const_seg", &Parser::HandlePragmaMSSegment)
+ .Case("code_seg", &Parser::HandlePragmaMSSegment)
+ .Case("section", &Parser::HandlePragmaMSSection)
+ .Case("init_seg", &Parser::HandlePragmaMSInitSeg);
+
+ if (!(this->*Handler)(PragmaName, PragmaLocation)) {
+ // Pragma handling failed, and has been diagnosed. Slurp up the tokens
+ // until eof (really end of line) to prevent follow-on errors.
+ while (Tok.isNot(tok::eof))
+ PP.Lex(Tok);
+ PP.Lex(Tok);
+ }
+}
+
+bool Parser::HandlePragmaMSSection(StringRef PragmaName,
+ SourceLocation PragmaLocation) {
+ if (Tok.isNot(tok::l_paren)) {
+ PP.Diag(PragmaLocation, diag::warn_pragma_expected_lparen) << PragmaName;
+ return false;
+ }
+ PP.Lex(Tok); // (
+ // Parsing code for pragma section
+ if (Tok.isNot(tok::string_literal)) {
+ PP.Diag(PragmaLocation, diag::warn_pragma_expected_section_name)
+ << PragmaName;
+ return false;
+ }
+ ExprResult StringResult = ParseStringLiteralExpression();
+ if (StringResult.isInvalid())
+ return false; // Already diagnosed.
+ StringLiteral *SegmentName = cast<StringLiteral>(StringResult.get());
+ if (SegmentName->getCharByteWidth() != 1) {
+ PP.Diag(PragmaLocation, diag::warn_pragma_expected_non_wide_string)
+ << PragmaName;
+ return false;
+ }
+ int SectionFlags = ASTContext::PSF_Read;
+ bool SectionFlagsAreDefault = true;
+ while (Tok.is(tok::comma)) {
+ PP.Lex(Tok); // ,
+ // Ignore "long" and "short".
+ // They are undocumented, but widely used, section attributes which appear
+ // to do nothing.
+ if (Tok.is(tok::kw_long) || Tok.is(tok::kw_short)) {
+ PP.Lex(Tok); // long/short
+ continue;
+ }
+
+ if (!Tok.isAnyIdentifier()) {
+ PP.Diag(PragmaLocation, diag::warn_pragma_expected_action_or_r_paren)
+ << PragmaName;
+ return false;
+ }
+ ASTContext::PragmaSectionFlag Flag =
+ llvm::StringSwitch<ASTContext::PragmaSectionFlag>(
+ Tok.getIdentifierInfo()->getName())
+ .Case("read", ASTContext::PSF_Read)
+ .Case("write", ASTContext::PSF_Write)
+ .Case("execute", ASTContext::PSF_Execute)
+ .Case("shared", ASTContext::PSF_Invalid)
+ .Case("nopage", ASTContext::PSF_Invalid)
+ .Case("nocache", ASTContext::PSF_Invalid)
+ .Case("discard", ASTContext::PSF_Invalid)
+ .Case("remove", ASTContext::PSF_Invalid)
+ .Default(ASTContext::PSF_None);
+ if (Flag == ASTContext::PSF_None || Flag == ASTContext::PSF_Invalid) {
+ PP.Diag(PragmaLocation, Flag == ASTContext::PSF_None
+ ? diag::warn_pragma_invalid_specific_action
+ : diag::warn_pragma_unsupported_action)
+ << PragmaName << Tok.getIdentifierInfo()->getName();
+ return false;
+ }
+ SectionFlags |= Flag;
+ SectionFlagsAreDefault = false;
+ PP.Lex(Tok); // Identifier
+ }
+ // If no section attributes are specified, the section will be marked as
+ // read/write.
+ if (SectionFlagsAreDefault)
+ SectionFlags |= ASTContext::PSF_Write;
+ if (Tok.isNot(tok::r_paren)) {
+ PP.Diag(PragmaLocation, diag::warn_pragma_expected_rparen) << PragmaName;
+ return false;
+ }
+ PP.Lex(Tok); // )
+ if (Tok.isNot(tok::eof)) {
+ PP.Diag(PragmaLocation, diag::warn_pragma_extra_tokens_at_eol)
+ << PragmaName;
+ return false;
+ }
+ PP.Lex(Tok); // eof
+ Actions.ActOnPragmaMSSection(PragmaLocation, SectionFlags, SegmentName);
+ return true;
+}
+
+bool Parser::HandlePragmaMSSegment(StringRef PragmaName,
+ SourceLocation PragmaLocation) {
+ if (Tok.isNot(tok::l_paren)) {
+ PP.Diag(PragmaLocation, diag::warn_pragma_expected_lparen) << PragmaName;
+ return false;
+ }
+ PP.Lex(Tok); // (
+ Sema::PragmaMsStackAction Action = Sema::PSK_Reset;
+ StringRef SlotLabel;
+ if (Tok.isAnyIdentifier()) {
+ StringRef PushPop = Tok.getIdentifierInfo()->getName();
+ if (PushPop == "push")
+ Action = Sema::PSK_Push;
+ else if (PushPop == "pop")
+ Action = Sema::PSK_Pop;
+ else {
+ PP.Diag(PragmaLocation,
+ diag::warn_pragma_expected_section_push_pop_or_name)
+ << PragmaName;
+ return false;
+ }
+ if (Action != Sema::PSK_Reset) {
+ PP.Lex(Tok); // push | pop
+ if (Tok.is(tok::comma)) {
+ PP.Lex(Tok); // ,
+ // If we've got a comma, we either need a label or a string.
+ if (Tok.isAnyIdentifier()) {
+ SlotLabel = Tok.getIdentifierInfo()->getName();
+ PP.Lex(Tok); // identifier
+ if (Tok.is(tok::comma))
+ PP.Lex(Tok);
+ else if (Tok.isNot(tok::r_paren)) {
+ PP.Diag(PragmaLocation, diag::warn_pragma_expected_punc)
+ << PragmaName;
+ return false;
+ }
+ }
+ } else if (Tok.isNot(tok::r_paren)) {
+ PP.Diag(PragmaLocation, diag::warn_pragma_expected_punc) << PragmaName;
+ return false;
+ }
+ }
+ }
+ // Grab the string literal for our section name.
+ StringLiteral *SegmentName = nullptr;
+ if (Tok.isNot(tok::r_paren)) {
+ if (Tok.isNot(tok::string_literal)) {
+ unsigned DiagID = Action != Sema::PSK_Reset ? !SlotLabel.empty() ?
+ diag::warn_pragma_expected_section_name :
+ diag::warn_pragma_expected_section_label_or_name :
+ diag::warn_pragma_expected_section_push_pop_or_name;
+ PP.Diag(PragmaLocation, DiagID) << PragmaName;
+ return false;
+ }
+ ExprResult StringResult = ParseStringLiteralExpression();
+ if (StringResult.isInvalid())
+ return false; // Already diagnosed.
+ SegmentName = cast<StringLiteral>(StringResult.get());
+ if (SegmentName->getCharByteWidth() != 1) {
+ PP.Diag(PragmaLocation, diag::warn_pragma_expected_non_wide_string)
+ << PragmaName;
+ return false;
+ }
+ // Setting section "" has no effect
+ if (SegmentName->getLength())
+ Action = (Sema::PragmaMsStackAction)(Action | Sema::PSK_Set);
+ }
+ if (Tok.isNot(tok::r_paren)) {
+ PP.Diag(PragmaLocation, diag::warn_pragma_expected_rparen) << PragmaName;
+ return false;
+ }
+ PP.Lex(Tok); // )
+ if (Tok.isNot(tok::eof)) {
+ PP.Diag(PragmaLocation, diag::warn_pragma_extra_tokens_at_eol)
+ << PragmaName;
+ return false;
+ }
+ PP.Lex(Tok); // eof
+ Actions.ActOnPragmaMSSeg(PragmaLocation, Action, SlotLabel,
+ SegmentName, PragmaName);
+ return true;
+}
+
+// #pragma init_seg({ compiler | lib | user | "section-name" [, func-name]} )
+bool Parser::HandlePragmaMSInitSeg(StringRef PragmaName,
+ SourceLocation PragmaLocation) {
+ if (getTargetInfo().getTriple().getEnvironment() != llvm::Triple::MSVC) {
+ PP.Diag(PragmaLocation, diag::warn_pragma_init_seg_unsupported_target);
+ return false;
+ }
+
+ if (ExpectAndConsume(tok::l_paren, diag::warn_pragma_expected_lparen,
+ PragmaName))
+ return false;
+
+ // Parse either the known section names or the string section name.
+ StringLiteral *SegmentName = nullptr;
+ if (Tok.isAnyIdentifier()) {
+ auto *II = Tok.getIdentifierInfo();
+ StringRef Section = llvm::StringSwitch<StringRef>(II->getName())
+ .Case("compiler", "\".CRT$XCC\"")
+ .Case("lib", "\".CRT$XCL\"")
+ .Case("user", "\".CRT$XCU\"")
+ .Default("");
+
+ if (!Section.empty()) {
+ // Pretend the user wrote the appropriate string literal here.
+ Token Toks[1];
+ Toks[0].startToken();
+ Toks[0].setKind(tok::string_literal);
+ Toks[0].setLocation(Tok.getLocation());
+ Toks[0].setLiteralData(Section.data());
+ Toks[0].setLength(Section.size());
+ SegmentName =
+ cast<StringLiteral>(Actions.ActOnStringLiteral(Toks, nullptr).get());
+ PP.Lex(Tok);
+ }
+ } else if (Tok.is(tok::string_literal)) {
+ ExprResult StringResult = ParseStringLiteralExpression();
+ if (StringResult.isInvalid())
+ return false;
+ SegmentName = cast<StringLiteral>(StringResult.get());
+ if (SegmentName->getCharByteWidth() != 1) {
+ PP.Diag(PragmaLocation, diag::warn_pragma_expected_non_wide_string)
+ << PragmaName;
+ return false;
+ }
+ // FIXME: Add support for the '[, func-name]' part of the pragma.
+ }
+
+ if (!SegmentName) {
+ PP.Diag(PragmaLocation, diag::warn_pragma_expected_init_seg) << PragmaName;
+ return false;
+ }
+
+ if (ExpectAndConsume(tok::r_paren, diag::warn_pragma_expected_rparen,
+ PragmaName) ||
+ ExpectAndConsume(tok::eof, diag::warn_pragma_extra_tokens_at_eol,
+ PragmaName))
+ return false;
+
+ Actions.ActOnPragmaMSInitSeg(PragmaLocation, SegmentName);
+ return true;
+}
+
+struct PragmaLoopHintInfo {
+ Token PragmaName;
+ Token Option;
+ Token *Toks;
+ size_t TokSize;
+ PragmaLoopHintInfo() : Toks(nullptr), TokSize(0) {}
+};
+
+static std::string PragmaLoopHintString(Token PragmaName, Token Option) {
+ std::string PragmaString;
+ if (PragmaName.getIdentifierInfo()->getName() == "loop") {
+ PragmaString = "clang loop ";
+ PragmaString += Option.getIdentifierInfo()->getName();
+ } else {
+ assert(PragmaName.getIdentifierInfo()->getName() == "unroll" &&
+ "Unexpected pragma name");
+ PragmaString = "unroll";
+ }
+ return PragmaString;
+}
+
+bool Parser::HandlePragmaLoopHint(LoopHint &Hint) {
+ assert(Tok.is(tok::annot_pragma_loop_hint));
+ PragmaLoopHintInfo *Info =
+ static_cast<PragmaLoopHintInfo *>(Tok.getAnnotationValue());
+
+ IdentifierInfo *PragmaNameInfo = Info->PragmaName.getIdentifierInfo();
+ Hint.PragmaNameLoc = IdentifierLoc::create(
+ Actions.Context, Info->PragmaName.getLocation(), PragmaNameInfo);
+
+ // It is possible that the loop hint has no option identifier, such as
+ // #pragma unroll(4).
+ IdentifierInfo *OptionInfo = Info->Option.is(tok::identifier)
+ ? Info->Option.getIdentifierInfo()
+ : nullptr;
+ Hint.OptionLoc = IdentifierLoc::create(
+ Actions.Context, Info->Option.getLocation(), OptionInfo);
+
+ Token *Toks = Info->Toks;
+ size_t TokSize = Info->TokSize;
+
+ // Return a valid hint if pragma unroll or nounroll were specified
+ // without an argument.
+ bool PragmaUnroll = PragmaNameInfo->getName() == "unroll";
+ bool PragmaNoUnroll = PragmaNameInfo->getName() == "nounroll";
+ if (TokSize == 0 && (PragmaUnroll || PragmaNoUnroll)) {
+ ConsumeToken(); // The annotation token.
+ Hint.Range = Info->PragmaName.getLocation();
+ return true;
+ }
+
+ // The constant expression is always followed by an eof token, which increases
+ // the TokSize by 1.
+ assert(TokSize > 0 &&
+ "PragmaLoopHintInfo::Toks must contain at least one token.");
+
+ // If no option is specified the argument is assumed to be a constant expr.
+ bool StateOption = false;
+ if (OptionInfo) { // Pragma unroll does not specify an option.
+ StateOption = llvm::StringSwitch<bool>(OptionInfo->getName())
+ .Case("vectorize", true)
+ .Case("interleave", true)
+ .Case("unroll", true)
+ .Default(false);
+ }
+
+ // Verify loop hint has an argument.
+ if (Toks[0].is(tok::eof)) {
+ ConsumeToken(); // The annotation token.
+ Diag(Toks[0].getLocation(), diag::err_pragma_loop_missing_argument)
+ << /*StateArgument=*/StateOption << /*FullKeyword=*/PragmaUnroll;
+ return false;
+ }
+
+ // Validate the argument.
+ if (StateOption) {
+ ConsumeToken(); // The annotation token.
+ bool OptionUnroll = OptionInfo->isStr("unroll");
+ SourceLocation StateLoc = Toks[0].getLocation();
+ IdentifierInfo *StateInfo = Toks[0].getIdentifierInfo();
+ if (!StateInfo || ((OptionUnroll ? !StateInfo->isStr("full")
+ : !StateInfo->isStr("enable")) &&
+ !StateInfo->isStr("disable"))) {
+ Diag(Toks[0].getLocation(), diag::err_pragma_invalid_keyword)
+ << /*FullKeyword=*/OptionUnroll;
+ return false;
+ }
+ if (TokSize > 2)
+ Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol)
+ << PragmaLoopHintString(Info->PragmaName, Info->Option);
+ Hint.StateLoc = IdentifierLoc::create(Actions.Context, StateLoc, StateInfo);
+ } else {
+ // Enter constant expression including eof terminator into token stream.
+ PP.EnterTokenStream(Toks, TokSize, /*DisableMacroExpansion=*/false,
+ /*OwnsTokens=*/false);
+ ConsumeToken(); // The annotation token.
+
+ ExprResult R = ParseConstantExpression();
+
+ // Tokens following an error in an ill-formed constant expression will
+ // remain in the token stream and must be removed.
+ if (Tok.isNot(tok::eof)) {
+ Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol)
+ << PragmaLoopHintString(Info->PragmaName, Info->Option);
+ while (Tok.isNot(tok::eof))
+ ConsumeAnyToken();
+ }
+
+ ConsumeToken(); // Consume the constant expression eof terminator.
+
+ if (R.isInvalid() ||
+ Actions.CheckLoopHintExpr(R.get(), Toks[0].getLocation()))
+ return false;
+
+ // Argument is a constant expression with an integer type.
+ Hint.ValueExpr = R.get();
+ }
+
+ Hint.Range = SourceRange(Info->PragmaName.getLocation(),
+ Info->Toks[TokSize - 1].getLocation());
+ return true;
+}
+
+// #pragma GCC visibility comes in two variants:
+// 'push' '(' [visibility] ')'
+// 'pop'
+void PragmaGCCVisibilityHandler::HandlePragma(Preprocessor &PP,
+ PragmaIntroducerKind Introducer,
+ Token &VisTok) {
+ SourceLocation VisLoc = VisTok.getLocation();
+
+ Token Tok;
+ PP.LexUnexpandedToken(Tok);
+
+ const IdentifierInfo *PushPop = Tok.getIdentifierInfo();
+
+ const IdentifierInfo *VisType;
+ if (PushPop && PushPop->isStr("pop")) {
+ VisType = nullptr;
+ } else if (PushPop && PushPop->isStr("push")) {
+ PP.LexUnexpandedToken(Tok);
+ if (Tok.isNot(tok::l_paren)) {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_lparen)
+ << "visibility";
+ return;
+ }
+ PP.LexUnexpandedToken(Tok);
+ VisType = Tok.getIdentifierInfo();
+ if (!VisType) {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_identifier)
+ << "visibility";
+ return;
+ }
+ PP.LexUnexpandedToken(Tok);
+ if (Tok.isNot(tok::r_paren)) {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_rparen)
+ << "visibility";
+ return;
+ }
+ } else {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_identifier)
+ << "visibility";
+ return;
+ }
+ SourceLocation EndLoc = Tok.getLocation();
+ PP.LexUnexpandedToken(Tok);
+ if (Tok.isNot(tok::eod)) {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol)
+ << "visibility";
+ return;
+ }
+
+ Token *Toks = new Token[1];
+ Toks[0].startToken();
+ Toks[0].setKind(tok::annot_pragma_vis);
+ Toks[0].setLocation(VisLoc);
+ Toks[0].setAnnotationEndLoc(EndLoc);
+ Toks[0].setAnnotationValue(
+ const_cast<void*>(static_cast<const void*>(VisType)));
+ PP.EnterTokenStream(Toks, 1, /*DisableMacroExpansion=*/true,
+ /*OwnsTokens=*/true);
+}
+
+// #pragma pack(...) comes in the following delicious flavors:
+// pack '(' [integer] ')'
+// pack '(' 'show' ')'
+// pack '(' ('push' | 'pop') [',' identifier] [, integer] ')'
+void PragmaPackHandler::HandlePragma(Preprocessor &PP,
+ PragmaIntroducerKind Introducer,
+ Token &PackTok) {
+ SourceLocation PackLoc = PackTok.getLocation();
+
+ Token Tok;
+ PP.Lex(Tok);
+ if (Tok.isNot(tok::l_paren)) {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_lparen) << "pack";
+ return;
+ }
+
+ Sema::PragmaPackKind Kind = Sema::PPK_Default;
+ IdentifierInfo *Name = nullptr;
+ Token Alignment;
+ Alignment.startToken();
+ SourceLocation LParenLoc = Tok.getLocation();
+ PP.Lex(Tok);
+ if (Tok.is(tok::numeric_constant)) {
+ Alignment = Tok;
+
+ PP.Lex(Tok);
+
+ // In MSVC/gcc, #pragma pack(4) sets the alignment without affecting
+ // the push/pop stack.
+ // In Apple gcc, #pragma pack(4) is equivalent to #pragma pack(push, 4)
+ if (PP.getLangOpts().ApplePragmaPack)
+ Kind = Sema::PPK_Push;
+ } else if (Tok.is(tok::identifier)) {
+ const IdentifierInfo *II = Tok.getIdentifierInfo();
+ if (II->isStr("show")) {
+ Kind = Sema::PPK_Show;
+ PP.Lex(Tok);
+ } else {
+ if (II->isStr("push")) {
+ Kind = Sema::PPK_Push;
+ } else if (II->isStr("pop")) {
+ Kind = Sema::PPK_Pop;
+ } else {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_invalid_action) << "pack";
+ return;
+ }
+ PP.Lex(Tok);
+
+ if (Tok.is(tok::comma)) {
+ PP.Lex(Tok);
+
+ if (Tok.is(tok::numeric_constant)) {
+ Alignment = Tok;
+
+ PP.Lex(Tok);
+ } else if (Tok.is(tok::identifier)) {
+ Name = Tok.getIdentifierInfo();
+ PP.Lex(Tok);
+
+ if (Tok.is(tok::comma)) {
+ PP.Lex(Tok);
+
+ if (Tok.isNot(tok::numeric_constant)) {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_pack_malformed);
+ return;
+ }
+
+ Alignment = Tok;
+
+ PP.Lex(Tok);
+ }
+ } else {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_pack_malformed);
+ return;
+ }
+ }
+ }
+ } else if (PP.getLangOpts().ApplePragmaPack) {
+ // In MSVC/gcc, #pragma pack() resets the alignment without affecting
+ // the push/pop stack.
+ // In Apple gcc #pragma pack() is equivalent to #pragma pack(pop).
+ Kind = Sema::PPK_Pop;
+ }
+
+ if (Tok.isNot(tok::r_paren)) {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_rparen) << "pack";
+ return;
+ }
+
+ SourceLocation RParenLoc = Tok.getLocation();
+ PP.Lex(Tok);
+ if (Tok.isNot(tok::eod)) {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol) << "pack";
+ return;
+ }
+
+ PragmaPackInfo *Info =
+ (PragmaPackInfo*) PP.getPreprocessorAllocator().Allocate(
+ sizeof(PragmaPackInfo), llvm::alignOf<PragmaPackInfo>());
+ new (Info) PragmaPackInfo();
+ Info->Kind = Kind;
+ Info->Name = Name;
+ Info->Alignment = Alignment;
+ Info->LParenLoc = LParenLoc;
+ Info->RParenLoc = RParenLoc;
+
+ Token *Toks =
+ (Token*) PP.getPreprocessorAllocator().Allocate(
+ sizeof(Token) * 1, llvm::alignOf<Token>());
+ new (Toks) Token();
+ Toks[0].startToken();
+ Toks[0].setKind(tok::annot_pragma_pack);
+ Toks[0].setLocation(PackLoc);
+ Toks[0].setAnnotationEndLoc(RParenLoc);
+ Toks[0].setAnnotationValue(static_cast<void*>(Info));
+ PP.EnterTokenStream(Toks, 1, /*DisableMacroExpansion=*/true,
+ /*OwnsTokens=*/false);
+}
+
+// #pragma ms_struct on
+// #pragma ms_struct off
+void PragmaMSStructHandler::HandlePragma(Preprocessor &PP,
+ PragmaIntroducerKind Introducer,
+ Token &MSStructTok) {
+ Sema::PragmaMSStructKind Kind = Sema::PMSST_OFF;
+
+ Token Tok;
+ PP.Lex(Tok);
+ if (Tok.isNot(tok::identifier)) {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_ms_struct);
+ return;
+ }
+ SourceLocation EndLoc = Tok.getLocation();
+ const IdentifierInfo *II = Tok.getIdentifierInfo();
+ if (II->isStr("on")) {
+ Kind = Sema::PMSST_ON;
+ PP.Lex(Tok);
+ }
+ else if (II->isStr("off") || II->isStr("reset"))
+ PP.Lex(Tok);
+ else {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_ms_struct);
+ return;
+ }
+
+ if (Tok.isNot(tok::eod)) {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol)
+ << "ms_struct";
+ return;
+ }
+
+ Token *Toks =
+ (Token*) PP.getPreprocessorAllocator().Allocate(
+ sizeof(Token) * 1, llvm::alignOf<Token>());
+ new (Toks) Token();
+ Toks[0].startToken();
+ Toks[0].setKind(tok::annot_pragma_msstruct);
+ Toks[0].setLocation(MSStructTok.getLocation());
+ Toks[0].setAnnotationEndLoc(EndLoc);
+ Toks[0].setAnnotationValue(reinterpret_cast<void*>(
+ static_cast<uintptr_t>(Kind)));
+ PP.EnterTokenStream(Toks, 1, /*DisableMacroExpansion=*/true,
+ /*OwnsTokens=*/false);
+}
+
+// #pragma 'align' '=' {'native','natural','mac68k','power','reset'}
+// #pragma 'options 'align' '=' {'native','natural','mac68k','power','reset'}
+static void ParseAlignPragma(Preprocessor &PP, Token &FirstTok,
+ bool IsOptions) {
+ Token Tok;
+
+ if (IsOptions) {
+ PP.Lex(Tok);
+ if (Tok.isNot(tok::identifier) ||
+ !Tok.getIdentifierInfo()->isStr("align")) {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_options_expected_align);
+ return;
+ }
+ }
+
+ PP.Lex(Tok);
+ if (Tok.isNot(tok::equal)) {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_align_expected_equal)
+ << IsOptions;
+ return;
+ }
+
+ PP.Lex(Tok);
+ if (Tok.isNot(tok::identifier)) {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_identifier)
+ << (IsOptions ? "options" : "align");
+ return;
+ }
+
+ Sema::PragmaOptionsAlignKind Kind = Sema::POAK_Natural;
+ const IdentifierInfo *II = Tok.getIdentifierInfo();
+ if (II->isStr("native"))
+ Kind = Sema::POAK_Native;
+ else if (II->isStr("natural"))
+ Kind = Sema::POAK_Natural;
+ else if (II->isStr("packed"))
+ Kind = Sema::POAK_Packed;
+ else if (II->isStr("power"))
+ Kind = Sema::POAK_Power;
+ else if (II->isStr("mac68k"))
+ Kind = Sema::POAK_Mac68k;
+ else if (II->isStr("reset"))
+ Kind = Sema::POAK_Reset;
+ else {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_align_invalid_option)
+ << IsOptions;
+ return;
+ }
+
+ SourceLocation EndLoc = Tok.getLocation();
+ PP.Lex(Tok);
+ if (Tok.isNot(tok::eod)) {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol)
+ << (IsOptions ? "options" : "align");
+ return;
+ }
+
+ Token *Toks =
+ (Token*) PP.getPreprocessorAllocator().Allocate(
+ sizeof(Token) * 1, llvm::alignOf<Token>());
+ new (Toks) Token();
+ Toks[0].startToken();
+ Toks[0].setKind(tok::annot_pragma_align);
+ Toks[0].setLocation(FirstTok.getLocation());
+ Toks[0].setAnnotationEndLoc(EndLoc);
+ Toks[0].setAnnotationValue(reinterpret_cast<void*>(
+ static_cast<uintptr_t>(Kind)));
+ PP.EnterTokenStream(Toks, 1, /*DisableMacroExpansion=*/true,
+ /*OwnsTokens=*/false);
+}
+
+void PragmaAlignHandler::HandlePragma(Preprocessor &PP,
+ PragmaIntroducerKind Introducer,
+ Token &AlignTok) {
+ ParseAlignPragma(PP, AlignTok, /*IsOptions=*/false);
+}
+
+void PragmaOptionsHandler::HandlePragma(Preprocessor &PP,
+ PragmaIntroducerKind Introducer,
+ Token &OptionsTok) {
+ ParseAlignPragma(PP, OptionsTok, /*IsOptions=*/true);
+}
+
+// #pragma unused(identifier)
+void PragmaUnusedHandler::HandlePragma(Preprocessor &PP,
+ PragmaIntroducerKind Introducer,
+ Token &UnusedTok) {
+ // FIXME: Should we be expanding macros here? My guess is no.
+ SourceLocation UnusedLoc = UnusedTok.getLocation();
+
+ // Lex the left '('.
+ Token Tok;
+ PP.Lex(Tok);
+ if (Tok.isNot(tok::l_paren)) {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_lparen) << "unused";
+ return;
+ }
+
+ // Lex the declaration reference(s).
+ SmallVector<Token, 5> Identifiers;
+ SourceLocation RParenLoc;
+ bool LexID = true;
+
+ while (true) {
+ PP.Lex(Tok);
+
+ if (LexID) {
+ if (Tok.is(tok::identifier)) {
+ Identifiers.push_back(Tok);
+ LexID = false;
+ continue;
+ }
+
+ // Illegal token!
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_unused_expected_var);
+ return;
+ }
+
+ // We are execting a ')' or a ','.
+ if (Tok.is(tok::comma)) {
+ LexID = true;
+ continue;
+ }
+
+ if (Tok.is(tok::r_paren)) {
+ RParenLoc = Tok.getLocation();
+ break;
+ }
+
+ // Illegal token!
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_punc) << "unused";
+ return;
+ }
+
+ PP.Lex(Tok);
+ if (Tok.isNot(tok::eod)) {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol) <<
+ "unused";
+ return;
+ }
+
+ // Verify that we have a location for the right parenthesis.
+ assert(RParenLoc.isValid() && "Valid '#pragma unused' must have ')'");
+ assert(!Identifiers.empty() && "Valid '#pragma unused' must have arguments");
+
+ // For each identifier token, insert into the token stream a
+ // annot_pragma_unused token followed by the identifier token.
+ // This allows us to cache a "#pragma unused" that occurs inside an inline
+ // C++ member function.
+
+ Token *Toks =
+ (Token*) PP.getPreprocessorAllocator().Allocate(
+ sizeof(Token) * 2 * Identifiers.size(), llvm::alignOf<Token>());
+ for (unsigned i=0; i != Identifiers.size(); i++) {
+ Token &pragmaUnusedTok = Toks[2*i], &idTok = Toks[2*i+1];
+ pragmaUnusedTok.startToken();
+ pragmaUnusedTok.setKind(tok::annot_pragma_unused);
+ pragmaUnusedTok.setLocation(UnusedLoc);
+ idTok = Identifiers[i];
+ }
+ PP.EnterTokenStream(Toks, 2*Identifiers.size(),
+ /*DisableMacroExpansion=*/true, /*OwnsTokens=*/false);
+}
+
+// #pragma weak identifier
+// #pragma weak identifier '=' identifier
+void PragmaWeakHandler::HandlePragma(Preprocessor &PP,
+ PragmaIntroducerKind Introducer,
+ Token &WeakTok) {
+ SourceLocation WeakLoc = WeakTok.getLocation();
+
+ Token Tok;
+ PP.Lex(Tok);
+ if (Tok.isNot(tok::identifier)) {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_identifier) << "weak";
+ return;
+ }
+
+ Token WeakName = Tok;
+ bool HasAlias = false;
+ Token AliasName;
+
+ PP.Lex(Tok);
+ if (Tok.is(tok::equal)) {
+ HasAlias = true;
+ PP.Lex(Tok);
+ if (Tok.isNot(tok::identifier)) {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_identifier)
+ << "weak";
+ return;
+ }
+ AliasName = Tok;
+ PP.Lex(Tok);
+ }
+
+ if (Tok.isNot(tok::eod)) {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol) << "weak";
+ return;
+ }
+
+ if (HasAlias) {
+ Token *Toks =
+ (Token*) PP.getPreprocessorAllocator().Allocate(
+ sizeof(Token) * 3, llvm::alignOf<Token>());
+ Token &pragmaUnusedTok = Toks[0];
+ pragmaUnusedTok.startToken();
+ pragmaUnusedTok.setKind(tok::annot_pragma_weakalias);
+ pragmaUnusedTok.setLocation(WeakLoc);
+ pragmaUnusedTok.setAnnotationEndLoc(AliasName.getLocation());
+ Toks[1] = WeakName;
+ Toks[2] = AliasName;
+ PP.EnterTokenStream(Toks, 3,
+ /*DisableMacroExpansion=*/true, /*OwnsTokens=*/false);
+ } else {
+ Token *Toks =
+ (Token*) PP.getPreprocessorAllocator().Allocate(
+ sizeof(Token) * 2, llvm::alignOf<Token>());
+ Token &pragmaUnusedTok = Toks[0];
+ pragmaUnusedTok.startToken();
+ pragmaUnusedTok.setKind(tok::annot_pragma_weak);
+ pragmaUnusedTok.setLocation(WeakLoc);
+ pragmaUnusedTok.setAnnotationEndLoc(WeakLoc);
+ Toks[1] = WeakName;
+ PP.EnterTokenStream(Toks, 2,
+ /*DisableMacroExpansion=*/true, /*OwnsTokens=*/false);
+ }
+}
+
+// #pragma redefine_extname identifier identifier
+void PragmaRedefineExtnameHandler::HandlePragma(Preprocessor &PP,
+ PragmaIntroducerKind Introducer,
+ Token &RedefToken) {
+ SourceLocation RedefLoc = RedefToken.getLocation();
+
+ Token Tok;
+ PP.Lex(Tok);
+ if (Tok.isNot(tok::identifier)) {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_identifier) <<
+ "redefine_extname";
+ return;
+ }
+
+ Token RedefName = Tok;
+ PP.Lex(Tok);
+
+ if (Tok.isNot(tok::identifier)) {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_identifier)
+ << "redefine_extname";
+ return;
+ }
+
+ Token AliasName = Tok;
+ PP.Lex(Tok);
+
+ if (Tok.isNot(tok::eod)) {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol) <<
+ "redefine_extname";
+ return;
+ }
+
+ Token *Toks =
+ (Token*) PP.getPreprocessorAllocator().Allocate(
+ sizeof(Token) * 3, llvm::alignOf<Token>());
+ Token &pragmaRedefTok = Toks[0];
+ pragmaRedefTok.startToken();
+ pragmaRedefTok.setKind(tok::annot_pragma_redefine_extname);
+ pragmaRedefTok.setLocation(RedefLoc);
+ pragmaRedefTok.setAnnotationEndLoc(AliasName.getLocation());
+ Toks[1] = RedefName;
+ Toks[2] = AliasName;
+ PP.EnterTokenStream(Toks, 3,
+ /*DisableMacroExpansion=*/true, /*OwnsTokens=*/false);
+}
+
+
+void
+PragmaFPContractHandler::HandlePragma(Preprocessor &PP,
+ PragmaIntroducerKind Introducer,
+ Token &Tok) {
+ tok::OnOffSwitch OOS;
+ if (PP.LexOnOffSwitch(OOS))
+ return;
+
+ Token *Toks =
+ (Token*) PP.getPreprocessorAllocator().Allocate(
+ sizeof(Token) * 1, llvm::alignOf<Token>());
+ new (Toks) Token();
+ Toks[0].startToken();
+ Toks[0].setKind(tok::annot_pragma_fp_contract);
+ Toks[0].setLocation(Tok.getLocation());
+ Toks[0].setAnnotationEndLoc(Tok.getLocation());
+ Toks[0].setAnnotationValue(reinterpret_cast<void*>(
+ static_cast<uintptr_t>(OOS)));
+ PP.EnterTokenStream(Toks, 1, /*DisableMacroExpansion=*/true,
+ /*OwnsTokens=*/false);
+}
+
+void
+PragmaOpenCLExtensionHandler::HandlePragma(Preprocessor &PP,
+ PragmaIntroducerKind Introducer,
+ Token &Tok) {
+ PP.LexUnexpandedToken(Tok);
+ if (Tok.isNot(tok::identifier)) {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_identifier) <<
+ "OPENCL";
+ return;
+ }
+ IdentifierInfo *ename = Tok.getIdentifierInfo();
+ SourceLocation NameLoc = Tok.getLocation();
+
+ PP.Lex(Tok);
+ if (Tok.isNot(tok::colon)) {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_colon) << ename;
+ return;
+ }
+
+ PP.Lex(Tok);
+ if (Tok.isNot(tok::identifier)) {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_enable_disable);
+ return;
+ }
+ IdentifierInfo *op = Tok.getIdentifierInfo();
+
+ unsigned state;
+ if (op->isStr("enable")) {
+ state = 1;
+ } else if (op->isStr("disable")) {
+ state = 0;
+ } else {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_enable_disable);
+ return;
+ }
+ SourceLocation StateLoc = Tok.getLocation();
+
+ PP.Lex(Tok);
+ if (Tok.isNot(tok::eod)) {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol) <<
+ "OPENCL EXTENSION";
+ return;
+ }
+
+ OpenCLExtData data(ename, state);
+ Token *Toks =
+ (Token*) PP.getPreprocessorAllocator().Allocate(
+ sizeof(Token) * 1, llvm::alignOf<Token>());
+ new (Toks) Token();
+ Toks[0].startToken();
+ Toks[0].setKind(tok::annot_pragma_opencl_extension);
+ Toks[0].setLocation(NameLoc);
+ Toks[0].setAnnotationValue(data.getOpaqueValue());
+ Toks[0].setAnnotationEndLoc(StateLoc);
+ PP.EnterTokenStream(Toks, 1, /*DisableMacroExpansion=*/true,
+ /*OwnsTokens=*/false);
+
+ if (PP.getPPCallbacks())
+ PP.getPPCallbacks()->PragmaOpenCLExtension(NameLoc, ename,
+ StateLoc, state);
+}
+
+/// \brief Handle '#pragma omp ...' when OpenMP is disabled.
+///
+void
+PragmaNoOpenMPHandler::HandlePragma(Preprocessor &PP,
+ PragmaIntroducerKind Introducer,
+ Token &FirstTok) {
+ if (!PP.getDiagnostics().isIgnored(diag::warn_pragma_omp_ignored,
+ FirstTok.getLocation())) {
+ PP.Diag(FirstTok, diag::warn_pragma_omp_ignored);
+ PP.getDiagnostics().setSeverity(diag::warn_pragma_omp_ignored,
+ diag::Severity::Ignored, SourceLocation());
+ }
+ PP.DiscardUntilEndOfDirective();
+}
+
+/// \brief Handle '#pragma omp ...' when OpenMP is enabled.
+///
+void
+PragmaOpenMPHandler::HandlePragma(Preprocessor &PP,
+ PragmaIntroducerKind Introducer,
+ Token &FirstTok) {
+ SmallVector<Token, 16> Pragma;
+ Token Tok;
+ Tok.startToken();
+ Tok.setKind(tok::annot_pragma_openmp);
+ Tok.setLocation(FirstTok.getLocation());
+
+ while (Tok.isNot(tok::eod)) {
+ Pragma.push_back(Tok);
+ PP.Lex(Tok);
+ }
+ SourceLocation EodLoc = Tok.getLocation();
+ Tok.startToken();
+ Tok.setKind(tok::annot_pragma_openmp_end);
+ Tok.setLocation(EodLoc);
+ Pragma.push_back(Tok);
+
+ Token *Toks = new Token[Pragma.size()];
+ std::copy(Pragma.begin(), Pragma.end(), Toks);
+ PP.EnterTokenStream(Toks, Pragma.size(),
+ /*DisableMacroExpansion=*/false, /*OwnsTokens=*/true);
+}
+
+/// \brief Handle '#pragma pointers_to_members'
+// The grammar for this pragma is as follows:
+//
+// <inheritance model> ::= ('single' | 'multiple' | 'virtual') '_inheritance'
+//
+// #pragma pointers_to_members '(' 'best_case' ')'
+// #pragma pointers_to_members '(' 'full_generality' [',' inheritance-model] ')'
+// #pragma pointers_to_members '(' inheritance-model ')'
+void PragmaMSPointersToMembers::HandlePragma(Preprocessor &PP,
+ PragmaIntroducerKind Introducer,
+ Token &Tok) {
+ SourceLocation PointersToMembersLoc = Tok.getLocation();
+ PP.Lex(Tok);
+ if (Tok.isNot(tok::l_paren)) {
+ PP.Diag(PointersToMembersLoc, diag::warn_pragma_expected_lparen)
+ << "pointers_to_members";
+ return;
+ }
+ PP.Lex(Tok);
+ const IdentifierInfo *Arg = Tok.getIdentifierInfo();
+ if (!Arg) {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_identifier)
+ << "pointers_to_members";
+ return;
+ }
+ PP.Lex(Tok);
+
+ LangOptions::PragmaMSPointersToMembersKind RepresentationMethod;
+ if (Arg->isStr("best_case")) {
+ RepresentationMethod = LangOptions::PPTMK_BestCase;
+ } else {
+ if (Arg->isStr("full_generality")) {
+ if (Tok.is(tok::comma)) {
+ PP.Lex(Tok);
+
+ Arg = Tok.getIdentifierInfo();
+ if (!Arg) {
+ PP.Diag(Tok.getLocation(),
+ diag::err_pragma_pointers_to_members_unknown_kind)
+ << Tok.getKind() << /*OnlyInheritanceModels*/ 0;
+ return;
+ }
+ PP.Lex(Tok);
+ } else if (Tok.is(tok::r_paren)) {
+ // #pragma pointers_to_members(full_generality) implicitly specifies
+ // virtual_inheritance.
+ Arg = nullptr;
+ RepresentationMethod = LangOptions::PPTMK_FullGeneralityVirtualInheritance;
+ } else {
+ PP.Diag(Tok.getLocation(), diag::err_expected_punc)
+ << "full_generality";
+ return;
+ }
+ }
+
+ if (Arg) {
+ if (Arg->isStr("single_inheritance")) {
+ RepresentationMethod =
+ LangOptions::PPTMK_FullGeneralitySingleInheritance;
+ } else if (Arg->isStr("multiple_inheritance")) {
+ RepresentationMethod =
+ LangOptions::PPTMK_FullGeneralityMultipleInheritance;
+ } else if (Arg->isStr("virtual_inheritance")) {
+ RepresentationMethod =
+ LangOptions::PPTMK_FullGeneralityVirtualInheritance;
+ } else {
+ PP.Diag(Tok.getLocation(),
+ diag::err_pragma_pointers_to_members_unknown_kind)
+ << Arg << /*HasPointerDeclaration*/ 1;
+ return;
+ }
+ }
+ }
+
+ if (Tok.isNot(tok::r_paren)) {
+ PP.Diag(Tok.getLocation(), diag::err_expected_rparen_after)
+ << (Arg ? Arg->getName() : "full_generality");
+ return;
+ }
+
+ SourceLocation EndLoc = Tok.getLocation();
+ PP.Lex(Tok);
+ if (Tok.isNot(tok::eod)) {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol)
+ << "pointers_to_members";
+ return;
+ }
+
+ Token AnnotTok;
+ AnnotTok.startToken();
+ AnnotTok.setKind(tok::annot_pragma_ms_pointers_to_members);
+ AnnotTok.setLocation(PointersToMembersLoc);
+ AnnotTok.setAnnotationEndLoc(EndLoc);
+ AnnotTok.setAnnotationValue(
+ reinterpret_cast<void *>(static_cast<uintptr_t>(RepresentationMethod)));
+ PP.EnterToken(AnnotTok);
+}
+
+/// \brief Handle '#pragma vtordisp'
+// The grammar for this pragma is as follows:
+//
+// <vtordisp-mode> ::= ('off' | 'on' | '0' | '1' | '2' )
+//
+// #pragma vtordisp '(' ['push' ','] vtordisp-mode ')'
+// #pragma vtordisp '(' 'pop' ')'
+// #pragma vtordisp '(' ')'
+void PragmaMSVtorDisp::HandlePragma(Preprocessor &PP,
+ PragmaIntroducerKind Introducer,
+ Token &Tok) {
+ SourceLocation VtorDispLoc = Tok.getLocation();
+ PP.Lex(Tok);
+ if (Tok.isNot(tok::l_paren)) {
+ PP.Diag(VtorDispLoc, diag::warn_pragma_expected_lparen) << "vtordisp";
+ return;
+ }
+ PP.Lex(Tok);
+
+ Sema::PragmaVtorDispKind Kind = Sema::PVDK_Set;
+ const IdentifierInfo *II = Tok.getIdentifierInfo();
+ if (II) {
+ if (II->isStr("push")) {
+ // #pragma vtordisp(push, mode)
+ PP.Lex(Tok);
+ if (Tok.isNot(tok::comma)) {
+ PP.Diag(VtorDispLoc, diag::warn_pragma_expected_punc) << "vtordisp";
+ return;
+ }
+ PP.Lex(Tok);
+ Kind = Sema::PVDK_Push;
+ // not push, could be on/off
+ } else if (II->isStr("pop")) {
+ // #pragma vtordisp(pop)
+ PP.Lex(Tok);
+ Kind = Sema::PVDK_Pop;
+ }
+ // not push or pop, could be on/off
+ } else {
+ if (Tok.is(tok::r_paren)) {
+ // #pragma vtordisp()
+ Kind = Sema::PVDK_Reset;
+ }
+ }
+
+
+ uint64_t Value = 0;
+ if (Kind == Sema::PVDK_Push || Kind == Sema::PVDK_Set) {
+ const IdentifierInfo *II = Tok.getIdentifierInfo();
+ if (II && II->isStr("off")) {
+ PP.Lex(Tok);
+ Value = 0;
+ } else if (II && II->isStr("on")) {
+ PP.Lex(Tok);
+ Value = 1;
+ } else if (Tok.is(tok::numeric_constant) &&
+ PP.parseSimpleIntegerLiteral(Tok, Value)) {
+ if (Value > 2) {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_integer)
+ << 0 << 2 << "vtordisp";
+ return;
+ }
+ } else {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_invalid_action)
+ << "vtordisp";
+ return;
+ }
+ }
+
+ // Finish the pragma: ')' $
+ if (Tok.isNot(tok::r_paren)) {
+ PP.Diag(VtorDispLoc, diag::warn_pragma_expected_rparen) << "vtordisp";
+ return;
+ }
+ SourceLocation EndLoc = Tok.getLocation();
+ PP.Lex(Tok);
+ if (Tok.isNot(tok::eod)) {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol)
+ << "vtordisp";
+ return;
+ }
+
+ // Enter the annotation.
+ Token AnnotTok;
+ AnnotTok.startToken();
+ AnnotTok.setKind(tok::annot_pragma_ms_vtordisp);
+ AnnotTok.setLocation(VtorDispLoc);
+ AnnotTok.setAnnotationEndLoc(EndLoc);
+ AnnotTok.setAnnotationValue(reinterpret_cast<void *>(
+ static_cast<uintptr_t>((Kind << 16) | (Value & 0xFFFF))));
+ PP.EnterToken(AnnotTok);
+}
+
+/// \brief Handle all MS pragmas. Simply forwards the tokens after inserting
+/// an annotation token.
+void PragmaMSPragma::HandlePragma(Preprocessor &PP,
+ PragmaIntroducerKind Introducer,
+ Token &Tok) {
+ Token EoF, AnnotTok;
+ EoF.startToken();
+ EoF.setKind(tok::eof);
+ AnnotTok.startToken();
+ AnnotTok.setKind(tok::annot_pragma_ms_pragma);
+ AnnotTok.setLocation(Tok.getLocation());
+ AnnotTok.setAnnotationEndLoc(Tok.getLocation());
+ SmallVector<Token, 8> TokenVector;
+ // Suck up all of the tokens before the eod.
+ for (; Tok.isNot(tok::eod); PP.Lex(Tok)) {
+ TokenVector.push_back(Tok);
+ AnnotTok.setAnnotationEndLoc(Tok.getLocation());
+ }
+ // Add a sentinal EoF token to the end of the list.
+ TokenVector.push_back(EoF);
+ // We must allocate this array with new because EnterTokenStream is going to
+ // delete it later.
+ Token *TokenArray = new Token[TokenVector.size()];
+ std::copy(TokenVector.begin(), TokenVector.end(), TokenArray);
+ auto Value = new (PP.getPreprocessorAllocator())
+ std::pair<Token*, size_t>(std::make_pair(TokenArray, TokenVector.size()));
+ AnnotTok.setAnnotationValue(Value);
+ PP.EnterToken(AnnotTok);
+}
+
+/// \brief Handle the Microsoft \#pragma detect_mismatch extension.
+///
+/// The syntax is:
+/// \code
+/// #pragma detect_mismatch("name", "value")
+/// \endcode
+/// Where 'name' and 'value' are quoted strings. The values are embedded in
+/// the object file and passed along to the linker. If the linker detects a
+/// mismatch in the object file's values for the given name, a LNK2038 error
+/// is emitted. See MSDN for more details.
+void PragmaDetectMismatchHandler::HandlePragma(Preprocessor &PP,
+ PragmaIntroducerKind Introducer,
+ Token &Tok) {
+ SourceLocation CommentLoc = Tok.getLocation();
+ PP.Lex(Tok);
+ if (Tok.isNot(tok::l_paren)) {
+ PP.Diag(CommentLoc, diag::err_expected) << tok::l_paren;
+ return;
+ }
+
+ // Read the name to embed, which must be a string literal.
+ std::string NameString;
+ if (!PP.LexStringLiteral(Tok, NameString,
+ "pragma detect_mismatch",
+ /*MacroExpansion=*/true))
+ return;
+
+ // Read the comma followed by a second string literal.
+ std::string ValueString;
+ if (Tok.isNot(tok::comma)) {
+ PP.Diag(Tok.getLocation(), diag::err_pragma_detect_mismatch_malformed);
+ return;
+ }
+
+ if (!PP.LexStringLiteral(Tok, ValueString, "pragma detect_mismatch",
+ /*MacroExpansion=*/true))
+ return;
+
+ if (Tok.isNot(tok::r_paren)) {
+ PP.Diag(Tok.getLocation(), diag::err_expected) << tok::r_paren;
+ return;
+ }
+ PP.Lex(Tok); // Eat the r_paren.
+
+ if (Tok.isNot(tok::eod)) {
+ PP.Diag(Tok.getLocation(), diag::err_pragma_detect_mismatch_malformed);
+ return;
+ }
+
+ // If the pragma is lexically sound, notify any interested PPCallbacks.
+ if (PP.getPPCallbacks())
+ PP.getPPCallbacks()->PragmaDetectMismatch(CommentLoc, NameString,
+ ValueString);
+
+ Actions.ActOnPragmaDetectMismatch(NameString, ValueString);
+}
+
+/// \brief Handle the microsoft \#pragma comment extension.
+///
+/// The syntax is:
+/// \code
+/// #pragma comment(linker, "foo")
+/// \endcode
+/// 'linker' is one of five identifiers: compiler, exestr, lib, linker, user.
+/// "foo" is a string, which is fully macro expanded, and permits string
+/// concatenation, embedded escape characters etc. See MSDN for more details.
+void PragmaCommentHandler::HandlePragma(Preprocessor &PP,
+ PragmaIntroducerKind Introducer,
+ Token &Tok) {
+ SourceLocation CommentLoc = Tok.getLocation();
+ PP.Lex(Tok);
+ if (Tok.isNot(tok::l_paren)) {
+ PP.Diag(CommentLoc, diag::err_pragma_comment_malformed);
+ return;
+ }
+
+ // Read the identifier.
+ PP.Lex(Tok);
+ if (Tok.isNot(tok::identifier)) {
+ PP.Diag(CommentLoc, diag::err_pragma_comment_malformed);
+ return;
+ }
+
+ // Verify that this is one of the 5 whitelisted options.
+ IdentifierInfo *II = Tok.getIdentifierInfo();
+ Sema::PragmaMSCommentKind Kind =
+ llvm::StringSwitch<Sema::PragmaMSCommentKind>(II->getName())
+ .Case("linker", Sema::PCK_Linker)
+ .Case("lib", Sema::PCK_Lib)
+ .Case("compiler", Sema::PCK_Compiler)
+ .Case("exestr", Sema::PCK_ExeStr)
+ .Case("user", Sema::PCK_User)
+ .Default(Sema::PCK_Unknown);
+ if (Kind == Sema::PCK_Unknown) {
+ PP.Diag(Tok.getLocation(), diag::err_pragma_comment_unknown_kind);
+ return;
+ }
+
+ // On PS4, issue a warning about any pragma comments other than
+ // #pragma comment lib.
+ if (PP.getTargetInfo().getTriple().isPS4() && Kind != Sema::PCK_Lib) {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_comment_ignored)
+ << II->getName();
+ return;
+ }
+
+ // Read the optional string if present.
+ PP.Lex(Tok);
+ std::string ArgumentString;
+ if (Tok.is(tok::comma) && !PP.LexStringLiteral(Tok, ArgumentString,
+ "pragma comment",
+ /*MacroExpansion=*/true))
+ return;
+
+ // FIXME: warn that 'exestr' is deprecated.
+ // FIXME: If the kind is "compiler" warn if the string is present (it is
+ // ignored).
+ // The MSDN docs say that "lib" and "linker" require a string and have a short
+ // whitelist of linker options they support, but in practice MSVC doesn't
+ // issue a diagnostic. Therefore neither does clang.
+
+ if (Tok.isNot(tok::r_paren)) {
+ PP.Diag(Tok.getLocation(), diag::err_pragma_comment_malformed);
+ return;
+ }
+ PP.Lex(Tok); // eat the r_paren.
+
+ if (Tok.isNot(tok::eod)) {
+ PP.Diag(Tok.getLocation(), diag::err_pragma_comment_malformed);
+ return;
+ }
+
+ // If the pragma is lexically sound, notify any interested PPCallbacks.
+ if (PP.getPPCallbacks())
+ PP.getPPCallbacks()->PragmaComment(CommentLoc, II, ArgumentString);
+
+ Actions.ActOnPragmaMSComment(Kind, ArgumentString);
+}
+
+// #pragma clang optimize off
+// #pragma clang optimize on
+void PragmaOptimizeHandler::HandlePragma(Preprocessor &PP,
+ PragmaIntroducerKind Introducer,
+ Token &FirstToken) {
+ Token Tok;
+ PP.Lex(Tok);
+ if (Tok.is(tok::eod)) {
+ PP.Diag(Tok.getLocation(), diag::err_pragma_missing_argument)
+ << "clang optimize" << /*Expected=*/true << "'on' or 'off'";
+ return;
+ }
+ if (Tok.isNot(tok::identifier)) {
+ PP.Diag(Tok.getLocation(), diag::err_pragma_optimize_invalid_argument)
+ << PP.getSpelling(Tok);
+ return;
+ }
+ const IdentifierInfo *II = Tok.getIdentifierInfo();
+ // The only accepted values are 'on' or 'off'.
+ bool IsOn = false;
+ if (II->isStr("on")) {
+ IsOn = true;
+ } else if (!II->isStr("off")) {
+ PP.Diag(Tok.getLocation(), diag::err_pragma_optimize_invalid_argument)
+ << PP.getSpelling(Tok);
+ return;
+ }
+ PP.Lex(Tok);
+
+ if (Tok.isNot(tok::eod)) {
+ PP.Diag(Tok.getLocation(), diag::err_pragma_optimize_extra_argument)
+ << PP.getSpelling(Tok);
+ return;
+ }
+
+ Actions.ActOnPragmaOptimize(IsOn, FirstToken.getLocation());
+}
+
+/// \brief Parses loop or unroll pragma hint value and fills in Info.
+static bool ParseLoopHintValue(Preprocessor &PP, Token &Tok, Token PragmaName,
+ Token Option, bool ValueInParens,
+ PragmaLoopHintInfo &Info) {
+ SmallVector<Token, 1> ValueList;
+ int OpenParens = ValueInParens ? 1 : 0;
+ // Read constant expression.
+ while (Tok.isNot(tok::eod)) {
+ if (Tok.is(tok::l_paren))
+ OpenParens++;
+ else if (Tok.is(tok::r_paren)) {
+ OpenParens--;
+ if (OpenParens == 0 && ValueInParens)
+ break;
+ }
+
+ ValueList.push_back(Tok);
+ PP.Lex(Tok);
+ }
+
+ if (ValueInParens) {
+ // Read ')'
+ if (Tok.isNot(tok::r_paren)) {
+ PP.Diag(Tok.getLocation(), diag::err_expected) << tok::r_paren;
+ return true;
+ }
+ PP.Lex(Tok);
+ }
+
+ Token EOFTok;
+ EOFTok.startToken();
+ EOFTok.setKind(tok::eof);
+ EOFTok.setLocation(Tok.getLocation());
+ ValueList.push_back(EOFTok); // Terminates expression for parsing.
+
+ Token *TokenArray = (Token *)PP.getPreprocessorAllocator().Allocate(
+ ValueList.size() * sizeof(Token), llvm::alignOf<Token>());
+ std::copy(ValueList.begin(), ValueList.end(), TokenArray);
+ Info.Toks = TokenArray;
+ Info.TokSize = ValueList.size();
+
+ Info.PragmaName = PragmaName;
+ Info.Option = Option;
+ return false;
+}
+
+/// \brief Handle the \#pragma clang loop directive.
+/// #pragma clang 'loop' loop-hints
+///
+/// loop-hints:
+/// loop-hint loop-hints[opt]
+///
+/// loop-hint:
+/// 'vectorize' '(' loop-hint-keyword ')'
+/// 'interleave' '(' loop-hint-keyword ')'
+/// 'unroll' '(' unroll-hint-keyword ')'
+/// 'vectorize_width' '(' loop-hint-value ')'
+/// 'interleave_count' '(' loop-hint-value ')'
+/// 'unroll_count' '(' loop-hint-value ')'
+///
+/// loop-hint-keyword:
+/// 'enable'
+/// 'disable'
+///
+/// unroll-hint-keyword:
+/// 'full'
+/// 'disable'
+///
+/// loop-hint-value:
+/// constant-expression
+///
+/// Specifying vectorize(enable) or vectorize_width(_value_) instructs llvm to
+/// try vectorizing the instructions of the loop it precedes. Specifying
+/// interleave(enable) or interleave_count(_value_) instructs llvm to try
+/// interleaving multiple iterations of the loop it precedes. The width of the
+/// vector instructions is specified by vectorize_width() and the number of
+/// interleaved loop iterations is specified by interleave_count(). Specifying a
+/// value of 1 effectively disables vectorization/interleaving, even if it is
+/// possible and profitable, and 0 is invalid. The loop vectorizer currently
+/// only works on inner loops.
+///
+/// The unroll and unroll_count directives control the concatenation
+/// unroller. Specifying unroll(full) instructs llvm to try to
+/// unroll the loop completely, and unroll(disable) disables unrolling
+/// for the loop. Specifying unroll_count(_value_) instructs llvm to
+/// try to unroll the loop the number of times indicated by the value.
+void PragmaLoopHintHandler::HandlePragma(Preprocessor &PP,
+ PragmaIntroducerKind Introducer,
+ Token &Tok) {
+ // Incoming token is "loop" from "#pragma clang loop".
+ Token PragmaName = Tok;
+ SmallVector<Token, 1> TokenList;
+
+ // Lex the optimization option and verify it is an identifier.
+ PP.Lex(Tok);
+ if (Tok.isNot(tok::identifier)) {
+ PP.Diag(Tok.getLocation(), diag::err_pragma_loop_invalid_option)
+ << /*MissingOption=*/true << "";
+ return;
+ }
+
+ while (Tok.is(tok::identifier)) {
+ Token Option = Tok;
+ IdentifierInfo *OptionInfo = Tok.getIdentifierInfo();
+
+ bool OptionValid = llvm::StringSwitch<bool>(OptionInfo->getName())
+ .Case("vectorize", true)
+ .Case("interleave", true)
+ .Case("unroll", true)
+ .Case("vectorize_width", true)
+ .Case("interleave_count", true)
+ .Case("unroll_count", true)
+ .Default(false);
+ if (!OptionValid) {
+ PP.Diag(Tok.getLocation(), diag::err_pragma_loop_invalid_option)
+ << /*MissingOption=*/false << OptionInfo;
+ return;
+ }
+ PP.Lex(Tok);
+
+ // Read '('
+ if (Tok.isNot(tok::l_paren)) {
+ PP.Diag(Tok.getLocation(), diag::err_expected) << tok::l_paren;
+ return;
+ }
+ PP.Lex(Tok);
+
+ auto *Info = new (PP.getPreprocessorAllocator()) PragmaLoopHintInfo;
+ if (ParseLoopHintValue(PP, Tok, PragmaName, Option, /*ValueInParens=*/true,
+ *Info))
+ return;
+
+ // Generate the loop hint token.
+ Token LoopHintTok;
+ LoopHintTok.startToken();
+ LoopHintTok.setKind(tok::annot_pragma_loop_hint);
+ LoopHintTok.setLocation(PragmaName.getLocation());
+ LoopHintTok.setAnnotationEndLoc(PragmaName.getLocation());
+ LoopHintTok.setAnnotationValue(static_cast<void *>(Info));
+ TokenList.push_back(LoopHintTok);
+ }
+
+ if (Tok.isNot(tok::eod)) {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol)
+ << "clang loop";
+ return;
+ }
+
+ Token *TokenArray = new Token[TokenList.size()];
+ std::copy(TokenList.begin(), TokenList.end(), TokenArray);
+
+ PP.EnterTokenStream(TokenArray, TokenList.size(),
+ /*DisableMacroExpansion=*/false,
+ /*OwnsTokens=*/true);
+}
+
+/// \brief Handle the loop unroll optimization pragmas.
+/// #pragma unroll
+/// #pragma unroll unroll-hint-value
+/// #pragma unroll '(' unroll-hint-value ')'
+/// #pragma nounroll
+///
+/// unroll-hint-value:
+/// constant-expression
+///
+/// Loop unrolling hints can be specified with '#pragma unroll' or
+/// '#pragma nounroll'. '#pragma unroll' can take a numeric argument optionally
+/// contained in parentheses. With no argument the directive instructs llvm to
+/// try to unroll the loop completely. A positive integer argument can be
+/// specified to indicate the number of times the loop should be unrolled. To
+/// maximize compatibility with other compilers the unroll count argument can be
+/// specified with or without parentheses. Specifying, '#pragma nounroll'
+/// disables unrolling of the loop.
+void PragmaUnrollHintHandler::HandlePragma(Preprocessor &PP,
+ PragmaIntroducerKind Introducer,
+ Token &Tok) {
+ // Incoming token is "unroll" for "#pragma unroll", or "nounroll" for
+ // "#pragma nounroll".
+ Token PragmaName = Tok;
+ PP.Lex(Tok);
+ auto *Info = new (PP.getPreprocessorAllocator()) PragmaLoopHintInfo;
+ if (Tok.is(tok::eod)) {
+ // nounroll or unroll pragma without an argument.
+ Info->PragmaName = PragmaName;
+ Info->Option.startToken();
+ } else if (PragmaName.getIdentifierInfo()->getName() == "nounroll") {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol)
+ << "nounroll";
+ return;
+ } else {
+ // Unroll pragma with an argument: "#pragma unroll N" or
+ // "#pragma unroll(N)".
+ // Read '(' if it exists.
+ bool ValueInParens = Tok.is(tok::l_paren);
+ if (ValueInParens)
+ PP.Lex(Tok);
+
+ Token Option;
+ Option.startToken();
+ if (ParseLoopHintValue(PP, Tok, PragmaName, Option, ValueInParens, *Info))
+ return;
+
+ // In CUDA, the argument to '#pragma unroll' should not be contained in
+ // parentheses.
+ if (PP.getLangOpts().CUDA && ValueInParens)
+ PP.Diag(Info->Toks[0].getLocation(),
+ diag::warn_pragma_unroll_cuda_value_in_parens);
+
+ if (Tok.isNot(tok::eod)) {
+ PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol)
+ << "unroll";
+ return;
+ }
+ }
+
+ // Generate the hint token.
+ Token *TokenArray = new Token[1];
+ TokenArray[0].startToken();
+ TokenArray[0].setKind(tok::annot_pragma_loop_hint);
+ TokenArray[0].setLocation(PragmaName.getLocation());
+ TokenArray[0].setAnnotationEndLoc(PragmaName.getLocation());
+ TokenArray[0].setAnnotationValue(static_cast<void *>(Info));
+ PP.EnterTokenStream(TokenArray, 1, /*DisableMacroExpansion=*/false,
+ /*OwnsTokens=*/true);
+}
diff --git a/contrib/llvm/tools/clang/lib/Parse/ParseStmt.cpp b/contrib/llvm/tools/clang/lib/Parse/ParseStmt.cpp
new file mode 100644
index 0000000..055bdea
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Parse/ParseStmt.cpp
@@ -0,0 +1,2150 @@
+//===--- ParseStmt.cpp - Statement and Block Parser -----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Statement and Block portions of the Parser
+// interface.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Parse/Parser.h"
+#include "RAIIObjectsForParser.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/Basic/Attributes.h"
+#include "clang/Basic/Diagnostic.h"
+#include "clang/Basic/PrettyStackTrace.h"
+#include "clang/Sema/DeclSpec.h"
+#include "clang/Sema/LoopHint.h"
+#include "clang/Sema/PrettyDeclStackTrace.h"
+#include "clang/Sema/Scope.h"
+#include "clang/Sema/TypoCorrection.h"
+#include "llvm/ADT/SmallString.h"
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// C99 6.8: Statements and Blocks.
+//===----------------------------------------------------------------------===//
+
+/// \brief Parse a standalone statement (for instance, as the body of an 'if',
+/// 'while', or 'for').
+StmtResult Parser::ParseStatement(SourceLocation *TrailingElseLoc) {
+ StmtResult Res;
+
+ // We may get back a null statement if we found a #pragma. Keep going until
+ // we get an actual statement.
+ do {
+ StmtVector Stmts;
+ Res = ParseStatementOrDeclaration(Stmts, true, TrailingElseLoc);
+ } while (!Res.isInvalid() && !Res.get());
+
+ return Res;
+}
+
+/// ParseStatementOrDeclaration - Read 'statement' or 'declaration'.
+/// StatementOrDeclaration:
+/// statement
+/// declaration
+///
+/// statement:
+/// labeled-statement
+/// compound-statement
+/// expression-statement
+/// selection-statement
+/// iteration-statement
+/// jump-statement
+/// [C++] declaration-statement
+/// [C++] try-block
+/// [MS] seh-try-block
+/// [OBC] objc-throw-statement
+/// [OBC] objc-try-catch-statement
+/// [OBC] objc-synchronized-statement
+/// [GNU] asm-statement
+/// [OMP] openmp-construct [TODO]
+///
+/// labeled-statement:
+/// identifier ':' statement
+/// 'case' constant-expression ':' statement
+/// 'default' ':' statement
+///
+/// selection-statement:
+/// if-statement
+/// switch-statement
+///
+/// iteration-statement:
+/// while-statement
+/// do-statement
+/// for-statement
+///
+/// expression-statement:
+/// expression[opt] ';'
+///
+/// jump-statement:
+/// 'goto' identifier ';'
+/// 'continue' ';'
+/// 'break' ';'
+/// 'return' expression[opt] ';'
+/// [GNU] 'goto' '*' expression ';'
+///
+/// [OBC] objc-throw-statement:
+/// [OBC] '@' 'throw' expression ';'
+/// [OBC] '@' 'throw' ';'
+///
+StmtResult
+Parser::ParseStatementOrDeclaration(StmtVector &Stmts, bool OnlyStatement,
+ SourceLocation *TrailingElseLoc) {
+
+ ParenBraceBracketBalancer BalancerRAIIObj(*this);
+
+ ParsedAttributesWithRange Attrs(AttrFactory);
+ MaybeParseCXX11Attributes(Attrs, nullptr, /*MightBeObjCMessageSend*/ true);
+
+ StmtResult Res = ParseStatementOrDeclarationAfterAttributes(Stmts,
+ OnlyStatement, TrailingElseLoc, Attrs);
+
+ assert((Attrs.empty() || Res.isInvalid() || Res.isUsable()) &&
+ "attributes on empty statement");
+
+ if (Attrs.empty() || Res.isInvalid())
+ return Res;
+
+ return Actions.ProcessStmtAttributes(Res.get(), Attrs.getList(), Attrs.Range);
+}
+
+namespace {
+class StatementFilterCCC : public CorrectionCandidateCallback {
+public:
+ StatementFilterCCC(Token nextTok) : NextToken(nextTok) {
+ WantTypeSpecifiers = nextTok.is(tok::l_paren) || nextTok.is(tok::less) ||
+ nextTok.is(tok::identifier) || nextTok.is(tok::star) ||
+ nextTok.is(tok::amp) || nextTok.is(tok::l_square);
+ WantExpressionKeywords = nextTok.is(tok::l_paren) ||
+ nextTok.is(tok::identifier) ||
+ nextTok.is(tok::arrow) || nextTok.is(tok::period);
+ WantRemainingKeywords = nextTok.is(tok::l_paren) || nextTok.is(tok::semi) ||
+ nextTok.is(tok::identifier) ||
+ nextTok.is(tok::l_brace);
+ WantCXXNamedCasts = false;
+ }
+
+ bool ValidateCandidate(const TypoCorrection &candidate) override {
+ if (FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>())
+ return !candidate.getCorrectionSpecifier() || isa<ObjCIvarDecl>(FD);
+ if (NextToken.is(tok::equal))
+ return candidate.getCorrectionDeclAs<VarDecl>();
+ if (NextToken.is(tok::period) &&
+ candidate.getCorrectionDeclAs<NamespaceDecl>())
+ return false;
+ return CorrectionCandidateCallback::ValidateCandidate(candidate);
+ }
+
+private:
+ Token NextToken;
+};
+}
+
+StmtResult
+Parser::ParseStatementOrDeclarationAfterAttributes(StmtVector &Stmts,
+ bool OnlyStatement, SourceLocation *TrailingElseLoc,
+ ParsedAttributesWithRange &Attrs) {
+ const char *SemiError = nullptr;
+ StmtResult Res;
+
+ // Cases in this switch statement should fall through if the parser expects
+ // the token to end in a semicolon (in which case SemiError should be set),
+ // or they directly 'return;' if not.
+Retry:
+ tok::TokenKind Kind = Tok.getKind();
+ SourceLocation AtLoc;
+ switch (Kind) {
+ case tok::at: // May be a @try or @throw statement
+ {
+ ProhibitAttributes(Attrs); // TODO: is it correct?
+ AtLoc = ConsumeToken(); // consume @
+ return ParseObjCAtStatement(AtLoc);
+ }
+
+ case tok::code_completion:
+ Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Statement);
+ cutOffParsing();
+ return StmtError();
+
+ case tok::identifier: {
+ Token Next = NextToken();
+ if (Next.is(tok::colon)) { // C99 6.8.1: labeled-statement
+ // identifier ':' statement
+ return ParseLabeledStatement(Attrs);
+ }
+
+ // Look up the identifier, and typo-correct it to a keyword if it's not
+ // found.
+ if (Next.isNot(tok::coloncolon)) {
+ // Try to limit which sets of keywords should be included in typo
+ // correction based on what the next token is.
+ if (TryAnnotateName(/*IsAddressOfOperand*/ false,
+ llvm::make_unique<StatementFilterCCC>(Next)) ==
+ ANK_Error) {
+ // Handle errors here by skipping up to the next semicolon or '}', and
+ // eat the semicolon if that's what stopped us.
+ SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
+ if (Tok.is(tok::semi))
+ ConsumeToken();
+ return StmtError();
+ }
+
+ // If the identifier was typo-corrected, try again.
+ if (Tok.isNot(tok::identifier))
+ goto Retry;
+ }
+
+ // Fall through
+ }
+
+ default: {
+ if ((getLangOpts().CPlusPlus || !OnlyStatement) && isDeclarationStatement()) {
+ SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
+ DeclGroupPtrTy Decl = ParseDeclaration(Declarator::BlockContext,
+ DeclEnd, Attrs);
+ return Actions.ActOnDeclStmt(Decl, DeclStart, DeclEnd);
+ }
+
+ if (Tok.is(tok::r_brace)) {
+ Diag(Tok, diag::err_expected_statement);
+ return StmtError();
+ }
+
+ return ParseExprStatement();
+ }
+
+ case tok::kw_case: // C99 6.8.1: labeled-statement
+ return ParseCaseStatement();
+ case tok::kw_default: // C99 6.8.1: labeled-statement
+ return ParseDefaultStatement();
+
+ case tok::l_brace: // C99 6.8.2: compound-statement
+ return ParseCompoundStatement();
+ case tok::semi: { // C99 6.8.3p3: expression[opt] ';'
+ bool HasLeadingEmptyMacro = Tok.hasLeadingEmptyMacro();
+ return Actions.ActOnNullStmt(ConsumeToken(), HasLeadingEmptyMacro);
+ }
+
+ case tok::kw_if: // C99 6.8.4.1: if-statement
+ return ParseIfStatement(TrailingElseLoc);
+ case tok::kw_switch: // C99 6.8.4.2: switch-statement
+ return ParseSwitchStatement(TrailingElseLoc);
+
+ case tok::kw_while: // C99 6.8.5.1: while-statement
+ return ParseWhileStatement(TrailingElseLoc);
+ case tok::kw_do: // C99 6.8.5.2: do-statement
+ Res = ParseDoStatement();
+ SemiError = "do/while";
+ break;
+ case tok::kw_for: // C99 6.8.5.3: for-statement
+ return ParseForStatement(TrailingElseLoc);
+
+ case tok::kw_goto: // C99 6.8.6.1: goto-statement
+ Res = ParseGotoStatement();
+ SemiError = "goto";
+ break;
+ case tok::kw_continue: // C99 6.8.6.2: continue-statement
+ Res = ParseContinueStatement();
+ SemiError = "continue";
+ break;
+ case tok::kw_break: // C99 6.8.6.3: break-statement
+ Res = ParseBreakStatement();
+ SemiError = "break";
+ break;
+ case tok::kw_return: // C99 6.8.6.4: return-statement
+ Res = ParseReturnStatement();
+ SemiError = "return";
+ break;
+
+ case tok::kw_asm: {
+ ProhibitAttributes(Attrs);
+ bool msAsm = false;
+ Res = ParseAsmStatement(msAsm);
+ Res = Actions.ActOnFinishFullStmt(Res.get());
+ if (msAsm) return Res;
+ SemiError = "asm";
+ break;
+ }
+
+ case tok::kw___if_exists:
+ case tok::kw___if_not_exists:
+ ProhibitAttributes(Attrs);
+ ParseMicrosoftIfExistsStatement(Stmts);
+ // An __if_exists block is like a compound statement, but it doesn't create
+ // a new scope.
+ return StmtEmpty();
+
+ case tok::kw_try: // C++ 15: try-block
+ return ParseCXXTryBlock();
+
+ case tok::kw___try:
+ ProhibitAttributes(Attrs); // TODO: is it correct?
+ return ParseSEHTryBlock();
+
+ case tok::kw___leave:
+ Res = ParseSEHLeaveStatement();
+ SemiError = "__leave";
+ break;
+
+ case tok::annot_pragma_vis:
+ ProhibitAttributes(Attrs);
+ HandlePragmaVisibility();
+ return StmtEmpty();
+
+ case tok::annot_pragma_pack:
+ ProhibitAttributes(Attrs);
+ HandlePragmaPack();
+ return StmtEmpty();
+
+ case tok::annot_pragma_msstruct:
+ ProhibitAttributes(Attrs);
+ HandlePragmaMSStruct();
+ return StmtEmpty();
+
+ case tok::annot_pragma_align:
+ ProhibitAttributes(Attrs);
+ HandlePragmaAlign();
+ return StmtEmpty();
+
+ case tok::annot_pragma_weak:
+ ProhibitAttributes(Attrs);
+ HandlePragmaWeak();
+ return StmtEmpty();
+
+ case tok::annot_pragma_weakalias:
+ ProhibitAttributes(Attrs);
+ HandlePragmaWeakAlias();
+ return StmtEmpty();
+
+ case tok::annot_pragma_redefine_extname:
+ ProhibitAttributes(Attrs);
+ HandlePragmaRedefineExtname();
+ return StmtEmpty();
+
+ case tok::annot_pragma_fp_contract:
+ ProhibitAttributes(Attrs);
+ Diag(Tok, diag::err_pragma_fp_contract_scope);
+ ConsumeToken();
+ return StmtError();
+
+ case tok::annot_pragma_opencl_extension:
+ ProhibitAttributes(Attrs);
+ HandlePragmaOpenCLExtension();
+ return StmtEmpty();
+
+ case tok::annot_pragma_captured:
+ ProhibitAttributes(Attrs);
+ return HandlePragmaCaptured();
+
+ case tok::annot_pragma_openmp:
+ ProhibitAttributes(Attrs);
+ return ParseOpenMPDeclarativeOrExecutableDirective(!OnlyStatement);
+
+ case tok::annot_pragma_ms_pointers_to_members:
+ ProhibitAttributes(Attrs);
+ HandlePragmaMSPointersToMembers();
+ return StmtEmpty();
+
+ case tok::annot_pragma_ms_pragma:
+ ProhibitAttributes(Attrs);
+ HandlePragmaMSPragma();
+ return StmtEmpty();
+
+ case tok::annot_pragma_loop_hint:
+ ProhibitAttributes(Attrs);
+ return ParsePragmaLoopHint(Stmts, OnlyStatement, TrailingElseLoc, Attrs);
+ }
+
+ // If we reached this code, the statement must end in a semicolon.
+ if (!TryConsumeToken(tok::semi) && !Res.isInvalid()) {
+ // If the result was valid, then we do want to diagnose this. Use
+ // ExpectAndConsume to emit the diagnostic, even though we know it won't
+ // succeed.
+ ExpectAndConsume(tok::semi, diag::err_expected_semi_after_stmt, SemiError);
+ // Skip until we see a } or ;, but don't eat it.
+ SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
+ }
+
+ return Res;
+}
+
+/// \brief Parse an expression statement.
+StmtResult Parser::ParseExprStatement() {
+ // If a case keyword is missing, this is where it should be inserted.
+ Token OldToken = Tok;
+
+ // expression[opt] ';'
+ ExprResult Expr(ParseExpression());
+ if (Expr.isInvalid()) {
+ // If the expression is invalid, skip ahead to the next semicolon or '}'.
+ // Not doing this opens us up to the possibility of infinite loops if
+ // ParseExpression does not consume any tokens.
+ SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
+ if (Tok.is(tok::semi))
+ ConsumeToken();
+ return Actions.ActOnExprStmtError();
+ }
+
+ if (Tok.is(tok::colon) && getCurScope()->isSwitchScope() &&
+ Actions.CheckCaseExpression(Expr.get())) {
+ // If a constant expression is followed by a colon inside a switch block,
+ // suggest a missing case keyword.
+ Diag(OldToken, diag::err_expected_case_before_expression)
+ << FixItHint::CreateInsertion(OldToken.getLocation(), "case ");
+
+ // Recover parsing as a case statement.
+ return ParseCaseStatement(/*MissingCase=*/true, Expr);
+ }
+
+ // Otherwise, eat the semicolon.
+ ExpectAndConsumeSemi(diag::err_expected_semi_after_expr);
+ return Actions.ActOnExprStmt(Expr);
+}
+
+/// ParseSEHTryBlockCommon
+///
+/// seh-try-block:
+/// '__try' compound-statement seh-handler
+///
+/// seh-handler:
+/// seh-except-block
+/// seh-finally-block
+///
+StmtResult Parser::ParseSEHTryBlock() {
+ assert(Tok.is(tok::kw___try) && "Expected '__try'");
+ SourceLocation TryLoc = ConsumeToken();
+
+ if (Tok.isNot(tok::l_brace))
+ return StmtError(Diag(Tok, diag::err_expected) << tok::l_brace);
+
+ StmtResult TryBlock(ParseCompoundStatement(/*isStmtExpr=*/false,
+ Scope::DeclScope | Scope::SEHTryScope));
+ if(TryBlock.isInvalid())
+ return TryBlock;
+
+ StmtResult Handler;
+ if (Tok.is(tok::identifier) &&
+ Tok.getIdentifierInfo() == getSEHExceptKeyword()) {
+ SourceLocation Loc = ConsumeToken();
+ Handler = ParseSEHExceptBlock(Loc);
+ } else if (Tok.is(tok::kw___finally)) {
+ SourceLocation Loc = ConsumeToken();
+ Handler = ParseSEHFinallyBlock(Loc);
+ } else {
+ return StmtError(Diag(Tok, diag::err_seh_expected_handler));
+ }
+
+ if(Handler.isInvalid())
+ return Handler;
+
+ return Actions.ActOnSEHTryBlock(false /* IsCXXTry */,
+ TryLoc,
+ TryBlock.get(),
+ Handler.get());
+}
+
+/// ParseSEHExceptBlock - Handle __except
+///
+/// seh-except-block:
+/// '__except' '(' seh-filter-expression ')' compound-statement
+///
+StmtResult Parser::ParseSEHExceptBlock(SourceLocation ExceptLoc) {
+ PoisonIdentifierRAIIObject raii(Ident__exception_code, false),
+ raii2(Ident___exception_code, false),
+ raii3(Ident_GetExceptionCode, false);
+
+ if (ExpectAndConsume(tok::l_paren))
+ return StmtError();
+
+ ParseScope ExpectScope(this, Scope::DeclScope | Scope::ControlScope |
+ Scope::SEHExceptScope);
+
+ if (getLangOpts().Borland) {
+ Ident__exception_info->setIsPoisoned(false);
+ Ident___exception_info->setIsPoisoned(false);
+ Ident_GetExceptionInfo->setIsPoisoned(false);
+ }
+
+ ExprResult FilterExpr;
+ {
+ ParseScopeFlags FilterScope(this, getCurScope()->getFlags() |
+ Scope::SEHFilterScope);
+ FilterExpr = Actions.CorrectDelayedTyposInExpr(ParseExpression());
+ }
+
+ if (getLangOpts().Borland) {
+ Ident__exception_info->setIsPoisoned(true);
+ Ident___exception_info->setIsPoisoned(true);
+ Ident_GetExceptionInfo->setIsPoisoned(true);
+ }
+
+ if(FilterExpr.isInvalid())
+ return StmtError();
+
+ if (ExpectAndConsume(tok::r_paren))
+ return StmtError();
+
+ if (Tok.isNot(tok::l_brace))
+ return StmtError(Diag(Tok, diag::err_expected) << tok::l_brace);
+
+ StmtResult Block(ParseCompoundStatement());
+
+ if(Block.isInvalid())
+ return Block;
+
+ return Actions.ActOnSEHExceptBlock(ExceptLoc, FilterExpr.get(), Block.get());
+}
+
+/// ParseSEHFinallyBlock - Handle __finally
+///
+/// seh-finally-block:
+/// '__finally' compound-statement
+///
+StmtResult Parser::ParseSEHFinallyBlock(SourceLocation FinallyLoc) {
+ PoisonIdentifierRAIIObject raii(Ident__abnormal_termination, false),
+ raii2(Ident___abnormal_termination, false),
+ raii3(Ident_AbnormalTermination, false);
+
+ if (Tok.isNot(tok::l_brace))
+ return StmtError(Diag(Tok, diag::err_expected) << tok::l_brace);
+
+ ParseScope FinallyScope(this, 0);
+ Actions.ActOnStartSEHFinallyBlock();
+
+ StmtResult Block(ParseCompoundStatement());
+ if(Block.isInvalid()) {
+ Actions.ActOnAbortSEHFinallyBlock();
+ return Block;
+ }
+
+ return Actions.ActOnFinishSEHFinallyBlock(FinallyLoc, Block.get());
+}
+
+/// Handle __leave
+///
+/// seh-leave-statement:
+/// '__leave' ';'
+///
+StmtResult Parser::ParseSEHLeaveStatement() {
+ SourceLocation LeaveLoc = ConsumeToken(); // eat the '__leave'.
+ return Actions.ActOnSEHLeaveStmt(LeaveLoc, getCurScope());
+}
+
+/// ParseLabeledStatement - We have an identifier and a ':' after it.
+///
+/// labeled-statement:
+/// identifier ':' statement
+/// [GNU] identifier ':' attributes[opt] statement
+///
+StmtResult Parser::ParseLabeledStatement(ParsedAttributesWithRange &attrs) {
+ assert(Tok.is(tok::identifier) && Tok.getIdentifierInfo() &&
+ "Not an identifier!");
+
+ Token IdentTok = Tok; // Save the whole token.
+ ConsumeToken(); // eat the identifier.
+
+ assert(Tok.is(tok::colon) && "Not a label!");
+
+ // identifier ':' statement
+ SourceLocation ColonLoc = ConsumeToken();
+
+ // Read label attributes, if present.
+ StmtResult SubStmt;
+ if (Tok.is(tok::kw___attribute)) {
+ ParsedAttributesWithRange TempAttrs(AttrFactory);
+ ParseGNUAttributes(TempAttrs);
+
+ // In C++, GNU attributes only apply to the label if they are followed by a
+ // semicolon, to disambiguate label attributes from attributes on a labeled
+ // declaration.
+ //
+ // This doesn't quite match what GCC does; if the attribute list is empty
+ // and followed by a semicolon, GCC will reject (it appears to parse the
+ // attributes as part of a statement in that case). That looks like a bug.
+ if (!getLangOpts().CPlusPlus || Tok.is(tok::semi))
+ attrs.takeAllFrom(TempAttrs);
+ else if (isDeclarationStatement()) {
+ StmtVector Stmts;
+ // FIXME: We should do this whether or not we have a declaration
+ // statement, but that doesn't work correctly (because ProhibitAttributes
+ // can't handle GNU attributes), so only call it in the one case where
+ // GNU attributes are allowed.
+ SubStmt = ParseStatementOrDeclarationAfterAttributes(
+ Stmts, /*OnlyStmts*/ true, nullptr, TempAttrs);
+ if (!TempAttrs.empty() && !SubStmt.isInvalid())
+ SubStmt = Actions.ProcessStmtAttributes(
+ SubStmt.get(), TempAttrs.getList(), TempAttrs.Range);
+ } else {
+ Diag(Tok, diag::err_expected_after) << "__attribute__" << tok::semi;
+ }
+ }
+
+ // If we've not parsed a statement yet, parse one now.
+ if (!SubStmt.isInvalid() && !SubStmt.isUsable())
+ SubStmt = ParseStatement();
+
+ // Broken substmt shouldn't prevent the label from being added to the AST.
+ if (SubStmt.isInvalid())
+ SubStmt = Actions.ActOnNullStmt(ColonLoc);
+
+ LabelDecl *LD = Actions.LookupOrCreateLabel(IdentTok.getIdentifierInfo(),
+ IdentTok.getLocation());
+ if (AttributeList *Attrs = attrs.getList()) {
+ Actions.ProcessDeclAttributeList(Actions.CurScope, LD, Attrs);
+ attrs.clear();
+ }
+
+ return Actions.ActOnLabelStmt(IdentTok.getLocation(), LD, ColonLoc,
+ SubStmt.get());
+}
+
+/// ParseCaseStatement
+/// labeled-statement:
+/// 'case' constant-expression ':' statement
+/// [GNU] 'case' constant-expression '...' constant-expression ':' statement
+///
+StmtResult Parser::ParseCaseStatement(bool MissingCase, ExprResult Expr) {
+ assert((MissingCase || Tok.is(tok::kw_case)) && "Not a case stmt!");
+
+ // It is very very common for code to contain many case statements recursively
+ // nested, as in (but usually without indentation):
+ // case 1:
+ // case 2:
+ // case 3:
+ // case 4:
+ // case 5: etc.
+ //
+ // Parsing this naively works, but is both inefficient and can cause us to run
+ // out of stack space in our recursive descent parser. As a special case,
+ // flatten this recursion into an iterative loop. This is complex and gross,
+ // but all the grossness is constrained to ParseCaseStatement (and some
+ // weirdness in the actions), so this is just local grossness :).
+
+ // TopLevelCase - This is the highest level we have parsed. 'case 1' in the
+ // example above.
+ StmtResult TopLevelCase(true);
+
+ // DeepestParsedCaseStmt - This is the deepest statement we have parsed, which
+ // gets updated each time a new case is parsed, and whose body is unset so
+ // far. When parsing 'case 4', this is the 'case 3' node.
+ Stmt *DeepestParsedCaseStmt = nullptr;
+
+ // While we have case statements, eat and stack them.
+ SourceLocation ColonLoc;
+ do {
+ SourceLocation CaseLoc = MissingCase ? Expr.get()->getExprLoc() :
+ ConsumeToken(); // eat the 'case'.
+ ColonLoc = SourceLocation();
+
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteCase(getCurScope());
+ cutOffParsing();
+ return StmtError();
+ }
+
+ /// We don't want to treat 'case x : y' as a potential typo for 'case x::y'.
+ /// Disable this form of error recovery while we're parsing the case
+ /// expression.
+ ColonProtectionRAIIObject ColonProtection(*this);
+
+ ExprResult LHS;
+ if (!MissingCase) {
+ LHS = ParseConstantExpression();
+ if (!getLangOpts().CPlusPlus11) {
+ LHS = Actions.CorrectDelayedTyposInExpr(LHS, [this](class Expr *E) {
+ return Actions.VerifyIntegerConstantExpression(E);
+ });
+ }
+ if (LHS.isInvalid()) {
+ // If constant-expression is parsed unsuccessfully, recover by skipping
+ // current case statement (moving to the colon that ends it).
+ if (SkipUntil(tok::colon, tok::r_brace, StopAtSemi | StopBeforeMatch)) {
+ TryConsumeToken(tok::colon, ColonLoc);
+ continue;
+ }
+ return StmtError();
+ }
+ } else {
+ LHS = Expr;
+ MissingCase = false;
+ }
+
+ // GNU case range extension.
+ SourceLocation DotDotDotLoc;
+ ExprResult RHS;
+ if (TryConsumeToken(tok::ellipsis, DotDotDotLoc)) {
+ Diag(DotDotDotLoc, diag::ext_gnu_case_range);
+ RHS = ParseConstantExpression();
+ if (RHS.isInvalid()) {
+ if (SkipUntil(tok::colon, tok::r_brace, StopAtSemi | StopBeforeMatch)) {
+ TryConsumeToken(tok::colon, ColonLoc);
+ continue;
+ }
+ return StmtError();
+ }
+ }
+
+ ColonProtection.restore();
+
+ if (TryConsumeToken(tok::colon, ColonLoc)) {
+ } else if (TryConsumeToken(tok::semi, ColonLoc) ||
+ TryConsumeToken(tok::coloncolon, ColonLoc)) {
+ // Treat "case blah;" or "case blah::" as a typo for "case blah:".
+ Diag(ColonLoc, diag::err_expected_after)
+ << "'case'" << tok::colon
+ << FixItHint::CreateReplacement(ColonLoc, ":");
+ } else {
+ SourceLocation ExpectedLoc = PP.getLocForEndOfToken(PrevTokLocation);
+ Diag(ExpectedLoc, diag::err_expected_after)
+ << "'case'" << tok::colon
+ << FixItHint::CreateInsertion(ExpectedLoc, ":");
+ ColonLoc = ExpectedLoc;
+ }
+
+ StmtResult Case =
+ Actions.ActOnCaseStmt(CaseLoc, LHS.get(), DotDotDotLoc,
+ RHS.get(), ColonLoc);
+
+ // If we had a sema error parsing this case, then just ignore it and
+ // continue parsing the sub-stmt.
+ if (Case.isInvalid()) {
+ if (TopLevelCase.isInvalid()) // No parsed case stmts.
+ return ParseStatement();
+ // Otherwise, just don't add it as a nested case.
+ } else {
+ // If this is the first case statement we parsed, it becomes TopLevelCase.
+ // Otherwise we link it into the current chain.
+ Stmt *NextDeepest = Case.get();
+ if (TopLevelCase.isInvalid())
+ TopLevelCase = Case;
+ else
+ Actions.ActOnCaseStmtBody(DeepestParsedCaseStmt, Case.get());
+ DeepestParsedCaseStmt = NextDeepest;
+ }
+
+ // Handle all case statements.
+ } while (Tok.is(tok::kw_case));
+
+ // If we found a non-case statement, start by parsing it.
+ StmtResult SubStmt;
+
+ if (Tok.isNot(tok::r_brace)) {
+ SubStmt = ParseStatement();
+ } else {
+ // Nicely diagnose the common error "switch (X) { case 4: }", which is
+ // not valid. If ColonLoc doesn't point to a valid text location, there was
+ // another parsing error, so avoid producing extra diagnostics.
+ if (ColonLoc.isValid()) {
+ SourceLocation AfterColonLoc = PP.getLocForEndOfToken(ColonLoc);
+ Diag(AfterColonLoc, diag::err_label_end_of_compound_statement)
+ << FixItHint::CreateInsertion(AfterColonLoc, " ;");
+ }
+ SubStmt = StmtError();
+ }
+
+ // Install the body into the most deeply-nested case.
+ if (DeepestParsedCaseStmt) {
+ // Broken sub-stmt shouldn't prevent forming the case statement properly.
+ if (SubStmt.isInvalid())
+ SubStmt = Actions.ActOnNullStmt(SourceLocation());
+ Actions.ActOnCaseStmtBody(DeepestParsedCaseStmt, SubStmt.get());
+ }
+
+ // Return the top level parsed statement tree.
+ return TopLevelCase;
+}
+
+/// ParseDefaultStatement
+/// labeled-statement:
+/// 'default' ':' statement
+/// Note that this does not parse the 'statement' at the end.
+///
+StmtResult Parser::ParseDefaultStatement() {
+ assert(Tok.is(tok::kw_default) && "Not a default stmt!");
+ SourceLocation DefaultLoc = ConsumeToken(); // eat the 'default'.
+
+ SourceLocation ColonLoc;
+ if (TryConsumeToken(tok::colon, ColonLoc)) {
+ } else if (TryConsumeToken(tok::semi, ColonLoc)) {
+ // Treat "default;" as a typo for "default:".
+ Diag(ColonLoc, diag::err_expected_after)
+ << "'default'" << tok::colon
+ << FixItHint::CreateReplacement(ColonLoc, ":");
+ } else {
+ SourceLocation ExpectedLoc = PP.getLocForEndOfToken(PrevTokLocation);
+ Diag(ExpectedLoc, diag::err_expected_after)
+ << "'default'" << tok::colon
+ << FixItHint::CreateInsertion(ExpectedLoc, ":");
+ ColonLoc = ExpectedLoc;
+ }
+
+ StmtResult SubStmt;
+
+ if (Tok.isNot(tok::r_brace)) {
+ SubStmt = ParseStatement();
+ } else {
+ // Diagnose the common error "switch (X) {... default: }", which is
+ // not valid.
+ SourceLocation AfterColonLoc = PP.getLocForEndOfToken(ColonLoc);
+ Diag(AfterColonLoc, diag::err_label_end_of_compound_statement)
+ << FixItHint::CreateInsertion(AfterColonLoc, " ;");
+ SubStmt = true;
+ }
+
+ // Broken sub-stmt shouldn't prevent forming the case statement properly.
+ if (SubStmt.isInvalid())
+ SubStmt = Actions.ActOnNullStmt(ColonLoc);
+
+ return Actions.ActOnDefaultStmt(DefaultLoc, ColonLoc,
+ SubStmt.get(), getCurScope());
+}
+
+StmtResult Parser::ParseCompoundStatement(bool isStmtExpr) {
+ return ParseCompoundStatement(isStmtExpr, Scope::DeclScope);
+}
+
+/// ParseCompoundStatement - Parse a "{}" block.
+///
+/// compound-statement: [C99 6.8.2]
+/// { block-item-list[opt] }
+/// [GNU] { label-declarations block-item-list } [TODO]
+///
+/// block-item-list:
+/// block-item
+/// block-item-list block-item
+///
+/// block-item:
+/// declaration
+/// [GNU] '__extension__' declaration
+/// statement
+///
+/// [GNU] label-declarations:
+/// [GNU] label-declaration
+/// [GNU] label-declarations label-declaration
+///
+/// [GNU] label-declaration:
+/// [GNU] '__label__' identifier-list ';'
+///
+StmtResult Parser::ParseCompoundStatement(bool isStmtExpr,
+ unsigned ScopeFlags) {
+ assert(Tok.is(tok::l_brace) && "Not a compount stmt!");
+
+ // Enter a scope to hold everything within the compound stmt. Compound
+ // statements can always hold declarations.
+ ParseScope CompoundScope(this, ScopeFlags);
+
+ // Parse the statements in the body.
+ return ParseCompoundStatementBody(isStmtExpr);
+}
+
+/// Parse any pragmas at the start of the compound expression. We handle these
+/// separately since some pragmas (FP_CONTRACT) must appear before any C
+/// statement in the compound, but may be intermingled with other pragmas.
+void Parser::ParseCompoundStatementLeadingPragmas() {
+ bool checkForPragmas = true;
+ while (checkForPragmas) {
+ switch (Tok.getKind()) {
+ case tok::annot_pragma_vis:
+ HandlePragmaVisibility();
+ break;
+ case tok::annot_pragma_pack:
+ HandlePragmaPack();
+ break;
+ case tok::annot_pragma_msstruct:
+ HandlePragmaMSStruct();
+ break;
+ case tok::annot_pragma_align:
+ HandlePragmaAlign();
+ break;
+ case tok::annot_pragma_weak:
+ HandlePragmaWeak();
+ break;
+ case tok::annot_pragma_weakalias:
+ HandlePragmaWeakAlias();
+ break;
+ case tok::annot_pragma_redefine_extname:
+ HandlePragmaRedefineExtname();
+ break;
+ case tok::annot_pragma_opencl_extension:
+ HandlePragmaOpenCLExtension();
+ break;
+ case tok::annot_pragma_fp_contract:
+ HandlePragmaFPContract();
+ break;
+ case tok::annot_pragma_ms_pointers_to_members:
+ HandlePragmaMSPointersToMembers();
+ break;
+ case tok::annot_pragma_ms_pragma:
+ HandlePragmaMSPragma();
+ break;
+ default:
+ checkForPragmas = false;
+ break;
+ }
+ }
+
+}
+
+/// ParseCompoundStatementBody - Parse a sequence of statements and invoke the
+/// ActOnCompoundStmt action. This expects the '{' to be the current token, and
+/// consume the '}' at the end of the block. It does not manipulate the scope
+/// stack.
+StmtResult Parser::ParseCompoundStatementBody(bool isStmtExpr) {
+ PrettyStackTraceLoc CrashInfo(PP.getSourceManager(),
+ Tok.getLocation(),
+ "in compound statement ('{}')");
+
+ // Record the state of the FP_CONTRACT pragma, restore on leaving the
+ // compound statement.
+ Sema::FPContractStateRAII SaveFPContractState(Actions);
+
+ InMessageExpressionRAIIObject InMessage(*this, false);
+ BalancedDelimiterTracker T(*this, tok::l_brace);
+ if (T.consumeOpen())
+ return StmtError();
+
+ Sema::CompoundScopeRAII CompoundScope(Actions);
+
+ // Parse any pragmas at the beginning of the compound statement.
+ ParseCompoundStatementLeadingPragmas();
+
+ StmtVector Stmts;
+
+ // "__label__ X, Y, Z;" is the GNU "Local Label" extension. These are
+ // only allowed at the start of a compound stmt regardless of the language.
+ while (Tok.is(tok::kw___label__)) {
+ SourceLocation LabelLoc = ConsumeToken();
+
+ SmallVector<Decl *, 8> DeclsInGroup;
+ while (1) {
+ if (Tok.isNot(tok::identifier)) {
+ Diag(Tok, diag::err_expected) << tok::identifier;
+ break;
+ }
+
+ IdentifierInfo *II = Tok.getIdentifierInfo();
+ SourceLocation IdLoc = ConsumeToken();
+ DeclsInGroup.push_back(Actions.LookupOrCreateLabel(II, IdLoc, LabelLoc));
+
+ if (!TryConsumeToken(tok::comma))
+ break;
+ }
+
+ DeclSpec DS(AttrFactory);
+ DeclGroupPtrTy Res =
+ Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup);
+ StmtResult R = Actions.ActOnDeclStmt(Res, LabelLoc, Tok.getLocation());
+
+ ExpectAndConsumeSemi(diag::err_expected_semi_declaration);
+ if (R.isUsable())
+ Stmts.push_back(R.get());
+ }
+
+ while (Tok.isNot(tok::r_brace) && !isEofOrEom()) {
+ if (Tok.is(tok::annot_pragma_unused)) {
+ HandlePragmaUnused();
+ continue;
+ }
+
+ StmtResult R;
+ if (Tok.isNot(tok::kw___extension__)) {
+ R = ParseStatementOrDeclaration(Stmts, false);
+ } else {
+ // __extension__ can start declarations and it can also be a unary
+ // operator for expressions. Consume multiple __extension__ markers here
+ // until we can determine which is which.
+ // FIXME: This loses extension expressions in the AST!
+ SourceLocation ExtLoc = ConsumeToken();
+ while (Tok.is(tok::kw___extension__))
+ ConsumeToken();
+
+ ParsedAttributesWithRange attrs(AttrFactory);
+ MaybeParseCXX11Attributes(attrs, nullptr,
+ /*MightBeObjCMessageSend*/ true);
+
+ // If this is the start of a declaration, parse it as such.
+ if (isDeclarationStatement()) {
+ // __extension__ silences extension warnings in the subdeclaration.
+ // FIXME: Save the __extension__ on the decl as a node somehow?
+ ExtensionRAIIObject O(Diags);
+
+ SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
+ DeclGroupPtrTy Res = ParseDeclaration(Declarator::BlockContext, DeclEnd,
+ attrs);
+ R = Actions.ActOnDeclStmt(Res, DeclStart, DeclEnd);
+ } else {
+ // Otherwise this was a unary __extension__ marker.
+ ExprResult Res(ParseExpressionWithLeadingExtension(ExtLoc));
+
+ if (Res.isInvalid()) {
+ SkipUntil(tok::semi);
+ continue;
+ }
+
+ // FIXME: Use attributes?
+ // Eat the semicolon at the end of stmt and convert the expr into a
+ // statement.
+ ExpectAndConsumeSemi(diag::err_expected_semi_after_expr);
+ R = Actions.ActOnExprStmt(Res);
+ }
+ }
+
+ if (R.isUsable())
+ Stmts.push_back(R.get());
+ }
+
+ SourceLocation CloseLoc = Tok.getLocation();
+
+ // We broke out of the while loop because we found a '}' or EOF.
+ if (!T.consumeClose())
+ // Recover by creating a compound statement with what we parsed so far,
+ // instead of dropping everything and returning StmtError();
+ CloseLoc = T.getCloseLocation();
+
+ return Actions.ActOnCompoundStmt(T.getOpenLocation(), CloseLoc,
+ Stmts, isStmtExpr);
+}
+
+/// ParseParenExprOrCondition:
+/// [C ] '(' expression ')'
+/// [C++] '(' condition ')' [not allowed if OnlyAllowCondition=true]
+///
+/// This function parses and performs error recovery on the specified condition
+/// or expression (depending on whether we're in C++ or C mode). This function
+/// goes out of its way to recover well. It returns true if there was a parser
+/// error (the right paren couldn't be found), which indicates that the caller
+/// should try to recover harder. It returns false if the condition is
+/// successfully parsed. Note that a successful parse can still have semantic
+/// errors in the condition.
+bool Parser::ParseParenExprOrCondition(ExprResult &ExprResult,
+ Decl *&DeclResult,
+ SourceLocation Loc,
+ bool ConvertToBoolean) {
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ T.consumeOpen();
+
+ if (getLangOpts().CPlusPlus)
+ ParseCXXCondition(ExprResult, DeclResult, Loc, ConvertToBoolean);
+ else {
+ ExprResult = ParseExpression();
+ DeclResult = nullptr;
+
+ // If required, convert to a boolean value.
+ if (!ExprResult.isInvalid() && ConvertToBoolean)
+ ExprResult
+ = Actions.ActOnBooleanCondition(getCurScope(), Loc, ExprResult.get());
+ }
+
+ // If the parser was confused by the condition and we don't have a ')', try to
+ // recover by skipping ahead to a semi and bailing out. If condexp is
+ // semantically invalid but we have well formed code, keep going.
+ if (ExprResult.isInvalid() && !DeclResult && Tok.isNot(tok::r_paren)) {
+ SkipUntil(tok::semi);
+ // Skipping may have stopped if it found the containing ')'. If so, we can
+ // continue parsing the if statement.
+ if (Tok.isNot(tok::r_paren))
+ return true;
+ }
+
+ // Otherwise the condition is valid or the rparen is present.
+ T.consumeClose();
+
+ // Check for extraneous ')'s to catch things like "if (foo())) {". We know
+ // that all callers are looking for a statement after the condition, so ")"
+ // isn't valid.
+ while (Tok.is(tok::r_paren)) {
+ Diag(Tok, diag::err_extraneous_rparen_in_condition)
+ << FixItHint::CreateRemoval(Tok.getLocation());
+ ConsumeParen();
+ }
+
+ return false;
+}
+
+
+/// ParseIfStatement
+/// if-statement: [C99 6.8.4.1]
+/// 'if' '(' expression ')' statement
+/// 'if' '(' expression ')' statement 'else' statement
+/// [C++] 'if' '(' condition ')' statement
+/// [C++] 'if' '(' condition ')' statement 'else' statement
+///
+StmtResult Parser::ParseIfStatement(SourceLocation *TrailingElseLoc) {
+ assert(Tok.is(tok::kw_if) && "Not an if stmt!");
+ SourceLocation IfLoc = ConsumeToken(); // eat the 'if'.
+
+ if (Tok.isNot(tok::l_paren)) {
+ Diag(Tok, diag::err_expected_lparen_after) << "if";
+ SkipUntil(tok::semi);
+ return StmtError();
+ }
+
+ bool C99orCXX = getLangOpts().C99 || getLangOpts().CPlusPlus;
+
+ // C99 6.8.4p3 - In C99, the if statement is a block. This is not
+ // the case for C90.
+ //
+ // C++ 6.4p3:
+ // A name introduced by a declaration in a condition is in scope from its
+ // point of declaration until the end of the substatements controlled by the
+ // condition.
+ // C++ 3.3.2p4:
+ // Names declared in the for-init-statement, and in the condition of if,
+ // while, for, and switch statements are local to the if, while, for, or
+ // switch statement (including the controlled statement).
+ //
+ ParseScope IfScope(this, Scope::DeclScope | Scope::ControlScope, C99orCXX);
+
+ // Parse the condition.
+ ExprResult CondExp;
+ Decl *CondVar = nullptr;
+ if (ParseParenExprOrCondition(CondExp, CondVar, IfLoc, true))
+ return StmtError();
+
+ FullExprArg FullCondExp(Actions.MakeFullExpr(CondExp.get(), IfLoc));
+
+ // C99 6.8.4p3 - In C99, the body of the if statement is a scope, even if
+ // there is no compound stmt. C90 does not have this clause. We only do this
+ // if the body isn't a compound statement to avoid push/pop in common cases.
+ //
+ // C++ 6.4p1:
+ // The substatement in a selection-statement (each substatement, in the else
+ // form of the if statement) implicitly defines a local scope.
+ //
+ // For C++ we create a scope for the condition and a new scope for
+ // substatements because:
+ // -When the 'then' scope exits, we want the condition declaration to still be
+ // active for the 'else' scope too.
+ // -Sema will detect name clashes by considering declarations of a
+ // 'ControlScope' as part of its direct subscope.
+ // -If we wanted the condition and substatement to be in the same scope, we
+ // would have to notify ParseStatement not to create a new scope. It's
+ // simpler to let it create a new scope.
+ //
+ ParseScope InnerScope(this, Scope::DeclScope, C99orCXX, Tok.is(tok::l_brace));
+
+ // Read the 'then' stmt.
+ SourceLocation ThenStmtLoc = Tok.getLocation();
+
+ SourceLocation InnerStatementTrailingElseLoc;
+ StmtResult ThenStmt(ParseStatement(&InnerStatementTrailingElseLoc));
+
+ // Pop the 'if' scope if needed.
+ InnerScope.Exit();
+
+ // If it has an else, parse it.
+ SourceLocation ElseLoc;
+ SourceLocation ElseStmtLoc;
+ StmtResult ElseStmt;
+
+ if (Tok.is(tok::kw_else)) {
+ if (TrailingElseLoc)
+ *TrailingElseLoc = Tok.getLocation();
+
+ ElseLoc = ConsumeToken();
+ ElseStmtLoc = Tok.getLocation();
+
+ // C99 6.8.4p3 - In C99, the body of the if statement is a scope, even if
+ // there is no compound stmt. C90 does not have this clause. We only do
+ // this if the body isn't a compound statement to avoid push/pop in common
+ // cases.
+ //
+ // C++ 6.4p1:
+ // The substatement in a selection-statement (each substatement, in the else
+ // form of the if statement) implicitly defines a local scope.
+ //
+ ParseScope InnerScope(this, Scope::DeclScope, C99orCXX, Tok.is(tok::l_brace));
+
+ ElseStmt = ParseStatement();
+
+ // Pop the 'else' scope if needed.
+ InnerScope.Exit();
+ } else if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteAfterIf(getCurScope());
+ cutOffParsing();
+ return StmtError();
+ } else if (InnerStatementTrailingElseLoc.isValid()) {
+ Diag(InnerStatementTrailingElseLoc, diag::warn_dangling_else);
+ }
+
+ IfScope.Exit();
+
+ // If the then or else stmt is invalid and the other is valid (and present),
+ // make turn the invalid one into a null stmt to avoid dropping the other
+ // part. If both are invalid, return error.
+ if ((ThenStmt.isInvalid() && ElseStmt.isInvalid()) ||
+ (ThenStmt.isInvalid() && ElseStmt.get() == nullptr) ||
+ (ThenStmt.get() == nullptr && ElseStmt.isInvalid())) {
+ // Both invalid, or one is invalid and other is non-present: return error.
+ return StmtError();
+ }
+
+ // Now if either are invalid, replace with a ';'.
+ if (ThenStmt.isInvalid())
+ ThenStmt = Actions.ActOnNullStmt(ThenStmtLoc);
+ if (ElseStmt.isInvalid())
+ ElseStmt = Actions.ActOnNullStmt(ElseStmtLoc);
+
+ return Actions.ActOnIfStmt(IfLoc, FullCondExp, CondVar, ThenStmt.get(),
+ ElseLoc, ElseStmt.get());
+}
+
+/// ParseSwitchStatement
+/// switch-statement:
+/// 'switch' '(' expression ')' statement
+/// [C++] 'switch' '(' condition ')' statement
+StmtResult Parser::ParseSwitchStatement(SourceLocation *TrailingElseLoc) {
+ assert(Tok.is(tok::kw_switch) && "Not a switch stmt!");
+ SourceLocation SwitchLoc = ConsumeToken(); // eat the 'switch'.
+
+ if (Tok.isNot(tok::l_paren)) {
+ Diag(Tok, diag::err_expected_lparen_after) << "switch";
+ SkipUntil(tok::semi);
+ return StmtError();
+ }
+
+ bool C99orCXX = getLangOpts().C99 || getLangOpts().CPlusPlus;
+
+ // C99 6.8.4p3 - In C99, the switch statement is a block. This is
+ // not the case for C90. Start the switch scope.
+ //
+ // C++ 6.4p3:
+ // A name introduced by a declaration in a condition is in scope from its
+ // point of declaration until the end of the substatements controlled by the
+ // condition.
+ // C++ 3.3.2p4:
+ // Names declared in the for-init-statement, and in the condition of if,
+ // while, for, and switch statements are local to the if, while, for, or
+ // switch statement (including the controlled statement).
+ //
+ unsigned ScopeFlags = Scope::SwitchScope;
+ if (C99orCXX)
+ ScopeFlags |= Scope::DeclScope | Scope::ControlScope;
+ ParseScope SwitchScope(this, ScopeFlags);
+
+ // Parse the condition.
+ ExprResult Cond;
+ Decl *CondVar = nullptr;
+ if (ParseParenExprOrCondition(Cond, CondVar, SwitchLoc, false))
+ return StmtError();
+
+ StmtResult Switch
+ = Actions.ActOnStartOfSwitchStmt(SwitchLoc, Cond.get(), CondVar);
+
+ if (Switch.isInvalid()) {
+ // Skip the switch body.
+ // FIXME: This is not optimal recovery, but parsing the body is more
+ // dangerous due to the presence of case and default statements, which
+ // will have no place to connect back with the switch.
+ if (Tok.is(tok::l_brace)) {
+ ConsumeBrace();
+ SkipUntil(tok::r_brace);
+ } else
+ SkipUntil(tok::semi);
+ return Switch;
+ }
+
+ // C99 6.8.4p3 - In C99, the body of the switch statement is a scope, even if
+ // there is no compound stmt. C90 does not have this clause. We only do this
+ // if the body isn't a compound statement to avoid push/pop in common cases.
+ //
+ // C++ 6.4p1:
+ // The substatement in a selection-statement (each substatement, in the else
+ // form of the if statement) implicitly defines a local scope.
+ //
+ // See comments in ParseIfStatement for why we create a scope for the
+ // condition and a new scope for substatement in C++.
+ //
+ getCurScope()->AddFlags(Scope::BreakScope);
+ ParseScope InnerScope(this, Scope::DeclScope, C99orCXX, Tok.is(tok::l_brace));
+
+ // We have incremented the mangling number for the SwitchScope and the
+ // InnerScope, which is one too many.
+ if (C99orCXX)
+ getCurScope()->decrementMSManglingNumber();
+
+ // Read the body statement.
+ StmtResult Body(ParseStatement(TrailingElseLoc));
+
+ // Pop the scopes.
+ InnerScope.Exit();
+ SwitchScope.Exit();
+
+ return Actions.ActOnFinishSwitchStmt(SwitchLoc, Switch.get(), Body.get());
+}
+
+/// ParseWhileStatement
+/// while-statement: [C99 6.8.5.1]
+/// 'while' '(' expression ')' statement
+/// [C++] 'while' '(' condition ')' statement
+StmtResult Parser::ParseWhileStatement(SourceLocation *TrailingElseLoc) {
+ assert(Tok.is(tok::kw_while) && "Not a while stmt!");
+ SourceLocation WhileLoc = Tok.getLocation();
+ ConsumeToken(); // eat the 'while'.
+
+ if (Tok.isNot(tok::l_paren)) {
+ Diag(Tok, diag::err_expected_lparen_after) << "while";
+ SkipUntil(tok::semi);
+ return StmtError();
+ }
+
+ bool C99orCXX = getLangOpts().C99 || getLangOpts().CPlusPlus;
+
+ // C99 6.8.5p5 - In C99, the while statement is a block. This is not
+ // the case for C90. Start the loop scope.
+ //
+ // C++ 6.4p3:
+ // A name introduced by a declaration in a condition is in scope from its
+ // point of declaration until the end of the substatements controlled by the
+ // condition.
+ // C++ 3.3.2p4:
+ // Names declared in the for-init-statement, and in the condition of if,
+ // while, for, and switch statements are local to the if, while, for, or
+ // switch statement (including the controlled statement).
+ //
+ unsigned ScopeFlags;
+ if (C99orCXX)
+ ScopeFlags = Scope::BreakScope | Scope::ContinueScope |
+ Scope::DeclScope | Scope::ControlScope;
+ else
+ ScopeFlags = Scope::BreakScope | Scope::ContinueScope;
+ ParseScope WhileScope(this, ScopeFlags);
+
+ // Parse the condition.
+ ExprResult Cond;
+ Decl *CondVar = nullptr;
+ if (ParseParenExprOrCondition(Cond, CondVar, WhileLoc, true))
+ return StmtError();
+
+ FullExprArg FullCond(Actions.MakeFullExpr(Cond.get(), WhileLoc));
+
+ // C99 6.8.5p5 - In C99, the body of the while statement is a scope, even if
+ // there is no compound stmt. C90 does not have this clause. We only do this
+ // if the body isn't a compound statement to avoid push/pop in common cases.
+ //
+ // C++ 6.5p2:
+ // The substatement in an iteration-statement implicitly defines a local scope
+ // which is entered and exited each time through the loop.
+ //
+ // See comments in ParseIfStatement for why we create a scope for the
+ // condition and a new scope for substatement in C++.
+ //
+ ParseScope InnerScope(this, Scope::DeclScope, C99orCXX, Tok.is(tok::l_brace));
+
+ // Read the body statement.
+ StmtResult Body(ParseStatement(TrailingElseLoc));
+
+ // Pop the body scope if needed.
+ InnerScope.Exit();
+ WhileScope.Exit();
+
+ if ((Cond.isInvalid() && !CondVar) || Body.isInvalid())
+ return StmtError();
+
+ return Actions.ActOnWhileStmt(WhileLoc, FullCond, CondVar, Body.get());
+}
+
+/// ParseDoStatement
+/// do-statement: [C99 6.8.5.2]
+/// 'do' statement 'while' '(' expression ')' ';'
+/// Note: this lets the caller parse the end ';'.
+StmtResult Parser::ParseDoStatement() {
+ assert(Tok.is(tok::kw_do) && "Not a do stmt!");
+ SourceLocation DoLoc = ConsumeToken(); // eat the 'do'.
+
+ // C99 6.8.5p5 - In C99, the do statement is a block. This is not
+ // the case for C90. Start the loop scope.
+ unsigned ScopeFlags;
+ if (getLangOpts().C99)
+ ScopeFlags = Scope::BreakScope | Scope::ContinueScope | Scope::DeclScope;
+ else
+ ScopeFlags = Scope::BreakScope | Scope::ContinueScope;
+
+ ParseScope DoScope(this, ScopeFlags);
+
+ // C99 6.8.5p5 - In C99, the body of the do statement is a scope, even if
+ // there is no compound stmt. C90 does not have this clause. We only do this
+ // if the body isn't a compound statement to avoid push/pop in common cases.
+ //
+ // C++ 6.5p2:
+ // The substatement in an iteration-statement implicitly defines a local scope
+ // which is entered and exited each time through the loop.
+ //
+ bool C99orCXX = getLangOpts().C99 || getLangOpts().CPlusPlus;
+ ParseScope InnerScope(this, Scope::DeclScope, C99orCXX, Tok.is(tok::l_brace));
+
+ // Read the body statement.
+ StmtResult Body(ParseStatement());
+
+ // Pop the body scope if needed.
+ InnerScope.Exit();
+
+ if (Tok.isNot(tok::kw_while)) {
+ if (!Body.isInvalid()) {
+ Diag(Tok, diag::err_expected_while);
+ Diag(DoLoc, diag::note_matching) << "'do'";
+ SkipUntil(tok::semi, StopBeforeMatch);
+ }
+ return StmtError();
+ }
+ SourceLocation WhileLoc = ConsumeToken();
+
+ if (Tok.isNot(tok::l_paren)) {
+ Diag(Tok, diag::err_expected_lparen_after) << "do/while";
+ SkipUntil(tok::semi, StopBeforeMatch);
+ return StmtError();
+ }
+
+ // Parse the parenthesized expression.
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ T.consumeOpen();
+
+ // A do-while expression is not a condition, so can't have attributes.
+ DiagnoseAndSkipCXX11Attributes();
+
+ ExprResult Cond = ParseExpression();
+ T.consumeClose();
+ DoScope.Exit();
+
+ if (Cond.isInvalid() || Body.isInvalid())
+ return StmtError();
+
+ return Actions.ActOnDoStmt(DoLoc, Body.get(), WhileLoc, T.getOpenLocation(),
+ Cond.get(), T.getCloseLocation());
+}
+
+bool Parser::isForRangeIdentifier() {
+ assert(Tok.is(tok::identifier));
+
+ const Token &Next = NextToken();
+ if (Next.is(tok::colon))
+ return true;
+
+ if (Next.is(tok::l_square) || Next.is(tok::kw_alignas)) {
+ TentativeParsingAction PA(*this);
+ ConsumeToken();
+ SkipCXX11Attributes();
+ bool Result = Tok.is(tok::colon);
+ PA.Revert();
+ return Result;
+ }
+
+ return false;
+}
+
+/// ParseForStatement
+/// for-statement: [C99 6.8.5.3]
+/// 'for' '(' expr[opt] ';' expr[opt] ';' expr[opt] ')' statement
+/// 'for' '(' declaration expr[opt] ';' expr[opt] ')' statement
+/// [C++] 'for' '(' for-init-statement condition[opt] ';' expression[opt] ')'
+/// [C++] statement
+/// [C++0x] 'for' '(' for-range-declaration : for-range-initializer ) statement
+/// [OBJC2] 'for' '(' declaration 'in' expr ')' statement
+/// [OBJC2] 'for' '(' expr 'in' expr ')' statement
+///
+/// [C++] for-init-statement:
+/// [C++] expression-statement
+/// [C++] simple-declaration
+///
+/// [C++0x] for-range-declaration:
+/// [C++0x] attribute-specifier-seq[opt] type-specifier-seq declarator
+/// [C++0x] for-range-initializer:
+/// [C++0x] expression
+/// [C++0x] braced-init-list [TODO]
+StmtResult Parser::ParseForStatement(SourceLocation *TrailingElseLoc) {
+ assert(Tok.is(tok::kw_for) && "Not a for stmt!");
+ SourceLocation ForLoc = ConsumeToken(); // eat the 'for'.
+
+ if (Tok.isNot(tok::l_paren)) {
+ Diag(Tok, diag::err_expected_lparen_after) << "for";
+ SkipUntil(tok::semi);
+ return StmtError();
+ }
+
+ bool C99orCXXorObjC = getLangOpts().C99 || getLangOpts().CPlusPlus ||
+ getLangOpts().ObjC1;
+
+ // C99 6.8.5p5 - In C99, the for statement is a block. This is not
+ // the case for C90. Start the loop scope.
+ //
+ // C++ 6.4p3:
+ // A name introduced by a declaration in a condition is in scope from its
+ // point of declaration until the end of the substatements controlled by the
+ // condition.
+ // C++ 3.3.2p4:
+ // Names declared in the for-init-statement, and in the condition of if,
+ // while, for, and switch statements are local to the if, while, for, or
+ // switch statement (including the controlled statement).
+ // C++ 6.5.3p1:
+ // Names declared in the for-init-statement are in the same declarative-region
+ // as those declared in the condition.
+ //
+ unsigned ScopeFlags = 0;
+ if (C99orCXXorObjC)
+ ScopeFlags = Scope::DeclScope | Scope::ControlScope;
+
+ ParseScope ForScope(this, ScopeFlags);
+
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ T.consumeOpen();
+
+ ExprResult Value;
+
+ bool ForEach = false, ForRange = false;
+ StmtResult FirstPart;
+ bool SecondPartIsInvalid = false;
+ FullExprArg SecondPart(Actions);
+ ExprResult Collection;
+ ForRangeInit ForRangeInit;
+ FullExprArg ThirdPart(Actions);
+ Decl *SecondVar = nullptr;
+
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteOrdinaryName(getCurScope(),
+ C99orCXXorObjC? Sema::PCC_ForInit
+ : Sema::PCC_Expression);
+ cutOffParsing();
+ return StmtError();
+ }
+
+ ParsedAttributesWithRange attrs(AttrFactory);
+ MaybeParseCXX11Attributes(attrs);
+
+ // Parse the first part of the for specifier.
+ if (Tok.is(tok::semi)) { // for (;
+ ProhibitAttributes(attrs);
+ // no first part, eat the ';'.
+ ConsumeToken();
+ } else if (getLangOpts().CPlusPlus && Tok.is(tok::identifier) &&
+ isForRangeIdentifier()) {
+ ProhibitAttributes(attrs);
+ IdentifierInfo *Name = Tok.getIdentifierInfo();
+ SourceLocation Loc = ConsumeToken();
+ MaybeParseCXX11Attributes(attrs);
+
+ ForRangeInit.ColonLoc = ConsumeToken();
+ if (Tok.is(tok::l_brace))
+ ForRangeInit.RangeExpr = ParseBraceInitializer();
+ else
+ ForRangeInit.RangeExpr = ParseExpression();
+
+ Diag(Loc, diag::err_for_range_identifier)
+ << ((getLangOpts().CPlusPlus11 && !getLangOpts().CPlusPlus1z)
+ ? FixItHint::CreateInsertion(Loc, "auto &&")
+ : FixItHint());
+
+ FirstPart = Actions.ActOnCXXForRangeIdentifier(getCurScope(), Loc, Name,
+ attrs, attrs.Range.getEnd());
+ ForRange = true;
+ } else if (isForInitDeclaration()) { // for (int X = 4;
+ // Parse declaration, which eats the ';'.
+ if (!C99orCXXorObjC) // Use of C99-style for loops in C90 mode?
+ Diag(Tok, diag::ext_c99_variable_decl_in_for_loop);
+
+ // In C++0x, "for (T NS:a" might not be a typo for ::
+ bool MightBeForRangeStmt = getLangOpts().CPlusPlus;
+ ColonProtectionRAIIObject ColonProtection(*this, MightBeForRangeStmt);
+
+ SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
+ DeclGroupPtrTy DG = ParseSimpleDeclaration(
+ Declarator::ForContext, DeclEnd, attrs, false,
+ MightBeForRangeStmt ? &ForRangeInit : nullptr);
+ FirstPart = Actions.ActOnDeclStmt(DG, DeclStart, Tok.getLocation());
+ if (ForRangeInit.ParsedForRangeDecl()) {
+ Diag(ForRangeInit.ColonLoc, getLangOpts().CPlusPlus11 ?
+ diag::warn_cxx98_compat_for_range : diag::ext_for_range);
+
+ ForRange = true;
+ } else if (Tok.is(tok::semi)) { // for (int x = 4;
+ ConsumeToken();
+ } else if ((ForEach = isTokIdentifier_in())) {
+ Actions.ActOnForEachDeclStmt(DG);
+ // ObjC: for (id x in expr)
+ ConsumeToken(); // consume 'in'
+
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteObjCForCollection(getCurScope(), DG);
+ cutOffParsing();
+ return StmtError();
+ }
+ Collection = ParseExpression();
+ } else {
+ Diag(Tok, diag::err_expected_semi_for);
+ }
+ } else {
+ ProhibitAttributes(attrs);
+ Value = Actions.CorrectDelayedTyposInExpr(ParseExpression());
+
+ ForEach = isTokIdentifier_in();
+
+ // Turn the expression into a stmt.
+ if (!Value.isInvalid()) {
+ if (ForEach)
+ FirstPart = Actions.ActOnForEachLValueExpr(Value.get());
+ else
+ FirstPart = Actions.ActOnExprStmt(Value);
+ }
+
+ if (Tok.is(tok::semi)) {
+ ConsumeToken();
+ } else if (ForEach) {
+ ConsumeToken(); // consume 'in'
+
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteObjCForCollection(getCurScope(), DeclGroupPtrTy());
+ cutOffParsing();
+ return StmtError();
+ }
+ Collection = ParseExpression();
+ } else if (getLangOpts().CPlusPlus11 && Tok.is(tok::colon) && FirstPart.get()) {
+ // User tried to write the reasonable, but ill-formed, for-range-statement
+ // for (expr : expr) { ... }
+ Diag(Tok, diag::err_for_range_expected_decl)
+ << FirstPart.get()->getSourceRange();
+ SkipUntil(tok::r_paren, StopBeforeMatch);
+ SecondPartIsInvalid = true;
+ } else {
+ if (!Value.isInvalid()) {
+ Diag(Tok, diag::err_expected_semi_for);
+ } else {
+ // Skip until semicolon or rparen, don't consume it.
+ SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch);
+ if (Tok.is(tok::semi))
+ ConsumeToken();
+ }
+ }
+ }
+
+ // Parse the second part of the for specifier.
+ getCurScope()->AddFlags(Scope::BreakScope | Scope::ContinueScope);
+ if (!ForEach && !ForRange) {
+ assert(!SecondPart.get() && "Shouldn't have a second expression yet.");
+ // Parse the second part of the for specifier.
+ if (Tok.is(tok::semi)) { // for (...;;
+ // no second part.
+ } else if (Tok.is(tok::r_paren)) {
+ // missing both semicolons.
+ } else {
+ ExprResult Second;
+ if (getLangOpts().CPlusPlus)
+ ParseCXXCondition(Second, SecondVar, ForLoc, true);
+ else {
+ Second = ParseExpression();
+ if (!Second.isInvalid())
+ Second = Actions.ActOnBooleanCondition(getCurScope(), ForLoc,
+ Second.get());
+ }
+ SecondPartIsInvalid = Second.isInvalid();
+ SecondPart = Actions.MakeFullExpr(Second.get(), ForLoc);
+ }
+
+ if (Tok.isNot(tok::semi)) {
+ if (!SecondPartIsInvalid || SecondVar)
+ Diag(Tok, diag::err_expected_semi_for);
+ else
+ // Skip until semicolon or rparen, don't consume it.
+ SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch);
+ }
+
+ if (Tok.is(tok::semi)) {
+ ConsumeToken();
+ }
+
+ // Parse the third part of the for specifier.
+ if (Tok.isNot(tok::r_paren)) { // for (...;...;)
+ ExprResult Third = ParseExpression();
+ // FIXME: The C++11 standard doesn't actually say that this is a
+ // discarded-value expression, but it clearly should be.
+ ThirdPart = Actions.MakeFullDiscardedValueExpr(Third.get());
+ }
+ }
+ // Match the ')'.
+ T.consumeClose();
+
+ // We need to perform most of the semantic analysis for a C++0x for-range
+ // statememt before parsing the body, in order to be able to deduce the type
+ // of an auto-typed loop variable.
+ StmtResult ForRangeStmt;
+ StmtResult ForEachStmt;
+
+ if (ForRange) {
+ ForRangeStmt = Actions.ActOnCXXForRangeStmt(ForLoc, FirstPart.get(),
+ ForRangeInit.ColonLoc,
+ ForRangeInit.RangeExpr.get(),
+ T.getCloseLocation(),
+ Sema::BFRK_Build);
+
+
+ // Similarly, we need to do the semantic analysis for a for-range
+ // statement immediately in order to close over temporaries correctly.
+ } else if (ForEach) {
+ ForEachStmt = Actions.ActOnObjCForCollectionStmt(ForLoc,
+ FirstPart.get(),
+ Collection.get(),
+ T.getCloseLocation());
+ } else {
+ // In OpenMP loop region loop control variable must be captured and be
+ // private. Perform analysis of first part (if any).
+ if (getLangOpts().OpenMP && FirstPart.isUsable()) {
+ Actions.ActOnOpenMPLoopInitialization(ForLoc, FirstPart.get());
+ }
+ }
+
+ // C99 6.8.5p5 - In C99, the body of the for statement is a scope, even if
+ // there is no compound stmt. C90 does not have this clause. We only do this
+ // if the body isn't a compound statement to avoid push/pop in common cases.
+ //
+ // C++ 6.5p2:
+ // The substatement in an iteration-statement implicitly defines a local scope
+ // which is entered and exited each time through the loop.
+ //
+ // See comments in ParseIfStatement for why we create a scope for
+ // for-init-statement/condition and a new scope for substatement in C++.
+ //
+ ParseScope InnerScope(this, Scope::DeclScope, C99orCXXorObjC,
+ Tok.is(tok::l_brace));
+
+ // The body of the for loop has the same local mangling number as the
+ // for-init-statement.
+ // It will only be incremented if the body contains other things that would
+ // normally increment the mangling number (like a compound statement).
+ if (C99orCXXorObjC)
+ getCurScope()->decrementMSManglingNumber();
+
+ // Read the body statement.
+ StmtResult Body(ParseStatement(TrailingElseLoc));
+
+ // Pop the body scope if needed.
+ InnerScope.Exit();
+
+ // Leave the for-scope.
+ ForScope.Exit();
+
+ if (Body.isInvalid())
+ return StmtError();
+
+ if (ForEach)
+ return Actions.FinishObjCForCollectionStmt(ForEachStmt.get(),
+ Body.get());
+
+ if (ForRange)
+ return Actions.FinishCXXForRangeStmt(ForRangeStmt.get(), Body.get());
+
+ return Actions.ActOnForStmt(ForLoc, T.getOpenLocation(), FirstPart.get(),
+ SecondPart, SecondVar, ThirdPart,
+ T.getCloseLocation(), Body.get());
+}
+
+/// ParseGotoStatement
+/// jump-statement:
+/// 'goto' identifier ';'
+/// [GNU] 'goto' '*' expression ';'
+///
+/// Note: this lets the caller parse the end ';'.
+///
+StmtResult Parser::ParseGotoStatement() {
+ assert(Tok.is(tok::kw_goto) && "Not a goto stmt!");
+ SourceLocation GotoLoc = ConsumeToken(); // eat the 'goto'.
+
+ StmtResult Res;
+ if (Tok.is(tok::identifier)) {
+ LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(),
+ Tok.getLocation());
+ Res = Actions.ActOnGotoStmt(GotoLoc, Tok.getLocation(), LD);
+ ConsumeToken();
+ } else if (Tok.is(tok::star)) {
+ // GNU indirect goto extension.
+ Diag(Tok, diag::ext_gnu_indirect_goto);
+ SourceLocation StarLoc = ConsumeToken();
+ ExprResult R(ParseExpression());
+ if (R.isInvalid()) { // Skip to the semicolon, but don't consume it.
+ SkipUntil(tok::semi, StopBeforeMatch);
+ return StmtError();
+ }
+ Res = Actions.ActOnIndirectGotoStmt(GotoLoc, StarLoc, R.get());
+ } else {
+ Diag(Tok, diag::err_expected) << tok::identifier;
+ return StmtError();
+ }
+
+ return Res;
+}
+
+/// ParseContinueStatement
+/// jump-statement:
+/// 'continue' ';'
+///
+/// Note: this lets the caller parse the end ';'.
+///
+StmtResult Parser::ParseContinueStatement() {
+ SourceLocation ContinueLoc = ConsumeToken(); // eat the 'continue'.
+ return Actions.ActOnContinueStmt(ContinueLoc, getCurScope());
+}
+
+/// ParseBreakStatement
+/// jump-statement:
+/// 'break' ';'
+///
+/// Note: this lets the caller parse the end ';'.
+///
+StmtResult Parser::ParseBreakStatement() {
+ SourceLocation BreakLoc = ConsumeToken(); // eat the 'break'.
+ return Actions.ActOnBreakStmt(BreakLoc, getCurScope());
+}
+
+/// ParseReturnStatement
+/// jump-statement:
+/// 'return' expression[opt] ';'
+StmtResult Parser::ParseReturnStatement() {
+ assert(Tok.is(tok::kw_return) && "Not a return stmt!");
+ SourceLocation ReturnLoc = ConsumeToken(); // eat the 'return'.
+
+ ExprResult R;
+ if (Tok.isNot(tok::semi)) {
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteReturn(getCurScope());
+ cutOffParsing();
+ return StmtError();
+ }
+
+ if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus) {
+ R = ParseInitializer();
+ if (R.isUsable())
+ Diag(R.get()->getLocStart(), getLangOpts().CPlusPlus11 ?
+ diag::warn_cxx98_compat_generalized_initializer_lists :
+ diag::ext_generalized_initializer_lists)
+ << R.get()->getSourceRange();
+ } else
+ R = ParseExpression();
+ if (R.isInvalid()) {
+ SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
+ return StmtError();
+ }
+ }
+ return Actions.ActOnReturnStmt(ReturnLoc, R.get(), getCurScope());
+}
+
+StmtResult Parser::ParsePragmaLoopHint(StmtVector &Stmts, bool OnlyStatement,
+ SourceLocation *TrailingElseLoc,
+ ParsedAttributesWithRange &Attrs) {
+ // Create temporary attribute list.
+ ParsedAttributesWithRange TempAttrs(AttrFactory);
+
+ // Get loop hints and consume annotated token.
+ while (Tok.is(tok::annot_pragma_loop_hint)) {
+ LoopHint Hint;
+ if (!HandlePragmaLoopHint(Hint))
+ continue;
+
+ ArgsUnion ArgHints[] = {Hint.PragmaNameLoc, Hint.OptionLoc, Hint.StateLoc,
+ ArgsUnion(Hint.ValueExpr)};
+ TempAttrs.addNew(Hint.PragmaNameLoc->Ident, Hint.Range, nullptr,
+ Hint.PragmaNameLoc->Loc, ArgHints, 4,
+ AttributeList::AS_Pragma);
+ }
+
+ // Get the next statement.
+ MaybeParseCXX11Attributes(Attrs);
+
+ StmtResult S = ParseStatementOrDeclarationAfterAttributes(
+ Stmts, OnlyStatement, TrailingElseLoc, Attrs);
+
+ Attrs.takeAllFrom(TempAttrs);
+ return S;
+}
+
+Decl *Parser::ParseFunctionStatementBody(Decl *Decl, ParseScope &BodyScope) {
+ assert(Tok.is(tok::l_brace));
+ SourceLocation LBraceLoc = Tok.getLocation();
+
+ if (SkipFunctionBodies && (!Decl || Actions.canSkipFunctionBody(Decl)) &&
+ trySkippingFunctionBody()) {
+ BodyScope.Exit();
+ return Actions.ActOnSkippedFunctionBody(Decl);
+ }
+
+ PrettyDeclStackTraceEntry CrashInfo(Actions, Decl, LBraceLoc,
+ "parsing function body");
+
+ // Do not enter a scope for the brace, as the arguments are in the same scope
+ // (the function body) as the body itself. Instead, just read the statement
+ // list and put it into a CompoundStmt for safe keeping.
+ StmtResult FnBody(ParseCompoundStatementBody());
+
+ // If the function body could not be parsed, make a bogus compoundstmt.
+ if (FnBody.isInvalid()) {
+ Sema::CompoundScopeRAII CompoundScope(Actions);
+ FnBody = Actions.ActOnCompoundStmt(LBraceLoc, LBraceLoc, None, false);
+ }
+
+ BodyScope.Exit();
+ return Actions.ActOnFinishFunctionBody(Decl, FnBody.get());
+}
+
+/// ParseFunctionTryBlock - Parse a C++ function-try-block.
+///
+/// function-try-block:
+/// 'try' ctor-initializer[opt] compound-statement handler-seq
+///
+Decl *Parser::ParseFunctionTryBlock(Decl *Decl, ParseScope &BodyScope) {
+ assert(Tok.is(tok::kw_try) && "Expected 'try'");
+ SourceLocation TryLoc = ConsumeToken();
+
+ PrettyDeclStackTraceEntry CrashInfo(Actions, Decl, TryLoc,
+ "parsing function try block");
+
+ // Constructor initializer list?
+ if (Tok.is(tok::colon))
+ ParseConstructorInitializer(Decl);
+ else
+ Actions.ActOnDefaultCtorInitializers(Decl);
+
+ if (SkipFunctionBodies && Actions.canSkipFunctionBody(Decl) &&
+ trySkippingFunctionBody()) {
+ BodyScope.Exit();
+ return Actions.ActOnSkippedFunctionBody(Decl);
+ }
+
+ SourceLocation LBraceLoc = Tok.getLocation();
+ StmtResult FnBody(ParseCXXTryBlockCommon(TryLoc, /*FnTry*/true));
+ // If we failed to parse the try-catch, we just give the function an empty
+ // compound statement as the body.
+ if (FnBody.isInvalid()) {
+ Sema::CompoundScopeRAII CompoundScope(Actions);
+ FnBody = Actions.ActOnCompoundStmt(LBraceLoc, LBraceLoc, None, false);
+ }
+
+ BodyScope.Exit();
+ return Actions.ActOnFinishFunctionBody(Decl, FnBody.get());
+}
+
+bool Parser::trySkippingFunctionBody() {
+ assert(Tok.is(tok::l_brace));
+ assert(SkipFunctionBodies &&
+ "Should only be called when SkipFunctionBodies is enabled");
+
+ if (!PP.isCodeCompletionEnabled()) {
+ ConsumeBrace();
+ SkipUntil(tok::r_brace);
+ return true;
+ }
+
+ // We're in code-completion mode. Skip parsing for all function bodies unless
+ // the body contains the code-completion point.
+ TentativeParsingAction PA(*this);
+ ConsumeBrace();
+ if (SkipUntil(tok::r_brace, StopAtCodeCompletion)) {
+ PA.Commit();
+ return true;
+ }
+
+ PA.Revert();
+ return false;
+}
+
+/// ParseCXXTryBlock - Parse a C++ try-block.
+///
+/// try-block:
+/// 'try' compound-statement handler-seq
+///
+StmtResult Parser::ParseCXXTryBlock() {
+ assert(Tok.is(tok::kw_try) && "Expected 'try'");
+
+ SourceLocation TryLoc = ConsumeToken();
+ return ParseCXXTryBlockCommon(TryLoc);
+}
+
+/// ParseCXXTryBlockCommon - Parse the common part of try-block and
+/// function-try-block.
+///
+/// try-block:
+/// 'try' compound-statement handler-seq
+///
+/// function-try-block:
+/// 'try' ctor-initializer[opt] compound-statement handler-seq
+///
+/// handler-seq:
+/// handler handler-seq[opt]
+///
+/// [Borland] try-block:
+/// 'try' compound-statement seh-except-block
+/// 'try' compound-statement seh-finally-block
+///
+StmtResult Parser::ParseCXXTryBlockCommon(SourceLocation TryLoc, bool FnTry) {
+ if (Tok.isNot(tok::l_brace))
+ return StmtError(Diag(Tok, diag::err_expected) << tok::l_brace);
+
+ StmtResult TryBlock(ParseCompoundStatement(/*isStmtExpr=*/false,
+ Scope::DeclScope | Scope::TryScope |
+ (FnTry ? Scope::FnTryCatchScope : 0)));
+ if (TryBlock.isInvalid())
+ return TryBlock;
+
+ // Borland allows SEH-handlers with 'try'
+
+ if ((Tok.is(tok::identifier) &&
+ Tok.getIdentifierInfo() == getSEHExceptKeyword()) ||
+ Tok.is(tok::kw___finally)) {
+ // TODO: Factor into common return ParseSEHHandlerCommon(...)
+ StmtResult Handler;
+ if(Tok.getIdentifierInfo() == getSEHExceptKeyword()) {
+ SourceLocation Loc = ConsumeToken();
+ Handler = ParseSEHExceptBlock(Loc);
+ }
+ else {
+ SourceLocation Loc = ConsumeToken();
+ Handler = ParseSEHFinallyBlock(Loc);
+ }
+ if(Handler.isInvalid())
+ return Handler;
+
+ return Actions.ActOnSEHTryBlock(true /* IsCXXTry */,
+ TryLoc,
+ TryBlock.get(),
+ Handler.get());
+ }
+ else {
+ StmtVector Handlers;
+
+ // C++11 attributes can't appear here, despite this context seeming
+ // statement-like.
+ DiagnoseAndSkipCXX11Attributes();
+
+ if (Tok.isNot(tok::kw_catch))
+ return StmtError(Diag(Tok, diag::err_expected_catch));
+ while (Tok.is(tok::kw_catch)) {
+ StmtResult Handler(ParseCXXCatchBlock(FnTry));
+ if (!Handler.isInvalid())
+ Handlers.push_back(Handler.get());
+ }
+ // Don't bother creating the full statement if we don't have any usable
+ // handlers.
+ if (Handlers.empty())
+ return StmtError();
+
+ return Actions.ActOnCXXTryBlock(TryLoc, TryBlock.get(), Handlers);
+ }
+}
+
+/// ParseCXXCatchBlock - Parse a C++ catch block, called handler in the standard
+///
+/// handler:
+/// 'catch' '(' exception-declaration ')' compound-statement
+///
+/// exception-declaration:
+/// attribute-specifier-seq[opt] type-specifier-seq declarator
+/// attribute-specifier-seq[opt] type-specifier-seq abstract-declarator[opt]
+/// '...'
+///
+StmtResult Parser::ParseCXXCatchBlock(bool FnCatch) {
+ assert(Tok.is(tok::kw_catch) && "Expected 'catch'");
+
+ SourceLocation CatchLoc = ConsumeToken();
+
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ if (T.expectAndConsume())
+ return StmtError();
+
+ // C++ 3.3.2p3:
+ // The name in a catch exception-declaration is local to the handler and
+ // shall not be redeclared in the outermost block of the handler.
+ ParseScope CatchScope(this, Scope::DeclScope | Scope::ControlScope |
+ (FnCatch ? Scope::FnTryCatchScope : 0));
+
+ // exception-declaration is equivalent to '...' or a parameter-declaration
+ // without default arguments.
+ Decl *ExceptionDecl = nullptr;
+ if (Tok.isNot(tok::ellipsis)) {
+ ParsedAttributesWithRange Attributes(AttrFactory);
+ MaybeParseCXX11Attributes(Attributes);
+
+ DeclSpec DS(AttrFactory);
+ DS.takeAttributesFrom(Attributes);
+
+ if (ParseCXXTypeSpecifierSeq(DS))
+ return StmtError();
+
+ Declarator ExDecl(DS, Declarator::CXXCatchContext);
+ ParseDeclarator(ExDecl);
+ ExceptionDecl = Actions.ActOnExceptionDeclarator(getCurScope(), ExDecl);
+ } else
+ ConsumeToken();
+
+ T.consumeClose();
+ if (T.getCloseLocation().isInvalid())
+ return StmtError();
+
+ if (Tok.isNot(tok::l_brace))
+ return StmtError(Diag(Tok, diag::err_expected) << tok::l_brace);
+
+ // FIXME: Possible draft standard bug: attribute-specifier should be allowed?
+ StmtResult Block(ParseCompoundStatement());
+ if (Block.isInvalid())
+ return Block;
+
+ return Actions.ActOnCXXCatchBlock(CatchLoc, ExceptionDecl, Block.get());
+}
+
+void Parser::ParseMicrosoftIfExistsStatement(StmtVector &Stmts) {
+ IfExistsCondition Result;
+ if (ParseMicrosoftIfExistsCondition(Result))
+ return;
+
+ // Handle dependent statements by parsing the braces as a compound statement.
+ // This is not the same behavior as Visual C++, which don't treat this as a
+ // compound statement, but for Clang's type checking we can't have anything
+ // inside these braces escaping to the surrounding code.
+ if (Result.Behavior == IEB_Dependent) {
+ if (!Tok.is(tok::l_brace)) {
+ Diag(Tok, diag::err_expected) << tok::l_brace;
+ return;
+ }
+
+ StmtResult Compound = ParseCompoundStatement();
+ if (Compound.isInvalid())
+ return;
+
+ StmtResult DepResult = Actions.ActOnMSDependentExistsStmt(Result.KeywordLoc,
+ Result.IsIfExists,
+ Result.SS,
+ Result.Name,
+ Compound.get());
+ if (DepResult.isUsable())
+ Stmts.push_back(DepResult.get());
+ return;
+ }
+
+ BalancedDelimiterTracker Braces(*this, tok::l_brace);
+ if (Braces.consumeOpen()) {
+ Diag(Tok, diag::err_expected) << tok::l_brace;
+ return;
+ }
+
+ switch (Result.Behavior) {
+ case IEB_Parse:
+ // Parse the statements below.
+ break;
+
+ case IEB_Dependent:
+ llvm_unreachable("Dependent case handled above");
+
+ case IEB_Skip:
+ Braces.skipToEnd();
+ return;
+ }
+
+ // Condition is true, parse the statements.
+ while (Tok.isNot(tok::r_brace)) {
+ StmtResult R = ParseStatementOrDeclaration(Stmts, false);
+ if (R.isUsable())
+ Stmts.push_back(R.get());
+ }
+ Braces.consumeClose();
+}
diff --git a/contrib/llvm/tools/clang/lib/Parse/ParseStmtAsm.cpp b/contrib/llvm/tools/clang/lib/Parse/ParseStmtAsm.cpp
new file mode 100644
index 0000000..8ba9f15
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Parse/ParseStmtAsm.cpp
@@ -0,0 +1,798 @@
+//===---- ParseStmtAsm.cpp - Assembly Statement Parser --------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements parsing for GCC and Microsoft inline assembly.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Parse/Parser.h"
+#include "RAIIObjectsForParser.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/Basic/Diagnostic.h"
+#include "clang/Basic/TargetInfo.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCInstPrinter.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCObjectFileInfo.h"
+#include "llvm/MC/MCParser/MCAsmParser.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/MC/MCTargetAsmParser.h"
+#include "llvm/MC/MCTargetOptions.h"
+#include "llvm/Support/SourceMgr.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Support/TargetSelect.h"
+using namespace clang;
+
+namespace {
+class ClangAsmParserCallback : public llvm::MCAsmParserSemaCallback {
+ Parser &TheParser;
+ SourceLocation AsmLoc;
+ StringRef AsmString;
+
+ /// The tokens we streamed into AsmString and handed off to MC.
+ ArrayRef<Token> AsmToks;
+
+ /// The offset of each token in AsmToks within AsmString.
+ ArrayRef<unsigned> AsmTokOffsets;
+
+public:
+ ClangAsmParserCallback(Parser &P, SourceLocation Loc, StringRef AsmString,
+ ArrayRef<Token> Toks, ArrayRef<unsigned> Offsets)
+ : TheParser(P), AsmLoc(Loc), AsmString(AsmString), AsmToks(Toks),
+ AsmTokOffsets(Offsets) {
+ assert(AsmToks.size() == AsmTokOffsets.size());
+ }
+
+ void *LookupInlineAsmIdentifier(StringRef &LineBuf,
+ llvm::InlineAsmIdentifierInfo &Info,
+ bool IsUnevaluatedContext) override {
+ // Collect the desired tokens.
+ SmallVector<Token, 16> LineToks;
+ const Token *FirstOrigToken = nullptr;
+ findTokensForString(LineBuf, LineToks, FirstOrigToken);
+
+ unsigned NumConsumedToks;
+ ExprResult Result = TheParser.ParseMSAsmIdentifier(
+ LineToks, NumConsumedToks, &Info, IsUnevaluatedContext);
+
+ // If we consumed the entire line, tell MC that.
+ // Also do this if we consumed nothing as a way of reporting failure.
+ if (NumConsumedToks == 0 || NumConsumedToks == LineToks.size()) {
+ // By not modifying LineBuf, we're implicitly consuming it all.
+
+ // Otherwise, consume up to the original tokens.
+ } else {
+ assert(FirstOrigToken && "not using original tokens?");
+
+ // Since we're using original tokens, apply that offset.
+ assert(FirstOrigToken[NumConsumedToks].getLocation() ==
+ LineToks[NumConsumedToks].getLocation());
+ unsigned FirstIndex = FirstOrigToken - AsmToks.begin();
+ unsigned LastIndex = FirstIndex + NumConsumedToks - 1;
+
+ // The total length we've consumed is the relative offset
+ // of the last token we consumed plus its length.
+ unsigned TotalOffset =
+ (AsmTokOffsets[LastIndex] + AsmToks[LastIndex].getLength() -
+ AsmTokOffsets[FirstIndex]);
+ LineBuf = LineBuf.substr(0, TotalOffset);
+ }
+
+ // Initialize the "decl" with the lookup result.
+ Info.OpDecl = static_cast<void *>(Result.get());
+ return Info.OpDecl;
+ }
+
+ StringRef LookupInlineAsmLabel(StringRef Identifier, llvm::SourceMgr &LSM,
+ llvm::SMLoc Location,
+ bool Create) override {
+ SourceLocation Loc = translateLocation(LSM, Location);
+ LabelDecl *Label =
+ TheParser.getActions().GetOrCreateMSAsmLabel(Identifier, Loc, Create);
+ return Label->getMSAsmLabel();
+ }
+
+ bool LookupInlineAsmField(StringRef Base, StringRef Member,
+ unsigned &Offset) override {
+ return TheParser.getActions().LookupInlineAsmField(Base, Member, Offset,
+ AsmLoc);
+ }
+
+ static void DiagHandlerCallback(const llvm::SMDiagnostic &D, void *Context) {
+ ((ClangAsmParserCallback *)Context)->handleDiagnostic(D);
+ }
+
+private:
+ /// Collect the appropriate tokens for the given string.
+ void findTokensForString(StringRef Str, SmallVectorImpl<Token> &TempToks,
+ const Token *&FirstOrigToken) const {
+ // For now, assert that the string we're working with is a substring
+ // of what we gave to MC. This lets us use the original tokens.
+ assert(!std::less<const char *>()(Str.begin(), AsmString.begin()) &&
+ !std::less<const char *>()(AsmString.end(), Str.end()));
+
+ // Try to find a token whose offset matches the first token.
+ unsigned FirstCharOffset = Str.begin() - AsmString.begin();
+ const unsigned *FirstTokOffset = std::lower_bound(
+ AsmTokOffsets.begin(), AsmTokOffsets.end(), FirstCharOffset);
+
+ // For now, assert that the start of the string exactly
+ // corresponds to the start of a token.
+ assert(*FirstTokOffset == FirstCharOffset);
+
+ // Use all the original tokens for this line. (We assume the
+ // end of the line corresponds cleanly to a token break.)
+ unsigned FirstTokIndex = FirstTokOffset - AsmTokOffsets.begin();
+ FirstOrigToken = &AsmToks[FirstTokIndex];
+ unsigned LastCharOffset = Str.end() - AsmString.begin();
+ for (unsigned i = FirstTokIndex, e = AsmTokOffsets.size(); i != e; ++i) {
+ if (AsmTokOffsets[i] >= LastCharOffset)
+ break;
+ TempToks.push_back(AsmToks[i]);
+ }
+ }
+
+ SourceLocation translateLocation(const llvm::SourceMgr &LSM, llvm::SMLoc SMLoc) {
+ // Compute an offset into the inline asm buffer.
+ // FIXME: This isn't right if .macro is involved (but hopefully, no
+ // real-world code does that).
+ const llvm::MemoryBuffer *LBuf =
+ LSM.getMemoryBuffer(LSM.FindBufferContainingLoc(SMLoc));
+ unsigned Offset = SMLoc.getPointer() - LBuf->getBufferStart();
+
+ // Figure out which token that offset points into.
+ const unsigned *TokOffsetPtr =
+ std::lower_bound(AsmTokOffsets.begin(), AsmTokOffsets.end(), Offset);
+ unsigned TokIndex = TokOffsetPtr - AsmTokOffsets.begin();
+ unsigned TokOffset = *TokOffsetPtr;
+
+ // If we come up with an answer which seems sane, use it; otherwise,
+ // just point at the __asm keyword.
+ // FIXME: Assert the answer is sane once we handle .macro correctly.
+ SourceLocation Loc = AsmLoc;
+ if (TokIndex < AsmToks.size()) {
+ const Token &Tok = AsmToks[TokIndex];
+ Loc = Tok.getLocation();
+ Loc = Loc.getLocWithOffset(Offset - TokOffset);
+ }
+ return Loc;
+ }
+
+ void handleDiagnostic(const llvm::SMDiagnostic &D) {
+ const llvm::SourceMgr &LSM = *D.getSourceMgr();
+ SourceLocation Loc = translateLocation(LSM, D.getLoc());
+ TheParser.Diag(Loc, diag::err_inline_ms_asm_parsing) << D.getMessage();
+ }
+};
+}
+
+/// Parse an identifier in an MS-style inline assembly block.
+///
+/// \param CastInfo - a void* so that we don't have to teach Parser.h
+/// about the actual type.
+ExprResult Parser::ParseMSAsmIdentifier(llvm::SmallVectorImpl<Token> &LineToks,
+ unsigned &NumLineToksConsumed,
+ void *CastInfo,
+ bool IsUnevaluatedContext) {
+ llvm::InlineAsmIdentifierInfo &Info =
+ *(llvm::InlineAsmIdentifierInfo *)CastInfo;
+
+ // Push a fake token on the end so that we don't overrun the token
+ // stream. We use ';' because it expression-parsing should never
+ // overrun it.
+ const tok::TokenKind EndOfStream = tok::semi;
+ Token EndOfStreamTok;
+ EndOfStreamTok.startToken();
+ EndOfStreamTok.setKind(EndOfStream);
+ LineToks.push_back(EndOfStreamTok);
+
+ // Also copy the current token over.
+ LineToks.push_back(Tok);
+
+ PP.EnterTokenStream(LineToks.begin(), LineToks.size(),
+ /*disable macros*/ true,
+ /*owns tokens*/ false);
+
+ // Clear the current token and advance to the first token in LineToks.
+ ConsumeAnyToken();
+
+ // Parse an optional scope-specifier if we're in C++.
+ CXXScopeSpec SS;
+ if (getLangOpts().CPlusPlus) {
+ ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
+ }
+
+ // Require an identifier here.
+ SourceLocation TemplateKWLoc;
+ UnqualifiedId Id;
+ bool Invalid =
+ ParseUnqualifiedId(SS,
+ /*EnteringContext=*/false,
+ /*AllowDestructorName=*/false,
+ /*AllowConstructorName=*/false,
+ /*ObjectType=*/ParsedType(), TemplateKWLoc, Id);
+
+ // Figure out how many tokens we are into LineToks.
+ unsigned LineIndex = 0;
+ if (Tok.is(EndOfStream)) {
+ LineIndex = LineToks.size() - 2;
+ } else {
+ while (LineToks[LineIndex].getLocation() != Tok.getLocation()) {
+ LineIndex++;
+ assert(LineIndex < LineToks.size() - 2); // we added two extra tokens
+ }
+ }
+
+ // If we've run into the poison token we inserted before, or there
+ // was a parsing error, then claim the entire line.
+ if (Invalid || Tok.is(EndOfStream)) {
+ NumLineToksConsumed = LineToks.size() - 2;
+ } else {
+ // Otherwise, claim up to the start of the next token.
+ NumLineToksConsumed = LineIndex;
+ }
+
+ // Finally, restore the old parsing state by consuming all the tokens we
+ // staged before, implicitly killing off the token-lexer we pushed.
+ for (unsigned i = 0, e = LineToks.size() - LineIndex - 2; i != e; ++i) {
+ ConsumeAnyToken();
+ }
+ assert(Tok.is(EndOfStream));
+ ConsumeToken();
+
+ // Leave LineToks in its original state.
+ LineToks.pop_back();
+ LineToks.pop_back();
+
+ // Perform the lookup.
+ return Actions.LookupInlineAsmIdentifier(SS, TemplateKWLoc, Id, Info,
+ IsUnevaluatedContext);
+}
+
+/// Turn a sequence of our tokens back into a string that we can hand
+/// to the MC asm parser.
+static bool buildMSAsmString(Preprocessor &PP, SourceLocation AsmLoc,
+ ArrayRef<Token> AsmToks,
+ SmallVectorImpl<unsigned> &TokOffsets,
+ SmallString<512> &Asm) {
+ assert(!AsmToks.empty() && "Didn't expect an empty AsmToks!");
+
+ // Is this the start of a new assembly statement?
+ bool isNewStatement = true;
+
+ for (unsigned i = 0, e = AsmToks.size(); i < e; ++i) {
+ const Token &Tok = AsmToks[i];
+
+ // Start each new statement with a newline and a tab.
+ if (!isNewStatement && (Tok.is(tok::kw_asm) || Tok.isAtStartOfLine())) {
+ Asm += "\n\t";
+ isNewStatement = true;
+ }
+
+ // Preserve the existence of leading whitespace except at the
+ // start of a statement.
+ if (!isNewStatement && Tok.hasLeadingSpace())
+ Asm += ' ';
+
+ // Remember the offset of this token.
+ TokOffsets.push_back(Asm.size());
+
+ // Don't actually write '__asm' into the assembly stream.
+ if (Tok.is(tok::kw_asm)) {
+ // Complain about __asm at the end of the stream.
+ if (i + 1 == e) {
+ PP.Diag(AsmLoc, diag::err_asm_empty);
+ return true;
+ }
+
+ continue;
+ }
+
+ // Append the spelling of the token.
+ SmallString<32> SpellingBuffer;
+ bool SpellingInvalid = false;
+ Asm += PP.getSpelling(Tok, SpellingBuffer, &SpellingInvalid);
+ assert(!SpellingInvalid && "spelling was invalid after correct parse?");
+
+ // We are no longer at the start of a statement.
+ isNewStatement = false;
+ }
+
+ // Ensure that the buffer is null-terminated.
+ Asm.push_back('\0');
+ Asm.pop_back();
+
+ assert(TokOffsets.size() == AsmToks.size());
+ return false;
+}
+
+/// ParseMicrosoftAsmStatement. When -fms-extensions/-fasm-blocks is enabled,
+/// this routine is called to collect the tokens for an MS asm statement.
+///
+/// [MS] ms-asm-statement:
+/// ms-asm-block
+/// ms-asm-block ms-asm-statement
+///
+/// [MS] ms-asm-block:
+/// '__asm' ms-asm-line '\n'
+/// '__asm' '{' ms-asm-instruction-block[opt] '}' ';'[opt]
+///
+/// [MS] ms-asm-instruction-block
+/// ms-asm-line
+/// ms-asm-line '\n' ms-asm-instruction-block
+///
+StmtResult Parser::ParseMicrosoftAsmStatement(SourceLocation AsmLoc) {
+ SourceManager &SrcMgr = PP.getSourceManager();
+ SourceLocation EndLoc = AsmLoc;
+ SmallVector<Token, 4> AsmToks;
+
+ bool SingleLineMode = true;
+ unsigned BraceNesting = 0;
+ unsigned short savedBraceCount = BraceCount;
+ bool InAsmComment = false;
+ FileID FID;
+ unsigned LineNo = 0;
+ unsigned NumTokensRead = 0;
+ SmallVector<SourceLocation, 4> LBraceLocs;
+ bool SkippedStartOfLine = false;
+
+ if (Tok.is(tok::l_brace)) {
+ // Braced inline asm: consume the opening brace.
+ SingleLineMode = false;
+ BraceNesting = 1;
+ EndLoc = ConsumeBrace();
+ LBraceLocs.push_back(EndLoc);
+ ++NumTokensRead;
+ } else {
+ // Single-line inline asm; compute which line it is on.
+ std::pair<FileID, unsigned> ExpAsmLoc =
+ SrcMgr.getDecomposedExpansionLoc(EndLoc);
+ FID = ExpAsmLoc.first;
+ LineNo = SrcMgr.getLineNumber(FID, ExpAsmLoc.second);
+ LBraceLocs.push_back(SourceLocation());
+ }
+
+ SourceLocation TokLoc = Tok.getLocation();
+ do {
+ // If we hit EOF, we're done, period.
+ if (isEofOrEom())
+ break;
+
+ if (!InAsmComment && Tok.is(tok::l_brace)) {
+ // Consume the opening brace.
+ SkippedStartOfLine = Tok.isAtStartOfLine();
+ EndLoc = ConsumeBrace();
+ BraceNesting++;
+ LBraceLocs.push_back(EndLoc);
+ TokLoc = Tok.getLocation();
+ ++NumTokensRead;
+ continue;
+ } else if (!InAsmComment && Tok.is(tok::semi)) {
+ // A semicolon in an asm is the start of a comment.
+ InAsmComment = true;
+ if (!SingleLineMode) {
+ // Compute which line the comment is on.
+ std::pair<FileID, unsigned> ExpSemiLoc =
+ SrcMgr.getDecomposedExpansionLoc(TokLoc);
+ FID = ExpSemiLoc.first;
+ LineNo = SrcMgr.getLineNumber(FID, ExpSemiLoc.second);
+ }
+ } else if (SingleLineMode || InAsmComment) {
+ // If end-of-line is significant, check whether this token is on a
+ // new line.
+ std::pair<FileID, unsigned> ExpLoc =
+ SrcMgr.getDecomposedExpansionLoc(TokLoc);
+ if (ExpLoc.first != FID ||
+ SrcMgr.getLineNumber(ExpLoc.first, ExpLoc.second) != LineNo) {
+ // If this is a single-line __asm, we're done, except if the next
+ // line begins with an __asm too, in which case we finish a comment
+ // if needed and then keep processing the next line as a single
+ // line __asm.
+ bool isAsm = Tok.is(tok::kw_asm);
+ if (SingleLineMode && !isAsm)
+ break;
+ // We're no longer in a comment.
+ InAsmComment = false;
+ if (isAsm) {
+ LineNo = SrcMgr.getLineNumber(ExpLoc.first, ExpLoc.second);
+ SkippedStartOfLine = Tok.isAtStartOfLine();
+ }
+ } else if (!InAsmComment && Tok.is(tok::r_brace)) {
+ // In MSVC mode, braces only participate in brace matching and
+ // separating the asm statements. This is an intentional
+ // departure from the Apple gcc behavior.
+ if (!BraceNesting)
+ break;
+ }
+ }
+ if (!InAsmComment && BraceNesting && Tok.is(tok::r_brace) &&
+ BraceCount == (savedBraceCount + BraceNesting)) {
+ // Consume the closing brace.
+ SkippedStartOfLine = Tok.isAtStartOfLine();
+ EndLoc = ConsumeBrace();
+ BraceNesting--;
+ // Finish if all of the opened braces in the inline asm section were
+ // consumed.
+ if (BraceNesting == 0 && !SingleLineMode)
+ break;
+ else {
+ LBraceLocs.pop_back();
+ TokLoc = Tok.getLocation();
+ ++NumTokensRead;
+ continue;
+ }
+ }
+
+ // Consume the next token; make sure we don't modify the brace count etc.
+ // if we are in a comment.
+ EndLoc = TokLoc;
+ if (InAsmComment)
+ PP.Lex(Tok);
+ else {
+ // Set the token as the start of line if we skipped the original start
+ // of line token in case it was a nested brace.
+ if (SkippedStartOfLine)
+ Tok.setFlag(Token::StartOfLine);
+ AsmToks.push_back(Tok);
+ ConsumeAnyToken();
+ }
+ TokLoc = Tok.getLocation();
+ ++NumTokensRead;
+ SkippedStartOfLine = false;
+ } while (1);
+
+ if (BraceNesting && BraceCount != savedBraceCount) {
+ // __asm without closing brace (this can happen at EOF).
+ for (unsigned i = 0; i < BraceNesting; ++i) {
+ Diag(Tok, diag::err_expected) << tok::r_brace;
+ Diag(LBraceLocs.back(), diag::note_matching) << tok::l_brace;
+ LBraceLocs.pop_back();
+ }
+ return StmtError();
+ } else if (NumTokensRead == 0) {
+ // Empty __asm.
+ Diag(Tok, diag::err_expected) << tok::l_brace;
+ return StmtError();
+ }
+
+ // Okay, prepare to use MC to parse the assembly.
+ SmallVector<StringRef, 4> ConstraintRefs;
+ SmallVector<Expr *, 4> Exprs;
+ SmallVector<StringRef, 4> ClobberRefs;
+
+ // We need an actual supported target.
+ const llvm::Triple &TheTriple = Actions.Context.getTargetInfo().getTriple();
+ llvm::Triple::ArchType ArchTy = TheTriple.getArch();
+ const std::string &TT = TheTriple.getTriple();
+ const llvm::Target *TheTarget = nullptr;
+ bool UnsupportedArch =
+ (ArchTy != llvm::Triple::x86 && ArchTy != llvm::Triple::x86_64);
+ if (UnsupportedArch) {
+ Diag(AsmLoc, diag::err_msasm_unsupported_arch) << TheTriple.getArchName();
+ } else {
+ std::string Error;
+ TheTarget = llvm::TargetRegistry::lookupTarget(TT, Error);
+ if (!TheTarget)
+ Diag(AsmLoc, diag::err_msasm_unable_to_create_target) << Error;
+ }
+
+ assert(!LBraceLocs.empty() && "Should have at least one location here");
+
+ // If we don't support assembly, or the assembly is empty, we don't
+ // need to instantiate the AsmParser, etc.
+ if (!TheTarget || AsmToks.empty()) {
+ return Actions.ActOnMSAsmStmt(AsmLoc, LBraceLocs[0], AsmToks, StringRef(),
+ /*NumOutputs*/ 0, /*NumInputs*/ 0,
+ ConstraintRefs, ClobberRefs, Exprs, EndLoc);
+ }
+
+ // Expand the tokens into a string buffer.
+ SmallString<512> AsmString;
+ SmallVector<unsigned, 8> TokOffsets;
+ if (buildMSAsmString(PP, AsmLoc, AsmToks, TokOffsets, AsmString))
+ return StmtError();
+
+ std::unique_ptr<llvm::MCRegisterInfo> MRI(TheTarget->createMCRegInfo(TT));
+ std::unique_ptr<llvm::MCAsmInfo> MAI(TheTarget->createMCAsmInfo(*MRI, TT));
+ // Get the instruction descriptor.
+ std::unique_ptr<llvm::MCInstrInfo> MII(TheTarget->createMCInstrInfo());
+ std::unique_ptr<llvm::MCObjectFileInfo> MOFI(new llvm::MCObjectFileInfo());
+ std::unique_ptr<llvm::MCSubtargetInfo> STI(
+ TheTarget->createMCSubtargetInfo(TT, "", ""));
+
+ llvm::SourceMgr TempSrcMgr;
+ llvm::MCContext Ctx(MAI.get(), MRI.get(), MOFI.get(), &TempSrcMgr);
+ MOFI->InitMCObjectFileInfo(TT, llvm::Reloc::Default, llvm::CodeModel::Default,
+ Ctx);
+ std::unique_ptr<llvm::MemoryBuffer> Buffer =
+ llvm::MemoryBuffer::getMemBuffer(AsmString, "<MS inline asm>");
+
+ // Tell SrcMgr about this buffer, which is what the parser will pick up.
+ TempSrcMgr.AddNewSourceBuffer(std::move(Buffer), llvm::SMLoc());
+
+ std::unique_ptr<llvm::MCStreamer> Str(createNullStreamer(Ctx));
+ std::unique_ptr<llvm::MCAsmParser> Parser(
+ createMCAsmParser(TempSrcMgr, Ctx, *Str.get(), *MAI));
+
+ // FIXME: init MCOptions from sanitizer flags here.
+ llvm::MCTargetOptions MCOptions;
+ std::unique_ptr<llvm::MCTargetAsmParser> TargetParser(
+ TheTarget->createMCAsmParser(*STI, *Parser, *MII, MCOptions));
+
+ std::unique_ptr<llvm::MCInstPrinter> IP(
+ TheTarget->createMCInstPrinter(llvm::Triple(TT), 1, *MAI, *MII, *MRI));
+
+ // Change to the Intel dialect.
+ Parser->setAssemblerDialect(1);
+ Parser->setTargetParser(*TargetParser.get());
+ Parser->setParsingInlineAsm(true);
+ TargetParser->setParsingInlineAsm(true);
+
+ ClangAsmParserCallback Callback(*this, AsmLoc, AsmString, AsmToks,
+ TokOffsets);
+ TargetParser->setSemaCallback(&Callback);
+ TempSrcMgr.setDiagHandler(ClangAsmParserCallback::DiagHandlerCallback,
+ &Callback);
+
+ unsigned NumOutputs;
+ unsigned NumInputs;
+ std::string AsmStringIR;
+ SmallVector<std::pair<void *, bool>, 4> OpExprs;
+ SmallVector<std::string, 4> Constraints;
+ SmallVector<std::string, 4> Clobbers;
+ if (Parser->parseMSInlineAsm(AsmLoc.getPtrEncoding(), AsmStringIR, NumOutputs,
+ NumInputs, OpExprs, Constraints, Clobbers,
+ MII.get(), IP.get(), Callback))
+ return StmtError();
+
+ // Filter out "fpsw". Clang doesn't accept it, and it always lists flags and
+ // fpsr as clobbers.
+ auto End = std::remove(Clobbers.begin(), Clobbers.end(), "fpsw");
+ Clobbers.erase(End, Clobbers.end());
+
+ // Build the vector of clobber StringRefs.
+ ClobberRefs.insert(ClobberRefs.end(), Clobbers.begin(), Clobbers.end());
+
+ // Recast the void pointers and build the vector of constraint StringRefs.
+ unsigned NumExprs = NumOutputs + NumInputs;
+ ConstraintRefs.resize(NumExprs);
+ Exprs.resize(NumExprs);
+ for (unsigned i = 0, e = NumExprs; i != e; ++i) {
+ Expr *OpExpr = static_cast<Expr *>(OpExprs[i].first);
+ if (!OpExpr)
+ return StmtError();
+
+ // Need address of variable.
+ if (OpExprs[i].second)
+ OpExpr =
+ Actions.BuildUnaryOp(getCurScope(), AsmLoc, UO_AddrOf, OpExpr).get();
+
+ ConstraintRefs[i] = StringRef(Constraints[i]);
+ Exprs[i] = OpExpr;
+ }
+
+ // FIXME: We should be passing source locations for better diagnostics.
+ return Actions.ActOnMSAsmStmt(AsmLoc, LBraceLocs[0], AsmToks, AsmStringIR,
+ NumOutputs, NumInputs, ConstraintRefs,
+ ClobberRefs, Exprs, EndLoc);
+}
+
+/// ParseAsmStatement - Parse a GNU extended asm statement.
+/// asm-statement:
+/// gnu-asm-statement
+/// ms-asm-statement
+///
+/// [GNU] gnu-asm-statement:
+/// 'asm' type-qualifier[opt] '(' asm-argument ')' ';'
+///
+/// [GNU] asm-argument:
+/// asm-string-literal
+/// asm-string-literal ':' asm-operands[opt]
+/// asm-string-literal ':' asm-operands[opt] ':' asm-operands[opt]
+/// asm-string-literal ':' asm-operands[opt] ':' asm-operands[opt]
+/// ':' asm-clobbers
+///
+/// [GNU] asm-clobbers:
+/// asm-string-literal
+/// asm-clobbers ',' asm-string-literal
+///
+StmtResult Parser::ParseAsmStatement(bool &msAsm) {
+ assert(Tok.is(tok::kw_asm) && "Not an asm stmt");
+ SourceLocation AsmLoc = ConsumeToken();
+
+ if (getLangOpts().AsmBlocks && Tok.isNot(tok::l_paren) &&
+ !isTypeQualifier()) {
+ msAsm = true;
+ return ParseMicrosoftAsmStatement(AsmLoc);
+ }
+
+ DeclSpec DS(AttrFactory);
+ SourceLocation Loc = Tok.getLocation();
+ ParseTypeQualifierListOpt(DS, AR_VendorAttributesParsed);
+
+ // GNU asms accept, but warn, about type-qualifiers other than volatile.
+ if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
+ Diag(Loc, diag::w_asm_qualifier_ignored) << "const";
+ if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
+ Diag(Loc, diag::w_asm_qualifier_ignored) << "restrict";
+ // FIXME: Once GCC supports _Atomic, check whether it permits it here.
+ if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
+ Diag(Loc, diag::w_asm_qualifier_ignored) << "_Atomic";
+
+ // Remember if this was a volatile asm.
+ bool isVolatile = DS.getTypeQualifiers() & DeclSpec::TQ_volatile;
+ if (Tok.isNot(tok::l_paren)) {
+ Diag(Tok, diag::err_expected_lparen_after) << "asm";
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return StmtError();
+ }
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ T.consumeOpen();
+
+ ExprResult AsmString(ParseAsmStringLiteral());
+
+ // Check if GNU-style InlineAsm is disabled.
+ // Error on anything other than empty string.
+ if (!(getLangOpts().GNUAsm || AsmString.isInvalid())) {
+ const auto *SL = cast<StringLiteral>(AsmString.get());
+ if (!SL->getString().trim().empty())
+ Diag(Loc, diag::err_gnu_inline_asm_disabled);
+ }
+
+ if (AsmString.isInvalid()) {
+ // Consume up to and including the closing paren.
+ T.skipToEnd();
+ return StmtError();
+ }
+
+ SmallVector<IdentifierInfo *, 4> Names;
+ ExprVector Constraints;
+ ExprVector Exprs;
+ ExprVector Clobbers;
+
+ if (Tok.is(tok::r_paren)) {
+ // We have a simple asm expression like 'asm("foo")'.
+ T.consumeClose();
+ return Actions.ActOnGCCAsmStmt(AsmLoc, /*isSimple*/ true, isVolatile,
+ /*NumOutputs*/ 0, /*NumInputs*/ 0, nullptr,
+ Constraints, Exprs, AsmString.get(),
+ Clobbers, T.getCloseLocation());
+ }
+
+ // Parse Outputs, if present.
+ bool AteExtraColon = false;
+ if (Tok.is(tok::colon) || Tok.is(tok::coloncolon)) {
+ // In C++ mode, parse "::" like ": :".
+ AteExtraColon = Tok.is(tok::coloncolon);
+ ConsumeToken();
+
+ if (!AteExtraColon && ParseAsmOperandsOpt(Names, Constraints, Exprs))
+ return StmtError();
+ }
+
+ unsigned NumOutputs = Names.size();
+
+ // Parse Inputs, if present.
+ if (AteExtraColon || Tok.is(tok::colon) || Tok.is(tok::coloncolon)) {
+ // In C++ mode, parse "::" like ": :".
+ if (AteExtraColon)
+ AteExtraColon = false;
+ else {
+ AteExtraColon = Tok.is(tok::coloncolon);
+ ConsumeToken();
+ }
+
+ if (!AteExtraColon && ParseAsmOperandsOpt(Names, Constraints, Exprs))
+ return StmtError();
+ }
+
+ assert(Names.size() == Constraints.size() &&
+ Constraints.size() == Exprs.size() && "Input operand size mismatch!");
+
+ unsigned NumInputs = Names.size() - NumOutputs;
+
+ // Parse the clobbers, if present.
+ if (AteExtraColon || Tok.is(tok::colon)) {
+ if (!AteExtraColon)
+ ConsumeToken();
+
+ // Parse the asm-string list for clobbers if present.
+ if (Tok.isNot(tok::r_paren)) {
+ while (1) {
+ ExprResult Clobber(ParseAsmStringLiteral());
+
+ if (Clobber.isInvalid())
+ break;
+
+ Clobbers.push_back(Clobber.get());
+
+ if (!TryConsumeToken(tok::comma))
+ break;
+ }
+ }
+ }
+
+ T.consumeClose();
+ return Actions.ActOnGCCAsmStmt(
+ AsmLoc, false, isVolatile, NumOutputs, NumInputs, Names.data(),
+ Constraints, Exprs, AsmString.get(), Clobbers, T.getCloseLocation());
+}
+
+/// ParseAsmOperands - Parse the asm-operands production as used by
+/// asm-statement, assuming the leading ':' token was eaten.
+///
+/// [GNU] asm-operands:
+/// asm-operand
+/// asm-operands ',' asm-operand
+///
+/// [GNU] asm-operand:
+/// asm-string-literal '(' expression ')'
+/// '[' identifier ']' asm-string-literal '(' expression ')'
+///
+//
+// FIXME: Avoid unnecessary std::string trashing.
+bool Parser::ParseAsmOperandsOpt(SmallVectorImpl<IdentifierInfo *> &Names,
+ SmallVectorImpl<Expr *> &Constraints,
+ SmallVectorImpl<Expr *> &Exprs) {
+ // 'asm-operands' isn't present?
+ if (!isTokenStringLiteral() && Tok.isNot(tok::l_square))
+ return false;
+
+ while (1) {
+ // Read the [id] if present.
+ if (Tok.is(tok::l_square)) {
+ BalancedDelimiterTracker T(*this, tok::l_square);
+ T.consumeOpen();
+
+ if (Tok.isNot(tok::identifier)) {
+ Diag(Tok, diag::err_expected) << tok::identifier;
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return true;
+ }
+
+ IdentifierInfo *II = Tok.getIdentifierInfo();
+ ConsumeToken();
+
+ Names.push_back(II);
+ T.consumeClose();
+ } else
+ Names.push_back(nullptr);
+
+ ExprResult Constraint(ParseAsmStringLiteral());
+ if (Constraint.isInvalid()) {
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return true;
+ }
+ Constraints.push_back(Constraint.get());
+
+ if (Tok.isNot(tok::l_paren)) {
+ Diag(Tok, diag::err_expected_lparen_after) << "asm operand";
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return true;
+ }
+
+ // Read the parenthesized expression.
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ T.consumeOpen();
+ ExprResult Res = Actions.CorrectDelayedTyposInExpr(ParseExpression());
+ T.consumeClose();
+ if (Res.isInvalid()) {
+ SkipUntil(tok::r_paren, StopAtSemi);
+ return true;
+ }
+ Exprs.push_back(Res.get());
+ // Eat the comma and continue parsing if it exists.
+ if (!TryConsumeToken(tok::comma))
+ return false;
+ }
+}
diff --git a/contrib/llvm/tools/clang/lib/Parse/ParseTemplate.cpp b/contrib/llvm/tools/clang/lib/Parse/ParseTemplate.cpp
new file mode 100644
index 0000000..f1467fe
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Parse/ParseTemplate.cpp
@@ -0,0 +1,1399 @@
+//===--- ParseTemplate.cpp - Template Parsing -----------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements parsing of C++ templates.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Parse/Parser.h"
+#include "RAIIObjectsForParser.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/Parse/ParseDiagnostic.h"
+#include "clang/Sema/DeclSpec.h"
+#include "clang/Sema/ParsedTemplate.h"
+#include "clang/Sema/Scope.h"
+using namespace clang;
+
+/// \brief Parse a template declaration, explicit instantiation, or
+/// explicit specialization.
+Decl *
+Parser::ParseDeclarationStartingWithTemplate(unsigned Context,
+ SourceLocation &DeclEnd,
+ AccessSpecifier AS,
+ AttributeList *AccessAttrs) {
+ ObjCDeclContextSwitch ObjCDC(*this);
+
+ if (Tok.is(tok::kw_template) && NextToken().isNot(tok::less)) {
+ return ParseExplicitInstantiation(Context,
+ SourceLocation(), ConsumeToken(),
+ DeclEnd, AS);
+ }
+ return ParseTemplateDeclarationOrSpecialization(Context, DeclEnd, AS,
+ AccessAttrs);
+}
+
+
+
+/// \brief Parse a template declaration or an explicit specialization.
+///
+/// Template declarations include one or more template parameter lists
+/// and either the function or class template declaration. Explicit
+/// specializations contain one or more 'template < >' prefixes
+/// followed by a (possibly templated) declaration. Since the
+/// syntactic form of both features is nearly identical, we parse all
+/// of the template headers together and let semantic analysis sort
+/// the declarations from the explicit specializations.
+///
+/// template-declaration: [C++ temp]
+/// 'export'[opt] 'template' '<' template-parameter-list '>' declaration
+///
+/// explicit-specialization: [ C++ temp.expl.spec]
+/// 'template' '<' '>' declaration
+Decl *
+Parser::ParseTemplateDeclarationOrSpecialization(unsigned Context,
+ SourceLocation &DeclEnd,
+ AccessSpecifier AS,
+ AttributeList *AccessAttrs) {
+ assert((Tok.is(tok::kw_export) || Tok.is(tok::kw_template)) &&
+ "Token does not start a template declaration.");
+
+ // Enter template-parameter scope.
+ ParseScope TemplateParmScope(this, Scope::TemplateParamScope);
+
+ // Tell the action that names should be checked in the context of
+ // the declaration to come.
+ ParsingDeclRAIIObject
+ ParsingTemplateParams(*this, ParsingDeclRAIIObject::NoParent);
+
+ // Parse multiple levels of template headers within this template
+ // parameter scope, e.g.,
+ //
+ // template<typename T>
+ // template<typename U>
+ // class A<T>::B { ... };
+ //
+ // We parse multiple levels non-recursively so that we can build a
+ // single data structure containing all of the template parameter
+ // lists to easily differentiate between the case above and:
+ //
+ // template<typename T>
+ // class A {
+ // template<typename U> class B;
+ // };
+ //
+ // In the first case, the action for declaring A<T>::B receives
+ // both template parameter lists. In the second case, the action for
+ // defining A<T>::B receives just the inner template parameter list
+ // (and retrieves the outer template parameter list from its
+ // context).
+ bool isSpecialization = true;
+ bool LastParamListWasEmpty = false;
+ TemplateParameterLists ParamLists;
+ TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth);
+
+ do {
+ // Consume the 'export', if any.
+ SourceLocation ExportLoc;
+ TryConsumeToken(tok::kw_export, ExportLoc);
+
+ // Consume the 'template', which should be here.
+ SourceLocation TemplateLoc;
+ if (!TryConsumeToken(tok::kw_template, TemplateLoc)) {
+ Diag(Tok.getLocation(), diag::err_expected_template);
+ return nullptr;
+ }
+
+ // Parse the '<' template-parameter-list '>'
+ SourceLocation LAngleLoc, RAngleLoc;
+ SmallVector<Decl*, 4> TemplateParams;
+ if (ParseTemplateParameters(CurTemplateDepthTracker.getDepth(),
+ TemplateParams, LAngleLoc, RAngleLoc)) {
+ // Skip until the semi-colon or a }.
+ SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
+ TryConsumeToken(tok::semi);
+ return nullptr;
+ }
+
+ ParamLists.push_back(
+ Actions.ActOnTemplateParameterList(CurTemplateDepthTracker.getDepth(),
+ ExportLoc,
+ TemplateLoc, LAngleLoc,
+ TemplateParams.data(),
+ TemplateParams.size(), RAngleLoc));
+
+ if (!TemplateParams.empty()) {
+ isSpecialization = false;
+ ++CurTemplateDepthTracker;
+ } else {
+ LastParamListWasEmpty = true;
+ }
+ } while (Tok.is(tok::kw_export) || Tok.is(tok::kw_template));
+
+ // Parse the actual template declaration.
+ return ParseSingleDeclarationAfterTemplate(Context,
+ ParsedTemplateInfo(&ParamLists,
+ isSpecialization,
+ LastParamListWasEmpty),
+ ParsingTemplateParams,
+ DeclEnd, AS, AccessAttrs);
+}
+
+/// \brief Parse a single declaration that declares a template,
+/// template specialization, or explicit instantiation of a template.
+///
+/// \param DeclEnd will receive the source location of the last token
+/// within this declaration.
+///
+/// \param AS the access specifier associated with this
+/// declaration. Will be AS_none for namespace-scope declarations.
+///
+/// \returns the new declaration.
+Decl *
+Parser::ParseSingleDeclarationAfterTemplate(
+ unsigned Context,
+ const ParsedTemplateInfo &TemplateInfo,
+ ParsingDeclRAIIObject &DiagsFromTParams,
+ SourceLocation &DeclEnd,
+ AccessSpecifier AS,
+ AttributeList *AccessAttrs) {
+ assert(TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
+ "Template information required");
+
+ if (Tok.is(tok::kw_static_assert)) {
+ // A static_assert declaration may not be templated.
+ Diag(Tok.getLocation(), diag::err_templated_invalid_declaration)
+ << TemplateInfo.getSourceRange();
+ // Parse the static_assert declaration to improve error recovery.
+ return ParseStaticAssertDeclaration(DeclEnd);
+ }
+
+ if (Context == Declarator::MemberContext) {
+ // We are parsing a member template.
+ ParseCXXClassMemberDeclaration(AS, AccessAttrs, TemplateInfo,
+ &DiagsFromTParams);
+ return nullptr;
+ }
+
+ ParsedAttributesWithRange prefixAttrs(AttrFactory);
+ MaybeParseCXX11Attributes(prefixAttrs);
+
+ if (Tok.is(tok::kw_using))
+ return ParseUsingDirectiveOrDeclaration(Context, TemplateInfo, DeclEnd,
+ prefixAttrs);
+
+ // Parse the declaration specifiers, stealing any diagnostics from
+ // the template parameters.
+ ParsingDeclSpec DS(*this, &DiagsFromTParams);
+
+ ParseDeclarationSpecifiers(DS, TemplateInfo, AS,
+ getDeclSpecContextFromDeclaratorContext(Context));
+
+ if (Tok.is(tok::semi)) {
+ ProhibitAttributes(prefixAttrs);
+ DeclEnd = ConsumeToken();
+ Decl *Decl = Actions.ParsedFreeStandingDeclSpec(
+ getCurScope(), AS, DS,
+ TemplateInfo.TemplateParams ? *TemplateInfo.TemplateParams
+ : MultiTemplateParamsArg(),
+ TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation);
+ DS.complete(Decl);
+ return Decl;
+ }
+
+ // Move the attributes from the prefix into the DS.
+ if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation)
+ ProhibitAttributes(prefixAttrs);
+ else
+ DS.takeAttributesFrom(prefixAttrs);
+
+ // Parse the declarator.
+ ParsingDeclarator DeclaratorInfo(*this, DS, (Declarator::TheContext)Context);
+ ParseDeclarator(DeclaratorInfo);
+ // Error parsing the declarator?
+ if (!DeclaratorInfo.hasName()) {
+ // If so, skip until the semi-colon or a }.
+ SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
+ if (Tok.is(tok::semi))
+ ConsumeToken();
+ return nullptr;
+ }
+
+ LateParsedAttrList LateParsedAttrs(true);
+ if (DeclaratorInfo.isFunctionDeclarator())
+ MaybeParseGNUAttributes(DeclaratorInfo, &LateParsedAttrs);
+
+ if (DeclaratorInfo.isFunctionDeclarator() &&
+ isStartOfFunctionDefinition(DeclaratorInfo)) {
+
+ // Function definitions are only allowed at file scope and in C++ classes.
+ // The C++ inline method definition case is handled elsewhere, so we only
+ // need to handle the file scope definition case.
+ if (Context != Declarator::FileContext) {
+ Diag(Tok, diag::err_function_definition_not_allowed);
+ SkipMalformedDecl();
+ return nullptr;
+ }
+
+ if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
+ // Recover by ignoring the 'typedef'. This was probably supposed to be
+ // the 'typename' keyword, which we should have already suggested adding
+ // if it's appropriate.
+ Diag(DS.getStorageClassSpecLoc(), diag::err_function_declared_typedef)
+ << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
+ DS.ClearStorageClassSpecs();
+ }
+
+ if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
+ if (DeclaratorInfo.getName().getKind() != UnqualifiedId::IK_TemplateId) {
+ // If the declarator-id is not a template-id, issue a diagnostic and
+ // recover by ignoring the 'template' keyword.
+ Diag(Tok, diag::err_template_defn_explicit_instantiation) << 0;
+ return ParseFunctionDefinition(DeclaratorInfo, ParsedTemplateInfo(),
+ &LateParsedAttrs);
+ } else {
+ SourceLocation LAngleLoc
+ = PP.getLocForEndOfToken(TemplateInfo.TemplateLoc);
+ Diag(DeclaratorInfo.getIdentifierLoc(),
+ diag::err_explicit_instantiation_with_definition)
+ << SourceRange(TemplateInfo.TemplateLoc)
+ << FixItHint::CreateInsertion(LAngleLoc, "<>");
+
+ // Recover as if it were an explicit specialization.
+ TemplateParameterLists FakedParamLists;
+ FakedParamLists.push_back(Actions.ActOnTemplateParameterList(
+ 0, SourceLocation(), TemplateInfo.TemplateLoc, LAngleLoc, nullptr,
+ 0, LAngleLoc));
+
+ return ParseFunctionDefinition(
+ DeclaratorInfo, ParsedTemplateInfo(&FakedParamLists,
+ /*isSpecialization=*/true,
+ /*LastParamListWasEmpty=*/true),
+ &LateParsedAttrs);
+ }
+ }
+ return ParseFunctionDefinition(DeclaratorInfo, TemplateInfo,
+ &LateParsedAttrs);
+ }
+
+ // Parse this declaration.
+ Decl *ThisDecl = ParseDeclarationAfterDeclarator(DeclaratorInfo,
+ TemplateInfo);
+
+ if (Tok.is(tok::comma)) {
+ Diag(Tok, diag::err_multiple_template_declarators)
+ << (int)TemplateInfo.Kind;
+ SkipUntil(tok::semi);
+ return ThisDecl;
+ }
+
+ // Eat the semi colon after the declaration.
+ ExpectAndConsumeSemi(diag::err_expected_semi_declaration);
+ if (LateParsedAttrs.size() > 0)
+ ParseLexedAttributeList(LateParsedAttrs, ThisDecl, true, false);
+ DeclaratorInfo.complete(ThisDecl);
+ return ThisDecl;
+}
+
+/// ParseTemplateParameters - Parses a template-parameter-list enclosed in
+/// angle brackets. Depth is the depth of this template-parameter-list, which
+/// is the number of template headers directly enclosing this template header.
+/// TemplateParams is the current list of template parameters we're building.
+/// The template parameter we parse will be added to this list. LAngleLoc and
+/// RAngleLoc will receive the positions of the '<' and '>', respectively,
+/// that enclose this template parameter list.
+///
+/// \returns true if an error occurred, false otherwise.
+bool Parser::ParseTemplateParameters(unsigned Depth,
+ SmallVectorImpl<Decl*> &TemplateParams,
+ SourceLocation &LAngleLoc,
+ SourceLocation &RAngleLoc) {
+ // Get the template parameter list.
+ if (!TryConsumeToken(tok::less, LAngleLoc)) {
+ Diag(Tok.getLocation(), diag::err_expected_less_after) << "template";
+ return true;
+ }
+
+ // Try to parse the template parameter list.
+ bool Failed = false;
+ if (!Tok.is(tok::greater) && !Tok.is(tok::greatergreater))
+ Failed = ParseTemplateParameterList(Depth, TemplateParams);
+
+ if (Tok.is(tok::greatergreater)) {
+ // No diagnostic required here: a template-parameter-list can only be
+ // followed by a declaration or, for a template template parameter, the
+ // 'class' keyword. Therefore, the second '>' will be diagnosed later.
+ // This matters for elegant diagnosis of:
+ // template<template<typename>> struct S;
+ Tok.setKind(tok::greater);
+ RAngleLoc = Tok.getLocation();
+ Tok.setLocation(Tok.getLocation().getLocWithOffset(1));
+ } else if (!TryConsumeToken(tok::greater, RAngleLoc) && Failed) {
+ Diag(Tok.getLocation(), diag::err_expected) << tok::greater;
+ return true;
+ }
+ return false;
+}
+
+/// ParseTemplateParameterList - Parse a template parameter list. If
+/// the parsing fails badly (i.e., closing bracket was left out), this
+/// will try to put the token stream in a reasonable position (closing
+/// a statement, etc.) and return false.
+///
+/// template-parameter-list: [C++ temp]
+/// template-parameter
+/// template-parameter-list ',' template-parameter
+bool
+Parser::ParseTemplateParameterList(unsigned Depth,
+ SmallVectorImpl<Decl*> &TemplateParams) {
+ while (1) {
+ if (Decl *TmpParam
+ = ParseTemplateParameter(Depth, TemplateParams.size())) {
+ TemplateParams.push_back(TmpParam);
+ } else {
+ // If we failed to parse a template parameter, skip until we find
+ // a comma or closing brace.
+ SkipUntil(tok::comma, tok::greater, tok::greatergreater,
+ StopAtSemi | StopBeforeMatch);
+ }
+
+ // Did we find a comma or the end of the template parameter list?
+ if (Tok.is(tok::comma)) {
+ ConsumeToken();
+ } else if (Tok.is(tok::greater) || Tok.is(tok::greatergreater)) {
+ // Don't consume this... that's done by template parser.
+ break;
+ } else {
+ // Somebody probably forgot to close the template. Skip ahead and
+ // try to get out of the expression. This error is currently
+ // subsumed by whatever goes on in ParseTemplateParameter.
+ Diag(Tok.getLocation(), diag::err_expected_comma_greater);
+ SkipUntil(tok::comma, tok::greater, tok::greatergreater,
+ StopAtSemi | StopBeforeMatch);
+ return false;
+ }
+ }
+ return true;
+}
+
+/// \brief Determine whether the parser is at the start of a template
+/// type parameter.
+bool Parser::isStartOfTemplateTypeParameter() {
+ if (Tok.is(tok::kw_class)) {
+ // "class" may be the start of an elaborated-type-specifier or a
+ // type-parameter. Per C++ [temp.param]p3, we prefer the type-parameter.
+ switch (NextToken().getKind()) {
+ case tok::equal:
+ case tok::comma:
+ case tok::greater:
+ case tok::greatergreater:
+ case tok::ellipsis:
+ return true;
+
+ case tok::identifier:
+ // This may be either a type-parameter or an elaborated-type-specifier.
+ // We have to look further.
+ break;
+
+ default:
+ return false;
+ }
+
+ switch (GetLookAheadToken(2).getKind()) {
+ case tok::equal:
+ case tok::comma:
+ case tok::greater:
+ case tok::greatergreater:
+ return true;
+
+ default:
+ return false;
+ }
+ }
+
+ if (Tok.isNot(tok::kw_typename))
+ return false;
+
+ // C++ [temp.param]p2:
+ // There is no semantic difference between class and typename in a
+ // template-parameter. typename followed by an unqualified-id
+ // names a template type parameter. typename followed by a
+ // qualified-id denotes the type in a non-type
+ // parameter-declaration.
+ Token Next = NextToken();
+
+ // If we have an identifier, skip over it.
+ if (Next.getKind() == tok::identifier)
+ Next = GetLookAheadToken(2);
+
+ switch (Next.getKind()) {
+ case tok::equal:
+ case tok::comma:
+ case tok::greater:
+ case tok::greatergreater:
+ case tok::ellipsis:
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+/// ParseTemplateParameter - Parse a template-parameter (C++ [temp.param]).
+///
+/// template-parameter: [C++ temp.param]
+/// type-parameter
+/// parameter-declaration
+///
+/// type-parameter: (see below)
+/// 'class' ...[opt] identifier[opt]
+/// 'class' identifier[opt] '=' type-id
+/// 'typename' ...[opt] identifier[opt]
+/// 'typename' identifier[opt] '=' type-id
+/// 'template' '<' template-parameter-list '>'
+/// 'class' ...[opt] identifier[opt]
+/// 'template' '<' template-parameter-list '>' 'class' identifier[opt]
+/// = id-expression
+Decl *Parser::ParseTemplateParameter(unsigned Depth, unsigned Position) {
+ if (isStartOfTemplateTypeParameter())
+ return ParseTypeParameter(Depth, Position);
+
+ if (Tok.is(tok::kw_template))
+ return ParseTemplateTemplateParameter(Depth, Position);
+
+ // If it's none of the above, then it must be a parameter declaration.
+ // NOTE: This will pick up errors in the closure of the template parameter
+ // list (e.g., template < ; Check here to implement >> style closures.
+ return ParseNonTypeTemplateParameter(Depth, Position);
+}
+
+/// ParseTypeParameter - Parse a template type parameter (C++ [temp.param]).
+/// Other kinds of template parameters are parsed in
+/// ParseTemplateTemplateParameter and ParseNonTypeTemplateParameter.
+///
+/// type-parameter: [C++ temp.param]
+/// 'class' ...[opt][C++0x] identifier[opt]
+/// 'class' identifier[opt] '=' type-id
+/// 'typename' ...[opt][C++0x] identifier[opt]
+/// 'typename' identifier[opt] '=' type-id
+Decl *Parser::ParseTypeParameter(unsigned Depth, unsigned Position) {
+ assert((Tok.is(tok::kw_class) || Tok.is(tok::kw_typename)) &&
+ "A type-parameter starts with 'class' or 'typename'");
+
+ // Consume the 'class' or 'typename' keyword.
+ bool TypenameKeyword = Tok.is(tok::kw_typename);
+ SourceLocation KeyLoc = ConsumeToken();
+
+ // Grab the ellipsis (if given).
+ SourceLocation EllipsisLoc;
+ if (TryConsumeToken(tok::ellipsis, EllipsisLoc)) {
+ Diag(EllipsisLoc,
+ getLangOpts().CPlusPlus11
+ ? diag::warn_cxx98_compat_variadic_templates
+ : diag::ext_variadic_templates);
+ }
+
+ // Grab the template parameter name (if given)
+ SourceLocation NameLoc;
+ IdentifierInfo *ParamName = nullptr;
+ if (Tok.is(tok::identifier)) {
+ ParamName = Tok.getIdentifierInfo();
+ NameLoc = ConsumeToken();
+ } else if (Tok.is(tok::equal) || Tok.is(tok::comma) ||
+ Tok.is(tok::greater) || Tok.is(tok::greatergreater)) {
+ // Unnamed template parameter. Don't have to do anything here, just
+ // don't consume this token.
+ } else {
+ Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
+ return nullptr;
+ }
+
+ // Recover from misplaced ellipsis.
+ bool AlreadyHasEllipsis = EllipsisLoc.isValid();
+ if (TryConsumeToken(tok::ellipsis, EllipsisLoc))
+ DiagnoseMisplacedEllipsis(EllipsisLoc, NameLoc, AlreadyHasEllipsis, true);
+
+ // Grab a default argument (if available).
+ // Per C++0x [basic.scope.pdecl]p9, we parse the default argument before
+ // we introduce the type parameter into the local scope.
+ SourceLocation EqualLoc;
+ ParsedType DefaultArg;
+ if (TryConsumeToken(tok::equal, EqualLoc))
+ DefaultArg = ParseTypeName(/*Range=*/nullptr,
+ Declarator::TemplateTypeArgContext).get();
+
+ return Actions.ActOnTypeParameter(getCurScope(), TypenameKeyword, EllipsisLoc,
+ KeyLoc, ParamName, NameLoc, Depth, Position,
+ EqualLoc, DefaultArg);
+}
+
+/// ParseTemplateTemplateParameter - Handle the parsing of template
+/// template parameters.
+///
+/// type-parameter: [C++ temp.param]
+/// 'template' '<' template-parameter-list '>' type-parameter-key
+/// ...[opt] identifier[opt]
+/// 'template' '<' template-parameter-list '>' type-parameter-key
+/// identifier[opt] = id-expression
+/// type-parameter-key:
+/// 'class'
+/// 'typename' [C++1z]
+Decl *
+Parser::ParseTemplateTemplateParameter(unsigned Depth, unsigned Position) {
+ assert(Tok.is(tok::kw_template) && "Expected 'template' keyword");
+
+ // Handle the template <...> part.
+ SourceLocation TemplateLoc = ConsumeToken();
+ SmallVector<Decl*,8> TemplateParams;
+ SourceLocation LAngleLoc, RAngleLoc;
+ {
+ ParseScope TemplateParmScope(this, Scope::TemplateParamScope);
+ if (ParseTemplateParameters(Depth + 1, TemplateParams, LAngleLoc,
+ RAngleLoc)) {
+ return nullptr;
+ }
+ }
+
+ // Provide an ExtWarn if the C++1z feature of using 'typename' here is used.
+ // Generate a meaningful error if the user forgot to put class before the
+ // identifier, comma, or greater. Provide a fixit if the identifier, comma,
+ // or greater appear immediately or after 'struct'. In the latter case,
+ // replace the keyword with 'class'.
+ if (!TryConsumeToken(tok::kw_class)) {
+ bool Replace = Tok.is(tok::kw_typename) || Tok.is(tok::kw_struct);
+ const Token &Next = Tok.is(tok::kw_struct) ? NextToken() : Tok;
+ if (Tok.is(tok::kw_typename)) {
+ Diag(Tok.getLocation(),
+ getLangOpts().CPlusPlus1z
+ ? diag::warn_cxx14_compat_template_template_param_typename
+ : diag::ext_template_template_param_typename)
+ << (!getLangOpts().CPlusPlus1z
+ ? FixItHint::CreateReplacement(Tok.getLocation(), "class")
+ : FixItHint());
+ } else if (Next.is(tok::identifier) || Next.is(tok::comma) ||
+ Next.is(tok::greater) || Next.is(tok::greatergreater) ||
+ Next.is(tok::ellipsis)) {
+ Diag(Tok.getLocation(), diag::err_class_on_template_template_param)
+ << (Replace ? FixItHint::CreateReplacement(Tok.getLocation(), "class")
+ : FixItHint::CreateInsertion(Tok.getLocation(), "class "));
+ } else
+ Diag(Tok.getLocation(), diag::err_class_on_template_template_param);
+
+ if (Replace)
+ ConsumeToken();
+ }
+
+ // Parse the ellipsis, if given.
+ SourceLocation EllipsisLoc;
+ if (TryConsumeToken(tok::ellipsis, EllipsisLoc))
+ Diag(EllipsisLoc,
+ getLangOpts().CPlusPlus11
+ ? diag::warn_cxx98_compat_variadic_templates
+ : diag::ext_variadic_templates);
+
+ // Get the identifier, if given.
+ SourceLocation NameLoc;
+ IdentifierInfo *ParamName = nullptr;
+ if (Tok.is(tok::identifier)) {
+ ParamName = Tok.getIdentifierInfo();
+ NameLoc = ConsumeToken();
+ } else if (Tok.is(tok::equal) || Tok.is(tok::comma) ||
+ Tok.is(tok::greater) || Tok.is(tok::greatergreater)) {
+ // Unnamed template parameter. Don't have to do anything here, just
+ // don't consume this token.
+ } else {
+ Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
+ return nullptr;
+ }
+
+ // Recover from misplaced ellipsis.
+ bool AlreadyHasEllipsis = EllipsisLoc.isValid();
+ if (TryConsumeToken(tok::ellipsis, EllipsisLoc))
+ DiagnoseMisplacedEllipsis(EllipsisLoc, NameLoc, AlreadyHasEllipsis, true);
+
+ TemplateParameterList *ParamList =
+ Actions.ActOnTemplateParameterList(Depth, SourceLocation(),
+ TemplateLoc, LAngleLoc,
+ TemplateParams.data(),
+ TemplateParams.size(),
+ RAngleLoc);
+
+ // Grab a default argument (if available).
+ // Per C++0x [basic.scope.pdecl]p9, we parse the default argument before
+ // we introduce the template parameter into the local scope.
+ SourceLocation EqualLoc;
+ ParsedTemplateArgument DefaultArg;
+ if (TryConsumeToken(tok::equal, EqualLoc)) {
+ DefaultArg = ParseTemplateTemplateArgument();
+ if (DefaultArg.isInvalid()) {
+ Diag(Tok.getLocation(),
+ diag::err_default_template_template_parameter_not_template);
+ SkipUntil(tok::comma, tok::greater, tok::greatergreater,
+ StopAtSemi | StopBeforeMatch);
+ }
+ }
+
+ return Actions.ActOnTemplateTemplateParameter(getCurScope(), TemplateLoc,
+ ParamList, EllipsisLoc,
+ ParamName, NameLoc, Depth,
+ Position, EqualLoc, DefaultArg);
+}
+
+/// ParseNonTypeTemplateParameter - Handle the parsing of non-type
+/// template parameters (e.g., in "template<int Size> class array;").
+///
+/// template-parameter:
+/// ...
+/// parameter-declaration
+Decl *
+Parser::ParseNonTypeTemplateParameter(unsigned Depth, unsigned Position) {
+ // Parse the declaration-specifiers (i.e., the type).
+ // FIXME: The type should probably be restricted in some way... Not all
+ // declarators (parts of declarators?) are accepted for parameters.
+ DeclSpec DS(AttrFactory);
+ ParseDeclarationSpecifiers(DS);
+
+ // Parse this as a typename.
+ Declarator ParamDecl(DS, Declarator::TemplateParamContext);
+ ParseDeclarator(ParamDecl);
+ if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
+ Diag(Tok.getLocation(), diag::err_expected_template_parameter);
+ return nullptr;
+ }
+
+ // Recover from misplaced ellipsis.
+ SourceLocation EllipsisLoc;
+ if (TryConsumeToken(tok::ellipsis, EllipsisLoc))
+ DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, ParamDecl);
+
+ // If there is a default value, parse it.
+ // Per C++0x [basic.scope.pdecl]p9, we parse the default argument before
+ // we introduce the template parameter into the local scope.
+ SourceLocation EqualLoc;
+ ExprResult DefaultArg;
+ if (TryConsumeToken(tok::equal, EqualLoc)) {
+ // C++ [temp.param]p15:
+ // When parsing a default template-argument for a non-type
+ // template-parameter, the first non-nested > is taken as the
+ // end of the template-parameter-list rather than a greater-than
+ // operator.
+ GreaterThanIsOperatorScope G(GreaterThanIsOperator, false);
+ EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
+
+ DefaultArg = Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
+ if (DefaultArg.isInvalid())
+ SkipUntil(tok::comma, tok::greater, StopAtSemi | StopBeforeMatch);
+ }
+
+ // Create the parameter.
+ return Actions.ActOnNonTypeTemplateParameter(getCurScope(), ParamDecl,
+ Depth, Position, EqualLoc,
+ DefaultArg.get());
+}
+
+void Parser::DiagnoseMisplacedEllipsis(SourceLocation EllipsisLoc,
+ SourceLocation CorrectLoc,
+ bool AlreadyHasEllipsis,
+ bool IdentifierHasName) {
+ FixItHint Insertion;
+ if (!AlreadyHasEllipsis)
+ Insertion = FixItHint::CreateInsertion(CorrectLoc, "...");
+ Diag(EllipsisLoc, diag::err_misplaced_ellipsis_in_declaration)
+ << FixItHint::CreateRemoval(EllipsisLoc) << Insertion
+ << !IdentifierHasName;
+}
+
+void Parser::DiagnoseMisplacedEllipsisInDeclarator(SourceLocation EllipsisLoc,
+ Declarator &D) {
+ assert(EllipsisLoc.isValid());
+ bool AlreadyHasEllipsis = D.getEllipsisLoc().isValid();
+ if (!AlreadyHasEllipsis)
+ D.setEllipsisLoc(EllipsisLoc);
+ DiagnoseMisplacedEllipsis(EllipsisLoc, D.getIdentifierLoc(),
+ AlreadyHasEllipsis, D.hasName());
+}
+
+/// \brief Parses a '>' at the end of a template list.
+///
+/// If this function encounters '>>', '>>>', '>=', or '>>=', it tries
+/// to determine if these tokens were supposed to be a '>' followed by
+/// '>', '>>', '>=', or '>='. It emits an appropriate diagnostic if necessary.
+///
+/// \param RAngleLoc the location of the consumed '>'.
+///
+/// \param ConsumeLastToken if true, the '>' is not consumed.
+///
+/// \returns true, if current token does not start with '>', false otherwise.
+bool Parser::ParseGreaterThanInTemplateList(SourceLocation &RAngleLoc,
+ bool ConsumeLastToken) {
+ // What will be left once we've consumed the '>'.
+ tok::TokenKind RemainingToken;
+ const char *ReplacementStr = "> >";
+
+ switch (Tok.getKind()) {
+ default:
+ Diag(Tok.getLocation(), diag::err_expected) << tok::greater;
+ return true;
+
+ case tok::greater:
+ // Determine the location of the '>' token. Only consume this token
+ // if the caller asked us to.
+ RAngleLoc = Tok.getLocation();
+ if (ConsumeLastToken)
+ ConsumeToken();
+ return false;
+
+ case tok::greatergreater:
+ RemainingToken = tok::greater;
+ break;
+
+ case tok::greatergreatergreater:
+ RemainingToken = tok::greatergreater;
+ break;
+
+ case tok::greaterequal:
+ RemainingToken = tok::equal;
+ ReplacementStr = "> =";
+ break;
+
+ case tok::greatergreaterequal:
+ RemainingToken = tok::greaterequal;
+ break;
+ }
+
+ // This template-id is terminated by a token which starts with a '>'. Outside
+ // C++11, this is now error recovery, and in C++11, this is error recovery if
+ // the token isn't '>>' or '>>>'.
+ // '>>>' is for CUDA, where this sequence of characters is parsed into
+ // tok::greatergreatergreater, rather than two separate tokens.
+
+ RAngleLoc = Tok.getLocation();
+
+ // The source range of the '>>' or '>=' at the start of the token.
+ CharSourceRange ReplacementRange =
+ CharSourceRange::getCharRange(RAngleLoc,
+ Lexer::AdvanceToTokenCharacter(RAngleLoc, 2, PP.getSourceManager(),
+ getLangOpts()));
+
+ // A hint to put a space between the '>>'s. In order to make the hint as
+ // clear as possible, we include the characters either side of the space in
+ // the replacement, rather than just inserting a space at SecondCharLoc.
+ FixItHint Hint1 = FixItHint::CreateReplacement(ReplacementRange,
+ ReplacementStr);
+
+ // A hint to put another space after the token, if it would otherwise be
+ // lexed differently.
+ FixItHint Hint2;
+ Token Next = NextToken();
+ if ((RemainingToken == tok::greater ||
+ RemainingToken == tok::greatergreater) &&
+ (Next.is(tok::greater) || Next.is(tok::greatergreater) ||
+ Next.is(tok::greatergreatergreater) || Next.is(tok::equal) ||
+ Next.is(tok::greaterequal) || Next.is(tok::greatergreaterequal) ||
+ Next.is(tok::equalequal)) &&
+ areTokensAdjacent(Tok, Next))
+ Hint2 = FixItHint::CreateInsertion(Next.getLocation(), " ");
+
+ unsigned DiagId = diag::err_two_right_angle_brackets_need_space;
+ if (getLangOpts().CPlusPlus11 &&
+ (Tok.is(tok::greatergreater) || Tok.is(tok::greatergreatergreater)))
+ DiagId = diag::warn_cxx98_compat_two_right_angle_brackets;
+ else if (Tok.is(tok::greaterequal))
+ DiagId = diag::err_right_angle_bracket_equal_needs_space;
+ Diag(Tok.getLocation(), DiagId) << Hint1 << Hint2;
+
+ // Strip the initial '>' from the token.
+ if (RemainingToken == tok::equal && Next.is(tok::equal) &&
+ areTokensAdjacent(Tok, Next)) {
+ // Join two adjacent '=' tokens into one, for cases like:
+ // void (*p)() = f<int>;
+ // return f<int>==p;
+ ConsumeToken();
+ Tok.setKind(tok::equalequal);
+ Tok.setLength(Tok.getLength() + 1);
+ } else {
+ Tok.setKind(RemainingToken);
+ Tok.setLength(Tok.getLength() - 1);
+ }
+ Tok.setLocation(Lexer::AdvanceToTokenCharacter(RAngleLoc, 1,
+ PP.getSourceManager(),
+ getLangOpts()));
+
+ if (!ConsumeLastToken) {
+ // Since we're not supposed to consume the '>' token, we need to push
+ // this token and revert the current token back to the '>'.
+ PP.EnterToken(Tok);
+ Tok.setKind(tok::greater);
+ Tok.setLength(1);
+ Tok.setLocation(RAngleLoc);
+ }
+ return false;
+}
+
+
+/// \brief Parses a template-id that after the template name has
+/// already been parsed.
+///
+/// This routine takes care of parsing the enclosed template argument
+/// list ('<' template-parameter-list [opt] '>') and placing the
+/// results into a form that can be transferred to semantic analysis.
+///
+/// \param Template the template declaration produced by isTemplateName
+///
+/// \param TemplateNameLoc the source location of the template name
+///
+/// \param SS if non-NULL, the nested-name-specifier preceding the
+/// template name.
+///
+/// \param ConsumeLastToken if true, then we will consume the last
+/// token that forms the template-id. Otherwise, we will leave the
+/// last token in the stream (e.g., so that it can be replaced with an
+/// annotation token).
+bool
+Parser::ParseTemplateIdAfterTemplateName(TemplateTy Template,
+ SourceLocation TemplateNameLoc,
+ const CXXScopeSpec &SS,
+ bool ConsumeLastToken,
+ SourceLocation &LAngleLoc,
+ TemplateArgList &TemplateArgs,
+ SourceLocation &RAngleLoc) {
+ assert(Tok.is(tok::less) && "Must have already parsed the template-name");
+
+ // Consume the '<'.
+ LAngleLoc = ConsumeToken();
+
+ // Parse the optional template-argument-list.
+ bool Invalid = false;
+ {
+ GreaterThanIsOperatorScope G(GreaterThanIsOperator, false);
+ if (Tok.isNot(tok::greater) && Tok.isNot(tok::greatergreater))
+ Invalid = ParseTemplateArgumentList(TemplateArgs);
+
+ if (Invalid) {
+ // Try to find the closing '>'.
+ if (ConsumeLastToken)
+ SkipUntil(tok::greater, StopAtSemi);
+ else
+ SkipUntil(tok::greater, StopAtSemi | StopBeforeMatch);
+ return true;
+ }
+ }
+
+ return ParseGreaterThanInTemplateList(RAngleLoc, ConsumeLastToken);
+}
+
+/// \brief Replace the tokens that form a simple-template-id with an
+/// annotation token containing the complete template-id.
+///
+/// The first token in the stream must be the name of a template that
+/// is followed by a '<'. This routine will parse the complete
+/// simple-template-id and replace the tokens with a single annotation
+/// token with one of two different kinds: if the template-id names a
+/// type (and \p AllowTypeAnnotation is true), the annotation token is
+/// a type annotation that includes the optional nested-name-specifier
+/// (\p SS). Otherwise, the annotation token is a template-id
+/// annotation that does not include the optional
+/// nested-name-specifier.
+///
+/// \param Template the declaration of the template named by the first
+/// token (an identifier), as returned from \c Action::isTemplateName().
+///
+/// \param TNK the kind of template that \p Template
+/// refers to, as returned from \c Action::isTemplateName().
+///
+/// \param SS if non-NULL, the nested-name-specifier that precedes
+/// this template name.
+///
+/// \param TemplateKWLoc if valid, specifies that this template-id
+/// annotation was preceded by the 'template' keyword and gives the
+/// location of that keyword. If invalid (the default), then this
+/// template-id was not preceded by a 'template' keyword.
+///
+/// \param AllowTypeAnnotation if true (the default), then a
+/// simple-template-id that refers to a class template, template
+/// template parameter, or other template that produces a type will be
+/// replaced with a type annotation token. Otherwise, the
+/// simple-template-id is always replaced with a template-id
+/// annotation token.
+///
+/// If an unrecoverable parse error occurs and no annotation token can be
+/// formed, this function returns true.
+///
+bool Parser::AnnotateTemplateIdToken(TemplateTy Template, TemplateNameKind TNK,
+ CXXScopeSpec &SS,
+ SourceLocation TemplateKWLoc,
+ UnqualifiedId &TemplateName,
+ bool AllowTypeAnnotation) {
+ assert(getLangOpts().CPlusPlus && "Can only annotate template-ids in C++");
+ assert(Template && Tok.is(tok::less) &&
+ "Parser isn't at the beginning of a template-id");
+
+ // Consume the template-name.
+ SourceLocation TemplateNameLoc = TemplateName.getSourceRange().getBegin();
+
+ // Parse the enclosed template argument list.
+ SourceLocation LAngleLoc, RAngleLoc;
+ TemplateArgList TemplateArgs;
+ bool Invalid = ParseTemplateIdAfterTemplateName(Template,
+ TemplateNameLoc,
+ SS, false, LAngleLoc,
+ TemplateArgs,
+ RAngleLoc);
+
+ if (Invalid) {
+ // If we failed to parse the template ID but skipped ahead to a >, we're not
+ // going to be able to form a token annotation. Eat the '>' if present.
+ TryConsumeToken(tok::greater);
+ return true;
+ }
+
+ ASTTemplateArgsPtr TemplateArgsPtr(TemplateArgs);
+
+ // Build the annotation token.
+ if (TNK == TNK_Type_template && AllowTypeAnnotation) {
+ TypeResult Type
+ = Actions.ActOnTemplateIdType(SS, TemplateKWLoc,
+ Template, TemplateNameLoc,
+ LAngleLoc, TemplateArgsPtr, RAngleLoc);
+ if (Type.isInvalid()) {
+ // If we failed to parse the template ID but skipped ahead to a >, we're not
+ // going to be able to form a token annotation. Eat the '>' if present.
+ TryConsumeToken(tok::greater);
+ return true;
+ }
+
+ Tok.setKind(tok::annot_typename);
+ setTypeAnnotation(Tok, Type.get());
+ if (SS.isNotEmpty())
+ Tok.setLocation(SS.getBeginLoc());
+ else if (TemplateKWLoc.isValid())
+ Tok.setLocation(TemplateKWLoc);
+ else
+ Tok.setLocation(TemplateNameLoc);
+ } else {
+ // Build a template-id annotation token that can be processed
+ // later.
+ Tok.setKind(tok::annot_template_id);
+ TemplateIdAnnotation *TemplateId
+ = TemplateIdAnnotation::Allocate(TemplateArgs.size(), TemplateIds);
+ TemplateId->TemplateNameLoc = TemplateNameLoc;
+ if (TemplateName.getKind() == UnqualifiedId::IK_Identifier) {
+ TemplateId->Name = TemplateName.Identifier;
+ TemplateId->Operator = OO_None;
+ } else {
+ TemplateId->Name = nullptr;
+ TemplateId->Operator = TemplateName.OperatorFunctionId.Operator;
+ }
+ TemplateId->SS = SS;
+ TemplateId->TemplateKWLoc = TemplateKWLoc;
+ TemplateId->Template = Template;
+ TemplateId->Kind = TNK;
+ TemplateId->LAngleLoc = LAngleLoc;
+ TemplateId->RAngleLoc = RAngleLoc;
+ ParsedTemplateArgument *Args = TemplateId->getTemplateArgs();
+ for (unsigned Arg = 0, ArgEnd = TemplateArgs.size(); Arg != ArgEnd; ++Arg)
+ Args[Arg] = ParsedTemplateArgument(TemplateArgs[Arg]);
+ Tok.setAnnotationValue(TemplateId);
+ if (TemplateKWLoc.isValid())
+ Tok.setLocation(TemplateKWLoc);
+ else
+ Tok.setLocation(TemplateNameLoc);
+ }
+
+ // Common fields for the annotation token
+ Tok.setAnnotationEndLoc(RAngleLoc);
+
+ // In case the tokens were cached, have Preprocessor replace them with the
+ // annotation token.
+ PP.AnnotateCachedTokens(Tok);
+ return false;
+}
+
+/// \brief Replaces a template-id annotation token with a type
+/// annotation token.
+///
+/// If there was a failure when forming the type from the template-id,
+/// a type annotation token will still be created, but will have a
+/// NULL type pointer to signify an error.
+void Parser::AnnotateTemplateIdTokenAsType() {
+ assert(Tok.is(tok::annot_template_id) && "Requires template-id tokens");
+
+ TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
+ assert((TemplateId->Kind == TNK_Type_template ||
+ TemplateId->Kind == TNK_Dependent_template_name) &&
+ "Only works for type and dependent templates");
+
+ ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
+ TemplateId->NumArgs);
+
+ TypeResult Type
+ = Actions.ActOnTemplateIdType(TemplateId->SS,
+ TemplateId->TemplateKWLoc,
+ TemplateId->Template,
+ TemplateId->TemplateNameLoc,
+ TemplateId->LAngleLoc,
+ TemplateArgsPtr,
+ TemplateId->RAngleLoc);
+ // Create the new "type" annotation token.
+ Tok.setKind(tok::annot_typename);
+ setTypeAnnotation(Tok, Type.isInvalid() ? ParsedType() : Type.get());
+ if (TemplateId->SS.isNotEmpty()) // it was a C++ qualified type name.
+ Tok.setLocation(TemplateId->SS.getBeginLoc());
+ // End location stays the same
+
+ // Replace the template-id annotation token, and possible the scope-specifier
+ // that precedes it, with the typename annotation token.
+ PP.AnnotateCachedTokens(Tok);
+}
+
+/// \brief Determine whether the given token can end a template argument.
+static bool isEndOfTemplateArgument(Token Tok) {
+ return Tok.is(tok::comma) || Tok.is(tok::greater) ||
+ Tok.is(tok::greatergreater);
+}
+
+/// \brief Parse a C++ template template argument.
+ParsedTemplateArgument Parser::ParseTemplateTemplateArgument() {
+ if (!Tok.is(tok::identifier) && !Tok.is(tok::coloncolon) &&
+ !Tok.is(tok::annot_cxxscope))
+ return ParsedTemplateArgument();
+
+ // C++0x [temp.arg.template]p1:
+ // A template-argument for a template template-parameter shall be the name
+ // of a class template or an alias template, expressed as id-expression.
+ //
+ // We parse an id-expression that refers to a class template or alias
+ // template. The grammar we parse is:
+ //
+ // nested-name-specifier[opt] template[opt] identifier ...[opt]
+ //
+ // followed by a token that terminates a template argument, such as ',',
+ // '>', or (in some cases) '>>'.
+ CXXScopeSpec SS; // nested-name-specifier, if present
+ ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
+ /*EnteringContext=*/false);
+
+ ParsedTemplateArgument Result;
+ SourceLocation EllipsisLoc;
+ if (SS.isSet() && Tok.is(tok::kw_template)) {
+ // Parse the optional 'template' keyword following the
+ // nested-name-specifier.
+ SourceLocation TemplateKWLoc = ConsumeToken();
+
+ if (Tok.is(tok::identifier)) {
+ // We appear to have a dependent template name.
+ UnqualifiedId Name;
+ Name.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
+ ConsumeToken(); // the identifier
+
+ TryConsumeToken(tok::ellipsis, EllipsisLoc);
+
+ // If the next token signals the end of a template argument,
+ // then we have a dependent template name that could be a template
+ // template argument.
+ TemplateTy Template;
+ if (isEndOfTemplateArgument(Tok) &&
+ Actions.ActOnDependentTemplateName(getCurScope(),
+ SS, TemplateKWLoc, Name,
+ /*ObjectType=*/ ParsedType(),
+ /*EnteringContext=*/false,
+ Template))
+ Result = ParsedTemplateArgument(SS, Template, Name.StartLocation);
+ }
+ } else if (Tok.is(tok::identifier)) {
+ // We may have a (non-dependent) template name.
+ TemplateTy Template;
+ UnqualifiedId Name;
+ Name.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
+ ConsumeToken(); // the identifier
+
+ TryConsumeToken(tok::ellipsis, EllipsisLoc);
+
+ if (isEndOfTemplateArgument(Tok)) {
+ bool MemberOfUnknownSpecialization;
+ TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS,
+ /*hasTemplateKeyword=*/false,
+ Name,
+ /*ObjectType=*/ ParsedType(),
+ /*EnteringContext=*/false,
+ Template,
+ MemberOfUnknownSpecialization);
+ if (TNK == TNK_Dependent_template_name || TNK == TNK_Type_template) {
+ // We have an id-expression that refers to a class template or
+ // (C++0x) alias template.
+ Result = ParsedTemplateArgument(SS, Template, Name.StartLocation);
+ }
+ }
+ }
+
+ // If this is a pack expansion, build it as such.
+ if (EllipsisLoc.isValid() && !Result.isInvalid())
+ Result = Actions.ActOnPackExpansion(Result, EllipsisLoc);
+
+ return Result;
+}
+
+/// ParseTemplateArgument - Parse a C++ template argument (C++ [temp.names]).
+///
+/// template-argument: [C++ 14.2]
+/// constant-expression
+/// type-id
+/// id-expression
+ParsedTemplateArgument Parser::ParseTemplateArgument() {
+ // C++ [temp.arg]p2:
+ // In a template-argument, an ambiguity between a type-id and an
+ // expression is resolved to a type-id, regardless of the form of
+ // the corresponding template-parameter.
+ //
+ // Therefore, we initially try to parse a type-id.
+ if (isCXXTypeId(TypeIdAsTemplateArgument)) {
+ SourceLocation Loc = Tok.getLocation();
+ TypeResult TypeArg = ParseTypeName(/*Range=*/nullptr,
+ Declarator::TemplateTypeArgContext);
+ if (TypeArg.isInvalid())
+ return ParsedTemplateArgument();
+
+ return ParsedTemplateArgument(ParsedTemplateArgument::Type,
+ TypeArg.get().getAsOpaquePtr(),
+ Loc);
+ }
+
+ // Try to parse a template template argument.
+ {
+ TentativeParsingAction TPA(*this);
+
+ ParsedTemplateArgument TemplateTemplateArgument
+ = ParseTemplateTemplateArgument();
+ if (!TemplateTemplateArgument.isInvalid()) {
+ TPA.Commit();
+ return TemplateTemplateArgument;
+ }
+
+ // Revert this tentative parse to parse a non-type template argument.
+ TPA.Revert();
+ }
+
+ // Parse a non-type template argument.
+ SourceLocation Loc = Tok.getLocation();
+ ExprResult ExprArg = ParseConstantExpression(MaybeTypeCast);
+ if (ExprArg.isInvalid() || !ExprArg.get())
+ return ParsedTemplateArgument();
+
+ return ParsedTemplateArgument(ParsedTemplateArgument::NonType,
+ ExprArg.get(), Loc);
+}
+
+/// \brief Determine whether the current tokens can only be parsed as a
+/// template argument list (starting with the '<') and never as a '<'
+/// expression.
+bool Parser::IsTemplateArgumentList(unsigned Skip) {
+ struct AlwaysRevertAction : TentativeParsingAction {
+ AlwaysRevertAction(Parser &P) : TentativeParsingAction(P) { }
+ ~AlwaysRevertAction() { Revert(); }
+ } Tentative(*this);
+
+ while (Skip) {
+ ConsumeToken();
+ --Skip;
+ }
+
+ // '<'
+ if (!TryConsumeToken(tok::less))
+ return false;
+
+ // An empty template argument list.
+ if (Tok.is(tok::greater))
+ return true;
+
+ // See whether we have declaration specifiers, which indicate a type.
+ while (isCXXDeclarationSpecifier() == TPResult::True)
+ ConsumeToken();
+
+ // If we have a '>' or a ',' then this is a template argument list.
+ return Tok.is(tok::greater) || Tok.is(tok::comma);
+}
+
+/// ParseTemplateArgumentList - Parse a C++ template-argument-list
+/// (C++ [temp.names]). Returns true if there was an error.
+///
+/// template-argument-list: [C++ 14.2]
+/// template-argument
+/// template-argument-list ',' template-argument
+bool
+Parser::ParseTemplateArgumentList(TemplateArgList &TemplateArgs) {
+ // Template argument lists are constant-evaluation contexts.
+ EnterExpressionEvaluationContext EvalContext(Actions,Sema::ConstantEvaluated);
+ ColonProtectionRAIIObject ColonProtection(*this, false);
+
+ do {
+ ParsedTemplateArgument Arg = ParseTemplateArgument();
+ SourceLocation EllipsisLoc;
+ if (TryConsumeToken(tok::ellipsis, EllipsisLoc))
+ Arg = Actions.ActOnPackExpansion(Arg, EllipsisLoc);
+
+ if (Arg.isInvalid()) {
+ SkipUntil(tok::comma, tok::greater, StopAtSemi | StopBeforeMatch);
+ return true;
+ }
+
+ // Save this template argument.
+ TemplateArgs.push_back(Arg);
+
+ // If the next token is a comma, consume it and keep reading
+ // arguments.
+ } while (TryConsumeToken(tok::comma));
+
+ return false;
+}
+
+/// \brief Parse a C++ explicit template instantiation
+/// (C++ [temp.explicit]).
+///
+/// explicit-instantiation:
+/// 'extern' [opt] 'template' declaration
+///
+/// Note that the 'extern' is a GNU extension and C++11 feature.
+Decl *Parser::ParseExplicitInstantiation(unsigned Context,
+ SourceLocation ExternLoc,
+ SourceLocation TemplateLoc,
+ SourceLocation &DeclEnd,
+ AccessSpecifier AS) {
+ // This isn't really required here.
+ ParsingDeclRAIIObject
+ ParsingTemplateParams(*this, ParsingDeclRAIIObject::NoParent);
+
+ return ParseSingleDeclarationAfterTemplate(Context,
+ ParsedTemplateInfo(ExternLoc,
+ TemplateLoc),
+ ParsingTemplateParams,
+ DeclEnd, AS);
+}
+
+SourceRange Parser::ParsedTemplateInfo::getSourceRange() const {
+ if (TemplateParams)
+ return getTemplateParamsRange(TemplateParams->data(),
+ TemplateParams->size());
+
+ SourceRange R(TemplateLoc);
+ if (ExternLoc.isValid())
+ R.setBegin(ExternLoc);
+ return R;
+}
+
+void Parser::LateTemplateParserCallback(void *P, LateParsedTemplate &LPT) {
+ ((Parser *)P)->ParseLateTemplatedFuncDef(LPT);
+}
+
+/// \brief Late parse a C++ function template in Microsoft mode.
+void Parser::ParseLateTemplatedFuncDef(LateParsedTemplate &LPT) {
+ if (!LPT.D)
+ return;
+
+ // Get the FunctionDecl.
+ FunctionDecl *FunD = LPT.D->getAsFunction();
+ // Track template parameter depth.
+ TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth);
+
+ // To restore the context after late parsing.
+ Sema::ContextRAII GlobalSavedContext(
+ Actions, Actions.Context.getTranslationUnitDecl());
+
+ SmallVector<ParseScope*, 4> TemplateParamScopeStack;
+
+ // Get the list of DeclContexts to reenter.
+ SmallVector<DeclContext*, 4> DeclContextsToReenter;
+ DeclContext *DD = FunD;
+ while (DD && !DD->isTranslationUnit()) {
+ DeclContextsToReenter.push_back(DD);
+ DD = DD->getLexicalParent();
+ }
+
+ // Reenter template scopes from outermost to innermost.
+ SmallVectorImpl<DeclContext *>::reverse_iterator II =
+ DeclContextsToReenter.rbegin();
+ for (; II != DeclContextsToReenter.rend(); ++II) {
+ TemplateParamScopeStack.push_back(new ParseScope(this,
+ Scope::TemplateParamScope));
+ unsigned NumParamLists =
+ Actions.ActOnReenterTemplateScope(getCurScope(), cast<Decl>(*II));
+ CurTemplateDepthTracker.addDepth(NumParamLists);
+ if (*II != FunD) {
+ TemplateParamScopeStack.push_back(new ParseScope(this, Scope::DeclScope));
+ Actions.PushDeclContext(Actions.getCurScope(), *II);
+ }
+ }
+
+ assert(!LPT.Toks.empty() && "Empty body!");
+
+ // Append the current token at the end of the new token stream so that it
+ // doesn't get lost.
+ LPT.Toks.push_back(Tok);
+ PP.EnterTokenStream(LPT.Toks.data(), LPT.Toks.size(), true, false);
+
+ // Consume the previously pushed token.
+ ConsumeAnyToken(/*ConsumeCodeCompletionTok=*/true);
+ assert((Tok.is(tok::l_brace) || Tok.is(tok::colon) || Tok.is(tok::kw_try))
+ && "Inline method not starting with '{', ':' or 'try'");
+
+ // Parse the method body. Function body parsing code is similar enough
+ // to be re-used for method bodies as well.
+ ParseScope FnScope(this, Scope::FnScope|Scope::DeclScope);
+
+ // Recreate the containing function DeclContext.
+ Sema::ContextRAII FunctionSavedContext(Actions,
+ Actions.getContainingDC(FunD));
+
+ Actions.ActOnStartOfFunctionDef(getCurScope(), FunD);
+
+ if (Tok.is(tok::kw_try)) {
+ ParseFunctionTryBlock(LPT.D, FnScope);
+ } else {
+ if (Tok.is(tok::colon))
+ ParseConstructorInitializer(LPT.D);
+ else
+ Actions.ActOnDefaultCtorInitializers(LPT.D);
+
+ if (Tok.is(tok::l_brace)) {
+ assert((!isa<FunctionTemplateDecl>(LPT.D) ||
+ cast<FunctionTemplateDecl>(LPT.D)
+ ->getTemplateParameters()
+ ->getDepth() == TemplateParameterDepth - 1) &&
+ "TemplateParameterDepth should be greater than the depth of "
+ "current template being instantiated!");
+ ParseFunctionStatementBody(LPT.D, FnScope);
+ Actions.UnmarkAsLateParsedTemplate(FunD);
+ } else
+ Actions.ActOnFinishFunctionBody(LPT.D, nullptr);
+ }
+
+ // Exit scopes.
+ FnScope.Exit();
+ SmallVectorImpl<ParseScope *>::reverse_iterator I =
+ TemplateParamScopeStack.rbegin();
+ for (; I != TemplateParamScopeStack.rend(); ++I)
+ delete *I;
+}
+
+/// \brief Lex a delayed template function for late parsing.
+void Parser::LexTemplateFunctionForLateParsing(CachedTokens &Toks) {
+ tok::TokenKind kind = Tok.getKind();
+ if (!ConsumeAndStoreFunctionPrologue(Toks)) {
+ // Consume everything up to (and including) the matching right brace.
+ ConsumeAndStoreUntil(tok::r_brace, Toks, /*StopAtSemi=*/false);
+ }
+
+ // If we're in a function-try-block, we need to store all the catch blocks.
+ if (kind == tok::kw_try) {
+ while (Tok.is(tok::kw_catch)) {
+ ConsumeAndStoreUntil(tok::l_brace, Toks, /*StopAtSemi=*/false);
+ ConsumeAndStoreUntil(tok::r_brace, Toks, /*StopAtSemi=*/false);
+ }
+ }
+}
diff --git a/contrib/llvm/tools/clang/lib/Parse/ParseTentative.cpp b/contrib/llvm/tools/clang/lib/Parse/ParseTentative.cpp
new file mode 100644
index 0000000..abf16fa
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Parse/ParseTentative.cpp
@@ -0,0 +1,1828 @@
+//===--- ParseTentative.cpp - Ambiguity Resolution Parsing ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the tentative parsing portions of the Parser
+// interfaces, for ambiguity resolution.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Parse/Parser.h"
+#include "clang/Parse/ParseDiagnostic.h"
+#include "clang/Sema/ParsedTemplate.h"
+using namespace clang;
+
+/// isCXXDeclarationStatement - C++-specialized function that disambiguates
+/// between a declaration or an expression statement, when parsing function
+/// bodies. Returns true for declaration, false for expression.
+///
+/// declaration-statement:
+/// block-declaration
+///
+/// block-declaration:
+/// simple-declaration
+/// asm-definition
+/// namespace-alias-definition
+/// using-declaration
+/// using-directive
+/// [C++0x] static_assert-declaration
+///
+/// asm-definition:
+/// 'asm' '(' string-literal ')' ';'
+///
+/// namespace-alias-definition:
+/// 'namespace' identifier = qualified-namespace-specifier ';'
+///
+/// using-declaration:
+/// 'using' typename[opt] '::'[opt] nested-name-specifier
+/// unqualified-id ';'
+/// 'using' '::' unqualified-id ;
+///
+/// using-directive:
+/// 'using' 'namespace' '::'[opt] nested-name-specifier[opt]
+/// namespace-name ';'
+///
+bool Parser::isCXXDeclarationStatement() {
+ switch (Tok.getKind()) {
+ // asm-definition
+ case tok::kw_asm:
+ // namespace-alias-definition
+ case tok::kw_namespace:
+ // using-declaration
+ // using-directive
+ case tok::kw_using:
+ // static_assert-declaration
+ case tok::kw_static_assert:
+ case tok::kw__Static_assert:
+ return true;
+ // simple-declaration
+ default:
+ return isCXXSimpleDeclaration(/*AllowForRangeDecl=*/false);
+ }
+}
+
+/// isCXXSimpleDeclaration - C++-specialized function that disambiguates
+/// between a simple-declaration or an expression-statement.
+/// If during the disambiguation process a parsing error is encountered,
+/// the function returns true to let the declaration parsing code handle it.
+/// Returns false if the statement is disambiguated as expression.
+///
+/// simple-declaration:
+/// decl-specifier-seq init-declarator-list[opt] ';'
+///
+/// (if AllowForRangeDecl specified)
+/// for ( for-range-declaration : for-range-initializer ) statement
+/// for-range-declaration:
+/// attribute-specifier-seqopt type-specifier-seq declarator
+bool Parser::isCXXSimpleDeclaration(bool AllowForRangeDecl) {
+ // C++ 6.8p1:
+ // There is an ambiguity in the grammar involving expression-statements and
+ // declarations: An expression-statement with a function-style explicit type
+ // conversion (5.2.3) as its leftmost subexpression can be indistinguishable
+ // from a declaration where the first declarator starts with a '('. In those
+ // cases the statement is a declaration. [Note: To disambiguate, the whole
+ // statement might have to be examined to determine if it is an
+ // expression-statement or a declaration].
+
+ // C++ 6.8p3:
+ // The disambiguation is purely syntactic; that is, the meaning of the names
+ // occurring in such a statement, beyond whether they are type-names or not,
+ // is not generally used in or changed by the disambiguation. Class
+ // templates are instantiated as necessary to determine if a qualified name
+ // is a type-name. Disambiguation precedes parsing, and a statement
+ // disambiguated as a declaration may be an ill-formed declaration.
+
+ // We don't have to parse all of the decl-specifier-seq part. There's only
+ // an ambiguity if the first decl-specifier is
+ // simple-type-specifier/typename-specifier followed by a '(', which may
+ // indicate a function-style cast expression.
+ // isCXXDeclarationSpecifier will return TPResult::Ambiguous only in such
+ // a case.
+
+ bool InvalidAsDeclaration = false;
+ TPResult TPR = isCXXDeclarationSpecifier(TPResult::False,
+ &InvalidAsDeclaration);
+ if (TPR != TPResult::Ambiguous)
+ return TPR != TPResult::False; // Returns true for TPResult::True or
+ // TPResult::Error.
+
+ // FIXME: TryParseSimpleDeclaration doesn't look past the first initializer,
+ // and so gets some cases wrong. We can't carry on if we've already seen
+ // something which makes this statement invalid as a declaration in this case,
+ // since it can cause us to misparse valid code. Revisit this once
+ // TryParseInitDeclaratorList is fixed.
+ if (InvalidAsDeclaration)
+ return false;
+
+ // FIXME: Add statistics about the number of ambiguous statements encountered
+ // and how they were resolved (number of declarations+number of expressions).
+
+ // Ok, we have a simple-type-specifier/typename-specifier followed by a '(',
+ // or an identifier which doesn't resolve as anything. We need tentative
+ // parsing...
+
+ TentativeParsingAction PA(*this);
+ TPR = TryParseSimpleDeclaration(AllowForRangeDecl);
+ PA.Revert();
+
+ // In case of an error, let the declaration parsing code handle it.
+ if (TPR == TPResult::Error)
+ return true;
+
+ // Declarations take precedence over expressions.
+ if (TPR == TPResult::Ambiguous)
+ TPR = TPResult::True;
+
+ assert(TPR == TPResult::True || TPR == TPResult::False);
+ return TPR == TPResult::True;
+}
+
+/// Try to consume a token sequence that we've already identified as
+/// (potentially) starting a decl-specifier.
+Parser::TPResult Parser::TryConsumeDeclarationSpecifier() {
+ switch (Tok.getKind()) {
+ case tok::kw__Atomic:
+ if (NextToken().isNot(tok::l_paren)) {
+ ConsumeToken();
+ break;
+ }
+ // Fall through.
+ case tok::kw_typeof:
+ case tok::kw___attribute:
+ case tok::kw___underlying_type: {
+ ConsumeToken();
+ if (Tok.isNot(tok::l_paren))
+ return TPResult::Error;
+ ConsumeParen();
+ if (!SkipUntil(tok::r_paren))
+ return TPResult::Error;
+ break;
+ }
+
+ case tok::kw_class:
+ case tok::kw_struct:
+ case tok::kw_union:
+ case tok::kw___interface:
+ case tok::kw_enum:
+ // elaborated-type-specifier:
+ // class-key attribute-specifier-seq[opt]
+ // nested-name-specifier[opt] identifier
+ // class-key nested-name-specifier[opt] template[opt] simple-template-id
+ // enum nested-name-specifier[opt] identifier
+ //
+ // FIXME: We don't support class-specifiers nor enum-specifiers here.
+ ConsumeToken();
+
+ // Skip attributes.
+ while (Tok.is(tok::l_square) || Tok.is(tok::kw___attribute) ||
+ Tok.is(tok::kw___declspec) || Tok.is(tok::kw_alignas)) {
+ if (Tok.is(tok::l_square)) {
+ ConsumeBracket();
+ if (!SkipUntil(tok::r_square))
+ return TPResult::Error;
+ } else {
+ ConsumeToken();
+ if (Tok.isNot(tok::l_paren))
+ return TPResult::Error;
+ ConsumeParen();
+ if (!SkipUntil(tok::r_paren))
+ return TPResult::Error;
+ }
+ }
+
+ if ((Tok.is(tok::identifier) || Tok.is(tok::coloncolon) ||
+ Tok.is(tok::kw_decltype) || Tok.is(tok::annot_template_id)) &&
+ TryAnnotateCXXScopeToken())
+ return TPResult::Error;
+ if (Tok.is(tok::annot_cxxscope))
+ ConsumeToken();
+ if (Tok.isNot(tok::identifier) && Tok.isNot(tok::annot_template_id))
+ return TPResult::Error;
+ ConsumeToken();
+ break;
+
+ case tok::annot_cxxscope:
+ ConsumeToken();
+ // Fall through.
+ default:
+ ConsumeToken();
+
+ if (getLangOpts().ObjC1 && Tok.is(tok::less))
+ return TryParseProtocolQualifiers();
+ break;
+ }
+
+ return TPResult::Ambiguous;
+}
+
+/// simple-declaration:
+/// decl-specifier-seq init-declarator-list[opt] ';'
+///
+/// (if AllowForRangeDecl specified)
+/// for ( for-range-declaration : for-range-initializer ) statement
+/// for-range-declaration:
+/// attribute-specifier-seqopt type-specifier-seq declarator
+///
+Parser::TPResult Parser::TryParseSimpleDeclaration(bool AllowForRangeDecl) {
+ if (TryConsumeDeclarationSpecifier() == TPResult::Error)
+ return TPResult::Error;
+
+ // Two decl-specifiers in a row conclusively disambiguate this as being a
+ // simple-declaration. Don't bother calling isCXXDeclarationSpecifier in the
+ // overwhelmingly common case that the next token is a '('.
+ if (Tok.isNot(tok::l_paren)) {
+ TPResult TPR = isCXXDeclarationSpecifier();
+ if (TPR == TPResult::Ambiguous)
+ return TPResult::True;
+ if (TPR == TPResult::True || TPR == TPResult::Error)
+ return TPR;
+ assert(TPR == TPResult::False);
+ }
+
+ TPResult TPR = TryParseInitDeclaratorList();
+ if (TPR != TPResult::Ambiguous)
+ return TPR;
+
+ if (Tok.isNot(tok::semi) && (!AllowForRangeDecl || Tok.isNot(tok::colon)))
+ return TPResult::False;
+
+ return TPResult::Ambiguous;
+}
+
+/// Tentatively parse an init-declarator-list in order to disambiguate it from
+/// an expression.
+///
+/// init-declarator-list:
+/// init-declarator
+/// init-declarator-list ',' init-declarator
+///
+/// init-declarator:
+/// declarator initializer[opt]
+/// [GNU] declarator simple-asm-expr[opt] attributes[opt] initializer[opt]
+///
+/// initializer:
+/// brace-or-equal-initializer
+/// '(' expression-list ')'
+///
+/// brace-or-equal-initializer:
+/// '=' initializer-clause
+/// [C++11] braced-init-list
+///
+/// initializer-clause:
+/// assignment-expression
+/// braced-init-list
+///
+/// braced-init-list:
+/// '{' initializer-list ','[opt] '}'
+/// '{' '}'
+///
+Parser::TPResult Parser::TryParseInitDeclaratorList() {
+ while (1) {
+ // declarator
+ TPResult TPR = TryParseDeclarator(false/*mayBeAbstract*/);
+ if (TPR != TPResult::Ambiguous)
+ return TPR;
+
+ // [GNU] simple-asm-expr[opt] attributes[opt]
+ if (Tok.is(tok::kw_asm) || Tok.is(tok::kw___attribute))
+ return TPResult::True;
+
+ // initializer[opt]
+ if (Tok.is(tok::l_paren)) {
+ // Parse through the parens.
+ ConsumeParen();
+ if (!SkipUntil(tok::r_paren, StopAtSemi))
+ return TPResult::Error;
+ } else if (Tok.is(tok::l_brace)) {
+ // A left-brace here is sufficient to disambiguate the parse; an
+ // expression can never be followed directly by a braced-init-list.
+ return TPResult::True;
+ } else if (Tok.is(tok::equal) || isTokIdentifier_in()) {
+ // MSVC and g++ won't examine the rest of declarators if '=' is
+ // encountered; they just conclude that we have a declaration.
+ // EDG parses the initializer completely, which is the proper behavior
+ // for this case.
+ //
+ // At present, Clang follows MSVC and g++, since the parser does not have
+ // the ability to parse an expression fully without recording the
+ // results of that parse.
+ // FIXME: Handle this case correctly.
+ //
+ // Also allow 'in' after an Objective-C declaration as in:
+ // for (int (^b)(void) in array). Ideally this should be done in the
+ // context of parsing for-init-statement of a foreach statement only. But,
+ // in any other context 'in' is invalid after a declaration and parser
+ // issues the error regardless of outcome of this decision.
+ // FIXME: Change if above assumption does not hold.
+ return TPResult::True;
+ }
+
+ if (!TryConsumeToken(tok::comma))
+ break;
+ }
+
+ return TPResult::Ambiguous;
+}
+
+/// isCXXConditionDeclaration - Disambiguates between a declaration or an
+/// expression for a condition of a if/switch/while/for statement.
+/// If during the disambiguation process a parsing error is encountered,
+/// the function returns true to let the declaration parsing code handle it.
+///
+/// condition:
+/// expression
+/// type-specifier-seq declarator '=' assignment-expression
+/// [C++11] type-specifier-seq declarator '=' initializer-clause
+/// [C++11] type-specifier-seq declarator braced-init-list
+/// [GNU] type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
+/// '=' assignment-expression
+///
+bool Parser::isCXXConditionDeclaration() {
+ TPResult TPR = isCXXDeclarationSpecifier();
+ if (TPR != TPResult::Ambiguous)
+ return TPR != TPResult::False; // Returns true for TPResult::True or
+ // TPResult::Error.
+
+ // FIXME: Add statistics about the number of ambiguous statements encountered
+ // and how they were resolved (number of declarations+number of expressions).
+
+ // Ok, we have a simple-type-specifier/typename-specifier followed by a '('.
+ // We need tentative parsing...
+
+ TentativeParsingAction PA(*this);
+
+ // type-specifier-seq
+ TryConsumeDeclarationSpecifier();
+ assert(Tok.is(tok::l_paren) && "Expected '('");
+
+ // declarator
+ TPR = TryParseDeclarator(false/*mayBeAbstract*/);
+
+ // In case of an error, let the declaration parsing code handle it.
+ if (TPR == TPResult::Error)
+ TPR = TPResult::True;
+
+ if (TPR == TPResult::Ambiguous) {
+ // '='
+ // [GNU] simple-asm-expr[opt] attributes[opt]
+ if (Tok.is(tok::equal) ||
+ Tok.is(tok::kw_asm) || Tok.is(tok::kw___attribute))
+ TPR = TPResult::True;
+ else if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace))
+ TPR = TPResult::True;
+ else
+ TPR = TPResult::False;
+ }
+
+ PA.Revert();
+
+ assert(TPR == TPResult::True || TPR == TPResult::False);
+ return TPR == TPResult::True;
+}
+
+ /// \brief Determine whether the next set of tokens contains a type-id.
+ ///
+ /// The context parameter states what context we're parsing right
+ /// now, which affects how this routine copes with the token
+ /// following the type-id. If the context is TypeIdInParens, we have
+ /// already parsed the '(' and we will cease lookahead when we hit
+ /// the corresponding ')'. If the context is
+ /// TypeIdAsTemplateArgument, we've already parsed the '<' or ','
+ /// before this template argument, and will cease lookahead when we
+ /// hit a '>', '>>' (in C++0x), or ','. Returns true for a type-id
+ /// and false for an expression. If during the disambiguation
+ /// process a parsing error is encountered, the function returns
+ /// true to let the declaration parsing code handle it.
+ ///
+ /// type-id:
+ /// type-specifier-seq abstract-declarator[opt]
+ ///
+bool Parser::isCXXTypeId(TentativeCXXTypeIdContext Context, bool &isAmbiguous) {
+
+ isAmbiguous = false;
+
+ // C++ 8.2p2:
+ // The ambiguity arising from the similarity between a function-style cast and
+ // a type-id can occur in different contexts. The ambiguity appears as a
+ // choice between a function-style cast expression and a declaration of a
+ // type. The resolution is that any construct that could possibly be a type-id
+ // in its syntactic context shall be considered a type-id.
+
+ TPResult TPR = isCXXDeclarationSpecifier();
+ if (TPR != TPResult::Ambiguous)
+ return TPR != TPResult::False; // Returns true for TPResult::True or
+ // TPResult::Error.
+
+ // FIXME: Add statistics about the number of ambiguous statements encountered
+ // and how they were resolved (number of declarations+number of expressions).
+
+ // Ok, we have a simple-type-specifier/typename-specifier followed by a '('.
+ // We need tentative parsing...
+
+ TentativeParsingAction PA(*this);
+
+ // type-specifier-seq
+ TryConsumeDeclarationSpecifier();
+ assert(Tok.is(tok::l_paren) && "Expected '('");
+
+ // declarator
+ TPR = TryParseDeclarator(true/*mayBeAbstract*/, false/*mayHaveIdentifier*/);
+
+ // In case of an error, let the declaration parsing code handle it.
+ if (TPR == TPResult::Error)
+ TPR = TPResult::True;
+
+ if (TPR == TPResult::Ambiguous) {
+ // We are supposed to be inside parens, so if after the abstract declarator
+ // we encounter a ')' this is a type-id, otherwise it's an expression.
+ if (Context == TypeIdInParens && Tok.is(tok::r_paren)) {
+ TPR = TPResult::True;
+ isAmbiguous = true;
+
+ // We are supposed to be inside a template argument, so if after
+ // the abstract declarator we encounter a '>', '>>' (in C++0x), or
+ // ',', this is a type-id. Otherwise, it's an expression.
+ } else if (Context == TypeIdAsTemplateArgument &&
+ (Tok.is(tok::greater) || Tok.is(tok::comma) ||
+ (getLangOpts().CPlusPlus11 && Tok.is(tok::greatergreater)))) {
+ TPR = TPResult::True;
+ isAmbiguous = true;
+
+ } else
+ TPR = TPResult::False;
+ }
+
+ PA.Revert();
+
+ assert(TPR == TPResult::True || TPR == TPResult::False);
+ return TPR == TPResult::True;
+}
+
+/// \brief Returns true if this is a C++11 attribute-specifier. Per
+/// C++11 [dcl.attr.grammar]p6, two consecutive left square bracket tokens
+/// always introduce an attribute. In Objective-C++11, this rule does not
+/// apply if either '[' begins a message-send.
+///
+/// If Disambiguate is true, we try harder to determine whether a '[[' starts
+/// an attribute-specifier, and return CAK_InvalidAttributeSpecifier if not.
+///
+/// If OuterMightBeMessageSend is true, we assume the outer '[' is either an
+/// Obj-C message send or the start of an attribute. Otherwise, we assume it
+/// is not an Obj-C message send.
+///
+/// C++11 [dcl.attr.grammar]:
+///
+/// attribute-specifier:
+/// '[' '[' attribute-list ']' ']'
+/// alignment-specifier
+///
+/// attribute-list:
+/// attribute[opt]
+/// attribute-list ',' attribute[opt]
+/// attribute '...'
+/// attribute-list ',' attribute '...'
+///
+/// attribute:
+/// attribute-token attribute-argument-clause[opt]
+///
+/// attribute-token:
+/// identifier
+/// identifier '::' identifier
+///
+/// attribute-argument-clause:
+/// '(' balanced-token-seq ')'
+Parser::CXX11AttributeKind
+Parser::isCXX11AttributeSpecifier(bool Disambiguate,
+ bool OuterMightBeMessageSend) {
+ if (Tok.is(tok::kw_alignas))
+ return CAK_AttributeSpecifier;
+
+ if (Tok.isNot(tok::l_square) || NextToken().isNot(tok::l_square))
+ return CAK_NotAttributeSpecifier;
+
+ // No tentative parsing if we don't need to look for ']]' or a lambda.
+ if (!Disambiguate && !getLangOpts().ObjC1)
+ return CAK_AttributeSpecifier;
+
+ TentativeParsingAction PA(*this);
+
+ // Opening brackets were checked for above.
+ ConsumeBracket();
+
+ // Outside Obj-C++11, treat anything with a matching ']]' as an attribute.
+ if (!getLangOpts().ObjC1) {
+ ConsumeBracket();
+
+ bool IsAttribute = SkipUntil(tok::r_square);
+ IsAttribute &= Tok.is(tok::r_square);
+
+ PA.Revert();
+
+ return IsAttribute ? CAK_AttributeSpecifier : CAK_InvalidAttributeSpecifier;
+ }
+
+ // In Obj-C++11, we need to distinguish four situations:
+ // 1a) int x[[attr]]; C++11 attribute.
+ // 1b) [[attr]]; C++11 statement attribute.
+ // 2) int x[[obj](){ return 1; }()]; Lambda in array size/index.
+ // 3a) int x[[obj get]]; Message send in array size/index.
+ // 3b) [[Class alloc] init]; Message send in message send.
+ // 4) [[obj]{ return self; }() doStuff]; Lambda in message send.
+ // (1) is an attribute, (2) is ill-formed, and (3) and (4) are accepted.
+
+ // If we have a lambda-introducer, then this is definitely not a message send.
+ // FIXME: If this disambiguation is too slow, fold the tentative lambda parse
+ // into the tentative attribute parse below.
+ LambdaIntroducer Intro;
+ if (!TryParseLambdaIntroducer(Intro)) {
+ // A lambda cannot end with ']]', and an attribute must.
+ bool IsAttribute = Tok.is(tok::r_square);
+
+ PA.Revert();
+
+ if (IsAttribute)
+ // Case 1: C++11 attribute.
+ return CAK_AttributeSpecifier;
+
+ if (OuterMightBeMessageSend)
+ // Case 4: Lambda in message send.
+ return CAK_NotAttributeSpecifier;
+
+ // Case 2: Lambda in array size / index.
+ return CAK_InvalidAttributeSpecifier;
+ }
+
+ ConsumeBracket();
+
+ // If we don't have a lambda-introducer, then we have an attribute or a
+ // message-send.
+ bool IsAttribute = true;
+ while (Tok.isNot(tok::r_square)) {
+ if (Tok.is(tok::comma)) {
+ // Case 1: Stray commas can only occur in attributes.
+ PA.Revert();
+ return CAK_AttributeSpecifier;
+ }
+
+ // Parse the attribute-token, if present.
+ // C++11 [dcl.attr.grammar]:
+ // If a keyword or an alternative token that satisfies the syntactic
+ // requirements of an identifier is contained in an attribute-token,
+ // it is considered an identifier.
+ SourceLocation Loc;
+ if (!TryParseCXX11AttributeIdentifier(Loc)) {
+ IsAttribute = false;
+ break;
+ }
+ if (Tok.is(tok::coloncolon)) {
+ ConsumeToken();
+ if (!TryParseCXX11AttributeIdentifier(Loc)) {
+ IsAttribute = false;
+ break;
+ }
+ }
+
+ // Parse the attribute-argument-clause, if present.
+ if (Tok.is(tok::l_paren)) {
+ ConsumeParen();
+ if (!SkipUntil(tok::r_paren)) {
+ IsAttribute = false;
+ break;
+ }
+ }
+
+ TryConsumeToken(tok::ellipsis);
+
+ if (!TryConsumeToken(tok::comma))
+ break;
+ }
+
+ // An attribute must end ']]'.
+ if (IsAttribute) {
+ if (Tok.is(tok::r_square)) {
+ ConsumeBracket();
+ IsAttribute = Tok.is(tok::r_square);
+ } else {
+ IsAttribute = false;
+ }
+ }
+
+ PA.Revert();
+
+ if (IsAttribute)
+ // Case 1: C++11 statement attribute.
+ return CAK_AttributeSpecifier;
+
+ // Case 3: Message send.
+ return CAK_NotAttributeSpecifier;
+}
+
+Parser::TPResult Parser::TryParsePtrOperatorSeq() {
+ while (true) {
+ if (Tok.is(tok::coloncolon) || Tok.is(tok::identifier))
+ if (TryAnnotateCXXScopeToken(true))
+ return TPResult::Error;
+
+ if (Tok.is(tok::star) || Tok.is(tok::amp) || Tok.is(tok::caret) ||
+ Tok.is(tok::ampamp) ||
+ (Tok.is(tok::annot_cxxscope) && NextToken().is(tok::star))) {
+ // ptr-operator
+ ConsumeToken();
+ while (Tok.is(tok::kw_const) ||
+ Tok.is(tok::kw_volatile) ||
+ Tok.is(tok::kw_restrict))
+ ConsumeToken();
+ } else {
+ return TPResult::True;
+ }
+ }
+}
+
+/// operator-function-id:
+/// 'operator' operator
+///
+/// operator: one of
+/// new delete new[] delete[] + - * / % ^ [...]
+///
+/// conversion-function-id:
+/// 'operator' conversion-type-id
+///
+/// conversion-type-id:
+/// type-specifier-seq conversion-declarator[opt]
+///
+/// conversion-declarator:
+/// ptr-operator conversion-declarator[opt]
+///
+/// literal-operator-id:
+/// 'operator' string-literal identifier
+/// 'operator' user-defined-string-literal
+Parser::TPResult Parser::TryParseOperatorId() {
+ assert(Tok.is(tok::kw_operator));
+ ConsumeToken();
+
+ // Maybe this is an operator-function-id.
+ switch (Tok.getKind()) {
+ case tok::kw_new: case tok::kw_delete:
+ ConsumeToken();
+ if (Tok.is(tok::l_square) && NextToken().is(tok::r_square)) {
+ ConsumeBracket();
+ ConsumeBracket();
+ }
+ return TPResult::True;
+
+#define OVERLOADED_OPERATOR(Name, Spelling, Token, Unary, Binary, MemOnly) \
+ case tok::Token:
+#define OVERLOADED_OPERATOR_MULTI(Name, Spelling, Unary, Binary, MemOnly)
+#include "clang/Basic/OperatorKinds.def"
+ ConsumeToken();
+ return TPResult::True;
+
+ case tok::l_square:
+ if (NextToken().is(tok::r_square)) {
+ ConsumeBracket();
+ ConsumeBracket();
+ return TPResult::True;
+ }
+ break;
+
+ case tok::l_paren:
+ if (NextToken().is(tok::r_paren)) {
+ ConsumeParen();
+ ConsumeParen();
+ return TPResult::True;
+ }
+ break;
+
+ default:
+ break;
+ }
+
+ // Maybe this is a literal-operator-id.
+ if (getLangOpts().CPlusPlus11 && isTokenStringLiteral()) {
+ bool FoundUDSuffix = false;
+ do {
+ FoundUDSuffix |= Tok.hasUDSuffix();
+ ConsumeStringToken();
+ } while (isTokenStringLiteral());
+
+ if (!FoundUDSuffix) {
+ if (Tok.is(tok::identifier))
+ ConsumeToken();
+ else
+ return TPResult::Error;
+ }
+ return TPResult::True;
+ }
+
+ // Maybe this is a conversion-function-id.
+ bool AnyDeclSpecifiers = false;
+ while (true) {
+ TPResult TPR = isCXXDeclarationSpecifier();
+ if (TPR == TPResult::Error)
+ return TPR;
+ if (TPR == TPResult::False) {
+ if (!AnyDeclSpecifiers)
+ return TPResult::Error;
+ break;
+ }
+ if (TryConsumeDeclarationSpecifier() == TPResult::Error)
+ return TPResult::Error;
+ AnyDeclSpecifiers = true;
+ }
+ return TryParsePtrOperatorSeq();
+}
+
+/// declarator:
+/// direct-declarator
+/// ptr-operator declarator
+///
+/// direct-declarator:
+/// declarator-id
+/// direct-declarator '(' parameter-declaration-clause ')'
+/// cv-qualifier-seq[opt] exception-specification[opt]
+/// direct-declarator '[' constant-expression[opt] ']'
+/// '(' declarator ')'
+/// [GNU] '(' attributes declarator ')'
+///
+/// abstract-declarator:
+/// ptr-operator abstract-declarator[opt]
+/// direct-abstract-declarator
+/// ...
+///
+/// direct-abstract-declarator:
+/// direct-abstract-declarator[opt]
+/// '(' parameter-declaration-clause ')' cv-qualifier-seq[opt]
+/// exception-specification[opt]
+/// direct-abstract-declarator[opt] '[' constant-expression[opt] ']'
+/// '(' abstract-declarator ')'
+///
+/// ptr-operator:
+/// '*' cv-qualifier-seq[opt]
+/// '&'
+/// [C++0x] '&&' [TODO]
+/// '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
+///
+/// cv-qualifier-seq:
+/// cv-qualifier cv-qualifier-seq[opt]
+///
+/// cv-qualifier:
+/// 'const'
+/// 'volatile'
+///
+/// declarator-id:
+/// '...'[opt] id-expression
+///
+/// id-expression:
+/// unqualified-id
+/// qualified-id [TODO]
+///
+/// unqualified-id:
+/// identifier
+/// operator-function-id
+/// conversion-function-id
+/// literal-operator-id
+/// '~' class-name [TODO]
+/// '~' decltype-specifier [TODO]
+/// template-id [TODO]
+///
+Parser::TPResult Parser::TryParseDeclarator(bool mayBeAbstract,
+ bool mayHaveIdentifier) {
+ // declarator:
+ // direct-declarator
+ // ptr-operator declarator
+ if (TryParsePtrOperatorSeq() == TPResult::Error)
+ return TPResult::Error;
+
+ // direct-declarator:
+ // direct-abstract-declarator:
+ if (Tok.is(tok::ellipsis))
+ ConsumeToken();
+
+ if ((Tok.is(tok::identifier) || Tok.is(tok::kw_operator) ||
+ (Tok.is(tok::annot_cxxscope) && (NextToken().is(tok::identifier) ||
+ NextToken().is(tok::kw_operator)))) &&
+ mayHaveIdentifier) {
+ // declarator-id
+ if (Tok.is(tok::annot_cxxscope))
+ ConsumeToken();
+ else if (Tok.is(tok::identifier))
+ TentativelyDeclaredIdentifiers.push_back(Tok.getIdentifierInfo());
+ if (Tok.is(tok::kw_operator)) {
+ if (TryParseOperatorId() == TPResult::Error)
+ return TPResult::Error;
+ } else
+ ConsumeToken();
+ } else if (Tok.is(tok::l_paren)) {
+ ConsumeParen();
+ if (mayBeAbstract &&
+ (Tok.is(tok::r_paren) || // 'int()' is a function.
+ // 'int(...)' is a function.
+ (Tok.is(tok::ellipsis) && NextToken().is(tok::r_paren)) ||
+ isDeclarationSpecifier())) { // 'int(int)' is a function.
+ // '(' parameter-declaration-clause ')' cv-qualifier-seq[opt]
+ // exception-specification[opt]
+ TPResult TPR = TryParseFunctionDeclarator();
+ if (TPR != TPResult::Ambiguous)
+ return TPR;
+ } else {
+ // '(' declarator ')'
+ // '(' attributes declarator ')'
+ // '(' abstract-declarator ')'
+ if (Tok.is(tok::kw___attribute) ||
+ Tok.is(tok::kw___declspec) ||
+ Tok.is(tok::kw___cdecl) ||
+ Tok.is(tok::kw___stdcall) ||
+ Tok.is(tok::kw___fastcall) ||
+ Tok.is(tok::kw___thiscall) ||
+ Tok.is(tok::kw___vectorcall) ||
+ Tok.is(tok::kw___unaligned))
+ return TPResult::True; // attributes indicate declaration
+ TPResult TPR = TryParseDeclarator(mayBeAbstract, mayHaveIdentifier);
+ if (TPR != TPResult::Ambiguous)
+ return TPR;
+ if (Tok.isNot(tok::r_paren))
+ return TPResult::False;
+ ConsumeParen();
+ }
+ } else if (!mayBeAbstract) {
+ return TPResult::False;
+ }
+
+ while (1) {
+ TPResult TPR(TPResult::Ambiguous);
+
+ // abstract-declarator: ...
+ if (Tok.is(tok::ellipsis))
+ ConsumeToken();
+
+ if (Tok.is(tok::l_paren)) {
+ // Check whether we have a function declarator or a possible ctor-style
+ // initializer that follows the declarator. Note that ctor-style
+ // initializers are not possible in contexts where abstract declarators
+ // are allowed.
+ if (!mayBeAbstract && !isCXXFunctionDeclarator())
+ break;
+
+ // direct-declarator '(' parameter-declaration-clause ')'
+ // cv-qualifier-seq[opt] exception-specification[opt]
+ ConsumeParen();
+ TPR = TryParseFunctionDeclarator();
+ } else if (Tok.is(tok::l_square)) {
+ // direct-declarator '[' constant-expression[opt] ']'
+ // direct-abstract-declarator[opt] '[' constant-expression[opt] ']'
+ TPR = TryParseBracketDeclarator();
+ } else {
+ break;
+ }
+
+ if (TPR != TPResult::Ambiguous)
+ return TPR;
+ }
+
+ return TPResult::Ambiguous;
+}
+
+Parser::TPResult
+Parser::isExpressionOrTypeSpecifierSimple(tok::TokenKind Kind) {
+ switch (Kind) {
+ // Obviously starts an expression.
+ case tok::numeric_constant:
+ case tok::char_constant:
+ case tok::wide_char_constant:
+ case tok::utf8_char_constant:
+ case tok::utf16_char_constant:
+ case tok::utf32_char_constant:
+ case tok::string_literal:
+ case tok::wide_string_literal:
+ case tok::utf8_string_literal:
+ case tok::utf16_string_literal:
+ case tok::utf32_string_literal:
+ case tok::l_square:
+ case tok::l_paren:
+ case tok::amp:
+ case tok::ampamp:
+ case tok::star:
+ case tok::plus:
+ case tok::plusplus:
+ case tok::minus:
+ case tok::minusminus:
+ case tok::tilde:
+ case tok::exclaim:
+ case tok::kw_sizeof:
+ case tok::kw___func__:
+ case tok::kw_const_cast:
+ case tok::kw_delete:
+ case tok::kw_dynamic_cast:
+ case tok::kw_false:
+ case tok::kw_new:
+ case tok::kw_operator:
+ case tok::kw_reinterpret_cast:
+ case tok::kw_static_cast:
+ case tok::kw_this:
+ case tok::kw_throw:
+ case tok::kw_true:
+ case tok::kw_typeid:
+ case tok::kw_alignof:
+ case tok::kw_noexcept:
+ case tok::kw_nullptr:
+ case tok::kw__Alignof:
+ case tok::kw___null:
+ case tok::kw___alignof:
+ case tok::kw___builtin_choose_expr:
+ case tok::kw___builtin_offsetof:
+ case tok::kw___builtin_va_arg:
+ case tok::kw___imag:
+ case tok::kw___real:
+ case tok::kw___FUNCTION__:
+ case tok::kw___FUNCDNAME__:
+ case tok::kw___FUNCSIG__:
+ case tok::kw_L__FUNCTION__:
+ case tok::kw___PRETTY_FUNCTION__:
+ case tok::kw___uuidof:
+#define TYPE_TRAIT(N,Spelling,K) \
+ case tok::kw_##Spelling:
+#include "clang/Basic/TokenKinds.def"
+ return TPResult::True;
+
+ // Obviously starts a type-specifier-seq:
+ case tok::kw_char:
+ case tok::kw_const:
+ case tok::kw_double:
+ case tok::kw_enum:
+ case tok::kw_half:
+ case tok::kw_float:
+ case tok::kw_int:
+ case tok::kw_long:
+ case tok::kw___int64:
+ case tok::kw___int128:
+ case tok::kw_restrict:
+ case tok::kw_short:
+ case tok::kw_signed:
+ case tok::kw_struct:
+ case tok::kw_union:
+ case tok::kw_unsigned:
+ case tok::kw_void:
+ case tok::kw_volatile:
+ case tok::kw__Bool:
+ case tok::kw__Complex:
+ case tok::kw_class:
+ case tok::kw_typename:
+ case tok::kw_wchar_t:
+ case tok::kw_char16_t:
+ case tok::kw_char32_t:
+ case tok::kw__Decimal32:
+ case tok::kw__Decimal64:
+ case tok::kw__Decimal128:
+ case tok::kw___interface:
+ case tok::kw___thread:
+ case tok::kw_thread_local:
+ case tok::kw__Thread_local:
+ case tok::kw_typeof:
+ case tok::kw___underlying_type:
+ case tok::kw___cdecl:
+ case tok::kw___stdcall:
+ case tok::kw___fastcall:
+ case tok::kw___thiscall:
+ case tok::kw___vectorcall:
+ case tok::kw___unaligned:
+ case tok::kw___vector:
+ case tok::kw___pixel:
+ case tok::kw___bool:
+ case tok::kw__Atomic:
+ case tok::kw___unknown_anytype:
+ return TPResult::False;
+
+ default:
+ break;
+ }
+
+ return TPResult::Ambiguous;
+}
+
+bool Parser::isTentativelyDeclared(IdentifierInfo *II) {
+ return std::find(TentativelyDeclaredIdentifiers.begin(),
+ TentativelyDeclaredIdentifiers.end(), II)
+ != TentativelyDeclaredIdentifiers.end();
+}
+
+namespace {
+class TentativeParseCCC : public CorrectionCandidateCallback {
+public:
+ TentativeParseCCC(const Token &Next) {
+ WantRemainingKeywords = false;
+ WantTypeSpecifiers = Next.is(tok::l_paren) || Next.is(tok::r_paren) ||
+ Next.is(tok::greater) || Next.is(tok::l_brace) ||
+ Next.is(tok::identifier);
+ }
+
+ bool ValidateCandidate(const TypoCorrection &Candidate) override {
+ // Reject any candidate that only resolves to instance members since they
+ // aren't viable as standalone identifiers instead of member references.
+ if (Candidate.isResolved() && !Candidate.isKeyword() &&
+ std::all_of(Candidate.begin(), Candidate.end(),
+ [](NamedDecl *ND) { return ND->isCXXInstanceMember(); }))
+ return false;
+
+ return CorrectionCandidateCallback::ValidateCandidate(Candidate);
+ }
+};
+}
+/// isCXXDeclarationSpecifier - Returns TPResult::True if it is a declaration
+/// specifier, TPResult::False if it is not, TPResult::Ambiguous if it could
+/// be either a decl-specifier or a function-style cast, and TPResult::Error
+/// if a parsing error was found and reported.
+///
+/// If HasMissingTypename is provided, a name with a dependent scope specifier
+/// will be treated as ambiguous if the 'typename' keyword is missing. If this
+/// happens, *HasMissingTypename will be set to 'true'. This will also be used
+/// as an indicator that undeclared identifiers (which will trigger a later
+/// parse error) should be treated as types. Returns TPResult::Ambiguous in
+/// such cases.
+///
+/// decl-specifier:
+/// storage-class-specifier
+/// type-specifier
+/// function-specifier
+/// 'friend'
+/// 'typedef'
+/// [C++11] 'constexpr'
+/// [GNU] attributes declaration-specifiers[opt]
+///
+/// storage-class-specifier:
+/// 'register'
+/// 'static'
+/// 'extern'
+/// 'mutable'
+/// 'auto'
+/// [GNU] '__thread'
+/// [C++11] 'thread_local'
+/// [C11] '_Thread_local'
+///
+/// function-specifier:
+/// 'inline'
+/// 'virtual'
+/// 'explicit'
+///
+/// typedef-name:
+/// identifier
+///
+/// type-specifier:
+/// simple-type-specifier
+/// class-specifier
+/// enum-specifier
+/// elaborated-type-specifier
+/// typename-specifier
+/// cv-qualifier
+///
+/// simple-type-specifier:
+/// '::'[opt] nested-name-specifier[opt] type-name
+/// '::'[opt] nested-name-specifier 'template'
+/// simple-template-id [TODO]
+/// 'char'
+/// 'wchar_t'
+/// 'bool'
+/// 'short'
+/// 'int'
+/// 'long'
+/// 'signed'
+/// 'unsigned'
+/// 'float'
+/// 'double'
+/// 'void'
+/// [GNU] typeof-specifier
+/// [GNU] '_Complex'
+/// [C++11] 'auto'
+/// [C++11] 'decltype' ( expression )
+/// [C++1y] 'decltype' ( 'auto' )
+///
+/// type-name:
+/// class-name
+/// enum-name
+/// typedef-name
+///
+/// elaborated-type-specifier:
+/// class-key '::'[opt] nested-name-specifier[opt] identifier
+/// class-key '::'[opt] nested-name-specifier[opt] 'template'[opt]
+/// simple-template-id
+/// 'enum' '::'[opt] nested-name-specifier[opt] identifier
+///
+/// enum-name:
+/// identifier
+///
+/// enum-specifier:
+/// 'enum' identifier[opt] '{' enumerator-list[opt] '}'
+/// 'enum' identifier[opt] '{' enumerator-list ',' '}'
+///
+/// class-specifier:
+/// class-head '{' member-specification[opt] '}'
+///
+/// class-head:
+/// class-key identifier[opt] base-clause[opt]
+/// class-key nested-name-specifier identifier base-clause[opt]
+/// class-key nested-name-specifier[opt] simple-template-id
+/// base-clause[opt]
+///
+/// class-key:
+/// 'class'
+/// 'struct'
+/// 'union'
+///
+/// cv-qualifier:
+/// 'const'
+/// 'volatile'
+/// [GNU] restrict
+///
+Parser::TPResult
+Parser::isCXXDeclarationSpecifier(Parser::TPResult BracedCastResult,
+ bool *HasMissingTypename) {
+ switch (Tok.getKind()) {
+ case tok::identifier: {
+ // Check for need to substitute AltiVec __vector keyword
+ // for "vector" identifier.
+ if (TryAltiVecVectorToken())
+ return TPResult::True;
+
+ const Token &Next = NextToken();
+ // In 'foo bar', 'foo' is always a type name outside of Objective-C.
+ if (!getLangOpts().ObjC1 && Next.is(tok::identifier))
+ return TPResult::True;
+
+ if (Next.isNot(tok::coloncolon) && Next.isNot(tok::less)) {
+ // Determine whether this is a valid expression. If not, we will hit
+ // a parse error one way or another. In that case, tell the caller that
+ // this is ambiguous. Typo-correct to type and expression keywords and
+ // to types and identifiers, in order to try to recover from errors.
+ switch (TryAnnotateName(false /* no nested name specifier */,
+ llvm::make_unique<TentativeParseCCC>(Next))) {
+ case ANK_Error:
+ return TPResult::Error;
+ case ANK_TentativeDecl:
+ return TPResult::False;
+ case ANK_TemplateName:
+ // A bare type template-name which can't be a template template
+ // argument is an error, and was probably intended to be a type.
+ return GreaterThanIsOperator ? TPResult::True : TPResult::False;
+ case ANK_Unresolved:
+ return HasMissingTypename ? TPResult::Ambiguous : TPResult::False;
+ case ANK_Success:
+ break;
+ }
+ assert(Tok.isNot(tok::identifier) &&
+ "TryAnnotateName succeeded without producing an annotation");
+ } else {
+ // This might possibly be a type with a dependent scope specifier and
+ // a missing 'typename' keyword. Don't use TryAnnotateName in this case,
+ // since it will annotate as a primary expression, and we want to use the
+ // "missing 'typename'" logic.
+ if (TryAnnotateTypeOrScopeToken())
+ return TPResult::Error;
+ // If annotation failed, assume it's a non-type.
+ // FIXME: If this happens due to an undeclared identifier, treat it as
+ // ambiguous.
+ if (Tok.is(tok::identifier))
+ return TPResult::False;
+ }
+
+ // We annotated this token as something. Recurse to handle whatever we got.
+ return isCXXDeclarationSpecifier(BracedCastResult, HasMissingTypename);
+ }
+
+ case tok::kw_typename: // typename T::type
+ // Annotate typenames and C++ scope specifiers. If we get one, just
+ // recurse to handle whatever we get.
+ if (TryAnnotateTypeOrScopeToken())
+ return TPResult::Error;
+ return isCXXDeclarationSpecifier(BracedCastResult, HasMissingTypename);
+
+ case tok::coloncolon: { // ::foo::bar
+ const Token &Next = NextToken();
+ if (Next.is(tok::kw_new) || // ::new
+ Next.is(tok::kw_delete)) // ::delete
+ return TPResult::False;
+ }
+ // Fall through.
+ case tok::kw___super:
+ case tok::kw_decltype:
+ // Annotate typenames and C++ scope specifiers. If we get one, just
+ // recurse to handle whatever we get.
+ if (TryAnnotateTypeOrScopeToken())
+ return TPResult::Error;
+ return isCXXDeclarationSpecifier(BracedCastResult, HasMissingTypename);
+
+ // decl-specifier:
+ // storage-class-specifier
+ // type-specifier
+ // function-specifier
+ // 'friend'
+ // 'typedef'
+ // 'constexpr'
+ case tok::kw_friend:
+ case tok::kw_typedef:
+ case tok::kw_constexpr:
+ // storage-class-specifier
+ case tok::kw_register:
+ case tok::kw_static:
+ case tok::kw_extern:
+ case tok::kw_mutable:
+ case tok::kw_auto:
+ case tok::kw___thread:
+ case tok::kw_thread_local:
+ case tok::kw__Thread_local:
+ // function-specifier
+ case tok::kw_inline:
+ case tok::kw_virtual:
+ case tok::kw_explicit:
+
+ // Modules
+ case tok::kw___module_private__:
+
+ // Debugger support
+ case tok::kw___unknown_anytype:
+
+ // type-specifier:
+ // simple-type-specifier
+ // class-specifier
+ // enum-specifier
+ // elaborated-type-specifier
+ // typename-specifier
+ // cv-qualifier
+
+ // class-specifier
+ // elaborated-type-specifier
+ case tok::kw_class:
+ case tok::kw_struct:
+ case tok::kw_union:
+ case tok::kw___interface:
+ // enum-specifier
+ case tok::kw_enum:
+ // cv-qualifier
+ case tok::kw_const:
+ case tok::kw_volatile:
+
+ // GNU
+ case tok::kw_restrict:
+ case tok::kw__Complex:
+ case tok::kw___attribute:
+ return TPResult::True;
+
+ // Microsoft
+ case tok::kw___declspec:
+ case tok::kw___cdecl:
+ case tok::kw___stdcall:
+ case tok::kw___fastcall:
+ case tok::kw___thiscall:
+ case tok::kw___vectorcall:
+ case tok::kw___w64:
+ case tok::kw___sptr:
+ case tok::kw___uptr:
+ case tok::kw___ptr64:
+ case tok::kw___ptr32:
+ case tok::kw___forceinline:
+ case tok::kw___unaligned:
+ return TPResult::True;
+
+ // Borland
+ case tok::kw___pascal:
+ return TPResult::True;
+
+ // AltiVec
+ case tok::kw___vector:
+ return TPResult::True;
+
+ case tok::annot_template_id: {
+ TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
+ if (TemplateId->Kind != TNK_Type_template)
+ return TPResult::False;
+ CXXScopeSpec SS;
+ AnnotateTemplateIdTokenAsType();
+ assert(Tok.is(tok::annot_typename));
+ goto case_typename;
+ }
+
+ case tok::annot_cxxscope: // foo::bar or ::foo::bar, but already parsed
+ // We've already annotated a scope; try to annotate a type.
+ if (TryAnnotateTypeOrScopeToken())
+ return TPResult::Error;
+ if (!Tok.is(tok::annot_typename)) {
+ // If the next token is an identifier or a type qualifier, then this
+ // can't possibly be a valid expression either.
+ if (Tok.is(tok::annot_cxxscope) && NextToken().is(tok::identifier)) {
+ CXXScopeSpec SS;
+ Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
+ Tok.getAnnotationRange(),
+ SS);
+ if (SS.getScopeRep() && SS.getScopeRep()->isDependent()) {
+ TentativeParsingAction PA(*this);
+ ConsumeToken();
+ ConsumeToken();
+ bool isIdentifier = Tok.is(tok::identifier);
+ TPResult TPR = TPResult::False;
+ if (!isIdentifier)
+ TPR = isCXXDeclarationSpecifier(BracedCastResult,
+ HasMissingTypename);
+ PA.Revert();
+
+ if (isIdentifier ||
+ TPR == TPResult::True || TPR == TPResult::Error)
+ return TPResult::Error;
+
+ if (HasMissingTypename) {
+ // We can't tell whether this is a missing 'typename' or a valid
+ // expression.
+ *HasMissingTypename = true;
+ return TPResult::Ambiguous;
+ }
+ } else {
+ // Try to resolve the name. If it doesn't exist, assume it was
+ // intended to name a type and keep disambiguating.
+ switch (TryAnnotateName(false /* SS is not dependent */)) {
+ case ANK_Error:
+ return TPResult::Error;
+ case ANK_TentativeDecl:
+ return TPResult::False;
+ case ANK_TemplateName:
+ // A bare type template-name which can't be a template template
+ // argument is an error, and was probably intended to be a type.
+ return GreaterThanIsOperator ? TPResult::True : TPResult::False;
+ case ANK_Unresolved:
+ return HasMissingTypename ? TPResult::Ambiguous
+ : TPResult::False;
+ case ANK_Success:
+ // Annotated it, check again.
+ assert(Tok.isNot(tok::annot_cxxscope) ||
+ NextToken().isNot(tok::identifier));
+ return isCXXDeclarationSpecifier(BracedCastResult,
+ HasMissingTypename);
+ }
+ }
+ }
+ return TPResult::False;
+ }
+ // If that succeeded, fallthrough into the generic simple-type-id case.
+
+ // The ambiguity resides in a simple-type-specifier/typename-specifier
+ // followed by a '('. The '(' could either be the start of:
+ //
+ // direct-declarator:
+ // '(' declarator ')'
+ //
+ // direct-abstract-declarator:
+ // '(' parameter-declaration-clause ')' cv-qualifier-seq[opt]
+ // exception-specification[opt]
+ // '(' abstract-declarator ')'
+ //
+ // or part of a function-style cast expression:
+ //
+ // simple-type-specifier '(' expression-list[opt] ')'
+ //
+
+ // simple-type-specifier:
+
+ case tok::annot_typename:
+ case_typename:
+ // In Objective-C, we might have a protocol-qualified type.
+ if (getLangOpts().ObjC1 && NextToken().is(tok::less)) {
+ // Tentatively parse the
+ TentativeParsingAction PA(*this);
+ ConsumeToken(); // The type token
+
+ TPResult TPR = TryParseProtocolQualifiers();
+ bool isFollowedByParen = Tok.is(tok::l_paren);
+ bool isFollowedByBrace = Tok.is(tok::l_brace);
+
+ PA.Revert();
+
+ if (TPR == TPResult::Error)
+ return TPResult::Error;
+
+ if (isFollowedByParen)
+ return TPResult::Ambiguous;
+
+ if (getLangOpts().CPlusPlus11 && isFollowedByBrace)
+ return BracedCastResult;
+
+ return TPResult::True;
+ }
+
+ case tok::kw_char:
+ case tok::kw_wchar_t:
+ case tok::kw_char16_t:
+ case tok::kw_char32_t:
+ case tok::kw_bool:
+ case tok::kw_short:
+ case tok::kw_int:
+ case tok::kw_long:
+ case tok::kw___int64:
+ case tok::kw___int128:
+ case tok::kw_signed:
+ case tok::kw_unsigned:
+ case tok::kw_half:
+ case tok::kw_float:
+ case tok::kw_double:
+ case tok::kw_void:
+ case tok::annot_decltype:
+ if (NextToken().is(tok::l_paren))
+ return TPResult::Ambiguous;
+
+ // This is a function-style cast in all cases we disambiguate other than
+ // one:
+ // struct S {
+ // enum E : int { a = 4 }; // enum
+ // enum E : int { 4 }; // bit-field
+ // };
+ if (getLangOpts().CPlusPlus11 && NextToken().is(tok::l_brace))
+ return BracedCastResult;
+
+ if (isStartOfObjCClassMessageMissingOpenBracket())
+ return TPResult::False;
+
+ return TPResult::True;
+
+ // GNU typeof support.
+ case tok::kw_typeof: {
+ if (NextToken().isNot(tok::l_paren))
+ return TPResult::True;
+
+ TentativeParsingAction PA(*this);
+
+ TPResult TPR = TryParseTypeofSpecifier();
+ bool isFollowedByParen = Tok.is(tok::l_paren);
+ bool isFollowedByBrace = Tok.is(tok::l_brace);
+
+ PA.Revert();
+
+ if (TPR == TPResult::Error)
+ return TPResult::Error;
+
+ if (isFollowedByParen)
+ return TPResult::Ambiguous;
+
+ if (getLangOpts().CPlusPlus11 && isFollowedByBrace)
+ return BracedCastResult;
+
+ return TPResult::True;
+ }
+
+ // C++0x type traits support
+ case tok::kw___underlying_type:
+ return TPResult::True;
+
+ // C11 _Atomic
+ case tok::kw__Atomic:
+ return TPResult::True;
+
+ default:
+ return TPResult::False;
+ }
+}
+
+bool Parser::isCXXDeclarationSpecifierAType() {
+ switch (Tok.getKind()) {
+ // typename-specifier
+ case tok::annot_decltype:
+ case tok::annot_template_id:
+ case tok::annot_typename:
+ case tok::kw_typeof:
+ case tok::kw___underlying_type:
+ return true;
+
+ // elaborated-type-specifier
+ case tok::kw_class:
+ case tok::kw_struct:
+ case tok::kw_union:
+ case tok::kw___interface:
+ case tok::kw_enum:
+ return true;
+
+ // simple-type-specifier
+ case tok::kw_char:
+ case tok::kw_wchar_t:
+ case tok::kw_char16_t:
+ case tok::kw_char32_t:
+ case tok::kw_bool:
+ case tok::kw_short:
+ case tok::kw_int:
+ case tok::kw_long:
+ case tok::kw___int64:
+ case tok::kw___int128:
+ case tok::kw_signed:
+ case tok::kw_unsigned:
+ case tok::kw_half:
+ case tok::kw_float:
+ case tok::kw_double:
+ case tok::kw_void:
+ case tok::kw___unknown_anytype:
+ return true;
+
+ case tok::kw_auto:
+ return getLangOpts().CPlusPlus11;
+
+ case tok::kw__Atomic:
+ // "_Atomic foo"
+ return NextToken().is(tok::l_paren);
+
+ default:
+ return false;
+ }
+}
+
+/// [GNU] typeof-specifier:
+/// 'typeof' '(' expressions ')'
+/// 'typeof' '(' type-name ')'
+///
+Parser::TPResult Parser::TryParseTypeofSpecifier() {
+ assert(Tok.is(tok::kw_typeof) && "Expected 'typeof'!");
+ ConsumeToken();
+
+ assert(Tok.is(tok::l_paren) && "Expected '('");
+ // Parse through the parens after 'typeof'.
+ ConsumeParen();
+ if (!SkipUntil(tok::r_paren, StopAtSemi))
+ return TPResult::Error;
+
+ return TPResult::Ambiguous;
+}
+
+/// [ObjC] protocol-qualifiers:
+//// '<' identifier-list '>'
+Parser::TPResult Parser::TryParseProtocolQualifiers() {
+ assert(Tok.is(tok::less) && "Expected '<' for qualifier list");
+ ConsumeToken();
+ do {
+ if (Tok.isNot(tok::identifier))
+ return TPResult::Error;
+ ConsumeToken();
+
+ if (Tok.is(tok::comma)) {
+ ConsumeToken();
+ continue;
+ }
+
+ if (Tok.is(tok::greater)) {
+ ConsumeToken();
+ return TPResult::Ambiguous;
+ }
+ } while (false);
+
+ return TPResult::Error;
+}
+
+/// isCXXFunctionDeclarator - Disambiguates between a function declarator or
+/// a constructor-style initializer, when parsing declaration statements.
+/// Returns true for function declarator and false for constructor-style
+/// initializer.
+/// If during the disambiguation process a parsing error is encountered,
+/// the function returns true to let the declaration parsing code handle it.
+///
+/// '(' parameter-declaration-clause ')' cv-qualifier-seq[opt]
+/// exception-specification[opt]
+///
+bool Parser::isCXXFunctionDeclarator(bool *IsAmbiguous) {
+
+ // C++ 8.2p1:
+ // The ambiguity arising from the similarity between a function-style cast and
+ // a declaration mentioned in 6.8 can also occur in the context of a
+ // declaration. In that context, the choice is between a function declaration
+ // with a redundant set of parentheses around a parameter name and an object
+ // declaration with a function-style cast as the initializer. Just as for the
+ // ambiguities mentioned in 6.8, the resolution is to consider any construct
+ // that could possibly be a declaration a declaration.
+
+ TentativeParsingAction PA(*this);
+
+ ConsumeParen();
+ bool InvalidAsDeclaration = false;
+ TPResult TPR = TryParseParameterDeclarationClause(&InvalidAsDeclaration);
+ if (TPR == TPResult::Ambiguous) {
+ if (Tok.isNot(tok::r_paren))
+ TPR = TPResult::False;
+ else {
+ const Token &Next = NextToken();
+ if (Next.is(tok::amp) || Next.is(tok::ampamp) ||
+ Next.is(tok::kw_const) || Next.is(tok::kw_volatile) ||
+ Next.is(tok::kw_throw) || Next.is(tok::kw_noexcept) ||
+ Next.is(tok::l_square) || isCXX11VirtSpecifier(Next) ||
+ Next.is(tok::l_brace) || Next.is(tok::kw_try) ||
+ Next.is(tok::equal) || Next.is(tok::arrow))
+ // The next token cannot appear after a constructor-style initializer,
+ // and can appear next in a function definition. This must be a function
+ // declarator.
+ TPR = TPResult::True;
+ else if (InvalidAsDeclaration)
+ // Use the absence of 'typename' as a tie-breaker.
+ TPR = TPResult::False;
+ }
+ }
+
+ PA.Revert();
+
+ if (IsAmbiguous && TPR == TPResult::Ambiguous)
+ *IsAmbiguous = true;
+
+ // In case of an error, let the declaration parsing code handle it.
+ return TPR != TPResult::False;
+}
+
+/// parameter-declaration-clause:
+/// parameter-declaration-list[opt] '...'[opt]
+/// parameter-declaration-list ',' '...'
+///
+/// parameter-declaration-list:
+/// parameter-declaration
+/// parameter-declaration-list ',' parameter-declaration
+///
+/// parameter-declaration:
+/// attribute-specifier-seq[opt] decl-specifier-seq declarator attributes[opt]
+/// attribute-specifier-seq[opt] decl-specifier-seq declarator attributes[opt]
+/// '=' assignment-expression
+/// attribute-specifier-seq[opt] decl-specifier-seq abstract-declarator[opt]
+/// attributes[opt]
+/// attribute-specifier-seq[opt] decl-specifier-seq abstract-declarator[opt]
+/// attributes[opt] '=' assignment-expression
+///
+Parser::TPResult
+Parser::TryParseParameterDeclarationClause(bool *InvalidAsDeclaration,
+ bool VersusTemplateArgument) {
+
+ if (Tok.is(tok::r_paren))
+ return TPResult::Ambiguous;
+
+ // parameter-declaration-list[opt] '...'[opt]
+ // parameter-declaration-list ',' '...'
+ //
+ // parameter-declaration-list:
+ // parameter-declaration
+ // parameter-declaration-list ',' parameter-declaration
+ //
+ while (1) {
+ // '...'[opt]
+ if (Tok.is(tok::ellipsis)) {
+ ConsumeToken();
+ if (Tok.is(tok::r_paren))
+ return TPResult::True; // '...)' is a sign of a function declarator.
+ else
+ return TPResult::False;
+ }
+
+ // An attribute-specifier-seq here is a sign of a function declarator.
+ if (isCXX11AttributeSpecifier(/*Disambiguate*/false,
+ /*OuterMightBeMessageSend*/true))
+ return TPResult::True;
+
+ ParsedAttributes attrs(AttrFactory);
+ MaybeParseMicrosoftAttributes(attrs);
+
+ // decl-specifier-seq
+ // A parameter-declaration's initializer must be preceded by an '=', so
+ // decl-specifier-seq '{' is not a parameter in C++11.
+ TPResult TPR = isCXXDeclarationSpecifier(TPResult::False,
+ InvalidAsDeclaration);
+
+ if (VersusTemplateArgument && TPR == TPResult::True) {
+ // Consume the decl-specifier-seq. We have to look past it, since a
+ // type-id might appear here in a template argument.
+ bool SeenType = false;
+ do {
+ SeenType |= isCXXDeclarationSpecifierAType();
+ if (TryConsumeDeclarationSpecifier() == TPResult::Error)
+ return TPResult::Error;
+
+ // If we see a parameter name, this can't be a template argument.
+ if (SeenType && Tok.is(tok::identifier))
+ return TPResult::True;
+
+ TPR = isCXXDeclarationSpecifier(TPResult::False,
+ InvalidAsDeclaration);
+ if (TPR == TPResult::Error)
+ return TPR;
+ } while (TPR != TPResult::False);
+ } else if (TPR == TPResult::Ambiguous) {
+ // Disambiguate what follows the decl-specifier.
+ if (TryConsumeDeclarationSpecifier() == TPResult::Error)
+ return TPResult::Error;
+ } else
+ return TPR;
+
+ // declarator
+ // abstract-declarator[opt]
+ TPR = TryParseDeclarator(true/*mayBeAbstract*/);
+ if (TPR != TPResult::Ambiguous)
+ return TPR;
+
+ // [GNU] attributes[opt]
+ if (Tok.is(tok::kw___attribute))
+ return TPResult::True;
+
+ // If we're disambiguating a template argument in a default argument in
+ // a class definition versus a parameter declaration, an '=' here
+ // disambiguates the parse one way or the other.
+ // If this is a parameter, it must have a default argument because
+ // (a) the previous parameter did, and
+ // (b) this must be the first declaration of the function, so we can't
+ // inherit any default arguments from elsewhere.
+ // If we see an ')', then we've reached the end of a
+ // parameter-declaration-clause, and the last param is missing its default
+ // argument.
+ if (VersusTemplateArgument)
+ return (Tok.is(tok::equal) || Tok.is(tok::r_paren)) ? TPResult::True
+ : TPResult::False;
+
+ if (Tok.is(tok::equal)) {
+ // '=' assignment-expression
+ // Parse through assignment-expression.
+ // FIXME: assignment-expression may contain an unparenthesized comma.
+ if (!SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch))
+ return TPResult::Error;
+ }
+
+ if (Tok.is(tok::ellipsis)) {
+ ConsumeToken();
+ if (Tok.is(tok::r_paren))
+ return TPResult::True; // '...)' is a sign of a function declarator.
+ else
+ return TPResult::False;
+ }
+
+ if (!TryConsumeToken(tok::comma))
+ break;
+ }
+
+ return TPResult::Ambiguous;
+}
+
+/// TryParseFunctionDeclarator - We parsed a '(' and we want to try to continue
+/// parsing as a function declarator.
+/// If TryParseFunctionDeclarator fully parsed the function declarator, it will
+/// return TPResult::Ambiguous, otherwise it will return either False() or
+/// Error().
+///
+/// '(' parameter-declaration-clause ')' cv-qualifier-seq[opt]
+/// exception-specification[opt]
+///
+/// exception-specification:
+/// 'throw' '(' type-id-list[opt] ')'
+///
+Parser::TPResult Parser::TryParseFunctionDeclarator() {
+
+ // The '(' is already parsed.
+
+ TPResult TPR = TryParseParameterDeclarationClause();
+ if (TPR == TPResult::Ambiguous && Tok.isNot(tok::r_paren))
+ TPR = TPResult::False;
+
+ if (TPR == TPResult::False || TPR == TPResult::Error)
+ return TPR;
+
+ // Parse through the parens.
+ if (!SkipUntil(tok::r_paren, StopAtSemi))
+ return TPResult::Error;
+
+ // cv-qualifier-seq
+ while (Tok.is(tok::kw_const) ||
+ Tok.is(tok::kw_volatile) ||
+ Tok.is(tok::kw_restrict) )
+ ConsumeToken();
+
+ // ref-qualifier[opt]
+ if (Tok.is(tok::amp) || Tok.is(tok::ampamp))
+ ConsumeToken();
+
+ // exception-specification
+ if (Tok.is(tok::kw_throw)) {
+ ConsumeToken();
+ if (Tok.isNot(tok::l_paren))
+ return TPResult::Error;
+
+ // Parse through the parens after 'throw'.
+ ConsumeParen();
+ if (!SkipUntil(tok::r_paren, StopAtSemi))
+ return TPResult::Error;
+ }
+ if (Tok.is(tok::kw_noexcept)) {
+ ConsumeToken();
+ // Possibly an expression as well.
+ if (Tok.is(tok::l_paren)) {
+ // Find the matching rparen.
+ ConsumeParen();
+ if (!SkipUntil(tok::r_paren, StopAtSemi))
+ return TPResult::Error;
+ }
+ }
+
+ return TPResult::Ambiguous;
+}
+
+/// '[' constant-expression[opt] ']'
+///
+Parser::TPResult Parser::TryParseBracketDeclarator() {
+ ConsumeBracket();
+ if (!SkipUntil(tok::r_square, StopAtSemi))
+ return TPResult::Error;
+
+ return TPResult::Ambiguous;
+}
diff --git a/contrib/llvm/tools/clang/lib/Parse/Parser.cpp b/contrib/llvm/tools/clang/lib/Parse/Parser.cpp
new file mode 100644
index 0000000..dea7a69
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Parse/Parser.cpp
@@ -0,0 +1,1987 @@
+//===--- Parser.cpp - C Language Family Parser ----------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Parser interfaces.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Parse/Parser.h"
+#include "RAIIObjectsForParser.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/Parse/ParseDiagnostic.h"
+#include "clang/Sema/DeclSpec.h"
+#include "clang/Sema/ParsedTemplate.h"
+#include "clang/Sema/Scope.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace clang;
+
+
+namespace {
+/// \brief A comment handler that passes comments found by the preprocessor
+/// to the parser action.
+class ActionCommentHandler : public CommentHandler {
+ Sema &S;
+
+public:
+ explicit ActionCommentHandler(Sema &S) : S(S) { }
+
+ bool HandleComment(Preprocessor &PP, SourceRange Comment) override {
+ S.ActOnComment(Comment);
+ return false;
+ }
+};
+
+/// \brief RAIIObject to destroy the contents of a SmallVector of
+/// TemplateIdAnnotation pointers and clear the vector.
+class DestroyTemplateIdAnnotationsRAIIObj {
+ SmallVectorImpl<TemplateIdAnnotation *> &Container;
+
+public:
+ DestroyTemplateIdAnnotationsRAIIObj(
+ SmallVectorImpl<TemplateIdAnnotation *> &Container)
+ : Container(Container) {}
+
+ ~DestroyTemplateIdAnnotationsRAIIObj() {
+ for (SmallVectorImpl<TemplateIdAnnotation *>::iterator I =
+ Container.begin(),
+ E = Container.end();
+ I != E; ++I)
+ (*I)->Destroy();
+ Container.clear();
+ }
+};
+} // end anonymous namespace
+
+IdentifierInfo *Parser::getSEHExceptKeyword() {
+ // __except is accepted as a (contextual) keyword
+ if (!Ident__except && (getLangOpts().MicrosoftExt || getLangOpts().Borland))
+ Ident__except = PP.getIdentifierInfo("__except");
+
+ return Ident__except;
+}
+
+Parser::Parser(Preprocessor &pp, Sema &actions, bool skipFunctionBodies)
+ : PP(pp), Actions(actions), Diags(PP.getDiagnostics()),
+ GreaterThanIsOperator(true), ColonIsSacred(false),
+ InMessageExpression(false), TemplateParameterDepth(0),
+ ParsingInObjCContainer(false) {
+ SkipFunctionBodies = pp.isCodeCompletionEnabled() || skipFunctionBodies;
+ Tok.startToken();
+ Tok.setKind(tok::eof);
+ Actions.CurScope = nullptr;
+ NumCachedScopes = 0;
+ ParenCount = BracketCount = BraceCount = 0;
+ CurParsedObjCImpl = nullptr;
+
+ // Add #pragma handlers. These are removed and destroyed in the
+ // destructor.
+ initializePragmaHandlers();
+
+ CommentSemaHandler.reset(new ActionCommentHandler(actions));
+ PP.addCommentHandler(CommentSemaHandler.get());
+
+ PP.setCodeCompletionHandler(*this);
+}
+
+DiagnosticBuilder Parser::Diag(SourceLocation Loc, unsigned DiagID) {
+ return Diags.Report(Loc, DiagID);
+}
+
+DiagnosticBuilder Parser::Diag(const Token &Tok, unsigned DiagID) {
+ return Diag(Tok.getLocation(), DiagID);
+}
+
+/// \brief Emits a diagnostic suggesting parentheses surrounding a
+/// given range.
+///
+/// \param Loc The location where we'll emit the diagnostic.
+/// \param DK The kind of diagnostic to emit.
+/// \param ParenRange Source range enclosing code that should be parenthesized.
+void Parser::SuggestParentheses(SourceLocation Loc, unsigned DK,
+ SourceRange ParenRange) {
+ SourceLocation EndLoc = PP.getLocForEndOfToken(ParenRange.getEnd());
+ if (!ParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
+ // We can't display the parentheses, so just dig the
+ // warning/error and return.
+ Diag(Loc, DK);
+ return;
+ }
+
+ Diag(Loc, DK)
+ << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
+ << FixItHint::CreateInsertion(EndLoc, ")");
+}
+
+static bool IsCommonTypo(tok::TokenKind ExpectedTok, const Token &Tok) {
+ switch (ExpectedTok) {
+ case tok::semi:
+ return Tok.is(tok::colon) || Tok.is(tok::comma); // : or , for ;
+ default: return false;
+ }
+}
+
+bool Parser::ExpectAndConsume(tok::TokenKind ExpectedTok, unsigned DiagID,
+ StringRef Msg) {
+ if (Tok.is(ExpectedTok) || Tok.is(tok::code_completion)) {
+ ConsumeAnyToken();
+ return false;
+ }
+
+ // Detect common single-character typos and resume.
+ if (IsCommonTypo(ExpectedTok, Tok)) {
+ SourceLocation Loc = Tok.getLocation();
+ {
+ DiagnosticBuilder DB = Diag(Loc, DiagID);
+ DB << FixItHint::CreateReplacement(
+ SourceRange(Loc), tok::getPunctuatorSpelling(ExpectedTok));
+ if (DiagID == diag::err_expected)
+ DB << ExpectedTok;
+ else if (DiagID == diag::err_expected_after)
+ DB << Msg << ExpectedTok;
+ else
+ DB << Msg;
+ }
+
+ // Pretend there wasn't a problem.
+ ConsumeAnyToken();
+ return false;
+ }
+
+ SourceLocation EndLoc = PP.getLocForEndOfToken(PrevTokLocation);
+ const char *Spelling = nullptr;
+ if (EndLoc.isValid())
+ Spelling = tok::getPunctuatorSpelling(ExpectedTok);
+
+ DiagnosticBuilder DB =
+ Spelling
+ ? Diag(EndLoc, DiagID) << FixItHint::CreateInsertion(EndLoc, Spelling)
+ : Diag(Tok, DiagID);
+ if (DiagID == diag::err_expected)
+ DB << ExpectedTok;
+ else if (DiagID == diag::err_expected_after)
+ DB << Msg << ExpectedTok;
+ else
+ DB << Msg;
+
+ return true;
+}
+
+bool Parser::ExpectAndConsumeSemi(unsigned DiagID) {
+ if (TryConsumeToken(tok::semi))
+ return false;
+
+ if (Tok.is(tok::code_completion)) {
+ handleUnexpectedCodeCompletionToken();
+ return false;
+ }
+
+ if ((Tok.is(tok::r_paren) || Tok.is(tok::r_square)) &&
+ NextToken().is(tok::semi)) {
+ Diag(Tok, diag::err_extraneous_token_before_semi)
+ << PP.getSpelling(Tok)
+ << FixItHint::CreateRemoval(Tok.getLocation());
+ ConsumeAnyToken(); // The ')' or ']'.
+ ConsumeToken(); // The ';'.
+ return false;
+ }
+
+ return ExpectAndConsume(tok::semi, DiagID);
+}
+
+void Parser::ConsumeExtraSemi(ExtraSemiKind Kind, unsigned TST) {
+ if (!Tok.is(tok::semi)) return;
+
+ bool HadMultipleSemis = false;
+ SourceLocation StartLoc = Tok.getLocation();
+ SourceLocation EndLoc = Tok.getLocation();
+ ConsumeToken();
+
+ while ((Tok.is(tok::semi) && !Tok.isAtStartOfLine())) {
+ HadMultipleSemis = true;
+ EndLoc = Tok.getLocation();
+ ConsumeToken();
+ }
+
+ // C++11 allows extra semicolons at namespace scope, but not in any of the
+ // other contexts.
+ if (Kind == OutsideFunction && getLangOpts().CPlusPlus) {
+ if (getLangOpts().CPlusPlus11)
+ Diag(StartLoc, diag::warn_cxx98_compat_top_level_semi)
+ << FixItHint::CreateRemoval(SourceRange(StartLoc, EndLoc));
+ else
+ Diag(StartLoc, diag::ext_extra_semi_cxx11)
+ << FixItHint::CreateRemoval(SourceRange(StartLoc, EndLoc));
+ return;
+ }
+
+ if (Kind != AfterMemberFunctionDefinition || HadMultipleSemis)
+ Diag(StartLoc, diag::ext_extra_semi)
+ << Kind << DeclSpec::getSpecifierName((DeclSpec::TST)TST,
+ Actions.getASTContext().getPrintingPolicy())
+ << FixItHint::CreateRemoval(SourceRange(StartLoc, EndLoc));
+ else
+ // A single semicolon is valid after a member function definition.
+ Diag(StartLoc, diag::warn_extra_semi_after_mem_fn_def)
+ << FixItHint::CreateRemoval(SourceRange(StartLoc, EndLoc));
+}
+
+//===----------------------------------------------------------------------===//
+// Error recovery.
+//===----------------------------------------------------------------------===//
+
+static bool HasFlagsSet(Parser::SkipUntilFlags L, Parser::SkipUntilFlags R) {
+ return (static_cast<unsigned>(L) & static_cast<unsigned>(R)) != 0;
+}
+
+/// SkipUntil - Read tokens until we get to the specified token, then consume
+/// it (unless no flag StopBeforeMatch). Because we cannot guarantee that the
+/// token will ever occur, this skips to the next token, or to some likely
+/// good stopping point. If StopAtSemi is true, skipping will stop at a ';'
+/// character.
+///
+/// If SkipUntil finds the specified token, it returns true, otherwise it
+/// returns false.
+bool Parser::SkipUntil(ArrayRef<tok::TokenKind> Toks, SkipUntilFlags Flags) {
+ // We always want this function to skip at least one token if the first token
+ // isn't T and if not at EOF.
+ bool isFirstTokenSkipped = true;
+ while (1) {
+ // If we found one of the tokens, stop and return true.
+ for (unsigned i = 0, NumToks = Toks.size(); i != NumToks; ++i) {
+ if (Tok.is(Toks[i])) {
+ if (HasFlagsSet(Flags, StopBeforeMatch)) {
+ // Noop, don't consume the token.
+ } else {
+ ConsumeAnyToken();
+ }
+ return true;
+ }
+ }
+
+ // Important special case: The caller has given up and just wants us to
+ // skip the rest of the file. Do this without recursing, since we can
+ // get here precisely because the caller detected too much recursion.
+ if (Toks.size() == 1 && Toks[0] == tok::eof &&
+ !HasFlagsSet(Flags, StopAtSemi) &&
+ !HasFlagsSet(Flags, StopAtCodeCompletion)) {
+ while (Tok.isNot(tok::eof))
+ ConsumeAnyToken();
+ return true;
+ }
+
+ switch (Tok.getKind()) {
+ case tok::eof:
+ // Ran out of tokens.
+ return false;
+
+ case tok::annot_pragma_openmp_end:
+ // Stop before an OpenMP pragma boundary.
+ case tok::annot_module_begin:
+ case tok::annot_module_end:
+ case tok::annot_module_include:
+ // Stop before we change submodules. They generally indicate a "good"
+ // place to pick up parsing again (except in the special case where
+ // we're trying to skip to EOF).
+ return false;
+
+ case tok::code_completion:
+ if (!HasFlagsSet(Flags, StopAtCodeCompletion))
+ handleUnexpectedCodeCompletionToken();
+ return false;
+
+ case tok::l_paren:
+ // Recursively skip properly-nested parens.
+ ConsumeParen();
+ if (HasFlagsSet(Flags, StopAtCodeCompletion))
+ SkipUntil(tok::r_paren, StopAtCodeCompletion);
+ else
+ SkipUntil(tok::r_paren);
+ break;
+ case tok::l_square:
+ // Recursively skip properly-nested square brackets.
+ ConsumeBracket();
+ if (HasFlagsSet(Flags, StopAtCodeCompletion))
+ SkipUntil(tok::r_square, StopAtCodeCompletion);
+ else
+ SkipUntil(tok::r_square);
+ break;
+ case tok::l_brace:
+ // Recursively skip properly-nested braces.
+ ConsumeBrace();
+ if (HasFlagsSet(Flags, StopAtCodeCompletion))
+ SkipUntil(tok::r_brace, StopAtCodeCompletion);
+ else
+ SkipUntil(tok::r_brace);
+ break;
+
+ // Okay, we found a ']' or '}' or ')', which we think should be balanced.
+ // Since the user wasn't looking for this token (if they were, it would
+ // already be handled), this isn't balanced. If there is a LHS token at a
+ // higher level, we will assume that this matches the unbalanced token
+ // and return it. Otherwise, this is a spurious RHS token, which we skip.
+ case tok::r_paren:
+ if (ParenCount && !isFirstTokenSkipped)
+ return false; // Matches something.
+ ConsumeParen();
+ break;
+ case tok::r_square:
+ if (BracketCount && !isFirstTokenSkipped)
+ return false; // Matches something.
+ ConsumeBracket();
+ break;
+ case tok::r_brace:
+ if (BraceCount && !isFirstTokenSkipped)
+ return false; // Matches something.
+ ConsumeBrace();
+ break;
+
+ case tok::string_literal:
+ case tok::wide_string_literal:
+ case tok::utf8_string_literal:
+ case tok::utf16_string_literal:
+ case tok::utf32_string_literal:
+ ConsumeStringToken();
+ break;
+
+ case tok::semi:
+ if (HasFlagsSet(Flags, StopAtSemi))
+ return false;
+ // FALL THROUGH.
+ default:
+ // Skip this token.
+ ConsumeToken();
+ break;
+ }
+ isFirstTokenSkipped = false;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Scope manipulation
+//===----------------------------------------------------------------------===//
+
+/// EnterScope - Start a new scope.
+void Parser::EnterScope(unsigned ScopeFlags) {
+ if (NumCachedScopes) {
+ Scope *N = ScopeCache[--NumCachedScopes];
+ N->Init(getCurScope(), ScopeFlags);
+ Actions.CurScope = N;
+ } else {
+ Actions.CurScope = new Scope(getCurScope(), ScopeFlags, Diags);
+ }
+}
+
+/// ExitScope - Pop a scope off the scope stack.
+void Parser::ExitScope() {
+ assert(getCurScope() && "Scope imbalance!");
+
+ // Inform the actions module that this scope is going away if there are any
+ // decls in it.
+ Actions.ActOnPopScope(Tok.getLocation(), getCurScope());
+
+ Scope *OldScope = getCurScope();
+ Actions.CurScope = OldScope->getParent();
+
+ if (NumCachedScopes == ScopeCacheSize)
+ delete OldScope;
+ else
+ ScopeCache[NumCachedScopes++] = OldScope;
+}
+
+/// Set the flags for the current scope to ScopeFlags. If ManageFlags is false,
+/// this object does nothing.
+Parser::ParseScopeFlags::ParseScopeFlags(Parser *Self, unsigned ScopeFlags,
+ bool ManageFlags)
+ : CurScope(ManageFlags ? Self->getCurScope() : nullptr) {
+ if (CurScope) {
+ OldFlags = CurScope->getFlags();
+ CurScope->setFlags(ScopeFlags);
+ }
+}
+
+/// Restore the flags for the current scope to what they were before this
+/// object overrode them.
+Parser::ParseScopeFlags::~ParseScopeFlags() {
+ if (CurScope)
+ CurScope->setFlags(OldFlags);
+}
+
+
+//===----------------------------------------------------------------------===//
+// C99 6.9: External Definitions.
+//===----------------------------------------------------------------------===//
+
+Parser::~Parser() {
+ // If we still have scopes active, delete the scope tree.
+ delete getCurScope();
+ Actions.CurScope = nullptr;
+
+ // Free the scope cache.
+ for (unsigned i = 0, e = NumCachedScopes; i != e; ++i)
+ delete ScopeCache[i];
+
+ resetPragmaHandlers();
+
+ PP.removeCommentHandler(CommentSemaHandler.get());
+
+ PP.clearCodeCompletionHandler();
+
+ if (getLangOpts().DelayedTemplateParsing &&
+ !PP.isIncrementalProcessingEnabled() && !TemplateIds.empty()) {
+ // If an ASTConsumer parsed delay-parsed templates in their
+ // HandleTranslationUnit() method, TemplateIds created there were not
+ // guarded by a DestroyTemplateIdAnnotationsRAIIObj object in
+ // ParseTopLevelDecl(). Destroy them here.
+ DestroyTemplateIdAnnotationsRAIIObj CleanupRAII(TemplateIds);
+ }
+
+ assert(TemplateIds.empty() && "Still alive TemplateIdAnnotations around?");
+}
+
+/// Initialize - Warm up the parser.
+///
+void Parser::Initialize() {
+ // Create the translation unit scope. Install it as the current scope.
+ assert(getCurScope() == nullptr && "A scope is already active?");
+ EnterScope(Scope::DeclScope);
+ Actions.ActOnTranslationUnitScope(getCurScope());
+
+ // Initialization for Objective-C context sensitive keywords recognition.
+ // Referenced in Parser::ParseObjCTypeQualifierList.
+ if (getLangOpts().ObjC1) {
+ ObjCTypeQuals[objc_in] = &PP.getIdentifierTable().get("in");
+ ObjCTypeQuals[objc_out] = &PP.getIdentifierTable().get("out");
+ ObjCTypeQuals[objc_inout] = &PP.getIdentifierTable().get("inout");
+ ObjCTypeQuals[objc_oneway] = &PP.getIdentifierTable().get("oneway");
+ ObjCTypeQuals[objc_bycopy] = &PP.getIdentifierTable().get("bycopy");
+ ObjCTypeQuals[objc_byref] = &PP.getIdentifierTable().get("byref");
+ }
+
+ Ident_instancetype = nullptr;
+ Ident_final = nullptr;
+ Ident_sealed = nullptr;
+ Ident_override = nullptr;
+
+ Ident_super = &PP.getIdentifierTable().get("super");
+
+ if (getLangOpts().AltiVec) {
+ Ident_vector = &PP.getIdentifierTable().get("vector");
+ Ident_pixel = &PP.getIdentifierTable().get("pixel");
+ Ident_bool = &PP.getIdentifierTable().get("bool");
+ }
+
+ Ident_introduced = nullptr;
+ Ident_deprecated = nullptr;
+ Ident_obsoleted = nullptr;
+ Ident_unavailable = nullptr;
+
+ Ident__except = nullptr;
+
+ Ident__exception_code = Ident__exception_info = nullptr;
+ Ident__abnormal_termination = Ident___exception_code = nullptr;
+ Ident___exception_info = Ident___abnormal_termination = nullptr;
+ Ident_GetExceptionCode = Ident_GetExceptionInfo = nullptr;
+ Ident_AbnormalTermination = nullptr;
+
+ if(getLangOpts().Borland) {
+ Ident__exception_info = PP.getIdentifierInfo("_exception_info");
+ Ident___exception_info = PP.getIdentifierInfo("__exception_info");
+ Ident_GetExceptionInfo = PP.getIdentifierInfo("GetExceptionInformation");
+ Ident__exception_code = PP.getIdentifierInfo("_exception_code");
+ Ident___exception_code = PP.getIdentifierInfo("__exception_code");
+ Ident_GetExceptionCode = PP.getIdentifierInfo("GetExceptionCode");
+ Ident__abnormal_termination = PP.getIdentifierInfo("_abnormal_termination");
+ Ident___abnormal_termination = PP.getIdentifierInfo("__abnormal_termination");
+ Ident_AbnormalTermination = PP.getIdentifierInfo("AbnormalTermination");
+
+ PP.SetPoisonReason(Ident__exception_code,diag::err_seh___except_block);
+ PP.SetPoisonReason(Ident___exception_code,diag::err_seh___except_block);
+ PP.SetPoisonReason(Ident_GetExceptionCode,diag::err_seh___except_block);
+ PP.SetPoisonReason(Ident__exception_info,diag::err_seh___except_filter);
+ PP.SetPoisonReason(Ident___exception_info,diag::err_seh___except_filter);
+ PP.SetPoisonReason(Ident_GetExceptionInfo,diag::err_seh___except_filter);
+ PP.SetPoisonReason(Ident__abnormal_termination,diag::err_seh___finally_block);
+ PP.SetPoisonReason(Ident___abnormal_termination,diag::err_seh___finally_block);
+ PP.SetPoisonReason(Ident_AbnormalTermination,diag::err_seh___finally_block);
+ }
+
+ Actions.Initialize();
+
+ // Prime the lexer look-ahead.
+ ConsumeToken();
+}
+
+void Parser::LateTemplateParserCleanupCallback(void *P) {
+ // While this RAII helper doesn't bracket any actual work, the destructor will
+ // clean up annotations that were created during ActOnEndOfTranslationUnit
+ // when incremental processing is enabled.
+ DestroyTemplateIdAnnotationsRAIIObj CleanupRAII(((Parser *)P)->TemplateIds);
+}
+
+/// ParseTopLevelDecl - Parse one top-level declaration, return whatever the
+/// action tells us to. This returns true if the EOF was encountered.
+bool Parser::ParseTopLevelDecl(DeclGroupPtrTy &Result) {
+ DestroyTemplateIdAnnotationsRAIIObj CleanupRAII(TemplateIds);
+
+ // Skip over the EOF token, flagging end of previous input for incremental
+ // processing
+ if (PP.isIncrementalProcessingEnabled() && Tok.is(tok::eof))
+ ConsumeToken();
+
+ Result = DeclGroupPtrTy();
+ switch (Tok.getKind()) {
+ case tok::annot_pragma_unused:
+ HandlePragmaUnused();
+ return false;
+
+ case tok::annot_module_include:
+ Actions.ActOnModuleInclude(Tok.getLocation(),
+ reinterpret_cast<Module *>(
+ Tok.getAnnotationValue()));
+ ConsumeToken();
+ return false;
+
+ case tok::annot_module_begin:
+ Actions.ActOnModuleBegin(Tok.getLocation(), reinterpret_cast<Module *>(
+ Tok.getAnnotationValue()));
+ ConsumeToken();
+ return false;
+
+ case tok::annot_module_end:
+ Actions.ActOnModuleEnd(Tok.getLocation(), reinterpret_cast<Module *>(
+ Tok.getAnnotationValue()));
+ ConsumeToken();
+ return false;
+
+ case tok::eof:
+ // Late template parsing can begin.
+ if (getLangOpts().DelayedTemplateParsing)
+ Actions.SetLateTemplateParser(LateTemplateParserCallback,
+ PP.isIncrementalProcessingEnabled() ?
+ LateTemplateParserCleanupCallback : nullptr,
+ this);
+ if (!PP.isIncrementalProcessingEnabled())
+ Actions.ActOnEndOfTranslationUnit();
+ //else don't tell Sema that we ended parsing: more input might come.
+ return true;
+
+ default:
+ break;
+ }
+
+ ParsedAttributesWithRange attrs(AttrFactory);
+ MaybeParseCXX11Attributes(attrs);
+ MaybeParseMicrosoftAttributes(attrs);
+
+ Result = ParseExternalDeclaration(attrs);
+ return false;
+}
+
+/// ParseExternalDeclaration:
+///
+/// external-declaration: [C99 6.9], declaration: [C++ dcl.dcl]
+/// function-definition
+/// declaration
+/// [GNU] asm-definition
+/// [GNU] __extension__ external-declaration
+/// [OBJC] objc-class-definition
+/// [OBJC] objc-class-declaration
+/// [OBJC] objc-alias-declaration
+/// [OBJC] objc-protocol-definition
+/// [OBJC] objc-method-definition
+/// [OBJC] @end
+/// [C++] linkage-specification
+/// [GNU] asm-definition:
+/// simple-asm-expr ';'
+/// [C++11] empty-declaration
+/// [C++11] attribute-declaration
+///
+/// [C++11] empty-declaration:
+/// ';'
+///
+/// [C++0x/GNU] 'extern' 'template' declaration
+Parser::DeclGroupPtrTy
+Parser::ParseExternalDeclaration(ParsedAttributesWithRange &attrs,
+ ParsingDeclSpec *DS) {
+ DestroyTemplateIdAnnotationsRAIIObj CleanupRAII(TemplateIds);
+ ParenBraceBracketBalancer BalancerRAIIObj(*this);
+
+ if (PP.isCodeCompletionReached()) {
+ cutOffParsing();
+ return DeclGroupPtrTy();
+ }
+
+ Decl *SingleDecl = nullptr;
+ switch (Tok.getKind()) {
+ case tok::annot_pragma_vis:
+ HandlePragmaVisibility();
+ return DeclGroupPtrTy();
+ case tok::annot_pragma_pack:
+ HandlePragmaPack();
+ return DeclGroupPtrTy();
+ case tok::annot_pragma_msstruct:
+ HandlePragmaMSStruct();
+ return DeclGroupPtrTy();
+ case tok::annot_pragma_align:
+ HandlePragmaAlign();
+ return DeclGroupPtrTy();
+ case tok::annot_pragma_weak:
+ HandlePragmaWeak();
+ return DeclGroupPtrTy();
+ case tok::annot_pragma_weakalias:
+ HandlePragmaWeakAlias();
+ return DeclGroupPtrTy();
+ case tok::annot_pragma_redefine_extname:
+ HandlePragmaRedefineExtname();
+ return DeclGroupPtrTy();
+ case tok::annot_pragma_fp_contract:
+ HandlePragmaFPContract();
+ return DeclGroupPtrTy();
+ case tok::annot_pragma_opencl_extension:
+ HandlePragmaOpenCLExtension();
+ return DeclGroupPtrTy();
+ case tok::annot_pragma_openmp:
+ return ParseOpenMPDeclarativeDirective();
+ case tok::annot_pragma_ms_pointers_to_members:
+ HandlePragmaMSPointersToMembers();
+ return DeclGroupPtrTy();
+ case tok::annot_pragma_ms_vtordisp:
+ HandlePragmaMSVtorDisp();
+ return DeclGroupPtrTy();
+ case tok::annot_pragma_ms_pragma:
+ HandlePragmaMSPragma();
+ return DeclGroupPtrTy();
+ case tok::semi:
+ // Either a C++11 empty-declaration or attribute-declaration.
+ SingleDecl = Actions.ActOnEmptyDeclaration(getCurScope(),
+ attrs.getList(),
+ Tok.getLocation());
+ ConsumeExtraSemi(OutsideFunction);
+ break;
+ case tok::r_brace:
+ Diag(Tok, diag::err_extraneous_closing_brace);
+ ConsumeBrace();
+ return DeclGroupPtrTy();
+ case tok::eof:
+ Diag(Tok, diag::err_expected_external_declaration);
+ return DeclGroupPtrTy();
+ case tok::kw___extension__: {
+ // __extension__ silences extension warnings in the subexpression.
+ ExtensionRAIIObject O(Diags); // Use RAII to do this.
+ ConsumeToken();
+ return ParseExternalDeclaration(attrs);
+ }
+ case tok::kw_asm: {
+ ProhibitAttributes(attrs);
+
+ SourceLocation StartLoc = Tok.getLocation();
+ SourceLocation EndLoc;
+
+ ExprResult Result(ParseSimpleAsm(&EndLoc));
+
+ // Check if GNU-style InlineAsm is disabled.
+ // Empty asm string is allowed because it will not introduce
+ // any assembly code.
+ if (!(getLangOpts().GNUAsm || Result.isInvalid())) {
+ const auto *SL = cast<StringLiteral>(Result.get());
+ if (!SL->getString().trim().empty())
+ Diag(StartLoc, diag::err_gnu_inline_asm_disabled);
+ }
+
+ ExpectAndConsume(tok::semi, diag::err_expected_after,
+ "top-level asm block");
+
+ if (Result.isInvalid())
+ return DeclGroupPtrTy();
+ SingleDecl = Actions.ActOnFileScopeAsmDecl(Result.get(), StartLoc, EndLoc);
+ break;
+ }
+ case tok::at:
+ return ParseObjCAtDirectives();
+ case tok::minus:
+ case tok::plus:
+ if (!getLangOpts().ObjC1) {
+ Diag(Tok, diag::err_expected_external_declaration);
+ ConsumeToken();
+ return DeclGroupPtrTy();
+ }
+ SingleDecl = ParseObjCMethodDefinition();
+ break;
+ case tok::code_completion:
+ Actions.CodeCompleteOrdinaryName(getCurScope(),
+ CurParsedObjCImpl? Sema::PCC_ObjCImplementation
+ : Sema::PCC_Namespace);
+ cutOffParsing();
+ return DeclGroupPtrTy();
+ case tok::kw_using:
+ case tok::kw_namespace:
+ case tok::kw_typedef:
+ case tok::kw_template:
+ case tok::kw_export: // As in 'export template'
+ case tok::kw_static_assert:
+ case tok::kw__Static_assert:
+ // A function definition cannot start with any of these keywords.
+ {
+ SourceLocation DeclEnd;
+ return ParseDeclaration(Declarator::FileContext, DeclEnd, attrs);
+ }
+
+ case tok::kw_static:
+ // Parse (then ignore) 'static' prior to a template instantiation. This is
+ // a GCC extension that we intentionally do not support.
+ if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_template)) {
+ Diag(ConsumeToken(), diag::warn_static_inline_explicit_inst_ignored)
+ << 0;
+ SourceLocation DeclEnd;
+ return ParseDeclaration(Declarator::FileContext, DeclEnd, attrs);
+ }
+ goto dont_know;
+
+ case tok::kw_inline:
+ if (getLangOpts().CPlusPlus) {
+ tok::TokenKind NextKind = NextToken().getKind();
+
+ // Inline namespaces. Allowed as an extension even in C++03.
+ if (NextKind == tok::kw_namespace) {
+ SourceLocation DeclEnd;
+ return ParseDeclaration(Declarator::FileContext, DeclEnd, attrs);
+ }
+
+ // Parse (then ignore) 'inline' prior to a template instantiation. This is
+ // a GCC extension that we intentionally do not support.
+ if (NextKind == tok::kw_template) {
+ Diag(ConsumeToken(), diag::warn_static_inline_explicit_inst_ignored)
+ << 1;
+ SourceLocation DeclEnd;
+ return ParseDeclaration(Declarator::FileContext, DeclEnd, attrs);
+ }
+ }
+ goto dont_know;
+
+ case tok::kw_extern:
+ if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_template)) {
+ // Extern templates
+ SourceLocation ExternLoc = ConsumeToken();
+ SourceLocation TemplateLoc = ConsumeToken();
+ Diag(ExternLoc, getLangOpts().CPlusPlus11 ?
+ diag::warn_cxx98_compat_extern_template :
+ diag::ext_extern_template) << SourceRange(ExternLoc, TemplateLoc);
+ SourceLocation DeclEnd;
+ return Actions.ConvertDeclToDeclGroup(
+ ParseExplicitInstantiation(Declarator::FileContext,
+ ExternLoc, TemplateLoc, DeclEnd));
+ }
+ goto dont_know;
+
+ case tok::kw___if_exists:
+ case tok::kw___if_not_exists:
+ ParseMicrosoftIfExistsExternalDeclaration();
+ return DeclGroupPtrTy();
+
+ default:
+ dont_know:
+ // We can't tell whether this is a function-definition or declaration yet.
+ return ParseDeclarationOrFunctionDefinition(attrs, DS);
+ }
+
+ // This routine returns a DeclGroup, if the thing we parsed only contains a
+ // single decl, convert it now.
+ return Actions.ConvertDeclToDeclGroup(SingleDecl);
+}
+
+/// \brief Determine whether the current token, if it occurs after a
+/// declarator, continues a declaration or declaration list.
+bool Parser::isDeclarationAfterDeclarator() {
+ // Check for '= delete' or '= default'
+ if (getLangOpts().CPlusPlus && Tok.is(tok::equal)) {
+ const Token &KW = NextToken();
+ if (KW.is(tok::kw_default) || KW.is(tok::kw_delete))
+ return false;
+ }
+
+ return Tok.is(tok::equal) || // int X()= -> not a function def
+ Tok.is(tok::comma) || // int X(), -> not a function def
+ Tok.is(tok::semi) || // int X(); -> not a function def
+ Tok.is(tok::kw_asm) || // int X() __asm__ -> not a function def
+ Tok.is(tok::kw___attribute) || // int X() __attr__ -> not a function def
+ (getLangOpts().CPlusPlus &&
+ Tok.is(tok::l_paren)); // int X(0) -> not a function def [C++]
+}
+
+/// \brief Determine whether the current token, if it occurs after a
+/// declarator, indicates the start of a function definition.
+bool Parser::isStartOfFunctionDefinition(const ParsingDeclarator &Declarator) {
+ assert(Declarator.isFunctionDeclarator() && "Isn't a function declarator");
+ if (Tok.is(tok::l_brace)) // int X() {}
+ return true;
+
+ // Handle K&R C argument lists: int X(f) int f; {}
+ if (!getLangOpts().CPlusPlus &&
+ Declarator.getFunctionTypeInfo().isKNRPrototype())
+ return isDeclarationSpecifier();
+
+ if (getLangOpts().CPlusPlus && Tok.is(tok::equal)) {
+ const Token &KW = NextToken();
+ return KW.is(tok::kw_default) || KW.is(tok::kw_delete);
+ }
+
+ return Tok.is(tok::colon) || // X() : Base() {} (used for ctors)
+ Tok.is(tok::kw_try); // X() try { ... }
+}
+
+/// ParseDeclarationOrFunctionDefinition - Parse either a function-definition or
+/// a declaration. We can't tell which we have until we read up to the
+/// compound-statement in function-definition. TemplateParams, if
+/// non-NULL, provides the template parameters when we're parsing a
+/// C++ template-declaration.
+///
+/// function-definition: [C99 6.9.1]
+/// decl-specs declarator declaration-list[opt] compound-statement
+/// [C90] function-definition: [C99 6.7.1] - implicit int result
+/// [C90] decl-specs[opt] declarator declaration-list[opt] compound-statement
+///
+/// declaration: [C99 6.7]
+/// declaration-specifiers init-declarator-list[opt] ';'
+/// [!C99] init-declarator-list ';' [TODO: warn in c99 mode]
+/// [OMP] threadprivate-directive [TODO]
+///
+Parser::DeclGroupPtrTy
+Parser::ParseDeclOrFunctionDefInternal(ParsedAttributesWithRange &attrs,
+ ParsingDeclSpec &DS,
+ AccessSpecifier AS) {
+ // Parse the common declaration-specifiers piece.
+ ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS, DSC_top_level);
+
+ // If we had a free-standing type definition with a missing semicolon, we
+ // may get this far before the problem becomes obvious.
+ if (DS.hasTagDefinition() &&
+ DiagnoseMissingSemiAfterTagDefinition(DS, AS, DSC_top_level))
+ return DeclGroupPtrTy();
+
+ // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
+ // declaration-specifiers init-declarator-list[opt] ';'
+ if (Tok.is(tok::semi)) {
+ ProhibitAttributes(attrs);
+ ConsumeToken();
+ Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS, DS);
+ DS.complete(TheDecl);
+ return Actions.ConvertDeclToDeclGroup(TheDecl);
+ }
+
+ DS.takeAttributesFrom(attrs);
+
+ // ObjC2 allows prefix attributes on class interfaces and protocols.
+ // FIXME: This still needs better diagnostics. We should only accept
+ // attributes here, no types, etc.
+ if (getLangOpts().ObjC2 && Tok.is(tok::at)) {
+ SourceLocation AtLoc = ConsumeToken(); // the "@"
+ if (!Tok.isObjCAtKeyword(tok::objc_interface) &&
+ !Tok.isObjCAtKeyword(tok::objc_protocol)) {
+ Diag(Tok, diag::err_objc_unexpected_attr);
+ SkipUntil(tok::semi); // FIXME: better skip?
+ return DeclGroupPtrTy();
+ }
+
+ DS.abort();
+
+ const char *PrevSpec = nullptr;
+ unsigned DiagID;
+ if (DS.SetTypeSpecType(DeclSpec::TST_unspecified, AtLoc, PrevSpec, DiagID,
+ Actions.getASTContext().getPrintingPolicy()))
+ Diag(AtLoc, DiagID) << PrevSpec;
+
+ if (Tok.isObjCAtKeyword(tok::objc_protocol))
+ return ParseObjCAtProtocolDeclaration(AtLoc, DS.getAttributes());
+
+ return Actions.ConvertDeclToDeclGroup(
+ ParseObjCAtInterfaceDeclaration(AtLoc, DS.getAttributes()));
+ }
+
+ // If the declspec consisted only of 'extern' and we have a string
+ // literal following it, this must be a C++ linkage specifier like
+ // 'extern "C"'.
+ if (getLangOpts().CPlusPlus && isTokenStringLiteral() &&
+ DS.getStorageClassSpec() == DeclSpec::SCS_extern &&
+ DS.getParsedSpecifiers() == DeclSpec::PQ_StorageClassSpecifier) {
+ Decl *TheDecl = ParseLinkage(DS, Declarator::FileContext);
+ return Actions.ConvertDeclToDeclGroup(TheDecl);
+ }
+
+ return ParseDeclGroup(DS, Declarator::FileContext);
+}
+
+Parser::DeclGroupPtrTy
+Parser::ParseDeclarationOrFunctionDefinition(ParsedAttributesWithRange &attrs,
+ ParsingDeclSpec *DS,
+ AccessSpecifier AS) {
+ if (DS) {
+ return ParseDeclOrFunctionDefInternal(attrs, *DS, AS);
+ } else {
+ ParsingDeclSpec PDS(*this);
+ // Must temporarily exit the objective-c container scope for
+ // parsing c constructs and re-enter objc container scope
+ // afterwards.
+ ObjCDeclContextSwitch ObjCDC(*this);
+
+ return ParseDeclOrFunctionDefInternal(attrs, PDS, AS);
+ }
+}
+
+/// ParseFunctionDefinition - We parsed and verified that the specified
+/// Declarator is well formed. If this is a K&R-style function, read the
+/// parameters declaration-list, then start the compound-statement.
+///
+/// function-definition: [C99 6.9.1]
+/// decl-specs declarator declaration-list[opt] compound-statement
+/// [C90] function-definition: [C99 6.7.1] - implicit int result
+/// [C90] decl-specs[opt] declarator declaration-list[opt] compound-statement
+/// [C++] function-definition: [C++ 8.4]
+/// decl-specifier-seq[opt] declarator ctor-initializer[opt]
+/// function-body
+/// [C++] function-definition: [C++ 8.4]
+/// decl-specifier-seq[opt] declarator function-try-block
+///
+Decl *Parser::ParseFunctionDefinition(ParsingDeclarator &D,
+ const ParsedTemplateInfo &TemplateInfo,
+ LateParsedAttrList *LateParsedAttrs) {
+ // Poison SEH identifiers so they are flagged as illegal in function bodies.
+ PoisonSEHIdentifiersRAIIObject PoisonSEHIdentifiers(*this, true);
+ const DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
+
+ // If this is C90 and the declspecs were completely missing, fudge in an
+ // implicit int. We do this here because this is the only place where
+ // declaration-specifiers are completely optional in the grammar.
+ if (getLangOpts().ImplicitInt && D.getDeclSpec().isEmpty()) {
+ const char *PrevSpec;
+ unsigned DiagID;
+ const PrintingPolicy &Policy = Actions.getASTContext().getPrintingPolicy();
+ D.getMutableDeclSpec().SetTypeSpecType(DeclSpec::TST_int,
+ D.getIdentifierLoc(),
+ PrevSpec, DiagID,
+ Policy);
+ D.SetRangeBegin(D.getDeclSpec().getSourceRange().getBegin());
+ }
+
+ // If this declaration was formed with a K&R-style identifier list for the
+ // arguments, parse declarations for all of the args next.
+ // int foo(a,b) int a; float b; {}
+ if (FTI.isKNRPrototype())
+ ParseKNRParamDeclarations(D);
+
+ // We should have either an opening brace or, in a C++ constructor,
+ // we may have a colon.
+ if (Tok.isNot(tok::l_brace) &&
+ (!getLangOpts().CPlusPlus ||
+ (Tok.isNot(tok::colon) && Tok.isNot(tok::kw_try) &&
+ Tok.isNot(tok::equal)))) {
+ Diag(Tok, diag::err_expected_fn_body);
+
+ // Skip over garbage, until we get to '{'. Don't eat the '{'.
+ SkipUntil(tok::l_brace, StopAtSemi | StopBeforeMatch);
+
+ // If we didn't find the '{', bail out.
+ if (Tok.isNot(tok::l_brace))
+ return nullptr;
+ }
+
+ // Check to make sure that any normal attributes are allowed to be on
+ // a definition. Late parsed attributes are checked at the end.
+ if (Tok.isNot(tok::equal)) {
+ AttributeList *DtorAttrs = D.getAttributes();
+ while (DtorAttrs) {
+ if (DtorAttrs->isKnownToGCC() &&
+ !DtorAttrs->isCXX11Attribute()) {
+ Diag(DtorAttrs->getLoc(), diag::warn_attribute_on_function_definition)
+ << DtorAttrs->getName();
+ }
+ DtorAttrs = DtorAttrs->getNext();
+ }
+ }
+
+ // In delayed template parsing mode, for function template we consume the
+ // tokens and store them for late parsing at the end of the translation unit.
+ if (getLangOpts().DelayedTemplateParsing && Tok.isNot(tok::equal) &&
+ TemplateInfo.Kind == ParsedTemplateInfo::Template &&
+ Actions.canDelayFunctionBody(D)) {
+ MultiTemplateParamsArg TemplateParameterLists(*TemplateInfo.TemplateParams);
+
+ ParseScope BodyScope(this, Scope::FnScope|Scope::DeclScope);
+ Scope *ParentScope = getCurScope()->getParent();
+
+ D.setFunctionDefinitionKind(FDK_Definition);
+ Decl *DP = Actions.HandleDeclarator(ParentScope, D,
+ TemplateParameterLists);
+ D.complete(DP);
+ D.getMutableDeclSpec().abort();
+
+ CachedTokens Toks;
+ LexTemplateFunctionForLateParsing(Toks);
+
+ if (DP) {
+ FunctionDecl *FnD = DP->getAsFunction();
+ Actions.CheckForFunctionRedefinition(FnD);
+ Actions.MarkAsLateParsedTemplate(FnD, DP, Toks);
+ }
+ return DP;
+ }
+ else if (CurParsedObjCImpl &&
+ !TemplateInfo.TemplateParams &&
+ (Tok.is(tok::l_brace) || Tok.is(tok::kw_try) ||
+ Tok.is(tok::colon)) &&
+ Actions.CurContext->isTranslationUnit()) {
+ ParseScope BodyScope(this, Scope::FnScope|Scope::DeclScope);
+ Scope *ParentScope = getCurScope()->getParent();
+
+ D.setFunctionDefinitionKind(FDK_Definition);
+ Decl *FuncDecl = Actions.HandleDeclarator(ParentScope, D,
+ MultiTemplateParamsArg());
+ D.complete(FuncDecl);
+ D.getMutableDeclSpec().abort();
+ if (FuncDecl) {
+ // Consume the tokens and store them for later parsing.
+ StashAwayMethodOrFunctionBodyTokens(FuncDecl);
+ CurParsedObjCImpl->HasCFunction = true;
+ return FuncDecl;
+ }
+ // FIXME: Should we really fall through here?
+ }
+
+ // Enter a scope for the function body.
+ ParseScope BodyScope(this, Scope::FnScope|Scope::DeclScope);
+
+ // Tell the actions module that we have entered a function definition with the
+ // specified Declarator for the function.
+ Decl *Res = TemplateInfo.TemplateParams?
+ Actions.ActOnStartOfFunctionTemplateDef(getCurScope(),
+ *TemplateInfo.TemplateParams, D)
+ : Actions.ActOnStartOfFunctionDef(getCurScope(), D);
+
+ // Break out of the ParsingDeclarator context before we parse the body.
+ D.complete(Res);
+
+ // Break out of the ParsingDeclSpec context, too. This const_cast is
+ // safe because we're always the sole owner.
+ D.getMutableDeclSpec().abort();
+
+ if (TryConsumeToken(tok::equal)) {
+ assert(getLangOpts().CPlusPlus && "Only C++ function definitions have '='");
+
+ bool Delete = false;
+ SourceLocation KWLoc;
+ if (TryConsumeToken(tok::kw_delete, KWLoc)) {
+ Diag(KWLoc, getLangOpts().CPlusPlus11
+ ? diag::warn_cxx98_compat_deleted_function
+ : diag::ext_deleted_function);
+ Actions.SetDeclDeleted(Res, KWLoc);
+ Delete = true;
+ } else if (TryConsumeToken(tok::kw_default, KWLoc)) {
+ Diag(KWLoc, getLangOpts().CPlusPlus11
+ ? diag::warn_cxx98_compat_defaulted_function
+ : diag::ext_defaulted_function);
+ Actions.SetDeclDefaulted(Res, KWLoc);
+ } else {
+ llvm_unreachable("function definition after = not 'delete' or 'default'");
+ }
+
+ if (Tok.is(tok::comma)) {
+ Diag(KWLoc, diag::err_default_delete_in_multiple_declaration)
+ << Delete;
+ SkipUntil(tok::semi);
+ } else if (ExpectAndConsume(tok::semi, diag::err_expected_after,
+ Delete ? "delete" : "default")) {
+ SkipUntil(tok::semi);
+ }
+
+ Stmt *GeneratedBody = Res ? Res->getBody() : nullptr;
+ Actions.ActOnFinishFunctionBody(Res, GeneratedBody, false);
+ return Res;
+ }
+
+ if (Tok.is(tok::kw_try))
+ return ParseFunctionTryBlock(Res, BodyScope);
+
+ // If we have a colon, then we're probably parsing a C++
+ // ctor-initializer.
+ if (Tok.is(tok::colon)) {
+ ParseConstructorInitializer(Res);
+
+ // Recover from error.
+ if (!Tok.is(tok::l_brace)) {
+ BodyScope.Exit();
+ Actions.ActOnFinishFunctionBody(Res, nullptr);
+ return Res;
+ }
+ } else
+ Actions.ActOnDefaultCtorInitializers(Res);
+
+ // Late attributes are parsed in the same scope as the function body.
+ if (LateParsedAttrs)
+ ParseLexedAttributeList(*LateParsedAttrs, Res, false, true);
+
+ return ParseFunctionStatementBody(Res, BodyScope);
+}
+
+/// ParseKNRParamDeclarations - Parse 'declaration-list[opt]' which provides
+/// types for a function with a K&R-style identifier list for arguments.
+void Parser::ParseKNRParamDeclarations(Declarator &D) {
+ // We know that the top-level of this declarator is a function.
+ DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
+
+ // Enter function-declaration scope, limiting any declarators to the
+ // function prototype scope, including parameter declarators.
+ ParseScope PrototypeScope(this, Scope::FunctionPrototypeScope |
+ Scope::FunctionDeclarationScope | Scope::DeclScope);
+
+ // Read all the argument declarations.
+ while (isDeclarationSpecifier()) {
+ SourceLocation DSStart = Tok.getLocation();
+
+ // Parse the common declaration-specifiers piece.
+ DeclSpec DS(AttrFactory);
+ ParseDeclarationSpecifiers(DS);
+
+ // C99 6.9.1p6: 'each declaration in the declaration list shall have at
+ // least one declarator'.
+ // NOTE: GCC just makes this an ext-warn. It's not clear what it does with
+ // the declarations though. It's trivial to ignore them, really hard to do
+ // anything else with them.
+ if (TryConsumeToken(tok::semi)) {
+ Diag(DSStart, diag::err_declaration_does_not_declare_param);
+ continue;
+ }
+
+ // C99 6.9.1p6: Declarations shall contain no storage-class specifiers other
+ // than register.
+ if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
+ DS.getStorageClassSpec() != DeclSpec::SCS_register) {
+ Diag(DS.getStorageClassSpecLoc(),
+ diag::err_invalid_storage_class_in_func_decl);
+ DS.ClearStorageClassSpecs();
+ }
+ if (DS.getThreadStorageClassSpec() != DeclSpec::TSCS_unspecified) {
+ Diag(DS.getThreadStorageClassSpecLoc(),
+ diag::err_invalid_storage_class_in_func_decl);
+ DS.ClearStorageClassSpecs();
+ }
+
+ // Parse the first declarator attached to this declspec.
+ Declarator ParmDeclarator(DS, Declarator::KNRTypeListContext);
+ ParseDeclarator(ParmDeclarator);
+
+ // Handle the full declarator list.
+ while (1) {
+ // If attributes are present, parse them.
+ MaybeParseGNUAttributes(ParmDeclarator);
+
+ // Ask the actions module to compute the type for this declarator.
+ Decl *Param =
+ Actions.ActOnParamDeclarator(getCurScope(), ParmDeclarator);
+
+ if (Param &&
+ // A missing identifier has already been diagnosed.
+ ParmDeclarator.getIdentifier()) {
+
+ // Scan the argument list looking for the correct param to apply this
+ // type.
+ for (unsigned i = 0; ; ++i) {
+ // C99 6.9.1p6: those declarators shall declare only identifiers from
+ // the identifier list.
+ if (i == FTI.NumParams) {
+ Diag(ParmDeclarator.getIdentifierLoc(), diag::err_no_matching_param)
+ << ParmDeclarator.getIdentifier();
+ break;
+ }
+
+ if (FTI.Params[i].Ident == ParmDeclarator.getIdentifier()) {
+ // Reject redefinitions of parameters.
+ if (FTI.Params[i].Param) {
+ Diag(ParmDeclarator.getIdentifierLoc(),
+ diag::err_param_redefinition)
+ << ParmDeclarator.getIdentifier();
+ } else {
+ FTI.Params[i].Param = Param;
+ }
+ break;
+ }
+ }
+ }
+
+ // If we don't have a comma, it is either the end of the list (a ';') or
+ // an error, bail out.
+ if (Tok.isNot(tok::comma))
+ break;
+
+ ParmDeclarator.clear();
+
+ // Consume the comma.
+ ParmDeclarator.setCommaLoc(ConsumeToken());
+
+ // Parse the next declarator.
+ ParseDeclarator(ParmDeclarator);
+ }
+
+ // Consume ';' and continue parsing.
+ if (!ExpectAndConsumeSemi(diag::err_expected_semi_declaration))
+ continue;
+
+ // Otherwise recover by skipping to next semi or mandatory function body.
+ if (SkipUntil(tok::l_brace, StopAtSemi | StopBeforeMatch))
+ break;
+ TryConsumeToken(tok::semi);
+ }
+
+ // The actions module must verify that all arguments were declared.
+ Actions.ActOnFinishKNRParamDeclarations(getCurScope(), D, Tok.getLocation());
+}
+
+
+/// ParseAsmStringLiteral - This is just a normal string-literal, but is not
+/// allowed to be a wide string, and is not subject to character translation.
+///
+/// [GNU] asm-string-literal:
+/// string-literal
+///
+ExprResult Parser::ParseAsmStringLiteral() {
+ if (!isTokenStringLiteral()) {
+ Diag(Tok, diag::err_expected_string_literal)
+ << /*Source='in...'*/0 << "'asm'";
+ return ExprError();
+ }
+
+ ExprResult AsmString(ParseStringLiteralExpression());
+ if (!AsmString.isInvalid()) {
+ const auto *SL = cast<StringLiteral>(AsmString.get());
+ if (!SL->isAscii()) {
+ Diag(Tok, diag::err_asm_operand_wide_string_literal)
+ << SL->isWide()
+ << SL->getSourceRange();
+ return ExprError();
+ }
+ }
+ return AsmString;
+}
+
+/// ParseSimpleAsm
+///
+/// [GNU] simple-asm-expr:
+/// 'asm' '(' asm-string-literal ')'
+///
+ExprResult Parser::ParseSimpleAsm(SourceLocation *EndLoc) {
+ assert(Tok.is(tok::kw_asm) && "Not an asm!");
+ SourceLocation Loc = ConsumeToken();
+
+ if (Tok.is(tok::kw_volatile)) {
+ // Remove from the end of 'asm' to the end of 'volatile'.
+ SourceRange RemovalRange(PP.getLocForEndOfToken(Loc),
+ PP.getLocForEndOfToken(Tok.getLocation()));
+
+ Diag(Tok, diag::warn_file_asm_volatile)
+ << FixItHint::CreateRemoval(RemovalRange);
+ ConsumeToken();
+ }
+
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ if (T.consumeOpen()) {
+ Diag(Tok, diag::err_expected_lparen_after) << "asm";
+ return ExprError();
+ }
+
+ ExprResult Result(ParseAsmStringLiteral());
+
+ if (!Result.isInvalid()) {
+ // Close the paren and get the location of the end bracket
+ T.consumeClose();
+ if (EndLoc)
+ *EndLoc = T.getCloseLocation();
+ } else if (SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch)) {
+ if (EndLoc)
+ *EndLoc = Tok.getLocation();
+ ConsumeParen();
+ }
+
+ return Result;
+}
+
+/// \brief Get the TemplateIdAnnotation from the token and put it in the
+/// cleanup pool so that it gets destroyed when parsing the current top level
+/// declaration is finished.
+TemplateIdAnnotation *Parser::takeTemplateIdAnnotation(const Token &tok) {
+ assert(tok.is(tok::annot_template_id) && "Expected template-id token");
+ TemplateIdAnnotation *
+ Id = static_cast<TemplateIdAnnotation *>(tok.getAnnotationValue());
+ return Id;
+}
+
+void Parser::AnnotateScopeToken(CXXScopeSpec &SS, bool IsNewAnnotation) {
+ // Push the current token back into the token stream (or revert it if it is
+ // cached) and use an annotation scope token for current token.
+ if (PP.isBacktrackEnabled())
+ PP.RevertCachedTokens(1);
+ else
+ PP.EnterToken(Tok);
+ Tok.setKind(tok::annot_cxxscope);
+ Tok.setAnnotationValue(Actions.SaveNestedNameSpecifierAnnotation(SS));
+ Tok.setAnnotationRange(SS.getRange());
+
+ // In case the tokens were cached, have Preprocessor replace them
+ // with the annotation token. We don't need to do this if we've
+ // just reverted back to a prior state.
+ if (IsNewAnnotation)
+ PP.AnnotateCachedTokens(Tok);
+}
+
+/// \brief Attempt to classify the name at the current token position. This may
+/// form a type, scope or primary expression annotation, or replace the token
+/// with a typo-corrected keyword. This is only appropriate when the current
+/// name must refer to an entity which has already been declared.
+///
+/// \param IsAddressOfOperand Must be \c true if the name is preceded by an '&'
+/// and might possibly have a dependent nested name specifier.
+/// \param CCC Indicates how to perform typo-correction for this name. If NULL,
+/// no typo correction will be performed.
+Parser::AnnotatedNameKind
+Parser::TryAnnotateName(bool IsAddressOfOperand,
+ std::unique_ptr<CorrectionCandidateCallback> CCC) {
+ assert(Tok.is(tok::identifier) || Tok.is(tok::annot_cxxscope));
+
+ const bool EnteringContext = false;
+ const bool WasScopeAnnotation = Tok.is(tok::annot_cxxscope);
+
+ CXXScopeSpec SS;
+ if (getLangOpts().CPlusPlus &&
+ ParseOptionalCXXScopeSpecifier(SS, ParsedType(), EnteringContext))
+ return ANK_Error;
+
+ if (Tok.isNot(tok::identifier) || SS.isInvalid()) {
+ if (TryAnnotateTypeOrScopeTokenAfterScopeSpec(EnteringContext, false, SS,
+ !WasScopeAnnotation))
+ return ANK_Error;
+ return ANK_Unresolved;
+ }
+
+ IdentifierInfo *Name = Tok.getIdentifierInfo();
+ SourceLocation NameLoc = Tok.getLocation();
+
+ // FIXME: Move the tentative declaration logic into ClassifyName so we can
+ // typo-correct to tentatively-declared identifiers.
+ if (isTentativelyDeclared(Name)) {
+ // Identifier has been tentatively declared, and thus cannot be resolved as
+ // an expression. Fall back to annotating it as a type.
+ if (TryAnnotateTypeOrScopeTokenAfterScopeSpec(EnteringContext, false, SS,
+ !WasScopeAnnotation))
+ return ANK_Error;
+ return Tok.is(tok::annot_typename) ? ANK_Success : ANK_TentativeDecl;
+ }
+
+ Token Next = NextToken();
+
+ // Look up and classify the identifier. We don't perform any typo-correction
+ // after a scope specifier, because in general we can't recover from typos
+ // there (eg, after correcting 'A::tempalte B<X>::C' [sic], we would need to
+ // jump back into scope specifier parsing).
+ Sema::NameClassification Classification = Actions.ClassifyName(
+ getCurScope(), SS, Name, NameLoc, Next, IsAddressOfOperand,
+ SS.isEmpty() ? std::move(CCC) : nullptr);
+
+ switch (Classification.getKind()) {
+ case Sema::NC_Error:
+ return ANK_Error;
+
+ case Sema::NC_Keyword:
+ // The identifier was typo-corrected to a keyword.
+ Tok.setIdentifierInfo(Name);
+ Tok.setKind(Name->getTokenID());
+ PP.TypoCorrectToken(Tok);
+ if (SS.isNotEmpty())
+ AnnotateScopeToken(SS, !WasScopeAnnotation);
+ // We've "annotated" this as a keyword.
+ return ANK_Success;
+
+ case Sema::NC_Unknown:
+ // It's not something we know about. Leave it unannotated.
+ break;
+
+ case Sema::NC_Type:
+ Tok.setKind(tok::annot_typename);
+ setTypeAnnotation(Tok, Classification.getType());
+ Tok.setAnnotationEndLoc(NameLoc);
+ if (SS.isNotEmpty())
+ Tok.setLocation(SS.getBeginLoc());
+ PP.AnnotateCachedTokens(Tok);
+ return ANK_Success;
+
+ case Sema::NC_Expression:
+ Tok.setKind(tok::annot_primary_expr);
+ setExprAnnotation(Tok, Classification.getExpression());
+ Tok.setAnnotationEndLoc(NameLoc);
+ if (SS.isNotEmpty())
+ Tok.setLocation(SS.getBeginLoc());
+ PP.AnnotateCachedTokens(Tok);
+ return ANK_Success;
+
+ case Sema::NC_TypeTemplate:
+ if (Next.isNot(tok::less)) {
+ // This may be a type template being used as a template template argument.
+ if (SS.isNotEmpty())
+ AnnotateScopeToken(SS, !WasScopeAnnotation);
+ return ANK_TemplateName;
+ }
+ // Fall through.
+ case Sema::NC_VarTemplate:
+ case Sema::NC_FunctionTemplate: {
+ // We have a type, variable or function template followed by '<'.
+ ConsumeToken();
+ UnqualifiedId Id;
+ Id.setIdentifier(Name, NameLoc);
+ if (AnnotateTemplateIdToken(
+ TemplateTy::make(Classification.getTemplateName()),
+ Classification.getTemplateNameKind(), SS, SourceLocation(), Id))
+ return ANK_Error;
+ return ANK_Success;
+ }
+
+ case Sema::NC_NestedNameSpecifier:
+ llvm_unreachable("already parsed nested name specifier");
+ }
+
+ // Unable to classify the name, but maybe we can annotate a scope specifier.
+ if (SS.isNotEmpty())
+ AnnotateScopeToken(SS, !WasScopeAnnotation);
+ return ANK_Unresolved;
+}
+
+bool Parser::TryKeywordIdentFallback(bool DisableKeyword) {
+ assert(Tok.isNot(tok::identifier));
+ Diag(Tok, diag::ext_keyword_as_ident)
+ << PP.getSpelling(Tok)
+ << DisableKeyword;
+ if (DisableKeyword)
+ Tok.getIdentifierInfo()->RevertTokenIDToIdentifier();
+ Tok.setKind(tok::identifier);
+ return true;
+}
+
+/// TryAnnotateTypeOrScopeToken - If the current token position is on a
+/// typename (possibly qualified in C++) or a C++ scope specifier not followed
+/// by a typename, TryAnnotateTypeOrScopeToken will replace one or more tokens
+/// with a single annotation token representing the typename or C++ scope
+/// respectively.
+/// This simplifies handling of C++ scope specifiers and allows efficient
+/// backtracking without the need to re-parse and resolve nested-names and
+/// typenames.
+/// It will mainly be called when we expect to treat identifiers as typenames
+/// (if they are typenames). For example, in C we do not expect identifiers
+/// inside expressions to be treated as typenames so it will not be called
+/// for expressions in C.
+/// The benefit for C/ObjC is that a typename will be annotated and
+/// Actions.getTypeName will not be needed to be called again (e.g. getTypeName
+/// will not be called twice, once to check whether we have a declaration
+/// specifier, and another one to get the actual type inside
+/// ParseDeclarationSpecifiers).
+///
+/// This returns true if an error occurred.
+///
+/// Note that this routine emits an error if you call it with ::new or ::delete
+/// as the current tokens, so only call it in contexts where these are invalid.
+bool Parser::TryAnnotateTypeOrScopeToken(bool EnteringContext, bool NeedType) {
+ assert((Tok.is(tok::identifier) || Tok.is(tok::coloncolon) ||
+ Tok.is(tok::kw_typename) || Tok.is(tok::annot_cxxscope) ||
+ Tok.is(tok::kw_decltype) || Tok.is(tok::annot_template_id) ||
+ Tok.is(tok::kw___super)) &&
+ "Cannot be a type or scope token!");
+
+ if (Tok.is(tok::kw_typename)) {
+ // MSVC lets you do stuff like:
+ // typename typedef T_::D D;
+ //
+ // We will consume the typedef token here and put it back after we have
+ // parsed the first identifier, transforming it into something more like:
+ // typename T_::D typedef D;
+ if (getLangOpts().MSVCCompat && NextToken().is(tok::kw_typedef)) {
+ Token TypedefToken;
+ PP.Lex(TypedefToken);
+ bool Result = TryAnnotateTypeOrScopeToken(EnteringContext, NeedType);
+ PP.EnterToken(Tok);
+ Tok = TypedefToken;
+ if (!Result)
+ Diag(Tok.getLocation(), diag::warn_expected_qualified_after_typename);
+ return Result;
+ }
+
+ // Parse a C++ typename-specifier, e.g., "typename T::type".
+ //
+ // typename-specifier:
+ // 'typename' '::' [opt] nested-name-specifier identifier
+ // 'typename' '::' [opt] nested-name-specifier template [opt]
+ // simple-template-id
+ SourceLocation TypenameLoc = ConsumeToken();
+ CXXScopeSpec SS;
+ if (ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/ParsedType(),
+ /*EnteringContext=*/false,
+ nullptr, /*IsTypename*/ true))
+ return true;
+ if (!SS.isSet()) {
+ if (Tok.is(tok::identifier) || Tok.is(tok::annot_template_id) ||
+ Tok.is(tok::annot_decltype)) {
+ // Attempt to recover by skipping the invalid 'typename'
+ if (Tok.is(tok::annot_decltype) ||
+ (!TryAnnotateTypeOrScopeToken(EnteringContext, NeedType) &&
+ Tok.isAnnotation())) {
+ unsigned DiagID = diag::err_expected_qualified_after_typename;
+ // MS compatibility: MSVC permits using known types with typename.
+ // e.g. "typedef typename T* pointer_type"
+ if (getLangOpts().MicrosoftExt)
+ DiagID = diag::warn_expected_qualified_after_typename;
+ Diag(Tok.getLocation(), DiagID);
+ return false;
+ }
+ }
+
+ Diag(Tok.getLocation(), diag::err_expected_qualified_after_typename);
+ return true;
+ }
+
+ TypeResult Ty;
+ if (Tok.is(tok::identifier)) {
+ // FIXME: check whether the next token is '<', first!
+ Ty = Actions.ActOnTypenameType(getCurScope(), TypenameLoc, SS,
+ *Tok.getIdentifierInfo(),
+ Tok.getLocation());
+ } else if (Tok.is(tok::annot_template_id)) {
+ TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
+ if (TemplateId->Kind != TNK_Type_template &&
+ TemplateId->Kind != TNK_Dependent_template_name) {
+ Diag(Tok, diag::err_typename_refers_to_non_type_template)
+ << Tok.getAnnotationRange();
+ return true;
+ }
+
+ ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
+ TemplateId->NumArgs);
+
+ Ty = Actions.ActOnTypenameType(getCurScope(), TypenameLoc, SS,
+ TemplateId->TemplateKWLoc,
+ TemplateId->Template,
+ TemplateId->TemplateNameLoc,
+ TemplateId->LAngleLoc,
+ TemplateArgsPtr,
+ TemplateId->RAngleLoc);
+ } else {
+ Diag(Tok, diag::err_expected_type_name_after_typename)
+ << SS.getRange();
+ return true;
+ }
+
+ SourceLocation EndLoc = Tok.getLastLoc();
+ Tok.setKind(tok::annot_typename);
+ setTypeAnnotation(Tok, Ty.isInvalid() ? ParsedType() : Ty.get());
+ Tok.setAnnotationEndLoc(EndLoc);
+ Tok.setLocation(TypenameLoc);
+ PP.AnnotateCachedTokens(Tok);
+ return false;
+ }
+
+ // Remembers whether the token was originally a scope annotation.
+ bool WasScopeAnnotation = Tok.is(tok::annot_cxxscope);
+
+ CXXScopeSpec SS;
+ if (getLangOpts().CPlusPlus)
+ if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(), EnteringContext))
+ return true;
+
+ return TryAnnotateTypeOrScopeTokenAfterScopeSpec(EnteringContext, NeedType,
+ SS, !WasScopeAnnotation);
+}
+
+/// \brief Try to annotate a type or scope token, having already parsed an
+/// optional scope specifier. \p IsNewScope should be \c true unless the scope
+/// specifier was extracted from an existing tok::annot_cxxscope annotation.
+bool Parser::TryAnnotateTypeOrScopeTokenAfterScopeSpec(bool EnteringContext,
+ bool NeedType,
+ CXXScopeSpec &SS,
+ bool IsNewScope) {
+ if (Tok.is(tok::identifier)) {
+ IdentifierInfo *CorrectedII = nullptr;
+ // Determine whether the identifier is a type name.
+ if (ParsedType Ty = Actions.getTypeName(*Tok.getIdentifierInfo(),
+ Tok.getLocation(), getCurScope(),
+ &SS, false,
+ NextToken().is(tok::period),
+ ParsedType(),
+ /*IsCtorOrDtorName=*/false,
+ /*NonTrivialTypeSourceInfo*/ true,
+ NeedType ? &CorrectedII
+ : nullptr)) {
+ // A FixIt was applied as a result of typo correction
+ if (CorrectedII)
+ Tok.setIdentifierInfo(CorrectedII);
+ // This is a typename. Replace the current token in-place with an
+ // annotation type token.
+ Tok.setKind(tok::annot_typename);
+ setTypeAnnotation(Tok, Ty);
+ Tok.setAnnotationEndLoc(Tok.getLocation());
+ if (SS.isNotEmpty()) // it was a C++ qualified type name.
+ Tok.setLocation(SS.getBeginLoc());
+
+ // In case the tokens were cached, have Preprocessor replace
+ // them with the annotation token.
+ PP.AnnotateCachedTokens(Tok);
+ return false;
+ }
+
+ if (!getLangOpts().CPlusPlus) {
+ // If we're in C, we can't have :: tokens at all (the lexer won't return
+ // them). If the identifier is not a type, then it can't be scope either,
+ // just early exit.
+ return false;
+ }
+
+ // If this is a template-id, annotate with a template-id or type token.
+ if (NextToken().is(tok::less)) {
+ TemplateTy Template;
+ UnqualifiedId TemplateName;
+ TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
+ bool MemberOfUnknownSpecialization;
+ if (TemplateNameKind TNK
+ = Actions.isTemplateName(getCurScope(), SS,
+ /*hasTemplateKeyword=*/false, TemplateName,
+ /*ObjectType=*/ ParsedType(),
+ EnteringContext,
+ Template, MemberOfUnknownSpecialization)) {
+ // Consume the identifier.
+ ConsumeToken();
+ if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
+ TemplateName)) {
+ // If an unrecoverable error occurred, we need to return true here,
+ // because the token stream is in a damaged state. We may not return
+ // a valid identifier.
+ return true;
+ }
+ }
+ }
+
+ // The current token, which is either an identifier or a
+ // template-id, is not part of the annotation. Fall through to
+ // push that token back into the stream and complete the C++ scope
+ // specifier annotation.
+ }
+
+ if (Tok.is(tok::annot_template_id)) {
+ TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
+ if (TemplateId->Kind == TNK_Type_template) {
+ // A template-id that refers to a type was parsed into a
+ // template-id annotation in a context where we weren't allowed
+ // to produce a type annotation token. Update the template-id
+ // annotation token to a type annotation token now.
+ AnnotateTemplateIdTokenAsType();
+ return false;
+ }
+ }
+
+ if (SS.isEmpty())
+ return false;
+
+ // A C++ scope specifier that isn't followed by a typename.
+ AnnotateScopeToken(SS, IsNewScope);
+ return false;
+}
+
+/// TryAnnotateScopeToken - Like TryAnnotateTypeOrScopeToken but only
+/// annotates C++ scope specifiers and template-ids. This returns
+/// true if there was an error that could not be recovered from.
+///
+/// Note that this routine emits an error if you call it with ::new or ::delete
+/// as the current tokens, so only call it in contexts where these are invalid.
+bool Parser::TryAnnotateCXXScopeToken(bool EnteringContext) {
+ assert(getLangOpts().CPlusPlus &&
+ "Call sites of this function should be guarded by checking for C++");
+ assert((Tok.is(tok::identifier) || Tok.is(tok::coloncolon) ||
+ (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) ||
+ Tok.is(tok::kw_decltype) || Tok.is(tok::kw___super)) &&
+ "Cannot be a type or scope token!");
+
+ CXXScopeSpec SS;
+ if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(), EnteringContext))
+ return true;
+ if (SS.isEmpty())
+ return false;
+
+ AnnotateScopeToken(SS, true);
+ return false;
+}
+
+bool Parser::isTokenEqualOrEqualTypo() {
+ tok::TokenKind Kind = Tok.getKind();
+ switch (Kind) {
+ default:
+ return false;
+ case tok::ampequal: // &=
+ case tok::starequal: // *=
+ case tok::plusequal: // +=
+ case tok::minusequal: // -=
+ case tok::exclaimequal: // !=
+ case tok::slashequal: // /=
+ case tok::percentequal: // %=
+ case tok::lessequal: // <=
+ case tok::lesslessequal: // <<=
+ case tok::greaterequal: // >=
+ case tok::greatergreaterequal: // >>=
+ case tok::caretequal: // ^=
+ case tok::pipeequal: // |=
+ case tok::equalequal: // ==
+ Diag(Tok, diag::err_invalid_token_after_declarator_suggest_equal)
+ << Kind
+ << FixItHint::CreateReplacement(SourceRange(Tok.getLocation()), "=");
+ case tok::equal:
+ return true;
+ }
+}
+
+SourceLocation Parser::handleUnexpectedCodeCompletionToken() {
+ assert(Tok.is(tok::code_completion));
+ PrevTokLocation = Tok.getLocation();
+
+ for (Scope *S = getCurScope(); S; S = S->getParent()) {
+ if (S->getFlags() & Scope::FnScope) {
+ Actions.CodeCompleteOrdinaryName(getCurScope(),
+ Sema::PCC_RecoveryInFunction);
+ cutOffParsing();
+ return PrevTokLocation;
+ }
+
+ if (S->getFlags() & Scope::ClassScope) {
+ Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Class);
+ cutOffParsing();
+ return PrevTokLocation;
+ }
+ }
+
+ Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Namespace);
+ cutOffParsing();
+ return PrevTokLocation;
+}
+
+// Code-completion pass-through functions
+
+void Parser::CodeCompleteDirective(bool InConditional) {
+ Actions.CodeCompletePreprocessorDirective(InConditional);
+}
+
+void Parser::CodeCompleteInConditionalExclusion() {
+ Actions.CodeCompleteInPreprocessorConditionalExclusion(getCurScope());
+}
+
+void Parser::CodeCompleteMacroName(bool IsDefinition) {
+ Actions.CodeCompletePreprocessorMacroName(IsDefinition);
+}
+
+void Parser::CodeCompletePreprocessorExpression() {
+ Actions.CodeCompletePreprocessorExpression();
+}
+
+void Parser::CodeCompleteMacroArgument(IdentifierInfo *Macro,
+ MacroInfo *MacroInfo,
+ unsigned ArgumentIndex) {
+ Actions.CodeCompletePreprocessorMacroArgument(getCurScope(), Macro, MacroInfo,
+ ArgumentIndex);
+}
+
+void Parser::CodeCompleteNaturalLanguage() {
+ Actions.CodeCompleteNaturalLanguage();
+}
+
+bool Parser::ParseMicrosoftIfExistsCondition(IfExistsCondition& Result) {
+ assert((Tok.is(tok::kw___if_exists) || Tok.is(tok::kw___if_not_exists)) &&
+ "Expected '__if_exists' or '__if_not_exists'");
+ Result.IsIfExists = Tok.is(tok::kw___if_exists);
+ Result.KeywordLoc = ConsumeToken();
+
+ BalancedDelimiterTracker T(*this, tok::l_paren);
+ if (T.consumeOpen()) {
+ Diag(Tok, diag::err_expected_lparen_after)
+ << (Result.IsIfExists? "__if_exists" : "__if_not_exists");
+ return true;
+ }
+
+ // Parse nested-name-specifier.
+ if (getLangOpts().CPlusPlus)
+ ParseOptionalCXXScopeSpecifier(Result.SS, ParsedType(),
+ /*EnteringContext=*/false);
+
+ // Check nested-name specifier.
+ if (Result.SS.isInvalid()) {
+ T.skipToEnd();
+ return true;
+ }
+
+ // Parse the unqualified-id.
+ SourceLocation TemplateKWLoc; // FIXME: parsed, but unused.
+ if (ParseUnqualifiedId(Result.SS, false, true, true, ParsedType(),
+ TemplateKWLoc, Result.Name)) {
+ T.skipToEnd();
+ return true;
+ }
+
+ if (T.consumeClose())
+ return true;
+
+ // Check if the symbol exists.
+ switch (Actions.CheckMicrosoftIfExistsSymbol(getCurScope(), Result.KeywordLoc,
+ Result.IsIfExists, Result.SS,
+ Result.Name)) {
+ case Sema::IER_Exists:
+ Result.Behavior = Result.IsIfExists ? IEB_Parse : IEB_Skip;
+ break;
+
+ case Sema::IER_DoesNotExist:
+ Result.Behavior = !Result.IsIfExists ? IEB_Parse : IEB_Skip;
+ break;
+
+ case Sema::IER_Dependent:
+ Result.Behavior = IEB_Dependent;
+ break;
+
+ case Sema::IER_Error:
+ return true;
+ }
+
+ return false;
+}
+
+void Parser::ParseMicrosoftIfExistsExternalDeclaration() {
+ IfExistsCondition Result;
+ if (ParseMicrosoftIfExistsCondition(Result))
+ return;
+
+ BalancedDelimiterTracker Braces(*this, tok::l_brace);
+ if (Braces.consumeOpen()) {
+ Diag(Tok, diag::err_expected) << tok::l_brace;
+ return;
+ }
+
+ switch (Result.Behavior) {
+ case IEB_Parse:
+ // Parse declarations below.
+ break;
+
+ case IEB_Dependent:
+ llvm_unreachable("Cannot have a dependent external declaration");
+
+ case IEB_Skip:
+ Braces.skipToEnd();
+ return;
+ }
+
+ // Parse the declarations.
+ // FIXME: Support module import within __if_exists?
+ while (Tok.isNot(tok::r_brace) && !isEofOrEom()) {
+ ParsedAttributesWithRange attrs(AttrFactory);
+ MaybeParseCXX11Attributes(attrs);
+ MaybeParseMicrosoftAttributes(attrs);
+ DeclGroupPtrTy Result = ParseExternalDeclaration(attrs);
+ if (Result && !getCurScope()->getParent())
+ Actions.getASTConsumer().HandleTopLevelDecl(Result.get());
+ }
+ Braces.consumeClose();
+}
+
+Parser::DeclGroupPtrTy Parser::ParseModuleImport(SourceLocation AtLoc) {
+ assert(Tok.isObjCAtKeyword(tok::objc_import) &&
+ "Improper start to module import");
+ SourceLocation ImportLoc = ConsumeToken();
+
+ SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> Path;
+
+ // Parse the module path.
+ do {
+ if (!Tok.is(tok::identifier)) {
+ if (Tok.is(tok::code_completion)) {
+ Actions.CodeCompleteModuleImport(ImportLoc, Path);
+ cutOffParsing();
+ return DeclGroupPtrTy();
+ }
+
+ Diag(Tok, diag::err_module_expected_ident);
+ SkipUntil(tok::semi);
+ return DeclGroupPtrTy();
+ }
+
+ // Record this part of the module path.
+ Path.push_back(std::make_pair(Tok.getIdentifierInfo(), Tok.getLocation()));
+ ConsumeToken();
+
+ if (Tok.is(tok::period)) {
+ ConsumeToken();
+ continue;
+ }
+
+ break;
+ } while (true);
+
+ if (PP.hadModuleLoaderFatalFailure()) {
+ // With a fatal failure in the module loader, we abort parsing.
+ cutOffParsing();
+ return DeclGroupPtrTy();
+ }
+
+ DeclResult Import = Actions.ActOnModuleImport(AtLoc, ImportLoc, Path);
+ ExpectAndConsumeSemi(diag::err_module_expected_semi);
+ if (Import.isInvalid())
+ return DeclGroupPtrTy();
+
+ return Actions.ConvertDeclToDeclGroup(Import.get());
+}
+
+bool BalancedDelimiterTracker::diagnoseOverflow() {
+ P.Diag(P.Tok, diag::err_bracket_depth_exceeded)
+ << P.getLangOpts().BracketDepth;
+ P.Diag(P.Tok, diag::note_bracket_depth);
+ P.cutOffParsing();
+ return true;
+}
+
+bool BalancedDelimiterTracker::expectAndConsume(unsigned DiagID,
+ const char *Msg,
+ tok::TokenKind SkipToTok) {
+ LOpen = P.Tok.getLocation();
+ if (P.ExpectAndConsume(Kind, DiagID, Msg)) {
+ if (SkipToTok != tok::unknown)
+ P.SkipUntil(SkipToTok, Parser::StopAtSemi);
+ return true;
+ }
+
+ if (getDepth() < MaxDepth)
+ return false;
+
+ return diagnoseOverflow();
+}
+
+bool BalancedDelimiterTracker::diagnoseMissingClose() {
+ assert(!P.Tok.is(Close) && "Should have consumed closing delimiter");
+
+ P.Diag(P.Tok, diag::err_expected) << Close;
+ P.Diag(LOpen, diag::note_matching) << Kind;
+
+ // If we're not already at some kind of closing bracket, skip to our closing
+ // token.
+ if (P.Tok.isNot(tok::r_paren) && P.Tok.isNot(tok::r_brace) &&
+ P.Tok.isNot(tok::r_square) &&
+ P.SkipUntil(Close, FinalToken,
+ Parser::StopAtSemi | Parser::StopBeforeMatch) &&
+ P.Tok.is(Close))
+ LClose = P.ConsumeAnyToken();
+ return true;
+}
+
+void BalancedDelimiterTracker::skipToEnd() {
+ P.SkipUntil(Close, Parser::StopBeforeMatch);
+ consumeClose();
+}
diff --git a/contrib/llvm/tools/clang/lib/Parse/RAIIObjectsForParser.h b/contrib/llvm/tools/clang/lib/Parse/RAIIObjectsForParser.h
new file mode 100644
index 0000000..36d87eb
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Parse/RAIIObjectsForParser.h
@@ -0,0 +1,447 @@
+//===--- RAIIObjectsForParser.h - RAII helpers for the parser ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines and implements the some simple RAII objects that are used
+// by the parser to manage bits in recursion.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_PARSE_RAIIOBJECTSFORPARSER_H
+#define LLVM_CLANG_LIB_PARSE_RAIIOBJECTSFORPARSER_H
+
+#include "clang/Parse/ParseDiagnostic.h"
+#include "clang/Parse/Parser.h"
+#include "clang/Sema/DelayedDiagnostic.h"
+#include "clang/Sema/Sema.h"
+
+namespace clang {
+ // TODO: move ParsingClassDefinition here.
+ // TODO: move TentativeParsingAction here.
+
+ /// \brief A RAII object used to temporarily suppress access-like
+ /// checking. Access-like checks are those associated with
+ /// controlling the use of a declaration, like C++ access control
+ /// errors and deprecation warnings. They are contextually
+ /// dependent, in that they can only be resolved with full
+ /// information about what's being declared. They are also
+ /// suppressed in certain contexts, like the template arguments of
+ /// an explicit instantiation. However, those suppression contexts
+ /// cannot necessarily be fully determined in advance; for
+ /// example, something starting like this:
+ /// template <> class std::vector<A::PrivateType>
+ /// might be the entirety of an explicit instantiation:
+ /// template <> class std::vector<A::PrivateType>;
+ /// or just an elaborated type specifier:
+ /// template <> class std::vector<A::PrivateType> make_vector<>();
+ /// Therefore this class collects all the diagnostics and permits
+ /// them to be re-delayed in a new context.
+ class SuppressAccessChecks {
+ Sema &S;
+ sema::DelayedDiagnosticPool DiagnosticPool;
+ Sema::ParsingDeclState State;
+ bool Active;
+
+ public:
+ /// Begin suppressing access-like checks
+ SuppressAccessChecks(Parser &P, bool activate = true)
+ : S(P.getActions()), DiagnosticPool(nullptr) {
+ if (activate) {
+ State = S.PushParsingDeclaration(DiagnosticPool);
+ Active = true;
+ } else {
+ Active = false;
+ }
+ }
+ SuppressAccessChecks(SuppressAccessChecks &&Other)
+ : S(Other.S), DiagnosticPool(std::move(Other.DiagnosticPool)),
+ State(Other.State), Active(Other.Active) {
+ Other.Active = false;
+ }
+ void operator=(SuppressAccessChecks &&Other) = delete;
+
+ void done() {
+ assert(Active && "trying to end an inactive suppression");
+ S.PopParsingDeclaration(State, nullptr);
+ Active = false;
+ }
+
+ void redelay() {
+ assert(!Active && "redelaying without having ended first");
+ if (!DiagnosticPool.pool_empty())
+ S.redelayDiagnostics(DiagnosticPool);
+ assert(DiagnosticPool.pool_empty());
+ }
+
+ ~SuppressAccessChecks() {
+ if (Active) done();
+ }
+ };
+
+ /// \brief RAII object used to inform the actions that we're
+ /// currently parsing a declaration. This is active when parsing a
+ /// variable's initializer, but not when parsing the body of a
+ /// class or function definition.
+ class ParsingDeclRAIIObject {
+ Sema &Actions;
+ sema::DelayedDiagnosticPool DiagnosticPool;
+ Sema::ParsingDeclState State;
+ bool Popped;
+
+ ParsingDeclRAIIObject(const ParsingDeclRAIIObject &) = delete;
+ void operator=(const ParsingDeclRAIIObject &) = delete;
+
+ public:
+ enum NoParent_t { NoParent };
+ ParsingDeclRAIIObject(Parser &P, NoParent_t _)
+ : Actions(P.getActions()), DiagnosticPool(nullptr) {
+ push();
+ }
+
+ /// Creates a RAII object whose pool is optionally parented by another.
+ ParsingDeclRAIIObject(Parser &P,
+ const sema::DelayedDiagnosticPool *parentPool)
+ : Actions(P.getActions()), DiagnosticPool(parentPool) {
+ push();
+ }
+
+ /// Creates a RAII object and, optionally, initialize its
+ /// diagnostics pool by stealing the diagnostics from another
+ /// RAII object (which is assumed to be the current top pool).
+ ParsingDeclRAIIObject(Parser &P, ParsingDeclRAIIObject *other)
+ : Actions(P.getActions()),
+ DiagnosticPool(other ? other->DiagnosticPool.getParent() : nullptr) {
+ if (other) {
+ DiagnosticPool.steal(other->DiagnosticPool);
+ other->abort();
+ }
+ push();
+ }
+
+ ~ParsingDeclRAIIObject() {
+ abort();
+ }
+
+ sema::DelayedDiagnosticPool &getDelayedDiagnosticPool() {
+ return DiagnosticPool;
+ }
+ const sema::DelayedDiagnosticPool &getDelayedDiagnosticPool() const {
+ return DiagnosticPool;
+ }
+
+ /// Resets the RAII object for a new declaration.
+ void reset() {
+ abort();
+ push();
+ }
+
+ /// Signals that the context was completed without an appropriate
+ /// declaration being parsed.
+ void abort() {
+ pop(nullptr);
+ }
+
+ void complete(Decl *D) {
+ assert(!Popped && "ParsingDeclaration has already been popped!");
+ pop(D);
+ }
+
+ /// Unregister this object from Sema, but remember all the
+ /// diagnostics that were emitted into it.
+ void abortAndRemember() {
+ pop(nullptr);
+ }
+
+ private:
+ void push() {
+ State = Actions.PushParsingDeclaration(DiagnosticPool);
+ Popped = false;
+ }
+
+ void pop(Decl *D) {
+ if (!Popped) {
+ Actions.PopParsingDeclaration(State, D);
+ Popped = true;
+ }
+ }
+ };
+
+ /// A class for parsing a DeclSpec.
+ class ParsingDeclSpec : public DeclSpec {
+ ParsingDeclRAIIObject ParsingRAII;
+
+ public:
+ ParsingDeclSpec(Parser &P)
+ : DeclSpec(P.getAttrFactory()),
+ ParsingRAII(P, ParsingDeclRAIIObject::NoParent) {}
+ ParsingDeclSpec(Parser &P, ParsingDeclRAIIObject *RAII)
+ : DeclSpec(P.getAttrFactory()),
+ ParsingRAII(P, RAII) {}
+
+ const sema::DelayedDiagnosticPool &getDelayedDiagnosticPool() const {
+ return ParsingRAII.getDelayedDiagnosticPool();
+ }
+
+ void complete(Decl *D) {
+ ParsingRAII.complete(D);
+ }
+
+ void abort() {
+ ParsingRAII.abort();
+ }
+ };
+
+ /// A class for parsing a declarator.
+ class ParsingDeclarator : public Declarator {
+ ParsingDeclRAIIObject ParsingRAII;
+
+ public:
+ ParsingDeclarator(Parser &P, const ParsingDeclSpec &DS, TheContext C)
+ : Declarator(DS, C), ParsingRAII(P, &DS.getDelayedDiagnosticPool()) {
+ }
+
+ const ParsingDeclSpec &getDeclSpec() const {
+ return static_cast<const ParsingDeclSpec&>(Declarator::getDeclSpec());
+ }
+
+ ParsingDeclSpec &getMutableDeclSpec() const {
+ return const_cast<ParsingDeclSpec&>(getDeclSpec());
+ }
+
+ void clear() {
+ Declarator::clear();
+ ParsingRAII.reset();
+ }
+
+ void complete(Decl *D) {
+ ParsingRAII.complete(D);
+ }
+ };
+
+ /// A class for parsing a field declarator.
+ class ParsingFieldDeclarator : public FieldDeclarator {
+ ParsingDeclRAIIObject ParsingRAII;
+
+ public:
+ ParsingFieldDeclarator(Parser &P, const ParsingDeclSpec &DS)
+ : FieldDeclarator(DS), ParsingRAII(P, &DS.getDelayedDiagnosticPool()) {
+ }
+
+ const ParsingDeclSpec &getDeclSpec() const {
+ return static_cast<const ParsingDeclSpec&>(D.getDeclSpec());
+ }
+
+ ParsingDeclSpec &getMutableDeclSpec() const {
+ return const_cast<ParsingDeclSpec&>(getDeclSpec());
+ }
+
+ void complete(Decl *D) {
+ ParsingRAII.complete(D);
+ }
+ };
+
+ /// ExtensionRAIIObject - This saves the state of extension warnings when
+ /// constructed and disables them. When destructed, it restores them back to
+ /// the way they used to be. This is used to handle __extension__ in the
+ /// parser.
+ class ExtensionRAIIObject {
+ ExtensionRAIIObject(const ExtensionRAIIObject &) = delete;
+ void operator=(const ExtensionRAIIObject &) = delete;
+
+ DiagnosticsEngine &Diags;
+ public:
+ ExtensionRAIIObject(DiagnosticsEngine &diags) : Diags(diags) {
+ Diags.IncrementAllExtensionsSilenced();
+ }
+
+ ~ExtensionRAIIObject() {
+ Diags.DecrementAllExtensionsSilenced();
+ }
+ };
+
+ /// ColonProtectionRAIIObject - This sets the Parser::ColonIsSacred bool and
+ /// restores it when destroyed. This says that "foo:" should not be
+ /// considered a possible typo for "foo::" for error recovery purposes.
+ class ColonProtectionRAIIObject {
+ Parser &P;
+ bool OldVal;
+ public:
+ ColonProtectionRAIIObject(Parser &p, bool Value = true)
+ : P(p), OldVal(P.ColonIsSacred) {
+ P.ColonIsSacred = Value;
+ }
+
+ /// restore - This can be used to restore the state early, before the dtor
+ /// is run.
+ void restore() {
+ P.ColonIsSacred = OldVal;
+ }
+
+ ~ColonProtectionRAIIObject() {
+ restore();
+ }
+ };
+
+ /// \brief RAII object that makes '>' behave either as an operator
+ /// or as the closing angle bracket for a template argument list.
+ class GreaterThanIsOperatorScope {
+ bool &GreaterThanIsOperator;
+ bool OldGreaterThanIsOperator;
+ public:
+ GreaterThanIsOperatorScope(bool &GTIO, bool Val)
+ : GreaterThanIsOperator(GTIO), OldGreaterThanIsOperator(GTIO) {
+ GreaterThanIsOperator = Val;
+ }
+
+ ~GreaterThanIsOperatorScope() {
+ GreaterThanIsOperator = OldGreaterThanIsOperator;
+ }
+ };
+
+ class InMessageExpressionRAIIObject {
+ bool &InMessageExpression;
+ bool OldValue;
+
+ public:
+ InMessageExpressionRAIIObject(Parser &P, bool Value)
+ : InMessageExpression(P.InMessageExpression),
+ OldValue(P.InMessageExpression) {
+ InMessageExpression = Value;
+ }
+
+ ~InMessageExpressionRAIIObject() {
+ InMessageExpression = OldValue;
+ }
+ };
+
+ /// \brief RAII object that makes sure paren/bracket/brace count is correct
+ /// after declaration/statement parsing, even when there's a parsing error.
+ class ParenBraceBracketBalancer {
+ Parser &P;
+ unsigned short ParenCount, BracketCount, BraceCount;
+ public:
+ ParenBraceBracketBalancer(Parser &p)
+ : P(p), ParenCount(p.ParenCount), BracketCount(p.BracketCount),
+ BraceCount(p.BraceCount) { }
+
+ ~ParenBraceBracketBalancer() {
+ P.ParenCount = ParenCount;
+ P.BracketCount = BracketCount;
+ P.BraceCount = BraceCount;
+ }
+ };
+
+ class PoisonSEHIdentifiersRAIIObject {
+ PoisonIdentifierRAIIObject Ident_AbnormalTermination;
+ PoisonIdentifierRAIIObject Ident_GetExceptionCode;
+ PoisonIdentifierRAIIObject Ident_GetExceptionInfo;
+ PoisonIdentifierRAIIObject Ident__abnormal_termination;
+ PoisonIdentifierRAIIObject Ident__exception_code;
+ PoisonIdentifierRAIIObject Ident__exception_info;
+ PoisonIdentifierRAIIObject Ident___abnormal_termination;
+ PoisonIdentifierRAIIObject Ident___exception_code;
+ PoisonIdentifierRAIIObject Ident___exception_info;
+ public:
+ PoisonSEHIdentifiersRAIIObject(Parser &Self, bool NewValue)
+ : Ident_AbnormalTermination(Self.Ident_AbnormalTermination, NewValue),
+ Ident_GetExceptionCode(Self.Ident_GetExceptionCode, NewValue),
+ Ident_GetExceptionInfo(Self.Ident_GetExceptionInfo, NewValue),
+ Ident__abnormal_termination(Self.Ident__abnormal_termination, NewValue),
+ Ident__exception_code(Self.Ident__exception_code, NewValue),
+ Ident__exception_info(Self.Ident__exception_info, NewValue),
+ Ident___abnormal_termination(Self.Ident___abnormal_termination, NewValue),
+ Ident___exception_code(Self.Ident___exception_code, NewValue),
+ Ident___exception_info(Self.Ident___exception_info, NewValue) {
+ }
+ };
+
+ /// \brief RAII class that helps handle the parsing of an open/close delimiter
+ /// pair, such as braces { ... } or parentheses ( ... ).
+ class BalancedDelimiterTracker : public GreaterThanIsOperatorScope {
+ Parser& P;
+ tok::TokenKind Kind, Close, FinalToken;
+ SourceLocation (Parser::*Consumer)();
+ SourceLocation LOpen, LClose;
+
+ unsigned short &getDepth() {
+ switch (Kind) {
+ case tok::l_brace: return P.BraceCount;
+ case tok::l_square: return P.BracketCount;
+ case tok::l_paren: return P.ParenCount;
+ default: llvm_unreachable("Wrong token kind");
+ }
+ }
+
+ enum { MaxDepth = 256 };
+
+ bool diagnoseOverflow();
+ bool diagnoseMissingClose();
+
+ public:
+ BalancedDelimiterTracker(Parser& p, tok::TokenKind k,
+ tok::TokenKind FinalToken = tok::semi)
+ : GreaterThanIsOperatorScope(p.GreaterThanIsOperator, true),
+ P(p), Kind(k), FinalToken(FinalToken)
+ {
+ switch (Kind) {
+ default: llvm_unreachable("Unexpected balanced token");
+ case tok::l_brace:
+ Close = tok::r_brace;
+ Consumer = &Parser::ConsumeBrace;
+ break;
+ case tok::l_paren:
+ Close = tok::r_paren;
+ Consumer = &Parser::ConsumeParen;
+ break;
+
+ case tok::l_square:
+ Close = tok::r_square;
+ Consumer = &Parser::ConsumeBracket;
+ break;
+ }
+ }
+
+ SourceLocation getOpenLocation() const { return LOpen; }
+ SourceLocation getCloseLocation() const { return LClose; }
+ SourceRange getRange() const { return SourceRange(LOpen, LClose); }
+
+ bool consumeOpen() {
+ if (!P.Tok.is(Kind))
+ return true;
+
+ if (getDepth() < P.getLangOpts().BracketDepth) {
+ LOpen = (P.*Consumer)();
+ return false;
+ }
+
+ return diagnoseOverflow();
+ }
+
+ bool expectAndConsume(unsigned DiagID = diag::err_expected,
+ const char *Msg = "",
+ tok::TokenKind SkipToTok = tok::unknown);
+ bool consumeClose() {
+ if (P.Tok.is(Close)) {
+ LClose = (P.*Consumer)();
+ return false;
+ } else if (P.Tok.is(tok::semi) && P.NextToken().is(Close)) {
+ SourceLocation SemiLoc = P.ConsumeToken();
+ P.Diag(SemiLoc, diag::err_unexpected_semi)
+ << Close << FixItHint::CreateRemoval(SourceRange(SemiLoc, SemiLoc));
+ LClose = (P.*Consumer)();
+ return false;
+ }
+
+ return diagnoseMissingClose();
+ }
+ void skipToEnd();
+ };
+
+} // end namespace clang
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/Rewrite/DeltaTree.cpp b/contrib/llvm/tools/clang/lib/Rewrite/DeltaTree.cpp
new file mode 100644
index 0000000..352fab0
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Rewrite/DeltaTree.cpp
@@ -0,0 +1,464 @@
+//===--- DeltaTree.cpp - B-Tree for Rewrite Delta tracking ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the DeltaTree and related classes.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Rewrite/Core/DeltaTree.h"
+#include "clang/Basic/LLVM.h"
+#include <cstdio>
+#include <cstring>
+using namespace clang;
+
+/// The DeltaTree class is a multiway search tree (BTree) structure with some
+/// fancy features. B-Trees are generally more memory and cache efficient
+/// than binary trees, because they store multiple keys/values in each node.
+///
+/// DeltaTree implements a key/value mapping from FileIndex to Delta, allowing
+/// fast lookup by FileIndex. However, an added (important) bonus is that it
+/// can also efficiently tell us the full accumulated delta for a specific
+/// file offset as well, without traversing the whole tree.
+///
+/// The nodes of the tree are made up of instances of two classes:
+/// DeltaTreeNode and DeltaTreeInteriorNode. The later subclasses the
+/// former and adds children pointers. Each node knows the full delta of all
+/// entries (recursively) contained inside of it, which allows us to get the
+/// full delta implied by a whole subtree in constant time.
+
+namespace {
+ /// SourceDelta - As code in the original input buffer is added and deleted,
+ /// SourceDelta records are used to keep track of how the input SourceLocation
+ /// object is mapped into the output buffer.
+ struct SourceDelta {
+ unsigned FileLoc;
+ int Delta;
+
+ static SourceDelta get(unsigned Loc, int D) {
+ SourceDelta Delta;
+ Delta.FileLoc = Loc;
+ Delta.Delta = D;
+ return Delta;
+ }
+ };
+
+ /// DeltaTreeNode - The common part of all nodes.
+ ///
+ class DeltaTreeNode {
+ public:
+ struct InsertResult {
+ DeltaTreeNode *LHS, *RHS;
+ SourceDelta Split;
+ };
+
+ private:
+ friend class DeltaTreeInteriorNode;
+
+ /// WidthFactor - This controls the number of K/V slots held in the BTree:
+ /// how wide it is. Each level of the BTree is guaranteed to have at least
+ /// WidthFactor-1 K/V pairs (except the root) and may have at most
+ /// 2*WidthFactor-1 K/V pairs.
+ enum { WidthFactor = 8 };
+
+ /// Values - This tracks the SourceDelta's currently in this node.
+ ///
+ SourceDelta Values[2*WidthFactor-1];
+
+ /// NumValuesUsed - This tracks the number of values this node currently
+ /// holds.
+ unsigned char NumValuesUsed;
+
+ /// IsLeaf - This is true if this is a leaf of the btree. If false, this is
+ /// an interior node, and is actually an instance of DeltaTreeInteriorNode.
+ bool IsLeaf;
+
+ /// FullDelta - This is the full delta of all the values in this node and
+ /// all children nodes.
+ int FullDelta;
+ public:
+ DeltaTreeNode(bool isLeaf = true)
+ : NumValuesUsed(0), IsLeaf(isLeaf), FullDelta(0) {}
+
+ bool isLeaf() const { return IsLeaf; }
+ int getFullDelta() const { return FullDelta; }
+ bool isFull() const { return NumValuesUsed == 2*WidthFactor-1; }
+
+ unsigned getNumValuesUsed() const { return NumValuesUsed; }
+ const SourceDelta &getValue(unsigned i) const {
+ assert(i < NumValuesUsed && "Invalid value #");
+ return Values[i];
+ }
+ SourceDelta &getValue(unsigned i) {
+ assert(i < NumValuesUsed && "Invalid value #");
+ return Values[i];
+ }
+
+ /// DoInsertion - Do an insertion of the specified FileIndex/Delta pair into
+ /// this node. If insertion is easy, do it and return false. Otherwise,
+ /// split the node, populate InsertRes with info about the split, and return
+ /// true.
+ bool DoInsertion(unsigned FileIndex, int Delta, InsertResult *InsertRes);
+
+ void DoSplit(InsertResult &InsertRes);
+
+
+ /// RecomputeFullDeltaLocally - Recompute the FullDelta field by doing a
+ /// local walk over our contained deltas.
+ void RecomputeFullDeltaLocally();
+
+ void Destroy();
+ };
+} // end anonymous namespace
+
+namespace {
+ /// DeltaTreeInteriorNode - When isLeaf = false, a node has child pointers.
+ /// This class tracks them.
+ class DeltaTreeInteriorNode : public DeltaTreeNode {
+ DeltaTreeNode *Children[2*WidthFactor];
+ ~DeltaTreeInteriorNode() {
+ for (unsigned i = 0, e = NumValuesUsed+1; i != e; ++i)
+ Children[i]->Destroy();
+ }
+ friend class DeltaTreeNode;
+ public:
+ DeltaTreeInteriorNode() : DeltaTreeNode(false /*nonleaf*/) {}
+
+ DeltaTreeInteriorNode(const InsertResult &IR)
+ : DeltaTreeNode(false /*nonleaf*/) {
+ Children[0] = IR.LHS;
+ Children[1] = IR.RHS;
+ Values[0] = IR.Split;
+ FullDelta = IR.LHS->getFullDelta()+IR.RHS->getFullDelta()+IR.Split.Delta;
+ NumValuesUsed = 1;
+ }
+
+ const DeltaTreeNode *getChild(unsigned i) const {
+ assert(i < getNumValuesUsed()+1 && "Invalid child");
+ return Children[i];
+ }
+ DeltaTreeNode *getChild(unsigned i) {
+ assert(i < getNumValuesUsed()+1 && "Invalid child");
+ return Children[i];
+ }
+
+ static inline bool classof(const DeltaTreeNode *N) { return !N->isLeaf(); }
+ };
+}
+
+
+/// Destroy - A 'virtual' destructor.
+void DeltaTreeNode::Destroy() {
+ if (isLeaf())
+ delete this;
+ else
+ delete cast<DeltaTreeInteriorNode>(this);
+}
+
+/// RecomputeFullDeltaLocally - Recompute the FullDelta field by doing a
+/// local walk over our contained deltas.
+void DeltaTreeNode::RecomputeFullDeltaLocally() {
+ int NewFullDelta = 0;
+ for (unsigned i = 0, e = getNumValuesUsed(); i != e; ++i)
+ NewFullDelta += Values[i].Delta;
+ if (DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(this))
+ for (unsigned i = 0, e = getNumValuesUsed()+1; i != e; ++i)
+ NewFullDelta += IN->getChild(i)->getFullDelta();
+ FullDelta = NewFullDelta;
+}
+
+/// DoInsertion - Do an insertion of the specified FileIndex/Delta pair into
+/// this node. If insertion is easy, do it and return false. Otherwise,
+/// split the node, populate InsertRes with info about the split, and return
+/// true.
+bool DeltaTreeNode::DoInsertion(unsigned FileIndex, int Delta,
+ InsertResult *InsertRes) {
+ // Maintain full delta for this node.
+ FullDelta += Delta;
+
+ // Find the insertion point, the first delta whose index is >= FileIndex.
+ unsigned i = 0, e = getNumValuesUsed();
+ while (i != e && FileIndex > getValue(i).FileLoc)
+ ++i;
+
+ // If we found an a record for exactly this file index, just merge this
+ // value into the pre-existing record and finish early.
+ if (i != e && getValue(i).FileLoc == FileIndex) {
+ // NOTE: Delta could drop to zero here. This means that the delta entry is
+ // useless and could be removed. Supporting erases is more complex than
+ // leaving an entry with Delta=0, so we just leave an entry with Delta=0 in
+ // the tree.
+ Values[i].Delta += Delta;
+ return false;
+ }
+
+ // Otherwise, we found an insertion point, and we know that the value at the
+ // specified index is > FileIndex. Handle the leaf case first.
+ if (isLeaf()) {
+ if (!isFull()) {
+ // For an insertion into a non-full leaf node, just insert the value in
+ // its sorted position. This requires moving later values over.
+ if (i != e)
+ memmove(&Values[i+1], &Values[i], sizeof(Values[0])*(e-i));
+ Values[i] = SourceDelta::get(FileIndex, Delta);
+ ++NumValuesUsed;
+ return false;
+ }
+
+ // Otherwise, if this is leaf is full, split the node at its median, insert
+ // the value into one of the children, and return the result.
+ assert(InsertRes && "No result location specified");
+ DoSplit(*InsertRes);
+
+ if (InsertRes->Split.FileLoc > FileIndex)
+ InsertRes->LHS->DoInsertion(FileIndex, Delta, nullptr /*can't fail*/);
+ else
+ InsertRes->RHS->DoInsertion(FileIndex, Delta, nullptr /*can't fail*/);
+ return true;
+ }
+
+ // Otherwise, this is an interior node. Send the request down the tree.
+ DeltaTreeInteriorNode *IN = cast<DeltaTreeInteriorNode>(this);
+ if (!IN->Children[i]->DoInsertion(FileIndex, Delta, InsertRes))
+ return false; // If there was space in the child, just return.
+
+ // Okay, this split the subtree, producing a new value and two children to
+ // insert here. If this node is non-full, we can just insert it directly.
+ if (!isFull()) {
+ // Now that we have two nodes and a new element, insert the perclated value
+ // into ourself by moving all the later values/children down, then inserting
+ // the new one.
+ if (i != e)
+ memmove(&IN->Children[i+2], &IN->Children[i+1],
+ (e-i)*sizeof(IN->Children[0]));
+ IN->Children[i] = InsertRes->LHS;
+ IN->Children[i+1] = InsertRes->RHS;
+
+ if (e != i)
+ memmove(&Values[i+1], &Values[i], (e-i)*sizeof(Values[0]));
+ Values[i] = InsertRes->Split;
+ ++NumValuesUsed;
+ return false;
+ }
+
+ // Finally, if this interior node was full and a node is percolated up, split
+ // ourself and return that up the chain. Start by saving all our info to
+ // avoid having the split clobber it.
+ IN->Children[i] = InsertRes->LHS;
+ DeltaTreeNode *SubRHS = InsertRes->RHS;
+ SourceDelta SubSplit = InsertRes->Split;
+
+ // Do the split.
+ DoSplit(*InsertRes);
+
+ // Figure out where to insert SubRHS/NewSplit.
+ DeltaTreeInteriorNode *InsertSide;
+ if (SubSplit.FileLoc < InsertRes->Split.FileLoc)
+ InsertSide = cast<DeltaTreeInteriorNode>(InsertRes->LHS);
+ else
+ InsertSide = cast<DeltaTreeInteriorNode>(InsertRes->RHS);
+
+ // We now have a non-empty interior node 'InsertSide' to insert
+ // SubRHS/SubSplit into. Find out where to insert SubSplit.
+
+ // Find the insertion point, the first delta whose index is >SubSplit.FileLoc.
+ i = 0; e = InsertSide->getNumValuesUsed();
+ while (i != e && SubSplit.FileLoc > InsertSide->getValue(i).FileLoc)
+ ++i;
+
+ // Now we know that i is the place to insert the split value into. Insert it
+ // and the child right after it.
+ if (i != e)
+ memmove(&InsertSide->Children[i+2], &InsertSide->Children[i+1],
+ (e-i)*sizeof(IN->Children[0]));
+ InsertSide->Children[i+1] = SubRHS;
+
+ if (e != i)
+ memmove(&InsertSide->Values[i+1], &InsertSide->Values[i],
+ (e-i)*sizeof(Values[0]));
+ InsertSide->Values[i] = SubSplit;
+ ++InsertSide->NumValuesUsed;
+ InsertSide->FullDelta += SubSplit.Delta + SubRHS->getFullDelta();
+ return true;
+}
+
+/// DoSplit - Split the currently full node (which has 2*WidthFactor-1 values)
+/// into two subtrees each with "WidthFactor-1" values and a pivot value.
+/// Return the pieces in InsertRes.
+void DeltaTreeNode::DoSplit(InsertResult &InsertRes) {
+ assert(isFull() && "Why split a non-full node?");
+
+ // Since this node is full, it contains 2*WidthFactor-1 values. We move
+ // the first 'WidthFactor-1' values to the LHS child (which we leave in this
+ // node), propagate one value up, and move the last 'WidthFactor-1' values
+ // into the RHS child.
+
+ // Create the new child node.
+ DeltaTreeNode *NewNode;
+ if (DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(this)) {
+ // If this is an interior node, also move over 'WidthFactor' children
+ // into the new node.
+ DeltaTreeInteriorNode *New = new DeltaTreeInteriorNode();
+ memcpy(&New->Children[0], &IN->Children[WidthFactor],
+ WidthFactor*sizeof(IN->Children[0]));
+ NewNode = New;
+ } else {
+ // Just create the new leaf node.
+ NewNode = new DeltaTreeNode();
+ }
+
+ // Move over the last 'WidthFactor-1' values from here to NewNode.
+ memcpy(&NewNode->Values[0], &Values[WidthFactor],
+ (WidthFactor-1)*sizeof(Values[0]));
+
+ // Decrease the number of values in the two nodes.
+ NewNode->NumValuesUsed = NumValuesUsed = WidthFactor-1;
+
+ // Recompute the two nodes' full delta.
+ NewNode->RecomputeFullDeltaLocally();
+ RecomputeFullDeltaLocally();
+
+ InsertRes.LHS = this;
+ InsertRes.RHS = NewNode;
+ InsertRes.Split = Values[WidthFactor-1];
+}
+
+
+
+//===----------------------------------------------------------------------===//
+// DeltaTree Implementation
+//===----------------------------------------------------------------------===//
+
+//#define VERIFY_TREE
+
+#ifdef VERIFY_TREE
+/// VerifyTree - Walk the btree performing assertions on various properties to
+/// verify consistency. This is useful for debugging new changes to the tree.
+static void VerifyTree(const DeltaTreeNode *N) {
+ const DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(N);
+ if (IN == 0) {
+ // Verify leaves, just ensure that FullDelta matches up and the elements
+ // are in proper order.
+ int FullDelta = 0;
+ for (unsigned i = 0, e = N->getNumValuesUsed(); i != e; ++i) {
+ if (i)
+ assert(N->getValue(i-1).FileLoc < N->getValue(i).FileLoc);
+ FullDelta += N->getValue(i).Delta;
+ }
+ assert(FullDelta == N->getFullDelta());
+ return;
+ }
+
+ // Verify interior nodes: Ensure that FullDelta matches up and the
+ // elements are in proper order and the children are in proper order.
+ int FullDelta = 0;
+ for (unsigned i = 0, e = IN->getNumValuesUsed(); i != e; ++i) {
+ const SourceDelta &IVal = N->getValue(i);
+ const DeltaTreeNode *IChild = IN->getChild(i);
+ if (i)
+ assert(IN->getValue(i-1).FileLoc < IVal.FileLoc);
+ FullDelta += IVal.Delta;
+ FullDelta += IChild->getFullDelta();
+
+ // The largest value in child #i should be smaller than FileLoc.
+ assert(IChild->getValue(IChild->getNumValuesUsed()-1).FileLoc <
+ IVal.FileLoc);
+
+ // The smallest value in child #i+1 should be larger than FileLoc.
+ assert(IN->getChild(i+1)->getValue(0).FileLoc > IVal.FileLoc);
+ VerifyTree(IChild);
+ }
+
+ FullDelta += IN->getChild(IN->getNumValuesUsed())->getFullDelta();
+
+ assert(FullDelta == N->getFullDelta());
+}
+#endif // VERIFY_TREE
+
+static DeltaTreeNode *getRoot(void *Root) {
+ return (DeltaTreeNode*)Root;
+}
+
+DeltaTree::DeltaTree() {
+ Root = new DeltaTreeNode();
+}
+DeltaTree::DeltaTree(const DeltaTree &RHS) {
+ // Currently we only support copying when the RHS is empty.
+ assert(getRoot(RHS.Root)->getNumValuesUsed() == 0 &&
+ "Can only copy empty tree");
+ Root = new DeltaTreeNode();
+}
+
+DeltaTree::~DeltaTree() {
+ getRoot(Root)->Destroy();
+}
+
+/// getDeltaAt - Return the accumulated delta at the specified file offset.
+/// This includes all insertions or delections that occurred *before* the
+/// specified file index.
+int DeltaTree::getDeltaAt(unsigned FileIndex) const {
+ const DeltaTreeNode *Node = getRoot(Root);
+
+ int Result = 0;
+
+ // Walk down the tree.
+ while (1) {
+ // For all nodes, include any local deltas before the specified file
+ // index by summing them up directly. Keep track of how many were
+ // included.
+ unsigned NumValsGreater = 0;
+ for (unsigned e = Node->getNumValuesUsed(); NumValsGreater != e;
+ ++NumValsGreater) {
+ const SourceDelta &Val = Node->getValue(NumValsGreater);
+
+ if (Val.FileLoc >= FileIndex)
+ break;
+ Result += Val.Delta;
+ }
+
+ // If we have an interior node, include information about children and
+ // recurse. Otherwise, if we have a leaf, we're done.
+ const DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(Node);
+ if (!IN) return Result;
+
+ // Include any children to the left of the values we skipped, all of
+ // their deltas should be included as well.
+ for (unsigned i = 0; i != NumValsGreater; ++i)
+ Result += IN->getChild(i)->getFullDelta();
+
+ // If we found exactly the value we were looking for, break off the
+ // search early. There is no need to search the RHS of the value for
+ // partial results.
+ if (NumValsGreater != Node->getNumValuesUsed() &&
+ Node->getValue(NumValsGreater).FileLoc == FileIndex)
+ return Result+IN->getChild(NumValsGreater)->getFullDelta();
+
+ // Otherwise, traverse down the tree. The selected subtree may be
+ // partially included in the range.
+ Node = IN->getChild(NumValsGreater);
+ }
+ // NOT REACHED.
+}
+
+/// AddDelta - When a change is made that shifts around the text buffer,
+/// this method is used to record that info. It inserts a delta of 'Delta'
+/// into the current DeltaTree at offset FileIndex.
+void DeltaTree::AddDelta(unsigned FileIndex, int Delta) {
+ assert(Delta && "Adding a noop?");
+ DeltaTreeNode *MyRoot = getRoot(Root);
+
+ DeltaTreeNode::InsertResult InsertRes;
+ if (MyRoot->DoInsertion(FileIndex, Delta, &InsertRes)) {
+ Root = MyRoot = new DeltaTreeInteriorNode(InsertRes);
+ }
+
+#ifdef VERIFY_TREE
+ VerifyTree(MyRoot);
+#endif
+}
+
diff --git a/contrib/llvm/tools/clang/lib/Rewrite/HTMLRewrite.cpp b/contrib/llvm/tools/clang/lib/Rewrite/HTMLRewrite.cpp
new file mode 100644
index 0000000..275fbd0
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Rewrite/HTMLRewrite.cpp
@@ -0,0 +1,582 @@
+//== HTMLRewrite.cpp - Translate source code into prettified HTML --*- C++ -*-//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the HTMLRewriter class, which is used to translate the
+// text of a source file into prettified HTML.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Rewrite/Core/HTMLRewrite.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Lex/TokenConcatenation.h"
+#include "clang/Rewrite/Core/Rewriter.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/raw_ostream.h"
+#include <memory>
+using namespace clang;
+
+
+/// HighlightRange - Highlight a range in the source code with the specified
+/// start/end tags. B/E must be in the same file. This ensures that
+/// start/end tags are placed at the start/end of each line if the range is
+/// multiline.
+void html::HighlightRange(Rewriter &R, SourceLocation B, SourceLocation E,
+ const char *StartTag, const char *EndTag) {
+ SourceManager &SM = R.getSourceMgr();
+ B = SM.getExpansionLoc(B);
+ E = SM.getExpansionLoc(E);
+ FileID FID = SM.getFileID(B);
+ assert(SM.getFileID(E) == FID && "B/E not in the same file!");
+
+ unsigned BOffset = SM.getFileOffset(B);
+ unsigned EOffset = SM.getFileOffset(E);
+
+ // Include the whole end token in the range.
+ EOffset += Lexer::MeasureTokenLength(E, R.getSourceMgr(), R.getLangOpts());
+
+ bool Invalid = false;
+ const char *BufferStart = SM.getBufferData(FID, &Invalid).data();
+ if (Invalid)
+ return;
+
+ HighlightRange(R.getEditBuffer(FID), BOffset, EOffset,
+ BufferStart, StartTag, EndTag);
+}
+
+/// HighlightRange - This is the same as the above method, but takes
+/// decomposed file locations.
+void html::HighlightRange(RewriteBuffer &RB, unsigned B, unsigned E,
+ const char *BufferStart,
+ const char *StartTag, const char *EndTag) {
+ // Insert the tag at the absolute start/end of the range.
+ RB.InsertTextAfter(B, StartTag);
+ RB.InsertTextBefore(E, EndTag);
+
+ // Scan the range to see if there is a \r or \n. If so, and if the line is
+ // not blank, insert tags on that line as well.
+ bool HadOpenTag = true;
+
+ unsigned LastNonWhiteSpace = B;
+ for (unsigned i = B; i != E; ++i) {
+ switch (BufferStart[i]) {
+ case '\r':
+ case '\n':
+ // Okay, we found a newline in the range. If we have an open tag, we need
+ // to insert a close tag at the first non-whitespace before the newline.
+ if (HadOpenTag)
+ RB.InsertTextBefore(LastNonWhiteSpace+1, EndTag);
+
+ // Instead of inserting an open tag immediately after the newline, we
+ // wait until we see a non-whitespace character. This prevents us from
+ // inserting tags around blank lines, and also allows the open tag to
+ // be put *after* whitespace on a non-blank line.
+ HadOpenTag = false;
+ break;
+ case '\0':
+ case ' ':
+ case '\t':
+ case '\f':
+ case '\v':
+ // Ignore whitespace.
+ break;
+
+ default:
+ // If there is no tag open, do it now.
+ if (!HadOpenTag) {
+ RB.InsertTextAfter(i, StartTag);
+ HadOpenTag = true;
+ }
+
+ // Remember this character.
+ LastNonWhiteSpace = i;
+ break;
+ }
+ }
+}
+
+void html::EscapeText(Rewriter &R, FileID FID,
+ bool EscapeSpaces, bool ReplaceTabs) {
+
+ const llvm::MemoryBuffer *Buf = R.getSourceMgr().getBuffer(FID);
+ const char* C = Buf->getBufferStart();
+ const char* FileEnd = Buf->getBufferEnd();
+
+ assert (C <= FileEnd);
+
+ RewriteBuffer &RB = R.getEditBuffer(FID);
+
+ unsigned ColNo = 0;
+ for (unsigned FilePos = 0; C != FileEnd ; ++C, ++FilePos) {
+ switch (*C) {
+ default: ++ColNo; break;
+ case '\n':
+ case '\r':
+ ColNo = 0;
+ break;
+
+ case ' ':
+ if (EscapeSpaces)
+ RB.ReplaceText(FilePos, 1, "&nbsp;");
+ ++ColNo;
+ break;
+ case '\f':
+ RB.ReplaceText(FilePos, 1, "<hr>");
+ ColNo = 0;
+ break;
+
+ case '\t': {
+ if (!ReplaceTabs)
+ break;
+ unsigned NumSpaces = 8-(ColNo&7);
+ if (EscapeSpaces)
+ RB.ReplaceText(FilePos, 1,
+ StringRef("&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;"
+ "&nbsp;&nbsp;&nbsp;", 6*NumSpaces));
+ else
+ RB.ReplaceText(FilePos, 1, StringRef(" ", NumSpaces));
+ ColNo += NumSpaces;
+ break;
+ }
+ case '<':
+ RB.ReplaceText(FilePos, 1, "&lt;");
+ ++ColNo;
+ break;
+
+ case '>':
+ RB.ReplaceText(FilePos, 1, "&gt;");
+ ++ColNo;
+ break;
+
+ case '&':
+ RB.ReplaceText(FilePos, 1, "&amp;");
+ ++ColNo;
+ break;
+ }
+ }
+}
+
+std::string html::EscapeText(StringRef s, bool EscapeSpaces, bool ReplaceTabs) {
+
+ unsigned len = s.size();
+ std::string Str;
+ llvm::raw_string_ostream os(Str);
+
+ for (unsigned i = 0 ; i < len; ++i) {
+
+ char c = s[i];
+ switch (c) {
+ default:
+ os << c; break;
+
+ case ' ':
+ if (EscapeSpaces) os << "&nbsp;";
+ else os << ' ';
+ break;
+
+ case '\t':
+ if (ReplaceTabs) {
+ if (EscapeSpaces)
+ for (unsigned i = 0; i < 4; ++i)
+ os << "&nbsp;";
+ else
+ for (unsigned i = 0; i < 4; ++i)
+ os << " ";
+ }
+ else
+ os << c;
+
+ break;
+
+ case '<': os << "&lt;"; break;
+ case '>': os << "&gt;"; break;
+ case '&': os << "&amp;"; break;
+ }
+ }
+
+ return os.str();
+}
+
+static void AddLineNumber(RewriteBuffer &RB, unsigned LineNo,
+ unsigned B, unsigned E) {
+ SmallString<256> Str;
+ llvm::raw_svector_ostream OS(Str);
+
+ OS << "<tr><td class=\"num\" id=\"LN"
+ << LineNo << "\">"
+ << LineNo << "</td><td class=\"line\">";
+
+ if (B == E) { // Handle empty lines.
+ OS << " </td></tr>";
+ RB.InsertTextBefore(B, OS.str());
+ } else {
+ RB.InsertTextBefore(B, OS.str());
+ RB.InsertTextBefore(E, "</td></tr>");
+ }
+}
+
+void html::AddLineNumbers(Rewriter& R, FileID FID) {
+
+ const llvm::MemoryBuffer *Buf = R.getSourceMgr().getBuffer(FID);
+ const char* FileBeg = Buf->getBufferStart();
+ const char* FileEnd = Buf->getBufferEnd();
+ const char* C = FileBeg;
+ RewriteBuffer &RB = R.getEditBuffer(FID);
+
+ assert (C <= FileEnd);
+
+ unsigned LineNo = 0;
+ unsigned FilePos = 0;
+
+ while (C != FileEnd) {
+
+ ++LineNo;
+ unsigned LineStartPos = FilePos;
+ unsigned LineEndPos = FileEnd - FileBeg;
+
+ assert (FilePos <= LineEndPos);
+ assert (C < FileEnd);
+
+ // Scan until the newline (or end-of-file).
+
+ while (C != FileEnd) {
+ char c = *C;
+ ++C;
+
+ if (c == '\n') {
+ LineEndPos = FilePos++;
+ break;
+ }
+
+ ++FilePos;
+ }
+
+ AddLineNumber(RB, LineNo, LineStartPos, LineEndPos);
+ }
+
+ // Add one big table tag that surrounds all of the code.
+ RB.InsertTextBefore(0, "<table class=\"code\">\n");
+ RB.InsertTextAfter(FileEnd - FileBeg, "</table>");
+}
+
+void html::AddHeaderFooterInternalBuiltinCSS(Rewriter& R, FileID FID,
+ const char *title) {
+
+ const llvm::MemoryBuffer *Buf = R.getSourceMgr().getBuffer(FID);
+ const char* FileStart = Buf->getBufferStart();
+ const char* FileEnd = Buf->getBufferEnd();
+
+ SourceLocation StartLoc = R.getSourceMgr().getLocForStartOfFile(FID);
+ SourceLocation EndLoc = StartLoc.getLocWithOffset(FileEnd-FileStart);
+
+ std::string s;
+ llvm::raw_string_ostream os(s);
+ os << "<!doctype html>\n" // Use HTML 5 doctype
+ "<html>\n<head>\n";
+
+ if (title)
+ os << "<title>" << html::EscapeText(title) << "</title>\n";
+
+ os << "<style type=\"text/css\">\n"
+ " body { color:#000000; background-color:#ffffff }\n"
+ " body { font-family:Helvetica, sans-serif; font-size:10pt }\n"
+ " h1 { font-size:14pt }\n"
+ " .code { border-collapse:collapse; width:100%; }\n"
+ " .code { font-family: \"Monospace\", monospace; font-size:10pt }\n"
+ " .code { line-height: 1.2em }\n"
+ " .comment { color: green; font-style: oblique }\n"
+ " .keyword { color: blue }\n"
+ " .string_literal { color: red }\n"
+ " .directive { color: darkmagenta }\n"
+ // Macro expansions.
+ " .expansion { display: none; }\n"
+ " .macro:hover .expansion { display: block; border: 2px solid #FF0000; "
+ "padding: 2px; background-color:#FFF0F0; font-weight: normal; "
+ " -webkit-border-radius:5px; -webkit-box-shadow:1px 1px 7px #000; "
+ "position: absolute; top: -1em; left:10em; z-index: 1 } \n"
+ " .macro { color: darkmagenta; background-color:LemonChiffon;"
+ // Macros are position: relative to provide base for expansions.
+ " position: relative }\n"
+ " .num { width:2.5em; padding-right:2ex; background-color:#eeeeee }\n"
+ " .num { text-align:right; font-size:8pt }\n"
+ " .num { color:#444444 }\n"
+ " .line { padding-left: 1ex; border-left: 3px solid #ccc }\n"
+ " .line { white-space: pre }\n"
+ " .msg { -webkit-box-shadow:1px 1px 7px #000 }\n"
+ " .msg { -webkit-border-radius:5px }\n"
+ " .msg { font-family:Helvetica, sans-serif; font-size:8pt }\n"
+ " .msg { float:left }\n"
+ " .msg { padding:0.25em 1ex 0.25em 1ex }\n"
+ " .msg { margin-top:10px; margin-bottom:10px }\n"
+ " .msg { font-weight:bold }\n"
+ " .msg { max-width:60em; word-wrap: break-word; white-space: pre-wrap }\n"
+ " .msgT { padding:0x; spacing:0x }\n"
+ " .msgEvent { background-color:#fff8b4; color:#000000 }\n"
+ " .msgControl { background-color:#bbbbbb; color:#000000 }\n"
+ " .mrange { background-color:#dfddf3 }\n"
+ " .mrange { border-bottom:1px solid #6F9DBE }\n"
+ " .PathIndex { font-weight: bold; padding:0px 5px; "
+ "margin-right:5px; }\n"
+ " .PathIndex { -webkit-border-radius:8px }\n"
+ " .PathIndexEvent { background-color:#bfba87 }\n"
+ " .PathIndexControl { background-color:#8c8c8c }\n"
+ " .PathNav a { text-decoration:none; font-size: larger }\n"
+ " .CodeInsertionHint { font-weight: bold; background-color: #10dd10 }\n"
+ " .CodeRemovalHint { background-color:#de1010 }\n"
+ " .CodeRemovalHint { border-bottom:1px solid #6F9DBE }\n"
+ " table.simpletable {\n"
+ " padding: 5px;\n"
+ " font-size:12pt;\n"
+ " margin:20px;\n"
+ " border-collapse: collapse; border-spacing: 0px;\n"
+ " }\n"
+ " td.rowname {\n"
+ " text-align:right; font-weight:bold; color:#444444;\n"
+ " padding-right:2ex; }\n"
+ "</style>\n</head>\n<body>";
+
+ // Generate header
+ R.InsertTextBefore(StartLoc, os.str());
+ // Generate footer
+
+ R.InsertTextAfter(EndLoc, "</body></html>\n");
+}
+
+/// SyntaxHighlight - Relex the specified FileID and annotate the HTML with
+/// information about keywords, macro expansions etc. This uses the macro
+/// table state from the end of the file, so it won't be perfectly perfect,
+/// but it will be reasonably close.
+void html::SyntaxHighlight(Rewriter &R, FileID FID, const Preprocessor &PP) {
+ RewriteBuffer &RB = R.getEditBuffer(FID);
+
+ const SourceManager &SM = PP.getSourceManager();
+ const llvm::MemoryBuffer *FromFile = SM.getBuffer(FID);
+ Lexer L(FID, FromFile, SM, PP.getLangOpts());
+ const char *BufferStart = L.getBuffer().data();
+
+ // Inform the preprocessor that we want to retain comments as tokens, so we
+ // can highlight them.
+ L.SetCommentRetentionState(true);
+
+ // Lex all the tokens in raw mode, to avoid entering #includes or expanding
+ // macros.
+ Token Tok;
+ L.LexFromRawLexer(Tok);
+
+ while (Tok.isNot(tok::eof)) {
+ // Since we are lexing unexpanded tokens, all tokens are from the main
+ // FileID.
+ unsigned TokOffs = SM.getFileOffset(Tok.getLocation());
+ unsigned TokLen = Tok.getLength();
+ switch (Tok.getKind()) {
+ default: break;
+ case tok::identifier:
+ llvm_unreachable("tok::identifier in raw lexing mode!");
+ case tok::raw_identifier: {
+ // Fill in Result.IdentifierInfo and update the token kind,
+ // looking up the identifier in the identifier table.
+ PP.LookUpIdentifierInfo(Tok);
+
+ // If this is a pp-identifier, for a keyword, highlight it as such.
+ if (Tok.isNot(tok::identifier))
+ HighlightRange(RB, TokOffs, TokOffs+TokLen, BufferStart,
+ "<span class='keyword'>", "</span>");
+ break;
+ }
+ case tok::comment:
+ HighlightRange(RB, TokOffs, TokOffs+TokLen, BufferStart,
+ "<span class='comment'>", "</span>");
+ break;
+ case tok::utf8_string_literal:
+ // Chop off the u part of u8 prefix
+ ++TokOffs;
+ --TokLen;
+ // FALL THROUGH to chop the 8
+ case tok::wide_string_literal:
+ case tok::utf16_string_literal:
+ case tok::utf32_string_literal:
+ // Chop off the L, u, U or 8 prefix
+ ++TokOffs;
+ --TokLen;
+ // FALL THROUGH.
+ case tok::string_literal:
+ // FIXME: Exclude the optional ud-suffix from the highlighted range.
+ HighlightRange(RB, TokOffs, TokOffs+TokLen, BufferStart,
+ "<span class='string_literal'>", "</span>");
+ break;
+ case tok::hash: {
+ // If this is a preprocessor directive, all tokens to end of line are too.
+ if (!Tok.isAtStartOfLine())
+ break;
+
+ // Eat all of the tokens until we get to the next one at the start of
+ // line.
+ unsigned TokEnd = TokOffs+TokLen;
+ L.LexFromRawLexer(Tok);
+ while (!Tok.isAtStartOfLine() && Tok.isNot(tok::eof)) {
+ TokEnd = SM.getFileOffset(Tok.getLocation())+Tok.getLength();
+ L.LexFromRawLexer(Tok);
+ }
+
+ // Find end of line. This is a hack.
+ HighlightRange(RB, TokOffs, TokEnd, BufferStart,
+ "<span class='directive'>", "</span>");
+
+ // Don't skip the next token.
+ continue;
+ }
+ }
+
+ L.LexFromRawLexer(Tok);
+ }
+}
+
+/// HighlightMacros - This uses the macro table state from the end of the
+/// file, to re-expand macros and insert (into the HTML) information about the
+/// macro expansions. This won't be perfectly perfect, but it will be
+/// reasonably close.
+void html::HighlightMacros(Rewriter &R, FileID FID, const Preprocessor& PP) {
+ // Re-lex the raw token stream into a token buffer.
+ const SourceManager &SM = PP.getSourceManager();
+ std::vector<Token> TokenStream;
+
+ const llvm::MemoryBuffer *FromFile = SM.getBuffer(FID);
+ Lexer L(FID, FromFile, SM, PP.getLangOpts());
+
+ // Lex all the tokens in raw mode, to avoid entering #includes or expanding
+ // macros.
+ while (1) {
+ Token Tok;
+ L.LexFromRawLexer(Tok);
+
+ // If this is a # at the start of a line, discard it from the token stream.
+ // We don't want the re-preprocess step to see #defines, #includes or other
+ // preprocessor directives.
+ if (Tok.is(tok::hash) && Tok.isAtStartOfLine())
+ continue;
+
+ // If this is a ## token, change its kind to unknown so that repreprocessing
+ // it will not produce an error.
+ if (Tok.is(tok::hashhash))
+ Tok.setKind(tok::unknown);
+
+ // If this raw token is an identifier, the raw lexer won't have looked up
+ // the corresponding identifier info for it. Do this now so that it will be
+ // macro expanded when we re-preprocess it.
+ if (Tok.is(tok::raw_identifier))
+ PP.LookUpIdentifierInfo(Tok);
+
+ TokenStream.push_back(Tok);
+
+ if (Tok.is(tok::eof)) break;
+ }
+
+ // Temporarily change the diagnostics object so that we ignore any generated
+ // diagnostics from this pass.
+ DiagnosticsEngine TmpDiags(PP.getDiagnostics().getDiagnosticIDs(),
+ &PP.getDiagnostics().getDiagnosticOptions(),
+ new IgnoringDiagConsumer);
+
+ // FIXME: This is a huge hack; we reuse the input preprocessor because we want
+ // its state, but we aren't actually changing it (we hope). This should really
+ // construct a copy of the preprocessor.
+ Preprocessor &TmpPP = const_cast<Preprocessor&>(PP);
+ DiagnosticsEngine *OldDiags = &TmpPP.getDiagnostics();
+ TmpPP.setDiagnostics(TmpDiags);
+
+ // Inform the preprocessor that we don't want comments.
+ TmpPP.SetCommentRetentionState(false, false);
+
+ // We don't want pragmas either. Although we filtered out #pragma, removing
+ // _Pragma and __pragma is much harder.
+ bool PragmasPreviouslyEnabled = TmpPP.getPragmasEnabled();
+ TmpPP.setPragmasEnabled(false);
+
+ // Enter the tokens we just lexed. This will cause them to be macro expanded
+ // but won't enter sub-files (because we removed #'s).
+ TmpPP.EnterTokenStream(&TokenStream[0], TokenStream.size(), false, false);
+
+ TokenConcatenation ConcatInfo(TmpPP);
+
+ // Lex all the tokens.
+ Token Tok;
+ TmpPP.Lex(Tok);
+ while (Tok.isNot(tok::eof)) {
+ // Ignore non-macro tokens.
+ if (!Tok.getLocation().isMacroID()) {
+ TmpPP.Lex(Tok);
+ continue;
+ }
+
+ // Okay, we have the first token of a macro expansion: highlight the
+ // expansion by inserting a start tag before the macro expansion and
+ // end tag after it.
+ std::pair<SourceLocation, SourceLocation> LLoc =
+ SM.getExpansionRange(Tok.getLocation());
+
+ // Ignore tokens whose instantiation location was not the main file.
+ if (SM.getFileID(LLoc.first) != FID) {
+ TmpPP.Lex(Tok);
+ continue;
+ }
+
+ assert(SM.getFileID(LLoc.second) == FID &&
+ "Start and end of expansion must be in the same ultimate file!");
+
+ std::string Expansion = EscapeText(TmpPP.getSpelling(Tok));
+ unsigned LineLen = Expansion.size();
+
+ Token PrevPrevTok;
+ Token PrevTok = Tok;
+ // Okay, eat this token, getting the next one.
+ TmpPP.Lex(Tok);
+
+ // Skip all the rest of the tokens that are part of this macro
+ // instantiation. It would be really nice to pop up a window with all the
+ // spelling of the tokens or something.
+ while (!Tok.is(tok::eof) &&
+ SM.getExpansionLoc(Tok.getLocation()) == LLoc.first) {
+ // Insert a newline if the macro expansion is getting large.
+ if (LineLen > 60) {
+ Expansion += "<br>";
+ LineLen = 0;
+ }
+
+ LineLen -= Expansion.size();
+
+ // If the tokens were already space separated, or if they must be to avoid
+ // them being implicitly pasted, add a space between them.
+ if (Tok.hasLeadingSpace() ||
+ ConcatInfo.AvoidConcat(PrevPrevTok, PrevTok, Tok))
+ Expansion += ' ';
+
+ // Escape any special characters in the token text.
+ Expansion += EscapeText(TmpPP.getSpelling(Tok));
+ LineLen += Expansion.size();
+
+ PrevPrevTok = PrevTok;
+ PrevTok = Tok;
+ TmpPP.Lex(Tok);
+ }
+
+
+ // Insert the expansion as the end tag, so that multi-line macros all get
+ // highlighted.
+ Expansion = "<span class='expansion'>" + Expansion + "</span></span>";
+
+ HighlightRange(R, LLoc.first, LLoc.second,
+ "<span class='macro'>", Expansion.c_str());
+ }
+
+ // Restore the preprocessor's old state.
+ TmpPP.setDiagnostics(*OldDiags);
+ TmpPP.setPragmasEnabled(PragmasPreviouslyEnabled);
+}
diff --git a/contrib/llvm/tools/clang/lib/Rewrite/RewriteRope.cpp b/contrib/llvm/tools/clang/lib/Rewrite/RewriteRope.cpp
new file mode 100644
index 0000000..451ad07
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Rewrite/RewriteRope.cpp
@@ -0,0 +1,802 @@
+//===--- RewriteRope.cpp - Rope specialized for rewriter --------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the RewriteRope class, which is a powerful string.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Rewrite/Core/RewriteRope.h"
+#include "clang/Basic/LLVM.h"
+#include <algorithm>
+using namespace clang;
+
+/// RewriteRope is a "strong" string class, designed to make insertions and
+/// deletions in the middle of the string nearly constant time (really, they are
+/// O(log N), but with a very low constant factor).
+///
+/// The implementation of this datastructure is a conceptual linear sequence of
+/// RopePiece elements. Each RopePiece represents a view on a separately
+/// allocated and reference counted string. This means that splitting a very
+/// long string can be done in constant time by splitting a RopePiece that
+/// references the whole string into two rope pieces that reference each half.
+/// Once split, another string can be inserted in between the two halves by
+/// inserting a RopePiece in between the two others. All of this is very
+/// inexpensive: it takes time proportional to the number of RopePieces, not the
+/// length of the strings they represent.
+///
+/// While a linear sequences of RopePieces is the conceptual model, the actual
+/// implementation captures them in an adapted B+ Tree. Using a B+ tree (which
+/// is a tree that keeps the values in the leaves and has where each node
+/// contains a reasonable number of pointers to children/values) allows us to
+/// maintain efficient operation when the RewriteRope contains a *huge* number
+/// of RopePieces. The basic idea of the B+ Tree is that it allows us to find
+/// the RopePiece corresponding to some offset very efficiently, and it
+/// automatically balances itself on insertions of RopePieces (which can happen
+/// for both insertions and erases of string ranges).
+///
+/// The one wrinkle on the theory is that we don't attempt to keep the tree
+/// properly balanced when erases happen. Erases of string data can both insert
+/// new RopePieces (e.g. when the middle of some other rope piece is deleted,
+/// which results in two rope pieces, which is just like an insert) or it can
+/// reduce the number of RopePieces maintained by the B+Tree. In the case when
+/// the number of RopePieces is reduced, we don't attempt to maintain the
+/// standard 'invariant' that each node in the tree contains at least
+/// 'WidthFactor' children/values. For our use cases, this doesn't seem to
+/// matter.
+///
+/// The implementation below is primarily implemented in terms of three classes:
+/// RopePieceBTreeNode - Common base class for:
+///
+/// RopePieceBTreeLeaf - Directly manages up to '2*WidthFactor' RopePiece
+/// nodes. This directly represents a chunk of the string with those
+/// RopePieces contatenated.
+/// RopePieceBTreeInterior - An interior node in the B+ Tree, which manages
+/// up to '2*WidthFactor' other nodes in the tree.
+
+
+//===----------------------------------------------------------------------===//
+// RopePieceBTreeNode Class
+//===----------------------------------------------------------------------===//
+
+namespace {
+ /// RopePieceBTreeNode - Common base class of RopePieceBTreeLeaf and
+ /// RopePieceBTreeInterior. This provides some 'virtual' dispatching methods
+ /// and a flag that determines which subclass the instance is. Also
+ /// important, this node knows the full extend of the node, including any
+ /// children that it has. This allows efficient skipping over entire subtrees
+ /// when looking for an offset in the BTree.
+ class RopePieceBTreeNode {
+ protected:
+ /// WidthFactor - This controls the number of K/V slots held in the BTree:
+ /// how wide it is. Each level of the BTree is guaranteed to have at least
+ /// 'WidthFactor' elements in it (either ropepieces or children), (except
+ /// the root, which may have less) and may have at most 2*WidthFactor
+ /// elements.
+ enum { WidthFactor = 8 };
+
+ /// Size - This is the number of bytes of file this node (including any
+ /// potential children) covers.
+ unsigned Size;
+
+ /// IsLeaf - True if this is an instance of RopePieceBTreeLeaf, false if it
+ /// is an instance of RopePieceBTreeInterior.
+ bool IsLeaf;
+
+ RopePieceBTreeNode(bool isLeaf) : Size(0), IsLeaf(isLeaf) {}
+ ~RopePieceBTreeNode() = default;
+
+ public:
+ bool isLeaf() const { return IsLeaf; }
+ unsigned size() const { return Size; }
+
+ void Destroy();
+
+ /// split - Split the range containing the specified offset so that we are
+ /// guaranteed that there is a place to do an insertion at the specified
+ /// offset. The offset is relative, so "0" is the start of the node.
+ ///
+ /// If there is no space in this subtree for the extra piece, the extra tree
+ /// node is returned and must be inserted into a parent.
+ RopePieceBTreeNode *split(unsigned Offset);
+
+ /// insert - Insert the specified ropepiece into this tree node at the
+ /// specified offset. The offset is relative, so "0" is the start of the
+ /// node.
+ ///
+ /// If there is no space in this subtree for the extra piece, the extra tree
+ /// node is returned and must be inserted into a parent.
+ RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
+
+ /// erase - Remove NumBytes from this node at the specified offset. We are
+ /// guaranteed that there is a split at Offset.
+ void erase(unsigned Offset, unsigned NumBytes);
+
+ };
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// RopePieceBTreeLeaf Class
+//===----------------------------------------------------------------------===//
+
+namespace {
+ /// RopePieceBTreeLeaf - Directly manages up to '2*WidthFactor' RopePiece
+ /// nodes. This directly represents a chunk of the string with those
+ /// RopePieces contatenated. Since this is a B+Tree, all values (in this case
+ /// instances of RopePiece) are stored in leaves like this. To make iteration
+ /// over the leaves efficient, they maintain a singly linked list through the
+ /// NextLeaf field. This allows the B+Tree forward iterator to be constant
+ /// time for all increments.
+ class RopePieceBTreeLeaf : public RopePieceBTreeNode {
+ /// NumPieces - This holds the number of rope pieces currently active in the
+ /// Pieces array.
+ unsigned char NumPieces;
+
+ /// Pieces - This tracks the file chunks currently in this leaf.
+ ///
+ RopePiece Pieces[2*WidthFactor];
+
+ /// NextLeaf - This is a pointer to the next leaf in the tree, allowing
+ /// efficient in-order forward iteration of the tree without traversal.
+ RopePieceBTreeLeaf **PrevLeaf, *NextLeaf;
+ public:
+ RopePieceBTreeLeaf() : RopePieceBTreeNode(true), NumPieces(0),
+ PrevLeaf(nullptr), NextLeaf(nullptr) {}
+ ~RopePieceBTreeLeaf() {
+ if (PrevLeaf || NextLeaf)
+ removeFromLeafInOrder();
+ clear();
+ }
+
+ bool isFull() const { return NumPieces == 2*WidthFactor; }
+
+ /// clear - Remove all rope pieces from this leaf.
+ void clear() {
+ while (NumPieces)
+ Pieces[--NumPieces] = RopePiece();
+ Size = 0;
+ }
+
+ unsigned getNumPieces() const { return NumPieces; }
+
+ const RopePiece &getPiece(unsigned i) const {
+ assert(i < getNumPieces() && "Invalid piece ID");
+ return Pieces[i];
+ }
+
+ const RopePieceBTreeLeaf *getNextLeafInOrder() const { return NextLeaf; }
+ void insertAfterLeafInOrder(RopePieceBTreeLeaf *Node) {
+ assert(!PrevLeaf && !NextLeaf && "Already in ordering");
+
+ NextLeaf = Node->NextLeaf;
+ if (NextLeaf)
+ NextLeaf->PrevLeaf = &NextLeaf;
+ PrevLeaf = &Node->NextLeaf;
+ Node->NextLeaf = this;
+ }
+
+ void removeFromLeafInOrder() {
+ if (PrevLeaf) {
+ *PrevLeaf = NextLeaf;
+ if (NextLeaf)
+ NextLeaf->PrevLeaf = PrevLeaf;
+ } else if (NextLeaf) {
+ NextLeaf->PrevLeaf = nullptr;
+ }
+ }
+
+ /// FullRecomputeSizeLocally - This method recomputes the 'Size' field by
+ /// summing the size of all RopePieces.
+ void FullRecomputeSizeLocally() {
+ Size = 0;
+ for (unsigned i = 0, e = getNumPieces(); i != e; ++i)
+ Size += getPiece(i).size();
+ }
+
+ /// split - Split the range containing the specified offset so that we are
+ /// guaranteed that there is a place to do an insertion at the specified
+ /// offset. The offset is relative, so "0" is the start of the node.
+ ///
+ /// If there is no space in this subtree for the extra piece, the extra tree
+ /// node is returned and must be inserted into a parent.
+ RopePieceBTreeNode *split(unsigned Offset);
+
+ /// insert - Insert the specified ropepiece into this tree node at the
+ /// specified offset. The offset is relative, so "0" is the start of the
+ /// node.
+ ///
+ /// If there is no space in this subtree for the extra piece, the extra tree
+ /// node is returned and must be inserted into a parent.
+ RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
+
+
+ /// erase - Remove NumBytes from this node at the specified offset. We are
+ /// guaranteed that there is a split at Offset.
+ void erase(unsigned Offset, unsigned NumBytes);
+
+ static inline bool classof(const RopePieceBTreeNode *N) {
+ return N->isLeaf();
+ }
+ };
+} // end anonymous namespace
+
+/// split - Split the range containing the specified offset so that we are
+/// guaranteed that there is a place to do an insertion at the specified
+/// offset. The offset is relative, so "0" is the start of the node.
+///
+/// If there is no space in this subtree for the extra piece, the extra tree
+/// node is returned and must be inserted into a parent.
+RopePieceBTreeNode *RopePieceBTreeLeaf::split(unsigned Offset) {
+ // Find the insertion point. We are guaranteed that there is a split at the
+ // specified offset so find it.
+ if (Offset == 0 || Offset == size()) {
+ // Fastpath for a common case. There is already a splitpoint at the end.
+ return nullptr;
+ }
+
+ // Find the piece that this offset lands in.
+ unsigned PieceOffs = 0;
+ unsigned i = 0;
+ while (Offset >= PieceOffs+Pieces[i].size()) {
+ PieceOffs += Pieces[i].size();
+ ++i;
+ }
+
+ // If there is already a split point at the specified offset, just return
+ // success.
+ if (PieceOffs == Offset)
+ return nullptr;
+
+ // Otherwise, we need to split piece 'i' at Offset-PieceOffs. Convert Offset
+ // to being Piece relative.
+ unsigned IntraPieceOffset = Offset-PieceOffs;
+
+ // We do this by shrinking the RopePiece and then doing an insert of the tail.
+ RopePiece Tail(Pieces[i].StrData, Pieces[i].StartOffs+IntraPieceOffset,
+ Pieces[i].EndOffs);
+ Size -= Pieces[i].size();
+ Pieces[i].EndOffs = Pieces[i].StartOffs+IntraPieceOffset;
+ Size += Pieces[i].size();
+
+ return insert(Offset, Tail);
+}
+
+
+/// insert - Insert the specified RopePiece into this tree node at the
+/// specified offset. The offset is relative, so "0" is the start of the node.
+///
+/// If there is no space in this subtree for the extra piece, the extra tree
+/// node is returned and must be inserted into a parent.
+RopePieceBTreeNode *RopePieceBTreeLeaf::insert(unsigned Offset,
+ const RopePiece &R) {
+ // If this node is not full, insert the piece.
+ if (!isFull()) {
+ // Find the insertion point. We are guaranteed that there is a split at the
+ // specified offset so find it.
+ unsigned i = 0, e = getNumPieces();
+ if (Offset == size()) {
+ // Fastpath for a common case.
+ i = e;
+ } else {
+ unsigned SlotOffs = 0;
+ for (; Offset > SlotOffs; ++i)
+ SlotOffs += getPiece(i).size();
+ assert(SlotOffs == Offset && "Split didn't occur before insertion!");
+ }
+
+ // For an insertion into a non-full leaf node, just insert the value in
+ // its sorted position. This requires moving later values over.
+ for (; i != e; --e)
+ Pieces[e] = Pieces[e-1];
+ Pieces[i] = R;
+ ++NumPieces;
+ Size += R.size();
+ return nullptr;
+ }
+
+ // Otherwise, if this is leaf is full, split it in two halves. Since this
+ // node is full, it contains 2*WidthFactor values. We move the first
+ // 'WidthFactor' values to the LHS child (which we leave in this node) and
+ // move the last 'WidthFactor' values into the RHS child.
+
+ // Create the new node.
+ RopePieceBTreeLeaf *NewNode = new RopePieceBTreeLeaf();
+
+ // Move over the last 'WidthFactor' values from here to NewNode.
+ std::copy(&Pieces[WidthFactor], &Pieces[2*WidthFactor],
+ &NewNode->Pieces[0]);
+ // Replace old pieces with null RopePieces to drop refcounts.
+ std::fill(&Pieces[WidthFactor], &Pieces[2*WidthFactor], RopePiece());
+
+ // Decrease the number of values in the two nodes.
+ NewNode->NumPieces = NumPieces = WidthFactor;
+
+ // Recompute the two nodes' size.
+ NewNode->FullRecomputeSizeLocally();
+ FullRecomputeSizeLocally();
+
+ // Update the list of leaves.
+ NewNode->insertAfterLeafInOrder(this);
+
+ // These insertions can't fail.
+ if (this->size() >= Offset)
+ this->insert(Offset, R);
+ else
+ NewNode->insert(Offset - this->size(), R);
+ return NewNode;
+}
+
+/// erase - Remove NumBytes from this node at the specified offset. We are
+/// guaranteed that there is a split at Offset.
+void RopePieceBTreeLeaf::erase(unsigned Offset, unsigned NumBytes) {
+ // Since we are guaranteed that there is a split at Offset, we start by
+ // finding the Piece that starts there.
+ unsigned PieceOffs = 0;
+ unsigned i = 0;
+ for (; Offset > PieceOffs; ++i)
+ PieceOffs += getPiece(i).size();
+ assert(PieceOffs == Offset && "Split didn't occur before erase!");
+
+ unsigned StartPiece = i;
+
+ // Figure out how many pieces completely cover 'NumBytes'. We want to remove
+ // all of them.
+ for (; Offset+NumBytes > PieceOffs+getPiece(i).size(); ++i)
+ PieceOffs += getPiece(i).size();
+
+ // If we exactly include the last one, include it in the region to delete.
+ if (Offset+NumBytes == PieceOffs+getPiece(i).size())
+ PieceOffs += getPiece(i).size(), ++i;
+
+ // If we completely cover some RopePieces, erase them now.
+ if (i != StartPiece) {
+ unsigned NumDeleted = i-StartPiece;
+ for (; i != getNumPieces(); ++i)
+ Pieces[i-NumDeleted] = Pieces[i];
+
+ // Drop references to dead rope pieces.
+ std::fill(&Pieces[getNumPieces()-NumDeleted], &Pieces[getNumPieces()],
+ RopePiece());
+ NumPieces -= NumDeleted;
+
+ unsigned CoverBytes = PieceOffs-Offset;
+ NumBytes -= CoverBytes;
+ Size -= CoverBytes;
+ }
+
+ // If we completely removed some stuff, we could be done.
+ if (NumBytes == 0) return;
+
+ // Okay, now might be erasing part of some Piece. If this is the case, then
+ // move the start point of the piece.
+ assert(getPiece(StartPiece).size() > NumBytes);
+ Pieces[StartPiece].StartOffs += NumBytes;
+
+ // The size of this node just shrunk by NumBytes.
+ Size -= NumBytes;
+}
+
+//===----------------------------------------------------------------------===//
+// RopePieceBTreeInterior Class
+//===----------------------------------------------------------------------===//
+
+namespace {
+ /// RopePieceBTreeInterior - This represents an interior node in the B+Tree,
+ /// which holds up to 2*WidthFactor pointers to child nodes.
+ class RopePieceBTreeInterior : public RopePieceBTreeNode {
+ /// NumChildren - This holds the number of children currently active in the
+ /// Children array.
+ unsigned char NumChildren;
+ RopePieceBTreeNode *Children[2*WidthFactor];
+ public:
+ RopePieceBTreeInterior() : RopePieceBTreeNode(false), NumChildren(0) {}
+
+ RopePieceBTreeInterior(RopePieceBTreeNode *LHS, RopePieceBTreeNode *RHS)
+ : RopePieceBTreeNode(false) {
+ Children[0] = LHS;
+ Children[1] = RHS;
+ NumChildren = 2;
+ Size = LHS->size() + RHS->size();
+ }
+
+ ~RopePieceBTreeInterior() {
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+ Children[i]->Destroy();
+ }
+
+ bool isFull() const { return NumChildren == 2*WidthFactor; }
+
+ unsigned getNumChildren() const { return NumChildren; }
+ const RopePieceBTreeNode *getChild(unsigned i) const {
+ assert(i < NumChildren && "invalid child #");
+ return Children[i];
+ }
+ RopePieceBTreeNode *getChild(unsigned i) {
+ assert(i < NumChildren && "invalid child #");
+ return Children[i];
+ }
+
+ /// FullRecomputeSizeLocally - Recompute the Size field of this node by
+ /// summing up the sizes of the child nodes.
+ void FullRecomputeSizeLocally() {
+ Size = 0;
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+ Size += getChild(i)->size();
+ }
+
+
+ /// split - Split the range containing the specified offset so that we are
+ /// guaranteed that there is a place to do an insertion at the specified
+ /// offset. The offset is relative, so "0" is the start of the node.
+ ///
+ /// If there is no space in this subtree for the extra piece, the extra tree
+ /// node is returned and must be inserted into a parent.
+ RopePieceBTreeNode *split(unsigned Offset);
+
+
+ /// insert - Insert the specified ropepiece into this tree node at the
+ /// specified offset. The offset is relative, so "0" is the start of the
+ /// node.
+ ///
+ /// If there is no space in this subtree for the extra piece, the extra tree
+ /// node is returned and must be inserted into a parent.
+ RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
+
+ /// HandleChildPiece - A child propagated an insertion result up to us.
+ /// Insert the new child, and/or propagate the result further up the tree.
+ RopePieceBTreeNode *HandleChildPiece(unsigned i, RopePieceBTreeNode *RHS);
+
+ /// erase - Remove NumBytes from this node at the specified offset. We are
+ /// guaranteed that there is a split at Offset.
+ void erase(unsigned Offset, unsigned NumBytes);
+
+ static inline bool classof(const RopePieceBTreeNode *N) {
+ return !N->isLeaf();
+ }
+ };
+} // end anonymous namespace
+
+/// split - Split the range containing the specified offset so that we are
+/// guaranteed that there is a place to do an insertion at the specified
+/// offset. The offset is relative, so "0" is the start of the node.
+///
+/// If there is no space in this subtree for the extra piece, the extra tree
+/// node is returned and must be inserted into a parent.
+RopePieceBTreeNode *RopePieceBTreeInterior::split(unsigned Offset) {
+ // Figure out which child to split.
+ if (Offset == 0 || Offset == size())
+ return nullptr; // If we have an exact offset, we're already split.
+
+ unsigned ChildOffset = 0;
+ unsigned i = 0;
+ for (; Offset >= ChildOffset+getChild(i)->size(); ++i)
+ ChildOffset += getChild(i)->size();
+
+ // If already split there, we're done.
+ if (ChildOffset == Offset)
+ return nullptr;
+
+ // Otherwise, recursively split the child.
+ if (RopePieceBTreeNode *RHS = getChild(i)->split(Offset-ChildOffset))
+ return HandleChildPiece(i, RHS);
+ return nullptr; // Done!
+}
+
+/// insert - Insert the specified ropepiece into this tree node at the
+/// specified offset. The offset is relative, so "0" is the start of the
+/// node.
+///
+/// If there is no space in this subtree for the extra piece, the extra tree
+/// node is returned and must be inserted into a parent.
+RopePieceBTreeNode *RopePieceBTreeInterior::insert(unsigned Offset,
+ const RopePiece &R) {
+ // Find the insertion point. We are guaranteed that there is a split at the
+ // specified offset so find it.
+ unsigned i = 0, e = getNumChildren();
+
+ unsigned ChildOffs = 0;
+ if (Offset == size()) {
+ // Fastpath for a common case. Insert at end of last child.
+ i = e-1;
+ ChildOffs = size()-getChild(i)->size();
+ } else {
+ for (; Offset > ChildOffs+getChild(i)->size(); ++i)
+ ChildOffs += getChild(i)->size();
+ }
+
+ Size += R.size();
+
+ // Insert at the end of this child.
+ if (RopePieceBTreeNode *RHS = getChild(i)->insert(Offset-ChildOffs, R))
+ return HandleChildPiece(i, RHS);
+
+ return nullptr;
+}
+
+/// HandleChildPiece - A child propagated an insertion result up to us.
+/// Insert the new child, and/or propagate the result further up the tree.
+RopePieceBTreeNode *
+RopePieceBTreeInterior::HandleChildPiece(unsigned i, RopePieceBTreeNode *RHS) {
+ // Otherwise the child propagated a subtree up to us as a new child. See if
+ // we have space for it here.
+ if (!isFull()) {
+ // Insert RHS after child 'i'.
+ if (i + 1 != getNumChildren())
+ memmove(&Children[i+2], &Children[i+1],
+ (getNumChildren()-i-1)*sizeof(Children[0]));
+ Children[i+1] = RHS;
+ ++NumChildren;
+ return nullptr;
+ }
+
+ // Okay, this node is full. Split it in half, moving WidthFactor children to
+ // a newly allocated interior node.
+
+ // Create the new node.
+ RopePieceBTreeInterior *NewNode = new RopePieceBTreeInterior();
+
+ // Move over the last 'WidthFactor' values from here to NewNode.
+ memcpy(&NewNode->Children[0], &Children[WidthFactor],
+ WidthFactor*sizeof(Children[0]));
+
+ // Decrease the number of values in the two nodes.
+ NewNode->NumChildren = NumChildren = WidthFactor;
+
+ // Finally, insert the two new children in the side the can (now) hold them.
+ // These insertions can't fail.
+ if (i < WidthFactor)
+ this->HandleChildPiece(i, RHS);
+ else
+ NewNode->HandleChildPiece(i-WidthFactor, RHS);
+
+ // Recompute the two nodes' size.
+ NewNode->FullRecomputeSizeLocally();
+ FullRecomputeSizeLocally();
+ return NewNode;
+}
+
+/// erase - Remove NumBytes from this node at the specified offset. We are
+/// guaranteed that there is a split at Offset.
+void RopePieceBTreeInterior::erase(unsigned Offset, unsigned NumBytes) {
+ // This will shrink this node by NumBytes.
+ Size -= NumBytes;
+
+ // Find the first child that overlaps with Offset.
+ unsigned i = 0;
+ for (; Offset >= getChild(i)->size(); ++i)
+ Offset -= getChild(i)->size();
+
+ // Propagate the delete request into overlapping children, or completely
+ // delete the children as appropriate.
+ while (NumBytes) {
+ RopePieceBTreeNode *CurChild = getChild(i);
+
+ // If we are deleting something contained entirely in the child, pass on the
+ // request.
+ if (Offset+NumBytes < CurChild->size()) {
+ CurChild->erase(Offset, NumBytes);
+ return;
+ }
+
+ // If this deletion request starts somewhere in the middle of the child, it
+ // must be deleting to the end of the child.
+ if (Offset) {
+ unsigned BytesFromChild = CurChild->size()-Offset;
+ CurChild->erase(Offset, BytesFromChild);
+ NumBytes -= BytesFromChild;
+ // Start at the beginning of the next child.
+ Offset = 0;
+ ++i;
+ continue;
+ }
+
+ // If the deletion request completely covers the child, delete it and move
+ // the rest down.
+ NumBytes -= CurChild->size();
+ CurChild->Destroy();
+ --NumChildren;
+ if (i != getNumChildren())
+ memmove(&Children[i], &Children[i+1],
+ (getNumChildren()-i)*sizeof(Children[0]));
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// RopePieceBTreeNode Implementation
+//===----------------------------------------------------------------------===//
+
+void RopePieceBTreeNode::Destroy() {
+ if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
+ delete Leaf;
+ else
+ delete cast<RopePieceBTreeInterior>(this);
+}
+
+/// split - Split the range containing the specified offset so that we are
+/// guaranteed that there is a place to do an insertion at the specified
+/// offset. The offset is relative, so "0" is the start of the node.
+///
+/// If there is no space in this subtree for the extra piece, the extra tree
+/// node is returned and must be inserted into a parent.
+RopePieceBTreeNode *RopePieceBTreeNode::split(unsigned Offset) {
+ assert(Offset <= size() && "Invalid offset to split!");
+ if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
+ return Leaf->split(Offset);
+ return cast<RopePieceBTreeInterior>(this)->split(Offset);
+}
+
+/// insert - Insert the specified ropepiece into this tree node at the
+/// specified offset. The offset is relative, so "0" is the start of the
+/// node.
+///
+/// If there is no space in this subtree for the extra piece, the extra tree
+/// node is returned and must be inserted into a parent.
+RopePieceBTreeNode *RopePieceBTreeNode::insert(unsigned Offset,
+ const RopePiece &R) {
+ assert(Offset <= size() && "Invalid offset to insert!");
+ if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
+ return Leaf->insert(Offset, R);
+ return cast<RopePieceBTreeInterior>(this)->insert(Offset, R);
+}
+
+/// erase - Remove NumBytes from this node at the specified offset. We are
+/// guaranteed that there is a split at Offset.
+void RopePieceBTreeNode::erase(unsigned Offset, unsigned NumBytes) {
+ assert(Offset+NumBytes <= size() && "Invalid offset to erase!");
+ if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
+ return Leaf->erase(Offset, NumBytes);
+ return cast<RopePieceBTreeInterior>(this)->erase(Offset, NumBytes);
+}
+
+
+//===----------------------------------------------------------------------===//
+// RopePieceBTreeIterator Implementation
+//===----------------------------------------------------------------------===//
+
+static const RopePieceBTreeLeaf *getCN(const void *P) {
+ return static_cast<const RopePieceBTreeLeaf*>(P);
+}
+
+// begin iterator.
+RopePieceBTreeIterator::RopePieceBTreeIterator(const void *n) {
+ const RopePieceBTreeNode *N = static_cast<const RopePieceBTreeNode*>(n);
+
+ // Walk down the left side of the tree until we get to a leaf.
+ while (const RopePieceBTreeInterior *IN = dyn_cast<RopePieceBTreeInterior>(N))
+ N = IN->getChild(0);
+
+ // We must have at least one leaf.
+ CurNode = cast<RopePieceBTreeLeaf>(N);
+
+ // If we found a leaf that happens to be empty, skip over it until we get
+ // to something full.
+ while (CurNode && getCN(CurNode)->getNumPieces() == 0)
+ CurNode = getCN(CurNode)->getNextLeafInOrder();
+
+ if (CurNode)
+ CurPiece = &getCN(CurNode)->getPiece(0);
+ else // Empty tree, this is an end() iterator.
+ CurPiece = nullptr;
+ CurChar = 0;
+}
+
+void RopePieceBTreeIterator::MoveToNextPiece() {
+ if (CurPiece != &getCN(CurNode)->getPiece(getCN(CurNode)->getNumPieces()-1)) {
+ CurChar = 0;
+ ++CurPiece;
+ return;
+ }
+
+ // Find the next non-empty leaf node.
+ do
+ CurNode = getCN(CurNode)->getNextLeafInOrder();
+ while (CurNode && getCN(CurNode)->getNumPieces() == 0);
+
+ if (CurNode)
+ CurPiece = &getCN(CurNode)->getPiece(0);
+ else // Hit end().
+ CurPiece = nullptr;
+ CurChar = 0;
+}
+
+//===----------------------------------------------------------------------===//
+// RopePieceBTree Implementation
+//===----------------------------------------------------------------------===//
+
+static RopePieceBTreeNode *getRoot(void *P) {
+ return static_cast<RopePieceBTreeNode*>(P);
+}
+
+RopePieceBTree::RopePieceBTree() {
+ Root = new RopePieceBTreeLeaf();
+}
+RopePieceBTree::RopePieceBTree(const RopePieceBTree &RHS) {
+ assert(RHS.empty() && "Can't copy non-empty tree yet");
+ Root = new RopePieceBTreeLeaf();
+}
+RopePieceBTree::~RopePieceBTree() {
+ getRoot(Root)->Destroy();
+}
+
+unsigned RopePieceBTree::size() const {
+ return getRoot(Root)->size();
+}
+
+void RopePieceBTree::clear() {
+ if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(getRoot(Root)))
+ Leaf->clear();
+ else {
+ getRoot(Root)->Destroy();
+ Root = new RopePieceBTreeLeaf();
+ }
+}
+
+void RopePieceBTree::insert(unsigned Offset, const RopePiece &R) {
+ // #1. Split at Offset.
+ if (RopePieceBTreeNode *RHS = getRoot(Root)->split(Offset))
+ Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
+
+ // #2. Do the insertion.
+ if (RopePieceBTreeNode *RHS = getRoot(Root)->insert(Offset, R))
+ Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
+}
+
+void RopePieceBTree::erase(unsigned Offset, unsigned NumBytes) {
+ // #1. Split at Offset.
+ if (RopePieceBTreeNode *RHS = getRoot(Root)->split(Offset))
+ Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
+
+ // #2. Do the erasing.
+ getRoot(Root)->erase(Offset, NumBytes);
+}
+
+//===----------------------------------------------------------------------===//
+// RewriteRope Implementation
+//===----------------------------------------------------------------------===//
+
+/// MakeRopeString - This copies the specified byte range into some instance of
+/// RopeRefCountString, and return a RopePiece that represents it. This uses
+/// the AllocBuffer object to aggregate requests for small strings into one
+/// allocation instead of doing tons of tiny allocations.
+RopePiece RewriteRope::MakeRopeString(const char *Start, const char *End) {
+ unsigned Len = End-Start;
+ assert(Len && "Zero length RopePiece is invalid!");
+
+ // If we have space for this string in the current alloc buffer, use it.
+ if (AllocOffs+Len <= AllocChunkSize) {
+ memcpy(AllocBuffer->Data+AllocOffs, Start, Len);
+ AllocOffs += Len;
+ return RopePiece(AllocBuffer, AllocOffs-Len, AllocOffs);
+ }
+
+ // If we don't have enough room because this specific allocation is huge,
+ // just allocate a new rope piece for it alone.
+ if (Len > AllocChunkSize) {
+ unsigned Size = End-Start+sizeof(RopeRefCountString)-1;
+ RopeRefCountString *Res =
+ reinterpret_cast<RopeRefCountString *>(new char[Size]);
+ Res->RefCount = 0;
+ memcpy(Res->Data, Start, End-Start);
+ return RopePiece(Res, 0, End-Start);
+ }
+
+ // Otherwise, this was a small request but we just don't have space for it
+ // Make a new chunk and share it with later allocations.
+
+ unsigned AllocSize = offsetof(RopeRefCountString, Data) + AllocChunkSize;
+ RopeRefCountString *Res =
+ reinterpret_cast<RopeRefCountString *>(new char[AllocSize]);
+ Res->RefCount = 0;
+ memcpy(Res->Data, Start, Len);
+ AllocBuffer = Res;
+ AllocOffs = Len;
+
+ return RopePiece(AllocBuffer, 0, Len);
+}
+
+
diff --git a/contrib/llvm/tools/clang/lib/Rewrite/Rewriter.cpp b/contrib/llvm/tools/clang/lib/Rewrite/Rewriter.cpp
new file mode 100644
index 0000000..be09a36
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Rewrite/Rewriter.cpp
@@ -0,0 +1,464 @@
+//===--- Rewriter.cpp - Code rewriting interface --------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the Rewriter class, which is used for code
+// transformations.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Rewrite/Core/Rewriter.h"
+#include "clang/Basic/Diagnostic.h"
+#include "clang/Basic/DiagnosticIDs.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Lex/Lexer.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Config/llvm-config.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace clang;
+
+raw_ostream &RewriteBuffer::write(raw_ostream &os) const {
+ // Walk RewriteRope chunks efficiently using MoveToNextPiece() instead of the
+ // character iterator.
+ for (RopePieceBTreeIterator I = begin(), E = end(); I != E;
+ I.MoveToNextPiece())
+ os << I.piece();
+ return os;
+}
+
+/// \brief Return true if this character is non-new-line whitespace:
+/// ' ', '\\t', '\\f', '\\v', '\\r'.
+static inline bool isWhitespace(unsigned char c) {
+ switch (c) {
+ case ' ':
+ case '\t':
+ case '\f':
+ case '\v':
+ case '\r':
+ return true;
+ default:
+ return false;
+ }
+}
+
+void RewriteBuffer::RemoveText(unsigned OrigOffset, unsigned Size,
+ bool removeLineIfEmpty) {
+ // Nothing to remove, exit early.
+ if (Size == 0) return;
+
+ unsigned RealOffset = getMappedOffset(OrigOffset, true);
+ assert(RealOffset+Size <= Buffer.size() && "Invalid location");
+
+ // Remove the dead characters.
+ Buffer.erase(RealOffset, Size);
+
+ // Add a delta so that future changes are offset correctly.
+ AddReplaceDelta(OrigOffset, -Size);
+
+ if (removeLineIfEmpty) {
+ // Find the line that the remove occurred and if it is completely empty
+ // remove the line as well.
+
+ iterator curLineStart = begin();
+ unsigned curLineStartOffs = 0;
+ iterator posI = begin();
+ for (unsigned i = 0; i != RealOffset; ++i) {
+ if (*posI == '\n') {
+ curLineStart = posI;
+ ++curLineStart;
+ curLineStartOffs = i + 1;
+ }
+ ++posI;
+ }
+
+ unsigned lineSize = 0;
+ posI = curLineStart;
+ while (posI != end() && isWhitespace(*posI)) {
+ ++posI;
+ ++lineSize;
+ }
+ if (posI != end() && *posI == '\n') {
+ Buffer.erase(curLineStartOffs, lineSize + 1/* + '\n'*/);
+ AddReplaceDelta(curLineStartOffs, -(lineSize + 1/* + '\n'*/));
+ }
+ }
+}
+
+void RewriteBuffer::InsertText(unsigned OrigOffset, StringRef Str,
+ bool InsertAfter) {
+
+ // Nothing to insert, exit early.
+ if (Str.empty()) return;
+
+ unsigned RealOffset = getMappedOffset(OrigOffset, InsertAfter);
+ Buffer.insert(RealOffset, Str.begin(), Str.end());
+
+ // Add a delta so that future changes are offset correctly.
+ AddInsertDelta(OrigOffset, Str.size());
+}
+
+/// ReplaceText - This method replaces a range of characters in the input
+/// buffer with a new string. This is effectively a combined "remove+insert"
+/// operation.
+void RewriteBuffer::ReplaceText(unsigned OrigOffset, unsigned OrigLength,
+ StringRef NewStr) {
+ unsigned RealOffset = getMappedOffset(OrigOffset, true);
+ Buffer.erase(RealOffset, OrigLength);
+ Buffer.insert(RealOffset, NewStr.begin(), NewStr.end());
+ if (OrigLength != NewStr.size())
+ AddReplaceDelta(OrigOffset, NewStr.size() - OrigLength);
+}
+
+
+//===----------------------------------------------------------------------===//
+// Rewriter class
+//===----------------------------------------------------------------------===//
+
+/// getRangeSize - Return the size in bytes of the specified range if they
+/// are in the same file. If not, this returns -1.
+int Rewriter::getRangeSize(const CharSourceRange &Range,
+ RewriteOptions opts) const {
+ if (!isRewritable(Range.getBegin()) ||
+ !isRewritable(Range.getEnd())) return -1;
+
+ FileID StartFileID, EndFileID;
+ unsigned StartOff, EndOff;
+
+ StartOff = getLocationOffsetAndFileID(Range.getBegin(), StartFileID);
+ EndOff = getLocationOffsetAndFileID(Range.getEnd(), EndFileID);
+
+ if (StartFileID != EndFileID)
+ return -1;
+
+ // If edits have been made to this buffer, the delta between the range may
+ // have changed.
+ std::map<FileID, RewriteBuffer>::const_iterator I =
+ RewriteBuffers.find(StartFileID);
+ if (I != RewriteBuffers.end()) {
+ const RewriteBuffer &RB = I->second;
+ EndOff = RB.getMappedOffset(EndOff, opts.IncludeInsertsAtEndOfRange);
+ StartOff = RB.getMappedOffset(StartOff, !opts.IncludeInsertsAtBeginOfRange);
+ }
+
+
+ // Adjust the end offset to the end of the last token, instead of being the
+ // start of the last token if this is a token range.
+ if (Range.isTokenRange())
+ EndOff += Lexer::MeasureTokenLength(Range.getEnd(), *SourceMgr, *LangOpts);
+
+ return EndOff-StartOff;
+}
+
+int Rewriter::getRangeSize(SourceRange Range, RewriteOptions opts) const {
+ return getRangeSize(CharSourceRange::getTokenRange(Range), opts);
+}
+
+
+/// getRewrittenText - Return the rewritten form of the text in the specified
+/// range. If the start or end of the range was unrewritable or if they are
+/// in different buffers, this returns an empty string.
+///
+/// Note that this method is not particularly efficient.
+///
+std::string Rewriter::getRewrittenText(SourceRange Range) const {
+ if (!isRewritable(Range.getBegin()) ||
+ !isRewritable(Range.getEnd()))
+ return "";
+
+ FileID StartFileID, EndFileID;
+ unsigned StartOff, EndOff;
+ StartOff = getLocationOffsetAndFileID(Range.getBegin(), StartFileID);
+ EndOff = getLocationOffsetAndFileID(Range.getEnd(), EndFileID);
+
+ if (StartFileID != EndFileID)
+ return ""; // Start and end in different buffers.
+
+ // If edits have been made to this buffer, the delta between the range may
+ // have changed.
+ std::map<FileID, RewriteBuffer>::const_iterator I =
+ RewriteBuffers.find(StartFileID);
+ if (I == RewriteBuffers.end()) {
+ // If the buffer hasn't been rewritten, just return the text from the input.
+ const char *Ptr = SourceMgr->getCharacterData(Range.getBegin());
+
+ // Adjust the end offset to the end of the last token, instead of being the
+ // start of the last token.
+ EndOff += Lexer::MeasureTokenLength(Range.getEnd(), *SourceMgr, *LangOpts);
+ return std::string(Ptr, Ptr+EndOff-StartOff);
+ }
+
+ const RewriteBuffer &RB = I->second;
+ EndOff = RB.getMappedOffset(EndOff, true);
+ StartOff = RB.getMappedOffset(StartOff);
+
+ // Adjust the end offset to the end of the last token, instead of being the
+ // start of the last token.
+ EndOff += Lexer::MeasureTokenLength(Range.getEnd(), *SourceMgr, *LangOpts);
+
+ // Advance the iterators to the right spot, yay for linear time algorithms.
+ RewriteBuffer::iterator Start = RB.begin();
+ std::advance(Start, StartOff);
+ RewriteBuffer::iterator End = Start;
+ std::advance(End, EndOff-StartOff);
+
+ return std::string(Start, End);
+}
+
+unsigned Rewriter::getLocationOffsetAndFileID(SourceLocation Loc,
+ FileID &FID) const {
+ assert(Loc.isValid() && "Invalid location");
+ std::pair<FileID,unsigned> V = SourceMgr->getDecomposedLoc(Loc);
+ FID = V.first;
+ return V.second;
+}
+
+
+/// getEditBuffer - Get or create a RewriteBuffer for the specified FileID.
+///
+RewriteBuffer &Rewriter::getEditBuffer(FileID FID) {
+ std::map<FileID, RewriteBuffer>::iterator I =
+ RewriteBuffers.lower_bound(FID);
+ if (I != RewriteBuffers.end() && I->first == FID)
+ return I->second;
+ I = RewriteBuffers.insert(I, std::make_pair(FID, RewriteBuffer()));
+
+ StringRef MB = SourceMgr->getBufferData(FID);
+ I->second.Initialize(MB.begin(), MB.end());
+
+ return I->second;
+}
+
+/// InsertText - Insert the specified string at the specified location in the
+/// original buffer.
+bool Rewriter::InsertText(SourceLocation Loc, StringRef Str,
+ bool InsertAfter, bool indentNewLines) {
+ if (!isRewritable(Loc)) return true;
+ FileID FID;
+ unsigned StartOffs = getLocationOffsetAndFileID(Loc, FID);
+
+ SmallString<128> indentedStr;
+ if (indentNewLines && Str.find('\n') != StringRef::npos) {
+ StringRef MB = SourceMgr->getBufferData(FID);
+
+ unsigned lineNo = SourceMgr->getLineNumber(FID, StartOffs) - 1;
+ const SrcMgr::ContentCache *
+ Content = SourceMgr->getSLocEntry(FID).getFile().getContentCache();
+ unsigned lineOffs = Content->SourceLineCache[lineNo];
+
+ // Find the whitespace at the start of the line.
+ StringRef indentSpace;
+ {
+ unsigned i = lineOffs;
+ while (isWhitespace(MB[i]))
+ ++i;
+ indentSpace = MB.substr(lineOffs, i-lineOffs);
+ }
+
+ SmallVector<StringRef, 4> lines;
+ Str.split(lines, "\n");
+
+ for (unsigned i = 0, e = lines.size(); i != e; ++i) {
+ indentedStr += lines[i];
+ if (i < e-1) {
+ indentedStr += '\n';
+ indentedStr += indentSpace;
+ }
+ }
+ Str = indentedStr.str();
+ }
+
+ getEditBuffer(FID).InsertText(StartOffs, Str, InsertAfter);
+ return false;
+}
+
+bool Rewriter::InsertTextAfterToken(SourceLocation Loc, StringRef Str) {
+ if (!isRewritable(Loc)) return true;
+ FileID FID;
+ unsigned StartOffs = getLocationOffsetAndFileID(Loc, FID);
+ RewriteOptions rangeOpts;
+ rangeOpts.IncludeInsertsAtBeginOfRange = false;
+ StartOffs += getRangeSize(SourceRange(Loc, Loc), rangeOpts);
+ getEditBuffer(FID).InsertText(StartOffs, Str, /*InsertAfter*/true);
+ return false;
+}
+
+/// RemoveText - Remove the specified text region.
+bool Rewriter::RemoveText(SourceLocation Start, unsigned Length,
+ RewriteOptions opts) {
+ if (!isRewritable(Start)) return true;
+ FileID FID;
+ unsigned StartOffs = getLocationOffsetAndFileID(Start, FID);
+ getEditBuffer(FID).RemoveText(StartOffs, Length, opts.RemoveLineIfEmpty);
+ return false;
+}
+
+/// ReplaceText - This method replaces a range of characters in the input
+/// buffer with a new string. This is effectively a combined "remove/insert"
+/// operation.
+bool Rewriter::ReplaceText(SourceLocation Start, unsigned OrigLength,
+ StringRef NewStr) {
+ if (!isRewritable(Start)) return true;
+ FileID StartFileID;
+ unsigned StartOffs = getLocationOffsetAndFileID(Start, StartFileID);
+
+ getEditBuffer(StartFileID).ReplaceText(StartOffs, OrigLength, NewStr);
+ return false;
+}
+
+bool Rewriter::ReplaceText(SourceRange range, SourceRange replacementRange) {
+ if (!isRewritable(range.getBegin())) return true;
+ if (!isRewritable(range.getEnd())) return true;
+ if (replacementRange.isInvalid()) return true;
+ SourceLocation start = range.getBegin();
+ unsigned origLength = getRangeSize(range);
+ unsigned newLength = getRangeSize(replacementRange);
+ FileID FID;
+ unsigned newOffs = getLocationOffsetAndFileID(replacementRange.getBegin(),
+ FID);
+ StringRef MB = SourceMgr->getBufferData(FID);
+ return ReplaceText(start, origLength, MB.substr(newOffs, newLength));
+}
+
+bool Rewriter::IncreaseIndentation(CharSourceRange range,
+ SourceLocation parentIndent) {
+ if (range.isInvalid()) return true;
+ if (!isRewritable(range.getBegin())) return true;
+ if (!isRewritable(range.getEnd())) return true;
+ if (!isRewritable(parentIndent)) return true;
+
+ FileID StartFileID, EndFileID, parentFileID;
+ unsigned StartOff, EndOff, parentOff;
+
+ StartOff = getLocationOffsetAndFileID(range.getBegin(), StartFileID);
+ EndOff = getLocationOffsetAndFileID(range.getEnd(), EndFileID);
+ parentOff = getLocationOffsetAndFileID(parentIndent, parentFileID);
+
+ if (StartFileID != EndFileID || StartFileID != parentFileID)
+ return true;
+ if (StartOff > EndOff)
+ return true;
+
+ FileID FID = StartFileID;
+ StringRef MB = SourceMgr->getBufferData(FID);
+
+ unsigned parentLineNo = SourceMgr->getLineNumber(FID, parentOff) - 1;
+ unsigned startLineNo = SourceMgr->getLineNumber(FID, StartOff) - 1;
+ unsigned endLineNo = SourceMgr->getLineNumber(FID, EndOff) - 1;
+
+ const SrcMgr::ContentCache *
+ Content = SourceMgr->getSLocEntry(FID).getFile().getContentCache();
+
+ // Find where the lines start.
+ unsigned parentLineOffs = Content->SourceLineCache[parentLineNo];
+ unsigned startLineOffs = Content->SourceLineCache[startLineNo];
+
+ // Find the whitespace at the start of each line.
+ StringRef parentSpace, startSpace;
+ {
+ unsigned i = parentLineOffs;
+ while (isWhitespace(MB[i]))
+ ++i;
+ parentSpace = MB.substr(parentLineOffs, i-parentLineOffs);
+
+ i = startLineOffs;
+ while (isWhitespace(MB[i]))
+ ++i;
+ startSpace = MB.substr(startLineOffs, i-startLineOffs);
+ }
+ if (parentSpace.size() >= startSpace.size())
+ return true;
+ if (!startSpace.startswith(parentSpace))
+ return true;
+
+ StringRef indent = startSpace.substr(parentSpace.size());
+
+ // Indent the lines between start/end offsets.
+ RewriteBuffer &RB = getEditBuffer(FID);
+ for (unsigned lineNo = startLineNo; lineNo <= endLineNo; ++lineNo) {
+ unsigned offs = Content->SourceLineCache[lineNo];
+ unsigned i = offs;
+ while (isWhitespace(MB[i]))
+ ++i;
+ StringRef origIndent = MB.substr(offs, i-offs);
+ if (origIndent.startswith(startSpace))
+ RB.InsertText(offs, indent, /*InsertAfter=*/false);
+ }
+
+ return false;
+}
+
+namespace {
+// A wrapper for a file stream that atomically overwrites the target.
+//
+// Creates a file output stream for a temporary file in the constructor,
+// which is later accessible via getStream() if ok() return true.
+// Flushes the stream and moves the temporary file to the target location
+// in the destructor.
+class AtomicallyMovedFile {
+public:
+ AtomicallyMovedFile(DiagnosticsEngine &Diagnostics, StringRef Filename,
+ bool &AllWritten)
+ : Diagnostics(Diagnostics), Filename(Filename), AllWritten(AllWritten) {
+ TempFilename = Filename;
+ TempFilename += "-%%%%%%%%";
+ int FD;
+ if (llvm::sys::fs::createUniqueFile(TempFilename.str(), FD, TempFilename)) {
+ AllWritten = false;
+ Diagnostics.Report(clang::diag::err_unable_to_make_temp)
+ << TempFilename;
+ } else {
+ FileStream.reset(new llvm::raw_fd_ostream(FD, /*shouldClose=*/true));
+ }
+ }
+
+ ~AtomicallyMovedFile() {
+ if (!ok()) return;
+
+ FileStream->flush();
+#ifdef LLVM_ON_WIN32
+ // Win32 does not allow rename/removing opened files.
+ FileStream.reset();
+#endif
+ if (std::error_code ec =
+ llvm::sys::fs::rename(TempFilename.str(), Filename)) {
+ AllWritten = false;
+ Diagnostics.Report(clang::diag::err_unable_to_rename_temp)
+ << TempFilename << Filename << ec.message();
+ // If the remove fails, there's not a lot we can do - this is already an
+ // error.
+ llvm::sys::fs::remove(TempFilename.str());
+ }
+ }
+
+ bool ok() { return (bool)FileStream; }
+ raw_ostream &getStream() { return *FileStream; }
+
+private:
+ DiagnosticsEngine &Diagnostics;
+ StringRef Filename;
+ SmallString<128> TempFilename;
+ std::unique_ptr<llvm::raw_fd_ostream> FileStream;
+ bool &AllWritten;
+};
+} // end anonymous namespace
+
+bool Rewriter::overwriteChangedFiles() {
+ bool AllWritten = true;
+ for (buffer_iterator I = buffer_begin(), E = buffer_end(); I != E; ++I) {
+ const FileEntry *Entry =
+ getSourceMgr().getFileEntryForID(I->first);
+ AtomicallyMovedFile File(getSourceMgr().getDiagnostics(), Entry->getName(),
+ AllWritten);
+ if (File.ok()) {
+ I->second.write(File.getStream());
+ }
+ }
+ return !AllWritten;
+}
diff --git a/contrib/llvm/tools/clang/lib/Rewrite/TokenRewriter.cpp b/contrib/llvm/tools/clang/lib/Rewrite/TokenRewriter.cpp
new file mode 100644
index 0000000..494defd
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Rewrite/TokenRewriter.cpp
@@ -0,0 +1,99 @@
+//===--- TokenRewriter.cpp - Token-based code rewriting interface ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the TokenRewriter class, which is used for code
+// transformations.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Rewrite/Core/TokenRewriter.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Lex/Lexer.h"
+#include "clang/Lex/ScratchBuffer.h"
+using namespace clang;
+
+TokenRewriter::TokenRewriter(FileID FID, SourceManager &SM,
+ const LangOptions &LangOpts) {
+ ScratchBuf.reset(new ScratchBuffer(SM));
+
+ // Create a lexer to lex all the tokens of the main file in raw mode.
+ const llvm::MemoryBuffer *FromFile = SM.getBuffer(FID);
+ Lexer RawLex(FID, FromFile, SM, LangOpts);
+
+ // Return all comments and whitespace as tokens.
+ RawLex.SetKeepWhitespaceMode(true);
+
+ // Lex the file, populating our datastructures.
+ Token RawTok;
+ RawLex.LexFromRawLexer(RawTok);
+ while (RawTok.isNot(tok::eof)) {
+#if 0
+ if (Tok.is(tok::raw_identifier)) {
+ // Look up the identifier info for the token. This should use
+ // IdentifierTable directly instead of PP.
+ PP.LookUpIdentifierInfo(Tok);
+ }
+#endif
+
+ AddToken(RawTok, TokenList.end());
+ RawLex.LexFromRawLexer(RawTok);
+ }
+}
+
+TokenRewriter::~TokenRewriter() {
+}
+
+
+/// RemapIterator - Convert from token_iterator (a const iterator) to
+/// TokenRefTy (a non-const iterator).
+TokenRewriter::TokenRefTy TokenRewriter::RemapIterator(token_iterator I) {
+ if (I == token_end()) return TokenList.end();
+
+ // FIXME: This is horrible, we should use our own list or something to avoid
+ // this.
+ std::map<SourceLocation, TokenRefTy>::iterator MapIt =
+ TokenAtLoc.find(I->getLocation());
+ assert(MapIt != TokenAtLoc.end() && "iterator not in rewriter?");
+ return MapIt->second;
+}
+
+
+/// AddToken - Add the specified token into the Rewriter before the other
+/// position.
+TokenRewriter::TokenRefTy
+TokenRewriter::AddToken(const Token &T, TokenRefTy Where) {
+ Where = TokenList.insert(Where, T);
+
+ bool InsertSuccess = TokenAtLoc.insert(std::make_pair(T.getLocation(),
+ Where)).second;
+ assert(InsertSuccess && "Token location already in rewriter!");
+ (void)InsertSuccess;
+ return Where;
+}
+
+
+TokenRewriter::token_iterator
+TokenRewriter::AddTokenBefore(token_iterator I, const char *Val) {
+ unsigned Len = strlen(Val);
+
+ // Plop the string into the scratch buffer, then create a token for this
+ // string.
+ Token Tok;
+ Tok.startToken();
+ const char *Spelling;
+ Tok.setLocation(ScratchBuf->getToken(Val, Len, Spelling));
+ Tok.setLength(Len);
+
+ // TODO: Form a whole lexer around this and relex the token! For now, just
+ // set kind to tok::unknown.
+ Tok.setKind(tok::unknown);
+
+ return AddToken(Tok, RemapIterator(I));
+}
+
diff --git a/contrib/llvm/tools/clang/lib/Sema/AnalysisBasedWarnings.cpp b/contrib/llvm/tools/clang/lib/Sema/AnalysisBasedWarnings.cpp
new file mode 100644
index 0000000..d697ecb
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/AnalysisBasedWarnings.cpp
@@ -0,0 +1,2105 @@
+//=- AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis -*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines analysis_warnings::[Policy,Executor].
+// Together they are used by Sema to issue warnings based on inexpensive
+// static analysis algorithms in libAnalysis.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Sema/AnalysisBasedWarnings.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/EvaluatedExprVisitor.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/AST/ParentMap.h"
+#include "clang/AST/RecursiveASTVisitor.h"
+#include "clang/AST/StmtCXX.h"
+#include "clang/AST/StmtObjC.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h"
+#include "clang/Analysis/Analyses/Consumed.h"
+#include "clang/Analysis/Analyses/ReachableCode.h"
+#include "clang/Analysis/Analyses/ThreadSafety.h"
+#include "clang/Analysis/Analyses/UninitializedValues.h"
+#include "clang/Analysis/AnalysisContext.h"
+#include "clang/Analysis/CFG.h"
+#include "clang/Analysis/CFGStmtMap.h"
+#include "clang/Basic/SourceLocation.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Lex/Lexer.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Sema/ScopeInfo.h"
+#include "clang/Sema/SemaInternal.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/ADT/ImmutableMap.h"
+#include "llvm/ADT/MapVector.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/Support/Casting.h"
+#include <algorithm>
+#include <deque>
+#include <iterator>
+#include <vector>
+
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// Unreachable code analysis.
+//===----------------------------------------------------------------------===//
+
+namespace {
+ class UnreachableCodeHandler : public reachable_code::Callback {
+ Sema &S;
+ public:
+ UnreachableCodeHandler(Sema &s) : S(s) {}
+
+ void HandleUnreachable(reachable_code::UnreachableKind UK,
+ SourceLocation L,
+ SourceRange SilenceableCondVal,
+ SourceRange R1,
+ SourceRange R2) override {
+ unsigned diag = diag::warn_unreachable;
+ switch (UK) {
+ case reachable_code::UK_Break:
+ diag = diag::warn_unreachable_break;
+ break;
+ case reachable_code::UK_Return:
+ diag = diag::warn_unreachable_return;
+ break;
+ case reachable_code::UK_Loop_Increment:
+ diag = diag::warn_unreachable_loop_increment;
+ break;
+ case reachable_code::UK_Other:
+ break;
+ }
+
+ S.Diag(L, diag) << R1 << R2;
+
+ SourceLocation Open = SilenceableCondVal.getBegin();
+ if (Open.isValid()) {
+ SourceLocation Close = SilenceableCondVal.getEnd();
+ Close = S.getLocForEndOfToken(Close);
+ if (Close.isValid()) {
+ S.Diag(Open, diag::note_unreachable_silence)
+ << FixItHint::CreateInsertion(Open, "/* DISABLES CODE */ (")
+ << FixItHint::CreateInsertion(Close, ")");
+ }
+ }
+ }
+ };
+}
+
+/// CheckUnreachable - Check for unreachable code.
+static void CheckUnreachable(Sema &S, AnalysisDeclContext &AC) {
+ // As a heuristic prune all diagnostics not in the main file. Currently
+ // the majority of warnings in headers are false positives. These
+ // are largely caused by configuration state, e.g. preprocessor
+ // defined code, etc.
+ //
+ // Note that this is also a performance optimization. Analyzing
+ // headers many times can be expensive.
+ if (!S.getSourceManager().isInMainFile(AC.getDecl()->getLocStart()))
+ return;
+
+ UnreachableCodeHandler UC(S);
+ reachable_code::FindUnreachableCode(AC, S.getPreprocessor(), UC);
+}
+
+namespace {
+/// \brief Warn on logical operator errors in CFGBuilder
+class LogicalErrorHandler : public CFGCallback {
+ Sema &S;
+
+public:
+ LogicalErrorHandler(Sema &S) : CFGCallback(), S(S) {}
+
+ static bool HasMacroID(const Expr *E) {
+ if (E->getExprLoc().isMacroID())
+ return true;
+
+ // Recurse to children.
+ for (ConstStmtRange SubStmts = E->children(); SubStmts; ++SubStmts)
+ if (*SubStmts)
+ if (const Expr *SubExpr = dyn_cast<Expr>(*SubStmts))
+ if (HasMacroID(SubExpr))
+ return true;
+
+ return false;
+ }
+
+ void compareAlwaysTrue(const BinaryOperator *B, bool isAlwaysTrue) override {
+ if (HasMacroID(B))
+ return;
+
+ SourceRange DiagRange = B->getSourceRange();
+ S.Diag(B->getExprLoc(), diag::warn_tautological_overlap_comparison)
+ << DiagRange << isAlwaysTrue;
+ }
+
+ void compareBitwiseEquality(const BinaryOperator *B,
+ bool isAlwaysTrue) override {
+ if (HasMacroID(B))
+ return;
+
+ SourceRange DiagRange = B->getSourceRange();
+ S.Diag(B->getExprLoc(), diag::warn_comparison_bitwise_always)
+ << DiagRange << isAlwaysTrue;
+ }
+};
+} // namespace
+
+//===----------------------------------------------------------------------===//
+// Check for infinite self-recursion in functions
+//===----------------------------------------------------------------------===//
+
+// All blocks are in one of three states. States are ordered so that blocks
+// can only move to higher states.
+enum RecursiveState {
+ FoundNoPath,
+ FoundPath,
+ FoundPathWithNoRecursiveCall
+};
+
+static void checkForFunctionCall(Sema &S, const FunctionDecl *FD,
+ CFGBlock &Block, unsigned ExitID,
+ llvm::SmallVectorImpl<RecursiveState> &States,
+ RecursiveState State) {
+ unsigned ID = Block.getBlockID();
+
+ // A block's state can only move to a higher state.
+ if (States[ID] >= State)
+ return;
+
+ States[ID] = State;
+
+ // Found a path to the exit node without a recursive call.
+ if (ID == ExitID && State == FoundPathWithNoRecursiveCall)
+ return;
+
+ if (State == FoundPathWithNoRecursiveCall) {
+ // If the current state is FoundPathWithNoRecursiveCall, the successors
+ // will be either FoundPathWithNoRecursiveCall or FoundPath. To determine
+ // which, process all the Stmt's in this block to find any recursive calls.
+ for (const auto &B : Block) {
+ if (B.getKind() != CFGElement::Statement)
+ continue;
+
+ const CallExpr *CE = dyn_cast<CallExpr>(B.getAs<CFGStmt>()->getStmt());
+ if (CE && CE->getCalleeDecl() &&
+ CE->getCalleeDecl()->getCanonicalDecl() == FD) {
+
+ // Skip function calls which are qualified with a templated class.
+ if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(
+ CE->getCallee()->IgnoreParenImpCasts())) {
+ if (NestedNameSpecifier *NNS = DRE->getQualifier()) {
+ if (NNS->getKind() == NestedNameSpecifier::TypeSpec &&
+ isa<TemplateSpecializationType>(NNS->getAsType())) {
+ continue;
+ }
+ }
+ }
+
+ if (const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE)) {
+ if (isa<CXXThisExpr>(MCE->getImplicitObjectArgument()) ||
+ !MCE->getMethodDecl()->isVirtual()) {
+ State = FoundPath;
+ break;
+ }
+ } else {
+ State = FoundPath;
+ break;
+ }
+ }
+ }
+ }
+
+ for (CFGBlock::succ_iterator I = Block.succ_begin(), E = Block.succ_end();
+ I != E; ++I)
+ if (*I)
+ checkForFunctionCall(S, FD, **I, ExitID, States, State);
+}
+
+static void checkRecursiveFunction(Sema &S, const FunctionDecl *FD,
+ const Stmt *Body,
+ AnalysisDeclContext &AC) {
+ FD = FD->getCanonicalDecl();
+
+ // Only run on non-templated functions and non-templated members of
+ // templated classes.
+ if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate &&
+ FD->getTemplatedKind() != FunctionDecl::TK_MemberSpecialization)
+ return;
+
+ CFG *cfg = AC.getCFG();
+ if (!cfg) return;
+
+ // If the exit block is unreachable, skip processing the function.
+ if (cfg->getExit().pred_empty())
+ return;
+
+ // Mark all nodes as FoundNoPath, then begin processing the entry block.
+ llvm::SmallVector<RecursiveState, 16> states(cfg->getNumBlockIDs(),
+ FoundNoPath);
+ checkForFunctionCall(S, FD, cfg->getEntry(), cfg->getExit().getBlockID(),
+ states, FoundPathWithNoRecursiveCall);
+
+ // Check that the exit block is reachable. This prevents triggering the
+ // warning on functions that do not terminate.
+ if (states[cfg->getExit().getBlockID()] == FoundPath)
+ S.Diag(Body->getLocStart(), diag::warn_infinite_recursive_function);
+}
+
+//===----------------------------------------------------------------------===//
+// Check for missing return value.
+//===----------------------------------------------------------------------===//
+
+enum ControlFlowKind {
+ UnknownFallThrough,
+ NeverFallThrough,
+ MaybeFallThrough,
+ AlwaysFallThrough,
+ NeverFallThroughOrReturn
+};
+
+/// CheckFallThrough - Check that we don't fall off the end of a
+/// Statement that should return a value.
+///
+/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
+/// MaybeFallThrough iff we might or might not fall off the end,
+/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
+/// return. We assume NeverFallThrough iff we never fall off the end of the
+/// statement but we may return. We assume that functions not marked noreturn
+/// will return.
+static ControlFlowKind CheckFallThrough(AnalysisDeclContext &AC) {
+ CFG *cfg = AC.getCFG();
+ if (!cfg) return UnknownFallThrough;
+
+ // The CFG leaves in dead things, and we don't want the dead code paths to
+ // confuse us, so we mark all live things first.
+ llvm::BitVector live(cfg->getNumBlockIDs());
+ unsigned count = reachable_code::ScanReachableFromBlock(&cfg->getEntry(),
+ live);
+
+ bool AddEHEdges = AC.getAddEHEdges();
+ if (!AddEHEdges && count != cfg->getNumBlockIDs())
+ // When there are things remaining dead, and we didn't add EH edges
+ // from CallExprs to the catch clauses, we have to go back and
+ // mark them as live.
+ for (const auto *B : *cfg) {
+ if (!live[B->getBlockID()]) {
+ if (B->pred_begin() == B->pred_end()) {
+ if (B->getTerminator() && isa<CXXTryStmt>(B->getTerminator()))
+ // When not adding EH edges from calls, catch clauses
+ // can otherwise seem dead. Avoid noting them as dead.
+ count += reachable_code::ScanReachableFromBlock(B, live);
+ continue;
+ }
+ }
+ }
+
+ // Now we know what is live, we check the live precessors of the exit block
+ // and look for fall through paths, being careful to ignore normal returns,
+ // and exceptional paths.
+ bool HasLiveReturn = false;
+ bool HasFakeEdge = false;
+ bool HasPlainEdge = false;
+ bool HasAbnormalEdge = false;
+
+ // Ignore default cases that aren't likely to be reachable because all
+ // enums in a switch(X) have explicit case statements.
+ CFGBlock::FilterOptions FO;
+ FO.IgnoreDefaultsWithCoveredEnums = 1;
+
+ for (CFGBlock::filtered_pred_iterator
+ I = cfg->getExit().filtered_pred_start_end(FO); I.hasMore(); ++I) {
+ const CFGBlock& B = **I;
+ if (!live[B.getBlockID()])
+ continue;
+
+ // Skip blocks which contain an element marked as no-return. They don't
+ // represent actually viable edges into the exit block, so mark them as
+ // abnormal.
+ if (B.hasNoReturnElement()) {
+ HasAbnormalEdge = true;
+ continue;
+ }
+
+ // Destructors can appear after the 'return' in the CFG. This is
+ // normal. We need to look pass the destructors for the return
+ // statement (if it exists).
+ CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend();
+
+ for ( ; ri != re ; ++ri)
+ if (ri->getAs<CFGStmt>())
+ break;
+
+ // No more CFGElements in the block?
+ if (ri == re) {
+ if (B.getTerminator() && isa<CXXTryStmt>(B.getTerminator())) {
+ HasAbnormalEdge = true;
+ continue;
+ }
+ // A labeled empty statement, or the entry block...
+ HasPlainEdge = true;
+ continue;
+ }
+
+ CFGStmt CS = ri->castAs<CFGStmt>();
+ const Stmt *S = CS.getStmt();
+ if (isa<ReturnStmt>(S)) {
+ HasLiveReturn = true;
+ continue;
+ }
+ if (isa<ObjCAtThrowStmt>(S)) {
+ HasFakeEdge = true;
+ continue;
+ }
+ if (isa<CXXThrowExpr>(S)) {
+ HasFakeEdge = true;
+ continue;
+ }
+ if (isa<MSAsmStmt>(S)) {
+ // TODO: Verify this is correct.
+ HasFakeEdge = true;
+ HasLiveReturn = true;
+ continue;
+ }
+ if (isa<CXXTryStmt>(S)) {
+ HasAbnormalEdge = true;
+ continue;
+ }
+ if (std::find(B.succ_begin(), B.succ_end(), &cfg->getExit())
+ == B.succ_end()) {
+ HasAbnormalEdge = true;
+ continue;
+ }
+
+ HasPlainEdge = true;
+ }
+ if (!HasPlainEdge) {
+ if (HasLiveReturn)
+ return NeverFallThrough;
+ return NeverFallThroughOrReturn;
+ }
+ if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
+ return MaybeFallThrough;
+ // This says AlwaysFallThrough for calls to functions that are not marked
+ // noreturn, that don't return. If people would like this warning to be more
+ // accurate, such functions should be marked as noreturn.
+ return AlwaysFallThrough;
+}
+
+namespace {
+
+struct CheckFallThroughDiagnostics {
+ unsigned diag_MaybeFallThrough_HasNoReturn;
+ unsigned diag_MaybeFallThrough_ReturnsNonVoid;
+ unsigned diag_AlwaysFallThrough_HasNoReturn;
+ unsigned diag_AlwaysFallThrough_ReturnsNonVoid;
+ unsigned diag_NeverFallThroughOrReturn;
+ enum { Function, Block, Lambda } funMode;
+ SourceLocation FuncLoc;
+
+ static CheckFallThroughDiagnostics MakeForFunction(const Decl *Func) {
+ CheckFallThroughDiagnostics D;
+ D.FuncLoc = Func->getLocation();
+ D.diag_MaybeFallThrough_HasNoReturn =
+ diag::warn_falloff_noreturn_function;
+ D.diag_MaybeFallThrough_ReturnsNonVoid =
+ diag::warn_maybe_falloff_nonvoid_function;
+ D.diag_AlwaysFallThrough_HasNoReturn =
+ diag::warn_falloff_noreturn_function;
+ D.diag_AlwaysFallThrough_ReturnsNonVoid =
+ diag::warn_falloff_nonvoid_function;
+
+ // Don't suggest that virtual functions be marked "noreturn", since they
+ // might be overridden by non-noreturn functions.
+ bool isVirtualMethod = false;
+ if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Func))
+ isVirtualMethod = Method->isVirtual();
+
+ // Don't suggest that template instantiations be marked "noreturn"
+ bool isTemplateInstantiation = false;
+ if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(Func))
+ isTemplateInstantiation = Function->isTemplateInstantiation();
+
+ if (!isVirtualMethod && !isTemplateInstantiation)
+ D.diag_NeverFallThroughOrReturn =
+ diag::warn_suggest_noreturn_function;
+ else
+ D.diag_NeverFallThroughOrReturn = 0;
+
+ D.funMode = Function;
+ return D;
+ }
+
+ static CheckFallThroughDiagnostics MakeForBlock() {
+ CheckFallThroughDiagnostics D;
+ D.diag_MaybeFallThrough_HasNoReturn =
+ diag::err_noreturn_block_has_return_expr;
+ D.diag_MaybeFallThrough_ReturnsNonVoid =
+ diag::err_maybe_falloff_nonvoid_block;
+ D.diag_AlwaysFallThrough_HasNoReturn =
+ diag::err_noreturn_block_has_return_expr;
+ D.diag_AlwaysFallThrough_ReturnsNonVoid =
+ diag::err_falloff_nonvoid_block;
+ D.diag_NeverFallThroughOrReturn = 0;
+ D.funMode = Block;
+ return D;
+ }
+
+ static CheckFallThroughDiagnostics MakeForLambda() {
+ CheckFallThroughDiagnostics D;
+ D.diag_MaybeFallThrough_HasNoReturn =
+ diag::err_noreturn_lambda_has_return_expr;
+ D.diag_MaybeFallThrough_ReturnsNonVoid =
+ diag::warn_maybe_falloff_nonvoid_lambda;
+ D.diag_AlwaysFallThrough_HasNoReturn =
+ diag::err_noreturn_lambda_has_return_expr;
+ D.diag_AlwaysFallThrough_ReturnsNonVoid =
+ diag::warn_falloff_nonvoid_lambda;
+ D.diag_NeverFallThroughOrReturn = 0;
+ D.funMode = Lambda;
+ return D;
+ }
+
+ bool checkDiagnostics(DiagnosticsEngine &D, bool ReturnsVoid,
+ bool HasNoReturn) const {
+ if (funMode == Function) {
+ return (ReturnsVoid ||
+ D.isIgnored(diag::warn_maybe_falloff_nonvoid_function,
+ FuncLoc)) &&
+ (!HasNoReturn ||
+ D.isIgnored(diag::warn_noreturn_function_has_return_expr,
+ FuncLoc)) &&
+ (!ReturnsVoid ||
+ D.isIgnored(diag::warn_suggest_noreturn_block, FuncLoc));
+ }
+
+ // For blocks / lambdas.
+ return ReturnsVoid && !HasNoReturn;
+ }
+};
+
+}
+
+/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
+/// function that should return a value. Check that we don't fall off the end
+/// of a noreturn function. We assume that functions and blocks not marked
+/// noreturn will return.
+static void CheckFallThroughForBody(Sema &S, const Decl *D, const Stmt *Body,
+ const BlockExpr *blkExpr,
+ const CheckFallThroughDiagnostics& CD,
+ AnalysisDeclContext &AC) {
+
+ bool ReturnsVoid = false;
+ bool HasNoReturn = false;
+
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ ReturnsVoid = FD->getReturnType()->isVoidType();
+ HasNoReturn = FD->isNoReturn();
+ }
+ else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
+ ReturnsVoid = MD->getReturnType()->isVoidType();
+ HasNoReturn = MD->hasAttr<NoReturnAttr>();
+ }
+ else if (isa<BlockDecl>(D)) {
+ QualType BlockTy = blkExpr->getType();
+ if (const FunctionType *FT =
+ BlockTy->getPointeeType()->getAs<FunctionType>()) {
+ if (FT->getReturnType()->isVoidType())
+ ReturnsVoid = true;
+ if (FT->getNoReturnAttr())
+ HasNoReturn = true;
+ }
+ }
+
+ DiagnosticsEngine &Diags = S.getDiagnostics();
+
+ // Short circuit for compilation speed.
+ if (CD.checkDiagnostics(Diags, ReturnsVoid, HasNoReturn))
+ return;
+
+ SourceLocation LBrace = Body->getLocStart(), RBrace = Body->getLocEnd();
+ // Either in a function body compound statement, or a function-try-block.
+ switch (CheckFallThrough(AC)) {
+ case UnknownFallThrough:
+ break;
+
+ case MaybeFallThrough:
+ if (HasNoReturn)
+ S.Diag(RBrace, CD.diag_MaybeFallThrough_HasNoReturn);
+ else if (!ReturnsVoid)
+ S.Diag(RBrace, CD.diag_MaybeFallThrough_ReturnsNonVoid);
+ break;
+ case AlwaysFallThrough:
+ if (HasNoReturn)
+ S.Diag(RBrace, CD.diag_AlwaysFallThrough_HasNoReturn);
+ else if (!ReturnsVoid)
+ S.Diag(RBrace, CD.diag_AlwaysFallThrough_ReturnsNonVoid);
+ break;
+ case NeverFallThroughOrReturn:
+ if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn) {
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 0 << FD;
+ } else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
+ S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 1 << MD;
+ } else {
+ S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn);
+ }
+ }
+ break;
+ case NeverFallThrough:
+ break;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// -Wuninitialized
+//===----------------------------------------------------------------------===//
+
+namespace {
+/// ContainsReference - A visitor class to search for references to
+/// a particular declaration (the needle) within any evaluated component of an
+/// expression (recursively).
+class ContainsReference : public EvaluatedExprVisitor<ContainsReference> {
+ bool FoundReference;
+ const DeclRefExpr *Needle;
+
+public:
+ ContainsReference(ASTContext &Context, const DeclRefExpr *Needle)
+ : EvaluatedExprVisitor<ContainsReference>(Context),
+ FoundReference(false), Needle(Needle) {}
+
+ void VisitExpr(Expr *E) {
+ // Stop evaluating if we already have a reference.
+ if (FoundReference)
+ return;
+
+ EvaluatedExprVisitor<ContainsReference>::VisitExpr(E);
+ }
+
+ void VisitDeclRefExpr(DeclRefExpr *E) {
+ if (E == Needle)
+ FoundReference = true;
+ else
+ EvaluatedExprVisitor<ContainsReference>::VisitDeclRefExpr(E);
+ }
+
+ bool doesContainReference() const { return FoundReference; }
+};
+}
+
+static bool SuggestInitializationFixit(Sema &S, const VarDecl *VD) {
+ QualType VariableTy = VD->getType().getCanonicalType();
+ if (VariableTy->isBlockPointerType() &&
+ !VD->hasAttr<BlocksAttr>()) {
+ S.Diag(VD->getLocation(), diag::note_block_var_fixit_add_initialization)
+ << VD->getDeclName()
+ << FixItHint::CreateInsertion(VD->getLocation(), "__block ");
+ return true;
+ }
+
+ // Don't issue a fixit if there is already an initializer.
+ if (VD->getInit())
+ return false;
+
+ // Don't suggest a fixit inside macros.
+ if (VD->getLocEnd().isMacroID())
+ return false;
+
+ SourceLocation Loc = S.getLocForEndOfToken(VD->getLocEnd());
+
+ // Suggest possible initialization (if any).
+ std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
+ if (Init.empty())
+ return false;
+
+ S.Diag(Loc, diag::note_var_fixit_add_initialization) << VD->getDeclName()
+ << FixItHint::CreateInsertion(Loc, Init);
+ return true;
+}
+
+/// Create a fixit to remove an if-like statement, on the assumption that its
+/// condition is CondVal.
+static void CreateIfFixit(Sema &S, const Stmt *If, const Stmt *Then,
+ const Stmt *Else, bool CondVal,
+ FixItHint &Fixit1, FixItHint &Fixit2) {
+ if (CondVal) {
+ // If condition is always true, remove all but the 'then'.
+ Fixit1 = FixItHint::CreateRemoval(
+ CharSourceRange::getCharRange(If->getLocStart(),
+ Then->getLocStart()));
+ if (Else) {
+ SourceLocation ElseKwLoc = Lexer::getLocForEndOfToken(
+ Then->getLocEnd(), 0, S.getSourceManager(), S.getLangOpts());
+ Fixit2 = FixItHint::CreateRemoval(
+ SourceRange(ElseKwLoc, Else->getLocEnd()));
+ }
+ } else {
+ // If condition is always false, remove all but the 'else'.
+ if (Else)
+ Fixit1 = FixItHint::CreateRemoval(
+ CharSourceRange::getCharRange(If->getLocStart(),
+ Else->getLocStart()));
+ else
+ Fixit1 = FixItHint::CreateRemoval(If->getSourceRange());
+ }
+}
+
+/// DiagUninitUse -- Helper function to produce a diagnostic for an
+/// uninitialized use of a variable.
+static void DiagUninitUse(Sema &S, const VarDecl *VD, const UninitUse &Use,
+ bool IsCapturedByBlock) {
+ bool Diagnosed = false;
+
+ switch (Use.getKind()) {
+ case UninitUse::Always:
+ S.Diag(Use.getUser()->getLocStart(), diag::warn_uninit_var)
+ << VD->getDeclName() << IsCapturedByBlock
+ << Use.getUser()->getSourceRange();
+ return;
+
+ case UninitUse::AfterDecl:
+ case UninitUse::AfterCall:
+ S.Diag(VD->getLocation(), diag::warn_sometimes_uninit_var)
+ << VD->getDeclName() << IsCapturedByBlock
+ << (Use.getKind() == UninitUse::AfterDecl ? 4 : 5)
+ << const_cast<DeclContext*>(VD->getLexicalDeclContext())
+ << VD->getSourceRange();
+ S.Diag(Use.getUser()->getLocStart(), diag::note_uninit_var_use)
+ << IsCapturedByBlock << Use.getUser()->getSourceRange();
+ return;
+
+ case UninitUse::Maybe:
+ case UninitUse::Sometimes:
+ // Carry on to report sometimes-uninitialized branches, if possible,
+ // or a 'may be used uninitialized' diagnostic otherwise.
+ break;
+ }
+
+ // Diagnose each branch which leads to a sometimes-uninitialized use.
+ for (UninitUse::branch_iterator I = Use.branch_begin(), E = Use.branch_end();
+ I != E; ++I) {
+ assert(Use.getKind() == UninitUse::Sometimes);
+
+ const Expr *User = Use.getUser();
+ const Stmt *Term = I->Terminator;
+
+ // Information used when building the diagnostic.
+ unsigned DiagKind;
+ StringRef Str;
+ SourceRange Range;
+
+ // FixIts to suppress the diagnostic by removing the dead condition.
+ // For all binary terminators, branch 0 is taken if the condition is true,
+ // and branch 1 is taken if the condition is false.
+ int RemoveDiagKind = -1;
+ const char *FixitStr =
+ S.getLangOpts().CPlusPlus ? (I->Output ? "true" : "false")
+ : (I->Output ? "1" : "0");
+ FixItHint Fixit1, Fixit2;
+
+ switch (Term ? Term->getStmtClass() : Stmt::DeclStmtClass) {
+ default:
+ // Don't know how to report this. Just fall back to 'may be used
+ // uninitialized'. FIXME: Can this happen?
+ continue;
+
+ // "condition is true / condition is false".
+ case Stmt::IfStmtClass: {
+ const IfStmt *IS = cast<IfStmt>(Term);
+ DiagKind = 0;
+ Str = "if";
+ Range = IS->getCond()->getSourceRange();
+ RemoveDiagKind = 0;
+ CreateIfFixit(S, IS, IS->getThen(), IS->getElse(),
+ I->Output, Fixit1, Fixit2);
+ break;
+ }
+ case Stmt::ConditionalOperatorClass: {
+ const ConditionalOperator *CO = cast<ConditionalOperator>(Term);
+ DiagKind = 0;
+ Str = "?:";
+ Range = CO->getCond()->getSourceRange();
+ RemoveDiagKind = 0;
+ CreateIfFixit(S, CO, CO->getTrueExpr(), CO->getFalseExpr(),
+ I->Output, Fixit1, Fixit2);
+ break;
+ }
+ case Stmt::BinaryOperatorClass: {
+ const BinaryOperator *BO = cast<BinaryOperator>(Term);
+ if (!BO->isLogicalOp())
+ continue;
+ DiagKind = 0;
+ Str = BO->getOpcodeStr();
+ Range = BO->getLHS()->getSourceRange();
+ RemoveDiagKind = 0;
+ if ((BO->getOpcode() == BO_LAnd && I->Output) ||
+ (BO->getOpcode() == BO_LOr && !I->Output))
+ // true && y -> y, false || y -> y.
+ Fixit1 = FixItHint::CreateRemoval(SourceRange(BO->getLocStart(),
+ BO->getOperatorLoc()));
+ else
+ // false && y -> false, true || y -> true.
+ Fixit1 = FixItHint::CreateReplacement(BO->getSourceRange(), FixitStr);
+ break;
+ }
+
+ // "loop is entered / loop is exited".
+ case Stmt::WhileStmtClass:
+ DiagKind = 1;
+ Str = "while";
+ Range = cast<WhileStmt>(Term)->getCond()->getSourceRange();
+ RemoveDiagKind = 1;
+ Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
+ break;
+ case Stmt::ForStmtClass:
+ DiagKind = 1;
+ Str = "for";
+ Range = cast<ForStmt>(Term)->getCond()->getSourceRange();
+ RemoveDiagKind = 1;
+ if (I->Output)
+ Fixit1 = FixItHint::CreateRemoval(Range);
+ else
+ Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
+ break;
+ case Stmt::CXXForRangeStmtClass:
+ if (I->Output == 1) {
+ // The use occurs if a range-based for loop's body never executes.
+ // That may be impossible, and there's no syntactic fix for this,
+ // so treat it as a 'may be uninitialized' case.
+ continue;
+ }
+ DiagKind = 1;
+ Str = "for";
+ Range = cast<CXXForRangeStmt>(Term)->getRangeInit()->getSourceRange();
+ break;
+
+ // "condition is true / loop is exited".
+ case Stmt::DoStmtClass:
+ DiagKind = 2;
+ Str = "do";
+ Range = cast<DoStmt>(Term)->getCond()->getSourceRange();
+ RemoveDiagKind = 1;
+ Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
+ break;
+
+ // "switch case is taken".
+ case Stmt::CaseStmtClass:
+ DiagKind = 3;
+ Str = "case";
+ Range = cast<CaseStmt>(Term)->getLHS()->getSourceRange();
+ break;
+ case Stmt::DefaultStmtClass:
+ DiagKind = 3;
+ Str = "default";
+ Range = cast<DefaultStmt>(Term)->getDefaultLoc();
+ break;
+ }
+
+ S.Diag(Range.getBegin(), diag::warn_sometimes_uninit_var)
+ << VD->getDeclName() << IsCapturedByBlock << DiagKind
+ << Str << I->Output << Range;
+ S.Diag(User->getLocStart(), diag::note_uninit_var_use)
+ << IsCapturedByBlock << User->getSourceRange();
+ if (RemoveDiagKind != -1)
+ S.Diag(Fixit1.RemoveRange.getBegin(), diag::note_uninit_fixit_remove_cond)
+ << RemoveDiagKind << Str << I->Output << Fixit1 << Fixit2;
+
+ Diagnosed = true;
+ }
+
+ if (!Diagnosed)
+ S.Diag(Use.getUser()->getLocStart(), diag::warn_maybe_uninit_var)
+ << VD->getDeclName() << IsCapturedByBlock
+ << Use.getUser()->getSourceRange();
+}
+
+/// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an
+/// uninitialized variable. This manages the different forms of diagnostic
+/// emitted for particular types of uses. Returns true if the use was diagnosed
+/// as a warning. If a particular use is one we omit warnings for, returns
+/// false.
+static bool DiagnoseUninitializedUse(Sema &S, const VarDecl *VD,
+ const UninitUse &Use,
+ bool alwaysReportSelfInit = false) {
+
+ if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Use.getUser())) {
+ // Inspect the initializer of the variable declaration which is
+ // being referenced prior to its initialization. We emit
+ // specialized diagnostics for self-initialization, and we
+ // specifically avoid warning about self references which take the
+ // form of:
+ //
+ // int x = x;
+ //
+ // This is used to indicate to GCC that 'x' is intentionally left
+ // uninitialized. Proven code paths which access 'x' in
+ // an uninitialized state after this will still warn.
+ if (const Expr *Initializer = VD->getInit()) {
+ if (!alwaysReportSelfInit && DRE == Initializer->IgnoreParenImpCasts())
+ return false;
+
+ ContainsReference CR(S.Context, DRE);
+ CR.Visit(const_cast<Expr*>(Initializer));
+ if (CR.doesContainReference()) {
+ S.Diag(DRE->getLocStart(),
+ diag::warn_uninit_self_reference_in_init)
+ << VD->getDeclName() << VD->getLocation() << DRE->getSourceRange();
+ return true;
+ }
+ }
+
+ DiagUninitUse(S, VD, Use, false);
+ } else {
+ const BlockExpr *BE = cast<BlockExpr>(Use.getUser());
+ if (VD->getType()->isBlockPointerType() && !VD->hasAttr<BlocksAttr>())
+ S.Diag(BE->getLocStart(),
+ diag::warn_uninit_byref_blockvar_captured_by_block)
+ << VD->getDeclName();
+ else
+ DiagUninitUse(S, VD, Use, true);
+ }
+
+ // Report where the variable was declared when the use wasn't within
+ // the initializer of that declaration & we didn't already suggest
+ // an initialization fixit.
+ if (!SuggestInitializationFixit(S, VD))
+ S.Diag(VD->getLocStart(), diag::note_uninit_var_def)
+ << VD->getDeclName();
+
+ return true;
+}
+
+namespace {
+ class FallthroughMapper : public RecursiveASTVisitor<FallthroughMapper> {
+ public:
+ FallthroughMapper(Sema &S)
+ : FoundSwitchStatements(false),
+ S(S) {
+ }
+
+ bool foundSwitchStatements() const { return FoundSwitchStatements; }
+
+ void markFallthroughVisited(const AttributedStmt *Stmt) {
+ bool Found = FallthroughStmts.erase(Stmt);
+ assert(Found);
+ (void)Found;
+ }
+
+ typedef llvm::SmallPtrSet<const AttributedStmt*, 8> AttrStmts;
+
+ const AttrStmts &getFallthroughStmts() const {
+ return FallthroughStmts;
+ }
+
+ void fillReachableBlocks(CFG *Cfg) {
+ assert(ReachableBlocks.empty() && "ReachableBlocks already filled");
+ std::deque<const CFGBlock *> BlockQueue;
+
+ ReachableBlocks.insert(&Cfg->getEntry());
+ BlockQueue.push_back(&Cfg->getEntry());
+ // Mark all case blocks reachable to avoid problems with switching on
+ // constants, covered enums, etc.
+ // These blocks can contain fall-through annotations, and we don't want to
+ // issue a warn_fallthrough_attr_unreachable for them.
+ for (const auto *B : *Cfg) {
+ const Stmt *L = B->getLabel();
+ if (L && isa<SwitchCase>(L) && ReachableBlocks.insert(B).second)
+ BlockQueue.push_back(B);
+ }
+
+ while (!BlockQueue.empty()) {
+ const CFGBlock *P = BlockQueue.front();
+ BlockQueue.pop_front();
+ for (CFGBlock::const_succ_iterator I = P->succ_begin(),
+ E = P->succ_end();
+ I != E; ++I) {
+ if (*I && ReachableBlocks.insert(*I).second)
+ BlockQueue.push_back(*I);
+ }
+ }
+ }
+
+ bool checkFallThroughIntoBlock(const CFGBlock &B, int &AnnotatedCnt) {
+ assert(!ReachableBlocks.empty() && "ReachableBlocks empty");
+
+ int UnannotatedCnt = 0;
+ AnnotatedCnt = 0;
+
+ std::deque<const CFGBlock*> BlockQueue(B.pred_begin(), B.pred_end());
+ while (!BlockQueue.empty()) {
+ const CFGBlock *P = BlockQueue.front();
+ BlockQueue.pop_front();
+ if (!P) continue;
+
+ const Stmt *Term = P->getTerminator();
+ if (Term && isa<SwitchStmt>(Term))
+ continue; // Switch statement, good.
+
+ const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(P->getLabel());
+ if (SW && SW->getSubStmt() == B.getLabel() && P->begin() == P->end())
+ continue; // Previous case label has no statements, good.
+
+ const LabelStmt *L = dyn_cast_or_null<LabelStmt>(P->getLabel());
+ if (L && L->getSubStmt() == B.getLabel() && P->begin() == P->end())
+ continue; // Case label is preceded with a normal label, good.
+
+ if (!ReachableBlocks.count(P)) {
+ for (CFGBlock::const_reverse_iterator ElemIt = P->rbegin(),
+ ElemEnd = P->rend();
+ ElemIt != ElemEnd; ++ElemIt) {
+ if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>()) {
+ if (const AttributedStmt *AS = asFallThroughAttr(CS->getStmt())) {
+ S.Diag(AS->getLocStart(),
+ diag::warn_fallthrough_attr_unreachable);
+ markFallthroughVisited(AS);
+ ++AnnotatedCnt;
+ break;
+ }
+ // Don't care about other unreachable statements.
+ }
+ }
+ // If there are no unreachable statements, this may be a special
+ // case in CFG:
+ // case X: {
+ // A a; // A has a destructor.
+ // break;
+ // }
+ // // <<<< This place is represented by a 'hanging' CFG block.
+ // case Y:
+ continue;
+ }
+
+ const Stmt *LastStmt = getLastStmt(*P);
+ if (const AttributedStmt *AS = asFallThroughAttr(LastStmt)) {
+ markFallthroughVisited(AS);
+ ++AnnotatedCnt;
+ continue; // Fallthrough annotation, good.
+ }
+
+ if (!LastStmt) { // This block contains no executable statements.
+ // Traverse its predecessors.
+ std::copy(P->pred_begin(), P->pred_end(),
+ std::back_inserter(BlockQueue));
+ continue;
+ }
+
+ ++UnannotatedCnt;
+ }
+ return !!UnannotatedCnt;
+ }
+
+ // RecursiveASTVisitor setup.
+ bool shouldWalkTypesOfTypeLocs() const { return false; }
+
+ bool VisitAttributedStmt(AttributedStmt *S) {
+ if (asFallThroughAttr(S))
+ FallthroughStmts.insert(S);
+ return true;
+ }
+
+ bool VisitSwitchStmt(SwitchStmt *S) {
+ FoundSwitchStatements = true;
+ return true;
+ }
+
+ // We don't want to traverse local type declarations. We analyze their
+ // methods separately.
+ bool TraverseDecl(Decl *D) { return true; }
+
+ // We analyze lambda bodies separately. Skip them here.
+ bool TraverseLambdaBody(LambdaExpr *LE) { return true; }
+
+ private:
+
+ static const AttributedStmt *asFallThroughAttr(const Stmt *S) {
+ if (const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(S)) {
+ if (hasSpecificAttr<FallThroughAttr>(AS->getAttrs()))
+ return AS;
+ }
+ return nullptr;
+ }
+
+ static const Stmt *getLastStmt(const CFGBlock &B) {
+ if (const Stmt *Term = B.getTerminator())
+ return Term;
+ for (CFGBlock::const_reverse_iterator ElemIt = B.rbegin(),
+ ElemEnd = B.rend();
+ ElemIt != ElemEnd; ++ElemIt) {
+ if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>())
+ return CS->getStmt();
+ }
+ // Workaround to detect a statement thrown out by CFGBuilder:
+ // case X: {} case Y:
+ // case X: ; case Y:
+ if (const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(B.getLabel()))
+ if (!isa<SwitchCase>(SW->getSubStmt()))
+ return SW->getSubStmt();
+
+ return nullptr;
+ }
+
+ bool FoundSwitchStatements;
+ AttrStmts FallthroughStmts;
+ Sema &S;
+ llvm::SmallPtrSet<const CFGBlock *, 16> ReachableBlocks;
+ };
+}
+
+static void DiagnoseSwitchLabelsFallthrough(Sema &S, AnalysisDeclContext &AC,
+ bool PerFunction) {
+ // Only perform this analysis when using C++11. There is no good workflow
+ // for this warning when not using C++11. There is no good way to silence
+ // the warning (no attribute is available) unless we are using C++11's support
+ // for generalized attributes. Once could use pragmas to silence the warning,
+ // but as a general solution that is gross and not in the spirit of this
+ // warning.
+ //
+ // NOTE: This an intermediate solution. There are on-going discussions on
+ // how to properly support this warning outside of C++11 with an annotation.
+ if (!AC.getASTContext().getLangOpts().CPlusPlus11)
+ return;
+
+ FallthroughMapper FM(S);
+ FM.TraverseStmt(AC.getBody());
+
+ if (!FM.foundSwitchStatements())
+ return;
+
+ if (PerFunction && FM.getFallthroughStmts().empty())
+ return;
+
+ CFG *Cfg = AC.getCFG();
+
+ if (!Cfg)
+ return;
+
+ FM.fillReachableBlocks(Cfg);
+
+ for (CFG::reverse_iterator I = Cfg->rbegin(), E = Cfg->rend(); I != E; ++I) {
+ const CFGBlock *B = *I;
+ const Stmt *Label = B->getLabel();
+
+ if (!Label || !isa<SwitchCase>(Label))
+ continue;
+
+ int AnnotatedCnt;
+
+ if (!FM.checkFallThroughIntoBlock(*B, AnnotatedCnt))
+ continue;
+
+ S.Diag(Label->getLocStart(),
+ PerFunction ? diag::warn_unannotated_fallthrough_per_function
+ : diag::warn_unannotated_fallthrough);
+
+ if (!AnnotatedCnt) {
+ SourceLocation L = Label->getLocStart();
+ if (L.isMacroID())
+ continue;
+ if (S.getLangOpts().CPlusPlus11) {
+ const Stmt *Term = B->getTerminator();
+ // Skip empty cases.
+ while (B->empty() && !Term && B->succ_size() == 1) {
+ B = *B->succ_begin();
+ Term = B->getTerminator();
+ }
+ if (!(B->empty() && Term && isa<BreakStmt>(Term))) {
+ Preprocessor &PP = S.getPreprocessor();
+ TokenValue Tokens[] = {
+ tok::l_square, tok::l_square, PP.getIdentifierInfo("clang"),
+ tok::coloncolon, PP.getIdentifierInfo("fallthrough"),
+ tok::r_square, tok::r_square
+ };
+ StringRef AnnotationSpelling = "[[clang::fallthrough]]";
+ StringRef MacroName = PP.getLastMacroWithSpelling(L, Tokens);
+ if (!MacroName.empty())
+ AnnotationSpelling = MacroName;
+ SmallString<64> TextToInsert(AnnotationSpelling);
+ TextToInsert += "; ";
+ S.Diag(L, diag::note_insert_fallthrough_fixit) <<
+ AnnotationSpelling <<
+ FixItHint::CreateInsertion(L, TextToInsert);
+ }
+ }
+ S.Diag(L, diag::note_insert_break_fixit) <<
+ FixItHint::CreateInsertion(L, "break; ");
+ }
+ }
+
+ for (const auto *F : FM.getFallthroughStmts())
+ S.Diag(F->getLocStart(), diag::warn_fallthrough_attr_invalid_placement);
+}
+
+static bool isInLoop(const ASTContext &Ctx, const ParentMap &PM,
+ const Stmt *S) {
+ assert(S);
+
+ do {
+ switch (S->getStmtClass()) {
+ case Stmt::ForStmtClass:
+ case Stmt::WhileStmtClass:
+ case Stmt::CXXForRangeStmtClass:
+ case Stmt::ObjCForCollectionStmtClass:
+ return true;
+ case Stmt::DoStmtClass: {
+ const Expr *Cond = cast<DoStmt>(S)->getCond();
+ llvm::APSInt Val;
+ if (!Cond->EvaluateAsInt(Val, Ctx))
+ return true;
+ return Val.getBoolValue();
+ }
+ default:
+ break;
+ }
+ } while ((S = PM.getParent(S)));
+
+ return false;
+}
+
+
+static void diagnoseRepeatedUseOfWeak(Sema &S,
+ const sema::FunctionScopeInfo *CurFn,
+ const Decl *D,
+ const ParentMap &PM) {
+ typedef sema::FunctionScopeInfo::WeakObjectProfileTy WeakObjectProfileTy;
+ typedef sema::FunctionScopeInfo::WeakObjectUseMap WeakObjectUseMap;
+ typedef sema::FunctionScopeInfo::WeakUseVector WeakUseVector;
+ typedef std::pair<const Stmt *, WeakObjectUseMap::const_iterator>
+ StmtUsesPair;
+
+ ASTContext &Ctx = S.getASTContext();
+
+ const WeakObjectUseMap &WeakMap = CurFn->getWeakObjectUses();
+
+ // Extract all weak objects that are referenced more than once.
+ SmallVector<StmtUsesPair, 8> UsesByStmt;
+ for (WeakObjectUseMap::const_iterator I = WeakMap.begin(), E = WeakMap.end();
+ I != E; ++I) {
+ const WeakUseVector &Uses = I->second;
+
+ // Find the first read of the weak object.
+ WeakUseVector::const_iterator UI = Uses.begin(), UE = Uses.end();
+ for ( ; UI != UE; ++UI) {
+ if (UI->isUnsafe())
+ break;
+ }
+
+ // If there were only writes to this object, don't warn.
+ if (UI == UE)
+ continue;
+
+ // If there was only one read, followed by any number of writes, and the
+ // read is not within a loop, don't warn. Additionally, don't warn in a
+ // loop if the base object is a local variable -- local variables are often
+ // changed in loops.
+ if (UI == Uses.begin()) {
+ WeakUseVector::const_iterator UI2 = UI;
+ for (++UI2; UI2 != UE; ++UI2)
+ if (UI2->isUnsafe())
+ break;
+
+ if (UI2 == UE) {
+ if (!isInLoop(Ctx, PM, UI->getUseExpr()))
+ continue;
+
+ const WeakObjectProfileTy &Profile = I->first;
+ if (!Profile.isExactProfile())
+ continue;
+
+ const NamedDecl *Base = Profile.getBase();
+ if (!Base)
+ Base = Profile.getProperty();
+ assert(Base && "A profile always has a base or property.");
+
+ if (const VarDecl *BaseVar = dyn_cast<VarDecl>(Base))
+ if (BaseVar->hasLocalStorage() && !isa<ParmVarDecl>(Base))
+ continue;
+ }
+ }
+
+ UsesByStmt.push_back(StmtUsesPair(UI->getUseExpr(), I));
+ }
+
+ if (UsesByStmt.empty())
+ return;
+
+ // Sort by first use so that we emit the warnings in a deterministic order.
+ SourceManager &SM = S.getSourceManager();
+ std::sort(UsesByStmt.begin(), UsesByStmt.end(),
+ [&SM](const StmtUsesPair &LHS, const StmtUsesPair &RHS) {
+ return SM.isBeforeInTranslationUnit(LHS.first->getLocStart(),
+ RHS.first->getLocStart());
+ });
+
+ // Classify the current code body for better warning text.
+ // This enum should stay in sync with the cases in
+ // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
+ // FIXME: Should we use a common classification enum and the same set of
+ // possibilities all throughout Sema?
+ enum {
+ Function,
+ Method,
+ Block,
+ Lambda
+ } FunctionKind;
+
+ if (isa<sema::BlockScopeInfo>(CurFn))
+ FunctionKind = Block;
+ else if (isa<sema::LambdaScopeInfo>(CurFn))
+ FunctionKind = Lambda;
+ else if (isa<ObjCMethodDecl>(D))
+ FunctionKind = Method;
+ else
+ FunctionKind = Function;
+
+ // Iterate through the sorted problems and emit warnings for each.
+ for (const auto &P : UsesByStmt) {
+ const Stmt *FirstRead = P.first;
+ const WeakObjectProfileTy &Key = P.second->first;
+ const WeakUseVector &Uses = P.second->second;
+
+ // For complicated expressions like 'a.b.c' and 'x.b.c', WeakObjectProfileTy
+ // may not contain enough information to determine that these are different
+ // properties. We can only be 100% sure of a repeated use in certain cases,
+ // and we adjust the diagnostic kind accordingly so that the less certain
+ // case can be turned off if it is too noisy.
+ unsigned DiagKind;
+ if (Key.isExactProfile())
+ DiagKind = diag::warn_arc_repeated_use_of_weak;
+ else
+ DiagKind = diag::warn_arc_possible_repeated_use_of_weak;
+
+ // Classify the weak object being accessed for better warning text.
+ // This enum should stay in sync with the cases in
+ // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
+ enum {
+ Variable,
+ Property,
+ ImplicitProperty,
+ Ivar
+ } ObjectKind;
+
+ const NamedDecl *D = Key.getProperty();
+ if (isa<VarDecl>(D))
+ ObjectKind = Variable;
+ else if (isa<ObjCPropertyDecl>(D))
+ ObjectKind = Property;
+ else if (isa<ObjCMethodDecl>(D))
+ ObjectKind = ImplicitProperty;
+ else if (isa<ObjCIvarDecl>(D))
+ ObjectKind = Ivar;
+ else
+ llvm_unreachable("Unexpected weak object kind!");
+
+ // Show the first time the object was read.
+ S.Diag(FirstRead->getLocStart(), DiagKind)
+ << int(ObjectKind) << D << int(FunctionKind)
+ << FirstRead->getSourceRange();
+
+ // Print all the other accesses as notes.
+ for (const auto &Use : Uses) {
+ if (Use.getUseExpr() == FirstRead)
+ continue;
+ S.Diag(Use.getUseExpr()->getLocStart(),
+ diag::note_arc_weak_also_accessed_here)
+ << Use.getUseExpr()->getSourceRange();
+ }
+ }
+}
+
+namespace {
+class UninitValsDiagReporter : public UninitVariablesHandler {
+ Sema &S;
+ typedef SmallVector<UninitUse, 2> UsesVec;
+ typedef llvm::PointerIntPair<UsesVec *, 1, bool> MappedType;
+ // Prefer using MapVector to DenseMap, so that iteration order will be
+ // the same as insertion order. This is needed to obtain a deterministic
+ // order of diagnostics when calling flushDiagnostics().
+ typedef llvm::MapVector<const VarDecl *, MappedType> UsesMap;
+ UsesMap *uses;
+
+public:
+ UninitValsDiagReporter(Sema &S) : S(S), uses(nullptr) {}
+ ~UninitValsDiagReporter() override { flushDiagnostics(); }
+
+ MappedType &getUses(const VarDecl *vd) {
+ if (!uses)
+ uses = new UsesMap();
+
+ MappedType &V = (*uses)[vd];
+ if (!V.getPointer())
+ V.setPointer(new UsesVec());
+
+ return V;
+ }
+
+ void handleUseOfUninitVariable(const VarDecl *vd,
+ const UninitUse &use) override {
+ getUses(vd).getPointer()->push_back(use);
+ }
+
+ void handleSelfInit(const VarDecl *vd) override {
+ getUses(vd).setInt(true);
+ }
+
+ void flushDiagnostics() {
+ if (!uses)
+ return;
+
+ for (const auto &P : *uses) {
+ const VarDecl *vd = P.first;
+ const MappedType &V = P.second;
+
+ UsesVec *vec = V.getPointer();
+ bool hasSelfInit = V.getInt();
+
+ // Specially handle the case where we have uses of an uninitialized
+ // variable, but the root cause is an idiomatic self-init. We want
+ // to report the diagnostic at the self-init since that is the root cause.
+ if (!vec->empty() && hasSelfInit && hasAlwaysUninitializedUse(vec))
+ DiagnoseUninitializedUse(S, vd,
+ UninitUse(vd->getInit()->IgnoreParenCasts(),
+ /* isAlwaysUninit */ true),
+ /* alwaysReportSelfInit */ true);
+ else {
+ // Sort the uses by their SourceLocations. While not strictly
+ // guaranteed to produce them in line/column order, this will provide
+ // a stable ordering.
+ std::sort(vec->begin(), vec->end(),
+ [](const UninitUse &a, const UninitUse &b) {
+ // Prefer a more confident report over a less confident one.
+ if (a.getKind() != b.getKind())
+ return a.getKind() > b.getKind();
+ return a.getUser()->getLocStart() < b.getUser()->getLocStart();
+ });
+
+ for (const auto &U : *vec) {
+ // If we have self-init, downgrade all uses to 'may be uninitialized'.
+ UninitUse Use = hasSelfInit ? UninitUse(U.getUser(), false) : U;
+
+ if (DiagnoseUninitializedUse(S, vd, Use))
+ // Skip further diagnostics for this variable. We try to warn only
+ // on the first point at which a variable is used uninitialized.
+ break;
+ }
+ }
+
+ // Release the uses vector.
+ delete vec;
+ }
+ delete uses;
+ }
+
+private:
+ static bool hasAlwaysUninitializedUse(const UsesVec* vec) {
+ return std::any_of(vec->begin(), vec->end(), [](const UninitUse &U) {
+ return U.getKind() == UninitUse::Always ||
+ U.getKind() == UninitUse::AfterCall ||
+ U.getKind() == UninitUse::AfterDecl;
+ });
+ }
+};
+}
+
+namespace clang {
+namespace {
+typedef SmallVector<PartialDiagnosticAt, 1> OptionalNotes;
+typedef std::pair<PartialDiagnosticAt, OptionalNotes> DelayedDiag;
+typedef std::list<DelayedDiag> DiagList;
+
+struct SortDiagBySourceLocation {
+ SourceManager &SM;
+ SortDiagBySourceLocation(SourceManager &SM) : SM(SM) {}
+
+ bool operator()(const DelayedDiag &left, const DelayedDiag &right) {
+ // Although this call will be slow, this is only called when outputting
+ // multiple warnings.
+ return SM.isBeforeInTranslationUnit(left.first.first, right.first.first);
+ }
+};
+}}
+
+//===----------------------------------------------------------------------===//
+// -Wthread-safety
+//===----------------------------------------------------------------------===//
+namespace clang {
+namespace threadSafety {
+namespace {
+class ThreadSafetyReporter : public clang::threadSafety::ThreadSafetyHandler {
+ Sema &S;
+ DiagList Warnings;
+ SourceLocation FunLocation, FunEndLocation;
+
+ const FunctionDecl *CurrentFunction;
+ bool Verbose;
+
+ OptionalNotes getNotes() const {
+ if (Verbose && CurrentFunction) {
+ PartialDiagnosticAt FNote(CurrentFunction->getBody()->getLocStart(),
+ S.PDiag(diag::note_thread_warning_in_fun)
+ << CurrentFunction->getNameAsString());
+ return OptionalNotes(1, FNote);
+ }
+ return OptionalNotes();
+ }
+
+ OptionalNotes getNotes(const PartialDiagnosticAt &Note) const {
+ OptionalNotes ONS(1, Note);
+ if (Verbose && CurrentFunction) {
+ PartialDiagnosticAt FNote(CurrentFunction->getBody()->getLocStart(),
+ S.PDiag(diag::note_thread_warning_in_fun)
+ << CurrentFunction->getNameAsString());
+ ONS.push_back(FNote);
+ }
+ return ONS;
+ }
+
+ OptionalNotes getNotes(const PartialDiagnosticAt &Note1,
+ const PartialDiagnosticAt &Note2) const {
+ OptionalNotes ONS;
+ ONS.push_back(Note1);
+ ONS.push_back(Note2);
+ if (Verbose && CurrentFunction) {
+ PartialDiagnosticAt FNote(CurrentFunction->getBody()->getLocStart(),
+ S.PDiag(diag::note_thread_warning_in_fun)
+ << CurrentFunction->getNameAsString());
+ ONS.push_back(FNote);
+ }
+ return ONS;
+ }
+
+ // Helper functions
+ void warnLockMismatch(unsigned DiagID, StringRef Kind, Name LockName,
+ SourceLocation Loc) {
+ // Gracefully handle rare cases when the analysis can't get a more
+ // precise source location.
+ if (!Loc.isValid())
+ Loc = FunLocation;
+ PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind << LockName);
+ Warnings.push_back(DelayedDiag(Warning, getNotes()));
+ }
+
+ public:
+ ThreadSafetyReporter(Sema &S, SourceLocation FL, SourceLocation FEL)
+ : S(S), FunLocation(FL), FunEndLocation(FEL),
+ CurrentFunction(nullptr), Verbose(false) {}
+
+ void setVerbose(bool b) { Verbose = b; }
+
+ /// \brief Emit all buffered diagnostics in order of sourcelocation.
+ /// We need to output diagnostics produced while iterating through
+ /// the lockset in deterministic order, so this function orders diagnostics
+ /// and outputs them.
+ void emitDiagnostics() {
+ Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
+ for (const auto &Diag : Warnings) {
+ S.Diag(Diag.first.first, Diag.first.second);
+ for (const auto &Note : Diag.second)
+ S.Diag(Note.first, Note.second);
+ }
+ }
+
+ void handleInvalidLockExp(StringRef Kind, SourceLocation Loc) override {
+ PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_cannot_resolve_lock)
+ << Loc);
+ Warnings.push_back(DelayedDiag(Warning, getNotes()));
+ }
+
+ void handleUnmatchedUnlock(StringRef Kind, Name LockName,
+ SourceLocation Loc) override {
+ warnLockMismatch(diag::warn_unlock_but_no_lock, Kind, LockName, Loc);
+ }
+
+ void handleIncorrectUnlockKind(StringRef Kind, Name LockName,
+ LockKind Expected, LockKind Received,
+ SourceLocation Loc) override {
+ if (Loc.isInvalid())
+ Loc = FunLocation;
+ PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_unlock_kind_mismatch)
+ << Kind << LockName << Received
+ << Expected);
+ Warnings.push_back(DelayedDiag(Warning, getNotes()));
+ }
+
+ void handleDoubleLock(StringRef Kind, Name LockName, SourceLocation Loc) override {
+ warnLockMismatch(diag::warn_double_lock, Kind, LockName, Loc);
+ }
+
+ void handleMutexHeldEndOfScope(StringRef Kind, Name LockName,
+ SourceLocation LocLocked,
+ SourceLocation LocEndOfScope,
+ LockErrorKind LEK) override {
+ unsigned DiagID = 0;
+ switch (LEK) {
+ case LEK_LockedSomePredecessors:
+ DiagID = diag::warn_lock_some_predecessors;
+ break;
+ case LEK_LockedSomeLoopIterations:
+ DiagID = diag::warn_expecting_lock_held_on_loop;
+ break;
+ case LEK_LockedAtEndOfFunction:
+ DiagID = diag::warn_no_unlock;
+ break;
+ case LEK_NotLockedAtEndOfFunction:
+ DiagID = diag::warn_expecting_locked;
+ break;
+ }
+ if (LocEndOfScope.isInvalid())
+ LocEndOfScope = FunEndLocation;
+
+ PartialDiagnosticAt Warning(LocEndOfScope, S.PDiag(DiagID) << Kind
+ << LockName);
+ if (LocLocked.isValid()) {
+ PartialDiagnosticAt Note(LocLocked, S.PDiag(diag::note_locked_here)
+ << Kind);
+ Warnings.push_back(DelayedDiag(Warning, getNotes(Note)));
+ return;
+ }
+ Warnings.push_back(DelayedDiag(Warning, getNotes()));
+ }
+
+ void handleExclusiveAndShared(StringRef Kind, Name LockName,
+ SourceLocation Loc1,
+ SourceLocation Loc2) override {
+ PartialDiagnosticAt Warning(Loc1,
+ S.PDiag(diag::warn_lock_exclusive_and_shared)
+ << Kind << LockName);
+ PartialDiagnosticAt Note(Loc2, S.PDiag(diag::note_lock_exclusive_and_shared)
+ << Kind << LockName);
+ Warnings.push_back(DelayedDiag(Warning, getNotes(Note)));
+ }
+
+ void handleNoMutexHeld(StringRef Kind, const NamedDecl *D,
+ ProtectedOperationKind POK, AccessKind AK,
+ SourceLocation Loc) override {
+ assert((POK == POK_VarAccess || POK == POK_VarDereference) &&
+ "Only works for variables");
+ unsigned DiagID = POK == POK_VarAccess?
+ diag::warn_variable_requires_any_lock:
+ diag::warn_var_deref_requires_any_lock;
+ PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID)
+ << D->getNameAsString() << getLockKindFromAccessKind(AK));
+ Warnings.push_back(DelayedDiag(Warning, getNotes()));
+ }
+
+ void handleMutexNotHeld(StringRef Kind, const NamedDecl *D,
+ ProtectedOperationKind POK, Name LockName,
+ LockKind LK, SourceLocation Loc,
+ Name *PossibleMatch) override {
+ unsigned DiagID = 0;
+ if (PossibleMatch) {
+ switch (POK) {
+ case POK_VarAccess:
+ DiagID = diag::warn_variable_requires_lock_precise;
+ break;
+ case POK_VarDereference:
+ DiagID = diag::warn_var_deref_requires_lock_precise;
+ break;
+ case POK_FunctionCall:
+ DiagID = diag::warn_fun_requires_lock_precise;
+ break;
+ case POK_PassByRef:
+ DiagID = diag::warn_guarded_pass_by_reference;
+ break;
+ case POK_PtPassByRef:
+ DiagID = diag::warn_pt_guarded_pass_by_reference;
+ break;
+ }
+ PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
+ << D->getNameAsString()
+ << LockName << LK);
+ PartialDiagnosticAt Note(Loc, S.PDiag(diag::note_found_mutex_near_match)
+ << *PossibleMatch);
+ if (Verbose && POK == POK_VarAccess) {
+ PartialDiagnosticAt VNote(D->getLocation(),
+ S.PDiag(diag::note_guarded_by_declared_here)
+ << D->getNameAsString());
+ Warnings.push_back(DelayedDiag(Warning, getNotes(Note, VNote)));
+ } else
+ Warnings.push_back(DelayedDiag(Warning, getNotes(Note)));
+ } else {
+ switch (POK) {
+ case POK_VarAccess:
+ DiagID = diag::warn_variable_requires_lock;
+ break;
+ case POK_VarDereference:
+ DiagID = diag::warn_var_deref_requires_lock;
+ break;
+ case POK_FunctionCall:
+ DiagID = diag::warn_fun_requires_lock;
+ break;
+ case POK_PassByRef:
+ DiagID = diag::warn_guarded_pass_by_reference;
+ break;
+ case POK_PtPassByRef:
+ DiagID = diag::warn_pt_guarded_pass_by_reference;
+ break;
+ }
+ PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
+ << D->getNameAsString()
+ << LockName << LK);
+ if (Verbose && POK == POK_VarAccess) {
+ PartialDiagnosticAt Note(D->getLocation(),
+ S.PDiag(diag::note_guarded_by_declared_here)
+ << D->getNameAsString());
+ Warnings.push_back(DelayedDiag(Warning, getNotes(Note)));
+ } else
+ Warnings.push_back(DelayedDiag(Warning, getNotes()));
+ }
+ }
+
+ void handleNegativeNotHeld(StringRef Kind, Name LockName, Name Neg,
+ SourceLocation Loc) override {
+ PartialDiagnosticAt Warning(Loc,
+ S.PDiag(diag::warn_acquire_requires_negative_cap)
+ << Kind << LockName << Neg);
+ Warnings.push_back(DelayedDiag(Warning, getNotes()));
+ }
+
+
+ void handleFunExcludesLock(StringRef Kind, Name FunName, Name LockName,
+ SourceLocation Loc) override {
+ PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_fun_excludes_mutex)
+ << Kind << FunName << LockName);
+ Warnings.push_back(DelayedDiag(Warning, getNotes()));
+ }
+
+ void handleLockAcquiredBefore(StringRef Kind, Name L1Name, Name L2Name,
+ SourceLocation Loc) override {
+ PartialDiagnosticAt Warning(Loc,
+ S.PDiag(diag::warn_acquired_before) << Kind << L1Name << L2Name);
+ Warnings.push_back(DelayedDiag(Warning, getNotes()));
+ }
+
+ void handleBeforeAfterCycle(Name L1Name, SourceLocation Loc) override {
+ PartialDiagnosticAt Warning(Loc,
+ S.PDiag(diag::warn_acquired_before_after_cycle) << L1Name);
+ Warnings.push_back(DelayedDiag(Warning, getNotes()));
+ }
+
+ void enterFunction(const FunctionDecl* FD) override {
+ CurrentFunction = FD;
+ }
+
+ void leaveFunction(const FunctionDecl* FD) override {
+ CurrentFunction = 0;
+ }
+};
+} // namespace
+} // namespace threadSafety
+} // namespace clang
+
+//===----------------------------------------------------------------------===//
+// -Wconsumed
+//===----------------------------------------------------------------------===//
+
+namespace clang {
+namespace consumed {
+namespace {
+class ConsumedWarningsHandler : public ConsumedWarningsHandlerBase {
+
+ Sema &S;
+ DiagList Warnings;
+
+public:
+
+ ConsumedWarningsHandler(Sema &S) : S(S) {}
+
+ void emitDiagnostics() override {
+ Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
+ for (const auto &Diag : Warnings) {
+ S.Diag(Diag.first.first, Diag.first.second);
+ for (const auto &Note : Diag.second)
+ S.Diag(Note.first, Note.second);
+ }
+ }
+
+ void warnLoopStateMismatch(SourceLocation Loc,
+ StringRef VariableName) override {
+ PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_loop_state_mismatch) <<
+ VariableName);
+
+ Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
+ }
+
+ void warnParamReturnTypestateMismatch(SourceLocation Loc,
+ StringRef VariableName,
+ StringRef ExpectedState,
+ StringRef ObservedState) override {
+
+ PartialDiagnosticAt Warning(Loc, S.PDiag(
+ diag::warn_param_return_typestate_mismatch) << VariableName <<
+ ExpectedState << ObservedState);
+
+ Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
+ }
+
+ void warnParamTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
+ StringRef ObservedState) override {
+
+ PartialDiagnosticAt Warning(Loc, S.PDiag(
+ diag::warn_param_typestate_mismatch) << ExpectedState << ObservedState);
+
+ Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
+ }
+
+ void warnReturnTypestateForUnconsumableType(SourceLocation Loc,
+ StringRef TypeName) override {
+ PartialDiagnosticAt Warning(Loc, S.PDiag(
+ diag::warn_return_typestate_for_unconsumable_type) << TypeName);
+
+ Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
+ }
+
+ void warnReturnTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
+ StringRef ObservedState) override {
+
+ PartialDiagnosticAt Warning(Loc, S.PDiag(
+ diag::warn_return_typestate_mismatch) << ExpectedState << ObservedState);
+
+ Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
+ }
+
+ void warnUseOfTempInInvalidState(StringRef MethodName, StringRef State,
+ SourceLocation Loc) override {
+
+ PartialDiagnosticAt Warning(Loc, S.PDiag(
+ diag::warn_use_of_temp_in_invalid_state) << MethodName << State);
+
+ Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
+ }
+
+ void warnUseInInvalidState(StringRef MethodName, StringRef VariableName,
+ StringRef State, SourceLocation Loc) override {
+
+ PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_use_in_invalid_state) <<
+ MethodName << VariableName << State);
+
+ Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
+ }
+};
+}}}
+
+//===----------------------------------------------------------------------===//
+// AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based
+// warnings on a function, method, or block.
+//===----------------------------------------------------------------------===//
+
+clang::sema::AnalysisBasedWarnings::Policy::Policy() {
+ enableCheckFallThrough = 1;
+ enableCheckUnreachable = 0;
+ enableThreadSafetyAnalysis = 0;
+ enableConsumedAnalysis = 0;
+}
+
+static unsigned isEnabled(DiagnosticsEngine &D, unsigned diag) {
+ return (unsigned)!D.isIgnored(diag, SourceLocation());
+}
+
+clang::sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s)
+ : S(s),
+ NumFunctionsAnalyzed(0),
+ NumFunctionsWithBadCFGs(0),
+ NumCFGBlocks(0),
+ MaxCFGBlocksPerFunction(0),
+ NumUninitAnalysisFunctions(0),
+ NumUninitAnalysisVariables(0),
+ MaxUninitAnalysisVariablesPerFunction(0),
+ NumUninitAnalysisBlockVisits(0),
+ MaxUninitAnalysisBlockVisitsPerFunction(0) {
+
+ using namespace diag;
+ DiagnosticsEngine &D = S.getDiagnostics();
+
+ DefaultPolicy.enableCheckUnreachable =
+ isEnabled(D, warn_unreachable) ||
+ isEnabled(D, warn_unreachable_break) ||
+ isEnabled(D, warn_unreachable_return) ||
+ isEnabled(D, warn_unreachable_loop_increment);
+
+ DefaultPolicy.enableThreadSafetyAnalysis =
+ isEnabled(D, warn_double_lock);
+
+ DefaultPolicy.enableConsumedAnalysis =
+ isEnabled(D, warn_use_in_invalid_state);
+}
+
+static void flushDiagnostics(Sema &S, const sema::FunctionScopeInfo *fscope) {
+ for (const auto &D : fscope->PossiblyUnreachableDiags)
+ S.Diag(D.Loc, D.PD);
+}
+
+void clang::sema::
+AnalysisBasedWarnings::IssueWarnings(sema::AnalysisBasedWarnings::Policy P,
+ sema::FunctionScopeInfo *fscope,
+ const Decl *D, const BlockExpr *blkExpr) {
+
+ // We avoid doing analysis-based warnings when there are errors for
+ // two reasons:
+ // (1) The CFGs often can't be constructed (if the body is invalid), so
+ // don't bother trying.
+ // (2) The code already has problems; running the analysis just takes more
+ // time.
+ DiagnosticsEngine &Diags = S.getDiagnostics();
+
+ // Do not do any analysis for declarations in system headers if we are
+ // going to just ignore them.
+ if (Diags.getSuppressSystemWarnings() &&
+ S.SourceMgr.isInSystemHeader(D->getLocation()))
+ return;
+
+ // For code in dependent contexts, we'll do this at instantiation time.
+ if (cast<DeclContext>(D)->isDependentContext())
+ return;
+
+ if (Diags.hasUncompilableErrorOccurred() || Diags.hasFatalErrorOccurred()) {
+ // Flush out any possibly unreachable diagnostics.
+ flushDiagnostics(S, fscope);
+ return;
+ }
+
+ const Stmt *Body = D->getBody();
+ assert(Body);
+
+ // Construct the analysis context with the specified CFG build options.
+ AnalysisDeclContext AC(/* AnalysisDeclContextManager */ nullptr, D);
+
+ // Don't generate EH edges for CallExprs as we'd like to avoid the n^2
+ // explosion for destructors that can result and the compile time hit.
+ AC.getCFGBuildOptions().PruneTriviallyFalseEdges = true;
+ AC.getCFGBuildOptions().AddEHEdges = false;
+ AC.getCFGBuildOptions().AddInitializers = true;
+ AC.getCFGBuildOptions().AddImplicitDtors = true;
+ AC.getCFGBuildOptions().AddTemporaryDtors = true;
+ AC.getCFGBuildOptions().AddCXXNewAllocator = false;
+
+ // Force that certain expressions appear as CFGElements in the CFG. This
+ // is used to speed up various analyses.
+ // FIXME: This isn't the right factoring. This is here for initial
+ // prototyping, but we need a way for analyses to say what expressions they
+ // expect to always be CFGElements and then fill in the BuildOptions
+ // appropriately. This is essentially a layering violation.
+ if (P.enableCheckUnreachable || P.enableThreadSafetyAnalysis ||
+ P.enableConsumedAnalysis) {
+ // Unreachable code analysis and thread safety require a linearized CFG.
+ AC.getCFGBuildOptions().setAllAlwaysAdd();
+ }
+ else {
+ AC.getCFGBuildOptions()
+ .setAlwaysAdd(Stmt::BinaryOperatorClass)
+ .setAlwaysAdd(Stmt::CompoundAssignOperatorClass)
+ .setAlwaysAdd(Stmt::BlockExprClass)
+ .setAlwaysAdd(Stmt::CStyleCastExprClass)
+ .setAlwaysAdd(Stmt::DeclRefExprClass)
+ .setAlwaysAdd(Stmt::ImplicitCastExprClass)
+ .setAlwaysAdd(Stmt::UnaryOperatorClass)
+ .setAlwaysAdd(Stmt::AttributedStmtClass);
+ }
+
+ // Install the logical handler for -Wtautological-overlap-compare
+ std::unique_ptr<LogicalErrorHandler> LEH;
+ if (!Diags.isIgnored(diag::warn_tautological_overlap_comparison,
+ D->getLocStart())) {
+ LEH.reset(new LogicalErrorHandler(S));
+ AC.getCFGBuildOptions().Observer = LEH.get();
+ }
+
+ // Emit delayed diagnostics.
+ if (!fscope->PossiblyUnreachableDiags.empty()) {
+ bool analyzed = false;
+
+ // Register the expressions with the CFGBuilder.
+ for (const auto &D : fscope->PossiblyUnreachableDiags) {
+ if (D.stmt)
+ AC.registerForcedBlockExpression(D.stmt);
+ }
+
+ if (AC.getCFG()) {
+ analyzed = true;
+ for (const auto &D : fscope->PossiblyUnreachableDiags) {
+ bool processed = false;
+ if (D.stmt) {
+ const CFGBlock *block = AC.getBlockForRegisteredExpression(D.stmt);
+ CFGReverseBlockReachabilityAnalysis *cra =
+ AC.getCFGReachablityAnalysis();
+ // FIXME: We should be able to assert that block is non-null, but
+ // the CFG analysis can skip potentially-evaluated expressions in
+ // edge cases; see test/Sema/vla-2.c.
+ if (block && cra) {
+ // Can this block be reached from the entrance?
+ if (cra->isReachable(&AC.getCFG()->getEntry(), block))
+ S.Diag(D.Loc, D.PD);
+ processed = true;
+ }
+ }
+ if (!processed) {
+ // Emit the warning anyway if we cannot map to a basic block.
+ S.Diag(D.Loc, D.PD);
+ }
+ }
+ }
+
+ if (!analyzed)
+ flushDiagnostics(S, fscope);
+ }
+
+
+ // Warning: check missing 'return'
+ if (P.enableCheckFallThrough) {
+ const CheckFallThroughDiagnostics &CD =
+ (isa<BlockDecl>(D) ? CheckFallThroughDiagnostics::MakeForBlock()
+ : (isa<CXXMethodDecl>(D) &&
+ cast<CXXMethodDecl>(D)->getOverloadedOperator() == OO_Call &&
+ cast<CXXMethodDecl>(D)->getParent()->isLambda())
+ ? CheckFallThroughDiagnostics::MakeForLambda()
+ : CheckFallThroughDiagnostics::MakeForFunction(D));
+ CheckFallThroughForBody(S, D, Body, blkExpr, CD, AC);
+ }
+
+ // Warning: check for unreachable code
+ if (P.enableCheckUnreachable) {
+ // Only check for unreachable code on non-template instantiations.
+ // Different template instantiations can effectively change the control-flow
+ // and it is very difficult to prove that a snippet of code in a template
+ // is unreachable for all instantiations.
+ bool isTemplateInstantiation = false;
+ if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
+ isTemplateInstantiation = Function->isTemplateInstantiation();
+ if (!isTemplateInstantiation)
+ CheckUnreachable(S, AC);
+ }
+
+ // Check for thread safety violations
+ if (P.enableThreadSafetyAnalysis) {
+ SourceLocation FL = AC.getDecl()->getLocation();
+ SourceLocation FEL = AC.getDecl()->getLocEnd();
+ threadSafety::ThreadSafetyReporter Reporter(S, FL, FEL);
+ if (!Diags.isIgnored(diag::warn_thread_safety_beta, D->getLocStart()))
+ Reporter.setIssueBetaWarnings(true);
+ if (!Diags.isIgnored(diag::warn_thread_safety_verbose, D->getLocStart()))
+ Reporter.setVerbose(true);
+
+ threadSafety::runThreadSafetyAnalysis(AC, Reporter,
+ &S.ThreadSafetyDeclCache);
+ Reporter.emitDiagnostics();
+ }
+
+ // Check for violations of consumed properties.
+ if (P.enableConsumedAnalysis) {
+ consumed::ConsumedWarningsHandler WarningHandler(S);
+ consumed::ConsumedAnalyzer Analyzer(WarningHandler);
+ Analyzer.run(AC);
+ }
+
+ if (!Diags.isIgnored(diag::warn_uninit_var, D->getLocStart()) ||
+ !Diags.isIgnored(diag::warn_sometimes_uninit_var, D->getLocStart()) ||
+ !Diags.isIgnored(diag::warn_maybe_uninit_var, D->getLocStart())) {
+ if (CFG *cfg = AC.getCFG()) {
+ UninitValsDiagReporter reporter(S);
+ UninitVariablesAnalysisStats stats;
+ std::memset(&stats, 0, sizeof(UninitVariablesAnalysisStats));
+ runUninitializedVariablesAnalysis(*cast<DeclContext>(D), *cfg, AC,
+ reporter, stats);
+
+ if (S.CollectStats && stats.NumVariablesAnalyzed > 0) {
+ ++NumUninitAnalysisFunctions;
+ NumUninitAnalysisVariables += stats.NumVariablesAnalyzed;
+ NumUninitAnalysisBlockVisits += stats.NumBlockVisits;
+ MaxUninitAnalysisVariablesPerFunction =
+ std::max(MaxUninitAnalysisVariablesPerFunction,
+ stats.NumVariablesAnalyzed);
+ MaxUninitAnalysisBlockVisitsPerFunction =
+ std::max(MaxUninitAnalysisBlockVisitsPerFunction,
+ stats.NumBlockVisits);
+ }
+ }
+ }
+
+ bool FallThroughDiagFull =
+ !Diags.isIgnored(diag::warn_unannotated_fallthrough, D->getLocStart());
+ bool FallThroughDiagPerFunction = !Diags.isIgnored(
+ diag::warn_unannotated_fallthrough_per_function, D->getLocStart());
+ if (FallThroughDiagFull || FallThroughDiagPerFunction) {
+ DiagnoseSwitchLabelsFallthrough(S, AC, !FallThroughDiagFull);
+ }
+
+ if (S.getLangOpts().ObjCARCWeak &&
+ !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, D->getLocStart()))
+ diagnoseRepeatedUseOfWeak(S, fscope, D, AC.getParentMap());
+
+
+ // Check for infinite self-recursion in functions
+ if (!Diags.isIgnored(diag::warn_infinite_recursive_function,
+ D->getLocStart())) {
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ checkRecursiveFunction(S, FD, Body, AC);
+ }
+ }
+
+ // If none of the previous checks caused a CFG build, trigger one here
+ // for -Wtautological-overlap-compare
+ if (!Diags.isIgnored(diag::warn_tautological_overlap_comparison,
+ D->getLocStart())) {
+ AC.getCFG();
+ }
+
+ // Collect statistics about the CFG if it was built.
+ if (S.CollectStats && AC.isCFGBuilt()) {
+ ++NumFunctionsAnalyzed;
+ if (CFG *cfg = AC.getCFG()) {
+ // If we successfully built a CFG for this context, record some more
+ // detail information about it.
+ NumCFGBlocks += cfg->getNumBlockIDs();
+ MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction,
+ cfg->getNumBlockIDs());
+ } else {
+ ++NumFunctionsWithBadCFGs;
+ }
+ }
+}
+
+void clang::sema::AnalysisBasedWarnings::PrintStats() const {
+ llvm::errs() << "\n*** Analysis Based Warnings Stats:\n";
+
+ unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs;
+ unsigned AvgCFGBlocksPerFunction =
+ !NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt;
+ llvm::errs() << NumFunctionsAnalyzed << " functions analyzed ("
+ << NumFunctionsWithBadCFGs << " w/o CFGs).\n"
+ << " " << NumCFGBlocks << " CFG blocks built.\n"
+ << " " << AvgCFGBlocksPerFunction
+ << " average CFG blocks per function.\n"
+ << " " << MaxCFGBlocksPerFunction
+ << " max CFG blocks per function.\n";
+
+ unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0
+ : NumUninitAnalysisVariables/NumUninitAnalysisFunctions;
+ unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0
+ : NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions;
+ llvm::errs() << NumUninitAnalysisFunctions
+ << " functions analyzed for uninitialiazed variables\n"
+ << " " << NumUninitAnalysisVariables << " variables analyzed.\n"
+ << " " << AvgUninitVariablesPerFunction
+ << " average variables per function.\n"
+ << " " << MaxUninitAnalysisVariablesPerFunction
+ << " max variables per function.\n"
+ << " " << NumUninitAnalysisBlockVisits << " block visits.\n"
+ << " " << AvgUninitBlockVisitsPerFunction
+ << " average block visits per function.\n"
+ << " " << MaxUninitAnalysisBlockVisitsPerFunction
+ << " max block visits per function.\n";
+}
diff --git a/contrib/llvm/tools/clang/lib/Sema/AttributeList.cpp b/contrib/llvm/tools/clang/lib/Sema/AttributeList.cpp
new file mode 100644
index 0000000..34af6cf
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/AttributeList.cpp
@@ -0,0 +1,216 @@
+//===--- AttributeList.cpp --------------------------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the AttributeList class implementation
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Sema/AttributeList.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/Expr.h"
+#include "clang/Basic/IdentifierTable.h"
+#include "clang/Sema/SemaInternal.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringSwitch.h"
+using namespace clang;
+
+IdentifierLoc *IdentifierLoc::create(ASTContext &Ctx, SourceLocation Loc,
+ IdentifierInfo *Ident) {
+ IdentifierLoc *Result = new (Ctx) IdentifierLoc;
+ Result->Loc = Loc;
+ Result->Ident = Ident;
+ return Result;
+}
+
+size_t AttributeList::allocated_size() const {
+ if (IsAvailability) return AttributeFactory::AvailabilityAllocSize;
+ else if (IsTypeTagForDatatype)
+ return AttributeFactory::TypeTagForDatatypeAllocSize;
+ else if (IsProperty)
+ return AttributeFactory::PropertyAllocSize;
+ return (sizeof(AttributeList) + NumArgs * sizeof(ArgsUnion));
+}
+
+AttributeFactory::AttributeFactory() {
+ // Go ahead and configure all the inline capacity. This is just a memset.
+ FreeLists.resize(InlineFreeListsCapacity);
+}
+AttributeFactory::~AttributeFactory() {}
+
+static size_t getFreeListIndexForSize(size_t size) {
+ assert(size >= sizeof(AttributeList));
+ assert((size % sizeof(void*)) == 0);
+ return ((size - sizeof(AttributeList)) / sizeof(void*));
+}
+
+void *AttributeFactory::allocate(size_t size) {
+ // Check for a previously reclaimed attribute.
+ size_t index = getFreeListIndexForSize(size);
+ if (index < FreeLists.size()) {
+ if (AttributeList *attr = FreeLists[index]) {
+ FreeLists[index] = attr->NextInPool;
+ return attr;
+ }
+ }
+
+ // Otherwise, allocate something new.
+ return Alloc.Allocate(size, llvm::AlignOf<AttributeFactory>::Alignment);
+}
+
+void AttributeFactory::reclaimPool(AttributeList *cur) {
+ assert(cur && "reclaiming empty pool!");
+ do {
+ // Read this here, because we're going to overwrite NextInPool
+ // when we toss 'cur' into the appropriate queue.
+ AttributeList *next = cur->NextInPool;
+
+ size_t size = cur->allocated_size();
+ size_t freeListIndex = getFreeListIndexForSize(size);
+
+ // Expand FreeLists to the appropriate size, if required.
+ if (freeListIndex >= FreeLists.size())
+ FreeLists.resize(freeListIndex+1);
+
+ // Add 'cur' to the appropriate free-list.
+ cur->NextInPool = FreeLists[freeListIndex];
+ FreeLists[freeListIndex] = cur;
+
+ cur = next;
+ } while (cur);
+}
+
+void AttributePool::takePool(AttributeList *pool) {
+ assert(pool);
+
+ // Fast path: this pool is empty.
+ if (!Head) {
+ Head = pool;
+ return;
+ }
+
+ // Reverse the pool onto the current head. This optimizes for the
+ // pattern of pulling a lot of pools into a single pool.
+ do {
+ AttributeList *next = pool->NextInPool;
+ pool->NextInPool = Head;
+ Head = pool;
+ pool = next;
+ } while (pool);
+}
+
+#include "clang/Sema/AttrParsedAttrKinds.inc"
+
+AttributeList::Kind AttributeList::getKind(const IdentifierInfo *Name,
+ const IdentifierInfo *ScopeName,
+ Syntax SyntaxUsed) {
+ StringRef AttrName = Name->getName();
+
+ SmallString<64> FullName;
+ if (ScopeName)
+ FullName += ScopeName->getName();
+
+ // Normalize the attribute name, __foo__ becomes foo. This is only allowable
+ // for GNU attributes.
+ bool IsGNU = SyntaxUsed == AS_GNU || (SyntaxUsed == AS_CXX11 &&
+ FullName == "gnu");
+ if (IsGNU && AttrName.size() >= 4 && AttrName.startswith("__") &&
+ AttrName.endswith("__"))
+ AttrName = AttrName.slice(2, AttrName.size() - 2);
+
+ // Ensure that in the case of C++11 attributes, we look for '::foo' if it is
+ // unscoped.
+ if (ScopeName || SyntaxUsed == AS_CXX11)
+ FullName += "::";
+ FullName += AttrName;
+
+ return ::getAttrKind(FullName, SyntaxUsed);
+}
+
+unsigned AttributeList::getAttributeSpellingListIndex() const {
+ // Both variables will be used in tablegen generated
+ // attribute spell list index matching code.
+ StringRef Name = AttrName->getName();
+ StringRef Scope = ScopeName ? ScopeName->getName() : "";
+
+#include "clang/Sema/AttrSpellingListIndex.inc"
+
+}
+
+struct ParsedAttrInfo {
+ unsigned NumArgs : 4;
+ unsigned OptArgs : 4;
+ unsigned HasCustomParsing : 1;
+ unsigned IsTargetSpecific : 1;
+ unsigned IsType : 1;
+ unsigned IsKnownToGCC : 1;
+
+ bool (*DiagAppertainsToDecl)(Sema &S, const AttributeList &Attr,
+ const Decl *);
+ bool (*DiagLangOpts)(Sema &S, const AttributeList &Attr);
+ bool (*ExistsInTarget)(const llvm::Triple &T);
+ unsigned (*SpellingIndexToSemanticSpelling)(const AttributeList &Attr);
+};
+
+namespace {
+ #include "clang/Sema/AttrParsedAttrImpl.inc"
+}
+
+static const ParsedAttrInfo &getInfo(const AttributeList &A) {
+ return AttrInfoMap[A.getKind()];
+}
+
+unsigned AttributeList::getMinArgs() const {
+ return getInfo(*this).NumArgs;
+}
+
+unsigned AttributeList::getMaxArgs() const {
+ return getMinArgs() + getInfo(*this).OptArgs;
+}
+
+bool AttributeList::hasCustomParsing() const {
+ return getInfo(*this).HasCustomParsing;
+}
+
+bool AttributeList::diagnoseAppertainsTo(Sema &S, const Decl *D) const {
+ return getInfo(*this).DiagAppertainsToDecl(S, *this, D);
+}
+
+bool AttributeList::diagnoseLangOpts(Sema &S) const {
+ return getInfo(*this).DiagLangOpts(S, *this);
+}
+
+bool AttributeList::isTargetSpecificAttr() const {
+ return getInfo(*this).IsTargetSpecific;
+}
+
+bool AttributeList::isTypeAttr() const {
+ return getInfo(*this).IsType;
+}
+
+bool AttributeList::existsInTarget(const llvm::Triple &T) const {
+ return getInfo(*this).ExistsInTarget(T);
+}
+
+bool AttributeList::isKnownToGCC() const {
+ return getInfo(*this).IsKnownToGCC;
+}
+
+unsigned AttributeList::getSemanticSpelling() const {
+ return getInfo(*this).SpellingIndexToSemanticSpelling(*this);
+}
+
+bool AttributeList::hasVariadicArg() const {
+ // If the attribute has the maximum number of optional arguments, we will
+ // claim that as being variadic. If we someday get an attribute that
+ // legitimately bumps up against that maximum, we can use another bit to track
+ // whether it's truly variadic or not.
+ return getInfo(*this).OptArgs == 15;
+}
diff --git a/contrib/llvm/tools/clang/lib/Sema/CodeCompleteConsumer.cpp b/contrib/llvm/tools/clang/lib/Sema/CodeCompleteConsumer.cpp
new file mode 100644
index 0000000..69ae4f0
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/CodeCompleteConsumer.cpp
@@ -0,0 +1,636 @@
+//===--- CodeCompleteConsumer.cpp - Code Completion Interface ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the CodeCompleteConsumer class.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/Sema/CodeCompleteConsumer.h"
+#include "clang-c/Index.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/Sema/Scope.h"
+#include "clang/Sema/Sema.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cstring>
+#include <functional>
+
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// Code completion context implementation
+//===----------------------------------------------------------------------===//
+
+bool CodeCompletionContext::wantConstructorResults() const {
+ switch (Kind) {
+ case CCC_Recovery:
+ case CCC_Statement:
+ case CCC_Expression:
+ case CCC_ObjCMessageReceiver:
+ case CCC_ParenthesizedExpression:
+ return true;
+
+ case CCC_TopLevel:
+ case CCC_ObjCInterface:
+ case CCC_ObjCImplementation:
+ case CCC_ObjCIvarList:
+ case CCC_ClassStructUnion:
+ case CCC_DotMemberAccess:
+ case CCC_ArrowMemberAccess:
+ case CCC_ObjCPropertyAccess:
+ case CCC_EnumTag:
+ case CCC_UnionTag:
+ case CCC_ClassOrStructTag:
+ case CCC_ObjCProtocolName:
+ case CCC_Namespace:
+ case CCC_Type:
+ case CCC_Name:
+ case CCC_PotentiallyQualifiedName:
+ case CCC_MacroName:
+ case CCC_MacroNameUse:
+ case CCC_PreprocessorExpression:
+ case CCC_PreprocessorDirective:
+ case CCC_NaturalLanguage:
+ case CCC_SelectorName:
+ case CCC_TypeQualifiers:
+ case CCC_Other:
+ case CCC_OtherWithMacros:
+ case CCC_ObjCInstanceMessage:
+ case CCC_ObjCClassMessage:
+ case CCC_ObjCInterfaceName:
+ case CCC_ObjCCategoryName:
+ return false;
+ }
+
+ llvm_unreachable("Invalid CodeCompletionContext::Kind!");
+}
+
+//===----------------------------------------------------------------------===//
+// Code completion string implementation
+//===----------------------------------------------------------------------===//
+CodeCompletionString::Chunk::Chunk(ChunkKind Kind, const char *Text)
+ : Kind(Kind), Text("")
+{
+ switch (Kind) {
+ case CK_TypedText:
+ case CK_Text:
+ case CK_Placeholder:
+ case CK_Informative:
+ case CK_ResultType:
+ case CK_CurrentParameter:
+ this->Text = Text;
+ break;
+
+ case CK_Optional:
+ llvm_unreachable("Optional strings cannot be created from text");
+
+ case CK_LeftParen:
+ this->Text = "(";
+ break;
+
+ case CK_RightParen:
+ this->Text = ")";
+ break;
+
+ case CK_LeftBracket:
+ this->Text = "[";
+ break;
+
+ case CK_RightBracket:
+ this->Text = "]";
+ break;
+
+ case CK_LeftBrace:
+ this->Text = "{";
+ break;
+
+ case CK_RightBrace:
+ this->Text = "}";
+ break;
+
+ case CK_LeftAngle:
+ this->Text = "<";
+ break;
+
+ case CK_RightAngle:
+ this->Text = ">";
+ break;
+
+ case CK_Comma:
+ this->Text = ", ";
+ break;
+
+ case CK_Colon:
+ this->Text = ":";
+ break;
+
+ case CK_SemiColon:
+ this->Text = ";";
+ break;
+
+ case CK_Equal:
+ this->Text = " = ";
+ break;
+
+ case CK_HorizontalSpace:
+ this->Text = " ";
+ break;
+
+ case CK_VerticalSpace:
+ this->Text = "\n";
+ break;
+ }
+}
+
+CodeCompletionString::Chunk
+CodeCompletionString::Chunk::CreateText(const char *Text) {
+ return Chunk(CK_Text, Text);
+}
+
+CodeCompletionString::Chunk
+CodeCompletionString::Chunk::CreateOptional(CodeCompletionString *Optional) {
+ Chunk Result;
+ Result.Kind = CK_Optional;
+ Result.Optional = Optional;
+ return Result;
+}
+
+CodeCompletionString::Chunk
+CodeCompletionString::Chunk::CreatePlaceholder(const char *Placeholder) {
+ return Chunk(CK_Placeholder, Placeholder);
+}
+
+CodeCompletionString::Chunk
+CodeCompletionString::Chunk::CreateInformative(const char *Informative) {
+ return Chunk(CK_Informative, Informative);
+}
+
+CodeCompletionString::Chunk
+CodeCompletionString::Chunk::CreateResultType(const char *ResultType) {
+ return Chunk(CK_ResultType, ResultType);
+}
+
+CodeCompletionString::Chunk
+CodeCompletionString::Chunk::CreateCurrentParameter(
+ const char *CurrentParameter) {
+ return Chunk(CK_CurrentParameter, CurrentParameter);
+}
+
+CodeCompletionString::CodeCompletionString(const Chunk *Chunks,
+ unsigned NumChunks,
+ unsigned Priority,
+ CXAvailabilityKind Availability,
+ const char **Annotations,
+ unsigned NumAnnotations,
+ StringRef ParentName,
+ const char *BriefComment)
+ : NumChunks(NumChunks), NumAnnotations(NumAnnotations),
+ Priority(Priority), Availability(Availability),
+ ParentName(ParentName), BriefComment(BriefComment)
+{
+ assert(NumChunks <= 0xffff);
+ assert(NumAnnotations <= 0xffff);
+
+ Chunk *StoredChunks = reinterpret_cast<Chunk *>(this + 1);
+ for (unsigned I = 0; I != NumChunks; ++I)
+ StoredChunks[I] = Chunks[I];
+
+ const char **StoredAnnotations = reinterpret_cast<const char **>(StoredChunks + NumChunks);
+ for (unsigned I = 0; I != NumAnnotations; ++I)
+ StoredAnnotations[I] = Annotations[I];
+}
+
+unsigned CodeCompletionString::getAnnotationCount() const {
+ return NumAnnotations;
+}
+
+const char *CodeCompletionString::getAnnotation(unsigned AnnotationNr) const {
+ if (AnnotationNr < NumAnnotations)
+ return reinterpret_cast<const char * const*>(end())[AnnotationNr];
+ else
+ return nullptr;
+}
+
+
+std::string CodeCompletionString::getAsString() const {
+ std::string Result;
+ llvm::raw_string_ostream OS(Result);
+
+ for (iterator C = begin(), CEnd = end(); C != CEnd; ++C) {
+ switch (C->Kind) {
+ case CK_Optional: OS << "{#" << C->Optional->getAsString() << "#}"; break;
+ case CK_Placeholder: OS << "<#" << C->Text << "#>"; break;
+
+ case CK_Informative:
+ case CK_ResultType:
+ OS << "[#" << C->Text << "#]";
+ break;
+
+ case CK_CurrentParameter: OS << "<#" << C->Text << "#>"; break;
+ default: OS << C->Text; break;
+ }
+ }
+ return OS.str();
+}
+
+const char *CodeCompletionString::getTypedText() const {
+ for (iterator C = begin(), CEnd = end(); C != CEnd; ++C)
+ if (C->Kind == CK_TypedText)
+ return C->Text;
+
+ return nullptr;
+}
+
+const char *CodeCompletionAllocator::CopyString(const Twine &String) {
+ SmallString<128> Data;
+ StringRef Ref = String.toStringRef(Data);
+ // FIXME: It would be more efficient to teach Twine to tell us its size and
+ // then add a routine there to fill in an allocated char* with the contents
+ // of the string.
+ char *Mem = (char *)Allocate(Ref.size() + 1, 1);
+ std::copy(Ref.begin(), Ref.end(), Mem);
+ Mem[Ref.size()] = 0;
+ return Mem;
+}
+
+StringRef CodeCompletionTUInfo::getParentName(const DeclContext *DC) {
+ const NamedDecl *ND = dyn_cast<NamedDecl>(DC);
+ if (!ND)
+ return StringRef();
+
+ // Check whether we've already cached the parent name.
+ StringRef &CachedParentName = ParentNames[DC];
+ if (!CachedParentName.empty())
+ return CachedParentName;
+
+ // If we already processed this DeclContext and assigned empty to it, the
+ // data pointer will be non-null.
+ if (CachedParentName.data() != nullptr)
+ return StringRef();
+
+ // Find the interesting names.
+ SmallVector<const DeclContext *, 2> Contexts;
+ while (DC && !DC->isFunctionOrMethod()) {
+ if (const NamedDecl *ND = dyn_cast<NamedDecl>(DC)) {
+ if (ND->getIdentifier())
+ Contexts.push_back(DC);
+ }
+
+ DC = DC->getParent();
+ }
+
+ {
+ SmallString<128> S;
+ llvm::raw_svector_ostream OS(S);
+ bool First = true;
+ for (unsigned I = Contexts.size(); I != 0; --I) {
+ if (First)
+ First = false;
+ else {
+ OS << "::";
+ }
+
+ const DeclContext *CurDC = Contexts[I-1];
+ if (const ObjCCategoryImplDecl *CatImpl = dyn_cast<ObjCCategoryImplDecl>(CurDC))
+ CurDC = CatImpl->getCategoryDecl();
+
+ if (const ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(CurDC)) {
+ const ObjCInterfaceDecl *Interface = Cat->getClassInterface();
+ if (!Interface) {
+ // Assign an empty StringRef but with non-null data to distinguish
+ // between empty because we didn't process the DeclContext yet.
+ CachedParentName = StringRef((const char *)~0U, 0);
+ return StringRef();
+ }
+
+ OS << Interface->getName() << '(' << Cat->getName() << ')';
+ } else {
+ OS << cast<NamedDecl>(CurDC)->getName();
+ }
+ }
+
+ CachedParentName = AllocatorRef->CopyString(OS.str());
+ }
+
+ return CachedParentName;
+}
+
+CodeCompletionString *CodeCompletionBuilder::TakeString() {
+ void *Mem = getAllocator().Allocate(
+ sizeof(CodeCompletionString) + sizeof(Chunk) * Chunks.size()
+ + sizeof(const char *) * Annotations.size(),
+ llvm::alignOf<CodeCompletionString>());
+ CodeCompletionString *Result
+ = new (Mem) CodeCompletionString(Chunks.data(), Chunks.size(),
+ Priority, Availability,
+ Annotations.data(), Annotations.size(),
+ ParentName, BriefComment);
+ Chunks.clear();
+ return Result;
+}
+
+void CodeCompletionBuilder::AddTypedTextChunk(const char *Text) {
+ Chunks.push_back(Chunk(CodeCompletionString::CK_TypedText, Text));
+}
+
+void CodeCompletionBuilder::AddTextChunk(const char *Text) {
+ Chunks.push_back(Chunk::CreateText(Text));
+}
+
+void CodeCompletionBuilder::AddOptionalChunk(CodeCompletionString *Optional) {
+ Chunks.push_back(Chunk::CreateOptional(Optional));
+}
+
+void CodeCompletionBuilder::AddPlaceholderChunk(const char *Placeholder) {
+ Chunks.push_back(Chunk::CreatePlaceholder(Placeholder));
+}
+
+void CodeCompletionBuilder::AddInformativeChunk(const char *Text) {
+ Chunks.push_back(Chunk::CreateInformative(Text));
+}
+
+void CodeCompletionBuilder::AddResultTypeChunk(const char *ResultType) {
+ Chunks.push_back(Chunk::CreateResultType(ResultType));
+}
+
+void
+CodeCompletionBuilder::AddCurrentParameterChunk(const char *CurrentParameter) {
+ Chunks.push_back(Chunk::CreateCurrentParameter(CurrentParameter));
+}
+
+void CodeCompletionBuilder::AddChunk(CodeCompletionString::ChunkKind CK,
+ const char *Text) {
+ Chunks.push_back(Chunk(CK, Text));
+}
+
+void CodeCompletionBuilder::addParentContext(const DeclContext *DC) {
+ if (DC->isTranslationUnit()) {
+ return;
+ }
+
+ if (DC->isFunctionOrMethod())
+ return;
+
+ const NamedDecl *ND = dyn_cast<NamedDecl>(DC);
+ if (!ND)
+ return;
+
+ ParentName = getCodeCompletionTUInfo().getParentName(DC);
+}
+
+void CodeCompletionBuilder::addBriefComment(StringRef Comment) {
+ BriefComment = Allocator.CopyString(Comment);
+}
+
+//===----------------------------------------------------------------------===//
+// Code completion overload candidate implementation
+//===----------------------------------------------------------------------===//
+FunctionDecl *
+CodeCompleteConsumer::OverloadCandidate::getFunction() const {
+ if (getKind() == CK_Function)
+ return Function;
+ else if (getKind() == CK_FunctionTemplate)
+ return FunctionTemplate->getTemplatedDecl();
+ else
+ return nullptr;
+}
+
+const FunctionType *
+CodeCompleteConsumer::OverloadCandidate::getFunctionType() const {
+ switch (Kind) {
+ case CK_Function:
+ return Function->getType()->getAs<FunctionType>();
+
+ case CK_FunctionTemplate:
+ return FunctionTemplate->getTemplatedDecl()->getType()
+ ->getAs<FunctionType>();
+
+ case CK_FunctionType:
+ return Type;
+ }
+
+ llvm_unreachable("Invalid CandidateKind!");
+}
+
+//===----------------------------------------------------------------------===//
+// Code completion consumer implementation
+//===----------------------------------------------------------------------===//
+
+CodeCompleteConsumer::~CodeCompleteConsumer() { }
+
+void
+PrintingCodeCompleteConsumer::ProcessCodeCompleteResults(Sema &SemaRef,
+ CodeCompletionContext Context,
+ CodeCompletionResult *Results,
+ unsigned NumResults) {
+ std::stable_sort(Results, Results + NumResults);
+
+ // Print the results.
+ for (unsigned I = 0; I != NumResults; ++I) {
+ OS << "COMPLETION: ";
+ switch (Results[I].Kind) {
+ case CodeCompletionResult::RK_Declaration:
+ OS << *Results[I].Declaration;
+ if (Results[I].Hidden)
+ OS << " (Hidden)";
+ if (CodeCompletionString *CCS
+ = Results[I].CreateCodeCompletionString(SemaRef, getAllocator(),
+ CCTUInfo,
+ includeBriefComments())) {
+ OS << " : " << CCS->getAsString();
+ if (const char *BriefComment = CCS->getBriefComment())
+ OS << " : " << BriefComment;
+ }
+
+ OS << '\n';
+ break;
+
+ case CodeCompletionResult::RK_Keyword:
+ OS << Results[I].Keyword << '\n';
+ break;
+
+ case CodeCompletionResult::RK_Macro: {
+ OS << Results[I].Macro->getName();
+ if (CodeCompletionString *CCS
+ = Results[I].CreateCodeCompletionString(SemaRef, getAllocator(),
+ CCTUInfo,
+ includeBriefComments())) {
+ OS << " : " << CCS->getAsString();
+ }
+ OS << '\n';
+ break;
+ }
+
+ case CodeCompletionResult::RK_Pattern: {
+ OS << "Pattern : "
+ << Results[I].Pattern->getAsString() << '\n';
+ break;
+ }
+ }
+ }
+}
+
+// This function is used solely to preserve the former presentation of overloads
+// by "clang -cc1 -code-completion-at", since CodeCompletionString::getAsString
+// needs to be improved for printing the newer and more detailed overload
+// chunks.
+static std::string getOverloadAsString(const CodeCompletionString &CCS) {
+ std::string Result;
+ llvm::raw_string_ostream OS(Result);
+
+ for (auto &C : CCS) {
+ switch (C.Kind) {
+ case CodeCompletionString::CK_Informative:
+ case CodeCompletionString::CK_ResultType:
+ OS << "[#" << C.Text << "#]";
+ break;
+
+ case CodeCompletionString::CK_CurrentParameter:
+ OS << "<#" << C.Text << "#>";
+ break;
+
+ default: OS << C.Text; break;
+ }
+ }
+ return OS.str();
+}
+
+void
+PrintingCodeCompleteConsumer::ProcessOverloadCandidates(Sema &SemaRef,
+ unsigned CurrentArg,
+ OverloadCandidate *Candidates,
+ unsigned NumCandidates) {
+ for (unsigned I = 0; I != NumCandidates; ++I) {
+ if (CodeCompletionString *CCS
+ = Candidates[I].CreateSignatureString(CurrentArg, SemaRef,
+ getAllocator(), CCTUInfo,
+ includeBriefComments())) {
+ OS << "OVERLOAD: " << getOverloadAsString(*CCS) << "\n";
+ }
+ }
+}
+
+/// \brief Retrieve the effective availability of the given declaration.
+static AvailabilityResult getDeclAvailability(const Decl *D) {
+ AvailabilityResult AR = D->getAvailability();
+ if (isa<EnumConstantDecl>(D))
+ AR = std::max(AR, cast<Decl>(D->getDeclContext())->getAvailability());
+ return AR;
+}
+
+void CodeCompletionResult::computeCursorKindAndAvailability(bool Accessible) {
+ switch (Kind) {
+ case RK_Pattern:
+ if (!Declaration) {
+ // Do nothing: Patterns can come with cursor kinds!
+ break;
+ }
+ // Fall through
+
+ case RK_Declaration: {
+ // Set the availability based on attributes.
+ switch (getDeclAvailability(Declaration)) {
+ case AR_Available:
+ case AR_NotYetIntroduced:
+ Availability = CXAvailability_Available;
+ break;
+
+ case AR_Deprecated:
+ Availability = CXAvailability_Deprecated;
+ break;
+
+ case AR_Unavailable:
+ Availability = CXAvailability_NotAvailable;
+ break;
+ }
+
+ if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(Declaration))
+ if (Function->isDeleted())
+ Availability = CXAvailability_NotAvailable;
+
+ CursorKind = getCursorKindForDecl(Declaration);
+ if (CursorKind == CXCursor_UnexposedDecl) {
+ // FIXME: Forward declarations of Objective-C classes and protocols
+ // are not directly exposed, but we want code completion to treat them
+ // like a definition.
+ if (isa<ObjCInterfaceDecl>(Declaration))
+ CursorKind = CXCursor_ObjCInterfaceDecl;
+ else if (isa<ObjCProtocolDecl>(Declaration))
+ CursorKind = CXCursor_ObjCProtocolDecl;
+ else
+ CursorKind = CXCursor_NotImplemented;
+ }
+ break;
+ }
+
+ case RK_Macro:
+ case RK_Keyword:
+ llvm_unreachable("Macro and keyword kinds are handled by the constructors");
+ }
+
+ if (!Accessible)
+ Availability = CXAvailability_NotAccessible;
+}
+
+/// \brief Retrieve the name that should be used to order a result.
+///
+/// If the name needs to be constructed as a string, that string will be
+/// saved into Saved and the returned StringRef will refer to it.
+static StringRef getOrderedName(const CodeCompletionResult &R,
+ std::string &Saved) {
+ switch (R.Kind) {
+ case CodeCompletionResult::RK_Keyword:
+ return R.Keyword;
+
+ case CodeCompletionResult::RK_Pattern:
+ return R.Pattern->getTypedText();
+
+ case CodeCompletionResult::RK_Macro:
+ return R.Macro->getName();
+
+ case CodeCompletionResult::RK_Declaration:
+ // Handle declarations below.
+ break;
+ }
+
+ DeclarationName Name = R.Declaration->getDeclName();
+
+ // If the name is a simple identifier (by far the common case), or a
+ // zero-argument selector, just return a reference to that identifier.
+ if (IdentifierInfo *Id = Name.getAsIdentifierInfo())
+ return Id->getName();
+ if (Name.isObjCZeroArgSelector())
+ if (IdentifierInfo *Id
+ = Name.getObjCSelector().getIdentifierInfoForSlot(0))
+ return Id->getName();
+
+ Saved = Name.getAsString();
+ return Saved;
+}
+
+bool clang::operator<(const CodeCompletionResult &X,
+ const CodeCompletionResult &Y) {
+ std::string XSaved, YSaved;
+ StringRef XStr = getOrderedName(X, XSaved);
+ StringRef YStr = getOrderedName(Y, YSaved);
+ int cmp = XStr.compare_lower(YStr);
+ if (cmp)
+ return cmp < 0;
+
+ // If case-insensitive comparison fails, try case-sensitive comparison.
+ cmp = XStr.compare(YStr);
+ if (cmp)
+ return cmp < 0;
+
+ return false;
+}
diff --git a/contrib/llvm/tools/clang/lib/Sema/DeclSpec.cpp b/contrib/llvm/tools/clang/lib/Sema/DeclSpec.cpp
new file mode 100644
index 0000000..1e7fc75
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/DeclSpec.cpp
@@ -0,0 +1,1253 @@
+//===--- SemaDeclSpec.cpp - Declaration Specifier Semantic Analysis -------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements semantic analysis for declaration specifiers.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Sema/DeclSpec.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/NestedNameSpecifier.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/Basic/LangOptions.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Parse/ParseDiagnostic.h" // FIXME: remove this back-dependency!
+#include "clang/Sema/LocInfoType.h"
+#include "clang/Sema/ParsedTemplate.h"
+#include "clang/Sema/Sema.h"
+#include "clang/Sema/SemaDiagnostic.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <cstring>
+using namespace clang;
+
+
+static DiagnosticBuilder Diag(DiagnosticsEngine &D, SourceLocation Loc,
+ unsigned DiagID) {
+ return D.Report(Loc, DiagID);
+}
+
+
+void UnqualifiedId::setTemplateId(TemplateIdAnnotation *TemplateId) {
+ assert(TemplateId && "NULL template-id annotation?");
+ Kind = IK_TemplateId;
+ this->TemplateId = TemplateId;
+ StartLocation = TemplateId->TemplateNameLoc;
+ EndLocation = TemplateId->RAngleLoc;
+}
+
+void UnqualifiedId::setConstructorTemplateId(TemplateIdAnnotation *TemplateId) {
+ assert(TemplateId && "NULL template-id annotation?");
+ Kind = IK_ConstructorTemplateId;
+ this->TemplateId = TemplateId;
+ StartLocation = TemplateId->TemplateNameLoc;
+ EndLocation = TemplateId->RAngleLoc;
+}
+
+void CXXScopeSpec::Extend(ASTContext &Context, SourceLocation TemplateKWLoc,
+ TypeLoc TL, SourceLocation ColonColonLoc) {
+ Builder.Extend(Context, TemplateKWLoc, TL, ColonColonLoc);
+ if (Range.getBegin().isInvalid())
+ Range.setBegin(TL.getBeginLoc());
+ Range.setEnd(ColonColonLoc);
+
+ assert(Range == Builder.getSourceRange() &&
+ "NestedNameSpecifierLoc range computation incorrect");
+}
+
+void CXXScopeSpec::Extend(ASTContext &Context, IdentifierInfo *Identifier,
+ SourceLocation IdentifierLoc,
+ SourceLocation ColonColonLoc) {
+ Builder.Extend(Context, Identifier, IdentifierLoc, ColonColonLoc);
+
+ if (Range.getBegin().isInvalid())
+ Range.setBegin(IdentifierLoc);
+ Range.setEnd(ColonColonLoc);
+
+ assert(Range == Builder.getSourceRange() &&
+ "NestedNameSpecifierLoc range computation incorrect");
+}
+
+void CXXScopeSpec::Extend(ASTContext &Context, NamespaceDecl *Namespace,
+ SourceLocation NamespaceLoc,
+ SourceLocation ColonColonLoc) {
+ Builder.Extend(Context, Namespace, NamespaceLoc, ColonColonLoc);
+
+ if (Range.getBegin().isInvalid())
+ Range.setBegin(NamespaceLoc);
+ Range.setEnd(ColonColonLoc);
+
+ assert(Range == Builder.getSourceRange() &&
+ "NestedNameSpecifierLoc range computation incorrect");
+}
+
+void CXXScopeSpec::Extend(ASTContext &Context, NamespaceAliasDecl *Alias,
+ SourceLocation AliasLoc,
+ SourceLocation ColonColonLoc) {
+ Builder.Extend(Context, Alias, AliasLoc, ColonColonLoc);
+
+ if (Range.getBegin().isInvalid())
+ Range.setBegin(AliasLoc);
+ Range.setEnd(ColonColonLoc);
+
+ assert(Range == Builder.getSourceRange() &&
+ "NestedNameSpecifierLoc range computation incorrect");
+}
+
+void CXXScopeSpec::MakeGlobal(ASTContext &Context,
+ SourceLocation ColonColonLoc) {
+ Builder.MakeGlobal(Context, ColonColonLoc);
+
+ Range = SourceRange(ColonColonLoc);
+
+ assert(Range == Builder.getSourceRange() &&
+ "NestedNameSpecifierLoc range computation incorrect");
+}
+
+void CXXScopeSpec::MakeSuper(ASTContext &Context, CXXRecordDecl *RD,
+ SourceLocation SuperLoc,
+ SourceLocation ColonColonLoc) {
+ Builder.MakeSuper(Context, RD, SuperLoc, ColonColonLoc);
+
+ Range.setBegin(SuperLoc);
+ Range.setEnd(ColonColonLoc);
+
+ assert(Range == Builder.getSourceRange() &&
+ "NestedNameSpecifierLoc range computation incorrect");
+}
+
+void CXXScopeSpec::MakeTrivial(ASTContext &Context,
+ NestedNameSpecifier *Qualifier, SourceRange R) {
+ Builder.MakeTrivial(Context, Qualifier, R);
+ Range = R;
+}
+
+void CXXScopeSpec::Adopt(NestedNameSpecifierLoc Other) {
+ if (!Other) {
+ Range = SourceRange();
+ Builder.Clear();
+ return;
+ }
+
+ Range = Other.getSourceRange();
+ Builder.Adopt(Other);
+}
+
+SourceLocation CXXScopeSpec::getLastQualifierNameLoc() const {
+ if (!Builder.getRepresentation())
+ return SourceLocation();
+ return Builder.getTemporary().getLocalBeginLoc();
+}
+
+NestedNameSpecifierLoc
+CXXScopeSpec::getWithLocInContext(ASTContext &Context) const {
+ if (!Builder.getRepresentation())
+ return NestedNameSpecifierLoc();
+
+ return Builder.getWithLocInContext(Context);
+}
+
+/// DeclaratorChunk::getFunction - Return a DeclaratorChunk for a function.
+/// "TheDeclarator" is the declarator that this will be added to.
+DeclaratorChunk DeclaratorChunk::getFunction(bool hasProto,
+ bool isAmbiguous,
+ SourceLocation LParenLoc,
+ ParamInfo *Params,
+ unsigned NumParams,
+ SourceLocation EllipsisLoc,
+ SourceLocation RParenLoc,
+ unsigned TypeQuals,
+ bool RefQualifierIsLvalueRef,
+ SourceLocation RefQualifierLoc,
+ SourceLocation ConstQualifierLoc,
+ SourceLocation
+ VolatileQualifierLoc,
+ SourceLocation
+ RestrictQualifierLoc,
+ SourceLocation MutableLoc,
+ ExceptionSpecificationType
+ ESpecType,
+ SourceLocation ESpecLoc,
+ ParsedType *Exceptions,
+ SourceRange *ExceptionRanges,
+ unsigned NumExceptions,
+ Expr *NoexceptExpr,
+ CachedTokens *ExceptionSpecTokens,
+ SourceLocation LocalRangeBegin,
+ SourceLocation LocalRangeEnd,
+ Declarator &TheDeclarator,
+ TypeResult TrailingReturnType) {
+ assert(!(TypeQuals & DeclSpec::TQ_atomic) &&
+ "function cannot have _Atomic qualifier");
+
+ DeclaratorChunk I;
+ I.Kind = Function;
+ I.Loc = LocalRangeBegin;
+ I.EndLoc = LocalRangeEnd;
+ I.Fun.AttrList = nullptr;
+ I.Fun.hasPrototype = hasProto;
+ I.Fun.isVariadic = EllipsisLoc.isValid();
+ I.Fun.isAmbiguous = isAmbiguous;
+ I.Fun.LParenLoc = LParenLoc.getRawEncoding();
+ I.Fun.EllipsisLoc = EllipsisLoc.getRawEncoding();
+ I.Fun.RParenLoc = RParenLoc.getRawEncoding();
+ I.Fun.DeleteParams = false;
+ I.Fun.TypeQuals = TypeQuals;
+ I.Fun.NumParams = NumParams;
+ I.Fun.Params = nullptr;
+ I.Fun.RefQualifierIsLValueRef = RefQualifierIsLvalueRef;
+ I.Fun.RefQualifierLoc = RefQualifierLoc.getRawEncoding();
+ I.Fun.ConstQualifierLoc = ConstQualifierLoc.getRawEncoding();
+ I.Fun.VolatileQualifierLoc = VolatileQualifierLoc.getRawEncoding();
+ I.Fun.RestrictQualifierLoc = RestrictQualifierLoc.getRawEncoding();
+ I.Fun.MutableLoc = MutableLoc.getRawEncoding();
+ I.Fun.ExceptionSpecType = ESpecType;
+ I.Fun.ExceptionSpecLoc = ESpecLoc.getRawEncoding();
+ I.Fun.NumExceptions = 0;
+ I.Fun.Exceptions = nullptr;
+ I.Fun.NoexceptExpr = nullptr;
+ I.Fun.HasTrailingReturnType = TrailingReturnType.isUsable() ||
+ TrailingReturnType.isInvalid();
+ I.Fun.TrailingReturnType = TrailingReturnType.get();
+
+ assert(I.Fun.TypeQuals == TypeQuals && "bitfield overflow");
+ assert(I.Fun.ExceptionSpecType == ESpecType && "bitfield overflow");
+
+ // new[] a parameter array if needed.
+ if (NumParams) {
+ // If the 'InlineParams' in Declarator is unused and big enough, put our
+ // parameter list there (in an effort to avoid new/delete traffic). If it
+ // is already used (consider a function returning a function pointer) or too
+ // small (function with too many parameters), go to the heap.
+ if (!TheDeclarator.InlineParamsUsed &&
+ NumParams <= llvm::array_lengthof(TheDeclarator.InlineParams)) {
+ I.Fun.Params = TheDeclarator.InlineParams;
+ I.Fun.DeleteParams = false;
+ TheDeclarator.InlineParamsUsed = true;
+ } else {
+ I.Fun.Params = new DeclaratorChunk::ParamInfo[NumParams];
+ I.Fun.DeleteParams = true;
+ }
+ memcpy(I.Fun.Params, Params, sizeof(Params[0]) * NumParams);
+ }
+
+ // Check what exception specification information we should actually store.
+ switch (ESpecType) {
+ default: break; // By default, save nothing.
+ case EST_Dynamic:
+ // new[] an exception array if needed
+ if (NumExceptions) {
+ I.Fun.NumExceptions = NumExceptions;
+ I.Fun.Exceptions = new DeclaratorChunk::TypeAndRange[NumExceptions];
+ for (unsigned i = 0; i != NumExceptions; ++i) {
+ I.Fun.Exceptions[i].Ty = Exceptions[i];
+ I.Fun.Exceptions[i].Range = ExceptionRanges[i];
+ }
+ }
+ break;
+
+ case EST_ComputedNoexcept:
+ I.Fun.NoexceptExpr = NoexceptExpr;
+ break;
+
+ case EST_Unparsed:
+ I.Fun.ExceptionSpecTokens = ExceptionSpecTokens;
+ break;
+ }
+ return I;
+}
+
+bool Declarator::isDeclarationOfFunction() const {
+ for (unsigned i = 0, i_end = DeclTypeInfo.size(); i < i_end; ++i) {
+ switch (DeclTypeInfo[i].Kind) {
+ case DeclaratorChunk::Function:
+ return true;
+ case DeclaratorChunk::Paren:
+ continue;
+ case DeclaratorChunk::Pointer:
+ case DeclaratorChunk::Reference:
+ case DeclaratorChunk::Array:
+ case DeclaratorChunk::BlockPointer:
+ case DeclaratorChunk::MemberPointer:
+ return false;
+ }
+ llvm_unreachable("Invalid type chunk");
+ }
+
+ switch (DS.getTypeSpecType()) {
+ case TST_atomic:
+ case TST_auto:
+ case TST_bool:
+ case TST_char:
+ case TST_char16:
+ case TST_char32:
+ case TST_class:
+ case TST_decimal128:
+ case TST_decimal32:
+ case TST_decimal64:
+ case TST_double:
+ case TST_enum:
+ case TST_error:
+ case TST_float:
+ case TST_half:
+ case TST_int:
+ case TST_int128:
+ case TST_struct:
+ case TST_interface:
+ case TST_union:
+ case TST_unknown_anytype:
+ case TST_unspecified:
+ case TST_void:
+ case TST_wchar:
+ return false;
+
+ case TST_decltype_auto:
+ // This must have an initializer, so can't be a function declaration,
+ // even if the initializer has function type.
+ return false;
+
+ case TST_decltype:
+ case TST_typeofExpr:
+ if (Expr *E = DS.getRepAsExpr())
+ return E->getType()->isFunctionType();
+ return false;
+
+ case TST_underlyingType:
+ case TST_typename:
+ case TST_typeofType: {
+ QualType QT = DS.getRepAsType().get();
+ if (QT.isNull())
+ return false;
+
+ if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT))
+ QT = LIT->getType();
+
+ if (QT.isNull())
+ return false;
+
+ return QT->isFunctionType();
+ }
+ }
+
+ llvm_unreachable("Invalid TypeSpecType!");
+}
+
+bool Declarator::isStaticMember() {
+ assert(getContext() == MemberContext);
+ return getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static ||
+ (getName().Kind == UnqualifiedId::IK_OperatorFunctionId &&
+ CXXMethodDecl::isStaticOverloadedOperator(
+ getName().OperatorFunctionId.Operator));
+}
+
+bool DeclSpec::hasTagDefinition() const {
+ if (!TypeSpecOwned)
+ return false;
+ return cast<TagDecl>(getRepAsDecl())->isCompleteDefinition();
+}
+
+/// getParsedSpecifiers - Return a bitmask of which flavors of specifiers this
+/// declaration specifier includes.
+///
+unsigned DeclSpec::getParsedSpecifiers() const {
+ unsigned Res = 0;
+ if (StorageClassSpec != SCS_unspecified ||
+ ThreadStorageClassSpec != TSCS_unspecified)
+ Res |= PQ_StorageClassSpecifier;
+
+ if (TypeQualifiers != TQ_unspecified)
+ Res |= PQ_TypeQualifier;
+
+ if (hasTypeSpecifier())
+ Res |= PQ_TypeSpecifier;
+
+ if (FS_inline_specified || FS_virtual_specified || FS_explicit_specified ||
+ FS_noreturn_specified || FS_forceinline_specified)
+ Res |= PQ_FunctionSpecifier;
+ return Res;
+}
+
+template <class T> static bool BadSpecifier(T TNew, T TPrev,
+ const char *&PrevSpec,
+ unsigned &DiagID,
+ bool IsExtension = true) {
+ PrevSpec = DeclSpec::getSpecifierName(TPrev);
+ if (TNew != TPrev)
+ DiagID = diag::err_invalid_decl_spec_combination;
+ else
+ DiagID = IsExtension ? diag::ext_duplicate_declspec :
+ diag::warn_duplicate_declspec;
+ return true;
+}
+
+const char *DeclSpec::getSpecifierName(DeclSpec::SCS S) {
+ switch (S) {
+ case DeclSpec::SCS_unspecified: return "unspecified";
+ case DeclSpec::SCS_typedef: return "typedef";
+ case DeclSpec::SCS_extern: return "extern";
+ case DeclSpec::SCS_static: return "static";
+ case DeclSpec::SCS_auto: return "auto";
+ case DeclSpec::SCS_register: return "register";
+ case DeclSpec::SCS_private_extern: return "__private_extern__";
+ case DeclSpec::SCS_mutable: return "mutable";
+ }
+ llvm_unreachable("Unknown typespec!");
+}
+
+const char *DeclSpec::getSpecifierName(DeclSpec::TSCS S) {
+ switch (S) {
+ case DeclSpec::TSCS_unspecified: return "unspecified";
+ case DeclSpec::TSCS___thread: return "__thread";
+ case DeclSpec::TSCS_thread_local: return "thread_local";
+ case DeclSpec::TSCS__Thread_local: return "_Thread_local";
+ }
+ llvm_unreachable("Unknown typespec!");
+}
+
+const char *DeclSpec::getSpecifierName(TSW W) {
+ switch (W) {
+ case TSW_unspecified: return "unspecified";
+ case TSW_short: return "short";
+ case TSW_long: return "long";
+ case TSW_longlong: return "long long";
+ }
+ llvm_unreachable("Unknown typespec!");
+}
+
+const char *DeclSpec::getSpecifierName(TSC C) {
+ switch (C) {
+ case TSC_unspecified: return "unspecified";
+ case TSC_imaginary: return "imaginary";
+ case TSC_complex: return "complex";
+ }
+ llvm_unreachable("Unknown typespec!");
+}
+
+
+const char *DeclSpec::getSpecifierName(TSS S) {
+ switch (S) {
+ case TSS_unspecified: return "unspecified";
+ case TSS_signed: return "signed";
+ case TSS_unsigned: return "unsigned";
+ }
+ llvm_unreachable("Unknown typespec!");
+}
+
+const char *DeclSpec::getSpecifierName(DeclSpec::TST T,
+ const PrintingPolicy &Policy) {
+ switch (T) {
+ case DeclSpec::TST_unspecified: return "unspecified";
+ case DeclSpec::TST_void: return "void";
+ case DeclSpec::TST_char: return "char";
+ case DeclSpec::TST_wchar: return Policy.MSWChar ? "__wchar_t" : "wchar_t";
+ case DeclSpec::TST_char16: return "char16_t";
+ case DeclSpec::TST_char32: return "char32_t";
+ case DeclSpec::TST_int: return "int";
+ case DeclSpec::TST_int128: return "__int128";
+ case DeclSpec::TST_half: return "half";
+ case DeclSpec::TST_float: return "float";
+ case DeclSpec::TST_double: return "double";
+ case DeclSpec::TST_bool: return Policy.Bool ? "bool" : "_Bool";
+ case DeclSpec::TST_decimal32: return "_Decimal32";
+ case DeclSpec::TST_decimal64: return "_Decimal64";
+ case DeclSpec::TST_decimal128: return "_Decimal128";
+ case DeclSpec::TST_enum: return "enum";
+ case DeclSpec::TST_class: return "class";
+ case DeclSpec::TST_union: return "union";
+ case DeclSpec::TST_struct: return "struct";
+ case DeclSpec::TST_interface: return "__interface";
+ case DeclSpec::TST_typename: return "type-name";
+ case DeclSpec::TST_typeofType:
+ case DeclSpec::TST_typeofExpr: return "typeof";
+ case DeclSpec::TST_auto: return "auto";
+ case DeclSpec::TST_decltype: return "(decltype)";
+ case DeclSpec::TST_decltype_auto: return "decltype(auto)";
+ case DeclSpec::TST_underlyingType: return "__underlying_type";
+ case DeclSpec::TST_unknown_anytype: return "__unknown_anytype";
+ case DeclSpec::TST_atomic: return "_Atomic";
+ case DeclSpec::TST_error: return "(error)";
+ }
+ llvm_unreachable("Unknown typespec!");
+}
+
+const char *DeclSpec::getSpecifierName(TQ T) {
+ switch (T) {
+ case DeclSpec::TQ_unspecified: return "unspecified";
+ case DeclSpec::TQ_const: return "const";
+ case DeclSpec::TQ_restrict: return "restrict";
+ case DeclSpec::TQ_volatile: return "volatile";
+ case DeclSpec::TQ_atomic: return "_Atomic";
+ }
+ llvm_unreachable("Unknown typespec!");
+}
+
+bool DeclSpec::SetStorageClassSpec(Sema &S, SCS SC, SourceLocation Loc,
+ const char *&PrevSpec,
+ unsigned &DiagID,
+ const PrintingPolicy &Policy) {
+ // OpenCL v1.1 s6.8g: "The extern, static, auto and register storage-class
+ // specifiers are not supported.
+ // It seems sensible to prohibit private_extern too
+ // The cl_clang_storage_class_specifiers extension enables support for
+ // these storage-class specifiers.
+ // OpenCL v1.2 s6.8 changes this to "The auto and register storage-class
+ // specifiers are not supported."
+ if (S.getLangOpts().OpenCL &&
+ !S.getOpenCLOptions().cl_clang_storage_class_specifiers) {
+ switch (SC) {
+ case SCS_extern:
+ case SCS_private_extern:
+ case SCS_static:
+ if (S.getLangOpts().OpenCLVersion < 120) {
+ DiagID = diag::err_opencl_unknown_type_specifier;
+ PrevSpec = getSpecifierName(SC);
+ return true;
+ }
+ break;
+ case SCS_auto:
+ case SCS_register:
+ DiagID = diag::err_opencl_unknown_type_specifier;
+ PrevSpec = getSpecifierName(SC);
+ return true;
+ default:
+ break;
+ }
+ }
+
+ if (StorageClassSpec != SCS_unspecified) {
+ // Maybe this is an attempt to use C++11 'auto' outside of C++11 mode.
+ bool isInvalid = true;
+ if (TypeSpecType == TST_unspecified && S.getLangOpts().CPlusPlus) {
+ if (SC == SCS_auto)
+ return SetTypeSpecType(TST_auto, Loc, PrevSpec, DiagID, Policy);
+ if (StorageClassSpec == SCS_auto) {
+ isInvalid = SetTypeSpecType(TST_auto, StorageClassSpecLoc,
+ PrevSpec, DiagID, Policy);
+ assert(!isInvalid && "auto SCS -> TST recovery failed");
+ }
+ }
+
+ // Changing storage class is allowed only if the previous one
+ // was the 'extern' that is part of a linkage specification and
+ // the new storage class is 'typedef'.
+ if (isInvalid &&
+ !(SCS_extern_in_linkage_spec &&
+ StorageClassSpec == SCS_extern &&
+ SC == SCS_typedef))
+ return BadSpecifier(SC, (SCS)StorageClassSpec, PrevSpec, DiagID);
+ }
+ StorageClassSpec = SC;
+ StorageClassSpecLoc = Loc;
+ assert((unsigned)SC == StorageClassSpec && "SCS constants overflow bitfield");
+ return false;
+}
+
+bool DeclSpec::SetStorageClassSpecThread(TSCS TSC, SourceLocation Loc,
+ const char *&PrevSpec,
+ unsigned &DiagID) {
+ if (ThreadStorageClassSpec != TSCS_unspecified)
+ return BadSpecifier(TSC, (TSCS)ThreadStorageClassSpec, PrevSpec, DiagID);
+
+ ThreadStorageClassSpec = TSC;
+ ThreadStorageClassSpecLoc = Loc;
+ return false;
+}
+
+/// These methods set the specified attribute of the DeclSpec, but return true
+/// and ignore the request if invalid (e.g. "extern" then "auto" is
+/// specified).
+bool DeclSpec::SetTypeSpecWidth(TSW W, SourceLocation Loc,
+ const char *&PrevSpec,
+ unsigned &DiagID,
+ const PrintingPolicy &Policy) {
+ // Overwrite TSWLoc only if TypeSpecWidth was unspecified, so that
+ // for 'long long' we will keep the source location of the first 'long'.
+ if (TypeSpecWidth == TSW_unspecified)
+ TSWLoc = Loc;
+ // Allow turning long -> long long.
+ else if (W != TSW_longlong || TypeSpecWidth != TSW_long)
+ return BadSpecifier(W, (TSW)TypeSpecWidth, PrevSpec, DiagID);
+ TypeSpecWidth = W;
+ return false;
+}
+
+bool DeclSpec::SetTypeSpecComplex(TSC C, SourceLocation Loc,
+ const char *&PrevSpec,
+ unsigned &DiagID) {
+ if (TypeSpecComplex != TSC_unspecified)
+ return BadSpecifier(C, (TSC)TypeSpecComplex, PrevSpec, DiagID);
+ TypeSpecComplex = C;
+ TSCLoc = Loc;
+ return false;
+}
+
+bool DeclSpec::SetTypeSpecSign(TSS S, SourceLocation Loc,
+ const char *&PrevSpec,
+ unsigned &DiagID) {
+ if (TypeSpecSign != TSS_unspecified)
+ return BadSpecifier(S, (TSS)TypeSpecSign, PrevSpec, DiagID);
+ TypeSpecSign = S;
+ TSSLoc = Loc;
+ return false;
+}
+
+bool DeclSpec::SetTypeSpecType(TST T, SourceLocation Loc,
+ const char *&PrevSpec,
+ unsigned &DiagID,
+ ParsedType Rep,
+ const PrintingPolicy &Policy) {
+ return SetTypeSpecType(T, Loc, Loc, PrevSpec, DiagID, Rep, Policy);
+}
+
+bool DeclSpec::SetTypeSpecType(TST T, SourceLocation TagKwLoc,
+ SourceLocation TagNameLoc,
+ const char *&PrevSpec,
+ unsigned &DiagID,
+ ParsedType Rep,
+ const PrintingPolicy &Policy) {
+ assert(isTypeRep(T) && "T does not store a type");
+ assert(Rep && "no type provided!");
+ if (TypeSpecType != TST_unspecified) {
+ PrevSpec = DeclSpec::getSpecifierName((TST) TypeSpecType, Policy);
+ DiagID = diag::err_invalid_decl_spec_combination;
+ return true;
+ }
+ TypeSpecType = T;
+ TypeRep = Rep;
+ TSTLoc = TagKwLoc;
+ TSTNameLoc = TagNameLoc;
+ TypeSpecOwned = false;
+ return false;
+}
+
+bool DeclSpec::SetTypeSpecType(TST T, SourceLocation Loc,
+ const char *&PrevSpec,
+ unsigned &DiagID,
+ Expr *Rep,
+ const PrintingPolicy &Policy) {
+ assert(isExprRep(T) && "T does not store an expr");
+ assert(Rep && "no expression provided!");
+ if (TypeSpecType != TST_unspecified) {
+ PrevSpec = DeclSpec::getSpecifierName((TST) TypeSpecType, Policy);
+ DiagID = diag::err_invalid_decl_spec_combination;
+ return true;
+ }
+ TypeSpecType = T;
+ ExprRep = Rep;
+ TSTLoc = Loc;
+ TSTNameLoc = Loc;
+ TypeSpecOwned = false;
+ return false;
+}
+
+bool DeclSpec::SetTypeSpecType(TST T, SourceLocation Loc,
+ const char *&PrevSpec,
+ unsigned &DiagID,
+ Decl *Rep, bool Owned,
+ const PrintingPolicy &Policy) {
+ return SetTypeSpecType(T, Loc, Loc, PrevSpec, DiagID, Rep, Owned, Policy);
+}
+
+bool DeclSpec::SetTypeSpecType(TST T, SourceLocation TagKwLoc,
+ SourceLocation TagNameLoc,
+ const char *&PrevSpec,
+ unsigned &DiagID,
+ Decl *Rep, bool Owned,
+ const PrintingPolicy &Policy) {
+ assert(isDeclRep(T) && "T does not store a decl");
+ // Unlike the other cases, we don't assert that we actually get a decl.
+
+ if (TypeSpecType != TST_unspecified) {
+ PrevSpec = DeclSpec::getSpecifierName((TST) TypeSpecType, Policy);
+ DiagID = diag::err_invalid_decl_spec_combination;
+ return true;
+ }
+ TypeSpecType = T;
+ DeclRep = Rep;
+ TSTLoc = TagKwLoc;
+ TSTNameLoc = TagNameLoc;
+ TypeSpecOwned = Owned && Rep != nullptr;
+ return false;
+}
+
+bool DeclSpec::SetTypeSpecType(TST T, SourceLocation Loc,
+ const char *&PrevSpec,
+ unsigned &DiagID,
+ const PrintingPolicy &Policy) {
+ assert(!isDeclRep(T) && !isTypeRep(T) && !isExprRep(T) &&
+ "rep required for these type-spec kinds!");
+ if (TypeSpecType != TST_unspecified) {
+ PrevSpec = DeclSpec::getSpecifierName((TST) TypeSpecType, Policy);
+ DiagID = diag::err_invalid_decl_spec_combination;
+ return true;
+ }
+ TSTLoc = Loc;
+ TSTNameLoc = Loc;
+ if (TypeAltiVecVector && (T == TST_bool) && !TypeAltiVecBool) {
+ TypeAltiVecBool = true;
+ return false;
+ }
+ TypeSpecType = T;
+ TypeSpecOwned = false;
+ return false;
+}
+
+bool DeclSpec::SetTypeAltiVecVector(bool isAltiVecVector, SourceLocation Loc,
+ const char *&PrevSpec, unsigned &DiagID,
+ const PrintingPolicy &Policy) {
+ if (TypeSpecType != TST_unspecified) {
+ PrevSpec = DeclSpec::getSpecifierName((TST) TypeSpecType, Policy);
+ DiagID = diag::err_invalid_vector_decl_spec_combination;
+ return true;
+ }
+ TypeAltiVecVector = isAltiVecVector;
+ AltiVecLoc = Loc;
+ return false;
+}
+
+bool DeclSpec::SetTypeAltiVecPixel(bool isAltiVecPixel, SourceLocation Loc,
+ const char *&PrevSpec, unsigned &DiagID,
+ const PrintingPolicy &Policy) {
+ if (!TypeAltiVecVector || TypeAltiVecPixel ||
+ (TypeSpecType != TST_unspecified)) {
+ PrevSpec = DeclSpec::getSpecifierName((TST) TypeSpecType, Policy);
+ DiagID = diag::err_invalid_pixel_decl_spec_combination;
+ return true;
+ }
+ TypeAltiVecPixel = isAltiVecPixel;
+ TSTLoc = Loc;
+ TSTNameLoc = Loc;
+ return false;
+}
+
+bool DeclSpec::SetTypeAltiVecBool(bool isAltiVecBool, SourceLocation Loc,
+ const char *&PrevSpec, unsigned &DiagID,
+ const PrintingPolicy &Policy) {
+ if (!TypeAltiVecVector || TypeAltiVecBool ||
+ (TypeSpecType != TST_unspecified)) {
+ PrevSpec = DeclSpec::getSpecifierName((TST) TypeSpecType, Policy);
+ DiagID = diag::err_invalid_vector_bool_decl_spec;
+ return true;
+ }
+ TypeAltiVecBool = isAltiVecBool;
+ TSTLoc = Loc;
+ TSTNameLoc = Loc;
+ return false;
+}
+
+bool DeclSpec::SetTypeSpecError() {
+ TypeSpecType = TST_error;
+ TypeSpecOwned = false;
+ TSTLoc = SourceLocation();
+ TSTNameLoc = SourceLocation();
+ return false;
+}
+
+bool DeclSpec::SetTypeQual(TQ T, SourceLocation Loc, const char *&PrevSpec,
+ unsigned &DiagID, const LangOptions &Lang) {
+ // Duplicates are permitted in C99 onwards, but are not permitted in C89 or
+ // C++. However, since this is likely not what the user intended, we will
+ // always warn. We do not need to set the qualifier's location since we
+ // already have it.
+ if (TypeQualifiers & T) {
+ bool IsExtension = true;
+ if (Lang.C99)
+ IsExtension = false;
+ return BadSpecifier(T, T, PrevSpec, DiagID, IsExtension);
+ }
+ TypeQualifiers |= T;
+
+ switch (T) {
+ case TQ_unspecified: break;
+ case TQ_const: TQ_constLoc = Loc; return false;
+ case TQ_restrict: TQ_restrictLoc = Loc; return false;
+ case TQ_volatile: TQ_volatileLoc = Loc; return false;
+ case TQ_atomic: TQ_atomicLoc = Loc; return false;
+ }
+
+ llvm_unreachable("Unknown type qualifier!");
+}
+
+bool DeclSpec::setFunctionSpecInline(SourceLocation Loc, const char *&PrevSpec,
+ unsigned &DiagID) {
+ // 'inline inline' is ok. However, since this is likely not what the user
+ // intended, we will always warn, similar to duplicates of type qualifiers.
+ if (FS_inline_specified) {
+ DiagID = diag::warn_duplicate_declspec;
+ PrevSpec = "inline";
+ return true;
+ }
+ FS_inline_specified = true;
+ FS_inlineLoc = Loc;
+ return false;
+}
+
+bool DeclSpec::setFunctionSpecForceInline(SourceLocation Loc, const char *&PrevSpec,
+ unsigned &DiagID) {
+ if (FS_forceinline_specified) {
+ DiagID = diag::warn_duplicate_declspec;
+ PrevSpec = "__forceinline";
+ return true;
+ }
+ FS_forceinline_specified = true;
+ FS_forceinlineLoc = Loc;
+ return false;
+}
+
+bool DeclSpec::setFunctionSpecVirtual(SourceLocation Loc,
+ const char *&PrevSpec,
+ unsigned &DiagID) {
+ // 'virtual virtual' is ok, but warn as this is likely not what the user
+ // intended.
+ if (FS_virtual_specified) {
+ DiagID = diag::warn_duplicate_declspec;
+ PrevSpec = "virtual";
+ return true;
+ }
+ FS_virtual_specified = true;
+ FS_virtualLoc = Loc;
+ return false;
+}
+
+bool DeclSpec::setFunctionSpecExplicit(SourceLocation Loc,
+ const char *&PrevSpec,
+ unsigned &DiagID) {
+ // 'explicit explicit' is ok, but warn as this is likely not what the user
+ // intended.
+ if (FS_explicit_specified) {
+ DiagID = diag::warn_duplicate_declspec;
+ PrevSpec = "explicit";
+ return true;
+ }
+ FS_explicit_specified = true;
+ FS_explicitLoc = Loc;
+ return false;
+}
+
+bool DeclSpec::setFunctionSpecNoreturn(SourceLocation Loc,
+ const char *&PrevSpec,
+ unsigned &DiagID) {
+ // '_Noreturn _Noreturn' is ok, but warn as this is likely not what the user
+ // intended.
+ if (FS_noreturn_specified) {
+ DiagID = diag::warn_duplicate_declspec;
+ PrevSpec = "_Noreturn";
+ return true;
+ }
+ FS_noreturn_specified = true;
+ FS_noreturnLoc = Loc;
+ return false;
+}
+
+bool DeclSpec::SetFriendSpec(SourceLocation Loc, const char *&PrevSpec,
+ unsigned &DiagID) {
+ if (Friend_specified) {
+ PrevSpec = "friend";
+ // Keep the later location, so that we can later diagnose ill-formed
+ // declarations like 'friend class X friend;'. Per [class.friend]p3,
+ // 'friend' must be the first token in a friend declaration that is
+ // not a function declaration.
+ FriendLoc = Loc;
+ DiagID = diag::warn_duplicate_declspec;
+ return true;
+ }
+
+ Friend_specified = true;
+ FriendLoc = Loc;
+ return false;
+}
+
+bool DeclSpec::setModulePrivateSpec(SourceLocation Loc, const char *&PrevSpec,
+ unsigned &DiagID) {
+ if (isModulePrivateSpecified()) {
+ PrevSpec = "__module_private__";
+ DiagID = diag::ext_duplicate_declspec;
+ return true;
+ }
+
+ ModulePrivateLoc = Loc;
+ return false;
+}
+
+bool DeclSpec::SetConstexprSpec(SourceLocation Loc, const char *&PrevSpec,
+ unsigned &DiagID) {
+ // 'constexpr constexpr' is ok, but warn as this is likely not what the user
+ // intended.
+ if (Constexpr_specified) {
+ DiagID = diag::warn_duplicate_declspec;
+ PrevSpec = "constexpr";
+ return true;
+ }
+ Constexpr_specified = true;
+ ConstexprLoc = Loc;
+ return false;
+}
+
+void DeclSpec::setProtocolQualifiers(Decl * const *Protos,
+ unsigned NP,
+ SourceLocation *ProtoLocs,
+ SourceLocation LAngleLoc) {
+ if (NP == 0) return;
+ Decl **ProtoQuals = new Decl*[NP];
+ memcpy(ProtoQuals, Protos, sizeof(Decl*)*NP);
+ ProtocolQualifiers = ProtoQuals;
+ ProtocolLocs = new SourceLocation[NP];
+ memcpy(ProtocolLocs, ProtoLocs, sizeof(SourceLocation)*NP);
+ NumProtocolQualifiers = NP;
+ ProtocolLAngleLoc = LAngleLoc;
+}
+
+void DeclSpec::SaveWrittenBuiltinSpecs() {
+ writtenBS.Sign = getTypeSpecSign();
+ writtenBS.Width = getTypeSpecWidth();
+ writtenBS.Type = getTypeSpecType();
+ // Search the list of attributes for the presence of a mode attribute.
+ writtenBS.ModeAttr = false;
+ AttributeList* attrs = getAttributes().getList();
+ while (attrs) {
+ if (attrs->getKind() == AttributeList::AT_Mode) {
+ writtenBS.ModeAttr = true;
+ break;
+ }
+ attrs = attrs->getNext();
+ }
+}
+
+/// Finish - This does final analysis of the declspec, rejecting things like
+/// "_Imaginary" (lacking an FP type). This returns a diagnostic to issue or
+/// diag::NUM_DIAGNOSTICS if there is no error. After calling this method,
+/// DeclSpec is guaranteed self-consistent, even if an error occurred.
+void DeclSpec::Finish(DiagnosticsEngine &D, Preprocessor &PP, const PrintingPolicy &Policy) {
+ // Before possibly changing their values, save specs as written.
+ SaveWrittenBuiltinSpecs();
+
+ // Check the type specifier components first.
+
+ // If decltype(auto) is used, no other type specifiers are permitted.
+ if (TypeSpecType == TST_decltype_auto &&
+ (TypeSpecWidth != TSW_unspecified ||
+ TypeSpecComplex != TSC_unspecified ||
+ TypeSpecSign != TSS_unspecified ||
+ TypeAltiVecVector || TypeAltiVecPixel || TypeAltiVecBool ||
+ TypeQualifiers)) {
+ const unsigned NumLocs = 8;
+ SourceLocation ExtraLocs[NumLocs] = {
+ TSWLoc, TSCLoc, TSSLoc, AltiVecLoc,
+ TQ_constLoc, TQ_restrictLoc, TQ_volatileLoc, TQ_atomicLoc
+ };
+ FixItHint Hints[NumLocs];
+ SourceLocation FirstLoc;
+ for (unsigned I = 0; I != NumLocs; ++I) {
+ if (!ExtraLocs[I].isInvalid()) {
+ if (FirstLoc.isInvalid() ||
+ PP.getSourceManager().isBeforeInTranslationUnit(ExtraLocs[I],
+ FirstLoc))
+ FirstLoc = ExtraLocs[I];
+ Hints[I] = FixItHint::CreateRemoval(ExtraLocs[I]);
+ }
+ }
+ TypeSpecWidth = TSW_unspecified;
+ TypeSpecComplex = TSC_unspecified;
+ TypeSpecSign = TSS_unspecified;
+ TypeAltiVecVector = TypeAltiVecPixel = TypeAltiVecBool = false;
+ TypeQualifiers = 0;
+ Diag(D, TSTLoc, diag::err_decltype_auto_cannot_be_combined)
+ << Hints[0] << Hints[1] << Hints[2] << Hints[3]
+ << Hints[4] << Hints[5] << Hints[6] << Hints[7];
+ }
+
+ // Validate and finalize AltiVec vector declspec.
+ if (TypeAltiVecVector) {
+ if (TypeAltiVecBool) {
+ // Sign specifiers are not allowed with vector bool. (PIM 2.1)
+ if (TypeSpecSign != TSS_unspecified) {
+ Diag(D, TSSLoc, diag::err_invalid_vector_bool_decl_spec)
+ << getSpecifierName((TSS)TypeSpecSign);
+ }
+
+ // Only char/int are valid with vector bool. (PIM 2.1)
+ if (((TypeSpecType != TST_unspecified) && (TypeSpecType != TST_char) &&
+ (TypeSpecType != TST_int)) || TypeAltiVecPixel) {
+ Diag(D, TSTLoc, diag::err_invalid_vector_bool_decl_spec)
+ << (TypeAltiVecPixel ? "__pixel" :
+ getSpecifierName((TST)TypeSpecType, Policy));
+ }
+
+ // Only 'short' and 'long long' are valid with vector bool. (PIM 2.1)
+ if ((TypeSpecWidth != TSW_unspecified) && (TypeSpecWidth != TSW_short) &&
+ (TypeSpecWidth != TSW_longlong))
+ Diag(D, TSWLoc, diag::err_invalid_vector_bool_decl_spec)
+ << getSpecifierName((TSW)TypeSpecWidth);
+
+ // vector bool long long requires VSX support.
+ if ((TypeSpecWidth == TSW_longlong) &&
+ (!PP.getTargetInfo().hasFeature("vsx")) &&
+ (!PP.getTargetInfo().hasFeature("power8-vector")))
+ Diag(D, TSTLoc, diag::err_invalid_vector_long_long_decl_spec);
+
+ // Elements of vector bool are interpreted as unsigned. (PIM 2.1)
+ if ((TypeSpecType == TST_char) || (TypeSpecType == TST_int) ||
+ (TypeSpecWidth != TSW_unspecified))
+ TypeSpecSign = TSS_unsigned;
+ } else if (TypeSpecType == TST_double) {
+ // vector long double and vector long long double are never allowed.
+ // vector double is OK for Power7 and later.
+ if (TypeSpecWidth == TSW_long || TypeSpecWidth == TSW_longlong)
+ Diag(D, TSWLoc, diag::err_invalid_vector_long_double_decl_spec);
+ else if (!PP.getTargetInfo().hasFeature("vsx"))
+ Diag(D, TSTLoc, diag::err_invalid_vector_double_decl_spec);
+ } else if (TypeSpecWidth == TSW_long) {
+ Diag(D, TSWLoc, diag::warn_vector_long_decl_spec_combination)
+ << getSpecifierName((TST)TypeSpecType, Policy);
+ }
+
+ if (TypeAltiVecPixel) {
+ //TODO: perform validation
+ TypeSpecType = TST_int;
+ TypeSpecSign = TSS_unsigned;
+ TypeSpecWidth = TSW_short;
+ TypeSpecOwned = false;
+ }
+ }
+
+ // signed/unsigned are only valid with int/char/wchar_t.
+ if (TypeSpecSign != TSS_unspecified) {
+ if (TypeSpecType == TST_unspecified)
+ TypeSpecType = TST_int; // unsigned -> unsigned int, signed -> signed int.
+ else if (TypeSpecType != TST_int && TypeSpecType != TST_int128 &&
+ TypeSpecType != TST_char && TypeSpecType != TST_wchar) {
+ Diag(D, TSSLoc, diag::err_invalid_sign_spec)
+ << getSpecifierName((TST)TypeSpecType, Policy);
+ // signed double -> double.
+ TypeSpecSign = TSS_unspecified;
+ }
+ }
+
+ // Validate the width of the type.
+ switch (TypeSpecWidth) {
+ case TSW_unspecified: break;
+ case TSW_short: // short int
+ case TSW_longlong: // long long int
+ if (TypeSpecType == TST_unspecified)
+ TypeSpecType = TST_int; // short -> short int, long long -> long long int.
+ else if (TypeSpecType != TST_int) {
+ Diag(D, TSWLoc,
+ TypeSpecWidth == TSW_short ? diag::err_invalid_short_spec
+ : diag::err_invalid_longlong_spec)
+ << getSpecifierName((TST)TypeSpecType, Policy);
+ TypeSpecType = TST_int;
+ TypeSpecOwned = false;
+ }
+ break;
+ case TSW_long: // long double, long int
+ if (TypeSpecType == TST_unspecified)
+ TypeSpecType = TST_int; // long -> long int.
+ else if (TypeSpecType != TST_int && TypeSpecType != TST_double) {
+ Diag(D, TSWLoc, diag::err_invalid_long_spec)
+ << getSpecifierName((TST)TypeSpecType, Policy);
+ TypeSpecType = TST_int;
+ TypeSpecOwned = false;
+ }
+ break;
+ }
+
+ // TODO: if the implementation does not implement _Complex or _Imaginary,
+ // disallow their use. Need information about the backend.
+ if (TypeSpecComplex != TSC_unspecified) {
+ if (TypeSpecType == TST_unspecified) {
+ Diag(D, TSCLoc, diag::ext_plain_complex)
+ << FixItHint::CreateInsertion(
+ PP.getLocForEndOfToken(getTypeSpecComplexLoc()),
+ " double");
+ TypeSpecType = TST_double; // _Complex -> _Complex double.
+ } else if (TypeSpecType == TST_int || TypeSpecType == TST_char) {
+ // Note that this intentionally doesn't include _Complex _Bool.
+ if (!PP.getLangOpts().CPlusPlus)
+ Diag(D, TSTLoc, diag::ext_integer_complex);
+ } else if (TypeSpecType != TST_float && TypeSpecType != TST_double) {
+ Diag(D, TSCLoc, diag::err_invalid_complex_spec)
+ << getSpecifierName((TST)TypeSpecType, Policy);
+ TypeSpecComplex = TSC_unspecified;
+ }
+ }
+
+ // C11 6.7.1/3, C++11 [dcl.stc]p1, GNU TLS: __thread, thread_local and
+ // _Thread_local can only appear with the 'static' and 'extern' storage class
+ // specifiers. We also allow __private_extern__ as an extension.
+ if (ThreadStorageClassSpec != TSCS_unspecified) {
+ switch (StorageClassSpec) {
+ case SCS_unspecified:
+ case SCS_extern:
+ case SCS_private_extern:
+ case SCS_static:
+ break;
+ default:
+ if (PP.getSourceManager().isBeforeInTranslationUnit(
+ getThreadStorageClassSpecLoc(), getStorageClassSpecLoc()))
+ Diag(D, getStorageClassSpecLoc(),
+ diag::err_invalid_decl_spec_combination)
+ << DeclSpec::getSpecifierName(getThreadStorageClassSpec())
+ << SourceRange(getThreadStorageClassSpecLoc());
+ else
+ Diag(D, getThreadStorageClassSpecLoc(),
+ diag::err_invalid_decl_spec_combination)
+ << DeclSpec::getSpecifierName(getStorageClassSpec())
+ << SourceRange(getStorageClassSpecLoc());
+ // Discard the thread storage class specifier to recover.
+ ThreadStorageClassSpec = TSCS_unspecified;
+ ThreadStorageClassSpecLoc = SourceLocation();
+ }
+ }
+
+ // If no type specifier was provided and we're parsing a language where
+ // the type specifier is not optional, but we got 'auto' as a storage
+ // class specifier, then assume this is an attempt to use C++0x's 'auto'
+ // type specifier.
+ if (PP.getLangOpts().CPlusPlus &&
+ TypeSpecType == TST_unspecified && StorageClassSpec == SCS_auto) {
+ TypeSpecType = TST_auto;
+ StorageClassSpec = SCS_unspecified;
+ TSTLoc = TSTNameLoc = StorageClassSpecLoc;
+ StorageClassSpecLoc = SourceLocation();
+ }
+ // Diagnose if we've recovered from an ill-formed 'auto' storage class
+ // specifier in a pre-C++11 dialect of C++.
+ if (!PP.getLangOpts().CPlusPlus11 && TypeSpecType == TST_auto)
+ Diag(D, TSTLoc, diag::ext_auto_type_specifier);
+ if (PP.getLangOpts().CPlusPlus && !PP.getLangOpts().CPlusPlus11 &&
+ StorageClassSpec == SCS_auto)
+ Diag(D, StorageClassSpecLoc, diag::warn_auto_storage_class)
+ << FixItHint::CreateRemoval(StorageClassSpecLoc);
+ if (TypeSpecType == TST_char16 || TypeSpecType == TST_char32)
+ Diag(D, TSTLoc, diag::warn_cxx98_compat_unicode_type)
+ << (TypeSpecType == TST_char16 ? "char16_t" : "char32_t");
+ if (Constexpr_specified)
+ Diag(D, ConstexprLoc, diag::warn_cxx98_compat_constexpr);
+
+ // C++ [class.friend]p6:
+ // No storage-class-specifier shall appear in the decl-specifier-seq
+ // of a friend declaration.
+ if (isFriendSpecified() &&
+ (getStorageClassSpec() || getThreadStorageClassSpec())) {
+ SmallString<32> SpecName;
+ SourceLocation SCLoc;
+ FixItHint StorageHint, ThreadHint;
+
+ if (DeclSpec::SCS SC = getStorageClassSpec()) {
+ SpecName = getSpecifierName(SC);
+ SCLoc = getStorageClassSpecLoc();
+ StorageHint = FixItHint::CreateRemoval(SCLoc);
+ }
+
+ if (DeclSpec::TSCS TSC = getThreadStorageClassSpec()) {
+ if (!SpecName.empty()) SpecName += " ";
+ SpecName += getSpecifierName(TSC);
+ SCLoc = getThreadStorageClassSpecLoc();
+ ThreadHint = FixItHint::CreateRemoval(SCLoc);
+ }
+
+ Diag(D, SCLoc, diag::err_friend_decl_spec)
+ << SpecName << StorageHint << ThreadHint;
+
+ ClearStorageClassSpecs();
+ }
+
+ // C++11 [dcl.fct.spec]p5:
+ // The virtual specifier shall be used only in the initial
+ // declaration of a non-static class member function;
+ // C++11 [dcl.fct.spec]p6:
+ // The explicit specifier shall be used only in the declaration of
+ // a constructor or conversion function within its class
+ // definition;
+ if (isFriendSpecified() && (isVirtualSpecified() || isExplicitSpecified())) {
+ StringRef Keyword;
+ SourceLocation SCLoc;
+
+ if (isVirtualSpecified()) {
+ Keyword = "virtual";
+ SCLoc = getVirtualSpecLoc();
+ } else {
+ Keyword = "explicit";
+ SCLoc = getExplicitSpecLoc();
+ }
+
+ FixItHint Hint = FixItHint::CreateRemoval(SCLoc);
+ Diag(D, SCLoc, diag::err_friend_decl_spec)
+ << Keyword << Hint;
+
+ FS_virtual_specified = FS_explicit_specified = false;
+ FS_virtualLoc = FS_explicitLoc = SourceLocation();
+ }
+
+ assert(!TypeSpecOwned || isDeclRep((TST) TypeSpecType));
+
+ // Okay, now we can infer the real type.
+
+ // TODO: return "auto function" and other bad things based on the real type.
+
+ // 'data definition has no type or storage class'?
+}
+
+bool DeclSpec::isMissingDeclaratorOk() {
+ TST tst = getTypeSpecType();
+ return isDeclRep(tst) && getRepAsDecl() != nullptr &&
+ StorageClassSpec != DeclSpec::SCS_typedef;
+}
+
+void UnqualifiedId::setOperatorFunctionId(SourceLocation OperatorLoc,
+ OverloadedOperatorKind Op,
+ SourceLocation SymbolLocations[3]) {
+ Kind = IK_OperatorFunctionId;
+ StartLocation = OperatorLoc;
+ EndLocation = OperatorLoc;
+ OperatorFunctionId.Operator = Op;
+ for (unsigned I = 0; I != 3; ++I) {
+ OperatorFunctionId.SymbolLocations[I] = SymbolLocations[I].getRawEncoding();
+
+ if (SymbolLocations[I].isValid())
+ EndLocation = SymbolLocations[I];
+ }
+}
+
+bool VirtSpecifiers::SetSpecifier(Specifier VS, SourceLocation Loc,
+ const char *&PrevSpec) {
+ if (!FirstLocation.isValid())
+ FirstLocation = Loc;
+ LastLocation = Loc;
+ LastSpecifier = VS;
+
+ if (Specifiers & VS) {
+ PrevSpec = getSpecifierName(VS);
+ return true;
+ }
+
+ Specifiers |= VS;
+
+ switch (VS) {
+ default: llvm_unreachable("Unknown specifier!");
+ case VS_Override: VS_overrideLoc = Loc; break;
+ case VS_Sealed:
+ case VS_Final: VS_finalLoc = Loc; break;
+ }
+
+ return false;
+}
+
+const char *VirtSpecifiers::getSpecifierName(Specifier VS) {
+ switch (VS) {
+ default: llvm_unreachable("Unknown specifier");
+ case VS_Override: return "override";
+ case VS_Final: return "final";
+ case VS_Sealed: return "sealed";
+ }
+}
diff --git a/contrib/llvm/tools/clang/lib/Sema/DelayedDiagnostic.cpp b/contrib/llvm/tools/clang/lib/Sema/DelayedDiagnostic.cpp
new file mode 100644
index 0000000..ceea04f
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/DelayedDiagnostic.cpp
@@ -0,0 +1,72 @@
+//===--- DelayedDiagnostic.cpp - Delayed declarator diagnostics -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the DelayedDiagnostic class implementation, which
+// is used to record diagnostics that are being conditionally produced
+// during declarator parsing.
+//
+// This file also defines AccessedEntity.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/Sema/DelayedDiagnostic.h"
+#include <string.h>
+using namespace clang;
+using namespace sema;
+
+DelayedDiagnostic
+DelayedDiagnostic::makeAvailability(Sema::AvailabilityDiagnostic AD,
+ SourceLocation Loc,
+ const NamedDecl *D,
+ const ObjCInterfaceDecl *UnknownObjCClass,
+ const ObjCPropertyDecl *ObjCProperty,
+ StringRef Msg,
+ bool ObjCPropertyAccess) {
+ DelayedDiagnostic DD;
+ switch (AD) {
+ case Sema::AD_Deprecation:
+ DD.Kind = Deprecation;
+ break;
+ case Sema::AD_Unavailable:
+ DD.Kind = Unavailable;
+ break;
+ case Sema::AD_Partial:
+ llvm_unreachable("AD_Partial diags should not be delayed");
+ }
+ DD.Triggered = false;
+ DD.Loc = Loc;
+ DD.DeprecationData.Decl = D;
+ DD.DeprecationData.UnknownObjCClass = UnknownObjCClass;
+ DD.DeprecationData.ObjCProperty = ObjCProperty;
+ char *MessageData = nullptr;
+ if (Msg.size()) {
+ MessageData = new char [Msg.size()];
+ memcpy(MessageData, Msg.data(), Msg.size());
+ }
+
+ DD.DeprecationData.Message = MessageData;
+ DD.DeprecationData.MessageLen = Msg.size();
+ DD.DeprecationData.ObjCPropertyAccess = ObjCPropertyAccess;
+ return DD;
+}
+
+void DelayedDiagnostic::Destroy() {
+ switch (static_cast<DDKind>(Kind)) {
+ case Access:
+ getAccessData().~AccessedEntity();
+ break;
+
+ case Deprecation:
+ case Unavailable:
+ delete [] DeprecationData.Message;
+ break;
+
+ case ForbiddenType:
+ break;
+ }
+}
diff --git a/contrib/llvm/tools/clang/lib/Sema/IdentifierResolver.cpp b/contrib/llvm/tools/clang/lib/Sema/IdentifierResolver.cpp
new file mode 100644
index 0000000..53263ba
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/IdentifierResolver.cpp
@@ -0,0 +1,422 @@
+//===- IdentifierResolver.cpp - Lexical Scope Name lookup -------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the IdentifierResolver class, which is used for lexical
+// scoped lookup, based on declaration names.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Sema/IdentifierResolver.h"
+#include "clang/AST/Decl.h"
+#include "clang/Basic/LangOptions.h"
+#include "clang/Lex/ExternalPreprocessorSource.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Sema/Scope.h"
+
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// IdDeclInfoMap class
+//===----------------------------------------------------------------------===//
+
+/// IdDeclInfoMap - Associates IdDeclInfos with declaration names.
+/// Allocates 'pools' (vectors of IdDeclInfos) to avoid allocating each
+/// individual IdDeclInfo to heap.
+class IdentifierResolver::IdDeclInfoMap {
+ static const unsigned int POOL_SIZE = 512;
+
+ /// We use our own linked-list implementation because it is sadly
+ /// impossible to add something to a pre-C++0x STL container without
+ /// a completely unnecessary copy.
+ struct IdDeclInfoPool {
+ IdDeclInfoPool(IdDeclInfoPool *Next) : Next(Next) {}
+
+ IdDeclInfoPool *Next;
+ IdDeclInfo Pool[POOL_SIZE];
+ };
+
+ IdDeclInfoPool *CurPool;
+ unsigned int CurIndex;
+
+public:
+ IdDeclInfoMap() : CurPool(nullptr), CurIndex(POOL_SIZE) {}
+
+ ~IdDeclInfoMap() {
+ IdDeclInfoPool *Cur = CurPool;
+ while (IdDeclInfoPool *P = Cur) {
+ Cur = Cur->Next;
+ delete P;
+ }
+ }
+
+ /// Returns the IdDeclInfo associated to the DeclarationName.
+ /// It creates a new IdDeclInfo if one was not created before for this id.
+ IdDeclInfo &operator[](DeclarationName Name);
+};
+
+
+//===----------------------------------------------------------------------===//
+// IdDeclInfo Implementation
+//===----------------------------------------------------------------------===//
+
+/// RemoveDecl - Remove the decl from the scope chain.
+/// The decl must already be part of the decl chain.
+void IdentifierResolver::IdDeclInfo::RemoveDecl(NamedDecl *D) {
+ for (DeclsTy::iterator I = Decls.end(); I != Decls.begin(); --I) {
+ if (D == *(I-1)) {
+ Decls.erase(I-1);
+ return;
+ }
+ }
+
+ llvm_unreachable("Didn't find this decl on its identifier's chain!");
+}
+
+//===----------------------------------------------------------------------===//
+// IdentifierResolver Implementation
+//===----------------------------------------------------------------------===//
+
+IdentifierResolver::IdentifierResolver(Preprocessor &PP)
+ : LangOpt(PP.getLangOpts()), PP(PP),
+ IdDeclInfos(new IdDeclInfoMap) {
+}
+
+IdentifierResolver::~IdentifierResolver() {
+ delete IdDeclInfos;
+}
+
+/// isDeclInScope - If 'Ctx' is a function/method, isDeclInScope returns true
+/// if 'D' is in Scope 'S', otherwise 'S' is ignored and isDeclInScope returns
+/// true if 'D' belongs to the given declaration context.
+bool IdentifierResolver::isDeclInScope(Decl *D, DeclContext *Ctx, Scope *S,
+ bool AllowInlineNamespace) const {
+ Ctx = Ctx->getRedeclContext();
+
+ if (Ctx->isFunctionOrMethod() || (S && S->isFunctionPrototypeScope())) {
+ // Ignore the scopes associated within transparent declaration contexts.
+ while (S->getEntity() && S->getEntity()->isTransparentContext())
+ S = S->getParent();
+
+ if (S->isDeclScope(D))
+ return true;
+ if (LangOpt.CPlusPlus) {
+ // C++ 3.3.2p3:
+ // The name declared in a catch exception-declaration is local to the
+ // handler and shall not be redeclared in the outermost block of the
+ // handler.
+ // C++ 3.3.2p4:
+ // Names declared in the for-init-statement, and in the condition of if,
+ // while, for, and switch statements are local to the if, while, for, or
+ // switch statement (including the controlled statement), and shall not be
+ // redeclared in a subsequent condition of that statement nor in the
+ // outermost block (or, for the if statement, any of the outermost blocks)
+ // of the controlled statement.
+ //
+ assert(S->getParent() && "No TUScope?");
+ if (S->getParent()->getFlags() & Scope::ControlScope) {
+ S = S->getParent();
+ if (S->isDeclScope(D))
+ return true;
+ }
+ if (S->getFlags() & Scope::FnTryCatchScope)
+ return S->getParent()->isDeclScope(D);
+ }
+ return false;
+ }
+
+ // FIXME: If D is a local extern declaration, this check doesn't make sense;
+ // we should be checking its lexical context instead in that case, because
+ // that is its scope.
+ DeclContext *DCtx = D->getDeclContext()->getRedeclContext();
+ return AllowInlineNamespace ? Ctx->InEnclosingNamespaceSetOf(DCtx)
+ : Ctx->Equals(DCtx);
+}
+
+/// AddDecl - Link the decl to its shadowed decl chain.
+void IdentifierResolver::AddDecl(NamedDecl *D) {
+ DeclarationName Name = D->getDeclName();
+ if (IdentifierInfo *II = Name.getAsIdentifierInfo())
+ updatingIdentifier(*II);
+
+ void *Ptr = Name.getFETokenInfo<void>();
+
+ if (!Ptr) {
+ Name.setFETokenInfo(D);
+ return;
+ }
+
+ IdDeclInfo *IDI;
+
+ if (isDeclPtr(Ptr)) {
+ Name.setFETokenInfo(nullptr);
+ IDI = &(*IdDeclInfos)[Name];
+ NamedDecl *PrevD = static_cast<NamedDecl*>(Ptr);
+ IDI->AddDecl(PrevD);
+ } else
+ IDI = toIdDeclInfo(Ptr);
+
+ IDI->AddDecl(D);
+}
+
+void IdentifierResolver::InsertDeclAfter(iterator Pos, NamedDecl *D) {
+ DeclarationName Name = D->getDeclName();
+ if (IdentifierInfo *II = Name.getAsIdentifierInfo())
+ updatingIdentifier(*II);
+
+ void *Ptr = Name.getFETokenInfo<void>();
+
+ if (!Ptr) {
+ AddDecl(D);
+ return;
+ }
+
+ if (isDeclPtr(Ptr)) {
+ // We only have a single declaration: insert before or after it,
+ // as appropriate.
+ if (Pos == iterator()) {
+ // Add the new declaration before the existing declaration.
+ NamedDecl *PrevD = static_cast<NamedDecl*>(Ptr);
+ RemoveDecl(PrevD);
+ AddDecl(D);
+ AddDecl(PrevD);
+ } else {
+ // Add new declaration after the existing declaration.
+ AddDecl(D);
+ }
+
+ return;
+ }
+
+ // General case: insert the declaration at the appropriate point in the
+ // list, which already has at least two elements.
+ IdDeclInfo *IDI = toIdDeclInfo(Ptr);
+ if (Pos.isIterator()) {
+ IDI->InsertDecl(Pos.getIterator() + 1, D);
+ } else
+ IDI->InsertDecl(IDI->decls_begin(), D);
+}
+
+/// RemoveDecl - Unlink the decl from its shadowed decl chain.
+/// The decl must already be part of the decl chain.
+void IdentifierResolver::RemoveDecl(NamedDecl *D) {
+ assert(D && "null param passed");
+ DeclarationName Name = D->getDeclName();
+ if (IdentifierInfo *II = Name.getAsIdentifierInfo())
+ updatingIdentifier(*II);
+
+ void *Ptr = Name.getFETokenInfo<void>();
+
+ assert(Ptr && "Didn't find this decl on its identifier's chain!");
+
+ if (isDeclPtr(Ptr)) {
+ assert(D == Ptr && "Didn't find this decl on its identifier's chain!");
+ Name.setFETokenInfo(nullptr);
+ return;
+ }
+
+ return toIdDeclInfo(Ptr)->RemoveDecl(D);
+}
+
+/// begin - Returns an iterator for decls with name 'Name'.
+IdentifierResolver::iterator
+IdentifierResolver::begin(DeclarationName Name) {
+ if (IdentifierInfo *II = Name.getAsIdentifierInfo())
+ readingIdentifier(*II);
+
+ void *Ptr = Name.getFETokenInfo<void>();
+ if (!Ptr) return end();
+
+ if (isDeclPtr(Ptr))
+ return iterator(static_cast<NamedDecl*>(Ptr));
+
+ IdDeclInfo *IDI = toIdDeclInfo(Ptr);
+
+ IdDeclInfo::DeclsTy::iterator I = IDI->decls_end();
+ if (I != IDI->decls_begin())
+ return iterator(I-1);
+ // No decls found.
+ return end();
+}
+
+namespace {
+ enum DeclMatchKind {
+ DMK_Different,
+ DMK_Replace,
+ DMK_Ignore
+ };
+}
+
+/// \brief Compare two declarations to see whether they are different or,
+/// if they are the same, whether the new declaration should replace the
+/// existing declaration.
+static DeclMatchKind compareDeclarations(NamedDecl *Existing, NamedDecl *New) {
+ // If the declarations are identical, ignore the new one.
+ if (Existing == New)
+ return DMK_Ignore;
+
+ // If the declarations have different kinds, they're obviously different.
+ if (Existing->getKind() != New->getKind())
+ return DMK_Different;
+
+ // If the declarations are redeclarations of each other, keep the newest one.
+ if (Existing->getCanonicalDecl() == New->getCanonicalDecl()) {
+ // If we're adding an imported declaration, don't replace another imported
+ // declaration.
+ if (Existing->isFromASTFile() && New->isFromASTFile())
+ return DMK_Different;
+
+ // If either of these is the most recent declaration, use it.
+ Decl *MostRecent = Existing->getMostRecentDecl();
+ if (Existing == MostRecent)
+ return DMK_Ignore;
+
+ if (New == MostRecent)
+ return DMK_Replace;
+
+ // If the existing declaration is somewhere in the previous declaration
+ // chain of the new declaration, then prefer the new declaration.
+ for (auto RD : New->redecls()) {
+ if (RD == Existing)
+ return DMK_Replace;
+
+ if (RD->isCanonicalDecl())
+ break;
+ }
+
+ return DMK_Ignore;
+ }
+
+ return DMK_Different;
+}
+
+bool IdentifierResolver::tryAddTopLevelDecl(NamedDecl *D, DeclarationName Name){
+ if (IdentifierInfo *II = Name.getAsIdentifierInfo())
+ readingIdentifier(*II);
+
+ void *Ptr = Name.getFETokenInfo<void>();
+
+ if (!Ptr) {
+ Name.setFETokenInfo(D);
+ return true;
+ }
+
+ IdDeclInfo *IDI;
+
+ if (isDeclPtr(Ptr)) {
+ NamedDecl *PrevD = static_cast<NamedDecl*>(Ptr);
+
+ switch (compareDeclarations(PrevD, D)) {
+ case DMK_Different:
+ break;
+
+ case DMK_Ignore:
+ return false;
+
+ case DMK_Replace:
+ Name.setFETokenInfo(D);
+ return true;
+ }
+
+ Name.setFETokenInfo(nullptr);
+ IDI = &(*IdDeclInfos)[Name];
+
+ // If the existing declaration is not visible in translation unit scope,
+ // then add the new top-level declaration first.
+ if (!PrevD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
+ IDI->AddDecl(D);
+ IDI->AddDecl(PrevD);
+ } else {
+ IDI->AddDecl(PrevD);
+ IDI->AddDecl(D);
+ }
+ return true;
+ }
+
+ IDI = toIdDeclInfo(Ptr);
+
+ // See whether this declaration is identical to any existing declarations.
+ // If not, find the right place to insert it.
+ for (IdDeclInfo::DeclsTy::iterator I = IDI->decls_begin(),
+ IEnd = IDI->decls_end();
+ I != IEnd; ++I) {
+
+ switch (compareDeclarations(*I, D)) {
+ case DMK_Different:
+ break;
+
+ case DMK_Ignore:
+ return false;
+
+ case DMK_Replace:
+ *I = D;
+ return true;
+ }
+
+ if (!(*I)->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
+ // We've found a declaration that is not visible from the translation
+ // unit (it's in an inner scope). Insert our declaration here.
+ IDI->InsertDecl(I, D);
+ return true;
+ }
+ }
+
+ // Add the declaration to the end.
+ IDI->AddDecl(D);
+ return true;
+}
+
+void IdentifierResolver::readingIdentifier(IdentifierInfo &II) {
+ if (II.isOutOfDate())
+ PP.getExternalSource()->updateOutOfDateIdentifier(II);
+}
+
+void IdentifierResolver::updatingIdentifier(IdentifierInfo &II) {
+ if (II.isOutOfDate())
+ PP.getExternalSource()->updateOutOfDateIdentifier(II);
+
+ if (II.isFromAST())
+ II.setChangedSinceDeserialization();
+}
+
+//===----------------------------------------------------------------------===//
+// IdDeclInfoMap Implementation
+//===----------------------------------------------------------------------===//
+
+/// Returns the IdDeclInfo associated to the DeclarationName.
+/// It creates a new IdDeclInfo if one was not created before for this id.
+IdentifierResolver::IdDeclInfo &
+IdentifierResolver::IdDeclInfoMap::operator[](DeclarationName Name) {
+ void *Ptr = Name.getFETokenInfo<void>();
+
+ if (Ptr) return *toIdDeclInfo(Ptr);
+
+ if (CurIndex == POOL_SIZE) {
+ CurPool = new IdDeclInfoPool(CurPool);
+ CurIndex = 0;
+ }
+ IdDeclInfo *IDI = &CurPool->Pool[CurIndex];
+ Name.setFETokenInfo(reinterpret_cast<void*>(
+ reinterpret_cast<uintptr_t>(IDI) | 0x1)
+ );
+ ++CurIndex;
+ return *IDI;
+}
+
+void IdentifierResolver::iterator::incrementSlowCase() {
+ NamedDecl *D = **this;
+ void *InfoPtr = D->getDeclName().getFETokenInfo<void>();
+ assert(!isDeclPtr(InfoPtr) && "Decl with wrong id ?");
+ IdDeclInfo *Info = toIdDeclInfo(InfoPtr);
+
+ BaseIter I = getIterator();
+ if (I != Info->decls_begin())
+ *this = iterator(I-1);
+ else // No more decls.
+ *this = iterator();
+}
diff --git a/contrib/llvm/tools/clang/lib/Sema/JumpDiagnostics.cpp b/contrib/llvm/tools/clang/lib/Sema/JumpDiagnostics.cpp
new file mode 100644
index 0000000..aac28be
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/JumpDiagnostics.cpp
@@ -0,0 +1,853 @@
+//===--- JumpDiagnostics.cpp - Protected scope jump analysis ------*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the JumpScopeChecker class, which is used to diagnose
+// jumps that enter a protected scope in an invalid way.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Sema/SemaInternal.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/StmtCXX.h"
+#include "clang/AST/StmtObjC.h"
+#include "llvm/ADT/BitVector.h"
+using namespace clang;
+
+namespace {
+
+/// JumpScopeChecker - This object is used by Sema to diagnose invalid jumps
+/// into VLA and other protected scopes. For example, this rejects:
+/// goto L;
+/// int a[n];
+/// L:
+///
+class JumpScopeChecker {
+ Sema &S;
+
+ /// Permissive - True when recovering from errors, in which case precautions
+ /// are taken to handle incomplete scope information.
+ const bool Permissive;
+
+ /// GotoScope - This is a record that we use to keep track of all of the
+ /// scopes that are introduced by VLAs and other things that scope jumps like
+ /// gotos. This scope tree has nothing to do with the source scope tree,
+ /// because you can have multiple VLA scopes per compound statement, and most
+ /// compound statements don't introduce any scopes.
+ struct GotoScope {
+ /// ParentScope - The index in ScopeMap of the parent scope. This is 0 for
+ /// the parent scope is the function body.
+ unsigned ParentScope;
+
+ /// InDiag - The note to emit if there is a jump into this scope.
+ unsigned InDiag;
+
+ /// OutDiag - The note to emit if there is an indirect jump out
+ /// of this scope. Direct jumps always clean up their current scope
+ /// in an orderly way.
+ unsigned OutDiag;
+
+ /// Loc - Location to emit the diagnostic.
+ SourceLocation Loc;
+
+ GotoScope(unsigned parentScope, unsigned InDiag, unsigned OutDiag,
+ SourceLocation L)
+ : ParentScope(parentScope), InDiag(InDiag), OutDiag(OutDiag), Loc(L) {}
+ };
+
+ SmallVector<GotoScope, 48> Scopes;
+ llvm::DenseMap<Stmt*, unsigned> LabelAndGotoScopes;
+ SmallVector<Stmt*, 16> Jumps;
+
+ SmallVector<IndirectGotoStmt*, 4> IndirectJumps;
+ SmallVector<LabelDecl*, 4> IndirectJumpTargets;
+public:
+ JumpScopeChecker(Stmt *Body, Sema &S);
+private:
+ void BuildScopeInformation(Decl *D, unsigned &ParentScope);
+ void BuildScopeInformation(VarDecl *D, const BlockDecl *BDecl,
+ unsigned &ParentScope);
+ void BuildScopeInformation(Stmt *S, unsigned &origParentScope);
+
+ void VerifyJumps();
+ void VerifyIndirectJumps();
+ void NoteJumpIntoScopes(ArrayRef<unsigned> ToScopes);
+ void DiagnoseIndirectJump(IndirectGotoStmt *IG, unsigned IGScope,
+ LabelDecl *Target, unsigned TargetScope);
+ void CheckJump(Stmt *From, Stmt *To, SourceLocation DiagLoc,
+ unsigned JumpDiag, unsigned JumpDiagWarning,
+ unsigned JumpDiagCXX98Compat);
+ void CheckGotoStmt(GotoStmt *GS);
+
+ unsigned GetDeepestCommonScope(unsigned A, unsigned B);
+};
+} // end anonymous namespace
+
+#define CHECK_PERMISSIVE(x) (assert(Permissive || !(x)), (Permissive && (x)))
+
+JumpScopeChecker::JumpScopeChecker(Stmt *Body, Sema &s)
+ : S(s), Permissive(s.hasAnyUnrecoverableErrorsInThisFunction()) {
+ // Add a scope entry for function scope.
+ Scopes.push_back(GotoScope(~0U, ~0U, ~0U, SourceLocation()));
+
+ // Build information for the top level compound statement, so that we have a
+ // defined scope record for every "goto" and label.
+ unsigned BodyParentScope = 0;
+ BuildScopeInformation(Body, BodyParentScope);
+
+ // Check that all jumps we saw are kosher.
+ VerifyJumps();
+ VerifyIndirectJumps();
+}
+
+/// GetDeepestCommonScope - Finds the innermost scope enclosing the
+/// two scopes.
+unsigned JumpScopeChecker::GetDeepestCommonScope(unsigned A, unsigned B) {
+ while (A != B) {
+ // Inner scopes are created after outer scopes and therefore have
+ // higher indices.
+ if (A < B) {
+ assert(Scopes[B].ParentScope < B);
+ B = Scopes[B].ParentScope;
+ } else {
+ assert(Scopes[A].ParentScope < A);
+ A = Scopes[A].ParentScope;
+ }
+ }
+ return A;
+}
+
+typedef std::pair<unsigned,unsigned> ScopePair;
+
+/// GetDiagForGotoScopeDecl - If this decl induces a new goto scope, return a
+/// diagnostic that should be emitted if control goes over it. If not, return 0.
+static ScopePair GetDiagForGotoScopeDecl(Sema &S, const Decl *D) {
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
+ unsigned InDiag = 0;
+ unsigned OutDiag = 0;
+
+ if (VD->getType()->isVariablyModifiedType())
+ InDiag = diag::note_protected_by_vla;
+
+ if (VD->hasAttr<BlocksAttr>())
+ return ScopePair(diag::note_protected_by___block,
+ diag::note_exits___block);
+
+ if (VD->hasAttr<CleanupAttr>())
+ return ScopePair(diag::note_protected_by_cleanup,
+ diag::note_exits_cleanup);
+
+ if (VD->hasLocalStorage()) {
+ switch (VD->getType().isDestructedType()) {
+ case QualType::DK_objc_strong_lifetime:
+ case QualType::DK_objc_weak_lifetime:
+ return ScopePair(diag::note_protected_by_objc_ownership,
+ diag::note_exits_objc_ownership);
+
+ case QualType::DK_cxx_destructor:
+ OutDiag = diag::note_exits_dtor;
+ break;
+
+ case QualType::DK_none:
+ break;
+ }
+ }
+
+ const Expr *Init = VD->getInit();
+ if (S.Context.getLangOpts().CPlusPlus && VD->hasLocalStorage() && Init) {
+ // C++11 [stmt.dcl]p3:
+ // A program that jumps from a point where a variable with automatic
+ // storage duration is not in scope to a point where it is in scope
+ // is ill-formed unless the variable has scalar type, class type with
+ // a trivial default constructor and a trivial destructor, a
+ // cv-qualified version of one of these types, or an array of one of
+ // the preceding types and is declared without an initializer.
+
+ // C++03 [stmt.dcl.p3:
+ // A program that jumps from a point where a local variable
+ // with automatic storage duration is not in scope to a point
+ // where it is in scope is ill-formed unless the variable has
+ // POD type and is declared without an initializer.
+
+ InDiag = diag::note_protected_by_variable_init;
+
+ // For a variable of (array of) class type declared without an
+ // initializer, we will have call-style initialization and the initializer
+ // will be the CXXConstructExpr with no intervening nodes.
+ if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
+ const CXXConstructorDecl *Ctor = CCE->getConstructor();
+ if (Ctor->isTrivial() && Ctor->isDefaultConstructor() &&
+ VD->getInitStyle() == VarDecl::CallInit) {
+ if (OutDiag)
+ InDiag = diag::note_protected_by_variable_nontriv_destructor;
+ else if (!Ctor->getParent()->isPOD())
+ InDiag = diag::note_protected_by_variable_non_pod;
+ else
+ InDiag = 0;
+ }
+ }
+ }
+
+ return ScopePair(InDiag, OutDiag);
+ }
+
+ if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
+ if (TD->getUnderlyingType()->isVariablyModifiedType())
+ return ScopePair(isa<TypedefDecl>(TD)
+ ? diag::note_protected_by_vla_typedef
+ : diag::note_protected_by_vla_type_alias,
+ 0);
+ }
+
+ return ScopePair(0U, 0U);
+}
+
+/// \brief Build scope information for a declaration that is part of a DeclStmt.
+void JumpScopeChecker::BuildScopeInformation(Decl *D, unsigned &ParentScope) {
+ // If this decl causes a new scope, push and switch to it.
+ std::pair<unsigned,unsigned> Diags = GetDiagForGotoScopeDecl(S, D);
+ if (Diags.first || Diags.second) {
+ Scopes.push_back(GotoScope(ParentScope, Diags.first, Diags.second,
+ D->getLocation()));
+ ParentScope = Scopes.size()-1;
+ }
+
+ // If the decl has an initializer, walk it with the potentially new
+ // scope we just installed.
+ if (VarDecl *VD = dyn_cast<VarDecl>(D))
+ if (Expr *Init = VD->getInit())
+ BuildScopeInformation(Init, ParentScope);
+}
+
+/// \brief Build scope information for a captured block literal variables.
+void JumpScopeChecker::BuildScopeInformation(VarDecl *D,
+ const BlockDecl *BDecl,
+ unsigned &ParentScope) {
+ // exclude captured __block variables; there's no destructor
+ // associated with the block literal for them.
+ if (D->hasAttr<BlocksAttr>())
+ return;
+ QualType T = D->getType();
+ QualType::DestructionKind destructKind = T.isDestructedType();
+ if (destructKind != QualType::DK_none) {
+ std::pair<unsigned,unsigned> Diags;
+ switch (destructKind) {
+ case QualType::DK_cxx_destructor:
+ Diags = ScopePair(diag::note_enters_block_captures_cxx_obj,
+ diag::note_exits_block_captures_cxx_obj);
+ break;
+ case QualType::DK_objc_strong_lifetime:
+ Diags = ScopePair(diag::note_enters_block_captures_strong,
+ diag::note_exits_block_captures_strong);
+ break;
+ case QualType::DK_objc_weak_lifetime:
+ Diags = ScopePair(diag::note_enters_block_captures_weak,
+ diag::note_exits_block_captures_weak);
+ break;
+ case QualType::DK_none:
+ llvm_unreachable("non-lifetime captured variable");
+ }
+ SourceLocation Loc = D->getLocation();
+ if (Loc.isInvalid())
+ Loc = BDecl->getLocation();
+ Scopes.push_back(GotoScope(ParentScope,
+ Diags.first, Diags.second, Loc));
+ ParentScope = Scopes.size()-1;
+ }
+}
+
+/// BuildScopeInformation - The statements from CI to CE are known to form a
+/// coherent VLA scope with a specified parent node. Walk through the
+/// statements, adding any labels or gotos to LabelAndGotoScopes and recursively
+/// walking the AST as needed.
+void JumpScopeChecker::BuildScopeInformation(Stmt *S, unsigned &origParentScope) {
+ // If this is a statement, rather than an expression, scopes within it don't
+ // propagate out into the enclosing scope. Otherwise we have to worry
+ // about block literals, which have the lifetime of their enclosing statement.
+ unsigned independentParentScope = origParentScope;
+ unsigned &ParentScope = ((isa<Expr>(S) && !isa<StmtExpr>(S))
+ ? origParentScope : independentParentScope);
+
+ bool SkipFirstSubStmt = false;
+
+ // If we found a label, remember that it is in ParentScope scope.
+ switch (S->getStmtClass()) {
+ case Stmt::AddrLabelExprClass:
+ IndirectJumpTargets.push_back(cast<AddrLabelExpr>(S)->getLabel());
+ break;
+
+ case Stmt::IndirectGotoStmtClass:
+ // "goto *&&lbl;" is a special case which we treat as equivalent
+ // to a normal goto. In addition, we don't calculate scope in the
+ // operand (to avoid recording the address-of-label use), which
+ // works only because of the restricted set of expressions which
+ // we detect as constant targets.
+ if (cast<IndirectGotoStmt>(S)->getConstantTarget()) {
+ LabelAndGotoScopes[S] = ParentScope;
+ Jumps.push_back(S);
+ return;
+ }
+
+ LabelAndGotoScopes[S] = ParentScope;
+ IndirectJumps.push_back(cast<IndirectGotoStmt>(S));
+ break;
+
+ case Stmt::SwitchStmtClass:
+ // Evaluate the condition variable before entering the scope of the switch
+ // statement.
+ if (VarDecl *Var = cast<SwitchStmt>(S)->getConditionVariable()) {
+ BuildScopeInformation(Var, ParentScope);
+ SkipFirstSubStmt = true;
+ }
+ // Fall through
+
+ case Stmt::GotoStmtClass:
+ // Remember both what scope a goto is in as well as the fact that we have
+ // it. This makes the second scan not have to walk the AST again.
+ LabelAndGotoScopes[S] = ParentScope;
+ Jumps.push_back(S);
+ break;
+
+ case Stmt::CXXTryStmtClass: {
+ CXXTryStmt *TS = cast<CXXTryStmt>(S);
+ unsigned newParentScope;
+ Scopes.push_back(GotoScope(ParentScope,
+ diag::note_protected_by_cxx_try,
+ diag::note_exits_cxx_try,
+ TS->getSourceRange().getBegin()));
+ if (Stmt *TryBlock = TS->getTryBlock())
+ BuildScopeInformation(TryBlock, (newParentScope = Scopes.size()-1));
+
+ // Jump from the catch into the try is not allowed either.
+ for (unsigned I = 0, E = TS->getNumHandlers(); I != E; ++I) {
+ CXXCatchStmt *CS = TS->getHandler(I);
+ Scopes.push_back(GotoScope(ParentScope,
+ diag::note_protected_by_cxx_catch,
+ diag::note_exits_cxx_catch,
+ CS->getSourceRange().getBegin()));
+ BuildScopeInformation(CS->getHandlerBlock(),
+ (newParentScope = Scopes.size()-1));
+ }
+ return;
+ }
+
+ case Stmt::SEHTryStmtClass: {
+ SEHTryStmt *TS = cast<SEHTryStmt>(S);
+ unsigned newParentScope;
+ Scopes.push_back(GotoScope(ParentScope,
+ diag::note_protected_by_seh_try,
+ diag::note_exits_seh_try,
+ TS->getSourceRange().getBegin()));
+ if (Stmt *TryBlock = TS->getTryBlock())
+ BuildScopeInformation(TryBlock, (newParentScope = Scopes.size()-1));
+
+ // Jump from __except or __finally into the __try are not allowed either.
+ if (SEHExceptStmt *Except = TS->getExceptHandler()) {
+ Scopes.push_back(GotoScope(ParentScope,
+ diag::note_protected_by_seh_except,
+ diag::note_exits_seh_except,
+ Except->getSourceRange().getBegin()));
+ BuildScopeInformation(Except->getBlock(),
+ (newParentScope = Scopes.size()-1));
+ } else if (SEHFinallyStmt *Finally = TS->getFinallyHandler()) {
+ Scopes.push_back(GotoScope(ParentScope,
+ diag::note_protected_by_seh_finally,
+ diag::note_exits_seh_finally,
+ Finally->getSourceRange().getBegin()));
+ BuildScopeInformation(Finally->getBlock(),
+ (newParentScope = Scopes.size()-1));
+ }
+
+ return;
+ }
+
+ default:
+ break;
+ }
+
+ for (Stmt::child_range CI = S->children(); CI; ++CI) {
+ if (SkipFirstSubStmt) {
+ SkipFirstSubStmt = false;
+ continue;
+ }
+
+ Stmt *SubStmt = *CI;
+ if (!SubStmt) continue;
+
+ // Cases, labels, and defaults aren't "scope parents". It's also
+ // important to handle these iteratively instead of recursively in
+ // order to avoid blowing out the stack.
+ while (true) {
+ Stmt *Next;
+ if (CaseStmt *CS = dyn_cast<CaseStmt>(SubStmt))
+ Next = CS->getSubStmt();
+ else if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SubStmt))
+ Next = DS->getSubStmt();
+ else if (LabelStmt *LS = dyn_cast<LabelStmt>(SubStmt))
+ Next = LS->getSubStmt();
+ else
+ break;
+
+ LabelAndGotoScopes[SubStmt] = ParentScope;
+ SubStmt = Next;
+ }
+
+ // If this is a declstmt with a VLA definition, it defines a scope from here
+ // to the end of the containing context.
+ if (DeclStmt *DS = dyn_cast<DeclStmt>(SubStmt)) {
+ // The decl statement creates a scope if any of the decls in it are VLAs
+ // or have the cleanup attribute.
+ for (auto *I : DS->decls())
+ BuildScopeInformation(I, ParentScope);
+ continue;
+ }
+ // Disallow jumps into any part of an @try statement by pushing a scope and
+ // walking all sub-stmts in that scope.
+ if (ObjCAtTryStmt *AT = dyn_cast<ObjCAtTryStmt>(SubStmt)) {
+ unsigned newParentScope;
+ // Recursively walk the AST for the @try part.
+ Scopes.push_back(GotoScope(ParentScope,
+ diag::note_protected_by_objc_try,
+ diag::note_exits_objc_try,
+ AT->getAtTryLoc()));
+ if (Stmt *TryPart = AT->getTryBody())
+ BuildScopeInformation(TryPart, (newParentScope = Scopes.size()-1));
+
+ // Jump from the catch to the finally or try is not valid.
+ for (unsigned I = 0, N = AT->getNumCatchStmts(); I != N; ++I) {
+ ObjCAtCatchStmt *AC = AT->getCatchStmt(I);
+ Scopes.push_back(GotoScope(ParentScope,
+ diag::note_protected_by_objc_catch,
+ diag::note_exits_objc_catch,
+ AC->getAtCatchLoc()));
+ // @catches are nested and it isn't
+ BuildScopeInformation(AC->getCatchBody(),
+ (newParentScope = Scopes.size()-1));
+ }
+
+ // Jump from the finally to the try or catch is not valid.
+ if (ObjCAtFinallyStmt *AF = AT->getFinallyStmt()) {
+ Scopes.push_back(GotoScope(ParentScope,
+ diag::note_protected_by_objc_finally,
+ diag::note_exits_objc_finally,
+ AF->getAtFinallyLoc()));
+ BuildScopeInformation(AF, (newParentScope = Scopes.size()-1));
+ }
+
+ continue;
+ }
+
+ unsigned newParentScope;
+ // Disallow jumps into the protected statement of an @synchronized, but
+ // allow jumps into the object expression it protects.
+ if (ObjCAtSynchronizedStmt *AS =
+ dyn_cast<ObjCAtSynchronizedStmt>(SubStmt)) {
+ // Recursively walk the AST for the @synchronized object expr, it is
+ // evaluated in the normal scope.
+ BuildScopeInformation(AS->getSynchExpr(), ParentScope);
+
+ // Recursively walk the AST for the @synchronized part, protected by a new
+ // scope.
+ Scopes.push_back(GotoScope(ParentScope,
+ diag::note_protected_by_objc_synchronized,
+ diag::note_exits_objc_synchronized,
+ AS->getAtSynchronizedLoc()));
+ BuildScopeInformation(AS->getSynchBody(),
+ (newParentScope = Scopes.size()-1));
+ continue;
+ }
+
+ // Disallow jumps into the protected statement of an @autoreleasepool.
+ if (ObjCAutoreleasePoolStmt *AS =
+ dyn_cast<ObjCAutoreleasePoolStmt>(SubStmt)) {
+ // Recursively walk the AST for the @autoreleasepool part, protected by a
+ // new scope.
+ Scopes.push_back(GotoScope(ParentScope,
+ diag::note_protected_by_objc_autoreleasepool,
+ diag::note_exits_objc_autoreleasepool,
+ AS->getAtLoc()));
+ BuildScopeInformation(AS->getSubStmt(),
+ (newParentScope = Scopes.size() - 1));
+ continue;
+ }
+
+ // Disallow jumps past full-expressions that use blocks with
+ // non-trivial cleanups of their captures. This is theoretically
+ // implementable but a lot of work which we haven't felt up to doing.
+ if (ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(SubStmt)) {
+ for (unsigned i = 0, e = EWC->getNumObjects(); i != e; ++i) {
+ const BlockDecl *BDecl = EWC->getObject(i);
+ for (const auto &CI : BDecl->captures()) {
+ VarDecl *variable = CI.getVariable();
+ BuildScopeInformation(variable, BDecl, ParentScope);
+ }
+ }
+ }
+
+ // Disallow jumps out of scopes containing temporaries lifetime-extended to
+ // automatic storage duration.
+ if (MaterializeTemporaryExpr *MTE =
+ dyn_cast<MaterializeTemporaryExpr>(SubStmt)) {
+ if (MTE->getStorageDuration() == SD_Automatic) {
+ SmallVector<const Expr *, 4> CommaLHS;
+ SmallVector<SubobjectAdjustment, 4> Adjustments;
+ const Expr *ExtendedObject =
+ MTE->GetTemporaryExpr()->skipRValueSubobjectAdjustments(
+ CommaLHS, Adjustments);
+ if (ExtendedObject->getType().isDestructedType()) {
+ Scopes.push_back(GotoScope(ParentScope, 0,
+ diag::note_exits_temporary_dtor,
+ ExtendedObject->getExprLoc()));
+ ParentScope = Scopes.size()-1;
+ }
+ }
+ }
+
+ // Recursively walk the AST.
+ BuildScopeInformation(SubStmt, ParentScope);
+ }
+}
+
+/// VerifyJumps - Verify each element of the Jumps array to see if they are
+/// valid, emitting diagnostics if not.
+void JumpScopeChecker::VerifyJumps() {
+ while (!Jumps.empty()) {
+ Stmt *Jump = Jumps.pop_back_val();
+
+ // With a goto,
+ if (GotoStmt *GS = dyn_cast<GotoStmt>(Jump)) {
+ // The label may not have a statement if it's coming from inline MS ASM.
+ if (GS->getLabel()->getStmt()) {
+ CheckJump(GS, GS->getLabel()->getStmt(), GS->getGotoLoc(),
+ diag::err_goto_into_protected_scope,
+ diag::ext_goto_into_protected_scope,
+ diag::warn_cxx98_compat_goto_into_protected_scope);
+ }
+ CheckGotoStmt(GS);
+ continue;
+ }
+
+ // We only get indirect gotos here when they have a constant target.
+ if (IndirectGotoStmt *IGS = dyn_cast<IndirectGotoStmt>(Jump)) {
+ LabelDecl *Target = IGS->getConstantTarget();
+ CheckJump(IGS, Target->getStmt(), IGS->getGotoLoc(),
+ diag::err_goto_into_protected_scope,
+ diag::ext_goto_into_protected_scope,
+ diag::warn_cxx98_compat_goto_into_protected_scope);
+ continue;
+ }
+
+ SwitchStmt *SS = cast<SwitchStmt>(Jump);
+ for (SwitchCase *SC = SS->getSwitchCaseList(); SC;
+ SC = SC->getNextSwitchCase()) {
+ if (CHECK_PERMISSIVE(!LabelAndGotoScopes.count(SC)))
+ continue;
+ SourceLocation Loc;
+ if (CaseStmt *CS = dyn_cast<CaseStmt>(SC))
+ Loc = CS->getLocStart();
+ else if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC))
+ Loc = DS->getLocStart();
+ else
+ Loc = SC->getLocStart();
+ CheckJump(SS, SC, Loc, diag::err_switch_into_protected_scope, 0,
+ diag::warn_cxx98_compat_switch_into_protected_scope);
+ }
+ }
+}
+
+/// VerifyIndirectJumps - Verify whether any possible indirect jump
+/// might cross a protection boundary. Unlike direct jumps, indirect
+/// jumps count cleanups as protection boundaries: since there's no
+/// way to know where the jump is going, we can't implicitly run the
+/// right cleanups the way we can with direct jumps.
+///
+/// Thus, an indirect jump is "trivial" if it bypasses no
+/// initializations and no teardowns. More formally, an indirect jump
+/// from A to B is trivial if the path out from A to DCA(A,B) is
+/// trivial and the path in from DCA(A,B) to B is trivial, where
+/// DCA(A,B) is the deepest common ancestor of A and B.
+/// Jump-triviality is transitive but asymmetric.
+///
+/// A path in is trivial if none of the entered scopes have an InDiag.
+/// A path out is trivial is none of the exited scopes have an OutDiag.
+///
+/// Under these definitions, this function checks that the indirect
+/// jump between A and B is trivial for every indirect goto statement A
+/// and every label B whose address was taken in the function.
+void JumpScopeChecker::VerifyIndirectJumps() {
+ if (IndirectJumps.empty()) return;
+
+ // If there aren't any address-of-label expressions in this function,
+ // complain about the first indirect goto.
+ if (IndirectJumpTargets.empty()) {
+ S.Diag(IndirectJumps[0]->getGotoLoc(),
+ diag::err_indirect_goto_without_addrlabel);
+ return;
+ }
+
+ // Collect a single representative of every scope containing an
+ // indirect goto. For most code bases, this substantially cuts
+ // down on the number of jump sites we'll have to consider later.
+ typedef std::pair<unsigned, IndirectGotoStmt*> JumpScope;
+ SmallVector<JumpScope, 32> JumpScopes;
+ {
+ llvm::DenseMap<unsigned, IndirectGotoStmt*> JumpScopesMap;
+ for (SmallVectorImpl<IndirectGotoStmt*>::iterator
+ I = IndirectJumps.begin(), E = IndirectJumps.end(); I != E; ++I) {
+ IndirectGotoStmt *IG = *I;
+ if (CHECK_PERMISSIVE(!LabelAndGotoScopes.count(IG)))
+ continue;
+ unsigned IGScope = LabelAndGotoScopes[IG];
+ IndirectGotoStmt *&Entry = JumpScopesMap[IGScope];
+ if (!Entry) Entry = IG;
+ }
+ JumpScopes.reserve(JumpScopesMap.size());
+ for (llvm::DenseMap<unsigned, IndirectGotoStmt*>::iterator
+ I = JumpScopesMap.begin(), E = JumpScopesMap.end(); I != E; ++I)
+ JumpScopes.push_back(*I);
+ }
+
+ // Collect a single representative of every scope containing a
+ // label whose address was taken somewhere in the function.
+ // For most code bases, there will be only one such scope.
+ llvm::DenseMap<unsigned, LabelDecl*> TargetScopes;
+ for (SmallVectorImpl<LabelDecl*>::iterator
+ I = IndirectJumpTargets.begin(), E = IndirectJumpTargets.end();
+ I != E; ++I) {
+ LabelDecl *TheLabel = *I;
+ if (CHECK_PERMISSIVE(!LabelAndGotoScopes.count(TheLabel->getStmt())))
+ continue;
+ unsigned LabelScope = LabelAndGotoScopes[TheLabel->getStmt()];
+ LabelDecl *&Target = TargetScopes[LabelScope];
+ if (!Target) Target = TheLabel;
+ }
+
+ // For each target scope, make sure it's trivially reachable from
+ // every scope containing a jump site.
+ //
+ // A path between scopes always consists of exitting zero or more
+ // scopes, then entering zero or more scopes. We build a set of
+ // of scopes S from which the target scope can be trivially
+ // entered, then verify that every jump scope can be trivially
+ // exitted to reach a scope in S.
+ llvm::BitVector Reachable(Scopes.size(), false);
+ for (llvm::DenseMap<unsigned,LabelDecl*>::iterator
+ TI = TargetScopes.begin(), TE = TargetScopes.end(); TI != TE; ++TI) {
+ unsigned TargetScope = TI->first;
+ LabelDecl *TargetLabel = TI->second;
+
+ Reachable.reset();
+
+ // Mark all the enclosing scopes from which you can safely jump
+ // into the target scope. 'Min' will end up being the index of
+ // the shallowest such scope.
+ unsigned Min = TargetScope;
+ while (true) {
+ Reachable.set(Min);
+
+ // Don't go beyond the outermost scope.
+ if (Min == 0) break;
+
+ // Stop if we can't trivially enter the current scope.
+ if (Scopes[Min].InDiag) break;
+
+ Min = Scopes[Min].ParentScope;
+ }
+
+ // Walk through all the jump sites, checking that they can trivially
+ // reach this label scope.
+ for (SmallVectorImpl<JumpScope>::iterator
+ I = JumpScopes.begin(), E = JumpScopes.end(); I != E; ++I) {
+ unsigned Scope = I->first;
+
+ // Walk out the "scope chain" for this scope, looking for a scope
+ // we've marked reachable. For well-formed code this amortizes
+ // to O(JumpScopes.size() / Scopes.size()): we only iterate
+ // when we see something unmarked, and in well-formed code we
+ // mark everything we iterate past.
+ bool IsReachable = false;
+ while (true) {
+ if (Reachable.test(Scope)) {
+ // If we find something reachable, mark all the scopes we just
+ // walked through as reachable.
+ for (unsigned S = I->first; S != Scope; S = Scopes[S].ParentScope)
+ Reachable.set(S);
+ IsReachable = true;
+ break;
+ }
+
+ // Don't walk out if we've reached the top-level scope or we've
+ // gotten shallower than the shallowest reachable scope.
+ if (Scope == 0 || Scope < Min) break;
+
+ // Don't walk out through an out-diagnostic.
+ if (Scopes[Scope].OutDiag) break;
+
+ Scope = Scopes[Scope].ParentScope;
+ }
+
+ // Only diagnose if we didn't find something.
+ if (IsReachable) continue;
+
+ DiagnoseIndirectJump(I->second, I->first, TargetLabel, TargetScope);
+ }
+ }
+}
+
+/// Return true if a particular error+note combination must be downgraded to a
+/// warning in Microsoft mode.
+static bool IsMicrosoftJumpWarning(unsigned JumpDiag, unsigned InDiagNote) {
+ return (JumpDiag == diag::err_goto_into_protected_scope &&
+ (InDiagNote == diag::note_protected_by_variable_init ||
+ InDiagNote == diag::note_protected_by_variable_nontriv_destructor));
+}
+
+/// Return true if a particular note should be downgraded to a compatibility
+/// warning in C++11 mode.
+static bool IsCXX98CompatWarning(Sema &S, unsigned InDiagNote) {
+ return S.getLangOpts().CPlusPlus11 &&
+ InDiagNote == diag::note_protected_by_variable_non_pod;
+}
+
+/// Produce primary diagnostic for an indirect jump statement.
+static void DiagnoseIndirectJumpStmt(Sema &S, IndirectGotoStmt *Jump,
+ LabelDecl *Target, bool &Diagnosed) {
+ if (Diagnosed)
+ return;
+ S.Diag(Jump->getGotoLoc(), diag::err_indirect_goto_in_protected_scope);
+ S.Diag(Target->getStmt()->getIdentLoc(), diag::note_indirect_goto_target);
+ Diagnosed = true;
+}
+
+/// Produce note diagnostics for a jump into a protected scope.
+void JumpScopeChecker::NoteJumpIntoScopes(ArrayRef<unsigned> ToScopes) {
+ if (CHECK_PERMISSIVE(ToScopes.empty()))
+ return;
+ for (unsigned I = 0, E = ToScopes.size(); I != E; ++I)
+ if (Scopes[ToScopes[I]].InDiag)
+ S.Diag(Scopes[ToScopes[I]].Loc, Scopes[ToScopes[I]].InDiag);
+}
+
+/// Diagnose an indirect jump which is known to cross scopes.
+void JumpScopeChecker::DiagnoseIndirectJump(IndirectGotoStmt *Jump,
+ unsigned JumpScope,
+ LabelDecl *Target,
+ unsigned TargetScope) {
+ if (CHECK_PERMISSIVE(JumpScope == TargetScope))
+ return;
+
+ unsigned Common = GetDeepestCommonScope(JumpScope, TargetScope);
+ bool Diagnosed = false;
+
+ // Walk out the scope chain until we reach the common ancestor.
+ for (unsigned I = JumpScope; I != Common; I = Scopes[I].ParentScope)
+ if (Scopes[I].OutDiag) {
+ DiagnoseIndirectJumpStmt(S, Jump, Target, Diagnosed);
+ S.Diag(Scopes[I].Loc, Scopes[I].OutDiag);
+ }
+
+ SmallVector<unsigned, 10> ToScopesCXX98Compat;
+
+ // Now walk into the scopes containing the label whose address was taken.
+ for (unsigned I = TargetScope; I != Common; I = Scopes[I].ParentScope)
+ if (IsCXX98CompatWarning(S, Scopes[I].InDiag))
+ ToScopesCXX98Compat.push_back(I);
+ else if (Scopes[I].InDiag) {
+ DiagnoseIndirectJumpStmt(S, Jump, Target, Diagnosed);
+ S.Diag(Scopes[I].Loc, Scopes[I].InDiag);
+ }
+
+ // Diagnose this jump if it would be ill-formed in C++98.
+ if (!Diagnosed && !ToScopesCXX98Compat.empty()) {
+ S.Diag(Jump->getGotoLoc(),
+ diag::warn_cxx98_compat_indirect_goto_in_protected_scope);
+ S.Diag(Target->getStmt()->getIdentLoc(), diag::note_indirect_goto_target);
+ NoteJumpIntoScopes(ToScopesCXX98Compat);
+ }
+}
+
+/// CheckJump - Validate that the specified jump statement is valid: that it is
+/// jumping within or out of its current scope, not into a deeper one.
+void JumpScopeChecker::CheckJump(Stmt *From, Stmt *To, SourceLocation DiagLoc,
+ unsigned JumpDiagError, unsigned JumpDiagWarning,
+ unsigned JumpDiagCXX98Compat) {
+ if (CHECK_PERMISSIVE(!LabelAndGotoScopes.count(From)))
+ return;
+ if (CHECK_PERMISSIVE(!LabelAndGotoScopes.count(To)))
+ return;
+
+ unsigned FromScope = LabelAndGotoScopes[From];
+ unsigned ToScope = LabelAndGotoScopes[To];
+
+ // Common case: exactly the same scope, which is fine.
+ if (FromScope == ToScope) return;
+
+ // Warn on gotos out of __finally blocks.
+ if (isa<GotoStmt>(From) || isa<IndirectGotoStmt>(From)) {
+ // If FromScope > ToScope, FromScope is more nested and the jump goes to a
+ // less nested scope. Check if it crosses a __finally along the way.
+ for (unsigned I = FromScope; I > ToScope; I = Scopes[I].ParentScope) {
+ if (Scopes[I].InDiag == diag::note_protected_by_seh_finally) {
+ S.Diag(From->getLocStart(), diag::warn_jump_out_of_seh_finally);
+ break;
+ }
+ }
+ }
+
+ unsigned CommonScope = GetDeepestCommonScope(FromScope, ToScope);
+
+ // It's okay to jump out from a nested scope.
+ if (CommonScope == ToScope) return;
+
+ // Pull out (and reverse) any scopes we might need to diagnose skipping.
+ SmallVector<unsigned, 10> ToScopesCXX98Compat;
+ SmallVector<unsigned, 10> ToScopesError;
+ SmallVector<unsigned, 10> ToScopesWarning;
+ for (unsigned I = ToScope; I != CommonScope; I = Scopes[I].ParentScope) {
+ if (S.getLangOpts().MSVCCompat && JumpDiagWarning != 0 &&
+ IsMicrosoftJumpWarning(JumpDiagError, Scopes[I].InDiag))
+ ToScopesWarning.push_back(I);
+ else if (IsCXX98CompatWarning(S, Scopes[I].InDiag))
+ ToScopesCXX98Compat.push_back(I);
+ else if (Scopes[I].InDiag)
+ ToScopesError.push_back(I);
+ }
+
+ // Handle warnings.
+ if (!ToScopesWarning.empty()) {
+ S.Diag(DiagLoc, JumpDiagWarning);
+ NoteJumpIntoScopes(ToScopesWarning);
+ }
+
+ // Handle errors.
+ if (!ToScopesError.empty()) {
+ S.Diag(DiagLoc, JumpDiagError);
+ NoteJumpIntoScopes(ToScopesError);
+ }
+
+ // Handle -Wc++98-compat warnings if the jump is well-formed.
+ if (ToScopesError.empty() && !ToScopesCXX98Compat.empty()) {
+ S.Diag(DiagLoc, JumpDiagCXX98Compat);
+ NoteJumpIntoScopes(ToScopesCXX98Compat);
+ }
+}
+
+void JumpScopeChecker::CheckGotoStmt(GotoStmt *GS) {
+ if (GS->getLabel()->isMSAsmLabel()) {
+ S.Diag(GS->getGotoLoc(), diag::err_goto_ms_asm_label)
+ << GS->getLabel()->getIdentifier();
+ S.Diag(GS->getLabel()->getLocation(), diag::note_goto_ms_asm_label)
+ << GS->getLabel()->getIdentifier();
+ }
+}
+
+void Sema::DiagnoseInvalidJumps(Stmt *Body) {
+ (void)JumpScopeChecker(Body, *this);
+}
diff --git a/contrib/llvm/tools/clang/lib/Sema/MultiplexExternalSemaSource.cpp b/contrib/llvm/tools/clang/lib/Sema/MultiplexExternalSemaSource.cpp
new file mode 100644
index 0000000..9ecb5a7
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/MultiplexExternalSemaSource.cpp
@@ -0,0 +1,315 @@
+//===--- MultiplexExternalSemaSource.cpp ---------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the event dispatching to the subscribed clients.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/Sema/MultiplexExternalSemaSource.h"
+#include "clang/AST/DeclContextInternals.h"
+#include "clang/Sema/Lookup.h"
+
+using namespace clang;
+
+///\brief Constructs a new multiplexing external sema source and appends the
+/// given element to it.
+///
+///\param[in] source - An ExternalSemaSource.
+///
+MultiplexExternalSemaSource::MultiplexExternalSemaSource(ExternalSemaSource &s1,
+ ExternalSemaSource &s2){
+ Sources.push_back(&s1);
+ Sources.push_back(&s2);
+}
+
+// pin the vtable here.
+MultiplexExternalSemaSource::~MultiplexExternalSemaSource() {}
+
+///\brief Appends new source to the source list.
+///
+///\param[in] source - An ExternalSemaSource.
+///
+void MultiplexExternalSemaSource::addSource(ExternalSemaSource &source) {
+ Sources.push_back(&source);
+}
+
+//===----------------------------------------------------------------------===//
+// ExternalASTSource.
+//===----------------------------------------------------------------------===//
+
+Decl *MultiplexExternalSemaSource::GetExternalDecl(uint32_t ID) {
+ for(size_t i = 0; i < Sources.size(); ++i)
+ if (Decl *Result = Sources[i]->GetExternalDecl(ID))
+ return Result;
+ return nullptr;
+}
+
+void MultiplexExternalSemaSource::CompleteRedeclChain(const Decl *D) {
+ for (size_t i = 0; i < Sources.size(); ++i)
+ Sources[i]->CompleteRedeclChain(D);
+}
+
+Selector MultiplexExternalSemaSource::GetExternalSelector(uint32_t ID) {
+ Selector Sel;
+ for(size_t i = 0; i < Sources.size(); ++i) {
+ Sel = Sources[i]->GetExternalSelector(ID);
+ if (!Sel.isNull())
+ return Sel;
+ }
+ return Sel;
+}
+
+uint32_t MultiplexExternalSemaSource::GetNumExternalSelectors() {
+ uint32_t total = 0;
+ for(size_t i = 0; i < Sources.size(); ++i)
+ total += Sources[i]->GetNumExternalSelectors();
+ return total;
+}
+
+Stmt *MultiplexExternalSemaSource::GetExternalDeclStmt(uint64_t Offset) {
+ for(size_t i = 0; i < Sources.size(); ++i)
+ if (Stmt *Result = Sources[i]->GetExternalDeclStmt(Offset))
+ return Result;
+ return nullptr;
+}
+
+CXXBaseSpecifier *MultiplexExternalSemaSource::GetExternalCXXBaseSpecifiers(
+ uint64_t Offset){
+ for(size_t i = 0; i < Sources.size(); ++i)
+ if (CXXBaseSpecifier *R = Sources[i]->GetExternalCXXBaseSpecifiers(Offset))
+ return R;
+ return nullptr;
+}
+
+CXXCtorInitializer **
+MultiplexExternalSemaSource::GetExternalCXXCtorInitializers(uint64_t Offset) {
+ for (auto *S : Sources)
+ if (auto *R = S->GetExternalCXXCtorInitializers(Offset))
+ return R;
+ return nullptr;
+}
+
+bool MultiplexExternalSemaSource::
+FindExternalVisibleDeclsByName(const DeclContext *DC, DeclarationName Name) {
+ bool AnyDeclsFound = false;
+ for (size_t i = 0; i < Sources.size(); ++i)
+ AnyDeclsFound |= Sources[i]->FindExternalVisibleDeclsByName(DC, Name);
+ return AnyDeclsFound;
+}
+
+void MultiplexExternalSemaSource::completeVisibleDeclsMap(const DeclContext *DC){
+ for(size_t i = 0; i < Sources.size(); ++i)
+ Sources[i]->completeVisibleDeclsMap(DC);
+}
+
+ExternalLoadResult MultiplexExternalSemaSource::
+FindExternalLexicalDecls(const DeclContext *DC,
+ bool (*isKindWeWant)(Decl::Kind),
+ SmallVectorImpl<Decl*> &Result) {
+ for(size_t i = 0; i < Sources.size(); ++i)
+ // FIXME: The semantics of the return result is unclear to me...
+ Sources[i]->FindExternalLexicalDecls(DC, isKindWeWant, Result);
+
+ return ELR_Success;
+}
+
+void MultiplexExternalSemaSource::FindFileRegionDecls(FileID File,
+ unsigned Offset,
+ unsigned Length,
+ SmallVectorImpl<Decl *> &Decls){
+ for(size_t i = 0; i < Sources.size(); ++i)
+ Sources[i]->FindFileRegionDecls(File, Offset, Length, Decls);
+}
+
+void MultiplexExternalSemaSource::CompleteType(TagDecl *Tag) {
+ for(size_t i = 0; i < Sources.size(); ++i)
+ Sources[i]->CompleteType(Tag);
+}
+
+void MultiplexExternalSemaSource::CompleteType(ObjCInterfaceDecl *Class) {
+ for(size_t i = 0; i < Sources.size(); ++i)
+ Sources[i]->CompleteType(Class);
+}
+
+void MultiplexExternalSemaSource::ReadComments() {
+ for(size_t i = 0; i < Sources.size(); ++i)
+ Sources[i]->ReadComments();
+}
+
+void MultiplexExternalSemaSource::StartedDeserializing() {
+ for(size_t i = 0; i < Sources.size(); ++i)
+ Sources[i]->StartedDeserializing();
+}
+
+void MultiplexExternalSemaSource::FinishedDeserializing() {
+ for(size_t i = 0; i < Sources.size(); ++i)
+ Sources[i]->FinishedDeserializing();
+}
+
+void MultiplexExternalSemaSource::StartTranslationUnit(ASTConsumer *Consumer) {
+ for(size_t i = 0; i < Sources.size(); ++i)
+ Sources[i]->StartTranslationUnit(Consumer);
+}
+
+void MultiplexExternalSemaSource::PrintStats() {
+ for(size_t i = 0; i < Sources.size(); ++i)
+ Sources[i]->PrintStats();
+}
+
+bool MultiplexExternalSemaSource::layoutRecordType(const RecordDecl *Record,
+ uint64_t &Size,
+ uint64_t &Alignment,
+ llvm::DenseMap<const FieldDecl *, uint64_t> &FieldOffsets,
+ llvm::DenseMap<const CXXRecordDecl *, CharUnits> &BaseOffsets,
+ llvm::DenseMap<const CXXRecordDecl *, CharUnits> &VirtualBaseOffsets){
+ for(size_t i = 0; i < Sources.size(); ++i)
+ if (Sources[i]->layoutRecordType(Record, Size, Alignment, FieldOffsets,
+ BaseOffsets, VirtualBaseOffsets))
+ return true;
+ return false;
+}
+
+void MultiplexExternalSemaSource::
+getMemoryBufferSizes(MemoryBufferSizes &sizes) const {
+ for(size_t i = 0; i < Sources.size(); ++i)
+ Sources[i]->getMemoryBufferSizes(sizes);
+
+}
+
+//===----------------------------------------------------------------------===//
+// ExternalSemaSource.
+//===----------------------------------------------------------------------===//
+
+
+void MultiplexExternalSemaSource::InitializeSema(Sema &S) {
+ for(size_t i = 0; i < Sources.size(); ++i)
+ Sources[i]->InitializeSema(S);
+}
+
+void MultiplexExternalSemaSource::ForgetSema() {
+ for(size_t i = 0; i < Sources.size(); ++i)
+ Sources[i]->ForgetSema();
+}
+
+void MultiplexExternalSemaSource::ReadMethodPool(Selector Sel) {
+ for(size_t i = 0; i < Sources.size(); ++i)
+ Sources[i]->ReadMethodPool(Sel);
+}
+
+void MultiplexExternalSemaSource::ReadKnownNamespaces(
+ SmallVectorImpl<NamespaceDecl*> &Namespaces){
+ for(size_t i = 0; i < Sources.size(); ++i)
+ Sources[i]->ReadKnownNamespaces(Namespaces);
+}
+
+void MultiplexExternalSemaSource::ReadUndefinedButUsed(
+ llvm::DenseMap<NamedDecl*, SourceLocation> &Undefined){
+ for(size_t i = 0; i < Sources.size(); ++i)
+ Sources[i]->ReadUndefinedButUsed(Undefined);
+}
+
+void MultiplexExternalSemaSource::ReadMismatchingDeleteExpressions(
+ llvm::MapVector<FieldDecl *,
+ llvm::SmallVector<std::pair<SourceLocation, bool>, 4>> &
+ Exprs) {
+ for (auto &Source : Sources)
+ Source->ReadMismatchingDeleteExpressions(Exprs);
+}
+
+bool MultiplexExternalSemaSource::LookupUnqualified(LookupResult &R, Scope *S){
+ for(size_t i = 0; i < Sources.size(); ++i)
+ Sources[i]->LookupUnqualified(R, S);
+
+ return !R.empty();
+}
+
+void MultiplexExternalSemaSource::ReadTentativeDefinitions(
+ SmallVectorImpl<VarDecl*> &TentativeDefs) {
+ for(size_t i = 0; i < Sources.size(); ++i)
+ Sources[i]->ReadTentativeDefinitions(TentativeDefs);
+}
+
+void MultiplexExternalSemaSource::ReadUnusedFileScopedDecls(
+ SmallVectorImpl<const DeclaratorDecl*> &Decls) {
+ for(size_t i = 0; i < Sources.size(); ++i)
+ Sources[i]->ReadUnusedFileScopedDecls(Decls);
+}
+
+void MultiplexExternalSemaSource::ReadDelegatingConstructors(
+ SmallVectorImpl<CXXConstructorDecl*> &Decls) {
+ for(size_t i = 0; i < Sources.size(); ++i)
+ Sources[i]->ReadDelegatingConstructors(Decls);
+}
+
+void MultiplexExternalSemaSource::ReadExtVectorDecls(
+ SmallVectorImpl<TypedefNameDecl*> &Decls) {
+ for(size_t i = 0; i < Sources.size(); ++i)
+ Sources[i]->ReadExtVectorDecls(Decls);
+}
+
+void MultiplexExternalSemaSource::ReadUnusedLocalTypedefNameCandidates(
+ llvm::SmallSetVector<const TypedefNameDecl *, 4> &Decls) {
+ for(size_t i = 0; i < Sources.size(); ++i)
+ Sources[i]->ReadUnusedLocalTypedefNameCandidates(Decls);
+}
+
+void MultiplexExternalSemaSource::ReadReferencedSelectors(
+ SmallVectorImpl<std::pair<Selector, SourceLocation> > &Sels) {
+ for(size_t i = 0; i < Sources.size(); ++i)
+ Sources[i]->ReadReferencedSelectors(Sels);
+}
+
+void MultiplexExternalSemaSource::ReadWeakUndeclaredIdentifiers(
+ SmallVectorImpl<std::pair<IdentifierInfo*, WeakInfo> > &WI) {
+ for(size_t i = 0; i < Sources.size(); ++i)
+ Sources[i]->ReadWeakUndeclaredIdentifiers(WI);
+}
+
+void MultiplexExternalSemaSource::ReadUsedVTables(
+ SmallVectorImpl<ExternalVTableUse> &VTables) {
+ for(size_t i = 0; i < Sources.size(); ++i)
+ Sources[i]->ReadUsedVTables(VTables);
+}
+
+void MultiplexExternalSemaSource::ReadPendingInstantiations(
+ SmallVectorImpl<std::pair<ValueDecl*,
+ SourceLocation> > &Pending) {
+ for(size_t i = 0; i < Sources.size(); ++i)
+ Sources[i]->ReadPendingInstantiations(Pending);
+}
+
+void MultiplexExternalSemaSource::ReadLateParsedTemplates(
+ llvm::MapVector<const FunctionDecl *, LateParsedTemplate *> &LPTMap) {
+ for (size_t i = 0; i < Sources.size(); ++i)
+ Sources[i]->ReadLateParsedTemplates(LPTMap);
+}
+
+TypoCorrection MultiplexExternalSemaSource::CorrectTypo(
+ const DeclarationNameInfo &Typo,
+ int LookupKind, Scope *S, CXXScopeSpec *SS,
+ CorrectionCandidateCallback &CCC,
+ DeclContext *MemberContext,
+ bool EnteringContext,
+ const ObjCObjectPointerType *OPT) {
+ for (size_t I = 0, E = Sources.size(); I < E; ++I) {
+ if (TypoCorrection C = Sources[I]->CorrectTypo(Typo, LookupKind, S, SS, CCC,
+ MemberContext,
+ EnteringContext, OPT))
+ return C;
+ }
+ return TypoCorrection();
+}
+
+bool MultiplexExternalSemaSource::MaybeDiagnoseMissingCompleteType(
+ SourceLocation Loc, QualType T) {
+ for (size_t I = 0, E = Sources.size(); I < E; ++I) {
+ if (Sources[I]->MaybeDiagnoseMissingCompleteType(Loc, T))
+ return true;
+ }
+ return false;
+}
diff --git a/contrib/llvm/tools/clang/lib/Sema/Scope.cpp b/contrib/llvm/tools/clang/lib/Sema/Scope.cpp
new file mode 100644
index 0000000..7c70048
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/Scope.cpp
@@ -0,0 +1,224 @@
+//===- Scope.cpp - Lexical scope information --------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Scope class, which is used for recording
+// information about a lexical scope.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Sema/Scope.h"
+#include "clang/AST/Decl.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+
+void Scope::Init(Scope *parent, unsigned flags) {
+ AnyParent = parent;
+ Flags = flags;
+
+ if (parent && !(flags & FnScope)) {
+ BreakParent = parent->BreakParent;
+ ContinueParent = parent->ContinueParent;
+ } else {
+ // Control scopes do not contain the contents of nested function scopes for
+ // control flow purposes.
+ BreakParent = ContinueParent = nullptr;
+ }
+
+ if (parent) {
+ Depth = parent->Depth + 1;
+ PrototypeDepth = parent->PrototypeDepth;
+ PrototypeIndex = 0;
+ FnParent = parent->FnParent;
+ BlockParent = parent->BlockParent;
+ TemplateParamParent = parent->TemplateParamParent;
+ MSLastManglingParent = parent->MSLastManglingParent;
+ MSCurManglingNumber = getMSLastManglingNumber();
+ if ((Flags & (FnScope | ClassScope | BlockScope | TemplateParamScope |
+ FunctionPrototypeScope | AtCatchScope | ObjCMethodScope)) ==
+ 0)
+ Flags |= parent->getFlags() & OpenMPSimdDirectiveScope;
+ } else {
+ Depth = 0;
+ PrototypeDepth = 0;
+ PrototypeIndex = 0;
+ MSLastManglingParent = FnParent = BlockParent = nullptr;
+ TemplateParamParent = nullptr;
+ MSLastManglingNumber = 1;
+ MSCurManglingNumber = 1;
+ }
+
+ // If this scope is a function or contains breaks/continues, remember it.
+ if (flags & FnScope) FnParent = this;
+ // The MS mangler uses the number of scopes that can hold declarations as
+ // part of an external name.
+ if (Flags & (ClassScope | FnScope)) {
+ MSLastManglingNumber = getMSLastManglingNumber();
+ MSLastManglingParent = this;
+ MSCurManglingNumber = 1;
+ }
+ if (flags & BreakScope) BreakParent = this;
+ if (flags & ContinueScope) ContinueParent = this;
+ if (flags & BlockScope) BlockParent = this;
+ if (flags & TemplateParamScope) TemplateParamParent = this;
+
+ // If this is a prototype scope, record that.
+ if (flags & FunctionPrototypeScope) PrototypeDepth++;
+
+ if (flags & DeclScope) {
+ if (flags & FunctionPrototypeScope)
+ ; // Prototype scopes are uninteresting.
+ else if ((flags & ClassScope) && getParent()->isClassScope())
+ ; // Nested class scopes aren't ambiguous.
+ else if ((flags & ClassScope) && getParent()->getFlags() == DeclScope)
+ ; // Classes inside of namespaces aren't ambiguous.
+ else if ((flags & EnumScope))
+ ; // Don't increment for enum scopes.
+ else
+ incrementMSManglingNumber();
+ }
+
+ DeclsInScope.clear();
+ UsingDirectives.clear();
+ Entity = nullptr;
+ ErrorTrap.reset();
+ NRVO.setPointerAndInt(nullptr, 0);
+}
+
+bool Scope::containedInPrototypeScope() const {
+ const Scope *S = this;
+ while (S) {
+ if (S->isFunctionPrototypeScope())
+ return true;
+ S = S->getParent();
+ }
+ return false;
+}
+
+void Scope::AddFlags(unsigned FlagsToSet) {
+ assert((FlagsToSet & ~(BreakScope | ContinueScope)) == 0 &&
+ "Unsupported scope flags");
+ if (FlagsToSet & BreakScope) {
+ assert((Flags & BreakScope) == 0 && "Already set");
+ BreakParent = this;
+ }
+ if (FlagsToSet & ContinueScope) {
+ assert((Flags & ContinueScope) == 0 && "Already set");
+ ContinueParent = this;
+ }
+ Flags |= FlagsToSet;
+}
+
+void Scope::mergeNRVOIntoParent() {
+ if (VarDecl *Candidate = NRVO.getPointer()) {
+ if (isDeclScope(Candidate))
+ Candidate->setNRVOVariable(true);
+ }
+
+ if (getEntity())
+ return;
+
+ if (NRVO.getInt())
+ getParent()->setNoNRVO();
+ else if (NRVO.getPointer())
+ getParent()->addNRVOCandidate(NRVO.getPointer());
+}
+
+void Scope::dump() const { dumpImpl(llvm::errs()); }
+
+void Scope::dumpImpl(raw_ostream &OS) const {
+ unsigned Flags = getFlags();
+ bool HasFlags = Flags != 0;
+
+ if (HasFlags)
+ OS << "Flags: ";
+
+ while (Flags) {
+ if (Flags & FnScope) {
+ OS << "FnScope";
+ Flags &= ~FnScope;
+ } else if (Flags & BreakScope) {
+ OS << "BreakScope";
+ Flags &= ~BreakScope;
+ } else if (Flags & ContinueScope) {
+ OS << "ContinueScope";
+ Flags &= ~ContinueScope;
+ } else if (Flags & DeclScope) {
+ OS << "DeclScope";
+ Flags &= ~DeclScope;
+ } else if (Flags & ControlScope) {
+ OS << "ControlScope";
+ Flags &= ~ControlScope;
+ } else if (Flags & ClassScope) {
+ OS << "ClassScope";
+ Flags &= ~ClassScope;
+ } else if (Flags & BlockScope) {
+ OS << "BlockScope";
+ Flags &= ~BlockScope;
+ } else if (Flags & TemplateParamScope) {
+ OS << "TemplateParamScope";
+ Flags &= ~TemplateParamScope;
+ } else if (Flags & FunctionPrototypeScope) {
+ OS << "FunctionPrototypeScope";
+ Flags &= ~FunctionPrototypeScope;
+ } else if (Flags & FunctionDeclarationScope) {
+ OS << "FunctionDeclarationScope";
+ Flags &= ~FunctionDeclarationScope;
+ } else if (Flags & AtCatchScope) {
+ OS << "AtCatchScope";
+ Flags &= ~AtCatchScope;
+ } else if (Flags & ObjCMethodScope) {
+ OS << "ObjCMethodScope";
+ Flags &= ~ObjCMethodScope;
+ } else if (Flags & SwitchScope) {
+ OS << "SwitchScope";
+ Flags &= ~SwitchScope;
+ } else if (Flags & TryScope) {
+ OS << "TryScope";
+ Flags &= ~TryScope;
+ } else if (Flags & FnTryCatchScope) {
+ OS << "FnTryCatchScope";
+ Flags &= ~FnTryCatchScope;
+ } else if (Flags & SEHTryScope) {
+ OS << "SEHTryScope";
+ Flags &= ~SEHTryScope;
+ } else if (Flags & SEHExceptScope) {
+ OS << "SEHExceptScope";
+ Flags &= ~SEHExceptScope;
+ } else if (Flags & OpenMPDirectiveScope) {
+ OS << "OpenMPDirectiveScope";
+ Flags &= ~OpenMPDirectiveScope;
+ } else if (Flags & OpenMPLoopDirectiveScope) {
+ OS << "OpenMPLoopDirectiveScope";
+ Flags &= ~OpenMPLoopDirectiveScope;
+ } else if (Flags & OpenMPSimdDirectiveScope) {
+ OS << "OpenMPSimdDirectiveScope";
+ Flags &= ~OpenMPSimdDirectiveScope;
+ }
+
+ if (Flags)
+ OS << " | ";
+ }
+ if (HasFlags)
+ OS << '\n';
+
+ if (const Scope *Parent = getParent())
+ OS << "Parent: (clang::Scope*)" << Parent << '\n';
+
+ OS << "Depth: " << Depth << '\n';
+ OS << "MSLastManglingNumber: " << getMSLastManglingNumber() << '\n';
+ OS << "MSCurManglingNumber: " << getMSCurManglingNumber() << '\n';
+ if (const DeclContext *DC = getEntity())
+ OS << "Entity : (clang::DeclContext*)" << DC << '\n';
+
+ if (NRVO.getInt())
+ OS << "NRVO not allowed\n";
+ else if (NRVO.getPointer())
+ OS << "NRVO candidate : (clang::VarDecl*)" << NRVO.getPointer() << '\n';
+}
diff --git a/contrib/llvm/tools/clang/lib/Sema/ScopeInfo.cpp b/contrib/llvm/tools/clang/lib/Sema/ScopeInfo.cpp
new file mode 100644
index 0000000..f80eadf
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/ScopeInfo.cpp
@@ -0,0 +1,238 @@
+//===--- ScopeInfo.cpp - Information about a semantic context -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements FunctionScopeInfo and its subclasses, which contain
+// information about a single function, block, lambda, or method body.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Sema/ScopeInfo.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+
+using namespace clang;
+using namespace sema;
+
+void FunctionScopeInfo::Clear() {
+ HasBranchProtectedScope = false;
+ HasBranchIntoScope = false;
+ HasIndirectGoto = false;
+ HasDroppedStmt = false;
+ ObjCShouldCallSuper = false;
+ ObjCIsDesignatedInit = false;
+ ObjCWarnForNoDesignatedInitChain = false;
+ ObjCIsSecondaryInit = false;
+ ObjCWarnForNoInitDelegation = false;
+ FirstCXXTryLoc = SourceLocation();
+ FirstSEHTryLoc = SourceLocation();
+
+ SwitchStack.clear();
+ Returns.clear();
+ ErrorTrap.reset();
+ PossiblyUnreachableDiags.clear();
+ WeakObjectUses.clear();
+ ModifiedNonNullParams.clear();
+}
+
+static const NamedDecl *getBestPropertyDecl(const ObjCPropertyRefExpr *PropE) {
+ if (PropE->isExplicitProperty())
+ return PropE->getExplicitProperty();
+
+ return PropE->getImplicitPropertyGetter();
+}
+
+FunctionScopeInfo::WeakObjectProfileTy::BaseInfoTy
+FunctionScopeInfo::WeakObjectProfileTy::getBaseInfo(const Expr *E) {
+ E = E->IgnoreParenCasts();
+
+ const NamedDecl *D = nullptr;
+ bool IsExact = false;
+
+ switch (E->getStmtClass()) {
+ case Stmt::DeclRefExprClass:
+ D = cast<DeclRefExpr>(E)->getDecl();
+ IsExact = isa<VarDecl>(D);
+ break;
+ case Stmt::MemberExprClass: {
+ const MemberExpr *ME = cast<MemberExpr>(E);
+ D = ME->getMemberDecl();
+ IsExact = isa<CXXThisExpr>(ME->getBase()->IgnoreParenImpCasts());
+ break;
+ }
+ case Stmt::ObjCIvarRefExprClass: {
+ const ObjCIvarRefExpr *IE = cast<ObjCIvarRefExpr>(E);
+ D = IE->getDecl();
+ IsExact = IE->getBase()->isObjCSelfExpr();
+ break;
+ }
+ case Stmt::PseudoObjectExprClass: {
+ const PseudoObjectExpr *POE = cast<PseudoObjectExpr>(E);
+ const ObjCPropertyRefExpr *BaseProp =
+ dyn_cast<ObjCPropertyRefExpr>(POE->getSyntacticForm());
+ if (BaseProp) {
+ D = getBestPropertyDecl(BaseProp);
+
+ const Expr *DoubleBase = BaseProp->getBase();
+ if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(DoubleBase))
+ DoubleBase = OVE->getSourceExpr();
+
+ IsExact = DoubleBase->isObjCSelfExpr();
+ }
+ break;
+ }
+ default:
+ break;
+ }
+
+ return BaseInfoTy(D, IsExact);
+}
+
+bool CapturingScopeInfo::isVLATypeCaptured(const VariableArrayType *VAT) const {
+ RecordDecl *RD = nullptr;
+ if (auto *LSI = dyn_cast<LambdaScopeInfo>(this))
+ RD = LSI->Lambda;
+ else if (auto CRSI = dyn_cast<CapturedRegionScopeInfo>(this))
+ RD = CRSI->TheRecordDecl;
+
+ if (RD)
+ for (auto *FD : RD->fields()) {
+ if (FD->hasCapturedVLAType() && FD->getCapturedVLAType() == VAT)
+ return true;
+ }
+ return false;
+}
+
+FunctionScopeInfo::WeakObjectProfileTy::WeakObjectProfileTy(
+ const ObjCPropertyRefExpr *PropE)
+ : Base(nullptr, true), Property(getBestPropertyDecl(PropE)) {
+
+ if (PropE->isObjectReceiver()) {
+ const OpaqueValueExpr *OVE = cast<OpaqueValueExpr>(PropE->getBase());
+ const Expr *E = OVE->getSourceExpr();
+ Base = getBaseInfo(E);
+ } else if (PropE->isClassReceiver()) {
+ Base.setPointer(PropE->getClassReceiver());
+ } else {
+ assert(PropE->isSuperReceiver());
+ }
+}
+
+FunctionScopeInfo::WeakObjectProfileTy::WeakObjectProfileTy(const Expr *BaseE,
+ const ObjCPropertyDecl *Prop)
+ : Base(nullptr, true), Property(Prop) {
+ if (BaseE)
+ Base = getBaseInfo(BaseE);
+ // else, this is a message accessing a property on super.
+}
+
+FunctionScopeInfo::WeakObjectProfileTy::WeakObjectProfileTy(
+ const DeclRefExpr *DRE)
+ : Base(nullptr, true), Property(DRE->getDecl()) {
+ assert(isa<VarDecl>(Property));
+}
+
+FunctionScopeInfo::WeakObjectProfileTy::WeakObjectProfileTy(
+ const ObjCIvarRefExpr *IvarE)
+ : Base(getBaseInfo(IvarE->getBase())), Property(IvarE->getDecl()) {
+}
+
+void FunctionScopeInfo::recordUseOfWeak(const ObjCMessageExpr *Msg,
+ const ObjCPropertyDecl *Prop) {
+ assert(Msg && Prop);
+ WeakUseVector &Uses =
+ WeakObjectUses[WeakObjectProfileTy(Msg->getInstanceReceiver(), Prop)];
+ Uses.push_back(WeakUseTy(Msg, Msg->getNumArgs() == 0));
+}
+
+void FunctionScopeInfo::markSafeWeakUse(const Expr *E) {
+ E = E->IgnoreParenCasts();
+
+ if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
+ markSafeWeakUse(POE->getSyntacticForm());
+ return;
+ }
+
+ if (const ConditionalOperator *Cond = dyn_cast<ConditionalOperator>(E)) {
+ markSafeWeakUse(Cond->getTrueExpr());
+ markSafeWeakUse(Cond->getFalseExpr());
+ return;
+ }
+
+ if (const BinaryConditionalOperator *Cond =
+ dyn_cast<BinaryConditionalOperator>(E)) {
+ markSafeWeakUse(Cond->getCommon());
+ markSafeWeakUse(Cond->getFalseExpr());
+ return;
+ }
+
+ // Has this weak object been seen before?
+ FunctionScopeInfo::WeakObjectUseMap::iterator Uses;
+ if (const ObjCPropertyRefExpr *RefExpr = dyn_cast<ObjCPropertyRefExpr>(E)) {
+ if (!RefExpr->isObjectReceiver())
+ return;
+ if (isa<OpaqueValueExpr>(RefExpr->getBase()))
+ Uses = WeakObjectUses.find(WeakObjectProfileTy(RefExpr));
+ else {
+ markSafeWeakUse(RefExpr->getBase());
+ return;
+ }
+ }
+ else if (const ObjCIvarRefExpr *IvarE = dyn_cast<ObjCIvarRefExpr>(E))
+ Uses = WeakObjectUses.find(WeakObjectProfileTy(IvarE));
+ else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
+ Uses = WeakObjectUses.find(WeakObjectProfileTy(DRE));
+ else if (const ObjCMessageExpr *MsgE = dyn_cast<ObjCMessageExpr>(E)) {
+ Uses = WeakObjectUses.end();
+ if (const ObjCMethodDecl *MD = MsgE->getMethodDecl()) {
+ if (const ObjCPropertyDecl *Prop = MD->findPropertyDecl()) {
+ Uses =
+ WeakObjectUses.find(WeakObjectProfileTy(MsgE->getInstanceReceiver(),
+ Prop));
+ }
+ }
+ }
+ else
+ return;
+
+ if (Uses == WeakObjectUses.end())
+ return;
+
+ // Has there been a read from the object using this Expr?
+ FunctionScopeInfo::WeakUseVector::reverse_iterator ThisUse =
+ std::find(Uses->second.rbegin(), Uses->second.rend(), WeakUseTy(E, true));
+ if (ThisUse == Uses->second.rend())
+ return;
+
+ ThisUse->markSafe();
+}
+
+void LambdaScopeInfo::getPotentialVariableCapture(unsigned Idx, VarDecl *&VD,
+ Expr *&E) const {
+ assert(Idx < getNumPotentialVariableCaptures() &&
+ "Index of potential capture must be within 0 to less than the "
+ "number of captures!");
+ E = PotentiallyCapturingExprs[Idx];
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
+ VD = dyn_cast<VarDecl>(DRE->getFoundDecl());
+ else if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
+ VD = dyn_cast<VarDecl>(ME->getMemberDecl());
+ else
+ llvm_unreachable("Only DeclRefExprs or MemberExprs should be added for "
+ "potential captures");
+ assert(VD);
+}
+
+FunctionScopeInfo::~FunctionScopeInfo() { }
+BlockScopeInfo::~BlockScopeInfo() { }
+LambdaScopeInfo::~LambdaScopeInfo() { }
+CapturedRegionScopeInfo::~CapturedRegionScopeInfo() { }
diff --git a/contrib/llvm/tools/clang/lib/Sema/Sema.cpp b/contrib/llvm/tools/clang/lib/Sema/Sema.cpp
new file mode 100644
index 0000000..50edc42
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/Sema.cpp
@@ -0,0 +1,1489 @@
+//===--- Sema.cpp - AST Builder and Semantic Analysis Implementation ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the actions class which performs semantic analysis and
+// builds an AST out of a parse stream.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Sema/SemaInternal.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTDiagnostic.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclFriend.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/StmtCXX.h"
+#include "clang/Basic/DiagnosticOptions.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/PartialDiagnostic.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Lex/HeaderSearch.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Sema/CXXFieldCollector.h"
+#include "clang/Sema/DelayedDiagnostic.h"
+#include "clang/Sema/ExternalSemaSource.h"
+#include "clang/Sema/MultiplexExternalSemaSource.h"
+#include "clang/Sema/ObjCMethodList.h"
+#include "clang/Sema/PrettyDeclStackTrace.h"
+#include "clang/Sema/Scope.h"
+#include "clang/Sema/ScopeInfo.h"
+#include "clang/Sema/SemaConsumer.h"
+#include "clang/Sema/TemplateDeduction.h"
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/Support/CrashRecoveryContext.h"
+using namespace clang;
+using namespace sema;
+
+SourceLocation Sema::getLocForEndOfToken(SourceLocation Loc, unsigned Offset) {
+ return Lexer::getLocForEndOfToken(Loc, Offset, SourceMgr, LangOpts);
+}
+
+ModuleLoader &Sema::getModuleLoader() const { return PP.getModuleLoader(); }
+
+PrintingPolicy Sema::getPrintingPolicy(const ASTContext &Context,
+ const Preprocessor &PP) {
+ PrintingPolicy Policy = Context.getPrintingPolicy();
+ Policy.Bool = Context.getLangOpts().Bool;
+ if (!Policy.Bool) {
+ if (const MacroInfo *
+ BoolMacro = PP.getMacroInfo(&Context.Idents.get("bool"))) {
+ Policy.Bool = BoolMacro->isObjectLike() &&
+ BoolMacro->getNumTokens() == 1 &&
+ BoolMacro->getReplacementToken(0).is(tok::kw__Bool);
+ }
+ }
+
+ return Policy;
+}
+
+void Sema::ActOnTranslationUnitScope(Scope *S) {
+ TUScope = S;
+ PushDeclContext(S, Context.getTranslationUnitDecl());
+}
+
+Sema::Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer,
+ TranslationUnitKind TUKind,
+ CodeCompleteConsumer *CodeCompleter)
+ : ExternalSource(nullptr),
+ isMultiplexExternalSource(false), FPFeatures(pp.getLangOpts()),
+ LangOpts(pp.getLangOpts()), PP(pp), Context(ctxt), Consumer(consumer),
+ Diags(PP.getDiagnostics()), SourceMgr(PP.getSourceManager()),
+ CollectStats(false), CodeCompleter(CodeCompleter),
+ CurContext(nullptr), OriginalLexicalContext(nullptr),
+ PackContext(nullptr), MSStructPragmaOn(false),
+ MSPointerToMemberRepresentationMethod(
+ LangOpts.getMSPointerToMemberRepresentationMethod()),
+ VtorDispModeStack(1, MSVtorDispAttr::Mode(LangOpts.VtorDispMode)),
+ DataSegStack(nullptr), BSSSegStack(nullptr), ConstSegStack(nullptr),
+ CodeSegStack(nullptr), CurInitSeg(nullptr), VisContext(nullptr),
+ IsBuildingRecoveryCallExpr(false),
+ ExprNeedsCleanups(false), LateTemplateParser(nullptr),
+ LateTemplateParserCleanup(nullptr),
+ OpaqueParser(nullptr), IdResolver(pp), StdInitializerList(nullptr),
+ CXXTypeInfoDecl(nullptr), MSVCGuidDecl(nullptr),
+ NSNumberDecl(nullptr),
+ NSStringDecl(nullptr), StringWithUTF8StringMethod(nullptr),
+ NSArrayDecl(nullptr), ArrayWithObjectsMethod(nullptr),
+ NSDictionaryDecl(nullptr), DictionaryWithObjectsMethod(nullptr),
+ MSAsmLabelNameCounter(0),
+ GlobalNewDeleteDeclared(false),
+ TUKind(TUKind),
+ NumSFINAEErrors(0),
+ CachedFakeTopLevelModule(nullptr),
+ AccessCheckingSFINAE(false), InNonInstantiationSFINAEContext(false),
+ NonInstantiationEntries(0), ArgumentPackSubstitutionIndex(-1),
+ CurrentInstantiationScope(nullptr), DisableTypoCorrection(false),
+ TyposCorrected(0), AnalysisWarnings(*this), ThreadSafetyDeclCache(nullptr),
+ VarDataSharingAttributesStack(nullptr), CurScope(nullptr),
+ Ident_super(nullptr), Ident___float128(nullptr)
+{
+ TUScope = nullptr;
+
+ LoadedExternalKnownNamespaces = false;
+ for (unsigned I = 0; I != NSAPI::NumNSNumberLiteralMethods; ++I)
+ NSNumberLiteralMethods[I] = nullptr;
+
+ if (getLangOpts().ObjC1)
+ NSAPIObj.reset(new NSAPI(Context));
+
+ if (getLangOpts().CPlusPlus)
+ FieldCollector.reset(new CXXFieldCollector());
+
+ // Tell diagnostics how to render things from the AST library.
+ PP.getDiagnostics().SetArgToStringFn(&FormatASTNodeDiagnosticArgument,
+ &Context);
+
+ ExprEvalContexts.emplace_back(PotentiallyEvaluated, 0, false, nullptr, false);
+
+ FunctionScopes.push_back(new FunctionScopeInfo(Diags));
+
+ // Initilization of data sharing attributes stack for OpenMP
+ InitDataSharingAttributesStack();
+}
+
+void Sema::addImplicitTypedef(StringRef Name, QualType T) {
+ DeclarationName DN = &Context.Idents.get(Name);
+ if (IdResolver.begin(DN) == IdResolver.end())
+ PushOnScopeChains(Context.buildImplicitTypedef(T, Name), TUScope);
+}
+
+void Sema::Initialize() {
+ // Tell the AST consumer about this Sema object.
+ Consumer.Initialize(Context);
+
+ // FIXME: Isn't this redundant with the initialization above?
+ if (SemaConsumer *SC = dyn_cast<SemaConsumer>(&Consumer))
+ SC->InitializeSema(*this);
+
+ // Tell the external Sema source about this Sema object.
+ if (ExternalSemaSource *ExternalSema
+ = dyn_cast_or_null<ExternalSemaSource>(Context.getExternalSource()))
+ ExternalSema->InitializeSema(*this);
+
+ // This needs to happen after ExternalSemaSource::InitializeSema(this) or we
+ // will not be able to merge any duplicate __va_list_tag decls correctly.
+ VAListTagName = PP.getIdentifierInfo("__va_list_tag");
+
+ // Initialize predefined 128-bit integer types, if needed.
+ if (Context.getTargetInfo().hasInt128Type()) {
+ // If either of the 128-bit integer types are unavailable to name lookup,
+ // define them now.
+ DeclarationName Int128 = &Context.Idents.get("__int128_t");
+ if (IdResolver.begin(Int128) == IdResolver.end())
+ PushOnScopeChains(Context.getInt128Decl(), TUScope);
+
+ DeclarationName UInt128 = &Context.Idents.get("__uint128_t");
+ if (IdResolver.begin(UInt128) == IdResolver.end())
+ PushOnScopeChains(Context.getUInt128Decl(), TUScope);
+ }
+
+
+ // Initialize predefined Objective-C types:
+ if (PP.getLangOpts().ObjC1) {
+ // If 'SEL' does not yet refer to any declarations, make it refer to the
+ // predefined 'SEL'.
+ DeclarationName SEL = &Context.Idents.get("SEL");
+ if (IdResolver.begin(SEL) == IdResolver.end())
+ PushOnScopeChains(Context.getObjCSelDecl(), TUScope);
+
+ // If 'id' does not yet refer to any declarations, make it refer to the
+ // predefined 'id'.
+ DeclarationName Id = &Context.Idents.get("id");
+ if (IdResolver.begin(Id) == IdResolver.end())
+ PushOnScopeChains(Context.getObjCIdDecl(), TUScope);
+
+ // Create the built-in typedef for 'Class'.
+ DeclarationName Class = &Context.Idents.get("Class");
+ if (IdResolver.begin(Class) == IdResolver.end())
+ PushOnScopeChains(Context.getObjCClassDecl(), TUScope);
+
+ // Create the built-in forward declaratino for 'Protocol'.
+ DeclarationName Protocol = &Context.Idents.get("Protocol");
+ if (IdResolver.begin(Protocol) == IdResolver.end())
+ PushOnScopeChains(Context.getObjCProtocolDecl(), TUScope);
+ }
+
+ // Initialize Microsoft "predefined C++ types".
+ if (PP.getLangOpts().MSVCCompat) {
+ if (PP.getLangOpts().CPlusPlus &&
+ IdResolver.begin(&Context.Idents.get("type_info")) == IdResolver.end())
+ PushOnScopeChains(Context.buildImplicitRecord("type_info", TTK_Class),
+ TUScope);
+
+ addImplicitTypedef("size_t", Context.getSizeType());
+ }
+
+ // Initialize predefined OpenCL types.
+ if (PP.getLangOpts().OpenCL) {
+ addImplicitTypedef("image1d_t", Context.OCLImage1dTy);
+ addImplicitTypedef("image1d_array_t", Context.OCLImage1dArrayTy);
+ addImplicitTypedef("image1d_buffer_t", Context.OCLImage1dBufferTy);
+ addImplicitTypedef("image2d_t", Context.OCLImage2dTy);
+ addImplicitTypedef("image2d_array_t", Context.OCLImage2dArrayTy);
+ addImplicitTypedef("image3d_t", Context.OCLImage3dTy);
+ addImplicitTypedef("sampler_t", Context.OCLSamplerTy);
+ addImplicitTypedef("event_t", Context.OCLEventTy);
+ if (getLangOpts().OpenCLVersion >= 200) {
+ addImplicitTypedef("atomic_int", Context.getAtomicType(Context.IntTy));
+ addImplicitTypedef("atomic_uint",
+ Context.getAtomicType(Context.UnsignedIntTy));
+ addImplicitTypedef("atomic_long", Context.getAtomicType(Context.LongTy));
+ addImplicitTypedef("atomic_ulong",
+ Context.getAtomicType(Context.UnsignedLongTy));
+ addImplicitTypedef("atomic_float",
+ Context.getAtomicType(Context.FloatTy));
+ addImplicitTypedef("atomic_double",
+ Context.getAtomicType(Context.DoubleTy));
+ // OpenCLC v2.0, s6.13.11.6 requires that atomic_flag is implemented as
+ // 32-bit integer and OpenCLC v2.0, s6.1.1 int is always 32-bit wide.
+ addImplicitTypedef("atomic_flag", Context.getAtomicType(Context.IntTy));
+ addImplicitTypedef("atomic_intptr_t",
+ Context.getAtomicType(Context.getIntPtrType()));
+ addImplicitTypedef("atomic_uintptr_t",
+ Context.getAtomicType(Context.getUIntPtrType()));
+ addImplicitTypedef("atomic_size_t",
+ Context.getAtomicType(Context.getSizeType()));
+ addImplicitTypedef("atomic_ptrdiff_t",
+ Context.getAtomicType(Context.getPointerDiffType()));
+ }
+ }
+
+ DeclarationName BuiltinVaList = &Context.Idents.get("__builtin_va_list");
+ if (IdResolver.begin(BuiltinVaList) == IdResolver.end())
+ PushOnScopeChains(Context.getBuiltinVaListDecl(), TUScope);
+}
+
+Sema::~Sema() {
+ llvm::DeleteContainerSeconds(LateParsedTemplateMap);
+ if (PackContext) FreePackedContext();
+ if (VisContext) FreeVisContext();
+ // Kill all the active scopes.
+ for (unsigned I = 1, E = FunctionScopes.size(); I != E; ++I)
+ delete FunctionScopes[I];
+ if (FunctionScopes.size() == 1)
+ delete FunctionScopes[0];
+
+ // Tell the SemaConsumer to forget about us; we're going out of scope.
+ if (SemaConsumer *SC = dyn_cast<SemaConsumer>(&Consumer))
+ SC->ForgetSema();
+
+ // Detach from the external Sema source.
+ if (ExternalSemaSource *ExternalSema
+ = dyn_cast_or_null<ExternalSemaSource>(Context.getExternalSource()))
+ ExternalSema->ForgetSema();
+
+ // If Sema's ExternalSource is the multiplexer - we own it.
+ if (isMultiplexExternalSource)
+ delete ExternalSource;
+
+ threadSafety::threadSafetyCleanup(ThreadSafetyDeclCache);
+
+ // Destroys data sharing attributes stack for OpenMP
+ DestroyDataSharingAttributesStack();
+
+ assert(DelayedTypos.empty() && "Uncorrected typos!");
+}
+
+/// makeUnavailableInSystemHeader - There is an error in the current
+/// context. If we're still in a system header, and we can plausibly
+/// make the relevant declaration unavailable instead of erroring, do
+/// so and return true.
+bool Sema::makeUnavailableInSystemHeader(SourceLocation loc,
+ StringRef msg) {
+ // If we're not in a function, it's an error.
+ FunctionDecl *fn = dyn_cast<FunctionDecl>(CurContext);
+ if (!fn) return false;
+
+ // If we're in template instantiation, it's an error.
+ if (!ActiveTemplateInstantiations.empty())
+ return false;
+
+ // If that function's not in a system header, it's an error.
+ if (!Context.getSourceManager().isInSystemHeader(loc))
+ return false;
+
+ // If the function is already unavailable, it's not an error.
+ if (fn->hasAttr<UnavailableAttr>()) return true;
+
+ fn->addAttr(UnavailableAttr::CreateImplicit(Context, msg, loc));
+ return true;
+}
+
+ASTMutationListener *Sema::getASTMutationListener() const {
+ return getASTConsumer().GetASTMutationListener();
+}
+
+///\brief Registers an external source. If an external source already exists,
+/// creates a multiplex external source and appends to it.
+///
+///\param[in] E - A non-null external sema source.
+///
+void Sema::addExternalSource(ExternalSemaSource *E) {
+ assert(E && "Cannot use with NULL ptr");
+
+ if (!ExternalSource) {
+ ExternalSource = E;
+ return;
+ }
+
+ if (isMultiplexExternalSource)
+ static_cast<MultiplexExternalSemaSource*>(ExternalSource)->addSource(*E);
+ else {
+ ExternalSource = new MultiplexExternalSemaSource(*ExternalSource, *E);
+ isMultiplexExternalSource = true;
+ }
+}
+
+/// \brief Print out statistics about the semantic analysis.
+void Sema::PrintStats() const {
+ llvm::errs() << "\n*** Semantic Analysis Stats:\n";
+ llvm::errs() << NumSFINAEErrors << " SFINAE diagnostics trapped.\n";
+
+ BumpAlloc.PrintStats();
+ AnalysisWarnings.PrintStats();
+}
+
+/// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit cast.
+/// If there is already an implicit cast, merge into the existing one.
+/// The result is of the given category.
+ExprResult Sema::ImpCastExprToType(Expr *E, QualType Ty,
+ CastKind Kind, ExprValueKind VK,
+ const CXXCastPath *BasePath,
+ CheckedConversionKind CCK) {
+#ifndef NDEBUG
+ if (VK == VK_RValue && !E->isRValue()) {
+ switch (Kind) {
+ default:
+ llvm_unreachable("can't implicitly cast lvalue to rvalue with this cast "
+ "kind");
+ case CK_LValueToRValue:
+ case CK_ArrayToPointerDecay:
+ case CK_FunctionToPointerDecay:
+ case CK_ToVoid:
+ break;
+ }
+ }
+ assert((VK == VK_RValue || !E->isRValue()) && "can't cast rvalue to lvalue");
+#endif
+
+ QualType ExprTy = Context.getCanonicalType(E->getType());
+ QualType TypeTy = Context.getCanonicalType(Ty);
+
+ if (ExprTy == TypeTy)
+ return E;
+
+ if (ImplicitCastExpr *ImpCast = dyn_cast<ImplicitCastExpr>(E)) {
+ if (ImpCast->getCastKind() == Kind && (!BasePath || BasePath->empty())) {
+ ImpCast->setType(Ty);
+ ImpCast->setValueKind(VK);
+ return E;
+ }
+ }
+
+ return ImplicitCastExpr::Create(Context, Ty, Kind, E, BasePath, VK);
+}
+
+/// ScalarTypeToBooleanCastKind - Returns the cast kind corresponding
+/// to the conversion from scalar type ScalarTy to the Boolean type.
+CastKind Sema::ScalarTypeToBooleanCastKind(QualType ScalarTy) {
+ switch (ScalarTy->getScalarTypeKind()) {
+ case Type::STK_Bool: return CK_NoOp;
+ case Type::STK_CPointer: return CK_PointerToBoolean;
+ case Type::STK_BlockPointer: return CK_PointerToBoolean;
+ case Type::STK_ObjCObjectPointer: return CK_PointerToBoolean;
+ case Type::STK_MemberPointer: return CK_MemberPointerToBoolean;
+ case Type::STK_Integral: return CK_IntegralToBoolean;
+ case Type::STK_Floating: return CK_FloatingToBoolean;
+ case Type::STK_IntegralComplex: return CK_IntegralComplexToBoolean;
+ case Type::STK_FloatingComplex: return CK_FloatingComplexToBoolean;
+ }
+ return CK_Invalid;
+}
+
+/// \brief Used to prune the decls of Sema's UnusedFileScopedDecls vector.
+static bool ShouldRemoveFromUnused(Sema *SemaRef, const DeclaratorDecl *D) {
+ if (D->getMostRecentDecl()->isUsed())
+ return true;
+
+ if (D->isExternallyVisible())
+ return true;
+
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ // UnusedFileScopedDecls stores the first declaration.
+ // The declaration may have become definition so check again.
+ const FunctionDecl *DeclToCheck;
+ if (FD->hasBody(DeclToCheck))
+ return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck);
+
+ // Later redecls may add new information resulting in not having to warn,
+ // so check again.
+ DeclToCheck = FD->getMostRecentDecl();
+ if (DeclToCheck != FD)
+ return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck);
+ }
+
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
+ // If a variable usable in constant expressions is referenced,
+ // don't warn if it isn't used: if the value of a variable is required
+ // for the computation of a constant expression, it doesn't make sense to
+ // warn even if the variable isn't odr-used. (isReferenced doesn't
+ // precisely reflect that, but it's a decent approximation.)
+ if (VD->isReferenced() &&
+ VD->isUsableInConstantExpressions(SemaRef->Context))
+ return true;
+
+ // UnusedFileScopedDecls stores the first declaration.
+ // The declaration may have become definition so check again.
+ const VarDecl *DeclToCheck = VD->getDefinition();
+ if (DeclToCheck)
+ return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck);
+
+ // Later redecls may add new information resulting in not having to warn,
+ // so check again.
+ DeclToCheck = VD->getMostRecentDecl();
+ if (DeclToCheck != VD)
+ return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck);
+ }
+
+ return false;
+}
+
+/// Obtains a sorted list of functions that are undefined but ODR-used.
+void Sema::getUndefinedButUsed(
+ SmallVectorImpl<std::pair<NamedDecl *, SourceLocation> > &Undefined) {
+ for (llvm::DenseMap<NamedDecl *, SourceLocation>::iterator
+ I = UndefinedButUsed.begin(), E = UndefinedButUsed.end();
+ I != E; ++I) {
+ NamedDecl *ND = I->first;
+
+ // Ignore attributes that have become invalid.
+ if (ND->isInvalidDecl()) continue;
+
+ // __attribute__((weakref)) is basically a definition.
+ if (ND->hasAttr<WeakRefAttr>()) continue;
+
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
+ if (FD->isDefined())
+ continue;
+ if (FD->isExternallyVisible() &&
+ !FD->getMostRecentDecl()->isInlined())
+ continue;
+ } else {
+ if (cast<VarDecl>(ND)->hasDefinition() != VarDecl::DeclarationOnly)
+ continue;
+ if (ND->isExternallyVisible())
+ continue;
+ }
+
+ Undefined.push_back(std::make_pair(ND, I->second));
+ }
+
+ // Sort (in order of use site) so that we're not dependent on the iteration
+ // order through an llvm::DenseMap.
+ SourceManager &SM = Context.getSourceManager();
+ std::sort(Undefined.begin(), Undefined.end(),
+ [&SM](const std::pair<NamedDecl *, SourceLocation> &l,
+ const std::pair<NamedDecl *, SourceLocation> &r) {
+ if (l.second.isValid() && !r.second.isValid())
+ return true;
+ if (!l.second.isValid() && r.second.isValid())
+ return false;
+ if (l.second != r.second)
+ return SM.isBeforeInTranslationUnit(l.second, r.second);
+ return SM.isBeforeInTranslationUnit(l.first->getLocation(),
+ r.first->getLocation());
+ });
+}
+
+/// checkUndefinedButUsed - Check for undefined objects with internal linkage
+/// or that are inline.
+static void checkUndefinedButUsed(Sema &S) {
+ if (S.UndefinedButUsed.empty()) return;
+
+ // Collect all the still-undefined entities with internal linkage.
+ SmallVector<std::pair<NamedDecl *, SourceLocation>, 16> Undefined;
+ S.getUndefinedButUsed(Undefined);
+ if (Undefined.empty()) return;
+
+ for (SmallVectorImpl<std::pair<NamedDecl *, SourceLocation> >::iterator
+ I = Undefined.begin(), E = Undefined.end(); I != E; ++I) {
+ NamedDecl *ND = I->first;
+
+ if (ND->hasAttr<DLLImportAttr>() || ND->hasAttr<DLLExportAttr>()) {
+ // An exported function will always be emitted when defined, so even if
+ // the function is inline, it doesn't have to be emitted in this TU. An
+ // imported function implies that it has been exported somewhere else.
+ continue;
+ }
+
+ if (!ND->isExternallyVisible()) {
+ S.Diag(ND->getLocation(), diag::warn_undefined_internal)
+ << isa<VarDecl>(ND) << ND;
+ } else {
+ assert(cast<FunctionDecl>(ND)->getMostRecentDecl()->isInlined() &&
+ "used object requires definition but isn't inline or internal?");
+ S.Diag(ND->getLocation(), diag::warn_undefined_inline) << ND;
+ }
+ if (I->second.isValid())
+ S.Diag(I->second, diag::note_used_here);
+ }
+}
+
+void Sema::LoadExternalWeakUndeclaredIdentifiers() {
+ if (!ExternalSource)
+ return;
+
+ SmallVector<std::pair<IdentifierInfo *, WeakInfo>, 4> WeakIDs;
+ ExternalSource->ReadWeakUndeclaredIdentifiers(WeakIDs);
+ for (auto &WeakID : WeakIDs)
+ WeakUndeclaredIdentifiers.insert(WeakID);
+}
+
+
+typedef llvm::DenseMap<const CXXRecordDecl*, bool> RecordCompleteMap;
+
+/// \brief Returns true, if all methods and nested classes of the given
+/// CXXRecordDecl are defined in this translation unit.
+///
+/// Should only be called from ActOnEndOfTranslationUnit so that all
+/// definitions are actually read.
+static bool MethodsAndNestedClassesComplete(const CXXRecordDecl *RD,
+ RecordCompleteMap &MNCComplete) {
+ RecordCompleteMap::iterator Cache = MNCComplete.find(RD);
+ if (Cache != MNCComplete.end())
+ return Cache->second;
+ if (!RD->isCompleteDefinition())
+ return false;
+ bool Complete = true;
+ for (DeclContext::decl_iterator I = RD->decls_begin(),
+ E = RD->decls_end();
+ I != E && Complete; ++I) {
+ if (const CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(*I))
+ Complete = M->isDefined() || (M->isPure() && !isa<CXXDestructorDecl>(M));
+ else if (const FunctionTemplateDecl *F = dyn_cast<FunctionTemplateDecl>(*I))
+ // If the template function is marked as late template parsed at this point,
+ // it has not been instantiated and therefore we have not performed semantic
+ // analysis on it yet, so we cannot know if the type can be considered
+ // complete.
+ Complete = !F->getTemplatedDecl()->isLateTemplateParsed() &&
+ F->getTemplatedDecl()->isDefined();
+ else if (const CXXRecordDecl *R = dyn_cast<CXXRecordDecl>(*I)) {
+ if (R->isInjectedClassName())
+ continue;
+ if (R->hasDefinition())
+ Complete = MethodsAndNestedClassesComplete(R->getDefinition(),
+ MNCComplete);
+ else
+ Complete = false;
+ }
+ }
+ MNCComplete[RD] = Complete;
+ return Complete;
+}
+
+/// \brief Returns true, if the given CXXRecordDecl is fully defined in this
+/// translation unit, i.e. all methods are defined or pure virtual and all
+/// friends, friend functions and nested classes are fully defined in this
+/// translation unit.
+///
+/// Should only be called from ActOnEndOfTranslationUnit so that all
+/// definitions are actually read.
+static bool IsRecordFullyDefined(const CXXRecordDecl *RD,
+ RecordCompleteMap &RecordsComplete,
+ RecordCompleteMap &MNCComplete) {
+ RecordCompleteMap::iterator Cache = RecordsComplete.find(RD);
+ if (Cache != RecordsComplete.end())
+ return Cache->second;
+ bool Complete = MethodsAndNestedClassesComplete(RD, MNCComplete);
+ for (CXXRecordDecl::friend_iterator I = RD->friend_begin(),
+ E = RD->friend_end();
+ I != E && Complete; ++I) {
+ // Check if friend classes and methods are complete.
+ if (TypeSourceInfo *TSI = (*I)->getFriendType()) {
+ // Friend classes are available as the TypeSourceInfo of the FriendDecl.
+ if (CXXRecordDecl *FriendD = TSI->getType()->getAsCXXRecordDecl())
+ Complete = MethodsAndNestedClassesComplete(FriendD, MNCComplete);
+ else
+ Complete = false;
+ } else {
+ // Friend functions are available through the NamedDecl of FriendDecl.
+ if (const FunctionDecl *FD =
+ dyn_cast<FunctionDecl>((*I)->getFriendDecl()))
+ Complete = FD->isDefined();
+ else
+ // This is a template friend, give up.
+ Complete = false;
+ }
+ }
+ RecordsComplete[RD] = Complete;
+ return Complete;
+}
+
+void Sema::emitAndClearUnusedLocalTypedefWarnings() {
+ if (ExternalSource)
+ ExternalSource->ReadUnusedLocalTypedefNameCandidates(
+ UnusedLocalTypedefNameCandidates);
+ for (const TypedefNameDecl *TD : UnusedLocalTypedefNameCandidates) {
+ if (TD->isReferenced())
+ continue;
+ Diag(TD->getLocation(), diag::warn_unused_local_typedef)
+ << isa<TypeAliasDecl>(TD) << TD->getDeclName();
+ }
+ UnusedLocalTypedefNameCandidates.clear();
+}
+
+/// ActOnEndOfTranslationUnit - This is called at the very end of the
+/// translation unit when EOF is reached and all but the top-level scope is
+/// popped.
+void Sema::ActOnEndOfTranslationUnit() {
+ assert(DelayedDiagnostics.getCurrentPool() == nullptr
+ && "reached end of translation unit with a pool attached?");
+
+ // If code completion is enabled, don't perform any end-of-translation-unit
+ // work.
+ if (PP.isCodeCompletionEnabled())
+ return;
+
+ // Complete translation units and modules define vtables and perform implicit
+ // instantiations. PCH files do not.
+ if (TUKind != TU_Prefix) {
+ DiagnoseUseOfUnimplementedSelectors();
+
+ // If DefinedUsedVTables ends up marking any virtual member functions it
+ // might lead to more pending template instantiations, which we then need
+ // to instantiate.
+ DefineUsedVTables();
+
+ // C++: Perform implicit template instantiations.
+ //
+ // FIXME: When we perform these implicit instantiations, we do not
+ // carefully keep track of the point of instantiation (C++ [temp.point]).
+ // This means that name lookup that occurs within the template
+ // instantiation will always happen at the end of the translation unit,
+ // so it will find some names that are not required to be found. This is
+ // valid, but we could do better by diagnosing if an instantiation uses a
+ // name that was not visible at its first point of instantiation.
+ if (ExternalSource) {
+ // Load pending instantiations from the external source.
+ SmallVector<PendingImplicitInstantiation, 4> Pending;
+ ExternalSource->ReadPendingInstantiations(Pending);
+ PendingInstantiations.insert(PendingInstantiations.begin(),
+ Pending.begin(), Pending.end());
+ }
+ PerformPendingInstantiations();
+
+ if (LateTemplateParserCleanup)
+ LateTemplateParserCleanup(OpaqueParser);
+
+ CheckDelayedMemberExceptionSpecs();
+ }
+
+ // All delayed member exception specs should be checked or we end up accepting
+ // incompatible declarations.
+ // FIXME: This is wrong for TUKind == TU_Prefix. In that case, we need to
+ // write out the lists to the AST file (if any).
+ assert(DelayedDefaultedMemberExceptionSpecs.empty());
+ assert(DelayedExceptionSpecChecks.empty());
+
+ // Remove file scoped decls that turned out to be used.
+ UnusedFileScopedDecls.erase(
+ std::remove_if(UnusedFileScopedDecls.begin(nullptr, true),
+ UnusedFileScopedDecls.end(),
+ std::bind1st(std::ptr_fun(ShouldRemoveFromUnused), this)),
+ UnusedFileScopedDecls.end());
+
+ if (TUKind == TU_Prefix) {
+ // Translation unit prefixes don't need any of the checking below.
+ TUScope = nullptr;
+ return;
+ }
+
+ // Check for #pragma weak identifiers that were never declared
+ LoadExternalWeakUndeclaredIdentifiers();
+ for (auto WeakID : WeakUndeclaredIdentifiers) {
+ if (WeakID.second.getUsed())
+ continue;
+
+ Diag(WeakID.second.getLocation(), diag::warn_weak_identifier_undeclared)
+ << WeakID.first;
+ }
+
+ if (LangOpts.CPlusPlus11 &&
+ !Diags.isIgnored(diag::warn_delegating_ctor_cycle, SourceLocation()))
+ CheckDelegatingCtorCycles();
+
+ if (TUKind == TU_Module) {
+ // If we are building a module, resolve all of the exported declarations
+ // now.
+ if (Module *CurrentModule = PP.getCurrentModule()) {
+ ModuleMap &ModMap = PP.getHeaderSearchInfo().getModuleMap();
+
+ SmallVector<Module *, 2> Stack;
+ Stack.push_back(CurrentModule);
+ while (!Stack.empty()) {
+ Module *Mod = Stack.pop_back_val();
+
+ // Resolve the exported declarations and conflicts.
+ // FIXME: Actually complain, once we figure out how to teach the
+ // diagnostic client to deal with complaints in the module map at this
+ // point.
+ ModMap.resolveExports(Mod, /*Complain=*/false);
+ ModMap.resolveUses(Mod, /*Complain=*/false);
+ ModMap.resolveConflicts(Mod, /*Complain=*/false);
+
+ // Queue the submodules, so their exports will also be resolved.
+ for (Module::submodule_iterator Sub = Mod->submodule_begin(),
+ SubEnd = Mod->submodule_end();
+ Sub != SubEnd; ++Sub) {
+ Stack.push_back(*Sub);
+ }
+ }
+ }
+
+ // Warnings emitted in ActOnEndOfTranslationUnit() should be emitted for
+ // modules when they are built, not every time they are used.
+ emitAndClearUnusedLocalTypedefWarnings();
+
+ // Modules don't need any of the checking below.
+ TUScope = nullptr;
+ return;
+ }
+
+ // C99 6.9.2p2:
+ // A declaration of an identifier for an object that has file
+ // scope without an initializer, and without a storage-class
+ // specifier or with the storage-class specifier static,
+ // constitutes a tentative definition. If a translation unit
+ // contains one or more tentative definitions for an identifier,
+ // and the translation unit contains no external definition for
+ // that identifier, then the behavior is exactly as if the
+ // translation unit contains a file scope declaration of that
+ // identifier, with the composite type as of the end of the
+ // translation unit, with an initializer equal to 0.
+ llvm::SmallSet<VarDecl *, 32> Seen;
+ for (TentativeDefinitionsType::iterator
+ T = TentativeDefinitions.begin(ExternalSource),
+ TEnd = TentativeDefinitions.end();
+ T != TEnd; ++T)
+ {
+ VarDecl *VD = (*T)->getActingDefinition();
+
+ // If the tentative definition was completed, getActingDefinition() returns
+ // null. If we've already seen this variable before, insert()'s second
+ // return value is false.
+ if (!VD || VD->isInvalidDecl() || !Seen.insert(VD).second)
+ continue;
+
+ if (const IncompleteArrayType *ArrayT
+ = Context.getAsIncompleteArrayType(VD->getType())) {
+ // Set the length of the array to 1 (C99 6.9.2p5).
+ Diag(VD->getLocation(), diag::warn_tentative_incomplete_array);
+ llvm::APInt One(Context.getTypeSize(Context.getSizeType()), true);
+ QualType T = Context.getConstantArrayType(ArrayT->getElementType(),
+ One, ArrayType::Normal, 0);
+ VD->setType(T);
+ } else if (RequireCompleteType(VD->getLocation(), VD->getType(),
+ diag::err_tentative_def_incomplete_type))
+ VD->setInvalidDecl();
+
+ CheckCompleteVariableDeclaration(VD);
+
+ // Notify the consumer that we've completed a tentative definition.
+ if (!VD->isInvalidDecl())
+ Consumer.CompleteTentativeDefinition(VD);
+
+ }
+
+ // If there were errors, disable 'unused' warnings since they will mostly be
+ // noise.
+ if (!Diags.hasErrorOccurred()) {
+ // Output warning for unused file scoped decls.
+ for (UnusedFileScopedDeclsType::iterator
+ I = UnusedFileScopedDecls.begin(ExternalSource),
+ E = UnusedFileScopedDecls.end(); I != E; ++I) {
+ if (ShouldRemoveFromUnused(this, *I))
+ continue;
+
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
+ const FunctionDecl *DiagD;
+ if (!FD->hasBody(DiagD))
+ DiagD = FD;
+ if (DiagD->isDeleted())
+ continue; // Deleted functions are supposed to be unused.
+ if (DiagD->isReferenced()) {
+ if (isa<CXXMethodDecl>(DiagD))
+ Diag(DiagD->getLocation(), diag::warn_unneeded_member_function)
+ << DiagD->getDeclName();
+ else {
+ if (FD->getStorageClass() == SC_Static &&
+ !FD->isInlineSpecified() &&
+ !SourceMgr.isInMainFile(
+ SourceMgr.getExpansionLoc(FD->getLocation())))
+ Diag(DiagD->getLocation(),
+ diag::warn_unneeded_static_internal_decl)
+ << DiagD->getDeclName();
+ else
+ Diag(DiagD->getLocation(), diag::warn_unneeded_internal_decl)
+ << /*function*/0 << DiagD->getDeclName();
+ }
+ } else {
+ Diag(DiagD->getLocation(),
+ isa<CXXMethodDecl>(DiagD) ? diag::warn_unused_member_function
+ : diag::warn_unused_function)
+ << DiagD->getDeclName();
+ }
+ } else {
+ const VarDecl *DiagD = cast<VarDecl>(*I)->getDefinition();
+ if (!DiagD)
+ DiagD = cast<VarDecl>(*I);
+ if (DiagD->isReferenced()) {
+ Diag(DiagD->getLocation(), diag::warn_unneeded_internal_decl)
+ << /*variable*/1 << DiagD->getDeclName();
+ } else if (DiagD->getType().isConstQualified()) {
+ Diag(DiagD->getLocation(), diag::warn_unused_const_variable)
+ << DiagD->getDeclName();
+ } else {
+ Diag(DiagD->getLocation(), diag::warn_unused_variable)
+ << DiagD->getDeclName();
+ }
+ }
+ }
+
+ if (ExternalSource)
+ ExternalSource->ReadUndefinedButUsed(UndefinedButUsed);
+ checkUndefinedButUsed(*this);
+
+ emitAndClearUnusedLocalTypedefWarnings();
+ }
+
+ if (!Diags.isIgnored(diag::warn_unused_private_field, SourceLocation())) {
+ RecordCompleteMap RecordsComplete;
+ RecordCompleteMap MNCComplete;
+ for (NamedDeclSetType::iterator I = UnusedPrivateFields.begin(),
+ E = UnusedPrivateFields.end(); I != E; ++I) {
+ const NamedDecl *D = *I;
+ const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D->getDeclContext());
+ if (RD && !RD->isUnion() &&
+ IsRecordFullyDefined(RD, RecordsComplete, MNCComplete)) {
+ Diag(D->getLocation(), diag::warn_unused_private_field)
+ << D->getDeclName();
+ }
+ }
+ }
+
+ if (!Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation())) {
+ if (ExternalSource)
+ ExternalSource->ReadMismatchingDeleteExpressions(DeleteExprs);
+ for (const auto &DeletedFieldInfo : DeleteExprs) {
+ for (const auto &DeleteExprLoc : DeletedFieldInfo.second) {
+ AnalyzeDeleteExprMismatch(DeletedFieldInfo.first, DeleteExprLoc.first,
+ DeleteExprLoc.second);
+ }
+ }
+ }
+
+ // Check we've noticed that we're no longer parsing the initializer for every
+ // variable. If we miss cases, then at best we have a performance issue and
+ // at worst a rejects-valid bug.
+ assert(ParsingInitForAutoVars.empty() &&
+ "Didn't unmark var as having its initializer parsed");
+
+ TUScope = nullptr;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Helper functions.
+//===----------------------------------------------------------------------===//
+
+DeclContext *Sema::getFunctionLevelDeclContext() {
+ DeclContext *DC = CurContext;
+
+ while (true) {
+ if (isa<BlockDecl>(DC) || isa<EnumDecl>(DC) || isa<CapturedDecl>(DC)) {
+ DC = DC->getParent();
+ } else if (isa<CXXMethodDecl>(DC) &&
+ cast<CXXMethodDecl>(DC)->getOverloadedOperator() == OO_Call &&
+ cast<CXXRecordDecl>(DC->getParent())->isLambda()) {
+ DC = DC->getParent()->getParent();
+ }
+ else break;
+ }
+
+ return DC;
+}
+
+/// getCurFunctionDecl - If inside of a function body, this returns a pointer
+/// to the function decl for the function being parsed. If we're currently
+/// in a 'block', this returns the containing context.
+FunctionDecl *Sema::getCurFunctionDecl() {
+ DeclContext *DC = getFunctionLevelDeclContext();
+ return dyn_cast<FunctionDecl>(DC);
+}
+
+ObjCMethodDecl *Sema::getCurMethodDecl() {
+ DeclContext *DC = getFunctionLevelDeclContext();
+ while (isa<RecordDecl>(DC))
+ DC = DC->getParent();
+ return dyn_cast<ObjCMethodDecl>(DC);
+}
+
+NamedDecl *Sema::getCurFunctionOrMethodDecl() {
+ DeclContext *DC = getFunctionLevelDeclContext();
+ if (isa<ObjCMethodDecl>(DC) || isa<FunctionDecl>(DC))
+ return cast<NamedDecl>(DC);
+ return nullptr;
+}
+
+void Sema::EmitCurrentDiagnostic(unsigned DiagID) {
+ // FIXME: It doesn't make sense to me that DiagID is an incoming argument here
+ // and yet we also use the current diag ID on the DiagnosticsEngine. This has
+ // been made more painfully obvious by the refactor that introduced this
+ // function, but it is possible that the incoming argument can be
+ // eliminnated. If it truly cannot be (for example, there is some reentrancy
+ // issue I am not seeing yet), then there should at least be a clarifying
+ // comment somewhere.
+ if (Optional<TemplateDeductionInfo*> Info = isSFINAEContext()) {
+ switch (DiagnosticIDs::getDiagnosticSFINAEResponse(
+ Diags.getCurrentDiagID())) {
+ case DiagnosticIDs::SFINAE_Report:
+ // We'll report the diagnostic below.
+ break;
+
+ case DiagnosticIDs::SFINAE_SubstitutionFailure:
+ // Count this failure so that we know that template argument deduction
+ // has failed.
+ ++NumSFINAEErrors;
+
+ // Make a copy of this suppressed diagnostic and store it with the
+ // template-deduction information.
+ if (*Info && !(*Info)->hasSFINAEDiagnostic()) {
+ Diagnostic DiagInfo(&Diags);
+ (*Info)->addSFINAEDiagnostic(DiagInfo.getLocation(),
+ PartialDiagnostic(DiagInfo, Context.getDiagAllocator()));
+ }
+
+ Diags.setLastDiagnosticIgnored();
+ Diags.Clear();
+ return;
+
+ case DiagnosticIDs::SFINAE_AccessControl: {
+ // Per C++ Core Issue 1170, access control is part of SFINAE.
+ // Additionally, the AccessCheckingSFINAE flag can be used to temporarily
+ // make access control a part of SFINAE for the purposes of checking
+ // type traits.
+ if (!AccessCheckingSFINAE && !getLangOpts().CPlusPlus11)
+ break;
+
+ SourceLocation Loc = Diags.getCurrentDiagLoc();
+
+ // Suppress this diagnostic.
+ ++NumSFINAEErrors;
+
+ // Make a copy of this suppressed diagnostic and store it with the
+ // template-deduction information.
+ if (*Info && !(*Info)->hasSFINAEDiagnostic()) {
+ Diagnostic DiagInfo(&Diags);
+ (*Info)->addSFINAEDiagnostic(DiagInfo.getLocation(),
+ PartialDiagnostic(DiagInfo, Context.getDiagAllocator()));
+ }
+
+ Diags.setLastDiagnosticIgnored();
+ Diags.Clear();
+
+ // Now the diagnostic state is clear, produce a C++98 compatibility
+ // warning.
+ Diag(Loc, diag::warn_cxx98_compat_sfinae_access_control);
+
+ // The last diagnostic which Sema produced was ignored. Suppress any
+ // notes attached to it.
+ Diags.setLastDiagnosticIgnored();
+ return;
+ }
+
+ case DiagnosticIDs::SFINAE_Suppress:
+ // Make a copy of this suppressed diagnostic and store it with the
+ // template-deduction information;
+ if (*Info) {
+ Diagnostic DiagInfo(&Diags);
+ (*Info)->addSuppressedDiagnostic(DiagInfo.getLocation(),
+ PartialDiagnostic(DiagInfo, Context.getDiagAllocator()));
+ }
+
+ // Suppress this diagnostic.
+ Diags.setLastDiagnosticIgnored();
+ Diags.Clear();
+ return;
+ }
+ }
+
+ // Set up the context's printing policy based on our current state.
+ Context.setPrintingPolicy(getPrintingPolicy());
+
+ // Emit the diagnostic.
+ if (!Diags.EmitCurrentDiagnostic())
+ return;
+
+ // If this is not a note, and we're in a template instantiation
+ // that is different from the last template instantiation where
+ // we emitted an error, print a template instantiation
+ // backtrace.
+ if (!DiagnosticIDs::isBuiltinNote(DiagID) &&
+ !ActiveTemplateInstantiations.empty() &&
+ ActiveTemplateInstantiations.back()
+ != LastTemplateInstantiationErrorContext) {
+ PrintInstantiationStack();
+ LastTemplateInstantiationErrorContext = ActiveTemplateInstantiations.back();
+ }
+}
+
+Sema::SemaDiagnosticBuilder
+Sema::Diag(SourceLocation Loc, const PartialDiagnostic& PD) {
+ SemaDiagnosticBuilder Builder(Diag(Loc, PD.getDiagID()));
+ PD.Emit(Builder);
+
+ return Builder;
+}
+
+/// \brief Looks through the macro-expansion chain for the given
+/// location, looking for a macro expansion with the given name.
+/// If one is found, returns true and sets the location to that
+/// expansion loc.
+bool Sema::findMacroSpelling(SourceLocation &locref, StringRef name) {
+ SourceLocation loc = locref;
+ if (!loc.isMacroID()) return false;
+
+ // There's no good way right now to look at the intermediate
+ // expansions, so just jump to the expansion location.
+ loc = getSourceManager().getExpansionLoc(loc);
+
+ // If that's written with the name, stop here.
+ SmallVector<char, 16> buffer;
+ if (getPreprocessor().getSpelling(loc, buffer) == name) {
+ locref = loc;
+ return true;
+ }
+ return false;
+}
+
+/// \brief Determines the active Scope associated with the given declaration
+/// context.
+///
+/// This routine maps a declaration context to the active Scope object that
+/// represents that declaration context in the parser. It is typically used
+/// from "scope-less" code (e.g., template instantiation, lazy creation of
+/// declarations) that injects a name for name-lookup purposes and, therefore,
+/// must update the Scope.
+///
+/// \returns The scope corresponding to the given declaraion context, or NULL
+/// if no such scope is open.
+Scope *Sema::getScopeForContext(DeclContext *Ctx) {
+
+ if (!Ctx)
+ return nullptr;
+
+ Ctx = Ctx->getPrimaryContext();
+ for (Scope *S = getCurScope(); S; S = S->getParent()) {
+ // Ignore scopes that cannot have declarations. This is important for
+ // out-of-line definitions of static class members.
+ if (S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope))
+ if (DeclContext *Entity = S->getEntity())
+ if (Ctx == Entity->getPrimaryContext())
+ return S;
+ }
+
+ return nullptr;
+}
+
+/// \brief Enter a new function scope
+void Sema::PushFunctionScope() {
+ if (FunctionScopes.size() == 1) {
+ // Use the "top" function scope rather than having to allocate
+ // memory for a new scope.
+ FunctionScopes.back()->Clear();
+ FunctionScopes.push_back(FunctionScopes.back());
+ return;
+ }
+
+ FunctionScopes.push_back(new FunctionScopeInfo(getDiagnostics()));
+}
+
+void Sema::PushBlockScope(Scope *BlockScope, BlockDecl *Block) {
+ FunctionScopes.push_back(new BlockScopeInfo(getDiagnostics(),
+ BlockScope, Block));
+}
+
+LambdaScopeInfo *Sema::PushLambdaScope() {
+ LambdaScopeInfo *const LSI = new LambdaScopeInfo(getDiagnostics());
+ FunctionScopes.push_back(LSI);
+ return LSI;
+}
+
+void Sema::RecordParsingTemplateParameterDepth(unsigned Depth) {
+ if (LambdaScopeInfo *const LSI = getCurLambda()) {
+ LSI->AutoTemplateParameterDepth = Depth;
+ return;
+ }
+ llvm_unreachable(
+ "Remove assertion if intentionally called in a non-lambda context.");
+}
+
+void Sema::PopFunctionScopeInfo(const AnalysisBasedWarnings::Policy *WP,
+ const Decl *D, const BlockExpr *blkExpr) {
+ FunctionScopeInfo *Scope = FunctionScopes.pop_back_val();
+ assert(!FunctionScopes.empty() && "mismatched push/pop!");
+
+ // Issue any analysis-based warnings.
+ if (WP && D)
+ AnalysisWarnings.IssueWarnings(*WP, Scope, D, blkExpr);
+ else
+ for (const auto &PUD : Scope->PossiblyUnreachableDiags)
+ Diag(PUD.Loc, PUD.PD);
+
+ if (FunctionScopes.back() != Scope)
+ delete Scope;
+}
+
+void Sema::PushCompoundScope() {
+ getCurFunction()->CompoundScopes.push_back(CompoundScopeInfo());
+}
+
+void Sema::PopCompoundScope() {
+ FunctionScopeInfo *CurFunction = getCurFunction();
+ assert(!CurFunction->CompoundScopes.empty() && "mismatched push/pop");
+
+ CurFunction->CompoundScopes.pop_back();
+}
+
+/// \brief Determine whether any errors occurred within this function/method/
+/// block.
+bool Sema::hasAnyUnrecoverableErrorsInThisFunction() const {
+ return getCurFunction()->ErrorTrap.hasUnrecoverableErrorOccurred();
+}
+
+BlockScopeInfo *Sema::getCurBlock() {
+ if (FunctionScopes.empty())
+ return nullptr;
+
+ auto CurBSI = dyn_cast<BlockScopeInfo>(FunctionScopes.back());
+ if (CurBSI && CurBSI->TheDecl &&
+ !CurBSI->TheDecl->Encloses(CurContext)) {
+ // We have switched contexts due to template instantiation.
+ assert(!ActiveTemplateInstantiations.empty());
+ return nullptr;
+ }
+
+ return CurBSI;
+}
+
+LambdaScopeInfo *Sema::getCurLambda() {
+ if (FunctionScopes.empty())
+ return nullptr;
+
+ auto CurLSI = dyn_cast<LambdaScopeInfo>(FunctionScopes.back());
+ if (CurLSI && CurLSI->Lambda &&
+ !CurLSI->Lambda->Encloses(CurContext)) {
+ // We have switched contexts due to template instantiation.
+ assert(!ActiveTemplateInstantiations.empty());
+ return nullptr;
+ }
+
+ return CurLSI;
+}
+// We have a generic lambda if we parsed auto parameters, or we have
+// an associated template parameter list.
+LambdaScopeInfo *Sema::getCurGenericLambda() {
+ if (LambdaScopeInfo *LSI = getCurLambda()) {
+ return (LSI->AutoTemplateParams.size() ||
+ LSI->GLTemplateParameterList) ? LSI : nullptr;
+ }
+ return nullptr;
+}
+
+
+void Sema::ActOnComment(SourceRange Comment) {
+ if (!LangOpts.RetainCommentsFromSystemHeaders &&
+ SourceMgr.isInSystemHeader(Comment.getBegin()))
+ return;
+ RawComment RC(SourceMgr, Comment, false,
+ LangOpts.CommentOpts.ParseAllComments);
+ if (RC.isAlmostTrailingComment()) {
+ SourceRange MagicMarkerRange(Comment.getBegin(),
+ Comment.getBegin().getLocWithOffset(3));
+ StringRef MagicMarkerText;
+ switch (RC.getKind()) {
+ case RawComment::RCK_OrdinaryBCPL:
+ MagicMarkerText = "///<";
+ break;
+ case RawComment::RCK_OrdinaryC:
+ MagicMarkerText = "/**<";
+ break;
+ default:
+ llvm_unreachable("if this is an almost Doxygen comment, "
+ "it should be ordinary");
+ }
+ Diag(Comment.getBegin(), diag::warn_not_a_doxygen_trailing_member_comment) <<
+ FixItHint::CreateReplacement(MagicMarkerRange, MagicMarkerText);
+ }
+ Context.addComment(RC);
+}
+
+// Pin this vtable to this file.
+ExternalSemaSource::~ExternalSemaSource() {}
+
+void ExternalSemaSource::ReadMethodPool(Selector Sel) { }
+
+void ExternalSemaSource::ReadKnownNamespaces(
+ SmallVectorImpl<NamespaceDecl *> &Namespaces) {
+}
+
+void ExternalSemaSource::ReadUndefinedButUsed(
+ llvm::DenseMap<NamedDecl *, SourceLocation> &Undefined) {
+}
+
+void ExternalSemaSource::ReadMismatchingDeleteExpressions(llvm::MapVector<
+ FieldDecl *, llvm::SmallVector<std::pair<SourceLocation, bool>, 4>> &) {}
+
+void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
+ SourceLocation Loc = this->Loc;
+ if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
+ if (Loc.isValid()) {
+ Loc.print(OS, S.getSourceManager());
+ OS << ": ";
+ }
+ OS << Message;
+
+ if (TheDecl && isa<NamedDecl>(TheDecl)) {
+ std::string Name = cast<NamedDecl>(TheDecl)->getNameAsString();
+ if (!Name.empty())
+ OS << " '" << Name << '\'';
+ }
+
+ OS << '\n';
+}
+
+/// \brief Figure out if an expression could be turned into a call.
+///
+/// Use this when trying to recover from an error where the programmer may have
+/// written just the name of a function instead of actually calling it.
+///
+/// \param E - The expression to examine.
+/// \param ZeroArgCallReturnTy - If the expression can be turned into a call
+/// with no arguments, this parameter is set to the type returned by such a
+/// call; otherwise, it is set to an empty QualType.
+/// \param OverloadSet - If the expression is an overloaded function
+/// name, this parameter is populated with the decls of the various overloads.
+bool Sema::tryExprAsCall(Expr &E, QualType &ZeroArgCallReturnTy,
+ UnresolvedSetImpl &OverloadSet) {
+ ZeroArgCallReturnTy = QualType();
+ OverloadSet.clear();
+
+ const OverloadExpr *Overloads = nullptr;
+ bool IsMemExpr = false;
+ if (E.getType() == Context.OverloadTy) {
+ OverloadExpr::FindResult FR = OverloadExpr::find(const_cast<Expr*>(&E));
+
+ // Ignore overloads that are pointer-to-member constants.
+ if (FR.HasFormOfMemberPointer)
+ return false;
+
+ Overloads = FR.Expression;
+ } else if (E.getType() == Context.BoundMemberTy) {
+ Overloads = dyn_cast<UnresolvedMemberExpr>(E.IgnoreParens());
+ IsMemExpr = true;
+ }
+
+ bool Ambiguous = false;
+
+ if (Overloads) {
+ for (OverloadExpr::decls_iterator it = Overloads->decls_begin(),
+ DeclsEnd = Overloads->decls_end(); it != DeclsEnd; ++it) {
+ OverloadSet.addDecl(*it);
+
+ // Check whether the function is a non-template, non-member which takes no
+ // arguments.
+ if (IsMemExpr)
+ continue;
+ if (const FunctionDecl *OverloadDecl
+ = dyn_cast<FunctionDecl>((*it)->getUnderlyingDecl())) {
+ if (OverloadDecl->getMinRequiredArguments() == 0) {
+ if (!ZeroArgCallReturnTy.isNull() && !Ambiguous) {
+ ZeroArgCallReturnTy = QualType();
+ Ambiguous = true;
+ } else
+ ZeroArgCallReturnTy = OverloadDecl->getReturnType();
+ }
+ }
+ }
+
+ // If it's not a member, use better machinery to try to resolve the call
+ if (!IsMemExpr)
+ return !ZeroArgCallReturnTy.isNull();
+ }
+
+ // Attempt to call the member with no arguments - this will correctly handle
+ // member templates with defaults/deduction of template arguments, overloads
+ // with default arguments, etc.
+ if (IsMemExpr && !E.isTypeDependent()) {
+ bool Suppress = getDiagnostics().getSuppressAllDiagnostics();
+ getDiagnostics().setSuppressAllDiagnostics(true);
+ ExprResult R = BuildCallToMemberFunction(nullptr, &E, SourceLocation(),
+ None, SourceLocation());
+ getDiagnostics().setSuppressAllDiagnostics(Suppress);
+ if (R.isUsable()) {
+ ZeroArgCallReturnTy = R.get()->getType();
+ return true;
+ }
+ return false;
+ }
+
+ if (const DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E.IgnoreParens())) {
+ if (const FunctionDecl *Fun = dyn_cast<FunctionDecl>(DeclRef->getDecl())) {
+ if (Fun->getMinRequiredArguments() == 0)
+ ZeroArgCallReturnTy = Fun->getReturnType();
+ return true;
+ }
+ }
+
+ // We don't have an expression that's convenient to get a FunctionDecl from,
+ // but we can at least check if the type is "function of 0 arguments".
+ QualType ExprTy = E.getType();
+ const FunctionType *FunTy = nullptr;
+ QualType PointeeTy = ExprTy->getPointeeType();
+ if (!PointeeTy.isNull())
+ FunTy = PointeeTy->getAs<FunctionType>();
+ if (!FunTy)
+ FunTy = ExprTy->getAs<FunctionType>();
+
+ if (const FunctionProtoType *FPT =
+ dyn_cast_or_null<FunctionProtoType>(FunTy)) {
+ if (FPT->getNumParams() == 0)
+ ZeroArgCallReturnTy = FunTy->getReturnType();
+ return true;
+ }
+ return false;
+}
+
+/// \brief Give notes for a set of overloads.
+///
+/// A companion to tryExprAsCall. In cases when the name that the programmer
+/// wrote was an overloaded function, we may be able to make some guesses about
+/// plausible overloads based on their return types; such guesses can be handed
+/// off to this method to be emitted as notes.
+///
+/// \param Overloads - The overloads to note.
+/// \param FinalNoteLoc - If we've suppressed printing some overloads due to
+/// -fshow-overloads=best, this is the location to attach to the note about too
+/// many candidates. Typically this will be the location of the original
+/// ill-formed expression.
+static void noteOverloads(Sema &S, const UnresolvedSetImpl &Overloads,
+ const SourceLocation FinalNoteLoc) {
+ int ShownOverloads = 0;
+ int SuppressedOverloads = 0;
+ for (UnresolvedSetImpl::iterator It = Overloads.begin(),
+ DeclsEnd = Overloads.end(); It != DeclsEnd; ++It) {
+ // FIXME: Magic number for max shown overloads stolen from
+ // OverloadCandidateSet::NoteCandidates.
+ if (ShownOverloads >= 4 && S.Diags.getShowOverloads() == Ovl_Best) {
+ ++SuppressedOverloads;
+ continue;
+ }
+
+ NamedDecl *Fn = (*It)->getUnderlyingDecl();
+ S.Diag(Fn->getLocation(), diag::note_possible_target_of_call);
+ ++ShownOverloads;
+ }
+
+ if (SuppressedOverloads)
+ S.Diag(FinalNoteLoc, diag::note_ovl_too_many_candidates)
+ << SuppressedOverloads;
+}
+
+static void notePlausibleOverloads(Sema &S, SourceLocation Loc,
+ const UnresolvedSetImpl &Overloads,
+ bool (*IsPlausibleResult)(QualType)) {
+ if (!IsPlausibleResult)
+ return noteOverloads(S, Overloads, Loc);
+
+ UnresolvedSet<2> PlausibleOverloads;
+ for (OverloadExpr::decls_iterator It = Overloads.begin(),
+ DeclsEnd = Overloads.end(); It != DeclsEnd; ++It) {
+ const FunctionDecl *OverloadDecl = cast<FunctionDecl>(*It);
+ QualType OverloadResultTy = OverloadDecl->getReturnType();
+ if (IsPlausibleResult(OverloadResultTy))
+ PlausibleOverloads.addDecl(It.getDecl());
+ }
+ noteOverloads(S, PlausibleOverloads, Loc);
+}
+
+/// Determine whether the given expression can be called by just
+/// putting parentheses after it. Notably, expressions with unary
+/// operators can't be because the unary operator will start parsing
+/// outside the call.
+static bool IsCallableWithAppend(Expr *E) {
+ E = E->IgnoreImplicit();
+ return (!isa<CStyleCastExpr>(E) &&
+ !isa<UnaryOperator>(E) &&
+ !isa<BinaryOperator>(E) &&
+ !isa<CXXOperatorCallExpr>(E));
+}
+
+bool Sema::tryToRecoverWithCall(ExprResult &E, const PartialDiagnostic &PD,
+ bool ForceComplain,
+ bool (*IsPlausibleResult)(QualType)) {
+ SourceLocation Loc = E.get()->getExprLoc();
+ SourceRange Range = E.get()->getSourceRange();
+
+ QualType ZeroArgCallTy;
+ UnresolvedSet<4> Overloads;
+ if (tryExprAsCall(*E.get(), ZeroArgCallTy, Overloads) &&
+ !ZeroArgCallTy.isNull() &&
+ (!IsPlausibleResult || IsPlausibleResult(ZeroArgCallTy))) {
+ // At this point, we know E is potentially callable with 0
+ // arguments and that it returns something of a reasonable type,
+ // so we can emit a fixit and carry on pretending that E was
+ // actually a CallExpr.
+ SourceLocation ParenInsertionLoc = PP.getLocForEndOfToken(Range.getEnd());
+ Diag(Loc, PD)
+ << /*zero-arg*/ 1 << Range
+ << (IsCallableWithAppend(E.get())
+ ? FixItHint::CreateInsertion(ParenInsertionLoc, "()")
+ : FixItHint());
+ notePlausibleOverloads(*this, Loc, Overloads, IsPlausibleResult);
+
+ // FIXME: Try this before emitting the fixit, and suppress diagnostics
+ // while doing so.
+ E = ActOnCallExpr(nullptr, E.get(), Range.getEnd(), None,
+ Range.getEnd().getLocWithOffset(1));
+ return true;
+ }
+
+ if (!ForceComplain) return false;
+
+ Diag(Loc, PD) << /*not zero-arg*/ 0 << Range;
+ notePlausibleOverloads(*this, Loc, Overloads, IsPlausibleResult);
+ E = ExprError();
+ return true;
+}
+
+IdentifierInfo *Sema::getSuperIdentifier() const {
+ if (!Ident_super)
+ Ident_super = &Context.Idents.get("super");
+ return Ident_super;
+}
+
+IdentifierInfo *Sema::getFloat128Identifier() const {
+ if (!Ident___float128)
+ Ident___float128 = &Context.Idents.get("__float128");
+ return Ident___float128;
+}
+
+void Sema::PushCapturedRegionScope(Scope *S, CapturedDecl *CD, RecordDecl *RD,
+ CapturedRegionKind K) {
+ CapturingScopeInfo *CSI = new CapturedRegionScopeInfo(
+ getDiagnostics(), S, CD, RD, CD->getContextParam(), K);
+ CSI->ReturnType = Context.VoidTy;
+ FunctionScopes.push_back(CSI);
+}
+
+CapturedRegionScopeInfo *Sema::getCurCapturedRegion() {
+ if (FunctionScopes.empty())
+ return nullptr;
+
+ return dyn_cast<CapturedRegionScopeInfo>(FunctionScopes.back());
+}
+
+const llvm::MapVector<FieldDecl *, Sema::DeleteLocs> &
+Sema::getMismatchingDeleteExpressions() const {
+ return DeleteExprs;
+}
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaAccess.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaAccess.cpp
new file mode 100644
index 0000000..0e973cc
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaAccess.cpp
@@ -0,0 +1,1908 @@
+//===---- SemaAccess.cpp - C++ Access Control -------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides Sema routines for C++ access control semantics.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Sema/SemaInternal.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclFriend.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DependentDiagnostic.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/Sema/DelayedDiagnostic.h"
+#include "clang/Sema/Initialization.h"
+#include "clang/Sema/Lookup.h"
+
+using namespace clang;
+using namespace sema;
+
+/// A copy of Sema's enum without AR_delayed.
+enum AccessResult {
+ AR_accessible,
+ AR_inaccessible,
+ AR_dependent
+};
+
+/// SetMemberAccessSpecifier - Set the access specifier of a member.
+/// Returns true on error (when the previous member decl access specifier
+/// is different from the new member decl access specifier).
+bool Sema::SetMemberAccessSpecifier(NamedDecl *MemberDecl,
+ NamedDecl *PrevMemberDecl,
+ AccessSpecifier LexicalAS) {
+ if (!PrevMemberDecl) {
+ // Use the lexical access specifier.
+ MemberDecl->setAccess(LexicalAS);
+ return false;
+ }
+
+ // C++ [class.access.spec]p3: When a member is redeclared its access
+ // specifier must be same as its initial declaration.
+ if (LexicalAS != AS_none && LexicalAS != PrevMemberDecl->getAccess()) {
+ Diag(MemberDecl->getLocation(),
+ diag::err_class_redeclared_with_different_access)
+ << MemberDecl << LexicalAS;
+ Diag(PrevMemberDecl->getLocation(), diag::note_previous_access_declaration)
+ << PrevMemberDecl << PrevMemberDecl->getAccess();
+
+ MemberDecl->setAccess(LexicalAS);
+ return true;
+ }
+
+ MemberDecl->setAccess(PrevMemberDecl->getAccess());
+ return false;
+}
+
+static CXXRecordDecl *FindDeclaringClass(NamedDecl *D) {
+ DeclContext *DC = D->getDeclContext();
+
+ // This can only happen at top: enum decls only "publish" their
+ // immediate members.
+ if (isa<EnumDecl>(DC))
+ DC = cast<EnumDecl>(DC)->getDeclContext();
+
+ CXXRecordDecl *DeclaringClass = cast<CXXRecordDecl>(DC);
+ while (DeclaringClass->isAnonymousStructOrUnion())
+ DeclaringClass = cast<CXXRecordDecl>(DeclaringClass->getDeclContext());
+ return DeclaringClass;
+}
+
+namespace {
+struct EffectiveContext {
+ EffectiveContext() : Inner(nullptr), Dependent(false) {}
+
+ explicit EffectiveContext(DeclContext *DC)
+ : Inner(DC),
+ Dependent(DC->isDependentContext()) {
+
+ // C++11 [class.access.nest]p1:
+ // A nested class is a member and as such has the same access
+ // rights as any other member.
+ // C++11 [class.access]p2:
+ // A member of a class can also access all the names to which
+ // the class has access. A local class of a member function
+ // may access the same names that the member function itself
+ // may access.
+ // This almost implies that the privileges of nesting are transitive.
+ // Technically it says nothing about the local classes of non-member
+ // functions (which can gain privileges through friendship), but we
+ // take that as an oversight.
+ while (true) {
+ // We want to add canonical declarations to the EC lists for
+ // simplicity of checking, but we need to walk up through the
+ // actual current DC chain. Otherwise, something like a local
+ // extern or friend which happens to be the canonical
+ // declaration will really mess us up.
+
+ if (isa<CXXRecordDecl>(DC)) {
+ CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
+ Records.push_back(Record->getCanonicalDecl());
+ DC = Record->getDeclContext();
+ } else if (isa<FunctionDecl>(DC)) {
+ FunctionDecl *Function = cast<FunctionDecl>(DC);
+ Functions.push_back(Function->getCanonicalDecl());
+ if (Function->getFriendObjectKind())
+ DC = Function->getLexicalDeclContext();
+ else
+ DC = Function->getDeclContext();
+ } else if (DC->isFileContext()) {
+ break;
+ } else {
+ DC = DC->getParent();
+ }
+ }
+ }
+
+ bool isDependent() const { return Dependent; }
+
+ bool includesClass(const CXXRecordDecl *R) const {
+ R = R->getCanonicalDecl();
+ return std::find(Records.begin(), Records.end(), R)
+ != Records.end();
+ }
+
+ /// Retrieves the innermost "useful" context. Can be null if we're
+ /// doing access-control without privileges.
+ DeclContext *getInnerContext() const {
+ return Inner;
+ }
+
+ typedef SmallVectorImpl<CXXRecordDecl*>::const_iterator record_iterator;
+
+ DeclContext *Inner;
+ SmallVector<FunctionDecl*, 4> Functions;
+ SmallVector<CXXRecordDecl*, 4> Records;
+ bool Dependent;
+};
+
+/// Like sema::AccessedEntity, but kindly lets us scribble all over
+/// it.
+struct AccessTarget : public AccessedEntity {
+ AccessTarget(const AccessedEntity &Entity)
+ : AccessedEntity(Entity) {
+ initialize();
+ }
+
+ AccessTarget(ASTContext &Context,
+ MemberNonce _,
+ CXXRecordDecl *NamingClass,
+ DeclAccessPair FoundDecl,
+ QualType BaseObjectType)
+ : AccessedEntity(Context.getDiagAllocator(), Member, NamingClass,
+ FoundDecl, BaseObjectType) {
+ initialize();
+ }
+
+ AccessTarget(ASTContext &Context,
+ BaseNonce _,
+ CXXRecordDecl *BaseClass,
+ CXXRecordDecl *DerivedClass,
+ AccessSpecifier Access)
+ : AccessedEntity(Context.getDiagAllocator(), Base, BaseClass, DerivedClass,
+ Access) {
+ initialize();
+ }
+
+ bool isInstanceMember() const {
+ return (isMemberAccess() && getTargetDecl()->isCXXInstanceMember());
+ }
+
+ bool hasInstanceContext() const {
+ return HasInstanceContext;
+ }
+
+ class SavedInstanceContext {
+ public:
+ ~SavedInstanceContext() {
+ Target.HasInstanceContext = Has;
+ }
+
+ private:
+ friend struct AccessTarget;
+ explicit SavedInstanceContext(AccessTarget &Target)
+ : Target(Target), Has(Target.HasInstanceContext) {}
+ AccessTarget &Target;
+ bool Has;
+ };
+
+ SavedInstanceContext saveInstanceContext() {
+ return SavedInstanceContext(*this);
+ }
+
+ void suppressInstanceContext() {
+ HasInstanceContext = false;
+ }
+
+ const CXXRecordDecl *resolveInstanceContext(Sema &S) const {
+ assert(HasInstanceContext);
+ if (CalculatedInstanceContext)
+ return InstanceContext;
+
+ CalculatedInstanceContext = true;
+ DeclContext *IC = S.computeDeclContext(getBaseObjectType());
+ InstanceContext = (IC ? cast<CXXRecordDecl>(IC)->getCanonicalDecl()
+ : nullptr);
+ return InstanceContext;
+ }
+
+ const CXXRecordDecl *getDeclaringClass() const {
+ return DeclaringClass;
+ }
+
+ /// The "effective" naming class is the canonical non-anonymous
+ /// class containing the actual naming class.
+ const CXXRecordDecl *getEffectiveNamingClass() const {
+ const CXXRecordDecl *namingClass = getNamingClass();
+ while (namingClass->isAnonymousStructOrUnion())
+ namingClass = cast<CXXRecordDecl>(namingClass->getParent());
+ return namingClass->getCanonicalDecl();
+ }
+
+private:
+ void initialize() {
+ HasInstanceContext = (isMemberAccess() &&
+ !getBaseObjectType().isNull() &&
+ getTargetDecl()->isCXXInstanceMember());
+ CalculatedInstanceContext = false;
+ InstanceContext = nullptr;
+
+ if (isMemberAccess())
+ DeclaringClass = FindDeclaringClass(getTargetDecl());
+ else
+ DeclaringClass = getBaseClass();
+ DeclaringClass = DeclaringClass->getCanonicalDecl();
+ }
+
+ bool HasInstanceContext : 1;
+ mutable bool CalculatedInstanceContext : 1;
+ mutable const CXXRecordDecl *InstanceContext;
+ const CXXRecordDecl *DeclaringClass;
+};
+
+}
+
+/// Checks whether one class might instantiate to the other.
+static bool MightInstantiateTo(const CXXRecordDecl *From,
+ const CXXRecordDecl *To) {
+ // Declaration names are always preserved by instantiation.
+ if (From->getDeclName() != To->getDeclName())
+ return false;
+
+ const DeclContext *FromDC = From->getDeclContext()->getPrimaryContext();
+ const DeclContext *ToDC = To->getDeclContext()->getPrimaryContext();
+ if (FromDC == ToDC) return true;
+ if (FromDC->isFileContext() || ToDC->isFileContext()) return false;
+
+ // Be conservative.
+ return true;
+}
+
+/// Checks whether one class is derived from another, inclusively.
+/// Properly indicates when it couldn't be determined due to
+/// dependence.
+///
+/// This should probably be donated to AST or at least Sema.
+static AccessResult IsDerivedFromInclusive(const CXXRecordDecl *Derived,
+ const CXXRecordDecl *Target) {
+ assert(Derived->getCanonicalDecl() == Derived);
+ assert(Target->getCanonicalDecl() == Target);
+
+ if (Derived == Target) return AR_accessible;
+
+ bool CheckDependent = Derived->isDependentContext();
+ if (CheckDependent && MightInstantiateTo(Derived, Target))
+ return AR_dependent;
+
+ AccessResult OnFailure = AR_inaccessible;
+ SmallVector<const CXXRecordDecl*, 8> Queue; // actually a stack
+
+ while (true) {
+ if (Derived->isDependentContext() && !Derived->hasDefinition())
+ return AR_dependent;
+
+ for (const auto &I : Derived->bases()) {
+ const CXXRecordDecl *RD;
+
+ QualType T = I.getType();
+ if (const RecordType *RT = T->getAs<RecordType>()) {
+ RD = cast<CXXRecordDecl>(RT->getDecl());
+ } else if (const InjectedClassNameType *IT
+ = T->getAs<InjectedClassNameType>()) {
+ RD = IT->getDecl();
+ } else {
+ assert(T->isDependentType() && "non-dependent base wasn't a record?");
+ OnFailure = AR_dependent;
+ continue;
+ }
+
+ RD = RD->getCanonicalDecl();
+ if (RD == Target) return AR_accessible;
+ if (CheckDependent && MightInstantiateTo(RD, Target))
+ OnFailure = AR_dependent;
+
+ Queue.push_back(RD);
+ }
+
+ if (Queue.empty()) break;
+
+ Derived = Queue.pop_back_val();
+ }
+
+ return OnFailure;
+}
+
+
+static bool MightInstantiateTo(Sema &S, DeclContext *Context,
+ DeclContext *Friend) {
+ if (Friend == Context)
+ return true;
+
+ assert(!Friend->isDependentContext() &&
+ "can't handle friends with dependent contexts here");
+
+ if (!Context->isDependentContext())
+ return false;
+
+ if (Friend->isFileContext())
+ return false;
+
+ // TODO: this is very conservative
+ return true;
+}
+
+// Asks whether the type in 'context' can ever instantiate to the type
+// in 'friend'.
+static bool MightInstantiateTo(Sema &S, CanQualType Context, CanQualType Friend) {
+ if (Friend == Context)
+ return true;
+
+ if (!Friend->isDependentType() && !Context->isDependentType())
+ return false;
+
+ // TODO: this is very conservative.
+ return true;
+}
+
+static bool MightInstantiateTo(Sema &S,
+ FunctionDecl *Context,
+ FunctionDecl *Friend) {
+ if (Context->getDeclName() != Friend->getDeclName())
+ return false;
+
+ if (!MightInstantiateTo(S,
+ Context->getDeclContext(),
+ Friend->getDeclContext()))
+ return false;
+
+ CanQual<FunctionProtoType> FriendTy
+ = S.Context.getCanonicalType(Friend->getType())
+ ->getAs<FunctionProtoType>();
+ CanQual<FunctionProtoType> ContextTy
+ = S.Context.getCanonicalType(Context->getType())
+ ->getAs<FunctionProtoType>();
+
+ // There isn't any way that I know of to add qualifiers
+ // during instantiation.
+ if (FriendTy.getQualifiers() != ContextTy.getQualifiers())
+ return false;
+
+ if (FriendTy->getNumParams() != ContextTy->getNumParams())
+ return false;
+
+ if (!MightInstantiateTo(S, ContextTy->getReturnType(),
+ FriendTy->getReturnType()))
+ return false;
+
+ for (unsigned I = 0, E = FriendTy->getNumParams(); I != E; ++I)
+ if (!MightInstantiateTo(S, ContextTy->getParamType(I),
+ FriendTy->getParamType(I)))
+ return false;
+
+ return true;
+}
+
+static bool MightInstantiateTo(Sema &S,
+ FunctionTemplateDecl *Context,
+ FunctionTemplateDecl *Friend) {
+ return MightInstantiateTo(S,
+ Context->getTemplatedDecl(),
+ Friend->getTemplatedDecl());
+}
+
+static AccessResult MatchesFriend(Sema &S,
+ const EffectiveContext &EC,
+ const CXXRecordDecl *Friend) {
+ if (EC.includesClass(Friend))
+ return AR_accessible;
+
+ if (EC.isDependent()) {
+ CanQualType FriendTy
+ = S.Context.getCanonicalType(S.Context.getTypeDeclType(Friend));
+
+ for (EffectiveContext::record_iterator
+ I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
+ CanQualType ContextTy
+ = S.Context.getCanonicalType(S.Context.getTypeDeclType(*I));
+ if (MightInstantiateTo(S, ContextTy, FriendTy))
+ return AR_dependent;
+ }
+ }
+
+ return AR_inaccessible;
+}
+
+static AccessResult MatchesFriend(Sema &S,
+ const EffectiveContext &EC,
+ CanQualType Friend) {
+ if (const RecordType *RT = Friend->getAs<RecordType>())
+ return MatchesFriend(S, EC, cast<CXXRecordDecl>(RT->getDecl()));
+
+ // TODO: we can do better than this
+ if (Friend->isDependentType())
+ return AR_dependent;
+
+ return AR_inaccessible;
+}
+
+/// Determines whether the given friend class template matches
+/// anything in the effective context.
+static AccessResult MatchesFriend(Sema &S,
+ const EffectiveContext &EC,
+ ClassTemplateDecl *Friend) {
+ AccessResult OnFailure = AR_inaccessible;
+
+ // Check whether the friend is the template of a class in the
+ // context chain.
+ for (SmallVectorImpl<CXXRecordDecl*>::const_iterator
+ I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
+ CXXRecordDecl *Record = *I;
+
+ // Figure out whether the current class has a template:
+ ClassTemplateDecl *CTD;
+
+ // A specialization of the template...
+ if (isa<ClassTemplateSpecializationDecl>(Record)) {
+ CTD = cast<ClassTemplateSpecializationDecl>(Record)
+ ->getSpecializedTemplate();
+
+ // ... or the template pattern itself.
+ } else {
+ CTD = Record->getDescribedClassTemplate();
+ if (!CTD) continue;
+ }
+
+ // It's a match.
+ if (Friend == CTD->getCanonicalDecl())
+ return AR_accessible;
+
+ // If the context isn't dependent, it can't be a dependent match.
+ if (!EC.isDependent())
+ continue;
+
+ // If the template names don't match, it can't be a dependent
+ // match.
+ if (CTD->getDeclName() != Friend->getDeclName())
+ continue;
+
+ // If the class's context can't instantiate to the friend's
+ // context, it can't be a dependent match.
+ if (!MightInstantiateTo(S, CTD->getDeclContext(),
+ Friend->getDeclContext()))
+ continue;
+
+ // Otherwise, it's a dependent match.
+ OnFailure = AR_dependent;
+ }
+
+ return OnFailure;
+}
+
+/// Determines whether the given friend function matches anything in
+/// the effective context.
+static AccessResult MatchesFriend(Sema &S,
+ const EffectiveContext &EC,
+ FunctionDecl *Friend) {
+ AccessResult OnFailure = AR_inaccessible;
+
+ for (SmallVectorImpl<FunctionDecl*>::const_iterator
+ I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {
+ if (Friend == *I)
+ return AR_accessible;
+
+ if (EC.isDependent() && MightInstantiateTo(S, *I, Friend))
+ OnFailure = AR_dependent;
+ }
+
+ return OnFailure;
+}
+
+/// Determines whether the given friend function template matches
+/// anything in the effective context.
+static AccessResult MatchesFriend(Sema &S,
+ const EffectiveContext &EC,
+ FunctionTemplateDecl *Friend) {
+ if (EC.Functions.empty()) return AR_inaccessible;
+
+ AccessResult OnFailure = AR_inaccessible;
+
+ for (SmallVectorImpl<FunctionDecl*>::const_iterator
+ I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {
+
+ FunctionTemplateDecl *FTD = (*I)->getPrimaryTemplate();
+ if (!FTD)
+ FTD = (*I)->getDescribedFunctionTemplate();
+ if (!FTD)
+ continue;
+
+ FTD = FTD->getCanonicalDecl();
+
+ if (Friend == FTD)
+ return AR_accessible;
+
+ if (EC.isDependent() && MightInstantiateTo(S, FTD, Friend))
+ OnFailure = AR_dependent;
+ }
+
+ return OnFailure;
+}
+
+/// Determines whether the given friend declaration matches anything
+/// in the effective context.
+static AccessResult MatchesFriend(Sema &S,
+ const EffectiveContext &EC,
+ FriendDecl *FriendD) {
+ // Whitelist accesses if there's an invalid or unsupported friend
+ // declaration.
+ if (FriendD->isInvalidDecl() || FriendD->isUnsupportedFriend())
+ return AR_accessible;
+
+ if (TypeSourceInfo *T = FriendD->getFriendType())
+ return MatchesFriend(S, EC, T->getType()->getCanonicalTypeUnqualified());
+
+ NamedDecl *Friend
+ = cast<NamedDecl>(FriendD->getFriendDecl()->getCanonicalDecl());
+
+ // FIXME: declarations with dependent or templated scope.
+
+ if (isa<ClassTemplateDecl>(Friend))
+ return MatchesFriend(S, EC, cast<ClassTemplateDecl>(Friend));
+
+ if (isa<FunctionTemplateDecl>(Friend))
+ return MatchesFriend(S, EC, cast<FunctionTemplateDecl>(Friend));
+
+ if (isa<CXXRecordDecl>(Friend))
+ return MatchesFriend(S, EC, cast<CXXRecordDecl>(Friend));
+
+ assert(isa<FunctionDecl>(Friend) && "unknown friend decl kind");
+ return MatchesFriend(S, EC, cast<FunctionDecl>(Friend));
+}
+
+static AccessResult GetFriendKind(Sema &S,
+ const EffectiveContext &EC,
+ const CXXRecordDecl *Class) {
+ AccessResult OnFailure = AR_inaccessible;
+
+ // Okay, check friends.
+ for (auto *Friend : Class->friends()) {
+ switch (MatchesFriend(S, EC, Friend)) {
+ case AR_accessible:
+ return AR_accessible;
+
+ case AR_inaccessible:
+ continue;
+
+ case AR_dependent:
+ OnFailure = AR_dependent;
+ break;
+ }
+ }
+
+ // That's it, give up.
+ return OnFailure;
+}
+
+namespace {
+
+/// A helper class for checking for a friend which will grant access
+/// to a protected instance member.
+struct ProtectedFriendContext {
+ Sema &S;
+ const EffectiveContext &EC;
+ const CXXRecordDecl *NamingClass;
+ bool CheckDependent;
+ bool EverDependent;
+
+ /// The path down to the current base class.
+ SmallVector<const CXXRecordDecl*, 20> CurPath;
+
+ ProtectedFriendContext(Sema &S, const EffectiveContext &EC,
+ const CXXRecordDecl *InstanceContext,
+ const CXXRecordDecl *NamingClass)
+ : S(S), EC(EC), NamingClass(NamingClass),
+ CheckDependent(InstanceContext->isDependentContext() ||
+ NamingClass->isDependentContext()),
+ EverDependent(false) {}
+
+ /// Check classes in the current path for friendship, starting at
+ /// the given index.
+ bool checkFriendshipAlongPath(unsigned I) {
+ assert(I < CurPath.size());
+ for (unsigned E = CurPath.size(); I != E; ++I) {
+ switch (GetFriendKind(S, EC, CurPath[I])) {
+ case AR_accessible: return true;
+ case AR_inaccessible: continue;
+ case AR_dependent: EverDependent = true; continue;
+ }
+ }
+ return false;
+ }
+
+ /// Perform a search starting at the given class.
+ ///
+ /// PrivateDepth is the index of the last (least derived) class
+ /// along the current path such that a notional public member of
+ /// the final class in the path would have access in that class.
+ bool findFriendship(const CXXRecordDecl *Cur, unsigned PrivateDepth) {
+ // If we ever reach the naming class, check the current path for
+ // friendship. We can also stop recursing because we obviously
+ // won't find the naming class there again.
+ if (Cur == NamingClass)
+ return checkFriendshipAlongPath(PrivateDepth);
+
+ if (CheckDependent && MightInstantiateTo(Cur, NamingClass))
+ EverDependent = true;
+
+ // Recurse into the base classes.
+ for (const auto &I : Cur->bases()) {
+ // If this is private inheritance, then a public member of the
+ // base will not have any access in classes derived from Cur.
+ unsigned BasePrivateDepth = PrivateDepth;
+ if (I.getAccessSpecifier() == AS_private)
+ BasePrivateDepth = CurPath.size() - 1;
+
+ const CXXRecordDecl *RD;
+
+ QualType T = I.getType();
+ if (const RecordType *RT = T->getAs<RecordType>()) {
+ RD = cast<CXXRecordDecl>(RT->getDecl());
+ } else if (const InjectedClassNameType *IT
+ = T->getAs<InjectedClassNameType>()) {
+ RD = IT->getDecl();
+ } else {
+ assert(T->isDependentType() && "non-dependent base wasn't a record?");
+ EverDependent = true;
+ continue;
+ }
+
+ // Recurse. We don't need to clean up if this returns true.
+ CurPath.push_back(RD);
+ if (findFriendship(RD->getCanonicalDecl(), BasePrivateDepth))
+ return true;
+ CurPath.pop_back();
+ }
+
+ return false;
+ }
+
+ bool findFriendship(const CXXRecordDecl *Cur) {
+ assert(CurPath.empty());
+ CurPath.push_back(Cur);
+ return findFriendship(Cur, 0);
+ }
+};
+}
+
+/// Search for a class P that EC is a friend of, under the constraint
+/// InstanceContext <= P
+/// if InstanceContext exists, or else
+/// NamingClass <= P
+/// and with the additional restriction that a protected member of
+/// NamingClass would have some natural access in P, which implicitly
+/// imposes the constraint that P <= NamingClass.
+///
+/// This isn't quite the condition laid out in the standard.
+/// Instead of saying that a notional protected member of NamingClass
+/// would have to have some natural access in P, it says the actual
+/// target has to have some natural access in P, which opens up the
+/// possibility that the target (which is not necessarily a member
+/// of NamingClass) might be more accessible along some path not
+/// passing through it. That's really a bad idea, though, because it
+/// introduces two problems:
+/// - Most importantly, it breaks encapsulation because you can
+/// access a forbidden base class's members by directly subclassing
+/// it elsewhere.
+/// - It also makes access substantially harder to compute because it
+/// breaks the hill-climbing algorithm: knowing that the target is
+/// accessible in some base class would no longer let you change
+/// the question solely to whether the base class is accessible,
+/// because the original target might have been more accessible
+/// because of crazy subclassing.
+/// So we don't implement that.
+static AccessResult GetProtectedFriendKind(Sema &S, const EffectiveContext &EC,
+ const CXXRecordDecl *InstanceContext,
+ const CXXRecordDecl *NamingClass) {
+ assert(InstanceContext == nullptr ||
+ InstanceContext->getCanonicalDecl() == InstanceContext);
+ assert(NamingClass->getCanonicalDecl() == NamingClass);
+
+ // If we don't have an instance context, our constraints give us
+ // that NamingClass <= P <= NamingClass, i.e. P == NamingClass.
+ // This is just the usual friendship check.
+ if (!InstanceContext) return GetFriendKind(S, EC, NamingClass);
+
+ ProtectedFriendContext PRC(S, EC, InstanceContext, NamingClass);
+ if (PRC.findFriendship(InstanceContext)) return AR_accessible;
+ if (PRC.EverDependent) return AR_dependent;
+ return AR_inaccessible;
+}
+
+static AccessResult HasAccess(Sema &S,
+ const EffectiveContext &EC,
+ const CXXRecordDecl *NamingClass,
+ AccessSpecifier Access,
+ const AccessTarget &Target) {
+ assert(NamingClass->getCanonicalDecl() == NamingClass &&
+ "declaration should be canonicalized before being passed here");
+
+ if (Access == AS_public) return AR_accessible;
+ assert(Access == AS_private || Access == AS_protected);
+
+ AccessResult OnFailure = AR_inaccessible;
+
+ for (EffectiveContext::record_iterator
+ I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
+ // All the declarations in EC have been canonicalized, so pointer
+ // equality from this point on will work fine.
+ const CXXRecordDecl *ECRecord = *I;
+
+ // [B2] and [M2]
+ if (Access == AS_private) {
+ if (ECRecord == NamingClass)
+ return AR_accessible;
+
+ if (EC.isDependent() && MightInstantiateTo(ECRecord, NamingClass))
+ OnFailure = AR_dependent;
+
+ // [B3] and [M3]
+ } else {
+ assert(Access == AS_protected);
+ switch (IsDerivedFromInclusive(ECRecord, NamingClass)) {
+ case AR_accessible: break;
+ case AR_inaccessible: continue;
+ case AR_dependent: OnFailure = AR_dependent; continue;
+ }
+
+ // C++ [class.protected]p1:
+ // An additional access check beyond those described earlier in
+ // [class.access] is applied when a non-static data member or
+ // non-static member function is a protected member of its naming
+ // class. As described earlier, access to a protected member is
+ // granted because the reference occurs in a friend or member of
+ // some class C. If the access is to form a pointer to member,
+ // the nested-name-specifier shall name C or a class derived from
+ // C. All other accesses involve a (possibly implicit) object
+ // expression. In this case, the class of the object expression
+ // shall be C or a class derived from C.
+ //
+ // We interpret this as a restriction on [M3].
+
+ // In this part of the code, 'C' is just our context class ECRecord.
+
+ // These rules are different if we don't have an instance context.
+ if (!Target.hasInstanceContext()) {
+ // If it's not an instance member, these restrictions don't apply.
+ if (!Target.isInstanceMember()) return AR_accessible;
+
+ // If it's an instance member, use the pointer-to-member rule
+ // that the naming class has to be derived from the effective
+ // context.
+
+ // Emulate a MSVC bug where the creation of pointer-to-member
+ // to protected member of base class is allowed but only from
+ // static member functions.
+ if (S.getLangOpts().MSVCCompat && !EC.Functions.empty())
+ if (CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(EC.Functions.front()))
+ if (MD->isStatic()) return AR_accessible;
+
+ // Despite the standard's confident wording, there is a case
+ // where you can have an instance member that's neither in a
+ // pointer-to-member expression nor in a member access: when
+ // it names a field in an unevaluated context that can't be an
+ // implicit member. Pending clarification, we just apply the
+ // same naming-class restriction here.
+ // FIXME: we're probably not correctly adding the
+ // protected-member restriction when we retroactively convert
+ // an expression to being evaluated.
+
+ // We know that ECRecord derives from NamingClass. The
+ // restriction says to check whether NamingClass derives from
+ // ECRecord, but that's not really necessary: two distinct
+ // classes can't be recursively derived from each other. So
+ // along this path, we just need to check whether the classes
+ // are equal.
+ if (NamingClass == ECRecord) return AR_accessible;
+
+ // Otherwise, this context class tells us nothing; on to the next.
+ continue;
+ }
+
+ assert(Target.isInstanceMember());
+
+ const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
+ if (!InstanceContext) {
+ OnFailure = AR_dependent;
+ continue;
+ }
+
+ switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) {
+ case AR_accessible: return AR_accessible;
+ case AR_inaccessible: continue;
+ case AR_dependent: OnFailure = AR_dependent; continue;
+ }
+ }
+ }
+
+ // [M3] and [B3] say that, if the target is protected in N, we grant
+ // access if the access occurs in a friend or member of some class P
+ // that's a subclass of N and where the target has some natural
+ // access in P. The 'member' aspect is easy to handle because P
+ // would necessarily be one of the effective-context records, and we
+ // address that above. The 'friend' aspect is completely ridiculous
+ // to implement because there are no restrictions at all on P
+ // *unless* the [class.protected] restriction applies. If it does,
+ // however, we should ignore whether the naming class is a friend,
+ // and instead rely on whether any potential P is a friend.
+ if (Access == AS_protected && Target.isInstanceMember()) {
+ // Compute the instance context if possible.
+ const CXXRecordDecl *InstanceContext = nullptr;
+ if (Target.hasInstanceContext()) {
+ InstanceContext = Target.resolveInstanceContext(S);
+ if (!InstanceContext) return AR_dependent;
+ }
+
+ switch (GetProtectedFriendKind(S, EC, InstanceContext, NamingClass)) {
+ case AR_accessible: return AR_accessible;
+ case AR_inaccessible: return OnFailure;
+ case AR_dependent: return AR_dependent;
+ }
+ llvm_unreachable("impossible friendship kind");
+ }
+
+ switch (GetFriendKind(S, EC, NamingClass)) {
+ case AR_accessible: return AR_accessible;
+ case AR_inaccessible: return OnFailure;
+ case AR_dependent: return AR_dependent;
+ }
+
+ // Silence bogus warnings
+ llvm_unreachable("impossible friendship kind");
+}
+
+/// Finds the best path from the naming class to the declaring class,
+/// taking friend declarations into account.
+///
+/// C++0x [class.access.base]p5:
+/// A member m is accessible at the point R when named in class N if
+/// [M1] m as a member of N is public, or
+/// [M2] m as a member of N is private, and R occurs in a member or
+/// friend of class N, or
+/// [M3] m as a member of N is protected, and R occurs in a member or
+/// friend of class N, or in a member or friend of a class P
+/// derived from N, where m as a member of P is public, private,
+/// or protected, or
+/// [M4] there exists a base class B of N that is accessible at R, and
+/// m is accessible at R when named in class B.
+///
+/// C++0x [class.access.base]p4:
+/// A base class B of N is accessible at R, if
+/// [B1] an invented public member of B would be a public member of N, or
+/// [B2] R occurs in a member or friend of class N, and an invented public
+/// member of B would be a private or protected member of N, or
+/// [B3] R occurs in a member or friend of a class P derived from N, and an
+/// invented public member of B would be a private or protected member
+/// of P, or
+/// [B4] there exists a class S such that B is a base class of S accessible
+/// at R and S is a base class of N accessible at R.
+///
+/// Along a single inheritance path we can restate both of these
+/// iteratively:
+///
+/// First, we note that M1-4 are equivalent to B1-4 if the member is
+/// treated as a notional base of its declaring class with inheritance
+/// access equivalent to the member's access. Therefore we need only
+/// ask whether a class B is accessible from a class N in context R.
+///
+/// Let B_1 .. B_n be the inheritance path in question (i.e. where
+/// B_1 = N, B_n = B, and for all i, B_{i+1} is a direct base class of
+/// B_i). For i in 1..n, we will calculate ACAB(i), the access to the
+/// closest accessible base in the path:
+/// Access(a, b) = (* access on the base specifier from a to b *)
+/// Merge(a, forbidden) = forbidden
+/// Merge(a, private) = forbidden
+/// Merge(a, b) = min(a,b)
+/// Accessible(c, forbidden) = false
+/// Accessible(c, private) = (R is c) || IsFriend(c, R)
+/// Accessible(c, protected) = (R derived from c) || IsFriend(c, R)
+/// Accessible(c, public) = true
+/// ACAB(n) = public
+/// ACAB(i) =
+/// let AccessToBase = Merge(Access(B_i, B_{i+1}), ACAB(i+1)) in
+/// if Accessible(B_i, AccessToBase) then public else AccessToBase
+///
+/// B is an accessible base of N at R iff ACAB(1) = public.
+///
+/// \param FinalAccess the access of the "final step", or AS_public if
+/// there is no final step.
+/// \return null if friendship is dependent
+static CXXBasePath *FindBestPath(Sema &S,
+ const EffectiveContext &EC,
+ AccessTarget &Target,
+ AccessSpecifier FinalAccess,
+ CXXBasePaths &Paths) {
+ // Derive the paths to the desired base.
+ const CXXRecordDecl *Derived = Target.getNamingClass();
+ const CXXRecordDecl *Base = Target.getDeclaringClass();
+
+ // FIXME: fail correctly when there are dependent paths.
+ bool isDerived = Derived->isDerivedFrom(const_cast<CXXRecordDecl*>(Base),
+ Paths);
+ assert(isDerived && "derived class not actually derived from base");
+ (void) isDerived;
+
+ CXXBasePath *BestPath = nullptr;
+
+ assert(FinalAccess != AS_none && "forbidden access after declaring class");
+
+ bool AnyDependent = false;
+
+ // Derive the friend-modified access along each path.
+ for (CXXBasePaths::paths_iterator PI = Paths.begin(), PE = Paths.end();
+ PI != PE; ++PI) {
+ AccessTarget::SavedInstanceContext _ = Target.saveInstanceContext();
+
+ // Walk through the path backwards.
+ AccessSpecifier PathAccess = FinalAccess;
+ CXXBasePath::iterator I = PI->end(), E = PI->begin();
+ while (I != E) {
+ --I;
+
+ assert(PathAccess != AS_none);
+
+ // If the declaration is a private member of a base class, there
+ // is no level of friendship in derived classes that can make it
+ // accessible.
+ if (PathAccess == AS_private) {
+ PathAccess = AS_none;
+ break;
+ }
+
+ const CXXRecordDecl *NC = I->Class->getCanonicalDecl();
+
+ AccessSpecifier BaseAccess = I->Base->getAccessSpecifier();
+ PathAccess = std::max(PathAccess, BaseAccess);
+
+ switch (HasAccess(S, EC, NC, PathAccess, Target)) {
+ case AR_inaccessible: break;
+ case AR_accessible:
+ PathAccess = AS_public;
+
+ // Future tests are not against members and so do not have
+ // instance context.
+ Target.suppressInstanceContext();
+ break;
+ case AR_dependent:
+ AnyDependent = true;
+ goto Next;
+ }
+ }
+
+ // Note that we modify the path's Access field to the
+ // friend-modified access.
+ if (BestPath == nullptr || PathAccess < BestPath->Access) {
+ BestPath = &*PI;
+ BestPath->Access = PathAccess;
+
+ // Short-circuit if we found a public path.
+ if (BestPath->Access == AS_public)
+ return BestPath;
+ }
+
+ Next: ;
+ }
+
+ assert((!BestPath || BestPath->Access != AS_public) &&
+ "fell out of loop with public path");
+
+ // We didn't find a public path, but at least one path was subject
+ // to dependent friendship, so delay the check.
+ if (AnyDependent)
+ return nullptr;
+
+ return BestPath;
+}
+
+/// Given that an entity has protected natural access, check whether
+/// access might be denied because of the protected member access
+/// restriction.
+///
+/// \return true if a note was emitted
+static bool TryDiagnoseProtectedAccess(Sema &S, const EffectiveContext &EC,
+ AccessTarget &Target) {
+ // Only applies to instance accesses.
+ if (!Target.isInstanceMember())
+ return false;
+
+ assert(Target.isMemberAccess());
+
+ const CXXRecordDecl *NamingClass = Target.getEffectiveNamingClass();
+
+ for (EffectiveContext::record_iterator
+ I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
+ const CXXRecordDecl *ECRecord = *I;
+ switch (IsDerivedFromInclusive(ECRecord, NamingClass)) {
+ case AR_accessible: break;
+ case AR_inaccessible: continue;
+ case AR_dependent: continue;
+ }
+
+ // The effective context is a subclass of the declaring class.
+ // Check whether the [class.protected] restriction is limiting
+ // access.
+
+ // To get this exactly right, this might need to be checked more
+ // holistically; it's not necessarily the case that gaining
+ // access here would grant us access overall.
+
+ NamedDecl *D = Target.getTargetDecl();
+
+ // If we don't have an instance context, [class.protected] says the
+ // naming class has to equal the context class.
+ if (!Target.hasInstanceContext()) {
+ // If it does, the restriction doesn't apply.
+ if (NamingClass == ECRecord) continue;
+
+ // TODO: it would be great to have a fixit here, since this is
+ // such an obvious error.
+ S.Diag(D->getLocation(), diag::note_access_protected_restricted_noobject)
+ << S.Context.getTypeDeclType(ECRecord);
+ return true;
+ }
+
+ const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
+ assert(InstanceContext && "diagnosing dependent access");
+
+ switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) {
+ case AR_accessible: continue;
+ case AR_dependent: continue;
+ case AR_inaccessible:
+ break;
+ }
+
+ // Okay, the restriction seems to be what's limiting us.
+
+ // Use a special diagnostic for constructors and destructors.
+ if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D) ||
+ (isa<FunctionTemplateDecl>(D) &&
+ isa<CXXConstructorDecl>(
+ cast<FunctionTemplateDecl>(D)->getTemplatedDecl()))) {
+ return S.Diag(D->getLocation(),
+ diag::note_access_protected_restricted_ctordtor)
+ << isa<CXXDestructorDecl>(D->getAsFunction());
+ }
+
+ // Otherwise, use the generic diagnostic.
+ return S.Diag(D->getLocation(),
+ diag::note_access_protected_restricted_object)
+ << S.Context.getTypeDeclType(ECRecord);
+ }
+
+ return false;
+}
+
+/// We are unable to access a given declaration due to its direct
+/// access control; diagnose that.
+static void diagnoseBadDirectAccess(Sema &S,
+ const EffectiveContext &EC,
+ AccessTarget &entity) {
+ assert(entity.isMemberAccess());
+ NamedDecl *D = entity.getTargetDecl();
+
+ if (D->getAccess() == AS_protected &&
+ TryDiagnoseProtectedAccess(S, EC, entity))
+ return;
+
+ // Find an original declaration.
+ while (D->isOutOfLine()) {
+ NamedDecl *PrevDecl = nullptr;
+ if (VarDecl *VD = dyn_cast<VarDecl>(D))
+ PrevDecl = VD->getPreviousDecl();
+ else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
+ PrevDecl = FD->getPreviousDecl();
+ else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(D))
+ PrevDecl = TND->getPreviousDecl();
+ else if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
+ if (isa<RecordDecl>(D) && cast<RecordDecl>(D)->isInjectedClassName())
+ break;
+ PrevDecl = TD->getPreviousDecl();
+ }
+ if (!PrevDecl) break;
+ D = PrevDecl;
+ }
+
+ CXXRecordDecl *DeclaringClass = FindDeclaringClass(D);
+ Decl *ImmediateChild;
+ if (D->getDeclContext() == DeclaringClass)
+ ImmediateChild = D;
+ else {
+ DeclContext *DC = D->getDeclContext();
+ while (DC->getParent() != DeclaringClass)
+ DC = DC->getParent();
+ ImmediateChild = cast<Decl>(DC);
+ }
+
+ // Check whether there's an AccessSpecDecl preceding this in the
+ // chain of the DeclContext.
+ bool isImplicit = true;
+ for (const auto *I : DeclaringClass->decls()) {
+ if (I == ImmediateChild) break;
+ if (isa<AccessSpecDecl>(I)) {
+ isImplicit = false;
+ break;
+ }
+ }
+
+ S.Diag(D->getLocation(), diag::note_access_natural)
+ << (unsigned) (D->getAccess() == AS_protected)
+ << isImplicit;
+}
+
+/// Diagnose the path which caused the given declaration or base class
+/// to become inaccessible.
+static void DiagnoseAccessPath(Sema &S,
+ const EffectiveContext &EC,
+ AccessTarget &entity) {
+ // Save the instance context to preserve invariants.
+ AccessTarget::SavedInstanceContext _ = entity.saveInstanceContext();
+
+ // This basically repeats the main algorithm but keeps some more
+ // information.
+
+ // The natural access so far.
+ AccessSpecifier accessSoFar = AS_public;
+
+ // Check whether we have special rights to the declaring class.
+ if (entity.isMemberAccess()) {
+ NamedDecl *D = entity.getTargetDecl();
+ accessSoFar = D->getAccess();
+ const CXXRecordDecl *declaringClass = entity.getDeclaringClass();
+
+ switch (HasAccess(S, EC, declaringClass, accessSoFar, entity)) {
+ // If the declaration is accessible when named in its declaring
+ // class, then we must be constrained by the path.
+ case AR_accessible:
+ accessSoFar = AS_public;
+ entity.suppressInstanceContext();
+ break;
+
+ case AR_inaccessible:
+ if (accessSoFar == AS_private ||
+ declaringClass == entity.getEffectiveNamingClass())
+ return diagnoseBadDirectAccess(S, EC, entity);
+ break;
+
+ case AR_dependent:
+ llvm_unreachable("cannot diagnose dependent access");
+ }
+ }
+
+ CXXBasePaths paths;
+ CXXBasePath &path = *FindBestPath(S, EC, entity, accessSoFar, paths);
+ assert(path.Access != AS_public);
+
+ CXXBasePath::iterator i = path.end(), e = path.begin();
+ CXXBasePath::iterator constrainingBase = i;
+ while (i != e) {
+ --i;
+
+ assert(accessSoFar != AS_none && accessSoFar != AS_private);
+
+ // Is the entity accessible when named in the deriving class, as
+ // modified by the base specifier?
+ const CXXRecordDecl *derivingClass = i->Class->getCanonicalDecl();
+ const CXXBaseSpecifier *base = i->Base;
+
+ // If the access to this base is worse than the access we have to
+ // the declaration, remember it.
+ AccessSpecifier baseAccess = base->getAccessSpecifier();
+ if (baseAccess > accessSoFar) {
+ constrainingBase = i;
+ accessSoFar = baseAccess;
+ }
+
+ switch (HasAccess(S, EC, derivingClass, accessSoFar, entity)) {
+ case AR_inaccessible: break;
+ case AR_accessible:
+ accessSoFar = AS_public;
+ entity.suppressInstanceContext();
+ constrainingBase = nullptr;
+ break;
+ case AR_dependent:
+ llvm_unreachable("cannot diagnose dependent access");
+ }
+
+ // If this was private inheritance, but we don't have access to
+ // the deriving class, we're done.
+ if (accessSoFar == AS_private) {
+ assert(baseAccess == AS_private);
+ assert(constrainingBase == i);
+ break;
+ }
+ }
+
+ // If we don't have a constraining base, the access failure must be
+ // due to the original declaration.
+ if (constrainingBase == path.end())
+ return diagnoseBadDirectAccess(S, EC, entity);
+
+ // We're constrained by inheritance, but we want to say
+ // "declared private here" if we're diagnosing a hierarchy
+ // conversion and this is the final step.
+ unsigned diagnostic;
+ if (entity.isMemberAccess() ||
+ constrainingBase + 1 != path.end()) {
+ diagnostic = diag::note_access_constrained_by_path;
+ } else {
+ diagnostic = diag::note_access_natural;
+ }
+
+ const CXXBaseSpecifier *base = constrainingBase->Base;
+
+ S.Diag(base->getSourceRange().getBegin(), diagnostic)
+ << base->getSourceRange()
+ << (base->getAccessSpecifier() == AS_protected)
+ << (base->getAccessSpecifierAsWritten() == AS_none);
+
+ if (entity.isMemberAccess())
+ S.Diag(entity.getTargetDecl()->getLocation(),
+ diag::note_member_declared_at);
+}
+
+static void DiagnoseBadAccess(Sema &S, SourceLocation Loc,
+ const EffectiveContext &EC,
+ AccessTarget &Entity) {
+ const CXXRecordDecl *NamingClass = Entity.getNamingClass();
+ const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
+ NamedDecl *D = (Entity.isMemberAccess() ? Entity.getTargetDecl() : nullptr);
+
+ S.Diag(Loc, Entity.getDiag())
+ << (Entity.getAccess() == AS_protected)
+ << (D ? D->getDeclName() : DeclarationName())
+ << S.Context.getTypeDeclType(NamingClass)
+ << S.Context.getTypeDeclType(DeclaringClass);
+ DiagnoseAccessPath(S, EC, Entity);
+}
+
+/// MSVC has a bug where if during an using declaration name lookup,
+/// the declaration found is unaccessible (private) and that declaration
+/// was bring into scope via another using declaration whose target
+/// declaration is accessible (public) then no error is generated.
+/// Example:
+/// class A {
+/// public:
+/// int f();
+/// };
+/// class B : public A {
+/// private:
+/// using A::f;
+/// };
+/// class C : public B {
+/// private:
+/// using B::f;
+/// };
+///
+/// Here, B::f is private so this should fail in Standard C++, but
+/// because B::f refers to A::f which is public MSVC accepts it.
+static bool IsMicrosoftUsingDeclarationAccessBug(Sema& S,
+ SourceLocation AccessLoc,
+ AccessTarget &Entity) {
+ if (UsingShadowDecl *Shadow =
+ dyn_cast<UsingShadowDecl>(Entity.getTargetDecl())) {
+ const NamedDecl *OrigDecl = Entity.getTargetDecl()->getUnderlyingDecl();
+ if (Entity.getTargetDecl()->getAccess() == AS_private &&
+ (OrigDecl->getAccess() == AS_public ||
+ OrigDecl->getAccess() == AS_protected)) {
+ S.Diag(AccessLoc, diag::ext_ms_using_declaration_inaccessible)
+ << Shadow->getUsingDecl()->getQualifiedNameAsString()
+ << OrigDecl->getQualifiedNameAsString();
+ return true;
+ }
+ }
+ return false;
+}
+
+/// Determines whether the accessed entity is accessible. Public members
+/// have been weeded out by this point.
+static AccessResult IsAccessible(Sema &S,
+ const EffectiveContext &EC,
+ AccessTarget &Entity) {
+ // Determine the actual naming class.
+ const CXXRecordDecl *NamingClass = Entity.getEffectiveNamingClass();
+
+ AccessSpecifier UnprivilegedAccess = Entity.getAccess();
+ assert(UnprivilegedAccess != AS_public && "public access not weeded out");
+
+ // Before we try to recalculate access paths, try to white-list
+ // accesses which just trade in on the final step, i.e. accesses
+ // which don't require [M4] or [B4]. These are by far the most
+ // common forms of privileged access.
+ if (UnprivilegedAccess != AS_none) {
+ switch (HasAccess(S, EC, NamingClass, UnprivilegedAccess, Entity)) {
+ case AR_dependent:
+ // This is actually an interesting policy decision. We don't
+ // *have* to delay immediately here: we can do the full access
+ // calculation in the hope that friendship on some intermediate
+ // class will make the declaration accessible non-dependently.
+ // But that's not cheap, and odds are very good (note: assertion
+ // made without data) that the friend declaration will determine
+ // access.
+ return AR_dependent;
+
+ case AR_accessible: return AR_accessible;
+ case AR_inaccessible: break;
+ }
+ }
+
+ AccessTarget::SavedInstanceContext _ = Entity.saveInstanceContext();
+
+ // We lower member accesses to base accesses by pretending that the
+ // member is a base class of its declaring class.
+ AccessSpecifier FinalAccess;
+
+ if (Entity.isMemberAccess()) {
+ // Determine if the declaration is accessible from EC when named
+ // in its declaring class.
+ NamedDecl *Target = Entity.getTargetDecl();
+ const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
+
+ FinalAccess = Target->getAccess();
+ switch (HasAccess(S, EC, DeclaringClass, FinalAccess, Entity)) {
+ case AR_accessible:
+ // Target is accessible at EC when named in its declaring class.
+ // We can now hill-climb and simply check whether the declaring
+ // class is accessible as a base of the naming class. This is
+ // equivalent to checking the access of a notional public
+ // member with no instance context.
+ FinalAccess = AS_public;
+ Entity.suppressInstanceContext();
+ break;
+ case AR_inaccessible: break;
+ case AR_dependent: return AR_dependent; // see above
+ }
+
+ if (DeclaringClass == NamingClass)
+ return (FinalAccess == AS_public ? AR_accessible : AR_inaccessible);
+ } else {
+ FinalAccess = AS_public;
+ }
+
+ assert(Entity.getDeclaringClass() != NamingClass);
+
+ // Append the declaration's access if applicable.
+ CXXBasePaths Paths;
+ CXXBasePath *Path = FindBestPath(S, EC, Entity, FinalAccess, Paths);
+ if (!Path)
+ return AR_dependent;
+
+ assert(Path->Access <= UnprivilegedAccess &&
+ "access along best path worse than direct?");
+ if (Path->Access == AS_public)
+ return AR_accessible;
+ return AR_inaccessible;
+}
+
+static void DelayDependentAccess(Sema &S,
+ const EffectiveContext &EC,
+ SourceLocation Loc,
+ const AccessTarget &Entity) {
+ assert(EC.isDependent() && "delaying non-dependent access");
+ DeclContext *DC = EC.getInnerContext();
+ assert(DC->isDependentContext() && "delaying non-dependent access");
+ DependentDiagnostic::Create(S.Context, DC, DependentDiagnostic::Access,
+ Loc,
+ Entity.isMemberAccess(),
+ Entity.getAccess(),
+ Entity.getTargetDecl(),
+ Entity.getNamingClass(),
+ Entity.getBaseObjectType(),
+ Entity.getDiag());
+}
+
+/// Checks access to an entity from the given effective context.
+static AccessResult CheckEffectiveAccess(Sema &S,
+ const EffectiveContext &EC,
+ SourceLocation Loc,
+ AccessTarget &Entity) {
+ assert(Entity.getAccess() != AS_public && "called for public access!");
+
+ switch (IsAccessible(S, EC, Entity)) {
+ case AR_dependent:
+ DelayDependentAccess(S, EC, Loc, Entity);
+ return AR_dependent;
+
+ case AR_inaccessible:
+ if (S.getLangOpts().MSVCCompat &&
+ IsMicrosoftUsingDeclarationAccessBug(S, Loc, Entity))
+ return AR_accessible;
+ if (!Entity.isQuiet())
+ DiagnoseBadAccess(S, Loc, EC, Entity);
+ return AR_inaccessible;
+
+ case AR_accessible:
+ return AR_accessible;
+ }
+
+ // silence unnecessary warning
+ llvm_unreachable("invalid access result");
+}
+
+static Sema::AccessResult CheckAccess(Sema &S, SourceLocation Loc,
+ AccessTarget &Entity) {
+ // If the access path is public, it's accessible everywhere.
+ if (Entity.getAccess() == AS_public)
+ return Sema::AR_accessible;
+
+ // If we're currently parsing a declaration, we may need to delay
+ // access control checking, because our effective context might be
+ // different based on what the declaration comes out as.
+ //
+ // For example, we might be parsing a declaration with a scope
+ // specifier, like this:
+ // A::private_type A::foo() { ... }
+ //
+ // Or we might be parsing something that will turn out to be a friend:
+ // void foo(A::private_type);
+ // void B::foo(A::private_type);
+ if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
+ S.DelayedDiagnostics.add(DelayedDiagnostic::makeAccess(Loc, Entity));
+ return Sema::AR_delayed;
+ }
+
+ EffectiveContext EC(S.CurContext);
+ switch (CheckEffectiveAccess(S, EC, Loc, Entity)) {
+ case AR_accessible: return Sema::AR_accessible;
+ case AR_inaccessible: return Sema::AR_inaccessible;
+ case AR_dependent: return Sema::AR_dependent;
+ }
+ llvm_unreachable("invalid access result");
+}
+
+void Sema::HandleDelayedAccessCheck(DelayedDiagnostic &DD, Decl *D) {
+ // Access control for names used in the declarations of functions
+ // and function templates should normally be evaluated in the context
+ // of the declaration, just in case it's a friend of something.
+ // However, this does not apply to local extern declarations.
+
+ DeclContext *DC = D->getDeclContext();
+ if (D->isLocalExternDecl()) {
+ DC = D->getLexicalDeclContext();
+ } else if (FunctionDecl *FN = dyn_cast<FunctionDecl>(D)) {
+ DC = FN;
+ } else if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D)) {
+ DC = cast<DeclContext>(TD->getTemplatedDecl());
+ }
+
+ EffectiveContext EC(DC);
+
+ AccessTarget Target(DD.getAccessData());
+
+ if (CheckEffectiveAccess(*this, EC, DD.Loc, Target) == ::AR_inaccessible)
+ DD.Triggered = true;
+}
+
+void Sema::HandleDependentAccessCheck(const DependentDiagnostic &DD,
+ const MultiLevelTemplateArgumentList &TemplateArgs) {
+ SourceLocation Loc = DD.getAccessLoc();
+ AccessSpecifier Access = DD.getAccess();
+
+ Decl *NamingD = FindInstantiatedDecl(Loc, DD.getAccessNamingClass(),
+ TemplateArgs);
+ if (!NamingD) return;
+ Decl *TargetD = FindInstantiatedDecl(Loc, DD.getAccessTarget(),
+ TemplateArgs);
+ if (!TargetD) return;
+
+ if (DD.isAccessToMember()) {
+ CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(NamingD);
+ NamedDecl *TargetDecl = cast<NamedDecl>(TargetD);
+ QualType BaseObjectType = DD.getAccessBaseObjectType();
+ if (!BaseObjectType.isNull()) {
+ BaseObjectType = SubstType(BaseObjectType, TemplateArgs, Loc,
+ DeclarationName());
+ if (BaseObjectType.isNull()) return;
+ }
+
+ AccessTarget Entity(Context,
+ AccessTarget::Member,
+ NamingClass,
+ DeclAccessPair::make(TargetDecl, Access),
+ BaseObjectType);
+ Entity.setDiag(DD.getDiagnostic());
+ CheckAccess(*this, Loc, Entity);
+ } else {
+ AccessTarget Entity(Context,
+ AccessTarget::Base,
+ cast<CXXRecordDecl>(TargetD),
+ cast<CXXRecordDecl>(NamingD),
+ Access);
+ Entity.setDiag(DD.getDiagnostic());
+ CheckAccess(*this, Loc, Entity);
+ }
+}
+
+Sema::AccessResult Sema::CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E,
+ DeclAccessPair Found) {
+ if (!getLangOpts().AccessControl ||
+ !E->getNamingClass() ||
+ Found.getAccess() == AS_public)
+ return AR_accessible;
+
+ AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(),
+ Found, QualType());
+ Entity.setDiag(diag::err_access) << E->getSourceRange();
+
+ return CheckAccess(*this, E->getNameLoc(), Entity);
+}
+
+/// Perform access-control checking on a previously-unresolved member
+/// access which has now been resolved to a member.
+Sema::AccessResult Sema::CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E,
+ DeclAccessPair Found) {
+ if (!getLangOpts().AccessControl ||
+ Found.getAccess() == AS_public)
+ return AR_accessible;
+
+ QualType BaseType = E->getBaseType();
+ if (E->isArrow())
+ BaseType = BaseType->getAs<PointerType>()->getPointeeType();
+
+ AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(),
+ Found, BaseType);
+ Entity.setDiag(diag::err_access) << E->getSourceRange();
+
+ return CheckAccess(*this, E->getMemberLoc(), Entity);
+}
+
+/// Is the given special member function accessible for the purposes of
+/// deciding whether to define a special member function as deleted?
+bool Sema::isSpecialMemberAccessibleForDeletion(CXXMethodDecl *decl,
+ AccessSpecifier access,
+ QualType objectType) {
+ // Fast path.
+ if (access == AS_public || !getLangOpts().AccessControl) return true;
+
+ AccessTarget entity(Context, AccessTarget::Member, decl->getParent(),
+ DeclAccessPair::make(decl, access), objectType);
+
+ // Suppress diagnostics.
+ entity.setDiag(PDiag());
+
+ switch (CheckAccess(*this, SourceLocation(), entity)) {
+ case AR_accessible: return true;
+ case AR_inaccessible: return false;
+ case AR_dependent: llvm_unreachable("dependent for =delete computation");
+ case AR_delayed: llvm_unreachable("cannot delay =delete computation");
+ }
+ llvm_unreachable("bad access result");
+}
+
+Sema::AccessResult Sema::CheckDestructorAccess(SourceLocation Loc,
+ CXXDestructorDecl *Dtor,
+ const PartialDiagnostic &PDiag,
+ QualType ObjectTy) {
+ if (!getLangOpts().AccessControl)
+ return AR_accessible;
+
+ // There's never a path involved when checking implicit destructor access.
+ AccessSpecifier Access = Dtor->getAccess();
+ if (Access == AS_public)
+ return AR_accessible;
+
+ CXXRecordDecl *NamingClass = Dtor->getParent();
+ if (ObjectTy.isNull()) ObjectTy = Context.getTypeDeclType(NamingClass);
+
+ AccessTarget Entity(Context, AccessTarget::Member, NamingClass,
+ DeclAccessPair::make(Dtor, Access),
+ ObjectTy);
+ Entity.setDiag(PDiag); // TODO: avoid copy
+
+ return CheckAccess(*this, Loc, Entity);
+}
+
+/// Checks access to a constructor.
+Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc,
+ CXXConstructorDecl *Constructor,
+ const InitializedEntity &Entity,
+ AccessSpecifier Access,
+ bool IsCopyBindingRefToTemp) {
+ if (!getLangOpts().AccessControl || Access == AS_public)
+ return AR_accessible;
+
+ PartialDiagnostic PD(PDiag());
+ switch (Entity.getKind()) {
+ default:
+ PD = PDiag(IsCopyBindingRefToTemp
+ ? diag::ext_rvalue_to_reference_access_ctor
+ : diag::err_access_ctor);
+
+ break;
+
+ case InitializedEntity::EK_Base:
+ PD = PDiag(diag::err_access_base_ctor);
+ PD << Entity.isInheritedVirtualBase()
+ << Entity.getBaseSpecifier()->getType() << getSpecialMember(Constructor);
+ break;
+
+ case InitializedEntity::EK_Member: {
+ const FieldDecl *Field = cast<FieldDecl>(Entity.getDecl());
+ PD = PDiag(diag::err_access_field_ctor);
+ PD << Field->getType() << getSpecialMember(Constructor);
+ break;
+ }
+
+ case InitializedEntity::EK_LambdaCapture: {
+ StringRef VarName = Entity.getCapturedVarName();
+ PD = PDiag(diag::err_access_lambda_capture);
+ PD << VarName << Entity.getType() << getSpecialMember(Constructor);
+ break;
+ }
+
+ }
+
+ return CheckConstructorAccess(UseLoc, Constructor, Entity, Access, PD);
+}
+
+/// Checks access to a constructor.
+Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc,
+ CXXConstructorDecl *Constructor,
+ const InitializedEntity &Entity,
+ AccessSpecifier Access,
+ const PartialDiagnostic &PD) {
+ if (!getLangOpts().AccessControl ||
+ Access == AS_public)
+ return AR_accessible;
+
+ CXXRecordDecl *NamingClass = Constructor->getParent();
+
+ // Initializing a base sub-object is an instance method call on an
+ // object of the derived class. Otherwise, we have an instance method
+ // call on an object of the constructed type.
+ CXXRecordDecl *ObjectClass;
+ if (Entity.getKind() == InitializedEntity::EK_Base) {
+ ObjectClass = cast<CXXConstructorDecl>(CurContext)->getParent();
+ } else {
+ ObjectClass = NamingClass;
+ }
+
+ AccessTarget AccessEntity(Context, AccessTarget::Member, NamingClass,
+ DeclAccessPair::make(Constructor, Access),
+ Context.getTypeDeclType(ObjectClass));
+ AccessEntity.setDiag(PD);
+
+ return CheckAccess(*this, UseLoc, AccessEntity);
+}
+
+/// Checks access to an overloaded operator new or delete.
+Sema::AccessResult Sema::CheckAllocationAccess(SourceLocation OpLoc,
+ SourceRange PlacementRange,
+ CXXRecordDecl *NamingClass,
+ DeclAccessPair Found,
+ bool Diagnose) {
+ if (!getLangOpts().AccessControl ||
+ !NamingClass ||
+ Found.getAccess() == AS_public)
+ return AR_accessible;
+
+ AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
+ QualType());
+ if (Diagnose)
+ Entity.setDiag(diag::err_access)
+ << PlacementRange;
+
+ return CheckAccess(*this, OpLoc, Entity);
+}
+
+/// \brief Checks access to a member.
+Sema::AccessResult Sema::CheckMemberAccess(SourceLocation UseLoc,
+ CXXRecordDecl *NamingClass,
+ DeclAccessPair Found) {
+ if (!getLangOpts().AccessControl ||
+ !NamingClass ||
+ Found.getAccess() == AS_public)
+ return AR_accessible;
+
+ AccessTarget Entity(Context, AccessTarget::Member, NamingClass,
+ Found, QualType());
+
+ return CheckAccess(*this, UseLoc, Entity);
+}
+
+/// Checks access to an overloaded member operator, including
+/// conversion operators.
+Sema::AccessResult Sema::CheckMemberOperatorAccess(SourceLocation OpLoc,
+ Expr *ObjectExpr,
+ Expr *ArgExpr,
+ DeclAccessPair Found) {
+ if (!getLangOpts().AccessControl ||
+ Found.getAccess() == AS_public)
+ return AR_accessible;
+
+ const RecordType *RT = ObjectExpr->getType()->castAs<RecordType>();
+ CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(RT->getDecl());
+
+ AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
+ ObjectExpr->getType());
+ Entity.setDiag(diag::err_access)
+ << ObjectExpr->getSourceRange()
+ << (ArgExpr ? ArgExpr->getSourceRange() : SourceRange());
+
+ return CheckAccess(*this, OpLoc, Entity);
+}
+
+/// Checks access to the target of a friend declaration.
+Sema::AccessResult Sema::CheckFriendAccess(NamedDecl *target) {
+ assert(isa<CXXMethodDecl>(target->getAsFunction()));
+
+ // Friendship lookup is a redeclaration lookup, so there's never an
+ // inheritance path modifying access.
+ AccessSpecifier access = target->getAccess();
+
+ if (!getLangOpts().AccessControl || access == AS_public)
+ return AR_accessible;
+
+ CXXMethodDecl *method = cast<CXXMethodDecl>(target->getAsFunction());
+
+ AccessTarget entity(Context, AccessTarget::Member,
+ cast<CXXRecordDecl>(target->getDeclContext()),
+ DeclAccessPair::make(target, access),
+ /*no instance context*/ QualType());
+ entity.setDiag(diag::err_access_friend_function)
+ << (method->getQualifier() ? method->getQualifierLoc().getSourceRange()
+ : method->getNameInfo().getSourceRange());
+
+ // We need to bypass delayed-diagnostics because we might be called
+ // while the ParsingDeclarator is active.
+ EffectiveContext EC(CurContext);
+ switch (CheckEffectiveAccess(*this, EC, target->getLocation(), entity)) {
+ case AR_accessible: return Sema::AR_accessible;
+ case AR_inaccessible: return Sema::AR_inaccessible;
+ case AR_dependent: return Sema::AR_dependent;
+ }
+ llvm_unreachable("falling off end");
+}
+
+Sema::AccessResult Sema::CheckAddressOfMemberAccess(Expr *OvlExpr,
+ DeclAccessPair Found) {
+ if (!getLangOpts().AccessControl ||
+ Found.getAccess() == AS_none ||
+ Found.getAccess() == AS_public)
+ return AR_accessible;
+
+ OverloadExpr *Ovl = OverloadExpr::find(OvlExpr).Expression;
+ CXXRecordDecl *NamingClass = Ovl->getNamingClass();
+
+ AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
+ /*no instance context*/ QualType());
+ Entity.setDiag(diag::err_access)
+ << Ovl->getSourceRange();
+
+ return CheckAccess(*this, Ovl->getNameLoc(), Entity);
+}
+
+/// Checks access for a hierarchy conversion.
+///
+/// \param ForceCheck true if this check should be performed even if access
+/// control is disabled; some things rely on this for semantics
+/// \param ForceUnprivileged true if this check should proceed as if the
+/// context had no special privileges
+Sema::AccessResult Sema::CheckBaseClassAccess(SourceLocation AccessLoc,
+ QualType Base,
+ QualType Derived,
+ const CXXBasePath &Path,
+ unsigned DiagID,
+ bool ForceCheck,
+ bool ForceUnprivileged) {
+ if (!ForceCheck && !getLangOpts().AccessControl)
+ return AR_accessible;
+
+ if (Path.Access == AS_public)
+ return AR_accessible;
+
+ CXXRecordDecl *BaseD, *DerivedD;
+ BaseD = cast<CXXRecordDecl>(Base->getAs<RecordType>()->getDecl());
+ DerivedD = cast<CXXRecordDecl>(Derived->getAs<RecordType>()->getDecl());
+
+ AccessTarget Entity(Context, AccessTarget::Base, BaseD, DerivedD,
+ Path.Access);
+ if (DiagID)
+ Entity.setDiag(DiagID) << Derived << Base;
+
+ if (ForceUnprivileged) {
+ switch (CheckEffectiveAccess(*this, EffectiveContext(),
+ AccessLoc, Entity)) {
+ case ::AR_accessible: return Sema::AR_accessible;
+ case ::AR_inaccessible: return Sema::AR_inaccessible;
+ case ::AR_dependent: return Sema::AR_dependent;
+ }
+ llvm_unreachable("unexpected result from CheckEffectiveAccess");
+ }
+ return CheckAccess(*this, AccessLoc, Entity);
+}
+
+/// Checks access to all the declarations in the given result set.
+void Sema::CheckLookupAccess(const LookupResult &R) {
+ assert(getLangOpts().AccessControl
+ && "performing access check without access control");
+ assert(R.getNamingClass() && "performing access check without naming class");
+
+ for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
+ if (I.getAccess() != AS_public) {
+ AccessTarget Entity(Context, AccessedEntity::Member,
+ R.getNamingClass(), I.getPair(),
+ R.getBaseObjectType());
+ Entity.setDiag(diag::err_access);
+ CheckAccess(*this, R.getNameLoc(), Entity);
+ }
+ }
+}
+
+/// Checks access to Decl from the given class. The check will take access
+/// specifiers into account, but no member access expressions and such.
+///
+/// \param Decl the declaration to check if it can be accessed
+/// \param Ctx the class/context from which to start the search
+/// \return true if the Decl is accessible from the Class, false otherwise.
+bool Sema::IsSimplyAccessible(NamedDecl *Decl, DeclContext *Ctx) {
+ if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx)) {
+ if (!Decl->isCXXClassMember())
+ return true;
+
+ QualType qType = Class->getTypeForDecl()->getCanonicalTypeInternal();
+ AccessTarget Entity(Context, AccessedEntity::Member, Class,
+ DeclAccessPair::make(Decl, Decl->getAccess()),
+ qType);
+ if (Entity.getAccess() == AS_public)
+ return true;
+
+ EffectiveContext EC(CurContext);
+ return ::IsAccessible(*this, EC, Entity) != ::AR_inaccessible;
+ }
+
+ if (ObjCIvarDecl *Ivar = dyn_cast<ObjCIvarDecl>(Decl)) {
+ // @public and @package ivars are always accessible.
+ if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Public ||
+ Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Package)
+ return true;
+
+ // If we are inside a class or category implementation, determine the
+ // interface we're in.
+ ObjCInterfaceDecl *ClassOfMethodDecl = nullptr;
+ if (ObjCMethodDecl *MD = getCurMethodDecl())
+ ClassOfMethodDecl = MD->getClassInterface();
+ else if (FunctionDecl *FD = getCurFunctionDecl()) {
+ if (ObjCImplDecl *Impl
+ = dyn_cast<ObjCImplDecl>(FD->getLexicalDeclContext())) {
+ if (ObjCImplementationDecl *IMPD
+ = dyn_cast<ObjCImplementationDecl>(Impl))
+ ClassOfMethodDecl = IMPD->getClassInterface();
+ else if (ObjCCategoryImplDecl* CatImplClass
+ = dyn_cast<ObjCCategoryImplDecl>(Impl))
+ ClassOfMethodDecl = CatImplClass->getClassInterface();
+ }
+ }
+
+ // If we're not in an interface, this ivar is inaccessible.
+ if (!ClassOfMethodDecl)
+ return false;
+
+ // If we're inside the same interface that owns the ivar, we're fine.
+ if (declaresSameEntity(ClassOfMethodDecl, Ivar->getContainingInterface()))
+ return true;
+
+ // If the ivar is private, it's inaccessible.
+ if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Private)
+ return false;
+
+ return Ivar->getContainingInterface()->isSuperClassOf(ClassOfMethodDecl);
+ }
+
+ return true;
+}
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaAttr.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaAttr.cpp
new file mode 100644
index 0000000..5a29bad
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaAttr.cpp
@@ -0,0 +1,619 @@
+//===--- SemaAttr.cpp - Semantic Analysis for Attributes ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements semantic analysis for non-trivial attributes and
+// pragmas.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Sema/SemaInternal.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/Expr.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Sema/Lookup.h"
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// Pragma 'pack' and 'options align'
+//===----------------------------------------------------------------------===//
+
+namespace {
+ struct PackStackEntry {
+ // We just use a sentinel to represent when the stack is set to mac68k
+ // alignment.
+ static const unsigned kMac68kAlignmentSentinel = ~0U;
+
+ unsigned Alignment;
+ IdentifierInfo *Name;
+ };
+
+ /// PragmaPackStack - Simple class to wrap the stack used by #pragma
+ /// pack.
+ class PragmaPackStack {
+ typedef std::vector<PackStackEntry> stack_ty;
+
+ /// Alignment - The current user specified alignment.
+ unsigned Alignment;
+
+ /// Stack - Entries in the #pragma pack stack, consisting of saved
+ /// alignments and optional names.
+ stack_ty Stack;
+
+ public:
+ PragmaPackStack() : Alignment(0) {}
+
+ void setAlignment(unsigned A) { Alignment = A; }
+ unsigned getAlignment() { return Alignment; }
+
+ /// push - Push the current alignment onto the stack, optionally
+ /// using the given \arg Name for the record, if non-zero.
+ void push(IdentifierInfo *Name) {
+ PackStackEntry PSE = { Alignment, Name };
+ Stack.push_back(PSE);
+ }
+
+ /// pop - Pop a record from the stack and restore the current
+ /// alignment to the previous value. If \arg Name is non-zero then
+ /// the first such named record is popped, otherwise the top record
+ /// is popped. Returns true if the pop succeeded.
+ bool pop(IdentifierInfo *Name, bool IsReset);
+ };
+} // end anonymous namespace.
+
+bool PragmaPackStack::pop(IdentifierInfo *Name, bool IsReset) {
+ // If name is empty just pop top.
+ if (!Name) {
+ // An empty stack is a special case...
+ if (Stack.empty()) {
+ // If this isn't a reset, it is always an error.
+ if (!IsReset)
+ return false;
+
+ // Otherwise, it is an error only if some alignment has been set.
+ if (!Alignment)
+ return false;
+
+ // Otherwise, reset to the default alignment.
+ Alignment = 0;
+ } else {
+ Alignment = Stack.back().Alignment;
+ Stack.pop_back();
+ }
+
+ return true;
+ }
+
+ // Otherwise, find the named record.
+ for (unsigned i = Stack.size(); i != 0; ) {
+ --i;
+ if (Stack[i].Name == Name) {
+ // Found it, pop up to and including this record.
+ Alignment = Stack[i].Alignment;
+ Stack.erase(Stack.begin() + i, Stack.end());
+ return true;
+ }
+ }
+
+ return false;
+}
+
+
+/// FreePackedContext - Deallocate and null out PackContext.
+void Sema::FreePackedContext() {
+ delete static_cast<PragmaPackStack*>(PackContext);
+ PackContext = nullptr;
+}
+
+void Sema::AddAlignmentAttributesForRecord(RecordDecl *RD) {
+ // If there is no pack context, we don't need any attributes.
+ if (!PackContext)
+ return;
+
+ PragmaPackStack *Stack = static_cast<PragmaPackStack*>(PackContext);
+
+ // Otherwise, check to see if we need a max field alignment attribute.
+ if (unsigned Alignment = Stack->getAlignment()) {
+ if (Alignment == PackStackEntry::kMac68kAlignmentSentinel)
+ RD->addAttr(AlignMac68kAttr::CreateImplicit(Context));
+ else
+ RD->addAttr(MaxFieldAlignmentAttr::CreateImplicit(Context,
+ Alignment * 8));
+ }
+}
+
+void Sema::AddMsStructLayoutForRecord(RecordDecl *RD) {
+ if (MSStructPragmaOn)
+ RD->addAttr(MSStructAttr::CreateImplicit(Context));
+
+ // FIXME: We should merge AddAlignmentAttributesForRecord with
+ // AddMsStructLayoutForRecord into AddPragmaAttributesForRecord, which takes
+ // all active pragmas and applies them as attributes to class definitions.
+ if (VtorDispModeStack.back() != getLangOpts().VtorDispMode)
+ RD->addAttr(
+ MSVtorDispAttr::CreateImplicit(Context, VtorDispModeStack.back()));
+}
+
+void Sema::ActOnPragmaOptionsAlign(PragmaOptionsAlignKind Kind,
+ SourceLocation PragmaLoc) {
+ if (!PackContext)
+ PackContext = new PragmaPackStack();
+
+ PragmaPackStack *Context = static_cast<PragmaPackStack*>(PackContext);
+
+ switch (Kind) {
+ // For all targets we support native and natural are the same.
+ //
+ // FIXME: This is not true on Darwin/PPC.
+ case POAK_Native:
+ case POAK_Power:
+ case POAK_Natural:
+ Context->push(nullptr);
+ Context->setAlignment(0);
+ break;
+
+ // Note that '#pragma options align=packed' is not equivalent to attribute
+ // packed, it has a different precedence relative to attribute aligned.
+ case POAK_Packed:
+ Context->push(nullptr);
+ Context->setAlignment(1);
+ break;
+
+ case POAK_Mac68k:
+ // Check if the target supports this.
+ if (!this->Context.getTargetInfo().hasAlignMac68kSupport()) {
+ Diag(PragmaLoc, diag::err_pragma_options_align_mac68k_target_unsupported);
+ return;
+ }
+ Context->push(nullptr);
+ Context->setAlignment(PackStackEntry::kMac68kAlignmentSentinel);
+ break;
+
+ case POAK_Reset:
+ // Reset just pops the top of the stack, or resets the current alignment to
+ // default.
+ if (!Context->pop(nullptr, /*IsReset=*/true)) {
+ Diag(PragmaLoc, diag::warn_pragma_options_align_reset_failed)
+ << "stack empty";
+ }
+ break;
+ }
+}
+
+void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name,
+ Expr *alignment, SourceLocation PragmaLoc,
+ SourceLocation LParenLoc, SourceLocation RParenLoc) {
+ Expr *Alignment = static_cast<Expr *>(alignment);
+
+ // If specified then alignment must be a "small" power of two.
+ unsigned AlignmentVal = 0;
+ if (Alignment) {
+ llvm::APSInt Val;
+
+ // pack(0) is like pack(), which just works out since that is what
+ // we use 0 for in PackAttr.
+ if (Alignment->isTypeDependent() ||
+ Alignment->isValueDependent() ||
+ !Alignment->isIntegerConstantExpr(Val, Context) ||
+ !(Val == 0 || Val.isPowerOf2()) ||
+ Val.getZExtValue() > 16) {
+ Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment);
+ return; // Ignore
+ }
+
+ AlignmentVal = (unsigned) Val.getZExtValue();
+ }
+
+ if (!PackContext)
+ PackContext = new PragmaPackStack();
+
+ PragmaPackStack *Context = static_cast<PragmaPackStack*>(PackContext);
+
+ switch (Kind) {
+ case Sema::PPK_Default: // pack([n])
+ Context->setAlignment(AlignmentVal);
+ break;
+
+ case Sema::PPK_Show: // pack(show)
+ // Show the current alignment, making sure to show the right value
+ // for the default.
+ AlignmentVal = Context->getAlignment();
+ // FIXME: This should come from the target.
+ if (AlignmentVal == 0)
+ AlignmentVal = 8;
+ if (AlignmentVal == PackStackEntry::kMac68kAlignmentSentinel)
+ Diag(PragmaLoc, diag::warn_pragma_pack_show) << "mac68k";
+ else
+ Diag(PragmaLoc, diag::warn_pragma_pack_show) << AlignmentVal;
+ break;
+
+ case Sema::PPK_Push: // pack(push [, id] [, [n])
+ Context->push(Name);
+ // Set the new alignment if specified.
+ if (Alignment)
+ Context->setAlignment(AlignmentVal);
+ break;
+
+ case Sema::PPK_Pop: // pack(pop [, id] [, n])
+ // MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack:
+ // "#pragma pack(pop, identifier, n) is undefined"
+ if (Alignment && Name)
+ Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment);
+
+ // Do the pop.
+ if (!Context->pop(Name, /*IsReset=*/false)) {
+ // If a name was specified then failure indicates the name
+ // wasn't found. Otherwise failure indicates the stack was
+ // empty.
+ Diag(PragmaLoc, diag::warn_pragma_pop_failed)
+ << "pack" << (Name ? "no record matching name" : "stack empty");
+
+ // FIXME: Warn about popping named records as MSVC does.
+ } else {
+ // Pop succeeded, set the new alignment if specified.
+ if (Alignment)
+ Context->setAlignment(AlignmentVal);
+ }
+ break;
+ }
+}
+
+void Sema::ActOnPragmaMSStruct(PragmaMSStructKind Kind) {
+ MSStructPragmaOn = (Kind == PMSST_ON);
+}
+
+void Sema::ActOnPragmaMSComment(PragmaMSCommentKind Kind, StringRef Arg) {
+ // FIXME: Serialize this.
+ switch (Kind) {
+ case PCK_Unknown:
+ llvm_unreachable("unexpected pragma comment kind");
+ case PCK_Linker:
+ Consumer.HandleLinkerOptionPragma(Arg);
+ return;
+ case PCK_Lib:
+ Consumer.HandleDependentLibrary(Arg);
+ return;
+ case PCK_Compiler:
+ case PCK_ExeStr:
+ case PCK_User:
+ return; // We ignore all of these.
+ }
+ llvm_unreachable("invalid pragma comment kind");
+}
+
+void Sema::ActOnPragmaDetectMismatch(StringRef Name, StringRef Value) {
+ // FIXME: Serialize this.
+ Consumer.HandleDetectMismatch(Name, Value);
+}
+
+void Sema::ActOnPragmaMSPointersToMembers(
+ LangOptions::PragmaMSPointersToMembersKind RepresentationMethod,
+ SourceLocation PragmaLoc) {
+ MSPointerToMemberRepresentationMethod = RepresentationMethod;
+ ImplicitMSInheritanceAttrLoc = PragmaLoc;
+}
+
+void Sema::ActOnPragmaMSVtorDisp(PragmaVtorDispKind Kind,
+ SourceLocation PragmaLoc,
+ MSVtorDispAttr::Mode Mode) {
+ switch (Kind) {
+ case PVDK_Set:
+ VtorDispModeStack.back() = Mode;
+ break;
+ case PVDK_Push:
+ VtorDispModeStack.push_back(Mode);
+ break;
+ case PVDK_Reset:
+ VtorDispModeStack.clear();
+ VtorDispModeStack.push_back(MSVtorDispAttr::Mode(LangOpts.VtorDispMode));
+ break;
+ case PVDK_Pop:
+ VtorDispModeStack.pop_back();
+ if (VtorDispModeStack.empty()) {
+ Diag(PragmaLoc, diag::warn_pragma_pop_failed) << "vtordisp"
+ << "stack empty";
+ VtorDispModeStack.push_back(MSVtorDispAttr::Mode(LangOpts.VtorDispMode));
+ }
+ break;
+ }
+}
+
+template<typename ValueType>
+void Sema::PragmaStack<ValueType>::Act(SourceLocation PragmaLocation,
+ PragmaMsStackAction Action,
+ llvm::StringRef StackSlotLabel,
+ ValueType Value) {
+ if (Action == PSK_Reset) {
+ CurrentValue = nullptr;
+ return;
+ }
+ if (Action & PSK_Push)
+ Stack.push_back(Slot(StackSlotLabel, CurrentValue, CurrentPragmaLocation));
+ else if (Action & PSK_Pop) {
+ if (!StackSlotLabel.empty()) {
+ // If we've got a label, try to find it and jump there.
+ auto I = std::find_if(Stack.rbegin(), Stack.rend(),
+ [&](const Slot &x) { return x.StackSlotLabel == StackSlotLabel; });
+ // If we found the label so pop from there.
+ if (I != Stack.rend()) {
+ CurrentValue = I->Value;
+ CurrentPragmaLocation = I->PragmaLocation;
+ Stack.erase(std::prev(I.base()), Stack.end());
+ }
+ } else if (!Stack.empty()) {
+ // We don't have a label, just pop the last entry.
+ CurrentValue = Stack.back().Value;
+ CurrentPragmaLocation = Stack.back().PragmaLocation;
+ Stack.pop_back();
+ }
+ }
+ if (Action & PSK_Set) {
+ CurrentValue = Value;
+ CurrentPragmaLocation = PragmaLocation;
+ }
+}
+
+bool Sema::UnifySection(StringRef SectionName,
+ int SectionFlags,
+ DeclaratorDecl *Decl) {
+ auto Section = Context.SectionInfos.find(SectionName);
+ if (Section == Context.SectionInfos.end()) {
+ Context.SectionInfos[SectionName] =
+ ASTContext::SectionInfo(Decl, SourceLocation(), SectionFlags);
+ return false;
+ }
+ // A pre-declared section takes precedence w/o diagnostic.
+ if (Section->second.SectionFlags == SectionFlags ||
+ !(Section->second.SectionFlags & ASTContext::PSF_Implicit))
+ return false;
+ auto OtherDecl = Section->second.Decl;
+ Diag(Decl->getLocation(), diag::err_section_conflict)
+ << Decl << OtherDecl;
+ Diag(OtherDecl->getLocation(), diag::note_declared_at)
+ << OtherDecl->getName();
+ if (auto A = Decl->getAttr<SectionAttr>())
+ if (A->isImplicit())
+ Diag(A->getLocation(), diag::note_pragma_entered_here);
+ if (auto A = OtherDecl->getAttr<SectionAttr>())
+ if (A->isImplicit())
+ Diag(A->getLocation(), diag::note_pragma_entered_here);
+ return true;
+}
+
+bool Sema::UnifySection(StringRef SectionName,
+ int SectionFlags,
+ SourceLocation PragmaSectionLocation) {
+ auto Section = Context.SectionInfos.find(SectionName);
+ if (Section != Context.SectionInfos.end()) {
+ if (Section->second.SectionFlags == SectionFlags)
+ return false;
+ if (!(Section->second.SectionFlags & ASTContext::PSF_Implicit)) {
+ Diag(PragmaSectionLocation, diag::err_section_conflict)
+ << "this" << "a prior #pragma section";
+ Diag(Section->second.PragmaSectionLocation,
+ diag::note_pragma_entered_here);
+ return true;
+ }
+ }
+ Context.SectionInfos[SectionName] =
+ ASTContext::SectionInfo(nullptr, PragmaSectionLocation, SectionFlags);
+ return false;
+}
+
+/// \brief Called on well formed \#pragma bss_seg().
+void Sema::ActOnPragmaMSSeg(SourceLocation PragmaLocation,
+ PragmaMsStackAction Action,
+ llvm::StringRef StackSlotLabel,
+ StringLiteral *SegmentName,
+ llvm::StringRef PragmaName) {
+ PragmaStack<StringLiteral *> *Stack =
+ llvm::StringSwitch<PragmaStack<StringLiteral *> *>(PragmaName)
+ .Case("data_seg", &DataSegStack)
+ .Case("bss_seg", &BSSSegStack)
+ .Case("const_seg", &ConstSegStack)
+ .Case("code_seg", &CodeSegStack);
+ if (Action & PSK_Pop && Stack->Stack.empty())
+ Diag(PragmaLocation, diag::warn_pragma_pop_failed) << PragmaName
+ << "stack empty";
+ if (SegmentName &&
+ !checkSectionName(SegmentName->getLocStart(), SegmentName->getString()))
+ return;
+ Stack->Act(PragmaLocation, Action, StackSlotLabel, SegmentName);
+}
+
+/// \brief Called on well formed \#pragma bss_seg().
+void Sema::ActOnPragmaMSSection(SourceLocation PragmaLocation,
+ int SectionFlags, StringLiteral *SegmentName) {
+ UnifySection(SegmentName->getString(), SectionFlags, PragmaLocation);
+}
+
+void Sema::ActOnPragmaMSInitSeg(SourceLocation PragmaLocation,
+ StringLiteral *SegmentName) {
+ // There's no stack to maintain, so we just have a current section. When we
+ // see the default section, reset our current section back to null so we stop
+ // tacking on unnecessary attributes.
+ CurInitSeg = SegmentName->getString() == ".CRT$XCU" ? nullptr : SegmentName;
+ CurInitSegLoc = PragmaLocation;
+}
+
+void Sema::ActOnPragmaUnused(const Token &IdTok, Scope *curScope,
+ SourceLocation PragmaLoc) {
+
+ IdentifierInfo *Name = IdTok.getIdentifierInfo();
+ LookupResult Lookup(*this, Name, IdTok.getLocation(), LookupOrdinaryName);
+ LookupParsedName(Lookup, curScope, nullptr, true);
+
+ if (Lookup.empty()) {
+ Diag(PragmaLoc, diag::warn_pragma_unused_undeclared_var)
+ << Name << SourceRange(IdTok.getLocation());
+ return;
+ }
+
+ VarDecl *VD = Lookup.getAsSingle<VarDecl>();
+ if (!VD) {
+ Diag(PragmaLoc, diag::warn_pragma_unused_expected_var_arg)
+ << Name << SourceRange(IdTok.getLocation());
+ return;
+ }
+
+ // Warn if this was used before being marked unused.
+ if (VD->isUsed())
+ Diag(PragmaLoc, diag::warn_used_but_marked_unused) << Name;
+
+ VD->addAttr(UnusedAttr::CreateImplicit(Context, IdTok.getLocation()));
+}
+
+void Sema::AddCFAuditedAttribute(Decl *D) {
+ SourceLocation Loc = PP.getPragmaARCCFCodeAuditedLoc();
+ if (!Loc.isValid()) return;
+
+ // Don't add a redundant or conflicting attribute.
+ if (D->hasAttr<CFAuditedTransferAttr>() ||
+ D->hasAttr<CFUnknownTransferAttr>())
+ return;
+
+ D->addAttr(CFAuditedTransferAttr::CreateImplicit(Context, Loc));
+}
+
+void Sema::ActOnPragmaOptimize(bool On, SourceLocation PragmaLoc) {
+ if(On)
+ OptimizeOffPragmaLocation = SourceLocation();
+ else
+ OptimizeOffPragmaLocation = PragmaLoc;
+}
+
+void Sema::AddRangeBasedOptnone(FunctionDecl *FD) {
+ // In the future, check other pragmas if they're implemented (e.g. pragma
+ // optimize 0 will probably map to this functionality too).
+ if(OptimizeOffPragmaLocation.isValid())
+ AddOptnoneAttributeIfNoConflicts(FD, OptimizeOffPragmaLocation);
+}
+
+void Sema::AddOptnoneAttributeIfNoConflicts(FunctionDecl *FD,
+ SourceLocation Loc) {
+ // Don't add a conflicting attribute. No diagnostic is needed.
+ if (FD->hasAttr<MinSizeAttr>() || FD->hasAttr<AlwaysInlineAttr>())
+ return;
+
+ // Add attributes only if required. Optnone requires noinline as well, but if
+ // either is already present then don't bother adding them.
+ if (!FD->hasAttr<OptimizeNoneAttr>())
+ FD->addAttr(OptimizeNoneAttr::CreateImplicit(Context, Loc));
+ if (!FD->hasAttr<NoInlineAttr>())
+ FD->addAttr(NoInlineAttr::CreateImplicit(Context, Loc));
+}
+
+typedef std::vector<std::pair<unsigned, SourceLocation> > VisStack;
+enum : unsigned { NoVisibility = ~0U };
+
+void Sema::AddPushedVisibilityAttribute(Decl *D) {
+ if (!VisContext)
+ return;
+
+ NamedDecl *ND = dyn_cast<NamedDecl>(D);
+ if (ND && ND->getExplicitVisibility(NamedDecl::VisibilityForValue))
+ return;
+
+ VisStack *Stack = static_cast<VisStack*>(VisContext);
+ unsigned rawType = Stack->back().first;
+ if (rawType == NoVisibility) return;
+
+ VisibilityAttr::VisibilityType type
+ = (VisibilityAttr::VisibilityType) rawType;
+ SourceLocation loc = Stack->back().second;
+
+ D->addAttr(VisibilityAttr::CreateImplicit(Context, type, loc));
+}
+
+/// FreeVisContext - Deallocate and null out VisContext.
+void Sema::FreeVisContext() {
+ delete static_cast<VisStack*>(VisContext);
+ VisContext = nullptr;
+}
+
+static void PushPragmaVisibility(Sema &S, unsigned type, SourceLocation loc) {
+ // Put visibility on stack.
+ if (!S.VisContext)
+ S.VisContext = new VisStack;
+
+ VisStack *Stack = static_cast<VisStack*>(S.VisContext);
+ Stack->push_back(std::make_pair(type, loc));
+}
+
+void Sema::ActOnPragmaVisibility(const IdentifierInfo* VisType,
+ SourceLocation PragmaLoc) {
+ if (VisType) {
+ // Compute visibility to use.
+ VisibilityAttr::VisibilityType T;
+ if (!VisibilityAttr::ConvertStrToVisibilityType(VisType->getName(), T)) {
+ Diag(PragmaLoc, diag::warn_attribute_unknown_visibility) << VisType;
+ return;
+ }
+ PushPragmaVisibility(*this, T, PragmaLoc);
+ } else {
+ PopPragmaVisibility(false, PragmaLoc);
+ }
+}
+
+void Sema::ActOnPragmaFPContract(tok::OnOffSwitch OOS) {
+ switch (OOS) {
+ case tok::OOS_ON:
+ FPFeatures.fp_contract = 1;
+ break;
+ case tok::OOS_OFF:
+ FPFeatures.fp_contract = 0;
+ break;
+ case tok::OOS_DEFAULT:
+ FPFeatures.fp_contract = getLangOpts().DefaultFPContract;
+ break;
+ }
+}
+
+void Sema::PushNamespaceVisibilityAttr(const VisibilityAttr *Attr,
+ SourceLocation Loc) {
+ // Visibility calculations will consider the namespace's visibility.
+ // Here we just want to note that we're in a visibility context
+ // which overrides any enclosing #pragma context, but doesn't itself
+ // contribute visibility.
+ PushPragmaVisibility(*this, NoVisibility, Loc);
+}
+
+void Sema::PopPragmaVisibility(bool IsNamespaceEnd, SourceLocation EndLoc) {
+ if (!VisContext) {
+ Diag(EndLoc, diag::err_pragma_pop_visibility_mismatch);
+ return;
+ }
+
+ // Pop visibility from stack
+ VisStack *Stack = static_cast<VisStack*>(VisContext);
+
+ const std::pair<unsigned, SourceLocation> *Back = &Stack->back();
+ bool StartsWithPragma = Back->first != NoVisibility;
+ if (StartsWithPragma && IsNamespaceEnd) {
+ Diag(Back->second, diag::err_pragma_push_visibility_mismatch);
+ Diag(EndLoc, diag::note_surrounding_namespace_ends_here);
+
+ // For better error recovery, eat all pushes inside the namespace.
+ do {
+ Stack->pop_back();
+ Back = &Stack->back();
+ StartsWithPragma = Back->first != NoVisibility;
+ } while (StartsWithPragma);
+ } else if (!StartsWithPragma && !IsNamespaceEnd) {
+ Diag(EndLoc, diag::err_pragma_pop_visibility_mismatch);
+ Diag(Back->second, diag::note_surrounding_namespace_starts_here);
+ return;
+ }
+
+ Stack->pop_back();
+ // To simplify the implementation, never keep around an empty stack.
+ if (Stack->empty())
+ FreeVisContext();
+}
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaCUDA.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaCUDA.cpp
new file mode 100644
index 0000000..5973500
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaCUDA.cpp
@@ -0,0 +1,280 @@
+//===--- SemaCUDA.cpp - Semantic Analysis for CUDA constructs -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// \brief This file implements semantic analysis for CUDA constructs.
+///
+//===----------------------------------------------------------------------===//
+
+#include "clang/Sema/Sema.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Decl.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Sema/SemaDiagnostic.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/SmallVector.h"
+using namespace clang;
+
+ExprResult Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
+ MultiExprArg ExecConfig,
+ SourceLocation GGGLoc) {
+ FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
+ if (!ConfigDecl)
+ return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
+ << "cudaConfigureCall");
+ QualType ConfigQTy = ConfigDecl->getType();
+
+ DeclRefExpr *ConfigDR = new (Context)
+ DeclRefExpr(ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc);
+ MarkFunctionReferenced(LLLLoc, ConfigDecl);
+
+ return ActOnCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, nullptr,
+ /*IsExecConfig=*/true);
+}
+
+/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
+Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
+ if (D->hasAttr<CUDAInvalidTargetAttr>())
+ return CFT_InvalidTarget;
+
+ if (D->hasAttr<CUDAGlobalAttr>())
+ return CFT_Global;
+
+ if (D->hasAttr<CUDADeviceAttr>()) {
+ if (D->hasAttr<CUDAHostAttr>())
+ return CFT_HostDevice;
+ return CFT_Device;
+ } else if (D->hasAttr<CUDAHostAttr>()) {
+ return CFT_Host;
+ } else if (D->isImplicit()) {
+ // Some implicit declarations (like intrinsic functions) are not marked.
+ // Set the most lenient target on them for maximal flexibility.
+ return CFT_HostDevice;
+ }
+
+ return CFT_Host;
+}
+
+bool Sema::CheckCUDATarget(const FunctionDecl *Caller,
+ const FunctionDecl *Callee) {
+ // The CUDADisableTargetCallChecks short-circuits this check: we assume all
+ // cross-target calls are valid.
+ if (getLangOpts().CUDADisableTargetCallChecks)
+ return false;
+
+ CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller),
+ CalleeTarget = IdentifyCUDATarget(Callee);
+
+ // If one of the targets is invalid, the check always fails, no matter what
+ // the other target is.
+ if (CallerTarget == CFT_InvalidTarget || CalleeTarget == CFT_InvalidTarget)
+ return true;
+
+ // CUDA B.1.1 "The __device__ qualifier declares a function that is [...]
+ // Callable from the device only."
+ if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
+ return true;
+
+ // CUDA B.1.2 "The __global__ qualifier declares a function that is [...]
+ // Callable from the host only."
+ // CUDA B.1.3 "The __host__ qualifier declares a function that is [...]
+ // Callable from the host only."
+ if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
+ (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
+ return true;
+
+ // CUDA B.1.3 "The __device__ and __host__ qualifiers can be used together
+ // however, in which case the function is compiled for both the host and the
+ // device. The __CUDA_ARCH__ macro [...] can be used to differentiate code
+ // paths between host and device."
+ if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice) {
+ // If the caller is implicit then the check always passes.
+ if (Caller->isImplicit()) return false;
+
+ bool InDeviceMode = getLangOpts().CUDAIsDevice;
+ if (!InDeviceMode && CalleeTarget != CFT_Host)
+ return true;
+ if (InDeviceMode && CalleeTarget != CFT_Device) {
+ // Allow host device functions to call host functions if explicitly
+ // requested.
+ if (CalleeTarget == CFT_Host &&
+ getLangOpts().CUDAAllowHostCallsFromHostDevice) {
+ Diag(Caller->getLocation(),
+ diag::warn_host_calls_from_host_device)
+ << Callee->getNameAsString() << Caller->getNameAsString();
+ return false;
+ }
+
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/// When an implicitly-declared special member has to invoke more than one
+/// base/field special member, conflicts may occur in the targets of these
+/// members. For example, if one base's member __host__ and another's is
+/// __device__, it's a conflict.
+/// This function figures out if the given targets \param Target1 and
+/// \param Target2 conflict, and if they do not it fills in
+/// \param ResolvedTarget with a target that resolves for both calls.
+/// \return true if there's a conflict, false otherwise.
+static bool
+resolveCalleeCUDATargetConflict(Sema::CUDAFunctionTarget Target1,
+ Sema::CUDAFunctionTarget Target2,
+ Sema::CUDAFunctionTarget *ResolvedTarget) {
+ if (Target1 == Sema::CFT_Global && Target2 == Sema::CFT_Global) {
+ // TODO: this shouldn't happen, really. Methods cannot be marked __global__.
+ // Clang should detect this earlier and produce an error. Then this
+ // condition can be changed to an assertion.
+ return true;
+ }
+
+ if (Target1 == Sema::CFT_HostDevice) {
+ *ResolvedTarget = Target2;
+ } else if (Target2 == Sema::CFT_HostDevice) {
+ *ResolvedTarget = Target1;
+ } else if (Target1 != Target2) {
+ return true;
+ } else {
+ *ResolvedTarget = Target1;
+ }
+
+ return false;
+}
+
+bool Sema::inferCUDATargetForImplicitSpecialMember(CXXRecordDecl *ClassDecl,
+ CXXSpecialMember CSM,
+ CXXMethodDecl *MemberDecl,
+ bool ConstRHS,
+ bool Diagnose) {
+ llvm::Optional<CUDAFunctionTarget> InferredTarget;
+
+ // We're going to invoke special member lookup; mark that these special
+ // members are called from this one, and not from its caller.
+ ContextRAII MethodContext(*this, MemberDecl);
+
+ // Look for special members in base classes that should be invoked from here.
+ // Infer the target of this member base on the ones it should call.
+ // Skip direct and indirect virtual bases for abstract classes.
+ llvm::SmallVector<const CXXBaseSpecifier *, 16> Bases;
+ for (const auto &B : ClassDecl->bases()) {
+ if (!B.isVirtual()) {
+ Bases.push_back(&B);
+ }
+ }
+
+ if (!ClassDecl->isAbstract()) {
+ for (const auto &VB : ClassDecl->vbases()) {
+ Bases.push_back(&VB);
+ }
+ }
+
+ for (const auto *B : Bases) {
+ const RecordType *BaseType = B->getType()->getAs<RecordType>();
+ if (!BaseType) {
+ continue;
+ }
+
+ CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
+ Sema::SpecialMemberOverloadResult *SMOR =
+ LookupSpecialMember(BaseClassDecl, CSM,
+ /* ConstArg */ ConstRHS,
+ /* VolatileArg */ false,
+ /* RValueThis */ false,
+ /* ConstThis */ false,
+ /* VolatileThis */ false);
+
+ if (!SMOR || !SMOR->getMethod()) {
+ continue;
+ }
+
+ CUDAFunctionTarget BaseMethodTarget = IdentifyCUDATarget(SMOR->getMethod());
+ if (!InferredTarget.hasValue()) {
+ InferredTarget = BaseMethodTarget;
+ } else {
+ bool ResolutionError = resolveCalleeCUDATargetConflict(
+ InferredTarget.getValue(), BaseMethodTarget,
+ InferredTarget.getPointer());
+ if (ResolutionError) {
+ if (Diagnose) {
+ Diag(ClassDecl->getLocation(),
+ diag::note_implicit_member_target_infer_collision)
+ << (unsigned)CSM << InferredTarget.getValue() << BaseMethodTarget;
+ }
+ MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context));
+ return true;
+ }
+ }
+ }
+
+ // Same as for bases, but now for special members of fields.
+ for (const auto *F : ClassDecl->fields()) {
+ if (F->isInvalidDecl()) {
+ continue;
+ }
+
+ const RecordType *FieldType =
+ Context.getBaseElementType(F->getType())->getAs<RecordType>();
+ if (!FieldType) {
+ continue;
+ }
+
+ CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(FieldType->getDecl());
+ Sema::SpecialMemberOverloadResult *SMOR =
+ LookupSpecialMember(FieldRecDecl, CSM,
+ /* ConstArg */ ConstRHS && !F->isMutable(),
+ /* VolatileArg */ false,
+ /* RValueThis */ false,
+ /* ConstThis */ false,
+ /* VolatileThis */ false);
+
+ if (!SMOR || !SMOR->getMethod()) {
+ continue;
+ }
+
+ CUDAFunctionTarget FieldMethodTarget =
+ IdentifyCUDATarget(SMOR->getMethod());
+ if (!InferredTarget.hasValue()) {
+ InferredTarget = FieldMethodTarget;
+ } else {
+ bool ResolutionError = resolveCalleeCUDATargetConflict(
+ InferredTarget.getValue(), FieldMethodTarget,
+ InferredTarget.getPointer());
+ if (ResolutionError) {
+ if (Diagnose) {
+ Diag(ClassDecl->getLocation(),
+ diag::note_implicit_member_target_infer_collision)
+ << (unsigned)CSM << InferredTarget.getValue()
+ << FieldMethodTarget;
+ }
+ MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context));
+ return true;
+ }
+ }
+ }
+
+ if (InferredTarget.hasValue()) {
+ if (InferredTarget.getValue() == CFT_Device) {
+ MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context));
+ } else if (InferredTarget.getValue() == CFT_Host) {
+ MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context));
+ } else {
+ MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context));
+ MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context));
+ }
+ } else {
+ // If no target was inferred, mark this member as __host__ __device__;
+ // it's the least restrictive option that can be invoked from any target.
+ MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context));
+ MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context));
+ }
+
+ return false;
+}
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaCXXScopeSpec.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaCXXScopeSpec.cpp
new file mode 100644
index 0000000..9e146ed
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaCXXScopeSpec.cpp
@@ -0,0 +1,1058 @@
+//===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements C++ semantic analysis for scope specifiers.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Sema/SemaInternal.h"
+#include "TypeLocBuilder.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/NestedNameSpecifier.h"
+#include "clang/Basic/PartialDiagnostic.h"
+#include "clang/Sema/DeclSpec.h"
+#include "clang/Sema/Lookup.h"
+#include "clang/Sema/Template.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace clang;
+
+/// \brief Find the current instantiation that associated with the given type.
+static CXXRecordDecl *getCurrentInstantiationOf(QualType T,
+ DeclContext *CurContext) {
+ if (T.isNull())
+ return nullptr;
+
+ const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
+ if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
+ CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
+ if (!Record->isDependentContext() ||
+ Record->isCurrentInstantiation(CurContext))
+ return Record;
+
+ return nullptr;
+ } else if (isa<InjectedClassNameType>(Ty))
+ return cast<InjectedClassNameType>(Ty)->getDecl();
+ else
+ return nullptr;
+}
+
+/// \brief Compute the DeclContext that is associated with the given type.
+///
+/// \param T the type for which we are attempting to find a DeclContext.
+///
+/// \returns the declaration context represented by the type T,
+/// or NULL if the declaration context cannot be computed (e.g., because it is
+/// dependent and not the current instantiation).
+DeclContext *Sema::computeDeclContext(QualType T) {
+ if (!T->isDependentType())
+ if (const TagType *Tag = T->getAs<TagType>())
+ return Tag->getDecl();
+
+ return ::getCurrentInstantiationOf(T, CurContext);
+}
+
+/// \brief Compute the DeclContext that is associated with the given
+/// scope specifier.
+///
+/// \param SS the C++ scope specifier as it appears in the source
+///
+/// \param EnteringContext when true, we will be entering the context of
+/// this scope specifier, so we can retrieve the declaration context of a
+/// class template or class template partial specialization even if it is
+/// not the current instantiation.
+///
+/// \returns the declaration context represented by the scope specifier @p SS,
+/// or NULL if the declaration context cannot be computed (e.g., because it is
+/// dependent and not the current instantiation).
+DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
+ bool EnteringContext) {
+ if (!SS.isSet() || SS.isInvalid())
+ return nullptr;
+
+ NestedNameSpecifier *NNS = SS.getScopeRep();
+ if (NNS->isDependent()) {
+ // If this nested-name-specifier refers to the current
+ // instantiation, return its DeclContext.
+ if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
+ return Record;
+
+ if (EnteringContext) {
+ const Type *NNSType = NNS->getAsType();
+ if (!NNSType) {
+ return nullptr;
+ }
+
+ // Look through type alias templates, per C++0x [temp.dep.type]p1.
+ NNSType = Context.getCanonicalType(NNSType);
+ if (const TemplateSpecializationType *SpecType
+ = NNSType->getAs<TemplateSpecializationType>()) {
+ // We are entering the context of the nested name specifier, so try to
+ // match the nested name specifier to either a primary class template
+ // or a class template partial specialization.
+ if (ClassTemplateDecl *ClassTemplate
+ = dyn_cast_or_null<ClassTemplateDecl>(
+ SpecType->getTemplateName().getAsTemplateDecl())) {
+ QualType ContextType
+ = Context.getCanonicalType(QualType(SpecType, 0));
+
+ // If the type of the nested name specifier is the same as the
+ // injected class name of the named class template, we're entering
+ // into that class template definition.
+ QualType Injected
+ = ClassTemplate->getInjectedClassNameSpecialization();
+ if (Context.hasSameType(Injected, ContextType))
+ return ClassTemplate->getTemplatedDecl();
+
+ // If the type of the nested name specifier is the same as the
+ // type of one of the class template's class template partial
+ // specializations, we're entering into the definition of that
+ // class template partial specialization.
+ if (ClassTemplatePartialSpecializationDecl *PartialSpec
+ = ClassTemplate->findPartialSpecialization(ContextType))
+ return PartialSpec;
+ }
+ } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
+ // The nested name specifier refers to a member of a class template.
+ return RecordT->getDecl();
+ }
+ }
+
+ return nullptr;
+ }
+
+ switch (NNS->getKind()) {
+ case NestedNameSpecifier::Identifier:
+ llvm_unreachable("Dependent nested-name-specifier has no DeclContext");
+
+ case NestedNameSpecifier::Namespace:
+ return NNS->getAsNamespace();
+
+ case NestedNameSpecifier::NamespaceAlias:
+ return NNS->getAsNamespaceAlias()->getNamespace();
+
+ case NestedNameSpecifier::TypeSpec:
+ case NestedNameSpecifier::TypeSpecWithTemplate: {
+ const TagType *Tag = NNS->getAsType()->getAs<TagType>();
+ assert(Tag && "Non-tag type in nested-name-specifier");
+ return Tag->getDecl();
+ }
+
+ case NestedNameSpecifier::Global:
+ return Context.getTranslationUnitDecl();
+
+ case NestedNameSpecifier::Super:
+ return NNS->getAsRecordDecl();
+ }
+
+ llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
+}
+
+bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
+ if (!SS.isSet() || SS.isInvalid())
+ return false;
+
+ return SS.getScopeRep()->isDependent();
+}
+
+/// \brief If the given nested name specifier refers to the current
+/// instantiation, return the declaration that corresponds to that
+/// current instantiation (C++0x [temp.dep.type]p1).
+///
+/// \param NNS a dependent nested name specifier.
+CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
+ assert(getLangOpts().CPlusPlus && "Only callable in C++");
+ assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
+
+ if (!NNS->getAsType())
+ return nullptr;
+
+ QualType T = QualType(NNS->getAsType(), 0);
+ return ::getCurrentInstantiationOf(T, CurContext);
+}
+
+/// \brief Require that the context specified by SS be complete.
+///
+/// If SS refers to a type, this routine checks whether the type is
+/// complete enough (or can be made complete enough) for name lookup
+/// into the DeclContext. A type that is not yet completed can be
+/// considered "complete enough" if it is a class/struct/union/enum
+/// that is currently being defined. Or, if we have a type that names
+/// a class template specialization that is not a complete type, we
+/// will attempt to instantiate that class template.
+bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
+ DeclContext *DC) {
+ assert(DC && "given null context");
+
+ TagDecl *tag = dyn_cast<TagDecl>(DC);
+
+ // If this is a dependent type, then we consider it complete.
+ if (!tag || tag->isDependentContext())
+ return false;
+
+ // If we're currently defining this type, then lookup into the
+ // type is okay: don't complain that it isn't complete yet.
+ QualType type = Context.getTypeDeclType(tag);
+ const TagType *tagType = type->getAs<TagType>();
+ if (tagType && tagType->isBeingDefined())
+ return false;
+
+ SourceLocation loc = SS.getLastQualifierNameLoc();
+ if (loc.isInvalid()) loc = SS.getRange().getBegin();
+
+ // The type must be complete.
+ if (RequireCompleteType(loc, type, diag::err_incomplete_nested_name_spec,
+ SS.getRange())) {
+ SS.SetInvalid(SS.getRange());
+ return true;
+ }
+
+ // Fixed enum types are complete, but they aren't valid as scopes
+ // until we see a definition, so awkwardly pull out this special
+ // case.
+ // FIXME: The definition might not be visible; complain if it is not.
+ const EnumType *enumType = dyn_cast_or_null<EnumType>(tagType);
+ if (!enumType || enumType->getDecl()->isCompleteDefinition())
+ return false;
+
+ // Try to instantiate the definition, if this is a specialization of an
+ // enumeration temploid.
+ EnumDecl *ED = enumType->getDecl();
+ if (EnumDecl *Pattern = ED->getInstantiatedFromMemberEnum()) {
+ MemberSpecializationInfo *MSI = ED->getMemberSpecializationInfo();
+ if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) {
+ if (InstantiateEnum(loc, ED, Pattern, getTemplateInstantiationArgs(ED),
+ TSK_ImplicitInstantiation)) {
+ SS.SetInvalid(SS.getRange());
+ return true;
+ }
+ return false;
+ }
+ }
+
+ Diag(loc, diag::err_incomplete_nested_name_spec)
+ << type << SS.getRange();
+ SS.SetInvalid(SS.getRange());
+ return true;
+}
+
+bool Sema::ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc,
+ CXXScopeSpec &SS) {
+ SS.MakeGlobal(Context, CCLoc);
+ return false;
+}
+
+bool Sema::ActOnSuperScopeSpecifier(SourceLocation SuperLoc,
+ SourceLocation ColonColonLoc,
+ CXXScopeSpec &SS) {
+ CXXRecordDecl *RD = nullptr;
+ for (Scope *S = getCurScope(); S; S = S->getParent()) {
+ if (S->isFunctionScope()) {
+ if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(S->getEntity()))
+ RD = MD->getParent();
+ break;
+ }
+ if (S->isClassScope()) {
+ RD = cast<CXXRecordDecl>(S->getEntity());
+ break;
+ }
+ }
+
+ if (!RD) {
+ Diag(SuperLoc, diag::err_invalid_super_scope);
+ return true;
+ } else if (RD->isLambda()) {
+ Diag(SuperLoc, diag::err_super_in_lambda_unsupported);
+ return true;
+ } else if (RD->getNumBases() == 0) {
+ Diag(SuperLoc, diag::err_no_base_classes) << RD->getName();
+ return true;
+ }
+
+ SS.MakeSuper(Context, RD, SuperLoc, ColonColonLoc);
+ return false;
+}
+
+/// \brief Determines whether the given declaration is an valid acceptable
+/// result for name lookup of a nested-name-specifier.
+/// \param SD Declaration checked for nested-name-specifier.
+/// \param IsExtension If not null and the declaration is accepted as an
+/// extension, the pointed variable is assigned true.
+bool Sema::isAcceptableNestedNameSpecifier(const NamedDecl *SD,
+ bool *IsExtension) {
+ if (!SD)
+ return false;
+
+ // Namespace and namespace aliases are fine.
+ if (isa<NamespaceDecl>(SD) || isa<NamespaceAliasDecl>(SD))
+ return true;
+
+ if (!isa<TypeDecl>(SD))
+ return false;
+
+ // Determine whether we have a class (or, in C++11, an enum) or
+ // a typedef thereof. If so, build the nested-name-specifier.
+ QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
+ if (T->isDependentType())
+ return true;
+ if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
+ if (TD->getUnderlyingType()->isRecordType())
+ return true;
+ if (TD->getUnderlyingType()->isEnumeralType()) {
+ if (Context.getLangOpts().CPlusPlus11)
+ return true;
+ if (IsExtension)
+ *IsExtension = true;
+ }
+ } else if (isa<RecordDecl>(SD)) {
+ return true;
+ } else if (isa<EnumDecl>(SD)) {
+ if (Context.getLangOpts().CPlusPlus11)
+ return true;
+ if (IsExtension)
+ *IsExtension = true;
+ }
+
+ return false;
+}
+
+/// \brief If the given nested-name-specifier begins with a bare identifier
+/// (e.g., Base::), perform name lookup for that identifier as a
+/// nested-name-specifier within the given scope, and return the result of that
+/// name lookup.
+NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
+ if (!S || !NNS)
+ return nullptr;
+
+ while (NNS->getPrefix())
+ NNS = NNS->getPrefix();
+
+ if (NNS->getKind() != NestedNameSpecifier::Identifier)
+ return nullptr;
+
+ LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
+ LookupNestedNameSpecifierName);
+ LookupName(Found, S);
+ assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
+
+ if (!Found.isSingleResult())
+ return nullptr;
+
+ NamedDecl *Result = Found.getFoundDecl();
+ if (isAcceptableNestedNameSpecifier(Result))
+ return Result;
+
+ return nullptr;
+}
+
+bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
+ SourceLocation IdLoc,
+ IdentifierInfo &II,
+ ParsedType ObjectTypePtr) {
+ QualType ObjectType = GetTypeFromParser(ObjectTypePtr);
+ LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
+
+ // Determine where to perform name lookup
+ DeclContext *LookupCtx = nullptr;
+ bool isDependent = false;
+ if (!ObjectType.isNull()) {
+ // This nested-name-specifier occurs in a member access expression, e.g.,
+ // x->B::f, and we are looking into the type of the object.
+ assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
+ LookupCtx = computeDeclContext(ObjectType);
+ isDependent = ObjectType->isDependentType();
+ } else if (SS.isSet()) {
+ // This nested-name-specifier occurs after another nested-name-specifier,
+ // so long into the context associated with the prior nested-name-specifier.
+ LookupCtx = computeDeclContext(SS, false);
+ isDependent = isDependentScopeSpecifier(SS);
+ Found.setContextRange(SS.getRange());
+ }
+
+ if (LookupCtx) {
+ // Perform "qualified" name lookup into the declaration context we
+ // computed, which is either the type of the base of a member access
+ // expression or the declaration context associated with a prior
+ // nested-name-specifier.
+
+ // The declaration context must be complete.
+ if (!LookupCtx->isDependentContext() &&
+ RequireCompleteDeclContext(SS, LookupCtx))
+ return false;
+
+ LookupQualifiedName(Found, LookupCtx);
+ } else if (isDependent) {
+ return false;
+ } else {
+ LookupName(Found, S);
+ }
+ Found.suppressDiagnostics();
+
+ if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
+ return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
+
+ return false;
+}
+
+namespace {
+
+// Callback to only accept typo corrections that can be a valid C++ member
+// intializer: either a non-static field member or a base class.
+class NestedNameSpecifierValidatorCCC : public CorrectionCandidateCallback {
+ public:
+ explicit NestedNameSpecifierValidatorCCC(Sema &SRef)
+ : SRef(SRef) {}
+
+ bool ValidateCandidate(const TypoCorrection &candidate) override {
+ return SRef.isAcceptableNestedNameSpecifier(candidate.getCorrectionDecl());
+ }
+
+ private:
+ Sema &SRef;
+};
+
+}
+
+/// \brief Build a new nested-name-specifier for "identifier::", as described
+/// by ActOnCXXNestedNameSpecifier.
+///
+/// \param S Scope in which the nested-name-specifier occurs.
+/// \param Identifier Identifier in the sequence "identifier" "::".
+/// \param IdentifierLoc Location of the \p Identifier.
+/// \param CCLoc Location of "::" following Identifier.
+/// \param ObjectType Type of postfix expression if the nested-name-specifier
+/// occurs in construct like: <tt>ptr->nns::f</tt>.
+/// \param EnteringContext If true, enter the context specified by the
+/// nested-name-specifier.
+/// \param SS Optional nested name specifier preceding the identifier.
+/// \param ScopeLookupResult Provides the result of name lookup within the
+/// scope of the nested-name-specifier that was computed at template
+/// definition time.
+/// \param ErrorRecoveryLookup Specifies if the method is called to improve
+/// error recovery and what kind of recovery is performed.
+/// \param IsCorrectedToColon If not null, suggestion of replace '::' -> ':'
+/// are allowed. The bool value pointed by this parameter is set to
+/// 'true' if the identifier is treated as if it was followed by ':',
+/// not '::'.
+///
+/// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
+/// that it contains an extra parameter \p ScopeLookupResult, which provides
+/// the result of name lookup within the scope of the nested-name-specifier
+/// that was computed at template definition time.
+///
+/// If ErrorRecoveryLookup is true, then this call is used to improve error
+/// recovery. This means that it should not emit diagnostics, it should
+/// just return true on failure. It also means it should only return a valid
+/// scope if it *knows* that the result is correct. It should not return in a
+/// dependent context, for example. Nor will it extend \p SS with the scope
+/// specifier.
+bool Sema::BuildCXXNestedNameSpecifier(Scope *S,
+ IdentifierInfo &Identifier,
+ SourceLocation IdentifierLoc,
+ SourceLocation CCLoc,
+ QualType ObjectType,
+ bool EnteringContext,
+ CXXScopeSpec &SS,
+ NamedDecl *ScopeLookupResult,
+ bool ErrorRecoveryLookup,
+ bool *IsCorrectedToColon) {
+ LookupResult Found(*this, &Identifier, IdentifierLoc,
+ LookupNestedNameSpecifierName);
+
+ // Determine where to perform name lookup
+ DeclContext *LookupCtx = nullptr;
+ bool isDependent = false;
+ if (IsCorrectedToColon)
+ *IsCorrectedToColon = false;
+ if (!ObjectType.isNull()) {
+ // This nested-name-specifier occurs in a member access expression, e.g.,
+ // x->B::f, and we are looking into the type of the object.
+ assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
+ LookupCtx = computeDeclContext(ObjectType);
+ isDependent = ObjectType->isDependentType();
+ } else if (SS.isSet()) {
+ // This nested-name-specifier occurs after another nested-name-specifier,
+ // so look into the context associated with the prior nested-name-specifier.
+ LookupCtx = computeDeclContext(SS, EnteringContext);
+ isDependent = isDependentScopeSpecifier(SS);
+ Found.setContextRange(SS.getRange());
+ }
+
+ bool ObjectTypeSearchedInScope = false;
+ if (LookupCtx) {
+ // Perform "qualified" name lookup into the declaration context we
+ // computed, which is either the type of the base of a member access
+ // expression or the declaration context associated with a prior
+ // nested-name-specifier.
+
+ // The declaration context must be complete.
+ if (!LookupCtx->isDependentContext() &&
+ RequireCompleteDeclContext(SS, LookupCtx))
+ return true;
+
+ LookupQualifiedName(Found, LookupCtx);
+
+ if (!ObjectType.isNull() && Found.empty()) {
+ // C++ [basic.lookup.classref]p4:
+ // If the id-expression in a class member access is a qualified-id of
+ // the form
+ //
+ // class-name-or-namespace-name::...
+ //
+ // the class-name-or-namespace-name following the . or -> operator is
+ // looked up both in the context of the entire postfix-expression and in
+ // the scope of the class of the object expression. If the name is found
+ // only in the scope of the class of the object expression, the name
+ // shall refer to a class-name. If the name is found only in the
+ // context of the entire postfix-expression, the name shall refer to a
+ // class-name or namespace-name. [...]
+ //
+ // Qualified name lookup into a class will not find a namespace-name,
+ // so we do not need to diagnose that case specifically. However,
+ // this qualified name lookup may find nothing. In that case, perform
+ // unqualified name lookup in the given scope (if available) or
+ // reconstruct the result from when name lookup was performed at template
+ // definition time.
+ if (S)
+ LookupName(Found, S);
+ else if (ScopeLookupResult)
+ Found.addDecl(ScopeLookupResult);
+
+ ObjectTypeSearchedInScope = true;
+ }
+ } else if (!isDependent) {
+ // Perform unqualified name lookup in the current scope.
+ LookupName(Found, S);
+ }
+
+ // If we performed lookup into a dependent context and did not find anything,
+ // that's fine: just build a dependent nested-name-specifier.
+ if (Found.empty() && isDependent &&
+ !(LookupCtx && LookupCtx->isRecord() &&
+ (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
+ !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
+ // Don't speculate if we're just trying to improve error recovery.
+ if (ErrorRecoveryLookup)
+ return true;
+
+ // We were not able to compute the declaration context for a dependent
+ // base object type or prior nested-name-specifier, so this
+ // nested-name-specifier refers to an unknown specialization. Just build
+ // a dependent nested-name-specifier.
+ SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
+ return false;
+ }
+
+ // FIXME: Deal with ambiguities cleanly.
+
+ if (Found.empty() && !ErrorRecoveryLookup) {
+ // If identifier is not found as class-name-or-namespace-name, but is found
+ // as other entity, don't look for typos.
+ LookupResult R(*this, Found.getLookupNameInfo(), LookupOrdinaryName);
+ if (LookupCtx)
+ LookupQualifiedName(R, LookupCtx);
+ else if (S && !isDependent)
+ LookupName(R, S);
+ if (!R.empty()) {
+ // The identifier is found in ordinary lookup. If correction to colon is
+ // allowed, suggest replacement to ':'.
+ if (IsCorrectedToColon) {
+ *IsCorrectedToColon = true;
+ Diag(CCLoc, diag::err_nested_name_spec_is_not_class)
+ << &Identifier << getLangOpts().CPlusPlus
+ << FixItHint::CreateReplacement(CCLoc, ":");
+ if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
+ Diag(ND->getLocation(), diag::note_declared_at);
+ return true;
+ }
+ // Replacement '::' -> ':' is not allowed, just issue respective error.
+ Diag(R.getNameLoc(), diag::err_expected_class_or_namespace)
+ << &Identifier << getLangOpts().CPlusPlus;
+ if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
+ Diag(ND->getLocation(), diag::note_entity_declared_at) << &Identifier;
+ return true;
+ }
+ }
+
+ if (Found.empty() && !ErrorRecoveryLookup && !getLangOpts().MSVCCompat) {
+ // We haven't found anything, and we're not recovering from a
+ // different kind of error, so look for typos.
+ DeclarationName Name = Found.getLookupName();
+ Found.clear();
+ if (TypoCorrection Corrected = CorrectTypo(
+ Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS,
+ llvm::make_unique<NestedNameSpecifierValidatorCCC>(*this),
+ CTK_ErrorRecovery, LookupCtx, EnteringContext)) {
+ if (LookupCtx) {
+ bool DroppedSpecifier =
+ Corrected.WillReplaceSpecifier() &&
+ Name.getAsString() == Corrected.getAsString(getLangOpts());
+ if (DroppedSpecifier)
+ SS.clear();
+ diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
+ << Name << LookupCtx << DroppedSpecifier
+ << SS.getRange());
+ } else
+ diagnoseTypo(Corrected, PDiag(diag::err_undeclared_var_use_suggest)
+ << Name);
+
+ if (NamedDecl *ND = Corrected.getCorrectionDecl())
+ Found.addDecl(ND);
+ Found.setLookupName(Corrected.getCorrection());
+ } else {
+ Found.setLookupName(&Identifier);
+ }
+ }
+
+ NamedDecl *SD = Found.getAsSingle<NamedDecl>();
+ bool IsExtension = false;
+ bool AcceptSpec = isAcceptableNestedNameSpecifier(SD, &IsExtension);
+ if (!AcceptSpec && IsExtension) {
+ AcceptSpec = true;
+ Diag(IdentifierLoc, diag::ext_nested_name_spec_is_enum);
+ }
+ if (AcceptSpec) {
+ if (!ObjectType.isNull() && !ObjectTypeSearchedInScope &&
+ !getLangOpts().CPlusPlus11) {
+ // C++03 [basic.lookup.classref]p4:
+ // [...] If the name is found in both contexts, the
+ // class-name-or-namespace-name shall refer to the same entity.
+ //
+ // We already found the name in the scope of the object. Now, look
+ // into the current scope (the scope of the postfix-expression) to
+ // see if we can find the same name there. As above, if there is no
+ // scope, reconstruct the result from the template instantiation itself.
+ //
+ // Note that C++11 does *not* perform this redundant lookup.
+ NamedDecl *OuterDecl;
+ if (S) {
+ LookupResult FoundOuter(*this, &Identifier, IdentifierLoc,
+ LookupNestedNameSpecifierName);
+ LookupName(FoundOuter, S);
+ OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
+ } else
+ OuterDecl = ScopeLookupResult;
+
+ if (isAcceptableNestedNameSpecifier(OuterDecl) &&
+ OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
+ (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
+ !Context.hasSameType(
+ Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
+ Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
+ if (ErrorRecoveryLookup)
+ return true;
+
+ Diag(IdentifierLoc,
+ diag::err_nested_name_member_ref_lookup_ambiguous)
+ << &Identifier;
+ Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
+ << ObjectType;
+ Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
+
+ // Fall through so that we'll pick the name we found in the object
+ // type, since that's probably what the user wanted anyway.
+ }
+ }
+
+ if (auto *TD = dyn_cast_or_null<TypedefNameDecl>(SD))
+ MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
+
+ // If we're just performing this lookup for error-recovery purposes,
+ // don't extend the nested-name-specifier. Just return now.
+ if (ErrorRecoveryLookup)
+ return false;
+
+ // The use of a nested name specifier may trigger deprecation warnings.
+ DiagnoseUseOfDecl(SD, CCLoc);
+
+
+ if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) {
+ SS.Extend(Context, Namespace, IdentifierLoc, CCLoc);
+ return false;
+ }
+
+ if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) {
+ SS.Extend(Context, Alias, IdentifierLoc, CCLoc);
+ return false;
+ }
+
+ QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
+ TypeLocBuilder TLB;
+ if (isa<InjectedClassNameType>(T)) {
+ InjectedClassNameTypeLoc InjectedTL
+ = TLB.push<InjectedClassNameTypeLoc>(T);
+ InjectedTL.setNameLoc(IdentifierLoc);
+ } else if (isa<RecordType>(T)) {
+ RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
+ RecordTL.setNameLoc(IdentifierLoc);
+ } else if (isa<TypedefType>(T)) {
+ TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
+ TypedefTL.setNameLoc(IdentifierLoc);
+ } else if (isa<EnumType>(T)) {
+ EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
+ EnumTL.setNameLoc(IdentifierLoc);
+ } else if (isa<TemplateTypeParmType>(T)) {
+ TemplateTypeParmTypeLoc TemplateTypeTL
+ = TLB.push<TemplateTypeParmTypeLoc>(T);
+ TemplateTypeTL.setNameLoc(IdentifierLoc);
+ } else if (isa<UnresolvedUsingType>(T)) {
+ UnresolvedUsingTypeLoc UnresolvedTL
+ = TLB.push<UnresolvedUsingTypeLoc>(T);
+ UnresolvedTL.setNameLoc(IdentifierLoc);
+ } else if (isa<SubstTemplateTypeParmType>(T)) {
+ SubstTemplateTypeParmTypeLoc TL
+ = TLB.push<SubstTemplateTypeParmTypeLoc>(T);
+ TL.setNameLoc(IdentifierLoc);
+ } else if (isa<SubstTemplateTypeParmPackType>(T)) {
+ SubstTemplateTypeParmPackTypeLoc TL
+ = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T);
+ TL.setNameLoc(IdentifierLoc);
+ } else {
+ llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier");
+ }
+
+ if (T->isEnumeralType())
+ Diag(IdentifierLoc, diag::warn_cxx98_compat_enum_nested_name_spec);
+
+ SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
+ CCLoc);
+ return false;
+ }
+
+ // Otherwise, we have an error case. If we don't want diagnostics, just
+ // return an error now.
+ if (ErrorRecoveryLookup)
+ return true;
+
+ // If we didn't find anything during our lookup, try again with
+ // ordinary name lookup, which can help us produce better error
+ // messages.
+ if (Found.empty()) {
+ Found.clear(LookupOrdinaryName);
+ LookupName(Found, S);
+ }
+
+ // In Microsoft mode, if we are within a templated function and we can't
+ // resolve Identifier, then extend the SS with Identifier. This will have
+ // the effect of resolving Identifier during template instantiation.
+ // The goal is to be able to resolve a function call whose
+ // nested-name-specifier is located inside a dependent base class.
+ // Example:
+ //
+ // class C {
+ // public:
+ // static void foo2() { }
+ // };
+ // template <class T> class A { public: typedef C D; };
+ //
+ // template <class T> class B : public A<T> {
+ // public:
+ // void foo() { D::foo2(); }
+ // };
+ if (getLangOpts().MSVCCompat) {
+ DeclContext *DC = LookupCtx ? LookupCtx : CurContext;
+ if (DC->isDependentContext() && DC->isFunctionOrMethod()) {
+ CXXRecordDecl *ContainingClass = dyn_cast<CXXRecordDecl>(DC->getParent());
+ if (ContainingClass && ContainingClass->hasAnyDependentBases()) {
+ Diag(IdentifierLoc, diag::ext_undeclared_unqual_id_with_dependent_base)
+ << &Identifier << ContainingClass;
+ SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
+ return false;
+ }
+ }
+ }
+
+ if (!Found.empty()) {
+ if (TypeDecl *TD = Found.getAsSingle<TypeDecl>())
+ Diag(IdentifierLoc, diag::err_expected_class_or_namespace)
+ << QualType(TD->getTypeForDecl(), 0) << getLangOpts().CPlusPlus;
+ else {
+ Diag(IdentifierLoc, diag::err_expected_class_or_namespace)
+ << &Identifier << getLangOpts().CPlusPlus;
+ if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
+ Diag(ND->getLocation(), diag::note_entity_declared_at) << &Identifier;
+ }
+ } else if (SS.isSet())
+ Diag(IdentifierLoc, diag::err_no_member) << &Identifier << LookupCtx
+ << SS.getRange();
+ else
+ Diag(IdentifierLoc, diag::err_undeclared_var_use) << &Identifier;
+
+ return true;
+}
+
+bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
+ IdentifierInfo &Identifier,
+ SourceLocation IdentifierLoc,
+ SourceLocation CCLoc,
+ ParsedType ObjectType,
+ bool EnteringContext,
+ CXXScopeSpec &SS,
+ bool ErrorRecoveryLookup,
+ bool *IsCorrectedToColon) {
+ if (SS.isInvalid())
+ return true;
+
+ return BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, CCLoc,
+ GetTypeFromParser(ObjectType),
+ EnteringContext, SS,
+ /*ScopeLookupResult=*/nullptr, false,
+ IsCorrectedToColon);
+}
+
+bool Sema::ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
+ const DeclSpec &DS,
+ SourceLocation ColonColonLoc) {
+ if (SS.isInvalid() || DS.getTypeSpecType() == DeclSpec::TST_error)
+ return true;
+
+ assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
+
+ QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
+ if (!T->isDependentType() && !T->getAs<TagType>()) {
+ Diag(DS.getTypeSpecTypeLoc(), diag::err_expected_class_or_namespace)
+ << T << getLangOpts().CPlusPlus;
+ return true;
+ }
+
+ TypeLocBuilder TLB;
+ DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
+ DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
+ SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
+ ColonColonLoc);
+ return false;
+}
+
+/// IsInvalidUnlessNestedName - This method is used for error recovery
+/// purposes to determine whether the specified identifier is only valid as
+/// a nested name specifier, for example a namespace name. It is
+/// conservatively correct to always return false from this method.
+///
+/// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
+bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
+ IdentifierInfo &Identifier,
+ SourceLocation IdentifierLoc,
+ SourceLocation ColonLoc,
+ ParsedType ObjectType,
+ bool EnteringContext) {
+ if (SS.isInvalid())
+ return false;
+
+ return !BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, ColonLoc,
+ GetTypeFromParser(ObjectType),
+ EnteringContext, SS,
+ /*ScopeLookupResult=*/nullptr, true);
+}
+
+bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
+ CXXScopeSpec &SS,
+ SourceLocation TemplateKWLoc,
+ TemplateTy Template,
+ SourceLocation TemplateNameLoc,
+ SourceLocation LAngleLoc,
+ ASTTemplateArgsPtr TemplateArgsIn,
+ SourceLocation RAngleLoc,
+ SourceLocation CCLoc,
+ bool EnteringContext) {
+ if (SS.isInvalid())
+ return true;
+
+ // Translate the parser's template argument list in our AST format.
+ TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
+ translateTemplateArguments(TemplateArgsIn, TemplateArgs);
+
+ DependentTemplateName *DTN = Template.get().getAsDependentTemplateName();
+ if (DTN && DTN->isIdentifier()) {
+ // Handle a dependent template specialization for which we cannot resolve
+ // the template name.
+ assert(DTN->getQualifier() == SS.getScopeRep());
+ QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
+ DTN->getQualifier(),
+ DTN->getIdentifier(),
+ TemplateArgs);
+
+ // Create source-location information for this type.
+ TypeLocBuilder Builder;
+ DependentTemplateSpecializationTypeLoc SpecTL
+ = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
+ SpecTL.setElaboratedKeywordLoc(SourceLocation());
+ SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
+ SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
+ SpecTL.setTemplateNameLoc(TemplateNameLoc);
+ SpecTL.setLAngleLoc(LAngleLoc);
+ SpecTL.setRAngleLoc(RAngleLoc);
+ for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
+ SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
+
+ SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
+ CCLoc);
+ return false;
+ }
+
+ TemplateDecl *TD = Template.get().getAsTemplateDecl();
+ if (Template.get().getAsOverloadedTemplate() || DTN ||
+ isa<FunctionTemplateDecl>(TD) || isa<VarTemplateDecl>(TD)) {
+ SourceRange R(TemplateNameLoc, RAngleLoc);
+ if (SS.getRange().isValid())
+ R.setBegin(SS.getRange().getBegin());
+
+ Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier)
+ << (TD && isa<VarTemplateDecl>(TD)) << Template.get() << R;
+ NoteAllFoundTemplates(Template.get());
+ return true;
+ }
+
+ // We were able to resolve the template name to an actual template.
+ // Build an appropriate nested-name-specifier.
+ QualType T = CheckTemplateIdType(Template.get(), TemplateNameLoc,
+ TemplateArgs);
+ if (T.isNull())
+ return true;
+
+ // Alias template specializations can produce types which are not valid
+ // nested name specifiers.
+ if (!T->isDependentType() && !T->getAs<TagType>()) {
+ Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T;
+ NoteAllFoundTemplates(Template.get());
+ return true;
+ }
+
+ // Provide source-location information for the template specialization type.
+ TypeLocBuilder Builder;
+ TemplateSpecializationTypeLoc SpecTL
+ = Builder.push<TemplateSpecializationTypeLoc>(T);
+ SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
+ SpecTL.setTemplateNameLoc(TemplateNameLoc);
+ SpecTL.setLAngleLoc(LAngleLoc);
+ SpecTL.setRAngleLoc(RAngleLoc);
+ for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
+ SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
+
+
+ SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
+ CCLoc);
+ return false;
+}
+
+namespace {
+ /// \brief A structure that stores a nested-name-specifier annotation,
+ /// including both the nested-name-specifier
+ struct NestedNameSpecifierAnnotation {
+ NestedNameSpecifier *NNS;
+ };
+}
+
+void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
+ if (SS.isEmpty() || SS.isInvalid())
+ return nullptr;
+
+ void *Mem = Context.Allocate((sizeof(NestedNameSpecifierAnnotation) +
+ SS.location_size()),
+ llvm::alignOf<NestedNameSpecifierAnnotation>());
+ NestedNameSpecifierAnnotation *Annotation
+ = new (Mem) NestedNameSpecifierAnnotation;
+ Annotation->NNS = SS.getScopeRep();
+ memcpy(Annotation + 1, SS.location_data(), SS.location_size());
+ return Annotation;
+}
+
+void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr,
+ SourceRange AnnotationRange,
+ CXXScopeSpec &SS) {
+ if (!AnnotationPtr) {
+ SS.SetInvalid(AnnotationRange);
+ return;
+ }
+
+ NestedNameSpecifierAnnotation *Annotation
+ = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
+ SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
+}
+
+bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
+ assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
+
+ NestedNameSpecifier *Qualifier = SS.getScopeRep();
+
+ // There are only two places a well-formed program may qualify a
+ // declarator: first, when defining a namespace or class member
+ // out-of-line, and second, when naming an explicitly-qualified
+ // friend function. The latter case is governed by
+ // C++03 [basic.lookup.unqual]p10:
+ // In a friend declaration naming a member function, a name used
+ // in the function declarator and not part of a template-argument
+ // in a template-id is first looked up in the scope of the member
+ // function's class. If it is not found, or if the name is part of
+ // a template-argument in a template-id, the look up is as
+ // described for unqualified names in the definition of the class
+ // granting friendship.
+ // i.e. we don't push a scope unless it's a class member.
+
+ switch (Qualifier->getKind()) {
+ case NestedNameSpecifier::Global:
+ case NestedNameSpecifier::Namespace:
+ case NestedNameSpecifier::NamespaceAlias:
+ // These are always namespace scopes. We never want to enter a
+ // namespace scope from anything but a file context.
+ return CurContext->getRedeclContext()->isFileContext();
+
+ case NestedNameSpecifier::Identifier:
+ case NestedNameSpecifier::TypeSpec:
+ case NestedNameSpecifier::TypeSpecWithTemplate:
+ case NestedNameSpecifier::Super:
+ // These are never namespace scopes.
+ return true;
+ }
+
+ llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
+}
+
+/// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
+/// scope or nested-name-specifier) is parsed, part of a declarator-id.
+/// After this method is called, according to [C++ 3.4.3p3], names should be
+/// looked up in the declarator-id's scope, until the declarator is parsed and
+/// ActOnCXXExitDeclaratorScope is called.
+/// The 'SS' should be a non-empty valid CXXScopeSpec.
+bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
+ assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
+
+ if (SS.isInvalid()) return true;
+
+ DeclContext *DC = computeDeclContext(SS, true);
+ if (!DC) return true;
+
+ // Before we enter a declarator's context, we need to make sure that
+ // it is a complete declaration context.
+ if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
+ return true;
+
+ EnterDeclaratorContext(S, DC);
+
+ // Rebuild the nested name specifier for the new scope.
+ if (DC->isDependentContext())
+ RebuildNestedNameSpecifierInCurrentInstantiation(SS);
+
+ return false;
+}
+
+/// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
+/// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
+/// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
+/// Used to indicate that names should revert to being looked up in the
+/// defining scope.
+void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
+ assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
+ if (SS.isInvalid())
+ return;
+ assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
+ "exiting declarator scope we never really entered");
+ ExitDeclaratorContext(S);
+}
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaCast.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaCast.cpp
new file mode 100644
index 0000000..091e779
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaCast.cpp
@@ -0,0 +1,2479 @@
+//===--- SemaCast.cpp - Semantic Analysis for Casts -----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements semantic analysis for cast expressions, including
+// 1) C-style casts like '(int) x'
+// 2) C++ functional casts like 'int(x)'
+// 3) C++ named casts like 'static_cast<int>(x)'
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Sema/SemaInternal.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/Basic/PartialDiagnostic.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Sema/Initialization.h"
+#include "llvm/ADT/SmallVector.h"
+#include <set>
+using namespace clang;
+
+
+
+enum TryCastResult {
+ TC_NotApplicable, ///< The cast method is not applicable.
+ TC_Success, ///< The cast method is appropriate and successful.
+ TC_Failed ///< The cast method is appropriate, but failed. A
+ ///< diagnostic has been emitted.
+};
+
+enum CastType {
+ CT_Const, ///< const_cast
+ CT_Static, ///< static_cast
+ CT_Reinterpret, ///< reinterpret_cast
+ CT_Dynamic, ///< dynamic_cast
+ CT_CStyle, ///< (Type)expr
+ CT_Functional ///< Type(expr)
+};
+
+namespace {
+ struct CastOperation {
+ CastOperation(Sema &S, QualType destType, ExprResult src)
+ : Self(S), SrcExpr(src), DestType(destType),
+ ResultType(destType.getNonLValueExprType(S.Context)),
+ ValueKind(Expr::getValueKindForType(destType)),
+ Kind(CK_Dependent), IsARCUnbridgedCast(false) {
+
+ if (const BuiltinType *placeholder =
+ src.get()->getType()->getAsPlaceholderType()) {
+ PlaceholderKind = placeholder->getKind();
+ } else {
+ PlaceholderKind = (BuiltinType::Kind) 0;
+ }
+ }
+
+ Sema &Self;
+ ExprResult SrcExpr;
+ QualType DestType;
+ QualType ResultType;
+ ExprValueKind ValueKind;
+ CastKind Kind;
+ BuiltinType::Kind PlaceholderKind;
+ CXXCastPath BasePath;
+ bool IsARCUnbridgedCast;
+
+ SourceRange OpRange;
+ SourceRange DestRange;
+
+ // Top-level semantics-checking routines.
+ void CheckConstCast();
+ void CheckReinterpretCast();
+ void CheckStaticCast();
+ void CheckDynamicCast();
+ void CheckCXXCStyleCast(bool FunctionalCast, bool ListInitialization);
+ void CheckCStyleCast();
+
+ /// Complete an apparently-successful cast operation that yields
+ /// the given expression.
+ ExprResult complete(CastExpr *castExpr) {
+ // If this is an unbridged cast, wrap the result in an implicit
+ // cast that yields the unbridged-cast placeholder type.
+ if (IsARCUnbridgedCast) {
+ castExpr = ImplicitCastExpr::Create(Self.Context,
+ Self.Context.ARCUnbridgedCastTy,
+ CK_Dependent, castExpr, nullptr,
+ castExpr->getValueKind());
+ }
+ return castExpr;
+ }
+
+ // Internal convenience methods.
+
+ /// Try to handle the given placeholder expression kind. Return
+ /// true if the source expression has the appropriate placeholder
+ /// kind. A placeholder can only be claimed once.
+ bool claimPlaceholder(BuiltinType::Kind K) {
+ if (PlaceholderKind != K) return false;
+
+ PlaceholderKind = (BuiltinType::Kind) 0;
+ return true;
+ }
+
+ bool isPlaceholder() const {
+ return PlaceholderKind != 0;
+ }
+ bool isPlaceholder(BuiltinType::Kind K) const {
+ return PlaceholderKind == K;
+ }
+
+ void checkCastAlign() {
+ Self.CheckCastAlign(SrcExpr.get(), DestType, OpRange);
+ }
+
+ void checkObjCARCConversion(Sema::CheckedConversionKind CCK) {
+ assert(Self.getLangOpts().ObjCAutoRefCount);
+
+ Expr *src = SrcExpr.get();
+ if (Self.CheckObjCARCConversion(OpRange, DestType, src, CCK) ==
+ Sema::ACR_unbridged)
+ IsARCUnbridgedCast = true;
+ SrcExpr = src;
+ }
+
+ /// Check for and handle non-overload placeholder expressions.
+ void checkNonOverloadPlaceholders() {
+ if (!isPlaceholder() || isPlaceholder(BuiltinType::Overload))
+ return;
+
+ SrcExpr = Self.CheckPlaceholderExpr(SrcExpr.get());
+ if (SrcExpr.isInvalid())
+ return;
+ PlaceholderKind = (BuiltinType::Kind) 0;
+ }
+ };
+}
+
+// The Try functions attempt a specific way of casting. If they succeed, they
+// return TC_Success. If their way of casting is not appropriate for the given
+// arguments, they return TC_NotApplicable and *may* set diag to a diagnostic
+// to emit if no other way succeeds. If their way of casting is appropriate but
+// fails, they return TC_Failed and *must* set diag; they can set it to 0 if
+// they emit a specialized diagnostic.
+// All diagnostics returned by these functions must expect the same three
+// arguments:
+// %0: Cast Type (a value from the CastType enumeration)
+// %1: Source Type
+// %2: Destination Type
+static TryCastResult TryLValueToRValueCast(Sema &Self, Expr *SrcExpr,
+ QualType DestType, bool CStyle,
+ CastKind &Kind,
+ CXXCastPath &BasePath,
+ unsigned &msg);
+static TryCastResult TryStaticReferenceDowncast(Sema &Self, Expr *SrcExpr,
+ QualType DestType, bool CStyle,
+ const SourceRange &OpRange,
+ unsigned &msg,
+ CastKind &Kind,
+ CXXCastPath &BasePath);
+static TryCastResult TryStaticPointerDowncast(Sema &Self, QualType SrcType,
+ QualType DestType, bool CStyle,
+ const SourceRange &OpRange,
+ unsigned &msg,
+ CastKind &Kind,
+ CXXCastPath &BasePath);
+static TryCastResult TryStaticDowncast(Sema &Self, CanQualType SrcType,
+ CanQualType DestType, bool CStyle,
+ const SourceRange &OpRange,
+ QualType OrigSrcType,
+ QualType OrigDestType, unsigned &msg,
+ CastKind &Kind,
+ CXXCastPath &BasePath);
+static TryCastResult TryStaticMemberPointerUpcast(Sema &Self, ExprResult &SrcExpr,
+ QualType SrcType,
+ QualType DestType,bool CStyle,
+ const SourceRange &OpRange,
+ unsigned &msg,
+ CastKind &Kind,
+ CXXCastPath &BasePath);
+
+static TryCastResult TryStaticImplicitCast(Sema &Self, ExprResult &SrcExpr,
+ QualType DestType,
+ Sema::CheckedConversionKind CCK,
+ const SourceRange &OpRange,
+ unsigned &msg, CastKind &Kind,
+ bool ListInitialization);
+static TryCastResult TryStaticCast(Sema &Self, ExprResult &SrcExpr,
+ QualType DestType,
+ Sema::CheckedConversionKind CCK,
+ const SourceRange &OpRange,
+ unsigned &msg, CastKind &Kind,
+ CXXCastPath &BasePath,
+ bool ListInitialization);
+static TryCastResult TryConstCast(Sema &Self, ExprResult &SrcExpr,
+ QualType DestType, bool CStyle,
+ unsigned &msg);
+static TryCastResult TryReinterpretCast(Sema &Self, ExprResult &SrcExpr,
+ QualType DestType, bool CStyle,
+ const SourceRange &OpRange,
+ unsigned &msg,
+ CastKind &Kind);
+
+
+/// ActOnCXXNamedCast - Parse {dynamic,static,reinterpret,const}_cast's.
+ExprResult
+Sema::ActOnCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind,
+ SourceLocation LAngleBracketLoc, Declarator &D,
+ SourceLocation RAngleBracketLoc,
+ SourceLocation LParenLoc, Expr *E,
+ SourceLocation RParenLoc) {
+
+ assert(!D.isInvalidType());
+
+ TypeSourceInfo *TInfo = GetTypeForDeclaratorCast(D, E->getType());
+ if (D.isInvalidType())
+ return ExprError();
+
+ if (getLangOpts().CPlusPlus) {
+ // Check that there are no default arguments (C++ only).
+ CheckExtraCXXDefaultArguments(D);
+ }
+
+ return BuildCXXNamedCast(OpLoc, Kind, TInfo, E,
+ SourceRange(LAngleBracketLoc, RAngleBracketLoc),
+ SourceRange(LParenLoc, RParenLoc));
+}
+
+ExprResult
+Sema::BuildCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind,
+ TypeSourceInfo *DestTInfo, Expr *E,
+ SourceRange AngleBrackets, SourceRange Parens) {
+ ExprResult Ex = E;
+ QualType DestType = DestTInfo->getType();
+
+ // If the type is dependent, we won't do the semantic analysis now.
+ bool TypeDependent =
+ DestType->isDependentType() || Ex.get()->isTypeDependent();
+
+ CastOperation Op(*this, DestType, E);
+ Op.OpRange = SourceRange(OpLoc, Parens.getEnd());
+ Op.DestRange = AngleBrackets;
+
+ switch (Kind) {
+ default: llvm_unreachable("Unknown C++ cast!");
+
+ case tok::kw_const_cast:
+ if (!TypeDependent) {
+ Op.CheckConstCast();
+ if (Op.SrcExpr.isInvalid())
+ return ExprError();
+ }
+ return Op.complete(CXXConstCastExpr::Create(Context, Op.ResultType,
+ Op.ValueKind, Op.SrcExpr.get(), DestTInfo,
+ OpLoc, Parens.getEnd(),
+ AngleBrackets));
+
+ case tok::kw_dynamic_cast: {
+ if (!TypeDependent) {
+ Op.CheckDynamicCast();
+ if (Op.SrcExpr.isInvalid())
+ return ExprError();
+ }
+ return Op.complete(CXXDynamicCastExpr::Create(Context, Op.ResultType,
+ Op.ValueKind, Op.Kind, Op.SrcExpr.get(),
+ &Op.BasePath, DestTInfo,
+ OpLoc, Parens.getEnd(),
+ AngleBrackets));
+ }
+ case tok::kw_reinterpret_cast: {
+ if (!TypeDependent) {
+ Op.CheckReinterpretCast();
+ if (Op.SrcExpr.isInvalid())
+ return ExprError();
+ }
+ return Op.complete(CXXReinterpretCastExpr::Create(Context, Op.ResultType,
+ Op.ValueKind, Op.Kind, Op.SrcExpr.get(),
+ nullptr, DestTInfo, OpLoc,
+ Parens.getEnd(),
+ AngleBrackets));
+ }
+ case tok::kw_static_cast: {
+ if (!TypeDependent) {
+ Op.CheckStaticCast();
+ if (Op.SrcExpr.isInvalid())
+ return ExprError();
+ }
+
+ return Op.complete(CXXStaticCastExpr::Create(Context, Op.ResultType,
+ Op.ValueKind, Op.Kind, Op.SrcExpr.get(),
+ &Op.BasePath, DestTInfo,
+ OpLoc, Parens.getEnd(),
+ AngleBrackets));
+ }
+ }
+}
+
+/// Try to diagnose a failed overloaded cast. Returns true if
+/// diagnostics were emitted.
+static bool tryDiagnoseOverloadedCast(Sema &S, CastType CT,
+ SourceRange range, Expr *src,
+ QualType destType,
+ bool listInitialization) {
+ switch (CT) {
+ // These cast kinds don't consider user-defined conversions.
+ case CT_Const:
+ case CT_Reinterpret:
+ case CT_Dynamic:
+ return false;
+
+ // These do.
+ case CT_Static:
+ case CT_CStyle:
+ case CT_Functional:
+ break;
+ }
+
+ QualType srcType = src->getType();
+ if (!destType->isRecordType() && !srcType->isRecordType())
+ return false;
+
+ InitializedEntity entity = InitializedEntity::InitializeTemporary(destType);
+ InitializationKind initKind
+ = (CT == CT_CStyle)? InitializationKind::CreateCStyleCast(range.getBegin(),
+ range, listInitialization)
+ : (CT == CT_Functional)? InitializationKind::CreateFunctionalCast(range,
+ listInitialization)
+ : InitializationKind::CreateCast(/*type range?*/ range);
+ InitializationSequence sequence(S, entity, initKind, src);
+
+ assert(sequence.Failed() && "initialization succeeded on second try?");
+ switch (sequence.getFailureKind()) {
+ default: return false;
+
+ case InitializationSequence::FK_ConstructorOverloadFailed:
+ case InitializationSequence::FK_UserConversionOverloadFailed:
+ break;
+ }
+
+ OverloadCandidateSet &candidates = sequence.getFailedCandidateSet();
+
+ unsigned msg = 0;
+ OverloadCandidateDisplayKind howManyCandidates = OCD_AllCandidates;
+
+ switch (sequence.getFailedOverloadResult()) {
+ case OR_Success: llvm_unreachable("successful failed overload");
+ case OR_No_Viable_Function:
+ if (candidates.empty())
+ msg = diag::err_ovl_no_conversion_in_cast;
+ else
+ msg = diag::err_ovl_no_viable_conversion_in_cast;
+ howManyCandidates = OCD_AllCandidates;
+ break;
+
+ case OR_Ambiguous:
+ msg = diag::err_ovl_ambiguous_conversion_in_cast;
+ howManyCandidates = OCD_ViableCandidates;
+ break;
+
+ case OR_Deleted:
+ msg = diag::err_ovl_deleted_conversion_in_cast;
+ howManyCandidates = OCD_ViableCandidates;
+ break;
+ }
+
+ S.Diag(range.getBegin(), msg)
+ << CT << srcType << destType
+ << range << src->getSourceRange();
+
+ candidates.NoteCandidates(S, howManyCandidates, src);
+
+ return true;
+}
+
+/// Diagnose a failed cast.
+static void diagnoseBadCast(Sema &S, unsigned msg, CastType castType,
+ SourceRange opRange, Expr *src, QualType destType,
+ bool listInitialization) {
+ if (msg == diag::err_bad_cxx_cast_generic &&
+ tryDiagnoseOverloadedCast(S, castType, opRange, src, destType,
+ listInitialization))
+ return;
+
+ S.Diag(opRange.getBegin(), msg) << castType
+ << src->getType() << destType << opRange << src->getSourceRange();
+
+ // Detect if both types are (ptr to) class, and note any incompleteness.
+ int DifferentPtrness = 0;
+ QualType From = destType;
+ if (auto Ptr = From->getAs<PointerType>()) {
+ From = Ptr->getPointeeType();
+ DifferentPtrness++;
+ }
+ QualType To = src->getType();
+ if (auto Ptr = To->getAs<PointerType>()) {
+ To = Ptr->getPointeeType();
+ DifferentPtrness--;
+ }
+ if (!DifferentPtrness) {
+ auto RecFrom = From->getAs<RecordType>();
+ auto RecTo = To->getAs<RecordType>();
+ if (RecFrom && RecTo) {
+ auto DeclFrom = RecFrom->getAsCXXRecordDecl();
+ if (!DeclFrom->isCompleteDefinition())
+ S.Diag(DeclFrom->getLocation(), diag::note_type_incomplete)
+ << DeclFrom->getDeclName();
+ auto DeclTo = RecTo->getAsCXXRecordDecl();
+ if (!DeclTo->isCompleteDefinition())
+ S.Diag(DeclTo->getLocation(), diag::note_type_incomplete)
+ << DeclTo->getDeclName();
+ }
+ }
+}
+
+/// UnwrapDissimilarPointerTypes - Like Sema::UnwrapSimilarPointerTypes,
+/// this removes one level of indirection from both types, provided that they're
+/// the same kind of pointer (plain or to-member). Unlike the Sema function,
+/// this one doesn't care if the two pointers-to-member don't point into the
+/// same class. This is because CastsAwayConstness doesn't care.
+static bool UnwrapDissimilarPointerTypes(QualType& T1, QualType& T2) {
+ const PointerType *T1PtrType = T1->getAs<PointerType>(),
+ *T2PtrType = T2->getAs<PointerType>();
+ if (T1PtrType && T2PtrType) {
+ T1 = T1PtrType->getPointeeType();
+ T2 = T2PtrType->getPointeeType();
+ return true;
+ }
+ const ObjCObjectPointerType *T1ObjCPtrType =
+ T1->getAs<ObjCObjectPointerType>(),
+ *T2ObjCPtrType =
+ T2->getAs<ObjCObjectPointerType>();
+ if (T1ObjCPtrType) {
+ if (T2ObjCPtrType) {
+ T1 = T1ObjCPtrType->getPointeeType();
+ T2 = T2ObjCPtrType->getPointeeType();
+ return true;
+ }
+ else if (T2PtrType) {
+ T1 = T1ObjCPtrType->getPointeeType();
+ T2 = T2PtrType->getPointeeType();
+ return true;
+ }
+ }
+ else if (T2ObjCPtrType) {
+ if (T1PtrType) {
+ T2 = T2ObjCPtrType->getPointeeType();
+ T1 = T1PtrType->getPointeeType();
+ return true;
+ }
+ }
+
+ const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
+ *T2MPType = T2->getAs<MemberPointerType>();
+ if (T1MPType && T2MPType) {
+ T1 = T1MPType->getPointeeType();
+ T2 = T2MPType->getPointeeType();
+ return true;
+ }
+
+ const BlockPointerType *T1BPType = T1->getAs<BlockPointerType>(),
+ *T2BPType = T2->getAs<BlockPointerType>();
+ if (T1BPType && T2BPType) {
+ T1 = T1BPType->getPointeeType();
+ T2 = T2BPType->getPointeeType();
+ return true;
+ }
+
+ return false;
+}
+
+/// CastsAwayConstness - Check if the pointer conversion from SrcType to
+/// DestType casts away constness as defined in C++ 5.2.11p8ff. This is used by
+/// the cast checkers. Both arguments must denote pointer (possibly to member)
+/// types.
+///
+/// \param CheckCVR Whether to check for const/volatile/restrict qualifiers.
+///
+/// \param CheckObjCLifetime Whether to check Objective-C lifetime qualifiers.
+static bool
+CastsAwayConstness(Sema &Self, QualType SrcType, QualType DestType,
+ bool CheckCVR, bool CheckObjCLifetime,
+ QualType *TheOffendingSrcType = nullptr,
+ QualType *TheOffendingDestType = nullptr,
+ Qualifiers *CastAwayQualifiers = nullptr) {
+ // If the only checking we care about is for Objective-C lifetime qualifiers,
+ // and we're not in ARC mode, there's nothing to check.
+ if (!CheckCVR && CheckObjCLifetime &&
+ !Self.Context.getLangOpts().ObjCAutoRefCount)
+ return false;
+
+ // Casting away constness is defined in C++ 5.2.11p8 with reference to
+ // C++ 4.4. We piggyback on Sema::IsQualificationConversion for this, since
+ // the rules are non-trivial. So first we construct Tcv *...cv* as described
+ // in C++ 5.2.11p8.
+ assert((SrcType->isAnyPointerType() || SrcType->isMemberPointerType() ||
+ SrcType->isBlockPointerType()) &&
+ "Source type is not pointer or pointer to member.");
+ assert((DestType->isAnyPointerType() || DestType->isMemberPointerType() ||
+ DestType->isBlockPointerType()) &&
+ "Destination type is not pointer or pointer to member.");
+
+ QualType UnwrappedSrcType = Self.Context.getCanonicalType(SrcType),
+ UnwrappedDestType = Self.Context.getCanonicalType(DestType);
+ SmallVector<Qualifiers, 8> cv1, cv2;
+
+ // Find the qualifiers. We only care about cvr-qualifiers for the
+ // purpose of this check, because other qualifiers (address spaces,
+ // Objective-C GC, etc.) are part of the type's identity.
+ QualType PrevUnwrappedSrcType = UnwrappedSrcType;
+ QualType PrevUnwrappedDestType = UnwrappedDestType;
+ while (UnwrapDissimilarPointerTypes(UnwrappedSrcType, UnwrappedDestType)) {
+ // Determine the relevant qualifiers at this level.
+ Qualifiers SrcQuals, DestQuals;
+ Self.Context.getUnqualifiedArrayType(UnwrappedSrcType, SrcQuals);
+ Self.Context.getUnqualifiedArrayType(UnwrappedDestType, DestQuals);
+
+ Qualifiers RetainedSrcQuals, RetainedDestQuals;
+ if (CheckCVR) {
+ RetainedSrcQuals.setCVRQualifiers(SrcQuals.getCVRQualifiers());
+ RetainedDestQuals.setCVRQualifiers(DestQuals.getCVRQualifiers());
+
+ if (RetainedSrcQuals != RetainedDestQuals && TheOffendingSrcType &&
+ TheOffendingDestType && CastAwayQualifiers) {
+ *TheOffendingSrcType = PrevUnwrappedSrcType;
+ *TheOffendingDestType = PrevUnwrappedDestType;
+ *CastAwayQualifiers = RetainedSrcQuals - RetainedDestQuals;
+ }
+ }
+
+ if (CheckObjCLifetime &&
+ !DestQuals.compatiblyIncludesObjCLifetime(SrcQuals))
+ return true;
+
+ cv1.push_back(RetainedSrcQuals);
+ cv2.push_back(RetainedDestQuals);
+
+ PrevUnwrappedSrcType = UnwrappedSrcType;
+ PrevUnwrappedDestType = UnwrappedDestType;
+ }
+ if (cv1.empty())
+ return false;
+
+ // Construct void pointers with those qualifiers (in reverse order of
+ // unwrapping, of course).
+ QualType SrcConstruct = Self.Context.VoidTy;
+ QualType DestConstruct = Self.Context.VoidTy;
+ ASTContext &Context = Self.Context;
+ for (SmallVectorImpl<Qualifiers>::reverse_iterator i1 = cv1.rbegin(),
+ i2 = cv2.rbegin();
+ i1 != cv1.rend(); ++i1, ++i2) {
+ SrcConstruct
+ = Context.getPointerType(Context.getQualifiedType(SrcConstruct, *i1));
+ DestConstruct
+ = Context.getPointerType(Context.getQualifiedType(DestConstruct, *i2));
+ }
+
+ // Test if they're compatible.
+ bool ObjCLifetimeConversion;
+ return SrcConstruct != DestConstruct &&
+ !Self.IsQualificationConversion(SrcConstruct, DestConstruct, false,
+ ObjCLifetimeConversion);
+}
+
+/// CheckDynamicCast - Check that a dynamic_cast\<DestType\>(SrcExpr) is valid.
+/// Refer to C++ 5.2.7 for details. Dynamic casts are used mostly for runtime-
+/// checked downcasts in class hierarchies.
+void CastOperation::CheckDynamicCast() {
+ if (ValueKind == VK_RValue)
+ SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get());
+ else if (isPlaceholder())
+ SrcExpr = Self.CheckPlaceholderExpr(SrcExpr.get());
+ if (SrcExpr.isInvalid()) // if conversion failed, don't report another error
+ return;
+
+ QualType OrigSrcType = SrcExpr.get()->getType();
+ QualType DestType = Self.Context.getCanonicalType(this->DestType);
+
+ // C++ 5.2.7p1: T shall be a pointer or reference to a complete class type,
+ // or "pointer to cv void".
+
+ QualType DestPointee;
+ const PointerType *DestPointer = DestType->getAs<PointerType>();
+ const ReferenceType *DestReference = nullptr;
+ if (DestPointer) {
+ DestPointee = DestPointer->getPointeeType();
+ } else if ((DestReference = DestType->getAs<ReferenceType>())) {
+ DestPointee = DestReference->getPointeeType();
+ } else {
+ Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_ref_or_ptr)
+ << this->DestType << DestRange;
+ SrcExpr = ExprError();
+ return;
+ }
+
+ const RecordType *DestRecord = DestPointee->getAs<RecordType>();
+ if (DestPointee->isVoidType()) {
+ assert(DestPointer && "Reference to void is not possible");
+ } else if (DestRecord) {
+ if (Self.RequireCompleteType(OpRange.getBegin(), DestPointee,
+ diag::err_bad_dynamic_cast_incomplete,
+ DestRange)) {
+ SrcExpr = ExprError();
+ return;
+ }
+ } else {
+ Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_class)
+ << DestPointee.getUnqualifiedType() << DestRange;
+ SrcExpr = ExprError();
+ return;
+ }
+
+ // C++0x 5.2.7p2: If T is a pointer type, v shall be an rvalue of a pointer to
+ // complete class type, [...]. If T is an lvalue reference type, v shall be
+ // an lvalue of a complete class type, [...]. If T is an rvalue reference
+ // type, v shall be an expression having a complete class type, [...]
+ QualType SrcType = Self.Context.getCanonicalType(OrigSrcType);
+ QualType SrcPointee;
+ if (DestPointer) {
+ if (const PointerType *SrcPointer = SrcType->getAs<PointerType>()) {
+ SrcPointee = SrcPointer->getPointeeType();
+ } else {
+ Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_ptr)
+ << OrigSrcType << SrcExpr.get()->getSourceRange();
+ SrcExpr = ExprError();
+ return;
+ }
+ } else if (DestReference->isLValueReferenceType()) {
+ if (!SrcExpr.get()->isLValue()) {
+ Self.Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_rvalue)
+ << CT_Dynamic << OrigSrcType << this->DestType << OpRange;
+ }
+ SrcPointee = SrcType;
+ } else {
+ // If we're dynamic_casting from a prvalue to an rvalue reference, we need
+ // to materialize the prvalue before we bind the reference to it.
+ if (SrcExpr.get()->isRValue())
+ SrcExpr = new (Self.Context) MaterializeTemporaryExpr(
+ SrcType, SrcExpr.get(), /*IsLValueReference*/false);
+ SrcPointee = SrcType;
+ }
+
+ const RecordType *SrcRecord = SrcPointee->getAs<RecordType>();
+ if (SrcRecord) {
+ if (Self.RequireCompleteType(OpRange.getBegin(), SrcPointee,
+ diag::err_bad_dynamic_cast_incomplete,
+ SrcExpr.get())) {
+ SrcExpr = ExprError();
+ return;
+ }
+ } else {
+ Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_class)
+ << SrcPointee.getUnqualifiedType() << SrcExpr.get()->getSourceRange();
+ SrcExpr = ExprError();
+ return;
+ }
+
+ assert((DestPointer || DestReference) &&
+ "Bad destination non-ptr/ref slipped through.");
+ assert((DestRecord || DestPointee->isVoidType()) &&
+ "Bad destination pointee slipped through.");
+ assert(SrcRecord && "Bad source pointee slipped through.");
+
+ // C++ 5.2.7p1: The dynamic_cast operator shall not cast away constness.
+ if (!DestPointee.isAtLeastAsQualifiedAs(SrcPointee)) {
+ Self.Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_qualifiers_away)
+ << CT_Dynamic << OrigSrcType << this->DestType << OpRange;
+ SrcExpr = ExprError();
+ return;
+ }
+
+ // C++ 5.2.7p3: If the type of v is the same as the required result type,
+ // [except for cv].
+ if (DestRecord == SrcRecord) {
+ Kind = CK_NoOp;
+ return;
+ }
+
+ // C++ 5.2.7p5
+ // Upcasts are resolved statically.
+ if (DestRecord && Self.IsDerivedFrom(SrcPointee, DestPointee)) {
+ if (Self.CheckDerivedToBaseConversion(SrcPointee, DestPointee,
+ OpRange.getBegin(), OpRange,
+ &BasePath)) {
+ SrcExpr = ExprError();
+ return;
+ }
+
+ Kind = CK_DerivedToBase;
+ return;
+ }
+
+ // C++ 5.2.7p6: Otherwise, v shall be [polymorphic].
+ const RecordDecl *SrcDecl = SrcRecord->getDecl()->getDefinition();
+ assert(SrcDecl && "Definition missing");
+ if (!cast<CXXRecordDecl>(SrcDecl)->isPolymorphic()) {
+ Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_polymorphic)
+ << SrcPointee.getUnqualifiedType() << SrcExpr.get()->getSourceRange();
+ SrcExpr = ExprError();
+ }
+
+ // dynamic_cast is not available with -fno-rtti.
+ // As an exception, dynamic_cast to void* is available because it doesn't
+ // use RTTI.
+ if (!Self.getLangOpts().RTTI && !DestPointee->isVoidType()) {
+ Self.Diag(OpRange.getBegin(), diag::err_no_dynamic_cast_with_fno_rtti);
+ SrcExpr = ExprError();
+ return;
+ }
+
+ // Done. Everything else is run-time checks.
+ Kind = CK_Dynamic;
+}
+
+/// CheckConstCast - Check that a const_cast\<DestType\>(SrcExpr) is valid.
+/// Refer to C++ 5.2.11 for details. const_cast is typically used in code
+/// like this:
+/// const char *str = "literal";
+/// legacy_function(const_cast\<char*\>(str));
+void CastOperation::CheckConstCast() {
+ if (ValueKind == VK_RValue)
+ SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get());
+ else if (isPlaceholder())
+ SrcExpr = Self.CheckPlaceholderExpr(SrcExpr.get());
+ if (SrcExpr.isInvalid()) // if conversion failed, don't report another error
+ return;
+
+ unsigned msg = diag::err_bad_cxx_cast_generic;
+ if (TryConstCast(Self, SrcExpr, DestType, /*CStyle*/false, msg) != TC_Success
+ && msg != 0) {
+ Self.Diag(OpRange.getBegin(), msg) << CT_Const
+ << SrcExpr.get()->getType() << DestType << OpRange;
+ SrcExpr = ExprError();
+ }
+}
+
+/// Check that a reinterpret_cast\<DestType\>(SrcExpr) is not used as upcast
+/// or downcast between respective pointers or references.
+static void DiagnoseReinterpretUpDownCast(Sema &Self, const Expr *SrcExpr,
+ QualType DestType,
+ SourceRange OpRange) {
+ QualType SrcType = SrcExpr->getType();
+ // When casting from pointer or reference, get pointee type; use original
+ // type otherwise.
+ const CXXRecordDecl *SrcPointeeRD = SrcType->getPointeeCXXRecordDecl();
+ const CXXRecordDecl *SrcRD =
+ SrcPointeeRD ? SrcPointeeRD : SrcType->getAsCXXRecordDecl();
+
+ // Examining subobjects for records is only possible if the complete and
+ // valid definition is available. Also, template instantiation is not
+ // allowed here.
+ if (!SrcRD || !SrcRD->isCompleteDefinition() || SrcRD->isInvalidDecl())
+ return;
+
+ const CXXRecordDecl *DestRD = DestType->getPointeeCXXRecordDecl();
+
+ if (!DestRD || !DestRD->isCompleteDefinition() || DestRD->isInvalidDecl())
+ return;
+
+ enum {
+ ReinterpretUpcast,
+ ReinterpretDowncast
+ } ReinterpretKind;
+
+ CXXBasePaths BasePaths;
+
+ if (SrcRD->isDerivedFrom(DestRD, BasePaths))
+ ReinterpretKind = ReinterpretUpcast;
+ else if (DestRD->isDerivedFrom(SrcRD, BasePaths))
+ ReinterpretKind = ReinterpretDowncast;
+ else
+ return;
+
+ bool VirtualBase = true;
+ bool NonZeroOffset = false;
+ for (CXXBasePaths::const_paths_iterator I = BasePaths.begin(),
+ E = BasePaths.end();
+ I != E; ++I) {
+ const CXXBasePath &Path = *I;
+ CharUnits Offset = CharUnits::Zero();
+ bool IsVirtual = false;
+ for (CXXBasePath::const_iterator IElem = Path.begin(), EElem = Path.end();
+ IElem != EElem; ++IElem) {
+ IsVirtual = IElem->Base->isVirtual();
+ if (IsVirtual)
+ break;
+ const CXXRecordDecl *BaseRD = IElem->Base->getType()->getAsCXXRecordDecl();
+ assert(BaseRD && "Base type should be a valid unqualified class type");
+ // Don't check if any base has invalid declaration or has no definition
+ // since it has no layout info.
+ const CXXRecordDecl *Class = IElem->Class,
+ *ClassDefinition = Class->getDefinition();
+ if (Class->isInvalidDecl() || !ClassDefinition ||
+ !ClassDefinition->isCompleteDefinition())
+ return;
+
+ const ASTRecordLayout &DerivedLayout =
+ Self.Context.getASTRecordLayout(Class);
+ Offset += DerivedLayout.getBaseClassOffset(BaseRD);
+ }
+ if (!IsVirtual) {
+ // Don't warn if any path is a non-virtually derived base at offset zero.
+ if (Offset.isZero())
+ return;
+ // Offset makes sense only for non-virtual bases.
+ else
+ NonZeroOffset = true;
+ }
+ VirtualBase = VirtualBase && IsVirtual;
+ }
+
+ (void) NonZeroOffset; // Silence set but not used warning.
+ assert((VirtualBase || NonZeroOffset) &&
+ "Should have returned if has non-virtual base with zero offset");
+
+ QualType BaseType =
+ ReinterpretKind == ReinterpretUpcast? DestType : SrcType;
+ QualType DerivedType =
+ ReinterpretKind == ReinterpretUpcast? SrcType : DestType;
+
+ SourceLocation BeginLoc = OpRange.getBegin();
+ Self.Diag(BeginLoc, diag::warn_reinterpret_different_from_static)
+ << DerivedType << BaseType << !VirtualBase << int(ReinterpretKind)
+ << OpRange;
+ Self.Diag(BeginLoc, diag::note_reinterpret_updowncast_use_static)
+ << int(ReinterpretKind)
+ << FixItHint::CreateReplacement(BeginLoc, "static_cast");
+}
+
+/// CheckReinterpretCast - Check that a reinterpret_cast\<DestType\>(SrcExpr) is
+/// valid.
+/// Refer to C++ 5.2.10 for details. reinterpret_cast is typically used in code
+/// like this:
+/// char *bytes = reinterpret_cast\<char*\>(int_ptr);
+void CastOperation::CheckReinterpretCast() {
+ if (ValueKind == VK_RValue && !isPlaceholder(BuiltinType::Overload))
+ SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get());
+ else
+ checkNonOverloadPlaceholders();
+ if (SrcExpr.isInvalid()) // if conversion failed, don't report another error
+ return;
+
+ unsigned msg = diag::err_bad_cxx_cast_generic;
+ TryCastResult tcr =
+ TryReinterpretCast(Self, SrcExpr, DestType,
+ /*CStyle*/false, OpRange, msg, Kind);
+ if (tcr != TC_Success && msg != 0)
+ {
+ if (SrcExpr.isInvalid()) // if conversion failed, don't report another error
+ return;
+ if (SrcExpr.get()->getType() == Self.Context.OverloadTy) {
+ //FIXME: &f<int>; is overloaded and resolvable
+ Self.Diag(OpRange.getBegin(), diag::err_bad_reinterpret_cast_overload)
+ << OverloadExpr::find(SrcExpr.get()).Expression->getName()
+ << DestType << OpRange;
+ Self.NoteAllOverloadCandidates(SrcExpr.get());
+
+ } else {
+ diagnoseBadCast(Self, msg, CT_Reinterpret, OpRange, SrcExpr.get(),
+ DestType, /*listInitialization=*/false);
+ }
+ SrcExpr = ExprError();
+ } else if (tcr == TC_Success) {
+ if (Self.getLangOpts().ObjCAutoRefCount)
+ checkObjCARCConversion(Sema::CCK_OtherCast);
+ DiagnoseReinterpretUpDownCast(Self, SrcExpr.get(), DestType, OpRange);
+ }
+}
+
+
+/// CheckStaticCast - Check that a static_cast\<DestType\>(SrcExpr) is valid.
+/// Refer to C++ 5.2.9 for details. Static casts are mostly used for making
+/// implicit conversions explicit and getting rid of data loss warnings.
+void CastOperation::CheckStaticCast() {
+ if (isPlaceholder()) {
+ checkNonOverloadPlaceholders();
+ if (SrcExpr.isInvalid())
+ return;
+ }
+
+ // This test is outside everything else because it's the only case where
+ // a non-lvalue-reference target type does not lead to decay.
+ // C++ 5.2.9p4: Any expression can be explicitly converted to type "cv void".
+ if (DestType->isVoidType()) {
+ Kind = CK_ToVoid;
+
+ if (claimPlaceholder(BuiltinType::Overload)) {
+ Self.ResolveAndFixSingleFunctionTemplateSpecialization(SrcExpr,
+ false, // Decay Function to ptr
+ true, // Complain
+ OpRange, DestType, diag::err_bad_static_cast_overload);
+ if (SrcExpr.isInvalid())
+ return;
+ }
+
+ SrcExpr = Self.IgnoredValueConversions(SrcExpr.get());
+ return;
+ }
+
+ if (ValueKind == VK_RValue && !DestType->isRecordType() &&
+ !isPlaceholder(BuiltinType::Overload)) {
+ SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get());
+ if (SrcExpr.isInvalid()) // if conversion failed, don't report another error
+ return;
+ }
+
+ unsigned msg = diag::err_bad_cxx_cast_generic;
+ TryCastResult tcr
+ = TryStaticCast(Self, SrcExpr, DestType, Sema::CCK_OtherCast, OpRange, msg,
+ Kind, BasePath, /*ListInitialization=*/false);
+ if (tcr != TC_Success && msg != 0) {
+ if (SrcExpr.isInvalid())
+ return;
+ if (SrcExpr.get()->getType() == Self.Context.OverloadTy) {
+ OverloadExpr* oe = OverloadExpr::find(SrcExpr.get()).Expression;
+ Self.Diag(OpRange.getBegin(), diag::err_bad_static_cast_overload)
+ << oe->getName() << DestType << OpRange
+ << oe->getQualifierLoc().getSourceRange();
+ Self.NoteAllOverloadCandidates(SrcExpr.get());
+ } else {
+ diagnoseBadCast(Self, msg, CT_Static, OpRange, SrcExpr.get(), DestType,
+ /*listInitialization=*/false);
+ }
+ SrcExpr = ExprError();
+ } else if (tcr == TC_Success) {
+ if (Kind == CK_BitCast)
+ checkCastAlign();
+ if (Self.getLangOpts().ObjCAutoRefCount)
+ checkObjCARCConversion(Sema::CCK_OtherCast);
+ } else if (Kind == CK_BitCast) {
+ checkCastAlign();
+ }
+}
+
+/// TryStaticCast - Check if a static cast can be performed, and do so if
+/// possible. If @p CStyle, ignore access restrictions on hierarchy casting
+/// and casting away constness.
+static TryCastResult TryStaticCast(Sema &Self, ExprResult &SrcExpr,
+ QualType DestType,
+ Sema::CheckedConversionKind CCK,
+ const SourceRange &OpRange, unsigned &msg,
+ CastKind &Kind, CXXCastPath &BasePath,
+ bool ListInitialization) {
+ // Determine whether we have the semantics of a C-style cast.
+ bool CStyle
+ = (CCK == Sema::CCK_CStyleCast || CCK == Sema::CCK_FunctionalCast);
+
+ // The order the tests is not entirely arbitrary. There is one conversion
+ // that can be handled in two different ways. Given:
+ // struct A {};
+ // struct B : public A {
+ // B(); B(const A&);
+ // };
+ // const A &a = B();
+ // the cast static_cast<const B&>(a) could be seen as either a static
+ // reference downcast, or an explicit invocation of the user-defined
+ // conversion using B's conversion constructor.
+ // DR 427 specifies that the downcast is to be applied here.
+
+ // C++ 5.2.9p4: Any expression can be explicitly converted to type "cv void".
+ // Done outside this function.
+
+ TryCastResult tcr;
+
+ // C++ 5.2.9p5, reference downcast.
+ // See the function for details.
+ // DR 427 specifies that this is to be applied before paragraph 2.
+ tcr = TryStaticReferenceDowncast(Self, SrcExpr.get(), DestType, CStyle,
+ OpRange, msg, Kind, BasePath);
+ if (tcr != TC_NotApplicable)
+ return tcr;
+
+ // C++0x [expr.static.cast]p3:
+ // A glvalue of type "cv1 T1" can be cast to type "rvalue reference to cv2
+ // T2" if "cv2 T2" is reference-compatible with "cv1 T1".
+ tcr = TryLValueToRValueCast(Self, SrcExpr.get(), DestType, CStyle, Kind,
+ BasePath, msg);
+ if (tcr != TC_NotApplicable)
+ return tcr;
+
+ // C++ 5.2.9p2: An expression e can be explicitly converted to a type T
+ // [...] if the declaration "T t(e);" is well-formed, [...].
+ tcr = TryStaticImplicitCast(Self, SrcExpr, DestType, CCK, OpRange, msg,
+ Kind, ListInitialization);
+ if (SrcExpr.isInvalid())
+ return TC_Failed;
+ if (tcr != TC_NotApplicable)
+ return tcr;
+
+ // C++ 5.2.9p6: May apply the reverse of any standard conversion, except
+ // lvalue-to-rvalue, array-to-pointer, function-to-pointer, and boolean
+ // conversions, subject to further restrictions.
+ // Also, C++ 5.2.9p1 forbids casting away constness, which makes reversal
+ // of qualification conversions impossible.
+ // In the CStyle case, the earlier attempt to const_cast should have taken
+ // care of reverse qualification conversions.
+
+ QualType SrcType = Self.Context.getCanonicalType(SrcExpr.get()->getType());
+
+ // C++0x 5.2.9p9: A value of a scoped enumeration type can be explicitly
+ // converted to an integral type. [...] A value of a scoped enumeration type
+ // can also be explicitly converted to a floating-point type [...].
+ if (const EnumType *Enum = SrcType->getAs<EnumType>()) {
+ if (Enum->getDecl()->isScoped()) {
+ if (DestType->isBooleanType()) {
+ Kind = CK_IntegralToBoolean;
+ return TC_Success;
+ } else if (DestType->isIntegralType(Self.Context)) {
+ Kind = CK_IntegralCast;
+ return TC_Success;
+ } else if (DestType->isRealFloatingType()) {
+ Kind = CK_IntegralToFloating;
+ return TC_Success;
+ }
+ }
+ }
+
+ // Reverse integral promotion/conversion. All such conversions are themselves
+ // again integral promotions or conversions and are thus already handled by
+ // p2 (TryDirectInitialization above).
+ // (Note: any data loss warnings should be suppressed.)
+ // The exception is the reverse of enum->integer, i.e. integer->enum (and
+ // enum->enum). See also C++ 5.2.9p7.
+ // The same goes for reverse floating point promotion/conversion and
+ // floating-integral conversions. Again, only floating->enum is relevant.
+ if (DestType->isEnumeralType()) {
+ if (SrcType->isIntegralOrEnumerationType()) {
+ Kind = CK_IntegralCast;
+ return TC_Success;
+ } else if (SrcType->isRealFloatingType()) {
+ Kind = CK_FloatingToIntegral;
+ return TC_Success;
+ }
+ }
+
+ // Reverse pointer upcast. C++ 4.10p3 specifies pointer upcast.
+ // C++ 5.2.9p8 additionally disallows a cast path through virtual inheritance.
+ tcr = TryStaticPointerDowncast(Self, SrcType, DestType, CStyle, OpRange, msg,
+ Kind, BasePath);
+ if (tcr != TC_NotApplicable)
+ return tcr;
+
+ // Reverse member pointer conversion. C++ 4.11 specifies member pointer
+ // conversion. C++ 5.2.9p9 has additional information.
+ // DR54's access restrictions apply here also.
+ tcr = TryStaticMemberPointerUpcast(Self, SrcExpr, SrcType, DestType, CStyle,
+ OpRange, msg, Kind, BasePath);
+ if (tcr != TC_NotApplicable)
+ return tcr;
+
+ // Reverse pointer conversion to void*. C++ 4.10.p2 specifies conversion to
+ // void*. C++ 5.2.9p10 specifies additional restrictions, which really is
+ // just the usual constness stuff.
+ if (const PointerType *SrcPointer = SrcType->getAs<PointerType>()) {
+ QualType SrcPointee = SrcPointer->getPointeeType();
+ if (SrcPointee->isVoidType()) {
+ if (const PointerType *DestPointer = DestType->getAs<PointerType>()) {
+ QualType DestPointee = DestPointer->getPointeeType();
+ if (DestPointee->isIncompleteOrObjectType()) {
+ // This is definitely the intended conversion, but it might fail due
+ // to a qualifier violation. Note that we permit Objective-C lifetime
+ // and GC qualifier mismatches here.
+ if (!CStyle) {
+ Qualifiers DestPointeeQuals = DestPointee.getQualifiers();
+ Qualifiers SrcPointeeQuals = SrcPointee.getQualifiers();
+ DestPointeeQuals.removeObjCGCAttr();
+ DestPointeeQuals.removeObjCLifetime();
+ SrcPointeeQuals.removeObjCGCAttr();
+ SrcPointeeQuals.removeObjCLifetime();
+ if (DestPointeeQuals != SrcPointeeQuals &&
+ !DestPointeeQuals.compatiblyIncludes(SrcPointeeQuals)) {
+ msg = diag::err_bad_cxx_cast_qualifiers_away;
+ return TC_Failed;
+ }
+ }
+ Kind = CK_BitCast;
+ return TC_Success;
+ }
+ }
+ else if (DestType->isObjCObjectPointerType()) {
+ // allow both c-style cast and static_cast of objective-c pointers as
+ // they are pervasive.
+ Kind = CK_CPointerToObjCPointerCast;
+ return TC_Success;
+ }
+ else if (CStyle && DestType->isBlockPointerType()) {
+ // allow c-style cast of void * to block pointers.
+ Kind = CK_AnyPointerToBlockPointerCast;
+ return TC_Success;
+ }
+ }
+ }
+ // Allow arbitray objective-c pointer conversion with static casts.
+ if (SrcType->isObjCObjectPointerType() &&
+ DestType->isObjCObjectPointerType()) {
+ Kind = CK_BitCast;
+ return TC_Success;
+ }
+ // Allow ns-pointer to cf-pointer conversion in either direction
+ // with static casts.
+ if (!CStyle &&
+ Self.CheckTollFreeBridgeStaticCast(DestType, SrcExpr.get(), Kind))
+ return TC_Success;
+
+ // See if it looks like the user is trying to convert between
+ // related record types, and select a better diagnostic if so.
+ if (auto SrcPointer = SrcType->getAs<PointerType>())
+ if (auto DestPointer = DestType->getAs<PointerType>())
+ if (SrcPointer->getPointeeType()->getAs<RecordType>() &&
+ DestPointer->getPointeeType()->getAs<RecordType>())
+ msg = diag::err_bad_cxx_cast_unrelated_class;
+
+ // We tried everything. Everything! Nothing works! :-(
+ return TC_NotApplicable;
+}
+
+/// Tests whether a conversion according to N2844 is valid.
+TryCastResult
+TryLValueToRValueCast(Sema &Self, Expr *SrcExpr, QualType DestType,
+ bool CStyle, CastKind &Kind, CXXCastPath &BasePath,
+ unsigned &msg) {
+ // C++0x [expr.static.cast]p3:
+ // A glvalue of type "cv1 T1" can be cast to type "rvalue reference to
+ // cv2 T2" if "cv2 T2" is reference-compatible with "cv1 T1".
+ const RValueReferenceType *R = DestType->getAs<RValueReferenceType>();
+ if (!R)
+ return TC_NotApplicable;
+
+ if (!SrcExpr->isGLValue())
+ return TC_NotApplicable;
+
+ // Because we try the reference downcast before this function, from now on
+ // this is the only cast possibility, so we issue an error if we fail now.
+ // FIXME: Should allow casting away constness if CStyle.
+ bool DerivedToBase;
+ bool ObjCConversion;
+ bool ObjCLifetimeConversion;
+ QualType FromType = SrcExpr->getType();
+ QualType ToType = R->getPointeeType();
+ if (CStyle) {
+ FromType = FromType.getUnqualifiedType();
+ ToType = ToType.getUnqualifiedType();
+ }
+
+ if (Self.CompareReferenceRelationship(SrcExpr->getLocStart(),
+ ToType, FromType,
+ DerivedToBase, ObjCConversion,
+ ObjCLifetimeConversion)
+ < Sema::Ref_Compatible_With_Added_Qualification) {
+ msg = diag::err_bad_lvalue_to_rvalue_cast;
+ return TC_Failed;
+ }
+
+ if (DerivedToBase) {
+ Kind = CK_DerivedToBase;
+ CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
+ /*DetectVirtual=*/true);
+ if (!Self.IsDerivedFrom(SrcExpr->getType(), R->getPointeeType(), Paths))
+ return TC_NotApplicable;
+
+ Self.BuildBasePathArray(Paths, BasePath);
+ } else
+ Kind = CK_NoOp;
+
+ return TC_Success;
+}
+
+/// Tests whether a conversion according to C++ 5.2.9p5 is valid.
+TryCastResult
+TryStaticReferenceDowncast(Sema &Self, Expr *SrcExpr, QualType DestType,
+ bool CStyle, const SourceRange &OpRange,
+ unsigned &msg, CastKind &Kind,
+ CXXCastPath &BasePath) {
+ // C++ 5.2.9p5: An lvalue of type "cv1 B", where B is a class type, can be
+ // cast to type "reference to cv2 D", where D is a class derived from B,
+ // if a valid standard conversion from "pointer to D" to "pointer to B"
+ // exists, cv2 >= cv1, and B is not a virtual base class of D.
+ // In addition, DR54 clarifies that the base must be accessible in the
+ // current context. Although the wording of DR54 only applies to the pointer
+ // variant of this rule, the intent is clearly for it to apply to the this
+ // conversion as well.
+
+ const ReferenceType *DestReference = DestType->getAs<ReferenceType>();
+ if (!DestReference) {
+ return TC_NotApplicable;
+ }
+ bool RValueRef = DestReference->isRValueReferenceType();
+ if (!RValueRef && !SrcExpr->isLValue()) {
+ // We know the left side is an lvalue reference, so we can suggest a reason.
+ msg = diag::err_bad_cxx_cast_rvalue;
+ return TC_NotApplicable;
+ }
+
+ QualType DestPointee = DestReference->getPointeeType();
+
+ // FIXME: If the source is a prvalue, we should issue a warning (because the
+ // cast always has undefined behavior), and for AST consistency, we should
+ // materialize a temporary.
+ return TryStaticDowncast(Self,
+ Self.Context.getCanonicalType(SrcExpr->getType()),
+ Self.Context.getCanonicalType(DestPointee), CStyle,
+ OpRange, SrcExpr->getType(), DestType, msg, Kind,
+ BasePath);
+}
+
+/// Tests whether a conversion according to C++ 5.2.9p8 is valid.
+TryCastResult
+TryStaticPointerDowncast(Sema &Self, QualType SrcType, QualType DestType,
+ bool CStyle, const SourceRange &OpRange,
+ unsigned &msg, CastKind &Kind,
+ CXXCastPath &BasePath) {
+ // C++ 5.2.9p8: An rvalue of type "pointer to cv1 B", where B is a class
+ // type, can be converted to an rvalue of type "pointer to cv2 D", where D
+ // is a class derived from B, if a valid standard conversion from "pointer
+ // to D" to "pointer to B" exists, cv2 >= cv1, and B is not a virtual base
+ // class of D.
+ // In addition, DR54 clarifies that the base must be accessible in the
+ // current context.
+
+ const PointerType *DestPointer = DestType->getAs<PointerType>();
+ if (!DestPointer) {
+ return TC_NotApplicable;
+ }
+
+ const PointerType *SrcPointer = SrcType->getAs<PointerType>();
+ if (!SrcPointer) {
+ msg = diag::err_bad_static_cast_pointer_nonpointer;
+ return TC_NotApplicable;
+ }
+
+ return TryStaticDowncast(Self,
+ Self.Context.getCanonicalType(SrcPointer->getPointeeType()),
+ Self.Context.getCanonicalType(DestPointer->getPointeeType()),
+ CStyle, OpRange, SrcType, DestType, msg, Kind,
+ BasePath);
+}
+
+/// TryStaticDowncast - Common functionality of TryStaticReferenceDowncast and
+/// TryStaticPointerDowncast. Tests whether a static downcast from SrcType to
+/// DestType is possible and allowed.
+TryCastResult
+TryStaticDowncast(Sema &Self, CanQualType SrcType, CanQualType DestType,
+ bool CStyle, const SourceRange &OpRange, QualType OrigSrcType,
+ QualType OrigDestType, unsigned &msg,
+ CastKind &Kind, CXXCastPath &BasePath) {
+ // We can only work with complete types. But don't complain if it doesn't work
+ if (Self.RequireCompleteType(OpRange.getBegin(), SrcType, 0) ||
+ Self.RequireCompleteType(OpRange.getBegin(), DestType, 0))
+ return TC_NotApplicable;
+
+ // Downcast can only happen in class hierarchies, so we need classes.
+ if (!DestType->getAs<RecordType>() || !SrcType->getAs<RecordType>()) {
+ return TC_NotApplicable;
+ }
+
+ CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
+ /*DetectVirtual=*/true);
+ if (!Self.IsDerivedFrom(DestType, SrcType, Paths)) {
+ return TC_NotApplicable;
+ }
+
+ // Target type does derive from source type. Now we're serious. If an error
+ // appears now, it's not ignored.
+ // This may not be entirely in line with the standard. Take for example:
+ // struct A {};
+ // struct B : virtual A {
+ // B(A&);
+ // };
+ //
+ // void f()
+ // {
+ // (void)static_cast<const B&>(*((A*)0));
+ // }
+ // As far as the standard is concerned, p5 does not apply (A is virtual), so
+ // p2 should be used instead - "const B& t(*((A*)0));" is perfectly valid.
+ // However, both GCC and Comeau reject this example, and accepting it would
+ // mean more complex code if we're to preserve the nice error message.
+ // FIXME: Being 100% compliant here would be nice to have.
+
+ // Must preserve cv, as always, unless we're in C-style mode.
+ if (!CStyle && !DestType.isAtLeastAsQualifiedAs(SrcType)) {
+ msg = diag::err_bad_cxx_cast_qualifiers_away;
+ return TC_Failed;
+ }
+
+ if (Paths.isAmbiguous(SrcType.getUnqualifiedType())) {
+ // This code is analoguous to that in CheckDerivedToBaseConversion, except
+ // that it builds the paths in reverse order.
+ // To sum up: record all paths to the base and build a nice string from
+ // them. Use it to spice up the error message.
+ if (!Paths.isRecordingPaths()) {
+ Paths.clear();
+ Paths.setRecordingPaths(true);
+ Self.IsDerivedFrom(DestType, SrcType, Paths);
+ }
+ std::string PathDisplayStr;
+ std::set<unsigned> DisplayedPaths;
+ for (CXXBasePaths::paths_iterator PI = Paths.begin(), PE = Paths.end();
+ PI != PE; ++PI) {
+ if (DisplayedPaths.insert(PI->back().SubobjectNumber).second) {
+ // We haven't displayed a path to this particular base
+ // class subobject yet.
+ PathDisplayStr += "\n ";
+ for (CXXBasePath::const_reverse_iterator EI = PI->rbegin(),
+ EE = PI->rend();
+ EI != EE; ++EI)
+ PathDisplayStr += EI->Base->getType().getAsString() + " -> ";
+ PathDisplayStr += QualType(DestType).getAsString();
+ }
+ }
+
+ Self.Diag(OpRange.getBegin(), diag::err_ambiguous_base_to_derived_cast)
+ << QualType(SrcType).getUnqualifiedType()
+ << QualType(DestType).getUnqualifiedType()
+ << PathDisplayStr << OpRange;
+ msg = 0;
+ return TC_Failed;
+ }
+
+ if (Paths.getDetectedVirtual() != nullptr) {
+ QualType VirtualBase(Paths.getDetectedVirtual(), 0);
+ Self.Diag(OpRange.getBegin(), diag::err_static_downcast_via_virtual)
+ << OrigSrcType << OrigDestType << VirtualBase << OpRange;
+ msg = 0;
+ return TC_Failed;
+ }
+
+ if (!CStyle) {
+ switch (Self.CheckBaseClassAccess(OpRange.getBegin(),
+ SrcType, DestType,
+ Paths.front(),
+ diag::err_downcast_from_inaccessible_base)) {
+ case Sema::AR_accessible:
+ case Sema::AR_delayed: // be optimistic
+ case Sema::AR_dependent: // be optimistic
+ break;
+
+ case Sema::AR_inaccessible:
+ msg = 0;
+ return TC_Failed;
+ }
+ }
+
+ Self.BuildBasePathArray(Paths, BasePath);
+ Kind = CK_BaseToDerived;
+ return TC_Success;
+}
+
+/// TryStaticMemberPointerUpcast - Tests whether a conversion according to
+/// C++ 5.2.9p9 is valid:
+///
+/// An rvalue of type "pointer to member of D of type cv1 T" can be
+/// converted to an rvalue of type "pointer to member of B of type cv2 T",
+/// where B is a base class of D [...].
+///
+TryCastResult
+TryStaticMemberPointerUpcast(Sema &Self, ExprResult &SrcExpr, QualType SrcType,
+ QualType DestType, bool CStyle,
+ const SourceRange &OpRange,
+ unsigned &msg, CastKind &Kind,
+ CXXCastPath &BasePath) {
+ const MemberPointerType *DestMemPtr = DestType->getAs<MemberPointerType>();
+ if (!DestMemPtr)
+ return TC_NotApplicable;
+
+ bool WasOverloadedFunction = false;
+ DeclAccessPair FoundOverload;
+ if (SrcExpr.get()->getType() == Self.Context.OverloadTy) {
+ if (FunctionDecl *Fn
+ = Self.ResolveAddressOfOverloadedFunction(SrcExpr.get(), DestType, false,
+ FoundOverload)) {
+ CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
+ SrcType = Self.Context.getMemberPointerType(Fn->getType(),
+ Self.Context.getTypeDeclType(M->getParent()).getTypePtr());
+ WasOverloadedFunction = true;
+ }
+ }
+
+ const MemberPointerType *SrcMemPtr = SrcType->getAs<MemberPointerType>();
+ if (!SrcMemPtr) {
+ msg = diag::err_bad_static_cast_member_pointer_nonmp;
+ return TC_NotApplicable;
+ }
+
+ // T == T, modulo cv
+ if (!Self.Context.hasSameUnqualifiedType(SrcMemPtr->getPointeeType(),
+ DestMemPtr->getPointeeType()))
+ return TC_NotApplicable;
+
+ // B base of D
+ QualType SrcClass(SrcMemPtr->getClass(), 0);
+ QualType DestClass(DestMemPtr->getClass(), 0);
+ CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
+ /*DetectVirtual=*/true);
+ if (Self.RequireCompleteType(OpRange.getBegin(), SrcClass, 0) ||
+ !Self.IsDerivedFrom(SrcClass, DestClass, Paths)) {
+ return TC_NotApplicable;
+ }
+
+ // B is a base of D. But is it an allowed base? If not, it's a hard error.
+ if (Paths.isAmbiguous(Self.Context.getCanonicalType(DestClass))) {
+ Paths.clear();
+ Paths.setRecordingPaths(true);
+ bool StillOkay = Self.IsDerivedFrom(SrcClass, DestClass, Paths);
+ assert(StillOkay);
+ (void)StillOkay;
+ std::string PathDisplayStr = Self.getAmbiguousPathsDisplayString(Paths);
+ Self.Diag(OpRange.getBegin(), diag::err_ambiguous_memptr_conv)
+ << 1 << SrcClass << DestClass << PathDisplayStr << OpRange;
+ msg = 0;
+ return TC_Failed;
+ }
+
+ if (const RecordType *VBase = Paths.getDetectedVirtual()) {
+ Self.Diag(OpRange.getBegin(), diag::err_memptr_conv_via_virtual)
+ << SrcClass << DestClass << QualType(VBase, 0) << OpRange;
+ msg = 0;
+ return TC_Failed;
+ }
+
+ if (!CStyle) {
+ switch (Self.CheckBaseClassAccess(OpRange.getBegin(),
+ DestClass, SrcClass,
+ Paths.front(),
+ diag::err_upcast_to_inaccessible_base)) {
+ case Sema::AR_accessible:
+ case Sema::AR_delayed:
+ case Sema::AR_dependent:
+ // Optimistically assume that the delayed and dependent cases
+ // will work out.
+ break;
+
+ case Sema::AR_inaccessible:
+ msg = 0;
+ return TC_Failed;
+ }
+ }
+
+ if (WasOverloadedFunction) {
+ // Resolve the address of the overloaded function again, this time
+ // allowing complaints if something goes wrong.
+ FunctionDecl *Fn = Self.ResolveAddressOfOverloadedFunction(SrcExpr.get(),
+ DestType,
+ true,
+ FoundOverload);
+ if (!Fn) {
+ msg = 0;
+ return TC_Failed;
+ }
+
+ SrcExpr = Self.FixOverloadedFunctionReference(SrcExpr, FoundOverload, Fn);
+ if (!SrcExpr.isUsable()) {
+ msg = 0;
+ return TC_Failed;
+ }
+ }
+
+ Self.BuildBasePathArray(Paths, BasePath);
+ Kind = CK_DerivedToBaseMemberPointer;
+ return TC_Success;
+}
+
+/// TryStaticImplicitCast - Tests whether a conversion according to C++ 5.2.9p2
+/// is valid:
+///
+/// An expression e can be explicitly converted to a type T using a
+/// @c static_cast if the declaration "T t(e);" is well-formed [...].
+TryCastResult
+TryStaticImplicitCast(Sema &Self, ExprResult &SrcExpr, QualType DestType,
+ Sema::CheckedConversionKind CCK,
+ const SourceRange &OpRange, unsigned &msg,
+ CastKind &Kind, bool ListInitialization) {
+ if (DestType->isRecordType()) {
+ if (Self.RequireCompleteType(OpRange.getBegin(), DestType,
+ diag::err_bad_dynamic_cast_incomplete) ||
+ Self.RequireNonAbstractType(OpRange.getBegin(), DestType,
+ diag::err_allocation_of_abstract_type)) {
+ msg = 0;
+ return TC_Failed;
+ }
+ } else if (DestType->isMemberPointerType()) {
+ if (Self.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
+ Self.RequireCompleteType(OpRange.getBegin(), DestType, 0);
+ }
+ }
+
+ InitializedEntity Entity = InitializedEntity::InitializeTemporary(DestType);
+ InitializationKind InitKind
+ = (CCK == Sema::CCK_CStyleCast)
+ ? InitializationKind::CreateCStyleCast(OpRange.getBegin(), OpRange,
+ ListInitialization)
+ : (CCK == Sema::CCK_FunctionalCast)
+ ? InitializationKind::CreateFunctionalCast(OpRange, ListInitialization)
+ : InitializationKind::CreateCast(OpRange);
+ Expr *SrcExprRaw = SrcExpr.get();
+ InitializationSequence InitSeq(Self, Entity, InitKind, SrcExprRaw);
+
+ // At this point of CheckStaticCast, if the destination is a reference,
+ // or the expression is an overload expression this has to work.
+ // There is no other way that works.
+ // On the other hand, if we're checking a C-style cast, we've still got
+ // the reinterpret_cast way.
+ bool CStyle
+ = (CCK == Sema::CCK_CStyleCast || CCK == Sema::CCK_FunctionalCast);
+ if (InitSeq.Failed() && (CStyle || !DestType->isReferenceType()))
+ return TC_NotApplicable;
+
+ ExprResult Result = InitSeq.Perform(Self, Entity, InitKind, SrcExprRaw);
+ if (Result.isInvalid()) {
+ msg = 0;
+ return TC_Failed;
+ }
+
+ if (InitSeq.isConstructorInitialization())
+ Kind = CK_ConstructorConversion;
+ else
+ Kind = CK_NoOp;
+
+ SrcExpr = Result;
+ return TC_Success;
+}
+
+/// TryConstCast - See if a const_cast from source to destination is allowed,
+/// and perform it if it is.
+static TryCastResult TryConstCast(Sema &Self, ExprResult &SrcExpr,
+ QualType DestType, bool CStyle,
+ unsigned &msg) {
+ DestType = Self.Context.getCanonicalType(DestType);
+ QualType SrcType = SrcExpr.get()->getType();
+ bool NeedToMaterializeTemporary = false;
+
+ if (const ReferenceType *DestTypeTmp =DestType->getAs<ReferenceType>()) {
+ // C++11 5.2.11p4:
+ // if a pointer to T1 can be explicitly converted to the type "pointer to
+ // T2" using a const_cast, then the following conversions can also be
+ // made:
+ // -- an lvalue of type T1 can be explicitly converted to an lvalue of
+ // type T2 using the cast const_cast<T2&>;
+ // -- a glvalue of type T1 can be explicitly converted to an xvalue of
+ // type T2 using the cast const_cast<T2&&>; and
+ // -- if T1 is a class type, a prvalue of type T1 can be explicitly
+ // converted to an xvalue of type T2 using the cast const_cast<T2&&>.
+
+ if (isa<LValueReferenceType>(DestTypeTmp) && !SrcExpr.get()->isLValue()) {
+ // Cannot const_cast non-lvalue to lvalue reference type. But if this
+ // is C-style, static_cast might find a way, so we simply suggest a
+ // message and tell the parent to keep searching.
+ msg = diag::err_bad_cxx_cast_rvalue;
+ return TC_NotApplicable;
+ }
+
+ if (isa<RValueReferenceType>(DestTypeTmp) && SrcExpr.get()->isRValue()) {
+ if (!SrcType->isRecordType()) {
+ // Cannot const_cast non-class prvalue to rvalue reference type. But if
+ // this is C-style, static_cast can do this.
+ msg = diag::err_bad_cxx_cast_rvalue;
+ return TC_NotApplicable;
+ }
+
+ // Materialize the class prvalue so that the const_cast can bind a
+ // reference to it.
+ NeedToMaterializeTemporary = true;
+ }
+
+ // It's not completely clear under the standard whether we can
+ // const_cast bit-field gl-values. Doing so would not be
+ // intrinsically complicated, but for now, we say no for
+ // consistency with other compilers and await the word of the
+ // committee.
+ if (SrcExpr.get()->refersToBitField()) {
+ msg = diag::err_bad_cxx_cast_bitfield;
+ return TC_NotApplicable;
+ }
+
+ DestType = Self.Context.getPointerType(DestTypeTmp->getPointeeType());
+ SrcType = Self.Context.getPointerType(SrcType);
+ }
+
+ // C++ 5.2.11p5: For a const_cast involving pointers to data members [...]
+ // the rules for const_cast are the same as those used for pointers.
+
+ if (!DestType->isPointerType() &&
+ !DestType->isMemberPointerType() &&
+ !DestType->isObjCObjectPointerType()) {
+ // Cannot cast to non-pointer, non-reference type. Note that, if DestType
+ // was a reference type, we converted it to a pointer above.
+ // The status of rvalue references isn't entirely clear, but it looks like
+ // conversion to them is simply invalid.
+ // C++ 5.2.11p3: For two pointer types [...]
+ if (!CStyle)
+ msg = diag::err_bad_const_cast_dest;
+ return TC_NotApplicable;
+ }
+ if (DestType->isFunctionPointerType() ||
+ DestType->isMemberFunctionPointerType()) {
+ // Cannot cast direct function pointers.
+ // C++ 5.2.11p2: [...] where T is any object type or the void type [...]
+ // T is the ultimate pointee of source and target type.
+ if (!CStyle)
+ msg = diag::err_bad_const_cast_dest;
+ return TC_NotApplicable;
+ }
+ SrcType = Self.Context.getCanonicalType(SrcType);
+
+ // Unwrap the pointers. Ignore qualifiers. Terminate early if the types are
+ // completely equal.
+ // C++ 5.2.11p3 describes the core semantics of const_cast. All cv specifiers
+ // in multi-level pointers may change, but the level count must be the same,
+ // as must be the final pointee type.
+ while (SrcType != DestType &&
+ Self.Context.UnwrapSimilarPointerTypes(SrcType, DestType)) {
+ Qualifiers SrcQuals, DestQuals;
+ SrcType = Self.Context.getUnqualifiedArrayType(SrcType, SrcQuals);
+ DestType = Self.Context.getUnqualifiedArrayType(DestType, DestQuals);
+
+ // const_cast is permitted to strip cvr-qualifiers, only. Make sure that
+ // the other qualifiers (e.g., address spaces) are identical.
+ SrcQuals.removeCVRQualifiers();
+ DestQuals.removeCVRQualifiers();
+ if (SrcQuals != DestQuals)
+ return TC_NotApplicable;
+ }
+
+ // Since we're dealing in canonical types, the remainder must be the same.
+ if (SrcType != DestType)
+ return TC_NotApplicable;
+
+ if (NeedToMaterializeTemporary)
+ // This is a const_cast from a class prvalue to an rvalue reference type.
+ // Materialize a temporary to store the result of the conversion.
+ SrcExpr = new (Self.Context) MaterializeTemporaryExpr(
+ SrcType, SrcExpr.get(), /*IsLValueReference*/ false);
+
+ return TC_Success;
+}
+
+// Checks for undefined behavior in reinterpret_cast.
+// The cases that is checked for is:
+// *reinterpret_cast<T*>(&a)
+// reinterpret_cast<T&>(a)
+// where accessing 'a' as type 'T' will result in undefined behavior.
+void Sema::CheckCompatibleReinterpretCast(QualType SrcType, QualType DestType,
+ bool IsDereference,
+ SourceRange Range) {
+ unsigned DiagID = IsDereference ?
+ diag::warn_pointer_indirection_from_incompatible_type :
+ diag::warn_undefined_reinterpret_cast;
+
+ if (Diags.isIgnored(DiagID, Range.getBegin()))
+ return;
+
+ QualType SrcTy, DestTy;
+ if (IsDereference) {
+ if (!SrcType->getAs<PointerType>() || !DestType->getAs<PointerType>()) {
+ return;
+ }
+ SrcTy = SrcType->getPointeeType();
+ DestTy = DestType->getPointeeType();
+ } else {
+ if (!DestType->getAs<ReferenceType>()) {
+ return;
+ }
+ SrcTy = SrcType;
+ DestTy = DestType->getPointeeType();
+ }
+
+ // Cast is compatible if the types are the same.
+ if (Context.hasSameUnqualifiedType(DestTy, SrcTy)) {
+ return;
+ }
+ // or one of the types is a char or void type
+ if (DestTy->isAnyCharacterType() || DestTy->isVoidType() ||
+ SrcTy->isAnyCharacterType() || SrcTy->isVoidType()) {
+ return;
+ }
+ // or one of the types is a tag type.
+ if (SrcTy->getAs<TagType>() || DestTy->getAs<TagType>()) {
+ return;
+ }
+
+ // FIXME: Scoped enums?
+ if ((SrcTy->isUnsignedIntegerType() && DestTy->isSignedIntegerType()) ||
+ (SrcTy->isSignedIntegerType() && DestTy->isUnsignedIntegerType())) {
+ if (Context.getTypeSize(DestTy) == Context.getTypeSize(SrcTy)) {
+ return;
+ }
+ }
+
+ Diag(Range.getBegin(), DiagID) << SrcType << DestType << Range;
+}
+
+static void DiagnoseCastOfObjCSEL(Sema &Self, const ExprResult &SrcExpr,
+ QualType DestType) {
+ QualType SrcType = SrcExpr.get()->getType();
+ if (Self.Context.hasSameType(SrcType, DestType))
+ return;
+ if (const PointerType *SrcPtrTy = SrcType->getAs<PointerType>())
+ if (SrcPtrTy->isObjCSelType()) {
+ QualType DT = DestType;
+ if (isa<PointerType>(DestType))
+ DT = DestType->getPointeeType();
+ if (!DT.getUnqualifiedType()->isVoidType())
+ Self.Diag(SrcExpr.get()->getExprLoc(),
+ diag::warn_cast_pointer_from_sel)
+ << SrcType << DestType << SrcExpr.get()->getSourceRange();
+ }
+}
+
+static void checkIntToPointerCast(bool CStyle, SourceLocation Loc,
+ const Expr *SrcExpr, QualType DestType,
+ Sema &Self) {
+ QualType SrcType = SrcExpr->getType();
+
+ // Not warning on reinterpret_cast, boolean, constant expressions, etc
+ // are not explicit design choices, but consistent with GCC's behavior.
+ // Feel free to modify them if you've reason/evidence for an alternative.
+ if (CStyle && SrcType->isIntegralType(Self.Context)
+ && !SrcType->isBooleanType()
+ && !SrcType->isEnumeralType()
+ && !SrcExpr->isIntegerConstantExpr(Self.Context)
+ && Self.Context.getTypeSize(DestType) >
+ Self.Context.getTypeSize(SrcType)) {
+ // Separate between casts to void* and non-void* pointers.
+ // Some APIs use (abuse) void* for something like a user context,
+ // and often that value is an integer even if it isn't a pointer itself.
+ // Having a separate warning flag allows users to control the warning
+ // for their workflow.
+ unsigned Diag = DestType->isVoidPointerType() ?
+ diag::warn_int_to_void_pointer_cast
+ : diag::warn_int_to_pointer_cast;
+ Self.Diag(Loc, Diag) << SrcType << DestType;
+ }
+}
+
+static TryCastResult TryReinterpretCast(Sema &Self, ExprResult &SrcExpr,
+ QualType DestType, bool CStyle,
+ const SourceRange &OpRange,
+ unsigned &msg,
+ CastKind &Kind) {
+ bool IsLValueCast = false;
+
+ DestType = Self.Context.getCanonicalType(DestType);
+ QualType SrcType = SrcExpr.get()->getType();
+
+ // Is the source an overloaded name? (i.e. &foo)
+ // If so, reinterpret_cast can not help us here (13.4, p1, bullet 5) ...
+ if (SrcType == Self.Context.OverloadTy) {
+ // ... unless foo<int> resolves to an lvalue unambiguously.
+ // TODO: what if this fails because of DiagnoseUseOfDecl or something
+ // like it?
+ ExprResult SingleFunctionExpr = SrcExpr;
+ if (Self.ResolveAndFixSingleFunctionTemplateSpecialization(
+ SingleFunctionExpr,
+ Expr::getValueKindForType(DestType) == VK_RValue // Convert Fun to Ptr
+ ) && SingleFunctionExpr.isUsable()) {
+ SrcExpr = SingleFunctionExpr;
+ SrcType = SrcExpr.get()->getType();
+ } else {
+ return TC_NotApplicable;
+ }
+ }
+
+ if (const ReferenceType *DestTypeTmp = DestType->getAs<ReferenceType>()) {
+ if (!SrcExpr.get()->isGLValue()) {
+ // Cannot cast non-glvalue to (lvalue or rvalue) reference type. See the
+ // similar comment in const_cast.
+ msg = diag::err_bad_cxx_cast_rvalue;
+ return TC_NotApplicable;
+ }
+
+ if (!CStyle) {
+ Self.CheckCompatibleReinterpretCast(SrcType, DestType,
+ /*isDereference=*/false, OpRange);
+ }
+
+ // C++ 5.2.10p10: [...] a reference cast reinterpret_cast<T&>(x) has the
+ // same effect as the conversion *reinterpret_cast<T*>(&x) with the
+ // built-in & and * operators.
+
+ const char *inappropriate = nullptr;
+ switch (SrcExpr.get()->getObjectKind()) {
+ case OK_Ordinary:
+ break;
+ case OK_BitField: inappropriate = "bit-field"; break;
+ case OK_VectorComponent: inappropriate = "vector element"; break;
+ case OK_ObjCProperty: inappropriate = "property expression"; break;
+ case OK_ObjCSubscript: inappropriate = "container subscripting expression";
+ break;
+ }
+ if (inappropriate) {
+ Self.Diag(OpRange.getBegin(), diag::err_bad_reinterpret_cast_reference)
+ << inappropriate << DestType
+ << OpRange << SrcExpr.get()->getSourceRange();
+ msg = 0; SrcExpr = ExprError();
+ return TC_NotApplicable;
+ }
+
+ // This code does this transformation for the checked types.
+ DestType = Self.Context.getPointerType(DestTypeTmp->getPointeeType());
+ SrcType = Self.Context.getPointerType(SrcType);
+
+ IsLValueCast = true;
+ }
+
+ // Canonicalize source for comparison.
+ SrcType = Self.Context.getCanonicalType(SrcType);
+
+ const MemberPointerType *DestMemPtr = DestType->getAs<MemberPointerType>(),
+ *SrcMemPtr = SrcType->getAs<MemberPointerType>();
+ if (DestMemPtr && SrcMemPtr) {
+ // C++ 5.2.10p9: An rvalue of type "pointer to member of X of type T1"
+ // can be explicitly converted to an rvalue of type "pointer to member
+ // of Y of type T2" if T1 and T2 are both function types or both object
+ // types.
+ if (DestMemPtr->isMemberFunctionPointer() !=
+ SrcMemPtr->isMemberFunctionPointer())
+ return TC_NotApplicable;
+
+ // C++ 5.2.10p2: The reinterpret_cast operator shall not cast away
+ // constness.
+ // A reinterpret_cast followed by a const_cast can, though, so in C-style,
+ // we accept it.
+ if (CastsAwayConstness(Self, SrcType, DestType, /*CheckCVR=*/!CStyle,
+ /*CheckObjCLifetime=*/CStyle)) {
+ msg = diag::err_bad_cxx_cast_qualifiers_away;
+ return TC_Failed;
+ }
+
+ if (Self.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
+ // We need to determine the inheritance model that the class will use if
+ // haven't yet.
+ Self.RequireCompleteType(OpRange.getBegin(), SrcType, 0);
+ Self.RequireCompleteType(OpRange.getBegin(), DestType, 0);
+ }
+
+ // Don't allow casting between member pointers of different sizes.
+ if (Self.Context.getTypeSize(DestMemPtr) !=
+ Self.Context.getTypeSize(SrcMemPtr)) {
+ msg = diag::err_bad_cxx_cast_member_pointer_size;
+ return TC_Failed;
+ }
+
+ // A valid member pointer cast.
+ assert(!IsLValueCast);
+ Kind = CK_ReinterpretMemberPointer;
+ return TC_Success;
+ }
+
+ // See below for the enumeral issue.
+ if (SrcType->isNullPtrType() && DestType->isIntegralType(Self.Context)) {
+ // C++0x 5.2.10p4: A pointer can be explicitly converted to any integral
+ // type large enough to hold it. A value of std::nullptr_t can be
+ // converted to an integral type; the conversion has the same meaning
+ // and validity as a conversion of (void*)0 to the integral type.
+ if (Self.Context.getTypeSize(SrcType) >
+ Self.Context.getTypeSize(DestType)) {
+ msg = diag::err_bad_reinterpret_cast_small_int;
+ return TC_Failed;
+ }
+ Kind = CK_PointerToIntegral;
+ return TC_Success;
+ }
+
+ bool destIsVector = DestType->isVectorType();
+ bool srcIsVector = SrcType->isVectorType();
+ if (srcIsVector || destIsVector) {
+ // FIXME: Should this also apply to floating point types?
+ bool srcIsScalar = SrcType->isIntegralType(Self.Context);
+ bool destIsScalar = DestType->isIntegralType(Self.Context);
+
+ // Check if this is a cast between a vector and something else.
+ if (!(srcIsScalar && destIsVector) && !(srcIsVector && destIsScalar) &&
+ !(srcIsVector && destIsVector))
+ return TC_NotApplicable;
+
+ // If both types have the same size, we can successfully cast.
+ if (Self.Context.getTypeSize(SrcType)
+ == Self.Context.getTypeSize(DestType)) {
+ Kind = CK_BitCast;
+ return TC_Success;
+ }
+
+ if (destIsScalar)
+ msg = diag::err_bad_cxx_cast_vector_to_scalar_different_size;
+ else if (srcIsScalar)
+ msg = diag::err_bad_cxx_cast_scalar_to_vector_different_size;
+ else
+ msg = diag::err_bad_cxx_cast_vector_to_vector_different_size;
+
+ return TC_Failed;
+ }
+
+ if (SrcType == DestType) {
+ // C++ 5.2.10p2 has a note that mentions that, subject to all other
+ // restrictions, a cast to the same type is allowed so long as it does not
+ // cast away constness. In C++98, the intent was not entirely clear here,
+ // since all other paragraphs explicitly forbid casts to the same type.
+ // C++11 clarifies this case with p2.
+ //
+ // The only allowed types are: integral, enumeration, pointer, or
+ // pointer-to-member types. We also won't restrict Obj-C pointers either.
+ Kind = CK_NoOp;
+ TryCastResult Result = TC_NotApplicable;
+ if (SrcType->isIntegralOrEnumerationType() ||
+ SrcType->isAnyPointerType() ||
+ SrcType->isMemberPointerType() ||
+ SrcType->isBlockPointerType()) {
+ Result = TC_Success;
+ }
+ return Result;
+ }
+
+ bool destIsPtr = DestType->isAnyPointerType() ||
+ DestType->isBlockPointerType();
+ bool srcIsPtr = SrcType->isAnyPointerType() ||
+ SrcType->isBlockPointerType();
+ if (!destIsPtr && !srcIsPtr) {
+ // Except for std::nullptr_t->integer and lvalue->reference, which are
+ // handled above, at least one of the two arguments must be a pointer.
+ return TC_NotApplicable;
+ }
+
+ if (DestType->isIntegralType(Self.Context)) {
+ assert(srcIsPtr && "One type must be a pointer");
+ // C++ 5.2.10p4: A pointer can be explicitly converted to any integral
+ // type large enough to hold it; except in Microsoft mode, where the
+ // integral type size doesn't matter (except we don't allow bool).
+ bool MicrosoftException = Self.getLangOpts().MicrosoftExt &&
+ !DestType->isBooleanType();
+ if ((Self.Context.getTypeSize(SrcType) >
+ Self.Context.getTypeSize(DestType)) &&
+ !MicrosoftException) {
+ msg = diag::err_bad_reinterpret_cast_small_int;
+ return TC_Failed;
+ }
+ Kind = CK_PointerToIntegral;
+ return TC_Success;
+ }
+
+ if (SrcType->isIntegralOrEnumerationType()) {
+ assert(destIsPtr && "One type must be a pointer");
+ checkIntToPointerCast(CStyle, OpRange.getBegin(), SrcExpr.get(), DestType,
+ Self);
+ // C++ 5.2.10p5: A value of integral or enumeration type can be explicitly
+ // converted to a pointer.
+ // C++ 5.2.10p9: [Note: ...a null pointer constant of integral type is not
+ // necessarily converted to a null pointer value.]
+ Kind = CK_IntegralToPointer;
+ return TC_Success;
+ }
+
+ if (!destIsPtr || !srcIsPtr) {
+ // With the valid non-pointer conversions out of the way, we can be even
+ // more stringent.
+ return TC_NotApplicable;
+ }
+
+ // C++ 5.2.10p2: The reinterpret_cast operator shall not cast away constness.
+ // The C-style cast operator can.
+ if (CastsAwayConstness(Self, SrcType, DestType, /*CheckCVR=*/!CStyle,
+ /*CheckObjCLifetime=*/CStyle)) {
+ msg = diag::err_bad_cxx_cast_qualifiers_away;
+ return TC_Failed;
+ }
+
+ // Cannot convert between block pointers and Objective-C object pointers.
+ if ((SrcType->isBlockPointerType() && DestType->isObjCObjectPointerType()) ||
+ (DestType->isBlockPointerType() && SrcType->isObjCObjectPointerType()))
+ return TC_NotApplicable;
+
+ if (IsLValueCast) {
+ Kind = CK_LValueBitCast;
+ } else if (DestType->isObjCObjectPointerType()) {
+ Kind = Self.PrepareCastToObjCObjectPointer(SrcExpr);
+ } else if (DestType->isBlockPointerType()) {
+ if (!SrcType->isBlockPointerType()) {
+ Kind = CK_AnyPointerToBlockPointerCast;
+ } else {
+ Kind = CK_BitCast;
+ }
+ } else {
+ Kind = CK_BitCast;
+ }
+
+ // Any pointer can be cast to an Objective-C pointer type with a C-style
+ // cast.
+ if (CStyle && DestType->isObjCObjectPointerType()) {
+ return TC_Success;
+ }
+ if (CStyle)
+ DiagnoseCastOfObjCSEL(Self, SrcExpr, DestType);
+
+ // Not casting away constness, so the only remaining check is for compatible
+ // pointer categories.
+
+ if (SrcType->isFunctionPointerType()) {
+ if (DestType->isFunctionPointerType()) {
+ // C++ 5.2.10p6: A pointer to a function can be explicitly converted to
+ // a pointer to a function of a different type.
+ return TC_Success;
+ }
+
+ // C++0x 5.2.10p8: Converting a pointer to a function into a pointer to
+ // an object type or vice versa is conditionally-supported.
+ // Compilers support it in C++03 too, though, because it's necessary for
+ // casting the return value of dlsym() and GetProcAddress().
+ // FIXME: Conditionally-supported behavior should be configurable in the
+ // TargetInfo or similar.
+ Self.Diag(OpRange.getBegin(),
+ Self.getLangOpts().CPlusPlus11 ?
+ diag::warn_cxx98_compat_cast_fn_obj : diag::ext_cast_fn_obj)
+ << OpRange;
+ return TC_Success;
+ }
+
+ if (DestType->isFunctionPointerType()) {
+ // See above.
+ Self.Diag(OpRange.getBegin(),
+ Self.getLangOpts().CPlusPlus11 ?
+ diag::warn_cxx98_compat_cast_fn_obj : diag::ext_cast_fn_obj)
+ << OpRange;
+ return TC_Success;
+ }
+
+ // C++ 5.2.10p7: A pointer to an object can be explicitly converted to
+ // a pointer to an object of different type.
+ // Void pointers are not specified, but supported by every compiler out there.
+ // So we finish by allowing everything that remains - it's got to be two
+ // object pointers.
+ return TC_Success;
+}
+
+void CastOperation::CheckCXXCStyleCast(bool FunctionalStyle,
+ bool ListInitialization) {
+ // Handle placeholders.
+ if (isPlaceholder()) {
+ // C-style casts can resolve __unknown_any types.
+ if (claimPlaceholder(BuiltinType::UnknownAny)) {
+ SrcExpr = Self.checkUnknownAnyCast(DestRange, DestType,
+ SrcExpr.get(), Kind,
+ ValueKind, BasePath);
+ return;
+ }
+
+ checkNonOverloadPlaceholders();
+ if (SrcExpr.isInvalid())
+ return;
+ }
+
+ // C++ 5.2.9p4: Any expression can be explicitly converted to type "cv void".
+ // This test is outside everything else because it's the only case where
+ // a non-lvalue-reference target type does not lead to decay.
+ if (DestType->isVoidType()) {
+ Kind = CK_ToVoid;
+
+ if (claimPlaceholder(BuiltinType::Overload)) {
+ Self.ResolveAndFixSingleFunctionTemplateSpecialization(
+ SrcExpr, /* Decay Function to ptr */ false,
+ /* Complain */ true, DestRange, DestType,
+ diag::err_bad_cstyle_cast_overload);
+ if (SrcExpr.isInvalid())
+ return;
+ }
+
+ SrcExpr = Self.IgnoredValueConversions(SrcExpr.get());
+ return;
+ }
+
+ // If the type is dependent, we won't do any other semantic analysis now.
+ if (DestType->isDependentType() || SrcExpr.get()->isTypeDependent() ||
+ SrcExpr.get()->isValueDependent()) {
+ assert(Kind == CK_Dependent);
+ return;
+ }
+
+ if (ValueKind == VK_RValue && !DestType->isRecordType() &&
+ !isPlaceholder(BuiltinType::Overload)) {
+ SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get());
+ if (SrcExpr.isInvalid())
+ return;
+ }
+
+ // AltiVec vector initialization with a single literal.
+ if (const VectorType *vecTy = DestType->getAs<VectorType>())
+ if (vecTy->getVectorKind() == VectorType::AltiVecVector
+ && (SrcExpr.get()->getType()->isIntegerType()
+ || SrcExpr.get()->getType()->isFloatingType())) {
+ Kind = CK_VectorSplat;
+ return;
+ }
+
+ // C++ [expr.cast]p5: The conversions performed by
+ // - a const_cast,
+ // - a static_cast,
+ // - a static_cast followed by a const_cast,
+ // - a reinterpret_cast, or
+ // - a reinterpret_cast followed by a const_cast,
+ // can be performed using the cast notation of explicit type conversion.
+ // [...] If a conversion can be interpreted in more than one of the ways
+ // listed above, the interpretation that appears first in the list is used,
+ // even if a cast resulting from that interpretation is ill-formed.
+ // In plain language, this means trying a const_cast ...
+ unsigned msg = diag::err_bad_cxx_cast_generic;
+ TryCastResult tcr = TryConstCast(Self, SrcExpr, DestType,
+ /*CStyle*/true, msg);
+ if (SrcExpr.isInvalid())
+ return;
+ if (tcr == TC_Success)
+ Kind = CK_NoOp;
+
+ Sema::CheckedConversionKind CCK
+ = FunctionalStyle? Sema::CCK_FunctionalCast
+ : Sema::CCK_CStyleCast;
+ if (tcr == TC_NotApplicable) {
+ // ... or if that is not possible, a static_cast, ignoring const, ...
+ tcr = TryStaticCast(Self, SrcExpr, DestType, CCK, OpRange,
+ msg, Kind, BasePath, ListInitialization);
+ if (SrcExpr.isInvalid())
+ return;
+
+ if (tcr == TC_NotApplicable) {
+ // ... and finally a reinterpret_cast, ignoring const.
+ tcr = TryReinterpretCast(Self, SrcExpr, DestType, /*CStyle*/true,
+ OpRange, msg, Kind);
+ if (SrcExpr.isInvalid())
+ return;
+ }
+ }
+
+ if (Self.getLangOpts().ObjCAutoRefCount && tcr == TC_Success)
+ checkObjCARCConversion(CCK);
+
+ if (tcr != TC_Success && msg != 0) {
+ if (SrcExpr.get()->getType() == Self.Context.OverloadTy) {
+ DeclAccessPair Found;
+ FunctionDecl *Fn = Self.ResolveAddressOfOverloadedFunction(SrcExpr.get(),
+ DestType,
+ /*Complain*/ true,
+ Found);
+ if (Fn) {
+ // If DestType is a function type (not to be confused with the function
+ // pointer type), it will be possible to resolve the function address,
+ // but the type cast should be considered as failure.
+ OverloadExpr *OE = OverloadExpr::find(SrcExpr.get()).Expression;
+ Self.Diag(OpRange.getBegin(), diag::err_bad_cstyle_cast_overload)
+ << OE->getName() << DestType << OpRange
+ << OE->getQualifierLoc().getSourceRange();
+ Self.NoteAllOverloadCandidates(SrcExpr.get());
+ }
+ } else {
+ diagnoseBadCast(Self, msg, (FunctionalStyle ? CT_Functional : CT_CStyle),
+ OpRange, SrcExpr.get(), DestType, ListInitialization);
+ }
+ } else if (Kind == CK_BitCast) {
+ checkCastAlign();
+ }
+
+ // Clear out SrcExpr if there was a fatal error.
+ if (tcr != TC_Success)
+ SrcExpr = ExprError();
+}
+
+/// DiagnoseBadFunctionCast - Warn whenever a function call is cast to a
+/// non-matching type. Such as enum function call to int, int call to
+/// pointer; etc. Cast to 'void' is an exception.
+static void DiagnoseBadFunctionCast(Sema &Self, const ExprResult &SrcExpr,
+ QualType DestType) {
+ if (Self.Diags.isIgnored(diag::warn_bad_function_cast,
+ SrcExpr.get()->getExprLoc()))
+ return;
+
+ if (!isa<CallExpr>(SrcExpr.get()))
+ return;
+
+ QualType SrcType = SrcExpr.get()->getType();
+ if (DestType.getUnqualifiedType()->isVoidType())
+ return;
+ if ((SrcType->isAnyPointerType() || SrcType->isBlockPointerType())
+ && (DestType->isAnyPointerType() || DestType->isBlockPointerType()))
+ return;
+ if (SrcType->isIntegerType() && DestType->isIntegerType() &&
+ (SrcType->isBooleanType() == DestType->isBooleanType()) &&
+ (SrcType->isEnumeralType() == DestType->isEnumeralType()))
+ return;
+ if (SrcType->isRealFloatingType() && DestType->isRealFloatingType())
+ return;
+ if (SrcType->isEnumeralType() && DestType->isEnumeralType())
+ return;
+ if (SrcType->isComplexType() && DestType->isComplexType())
+ return;
+ if (SrcType->isComplexIntegerType() && DestType->isComplexIntegerType())
+ return;
+
+ Self.Diag(SrcExpr.get()->getExprLoc(),
+ diag::warn_bad_function_cast)
+ << SrcType << DestType << SrcExpr.get()->getSourceRange();
+}
+
+/// Check the semantics of a C-style cast operation, in C.
+void CastOperation::CheckCStyleCast() {
+ assert(!Self.getLangOpts().CPlusPlus);
+
+ // C-style casts can resolve __unknown_any types.
+ if (claimPlaceholder(BuiltinType::UnknownAny)) {
+ SrcExpr = Self.checkUnknownAnyCast(DestRange, DestType,
+ SrcExpr.get(), Kind,
+ ValueKind, BasePath);
+ return;
+ }
+
+ // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
+ // type needs to be scalar.
+ if (DestType->isVoidType()) {
+ // We don't necessarily do lvalue-to-rvalue conversions on this.
+ SrcExpr = Self.IgnoredValueConversions(SrcExpr.get());
+ if (SrcExpr.isInvalid())
+ return;
+
+ // Cast to void allows any expr type.
+ Kind = CK_ToVoid;
+ return;
+ }
+
+ SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get());
+ if (SrcExpr.isInvalid())
+ return;
+ QualType SrcType = SrcExpr.get()->getType();
+
+ assert(!SrcType->isPlaceholderType());
+
+ // OpenCL v1 s6.5: Casting a pointer to address space A to a pointer to
+ // address space B is illegal.
+ if (Self.getLangOpts().OpenCL && DestType->isPointerType() &&
+ SrcType->isPointerType()) {
+ const PointerType *DestPtr = DestType->getAs<PointerType>();
+ if (!DestPtr->isAddressSpaceOverlapping(*SrcType->getAs<PointerType>())) {
+ Self.Diag(OpRange.getBegin(),
+ diag::err_typecheck_incompatible_address_space)
+ << SrcType << DestType << Sema::AA_Casting
+ << SrcExpr.get()->getSourceRange();
+ SrcExpr = ExprError();
+ return;
+ }
+ }
+
+ if (Self.RequireCompleteType(OpRange.getBegin(), DestType,
+ diag::err_typecheck_cast_to_incomplete)) {
+ SrcExpr = ExprError();
+ return;
+ }
+
+ if (!DestType->isScalarType() && !DestType->isVectorType()) {
+ const RecordType *DestRecordTy = DestType->getAs<RecordType>();
+
+ if (DestRecordTy && Self.Context.hasSameUnqualifiedType(DestType, SrcType)){
+ // GCC struct/union extension: allow cast to self.
+ Self.Diag(OpRange.getBegin(), diag::ext_typecheck_cast_nonscalar)
+ << DestType << SrcExpr.get()->getSourceRange();
+ Kind = CK_NoOp;
+ return;
+ }
+
+ // GCC's cast to union extension.
+ if (DestRecordTy && DestRecordTy->getDecl()->isUnion()) {
+ RecordDecl *RD = DestRecordTy->getDecl();
+ RecordDecl::field_iterator Field, FieldEnd;
+ for (Field = RD->field_begin(), FieldEnd = RD->field_end();
+ Field != FieldEnd; ++Field) {
+ if (Self.Context.hasSameUnqualifiedType(Field->getType(), SrcType) &&
+ !Field->isUnnamedBitfield()) {
+ Self.Diag(OpRange.getBegin(), diag::ext_typecheck_cast_to_union)
+ << SrcExpr.get()->getSourceRange();
+ break;
+ }
+ }
+ if (Field == FieldEnd) {
+ Self.Diag(OpRange.getBegin(), diag::err_typecheck_cast_to_union_no_type)
+ << SrcType << SrcExpr.get()->getSourceRange();
+ SrcExpr = ExprError();
+ return;
+ }
+ Kind = CK_ToUnion;
+ return;
+ }
+
+ // Reject any other conversions to non-scalar types.
+ Self.Diag(OpRange.getBegin(), diag::err_typecheck_cond_expect_scalar)
+ << DestType << SrcExpr.get()->getSourceRange();
+ SrcExpr = ExprError();
+ return;
+ }
+
+ // The type we're casting to is known to be a scalar or vector.
+
+ // Require the operand to be a scalar or vector.
+ if (!SrcType->isScalarType() && !SrcType->isVectorType()) {
+ Self.Diag(SrcExpr.get()->getExprLoc(),
+ diag::err_typecheck_expect_scalar_operand)
+ << SrcType << SrcExpr.get()->getSourceRange();
+ SrcExpr = ExprError();
+ return;
+ }
+
+ if (DestType->isExtVectorType()) {
+ SrcExpr = Self.CheckExtVectorCast(OpRange, DestType, SrcExpr.get(), Kind);
+ return;
+ }
+
+ if (const VectorType *DestVecTy = DestType->getAs<VectorType>()) {
+ if (DestVecTy->getVectorKind() == VectorType::AltiVecVector &&
+ (SrcType->isIntegerType() || SrcType->isFloatingType())) {
+ Kind = CK_VectorSplat;
+ } else if (Self.CheckVectorCast(OpRange, DestType, SrcType, Kind)) {
+ SrcExpr = ExprError();
+ }
+ return;
+ }
+
+ if (SrcType->isVectorType()) {
+ if (Self.CheckVectorCast(OpRange, SrcType, DestType, Kind))
+ SrcExpr = ExprError();
+ return;
+ }
+
+ // The source and target types are both scalars, i.e.
+ // - arithmetic types (fundamental, enum, and complex)
+ // - all kinds of pointers
+ // Note that member pointers were filtered out with C++, above.
+
+ if (isa<ObjCSelectorExpr>(SrcExpr.get())) {
+ Self.Diag(SrcExpr.get()->getExprLoc(), diag::err_cast_selector_expr);
+ SrcExpr = ExprError();
+ return;
+ }
+
+ // If either type is a pointer, the other type has to be either an
+ // integer or a pointer.
+ if (!DestType->isArithmeticType()) {
+ if (!SrcType->isIntegralType(Self.Context) && SrcType->isArithmeticType()) {
+ Self.Diag(SrcExpr.get()->getExprLoc(),
+ diag::err_cast_pointer_from_non_pointer_int)
+ << SrcType << SrcExpr.get()->getSourceRange();
+ SrcExpr = ExprError();
+ return;
+ }
+ checkIntToPointerCast(/* CStyle */ true, OpRange.getBegin(), SrcExpr.get(),
+ DestType, Self);
+ } else if (!SrcType->isArithmeticType()) {
+ if (!DestType->isIntegralType(Self.Context) &&
+ DestType->isArithmeticType()) {
+ Self.Diag(SrcExpr.get()->getLocStart(),
+ diag::err_cast_pointer_to_non_pointer_int)
+ << DestType << SrcExpr.get()->getSourceRange();
+ SrcExpr = ExprError();
+ return;
+ }
+ }
+
+ if (Self.getLangOpts().OpenCL && !Self.getOpenCLOptions().cl_khr_fp16) {
+ if (DestType->isHalfType()) {
+ Self.Diag(SrcExpr.get()->getLocStart(), diag::err_opencl_cast_to_half)
+ << DestType << SrcExpr.get()->getSourceRange();
+ SrcExpr = ExprError();
+ return;
+ }
+ }
+
+ // ARC imposes extra restrictions on casts.
+ if (Self.getLangOpts().ObjCAutoRefCount) {
+ checkObjCARCConversion(Sema::CCK_CStyleCast);
+ if (SrcExpr.isInvalid())
+ return;
+
+ if (const PointerType *CastPtr = DestType->getAs<PointerType>()) {
+ if (const PointerType *ExprPtr = SrcType->getAs<PointerType>()) {
+ Qualifiers CastQuals = CastPtr->getPointeeType().getQualifiers();
+ Qualifiers ExprQuals = ExprPtr->getPointeeType().getQualifiers();
+ if (CastPtr->getPointeeType()->isObjCLifetimeType() &&
+ ExprPtr->getPointeeType()->isObjCLifetimeType() &&
+ !CastQuals.compatiblyIncludesObjCLifetime(ExprQuals)) {
+ Self.Diag(SrcExpr.get()->getLocStart(),
+ diag::err_typecheck_incompatible_ownership)
+ << SrcType << DestType << Sema::AA_Casting
+ << SrcExpr.get()->getSourceRange();
+ return;
+ }
+ }
+ }
+ else if (!Self.CheckObjCARCUnavailableWeakConversion(DestType, SrcType)) {
+ Self.Diag(SrcExpr.get()->getLocStart(),
+ diag::err_arc_convesion_of_weak_unavailable)
+ << 1 << SrcType << DestType << SrcExpr.get()->getSourceRange();
+ SrcExpr = ExprError();
+ return;
+ }
+ }
+
+ DiagnoseCastOfObjCSEL(Self, SrcExpr, DestType);
+ DiagnoseBadFunctionCast(Self, SrcExpr, DestType);
+ Kind = Self.PrepareScalarCast(SrcExpr, DestType);
+ if (SrcExpr.isInvalid())
+ return;
+
+ if (Kind == CK_BitCast)
+ checkCastAlign();
+
+ // -Wcast-qual
+ QualType TheOffendingSrcType, TheOffendingDestType;
+ Qualifiers CastAwayQualifiers;
+ if (SrcType->isAnyPointerType() && DestType->isAnyPointerType() &&
+ CastsAwayConstness(Self, SrcType, DestType, true, false,
+ &TheOffendingSrcType, &TheOffendingDestType,
+ &CastAwayQualifiers)) {
+ int qualifiers = -1;
+ if (CastAwayQualifiers.hasConst() && CastAwayQualifiers.hasVolatile()) {
+ qualifiers = 0;
+ } else if (CastAwayQualifiers.hasConst()) {
+ qualifiers = 1;
+ } else if (CastAwayQualifiers.hasVolatile()) {
+ qualifiers = 2;
+ }
+ // This is a variant of int **x; const int **y = (const int **)x;
+ if (qualifiers == -1)
+ Self.Diag(SrcExpr.get()->getLocStart(), diag::warn_cast_qual2) <<
+ SrcType << DestType;
+ else
+ Self.Diag(SrcExpr.get()->getLocStart(), diag::warn_cast_qual) <<
+ TheOffendingSrcType << TheOffendingDestType << qualifiers;
+ }
+}
+
+ExprResult Sema::BuildCStyleCastExpr(SourceLocation LPLoc,
+ TypeSourceInfo *CastTypeInfo,
+ SourceLocation RPLoc,
+ Expr *CastExpr) {
+ CastOperation Op(*this, CastTypeInfo->getType(), CastExpr);
+ Op.DestRange = CastTypeInfo->getTypeLoc().getSourceRange();
+ Op.OpRange = SourceRange(LPLoc, CastExpr->getLocEnd());
+
+ if (getLangOpts().CPlusPlus) {
+ Op.CheckCXXCStyleCast(/*FunctionalStyle=*/ false,
+ isa<InitListExpr>(CastExpr));
+ } else {
+ Op.CheckCStyleCast();
+ }
+
+ if (Op.SrcExpr.isInvalid())
+ return ExprError();
+
+ return Op.complete(CStyleCastExpr::Create(Context, Op.ResultType,
+ Op.ValueKind, Op.Kind, Op.SrcExpr.get(),
+ &Op.BasePath, CastTypeInfo, LPLoc, RPLoc));
+}
+
+ExprResult Sema::BuildCXXFunctionalCastExpr(TypeSourceInfo *CastTypeInfo,
+ SourceLocation LPLoc,
+ Expr *CastExpr,
+ SourceLocation RPLoc) {
+ assert(LPLoc.isValid() && "List-initialization shouldn't get here.");
+ CastOperation Op(*this, CastTypeInfo->getType(), CastExpr);
+ Op.DestRange = CastTypeInfo->getTypeLoc().getSourceRange();
+ Op.OpRange = SourceRange(Op.DestRange.getBegin(), CastExpr->getLocEnd());
+
+ Op.CheckCXXCStyleCast(/*FunctionalStyle=*/true, /*ListInit=*/false);
+ if (Op.SrcExpr.isInvalid())
+ return ExprError();
+
+ if (CXXConstructExpr *ConstructExpr = dyn_cast<CXXConstructExpr>(Op.SrcExpr.get()))
+ ConstructExpr->setParenOrBraceRange(SourceRange(LPLoc, RPLoc));
+
+ return Op.complete(CXXFunctionalCastExpr::Create(Context, Op.ResultType,
+ Op.ValueKind, CastTypeInfo, Op.Kind,
+ Op.SrcExpr.get(), &Op.BasePath, LPLoc, RPLoc));
+}
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaChecking.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaChecking.cpp
new file mode 100644
index 0000000..23a6fc3
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaChecking.cpp
@@ -0,0 +1,9375 @@
+//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements extra semantic analysis beyond what is enforced
+// by the C type system.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Sema/SemaInternal.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/CharUnits.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/EvaluatedExprVisitor.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/AST/StmtCXX.h"
+#include "clang/AST/StmtObjC.h"
+#include "clang/Analysis/Analyses/FormatString.h"
+#include "clang/Basic/CharInfo.h"
+#include "clang/Basic/TargetBuiltins.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
+#include "clang/Sema/Initialization.h"
+#include "clang/Sema/Lookup.h"
+#include "clang/Sema/ScopeInfo.h"
+#include "clang/Sema/Sema.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallBitVector.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/ConvertUTF.h"
+#include "llvm/Support/raw_ostream.h"
+#include <limits>
+using namespace clang;
+using namespace sema;
+
+SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
+ unsigned ByteNo) const {
+ return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts,
+ Context.getTargetInfo());
+}
+
+/// Checks that a call expression's argument count is the desired number.
+/// This is useful when doing custom type-checking. Returns true on error.
+static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
+ unsigned argCount = call->getNumArgs();
+ if (argCount == desiredArgCount) return false;
+
+ if (argCount < desiredArgCount)
+ return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
+ << 0 /*function call*/ << desiredArgCount << argCount
+ << call->getSourceRange();
+
+ // Highlight all the excess arguments.
+ SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
+ call->getArg(argCount - 1)->getLocEnd());
+
+ return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
+ << 0 /*function call*/ << desiredArgCount << argCount
+ << call->getArg(1)->getSourceRange();
+}
+
+/// Check that the first argument to __builtin_annotation is an integer
+/// and the second argument is a non-wide string literal.
+static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
+ if (checkArgCount(S, TheCall, 2))
+ return true;
+
+ // First argument should be an integer.
+ Expr *ValArg = TheCall->getArg(0);
+ QualType Ty = ValArg->getType();
+ if (!Ty->isIntegerType()) {
+ S.Diag(ValArg->getLocStart(), diag::err_builtin_annotation_first_arg)
+ << ValArg->getSourceRange();
+ return true;
+ }
+
+ // Second argument should be a constant string.
+ Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
+ StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
+ if (!Literal || !Literal->isAscii()) {
+ S.Diag(StrArg->getLocStart(), diag::err_builtin_annotation_second_arg)
+ << StrArg->getSourceRange();
+ return true;
+ }
+
+ TheCall->setType(Ty);
+ return false;
+}
+
+/// Check that the argument to __builtin_addressof is a glvalue, and set the
+/// result type to the corresponding pointer type.
+static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
+ if (checkArgCount(S, TheCall, 1))
+ return true;
+
+ ExprResult Arg(TheCall->getArg(0));
+ QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getLocStart());
+ if (ResultType.isNull())
+ return true;
+
+ TheCall->setArg(0, Arg.get());
+ TheCall->setType(ResultType);
+ return false;
+}
+
+static void SemaBuiltinMemChkCall(Sema &S, FunctionDecl *FDecl,
+ CallExpr *TheCall, unsigned SizeIdx,
+ unsigned DstSizeIdx) {
+ if (TheCall->getNumArgs() <= SizeIdx ||
+ TheCall->getNumArgs() <= DstSizeIdx)
+ return;
+
+ const Expr *SizeArg = TheCall->getArg(SizeIdx);
+ const Expr *DstSizeArg = TheCall->getArg(DstSizeIdx);
+
+ llvm::APSInt Size, DstSize;
+
+ // find out if both sizes are known at compile time
+ if (!SizeArg->EvaluateAsInt(Size, S.Context) ||
+ !DstSizeArg->EvaluateAsInt(DstSize, S.Context))
+ return;
+
+ if (Size.ule(DstSize))
+ return;
+
+ // confirmed overflow so generate the diagnostic.
+ IdentifierInfo *FnName = FDecl->getIdentifier();
+ SourceLocation SL = TheCall->getLocStart();
+ SourceRange SR = TheCall->getSourceRange();
+
+ S.Diag(SL, diag::warn_memcpy_chk_overflow) << SR << FnName;
+}
+
+static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) {
+ if (checkArgCount(S, BuiltinCall, 2))
+ return true;
+
+ SourceLocation BuiltinLoc = BuiltinCall->getLocStart();
+ Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts();
+ Expr *Call = BuiltinCall->getArg(0);
+ Expr *Chain = BuiltinCall->getArg(1);
+
+ if (Call->getStmtClass() != Stmt::CallExprClass) {
+ S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call)
+ << Call->getSourceRange();
+ return true;
+ }
+
+ auto CE = cast<CallExpr>(Call);
+ if (CE->getCallee()->getType()->isBlockPointerType()) {
+ S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call)
+ << Call->getSourceRange();
+ return true;
+ }
+
+ const Decl *TargetDecl = CE->getCalleeDecl();
+ if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
+ if (FD->getBuiltinID()) {
+ S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call)
+ << Call->getSourceRange();
+ return true;
+ }
+
+ if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) {
+ S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call)
+ << Call->getSourceRange();
+ return true;
+ }
+
+ ExprResult ChainResult = S.UsualUnaryConversions(Chain);
+ if (ChainResult.isInvalid())
+ return true;
+ if (!ChainResult.get()->getType()->isPointerType()) {
+ S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer)
+ << Chain->getSourceRange();
+ return true;
+ }
+
+ QualType ReturnTy = CE->getCallReturnType(S.Context);
+ QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() };
+ QualType BuiltinTy = S.Context.getFunctionType(
+ ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo());
+ QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy);
+
+ Builtin =
+ S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get();
+
+ BuiltinCall->setType(CE->getType());
+ BuiltinCall->setValueKind(CE->getValueKind());
+ BuiltinCall->setObjectKind(CE->getObjectKind());
+ BuiltinCall->setCallee(Builtin);
+ BuiltinCall->setArg(1, ChainResult.get());
+
+ return false;
+}
+
+static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall,
+ Scope::ScopeFlags NeededScopeFlags,
+ unsigned DiagID) {
+ // Scopes aren't available during instantiation. Fortunately, builtin
+ // functions cannot be template args so they cannot be formed through template
+ // instantiation. Therefore checking once during the parse is sufficient.
+ if (!SemaRef.ActiveTemplateInstantiations.empty())
+ return false;
+
+ Scope *S = SemaRef.getCurScope();
+ while (S && !S->isSEHExceptScope())
+ S = S->getParent();
+ if (!S || !(S->getFlags() & NeededScopeFlags)) {
+ auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
+ SemaRef.Diag(TheCall->getExprLoc(), DiagID)
+ << DRE->getDecl()->getIdentifier();
+ return true;
+ }
+
+ return false;
+}
+
+ExprResult
+Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID,
+ CallExpr *TheCall) {
+ ExprResult TheCallResult(TheCall);
+
+ // Find out if any arguments are required to be integer constant expressions.
+ unsigned ICEArguments = 0;
+ ASTContext::GetBuiltinTypeError Error;
+ Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
+ if (Error != ASTContext::GE_None)
+ ICEArguments = 0; // Don't diagnose previously diagnosed errors.
+
+ // If any arguments are required to be ICE's, check and diagnose.
+ for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
+ // Skip arguments not required to be ICE's.
+ if ((ICEArguments & (1 << ArgNo)) == 0) continue;
+
+ llvm::APSInt Result;
+ if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
+ return true;
+ ICEArguments &= ~(1 << ArgNo);
+ }
+
+ switch (BuiltinID) {
+ case Builtin::BI__builtin___CFStringMakeConstantString:
+ assert(TheCall->getNumArgs() == 1 &&
+ "Wrong # arguments to builtin CFStringMakeConstantString");
+ if (CheckObjCString(TheCall->getArg(0)))
+ return ExprError();
+ break;
+ case Builtin::BI__builtin_stdarg_start:
+ case Builtin::BI__builtin_va_start:
+ if (SemaBuiltinVAStart(TheCall))
+ return ExprError();
+ break;
+ case Builtin::BI__va_start: {
+ switch (Context.getTargetInfo().getTriple().getArch()) {
+ case llvm::Triple::arm:
+ case llvm::Triple::thumb:
+ if (SemaBuiltinVAStartARM(TheCall))
+ return ExprError();
+ break;
+ default:
+ if (SemaBuiltinVAStart(TheCall))
+ return ExprError();
+ break;
+ }
+ break;
+ }
+ case Builtin::BI__builtin_isgreater:
+ case Builtin::BI__builtin_isgreaterequal:
+ case Builtin::BI__builtin_isless:
+ case Builtin::BI__builtin_islessequal:
+ case Builtin::BI__builtin_islessgreater:
+ case Builtin::BI__builtin_isunordered:
+ if (SemaBuiltinUnorderedCompare(TheCall))
+ return ExprError();
+ break;
+ case Builtin::BI__builtin_fpclassify:
+ if (SemaBuiltinFPClassification(TheCall, 6))
+ return ExprError();
+ break;
+ case Builtin::BI__builtin_isfinite:
+ case Builtin::BI__builtin_isinf:
+ case Builtin::BI__builtin_isinf_sign:
+ case Builtin::BI__builtin_isnan:
+ case Builtin::BI__builtin_isnormal:
+ if (SemaBuiltinFPClassification(TheCall, 1))
+ return ExprError();
+ break;
+ case Builtin::BI__builtin_shufflevector:
+ return SemaBuiltinShuffleVector(TheCall);
+ // TheCall will be freed by the smart pointer here, but that's fine, since
+ // SemaBuiltinShuffleVector guts it, but then doesn't release it.
+ case Builtin::BI__builtin_prefetch:
+ if (SemaBuiltinPrefetch(TheCall))
+ return ExprError();
+ break;
+ case Builtin::BI__assume:
+ case Builtin::BI__builtin_assume:
+ if (SemaBuiltinAssume(TheCall))
+ return ExprError();
+ break;
+ case Builtin::BI__builtin_assume_aligned:
+ if (SemaBuiltinAssumeAligned(TheCall))
+ return ExprError();
+ break;
+ case Builtin::BI__builtin_object_size:
+ if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3))
+ return ExprError();
+ break;
+ case Builtin::BI__builtin_longjmp:
+ if (SemaBuiltinLongjmp(TheCall))
+ return ExprError();
+ break;
+ case Builtin::BI__builtin_setjmp:
+ if (SemaBuiltinSetjmp(TheCall))
+ return ExprError();
+ break;
+ case Builtin::BI_setjmp:
+ case Builtin::BI_setjmpex:
+ if (checkArgCount(*this, TheCall, 1))
+ return true;
+ break;
+
+ case Builtin::BI__builtin_classify_type:
+ if (checkArgCount(*this, TheCall, 1)) return true;
+ TheCall->setType(Context.IntTy);
+ break;
+ case Builtin::BI__builtin_constant_p:
+ if (checkArgCount(*this, TheCall, 1)) return true;
+ TheCall->setType(Context.IntTy);
+ break;
+ case Builtin::BI__sync_fetch_and_add:
+ case Builtin::BI__sync_fetch_and_add_1:
+ case Builtin::BI__sync_fetch_and_add_2:
+ case Builtin::BI__sync_fetch_and_add_4:
+ case Builtin::BI__sync_fetch_and_add_8:
+ case Builtin::BI__sync_fetch_and_add_16:
+ case Builtin::BI__sync_fetch_and_sub:
+ case Builtin::BI__sync_fetch_and_sub_1:
+ case Builtin::BI__sync_fetch_and_sub_2:
+ case Builtin::BI__sync_fetch_and_sub_4:
+ case Builtin::BI__sync_fetch_and_sub_8:
+ case Builtin::BI__sync_fetch_and_sub_16:
+ case Builtin::BI__sync_fetch_and_or:
+ case Builtin::BI__sync_fetch_and_or_1:
+ case Builtin::BI__sync_fetch_and_or_2:
+ case Builtin::BI__sync_fetch_and_or_4:
+ case Builtin::BI__sync_fetch_and_or_8:
+ case Builtin::BI__sync_fetch_and_or_16:
+ case Builtin::BI__sync_fetch_and_and:
+ case Builtin::BI__sync_fetch_and_and_1:
+ case Builtin::BI__sync_fetch_and_and_2:
+ case Builtin::BI__sync_fetch_and_and_4:
+ case Builtin::BI__sync_fetch_and_and_8:
+ case Builtin::BI__sync_fetch_and_and_16:
+ case Builtin::BI__sync_fetch_and_xor:
+ case Builtin::BI__sync_fetch_and_xor_1:
+ case Builtin::BI__sync_fetch_and_xor_2:
+ case Builtin::BI__sync_fetch_and_xor_4:
+ case Builtin::BI__sync_fetch_and_xor_8:
+ case Builtin::BI__sync_fetch_and_xor_16:
+ case Builtin::BI__sync_fetch_and_nand:
+ case Builtin::BI__sync_fetch_and_nand_1:
+ case Builtin::BI__sync_fetch_and_nand_2:
+ case Builtin::BI__sync_fetch_and_nand_4:
+ case Builtin::BI__sync_fetch_and_nand_8:
+ case Builtin::BI__sync_fetch_and_nand_16:
+ case Builtin::BI__sync_add_and_fetch:
+ case Builtin::BI__sync_add_and_fetch_1:
+ case Builtin::BI__sync_add_and_fetch_2:
+ case Builtin::BI__sync_add_and_fetch_4:
+ case Builtin::BI__sync_add_and_fetch_8:
+ case Builtin::BI__sync_add_and_fetch_16:
+ case Builtin::BI__sync_sub_and_fetch:
+ case Builtin::BI__sync_sub_and_fetch_1:
+ case Builtin::BI__sync_sub_and_fetch_2:
+ case Builtin::BI__sync_sub_and_fetch_4:
+ case Builtin::BI__sync_sub_and_fetch_8:
+ case Builtin::BI__sync_sub_and_fetch_16:
+ case Builtin::BI__sync_and_and_fetch:
+ case Builtin::BI__sync_and_and_fetch_1:
+ case Builtin::BI__sync_and_and_fetch_2:
+ case Builtin::BI__sync_and_and_fetch_4:
+ case Builtin::BI__sync_and_and_fetch_8:
+ case Builtin::BI__sync_and_and_fetch_16:
+ case Builtin::BI__sync_or_and_fetch:
+ case Builtin::BI__sync_or_and_fetch_1:
+ case Builtin::BI__sync_or_and_fetch_2:
+ case Builtin::BI__sync_or_and_fetch_4:
+ case Builtin::BI__sync_or_and_fetch_8:
+ case Builtin::BI__sync_or_and_fetch_16:
+ case Builtin::BI__sync_xor_and_fetch:
+ case Builtin::BI__sync_xor_and_fetch_1:
+ case Builtin::BI__sync_xor_and_fetch_2:
+ case Builtin::BI__sync_xor_and_fetch_4:
+ case Builtin::BI__sync_xor_and_fetch_8:
+ case Builtin::BI__sync_xor_and_fetch_16:
+ case Builtin::BI__sync_nand_and_fetch:
+ case Builtin::BI__sync_nand_and_fetch_1:
+ case Builtin::BI__sync_nand_and_fetch_2:
+ case Builtin::BI__sync_nand_and_fetch_4:
+ case Builtin::BI__sync_nand_and_fetch_8:
+ case Builtin::BI__sync_nand_and_fetch_16:
+ case Builtin::BI__sync_val_compare_and_swap:
+ case Builtin::BI__sync_val_compare_and_swap_1:
+ case Builtin::BI__sync_val_compare_and_swap_2:
+ case Builtin::BI__sync_val_compare_and_swap_4:
+ case Builtin::BI__sync_val_compare_and_swap_8:
+ case Builtin::BI__sync_val_compare_and_swap_16:
+ case Builtin::BI__sync_bool_compare_and_swap:
+ case Builtin::BI__sync_bool_compare_and_swap_1:
+ case Builtin::BI__sync_bool_compare_and_swap_2:
+ case Builtin::BI__sync_bool_compare_and_swap_4:
+ case Builtin::BI__sync_bool_compare_and_swap_8:
+ case Builtin::BI__sync_bool_compare_and_swap_16:
+ case Builtin::BI__sync_lock_test_and_set:
+ case Builtin::BI__sync_lock_test_and_set_1:
+ case Builtin::BI__sync_lock_test_and_set_2:
+ case Builtin::BI__sync_lock_test_and_set_4:
+ case Builtin::BI__sync_lock_test_and_set_8:
+ case Builtin::BI__sync_lock_test_and_set_16:
+ case Builtin::BI__sync_lock_release:
+ case Builtin::BI__sync_lock_release_1:
+ case Builtin::BI__sync_lock_release_2:
+ case Builtin::BI__sync_lock_release_4:
+ case Builtin::BI__sync_lock_release_8:
+ case Builtin::BI__sync_lock_release_16:
+ case Builtin::BI__sync_swap:
+ case Builtin::BI__sync_swap_1:
+ case Builtin::BI__sync_swap_2:
+ case Builtin::BI__sync_swap_4:
+ case Builtin::BI__sync_swap_8:
+ case Builtin::BI__sync_swap_16:
+ return SemaBuiltinAtomicOverloaded(TheCallResult);
+#define BUILTIN(ID, TYPE, ATTRS)
+#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
+ case Builtin::BI##ID: \
+ return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
+#include "clang/Basic/Builtins.def"
+ case Builtin::BI__builtin_annotation:
+ if (SemaBuiltinAnnotation(*this, TheCall))
+ return ExprError();
+ break;
+ case Builtin::BI__builtin_addressof:
+ if (SemaBuiltinAddressof(*this, TheCall))
+ return ExprError();
+ break;
+ case Builtin::BI__builtin_operator_new:
+ case Builtin::BI__builtin_operator_delete:
+ if (!getLangOpts().CPlusPlus) {
+ Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
+ << (BuiltinID == Builtin::BI__builtin_operator_new
+ ? "__builtin_operator_new"
+ : "__builtin_operator_delete")
+ << "C++";
+ return ExprError();
+ }
+ // CodeGen assumes it can find the global new and delete to call,
+ // so ensure that they are declared.
+ DeclareGlobalNewDelete();
+ break;
+
+ // check secure string manipulation functions where overflows
+ // are detectable at compile time
+ case Builtin::BI__builtin___memcpy_chk:
+ case Builtin::BI__builtin___memmove_chk:
+ case Builtin::BI__builtin___memset_chk:
+ case Builtin::BI__builtin___strlcat_chk:
+ case Builtin::BI__builtin___strlcpy_chk:
+ case Builtin::BI__builtin___strncat_chk:
+ case Builtin::BI__builtin___strncpy_chk:
+ case Builtin::BI__builtin___stpncpy_chk:
+ SemaBuiltinMemChkCall(*this, FDecl, TheCall, 2, 3);
+ break;
+ case Builtin::BI__builtin___memccpy_chk:
+ SemaBuiltinMemChkCall(*this, FDecl, TheCall, 3, 4);
+ break;
+ case Builtin::BI__builtin___snprintf_chk:
+ case Builtin::BI__builtin___vsnprintf_chk:
+ SemaBuiltinMemChkCall(*this, FDecl, TheCall, 1, 3);
+ break;
+
+ case Builtin::BI__builtin_call_with_static_chain:
+ if (SemaBuiltinCallWithStaticChain(*this, TheCall))
+ return ExprError();
+ break;
+
+ case Builtin::BI__exception_code:
+ case Builtin::BI_exception_code: {
+ if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope,
+ diag::err_seh___except_block))
+ return ExprError();
+ break;
+ }
+ case Builtin::BI__exception_info:
+ case Builtin::BI_exception_info: {
+ if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope,
+ diag::err_seh___except_filter))
+ return ExprError();
+ break;
+ }
+
+ case Builtin::BI__GetExceptionInfo:
+ if (checkArgCount(*this, TheCall, 1))
+ return ExprError();
+
+ if (CheckCXXThrowOperand(
+ TheCall->getLocStart(),
+ Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()),
+ TheCall))
+ return ExprError();
+
+ TheCall->setType(Context.VoidPtrTy);
+ break;
+
+ }
+
+ // Since the target specific builtins for each arch overlap, only check those
+ // of the arch we are compiling for.
+ if (BuiltinID >= Builtin::FirstTSBuiltin) {
+ switch (Context.getTargetInfo().getTriple().getArch()) {
+ case llvm::Triple::arm:
+ case llvm::Triple::armeb:
+ case llvm::Triple::thumb:
+ case llvm::Triple::thumbeb:
+ if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
+ return ExprError();
+ break;
+ case llvm::Triple::aarch64:
+ case llvm::Triple::aarch64_be:
+ if (CheckAArch64BuiltinFunctionCall(BuiltinID, TheCall))
+ return ExprError();
+ break;
+ case llvm::Triple::mips:
+ case llvm::Triple::mipsel:
+ case llvm::Triple::mips64:
+ case llvm::Triple::mips64el:
+ if (CheckMipsBuiltinFunctionCall(BuiltinID, TheCall))
+ return ExprError();
+ break;
+ case llvm::Triple::systemz:
+ if (CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall))
+ return ExprError();
+ break;
+ case llvm::Triple::x86:
+ case llvm::Triple::x86_64:
+ if (CheckX86BuiltinFunctionCall(BuiltinID, TheCall))
+ return ExprError();
+ break;
+ case llvm::Triple::ppc:
+ case llvm::Triple::ppc64:
+ case llvm::Triple::ppc64le:
+ if (CheckPPCBuiltinFunctionCall(BuiltinID, TheCall))
+ return ExprError();
+ break;
+ default:
+ break;
+ }
+ }
+
+ return TheCallResult;
+}
+
+// Get the valid immediate range for the specified NEON type code.
+static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) {
+ NeonTypeFlags Type(t);
+ int IsQuad = ForceQuad ? true : Type.isQuad();
+ switch (Type.getEltType()) {
+ case NeonTypeFlags::Int8:
+ case NeonTypeFlags::Poly8:
+ return shift ? 7 : (8 << IsQuad) - 1;
+ case NeonTypeFlags::Int16:
+ case NeonTypeFlags::Poly16:
+ return shift ? 15 : (4 << IsQuad) - 1;
+ case NeonTypeFlags::Int32:
+ return shift ? 31 : (2 << IsQuad) - 1;
+ case NeonTypeFlags::Int64:
+ case NeonTypeFlags::Poly64:
+ return shift ? 63 : (1 << IsQuad) - 1;
+ case NeonTypeFlags::Poly128:
+ return shift ? 127 : (1 << IsQuad) - 1;
+ case NeonTypeFlags::Float16:
+ assert(!shift && "cannot shift float types!");
+ return (4 << IsQuad) - 1;
+ case NeonTypeFlags::Float32:
+ assert(!shift && "cannot shift float types!");
+ return (2 << IsQuad) - 1;
+ case NeonTypeFlags::Float64:
+ assert(!shift && "cannot shift float types!");
+ return (1 << IsQuad) - 1;
+ }
+ llvm_unreachable("Invalid NeonTypeFlag!");
+}
+
+/// getNeonEltType - Return the QualType corresponding to the elements of
+/// the vector type specified by the NeonTypeFlags. This is used to check
+/// the pointer arguments for Neon load/store intrinsics.
+static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context,
+ bool IsPolyUnsigned, bool IsInt64Long) {
+ switch (Flags.getEltType()) {
+ case NeonTypeFlags::Int8:
+ return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
+ case NeonTypeFlags::Int16:
+ return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
+ case NeonTypeFlags::Int32:
+ return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
+ case NeonTypeFlags::Int64:
+ if (IsInt64Long)
+ return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy;
+ else
+ return Flags.isUnsigned() ? Context.UnsignedLongLongTy
+ : Context.LongLongTy;
+ case NeonTypeFlags::Poly8:
+ return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy;
+ case NeonTypeFlags::Poly16:
+ return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy;
+ case NeonTypeFlags::Poly64:
+ if (IsInt64Long)
+ return Context.UnsignedLongTy;
+ else
+ return Context.UnsignedLongLongTy;
+ case NeonTypeFlags::Poly128:
+ break;
+ case NeonTypeFlags::Float16:
+ return Context.HalfTy;
+ case NeonTypeFlags::Float32:
+ return Context.FloatTy;
+ case NeonTypeFlags::Float64:
+ return Context.DoubleTy;
+ }
+ llvm_unreachable("Invalid NeonTypeFlag!");
+}
+
+bool Sema::CheckNeonBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
+ llvm::APSInt Result;
+ uint64_t mask = 0;
+ unsigned TV = 0;
+ int PtrArgNum = -1;
+ bool HasConstPtr = false;
+ switch (BuiltinID) {
+#define GET_NEON_OVERLOAD_CHECK
+#include "clang/Basic/arm_neon.inc"
+#undef GET_NEON_OVERLOAD_CHECK
+ }
+
+ // For NEON intrinsics which are overloaded on vector element type, validate
+ // the immediate which specifies which variant to emit.
+ unsigned ImmArg = TheCall->getNumArgs()-1;
+ if (mask) {
+ if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
+ return true;
+
+ TV = Result.getLimitedValue(64);
+ if ((TV > 63) || (mask & (1ULL << TV)) == 0)
+ return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
+ << TheCall->getArg(ImmArg)->getSourceRange();
+ }
+
+ if (PtrArgNum >= 0) {
+ // Check that pointer arguments have the specified type.
+ Expr *Arg = TheCall->getArg(PtrArgNum);
+ if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
+ Arg = ICE->getSubExpr();
+ ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
+ QualType RHSTy = RHS.get()->getType();
+
+ llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
+ bool IsPolyUnsigned = Arch == llvm::Triple::aarch64;
+ bool IsInt64Long =
+ Context.getTargetInfo().getInt64Type() == TargetInfo::SignedLong;
+ QualType EltTy =
+ getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long);
+ if (HasConstPtr)
+ EltTy = EltTy.withConst();
+ QualType LHSTy = Context.getPointerType(EltTy);
+ AssignConvertType ConvTy;
+ ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
+ if (RHS.isInvalid())
+ return true;
+ if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
+ RHS.get(), AA_Assigning))
+ return true;
+ }
+
+ // For NEON intrinsics which take an immediate value as part of the
+ // instruction, range check them here.
+ unsigned i = 0, l = 0, u = 0;
+ switch (BuiltinID) {
+ default:
+ return false;
+#define GET_NEON_IMMEDIATE_CHECK
+#include "clang/Basic/arm_neon.inc"
+#undef GET_NEON_IMMEDIATE_CHECK
+ }
+
+ return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
+}
+
+bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
+ unsigned MaxWidth) {
+ assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||
+ BuiltinID == ARM::BI__builtin_arm_ldaex ||
+ BuiltinID == ARM::BI__builtin_arm_strex ||
+ BuiltinID == ARM::BI__builtin_arm_stlex ||
+ BuiltinID == AArch64::BI__builtin_arm_ldrex ||
+ BuiltinID == AArch64::BI__builtin_arm_ldaex ||
+ BuiltinID == AArch64::BI__builtin_arm_strex ||
+ BuiltinID == AArch64::BI__builtin_arm_stlex) &&
+ "unexpected ARM builtin");
+ bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex ||
+ BuiltinID == ARM::BI__builtin_arm_ldaex ||
+ BuiltinID == AArch64::BI__builtin_arm_ldrex ||
+ BuiltinID == AArch64::BI__builtin_arm_ldaex;
+
+ DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
+
+ // Ensure that we have the proper number of arguments.
+ if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
+ return true;
+
+ // Inspect the pointer argument of the atomic builtin. This should always be
+ // a pointer type, whose element is an integral scalar or pointer type.
+ // Because it is a pointer type, we don't have to worry about any implicit
+ // casts here.
+ Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
+ ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
+ if (PointerArgRes.isInvalid())
+ return true;
+ PointerArg = PointerArgRes.get();
+
+ const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
+ if (!pointerType) {
+ Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
+ << PointerArg->getType() << PointerArg->getSourceRange();
+ return true;
+ }
+
+ // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
+ // task is to insert the appropriate casts into the AST. First work out just
+ // what the appropriate type is.
+ QualType ValType = pointerType->getPointeeType();
+ QualType AddrType = ValType.getUnqualifiedType().withVolatile();
+ if (IsLdrex)
+ AddrType.addConst();
+
+ // Issue a warning if the cast is dodgy.
+ CastKind CastNeeded = CK_NoOp;
+ if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
+ CastNeeded = CK_BitCast;
+ Diag(DRE->getLocStart(), diag::ext_typecheck_convert_discards_qualifiers)
+ << PointerArg->getType()
+ << Context.getPointerType(AddrType)
+ << AA_Passing << PointerArg->getSourceRange();
+ }
+
+ // Finally, do the cast and replace the argument with the corrected version.
+ AddrType = Context.getPointerType(AddrType);
+ PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
+ if (PointerArgRes.isInvalid())
+ return true;
+ PointerArg = PointerArgRes.get();
+
+ TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
+
+ // In general, we allow ints, floats and pointers to be loaded and stored.
+ if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
+ !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
+ Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
+ << PointerArg->getType() << PointerArg->getSourceRange();
+ return true;
+ }
+
+ // But ARM doesn't have instructions to deal with 128-bit versions.
+ if (Context.getTypeSize(ValType) > MaxWidth) {
+ assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate");
+ Diag(DRE->getLocStart(), diag::err_atomic_exclusive_builtin_pointer_size)
+ << PointerArg->getType() << PointerArg->getSourceRange();
+ return true;
+ }
+
+ switch (ValType.getObjCLifetime()) {
+ case Qualifiers::OCL_None:
+ case Qualifiers::OCL_ExplicitNone:
+ // okay
+ break;
+
+ case Qualifiers::OCL_Weak:
+ case Qualifiers::OCL_Strong:
+ case Qualifiers::OCL_Autoreleasing:
+ Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
+ << ValType << PointerArg->getSourceRange();
+ return true;
+ }
+
+
+ if (IsLdrex) {
+ TheCall->setType(ValType);
+ return false;
+ }
+
+ // Initialize the argument to be stored.
+ ExprResult ValArg = TheCall->getArg(0);
+ InitializedEntity Entity = InitializedEntity::InitializeParameter(
+ Context, ValType, /*consume*/ false);
+ ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
+ if (ValArg.isInvalid())
+ return true;
+ TheCall->setArg(0, ValArg.get());
+
+ // __builtin_arm_strex always returns an int. It's marked as such in the .def,
+ // but the custom checker bypasses all default analysis.
+ TheCall->setType(Context.IntTy);
+ return false;
+}
+
+bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
+ llvm::APSInt Result;
+
+ if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
+ BuiltinID == ARM::BI__builtin_arm_ldaex ||
+ BuiltinID == ARM::BI__builtin_arm_strex ||
+ BuiltinID == ARM::BI__builtin_arm_stlex) {
+ return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64);
+ }
+
+ if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
+ return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
+ SemaBuiltinConstantArgRange(TheCall, 2, 0, 1);
+ }
+
+ if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall))
+ return true;
+
+ // For intrinsics which take an immediate value as part of the instruction,
+ // range check them here.
+ unsigned i = 0, l = 0, u = 0;
+ switch (BuiltinID) {
+ default: return false;
+ case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
+ case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
+ case ARM::BI__builtin_arm_vcvtr_f:
+ case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
+ case ARM::BI__builtin_arm_dmb:
+ case ARM::BI__builtin_arm_dsb:
+ case ARM::BI__builtin_arm_isb:
+ case ARM::BI__builtin_arm_dbg: l = 0; u = 15; break;
+ }
+
+ // FIXME: VFP Intrinsics should error if VFP not present.
+ return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
+}
+
+bool Sema::CheckAArch64BuiltinFunctionCall(unsigned BuiltinID,
+ CallExpr *TheCall) {
+ llvm::APSInt Result;
+
+ if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
+ BuiltinID == AArch64::BI__builtin_arm_ldaex ||
+ BuiltinID == AArch64::BI__builtin_arm_strex ||
+ BuiltinID == AArch64::BI__builtin_arm_stlex) {
+ return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128);
+ }
+
+ if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
+ return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
+ SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) ||
+ SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) ||
+ SemaBuiltinConstantArgRange(TheCall, 4, 0, 1);
+ }
+
+ if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall))
+ return true;
+
+ // For intrinsics which take an immediate value as part of the instruction,
+ // range check them here.
+ unsigned i = 0, l = 0, u = 0;
+ switch (BuiltinID) {
+ default: return false;
+ case AArch64::BI__builtin_arm_dmb:
+ case AArch64::BI__builtin_arm_dsb:
+ case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break;
+ }
+
+ return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
+}
+
+bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
+ unsigned i = 0, l = 0, u = 0;
+ switch (BuiltinID) {
+ default: return false;
+ case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
+ case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
+ case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
+ case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
+ case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
+ case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
+ case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
+ }
+
+ return SemaBuiltinConstantArgRange(TheCall, i, l, u);
+}
+
+bool Sema::CheckPPCBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
+ unsigned i = 0, l = 0, u = 0;
+ bool Is64BitBltin = BuiltinID == PPC::BI__builtin_divde ||
+ BuiltinID == PPC::BI__builtin_divdeu ||
+ BuiltinID == PPC::BI__builtin_bpermd;
+ bool IsTarget64Bit = Context.getTargetInfo()
+ .getTypeWidth(Context
+ .getTargetInfo()
+ .getIntPtrType()) == 64;
+ bool IsBltinExtDiv = BuiltinID == PPC::BI__builtin_divwe ||
+ BuiltinID == PPC::BI__builtin_divweu ||
+ BuiltinID == PPC::BI__builtin_divde ||
+ BuiltinID == PPC::BI__builtin_divdeu;
+
+ if (Is64BitBltin && !IsTarget64Bit)
+ return Diag(TheCall->getLocStart(), diag::err_64_bit_builtin_32_bit_tgt)
+ << TheCall->getSourceRange();
+
+ if ((IsBltinExtDiv && !Context.getTargetInfo().hasFeature("extdiv")) ||
+ (BuiltinID == PPC::BI__builtin_bpermd &&
+ !Context.getTargetInfo().hasFeature("bpermd")))
+ return Diag(TheCall->getLocStart(), diag::err_ppc_builtin_only_on_pwr7)
+ << TheCall->getSourceRange();
+
+ switch (BuiltinID) {
+ default: return false;
+ case PPC::BI__builtin_altivec_crypto_vshasigmaw:
+ case PPC::BI__builtin_altivec_crypto_vshasigmad:
+ return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
+ SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
+ case PPC::BI__builtin_tbegin:
+ case PPC::BI__builtin_tend: i = 0; l = 0; u = 1; break;
+ case PPC::BI__builtin_tsr: i = 0; l = 0; u = 7; break;
+ case PPC::BI__builtin_tabortwc:
+ case PPC::BI__builtin_tabortdc: i = 0; l = 0; u = 31; break;
+ case PPC::BI__builtin_tabortwci:
+ case PPC::BI__builtin_tabortdci:
+ return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) ||
+ SemaBuiltinConstantArgRange(TheCall, 2, 0, 31);
+ }
+ return SemaBuiltinConstantArgRange(TheCall, i, l, u);
+}
+
+bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID,
+ CallExpr *TheCall) {
+ if (BuiltinID == SystemZ::BI__builtin_tabort) {
+ Expr *Arg = TheCall->getArg(0);
+ llvm::APSInt AbortCode(32);
+ if (Arg->isIntegerConstantExpr(AbortCode, Context) &&
+ AbortCode.getSExtValue() >= 0 && AbortCode.getSExtValue() < 256)
+ return Diag(Arg->getLocStart(), diag::err_systemz_invalid_tabort_code)
+ << Arg->getSourceRange();
+ }
+
+ // For intrinsics which take an immediate value as part of the instruction,
+ // range check them here.
+ unsigned i = 0, l = 0, u = 0;
+ switch (BuiltinID) {
+ default: return false;
+ case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break;
+ case SystemZ::BI__builtin_s390_verimb:
+ case SystemZ::BI__builtin_s390_verimh:
+ case SystemZ::BI__builtin_s390_verimf:
+ case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break;
+ case SystemZ::BI__builtin_s390_vfaeb:
+ case SystemZ::BI__builtin_s390_vfaeh:
+ case SystemZ::BI__builtin_s390_vfaef:
+ case SystemZ::BI__builtin_s390_vfaebs:
+ case SystemZ::BI__builtin_s390_vfaehs:
+ case SystemZ::BI__builtin_s390_vfaefs:
+ case SystemZ::BI__builtin_s390_vfaezb:
+ case SystemZ::BI__builtin_s390_vfaezh:
+ case SystemZ::BI__builtin_s390_vfaezf:
+ case SystemZ::BI__builtin_s390_vfaezbs:
+ case SystemZ::BI__builtin_s390_vfaezhs:
+ case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break;
+ case SystemZ::BI__builtin_s390_vfidb:
+ return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) ||
+ SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
+ case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break;
+ case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break;
+ case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break;
+ case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break;
+ case SystemZ::BI__builtin_s390_vstrcb:
+ case SystemZ::BI__builtin_s390_vstrch:
+ case SystemZ::BI__builtin_s390_vstrcf:
+ case SystemZ::BI__builtin_s390_vstrczb:
+ case SystemZ::BI__builtin_s390_vstrczh:
+ case SystemZ::BI__builtin_s390_vstrczf:
+ case SystemZ::BI__builtin_s390_vstrcbs:
+ case SystemZ::BI__builtin_s390_vstrchs:
+ case SystemZ::BI__builtin_s390_vstrcfs:
+ case SystemZ::BI__builtin_s390_vstrczbs:
+ case SystemZ::BI__builtin_s390_vstrczhs:
+ case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break;
+ }
+ return SemaBuiltinConstantArgRange(TheCall, i, l, u);
+}
+
+bool Sema::CheckX86BuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
+ unsigned i = 0, l = 0, u = 0;
+ switch (BuiltinID) {
+ default: return false;
+ case X86::BI_mm_prefetch: i = 1; l = 0; u = 3; break;
+ case X86::BI__builtin_ia32_sha1rnds4: i = 2, l = 0; u = 3; break;
+ case X86::BI__builtin_ia32_vpermil2pd:
+ case X86::BI__builtin_ia32_vpermil2pd256:
+ case X86::BI__builtin_ia32_vpermil2ps:
+ case X86::BI__builtin_ia32_vpermil2ps256: i = 3, l = 0; u = 3; break;
+ case X86::BI__builtin_ia32_cmpb128_mask:
+ case X86::BI__builtin_ia32_cmpw128_mask:
+ case X86::BI__builtin_ia32_cmpd128_mask:
+ case X86::BI__builtin_ia32_cmpq128_mask:
+ case X86::BI__builtin_ia32_cmpb256_mask:
+ case X86::BI__builtin_ia32_cmpw256_mask:
+ case X86::BI__builtin_ia32_cmpd256_mask:
+ case X86::BI__builtin_ia32_cmpq256_mask:
+ case X86::BI__builtin_ia32_cmpb512_mask:
+ case X86::BI__builtin_ia32_cmpw512_mask:
+ case X86::BI__builtin_ia32_cmpd512_mask:
+ case X86::BI__builtin_ia32_cmpq512_mask:
+ case X86::BI__builtin_ia32_ucmpb128_mask:
+ case X86::BI__builtin_ia32_ucmpw128_mask:
+ case X86::BI__builtin_ia32_ucmpd128_mask:
+ case X86::BI__builtin_ia32_ucmpq128_mask:
+ case X86::BI__builtin_ia32_ucmpb256_mask:
+ case X86::BI__builtin_ia32_ucmpw256_mask:
+ case X86::BI__builtin_ia32_ucmpd256_mask:
+ case X86::BI__builtin_ia32_ucmpq256_mask:
+ case X86::BI__builtin_ia32_ucmpb512_mask:
+ case X86::BI__builtin_ia32_ucmpw512_mask:
+ case X86::BI__builtin_ia32_ucmpd512_mask:
+ case X86::BI__builtin_ia32_ucmpq512_mask: i = 2; l = 0; u = 7; break;
+ case X86::BI__builtin_ia32_roundps:
+ case X86::BI__builtin_ia32_roundpd:
+ case X86::BI__builtin_ia32_roundps256:
+ case X86::BI__builtin_ia32_roundpd256: i = 1, l = 0; u = 15; break;
+ case X86::BI__builtin_ia32_roundss:
+ case X86::BI__builtin_ia32_roundsd: i = 2, l = 0; u = 15; break;
+ case X86::BI__builtin_ia32_cmpps:
+ case X86::BI__builtin_ia32_cmpss:
+ case X86::BI__builtin_ia32_cmppd:
+ case X86::BI__builtin_ia32_cmpsd:
+ case X86::BI__builtin_ia32_cmpps256:
+ case X86::BI__builtin_ia32_cmppd256:
+ case X86::BI__builtin_ia32_cmpps512_mask:
+ case X86::BI__builtin_ia32_cmppd512_mask: i = 2; l = 0; u = 31; break;
+ case X86::BI__builtin_ia32_vpcomub:
+ case X86::BI__builtin_ia32_vpcomuw:
+ case X86::BI__builtin_ia32_vpcomud:
+ case X86::BI__builtin_ia32_vpcomuq:
+ case X86::BI__builtin_ia32_vpcomb:
+ case X86::BI__builtin_ia32_vpcomw:
+ case X86::BI__builtin_ia32_vpcomd:
+ case X86::BI__builtin_ia32_vpcomq: i = 2; l = 0; u = 7; break;
+ }
+ return SemaBuiltinConstantArgRange(TheCall, i, l, u);
+}
+
+/// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
+/// parameter with the FormatAttr's correct format_idx and firstDataArg.
+/// Returns true when the format fits the function and the FormatStringInfo has
+/// been populated.
+bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
+ FormatStringInfo *FSI) {
+ FSI->HasVAListArg = Format->getFirstArg() == 0;
+ FSI->FormatIdx = Format->getFormatIdx() - 1;
+ FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
+
+ // The way the format attribute works in GCC, the implicit this argument
+ // of member functions is counted. However, it doesn't appear in our own
+ // lists, so decrement format_idx in that case.
+ if (IsCXXMember) {
+ if(FSI->FormatIdx == 0)
+ return false;
+ --FSI->FormatIdx;
+ if (FSI->FirstDataArg != 0)
+ --FSI->FirstDataArg;
+ }
+ return true;
+}
+
+/// Checks if a the given expression evaluates to null.
+///
+/// \brief Returns true if the value evaluates to null.
+static bool CheckNonNullExpr(Sema &S,
+ const Expr *Expr) {
+ // As a special case, transparent unions initialized with zero are
+ // considered null for the purposes of the nonnull attribute.
+ if (const RecordType *UT = Expr->getType()->getAsUnionType()) {
+ if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
+ if (const CompoundLiteralExpr *CLE =
+ dyn_cast<CompoundLiteralExpr>(Expr))
+ if (const InitListExpr *ILE =
+ dyn_cast<InitListExpr>(CLE->getInitializer()))
+ Expr = ILE->getInit(0);
+ }
+
+ bool Result;
+ return (!Expr->isValueDependent() &&
+ Expr->EvaluateAsBooleanCondition(Result, S.Context) &&
+ !Result);
+}
+
+static void CheckNonNullArgument(Sema &S,
+ const Expr *ArgExpr,
+ SourceLocation CallSiteLoc) {
+ if (CheckNonNullExpr(S, ArgExpr))
+ S.Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
+}
+
+bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) {
+ FormatStringInfo FSI;
+ if ((GetFormatStringType(Format) == FST_NSString) &&
+ getFormatStringInfo(Format, false, &FSI)) {
+ Idx = FSI.FormatIdx;
+ return true;
+ }
+ return false;
+}
+/// \brief Diagnose use of %s directive in an NSString which is being passed
+/// as formatting string to formatting method.
+static void
+DiagnoseCStringFormatDirectiveInCFAPI(Sema &S,
+ const NamedDecl *FDecl,
+ Expr **Args,
+ unsigned NumArgs) {
+ unsigned Idx = 0;
+ bool Format = false;
+ ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily();
+ if (SFFamily == ObjCStringFormatFamily::SFF_CFString) {
+ Idx = 2;
+ Format = true;
+ }
+ else
+ for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
+ if (S.GetFormatNSStringIdx(I, Idx)) {
+ Format = true;
+ break;
+ }
+ }
+ if (!Format || NumArgs <= Idx)
+ return;
+ const Expr *FormatExpr = Args[Idx];
+ if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr))
+ FormatExpr = CSCE->getSubExpr();
+ const StringLiteral *FormatString;
+ if (const ObjCStringLiteral *OSL =
+ dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts()))
+ FormatString = OSL->getString();
+ else
+ FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts());
+ if (!FormatString)
+ return;
+ if (S.FormatStringHasSArg(FormatString)) {
+ S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string)
+ << "%s" << 1 << 1;
+ S.Diag(FDecl->getLocation(), diag::note_entity_declared_at)
+ << FDecl->getDeclName();
+ }
+}
+
+static void CheckNonNullArguments(Sema &S,
+ const NamedDecl *FDecl,
+ ArrayRef<const Expr *> Args,
+ SourceLocation CallSiteLoc) {
+ // Check the attributes attached to the method/function itself.
+ llvm::SmallBitVector NonNullArgs;
+ for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) {
+ if (!NonNull->args_size()) {
+ // Easy case: all pointer arguments are nonnull.
+ for (const auto *Arg : Args)
+ if (S.isValidPointerAttrType(Arg->getType()))
+ CheckNonNullArgument(S, Arg, CallSiteLoc);
+ return;
+ }
+
+ for (unsigned Val : NonNull->args()) {
+ if (Val >= Args.size())
+ continue;
+ if (NonNullArgs.empty())
+ NonNullArgs.resize(Args.size());
+ NonNullArgs.set(Val);
+ }
+ }
+
+ // Check the attributes on the parameters.
+ ArrayRef<ParmVarDecl*> parms;
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl))
+ parms = FD->parameters();
+ else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(FDecl))
+ parms = MD->parameters();
+
+ unsigned ArgIndex = 0;
+ for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end();
+ I != E; ++I, ++ArgIndex) {
+ const ParmVarDecl *PVD = *I;
+ if (PVD->hasAttr<NonNullAttr>() ||
+ (ArgIndex < NonNullArgs.size() && NonNullArgs[ArgIndex]))
+ CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc);
+ }
+
+ // In case this is a variadic call, check any remaining arguments.
+ for (/**/; ArgIndex < NonNullArgs.size(); ++ArgIndex)
+ if (NonNullArgs[ArgIndex])
+ CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc);
+}
+
+/// Handles the checks for format strings, non-POD arguments to vararg
+/// functions, and NULL arguments passed to non-NULL parameters.
+void Sema::checkCall(NamedDecl *FDecl, ArrayRef<const Expr *> Args,
+ unsigned NumParams, bool IsMemberFunction,
+ SourceLocation Loc, SourceRange Range,
+ VariadicCallType CallType) {
+ // FIXME: We should check as much as we can in the template definition.
+ if (CurContext->isDependentContext())
+ return;
+
+ // Printf and scanf checking.
+ llvm::SmallBitVector CheckedVarArgs;
+ if (FDecl) {
+ for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
+ // Only create vector if there are format attributes.
+ CheckedVarArgs.resize(Args.size());
+
+ CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range,
+ CheckedVarArgs);
+ }
+ }
+
+ // Refuse POD arguments that weren't caught by the format string
+ // checks above.
+ if (CallType != VariadicDoesNotApply) {
+ for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) {
+ // Args[ArgIdx] can be null in malformed code.
+ if (const Expr *Arg = Args[ArgIdx]) {
+ if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
+ checkVariadicArgument(Arg, CallType);
+ }
+ }
+ }
+
+ if (FDecl) {
+ CheckNonNullArguments(*this, FDecl, Args, Loc);
+
+ // Type safety checking.
+ for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>())
+ CheckArgumentWithTypeTag(I, Args.data());
+ }
+}
+
+/// CheckConstructorCall - Check a constructor call for correctness and safety
+/// properties not enforced by the C type system.
+void Sema::CheckConstructorCall(FunctionDecl *FDecl,
+ ArrayRef<const Expr *> Args,
+ const FunctionProtoType *Proto,
+ SourceLocation Loc) {
+ VariadicCallType CallType =
+ Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
+ checkCall(FDecl, Args, Proto->getNumParams(),
+ /*IsMemberFunction=*/true, Loc, SourceRange(), CallType);
+}
+
+/// CheckFunctionCall - Check a direct function call for various correctness
+/// and safety properties not strictly enforced by the C type system.
+bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
+ const FunctionProtoType *Proto) {
+ bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
+ isa<CXXMethodDecl>(FDecl);
+ bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
+ IsMemberOperatorCall;
+ VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
+ TheCall->getCallee());
+ unsigned NumParams = Proto ? Proto->getNumParams() : 0;
+ Expr** Args = TheCall->getArgs();
+ unsigned NumArgs = TheCall->getNumArgs();
+ if (IsMemberOperatorCall) {
+ // If this is a call to a member operator, hide the first argument
+ // from checkCall.
+ // FIXME: Our choice of AST representation here is less than ideal.
+ ++Args;
+ --NumArgs;
+ }
+ checkCall(FDecl, llvm::makeArrayRef(Args, NumArgs), NumParams,
+ IsMemberFunction, TheCall->getRParenLoc(),
+ TheCall->getCallee()->getSourceRange(), CallType);
+
+ IdentifierInfo *FnInfo = FDecl->getIdentifier();
+ // None of the checks below are needed for functions that don't have
+ // simple names (e.g., C++ conversion functions).
+ if (!FnInfo)
+ return false;
+
+ CheckAbsoluteValueFunction(TheCall, FDecl, FnInfo);
+ if (getLangOpts().ObjC1)
+ DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs);
+
+ unsigned CMId = FDecl->getMemoryFunctionKind();
+ if (CMId == 0)
+ return false;
+
+ // Handle memory setting and copying functions.
+ if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
+ CheckStrlcpycatArguments(TheCall, FnInfo);
+ else if (CMId == Builtin::BIstrncat)
+ CheckStrncatArguments(TheCall, FnInfo);
+ else
+ CheckMemaccessArguments(TheCall, CMId, FnInfo);
+
+ return false;
+}
+
+bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
+ ArrayRef<const Expr *> Args) {
+ VariadicCallType CallType =
+ Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
+
+ checkCall(Method, Args, Method->param_size(),
+ /*IsMemberFunction=*/false,
+ lbrac, Method->getSourceRange(), CallType);
+
+ return false;
+}
+
+bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
+ const FunctionProtoType *Proto) {
+ QualType Ty;
+ if (const auto *V = dyn_cast<VarDecl>(NDecl))
+ Ty = V->getType();
+ else if (const auto *F = dyn_cast<FieldDecl>(NDecl))
+ Ty = F->getType();
+ else
+ return false;
+
+ if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType())
+ return false;
+
+ VariadicCallType CallType;
+ if (!Proto || !Proto->isVariadic()) {
+ CallType = VariadicDoesNotApply;
+ } else if (Ty->isBlockPointerType()) {
+ CallType = VariadicBlock;
+ } else { // Ty->isFunctionPointerType()
+ CallType = VariadicFunction;
+ }
+ unsigned NumParams = Proto ? Proto->getNumParams() : 0;
+
+ checkCall(NDecl, llvm::makeArrayRef(TheCall->getArgs(),
+ TheCall->getNumArgs()),
+ NumParams, /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
+ TheCall->getCallee()->getSourceRange(), CallType);
+
+ return false;
+}
+
+/// Checks function calls when a FunctionDecl or a NamedDecl is not available,
+/// such as function pointers returned from functions.
+bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
+ VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto,
+ TheCall->getCallee());
+ unsigned NumParams = Proto ? Proto->getNumParams() : 0;
+
+ checkCall(/*FDecl=*/nullptr,
+ llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
+ NumParams, /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
+ TheCall->getCallee()->getSourceRange(), CallType);
+
+ return false;
+}
+
+static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) {
+ if (Ordering < AtomicExpr::AO_ABI_memory_order_relaxed ||
+ Ordering > AtomicExpr::AO_ABI_memory_order_seq_cst)
+ return false;
+
+ switch (Op) {
+ case AtomicExpr::AO__c11_atomic_init:
+ llvm_unreachable("There is no ordering argument for an init");
+
+ case AtomicExpr::AO__c11_atomic_load:
+ case AtomicExpr::AO__atomic_load_n:
+ case AtomicExpr::AO__atomic_load:
+ return Ordering != AtomicExpr::AO_ABI_memory_order_release &&
+ Ordering != AtomicExpr::AO_ABI_memory_order_acq_rel;
+
+ case AtomicExpr::AO__c11_atomic_store:
+ case AtomicExpr::AO__atomic_store:
+ case AtomicExpr::AO__atomic_store_n:
+ return Ordering != AtomicExpr::AO_ABI_memory_order_consume &&
+ Ordering != AtomicExpr::AO_ABI_memory_order_acquire &&
+ Ordering != AtomicExpr::AO_ABI_memory_order_acq_rel;
+
+ default:
+ return true;
+ }
+}
+
+ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
+ AtomicExpr::AtomicOp Op) {
+ CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
+ DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
+
+ // All these operations take one of the following forms:
+ enum {
+ // C __c11_atomic_init(A *, C)
+ Init,
+ // C __c11_atomic_load(A *, int)
+ Load,
+ // void __atomic_load(A *, CP, int)
+ Copy,
+ // C __c11_atomic_add(A *, M, int)
+ Arithmetic,
+ // C __atomic_exchange_n(A *, CP, int)
+ Xchg,
+ // void __atomic_exchange(A *, C *, CP, int)
+ GNUXchg,
+ // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
+ C11CmpXchg,
+ // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
+ GNUCmpXchg
+ } Form = Init;
+ const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 4, 5, 6 };
+ const unsigned NumVals[] = { 1, 0, 1, 1, 1, 2, 2, 3 };
+ // where:
+ // C is an appropriate type,
+ // A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
+ // CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
+ // M is C if C is an integer, and ptrdiff_t if C is a pointer, and
+ // the int parameters are for orderings.
+
+ static_assert(AtomicExpr::AO__c11_atomic_init == 0 &&
+ AtomicExpr::AO__c11_atomic_fetch_xor + 1 ==
+ AtomicExpr::AO__atomic_load,
+ "need to update code for modified C11 atomics");
+ bool IsC11 = Op >= AtomicExpr::AO__c11_atomic_init &&
+ Op <= AtomicExpr::AO__c11_atomic_fetch_xor;
+ bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
+ Op == AtomicExpr::AO__atomic_store_n ||
+ Op == AtomicExpr::AO__atomic_exchange_n ||
+ Op == AtomicExpr::AO__atomic_compare_exchange_n;
+ bool IsAddSub = false;
+
+ switch (Op) {
+ case AtomicExpr::AO__c11_atomic_init:
+ Form = Init;
+ break;
+
+ case AtomicExpr::AO__c11_atomic_load:
+ case AtomicExpr::AO__atomic_load_n:
+ Form = Load;
+ break;
+
+ case AtomicExpr::AO__c11_atomic_store:
+ case AtomicExpr::AO__atomic_load:
+ case AtomicExpr::AO__atomic_store:
+ case AtomicExpr::AO__atomic_store_n:
+ Form = Copy;
+ break;
+
+ case AtomicExpr::AO__c11_atomic_fetch_add:
+ case AtomicExpr::AO__c11_atomic_fetch_sub:
+ case AtomicExpr::AO__atomic_fetch_add:
+ case AtomicExpr::AO__atomic_fetch_sub:
+ case AtomicExpr::AO__atomic_add_fetch:
+ case AtomicExpr::AO__atomic_sub_fetch:
+ IsAddSub = true;
+ // Fall through.
+ case AtomicExpr::AO__c11_atomic_fetch_and:
+ case AtomicExpr::AO__c11_atomic_fetch_or:
+ case AtomicExpr::AO__c11_atomic_fetch_xor:
+ case AtomicExpr::AO__atomic_fetch_and:
+ case AtomicExpr::AO__atomic_fetch_or:
+ case AtomicExpr::AO__atomic_fetch_xor:
+ case AtomicExpr::AO__atomic_fetch_nand:
+ case AtomicExpr::AO__atomic_and_fetch:
+ case AtomicExpr::AO__atomic_or_fetch:
+ case AtomicExpr::AO__atomic_xor_fetch:
+ case AtomicExpr::AO__atomic_nand_fetch:
+ Form = Arithmetic;
+ break;
+
+ case AtomicExpr::AO__c11_atomic_exchange:
+ case AtomicExpr::AO__atomic_exchange_n:
+ Form = Xchg;
+ break;
+
+ case AtomicExpr::AO__atomic_exchange:
+ Form = GNUXchg;
+ break;
+
+ case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
+ case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
+ Form = C11CmpXchg;
+ break;
+
+ case AtomicExpr::AO__atomic_compare_exchange:
+ case AtomicExpr::AO__atomic_compare_exchange_n:
+ Form = GNUCmpXchg;
+ break;
+ }
+
+ // Check we have the right number of arguments.
+ if (TheCall->getNumArgs() < NumArgs[Form]) {
+ Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
+ << 0 << NumArgs[Form] << TheCall->getNumArgs()
+ << TheCall->getCallee()->getSourceRange();
+ return ExprError();
+ } else if (TheCall->getNumArgs() > NumArgs[Form]) {
+ Diag(TheCall->getArg(NumArgs[Form])->getLocStart(),
+ diag::err_typecheck_call_too_many_args)
+ << 0 << NumArgs[Form] << TheCall->getNumArgs()
+ << TheCall->getCallee()->getSourceRange();
+ return ExprError();
+ }
+
+ // Inspect the first argument of the atomic operation.
+ Expr *Ptr = TheCall->getArg(0);
+ Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
+ const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
+ if (!pointerType) {
+ Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
+ << Ptr->getType() << Ptr->getSourceRange();
+ return ExprError();
+ }
+
+ // For a __c11 builtin, this should be a pointer to an _Atomic type.
+ QualType AtomTy = pointerType->getPointeeType(); // 'A'
+ QualType ValType = AtomTy; // 'C'
+ if (IsC11) {
+ if (!AtomTy->isAtomicType()) {
+ Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
+ << Ptr->getType() << Ptr->getSourceRange();
+ return ExprError();
+ }
+ if (AtomTy.isConstQualified()) {
+ Diag(DRE->getLocStart(), diag::err_atomic_op_needs_non_const_atomic)
+ << Ptr->getType() << Ptr->getSourceRange();
+ return ExprError();
+ }
+ ValType = AtomTy->getAs<AtomicType>()->getValueType();
+ }
+
+ // For an arithmetic operation, the implied arithmetic must be well-formed.
+ if (Form == Arithmetic) {
+ // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
+ if (IsAddSub && !ValType->isIntegerType() && !ValType->isPointerType()) {
+ Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
+ << IsC11 << Ptr->getType() << Ptr->getSourceRange();
+ return ExprError();
+ }
+ if (!IsAddSub && !ValType->isIntegerType()) {
+ Diag(DRE->getLocStart(), diag::err_atomic_op_bitwise_needs_atomic_int)
+ << IsC11 << Ptr->getType() << Ptr->getSourceRange();
+ return ExprError();
+ }
+ if (IsC11 && ValType->isPointerType() &&
+ RequireCompleteType(Ptr->getLocStart(), ValType->getPointeeType(),
+ diag::err_incomplete_type)) {
+ return ExprError();
+ }
+ } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
+ // For __atomic_*_n operations, the value type must be a scalar integral or
+ // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
+ Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
+ << IsC11 << Ptr->getType() << Ptr->getSourceRange();
+ return ExprError();
+ }
+
+ if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
+ !AtomTy->isScalarType()) {
+ // For GNU atomics, require a trivially-copyable type. This is not part of
+ // the GNU atomics specification, but we enforce it for sanity.
+ Diag(DRE->getLocStart(), diag::err_atomic_op_needs_trivial_copy)
+ << Ptr->getType() << Ptr->getSourceRange();
+ return ExprError();
+ }
+
+ // FIXME: For any builtin other than a load, the ValType must not be
+ // const-qualified.
+
+ switch (ValType.getObjCLifetime()) {
+ case Qualifiers::OCL_None:
+ case Qualifiers::OCL_ExplicitNone:
+ // okay
+ break;
+
+ case Qualifiers::OCL_Weak:
+ case Qualifiers::OCL_Strong:
+ case Qualifiers::OCL_Autoreleasing:
+ // FIXME: Can this happen? By this point, ValType should be known
+ // to be trivially copyable.
+ Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
+ << ValType << Ptr->getSourceRange();
+ return ExprError();
+ }
+
+ QualType ResultType = ValType;
+ if (Form == Copy || Form == GNUXchg || Form == Init)
+ ResultType = Context.VoidTy;
+ else if (Form == C11CmpXchg || Form == GNUCmpXchg)
+ ResultType = Context.BoolTy;
+
+ // The type of a parameter passed 'by value'. In the GNU atomics, such
+ // arguments are actually passed as pointers.
+ QualType ByValType = ValType; // 'CP'
+ if (!IsC11 && !IsN)
+ ByValType = Ptr->getType();
+
+ // The first argument --- the pointer --- has a fixed type; we
+ // deduce the types of the rest of the arguments accordingly. Walk
+ // the remaining arguments, converting them to the deduced value type.
+ for (unsigned i = 1; i != NumArgs[Form]; ++i) {
+ QualType Ty;
+ if (i < NumVals[Form] + 1) {
+ switch (i) {
+ case 1:
+ // The second argument is the non-atomic operand. For arithmetic, this
+ // is always passed by value, and for a compare_exchange it is always
+ // passed by address. For the rest, GNU uses by-address and C11 uses
+ // by-value.
+ assert(Form != Load);
+ if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
+ Ty = ValType;
+ else if (Form == Copy || Form == Xchg)
+ Ty = ByValType;
+ else if (Form == Arithmetic)
+ Ty = Context.getPointerDiffType();
+ else
+ Ty = Context.getPointerType(ValType.getUnqualifiedType());
+ break;
+ case 2:
+ // The third argument to compare_exchange / GNU exchange is a
+ // (pointer to a) desired value.
+ Ty = ByValType;
+ break;
+ case 3:
+ // The fourth argument to GNU compare_exchange is a 'weak' flag.
+ Ty = Context.BoolTy;
+ break;
+ }
+ } else {
+ // The order(s) are always converted to int.
+ Ty = Context.IntTy;
+ }
+
+ InitializedEntity Entity =
+ InitializedEntity::InitializeParameter(Context, Ty, false);
+ ExprResult Arg = TheCall->getArg(i);
+ Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
+ if (Arg.isInvalid())
+ return true;
+ TheCall->setArg(i, Arg.get());
+ }
+
+ // Permute the arguments into a 'consistent' order.
+ SmallVector<Expr*, 5> SubExprs;
+ SubExprs.push_back(Ptr);
+ switch (Form) {
+ case Init:
+ // Note, AtomicExpr::getVal1() has a special case for this atomic.
+ SubExprs.push_back(TheCall->getArg(1)); // Val1
+ break;
+ case Load:
+ SubExprs.push_back(TheCall->getArg(1)); // Order
+ break;
+ case Copy:
+ case Arithmetic:
+ case Xchg:
+ SubExprs.push_back(TheCall->getArg(2)); // Order
+ SubExprs.push_back(TheCall->getArg(1)); // Val1
+ break;
+ case GNUXchg:
+ // Note, AtomicExpr::getVal2() has a special case for this atomic.
+ SubExprs.push_back(TheCall->getArg(3)); // Order
+ SubExprs.push_back(TheCall->getArg(1)); // Val1
+ SubExprs.push_back(TheCall->getArg(2)); // Val2
+ break;
+ case C11CmpXchg:
+ SubExprs.push_back(TheCall->getArg(3)); // Order
+ SubExprs.push_back(TheCall->getArg(1)); // Val1
+ SubExprs.push_back(TheCall->getArg(4)); // OrderFail
+ SubExprs.push_back(TheCall->getArg(2)); // Val2
+ break;
+ case GNUCmpXchg:
+ SubExprs.push_back(TheCall->getArg(4)); // Order
+ SubExprs.push_back(TheCall->getArg(1)); // Val1
+ SubExprs.push_back(TheCall->getArg(5)); // OrderFail
+ SubExprs.push_back(TheCall->getArg(2)); // Val2
+ SubExprs.push_back(TheCall->getArg(3)); // Weak
+ break;
+ }
+
+ if (SubExprs.size() >= 2 && Form != Init) {
+ llvm::APSInt Result(32);
+ if (SubExprs[1]->isIntegerConstantExpr(Result, Context) &&
+ !isValidOrderingForOp(Result.getSExtValue(), Op))
+ Diag(SubExprs[1]->getLocStart(),
+ diag::warn_atomic_op_has_invalid_memory_order)
+ << SubExprs[1]->getSourceRange();
+ }
+
+ AtomicExpr *AE = new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
+ SubExprs, ResultType, Op,
+ TheCall->getRParenLoc());
+
+ if ((Op == AtomicExpr::AO__c11_atomic_load ||
+ (Op == AtomicExpr::AO__c11_atomic_store)) &&
+ Context.AtomicUsesUnsupportedLibcall(AE))
+ Diag(AE->getLocStart(), diag::err_atomic_load_store_uses_lib) <<
+ ((Op == AtomicExpr::AO__c11_atomic_load) ? 0 : 1);
+
+ return AE;
+}
+
+
+/// checkBuiltinArgument - Given a call to a builtin function, perform
+/// normal type-checking on the given argument, updating the call in
+/// place. This is useful when a builtin function requires custom
+/// type-checking for some of its arguments but not necessarily all of
+/// them.
+///
+/// Returns true on error.
+static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
+ FunctionDecl *Fn = E->getDirectCallee();
+ assert(Fn && "builtin call without direct callee!");
+
+ ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
+ InitializedEntity Entity =
+ InitializedEntity::InitializeParameter(S.Context, Param);
+
+ ExprResult Arg = E->getArg(0);
+ Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
+ if (Arg.isInvalid())
+ return true;
+
+ E->setArg(ArgIndex, Arg.get());
+ return false;
+}
+
+/// SemaBuiltinAtomicOverloaded - We have a call to a function like
+/// __sync_fetch_and_add, which is an overloaded function based on the pointer
+/// type of its first argument. The main ActOnCallExpr routines have already
+/// promoted the types of arguments because all of these calls are prototyped as
+/// void(...).
+///
+/// This function goes through and does final semantic checking for these
+/// builtins,
+ExprResult
+Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
+ CallExpr *TheCall = (CallExpr *)TheCallResult.get();
+ DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
+ FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
+
+ // Ensure that we have at least one argument to do type inference from.
+ if (TheCall->getNumArgs() < 1) {
+ Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
+ << 0 << 1 << TheCall->getNumArgs()
+ << TheCall->getCallee()->getSourceRange();
+ return ExprError();
+ }
+
+ // Inspect the first argument of the atomic builtin. This should always be
+ // a pointer type, whose element is an integral scalar or pointer type.
+ // Because it is a pointer type, we don't have to worry about any implicit
+ // casts here.
+ // FIXME: We don't allow floating point scalars as input.
+ Expr *FirstArg = TheCall->getArg(0);
+ ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
+ if (FirstArgResult.isInvalid())
+ return ExprError();
+ FirstArg = FirstArgResult.get();
+ TheCall->setArg(0, FirstArg);
+
+ const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
+ if (!pointerType) {
+ Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
+ << FirstArg->getType() << FirstArg->getSourceRange();
+ return ExprError();
+ }
+
+ QualType ValType = pointerType->getPointeeType();
+ if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
+ !ValType->isBlockPointerType()) {
+ Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
+ << FirstArg->getType() << FirstArg->getSourceRange();
+ return ExprError();
+ }
+
+ switch (ValType.getObjCLifetime()) {
+ case Qualifiers::OCL_None:
+ case Qualifiers::OCL_ExplicitNone:
+ // okay
+ break;
+
+ case Qualifiers::OCL_Weak:
+ case Qualifiers::OCL_Strong:
+ case Qualifiers::OCL_Autoreleasing:
+ Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
+ << ValType << FirstArg->getSourceRange();
+ return ExprError();
+ }
+
+ // Strip any qualifiers off ValType.
+ ValType = ValType.getUnqualifiedType();
+
+ // The majority of builtins return a value, but a few have special return
+ // types, so allow them to override appropriately below.
+ QualType ResultType = ValType;
+
+ // We need to figure out which concrete builtin this maps onto. For example,
+ // __sync_fetch_and_add with a 2 byte object turns into
+ // __sync_fetch_and_add_2.
+#define BUILTIN_ROW(x) \
+ { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
+ Builtin::BI##x##_8, Builtin::BI##x##_16 }
+
+ static const unsigned BuiltinIndices[][5] = {
+ BUILTIN_ROW(__sync_fetch_and_add),
+ BUILTIN_ROW(__sync_fetch_and_sub),
+ BUILTIN_ROW(__sync_fetch_and_or),
+ BUILTIN_ROW(__sync_fetch_and_and),
+ BUILTIN_ROW(__sync_fetch_and_xor),
+ BUILTIN_ROW(__sync_fetch_and_nand),
+
+ BUILTIN_ROW(__sync_add_and_fetch),
+ BUILTIN_ROW(__sync_sub_and_fetch),
+ BUILTIN_ROW(__sync_and_and_fetch),
+ BUILTIN_ROW(__sync_or_and_fetch),
+ BUILTIN_ROW(__sync_xor_and_fetch),
+ BUILTIN_ROW(__sync_nand_and_fetch),
+
+ BUILTIN_ROW(__sync_val_compare_and_swap),
+ BUILTIN_ROW(__sync_bool_compare_and_swap),
+ BUILTIN_ROW(__sync_lock_test_and_set),
+ BUILTIN_ROW(__sync_lock_release),
+ BUILTIN_ROW(__sync_swap)
+ };
+#undef BUILTIN_ROW
+
+ // Determine the index of the size.
+ unsigned SizeIndex;
+ switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
+ case 1: SizeIndex = 0; break;
+ case 2: SizeIndex = 1; break;
+ case 4: SizeIndex = 2; break;
+ case 8: SizeIndex = 3; break;
+ case 16: SizeIndex = 4; break;
+ default:
+ Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
+ << FirstArg->getType() << FirstArg->getSourceRange();
+ return ExprError();
+ }
+
+ // Each of these builtins has one pointer argument, followed by some number of
+ // values (0, 1 or 2) followed by a potentially empty varags list of stuff
+ // that we ignore. Find out which row of BuiltinIndices to read from as well
+ // as the number of fixed args.
+ unsigned BuiltinID = FDecl->getBuiltinID();
+ unsigned BuiltinIndex, NumFixed = 1;
+ bool WarnAboutSemanticsChange = false;
+ switch (BuiltinID) {
+ default: llvm_unreachable("Unknown overloaded atomic builtin!");
+ case Builtin::BI__sync_fetch_and_add:
+ case Builtin::BI__sync_fetch_and_add_1:
+ case Builtin::BI__sync_fetch_and_add_2:
+ case Builtin::BI__sync_fetch_and_add_4:
+ case Builtin::BI__sync_fetch_and_add_8:
+ case Builtin::BI__sync_fetch_and_add_16:
+ BuiltinIndex = 0;
+ break;
+
+ case Builtin::BI__sync_fetch_and_sub:
+ case Builtin::BI__sync_fetch_and_sub_1:
+ case Builtin::BI__sync_fetch_and_sub_2:
+ case Builtin::BI__sync_fetch_and_sub_4:
+ case Builtin::BI__sync_fetch_and_sub_8:
+ case Builtin::BI__sync_fetch_and_sub_16:
+ BuiltinIndex = 1;
+ break;
+
+ case Builtin::BI__sync_fetch_and_or:
+ case Builtin::BI__sync_fetch_and_or_1:
+ case Builtin::BI__sync_fetch_and_or_2:
+ case Builtin::BI__sync_fetch_and_or_4:
+ case Builtin::BI__sync_fetch_and_or_8:
+ case Builtin::BI__sync_fetch_and_or_16:
+ BuiltinIndex = 2;
+ break;
+
+ case Builtin::BI__sync_fetch_and_and:
+ case Builtin::BI__sync_fetch_and_and_1:
+ case Builtin::BI__sync_fetch_and_and_2:
+ case Builtin::BI__sync_fetch_and_and_4:
+ case Builtin::BI__sync_fetch_and_and_8:
+ case Builtin::BI__sync_fetch_and_and_16:
+ BuiltinIndex = 3;
+ break;
+
+ case Builtin::BI__sync_fetch_and_xor:
+ case Builtin::BI__sync_fetch_and_xor_1:
+ case Builtin::BI__sync_fetch_and_xor_2:
+ case Builtin::BI__sync_fetch_and_xor_4:
+ case Builtin::BI__sync_fetch_and_xor_8:
+ case Builtin::BI__sync_fetch_and_xor_16:
+ BuiltinIndex = 4;
+ break;
+
+ case Builtin::BI__sync_fetch_and_nand:
+ case Builtin::BI__sync_fetch_and_nand_1:
+ case Builtin::BI__sync_fetch_and_nand_2:
+ case Builtin::BI__sync_fetch_and_nand_4:
+ case Builtin::BI__sync_fetch_and_nand_8:
+ case Builtin::BI__sync_fetch_and_nand_16:
+ BuiltinIndex = 5;
+ WarnAboutSemanticsChange = true;
+ break;
+
+ case Builtin::BI__sync_add_and_fetch:
+ case Builtin::BI__sync_add_and_fetch_1:
+ case Builtin::BI__sync_add_and_fetch_2:
+ case Builtin::BI__sync_add_and_fetch_4:
+ case Builtin::BI__sync_add_and_fetch_8:
+ case Builtin::BI__sync_add_and_fetch_16:
+ BuiltinIndex = 6;
+ break;
+
+ case Builtin::BI__sync_sub_and_fetch:
+ case Builtin::BI__sync_sub_and_fetch_1:
+ case Builtin::BI__sync_sub_and_fetch_2:
+ case Builtin::BI__sync_sub_and_fetch_4:
+ case Builtin::BI__sync_sub_and_fetch_8:
+ case Builtin::BI__sync_sub_and_fetch_16:
+ BuiltinIndex = 7;
+ break;
+
+ case Builtin::BI__sync_and_and_fetch:
+ case Builtin::BI__sync_and_and_fetch_1:
+ case Builtin::BI__sync_and_and_fetch_2:
+ case Builtin::BI__sync_and_and_fetch_4:
+ case Builtin::BI__sync_and_and_fetch_8:
+ case Builtin::BI__sync_and_and_fetch_16:
+ BuiltinIndex = 8;
+ break;
+
+ case Builtin::BI__sync_or_and_fetch:
+ case Builtin::BI__sync_or_and_fetch_1:
+ case Builtin::BI__sync_or_and_fetch_2:
+ case Builtin::BI__sync_or_and_fetch_4:
+ case Builtin::BI__sync_or_and_fetch_8:
+ case Builtin::BI__sync_or_and_fetch_16:
+ BuiltinIndex = 9;
+ break;
+
+ case Builtin::BI__sync_xor_and_fetch:
+ case Builtin::BI__sync_xor_and_fetch_1:
+ case Builtin::BI__sync_xor_and_fetch_2:
+ case Builtin::BI__sync_xor_and_fetch_4:
+ case Builtin::BI__sync_xor_and_fetch_8:
+ case Builtin::BI__sync_xor_and_fetch_16:
+ BuiltinIndex = 10;
+ break;
+
+ case Builtin::BI__sync_nand_and_fetch:
+ case Builtin::BI__sync_nand_and_fetch_1:
+ case Builtin::BI__sync_nand_and_fetch_2:
+ case Builtin::BI__sync_nand_and_fetch_4:
+ case Builtin::BI__sync_nand_and_fetch_8:
+ case Builtin::BI__sync_nand_and_fetch_16:
+ BuiltinIndex = 11;
+ WarnAboutSemanticsChange = true;
+ break;
+
+ case Builtin::BI__sync_val_compare_and_swap:
+ case Builtin::BI__sync_val_compare_and_swap_1:
+ case Builtin::BI__sync_val_compare_and_swap_2:
+ case Builtin::BI__sync_val_compare_and_swap_4:
+ case Builtin::BI__sync_val_compare_and_swap_8:
+ case Builtin::BI__sync_val_compare_and_swap_16:
+ BuiltinIndex = 12;
+ NumFixed = 2;
+ break;
+
+ case Builtin::BI__sync_bool_compare_and_swap:
+ case Builtin::BI__sync_bool_compare_and_swap_1:
+ case Builtin::BI__sync_bool_compare_and_swap_2:
+ case Builtin::BI__sync_bool_compare_and_swap_4:
+ case Builtin::BI__sync_bool_compare_and_swap_8:
+ case Builtin::BI__sync_bool_compare_and_swap_16:
+ BuiltinIndex = 13;
+ NumFixed = 2;
+ ResultType = Context.BoolTy;
+ break;
+
+ case Builtin::BI__sync_lock_test_and_set:
+ case Builtin::BI__sync_lock_test_and_set_1:
+ case Builtin::BI__sync_lock_test_and_set_2:
+ case Builtin::BI__sync_lock_test_and_set_4:
+ case Builtin::BI__sync_lock_test_and_set_8:
+ case Builtin::BI__sync_lock_test_and_set_16:
+ BuiltinIndex = 14;
+ break;
+
+ case Builtin::BI__sync_lock_release:
+ case Builtin::BI__sync_lock_release_1:
+ case Builtin::BI__sync_lock_release_2:
+ case Builtin::BI__sync_lock_release_4:
+ case Builtin::BI__sync_lock_release_8:
+ case Builtin::BI__sync_lock_release_16:
+ BuiltinIndex = 15;
+ NumFixed = 0;
+ ResultType = Context.VoidTy;
+ break;
+
+ case Builtin::BI__sync_swap:
+ case Builtin::BI__sync_swap_1:
+ case Builtin::BI__sync_swap_2:
+ case Builtin::BI__sync_swap_4:
+ case Builtin::BI__sync_swap_8:
+ case Builtin::BI__sync_swap_16:
+ BuiltinIndex = 16;
+ break;
+ }
+
+ // Now that we know how many fixed arguments we expect, first check that we
+ // have at least that many.
+ if (TheCall->getNumArgs() < 1+NumFixed) {
+ Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
+ << 0 << 1+NumFixed << TheCall->getNumArgs()
+ << TheCall->getCallee()->getSourceRange();
+ return ExprError();
+ }
+
+ if (WarnAboutSemanticsChange) {
+ Diag(TheCall->getLocEnd(), diag::warn_sync_fetch_and_nand_semantics_change)
+ << TheCall->getCallee()->getSourceRange();
+ }
+
+ // Get the decl for the concrete builtin from this, we can tell what the
+ // concrete integer type we should convert to is.
+ unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
+ const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
+ FunctionDecl *NewBuiltinDecl;
+ if (NewBuiltinID == BuiltinID)
+ NewBuiltinDecl = FDecl;
+ else {
+ // Perform builtin lookup to avoid redeclaring it.
+ DeclarationName DN(&Context.Idents.get(NewBuiltinName));
+ LookupResult Res(*this, DN, DRE->getLocStart(), LookupOrdinaryName);
+ LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
+ assert(Res.getFoundDecl());
+ NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
+ if (!NewBuiltinDecl)
+ return ExprError();
+ }
+
+ // The first argument --- the pointer --- has a fixed type; we
+ // deduce the types of the rest of the arguments accordingly. Walk
+ // the remaining arguments, converting them to the deduced value type.
+ for (unsigned i = 0; i != NumFixed; ++i) {
+ ExprResult Arg = TheCall->getArg(i+1);
+
+ // GCC does an implicit conversion to the pointer or integer ValType. This
+ // can fail in some cases (1i -> int**), check for this error case now.
+ // Initialize the argument.
+ InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
+ ValType, /*consume*/ false);
+ Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
+ if (Arg.isInvalid())
+ return ExprError();
+
+ // Okay, we have something that *can* be converted to the right type. Check
+ // to see if there is a potentially weird extension going on here. This can
+ // happen when you do an atomic operation on something like an char* and
+ // pass in 42. The 42 gets converted to char. This is even more strange
+ // for things like 45.123 -> char, etc.
+ // FIXME: Do this check.
+ TheCall->setArg(i+1, Arg.get());
+ }
+
+ ASTContext& Context = this->getASTContext();
+
+ // Create a new DeclRefExpr to refer to the new decl.
+ DeclRefExpr* NewDRE = DeclRefExpr::Create(
+ Context,
+ DRE->getQualifierLoc(),
+ SourceLocation(),
+ NewBuiltinDecl,
+ /*enclosing*/ false,
+ DRE->getLocation(),
+ Context.BuiltinFnTy,
+ DRE->getValueKind());
+
+ // Set the callee in the CallExpr.
+ // FIXME: This loses syntactic information.
+ QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
+ ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
+ CK_BuiltinFnToFnPtr);
+ TheCall->setCallee(PromotedCall.get());
+
+ // Change the result type of the call to match the original value type. This
+ // is arbitrary, but the codegen for these builtins ins design to handle it
+ // gracefully.
+ TheCall->setType(ResultType);
+
+ return TheCallResult;
+}
+
+/// CheckObjCString - Checks that the argument to the builtin
+/// CFString constructor is correct
+/// Note: It might also make sense to do the UTF-16 conversion here (would
+/// simplify the backend).
+bool Sema::CheckObjCString(Expr *Arg) {
+ Arg = Arg->IgnoreParenCasts();
+ StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
+
+ if (!Literal || !Literal->isAscii()) {
+ Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
+ << Arg->getSourceRange();
+ return true;
+ }
+
+ if (Literal->containsNonAsciiOrNull()) {
+ StringRef String = Literal->getString();
+ unsigned NumBytes = String.size();
+ SmallVector<UTF16, 128> ToBuf(NumBytes);
+ const UTF8 *FromPtr = (const UTF8 *)String.data();
+ UTF16 *ToPtr = &ToBuf[0];
+
+ ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
+ &ToPtr, ToPtr + NumBytes,
+ strictConversion);
+ // Check for conversion failure.
+ if (Result != conversionOK)
+ Diag(Arg->getLocStart(),
+ diag::warn_cfstring_truncated) << Arg->getSourceRange();
+ }
+ return false;
+}
+
+/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
+/// Emit an error and return true on failure, return false on success.
+bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
+ Expr *Fn = TheCall->getCallee();
+ if (TheCall->getNumArgs() > 2) {
+ Diag(TheCall->getArg(2)->getLocStart(),
+ diag::err_typecheck_call_too_many_args)
+ << 0 /*function call*/ << 2 << TheCall->getNumArgs()
+ << Fn->getSourceRange()
+ << SourceRange(TheCall->getArg(2)->getLocStart(),
+ (*(TheCall->arg_end()-1))->getLocEnd());
+ return true;
+ }
+
+ if (TheCall->getNumArgs() < 2) {
+ return Diag(TheCall->getLocEnd(),
+ diag::err_typecheck_call_too_few_args_at_least)
+ << 0 /*function call*/ << 2 << TheCall->getNumArgs();
+ }
+
+ // Type-check the first argument normally.
+ if (checkBuiltinArgument(*this, TheCall, 0))
+ return true;
+
+ // Determine whether the current function is variadic or not.
+ BlockScopeInfo *CurBlock = getCurBlock();
+ bool isVariadic;
+ if (CurBlock)
+ isVariadic = CurBlock->TheDecl->isVariadic();
+ else if (FunctionDecl *FD = getCurFunctionDecl())
+ isVariadic = FD->isVariadic();
+ else
+ isVariadic = getCurMethodDecl()->isVariadic();
+
+ if (!isVariadic) {
+ Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
+ return true;
+ }
+
+ // Verify that the second argument to the builtin is the last argument of the
+ // current function or method.
+ bool SecondArgIsLastNamedArgument = false;
+ const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
+
+ // These are valid if SecondArgIsLastNamedArgument is false after the next
+ // block.
+ QualType Type;
+ SourceLocation ParamLoc;
+
+ if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
+ if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
+ // FIXME: This isn't correct for methods (results in bogus warning).
+ // Get the last formal in the current function.
+ const ParmVarDecl *LastArg;
+ if (CurBlock)
+ LastArg = *(CurBlock->TheDecl->param_end()-1);
+ else if (FunctionDecl *FD = getCurFunctionDecl())
+ LastArg = *(FD->param_end()-1);
+ else
+ LastArg = *(getCurMethodDecl()->param_end()-1);
+ SecondArgIsLastNamedArgument = PV == LastArg;
+
+ Type = PV->getType();
+ ParamLoc = PV->getLocation();
+ }
+ }
+
+ if (!SecondArgIsLastNamedArgument)
+ Diag(TheCall->getArg(1)->getLocStart(),
+ diag::warn_second_parameter_of_va_start_not_last_named_argument);
+ else if (Type->isReferenceType()) {
+ Diag(Arg->getLocStart(),
+ diag::warn_va_start_of_reference_type_is_undefined);
+ Diag(ParamLoc, diag::note_parameter_type) << Type;
+ }
+
+ TheCall->setType(Context.VoidTy);
+ return false;
+}
+
+bool Sema::SemaBuiltinVAStartARM(CallExpr *Call) {
+ // void __va_start(va_list *ap, const char *named_addr, size_t slot_size,
+ // const char *named_addr);
+
+ Expr *Func = Call->getCallee();
+
+ if (Call->getNumArgs() < 3)
+ return Diag(Call->getLocEnd(),
+ diag::err_typecheck_call_too_few_args_at_least)
+ << 0 /*function call*/ << 3 << Call->getNumArgs();
+
+ // Determine whether the current function is variadic or not.
+ bool IsVariadic;
+ if (BlockScopeInfo *CurBlock = getCurBlock())
+ IsVariadic = CurBlock->TheDecl->isVariadic();
+ else if (FunctionDecl *FD = getCurFunctionDecl())
+ IsVariadic = FD->isVariadic();
+ else if (ObjCMethodDecl *MD = getCurMethodDecl())
+ IsVariadic = MD->isVariadic();
+ else
+ llvm_unreachable("unexpected statement type");
+
+ if (!IsVariadic) {
+ Diag(Func->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
+ return true;
+ }
+
+ // Type-check the first argument normally.
+ if (checkBuiltinArgument(*this, Call, 0))
+ return true;
+
+ const struct {
+ unsigned ArgNo;
+ QualType Type;
+ } ArgumentTypes[] = {
+ { 1, Context.getPointerType(Context.CharTy.withConst()) },
+ { 2, Context.getSizeType() },
+ };
+
+ for (const auto &AT : ArgumentTypes) {
+ const Expr *Arg = Call->getArg(AT.ArgNo)->IgnoreParens();
+ if (Arg->getType().getCanonicalType() == AT.Type.getCanonicalType())
+ continue;
+ Diag(Arg->getLocStart(), diag::err_typecheck_convert_incompatible)
+ << Arg->getType() << AT.Type << 1 /* different class */
+ << 0 /* qualifier difference */ << 3 /* parameter mismatch */
+ << AT.ArgNo + 1 << Arg->getType() << AT.Type;
+ }
+
+ return false;
+}
+
+/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
+/// friends. This is declared to take (...), so we have to check everything.
+bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
+ if (TheCall->getNumArgs() < 2)
+ return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
+ << 0 << 2 << TheCall->getNumArgs()/*function call*/;
+ if (TheCall->getNumArgs() > 2)
+ return Diag(TheCall->getArg(2)->getLocStart(),
+ diag::err_typecheck_call_too_many_args)
+ << 0 /*function call*/ << 2 << TheCall->getNumArgs()
+ << SourceRange(TheCall->getArg(2)->getLocStart(),
+ (*(TheCall->arg_end()-1))->getLocEnd());
+
+ ExprResult OrigArg0 = TheCall->getArg(0);
+ ExprResult OrigArg1 = TheCall->getArg(1);
+
+ // Do standard promotions between the two arguments, returning their common
+ // type.
+ QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
+ if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
+ return true;
+
+ // Make sure any conversions are pushed back into the call; this is
+ // type safe since unordered compare builtins are declared as "_Bool
+ // foo(...)".
+ TheCall->setArg(0, OrigArg0.get());
+ TheCall->setArg(1, OrigArg1.get());
+
+ if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
+ return false;
+
+ // If the common type isn't a real floating type, then the arguments were
+ // invalid for this operation.
+ if (Res.isNull() || !Res->isRealFloatingType())
+ return Diag(OrigArg0.get()->getLocStart(),
+ diag::err_typecheck_call_invalid_ordered_compare)
+ << OrigArg0.get()->getType() << OrigArg1.get()->getType()
+ << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
+
+ return false;
+}
+
+/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
+/// __builtin_isnan and friends. This is declared to take (...), so we have
+/// to check everything. We expect the last argument to be a floating point
+/// value.
+bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
+ if (TheCall->getNumArgs() < NumArgs)
+ return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
+ << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
+ if (TheCall->getNumArgs() > NumArgs)
+ return Diag(TheCall->getArg(NumArgs)->getLocStart(),
+ diag::err_typecheck_call_too_many_args)
+ << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
+ << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
+ (*(TheCall->arg_end()-1))->getLocEnd());
+
+ Expr *OrigArg = TheCall->getArg(NumArgs-1);
+
+ if (OrigArg->isTypeDependent())
+ return false;
+
+ // This operation requires a non-_Complex floating-point number.
+ if (!OrigArg->getType()->isRealFloatingType())
+ return Diag(OrigArg->getLocStart(),
+ diag::err_typecheck_call_invalid_unary_fp)
+ << OrigArg->getType() << OrigArg->getSourceRange();
+
+ // If this is an implicit conversion from float -> double, remove it.
+ if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
+ Expr *CastArg = Cast->getSubExpr();
+ if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
+ assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
+ "promotion from float to double is the only expected cast here");
+ Cast->setSubExpr(nullptr);
+ TheCall->setArg(NumArgs-1, CastArg);
+ }
+ }
+
+ return false;
+}
+
+/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
+// This is declared to take (...), so we have to check everything.
+ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
+ if (TheCall->getNumArgs() < 2)
+ return ExprError(Diag(TheCall->getLocEnd(),
+ diag::err_typecheck_call_too_few_args_at_least)
+ << 0 /*function call*/ << 2 << TheCall->getNumArgs()
+ << TheCall->getSourceRange());
+
+ // Determine which of the following types of shufflevector we're checking:
+ // 1) unary, vector mask: (lhs, mask)
+ // 2) binary, vector mask: (lhs, rhs, mask)
+ // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
+ QualType resType = TheCall->getArg(0)->getType();
+ unsigned numElements = 0;
+
+ if (!TheCall->getArg(0)->isTypeDependent() &&
+ !TheCall->getArg(1)->isTypeDependent()) {
+ QualType LHSType = TheCall->getArg(0)->getType();
+ QualType RHSType = TheCall->getArg(1)->getType();
+
+ if (!LHSType->isVectorType() || !RHSType->isVectorType())
+ return ExprError(Diag(TheCall->getLocStart(),
+ diag::err_shufflevector_non_vector)
+ << SourceRange(TheCall->getArg(0)->getLocStart(),
+ TheCall->getArg(1)->getLocEnd()));
+
+ numElements = LHSType->getAs<VectorType>()->getNumElements();
+ unsigned numResElements = TheCall->getNumArgs() - 2;
+
+ // Check to see if we have a call with 2 vector arguments, the unary shuffle
+ // with mask. If so, verify that RHS is an integer vector type with the
+ // same number of elts as lhs.
+ if (TheCall->getNumArgs() == 2) {
+ if (!RHSType->hasIntegerRepresentation() ||
+ RHSType->getAs<VectorType>()->getNumElements() != numElements)
+ return ExprError(Diag(TheCall->getLocStart(),
+ diag::err_shufflevector_incompatible_vector)
+ << SourceRange(TheCall->getArg(1)->getLocStart(),
+ TheCall->getArg(1)->getLocEnd()));
+ } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
+ return ExprError(Diag(TheCall->getLocStart(),
+ diag::err_shufflevector_incompatible_vector)
+ << SourceRange(TheCall->getArg(0)->getLocStart(),
+ TheCall->getArg(1)->getLocEnd()));
+ } else if (numElements != numResElements) {
+ QualType eltType = LHSType->getAs<VectorType>()->getElementType();
+ resType = Context.getVectorType(eltType, numResElements,
+ VectorType::GenericVector);
+ }
+ }
+
+ for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
+ if (TheCall->getArg(i)->isTypeDependent() ||
+ TheCall->getArg(i)->isValueDependent())
+ continue;
+
+ llvm::APSInt Result(32);
+ if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
+ return ExprError(Diag(TheCall->getLocStart(),
+ diag::err_shufflevector_nonconstant_argument)
+ << TheCall->getArg(i)->getSourceRange());
+
+ // Allow -1 which will be translated to undef in the IR.
+ if (Result.isSigned() && Result.isAllOnesValue())
+ continue;
+
+ if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
+ return ExprError(Diag(TheCall->getLocStart(),
+ diag::err_shufflevector_argument_too_large)
+ << TheCall->getArg(i)->getSourceRange());
+ }
+
+ SmallVector<Expr*, 32> exprs;
+
+ for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
+ exprs.push_back(TheCall->getArg(i));
+ TheCall->setArg(i, nullptr);
+ }
+
+ return new (Context) ShuffleVectorExpr(Context, exprs, resType,
+ TheCall->getCallee()->getLocStart(),
+ TheCall->getRParenLoc());
+}
+
+/// SemaConvertVectorExpr - Handle __builtin_convertvector
+ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
+ SourceLocation BuiltinLoc,
+ SourceLocation RParenLoc) {
+ ExprValueKind VK = VK_RValue;
+ ExprObjectKind OK = OK_Ordinary;
+ QualType DstTy = TInfo->getType();
+ QualType SrcTy = E->getType();
+
+ if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
+ return ExprError(Diag(BuiltinLoc,
+ diag::err_convertvector_non_vector)
+ << E->getSourceRange());
+ if (!DstTy->isVectorType() && !DstTy->isDependentType())
+ return ExprError(Diag(BuiltinLoc,
+ diag::err_convertvector_non_vector_type));
+
+ if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
+ unsigned SrcElts = SrcTy->getAs<VectorType>()->getNumElements();
+ unsigned DstElts = DstTy->getAs<VectorType>()->getNumElements();
+ if (SrcElts != DstElts)
+ return ExprError(Diag(BuiltinLoc,
+ diag::err_convertvector_incompatible_vector)
+ << E->getSourceRange());
+ }
+
+ return new (Context)
+ ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc);
+}
+
+/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
+// This is declared to take (const void*, ...) and can take two
+// optional constant int args.
+bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
+ unsigned NumArgs = TheCall->getNumArgs();
+
+ if (NumArgs > 3)
+ return Diag(TheCall->getLocEnd(),
+ diag::err_typecheck_call_too_many_args_at_most)
+ << 0 /*function call*/ << 3 << NumArgs
+ << TheCall->getSourceRange();
+
+ // Argument 0 is checked for us and the remaining arguments must be
+ // constant integers.
+ for (unsigned i = 1; i != NumArgs; ++i)
+ if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3))
+ return true;
+
+ return false;
+}
+
+/// SemaBuiltinAssume - Handle __assume (MS Extension).
+// __assume does not evaluate its arguments, and should warn if its argument
+// has side effects.
+bool Sema::SemaBuiltinAssume(CallExpr *TheCall) {
+ Expr *Arg = TheCall->getArg(0);
+ if (Arg->isInstantiationDependent()) return false;
+
+ if (Arg->HasSideEffects(Context))
+ Diag(Arg->getLocStart(), diag::warn_assume_side_effects)
+ << Arg->getSourceRange()
+ << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier();
+
+ return false;
+}
+
+/// Handle __builtin_assume_aligned. This is declared
+/// as (const void*, size_t, ...) and can take one optional constant int arg.
+bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) {
+ unsigned NumArgs = TheCall->getNumArgs();
+
+ if (NumArgs > 3)
+ return Diag(TheCall->getLocEnd(),
+ diag::err_typecheck_call_too_many_args_at_most)
+ << 0 /*function call*/ << 3 << NumArgs
+ << TheCall->getSourceRange();
+
+ // The alignment must be a constant integer.
+ Expr *Arg = TheCall->getArg(1);
+
+ // We can't check the value of a dependent argument.
+ if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
+ llvm::APSInt Result;
+ if (SemaBuiltinConstantArg(TheCall, 1, Result))
+ return true;
+
+ if (!Result.isPowerOf2())
+ return Diag(TheCall->getLocStart(),
+ diag::err_alignment_not_power_of_two)
+ << Arg->getSourceRange();
+ }
+
+ if (NumArgs > 2) {
+ ExprResult Arg(TheCall->getArg(2));
+ InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
+ Context.getSizeType(), false);
+ Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
+ if (Arg.isInvalid()) return true;
+ TheCall->setArg(2, Arg.get());
+ }
+
+ return false;
+}
+
+/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
+/// TheCall is a constant expression.
+bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
+ llvm::APSInt &Result) {
+ Expr *Arg = TheCall->getArg(ArgNum);
+ DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
+ FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
+
+ if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
+
+ if (!Arg->isIntegerConstantExpr(Result, Context))
+ return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
+ << FDecl->getDeclName() << Arg->getSourceRange();
+
+ return false;
+}
+
+/// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr
+/// TheCall is a constant expression in the range [Low, High].
+bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum,
+ int Low, int High) {
+ llvm::APSInt Result;
+
+ // We can't check the value of a dependent argument.
+ Expr *Arg = TheCall->getArg(ArgNum);
+ if (Arg->isTypeDependent() || Arg->isValueDependent())
+ return false;
+
+ // Check constant-ness first.
+ if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
+ return true;
+
+ if (Result.getSExtValue() < Low || Result.getSExtValue() > High)
+ return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
+ << Low << High << Arg->getSourceRange();
+
+ return false;
+}
+
+/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
+/// This checks that the target supports __builtin_longjmp and
+/// that val is a constant 1.
+bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
+ if (!Context.getTargetInfo().hasSjLjLowering())
+ return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_unsupported)
+ << SourceRange(TheCall->getLocStart(), TheCall->getLocEnd());
+
+ Expr *Arg = TheCall->getArg(1);
+ llvm::APSInt Result;
+
+ // TODO: This is less than ideal. Overload this to take a value.
+ if (SemaBuiltinConstantArg(TheCall, 1, Result))
+ return true;
+
+ if (Result != 1)
+ return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
+ << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
+
+ return false;
+}
+
+
+/// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]).
+/// This checks that the target supports __builtin_setjmp.
+bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) {
+ if (!Context.getTargetInfo().hasSjLjLowering())
+ return Diag(TheCall->getLocStart(), diag::err_builtin_setjmp_unsupported)
+ << SourceRange(TheCall->getLocStart(), TheCall->getLocEnd());
+ return false;
+}
+
+namespace {
+enum StringLiteralCheckType {
+ SLCT_NotALiteral,
+ SLCT_UncheckedLiteral,
+ SLCT_CheckedLiteral
+};
+}
+
+// Determine if an expression is a string literal or constant string.
+// If this function returns false on the arguments to a function expecting a
+// format string, we will usually need to emit a warning.
+// True string literals are then checked by CheckFormatString.
+static StringLiteralCheckType
+checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
+ bool HasVAListArg, unsigned format_idx,
+ unsigned firstDataArg, Sema::FormatStringType Type,
+ Sema::VariadicCallType CallType, bool InFunctionCall,
+ llvm::SmallBitVector &CheckedVarArgs) {
+ tryAgain:
+ if (E->isTypeDependent() || E->isValueDependent())
+ return SLCT_NotALiteral;
+
+ E = E->IgnoreParenCasts();
+
+ if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
+ // Technically -Wformat-nonliteral does not warn about this case.
+ // The behavior of printf and friends in this case is implementation
+ // dependent. Ideally if the format string cannot be null then
+ // it should have a 'nonnull' attribute in the function prototype.
+ return SLCT_UncheckedLiteral;
+
+ switch (E->getStmtClass()) {
+ case Stmt::BinaryConditionalOperatorClass:
+ case Stmt::ConditionalOperatorClass: {
+ // The expression is a literal if both sub-expressions were, and it was
+ // completely checked only if both sub-expressions were checked.
+ const AbstractConditionalOperator *C =
+ cast<AbstractConditionalOperator>(E);
+ StringLiteralCheckType Left =
+ checkFormatStringExpr(S, C->getTrueExpr(), Args,
+ HasVAListArg, format_idx, firstDataArg,
+ Type, CallType, InFunctionCall, CheckedVarArgs);
+ if (Left == SLCT_NotALiteral)
+ return SLCT_NotALiteral;
+ StringLiteralCheckType Right =
+ checkFormatStringExpr(S, C->getFalseExpr(), Args,
+ HasVAListArg, format_idx, firstDataArg,
+ Type, CallType, InFunctionCall, CheckedVarArgs);
+ return Left < Right ? Left : Right;
+ }
+
+ case Stmt::ImplicitCastExprClass: {
+ E = cast<ImplicitCastExpr>(E)->getSubExpr();
+ goto tryAgain;
+ }
+
+ case Stmt::OpaqueValueExprClass:
+ if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
+ E = src;
+ goto tryAgain;
+ }
+ return SLCT_NotALiteral;
+
+ case Stmt::PredefinedExprClass:
+ // While __func__, etc., are technically not string literals, they
+ // cannot contain format specifiers and thus are not a security
+ // liability.
+ return SLCT_UncheckedLiteral;
+
+ case Stmt::DeclRefExprClass: {
+ const DeclRefExpr *DR = cast<DeclRefExpr>(E);
+
+ // As an exception, do not flag errors for variables binding to
+ // const string literals.
+ if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
+ bool isConstant = false;
+ QualType T = DR->getType();
+
+ if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
+ isConstant = AT->getElementType().isConstant(S.Context);
+ } else if (const PointerType *PT = T->getAs<PointerType>()) {
+ isConstant = T.isConstant(S.Context) &&
+ PT->getPointeeType().isConstant(S.Context);
+ } else if (T->isObjCObjectPointerType()) {
+ // In ObjC, there is usually no "const ObjectPointer" type,
+ // so don't check if the pointee type is constant.
+ isConstant = T.isConstant(S.Context);
+ }
+
+ if (isConstant) {
+ if (const Expr *Init = VD->getAnyInitializer()) {
+ // Look through initializers like const char c[] = { "foo" }
+ if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
+ if (InitList->isStringLiteralInit())
+ Init = InitList->getInit(0)->IgnoreParenImpCasts();
+ }
+ return checkFormatStringExpr(S, Init, Args,
+ HasVAListArg, format_idx,
+ firstDataArg, Type, CallType,
+ /*InFunctionCall*/false, CheckedVarArgs);
+ }
+ }
+
+ // For vprintf* functions (i.e., HasVAListArg==true), we add a
+ // special check to see if the format string is a function parameter
+ // of the function calling the printf function. If the function
+ // has an attribute indicating it is a printf-like function, then we
+ // should suppress warnings concerning non-literals being used in a call
+ // to a vprintf function. For example:
+ //
+ // void
+ // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
+ // va_list ap;
+ // va_start(ap, fmt);
+ // vprintf(fmt, ap); // Do NOT emit a warning about "fmt".
+ // ...
+ // }
+ if (HasVAListArg) {
+ if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
+ if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
+ int PVIndex = PV->getFunctionScopeIndex() + 1;
+ for (const auto *PVFormat : ND->specific_attrs<FormatAttr>()) {
+ // adjust for implicit parameter
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
+ if (MD->isInstance())
+ ++PVIndex;
+ // We also check if the formats are compatible.
+ // We can't pass a 'scanf' string to a 'printf' function.
+ if (PVIndex == PVFormat->getFormatIdx() &&
+ Type == S.GetFormatStringType(PVFormat))
+ return SLCT_UncheckedLiteral;
+ }
+ }
+ }
+ }
+ }
+
+ return SLCT_NotALiteral;
+ }
+
+ case Stmt::CallExprClass:
+ case Stmt::CXXMemberCallExprClass: {
+ const CallExpr *CE = cast<CallExpr>(E);
+ if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
+ if (const FormatArgAttr *FA = ND->getAttr<FormatArgAttr>()) {
+ unsigned ArgIndex = FA->getFormatIdx();
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
+ if (MD->isInstance())
+ --ArgIndex;
+ const Expr *Arg = CE->getArg(ArgIndex - 1);
+
+ return checkFormatStringExpr(S, Arg, Args,
+ HasVAListArg, format_idx, firstDataArg,
+ Type, CallType, InFunctionCall,
+ CheckedVarArgs);
+ } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
+ unsigned BuiltinID = FD->getBuiltinID();
+ if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
+ BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
+ const Expr *Arg = CE->getArg(0);
+ return checkFormatStringExpr(S, Arg, Args,
+ HasVAListArg, format_idx,
+ firstDataArg, Type, CallType,
+ InFunctionCall, CheckedVarArgs);
+ }
+ }
+ }
+
+ return SLCT_NotALiteral;
+ }
+ case Stmt::ObjCStringLiteralClass:
+ case Stmt::StringLiteralClass: {
+ const StringLiteral *StrE = nullptr;
+
+ if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
+ StrE = ObjCFExpr->getString();
+ else
+ StrE = cast<StringLiteral>(E);
+
+ if (StrE) {
+ S.CheckFormatString(StrE, E, Args, HasVAListArg, format_idx, firstDataArg,
+ Type, InFunctionCall, CallType, CheckedVarArgs);
+ return SLCT_CheckedLiteral;
+ }
+
+ return SLCT_NotALiteral;
+ }
+
+ default:
+ return SLCT_NotALiteral;
+ }
+}
+
+Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
+ return llvm::StringSwitch<FormatStringType>(Format->getType()->getName())
+ .Case("scanf", FST_Scanf)
+ .Cases("printf", "printf0", FST_Printf)
+ .Cases("NSString", "CFString", FST_NSString)
+ .Case("strftime", FST_Strftime)
+ .Case("strfmon", FST_Strfmon)
+ .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
+ .Case("freebsd_kprintf", FST_FreeBSDKPrintf)
+ .Case("os_trace", FST_OSTrace)
+ .Default(FST_Unknown);
+}
+
+/// CheckFormatArguments - Check calls to printf and scanf (and similar
+/// functions) for correct use of format strings.
+/// Returns true if a format string has been fully checked.
+bool Sema::CheckFormatArguments(const FormatAttr *Format,
+ ArrayRef<const Expr *> Args,
+ bool IsCXXMember,
+ VariadicCallType CallType,
+ SourceLocation Loc, SourceRange Range,
+ llvm::SmallBitVector &CheckedVarArgs) {
+ FormatStringInfo FSI;
+ if (getFormatStringInfo(Format, IsCXXMember, &FSI))
+ return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
+ FSI.FirstDataArg, GetFormatStringType(Format),
+ CallType, Loc, Range, CheckedVarArgs);
+ return false;
+}
+
+bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
+ bool HasVAListArg, unsigned format_idx,
+ unsigned firstDataArg, FormatStringType Type,
+ VariadicCallType CallType,
+ SourceLocation Loc, SourceRange Range,
+ llvm::SmallBitVector &CheckedVarArgs) {
+ // CHECK: printf/scanf-like function is called with no format string.
+ if (format_idx >= Args.size()) {
+ Diag(Loc, diag::warn_missing_format_string) << Range;
+ return false;
+ }
+
+ const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
+
+ // CHECK: format string is not a string literal.
+ //
+ // Dynamically generated format strings are difficult to
+ // automatically vet at compile time. Requiring that format strings
+ // are string literals: (1) permits the checking of format strings by
+ // the compiler and thereby (2) can practically remove the source of
+ // many format string exploits.
+
+ // Format string can be either ObjC string (e.g. @"%d") or
+ // C string (e.g. "%d")
+ // ObjC string uses the same format specifiers as C string, so we can use
+ // the same format string checking logic for both ObjC and C strings.
+ StringLiteralCheckType CT =
+ checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg,
+ format_idx, firstDataArg, Type, CallType,
+ /*IsFunctionCall*/true, CheckedVarArgs);
+ if (CT != SLCT_NotALiteral)
+ // Literal format string found, check done!
+ return CT == SLCT_CheckedLiteral;
+
+ // Strftime is particular as it always uses a single 'time' argument,
+ // so it is safe to pass a non-literal string.
+ if (Type == FST_Strftime)
+ return false;
+
+ // Do not emit diag when the string param is a macro expansion and the
+ // format is either NSString or CFString. This is a hack to prevent
+ // diag when using the NSLocalizedString and CFCopyLocalizedString macros
+ // which are usually used in place of NS and CF string literals.
+ if (Type == FST_NSString &&
+ SourceMgr.isInSystemMacro(Args[format_idx]->getLocStart()))
+ return false;
+
+ // If there are no arguments specified, warn with -Wformat-security, otherwise
+ // warn only with -Wformat-nonliteral.
+ if (Args.size() == firstDataArg)
+ Diag(Args[format_idx]->getLocStart(),
+ diag::warn_format_nonliteral_noargs)
+ << OrigFormatExpr->getSourceRange();
+ else
+ Diag(Args[format_idx]->getLocStart(),
+ diag::warn_format_nonliteral)
+ << OrigFormatExpr->getSourceRange();
+ return false;
+}
+
+namespace {
+class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
+protected:
+ Sema &S;
+ const StringLiteral *FExpr;
+ const Expr *OrigFormatExpr;
+ const unsigned FirstDataArg;
+ const unsigned NumDataArgs;
+ const char *Beg; // Start of format string.
+ const bool HasVAListArg;
+ ArrayRef<const Expr *> Args;
+ unsigned FormatIdx;
+ llvm::SmallBitVector CoveredArgs;
+ bool usesPositionalArgs;
+ bool atFirstArg;
+ bool inFunctionCall;
+ Sema::VariadicCallType CallType;
+ llvm::SmallBitVector &CheckedVarArgs;
+public:
+ CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
+ const Expr *origFormatExpr, unsigned firstDataArg,
+ unsigned numDataArgs, const char *beg, bool hasVAListArg,
+ ArrayRef<const Expr *> Args,
+ unsigned formatIdx, bool inFunctionCall,
+ Sema::VariadicCallType callType,
+ llvm::SmallBitVector &CheckedVarArgs)
+ : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
+ FirstDataArg(firstDataArg), NumDataArgs(numDataArgs),
+ Beg(beg), HasVAListArg(hasVAListArg),
+ Args(Args), FormatIdx(formatIdx),
+ usesPositionalArgs(false), atFirstArg(true),
+ inFunctionCall(inFunctionCall), CallType(callType),
+ CheckedVarArgs(CheckedVarArgs) {
+ CoveredArgs.resize(numDataArgs);
+ CoveredArgs.reset();
+ }
+
+ void DoneProcessing();
+
+ void HandleIncompleteSpecifier(const char *startSpecifier,
+ unsigned specifierLen) override;
+
+ void HandleInvalidLengthModifier(
+ const analyze_format_string::FormatSpecifier &FS,
+ const analyze_format_string::ConversionSpecifier &CS,
+ const char *startSpecifier, unsigned specifierLen,
+ unsigned DiagID);
+
+ void HandleNonStandardLengthModifier(
+ const analyze_format_string::FormatSpecifier &FS,
+ const char *startSpecifier, unsigned specifierLen);
+
+ void HandleNonStandardConversionSpecifier(
+ const analyze_format_string::ConversionSpecifier &CS,
+ const char *startSpecifier, unsigned specifierLen);
+
+ void HandlePosition(const char *startPos, unsigned posLen) override;
+
+ void HandleInvalidPosition(const char *startSpecifier,
+ unsigned specifierLen,
+ analyze_format_string::PositionContext p) override;
+
+ void HandleZeroPosition(const char *startPos, unsigned posLen) override;
+
+ void HandleNullChar(const char *nullCharacter) override;
+
+ template <typename Range>
+ static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
+ const Expr *ArgumentExpr,
+ PartialDiagnostic PDiag,
+ SourceLocation StringLoc,
+ bool IsStringLocation, Range StringRange,
+ ArrayRef<FixItHint> Fixit = None);
+
+protected:
+ bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
+ const char *startSpec,
+ unsigned specifierLen,
+ const char *csStart, unsigned csLen);
+
+ void HandlePositionalNonpositionalArgs(SourceLocation Loc,
+ const char *startSpec,
+ unsigned specifierLen);
+
+ SourceRange getFormatStringRange();
+ CharSourceRange getSpecifierRange(const char *startSpecifier,
+ unsigned specifierLen);
+ SourceLocation getLocationOfByte(const char *x);
+
+ const Expr *getDataArg(unsigned i) const;
+
+ bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
+ const analyze_format_string::ConversionSpecifier &CS,
+ const char *startSpecifier, unsigned specifierLen,
+ unsigned argIndex);
+
+ template <typename Range>
+ void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
+ bool IsStringLocation, Range StringRange,
+ ArrayRef<FixItHint> Fixit = None);
+};
+}
+
+SourceRange CheckFormatHandler::getFormatStringRange() {
+ return OrigFormatExpr->getSourceRange();
+}
+
+CharSourceRange CheckFormatHandler::
+getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
+ SourceLocation Start = getLocationOfByte(startSpecifier);
+ SourceLocation End = getLocationOfByte(startSpecifier + specifierLen - 1);
+
+ // Advance the end SourceLocation by one due to half-open ranges.
+ End = End.getLocWithOffset(1);
+
+ return CharSourceRange::getCharRange(Start, End);
+}
+
+SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
+ return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
+}
+
+void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
+ unsigned specifierLen){
+ EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
+ getLocationOfByte(startSpecifier),
+ /*IsStringLocation*/true,
+ getSpecifierRange(startSpecifier, specifierLen));
+}
+
+void CheckFormatHandler::HandleInvalidLengthModifier(
+ const analyze_format_string::FormatSpecifier &FS,
+ const analyze_format_string::ConversionSpecifier &CS,
+ const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
+ using namespace analyze_format_string;
+
+ const LengthModifier &LM = FS.getLengthModifier();
+ CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
+
+ // See if we know how to fix this length modifier.
+ Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
+ if (FixedLM) {
+ EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
+ getLocationOfByte(LM.getStart()),
+ /*IsStringLocation*/true,
+ getSpecifierRange(startSpecifier, specifierLen));
+
+ S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
+ << FixedLM->toString()
+ << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
+
+ } else {
+ FixItHint Hint;
+ if (DiagID == diag::warn_format_nonsensical_length)
+ Hint = FixItHint::CreateRemoval(LMRange);
+
+ EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
+ getLocationOfByte(LM.getStart()),
+ /*IsStringLocation*/true,
+ getSpecifierRange(startSpecifier, specifierLen),
+ Hint);
+ }
+}
+
+void CheckFormatHandler::HandleNonStandardLengthModifier(
+ const analyze_format_string::FormatSpecifier &FS,
+ const char *startSpecifier, unsigned specifierLen) {
+ using namespace analyze_format_string;
+
+ const LengthModifier &LM = FS.getLengthModifier();
+ CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
+
+ // See if we know how to fix this length modifier.
+ Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
+ if (FixedLM) {
+ EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
+ << LM.toString() << 0,
+ getLocationOfByte(LM.getStart()),
+ /*IsStringLocation*/true,
+ getSpecifierRange(startSpecifier, specifierLen));
+
+ S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
+ << FixedLM->toString()
+ << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
+
+ } else {
+ EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
+ << LM.toString() << 0,
+ getLocationOfByte(LM.getStart()),
+ /*IsStringLocation*/true,
+ getSpecifierRange(startSpecifier, specifierLen));
+ }
+}
+
+void CheckFormatHandler::HandleNonStandardConversionSpecifier(
+ const analyze_format_string::ConversionSpecifier &CS,
+ const char *startSpecifier, unsigned specifierLen) {
+ using namespace analyze_format_string;
+
+ // See if we know how to fix this conversion specifier.
+ Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
+ if (FixedCS) {
+ EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
+ << CS.toString() << /*conversion specifier*/1,
+ getLocationOfByte(CS.getStart()),
+ /*IsStringLocation*/true,
+ getSpecifierRange(startSpecifier, specifierLen));
+
+ CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
+ S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
+ << FixedCS->toString()
+ << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
+ } else {
+ EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
+ << CS.toString() << /*conversion specifier*/1,
+ getLocationOfByte(CS.getStart()),
+ /*IsStringLocation*/true,
+ getSpecifierRange(startSpecifier, specifierLen));
+ }
+}
+
+void CheckFormatHandler::HandlePosition(const char *startPos,
+ unsigned posLen) {
+ EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
+ getLocationOfByte(startPos),
+ /*IsStringLocation*/true,
+ getSpecifierRange(startPos, posLen));
+}
+
+void
+CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
+ analyze_format_string::PositionContext p) {
+ EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
+ << (unsigned) p,
+ getLocationOfByte(startPos), /*IsStringLocation*/true,
+ getSpecifierRange(startPos, posLen));
+}
+
+void CheckFormatHandler::HandleZeroPosition(const char *startPos,
+ unsigned posLen) {
+ EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
+ getLocationOfByte(startPos),
+ /*IsStringLocation*/true,
+ getSpecifierRange(startPos, posLen));
+}
+
+void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
+ if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
+ // The presence of a null character is likely an error.
+ EmitFormatDiagnostic(
+ S.PDiag(diag::warn_printf_format_string_contains_null_char),
+ getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
+ getFormatStringRange());
+ }
+}
+
+// Note that this may return NULL if there was an error parsing or building
+// one of the argument expressions.
+const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
+ return Args[FirstDataArg + i];
+}
+
+void CheckFormatHandler::DoneProcessing() {
+ // Does the number of data arguments exceed the number of
+ // format conversions in the format string?
+ if (!HasVAListArg) {
+ // Find any arguments that weren't covered.
+ CoveredArgs.flip();
+ signed notCoveredArg = CoveredArgs.find_first();
+ if (notCoveredArg >= 0) {
+ assert((unsigned)notCoveredArg < NumDataArgs);
+ if (const Expr *E = getDataArg((unsigned) notCoveredArg)) {
+ SourceLocation Loc = E->getLocStart();
+ if (!S.getSourceManager().isInSystemMacro(Loc)) {
+ EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
+ Loc, /*IsStringLocation*/false,
+ getFormatStringRange());
+ }
+ }
+ }
+ }
+}
+
+bool
+CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
+ SourceLocation Loc,
+ const char *startSpec,
+ unsigned specifierLen,
+ const char *csStart,
+ unsigned csLen) {
+
+ bool keepGoing = true;
+ if (argIndex < NumDataArgs) {
+ // Consider the argument coverered, even though the specifier doesn't
+ // make sense.
+ CoveredArgs.set(argIndex);
+ }
+ else {
+ // If argIndex exceeds the number of data arguments we
+ // don't issue a warning because that is just a cascade of warnings (and
+ // they may have intended '%%' anyway). We don't want to continue processing
+ // the format string after this point, however, as we will like just get
+ // gibberish when trying to match arguments.
+ keepGoing = false;
+ }
+
+ EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
+ << StringRef(csStart, csLen),
+ Loc, /*IsStringLocation*/true,
+ getSpecifierRange(startSpec, specifierLen));
+
+ return keepGoing;
+}
+
+void
+CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
+ const char *startSpec,
+ unsigned specifierLen) {
+ EmitFormatDiagnostic(
+ S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
+ Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
+}
+
+bool
+CheckFormatHandler::CheckNumArgs(
+ const analyze_format_string::FormatSpecifier &FS,
+ const analyze_format_string::ConversionSpecifier &CS,
+ const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
+
+ if (argIndex >= NumDataArgs) {
+ PartialDiagnostic PDiag = FS.usesPositionalArg()
+ ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
+ << (argIndex+1) << NumDataArgs)
+ : S.PDiag(diag::warn_printf_insufficient_data_args);
+ EmitFormatDiagnostic(
+ PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
+ getSpecifierRange(startSpecifier, specifierLen));
+ return false;
+ }
+ return true;
+}
+
+template<typename Range>
+void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
+ SourceLocation Loc,
+ bool IsStringLocation,
+ Range StringRange,
+ ArrayRef<FixItHint> FixIt) {
+ EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
+ Loc, IsStringLocation, StringRange, FixIt);
+}
+
+/// \brief If the format string is not within the funcion call, emit a note
+/// so that the function call and string are in diagnostic messages.
+///
+/// \param InFunctionCall if true, the format string is within the function
+/// call and only one diagnostic message will be produced. Otherwise, an
+/// extra note will be emitted pointing to location of the format string.
+///
+/// \param ArgumentExpr the expression that is passed as the format string
+/// argument in the function call. Used for getting locations when two
+/// diagnostics are emitted.
+///
+/// \param PDiag the callee should already have provided any strings for the
+/// diagnostic message. This function only adds locations and fixits
+/// to diagnostics.
+///
+/// \param Loc primary location for diagnostic. If two diagnostics are
+/// required, one will be at Loc and a new SourceLocation will be created for
+/// the other one.
+///
+/// \param IsStringLocation if true, Loc points to the format string should be
+/// used for the note. Otherwise, Loc points to the argument list and will
+/// be used with PDiag.
+///
+/// \param StringRange some or all of the string to highlight. This is
+/// templated so it can accept either a CharSourceRange or a SourceRange.
+///
+/// \param FixIt optional fix it hint for the format string.
+template<typename Range>
+void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
+ const Expr *ArgumentExpr,
+ PartialDiagnostic PDiag,
+ SourceLocation Loc,
+ bool IsStringLocation,
+ Range StringRange,
+ ArrayRef<FixItHint> FixIt) {
+ if (InFunctionCall) {
+ const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
+ D << StringRange;
+ D << FixIt;
+ } else {
+ S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
+ << ArgumentExpr->getSourceRange();
+
+ const Sema::SemaDiagnosticBuilder &Note =
+ S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
+ diag::note_format_string_defined);
+
+ Note << StringRange;
+ Note << FixIt;
+ }
+}
+
+//===--- CHECK: Printf format string checking ------------------------------===//
+
+namespace {
+class CheckPrintfHandler : public CheckFormatHandler {
+ bool ObjCContext;
+public:
+ CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
+ const Expr *origFormatExpr, unsigned firstDataArg,
+ unsigned numDataArgs, bool isObjC,
+ const char *beg, bool hasVAListArg,
+ ArrayRef<const Expr *> Args,
+ unsigned formatIdx, bool inFunctionCall,
+ Sema::VariadicCallType CallType,
+ llvm::SmallBitVector &CheckedVarArgs)
+ : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
+ numDataArgs, beg, hasVAListArg, Args,
+ formatIdx, inFunctionCall, CallType, CheckedVarArgs),
+ ObjCContext(isObjC)
+ {}
+
+
+ bool HandleInvalidPrintfConversionSpecifier(
+ const analyze_printf::PrintfSpecifier &FS,
+ const char *startSpecifier,
+ unsigned specifierLen) override;
+
+ bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
+ const char *startSpecifier,
+ unsigned specifierLen) override;
+ bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
+ const char *StartSpecifier,
+ unsigned SpecifierLen,
+ const Expr *E);
+
+ bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
+ const char *startSpecifier, unsigned specifierLen);
+ void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
+ const analyze_printf::OptionalAmount &Amt,
+ unsigned type,
+ const char *startSpecifier, unsigned specifierLen);
+ void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
+ const analyze_printf::OptionalFlag &flag,
+ const char *startSpecifier, unsigned specifierLen);
+ void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
+ const analyze_printf::OptionalFlag &ignoredFlag,
+ const analyze_printf::OptionalFlag &flag,
+ const char *startSpecifier, unsigned specifierLen);
+ bool checkForCStrMembers(const analyze_printf::ArgType &AT,
+ const Expr *E);
+
+};
+}
+
+bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
+ const analyze_printf::PrintfSpecifier &FS,
+ const char *startSpecifier,
+ unsigned specifierLen) {
+ const analyze_printf::PrintfConversionSpecifier &CS =
+ FS.getConversionSpecifier();
+
+ return HandleInvalidConversionSpecifier(FS.getArgIndex(),
+ getLocationOfByte(CS.getStart()),
+ startSpecifier, specifierLen,
+ CS.getStart(), CS.getLength());
+}
+
+bool CheckPrintfHandler::HandleAmount(
+ const analyze_format_string::OptionalAmount &Amt,
+ unsigned k, const char *startSpecifier,
+ unsigned specifierLen) {
+
+ if (Amt.hasDataArgument()) {
+ if (!HasVAListArg) {
+ unsigned argIndex = Amt.getArgIndex();
+ if (argIndex >= NumDataArgs) {
+ EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
+ << k,
+ getLocationOfByte(Amt.getStart()),
+ /*IsStringLocation*/true,
+ getSpecifierRange(startSpecifier, specifierLen));
+ // Don't do any more checking. We will just emit
+ // spurious errors.
+ return false;
+ }
+
+ // Type check the data argument. It should be an 'int'.
+ // Although not in conformance with C99, we also allow the argument to be
+ // an 'unsigned int' as that is a reasonably safe case. GCC also
+ // doesn't emit a warning for that case.
+ CoveredArgs.set(argIndex);
+ const Expr *Arg = getDataArg(argIndex);
+ if (!Arg)
+ return false;
+
+ QualType T = Arg->getType();
+
+ const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
+ assert(AT.isValid());
+
+ if (!AT.matchesType(S.Context, T)) {
+ EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
+ << k << AT.getRepresentativeTypeName(S.Context)
+ << T << Arg->getSourceRange(),
+ getLocationOfByte(Amt.getStart()),
+ /*IsStringLocation*/true,
+ getSpecifierRange(startSpecifier, specifierLen));
+ // Don't do any more checking. We will just emit
+ // spurious errors.
+ return false;
+ }
+ }
+ }
+ return true;
+}
+
+void CheckPrintfHandler::HandleInvalidAmount(
+ const analyze_printf::PrintfSpecifier &FS,
+ const analyze_printf::OptionalAmount &Amt,
+ unsigned type,
+ const char *startSpecifier,
+ unsigned specifierLen) {
+ const analyze_printf::PrintfConversionSpecifier &CS =
+ FS.getConversionSpecifier();
+
+ FixItHint fixit =
+ Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
+ ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
+ Amt.getConstantLength()))
+ : FixItHint();
+
+ EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
+ << type << CS.toString(),
+ getLocationOfByte(Amt.getStart()),
+ /*IsStringLocation*/true,
+ getSpecifierRange(startSpecifier, specifierLen),
+ fixit);
+}
+
+void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
+ const analyze_printf::OptionalFlag &flag,
+ const char *startSpecifier,
+ unsigned specifierLen) {
+ // Warn about pointless flag with a fixit removal.
+ const analyze_printf::PrintfConversionSpecifier &CS =
+ FS.getConversionSpecifier();
+ EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
+ << flag.toString() << CS.toString(),
+ getLocationOfByte(flag.getPosition()),
+ /*IsStringLocation*/true,
+ getSpecifierRange(startSpecifier, specifierLen),
+ FixItHint::CreateRemoval(
+ getSpecifierRange(flag.getPosition(), 1)));
+}
+
+void CheckPrintfHandler::HandleIgnoredFlag(
+ const analyze_printf::PrintfSpecifier &FS,
+ const analyze_printf::OptionalFlag &ignoredFlag,
+ const analyze_printf::OptionalFlag &flag,
+ const char *startSpecifier,
+ unsigned specifierLen) {
+ // Warn about ignored flag with a fixit removal.
+ EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
+ << ignoredFlag.toString() << flag.toString(),
+ getLocationOfByte(ignoredFlag.getPosition()),
+ /*IsStringLocation*/true,
+ getSpecifierRange(startSpecifier, specifierLen),
+ FixItHint::CreateRemoval(
+ getSpecifierRange(ignoredFlag.getPosition(), 1)));
+}
+
+// Determines if the specified is a C++ class or struct containing
+// a member with the specified name and kind (e.g. a CXXMethodDecl named
+// "c_str()").
+template<typename MemberKind>
+static llvm::SmallPtrSet<MemberKind*, 1>
+CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
+ const RecordType *RT = Ty->getAs<RecordType>();
+ llvm::SmallPtrSet<MemberKind*, 1> Results;
+
+ if (!RT)
+ return Results;
+ const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
+ if (!RD || !RD->getDefinition())
+ return Results;
+
+ LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(),
+ Sema::LookupMemberName);
+ R.suppressDiagnostics();
+
+ // We just need to include all members of the right kind turned up by the
+ // filter, at this point.
+ if (S.LookupQualifiedName(R, RT->getDecl()))
+ for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
+ NamedDecl *decl = (*I)->getUnderlyingDecl();
+ if (MemberKind *FK = dyn_cast<MemberKind>(decl))
+ Results.insert(FK);
+ }
+ return Results;
+}
+
+/// Check if we could call '.c_str()' on an object.
+///
+/// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't
+/// allow the call, or if it would be ambiguous).
+bool Sema::hasCStrMethod(const Expr *E) {
+ typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
+ MethodSet Results =
+ CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType());
+ for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
+ MI != ME; ++MI)
+ if ((*MI)->getMinRequiredArguments() == 0)
+ return true;
+ return false;
+}
+
+// Check if a (w)string was passed when a (w)char* was needed, and offer a
+// better diagnostic if so. AT is assumed to be valid.
+// Returns true when a c_str() conversion method is found.
+bool CheckPrintfHandler::checkForCStrMembers(
+ const analyze_printf::ArgType &AT, const Expr *E) {
+ typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
+
+ MethodSet Results =
+ CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
+
+ for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
+ MI != ME; ++MI) {
+ const CXXMethodDecl *Method = *MI;
+ if (Method->getMinRequiredArguments() == 0 &&
+ AT.matchesType(S.Context, Method->getReturnType())) {
+ // FIXME: Suggest parens if the expression needs them.
+ SourceLocation EndLoc = S.getLocForEndOfToken(E->getLocEnd());
+ S.Diag(E->getLocStart(), diag::note_printf_c_str)
+ << "c_str()"
+ << FixItHint::CreateInsertion(EndLoc, ".c_str()");
+ return true;
+ }
+ }
+
+ return false;
+}
+
+bool
+CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
+ &FS,
+ const char *startSpecifier,
+ unsigned specifierLen) {
+
+ using namespace analyze_format_string;
+ using namespace analyze_printf;
+ const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
+
+ if (FS.consumesDataArgument()) {
+ if (atFirstArg) {
+ atFirstArg = false;
+ usesPositionalArgs = FS.usesPositionalArg();
+ }
+ else if (usesPositionalArgs != FS.usesPositionalArg()) {
+ HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
+ startSpecifier, specifierLen);
+ return false;
+ }
+ }
+
+ // First check if the field width, precision, and conversion specifier
+ // have matching data arguments.
+ if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
+ startSpecifier, specifierLen)) {
+ return false;
+ }
+
+ if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
+ startSpecifier, specifierLen)) {
+ return false;
+ }
+
+ if (!CS.consumesDataArgument()) {
+ // FIXME: Technically specifying a precision or field width here
+ // makes no sense. Worth issuing a warning at some point.
+ return true;
+ }
+
+ // Consume the argument.
+ unsigned argIndex = FS.getArgIndex();
+ if (argIndex < NumDataArgs) {
+ // The check to see if the argIndex is valid will come later.
+ // We set the bit here because we may exit early from this
+ // function if we encounter some other error.
+ CoveredArgs.set(argIndex);
+ }
+
+ // FreeBSD kernel extensions.
+ if (CS.getKind() == ConversionSpecifier::FreeBSDbArg ||
+ CS.getKind() == ConversionSpecifier::FreeBSDDArg) {
+ // We need at least two arguments.
+ if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1))
+ return false;
+
+ // Claim the second argument.
+ CoveredArgs.set(argIndex + 1);
+
+ // Type check the first argument (int for %b, pointer for %D)
+ const Expr *Ex = getDataArg(argIndex);
+ const analyze_printf::ArgType &AT =
+ (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ?
+ ArgType(S.Context.IntTy) : ArgType::CPointerTy;
+ if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType()))
+ EmitFormatDiagnostic(
+ S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
+ << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
+ << false << Ex->getSourceRange(),
+ Ex->getLocStart(), /*IsStringLocation*/false,
+ getSpecifierRange(startSpecifier, specifierLen));
+
+ // Type check the second argument (char * for both %b and %D)
+ Ex = getDataArg(argIndex + 1);
+ const analyze_printf::ArgType &AT2 = ArgType::CStrTy;
+ if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType()))
+ EmitFormatDiagnostic(
+ S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
+ << AT2.getRepresentativeTypeName(S.Context) << Ex->getType()
+ << false << Ex->getSourceRange(),
+ Ex->getLocStart(), /*IsStringLocation*/false,
+ getSpecifierRange(startSpecifier, specifierLen));
+
+ return true;
+ }
+
+ // Check for using an Objective-C specific conversion specifier
+ // in a non-ObjC literal.
+ if (!ObjCContext && CS.isObjCArg()) {
+ return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
+ specifierLen);
+ }
+
+ // Check for invalid use of field width
+ if (!FS.hasValidFieldWidth()) {
+ HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
+ startSpecifier, specifierLen);
+ }
+
+ // Check for invalid use of precision
+ if (!FS.hasValidPrecision()) {
+ HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
+ startSpecifier, specifierLen);
+ }
+
+ // Check each flag does not conflict with any other component.
+ if (!FS.hasValidThousandsGroupingPrefix())
+ HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
+ if (!FS.hasValidLeadingZeros())
+ HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
+ if (!FS.hasValidPlusPrefix())
+ HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
+ if (!FS.hasValidSpacePrefix())
+ HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
+ if (!FS.hasValidAlternativeForm())
+ HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
+ if (!FS.hasValidLeftJustified())
+ HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
+
+ // Check that flags are not ignored by another flag
+ if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
+ HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
+ startSpecifier, specifierLen);
+ if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
+ HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
+ startSpecifier, specifierLen);
+
+ // Check the length modifier is valid with the given conversion specifier.
+ if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
+ HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
+ diag::warn_format_nonsensical_length);
+ else if (!FS.hasStandardLengthModifier())
+ HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
+ else if (!FS.hasStandardLengthConversionCombination())
+ HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
+ diag::warn_format_non_standard_conversion_spec);
+
+ if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
+ HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
+
+ // The remaining checks depend on the data arguments.
+ if (HasVAListArg)
+ return true;
+
+ if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
+ return false;
+
+ const Expr *Arg = getDataArg(argIndex);
+ if (!Arg)
+ return true;
+
+ return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
+}
+
+static bool requiresParensToAddCast(const Expr *E) {
+ // FIXME: We should have a general way to reason about operator
+ // precedence and whether parens are actually needed here.
+ // Take care of a few common cases where they aren't.
+ const Expr *Inside = E->IgnoreImpCasts();
+ if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
+ Inside = POE->getSyntacticForm()->IgnoreImpCasts();
+
+ switch (Inside->getStmtClass()) {
+ case Stmt::ArraySubscriptExprClass:
+ case Stmt::CallExprClass:
+ case Stmt::CharacterLiteralClass:
+ case Stmt::CXXBoolLiteralExprClass:
+ case Stmt::DeclRefExprClass:
+ case Stmt::FloatingLiteralClass:
+ case Stmt::IntegerLiteralClass:
+ case Stmt::MemberExprClass:
+ case Stmt::ObjCArrayLiteralClass:
+ case Stmt::ObjCBoolLiteralExprClass:
+ case Stmt::ObjCBoxedExprClass:
+ case Stmt::ObjCDictionaryLiteralClass:
+ case Stmt::ObjCEncodeExprClass:
+ case Stmt::ObjCIvarRefExprClass:
+ case Stmt::ObjCMessageExprClass:
+ case Stmt::ObjCPropertyRefExprClass:
+ case Stmt::ObjCStringLiteralClass:
+ case Stmt::ObjCSubscriptRefExprClass:
+ case Stmt::ParenExprClass:
+ case Stmt::StringLiteralClass:
+ case Stmt::UnaryOperatorClass:
+ return false;
+ default:
+ return true;
+ }
+}
+
+static std::pair<QualType, StringRef>
+shouldNotPrintDirectly(const ASTContext &Context,
+ QualType IntendedTy,
+ const Expr *E) {
+ // Use a 'while' to peel off layers of typedefs.
+ QualType TyTy = IntendedTy;
+ while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
+ StringRef Name = UserTy->getDecl()->getName();
+ QualType CastTy = llvm::StringSwitch<QualType>(Name)
+ .Case("NSInteger", Context.LongTy)
+ .Case("NSUInteger", Context.UnsignedLongTy)
+ .Case("SInt32", Context.IntTy)
+ .Case("UInt32", Context.UnsignedIntTy)
+ .Default(QualType());
+
+ if (!CastTy.isNull())
+ return std::make_pair(CastTy, Name);
+
+ TyTy = UserTy->desugar();
+ }
+
+ // Strip parens if necessary.
+ if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
+ return shouldNotPrintDirectly(Context,
+ PE->getSubExpr()->getType(),
+ PE->getSubExpr());
+
+ // If this is a conditional expression, then its result type is constructed
+ // via usual arithmetic conversions and thus there might be no necessary
+ // typedef sugar there. Recurse to operands to check for NSInteger &
+ // Co. usage condition.
+ if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
+ QualType TrueTy, FalseTy;
+ StringRef TrueName, FalseName;
+
+ std::tie(TrueTy, TrueName) =
+ shouldNotPrintDirectly(Context,
+ CO->getTrueExpr()->getType(),
+ CO->getTrueExpr());
+ std::tie(FalseTy, FalseName) =
+ shouldNotPrintDirectly(Context,
+ CO->getFalseExpr()->getType(),
+ CO->getFalseExpr());
+
+ if (TrueTy == FalseTy)
+ return std::make_pair(TrueTy, TrueName);
+ else if (TrueTy.isNull())
+ return std::make_pair(FalseTy, FalseName);
+ else if (FalseTy.isNull())
+ return std::make_pair(TrueTy, TrueName);
+ }
+
+ return std::make_pair(QualType(), StringRef());
+}
+
+bool
+CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
+ const char *StartSpecifier,
+ unsigned SpecifierLen,
+ const Expr *E) {
+ using namespace analyze_format_string;
+ using namespace analyze_printf;
+ // Now type check the data expression that matches the
+ // format specifier.
+ const analyze_printf::ArgType &AT = FS.getArgType(S.Context,
+ ObjCContext);
+ if (!AT.isValid())
+ return true;
+
+ QualType ExprTy = E->getType();
+ while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
+ ExprTy = TET->getUnderlyingExpr()->getType();
+ }
+
+ analyze_printf::ArgType::MatchKind match = AT.matchesType(S.Context, ExprTy);
+
+ if (match == analyze_printf::ArgType::Match) {
+ return true;
+ }
+
+ // Look through argument promotions for our error message's reported type.
+ // This includes the integral and floating promotions, but excludes array
+ // and function pointer decay; seeing that an argument intended to be a
+ // string has type 'char [6]' is probably more confusing than 'char *'.
+ if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
+ if (ICE->getCastKind() == CK_IntegralCast ||
+ ICE->getCastKind() == CK_FloatingCast) {
+ E = ICE->getSubExpr();
+ ExprTy = E->getType();
+
+ // Check if we didn't match because of an implicit cast from a 'char'
+ // or 'short' to an 'int'. This is done because printf is a varargs
+ // function.
+ if (ICE->getType() == S.Context.IntTy ||
+ ICE->getType() == S.Context.UnsignedIntTy) {
+ // All further checking is done on the subexpression.
+ if (AT.matchesType(S.Context, ExprTy))
+ return true;
+ }
+ }
+ } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
+ // Special case for 'a', which has type 'int' in C.
+ // Note, however, that we do /not/ want to treat multibyte constants like
+ // 'MooV' as characters! This form is deprecated but still exists.
+ if (ExprTy == S.Context.IntTy)
+ if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
+ ExprTy = S.Context.CharTy;
+ }
+
+ // Look through enums to their underlying type.
+ bool IsEnum = false;
+ if (auto EnumTy = ExprTy->getAs<EnumType>()) {
+ ExprTy = EnumTy->getDecl()->getIntegerType();
+ IsEnum = true;
+ }
+
+ // %C in an Objective-C context prints a unichar, not a wchar_t.
+ // If the argument is an integer of some kind, believe the %C and suggest
+ // a cast instead of changing the conversion specifier.
+ QualType IntendedTy = ExprTy;
+ if (ObjCContext &&
+ FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
+ if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
+ !ExprTy->isCharType()) {
+ // 'unichar' is defined as a typedef of unsigned short, but we should
+ // prefer using the typedef if it is visible.
+ IntendedTy = S.Context.UnsignedShortTy;
+
+ // While we are here, check if the value is an IntegerLiteral that happens
+ // to be within the valid range.
+ if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) {
+ const llvm::APInt &V = IL->getValue();
+ if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy))
+ return true;
+ }
+
+ LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getLocStart(),
+ Sema::LookupOrdinaryName);
+ if (S.LookupName(Result, S.getCurScope())) {
+ NamedDecl *ND = Result.getFoundDecl();
+ if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
+ if (TD->getUnderlyingType() == IntendedTy)
+ IntendedTy = S.Context.getTypedefType(TD);
+ }
+ }
+ }
+
+ // Special-case some of Darwin's platform-independence types by suggesting
+ // casts to primitive types that are known to be large enough.
+ bool ShouldNotPrintDirectly = false; StringRef CastTyName;
+ if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
+ QualType CastTy;
+ std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E);
+ if (!CastTy.isNull()) {
+ IntendedTy = CastTy;
+ ShouldNotPrintDirectly = true;
+ }
+ }
+
+ // We may be able to offer a FixItHint if it is a supported type.
+ PrintfSpecifier fixedFS = FS;
+ bool success = fixedFS.fixType(IntendedTy, S.getLangOpts(),
+ S.Context, ObjCContext);
+
+ if (success) {
+ // Get the fix string from the fixed format specifier
+ SmallString<16> buf;
+ llvm::raw_svector_ostream os(buf);
+ fixedFS.toString(os);
+
+ CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
+
+ if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) {
+ unsigned diag = diag::warn_format_conversion_argument_type_mismatch;
+ if (match == analyze_format_string::ArgType::NoMatchPedantic) {
+ diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
+ }
+ // In this case, the specifier is wrong and should be changed to match
+ // the argument.
+ EmitFormatDiagnostic(S.PDiag(diag)
+ << AT.getRepresentativeTypeName(S.Context)
+ << IntendedTy << IsEnum << E->getSourceRange(),
+ E->getLocStart(),
+ /*IsStringLocation*/ false, SpecRange,
+ FixItHint::CreateReplacement(SpecRange, os.str()));
+
+ } else {
+ // The canonical type for formatting this value is different from the
+ // actual type of the expression. (This occurs, for example, with Darwin's
+ // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
+ // should be printed as 'long' for 64-bit compatibility.)
+ // Rather than emitting a normal format/argument mismatch, we want to
+ // add a cast to the recommended type (and correct the format string
+ // if necessary).
+ SmallString<16> CastBuf;
+ llvm::raw_svector_ostream CastFix(CastBuf);
+ CastFix << "(";
+ IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
+ CastFix << ")";
+
+ SmallVector<FixItHint,4> Hints;
+ if (!AT.matchesType(S.Context, IntendedTy))
+ Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
+
+ if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
+ // If there's already a cast present, just replace it.
+ SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
+ Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
+
+ } else if (!requiresParensToAddCast(E)) {
+ // If the expression has high enough precedence,
+ // just write the C-style cast.
+ Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
+ CastFix.str()));
+ } else {
+ // Otherwise, add parens around the expression as well as the cast.
+ CastFix << "(";
+ Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
+ CastFix.str()));
+
+ SourceLocation After = S.getLocForEndOfToken(E->getLocEnd());
+ Hints.push_back(FixItHint::CreateInsertion(After, ")"));
+ }
+
+ if (ShouldNotPrintDirectly) {
+ // The expression has a type that should not be printed directly.
+ // We extract the name from the typedef because we don't want to show
+ // the underlying type in the diagnostic.
+ StringRef Name;
+ if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy))
+ Name = TypedefTy->getDecl()->getName();
+ else
+ Name = CastTyName;
+ EmitFormatDiagnostic(S.PDiag(diag::warn_format_argument_needs_cast)
+ << Name << IntendedTy << IsEnum
+ << E->getSourceRange(),
+ E->getLocStart(), /*IsStringLocation=*/false,
+ SpecRange, Hints);
+ } else {
+ // In this case, the expression could be printed using a different
+ // specifier, but we've decided that the specifier is probably correct
+ // and we should cast instead. Just use the normal warning message.
+ EmitFormatDiagnostic(
+ S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
+ << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum
+ << E->getSourceRange(),
+ E->getLocStart(), /*IsStringLocation*/false,
+ SpecRange, Hints);
+ }
+ }
+ } else {
+ const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
+ SpecifierLen);
+ // Since the warning for passing non-POD types to variadic functions
+ // was deferred until now, we emit a warning for non-POD
+ // arguments here.
+ switch (S.isValidVarArgType(ExprTy)) {
+ case Sema::VAK_Valid:
+ case Sema::VAK_ValidInCXX11: {
+ unsigned diag = diag::warn_format_conversion_argument_type_mismatch;
+ if (match == analyze_printf::ArgType::NoMatchPedantic) {
+ diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
+ }
+
+ EmitFormatDiagnostic(
+ S.PDiag(diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy
+ << IsEnum << CSR << E->getSourceRange(),
+ E->getLocStart(), /*IsStringLocation*/ false, CSR);
+ break;
+ }
+ case Sema::VAK_Undefined:
+ case Sema::VAK_MSVCUndefined:
+ EmitFormatDiagnostic(
+ S.PDiag(diag::warn_non_pod_vararg_with_format_string)
+ << S.getLangOpts().CPlusPlus11
+ << ExprTy
+ << CallType
+ << AT.getRepresentativeTypeName(S.Context)
+ << CSR
+ << E->getSourceRange(),
+ E->getLocStart(), /*IsStringLocation*/false, CSR);
+ checkForCStrMembers(AT, E);
+ break;
+
+ case Sema::VAK_Invalid:
+ if (ExprTy->isObjCObjectType())
+ EmitFormatDiagnostic(
+ S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
+ << S.getLangOpts().CPlusPlus11
+ << ExprTy
+ << CallType
+ << AT.getRepresentativeTypeName(S.Context)
+ << CSR
+ << E->getSourceRange(),
+ E->getLocStart(), /*IsStringLocation*/false, CSR);
+ else
+ // FIXME: If this is an initializer list, suggest removing the braces
+ // or inserting a cast to the target type.
+ S.Diag(E->getLocStart(), diag::err_cannot_pass_to_vararg_format)
+ << isa<InitListExpr>(E) << ExprTy << CallType
+ << AT.getRepresentativeTypeName(S.Context)
+ << E->getSourceRange();
+ break;
+ }
+
+ assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
+ "format string specifier index out of range");
+ CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
+ }
+
+ return true;
+}
+
+//===--- CHECK: Scanf format string checking ------------------------------===//
+
+namespace {
+class CheckScanfHandler : public CheckFormatHandler {
+public:
+ CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
+ const Expr *origFormatExpr, unsigned firstDataArg,
+ unsigned numDataArgs, const char *beg, bool hasVAListArg,
+ ArrayRef<const Expr *> Args,
+ unsigned formatIdx, bool inFunctionCall,
+ Sema::VariadicCallType CallType,
+ llvm::SmallBitVector &CheckedVarArgs)
+ : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
+ numDataArgs, beg, hasVAListArg,
+ Args, formatIdx, inFunctionCall, CallType,
+ CheckedVarArgs)
+ {}
+
+ bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
+ const char *startSpecifier,
+ unsigned specifierLen) override;
+
+ bool HandleInvalidScanfConversionSpecifier(
+ const analyze_scanf::ScanfSpecifier &FS,
+ const char *startSpecifier,
+ unsigned specifierLen) override;
+
+ void HandleIncompleteScanList(const char *start, const char *end) override;
+};
+}
+
+void CheckScanfHandler::HandleIncompleteScanList(const char *start,
+ const char *end) {
+ EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
+ getLocationOfByte(end), /*IsStringLocation*/true,
+ getSpecifierRange(start, end - start));
+}
+
+bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
+ const analyze_scanf::ScanfSpecifier &FS,
+ const char *startSpecifier,
+ unsigned specifierLen) {
+
+ const analyze_scanf::ScanfConversionSpecifier &CS =
+ FS.getConversionSpecifier();
+
+ return HandleInvalidConversionSpecifier(FS.getArgIndex(),
+ getLocationOfByte(CS.getStart()),
+ startSpecifier, specifierLen,
+ CS.getStart(), CS.getLength());
+}
+
+bool CheckScanfHandler::HandleScanfSpecifier(
+ const analyze_scanf::ScanfSpecifier &FS,
+ const char *startSpecifier,
+ unsigned specifierLen) {
+
+ using namespace analyze_scanf;
+ using namespace analyze_format_string;
+
+ const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
+
+ // Handle case where '%' and '*' don't consume an argument. These shouldn't
+ // be used to decide if we are using positional arguments consistently.
+ if (FS.consumesDataArgument()) {
+ if (atFirstArg) {
+ atFirstArg = false;
+ usesPositionalArgs = FS.usesPositionalArg();
+ }
+ else if (usesPositionalArgs != FS.usesPositionalArg()) {
+ HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
+ startSpecifier, specifierLen);
+ return false;
+ }
+ }
+
+ // Check if the field with is non-zero.
+ const OptionalAmount &Amt = FS.getFieldWidth();
+ if (Amt.getHowSpecified() == OptionalAmount::Constant) {
+ if (Amt.getConstantAmount() == 0) {
+ const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
+ Amt.getConstantLength());
+ EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
+ getLocationOfByte(Amt.getStart()),
+ /*IsStringLocation*/true, R,
+ FixItHint::CreateRemoval(R));
+ }
+ }
+
+ if (!FS.consumesDataArgument()) {
+ // FIXME: Technically specifying a precision or field width here
+ // makes no sense. Worth issuing a warning at some point.
+ return true;
+ }
+
+ // Consume the argument.
+ unsigned argIndex = FS.getArgIndex();
+ if (argIndex < NumDataArgs) {
+ // The check to see if the argIndex is valid will come later.
+ // We set the bit here because we may exit early from this
+ // function if we encounter some other error.
+ CoveredArgs.set(argIndex);
+ }
+
+ // Check the length modifier is valid with the given conversion specifier.
+ if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
+ HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
+ diag::warn_format_nonsensical_length);
+ else if (!FS.hasStandardLengthModifier())
+ HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
+ else if (!FS.hasStandardLengthConversionCombination())
+ HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
+ diag::warn_format_non_standard_conversion_spec);
+
+ if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
+ HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
+
+ // The remaining checks depend on the data arguments.
+ if (HasVAListArg)
+ return true;
+
+ if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
+ return false;
+
+ // Check that the argument type matches the format specifier.
+ const Expr *Ex = getDataArg(argIndex);
+ if (!Ex)
+ return true;
+
+ const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
+
+ if (!AT.isValid()) {
+ return true;
+ }
+
+ analyze_format_string::ArgType::MatchKind match =
+ AT.matchesType(S.Context, Ex->getType());
+ if (match == analyze_format_string::ArgType::Match) {
+ return true;
+ }
+
+ ScanfSpecifier fixedFS = FS;
+ bool success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(),
+ S.getLangOpts(), S.Context);
+
+ unsigned diag = diag::warn_format_conversion_argument_type_mismatch;
+ if (match == analyze_format_string::ArgType::NoMatchPedantic) {
+ diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
+ }
+
+ if (success) {
+ // Get the fix string from the fixed format specifier.
+ SmallString<128> buf;
+ llvm::raw_svector_ostream os(buf);
+ fixedFS.toString(os);
+
+ EmitFormatDiagnostic(
+ S.PDiag(diag) << AT.getRepresentativeTypeName(S.Context)
+ << Ex->getType() << false << Ex->getSourceRange(),
+ Ex->getLocStart(),
+ /*IsStringLocation*/ false,
+ getSpecifierRange(startSpecifier, specifierLen),
+ FixItHint::CreateReplacement(
+ getSpecifierRange(startSpecifier, specifierLen), os.str()));
+ } else {
+ EmitFormatDiagnostic(S.PDiag(diag)
+ << AT.getRepresentativeTypeName(S.Context)
+ << Ex->getType() << false << Ex->getSourceRange(),
+ Ex->getLocStart(),
+ /*IsStringLocation*/ false,
+ getSpecifierRange(startSpecifier, specifierLen));
+ }
+
+ return true;
+}
+
+void Sema::CheckFormatString(const StringLiteral *FExpr,
+ const Expr *OrigFormatExpr,
+ ArrayRef<const Expr *> Args,
+ bool HasVAListArg, unsigned format_idx,
+ unsigned firstDataArg, FormatStringType Type,
+ bool inFunctionCall, VariadicCallType CallType,
+ llvm::SmallBitVector &CheckedVarArgs) {
+
+ // CHECK: is the format string a wide literal?
+ if (!FExpr->isAscii() && !FExpr->isUTF8()) {
+ CheckFormatHandler::EmitFormatDiagnostic(
+ *this, inFunctionCall, Args[format_idx],
+ PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
+ /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
+ return;
+ }
+
+ // Str - The format string. NOTE: this is NOT null-terminated!
+ StringRef StrRef = FExpr->getString();
+ const char *Str = StrRef.data();
+ // Account for cases where the string literal is truncated in a declaration.
+ const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
+ assert(T && "String literal not of constant array type!");
+ size_t TypeSize = T->getSize().getZExtValue();
+ size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
+ const unsigned numDataArgs = Args.size() - firstDataArg;
+
+ // Emit a warning if the string literal is truncated and does not contain an
+ // embedded null character.
+ if (TypeSize <= StrRef.size() &&
+ StrRef.substr(0, TypeSize).find('\0') == StringRef::npos) {
+ CheckFormatHandler::EmitFormatDiagnostic(
+ *this, inFunctionCall, Args[format_idx],
+ PDiag(diag::warn_printf_format_string_not_null_terminated),
+ FExpr->getLocStart(),
+ /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange());
+ return;
+ }
+
+ // CHECK: empty format string?
+ if (StrLen == 0 && numDataArgs > 0) {
+ CheckFormatHandler::EmitFormatDiagnostic(
+ *this, inFunctionCall, Args[format_idx],
+ PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
+ /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
+ return;
+ }
+
+ if (Type == FST_Printf || Type == FST_NSString ||
+ Type == FST_FreeBSDKPrintf || Type == FST_OSTrace) {
+ CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
+ numDataArgs, (Type == FST_NSString || Type == FST_OSTrace),
+ Str, HasVAListArg, Args, format_idx,
+ inFunctionCall, CallType, CheckedVarArgs);
+
+ if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
+ getLangOpts(),
+ Context.getTargetInfo(),
+ Type == FST_FreeBSDKPrintf))
+ H.DoneProcessing();
+ } else if (Type == FST_Scanf) {
+ CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg, numDataArgs,
+ Str, HasVAListArg, Args, format_idx,
+ inFunctionCall, CallType, CheckedVarArgs);
+
+ if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
+ getLangOpts(),
+ Context.getTargetInfo()))
+ H.DoneProcessing();
+ } // TODO: handle other formats
+}
+
+bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) {
+ // Str - The format string. NOTE: this is NOT null-terminated!
+ StringRef StrRef = FExpr->getString();
+ const char *Str = StrRef.data();
+ // Account for cases where the string literal is truncated in a declaration.
+ const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
+ assert(T && "String literal not of constant array type!");
+ size_t TypeSize = T->getSize().getZExtValue();
+ size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
+ return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen,
+ getLangOpts(),
+ Context.getTargetInfo());
+}
+
+//===--- CHECK: Warn on use of wrong absolute value function. -------------===//
+
+// Returns the related absolute value function that is larger, of 0 if one
+// does not exist.
+static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) {
+ switch (AbsFunction) {
+ default:
+ return 0;
+
+ case Builtin::BI__builtin_abs:
+ return Builtin::BI__builtin_labs;
+ case Builtin::BI__builtin_labs:
+ return Builtin::BI__builtin_llabs;
+ case Builtin::BI__builtin_llabs:
+ return 0;
+
+ case Builtin::BI__builtin_fabsf:
+ return Builtin::BI__builtin_fabs;
+ case Builtin::BI__builtin_fabs:
+ return Builtin::BI__builtin_fabsl;
+ case Builtin::BI__builtin_fabsl:
+ return 0;
+
+ case Builtin::BI__builtin_cabsf:
+ return Builtin::BI__builtin_cabs;
+ case Builtin::BI__builtin_cabs:
+ return Builtin::BI__builtin_cabsl;
+ case Builtin::BI__builtin_cabsl:
+ return 0;
+
+ case Builtin::BIabs:
+ return Builtin::BIlabs;
+ case Builtin::BIlabs:
+ return Builtin::BIllabs;
+ case Builtin::BIllabs:
+ return 0;
+
+ case Builtin::BIfabsf:
+ return Builtin::BIfabs;
+ case Builtin::BIfabs:
+ return Builtin::BIfabsl;
+ case Builtin::BIfabsl:
+ return 0;
+
+ case Builtin::BIcabsf:
+ return Builtin::BIcabs;
+ case Builtin::BIcabs:
+ return Builtin::BIcabsl;
+ case Builtin::BIcabsl:
+ return 0;
+ }
+}
+
+// Returns the argument type of the absolute value function.
+static QualType getAbsoluteValueArgumentType(ASTContext &Context,
+ unsigned AbsType) {
+ if (AbsType == 0)
+ return QualType();
+
+ ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
+ QualType BuiltinType = Context.GetBuiltinType(AbsType, Error);
+ if (Error != ASTContext::GE_None)
+ return QualType();
+
+ const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>();
+ if (!FT)
+ return QualType();
+
+ if (FT->getNumParams() != 1)
+ return QualType();
+
+ return FT->getParamType(0);
+}
+
+// Returns the best absolute value function, or zero, based on type and
+// current absolute value function.
+static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType,
+ unsigned AbsFunctionKind) {
+ unsigned BestKind = 0;
+ uint64_t ArgSize = Context.getTypeSize(ArgType);
+ for (unsigned Kind = AbsFunctionKind; Kind != 0;
+ Kind = getLargerAbsoluteValueFunction(Kind)) {
+ QualType ParamType = getAbsoluteValueArgumentType(Context, Kind);
+ if (Context.getTypeSize(ParamType) >= ArgSize) {
+ if (BestKind == 0)
+ BestKind = Kind;
+ else if (Context.hasSameType(ParamType, ArgType)) {
+ BestKind = Kind;
+ break;
+ }
+ }
+ }
+ return BestKind;
+}
+
+enum AbsoluteValueKind {
+ AVK_Integer,
+ AVK_Floating,
+ AVK_Complex
+};
+
+static AbsoluteValueKind getAbsoluteValueKind(QualType T) {
+ if (T->isIntegralOrEnumerationType())
+ return AVK_Integer;
+ if (T->isRealFloatingType())
+ return AVK_Floating;
+ if (T->isAnyComplexType())
+ return AVK_Complex;
+
+ llvm_unreachable("Type not integer, floating, or complex");
+}
+
+// Changes the absolute value function to a different type. Preserves whether
+// the function is a builtin.
+static unsigned changeAbsFunction(unsigned AbsKind,
+ AbsoluteValueKind ValueKind) {
+ switch (ValueKind) {
+ case AVK_Integer:
+ switch (AbsKind) {
+ default:
+ return 0;
+ case Builtin::BI__builtin_fabsf:
+ case Builtin::BI__builtin_fabs:
+ case Builtin::BI__builtin_fabsl:
+ case Builtin::BI__builtin_cabsf:
+ case Builtin::BI__builtin_cabs:
+ case Builtin::BI__builtin_cabsl:
+ return Builtin::BI__builtin_abs;
+ case Builtin::BIfabsf:
+ case Builtin::BIfabs:
+ case Builtin::BIfabsl:
+ case Builtin::BIcabsf:
+ case Builtin::BIcabs:
+ case Builtin::BIcabsl:
+ return Builtin::BIabs;
+ }
+ case AVK_Floating:
+ switch (AbsKind) {
+ default:
+ return 0;
+ case Builtin::BI__builtin_abs:
+ case Builtin::BI__builtin_labs:
+ case Builtin::BI__builtin_llabs:
+ case Builtin::BI__builtin_cabsf:
+ case Builtin::BI__builtin_cabs:
+ case Builtin::BI__builtin_cabsl:
+ return Builtin::BI__builtin_fabsf;
+ case Builtin::BIabs:
+ case Builtin::BIlabs:
+ case Builtin::BIllabs:
+ case Builtin::BIcabsf:
+ case Builtin::BIcabs:
+ case Builtin::BIcabsl:
+ return Builtin::BIfabsf;
+ }
+ case AVK_Complex:
+ switch (AbsKind) {
+ default:
+ return 0;
+ case Builtin::BI__builtin_abs:
+ case Builtin::BI__builtin_labs:
+ case Builtin::BI__builtin_llabs:
+ case Builtin::BI__builtin_fabsf:
+ case Builtin::BI__builtin_fabs:
+ case Builtin::BI__builtin_fabsl:
+ return Builtin::BI__builtin_cabsf;
+ case Builtin::BIabs:
+ case Builtin::BIlabs:
+ case Builtin::BIllabs:
+ case Builtin::BIfabsf:
+ case Builtin::BIfabs:
+ case Builtin::BIfabsl:
+ return Builtin::BIcabsf;
+ }
+ }
+ llvm_unreachable("Unable to convert function");
+}
+
+static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) {
+ const IdentifierInfo *FnInfo = FDecl->getIdentifier();
+ if (!FnInfo)
+ return 0;
+
+ switch (FDecl->getBuiltinID()) {
+ default:
+ return 0;
+ case Builtin::BI__builtin_abs:
+ case Builtin::BI__builtin_fabs:
+ case Builtin::BI__builtin_fabsf:
+ case Builtin::BI__builtin_fabsl:
+ case Builtin::BI__builtin_labs:
+ case Builtin::BI__builtin_llabs:
+ case Builtin::BI__builtin_cabs:
+ case Builtin::BI__builtin_cabsf:
+ case Builtin::BI__builtin_cabsl:
+ case Builtin::BIabs:
+ case Builtin::BIlabs:
+ case Builtin::BIllabs:
+ case Builtin::BIfabs:
+ case Builtin::BIfabsf:
+ case Builtin::BIfabsl:
+ case Builtin::BIcabs:
+ case Builtin::BIcabsf:
+ case Builtin::BIcabsl:
+ return FDecl->getBuiltinID();
+ }
+ llvm_unreachable("Unknown Builtin type");
+}
+
+// If the replacement is valid, emit a note with replacement function.
+// Additionally, suggest including the proper header if not already included.
+static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range,
+ unsigned AbsKind, QualType ArgType) {
+ bool EmitHeaderHint = true;
+ const char *HeaderName = nullptr;
+ const char *FunctionName = nullptr;
+ if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) {
+ FunctionName = "std::abs";
+ if (ArgType->isIntegralOrEnumerationType()) {
+ HeaderName = "cstdlib";
+ } else if (ArgType->isRealFloatingType()) {
+ HeaderName = "cmath";
+ } else {
+ llvm_unreachable("Invalid Type");
+ }
+
+ // Lookup all std::abs
+ if (NamespaceDecl *Std = S.getStdNamespace()) {
+ LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName);
+ R.suppressDiagnostics();
+ S.LookupQualifiedName(R, Std);
+
+ for (const auto *I : R) {
+ const FunctionDecl *FDecl = nullptr;
+ if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) {
+ FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl());
+ } else {
+ FDecl = dyn_cast<FunctionDecl>(I);
+ }
+ if (!FDecl)
+ continue;
+
+ // Found std::abs(), check that they are the right ones.
+ if (FDecl->getNumParams() != 1)
+ continue;
+
+ // Check that the parameter type can handle the argument.
+ QualType ParamType = FDecl->getParamDecl(0)->getType();
+ if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) &&
+ S.Context.getTypeSize(ArgType) <=
+ S.Context.getTypeSize(ParamType)) {
+ // Found a function, don't need the header hint.
+ EmitHeaderHint = false;
+ break;
+ }
+ }
+ }
+ } else {
+ FunctionName = S.Context.BuiltinInfo.GetName(AbsKind);
+ HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind);
+
+ if (HeaderName) {
+ DeclarationName DN(&S.Context.Idents.get(FunctionName));
+ LookupResult R(S, DN, Loc, Sema::LookupAnyName);
+ R.suppressDiagnostics();
+ S.LookupName(R, S.getCurScope());
+
+ if (R.isSingleResult()) {
+ FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
+ if (FD && FD->getBuiltinID() == AbsKind) {
+ EmitHeaderHint = false;
+ } else {
+ return;
+ }
+ } else if (!R.empty()) {
+ return;
+ }
+ }
+ }
+
+ S.Diag(Loc, diag::note_replace_abs_function)
+ << FunctionName << FixItHint::CreateReplacement(Range, FunctionName);
+
+ if (!HeaderName)
+ return;
+
+ if (!EmitHeaderHint)
+ return;
+
+ S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName
+ << FunctionName;
+}
+
+static bool IsFunctionStdAbs(const FunctionDecl *FDecl) {
+ if (!FDecl)
+ return false;
+
+ if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr("abs"))
+ return false;
+
+ const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(FDecl->getDeclContext());
+
+ while (ND && ND->isInlineNamespace()) {
+ ND = dyn_cast<NamespaceDecl>(ND->getDeclContext());
+ }
+
+ if (!ND || !ND->getIdentifier() || !ND->getIdentifier()->isStr("std"))
+ return false;
+
+ if (!isa<TranslationUnitDecl>(ND->getDeclContext()))
+ return false;
+
+ return true;
+}
+
+// Warn when using the wrong abs() function.
+void Sema::CheckAbsoluteValueFunction(const CallExpr *Call,
+ const FunctionDecl *FDecl,
+ IdentifierInfo *FnInfo) {
+ if (Call->getNumArgs() != 1)
+ return;
+
+ unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl);
+ bool IsStdAbs = IsFunctionStdAbs(FDecl);
+ if (AbsKind == 0 && !IsStdAbs)
+ return;
+
+ QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType();
+ QualType ParamType = Call->getArg(0)->getType();
+
+ // Unsigned types cannot be negative. Suggest removing the absolute value
+ // function call.
+ if (ArgType->isUnsignedIntegerType()) {
+ const char *FunctionName =
+ IsStdAbs ? "std::abs" : Context.BuiltinInfo.GetName(AbsKind);
+ Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType;
+ Diag(Call->getExprLoc(), diag::note_remove_abs)
+ << FunctionName
+ << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange());
+ return;
+ }
+
+ // std::abs has overloads which prevent most of the absolute value problems
+ // from occurring.
+ if (IsStdAbs)
+ return;
+
+ AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType);
+ AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType);
+
+ // The argument and parameter are the same kind. Check if they are the right
+ // size.
+ if (ArgValueKind == ParamValueKind) {
+ if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType))
+ return;
+
+ unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind);
+ Diag(Call->getExprLoc(), diag::warn_abs_too_small)
+ << FDecl << ArgType << ParamType;
+
+ if (NewAbsKind == 0)
+ return;
+
+ emitReplacement(*this, Call->getExprLoc(),
+ Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
+ return;
+ }
+
+ // ArgValueKind != ParamValueKind
+ // The wrong type of absolute value function was used. Attempt to find the
+ // proper one.
+ unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind);
+ NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind);
+ if (NewAbsKind == 0)
+ return;
+
+ Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type)
+ << FDecl << ParamValueKind << ArgValueKind;
+
+ emitReplacement(*this, Call->getExprLoc(),
+ Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
+ return;
+}
+
+//===--- CHECK: Standard memory functions ---------------------------------===//
+
+/// \brief Takes the expression passed to the size_t parameter of functions
+/// such as memcmp, strncat, etc and warns if it's a comparison.
+///
+/// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`.
+static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E,
+ IdentifierInfo *FnName,
+ SourceLocation FnLoc,
+ SourceLocation RParenLoc) {
+ const BinaryOperator *Size = dyn_cast<BinaryOperator>(E);
+ if (!Size)
+ return false;
+
+ // if E is binop and op is >, <, >=, <=, ==, &&, ||:
+ if (!Size->isComparisonOp() && !Size->isEqualityOp() && !Size->isLogicalOp())
+ return false;
+
+ SourceRange SizeRange = Size->getSourceRange();
+ S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison)
+ << SizeRange << FnName;
+ S.Diag(FnLoc, diag::note_memsize_comparison_paren)
+ << FnName << FixItHint::CreateInsertion(
+ S.getLocForEndOfToken(Size->getLHS()->getLocEnd()), ")")
+ << FixItHint::CreateRemoval(RParenLoc);
+ S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence)
+ << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(")
+ << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()),
+ ")");
+
+ return true;
+}
+
+/// \brief Determine whether the given type is or contains a dynamic class type
+/// (e.g., whether it has a vtable).
+static const CXXRecordDecl *getContainedDynamicClass(QualType T,
+ bool &IsContained) {
+ // Look through array types while ignoring qualifiers.
+ const Type *Ty = T->getBaseElementTypeUnsafe();
+ IsContained = false;
+
+ const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
+ RD = RD ? RD->getDefinition() : nullptr;
+ if (!RD)
+ return nullptr;
+
+ if (RD->isDynamicClass())
+ return RD;
+
+ // Check all the fields. If any bases were dynamic, the class is dynamic.
+ // It's impossible for a class to transitively contain itself by value, so
+ // infinite recursion is impossible.
+ for (auto *FD : RD->fields()) {
+ bool SubContained;
+ if (const CXXRecordDecl *ContainedRD =
+ getContainedDynamicClass(FD->getType(), SubContained)) {
+ IsContained = true;
+ return ContainedRD;
+ }
+ }
+
+ return nullptr;
+}
+
+/// \brief If E is a sizeof expression, returns its argument expression,
+/// otherwise returns NULL.
+static const Expr *getSizeOfExprArg(const Expr *E) {
+ if (const UnaryExprOrTypeTraitExpr *SizeOf =
+ dyn_cast<UnaryExprOrTypeTraitExpr>(E))
+ if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
+ return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
+
+ return nullptr;
+}
+
+/// \brief If E is a sizeof expression, returns its argument type.
+static QualType getSizeOfArgType(const Expr *E) {
+ if (const UnaryExprOrTypeTraitExpr *SizeOf =
+ dyn_cast<UnaryExprOrTypeTraitExpr>(E))
+ if (SizeOf->getKind() == clang::UETT_SizeOf)
+ return SizeOf->getTypeOfArgument();
+
+ return QualType();
+}
+
+/// \brief Check for dangerous or invalid arguments to memset().
+///
+/// This issues warnings on known problematic, dangerous or unspecified
+/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
+/// function calls.
+///
+/// \param Call The call expression to diagnose.
+void Sema::CheckMemaccessArguments(const CallExpr *Call,
+ unsigned BId,
+ IdentifierInfo *FnName) {
+ assert(BId != 0);
+
+ // It is possible to have a non-standard definition of memset. Validate
+ // we have enough arguments, and if not, abort further checking.
+ unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3);
+ if (Call->getNumArgs() < ExpectedNumArgs)
+ return;
+
+ unsigned LastArg = (BId == Builtin::BImemset ||
+ BId == Builtin::BIstrndup ? 1 : 2);
+ unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2);
+ const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
+
+ if (CheckMemorySizeofForComparison(*this, LenExpr, FnName,
+ Call->getLocStart(), Call->getRParenLoc()))
+ return;
+
+ // We have special checking when the length is a sizeof expression.
+ QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
+ const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
+ llvm::FoldingSetNodeID SizeOfArgID;
+
+ for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
+ const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
+ SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
+
+ QualType DestTy = Dest->getType();
+ QualType PointeeTy;
+ if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
+ PointeeTy = DestPtrTy->getPointeeType();
+
+ // Never warn about void type pointers. This can be used to suppress
+ // false positives.
+ if (PointeeTy->isVoidType())
+ continue;
+
+ // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
+ // actually comparing the expressions for equality. Because computing the
+ // expression IDs can be expensive, we only do this if the diagnostic is
+ // enabled.
+ if (SizeOfArg &&
+ !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess,
+ SizeOfArg->getExprLoc())) {
+ // We only compute IDs for expressions if the warning is enabled, and
+ // cache the sizeof arg's ID.
+ if (SizeOfArgID == llvm::FoldingSetNodeID())
+ SizeOfArg->Profile(SizeOfArgID, Context, true);
+ llvm::FoldingSetNodeID DestID;
+ Dest->Profile(DestID, Context, true);
+ if (DestID == SizeOfArgID) {
+ // TODO: For strncpy() and friends, this could suggest sizeof(dst)
+ // over sizeof(src) as well.
+ unsigned ActionIdx = 0; // Default is to suggest dereferencing.
+ StringRef ReadableName = FnName->getName();
+
+ if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
+ if (UnaryOp->getOpcode() == UO_AddrOf)
+ ActionIdx = 1; // If its an address-of operator, just remove it.
+ if (!PointeeTy->isIncompleteType() &&
+ (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
+ ActionIdx = 2; // If the pointee's size is sizeof(char),
+ // suggest an explicit length.
+
+ // If the function is defined as a builtin macro, do not show macro
+ // expansion.
+ SourceLocation SL = SizeOfArg->getExprLoc();
+ SourceRange DSR = Dest->getSourceRange();
+ SourceRange SSR = SizeOfArg->getSourceRange();
+ SourceManager &SM = getSourceManager();
+
+ if (SM.isMacroArgExpansion(SL)) {
+ ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
+ SL = SM.getSpellingLoc(SL);
+ DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
+ SM.getSpellingLoc(DSR.getEnd()));
+ SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
+ SM.getSpellingLoc(SSR.getEnd()));
+ }
+
+ DiagRuntimeBehavior(SL, SizeOfArg,
+ PDiag(diag::warn_sizeof_pointer_expr_memaccess)
+ << ReadableName
+ << PointeeTy
+ << DestTy
+ << DSR
+ << SSR);
+ DiagRuntimeBehavior(SL, SizeOfArg,
+ PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
+ << ActionIdx
+ << SSR);
+
+ break;
+ }
+ }
+
+ // Also check for cases where the sizeof argument is the exact same
+ // type as the memory argument, and where it points to a user-defined
+ // record type.
+ if (SizeOfArgTy != QualType()) {
+ if (PointeeTy->isRecordType() &&
+ Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
+ DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
+ PDiag(diag::warn_sizeof_pointer_type_memaccess)
+ << FnName << SizeOfArgTy << ArgIdx
+ << PointeeTy << Dest->getSourceRange()
+ << LenExpr->getSourceRange());
+ break;
+ }
+ }
+ } else if (DestTy->isArrayType()) {
+ PointeeTy = DestTy;
+ }
+
+ if (PointeeTy == QualType())
+ continue;
+
+ // Always complain about dynamic classes.
+ bool IsContained;
+ if (const CXXRecordDecl *ContainedRD =
+ getContainedDynamicClass(PointeeTy, IsContained)) {
+
+ unsigned OperationType = 0;
+ // "overwritten" if we're warning about the destination for any call
+ // but memcmp; otherwise a verb appropriate to the call.
+ if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
+ if (BId == Builtin::BImemcpy)
+ OperationType = 1;
+ else if(BId == Builtin::BImemmove)
+ OperationType = 2;
+ else if (BId == Builtin::BImemcmp)
+ OperationType = 3;
+ }
+
+ DiagRuntimeBehavior(
+ Dest->getExprLoc(), Dest,
+ PDiag(diag::warn_dyn_class_memaccess)
+ << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
+ << FnName << IsContained << ContainedRD << OperationType
+ << Call->getCallee()->getSourceRange());
+ } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
+ BId != Builtin::BImemset)
+ DiagRuntimeBehavior(
+ Dest->getExprLoc(), Dest,
+ PDiag(diag::warn_arc_object_memaccess)
+ << ArgIdx << FnName << PointeeTy
+ << Call->getCallee()->getSourceRange());
+ else
+ continue;
+
+ DiagRuntimeBehavior(
+ Dest->getExprLoc(), Dest,
+ PDiag(diag::note_bad_memaccess_silence)
+ << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
+ break;
+ }
+
+}
+
+// A little helper routine: ignore addition and subtraction of integer literals.
+// This intentionally does not ignore all integer constant expressions because
+// we don't want to remove sizeof().
+static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
+ Ex = Ex->IgnoreParenCasts();
+
+ for (;;) {
+ const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
+ if (!BO || !BO->isAdditiveOp())
+ break;
+
+ const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
+ const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
+
+ if (isa<IntegerLiteral>(RHS))
+ Ex = LHS;
+ else if (isa<IntegerLiteral>(LHS))
+ Ex = RHS;
+ else
+ break;
+ }
+
+ return Ex;
+}
+
+static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
+ ASTContext &Context) {
+ // Only handle constant-sized or VLAs, but not flexible members.
+ if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
+ // Only issue the FIXIT for arrays of size > 1.
+ if (CAT->getSize().getSExtValue() <= 1)
+ return false;
+ } else if (!Ty->isVariableArrayType()) {
+ return false;
+ }
+ return true;
+}
+
+// Warn if the user has made the 'size' argument to strlcpy or strlcat
+// be the size of the source, instead of the destination.
+void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
+ IdentifierInfo *FnName) {
+
+ // Don't crash if the user has the wrong number of arguments
+ unsigned NumArgs = Call->getNumArgs();
+ if ((NumArgs != 3) && (NumArgs != 4))
+ return;
+
+ const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
+ const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
+ const Expr *CompareWithSrc = nullptr;
+
+ if (CheckMemorySizeofForComparison(*this, SizeArg, FnName,
+ Call->getLocStart(), Call->getRParenLoc()))
+ return;
+
+ // Look for 'strlcpy(dst, x, sizeof(x))'
+ if (const Expr *Ex = getSizeOfExprArg(SizeArg))
+ CompareWithSrc = Ex;
+ else {
+ // Look for 'strlcpy(dst, x, strlen(x))'
+ if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
+ if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen &&
+ SizeCall->getNumArgs() == 1)
+ CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
+ }
+ }
+
+ if (!CompareWithSrc)
+ return;
+
+ // Determine if the argument to sizeof/strlen is equal to the source
+ // argument. In principle there's all kinds of things you could do
+ // here, for instance creating an == expression and evaluating it with
+ // EvaluateAsBooleanCondition, but this uses a more direct technique:
+ const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
+ if (!SrcArgDRE)
+ return;
+
+ const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
+ if (!CompareWithSrcDRE ||
+ SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
+ return;
+
+ const Expr *OriginalSizeArg = Call->getArg(2);
+ Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
+ << OriginalSizeArg->getSourceRange() << FnName;
+
+ // Output a FIXIT hint if the destination is an array (rather than a
+ // pointer to an array). This could be enhanced to handle some
+ // pointers if we know the actual size, like if DstArg is 'array+2'
+ // we could say 'sizeof(array)-2'.
+ const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
+ if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
+ return;
+
+ SmallString<128> sizeString;
+ llvm::raw_svector_ostream OS(sizeString);
+ OS << "sizeof(";
+ DstArg->printPretty(OS, nullptr, getPrintingPolicy());
+ OS << ")";
+
+ Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
+ << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
+ OS.str());
+}
+
+/// Check if two expressions refer to the same declaration.
+static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
+ if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
+ if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
+ return D1->getDecl() == D2->getDecl();
+ return false;
+}
+
+static const Expr *getStrlenExprArg(const Expr *E) {
+ if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
+ const FunctionDecl *FD = CE->getDirectCallee();
+ if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
+ return nullptr;
+ return CE->getArg(0)->IgnoreParenCasts();
+ }
+ return nullptr;
+}
+
+// Warn on anti-patterns as the 'size' argument to strncat.
+// The correct size argument should look like following:
+// strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
+void Sema::CheckStrncatArguments(const CallExpr *CE,
+ IdentifierInfo *FnName) {
+ // Don't crash if the user has the wrong number of arguments.
+ if (CE->getNumArgs() < 3)
+ return;
+ const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
+ const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
+ const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
+
+ if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getLocStart(),
+ CE->getRParenLoc()))
+ return;
+
+ // Identify common expressions, which are wrongly used as the size argument
+ // to strncat and may lead to buffer overflows.
+ unsigned PatternType = 0;
+ if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
+ // - sizeof(dst)
+ if (referToTheSameDecl(SizeOfArg, DstArg))
+ PatternType = 1;
+ // - sizeof(src)
+ else if (referToTheSameDecl(SizeOfArg, SrcArg))
+ PatternType = 2;
+ } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
+ if (BE->getOpcode() == BO_Sub) {
+ const Expr *L = BE->getLHS()->IgnoreParenCasts();
+ const Expr *R = BE->getRHS()->IgnoreParenCasts();
+ // - sizeof(dst) - strlen(dst)
+ if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
+ referToTheSameDecl(DstArg, getStrlenExprArg(R)))
+ PatternType = 1;
+ // - sizeof(src) - (anything)
+ else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
+ PatternType = 2;
+ }
+ }
+
+ if (PatternType == 0)
+ return;
+
+ // Generate the diagnostic.
+ SourceLocation SL = LenArg->getLocStart();
+ SourceRange SR = LenArg->getSourceRange();
+ SourceManager &SM = getSourceManager();
+
+ // If the function is defined as a builtin macro, do not show macro expansion.
+ if (SM.isMacroArgExpansion(SL)) {
+ SL = SM.getSpellingLoc(SL);
+ SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
+ SM.getSpellingLoc(SR.getEnd()));
+ }
+
+ // Check if the destination is an array (rather than a pointer to an array).
+ QualType DstTy = DstArg->getType();
+ bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
+ Context);
+ if (!isKnownSizeArray) {
+ if (PatternType == 1)
+ Diag(SL, diag::warn_strncat_wrong_size) << SR;
+ else
+ Diag(SL, diag::warn_strncat_src_size) << SR;
+ return;
+ }
+
+ if (PatternType == 1)
+ Diag(SL, diag::warn_strncat_large_size) << SR;
+ else
+ Diag(SL, diag::warn_strncat_src_size) << SR;
+
+ SmallString<128> sizeString;
+ llvm::raw_svector_ostream OS(sizeString);
+ OS << "sizeof(";
+ DstArg->printPretty(OS, nullptr, getPrintingPolicy());
+ OS << ") - ";
+ OS << "strlen(";
+ DstArg->printPretty(OS, nullptr, getPrintingPolicy());
+ OS << ") - 1";
+
+ Diag(SL, diag::note_strncat_wrong_size)
+ << FixItHint::CreateReplacement(SR, OS.str());
+}
+
+//===--- CHECK: Return Address of Stack Variable --------------------------===//
+
+static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
+ Decl *ParentDecl);
+static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars,
+ Decl *ParentDecl);
+
+/// CheckReturnStackAddr - Check if a return statement returns the address
+/// of a stack variable.
+static void
+CheckReturnStackAddr(Sema &S, Expr *RetValExp, QualType lhsType,
+ SourceLocation ReturnLoc) {
+
+ Expr *stackE = nullptr;
+ SmallVector<DeclRefExpr *, 8> refVars;
+
+ // Perform checking for returned stack addresses, local blocks,
+ // label addresses or references to temporaries.
+ if (lhsType->isPointerType() ||
+ (!S.getLangOpts().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
+ stackE = EvalAddr(RetValExp, refVars, /*ParentDecl=*/nullptr);
+ } else if (lhsType->isReferenceType()) {
+ stackE = EvalVal(RetValExp, refVars, /*ParentDecl=*/nullptr);
+ }
+
+ if (!stackE)
+ return; // Nothing suspicious was found.
+
+ SourceLocation diagLoc;
+ SourceRange diagRange;
+ if (refVars.empty()) {
+ diagLoc = stackE->getLocStart();
+ diagRange = stackE->getSourceRange();
+ } else {
+ // We followed through a reference variable. 'stackE' contains the
+ // problematic expression but we will warn at the return statement pointing
+ // at the reference variable. We will later display the "trail" of
+ // reference variables using notes.
+ diagLoc = refVars[0]->getLocStart();
+ diagRange = refVars[0]->getSourceRange();
+ }
+
+ if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
+ S.Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
+ : diag::warn_ret_stack_addr)
+ << DR->getDecl()->getDeclName() << diagRange;
+ } else if (isa<BlockExpr>(stackE)) { // local block.
+ S.Diag(diagLoc, diag::err_ret_local_block) << diagRange;
+ } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
+ S.Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
+ } else { // local temporary.
+ S.Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
+ : diag::warn_ret_local_temp_addr)
+ << diagRange;
+ }
+
+ // Display the "trail" of reference variables that we followed until we
+ // found the problematic expression using notes.
+ for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
+ VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
+ // If this var binds to another reference var, show the range of the next
+ // var, otherwise the var binds to the problematic expression, in which case
+ // show the range of the expression.
+ SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
+ : stackE->getSourceRange();
+ S.Diag(VD->getLocation(), diag::note_ref_var_local_bind)
+ << VD->getDeclName() << range;
+ }
+}
+
+/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
+/// check if the expression in a return statement evaluates to an address
+/// to a location on the stack, a local block, an address of a label, or a
+/// reference to local temporary. The recursion is used to traverse the
+/// AST of the return expression, with recursion backtracking when we
+/// encounter a subexpression that (1) clearly does not lead to one of the
+/// above problematic expressions (2) is something we cannot determine leads to
+/// a problematic expression based on such local checking.
+///
+/// Both EvalAddr and EvalVal follow through reference variables to evaluate
+/// the expression that they point to. Such variables are added to the
+/// 'refVars' vector so that we know what the reference variable "trail" was.
+///
+/// EvalAddr processes expressions that are pointers that are used as
+/// references (and not L-values). EvalVal handles all other values.
+/// At the base case of the recursion is a check for the above problematic
+/// expressions.
+///
+/// This implementation handles:
+///
+/// * pointer-to-pointer casts
+/// * implicit conversions from array references to pointers
+/// * taking the address of fields
+/// * arbitrary interplay between "&" and "*" operators
+/// * pointer arithmetic from an address of a stack variable
+/// * taking the address of an array element where the array is on the stack
+static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
+ Decl *ParentDecl) {
+ if (E->isTypeDependent())
+ return nullptr;
+
+ // We should only be called for evaluating pointer expressions.
+ assert((E->getType()->isAnyPointerType() ||
+ E->getType()->isBlockPointerType() ||
+ E->getType()->isObjCQualifiedIdType()) &&
+ "EvalAddr only works on pointers");
+
+ E = E->IgnoreParens();
+
+ // Our "symbolic interpreter" is just a dispatch off the currently
+ // viewed AST node. We then recursively traverse the AST by calling
+ // EvalAddr and EvalVal appropriately.
+ switch (E->getStmtClass()) {
+ case Stmt::DeclRefExprClass: {
+ DeclRefExpr *DR = cast<DeclRefExpr>(E);
+
+ // If we leave the immediate function, the lifetime isn't about to end.
+ if (DR->refersToEnclosingVariableOrCapture())
+ return nullptr;
+
+ if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
+ // If this is a reference variable, follow through to the expression that
+ // it points to.
+ if (V->hasLocalStorage() &&
+ V->getType()->isReferenceType() && V->hasInit()) {
+ // Add the reference variable to the "trail".
+ refVars.push_back(DR);
+ return EvalAddr(V->getInit(), refVars, ParentDecl);
+ }
+
+ return nullptr;
+ }
+
+ case Stmt::UnaryOperatorClass: {
+ // The only unary operator that make sense to handle here
+ // is AddrOf. All others don't make sense as pointers.
+ UnaryOperator *U = cast<UnaryOperator>(E);
+
+ if (U->getOpcode() == UO_AddrOf)
+ return EvalVal(U->getSubExpr(), refVars, ParentDecl);
+ else
+ return nullptr;
+ }
+
+ case Stmt::BinaryOperatorClass: {
+ // Handle pointer arithmetic. All other binary operators are not valid
+ // in this context.
+ BinaryOperator *B = cast<BinaryOperator>(E);
+ BinaryOperatorKind op = B->getOpcode();
+
+ if (op != BO_Add && op != BO_Sub)
+ return nullptr;
+
+ Expr *Base = B->getLHS();
+
+ // Determine which argument is the real pointer base. It could be
+ // the RHS argument instead of the LHS.
+ if (!Base->getType()->isPointerType()) Base = B->getRHS();
+
+ assert (Base->getType()->isPointerType());
+ return EvalAddr(Base, refVars, ParentDecl);
+ }
+
+ // For conditional operators we need to see if either the LHS or RHS are
+ // valid DeclRefExpr*s. If one of them is valid, we return it.
+ case Stmt::ConditionalOperatorClass: {
+ ConditionalOperator *C = cast<ConditionalOperator>(E);
+
+ // Handle the GNU extension for missing LHS.
+ // FIXME: That isn't a ConditionalOperator, so doesn't get here.
+ if (Expr *LHSExpr = C->getLHS()) {
+ // In C++, we can have a throw-expression, which has 'void' type.
+ if (!LHSExpr->getType()->isVoidType())
+ if (Expr *LHS = EvalAddr(LHSExpr, refVars, ParentDecl))
+ return LHS;
+ }
+
+ // In C++, we can have a throw-expression, which has 'void' type.
+ if (C->getRHS()->getType()->isVoidType())
+ return nullptr;
+
+ return EvalAddr(C->getRHS(), refVars, ParentDecl);
+ }
+
+ case Stmt::BlockExprClass:
+ if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
+ return E; // local block.
+ return nullptr;
+
+ case Stmt::AddrLabelExprClass:
+ return E; // address of label.
+
+ case Stmt::ExprWithCleanupsClass:
+ return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,
+ ParentDecl);
+
+ // For casts, we need to handle conversions from arrays to
+ // pointer values, and pointer-to-pointer conversions.
+ case Stmt::ImplicitCastExprClass:
+ case Stmt::CStyleCastExprClass:
+ case Stmt::CXXFunctionalCastExprClass:
+ case Stmt::ObjCBridgedCastExprClass:
+ case Stmt::CXXStaticCastExprClass:
+ case Stmt::CXXDynamicCastExprClass:
+ case Stmt::CXXConstCastExprClass:
+ case Stmt::CXXReinterpretCastExprClass: {
+ Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
+ switch (cast<CastExpr>(E)->getCastKind()) {
+ case CK_LValueToRValue:
+ case CK_NoOp:
+ case CK_BaseToDerived:
+ case CK_DerivedToBase:
+ case CK_UncheckedDerivedToBase:
+ case CK_Dynamic:
+ case CK_CPointerToObjCPointerCast:
+ case CK_BlockPointerToObjCPointerCast:
+ case CK_AnyPointerToBlockPointerCast:
+ return EvalAddr(SubExpr, refVars, ParentDecl);
+
+ case CK_ArrayToPointerDecay:
+ return EvalVal(SubExpr, refVars, ParentDecl);
+
+ case CK_BitCast:
+ if (SubExpr->getType()->isAnyPointerType() ||
+ SubExpr->getType()->isBlockPointerType() ||
+ SubExpr->getType()->isObjCQualifiedIdType())
+ return EvalAddr(SubExpr, refVars, ParentDecl);
+ else
+ return nullptr;
+
+ default:
+ return nullptr;
+ }
+ }
+
+ case Stmt::MaterializeTemporaryExprClass:
+ if (Expr *Result = EvalAddr(
+ cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
+ refVars, ParentDecl))
+ return Result;
+
+ return E;
+
+ // Everything else: we simply don't reason about them.
+ default:
+ return nullptr;
+ }
+}
+
+
+/// EvalVal - This function is complements EvalAddr in the mutual recursion.
+/// See the comments for EvalAddr for more details.
+static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
+ Decl *ParentDecl) {
+do {
+ // We should only be called for evaluating non-pointer expressions, or
+ // expressions with a pointer type that are not used as references but instead
+ // are l-values (e.g., DeclRefExpr with a pointer type).
+
+ // Our "symbolic interpreter" is just a dispatch off the currently
+ // viewed AST node. We then recursively traverse the AST by calling
+ // EvalAddr and EvalVal appropriately.
+
+ E = E->IgnoreParens();
+ switch (E->getStmtClass()) {
+ case Stmt::ImplicitCastExprClass: {
+ ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
+ if (IE->getValueKind() == VK_LValue) {
+ E = IE->getSubExpr();
+ continue;
+ }
+ return nullptr;
+ }
+
+ case Stmt::ExprWithCleanupsClass:
+ return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,ParentDecl);
+
+ case Stmt::DeclRefExprClass: {
+ // When we hit a DeclRefExpr we are looking at code that refers to a
+ // variable's name. If it's not a reference variable we check if it has
+ // local storage within the function, and if so, return the expression.
+ DeclRefExpr *DR = cast<DeclRefExpr>(E);
+
+ // If we leave the immediate function, the lifetime isn't about to end.
+ if (DR->refersToEnclosingVariableOrCapture())
+ return nullptr;
+
+ if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) {
+ // Check if it refers to itself, e.g. "int& i = i;".
+ if (V == ParentDecl)
+ return DR;
+
+ if (V->hasLocalStorage()) {
+ if (!V->getType()->isReferenceType())
+ return DR;
+
+ // Reference variable, follow through to the expression that
+ // it points to.
+ if (V->hasInit()) {
+ // Add the reference variable to the "trail".
+ refVars.push_back(DR);
+ return EvalVal(V->getInit(), refVars, V);
+ }
+ }
+ }
+
+ return nullptr;
+ }
+
+ case Stmt::UnaryOperatorClass: {
+ // The only unary operator that make sense to handle here
+ // is Deref. All others don't resolve to a "name." This includes
+ // handling all sorts of rvalues passed to a unary operator.
+ UnaryOperator *U = cast<UnaryOperator>(E);
+
+ if (U->getOpcode() == UO_Deref)
+ return EvalAddr(U->getSubExpr(), refVars, ParentDecl);
+
+ return nullptr;
+ }
+
+ case Stmt::ArraySubscriptExprClass: {
+ // Array subscripts are potential references to data on the stack. We
+ // retrieve the DeclRefExpr* for the array variable if it indeed
+ // has local storage.
+ return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars,ParentDecl);
+ }
+
+ case Stmt::ConditionalOperatorClass: {
+ // For conditional operators we need to see if either the LHS or RHS are
+ // non-NULL Expr's. If one is non-NULL, we return it.
+ ConditionalOperator *C = cast<ConditionalOperator>(E);
+
+ // Handle the GNU extension for missing LHS.
+ if (Expr *LHSExpr = C->getLHS()) {
+ // In C++, we can have a throw-expression, which has 'void' type.
+ if (!LHSExpr->getType()->isVoidType())
+ if (Expr *LHS = EvalVal(LHSExpr, refVars, ParentDecl))
+ return LHS;
+ }
+
+ // In C++, we can have a throw-expression, which has 'void' type.
+ if (C->getRHS()->getType()->isVoidType())
+ return nullptr;
+
+ return EvalVal(C->getRHS(), refVars, ParentDecl);
+ }
+
+ // Accesses to members are potential references to data on the stack.
+ case Stmt::MemberExprClass: {
+ MemberExpr *M = cast<MemberExpr>(E);
+
+ // Check for indirect access. We only want direct field accesses.
+ if (M->isArrow())
+ return nullptr;
+
+ // Check whether the member type is itself a reference, in which case
+ // we're not going to refer to the member, but to what the member refers to.
+ if (M->getMemberDecl()->getType()->isReferenceType())
+ return nullptr;
+
+ return EvalVal(M->getBase(), refVars, ParentDecl);
+ }
+
+ case Stmt::MaterializeTemporaryExprClass:
+ if (Expr *Result = EvalVal(
+ cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
+ refVars, ParentDecl))
+ return Result;
+
+ return E;
+
+ default:
+ // Check that we don't return or take the address of a reference to a
+ // temporary. This is only useful in C++.
+ if (!E->isTypeDependent() && E->isRValue())
+ return E;
+
+ // Everything else: we simply don't reason about them.
+ return nullptr;
+ }
+} while (true);
+}
+
+void
+Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
+ SourceLocation ReturnLoc,
+ bool isObjCMethod,
+ const AttrVec *Attrs,
+ const FunctionDecl *FD) {
+ CheckReturnStackAddr(*this, RetValExp, lhsType, ReturnLoc);
+
+ // Check if the return value is null but should not be.
+ if (Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs) &&
+ CheckNonNullExpr(*this, RetValExp))
+ Diag(ReturnLoc, diag::warn_null_ret)
+ << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange();
+
+ // C++11 [basic.stc.dynamic.allocation]p4:
+ // If an allocation function declared with a non-throwing
+ // exception-specification fails to allocate storage, it shall return
+ // a null pointer. Any other allocation function that fails to allocate
+ // storage shall indicate failure only by throwing an exception [...]
+ if (FD) {
+ OverloadedOperatorKind Op = FD->getOverloadedOperator();
+ if (Op == OO_New || Op == OO_Array_New) {
+ const FunctionProtoType *Proto
+ = FD->getType()->castAs<FunctionProtoType>();
+ if (!Proto->isNothrow(Context, /*ResultIfDependent*/true) &&
+ CheckNonNullExpr(*this, RetValExp))
+ Diag(ReturnLoc, diag::warn_operator_new_returns_null)
+ << FD << getLangOpts().CPlusPlus11;
+ }
+ }
+}
+
+//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
+
+/// Check for comparisons of floating point operands using != and ==.
+/// Issue a warning if these are no self-comparisons, as they are not likely
+/// to do what the programmer intended.
+void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
+ Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
+ Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
+
+ // Special case: check for x == x (which is OK).
+ // Do not emit warnings for such cases.
+ if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
+ if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
+ if (DRL->getDecl() == DRR->getDecl())
+ return;
+
+
+ // Special case: check for comparisons against literals that can be exactly
+ // represented by APFloat. In such cases, do not emit a warning. This
+ // is a heuristic: often comparison against such literals are used to
+ // detect if a value in a variable has not changed. This clearly can
+ // lead to false negatives.
+ if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
+ if (FLL->isExact())
+ return;
+ } else
+ if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
+ if (FLR->isExact())
+ return;
+
+ // Check for comparisons with builtin types.
+ if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
+ if (CL->getBuiltinCallee())
+ return;
+
+ if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
+ if (CR->getBuiltinCallee())
+ return;
+
+ // Emit the diagnostic.
+ Diag(Loc, diag::warn_floatingpoint_eq)
+ << LHS->getSourceRange() << RHS->getSourceRange();
+}
+
+//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
+//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
+
+namespace {
+
+/// Structure recording the 'active' range of an integer-valued
+/// expression.
+struct IntRange {
+ /// The number of bits active in the int.
+ unsigned Width;
+
+ /// True if the int is known not to have negative values.
+ bool NonNegative;
+
+ IntRange(unsigned Width, bool NonNegative)
+ : Width(Width), NonNegative(NonNegative)
+ {}
+
+ /// Returns the range of the bool type.
+ static IntRange forBoolType() {
+ return IntRange(1, true);
+ }
+
+ /// Returns the range of an opaque value of the given integral type.
+ static IntRange forValueOfType(ASTContext &C, QualType T) {
+ return forValueOfCanonicalType(C,
+ T->getCanonicalTypeInternal().getTypePtr());
+ }
+
+ /// Returns the range of an opaque value of a canonical integral type.
+ static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
+ assert(T->isCanonicalUnqualified());
+
+ if (const VectorType *VT = dyn_cast<VectorType>(T))
+ T = VT->getElementType().getTypePtr();
+ if (const ComplexType *CT = dyn_cast<ComplexType>(T))
+ T = CT->getElementType().getTypePtr();
+ if (const AtomicType *AT = dyn_cast<AtomicType>(T))
+ T = AT->getValueType().getTypePtr();
+
+ // For enum types, use the known bit width of the enumerators.
+ if (const EnumType *ET = dyn_cast<EnumType>(T)) {
+ EnumDecl *Enum = ET->getDecl();
+ if (!Enum->isCompleteDefinition())
+ return IntRange(C.getIntWidth(QualType(T, 0)), false);
+
+ unsigned NumPositive = Enum->getNumPositiveBits();
+ unsigned NumNegative = Enum->getNumNegativeBits();
+
+ if (NumNegative == 0)
+ return IntRange(NumPositive, true/*NonNegative*/);
+ else
+ return IntRange(std::max(NumPositive + 1, NumNegative),
+ false/*NonNegative*/);
+ }
+
+ const BuiltinType *BT = cast<BuiltinType>(T);
+ assert(BT->isInteger());
+
+ return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
+ }
+
+ /// Returns the "target" range of a canonical integral type, i.e.
+ /// the range of values expressible in the type.
+ ///
+ /// This matches forValueOfCanonicalType except that enums have the
+ /// full range of their type, not the range of their enumerators.
+ static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
+ assert(T->isCanonicalUnqualified());
+
+ if (const VectorType *VT = dyn_cast<VectorType>(T))
+ T = VT->getElementType().getTypePtr();
+ if (const ComplexType *CT = dyn_cast<ComplexType>(T))
+ T = CT->getElementType().getTypePtr();
+ if (const AtomicType *AT = dyn_cast<AtomicType>(T))
+ T = AT->getValueType().getTypePtr();
+ if (const EnumType *ET = dyn_cast<EnumType>(T))
+ T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
+
+ const BuiltinType *BT = cast<BuiltinType>(T);
+ assert(BT->isInteger());
+
+ return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
+ }
+
+ /// Returns the supremum of two ranges: i.e. their conservative merge.
+ static IntRange join(IntRange L, IntRange R) {
+ return IntRange(std::max(L.Width, R.Width),
+ L.NonNegative && R.NonNegative);
+ }
+
+ /// Returns the infinum of two ranges: i.e. their aggressive merge.
+ static IntRange meet(IntRange L, IntRange R) {
+ return IntRange(std::min(L.Width, R.Width),
+ L.NonNegative || R.NonNegative);
+ }
+};
+
+static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
+ unsigned MaxWidth) {
+ if (value.isSigned() && value.isNegative())
+ return IntRange(value.getMinSignedBits(), false);
+
+ if (value.getBitWidth() > MaxWidth)
+ value = value.trunc(MaxWidth);
+
+ // isNonNegative() just checks the sign bit without considering
+ // signedness.
+ return IntRange(value.getActiveBits(), true);
+}
+
+static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
+ unsigned MaxWidth) {
+ if (result.isInt())
+ return GetValueRange(C, result.getInt(), MaxWidth);
+
+ if (result.isVector()) {
+ IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
+ for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
+ IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
+ R = IntRange::join(R, El);
+ }
+ return R;
+ }
+
+ if (result.isComplexInt()) {
+ IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
+ IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
+ return IntRange::join(R, I);
+ }
+
+ // This can happen with lossless casts to intptr_t of "based" lvalues.
+ // Assume it might use arbitrary bits.
+ // FIXME: The only reason we need to pass the type in here is to get
+ // the sign right on this one case. It would be nice if APValue
+ // preserved this.
+ assert(result.isLValue() || result.isAddrLabelDiff());
+ return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
+}
+
+static QualType GetExprType(Expr *E) {
+ QualType Ty = E->getType();
+ if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
+ Ty = AtomicRHS->getValueType();
+ return Ty;
+}
+
+/// Pseudo-evaluate the given integer expression, estimating the
+/// range of values it might take.
+///
+/// \param MaxWidth - the width to which the value will be truncated
+static IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
+ E = E->IgnoreParens();
+
+ // Try a full evaluation first.
+ Expr::EvalResult result;
+ if (E->EvaluateAsRValue(result, C))
+ return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
+
+ // I think we only want to look through implicit casts here; if the
+ // user has an explicit widening cast, we should treat the value as
+ // being of the new, wider type.
+ if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
+ if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
+ return GetExprRange(C, CE->getSubExpr(), MaxWidth);
+
+ IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
+
+ bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
+
+ // Assume that non-integer casts can span the full range of the type.
+ if (!isIntegerCast)
+ return OutputTypeRange;
+
+ IntRange SubRange
+ = GetExprRange(C, CE->getSubExpr(),
+ std::min(MaxWidth, OutputTypeRange.Width));
+
+ // Bail out if the subexpr's range is as wide as the cast type.
+ if (SubRange.Width >= OutputTypeRange.Width)
+ return OutputTypeRange;
+
+ // Otherwise, we take the smaller width, and we're non-negative if
+ // either the output type or the subexpr is.
+ return IntRange(SubRange.Width,
+ SubRange.NonNegative || OutputTypeRange.NonNegative);
+ }
+
+ if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
+ // If we can fold the condition, just take that operand.
+ bool CondResult;
+ if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
+ return GetExprRange(C, CondResult ? CO->getTrueExpr()
+ : CO->getFalseExpr(),
+ MaxWidth);
+
+ // Otherwise, conservatively merge.
+ IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
+ IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
+ return IntRange::join(L, R);
+ }
+
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
+ switch (BO->getOpcode()) {
+
+ // Boolean-valued operations are single-bit and positive.
+ case BO_LAnd:
+ case BO_LOr:
+ case BO_LT:
+ case BO_GT:
+ case BO_LE:
+ case BO_GE:
+ case BO_EQ:
+ case BO_NE:
+ return IntRange::forBoolType();
+
+ // The type of the assignments is the type of the LHS, so the RHS
+ // is not necessarily the same type.
+ case BO_MulAssign:
+ case BO_DivAssign:
+ case BO_RemAssign:
+ case BO_AddAssign:
+ case BO_SubAssign:
+ case BO_XorAssign:
+ case BO_OrAssign:
+ // TODO: bitfields?
+ return IntRange::forValueOfType(C, GetExprType(E));
+
+ // Simple assignments just pass through the RHS, which will have
+ // been coerced to the LHS type.
+ case BO_Assign:
+ // TODO: bitfields?
+ return GetExprRange(C, BO->getRHS(), MaxWidth);
+
+ // Operations with opaque sources are black-listed.
+ case BO_PtrMemD:
+ case BO_PtrMemI:
+ return IntRange::forValueOfType(C, GetExprType(E));
+
+ // Bitwise-and uses the *infinum* of the two source ranges.
+ case BO_And:
+ case BO_AndAssign:
+ return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
+ GetExprRange(C, BO->getRHS(), MaxWidth));
+
+ // Left shift gets black-listed based on a judgement call.
+ case BO_Shl:
+ // ...except that we want to treat '1 << (blah)' as logically
+ // positive. It's an important idiom.
+ if (IntegerLiteral *I
+ = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
+ if (I->getValue() == 1) {
+ IntRange R = IntRange::forValueOfType(C, GetExprType(E));
+ return IntRange(R.Width, /*NonNegative*/ true);
+ }
+ }
+ // fallthrough
+
+ case BO_ShlAssign:
+ return IntRange::forValueOfType(C, GetExprType(E));
+
+ // Right shift by a constant can narrow its left argument.
+ case BO_Shr:
+ case BO_ShrAssign: {
+ IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
+
+ // If the shift amount is a positive constant, drop the width by
+ // that much.
+ llvm::APSInt shift;
+ if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
+ shift.isNonNegative()) {
+ unsigned zext = shift.getZExtValue();
+ if (zext >= L.Width)
+ L.Width = (L.NonNegative ? 0 : 1);
+ else
+ L.Width -= zext;
+ }
+
+ return L;
+ }
+
+ // Comma acts as its right operand.
+ case BO_Comma:
+ return GetExprRange(C, BO->getRHS(), MaxWidth);
+
+ // Black-list pointer subtractions.
+ case BO_Sub:
+ if (BO->getLHS()->getType()->isPointerType())
+ return IntRange::forValueOfType(C, GetExprType(E));
+ break;
+
+ // The width of a division result is mostly determined by the size
+ // of the LHS.
+ case BO_Div: {
+ // Don't 'pre-truncate' the operands.
+ unsigned opWidth = C.getIntWidth(GetExprType(E));
+ IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
+
+ // If the divisor is constant, use that.
+ llvm::APSInt divisor;
+ if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
+ unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
+ if (log2 >= L.Width)
+ L.Width = (L.NonNegative ? 0 : 1);
+ else
+ L.Width = std::min(L.Width - log2, MaxWidth);
+ return L;
+ }
+
+ // Otherwise, just use the LHS's width.
+ IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
+ return IntRange(L.Width, L.NonNegative && R.NonNegative);
+ }
+
+ // The result of a remainder can't be larger than the result of
+ // either side.
+ case BO_Rem: {
+ // Don't 'pre-truncate' the operands.
+ unsigned opWidth = C.getIntWidth(GetExprType(E));
+ IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
+ IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
+
+ IntRange meet = IntRange::meet(L, R);
+ meet.Width = std::min(meet.Width, MaxWidth);
+ return meet;
+ }
+
+ // The default behavior is okay for these.
+ case BO_Mul:
+ case BO_Add:
+ case BO_Xor:
+ case BO_Or:
+ break;
+ }
+
+ // The default case is to treat the operation as if it were closed
+ // on the narrowest type that encompasses both operands.
+ IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
+ IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
+ return IntRange::join(L, R);
+ }
+
+ if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
+ switch (UO->getOpcode()) {
+ // Boolean-valued operations are white-listed.
+ case UO_LNot:
+ return IntRange::forBoolType();
+
+ // Operations with opaque sources are black-listed.
+ case UO_Deref:
+ case UO_AddrOf: // should be impossible
+ return IntRange::forValueOfType(C, GetExprType(E));
+
+ default:
+ return GetExprRange(C, UO->getSubExpr(), MaxWidth);
+ }
+ }
+
+ if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E))
+ return GetExprRange(C, OVE->getSourceExpr(), MaxWidth);
+
+ if (FieldDecl *BitField = E->getSourceBitField())
+ return IntRange(BitField->getBitWidthValue(C),
+ BitField->getType()->isUnsignedIntegerOrEnumerationType());
+
+ return IntRange::forValueOfType(C, GetExprType(E));
+}
+
+static IntRange GetExprRange(ASTContext &C, Expr *E) {
+ return GetExprRange(C, E, C.getIntWidth(GetExprType(E)));
+}
+
+/// Checks whether the given value, which currently has the given
+/// source semantics, has the same value when coerced through the
+/// target semantics.
+static bool IsSameFloatAfterCast(const llvm::APFloat &value,
+ const llvm::fltSemantics &Src,
+ const llvm::fltSemantics &Tgt) {
+ llvm::APFloat truncated = value;
+
+ bool ignored;
+ truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
+ truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
+
+ return truncated.bitwiseIsEqual(value);
+}
+
+/// Checks whether the given value, which currently has the given
+/// source semantics, has the same value when coerced through the
+/// target semantics.
+///
+/// The value might be a vector of floats (or a complex number).
+static bool IsSameFloatAfterCast(const APValue &value,
+ const llvm::fltSemantics &Src,
+ const llvm::fltSemantics &Tgt) {
+ if (value.isFloat())
+ return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
+
+ if (value.isVector()) {
+ for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
+ if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
+ return false;
+ return true;
+ }
+
+ assert(value.isComplexFloat());
+ return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
+ IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
+}
+
+static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
+
+static bool IsZero(Sema &S, Expr *E) {
+ // Suppress cases where we are comparing against an enum constant.
+ if (const DeclRefExpr *DR =
+ dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
+ if (isa<EnumConstantDecl>(DR->getDecl()))
+ return false;
+
+ // Suppress cases where the '0' value is expanded from a macro.
+ if (E->getLocStart().isMacroID())
+ return false;
+
+ llvm::APSInt Value;
+ return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
+}
+
+static bool HasEnumType(Expr *E) {
+ // Strip off implicit integral promotions.
+ while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
+ if (ICE->getCastKind() != CK_IntegralCast &&
+ ICE->getCastKind() != CK_NoOp)
+ break;
+ E = ICE->getSubExpr();
+ }
+
+ return E->getType()->isEnumeralType();
+}
+
+static void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
+ // Disable warning in template instantiations.
+ if (!S.ActiveTemplateInstantiations.empty())
+ return;
+
+ BinaryOperatorKind op = E->getOpcode();
+ if (E->isValueDependent())
+ return;
+
+ if (op == BO_LT && IsZero(S, E->getRHS())) {
+ S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
+ << "< 0" << "false" << HasEnumType(E->getLHS())
+ << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
+ } else if (op == BO_GE && IsZero(S, E->getRHS())) {
+ S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
+ << ">= 0" << "true" << HasEnumType(E->getLHS())
+ << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
+ } else if (op == BO_GT && IsZero(S, E->getLHS())) {
+ S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
+ << "0 >" << "false" << HasEnumType(E->getRHS())
+ << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
+ } else if (op == BO_LE && IsZero(S, E->getLHS())) {
+ S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
+ << "0 <=" << "true" << HasEnumType(E->getRHS())
+ << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
+ }
+}
+
+static void DiagnoseOutOfRangeComparison(Sema &S, BinaryOperator *E,
+ Expr *Constant, Expr *Other,
+ llvm::APSInt Value,
+ bool RhsConstant) {
+ // Disable warning in template instantiations.
+ if (!S.ActiveTemplateInstantiations.empty())
+ return;
+
+ // TODO: Investigate using GetExprRange() to get tighter bounds
+ // on the bit ranges.
+ QualType OtherT = Other->getType();
+ if (const auto *AT = OtherT->getAs<AtomicType>())
+ OtherT = AT->getValueType();
+ IntRange OtherRange = IntRange::forValueOfType(S.Context, OtherT);
+ unsigned OtherWidth = OtherRange.Width;
+
+ bool OtherIsBooleanType = Other->isKnownToHaveBooleanValue();
+
+ // 0 values are handled later by CheckTrivialUnsignedComparison().
+ if ((Value == 0) && (!OtherIsBooleanType))
+ return;
+
+ BinaryOperatorKind op = E->getOpcode();
+ bool IsTrue = true;
+
+ // Used for diagnostic printout.
+ enum {
+ LiteralConstant = 0,
+ CXXBoolLiteralTrue,
+ CXXBoolLiteralFalse
+ } LiteralOrBoolConstant = LiteralConstant;
+
+ if (!OtherIsBooleanType) {
+ QualType ConstantT = Constant->getType();
+ QualType CommonT = E->getLHS()->getType();
+
+ if (S.Context.hasSameUnqualifiedType(OtherT, ConstantT))
+ return;
+ assert((OtherT->isIntegerType() && ConstantT->isIntegerType()) &&
+ "comparison with non-integer type");
+
+ bool ConstantSigned = ConstantT->isSignedIntegerType();
+ bool CommonSigned = CommonT->isSignedIntegerType();
+
+ bool EqualityOnly = false;
+
+ if (CommonSigned) {
+ // The common type is signed, therefore no signed to unsigned conversion.
+ if (!OtherRange.NonNegative) {
+ // Check that the constant is representable in type OtherT.
+ if (ConstantSigned) {
+ if (OtherWidth >= Value.getMinSignedBits())
+ return;
+ } else { // !ConstantSigned
+ if (OtherWidth >= Value.getActiveBits() + 1)
+ return;
+ }
+ } else { // !OtherSigned
+ // Check that the constant is representable in type OtherT.
+ // Negative values are out of range.
+ if (ConstantSigned) {
+ if (Value.isNonNegative() && OtherWidth >= Value.getActiveBits())
+ return;
+ } else { // !ConstantSigned
+ if (OtherWidth >= Value.getActiveBits())
+ return;
+ }
+ }
+ } else { // !CommonSigned
+ if (OtherRange.NonNegative) {
+ if (OtherWidth >= Value.getActiveBits())
+ return;
+ } else { // OtherSigned
+ assert(!ConstantSigned &&
+ "Two signed types converted to unsigned types.");
+ // Check to see if the constant is representable in OtherT.
+ if (OtherWidth > Value.getActiveBits())
+ return;
+ // Check to see if the constant is equivalent to a negative value
+ // cast to CommonT.
+ if (S.Context.getIntWidth(ConstantT) ==
+ S.Context.getIntWidth(CommonT) &&
+ Value.isNegative() && Value.getMinSignedBits() <= OtherWidth)
+ return;
+ // The constant value rests between values that OtherT can represent
+ // after conversion. Relational comparison still works, but equality
+ // comparisons will be tautological.
+ EqualityOnly = true;
+ }
+ }
+
+ bool PositiveConstant = !ConstantSigned || Value.isNonNegative();
+
+ if (op == BO_EQ || op == BO_NE) {
+ IsTrue = op == BO_NE;
+ } else if (EqualityOnly) {
+ return;
+ } else if (RhsConstant) {
+ if (op == BO_GT || op == BO_GE)
+ IsTrue = !PositiveConstant;
+ else // op == BO_LT || op == BO_LE
+ IsTrue = PositiveConstant;
+ } else {
+ if (op == BO_LT || op == BO_LE)
+ IsTrue = !PositiveConstant;
+ else // op == BO_GT || op == BO_GE
+ IsTrue = PositiveConstant;
+ }
+ } else {
+ // Other isKnownToHaveBooleanValue
+ enum CompareBoolWithConstantResult { AFals, ATrue, Unkwn };
+ enum ConstantValue { LT_Zero, Zero, One, GT_One, SizeOfConstVal };
+ enum ConstantSide { Lhs, Rhs, SizeOfConstSides };
+
+ static const struct LinkedConditions {
+ CompareBoolWithConstantResult BO_LT_OP[SizeOfConstSides][SizeOfConstVal];
+ CompareBoolWithConstantResult BO_GT_OP[SizeOfConstSides][SizeOfConstVal];
+ CompareBoolWithConstantResult BO_LE_OP[SizeOfConstSides][SizeOfConstVal];
+ CompareBoolWithConstantResult BO_GE_OP[SizeOfConstSides][SizeOfConstVal];
+ CompareBoolWithConstantResult BO_EQ_OP[SizeOfConstSides][SizeOfConstVal];
+ CompareBoolWithConstantResult BO_NE_OP[SizeOfConstSides][SizeOfConstVal];
+
+ } TruthTable = {
+ // Constant on LHS. | Constant on RHS. |
+ // LT_Zero| Zero | One |GT_One| LT_Zero| Zero | One |GT_One|
+ { { ATrue, Unkwn, AFals, AFals }, { AFals, AFals, Unkwn, ATrue } },
+ { { AFals, AFals, Unkwn, ATrue }, { ATrue, Unkwn, AFals, AFals } },
+ { { ATrue, ATrue, Unkwn, AFals }, { AFals, Unkwn, ATrue, ATrue } },
+ { { AFals, Unkwn, ATrue, ATrue }, { ATrue, ATrue, Unkwn, AFals } },
+ { { AFals, Unkwn, Unkwn, AFals }, { AFals, Unkwn, Unkwn, AFals } },
+ { { ATrue, Unkwn, Unkwn, ATrue }, { ATrue, Unkwn, Unkwn, ATrue } }
+ };
+
+ bool ConstantIsBoolLiteral = isa<CXXBoolLiteralExpr>(Constant);
+
+ enum ConstantValue ConstVal = Zero;
+ if (Value.isUnsigned() || Value.isNonNegative()) {
+ if (Value == 0) {
+ LiteralOrBoolConstant =
+ ConstantIsBoolLiteral ? CXXBoolLiteralFalse : LiteralConstant;
+ ConstVal = Zero;
+ } else if (Value == 1) {
+ LiteralOrBoolConstant =
+ ConstantIsBoolLiteral ? CXXBoolLiteralTrue : LiteralConstant;
+ ConstVal = One;
+ } else {
+ LiteralOrBoolConstant = LiteralConstant;
+ ConstVal = GT_One;
+ }
+ } else {
+ ConstVal = LT_Zero;
+ }
+
+ CompareBoolWithConstantResult CmpRes;
+
+ switch (op) {
+ case BO_LT:
+ CmpRes = TruthTable.BO_LT_OP[RhsConstant][ConstVal];
+ break;
+ case BO_GT:
+ CmpRes = TruthTable.BO_GT_OP[RhsConstant][ConstVal];
+ break;
+ case BO_LE:
+ CmpRes = TruthTable.BO_LE_OP[RhsConstant][ConstVal];
+ break;
+ case BO_GE:
+ CmpRes = TruthTable.BO_GE_OP[RhsConstant][ConstVal];
+ break;
+ case BO_EQ:
+ CmpRes = TruthTable.BO_EQ_OP[RhsConstant][ConstVal];
+ break;
+ case BO_NE:
+ CmpRes = TruthTable.BO_NE_OP[RhsConstant][ConstVal];
+ break;
+ default:
+ CmpRes = Unkwn;
+ break;
+ }
+
+ if (CmpRes == AFals) {
+ IsTrue = false;
+ } else if (CmpRes == ATrue) {
+ IsTrue = true;
+ } else {
+ return;
+ }
+ }
+
+ // If this is a comparison to an enum constant, include that
+ // constant in the diagnostic.
+ const EnumConstantDecl *ED = nullptr;
+ if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
+ ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
+
+ SmallString<64> PrettySourceValue;
+ llvm::raw_svector_ostream OS(PrettySourceValue);
+ if (ED)
+ OS << '\'' << *ED << "' (" << Value << ")";
+ else
+ OS << Value;
+
+ S.DiagRuntimeBehavior(
+ E->getOperatorLoc(), E,
+ S.PDiag(diag::warn_out_of_range_compare)
+ << OS.str() << LiteralOrBoolConstant
+ << OtherT << (OtherIsBooleanType && !OtherT->isBooleanType()) << IsTrue
+ << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange());
+}
+
+/// Analyze the operands of the given comparison. Implements the
+/// fallback case from AnalyzeComparison.
+static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
+ AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
+ AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
+}
+
+/// \brief Implements -Wsign-compare.
+///
+/// \param E the binary operator to check for warnings
+static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
+ // The type the comparison is being performed in.
+ QualType T = E->getLHS()->getType();
+
+ // Only analyze comparison operators where both sides have been converted to
+ // the same type.
+ if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType()))
+ return AnalyzeImpConvsInComparison(S, E);
+
+ // Don't analyze value-dependent comparisons directly.
+ if (E->isValueDependent())
+ return AnalyzeImpConvsInComparison(S, E);
+
+ Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
+ Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
+
+ bool IsComparisonConstant = false;
+
+ // Check whether an integer constant comparison results in a value
+ // of 'true' or 'false'.
+ if (T->isIntegralType(S.Context)) {
+ llvm::APSInt RHSValue;
+ bool IsRHSIntegralLiteral =
+ RHS->isIntegerConstantExpr(RHSValue, S.Context);
+ llvm::APSInt LHSValue;
+ bool IsLHSIntegralLiteral =
+ LHS->isIntegerConstantExpr(LHSValue, S.Context);
+ if (IsRHSIntegralLiteral && !IsLHSIntegralLiteral)
+ DiagnoseOutOfRangeComparison(S, E, RHS, LHS, RHSValue, true);
+ else if (!IsRHSIntegralLiteral && IsLHSIntegralLiteral)
+ DiagnoseOutOfRangeComparison(S, E, LHS, RHS, LHSValue, false);
+ else
+ IsComparisonConstant =
+ (IsRHSIntegralLiteral && IsLHSIntegralLiteral);
+ } else if (!T->hasUnsignedIntegerRepresentation())
+ IsComparisonConstant = E->isIntegerConstantExpr(S.Context);
+
+ // We don't do anything special if this isn't an unsigned integral
+ // comparison: we're only interested in integral comparisons, and
+ // signed comparisons only happen in cases we don't care to warn about.
+ //
+ // We also don't care about value-dependent expressions or expressions
+ // whose result is a constant.
+ if (!T->hasUnsignedIntegerRepresentation() || IsComparisonConstant)
+ return AnalyzeImpConvsInComparison(S, E);
+
+ // Check to see if one of the (unmodified) operands is of different
+ // signedness.
+ Expr *signedOperand, *unsignedOperand;
+ if (LHS->getType()->hasSignedIntegerRepresentation()) {
+ assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
+ "unsigned comparison between two signed integer expressions?");
+ signedOperand = LHS;
+ unsignedOperand = RHS;
+ } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
+ signedOperand = RHS;
+ unsignedOperand = LHS;
+ } else {
+ CheckTrivialUnsignedComparison(S, E);
+ return AnalyzeImpConvsInComparison(S, E);
+ }
+
+ // Otherwise, calculate the effective range of the signed operand.
+ IntRange signedRange = GetExprRange(S.Context, signedOperand);
+
+ // Go ahead and analyze implicit conversions in the operands. Note
+ // that we skip the implicit conversions on both sides.
+ AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
+ AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
+
+ // If the signed range is non-negative, -Wsign-compare won't fire,
+ // but we should still check for comparisons which are always true
+ // or false.
+ if (signedRange.NonNegative)
+ return CheckTrivialUnsignedComparison(S, E);
+
+ // For (in)equality comparisons, if the unsigned operand is a
+ // constant which cannot collide with a overflowed signed operand,
+ // then reinterpreting the signed operand as unsigned will not
+ // change the result of the comparison.
+ if (E->isEqualityOp()) {
+ unsigned comparisonWidth = S.Context.getIntWidth(T);
+ IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
+
+ // We should never be unable to prove that the unsigned operand is
+ // non-negative.
+ assert(unsignedRange.NonNegative && "unsigned range includes negative?");
+
+ if (unsignedRange.Width < comparisonWidth)
+ return;
+ }
+
+ S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
+ S.PDiag(diag::warn_mixed_sign_comparison)
+ << LHS->getType() << RHS->getType()
+ << LHS->getSourceRange() << RHS->getSourceRange());
+}
+
+/// Analyzes an attempt to assign the given value to a bitfield.
+///
+/// Returns true if there was something fishy about the attempt.
+static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
+ SourceLocation InitLoc) {
+ assert(Bitfield->isBitField());
+ if (Bitfield->isInvalidDecl())
+ return false;
+
+ // White-list bool bitfields.
+ if (Bitfield->getType()->isBooleanType())
+ return false;
+
+ // Ignore value- or type-dependent expressions.
+ if (Bitfield->getBitWidth()->isValueDependent() ||
+ Bitfield->getBitWidth()->isTypeDependent() ||
+ Init->isValueDependent() ||
+ Init->isTypeDependent())
+ return false;
+
+ Expr *OriginalInit = Init->IgnoreParenImpCasts();
+
+ llvm::APSInt Value;
+ if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
+ return false;
+
+ unsigned OriginalWidth = Value.getBitWidth();
+ unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
+
+ if (OriginalWidth <= FieldWidth)
+ return false;
+
+ // Compute the value which the bitfield will contain.
+ llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
+ TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType());
+
+ // Check whether the stored value is equal to the original value.
+ TruncatedValue = TruncatedValue.extend(OriginalWidth);
+ if (llvm::APSInt::isSameValue(Value, TruncatedValue))
+ return false;
+
+ // Special-case bitfields of width 1: booleans are naturally 0/1, and
+ // therefore don't strictly fit into a signed bitfield of width 1.
+ if (FieldWidth == 1 && Value == 1)
+ return false;
+
+ std::string PrettyValue = Value.toString(10);
+ std::string PrettyTrunc = TruncatedValue.toString(10);
+
+ S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
+ << PrettyValue << PrettyTrunc << OriginalInit->getType()
+ << Init->getSourceRange();
+
+ return true;
+}
+
+/// Analyze the given simple or compound assignment for warning-worthy
+/// operations.
+static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
+ // Just recurse on the LHS.
+ AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
+
+ // We want to recurse on the RHS as normal unless we're assigning to
+ // a bitfield.
+ if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
+ if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
+ E->getOperatorLoc())) {
+ // Recurse, ignoring any implicit conversions on the RHS.
+ return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
+ E->getOperatorLoc());
+ }
+ }
+
+ AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
+}
+
+/// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
+static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
+ SourceLocation CContext, unsigned diag,
+ bool pruneControlFlow = false) {
+ if (pruneControlFlow) {
+ S.DiagRuntimeBehavior(E->getExprLoc(), E,
+ S.PDiag(diag)
+ << SourceType << T << E->getSourceRange()
+ << SourceRange(CContext));
+ return;
+ }
+ S.Diag(E->getExprLoc(), diag)
+ << SourceType << T << E->getSourceRange() << SourceRange(CContext);
+}
+
+/// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
+static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
+ SourceLocation CContext, unsigned diag,
+ bool pruneControlFlow = false) {
+ DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
+}
+
+/// Diagnose an implicit cast from a literal expression. Does not warn when the
+/// cast wouldn't lose information.
+void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
+ SourceLocation CContext) {
+ // Try to convert the literal exactly to an integer. If we can, don't warn.
+ bool isExact = false;
+ const llvm::APFloat &Value = FL->getValue();
+ llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
+ T->hasUnsignedIntegerRepresentation());
+ if (Value.convertToInteger(IntegerValue,
+ llvm::APFloat::rmTowardZero, &isExact)
+ == llvm::APFloat::opOK && isExact)
+ return;
+
+ // FIXME: Force the precision of the source value down so we don't print
+ // digits which are usually useless (we don't really care here if we
+ // truncate a digit by accident in edge cases). Ideally, APFloat::toString
+ // would automatically print the shortest representation, but it's a bit
+ // tricky to implement.
+ SmallString<16> PrettySourceValue;
+ unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
+ precision = (precision * 59 + 195) / 196;
+ Value.toString(PrettySourceValue, precision);
+
+ SmallString<16> PrettyTargetValue;
+ if (T->isSpecificBuiltinType(BuiltinType::Bool))
+ PrettyTargetValue = IntegerValue == 0 ? "false" : "true";
+ else
+ IntegerValue.toString(PrettyTargetValue);
+
+ S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
+ << FL->getType() << T.getUnqualifiedType() << PrettySourceValue
+ << PrettyTargetValue << FL->getSourceRange() << SourceRange(CContext);
+}
+
+std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
+ if (!Range.Width) return "0";
+
+ llvm::APSInt ValueInRange = Value;
+ ValueInRange.setIsSigned(!Range.NonNegative);
+ ValueInRange = ValueInRange.trunc(Range.Width);
+ return ValueInRange.toString(10);
+}
+
+static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
+ if (!isa<ImplicitCastExpr>(Ex))
+ return false;
+
+ Expr *InnerE = Ex->IgnoreParenImpCasts();
+ const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
+ const Type *Source =
+ S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
+ if (Target->isDependentType())
+ return false;
+
+ const BuiltinType *FloatCandidateBT =
+ dyn_cast<BuiltinType>(ToBool ? Source : Target);
+ const Type *BoolCandidateType = ToBool ? Target : Source;
+
+ return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
+ FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
+}
+
+void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
+ SourceLocation CC) {
+ unsigned NumArgs = TheCall->getNumArgs();
+ for (unsigned i = 0; i < NumArgs; ++i) {
+ Expr *CurrA = TheCall->getArg(i);
+ if (!IsImplicitBoolFloatConversion(S, CurrA, true))
+ continue;
+
+ bool IsSwapped = ((i > 0) &&
+ IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
+ IsSwapped |= ((i < (NumArgs - 1)) &&
+ IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
+ if (IsSwapped) {
+ // Warn on this floating-point to bool conversion.
+ DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
+ CurrA->getType(), CC,
+ diag::warn_impcast_floating_point_to_bool);
+ }
+ }
+}
+
+static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T,
+ SourceLocation CC) {
+ if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer,
+ E->getExprLoc()))
+ return;
+
+ // Check for NULL (GNUNull) or nullptr (CXX11_nullptr).
+ const Expr::NullPointerConstantKind NullKind =
+ E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull);
+ if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr)
+ return;
+
+ // Return if target type is a safe conversion.
+ if (T->isAnyPointerType() || T->isBlockPointerType() ||
+ T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType())
+ return;
+
+ SourceLocation Loc = E->getSourceRange().getBegin();
+
+ // __null is usually wrapped in a macro. Go up a macro if that is the case.
+ if (NullKind == Expr::NPCK_GNUNull) {
+ if (Loc.isMacroID())
+ Loc = S.SourceMgr.getImmediateExpansionRange(Loc).first;
+ }
+
+ // Only warn if the null and context location are in the same macro expansion.
+ if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC))
+ return;
+
+ S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
+ << (NullKind == Expr::NPCK_CXX11_nullptr) << T << clang::SourceRange(CC)
+ << FixItHint::CreateReplacement(Loc,
+ S.getFixItZeroLiteralForType(T, Loc));
+}
+
+void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
+ SourceLocation CC, bool *ICContext = nullptr) {
+ if (E->isTypeDependent() || E->isValueDependent()) return;
+
+ const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
+ const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
+ if (Source == Target) return;
+ if (Target->isDependentType()) return;
+
+ // If the conversion context location is invalid don't complain. We also
+ // don't want to emit a warning if the issue occurs from the expansion of
+ // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
+ // delay this check as long as possible. Once we detect we are in that
+ // scenario, we just return.
+ if (CC.isInvalid())
+ return;
+
+ // Diagnose implicit casts to bool.
+ if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
+ if (isa<StringLiteral>(E))
+ // Warn on string literal to bool. Checks for string literals in logical
+ // and expressions, for instance, assert(0 && "error here"), are
+ // prevented by a check in AnalyzeImplicitConversions().
+ return DiagnoseImpCast(S, E, T, CC,
+ diag::warn_impcast_string_literal_to_bool);
+ if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) ||
+ isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) {
+ // This covers the literal expressions that evaluate to Objective-C
+ // objects.
+ return DiagnoseImpCast(S, E, T, CC,
+ diag::warn_impcast_objective_c_literal_to_bool);
+ }
+ if (Source->isPointerType() || Source->canDecayToPointerType()) {
+ // Warn on pointer to bool conversion that is always true.
+ S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false,
+ SourceRange(CC));
+ }
+ }
+
+ // Strip vector types.
+ if (isa<VectorType>(Source)) {
+ if (!isa<VectorType>(Target)) {
+ if (S.SourceMgr.isInSystemMacro(CC))
+ return;
+ return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
+ }
+
+ // If the vector cast is cast between two vectors of the same size, it is
+ // a bitcast, not a conversion.
+ if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
+ return;
+
+ Source = cast<VectorType>(Source)->getElementType().getTypePtr();
+ Target = cast<VectorType>(Target)->getElementType().getTypePtr();
+ }
+ if (auto VecTy = dyn_cast<VectorType>(Target))
+ Target = VecTy->getElementType().getTypePtr();
+
+ // Strip complex types.
+ if (isa<ComplexType>(Source)) {
+ if (!isa<ComplexType>(Target)) {
+ if (S.SourceMgr.isInSystemMacro(CC))
+ return;
+
+ return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
+ }
+
+ Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
+ Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
+ }
+
+ const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
+ const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
+
+ // If the source is floating point...
+ if (SourceBT && SourceBT->isFloatingPoint()) {
+ // ...and the target is floating point...
+ if (TargetBT && TargetBT->isFloatingPoint()) {
+ // ...then warn if we're dropping FP rank.
+
+ // Builtin FP kinds are ordered by increasing FP rank.
+ if (SourceBT->getKind() > TargetBT->getKind()) {
+ // Don't warn about float constants that are precisely
+ // representable in the target type.
+ Expr::EvalResult result;
+ if (E->EvaluateAsRValue(result, S.Context)) {
+ // Value might be a float, a float vector, or a float complex.
+ if (IsSameFloatAfterCast(result.Val,
+ S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
+ S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
+ return;
+ }
+
+ if (S.SourceMgr.isInSystemMacro(CC))
+ return;
+
+ DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
+ }
+ return;
+ }
+
+ // If the target is integral, always warn.
+ if (TargetBT && TargetBT->isInteger()) {
+ if (S.SourceMgr.isInSystemMacro(CC))
+ return;
+
+ Expr *InnerE = E->IgnoreParenImpCasts();
+ // We also want to warn on, e.g., "int i = -1.234"
+ if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
+ if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
+ InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
+
+ if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
+ DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
+ } else {
+ DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
+ }
+ }
+
+ // If the target is bool, warn if expr is a function or method call.
+ if (Target->isSpecificBuiltinType(BuiltinType::Bool) &&
+ isa<CallExpr>(E)) {
+ // Check last argument of function call to see if it is an
+ // implicit cast from a type matching the type the result
+ // is being cast to.
+ CallExpr *CEx = cast<CallExpr>(E);
+ unsigned NumArgs = CEx->getNumArgs();
+ if (NumArgs > 0) {
+ Expr *LastA = CEx->getArg(NumArgs - 1);
+ Expr *InnerE = LastA->IgnoreParenImpCasts();
+ const Type *InnerType =
+ S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
+ if (isa<ImplicitCastExpr>(LastA) && (InnerType == Target)) {
+ // Warn on this floating-point to bool conversion
+ DiagnoseImpCast(S, E, T, CC,
+ diag::warn_impcast_floating_point_to_bool);
+ }
+ }
+ }
+ return;
+ }
+
+ DiagnoseNullConversion(S, E, T, CC);
+
+ if (!Source->isIntegerType() || !Target->isIntegerType())
+ return;
+
+ // TODO: remove this early return once the false positives for constant->bool
+ // in templates, macros, etc, are reduced or removed.
+ if (Target->isSpecificBuiltinType(BuiltinType::Bool))
+ return;
+
+ IntRange SourceRange = GetExprRange(S.Context, E);
+ IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
+
+ if (SourceRange.Width > TargetRange.Width) {
+ // If the source is a constant, use a default-on diagnostic.
+ // TODO: this should happen for bitfield stores, too.
+ llvm::APSInt Value(32);
+ if (E->isIntegerConstantExpr(Value, S.Context)) {
+ if (S.SourceMgr.isInSystemMacro(CC))
+ return;
+
+ std::string PrettySourceValue = Value.toString(10);
+ std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
+
+ S.DiagRuntimeBehavior(E->getExprLoc(), E,
+ S.PDiag(diag::warn_impcast_integer_precision_constant)
+ << PrettySourceValue << PrettyTargetValue
+ << E->getType() << T << E->getSourceRange()
+ << clang::SourceRange(CC));
+ return;
+ }
+
+ // People want to build with -Wshorten-64-to-32 and not -Wconversion.
+ if (S.SourceMgr.isInSystemMacro(CC))
+ return;
+
+ if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
+ return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
+ /* pruneControlFlow */ true);
+ return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
+ }
+
+ if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
+ (!TargetRange.NonNegative && SourceRange.NonNegative &&
+ SourceRange.Width == TargetRange.Width)) {
+
+ if (S.SourceMgr.isInSystemMacro(CC))
+ return;
+
+ unsigned DiagID = diag::warn_impcast_integer_sign;
+
+ // Traditionally, gcc has warned about this under -Wsign-compare.
+ // We also want to warn about it in -Wconversion.
+ // So if -Wconversion is off, use a completely identical diagnostic
+ // in the sign-compare group.
+ // The conditional-checking code will
+ if (ICContext) {
+ DiagID = diag::warn_impcast_integer_sign_conditional;
+ *ICContext = true;
+ }
+
+ return DiagnoseImpCast(S, E, T, CC, DiagID);
+ }
+
+ // Diagnose conversions between different enumeration types.
+ // In C, we pretend that the type of an EnumConstantDecl is its enumeration
+ // type, to give us better diagnostics.
+ QualType SourceType = E->getType();
+ if (!S.getLangOpts().CPlusPlus) {
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
+ if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
+ EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
+ SourceType = S.Context.getTypeDeclType(Enum);
+ Source = S.Context.getCanonicalType(SourceType).getTypePtr();
+ }
+ }
+
+ if (const EnumType *SourceEnum = Source->getAs<EnumType>())
+ if (const EnumType *TargetEnum = Target->getAs<EnumType>())
+ if (SourceEnum->getDecl()->hasNameForLinkage() &&
+ TargetEnum->getDecl()->hasNameForLinkage() &&
+ SourceEnum != TargetEnum) {
+ if (S.SourceMgr.isInSystemMacro(CC))
+ return;
+
+ return DiagnoseImpCast(S, E, SourceType, T, CC,
+ diag::warn_impcast_different_enum_types);
+ }
+
+ return;
+}
+
+void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
+ SourceLocation CC, QualType T);
+
+void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
+ SourceLocation CC, bool &ICContext) {
+ E = E->IgnoreParenImpCasts();
+
+ if (isa<ConditionalOperator>(E))
+ return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T);
+
+ AnalyzeImplicitConversions(S, E, CC);
+ if (E->getType() != T)
+ return CheckImplicitConversion(S, E, T, CC, &ICContext);
+ return;
+}
+
+void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
+ SourceLocation CC, QualType T) {
+ AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc());
+
+ bool Suspicious = false;
+ CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
+ CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
+
+ // If -Wconversion would have warned about either of the candidates
+ // for a signedness conversion to the context type...
+ if (!Suspicious) return;
+
+ // ...but it's currently ignored...
+ if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC))
+ return;
+
+ // ...then check whether it would have warned about either of the
+ // candidates for a signedness conversion to the condition type.
+ if (E->getType() == T) return;
+
+ Suspicious = false;
+ CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
+ E->getType(), CC, &Suspicious);
+ if (!Suspicious)
+ CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
+ E->getType(), CC, &Suspicious);
+}
+
+/// CheckBoolLikeConversion - Check conversion of given expression to boolean.
+/// Input argument E is a logical expression.
+static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) {
+ if (S.getLangOpts().Bool)
+ return;
+ CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC);
+}
+
+/// AnalyzeImplicitConversions - Find and report any interesting
+/// implicit conversions in the given expression. There are a couple
+/// of competing diagnostics here, -Wconversion and -Wsign-compare.
+void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
+ QualType T = OrigE->getType();
+ Expr *E = OrigE->IgnoreParenImpCasts();
+
+ if (E->isTypeDependent() || E->isValueDependent())
+ return;
+
+ // For conditional operators, we analyze the arguments as if they
+ // were being fed directly into the output.
+ if (isa<ConditionalOperator>(E)) {
+ ConditionalOperator *CO = cast<ConditionalOperator>(E);
+ CheckConditionalOperator(S, CO, CC, T);
+ return;
+ }
+
+ // Check implicit argument conversions for function calls.
+ if (CallExpr *Call = dyn_cast<CallExpr>(E))
+ CheckImplicitArgumentConversions(S, Call, CC);
+
+ // Go ahead and check any implicit conversions we might have skipped.
+ // The non-canonical typecheck is just an optimization;
+ // CheckImplicitConversion will filter out dead implicit conversions.
+ if (E->getType() != T)
+ CheckImplicitConversion(S, E, T, CC);
+
+ // Now continue drilling into this expression.
+
+ if (PseudoObjectExpr * POE = dyn_cast<PseudoObjectExpr>(E)) {
+ if (POE->getResultExpr())
+ E = POE->getResultExpr();
+ }
+
+ if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
+ if (OVE->getSourceExpr())
+ AnalyzeImplicitConversions(S, OVE->getSourceExpr(), CC);
+ return;
+ }
+
+ // Skip past explicit casts.
+ if (isa<ExplicitCastExpr>(E)) {
+ E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
+ return AnalyzeImplicitConversions(S, E, CC);
+ }
+
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
+ // Do a somewhat different check with comparison operators.
+ if (BO->isComparisonOp())
+ return AnalyzeComparison(S, BO);
+
+ // And with simple assignments.
+ if (BO->getOpcode() == BO_Assign)
+ return AnalyzeAssignment(S, BO);
+ }
+
+ // These break the otherwise-useful invariant below. Fortunately,
+ // we don't really need to recurse into them, because any internal
+ // expressions should have been analyzed already when they were
+ // built into statements.
+ if (isa<StmtExpr>(E)) return;
+
+ // Don't descend into unevaluated contexts.
+ if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
+
+ // Now just recurse over the expression's children.
+ CC = E->getExprLoc();
+ BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
+ bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd;
+ for (Stmt::child_range I = E->children(); I; ++I) {
+ Expr *ChildExpr = dyn_cast_or_null<Expr>(*I);
+ if (!ChildExpr)
+ continue;
+
+ if (IsLogicalAndOperator &&
+ isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
+ // Ignore checking string literals that are in logical and operators.
+ // This is a common pattern for asserts.
+ continue;
+ AnalyzeImplicitConversions(S, ChildExpr, CC);
+ }
+
+ if (BO && BO->isLogicalOp()) {
+ Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts();
+ if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
+ ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
+
+ SubExpr = BO->getRHS()->IgnoreParenImpCasts();
+ if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
+ ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
+ }
+
+ if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E))
+ if (U->getOpcode() == UO_LNot)
+ ::CheckBoolLikeConversion(S, U->getSubExpr(), CC);
+}
+
+} // end anonymous namespace
+
+enum {
+ AddressOf,
+ FunctionPointer,
+ ArrayPointer
+};
+
+// Helper function for Sema::DiagnoseAlwaysNonNullPointer.
+// Returns true when emitting a warning about taking the address of a reference.
+static bool CheckForReference(Sema &SemaRef, const Expr *E,
+ PartialDiagnostic PD) {
+ E = E->IgnoreParenImpCasts();
+
+ const FunctionDecl *FD = nullptr;
+
+ if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
+ if (!DRE->getDecl()->getType()->isReferenceType())
+ return false;
+ } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) {
+ if (!M->getMemberDecl()->getType()->isReferenceType())
+ return false;
+ } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) {
+ if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType())
+ return false;
+ FD = Call->getDirectCallee();
+ } else {
+ return false;
+ }
+
+ SemaRef.Diag(E->getExprLoc(), PD);
+
+ // If possible, point to location of function.
+ if (FD) {
+ SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD;
+ }
+
+ return true;
+}
+
+// Returns true if the SourceLocation is expanded from any macro body.
+// Returns false if the SourceLocation is invalid, is from not in a macro
+// expansion, or is from expanded from a top-level macro argument.
+static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) {
+ if (Loc.isInvalid())
+ return false;
+
+ while (Loc.isMacroID()) {
+ if (SM.isMacroBodyExpansion(Loc))
+ return true;
+ Loc = SM.getImmediateMacroCallerLoc(Loc);
+ }
+
+ return false;
+}
+
+/// \brief Diagnose pointers that are always non-null.
+/// \param E the expression containing the pointer
+/// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is
+/// compared to a null pointer
+/// \param IsEqual True when the comparison is equal to a null pointer
+/// \param Range Extra SourceRange to highlight in the diagnostic
+void Sema::DiagnoseAlwaysNonNullPointer(Expr *E,
+ Expr::NullPointerConstantKind NullKind,
+ bool IsEqual, SourceRange Range) {
+ if (!E)
+ return;
+
+ // Don't warn inside macros.
+ if (E->getExprLoc().isMacroID()) {
+ const SourceManager &SM = getSourceManager();
+ if (IsInAnyMacroBody(SM, E->getExprLoc()) ||
+ IsInAnyMacroBody(SM, Range.getBegin()))
+ return;
+ }
+ E = E->IgnoreImpCasts();
+
+ const bool IsCompare = NullKind != Expr::NPCK_NotNull;
+
+ if (isa<CXXThisExpr>(E)) {
+ unsigned DiagID = IsCompare ? diag::warn_this_null_compare
+ : diag::warn_this_bool_conversion;
+ Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual;
+ return;
+ }
+
+ bool IsAddressOf = false;
+
+ if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
+ if (UO->getOpcode() != UO_AddrOf)
+ return;
+ IsAddressOf = true;
+ E = UO->getSubExpr();
+ }
+
+ if (IsAddressOf) {
+ unsigned DiagID = IsCompare
+ ? diag::warn_address_of_reference_null_compare
+ : diag::warn_address_of_reference_bool_conversion;
+ PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range
+ << IsEqual;
+ if (CheckForReference(*this, E, PD)) {
+ return;
+ }
+ }
+
+ // Expect to find a single Decl. Skip anything more complicated.
+ ValueDecl *D = nullptr;
+ if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) {
+ D = R->getDecl();
+ } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
+ D = M->getMemberDecl();
+ }
+
+ // Weak Decls can be null.
+ if (!D || D->isWeak())
+ return;
+
+ // Check for parameter decl with nonnull attribute
+ if (const ParmVarDecl* PV = dyn_cast<ParmVarDecl>(D)) {
+ if (getCurFunction() && !getCurFunction()->ModifiedNonNullParams.count(PV))
+ if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) {
+ unsigned NumArgs = FD->getNumParams();
+ llvm::SmallBitVector AttrNonNull(NumArgs);
+ for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) {
+ if (!NonNull->args_size()) {
+ AttrNonNull.set(0, NumArgs);
+ break;
+ }
+ for (unsigned Val : NonNull->args()) {
+ if (Val >= NumArgs)
+ continue;
+ AttrNonNull.set(Val);
+ }
+ }
+ if (!AttrNonNull.empty())
+ for (unsigned i = 0; i < NumArgs; ++i)
+ if (FD->getParamDecl(i) == PV &&
+ (AttrNonNull[i] || PV->hasAttr<NonNullAttr>())) {
+ std::string Str;
+ llvm::raw_string_ostream S(Str);
+ E->printPretty(S, nullptr, getPrintingPolicy());
+ unsigned DiagID = IsCompare ? diag::warn_nonnull_parameter_compare
+ : diag::warn_cast_nonnull_to_bool;
+ Diag(E->getExprLoc(), DiagID) << S.str() << E->getSourceRange()
+ << Range << IsEqual;
+ return;
+ }
+ }
+ }
+
+ QualType T = D->getType();
+ const bool IsArray = T->isArrayType();
+ const bool IsFunction = T->isFunctionType();
+
+ // Address of function is used to silence the function warning.
+ if (IsAddressOf && IsFunction) {
+ return;
+ }
+
+ // Found nothing.
+ if (!IsAddressOf && !IsFunction && !IsArray)
+ return;
+
+ // Pretty print the expression for the diagnostic.
+ std::string Str;
+ llvm::raw_string_ostream S(Str);
+ E->printPretty(S, nullptr, getPrintingPolicy());
+
+ unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare
+ : diag::warn_impcast_pointer_to_bool;
+ unsigned DiagType;
+ if (IsAddressOf)
+ DiagType = AddressOf;
+ else if (IsFunction)
+ DiagType = FunctionPointer;
+ else if (IsArray)
+ DiagType = ArrayPointer;
+ else
+ llvm_unreachable("Could not determine diagnostic.");
+ Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange()
+ << Range << IsEqual;
+
+ if (!IsFunction)
+ return;
+
+ // Suggest '&' to silence the function warning.
+ Diag(E->getExprLoc(), diag::note_function_warning_silence)
+ << FixItHint::CreateInsertion(E->getLocStart(), "&");
+
+ // Check to see if '()' fixit should be emitted.
+ QualType ReturnType;
+ UnresolvedSet<4> NonTemplateOverloads;
+ tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
+ if (ReturnType.isNull())
+ return;
+
+ if (IsCompare) {
+ // There are two cases here. If there is null constant, the only suggest
+ // for a pointer return type. If the null is 0, then suggest if the return
+ // type is a pointer or an integer type.
+ if (!ReturnType->isPointerType()) {
+ if (NullKind == Expr::NPCK_ZeroExpression ||
+ NullKind == Expr::NPCK_ZeroLiteral) {
+ if (!ReturnType->isIntegerType())
+ return;
+ } else {
+ return;
+ }
+ }
+ } else { // !IsCompare
+ // For function to bool, only suggest if the function pointer has bool
+ // return type.
+ if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
+ return;
+ }
+ Diag(E->getExprLoc(), diag::note_function_to_function_call)
+ << FixItHint::CreateInsertion(getLocForEndOfToken(E->getLocEnd()), "()");
+}
+
+
+/// Diagnoses "dangerous" implicit conversions within the given
+/// expression (which is a full expression). Implements -Wconversion
+/// and -Wsign-compare.
+///
+/// \param CC the "context" location of the implicit conversion, i.e.
+/// the most location of the syntactic entity requiring the implicit
+/// conversion
+void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
+ // Don't diagnose in unevaluated contexts.
+ if (isUnevaluatedContext())
+ return;
+
+ // Don't diagnose for value- or type-dependent expressions.
+ if (E->isTypeDependent() || E->isValueDependent())
+ return;
+
+ // Check for array bounds violations in cases where the check isn't triggered
+ // elsewhere for other Expr types (like BinaryOperators), e.g. when an
+ // ArraySubscriptExpr is on the RHS of a variable initialization.
+ CheckArrayAccess(E);
+
+ // This is not the right CC for (e.g.) a variable initialization.
+ AnalyzeImplicitConversions(*this, E, CC);
+}
+
+/// CheckBoolLikeConversion - Check conversion of given expression to boolean.
+/// Input argument E is a logical expression.
+void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) {
+ ::CheckBoolLikeConversion(*this, E, CC);
+}
+
+/// Diagnose when expression is an integer constant expression and its evaluation
+/// results in integer overflow
+void Sema::CheckForIntOverflow (Expr *E) {
+ if (isa<BinaryOperator>(E->IgnoreParenCasts()))
+ E->IgnoreParenCasts()->EvaluateForOverflow(Context);
+}
+
+namespace {
+/// \brief Visitor for expressions which looks for unsequenced operations on the
+/// same object.
+class SequenceChecker : public EvaluatedExprVisitor<SequenceChecker> {
+ typedef EvaluatedExprVisitor<SequenceChecker> Base;
+
+ /// \brief A tree of sequenced regions within an expression. Two regions are
+ /// unsequenced if one is an ancestor or a descendent of the other. When we
+ /// finish processing an expression with sequencing, such as a comma
+ /// expression, we fold its tree nodes into its parent, since they are
+ /// unsequenced with respect to nodes we will visit later.
+ class SequenceTree {
+ struct Value {
+ explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
+ unsigned Parent : 31;
+ bool Merged : 1;
+ };
+ SmallVector<Value, 8> Values;
+
+ public:
+ /// \brief A region within an expression which may be sequenced with respect
+ /// to some other region.
+ class Seq {
+ explicit Seq(unsigned N) : Index(N) {}
+ unsigned Index;
+ friend class SequenceTree;
+ public:
+ Seq() : Index(0) {}
+ };
+
+ SequenceTree() { Values.push_back(Value(0)); }
+ Seq root() const { return Seq(0); }
+
+ /// \brief Create a new sequence of operations, which is an unsequenced
+ /// subset of \p Parent. This sequence of operations is sequenced with
+ /// respect to other children of \p Parent.
+ Seq allocate(Seq Parent) {
+ Values.push_back(Value(Parent.Index));
+ return Seq(Values.size() - 1);
+ }
+
+ /// \brief Merge a sequence of operations into its parent.
+ void merge(Seq S) {
+ Values[S.Index].Merged = true;
+ }
+
+ /// \brief Determine whether two operations are unsequenced. This operation
+ /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
+ /// should have been merged into its parent as appropriate.
+ bool isUnsequenced(Seq Cur, Seq Old) {
+ unsigned C = representative(Cur.Index);
+ unsigned Target = representative(Old.Index);
+ while (C >= Target) {
+ if (C == Target)
+ return true;
+ C = Values[C].Parent;
+ }
+ return false;
+ }
+
+ private:
+ /// \brief Pick a representative for a sequence.
+ unsigned representative(unsigned K) {
+ if (Values[K].Merged)
+ // Perform path compression as we go.
+ return Values[K].Parent = representative(Values[K].Parent);
+ return K;
+ }
+ };
+
+ /// An object for which we can track unsequenced uses.
+ typedef NamedDecl *Object;
+
+ /// Different flavors of object usage which we track. We only track the
+ /// least-sequenced usage of each kind.
+ enum UsageKind {
+ /// A read of an object. Multiple unsequenced reads are OK.
+ UK_Use,
+ /// A modification of an object which is sequenced before the value
+ /// computation of the expression, such as ++n in C++.
+ UK_ModAsValue,
+ /// A modification of an object which is not sequenced before the value
+ /// computation of the expression, such as n++.
+ UK_ModAsSideEffect,
+
+ UK_Count = UK_ModAsSideEffect + 1
+ };
+
+ struct Usage {
+ Usage() : Use(nullptr), Seq() {}
+ Expr *Use;
+ SequenceTree::Seq Seq;
+ };
+
+ struct UsageInfo {
+ UsageInfo() : Diagnosed(false) {}
+ Usage Uses[UK_Count];
+ /// Have we issued a diagnostic for this variable already?
+ bool Diagnosed;
+ };
+ typedef llvm::SmallDenseMap<Object, UsageInfo, 16> UsageInfoMap;
+
+ Sema &SemaRef;
+ /// Sequenced regions within the expression.
+ SequenceTree Tree;
+ /// Declaration modifications and references which we have seen.
+ UsageInfoMap UsageMap;
+ /// The region we are currently within.
+ SequenceTree::Seq Region;
+ /// Filled in with declarations which were modified as a side-effect
+ /// (that is, post-increment operations).
+ SmallVectorImpl<std::pair<Object, Usage> > *ModAsSideEffect;
+ /// Expressions to check later. We defer checking these to reduce
+ /// stack usage.
+ SmallVectorImpl<Expr *> &WorkList;
+
+ /// RAII object wrapping the visitation of a sequenced subexpression of an
+ /// expression. At the end of this process, the side-effects of the evaluation
+ /// become sequenced with respect to the value computation of the result, so
+ /// we downgrade any UK_ModAsSideEffect within the evaluation to
+ /// UK_ModAsValue.
+ struct SequencedSubexpression {
+ SequencedSubexpression(SequenceChecker &Self)
+ : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
+ Self.ModAsSideEffect = &ModAsSideEffect;
+ }
+ ~SequencedSubexpression() {
+ for (auto MI = ModAsSideEffect.rbegin(), ME = ModAsSideEffect.rend();
+ MI != ME; ++MI) {
+ UsageInfo &U = Self.UsageMap[MI->first];
+ auto &SideEffectUsage = U.Uses[UK_ModAsSideEffect];
+ Self.addUsage(U, MI->first, SideEffectUsage.Use, UK_ModAsValue);
+ SideEffectUsage = MI->second;
+ }
+ Self.ModAsSideEffect = OldModAsSideEffect;
+ }
+
+ SequenceChecker &Self;
+ SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
+ SmallVectorImpl<std::pair<Object, Usage> > *OldModAsSideEffect;
+ };
+
+ /// RAII object wrapping the visitation of a subexpression which we might
+ /// choose to evaluate as a constant. If any subexpression is evaluated and
+ /// found to be non-constant, this allows us to suppress the evaluation of
+ /// the outer expression.
+ class EvaluationTracker {
+ public:
+ EvaluationTracker(SequenceChecker &Self)
+ : Self(Self), Prev(Self.EvalTracker), EvalOK(true) {
+ Self.EvalTracker = this;
+ }
+ ~EvaluationTracker() {
+ Self.EvalTracker = Prev;
+ if (Prev)
+ Prev->EvalOK &= EvalOK;
+ }
+
+ bool evaluate(const Expr *E, bool &Result) {
+ if (!EvalOK || E->isValueDependent())
+ return false;
+ EvalOK = E->EvaluateAsBooleanCondition(Result, Self.SemaRef.Context);
+ return EvalOK;
+ }
+
+ private:
+ SequenceChecker &Self;
+ EvaluationTracker *Prev;
+ bool EvalOK;
+ } *EvalTracker;
+
+ /// \brief Find the object which is produced by the specified expression,
+ /// if any.
+ Object getObject(Expr *E, bool Mod) const {
+ E = E->IgnoreParenCasts();
+ if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
+ if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
+ return getObject(UO->getSubExpr(), Mod);
+ } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
+ if (BO->getOpcode() == BO_Comma)
+ return getObject(BO->getRHS(), Mod);
+ if (Mod && BO->isAssignmentOp())
+ return getObject(BO->getLHS(), Mod);
+ } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
+ // FIXME: Check for more interesting cases, like "x.n = ++x.n".
+ if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
+ return ME->getMemberDecl();
+ } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
+ // FIXME: If this is a reference, map through to its value.
+ return DRE->getDecl();
+ return nullptr;
+ }
+
+ /// \brief Note that an object was modified or used by an expression.
+ void addUsage(UsageInfo &UI, Object O, Expr *Ref, UsageKind UK) {
+ Usage &U = UI.Uses[UK];
+ if (!U.Use || !Tree.isUnsequenced(Region, U.Seq)) {
+ if (UK == UK_ModAsSideEffect && ModAsSideEffect)
+ ModAsSideEffect->push_back(std::make_pair(O, U));
+ U.Use = Ref;
+ U.Seq = Region;
+ }
+ }
+ /// \brief Check whether a modification or use conflicts with a prior usage.
+ void checkUsage(Object O, UsageInfo &UI, Expr *Ref, UsageKind OtherKind,
+ bool IsModMod) {
+ if (UI.Diagnosed)
+ return;
+
+ const Usage &U = UI.Uses[OtherKind];
+ if (!U.Use || !Tree.isUnsequenced(Region, U.Seq))
+ return;
+
+ Expr *Mod = U.Use;
+ Expr *ModOrUse = Ref;
+ if (OtherKind == UK_Use)
+ std::swap(Mod, ModOrUse);
+
+ SemaRef.Diag(Mod->getExprLoc(),
+ IsModMod ? diag::warn_unsequenced_mod_mod
+ : diag::warn_unsequenced_mod_use)
+ << O << SourceRange(ModOrUse->getExprLoc());
+ UI.Diagnosed = true;
+ }
+
+ void notePreUse(Object O, Expr *Use) {
+ UsageInfo &U = UsageMap[O];
+ // Uses conflict with other modifications.
+ checkUsage(O, U, Use, UK_ModAsValue, false);
+ }
+ void notePostUse(Object O, Expr *Use) {
+ UsageInfo &U = UsageMap[O];
+ checkUsage(O, U, Use, UK_ModAsSideEffect, false);
+ addUsage(U, O, Use, UK_Use);
+ }
+
+ void notePreMod(Object O, Expr *Mod) {
+ UsageInfo &U = UsageMap[O];
+ // Modifications conflict with other modifications and with uses.
+ checkUsage(O, U, Mod, UK_ModAsValue, true);
+ checkUsage(O, U, Mod, UK_Use, false);
+ }
+ void notePostMod(Object O, Expr *Use, UsageKind UK) {
+ UsageInfo &U = UsageMap[O];
+ checkUsage(O, U, Use, UK_ModAsSideEffect, true);
+ addUsage(U, O, Use, UK);
+ }
+
+public:
+ SequenceChecker(Sema &S, Expr *E, SmallVectorImpl<Expr *> &WorkList)
+ : Base(S.Context), SemaRef(S), Region(Tree.root()),
+ ModAsSideEffect(nullptr), WorkList(WorkList), EvalTracker(nullptr) {
+ Visit(E);
+ }
+
+ void VisitStmt(Stmt *S) {
+ // Skip all statements which aren't expressions for now.
+ }
+
+ void VisitExpr(Expr *E) {
+ // By default, just recurse to evaluated subexpressions.
+ Base::VisitStmt(E);
+ }
+
+ void VisitCastExpr(CastExpr *E) {
+ Object O = Object();
+ if (E->getCastKind() == CK_LValueToRValue)
+ O = getObject(E->getSubExpr(), false);
+
+ if (O)
+ notePreUse(O, E);
+ VisitExpr(E);
+ if (O)
+ notePostUse(O, E);
+ }
+
+ void VisitBinComma(BinaryOperator *BO) {
+ // C++11 [expr.comma]p1:
+ // Every value computation and side effect associated with the left
+ // expression is sequenced before every value computation and side
+ // effect associated with the right expression.
+ SequenceTree::Seq LHS = Tree.allocate(Region);
+ SequenceTree::Seq RHS = Tree.allocate(Region);
+ SequenceTree::Seq OldRegion = Region;
+
+ {
+ SequencedSubexpression SeqLHS(*this);
+ Region = LHS;
+ Visit(BO->getLHS());
+ }
+
+ Region = RHS;
+ Visit(BO->getRHS());
+
+ Region = OldRegion;
+
+ // Forget that LHS and RHS are sequenced. They are both unsequenced
+ // with respect to other stuff.
+ Tree.merge(LHS);
+ Tree.merge(RHS);
+ }
+
+ void VisitBinAssign(BinaryOperator *BO) {
+ // The modification is sequenced after the value computation of the LHS
+ // and RHS, so check it before inspecting the operands and update the
+ // map afterwards.
+ Object O = getObject(BO->getLHS(), true);
+ if (!O)
+ return VisitExpr(BO);
+
+ notePreMod(O, BO);
+
+ // C++11 [expr.ass]p7:
+ // E1 op= E2 is equivalent to E1 = E1 op E2, except that E1 is evaluated
+ // only once.
+ //
+ // Therefore, for a compound assignment operator, O is considered used
+ // everywhere except within the evaluation of E1 itself.
+ if (isa<CompoundAssignOperator>(BO))
+ notePreUse(O, BO);
+
+ Visit(BO->getLHS());
+
+ if (isa<CompoundAssignOperator>(BO))
+ notePostUse(O, BO);
+
+ Visit(BO->getRHS());
+
+ // C++11 [expr.ass]p1:
+ // the assignment is sequenced [...] before the value computation of the
+ // assignment expression.
+ // C11 6.5.16/3 has no such rule.
+ notePostMod(O, BO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
+ : UK_ModAsSideEffect);
+ }
+ void VisitCompoundAssignOperator(CompoundAssignOperator *CAO) {
+ VisitBinAssign(CAO);
+ }
+
+ void VisitUnaryPreInc(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
+ void VisitUnaryPreDec(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
+ void VisitUnaryPreIncDec(UnaryOperator *UO) {
+ Object O = getObject(UO->getSubExpr(), true);
+ if (!O)
+ return VisitExpr(UO);
+
+ notePreMod(O, UO);
+ Visit(UO->getSubExpr());
+ // C++11 [expr.pre.incr]p1:
+ // the expression ++x is equivalent to x+=1
+ notePostMod(O, UO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
+ : UK_ModAsSideEffect);
+ }
+
+ void VisitUnaryPostInc(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
+ void VisitUnaryPostDec(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
+ void VisitUnaryPostIncDec(UnaryOperator *UO) {
+ Object O = getObject(UO->getSubExpr(), true);
+ if (!O)
+ return VisitExpr(UO);
+
+ notePreMod(O, UO);
+ Visit(UO->getSubExpr());
+ notePostMod(O, UO, UK_ModAsSideEffect);
+ }
+
+ /// Don't visit the RHS of '&&' or '||' if it might not be evaluated.
+ void VisitBinLOr(BinaryOperator *BO) {
+ // The side-effects of the LHS of an '&&' are sequenced before the
+ // value computation of the RHS, and hence before the value computation
+ // of the '&&' itself, unless the LHS evaluates to zero. We treat them
+ // as if they were unconditionally sequenced.
+ EvaluationTracker Eval(*this);
+ {
+ SequencedSubexpression Sequenced(*this);
+ Visit(BO->getLHS());
+ }
+
+ bool Result;
+ if (Eval.evaluate(BO->getLHS(), Result)) {
+ if (!Result)
+ Visit(BO->getRHS());
+ } else {
+ // Check for unsequenced operations in the RHS, treating it as an
+ // entirely separate evaluation.
+ //
+ // FIXME: If there are operations in the RHS which are unsequenced
+ // with respect to operations outside the RHS, and those operations
+ // are unconditionally evaluated, diagnose them.
+ WorkList.push_back(BO->getRHS());
+ }
+ }
+ void VisitBinLAnd(BinaryOperator *BO) {
+ EvaluationTracker Eval(*this);
+ {
+ SequencedSubexpression Sequenced(*this);
+ Visit(BO->getLHS());
+ }
+
+ bool Result;
+ if (Eval.evaluate(BO->getLHS(), Result)) {
+ if (Result)
+ Visit(BO->getRHS());
+ } else {
+ WorkList.push_back(BO->getRHS());
+ }
+ }
+
+ // Only visit the condition, unless we can be sure which subexpression will
+ // be chosen.
+ void VisitAbstractConditionalOperator(AbstractConditionalOperator *CO) {
+ EvaluationTracker Eval(*this);
+ {
+ SequencedSubexpression Sequenced(*this);
+ Visit(CO->getCond());
+ }
+
+ bool Result;
+ if (Eval.evaluate(CO->getCond(), Result))
+ Visit(Result ? CO->getTrueExpr() : CO->getFalseExpr());
+ else {
+ WorkList.push_back(CO->getTrueExpr());
+ WorkList.push_back(CO->getFalseExpr());
+ }
+ }
+
+ void VisitCallExpr(CallExpr *CE) {
+ // C++11 [intro.execution]p15:
+ // When calling a function [...], every value computation and side effect
+ // associated with any argument expression, or with the postfix expression
+ // designating the called function, is sequenced before execution of every
+ // expression or statement in the body of the function [and thus before
+ // the value computation of its result].
+ SequencedSubexpression Sequenced(*this);
+ Base::VisitCallExpr(CE);
+
+ // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
+ }
+
+ void VisitCXXConstructExpr(CXXConstructExpr *CCE) {
+ // This is a call, so all subexpressions are sequenced before the result.
+ SequencedSubexpression Sequenced(*this);
+
+ if (!CCE->isListInitialization())
+ return VisitExpr(CCE);
+
+ // In C++11, list initializations are sequenced.
+ SmallVector<SequenceTree::Seq, 32> Elts;
+ SequenceTree::Seq Parent = Region;
+ for (CXXConstructExpr::arg_iterator I = CCE->arg_begin(),
+ E = CCE->arg_end();
+ I != E; ++I) {
+ Region = Tree.allocate(Parent);
+ Elts.push_back(Region);
+ Visit(*I);
+ }
+
+ // Forget that the initializers are sequenced.
+ Region = Parent;
+ for (unsigned I = 0; I < Elts.size(); ++I)
+ Tree.merge(Elts[I]);
+ }
+
+ void VisitInitListExpr(InitListExpr *ILE) {
+ if (!SemaRef.getLangOpts().CPlusPlus11)
+ return VisitExpr(ILE);
+
+ // In C++11, list initializations are sequenced.
+ SmallVector<SequenceTree::Seq, 32> Elts;
+ SequenceTree::Seq Parent = Region;
+ for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
+ Expr *E = ILE->getInit(I);
+ if (!E) continue;
+ Region = Tree.allocate(Parent);
+ Elts.push_back(Region);
+ Visit(E);
+ }
+
+ // Forget that the initializers are sequenced.
+ Region = Parent;
+ for (unsigned I = 0; I < Elts.size(); ++I)
+ Tree.merge(Elts[I]);
+ }
+};
+}
+
+void Sema::CheckUnsequencedOperations(Expr *E) {
+ SmallVector<Expr *, 8> WorkList;
+ WorkList.push_back(E);
+ while (!WorkList.empty()) {
+ Expr *Item = WorkList.pop_back_val();
+ SequenceChecker(*this, Item, WorkList);
+ }
+}
+
+void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
+ bool IsConstexpr) {
+ CheckImplicitConversions(E, CheckLoc);
+ CheckUnsequencedOperations(E);
+ if (!IsConstexpr && !E->isValueDependent())
+ CheckForIntOverflow(E);
+}
+
+void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
+ FieldDecl *BitField,
+ Expr *Init) {
+ (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
+}
+
+static void diagnoseArrayStarInParamType(Sema &S, QualType PType,
+ SourceLocation Loc) {
+ if (!PType->isVariablyModifiedType())
+ return;
+ if (const auto *PointerTy = dyn_cast<PointerType>(PType)) {
+ diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc);
+ return;
+ }
+ if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) {
+ diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc);
+ return;
+ }
+ if (const auto *ParenTy = dyn_cast<ParenType>(PType)) {
+ diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc);
+ return;
+ }
+
+ const ArrayType *AT = S.Context.getAsArrayType(PType);
+ if (!AT)
+ return;
+
+ if (AT->getSizeModifier() != ArrayType::Star) {
+ diagnoseArrayStarInParamType(S, AT->getElementType(), Loc);
+ return;
+ }
+
+ S.Diag(Loc, diag::err_array_star_in_function_definition);
+}
+
+/// CheckParmsForFunctionDef - Check that the parameters of the given
+/// function are appropriate for the definition of a function. This
+/// takes care of any checks that cannot be performed on the
+/// declaration itself, e.g., that the types of each of the function
+/// parameters are complete.
+bool Sema::CheckParmsForFunctionDef(ParmVarDecl *const *P,
+ ParmVarDecl *const *PEnd,
+ bool CheckParameterNames) {
+ bool HasInvalidParm = false;
+ for (; P != PEnd; ++P) {
+ ParmVarDecl *Param = *P;
+
+ // C99 6.7.5.3p4: the parameters in a parameter type list in a
+ // function declarator that is part of a function definition of
+ // that function shall not have incomplete type.
+ //
+ // This is also C++ [dcl.fct]p6.
+ if (!Param->isInvalidDecl() &&
+ RequireCompleteType(Param->getLocation(), Param->getType(),
+ diag::err_typecheck_decl_incomplete_type)) {
+ Param->setInvalidDecl();
+ HasInvalidParm = true;
+ }
+
+ // C99 6.9.1p5: If the declarator includes a parameter type list, the
+ // declaration of each parameter shall include an identifier.
+ if (CheckParameterNames &&
+ Param->getIdentifier() == nullptr &&
+ !Param->isImplicit() &&
+ !getLangOpts().CPlusPlus)
+ Diag(Param->getLocation(), diag::err_parameter_name_omitted);
+
+ // C99 6.7.5.3p12:
+ // If the function declarator is not part of a definition of that
+ // function, parameters may have incomplete type and may use the [*]
+ // notation in their sequences of declarator specifiers to specify
+ // variable length array types.
+ QualType PType = Param->getOriginalType();
+ // FIXME: This diagnostic should point the '[*]' if source-location
+ // information is added for it.
+ diagnoseArrayStarInParamType(*this, PType, Param->getLocation());
+
+ // MSVC destroys objects passed by value in the callee. Therefore a
+ // function definition which takes such a parameter must be able to call the
+ // object's destructor. However, we don't perform any direct access check
+ // on the dtor.
+ if (getLangOpts().CPlusPlus && Context.getTargetInfo()
+ .getCXXABI()
+ .areArgsDestroyedLeftToRightInCallee()) {
+ if (!Param->isInvalidDecl()) {
+ if (const RecordType *RT = Param->getType()->getAs<RecordType>()) {
+ CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
+ if (!ClassDecl->isInvalidDecl() &&
+ !ClassDecl->hasIrrelevantDestructor() &&
+ !ClassDecl->isDependentContext()) {
+ CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
+ MarkFunctionReferenced(Param->getLocation(), Destructor);
+ DiagnoseUseOfDecl(Destructor, Param->getLocation());
+ }
+ }
+ }
+ }
+ }
+
+ return HasInvalidParm;
+}
+
+/// CheckCastAlign - Implements -Wcast-align, which warns when a
+/// pointer cast increases the alignment requirements.
+void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
+ // This is actually a lot of work to potentially be doing on every
+ // cast; don't do it if we're ignoring -Wcast_align (as is the default).
+ if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin()))
+ return;
+
+ // Ignore dependent types.
+ if (T->isDependentType() || Op->getType()->isDependentType())
+ return;
+
+ // Require that the destination be a pointer type.
+ const PointerType *DestPtr = T->getAs<PointerType>();
+ if (!DestPtr) return;
+
+ // If the destination has alignment 1, we're done.
+ QualType DestPointee = DestPtr->getPointeeType();
+ if (DestPointee->isIncompleteType()) return;
+ CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
+ if (DestAlign.isOne()) return;
+
+ // Require that the source be a pointer type.
+ const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
+ if (!SrcPtr) return;
+ QualType SrcPointee = SrcPtr->getPointeeType();
+
+ // Whitelist casts from cv void*. We already implicitly
+ // whitelisted casts to cv void*, since they have alignment 1.
+ // Also whitelist casts involving incomplete types, which implicitly
+ // includes 'void'.
+ if (SrcPointee->isIncompleteType()) return;
+
+ CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
+ if (SrcAlign >= DestAlign) return;
+
+ Diag(TRange.getBegin(), diag::warn_cast_align)
+ << Op->getType() << T
+ << static_cast<unsigned>(SrcAlign.getQuantity())
+ << static_cast<unsigned>(DestAlign.getQuantity())
+ << TRange << Op->getSourceRange();
+}
+
+static const Type* getElementType(const Expr *BaseExpr) {
+ const Type* EltType = BaseExpr->getType().getTypePtr();
+ if (EltType->isAnyPointerType())
+ return EltType->getPointeeType().getTypePtr();
+ else if (EltType->isArrayType())
+ return EltType->getBaseElementTypeUnsafe();
+ return EltType;
+}
+
+/// \brief Check whether this array fits the idiom of a size-one tail padded
+/// array member of a struct.
+///
+/// We avoid emitting out-of-bounds access warnings for such arrays as they are
+/// commonly used to emulate flexible arrays in C89 code.
+static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
+ const NamedDecl *ND) {
+ if (Size != 1 || !ND) return false;
+
+ const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
+ if (!FD) return false;
+
+ // Don't consider sizes resulting from macro expansions or template argument
+ // substitution to form C89 tail-padded arrays.
+
+ TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
+ while (TInfo) {
+ TypeLoc TL = TInfo->getTypeLoc();
+ // Look through typedefs.
+ if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
+ const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
+ TInfo = TDL->getTypeSourceInfo();
+ continue;
+ }
+ if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
+ const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
+ if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
+ return false;
+ }
+ break;
+ }
+
+ const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
+ if (!RD) return false;
+ if (RD->isUnion()) return false;
+ if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
+ if (!CRD->isStandardLayout()) return false;
+ }
+
+ // See if this is the last field decl in the record.
+ const Decl *D = FD;
+ while ((D = D->getNextDeclInContext()))
+ if (isa<FieldDecl>(D))
+ return false;
+ return true;
+}
+
+void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
+ const ArraySubscriptExpr *ASE,
+ bool AllowOnePastEnd, bool IndexNegated) {
+ IndexExpr = IndexExpr->IgnoreParenImpCasts();
+ if (IndexExpr->isValueDependent())
+ return;
+
+ const Type *EffectiveType = getElementType(BaseExpr);
+ BaseExpr = BaseExpr->IgnoreParenCasts();
+ const ConstantArrayType *ArrayTy =
+ Context.getAsConstantArrayType(BaseExpr->getType());
+ if (!ArrayTy)
+ return;
+
+ llvm::APSInt index;
+ if (!IndexExpr->EvaluateAsInt(index, Context))
+ return;
+ if (IndexNegated)
+ index = -index;
+
+ const NamedDecl *ND = nullptr;
+ if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
+ ND = dyn_cast<NamedDecl>(DRE->getDecl());
+ if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
+ ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
+
+ if (index.isUnsigned() || !index.isNegative()) {
+ llvm::APInt size = ArrayTy->getSize();
+ if (!size.isStrictlyPositive())
+ return;
+
+ const Type* BaseType = getElementType(BaseExpr);
+ if (BaseType != EffectiveType) {
+ // Make sure we're comparing apples to apples when comparing index to size
+ uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
+ uint64_t array_typesize = Context.getTypeSize(BaseType);
+ // Handle ptrarith_typesize being zero, such as when casting to void*
+ if (!ptrarith_typesize) ptrarith_typesize = 1;
+ if (ptrarith_typesize != array_typesize) {
+ // There's a cast to a different size type involved
+ uint64_t ratio = array_typesize / ptrarith_typesize;
+ // TODO: Be smarter about handling cases where array_typesize is not a
+ // multiple of ptrarith_typesize
+ if (ptrarith_typesize * ratio == array_typesize)
+ size *= llvm::APInt(size.getBitWidth(), ratio);
+ }
+ }
+
+ if (size.getBitWidth() > index.getBitWidth())
+ index = index.zext(size.getBitWidth());
+ else if (size.getBitWidth() < index.getBitWidth())
+ size = size.zext(index.getBitWidth());
+
+ // For array subscripting the index must be less than size, but for pointer
+ // arithmetic also allow the index (offset) to be equal to size since
+ // computing the next address after the end of the array is legal and
+ // commonly done e.g. in C++ iterators and range-based for loops.
+ if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
+ return;
+
+ // Also don't warn for arrays of size 1 which are members of some
+ // structure. These are often used to approximate flexible arrays in C89
+ // code.
+ if (IsTailPaddedMemberArray(*this, size, ND))
+ return;
+
+ // Suppress the warning if the subscript expression (as identified by the
+ // ']' location) and the index expression are both from macro expansions
+ // within a system header.
+ if (ASE) {
+ SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
+ ASE->getRBracketLoc());
+ if (SourceMgr.isInSystemHeader(RBracketLoc)) {
+ SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
+ IndexExpr->getLocStart());
+ if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
+ return;
+ }
+ }
+
+ unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
+ if (ASE)
+ DiagID = diag::warn_array_index_exceeds_bounds;
+
+ DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
+ PDiag(DiagID) << index.toString(10, true)
+ << size.toString(10, true)
+ << (unsigned)size.getLimitedValue(~0U)
+ << IndexExpr->getSourceRange());
+ } else {
+ unsigned DiagID = diag::warn_array_index_precedes_bounds;
+ if (!ASE) {
+ DiagID = diag::warn_ptr_arith_precedes_bounds;
+ if (index.isNegative()) index = -index;
+ }
+
+ DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
+ PDiag(DiagID) << index.toString(10, true)
+ << IndexExpr->getSourceRange());
+ }
+
+ if (!ND) {
+ // Try harder to find a NamedDecl to point at in the note.
+ while (const ArraySubscriptExpr *ASE =
+ dyn_cast<ArraySubscriptExpr>(BaseExpr))
+ BaseExpr = ASE->getBase()->IgnoreParenCasts();
+ if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
+ ND = dyn_cast<NamedDecl>(DRE->getDecl());
+ if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
+ ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
+ }
+
+ if (ND)
+ DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
+ PDiag(diag::note_array_index_out_of_bounds)
+ << ND->getDeclName());
+}
+
+void Sema::CheckArrayAccess(const Expr *expr) {
+ int AllowOnePastEnd = 0;
+ while (expr) {
+ expr = expr->IgnoreParenImpCasts();
+ switch (expr->getStmtClass()) {
+ case Stmt::ArraySubscriptExprClass: {
+ const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
+ CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
+ AllowOnePastEnd > 0);
+ return;
+ }
+ case Stmt::UnaryOperatorClass: {
+ // Only unwrap the * and & unary operators
+ const UnaryOperator *UO = cast<UnaryOperator>(expr);
+ expr = UO->getSubExpr();
+ switch (UO->getOpcode()) {
+ case UO_AddrOf:
+ AllowOnePastEnd++;
+ break;
+ case UO_Deref:
+ AllowOnePastEnd--;
+ break;
+ default:
+ return;
+ }
+ break;
+ }
+ case Stmt::ConditionalOperatorClass: {
+ const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
+ if (const Expr *lhs = cond->getLHS())
+ CheckArrayAccess(lhs);
+ if (const Expr *rhs = cond->getRHS())
+ CheckArrayAccess(rhs);
+ return;
+ }
+ default:
+ return;
+ }
+ }
+}
+
+//===--- CHECK: Objective-C retain cycles ----------------------------------//
+
+namespace {
+ struct RetainCycleOwner {
+ RetainCycleOwner() : Variable(nullptr), Indirect(false) {}
+ VarDecl *Variable;
+ SourceRange Range;
+ SourceLocation Loc;
+ bool Indirect;
+
+ void setLocsFrom(Expr *e) {
+ Loc = e->getExprLoc();
+ Range = e->getSourceRange();
+ }
+ };
+}
+
+/// Consider whether capturing the given variable can possibly lead to
+/// a retain cycle.
+static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
+ // In ARC, it's captured strongly iff the variable has __strong
+ // lifetime. In MRR, it's captured strongly if the variable is
+ // __block and has an appropriate type.
+ if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
+ return false;
+
+ owner.Variable = var;
+ if (ref)
+ owner.setLocsFrom(ref);
+ return true;
+}
+
+static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
+ while (true) {
+ e = e->IgnoreParens();
+ if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
+ switch (cast->getCastKind()) {
+ case CK_BitCast:
+ case CK_LValueBitCast:
+ case CK_LValueToRValue:
+ case CK_ARCReclaimReturnedObject:
+ e = cast->getSubExpr();
+ continue;
+
+ default:
+ return false;
+ }
+ }
+
+ if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
+ ObjCIvarDecl *ivar = ref->getDecl();
+ if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
+ return false;
+
+ // Try to find a retain cycle in the base.
+ if (!findRetainCycleOwner(S, ref->getBase(), owner))
+ return false;
+
+ if (ref->isFreeIvar()) owner.setLocsFrom(ref);
+ owner.Indirect = true;
+ return true;
+ }
+
+ if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
+ VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
+ if (!var) return false;
+ return considerVariable(var, ref, owner);
+ }
+
+ if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
+ if (member->isArrow()) return false;
+
+ // Don't count this as an indirect ownership.
+ e = member->getBase();
+ continue;
+ }
+
+ if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
+ // Only pay attention to pseudo-objects on property references.
+ ObjCPropertyRefExpr *pre
+ = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
+ ->IgnoreParens());
+ if (!pre) return false;
+ if (pre->isImplicitProperty()) return false;
+ ObjCPropertyDecl *property = pre->getExplicitProperty();
+ if (!property->isRetaining() &&
+ !(property->getPropertyIvarDecl() &&
+ property->getPropertyIvarDecl()->getType()
+ .getObjCLifetime() == Qualifiers::OCL_Strong))
+ return false;
+
+ owner.Indirect = true;
+ if (pre->isSuperReceiver()) {
+ owner.Variable = S.getCurMethodDecl()->getSelfDecl();
+ if (!owner.Variable)
+ return false;
+ owner.Loc = pre->getLocation();
+ owner.Range = pre->getSourceRange();
+ return true;
+ }
+ e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
+ ->getSourceExpr());
+ continue;
+ }
+
+ // Array ivars?
+
+ return false;
+ }
+}
+
+namespace {
+ struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
+ FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
+ : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
+ Context(Context), Variable(variable), Capturer(nullptr),
+ VarWillBeReased(false) {}
+ ASTContext &Context;
+ VarDecl *Variable;
+ Expr *Capturer;
+ bool VarWillBeReased;
+
+ void VisitDeclRefExpr(DeclRefExpr *ref) {
+ if (ref->getDecl() == Variable && !Capturer)
+ Capturer = ref;
+ }
+
+ void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
+ if (Capturer) return;
+ Visit(ref->getBase());
+ if (Capturer && ref->isFreeIvar())
+ Capturer = ref;
+ }
+
+ void VisitBlockExpr(BlockExpr *block) {
+ // Look inside nested blocks
+ if (block->getBlockDecl()->capturesVariable(Variable))
+ Visit(block->getBlockDecl()->getBody());
+ }
+
+ void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
+ if (Capturer) return;
+ if (OVE->getSourceExpr())
+ Visit(OVE->getSourceExpr());
+ }
+ void VisitBinaryOperator(BinaryOperator *BinOp) {
+ if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign)
+ return;
+ Expr *LHS = BinOp->getLHS();
+ if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) {
+ if (DRE->getDecl() != Variable)
+ return;
+ if (Expr *RHS = BinOp->getRHS()) {
+ RHS = RHS->IgnoreParenCasts();
+ llvm::APSInt Value;
+ VarWillBeReased =
+ (RHS && RHS->isIntegerConstantExpr(Value, Context) && Value == 0);
+ }
+ }
+ }
+ };
+}
+
+/// Check whether the given argument is a block which captures a
+/// variable.
+static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
+ assert(owner.Variable && owner.Loc.isValid());
+
+ e = e->IgnoreParenCasts();
+
+ // Look through [^{...} copy] and Block_copy(^{...}).
+ if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
+ Selector Cmd = ME->getSelector();
+ if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
+ e = ME->getInstanceReceiver();
+ if (!e)
+ return nullptr;
+ e = e->IgnoreParenCasts();
+ }
+ } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
+ if (CE->getNumArgs() == 1) {
+ FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
+ if (Fn) {
+ const IdentifierInfo *FnI = Fn->getIdentifier();
+ if (FnI && FnI->isStr("_Block_copy")) {
+ e = CE->getArg(0)->IgnoreParenCasts();
+ }
+ }
+ }
+ }
+
+ BlockExpr *block = dyn_cast<BlockExpr>(e);
+ if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
+ return nullptr;
+
+ FindCaptureVisitor visitor(S.Context, owner.Variable);
+ visitor.Visit(block->getBlockDecl()->getBody());
+ return visitor.VarWillBeReased ? nullptr : visitor.Capturer;
+}
+
+static void diagnoseRetainCycle(Sema &S, Expr *capturer,
+ RetainCycleOwner &owner) {
+ assert(capturer);
+ assert(owner.Variable && owner.Loc.isValid());
+
+ S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
+ << owner.Variable << capturer->getSourceRange();
+ S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
+ << owner.Indirect << owner.Range;
+}
+
+/// Check for a keyword selector that starts with the word 'add' or
+/// 'set'.
+static bool isSetterLikeSelector(Selector sel) {
+ if (sel.isUnarySelector()) return false;
+
+ StringRef str = sel.getNameForSlot(0);
+ while (!str.empty() && str.front() == '_') str = str.substr(1);
+ if (str.startswith("set"))
+ str = str.substr(3);
+ else if (str.startswith("add")) {
+ // Specially whitelist 'addOperationWithBlock:'.
+ if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
+ return false;
+ str = str.substr(3);
+ }
+ else
+ return false;
+
+ if (str.empty()) return true;
+ return !isLowercase(str.front());
+}
+
+static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S,
+ ObjCMessageExpr *Message) {
+ if (S.NSMutableArrayPointer.isNull()) {
+ IdentifierInfo *NSMutableArrayId =
+ S.NSAPIObj->getNSClassId(NSAPI::ClassId_NSMutableArray);
+ NamedDecl *IF = S.LookupSingleName(S.TUScope, NSMutableArrayId,
+ Message->getLocStart(),
+ Sema::LookupOrdinaryName);
+ ObjCInterfaceDecl *InterfaceDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
+ if (!InterfaceDecl) {
+ return None;
+ }
+ QualType NSMutableArrayObject =
+ S.Context.getObjCInterfaceType(InterfaceDecl);
+ S.NSMutableArrayPointer =
+ S.Context.getObjCObjectPointerType(NSMutableArrayObject);
+ }
+
+ if (S.NSMutableArrayPointer != Message->getReceiverType()) {
+ return None;
+ }
+
+ Selector Sel = Message->getSelector();
+
+ Optional<NSAPI::NSArrayMethodKind> MKOpt =
+ S.NSAPIObj->getNSArrayMethodKind(Sel);
+ if (!MKOpt) {
+ return None;
+ }
+
+ NSAPI::NSArrayMethodKind MK = *MKOpt;
+
+ switch (MK) {
+ case NSAPI::NSMutableArr_addObject:
+ case NSAPI::NSMutableArr_insertObjectAtIndex:
+ case NSAPI::NSMutableArr_setObjectAtIndexedSubscript:
+ return 0;
+ case NSAPI::NSMutableArr_replaceObjectAtIndex:
+ return 1;
+
+ default:
+ return None;
+ }
+
+ return None;
+}
+
+static
+Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S,
+ ObjCMessageExpr *Message) {
+
+ if (S.NSMutableDictionaryPointer.isNull()) {
+ IdentifierInfo *NSMutableDictionaryId =
+ S.NSAPIObj->getNSClassId(NSAPI::ClassId_NSMutableDictionary);
+ NamedDecl *IF = S.LookupSingleName(S.TUScope, NSMutableDictionaryId,
+ Message->getLocStart(),
+ Sema::LookupOrdinaryName);
+ ObjCInterfaceDecl *InterfaceDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
+ if (!InterfaceDecl) {
+ return None;
+ }
+ QualType NSMutableDictionaryObject =
+ S.Context.getObjCInterfaceType(InterfaceDecl);
+ S.NSMutableDictionaryPointer =
+ S.Context.getObjCObjectPointerType(NSMutableDictionaryObject);
+ }
+
+ if (S.NSMutableDictionaryPointer != Message->getReceiverType()) {
+ return None;
+ }
+
+ Selector Sel = Message->getSelector();
+
+ Optional<NSAPI::NSDictionaryMethodKind> MKOpt =
+ S.NSAPIObj->getNSDictionaryMethodKind(Sel);
+ if (!MKOpt) {
+ return None;
+ }
+
+ NSAPI::NSDictionaryMethodKind MK = *MKOpt;
+
+ switch (MK) {
+ case NSAPI::NSMutableDict_setObjectForKey:
+ case NSAPI::NSMutableDict_setValueForKey:
+ case NSAPI::NSMutableDict_setObjectForKeyedSubscript:
+ return 0;
+
+ default:
+ return None;
+ }
+
+ return None;
+}
+
+static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) {
+
+ ObjCInterfaceDecl *InterfaceDecl;
+ if (S.NSMutableSetPointer.isNull()) {
+ IdentifierInfo *NSMutableSetId =
+ S.NSAPIObj->getNSClassId(NSAPI::ClassId_NSMutableSet);
+ NamedDecl *IF = S.LookupSingleName(S.TUScope, NSMutableSetId,
+ Message->getLocStart(),
+ Sema::LookupOrdinaryName);
+ InterfaceDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
+ if (InterfaceDecl) {
+ QualType NSMutableSetObject =
+ S.Context.getObjCInterfaceType(InterfaceDecl);
+ S.NSMutableSetPointer =
+ S.Context.getObjCObjectPointerType(NSMutableSetObject);
+ }
+ }
+
+ if (S.NSCountedSetPointer.isNull()) {
+ IdentifierInfo *NSCountedSetId =
+ S.NSAPIObj->getNSClassId(NSAPI::ClassId_NSCountedSet);
+ NamedDecl *IF = S.LookupSingleName(S.TUScope, NSCountedSetId,
+ Message->getLocStart(),
+ Sema::LookupOrdinaryName);
+ InterfaceDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
+ if (InterfaceDecl) {
+ QualType NSCountedSetObject =
+ S.Context.getObjCInterfaceType(InterfaceDecl);
+ S.NSCountedSetPointer =
+ S.Context.getObjCObjectPointerType(NSCountedSetObject);
+ }
+ }
+
+ if (S.NSMutableOrderedSetPointer.isNull()) {
+ IdentifierInfo *NSOrderedSetId =
+ S.NSAPIObj->getNSClassId(NSAPI::ClassId_NSMutableOrderedSet);
+ NamedDecl *IF = S.LookupSingleName(S.TUScope, NSOrderedSetId,
+ Message->getLocStart(),
+ Sema::LookupOrdinaryName);
+ InterfaceDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
+ if (InterfaceDecl) {
+ QualType NSOrderedSetObject =
+ S.Context.getObjCInterfaceType(InterfaceDecl);
+ S.NSMutableOrderedSetPointer =
+ S.Context.getObjCObjectPointerType(NSOrderedSetObject);
+ }
+ }
+
+ QualType ReceiverType = Message->getReceiverType();
+
+ bool IsMutableSet = !S.NSMutableSetPointer.isNull() &&
+ ReceiverType == S.NSMutableSetPointer;
+ bool IsMutableOrderedSet = !S.NSMutableOrderedSetPointer.isNull() &&
+ ReceiverType == S.NSMutableOrderedSetPointer;
+ bool IsCountedSet = !S.NSCountedSetPointer.isNull() &&
+ ReceiverType == S.NSCountedSetPointer;
+
+ if (!IsMutableSet && !IsMutableOrderedSet && !IsCountedSet) {
+ return None;
+ }
+
+ Selector Sel = Message->getSelector();
+
+ Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel);
+ if (!MKOpt) {
+ return None;
+ }
+
+ NSAPI::NSSetMethodKind MK = *MKOpt;
+
+ switch (MK) {
+ case NSAPI::NSMutableSet_addObject:
+ case NSAPI::NSOrderedSet_setObjectAtIndex:
+ case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript:
+ case NSAPI::NSOrderedSet_insertObjectAtIndex:
+ return 0;
+ case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject:
+ return 1;
+ }
+
+ return None;
+}
+
+void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) {
+ if (!Message->isInstanceMessage()) {
+ return;
+ }
+
+ Optional<int> ArgOpt;
+
+ if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) &&
+ !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) &&
+ !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) {
+ return;
+ }
+
+ int ArgIndex = *ArgOpt;
+
+ Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts();
+ if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) {
+ Receiver = OE->getSourceExpr()->IgnoreImpCasts();
+ }
+
+ Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts();
+ if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) {
+ Arg = OE->getSourceExpr()->IgnoreImpCasts();
+ }
+
+ if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) {
+ if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
+ if (ReceiverRE->getDecl() == ArgRE->getDecl()) {
+ ValueDecl *Decl = ReceiverRE->getDecl();
+ Diag(Message->getSourceRange().getBegin(),
+ diag::warn_objc_circular_container)
+ << Decl->getName();
+ Diag(Decl->getLocation(),
+ diag::note_objc_circular_container_declared_here)
+ << Decl->getName();
+ }
+ }
+ } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) {
+ if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) {
+ if (IvarRE->getDecl() == IvarArgRE->getDecl()) {
+ ObjCIvarDecl *Decl = IvarRE->getDecl();
+ Diag(Message->getSourceRange().getBegin(),
+ diag::warn_objc_circular_container)
+ << Decl->getName();
+ Diag(Decl->getLocation(),
+ diag::note_objc_circular_container_declared_here)
+ << Decl->getName();
+ }
+ }
+ }
+
+}
+
+/// Check a message send to see if it's likely to cause a retain cycle.
+void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
+ // Only check instance methods whose selector looks like a setter.
+ if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
+ return;
+
+ // Try to find a variable that the receiver is strongly owned by.
+ RetainCycleOwner owner;
+ if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
+ if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
+ return;
+ } else {
+ assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
+ owner.Variable = getCurMethodDecl()->getSelfDecl();
+ owner.Loc = msg->getSuperLoc();
+ owner.Range = msg->getSuperLoc();
+ }
+
+ // Check whether the receiver is captured by any of the arguments.
+ for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
+ if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
+ return diagnoseRetainCycle(*this, capturer, owner);
+}
+
+/// Check a property assign to see if it's likely to cause a retain cycle.
+void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
+ RetainCycleOwner owner;
+ if (!findRetainCycleOwner(*this, receiver, owner))
+ return;
+
+ if (Expr *capturer = findCapturingExpr(*this, argument, owner))
+ diagnoseRetainCycle(*this, capturer, owner);
+}
+
+void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
+ RetainCycleOwner Owner;
+ if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner))
+ return;
+
+ // Because we don't have an expression for the variable, we have to set the
+ // location explicitly here.
+ Owner.Loc = Var->getLocation();
+ Owner.Range = Var->getSourceRange();
+
+ if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
+ diagnoseRetainCycle(*this, Capturer, Owner);
+}
+
+static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
+ Expr *RHS, bool isProperty) {
+ // Check if RHS is an Objective-C object literal, which also can get
+ // immediately zapped in a weak reference. Note that we explicitly
+ // allow ObjCStringLiterals, since those are designed to never really die.
+ RHS = RHS->IgnoreParenImpCasts();
+
+ // This enum needs to match with the 'select' in
+ // warn_objc_arc_literal_assign (off-by-1).
+ Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
+ if (Kind == Sema::LK_String || Kind == Sema::LK_None)
+ return false;
+
+ S.Diag(Loc, diag::warn_arc_literal_assign)
+ << (unsigned) Kind
+ << (isProperty ? 0 : 1)
+ << RHS->getSourceRange();
+
+ return true;
+}
+
+static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
+ Qualifiers::ObjCLifetime LT,
+ Expr *RHS, bool isProperty) {
+ // Strip off any implicit cast added to get to the one ARC-specific.
+ while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
+ if (cast->getCastKind() == CK_ARCConsumeObject) {
+ S.Diag(Loc, diag::warn_arc_retained_assign)
+ << (LT == Qualifiers::OCL_ExplicitNone)
+ << (isProperty ? 0 : 1)
+ << RHS->getSourceRange();
+ return true;
+ }
+ RHS = cast->getSubExpr();
+ }
+
+ if (LT == Qualifiers::OCL_Weak &&
+ checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
+ return true;
+
+ return false;
+}
+
+bool Sema::checkUnsafeAssigns(SourceLocation Loc,
+ QualType LHS, Expr *RHS) {
+ Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
+
+ if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
+ return false;
+
+ if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
+ return true;
+
+ return false;
+}
+
+void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
+ Expr *LHS, Expr *RHS) {
+ QualType LHSType;
+ // PropertyRef on LHS type need be directly obtained from
+ // its declaration as it has a PseudoType.
+ ObjCPropertyRefExpr *PRE
+ = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
+ if (PRE && !PRE->isImplicitProperty()) {
+ const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
+ if (PD)
+ LHSType = PD->getType();
+ }
+
+ if (LHSType.isNull())
+ LHSType = LHS->getType();
+
+ Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
+
+ if (LT == Qualifiers::OCL_Weak) {
+ if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
+ getCurFunction()->markSafeWeakUse(LHS);
+ }
+
+ if (checkUnsafeAssigns(Loc, LHSType, RHS))
+ return;
+
+ // FIXME. Check for other life times.
+ if (LT != Qualifiers::OCL_None)
+ return;
+
+ if (PRE) {
+ if (PRE->isImplicitProperty())
+ return;
+ const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
+ if (!PD)
+ return;
+
+ unsigned Attributes = PD->getPropertyAttributes();
+ if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
+ // when 'assign' attribute was not explicitly specified
+ // by user, ignore it and rely on property type itself
+ // for lifetime info.
+ unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
+ if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
+ LHSType->isObjCRetainableType())
+ return;
+
+ while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
+ if (cast->getCastKind() == CK_ARCConsumeObject) {
+ Diag(Loc, diag::warn_arc_retained_property_assign)
+ << RHS->getSourceRange();
+ return;
+ }
+ RHS = cast->getSubExpr();
+ }
+ }
+ else if (Attributes & ObjCPropertyDecl::OBJC_PR_weak) {
+ if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
+ return;
+ }
+ }
+}
+
+//===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
+
+namespace {
+bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
+ SourceLocation StmtLoc,
+ const NullStmt *Body) {
+ // Do not warn if the body is a macro that expands to nothing, e.g:
+ //
+ // #define CALL(x)
+ // if (condition)
+ // CALL(0);
+ //
+ if (Body->hasLeadingEmptyMacro())
+ return false;
+
+ // Get line numbers of statement and body.
+ bool StmtLineInvalid;
+ unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc,
+ &StmtLineInvalid);
+ if (StmtLineInvalid)
+ return false;
+
+ bool BodyLineInvalid;
+ unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
+ &BodyLineInvalid);
+ if (BodyLineInvalid)
+ return false;
+
+ // Warn if null statement and body are on the same line.
+ if (StmtLine != BodyLine)
+ return false;
+
+ return true;
+}
+} // Unnamed namespace
+
+void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
+ const Stmt *Body,
+ unsigned DiagID) {
+ // Since this is a syntactic check, don't emit diagnostic for template
+ // instantiations, this just adds noise.
+ if (CurrentInstantiationScope)
+ return;
+
+ // The body should be a null statement.
+ const NullStmt *NBody = dyn_cast<NullStmt>(Body);
+ if (!NBody)
+ return;
+
+ // Do the usual checks.
+ if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
+ return;
+
+ Diag(NBody->getSemiLoc(), DiagID);
+ Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
+}
+
+void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
+ const Stmt *PossibleBody) {
+ assert(!CurrentInstantiationScope); // Ensured by caller
+
+ SourceLocation StmtLoc;
+ const Stmt *Body;
+ unsigned DiagID;
+ if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
+ StmtLoc = FS->getRParenLoc();
+ Body = FS->getBody();
+ DiagID = diag::warn_empty_for_body;
+ } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
+ StmtLoc = WS->getCond()->getSourceRange().getEnd();
+ Body = WS->getBody();
+ DiagID = diag::warn_empty_while_body;
+ } else
+ return; // Neither `for' nor `while'.
+
+ // The body should be a null statement.
+ const NullStmt *NBody = dyn_cast<NullStmt>(Body);
+ if (!NBody)
+ return;
+
+ // Skip expensive checks if diagnostic is disabled.
+ if (Diags.isIgnored(DiagID, NBody->getSemiLoc()))
+ return;
+
+ // Do the usual checks.
+ if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
+ return;
+
+ // `for(...);' and `while(...);' are popular idioms, so in order to keep
+ // noise level low, emit diagnostics only if for/while is followed by a
+ // CompoundStmt, e.g.:
+ // for (int i = 0; i < n; i++);
+ // {
+ // a(i);
+ // }
+ // or if for/while is followed by a statement with more indentation
+ // than for/while itself:
+ // for (int i = 0; i < n; i++);
+ // a(i);
+ bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
+ if (!ProbableTypo) {
+ bool BodyColInvalid;
+ unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
+ PossibleBody->getLocStart(),
+ &BodyColInvalid);
+ if (BodyColInvalid)
+ return;
+
+ bool StmtColInvalid;
+ unsigned StmtCol = SourceMgr.getPresumedColumnNumber(
+ S->getLocStart(),
+ &StmtColInvalid);
+ if (StmtColInvalid)
+ return;
+
+ if (BodyCol > StmtCol)
+ ProbableTypo = true;
+ }
+
+ if (ProbableTypo) {
+ Diag(NBody->getSemiLoc(), DiagID);
+ Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
+ }
+}
+
+//===--- CHECK: Warn on self move with std::move. -------------------------===//
+
+/// DiagnoseSelfMove - Emits a warning if a value is moved to itself.
+void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
+ SourceLocation OpLoc) {
+
+ if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc))
+ return;
+
+ if (!ActiveTemplateInstantiations.empty())
+ return;
+
+ // Strip parens and casts away.
+ LHSExpr = LHSExpr->IgnoreParenImpCasts();
+ RHSExpr = RHSExpr->IgnoreParenImpCasts();
+
+ // Check for a call expression
+ const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr);
+ if (!CE || CE->getNumArgs() != 1)
+ return;
+
+ // Check for a call to std::move
+ const FunctionDecl *FD = CE->getDirectCallee();
+ if (!FD || !FD->isInStdNamespace() || !FD->getIdentifier() ||
+ !FD->getIdentifier()->isStr("move"))
+ return;
+
+ // Get argument from std::move
+ RHSExpr = CE->getArg(0);
+
+ const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
+ const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
+
+ // Two DeclRefExpr's, check that the decls are the same.
+ if (LHSDeclRef && RHSDeclRef) {
+ if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
+ return;
+ if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
+ RHSDeclRef->getDecl()->getCanonicalDecl())
+ return;
+
+ Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
+ << LHSExpr->getSourceRange()
+ << RHSExpr->getSourceRange();
+ return;
+ }
+
+ // Member variables require a different approach to check for self moves.
+ // MemberExpr's are the same if every nested MemberExpr refers to the same
+ // Decl and that the base Expr's are DeclRefExpr's with the same Decl or
+ // the base Expr's are CXXThisExpr's.
+ const Expr *LHSBase = LHSExpr;
+ const Expr *RHSBase = RHSExpr;
+ const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr);
+ const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr);
+ if (!LHSME || !RHSME)
+ return;
+
+ while (LHSME && RHSME) {
+ if (LHSME->getMemberDecl()->getCanonicalDecl() !=
+ RHSME->getMemberDecl()->getCanonicalDecl())
+ return;
+
+ LHSBase = LHSME->getBase();
+ RHSBase = RHSME->getBase();
+ LHSME = dyn_cast<MemberExpr>(LHSBase);
+ RHSME = dyn_cast<MemberExpr>(RHSBase);
+ }
+
+ LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase);
+ RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase);
+ if (LHSDeclRef && RHSDeclRef) {
+ if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
+ return;
+ if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
+ RHSDeclRef->getDecl()->getCanonicalDecl())
+ return;
+
+ Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
+ << LHSExpr->getSourceRange()
+ << RHSExpr->getSourceRange();
+ return;
+ }
+
+ if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase))
+ Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
+ << LHSExpr->getSourceRange()
+ << RHSExpr->getSourceRange();
+}
+
+//===--- Layout compatibility ----------------------------------------------//
+
+namespace {
+
+bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
+
+/// \brief Check if two enumeration types are layout-compatible.
+bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
+ // C++11 [dcl.enum] p8:
+ // Two enumeration types are layout-compatible if they have the same
+ // underlying type.
+ return ED1->isComplete() && ED2->isComplete() &&
+ C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
+}
+
+/// \brief Check if two fields are layout-compatible.
+bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, FieldDecl *Field2) {
+ if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
+ return false;
+
+ if (Field1->isBitField() != Field2->isBitField())
+ return false;
+
+ if (Field1->isBitField()) {
+ // Make sure that the bit-fields are the same length.
+ unsigned Bits1 = Field1->getBitWidthValue(C);
+ unsigned Bits2 = Field2->getBitWidthValue(C);
+
+ if (Bits1 != Bits2)
+ return false;
+ }
+
+ return true;
+}
+
+/// \brief Check if two standard-layout structs are layout-compatible.
+/// (C++11 [class.mem] p17)
+bool isLayoutCompatibleStruct(ASTContext &C,
+ RecordDecl *RD1,
+ RecordDecl *RD2) {
+ // If both records are C++ classes, check that base classes match.
+ if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
+ // If one of records is a CXXRecordDecl we are in C++ mode,
+ // thus the other one is a CXXRecordDecl, too.
+ const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
+ // Check number of base classes.
+ if (D1CXX->getNumBases() != D2CXX->getNumBases())
+ return false;
+
+ // Check the base classes.
+ for (CXXRecordDecl::base_class_const_iterator
+ Base1 = D1CXX->bases_begin(),
+ BaseEnd1 = D1CXX->bases_end(),
+ Base2 = D2CXX->bases_begin();
+ Base1 != BaseEnd1;
+ ++Base1, ++Base2) {
+ if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
+ return false;
+ }
+ } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
+ // If only RD2 is a C++ class, it should have zero base classes.
+ if (D2CXX->getNumBases() > 0)
+ return false;
+ }
+
+ // Check the fields.
+ RecordDecl::field_iterator Field2 = RD2->field_begin(),
+ Field2End = RD2->field_end(),
+ Field1 = RD1->field_begin(),
+ Field1End = RD1->field_end();
+ for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
+ if (!isLayoutCompatible(C, *Field1, *Field2))
+ return false;
+ }
+ if (Field1 != Field1End || Field2 != Field2End)
+ return false;
+
+ return true;
+}
+
+/// \brief Check if two standard-layout unions are layout-compatible.
+/// (C++11 [class.mem] p18)
+bool isLayoutCompatibleUnion(ASTContext &C,
+ RecordDecl *RD1,
+ RecordDecl *RD2) {
+ llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
+ for (auto *Field2 : RD2->fields())
+ UnmatchedFields.insert(Field2);
+
+ for (auto *Field1 : RD1->fields()) {
+ llvm::SmallPtrSet<FieldDecl *, 8>::iterator
+ I = UnmatchedFields.begin(),
+ E = UnmatchedFields.end();
+
+ for ( ; I != E; ++I) {
+ if (isLayoutCompatible(C, Field1, *I)) {
+ bool Result = UnmatchedFields.erase(*I);
+ (void) Result;
+ assert(Result);
+ break;
+ }
+ }
+ if (I == E)
+ return false;
+ }
+
+ return UnmatchedFields.empty();
+}
+
+bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, RecordDecl *RD2) {
+ if (RD1->isUnion() != RD2->isUnion())
+ return false;
+
+ if (RD1->isUnion())
+ return isLayoutCompatibleUnion(C, RD1, RD2);
+ else
+ return isLayoutCompatibleStruct(C, RD1, RD2);
+}
+
+/// \brief Check if two types are layout-compatible in C++11 sense.
+bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
+ if (T1.isNull() || T2.isNull())
+ return false;
+
+ // C++11 [basic.types] p11:
+ // If two types T1 and T2 are the same type, then T1 and T2 are
+ // layout-compatible types.
+ if (C.hasSameType(T1, T2))
+ return true;
+
+ T1 = T1.getCanonicalType().getUnqualifiedType();
+ T2 = T2.getCanonicalType().getUnqualifiedType();
+
+ const Type::TypeClass TC1 = T1->getTypeClass();
+ const Type::TypeClass TC2 = T2->getTypeClass();
+
+ if (TC1 != TC2)
+ return false;
+
+ if (TC1 == Type::Enum) {
+ return isLayoutCompatible(C,
+ cast<EnumType>(T1)->getDecl(),
+ cast<EnumType>(T2)->getDecl());
+ } else if (TC1 == Type::Record) {
+ if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
+ return false;
+
+ return isLayoutCompatible(C,
+ cast<RecordType>(T1)->getDecl(),
+ cast<RecordType>(T2)->getDecl());
+ }
+
+ return false;
+}
+}
+
+//===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
+
+namespace {
+/// \brief Given a type tag expression find the type tag itself.
+///
+/// \param TypeExpr Type tag expression, as it appears in user's code.
+///
+/// \param VD Declaration of an identifier that appears in a type tag.
+///
+/// \param MagicValue Type tag magic value.
+bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
+ const ValueDecl **VD, uint64_t *MagicValue) {
+ while(true) {
+ if (!TypeExpr)
+ return false;
+
+ TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
+
+ switch (TypeExpr->getStmtClass()) {
+ case Stmt::UnaryOperatorClass: {
+ const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
+ if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
+ TypeExpr = UO->getSubExpr();
+ continue;
+ }
+ return false;
+ }
+
+ case Stmt::DeclRefExprClass: {
+ const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
+ *VD = DRE->getDecl();
+ return true;
+ }
+
+ case Stmt::IntegerLiteralClass: {
+ const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
+ llvm::APInt MagicValueAPInt = IL->getValue();
+ if (MagicValueAPInt.getActiveBits() <= 64) {
+ *MagicValue = MagicValueAPInt.getZExtValue();
+ return true;
+ } else
+ return false;
+ }
+
+ case Stmt::BinaryConditionalOperatorClass:
+ case Stmt::ConditionalOperatorClass: {
+ const AbstractConditionalOperator *ACO =
+ cast<AbstractConditionalOperator>(TypeExpr);
+ bool Result;
+ if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx)) {
+ if (Result)
+ TypeExpr = ACO->getTrueExpr();
+ else
+ TypeExpr = ACO->getFalseExpr();
+ continue;
+ }
+ return false;
+ }
+
+ case Stmt::BinaryOperatorClass: {
+ const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
+ if (BO->getOpcode() == BO_Comma) {
+ TypeExpr = BO->getRHS();
+ continue;
+ }
+ return false;
+ }
+
+ default:
+ return false;
+ }
+ }
+}
+
+/// \brief Retrieve the C type corresponding to type tag TypeExpr.
+///
+/// \param TypeExpr Expression that specifies a type tag.
+///
+/// \param MagicValues Registered magic values.
+///
+/// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
+/// kind.
+///
+/// \param TypeInfo Information about the corresponding C type.
+///
+/// \returns true if the corresponding C type was found.
+bool GetMatchingCType(
+ const IdentifierInfo *ArgumentKind,
+ const Expr *TypeExpr, const ASTContext &Ctx,
+ const llvm::DenseMap<Sema::TypeTagMagicValue,
+ Sema::TypeTagData> *MagicValues,
+ bool &FoundWrongKind,
+ Sema::TypeTagData &TypeInfo) {
+ FoundWrongKind = false;
+
+ // Variable declaration that has type_tag_for_datatype attribute.
+ const ValueDecl *VD = nullptr;
+
+ uint64_t MagicValue;
+
+ if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue))
+ return false;
+
+ if (VD) {
+ if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) {
+ if (I->getArgumentKind() != ArgumentKind) {
+ FoundWrongKind = true;
+ return false;
+ }
+ TypeInfo.Type = I->getMatchingCType();
+ TypeInfo.LayoutCompatible = I->getLayoutCompatible();
+ TypeInfo.MustBeNull = I->getMustBeNull();
+ return true;
+ }
+ return false;
+ }
+
+ if (!MagicValues)
+ return false;
+
+ llvm::DenseMap<Sema::TypeTagMagicValue,
+ Sema::TypeTagData>::const_iterator I =
+ MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
+ if (I == MagicValues->end())
+ return false;
+
+ TypeInfo = I->second;
+ return true;
+}
+} // unnamed namespace
+
+void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
+ uint64_t MagicValue, QualType Type,
+ bool LayoutCompatible,
+ bool MustBeNull) {
+ if (!TypeTagForDatatypeMagicValues)
+ TypeTagForDatatypeMagicValues.reset(
+ new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
+
+ TypeTagMagicValue Magic(ArgumentKind, MagicValue);
+ (*TypeTagForDatatypeMagicValues)[Magic] =
+ TypeTagData(Type, LayoutCompatible, MustBeNull);
+}
+
+namespace {
+bool IsSameCharType(QualType T1, QualType T2) {
+ const BuiltinType *BT1 = T1->getAs<BuiltinType>();
+ if (!BT1)
+ return false;
+
+ const BuiltinType *BT2 = T2->getAs<BuiltinType>();
+ if (!BT2)
+ return false;
+
+ BuiltinType::Kind T1Kind = BT1->getKind();
+ BuiltinType::Kind T2Kind = BT2->getKind();
+
+ return (T1Kind == BuiltinType::SChar && T2Kind == BuiltinType::Char_S) ||
+ (T1Kind == BuiltinType::UChar && T2Kind == BuiltinType::Char_U) ||
+ (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
+ (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
+}
+} // unnamed namespace
+
+void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
+ const Expr * const *ExprArgs) {
+ const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
+ bool IsPointerAttr = Attr->getIsPointer();
+
+ const Expr *TypeTagExpr = ExprArgs[Attr->getTypeTagIdx()];
+ bool FoundWrongKind;
+ TypeTagData TypeInfo;
+ if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
+ TypeTagForDatatypeMagicValues.get(),
+ FoundWrongKind, TypeInfo)) {
+ if (FoundWrongKind)
+ Diag(TypeTagExpr->getExprLoc(),
+ diag::warn_type_tag_for_datatype_wrong_kind)
+ << TypeTagExpr->getSourceRange();
+ return;
+ }
+
+ const Expr *ArgumentExpr = ExprArgs[Attr->getArgumentIdx()];
+ if (IsPointerAttr) {
+ // Skip implicit cast of pointer to `void *' (as a function argument).
+ if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
+ if (ICE->getType()->isVoidPointerType() &&
+ ICE->getCastKind() == CK_BitCast)
+ ArgumentExpr = ICE->getSubExpr();
+ }
+ QualType ArgumentType = ArgumentExpr->getType();
+
+ // Passing a `void*' pointer shouldn't trigger a warning.
+ if (IsPointerAttr && ArgumentType->isVoidPointerType())
+ return;
+
+ if (TypeInfo.MustBeNull) {
+ // Type tag with matching void type requires a null pointer.
+ if (!ArgumentExpr->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNotNull)) {
+ Diag(ArgumentExpr->getExprLoc(),
+ diag::warn_type_safety_null_pointer_required)
+ << ArgumentKind->getName()
+ << ArgumentExpr->getSourceRange()
+ << TypeTagExpr->getSourceRange();
+ }
+ return;
+ }
+
+ QualType RequiredType = TypeInfo.Type;
+ if (IsPointerAttr)
+ RequiredType = Context.getPointerType(RequiredType);
+
+ bool mismatch = false;
+ if (!TypeInfo.LayoutCompatible) {
+ mismatch = !Context.hasSameType(ArgumentType, RequiredType);
+
+ // C++11 [basic.fundamental] p1:
+ // Plain char, signed char, and unsigned char are three distinct types.
+ //
+ // But we treat plain `char' as equivalent to `signed char' or `unsigned
+ // char' depending on the current char signedness mode.
+ if (mismatch)
+ if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
+ RequiredType->getPointeeType())) ||
+ (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
+ mismatch = false;
+ } else
+ if (IsPointerAttr)
+ mismatch = !isLayoutCompatible(Context,
+ ArgumentType->getPointeeType(),
+ RequiredType->getPointeeType());
+ else
+ mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
+
+ if (mismatch)
+ Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
+ << ArgumentType << ArgumentKind
+ << TypeInfo.LayoutCompatible << RequiredType
+ << ArgumentExpr->getSourceRange()
+ << TypeTagExpr->getSourceRange();
+}
+
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaCodeComplete.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaCodeComplete.cpp
new file mode 100644
index 0000000..18d352b
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaCodeComplete.cpp
@@ -0,0 +1,7423 @@
+//===---------------- SemaCodeComplete.cpp - Code Completion ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the code-completion semantic actions.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/Sema/SemaInternal.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/Basic/CharInfo.h"
+#include "clang/Lex/HeaderSearch.h"
+#include "clang/Lex/MacroInfo.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Sema/CodeCompleteConsumer.h"
+#include "clang/Sema/ExternalSemaSource.h"
+#include "clang/Sema/Lookup.h"
+#include "clang/Sema/Overload.h"
+#include "clang/Sema/Scope.h"
+#include "clang/Sema/ScopeInfo.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/SmallBitVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/ADT/Twine.h"
+#include <list>
+#include <map>
+#include <vector>
+
+using namespace clang;
+using namespace sema;
+
+namespace {
+ /// \brief A container of code-completion results.
+ class ResultBuilder {
+ public:
+ /// \brief The type of a name-lookup filter, which can be provided to the
+ /// name-lookup routines to specify which declarations should be included in
+ /// the result set (when it returns true) and which declarations should be
+ /// filtered out (returns false).
+ typedef bool (ResultBuilder::*LookupFilter)(const NamedDecl *) const;
+
+ typedef CodeCompletionResult Result;
+
+ private:
+ /// \brief The actual results we have found.
+ std::vector<Result> Results;
+
+ /// \brief A record of all of the declarations we have found and placed
+ /// into the result set, used to ensure that no declaration ever gets into
+ /// the result set twice.
+ llvm::SmallPtrSet<const Decl*, 16> AllDeclsFound;
+
+ typedef std::pair<const NamedDecl *, unsigned> DeclIndexPair;
+
+ /// \brief An entry in the shadow map, which is optimized to store
+ /// a single (declaration, index) mapping (the common case) but
+ /// can also store a list of (declaration, index) mappings.
+ class ShadowMapEntry {
+ typedef SmallVector<DeclIndexPair, 4> DeclIndexPairVector;
+
+ /// \brief Contains either the solitary NamedDecl * or a vector
+ /// of (declaration, index) pairs.
+ llvm::PointerUnion<const NamedDecl *, DeclIndexPairVector*> DeclOrVector;
+
+ /// \brief When the entry contains a single declaration, this is
+ /// the index associated with that entry.
+ unsigned SingleDeclIndex;
+
+ public:
+ ShadowMapEntry() : DeclOrVector(), SingleDeclIndex(0) { }
+
+ void Add(const NamedDecl *ND, unsigned Index) {
+ if (DeclOrVector.isNull()) {
+ // 0 - > 1 elements: just set the single element information.
+ DeclOrVector = ND;
+ SingleDeclIndex = Index;
+ return;
+ }
+
+ if (const NamedDecl *PrevND =
+ DeclOrVector.dyn_cast<const NamedDecl *>()) {
+ // 1 -> 2 elements: create the vector of results and push in the
+ // existing declaration.
+ DeclIndexPairVector *Vec = new DeclIndexPairVector;
+ Vec->push_back(DeclIndexPair(PrevND, SingleDeclIndex));
+ DeclOrVector = Vec;
+ }
+
+ // Add the new element to the end of the vector.
+ DeclOrVector.get<DeclIndexPairVector*>()->push_back(
+ DeclIndexPair(ND, Index));
+ }
+
+ void Destroy() {
+ if (DeclIndexPairVector *Vec
+ = DeclOrVector.dyn_cast<DeclIndexPairVector *>()) {
+ delete Vec;
+ DeclOrVector = ((NamedDecl *)nullptr);
+ }
+ }
+
+ // Iteration.
+ class iterator;
+ iterator begin() const;
+ iterator end() const;
+ };
+
+ /// \brief A mapping from declaration names to the declarations that have
+ /// this name within a particular scope and their index within the list of
+ /// results.
+ typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
+
+ /// \brief The semantic analysis object for which results are being
+ /// produced.
+ Sema &SemaRef;
+
+ /// \brief The allocator used to allocate new code-completion strings.
+ CodeCompletionAllocator &Allocator;
+
+ CodeCompletionTUInfo &CCTUInfo;
+
+ /// \brief If non-NULL, a filter function used to remove any code-completion
+ /// results that are not desirable.
+ LookupFilter Filter;
+
+ /// \brief Whether we should allow declarations as
+ /// nested-name-specifiers that would otherwise be filtered out.
+ bool AllowNestedNameSpecifiers;
+
+ /// \brief If set, the type that we would prefer our resulting value
+ /// declarations to have.
+ ///
+ /// Closely matching the preferred type gives a boost to a result's
+ /// priority.
+ CanQualType PreferredType;
+
+ /// \brief A list of shadow maps, which is used to model name hiding at
+ /// different levels of, e.g., the inheritance hierarchy.
+ std::list<ShadowMap> ShadowMaps;
+
+ /// \brief If we're potentially referring to a C++ member function, the set
+ /// of qualifiers applied to the object type.
+ Qualifiers ObjectTypeQualifiers;
+
+ /// \brief Whether the \p ObjectTypeQualifiers field is active.
+ bool HasObjectTypeQualifiers;
+
+ /// \brief The selector that we prefer.
+ Selector PreferredSelector;
+
+ /// \brief The completion context in which we are gathering results.
+ CodeCompletionContext CompletionContext;
+
+ /// \brief If we are in an instance method definition, the \@implementation
+ /// object.
+ ObjCImplementationDecl *ObjCImplementation;
+
+ void AdjustResultPriorityForDecl(Result &R);
+
+ void MaybeAddConstructorResults(Result R);
+
+ public:
+ explicit ResultBuilder(Sema &SemaRef, CodeCompletionAllocator &Allocator,
+ CodeCompletionTUInfo &CCTUInfo,
+ const CodeCompletionContext &CompletionContext,
+ LookupFilter Filter = nullptr)
+ : SemaRef(SemaRef), Allocator(Allocator), CCTUInfo(CCTUInfo),
+ Filter(Filter),
+ AllowNestedNameSpecifiers(false), HasObjectTypeQualifiers(false),
+ CompletionContext(CompletionContext),
+ ObjCImplementation(nullptr)
+ {
+ // If this is an Objective-C instance method definition, dig out the
+ // corresponding implementation.
+ switch (CompletionContext.getKind()) {
+ case CodeCompletionContext::CCC_Expression:
+ case CodeCompletionContext::CCC_ObjCMessageReceiver:
+ case CodeCompletionContext::CCC_ParenthesizedExpression:
+ case CodeCompletionContext::CCC_Statement:
+ case CodeCompletionContext::CCC_Recovery:
+ if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl())
+ if (Method->isInstanceMethod())
+ if (ObjCInterfaceDecl *Interface = Method->getClassInterface())
+ ObjCImplementation = Interface->getImplementation();
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ /// \brief Determine the priority for a reference to the given declaration.
+ unsigned getBasePriority(const NamedDecl *D);
+
+ /// \brief Whether we should include code patterns in the completion
+ /// results.
+ bool includeCodePatterns() const {
+ return SemaRef.CodeCompleter &&
+ SemaRef.CodeCompleter->includeCodePatterns();
+ }
+
+ /// \brief Set the filter used for code-completion results.
+ void setFilter(LookupFilter Filter) {
+ this->Filter = Filter;
+ }
+
+ Result *data() { return Results.empty()? nullptr : &Results.front(); }
+ unsigned size() const { return Results.size(); }
+ bool empty() const { return Results.empty(); }
+
+ /// \brief Specify the preferred type.
+ void setPreferredType(QualType T) {
+ PreferredType = SemaRef.Context.getCanonicalType(T);
+ }
+
+ /// \brief Set the cv-qualifiers on the object type, for us in filtering
+ /// calls to member functions.
+ ///
+ /// When there are qualifiers in this set, they will be used to filter
+ /// out member functions that aren't available (because there will be a
+ /// cv-qualifier mismatch) or prefer functions with an exact qualifier
+ /// match.
+ void setObjectTypeQualifiers(Qualifiers Quals) {
+ ObjectTypeQualifiers = Quals;
+ HasObjectTypeQualifiers = true;
+ }
+
+ /// \brief Set the preferred selector.
+ ///
+ /// When an Objective-C method declaration result is added, and that
+ /// method's selector matches this preferred selector, we give that method
+ /// a slight priority boost.
+ void setPreferredSelector(Selector Sel) {
+ PreferredSelector = Sel;
+ }
+
+ /// \brief Retrieve the code-completion context for which results are
+ /// being collected.
+ const CodeCompletionContext &getCompletionContext() const {
+ return CompletionContext;
+ }
+
+ /// \brief Specify whether nested-name-specifiers are allowed.
+ void allowNestedNameSpecifiers(bool Allow = true) {
+ AllowNestedNameSpecifiers = Allow;
+ }
+
+ /// \brief Return the semantic analysis object for which we are collecting
+ /// code completion results.
+ Sema &getSema() const { return SemaRef; }
+
+ /// \brief Retrieve the allocator used to allocate code completion strings.
+ CodeCompletionAllocator &getAllocator() const { return Allocator; }
+
+ CodeCompletionTUInfo &getCodeCompletionTUInfo() const { return CCTUInfo; }
+
+ /// \brief Determine whether the given declaration is at all interesting
+ /// as a code-completion result.
+ ///
+ /// \param ND the declaration that we are inspecting.
+ ///
+ /// \param AsNestedNameSpecifier will be set true if this declaration is
+ /// only interesting when it is a nested-name-specifier.
+ bool isInterestingDecl(const NamedDecl *ND,
+ bool &AsNestedNameSpecifier) const;
+
+ /// \brief Check whether the result is hidden by the Hiding declaration.
+ ///
+ /// \returns true if the result is hidden and cannot be found, false if
+ /// the hidden result could still be found. When false, \p R may be
+ /// modified to describe how the result can be found (e.g., via extra
+ /// qualification).
+ bool CheckHiddenResult(Result &R, DeclContext *CurContext,
+ const NamedDecl *Hiding);
+
+ /// \brief Add a new result to this result set (if it isn't already in one
+ /// of the shadow maps), or replace an existing result (for, e.g., a
+ /// redeclaration).
+ ///
+ /// \param R the result to add (if it is unique).
+ ///
+ /// \param CurContext the context in which this result will be named.
+ void MaybeAddResult(Result R, DeclContext *CurContext = nullptr);
+
+ /// \brief Add a new result to this result set, where we already know
+ /// the hiding declaration (if any).
+ ///
+ /// \param R the result to add (if it is unique).
+ ///
+ /// \param CurContext the context in which this result will be named.
+ ///
+ /// \param Hiding the declaration that hides the result.
+ ///
+ /// \param InBaseClass whether the result was found in a base
+ /// class of the searched context.
+ void AddResult(Result R, DeclContext *CurContext, NamedDecl *Hiding,
+ bool InBaseClass);
+
+ /// \brief Add a new non-declaration result to this result set.
+ void AddResult(Result R);
+
+ /// \brief Enter into a new scope.
+ void EnterNewScope();
+
+ /// \brief Exit from the current scope.
+ void ExitScope();
+
+ /// \brief Ignore this declaration, if it is seen again.
+ void Ignore(const Decl *D) { AllDeclsFound.insert(D->getCanonicalDecl()); }
+
+ /// \name Name lookup predicates
+ ///
+ /// These predicates can be passed to the name lookup functions to filter the
+ /// results of name lookup. All of the predicates have the same type, so that
+ ///
+ //@{
+ bool IsOrdinaryName(const NamedDecl *ND) const;
+ bool IsOrdinaryNonTypeName(const NamedDecl *ND) const;
+ bool IsIntegralConstantValue(const NamedDecl *ND) const;
+ bool IsOrdinaryNonValueName(const NamedDecl *ND) const;
+ bool IsNestedNameSpecifier(const NamedDecl *ND) const;
+ bool IsEnum(const NamedDecl *ND) const;
+ bool IsClassOrStruct(const NamedDecl *ND) const;
+ bool IsUnion(const NamedDecl *ND) const;
+ bool IsNamespace(const NamedDecl *ND) const;
+ bool IsNamespaceOrAlias(const NamedDecl *ND) const;
+ bool IsType(const NamedDecl *ND) const;
+ bool IsMember(const NamedDecl *ND) const;
+ bool IsObjCIvar(const NamedDecl *ND) const;
+ bool IsObjCMessageReceiver(const NamedDecl *ND) const;
+ bool IsObjCMessageReceiverOrLambdaCapture(const NamedDecl *ND) const;
+ bool IsObjCCollection(const NamedDecl *ND) const;
+ bool IsImpossibleToSatisfy(const NamedDecl *ND) const;
+ //@}
+ };
+}
+
+class ResultBuilder::ShadowMapEntry::iterator {
+ llvm::PointerUnion<const NamedDecl *, const DeclIndexPair *> DeclOrIterator;
+ unsigned SingleDeclIndex;
+
+public:
+ typedef DeclIndexPair value_type;
+ typedef value_type reference;
+ typedef std::ptrdiff_t difference_type;
+ typedef std::input_iterator_tag iterator_category;
+
+ class pointer {
+ DeclIndexPair Value;
+
+ public:
+ pointer(const DeclIndexPair &Value) : Value(Value) { }
+
+ const DeclIndexPair *operator->() const {
+ return &Value;
+ }
+ };
+
+ iterator() : DeclOrIterator((NamedDecl *)nullptr), SingleDeclIndex(0) {}
+
+ iterator(const NamedDecl *SingleDecl, unsigned Index)
+ : DeclOrIterator(SingleDecl), SingleDeclIndex(Index) { }
+
+ iterator(const DeclIndexPair *Iterator)
+ : DeclOrIterator(Iterator), SingleDeclIndex(0) { }
+
+ iterator &operator++() {
+ if (DeclOrIterator.is<const NamedDecl *>()) {
+ DeclOrIterator = (NamedDecl *)nullptr;
+ SingleDeclIndex = 0;
+ return *this;
+ }
+
+ const DeclIndexPair *I = DeclOrIterator.get<const DeclIndexPair*>();
+ ++I;
+ DeclOrIterator = I;
+ return *this;
+ }
+
+ /*iterator operator++(int) {
+ iterator tmp(*this);
+ ++(*this);
+ return tmp;
+ }*/
+
+ reference operator*() const {
+ if (const NamedDecl *ND = DeclOrIterator.dyn_cast<const NamedDecl *>())
+ return reference(ND, SingleDeclIndex);
+
+ return *DeclOrIterator.get<const DeclIndexPair*>();
+ }
+
+ pointer operator->() const {
+ return pointer(**this);
+ }
+
+ friend bool operator==(const iterator &X, const iterator &Y) {
+ return X.DeclOrIterator.getOpaqueValue()
+ == Y.DeclOrIterator.getOpaqueValue() &&
+ X.SingleDeclIndex == Y.SingleDeclIndex;
+ }
+
+ friend bool operator!=(const iterator &X, const iterator &Y) {
+ return !(X == Y);
+ }
+};
+
+ResultBuilder::ShadowMapEntry::iterator
+ResultBuilder::ShadowMapEntry::begin() const {
+ if (DeclOrVector.isNull())
+ return iterator();
+
+ if (const NamedDecl *ND = DeclOrVector.dyn_cast<const NamedDecl *>())
+ return iterator(ND, SingleDeclIndex);
+
+ return iterator(DeclOrVector.get<DeclIndexPairVector *>()->begin());
+}
+
+ResultBuilder::ShadowMapEntry::iterator
+ResultBuilder::ShadowMapEntry::end() const {
+ if (DeclOrVector.is<const NamedDecl *>() || DeclOrVector.isNull())
+ return iterator();
+
+ return iterator(DeclOrVector.get<DeclIndexPairVector *>()->end());
+}
+
+/// \brief Compute the qualification required to get from the current context
+/// (\p CurContext) to the target context (\p TargetContext).
+///
+/// \param Context the AST context in which the qualification will be used.
+///
+/// \param CurContext the context where an entity is being named, which is
+/// typically based on the current scope.
+///
+/// \param TargetContext the context in which the named entity actually
+/// resides.
+///
+/// \returns a nested name specifier that refers into the target context, or
+/// NULL if no qualification is needed.
+static NestedNameSpecifier *
+getRequiredQualification(ASTContext &Context,
+ const DeclContext *CurContext,
+ const DeclContext *TargetContext) {
+ SmallVector<const DeclContext *, 4> TargetParents;
+
+ for (const DeclContext *CommonAncestor = TargetContext;
+ CommonAncestor && !CommonAncestor->Encloses(CurContext);
+ CommonAncestor = CommonAncestor->getLookupParent()) {
+ if (CommonAncestor->isTransparentContext() ||
+ CommonAncestor->isFunctionOrMethod())
+ continue;
+
+ TargetParents.push_back(CommonAncestor);
+ }
+
+ NestedNameSpecifier *Result = nullptr;
+ while (!TargetParents.empty()) {
+ const DeclContext *Parent = TargetParents.pop_back_val();
+
+ if (const NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(Parent)) {
+ if (!Namespace->getIdentifier())
+ continue;
+
+ Result = NestedNameSpecifier::Create(Context, Result, Namespace);
+ }
+ else if (const TagDecl *TD = dyn_cast<TagDecl>(Parent))
+ Result = NestedNameSpecifier::Create(Context, Result,
+ false,
+ Context.getTypeDeclType(TD).getTypePtr());
+ }
+ return Result;
+}
+
+/// Determine whether \p Id is a name reserved for the implementation (C99
+/// 7.1.3, C++ [lib.global.names]).
+static bool isReservedName(const IdentifierInfo *Id) {
+ if (Id->getLength() < 2)
+ return false;
+ const char *Name = Id->getNameStart();
+ return Name[0] == '_' &&
+ (Name[1] == '_' || (Name[1] >= 'A' && Name[1] <= 'Z'));
+}
+
+bool ResultBuilder::isInterestingDecl(const NamedDecl *ND,
+ bool &AsNestedNameSpecifier) const {
+ AsNestedNameSpecifier = false;
+
+ ND = ND->getUnderlyingDecl();
+
+ // Skip unnamed entities.
+ if (!ND->getDeclName())
+ return false;
+
+ // Friend declarations and declarations introduced due to friends are never
+ // added as results.
+ if (ND->getFriendObjectKind() == Decl::FOK_Undeclared)
+ return false;
+
+ // Class template (partial) specializations are never added as results.
+ if (isa<ClassTemplateSpecializationDecl>(ND) ||
+ isa<ClassTemplatePartialSpecializationDecl>(ND))
+ return false;
+
+ // Using declarations themselves are never added as results.
+ if (isa<UsingDecl>(ND))
+ return false;
+
+ // Some declarations have reserved names that we don't want to ever show.
+ // Filter out names reserved for the implementation if they come from a
+ // system header.
+ // TODO: Add a predicate for this.
+ if (const IdentifierInfo *Id = ND->getIdentifier())
+ if (isReservedName(Id) &&
+ (ND->getLocation().isInvalid() ||
+ SemaRef.SourceMgr.isInSystemHeader(
+ SemaRef.SourceMgr.getSpellingLoc(ND->getLocation()))))
+ return false;
+
+ if (Filter == &ResultBuilder::IsNestedNameSpecifier ||
+ ((isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND)) &&
+ Filter != &ResultBuilder::IsNamespace &&
+ Filter != &ResultBuilder::IsNamespaceOrAlias &&
+ Filter != nullptr))
+ AsNestedNameSpecifier = true;
+
+ // Filter out any unwanted results.
+ if (Filter && !(this->*Filter)(ND)) {
+ // Check whether it is interesting as a nested-name-specifier.
+ if (AllowNestedNameSpecifiers && SemaRef.getLangOpts().CPlusPlus &&
+ IsNestedNameSpecifier(ND) &&
+ (Filter != &ResultBuilder::IsMember ||
+ (isa<CXXRecordDecl>(ND) &&
+ cast<CXXRecordDecl>(ND)->isInjectedClassName()))) {
+ AsNestedNameSpecifier = true;
+ return true;
+ }
+
+ return false;
+ }
+ // ... then it must be interesting!
+ return true;
+}
+
+bool ResultBuilder::CheckHiddenResult(Result &R, DeclContext *CurContext,
+ const NamedDecl *Hiding) {
+ // In C, there is no way to refer to a hidden name.
+ // FIXME: This isn't true; we can find a tag name hidden by an ordinary
+ // name if we introduce the tag type.
+ if (!SemaRef.getLangOpts().CPlusPlus)
+ return true;
+
+ const DeclContext *HiddenCtx =
+ R.Declaration->getDeclContext()->getRedeclContext();
+
+ // There is no way to qualify a name declared in a function or method.
+ if (HiddenCtx->isFunctionOrMethod())
+ return true;
+
+ if (HiddenCtx == Hiding->getDeclContext()->getRedeclContext())
+ return true;
+
+ // We can refer to the result with the appropriate qualification. Do it.
+ R.Hidden = true;
+ R.QualifierIsInformative = false;
+
+ if (!R.Qualifier)
+ R.Qualifier = getRequiredQualification(SemaRef.Context,
+ CurContext,
+ R.Declaration->getDeclContext());
+ return false;
+}
+
+/// \brief A simplified classification of types used to determine whether two
+/// types are "similar enough" when adjusting priorities.
+SimplifiedTypeClass clang::getSimplifiedTypeClass(CanQualType T) {
+ switch (T->getTypeClass()) {
+ case Type::Builtin:
+ switch (cast<BuiltinType>(T)->getKind()) {
+ case BuiltinType::Void:
+ return STC_Void;
+
+ case BuiltinType::NullPtr:
+ return STC_Pointer;
+
+ case BuiltinType::Overload:
+ case BuiltinType::Dependent:
+ return STC_Other;
+
+ case BuiltinType::ObjCId:
+ case BuiltinType::ObjCClass:
+ case BuiltinType::ObjCSel:
+ return STC_ObjectiveC;
+
+ default:
+ return STC_Arithmetic;
+ }
+
+ case Type::Complex:
+ return STC_Arithmetic;
+
+ case Type::Pointer:
+ return STC_Pointer;
+
+ case Type::BlockPointer:
+ return STC_Block;
+
+ case Type::LValueReference:
+ case Type::RValueReference:
+ return getSimplifiedTypeClass(T->getAs<ReferenceType>()->getPointeeType());
+
+ case Type::ConstantArray:
+ case Type::IncompleteArray:
+ case Type::VariableArray:
+ case Type::DependentSizedArray:
+ return STC_Array;
+
+ case Type::DependentSizedExtVector:
+ case Type::Vector:
+ case Type::ExtVector:
+ return STC_Arithmetic;
+
+ case Type::FunctionProto:
+ case Type::FunctionNoProto:
+ return STC_Function;
+
+ case Type::Record:
+ return STC_Record;
+
+ case Type::Enum:
+ return STC_Arithmetic;
+
+ case Type::ObjCObject:
+ case Type::ObjCInterface:
+ case Type::ObjCObjectPointer:
+ return STC_ObjectiveC;
+
+ default:
+ return STC_Other;
+ }
+}
+
+/// \brief Get the type that a given expression will have if this declaration
+/// is used as an expression in its "typical" code-completion form.
+QualType clang::getDeclUsageType(ASTContext &C, const NamedDecl *ND) {
+ ND = cast<NamedDecl>(ND->getUnderlyingDecl());
+
+ if (const TypeDecl *Type = dyn_cast<TypeDecl>(ND))
+ return C.getTypeDeclType(Type);
+ if (const ObjCInterfaceDecl *Iface = dyn_cast<ObjCInterfaceDecl>(ND))
+ return C.getObjCInterfaceType(Iface);
+
+ QualType T;
+ if (const FunctionDecl *Function = ND->getAsFunction())
+ T = Function->getCallResultType();
+ else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(ND))
+ T = Method->getSendResultType();
+ else if (const EnumConstantDecl *Enumerator = dyn_cast<EnumConstantDecl>(ND))
+ T = C.getTypeDeclType(cast<EnumDecl>(Enumerator->getDeclContext()));
+ else if (const ObjCPropertyDecl *Property = dyn_cast<ObjCPropertyDecl>(ND))
+ T = Property->getType();
+ else if (const ValueDecl *Value = dyn_cast<ValueDecl>(ND))
+ T = Value->getType();
+ else
+ return QualType();
+
+ // Dig through references, function pointers, and block pointers to
+ // get down to the likely type of an expression when the entity is
+ // used.
+ do {
+ if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
+ T = Ref->getPointeeType();
+ continue;
+ }
+
+ if (const PointerType *Pointer = T->getAs<PointerType>()) {
+ if (Pointer->getPointeeType()->isFunctionType()) {
+ T = Pointer->getPointeeType();
+ continue;
+ }
+
+ break;
+ }
+
+ if (const BlockPointerType *Block = T->getAs<BlockPointerType>()) {
+ T = Block->getPointeeType();
+ continue;
+ }
+
+ if (const FunctionType *Function = T->getAs<FunctionType>()) {
+ T = Function->getReturnType();
+ continue;
+ }
+
+ break;
+ } while (true);
+
+ return T;
+}
+
+unsigned ResultBuilder::getBasePriority(const NamedDecl *ND) {
+ if (!ND)
+ return CCP_Unlikely;
+
+ // Context-based decisions.
+ const DeclContext *LexicalDC = ND->getLexicalDeclContext();
+ if (LexicalDC->isFunctionOrMethod()) {
+ // _cmd is relatively rare
+ if (const ImplicitParamDecl *ImplicitParam =
+ dyn_cast<ImplicitParamDecl>(ND))
+ if (ImplicitParam->getIdentifier() &&
+ ImplicitParam->getIdentifier()->isStr("_cmd"))
+ return CCP_ObjC_cmd;
+
+ return CCP_LocalDeclaration;
+ }
+
+ const DeclContext *DC = ND->getDeclContext()->getRedeclContext();
+ if (DC->isRecord() || isa<ObjCContainerDecl>(DC))
+ return CCP_MemberDeclaration;
+
+ // Content-based decisions.
+ if (isa<EnumConstantDecl>(ND))
+ return CCP_Constant;
+
+ // Use CCP_Type for type declarations unless we're in a statement, Objective-C
+ // message receiver, or parenthesized expression context. There, it's as
+ // likely that the user will want to write a type as other declarations.
+ if ((isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
+ !(CompletionContext.getKind() == CodeCompletionContext::CCC_Statement ||
+ CompletionContext.getKind()
+ == CodeCompletionContext::CCC_ObjCMessageReceiver ||
+ CompletionContext.getKind()
+ == CodeCompletionContext::CCC_ParenthesizedExpression))
+ return CCP_Type;
+
+ return CCP_Declaration;
+}
+
+void ResultBuilder::AdjustResultPriorityForDecl(Result &R) {
+ // If this is an Objective-C method declaration whose selector matches our
+ // preferred selector, give it a priority boost.
+ if (!PreferredSelector.isNull())
+ if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(R.Declaration))
+ if (PreferredSelector == Method->getSelector())
+ R.Priority += CCD_SelectorMatch;
+
+ // If we have a preferred type, adjust the priority for results with exactly-
+ // matching or nearly-matching types.
+ if (!PreferredType.isNull()) {
+ QualType T = getDeclUsageType(SemaRef.Context, R.Declaration);
+ if (!T.isNull()) {
+ CanQualType TC = SemaRef.Context.getCanonicalType(T);
+ // Check for exactly-matching types (modulo qualifiers).
+ if (SemaRef.Context.hasSameUnqualifiedType(PreferredType, TC))
+ R.Priority /= CCF_ExactTypeMatch;
+ // Check for nearly-matching types, based on classification of each.
+ else if ((getSimplifiedTypeClass(PreferredType)
+ == getSimplifiedTypeClass(TC)) &&
+ !(PreferredType->isEnumeralType() && TC->isEnumeralType()))
+ R.Priority /= CCF_SimilarTypeMatch;
+ }
+ }
+}
+
+void ResultBuilder::MaybeAddConstructorResults(Result R) {
+ if (!SemaRef.getLangOpts().CPlusPlus || !R.Declaration ||
+ !CompletionContext.wantConstructorResults())
+ return;
+
+ ASTContext &Context = SemaRef.Context;
+ const NamedDecl *D = R.Declaration;
+ const CXXRecordDecl *Record = nullptr;
+ if (const ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(D))
+ Record = ClassTemplate->getTemplatedDecl();
+ else if ((Record = dyn_cast<CXXRecordDecl>(D))) {
+ // Skip specializations and partial specializations.
+ if (isa<ClassTemplateSpecializationDecl>(Record))
+ return;
+ } else {
+ // There are no constructors here.
+ return;
+ }
+
+ Record = Record->getDefinition();
+ if (!Record)
+ return;
+
+
+ QualType RecordTy = Context.getTypeDeclType(Record);
+ DeclarationName ConstructorName
+ = Context.DeclarationNames.getCXXConstructorName(
+ Context.getCanonicalType(RecordTy));
+ DeclContext::lookup_result Ctors = Record->lookup(ConstructorName);
+ for (DeclContext::lookup_iterator I = Ctors.begin(),
+ E = Ctors.end();
+ I != E; ++I) {
+ R.Declaration = *I;
+ R.CursorKind = getCursorKindForDecl(R.Declaration);
+ Results.push_back(R);
+ }
+}
+
+void ResultBuilder::MaybeAddResult(Result R, DeclContext *CurContext) {
+ assert(!ShadowMaps.empty() && "Must enter into a results scope");
+
+ if (R.Kind != Result::RK_Declaration) {
+ // For non-declaration results, just add the result.
+ Results.push_back(R);
+ return;
+ }
+
+ // Look through using declarations.
+ if (const UsingShadowDecl *Using =
+ dyn_cast<UsingShadowDecl>(R.Declaration)) {
+ MaybeAddResult(Result(Using->getTargetDecl(),
+ getBasePriority(Using->getTargetDecl()),
+ R.Qualifier),
+ CurContext);
+ return;
+ }
+
+ const Decl *CanonDecl = R.Declaration->getCanonicalDecl();
+ unsigned IDNS = CanonDecl->getIdentifierNamespace();
+
+ bool AsNestedNameSpecifier = false;
+ if (!isInterestingDecl(R.Declaration, AsNestedNameSpecifier))
+ return;
+
+ // C++ constructors are never found by name lookup.
+ if (isa<CXXConstructorDecl>(R.Declaration))
+ return;
+
+ ShadowMap &SMap = ShadowMaps.back();
+ ShadowMapEntry::iterator I, IEnd;
+ ShadowMap::iterator NamePos = SMap.find(R.Declaration->getDeclName());
+ if (NamePos != SMap.end()) {
+ I = NamePos->second.begin();
+ IEnd = NamePos->second.end();
+ }
+
+ for (; I != IEnd; ++I) {
+ const NamedDecl *ND = I->first;
+ unsigned Index = I->second;
+ if (ND->getCanonicalDecl() == CanonDecl) {
+ // This is a redeclaration. Always pick the newer declaration.
+ Results[Index].Declaration = R.Declaration;
+
+ // We're done.
+ return;
+ }
+ }
+
+ // This is a new declaration in this scope. However, check whether this
+ // declaration name is hidden by a similarly-named declaration in an outer
+ // scope.
+ std::list<ShadowMap>::iterator SM, SMEnd = ShadowMaps.end();
+ --SMEnd;
+ for (SM = ShadowMaps.begin(); SM != SMEnd; ++SM) {
+ ShadowMapEntry::iterator I, IEnd;
+ ShadowMap::iterator NamePos = SM->find(R.Declaration->getDeclName());
+ if (NamePos != SM->end()) {
+ I = NamePos->second.begin();
+ IEnd = NamePos->second.end();
+ }
+ for (; I != IEnd; ++I) {
+ // A tag declaration does not hide a non-tag declaration.
+ if (I->first->hasTagIdentifierNamespace() &&
+ (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
+ Decl::IDNS_LocalExtern | Decl::IDNS_ObjCProtocol)))
+ continue;
+
+ // Protocols are in distinct namespaces from everything else.
+ if (((I->first->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
+ || (IDNS & Decl::IDNS_ObjCProtocol)) &&
+ I->first->getIdentifierNamespace() != IDNS)
+ continue;
+
+ // The newly-added result is hidden by an entry in the shadow map.
+ if (CheckHiddenResult(R, CurContext, I->first))
+ return;
+
+ break;
+ }
+ }
+
+ // Make sure that any given declaration only shows up in the result set once.
+ if (!AllDeclsFound.insert(CanonDecl).second)
+ return;
+
+ // If the filter is for nested-name-specifiers, then this result starts a
+ // nested-name-specifier.
+ if (AsNestedNameSpecifier) {
+ R.StartsNestedNameSpecifier = true;
+ R.Priority = CCP_NestedNameSpecifier;
+ } else
+ AdjustResultPriorityForDecl(R);
+
+ // If this result is supposed to have an informative qualifier, add one.
+ if (R.QualifierIsInformative && !R.Qualifier &&
+ !R.StartsNestedNameSpecifier) {
+ const DeclContext *Ctx = R.Declaration->getDeclContext();
+ if (const NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(Ctx))
+ R.Qualifier = NestedNameSpecifier::Create(SemaRef.Context, nullptr,
+ Namespace);
+ else if (const TagDecl *Tag = dyn_cast<TagDecl>(Ctx))
+ R.Qualifier = NestedNameSpecifier::Create(SemaRef.Context, nullptr,
+ false, SemaRef.Context.getTypeDeclType(Tag).getTypePtr());
+ else
+ R.QualifierIsInformative = false;
+ }
+
+ // Insert this result into the set of results and into the current shadow
+ // map.
+ SMap[R.Declaration->getDeclName()].Add(R.Declaration, Results.size());
+ Results.push_back(R);
+
+ if (!AsNestedNameSpecifier)
+ MaybeAddConstructorResults(R);
+}
+
+void ResultBuilder::AddResult(Result R, DeclContext *CurContext,
+ NamedDecl *Hiding, bool InBaseClass = false) {
+ if (R.Kind != Result::RK_Declaration) {
+ // For non-declaration results, just add the result.
+ Results.push_back(R);
+ return;
+ }
+
+ // Look through using declarations.
+ if (const UsingShadowDecl *Using = dyn_cast<UsingShadowDecl>(R.Declaration)) {
+ AddResult(Result(Using->getTargetDecl(),
+ getBasePriority(Using->getTargetDecl()),
+ R.Qualifier),
+ CurContext, Hiding);
+ return;
+ }
+
+ bool AsNestedNameSpecifier = false;
+ if (!isInterestingDecl(R.Declaration, AsNestedNameSpecifier))
+ return;
+
+ // C++ constructors are never found by name lookup.
+ if (isa<CXXConstructorDecl>(R.Declaration))
+ return;
+
+ if (Hiding && CheckHiddenResult(R, CurContext, Hiding))
+ return;
+
+ // Make sure that any given declaration only shows up in the result set once.
+ if (!AllDeclsFound.insert(R.Declaration->getCanonicalDecl()).second)
+ return;
+
+ // If the filter is for nested-name-specifiers, then this result starts a
+ // nested-name-specifier.
+ if (AsNestedNameSpecifier) {
+ R.StartsNestedNameSpecifier = true;
+ R.Priority = CCP_NestedNameSpecifier;
+ }
+ else if (Filter == &ResultBuilder::IsMember && !R.Qualifier && InBaseClass &&
+ isa<CXXRecordDecl>(R.Declaration->getDeclContext()
+ ->getRedeclContext()))
+ R.QualifierIsInformative = true;
+
+ // If this result is supposed to have an informative qualifier, add one.
+ if (R.QualifierIsInformative && !R.Qualifier &&
+ !R.StartsNestedNameSpecifier) {
+ const DeclContext *Ctx = R.Declaration->getDeclContext();
+ if (const NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(Ctx))
+ R.Qualifier = NestedNameSpecifier::Create(SemaRef.Context, nullptr,
+ Namespace);
+ else if (const TagDecl *Tag = dyn_cast<TagDecl>(Ctx))
+ R.Qualifier = NestedNameSpecifier::Create(SemaRef.Context, nullptr, false,
+ SemaRef.Context.getTypeDeclType(Tag).getTypePtr());
+ else
+ R.QualifierIsInformative = false;
+ }
+
+ // Adjust the priority if this result comes from a base class.
+ if (InBaseClass)
+ R.Priority += CCD_InBaseClass;
+
+ AdjustResultPriorityForDecl(R);
+
+ if (HasObjectTypeQualifiers)
+ if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(R.Declaration))
+ if (Method->isInstance()) {
+ Qualifiers MethodQuals
+ = Qualifiers::fromCVRMask(Method->getTypeQualifiers());
+ if (ObjectTypeQualifiers == MethodQuals)
+ R.Priority += CCD_ObjectQualifierMatch;
+ else if (ObjectTypeQualifiers - MethodQuals) {
+ // The method cannot be invoked, because doing so would drop
+ // qualifiers.
+ return;
+ }
+ }
+
+ // Insert this result into the set of results.
+ Results.push_back(R);
+
+ if (!AsNestedNameSpecifier)
+ MaybeAddConstructorResults(R);
+}
+
+void ResultBuilder::AddResult(Result R) {
+ assert(R.Kind != Result::RK_Declaration &&
+ "Declaration results need more context");
+ Results.push_back(R);
+}
+
+/// \brief Enter into a new scope.
+void ResultBuilder::EnterNewScope() {
+ ShadowMaps.push_back(ShadowMap());
+}
+
+/// \brief Exit from the current scope.
+void ResultBuilder::ExitScope() {
+ for (ShadowMap::iterator E = ShadowMaps.back().begin(),
+ EEnd = ShadowMaps.back().end();
+ E != EEnd;
+ ++E)
+ E->second.Destroy();
+
+ ShadowMaps.pop_back();
+}
+
+/// \brief Determines whether this given declaration will be found by
+/// ordinary name lookup.
+bool ResultBuilder::IsOrdinaryName(const NamedDecl *ND) const {
+ ND = cast<NamedDecl>(ND->getUnderlyingDecl());
+
+ // If name lookup finds a local extern declaration, then we are in a
+ // context where it behaves like an ordinary name.
+ unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_LocalExtern;
+ if (SemaRef.getLangOpts().CPlusPlus)
+ IDNS |= Decl::IDNS_Tag | Decl::IDNS_Namespace | Decl::IDNS_Member;
+ else if (SemaRef.getLangOpts().ObjC1) {
+ if (isa<ObjCIvarDecl>(ND))
+ return true;
+ }
+
+ return ND->getIdentifierNamespace() & IDNS;
+}
+
+/// \brief Determines whether this given declaration will be found by
+/// ordinary name lookup but is not a type name.
+bool ResultBuilder::IsOrdinaryNonTypeName(const NamedDecl *ND) const {
+ ND = cast<NamedDecl>(ND->getUnderlyingDecl());
+ if (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND))
+ return false;
+
+ unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_LocalExtern;
+ if (SemaRef.getLangOpts().CPlusPlus)
+ IDNS |= Decl::IDNS_Tag | Decl::IDNS_Namespace | Decl::IDNS_Member;
+ else if (SemaRef.getLangOpts().ObjC1) {
+ if (isa<ObjCIvarDecl>(ND))
+ return true;
+ }
+
+ return ND->getIdentifierNamespace() & IDNS;
+}
+
+bool ResultBuilder::IsIntegralConstantValue(const NamedDecl *ND) const {
+ if (!IsOrdinaryNonTypeName(ND))
+ return 0;
+
+ if (const ValueDecl *VD = dyn_cast<ValueDecl>(ND->getUnderlyingDecl()))
+ if (VD->getType()->isIntegralOrEnumerationType())
+ return true;
+
+ return false;
+}
+
+/// \brief Determines whether this given declaration will be found by
+/// ordinary name lookup.
+bool ResultBuilder::IsOrdinaryNonValueName(const NamedDecl *ND) const {
+ ND = cast<NamedDecl>(ND->getUnderlyingDecl());
+
+ unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_LocalExtern;
+ if (SemaRef.getLangOpts().CPlusPlus)
+ IDNS |= Decl::IDNS_Tag | Decl::IDNS_Namespace;
+
+ return (ND->getIdentifierNamespace() & IDNS) &&
+ !isa<ValueDecl>(ND) && !isa<FunctionTemplateDecl>(ND) &&
+ !isa<ObjCPropertyDecl>(ND);
+}
+
+/// \brief Determines whether the given declaration is suitable as the
+/// start of a C++ nested-name-specifier, e.g., a class or namespace.
+bool ResultBuilder::IsNestedNameSpecifier(const NamedDecl *ND) const {
+ // Allow us to find class templates, too.
+ if (const ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(ND))
+ ND = ClassTemplate->getTemplatedDecl();
+
+ return SemaRef.isAcceptableNestedNameSpecifier(ND);
+}
+
+/// \brief Determines whether the given declaration is an enumeration.
+bool ResultBuilder::IsEnum(const NamedDecl *ND) const {
+ return isa<EnumDecl>(ND);
+}
+
+/// \brief Determines whether the given declaration is a class or struct.
+bool ResultBuilder::IsClassOrStruct(const NamedDecl *ND) const {
+ // Allow us to find class templates, too.
+ if (const ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(ND))
+ ND = ClassTemplate->getTemplatedDecl();
+
+ // For purposes of this check, interfaces match too.
+ if (const RecordDecl *RD = dyn_cast<RecordDecl>(ND))
+ return RD->getTagKind() == TTK_Class ||
+ RD->getTagKind() == TTK_Struct ||
+ RD->getTagKind() == TTK_Interface;
+
+ return false;
+}
+
+/// \brief Determines whether the given declaration is a union.
+bool ResultBuilder::IsUnion(const NamedDecl *ND) const {
+ // Allow us to find class templates, too.
+ if (const ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(ND))
+ ND = ClassTemplate->getTemplatedDecl();
+
+ if (const RecordDecl *RD = dyn_cast<RecordDecl>(ND))
+ return RD->getTagKind() == TTK_Union;
+
+ return false;
+}
+
+/// \brief Determines whether the given declaration is a namespace.
+bool ResultBuilder::IsNamespace(const NamedDecl *ND) const {
+ return isa<NamespaceDecl>(ND);
+}
+
+/// \brief Determines whether the given declaration is a namespace or
+/// namespace alias.
+bool ResultBuilder::IsNamespaceOrAlias(const NamedDecl *ND) const {
+ return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
+}
+
+/// \brief Determines whether the given declaration is a type.
+bool ResultBuilder::IsType(const NamedDecl *ND) const {
+ if (const UsingShadowDecl *Using = dyn_cast<UsingShadowDecl>(ND))
+ ND = Using->getTargetDecl();
+
+ return isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
+}
+
+/// \brief Determines which members of a class should be visible via
+/// "." or "->". Only value declarations, nested name specifiers, and
+/// using declarations thereof should show up.
+bool ResultBuilder::IsMember(const NamedDecl *ND) const {
+ if (const UsingShadowDecl *Using = dyn_cast<UsingShadowDecl>(ND))
+ ND = Using->getTargetDecl();
+
+ return isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND) ||
+ isa<ObjCPropertyDecl>(ND);
+}
+
+static bool isObjCReceiverType(ASTContext &C, QualType T) {
+ T = C.getCanonicalType(T);
+ switch (T->getTypeClass()) {
+ case Type::ObjCObject:
+ case Type::ObjCInterface:
+ case Type::ObjCObjectPointer:
+ return true;
+
+ case Type::Builtin:
+ switch (cast<BuiltinType>(T)->getKind()) {
+ case BuiltinType::ObjCId:
+ case BuiltinType::ObjCClass:
+ case BuiltinType::ObjCSel:
+ return true;
+
+ default:
+ break;
+ }
+ return false;
+
+ default:
+ break;
+ }
+
+ if (!C.getLangOpts().CPlusPlus)
+ return false;
+
+ // FIXME: We could perform more analysis here to determine whether a
+ // particular class type has any conversions to Objective-C types. For now,
+ // just accept all class types.
+ return T->isDependentType() || T->isRecordType();
+}
+
+bool ResultBuilder::IsObjCMessageReceiver(const NamedDecl *ND) const {
+ QualType T = getDeclUsageType(SemaRef.Context, ND);
+ if (T.isNull())
+ return false;
+
+ T = SemaRef.Context.getBaseElementType(T);
+ return isObjCReceiverType(SemaRef.Context, T);
+}
+
+bool ResultBuilder::IsObjCMessageReceiverOrLambdaCapture(const NamedDecl *ND) const {
+ if (IsObjCMessageReceiver(ND))
+ return true;
+
+ const VarDecl *Var = dyn_cast<VarDecl>(ND);
+ if (!Var)
+ return false;
+
+ return Var->hasLocalStorage() && !Var->hasAttr<BlocksAttr>();
+}
+
+bool ResultBuilder::IsObjCCollection(const NamedDecl *ND) const {
+ if ((SemaRef.getLangOpts().CPlusPlus && !IsOrdinaryName(ND)) ||
+ (!SemaRef.getLangOpts().CPlusPlus && !IsOrdinaryNonTypeName(ND)))
+ return false;
+
+ QualType T = getDeclUsageType(SemaRef.Context, ND);
+ if (T.isNull())
+ return false;
+
+ T = SemaRef.Context.getBaseElementType(T);
+ return T->isObjCObjectType() || T->isObjCObjectPointerType() ||
+ T->isObjCIdType() ||
+ (SemaRef.getLangOpts().CPlusPlus && T->isRecordType());
+}
+
+bool ResultBuilder::IsImpossibleToSatisfy(const NamedDecl *ND) const {
+ return false;
+}
+
+/// \brief Determines whether the given declaration is an Objective-C
+/// instance variable.
+bool ResultBuilder::IsObjCIvar(const NamedDecl *ND) const {
+ return isa<ObjCIvarDecl>(ND);
+}
+
+namespace {
+ /// \brief Visible declaration consumer that adds a code-completion result
+ /// for each visible declaration.
+ class CodeCompletionDeclConsumer : public VisibleDeclConsumer {
+ ResultBuilder &Results;
+ DeclContext *CurContext;
+
+ public:
+ CodeCompletionDeclConsumer(ResultBuilder &Results, DeclContext *CurContext)
+ : Results(Results), CurContext(CurContext) { }
+
+ void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, DeclContext *Ctx,
+ bool InBaseClass) override {
+ bool Accessible = true;
+ if (Ctx)
+ Accessible = Results.getSema().IsSimplyAccessible(ND, Ctx);
+
+ ResultBuilder::Result Result(ND, Results.getBasePriority(ND), nullptr,
+ false, Accessible);
+ Results.AddResult(Result, CurContext, Hiding, InBaseClass);
+ }
+ };
+}
+
+/// \brief Add type specifiers for the current language as keyword results.
+static void AddTypeSpecifierResults(const LangOptions &LangOpts,
+ ResultBuilder &Results) {
+ typedef CodeCompletionResult Result;
+ Results.AddResult(Result("short", CCP_Type));
+ Results.AddResult(Result("long", CCP_Type));
+ Results.AddResult(Result("signed", CCP_Type));
+ Results.AddResult(Result("unsigned", CCP_Type));
+ Results.AddResult(Result("void", CCP_Type));
+ Results.AddResult(Result("char", CCP_Type));
+ Results.AddResult(Result("int", CCP_Type));
+ Results.AddResult(Result("float", CCP_Type));
+ Results.AddResult(Result("double", CCP_Type));
+ Results.AddResult(Result("enum", CCP_Type));
+ Results.AddResult(Result("struct", CCP_Type));
+ Results.AddResult(Result("union", CCP_Type));
+ Results.AddResult(Result("const", CCP_Type));
+ Results.AddResult(Result("volatile", CCP_Type));
+
+ if (LangOpts.C99) {
+ // C99-specific
+ Results.AddResult(Result("_Complex", CCP_Type));
+ Results.AddResult(Result("_Imaginary", CCP_Type));
+ Results.AddResult(Result("_Bool", CCP_Type));
+ Results.AddResult(Result("restrict", CCP_Type));
+ }
+
+ CodeCompletionBuilder Builder(Results.getAllocator(),
+ Results.getCodeCompletionTUInfo());
+ if (LangOpts.CPlusPlus) {
+ // C++-specific
+ Results.AddResult(Result("bool", CCP_Type +
+ (LangOpts.ObjC1? CCD_bool_in_ObjC : 0)));
+ Results.AddResult(Result("class", CCP_Type));
+ Results.AddResult(Result("wchar_t", CCP_Type));
+
+ // typename qualified-id
+ Builder.AddTypedTextChunk("typename");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("qualifier");
+ Builder.AddTextChunk("::");
+ Builder.AddPlaceholderChunk("name");
+ Results.AddResult(Result(Builder.TakeString()));
+
+ if (LangOpts.CPlusPlus11) {
+ Results.AddResult(Result("auto", CCP_Type));
+ Results.AddResult(Result("char16_t", CCP_Type));
+ Results.AddResult(Result("char32_t", CCP_Type));
+
+ Builder.AddTypedTextChunk("decltype");
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddPlaceholderChunk("expression");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Results.AddResult(Result(Builder.TakeString()));
+ }
+ }
+
+ // GNU extensions
+ if (LangOpts.GNUMode) {
+ // FIXME: Enable when we actually support decimal floating point.
+ // Results.AddResult(Result("_Decimal32"));
+ // Results.AddResult(Result("_Decimal64"));
+ // Results.AddResult(Result("_Decimal128"));
+
+ Builder.AddTypedTextChunk("typeof");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("expression");
+ Results.AddResult(Result(Builder.TakeString()));
+
+ Builder.AddTypedTextChunk("typeof");
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddPlaceholderChunk("type");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Results.AddResult(Result(Builder.TakeString()));
+ }
+}
+
+static void AddStorageSpecifiers(Sema::ParserCompletionContext CCC,
+ const LangOptions &LangOpts,
+ ResultBuilder &Results) {
+ typedef CodeCompletionResult Result;
+ // Note: we don't suggest either "auto" or "register", because both
+ // are pointless as storage specifiers. Elsewhere, we suggest "auto"
+ // in C++0x as a type specifier.
+ Results.AddResult(Result("extern"));
+ Results.AddResult(Result("static"));
+}
+
+static void AddFunctionSpecifiers(Sema::ParserCompletionContext CCC,
+ const LangOptions &LangOpts,
+ ResultBuilder &Results) {
+ typedef CodeCompletionResult Result;
+ switch (CCC) {
+ case Sema::PCC_Class:
+ case Sema::PCC_MemberTemplate:
+ if (LangOpts.CPlusPlus) {
+ Results.AddResult(Result("explicit"));
+ Results.AddResult(Result("friend"));
+ Results.AddResult(Result("mutable"));
+ Results.AddResult(Result("virtual"));
+ }
+ // Fall through
+
+ case Sema::PCC_ObjCInterface:
+ case Sema::PCC_ObjCImplementation:
+ case Sema::PCC_Namespace:
+ case Sema::PCC_Template:
+ if (LangOpts.CPlusPlus || LangOpts.C99)
+ Results.AddResult(Result("inline"));
+ break;
+
+ case Sema::PCC_ObjCInstanceVariableList:
+ case Sema::PCC_Expression:
+ case Sema::PCC_Statement:
+ case Sema::PCC_ForInit:
+ case Sema::PCC_Condition:
+ case Sema::PCC_RecoveryInFunction:
+ case Sema::PCC_Type:
+ case Sema::PCC_ParenthesizedExpression:
+ case Sema::PCC_LocalDeclarationSpecifiers:
+ break;
+ }
+}
+
+static void AddObjCExpressionResults(ResultBuilder &Results, bool NeedAt);
+static void AddObjCStatementResults(ResultBuilder &Results, bool NeedAt);
+static void AddObjCVisibilityResults(const LangOptions &LangOpts,
+ ResultBuilder &Results,
+ bool NeedAt);
+static void AddObjCImplementationResults(const LangOptions &LangOpts,
+ ResultBuilder &Results,
+ bool NeedAt);
+static void AddObjCInterfaceResults(const LangOptions &LangOpts,
+ ResultBuilder &Results,
+ bool NeedAt);
+static void AddObjCTopLevelResults(ResultBuilder &Results, bool NeedAt);
+
+static void AddTypedefResult(ResultBuilder &Results) {
+ CodeCompletionBuilder Builder(Results.getAllocator(),
+ Results.getCodeCompletionTUInfo());
+ Builder.AddTypedTextChunk("typedef");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("type");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("name");
+ Results.AddResult(CodeCompletionResult(Builder.TakeString()));
+}
+
+static bool WantTypesInContext(Sema::ParserCompletionContext CCC,
+ const LangOptions &LangOpts) {
+ switch (CCC) {
+ case Sema::PCC_Namespace:
+ case Sema::PCC_Class:
+ case Sema::PCC_ObjCInstanceVariableList:
+ case Sema::PCC_Template:
+ case Sema::PCC_MemberTemplate:
+ case Sema::PCC_Statement:
+ case Sema::PCC_RecoveryInFunction:
+ case Sema::PCC_Type:
+ case Sema::PCC_ParenthesizedExpression:
+ case Sema::PCC_LocalDeclarationSpecifiers:
+ return true;
+
+ case Sema::PCC_Expression:
+ case Sema::PCC_Condition:
+ return LangOpts.CPlusPlus;
+
+ case Sema::PCC_ObjCInterface:
+ case Sema::PCC_ObjCImplementation:
+ return false;
+
+ case Sema::PCC_ForInit:
+ return LangOpts.CPlusPlus || LangOpts.ObjC1 || LangOpts.C99;
+ }
+
+ llvm_unreachable("Invalid ParserCompletionContext!");
+}
+
+static PrintingPolicy getCompletionPrintingPolicy(const ASTContext &Context,
+ const Preprocessor &PP) {
+ PrintingPolicy Policy = Sema::getPrintingPolicy(Context, PP);
+ Policy.AnonymousTagLocations = false;
+ Policy.SuppressStrongLifetime = true;
+ Policy.SuppressUnwrittenScope = true;
+ return Policy;
+}
+
+/// \brief Retrieve a printing policy suitable for code completion.
+static PrintingPolicy getCompletionPrintingPolicy(Sema &S) {
+ return getCompletionPrintingPolicy(S.Context, S.PP);
+}
+
+/// \brief Retrieve the string representation of the given type as a string
+/// that has the appropriate lifetime for code completion.
+///
+/// This routine provides a fast path where we provide constant strings for
+/// common type names.
+static const char *GetCompletionTypeString(QualType T,
+ ASTContext &Context,
+ const PrintingPolicy &Policy,
+ CodeCompletionAllocator &Allocator) {
+ if (!T.getLocalQualifiers()) {
+ // Built-in type names are constant strings.
+ if (const BuiltinType *BT = dyn_cast<BuiltinType>(T))
+ return BT->getNameAsCString(Policy);
+
+ // Anonymous tag types are constant strings.
+ if (const TagType *TagT = dyn_cast<TagType>(T))
+ if (TagDecl *Tag = TagT->getDecl())
+ if (!Tag->hasNameForLinkage()) {
+ switch (Tag->getTagKind()) {
+ case TTK_Struct: return "struct <anonymous>";
+ case TTK_Interface: return "__interface <anonymous>";
+ case TTK_Class: return "class <anonymous>";
+ case TTK_Union: return "union <anonymous>";
+ case TTK_Enum: return "enum <anonymous>";
+ }
+ }
+ }
+
+ // Slow path: format the type as a string.
+ std::string Result;
+ T.getAsStringInternal(Result, Policy);
+ return Allocator.CopyString(Result);
+}
+
+/// \brief Add a completion for "this", if we're in a member function.
+static void addThisCompletion(Sema &S, ResultBuilder &Results) {
+ QualType ThisTy = S.getCurrentThisType();
+ if (ThisTy.isNull())
+ return;
+
+ CodeCompletionAllocator &Allocator = Results.getAllocator();
+ CodeCompletionBuilder Builder(Allocator, Results.getCodeCompletionTUInfo());
+ PrintingPolicy Policy = getCompletionPrintingPolicy(S);
+ Builder.AddResultTypeChunk(GetCompletionTypeString(ThisTy,
+ S.Context,
+ Policy,
+ Allocator));
+ Builder.AddTypedTextChunk("this");
+ Results.AddResult(CodeCompletionResult(Builder.TakeString()));
+}
+
+/// \brief Add language constructs that show up for "ordinary" names.
+static void AddOrdinaryNameResults(Sema::ParserCompletionContext CCC,
+ Scope *S,
+ Sema &SemaRef,
+ ResultBuilder &Results) {
+ CodeCompletionAllocator &Allocator = Results.getAllocator();
+ CodeCompletionBuilder Builder(Allocator, Results.getCodeCompletionTUInfo());
+ PrintingPolicy Policy = getCompletionPrintingPolicy(SemaRef);
+
+ typedef CodeCompletionResult Result;
+ switch (CCC) {
+ case Sema::PCC_Namespace:
+ if (SemaRef.getLangOpts().CPlusPlus) {
+ if (Results.includeCodePatterns()) {
+ // namespace <identifier> { declarations }
+ Builder.AddTypedTextChunk("namespace");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("identifier");
+ Builder.AddChunk(CodeCompletionString::CK_LeftBrace);
+ Builder.AddPlaceholderChunk("declarations");
+ Builder.AddChunk(CodeCompletionString::CK_VerticalSpace);
+ Builder.AddChunk(CodeCompletionString::CK_RightBrace);
+ Results.AddResult(Result(Builder.TakeString()));
+ }
+
+ // namespace identifier = identifier ;
+ Builder.AddTypedTextChunk("namespace");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("name");
+ Builder.AddChunk(CodeCompletionString::CK_Equal);
+ Builder.AddPlaceholderChunk("namespace");
+ Results.AddResult(Result(Builder.TakeString()));
+
+ // Using directives
+ Builder.AddTypedTextChunk("using");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddTextChunk("namespace");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("identifier");
+ Results.AddResult(Result(Builder.TakeString()));
+
+ // asm(string-literal)
+ Builder.AddTypedTextChunk("asm");
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddPlaceholderChunk("string-literal");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Results.AddResult(Result(Builder.TakeString()));
+
+ if (Results.includeCodePatterns()) {
+ // Explicit template instantiation
+ Builder.AddTypedTextChunk("template");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("declaration");
+ Results.AddResult(Result(Builder.TakeString()));
+ }
+ }
+
+ if (SemaRef.getLangOpts().ObjC1)
+ AddObjCTopLevelResults(Results, true);
+
+ AddTypedefResult(Results);
+ // Fall through
+
+ case Sema::PCC_Class:
+ if (SemaRef.getLangOpts().CPlusPlus) {
+ // Using declaration
+ Builder.AddTypedTextChunk("using");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("qualifier");
+ Builder.AddTextChunk("::");
+ Builder.AddPlaceholderChunk("name");
+ Results.AddResult(Result(Builder.TakeString()));
+
+ // using typename qualifier::name (only in a dependent context)
+ if (SemaRef.CurContext->isDependentContext()) {
+ Builder.AddTypedTextChunk("using");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddTextChunk("typename");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("qualifier");
+ Builder.AddTextChunk("::");
+ Builder.AddPlaceholderChunk("name");
+ Results.AddResult(Result(Builder.TakeString()));
+ }
+
+ if (CCC == Sema::PCC_Class) {
+ AddTypedefResult(Results);
+
+ // public:
+ Builder.AddTypedTextChunk("public");
+ if (Results.includeCodePatterns())
+ Builder.AddChunk(CodeCompletionString::CK_Colon);
+ Results.AddResult(Result(Builder.TakeString()));
+
+ // protected:
+ Builder.AddTypedTextChunk("protected");
+ if (Results.includeCodePatterns())
+ Builder.AddChunk(CodeCompletionString::CK_Colon);
+ Results.AddResult(Result(Builder.TakeString()));
+
+ // private:
+ Builder.AddTypedTextChunk("private");
+ if (Results.includeCodePatterns())
+ Builder.AddChunk(CodeCompletionString::CK_Colon);
+ Results.AddResult(Result(Builder.TakeString()));
+ }
+ }
+ // Fall through
+
+ case Sema::PCC_Template:
+ case Sema::PCC_MemberTemplate:
+ if (SemaRef.getLangOpts().CPlusPlus && Results.includeCodePatterns()) {
+ // template < parameters >
+ Builder.AddTypedTextChunk("template");
+ Builder.AddChunk(CodeCompletionString::CK_LeftAngle);
+ Builder.AddPlaceholderChunk("parameters");
+ Builder.AddChunk(CodeCompletionString::CK_RightAngle);
+ Results.AddResult(Result(Builder.TakeString()));
+ }
+
+ AddStorageSpecifiers(CCC, SemaRef.getLangOpts(), Results);
+ AddFunctionSpecifiers(CCC, SemaRef.getLangOpts(), Results);
+ break;
+
+ case Sema::PCC_ObjCInterface:
+ AddObjCInterfaceResults(SemaRef.getLangOpts(), Results, true);
+ AddStorageSpecifiers(CCC, SemaRef.getLangOpts(), Results);
+ AddFunctionSpecifiers(CCC, SemaRef.getLangOpts(), Results);
+ break;
+
+ case Sema::PCC_ObjCImplementation:
+ AddObjCImplementationResults(SemaRef.getLangOpts(), Results, true);
+ AddStorageSpecifiers(CCC, SemaRef.getLangOpts(), Results);
+ AddFunctionSpecifiers(CCC, SemaRef.getLangOpts(), Results);
+ break;
+
+ case Sema::PCC_ObjCInstanceVariableList:
+ AddObjCVisibilityResults(SemaRef.getLangOpts(), Results, true);
+ break;
+
+ case Sema::PCC_RecoveryInFunction:
+ case Sema::PCC_Statement: {
+ AddTypedefResult(Results);
+
+ if (SemaRef.getLangOpts().CPlusPlus && Results.includeCodePatterns() &&
+ SemaRef.getLangOpts().CXXExceptions) {
+ Builder.AddTypedTextChunk("try");
+ Builder.AddChunk(CodeCompletionString::CK_LeftBrace);
+ Builder.AddPlaceholderChunk("statements");
+ Builder.AddChunk(CodeCompletionString::CK_VerticalSpace);
+ Builder.AddChunk(CodeCompletionString::CK_RightBrace);
+ Builder.AddTextChunk("catch");
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddPlaceholderChunk("declaration");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Builder.AddChunk(CodeCompletionString::CK_LeftBrace);
+ Builder.AddPlaceholderChunk("statements");
+ Builder.AddChunk(CodeCompletionString::CK_VerticalSpace);
+ Builder.AddChunk(CodeCompletionString::CK_RightBrace);
+ Results.AddResult(Result(Builder.TakeString()));
+ }
+ if (SemaRef.getLangOpts().ObjC1)
+ AddObjCStatementResults(Results, true);
+
+ if (Results.includeCodePatterns()) {
+ // if (condition) { statements }
+ Builder.AddTypedTextChunk("if");
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ if (SemaRef.getLangOpts().CPlusPlus)
+ Builder.AddPlaceholderChunk("condition");
+ else
+ Builder.AddPlaceholderChunk("expression");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Builder.AddChunk(CodeCompletionString::CK_LeftBrace);
+ Builder.AddPlaceholderChunk("statements");
+ Builder.AddChunk(CodeCompletionString::CK_VerticalSpace);
+ Builder.AddChunk(CodeCompletionString::CK_RightBrace);
+ Results.AddResult(Result(Builder.TakeString()));
+
+ // switch (condition) { }
+ Builder.AddTypedTextChunk("switch");
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ if (SemaRef.getLangOpts().CPlusPlus)
+ Builder.AddPlaceholderChunk("condition");
+ else
+ Builder.AddPlaceholderChunk("expression");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Builder.AddChunk(CodeCompletionString::CK_LeftBrace);
+ Builder.AddChunk(CodeCompletionString::CK_VerticalSpace);
+ Builder.AddChunk(CodeCompletionString::CK_RightBrace);
+ Results.AddResult(Result(Builder.TakeString()));
+ }
+
+ // Switch-specific statements.
+ if (!SemaRef.getCurFunction()->SwitchStack.empty()) {
+ // case expression:
+ Builder.AddTypedTextChunk("case");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("expression");
+ Builder.AddChunk(CodeCompletionString::CK_Colon);
+ Results.AddResult(Result(Builder.TakeString()));
+
+ // default:
+ Builder.AddTypedTextChunk("default");
+ Builder.AddChunk(CodeCompletionString::CK_Colon);
+ Results.AddResult(Result(Builder.TakeString()));
+ }
+
+ if (Results.includeCodePatterns()) {
+ /// while (condition) { statements }
+ Builder.AddTypedTextChunk("while");
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ if (SemaRef.getLangOpts().CPlusPlus)
+ Builder.AddPlaceholderChunk("condition");
+ else
+ Builder.AddPlaceholderChunk("expression");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Builder.AddChunk(CodeCompletionString::CK_LeftBrace);
+ Builder.AddPlaceholderChunk("statements");
+ Builder.AddChunk(CodeCompletionString::CK_VerticalSpace);
+ Builder.AddChunk(CodeCompletionString::CK_RightBrace);
+ Results.AddResult(Result(Builder.TakeString()));
+
+ // do { statements } while ( expression );
+ Builder.AddTypedTextChunk("do");
+ Builder.AddChunk(CodeCompletionString::CK_LeftBrace);
+ Builder.AddPlaceholderChunk("statements");
+ Builder.AddChunk(CodeCompletionString::CK_VerticalSpace);
+ Builder.AddChunk(CodeCompletionString::CK_RightBrace);
+ Builder.AddTextChunk("while");
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddPlaceholderChunk("expression");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Results.AddResult(Result(Builder.TakeString()));
+
+ // for ( for-init-statement ; condition ; expression ) { statements }
+ Builder.AddTypedTextChunk("for");
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ if (SemaRef.getLangOpts().CPlusPlus || SemaRef.getLangOpts().C99)
+ Builder.AddPlaceholderChunk("init-statement");
+ else
+ Builder.AddPlaceholderChunk("init-expression");
+ Builder.AddChunk(CodeCompletionString::CK_SemiColon);
+ Builder.AddPlaceholderChunk("condition");
+ Builder.AddChunk(CodeCompletionString::CK_SemiColon);
+ Builder.AddPlaceholderChunk("inc-expression");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Builder.AddChunk(CodeCompletionString::CK_LeftBrace);
+ Builder.AddChunk(CodeCompletionString::CK_VerticalSpace);
+ Builder.AddPlaceholderChunk("statements");
+ Builder.AddChunk(CodeCompletionString::CK_VerticalSpace);
+ Builder.AddChunk(CodeCompletionString::CK_RightBrace);
+ Results.AddResult(Result(Builder.TakeString()));
+ }
+
+ if (S->getContinueParent()) {
+ // continue ;
+ Builder.AddTypedTextChunk("continue");
+ Results.AddResult(Result(Builder.TakeString()));
+ }
+
+ if (S->getBreakParent()) {
+ // break ;
+ Builder.AddTypedTextChunk("break");
+ Results.AddResult(Result(Builder.TakeString()));
+ }
+
+ // "return expression ;" or "return ;", depending on whether we
+ // know the function is void or not.
+ bool isVoid = false;
+ if (FunctionDecl *Function = dyn_cast<FunctionDecl>(SemaRef.CurContext))
+ isVoid = Function->getReturnType()->isVoidType();
+ else if (ObjCMethodDecl *Method
+ = dyn_cast<ObjCMethodDecl>(SemaRef.CurContext))
+ isVoid = Method->getReturnType()->isVoidType();
+ else if (SemaRef.getCurBlock() &&
+ !SemaRef.getCurBlock()->ReturnType.isNull())
+ isVoid = SemaRef.getCurBlock()->ReturnType->isVoidType();
+ Builder.AddTypedTextChunk("return");
+ if (!isVoid) {
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("expression");
+ }
+ Results.AddResult(Result(Builder.TakeString()));
+
+ // goto identifier ;
+ Builder.AddTypedTextChunk("goto");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("label");
+ Results.AddResult(Result(Builder.TakeString()));
+
+ // Using directives
+ Builder.AddTypedTextChunk("using");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddTextChunk("namespace");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("identifier");
+ Results.AddResult(Result(Builder.TakeString()));
+ }
+
+ // Fall through (for statement expressions).
+ case Sema::PCC_ForInit:
+ case Sema::PCC_Condition:
+ AddStorageSpecifiers(CCC, SemaRef.getLangOpts(), Results);
+ // Fall through: conditions and statements can have expressions.
+
+ case Sema::PCC_ParenthesizedExpression:
+ if (SemaRef.getLangOpts().ObjCAutoRefCount &&
+ CCC == Sema::PCC_ParenthesizedExpression) {
+ // (__bridge <type>)<expression>
+ Builder.AddTypedTextChunk("__bridge");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("type");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Builder.AddPlaceholderChunk("expression");
+ Results.AddResult(Result(Builder.TakeString()));
+
+ // (__bridge_transfer <Objective-C type>)<expression>
+ Builder.AddTypedTextChunk("__bridge_transfer");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("Objective-C type");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Builder.AddPlaceholderChunk("expression");
+ Results.AddResult(Result(Builder.TakeString()));
+
+ // (__bridge_retained <CF type>)<expression>
+ Builder.AddTypedTextChunk("__bridge_retained");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("CF type");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Builder.AddPlaceholderChunk("expression");
+ Results.AddResult(Result(Builder.TakeString()));
+ }
+ // Fall through
+
+ case Sema::PCC_Expression: {
+ if (SemaRef.getLangOpts().CPlusPlus) {
+ // 'this', if we're in a non-static member function.
+ addThisCompletion(SemaRef, Results);
+
+ // true
+ Builder.AddResultTypeChunk("bool");
+ Builder.AddTypedTextChunk("true");
+ Results.AddResult(Result(Builder.TakeString()));
+
+ // false
+ Builder.AddResultTypeChunk("bool");
+ Builder.AddTypedTextChunk("false");
+ Results.AddResult(Result(Builder.TakeString()));
+
+ if (SemaRef.getLangOpts().RTTI) {
+ // dynamic_cast < type-id > ( expression )
+ Builder.AddTypedTextChunk("dynamic_cast");
+ Builder.AddChunk(CodeCompletionString::CK_LeftAngle);
+ Builder.AddPlaceholderChunk("type");
+ Builder.AddChunk(CodeCompletionString::CK_RightAngle);
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddPlaceholderChunk("expression");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Results.AddResult(Result(Builder.TakeString()));
+ }
+
+ // static_cast < type-id > ( expression )
+ Builder.AddTypedTextChunk("static_cast");
+ Builder.AddChunk(CodeCompletionString::CK_LeftAngle);
+ Builder.AddPlaceholderChunk("type");
+ Builder.AddChunk(CodeCompletionString::CK_RightAngle);
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddPlaceholderChunk("expression");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Results.AddResult(Result(Builder.TakeString()));
+
+ // reinterpret_cast < type-id > ( expression )
+ Builder.AddTypedTextChunk("reinterpret_cast");
+ Builder.AddChunk(CodeCompletionString::CK_LeftAngle);
+ Builder.AddPlaceholderChunk("type");
+ Builder.AddChunk(CodeCompletionString::CK_RightAngle);
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddPlaceholderChunk("expression");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Results.AddResult(Result(Builder.TakeString()));
+
+ // const_cast < type-id > ( expression )
+ Builder.AddTypedTextChunk("const_cast");
+ Builder.AddChunk(CodeCompletionString::CK_LeftAngle);
+ Builder.AddPlaceholderChunk("type");
+ Builder.AddChunk(CodeCompletionString::CK_RightAngle);
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddPlaceholderChunk("expression");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Results.AddResult(Result(Builder.TakeString()));
+
+ if (SemaRef.getLangOpts().RTTI) {
+ // typeid ( expression-or-type )
+ Builder.AddResultTypeChunk("std::type_info");
+ Builder.AddTypedTextChunk("typeid");
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddPlaceholderChunk("expression-or-type");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Results.AddResult(Result(Builder.TakeString()));
+ }
+
+ // new T ( ... )
+ Builder.AddTypedTextChunk("new");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("type");
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddPlaceholderChunk("expressions");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Results.AddResult(Result(Builder.TakeString()));
+
+ // new T [ ] ( ... )
+ Builder.AddTypedTextChunk("new");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("type");
+ Builder.AddChunk(CodeCompletionString::CK_LeftBracket);
+ Builder.AddPlaceholderChunk("size");
+ Builder.AddChunk(CodeCompletionString::CK_RightBracket);
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddPlaceholderChunk("expressions");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Results.AddResult(Result(Builder.TakeString()));
+
+ // delete expression
+ Builder.AddResultTypeChunk("void");
+ Builder.AddTypedTextChunk("delete");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("expression");
+ Results.AddResult(Result(Builder.TakeString()));
+
+ // delete [] expression
+ Builder.AddResultTypeChunk("void");
+ Builder.AddTypedTextChunk("delete");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddChunk(CodeCompletionString::CK_LeftBracket);
+ Builder.AddChunk(CodeCompletionString::CK_RightBracket);
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("expression");
+ Results.AddResult(Result(Builder.TakeString()));
+
+ if (SemaRef.getLangOpts().CXXExceptions) {
+ // throw expression
+ Builder.AddResultTypeChunk("void");
+ Builder.AddTypedTextChunk("throw");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("expression");
+ Results.AddResult(Result(Builder.TakeString()));
+ }
+
+ // FIXME: Rethrow?
+
+ if (SemaRef.getLangOpts().CPlusPlus11) {
+ // nullptr
+ Builder.AddResultTypeChunk("std::nullptr_t");
+ Builder.AddTypedTextChunk("nullptr");
+ Results.AddResult(Result(Builder.TakeString()));
+
+ // alignof
+ Builder.AddResultTypeChunk("size_t");
+ Builder.AddTypedTextChunk("alignof");
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddPlaceholderChunk("type");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Results.AddResult(Result(Builder.TakeString()));
+
+ // noexcept
+ Builder.AddResultTypeChunk("bool");
+ Builder.AddTypedTextChunk("noexcept");
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddPlaceholderChunk("expression");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Results.AddResult(Result(Builder.TakeString()));
+
+ // sizeof... expression
+ Builder.AddResultTypeChunk("size_t");
+ Builder.AddTypedTextChunk("sizeof...");
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddPlaceholderChunk("parameter-pack");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Results.AddResult(Result(Builder.TakeString()));
+ }
+ }
+
+ if (SemaRef.getLangOpts().ObjC1) {
+ // Add "super", if we're in an Objective-C class with a superclass.
+ if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
+ // The interface can be NULL.
+ if (ObjCInterfaceDecl *ID = Method->getClassInterface())
+ if (ID->getSuperClass()) {
+ std::string SuperType;
+ SuperType = ID->getSuperClass()->getNameAsString();
+ if (Method->isInstanceMethod())
+ SuperType += " *";
+
+ Builder.AddResultTypeChunk(Allocator.CopyString(SuperType));
+ Builder.AddTypedTextChunk("super");
+ Results.AddResult(Result(Builder.TakeString()));
+ }
+ }
+
+ AddObjCExpressionResults(Results, true);
+ }
+
+ if (SemaRef.getLangOpts().C11) {
+ // _Alignof
+ Builder.AddResultTypeChunk("size_t");
+ if (SemaRef.PP.isMacroDefined("alignof"))
+ Builder.AddTypedTextChunk("alignof");
+ else
+ Builder.AddTypedTextChunk("_Alignof");
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddPlaceholderChunk("type");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Results.AddResult(Result(Builder.TakeString()));
+ }
+
+ // sizeof expression
+ Builder.AddResultTypeChunk("size_t");
+ Builder.AddTypedTextChunk("sizeof");
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddPlaceholderChunk("expression-or-type");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Results.AddResult(Result(Builder.TakeString()));
+ break;
+ }
+
+ case Sema::PCC_Type:
+ case Sema::PCC_LocalDeclarationSpecifiers:
+ break;
+ }
+
+ if (WantTypesInContext(CCC, SemaRef.getLangOpts()))
+ AddTypeSpecifierResults(SemaRef.getLangOpts(), Results);
+
+ if (SemaRef.getLangOpts().CPlusPlus && CCC != Sema::PCC_Type)
+ Results.AddResult(Result("operator"));
+}
+
+/// \brief If the given declaration has an associated type, add it as a result
+/// type chunk.
+static void AddResultTypeChunk(ASTContext &Context,
+ const PrintingPolicy &Policy,
+ const NamedDecl *ND,
+ CodeCompletionBuilder &Result) {
+ if (!ND)
+ return;
+
+ // Skip constructors and conversion functions, which have their return types
+ // built into their names.
+ if (isa<CXXConstructorDecl>(ND) || isa<CXXConversionDecl>(ND))
+ return;
+
+ // Determine the type of the declaration (if it has a type).
+ QualType T;
+ if (const FunctionDecl *Function = ND->getAsFunction())
+ T = Function->getReturnType();
+ else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(ND))
+ T = Method->getReturnType();
+ else if (const EnumConstantDecl *Enumerator = dyn_cast<EnumConstantDecl>(ND))
+ T = Context.getTypeDeclType(cast<TypeDecl>(Enumerator->getDeclContext()));
+ else if (isa<UnresolvedUsingValueDecl>(ND)) {
+ /* Do nothing: ignore unresolved using declarations*/
+ } else if (const ValueDecl *Value = dyn_cast<ValueDecl>(ND)) {
+ T = Value->getType();
+ } else if (const ObjCPropertyDecl *Property = dyn_cast<ObjCPropertyDecl>(ND))
+ T = Property->getType();
+
+ if (T.isNull() || Context.hasSameType(T, Context.DependentTy))
+ return;
+
+ Result.AddResultTypeChunk(GetCompletionTypeString(T, Context, Policy,
+ Result.getAllocator()));
+}
+
+static void MaybeAddSentinel(Preprocessor &PP,
+ const NamedDecl *FunctionOrMethod,
+ CodeCompletionBuilder &Result) {
+ if (SentinelAttr *Sentinel = FunctionOrMethod->getAttr<SentinelAttr>())
+ if (Sentinel->getSentinel() == 0) {
+ if (PP.getLangOpts().ObjC1 && PP.isMacroDefined("nil"))
+ Result.AddTextChunk(", nil");
+ else if (PP.isMacroDefined("NULL"))
+ Result.AddTextChunk(", NULL");
+ else
+ Result.AddTextChunk(", (void*)0");
+ }
+}
+
+static std::string formatObjCParamQualifiers(unsigned ObjCQuals) {
+ std::string Result;
+ if (ObjCQuals & Decl::OBJC_TQ_In)
+ Result += "in ";
+ else if (ObjCQuals & Decl::OBJC_TQ_Inout)
+ Result += "inout ";
+ else if (ObjCQuals & Decl::OBJC_TQ_Out)
+ Result += "out ";
+ if (ObjCQuals & Decl::OBJC_TQ_Bycopy)
+ Result += "bycopy ";
+ else if (ObjCQuals & Decl::OBJC_TQ_Byref)
+ Result += "byref ";
+ if (ObjCQuals & Decl::OBJC_TQ_Oneway)
+ Result += "oneway ";
+ return Result;
+}
+
+static std::string FormatFunctionParameter(const PrintingPolicy &Policy,
+ const ParmVarDecl *Param,
+ bool SuppressName = false,
+ bool SuppressBlock = false) {
+ bool ObjCMethodParam = isa<ObjCMethodDecl>(Param->getDeclContext());
+ if (Param->getType()->isDependentType() ||
+ !Param->getType()->isBlockPointerType()) {
+ // The argument for a dependent or non-block parameter is a placeholder
+ // containing that parameter's type.
+ std::string Result;
+
+ if (Param->getIdentifier() && !ObjCMethodParam && !SuppressName)
+ Result = Param->getIdentifier()->getName();
+
+ Param->getType().getAsStringInternal(Result, Policy);
+
+ if (ObjCMethodParam) {
+ Result = "(" + formatObjCParamQualifiers(Param->getObjCDeclQualifier())
+ + Result + ")";
+ if (Param->getIdentifier() && !SuppressName)
+ Result += Param->getIdentifier()->getName();
+ }
+ return Result;
+ }
+
+ // The argument for a block pointer parameter is a block literal with
+ // the appropriate type.
+ FunctionTypeLoc Block;
+ FunctionProtoTypeLoc BlockProto;
+ TypeLoc TL;
+ if (TypeSourceInfo *TSInfo = Param->getTypeSourceInfo()) {
+ TL = TSInfo->getTypeLoc().getUnqualifiedLoc();
+ while (true) {
+ // Look through typedefs.
+ if (!SuppressBlock) {
+ if (TypedefTypeLoc TypedefTL = TL.getAs<TypedefTypeLoc>()) {
+ if (TypeSourceInfo *InnerTSInfo =
+ TypedefTL.getTypedefNameDecl()->getTypeSourceInfo()) {
+ TL = InnerTSInfo->getTypeLoc().getUnqualifiedLoc();
+ continue;
+ }
+ }
+
+ // Look through qualified types
+ if (QualifiedTypeLoc QualifiedTL = TL.getAs<QualifiedTypeLoc>()) {
+ TL = QualifiedTL.getUnqualifiedLoc();
+ continue;
+ }
+ }
+
+ // Try to get the function prototype behind the block pointer type,
+ // then we're done.
+ if (BlockPointerTypeLoc BlockPtr = TL.getAs<BlockPointerTypeLoc>()) {
+ TL = BlockPtr.getPointeeLoc().IgnoreParens();
+ Block = TL.getAs<FunctionTypeLoc>();
+ BlockProto = TL.getAs<FunctionProtoTypeLoc>();
+ }
+ break;
+ }
+ }
+
+ if (!Block) {
+ // We were unable to find a FunctionProtoTypeLoc with parameter names
+ // for the block; just use the parameter type as a placeholder.
+ std::string Result;
+ if (!ObjCMethodParam && Param->getIdentifier())
+ Result = Param->getIdentifier()->getName();
+
+ Param->getType().getUnqualifiedType().getAsStringInternal(Result, Policy);
+
+ if (ObjCMethodParam) {
+ Result = "(" + formatObjCParamQualifiers(Param->getObjCDeclQualifier())
+ + Result + ")";
+ if (Param->getIdentifier())
+ Result += Param->getIdentifier()->getName();
+ }
+
+ return Result;
+ }
+
+ // We have the function prototype behind the block pointer type, as it was
+ // written in the source.
+ std::string Result;
+ QualType ResultType = Block.getTypePtr()->getReturnType();
+ if (!ResultType->isVoidType() || SuppressBlock)
+ ResultType.getAsStringInternal(Result, Policy);
+
+ // Format the parameter list.
+ std::string Params;
+ if (!BlockProto || Block.getNumParams() == 0) {
+ if (BlockProto && BlockProto.getTypePtr()->isVariadic())
+ Params = "(...)";
+ else
+ Params = "(void)";
+ } else {
+ Params += "(";
+ for (unsigned I = 0, N = Block.getNumParams(); I != N; ++I) {
+ if (I)
+ Params += ", ";
+ Params += FormatFunctionParameter(Policy, Block.getParam(I),
+ /*SuppressName=*/false,
+ /*SuppressBlock=*/true);
+
+ if (I == N - 1 && BlockProto.getTypePtr()->isVariadic())
+ Params += ", ...";
+ }
+ Params += ")";
+ }
+
+ if (SuppressBlock) {
+ // Format as a parameter.
+ Result = Result + " (^";
+ if (Param->getIdentifier())
+ Result += Param->getIdentifier()->getName();
+ Result += ")";
+ Result += Params;
+ } else {
+ // Format as a block literal argument.
+ Result = '^' + Result;
+ Result += Params;
+
+ if (Param->getIdentifier())
+ Result += Param->getIdentifier()->getName();
+ }
+
+ return Result;
+}
+
+/// \brief Add function parameter chunks to the given code completion string.
+static void AddFunctionParameterChunks(Preprocessor &PP,
+ const PrintingPolicy &Policy,
+ const FunctionDecl *Function,
+ CodeCompletionBuilder &Result,
+ unsigned Start = 0,
+ bool InOptional = false) {
+ bool FirstParameter = true;
+
+ for (unsigned P = Start, N = Function->getNumParams(); P != N; ++P) {
+ const ParmVarDecl *Param = Function->getParamDecl(P);
+
+ if (Param->hasDefaultArg() && !InOptional) {
+ // When we see an optional default argument, put that argument and
+ // the remaining default arguments into a new, optional string.
+ CodeCompletionBuilder Opt(Result.getAllocator(),
+ Result.getCodeCompletionTUInfo());
+ if (!FirstParameter)
+ Opt.AddChunk(CodeCompletionString::CK_Comma);
+ AddFunctionParameterChunks(PP, Policy, Function, Opt, P, true);
+ Result.AddOptionalChunk(Opt.TakeString());
+ break;
+ }
+
+ if (FirstParameter)
+ FirstParameter = false;
+ else
+ Result.AddChunk(CodeCompletionString::CK_Comma);
+
+ InOptional = false;
+
+ // Format the placeholder string.
+ std::string PlaceholderStr = FormatFunctionParameter(Policy, Param);
+
+ if (Function->isVariadic() && P == N - 1)
+ PlaceholderStr += ", ...";
+
+ // Add the placeholder string.
+ Result.AddPlaceholderChunk(
+ Result.getAllocator().CopyString(PlaceholderStr));
+ }
+
+ if (const FunctionProtoType *Proto
+ = Function->getType()->getAs<FunctionProtoType>())
+ if (Proto->isVariadic()) {
+ if (Proto->getNumParams() == 0)
+ Result.AddPlaceholderChunk("...");
+
+ MaybeAddSentinel(PP, Function, Result);
+ }
+}
+
+/// \brief Add template parameter chunks to the given code completion string.
+static void AddTemplateParameterChunks(ASTContext &Context,
+ const PrintingPolicy &Policy,
+ const TemplateDecl *Template,
+ CodeCompletionBuilder &Result,
+ unsigned MaxParameters = 0,
+ unsigned Start = 0,
+ bool InDefaultArg = false) {
+ bool FirstParameter = true;
+
+ // Prefer to take the template parameter names from the first declaration of
+ // the template.
+ Template = cast<TemplateDecl>(Template->getCanonicalDecl());
+
+ TemplateParameterList *Params = Template->getTemplateParameters();
+ TemplateParameterList::iterator PEnd = Params->end();
+ if (MaxParameters)
+ PEnd = Params->begin() + MaxParameters;
+ for (TemplateParameterList::iterator P = Params->begin() + Start;
+ P != PEnd; ++P) {
+ bool HasDefaultArg = false;
+ std::string PlaceholderStr;
+ if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
+ if (TTP->wasDeclaredWithTypename())
+ PlaceholderStr = "typename";
+ else
+ PlaceholderStr = "class";
+
+ if (TTP->getIdentifier()) {
+ PlaceholderStr += ' ';
+ PlaceholderStr += TTP->getIdentifier()->getName();
+ }
+
+ HasDefaultArg = TTP->hasDefaultArgument();
+ } else if (NonTypeTemplateParmDecl *NTTP
+ = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
+ if (NTTP->getIdentifier())
+ PlaceholderStr = NTTP->getIdentifier()->getName();
+ NTTP->getType().getAsStringInternal(PlaceholderStr, Policy);
+ HasDefaultArg = NTTP->hasDefaultArgument();
+ } else {
+ assert(isa<TemplateTemplateParmDecl>(*P));
+ TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
+
+ // Since putting the template argument list into the placeholder would
+ // be very, very long, we just use an abbreviation.
+ PlaceholderStr = "template<...> class";
+ if (TTP->getIdentifier()) {
+ PlaceholderStr += ' ';
+ PlaceholderStr += TTP->getIdentifier()->getName();
+ }
+
+ HasDefaultArg = TTP->hasDefaultArgument();
+ }
+
+ if (HasDefaultArg && !InDefaultArg) {
+ // When we see an optional default argument, put that argument and
+ // the remaining default arguments into a new, optional string.
+ CodeCompletionBuilder Opt(Result.getAllocator(),
+ Result.getCodeCompletionTUInfo());
+ if (!FirstParameter)
+ Opt.AddChunk(CodeCompletionString::CK_Comma);
+ AddTemplateParameterChunks(Context, Policy, Template, Opt, MaxParameters,
+ P - Params->begin(), true);
+ Result.AddOptionalChunk(Opt.TakeString());
+ break;
+ }
+
+ InDefaultArg = false;
+
+ if (FirstParameter)
+ FirstParameter = false;
+ else
+ Result.AddChunk(CodeCompletionString::CK_Comma);
+
+ // Add the placeholder string.
+ Result.AddPlaceholderChunk(
+ Result.getAllocator().CopyString(PlaceholderStr));
+ }
+}
+
+/// \brief Add a qualifier to the given code-completion string, if the
+/// provided nested-name-specifier is non-NULL.
+static void
+AddQualifierToCompletionString(CodeCompletionBuilder &Result,
+ NestedNameSpecifier *Qualifier,
+ bool QualifierIsInformative,
+ ASTContext &Context,
+ const PrintingPolicy &Policy) {
+ if (!Qualifier)
+ return;
+
+ std::string PrintedNNS;
+ {
+ llvm::raw_string_ostream OS(PrintedNNS);
+ Qualifier->print(OS, Policy);
+ }
+ if (QualifierIsInformative)
+ Result.AddInformativeChunk(Result.getAllocator().CopyString(PrintedNNS));
+ else
+ Result.AddTextChunk(Result.getAllocator().CopyString(PrintedNNS));
+}
+
+static void
+AddFunctionTypeQualsToCompletionString(CodeCompletionBuilder &Result,
+ const FunctionDecl *Function) {
+ const FunctionProtoType *Proto
+ = Function->getType()->getAs<FunctionProtoType>();
+ if (!Proto || !Proto->getTypeQuals())
+ return;
+
+ // FIXME: Add ref-qualifier!
+
+ // Handle single qualifiers without copying
+ if (Proto->getTypeQuals() == Qualifiers::Const) {
+ Result.AddInformativeChunk(" const");
+ return;
+ }
+
+ if (Proto->getTypeQuals() == Qualifiers::Volatile) {
+ Result.AddInformativeChunk(" volatile");
+ return;
+ }
+
+ if (Proto->getTypeQuals() == Qualifiers::Restrict) {
+ Result.AddInformativeChunk(" restrict");
+ return;
+ }
+
+ // Handle multiple qualifiers.
+ std::string QualsStr;
+ if (Proto->isConst())
+ QualsStr += " const";
+ if (Proto->isVolatile())
+ QualsStr += " volatile";
+ if (Proto->isRestrict())
+ QualsStr += " restrict";
+ Result.AddInformativeChunk(Result.getAllocator().CopyString(QualsStr));
+}
+
+/// \brief Add the name of the given declaration
+static void AddTypedNameChunk(ASTContext &Context, const PrintingPolicy &Policy,
+ const NamedDecl *ND,
+ CodeCompletionBuilder &Result) {
+ DeclarationName Name = ND->getDeclName();
+ if (!Name)
+ return;
+
+ switch (Name.getNameKind()) {
+ case DeclarationName::CXXOperatorName: {
+ const char *OperatorName = nullptr;
+ switch (Name.getCXXOverloadedOperator()) {
+ case OO_None:
+ case OO_Conditional:
+ case NUM_OVERLOADED_OPERATORS:
+ OperatorName = "operator";
+ break;
+
+#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
+ case OO_##Name: OperatorName = "operator" Spelling; break;
+#define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
+#include "clang/Basic/OperatorKinds.def"
+
+ case OO_New: OperatorName = "operator new"; break;
+ case OO_Delete: OperatorName = "operator delete"; break;
+ case OO_Array_New: OperatorName = "operator new[]"; break;
+ case OO_Array_Delete: OperatorName = "operator delete[]"; break;
+ case OO_Call: OperatorName = "operator()"; break;
+ case OO_Subscript: OperatorName = "operator[]"; break;
+ }
+ Result.AddTypedTextChunk(OperatorName);
+ break;
+ }
+
+ case DeclarationName::Identifier:
+ case DeclarationName::CXXConversionFunctionName:
+ case DeclarationName::CXXDestructorName:
+ case DeclarationName::CXXLiteralOperatorName:
+ Result.AddTypedTextChunk(
+ Result.getAllocator().CopyString(ND->getNameAsString()));
+ break;
+
+ case DeclarationName::CXXUsingDirective:
+ case DeclarationName::ObjCZeroArgSelector:
+ case DeclarationName::ObjCOneArgSelector:
+ case DeclarationName::ObjCMultiArgSelector:
+ break;
+
+ case DeclarationName::CXXConstructorName: {
+ CXXRecordDecl *Record = nullptr;
+ QualType Ty = Name.getCXXNameType();
+ if (const RecordType *RecordTy = Ty->getAs<RecordType>())
+ Record = cast<CXXRecordDecl>(RecordTy->getDecl());
+ else if (const InjectedClassNameType *InjectedTy
+ = Ty->getAs<InjectedClassNameType>())
+ Record = InjectedTy->getDecl();
+ else {
+ Result.AddTypedTextChunk(
+ Result.getAllocator().CopyString(ND->getNameAsString()));
+ break;
+ }
+
+ Result.AddTypedTextChunk(
+ Result.getAllocator().CopyString(Record->getNameAsString()));
+ if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate()) {
+ Result.AddChunk(CodeCompletionString::CK_LeftAngle);
+ AddTemplateParameterChunks(Context, Policy, Template, Result);
+ Result.AddChunk(CodeCompletionString::CK_RightAngle);
+ }
+ break;
+ }
+ }
+}
+
+CodeCompletionString *CodeCompletionResult::CreateCodeCompletionString(Sema &S,
+ CodeCompletionAllocator &Allocator,
+ CodeCompletionTUInfo &CCTUInfo,
+ bool IncludeBriefComments) {
+ return CreateCodeCompletionString(S.Context, S.PP, Allocator, CCTUInfo,
+ IncludeBriefComments);
+}
+
+/// \brief If possible, create a new code completion string for the given
+/// result.
+///
+/// \returns Either a new, heap-allocated code completion string describing
+/// how to use this result, or NULL to indicate that the string or name of the
+/// result is all that is needed.
+CodeCompletionString *
+CodeCompletionResult::CreateCodeCompletionString(ASTContext &Ctx,
+ Preprocessor &PP,
+ CodeCompletionAllocator &Allocator,
+ CodeCompletionTUInfo &CCTUInfo,
+ bool IncludeBriefComments) {
+ CodeCompletionBuilder Result(Allocator, CCTUInfo, Priority, Availability);
+
+ PrintingPolicy Policy = getCompletionPrintingPolicy(Ctx, PP);
+ if (Kind == RK_Pattern) {
+ Pattern->Priority = Priority;
+ Pattern->Availability = Availability;
+
+ if (Declaration) {
+ Result.addParentContext(Declaration->getDeclContext());
+ Pattern->ParentName = Result.getParentName();
+ // Provide code completion comment for self.GetterName where
+ // GetterName is the getter method for a property with name
+ // different from the property name (declared via a property
+ // getter attribute.
+ const NamedDecl *ND = Declaration;
+ if (const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(ND))
+ if (M->isPropertyAccessor())
+ if (const ObjCPropertyDecl *PDecl = M->findPropertyDecl())
+ if (PDecl->getGetterName() == M->getSelector() &&
+ PDecl->getIdentifier() != M->getIdentifier()) {
+ if (const RawComment *RC =
+ Ctx.getRawCommentForAnyRedecl(M)) {
+ Result.addBriefComment(RC->getBriefText(Ctx));
+ Pattern->BriefComment = Result.getBriefComment();
+ }
+ else if (const RawComment *RC =
+ Ctx.getRawCommentForAnyRedecl(PDecl)) {
+ Result.addBriefComment(RC->getBriefText(Ctx));
+ Pattern->BriefComment = Result.getBriefComment();
+ }
+ }
+ }
+
+ return Pattern;
+ }
+
+ if (Kind == RK_Keyword) {
+ Result.AddTypedTextChunk(Keyword);
+ return Result.TakeString();
+ }
+
+ if (Kind == RK_Macro) {
+ const MacroInfo *MI = PP.getMacroInfo(Macro);
+ Result.AddTypedTextChunk(
+ Result.getAllocator().CopyString(Macro->getName()));
+
+ if (!MI || !MI->isFunctionLike())
+ return Result.TakeString();
+
+ // Format a function-like macro with placeholders for the arguments.
+ Result.AddChunk(CodeCompletionString::CK_LeftParen);
+ MacroInfo::arg_iterator A = MI->arg_begin(), AEnd = MI->arg_end();
+
+ // C99 variadic macros add __VA_ARGS__ at the end. Skip it.
+ if (MI->isC99Varargs()) {
+ --AEnd;
+
+ if (A == AEnd) {
+ Result.AddPlaceholderChunk("...");
+ }
+ }
+
+ for (MacroInfo::arg_iterator A = MI->arg_begin(); A != AEnd; ++A) {
+ if (A != MI->arg_begin())
+ Result.AddChunk(CodeCompletionString::CK_Comma);
+
+ if (MI->isVariadic() && (A+1) == AEnd) {
+ SmallString<32> Arg = (*A)->getName();
+ if (MI->isC99Varargs())
+ Arg += ", ...";
+ else
+ Arg += "...";
+ Result.AddPlaceholderChunk(Result.getAllocator().CopyString(Arg));
+ break;
+ }
+
+ // Non-variadic macros are simple.
+ Result.AddPlaceholderChunk(
+ Result.getAllocator().CopyString((*A)->getName()));
+ }
+ Result.AddChunk(CodeCompletionString::CK_RightParen);
+ return Result.TakeString();
+ }
+
+ assert(Kind == RK_Declaration && "Missed a result kind?");
+ const NamedDecl *ND = Declaration;
+ Result.addParentContext(ND->getDeclContext());
+
+ if (IncludeBriefComments) {
+ // Add documentation comment, if it exists.
+ if (const RawComment *RC = Ctx.getRawCommentForAnyRedecl(ND)) {
+ Result.addBriefComment(RC->getBriefText(Ctx));
+ }
+ else if (const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(ND))
+ if (OMD->isPropertyAccessor())
+ if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
+ if (const RawComment *RC = Ctx.getRawCommentForAnyRedecl(PDecl))
+ Result.addBriefComment(RC->getBriefText(Ctx));
+ }
+
+ if (StartsNestedNameSpecifier) {
+ Result.AddTypedTextChunk(
+ Result.getAllocator().CopyString(ND->getNameAsString()));
+ Result.AddTextChunk("::");
+ return Result.TakeString();
+ }
+
+ for (const auto *I : ND->specific_attrs<AnnotateAttr>())
+ Result.AddAnnotation(Result.getAllocator().CopyString(I->getAnnotation()));
+
+ AddResultTypeChunk(Ctx, Policy, ND, Result);
+
+ if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(ND)) {
+ AddQualifierToCompletionString(Result, Qualifier, QualifierIsInformative,
+ Ctx, Policy);
+ AddTypedNameChunk(Ctx, Policy, ND, Result);
+ Result.AddChunk(CodeCompletionString::CK_LeftParen);
+ AddFunctionParameterChunks(PP, Policy, Function, Result);
+ Result.AddChunk(CodeCompletionString::CK_RightParen);
+ AddFunctionTypeQualsToCompletionString(Result, Function);
+ return Result.TakeString();
+ }
+
+ if (const FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(ND)) {
+ AddQualifierToCompletionString(Result, Qualifier, QualifierIsInformative,
+ Ctx, Policy);
+ FunctionDecl *Function = FunTmpl->getTemplatedDecl();
+ AddTypedNameChunk(Ctx, Policy, Function, Result);
+
+ // Figure out which template parameters are deduced (or have default
+ // arguments).
+ llvm::SmallBitVector Deduced;
+ Sema::MarkDeducedTemplateParameters(Ctx, FunTmpl, Deduced);
+ unsigned LastDeducibleArgument;
+ for (LastDeducibleArgument = Deduced.size(); LastDeducibleArgument > 0;
+ --LastDeducibleArgument) {
+ if (!Deduced[LastDeducibleArgument - 1]) {
+ // C++0x: Figure out if the template argument has a default. If so,
+ // the user doesn't need to type this argument.
+ // FIXME: We need to abstract template parameters better!
+ bool HasDefaultArg = false;
+ NamedDecl *Param = FunTmpl->getTemplateParameters()->getParam(
+ LastDeducibleArgument - 1);
+ if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
+ HasDefaultArg = TTP->hasDefaultArgument();
+ else if (NonTypeTemplateParmDecl *NTTP
+ = dyn_cast<NonTypeTemplateParmDecl>(Param))
+ HasDefaultArg = NTTP->hasDefaultArgument();
+ else {
+ assert(isa<TemplateTemplateParmDecl>(Param));
+ HasDefaultArg
+ = cast<TemplateTemplateParmDecl>(Param)->hasDefaultArgument();
+ }
+
+ if (!HasDefaultArg)
+ break;
+ }
+ }
+
+ if (LastDeducibleArgument) {
+ // Some of the function template arguments cannot be deduced from a
+ // function call, so we introduce an explicit template argument list
+ // containing all of the arguments up to the first deducible argument.
+ Result.AddChunk(CodeCompletionString::CK_LeftAngle);
+ AddTemplateParameterChunks(Ctx, Policy, FunTmpl, Result,
+ LastDeducibleArgument);
+ Result.AddChunk(CodeCompletionString::CK_RightAngle);
+ }
+
+ // Add the function parameters
+ Result.AddChunk(CodeCompletionString::CK_LeftParen);
+ AddFunctionParameterChunks(PP, Policy, Function, Result);
+ Result.AddChunk(CodeCompletionString::CK_RightParen);
+ AddFunctionTypeQualsToCompletionString(Result, Function);
+ return Result.TakeString();
+ }
+
+ if (const TemplateDecl *Template = dyn_cast<TemplateDecl>(ND)) {
+ AddQualifierToCompletionString(Result, Qualifier, QualifierIsInformative,
+ Ctx, Policy);
+ Result.AddTypedTextChunk(
+ Result.getAllocator().CopyString(Template->getNameAsString()));
+ Result.AddChunk(CodeCompletionString::CK_LeftAngle);
+ AddTemplateParameterChunks(Ctx, Policy, Template, Result);
+ Result.AddChunk(CodeCompletionString::CK_RightAngle);
+ return Result.TakeString();
+ }
+
+ if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(ND)) {
+ Selector Sel = Method->getSelector();
+ if (Sel.isUnarySelector()) {
+ Result.AddTypedTextChunk(Result.getAllocator().CopyString(
+ Sel.getNameForSlot(0)));
+ return Result.TakeString();
+ }
+
+ std::string SelName = Sel.getNameForSlot(0).str();
+ SelName += ':';
+ if (StartParameter == 0)
+ Result.AddTypedTextChunk(Result.getAllocator().CopyString(SelName));
+ else {
+ Result.AddInformativeChunk(Result.getAllocator().CopyString(SelName));
+
+ // If there is only one parameter, and we're past it, add an empty
+ // typed-text chunk since there is nothing to type.
+ if (Method->param_size() == 1)
+ Result.AddTypedTextChunk("");
+ }
+ unsigned Idx = 0;
+ for (ObjCMethodDecl::param_const_iterator P = Method->param_begin(),
+ PEnd = Method->param_end();
+ P != PEnd; (void)++P, ++Idx) {
+ if (Idx > 0) {
+ std::string Keyword;
+ if (Idx > StartParameter)
+ Result.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ if (IdentifierInfo *II = Sel.getIdentifierInfoForSlot(Idx))
+ Keyword += II->getName();
+ Keyword += ":";
+ if (Idx < StartParameter || AllParametersAreInformative)
+ Result.AddInformativeChunk(Result.getAllocator().CopyString(Keyword));
+ else
+ Result.AddTypedTextChunk(Result.getAllocator().CopyString(Keyword));
+ }
+
+ // If we're before the starting parameter, skip the placeholder.
+ if (Idx < StartParameter)
+ continue;
+
+ std::string Arg;
+
+ if ((*P)->getType()->isBlockPointerType() && !DeclaringEntity)
+ Arg = FormatFunctionParameter(Policy, *P, true);
+ else {
+ (*P)->getType().getAsStringInternal(Arg, Policy);
+ Arg = "(" + formatObjCParamQualifiers((*P)->getObjCDeclQualifier())
+ + Arg + ")";
+ if (IdentifierInfo *II = (*P)->getIdentifier())
+ if (DeclaringEntity || AllParametersAreInformative)
+ Arg += II->getName();
+ }
+
+ if (Method->isVariadic() && (P + 1) == PEnd)
+ Arg += ", ...";
+
+ if (DeclaringEntity)
+ Result.AddTextChunk(Result.getAllocator().CopyString(Arg));
+ else if (AllParametersAreInformative)
+ Result.AddInformativeChunk(Result.getAllocator().CopyString(Arg));
+ else
+ Result.AddPlaceholderChunk(Result.getAllocator().CopyString(Arg));
+ }
+
+ if (Method->isVariadic()) {
+ if (Method->param_size() == 0) {
+ if (DeclaringEntity)
+ Result.AddTextChunk(", ...");
+ else if (AllParametersAreInformative)
+ Result.AddInformativeChunk(", ...");
+ else
+ Result.AddPlaceholderChunk(", ...");
+ }
+
+ MaybeAddSentinel(PP, Method, Result);
+ }
+
+ return Result.TakeString();
+ }
+
+ if (Qualifier)
+ AddQualifierToCompletionString(Result, Qualifier, QualifierIsInformative,
+ Ctx, Policy);
+
+ Result.AddTypedTextChunk(
+ Result.getAllocator().CopyString(ND->getNameAsString()));
+ return Result.TakeString();
+}
+
+/// \brief Add function overload parameter chunks to the given code completion
+/// string.
+static void AddOverloadParameterChunks(ASTContext &Context,
+ const PrintingPolicy &Policy,
+ const FunctionDecl *Function,
+ const FunctionProtoType *Prototype,
+ CodeCompletionBuilder &Result,
+ unsigned CurrentArg,
+ unsigned Start = 0,
+ bool InOptional = false) {
+ bool FirstParameter = true;
+ unsigned NumParams = Function ? Function->getNumParams()
+ : Prototype->getNumParams();
+
+ for (unsigned P = Start; P != NumParams; ++P) {
+ if (Function && Function->getParamDecl(P)->hasDefaultArg() && !InOptional) {
+ // When we see an optional default argument, put that argument and
+ // the remaining default arguments into a new, optional string.
+ CodeCompletionBuilder Opt(Result.getAllocator(),
+ Result.getCodeCompletionTUInfo());
+ if (!FirstParameter)
+ Opt.AddChunk(CodeCompletionString::CK_Comma);
+ // Optional sections are nested.
+ AddOverloadParameterChunks(Context, Policy, Function, Prototype, Opt,
+ CurrentArg, P, /*InOptional=*/true);
+ Result.AddOptionalChunk(Opt.TakeString());
+ return;
+ }
+
+ if (FirstParameter)
+ FirstParameter = false;
+ else
+ Result.AddChunk(CodeCompletionString::CK_Comma);
+
+ InOptional = false;
+
+ // Format the placeholder string.
+ std::string Placeholder;
+ if (Function)
+ Placeholder = FormatFunctionParameter(Policy, Function->getParamDecl(P));
+ else
+ Placeholder = Prototype->getParamType(P).getAsString(Policy);
+
+ if (P == CurrentArg)
+ Result.AddCurrentParameterChunk(
+ Result.getAllocator().CopyString(Placeholder));
+ else
+ Result.AddPlaceholderChunk(Result.getAllocator().CopyString(Placeholder));
+ }
+
+ if (Prototype && Prototype->isVariadic()) {
+ CodeCompletionBuilder Opt(Result.getAllocator(),
+ Result.getCodeCompletionTUInfo());
+ if (!FirstParameter)
+ Opt.AddChunk(CodeCompletionString::CK_Comma);
+
+ if (CurrentArg < NumParams)
+ Opt.AddPlaceholderChunk("...");
+ else
+ Opt.AddCurrentParameterChunk("...");
+
+ Result.AddOptionalChunk(Opt.TakeString());
+ }
+}
+
+CodeCompletionString *
+CodeCompleteConsumer::OverloadCandidate::CreateSignatureString(
+ unsigned CurrentArg, Sema &S,
+ CodeCompletionAllocator &Allocator,
+ CodeCompletionTUInfo &CCTUInfo,
+ bool IncludeBriefComments) const {
+ PrintingPolicy Policy = getCompletionPrintingPolicy(S);
+
+ // FIXME: Set priority, availability appropriately.
+ CodeCompletionBuilder Result(Allocator,CCTUInfo, 1, CXAvailability_Available);
+ FunctionDecl *FDecl = getFunction();
+ const FunctionProtoType *Proto
+ = dyn_cast<FunctionProtoType>(getFunctionType());
+ if (!FDecl && !Proto) {
+ // Function without a prototype. Just give the return type and a
+ // highlighted ellipsis.
+ const FunctionType *FT = getFunctionType();
+ Result.AddResultTypeChunk(Result.getAllocator().CopyString(
+ FT->getReturnType().getAsString(Policy)));
+ Result.AddChunk(CodeCompletionString::CK_LeftParen);
+ Result.AddChunk(CodeCompletionString::CK_CurrentParameter, "...");
+ Result.AddChunk(CodeCompletionString::CK_RightParen);
+ return Result.TakeString();
+ }
+
+ if (FDecl) {
+ if (IncludeBriefComments && CurrentArg < FDecl->getNumParams())
+ if (auto RC = S.getASTContext().getRawCommentForAnyRedecl(
+ FDecl->getParamDecl(CurrentArg)))
+ Result.addBriefComment(RC->getBriefText(S.getASTContext()));
+ AddResultTypeChunk(S.Context, Policy, FDecl, Result);
+ Result.AddTextChunk(
+ Result.getAllocator().CopyString(FDecl->getNameAsString()));
+ } else {
+ Result.AddResultTypeChunk(
+ Result.getAllocator().CopyString(
+ Proto->getReturnType().getAsString(Policy)));
+ }
+
+ Result.AddChunk(CodeCompletionString::CK_LeftParen);
+ AddOverloadParameterChunks(S.getASTContext(), Policy, FDecl, Proto, Result,
+ CurrentArg);
+ Result.AddChunk(CodeCompletionString::CK_RightParen);
+
+ return Result.TakeString();
+}
+
+unsigned clang::getMacroUsagePriority(StringRef MacroName,
+ const LangOptions &LangOpts,
+ bool PreferredTypeIsPointer) {
+ unsigned Priority = CCP_Macro;
+
+ // Treat the "nil", "Nil" and "NULL" macros as null pointer constants.
+ if (MacroName.equals("nil") || MacroName.equals("NULL") ||
+ MacroName.equals("Nil")) {
+ Priority = CCP_Constant;
+ if (PreferredTypeIsPointer)
+ Priority = Priority / CCF_SimilarTypeMatch;
+ }
+ // Treat "YES", "NO", "true", and "false" as constants.
+ else if (MacroName.equals("YES") || MacroName.equals("NO") ||
+ MacroName.equals("true") || MacroName.equals("false"))
+ Priority = CCP_Constant;
+ // Treat "bool" as a type.
+ else if (MacroName.equals("bool"))
+ Priority = CCP_Type + (LangOpts.ObjC1? CCD_bool_in_ObjC : 0);
+
+
+ return Priority;
+}
+
+CXCursorKind clang::getCursorKindForDecl(const Decl *D) {
+ if (!D)
+ return CXCursor_UnexposedDecl;
+
+ switch (D->getKind()) {
+ case Decl::Enum: return CXCursor_EnumDecl;
+ case Decl::EnumConstant: return CXCursor_EnumConstantDecl;
+ case Decl::Field: return CXCursor_FieldDecl;
+ case Decl::Function:
+ return CXCursor_FunctionDecl;
+ case Decl::ObjCCategory: return CXCursor_ObjCCategoryDecl;
+ case Decl::ObjCCategoryImpl: return CXCursor_ObjCCategoryImplDecl;
+ case Decl::ObjCImplementation: return CXCursor_ObjCImplementationDecl;
+
+ case Decl::ObjCInterface: return CXCursor_ObjCInterfaceDecl;
+ case Decl::ObjCIvar: return CXCursor_ObjCIvarDecl;
+ case Decl::ObjCMethod:
+ return cast<ObjCMethodDecl>(D)->isInstanceMethod()
+ ? CXCursor_ObjCInstanceMethodDecl : CXCursor_ObjCClassMethodDecl;
+ case Decl::CXXMethod: return CXCursor_CXXMethod;
+ case Decl::CXXConstructor: return CXCursor_Constructor;
+ case Decl::CXXDestructor: return CXCursor_Destructor;
+ case Decl::CXXConversion: return CXCursor_ConversionFunction;
+ case Decl::ObjCProperty: return CXCursor_ObjCPropertyDecl;
+ case Decl::ObjCProtocol: return CXCursor_ObjCProtocolDecl;
+ case Decl::ParmVar: return CXCursor_ParmDecl;
+ case Decl::Typedef: return CXCursor_TypedefDecl;
+ case Decl::TypeAlias: return CXCursor_TypeAliasDecl;
+ case Decl::Var: return CXCursor_VarDecl;
+ case Decl::Namespace: return CXCursor_Namespace;
+ case Decl::NamespaceAlias: return CXCursor_NamespaceAlias;
+ case Decl::TemplateTypeParm: return CXCursor_TemplateTypeParameter;
+ case Decl::NonTypeTemplateParm:return CXCursor_NonTypeTemplateParameter;
+ case Decl::TemplateTemplateParm:return CXCursor_TemplateTemplateParameter;
+ case Decl::FunctionTemplate: return CXCursor_FunctionTemplate;
+ case Decl::ClassTemplate: return CXCursor_ClassTemplate;
+ case Decl::AccessSpec: return CXCursor_CXXAccessSpecifier;
+ case Decl::ClassTemplatePartialSpecialization:
+ return CXCursor_ClassTemplatePartialSpecialization;
+ case Decl::UsingDirective: return CXCursor_UsingDirective;
+ case Decl::TranslationUnit: return CXCursor_TranslationUnit;
+
+ case Decl::Using:
+ case Decl::UnresolvedUsingValue:
+ case Decl::UnresolvedUsingTypename:
+ return CXCursor_UsingDeclaration;
+
+ case Decl::ObjCPropertyImpl:
+ switch (cast<ObjCPropertyImplDecl>(D)->getPropertyImplementation()) {
+ case ObjCPropertyImplDecl::Dynamic:
+ return CXCursor_ObjCDynamicDecl;
+
+ case ObjCPropertyImplDecl::Synthesize:
+ return CXCursor_ObjCSynthesizeDecl;
+ }
+
+ case Decl::Import:
+ return CXCursor_ModuleImportDecl;
+
+ default:
+ if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
+ switch (TD->getTagKind()) {
+ case TTK_Interface: // fall through
+ case TTK_Struct: return CXCursor_StructDecl;
+ case TTK_Class: return CXCursor_ClassDecl;
+ case TTK_Union: return CXCursor_UnionDecl;
+ case TTK_Enum: return CXCursor_EnumDecl;
+ }
+ }
+ }
+
+ return CXCursor_UnexposedDecl;
+}
+
+static void AddMacroResults(Preprocessor &PP, ResultBuilder &Results,
+ bool IncludeUndefined,
+ bool TargetTypeIsPointer = false) {
+ typedef CodeCompletionResult Result;
+
+ Results.EnterNewScope();
+
+ for (Preprocessor::macro_iterator M = PP.macro_begin(),
+ MEnd = PP.macro_end();
+ M != MEnd; ++M) {
+ auto MD = PP.getMacroDefinition(M->first);
+ if (IncludeUndefined || MD) {
+ if (MacroInfo *MI = MD.getMacroInfo())
+ if (MI->isUsedForHeaderGuard())
+ continue;
+
+ Results.AddResult(Result(M->first,
+ getMacroUsagePriority(M->first->getName(),
+ PP.getLangOpts(),
+ TargetTypeIsPointer)));
+ }
+ }
+
+ Results.ExitScope();
+
+}
+
+static void AddPrettyFunctionResults(const LangOptions &LangOpts,
+ ResultBuilder &Results) {
+ typedef CodeCompletionResult Result;
+
+ Results.EnterNewScope();
+
+ Results.AddResult(Result("__PRETTY_FUNCTION__", CCP_Constant));
+ Results.AddResult(Result("__FUNCTION__", CCP_Constant));
+ if (LangOpts.C99 || LangOpts.CPlusPlus11)
+ Results.AddResult(Result("__func__", CCP_Constant));
+ Results.ExitScope();
+}
+
+static void HandleCodeCompleteResults(Sema *S,
+ CodeCompleteConsumer *CodeCompleter,
+ CodeCompletionContext Context,
+ CodeCompletionResult *Results,
+ unsigned NumResults) {
+ if (CodeCompleter)
+ CodeCompleter->ProcessCodeCompleteResults(*S, Context, Results, NumResults);
+}
+
+static enum CodeCompletionContext::Kind mapCodeCompletionContext(Sema &S,
+ Sema::ParserCompletionContext PCC) {
+ switch (PCC) {
+ case Sema::PCC_Namespace:
+ return CodeCompletionContext::CCC_TopLevel;
+
+ case Sema::PCC_Class:
+ return CodeCompletionContext::CCC_ClassStructUnion;
+
+ case Sema::PCC_ObjCInterface:
+ return CodeCompletionContext::CCC_ObjCInterface;
+
+ case Sema::PCC_ObjCImplementation:
+ return CodeCompletionContext::CCC_ObjCImplementation;
+
+ case Sema::PCC_ObjCInstanceVariableList:
+ return CodeCompletionContext::CCC_ObjCIvarList;
+
+ case Sema::PCC_Template:
+ case Sema::PCC_MemberTemplate:
+ if (S.CurContext->isFileContext())
+ return CodeCompletionContext::CCC_TopLevel;
+ if (S.CurContext->isRecord())
+ return CodeCompletionContext::CCC_ClassStructUnion;
+ return CodeCompletionContext::CCC_Other;
+
+ case Sema::PCC_RecoveryInFunction:
+ return CodeCompletionContext::CCC_Recovery;
+
+ case Sema::PCC_ForInit:
+ if (S.getLangOpts().CPlusPlus || S.getLangOpts().C99 ||
+ S.getLangOpts().ObjC1)
+ return CodeCompletionContext::CCC_ParenthesizedExpression;
+ else
+ return CodeCompletionContext::CCC_Expression;
+
+ case Sema::PCC_Expression:
+ case Sema::PCC_Condition:
+ return CodeCompletionContext::CCC_Expression;
+
+ case Sema::PCC_Statement:
+ return CodeCompletionContext::CCC_Statement;
+
+ case Sema::PCC_Type:
+ return CodeCompletionContext::CCC_Type;
+
+ case Sema::PCC_ParenthesizedExpression:
+ return CodeCompletionContext::CCC_ParenthesizedExpression;
+
+ case Sema::PCC_LocalDeclarationSpecifiers:
+ return CodeCompletionContext::CCC_Type;
+ }
+
+ llvm_unreachable("Invalid ParserCompletionContext!");
+}
+
+/// \brief If we're in a C++ virtual member function, add completion results
+/// that invoke the functions we override, since it's common to invoke the
+/// overridden function as well as adding new functionality.
+///
+/// \param S The semantic analysis object for which we are generating results.
+///
+/// \param InContext This context in which the nested-name-specifier preceding
+/// the code-completion point
+static void MaybeAddOverrideCalls(Sema &S, DeclContext *InContext,
+ ResultBuilder &Results) {
+ // Look through blocks.
+ DeclContext *CurContext = S.CurContext;
+ while (isa<BlockDecl>(CurContext))
+ CurContext = CurContext->getParent();
+
+
+ CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(CurContext);
+ if (!Method || !Method->isVirtual())
+ return;
+
+ // We need to have names for all of the parameters, if we're going to
+ // generate a forwarding call.
+ for (auto P : Method->params())
+ if (!P->getDeclName())
+ return;
+
+ PrintingPolicy Policy = getCompletionPrintingPolicy(S);
+ for (CXXMethodDecl::method_iterator M = Method->begin_overridden_methods(),
+ MEnd = Method->end_overridden_methods();
+ M != MEnd; ++M) {
+ CodeCompletionBuilder Builder(Results.getAllocator(),
+ Results.getCodeCompletionTUInfo());
+ const CXXMethodDecl *Overridden = *M;
+ if (Overridden->getCanonicalDecl() == Method->getCanonicalDecl())
+ continue;
+
+ // If we need a nested-name-specifier, add one now.
+ if (!InContext) {
+ NestedNameSpecifier *NNS
+ = getRequiredQualification(S.Context, CurContext,
+ Overridden->getDeclContext());
+ if (NNS) {
+ std::string Str;
+ llvm::raw_string_ostream OS(Str);
+ NNS->print(OS, Policy);
+ Builder.AddTextChunk(Results.getAllocator().CopyString(OS.str()));
+ }
+ } else if (!InContext->Equals(Overridden->getDeclContext()))
+ continue;
+
+ Builder.AddTypedTextChunk(Results.getAllocator().CopyString(
+ Overridden->getNameAsString()));
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ bool FirstParam = true;
+ for (auto P : Method->params()) {
+ if (FirstParam)
+ FirstParam = false;
+ else
+ Builder.AddChunk(CodeCompletionString::CK_Comma);
+
+ Builder.AddPlaceholderChunk(
+ Results.getAllocator().CopyString(P->getIdentifier()->getName()));
+ }
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Results.AddResult(CodeCompletionResult(Builder.TakeString(),
+ CCP_SuperCompletion,
+ CXCursor_CXXMethod,
+ CXAvailability_Available,
+ Overridden));
+ Results.Ignore(Overridden);
+ }
+}
+
+void Sema::CodeCompleteModuleImport(SourceLocation ImportLoc,
+ ModuleIdPath Path) {
+ typedef CodeCompletionResult Result;
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ CodeCompletionContext::CCC_Other);
+ Results.EnterNewScope();
+
+ CodeCompletionAllocator &Allocator = Results.getAllocator();
+ CodeCompletionBuilder Builder(Allocator, Results.getCodeCompletionTUInfo());
+ typedef CodeCompletionResult Result;
+ if (Path.empty()) {
+ // Enumerate all top-level modules.
+ SmallVector<Module *, 8> Modules;
+ PP.getHeaderSearchInfo().collectAllModules(Modules);
+ for (unsigned I = 0, N = Modules.size(); I != N; ++I) {
+ Builder.AddTypedTextChunk(
+ Builder.getAllocator().CopyString(Modules[I]->Name));
+ Results.AddResult(Result(Builder.TakeString(),
+ CCP_Declaration,
+ CXCursor_ModuleImportDecl,
+ Modules[I]->isAvailable()
+ ? CXAvailability_Available
+ : CXAvailability_NotAvailable));
+ }
+ } else if (getLangOpts().Modules) {
+ // Load the named module.
+ Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
+ Module::AllVisible,
+ /*IsInclusionDirective=*/false);
+ // Enumerate submodules.
+ if (Mod) {
+ for (Module::submodule_iterator Sub = Mod->submodule_begin(),
+ SubEnd = Mod->submodule_end();
+ Sub != SubEnd; ++Sub) {
+
+ Builder.AddTypedTextChunk(
+ Builder.getAllocator().CopyString((*Sub)->Name));
+ Results.AddResult(Result(Builder.TakeString(),
+ CCP_Declaration,
+ CXCursor_ModuleImportDecl,
+ (*Sub)->isAvailable()
+ ? CXAvailability_Available
+ : CXAvailability_NotAvailable));
+ }
+ }
+ }
+ Results.ExitScope();
+ HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(),
+ Results.data(),Results.size());
+}
+
+void Sema::CodeCompleteOrdinaryName(Scope *S,
+ ParserCompletionContext CompletionContext) {
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ mapCodeCompletionContext(*this, CompletionContext));
+ Results.EnterNewScope();
+
+ // Determine how to filter results, e.g., so that the names of
+ // values (functions, enumerators, function templates, etc.) are
+ // only allowed where we can have an expression.
+ switch (CompletionContext) {
+ case PCC_Namespace:
+ case PCC_Class:
+ case PCC_ObjCInterface:
+ case PCC_ObjCImplementation:
+ case PCC_ObjCInstanceVariableList:
+ case PCC_Template:
+ case PCC_MemberTemplate:
+ case PCC_Type:
+ case PCC_LocalDeclarationSpecifiers:
+ Results.setFilter(&ResultBuilder::IsOrdinaryNonValueName);
+ break;
+
+ case PCC_Statement:
+ case PCC_ParenthesizedExpression:
+ case PCC_Expression:
+ case PCC_ForInit:
+ case PCC_Condition:
+ if (WantTypesInContext(CompletionContext, getLangOpts()))
+ Results.setFilter(&ResultBuilder::IsOrdinaryName);
+ else
+ Results.setFilter(&ResultBuilder::IsOrdinaryNonTypeName);
+
+ if (getLangOpts().CPlusPlus)
+ MaybeAddOverrideCalls(*this, /*InContext=*/nullptr, Results);
+ break;
+
+ case PCC_RecoveryInFunction:
+ // Unfiltered
+ break;
+ }
+
+ // If we are in a C++ non-static member function, check the qualifiers on
+ // the member function to filter/prioritize the results list.
+ if (CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext))
+ if (CurMethod->isInstance())
+ Results.setObjectTypeQualifiers(
+ Qualifiers::fromCVRMask(CurMethod->getTypeQualifiers()));
+
+ CodeCompletionDeclConsumer Consumer(Results, CurContext);
+ LookupVisibleDecls(S, LookupOrdinaryName, Consumer,
+ CodeCompleter->includeGlobals());
+
+ AddOrdinaryNameResults(CompletionContext, S, *this, Results);
+ Results.ExitScope();
+
+ switch (CompletionContext) {
+ case PCC_ParenthesizedExpression:
+ case PCC_Expression:
+ case PCC_Statement:
+ case PCC_RecoveryInFunction:
+ if (S->getFnParent())
+ AddPrettyFunctionResults(PP.getLangOpts(), Results);
+ break;
+
+ case PCC_Namespace:
+ case PCC_Class:
+ case PCC_ObjCInterface:
+ case PCC_ObjCImplementation:
+ case PCC_ObjCInstanceVariableList:
+ case PCC_Template:
+ case PCC_MemberTemplate:
+ case PCC_ForInit:
+ case PCC_Condition:
+ case PCC_Type:
+ case PCC_LocalDeclarationSpecifiers:
+ break;
+ }
+
+ if (CodeCompleter->includeMacros())
+ AddMacroResults(PP, Results, false);
+
+ HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(),
+ Results.data(),Results.size());
+}
+
+static void AddClassMessageCompletions(Sema &SemaRef, Scope *S,
+ ParsedType Receiver,
+ ArrayRef<IdentifierInfo *> SelIdents,
+ bool AtArgumentExpression,
+ bool IsSuper,
+ ResultBuilder &Results);
+
+void Sema::CodeCompleteDeclSpec(Scope *S, DeclSpec &DS,
+ bool AllowNonIdentifiers,
+ bool AllowNestedNameSpecifiers) {
+ typedef CodeCompletionResult Result;
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ AllowNestedNameSpecifiers
+ ? CodeCompletionContext::CCC_PotentiallyQualifiedName
+ : CodeCompletionContext::CCC_Name);
+ Results.EnterNewScope();
+
+ // Type qualifiers can come after names.
+ Results.AddResult(Result("const"));
+ Results.AddResult(Result("volatile"));
+ if (getLangOpts().C99)
+ Results.AddResult(Result("restrict"));
+
+ if (getLangOpts().CPlusPlus) {
+ if (AllowNonIdentifiers) {
+ Results.AddResult(Result("operator"));
+ }
+
+ // Add nested-name-specifiers.
+ if (AllowNestedNameSpecifiers) {
+ Results.allowNestedNameSpecifiers();
+ Results.setFilter(&ResultBuilder::IsImpossibleToSatisfy);
+ CodeCompletionDeclConsumer Consumer(Results, CurContext);
+ LookupVisibleDecls(S, LookupNestedNameSpecifierName, Consumer,
+ CodeCompleter->includeGlobals());
+ Results.setFilter(nullptr);
+ }
+ }
+ Results.ExitScope();
+
+ // If we're in a context where we might have an expression (rather than a
+ // declaration), and what we've seen so far is an Objective-C type that could
+ // be a receiver of a class message, this may be a class message send with
+ // the initial opening bracket '[' missing. Add appropriate completions.
+ if (AllowNonIdentifiers && !AllowNestedNameSpecifiers &&
+ DS.getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier &&
+ DS.getTypeSpecType() == DeclSpec::TST_typename &&
+ DS.getTypeSpecComplex() == DeclSpec::TSC_unspecified &&
+ DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
+ !DS.isTypeAltiVecVector() &&
+ S &&
+ (S->getFlags() & Scope::DeclScope) != 0 &&
+ (S->getFlags() & (Scope::ClassScope | Scope::TemplateParamScope |
+ Scope::FunctionPrototypeScope |
+ Scope::AtCatchScope)) == 0) {
+ ParsedType T = DS.getRepAsType();
+ if (!T.get().isNull() && T.get()->isObjCObjectOrInterfaceType())
+ AddClassMessageCompletions(*this, S, T, None, false, false, Results);
+ }
+
+ // Note that we intentionally suppress macro results here, since we do not
+ // encourage using macros to produce the names of entities.
+
+ HandleCodeCompleteResults(this, CodeCompleter,
+ Results.getCompletionContext(),
+ Results.data(), Results.size());
+}
+
+struct Sema::CodeCompleteExpressionData {
+ CodeCompleteExpressionData(QualType PreferredType = QualType())
+ : PreferredType(PreferredType), IntegralConstantExpression(false),
+ ObjCCollection(false) { }
+
+ QualType PreferredType;
+ bool IntegralConstantExpression;
+ bool ObjCCollection;
+ SmallVector<Decl *, 4> IgnoreDecls;
+};
+
+/// \brief Perform code-completion in an expression context when we know what
+/// type we're looking for.
+void Sema::CodeCompleteExpression(Scope *S,
+ const CodeCompleteExpressionData &Data) {
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ CodeCompletionContext::CCC_Expression);
+ if (Data.ObjCCollection)
+ Results.setFilter(&ResultBuilder::IsObjCCollection);
+ else if (Data.IntegralConstantExpression)
+ Results.setFilter(&ResultBuilder::IsIntegralConstantValue);
+ else if (WantTypesInContext(PCC_Expression, getLangOpts()))
+ Results.setFilter(&ResultBuilder::IsOrdinaryName);
+ else
+ Results.setFilter(&ResultBuilder::IsOrdinaryNonTypeName);
+
+ if (!Data.PreferredType.isNull())
+ Results.setPreferredType(Data.PreferredType.getNonReferenceType());
+
+ // Ignore any declarations that we were told that we don't care about.
+ for (unsigned I = 0, N = Data.IgnoreDecls.size(); I != N; ++I)
+ Results.Ignore(Data.IgnoreDecls[I]);
+
+ CodeCompletionDeclConsumer Consumer(Results, CurContext);
+ LookupVisibleDecls(S, LookupOrdinaryName, Consumer,
+ CodeCompleter->includeGlobals());
+
+ Results.EnterNewScope();
+ AddOrdinaryNameResults(PCC_Expression, S, *this, Results);
+ Results.ExitScope();
+
+ bool PreferredTypeIsPointer = false;
+ if (!Data.PreferredType.isNull())
+ PreferredTypeIsPointer = Data.PreferredType->isAnyPointerType()
+ || Data.PreferredType->isMemberPointerType()
+ || Data.PreferredType->isBlockPointerType();
+
+ if (S->getFnParent() &&
+ !Data.ObjCCollection &&
+ !Data.IntegralConstantExpression)
+ AddPrettyFunctionResults(PP.getLangOpts(), Results);
+
+ if (CodeCompleter->includeMacros())
+ AddMacroResults(PP, Results, false, PreferredTypeIsPointer);
+ HandleCodeCompleteResults(this, CodeCompleter,
+ CodeCompletionContext(CodeCompletionContext::CCC_Expression,
+ Data.PreferredType),
+ Results.data(),Results.size());
+}
+
+void Sema::CodeCompletePostfixExpression(Scope *S, ExprResult E) {
+ if (E.isInvalid())
+ CodeCompleteOrdinaryName(S, PCC_RecoveryInFunction);
+ else if (getLangOpts().ObjC1)
+ CodeCompleteObjCInstanceMessage(S, E.get(), None, false);
+}
+
+/// \brief The set of properties that have already been added, referenced by
+/// property name.
+typedef llvm::SmallPtrSet<IdentifierInfo*, 16> AddedPropertiesSet;
+
+/// \brief Retrieve the container definition, if any?
+static ObjCContainerDecl *getContainerDef(ObjCContainerDecl *Container) {
+ if (ObjCInterfaceDecl *Interface = dyn_cast<ObjCInterfaceDecl>(Container)) {
+ if (Interface->hasDefinition())
+ return Interface->getDefinition();
+
+ return Interface;
+ }
+
+ if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Container)) {
+ if (Protocol->hasDefinition())
+ return Protocol->getDefinition();
+
+ return Protocol;
+ }
+ return Container;
+}
+
+static void AddObjCProperties(ObjCContainerDecl *Container,
+ bool AllowCategories,
+ bool AllowNullaryMethods,
+ DeclContext *CurContext,
+ AddedPropertiesSet &AddedProperties,
+ ResultBuilder &Results) {
+ typedef CodeCompletionResult Result;
+
+ // Retrieve the definition.
+ Container = getContainerDef(Container);
+
+ // Add properties in this container.
+ for (const auto *P : Container->properties())
+ if (AddedProperties.insert(P->getIdentifier()).second)
+ Results.MaybeAddResult(Result(P, Results.getBasePriority(P), nullptr),
+ CurContext);
+
+ // Add nullary methods
+ if (AllowNullaryMethods) {
+ ASTContext &Context = Container->getASTContext();
+ PrintingPolicy Policy = getCompletionPrintingPolicy(Results.getSema());
+ for (auto *M : Container->methods()) {
+ if (M->getSelector().isUnarySelector())
+ if (IdentifierInfo *Name = M->getSelector().getIdentifierInfoForSlot(0))
+ if (AddedProperties.insert(Name).second) {
+ CodeCompletionBuilder Builder(Results.getAllocator(),
+ Results.getCodeCompletionTUInfo());
+ AddResultTypeChunk(Context, Policy, M, Builder);
+ Builder.AddTypedTextChunk(
+ Results.getAllocator().CopyString(Name->getName()));
+
+ Results.MaybeAddResult(Result(Builder.TakeString(), M,
+ CCP_MemberDeclaration + CCD_MethodAsProperty),
+ CurContext);
+ }
+ }
+ }
+
+
+ // Add properties in referenced protocols.
+ if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Container)) {
+ for (auto *P : Protocol->protocols())
+ AddObjCProperties(P, AllowCategories, AllowNullaryMethods, CurContext,
+ AddedProperties, Results);
+ } else if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Container)){
+ if (AllowCategories) {
+ // Look through categories.
+ for (auto *Cat : IFace->known_categories())
+ AddObjCProperties(Cat, AllowCategories, AllowNullaryMethods, CurContext,
+ AddedProperties, Results);
+ }
+
+ // Look through protocols.
+ for (auto *I : IFace->all_referenced_protocols())
+ AddObjCProperties(I, AllowCategories, AllowNullaryMethods, CurContext,
+ AddedProperties, Results);
+
+ // Look in the superclass.
+ if (IFace->getSuperClass())
+ AddObjCProperties(IFace->getSuperClass(), AllowCategories,
+ AllowNullaryMethods, CurContext,
+ AddedProperties, Results);
+ } else if (const ObjCCategoryDecl *Category
+ = dyn_cast<ObjCCategoryDecl>(Container)) {
+ // Look through protocols.
+ for (auto *P : Category->protocols())
+ AddObjCProperties(P, AllowCategories, AllowNullaryMethods, CurContext,
+ AddedProperties, Results);
+ }
+}
+
+void Sema::CodeCompleteMemberReferenceExpr(Scope *S, Expr *Base,
+ SourceLocation OpLoc,
+ bool IsArrow) {
+ if (!Base || !CodeCompleter)
+ return;
+
+ ExprResult ConvertedBase = PerformMemberExprBaseConversion(Base, IsArrow);
+ if (ConvertedBase.isInvalid())
+ return;
+ Base = ConvertedBase.get();
+
+ typedef CodeCompletionResult Result;
+
+ QualType BaseType = Base->getType();
+
+ if (IsArrow) {
+ if (const PointerType *Ptr = BaseType->getAs<PointerType>())
+ BaseType = Ptr->getPointeeType();
+ else if (BaseType->isObjCObjectPointerType())
+ /*Do nothing*/ ;
+ else
+ return;
+ }
+
+ enum CodeCompletionContext::Kind contextKind;
+
+ if (IsArrow) {
+ contextKind = CodeCompletionContext::CCC_ArrowMemberAccess;
+ }
+ else {
+ if (BaseType->isObjCObjectPointerType() ||
+ BaseType->isObjCObjectOrInterfaceType()) {
+ contextKind = CodeCompletionContext::CCC_ObjCPropertyAccess;
+ }
+ else {
+ contextKind = CodeCompletionContext::CCC_DotMemberAccess;
+ }
+ }
+
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ CodeCompletionContext(contextKind,
+ BaseType),
+ &ResultBuilder::IsMember);
+ Results.EnterNewScope();
+ if (const RecordType *Record = BaseType->getAs<RecordType>()) {
+ // Indicate that we are performing a member access, and the cv-qualifiers
+ // for the base object type.
+ Results.setObjectTypeQualifiers(BaseType.getQualifiers());
+
+ // Access to a C/C++ class, struct, or union.
+ Results.allowNestedNameSpecifiers();
+ CodeCompletionDeclConsumer Consumer(Results, CurContext);
+ LookupVisibleDecls(Record->getDecl(), LookupMemberName, Consumer,
+ CodeCompleter->includeGlobals());
+
+ if (getLangOpts().CPlusPlus) {
+ if (!Results.empty()) {
+ // The "template" keyword can follow "->" or "." in the grammar.
+ // However, we only want to suggest the template keyword if something
+ // is dependent.
+ bool IsDependent = BaseType->isDependentType();
+ if (!IsDependent) {
+ for (Scope *DepScope = S; DepScope; DepScope = DepScope->getParent())
+ if (DeclContext *Ctx = DepScope->getEntity()) {
+ IsDependent = Ctx->isDependentContext();
+ break;
+ }
+ }
+
+ if (IsDependent)
+ Results.AddResult(Result("template"));
+ }
+ }
+ } else if (!IsArrow && BaseType->getAsObjCInterfacePointerType()) {
+ // Objective-C property reference.
+ AddedPropertiesSet AddedProperties;
+
+ // Add property results based on our interface.
+ const ObjCObjectPointerType *ObjCPtr
+ = BaseType->getAsObjCInterfacePointerType();
+ assert(ObjCPtr && "Non-NULL pointer guaranteed above!");
+ AddObjCProperties(ObjCPtr->getInterfaceDecl(), true,
+ /*AllowNullaryMethods=*/true, CurContext,
+ AddedProperties, Results);
+
+ // Add properties from the protocols in a qualified interface.
+ for (auto *I : ObjCPtr->quals())
+ AddObjCProperties(I, true, /*AllowNullaryMethods=*/true, CurContext,
+ AddedProperties, Results);
+ } else if ((IsArrow && BaseType->isObjCObjectPointerType()) ||
+ (!IsArrow && BaseType->isObjCObjectType())) {
+ // Objective-C instance variable access.
+ ObjCInterfaceDecl *Class = nullptr;
+ if (const ObjCObjectPointerType *ObjCPtr
+ = BaseType->getAs<ObjCObjectPointerType>())
+ Class = ObjCPtr->getInterfaceDecl();
+ else
+ Class = BaseType->getAs<ObjCObjectType>()->getInterface();
+
+ // Add all ivars from this class and its superclasses.
+ if (Class) {
+ CodeCompletionDeclConsumer Consumer(Results, CurContext);
+ Results.setFilter(&ResultBuilder::IsObjCIvar);
+ LookupVisibleDecls(Class, LookupMemberName, Consumer,
+ CodeCompleter->includeGlobals());
+ }
+ }
+
+ // FIXME: How do we cope with isa?
+
+ Results.ExitScope();
+
+ // Hand off the results found for code completion.
+ HandleCodeCompleteResults(this, CodeCompleter,
+ Results.getCompletionContext(),
+ Results.data(),Results.size());
+}
+
+void Sema::CodeCompleteTag(Scope *S, unsigned TagSpec) {
+ if (!CodeCompleter)
+ return;
+
+ ResultBuilder::LookupFilter Filter = nullptr;
+ enum CodeCompletionContext::Kind ContextKind
+ = CodeCompletionContext::CCC_Other;
+ switch ((DeclSpec::TST)TagSpec) {
+ case DeclSpec::TST_enum:
+ Filter = &ResultBuilder::IsEnum;
+ ContextKind = CodeCompletionContext::CCC_EnumTag;
+ break;
+
+ case DeclSpec::TST_union:
+ Filter = &ResultBuilder::IsUnion;
+ ContextKind = CodeCompletionContext::CCC_UnionTag;
+ break;
+
+ case DeclSpec::TST_struct:
+ case DeclSpec::TST_class:
+ case DeclSpec::TST_interface:
+ Filter = &ResultBuilder::IsClassOrStruct;
+ ContextKind = CodeCompletionContext::CCC_ClassOrStructTag;
+ break;
+
+ default:
+ llvm_unreachable("Unknown type specifier kind in CodeCompleteTag");
+ }
+
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(), ContextKind);
+ CodeCompletionDeclConsumer Consumer(Results, CurContext);
+
+ // First pass: look for tags.
+ Results.setFilter(Filter);
+ LookupVisibleDecls(S, LookupTagName, Consumer,
+ CodeCompleter->includeGlobals());
+
+ if (CodeCompleter->includeGlobals()) {
+ // Second pass: look for nested name specifiers.
+ Results.setFilter(&ResultBuilder::IsNestedNameSpecifier);
+ LookupVisibleDecls(S, LookupNestedNameSpecifierName, Consumer);
+ }
+
+ HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(),
+ Results.data(),Results.size());
+}
+
+void Sema::CodeCompleteTypeQualifiers(DeclSpec &DS) {
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ CodeCompletionContext::CCC_TypeQualifiers);
+ Results.EnterNewScope();
+ if (!(DS.getTypeQualifiers() & DeclSpec::TQ_const))
+ Results.AddResult("const");
+ if (!(DS.getTypeQualifiers() & DeclSpec::TQ_volatile))
+ Results.AddResult("volatile");
+ if (getLangOpts().C99 &&
+ !(DS.getTypeQualifiers() & DeclSpec::TQ_restrict))
+ Results.AddResult("restrict");
+ if (getLangOpts().C11 &&
+ !(DS.getTypeQualifiers() & DeclSpec::TQ_atomic))
+ Results.AddResult("_Atomic");
+ Results.ExitScope();
+ HandleCodeCompleteResults(this, CodeCompleter,
+ Results.getCompletionContext(),
+ Results.data(), Results.size());
+}
+
+void Sema::CodeCompleteCase(Scope *S) {
+ if (getCurFunction()->SwitchStack.empty() || !CodeCompleter)
+ return;
+
+ SwitchStmt *Switch = getCurFunction()->SwitchStack.back();
+ QualType type = Switch->getCond()->IgnoreImplicit()->getType();
+ if (!type->isEnumeralType()) {
+ CodeCompleteExpressionData Data(type);
+ Data.IntegralConstantExpression = true;
+ CodeCompleteExpression(S, Data);
+ return;
+ }
+
+ // Code-complete the cases of a switch statement over an enumeration type
+ // by providing the list of
+ EnumDecl *Enum = type->castAs<EnumType>()->getDecl();
+ if (EnumDecl *Def = Enum->getDefinition())
+ Enum = Def;
+
+ // Determine which enumerators we have already seen in the switch statement.
+ // FIXME: Ideally, we would also be able to look *past* the code-completion
+ // token, in case we are code-completing in the middle of the switch and not
+ // at the end. However, we aren't able to do so at the moment.
+ llvm::SmallPtrSet<EnumConstantDecl *, 8> EnumeratorsSeen;
+ NestedNameSpecifier *Qualifier = nullptr;
+ for (SwitchCase *SC = Switch->getSwitchCaseList(); SC;
+ SC = SC->getNextSwitchCase()) {
+ CaseStmt *Case = dyn_cast<CaseStmt>(SC);
+ if (!Case)
+ continue;
+
+ Expr *CaseVal = Case->getLHS()->IgnoreParenCasts();
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CaseVal))
+ if (EnumConstantDecl *Enumerator
+ = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
+ // We look into the AST of the case statement to determine which
+ // enumerator was named. Alternatively, we could compute the value of
+ // the integral constant expression, then compare it against the
+ // values of each enumerator. However, value-based approach would not
+ // work as well with C++ templates where enumerators declared within a
+ // template are type- and value-dependent.
+ EnumeratorsSeen.insert(Enumerator);
+
+ // If this is a qualified-id, keep track of the nested-name-specifier
+ // so that we can reproduce it as part of code completion, e.g.,
+ //
+ // switch (TagD.getKind()) {
+ // case TagDecl::TK_enum:
+ // break;
+ // case XXX
+ //
+ // At the XXX, our completions are TagDecl::TK_union,
+ // TagDecl::TK_struct, and TagDecl::TK_class, rather than TK_union,
+ // TK_struct, and TK_class.
+ Qualifier = DRE->getQualifier();
+ }
+ }
+
+ if (getLangOpts().CPlusPlus && !Qualifier && EnumeratorsSeen.empty()) {
+ // If there are no prior enumerators in C++, check whether we have to
+ // qualify the names of the enumerators that we suggest, because they
+ // may not be visible in this scope.
+ Qualifier = getRequiredQualification(Context, CurContext, Enum);
+ }
+
+ // Add any enumerators that have not yet been mentioned.
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ CodeCompletionContext::CCC_Expression);
+ Results.EnterNewScope();
+ for (auto *E : Enum->enumerators()) {
+ if (EnumeratorsSeen.count(E))
+ continue;
+
+ CodeCompletionResult R(E, CCP_EnumInCase, Qualifier);
+ Results.AddResult(R, CurContext, nullptr, false);
+ }
+ Results.ExitScope();
+
+ //We need to make sure we're setting the right context,
+ //so only say we include macros if the code completer says we do
+ enum CodeCompletionContext::Kind kind = CodeCompletionContext::CCC_Other;
+ if (CodeCompleter->includeMacros()) {
+ AddMacroResults(PP, Results, false);
+ kind = CodeCompletionContext::CCC_OtherWithMacros;
+ }
+
+ HandleCodeCompleteResults(this, CodeCompleter,
+ kind,
+ Results.data(),Results.size());
+}
+
+static bool anyNullArguments(ArrayRef<Expr *> Args) {
+ if (Args.size() && !Args.data())
+ return true;
+
+ for (unsigned I = 0; I != Args.size(); ++I)
+ if (!Args[I])
+ return true;
+
+ return false;
+}
+
+typedef CodeCompleteConsumer::OverloadCandidate ResultCandidate;
+
+static void mergeCandidatesWithResults(Sema &SemaRef,
+ SmallVectorImpl<ResultCandidate> &Results,
+ OverloadCandidateSet &CandidateSet,
+ SourceLocation Loc) {
+ if (!CandidateSet.empty()) {
+ // Sort the overload candidate set by placing the best overloads first.
+ std::stable_sort(
+ CandidateSet.begin(), CandidateSet.end(),
+ [&](const OverloadCandidate &X, const OverloadCandidate &Y) {
+ return isBetterOverloadCandidate(SemaRef, X, Y, Loc);
+ });
+
+ // Add the remaining viable overload candidates as code-completion results.
+ for (auto &Candidate : CandidateSet)
+ if (Candidate.Viable)
+ Results.push_back(ResultCandidate(Candidate.Function));
+ }
+}
+
+/// \brief Get the type of the Nth parameter from a given set of overload
+/// candidates.
+static QualType getParamType(Sema &SemaRef,
+ ArrayRef<ResultCandidate> Candidates,
+ unsigned N) {
+
+ // Given the overloads 'Candidates' for a function call matching all arguments
+ // up to N, return the type of the Nth parameter if it is the same for all
+ // overload candidates.
+ QualType ParamType;
+ for (auto &Candidate : Candidates) {
+ if (auto FType = Candidate.getFunctionType())
+ if (auto Proto = dyn_cast<FunctionProtoType>(FType))
+ if (N < Proto->getNumParams()) {
+ if (ParamType.isNull())
+ ParamType = Proto->getParamType(N);
+ else if (!SemaRef.Context.hasSameUnqualifiedType(
+ ParamType.getNonReferenceType(),
+ Proto->getParamType(N).getNonReferenceType()))
+ // Otherwise return a default-constructed QualType.
+ return QualType();
+ }
+ }
+
+ return ParamType;
+}
+
+static void CodeCompleteOverloadResults(Sema &SemaRef, Scope *S,
+ MutableArrayRef<ResultCandidate> Candidates,
+ unsigned CurrentArg,
+ bool CompleteExpressionWithCurrentArg = true) {
+ QualType ParamType;
+ if (CompleteExpressionWithCurrentArg)
+ ParamType = getParamType(SemaRef, Candidates, CurrentArg);
+
+ if (ParamType.isNull())
+ SemaRef.CodeCompleteOrdinaryName(S, Sema::PCC_Expression);
+ else
+ SemaRef.CodeCompleteExpression(S, ParamType);
+
+ if (!Candidates.empty())
+ SemaRef.CodeCompleter->ProcessOverloadCandidates(SemaRef, CurrentArg,
+ Candidates.data(),
+ Candidates.size());
+}
+
+void Sema::CodeCompleteCall(Scope *S, Expr *Fn, ArrayRef<Expr *> Args) {
+ if (!CodeCompleter)
+ return;
+
+ // When we're code-completing for a call, we fall back to ordinary
+ // name code-completion whenever we can't produce specific
+ // results. We may want to revisit this strategy in the future,
+ // e.g., by merging the two kinds of results.
+
+ // FIXME: Provide support for variadic template functions.
+
+ // Ignore type-dependent call expressions entirely.
+ if (!Fn || Fn->isTypeDependent() || anyNullArguments(Args) ||
+ Expr::hasAnyTypeDependentArguments(Args)) {
+ CodeCompleteOrdinaryName(S, PCC_Expression);
+ return;
+ }
+
+ // Build an overload candidate set based on the functions we find.
+ SourceLocation Loc = Fn->getExprLoc();
+ OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
+
+ SmallVector<ResultCandidate, 8> Results;
+
+ Expr *NakedFn = Fn->IgnoreParenCasts();
+ if (auto ULE = dyn_cast<UnresolvedLookupExpr>(NakedFn))
+ AddOverloadedCallCandidates(ULE, Args, CandidateSet,
+ /*PartialOverloading=*/true);
+ else if (auto UME = dyn_cast<UnresolvedMemberExpr>(NakedFn)) {
+ TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
+ if (UME->hasExplicitTemplateArgs()) {
+ UME->copyTemplateArgumentsInto(TemplateArgsBuffer);
+ TemplateArgs = &TemplateArgsBuffer;
+ }
+ SmallVector<Expr *, 12> ArgExprs(1, UME->getBase());
+ ArgExprs.append(Args.begin(), Args.end());
+ UnresolvedSet<8> Decls;
+ Decls.append(UME->decls_begin(), UME->decls_end());
+ AddFunctionCandidates(Decls, ArgExprs, CandidateSet, TemplateArgs,
+ /*SuppressUsedConversions=*/false,
+ /*PartialOverloading=*/true);
+ } else {
+ FunctionDecl *FD = nullptr;
+ if (auto MCE = dyn_cast<MemberExpr>(NakedFn))
+ FD = dyn_cast<FunctionDecl>(MCE->getMemberDecl());
+ else if (auto DRE = dyn_cast<DeclRefExpr>(NakedFn))
+ FD = dyn_cast<FunctionDecl>(DRE->getDecl());
+ if (FD) { // We check whether it's a resolved function declaration.
+ if (!getLangOpts().CPlusPlus ||
+ !FD->getType()->getAs<FunctionProtoType>())
+ Results.push_back(ResultCandidate(FD));
+ else
+ AddOverloadCandidate(FD, DeclAccessPair::make(FD, FD->getAccess()),
+ Args, CandidateSet,
+ /*SuppressUsedConversions=*/false,
+ /*PartialOverloading=*/true);
+
+ } else if (auto DC = NakedFn->getType()->getAsCXXRecordDecl()) {
+ // If expression's type is CXXRecordDecl, it may overload the function
+ // call operator, so we check if it does and add them as candidates.
+ // A complete type is needed to lookup for member function call operators.
+ if (!RequireCompleteType(Loc, NakedFn->getType(), 0)) {
+ DeclarationName OpName = Context.DeclarationNames
+ .getCXXOperatorName(OO_Call);
+ LookupResult R(*this, OpName, Loc, LookupOrdinaryName);
+ LookupQualifiedName(R, DC);
+ R.suppressDiagnostics();
+ SmallVector<Expr *, 12> ArgExprs(1, NakedFn);
+ ArgExprs.append(Args.begin(), Args.end());
+ AddFunctionCandidates(R.asUnresolvedSet(), ArgExprs, CandidateSet,
+ /*ExplicitArgs=*/nullptr,
+ /*SuppressUsedConversions=*/false,
+ /*PartialOverloading=*/true);
+ }
+ } else {
+ // Lastly we check whether expression's type is function pointer or
+ // function.
+ QualType T = NakedFn->getType();
+ if (!T->getPointeeType().isNull())
+ T = T->getPointeeType();
+
+ if (auto FP = T->getAs<FunctionProtoType>()) {
+ if (!TooManyArguments(FP->getNumParams(), Args.size(),
+ /*PartialOverloading=*/true) ||
+ FP->isVariadic())
+ Results.push_back(ResultCandidate(FP));
+ } else if (auto FT = T->getAs<FunctionType>())
+ // No prototype and declaration, it may be a K & R style function.
+ Results.push_back(ResultCandidate(FT));
+ }
+ }
+
+ mergeCandidatesWithResults(*this, Results, CandidateSet, Loc);
+ CodeCompleteOverloadResults(*this, S, Results, Args.size(),
+ !CandidateSet.empty());
+}
+
+void Sema::CodeCompleteConstructor(Scope *S, QualType Type, SourceLocation Loc,
+ ArrayRef<Expr *> Args) {
+ if (!CodeCompleter)
+ return;
+
+ // A complete type is needed to lookup for constructors.
+ if (RequireCompleteType(Loc, Type, 0))
+ return;
+
+ CXXRecordDecl *RD = Type->getAsCXXRecordDecl();
+ if (!RD) {
+ CodeCompleteExpression(S, Type);
+ return;
+ }
+
+ // FIXME: Provide support for member initializers.
+ // FIXME: Provide support for variadic template constructors.
+
+ OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
+
+ for (auto C : LookupConstructors(RD)) {
+ if (auto FD = dyn_cast<FunctionDecl>(C)) {
+ AddOverloadCandidate(FD, DeclAccessPair::make(FD, C->getAccess()),
+ Args, CandidateSet,
+ /*SuppressUsedConversions=*/false,
+ /*PartialOverloading=*/true);
+ } else if (auto FTD = dyn_cast<FunctionTemplateDecl>(C)) {
+ AddTemplateOverloadCandidate(FTD,
+ DeclAccessPair::make(FTD, C->getAccess()),
+ /*ExplicitTemplateArgs=*/nullptr,
+ Args, CandidateSet,
+ /*SuppressUsedConversions=*/false,
+ /*PartialOverloading=*/true);
+ }
+ }
+
+ SmallVector<ResultCandidate, 8> Results;
+ mergeCandidatesWithResults(*this, Results, CandidateSet, Loc);
+ CodeCompleteOverloadResults(*this, S, Results, Args.size());
+}
+
+void Sema::CodeCompleteInitializer(Scope *S, Decl *D) {
+ ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D);
+ if (!VD) {
+ CodeCompleteOrdinaryName(S, PCC_Expression);
+ return;
+ }
+
+ CodeCompleteExpression(S, VD->getType());
+}
+
+void Sema::CodeCompleteReturn(Scope *S) {
+ QualType ResultType;
+ if (isa<BlockDecl>(CurContext)) {
+ if (BlockScopeInfo *BSI = getCurBlock())
+ ResultType = BSI->ReturnType;
+ } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(CurContext))
+ ResultType = Function->getReturnType();
+ else if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(CurContext))
+ ResultType = Method->getReturnType();
+
+ if (ResultType.isNull())
+ CodeCompleteOrdinaryName(S, PCC_Expression);
+ else
+ CodeCompleteExpression(S, ResultType);
+}
+
+void Sema::CodeCompleteAfterIf(Scope *S) {
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ mapCodeCompletionContext(*this, PCC_Statement));
+ Results.setFilter(&ResultBuilder::IsOrdinaryName);
+ Results.EnterNewScope();
+
+ CodeCompletionDeclConsumer Consumer(Results, CurContext);
+ LookupVisibleDecls(S, LookupOrdinaryName, Consumer,
+ CodeCompleter->includeGlobals());
+
+ AddOrdinaryNameResults(PCC_Statement, S, *this, Results);
+
+ // "else" block
+ CodeCompletionBuilder Builder(Results.getAllocator(),
+ Results.getCodeCompletionTUInfo());
+ Builder.AddTypedTextChunk("else");
+ if (Results.includeCodePatterns()) {
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddChunk(CodeCompletionString::CK_LeftBrace);
+ Builder.AddChunk(CodeCompletionString::CK_VerticalSpace);
+ Builder.AddPlaceholderChunk("statements");
+ Builder.AddChunk(CodeCompletionString::CK_VerticalSpace);
+ Builder.AddChunk(CodeCompletionString::CK_RightBrace);
+ }
+ Results.AddResult(Builder.TakeString());
+
+ // "else if" block
+ Builder.AddTypedTextChunk("else");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddTextChunk("if");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ if (getLangOpts().CPlusPlus)
+ Builder.AddPlaceholderChunk("condition");
+ else
+ Builder.AddPlaceholderChunk("expression");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ if (Results.includeCodePatterns()) {
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddChunk(CodeCompletionString::CK_LeftBrace);
+ Builder.AddChunk(CodeCompletionString::CK_VerticalSpace);
+ Builder.AddPlaceholderChunk("statements");
+ Builder.AddChunk(CodeCompletionString::CK_VerticalSpace);
+ Builder.AddChunk(CodeCompletionString::CK_RightBrace);
+ }
+ Results.AddResult(Builder.TakeString());
+
+ Results.ExitScope();
+
+ if (S->getFnParent())
+ AddPrettyFunctionResults(PP.getLangOpts(), Results);
+
+ if (CodeCompleter->includeMacros())
+ AddMacroResults(PP, Results, false);
+
+ HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(),
+ Results.data(),Results.size());
+}
+
+void Sema::CodeCompleteAssignmentRHS(Scope *S, Expr *LHS) {
+ if (LHS)
+ CodeCompleteExpression(S, static_cast<Expr *>(LHS)->getType());
+ else
+ CodeCompleteOrdinaryName(S, PCC_Expression);
+}
+
+void Sema::CodeCompleteQualifiedId(Scope *S, CXXScopeSpec &SS,
+ bool EnteringContext) {
+ if (!SS.getScopeRep() || !CodeCompleter)
+ return;
+
+ DeclContext *Ctx = computeDeclContext(SS, EnteringContext);
+ if (!Ctx)
+ return;
+
+ // Try to instantiate any non-dependent declaration contexts before
+ // we look in them.
+ if (!isDependentScopeSpecifier(SS) && RequireCompleteDeclContext(SS, Ctx))
+ return;
+
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ CodeCompletionContext::CCC_Name);
+ Results.EnterNewScope();
+
+ // The "template" keyword can follow "::" in the grammar, but only
+ // put it into the grammar if the nested-name-specifier is dependent.
+ NestedNameSpecifier *NNS = SS.getScopeRep();
+ if (!Results.empty() && NNS->isDependent())
+ Results.AddResult("template");
+
+ // Add calls to overridden virtual functions, if there are any.
+ //
+ // FIXME: This isn't wonderful, because we don't know whether we're actually
+ // in a context that permits expressions. This is a general issue with
+ // qualified-id completions.
+ if (!EnteringContext)
+ MaybeAddOverrideCalls(*this, Ctx, Results);
+ Results.ExitScope();
+
+ CodeCompletionDeclConsumer Consumer(Results, CurContext);
+ LookupVisibleDecls(Ctx, LookupOrdinaryName, Consumer);
+
+ HandleCodeCompleteResults(this, CodeCompleter,
+ Results.getCompletionContext(),
+ Results.data(),Results.size());
+}
+
+void Sema::CodeCompleteUsing(Scope *S) {
+ if (!CodeCompleter)
+ return;
+
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ CodeCompletionContext::CCC_PotentiallyQualifiedName,
+ &ResultBuilder::IsNestedNameSpecifier);
+ Results.EnterNewScope();
+
+ // If we aren't in class scope, we could see the "namespace" keyword.
+ if (!S->isClassScope())
+ Results.AddResult(CodeCompletionResult("namespace"));
+
+ // After "using", we can see anything that would start a
+ // nested-name-specifier.
+ CodeCompletionDeclConsumer Consumer(Results, CurContext);
+ LookupVisibleDecls(S, LookupOrdinaryName, Consumer,
+ CodeCompleter->includeGlobals());
+ Results.ExitScope();
+
+ HandleCodeCompleteResults(this, CodeCompleter,
+ CodeCompletionContext::CCC_PotentiallyQualifiedName,
+ Results.data(),Results.size());
+}
+
+void Sema::CodeCompleteUsingDirective(Scope *S) {
+ if (!CodeCompleter)
+ return;
+
+ // After "using namespace", we expect to see a namespace name or namespace
+ // alias.
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ CodeCompletionContext::CCC_Namespace,
+ &ResultBuilder::IsNamespaceOrAlias);
+ Results.EnterNewScope();
+ CodeCompletionDeclConsumer Consumer(Results, CurContext);
+ LookupVisibleDecls(S, LookupOrdinaryName, Consumer,
+ CodeCompleter->includeGlobals());
+ Results.ExitScope();
+ HandleCodeCompleteResults(this, CodeCompleter,
+ CodeCompletionContext::CCC_Namespace,
+ Results.data(),Results.size());
+}
+
+void Sema::CodeCompleteNamespaceDecl(Scope *S) {
+ if (!CodeCompleter)
+ return;
+
+ DeclContext *Ctx = S->getEntity();
+ if (!S->getParent())
+ Ctx = Context.getTranslationUnitDecl();
+
+ bool SuppressedGlobalResults
+ = Ctx && !CodeCompleter->includeGlobals() && isa<TranslationUnitDecl>(Ctx);
+
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ SuppressedGlobalResults
+ ? CodeCompletionContext::CCC_Namespace
+ : CodeCompletionContext::CCC_Other,
+ &ResultBuilder::IsNamespace);
+
+ if (Ctx && Ctx->isFileContext() && !SuppressedGlobalResults) {
+ // We only want to see those namespaces that have already been defined
+ // within this scope, because its likely that the user is creating an
+ // extended namespace declaration. Keep track of the most recent
+ // definition of each namespace.
+ std::map<NamespaceDecl *, NamespaceDecl *> OrigToLatest;
+ for (DeclContext::specific_decl_iterator<NamespaceDecl>
+ NS(Ctx->decls_begin()), NSEnd(Ctx->decls_end());
+ NS != NSEnd; ++NS)
+ OrigToLatest[NS->getOriginalNamespace()] = *NS;
+
+ // Add the most recent definition (or extended definition) of each
+ // namespace to the list of results.
+ Results.EnterNewScope();
+ for (std::map<NamespaceDecl *, NamespaceDecl *>::iterator
+ NS = OrigToLatest.begin(),
+ NSEnd = OrigToLatest.end();
+ NS != NSEnd; ++NS)
+ Results.AddResult(CodeCompletionResult(
+ NS->second, Results.getBasePriority(NS->second),
+ nullptr),
+ CurContext, nullptr, false);
+ Results.ExitScope();
+ }
+
+ HandleCodeCompleteResults(this, CodeCompleter,
+ Results.getCompletionContext(),
+ Results.data(),Results.size());
+}
+
+void Sema::CodeCompleteNamespaceAliasDecl(Scope *S) {
+ if (!CodeCompleter)
+ return;
+
+ // After "namespace", we expect to see a namespace or alias.
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ CodeCompletionContext::CCC_Namespace,
+ &ResultBuilder::IsNamespaceOrAlias);
+ CodeCompletionDeclConsumer Consumer(Results, CurContext);
+ LookupVisibleDecls(S, LookupOrdinaryName, Consumer,
+ CodeCompleter->includeGlobals());
+ HandleCodeCompleteResults(this, CodeCompleter,
+ Results.getCompletionContext(),
+ Results.data(),Results.size());
+}
+
+void Sema::CodeCompleteOperatorName(Scope *S) {
+ if (!CodeCompleter)
+ return;
+
+ typedef CodeCompletionResult Result;
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ CodeCompletionContext::CCC_Type,
+ &ResultBuilder::IsType);
+ Results.EnterNewScope();
+
+ // Add the names of overloadable operators.
+#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
+ if (std::strcmp(Spelling, "?")) \
+ Results.AddResult(Result(Spelling));
+#include "clang/Basic/OperatorKinds.def"
+
+ // Add any type names visible from the current scope
+ Results.allowNestedNameSpecifiers();
+ CodeCompletionDeclConsumer Consumer(Results, CurContext);
+ LookupVisibleDecls(S, LookupOrdinaryName, Consumer,
+ CodeCompleter->includeGlobals());
+
+ // Add any type specifiers
+ AddTypeSpecifierResults(getLangOpts(), Results);
+ Results.ExitScope();
+
+ HandleCodeCompleteResults(this, CodeCompleter,
+ CodeCompletionContext::CCC_Type,
+ Results.data(),Results.size());
+}
+
+void Sema::CodeCompleteConstructorInitializer(
+ Decl *ConstructorD,
+ ArrayRef <CXXCtorInitializer *> Initializers) {
+ PrintingPolicy Policy = getCompletionPrintingPolicy(*this);
+ CXXConstructorDecl *Constructor
+ = static_cast<CXXConstructorDecl *>(ConstructorD);
+ if (!Constructor)
+ return;
+
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ CodeCompletionContext::CCC_PotentiallyQualifiedName);
+ Results.EnterNewScope();
+
+ // Fill in any already-initialized fields or base classes.
+ llvm::SmallPtrSet<FieldDecl *, 4> InitializedFields;
+ llvm::SmallPtrSet<CanQualType, 4> InitializedBases;
+ for (unsigned I = 0, E = Initializers.size(); I != E; ++I) {
+ if (Initializers[I]->isBaseInitializer())
+ InitializedBases.insert(
+ Context.getCanonicalType(QualType(Initializers[I]->getBaseClass(), 0)));
+ else
+ InitializedFields.insert(cast<FieldDecl>(
+ Initializers[I]->getAnyMember()));
+ }
+
+ // Add completions for base classes.
+ CodeCompletionBuilder Builder(Results.getAllocator(),
+ Results.getCodeCompletionTUInfo());
+ bool SawLastInitializer = Initializers.empty();
+ CXXRecordDecl *ClassDecl = Constructor->getParent();
+ for (const auto &Base : ClassDecl->bases()) {
+ if (!InitializedBases.insert(Context.getCanonicalType(Base.getType()))
+ .second) {
+ SawLastInitializer
+ = !Initializers.empty() &&
+ Initializers.back()->isBaseInitializer() &&
+ Context.hasSameUnqualifiedType(Base.getType(),
+ QualType(Initializers.back()->getBaseClass(), 0));
+ continue;
+ }
+
+ Builder.AddTypedTextChunk(
+ Results.getAllocator().CopyString(
+ Base.getType().getAsString(Policy)));
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddPlaceholderChunk("args");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Results.AddResult(CodeCompletionResult(Builder.TakeString(),
+ SawLastInitializer? CCP_NextInitializer
+ : CCP_MemberDeclaration));
+ SawLastInitializer = false;
+ }
+
+ // Add completions for virtual base classes.
+ for (const auto &Base : ClassDecl->vbases()) {
+ if (!InitializedBases.insert(Context.getCanonicalType(Base.getType()))
+ .second) {
+ SawLastInitializer
+ = !Initializers.empty() &&
+ Initializers.back()->isBaseInitializer() &&
+ Context.hasSameUnqualifiedType(Base.getType(),
+ QualType(Initializers.back()->getBaseClass(), 0));
+ continue;
+ }
+
+ Builder.AddTypedTextChunk(
+ Builder.getAllocator().CopyString(
+ Base.getType().getAsString(Policy)));
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddPlaceholderChunk("args");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Results.AddResult(CodeCompletionResult(Builder.TakeString(),
+ SawLastInitializer? CCP_NextInitializer
+ : CCP_MemberDeclaration));
+ SawLastInitializer = false;
+ }
+
+ // Add completions for members.
+ for (auto *Field : ClassDecl->fields()) {
+ if (!InitializedFields.insert(cast<FieldDecl>(Field->getCanonicalDecl()))
+ .second) {
+ SawLastInitializer
+ = !Initializers.empty() &&
+ Initializers.back()->isAnyMemberInitializer() &&
+ Initializers.back()->getAnyMember() == Field;
+ continue;
+ }
+
+ if (!Field->getDeclName())
+ continue;
+
+ Builder.AddTypedTextChunk(Builder.getAllocator().CopyString(
+ Field->getIdentifier()->getName()));
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddPlaceholderChunk("args");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Results.AddResult(CodeCompletionResult(Builder.TakeString(),
+ SawLastInitializer? CCP_NextInitializer
+ : CCP_MemberDeclaration,
+ CXCursor_MemberRef,
+ CXAvailability_Available,
+ Field));
+ SawLastInitializer = false;
+ }
+ Results.ExitScope();
+
+ HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(),
+ Results.data(), Results.size());
+}
+
+/// \brief Determine whether this scope denotes a namespace.
+static bool isNamespaceScope(Scope *S) {
+ DeclContext *DC = S->getEntity();
+ if (!DC)
+ return false;
+
+ return DC->isFileContext();
+}
+
+void Sema::CodeCompleteLambdaIntroducer(Scope *S, LambdaIntroducer &Intro,
+ bool AfterAmpersand) {
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ CodeCompletionContext::CCC_Other);
+ Results.EnterNewScope();
+
+ // Note what has already been captured.
+ llvm::SmallPtrSet<IdentifierInfo *, 4> Known;
+ bool IncludedThis = false;
+ for (const auto &C : Intro.Captures) {
+ if (C.Kind == LCK_This) {
+ IncludedThis = true;
+ continue;
+ }
+
+ Known.insert(C.Id);
+ }
+
+ // Look for other capturable variables.
+ for (; S && !isNamespaceScope(S); S = S->getParent()) {
+ for (const auto *D : S->decls()) {
+ const auto *Var = dyn_cast<VarDecl>(D);
+ if (!Var ||
+ !Var->hasLocalStorage() ||
+ Var->hasAttr<BlocksAttr>())
+ continue;
+
+ if (Known.insert(Var->getIdentifier()).second)
+ Results.AddResult(CodeCompletionResult(Var, CCP_LocalDeclaration),
+ CurContext, nullptr, false);
+ }
+ }
+
+ // Add 'this', if it would be valid.
+ if (!IncludedThis && !AfterAmpersand && Intro.Default != LCD_ByCopy)
+ addThisCompletion(*this, Results);
+
+ Results.ExitScope();
+
+ HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(),
+ Results.data(), Results.size());
+}
+
+/// Macro that optionally prepends an "@" to the string literal passed in via
+/// Keyword, depending on whether NeedAt is true or false.
+#define OBJC_AT_KEYWORD_NAME(NeedAt,Keyword) ((NeedAt)? "@" Keyword : Keyword)
+
+static void AddObjCImplementationResults(const LangOptions &LangOpts,
+ ResultBuilder &Results,
+ bool NeedAt) {
+ typedef CodeCompletionResult Result;
+ // Since we have an implementation, we can end it.
+ Results.AddResult(Result(OBJC_AT_KEYWORD_NAME(NeedAt,"end")));
+
+ CodeCompletionBuilder Builder(Results.getAllocator(),
+ Results.getCodeCompletionTUInfo());
+ if (LangOpts.ObjC2) {
+ // @dynamic
+ Builder.AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,"dynamic"));
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("property");
+ Results.AddResult(Result(Builder.TakeString()));
+
+ // @synthesize
+ Builder.AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,"synthesize"));
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("property");
+ Results.AddResult(Result(Builder.TakeString()));
+ }
+}
+
+static void AddObjCInterfaceResults(const LangOptions &LangOpts,
+ ResultBuilder &Results,
+ bool NeedAt) {
+ typedef CodeCompletionResult Result;
+
+ // Since we have an interface or protocol, we can end it.
+ Results.AddResult(Result(OBJC_AT_KEYWORD_NAME(NeedAt,"end")));
+
+ if (LangOpts.ObjC2) {
+ // @property
+ Results.AddResult(Result(OBJC_AT_KEYWORD_NAME(NeedAt,"property")));
+
+ // @required
+ Results.AddResult(Result(OBJC_AT_KEYWORD_NAME(NeedAt,"required")));
+
+ // @optional
+ Results.AddResult(Result(OBJC_AT_KEYWORD_NAME(NeedAt,"optional")));
+ }
+}
+
+static void AddObjCTopLevelResults(ResultBuilder &Results, bool NeedAt) {
+ typedef CodeCompletionResult Result;
+ CodeCompletionBuilder Builder(Results.getAllocator(),
+ Results.getCodeCompletionTUInfo());
+
+ // @class name ;
+ Builder.AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,"class"));
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("name");
+ Results.AddResult(Result(Builder.TakeString()));
+
+ if (Results.includeCodePatterns()) {
+ // @interface name
+ // FIXME: Could introduce the whole pattern, including superclasses and
+ // such.
+ Builder.AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,"interface"));
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("class");
+ Results.AddResult(Result(Builder.TakeString()));
+
+ // @protocol name
+ Builder.AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,"protocol"));
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("protocol");
+ Results.AddResult(Result(Builder.TakeString()));
+
+ // @implementation name
+ Builder.AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,"implementation"));
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("class");
+ Results.AddResult(Result(Builder.TakeString()));
+ }
+
+ // @compatibility_alias name
+ Builder.AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,"compatibility_alias"));
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("alias");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("class");
+ Results.AddResult(Result(Builder.TakeString()));
+
+ if (Results.getSema().getLangOpts().Modules) {
+ // @import name
+ Builder.AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt, "import"));
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("module");
+ Results.AddResult(Result(Builder.TakeString()));
+ }
+}
+
+void Sema::CodeCompleteObjCAtDirective(Scope *S) {
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ CodeCompletionContext::CCC_Other);
+ Results.EnterNewScope();
+ if (isa<ObjCImplDecl>(CurContext))
+ AddObjCImplementationResults(getLangOpts(), Results, false);
+ else if (CurContext->isObjCContainer())
+ AddObjCInterfaceResults(getLangOpts(), Results, false);
+ else
+ AddObjCTopLevelResults(Results, false);
+ Results.ExitScope();
+ HandleCodeCompleteResults(this, CodeCompleter,
+ CodeCompletionContext::CCC_Other,
+ Results.data(),Results.size());
+}
+
+static void AddObjCExpressionResults(ResultBuilder &Results, bool NeedAt) {
+ typedef CodeCompletionResult Result;
+ CodeCompletionBuilder Builder(Results.getAllocator(),
+ Results.getCodeCompletionTUInfo());
+
+ // @encode ( type-name )
+ const char *EncodeType = "char[]";
+ if (Results.getSema().getLangOpts().CPlusPlus ||
+ Results.getSema().getLangOpts().ConstStrings)
+ EncodeType = "const char[]";
+ Builder.AddResultTypeChunk(EncodeType);
+ Builder.AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,"encode"));
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddPlaceholderChunk("type-name");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Results.AddResult(Result(Builder.TakeString()));
+
+ // @protocol ( protocol-name )
+ Builder.AddResultTypeChunk("Protocol *");
+ Builder.AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,"protocol"));
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddPlaceholderChunk("protocol-name");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Results.AddResult(Result(Builder.TakeString()));
+
+ // @selector ( selector )
+ Builder.AddResultTypeChunk("SEL");
+ Builder.AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,"selector"));
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddPlaceholderChunk("selector");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Results.AddResult(Result(Builder.TakeString()));
+
+ // @"string"
+ Builder.AddResultTypeChunk("NSString *");
+ Builder.AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,"\""));
+ Builder.AddPlaceholderChunk("string");
+ Builder.AddTextChunk("\"");
+ Results.AddResult(Result(Builder.TakeString()));
+
+ // @[objects, ...]
+ Builder.AddResultTypeChunk("NSArray *");
+ Builder.AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,"["));
+ Builder.AddPlaceholderChunk("objects, ...");
+ Builder.AddChunk(CodeCompletionString::CK_RightBracket);
+ Results.AddResult(Result(Builder.TakeString()));
+
+ // @{key : object, ...}
+ Builder.AddResultTypeChunk("NSDictionary *");
+ Builder.AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,"{"));
+ Builder.AddPlaceholderChunk("key");
+ Builder.AddChunk(CodeCompletionString::CK_Colon);
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("object, ...");
+ Builder.AddChunk(CodeCompletionString::CK_RightBrace);
+ Results.AddResult(Result(Builder.TakeString()));
+
+ // @(expression)
+ Builder.AddResultTypeChunk("id");
+ Builder.AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt, "("));
+ Builder.AddPlaceholderChunk("expression");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Results.AddResult(Result(Builder.TakeString()));
+}
+
+static void AddObjCStatementResults(ResultBuilder &Results, bool NeedAt) {
+ typedef CodeCompletionResult Result;
+ CodeCompletionBuilder Builder(Results.getAllocator(),
+ Results.getCodeCompletionTUInfo());
+
+ if (Results.includeCodePatterns()) {
+ // @try { statements } @catch ( declaration ) { statements } @finally
+ // { statements }
+ Builder.AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,"try"));
+ Builder.AddChunk(CodeCompletionString::CK_LeftBrace);
+ Builder.AddPlaceholderChunk("statements");
+ Builder.AddChunk(CodeCompletionString::CK_RightBrace);
+ Builder.AddTextChunk("@catch");
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddPlaceholderChunk("parameter");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Builder.AddChunk(CodeCompletionString::CK_LeftBrace);
+ Builder.AddPlaceholderChunk("statements");
+ Builder.AddChunk(CodeCompletionString::CK_RightBrace);
+ Builder.AddTextChunk("@finally");
+ Builder.AddChunk(CodeCompletionString::CK_LeftBrace);
+ Builder.AddPlaceholderChunk("statements");
+ Builder.AddChunk(CodeCompletionString::CK_RightBrace);
+ Results.AddResult(Result(Builder.TakeString()));
+ }
+
+ // @throw
+ Builder.AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,"throw"));
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("expression");
+ Results.AddResult(Result(Builder.TakeString()));
+
+ if (Results.includeCodePatterns()) {
+ // @synchronized ( expression ) { statements }
+ Builder.AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,"synchronized"));
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddPlaceholderChunk("expression");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Builder.AddChunk(CodeCompletionString::CK_LeftBrace);
+ Builder.AddPlaceholderChunk("statements");
+ Builder.AddChunk(CodeCompletionString::CK_RightBrace);
+ Results.AddResult(Result(Builder.TakeString()));
+ }
+}
+
+static void AddObjCVisibilityResults(const LangOptions &LangOpts,
+ ResultBuilder &Results,
+ bool NeedAt) {
+ typedef CodeCompletionResult Result;
+ Results.AddResult(Result(OBJC_AT_KEYWORD_NAME(NeedAt,"private")));
+ Results.AddResult(Result(OBJC_AT_KEYWORD_NAME(NeedAt,"protected")));
+ Results.AddResult(Result(OBJC_AT_KEYWORD_NAME(NeedAt,"public")));
+ if (LangOpts.ObjC2)
+ Results.AddResult(Result(OBJC_AT_KEYWORD_NAME(NeedAt,"package")));
+}
+
+void Sema::CodeCompleteObjCAtVisibility(Scope *S) {
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ CodeCompletionContext::CCC_Other);
+ Results.EnterNewScope();
+ AddObjCVisibilityResults(getLangOpts(), Results, false);
+ Results.ExitScope();
+ HandleCodeCompleteResults(this, CodeCompleter,
+ CodeCompletionContext::CCC_Other,
+ Results.data(),Results.size());
+}
+
+void Sema::CodeCompleteObjCAtStatement(Scope *S) {
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ CodeCompletionContext::CCC_Other);
+ Results.EnterNewScope();
+ AddObjCStatementResults(Results, false);
+ AddObjCExpressionResults(Results, false);
+ Results.ExitScope();
+ HandleCodeCompleteResults(this, CodeCompleter,
+ CodeCompletionContext::CCC_Other,
+ Results.data(),Results.size());
+}
+
+void Sema::CodeCompleteObjCAtExpression(Scope *S) {
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ CodeCompletionContext::CCC_Other);
+ Results.EnterNewScope();
+ AddObjCExpressionResults(Results, false);
+ Results.ExitScope();
+ HandleCodeCompleteResults(this, CodeCompleter,
+ CodeCompletionContext::CCC_Other,
+ Results.data(),Results.size());
+}
+
+/// \brief Determine whether the addition of the given flag to an Objective-C
+/// property's attributes will cause a conflict.
+static bool ObjCPropertyFlagConflicts(unsigned Attributes, unsigned NewFlag) {
+ // Check if we've already added this flag.
+ if (Attributes & NewFlag)
+ return true;
+
+ Attributes |= NewFlag;
+
+ // Check for collisions with "readonly".
+ if ((Attributes & ObjCDeclSpec::DQ_PR_readonly) &&
+ (Attributes & ObjCDeclSpec::DQ_PR_readwrite))
+ return true;
+
+ // Check for more than one of { assign, copy, retain, strong, weak }.
+ unsigned AssignCopyRetMask = Attributes & (ObjCDeclSpec::DQ_PR_assign |
+ ObjCDeclSpec::DQ_PR_unsafe_unretained |
+ ObjCDeclSpec::DQ_PR_copy |
+ ObjCDeclSpec::DQ_PR_retain |
+ ObjCDeclSpec::DQ_PR_strong |
+ ObjCDeclSpec::DQ_PR_weak);
+ if (AssignCopyRetMask &&
+ AssignCopyRetMask != ObjCDeclSpec::DQ_PR_assign &&
+ AssignCopyRetMask != ObjCDeclSpec::DQ_PR_unsafe_unretained &&
+ AssignCopyRetMask != ObjCDeclSpec::DQ_PR_copy &&
+ AssignCopyRetMask != ObjCDeclSpec::DQ_PR_retain &&
+ AssignCopyRetMask != ObjCDeclSpec::DQ_PR_strong &&
+ AssignCopyRetMask != ObjCDeclSpec::DQ_PR_weak)
+ return true;
+
+ return false;
+}
+
+void Sema::CodeCompleteObjCPropertyFlags(Scope *S, ObjCDeclSpec &ODS) {
+ if (!CodeCompleter)
+ return;
+
+ unsigned Attributes = ODS.getPropertyAttributes();
+
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ CodeCompletionContext::CCC_Other);
+ Results.EnterNewScope();
+ if (!ObjCPropertyFlagConflicts(Attributes, ObjCDeclSpec::DQ_PR_readonly))
+ Results.AddResult(CodeCompletionResult("readonly"));
+ if (!ObjCPropertyFlagConflicts(Attributes, ObjCDeclSpec::DQ_PR_assign))
+ Results.AddResult(CodeCompletionResult("assign"));
+ if (!ObjCPropertyFlagConflicts(Attributes,
+ ObjCDeclSpec::DQ_PR_unsafe_unretained))
+ Results.AddResult(CodeCompletionResult("unsafe_unretained"));
+ if (!ObjCPropertyFlagConflicts(Attributes, ObjCDeclSpec::DQ_PR_readwrite))
+ Results.AddResult(CodeCompletionResult("readwrite"));
+ if (!ObjCPropertyFlagConflicts(Attributes, ObjCDeclSpec::DQ_PR_retain))
+ Results.AddResult(CodeCompletionResult("retain"));
+ if (!ObjCPropertyFlagConflicts(Attributes, ObjCDeclSpec::DQ_PR_strong))
+ Results.AddResult(CodeCompletionResult("strong"));
+ if (!ObjCPropertyFlagConflicts(Attributes, ObjCDeclSpec::DQ_PR_copy))
+ Results.AddResult(CodeCompletionResult("copy"));
+ if (!ObjCPropertyFlagConflicts(Attributes, ObjCDeclSpec::DQ_PR_nonatomic))
+ Results.AddResult(CodeCompletionResult("nonatomic"));
+ if (!ObjCPropertyFlagConflicts(Attributes, ObjCDeclSpec::DQ_PR_atomic))
+ Results.AddResult(CodeCompletionResult("atomic"));
+
+ // Only suggest "weak" if we're compiling for ARC-with-weak-references or GC.
+ if (getLangOpts().ObjCARCWeak || getLangOpts().getGC() != LangOptions::NonGC)
+ if (!ObjCPropertyFlagConflicts(Attributes, ObjCDeclSpec::DQ_PR_weak))
+ Results.AddResult(CodeCompletionResult("weak"));
+
+ if (!ObjCPropertyFlagConflicts(Attributes, ObjCDeclSpec::DQ_PR_setter)) {
+ CodeCompletionBuilder Setter(Results.getAllocator(),
+ Results.getCodeCompletionTUInfo());
+ Setter.AddTypedTextChunk("setter");
+ Setter.AddTextChunk("=");
+ Setter.AddPlaceholderChunk("method");
+ Results.AddResult(CodeCompletionResult(Setter.TakeString()));
+ }
+ if (!ObjCPropertyFlagConflicts(Attributes, ObjCDeclSpec::DQ_PR_getter)) {
+ CodeCompletionBuilder Getter(Results.getAllocator(),
+ Results.getCodeCompletionTUInfo());
+ Getter.AddTypedTextChunk("getter");
+ Getter.AddTextChunk("=");
+ Getter.AddPlaceholderChunk("method");
+ Results.AddResult(CodeCompletionResult(Getter.TakeString()));
+ }
+ Results.ExitScope();
+ HandleCodeCompleteResults(this, CodeCompleter,
+ CodeCompletionContext::CCC_Other,
+ Results.data(),Results.size());
+}
+
+/// \brief Describes the kind of Objective-C method that we want to find
+/// via code completion.
+enum ObjCMethodKind {
+ MK_Any, ///< Any kind of method, provided it means other specified criteria.
+ MK_ZeroArgSelector, ///< Zero-argument (unary) selector.
+ MK_OneArgSelector ///< One-argument selector.
+};
+
+static bool isAcceptableObjCSelector(Selector Sel,
+ ObjCMethodKind WantKind,
+ ArrayRef<IdentifierInfo *> SelIdents,
+ bool AllowSameLength = true) {
+ unsigned NumSelIdents = SelIdents.size();
+ if (NumSelIdents > Sel.getNumArgs())
+ return false;
+
+ switch (WantKind) {
+ case MK_Any: break;
+ case MK_ZeroArgSelector: return Sel.isUnarySelector();
+ case MK_OneArgSelector: return Sel.getNumArgs() == 1;
+ }
+
+ if (!AllowSameLength && NumSelIdents && NumSelIdents == Sel.getNumArgs())
+ return false;
+
+ for (unsigned I = 0; I != NumSelIdents; ++I)
+ if (SelIdents[I] != Sel.getIdentifierInfoForSlot(I))
+ return false;
+
+ return true;
+}
+
+static bool isAcceptableObjCMethod(ObjCMethodDecl *Method,
+ ObjCMethodKind WantKind,
+ ArrayRef<IdentifierInfo *> SelIdents,
+ bool AllowSameLength = true) {
+ return isAcceptableObjCSelector(Method->getSelector(), WantKind, SelIdents,
+ AllowSameLength);
+}
+
+namespace {
+ /// \brief A set of selectors, which is used to avoid introducing multiple
+ /// completions with the same selector into the result set.
+ typedef llvm::SmallPtrSet<Selector, 16> VisitedSelectorSet;
+}
+
+/// \brief Add all of the Objective-C methods in the given Objective-C
+/// container to the set of results.
+///
+/// The container will be a class, protocol, category, or implementation of
+/// any of the above. This mether will recurse to include methods from
+/// the superclasses of classes along with their categories, protocols, and
+/// implementations.
+///
+/// \param Container the container in which we'll look to find methods.
+///
+/// \param WantInstanceMethods Whether to add instance methods (only); if
+/// false, this routine will add factory methods (only).
+///
+/// \param CurContext the context in which we're performing the lookup that
+/// finds methods.
+///
+/// \param AllowSameLength Whether we allow a method to be added to the list
+/// when it has the same number of parameters as we have selector identifiers.
+///
+/// \param Results the structure into which we'll add results.
+static void AddObjCMethods(ObjCContainerDecl *Container,
+ bool WantInstanceMethods,
+ ObjCMethodKind WantKind,
+ ArrayRef<IdentifierInfo *> SelIdents,
+ DeclContext *CurContext,
+ VisitedSelectorSet &Selectors,
+ bool AllowSameLength,
+ ResultBuilder &Results,
+ bool InOriginalClass = true) {
+ typedef CodeCompletionResult Result;
+ Container = getContainerDef(Container);
+ ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Container);
+ bool isRootClass = IFace && !IFace->getSuperClass();
+ for (auto *M : Container->methods()) {
+ // The instance methods on the root class can be messaged via the
+ // metaclass.
+ if (M->isInstanceMethod() == WantInstanceMethods ||
+ (isRootClass && !WantInstanceMethods)) {
+ // Check whether the selector identifiers we've been given are a
+ // subset of the identifiers for this particular method.
+ if (!isAcceptableObjCMethod(M, WantKind, SelIdents, AllowSameLength))
+ continue;
+
+ if (!Selectors.insert(M->getSelector()).second)
+ continue;
+
+ Result R = Result(M, Results.getBasePriority(M), nullptr);
+ R.StartParameter = SelIdents.size();
+ R.AllParametersAreInformative = (WantKind != MK_Any);
+ if (!InOriginalClass)
+ R.Priority += CCD_InBaseClass;
+ Results.MaybeAddResult(R, CurContext);
+ }
+ }
+
+ // Visit the protocols of protocols.
+ if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Container)) {
+ if (Protocol->hasDefinition()) {
+ const ObjCList<ObjCProtocolDecl> &Protocols
+ = Protocol->getReferencedProtocols();
+ for (ObjCList<ObjCProtocolDecl>::iterator I = Protocols.begin(),
+ E = Protocols.end();
+ I != E; ++I)
+ AddObjCMethods(*I, WantInstanceMethods, WantKind, SelIdents,
+ CurContext, Selectors, AllowSameLength, Results, false);
+ }
+ }
+
+ if (!IFace || !IFace->hasDefinition())
+ return;
+
+ // Add methods in protocols.
+ for (auto *I : IFace->protocols())
+ AddObjCMethods(I, WantInstanceMethods, WantKind, SelIdents,
+ CurContext, Selectors, AllowSameLength, Results, false);
+
+ // Add methods in categories.
+ for (auto *CatDecl : IFace->known_categories()) {
+ AddObjCMethods(CatDecl, WantInstanceMethods, WantKind, SelIdents,
+ CurContext, Selectors, AllowSameLength,
+ Results, InOriginalClass);
+
+ // Add a categories protocol methods.
+ const ObjCList<ObjCProtocolDecl> &Protocols
+ = CatDecl->getReferencedProtocols();
+ for (ObjCList<ObjCProtocolDecl>::iterator I = Protocols.begin(),
+ E = Protocols.end();
+ I != E; ++I)
+ AddObjCMethods(*I, WantInstanceMethods, WantKind, SelIdents,
+ CurContext, Selectors, AllowSameLength,
+ Results, false);
+
+ // Add methods in category implementations.
+ if (ObjCCategoryImplDecl *Impl = CatDecl->getImplementation())
+ AddObjCMethods(Impl, WantInstanceMethods, WantKind, SelIdents,
+ CurContext, Selectors, AllowSameLength,
+ Results, InOriginalClass);
+ }
+
+ // Add methods in superclass.
+ if (IFace->getSuperClass())
+ AddObjCMethods(IFace->getSuperClass(), WantInstanceMethods, WantKind,
+ SelIdents, CurContext, Selectors,
+ AllowSameLength, Results, false);
+
+ // Add methods in our implementation, if any.
+ if (ObjCImplementationDecl *Impl = IFace->getImplementation())
+ AddObjCMethods(Impl, WantInstanceMethods, WantKind, SelIdents,
+ CurContext, Selectors, AllowSameLength,
+ Results, InOriginalClass);
+}
+
+
+void Sema::CodeCompleteObjCPropertyGetter(Scope *S) {
+ // Try to find the interface where getters might live.
+ ObjCInterfaceDecl *Class = dyn_cast_or_null<ObjCInterfaceDecl>(CurContext);
+ if (!Class) {
+ if (ObjCCategoryDecl *Category
+ = dyn_cast_or_null<ObjCCategoryDecl>(CurContext))
+ Class = Category->getClassInterface();
+
+ if (!Class)
+ return;
+ }
+
+ // Find all of the potential getters.
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ CodeCompletionContext::CCC_Other);
+ Results.EnterNewScope();
+
+ VisitedSelectorSet Selectors;
+ AddObjCMethods(Class, true, MK_ZeroArgSelector, None, CurContext, Selectors,
+ /*AllowSameLength=*/true, Results);
+ Results.ExitScope();
+ HandleCodeCompleteResults(this, CodeCompleter,
+ CodeCompletionContext::CCC_Other,
+ Results.data(),Results.size());
+}
+
+void Sema::CodeCompleteObjCPropertySetter(Scope *S) {
+ // Try to find the interface where setters might live.
+ ObjCInterfaceDecl *Class
+ = dyn_cast_or_null<ObjCInterfaceDecl>(CurContext);
+ if (!Class) {
+ if (ObjCCategoryDecl *Category
+ = dyn_cast_or_null<ObjCCategoryDecl>(CurContext))
+ Class = Category->getClassInterface();
+
+ if (!Class)
+ return;
+ }
+
+ // Find all of the potential getters.
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ CodeCompletionContext::CCC_Other);
+ Results.EnterNewScope();
+
+ VisitedSelectorSet Selectors;
+ AddObjCMethods(Class, true, MK_OneArgSelector, None, CurContext,
+ Selectors, /*AllowSameLength=*/true, Results);
+
+ Results.ExitScope();
+ HandleCodeCompleteResults(this, CodeCompleter,
+ CodeCompletionContext::CCC_Other,
+ Results.data(),Results.size());
+}
+
+void Sema::CodeCompleteObjCPassingType(Scope *S, ObjCDeclSpec &DS,
+ bool IsParameter) {
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ CodeCompletionContext::CCC_Type);
+ Results.EnterNewScope();
+
+ // Add context-sensitive, Objective-C parameter-passing keywords.
+ bool AddedInOut = false;
+ if ((DS.getObjCDeclQualifier() &
+ (ObjCDeclSpec::DQ_In | ObjCDeclSpec::DQ_Inout)) == 0) {
+ Results.AddResult("in");
+ Results.AddResult("inout");
+ AddedInOut = true;
+ }
+ if ((DS.getObjCDeclQualifier() &
+ (ObjCDeclSpec::DQ_Out | ObjCDeclSpec::DQ_Inout)) == 0) {
+ Results.AddResult("out");
+ if (!AddedInOut)
+ Results.AddResult("inout");
+ }
+ if ((DS.getObjCDeclQualifier() &
+ (ObjCDeclSpec::DQ_Bycopy | ObjCDeclSpec::DQ_Byref |
+ ObjCDeclSpec::DQ_Oneway)) == 0) {
+ Results.AddResult("bycopy");
+ Results.AddResult("byref");
+ Results.AddResult("oneway");
+ }
+
+ // If we're completing the return type of an Objective-C method and the
+ // identifier IBAction refers to a macro, provide a completion item for
+ // an action, e.g.,
+ // IBAction)<#selector#>:(id)sender
+ if (DS.getObjCDeclQualifier() == 0 && !IsParameter &&
+ PP.isMacroDefined("IBAction")) {
+ CodeCompletionBuilder Builder(Results.getAllocator(),
+ Results.getCodeCompletionTUInfo(),
+ CCP_CodePattern, CXAvailability_Available);
+ Builder.AddTypedTextChunk("IBAction");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Builder.AddPlaceholderChunk("selector");
+ Builder.AddChunk(CodeCompletionString::CK_Colon);
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddTextChunk("id");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Builder.AddTextChunk("sender");
+ Results.AddResult(CodeCompletionResult(Builder.TakeString()));
+ }
+
+ // If we're completing the return type, provide 'instancetype'.
+ if (!IsParameter) {
+ Results.AddResult(CodeCompletionResult("instancetype"));
+ }
+
+ // Add various builtin type names and specifiers.
+ AddOrdinaryNameResults(PCC_Type, S, *this, Results);
+ Results.ExitScope();
+
+ // Add the various type names
+ Results.setFilter(&ResultBuilder::IsOrdinaryNonValueName);
+ CodeCompletionDeclConsumer Consumer(Results, CurContext);
+ LookupVisibleDecls(S, LookupOrdinaryName, Consumer,
+ CodeCompleter->includeGlobals());
+
+ if (CodeCompleter->includeMacros())
+ AddMacroResults(PP, Results, false);
+
+ HandleCodeCompleteResults(this, CodeCompleter,
+ CodeCompletionContext::CCC_Type,
+ Results.data(), Results.size());
+}
+
+/// \brief When we have an expression with type "id", we may assume
+/// that it has some more-specific class type based on knowledge of
+/// common uses of Objective-C. This routine returns that class type,
+/// or NULL if no better result could be determined.
+static ObjCInterfaceDecl *GetAssumedMessageSendExprType(Expr *E) {
+ ObjCMessageExpr *Msg = dyn_cast_or_null<ObjCMessageExpr>(E);
+ if (!Msg)
+ return nullptr;
+
+ Selector Sel = Msg->getSelector();
+ if (Sel.isNull())
+ return nullptr;
+
+ IdentifierInfo *Id = Sel.getIdentifierInfoForSlot(0);
+ if (!Id)
+ return nullptr;
+
+ ObjCMethodDecl *Method = Msg->getMethodDecl();
+ if (!Method)
+ return nullptr;
+
+ // Determine the class that we're sending the message to.
+ ObjCInterfaceDecl *IFace = nullptr;
+ switch (Msg->getReceiverKind()) {
+ case ObjCMessageExpr::Class:
+ if (const ObjCObjectType *ObjType
+ = Msg->getClassReceiver()->getAs<ObjCObjectType>())
+ IFace = ObjType->getInterface();
+ break;
+
+ case ObjCMessageExpr::Instance: {
+ QualType T = Msg->getInstanceReceiver()->getType();
+ if (const ObjCObjectPointerType *Ptr = T->getAs<ObjCObjectPointerType>())
+ IFace = Ptr->getInterfaceDecl();
+ break;
+ }
+
+ case ObjCMessageExpr::SuperInstance:
+ case ObjCMessageExpr::SuperClass:
+ break;
+ }
+
+ if (!IFace)
+ return nullptr;
+
+ ObjCInterfaceDecl *Super = IFace->getSuperClass();
+ if (Method->isInstanceMethod())
+ return llvm::StringSwitch<ObjCInterfaceDecl *>(Id->getName())
+ .Case("retain", IFace)
+ .Case("strong", IFace)
+ .Case("autorelease", IFace)
+ .Case("copy", IFace)
+ .Case("copyWithZone", IFace)
+ .Case("mutableCopy", IFace)
+ .Case("mutableCopyWithZone", IFace)
+ .Case("awakeFromCoder", IFace)
+ .Case("replacementObjectFromCoder", IFace)
+ .Case("class", IFace)
+ .Case("classForCoder", IFace)
+ .Case("superclass", Super)
+ .Default(nullptr);
+
+ return llvm::StringSwitch<ObjCInterfaceDecl *>(Id->getName())
+ .Case("new", IFace)
+ .Case("alloc", IFace)
+ .Case("allocWithZone", IFace)
+ .Case("class", IFace)
+ .Case("superclass", Super)
+ .Default(nullptr);
+}
+
+// Add a special completion for a message send to "super", which fills in the
+// most likely case of forwarding all of our arguments to the superclass
+// function.
+///
+/// \param S The semantic analysis object.
+///
+/// \param NeedSuperKeyword Whether we need to prefix this completion with
+/// the "super" keyword. Otherwise, we just need to provide the arguments.
+///
+/// \param SelIdents The identifiers in the selector that have already been
+/// provided as arguments for a send to "super".
+///
+/// \param Results The set of results to augment.
+///
+/// \returns the Objective-C method declaration that would be invoked by
+/// this "super" completion. If NULL, no completion was added.
+static ObjCMethodDecl *AddSuperSendCompletion(
+ Sema &S, bool NeedSuperKeyword,
+ ArrayRef<IdentifierInfo *> SelIdents,
+ ResultBuilder &Results) {
+ ObjCMethodDecl *CurMethod = S.getCurMethodDecl();
+ if (!CurMethod)
+ return nullptr;
+
+ ObjCInterfaceDecl *Class = CurMethod->getClassInterface();
+ if (!Class)
+ return nullptr;
+
+ // Try to find a superclass method with the same selector.
+ ObjCMethodDecl *SuperMethod = nullptr;
+ while ((Class = Class->getSuperClass()) && !SuperMethod) {
+ // Check in the class
+ SuperMethod = Class->getMethod(CurMethod->getSelector(),
+ CurMethod->isInstanceMethod());
+
+ // Check in categories or class extensions.
+ if (!SuperMethod) {
+ for (const auto *Cat : Class->known_categories()) {
+ if ((SuperMethod = Cat->getMethod(CurMethod->getSelector(),
+ CurMethod->isInstanceMethod())))
+ break;
+ }
+ }
+ }
+
+ if (!SuperMethod)
+ return nullptr;
+
+ // Check whether the superclass method has the same signature.
+ if (CurMethod->param_size() != SuperMethod->param_size() ||
+ CurMethod->isVariadic() != SuperMethod->isVariadic())
+ return nullptr;
+
+ for (ObjCMethodDecl::param_iterator CurP = CurMethod->param_begin(),
+ CurPEnd = CurMethod->param_end(),
+ SuperP = SuperMethod->param_begin();
+ CurP != CurPEnd; ++CurP, ++SuperP) {
+ // Make sure the parameter types are compatible.
+ if (!S.Context.hasSameUnqualifiedType((*CurP)->getType(),
+ (*SuperP)->getType()))
+ return nullptr;
+
+ // Make sure we have a parameter name to forward!
+ if (!(*CurP)->getIdentifier())
+ return nullptr;
+ }
+
+ // We have a superclass method. Now, form the send-to-super completion.
+ CodeCompletionBuilder Builder(Results.getAllocator(),
+ Results.getCodeCompletionTUInfo());
+
+ // Give this completion a return type.
+ AddResultTypeChunk(S.Context, getCompletionPrintingPolicy(S), SuperMethod,
+ Builder);
+
+ // If we need the "super" keyword, add it (plus some spacing).
+ if (NeedSuperKeyword) {
+ Builder.AddTypedTextChunk("super");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ }
+
+ Selector Sel = CurMethod->getSelector();
+ if (Sel.isUnarySelector()) {
+ if (NeedSuperKeyword)
+ Builder.AddTextChunk(Builder.getAllocator().CopyString(
+ Sel.getNameForSlot(0)));
+ else
+ Builder.AddTypedTextChunk(Builder.getAllocator().CopyString(
+ Sel.getNameForSlot(0)));
+ } else {
+ ObjCMethodDecl::param_iterator CurP = CurMethod->param_begin();
+ for (unsigned I = 0, N = Sel.getNumArgs(); I != N; ++I, ++CurP) {
+ if (I > SelIdents.size())
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+
+ if (I < SelIdents.size())
+ Builder.AddInformativeChunk(
+ Builder.getAllocator().CopyString(
+ Sel.getNameForSlot(I) + ":"));
+ else if (NeedSuperKeyword || I > SelIdents.size()) {
+ Builder.AddTextChunk(
+ Builder.getAllocator().CopyString(
+ Sel.getNameForSlot(I) + ":"));
+ Builder.AddPlaceholderChunk(Builder.getAllocator().CopyString(
+ (*CurP)->getIdentifier()->getName()));
+ } else {
+ Builder.AddTypedTextChunk(
+ Builder.getAllocator().CopyString(
+ Sel.getNameForSlot(I) + ":"));
+ Builder.AddPlaceholderChunk(Builder.getAllocator().CopyString(
+ (*CurP)->getIdentifier()->getName()));
+ }
+ }
+ }
+
+ Results.AddResult(CodeCompletionResult(Builder.TakeString(), SuperMethod,
+ CCP_SuperCompletion));
+ return SuperMethod;
+}
+
+void Sema::CodeCompleteObjCMessageReceiver(Scope *S) {
+ typedef CodeCompletionResult Result;
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ CodeCompletionContext::CCC_ObjCMessageReceiver,
+ getLangOpts().CPlusPlus11
+ ? &ResultBuilder::IsObjCMessageReceiverOrLambdaCapture
+ : &ResultBuilder::IsObjCMessageReceiver);
+
+ CodeCompletionDeclConsumer Consumer(Results, CurContext);
+ Results.EnterNewScope();
+ LookupVisibleDecls(S, LookupOrdinaryName, Consumer,
+ CodeCompleter->includeGlobals());
+
+ // If we are in an Objective-C method inside a class that has a superclass,
+ // add "super" as an option.
+ if (ObjCMethodDecl *Method = getCurMethodDecl())
+ if (ObjCInterfaceDecl *Iface = Method->getClassInterface())
+ if (Iface->getSuperClass()) {
+ Results.AddResult(Result("super"));
+
+ AddSuperSendCompletion(*this, /*NeedSuperKeyword=*/true, None, Results);
+ }
+
+ if (getLangOpts().CPlusPlus11)
+ addThisCompletion(*this, Results);
+
+ Results.ExitScope();
+
+ if (CodeCompleter->includeMacros())
+ AddMacroResults(PP, Results, false);
+ HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(),
+ Results.data(), Results.size());
+
+}
+
+void Sema::CodeCompleteObjCSuperMessage(Scope *S, SourceLocation SuperLoc,
+ ArrayRef<IdentifierInfo *> SelIdents,
+ bool AtArgumentExpression) {
+ ObjCInterfaceDecl *CDecl = nullptr;
+ if (ObjCMethodDecl *CurMethod = getCurMethodDecl()) {
+ // Figure out which interface we're in.
+ CDecl = CurMethod->getClassInterface();
+ if (!CDecl)
+ return;
+
+ // Find the superclass of this class.
+ CDecl = CDecl->getSuperClass();
+ if (!CDecl)
+ return;
+
+ if (CurMethod->isInstanceMethod()) {
+ // We are inside an instance method, which means that the message
+ // send [super ...] is actually calling an instance method on the
+ // current object.
+ return CodeCompleteObjCInstanceMessage(S, nullptr, SelIdents,
+ AtArgumentExpression,
+ CDecl);
+ }
+
+ // Fall through to send to the superclass in CDecl.
+ } else {
+ // "super" may be the name of a type or variable. Figure out which
+ // it is.
+ IdentifierInfo *Super = getSuperIdentifier();
+ NamedDecl *ND = LookupSingleName(S, Super, SuperLoc,
+ LookupOrdinaryName);
+ if ((CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(ND))) {
+ // "super" names an interface. Use it.
+ } else if (TypeDecl *TD = dyn_cast_or_null<TypeDecl>(ND)) {
+ if (const ObjCObjectType *Iface
+ = Context.getTypeDeclType(TD)->getAs<ObjCObjectType>())
+ CDecl = Iface->getInterface();
+ } else if (ND && isa<UnresolvedUsingTypenameDecl>(ND)) {
+ // "super" names an unresolved type; we can't be more specific.
+ } else {
+ // Assume that "super" names some kind of value and parse that way.
+ CXXScopeSpec SS;
+ SourceLocation TemplateKWLoc;
+ UnqualifiedId id;
+ id.setIdentifier(Super, SuperLoc);
+ ExprResult SuperExpr = ActOnIdExpression(S, SS, TemplateKWLoc, id,
+ false, false);
+ return CodeCompleteObjCInstanceMessage(S, (Expr *)SuperExpr.get(),
+ SelIdents,
+ AtArgumentExpression);
+ }
+
+ // Fall through
+ }
+
+ ParsedType Receiver;
+ if (CDecl)
+ Receiver = ParsedType::make(Context.getObjCInterfaceType(CDecl));
+ return CodeCompleteObjCClassMessage(S, Receiver, SelIdents,
+ AtArgumentExpression,
+ /*IsSuper=*/true);
+}
+
+/// \brief Given a set of code-completion results for the argument of a message
+/// send, determine the preferred type (if any) for that argument expression.
+static QualType getPreferredArgumentTypeForMessageSend(ResultBuilder &Results,
+ unsigned NumSelIdents) {
+ typedef CodeCompletionResult Result;
+ ASTContext &Context = Results.getSema().Context;
+
+ QualType PreferredType;
+ unsigned BestPriority = CCP_Unlikely * 2;
+ Result *ResultsData = Results.data();
+ for (unsigned I = 0, N = Results.size(); I != N; ++I) {
+ Result &R = ResultsData[I];
+ if (R.Kind == Result::RK_Declaration &&
+ isa<ObjCMethodDecl>(R.Declaration)) {
+ if (R.Priority <= BestPriority) {
+ const ObjCMethodDecl *Method = cast<ObjCMethodDecl>(R.Declaration);
+ if (NumSelIdents <= Method->param_size()) {
+ QualType MyPreferredType = Method->parameters()[NumSelIdents - 1]
+ ->getType();
+ if (R.Priority < BestPriority || PreferredType.isNull()) {
+ BestPriority = R.Priority;
+ PreferredType = MyPreferredType;
+ } else if (!Context.hasSameUnqualifiedType(PreferredType,
+ MyPreferredType)) {
+ PreferredType = QualType();
+ }
+ }
+ }
+ }
+ }
+
+ return PreferredType;
+}
+
+static void AddClassMessageCompletions(Sema &SemaRef, Scope *S,
+ ParsedType Receiver,
+ ArrayRef<IdentifierInfo *> SelIdents,
+ bool AtArgumentExpression,
+ bool IsSuper,
+ ResultBuilder &Results) {
+ typedef CodeCompletionResult Result;
+ ObjCInterfaceDecl *CDecl = nullptr;
+
+ // If the given name refers to an interface type, retrieve the
+ // corresponding declaration.
+ if (Receiver) {
+ QualType T = SemaRef.GetTypeFromParser(Receiver, nullptr);
+ if (!T.isNull())
+ if (const ObjCObjectType *Interface = T->getAs<ObjCObjectType>())
+ CDecl = Interface->getInterface();
+ }
+
+ // Add all of the factory methods in this Objective-C class, its protocols,
+ // superclasses, categories, implementation, etc.
+ Results.EnterNewScope();
+
+ // If this is a send-to-super, try to add the special "super" send
+ // completion.
+ if (IsSuper) {
+ if (ObjCMethodDecl *SuperMethod
+ = AddSuperSendCompletion(SemaRef, false, SelIdents, Results))
+ Results.Ignore(SuperMethod);
+ }
+
+ // If we're inside an Objective-C method definition, prefer its selector to
+ // others.
+ if (ObjCMethodDecl *CurMethod = SemaRef.getCurMethodDecl())
+ Results.setPreferredSelector(CurMethod->getSelector());
+
+ VisitedSelectorSet Selectors;
+ if (CDecl)
+ AddObjCMethods(CDecl, false, MK_Any, SelIdents,
+ SemaRef.CurContext, Selectors, AtArgumentExpression,
+ Results);
+ else {
+ // We're messaging "id" as a type; provide all class/factory methods.
+
+ // If we have an external source, load the entire class method
+ // pool from the AST file.
+ if (SemaRef.getExternalSource()) {
+ for (uint32_t I = 0,
+ N = SemaRef.getExternalSource()->GetNumExternalSelectors();
+ I != N; ++I) {
+ Selector Sel = SemaRef.getExternalSource()->GetExternalSelector(I);
+ if (Sel.isNull() || SemaRef.MethodPool.count(Sel))
+ continue;
+
+ SemaRef.ReadMethodPool(Sel);
+ }
+ }
+
+ for (Sema::GlobalMethodPool::iterator M = SemaRef.MethodPool.begin(),
+ MEnd = SemaRef.MethodPool.end();
+ M != MEnd; ++M) {
+ for (ObjCMethodList *MethList = &M->second.second;
+ MethList && MethList->getMethod();
+ MethList = MethList->getNext()) {
+ if (!isAcceptableObjCMethod(MethList->getMethod(), MK_Any, SelIdents))
+ continue;
+
+ Result R(MethList->getMethod(),
+ Results.getBasePriority(MethList->getMethod()), nullptr);
+ R.StartParameter = SelIdents.size();
+ R.AllParametersAreInformative = false;
+ Results.MaybeAddResult(R, SemaRef.CurContext);
+ }
+ }
+ }
+
+ Results.ExitScope();
+}
+
+void Sema::CodeCompleteObjCClassMessage(Scope *S, ParsedType Receiver,
+ ArrayRef<IdentifierInfo *> SelIdents,
+ bool AtArgumentExpression,
+ bool IsSuper) {
+
+ QualType T = this->GetTypeFromParser(Receiver);
+
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ CodeCompletionContext(CodeCompletionContext::CCC_ObjCClassMessage,
+ T, SelIdents));
+
+ AddClassMessageCompletions(*this, S, Receiver, SelIdents,
+ AtArgumentExpression, IsSuper, Results);
+
+ // If we're actually at the argument expression (rather than prior to the
+ // selector), we're actually performing code completion for an expression.
+ // Determine whether we have a single, best method. If so, we can
+ // code-complete the expression using the corresponding parameter type as
+ // our preferred type, improving completion results.
+ if (AtArgumentExpression) {
+ QualType PreferredType = getPreferredArgumentTypeForMessageSend(Results,
+ SelIdents.size());
+ if (PreferredType.isNull())
+ CodeCompleteOrdinaryName(S, PCC_Expression);
+ else
+ CodeCompleteExpression(S, PreferredType);
+ return;
+ }
+
+ HandleCodeCompleteResults(this, CodeCompleter,
+ Results.getCompletionContext(),
+ Results.data(), Results.size());
+}
+
+void Sema::CodeCompleteObjCInstanceMessage(Scope *S, Expr *Receiver,
+ ArrayRef<IdentifierInfo *> SelIdents,
+ bool AtArgumentExpression,
+ ObjCInterfaceDecl *Super) {
+ typedef CodeCompletionResult Result;
+
+ Expr *RecExpr = static_cast<Expr *>(Receiver);
+
+ // If necessary, apply function/array conversion to the receiver.
+ // C99 6.7.5.3p[7,8].
+ if (RecExpr) {
+ ExprResult Conv = DefaultFunctionArrayLvalueConversion(RecExpr);
+ if (Conv.isInvalid()) // conversion failed. bail.
+ return;
+ RecExpr = Conv.get();
+ }
+ QualType ReceiverType = RecExpr? RecExpr->getType()
+ : Super? Context.getObjCObjectPointerType(
+ Context.getObjCInterfaceType(Super))
+ : Context.getObjCIdType();
+
+ // If we're messaging an expression with type "id" or "Class", check
+ // whether we know something special about the receiver that allows
+ // us to assume a more-specific receiver type.
+ if (ReceiverType->isObjCIdType() || ReceiverType->isObjCClassType()) {
+ if (ObjCInterfaceDecl *IFace = GetAssumedMessageSendExprType(RecExpr)) {
+ if (ReceiverType->isObjCClassType())
+ return CodeCompleteObjCClassMessage(S,
+ ParsedType::make(Context.getObjCInterfaceType(IFace)),
+ SelIdents,
+ AtArgumentExpression, Super);
+
+ ReceiverType = Context.getObjCObjectPointerType(
+ Context.getObjCInterfaceType(IFace));
+ }
+ } else if (RecExpr && getLangOpts().CPlusPlus) {
+ ExprResult Conv = PerformContextuallyConvertToObjCPointer(RecExpr);
+ if (Conv.isUsable()) {
+ RecExpr = Conv.get();
+ ReceiverType = RecExpr->getType();
+ }
+ }
+
+ // Build the set of methods we can see.
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ CodeCompletionContext(CodeCompletionContext::CCC_ObjCInstanceMessage,
+ ReceiverType, SelIdents));
+
+ Results.EnterNewScope();
+
+ // If this is a send-to-super, try to add the special "super" send
+ // completion.
+ if (Super) {
+ if (ObjCMethodDecl *SuperMethod
+ = AddSuperSendCompletion(*this, false, SelIdents, Results))
+ Results.Ignore(SuperMethod);
+ }
+
+ // If we're inside an Objective-C method definition, prefer its selector to
+ // others.
+ if (ObjCMethodDecl *CurMethod = getCurMethodDecl())
+ Results.setPreferredSelector(CurMethod->getSelector());
+
+ // Keep track of the selectors we've already added.
+ VisitedSelectorSet Selectors;
+
+ // Handle messages to Class. This really isn't a message to an instance
+ // method, so we treat it the same way we would treat a message send to a
+ // class method.
+ if (ReceiverType->isObjCClassType() ||
+ ReceiverType->isObjCQualifiedClassType()) {
+ if (ObjCMethodDecl *CurMethod = getCurMethodDecl()) {
+ if (ObjCInterfaceDecl *ClassDecl = CurMethod->getClassInterface())
+ AddObjCMethods(ClassDecl, false, MK_Any, SelIdents,
+ CurContext, Selectors, AtArgumentExpression, Results);
+ }
+ }
+ // Handle messages to a qualified ID ("id<foo>").
+ else if (const ObjCObjectPointerType *QualID
+ = ReceiverType->getAsObjCQualifiedIdType()) {
+ // Search protocols for instance methods.
+ for (auto *I : QualID->quals())
+ AddObjCMethods(I, true, MK_Any, SelIdents, CurContext,
+ Selectors, AtArgumentExpression, Results);
+ }
+ // Handle messages to a pointer to interface type.
+ else if (const ObjCObjectPointerType *IFacePtr
+ = ReceiverType->getAsObjCInterfacePointerType()) {
+ // Search the class, its superclasses, etc., for instance methods.
+ AddObjCMethods(IFacePtr->getInterfaceDecl(), true, MK_Any, SelIdents,
+ CurContext, Selectors, AtArgumentExpression,
+ Results);
+
+ // Search protocols for instance methods.
+ for (auto *I : IFacePtr->quals())
+ AddObjCMethods(I, true, MK_Any, SelIdents, CurContext,
+ Selectors, AtArgumentExpression, Results);
+ }
+ // Handle messages to "id".
+ else if (ReceiverType->isObjCIdType()) {
+ // We're messaging "id", so provide all instance methods we know
+ // about as code-completion results.
+
+ // If we have an external source, load the entire class method
+ // pool from the AST file.
+ if (ExternalSource) {
+ for (uint32_t I = 0, N = ExternalSource->GetNumExternalSelectors();
+ I != N; ++I) {
+ Selector Sel = ExternalSource->GetExternalSelector(I);
+ if (Sel.isNull() || MethodPool.count(Sel))
+ continue;
+
+ ReadMethodPool(Sel);
+ }
+ }
+
+ for (GlobalMethodPool::iterator M = MethodPool.begin(),
+ MEnd = MethodPool.end();
+ M != MEnd; ++M) {
+ for (ObjCMethodList *MethList = &M->second.first;
+ MethList && MethList->getMethod();
+ MethList = MethList->getNext()) {
+ if (!isAcceptableObjCMethod(MethList->getMethod(), MK_Any, SelIdents))
+ continue;
+
+ if (!Selectors.insert(MethList->getMethod()->getSelector()).second)
+ continue;
+
+ Result R(MethList->getMethod(),
+ Results.getBasePriority(MethList->getMethod()), nullptr);
+ R.StartParameter = SelIdents.size();
+ R.AllParametersAreInformative = false;
+ Results.MaybeAddResult(R, CurContext);
+ }
+ }
+ }
+ Results.ExitScope();
+
+
+ // If we're actually at the argument expression (rather than prior to the
+ // selector), we're actually performing code completion for an expression.
+ // Determine whether we have a single, best method. If so, we can
+ // code-complete the expression using the corresponding parameter type as
+ // our preferred type, improving completion results.
+ if (AtArgumentExpression) {
+ QualType PreferredType = getPreferredArgumentTypeForMessageSend(Results,
+ SelIdents.size());
+ if (PreferredType.isNull())
+ CodeCompleteOrdinaryName(S, PCC_Expression);
+ else
+ CodeCompleteExpression(S, PreferredType);
+ return;
+ }
+
+ HandleCodeCompleteResults(this, CodeCompleter,
+ Results.getCompletionContext(),
+ Results.data(),Results.size());
+}
+
+void Sema::CodeCompleteObjCForCollection(Scope *S,
+ DeclGroupPtrTy IterationVar) {
+ CodeCompleteExpressionData Data;
+ Data.ObjCCollection = true;
+
+ if (IterationVar.getAsOpaquePtr()) {
+ DeclGroupRef DG = IterationVar.get();
+ for (DeclGroupRef::iterator I = DG.begin(), End = DG.end(); I != End; ++I) {
+ if (*I)
+ Data.IgnoreDecls.push_back(*I);
+ }
+ }
+
+ CodeCompleteExpression(S, Data);
+}
+
+void Sema::CodeCompleteObjCSelector(Scope *S,
+ ArrayRef<IdentifierInfo *> SelIdents) {
+ // If we have an external source, load the entire class method
+ // pool from the AST file.
+ if (ExternalSource) {
+ for (uint32_t I = 0, N = ExternalSource->GetNumExternalSelectors();
+ I != N; ++I) {
+ Selector Sel = ExternalSource->GetExternalSelector(I);
+ if (Sel.isNull() || MethodPool.count(Sel))
+ continue;
+
+ ReadMethodPool(Sel);
+ }
+ }
+
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ CodeCompletionContext::CCC_SelectorName);
+ Results.EnterNewScope();
+ for (GlobalMethodPool::iterator M = MethodPool.begin(),
+ MEnd = MethodPool.end();
+ M != MEnd; ++M) {
+
+ Selector Sel = M->first;
+ if (!isAcceptableObjCSelector(Sel, MK_Any, SelIdents))
+ continue;
+
+ CodeCompletionBuilder Builder(Results.getAllocator(),
+ Results.getCodeCompletionTUInfo());
+ if (Sel.isUnarySelector()) {
+ Builder.AddTypedTextChunk(Builder.getAllocator().CopyString(
+ Sel.getNameForSlot(0)));
+ Results.AddResult(Builder.TakeString());
+ continue;
+ }
+
+ std::string Accumulator;
+ for (unsigned I = 0, N = Sel.getNumArgs(); I != N; ++I) {
+ if (I == SelIdents.size()) {
+ if (!Accumulator.empty()) {
+ Builder.AddInformativeChunk(Builder.getAllocator().CopyString(
+ Accumulator));
+ Accumulator.clear();
+ }
+ }
+
+ Accumulator += Sel.getNameForSlot(I);
+ Accumulator += ':';
+ }
+ Builder.AddTypedTextChunk(Builder.getAllocator().CopyString( Accumulator));
+ Results.AddResult(Builder.TakeString());
+ }
+ Results.ExitScope();
+
+ HandleCodeCompleteResults(this, CodeCompleter,
+ CodeCompletionContext::CCC_SelectorName,
+ Results.data(), Results.size());
+}
+
+/// \brief Add all of the protocol declarations that we find in the given
+/// (translation unit) context.
+static void AddProtocolResults(DeclContext *Ctx, DeclContext *CurContext,
+ bool OnlyForwardDeclarations,
+ ResultBuilder &Results) {
+ typedef CodeCompletionResult Result;
+
+ for (const auto *D : Ctx->decls()) {
+ // Record any protocols we find.
+ if (const auto *Proto = dyn_cast<ObjCProtocolDecl>(D))
+ if (!OnlyForwardDeclarations || !Proto->hasDefinition())
+ Results.AddResult(Result(Proto, Results.getBasePriority(Proto),nullptr),
+ CurContext, nullptr, false);
+ }
+}
+
+void Sema::CodeCompleteObjCProtocolReferences(IdentifierLocPair *Protocols,
+ unsigned NumProtocols) {
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ CodeCompletionContext::CCC_ObjCProtocolName);
+
+ if (CodeCompleter && CodeCompleter->includeGlobals()) {
+ Results.EnterNewScope();
+
+ // Tell the result set to ignore all of the protocols we have
+ // already seen.
+ // FIXME: This doesn't work when caching code-completion results.
+ for (unsigned I = 0; I != NumProtocols; ++I)
+ if (ObjCProtocolDecl *Protocol = LookupProtocol(Protocols[I].first,
+ Protocols[I].second))
+ Results.Ignore(Protocol);
+
+ // Add all protocols.
+ AddProtocolResults(Context.getTranslationUnitDecl(), CurContext, false,
+ Results);
+
+ Results.ExitScope();
+ }
+
+ HandleCodeCompleteResults(this, CodeCompleter,
+ CodeCompletionContext::CCC_ObjCProtocolName,
+ Results.data(),Results.size());
+}
+
+void Sema::CodeCompleteObjCProtocolDecl(Scope *) {
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ CodeCompletionContext::CCC_ObjCProtocolName);
+
+ if (CodeCompleter && CodeCompleter->includeGlobals()) {
+ Results.EnterNewScope();
+
+ // Add all protocols.
+ AddProtocolResults(Context.getTranslationUnitDecl(), CurContext, true,
+ Results);
+
+ Results.ExitScope();
+ }
+
+ HandleCodeCompleteResults(this, CodeCompleter,
+ CodeCompletionContext::CCC_ObjCProtocolName,
+ Results.data(),Results.size());
+}
+
+/// \brief Add all of the Objective-C interface declarations that we find in
+/// the given (translation unit) context.
+static void AddInterfaceResults(DeclContext *Ctx, DeclContext *CurContext,
+ bool OnlyForwardDeclarations,
+ bool OnlyUnimplemented,
+ ResultBuilder &Results) {
+ typedef CodeCompletionResult Result;
+
+ for (const auto *D : Ctx->decls()) {
+ // Record any interfaces we find.
+ if (const auto *Class = dyn_cast<ObjCInterfaceDecl>(D))
+ if ((!OnlyForwardDeclarations || !Class->hasDefinition()) &&
+ (!OnlyUnimplemented || !Class->getImplementation()))
+ Results.AddResult(Result(Class, Results.getBasePriority(Class),nullptr),
+ CurContext, nullptr, false);
+ }
+}
+
+void Sema::CodeCompleteObjCInterfaceDecl(Scope *S) {
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ CodeCompletionContext::CCC_Other);
+ Results.EnterNewScope();
+
+ if (CodeCompleter->includeGlobals()) {
+ // Add all classes.
+ AddInterfaceResults(Context.getTranslationUnitDecl(), CurContext, false,
+ false, Results);
+ }
+
+ Results.ExitScope();
+
+ HandleCodeCompleteResults(this, CodeCompleter,
+ CodeCompletionContext::CCC_ObjCInterfaceName,
+ Results.data(),Results.size());
+}
+
+void Sema::CodeCompleteObjCSuperclass(Scope *S, IdentifierInfo *ClassName,
+ SourceLocation ClassNameLoc) {
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ CodeCompletionContext::CCC_ObjCInterfaceName);
+ Results.EnterNewScope();
+
+ // Make sure that we ignore the class we're currently defining.
+ NamedDecl *CurClass
+ = LookupSingleName(TUScope, ClassName, ClassNameLoc, LookupOrdinaryName);
+ if (CurClass && isa<ObjCInterfaceDecl>(CurClass))
+ Results.Ignore(CurClass);
+
+ if (CodeCompleter->includeGlobals()) {
+ // Add all classes.
+ AddInterfaceResults(Context.getTranslationUnitDecl(), CurContext, false,
+ false, Results);
+ }
+
+ Results.ExitScope();
+
+ HandleCodeCompleteResults(this, CodeCompleter,
+ CodeCompletionContext::CCC_ObjCInterfaceName,
+ Results.data(),Results.size());
+}
+
+void Sema::CodeCompleteObjCImplementationDecl(Scope *S) {
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ CodeCompletionContext::CCC_Other);
+ Results.EnterNewScope();
+
+ if (CodeCompleter->includeGlobals()) {
+ // Add all unimplemented classes.
+ AddInterfaceResults(Context.getTranslationUnitDecl(), CurContext, false,
+ true, Results);
+ }
+
+ Results.ExitScope();
+
+ HandleCodeCompleteResults(this, CodeCompleter,
+ CodeCompletionContext::CCC_ObjCInterfaceName,
+ Results.data(),Results.size());
+}
+
+void Sema::CodeCompleteObjCInterfaceCategory(Scope *S,
+ IdentifierInfo *ClassName,
+ SourceLocation ClassNameLoc) {
+ typedef CodeCompletionResult Result;
+
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ CodeCompletionContext::CCC_ObjCCategoryName);
+
+ // Ignore any categories we find that have already been implemented by this
+ // interface.
+ llvm::SmallPtrSet<IdentifierInfo *, 16> CategoryNames;
+ NamedDecl *CurClass
+ = LookupSingleName(TUScope, ClassName, ClassNameLoc, LookupOrdinaryName);
+ if (ObjCInterfaceDecl *Class = dyn_cast_or_null<ObjCInterfaceDecl>(CurClass)){
+ for (const auto *Cat : Class->visible_categories())
+ CategoryNames.insert(Cat->getIdentifier());
+ }
+
+ // Add all of the categories we know about.
+ Results.EnterNewScope();
+ TranslationUnitDecl *TU = Context.getTranslationUnitDecl();
+ for (const auto *D : TU->decls())
+ if (const auto *Category = dyn_cast<ObjCCategoryDecl>(D))
+ if (CategoryNames.insert(Category->getIdentifier()).second)
+ Results.AddResult(Result(Category, Results.getBasePriority(Category),
+ nullptr),
+ CurContext, nullptr, false);
+ Results.ExitScope();
+
+ HandleCodeCompleteResults(this, CodeCompleter,
+ CodeCompletionContext::CCC_ObjCCategoryName,
+ Results.data(),Results.size());
+}
+
+void Sema::CodeCompleteObjCImplementationCategory(Scope *S,
+ IdentifierInfo *ClassName,
+ SourceLocation ClassNameLoc) {
+ typedef CodeCompletionResult Result;
+
+ // Find the corresponding interface. If we couldn't find the interface, the
+ // program itself is ill-formed. However, we'll try to be helpful still by
+ // providing the list of all of the categories we know about.
+ NamedDecl *CurClass
+ = LookupSingleName(TUScope, ClassName, ClassNameLoc, LookupOrdinaryName);
+ ObjCInterfaceDecl *Class = dyn_cast_or_null<ObjCInterfaceDecl>(CurClass);
+ if (!Class)
+ return CodeCompleteObjCInterfaceCategory(S, ClassName, ClassNameLoc);
+
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ CodeCompletionContext::CCC_ObjCCategoryName);
+
+ // Add all of the categories that have have corresponding interface
+ // declarations in this class and any of its superclasses, except for
+ // already-implemented categories in the class itself.
+ llvm::SmallPtrSet<IdentifierInfo *, 16> CategoryNames;
+ Results.EnterNewScope();
+ bool IgnoreImplemented = true;
+ while (Class) {
+ for (const auto *Cat : Class->visible_categories()) {
+ if ((!IgnoreImplemented || !Cat->getImplementation()) &&
+ CategoryNames.insert(Cat->getIdentifier()).second)
+ Results.AddResult(Result(Cat, Results.getBasePriority(Cat), nullptr),
+ CurContext, nullptr, false);
+ }
+
+ Class = Class->getSuperClass();
+ IgnoreImplemented = false;
+ }
+ Results.ExitScope();
+
+ HandleCodeCompleteResults(this, CodeCompleter,
+ CodeCompletionContext::CCC_ObjCCategoryName,
+ Results.data(),Results.size());
+}
+
+void Sema::CodeCompleteObjCPropertyDefinition(Scope *S) {
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ CodeCompletionContext::CCC_Other);
+
+ // Figure out where this @synthesize lives.
+ ObjCContainerDecl *Container
+ = dyn_cast_or_null<ObjCContainerDecl>(CurContext);
+ if (!Container ||
+ (!isa<ObjCImplementationDecl>(Container) &&
+ !isa<ObjCCategoryImplDecl>(Container)))
+ return;
+
+ // Ignore any properties that have already been implemented.
+ Container = getContainerDef(Container);
+ for (const auto *D : Container->decls())
+ if (const auto *PropertyImpl = dyn_cast<ObjCPropertyImplDecl>(D))
+ Results.Ignore(PropertyImpl->getPropertyDecl());
+
+ // Add any properties that we find.
+ AddedPropertiesSet AddedProperties;
+ Results.EnterNewScope();
+ if (ObjCImplementationDecl *ClassImpl
+ = dyn_cast<ObjCImplementationDecl>(Container))
+ AddObjCProperties(ClassImpl->getClassInterface(), false,
+ /*AllowNullaryMethods=*/false, CurContext,
+ AddedProperties, Results);
+ else
+ AddObjCProperties(cast<ObjCCategoryImplDecl>(Container)->getCategoryDecl(),
+ false, /*AllowNullaryMethods=*/false, CurContext,
+ AddedProperties, Results);
+ Results.ExitScope();
+
+ HandleCodeCompleteResults(this, CodeCompleter,
+ CodeCompletionContext::CCC_Other,
+ Results.data(),Results.size());
+}
+
+void Sema::CodeCompleteObjCPropertySynthesizeIvar(Scope *S,
+ IdentifierInfo *PropertyName) {
+ typedef CodeCompletionResult Result;
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ CodeCompletionContext::CCC_Other);
+
+ // Figure out where this @synthesize lives.
+ ObjCContainerDecl *Container
+ = dyn_cast_or_null<ObjCContainerDecl>(CurContext);
+ if (!Container ||
+ (!isa<ObjCImplementationDecl>(Container) &&
+ !isa<ObjCCategoryImplDecl>(Container)))
+ return;
+
+ // Figure out which interface we're looking into.
+ ObjCInterfaceDecl *Class = nullptr;
+ if (ObjCImplementationDecl *ClassImpl
+ = dyn_cast<ObjCImplementationDecl>(Container))
+ Class = ClassImpl->getClassInterface();
+ else
+ Class = cast<ObjCCategoryImplDecl>(Container)->getCategoryDecl()
+ ->getClassInterface();
+
+ // Determine the type of the property we're synthesizing.
+ QualType PropertyType = Context.getObjCIdType();
+ if (Class) {
+ if (ObjCPropertyDecl *Property
+ = Class->FindPropertyDeclaration(PropertyName)) {
+ PropertyType
+ = Property->getType().getNonReferenceType().getUnqualifiedType();
+
+ // Give preference to ivars
+ Results.setPreferredType(PropertyType);
+ }
+ }
+
+ // Add all of the instance variables in this class and its superclasses.
+ Results.EnterNewScope();
+ bool SawSimilarlyNamedIvar = false;
+ std::string NameWithPrefix;
+ NameWithPrefix += '_';
+ NameWithPrefix += PropertyName->getName();
+ std::string NameWithSuffix = PropertyName->getName().str();
+ NameWithSuffix += '_';
+ for(; Class; Class = Class->getSuperClass()) {
+ for (ObjCIvarDecl *Ivar = Class->all_declared_ivar_begin(); Ivar;
+ Ivar = Ivar->getNextIvar()) {
+ Results.AddResult(Result(Ivar, Results.getBasePriority(Ivar), nullptr),
+ CurContext, nullptr, false);
+
+ // Determine whether we've seen an ivar with a name similar to the
+ // property.
+ if ((PropertyName == Ivar->getIdentifier() ||
+ NameWithPrefix == Ivar->getName() ||
+ NameWithSuffix == Ivar->getName())) {
+ SawSimilarlyNamedIvar = true;
+
+ // Reduce the priority of this result by one, to give it a slight
+ // advantage over other results whose names don't match so closely.
+ if (Results.size() &&
+ Results.data()[Results.size() - 1].Kind
+ == CodeCompletionResult::RK_Declaration &&
+ Results.data()[Results.size() - 1].Declaration == Ivar)
+ Results.data()[Results.size() - 1].Priority--;
+ }
+ }
+ }
+
+ if (!SawSimilarlyNamedIvar) {
+ // Create ivar result _propName, that the user can use to synthesize
+ // an ivar of the appropriate type.
+ unsigned Priority = CCP_MemberDeclaration + 1;
+ typedef CodeCompletionResult Result;
+ CodeCompletionAllocator &Allocator = Results.getAllocator();
+ CodeCompletionBuilder Builder(Allocator, Results.getCodeCompletionTUInfo(),
+ Priority,CXAvailability_Available);
+
+ PrintingPolicy Policy = getCompletionPrintingPolicy(*this);
+ Builder.AddResultTypeChunk(GetCompletionTypeString(PropertyType, Context,
+ Policy, Allocator));
+ Builder.AddTypedTextChunk(Allocator.CopyString(NameWithPrefix));
+ Results.AddResult(Result(Builder.TakeString(), Priority,
+ CXCursor_ObjCIvarDecl));
+ }
+
+ Results.ExitScope();
+
+ HandleCodeCompleteResults(this, CodeCompleter,
+ CodeCompletionContext::CCC_Other,
+ Results.data(),Results.size());
+}
+
+// Mapping from selectors to the methods that implement that selector, along
+// with the "in original class" flag.
+typedef llvm::DenseMap<
+ Selector, llvm::PointerIntPair<ObjCMethodDecl *, 1, bool> > KnownMethodsMap;
+
+/// \brief Find all of the methods that reside in the given container
+/// (and its superclasses, protocols, etc.) that meet the given
+/// criteria. Insert those methods into the map of known methods,
+/// indexed by selector so they can be easily found.
+static void FindImplementableMethods(ASTContext &Context,
+ ObjCContainerDecl *Container,
+ bool WantInstanceMethods,
+ QualType ReturnType,
+ KnownMethodsMap &KnownMethods,
+ bool InOriginalClass = true) {
+ if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Container)) {
+ // Make sure we have a definition; that's what we'll walk.
+ if (!IFace->hasDefinition())
+ return;
+
+ IFace = IFace->getDefinition();
+ Container = IFace;
+
+ const ObjCList<ObjCProtocolDecl> &Protocols
+ = IFace->getReferencedProtocols();
+ for (ObjCList<ObjCProtocolDecl>::iterator I = Protocols.begin(),
+ E = Protocols.end();
+ I != E; ++I)
+ FindImplementableMethods(Context, *I, WantInstanceMethods, ReturnType,
+ KnownMethods, InOriginalClass);
+
+ // Add methods from any class extensions and categories.
+ for (auto *Cat : IFace->visible_categories()) {
+ FindImplementableMethods(Context, Cat, WantInstanceMethods, ReturnType,
+ KnownMethods, false);
+ }
+
+ // Visit the superclass.
+ if (IFace->getSuperClass())
+ FindImplementableMethods(Context, IFace->getSuperClass(),
+ WantInstanceMethods, ReturnType,
+ KnownMethods, false);
+ }
+
+ if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Container)) {
+ // Recurse into protocols.
+ const ObjCList<ObjCProtocolDecl> &Protocols
+ = Category->getReferencedProtocols();
+ for (ObjCList<ObjCProtocolDecl>::iterator I = Protocols.begin(),
+ E = Protocols.end();
+ I != E; ++I)
+ FindImplementableMethods(Context, *I, WantInstanceMethods, ReturnType,
+ KnownMethods, InOriginalClass);
+
+ // If this category is the original class, jump to the interface.
+ if (InOriginalClass && Category->getClassInterface())
+ FindImplementableMethods(Context, Category->getClassInterface(),
+ WantInstanceMethods, ReturnType, KnownMethods,
+ false);
+ }
+
+ if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Container)) {
+ // Make sure we have a definition; that's what we'll walk.
+ if (!Protocol->hasDefinition())
+ return;
+ Protocol = Protocol->getDefinition();
+ Container = Protocol;
+
+ // Recurse into protocols.
+ const ObjCList<ObjCProtocolDecl> &Protocols
+ = Protocol->getReferencedProtocols();
+ for (ObjCList<ObjCProtocolDecl>::iterator I = Protocols.begin(),
+ E = Protocols.end();
+ I != E; ++I)
+ FindImplementableMethods(Context, *I, WantInstanceMethods, ReturnType,
+ KnownMethods, false);
+ }
+
+ // Add methods in this container. This operation occurs last because
+ // we want the methods from this container to override any methods
+ // we've previously seen with the same selector.
+ for (auto *M : Container->methods()) {
+ if (M->isInstanceMethod() == WantInstanceMethods) {
+ if (!ReturnType.isNull() &&
+ !Context.hasSameUnqualifiedType(ReturnType, M->getReturnType()))
+ continue;
+
+ KnownMethods[M->getSelector()] =
+ KnownMethodsMap::mapped_type(M, InOriginalClass);
+ }
+ }
+}
+
+/// \brief Add the parenthesized return or parameter type chunk to a code
+/// completion string.
+static void AddObjCPassingTypeChunk(QualType Type,
+ unsigned ObjCDeclQuals,
+ ASTContext &Context,
+ const PrintingPolicy &Policy,
+ CodeCompletionBuilder &Builder) {
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ std::string Quals = formatObjCParamQualifiers(ObjCDeclQuals);
+ if (!Quals.empty())
+ Builder.AddTextChunk(Builder.getAllocator().CopyString(Quals));
+ Builder.AddTextChunk(GetCompletionTypeString(Type, Context, Policy,
+ Builder.getAllocator()));
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+}
+
+/// \brief Determine whether the given class is or inherits from a class by
+/// the given name.
+static bool InheritsFromClassNamed(ObjCInterfaceDecl *Class,
+ StringRef Name) {
+ if (!Class)
+ return false;
+
+ if (Class->getIdentifier() && Class->getIdentifier()->getName() == Name)
+ return true;
+
+ return InheritsFromClassNamed(Class->getSuperClass(), Name);
+}
+
+/// \brief Add code completions for Objective-C Key-Value Coding (KVC) and
+/// Key-Value Observing (KVO).
+static void AddObjCKeyValueCompletions(ObjCPropertyDecl *Property,
+ bool IsInstanceMethod,
+ QualType ReturnType,
+ ASTContext &Context,
+ VisitedSelectorSet &KnownSelectors,
+ ResultBuilder &Results) {
+ IdentifierInfo *PropName = Property->getIdentifier();
+ if (!PropName || PropName->getLength() == 0)
+ return;
+
+ PrintingPolicy Policy = getCompletionPrintingPolicy(Results.getSema());
+
+ // Builder that will create each code completion.
+ typedef CodeCompletionResult Result;
+ CodeCompletionAllocator &Allocator = Results.getAllocator();
+ CodeCompletionBuilder Builder(Allocator, Results.getCodeCompletionTUInfo());
+
+ // The selector table.
+ SelectorTable &Selectors = Context.Selectors;
+
+ // The property name, copied into the code completion allocation region
+ // on demand.
+ struct KeyHolder {
+ CodeCompletionAllocator &Allocator;
+ StringRef Key;
+ const char *CopiedKey;
+
+ KeyHolder(CodeCompletionAllocator &Allocator, StringRef Key)
+ : Allocator(Allocator), Key(Key), CopiedKey(nullptr) {}
+
+ operator const char *() {
+ if (CopiedKey)
+ return CopiedKey;
+
+ return CopiedKey = Allocator.CopyString(Key);
+ }
+ } Key(Allocator, PropName->getName());
+
+ // The uppercased name of the property name.
+ std::string UpperKey = PropName->getName();
+ if (!UpperKey.empty())
+ UpperKey[0] = toUppercase(UpperKey[0]);
+
+ bool ReturnTypeMatchesProperty = ReturnType.isNull() ||
+ Context.hasSameUnqualifiedType(ReturnType.getNonReferenceType(),
+ Property->getType());
+ bool ReturnTypeMatchesVoid
+ = ReturnType.isNull() || ReturnType->isVoidType();
+
+ // Add the normal accessor -(type)key.
+ if (IsInstanceMethod &&
+ KnownSelectors.insert(Selectors.getNullarySelector(PropName)).second &&
+ ReturnTypeMatchesProperty && !Property->getGetterMethodDecl()) {
+ if (ReturnType.isNull())
+ AddObjCPassingTypeChunk(Property->getType(), /*Quals=*/0,
+ Context, Policy, Builder);
+
+ Builder.AddTypedTextChunk(Key);
+ Results.AddResult(Result(Builder.TakeString(), CCP_CodePattern,
+ CXCursor_ObjCInstanceMethodDecl));
+ }
+
+ // If we have an integral or boolean property (or the user has provided
+ // an integral or boolean return type), add the accessor -(type)isKey.
+ if (IsInstanceMethod &&
+ ((!ReturnType.isNull() &&
+ (ReturnType->isIntegerType() || ReturnType->isBooleanType())) ||
+ (ReturnType.isNull() &&
+ (Property->getType()->isIntegerType() ||
+ Property->getType()->isBooleanType())))) {
+ std::string SelectorName = (Twine("is") + UpperKey).str();
+ IdentifierInfo *SelectorId = &Context.Idents.get(SelectorName);
+ if (KnownSelectors.insert(Selectors.getNullarySelector(SelectorId))
+ .second) {
+ if (ReturnType.isNull()) {
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddTextChunk("BOOL");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ }
+
+ Builder.AddTypedTextChunk(
+ Allocator.CopyString(SelectorId->getName()));
+ Results.AddResult(Result(Builder.TakeString(), CCP_CodePattern,
+ CXCursor_ObjCInstanceMethodDecl));
+ }
+ }
+
+ // Add the normal mutator.
+ if (IsInstanceMethod && ReturnTypeMatchesVoid &&
+ !Property->getSetterMethodDecl()) {
+ std::string SelectorName = (Twine("set") + UpperKey).str();
+ IdentifierInfo *SelectorId = &Context.Idents.get(SelectorName);
+ if (KnownSelectors.insert(Selectors.getUnarySelector(SelectorId)).second) {
+ if (ReturnType.isNull()) {
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddTextChunk("void");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ }
+
+ Builder.AddTypedTextChunk(
+ Allocator.CopyString(SelectorId->getName()));
+ Builder.AddTypedTextChunk(":");
+ AddObjCPassingTypeChunk(Property->getType(), /*Quals=*/0,
+ Context, Policy, Builder);
+ Builder.AddTextChunk(Key);
+ Results.AddResult(Result(Builder.TakeString(), CCP_CodePattern,
+ CXCursor_ObjCInstanceMethodDecl));
+ }
+ }
+
+ // Indexed and unordered accessors
+ unsigned IndexedGetterPriority = CCP_CodePattern;
+ unsigned IndexedSetterPriority = CCP_CodePattern;
+ unsigned UnorderedGetterPriority = CCP_CodePattern;
+ unsigned UnorderedSetterPriority = CCP_CodePattern;
+ if (const ObjCObjectPointerType *ObjCPointer
+ = Property->getType()->getAs<ObjCObjectPointerType>()) {
+ if (ObjCInterfaceDecl *IFace = ObjCPointer->getInterfaceDecl()) {
+ // If this interface type is not provably derived from a known
+ // collection, penalize the corresponding completions.
+ if (!InheritsFromClassNamed(IFace, "NSMutableArray")) {
+ IndexedSetterPriority += CCD_ProbablyNotObjCCollection;
+ if (!InheritsFromClassNamed(IFace, "NSArray"))
+ IndexedGetterPriority += CCD_ProbablyNotObjCCollection;
+ }
+
+ if (!InheritsFromClassNamed(IFace, "NSMutableSet")) {
+ UnorderedSetterPriority += CCD_ProbablyNotObjCCollection;
+ if (!InheritsFromClassNamed(IFace, "NSSet"))
+ UnorderedGetterPriority += CCD_ProbablyNotObjCCollection;
+ }
+ }
+ } else {
+ IndexedGetterPriority += CCD_ProbablyNotObjCCollection;
+ IndexedSetterPriority += CCD_ProbablyNotObjCCollection;
+ UnorderedGetterPriority += CCD_ProbablyNotObjCCollection;
+ UnorderedSetterPriority += CCD_ProbablyNotObjCCollection;
+ }
+
+ // Add -(NSUInteger)countOf<key>
+ if (IsInstanceMethod &&
+ (ReturnType.isNull() || ReturnType->isIntegerType())) {
+ std::string SelectorName = (Twine("countOf") + UpperKey).str();
+ IdentifierInfo *SelectorId = &Context.Idents.get(SelectorName);
+ if (KnownSelectors.insert(Selectors.getNullarySelector(SelectorId))
+ .second) {
+ if (ReturnType.isNull()) {
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddTextChunk("NSUInteger");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ }
+
+ Builder.AddTypedTextChunk(
+ Allocator.CopyString(SelectorId->getName()));
+ Results.AddResult(Result(Builder.TakeString(),
+ std::min(IndexedGetterPriority,
+ UnorderedGetterPriority),
+ CXCursor_ObjCInstanceMethodDecl));
+ }
+ }
+
+ // Indexed getters
+ // Add -(id)objectInKeyAtIndex:(NSUInteger)index
+ if (IsInstanceMethod &&
+ (ReturnType.isNull() || ReturnType->isObjCObjectPointerType())) {
+ std::string SelectorName
+ = (Twine("objectIn") + UpperKey + "AtIndex").str();
+ IdentifierInfo *SelectorId = &Context.Idents.get(SelectorName);
+ if (KnownSelectors.insert(Selectors.getUnarySelector(SelectorId)).second) {
+ if (ReturnType.isNull()) {
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddTextChunk("id");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ }
+
+ Builder.AddTypedTextChunk(Allocator.CopyString(SelectorName + ":"));
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddTextChunk("NSUInteger");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Builder.AddTextChunk("index");
+ Results.AddResult(Result(Builder.TakeString(), IndexedGetterPriority,
+ CXCursor_ObjCInstanceMethodDecl));
+ }
+ }
+
+ // Add -(NSArray *)keyAtIndexes:(NSIndexSet *)indexes
+ if (IsInstanceMethod &&
+ (ReturnType.isNull() ||
+ (ReturnType->isObjCObjectPointerType() &&
+ ReturnType->getAs<ObjCObjectPointerType>()->getInterfaceDecl() &&
+ ReturnType->getAs<ObjCObjectPointerType>()->getInterfaceDecl()
+ ->getName() == "NSArray"))) {
+ std::string SelectorName
+ = (Twine(Property->getName()) + "AtIndexes").str();
+ IdentifierInfo *SelectorId = &Context.Idents.get(SelectorName);
+ if (KnownSelectors.insert(Selectors.getUnarySelector(SelectorId)).second) {
+ if (ReturnType.isNull()) {
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddTextChunk("NSArray *");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ }
+
+ Builder.AddTypedTextChunk(Allocator.CopyString(SelectorName + ":"));
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddTextChunk("NSIndexSet *");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Builder.AddTextChunk("indexes");
+ Results.AddResult(Result(Builder.TakeString(), IndexedGetterPriority,
+ CXCursor_ObjCInstanceMethodDecl));
+ }
+ }
+
+ // Add -(void)getKey:(type **)buffer range:(NSRange)inRange
+ if (IsInstanceMethod && ReturnTypeMatchesVoid) {
+ std::string SelectorName = (Twine("get") + UpperKey).str();
+ IdentifierInfo *SelectorIds[2] = {
+ &Context.Idents.get(SelectorName),
+ &Context.Idents.get("range")
+ };
+
+ if (KnownSelectors.insert(Selectors.getSelector(2, SelectorIds)).second) {
+ if (ReturnType.isNull()) {
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddTextChunk("void");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ }
+
+ Builder.AddTypedTextChunk(Allocator.CopyString(SelectorName + ":"));
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddPlaceholderChunk("object-type");
+ Builder.AddTextChunk(" **");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Builder.AddTextChunk("buffer");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddTypedTextChunk("range:");
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddTextChunk("NSRange");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Builder.AddTextChunk("inRange");
+ Results.AddResult(Result(Builder.TakeString(), IndexedGetterPriority,
+ CXCursor_ObjCInstanceMethodDecl));
+ }
+ }
+
+ // Mutable indexed accessors
+
+ // - (void)insertObject:(type *)object inKeyAtIndex:(NSUInteger)index
+ if (IsInstanceMethod && ReturnTypeMatchesVoid) {
+ std::string SelectorName = (Twine("in") + UpperKey + "AtIndex").str();
+ IdentifierInfo *SelectorIds[2] = {
+ &Context.Idents.get("insertObject"),
+ &Context.Idents.get(SelectorName)
+ };
+
+ if (KnownSelectors.insert(Selectors.getSelector(2, SelectorIds)).second) {
+ if (ReturnType.isNull()) {
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddTextChunk("void");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ }
+
+ Builder.AddTypedTextChunk("insertObject:");
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddPlaceholderChunk("object-type");
+ Builder.AddTextChunk(" *");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Builder.AddTextChunk("object");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddTypedTextChunk(Allocator.CopyString(SelectorName + ":"));
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddPlaceholderChunk("NSUInteger");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Builder.AddTextChunk("index");
+ Results.AddResult(Result(Builder.TakeString(), IndexedSetterPriority,
+ CXCursor_ObjCInstanceMethodDecl));
+ }
+ }
+
+ // - (void)insertKey:(NSArray *)array atIndexes:(NSIndexSet *)indexes
+ if (IsInstanceMethod && ReturnTypeMatchesVoid) {
+ std::string SelectorName = (Twine("insert") + UpperKey).str();
+ IdentifierInfo *SelectorIds[2] = {
+ &Context.Idents.get(SelectorName),
+ &Context.Idents.get("atIndexes")
+ };
+
+ if (KnownSelectors.insert(Selectors.getSelector(2, SelectorIds)).second) {
+ if (ReturnType.isNull()) {
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddTextChunk("void");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ }
+
+ Builder.AddTypedTextChunk(Allocator.CopyString(SelectorName + ":"));
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddTextChunk("NSArray *");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Builder.AddTextChunk("array");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddTypedTextChunk("atIndexes:");
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddPlaceholderChunk("NSIndexSet *");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Builder.AddTextChunk("indexes");
+ Results.AddResult(Result(Builder.TakeString(), IndexedSetterPriority,
+ CXCursor_ObjCInstanceMethodDecl));
+ }
+ }
+
+ // -(void)removeObjectFromKeyAtIndex:(NSUInteger)index
+ if (IsInstanceMethod && ReturnTypeMatchesVoid) {
+ std::string SelectorName
+ = (Twine("removeObjectFrom") + UpperKey + "AtIndex").str();
+ IdentifierInfo *SelectorId = &Context.Idents.get(SelectorName);
+ if (KnownSelectors.insert(Selectors.getUnarySelector(SelectorId)).second) {
+ if (ReturnType.isNull()) {
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddTextChunk("void");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ }
+
+ Builder.AddTypedTextChunk(Allocator.CopyString(SelectorName + ":"));
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddTextChunk("NSUInteger");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Builder.AddTextChunk("index");
+ Results.AddResult(Result(Builder.TakeString(), IndexedSetterPriority,
+ CXCursor_ObjCInstanceMethodDecl));
+ }
+ }
+
+ // -(void)removeKeyAtIndexes:(NSIndexSet *)indexes
+ if (IsInstanceMethod && ReturnTypeMatchesVoid) {
+ std::string SelectorName
+ = (Twine("remove") + UpperKey + "AtIndexes").str();
+ IdentifierInfo *SelectorId = &Context.Idents.get(SelectorName);
+ if (KnownSelectors.insert(Selectors.getUnarySelector(SelectorId)).second) {
+ if (ReturnType.isNull()) {
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddTextChunk("void");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ }
+
+ Builder.AddTypedTextChunk(Allocator.CopyString(SelectorName + ":"));
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddTextChunk("NSIndexSet *");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Builder.AddTextChunk("indexes");
+ Results.AddResult(Result(Builder.TakeString(), IndexedSetterPriority,
+ CXCursor_ObjCInstanceMethodDecl));
+ }
+ }
+
+ // - (void)replaceObjectInKeyAtIndex:(NSUInteger)index withObject:(id)object
+ if (IsInstanceMethod && ReturnTypeMatchesVoid) {
+ std::string SelectorName
+ = (Twine("replaceObjectIn") + UpperKey + "AtIndex").str();
+ IdentifierInfo *SelectorIds[2] = {
+ &Context.Idents.get(SelectorName),
+ &Context.Idents.get("withObject")
+ };
+
+ if (KnownSelectors.insert(Selectors.getSelector(2, SelectorIds)).second) {
+ if (ReturnType.isNull()) {
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddTextChunk("void");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ }
+
+ Builder.AddTypedTextChunk(Allocator.CopyString(SelectorName + ":"));
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddPlaceholderChunk("NSUInteger");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Builder.AddTextChunk("index");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddTypedTextChunk("withObject:");
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddTextChunk("id");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Builder.AddTextChunk("object");
+ Results.AddResult(Result(Builder.TakeString(), IndexedSetterPriority,
+ CXCursor_ObjCInstanceMethodDecl));
+ }
+ }
+
+ // - (void)replaceKeyAtIndexes:(NSIndexSet *)indexes withKey:(NSArray *)array
+ if (IsInstanceMethod && ReturnTypeMatchesVoid) {
+ std::string SelectorName1
+ = (Twine("replace") + UpperKey + "AtIndexes").str();
+ std::string SelectorName2 = (Twine("with") + UpperKey).str();
+ IdentifierInfo *SelectorIds[2] = {
+ &Context.Idents.get(SelectorName1),
+ &Context.Idents.get(SelectorName2)
+ };
+
+ if (KnownSelectors.insert(Selectors.getSelector(2, SelectorIds)).second) {
+ if (ReturnType.isNull()) {
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddTextChunk("void");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ }
+
+ Builder.AddTypedTextChunk(Allocator.CopyString(SelectorName1 + ":"));
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddPlaceholderChunk("NSIndexSet *");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Builder.AddTextChunk("indexes");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddTypedTextChunk(Allocator.CopyString(SelectorName2 + ":"));
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddTextChunk("NSArray *");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Builder.AddTextChunk("array");
+ Results.AddResult(Result(Builder.TakeString(), IndexedSetterPriority,
+ CXCursor_ObjCInstanceMethodDecl));
+ }
+ }
+
+ // Unordered getters
+ // - (NSEnumerator *)enumeratorOfKey
+ if (IsInstanceMethod &&
+ (ReturnType.isNull() ||
+ (ReturnType->isObjCObjectPointerType() &&
+ ReturnType->getAs<ObjCObjectPointerType>()->getInterfaceDecl() &&
+ ReturnType->getAs<ObjCObjectPointerType>()->getInterfaceDecl()
+ ->getName() == "NSEnumerator"))) {
+ std::string SelectorName = (Twine("enumeratorOf") + UpperKey).str();
+ IdentifierInfo *SelectorId = &Context.Idents.get(SelectorName);
+ if (KnownSelectors.insert(Selectors.getNullarySelector(SelectorId))
+ .second) {
+ if (ReturnType.isNull()) {
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddTextChunk("NSEnumerator *");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ }
+
+ Builder.AddTypedTextChunk(Allocator.CopyString(SelectorName));
+ Results.AddResult(Result(Builder.TakeString(), UnorderedGetterPriority,
+ CXCursor_ObjCInstanceMethodDecl));
+ }
+ }
+
+ // - (type *)memberOfKey:(type *)object
+ if (IsInstanceMethod &&
+ (ReturnType.isNull() || ReturnType->isObjCObjectPointerType())) {
+ std::string SelectorName = (Twine("memberOf") + UpperKey).str();
+ IdentifierInfo *SelectorId = &Context.Idents.get(SelectorName);
+ if (KnownSelectors.insert(Selectors.getUnarySelector(SelectorId)).second) {
+ if (ReturnType.isNull()) {
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddPlaceholderChunk("object-type");
+ Builder.AddTextChunk(" *");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ }
+
+ Builder.AddTypedTextChunk(Allocator.CopyString(SelectorName + ":"));
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ if (ReturnType.isNull()) {
+ Builder.AddPlaceholderChunk("object-type");
+ Builder.AddTextChunk(" *");
+ } else {
+ Builder.AddTextChunk(GetCompletionTypeString(ReturnType, Context,
+ Policy,
+ Builder.getAllocator()));
+ }
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Builder.AddTextChunk("object");
+ Results.AddResult(Result(Builder.TakeString(), UnorderedGetterPriority,
+ CXCursor_ObjCInstanceMethodDecl));
+ }
+ }
+
+ // Mutable unordered accessors
+ // - (void)addKeyObject:(type *)object
+ if (IsInstanceMethod && ReturnTypeMatchesVoid) {
+ std::string SelectorName
+ = (Twine("add") + UpperKey + Twine("Object")).str();
+ IdentifierInfo *SelectorId = &Context.Idents.get(SelectorName);
+ if (KnownSelectors.insert(Selectors.getUnarySelector(SelectorId)).second) {
+ if (ReturnType.isNull()) {
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddTextChunk("void");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ }
+
+ Builder.AddTypedTextChunk(Allocator.CopyString(SelectorName + ":"));
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddPlaceholderChunk("object-type");
+ Builder.AddTextChunk(" *");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Builder.AddTextChunk("object");
+ Results.AddResult(Result(Builder.TakeString(), UnorderedSetterPriority,
+ CXCursor_ObjCInstanceMethodDecl));
+ }
+ }
+
+ // - (void)addKey:(NSSet *)objects
+ if (IsInstanceMethod && ReturnTypeMatchesVoid) {
+ std::string SelectorName = (Twine("add") + UpperKey).str();
+ IdentifierInfo *SelectorId = &Context.Idents.get(SelectorName);
+ if (KnownSelectors.insert(Selectors.getUnarySelector(SelectorId)).second) {
+ if (ReturnType.isNull()) {
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddTextChunk("void");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ }
+
+ Builder.AddTypedTextChunk(Allocator.CopyString(SelectorName + ":"));
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddTextChunk("NSSet *");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Builder.AddTextChunk("objects");
+ Results.AddResult(Result(Builder.TakeString(), UnorderedSetterPriority,
+ CXCursor_ObjCInstanceMethodDecl));
+ }
+ }
+
+ // - (void)removeKeyObject:(type *)object
+ if (IsInstanceMethod && ReturnTypeMatchesVoid) {
+ std::string SelectorName
+ = (Twine("remove") + UpperKey + Twine("Object")).str();
+ IdentifierInfo *SelectorId = &Context.Idents.get(SelectorName);
+ if (KnownSelectors.insert(Selectors.getUnarySelector(SelectorId)).second) {
+ if (ReturnType.isNull()) {
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddTextChunk("void");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ }
+
+ Builder.AddTypedTextChunk(Allocator.CopyString(SelectorName + ":"));
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddPlaceholderChunk("object-type");
+ Builder.AddTextChunk(" *");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Builder.AddTextChunk("object");
+ Results.AddResult(Result(Builder.TakeString(), UnorderedSetterPriority,
+ CXCursor_ObjCInstanceMethodDecl));
+ }
+ }
+
+ // - (void)removeKey:(NSSet *)objects
+ if (IsInstanceMethod && ReturnTypeMatchesVoid) {
+ std::string SelectorName = (Twine("remove") + UpperKey).str();
+ IdentifierInfo *SelectorId = &Context.Idents.get(SelectorName);
+ if (KnownSelectors.insert(Selectors.getUnarySelector(SelectorId)).second) {
+ if (ReturnType.isNull()) {
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddTextChunk("void");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ }
+
+ Builder.AddTypedTextChunk(Allocator.CopyString(SelectorName + ":"));
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddTextChunk("NSSet *");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Builder.AddTextChunk("objects");
+ Results.AddResult(Result(Builder.TakeString(), UnorderedSetterPriority,
+ CXCursor_ObjCInstanceMethodDecl));
+ }
+ }
+
+ // - (void)intersectKey:(NSSet *)objects
+ if (IsInstanceMethod && ReturnTypeMatchesVoid) {
+ std::string SelectorName = (Twine("intersect") + UpperKey).str();
+ IdentifierInfo *SelectorId = &Context.Idents.get(SelectorName);
+ if (KnownSelectors.insert(Selectors.getUnarySelector(SelectorId)).second) {
+ if (ReturnType.isNull()) {
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddTextChunk("void");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ }
+
+ Builder.AddTypedTextChunk(Allocator.CopyString(SelectorName + ":"));
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddTextChunk("NSSet *");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Builder.AddTextChunk("objects");
+ Results.AddResult(Result(Builder.TakeString(), UnorderedSetterPriority,
+ CXCursor_ObjCInstanceMethodDecl));
+ }
+ }
+
+ // Key-Value Observing
+ // + (NSSet *)keyPathsForValuesAffectingKey
+ if (!IsInstanceMethod &&
+ (ReturnType.isNull() ||
+ (ReturnType->isObjCObjectPointerType() &&
+ ReturnType->getAs<ObjCObjectPointerType>()->getInterfaceDecl() &&
+ ReturnType->getAs<ObjCObjectPointerType>()->getInterfaceDecl()
+ ->getName() == "NSSet"))) {
+ std::string SelectorName
+ = (Twine("keyPathsForValuesAffecting") + UpperKey).str();
+ IdentifierInfo *SelectorId = &Context.Idents.get(SelectorName);
+ if (KnownSelectors.insert(Selectors.getNullarySelector(SelectorId))
+ .second) {
+ if (ReturnType.isNull()) {
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddTextChunk("NSSet *");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ }
+
+ Builder.AddTypedTextChunk(Allocator.CopyString(SelectorName));
+ Results.AddResult(Result(Builder.TakeString(), CCP_CodePattern,
+ CXCursor_ObjCClassMethodDecl));
+ }
+ }
+
+ // + (BOOL)automaticallyNotifiesObserversForKey
+ if (!IsInstanceMethod &&
+ (ReturnType.isNull() ||
+ ReturnType->isIntegerType() ||
+ ReturnType->isBooleanType())) {
+ std::string SelectorName
+ = (Twine("automaticallyNotifiesObserversOf") + UpperKey).str();
+ IdentifierInfo *SelectorId = &Context.Idents.get(SelectorName);
+ if (KnownSelectors.insert(Selectors.getNullarySelector(SelectorId))
+ .second) {
+ if (ReturnType.isNull()) {
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddTextChunk("BOOL");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ }
+
+ Builder.AddTypedTextChunk(Allocator.CopyString(SelectorName));
+ Results.AddResult(Result(Builder.TakeString(), CCP_CodePattern,
+ CXCursor_ObjCClassMethodDecl));
+ }
+ }
+}
+
+void Sema::CodeCompleteObjCMethodDecl(Scope *S,
+ bool IsInstanceMethod,
+ ParsedType ReturnTy) {
+ // Determine the return type of the method we're declaring, if
+ // provided.
+ QualType ReturnType = GetTypeFromParser(ReturnTy);
+ Decl *IDecl = nullptr;
+ if (CurContext->isObjCContainer()) {
+ ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
+ IDecl = cast<Decl>(OCD);
+ }
+ // Determine where we should start searching for methods.
+ ObjCContainerDecl *SearchDecl = nullptr;
+ bool IsInImplementation = false;
+ if (Decl *D = IDecl) {
+ if (ObjCImplementationDecl *Impl = dyn_cast<ObjCImplementationDecl>(D)) {
+ SearchDecl = Impl->getClassInterface();
+ IsInImplementation = true;
+ } else if (ObjCCategoryImplDecl *CatImpl
+ = dyn_cast<ObjCCategoryImplDecl>(D)) {
+ SearchDecl = CatImpl->getCategoryDecl();
+ IsInImplementation = true;
+ } else
+ SearchDecl = dyn_cast<ObjCContainerDecl>(D);
+ }
+
+ if (!SearchDecl && S) {
+ if (DeclContext *DC = S->getEntity())
+ SearchDecl = dyn_cast<ObjCContainerDecl>(DC);
+ }
+
+ if (!SearchDecl) {
+ HandleCodeCompleteResults(this, CodeCompleter,
+ CodeCompletionContext::CCC_Other,
+ nullptr, 0);
+ return;
+ }
+
+ // Find all of the methods that we could declare/implement here.
+ KnownMethodsMap KnownMethods;
+ FindImplementableMethods(Context, SearchDecl, IsInstanceMethod,
+ ReturnType, KnownMethods);
+
+ // Add declarations or definitions for each of the known methods.
+ typedef CodeCompletionResult Result;
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ CodeCompletionContext::CCC_Other);
+ Results.EnterNewScope();
+ PrintingPolicy Policy = getCompletionPrintingPolicy(*this);
+ for (KnownMethodsMap::iterator M = KnownMethods.begin(),
+ MEnd = KnownMethods.end();
+ M != MEnd; ++M) {
+ ObjCMethodDecl *Method = M->second.getPointer();
+ CodeCompletionBuilder Builder(Results.getAllocator(),
+ Results.getCodeCompletionTUInfo());
+
+ // If the result type was not already provided, add it to the
+ // pattern as (type).
+ if (ReturnType.isNull())
+ AddObjCPassingTypeChunk(Method->getReturnType(),
+ Method->getObjCDeclQualifier(), Context, Policy,
+ Builder);
+
+ Selector Sel = Method->getSelector();
+
+ // Add the first part of the selector to the pattern.
+ Builder.AddTypedTextChunk(Builder.getAllocator().CopyString(
+ Sel.getNameForSlot(0)));
+
+ // Add parameters to the pattern.
+ unsigned I = 0;
+ for (ObjCMethodDecl::param_iterator P = Method->param_begin(),
+ PEnd = Method->param_end();
+ P != PEnd; (void)++P, ++I) {
+ // Add the part of the selector name.
+ if (I == 0)
+ Builder.AddTypedTextChunk(":");
+ else if (I < Sel.getNumArgs()) {
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddTypedTextChunk(
+ Builder.getAllocator().CopyString(Sel.getNameForSlot(I) + ":"));
+ } else
+ break;
+
+ // Add the parameter type.
+ AddObjCPassingTypeChunk((*P)->getOriginalType(),
+ (*P)->getObjCDeclQualifier(),
+ Context, Policy,
+ Builder);
+
+ if (IdentifierInfo *Id = (*P)->getIdentifier())
+ Builder.AddTextChunk(Builder.getAllocator().CopyString( Id->getName()));
+ }
+
+ if (Method->isVariadic()) {
+ if (Method->param_size() > 0)
+ Builder.AddChunk(CodeCompletionString::CK_Comma);
+ Builder.AddTextChunk("...");
+ }
+
+ if (IsInImplementation && Results.includeCodePatterns()) {
+ // We will be defining the method here, so add a compound statement.
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddChunk(CodeCompletionString::CK_LeftBrace);
+ Builder.AddChunk(CodeCompletionString::CK_VerticalSpace);
+ if (!Method->getReturnType()->isVoidType()) {
+ // If the result type is not void, add a return clause.
+ Builder.AddTextChunk("return");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("expression");
+ Builder.AddChunk(CodeCompletionString::CK_SemiColon);
+ } else
+ Builder.AddPlaceholderChunk("statements");
+
+ Builder.AddChunk(CodeCompletionString::CK_VerticalSpace);
+ Builder.AddChunk(CodeCompletionString::CK_RightBrace);
+ }
+
+ unsigned Priority = CCP_CodePattern;
+ if (!M->second.getInt())
+ Priority += CCD_InBaseClass;
+
+ Results.AddResult(Result(Builder.TakeString(), Method, Priority));
+ }
+
+ // Add Key-Value-Coding and Key-Value-Observing accessor methods for all of
+ // the properties in this class and its categories.
+ if (Context.getLangOpts().ObjC2) {
+ SmallVector<ObjCContainerDecl *, 4> Containers;
+ Containers.push_back(SearchDecl);
+
+ VisitedSelectorSet KnownSelectors;
+ for (KnownMethodsMap::iterator M = KnownMethods.begin(),
+ MEnd = KnownMethods.end();
+ M != MEnd; ++M)
+ KnownSelectors.insert(M->first);
+
+
+ ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(SearchDecl);
+ if (!IFace)
+ if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(SearchDecl))
+ IFace = Category->getClassInterface();
+
+ if (IFace)
+ for (auto *Cat : IFace->visible_categories())
+ Containers.push_back(Cat);
+
+ for (unsigned I = 0, N = Containers.size(); I != N; ++I)
+ for (auto *P : Containers[I]->properties())
+ AddObjCKeyValueCompletions(P, IsInstanceMethod, ReturnType, Context,
+ KnownSelectors, Results);
+ }
+
+ Results.ExitScope();
+
+ HandleCodeCompleteResults(this, CodeCompleter,
+ CodeCompletionContext::CCC_Other,
+ Results.data(),Results.size());
+}
+
+void Sema::CodeCompleteObjCMethodDeclSelector(Scope *S,
+ bool IsInstanceMethod,
+ bool AtParameterName,
+ ParsedType ReturnTy,
+ ArrayRef<IdentifierInfo *> SelIdents) {
+ // If we have an external source, load the entire class method
+ // pool from the AST file.
+ if (ExternalSource) {
+ for (uint32_t I = 0, N = ExternalSource->GetNumExternalSelectors();
+ I != N; ++I) {
+ Selector Sel = ExternalSource->GetExternalSelector(I);
+ if (Sel.isNull() || MethodPool.count(Sel))
+ continue;
+
+ ReadMethodPool(Sel);
+ }
+ }
+
+ // Build the set of methods we can see.
+ typedef CodeCompletionResult Result;
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ CodeCompletionContext::CCC_Other);
+
+ if (ReturnTy)
+ Results.setPreferredType(GetTypeFromParser(ReturnTy).getNonReferenceType());
+
+ Results.EnterNewScope();
+ for (GlobalMethodPool::iterator M = MethodPool.begin(),
+ MEnd = MethodPool.end();
+ M != MEnd; ++M) {
+ for (ObjCMethodList *MethList = IsInstanceMethod ? &M->second.first :
+ &M->second.second;
+ MethList && MethList->getMethod();
+ MethList = MethList->getNext()) {
+ if (!isAcceptableObjCMethod(MethList->getMethod(), MK_Any, SelIdents))
+ continue;
+
+ if (AtParameterName) {
+ // Suggest parameter names we've seen before.
+ unsigned NumSelIdents = SelIdents.size();
+ if (NumSelIdents &&
+ NumSelIdents <= MethList->getMethod()->param_size()) {
+ ParmVarDecl *Param =
+ MethList->getMethod()->parameters()[NumSelIdents - 1];
+ if (Param->getIdentifier()) {
+ CodeCompletionBuilder Builder(Results.getAllocator(),
+ Results.getCodeCompletionTUInfo());
+ Builder.AddTypedTextChunk(Builder.getAllocator().CopyString(
+ Param->getIdentifier()->getName()));
+ Results.AddResult(Builder.TakeString());
+ }
+ }
+
+ continue;
+ }
+
+ Result R(MethList->getMethod(),
+ Results.getBasePriority(MethList->getMethod()), nullptr);
+ R.StartParameter = SelIdents.size();
+ R.AllParametersAreInformative = false;
+ R.DeclaringEntity = true;
+ Results.MaybeAddResult(R, CurContext);
+ }
+ }
+
+ Results.ExitScope();
+ HandleCodeCompleteResults(this, CodeCompleter,
+ CodeCompletionContext::CCC_Other,
+ Results.data(),Results.size());
+}
+
+void Sema::CodeCompletePreprocessorDirective(bool InConditional) {
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ CodeCompletionContext::CCC_PreprocessorDirective);
+ Results.EnterNewScope();
+
+ // #if <condition>
+ CodeCompletionBuilder Builder(Results.getAllocator(),
+ Results.getCodeCompletionTUInfo());
+ Builder.AddTypedTextChunk("if");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("condition");
+ Results.AddResult(Builder.TakeString());
+
+ // #ifdef <macro>
+ Builder.AddTypedTextChunk("ifdef");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("macro");
+ Results.AddResult(Builder.TakeString());
+
+ // #ifndef <macro>
+ Builder.AddTypedTextChunk("ifndef");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("macro");
+ Results.AddResult(Builder.TakeString());
+
+ if (InConditional) {
+ // #elif <condition>
+ Builder.AddTypedTextChunk("elif");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("condition");
+ Results.AddResult(Builder.TakeString());
+
+ // #else
+ Builder.AddTypedTextChunk("else");
+ Results.AddResult(Builder.TakeString());
+
+ // #endif
+ Builder.AddTypedTextChunk("endif");
+ Results.AddResult(Builder.TakeString());
+ }
+
+ // #include "header"
+ Builder.AddTypedTextChunk("include");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddTextChunk("\"");
+ Builder.AddPlaceholderChunk("header");
+ Builder.AddTextChunk("\"");
+ Results.AddResult(Builder.TakeString());
+
+ // #include <header>
+ Builder.AddTypedTextChunk("include");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddTextChunk("<");
+ Builder.AddPlaceholderChunk("header");
+ Builder.AddTextChunk(">");
+ Results.AddResult(Builder.TakeString());
+
+ // #define <macro>
+ Builder.AddTypedTextChunk("define");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("macro");
+ Results.AddResult(Builder.TakeString());
+
+ // #define <macro>(<args>)
+ Builder.AddTypedTextChunk("define");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("macro");
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddPlaceholderChunk("args");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Results.AddResult(Builder.TakeString());
+
+ // #undef <macro>
+ Builder.AddTypedTextChunk("undef");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("macro");
+ Results.AddResult(Builder.TakeString());
+
+ // #line <number>
+ Builder.AddTypedTextChunk("line");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("number");
+ Results.AddResult(Builder.TakeString());
+
+ // #line <number> "filename"
+ Builder.AddTypedTextChunk("line");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("number");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddTextChunk("\"");
+ Builder.AddPlaceholderChunk("filename");
+ Builder.AddTextChunk("\"");
+ Results.AddResult(Builder.TakeString());
+
+ // #error <message>
+ Builder.AddTypedTextChunk("error");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("message");
+ Results.AddResult(Builder.TakeString());
+
+ // #pragma <arguments>
+ Builder.AddTypedTextChunk("pragma");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("arguments");
+ Results.AddResult(Builder.TakeString());
+
+ if (getLangOpts().ObjC1) {
+ // #import "header"
+ Builder.AddTypedTextChunk("import");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddTextChunk("\"");
+ Builder.AddPlaceholderChunk("header");
+ Builder.AddTextChunk("\"");
+ Results.AddResult(Builder.TakeString());
+
+ // #import <header>
+ Builder.AddTypedTextChunk("import");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddTextChunk("<");
+ Builder.AddPlaceholderChunk("header");
+ Builder.AddTextChunk(">");
+ Results.AddResult(Builder.TakeString());
+ }
+
+ // #include_next "header"
+ Builder.AddTypedTextChunk("include_next");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddTextChunk("\"");
+ Builder.AddPlaceholderChunk("header");
+ Builder.AddTextChunk("\"");
+ Results.AddResult(Builder.TakeString());
+
+ // #include_next <header>
+ Builder.AddTypedTextChunk("include_next");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddTextChunk("<");
+ Builder.AddPlaceholderChunk("header");
+ Builder.AddTextChunk(">");
+ Results.AddResult(Builder.TakeString());
+
+ // #warning <message>
+ Builder.AddTypedTextChunk("warning");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddPlaceholderChunk("message");
+ Results.AddResult(Builder.TakeString());
+
+ // Note: #ident and #sccs are such crazy anachronisms that we don't provide
+ // completions for them. And __include_macros is a Clang-internal extension
+ // that we don't want to encourage anyone to use.
+
+ // FIXME: we don't support #assert or #unassert, so don't suggest them.
+ Results.ExitScope();
+
+ HandleCodeCompleteResults(this, CodeCompleter,
+ CodeCompletionContext::CCC_PreprocessorDirective,
+ Results.data(), Results.size());
+}
+
+void Sema::CodeCompleteInPreprocessorConditionalExclusion(Scope *S) {
+ CodeCompleteOrdinaryName(S,
+ S->getFnParent()? Sema::PCC_RecoveryInFunction
+ : Sema::PCC_Namespace);
+}
+
+void Sema::CodeCompletePreprocessorMacroName(bool IsDefinition) {
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ IsDefinition? CodeCompletionContext::CCC_MacroName
+ : CodeCompletionContext::CCC_MacroNameUse);
+ if (!IsDefinition && (!CodeCompleter || CodeCompleter->includeMacros())) {
+ // Add just the names of macros, not their arguments.
+ CodeCompletionBuilder Builder(Results.getAllocator(),
+ Results.getCodeCompletionTUInfo());
+ Results.EnterNewScope();
+ for (Preprocessor::macro_iterator M = PP.macro_begin(),
+ MEnd = PP.macro_end();
+ M != MEnd; ++M) {
+ Builder.AddTypedTextChunk(Builder.getAllocator().CopyString(
+ M->first->getName()));
+ Results.AddResult(CodeCompletionResult(Builder.TakeString(),
+ CCP_CodePattern,
+ CXCursor_MacroDefinition));
+ }
+ Results.ExitScope();
+ } else if (IsDefinition) {
+ // FIXME: Can we detect when the user just wrote an include guard above?
+ }
+
+ HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(),
+ Results.data(), Results.size());
+}
+
+void Sema::CodeCompletePreprocessorExpression() {
+ ResultBuilder Results(*this, CodeCompleter->getAllocator(),
+ CodeCompleter->getCodeCompletionTUInfo(),
+ CodeCompletionContext::CCC_PreprocessorExpression);
+
+ if (!CodeCompleter || CodeCompleter->includeMacros())
+ AddMacroResults(PP, Results, true);
+
+ // defined (<macro>)
+ Results.EnterNewScope();
+ CodeCompletionBuilder Builder(Results.getAllocator(),
+ Results.getCodeCompletionTUInfo());
+ Builder.AddTypedTextChunk("defined");
+ Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace);
+ Builder.AddChunk(CodeCompletionString::CK_LeftParen);
+ Builder.AddPlaceholderChunk("macro");
+ Builder.AddChunk(CodeCompletionString::CK_RightParen);
+ Results.AddResult(Builder.TakeString());
+ Results.ExitScope();
+
+ HandleCodeCompleteResults(this, CodeCompleter,
+ CodeCompletionContext::CCC_PreprocessorExpression,
+ Results.data(), Results.size());
+}
+
+void Sema::CodeCompletePreprocessorMacroArgument(Scope *S,
+ IdentifierInfo *Macro,
+ MacroInfo *MacroInfo,
+ unsigned Argument) {
+ // FIXME: In the future, we could provide "overload" results, much like we
+ // do for function calls.
+
+ // Now just ignore this. There will be another code-completion callback
+ // for the expanded tokens.
+}
+
+void Sema::CodeCompleteNaturalLanguage() {
+ HandleCodeCompleteResults(this, CodeCompleter,
+ CodeCompletionContext::CCC_NaturalLanguage,
+ nullptr, 0);
+}
+
+void Sema::GatherGlobalCodeCompletions(CodeCompletionAllocator &Allocator,
+ CodeCompletionTUInfo &CCTUInfo,
+ SmallVectorImpl<CodeCompletionResult> &Results) {
+ ResultBuilder Builder(*this, Allocator, CCTUInfo,
+ CodeCompletionContext::CCC_Recovery);
+ if (!CodeCompleter || CodeCompleter->includeGlobals()) {
+ CodeCompletionDeclConsumer Consumer(Builder,
+ Context.getTranslationUnitDecl());
+ LookupVisibleDecls(Context.getTranslationUnitDecl(), LookupAnyName,
+ Consumer);
+ }
+
+ if (!CodeCompleter || CodeCompleter->includeMacros())
+ AddMacroResults(PP, Builder, true);
+
+ Results.clear();
+ Results.insert(Results.end(),
+ Builder.data(), Builder.data() + Builder.size());
+}
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaConsumer.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaConsumer.cpp
new file mode 100644
index 0000000..d83a13e
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaConsumer.cpp
@@ -0,0 +1,14 @@
+//===-- SemaConsumer.cpp - Abstract interface for AST semantics -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Sema/SemaConsumer.h"
+
+using namespace clang;
+
+void SemaConsumer::anchor() { }
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaDecl.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaDecl.cpp
new file mode 100644
index 0000000..89f4b3a
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaDecl.cpp
@@ -0,0 +1,14273 @@
+//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements semantic analysis for declarations.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Sema/SemaInternal.h"
+#include "TypeLocBuilder.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTLambda.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/CharUnits.h"
+#include "clang/AST/CommentDiagnostic.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/EvaluatedExprVisitor.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/StmtCXX.h"
+#include "clang/Basic/Builtins.h"
+#include "clang/Basic/PartialDiagnostic.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
+#include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
+#include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
+#include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
+#include "clang/Parse/ParseDiagnostic.h"
+#include "clang/Sema/CXXFieldCollector.h"
+#include "clang/Sema/DeclSpec.h"
+#include "clang/Sema/DelayedDiagnostic.h"
+#include "clang/Sema/Initialization.h"
+#include "clang/Sema/Lookup.h"
+#include "clang/Sema/ParsedTemplate.h"
+#include "clang/Sema/Scope.h"
+#include "clang/Sema/ScopeInfo.h"
+#include "clang/Sema/Template.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/Triple.h"
+#include <algorithm>
+#include <cstring>
+#include <functional>
+using namespace clang;
+using namespace sema;
+
+Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
+ if (OwnedType) {
+ Decl *Group[2] = { OwnedType, Ptr };
+ return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
+ }
+
+ return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
+}
+
+namespace {
+
+class TypeNameValidatorCCC : public CorrectionCandidateCallback {
+ public:
+ TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false,
+ bool AllowTemplates=false)
+ : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
+ AllowClassTemplates(AllowTemplates) {
+ WantExpressionKeywords = false;
+ WantCXXNamedCasts = false;
+ WantRemainingKeywords = false;
+ }
+
+ bool ValidateCandidate(const TypoCorrection &candidate) override {
+ if (NamedDecl *ND = candidate.getCorrectionDecl()) {
+ bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
+ bool AllowedTemplate = AllowClassTemplates && isa<ClassTemplateDecl>(ND);
+ return (IsType || AllowedTemplate) &&
+ (AllowInvalidDecl || !ND->isInvalidDecl());
+ }
+ return !WantClassName && candidate.isKeyword();
+ }
+
+ private:
+ bool AllowInvalidDecl;
+ bool WantClassName;
+ bool AllowClassTemplates;
+};
+
+}
+
+/// \brief Determine whether the token kind starts a simple-type-specifier.
+bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
+ switch (Kind) {
+ // FIXME: Take into account the current language when deciding whether a
+ // token kind is a valid type specifier
+ case tok::kw_short:
+ case tok::kw_long:
+ case tok::kw___int64:
+ case tok::kw___int128:
+ case tok::kw_signed:
+ case tok::kw_unsigned:
+ case tok::kw_void:
+ case tok::kw_char:
+ case tok::kw_int:
+ case tok::kw_half:
+ case tok::kw_float:
+ case tok::kw_double:
+ case tok::kw_wchar_t:
+ case tok::kw_bool:
+ case tok::kw___underlying_type:
+ return true;
+
+ case tok::annot_typename:
+ case tok::kw_char16_t:
+ case tok::kw_char32_t:
+ case tok::kw_typeof:
+ case tok::annot_decltype:
+ case tok::kw_decltype:
+ return getLangOpts().CPlusPlus;
+
+ default:
+ break;
+ }
+
+ return false;
+}
+
+namespace {
+enum class UnqualifiedTypeNameLookupResult {
+ NotFound,
+ FoundNonType,
+ FoundType
+};
+} // namespace
+
+/// \brief Tries to perform unqualified lookup of the type decls in bases for
+/// dependent class.
+/// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
+/// type decl, \a FoundType if only type decls are found.
+static UnqualifiedTypeNameLookupResult
+lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II,
+ SourceLocation NameLoc,
+ const CXXRecordDecl *RD) {
+ if (!RD->hasDefinition())
+ return UnqualifiedTypeNameLookupResult::NotFound;
+ // Look for type decls in base classes.
+ UnqualifiedTypeNameLookupResult FoundTypeDecl =
+ UnqualifiedTypeNameLookupResult::NotFound;
+ for (const auto &Base : RD->bases()) {
+ const CXXRecordDecl *BaseRD = nullptr;
+ if (auto *BaseTT = Base.getType()->getAs<TagType>())
+ BaseRD = BaseTT->getAsCXXRecordDecl();
+ else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) {
+ // Look for type decls in dependent base classes that have known primary
+ // templates.
+ if (!TST || !TST->isDependentType())
+ continue;
+ auto *TD = TST->getTemplateName().getAsTemplateDecl();
+ if (!TD)
+ continue;
+ auto *BasePrimaryTemplate =
+ dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl());
+ if (!BasePrimaryTemplate)
+ continue;
+ BaseRD = BasePrimaryTemplate;
+ }
+ if (BaseRD) {
+ for (NamedDecl *ND : BaseRD->lookup(&II)) {
+ if (!isa<TypeDecl>(ND))
+ return UnqualifiedTypeNameLookupResult::FoundNonType;
+ FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
+ }
+ if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) {
+ switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) {
+ case UnqualifiedTypeNameLookupResult::FoundNonType:
+ return UnqualifiedTypeNameLookupResult::FoundNonType;
+ case UnqualifiedTypeNameLookupResult::FoundType:
+ FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
+ break;
+ case UnqualifiedTypeNameLookupResult::NotFound:
+ break;
+ }
+ }
+ }
+ }
+
+ return FoundTypeDecl;
+}
+
+static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
+ const IdentifierInfo &II,
+ SourceLocation NameLoc) {
+ // Lookup in the parent class template context, if any.
+ const CXXRecordDecl *RD = nullptr;
+ UnqualifiedTypeNameLookupResult FoundTypeDecl =
+ UnqualifiedTypeNameLookupResult::NotFound;
+ for (DeclContext *DC = S.CurContext;
+ DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound;
+ DC = DC->getParent()) {
+ // Look for type decls in dependent base classes that have known primary
+ // templates.
+ RD = dyn_cast<CXXRecordDecl>(DC);
+ if (RD && RD->getDescribedClassTemplate())
+ FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD);
+ }
+ if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType)
+ return ParsedType();
+
+ // We found some types in dependent base classes. Recover as if the user
+ // wrote 'typename MyClass::II' instead of 'II'. We'll fully resolve the
+ // lookup during template instantiation.
+ S.Diag(NameLoc, diag::ext_found_via_dependent_bases_lookup) << &II;
+
+ ASTContext &Context = S.Context;
+ auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
+ cast<Type>(Context.getRecordType(RD)));
+ QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II);
+
+ CXXScopeSpec SS;
+ SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
+
+ TypeLocBuilder Builder;
+ DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
+ DepTL.setNameLoc(NameLoc);
+ DepTL.setElaboratedKeywordLoc(SourceLocation());
+ DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
+ return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
+}
+
+/// \brief If the identifier refers to a type name within this scope,
+/// return the declaration of that type.
+///
+/// This routine performs ordinary name lookup of the identifier II
+/// within the given scope, with optional C++ scope specifier SS, to
+/// determine whether the name refers to a type. If so, returns an
+/// opaque pointer (actually a QualType) corresponding to that
+/// type. Otherwise, returns NULL.
+ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
+ Scope *S, CXXScopeSpec *SS,
+ bool isClassName, bool HasTrailingDot,
+ ParsedType ObjectTypePtr,
+ bool IsCtorOrDtorName,
+ bool WantNontrivialTypeSourceInfo,
+ IdentifierInfo **CorrectedII) {
+ // Determine where we will perform name lookup.
+ DeclContext *LookupCtx = nullptr;
+ if (ObjectTypePtr) {
+ QualType ObjectType = ObjectTypePtr.get();
+ if (ObjectType->isRecordType())
+ LookupCtx = computeDeclContext(ObjectType);
+ } else if (SS && SS->isNotEmpty()) {
+ LookupCtx = computeDeclContext(*SS, false);
+
+ if (!LookupCtx) {
+ if (isDependentScopeSpecifier(*SS)) {
+ // C++ [temp.res]p3:
+ // A qualified-id that refers to a type and in which the
+ // nested-name-specifier depends on a template-parameter (14.6.2)
+ // shall be prefixed by the keyword typename to indicate that the
+ // qualified-id denotes a type, forming an
+ // elaborated-type-specifier (7.1.5.3).
+ //
+ // We therefore do not perform any name lookup if the result would
+ // refer to a member of an unknown specialization.
+ if (!isClassName && !IsCtorOrDtorName)
+ return ParsedType();
+
+ // We know from the grammar that this name refers to a type,
+ // so build a dependent node to describe the type.
+ if (WantNontrivialTypeSourceInfo)
+ return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
+
+ NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
+ QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
+ II, NameLoc);
+ return ParsedType::make(T);
+ }
+
+ return ParsedType();
+ }
+
+ if (!LookupCtx->isDependentContext() &&
+ RequireCompleteDeclContext(*SS, LookupCtx))
+ return ParsedType();
+ }
+
+ // FIXME: LookupNestedNameSpecifierName isn't the right kind of
+ // lookup for class-names.
+ LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
+ LookupOrdinaryName;
+ LookupResult Result(*this, &II, NameLoc, Kind);
+ if (LookupCtx) {
+ // Perform "qualified" name lookup into the declaration context we
+ // computed, which is either the type of the base of a member access
+ // expression or the declaration context associated with a prior
+ // nested-name-specifier.
+ LookupQualifiedName(Result, LookupCtx);
+
+ if (ObjectTypePtr && Result.empty()) {
+ // C++ [basic.lookup.classref]p3:
+ // If the unqualified-id is ~type-name, the type-name is looked up
+ // in the context of the entire postfix-expression. If the type T of
+ // the object expression is of a class type C, the type-name is also
+ // looked up in the scope of class C. At least one of the lookups shall
+ // find a name that refers to (possibly cv-qualified) T.
+ LookupName(Result, S);
+ }
+ } else {
+ // Perform unqualified name lookup.
+ LookupName(Result, S);
+
+ // For unqualified lookup in a class template in MSVC mode, look into
+ // dependent base classes where the primary class template is known.
+ if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
+ if (ParsedType TypeInBase =
+ recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
+ return TypeInBase;
+ }
+ }
+
+ NamedDecl *IIDecl = nullptr;
+ switch (Result.getResultKind()) {
+ case LookupResult::NotFound:
+ case LookupResult::NotFoundInCurrentInstantiation:
+ if (CorrectedII) {
+ TypoCorrection Correction = CorrectTypo(
+ Result.getLookupNameInfo(), Kind, S, SS,
+ llvm::make_unique<TypeNameValidatorCCC>(true, isClassName),
+ CTK_ErrorRecovery);
+ IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
+ TemplateTy Template;
+ bool MemberOfUnknownSpecialization;
+ UnqualifiedId TemplateName;
+ TemplateName.setIdentifier(NewII, NameLoc);
+ NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
+ CXXScopeSpec NewSS, *NewSSPtr = SS;
+ if (SS && NNS) {
+ NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
+ NewSSPtr = &NewSS;
+ }
+ if (Correction && (NNS || NewII != &II) &&
+ // Ignore a correction to a template type as the to-be-corrected
+ // identifier is not a template (typo correction for template names
+ // is handled elsewhere).
+ !(getLangOpts().CPlusPlus && NewSSPtr &&
+ isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
+ false, Template, MemberOfUnknownSpecialization))) {
+ ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
+ isClassName, HasTrailingDot, ObjectTypePtr,
+ IsCtorOrDtorName,
+ WantNontrivialTypeSourceInfo);
+ if (Ty) {
+ diagnoseTypo(Correction,
+ PDiag(diag::err_unknown_type_or_class_name_suggest)
+ << Result.getLookupName() << isClassName);
+ if (SS && NNS)
+ SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
+ *CorrectedII = NewII;
+ return Ty;
+ }
+ }
+ }
+ // If typo correction failed or was not performed, fall through
+ case LookupResult::FoundOverloaded:
+ case LookupResult::FoundUnresolvedValue:
+ Result.suppressDiagnostics();
+ return ParsedType();
+
+ case LookupResult::Ambiguous:
+ // Recover from type-hiding ambiguities by hiding the type. We'll
+ // do the lookup again when looking for an object, and we can
+ // diagnose the error then. If we don't do this, then the error
+ // about hiding the type will be immediately followed by an error
+ // that only makes sense if the identifier was treated like a type.
+ if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
+ Result.suppressDiagnostics();
+ return ParsedType();
+ }
+
+ // Look to see if we have a type anywhere in the list of results.
+ for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
+ Res != ResEnd; ++Res) {
+ if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
+ if (!IIDecl ||
+ (*Res)->getLocation().getRawEncoding() <
+ IIDecl->getLocation().getRawEncoding())
+ IIDecl = *Res;
+ }
+ }
+
+ if (!IIDecl) {
+ // None of the entities we found is a type, so there is no way
+ // to even assume that the result is a type. In this case, don't
+ // complain about the ambiguity. The parser will either try to
+ // perform this lookup again (e.g., as an object name), which
+ // will produce the ambiguity, or will complain that it expected
+ // a type name.
+ Result.suppressDiagnostics();
+ return ParsedType();
+ }
+
+ // We found a type within the ambiguous lookup; diagnose the
+ // ambiguity and then return that type. This might be the right
+ // answer, or it might not be, but it suppresses any attempt to
+ // perform the name lookup again.
+ break;
+
+ case LookupResult::Found:
+ IIDecl = Result.getFoundDecl();
+ break;
+ }
+
+ assert(IIDecl && "Didn't find decl");
+
+ QualType T;
+ if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
+ DiagnoseUseOfDecl(IIDecl, NameLoc);
+
+ T = Context.getTypeDeclType(TD);
+ MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
+
+ // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
+ // constructor or destructor name (in such a case, the scope specifier
+ // will be attached to the enclosing Expr or Decl node).
+ if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
+ if (WantNontrivialTypeSourceInfo) {
+ // Construct a type with type-source information.
+ TypeLocBuilder Builder;
+ Builder.pushTypeSpec(T).setNameLoc(NameLoc);
+
+ T = getElaboratedType(ETK_None, *SS, T);
+ ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
+ ElabTL.setElaboratedKeywordLoc(SourceLocation());
+ ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
+ return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
+ } else {
+ T = getElaboratedType(ETK_None, *SS, T);
+ }
+ }
+ } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
+ (void)DiagnoseUseOfDecl(IDecl, NameLoc);
+ if (!HasTrailingDot)
+ T = Context.getObjCInterfaceType(IDecl);
+ }
+
+ if (T.isNull()) {
+ // If it's not plausibly a type, suppress diagnostics.
+ Result.suppressDiagnostics();
+ return ParsedType();
+ }
+ return ParsedType::make(T);
+}
+
+// Builds a fake NNS for the given decl context.
+static NestedNameSpecifier *
+synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
+ for (;; DC = DC->getLookupParent()) {
+ DC = DC->getPrimaryContext();
+ auto *ND = dyn_cast<NamespaceDecl>(DC);
+ if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
+ return NestedNameSpecifier::Create(Context, nullptr, ND);
+ else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
+ return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
+ RD->getTypeForDecl());
+ else if (isa<TranslationUnitDecl>(DC))
+ return NestedNameSpecifier::GlobalSpecifier(Context);
+ }
+ llvm_unreachable("something isn't in TU scope?");
+}
+
+ParsedType Sema::ActOnDelayedDefaultTemplateArg(const IdentifierInfo &II,
+ SourceLocation NameLoc) {
+ // Accepting an undeclared identifier as a default argument for a template
+ // type parameter is a Microsoft extension.
+ Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
+
+ // Build a fake DependentNameType that will perform lookup into CurContext at
+ // instantiation time. The name specifier isn't dependent, so template
+ // instantiation won't transform it. It will retry the lookup, however.
+ NestedNameSpecifier *NNS =
+ synthesizeCurrentNestedNameSpecifier(Context, CurContext);
+ QualType T = Context.getDependentNameType(ETK_None, NNS, &II);
+
+ // Build type location information. We synthesized the qualifier, so we have
+ // to build a fake NestedNameSpecifierLoc.
+ NestedNameSpecifierLocBuilder NNSLocBuilder;
+ NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
+ NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
+
+ TypeLocBuilder Builder;
+ DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
+ DepTL.setNameLoc(NameLoc);
+ DepTL.setElaboratedKeywordLoc(SourceLocation());
+ DepTL.setQualifierLoc(QualifierLoc);
+ return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
+}
+
+/// isTagName() - This method is called *for error recovery purposes only*
+/// to determine if the specified name is a valid tag name ("struct foo"). If
+/// so, this returns the TST for the tag corresponding to it (TST_enum,
+/// TST_union, TST_struct, TST_interface, TST_class). This is used to diagnose
+/// cases in C where the user forgot to specify the tag.
+DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
+ // Do a tag name lookup in this scope.
+ LookupResult R(*this, &II, SourceLocation(), LookupTagName);
+ LookupName(R, S, false);
+ R.suppressDiagnostics();
+ if (R.getResultKind() == LookupResult::Found)
+ if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
+ switch (TD->getTagKind()) {
+ case TTK_Struct: return DeclSpec::TST_struct;
+ case TTK_Interface: return DeclSpec::TST_interface;
+ case TTK_Union: return DeclSpec::TST_union;
+ case TTK_Class: return DeclSpec::TST_class;
+ case TTK_Enum: return DeclSpec::TST_enum;
+ }
+ }
+
+ return DeclSpec::TST_unspecified;
+}
+
+/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
+/// if a CXXScopeSpec's type is equal to the type of one of the base classes
+/// then downgrade the missing typename error to a warning.
+/// This is needed for MSVC compatibility; Example:
+/// @code
+/// template<class T> class A {
+/// public:
+/// typedef int TYPE;
+/// };
+/// template<class T> class B : public A<T> {
+/// public:
+/// A<T>::TYPE a; // no typename required because A<T> is a base class.
+/// };
+/// @endcode
+bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
+ if (CurContext->isRecord()) {
+ if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super)
+ return true;
+
+ const Type *Ty = SS->getScopeRep()->getAsType();
+
+ CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
+ for (const auto &Base : RD->bases())
+ if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
+ return true;
+ return S->isFunctionPrototypeScope();
+ }
+ return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
+}
+
+void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
+ SourceLocation IILoc,
+ Scope *S,
+ CXXScopeSpec *SS,
+ ParsedType &SuggestedType,
+ bool AllowClassTemplates) {
+ // We don't have anything to suggest (yet).
+ SuggestedType = ParsedType();
+
+ // There may have been a typo in the name of the type. Look up typo
+ // results, in case we have something that we can suggest.
+ if (TypoCorrection Corrected =
+ CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
+ llvm::make_unique<TypeNameValidatorCCC>(
+ false, false, AllowClassTemplates),
+ CTK_ErrorRecovery)) {
+ if (Corrected.isKeyword()) {
+ // We corrected to a keyword.
+ diagnoseTypo(Corrected, PDiag(diag::err_unknown_typename_suggest) << II);
+ II = Corrected.getCorrectionAsIdentifierInfo();
+ } else {
+ // We found a similarly-named type or interface; suggest that.
+ if (!SS || !SS->isSet()) {
+ diagnoseTypo(Corrected,
+ PDiag(diag::err_unknown_typename_suggest) << II);
+ } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
+ std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
+ bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
+ II->getName().equals(CorrectedStr);
+ diagnoseTypo(Corrected,
+ PDiag(diag::err_unknown_nested_typename_suggest)
+ << II << DC << DroppedSpecifier << SS->getRange());
+ } else {
+ llvm_unreachable("could not have corrected a typo here");
+ }
+
+ CXXScopeSpec tmpSS;
+ if (Corrected.getCorrectionSpecifier())
+ tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
+ SourceRange(IILoc));
+ SuggestedType = getTypeName(*Corrected.getCorrectionAsIdentifierInfo(),
+ IILoc, S, tmpSS.isSet() ? &tmpSS : SS, false,
+ false, ParsedType(),
+ /*IsCtorOrDtorName=*/false,
+ /*NonTrivialTypeSourceInfo=*/true);
+ }
+ return;
+ }
+
+ if (getLangOpts().CPlusPlus) {
+ // See if II is a class template that the user forgot to pass arguments to.
+ UnqualifiedId Name;
+ Name.setIdentifier(II, IILoc);
+ CXXScopeSpec EmptySS;
+ TemplateTy TemplateResult;
+ bool MemberOfUnknownSpecialization;
+ if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
+ Name, ParsedType(), true, TemplateResult,
+ MemberOfUnknownSpecialization) == TNK_Type_template) {
+ TemplateName TplName = TemplateResult.get();
+ Diag(IILoc, diag::err_template_missing_args) << TplName;
+ if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
+ Diag(TplDecl->getLocation(), diag::note_template_decl_here)
+ << TplDecl->getTemplateParameters()->getSourceRange();
+ }
+ return;
+ }
+ }
+
+ // FIXME: Should we move the logic that tries to recover from a missing tag
+ // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
+
+ if (!SS || (!SS->isSet() && !SS->isInvalid()))
+ Diag(IILoc, diag::err_unknown_typename) << II;
+ else if (DeclContext *DC = computeDeclContext(*SS, false))
+ Diag(IILoc, diag::err_typename_nested_not_found)
+ << II << DC << SS->getRange();
+ else if (isDependentScopeSpecifier(*SS)) {
+ unsigned DiagID = diag::err_typename_missing;
+ if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
+ DiagID = diag::ext_typename_missing;
+
+ Diag(SS->getRange().getBegin(), DiagID)
+ << SS->getScopeRep() << II->getName()
+ << SourceRange(SS->getRange().getBegin(), IILoc)
+ << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
+ SuggestedType = ActOnTypenameType(S, SourceLocation(),
+ *SS, *II, IILoc).get();
+ } else {
+ assert(SS && SS->isInvalid() &&
+ "Invalid scope specifier has already been diagnosed");
+ }
+}
+
+/// \brief Determine whether the given result set contains either a type name
+/// or
+static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
+ bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
+ NextToken.is(tok::less);
+
+ for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
+ if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
+ return true;
+
+ if (CheckTemplate && isa<TemplateDecl>(*I))
+ return true;
+ }
+
+ return false;
+}
+
+static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
+ Scope *S, CXXScopeSpec &SS,
+ IdentifierInfo *&Name,
+ SourceLocation NameLoc) {
+ LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
+ SemaRef.LookupParsedName(R, S, &SS);
+ if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
+ StringRef FixItTagName;
+ switch (Tag->getTagKind()) {
+ case TTK_Class:
+ FixItTagName = "class ";
+ break;
+
+ case TTK_Enum:
+ FixItTagName = "enum ";
+ break;
+
+ case TTK_Struct:
+ FixItTagName = "struct ";
+ break;
+
+ case TTK_Interface:
+ FixItTagName = "__interface ";
+ break;
+
+ case TTK_Union:
+ FixItTagName = "union ";
+ break;
+ }
+
+ StringRef TagName = FixItTagName.drop_back();
+ SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
+ << Name << TagName << SemaRef.getLangOpts().CPlusPlus
+ << FixItHint::CreateInsertion(NameLoc, FixItTagName);
+
+ for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
+ I != IEnd; ++I)
+ SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
+ << Name << TagName;
+
+ // Replace lookup results with just the tag decl.
+ Result.clear(Sema::LookupTagName);
+ SemaRef.LookupParsedName(Result, S, &SS);
+ return true;
+ }
+
+ return false;
+}
+
+/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
+static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
+ QualType T, SourceLocation NameLoc) {
+ ASTContext &Context = S.Context;
+
+ TypeLocBuilder Builder;
+ Builder.pushTypeSpec(T).setNameLoc(NameLoc);
+
+ T = S.getElaboratedType(ETK_None, SS, T);
+ ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
+ ElabTL.setElaboratedKeywordLoc(SourceLocation());
+ ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
+ return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
+}
+
+Sema::NameClassification
+Sema::ClassifyName(Scope *S, CXXScopeSpec &SS, IdentifierInfo *&Name,
+ SourceLocation NameLoc, const Token &NextToken,
+ bool IsAddressOfOperand,
+ std::unique_ptr<CorrectionCandidateCallback> CCC) {
+ DeclarationNameInfo NameInfo(Name, NameLoc);
+ ObjCMethodDecl *CurMethod = getCurMethodDecl();
+
+ if (NextToken.is(tok::coloncolon)) {
+ BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
+ QualType(), false, SS, nullptr, false);
+ }
+
+ LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
+ LookupParsedName(Result, S, &SS, !CurMethod);
+
+ // For unqualified lookup in a class template in MSVC mode, look into
+ // dependent base classes where the primary class template is known.
+ if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
+ if (ParsedType TypeInBase =
+ recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
+ return TypeInBase;
+ }
+
+ // Perform lookup for Objective-C instance variables (including automatically
+ // synthesized instance variables), if we're in an Objective-C method.
+ // FIXME: This lookup really, really needs to be folded in to the normal
+ // unqualified lookup mechanism.
+ if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
+ ExprResult E = LookupInObjCMethod(Result, S, Name, true);
+ if (E.get() || E.isInvalid())
+ return E;
+ }
+
+ bool SecondTry = false;
+ bool IsFilteredTemplateName = false;
+
+Corrected:
+ switch (Result.getResultKind()) {
+ case LookupResult::NotFound:
+ // If an unqualified-id is followed by a '(', then we have a function
+ // call.
+ if (!SS.isSet() && NextToken.is(tok::l_paren)) {
+ // In C++, this is an ADL-only call.
+ // FIXME: Reference?
+ if (getLangOpts().CPlusPlus)
+ return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
+
+ // C90 6.3.2.2:
+ // If the expression that precedes the parenthesized argument list in a
+ // function call consists solely of an identifier, and if no
+ // declaration is visible for this identifier, the identifier is
+ // implicitly declared exactly as if, in the innermost block containing
+ // the function call, the declaration
+ //
+ // extern int identifier ();
+ //
+ // appeared.
+ //
+ // We also allow this in C99 as an extension.
+ if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
+ Result.addDecl(D);
+ Result.resolveKind();
+ return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
+ }
+ }
+
+ // In C, we first see whether there is a tag type by the same name, in
+ // which case it's likely that the user just forget to write "enum",
+ // "struct", or "union".
+ if (!getLangOpts().CPlusPlus && !SecondTry &&
+ isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
+ break;
+ }
+
+ // Perform typo correction to determine if there is another name that is
+ // close to this name.
+ if (!SecondTry && CCC) {
+ SecondTry = true;
+ if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
+ Result.getLookupKind(), S,
+ &SS, std::move(CCC),
+ CTK_ErrorRecovery)) {
+ unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
+ unsigned QualifiedDiag = diag::err_no_member_suggest;
+
+ NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
+ NamedDecl *UnderlyingFirstDecl
+ = FirstDecl? FirstDecl->getUnderlyingDecl() : nullptr;
+ if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
+ UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
+ UnqualifiedDiag = diag::err_no_template_suggest;
+ QualifiedDiag = diag::err_no_member_template_suggest;
+ } else if (UnderlyingFirstDecl &&
+ (isa<TypeDecl>(UnderlyingFirstDecl) ||
+ isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
+ isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
+ UnqualifiedDiag = diag::err_unknown_typename_suggest;
+ QualifiedDiag = diag::err_unknown_nested_typename_suggest;
+ }
+
+ if (SS.isEmpty()) {
+ diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
+ } else {// FIXME: is this even reachable? Test it.
+ std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
+ bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
+ Name->getName().equals(CorrectedStr);
+ diagnoseTypo(Corrected, PDiag(QualifiedDiag)
+ << Name << computeDeclContext(SS, false)
+ << DroppedSpecifier << SS.getRange());
+ }
+
+ // Update the name, so that the caller has the new name.
+ Name = Corrected.getCorrectionAsIdentifierInfo();
+
+ // Typo correction corrected to a keyword.
+ if (Corrected.isKeyword())
+ return Name;
+
+ // Also update the LookupResult...
+ // FIXME: This should probably go away at some point
+ Result.clear();
+ Result.setLookupName(Corrected.getCorrection());
+ if (FirstDecl)
+ Result.addDecl(FirstDecl);
+
+ // If we found an Objective-C instance variable, let
+ // LookupInObjCMethod build the appropriate expression to
+ // reference the ivar.
+ // FIXME: This is a gross hack.
+ if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
+ Result.clear();
+ ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
+ return E;
+ }
+
+ goto Corrected;
+ }
+ }
+
+ // We failed to correct; just fall through and let the parser deal with it.
+ Result.suppressDiagnostics();
+ return NameClassification::Unknown();
+
+ case LookupResult::NotFoundInCurrentInstantiation: {
+ // We performed name lookup into the current instantiation, and there were
+ // dependent bases, so we treat this result the same way as any other
+ // dependent nested-name-specifier.
+
+ // C++ [temp.res]p2:
+ // A name used in a template declaration or definition and that is
+ // dependent on a template-parameter is assumed not to name a type
+ // unless the applicable name lookup finds a type name or the name is
+ // qualified by the keyword typename.
+ //
+ // FIXME: If the next token is '<', we might want to ask the parser to
+ // perform some heroics to see if we actually have a
+ // template-argument-list, which would indicate a missing 'template'
+ // keyword here.
+ return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
+ NameInfo, IsAddressOfOperand,
+ /*TemplateArgs=*/nullptr);
+ }
+
+ case LookupResult::Found:
+ case LookupResult::FoundOverloaded:
+ case LookupResult::FoundUnresolvedValue:
+ break;
+
+ case LookupResult::Ambiguous:
+ if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
+ hasAnyAcceptableTemplateNames(Result)) {
+ // C++ [temp.local]p3:
+ // A lookup that finds an injected-class-name (10.2) can result in an
+ // ambiguity in certain cases (for example, if it is found in more than
+ // one base class). If all of the injected-class-names that are found
+ // refer to specializations of the same class template, and if the name
+ // is followed by a template-argument-list, the reference refers to the
+ // class template itself and not a specialization thereof, and is not
+ // ambiguous.
+ //
+ // This filtering can make an ambiguous result into an unambiguous one,
+ // so try again after filtering out template names.
+ FilterAcceptableTemplateNames(Result);
+ if (!Result.isAmbiguous()) {
+ IsFilteredTemplateName = true;
+ break;
+ }
+ }
+
+ // Diagnose the ambiguity and return an error.
+ return NameClassification::Error();
+ }
+
+ if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
+ (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
+ // C++ [temp.names]p3:
+ // After name lookup (3.4) finds that a name is a template-name or that
+ // an operator-function-id or a literal- operator-id refers to a set of
+ // overloaded functions any member of which is a function template if
+ // this is followed by a <, the < is always taken as the delimiter of a
+ // template-argument-list and never as the less-than operator.
+ if (!IsFilteredTemplateName)
+ FilterAcceptableTemplateNames(Result);
+
+ if (!Result.empty()) {
+ bool IsFunctionTemplate;
+ bool IsVarTemplate;
+ TemplateName Template;
+ if (Result.end() - Result.begin() > 1) {
+ IsFunctionTemplate = true;
+ Template = Context.getOverloadedTemplateName(Result.begin(),
+ Result.end());
+ } else {
+ TemplateDecl *TD
+ = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
+ IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
+ IsVarTemplate = isa<VarTemplateDecl>(TD);
+
+ if (SS.isSet() && !SS.isInvalid())
+ Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
+ /*TemplateKeyword=*/false,
+ TD);
+ else
+ Template = TemplateName(TD);
+ }
+
+ if (IsFunctionTemplate) {
+ // Function templates always go through overload resolution, at which
+ // point we'll perform the various checks (e.g., accessibility) we need
+ // to based on which function we selected.
+ Result.suppressDiagnostics();
+
+ return NameClassification::FunctionTemplate(Template);
+ }
+
+ return IsVarTemplate ? NameClassification::VarTemplate(Template)
+ : NameClassification::TypeTemplate(Template);
+ }
+ }
+
+ NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
+ if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
+ DiagnoseUseOfDecl(Type, NameLoc);
+ MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
+ QualType T = Context.getTypeDeclType(Type);
+ if (SS.isNotEmpty())
+ return buildNestedType(*this, SS, T, NameLoc);
+ return ParsedType::make(T);
+ }
+
+ ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
+ if (!Class) {
+ // FIXME: It's unfortunate that we don't have a Type node for handling this.
+ if (ObjCCompatibleAliasDecl *Alias =
+ dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
+ Class = Alias->getClassInterface();
+ }
+
+ if (Class) {
+ DiagnoseUseOfDecl(Class, NameLoc);
+
+ if (NextToken.is(tok::period)) {
+ // Interface. <something> is parsed as a property reference expression.
+ // Just return "unknown" as a fall-through for now.
+ Result.suppressDiagnostics();
+ return NameClassification::Unknown();
+ }
+
+ QualType T = Context.getObjCInterfaceType(Class);
+ return ParsedType::make(T);
+ }
+
+ // We can have a type template here if we're classifying a template argument.
+ if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
+ return NameClassification::TypeTemplate(
+ TemplateName(cast<TemplateDecl>(FirstDecl)));
+
+ // Check for a tag type hidden by a non-type decl in a few cases where it
+ // seems likely a type is wanted instead of the non-type that was found.
+ bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
+ if ((NextToken.is(tok::identifier) ||
+ (NextIsOp &&
+ FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
+ isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
+ TypeDecl *Type = Result.getAsSingle<TypeDecl>();
+ DiagnoseUseOfDecl(Type, NameLoc);
+ QualType T = Context.getTypeDeclType(Type);
+ if (SS.isNotEmpty())
+ return buildNestedType(*this, SS, T, NameLoc);
+ return ParsedType::make(T);
+ }
+
+ if (FirstDecl->isCXXClassMember())
+ return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
+ nullptr);
+
+ bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
+ return BuildDeclarationNameExpr(SS, Result, ADL);
+}
+
+// Determines the context to return to after temporarily entering a
+// context. This depends in an unnecessarily complicated way on the
+// exact ordering of callbacks from the parser.
+DeclContext *Sema::getContainingDC(DeclContext *DC) {
+
+ // Functions defined inline within classes aren't parsed until we've
+ // finished parsing the top-level class, so the top-level class is
+ // the context we'll need to return to.
+ // A Lambda call operator whose parent is a class must not be treated
+ // as an inline member function. A Lambda can be used legally
+ // either as an in-class member initializer or a default argument. These
+ // are parsed once the class has been marked complete and so the containing
+ // context would be the nested class (when the lambda is defined in one);
+ // If the class is not complete, then the lambda is being used in an
+ // ill-formed fashion (such as to specify the width of a bit-field, or
+ // in an array-bound) - in which case we still want to return the
+ // lexically containing DC (which could be a nested class).
+ if (isa<FunctionDecl>(DC) && !isLambdaCallOperator(DC)) {
+ DC = DC->getLexicalParent();
+
+ // A function not defined within a class will always return to its
+ // lexical context.
+ if (!isa<CXXRecordDecl>(DC))
+ return DC;
+
+ // A C++ inline method/friend is parsed *after* the topmost class
+ // it was declared in is fully parsed ("complete"); the topmost
+ // class is the context we need to return to.
+ while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
+ DC = RD;
+
+ // Return the declaration context of the topmost class the inline method is
+ // declared in.
+ return DC;
+ }
+
+ return DC->getLexicalParent();
+}
+
+void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
+ assert(getContainingDC(DC) == CurContext &&
+ "The next DeclContext should be lexically contained in the current one.");
+ CurContext = DC;
+ S->setEntity(DC);
+}
+
+void Sema::PopDeclContext() {
+ assert(CurContext && "DeclContext imbalance!");
+
+ CurContext = getContainingDC(CurContext);
+ assert(CurContext && "Popped translation unit!");
+}
+
+/// EnterDeclaratorContext - Used when we must lookup names in the context
+/// of a declarator's nested name specifier.
+///
+void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
+ // C++0x [basic.lookup.unqual]p13:
+ // A name used in the definition of a static data member of class
+ // X (after the qualified-id of the static member) is looked up as
+ // if the name was used in a member function of X.
+ // C++0x [basic.lookup.unqual]p14:
+ // If a variable member of a namespace is defined outside of the
+ // scope of its namespace then any name used in the definition of
+ // the variable member (after the declarator-id) is looked up as
+ // if the definition of the variable member occurred in its
+ // namespace.
+ // Both of these imply that we should push a scope whose context
+ // is the semantic context of the declaration. We can't use
+ // PushDeclContext here because that context is not necessarily
+ // lexically contained in the current context. Fortunately,
+ // the containing scope should have the appropriate information.
+
+ assert(!S->getEntity() && "scope already has entity");
+
+#ifndef NDEBUG
+ Scope *Ancestor = S->getParent();
+ while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
+ assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
+#endif
+
+ CurContext = DC;
+ S->setEntity(DC);
+}
+
+void Sema::ExitDeclaratorContext(Scope *S) {
+ assert(S->getEntity() == CurContext && "Context imbalance!");
+
+ // Switch back to the lexical context. The safety of this is
+ // enforced by an assert in EnterDeclaratorContext.
+ Scope *Ancestor = S->getParent();
+ while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
+ CurContext = Ancestor->getEntity();
+
+ // We don't need to do anything with the scope, which is going to
+ // disappear.
+}
+
+
+void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
+ // We assume that the caller has already called
+ // ActOnReenterTemplateScope so getTemplatedDecl() works.
+ FunctionDecl *FD = D->getAsFunction();
+ if (!FD)
+ return;
+
+ // Same implementation as PushDeclContext, but enters the context
+ // from the lexical parent, rather than the top-level class.
+ assert(CurContext == FD->getLexicalParent() &&
+ "The next DeclContext should be lexically contained in the current one.");
+ CurContext = FD;
+ S->setEntity(CurContext);
+
+ for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
+ ParmVarDecl *Param = FD->getParamDecl(P);
+ // If the parameter has an identifier, then add it to the scope
+ if (Param->getIdentifier()) {
+ S->AddDecl(Param);
+ IdResolver.AddDecl(Param);
+ }
+ }
+}
+
+
+void Sema::ActOnExitFunctionContext() {
+ // Same implementation as PopDeclContext, but returns to the lexical parent,
+ // rather than the top-level class.
+ assert(CurContext && "DeclContext imbalance!");
+ CurContext = CurContext->getLexicalParent();
+ assert(CurContext && "Popped translation unit!");
+}
+
+
+/// \brief Determine whether we allow overloading of the function
+/// PrevDecl with another declaration.
+///
+/// This routine determines whether overloading is possible, not
+/// whether some new function is actually an overload. It will return
+/// true in C++ (where we can always provide overloads) or, as an
+/// extension, in C when the previous function is already an
+/// overloaded function declaration or has the "overloadable"
+/// attribute.
+static bool AllowOverloadingOfFunction(LookupResult &Previous,
+ ASTContext &Context) {
+ if (Context.getLangOpts().CPlusPlus)
+ return true;
+
+ if (Previous.getResultKind() == LookupResult::FoundOverloaded)
+ return true;
+
+ return (Previous.getResultKind() == LookupResult::Found
+ && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
+}
+
+/// Add this decl to the scope shadowed decl chains.
+void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
+ // Move up the scope chain until we find the nearest enclosing
+ // non-transparent context. The declaration will be introduced into this
+ // scope.
+ while (S->getEntity() && S->getEntity()->isTransparentContext())
+ S = S->getParent();
+
+ // Add scoped declarations into their context, so that they can be
+ // found later. Declarations without a context won't be inserted
+ // into any context.
+ if (AddToContext)
+ CurContext->addDecl(D);
+
+ // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
+ // are function-local declarations.
+ if (getLangOpts().CPlusPlus && D->isOutOfLine() &&
+ !D->getDeclContext()->getRedeclContext()->Equals(
+ D->getLexicalDeclContext()->getRedeclContext()) &&
+ !D->getLexicalDeclContext()->isFunctionOrMethod())
+ return;
+
+ // Template instantiations should also not be pushed into scope.
+ if (isa<FunctionDecl>(D) &&
+ cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
+ return;
+
+ // If this replaces anything in the current scope,
+ IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
+ IEnd = IdResolver.end();
+ for (; I != IEnd; ++I) {
+ if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
+ S->RemoveDecl(*I);
+ IdResolver.RemoveDecl(*I);
+
+ // Should only need to replace one decl.
+ break;
+ }
+ }
+
+ S->AddDecl(D);
+
+ if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
+ // Implicitly-generated labels may end up getting generated in an order that
+ // isn't strictly lexical, which breaks name lookup. Be careful to insert
+ // the label at the appropriate place in the identifier chain.
+ for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
+ DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
+ if (IDC == CurContext) {
+ if (!S->isDeclScope(*I))
+ continue;
+ } else if (IDC->Encloses(CurContext))
+ break;
+ }
+
+ IdResolver.InsertDeclAfter(I, D);
+ } else {
+ IdResolver.AddDecl(D);
+ }
+}
+
+void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
+ if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
+ TUScope->AddDecl(D);
+}
+
+bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
+ bool AllowInlineNamespace) {
+ return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
+}
+
+Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
+ DeclContext *TargetDC = DC->getPrimaryContext();
+ do {
+ if (DeclContext *ScopeDC = S->getEntity())
+ if (ScopeDC->getPrimaryContext() == TargetDC)
+ return S;
+ } while ((S = S->getParent()));
+
+ return nullptr;
+}
+
+static bool isOutOfScopePreviousDeclaration(NamedDecl *,
+ DeclContext*,
+ ASTContext&);
+
+/// Filters out lookup results that don't fall within the given scope
+/// as determined by isDeclInScope.
+void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
+ bool ConsiderLinkage,
+ bool AllowInlineNamespace) {
+ LookupResult::Filter F = R.makeFilter();
+ while (F.hasNext()) {
+ NamedDecl *D = F.next();
+
+ if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
+ continue;
+
+ if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
+ continue;
+
+ F.erase();
+ }
+
+ F.done();
+}
+
+static bool isUsingDecl(NamedDecl *D) {
+ return isa<UsingShadowDecl>(D) ||
+ isa<UnresolvedUsingTypenameDecl>(D) ||
+ isa<UnresolvedUsingValueDecl>(D);
+}
+
+/// Removes using shadow declarations from the lookup results.
+static void RemoveUsingDecls(LookupResult &R) {
+ LookupResult::Filter F = R.makeFilter();
+ while (F.hasNext())
+ if (isUsingDecl(F.next()))
+ F.erase();
+
+ F.done();
+}
+
+/// \brief Check for this common pattern:
+/// @code
+/// class S {
+/// S(const S&); // DO NOT IMPLEMENT
+/// void operator=(const S&); // DO NOT IMPLEMENT
+/// };
+/// @endcode
+static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
+ // FIXME: Should check for private access too but access is set after we get
+ // the decl here.
+ if (D->doesThisDeclarationHaveABody())
+ return false;
+
+ if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
+ return CD->isCopyConstructor();
+ if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
+ return Method->isCopyAssignmentOperator();
+ return false;
+}
+
+// We need this to handle
+//
+// typedef struct {
+// void *foo() { return 0; }
+// } A;
+//
+// When we see foo we don't know if after the typedef we will get 'A' or '*A'
+// for example. If 'A', foo will have external linkage. If we have '*A',
+// foo will have no linkage. Since we can't know until we get to the end
+// of the typedef, this function finds out if D might have non-external linkage.
+// Callers should verify at the end of the TU if it D has external linkage or
+// not.
+bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
+ const DeclContext *DC = D->getDeclContext();
+ while (!DC->isTranslationUnit()) {
+ if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
+ if (!RD->hasNameForLinkage())
+ return true;
+ }
+ DC = DC->getParent();
+ }
+
+ return !D->isExternallyVisible();
+}
+
+// FIXME: This needs to be refactored; some other isInMainFile users want
+// these semantics.
+static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
+ if (S.TUKind != TU_Complete)
+ return false;
+ return S.SourceMgr.isInMainFile(Loc);
+}
+
+bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
+ assert(D);
+
+ if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
+ return false;
+
+ // Ignore all entities declared within templates, and out-of-line definitions
+ // of members of class templates.
+ if (D->getDeclContext()->isDependentContext() ||
+ D->getLexicalDeclContext()->isDependentContext())
+ return false;
+
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
+ return false;
+
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
+ if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
+ return false;
+ } else {
+ // 'static inline' functions are defined in headers; don't warn.
+ if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
+ return false;
+ }
+
+ if (FD->doesThisDeclarationHaveABody() &&
+ Context.DeclMustBeEmitted(FD))
+ return false;
+ } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
+ // Constants and utility variables are defined in headers with internal
+ // linkage; don't warn. (Unlike functions, there isn't a convenient marker
+ // like "inline".)
+ if (!isMainFileLoc(*this, VD->getLocation()))
+ return false;
+
+ if (Context.DeclMustBeEmitted(VD))
+ return false;
+
+ if (VD->isStaticDataMember() &&
+ VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
+ return false;
+ } else {
+ return false;
+ }
+
+ // Only warn for unused decls internal to the translation unit.
+ // FIXME: This seems like a bogus check; it suppresses -Wunused-function
+ // for inline functions defined in the main source file, for instance.
+ return mightHaveNonExternalLinkage(D);
+}
+
+void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
+ if (!D)
+ return;
+
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ const FunctionDecl *First = FD->getFirstDecl();
+ if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
+ return; // First should already be in the vector.
+ }
+
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
+ const VarDecl *First = VD->getFirstDecl();
+ if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
+ return; // First should already be in the vector.
+ }
+
+ if (ShouldWarnIfUnusedFileScopedDecl(D))
+ UnusedFileScopedDecls.push_back(D);
+}
+
+static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
+ if (D->isInvalidDecl())
+ return false;
+
+ if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>() ||
+ D->hasAttr<ObjCPreciseLifetimeAttr>())
+ return false;
+
+ if (isa<LabelDecl>(D))
+ return true;
+
+ // Except for labels, we only care about unused decls that are local to
+ // functions.
+ bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
+ if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
+ // For dependent types, the diagnostic is deferred.
+ WithinFunction =
+ WithinFunction || (R->isLocalClass() && !R->isDependentType());
+ if (!WithinFunction)
+ return false;
+
+ if (isa<TypedefNameDecl>(D))
+ return true;
+
+ // White-list anything that isn't a local variable.
+ if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
+ return false;
+
+ // Types of valid local variables should be complete, so this should succeed.
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
+
+ // White-list anything with an __attribute__((unused)) type.
+ QualType Ty = VD->getType();
+
+ // Only look at the outermost level of typedef.
+ if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
+ if (TT->getDecl()->hasAttr<UnusedAttr>())
+ return false;
+ }
+
+ // If we failed to complete the type for some reason, or if the type is
+ // dependent, don't diagnose the variable.
+ if (Ty->isIncompleteType() || Ty->isDependentType())
+ return false;
+
+ if (const TagType *TT = Ty->getAs<TagType>()) {
+ const TagDecl *Tag = TT->getDecl();
+ if (Tag->hasAttr<UnusedAttr>())
+ return false;
+
+ if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
+ if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
+ return false;
+
+ if (const Expr *Init = VD->getInit()) {
+ if (const ExprWithCleanups *Cleanups =
+ dyn_cast<ExprWithCleanups>(Init))
+ Init = Cleanups->getSubExpr();
+ const CXXConstructExpr *Construct =
+ dyn_cast<CXXConstructExpr>(Init);
+ if (Construct && !Construct->isElidable()) {
+ CXXConstructorDecl *CD = Construct->getConstructor();
+ if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>())
+ return false;
+ }
+ }
+ }
+ }
+
+ // TODO: __attribute__((unused)) templates?
+ }
+
+ return true;
+}
+
+static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
+ FixItHint &Hint) {
+ if (isa<LabelDecl>(D)) {
+ SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
+ tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
+ if (AfterColon.isInvalid())
+ return;
+ Hint = FixItHint::CreateRemoval(CharSourceRange::
+ getCharRange(D->getLocStart(), AfterColon));
+ }
+ return;
+}
+
+void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) {
+ if (D->getTypeForDecl()->isDependentType())
+ return;
+
+ for (auto *TmpD : D->decls()) {
+ if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
+ DiagnoseUnusedDecl(T);
+ else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
+ DiagnoseUnusedNestedTypedefs(R);
+ }
+}
+
+/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
+/// unless they are marked attr(unused).
+void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
+ if (!ShouldDiagnoseUnusedDecl(D))
+ return;
+
+ if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
+ // typedefs can be referenced later on, so the diagnostics are emitted
+ // at end-of-translation-unit.
+ UnusedLocalTypedefNameCandidates.insert(TD);
+ return;
+ }
+
+ FixItHint Hint;
+ GenerateFixForUnusedDecl(D, Context, Hint);
+
+ unsigned DiagID;
+ if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
+ DiagID = diag::warn_unused_exception_param;
+ else if (isa<LabelDecl>(D))
+ DiagID = diag::warn_unused_label;
+ else
+ DiagID = diag::warn_unused_variable;
+
+ Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
+}
+
+static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
+ // Verify that we have no forward references left. If so, there was a goto
+ // or address of a label taken, but no definition of it. Label fwd
+ // definitions are indicated with a null substmt which is also not a resolved
+ // MS inline assembly label name.
+ bool Diagnose = false;
+ if (L->isMSAsmLabel())
+ Diagnose = !L->isResolvedMSAsmLabel();
+ else
+ Diagnose = L->getStmt() == nullptr;
+ if (Diagnose)
+ S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
+}
+
+void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
+ S->mergeNRVOIntoParent();
+
+ if (S->decl_empty()) return;
+ assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
+ "Scope shouldn't contain decls!");
+
+ for (auto *TmpD : S->decls()) {
+ assert(TmpD && "This decl didn't get pushed??");
+
+ assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
+ NamedDecl *D = cast<NamedDecl>(TmpD);
+
+ if (!D->getDeclName()) continue;
+
+ // Diagnose unused variables in this scope.
+ if (!S->hasUnrecoverableErrorOccurred()) {
+ DiagnoseUnusedDecl(D);
+ if (const auto *RD = dyn_cast<RecordDecl>(D))
+ DiagnoseUnusedNestedTypedefs(RD);
+ }
+
+ // If this was a forward reference to a label, verify it was defined.
+ if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
+ CheckPoppedLabel(LD, *this);
+
+ // Remove this name from our lexical scope.
+ IdResolver.RemoveDecl(D);
+ }
+}
+
+/// \brief Look for an Objective-C class in the translation unit.
+///
+/// \param Id The name of the Objective-C class we're looking for. If
+/// typo-correction fixes this name, the Id will be updated
+/// to the fixed name.
+///
+/// \param IdLoc The location of the name in the translation unit.
+///
+/// \param DoTypoCorrection If true, this routine will attempt typo correction
+/// if there is no class with the given name.
+///
+/// \returns The declaration of the named Objective-C class, or NULL if the
+/// class could not be found.
+ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
+ SourceLocation IdLoc,
+ bool DoTypoCorrection) {
+ // The third "scope" argument is 0 since we aren't enabling lazy built-in
+ // creation from this context.
+ NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
+
+ if (!IDecl && DoTypoCorrection) {
+ // Perform typo correction at the given location, but only if we
+ // find an Objective-C class name.
+ if (TypoCorrection C = CorrectTypo(
+ DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName, TUScope, nullptr,
+ llvm::make_unique<DeclFilterCCC<ObjCInterfaceDecl>>(),
+ CTK_ErrorRecovery)) {
+ diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
+ IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
+ Id = IDecl->getIdentifier();
+ }
+ }
+ ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
+ // This routine must always return a class definition, if any.
+ if (Def && Def->getDefinition())
+ Def = Def->getDefinition();
+ return Def;
+}
+
+/// getNonFieldDeclScope - Retrieves the innermost scope, starting
+/// from S, where a non-field would be declared. This routine copes
+/// with the difference between C and C++ scoping rules in structs and
+/// unions. For example, the following code is well-formed in C but
+/// ill-formed in C++:
+/// @code
+/// struct S6 {
+/// enum { BAR } e;
+/// };
+///
+/// void test_S6() {
+/// struct S6 a;
+/// a.e = BAR;
+/// }
+/// @endcode
+/// For the declaration of BAR, this routine will return a different
+/// scope. The scope S will be the scope of the unnamed enumeration
+/// within S6. In C++, this routine will return the scope associated
+/// with S6, because the enumeration's scope is a transparent
+/// context but structures can contain non-field names. In C, this
+/// routine will return the translation unit scope, since the
+/// enumeration's scope is a transparent context and structures cannot
+/// contain non-field names.
+Scope *Sema::getNonFieldDeclScope(Scope *S) {
+ while (((S->getFlags() & Scope::DeclScope) == 0) ||
+ (S->getEntity() && S->getEntity()->isTransparentContext()) ||
+ (S->isClassScope() && !getLangOpts().CPlusPlus))
+ S = S->getParent();
+ return S;
+}
+
+/// \brief Looks up the declaration of "struct objc_super" and
+/// saves it for later use in building builtin declaration of
+/// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
+/// pre-existing declaration exists no action takes place.
+static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
+ IdentifierInfo *II) {
+ if (!II->isStr("objc_msgSendSuper"))
+ return;
+ ASTContext &Context = ThisSema.Context;
+
+ LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
+ SourceLocation(), Sema::LookupTagName);
+ ThisSema.LookupName(Result, S);
+ if (Result.getResultKind() == LookupResult::Found)
+ if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
+ Context.setObjCSuperType(Context.getTagDeclType(TD));
+}
+
+static StringRef getHeaderName(ASTContext::GetBuiltinTypeError Error) {
+ switch (Error) {
+ case ASTContext::GE_None:
+ return "";
+ case ASTContext::GE_Missing_stdio:
+ return "stdio.h";
+ case ASTContext::GE_Missing_setjmp:
+ return "setjmp.h";
+ case ASTContext::GE_Missing_ucontext:
+ return "ucontext.h";
+ }
+ llvm_unreachable("unhandled error kind");
+}
+
+/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
+/// file scope. lazily create a decl for it. ForRedeclaration is true
+/// if we're creating this built-in in anticipation of redeclaring the
+/// built-in.
+NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
+ Scope *S, bool ForRedeclaration,
+ SourceLocation Loc) {
+ LookupPredefedObjCSuperType(*this, S, II);
+
+ ASTContext::GetBuiltinTypeError Error;
+ QualType R = Context.GetBuiltinType(ID, Error);
+ if (Error) {
+ if (ForRedeclaration)
+ Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
+ << getHeaderName(Error)
+ << Context.BuiltinInfo.GetName(ID);
+ return nullptr;
+ }
+
+ if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(ID)) {
+ Diag(Loc, diag::ext_implicit_lib_function_decl)
+ << Context.BuiltinInfo.GetName(ID)
+ << R;
+ if (Context.BuiltinInfo.getHeaderName(ID) &&
+ !Diags.isIgnored(diag::ext_implicit_lib_function_decl, Loc))
+ Diag(Loc, diag::note_include_header_or_declare)
+ << Context.BuiltinInfo.getHeaderName(ID)
+ << Context.BuiltinInfo.GetName(ID);
+ }
+
+ DeclContext *Parent = Context.getTranslationUnitDecl();
+ if (getLangOpts().CPlusPlus) {
+ LinkageSpecDecl *CLinkageDecl =
+ LinkageSpecDecl::Create(Context, Parent, Loc, Loc,
+ LinkageSpecDecl::lang_c, false);
+ CLinkageDecl->setImplicit();
+ Parent->addDecl(CLinkageDecl);
+ Parent = CLinkageDecl;
+ }
+
+ FunctionDecl *New = FunctionDecl::Create(Context,
+ Parent,
+ Loc, Loc, II, R, /*TInfo=*/nullptr,
+ SC_Extern,
+ false,
+ R->isFunctionProtoType());
+ New->setImplicit();
+
+ // Create Decl objects for each parameter, adding them to the
+ // FunctionDecl.
+ if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
+ SmallVector<ParmVarDecl*, 16> Params;
+ for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
+ ParmVarDecl *parm =
+ ParmVarDecl::Create(Context, New, SourceLocation(), SourceLocation(),
+ nullptr, FT->getParamType(i), /*TInfo=*/nullptr,
+ SC_None, nullptr);
+ parm->setScopeInfo(0, i);
+ Params.push_back(parm);
+ }
+ New->setParams(Params);
+ }
+
+ AddKnownFunctionAttributes(New);
+ RegisterLocallyScopedExternCDecl(New, S);
+
+ // TUScope is the translation-unit scope to insert this function into.
+ // FIXME: This is hideous. We need to teach PushOnScopeChains to
+ // relate Scopes to DeclContexts, and probably eliminate CurContext
+ // entirely, but we're not there yet.
+ DeclContext *SavedContext = CurContext;
+ CurContext = Parent;
+ PushOnScopeChains(New, TUScope);
+ CurContext = SavedContext;
+ return New;
+}
+
+/// \brief Filter out any previous declarations that the given declaration
+/// should not consider because they are not permitted to conflict, e.g.,
+/// because they come from hidden sub-modules and do not refer to the same
+/// entity.
+static void filterNonConflictingPreviousDecls(Sema &S,
+ NamedDecl *decl,
+ LookupResult &previous){
+ // This is only interesting when modules are enabled.
+ if (!S.getLangOpts().Modules)
+ return;
+
+ // Empty sets are uninteresting.
+ if (previous.empty())
+ return;
+
+ LookupResult::Filter filter = previous.makeFilter();
+ while (filter.hasNext()) {
+ NamedDecl *old = filter.next();
+
+ // Non-hidden declarations are never ignored.
+ if (S.isVisible(old))
+ continue;
+
+ if (!old->isExternallyVisible())
+ filter.erase();
+ }
+
+ filter.done();
+}
+
+/// Typedef declarations don't have linkage, but they still denote the same
+/// entity if their types are the same.
+/// FIXME: This is notionally doing the same thing as ASTReaderDecl's
+/// isSameEntity.
+static void filterNonConflictingPreviousTypedefDecls(Sema &S,
+ TypedefNameDecl *Decl,
+ LookupResult &Previous) {
+ // This is only interesting when modules are enabled.
+ if (!S.getLangOpts().Modules)
+ return;
+
+ // Empty sets are uninteresting.
+ if (Previous.empty())
+ return;
+
+ LookupResult::Filter Filter = Previous.makeFilter();
+ while (Filter.hasNext()) {
+ NamedDecl *Old = Filter.next();
+
+ // Non-hidden declarations are never ignored.
+ if (S.isVisible(Old))
+ continue;
+
+ // Declarations of the same entity are not ignored, even if they have
+ // different linkages.
+ if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
+ if (S.Context.hasSameType(OldTD->getUnderlyingType(),
+ Decl->getUnderlyingType()))
+ continue;
+
+ // If both declarations give a tag declaration a typedef name for linkage
+ // purposes, then they declare the same entity.
+ if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
+ Decl->getAnonDeclWithTypedefName())
+ continue;
+ }
+
+ if (!Old->isExternallyVisible())
+ Filter.erase();
+ }
+
+ Filter.done();
+}
+
+bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
+ QualType OldType;
+ if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
+ OldType = OldTypedef->getUnderlyingType();
+ else
+ OldType = Context.getTypeDeclType(Old);
+ QualType NewType = New->getUnderlyingType();
+
+ if (NewType->isVariablyModifiedType()) {
+ // Must not redefine a typedef with a variably-modified type.
+ int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
+ Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
+ << Kind << NewType;
+ if (Old->getLocation().isValid())
+ Diag(Old->getLocation(), diag::note_previous_definition);
+ New->setInvalidDecl();
+ return true;
+ }
+
+ if (OldType != NewType &&
+ !OldType->isDependentType() &&
+ !NewType->isDependentType() &&
+ !Context.hasSameType(OldType, NewType)) {
+ int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
+ Diag(New->getLocation(), diag::err_redefinition_different_typedef)
+ << Kind << NewType << OldType;
+ if (Old->getLocation().isValid())
+ Diag(Old->getLocation(), diag::note_previous_definition);
+ New->setInvalidDecl();
+ return true;
+ }
+ return false;
+}
+
+/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
+/// same name and scope as a previous declaration 'Old'. Figure out
+/// how to resolve this situation, merging decls or emitting
+/// diagnostics as appropriate. If there was an error, set New to be invalid.
+///
+void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
+ // If the new decl is known invalid already, don't bother doing any
+ // merging checks.
+ if (New->isInvalidDecl()) return;
+
+ // Allow multiple definitions for ObjC built-in typedefs.
+ // FIXME: Verify the underlying types are equivalent!
+ if (getLangOpts().ObjC1) {
+ const IdentifierInfo *TypeID = New->getIdentifier();
+ switch (TypeID->getLength()) {
+ default: break;
+ case 2:
+ {
+ if (!TypeID->isStr("id"))
+ break;
+ QualType T = New->getUnderlyingType();
+ if (!T->isPointerType())
+ break;
+ if (!T->isVoidPointerType()) {
+ QualType PT = T->getAs<PointerType>()->getPointeeType();
+ if (!PT->isStructureType())
+ break;
+ }
+ Context.setObjCIdRedefinitionType(T);
+ // Install the built-in type for 'id', ignoring the current definition.
+ New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
+ return;
+ }
+ case 5:
+ if (!TypeID->isStr("Class"))
+ break;
+ Context.setObjCClassRedefinitionType(New->getUnderlyingType());
+ // Install the built-in type for 'Class', ignoring the current definition.
+ New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
+ return;
+ case 3:
+ if (!TypeID->isStr("SEL"))
+ break;
+ Context.setObjCSelRedefinitionType(New->getUnderlyingType());
+ // Install the built-in type for 'SEL', ignoring the current definition.
+ New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
+ return;
+ }
+ // Fall through - the typedef name was not a builtin type.
+ }
+
+ // Verify the old decl was also a type.
+ TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
+ if (!Old) {
+ Diag(New->getLocation(), diag::err_redefinition_different_kind)
+ << New->getDeclName();
+
+ NamedDecl *OldD = OldDecls.getRepresentativeDecl();
+ if (OldD->getLocation().isValid())
+ Diag(OldD->getLocation(), diag::note_previous_definition);
+
+ return New->setInvalidDecl();
+ }
+
+ // If the old declaration is invalid, just give up here.
+ if (Old->isInvalidDecl())
+ return New->setInvalidDecl();
+
+ if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
+ auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
+ auto *NewTag = New->getAnonDeclWithTypedefName();
+ NamedDecl *Hidden = nullptr;
+ if (getLangOpts().CPlusPlus && OldTag && NewTag &&
+ OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() &&
+ !hasVisibleDefinition(OldTag, &Hidden)) {
+ // There is a definition of this tag, but it is not visible. Use it
+ // instead of our tag.
+ New->setTypeForDecl(OldTD->getTypeForDecl());
+ if (OldTD->isModed())
+ New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(),
+ OldTD->getUnderlyingType());
+ else
+ New->setTypeSourceInfo(OldTD->getTypeSourceInfo());
+
+ // Make the old tag definition visible.
+ makeMergedDefinitionVisible(Hidden, NewTag->getLocation());
+ }
+ }
+
+ // If the typedef types are not identical, reject them in all languages and
+ // with any extensions enabled.
+ if (isIncompatibleTypedef(Old, New))
+ return;
+
+ // The types match. Link up the redeclaration chain and merge attributes if
+ // the old declaration was a typedef.
+ if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
+ New->setPreviousDecl(Typedef);
+ mergeDeclAttributes(New, Old);
+ }
+
+ if (getLangOpts().MicrosoftExt)
+ return;
+
+ if (getLangOpts().CPlusPlus) {
+ // C++ [dcl.typedef]p2:
+ // In a given non-class scope, a typedef specifier can be used to
+ // redefine the name of any type declared in that scope to refer
+ // to the type to which it already refers.
+ if (!isa<CXXRecordDecl>(CurContext))
+ return;
+
+ // C++0x [dcl.typedef]p4:
+ // In a given class scope, a typedef specifier can be used to redefine
+ // any class-name declared in that scope that is not also a typedef-name
+ // to refer to the type to which it already refers.
+ //
+ // This wording came in via DR424, which was a correction to the
+ // wording in DR56, which accidentally banned code like:
+ //
+ // struct S {
+ // typedef struct A { } A;
+ // };
+ //
+ // in the C++03 standard. We implement the C++0x semantics, which
+ // allow the above but disallow
+ //
+ // struct S {
+ // typedef int I;
+ // typedef int I;
+ // };
+ //
+ // since that was the intent of DR56.
+ if (!isa<TypedefNameDecl>(Old))
+ return;
+
+ Diag(New->getLocation(), diag::err_redefinition)
+ << New->getDeclName();
+ Diag(Old->getLocation(), diag::note_previous_definition);
+ return New->setInvalidDecl();
+ }
+
+ // Modules always permit redefinition of typedefs, as does C11.
+ if (getLangOpts().Modules || getLangOpts().C11)
+ return;
+
+ // If we have a redefinition of a typedef in C, emit a warning. This warning
+ // is normally mapped to an error, but can be controlled with
+ // -Wtypedef-redefinition. If either the original or the redefinition is
+ // in a system header, don't emit this for compatibility with GCC.
+ if (getDiagnostics().getSuppressSystemWarnings() &&
+ (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
+ Context.getSourceManager().isInSystemHeader(New->getLocation())))
+ return;
+
+ Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
+ << New->getDeclName();
+ Diag(Old->getLocation(), diag::note_previous_definition);
+}
+
+/// DeclhasAttr - returns true if decl Declaration already has the target
+/// attribute.
+static bool DeclHasAttr(const Decl *D, const Attr *A) {
+ const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
+ const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
+ for (const auto *i : D->attrs())
+ if (i->getKind() == A->getKind()) {
+ if (Ann) {
+ if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
+ return true;
+ continue;
+ }
+ // FIXME: Don't hardcode this check
+ if (OA && isa<OwnershipAttr>(i))
+ return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
+ return true;
+ }
+
+ return false;
+}
+
+static bool isAttributeTargetADefinition(Decl *D) {
+ if (VarDecl *VD = dyn_cast<VarDecl>(D))
+ return VD->isThisDeclarationADefinition();
+ if (TagDecl *TD = dyn_cast<TagDecl>(D))
+ return TD->isCompleteDefinition() || TD->isBeingDefined();
+ return true;
+}
+
+/// Merge alignment attributes from \p Old to \p New, taking into account the
+/// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
+///
+/// \return \c true if any attributes were added to \p New.
+static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
+ // Look for alignas attributes on Old, and pick out whichever attribute
+ // specifies the strictest alignment requirement.
+ AlignedAttr *OldAlignasAttr = nullptr;
+ AlignedAttr *OldStrictestAlignAttr = nullptr;
+ unsigned OldAlign = 0;
+ for (auto *I : Old->specific_attrs<AlignedAttr>()) {
+ // FIXME: We have no way of representing inherited dependent alignments
+ // in a case like:
+ // template<int A, int B> struct alignas(A) X;
+ // template<int A, int B> struct alignas(B) X {};
+ // For now, we just ignore any alignas attributes which are not on the
+ // definition in such a case.
+ if (I->isAlignmentDependent())
+ return false;
+
+ if (I->isAlignas())
+ OldAlignasAttr = I;
+
+ unsigned Align = I->getAlignment(S.Context);
+ if (Align > OldAlign) {
+ OldAlign = Align;
+ OldStrictestAlignAttr = I;
+ }
+ }
+
+ // Look for alignas attributes on New.
+ AlignedAttr *NewAlignasAttr = nullptr;
+ unsigned NewAlign = 0;
+ for (auto *I : New->specific_attrs<AlignedAttr>()) {
+ if (I->isAlignmentDependent())
+ return false;
+
+ if (I->isAlignas())
+ NewAlignasAttr = I;
+
+ unsigned Align = I->getAlignment(S.Context);
+ if (Align > NewAlign)
+ NewAlign = Align;
+ }
+
+ if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
+ // Both declarations have 'alignas' attributes. We require them to match.
+ // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
+ // fall short. (If two declarations both have alignas, they must both match
+ // every definition, and so must match each other if there is a definition.)
+
+ // If either declaration only contains 'alignas(0)' specifiers, then it
+ // specifies the natural alignment for the type.
+ if (OldAlign == 0 || NewAlign == 0) {
+ QualType Ty;
+ if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
+ Ty = VD->getType();
+ else
+ Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
+
+ if (OldAlign == 0)
+ OldAlign = S.Context.getTypeAlign(Ty);
+ if (NewAlign == 0)
+ NewAlign = S.Context.getTypeAlign(Ty);
+ }
+
+ if (OldAlign != NewAlign) {
+ S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
+ << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
+ << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
+ S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
+ }
+ }
+
+ if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
+ // C++11 [dcl.align]p6:
+ // if any declaration of an entity has an alignment-specifier,
+ // every defining declaration of that entity shall specify an
+ // equivalent alignment.
+ // C11 6.7.5/7:
+ // If the definition of an object does not have an alignment
+ // specifier, any other declaration of that object shall also
+ // have no alignment specifier.
+ S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
+ << OldAlignasAttr;
+ S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
+ << OldAlignasAttr;
+ }
+
+ bool AnyAdded = false;
+
+ // Ensure we have an attribute representing the strictest alignment.
+ if (OldAlign > NewAlign) {
+ AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
+ Clone->setInherited(true);
+ New->addAttr(Clone);
+ AnyAdded = true;
+ }
+
+ // Ensure we have an alignas attribute if the old declaration had one.
+ if (OldAlignasAttr && !NewAlignasAttr &&
+ !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
+ AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
+ Clone->setInherited(true);
+ New->addAttr(Clone);
+ AnyAdded = true;
+ }
+
+ return AnyAdded;
+}
+
+static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
+ const InheritableAttr *Attr, bool Override) {
+ InheritableAttr *NewAttr = nullptr;
+ unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
+ if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
+ NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
+ AA->getIntroduced(), AA->getDeprecated(),
+ AA->getObsoleted(), AA->getUnavailable(),
+ AA->getMessage(), Override,
+ AttrSpellingListIndex);
+ else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
+ NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
+ AttrSpellingListIndex);
+ else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
+ NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
+ AttrSpellingListIndex);
+ else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
+ NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
+ AttrSpellingListIndex);
+ else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
+ NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
+ AttrSpellingListIndex);
+ else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
+ NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
+ FA->getFormatIdx(), FA->getFirstArg(),
+ AttrSpellingListIndex);
+ else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
+ NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
+ AttrSpellingListIndex);
+ else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
+ NewAttr = S.mergeMSInheritanceAttr(D, IA->getRange(), IA->getBestCase(),
+ AttrSpellingListIndex,
+ IA->getSemanticSpelling());
+ else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
+ NewAttr = S.mergeAlwaysInlineAttr(D, AA->getRange(),
+ &S.Context.Idents.get(AA->getSpelling()),
+ AttrSpellingListIndex);
+ else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
+ NewAttr = S.mergeMinSizeAttr(D, MA->getRange(), AttrSpellingListIndex);
+ else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
+ NewAttr = S.mergeOptimizeNoneAttr(D, OA->getRange(), AttrSpellingListIndex);
+ else if (isa<AlignedAttr>(Attr))
+ // AlignedAttrs are handled separately, because we need to handle all
+ // such attributes on a declaration at the same time.
+ NewAttr = nullptr;
+ else if (isa<DeprecatedAttr>(Attr) && Override)
+ NewAttr = nullptr;
+ else if (Attr->duplicatesAllowed() || !DeclHasAttr(D, Attr))
+ NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
+
+ if (NewAttr) {
+ NewAttr->setInherited(true);
+ D->addAttr(NewAttr);
+ return true;
+ }
+
+ return false;
+}
+
+static const Decl *getDefinition(const Decl *D) {
+ if (const TagDecl *TD = dyn_cast<TagDecl>(D))
+ return TD->getDefinition();
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
+ const VarDecl *Def = VD->getDefinition();
+ if (Def)
+ return Def;
+ return VD->getActingDefinition();
+ }
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ const FunctionDecl* Def;
+ if (FD->isDefined(Def))
+ return Def;
+ }
+ return nullptr;
+}
+
+static bool hasAttribute(const Decl *D, attr::Kind Kind) {
+ for (const auto *Attribute : D->attrs())
+ if (Attribute->getKind() == Kind)
+ return true;
+ return false;
+}
+
+/// checkNewAttributesAfterDef - If we already have a definition, check that
+/// there are no new attributes in this declaration.
+static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
+ if (!New->hasAttrs())
+ return;
+
+ const Decl *Def = getDefinition(Old);
+ if (!Def || Def == New)
+ return;
+
+ AttrVec &NewAttributes = New->getAttrs();
+ for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
+ const Attr *NewAttribute = NewAttributes[I];
+
+ if (isa<AliasAttr>(NewAttribute)) {
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New))
+ S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def));
+ else {
+ VarDecl *VD = cast<VarDecl>(New);
+ unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
+ VarDecl::TentativeDefinition
+ ? diag::err_alias_after_tentative
+ : diag::err_redefinition;
+ S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
+ S.Diag(Def->getLocation(), diag::note_previous_definition);
+ VD->setInvalidDecl();
+ }
+ ++I;
+ continue;
+ }
+
+ if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
+ // Tentative definitions are only interesting for the alias check above.
+ if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
+ ++I;
+ continue;
+ }
+ }
+
+ if (hasAttribute(Def, NewAttribute->getKind())) {
+ ++I;
+ continue; // regular attr merging will take care of validating this.
+ }
+
+ if (isa<C11NoReturnAttr>(NewAttribute)) {
+ // C's _Noreturn is allowed to be added to a function after it is defined.
+ ++I;
+ continue;
+ } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
+ if (AA->isAlignas()) {
+ // C++11 [dcl.align]p6:
+ // if any declaration of an entity has an alignment-specifier,
+ // every defining declaration of that entity shall specify an
+ // equivalent alignment.
+ // C11 6.7.5/7:
+ // If the definition of an object does not have an alignment
+ // specifier, any other declaration of that object shall also
+ // have no alignment specifier.
+ S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
+ << AA;
+ S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
+ << AA;
+ NewAttributes.erase(NewAttributes.begin() + I);
+ --E;
+ continue;
+ }
+ }
+
+ S.Diag(NewAttribute->getLocation(),
+ diag::warn_attribute_precede_definition);
+ S.Diag(Def->getLocation(), diag::note_previous_definition);
+ NewAttributes.erase(NewAttributes.begin() + I);
+ --E;
+ }
+}
+
+/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
+void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
+ AvailabilityMergeKind AMK) {
+ if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
+ UsedAttr *NewAttr = OldAttr->clone(Context);
+ NewAttr->setInherited(true);
+ New->addAttr(NewAttr);
+ }
+
+ if (!Old->hasAttrs() && !New->hasAttrs())
+ return;
+
+ // attributes declared post-definition are currently ignored
+ checkNewAttributesAfterDef(*this, New, Old);
+
+ if (!Old->hasAttrs())
+ return;
+
+ bool foundAny = New->hasAttrs();
+
+ // Ensure that any moving of objects within the allocated map is done before
+ // we process them.
+ if (!foundAny) New->setAttrs(AttrVec());
+
+ for (auto *I : Old->specific_attrs<InheritableAttr>()) {
+ bool Override = false;
+ // Ignore deprecated/unavailable/availability attributes if requested.
+ if (isa<DeprecatedAttr>(I) ||
+ isa<UnavailableAttr>(I) ||
+ isa<AvailabilityAttr>(I)) {
+ switch (AMK) {
+ case AMK_None:
+ continue;
+
+ case AMK_Redeclaration:
+ break;
+
+ case AMK_Override:
+ Override = true;
+ break;
+ }
+ }
+
+ // Already handled.
+ if (isa<UsedAttr>(I))
+ continue;
+
+ if (mergeDeclAttribute(*this, New, I, Override))
+ foundAny = true;
+ }
+
+ if (mergeAlignedAttrs(*this, New, Old))
+ foundAny = true;
+
+ if (!foundAny) New->dropAttrs();
+}
+
+/// mergeParamDeclAttributes - Copy attributes from the old parameter
+/// to the new one.
+static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
+ const ParmVarDecl *oldDecl,
+ Sema &S) {
+ // C++11 [dcl.attr.depend]p2:
+ // The first declaration of a function shall specify the
+ // carries_dependency attribute for its declarator-id if any declaration
+ // of the function specifies the carries_dependency attribute.
+ const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
+ if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
+ S.Diag(CDA->getLocation(),
+ diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
+ // Find the first declaration of the parameter.
+ // FIXME: Should we build redeclaration chains for function parameters?
+ const FunctionDecl *FirstFD =
+ cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
+ const ParmVarDecl *FirstVD =
+ FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
+ S.Diag(FirstVD->getLocation(),
+ diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
+ }
+
+ if (!oldDecl->hasAttrs())
+ return;
+
+ bool foundAny = newDecl->hasAttrs();
+
+ // Ensure that any moving of objects within the allocated map is
+ // done before we process them.
+ if (!foundAny) newDecl->setAttrs(AttrVec());
+
+ for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
+ if (!DeclHasAttr(newDecl, I)) {
+ InheritableAttr *newAttr =
+ cast<InheritableParamAttr>(I->clone(S.Context));
+ newAttr->setInherited(true);
+ newDecl->addAttr(newAttr);
+ foundAny = true;
+ }
+ }
+
+ if (!foundAny) newDecl->dropAttrs();
+}
+
+namespace {
+
+/// Used in MergeFunctionDecl to keep track of function parameters in
+/// C.
+struct GNUCompatibleParamWarning {
+ ParmVarDecl *OldParm;
+ ParmVarDecl *NewParm;
+ QualType PromotedType;
+};
+
+}
+
+/// getSpecialMember - get the special member enum for a method.
+Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
+ if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
+ if (Ctor->isDefaultConstructor())
+ return Sema::CXXDefaultConstructor;
+
+ if (Ctor->isCopyConstructor())
+ return Sema::CXXCopyConstructor;
+
+ if (Ctor->isMoveConstructor())
+ return Sema::CXXMoveConstructor;
+ } else if (isa<CXXDestructorDecl>(MD)) {
+ return Sema::CXXDestructor;
+ } else if (MD->isCopyAssignmentOperator()) {
+ return Sema::CXXCopyAssignment;
+ } else if (MD->isMoveAssignmentOperator()) {
+ return Sema::CXXMoveAssignment;
+ }
+
+ return Sema::CXXInvalid;
+}
+
+// Determine whether the previous declaration was a definition, implicit
+// declaration, or a declaration.
+template <typename T>
+static std::pair<diag::kind, SourceLocation>
+getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
+ diag::kind PrevDiag;
+ SourceLocation OldLocation = Old->getLocation();
+ if (Old->isThisDeclarationADefinition())
+ PrevDiag = diag::note_previous_definition;
+ else if (Old->isImplicit()) {
+ PrevDiag = diag::note_previous_implicit_declaration;
+ if (OldLocation.isInvalid())
+ OldLocation = New->getLocation();
+ } else
+ PrevDiag = diag::note_previous_declaration;
+ return std::make_pair(PrevDiag, OldLocation);
+}
+
+/// canRedefineFunction - checks if a function can be redefined. Currently,
+/// only extern inline functions can be redefined, and even then only in
+/// GNU89 mode.
+static bool canRedefineFunction(const FunctionDecl *FD,
+ const LangOptions& LangOpts) {
+ return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
+ !LangOpts.CPlusPlus &&
+ FD->isInlineSpecified() &&
+ FD->getStorageClass() == SC_Extern);
+}
+
+const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
+ const AttributedType *AT = T->getAs<AttributedType>();
+ while (AT && !AT->isCallingConv())
+ AT = AT->getModifiedType()->getAs<AttributedType>();
+ return AT;
+}
+
+template <typename T>
+static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
+ const DeclContext *DC = Old->getDeclContext();
+ if (DC->isRecord())
+ return false;
+
+ LanguageLinkage OldLinkage = Old->getLanguageLinkage();
+ if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
+ return true;
+ if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
+ return true;
+ return false;
+}
+
+/// MergeFunctionDecl - We just parsed a function 'New' from
+/// declarator D which has the same name and scope as a previous
+/// declaration 'Old'. Figure out how to resolve this situation,
+/// merging decls or emitting diagnostics as appropriate.
+///
+/// In C++, New and Old must be declarations that are not
+/// overloaded. Use IsOverload to determine whether New and Old are
+/// overloaded, and to select the Old declaration that New should be
+/// merged with.
+///
+/// Returns true if there was an error, false otherwise.
+bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD,
+ Scope *S, bool MergeTypeWithOld) {
+ // Verify the old decl was also a function.
+ FunctionDecl *Old = OldD->getAsFunction();
+ if (!Old) {
+ if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
+ if (New->getFriendObjectKind()) {
+ Diag(New->getLocation(), diag::err_using_decl_friend);
+ Diag(Shadow->getTargetDecl()->getLocation(),
+ diag::note_using_decl_target);
+ Diag(Shadow->getUsingDecl()->getLocation(),
+ diag::note_using_decl) << 0;
+ return true;
+ }
+
+ // C++11 [namespace.udecl]p14:
+ // If a function declaration in namespace scope or block scope has the
+ // same name and the same parameter-type-list as a function introduced
+ // by a using-declaration, and the declarations do not declare the same
+ // function, the program is ill-formed.
+
+ // Check whether the two declarations might declare the same function.
+ Old = dyn_cast<FunctionDecl>(Shadow->getTargetDecl());
+ if (Old &&
+ !Old->getDeclContext()->getRedeclContext()->Equals(
+ New->getDeclContext()->getRedeclContext()) &&
+ !(Old->isExternC() && New->isExternC()))
+ Old = nullptr;
+
+ if (!Old) {
+ Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
+ Diag(Shadow->getTargetDecl()->getLocation(),
+ diag::note_using_decl_target);
+ Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
+ return true;
+ }
+ OldD = Old;
+ } else {
+ Diag(New->getLocation(), diag::err_redefinition_different_kind)
+ << New->getDeclName();
+ Diag(OldD->getLocation(), diag::note_previous_definition);
+ return true;
+ }
+ }
+
+ // If the old declaration is invalid, just give up here.
+ if (Old->isInvalidDecl())
+ return true;
+
+ diag::kind PrevDiag;
+ SourceLocation OldLocation;
+ std::tie(PrevDiag, OldLocation) =
+ getNoteDiagForInvalidRedeclaration(Old, New);
+
+ // Don't complain about this if we're in GNU89 mode and the old function
+ // is an extern inline function.
+ // Don't complain about specializations. They are not supposed to have
+ // storage classes.
+ if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
+ New->getStorageClass() == SC_Static &&
+ Old->hasExternalFormalLinkage() &&
+ !New->getTemplateSpecializationInfo() &&
+ !canRedefineFunction(Old, getLangOpts())) {
+ if (getLangOpts().MicrosoftExt) {
+ Diag(New->getLocation(), diag::ext_static_non_static) << New;
+ Diag(OldLocation, PrevDiag);
+ } else {
+ Diag(New->getLocation(), diag::err_static_non_static) << New;
+ Diag(OldLocation, PrevDiag);
+ return true;
+ }
+ }
+
+
+ // If a function is first declared with a calling convention, but is later
+ // declared or defined without one, all following decls assume the calling
+ // convention of the first.
+ //
+ // It's OK if a function is first declared without a calling convention,
+ // but is later declared or defined with the default calling convention.
+ //
+ // To test if either decl has an explicit calling convention, we look for
+ // AttributedType sugar nodes on the type as written. If they are missing or
+ // were canonicalized away, we assume the calling convention was implicit.
+ //
+ // Note also that we DO NOT return at this point, because we still have
+ // other tests to run.
+ QualType OldQType = Context.getCanonicalType(Old->getType());
+ QualType NewQType = Context.getCanonicalType(New->getType());
+ const FunctionType *OldType = cast<FunctionType>(OldQType);
+ const FunctionType *NewType = cast<FunctionType>(NewQType);
+ FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
+ FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
+ bool RequiresAdjustment = false;
+
+ if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
+ FunctionDecl *First = Old->getFirstDecl();
+ const FunctionType *FT =
+ First->getType().getCanonicalType()->castAs<FunctionType>();
+ FunctionType::ExtInfo FI = FT->getExtInfo();
+ bool NewCCExplicit = getCallingConvAttributedType(New->getType());
+ if (!NewCCExplicit) {
+ // Inherit the CC from the previous declaration if it was specified
+ // there but not here.
+ NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
+ RequiresAdjustment = true;
+ } else {
+ // Calling conventions aren't compatible, so complain.
+ bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
+ Diag(New->getLocation(), diag::err_cconv_change)
+ << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
+ << !FirstCCExplicit
+ << (!FirstCCExplicit ? "" :
+ FunctionType::getNameForCallConv(FI.getCC()));
+
+ // Put the note on the first decl, since it is the one that matters.
+ Diag(First->getLocation(), diag::note_previous_declaration);
+ return true;
+ }
+ }
+
+ // FIXME: diagnose the other way around?
+ if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
+ NewTypeInfo = NewTypeInfo.withNoReturn(true);
+ RequiresAdjustment = true;
+ }
+
+ // Merge regparm attribute.
+ if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
+ OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
+ if (NewTypeInfo.getHasRegParm()) {
+ Diag(New->getLocation(), diag::err_regparm_mismatch)
+ << NewType->getRegParmType()
+ << OldType->getRegParmType();
+ Diag(OldLocation, diag::note_previous_declaration);
+ return true;
+ }
+
+ NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
+ RequiresAdjustment = true;
+ }
+
+ // Merge ns_returns_retained attribute.
+ if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
+ if (NewTypeInfo.getProducesResult()) {
+ Diag(New->getLocation(), diag::err_returns_retained_mismatch);
+ Diag(OldLocation, diag::note_previous_declaration);
+ return true;
+ }
+
+ NewTypeInfo = NewTypeInfo.withProducesResult(true);
+ RequiresAdjustment = true;
+ }
+
+ if (RequiresAdjustment) {
+ const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
+ AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
+ New->setType(QualType(AdjustedType, 0));
+ NewQType = Context.getCanonicalType(New->getType());
+ NewType = cast<FunctionType>(NewQType);
+ }
+
+ // If this redeclaration makes the function inline, we may need to add it to
+ // UndefinedButUsed.
+ if (!Old->isInlined() && New->isInlined() &&
+ !New->hasAttr<GNUInlineAttr>() &&
+ !getLangOpts().GNUInline &&
+ Old->isUsed(false) &&
+ !Old->isDefined() && !New->isThisDeclarationADefinition())
+ UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
+ SourceLocation()));
+
+ // If this redeclaration makes it newly gnu_inline, we don't want to warn
+ // about it.
+ if (New->hasAttr<GNUInlineAttr>() &&
+ Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
+ UndefinedButUsed.erase(Old->getCanonicalDecl());
+ }
+
+ if (getLangOpts().CPlusPlus) {
+ // (C++98 13.1p2):
+ // Certain function declarations cannot be overloaded:
+ // -- Function declarations that differ only in the return type
+ // cannot be overloaded.
+
+ // Go back to the type source info to compare the declared return types,
+ // per C++1y [dcl.type.auto]p13:
+ // Redeclarations or specializations of a function or function template
+ // with a declared return type that uses a placeholder type shall also
+ // use that placeholder, not a deduced type.
+ QualType OldDeclaredReturnType =
+ (Old->getTypeSourceInfo()
+ ? Old->getTypeSourceInfo()->getType()->castAs<FunctionType>()
+ : OldType)->getReturnType();
+ QualType NewDeclaredReturnType =
+ (New->getTypeSourceInfo()
+ ? New->getTypeSourceInfo()->getType()->castAs<FunctionType>()
+ : NewType)->getReturnType();
+ QualType ResQT;
+ if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
+ !((NewQType->isDependentType() || OldQType->isDependentType()) &&
+ New->isLocalExternDecl())) {
+ if (NewDeclaredReturnType->isObjCObjectPointerType() &&
+ OldDeclaredReturnType->isObjCObjectPointerType())
+ ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
+ if (ResQT.isNull()) {
+ if (New->isCXXClassMember() && New->isOutOfLine())
+ Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
+ << New << New->getReturnTypeSourceRange();
+ else
+ Diag(New->getLocation(), diag::err_ovl_diff_return_type)
+ << New->getReturnTypeSourceRange();
+ Diag(OldLocation, PrevDiag) << Old << Old->getType()
+ << Old->getReturnTypeSourceRange();
+ return true;
+ }
+ else
+ NewQType = ResQT;
+ }
+
+ QualType OldReturnType = OldType->getReturnType();
+ QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
+ if (OldReturnType != NewReturnType) {
+ // If this function has a deduced return type and has already been
+ // defined, copy the deduced value from the old declaration.
+ AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
+ if (OldAT && OldAT->isDeduced()) {
+ New->setType(
+ SubstAutoType(New->getType(),
+ OldAT->isDependentType() ? Context.DependentTy
+ : OldAT->getDeducedType()));
+ NewQType = Context.getCanonicalType(
+ SubstAutoType(NewQType,
+ OldAT->isDependentType() ? Context.DependentTy
+ : OldAT->getDeducedType()));
+ }
+ }
+
+ const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
+ CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
+ if (OldMethod && NewMethod) {
+ // Preserve triviality.
+ NewMethod->setTrivial(OldMethod->isTrivial());
+
+ // MSVC allows explicit template specialization at class scope:
+ // 2 CXXMethodDecls referring to the same function will be injected.
+ // We don't want a redeclaration error.
+ bool IsClassScopeExplicitSpecialization =
+ OldMethod->isFunctionTemplateSpecialization() &&
+ NewMethod->isFunctionTemplateSpecialization();
+ bool isFriend = NewMethod->getFriendObjectKind();
+
+ if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
+ !IsClassScopeExplicitSpecialization) {
+ // -- Member function declarations with the same name and the
+ // same parameter types cannot be overloaded if any of them
+ // is a static member function declaration.
+ if (OldMethod->isStatic() != NewMethod->isStatic()) {
+ Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
+ Diag(OldLocation, PrevDiag) << Old << Old->getType();
+ return true;
+ }
+
+ // C++ [class.mem]p1:
+ // [...] A member shall not be declared twice in the
+ // member-specification, except that a nested class or member
+ // class template can be declared and then later defined.
+ if (ActiveTemplateInstantiations.empty()) {
+ unsigned NewDiag;
+ if (isa<CXXConstructorDecl>(OldMethod))
+ NewDiag = diag::err_constructor_redeclared;
+ else if (isa<CXXDestructorDecl>(NewMethod))
+ NewDiag = diag::err_destructor_redeclared;
+ else if (isa<CXXConversionDecl>(NewMethod))
+ NewDiag = diag::err_conv_function_redeclared;
+ else
+ NewDiag = diag::err_member_redeclared;
+
+ Diag(New->getLocation(), NewDiag);
+ } else {
+ Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
+ << New << New->getType();
+ }
+ Diag(OldLocation, PrevDiag) << Old << Old->getType();
+ return true;
+
+ // Complain if this is an explicit declaration of a special
+ // member that was initially declared implicitly.
+ //
+ // As an exception, it's okay to befriend such methods in order
+ // to permit the implicit constructor/destructor/operator calls.
+ } else if (OldMethod->isImplicit()) {
+ if (isFriend) {
+ NewMethod->setImplicit();
+ } else {
+ Diag(NewMethod->getLocation(),
+ diag::err_definition_of_implicitly_declared_member)
+ << New << getSpecialMember(OldMethod);
+ return true;
+ }
+ } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
+ Diag(NewMethod->getLocation(),
+ diag::err_definition_of_explicitly_defaulted_member)
+ << getSpecialMember(OldMethod);
+ return true;
+ }
+ }
+
+ // C++11 [dcl.attr.noreturn]p1:
+ // The first declaration of a function shall specify the noreturn
+ // attribute if any declaration of that function specifies the noreturn
+ // attribute.
+ const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>();
+ if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) {
+ Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl);
+ Diag(Old->getFirstDecl()->getLocation(),
+ diag::note_noreturn_missing_first_decl);
+ }
+
+ // C++11 [dcl.attr.depend]p2:
+ // The first declaration of a function shall specify the
+ // carries_dependency attribute for its declarator-id if any declaration
+ // of the function specifies the carries_dependency attribute.
+ const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
+ if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
+ Diag(CDA->getLocation(),
+ diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
+ Diag(Old->getFirstDecl()->getLocation(),
+ diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
+ }
+
+ // (C++98 8.3.5p3):
+ // All declarations for a function shall agree exactly in both the
+ // return type and the parameter-type-list.
+ // We also want to respect all the extended bits except noreturn.
+
+ // noreturn should now match unless the old type info didn't have it.
+ QualType OldQTypeForComparison = OldQType;
+ if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
+ assert(OldQType == QualType(OldType, 0));
+ const FunctionType *OldTypeForComparison
+ = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
+ OldQTypeForComparison = QualType(OldTypeForComparison, 0);
+ assert(OldQTypeForComparison.isCanonical());
+ }
+
+ if (haveIncompatibleLanguageLinkages(Old, New)) {
+ // As a special case, retain the language linkage from previous
+ // declarations of a friend function as an extension.
+ //
+ // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
+ // and is useful because there's otherwise no way to specify language
+ // linkage within class scope.
+ //
+ // Check cautiously as the friend object kind isn't yet complete.
+ if (New->getFriendObjectKind() != Decl::FOK_None) {
+ Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
+ Diag(OldLocation, PrevDiag);
+ } else {
+ Diag(New->getLocation(), diag::err_different_language_linkage) << New;
+ Diag(OldLocation, PrevDiag);
+ return true;
+ }
+ }
+
+ if (OldQTypeForComparison == NewQType)
+ return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
+
+ if ((NewQType->isDependentType() || OldQType->isDependentType()) &&
+ New->isLocalExternDecl()) {
+ // It's OK if we couldn't merge types for a local function declaraton
+ // if either the old or new type is dependent. We'll merge the types
+ // when we instantiate the function.
+ return false;
+ }
+
+ // Fall through for conflicting redeclarations and redefinitions.
+ }
+
+ // C: Function types need to be compatible, not identical. This handles
+ // duplicate function decls like "void f(int); void f(enum X);" properly.
+ if (!getLangOpts().CPlusPlus &&
+ Context.typesAreCompatible(OldQType, NewQType)) {
+ const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
+ const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
+ const FunctionProtoType *OldProto = nullptr;
+ if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
+ (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
+ // The old declaration provided a function prototype, but the
+ // new declaration does not. Merge in the prototype.
+ assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
+ SmallVector<QualType, 16> ParamTypes(OldProto->param_types());
+ NewQType =
+ Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes,
+ OldProto->getExtProtoInfo());
+ New->setType(NewQType);
+ New->setHasInheritedPrototype();
+
+ // Synthesize parameters with the same types.
+ SmallVector<ParmVarDecl*, 16> Params;
+ for (const auto &ParamType : OldProto->param_types()) {
+ ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(),
+ SourceLocation(), nullptr,
+ ParamType, /*TInfo=*/nullptr,
+ SC_None, nullptr);
+ Param->setScopeInfo(0, Params.size());
+ Param->setImplicit();
+ Params.push_back(Param);
+ }
+
+ New->setParams(Params);
+ }
+
+ return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
+ }
+
+ // GNU C permits a K&R definition to follow a prototype declaration
+ // if the declared types of the parameters in the K&R definition
+ // match the types in the prototype declaration, even when the
+ // promoted types of the parameters from the K&R definition differ
+ // from the types in the prototype. GCC then keeps the types from
+ // the prototype.
+ //
+ // If a variadic prototype is followed by a non-variadic K&R definition,
+ // the K&R definition becomes variadic. This is sort of an edge case, but
+ // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
+ // C99 6.9.1p8.
+ if (!getLangOpts().CPlusPlus &&
+ Old->hasPrototype() && !New->hasPrototype() &&
+ New->getType()->getAs<FunctionProtoType>() &&
+ Old->getNumParams() == New->getNumParams()) {
+ SmallVector<QualType, 16> ArgTypes;
+ SmallVector<GNUCompatibleParamWarning, 16> Warnings;
+ const FunctionProtoType *OldProto
+ = Old->getType()->getAs<FunctionProtoType>();
+ const FunctionProtoType *NewProto
+ = New->getType()->getAs<FunctionProtoType>();
+
+ // Determine whether this is the GNU C extension.
+ QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
+ NewProto->getReturnType());
+ bool LooseCompatible = !MergedReturn.isNull();
+ for (unsigned Idx = 0, End = Old->getNumParams();
+ LooseCompatible && Idx != End; ++Idx) {
+ ParmVarDecl *OldParm = Old->getParamDecl(Idx);
+ ParmVarDecl *NewParm = New->getParamDecl(Idx);
+ if (Context.typesAreCompatible(OldParm->getType(),
+ NewProto->getParamType(Idx))) {
+ ArgTypes.push_back(NewParm->getType());
+ } else if (Context.typesAreCompatible(OldParm->getType(),
+ NewParm->getType(),
+ /*CompareUnqualified=*/true)) {
+ GNUCompatibleParamWarning Warn = { OldParm, NewParm,
+ NewProto->getParamType(Idx) };
+ Warnings.push_back(Warn);
+ ArgTypes.push_back(NewParm->getType());
+ } else
+ LooseCompatible = false;
+ }
+
+ if (LooseCompatible) {
+ for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
+ Diag(Warnings[Warn].NewParm->getLocation(),
+ diag::ext_param_promoted_not_compatible_with_prototype)
+ << Warnings[Warn].PromotedType
+ << Warnings[Warn].OldParm->getType();
+ if (Warnings[Warn].OldParm->getLocation().isValid())
+ Diag(Warnings[Warn].OldParm->getLocation(),
+ diag::note_previous_declaration);
+ }
+
+ if (MergeTypeWithOld)
+ New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
+ OldProto->getExtProtoInfo()));
+ return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
+ }
+
+ // Fall through to diagnose conflicting types.
+ }
+
+ // A function that has already been declared has been redeclared or
+ // defined with a different type; show an appropriate diagnostic.
+
+ // If the previous declaration was an implicitly-generated builtin
+ // declaration, then at the very least we should use a specialized note.
+ unsigned BuiltinID;
+ if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
+ // If it's actually a library-defined builtin function like 'malloc'
+ // or 'printf', just warn about the incompatible redeclaration.
+ if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
+ Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
+ Diag(OldLocation, diag::note_previous_builtin_declaration)
+ << Old << Old->getType();
+
+ // If this is a global redeclaration, just forget hereafter
+ // about the "builtin-ness" of the function.
+ //
+ // Doing this for local extern declarations is problematic. If
+ // the builtin declaration remains visible, a second invalid
+ // local declaration will produce a hard error; if it doesn't
+ // remain visible, a single bogus local redeclaration (which is
+ // actually only a warning) could break all the downstream code.
+ if (!New->getLexicalDeclContext()->isFunctionOrMethod())
+ New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
+
+ return false;
+ }
+
+ PrevDiag = diag::note_previous_builtin_declaration;
+ }
+
+ Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
+ Diag(OldLocation, PrevDiag) << Old << Old->getType();
+ return true;
+}
+
+/// \brief Completes the merge of two function declarations that are
+/// known to be compatible.
+///
+/// This routine handles the merging of attributes and other
+/// properties of function declarations from the old declaration to
+/// the new declaration, once we know that New is in fact a
+/// redeclaration of Old.
+///
+/// \returns false
+bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
+ Scope *S, bool MergeTypeWithOld) {
+ // Merge the attributes
+ mergeDeclAttributes(New, Old);
+
+ // Merge "pure" flag.
+ if (Old->isPure())
+ New->setPure();
+
+ // Merge "used" flag.
+ if (Old->getMostRecentDecl()->isUsed(false))
+ New->setIsUsed();
+
+ // Merge attributes from the parameters. These can mismatch with K&R
+ // declarations.
+ if (New->getNumParams() == Old->getNumParams())
+ for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
+ mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
+ *this);
+
+ if (getLangOpts().CPlusPlus)
+ return MergeCXXFunctionDecl(New, Old, S);
+
+ // Merge the function types so the we get the composite types for the return
+ // and argument types. Per C11 6.2.7/4, only update the type if the old decl
+ // was visible.
+ QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
+ if (!Merged.isNull() && MergeTypeWithOld)
+ New->setType(Merged);
+
+ return false;
+}
+
+
+void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
+ ObjCMethodDecl *oldMethod) {
+
+ // Merge the attributes, including deprecated/unavailable
+ AvailabilityMergeKind MergeKind =
+ isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
+ : AMK_Override;
+ mergeDeclAttributes(newMethod, oldMethod, MergeKind);
+
+ // Merge attributes from the parameters.
+ ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
+ oe = oldMethod->param_end();
+ for (ObjCMethodDecl::param_iterator
+ ni = newMethod->param_begin(), ne = newMethod->param_end();
+ ni != ne && oi != oe; ++ni, ++oi)
+ mergeParamDeclAttributes(*ni, *oi, *this);
+
+ CheckObjCMethodOverride(newMethod, oldMethod);
+}
+
+/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
+/// scope as a previous declaration 'Old'. Figure out how to merge their types,
+/// emitting diagnostics as appropriate.
+///
+/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
+/// to here in AddInitializerToDecl. We can't check them before the initializer
+/// is attached.
+void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
+ bool MergeTypeWithOld) {
+ if (New->isInvalidDecl() || Old->isInvalidDecl())
+ return;
+
+ QualType MergedT;
+ if (getLangOpts().CPlusPlus) {
+ if (New->getType()->isUndeducedType()) {
+ // We don't know what the new type is until the initializer is attached.
+ return;
+ } else if (Context.hasSameType(New->getType(), Old->getType())) {
+ // These could still be something that needs exception specs checked.
+ return MergeVarDeclExceptionSpecs(New, Old);
+ }
+ // C++ [basic.link]p10:
+ // [...] the types specified by all declarations referring to a given
+ // object or function shall be identical, except that declarations for an
+ // array object can specify array types that differ by the presence or
+ // absence of a major array bound (8.3.4).
+ else if (Old->getType()->isIncompleteArrayType() &&
+ New->getType()->isArrayType()) {
+ const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
+ const ArrayType *NewArray = Context.getAsArrayType(New->getType());
+ if (Context.hasSameType(OldArray->getElementType(),
+ NewArray->getElementType()))
+ MergedT = New->getType();
+ } else if (Old->getType()->isArrayType() &&
+ New->getType()->isIncompleteArrayType()) {
+ const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
+ const ArrayType *NewArray = Context.getAsArrayType(New->getType());
+ if (Context.hasSameType(OldArray->getElementType(),
+ NewArray->getElementType()))
+ MergedT = Old->getType();
+ } else if (New->getType()->isObjCObjectPointerType() &&
+ Old->getType()->isObjCObjectPointerType()) {
+ MergedT = Context.mergeObjCGCQualifiers(New->getType(),
+ Old->getType());
+ }
+ } else {
+ // C 6.2.7p2:
+ // All declarations that refer to the same object or function shall have
+ // compatible type.
+ MergedT = Context.mergeTypes(New->getType(), Old->getType());
+ }
+ if (MergedT.isNull()) {
+ // It's OK if we couldn't merge types if either type is dependent, for a
+ // block-scope variable. In other cases (static data members of class
+ // templates, variable templates, ...), we require the types to be
+ // equivalent.
+ // FIXME: The C++ standard doesn't say anything about this.
+ if ((New->getType()->isDependentType() ||
+ Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
+ // If the old type was dependent, we can't merge with it, so the new type
+ // becomes dependent for now. We'll reproduce the original type when we
+ // instantiate the TypeSourceInfo for the variable.
+ if (!New->getType()->isDependentType() && MergeTypeWithOld)
+ New->setType(Context.DependentTy);
+ return;
+ }
+
+ // FIXME: Even if this merging succeeds, some other non-visible declaration
+ // of this variable might have an incompatible type. For instance:
+ //
+ // extern int arr[];
+ // void f() { extern int arr[2]; }
+ // void g() { extern int arr[3]; }
+ //
+ // Neither C nor C++ requires a diagnostic for this, but we should still try
+ // to diagnose it.
+ Diag(New->getLocation(), diag::err_redefinition_different_type)
+ << New->getDeclName() << New->getType() << Old->getType();
+ Diag(Old->getLocation(), diag::note_previous_definition);
+ return New->setInvalidDecl();
+ }
+
+ // Don't actually update the type on the new declaration if the old
+ // declaration was an extern declaration in a different scope.
+ if (MergeTypeWithOld)
+ New->setType(MergedT);
+}
+
+static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
+ LookupResult &Previous) {
+ // C11 6.2.7p4:
+ // For an identifier with internal or external linkage declared
+ // in a scope in which a prior declaration of that identifier is
+ // visible, if the prior declaration specifies internal or
+ // external linkage, the type of the identifier at the later
+ // declaration becomes the composite type.
+ //
+ // If the variable isn't visible, we do not merge with its type.
+ if (Previous.isShadowed())
+ return false;
+
+ if (S.getLangOpts().CPlusPlus) {
+ // C++11 [dcl.array]p3:
+ // If there is a preceding declaration of the entity in the same
+ // scope in which the bound was specified, an omitted array bound
+ // is taken to be the same as in that earlier declaration.
+ return NewVD->isPreviousDeclInSameBlockScope() ||
+ (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
+ !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
+ } else {
+ // If the old declaration was function-local, don't merge with its
+ // type unless we're in the same function.
+ return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
+ OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
+ }
+}
+
+/// MergeVarDecl - We just parsed a variable 'New' which has the same name
+/// and scope as a previous declaration 'Old'. Figure out how to resolve this
+/// situation, merging decls or emitting diagnostics as appropriate.
+///
+/// Tentative definition rules (C99 6.9.2p2) are checked by
+/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
+/// definitions here, since the initializer hasn't been attached.
+///
+void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
+ // If the new decl is already invalid, don't do any other checking.
+ if (New->isInvalidDecl())
+ return;
+
+ VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
+
+ // Verify the old decl was also a variable or variable template.
+ VarDecl *Old = nullptr;
+ VarTemplateDecl *OldTemplate = nullptr;
+ if (Previous.isSingleResult()) {
+ if (NewTemplate) {
+ OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
+ Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
+ } else
+ Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
+ }
+ if (!Old) {
+ Diag(New->getLocation(), diag::err_redefinition_different_kind)
+ << New->getDeclName();
+ Diag(Previous.getRepresentativeDecl()->getLocation(),
+ diag::note_previous_definition);
+ return New->setInvalidDecl();
+ }
+
+ if (!shouldLinkPossiblyHiddenDecl(Old, New))
+ return;
+
+ // Ensure the template parameters are compatible.
+ if (NewTemplate &&
+ !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
+ OldTemplate->getTemplateParameters(),
+ /*Complain=*/true, TPL_TemplateMatch))
+ return;
+
+ // C++ [class.mem]p1:
+ // A member shall not be declared twice in the member-specification [...]
+ //
+ // Here, we need only consider static data members.
+ if (Old->isStaticDataMember() && !New->isOutOfLine()) {
+ Diag(New->getLocation(), diag::err_duplicate_member)
+ << New->getIdentifier();
+ Diag(Old->getLocation(), diag::note_previous_declaration);
+ New->setInvalidDecl();
+ }
+
+ mergeDeclAttributes(New, Old);
+ // Warn if an already-declared variable is made a weak_import in a subsequent
+ // declaration
+ if (New->hasAttr<WeakImportAttr>() &&
+ Old->getStorageClass() == SC_None &&
+ !Old->hasAttr<WeakImportAttr>()) {
+ Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
+ Diag(Old->getLocation(), diag::note_previous_definition);
+ // Remove weak_import attribute on new declaration.
+ New->dropAttr<WeakImportAttr>();
+ }
+
+ // Merge the types.
+ VarDecl *MostRecent = Old->getMostRecentDecl();
+ if (MostRecent != Old) {
+ MergeVarDeclTypes(New, MostRecent,
+ mergeTypeWithPrevious(*this, New, MostRecent, Previous));
+ if (New->isInvalidDecl())
+ return;
+ }
+
+ MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
+ if (New->isInvalidDecl())
+ return;
+
+ diag::kind PrevDiag;
+ SourceLocation OldLocation;
+ std::tie(PrevDiag, OldLocation) =
+ getNoteDiagForInvalidRedeclaration(Old, New);
+
+ // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
+ if (New->getStorageClass() == SC_Static &&
+ !New->isStaticDataMember() &&
+ Old->hasExternalFormalLinkage()) {
+ if (getLangOpts().MicrosoftExt) {
+ Diag(New->getLocation(), diag::ext_static_non_static)
+ << New->getDeclName();
+ Diag(OldLocation, PrevDiag);
+ } else {
+ Diag(New->getLocation(), diag::err_static_non_static)
+ << New->getDeclName();
+ Diag(OldLocation, PrevDiag);
+ return New->setInvalidDecl();
+ }
+ }
+ // C99 6.2.2p4:
+ // For an identifier declared with the storage-class specifier
+ // extern in a scope in which a prior declaration of that
+ // identifier is visible,23) if the prior declaration specifies
+ // internal or external linkage, the linkage of the identifier at
+ // the later declaration is the same as the linkage specified at
+ // the prior declaration. If no prior declaration is visible, or
+ // if the prior declaration specifies no linkage, then the
+ // identifier has external linkage.
+ if (New->hasExternalStorage() && Old->hasLinkage())
+ /* Okay */;
+ else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
+ !New->isStaticDataMember() &&
+ Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
+ Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
+ Diag(OldLocation, PrevDiag);
+ return New->setInvalidDecl();
+ }
+
+ // Check if extern is followed by non-extern and vice-versa.
+ if (New->hasExternalStorage() &&
+ !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
+ Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
+ Diag(OldLocation, PrevDiag);
+ return New->setInvalidDecl();
+ }
+ if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
+ !New->hasExternalStorage()) {
+ Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
+ Diag(OldLocation, PrevDiag);
+ return New->setInvalidDecl();
+ }
+
+ // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
+
+ // FIXME: The test for external storage here seems wrong? We still
+ // need to check for mismatches.
+ if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
+ // Don't complain about out-of-line definitions of static members.
+ !(Old->getLexicalDeclContext()->isRecord() &&
+ !New->getLexicalDeclContext()->isRecord())) {
+ Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
+ Diag(OldLocation, PrevDiag);
+ return New->setInvalidDecl();
+ }
+
+ if (New->getTLSKind() != Old->getTLSKind()) {
+ if (!Old->getTLSKind()) {
+ Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
+ Diag(OldLocation, PrevDiag);
+ } else if (!New->getTLSKind()) {
+ Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
+ Diag(OldLocation, PrevDiag);
+ } else {
+ // Do not allow redeclaration to change the variable between requiring
+ // static and dynamic initialization.
+ // FIXME: GCC allows this, but uses the TLS keyword on the first
+ // declaration to determine the kind. Do we need to be compatible here?
+ Diag(New->getLocation(), diag::err_thread_thread_different_kind)
+ << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
+ Diag(OldLocation, PrevDiag);
+ }
+ }
+
+ // C++ doesn't have tentative definitions, so go right ahead and check here.
+ VarDecl *Def;
+ if (getLangOpts().CPlusPlus &&
+ New->isThisDeclarationADefinition() == VarDecl::Definition &&
+ (Def = Old->getDefinition())) {
+ NamedDecl *Hidden = nullptr;
+ if (!hasVisibleDefinition(Def, &Hidden) &&
+ (New->getDescribedVarTemplate() ||
+ New->getNumTemplateParameterLists() ||
+ New->getDeclContext()->isDependentContext())) {
+ // The previous definition is hidden, and multiple definitions are
+ // permitted (in separate TUs). Form another definition of it.
+ } else {
+ Diag(New->getLocation(), diag::err_redefinition) << New;
+ Diag(Def->getLocation(), diag::note_previous_definition);
+ New->setInvalidDecl();
+ return;
+ }
+ }
+
+ if (haveIncompatibleLanguageLinkages(Old, New)) {
+ Diag(New->getLocation(), diag::err_different_language_linkage) << New;
+ Diag(OldLocation, PrevDiag);
+ New->setInvalidDecl();
+ return;
+ }
+
+ // Merge "used" flag.
+ if (Old->getMostRecentDecl()->isUsed(false))
+ New->setIsUsed();
+
+ // Keep a chain of previous declarations.
+ New->setPreviousDecl(Old);
+ if (NewTemplate)
+ NewTemplate->setPreviousDecl(OldTemplate);
+
+ // Inherit access appropriately.
+ New->setAccess(Old->getAccess());
+ if (NewTemplate)
+ NewTemplate->setAccess(New->getAccess());
+}
+
+/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
+/// no declarator (e.g. "struct foo;") is parsed.
+Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
+ DeclSpec &DS) {
+ return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
+}
+
+// The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
+// disambiguate entities defined in different scopes.
+// While the VS2015 ABI fixes potential miscompiles, it is also breaks
+// compatibility.
+// We will pick our mangling number depending on which version of MSVC is being
+// targeted.
+static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) {
+ return LO.isCompatibleWithMSVC(LangOptions::MSVC2015)
+ ? S->getMSCurManglingNumber()
+ : S->getMSLastManglingNumber();
+}
+
+void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) {
+ if (!Context.getLangOpts().CPlusPlus)
+ return;
+
+ if (isa<CXXRecordDecl>(Tag->getParent())) {
+ // If this tag is the direct child of a class, number it if
+ // it is anonymous.
+ if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
+ return;
+ MangleNumberingContext &MCtx =
+ Context.getManglingNumberContext(Tag->getParent());
+ Context.setManglingNumber(
+ Tag, MCtx.getManglingNumber(
+ Tag, getMSManglingNumber(getLangOpts(), TagScope)));
+ return;
+ }
+
+ // If this tag isn't a direct child of a class, number it if it is local.
+ Decl *ManglingContextDecl;
+ if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
+ Tag->getDeclContext(), ManglingContextDecl)) {
+ Context.setManglingNumber(
+ Tag, MCtx->getManglingNumber(
+ Tag, getMSManglingNumber(getLangOpts(), TagScope)));
+ }
+}
+
+void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
+ TypedefNameDecl *NewTD) {
+ // Do nothing if the tag is not anonymous or already has an
+ // associated typedef (from an earlier typedef in this decl group).
+ if (TagFromDeclSpec->getIdentifier())
+ return;
+ if (TagFromDeclSpec->getTypedefNameForAnonDecl())
+ return;
+
+ // A well-formed anonymous tag must always be a TUK_Definition.
+ assert(TagFromDeclSpec->isThisDeclarationADefinition());
+
+ // The type must match the tag exactly; no qualifiers allowed.
+ if (!Context.hasSameType(NewTD->getUnderlyingType(),
+ Context.getTagDeclType(TagFromDeclSpec)))
+ return;
+
+ // If we've already computed linkage for the anonymous tag, then
+ // adding a typedef name for the anonymous decl can change that
+ // linkage, which might be a serious problem. Diagnose this as
+ // unsupported and ignore the typedef name. TODO: we should
+ // pursue this as a language defect and establish a formal rule
+ // for how to handle it.
+ if (TagFromDeclSpec->hasLinkageBeenComputed()) {
+ Diag(NewTD->getLocation(), diag::err_typedef_changes_linkage);
+
+ SourceLocation tagLoc = TagFromDeclSpec->getInnerLocStart();
+ tagLoc = getLocForEndOfToken(tagLoc);
+
+ llvm::SmallString<40> textToInsert;
+ textToInsert += ' ';
+ textToInsert += NewTD->getIdentifier()->getName();
+ Diag(tagLoc, diag::note_typedef_changes_linkage)
+ << FixItHint::CreateInsertion(tagLoc, textToInsert);
+ return;
+ }
+
+ // Otherwise, set this is the anon-decl typedef for the tag.
+ TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
+}
+
+/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
+/// no declarator (e.g. "struct foo;") is parsed. It also accepts template
+/// parameters to cope with template friend declarations.
+Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
+ DeclSpec &DS,
+ MultiTemplateParamsArg TemplateParams,
+ bool IsExplicitInstantiation) {
+ Decl *TagD = nullptr;
+ TagDecl *Tag = nullptr;
+ if (DS.getTypeSpecType() == DeclSpec::TST_class ||
+ DS.getTypeSpecType() == DeclSpec::TST_struct ||
+ DS.getTypeSpecType() == DeclSpec::TST_interface ||
+ DS.getTypeSpecType() == DeclSpec::TST_union ||
+ DS.getTypeSpecType() == DeclSpec::TST_enum) {
+ TagD = DS.getRepAsDecl();
+
+ if (!TagD) // We probably had an error
+ return nullptr;
+
+ // Note that the above type specs guarantee that the
+ // type rep is a Decl, whereas in many of the others
+ // it's a Type.
+ if (isa<TagDecl>(TagD))
+ Tag = cast<TagDecl>(TagD);
+ else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
+ Tag = CTD->getTemplatedDecl();
+ }
+
+ if (Tag) {
+ handleTagNumbering(Tag, S);
+ Tag->setFreeStanding();
+ if (Tag->isInvalidDecl())
+ return Tag;
+ }
+
+ if (unsigned TypeQuals = DS.getTypeQualifiers()) {
+ // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
+ // or incomplete types shall not be restrict-qualified."
+ if (TypeQuals & DeclSpec::TQ_restrict)
+ Diag(DS.getRestrictSpecLoc(),
+ diag::err_typecheck_invalid_restrict_not_pointer_noarg)
+ << DS.getSourceRange();
+ }
+
+ if (DS.isConstexprSpecified()) {
+ // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
+ // and definitions of functions and variables.
+ if (Tag)
+ Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
+ << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
+ DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
+ DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
+ DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
+ else
+ Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
+ // Don't emit warnings after this error.
+ return TagD;
+ }
+
+ DiagnoseFunctionSpecifiers(DS);
+
+ if (DS.isFriendSpecified()) {
+ // If we're dealing with a decl but not a TagDecl, assume that
+ // whatever routines created it handled the friendship aspect.
+ if (TagD && !Tag)
+ return nullptr;
+ return ActOnFriendTypeDecl(S, DS, TemplateParams);
+ }
+
+ const CXXScopeSpec &SS = DS.getTypeSpecScope();
+ bool IsExplicitSpecialization =
+ !TemplateParams.empty() && TemplateParams.back()->size() == 0;
+ if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
+ !IsExplicitInstantiation && !IsExplicitSpecialization) {
+ // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
+ // nested-name-specifier unless it is an explicit instantiation
+ // or an explicit specialization.
+ // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
+ Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
+ << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
+ DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
+ DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
+ DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4)
+ << SS.getRange();
+ return nullptr;
+ }
+
+ // Track whether this decl-specifier declares anything.
+ bool DeclaresAnything = true;
+
+ // Handle anonymous struct definitions.
+ if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
+ if (!Record->getDeclName() && Record->isCompleteDefinition() &&
+ DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
+ if (getLangOpts().CPlusPlus ||
+ Record->getDeclContext()->isRecord())
+ return BuildAnonymousStructOrUnion(S, DS, AS, Record,
+ Context.getPrintingPolicy());
+
+ DeclaresAnything = false;
+ }
+ }
+
+ // C11 6.7.2.1p2:
+ // A struct-declaration that does not declare an anonymous structure or
+ // anonymous union shall contain a struct-declarator-list.
+ //
+ // This rule also existed in C89 and C99; the grammar for struct-declaration
+ // did not permit a struct-declaration without a struct-declarator-list.
+ if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
+ DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
+ // Check for Microsoft C extension: anonymous struct/union member.
+ // Handle 2 kinds of anonymous struct/union:
+ // struct STRUCT;
+ // union UNION;
+ // and
+ // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct.
+ // UNION_TYPE; <- where UNION_TYPE is a typedef union.
+ if ((Tag && Tag->getDeclName()) ||
+ DS.getTypeSpecType() == DeclSpec::TST_typename) {
+ RecordDecl *Record = nullptr;
+ if (Tag)
+ Record = dyn_cast<RecordDecl>(Tag);
+ else if (const RecordType *RT =
+ DS.getRepAsType().get()->getAsStructureType())
+ Record = RT->getDecl();
+ else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
+ Record = UT->getDecl();
+
+ if (Record && getLangOpts().MicrosoftExt) {
+ Diag(DS.getLocStart(), diag::ext_ms_anonymous_record)
+ << Record->isUnion() << DS.getSourceRange();
+ return BuildMicrosoftCAnonymousStruct(S, DS, Record);
+ }
+
+ DeclaresAnything = false;
+ }
+ }
+
+ // Skip all the checks below if we have a type error.
+ if (DS.getTypeSpecType() == DeclSpec::TST_error ||
+ (TagD && TagD->isInvalidDecl()))
+ return TagD;
+
+ if (getLangOpts().CPlusPlus &&
+ DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
+ if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
+ if (Enum->enumerator_begin() == Enum->enumerator_end() &&
+ !Enum->getIdentifier() && !Enum->isInvalidDecl())
+ DeclaresAnything = false;
+
+ if (!DS.isMissingDeclaratorOk()) {
+ // Customize diagnostic for a typedef missing a name.
+ if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
+ Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
+ << DS.getSourceRange();
+ else
+ DeclaresAnything = false;
+ }
+
+ if (DS.isModulePrivateSpecified() &&
+ Tag && Tag->getDeclContext()->isFunctionOrMethod())
+ Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
+ << Tag->getTagKind()
+ << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
+
+ ActOnDocumentableDecl(TagD);
+
+ // C 6.7/2:
+ // A declaration [...] shall declare at least a declarator [...], a tag,
+ // or the members of an enumeration.
+ // C++ [dcl.dcl]p3:
+ // [If there are no declarators], and except for the declaration of an
+ // unnamed bit-field, the decl-specifier-seq shall introduce one or more
+ // names into the program, or shall redeclare a name introduced by a
+ // previous declaration.
+ if (!DeclaresAnything) {
+ // In C, we allow this as a (popular) extension / bug. Don't bother
+ // producing further diagnostics for redundant qualifiers after this.
+ Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange();
+ return TagD;
+ }
+
+ // C++ [dcl.stc]p1:
+ // If a storage-class-specifier appears in a decl-specifier-seq, [...] the
+ // init-declarator-list of the declaration shall not be empty.
+ // C++ [dcl.fct.spec]p1:
+ // If a cv-qualifier appears in a decl-specifier-seq, the
+ // init-declarator-list of the declaration shall not be empty.
+ //
+ // Spurious qualifiers here appear to be valid in C.
+ unsigned DiagID = diag::warn_standalone_specifier;
+ if (getLangOpts().CPlusPlus)
+ DiagID = diag::ext_standalone_specifier;
+
+ // Note that a linkage-specification sets a storage class, but
+ // 'extern "C" struct foo;' is actually valid and not theoretically
+ // useless.
+ if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
+ if (SCS == DeclSpec::SCS_mutable)
+ // Since mutable is not a viable storage class specifier in C, there is
+ // no reason to treat it as an extension. Instead, diagnose as an error.
+ Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
+ else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
+ Diag(DS.getStorageClassSpecLoc(), DiagID)
+ << DeclSpec::getSpecifierName(SCS);
+ }
+
+ if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
+ Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
+ << DeclSpec::getSpecifierName(TSCS);
+ if (DS.getTypeQualifiers()) {
+ if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
+ Diag(DS.getConstSpecLoc(), DiagID) << "const";
+ if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
+ Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
+ // Restrict is covered above.
+ if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
+ Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
+ }
+
+ // Warn about ignored type attributes, for example:
+ // __attribute__((aligned)) struct A;
+ // Attributes should be placed after tag to apply to type declaration.
+ if (!DS.getAttributes().empty()) {
+ DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
+ if (TypeSpecType == DeclSpec::TST_class ||
+ TypeSpecType == DeclSpec::TST_struct ||
+ TypeSpecType == DeclSpec::TST_interface ||
+ TypeSpecType == DeclSpec::TST_union ||
+ TypeSpecType == DeclSpec::TST_enum) {
+ AttributeList* attrs = DS.getAttributes().getList();
+ while (attrs) {
+ Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
+ << attrs->getName()
+ << (TypeSpecType == DeclSpec::TST_class ? 0 :
+ TypeSpecType == DeclSpec::TST_struct ? 1 :
+ TypeSpecType == DeclSpec::TST_union ? 2 :
+ TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
+ attrs = attrs->getNext();
+ }
+ }
+ }
+
+ return TagD;
+}
+
+/// We are trying to inject an anonymous member into the given scope;
+/// check if there's an existing declaration that can't be overloaded.
+///
+/// \return true if this is a forbidden redeclaration
+static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
+ Scope *S,
+ DeclContext *Owner,
+ DeclarationName Name,
+ SourceLocation NameLoc,
+ unsigned diagnostic) {
+ LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
+ Sema::ForRedeclaration);
+ if (!SemaRef.LookupName(R, S)) return false;
+
+ if (R.getAsSingle<TagDecl>())
+ return false;
+
+ // Pick a representative declaration.
+ NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
+ assert(PrevDecl && "Expected a non-null Decl");
+
+ if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
+ return false;
+
+ SemaRef.Diag(NameLoc, diagnostic) << Name;
+ SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
+
+ return true;
+}
+
+/// InjectAnonymousStructOrUnionMembers - Inject the members of the
+/// anonymous struct or union AnonRecord into the owning context Owner
+/// and scope S. This routine will be invoked just after we realize
+/// that an unnamed union or struct is actually an anonymous union or
+/// struct, e.g.,
+///
+/// @code
+/// union {
+/// int i;
+/// float f;
+/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
+/// // f into the surrounding scope.x
+/// @endcode
+///
+/// This routine is recursive, injecting the names of nested anonymous
+/// structs/unions into the owning context and scope as well.
+static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
+ DeclContext *Owner,
+ RecordDecl *AnonRecord,
+ AccessSpecifier AS,
+ SmallVectorImpl<NamedDecl *> &Chaining,
+ bool MSAnonStruct) {
+ unsigned diagKind
+ = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
+ : diag::err_anonymous_struct_member_redecl;
+
+ bool Invalid = false;
+
+ // Look every FieldDecl and IndirectFieldDecl with a name.
+ for (auto *D : AnonRecord->decls()) {
+ if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
+ cast<NamedDecl>(D)->getDeclName()) {
+ ValueDecl *VD = cast<ValueDecl>(D);
+ if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
+ VD->getLocation(), diagKind)) {
+ // C++ [class.union]p2:
+ // The names of the members of an anonymous union shall be
+ // distinct from the names of any other entity in the
+ // scope in which the anonymous union is declared.
+ Invalid = true;
+ } else {
+ // C++ [class.union]p2:
+ // For the purpose of name lookup, after the anonymous union
+ // definition, the members of the anonymous union are
+ // considered to have been defined in the scope in which the
+ // anonymous union is declared.
+ unsigned OldChainingSize = Chaining.size();
+ if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
+ Chaining.append(IF->chain_begin(), IF->chain_end());
+ else
+ Chaining.push_back(VD);
+
+ assert(Chaining.size() >= 2);
+ NamedDecl **NamedChain =
+ new (SemaRef.Context)NamedDecl*[Chaining.size()];
+ for (unsigned i = 0; i < Chaining.size(); i++)
+ NamedChain[i] = Chaining[i];
+
+ IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
+ SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
+ VD->getType(), NamedChain, Chaining.size());
+
+ for (const auto *Attr : VD->attrs())
+ IndirectField->addAttr(Attr->clone(SemaRef.Context));
+
+ IndirectField->setAccess(AS);
+ IndirectField->setImplicit();
+ SemaRef.PushOnScopeChains(IndirectField, S);
+
+ // That includes picking up the appropriate access specifier.
+ if (AS != AS_none) IndirectField->setAccess(AS);
+
+ Chaining.resize(OldChainingSize);
+ }
+ }
+ }
+
+ return Invalid;
+}
+
+/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
+/// a VarDecl::StorageClass. Any error reporting is up to the caller:
+/// illegal input values are mapped to SC_None.
+static StorageClass
+StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
+ DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
+ assert(StorageClassSpec != DeclSpec::SCS_typedef &&
+ "Parser allowed 'typedef' as storage class VarDecl.");
+ switch (StorageClassSpec) {
+ case DeclSpec::SCS_unspecified: return SC_None;
+ case DeclSpec::SCS_extern:
+ if (DS.isExternInLinkageSpec())
+ return SC_None;
+ return SC_Extern;
+ case DeclSpec::SCS_static: return SC_Static;
+ case DeclSpec::SCS_auto: return SC_Auto;
+ case DeclSpec::SCS_register: return SC_Register;
+ case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
+ // Illegal SCSs map to None: error reporting is up to the caller.
+ case DeclSpec::SCS_mutable: // Fall through.
+ case DeclSpec::SCS_typedef: return SC_None;
+ }
+ llvm_unreachable("unknown storage class specifier");
+}
+
+static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
+ assert(Record->hasInClassInitializer());
+
+ for (const auto *I : Record->decls()) {
+ const auto *FD = dyn_cast<FieldDecl>(I);
+ if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
+ FD = IFD->getAnonField();
+ if (FD && FD->hasInClassInitializer())
+ return FD->getLocation();
+ }
+
+ llvm_unreachable("couldn't find in-class initializer");
+}
+
+static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
+ SourceLocation DefaultInitLoc) {
+ if (!Parent->isUnion() || !Parent->hasInClassInitializer())
+ return;
+
+ S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
+ S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
+}
+
+static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
+ CXXRecordDecl *AnonUnion) {
+ if (!Parent->isUnion() || !Parent->hasInClassInitializer())
+ return;
+
+ checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
+}
+
+/// BuildAnonymousStructOrUnion - Handle the declaration of an
+/// anonymous structure or union. Anonymous unions are a C++ feature
+/// (C++ [class.union]) and a C11 feature; anonymous structures
+/// are a C11 feature and GNU C++ extension.
+Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
+ AccessSpecifier AS,
+ RecordDecl *Record,
+ const PrintingPolicy &Policy) {
+ DeclContext *Owner = Record->getDeclContext();
+
+ // Diagnose whether this anonymous struct/union is an extension.
+ if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
+ Diag(Record->getLocation(), diag::ext_anonymous_union);
+ else if (!Record->isUnion() && getLangOpts().CPlusPlus)
+ Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
+ else if (!Record->isUnion() && !getLangOpts().C11)
+ Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
+
+ // C and C++ require different kinds of checks for anonymous
+ // structs/unions.
+ bool Invalid = false;
+ if (getLangOpts().CPlusPlus) {
+ const char *PrevSpec = nullptr;
+ unsigned DiagID;
+ if (Record->isUnion()) {
+ // C++ [class.union]p6:
+ // Anonymous unions declared in a named namespace or in the
+ // global namespace shall be declared static.
+ if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
+ (isa<TranslationUnitDecl>(Owner) ||
+ (isa<NamespaceDecl>(Owner) &&
+ cast<NamespaceDecl>(Owner)->getDeclName()))) {
+ Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
+ << FixItHint::CreateInsertion(Record->getLocation(), "static ");
+
+ // Recover by adding 'static'.
+ DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
+ PrevSpec, DiagID, Policy);
+ }
+ // C++ [class.union]p6:
+ // A storage class is not allowed in a declaration of an
+ // anonymous union in a class scope.
+ else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
+ isa<RecordDecl>(Owner)) {
+ Diag(DS.getStorageClassSpecLoc(),
+ diag::err_anonymous_union_with_storage_spec)
+ << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
+
+ // Recover by removing the storage specifier.
+ DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
+ SourceLocation(),
+ PrevSpec, DiagID, Context.getPrintingPolicy());
+ }
+ }
+
+ // Ignore const/volatile/restrict qualifiers.
+ if (DS.getTypeQualifiers()) {
+ if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
+ Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
+ << Record->isUnion() << "const"
+ << FixItHint::CreateRemoval(DS.getConstSpecLoc());
+ if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
+ Diag(DS.getVolatileSpecLoc(),
+ diag::ext_anonymous_struct_union_qualified)
+ << Record->isUnion() << "volatile"
+ << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
+ if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
+ Diag(DS.getRestrictSpecLoc(),
+ diag::ext_anonymous_struct_union_qualified)
+ << Record->isUnion() << "restrict"
+ << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
+ if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
+ Diag(DS.getAtomicSpecLoc(),
+ diag::ext_anonymous_struct_union_qualified)
+ << Record->isUnion() << "_Atomic"
+ << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
+
+ DS.ClearTypeQualifiers();
+ }
+
+ // C++ [class.union]p2:
+ // The member-specification of an anonymous union shall only
+ // define non-static data members. [Note: nested types and
+ // functions cannot be declared within an anonymous union. ]
+ for (auto *Mem : Record->decls()) {
+ if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
+ // C++ [class.union]p3:
+ // An anonymous union shall not have private or protected
+ // members (clause 11).
+ assert(FD->getAccess() != AS_none);
+ if (FD->getAccess() != AS_public) {
+ Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
+ << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
+ Invalid = true;
+ }
+
+ // C++ [class.union]p1
+ // An object of a class with a non-trivial constructor, a non-trivial
+ // copy constructor, a non-trivial destructor, or a non-trivial copy
+ // assignment operator cannot be a member of a union, nor can an
+ // array of such objects.
+ if (CheckNontrivialField(FD))
+ Invalid = true;
+ } else if (Mem->isImplicit()) {
+ // Any implicit members are fine.
+ } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
+ // This is a type that showed up in an
+ // elaborated-type-specifier inside the anonymous struct or
+ // union, but which actually declares a type outside of the
+ // anonymous struct or union. It's okay.
+ } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
+ if (!MemRecord->isAnonymousStructOrUnion() &&
+ MemRecord->getDeclName()) {
+ // Visual C++ allows type definition in anonymous struct or union.
+ if (getLangOpts().MicrosoftExt)
+ Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
+ << (int)Record->isUnion();
+ else {
+ // This is a nested type declaration.
+ Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
+ << (int)Record->isUnion();
+ Invalid = true;
+ }
+ } else {
+ // This is an anonymous type definition within another anonymous type.
+ // This is a popular extension, provided by Plan9, MSVC and GCC, but
+ // not part of standard C++.
+ Diag(MemRecord->getLocation(),
+ diag::ext_anonymous_record_with_anonymous_type)
+ << (int)Record->isUnion();
+ }
+ } else if (isa<AccessSpecDecl>(Mem)) {
+ // Any access specifier is fine.
+ } else if (isa<StaticAssertDecl>(Mem)) {
+ // In C++1z, static_assert declarations are also fine.
+ } else {
+ // We have something that isn't a non-static data
+ // member. Complain about it.
+ unsigned DK = diag::err_anonymous_record_bad_member;
+ if (isa<TypeDecl>(Mem))
+ DK = diag::err_anonymous_record_with_type;
+ else if (isa<FunctionDecl>(Mem))
+ DK = diag::err_anonymous_record_with_function;
+ else if (isa<VarDecl>(Mem))
+ DK = diag::err_anonymous_record_with_static;
+
+ // Visual C++ allows type definition in anonymous struct or union.
+ if (getLangOpts().MicrosoftExt &&
+ DK == diag::err_anonymous_record_with_type)
+ Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
+ << (int)Record->isUnion();
+ else {
+ Diag(Mem->getLocation(), DK)
+ << (int)Record->isUnion();
+ Invalid = true;
+ }
+ }
+ }
+
+ // C++11 [class.union]p8 (DR1460):
+ // At most one variant member of a union may have a
+ // brace-or-equal-initializer.
+ if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
+ Owner->isRecord())
+ checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
+ cast<CXXRecordDecl>(Record));
+ }
+
+ if (!Record->isUnion() && !Owner->isRecord()) {
+ Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
+ << (int)getLangOpts().CPlusPlus;
+ Invalid = true;
+ }
+
+ // Mock up a declarator.
+ Declarator Dc(DS, Declarator::MemberContext);
+ TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
+ assert(TInfo && "couldn't build declarator info for anonymous struct/union");
+
+ // Create a declaration for this anonymous struct/union.
+ NamedDecl *Anon = nullptr;
+ if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
+ Anon = FieldDecl::Create(Context, OwningClass,
+ DS.getLocStart(),
+ Record->getLocation(),
+ /*IdentifierInfo=*/nullptr,
+ Context.getTypeDeclType(Record),
+ TInfo,
+ /*BitWidth=*/nullptr, /*Mutable=*/false,
+ /*InitStyle=*/ICIS_NoInit);
+ Anon->setAccess(AS);
+ if (getLangOpts().CPlusPlus)
+ FieldCollector->Add(cast<FieldDecl>(Anon));
+ } else {
+ DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
+ StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
+ if (SCSpec == DeclSpec::SCS_mutable) {
+ // mutable can only appear on non-static class members, so it's always
+ // an error here
+ Diag(Record->getLocation(), diag::err_mutable_nonmember);
+ Invalid = true;
+ SC = SC_None;
+ }
+
+ Anon = VarDecl::Create(Context, Owner,
+ DS.getLocStart(),
+ Record->getLocation(), /*IdentifierInfo=*/nullptr,
+ Context.getTypeDeclType(Record),
+ TInfo, SC);
+
+ // Default-initialize the implicit variable. This initialization will be
+ // trivial in almost all cases, except if a union member has an in-class
+ // initializer:
+ // union { int n = 0; };
+ ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
+ }
+ Anon->setImplicit();
+
+ // Mark this as an anonymous struct/union type.
+ Record->setAnonymousStructOrUnion(true);
+
+ // Add the anonymous struct/union object to the current
+ // context. We'll be referencing this object when we refer to one of
+ // its members.
+ Owner->addDecl(Anon);
+
+ // Inject the members of the anonymous struct/union into the owning
+ // context and into the identifier resolver chain for name lookup
+ // purposes.
+ SmallVector<NamedDecl*, 2> Chain;
+ Chain.push_back(Anon);
+
+ if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
+ Chain, false))
+ Invalid = true;
+
+ if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
+ if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
+ Decl *ManglingContextDecl;
+ if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
+ NewVD->getDeclContext(), ManglingContextDecl)) {
+ Context.setManglingNumber(
+ NewVD, MCtx->getManglingNumber(
+ NewVD, getMSManglingNumber(getLangOpts(), S)));
+ Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
+ }
+ }
+ }
+
+ if (Invalid)
+ Anon->setInvalidDecl();
+
+ return Anon;
+}
+
+/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
+/// Microsoft C anonymous structure.
+/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
+/// Example:
+///
+/// struct A { int a; };
+/// struct B { struct A; int b; };
+///
+/// void foo() {
+/// B var;
+/// var.a = 3;
+/// }
+///
+Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
+ RecordDecl *Record) {
+ assert(Record && "expected a record!");
+
+ // Mock up a declarator.
+ Declarator Dc(DS, Declarator::TypeNameContext);
+ TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
+ assert(TInfo && "couldn't build declarator info for anonymous struct");
+
+ auto *ParentDecl = cast<RecordDecl>(CurContext);
+ QualType RecTy = Context.getTypeDeclType(Record);
+
+ // Create a declaration for this anonymous struct.
+ NamedDecl *Anon = FieldDecl::Create(Context,
+ ParentDecl,
+ DS.getLocStart(),
+ DS.getLocStart(),
+ /*IdentifierInfo=*/nullptr,
+ RecTy,
+ TInfo,
+ /*BitWidth=*/nullptr, /*Mutable=*/false,
+ /*InitStyle=*/ICIS_NoInit);
+ Anon->setImplicit();
+
+ // Add the anonymous struct object to the current context.
+ CurContext->addDecl(Anon);
+
+ // Inject the members of the anonymous struct into the current
+ // context and into the identifier resolver chain for name lookup
+ // purposes.
+ SmallVector<NamedDecl*, 2> Chain;
+ Chain.push_back(Anon);
+
+ RecordDecl *RecordDef = Record->getDefinition();
+ if (RequireCompleteType(Anon->getLocation(), RecTy,
+ diag::err_field_incomplete) ||
+ InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef,
+ AS_none, Chain, true)) {
+ Anon->setInvalidDecl();
+ ParentDecl->setInvalidDecl();
+ }
+
+ return Anon;
+}
+
+/// GetNameForDeclarator - Determine the full declaration name for the
+/// given Declarator.
+DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
+ return GetNameFromUnqualifiedId(D.getName());
+}
+
+/// \brief Retrieves the declaration name from a parsed unqualified-id.
+DeclarationNameInfo
+Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
+ DeclarationNameInfo NameInfo;
+ NameInfo.setLoc(Name.StartLocation);
+
+ switch (Name.getKind()) {
+
+ case UnqualifiedId::IK_ImplicitSelfParam:
+ case UnqualifiedId::IK_Identifier:
+ NameInfo.setName(Name.Identifier);
+ NameInfo.setLoc(Name.StartLocation);
+ return NameInfo;
+
+ case UnqualifiedId::IK_OperatorFunctionId:
+ NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
+ Name.OperatorFunctionId.Operator));
+ NameInfo.setLoc(Name.StartLocation);
+ NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
+ = Name.OperatorFunctionId.SymbolLocations[0];
+ NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
+ = Name.EndLocation.getRawEncoding();
+ return NameInfo;
+
+ case UnqualifiedId::IK_LiteralOperatorId:
+ NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
+ Name.Identifier));
+ NameInfo.setLoc(Name.StartLocation);
+ NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
+ return NameInfo;
+
+ case UnqualifiedId::IK_ConversionFunctionId: {
+ TypeSourceInfo *TInfo;
+ QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
+ if (Ty.isNull())
+ return DeclarationNameInfo();
+ NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
+ Context.getCanonicalType(Ty)));
+ NameInfo.setLoc(Name.StartLocation);
+ NameInfo.setNamedTypeInfo(TInfo);
+ return NameInfo;
+ }
+
+ case UnqualifiedId::IK_ConstructorName: {
+ TypeSourceInfo *TInfo;
+ QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
+ if (Ty.isNull())
+ return DeclarationNameInfo();
+ NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
+ Context.getCanonicalType(Ty)));
+ NameInfo.setLoc(Name.StartLocation);
+ NameInfo.setNamedTypeInfo(TInfo);
+ return NameInfo;
+ }
+
+ case UnqualifiedId::IK_ConstructorTemplateId: {
+ // In well-formed code, we can only have a constructor
+ // template-id that refers to the current context, so go there
+ // to find the actual type being constructed.
+ CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
+ if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
+ return DeclarationNameInfo();
+
+ // Determine the type of the class being constructed.
+ QualType CurClassType = Context.getTypeDeclType(CurClass);
+
+ // FIXME: Check two things: that the template-id names the same type as
+ // CurClassType, and that the template-id does not occur when the name
+ // was qualified.
+
+ NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
+ Context.getCanonicalType(CurClassType)));
+ NameInfo.setLoc(Name.StartLocation);
+ // FIXME: should we retrieve TypeSourceInfo?
+ NameInfo.setNamedTypeInfo(nullptr);
+ return NameInfo;
+ }
+
+ case UnqualifiedId::IK_DestructorName: {
+ TypeSourceInfo *TInfo;
+ QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
+ if (Ty.isNull())
+ return DeclarationNameInfo();
+ NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
+ Context.getCanonicalType(Ty)));
+ NameInfo.setLoc(Name.StartLocation);
+ NameInfo.setNamedTypeInfo(TInfo);
+ return NameInfo;
+ }
+
+ case UnqualifiedId::IK_TemplateId: {
+ TemplateName TName = Name.TemplateId->Template.get();
+ SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
+ return Context.getNameForTemplate(TName, TNameLoc);
+ }
+
+ } // switch (Name.getKind())
+
+ llvm_unreachable("Unknown name kind");
+}
+
+static QualType getCoreType(QualType Ty) {
+ do {
+ if (Ty->isPointerType() || Ty->isReferenceType())
+ Ty = Ty->getPointeeType();
+ else if (Ty->isArrayType())
+ Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
+ else
+ return Ty.withoutLocalFastQualifiers();
+ } while (true);
+}
+
+/// hasSimilarParameters - Determine whether the C++ functions Declaration
+/// and Definition have "nearly" matching parameters. This heuristic is
+/// used to improve diagnostics in the case where an out-of-line function
+/// definition doesn't match any declaration within the class or namespace.
+/// Also sets Params to the list of indices to the parameters that differ
+/// between the declaration and the definition. If hasSimilarParameters
+/// returns true and Params is empty, then all of the parameters match.
+static bool hasSimilarParameters(ASTContext &Context,
+ FunctionDecl *Declaration,
+ FunctionDecl *Definition,
+ SmallVectorImpl<unsigned> &Params) {
+ Params.clear();
+ if (Declaration->param_size() != Definition->param_size())
+ return false;
+ for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
+ QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
+ QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
+
+ // The parameter types are identical
+ if (Context.hasSameType(DefParamTy, DeclParamTy))
+ continue;
+
+ QualType DeclParamBaseTy = getCoreType(DeclParamTy);
+ QualType DefParamBaseTy = getCoreType(DefParamTy);
+ const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
+ const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
+
+ if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
+ (DeclTyName && DeclTyName == DefTyName))
+ Params.push_back(Idx);
+ else // The two parameters aren't even close
+ return false;
+ }
+
+ return true;
+}
+
+/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
+/// declarator needs to be rebuilt in the current instantiation.
+/// Any bits of declarator which appear before the name are valid for
+/// consideration here. That's specifically the type in the decl spec
+/// and the base type in any member-pointer chunks.
+static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
+ DeclarationName Name) {
+ // The types we specifically need to rebuild are:
+ // - typenames, typeofs, and decltypes
+ // - types which will become injected class names
+ // Of course, we also need to rebuild any type referencing such a
+ // type. It's safest to just say "dependent", but we call out a
+ // few cases here.
+
+ DeclSpec &DS = D.getMutableDeclSpec();
+ switch (DS.getTypeSpecType()) {
+ case DeclSpec::TST_typename:
+ case DeclSpec::TST_typeofType:
+ case DeclSpec::TST_underlyingType:
+ case DeclSpec::TST_atomic: {
+ // Grab the type from the parser.
+ TypeSourceInfo *TSI = nullptr;
+ QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
+ if (T.isNull() || !T->isDependentType()) break;
+
+ // Make sure there's a type source info. This isn't really much
+ // of a waste; most dependent types should have type source info
+ // attached already.
+ if (!TSI)
+ TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
+
+ // Rebuild the type in the current instantiation.
+ TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
+ if (!TSI) return true;
+
+ // Store the new type back in the decl spec.
+ ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
+ DS.UpdateTypeRep(LocType);
+ break;
+ }
+
+ case DeclSpec::TST_decltype:
+ case DeclSpec::TST_typeofExpr: {
+ Expr *E = DS.getRepAsExpr();
+ ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
+ if (Result.isInvalid()) return true;
+ DS.UpdateExprRep(Result.get());
+ break;
+ }
+
+ default:
+ // Nothing to do for these decl specs.
+ break;
+ }
+
+ // It doesn't matter what order we do this in.
+ for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
+ DeclaratorChunk &Chunk = D.getTypeObject(I);
+
+ // The only type information in the declarator which can come
+ // before the declaration name is the base type of a member
+ // pointer.
+ if (Chunk.Kind != DeclaratorChunk::MemberPointer)
+ continue;
+
+ // Rebuild the scope specifier in-place.
+ CXXScopeSpec &SS = Chunk.Mem.Scope();
+ if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
+ return true;
+ }
+
+ return false;
+}
+
+Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
+ D.setFunctionDefinitionKind(FDK_Declaration);
+ Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
+
+ if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
+ Dcl && Dcl->getDeclContext()->isFileContext())
+ Dcl->setTopLevelDeclInObjCContainer();
+
+ return Dcl;
+}
+
+/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
+/// If T is the name of a class, then each of the following shall have a
+/// name different from T:
+/// - every static data member of class T;
+/// - every member function of class T
+/// - every member of class T that is itself a type;
+/// \returns true if the declaration name violates these rules.
+bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
+ DeclarationNameInfo NameInfo) {
+ DeclarationName Name = NameInfo.getName();
+
+ if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
+ if (Record->getIdentifier() && Record->getDeclName() == Name) {
+ Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
+ return true;
+ }
+
+ return false;
+}
+
+/// \brief Diagnose a declaration whose declarator-id has the given
+/// nested-name-specifier.
+///
+/// \param SS The nested-name-specifier of the declarator-id.
+///
+/// \param DC The declaration context to which the nested-name-specifier
+/// resolves.
+///
+/// \param Name The name of the entity being declared.
+///
+/// \param Loc The location of the name of the entity being declared.
+///
+/// \returns true if we cannot safely recover from this error, false otherwise.
+bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
+ DeclarationName Name,
+ SourceLocation Loc) {
+ DeclContext *Cur = CurContext;
+ while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
+ Cur = Cur->getParent();
+
+ // If the user provided a superfluous scope specifier that refers back to the
+ // class in which the entity is already declared, diagnose and ignore it.
+ //
+ // class X {
+ // void X::f();
+ // };
+ //
+ // Note, it was once ill-formed to give redundant qualification in all
+ // contexts, but that rule was removed by DR482.
+ if (Cur->Equals(DC)) {
+ if (Cur->isRecord()) {
+ Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
+ : diag::err_member_extra_qualification)
+ << Name << FixItHint::CreateRemoval(SS.getRange());
+ SS.clear();
+ } else {
+ Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
+ }
+ return false;
+ }
+
+ // Check whether the qualifying scope encloses the scope of the original
+ // declaration.
+ if (!Cur->Encloses(DC)) {
+ if (Cur->isRecord())
+ Diag(Loc, diag::err_member_qualification)
+ << Name << SS.getRange();
+ else if (isa<TranslationUnitDecl>(DC))
+ Diag(Loc, diag::err_invalid_declarator_global_scope)
+ << Name << SS.getRange();
+ else if (isa<FunctionDecl>(Cur))
+ Diag(Loc, diag::err_invalid_declarator_in_function)
+ << Name << SS.getRange();
+ else if (isa<BlockDecl>(Cur))
+ Diag(Loc, diag::err_invalid_declarator_in_block)
+ << Name << SS.getRange();
+ else
+ Diag(Loc, diag::err_invalid_declarator_scope)
+ << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
+
+ return true;
+ }
+
+ if (Cur->isRecord()) {
+ // Cannot qualify members within a class.
+ Diag(Loc, diag::err_member_qualification)
+ << Name << SS.getRange();
+ SS.clear();
+
+ // C++ constructors and destructors with incorrect scopes can break
+ // our AST invariants by having the wrong underlying types. If
+ // that's the case, then drop this declaration entirely.
+ if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
+ Name.getNameKind() == DeclarationName::CXXDestructorName) &&
+ !Context.hasSameType(Name.getCXXNameType(),
+ Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
+ return true;
+
+ return false;
+ }
+
+ // C++11 [dcl.meaning]p1:
+ // [...] "The nested-name-specifier of the qualified declarator-id shall
+ // not begin with a decltype-specifer"
+ NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
+ while (SpecLoc.getPrefix())
+ SpecLoc = SpecLoc.getPrefix();
+ if (dyn_cast_or_null<DecltypeType>(
+ SpecLoc.getNestedNameSpecifier()->getAsType()))
+ Diag(Loc, diag::err_decltype_in_declarator)
+ << SpecLoc.getTypeLoc().getSourceRange();
+
+ return false;
+}
+
+NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
+ MultiTemplateParamsArg TemplateParamLists) {
+ // TODO: consider using NameInfo for diagnostic.
+ DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
+ DeclarationName Name = NameInfo.getName();
+
+ // All of these full declarators require an identifier. If it doesn't have
+ // one, the ParsedFreeStandingDeclSpec action should be used.
+ if (!Name) {
+ if (!D.isInvalidType()) // Reject this if we think it is valid.
+ Diag(D.getDeclSpec().getLocStart(),
+ diag::err_declarator_need_ident)
+ << D.getDeclSpec().getSourceRange() << D.getSourceRange();
+ return nullptr;
+ } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
+ return nullptr;
+
+ // The scope passed in may not be a decl scope. Zip up the scope tree until
+ // we find one that is.
+ while ((S->getFlags() & Scope::DeclScope) == 0 ||
+ (S->getFlags() & Scope::TemplateParamScope) != 0)
+ S = S->getParent();
+
+ DeclContext *DC = CurContext;
+ if (D.getCXXScopeSpec().isInvalid())
+ D.setInvalidType();
+ else if (D.getCXXScopeSpec().isSet()) {
+ if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
+ UPPC_DeclarationQualifier))
+ return nullptr;
+
+ bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
+ DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
+ if (!DC || isa<EnumDecl>(DC)) {
+ // If we could not compute the declaration context, it's because the
+ // declaration context is dependent but does not refer to a class,
+ // class template, or class template partial specialization. Complain
+ // and return early, to avoid the coming semantic disaster.
+ Diag(D.getIdentifierLoc(),
+ diag::err_template_qualified_declarator_no_match)
+ << D.getCXXScopeSpec().getScopeRep()
+ << D.getCXXScopeSpec().getRange();
+ return nullptr;
+ }
+ bool IsDependentContext = DC->isDependentContext();
+
+ if (!IsDependentContext &&
+ RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
+ return nullptr;
+
+ if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
+ Diag(D.getIdentifierLoc(),
+ diag::err_member_def_undefined_record)
+ << Name << DC << D.getCXXScopeSpec().getRange();
+ D.setInvalidType();
+ } else if (!D.getDeclSpec().isFriendSpecified()) {
+ if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
+ Name, D.getIdentifierLoc())) {
+ if (DC->isRecord())
+ return nullptr;
+
+ D.setInvalidType();
+ }
+ }
+
+ // Check whether we need to rebuild the type of the given
+ // declaration in the current instantiation.
+ if (EnteringContext && IsDependentContext &&
+ TemplateParamLists.size() != 0) {
+ ContextRAII SavedContext(*this, DC);
+ if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
+ D.setInvalidType();
+ }
+ }
+
+ if (DiagnoseClassNameShadow(DC, NameInfo))
+ // If this is a typedef, we'll end up spewing multiple diagnostics.
+ // Just return early; it's safer.
+ if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
+ return nullptr;
+
+ TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
+ QualType R = TInfo->getType();
+
+ if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
+ UPPC_DeclarationType))
+ D.setInvalidType();
+
+ LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
+ ForRedeclaration);
+
+ // See if this is a redefinition of a variable in the same scope.
+ if (!D.getCXXScopeSpec().isSet()) {
+ bool IsLinkageLookup = false;
+ bool CreateBuiltins = false;
+
+ // If the declaration we're planning to build will be a function
+ // or object with linkage, then look for another declaration with
+ // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
+ //
+ // If the declaration we're planning to build will be declared with
+ // external linkage in the translation unit, create any builtin with
+ // the same name.
+ if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
+ /* Do nothing*/;
+ else if (CurContext->isFunctionOrMethod() &&
+ (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
+ R->isFunctionType())) {
+ IsLinkageLookup = true;
+ CreateBuiltins =
+ CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
+ } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
+ D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
+ CreateBuiltins = true;
+
+ if (IsLinkageLookup)
+ Previous.clear(LookupRedeclarationWithLinkage);
+
+ LookupName(Previous, S, CreateBuiltins);
+ } else { // Something like "int foo::x;"
+ LookupQualifiedName(Previous, DC);
+
+ // C++ [dcl.meaning]p1:
+ // When the declarator-id is qualified, the declaration shall refer to a
+ // previously declared member of the class or namespace to which the
+ // qualifier refers (or, in the case of a namespace, of an element of the
+ // inline namespace set of that namespace (7.3.1)) or to a specialization
+ // thereof; [...]
+ //
+ // Note that we already checked the context above, and that we do not have
+ // enough information to make sure that Previous contains the declaration
+ // we want to match. For example, given:
+ //
+ // class X {
+ // void f();
+ // void f(float);
+ // };
+ //
+ // void X::f(int) { } // ill-formed
+ //
+ // In this case, Previous will point to the overload set
+ // containing the two f's declared in X, but neither of them
+ // matches.
+
+ // C++ [dcl.meaning]p1:
+ // [...] the member shall not merely have been introduced by a
+ // using-declaration in the scope of the class or namespace nominated by
+ // the nested-name-specifier of the declarator-id.
+ RemoveUsingDecls(Previous);
+ }
+
+ if (Previous.isSingleResult() &&
+ Previous.getFoundDecl()->isTemplateParameter()) {
+ // Maybe we will complain about the shadowed template parameter.
+ if (!D.isInvalidType())
+ DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
+ Previous.getFoundDecl());
+
+ // Just pretend that we didn't see the previous declaration.
+ Previous.clear();
+ }
+
+ // In C++, the previous declaration we find might be a tag type
+ // (class or enum). In this case, the new declaration will hide the
+ // tag type. Note that this does does not apply if we're declaring a
+ // typedef (C++ [dcl.typedef]p4).
+ if (Previous.isSingleTagDecl() &&
+ D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
+ Previous.clear();
+
+ // Check that there are no default arguments other than in the parameters
+ // of a function declaration (C++ only).
+ if (getLangOpts().CPlusPlus)
+ CheckExtraCXXDefaultArguments(D);
+
+ NamedDecl *New;
+
+ bool AddToScope = true;
+ if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
+ if (TemplateParamLists.size()) {
+ Diag(D.getIdentifierLoc(), diag::err_template_typedef);
+ return nullptr;
+ }
+
+ New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
+ } else if (R->isFunctionType()) {
+ New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
+ TemplateParamLists,
+ AddToScope);
+ } else {
+ New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
+ AddToScope);
+ }
+
+ if (!New)
+ return nullptr;
+
+ // If this has an identifier and is not an invalid redeclaration or
+ // function template specialization, add it to the scope stack.
+ if (New->getDeclName() && AddToScope &&
+ !(D.isRedeclaration() && New->isInvalidDecl())) {
+ // Only make a locally-scoped extern declaration visible if it is the first
+ // declaration of this entity. Qualified lookup for such an entity should
+ // only find this declaration if there is no visible declaration of it.
+ bool AddToContext = !D.isRedeclaration() || !New->isLocalExternDecl();
+ PushOnScopeChains(New, S, AddToContext);
+ if (!AddToContext)
+ CurContext->addHiddenDecl(New);
+ }
+
+ return New;
+}
+
+/// Helper method to turn variable array types into constant array
+/// types in certain situations which would otherwise be errors (for
+/// GCC compatibility).
+static QualType TryToFixInvalidVariablyModifiedType(QualType T,
+ ASTContext &Context,
+ bool &SizeIsNegative,
+ llvm::APSInt &Oversized) {
+ // This method tries to turn a variable array into a constant
+ // array even when the size isn't an ICE. This is necessary
+ // for compatibility with code that depends on gcc's buggy
+ // constant expression folding, like struct {char x[(int)(char*)2];}
+ SizeIsNegative = false;
+ Oversized = 0;
+
+ if (T->isDependentType())
+ return QualType();
+
+ QualifierCollector Qs;
+ const Type *Ty = Qs.strip(T);
+
+ if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
+ QualType Pointee = PTy->getPointeeType();
+ QualType FixedType =
+ TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
+ Oversized);
+ if (FixedType.isNull()) return FixedType;
+ FixedType = Context.getPointerType(FixedType);
+ return Qs.apply(Context, FixedType);
+ }
+ if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
+ QualType Inner = PTy->getInnerType();
+ QualType FixedType =
+ TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
+ Oversized);
+ if (FixedType.isNull()) return FixedType;
+ FixedType = Context.getParenType(FixedType);
+ return Qs.apply(Context, FixedType);
+ }
+
+ const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
+ if (!VLATy)
+ return QualType();
+ // FIXME: We should probably handle this case
+ if (VLATy->getElementType()->isVariablyModifiedType())
+ return QualType();
+
+ llvm::APSInt Res;
+ if (!VLATy->getSizeExpr() ||
+ !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
+ return QualType();
+
+ // Check whether the array size is negative.
+ if (Res.isSigned() && Res.isNegative()) {
+ SizeIsNegative = true;
+ return QualType();
+ }
+
+ // Check whether the array is too large to be addressed.
+ unsigned ActiveSizeBits
+ = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
+ Res);
+ if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
+ Oversized = Res;
+ return QualType();
+ }
+
+ return Context.getConstantArrayType(VLATy->getElementType(),
+ Res, ArrayType::Normal, 0);
+}
+
+static void
+FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
+ SrcTL = SrcTL.getUnqualifiedLoc();
+ DstTL = DstTL.getUnqualifiedLoc();
+ if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
+ PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
+ FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
+ DstPTL.getPointeeLoc());
+ DstPTL.setStarLoc(SrcPTL.getStarLoc());
+ return;
+ }
+ if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
+ ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
+ FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
+ DstPTL.getInnerLoc());
+ DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
+ DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
+ return;
+ }
+ ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
+ ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
+ TypeLoc SrcElemTL = SrcATL.getElementLoc();
+ TypeLoc DstElemTL = DstATL.getElementLoc();
+ DstElemTL.initializeFullCopy(SrcElemTL);
+ DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
+ DstATL.setSizeExpr(SrcATL.getSizeExpr());
+ DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
+}
+
+/// Helper method to turn variable array types into constant array
+/// types in certain situations which would otherwise be errors (for
+/// GCC compatibility).
+static TypeSourceInfo*
+TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
+ ASTContext &Context,
+ bool &SizeIsNegative,
+ llvm::APSInt &Oversized) {
+ QualType FixedTy
+ = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
+ SizeIsNegative, Oversized);
+ if (FixedTy.isNull())
+ return nullptr;
+ TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
+ FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
+ FixedTInfo->getTypeLoc());
+ return FixedTInfo;
+}
+
+/// \brief Register the given locally-scoped extern "C" declaration so
+/// that it can be found later for redeclarations. We include any extern "C"
+/// declaration that is not visible in the translation unit here, not just
+/// function-scope declarations.
+void
+Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
+ if (!getLangOpts().CPlusPlus &&
+ ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
+ // Don't need to track declarations in the TU in C.
+ return;
+
+ // Note that we have a locally-scoped external with this name.
+ Context.getExternCContextDecl()->makeDeclVisibleInContext(ND);
+}
+
+NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
+ // FIXME: We can have multiple results via __attribute__((overloadable)).
+ auto Result = Context.getExternCContextDecl()->lookup(Name);
+ return Result.empty() ? nullptr : *Result.begin();
+}
+
+/// \brief Diagnose function specifiers on a declaration of an identifier that
+/// does not identify a function.
+void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
+ // FIXME: We should probably indicate the identifier in question to avoid
+ // confusion for constructs like "inline int a(), b;"
+ if (DS.isInlineSpecified())
+ Diag(DS.getInlineSpecLoc(),
+ diag::err_inline_non_function);
+
+ if (DS.isVirtualSpecified())
+ Diag(DS.getVirtualSpecLoc(),
+ diag::err_virtual_non_function);
+
+ if (DS.isExplicitSpecified())
+ Diag(DS.getExplicitSpecLoc(),
+ diag::err_explicit_non_function);
+
+ if (DS.isNoreturnSpecified())
+ Diag(DS.getNoreturnSpecLoc(),
+ diag::err_noreturn_non_function);
+}
+
+NamedDecl*
+Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
+ TypeSourceInfo *TInfo, LookupResult &Previous) {
+ // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
+ if (D.getCXXScopeSpec().isSet()) {
+ Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
+ << D.getCXXScopeSpec().getRange();
+ D.setInvalidType();
+ // Pretend we didn't see the scope specifier.
+ DC = CurContext;
+ Previous.clear();
+ }
+
+ DiagnoseFunctionSpecifiers(D.getDeclSpec());
+
+ if (D.getDeclSpec().isConstexprSpecified())
+ Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
+ << 1;
+
+ if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
+ Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
+ << D.getName().getSourceRange();
+ return nullptr;
+ }
+
+ TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
+ if (!NewTD) return nullptr;
+
+ // Handle attributes prior to checking for duplicates in MergeVarDecl
+ ProcessDeclAttributes(S, NewTD, D);
+
+ CheckTypedefForVariablyModifiedType(S, NewTD);
+
+ bool Redeclaration = D.isRedeclaration();
+ NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
+ D.setRedeclaration(Redeclaration);
+ return ND;
+}
+
+void
+Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
+ // C99 6.7.7p2: If a typedef name specifies a variably modified type
+ // then it shall have block scope.
+ // Note that variably modified types must be fixed before merging the decl so
+ // that redeclarations will match.
+ TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
+ QualType T = TInfo->getType();
+ if (T->isVariablyModifiedType()) {
+ getCurFunction()->setHasBranchProtectedScope();
+
+ if (S->getFnParent() == nullptr) {
+ bool SizeIsNegative;
+ llvm::APSInt Oversized;
+ TypeSourceInfo *FixedTInfo =
+ TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
+ SizeIsNegative,
+ Oversized);
+ if (FixedTInfo) {
+ Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
+ NewTD->setTypeSourceInfo(FixedTInfo);
+ } else {
+ if (SizeIsNegative)
+ Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
+ else if (T->isVariableArrayType())
+ Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
+ else if (Oversized.getBoolValue())
+ Diag(NewTD->getLocation(), diag::err_array_too_large)
+ << Oversized.toString(10);
+ else
+ Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
+ NewTD->setInvalidDecl();
+ }
+ }
+ }
+}
+
+
+/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
+/// declares a typedef-name, either using the 'typedef' type specifier or via
+/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
+NamedDecl*
+Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
+ LookupResult &Previous, bool &Redeclaration) {
+ // Merge the decl with the existing one if appropriate. If the decl is
+ // in an outer scope, it isn't the same thing.
+ FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
+ /*AllowInlineNamespace*/false);
+ filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous);
+ if (!Previous.empty()) {
+ Redeclaration = true;
+ MergeTypedefNameDecl(NewTD, Previous);
+ }
+
+ // If this is the C FILE type, notify the AST context.
+ if (IdentifierInfo *II = NewTD->getIdentifier())
+ if (!NewTD->isInvalidDecl() &&
+ NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
+ if (II->isStr("FILE"))
+ Context.setFILEDecl(NewTD);
+ else if (II->isStr("jmp_buf"))
+ Context.setjmp_bufDecl(NewTD);
+ else if (II->isStr("sigjmp_buf"))
+ Context.setsigjmp_bufDecl(NewTD);
+ else if (II->isStr("ucontext_t"))
+ Context.setucontext_tDecl(NewTD);
+ }
+
+ return NewTD;
+}
+
+/// \brief Determines whether the given declaration is an out-of-scope
+/// previous declaration.
+///
+/// This routine should be invoked when name lookup has found a
+/// previous declaration (PrevDecl) that is not in the scope where a
+/// new declaration by the same name is being introduced. If the new
+/// declaration occurs in a local scope, previous declarations with
+/// linkage may still be considered previous declarations (C99
+/// 6.2.2p4-5, C++ [basic.link]p6).
+///
+/// \param PrevDecl the previous declaration found by name
+/// lookup
+///
+/// \param DC the context in which the new declaration is being
+/// declared.
+///
+/// \returns true if PrevDecl is an out-of-scope previous declaration
+/// for a new delcaration with the same name.
+static bool
+isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
+ ASTContext &Context) {
+ if (!PrevDecl)
+ return false;
+
+ if (!PrevDecl->hasLinkage())
+ return false;
+
+ if (Context.getLangOpts().CPlusPlus) {
+ // C++ [basic.link]p6:
+ // If there is a visible declaration of an entity with linkage
+ // having the same name and type, ignoring entities declared
+ // outside the innermost enclosing namespace scope, the block
+ // scope declaration declares that same entity and receives the
+ // linkage of the previous declaration.
+ DeclContext *OuterContext = DC->getRedeclContext();
+ if (!OuterContext->isFunctionOrMethod())
+ // This rule only applies to block-scope declarations.
+ return false;
+
+ DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
+ if (PrevOuterContext->isRecord())
+ // We found a member function: ignore it.
+ return false;
+
+ // Find the innermost enclosing namespace for the new and
+ // previous declarations.
+ OuterContext = OuterContext->getEnclosingNamespaceContext();
+ PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
+
+ // The previous declaration is in a different namespace, so it
+ // isn't the same function.
+ if (!OuterContext->Equals(PrevOuterContext))
+ return false;
+ }
+
+ return true;
+}
+
+static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
+ CXXScopeSpec &SS = D.getCXXScopeSpec();
+ if (!SS.isSet()) return;
+ DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
+}
+
+bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
+ QualType type = decl->getType();
+ Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
+ if (lifetime == Qualifiers::OCL_Autoreleasing) {
+ // Various kinds of declaration aren't allowed to be __autoreleasing.
+ unsigned kind = -1U;
+ if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
+ if (var->hasAttr<BlocksAttr>())
+ kind = 0; // __block
+ else if (!var->hasLocalStorage())
+ kind = 1; // global
+ } else if (isa<ObjCIvarDecl>(decl)) {
+ kind = 3; // ivar
+ } else if (isa<FieldDecl>(decl)) {
+ kind = 2; // field
+ }
+
+ if (kind != -1U) {
+ Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
+ << kind;
+ }
+ } else if (lifetime == Qualifiers::OCL_None) {
+ // Try to infer lifetime.
+ if (!type->isObjCLifetimeType())
+ return false;
+
+ lifetime = type->getObjCARCImplicitLifetime();
+ type = Context.getLifetimeQualifiedType(type, lifetime);
+ decl->setType(type);
+ }
+
+ if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
+ // Thread-local variables cannot have lifetime.
+ if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
+ var->getTLSKind()) {
+ Diag(var->getLocation(), diag::err_arc_thread_ownership)
+ << var->getType();
+ return true;
+ }
+ }
+
+ return false;
+}
+
+static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
+ // Ensure that an auto decl is deduced otherwise the checks below might cache
+ // the wrong linkage.
+ assert(S.ParsingInitForAutoVars.count(&ND) == 0);
+
+ // 'weak' only applies to declarations with external linkage.
+ if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
+ if (!ND.isExternallyVisible()) {
+ S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
+ ND.dropAttr<WeakAttr>();
+ }
+ }
+ if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
+ if (ND.isExternallyVisible()) {
+ S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
+ ND.dropAttr<WeakRefAttr>();
+ ND.dropAttr<AliasAttr>();
+ }
+ }
+
+ if (auto *VD = dyn_cast<VarDecl>(&ND)) {
+ if (VD->hasInit()) {
+ if (const auto *Attr = VD->getAttr<AliasAttr>()) {
+ assert(VD->isThisDeclarationADefinition() &&
+ !VD->isExternallyVisible() && "Broken AliasAttr handled late!");
+ S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD;
+ VD->dropAttr<AliasAttr>();
+ }
+ }
+ }
+
+ // 'selectany' only applies to externally visible variable declarations.
+ // It does not apply to functions.
+ if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
+ if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
+ S.Diag(Attr->getLocation(),
+ diag::err_attribute_selectany_non_extern_data);
+ ND.dropAttr<SelectAnyAttr>();
+ }
+ }
+
+ // dll attributes require external linkage.
+ if (const InheritableAttr *Attr = getDLLAttr(&ND)) {
+ if (!ND.isExternallyVisible()) {
+ S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
+ << &ND << Attr;
+ ND.setInvalidDecl();
+ }
+ }
+}
+
+static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
+ NamedDecl *NewDecl,
+ bool IsSpecialization) {
+ if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl))
+ OldDecl = OldTD->getTemplatedDecl();
+ if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl))
+ NewDecl = NewTD->getTemplatedDecl();
+
+ if (!OldDecl || !NewDecl)
+ return;
+
+ const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
+ const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
+ const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
+ const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
+
+ // dllimport and dllexport are inheritable attributes so we have to exclude
+ // inherited attribute instances.
+ bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
+ (NewExportAttr && !NewExportAttr->isInherited());
+
+ // A redeclaration is not allowed to add a dllimport or dllexport attribute,
+ // the only exception being explicit specializations.
+ // Implicitly generated declarations are also excluded for now because there
+ // is no other way to switch these to use dllimport or dllexport.
+ bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
+
+ if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
+ // If the declaration hasn't been used yet, allow with a warning for
+ // free functions and global variables.
+ bool JustWarn = false;
+ if (!OldDecl->isUsed() && !OldDecl->isCXXClassMember()) {
+ auto *VD = dyn_cast<VarDecl>(OldDecl);
+ if (VD && !VD->getDescribedVarTemplate())
+ JustWarn = true;
+ auto *FD = dyn_cast<FunctionDecl>(OldDecl);
+ if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate)
+ JustWarn = true;
+ }
+
+ unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration
+ : diag::err_attribute_dll_redeclaration;
+ S.Diag(NewDecl->getLocation(), DiagID)
+ << NewDecl
+ << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
+ S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
+ if (!JustWarn) {
+ NewDecl->setInvalidDecl();
+ return;
+ }
+ }
+
+ // A redeclaration is not allowed to drop a dllimport attribute, the only
+ // exceptions being inline function definitions, local extern declarations,
+ // and qualified friend declarations.
+ // NB: MSVC converts such a declaration to dllexport.
+ bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false;
+ if (const auto *VD = dyn_cast<VarDecl>(NewDecl))
+ // Ignore static data because out-of-line definitions are diagnosed
+ // separately.
+ IsStaticDataMember = VD->isStaticDataMember();
+ else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) {
+ IsInline = FD->isInlined();
+ IsQualifiedFriend = FD->getQualifier() &&
+ FD->getFriendObjectKind() == Decl::FOK_Declared;
+ }
+
+ if (OldImportAttr && !HasNewAttr && !IsInline && !IsStaticDataMember &&
+ !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) {
+ S.Diag(NewDecl->getLocation(),
+ diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
+ << NewDecl << OldImportAttr;
+ S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
+ S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
+ OldDecl->dropAttr<DLLImportAttr>();
+ NewDecl->dropAttr<DLLImportAttr>();
+ } else if (IsInline && OldImportAttr &&
+ !S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
+ // In MinGW, seeing a function declared inline drops the dllimport attribute.
+ OldDecl->dropAttr<DLLImportAttr>();
+ NewDecl->dropAttr<DLLImportAttr>();
+ S.Diag(NewDecl->getLocation(),
+ diag::warn_dllimport_dropped_from_inline_function)
+ << NewDecl << OldImportAttr;
+ }
+}
+
+/// Given that we are within the definition of the given function,
+/// will that definition behave like C99's 'inline', where the
+/// definition is discarded except for optimization purposes?
+static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
+ // Try to avoid calling GetGVALinkageForFunction.
+
+ // All cases of this require the 'inline' keyword.
+ if (!FD->isInlined()) return false;
+
+ // This is only possible in C++ with the gnu_inline attribute.
+ if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
+ return false;
+
+ // Okay, go ahead and call the relatively-more-expensive function.
+
+#ifndef NDEBUG
+ // AST quite reasonably asserts that it's working on a function
+ // definition. We don't really have a way to tell it that we're
+ // currently defining the function, so just lie to it in +Asserts
+ // builds. This is an awful hack.
+ FD->setLazyBody(1);
+#endif
+
+ bool isC99Inline =
+ S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
+
+#ifndef NDEBUG
+ FD->setLazyBody(0);
+#endif
+
+ return isC99Inline;
+}
+
+/// Determine whether a variable is extern "C" prior to attaching
+/// an initializer. We can't just call isExternC() here, because that
+/// will also compute and cache whether the declaration is externally
+/// visible, which might change when we attach the initializer.
+///
+/// This can only be used if the declaration is known to not be a
+/// redeclaration of an internal linkage declaration.
+///
+/// For instance:
+///
+/// auto x = []{};
+///
+/// Attaching the initializer here makes this declaration not externally
+/// visible, because its type has internal linkage.
+///
+/// FIXME: This is a hack.
+template<typename T>
+static bool isIncompleteDeclExternC(Sema &S, const T *D) {
+ if (S.getLangOpts().CPlusPlus) {
+ // In C++, the overloadable attribute negates the effects of extern "C".
+ if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
+ return false;
+ }
+ return D->isExternC();
+}
+
+static bool shouldConsiderLinkage(const VarDecl *VD) {
+ const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
+ if (DC->isFunctionOrMethod())
+ return VD->hasExternalStorage();
+ if (DC->isFileContext())
+ return true;
+ if (DC->isRecord())
+ return false;
+ llvm_unreachable("Unexpected context");
+}
+
+static bool shouldConsiderLinkage(const FunctionDecl *FD) {
+ const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
+ if (DC->isFileContext() || DC->isFunctionOrMethod())
+ return true;
+ if (DC->isRecord())
+ return false;
+ llvm_unreachable("Unexpected context");
+}
+
+static bool hasParsedAttr(Scope *S, const AttributeList *AttrList,
+ AttributeList::Kind Kind) {
+ for (const AttributeList *L = AttrList; L; L = L->getNext())
+ if (L->getKind() == Kind)
+ return true;
+ return false;
+}
+
+static bool hasParsedAttr(Scope *S, const Declarator &PD,
+ AttributeList::Kind Kind) {
+ // Check decl attributes on the DeclSpec.
+ if (hasParsedAttr(S, PD.getDeclSpec().getAttributes().getList(), Kind))
+ return true;
+
+ // Walk the declarator structure, checking decl attributes that were in a type
+ // position to the decl itself.
+ for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
+ if (hasParsedAttr(S, PD.getTypeObject(I).getAttrs(), Kind))
+ return true;
+ }
+
+ // Finally, check attributes on the decl itself.
+ return hasParsedAttr(S, PD.getAttributes(), Kind);
+}
+
+/// Adjust the \c DeclContext for a function or variable that might be a
+/// function-local external declaration.
+bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
+ if (!DC->isFunctionOrMethod())
+ return false;
+
+ // If this is a local extern function or variable declared within a function
+ // template, don't add it into the enclosing namespace scope until it is
+ // instantiated; it might have a dependent type right now.
+ if (DC->isDependentContext())
+ return true;
+
+ // C++11 [basic.link]p7:
+ // When a block scope declaration of an entity with linkage is not found to
+ // refer to some other declaration, then that entity is a member of the
+ // innermost enclosing namespace.
+ //
+ // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
+ // semantically-enclosing namespace, not a lexically-enclosing one.
+ while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
+ DC = DC->getParent();
+ return true;
+}
+
+NamedDecl *
+Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
+ TypeSourceInfo *TInfo, LookupResult &Previous,
+ MultiTemplateParamsArg TemplateParamLists,
+ bool &AddToScope) {
+ QualType R = TInfo->getType();
+ DeclarationName Name = GetNameForDeclarator(D).getName();
+
+ DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
+ StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
+
+ // dllimport globals without explicit storage class are treated as extern. We
+ // have to change the storage class this early to get the right DeclContext.
+ if (SC == SC_None && !DC->isRecord() &&
+ hasParsedAttr(S, D, AttributeList::AT_DLLImport) &&
+ !hasParsedAttr(S, D, AttributeList::AT_DLLExport))
+ SC = SC_Extern;
+
+ DeclContext *OriginalDC = DC;
+ bool IsLocalExternDecl = SC == SC_Extern &&
+ adjustContextForLocalExternDecl(DC);
+
+ if (getLangOpts().OpenCL) {
+ // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
+ QualType NR = R;
+ while (NR->isPointerType()) {
+ if (NR->isFunctionPointerType()) {
+ Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer_variable);
+ D.setInvalidType();
+ break;
+ }
+ NR = NR->getPointeeType();
+ }
+
+ if (!getOpenCLOptions().cl_khr_fp16) {
+ // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
+ // half array type (unless the cl_khr_fp16 extension is enabled).
+ if (Context.getBaseElementType(R)->isHalfType()) {
+ Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
+ D.setInvalidType();
+ }
+ }
+ }
+
+ if (SCSpec == DeclSpec::SCS_mutable) {
+ // mutable can only appear on non-static class members, so it's always
+ // an error here
+ Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
+ D.setInvalidType();
+ SC = SC_None;
+ }
+
+ if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
+ !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
+ D.getDeclSpec().getStorageClassSpecLoc())) {
+ // In C++11, the 'register' storage class specifier is deprecated.
+ // Suppress the warning in system macros, it's used in macros in some
+ // popular C system headers, such as in glibc's htonl() macro.
+ Diag(D.getDeclSpec().getStorageClassSpecLoc(),
+ diag::warn_deprecated_register)
+ << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
+ }
+
+ IdentifierInfo *II = Name.getAsIdentifierInfo();
+ if (!II) {
+ Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
+ << Name;
+ return nullptr;
+ }
+
+ DiagnoseFunctionSpecifiers(D.getDeclSpec());
+
+ if (!DC->isRecord() && S->getFnParent() == nullptr) {
+ // C99 6.9p2: The storage-class specifiers auto and register shall not
+ // appear in the declaration specifiers in an external declaration.
+ // Global Register+Asm is a GNU extension we support.
+ if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
+ Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
+ D.setInvalidType();
+ }
+ }
+
+ if (getLangOpts().OpenCL) {
+ // Set up the special work-group-local storage class for variables in the
+ // OpenCL __local address space.
+ if (R.getAddressSpace() == LangAS::opencl_local) {
+ SC = SC_OpenCLWorkGroupLocal;
+ }
+
+ // OpenCL v1.2 s6.9.b p4:
+ // The sampler type cannot be used with the __local and __global address
+ // space qualifiers.
+ if (R->isSamplerT() && (R.getAddressSpace() == LangAS::opencl_local ||
+ R.getAddressSpace() == LangAS::opencl_global)) {
+ Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
+ }
+
+ // OpenCL 1.2 spec, p6.9 r:
+ // The event type cannot be used to declare a program scope variable.
+ // The event type cannot be used with the __local, __constant and __global
+ // address space qualifiers.
+ if (R->isEventT()) {
+ if (S->getParent() == nullptr) {
+ Diag(D.getLocStart(), diag::err_event_t_global_var);
+ D.setInvalidType();
+ }
+
+ if (R.getAddressSpace()) {
+ Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
+ D.setInvalidType();
+ }
+ }
+ }
+
+ bool IsExplicitSpecialization = false;
+ bool IsVariableTemplateSpecialization = false;
+ bool IsPartialSpecialization = false;
+ bool IsVariableTemplate = false;
+ VarDecl *NewVD = nullptr;
+ VarTemplateDecl *NewTemplate = nullptr;
+ TemplateParameterList *TemplateParams = nullptr;
+ if (!getLangOpts().CPlusPlus) {
+ NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
+ D.getIdentifierLoc(), II,
+ R, TInfo, SC);
+
+ if (D.isInvalidType())
+ NewVD->setInvalidDecl();
+ } else {
+ bool Invalid = false;
+
+ if (DC->isRecord() && !CurContext->isRecord()) {
+ // This is an out-of-line definition of a static data member.
+ switch (SC) {
+ case SC_None:
+ break;
+ case SC_Static:
+ Diag(D.getDeclSpec().getStorageClassSpecLoc(),
+ diag::err_static_out_of_line)
+ << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
+ break;
+ case SC_Auto:
+ case SC_Register:
+ case SC_Extern:
+ // [dcl.stc] p2: The auto or register specifiers shall be applied only
+ // to names of variables declared in a block or to function parameters.
+ // [dcl.stc] p6: The extern specifier cannot be used in the declaration
+ // of class members
+
+ Diag(D.getDeclSpec().getStorageClassSpecLoc(),
+ diag::err_storage_class_for_static_member)
+ << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
+ break;
+ case SC_PrivateExtern:
+ llvm_unreachable("C storage class in c++!");
+ case SC_OpenCLWorkGroupLocal:
+ llvm_unreachable("OpenCL storage class in c++!");
+ }
+ }
+
+ if (SC == SC_Static && CurContext->isRecord()) {
+ if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
+ if (RD->isLocalClass())
+ Diag(D.getIdentifierLoc(),
+ diag::err_static_data_member_not_allowed_in_local_class)
+ << Name << RD->getDeclName();
+
+ // C++98 [class.union]p1: If a union contains a static data member,
+ // the program is ill-formed. C++11 drops this restriction.
+ if (RD->isUnion())
+ Diag(D.getIdentifierLoc(),
+ getLangOpts().CPlusPlus11
+ ? diag::warn_cxx98_compat_static_data_member_in_union
+ : diag::ext_static_data_member_in_union) << Name;
+ // We conservatively disallow static data members in anonymous structs.
+ else if (!RD->getDeclName())
+ Diag(D.getIdentifierLoc(),
+ diag::err_static_data_member_not_allowed_in_anon_struct)
+ << Name << RD->isUnion();
+ }
+ }
+
+ // Match up the template parameter lists with the scope specifier, then
+ // determine whether we have a template or a template specialization.
+ TemplateParams = MatchTemplateParametersToScopeSpecifier(
+ D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
+ D.getCXXScopeSpec(),
+ D.getName().getKind() == UnqualifiedId::IK_TemplateId
+ ? D.getName().TemplateId
+ : nullptr,
+ TemplateParamLists,
+ /*never a friend*/ false, IsExplicitSpecialization, Invalid);
+
+ if (TemplateParams) {
+ if (!TemplateParams->size() &&
+ D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
+ // There is an extraneous 'template<>' for this variable. Complain
+ // about it, but allow the declaration of the variable.
+ Diag(TemplateParams->getTemplateLoc(),
+ diag::err_template_variable_noparams)
+ << II
+ << SourceRange(TemplateParams->getTemplateLoc(),
+ TemplateParams->getRAngleLoc());
+ TemplateParams = nullptr;
+ } else {
+ if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
+ // This is an explicit specialization or a partial specialization.
+ // FIXME: Check that we can declare a specialization here.
+ IsVariableTemplateSpecialization = true;
+ IsPartialSpecialization = TemplateParams->size() > 0;
+ } else { // if (TemplateParams->size() > 0)
+ // This is a template declaration.
+ IsVariableTemplate = true;
+
+ // Check that we can declare a template here.
+ if (CheckTemplateDeclScope(S, TemplateParams))
+ return nullptr;
+
+ // Only C++1y supports variable templates (N3651).
+ Diag(D.getIdentifierLoc(),
+ getLangOpts().CPlusPlus14
+ ? diag::warn_cxx11_compat_variable_template
+ : diag::ext_variable_template);
+ }
+ }
+ } else {
+ assert(
+ (Invalid || D.getName().getKind() != UnqualifiedId::IK_TemplateId) &&
+ "should have a 'template<>' for this decl");
+ }
+
+ if (IsVariableTemplateSpecialization) {
+ SourceLocation TemplateKWLoc =
+ TemplateParamLists.size() > 0
+ ? TemplateParamLists[0]->getTemplateLoc()
+ : SourceLocation();
+ DeclResult Res = ActOnVarTemplateSpecialization(
+ S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
+ IsPartialSpecialization);
+ if (Res.isInvalid())
+ return nullptr;
+ NewVD = cast<VarDecl>(Res.get());
+ AddToScope = false;
+ } else
+ NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
+ D.getIdentifierLoc(), II, R, TInfo, SC);
+
+ // If this is supposed to be a variable template, create it as such.
+ if (IsVariableTemplate) {
+ NewTemplate =
+ VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
+ TemplateParams, NewVD);
+ NewVD->setDescribedVarTemplate(NewTemplate);
+ }
+
+ // If this decl has an auto type in need of deduction, make a note of the
+ // Decl so we can diagnose uses of it in its own initializer.
+ if (D.getDeclSpec().containsPlaceholderType() && R->getContainedAutoType())
+ ParsingInitForAutoVars.insert(NewVD);
+
+ if (D.isInvalidType() || Invalid) {
+ NewVD->setInvalidDecl();
+ if (NewTemplate)
+ NewTemplate->setInvalidDecl();
+ }
+
+ SetNestedNameSpecifier(NewVD, D);
+
+ // If we have any template parameter lists that don't directly belong to
+ // the variable (matching the scope specifier), store them.
+ unsigned VDTemplateParamLists = TemplateParams ? 1 : 0;
+ if (TemplateParamLists.size() > VDTemplateParamLists)
+ NewVD->setTemplateParameterListsInfo(
+ Context, TemplateParamLists.size() - VDTemplateParamLists,
+ TemplateParamLists.data());
+
+ if (D.getDeclSpec().isConstexprSpecified())
+ NewVD->setConstexpr(true);
+ }
+
+ // Set the lexical context. If the declarator has a C++ scope specifier, the
+ // lexical context will be different from the semantic context.
+ NewVD->setLexicalDeclContext(CurContext);
+ if (NewTemplate)
+ NewTemplate->setLexicalDeclContext(CurContext);
+
+ if (IsLocalExternDecl)
+ NewVD->setLocalExternDecl();
+
+ bool EmitTLSUnsupportedError = false;
+ if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
+ // C++11 [dcl.stc]p4:
+ // When thread_local is applied to a variable of block scope the
+ // storage-class-specifier static is implied if it does not appear
+ // explicitly.
+ // Core issue: 'static' is not implied if the variable is declared
+ // 'extern'.
+ if (NewVD->hasLocalStorage() &&
+ (SCSpec != DeclSpec::SCS_unspecified ||
+ TSCS != DeclSpec::TSCS_thread_local ||
+ !DC->isFunctionOrMethod()))
+ Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
+ diag::err_thread_non_global)
+ << DeclSpec::getSpecifierName(TSCS);
+ else if (!Context.getTargetInfo().isTLSSupported()) {
+ if (getLangOpts().CUDA) {
+ // Postpone error emission until we've collected attributes required to
+ // figure out whether it's a host or device variable and whether the
+ // error should be ignored.
+ EmitTLSUnsupportedError = true;
+ // We still need to mark the variable as TLS so it shows up in AST with
+ // proper storage class for other tools to use even if we're not going
+ // to emit any code for it.
+ NewVD->setTSCSpec(TSCS);
+ } else
+ Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
+ diag::err_thread_unsupported);
+ } else
+ NewVD->setTSCSpec(TSCS);
+ }
+
+ // C99 6.7.4p3
+ // An inline definition of a function with external linkage shall
+ // not contain a definition of a modifiable object with static or
+ // thread storage duration...
+ // We only apply this when the function is required to be defined
+ // elsewhere, i.e. when the function is not 'extern inline'. Note
+ // that a local variable with thread storage duration still has to
+ // be marked 'static'. Also note that it's possible to get these
+ // semantics in C++ using __attribute__((gnu_inline)).
+ if (SC == SC_Static && S->getFnParent() != nullptr &&
+ !NewVD->getType().isConstQualified()) {
+ FunctionDecl *CurFD = getCurFunctionDecl();
+ if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
+ Diag(D.getDeclSpec().getStorageClassSpecLoc(),
+ diag::warn_static_local_in_extern_inline);
+ MaybeSuggestAddingStaticToDecl(CurFD);
+ }
+ }
+
+ if (D.getDeclSpec().isModulePrivateSpecified()) {
+ if (IsVariableTemplateSpecialization)
+ Diag(NewVD->getLocation(), diag::err_module_private_specialization)
+ << (IsPartialSpecialization ? 1 : 0)
+ << FixItHint::CreateRemoval(
+ D.getDeclSpec().getModulePrivateSpecLoc());
+ else if (IsExplicitSpecialization)
+ Diag(NewVD->getLocation(), diag::err_module_private_specialization)
+ << 2
+ << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
+ else if (NewVD->hasLocalStorage())
+ Diag(NewVD->getLocation(), diag::err_module_private_local)
+ << 0 << NewVD->getDeclName()
+ << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
+ << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
+ else {
+ NewVD->setModulePrivate();
+ if (NewTemplate)
+ NewTemplate->setModulePrivate();
+ }
+ }
+
+ // Handle attributes prior to checking for duplicates in MergeVarDecl
+ ProcessDeclAttributes(S, NewVD, D);
+
+ if (getLangOpts().CUDA) {
+ if (EmitTLSUnsupportedError && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD))
+ Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
+ diag::err_thread_unsupported);
+ // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
+ // storage [duration]."
+ if (SC == SC_None && S->getFnParent() != nullptr &&
+ (NewVD->hasAttr<CUDASharedAttr>() ||
+ NewVD->hasAttr<CUDAConstantAttr>())) {
+ NewVD->setStorageClass(SC_Static);
+ }
+ }
+
+ // Ensure that dllimport globals without explicit storage class are treated as
+ // extern. The storage class is set above using parsed attributes. Now we can
+ // check the VarDecl itself.
+ assert(!NewVD->hasAttr<DLLImportAttr>() ||
+ NewVD->getAttr<DLLImportAttr>()->isInherited() ||
+ NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None);
+
+ // In auto-retain/release, infer strong retension for variables of
+ // retainable type.
+ if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
+ NewVD->setInvalidDecl();
+
+ // Handle GNU asm-label extension (encoded as an attribute).
+ if (Expr *E = (Expr*)D.getAsmLabel()) {
+ // The parser guarantees this is a string.
+ StringLiteral *SE = cast<StringLiteral>(E);
+ StringRef Label = SE->getString();
+ if (S->getFnParent() != nullptr) {
+ switch (SC) {
+ case SC_None:
+ case SC_Auto:
+ Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
+ break;
+ case SC_Register:
+ // Local Named register
+ if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
+ Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
+ break;
+ case SC_Static:
+ case SC_Extern:
+ case SC_PrivateExtern:
+ case SC_OpenCLWorkGroupLocal:
+ break;
+ }
+ } else if (SC == SC_Register) {
+ // Global Named register
+ if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
+ Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
+ if (!R->isIntegralType(Context) && !R->isPointerType()) {
+ Diag(D.getLocStart(), diag::err_asm_bad_register_type);
+ NewVD->setInvalidDecl(true);
+ }
+ }
+
+ NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
+ Context, Label, 0));
+ } else if (!ExtnameUndeclaredIdentifiers.empty()) {
+ llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
+ ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
+ if (I != ExtnameUndeclaredIdentifiers.end()) {
+ NewVD->addAttr(I->second);
+ ExtnameUndeclaredIdentifiers.erase(I);
+ }
+ }
+
+ // Diagnose shadowed variables before filtering for scope.
+ if (D.getCXXScopeSpec().isEmpty())
+ CheckShadow(S, NewVD, Previous);
+
+ // Don't consider existing declarations that are in a different
+ // scope and are out-of-semantic-context declarations (if the new
+ // declaration has linkage).
+ FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
+ D.getCXXScopeSpec().isNotEmpty() ||
+ IsExplicitSpecialization ||
+ IsVariableTemplateSpecialization);
+
+ // Check whether the previous declaration is in the same block scope. This
+ // affects whether we merge types with it, per C++11 [dcl.array]p3.
+ if (getLangOpts().CPlusPlus &&
+ NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
+ NewVD->setPreviousDeclInSameBlockScope(
+ Previous.isSingleResult() && !Previous.isShadowed() &&
+ isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
+
+ if (!getLangOpts().CPlusPlus) {
+ D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
+ } else {
+ // If this is an explicit specialization of a static data member, check it.
+ if (IsExplicitSpecialization && !NewVD->isInvalidDecl() &&
+ CheckMemberSpecialization(NewVD, Previous))
+ NewVD->setInvalidDecl();
+
+ // Merge the decl with the existing one if appropriate.
+ if (!Previous.empty()) {
+ if (Previous.isSingleResult() &&
+ isa<FieldDecl>(Previous.getFoundDecl()) &&
+ D.getCXXScopeSpec().isSet()) {
+ // The user tried to define a non-static data member
+ // out-of-line (C++ [dcl.meaning]p1).
+ Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
+ << D.getCXXScopeSpec().getRange();
+ Previous.clear();
+ NewVD->setInvalidDecl();
+ }
+ } else if (D.getCXXScopeSpec().isSet()) {
+ // No previous declaration in the qualifying scope.
+ Diag(D.getIdentifierLoc(), diag::err_no_member)
+ << Name << computeDeclContext(D.getCXXScopeSpec(), true)
+ << D.getCXXScopeSpec().getRange();
+ NewVD->setInvalidDecl();
+ }
+
+ if (!IsVariableTemplateSpecialization)
+ D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
+
+ if (NewTemplate) {
+ VarTemplateDecl *PrevVarTemplate =
+ NewVD->getPreviousDecl()
+ ? NewVD->getPreviousDecl()->getDescribedVarTemplate()
+ : nullptr;
+
+ // Check the template parameter list of this declaration, possibly
+ // merging in the template parameter list from the previous variable
+ // template declaration.
+ if (CheckTemplateParameterList(
+ TemplateParams,
+ PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
+ : nullptr,
+ (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
+ DC->isDependentContext())
+ ? TPC_ClassTemplateMember
+ : TPC_VarTemplate))
+ NewVD->setInvalidDecl();
+
+ // If we are providing an explicit specialization of a static variable
+ // template, make a note of that.
+ if (PrevVarTemplate &&
+ PrevVarTemplate->getInstantiatedFromMemberTemplate())
+ PrevVarTemplate->setMemberSpecialization();
+ }
+ }
+
+ ProcessPragmaWeak(S, NewVD);
+
+ // If this is the first declaration of an extern C variable, update
+ // the map of such variables.
+ if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
+ isIncompleteDeclExternC(*this, NewVD))
+ RegisterLocallyScopedExternCDecl(NewVD, S);
+
+ if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
+ Decl *ManglingContextDecl;
+ if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
+ NewVD->getDeclContext(), ManglingContextDecl)) {
+ Context.setManglingNumber(
+ NewVD, MCtx->getManglingNumber(
+ NewVD, getMSManglingNumber(getLangOpts(), S)));
+ Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
+ }
+ }
+
+ if (D.isRedeclaration() && !Previous.empty()) {
+ checkDLLAttributeRedeclaration(
+ *this, dyn_cast<NamedDecl>(Previous.getRepresentativeDecl()), NewVD,
+ IsExplicitSpecialization);
+ }
+
+ if (NewTemplate) {
+ if (NewVD->isInvalidDecl())
+ NewTemplate->setInvalidDecl();
+ ActOnDocumentableDecl(NewTemplate);
+ return NewTemplate;
+ }
+
+ return NewVD;
+}
+
+/// \brief Diagnose variable or built-in function shadowing. Implements
+/// -Wshadow.
+///
+/// This method is called whenever a VarDecl is added to a "useful"
+/// scope.
+///
+/// \param S the scope in which the shadowing name is being declared
+/// \param R the lookup of the name
+///
+void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
+ // Return if warning is ignored.
+ if (Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc()))
+ return;
+
+ // Don't diagnose declarations at file scope.
+ if (D->hasGlobalStorage())
+ return;
+
+ DeclContext *NewDC = D->getDeclContext();
+
+ // Only diagnose if we're shadowing an unambiguous field or variable.
+ if (R.getResultKind() != LookupResult::Found)
+ return;
+
+ NamedDecl* ShadowedDecl = R.getFoundDecl();
+ if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
+ return;
+
+ // Fields are not shadowed by variables in C++ static methods.
+ if (isa<FieldDecl>(ShadowedDecl))
+ if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
+ if (MD->isStatic())
+ return;
+
+ if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
+ if (shadowedVar->isExternC()) {
+ // For shadowing external vars, make sure that we point to the global
+ // declaration, not a locally scoped extern declaration.
+ for (auto I : shadowedVar->redecls())
+ if (I->isFileVarDecl()) {
+ ShadowedDecl = I;
+ break;
+ }
+ }
+
+ DeclContext *OldDC = ShadowedDecl->getDeclContext();
+
+ // Only warn about certain kinds of shadowing for class members.
+ if (NewDC && NewDC->isRecord()) {
+ // In particular, don't warn about shadowing non-class members.
+ if (!OldDC->isRecord())
+ return;
+
+ // TODO: should we warn about static data members shadowing
+ // static data members from base classes?
+
+ // TODO: don't diagnose for inaccessible shadowed members.
+ // This is hard to do perfectly because we might friend the
+ // shadowing context, but that's just a false negative.
+ }
+
+ // Determine what kind of declaration we're shadowing.
+ unsigned Kind;
+ if (isa<RecordDecl>(OldDC)) {
+ if (isa<FieldDecl>(ShadowedDecl))
+ Kind = 3; // field
+ else
+ Kind = 2; // static data member
+ } else if (OldDC->isFileContext())
+ Kind = 1; // global
+ else
+ Kind = 0; // local
+
+ DeclarationName Name = R.getLookupName();
+
+ // Emit warning and note.
+ if (getSourceManager().isInSystemMacro(R.getNameLoc()))
+ return;
+ Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
+ Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
+}
+
+/// \brief Check -Wshadow without the advantage of a previous lookup.
+void Sema::CheckShadow(Scope *S, VarDecl *D) {
+ if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
+ return;
+
+ LookupResult R(*this, D->getDeclName(), D->getLocation(),
+ Sema::LookupOrdinaryName, Sema::ForRedeclaration);
+ LookupName(R, S);
+ CheckShadow(S, D, R);
+}
+
+/// Check for conflict between this global or extern "C" declaration and
+/// previous global or extern "C" declarations. This is only used in C++.
+template<typename T>
+static bool checkGlobalOrExternCConflict(
+ Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
+ assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
+ NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
+
+ if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
+ // The common case: this global doesn't conflict with any extern "C"
+ // declaration.
+ return false;
+ }
+
+ if (Prev) {
+ if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
+ // Both the old and new declarations have C language linkage. This is a
+ // redeclaration.
+ Previous.clear();
+ Previous.addDecl(Prev);
+ return true;
+ }
+
+ // This is a global, non-extern "C" declaration, and there is a previous
+ // non-global extern "C" declaration. Diagnose if this is a variable
+ // declaration.
+ if (!isa<VarDecl>(ND))
+ return false;
+ } else {
+ // The declaration is extern "C". Check for any declaration in the
+ // translation unit which might conflict.
+ if (IsGlobal) {
+ // We have already performed the lookup into the translation unit.
+ IsGlobal = false;
+ for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
+ I != E; ++I) {
+ if (isa<VarDecl>(*I)) {
+ Prev = *I;
+ break;
+ }
+ }
+ } else {
+ DeclContext::lookup_result R =
+ S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
+ for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
+ I != E; ++I) {
+ if (isa<VarDecl>(*I)) {
+ Prev = *I;
+ break;
+ }
+ // FIXME: If we have any other entity with this name in global scope,
+ // the declaration is ill-formed, but that is a defect: it breaks the
+ // 'stat' hack, for instance. Only variables can have mangled name
+ // clashes with extern "C" declarations, so only they deserve a
+ // diagnostic.
+ }
+ }
+
+ if (!Prev)
+ return false;
+ }
+
+ // Use the first declaration's location to ensure we point at something which
+ // is lexically inside an extern "C" linkage-spec.
+ assert(Prev && "should have found a previous declaration to diagnose");
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
+ Prev = FD->getFirstDecl();
+ else
+ Prev = cast<VarDecl>(Prev)->getFirstDecl();
+
+ S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
+ << IsGlobal << ND;
+ S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
+ << IsGlobal;
+ return false;
+}
+
+/// Apply special rules for handling extern "C" declarations. Returns \c true
+/// if we have found that this is a redeclaration of some prior entity.
+///
+/// Per C++ [dcl.link]p6:
+/// Two declarations [for a function or variable] with C language linkage
+/// with the same name that appear in different scopes refer to the same
+/// [entity]. An entity with C language linkage shall not be declared with
+/// the same name as an entity in global scope.
+template<typename T>
+static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
+ LookupResult &Previous) {
+ if (!S.getLangOpts().CPlusPlus) {
+ // In C, when declaring a global variable, look for a corresponding 'extern'
+ // variable declared in function scope. We don't need this in C++, because
+ // we find local extern decls in the surrounding file-scope DeclContext.
+ if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
+ if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
+ Previous.clear();
+ Previous.addDecl(Prev);
+ return true;
+ }
+ }
+ return false;
+ }
+
+ // A declaration in the translation unit can conflict with an extern "C"
+ // declaration.
+ if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
+ return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
+
+ // An extern "C" declaration can conflict with a declaration in the
+ // translation unit or can be a redeclaration of an extern "C" declaration
+ // in another scope.
+ if (isIncompleteDeclExternC(S,ND))
+ return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
+
+ // Neither global nor extern "C": nothing to do.
+ return false;
+}
+
+void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
+ // If the decl is already known invalid, don't check it.
+ if (NewVD->isInvalidDecl())
+ return;
+
+ TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
+ QualType T = TInfo->getType();
+
+ // Defer checking an 'auto' type until its initializer is attached.
+ if (T->isUndeducedType())
+ return;
+
+ if (NewVD->hasAttrs())
+ CheckAlignasUnderalignment(NewVD);
+
+ if (T->isObjCObjectType()) {
+ Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
+ << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
+ T = Context.getObjCObjectPointerType(T);
+ NewVD->setType(T);
+ }
+
+ // Emit an error if an address space was applied to decl with local storage.
+ // This includes arrays of objects with address space qualifiers, but not
+ // automatic variables that point to other address spaces.
+ // ISO/IEC TR 18037 S5.1.2
+ if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
+ Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
+ NewVD->setInvalidDecl();
+ return;
+ }
+
+ // OpenCL v1.2 s6.5 - All program scope variables must be declared in the
+ // __constant address space.
+ if (getLangOpts().OpenCL && NewVD->isFileVarDecl()
+ && T.getAddressSpace() != LangAS::opencl_constant
+ && !T->isSamplerT()){
+ Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space);
+ NewVD->setInvalidDecl();
+ return;
+ }
+
+ // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
+ // scope.
+ if ((getLangOpts().OpenCLVersion >= 120)
+ && NewVD->isStaticLocal()) {
+ Diag(NewVD->getLocation(), diag::err_static_function_scope);
+ NewVD->setInvalidDecl();
+ return;
+ }
+
+ if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
+ && !NewVD->hasAttr<BlocksAttr>()) {
+ if (getLangOpts().getGC() != LangOptions::NonGC)
+ Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
+ else {
+ assert(!getLangOpts().ObjCAutoRefCount);
+ Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
+ }
+ }
+
+ bool isVM = T->isVariablyModifiedType();
+ if (isVM || NewVD->hasAttr<CleanupAttr>() ||
+ NewVD->hasAttr<BlocksAttr>())
+ getCurFunction()->setHasBranchProtectedScope();
+
+ if ((isVM && NewVD->hasLinkage()) ||
+ (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
+ bool SizeIsNegative;
+ llvm::APSInt Oversized;
+ TypeSourceInfo *FixedTInfo =
+ TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
+ SizeIsNegative, Oversized);
+ if (!FixedTInfo && T->isVariableArrayType()) {
+ const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
+ // FIXME: This won't give the correct result for
+ // int a[10][n];
+ SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
+
+ if (NewVD->isFileVarDecl())
+ Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
+ << SizeRange;
+ else if (NewVD->isStaticLocal())
+ Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
+ << SizeRange;
+ else
+ Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
+ << SizeRange;
+ NewVD->setInvalidDecl();
+ return;
+ }
+
+ if (!FixedTInfo) {
+ if (NewVD->isFileVarDecl())
+ Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
+ else
+ Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
+ NewVD->setInvalidDecl();
+ return;
+ }
+
+ Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
+ NewVD->setType(FixedTInfo->getType());
+ NewVD->setTypeSourceInfo(FixedTInfo);
+ }
+
+ if (T->isVoidType()) {
+ // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
+ // of objects and functions.
+ if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
+ Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
+ << T;
+ NewVD->setInvalidDecl();
+ return;
+ }
+ }
+
+ if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
+ Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
+ NewVD->setInvalidDecl();
+ return;
+ }
+
+ if (isVM && NewVD->hasAttr<BlocksAttr>()) {
+ Diag(NewVD->getLocation(), diag::err_block_on_vm);
+ NewVD->setInvalidDecl();
+ return;
+ }
+
+ if (NewVD->isConstexpr() && !T->isDependentType() &&
+ RequireLiteralType(NewVD->getLocation(), T,
+ diag::err_constexpr_var_non_literal)) {
+ NewVD->setInvalidDecl();
+ return;
+ }
+}
+
+/// \brief Perform semantic checking on a newly-created variable
+/// declaration.
+///
+/// This routine performs all of the type-checking required for a
+/// variable declaration once it has been built. It is used both to
+/// check variables after they have been parsed and their declarators
+/// have been translated into a declaration, and to check variables
+/// that have been instantiated from a template.
+///
+/// Sets NewVD->isInvalidDecl() if an error was encountered.
+///
+/// Returns true if the variable declaration is a redeclaration.
+bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
+ CheckVariableDeclarationType(NewVD);
+
+ // If the decl is already known invalid, don't check it.
+ if (NewVD->isInvalidDecl())
+ return false;
+
+ // If we did not find anything by this name, look for a non-visible
+ // extern "C" declaration with the same name.
+ if (Previous.empty() &&
+ checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
+ Previous.setShadowed();
+
+ // Filter out any non-conflicting previous declarations.
+ filterNonConflictingPreviousDecls(*this, NewVD, Previous);
+
+ if (!Previous.empty()) {
+ MergeVarDecl(NewVD, Previous);
+ return true;
+ }
+ return false;
+}
+
+/// \brief Data used with FindOverriddenMethod
+struct FindOverriddenMethodData {
+ Sema *S;
+ CXXMethodDecl *Method;
+};
+
+/// \brief Member lookup function that determines whether a given C++
+/// method overrides a method in a base class, to be used with
+/// CXXRecordDecl::lookupInBases().
+static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
+ CXXBasePath &Path,
+ void *UserData) {
+ RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
+
+ FindOverriddenMethodData *Data
+ = reinterpret_cast<FindOverriddenMethodData*>(UserData);
+
+ DeclarationName Name = Data->Method->getDeclName();
+
+ // FIXME: Do we care about other names here too?
+ if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
+ // We really want to find the base class destructor here.
+ QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
+ CanQualType CT = Data->S->Context.getCanonicalType(T);
+
+ Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
+ }
+
+ for (Path.Decls = BaseRecord->lookup(Name);
+ !Path.Decls.empty();
+ Path.Decls = Path.Decls.slice(1)) {
+ NamedDecl *D = Path.Decls.front();
+ if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
+ if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
+ return true;
+ }
+ }
+
+ return false;
+}
+
+namespace {
+ enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
+}
+/// \brief Report an error regarding overriding, along with any relevant
+/// overriden methods.
+///
+/// \param DiagID the primary error to report.
+/// \param MD the overriding method.
+/// \param OEK which overrides to include as notes.
+static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
+ OverrideErrorKind OEK = OEK_All) {
+ S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
+ for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
+ E = MD->end_overridden_methods();
+ I != E; ++I) {
+ // This check (& the OEK parameter) could be replaced by a predicate, but
+ // without lambdas that would be overkill. This is still nicer than writing
+ // out the diag loop 3 times.
+ if ((OEK == OEK_All) ||
+ (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
+ (OEK == OEK_Deleted && (*I)->isDeleted()))
+ S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
+ }
+}
+
+/// AddOverriddenMethods - See if a method overrides any in the base classes,
+/// and if so, check that it's a valid override and remember it.
+bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
+ // Look for methods in base classes that this method might override.
+ CXXBasePaths Paths;
+ FindOverriddenMethodData Data;
+ Data.Method = MD;
+ Data.S = this;
+ bool hasDeletedOverridenMethods = false;
+ bool hasNonDeletedOverridenMethods = false;
+ bool AddedAny = false;
+ if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
+ for (auto *I : Paths.found_decls()) {
+ if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(I)) {
+ MD->addOverriddenMethod(OldMD->getCanonicalDecl());
+ if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
+ !CheckOverridingFunctionAttributes(MD, OldMD) &&
+ !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
+ !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
+ hasDeletedOverridenMethods |= OldMD->isDeleted();
+ hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
+ AddedAny = true;
+ }
+ }
+ }
+ }
+
+ if (hasDeletedOverridenMethods && !MD->isDeleted()) {
+ ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
+ }
+ if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
+ ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
+ }
+
+ return AddedAny;
+}
+
+namespace {
+ // Struct for holding all of the extra arguments needed by
+ // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
+ struct ActOnFDArgs {
+ Scope *S;
+ Declarator &D;
+ MultiTemplateParamsArg TemplateParamLists;
+ bool AddToScope;
+ };
+}
+
+namespace {
+
+// Callback to only accept typo corrections that have a non-zero edit distance.
+// Also only accept corrections that have the same parent decl.
+class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
+ public:
+ DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
+ CXXRecordDecl *Parent)
+ : Context(Context), OriginalFD(TypoFD),
+ ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
+
+ bool ValidateCandidate(const TypoCorrection &candidate) override {
+ if (candidate.getEditDistance() == 0)
+ return false;
+
+ SmallVector<unsigned, 1> MismatchedParams;
+ for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
+ CDeclEnd = candidate.end();
+ CDecl != CDeclEnd; ++CDecl) {
+ FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
+
+ if (FD && !FD->hasBody() &&
+ hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
+ if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
+ CXXRecordDecl *Parent = MD->getParent();
+ if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
+ return true;
+ } else if (!ExpectedParent) {
+ return true;
+ }
+ }
+ }
+
+ return false;
+ }
+
+ private:
+ ASTContext &Context;
+ FunctionDecl *OriginalFD;
+ CXXRecordDecl *ExpectedParent;
+};
+
+}
+
+/// \brief Generate diagnostics for an invalid function redeclaration.
+///
+/// This routine handles generating the diagnostic messages for an invalid
+/// function redeclaration, including finding possible similar declarations
+/// or performing typo correction if there are no previous declarations with
+/// the same name.
+///
+/// Returns a NamedDecl iff typo correction was performed and substituting in
+/// the new declaration name does not cause new errors.
+static NamedDecl *DiagnoseInvalidRedeclaration(
+ Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
+ ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
+ DeclarationName Name = NewFD->getDeclName();
+ DeclContext *NewDC = NewFD->getDeclContext();
+ SmallVector<unsigned, 1> MismatchedParams;
+ SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
+ TypoCorrection Correction;
+ bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
+ unsigned DiagMsg = IsLocalFriend ? diag::err_no_matching_local_friend
+ : diag::err_member_decl_does_not_match;
+ LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
+ IsLocalFriend ? Sema::LookupLocalFriendName
+ : Sema::LookupOrdinaryName,
+ Sema::ForRedeclaration);
+
+ NewFD->setInvalidDecl();
+ if (IsLocalFriend)
+ SemaRef.LookupName(Prev, S);
+ else
+ SemaRef.LookupQualifiedName(Prev, NewDC);
+ assert(!Prev.isAmbiguous() &&
+ "Cannot have an ambiguity in previous-declaration lookup");
+ CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
+ if (!Prev.empty()) {
+ for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
+ Func != FuncEnd; ++Func) {
+ FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
+ if (FD &&
+ hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
+ // Add 1 to the index so that 0 can mean the mismatch didn't
+ // involve a parameter
+ unsigned ParamNum =
+ MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
+ NearMatches.push_back(std::make_pair(FD, ParamNum));
+ }
+ }
+ // If the qualified name lookup yielded nothing, try typo correction
+ } else if ((Correction = SemaRef.CorrectTypo(
+ Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
+ &ExtraArgs.D.getCXXScopeSpec(),
+ llvm::make_unique<DifferentNameValidatorCCC>(
+ SemaRef.Context, NewFD, MD ? MD->getParent() : nullptr),
+ Sema::CTK_ErrorRecovery, IsLocalFriend ? nullptr : NewDC))) {
+ // Set up everything for the call to ActOnFunctionDeclarator
+ ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
+ ExtraArgs.D.getIdentifierLoc());
+ Previous.clear();
+ Previous.setLookupName(Correction.getCorrection());
+ for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
+ CDeclEnd = Correction.end();
+ CDecl != CDeclEnd; ++CDecl) {
+ FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
+ if (FD && !FD->hasBody() &&
+ hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
+ Previous.addDecl(FD);
+ }
+ }
+ bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
+
+ NamedDecl *Result;
+ // Retry building the function declaration with the new previous
+ // declarations, and with errors suppressed.
+ {
+ // Trap errors.
+ Sema::SFINAETrap Trap(SemaRef);
+
+ // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
+ // pieces need to verify the typo-corrected C++ declaration and hopefully
+ // eliminate the need for the parameter pack ExtraArgs.
+ Result = SemaRef.ActOnFunctionDeclarator(
+ ExtraArgs.S, ExtraArgs.D,
+ Correction.getCorrectionDecl()->getDeclContext(),
+ NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
+ ExtraArgs.AddToScope);
+
+ if (Trap.hasErrorOccurred())
+ Result = nullptr;
+ }
+
+ if (Result) {
+ // Determine which correction we picked.
+ Decl *Canonical = Result->getCanonicalDecl();
+ for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
+ I != E; ++I)
+ if ((*I)->getCanonicalDecl() == Canonical)
+ Correction.setCorrectionDecl(*I);
+
+ SemaRef.diagnoseTypo(
+ Correction,
+ SemaRef.PDiag(IsLocalFriend
+ ? diag::err_no_matching_local_friend_suggest
+ : diag::err_member_decl_does_not_match_suggest)
+ << Name << NewDC << IsDefinition);
+ return Result;
+ }
+
+ // Pretend the typo correction never occurred
+ ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
+ ExtraArgs.D.getIdentifierLoc());
+ ExtraArgs.D.setRedeclaration(wasRedeclaration);
+ Previous.clear();
+ Previous.setLookupName(Name);
+ }
+
+ SemaRef.Diag(NewFD->getLocation(), DiagMsg)
+ << Name << NewDC << IsDefinition << NewFD->getLocation();
+
+ bool NewFDisConst = false;
+ if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
+ NewFDisConst = NewMD->isConst();
+
+ for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
+ NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
+ NearMatch != NearMatchEnd; ++NearMatch) {
+ FunctionDecl *FD = NearMatch->first;
+ CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
+ bool FDisConst = MD && MD->isConst();
+ bool IsMember = MD || !IsLocalFriend;
+
+ // FIXME: These notes are poorly worded for the local friend case.
+ if (unsigned Idx = NearMatch->second) {
+ ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
+ SourceLocation Loc = FDParam->getTypeSpecStartLoc();
+ if (Loc.isInvalid()) Loc = FD->getLocation();
+ SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
+ : diag::note_local_decl_close_param_match)
+ << Idx << FDParam->getType()
+ << NewFD->getParamDecl(Idx - 1)->getType();
+ } else if (FDisConst != NewFDisConst) {
+ SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
+ << NewFDisConst << FD->getSourceRange().getEnd();
+ } else
+ SemaRef.Diag(FD->getLocation(),
+ IsMember ? diag::note_member_def_close_match
+ : diag::note_local_decl_close_match);
+ }
+ return nullptr;
+}
+
+static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
+ switch (D.getDeclSpec().getStorageClassSpec()) {
+ default: llvm_unreachable("Unknown storage class!");
+ case DeclSpec::SCS_auto:
+ case DeclSpec::SCS_register:
+ case DeclSpec::SCS_mutable:
+ SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
+ diag::err_typecheck_sclass_func);
+ D.setInvalidType();
+ break;
+ case DeclSpec::SCS_unspecified: break;
+ case DeclSpec::SCS_extern:
+ if (D.getDeclSpec().isExternInLinkageSpec())
+ return SC_None;
+ return SC_Extern;
+ case DeclSpec::SCS_static: {
+ if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
+ // C99 6.7.1p5:
+ // The declaration of an identifier for a function that has
+ // block scope shall have no explicit storage-class specifier
+ // other than extern
+ // See also (C++ [dcl.stc]p4).
+ SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
+ diag::err_static_block_func);
+ break;
+ } else
+ return SC_Static;
+ }
+ case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
+ }
+
+ // No explicit storage class has already been returned
+ return SC_None;
+}
+
+static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
+ DeclContext *DC, QualType &R,
+ TypeSourceInfo *TInfo,
+ StorageClass SC,
+ bool &IsVirtualOkay) {
+ DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
+ DeclarationName Name = NameInfo.getName();
+
+ FunctionDecl *NewFD = nullptr;
+ bool isInline = D.getDeclSpec().isInlineSpecified();
+
+ if (!SemaRef.getLangOpts().CPlusPlus) {
+ // Determine whether the function was written with a
+ // prototype. This true when:
+ // - there is a prototype in the declarator, or
+ // - the type R of the function is some kind of typedef or other reference
+ // to a type name (which eventually refers to a function type).
+ bool HasPrototype =
+ (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
+ (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
+
+ NewFD = FunctionDecl::Create(SemaRef.Context, DC,
+ D.getLocStart(), NameInfo, R,
+ TInfo, SC, isInline,
+ HasPrototype, false);
+ if (D.isInvalidType())
+ NewFD->setInvalidDecl();
+
+ return NewFD;
+ }
+
+ bool isExplicit = D.getDeclSpec().isExplicitSpecified();
+ bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
+
+ // Check that the return type is not an abstract class type.
+ // For record types, this is done by the AbstractClassUsageDiagnoser once
+ // the class has been completely parsed.
+ if (!DC->isRecord() &&
+ SemaRef.RequireNonAbstractType(
+ D.getIdentifierLoc(), R->getAs<FunctionType>()->getReturnType(),
+ diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType))
+ D.setInvalidType();
+
+ if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
+ // This is a C++ constructor declaration.
+ assert(DC->isRecord() &&
+ "Constructors can only be declared in a member context");
+
+ R = SemaRef.CheckConstructorDeclarator(D, R, SC);
+ return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
+ D.getLocStart(), NameInfo,
+ R, TInfo, isExplicit, isInline,
+ /*isImplicitlyDeclared=*/false,
+ isConstexpr);
+
+ } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
+ // This is a C++ destructor declaration.
+ if (DC->isRecord()) {
+ R = SemaRef.CheckDestructorDeclarator(D, R, SC);
+ CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
+ CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
+ SemaRef.Context, Record,
+ D.getLocStart(),
+ NameInfo, R, TInfo, isInline,
+ /*isImplicitlyDeclared=*/false);
+
+ // If the class is complete, then we now create the implicit exception
+ // specification. If the class is incomplete or dependent, we can't do
+ // it yet.
+ if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
+ Record->getDefinition() && !Record->isBeingDefined() &&
+ R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
+ SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
+ }
+
+ IsVirtualOkay = true;
+ return NewDD;
+
+ } else {
+ SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
+ D.setInvalidType();
+
+ // Create a FunctionDecl to satisfy the function definition parsing
+ // code path.
+ return FunctionDecl::Create(SemaRef.Context, DC,
+ D.getLocStart(),
+ D.getIdentifierLoc(), Name, R, TInfo,
+ SC, isInline,
+ /*hasPrototype=*/true, isConstexpr);
+ }
+
+ } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
+ if (!DC->isRecord()) {
+ SemaRef.Diag(D.getIdentifierLoc(),
+ diag::err_conv_function_not_member);
+ return nullptr;
+ }
+
+ SemaRef.CheckConversionDeclarator(D, R, SC);
+ IsVirtualOkay = true;
+ return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
+ D.getLocStart(), NameInfo,
+ R, TInfo, isInline, isExplicit,
+ isConstexpr, SourceLocation());
+
+ } else if (DC->isRecord()) {
+ // If the name of the function is the same as the name of the record,
+ // then this must be an invalid constructor that has a return type.
+ // (The parser checks for a return type and makes the declarator a
+ // constructor if it has no return type).
+ if (Name.getAsIdentifierInfo() &&
+ Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
+ SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
+ << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
+ << SourceRange(D.getIdentifierLoc());
+ return nullptr;
+ }
+
+ // This is a C++ method declaration.
+ CXXMethodDecl *Ret = CXXMethodDecl::Create(SemaRef.Context,
+ cast<CXXRecordDecl>(DC),
+ D.getLocStart(), NameInfo, R,
+ TInfo, SC, isInline,
+ isConstexpr, SourceLocation());
+ IsVirtualOkay = !Ret->isStatic();
+ return Ret;
+ } else {
+ bool isFriend =
+ SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified();
+ if (!isFriend && SemaRef.CurContext->isRecord())
+ return nullptr;
+
+ // Determine whether the function was written with a
+ // prototype. This true when:
+ // - we're in C++ (where every function has a prototype),
+ return FunctionDecl::Create(SemaRef.Context, DC,
+ D.getLocStart(),
+ NameInfo, R, TInfo, SC, isInline,
+ true/*HasPrototype*/, isConstexpr);
+ }
+}
+
+enum OpenCLParamType {
+ ValidKernelParam,
+ PtrPtrKernelParam,
+ PtrKernelParam,
+ PrivatePtrKernelParam,
+ InvalidKernelParam,
+ RecordKernelParam
+};
+
+static OpenCLParamType getOpenCLKernelParameterType(QualType PT) {
+ if (PT->isPointerType()) {
+ QualType PointeeType = PT->getPointeeType();
+ if (PointeeType->isPointerType())
+ return PtrPtrKernelParam;
+ return PointeeType.getAddressSpace() == 0 ? PrivatePtrKernelParam
+ : PtrKernelParam;
+ }
+
+ // TODO: Forbid the other integer types (size_t, ptrdiff_t...) when they can
+ // be used as builtin types.
+
+ if (PT->isImageType())
+ return PtrKernelParam;
+
+ if (PT->isBooleanType())
+ return InvalidKernelParam;
+
+ if (PT->isEventT())
+ return InvalidKernelParam;
+
+ if (PT->isHalfType())
+ return InvalidKernelParam;
+
+ if (PT->isRecordType())
+ return RecordKernelParam;
+
+ return ValidKernelParam;
+}
+
+static void checkIsValidOpenCLKernelParameter(
+ Sema &S,
+ Declarator &D,
+ ParmVarDecl *Param,
+ llvm::SmallPtrSetImpl<const Type *> &ValidTypes) {
+ QualType PT = Param->getType();
+
+ // Cache the valid types we encounter to avoid rechecking structs that are
+ // used again
+ if (ValidTypes.count(PT.getTypePtr()))
+ return;
+
+ switch (getOpenCLKernelParameterType(PT)) {
+ case PtrPtrKernelParam:
+ // OpenCL v1.2 s6.9.a:
+ // A kernel function argument cannot be declared as a
+ // pointer to a pointer type.
+ S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
+ D.setInvalidType();
+ return;
+
+ case PrivatePtrKernelParam:
+ // OpenCL v1.2 s6.9.a:
+ // A kernel function argument cannot be declared as a
+ // pointer to the private address space.
+ S.Diag(Param->getLocation(), diag::err_opencl_private_ptr_kernel_param);
+ D.setInvalidType();
+ return;
+
+ // OpenCL v1.2 s6.9.k:
+ // Arguments to kernel functions in a program cannot be declared with the
+ // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
+ // uintptr_t or a struct and/or union that contain fields declared to be
+ // one of these built-in scalar types.
+
+ case InvalidKernelParam:
+ // OpenCL v1.2 s6.8 n:
+ // A kernel function argument cannot be declared
+ // of event_t type.
+ S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
+ D.setInvalidType();
+ return;
+
+ case PtrKernelParam:
+ case ValidKernelParam:
+ ValidTypes.insert(PT.getTypePtr());
+ return;
+
+ case RecordKernelParam:
+ break;
+ }
+
+ // Track nested structs we will inspect
+ SmallVector<const Decl *, 4> VisitStack;
+
+ // Track where we are in the nested structs. Items will migrate from
+ // VisitStack to HistoryStack as we do the DFS for bad field.
+ SmallVector<const FieldDecl *, 4> HistoryStack;
+ HistoryStack.push_back(nullptr);
+
+ const RecordDecl *PD = PT->castAs<RecordType>()->getDecl();
+ VisitStack.push_back(PD);
+
+ assert(VisitStack.back() && "First decl null?");
+
+ do {
+ const Decl *Next = VisitStack.pop_back_val();
+ if (!Next) {
+ assert(!HistoryStack.empty());
+ // Found a marker, we have gone up a level
+ if (const FieldDecl *Hist = HistoryStack.pop_back_val())
+ ValidTypes.insert(Hist->getType().getTypePtr());
+
+ continue;
+ }
+
+ // Adds everything except the original parameter declaration (which is not a
+ // field itself) to the history stack.
+ const RecordDecl *RD;
+ if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
+ HistoryStack.push_back(Field);
+ RD = Field->getType()->castAs<RecordType>()->getDecl();
+ } else {
+ RD = cast<RecordDecl>(Next);
+ }
+
+ // Add a null marker so we know when we've gone back up a level
+ VisitStack.push_back(nullptr);
+
+ for (const auto *FD : RD->fields()) {
+ QualType QT = FD->getType();
+
+ if (ValidTypes.count(QT.getTypePtr()))
+ continue;
+
+ OpenCLParamType ParamType = getOpenCLKernelParameterType(QT);
+ if (ParamType == ValidKernelParam)
+ continue;
+
+ if (ParamType == RecordKernelParam) {
+ VisitStack.push_back(FD);
+ continue;
+ }
+
+ // OpenCL v1.2 s6.9.p:
+ // Arguments to kernel functions that are declared to be a struct or union
+ // do not allow OpenCL objects to be passed as elements of the struct or
+ // union.
+ if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
+ ParamType == PrivatePtrKernelParam) {
+ S.Diag(Param->getLocation(),
+ diag::err_record_with_pointers_kernel_param)
+ << PT->isUnionType()
+ << PT;
+ } else {
+ S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
+ }
+
+ S.Diag(PD->getLocation(), diag::note_within_field_of_type)
+ << PD->getDeclName();
+
+ // We have an error, now let's go back up through history and show where
+ // the offending field came from
+ for (ArrayRef<const FieldDecl *>::const_iterator
+ I = HistoryStack.begin() + 1,
+ E = HistoryStack.end();
+ I != E; ++I) {
+ const FieldDecl *OuterField = *I;
+ S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
+ << OuterField->getType();
+ }
+
+ S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
+ << QT->isPointerType()
+ << QT;
+ D.setInvalidType();
+ return;
+ }
+ } while (!VisitStack.empty());
+}
+
+NamedDecl*
+Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
+ TypeSourceInfo *TInfo, LookupResult &Previous,
+ MultiTemplateParamsArg TemplateParamLists,
+ bool &AddToScope) {
+ QualType R = TInfo->getType();
+
+ assert(R.getTypePtr()->isFunctionType());
+
+ // TODO: consider using NameInfo for diagnostic.
+ DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
+ DeclarationName Name = NameInfo.getName();
+ StorageClass SC = getFunctionStorageClass(*this, D);
+
+ if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
+ Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
+ diag::err_invalid_thread)
+ << DeclSpec::getSpecifierName(TSCS);
+
+ if (D.isFirstDeclarationOfMember())
+ adjustMemberFunctionCC(R, D.isStaticMember());
+
+ bool isFriend = false;
+ FunctionTemplateDecl *FunctionTemplate = nullptr;
+ bool isExplicitSpecialization = false;
+ bool isFunctionTemplateSpecialization = false;
+
+ bool isDependentClassScopeExplicitSpecialization = false;
+ bool HasExplicitTemplateArgs = false;
+ TemplateArgumentListInfo TemplateArgs;
+
+ bool isVirtualOkay = false;
+
+ DeclContext *OriginalDC = DC;
+ bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
+
+ FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
+ isVirtualOkay);
+ if (!NewFD) return nullptr;
+
+ if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
+ NewFD->setTopLevelDeclInObjCContainer();
+
+ // Set the lexical context. If this is a function-scope declaration, or has a
+ // C++ scope specifier, or is the object of a friend declaration, the lexical
+ // context will be different from the semantic context.
+ NewFD->setLexicalDeclContext(CurContext);
+
+ if (IsLocalExternDecl)
+ NewFD->setLocalExternDecl();
+
+ if (getLangOpts().CPlusPlus) {
+ bool isInline = D.getDeclSpec().isInlineSpecified();
+ bool isVirtual = D.getDeclSpec().isVirtualSpecified();
+ bool isExplicit = D.getDeclSpec().isExplicitSpecified();
+ bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
+ isFriend = D.getDeclSpec().isFriendSpecified();
+ if (isFriend && !isInline && D.isFunctionDefinition()) {
+ // C++ [class.friend]p5
+ // A function can be defined in a friend declaration of a
+ // class . . . . Such a function is implicitly inline.
+ NewFD->setImplicitlyInline();
+ }
+
+ // If this is a method defined in an __interface, and is not a constructor
+ // or an overloaded operator, then set the pure flag (isVirtual will already
+ // return true).
+ if (const CXXRecordDecl *Parent =
+ dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
+ if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
+ NewFD->setPure(true);
+ }
+
+ SetNestedNameSpecifier(NewFD, D);
+ isExplicitSpecialization = false;
+ isFunctionTemplateSpecialization = false;
+ if (D.isInvalidType())
+ NewFD->setInvalidDecl();
+
+ // Match up the template parameter lists with the scope specifier, then
+ // determine whether we have a template or a template specialization.
+ bool Invalid = false;
+ if (TemplateParameterList *TemplateParams =
+ MatchTemplateParametersToScopeSpecifier(
+ D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
+ D.getCXXScopeSpec(),
+ D.getName().getKind() == UnqualifiedId::IK_TemplateId
+ ? D.getName().TemplateId
+ : nullptr,
+ TemplateParamLists, isFriend, isExplicitSpecialization,
+ Invalid)) {
+ if (TemplateParams->size() > 0) {
+ // This is a function template
+
+ // Check that we can declare a template here.
+ if (CheckTemplateDeclScope(S, TemplateParams))
+ NewFD->setInvalidDecl();
+
+ // A destructor cannot be a template.
+ if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
+ Diag(NewFD->getLocation(), diag::err_destructor_template);
+ NewFD->setInvalidDecl();
+ }
+
+ // If we're adding a template to a dependent context, we may need to
+ // rebuilding some of the types used within the template parameter list,
+ // now that we know what the current instantiation is.
+ if (DC->isDependentContext()) {
+ ContextRAII SavedContext(*this, DC);
+ if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
+ Invalid = true;
+ }
+
+
+ FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
+ NewFD->getLocation(),
+ Name, TemplateParams,
+ NewFD);
+ FunctionTemplate->setLexicalDeclContext(CurContext);
+ NewFD->setDescribedFunctionTemplate(FunctionTemplate);
+
+ // For source fidelity, store the other template param lists.
+ if (TemplateParamLists.size() > 1) {
+ NewFD->setTemplateParameterListsInfo(Context,
+ TemplateParamLists.size() - 1,
+ TemplateParamLists.data());
+ }
+ } else {
+ // This is a function template specialization.
+ isFunctionTemplateSpecialization = true;
+ // For source fidelity, store all the template param lists.
+ if (TemplateParamLists.size() > 0)
+ NewFD->setTemplateParameterListsInfo(Context,
+ TemplateParamLists.size(),
+ TemplateParamLists.data());
+
+ // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
+ if (isFriend) {
+ // We want to remove the "template<>", found here.
+ SourceRange RemoveRange = TemplateParams->getSourceRange();
+
+ // If we remove the template<> and the name is not a
+ // template-id, we're actually silently creating a problem:
+ // the friend declaration will refer to an untemplated decl,
+ // and clearly the user wants a template specialization. So
+ // we need to insert '<>' after the name.
+ SourceLocation InsertLoc;
+ if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
+ InsertLoc = D.getName().getSourceRange().getEnd();
+ InsertLoc = getLocForEndOfToken(InsertLoc);
+ }
+
+ Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
+ << Name << RemoveRange
+ << FixItHint::CreateRemoval(RemoveRange)
+ << FixItHint::CreateInsertion(InsertLoc, "<>");
+ }
+ }
+ }
+ else {
+ // All template param lists were matched against the scope specifier:
+ // this is NOT (an explicit specialization of) a template.
+ if (TemplateParamLists.size() > 0)
+ // For source fidelity, store all the template param lists.
+ NewFD->setTemplateParameterListsInfo(Context,
+ TemplateParamLists.size(),
+ TemplateParamLists.data());
+ }
+
+ if (Invalid) {
+ NewFD->setInvalidDecl();
+ if (FunctionTemplate)
+ FunctionTemplate->setInvalidDecl();
+ }
+
+ // C++ [dcl.fct.spec]p5:
+ // The virtual specifier shall only be used in declarations of
+ // nonstatic class member functions that appear within a
+ // member-specification of a class declaration; see 10.3.
+ //
+ if (isVirtual && !NewFD->isInvalidDecl()) {
+ if (!isVirtualOkay) {
+ Diag(D.getDeclSpec().getVirtualSpecLoc(),
+ diag::err_virtual_non_function);
+ } else if (!CurContext->isRecord()) {
+ // 'virtual' was specified outside of the class.
+ Diag(D.getDeclSpec().getVirtualSpecLoc(),
+ diag::err_virtual_out_of_class)
+ << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
+ } else if (NewFD->getDescribedFunctionTemplate()) {
+ // C++ [temp.mem]p3:
+ // A member function template shall not be virtual.
+ Diag(D.getDeclSpec().getVirtualSpecLoc(),
+ diag::err_virtual_member_function_template)
+ << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
+ } else {
+ // Okay: Add virtual to the method.
+ NewFD->setVirtualAsWritten(true);
+ }
+
+ if (getLangOpts().CPlusPlus14 &&
+ NewFD->getReturnType()->isUndeducedType())
+ Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
+ }
+
+ if (getLangOpts().CPlusPlus14 &&
+ (NewFD->isDependentContext() ||
+ (isFriend && CurContext->isDependentContext())) &&
+ NewFD->getReturnType()->isUndeducedType()) {
+ // If the function template is referenced directly (for instance, as a
+ // member of the current instantiation), pretend it has a dependent type.
+ // This is not really justified by the standard, but is the only sane
+ // thing to do.
+ // FIXME: For a friend function, we have not marked the function as being
+ // a friend yet, so 'isDependentContext' on the FD doesn't work.
+ const FunctionProtoType *FPT =
+ NewFD->getType()->castAs<FunctionProtoType>();
+ QualType Result =
+ SubstAutoType(FPT->getReturnType(), Context.DependentTy);
+ NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
+ FPT->getExtProtoInfo()));
+ }
+
+ // C++ [dcl.fct.spec]p3:
+ // The inline specifier shall not appear on a block scope function
+ // declaration.
+ if (isInline && !NewFD->isInvalidDecl()) {
+ if (CurContext->isFunctionOrMethod()) {
+ // 'inline' is not allowed on block scope function declaration.
+ Diag(D.getDeclSpec().getInlineSpecLoc(),
+ diag::err_inline_declaration_block_scope) << Name
+ << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
+ }
+ }
+
+ // C++ [dcl.fct.spec]p6:
+ // The explicit specifier shall be used only in the declaration of a
+ // constructor or conversion function within its class definition;
+ // see 12.3.1 and 12.3.2.
+ if (isExplicit && !NewFD->isInvalidDecl()) {
+ if (!CurContext->isRecord()) {
+ // 'explicit' was specified outside of the class.
+ Diag(D.getDeclSpec().getExplicitSpecLoc(),
+ diag::err_explicit_out_of_class)
+ << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
+ } else if (!isa<CXXConstructorDecl>(NewFD) &&
+ !isa<CXXConversionDecl>(NewFD)) {
+ // 'explicit' was specified on a function that wasn't a constructor
+ // or conversion function.
+ Diag(D.getDeclSpec().getExplicitSpecLoc(),
+ diag::err_explicit_non_ctor_or_conv_function)
+ << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
+ }
+ }
+
+ if (isConstexpr) {
+ // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
+ // are implicitly inline.
+ NewFD->setImplicitlyInline();
+
+ // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
+ // be either constructors or to return a literal type. Therefore,
+ // destructors cannot be declared constexpr.
+ if (isa<CXXDestructorDecl>(NewFD))
+ Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
+ }
+
+ // If __module_private__ was specified, mark the function accordingly.
+ if (D.getDeclSpec().isModulePrivateSpecified()) {
+ if (isFunctionTemplateSpecialization) {
+ SourceLocation ModulePrivateLoc
+ = D.getDeclSpec().getModulePrivateSpecLoc();
+ Diag(ModulePrivateLoc, diag::err_module_private_specialization)
+ << 0
+ << FixItHint::CreateRemoval(ModulePrivateLoc);
+ } else {
+ NewFD->setModulePrivate();
+ if (FunctionTemplate)
+ FunctionTemplate->setModulePrivate();
+ }
+ }
+
+ if (isFriend) {
+ if (FunctionTemplate) {
+ FunctionTemplate->setObjectOfFriendDecl();
+ FunctionTemplate->setAccess(AS_public);
+ }
+ NewFD->setObjectOfFriendDecl();
+ NewFD->setAccess(AS_public);
+ }
+
+ // If a function is defined as defaulted or deleted, mark it as such now.
+ // FIXME: Does this ever happen? ActOnStartOfFunctionDef forces the function
+ // definition kind to FDK_Definition.
+ switch (D.getFunctionDefinitionKind()) {
+ case FDK_Declaration:
+ case FDK_Definition:
+ break;
+
+ case FDK_Defaulted:
+ NewFD->setDefaulted();
+ break;
+
+ case FDK_Deleted:
+ NewFD->setDeletedAsWritten();
+ break;
+ }
+
+ if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
+ D.isFunctionDefinition()) {
+ // C++ [class.mfct]p2:
+ // A member function may be defined (8.4) in its class definition, in
+ // which case it is an inline member function (7.1.2)
+ NewFD->setImplicitlyInline();
+ }
+
+ if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
+ !CurContext->isRecord()) {
+ // C++ [class.static]p1:
+ // A data or function member of a class may be declared static
+ // in a class definition, in which case it is a static member of
+ // the class.
+
+ // Complain about the 'static' specifier if it's on an out-of-line
+ // member function definition.
+ Diag(D.getDeclSpec().getStorageClassSpecLoc(),
+ diag::err_static_out_of_line)
+ << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
+ }
+
+ // C++11 [except.spec]p15:
+ // A deallocation function with no exception-specification is treated
+ // as if it were specified with noexcept(true).
+ const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
+ if ((Name.getCXXOverloadedOperator() == OO_Delete ||
+ Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
+ getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec())
+ NewFD->setType(Context.getFunctionType(
+ FPT->getReturnType(), FPT->getParamTypes(),
+ FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept)));
+ }
+
+ // Filter out previous declarations that don't match the scope.
+ FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
+ D.getCXXScopeSpec().isNotEmpty() ||
+ isExplicitSpecialization ||
+ isFunctionTemplateSpecialization);
+
+ // Handle GNU asm-label extension (encoded as an attribute).
+ if (Expr *E = (Expr*) D.getAsmLabel()) {
+ // The parser guarantees this is a string.
+ StringLiteral *SE = cast<StringLiteral>(E);
+ NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
+ SE->getString(), 0));
+ } else if (!ExtnameUndeclaredIdentifiers.empty()) {
+ llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
+ ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
+ if (I != ExtnameUndeclaredIdentifiers.end()) {
+ NewFD->addAttr(I->second);
+ ExtnameUndeclaredIdentifiers.erase(I);
+ }
+ }
+
+ // Copy the parameter declarations from the declarator D to the function
+ // declaration NewFD, if they are available. First scavenge them into Params.
+ SmallVector<ParmVarDecl*, 16> Params;
+ if (D.isFunctionDeclarator()) {
+ DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
+
+ // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
+ // function that takes no arguments, not a function that takes a
+ // single void argument.
+ // We let through "const void" here because Sema::GetTypeForDeclarator
+ // already checks for that case.
+ if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
+ for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
+ ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
+ assert(Param->getDeclContext() != NewFD && "Was set before ?");
+ Param->setDeclContext(NewFD);
+ Params.push_back(Param);
+
+ if (Param->isInvalidDecl())
+ NewFD->setInvalidDecl();
+ }
+ }
+
+ } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
+ // When we're declaring a function with a typedef, typeof, etc as in the
+ // following example, we'll need to synthesize (unnamed)
+ // parameters for use in the declaration.
+ //
+ // @code
+ // typedef void fn(int);
+ // fn f;
+ // @endcode
+
+ // Synthesize a parameter for each argument type.
+ for (const auto &AI : FT->param_types()) {
+ ParmVarDecl *Param =
+ BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
+ Param->setScopeInfo(0, Params.size());
+ Params.push_back(Param);
+ }
+ } else {
+ assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
+ "Should not need args for typedef of non-prototype fn");
+ }
+
+ // Finally, we know we have the right number of parameters, install them.
+ NewFD->setParams(Params);
+
+ // Find all anonymous symbols defined during the declaration of this function
+ // and add to NewFD. This lets us track decls such 'enum Y' in:
+ //
+ // void f(enum Y {AA} x) {}
+ //
+ // which would otherwise incorrectly end up in the translation unit scope.
+ NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
+ DeclsInPrototypeScope.clear();
+
+ if (D.getDeclSpec().isNoreturnSpecified())
+ NewFD->addAttr(
+ ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
+ Context, 0));
+
+ // Functions returning a variably modified type violate C99 6.7.5.2p2
+ // because all functions have linkage.
+ if (!NewFD->isInvalidDecl() &&
+ NewFD->getReturnType()->isVariablyModifiedType()) {
+ Diag(NewFD->getLocation(), diag::err_vm_func_decl);
+ NewFD->setInvalidDecl();
+ }
+
+ // Apply an implicit SectionAttr if #pragma code_seg is active.
+ if (CodeSegStack.CurrentValue && D.isFunctionDefinition() &&
+ !NewFD->hasAttr<SectionAttr>()) {
+ NewFD->addAttr(
+ SectionAttr::CreateImplicit(Context, SectionAttr::Declspec_allocate,
+ CodeSegStack.CurrentValue->getString(),
+ CodeSegStack.CurrentPragmaLocation));
+ if (UnifySection(CodeSegStack.CurrentValue->getString(),
+ ASTContext::PSF_Implicit | ASTContext::PSF_Execute |
+ ASTContext::PSF_Read,
+ NewFD))
+ NewFD->dropAttr<SectionAttr>();
+ }
+
+ // Handle attributes.
+ ProcessDeclAttributes(S, NewFD, D);
+
+ if (getLangOpts().OpenCL) {
+ // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
+ // type declaration will generate a compilation error.
+ unsigned AddressSpace = NewFD->getReturnType().getAddressSpace();
+ if (AddressSpace == LangAS::opencl_local ||
+ AddressSpace == LangAS::opencl_global ||
+ AddressSpace == LangAS::opencl_constant) {
+ Diag(NewFD->getLocation(),
+ diag::err_opencl_return_value_with_address_space);
+ NewFD->setInvalidDecl();
+ }
+ }
+
+ if (!getLangOpts().CPlusPlus) {
+ // Perform semantic checking on the function declaration.
+ bool isExplicitSpecialization=false;
+ if (!NewFD->isInvalidDecl() && NewFD->isMain())
+ CheckMain(NewFD, D.getDeclSpec());
+
+ if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
+ CheckMSVCRTEntryPoint(NewFD);
+
+ if (!NewFD->isInvalidDecl())
+ D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
+ isExplicitSpecialization));
+ else if (!Previous.empty())
+ // Recover gracefully from an invalid redeclaration.
+ D.setRedeclaration(true);
+ assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
+ Previous.getResultKind() != LookupResult::FoundOverloaded) &&
+ "previous declaration set still overloaded");
+
+ // Diagnose no-prototype function declarations with calling conventions that
+ // don't support variadic calls. Only do this in C and do it after merging
+ // possibly prototyped redeclarations.
+ const FunctionType *FT = NewFD->getType()->castAs<FunctionType>();
+ if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) {
+ CallingConv CC = FT->getExtInfo().getCC();
+ if (!supportsVariadicCall(CC)) {
+ // Windows system headers sometimes accidentally use stdcall without
+ // (void) parameters, so we relax this to a warning.
+ int DiagID =
+ CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr;
+ Diag(NewFD->getLocation(), DiagID)
+ << FunctionType::getNameForCallConv(CC);
+ }
+ }
+ } else {
+ // C++11 [replacement.functions]p3:
+ // The program's definitions shall not be specified as inline.
+ //
+ // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
+ //
+ // Suppress the diagnostic if the function is __attribute__((used)), since
+ // that forces an external definition to be emitted.
+ if (D.getDeclSpec().isInlineSpecified() &&
+ NewFD->isReplaceableGlobalAllocationFunction() &&
+ !NewFD->hasAttr<UsedAttr>())
+ Diag(D.getDeclSpec().getInlineSpecLoc(),
+ diag::ext_operator_new_delete_declared_inline)
+ << NewFD->getDeclName();
+
+ // If the declarator is a template-id, translate the parser's template
+ // argument list into our AST format.
+ if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
+ TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
+ TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
+ TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
+ ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
+ TemplateId->NumArgs);
+ translateTemplateArguments(TemplateArgsPtr,
+ TemplateArgs);
+
+ HasExplicitTemplateArgs = true;
+
+ if (NewFD->isInvalidDecl()) {
+ HasExplicitTemplateArgs = false;
+ } else if (FunctionTemplate) {
+ // Function template with explicit template arguments.
+ Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
+ << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
+
+ HasExplicitTemplateArgs = false;
+ } else {
+ assert((isFunctionTemplateSpecialization ||
+ D.getDeclSpec().isFriendSpecified()) &&
+ "should have a 'template<>' for this decl");
+ // "friend void foo<>(int);" is an implicit specialization decl.
+ isFunctionTemplateSpecialization = true;
+ }
+ } else if (isFriend && isFunctionTemplateSpecialization) {
+ // This combination is only possible in a recovery case; the user
+ // wrote something like:
+ // template <> friend void foo(int);
+ // which we're recovering from as if the user had written:
+ // friend void foo<>(int);
+ // Go ahead and fake up a template id.
+ HasExplicitTemplateArgs = true;
+ TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
+ TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
+ }
+
+ // If it's a friend (and only if it's a friend), it's possible
+ // that either the specialized function type or the specialized
+ // template is dependent, and therefore matching will fail. In
+ // this case, don't check the specialization yet.
+ bool InstantiationDependent = false;
+ if (isFunctionTemplateSpecialization && isFriend &&
+ (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
+ TemplateSpecializationType::anyDependentTemplateArguments(
+ TemplateArgs.getArgumentArray(), TemplateArgs.size(),
+ InstantiationDependent))) {
+ assert(HasExplicitTemplateArgs &&
+ "friend function specialization without template args");
+ if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
+ Previous))
+ NewFD->setInvalidDecl();
+ } else if (isFunctionTemplateSpecialization) {
+ if (CurContext->isDependentContext() && CurContext->isRecord()
+ && !isFriend) {
+ isDependentClassScopeExplicitSpecialization = true;
+ Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
+ diag::ext_function_specialization_in_class :
+ diag::err_function_specialization_in_class)
+ << NewFD->getDeclName();
+ } else if (CheckFunctionTemplateSpecialization(NewFD,
+ (HasExplicitTemplateArgs ? &TemplateArgs
+ : nullptr),
+ Previous))
+ NewFD->setInvalidDecl();
+
+ // C++ [dcl.stc]p1:
+ // A storage-class-specifier shall not be specified in an explicit
+ // specialization (14.7.3)
+ FunctionTemplateSpecializationInfo *Info =
+ NewFD->getTemplateSpecializationInfo();
+ if (Info && SC != SC_None) {
+ if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
+ Diag(NewFD->getLocation(),
+ diag::err_explicit_specialization_inconsistent_storage_class)
+ << SC
+ << FixItHint::CreateRemoval(
+ D.getDeclSpec().getStorageClassSpecLoc());
+
+ else
+ Diag(NewFD->getLocation(),
+ diag::ext_explicit_specialization_storage_class)
+ << FixItHint::CreateRemoval(
+ D.getDeclSpec().getStorageClassSpecLoc());
+ }
+
+ } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
+ if (CheckMemberSpecialization(NewFD, Previous))
+ NewFD->setInvalidDecl();
+ }
+
+ // Perform semantic checking on the function declaration.
+ if (!isDependentClassScopeExplicitSpecialization) {
+ if (!NewFD->isInvalidDecl() && NewFD->isMain())
+ CheckMain(NewFD, D.getDeclSpec());
+
+ if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
+ CheckMSVCRTEntryPoint(NewFD);
+
+ if (!NewFD->isInvalidDecl())
+ D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
+ isExplicitSpecialization));
+ else if (!Previous.empty())
+ // Recover gracefully from an invalid redeclaration.
+ D.setRedeclaration(true);
+ }
+
+ assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
+ Previous.getResultKind() != LookupResult::FoundOverloaded) &&
+ "previous declaration set still overloaded");
+
+ NamedDecl *PrincipalDecl = (FunctionTemplate
+ ? cast<NamedDecl>(FunctionTemplate)
+ : NewFD);
+
+ if (isFriend && D.isRedeclaration()) {
+ AccessSpecifier Access = AS_public;
+ if (!NewFD->isInvalidDecl())
+ Access = NewFD->getPreviousDecl()->getAccess();
+
+ NewFD->setAccess(Access);
+ if (FunctionTemplate) FunctionTemplate->setAccess(Access);
+ }
+
+ if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
+ PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
+ PrincipalDecl->setNonMemberOperator();
+
+ // If we have a function template, check the template parameter
+ // list. This will check and merge default template arguments.
+ if (FunctionTemplate) {
+ FunctionTemplateDecl *PrevTemplate =
+ FunctionTemplate->getPreviousDecl();
+ CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
+ PrevTemplate ? PrevTemplate->getTemplateParameters()
+ : nullptr,
+ D.getDeclSpec().isFriendSpecified()
+ ? (D.isFunctionDefinition()
+ ? TPC_FriendFunctionTemplateDefinition
+ : TPC_FriendFunctionTemplate)
+ : (D.getCXXScopeSpec().isSet() &&
+ DC && DC->isRecord() &&
+ DC->isDependentContext())
+ ? TPC_ClassTemplateMember
+ : TPC_FunctionTemplate);
+ }
+
+ if (NewFD->isInvalidDecl()) {
+ // Ignore all the rest of this.
+ } else if (!D.isRedeclaration()) {
+ struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
+ AddToScope };
+ // Fake up an access specifier if it's supposed to be a class member.
+ if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
+ NewFD->setAccess(AS_public);
+
+ // Qualified decls generally require a previous declaration.
+ if (D.getCXXScopeSpec().isSet()) {
+ // ...with the major exception of templated-scope or
+ // dependent-scope friend declarations.
+
+ // TODO: we currently also suppress this check in dependent
+ // contexts because (1) the parameter depth will be off when
+ // matching friend templates and (2) we might actually be
+ // selecting a friend based on a dependent factor. But there
+ // are situations where these conditions don't apply and we
+ // can actually do this check immediately.
+ if (isFriend &&
+ (TemplateParamLists.size() ||
+ D.getCXXScopeSpec().getScopeRep()->isDependent() ||
+ CurContext->isDependentContext())) {
+ // ignore these
+ } else {
+ // The user tried to provide an out-of-line definition for a
+ // function that is a member of a class or namespace, but there
+ // was no such member function declared (C++ [class.mfct]p2,
+ // C++ [namespace.memdef]p2). For example:
+ //
+ // class X {
+ // void f() const;
+ // };
+ //
+ // void X::f() { } // ill-formed
+ //
+ // Complain about this problem, and attempt to suggest close
+ // matches (e.g., those that differ only in cv-qualifiers and
+ // whether the parameter types are references).
+
+ if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
+ *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
+ AddToScope = ExtraArgs.AddToScope;
+ return Result;
+ }
+ }
+
+ // Unqualified local friend declarations are required to resolve
+ // to something.
+ } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
+ if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
+ *this, Previous, NewFD, ExtraArgs, true, S)) {
+ AddToScope = ExtraArgs.AddToScope;
+ return Result;
+ }
+ }
+
+ } else if (!D.isFunctionDefinition() &&
+ isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
+ !isFriend && !isFunctionTemplateSpecialization &&
+ !isExplicitSpecialization) {
+ // An out-of-line member function declaration must also be a
+ // definition (C++ [class.mfct]p2).
+ // Note that this is not the case for explicit specializations of
+ // function templates or member functions of class templates, per
+ // C++ [temp.expl.spec]p2. We also allow these declarations as an
+ // extension for compatibility with old SWIG code which likes to
+ // generate them.
+ Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
+ << D.getCXXScopeSpec().getRange();
+ }
+ }
+
+ ProcessPragmaWeak(S, NewFD);
+ checkAttributesAfterMerging(*this, *NewFD);
+
+ AddKnownFunctionAttributes(NewFD);
+
+ if (NewFD->hasAttr<OverloadableAttr>() &&
+ !NewFD->getType()->getAs<FunctionProtoType>()) {
+ Diag(NewFD->getLocation(),
+ diag::err_attribute_overloadable_no_prototype)
+ << NewFD;
+
+ // Turn this into a variadic function with no parameters.
+ const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
+ FunctionProtoType::ExtProtoInfo EPI(
+ Context.getDefaultCallingConvention(true, false));
+ EPI.Variadic = true;
+ EPI.ExtInfo = FT->getExtInfo();
+
+ QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI);
+ NewFD->setType(R);
+ }
+
+ // If there's a #pragma GCC visibility in scope, and this isn't a class
+ // member, set the visibility of this function.
+ if (!DC->isRecord() && NewFD->isExternallyVisible())
+ AddPushedVisibilityAttribute(NewFD);
+
+ // If there's a #pragma clang arc_cf_code_audited in scope, consider
+ // marking the function.
+ AddCFAuditedAttribute(NewFD);
+
+ // If this is a function definition, check if we have to apply optnone due to
+ // a pragma.
+ if(D.isFunctionDefinition())
+ AddRangeBasedOptnone(NewFD);
+
+ // If this is the first declaration of an extern C variable, update
+ // the map of such variables.
+ if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
+ isIncompleteDeclExternC(*this, NewFD))
+ RegisterLocallyScopedExternCDecl(NewFD, S);
+
+ // Set this FunctionDecl's range up to the right paren.
+ NewFD->setRangeEnd(D.getSourceRange().getEnd());
+
+ if (D.isRedeclaration() && !Previous.empty()) {
+ checkDLLAttributeRedeclaration(
+ *this, dyn_cast<NamedDecl>(Previous.getRepresentativeDecl()), NewFD,
+ isExplicitSpecialization || isFunctionTemplateSpecialization);
+ }
+
+ if (getLangOpts().CPlusPlus) {
+ if (FunctionTemplate) {
+ if (NewFD->isInvalidDecl())
+ FunctionTemplate->setInvalidDecl();
+ return FunctionTemplate;
+ }
+ }
+
+ if (NewFD->hasAttr<OpenCLKernelAttr>()) {
+ // OpenCL v1.2 s6.8 static is invalid for kernel functions.
+ if ((getLangOpts().OpenCLVersion >= 120)
+ && (SC == SC_Static)) {
+ Diag(D.getIdentifierLoc(), diag::err_static_kernel);
+ D.setInvalidType();
+ }
+
+ // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
+ if (!NewFD->getReturnType()->isVoidType()) {
+ SourceRange RTRange = NewFD->getReturnTypeSourceRange();
+ Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
+ << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
+ : FixItHint());
+ D.setInvalidType();
+ }
+
+ llvm::SmallPtrSet<const Type *, 16> ValidTypes;
+ for (auto Param : NewFD->params())
+ checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
+ }
+
+ MarkUnusedFileScopedDecl(NewFD);
+
+ if (getLangOpts().CUDA)
+ if (IdentifierInfo *II = NewFD->getIdentifier())
+ if (!NewFD->isInvalidDecl() &&
+ NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
+ if (II->isStr("cudaConfigureCall")) {
+ if (!R->getAs<FunctionType>()->getReturnType()->isScalarType())
+ Diag(NewFD->getLocation(), diag::err_config_scalar_return);
+
+ Context.setcudaConfigureCallDecl(NewFD);
+ }
+ }
+
+ // Here we have an function template explicit specialization at class scope.
+ // The actually specialization will be postponed to template instatiation
+ // time via the ClassScopeFunctionSpecializationDecl node.
+ if (isDependentClassScopeExplicitSpecialization) {
+ ClassScopeFunctionSpecializationDecl *NewSpec =
+ ClassScopeFunctionSpecializationDecl::Create(
+ Context, CurContext, SourceLocation(),
+ cast<CXXMethodDecl>(NewFD),
+ HasExplicitTemplateArgs, TemplateArgs);
+ CurContext->addDecl(NewSpec);
+ AddToScope = false;
+ }
+
+ return NewFD;
+}
+
+/// \brief Perform semantic checking of a new function declaration.
+///
+/// Performs semantic analysis of the new function declaration
+/// NewFD. This routine performs all semantic checking that does not
+/// require the actual declarator involved in the declaration, and is
+/// used both for the declaration of functions as they are parsed
+/// (called via ActOnDeclarator) and for the declaration of functions
+/// that have been instantiated via C++ template instantiation (called
+/// via InstantiateDecl).
+///
+/// \param IsExplicitSpecialization whether this new function declaration is
+/// an explicit specialization of the previous declaration.
+///
+/// This sets NewFD->isInvalidDecl() to true if there was an error.
+///
+/// \returns true if the function declaration is a redeclaration.
+bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
+ LookupResult &Previous,
+ bool IsExplicitSpecialization) {
+ assert(!NewFD->getReturnType()->isVariablyModifiedType() &&
+ "Variably modified return types are not handled here");
+
+ // Determine whether the type of this function should be merged with
+ // a previous visible declaration. This never happens for functions in C++,
+ // and always happens in C if the previous declaration was visible.
+ bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
+ !Previous.isShadowed();
+
+ // Filter out any non-conflicting previous declarations.
+ filterNonConflictingPreviousDecls(*this, NewFD, Previous);
+
+ bool Redeclaration = false;
+ NamedDecl *OldDecl = nullptr;
+
+ // Merge or overload the declaration with an existing declaration of
+ // the same name, if appropriate.
+ if (!Previous.empty()) {
+ // Determine whether NewFD is an overload of PrevDecl or
+ // a declaration that requires merging. If it's an overload,
+ // there's no more work to do here; we'll just add the new
+ // function to the scope.
+ if (!AllowOverloadingOfFunction(Previous, Context)) {
+ NamedDecl *Candidate = Previous.getFoundDecl();
+ if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
+ Redeclaration = true;
+ OldDecl = Candidate;
+ }
+ } else {
+ switch (CheckOverload(S, NewFD, Previous, OldDecl,
+ /*NewIsUsingDecl*/ false)) {
+ case Ovl_Match:
+ Redeclaration = true;
+ break;
+
+ case Ovl_NonFunction:
+ Redeclaration = true;
+ break;
+
+ case Ovl_Overload:
+ Redeclaration = false;
+ break;
+ }
+
+ if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
+ // If a function name is overloadable in C, then every function
+ // with that name must be marked "overloadable".
+ Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
+ << Redeclaration << NewFD;
+ NamedDecl *OverloadedDecl = nullptr;
+ if (Redeclaration)
+ OverloadedDecl = OldDecl;
+ else if (!Previous.empty())
+ OverloadedDecl = Previous.getRepresentativeDecl();
+ if (OverloadedDecl)
+ Diag(OverloadedDecl->getLocation(),
+ diag::note_attribute_overloadable_prev_overload);
+ NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
+ }
+ }
+ }
+
+ // Check for a previous extern "C" declaration with this name.
+ if (!Redeclaration &&
+ checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
+ filterNonConflictingPreviousDecls(*this, NewFD, Previous);
+ if (!Previous.empty()) {
+ // This is an extern "C" declaration with the same name as a previous
+ // declaration, and thus redeclares that entity...
+ Redeclaration = true;
+ OldDecl = Previous.getFoundDecl();
+ MergeTypeWithPrevious = false;
+
+ // ... except in the presence of __attribute__((overloadable)).
+ if (OldDecl->hasAttr<OverloadableAttr>()) {
+ if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
+ Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
+ << Redeclaration << NewFD;
+ Diag(Previous.getFoundDecl()->getLocation(),
+ diag::note_attribute_overloadable_prev_overload);
+ NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
+ }
+ if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
+ Redeclaration = false;
+ OldDecl = nullptr;
+ }
+ }
+ }
+ }
+
+ // C++11 [dcl.constexpr]p8:
+ // A constexpr specifier for a non-static member function that is not
+ // a constructor declares that member function to be const.
+ //
+ // This needs to be delayed until we know whether this is an out-of-line
+ // definition of a static member function.
+ //
+ // This rule is not present in C++1y, so we produce a backwards
+ // compatibility warning whenever it happens in C++11.
+ CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
+ if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() &&
+ !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
+ (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
+ CXXMethodDecl *OldMD = nullptr;
+ if (OldDecl)
+ OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction());
+ if (!OldMD || !OldMD->isStatic()) {
+ const FunctionProtoType *FPT =
+ MD->getType()->castAs<FunctionProtoType>();
+ FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
+ EPI.TypeQuals |= Qualifiers::Const;
+ MD->setType(Context.getFunctionType(FPT->getReturnType(),
+ FPT->getParamTypes(), EPI));
+
+ // Warn that we did this, if we're not performing template instantiation.
+ // In that case, we'll have warned already when the template was defined.
+ if (ActiveTemplateInstantiations.empty()) {
+ SourceLocation AddConstLoc;
+ if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
+ .IgnoreParens().getAs<FunctionTypeLoc>())
+ AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
+
+ Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const)
+ << FixItHint::CreateInsertion(AddConstLoc, " const");
+ }
+ }
+ }
+
+ if (Redeclaration) {
+ // NewFD and OldDecl represent declarations that need to be
+ // merged.
+ if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
+ NewFD->setInvalidDecl();
+ return Redeclaration;
+ }
+
+ Previous.clear();
+ Previous.addDecl(OldDecl);
+
+ if (FunctionTemplateDecl *OldTemplateDecl
+ = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
+ NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
+ FunctionTemplateDecl *NewTemplateDecl
+ = NewFD->getDescribedFunctionTemplate();
+ assert(NewTemplateDecl && "Template/non-template mismatch");
+ if (CXXMethodDecl *Method
+ = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
+ Method->setAccess(OldTemplateDecl->getAccess());
+ NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
+ }
+
+ // If this is an explicit specialization of a member that is a function
+ // template, mark it as a member specialization.
+ if (IsExplicitSpecialization &&
+ NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
+ NewTemplateDecl->setMemberSpecialization();
+ assert(OldTemplateDecl->isMemberSpecialization());
+ }
+
+ } else {
+ // This needs to happen first so that 'inline' propagates.
+ NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
+
+ if (isa<CXXMethodDecl>(NewFD))
+ NewFD->setAccess(OldDecl->getAccess());
+ }
+ }
+
+ // Semantic checking for this function declaration (in isolation).
+
+ if (getLangOpts().CPlusPlus) {
+ // C++-specific checks.
+ if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
+ CheckConstructor(Constructor);
+ } else if (CXXDestructorDecl *Destructor =
+ dyn_cast<CXXDestructorDecl>(NewFD)) {
+ CXXRecordDecl *Record = Destructor->getParent();
+ QualType ClassType = Context.getTypeDeclType(Record);
+
+ // FIXME: Shouldn't we be able to perform this check even when the class
+ // type is dependent? Both gcc and edg can handle that.
+ if (!ClassType->isDependentType()) {
+ DeclarationName Name
+ = Context.DeclarationNames.getCXXDestructorName(
+ Context.getCanonicalType(ClassType));
+ if (NewFD->getDeclName() != Name) {
+ Diag(NewFD->getLocation(), diag::err_destructor_name);
+ NewFD->setInvalidDecl();
+ return Redeclaration;
+ }
+ }
+ } else if (CXXConversionDecl *Conversion
+ = dyn_cast<CXXConversionDecl>(NewFD)) {
+ ActOnConversionDeclarator(Conversion);
+ }
+
+ // Find any virtual functions that this function overrides.
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
+ if (!Method->isFunctionTemplateSpecialization() &&
+ !Method->getDescribedFunctionTemplate() &&
+ Method->isCanonicalDecl()) {
+ if (AddOverriddenMethods(Method->getParent(), Method)) {
+ // If the function was marked as "static", we have a problem.
+ if (NewFD->getStorageClass() == SC_Static) {
+ ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
+ }
+ }
+ }
+
+ if (Method->isStatic())
+ checkThisInStaticMemberFunctionType(Method);
+ }
+
+ // Extra checking for C++ overloaded operators (C++ [over.oper]).
+ if (NewFD->isOverloadedOperator() &&
+ CheckOverloadedOperatorDeclaration(NewFD)) {
+ NewFD->setInvalidDecl();
+ return Redeclaration;
+ }
+
+ // Extra checking for C++0x literal operators (C++0x [over.literal]).
+ if (NewFD->getLiteralIdentifier() &&
+ CheckLiteralOperatorDeclaration(NewFD)) {
+ NewFD->setInvalidDecl();
+ return Redeclaration;
+ }
+
+ // In C++, check default arguments now that we have merged decls. Unless
+ // the lexical context is the class, because in this case this is done
+ // during delayed parsing anyway.
+ if (!CurContext->isRecord())
+ CheckCXXDefaultArguments(NewFD);
+
+ // If this function declares a builtin function, check the type of this
+ // declaration against the expected type for the builtin.
+ if (unsigned BuiltinID = NewFD->getBuiltinID()) {
+ ASTContext::GetBuiltinTypeError Error;
+ LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
+ QualType T = Context.GetBuiltinType(BuiltinID, Error);
+ if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
+ // The type of this function differs from the type of the builtin,
+ // so forget about the builtin entirely.
+ Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
+ }
+ }
+
+ // If this function is declared as being extern "C", then check to see if
+ // the function returns a UDT (class, struct, or union type) that is not C
+ // compatible, and if it does, warn the user.
+ // But, issue any diagnostic on the first declaration only.
+ if (Previous.empty() && NewFD->isExternC()) {
+ QualType R = NewFD->getReturnType();
+ if (R->isIncompleteType() && !R->isVoidType())
+ Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
+ << NewFD << R;
+ else if (!R.isPODType(Context) && !R->isVoidType() &&
+ !R->isObjCObjectPointerType())
+ Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
+ }
+ }
+ return Redeclaration;
+}
+
+void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
+ // C++11 [basic.start.main]p3:
+ // A program that [...] declares main to be inline, static or
+ // constexpr is ill-formed.
+ // C11 6.7.4p4: In a hosted environment, no function specifier(s) shall
+ // appear in a declaration of main.
+ // static main is not an error under C99, but we should warn about it.
+ // We accept _Noreturn main as an extension.
+ if (FD->getStorageClass() == SC_Static)
+ Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
+ ? diag::err_static_main : diag::warn_static_main)
+ << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
+ if (FD->isInlineSpecified())
+ Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
+ << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
+ if (DS.isNoreturnSpecified()) {
+ SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
+ SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
+ Diag(NoreturnLoc, diag::ext_noreturn_main);
+ Diag(NoreturnLoc, diag::note_main_remove_noreturn)
+ << FixItHint::CreateRemoval(NoreturnRange);
+ }
+ if (FD->isConstexpr()) {
+ Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
+ << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
+ FD->setConstexpr(false);
+ }
+
+ if (getLangOpts().OpenCL) {
+ Diag(FD->getLocation(), diag::err_opencl_no_main)
+ << FD->hasAttr<OpenCLKernelAttr>();
+ FD->setInvalidDecl();
+ return;
+ }
+
+ QualType T = FD->getType();
+ assert(T->isFunctionType() && "function decl is not of function type");
+ const FunctionType* FT = T->castAs<FunctionType>();
+
+ if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
+ // In C with GNU extensions we allow main() to have non-integer return
+ // type, but we should warn about the extension, and we disable the
+ // implicit-return-zero rule.
+
+ // GCC in C mode accepts qualified 'int'.
+ if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
+ FD->setHasImplicitReturnZero(true);
+ else {
+ Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
+ SourceRange RTRange = FD->getReturnTypeSourceRange();
+ if (RTRange.isValid())
+ Diag(RTRange.getBegin(), diag::note_main_change_return_type)
+ << FixItHint::CreateReplacement(RTRange, "int");
+ }
+ } else {
+ // In C and C++, main magically returns 0 if you fall off the end;
+ // set the flag which tells us that.
+ // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
+
+ // All the standards say that main() should return 'int'.
+ if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
+ FD->setHasImplicitReturnZero(true);
+ else {
+ // Otherwise, this is just a flat-out error.
+ SourceRange RTRange = FD->getReturnTypeSourceRange();
+ Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
+ << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
+ : FixItHint());
+ FD->setInvalidDecl(true);
+ }
+ }
+
+ // Treat protoless main() as nullary.
+ if (isa<FunctionNoProtoType>(FT)) return;
+
+ const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
+ unsigned nparams = FTP->getNumParams();
+ assert(FD->getNumParams() == nparams);
+
+ bool HasExtraParameters = (nparams > 3);
+
+ if (FTP->isVariadic()) {
+ Diag(FD->getLocation(), diag::ext_variadic_main);
+ // FIXME: if we had information about the location of the ellipsis, we
+ // could add a FixIt hint to remove it as a parameter.
+ }
+
+ // Darwin passes an undocumented fourth argument of type char**. If
+ // other platforms start sprouting these, the logic below will start
+ // getting shifty.
+ if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
+ HasExtraParameters = false;
+
+ if (HasExtraParameters) {
+ Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
+ FD->setInvalidDecl(true);
+ nparams = 3;
+ }
+
+ // FIXME: a lot of the following diagnostics would be improved
+ // if we had some location information about types.
+
+ QualType CharPP =
+ Context.getPointerType(Context.getPointerType(Context.CharTy));
+ QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
+
+ for (unsigned i = 0; i < nparams; ++i) {
+ QualType AT = FTP->getParamType(i);
+
+ bool mismatch = true;
+
+ if (Context.hasSameUnqualifiedType(AT, Expected[i]))
+ mismatch = false;
+ else if (Expected[i] == CharPP) {
+ // As an extension, the following forms are okay:
+ // char const **
+ // char const * const *
+ // char * const *
+
+ QualifierCollector qs;
+ const PointerType* PT;
+ if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
+ (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
+ Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
+ Context.CharTy)) {
+ qs.removeConst();
+ mismatch = !qs.empty();
+ }
+ }
+
+ if (mismatch) {
+ Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
+ // TODO: suggest replacing given type with expected type
+ FD->setInvalidDecl(true);
+ }
+ }
+
+ if (nparams == 1 && !FD->isInvalidDecl()) {
+ Diag(FD->getLocation(), diag::warn_main_one_arg);
+ }
+
+ if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
+ Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
+ FD->setInvalidDecl();
+ }
+}
+
+void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
+ QualType T = FD->getType();
+ assert(T->isFunctionType() && "function decl is not of function type");
+ const FunctionType *FT = T->castAs<FunctionType>();
+
+ // Set an implicit return of 'zero' if the function can return some integral,
+ // enumeration, pointer or nullptr type.
+ if (FT->getReturnType()->isIntegralOrEnumerationType() ||
+ FT->getReturnType()->isAnyPointerType() ||
+ FT->getReturnType()->isNullPtrType())
+ // DllMain is exempt because a return value of zero means it failed.
+ if (FD->getName() != "DllMain")
+ FD->setHasImplicitReturnZero(true);
+
+ if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
+ Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
+ FD->setInvalidDecl();
+ }
+}
+
+bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
+ // FIXME: Need strict checking. In C89, we need to check for
+ // any assignment, increment, decrement, function-calls, or
+ // commas outside of a sizeof. In C99, it's the same list,
+ // except that the aforementioned are allowed in unevaluated
+ // expressions. Everything else falls under the
+ // "may accept other forms of constant expressions" exception.
+ // (We never end up here for C++, so the constant expression
+ // rules there don't matter.)
+ const Expr *Culprit;
+ if (Init->isConstantInitializer(Context, false, &Culprit))
+ return false;
+ Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
+ << Culprit->getSourceRange();
+ return true;
+}
+
+namespace {
+ // Visits an initialization expression to see if OrigDecl is evaluated in
+ // its own initialization and throws a warning if it does.
+ class SelfReferenceChecker
+ : public EvaluatedExprVisitor<SelfReferenceChecker> {
+ Sema &S;
+ Decl *OrigDecl;
+ bool isRecordType;
+ bool isPODType;
+ bool isReferenceType;
+
+ bool isInitList;
+ llvm::SmallVector<unsigned, 4> InitFieldIndex;
+ public:
+ typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
+
+ SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
+ S(S), OrigDecl(OrigDecl) {
+ isPODType = false;
+ isRecordType = false;
+ isReferenceType = false;
+ isInitList = false;
+ if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
+ isPODType = VD->getType().isPODType(S.Context);
+ isRecordType = VD->getType()->isRecordType();
+ isReferenceType = VD->getType()->isReferenceType();
+ }
+ }
+
+ // For most expressions, just call the visitor. For initializer lists,
+ // track the index of the field being initialized since fields are
+ // initialized in order allowing use of previously initialized fields.
+ void CheckExpr(Expr *E) {
+ InitListExpr *InitList = dyn_cast<InitListExpr>(E);
+ if (!InitList) {
+ Visit(E);
+ return;
+ }
+
+ // Track and increment the index here.
+ isInitList = true;
+ InitFieldIndex.push_back(0);
+ for (auto Child : InitList->children()) {
+ CheckExpr(cast<Expr>(Child));
+ ++InitFieldIndex.back();
+ }
+ InitFieldIndex.pop_back();
+ }
+
+ // Returns true if MemberExpr is checked and no futher checking is needed.
+ // Returns false if additional checking is required.
+ bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) {
+ llvm::SmallVector<FieldDecl*, 4> Fields;
+ Expr *Base = E;
+ bool ReferenceField = false;
+
+ // Get the field memebers used.
+ while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
+ FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
+ if (!FD)
+ return false;
+ Fields.push_back(FD);
+ if (FD->getType()->isReferenceType())
+ ReferenceField = true;
+ Base = ME->getBase()->IgnoreParenImpCasts();
+ }
+
+ // Keep checking only if the base Decl is the same.
+ DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base);
+ if (!DRE || DRE->getDecl() != OrigDecl)
+ return false;
+
+ // A reference field can be bound to an unininitialized field.
+ if (CheckReference && !ReferenceField)
+ return true;
+
+ // Convert FieldDecls to their index number.
+ llvm::SmallVector<unsigned, 4> UsedFieldIndex;
+ for (auto I = Fields.rbegin(), E = Fields.rend(); I != E; ++I) {
+ UsedFieldIndex.push_back((*I)->getFieldIndex());
+ }
+
+ // See if a warning is needed by checking the first difference in index
+ // numbers. If field being used has index less than the field being
+ // initialized, then the use is safe.
+ for (auto UsedIter = UsedFieldIndex.begin(),
+ UsedEnd = UsedFieldIndex.end(),
+ OrigIter = InitFieldIndex.begin(),
+ OrigEnd = InitFieldIndex.end();
+ UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
+ if (*UsedIter < *OrigIter)
+ return true;
+ if (*UsedIter > *OrigIter)
+ break;
+ }
+
+ // TODO: Add a different warning which will print the field names.
+ HandleDeclRefExpr(DRE);
+ return true;
+ }
+
+ // For most expressions, the cast is directly above the DeclRefExpr.
+ // For conditional operators, the cast can be outside the conditional
+ // operator if both expressions are DeclRefExpr's.
+ void HandleValue(Expr *E) {
+ E = E->IgnoreParens();
+ if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
+ HandleDeclRefExpr(DRE);
+ return;
+ }
+
+ if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
+ Visit(CO->getCond());
+ HandleValue(CO->getTrueExpr());
+ HandleValue(CO->getFalseExpr());
+ return;
+ }
+
+ if (BinaryConditionalOperator *BCO =
+ dyn_cast<BinaryConditionalOperator>(E)) {
+ Visit(BCO->getCond());
+ HandleValue(BCO->getFalseExpr());
+ return;
+ }
+
+ if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
+ HandleValue(OVE->getSourceExpr());
+ return;
+ }
+
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
+ if (BO->getOpcode() == BO_Comma) {
+ Visit(BO->getLHS());
+ HandleValue(BO->getRHS());
+ return;
+ }
+ }
+
+ if (isa<MemberExpr>(E)) {
+ if (isInitList) {
+ if (CheckInitListMemberExpr(cast<MemberExpr>(E),
+ false /*CheckReference*/))
+ return;
+ }
+
+ Expr *Base = E->IgnoreParenImpCasts();
+ while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
+ // Check for static member variables and don't warn on them.
+ if (!isa<FieldDecl>(ME->getMemberDecl()))
+ return;
+ Base = ME->getBase()->IgnoreParenImpCasts();
+ }
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
+ HandleDeclRefExpr(DRE);
+ return;
+ }
+
+ Visit(E);
+ }
+
+ // Reference types not handled in HandleValue are handled here since all
+ // uses of references are bad, not just r-value uses.
+ void VisitDeclRefExpr(DeclRefExpr *E) {
+ if (isReferenceType)
+ HandleDeclRefExpr(E);
+ }
+
+ void VisitImplicitCastExpr(ImplicitCastExpr *E) {
+ if (E->getCastKind() == CK_LValueToRValue) {
+ HandleValue(E->getSubExpr());
+ return;
+ }
+
+ Inherited::VisitImplicitCastExpr(E);
+ }
+
+ void VisitMemberExpr(MemberExpr *E) {
+ if (isInitList) {
+ if (CheckInitListMemberExpr(E, true /*CheckReference*/))
+ return;
+ }
+
+ // Don't warn on arrays since they can be treated as pointers.
+ if (E->getType()->canDecayToPointerType()) return;
+
+ // Warn when a non-static method call is followed by non-static member
+ // field accesses, which is followed by a DeclRefExpr.
+ CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
+ bool Warn = (MD && !MD->isStatic());
+ Expr *Base = E->getBase()->IgnoreParenImpCasts();
+ while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
+ if (!isa<FieldDecl>(ME->getMemberDecl()))
+ Warn = false;
+ Base = ME->getBase()->IgnoreParenImpCasts();
+ }
+
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
+ if (Warn)
+ HandleDeclRefExpr(DRE);
+ return;
+ }
+
+ // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
+ // Visit that expression.
+ Visit(Base);
+ }
+
+ void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
+ Expr *Callee = E->getCallee();
+
+ if (isa<UnresolvedLookupExpr>(Callee))
+ return Inherited::VisitCXXOperatorCallExpr(E);
+
+ Visit(Callee);
+ for (auto Arg: E->arguments())
+ HandleValue(Arg->IgnoreParenImpCasts());
+ }
+
+ void VisitUnaryOperator(UnaryOperator *E) {
+ // For POD record types, addresses of its own members are well-defined.
+ if (E->getOpcode() == UO_AddrOf && isRecordType &&
+ isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
+ if (!isPODType)
+ HandleValue(E->getSubExpr());
+ return;
+ }
+
+ if (E->isIncrementDecrementOp()) {
+ HandleValue(E->getSubExpr());
+ return;
+ }
+
+ Inherited::VisitUnaryOperator(E);
+ }
+
+ void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
+
+ void VisitCXXConstructExpr(CXXConstructExpr *E) {
+ if (E->getConstructor()->isCopyConstructor()) {
+ Expr *ArgExpr = E->getArg(0);
+ if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
+ if (ILE->getNumInits() == 1)
+ ArgExpr = ILE->getInit(0);
+ if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
+ if (ICE->getCastKind() == CK_NoOp)
+ ArgExpr = ICE->getSubExpr();
+ HandleValue(ArgExpr);
+ return;
+ }
+ Inherited::VisitCXXConstructExpr(E);
+ }
+
+ void VisitCallExpr(CallExpr *E) {
+ // Treat std::move as a use.
+ if (E->getNumArgs() == 1) {
+ if (FunctionDecl *FD = E->getDirectCallee()) {
+ if (FD->isInStdNamespace() && FD->getIdentifier() &&
+ FD->getIdentifier()->isStr("move")) {
+ HandleValue(E->getArg(0));
+ return;
+ }
+ }
+ }
+
+ Inherited::VisitCallExpr(E);
+ }
+
+ void VisitBinaryOperator(BinaryOperator *E) {
+ if (E->isCompoundAssignmentOp()) {
+ HandleValue(E->getLHS());
+ Visit(E->getRHS());
+ return;
+ }
+
+ Inherited::VisitBinaryOperator(E);
+ }
+
+ // A custom visitor for BinaryConditionalOperator is needed because the
+ // regular visitor would check the condition and true expression separately
+ // but both point to the same place giving duplicate diagnostics.
+ void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
+ Visit(E->getCond());
+ Visit(E->getFalseExpr());
+ }
+
+ void HandleDeclRefExpr(DeclRefExpr *DRE) {
+ Decl* ReferenceDecl = DRE->getDecl();
+ if (OrigDecl != ReferenceDecl) return;
+ unsigned diag;
+ if (isReferenceType) {
+ diag = diag::warn_uninit_self_reference_in_reference_init;
+ } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
+ diag = diag::warn_static_self_reference_in_init;
+ } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) ||
+ isa<NamespaceDecl>(OrigDecl->getDeclContext()) ||
+ DRE->getDecl()->getType()->isRecordType()) {
+ diag = diag::warn_uninit_self_reference_in_init;
+ } else {
+ // Local variables will be handled by the CFG analysis.
+ return;
+ }
+
+ S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
+ S.PDiag(diag)
+ << DRE->getNameInfo().getName()
+ << OrigDecl->getLocation()
+ << DRE->getSourceRange());
+ }
+ };
+
+ /// CheckSelfReference - Warns if OrigDecl is used in expression E.
+ static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
+ bool DirectInit) {
+ // Parameters arguments are occassionially constructed with itself,
+ // for instance, in recursive functions. Skip them.
+ if (isa<ParmVarDecl>(OrigDecl))
+ return;
+
+ E = E->IgnoreParens();
+
+ // Skip checking T a = a where T is not a record or reference type.
+ // Doing so is a way to silence uninitialized warnings.
+ if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
+ if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
+ if (ICE->getCastKind() == CK_LValueToRValue)
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
+ if (DRE->getDecl() == OrigDecl)
+ return;
+
+ SelfReferenceChecker(S, OrigDecl).CheckExpr(E);
+ }
+}
+
+/// AddInitializerToDecl - Adds the initializer Init to the
+/// declaration dcl. If DirectInit is true, this is C++ direct
+/// initialization rather than copy initialization.
+void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
+ bool DirectInit, bool TypeMayContainAuto) {
+ // If there is no declaration, there was an error parsing it. Just ignore
+ // the initializer.
+ if (!RealDecl || RealDecl->isInvalidDecl()) {
+ CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl));
+ return;
+ }
+
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
+ // With declarators parsed the way they are, the parser cannot
+ // distinguish between a normal initializer and a pure-specifier.
+ // Thus this grotesque test.
+ IntegerLiteral *IL;
+ if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
+ Context.getCanonicalType(IL->getType()) == Context.IntTy)
+ CheckPureMethod(Method, Init->getSourceRange());
+ else {
+ Diag(Method->getLocation(), diag::err_member_function_initialization)
+ << Method->getDeclName() << Init->getSourceRange();
+ Method->setInvalidDecl();
+ }
+ return;
+ }
+
+ VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
+ if (!VDecl) {
+ assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
+ Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
+ RealDecl->setInvalidDecl();
+ return;
+ }
+ ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
+
+ // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
+ if (TypeMayContainAuto && VDecl->getType()->isUndeducedType()) {
+ // Attempt typo correction early so that the type of the init expression can
+ // be deduced based on the chosen correction:if the original init contains a
+ // TypoExpr.
+ ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl);
+ if (!Res.isUsable()) {
+ RealDecl->setInvalidDecl();
+ return;
+ }
+
+ if (Res.get() != Init) {
+ Init = Res.get();
+ if (CXXDirectInit)
+ CXXDirectInit = dyn_cast<ParenListExpr>(Init);
+ }
+
+ Expr *DeduceInit = Init;
+ // Initializer could be a C++ direct-initializer. Deduction only works if it
+ // contains exactly one expression.
+ if (CXXDirectInit) {
+ if (CXXDirectInit->getNumExprs() == 0) {
+ // It isn't possible to write this directly, but it is possible to
+ // end up in this situation with "auto x(some_pack...);"
+ Diag(CXXDirectInit->getLocStart(),
+ VDecl->isInitCapture() ? diag::err_init_capture_no_expression
+ : diag::err_auto_var_init_no_expression)
+ << VDecl->getDeclName() << VDecl->getType()
+ << VDecl->getSourceRange();
+ RealDecl->setInvalidDecl();
+ return;
+ } else if (CXXDirectInit->getNumExprs() > 1) {
+ Diag(CXXDirectInit->getExpr(1)->getLocStart(),
+ VDecl->isInitCapture()
+ ? diag::err_init_capture_multiple_expressions
+ : diag::err_auto_var_init_multiple_expressions)
+ << VDecl->getDeclName() << VDecl->getType()
+ << VDecl->getSourceRange();
+ RealDecl->setInvalidDecl();
+ return;
+ } else {
+ DeduceInit = CXXDirectInit->getExpr(0);
+ if (isa<InitListExpr>(DeduceInit))
+ Diag(CXXDirectInit->getLocStart(),
+ diag::err_auto_var_init_paren_braces)
+ << VDecl->getDeclName() << VDecl->getType()
+ << VDecl->getSourceRange();
+ }
+ }
+
+ // Expressions default to 'id' when we're in a debugger.
+ bool DefaultedToAuto = false;
+ if (getLangOpts().DebuggerCastResultToId &&
+ Init->getType() == Context.UnknownAnyTy) {
+ ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
+ if (Result.isInvalid()) {
+ VDecl->setInvalidDecl();
+ return;
+ }
+ Init = Result.get();
+ DefaultedToAuto = true;
+ }
+
+ QualType DeducedType;
+ if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
+ DAR_Failed)
+ DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
+ if (DeducedType.isNull()) {
+ RealDecl->setInvalidDecl();
+ return;
+ }
+ VDecl->setType(DeducedType);
+ assert(VDecl->isLinkageValid());
+
+ // In ARC, infer lifetime.
+ if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
+ VDecl->setInvalidDecl();
+
+ // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
+ // 'id' instead of a specific object type prevents most of our usual checks.
+ // We only want to warn outside of template instantiations, though:
+ // inside a template, the 'id' could have come from a parameter.
+ if (ActiveTemplateInstantiations.empty() && !DefaultedToAuto &&
+ DeducedType->isObjCIdType()) {
+ SourceLocation Loc =
+ VDecl->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
+ Diag(Loc, diag::warn_auto_var_is_id)
+ << VDecl->getDeclName() << DeduceInit->getSourceRange();
+ }
+
+ // If this is a redeclaration, check that the type we just deduced matches
+ // the previously declared type.
+ if (VarDecl *Old = VDecl->getPreviousDecl()) {
+ // We never need to merge the type, because we cannot form an incomplete
+ // array of auto, nor deduce such a type.
+ MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/false);
+ }
+
+ // Check the deduced type is valid for a variable declaration.
+ CheckVariableDeclarationType(VDecl);
+ if (VDecl->isInvalidDecl())
+ return;
+
+ // If all looks well, warn if this is a case that will change meaning when
+ // we implement N3922.
+ if (DirectInit && !CXXDirectInit && isa<InitListExpr>(Init)) {
+ Diag(Init->getLocStart(),
+ diag::warn_auto_var_direct_list_init)
+ << FixItHint::CreateInsertion(Init->getLocStart(), "=");
+ }
+ }
+
+ // dllimport cannot be used on variable definitions.
+ if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
+ Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
+ VDecl->setInvalidDecl();
+ return;
+ }
+
+ if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
+ // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
+ Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
+ VDecl->setInvalidDecl();
+ return;
+ }
+
+ if (!VDecl->getType()->isDependentType()) {
+ // A definition must end up with a complete type, which means it must be
+ // complete with the restriction that an array type might be completed by
+ // the initializer; note that later code assumes this restriction.
+ QualType BaseDeclType = VDecl->getType();
+ if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
+ BaseDeclType = Array->getElementType();
+ if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
+ diag::err_typecheck_decl_incomplete_type)) {
+ RealDecl->setInvalidDecl();
+ return;
+ }
+
+ // The variable can not have an abstract class type.
+ if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
+ diag::err_abstract_type_in_decl,
+ AbstractVariableType))
+ VDecl->setInvalidDecl();
+ }
+
+ VarDecl *Def;
+ if ((Def = VDecl->getDefinition()) && Def != VDecl) {
+ NamedDecl *Hidden = nullptr;
+ if (!hasVisibleDefinition(Def, &Hidden) &&
+ (VDecl->getDescribedVarTemplate() ||
+ VDecl->getNumTemplateParameterLists() ||
+ VDecl->getDeclContext()->isDependentContext())) {
+ // The previous definition is hidden, and multiple definitions are
+ // permitted (in separate TUs). Form another definition of it.
+ } else {
+ Diag(VDecl->getLocation(), diag::err_redefinition)
+ << VDecl->getDeclName();
+ Diag(Def->getLocation(), diag::note_previous_definition);
+ VDecl->setInvalidDecl();
+ return;
+ }
+ }
+
+ if (getLangOpts().CPlusPlus) {
+ // C++ [class.static.data]p4
+ // If a static data member is of const integral or const
+ // enumeration type, its declaration in the class definition can
+ // specify a constant-initializer which shall be an integral
+ // constant expression (5.19). In that case, the member can appear
+ // in integral constant expressions. The member shall still be
+ // defined in a namespace scope if it is used in the program and the
+ // namespace scope definition shall not contain an initializer.
+ //
+ // We already performed a redefinition check above, but for static
+ // data members we also need to check whether there was an in-class
+ // declaration with an initializer.
+ if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) {
+ Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
+ << VDecl->getDeclName();
+ Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(),
+ diag::note_previous_initializer)
+ << 0;
+ return;
+ }
+
+ if (VDecl->hasLocalStorage())
+ getCurFunction()->setHasBranchProtectedScope();
+
+ if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
+ VDecl->setInvalidDecl();
+ return;
+ }
+ }
+
+ // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
+ // a kernel function cannot be initialized."
+ if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
+ Diag(VDecl->getLocation(), diag::err_local_cant_init);
+ VDecl->setInvalidDecl();
+ return;
+ }
+
+ // Get the decls type and save a reference for later, since
+ // CheckInitializerTypes may change it.
+ QualType DclT = VDecl->getType(), SavT = DclT;
+
+ // Expressions default to 'id' when we're in a debugger
+ // and we are assigning it to a variable of Objective-C pointer type.
+ if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
+ Init->getType() == Context.UnknownAnyTy) {
+ ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
+ if (Result.isInvalid()) {
+ VDecl->setInvalidDecl();
+ return;
+ }
+ Init = Result.get();
+ }
+
+ // Perform the initialization.
+ if (!VDecl->isInvalidDecl()) {
+ InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
+ InitializationKind Kind
+ = DirectInit ?
+ CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
+ Init->getLocStart(),
+ Init->getLocEnd())
+ : InitializationKind::CreateDirectList(
+ VDecl->getLocation())
+ : InitializationKind::CreateCopy(VDecl->getLocation(),
+ Init->getLocStart());
+
+ MultiExprArg Args = Init;
+ if (CXXDirectInit)
+ Args = MultiExprArg(CXXDirectInit->getExprs(),
+ CXXDirectInit->getNumExprs());
+
+ // Try to correct any TypoExprs in the initialization arguments.
+ for (size_t Idx = 0; Idx < Args.size(); ++Idx) {
+ ExprResult Res = CorrectDelayedTyposInExpr(
+ Args[Idx], VDecl, [this, Entity, Kind](Expr *E) {
+ InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E));
+ return Init.Failed() ? ExprError() : E;
+ });
+ if (Res.isInvalid()) {
+ VDecl->setInvalidDecl();
+ } else if (Res.get() != Args[Idx]) {
+ Args[Idx] = Res.get();
+ }
+ }
+ if (VDecl->isInvalidDecl())
+ return;
+
+ InitializationSequence InitSeq(*this, Entity, Kind, Args);
+ ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
+ if (Result.isInvalid()) {
+ VDecl->setInvalidDecl();
+ return;
+ }
+
+ Init = Result.getAs<Expr>();
+ }
+
+ // Check for self-references within variable initializers.
+ // Variables declared within a function/method body (except for references)
+ // are handled by a dataflow analysis.
+ if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
+ VDecl->getType()->isReferenceType()) {
+ CheckSelfReference(*this, RealDecl, Init, DirectInit);
+ }
+
+ // If the type changed, it means we had an incomplete type that was
+ // completed by the initializer. For example:
+ // int ary[] = { 1, 3, 5 };
+ // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
+ if (!VDecl->isInvalidDecl() && (DclT != SavT))
+ VDecl->setType(DclT);
+
+ if (!VDecl->isInvalidDecl()) {
+ checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
+
+ if (VDecl->hasAttr<BlocksAttr>())
+ checkRetainCycles(VDecl, Init);
+
+ // It is safe to assign a weak reference into a strong variable.
+ // Although this code can still have problems:
+ // id x = self.weakProp;
+ // id y = self.weakProp;
+ // we do not warn to warn spuriously when 'x' and 'y' are on separate
+ // paths through the function. This should be revisited if
+ // -Wrepeated-use-of-weak is made flow-sensitive.
+ if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong &&
+ !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
+ Init->getLocStart()))
+ getCurFunction()->markSafeWeakUse(Init);
+ }
+
+ // The initialization is usually a full-expression.
+ //
+ // FIXME: If this is a braced initialization of an aggregate, it is not
+ // an expression, and each individual field initializer is a separate
+ // full-expression. For instance, in:
+ //
+ // struct Temp { ~Temp(); };
+ // struct S { S(Temp); };
+ // struct T { S a, b; } t = { Temp(), Temp() }
+ //
+ // we should destroy the first Temp before constructing the second.
+ ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
+ false,
+ VDecl->isConstexpr());
+ if (Result.isInvalid()) {
+ VDecl->setInvalidDecl();
+ return;
+ }
+ Init = Result.get();
+
+ // Attach the initializer to the decl.
+ VDecl->setInit(Init);
+
+ if (VDecl->isLocalVarDecl()) {
+ // C99 6.7.8p4: All the expressions in an initializer for an object that has
+ // static storage duration shall be constant expressions or string literals.
+ // C++ does not have this restriction.
+ if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl()) {
+ const Expr *Culprit;
+ if (VDecl->getStorageClass() == SC_Static)
+ CheckForConstantInitializer(Init, DclT);
+ // C89 is stricter than C99 for non-static aggregate types.
+ // C89 6.5.7p3: All the expressions [...] in an initializer list
+ // for an object that has aggregate or union type shall be
+ // constant expressions.
+ else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
+ isa<InitListExpr>(Init) &&
+ !Init->isConstantInitializer(Context, false, &Culprit))
+ Diag(Culprit->getExprLoc(),
+ diag::ext_aggregate_init_not_constant)
+ << Culprit->getSourceRange();
+ }
+ } else if (VDecl->isStaticDataMember() &&
+ VDecl->getLexicalDeclContext()->isRecord()) {
+ // This is an in-class initialization for a static data member, e.g.,
+ //
+ // struct S {
+ // static const int value = 17;
+ // };
+
+ // C++ [class.mem]p4:
+ // A member-declarator can contain a constant-initializer only
+ // if it declares a static member (9.4) of const integral or
+ // const enumeration type, see 9.4.2.
+ //
+ // C++11 [class.static.data]p3:
+ // If a non-volatile const static data member is of integral or
+ // enumeration type, its declaration in the class definition can
+ // specify a brace-or-equal-initializer in which every initalizer-clause
+ // that is an assignment-expression is a constant expression. A static
+ // data member of literal type can be declared in the class definition
+ // with the constexpr specifier; if so, its declaration shall specify a
+ // brace-or-equal-initializer in which every initializer-clause that is
+ // an assignment-expression is a constant expression.
+
+ // Do nothing on dependent types.
+ if (DclT->isDependentType()) {
+
+ // Allow any 'static constexpr' members, whether or not they are of literal
+ // type. We separately check that every constexpr variable is of literal
+ // type.
+ } else if (VDecl->isConstexpr()) {
+
+ // Require constness.
+ } else if (!DclT.isConstQualified()) {
+ Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
+ << Init->getSourceRange();
+ VDecl->setInvalidDecl();
+
+ // We allow integer constant expressions in all cases.
+ } else if (DclT->isIntegralOrEnumerationType()) {
+ // Check whether the expression is a constant expression.
+ SourceLocation Loc;
+ if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
+ // In C++11, a non-constexpr const static data member with an
+ // in-class initializer cannot be volatile.
+ Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
+ else if (Init->isValueDependent())
+ ; // Nothing to check.
+ else if (Init->isIntegerConstantExpr(Context, &Loc))
+ ; // Ok, it's an ICE!
+ else if (Init->isEvaluatable(Context)) {
+ // If we can constant fold the initializer through heroics, accept it,
+ // but report this as a use of an extension for -pedantic.
+ Diag(Loc, diag::ext_in_class_initializer_non_constant)
+ << Init->getSourceRange();
+ } else {
+ // Otherwise, this is some crazy unknown case. Report the issue at the
+ // location provided by the isIntegerConstantExpr failed check.
+ Diag(Loc, diag::err_in_class_initializer_non_constant)
+ << Init->getSourceRange();
+ VDecl->setInvalidDecl();
+ }
+
+ // We allow foldable floating-point constants as an extension.
+ } else if (DclT->isFloatingType()) { // also permits complex, which is ok
+ // In C++98, this is a GNU extension. In C++11, it is not, but we support
+ // it anyway and provide a fixit to add the 'constexpr'.
+ if (getLangOpts().CPlusPlus11) {
+ Diag(VDecl->getLocation(),
+ diag::ext_in_class_initializer_float_type_cxx11)
+ << DclT << Init->getSourceRange();
+ Diag(VDecl->getLocStart(),
+ diag::note_in_class_initializer_float_type_cxx11)
+ << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
+ } else {
+ Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
+ << DclT << Init->getSourceRange();
+
+ if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
+ Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
+ << Init->getSourceRange();
+ VDecl->setInvalidDecl();
+ }
+ }
+
+ // Suggest adding 'constexpr' in C++11 for literal types.
+ } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
+ Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
+ << DclT << Init->getSourceRange()
+ << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
+ VDecl->setConstexpr(true);
+
+ } else {
+ Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
+ << DclT << Init->getSourceRange();
+ VDecl->setInvalidDecl();
+ }
+ } else if (VDecl->isFileVarDecl()) {
+ if (VDecl->getStorageClass() == SC_Extern &&
+ (!getLangOpts().CPlusPlus ||
+ !(Context.getBaseElementType(VDecl->getType()).isConstQualified() ||
+ VDecl->isExternC())) &&
+ !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
+ Diag(VDecl->getLocation(), diag::warn_extern_init);
+
+ // C99 6.7.8p4. All file scoped initializers need to be constant.
+ if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
+ CheckForConstantInitializer(Init, DclT);
+ }
+
+ // We will represent direct-initialization similarly to copy-initialization:
+ // int x(1); -as-> int x = 1;
+ // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
+ //
+ // Clients that want to distinguish between the two forms, can check for
+ // direct initializer using VarDecl::getInitStyle().
+ // A major benefit is that clients that don't particularly care about which
+ // exactly form was it (like the CodeGen) can handle both cases without
+ // special case code.
+
+ // C++ 8.5p11:
+ // The form of initialization (using parentheses or '=') is generally
+ // insignificant, but does matter when the entity being initialized has a
+ // class type.
+ if (CXXDirectInit) {
+ assert(DirectInit && "Call-style initializer must be direct init.");
+ VDecl->setInitStyle(VarDecl::CallInit);
+ } else if (DirectInit) {
+ // This must be list-initialization. No other way is direct-initialization.
+ VDecl->setInitStyle(VarDecl::ListInit);
+ }
+
+ CheckCompleteVariableDeclaration(VDecl);
+}
+
+/// ActOnInitializerError - Given that there was an error parsing an
+/// initializer for the given declaration, try to return to some form
+/// of sanity.
+void Sema::ActOnInitializerError(Decl *D) {
+ // Our main concern here is re-establishing invariants like "a
+ // variable's type is either dependent or complete".
+ if (!D || D->isInvalidDecl()) return;
+
+ VarDecl *VD = dyn_cast<VarDecl>(D);
+ if (!VD) return;
+
+ // Auto types are meaningless if we can't make sense of the initializer.
+ if (ParsingInitForAutoVars.count(D)) {
+ D->setInvalidDecl();
+ return;
+ }
+
+ QualType Ty = VD->getType();
+ if (Ty->isDependentType()) return;
+
+ // Require a complete type.
+ if (RequireCompleteType(VD->getLocation(),
+ Context.getBaseElementType(Ty),
+ diag::err_typecheck_decl_incomplete_type)) {
+ VD->setInvalidDecl();
+ return;
+ }
+
+ // Require a non-abstract type.
+ if (RequireNonAbstractType(VD->getLocation(), Ty,
+ diag::err_abstract_type_in_decl,
+ AbstractVariableType)) {
+ VD->setInvalidDecl();
+ return;
+ }
+
+ // Don't bother complaining about constructors or destructors,
+ // though.
+}
+
+void Sema::ActOnUninitializedDecl(Decl *RealDecl,
+ bool TypeMayContainAuto) {
+ // If there is no declaration, there was an error parsing it. Just ignore it.
+ if (!RealDecl)
+ return;
+
+ if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
+ QualType Type = Var->getType();
+
+ // C++11 [dcl.spec.auto]p3
+ if (TypeMayContainAuto && Type->getContainedAutoType()) {
+ Diag(Var->getLocation(), diag::err_auto_var_requires_init)
+ << Var->getDeclName() << Type;
+ Var->setInvalidDecl();
+ return;
+ }
+
+ // C++11 [class.static.data]p3: A static data member can be declared with
+ // the constexpr specifier; if so, its declaration shall specify
+ // a brace-or-equal-initializer.
+ // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
+ // the definition of a variable [...] or the declaration of a static data
+ // member.
+ if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
+ if (Var->isStaticDataMember())
+ Diag(Var->getLocation(),
+ diag::err_constexpr_static_mem_var_requires_init)
+ << Var->getDeclName();
+ else
+ Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
+ Var->setInvalidDecl();
+ return;
+ }
+
+ // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
+ // be initialized.
+ if (!Var->isInvalidDecl() &&
+ Var->getType().getAddressSpace() == LangAS::opencl_constant &&
+ Var->getStorageClass() != SC_Extern && !Var->getInit()) {
+ Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
+ Var->setInvalidDecl();
+ return;
+ }
+
+ switch (Var->isThisDeclarationADefinition()) {
+ case VarDecl::Definition:
+ if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
+ break;
+
+ // We have an out-of-line definition of a static data member
+ // that has an in-class initializer, so we type-check this like
+ // a declaration.
+ //
+ // Fall through
+
+ case VarDecl::DeclarationOnly:
+ // It's only a declaration.
+
+ // Block scope. C99 6.7p7: If an identifier for an object is
+ // declared with no linkage (C99 6.2.2p6), the type for the
+ // object shall be complete.
+ if (!Type->isDependentType() && Var->isLocalVarDecl() &&
+ !Var->hasLinkage() && !Var->isInvalidDecl() &&
+ RequireCompleteType(Var->getLocation(), Type,
+ diag::err_typecheck_decl_incomplete_type))
+ Var->setInvalidDecl();
+
+ // Make sure that the type is not abstract.
+ if (!Type->isDependentType() && !Var->isInvalidDecl() &&
+ RequireNonAbstractType(Var->getLocation(), Type,
+ diag::err_abstract_type_in_decl,
+ AbstractVariableType))
+ Var->setInvalidDecl();
+ if (!Type->isDependentType() && !Var->isInvalidDecl() &&
+ Var->getStorageClass() == SC_PrivateExtern) {
+ Diag(Var->getLocation(), diag::warn_private_extern);
+ Diag(Var->getLocation(), diag::note_private_extern);
+ }
+
+ return;
+
+ case VarDecl::TentativeDefinition:
+ // File scope. C99 6.9.2p2: A declaration of an identifier for an
+ // object that has file scope without an initializer, and without a
+ // storage-class specifier or with the storage-class specifier "static",
+ // constitutes a tentative definition. Note: A tentative definition with
+ // external linkage is valid (C99 6.2.2p5).
+ if (!Var->isInvalidDecl()) {
+ if (const IncompleteArrayType *ArrayT
+ = Context.getAsIncompleteArrayType(Type)) {
+ if (RequireCompleteType(Var->getLocation(),
+ ArrayT->getElementType(),
+ diag::err_illegal_decl_array_incomplete_type))
+ Var->setInvalidDecl();
+ } else if (Var->getStorageClass() == SC_Static) {
+ // C99 6.9.2p3: If the declaration of an identifier for an object is
+ // a tentative definition and has internal linkage (C99 6.2.2p3), the
+ // declared type shall not be an incomplete type.
+ // NOTE: code such as the following
+ // static struct s;
+ // struct s { int a; };
+ // is accepted by gcc. Hence here we issue a warning instead of
+ // an error and we do not invalidate the static declaration.
+ // NOTE: to avoid multiple warnings, only check the first declaration.
+ if (Var->isFirstDecl())
+ RequireCompleteType(Var->getLocation(), Type,
+ diag::ext_typecheck_decl_incomplete_type);
+ }
+ }
+
+ // Record the tentative definition; we're done.
+ if (!Var->isInvalidDecl())
+ TentativeDefinitions.push_back(Var);
+ return;
+ }
+
+ // Provide a specific diagnostic for uninitialized variable
+ // definitions with incomplete array type.
+ if (Type->isIncompleteArrayType()) {
+ Diag(Var->getLocation(),
+ diag::err_typecheck_incomplete_array_needs_initializer);
+ Var->setInvalidDecl();
+ return;
+ }
+
+ // Provide a specific diagnostic for uninitialized variable
+ // definitions with reference type.
+ if (Type->isReferenceType()) {
+ Diag(Var->getLocation(), diag::err_reference_var_requires_init)
+ << Var->getDeclName()
+ << SourceRange(Var->getLocation(), Var->getLocation());
+ Var->setInvalidDecl();
+ return;
+ }
+
+ // Do not attempt to type-check the default initializer for a
+ // variable with dependent type.
+ if (Type->isDependentType())
+ return;
+
+ if (Var->isInvalidDecl())
+ return;
+
+ if (!Var->hasAttr<AliasAttr>()) {
+ if (RequireCompleteType(Var->getLocation(),
+ Context.getBaseElementType(Type),
+ diag::err_typecheck_decl_incomplete_type)) {
+ Var->setInvalidDecl();
+ return;
+ }
+ } else {
+ return;
+ }
+
+ // The variable can not have an abstract class type.
+ if (RequireNonAbstractType(Var->getLocation(), Type,
+ diag::err_abstract_type_in_decl,
+ AbstractVariableType)) {
+ Var->setInvalidDecl();
+ return;
+ }
+
+ // Check for jumps past the implicit initializer. C++0x
+ // clarifies that this applies to a "variable with automatic
+ // storage duration", not a "local variable".
+ // C++11 [stmt.dcl]p3
+ // A program that jumps from a point where a variable with automatic
+ // storage duration is not in scope to a point where it is in scope is
+ // ill-formed unless the variable has scalar type, class type with a
+ // trivial default constructor and a trivial destructor, a cv-qualified
+ // version of one of these types, or an array of one of the preceding
+ // types and is declared without an initializer.
+ if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
+ if (const RecordType *Record
+ = Context.getBaseElementType(Type)->getAs<RecordType>()) {
+ CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
+ // Mark the function for further checking even if the looser rules of
+ // C++11 do not require such checks, so that we can diagnose
+ // incompatibilities with C++98.
+ if (!CXXRecord->isPOD())
+ getCurFunction()->setHasBranchProtectedScope();
+ }
+ }
+
+ // C++03 [dcl.init]p9:
+ // If no initializer is specified for an object, and the
+ // object is of (possibly cv-qualified) non-POD class type (or
+ // array thereof), the object shall be default-initialized; if
+ // the object is of const-qualified type, the underlying class
+ // type shall have a user-declared default
+ // constructor. Otherwise, if no initializer is specified for
+ // a non- static object, the object and its subobjects, if
+ // any, have an indeterminate initial value); if the object
+ // or any of its subobjects are of const-qualified type, the
+ // program is ill-formed.
+ // C++0x [dcl.init]p11:
+ // If no initializer is specified for an object, the object is
+ // default-initialized; [...].
+ InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
+ InitializationKind Kind
+ = InitializationKind::CreateDefault(Var->getLocation());
+
+ InitializationSequence InitSeq(*this, Entity, Kind, None);
+ ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
+ if (Init.isInvalid())
+ Var->setInvalidDecl();
+ else if (Init.get()) {
+ Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
+ // This is important for template substitution.
+ Var->setInitStyle(VarDecl::CallInit);
+ }
+
+ CheckCompleteVariableDeclaration(Var);
+ }
+}
+
+void Sema::ActOnCXXForRangeDecl(Decl *D) {
+ VarDecl *VD = dyn_cast<VarDecl>(D);
+ if (!VD) {
+ Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
+ D->setInvalidDecl();
+ return;
+ }
+
+ VD->setCXXForRangeDecl(true);
+
+ // for-range-declaration cannot be given a storage class specifier.
+ int Error = -1;
+ switch (VD->getStorageClass()) {
+ case SC_None:
+ break;
+ case SC_Extern:
+ Error = 0;
+ break;
+ case SC_Static:
+ Error = 1;
+ break;
+ case SC_PrivateExtern:
+ Error = 2;
+ break;
+ case SC_Auto:
+ Error = 3;
+ break;
+ case SC_Register:
+ Error = 4;
+ break;
+ case SC_OpenCLWorkGroupLocal:
+ llvm_unreachable("Unexpected storage class");
+ }
+ if (Error != -1) {
+ Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
+ << VD->getDeclName() << Error;
+ D->setInvalidDecl();
+ }
+}
+
+StmtResult
+Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
+ IdentifierInfo *Ident,
+ ParsedAttributes &Attrs,
+ SourceLocation AttrEnd) {
+ // C++1y [stmt.iter]p1:
+ // A range-based for statement of the form
+ // for ( for-range-identifier : for-range-initializer ) statement
+ // is equivalent to
+ // for ( auto&& for-range-identifier : for-range-initializer ) statement
+ DeclSpec DS(Attrs.getPool().getFactory());
+
+ const char *PrevSpec;
+ unsigned DiagID;
+ DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
+ getPrintingPolicy());
+
+ Declarator D(DS, Declarator::ForContext);
+ D.SetIdentifier(Ident, IdentLoc);
+ D.takeAttributes(Attrs, AttrEnd);
+
+ ParsedAttributes EmptyAttrs(Attrs.getPool().getFactory());
+ D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/false),
+ EmptyAttrs, IdentLoc);
+ Decl *Var = ActOnDeclarator(S, D);
+ cast<VarDecl>(Var)->setCXXForRangeDecl(true);
+ FinalizeDeclaration(Var);
+ return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
+ AttrEnd.isValid() ? AttrEnd : IdentLoc);
+}
+
+void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
+ if (var->isInvalidDecl()) return;
+
+ // In ARC, don't allow jumps past the implicit initialization of a
+ // local retaining variable.
+ if (getLangOpts().ObjCAutoRefCount &&
+ var->hasLocalStorage()) {
+ switch (var->getType().getObjCLifetime()) {
+ case Qualifiers::OCL_None:
+ case Qualifiers::OCL_ExplicitNone:
+ case Qualifiers::OCL_Autoreleasing:
+ break;
+
+ case Qualifiers::OCL_Weak:
+ case Qualifiers::OCL_Strong:
+ getCurFunction()->setHasBranchProtectedScope();
+ break;
+ }
+ }
+
+ // Warn about externally-visible variables being defined without a
+ // prior declaration. We only want to do this for global
+ // declarations, but we also specifically need to avoid doing it for
+ // class members because the linkage of an anonymous class can
+ // change if it's later given a typedef name.
+ if (var->isThisDeclarationADefinition() &&
+ var->getDeclContext()->getRedeclContext()->isFileContext() &&
+ var->isExternallyVisible() && var->hasLinkage() &&
+ !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
+ var->getLocation())) {
+ // Find a previous declaration that's not a definition.
+ VarDecl *prev = var->getPreviousDecl();
+ while (prev && prev->isThisDeclarationADefinition())
+ prev = prev->getPreviousDecl();
+
+ if (!prev)
+ Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
+ }
+
+ if (var->getTLSKind() == VarDecl::TLS_Static) {
+ const Expr *Culprit;
+ if (var->getType().isDestructedType()) {
+ // GNU C++98 edits for __thread, [basic.start.term]p3:
+ // The type of an object with thread storage duration shall not
+ // have a non-trivial destructor.
+ Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
+ if (getLangOpts().CPlusPlus11)
+ Diag(var->getLocation(), diag::note_use_thread_local);
+ } else if (getLangOpts().CPlusPlus && var->hasInit() &&
+ !var->getInit()->isConstantInitializer(
+ Context, var->getType()->isReferenceType(), &Culprit)) {
+ // GNU C++98 edits for __thread, [basic.start.init]p4:
+ // An object of thread storage duration shall not require dynamic
+ // initialization.
+ // FIXME: Need strict checking here.
+ Diag(Culprit->getExprLoc(), diag::err_thread_dynamic_init)
+ << Culprit->getSourceRange();
+ if (getLangOpts().CPlusPlus11)
+ Diag(var->getLocation(), diag::note_use_thread_local);
+ }
+
+ }
+
+ // Apply section attributes and pragmas to global variables.
+ bool GlobalStorage = var->hasGlobalStorage();
+ if (GlobalStorage && var->isThisDeclarationADefinition() &&
+ ActiveTemplateInstantiations.empty()) {
+ PragmaStack<StringLiteral *> *Stack = nullptr;
+ int SectionFlags = ASTContext::PSF_Implicit | ASTContext::PSF_Read;
+ if (var->getType().isConstQualified())
+ Stack = &ConstSegStack;
+ else if (!var->getInit()) {
+ Stack = &BSSSegStack;
+ SectionFlags |= ASTContext::PSF_Write;
+ } else {
+ Stack = &DataSegStack;
+ SectionFlags |= ASTContext::PSF_Write;
+ }
+ if (Stack->CurrentValue && !var->hasAttr<SectionAttr>()) {
+ var->addAttr(SectionAttr::CreateImplicit(
+ Context, SectionAttr::Declspec_allocate,
+ Stack->CurrentValue->getString(), Stack->CurrentPragmaLocation));
+ }
+ if (const SectionAttr *SA = var->getAttr<SectionAttr>())
+ if (UnifySection(SA->getName(), SectionFlags, var))
+ var->dropAttr<SectionAttr>();
+
+ // Apply the init_seg attribute if this has an initializer. If the
+ // initializer turns out to not be dynamic, we'll end up ignoring this
+ // attribute.
+ if (CurInitSeg && var->getInit())
+ var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(),
+ CurInitSegLoc));
+ }
+
+ // All the following checks are C++ only.
+ if (!getLangOpts().CPlusPlus) return;
+
+ QualType type = var->getType();
+ if (type->isDependentType()) return;
+
+ // __block variables might require us to capture a copy-initializer.
+ if (var->hasAttr<BlocksAttr>()) {
+ // It's currently invalid to ever have a __block variable with an
+ // array type; should we diagnose that here?
+
+ // Regardless, we don't want to ignore array nesting when
+ // constructing this copy.
+ if (type->isStructureOrClassType()) {
+ EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
+ SourceLocation poi = var->getLocation();
+ Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
+ ExprResult result
+ = PerformMoveOrCopyInitialization(
+ InitializedEntity::InitializeBlock(poi, type, false),
+ var, var->getType(), varRef, /*AllowNRVO=*/true);
+ if (!result.isInvalid()) {
+ result = MaybeCreateExprWithCleanups(result);
+ Expr *init = result.getAs<Expr>();
+ Context.setBlockVarCopyInits(var, init);
+ }
+ }
+ }
+
+ Expr *Init = var->getInit();
+ bool IsGlobal = GlobalStorage && !var->isStaticLocal();
+ QualType baseType = Context.getBaseElementType(type);
+
+ if (!var->getDeclContext()->isDependentContext() &&
+ Init && !Init->isValueDependent()) {
+ if (IsGlobal && !var->isConstexpr() &&
+ !getDiagnostics().isIgnored(diag::warn_global_constructor,
+ var->getLocation())) {
+ // Warn about globals which don't have a constant initializer. Don't
+ // warn about globals with a non-trivial destructor because we already
+ // warned about them.
+ CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
+ if (!(RD && !RD->hasTrivialDestructor()) &&
+ !Init->isConstantInitializer(Context, baseType->isReferenceType()))
+ Diag(var->getLocation(), diag::warn_global_constructor)
+ << Init->getSourceRange();
+ }
+
+ if (var->isConstexpr()) {
+ SmallVector<PartialDiagnosticAt, 8> Notes;
+ if (!var->evaluateValue(Notes) || !var->isInitICE()) {
+ SourceLocation DiagLoc = var->getLocation();
+ // If the note doesn't add any useful information other than a source
+ // location, fold it into the primary diagnostic.
+ if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
+ diag::note_invalid_subexpr_in_const_expr) {
+ DiagLoc = Notes[0].first;
+ Notes.clear();
+ }
+ Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
+ << var << Init->getSourceRange();
+ for (unsigned I = 0, N = Notes.size(); I != N; ++I)
+ Diag(Notes[I].first, Notes[I].second);
+ }
+ } else if (var->isUsableInConstantExpressions(Context)) {
+ // Check whether the initializer of a const variable of integral or
+ // enumeration type is an ICE now, since we can't tell whether it was
+ // initialized by a constant expression if we check later.
+ var->checkInitIsICE();
+ }
+ }
+
+ // Require the destructor.
+ if (const RecordType *recordType = baseType->getAs<RecordType>())
+ FinalizeVarWithDestructor(var, recordType);
+}
+
+/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
+/// any semantic actions necessary after any initializer has been attached.
+void
+Sema::FinalizeDeclaration(Decl *ThisDecl) {
+ // Note that we are no longer parsing the initializer for this declaration.
+ ParsingInitForAutoVars.erase(ThisDecl);
+
+ VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
+ if (!VD)
+ return;
+
+ checkAttributesAfterMerging(*this, *VD);
+
+ // Static locals inherit dll attributes from their function.
+ if (VD->isStaticLocal()) {
+ if (FunctionDecl *FD =
+ dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod())) {
+ if (Attr *A = getDLLAttr(FD)) {
+ auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
+ NewAttr->setInherited(true);
+ VD->addAttr(NewAttr);
+ }
+ }
+ }
+
+ // Grab the dllimport or dllexport attribute off of the VarDecl.
+ const InheritableAttr *DLLAttr = getDLLAttr(VD);
+
+ // Imported static data members cannot be defined out-of-line.
+ if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) {
+ if (VD->isStaticDataMember() && VD->isOutOfLine() &&
+ VD->isThisDeclarationADefinition()) {
+ // We allow definitions of dllimport class template static data members
+ // with a warning.
+ CXXRecordDecl *Context =
+ cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
+ bool IsClassTemplateMember =
+ isa<ClassTemplatePartialSpecializationDecl>(Context) ||
+ Context->getDescribedClassTemplate();
+
+ Diag(VD->getLocation(),
+ IsClassTemplateMember
+ ? diag::warn_attribute_dllimport_static_field_definition
+ : diag::err_attribute_dllimport_static_field_definition);
+ Diag(IA->getLocation(), diag::note_attribute);
+ if (!IsClassTemplateMember)
+ VD->setInvalidDecl();
+ }
+ }
+
+ // dllimport/dllexport variables cannot be thread local, their TLS index
+ // isn't exported with the variable.
+ if (DLLAttr && VD->getTLSKind()) {
+ Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD
+ << DLLAttr;
+ VD->setInvalidDecl();
+ }
+
+ if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
+ if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
+ Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr;
+ VD->dropAttr<UsedAttr>();
+ }
+ }
+
+ const DeclContext *DC = VD->getDeclContext();
+ // If there's a #pragma GCC visibility in scope, and this isn't a class
+ // member, set the visibility of this variable.
+ if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
+ AddPushedVisibilityAttribute(VD);
+
+ // FIXME: Warn on unused templates.
+ if (VD->isFileVarDecl() && !VD->getDescribedVarTemplate() &&
+ !isa<VarTemplatePartialSpecializationDecl>(VD))
+ MarkUnusedFileScopedDecl(VD);
+
+ // Now we have parsed the initializer and can update the table of magic
+ // tag values.
+ if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
+ !VD->getType()->isIntegralOrEnumerationType())
+ return;
+
+ for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
+ const Expr *MagicValueExpr = VD->getInit();
+ if (!MagicValueExpr) {
+ continue;
+ }
+ llvm::APSInt MagicValueInt;
+ if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
+ Diag(I->getRange().getBegin(),
+ diag::err_type_tag_for_datatype_not_ice)
+ << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
+ continue;
+ }
+ if (MagicValueInt.getActiveBits() > 64) {
+ Diag(I->getRange().getBegin(),
+ diag::err_type_tag_for_datatype_too_large)
+ << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
+ continue;
+ }
+ uint64_t MagicValue = MagicValueInt.getZExtValue();
+ RegisterTypeTagForDatatype(I->getArgumentKind(),
+ MagicValue,
+ I->getMatchingCType(),
+ I->getLayoutCompatible(),
+ I->getMustBeNull());
+ }
+}
+
+Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
+ ArrayRef<Decl *> Group) {
+ SmallVector<Decl*, 8> Decls;
+
+ if (DS.isTypeSpecOwned())
+ Decls.push_back(DS.getRepAsDecl());
+
+ DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
+ for (unsigned i = 0, e = Group.size(); i != e; ++i)
+ if (Decl *D = Group[i]) {
+ if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D))
+ if (!FirstDeclaratorInGroup)
+ FirstDeclaratorInGroup = DD;
+ Decls.push_back(D);
+ }
+
+ if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
+ if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
+ handleTagNumbering(Tag, S);
+ if (!Tag->hasNameForLinkage() && !Tag->hasDeclaratorForAnonDecl())
+ Tag->setDeclaratorForAnonDecl(FirstDeclaratorInGroup);
+ }
+ }
+
+ return BuildDeclaratorGroup(Decls, DS.containsPlaceholderType());
+}
+
+/// BuildDeclaratorGroup - convert a list of declarations into a declaration
+/// group, performing any necessary semantic checking.
+Sema::DeclGroupPtrTy
+Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group,
+ bool TypeMayContainAuto) {
+ // C++0x [dcl.spec.auto]p7:
+ // If the type deduced for the template parameter U is not the same in each
+ // deduction, the program is ill-formed.
+ // FIXME: When initializer-list support is added, a distinction is needed
+ // between the deduced type U and the deduced type which 'auto' stands for.
+ // auto a = 0, b = { 1, 2, 3 };
+ // is legal because the deduced type U is 'int' in both cases.
+ if (TypeMayContainAuto && Group.size() > 1) {
+ QualType Deduced;
+ CanQualType DeducedCanon;
+ VarDecl *DeducedDecl = nullptr;
+ for (unsigned i = 0, e = Group.size(); i != e; ++i) {
+ if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
+ AutoType *AT = D->getType()->getContainedAutoType();
+ // Don't reissue diagnostics when instantiating a template.
+ if (AT && D->isInvalidDecl())
+ break;
+ QualType U = AT ? AT->getDeducedType() : QualType();
+ if (!U.isNull()) {
+ CanQualType UCanon = Context.getCanonicalType(U);
+ if (Deduced.isNull()) {
+ Deduced = U;
+ DeducedCanon = UCanon;
+ DeducedDecl = D;
+ } else if (DeducedCanon != UCanon) {
+ Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
+ diag::err_auto_different_deductions)
+ << (AT->isDecltypeAuto() ? 1 : 0)
+ << Deduced << DeducedDecl->getDeclName()
+ << U << D->getDeclName()
+ << DeducedDecl->getInit()->getSourceRange()
+ << D->getInit()->getSourceRange();
+ D->setInvalidDecl();
+ break;
+ }
+ }
+ }
+ }
+ }
+
+ ActOnDocumentableDecls(Group);
+
+ return DeclGroupPtrTy::make(
+ DeclGroupRef::Create(Context, Group.data(), Group.size()));
+}
+
+void Sema::ActOnDocumentableDecl(Decl *D) {
+ ActOnDocumentableDecls(D);
+}
+
+void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
+ // Don't parse the comment if Doxygen diagnostics are ignored.
+ if (Group.empty() || !Group[0])
+ return;
+
+ if (Diags.isIgnored(diag::warn_doc_param_not_found,
+ Group[0]->getLocation()) &&
+ Diags.isIgnored(diag::warn_unknown_comment_command_name,
+ Group[0]->getLocation()))
+ return;
+
+ if (Group.size() >= 2) {
+ // This is a decl group. Normally it will contain only declarations
+ // produced from declarator list. But in case we have any definitions or
+ // additional declaration references:
+ // 'typedef struct S {} S;'
+ // 'typedef struct S *S;'
+ // 'struct S *pS;'
+ // FinalizeDeclaratorGroup adds these as separate declarations.
+ Decl *MaybeTagDecl = Group[0];
+ if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
+ Group = Group.slice(1);
+ }
+ }
+
+ // See if there are any new comments that are not attached to a decl.
+ ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
+ if (!Comments.empty() &&
+ !Comments.back()->isAttached()) {
+ // There is at least one comment that not attached to a decl.
+ // Maybe it should be attached to one of these decls?
+ //
+ // Note that this way we pick up not only comments that precede the
+ // declaration, but also comments that *follow* the declaration -- thanks to
+ // the lookahead in the lexer: we've consumed the semicolon and looked
+ // ahead through comments.
+ for (unsigned i = 0, e = Group.size(); i != e; ++i)
+ Context.getCommentForDecl(Group[i], &PP);
+ }
+}
+
+/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
+/// to introduce parameters into function prototype scope.
+Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
+ const DeclSpec &DS = D.getDeclSpec();
+
+ // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
+
+ // C++03 [dcl.stc]p2 also permits 'auto'.
+ StorageClass SC = SC_None;
+ if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
+ SC = SC_Register;
+ } else if (getLangOpts().CPlusPlus &&
+ DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
+ SC = SC_Auto;
+ } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
+ Diag(DS.getStorageClassSpecLoc(),
+ diag::err_invalid_storage_class_in_func_decl);
+ D.getMutableDeclSpec().ClearStorageClassSpecs();
+ }
+
+ if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
+ Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
+ << DeclSpec::getSpecifierName(TSCS);
+ if (DS.isConstexprSpecified())
+ Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
+ << 0;
+
+ DiagnoseFunctionSpecifiers(DS);
+
+ TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
+ QualType parmDeclType = TInfo->getType();
+
+ if (getLangOpts().CPlusPlus) {
+ // Check that there are no default arguments inside the type of this
+ // parameter.
+ CheckExtraCXXDefaultArguments(D);
+
+ // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
+ if (D.getCXXScopeSpec().isSet()) {
+ Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
+ << D.getCXXScopeSpec().getRange();
+ D.getCXXScopeSpec().clear();
+ }
+ }
+
+ // Ensure we have a valid name
+ IdentifierInfo *II = nullptr;
+ if (D.hasName()) {
+ II = D.getIdentifier();
+ if (!II) {
+ Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
+ << GetNameForDeclarator(D).getName();
+ D.setInvalidType(true);
+ }
+ }
+
+ // Check for redeclaration of parameters, e.g. int foo(int x, int x);
+ if (II) {
+ LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
+ ForRedeclaration);
+ LookupName(R, S);
+ if (R.isSingleResult()) {
+ NamedDecl *PrevDecl = R.getFoundDecl();
+ if (PrevDecl->isTemplateParameter()) {
+ // Maybe we will complain about the shadowed template parameter.
+ DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
+ // Just pretend that we didn't see the previous declaration.
+ PrevDecl = nullptr;
+ } else if (S->isDeclScope(PrevDecl)) {
+ Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
+ Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
+
+ // Recover by removing the name
+ II = nullptr;
+ D.SetIdentifier(nullptr, D.getIdentifierLoc());
+ D.setInvalidType(true);
+ }
+ }
+ }
+
+ // Temporarily put parameter variables in the translation unit, not
+ // the enclosing context. This prevents them from accidentally
+ // looking like class members in C++.
+ ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
+ D.getLocStart(),
+ D.getIdentifierLoc(), II,
+ parmDeclType, TInfo,
+ SC);
+
+ if (D.isInvalidType())
+ New->setInvalidDecl();
+
+ assert(S->isFunctionPrototypeScope());
+ assert(S->getFunctionPrototypeDepth() >= 1);
+ New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
+ S->getNextFunctionPrototypeIndex());
+
+ // Add the parameter declaration into this scope.
+ S->AddDecl(New);
+ if (II)
+ IdResolver.AddDecl(New);
+
+ ProcessDeclAttributes(S, New, D);
+
+ if (D.getDeclSpec().isModulePrivateSpecified())
+ Diag(New->getLocation(), diag::err_module_private_local)
+ << 1 << New->getDeclName()
+ << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
+ << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
+
+ if (New->hasAttr<BlocksAttr>()) {
+ Diag(New->getLocation(), diag::err_block_on_nonlocal);
+ }
+ return New;
+}
+
+/// \brief Synthesizes a variable for a parameter arising from a
+/// typedef.
+ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
+ SourceLocation Loc,
+ QualType T) {
+ /* FIXME: setting StartLoc == Loc.
+ Would it be worth to modify callers so as to provide proper source
+ location for the unnamed parameters, embedding the parameter's type? */
+ ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
+ T, Context.getTrivialTypeSourceInfo(T, Loc),
+ SC_None, nullptr);
+ Param->setImplicit();
+ return Param;
+}
+
+void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
+ ParmVarDecl * const *ParamEnd) {
+ // Don't diagnose unused-parameter errors in template instantiations; we
+ // will already have done so in the template itself.
+ if (!ActiveTemplateInstantiations.empty())
+ return;
+
+ for (; Param != ParamEnd; ++Param) {
+ if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
+ !(*Param)->hasAttr<UnusedAttr>()) {
+ Diag((*Param)->getLocation(), diag::warn_unused_parameter)
+ << (*Param)->getDeclName();
+ }
+ }
+}
+
+void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
+ ParmVarDecl * const *ParamEnd,
+ QualType ReturnTy,
+ NamedDecl *D) {
+ if (LangOpts.NumLargeByValueCopy == 0) // No check.
+ return;
+
+ // Warn if the return value is pass-by-value and larger than the specified
+ // threshold.
+ if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
+ unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
+ if (Size > LangOpts.NumLargeByValueCopy)
+ Diag(D->getLocation(), diag::warn_return_value_size)
+ << D->getDeclName() << Size;
+ }
+
+ // Warn if any parameter is pass-by-value and larger than the specified
+ // threshold.
+ for (; Param != ParamEnd; ++Param) {
+ QualType T = (*Param)->getType();
+ if (T->isDependentType() || !T.isPODType(Context))
+ continue;
+ unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
+ if (Size > LangOpts.NumLargeByValueCopy)
+ Diag((*Param)->getLocation(), diag::warn_parameter_size)
+ << (*Param)->getDeclName() << Size;
+ }
+}
+
+ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
+ SourceLocation NameLoc, IdentifierInfo *Name,
+ QualType T, TypeSourceInfo *TSInfo,
+ StorageClass SC) {
+ // In ARC, infer a lifetime qualifier for appropriate parameter types.
+ if (getLangOpts().ObjCAutoRefCount &&
+ T.getObjCLifetime() == Qualifiers::OCL_None &&
+ T->isObjCLifetimeType()) {
+
+ Qualifiers::ObjCLifetime lifetime;
+
+ // Special cases for arrays:
+ // - if it's const, use __unsafe_unretained
+ // - otherwise, it's an error
+ if (T->isArrayType()) {
+ if (!T.isConstQualified()) {
+ DelayedDiagnostics.add(
+ sema::DelayedDiagnostic::makeForbiddenType(
+ NameLoc, diag::err_arc_array_param_no_ownership, T, false));
+ }
+ lifetime = Qualifiers::OCL_ExplicitNone;
+ } else {
+ lifetime = T->getObjCARCImplicitLifetime();
+ }
+ T = Context.getLifetimeQualifiedType(T, lifetime);
+ }
+
+ ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
+ Context.getAdjustedParameterType(T),
+ TSInfo, SC, nullptr);
+
+ // Parameters can not be abstract class types.
+ // For record types, this is done by the AbstractClassUsageDiagnoser once
+ // the class has been completely parsed.
+ if (!CurContext->isRecord() &&
+ RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
+ AbstractParamType))
+ New->setInvalidDecl();
+
+ // Parameter declarators cannot be interface types. All ObjC objects are
+ // passed by reference.
+ if (T->isObjCObjectType()) {
+ SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
+ Diag(NameLoc,
+ diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
+ << FixItHint::CreateInsertion(TypeEndLoc, "*");
+ T = Context.getObjCObjectPointerType(T);
+ New->setType(T);
+ }
+
+ // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
+ // duration shall not be qualified by an address-space qualifier."
+ // Since all parameters have automatic store duration, they can not have
+ // an address space.
+ if (T.getAddressSpace() != 0) {
+ // OpenCL allows function arguments declared to be an array of a type
+ // to be qualified with an address space.
+ if (!(getLangOpts().OpenCL && T->isArrayType())) {
+ Diag(NameLoc, diag::err_arg_with_address_space);
+ New->setInvalidDecl();
+ }
+ }
+
+ return New;
+}
+
+void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
+ SourceLocation LocAfterDecls) {
+ DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
+
+ // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
+ // for a K&R function.
+ if (!FTI.hasPrototype) {
+ for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
+ --i;
+ if (FTI.Params[i].Param == nullptr) {
+ SmallString<256> Code;
+ llvm::raw_svector_ostream(Code)
+ << " int " << FTI.Params[i].Ident->getName() << ";\n";
+ Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
+ << FTI.Params[i].Ident
+ << FixItHint::CreateInsertion(LocAfterDecls, Code);
+
+ // Implicitly declare the argument as type 'int' for lack of a better
+ // type.
+ AttributeFactory attrs;
+ DeclSpec DS(attrs);
+ const char* PrevSpec; // unused
+ unsigned DiagID; // unused
+ DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
+ DiagID, Context.getPrintingPolicy());
+ // Use the identifier location for the type source range.
+ DS.SetRangeStart(FTI.Params[i].IdentLoc);
+ DS.SetRangeEnd(FTI.Params[i].IdentLoc);
+ Declarator ParamD(DS, Declarator::KNRTypeListContext);
+ ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
+ FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
+ }
+ }
+ }
+}
+
+Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
+ assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
+ assert(D.isFunctionDeclarator() && "Not a function declarator!");
+ Scope *ParentScope = FnBodyScope->getParent();
+
+ D.setFunctionDefinitionKind(FDK_Definition);
+ Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
+ return ActOnStartOfFunctionDef(FnBodyScope, DP);
+}
+
+void Sema::ActOnFinishInlineMethodDef(CXXMethodDecl *D) {
+ Consumer.HandleInlineMethodDefinition(D);
+}
+
+static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
+ const FunctionDecl*& PossibleZeroParamPrototype) {
+ // Don't warn about invalid declarations.
+ if (FD->isInvalidDecl())
+ return false;
+
+ // Or declarations that aren't global.
+ if (!FD->isGlobal())
+ return false;
+
+ // Don't warn about C++ member functions.
+ if (isa<CXXMethodDecl>(FD))
+ return false;
+
+ // Don't warn about 'main'.
+ if (FD->isMain())
+ return false;
+
+ // Don't warn about inline functions.
+ if (FD->isInlined())
+ return false;
+
+ // Don't warn about function templates.
+ if (FD->getDescribedFunctionTemplate())
+ return false;
+
+ // Don't warn about function template specializations.
+ if (FD->isFunctionTemplateSpecialization())
+ return false;
+
+ // Don't warn for OpenCL kernels.
+ if (FD->hasAttr<OpenCLKernelAttr>())
+ return false;
+
+ // Don't warn on explicitly deleted functions.
+ if (FD->isDeleted())
+ return false;
+
+ bool MissingPrototype = true;
+ for (const FunctionDecl *Prev = FD->getPreviousDecl();
+ Prev; Prev = Prev->getPreviousDecl()) {
+ // Ignore any declarations that occur in function or method
+ // scope, because they aren't visible from the header.
+ if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
+ continue;
+
+ MissingPrototype = !Prev->getType()->isFunctionProtoType();
+ if (FD->getNumParams() == 0)
+ PossibleZeroParamPrototype = Prev;
+ break;
+ }
+
+ return MissingPrototype;
+}
+
+void
+Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
+ const FunctionDecl *EffectiveDefinition) {
+ // Don't complain if we're in GNU89 mode and the previous definition
+ // was an extern inline function.
+ const FunctionDecl *Definition = EffectiveDefinition;
+ if (!Definition)
+ if (!FD->isDefined(Definition))
+ return;
+
+ if (canRedefineFunction(Definition, getLangOpts()))
+ return;
+
+ // If we don't have a visible definition of the function, and it's inline or
+ // a template, it's OK to form another definition of it.
+ //
+ // FIXME: Should we skip the body of the function and use the old definition
+ // in this case? That may be necessary for functions that return local types
+ // through a deduced return type, or instantiate templates with local types.
+ if (!hasVisibleDefinition(Definition) &&
+ (Definition->isInlineSpecified() ||
+ Definition->getDescribedFunctionTemplate() ||
+ Definition->getNumTemplateParameterLists()))
+ return;
+
+ if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
+ Definition->getStorageClass() == SC_Extern)
+ Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
+ << FD->getDeclName() << getLangOpts().CPlusPlus;
+ else
+ Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
+
+ Diag(Definition->getLocation(), diag::note_previous_definition);
+ FD->setInvalidDecl();
+}
+
+
+static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator,
+ Sema &S) {
+ CXXRecordDecl *const LambdaClass = CallOperator->getParent();
+
+ LambdaScopeInfo *LSI = S.PushLambdaScope();
+ LSI->CallOperator = CallOperator;
+ LSI->Lambda = LambdaClass;
+ LSI->ReturnType = CallOperator->getReturnType();
+ const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
+
+ if (LCD == LCD_None)
+ LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
+ else if (LCD == LCD_ByCopy)
+ LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
+ else if (LCD == LCD_ByRef)
+ LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
+ DeclarationNameInfo DNI = CallOperator->getNameInfo();
+
+ LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
+ LSI->Mutable = !CallOperator->isConst();
+
+ // Add the captures to the LSI so they can be noted as already
+ // captured within tryCaptureVar.
+ auto I = LambdaClass->field_begin();
+ for (const auto &C : LambdaClass->captures()) {
+ if (C.capturesVariable()) {
+ VarDecl *VD = C.getCapturedVar();
+ if (VD->isInitCapture())
+ S.CurrentInstantiationScope->InstantiatedLocal(VD, VD);
+ QualType CaptureType = VD->getType();
+ const bool ByRef = C.getCaptureKind() == LCK_ByRef;
+ LSI->addCapture(VD, /*IsBlock*/false, ByRef,
+ /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(),
+ /*EllipsisLoc*/C.isPackExpansion()
+ ? C.getEllipsisLoc() : SourceLocation(),
+ CaptureType, /*Expr*/ nullptr);
+
+ } else if (C.capturesThis()) {
+ LSI->addThisCapture(/*Nested*/ false, C.getLocation(),
+ S.getCurrentThisType(), /*Expr*/ nullptr);
+ } else {
+ LSI->addVLATypeCapture(C.getLocation(), I->getType());
+ }
+ ++I;
+ }
+}
+
+Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
+ // Clear the last template instantiation error context.
+ LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
+
+ if (!D)
+ return D;
+ FunctionDecl *FD = nullptr;
+
+ if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
+ FD = FunTmpl->getTemplatedDecl();
+ else
+ FD = cast<FunctionDecl>(D);
+ // If we are instantiating a generic lambda call operator, push
+ // a LambdaScopeInfo onto the function stack. But use the information
+ // that's already been calculated (ActOnLambdaExpr) to prime the current
+ // LambdaScopeInfo.
+ // When the template operator is being specialized, the LambdaScopeInfo,
+ // has to be properly restored so that tryCaptureVariable doesn't try
+ // and capture any new variables. In addition when calculating potential
+ // captures during transformation of nested lambdas, it is necessary to
+ // have the LSI properly restored.
+ if (isGenericLambdaCallOperatorSpecialization(FD)) {
+ assert(ActiveTemplateInstantiations.size() &&
+ "There should be an active template instantiation on the stack "
+ "when instantiating a generic lambda!");
+ RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this);
+ }
+ else
+ // Enter a new function scope
+ PushFunctionScope();
+
+ // See if this is a redefinition.
+ if (!FD->isLateTemplateParsed())
+ CheckForFunctionRedefinition(FD);
+
+ // Builtin functions cannot be defined.
+ if (unsigned BuiltinID = FD->getBuiltinID()) {
+ if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
+ !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
+ Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
+ FD->setInvalidDecl();
+ }
+ }
+
+ // The return type of a function definition must be complete
+ // (C99 6.9.1p3, C++ [dcl.fct]p6).
+ QualType ResultType = FD->getReturnType();
+ if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
+ !FD->isInvalidDecl() &&
+ RequireCompleteType(FD->getLocation(), ResultType,
+ diag::err_func_def_incomplete_result))
+ FD->setInvalidDecl();
+
+ if (FnBodyScope)
+ PushDeclContext(FnBodyScope, FD);
+
+ // Check the validity of our function parameters
+ CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
+ /*CheckParameterNames=*/true);
+
+ // Introduce our parameters into the function scope
+ for (auto Param : FD->params()) {
+ Param->setOwningFunction(FD);
+
+ // If this has an identifier, add it to the scope stack.
+ if (Param->getIdentifier() && FnBodyScope) {
+ CheckShadow(FnBodyScope, Param);
+
+ PushOnScopeChains(Param, FnBodyScope);
+ }
+ }
+
+ // If we had any tags defined in the function prototype,
+ // introduce them into the function scope.
+ if (FnBodyScope) {
+ for (ArrayRef<NamedDecl *>::iterator
+ I = FD->getDeclsInPrototypeScope().begin(),
+ E = FD->getDeclsInPrototypeScope().end();
+ I != E; ++I) {
+ NamedDecl *D = *I;
+
+ // Some of these decls (like enums) may have been pinned to the
+ // translation unit for lack of a real context earlier. If so, remove
+ // from the translation unit and reattach to the current context.
+ if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
+ // Is the decl actually in the context?
+ for (const auto *DI : Context.getTranslationUnitDecl()->decls()) {
+ if (DI == D) {
+ Context.getTranslationUnitDecl()->removeDecl(D);
+ break;
+ }
+ }
+ // Either way, reassign the lexical decl context to our FunctionDecl.
+ D->setLexicalDeclContext(CurContext);
+ }
+
+ // If the decl has a non-null name, make accessible in the current scope.
+ if (!D->getName().empty())
+ PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
+
+ // Similarly, dive into enums and fish their constants out, making them
+ // accessible in this scope.
+ if (auto *ED = dyn_cast<EnumDecl>(D)) {
+ for (auto *EI : ED->enumerators())
+ PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
+ }
+ }
+ }
+
+ // Ensure that the function's exception specification is instantiated.
+ if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
+ ResolveExceptionSpec(D->getLocation(), FPT);
+
+ // dllimport cannot be applied to non-inline function definitions.
+ if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
+ !FD->isTemplateInstantiation()) {
+ assert(!FD->hasAttr<DLLExportAttr>());
+ Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
+ FD->setInvalidDecl();
+ return D;
+ }
+ // We want to attach documentation to original Decl (which might be
+ // a function template).
+ ActOnDocumentableDecl(D);
+ if (getCurLexicalContext()->isObjCContainer() &&
+ getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
+ getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
+ Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
+
+ return D;
+}
+
+/// \brief Given the set of return statements within a function body,
+/// compute the variables that are subject to the named return value
+/// optimization.
+///
+/// Each of the variables that is subject to the named return value
+/// optimization will be marked as NRVO variables in the AST, and any
+/// return statement that has a marked NRVO variable as its NRVO candidate can
+/// use the named return value optimization.
+///
+/// This function applies a very simplistic algorithm for NRVO: if every return
+/// statement in the scope of a variable has the same NRVO candidate, that
+/// candidate is an NRVO variable.
+void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
+ ReturnStmt **Returns = Scope->Returns.data();
+
+ for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
+ if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
+ if (!NRVOCandidate->isNRVOVariable())
+ Returns[I]->setNRVOCandidate(nullptr);
+ }
+ }
+}
+
+bool Sema::canDelayFunctionBody(const Declarator &D) {
+ // We can't delay parsing the body of a constexpr function template (yet).
+ if (D.getDeclSpec().isConstexprSpecified())
+ return false;
+
+ // We can't delay parsing the body of a function template with a deduced
+ // return type (yet).
+ if (D.getDeclSpec().containsPlaceholderType()) {
+ // If the placeholder introduces a non-deduced trailing return type,
+ // we can still delay parsing it.
+ if (D.getNumTypeObjects()) {
+ const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
+ if (Outer.Kind == DeclaratorChunk::Function &&
+ Outer.Fun.hasTrailingReturnType()) {
+ QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
+ return Ty.isNull() || !Ty->isUndeducedType();
+ }
+ }
+ return false;
+ }
+
+ return true;
+}
+
+bool Sema::canSkipFunctionBody(Decl *D) {
+ // We cannot skip the body of a function (or function template) which is
+ // constexpr, since we may need to evaluate its body in order to parse the
+ // rest of the file.
+ // We cannot skip the body of a function with an undeduced return type,
+ // because any callers of that function need to know the type.
+ if (const FunctionDecl *FD = D->getAsFunction())
+ if (FD->isConstexpr() || FD->getReturnType()->isUndeducedType())
+ return false;
+ return Consumer.shouldSkipFunctionBody(D);
+}
+
+Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
+ if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Decl))
+ FD->setHasSkippedBody();
+ else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Decl))
+ MD->setHasSkippedBody();
+ return ActOnFinishFunctionBody(Decl, nullptr);
+}
+
+Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
+ return ActOnFinishFunctionBody(D, BodyArg, false);
+}
+
+Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
+ bool IsInstantiation) {
+ FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
+
+ sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
+ sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
+
+ if (FD) {
+ FD->setBody(Body);
+
+ if (getLangOpts().CPlusPlus14 && !FD->isInvalidDecl() && Body &&
+ !FD->isDependentContext() && FD->getReturnType()->isUndeducedType()) {
+ // If the function has a deduced result type but contains no 'return'
+ // statements, the result type as written must be exactly 'auto', and
+ // the deduced result type is 'void'.
+ if (!FD->getReturnType()->getAs<AutoType>()) {
+ Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
+ << FD->getReturnType();
+ FD->setInvalidDecl();
+ } else {
+ // Substitute 'void' for the 'auto' in the type.
+ TypeLoc ResultType = getReturnTypeLoc(FD);
+ Context.adjustDeducedFunctionResultType(
+ FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
+ }
+ } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) {
+ auto *LSI = getCurLambda();
+ if (LSI->HasImplicitReturnType) {
+ deduceClosureReturnType(*LSI);
+
+ // C++11 [expr.prim.lambda]p4:
+ // [...] if there are no return statements in the compound-statement
+ // [the deduced type is] the type void
+ QualType RetType =
+ LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType;
+
+ // Update the return type to the deduced type.
+ const FunctionProtoType *Proto =
+ FD->getType()->getAs<FunctionProtoType>();
+ FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(),
+ Proto->getExtProtoInfo()));
+ }
+ }
+
+ // The only way to be included in UndefinedButUsed is if there is an
+ // ODR use before the definition. Avoid the expensive map lookup if this
+ // is the first declaration.
+ if (!FD->isFirstDecl() && FD->getPreviousDecl()->isUsed()) {
+ if (!FD->isExternallyVisible())
+ UndefinedButUsed.erase(FD);
+ else if (FD->isInlined() &&
+ !LangOpts.GNUInline &&
+ (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>()))
+ UndefinedButUsed.erase(FD);
+ }
+
+ // If the function implicitly returns zero (like 'main') or is naked,
+ // don't complain about missing return statements.
+ if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
+ WP.disableCheckFallThrough();
+
+ // MSVC permits the use of pure specifier (=0) on function definition,
+ // defined at class scope, warn about this non-standard construct.
+ if (getLangOpts().MicrosoftExt && FD->isPure() && FD->isCanonicalDecl())
+ Diag(FD->getLocation(), diag::ext_pure_function_definition);
+
+ if (!FD->isInvalidDecl()) {
+ // Don't diagnose unused parameters of defaulted or deleted functions.
+ if (!FD->isDeleted() && !FD->isDefaulted())
+ DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
+ DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
+ FD->getReturnType(), FD);
+
+ // If this is a structor, we need a vtable.
+ if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
+ MarkVTableUsed(FD->getLocation(), Constructor->getParent());
+ else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(FD))
+ MarkVTableUsed(FD->getLocation(), Destructor->getParent());
+
+ // Try to apply the named return value optimization. We have to check
+ // if we can do this here because lambdas keep return statements around
+ // to deduce an implicit return type.
+ if (getLangOpts().CPlusPlus && FD->getReturnType()->isRecordType() &&
+ !FD->isDependentContext())
+ computeNRVO(Body, getCurFunction());
+ }
+
+ // GNU warning -Wmissing-prototypes:
+ // Warn if a global function is defined without a previous
+ // prototype declaration. This warning is issued even if the
+ // definition itself provides a prototype. The aim is to detect
+ // global functions that fail to be declared in header files.
+ const FunctionDecl *PossibleZeroParamPrototype = nullptr;
+ if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
+ Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
+
+ if (PossibleZeroParamPrototype) {
+ // We found a declaration that is not a prototype,
+ // but that could be a zero-parameter prototype
+ if (TypeSourceInfo *TI =
+ PossibleZeroParamPrototype->getTypeSourceInfo()) {
+ TypeLoc TL = TI->getTypeLoc();
+ if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
+ Diag(PossibleZeroParamPrototype->getLocation(),
+ diag::note_declaration_not_a_prototype)
+ << PossibleZeroParamPrototype
+ << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
+ }
+ }
+ }
+
+ if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
+ const CXXMethodDecl *KeyFunction;
+ if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) &&
+ MD->isVirtual() &&
+ (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) &&
+ MD == KeyFunction->getCanonicalDecl()) {
+ // Update the key-function state if necessary for this ABI.
+ if (FD->isInlined() &&
+ !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
+ Context.setNonKeyFunction(MD);
+
+ // If the newly-chosen key function is already defined, then we
+ // need to mark the vtable as used retroactively.
+ KeyFunction = Context.getCurrentKeyFunction(MD->getParent());
+ const FunctionDecl *Definition;
+ if (KeyFunction && KeyFunction->isDefined(Definition))
+ MarkVTableUsed(Definition->getLocation(), MD->getParent(), true);
+ } else {
+ // We just defined they key function; mark the vtable as used.
+ MarkVTableUsed(FD->getLocation(), MD->getParent(), true);
+ }
+ }
+ }
+
+ assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
+ "Function parsing confused");
+ } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
+ assert(MD == getCurMethodDecl() && "Method parsing confused");
+ MD->setBody(Body);
+ if (!MD->isInvalidDecl()) {
+ DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
+ DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
+ MD->getReturnType(), MD);
+
+ if (Body)
+ computeNRVO(Body, getCurFunction());
+ }
+ if (getCurFunction()->ObjCShouldCallSuper) {
+ Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
+ << MD->getSelector().getAsString();
+ getCurFunction()->ObjCShouldCallSuper = false;
+ }
+ if (getCurFunction()->ObjCWarnForNoDesignatedInitChain) {
+ const ObjCMethodDecl *InitMethod = nullptr;
+ bool isDesignated =
+ MD->isDesignatedInitializerForTheInterface(&InitMethod);
+ assert(isDesignated && InitMethod);
+ (void)isDesignated;
+
+ auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
+ auto IFace = MD->getClassInterface();
+ if (!IFace)
+ return false;
+ auto SuperD = IFace->getSuperClass();
+ if (!SuperD)
+ return false;
+ return SuperD->getIdentifier() ==
+ NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
+ };
+ // Don't issue this warning for unavailable inits or direct subclasses
+ // of NSObject.
+ if (!MD->isUnavailable() && !superIsNSObject(MD)) {
+ Diag(MD->getLocation(),
+ diag::warn_objc_designated_init_missing_super_call);
+ Diag(InitMethod->getLocation(),
+ diag::note_objc_designated_init_marked_here);
+ }
+ getCurFunction()->ObjCWarnForNoDesignatedInitChain = false;
+ }
+ if (getCurFunction()->ObjCWarnForNoInitDelegation) {
+ // Don't issue this warning for unavaialable inits.
+ if (!MD->isUnavailable())
+ Diag(MD->getLocation(),
+ diag::warn_objc_secondary_init_missing_init_call);
+ getCurFunction()->ObjCWarnForNoInitDelegation = false;
+ }
+ } else {
+ return nullptr;
+ }
+
+ assert(!getCurFunction()->ObjCShouldCallSuper &&
+ "This should only be set for ObjC methods, which should have been "
+ "handled in the block above.");
+
+ // Verify and clean out per-function state.
+ if (Body && (!FD || !FD->isDefaulted())) {
+ // C++ constructors that have function-try-blocks can't have return
+ // statements in the handlers of that block. (C++ [except.handle]p14)
+ // Verify this.
+ if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
+ DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
+
+ // Verify that gotos and switch cases don't jump into scopes illegally.
+ if (getCurFunction()->NeedsScopeChecking() &&
+ !PP.isCodeCompletionEnabled())
+ DiagnoseInvalidJumps(Body);
+
+ if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
+ if (!Destructor->getParent()->isDependentType())
+ CheckDestructor(Destructor);
+
+ MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
+ Destructor->getParent());
+ }
+
+ // If any errors have occurred, clear out any temporaries that may have
+ // been leftover. This ensures that these temporaries won't be picked up for
+ // deletion in some later function.
+ if (getDiagnostics().hasErrorOccurred() ||
+ getDiagnostics().getSuppressAllDiagnostics()) {
+ DiscardCleanupsInEvaluationContext();
+ }
+ if (!getDiagnostics().hasUncompilableErrorOccurred() &&
+ !isa<FunctionTemplateDecl>(dcl)) {
+ // Since the body is valid, issue any analysis-based warnings that are
+ // enabled.
+ ActivePolicy = &WP;
+ }
+
+ if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
+ (!CheckConstexprFunctionDecl(FD) ||
+ !CheckConstexprFunctionBody(FD, Body)))
+ FD->setInvalidDecl();
+
+ if (FD && FD->hasAttr<NakedAttr>()) {
+ for (const Stmt *S : Body->children()) {
+ if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) {
+ Diag(S->getLocStart(), diag::err_non_asm_stmt_in_naked_function);
+ Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
+ FD->setInvalidDecl();
+ break;
+ }
+ }
+ }
+
+ assert(ExprCleanupObjects.size() ==
+ ExprEvalContexts.back().NumCleanupObjects &&
+ "Leftover temporaries in function");
+ assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
+ assert(MaybeODRUseExprs.empty() &&
+ "Leftover expressions for odr-use checking");
+ }
+
+ if (!IsInstantiation)
+ PopDeclContext();
+
+ PopFunctionScopeInfo(ActivePolicy, dcl);
+ // If any errors have occurred, clear out any temporaries that may have
+ // been leftover. This ensures that these temporaries won't be picked up for
+ // deletion in some later function.
+ if (getDiagnostics().hasErrorOccurred()) {
+ DiscardCleanupsInEvaluationContext();
+ }
+
+ return dcl;
+}
+
+
+/// When we finish delayed parsing of an attribute, we must attach it to the
+/// relevant Decl.
+void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
+ ParsedAttributes &Attrs) {
+ // Always attach attributes to the underlying decl.
+ if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
+ D = TD->getTemplatedDecl();
+ ProcessDeclAttributeList(S, D, Attrs.getList());
+
+ if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
+ if (Method->isStatic())
+ checkThisInStaticMemberFunctionAttributes(Method);
+}
+
+
+/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
+/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
+NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
+ IdentifierInfo &II, Scope *S) {
+ // Before we produce a declaration for an implicitly defined
+ // function, see whether there was a locally-scoped declaration of
+ // this name as a function or variable. If so, use that
+ // (non-visible) declaration, and complain about it.
+ if (NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II)) {
+ Diag(Loc, diag::warn_use_out_of_scope_declaration) << ExternCPrev;
+ Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
+ return ExternCPrev;
+ }
+
+ // Extension in C99. Legal in C90, but warn about it.
+ unsigned diag_id;
+ if (II.getName().startswith("__builtin_"))
+ diag_id = diag::warn_builtin_unknown;
+ else if (getLangOpts().C99)
+ diag_id = diag::ext_implicit_function_decl;
+ else
+ diag_id = diag::warn_implicit_function_decl;
+ Diag(Loc, diag_id) << &II;
+
+ // Because typo correction is expensive, only do it if the implicit
+ // function declaration is going to be treated as an error.
+ if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
+ TypoCorrection Corrected;
+ if (S &&
+ (Corrected = CorrectTypo(
+ DeclarationNameInfo(&II, Loc), LookupOrdinaryName, S, nullptr,
+ llvm::make_unique<DeclFilterCCC<FunctionDecl>>(), CTK_NonError)))
+ diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
+ /*ErrorRecovery*/false);
+ }
+
+ // Set a Declarator for the implicit definition: int foo();
+ const char *Dummy;
+ AttributeFactory attrFactory;
+ DeclSpec DS(attrFactory);
+ unsigned DiagID;
+ bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
+ Context.getPrintingPolicy());
+ (void)Error; // Silence warning.
+ assert(!Error && "Error setting up implicit decl!");
+ SourceLocation NoLoc;
+ Declarator D(DS, Declarator::BlockContext);
+ D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
+ /*IsAmbiguous=*/false,
+ /*LParenLoc=*/NoLoc,
+ /*Params=*/nullptr,
+ /*NumParams=*/0,
+ /*EllipsisLoc=*/NoLoc,
+ /*RParenLoc=*/NoLoc,
+ /*TypeQuals=*/0,
+ /*RefQualifierIsLvalueRef=*/true,
+ /*RefQualifierLoc=*/NoLoc,
+ /*ConstQualifierLoc=*/NoLoc,
+ /*VolatileQualifierLoc=*/NoLoc,
+ /*RestrictQualifierLoc=*/NoLoc,
+ /*MutableLoc=*/NoLoc,
+ EST_None,
+ /*ESpecLoc=*/NoLoc,
+ /*Exceptions=*/nullptr,
+ /*ExceptionRanges=*/nullptr,
+ /*NumExceptions=*/0,
+ /*NoexceptExpr=*/nullptr,
+ /*ExceptionSpecTokens=*/nullptr,
+ Loc, Loc, D),
+ DS.getAttributes(),
+ SourceLocation());
+ D.SetIdentifier(&II, Loc);
+
+ // Insert this function into translation-unit scope.
+
+ DeclContext *PrevDC = CurContext;
+ CurContext = Context.getTranslationUnitDecl();
+
+ FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
+ FD->setImplicit();
+
+ CurContext = PrevDC;
+
+ AddKnownFunctionAttributes(FD);
+
+ return FD;
+}
+
+/// \brief Adds any function attributes that we know a priori based on
+/// the declaration of this function.
+///
+/// These attributes can apply both to implicitly-declared builtins
+/// (like __builtin___printf_chk) or to library-declared functions
+/// like NSLog or printf.
+///
+/// We need to check for duplicate attributes both here and where user-written
+/// attributes are applied to declarations.
+void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
+ if (FD->isInvalidDecl())
+ return;
+
+ // If this is a built-in function, map its builtin attributes to
+ // actual attributes.
+ if (unsigned BuiltinID = FD->getBuiltinID()) {
+ // Handle printf-formatting attributes.
+ unsigned FormatIdx;
+ bool HasVAListArg;
+ if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
+ if (!FD->hasAttr<FormatAttr>()) {
+ const char *fmt = "printf";
+ unsigned int NumParams = FD->getNumParams();
+ if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
+ FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
+ fmt = "NSString";
+ FD->addAttr(FormatAttr::CreateImplicit(Context,
+ &Context.Idents.get(fmt),
+ FormatIdx+1,
+ HasVAListArg ? 0 : FormatIdx+2,
+ FD->getLocation()));
+ }
+ }
+ if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
+ HasVAListArg)) {
+ if (!FD->hasAttr<FormatAttr>())
+ FD->addAttr(FormatAttr::CreateImplicit(Context,
+ &Context.Idents.get("scanf"),
+ FormatIdx+1,
+ HasVAListArg ? 0 : FormatIdx+2,
+ FD->getLocation()));
+ }
+
+ // Mark const if we don't care about errno and that is the only
+ // thing preventing the function from being const. This allows
+ // IRgen to use LLVM intrinsics for such functions.
+ if (!getLangOpts().MathErrno &&
+ Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
+ if (!FD->hasAttr<ConstAttr>())
+ FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
+ }
+
+ if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
+ !FD->hasAttr<ReturnsTwiceAttr>())
+ FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
+ FD->getLocation()));
+ if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
+ FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
+ if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
+ FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
+ }
+
+ IdentifierInfo *Name = FD->getIdentifier();
+ if (!Name)
+ return;
+ if ((!getLangOpts().CPlusPlus &&
+ FD->getDeclContext()->isTranslationUnit()) ||
+ (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
+ cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
+ LinkageSpecDecl::lang_c)) {
+ // Okay: this could be a libc/libm/Objective-C function we know
+ // about.
+ } else
+ return;
+
+ if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
+ // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
+ // target-specific builtins, perhaps?
+ if (!FD->hasAttr<FormatAttr>())
+ FD->addAttr(FormatAttr::CreateImplicit(Context,
+ &Context.Idents.get("printf"), 2,
+ Name->isStr("vasprintf") ? 0 : 3,
+ FD->getLocation()));
+ }
+
+ if (Name->isStr("__CFStringMakeConstantString")) {
+ // We already have a __builtin___CFStringMakeConstantString,
+ // but builds that use -fno-constant-cfstrings don't go through that.
+ if (!FD->hasAttr<FormatArgAttr>())
+ FD->addAttr(FormatArgAttr::CreateImplicit(Context, 1,
+ FD->getLocation()));
+ }
+}
+
+TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
+ TypeSourceInfo *TInfo) {
+ assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
+ assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
+
+ if (!TInfo) {
+ assert(D.isInvalidType() && "no declarator info for valid type");
+ TInfo = Context.getTrivialTypeSourceInfo(T);
+ }
+
+ // Scope manipulation handled by caller.
+ TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
+ D.getLocStart(),
+ D.getIdentifierLoc(),
+ D.getIdentifier(),
+ TInfo);
+
+ // Bail out immediately if we have an invalid declaration.
+ if (D.isInvalidType()) {
+ NewTD->setInvalidDecl();
+ return NewTD;
+ }
+
+ if (D.getDeclSpec().isModulePrivateSpecified()) {
+ if (CurContext->isFunctionOrMethod())
+ Diag(NewTD->getLocation(), diag::err_module_private_local)
+ << 2 << NewTD->getDeclName()
+ << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
+ << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
+ else
+ NewTD->setModulePrivate();
+ }
+
+ // C++ [dcl.typedef]p8:
+ // If the typedef declaration defines an unnamed class (or
+ // enum), the first typedef-name declared by the declaration
+ // to be that class type (or enum type) is used to denote the
+ // class type (or enum type) for linkage purposes only.
+ // We need to check whether the type was declared in the declaration.
+ switch (D.getDeclSpec().getTypeSpecType()) {
+ case TST_enum:
+ case TST_struct:
+ case TST_interface:
+ case TST_union:
+ case TST_class: {
+ TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
+ setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD);
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ return NewTD;
+}
+
+
+/// \brief Check that this is a valid underlying type for an enum declaration.
+bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
+ SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
+ QualType T = TI->getType();
+
+ if (T->isDependentType())
+ return false;
+
+ if (const BuiltinType *BT = T->getAs<BuiltinType>())
+ if (BT->isInteger())
+ return false;
+
+ Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
+ return true;
+}
+
+/// Check whether this is a valid redeclaration of a previous enumeration.
+/// \return true if the redeclaration was invalid.
+bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
+ QualType EnumUnderlyingTy,
+ const EnumDecl *Prev) {
+ bool IsFixed = !EnumUnderlyingTy.isNull();
+
+ if (IsScoped != Prev->isScoped()) {
+ Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
+ << Prev->isScoped();
+ Diag(Prev->getLocation(), diag::note_previous_declaration);
+ return true;
+ }
+
+ if (IsFixed && Prev->isFixed()) {
+ if (!EnumUnderlyingTy->isDependentType() &&
+ !Prev->getIntegerType()->isDependentType() &&
+ !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
+ Prev->getIntegerType())) {
+ // TODO: Highlight the underlying type of the redeclaration.
+ Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
+ << EnumUnderlyingTy << Prev->getIntegerType();
+ Diag(Prev->getLocation(), diag::note_previous_declaration)
+ << Prev->getIntegerTypeRange();
+ return true;
+ }
+ } else if (IsFixed != Prev->isFixed()) {
+ Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
+ << Prev->isFixed();
+ Diag(Prev->getLocation(), diag::note_previous_declaration);
+ return true;
+ }
+
+ return false;
+}
+
+/// \brief Get diagnostic %select index for tag kind for
+/// redeclaration diagnostic message.
+/// WARNING: Indexes apply to particular diagnostics only!
+///
+/// \returns diagnostic %select index.
+static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
+ switch (Tag) {
+ case TTK_Struct: return 0;
+ case TTK_Interface: return 1;
+ case TTK_Class: return 2;
+ default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
+ }
+}
+
+/// \brief Determine if tag kind is a class-key compatible with
+/// class for redeclaration (class, struct, or __interface).
+///
+/// \returns true iff the tag kind is compatible.
+static bool isClassCompatTagKind(TagTypeKind Tag)
+{
+ return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
+}
+
+/// \brief Determine whether a tag with a given kind is acceptable
+/// as a redeclaration of the given tag declaration.
+///
+/// \returns true if the new tag kind is acceptable, false otherwise.
+bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
+ TagTypeKind NewTag, bool isDefinition,
+ SourceLocation NewTagLoc,
+ const IdentifierInfo &Name) {
+ // C++ [dcl.type.elab]p3:
+ // The class-key or enum keyword present in the
+ // elaborated-type-specifier shall agree in kind with the
+ // declaration to which the name in the elaborated-type-specifier
+ // refers. This rule also applies to the form of
+ // elaborated-type-specifier that declares a class-name or
+ // friend class since it can be construed as referring to the
+ // definition of the class. Thus, in any
+ // elaborated-type-specifier, the enum keyword shall be used to
+ // refer to an enumeration (7.2), the union class-key shall be
+ // used to refer to a union (clause 9), and either the class or
+ // struct class-key shall be used to refer to a class (clause 9)
+ // declared using the class or struct class-key.
+ TagTypeKind OldTag = Previous->getTagKind();
+ if (!isDefinition || !isClassCompatTagKind(NewTag))
+ if (OldTag == NewTag)
+ return true;
+
+ if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
+ // Warn about the struct/class tag mismatch.
+ bool isTemplate = false;
+ if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
+ isTemplate = Record->getDescribedClassTemplate();
+
+ if (!ActiveTemplateInstantiations.empty()) {
+ // In a template instantiation, do not offer fix-its for tag mismatches
+ // since they usually mess up the template instead of fixing the problem.
+ Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
+ << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
+ << getRedeclDiagFromTagKind(OldTag);
+ return true;
+ }
+
+ if (isDefinition) {
+ // On definitions, check previous tags and issue a fix-it for each
+ // one that doesn't match the current tag.
+ if (Previous->getDefinition()) {
+ // Don't suggest fix-its for redefinitions.
+ return true;
+ }
+
+ bool previousMismatch = false;
+ for (auto I : Previous->redecls()) {
+ if (I->getTagKind() != NewTag) {
+ if (!previousMismatch) {
+ previousMismatch = true;
+ Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
+ << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
+ << getRedeclDiagFromTagKind(I->getTagKind());
+ }
+ Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
+ << getRedeclDiagFromTagKind(NewTag)
+ << FixItHint::CreateReplacement(I->getInnerLocStart(),
+ TypeWithKeyword::getTagTypeKindName(NewTag));
+ }
+ }
+ return true;
+ }
+
+ // Check for a previous definition. If current tag and definition
+ // are same type, do nothing. If no definition, but disagree with
+ // with previous tag type, give a warning, but no fix-it.
+ const TagDecl *Redecl = Previous->getDefinition() ?
+ Previous->getDefinition() : Previous;
+ if (Redecl->getTagKind() == NewTag) {
+ return true;
+ }
+
+ Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
+ << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
+ << getRedeclDiagFromTagKind(OldTag);
+ Diag(Redecl->getLocation(), diag::note_previous_use);
+
+ // If there is a previous definition, suggest a fix-it.
+ if (Previous->getDefinition()) {
+ Diag(NewTagLoc, diag::note_struct_class_suggestion)
+ << getRedeclDiagFromTagKind(Redecl->getTagKind())
+ << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
+ TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
+ }
+
+ return true;
+ }
+ return false;
+}
+
+/// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
+/// from an outer enclosing namespace or file scope inside a friend declaration.
+/// This should provide the commented out code in the following snippet:
+/// namespace N {
+/// struct X;
+/// namespace M {
+/// struct Y { friend struct /*N::*/ X; };
+/// }
+/// }
+static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S,
+ SourceLocation NameLoc) {
+ // While the decl is in a namespace, do repeated lookup of that name and see
+ // if we get the same namespace back. If we do not, continue until
+ // translation unit scope, at which point we have a fully qualified NNS.
+ SmallVector<IdentifierInfo *, 4> Namespaces;
+ DeclContext *DC = ND->getDeclContext()->getRedeclContext();
+ for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
+ // This tag should be declared in a namespace, which can only be enclosed by
+ // other namespaces. Bail if there's an anonymous namespace in the chain.
+ NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC);
+ if (!Namespace || Namespace->isAnonymousNamespace())
+ return FixItHint();
+ IdentifierInfo *II = Namespace->getIdentifier();
+ Namespaces.push_back(II);
+ NamedDecl *Lookup = SemaRef.LookupSingleName(
+ S, II, NameLoc, Sema::LookupNestedNameSpecifierName);
+ if (Lookup == Namespace)
+ break;
+ }
+
+ // Once we have all the namespaces, reverse them to go outermost first, and
+ // build an NNS.
+ SmallString<64> Insertion;
+ llvm::raw_svector_ostream OS(Insertion);
+ if (DC->isTranslationUnit())
+ OS << "::";
+ std::reverse(Namespaces.begin(), Namespaces.end());
+ for (auto *II : Namespaces)
+ OS << II->getName() << "::";
+ OS.flush();
+ return FixItHint::CreateInsertion(NameLoc, Insertion);
+}
+
+/// \brief This is invoked when we see 'struct foo' or 'struct {'. In the
+/// former case, Name will be non-null. In the later case, Name will be null.
+/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
+/// reference/declaration/definition of a tag.
+///
+/// \param IsTypeSpecifier \c true if this is a type-specifier (or
+/// trailing-type-specifier) other than one in an alias-declaration.
+///
+/// \param SkipBody If non-null, will be set to indicate if the caller should
+/// skip the definition of this tag and treat it as if it were a declaration.
+Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
+ SourceLocation KWLoc, CXXScopeSpec &SS,
+ IdentifierInfo *Name, SourceLocation NameLoc,
+ AttributeList *Attr, AccessSpecifier AS,
+ SourceLocation ModulePrivateLoc,
+ MultiTemplateParamsArg TemplateParameterLists,
+ bool &OwnedDecl, bool &IsDependent,
+ SourceLocation ScopedEnumKWLoc,
+ bool ScopedEnumUsesClassTag,
+ TypeResult UnderlyingType,
+ bool IsTypeSpecifier, SkipBodyInfo *SkipBody) {
+ // If this is not a definition, it must have a name.
+ IdentifierInfo *OrigName = Name;
+ assert((Name != nullptr || TUK == TUK_Definition) &&
+ "Nameless record must be a definition!");
+ assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
+
+ OwnedDecl = false;
+ TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
+ bool ScopedEnum = ScopedEnumKWLoc.isValid();
+
+ // FIXME: Check explicit specializations more carefully.
+ bool isExplicitSpecialization = false;
+ bool Invalid = false;
+
+ // We only need to do this matching if we have template parameters
+ // or a scope specifier, which also conveniently avoids this work
+ // for non-C++ cases.
+ if (TemplateParameterLists.size() > 0 ||
+ (SS.isNotEmpty() && TUK != TUK_Reference)) {
+ if (TemplateParameterList *TemplateParams =
+ MatchTemplateParametersToScopeSpecifier(
+ KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
+ TUK == TUK_Friend, isExplicitSpecialization, Invalid)) {
+ if (Kind == TTK_Enum) {
+ Diag(KWLoc, diag::err_enum_template);
+ return nullptr;
+ }
+
+ if (TemplateParams->size() > 0) {
+ // This is a declaration or definition of a class template (which may
+ // be a member of another template).
+
+ if (Invalid)
+ return nullptr;
+
+ OwnedDecl = false;
+ DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
+ SS, Name, NameLoc, Attr,
+ TemplateParams, AS,
+ ModulePrivateLoc,
+ /*FriendLoc*/SourceLocation(),
+ TemplateParameterLists.size()-1,
+ TemplateParameterLists.data(),
+ SkipBody);
+ return Result.get();
+ } else {
+ // The "template<>" header is extraneous.
+ Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
+ << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
+ isExplicitSpecialization = true;
+ }
+ }
+ }
+
+ // Figure out the underlying type if this a enum declaration. We need to do
+ // this early, because it's needed to detect if this is an incompatible
+ // redeclaration.
+ llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
+
+ if (Kind == TTK_Enum) {
+ if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
+ // No underlying type explicitly specified, or we failed to parse the
+ // type, default to int.
+ EnumUnderlying = Context.IntTy.getTypePtr();
+ else if (UnderlyingType.get()) {
+ // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
+ // integral type; any cv-qualification is ignored.
+ TypeSourceInfo *TI = nullptr;
+ GetTypeFromParser(UnderlyingType.get(), &TI);
+ EnumUnderlying = TI;
+
+ if (CheckEnumUnderlyingType(TI))
+ // Recover by falling back to int.
+ EnumUnderlying = Context.IntTy.getTypePtr();
+
+ if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
+ UPPC_FixedUnderlyingType))
+ EnumUnderlying = Context.IntTy.getTypePtr();
+
+ } else if (getLangOpts().MSVCCompat)
+ // Microsoft enums are always of int type.
+ EnumUnderlying = Context.IntTy.getTypePtr();
+ }
+
+ DeclContext *SearchDC = CurContext;
+ DeclContext *DC = CurContext;
+ bool isStdBadAlloc = false;
+
+ RedeclarationKind Redecl = ForRedeclaration;
+ if (TUK == TUK_Friend || TUK == TUK_Reference)
+ Redecl = NotForRedeclaration;
+
+ LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
+ if (Name && SS.isNotEmpty()) {
+ // We have a nested-name tag ('struct foo::bar').
+
+ // Check for invalid 'foo::'.
+ if (SS.isInvalid()) {
+ Name = nullptr;
+ goto CreateNewDecl;
+ }
+
+ // If this is a friend or a reference to a class in a dependent
+ // context, don't try to make a decl for it.
+ if (TUK == TUK_Friend || TUK == TUK_Reference) {
+ DC = computeDeclContext(SS, false);
+ if (!DC) {
+ IsDependent = true;
+ return nullptr;
+ }
+ } else {
+ DC = computeDeclContext(SS, true);
+ if (!DC) {
+ Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
+ << SS.getRange();
+ return nullptr;
+ }
+ }
+
+ if (RequireCompleteDeclContext(SS, DC))
+ return nullptr;
+
+ SearchDC = DC;
+ // Look-up name inside 'foo::'.
+ LookupQualifiedName(Previous, DC);
+
+ if (Previous.isAmbiguous())
+ return nullptr;
+
+ if (Previous.empty()) {
+ // Name lookup did not find anything. However, if the
+ // nested-name-specifier refers to the current instantiation,
+ // and that current instantiation has any dependent base
+ // classes, we might find something at instantiation time: treat
+ // this as a dependent elaborated-type-specifier.
+ // But this only makes any sense for reference-like lookups.
+ if (Previous.wasNotFoundInCurrentInstantiation() &&
+ (TUK == TUK_Reference || TUK == TUK_Friend)) {
+ IsDependent = true;
+ return nullptr;
+ }
+
+ // A tag 'foo::bar' must already exist.
+ Diag(NameLoc, diag::err_not_tag_in_scope)
+ << Kind << Name << DC << SS.getRange();
+ Name = nullptr;
+ Invalid = true;
+ goto CreateNewDecl;
+ }
+ } else if (Name) {
+ // If this is a named struct, check to see if there was a previous forward
+ // declaration or definition.
+ // FIXME: We're looking into outer scopes here, even when we
+ // shouldn't be. Doing so can result in ambiguities that we
+ // shouldn't be diagnosing.
+ LookupName(Previous, S);
+
+ // When declaring or defining a tag, ignore ambiguities introduced
+ // by types using'ed into this scope.
+ if (Previous.isAmbiguous() &&
+ (TUK == TUK_Definition || TUK == TUK_Declaration)) {
+ LookupResult::Filter F = Previous.makeFilter();
+ while (F.hasNext()) {
+ NamedDecl *ND = F.next();
+ if (ND->getDeclContext()->getRedeclContext() != SearchDC)
+ F.erase();
+ }
+ F.done();
+ }
+
+ // C++11 [namespace.memdef]p3:
+ // If the name in a friend declaration is neither qualified nor
+ // a template-id and the declaration is a function or an
+ // elaborated-type-specifier, the lookup to determine whether
+ // the entity has been previously declared shall not consider
+ // any scopes outside the innermost enclosing namespace.
+ //
+ // MSVC doesn't implement the above rule for types, so a friend tag
+ // declaration may be a redeclaration of a type declared in an enclosing
+ // scope. They do implement this rule for friend functions.
+ //
+ // Does it matter that this should be by scope instead of by
+ // semantic context?
+ if (!Previous.empty() && TUK == TUK_Friend) {
+ DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
+ LookupResult::Filter F = Previous.makeFilter();
+ bool FriendSawTagOutsideEnclosingNamespace = false;
+ while (F.hasNext()) {
+ NamedDecl *ND = F.next();
+ DeclContext *DC = ND->getDeclContext()->getRedeclContext();
+ if (DC->isFileContext() &&
+ !EnclosingNS->Encloses(ND->getDeclContext())) {
+ if (getLangOpts().MSVCCompat)
+ FriendSawTagOutsideEnclosingNamespace = true;
+ else
+ F.erase();
+ }
+ }
+ F.done();
+
+ // Diagnose this MSVC extension in the easy case where lookup would have
+ // unambiguously found something outside the enclosing namespace.
+ if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) {
+ NamedDecl *ND = Previous.getFoundDecl();
+ Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace)
+ << createFriendTagNNSFixIt(*this, ND, S, NameLoc);
+ }
+ }
+
+ // Note: there used to be some attempt at recovery here.
+ if (Previous.isAmbiguous())
+ return nullptr;
+
+ if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
+ // FIXME: This makes sure that we ignore the contexts associated
+ // with C structs, unions, and enums when looking for a matching
+ // tag declaration or definition. See the similar lookup tweak
+ // in Sema::LookupName; is there a better way to deal with this?
+ while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
+ SearchDC = SearchDC->getParent();
+ }
+ }
+
+ if (Previous.isSingleResult() &&
+ Previous.getFoundDecl()->isTemplateParameter()) {
+ // Maybe we will complain about the shadowed template parameter.
+ DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
+ // Just pretend that we didn't see the previous declaration.
+ Previous.clear();
+ }
+
+ if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
+ DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
+ // This is a declaration of or a reference to "std::bad_alloc".
+ isStdBadAlloc = true;
+
+ if (Previous.empty() && StdBadAlloc) {
+ // std::bad_alloc has been implicitly declared (but made invisible to
+ // name lookup). Fill in this implicit declaration as the previous
+ // declaration, so that the declarations get chained appropriately.
+ Previous.addDecl(getStdBadAlloc());
+ }
+ }
+
+ // If we didn't find a previous declaration, and this is a reference
+ // (or friend reference), move to the correct scope. In C++, we
+ // also need to do a redeclaration lookup there, just in case
+ // there's a shadow friend decl.
+ if (Name && Previous.empty() &&
+ (TUK == TUK_Reference || TUK == TUK_Friend)) {
+ if (Invalid) goto CreateNewDecl;
+ assert(SS.isEmpty());
+
+ if (TUK == TUK_Reference) {
+ // C++ [basic.scope.pdecl]p5:
+ // -- for an elaborated-type-specifier of the form
+ //
+ // class-key identifier
+ //
+ // if the elaborated-type-specifier is used in the
+ // decl-specifier-seq or parameter-declaration-clause of a
+ // function defined in namespace scope, the identifier is
+ // declared as a class-name in the namespace that contains
+ // the declaration; otherwise, except as a friend
+ // declaration, the identifier is declared in the smallest
+ // non-class, non-function-prototype scope that contains the
+ // declaration.
+ //
+ // C99 6.7.2.3p8 has a similar (but not identical!) provision for
+ // C structs and unions.
+ //
+ // It is an error in C++ to declare (rather than define) an enum
+ // type, including via an elaborated type specifier. We'll
+ // diagnose that later; for now, declare the enum in the same
+ // scope as we would have picked for any other tag type.
+ //
+ // GNU C also supports this behavior as part of its incomplete
+ // enum types extension, while GNU C++ does not.
+ //
+ // Find the context where we'll be declaring the tag.
+ // FIXME: We would like to maintain the current DeclContext as the
+ // lexical context,
+ while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
+ SearchDC = SearchDC->getParent();
+
+ // Find the scope where we'll be declaring the tag.
+ while (S->isClassScope() ||
+ (getLangOpts().CPlusPlus &&
+ S->isFunctionPrototypeScope()) ||
+ ((S->getFlags() & Scope::DeclScope) == 0) ||
+ (S->getEntity() && S->getEntity()->isTransparentContext()))
+ S = S->getParent();
+ } else {
+ assert(TUK == TUK_Friend);
+ // C++ [namespace.memdef]p3:
+ // If a friend declaration in a non-local class first declares a
+ // class or function, the friend class or function is a member of
+ // the innermost enclosing namespace.
+ SearchDC = SearchDC->getEnclosingNamespaceContext();
+ }
+
+ // In C++, we need to do a redeclaration lookup to properly
+ // diagnose some problems.
+ if (getLangOpts().CPlusPlus) {
+ Previous.setRedeclarationKind(ForRedeclaration);
+ LookupQualifiedName(Previous, SearchDC);
+ }
+ }
+
+ // If we have a known previous declaration to use, then use it.
+ if (Previous.empty() && SkipBody && SkipBody->Previous)
+ Previous.addDecl(SkipBody->Previous);
+
+ if (!Previous.empty()) {
+ NamedDecl *PrevDecl = Previous.getFoundDecl();
+ NamedDecl *DirectPrevDecl =
+ getLangOpts().MSVCCompat ? *Previous.begin() : PrevDecl;
+
+ // It's okay to have a tag decl in the same scope as a typedef
+ // which hides a tag decl in the same scope. Finding this
+ // insanity with a redeclaration lookup can only actually happen
+ // in C++.
+ //
+ // This is also okay for elaborated-type-specifiers, which is
+ // technically forbidden by the current standard but which is
+ // okay according to the likely resolution of an open issue;
+ // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
+ if (getLangOpts().CPlusPlus) {
+ if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
+ if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
+ TagDecl *Tag = TT->getDecl();
+ if (Tag->getDeclName() == Name &&
+ Tag->getDeclContext()->getRedeclContext()
+ ->Equals(TD->getDeclContext()->getRedeclContext())) {
+ PrevDecl = Tag;
+ Previous.clear();
+ Previous.addDecl(Tag);
+ Previous.resolveKind();
+ }
+ }
+ }
+ }
+
+ if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
+ // If this is a use of a previous tag, or if the tag is already declared
+ // in the same scope (so that the definition/declaration completes or
+ // rementions the tag), reuse the decl.
+ if (TUK == TUK_Reference || TUK == TUK_Friend ||
+ isDeclInScope(DirectPrevDecl, SearchDC, S,
+ SS.isNotEmpty() || isExplicitSpecialization)) {
+ // Make sure that this wasn't declared as an enum and now used as a
+ // struct or something similar.
+ if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
+ TUK == TUK_Definition, KWLoc,
+ *Name)) {
+ bool SafeToContinue
+ = (PrevTagDecl->getTagKind() != TTK_Enum &&
+ Kind != TTK_Enum);
+ if (SafeToContinue)
+ Diag(KWLoc, diag::err_use_with_wrong_tag)
+ << Name
+ << FixItHint::CreateReplacement(SourceRange(KWLoc),
+ PrevTagDecl->getKindName());
+ else
+ Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
+ Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
+
+ if (SafeToContinue)
+ Kind = PrevTagDecl->getTagKind();
+ else {
+ // Recover by making this an anonymous redefinition.
+ Name = nullptr;
+ Previous.clear();
+ Invalid = true;
+ }
+ }
+
+ if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
+ const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
+
+ // If this is an elaborated-type-specifier for a scoped enumeration,
+ // the 'class' keyword is not necessary and not permitted.
+ if (TUK == TUK_Reference || TUK == TUK_Friend) {
+ if (ScopedEnum)
+ Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
+ << PrevEnum->isScoped()
+ << FixItHint::CreateRemoval(ScopedEnumKWLoc);
+ return PrevTagDecl;
+ }
+
+ QualType EnumUnderlyingTy;
+ if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
+ EnumUnderlyingTy = TI->getType().getUnqualifiedType();
+ else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
+ EnumUnderlyingTy = QualType(T, 0);
+
+ // All conflicts with previous declarations are recovered by
+ // returning the previous declaration, unless this is a definition,
+ // in which case we want the caller to bail out.
+ if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
+ ScopedEnum, EnumUnderlyingTy, PrevEnum))
+ return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
+ }
+
+ // C++11 [class.mem]p1:
+ // A member shall not be declared twice in the member-specification,
+ // except that a nested class or member class template can be declared
+ // and then later defined.
+ if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
+ S->isDeclScope(PrevDecl)) {
+ Diag(NameLoc, diag::ext_member_redeclared);
+ Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
+ }
+
+ if (!Invalid) {
+ // If this is a use, just return the declaration we found, unless
+ // we have attributes.
+
+ // FIXME: In the future, return a variant or some other clue
+ // for the consumer of this Decl to know it doesn't own it.
+ // For our current ASTs this shouldn't be a problem, but will
+ // need to be changed with DeclGroups.
+ if (!Attr &&
+ ((TUK == TUK_Reference &&
+ (!PrevTagDecl->getFriendObjectKind() || getLangOpts().MicrosoftExt))
+ || TUK == TUK_Friend))
+ return PrevTagDecl;
+
+ // Diagnose attempts to redefine a tag.
+ if (TUK == TUK_Definition) {
+ if (NamedDecl *Def = PrevTagDecl->getDefinition()) {
+ // If we're defining a specialization and the previous definition
+ // is from an implicit instantiation, don't emit an error
+ // here; we'll catch this in the general case below.
+ bool IsExplicitSpecializationAfterInstantiation = false;
+ if (isExplicitSpecialization) {
+ if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
+ IsExplicitSpecializationAfterInstantiation =
+ RD->getTemplateSpecializationKind() !=
+ TSK_ExplicitSpecialization;
+ else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
+ IsExplicitSpecializationAfterInstantiation =
+ ED->getTemplateSpecializationKind() !=
+ TSK_ExplicitSpecialization;
+ }
+
+ NamedDecl *Hidden = nullptr;
+ if (SkipBody && getLangOpts().CPlusPlus &&
+ !hasVisibleDefinition(Def, &Hidden)) {
+ // There is a definition of this tag, but it is not visible. We
+ // explicitly make use of C++'s one definition rule here, and
+ // assume that this definition is identical to the hidden one
+ // we already have. Make the existing definition visible and
+ // use it in place of this one.
+ SkipBody->ShouldSkip = true;
+ makeMergedDefinitionVisible(Hidden, KWLoc);
+ return Def;
+ } else if (!IsExplicitSpecializationAfterInstantiation) {
+ // A redeclaration in function prototype scope in C isn't
+ // visible elsewhere, so merely issue a warning.
+ if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
+ Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
+ else
+ Diag(NameLoc, diag::err_redefinition) << Name;
+ Diag(Def->getLocation(), diag::note_previous_definition);
+ // If this is a redefinition, recover by making this
+ // struct be anonymous, which will make any later
+ // references get the previous definition.
+ Name = nullptr;
+ Previous.clear();
+ Invalid = true;
+ }
+ } else {
+ // If the type is currently being defined, complain
+ // about a nested redefinition.
+ auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl();
+ if (TD->isBeingDefined()) {
+ Diag(NameLoc, diag::err_nested_redefinition) << Name;
+ Diag(PrevTagDecl->getLocation(),
+ diag::note_previous_definition);
+ Name = nullptr;
+ Previous.clear();
+ Invalid = true;
+ }
+ }
+
+ // Okay, this is definition of a previously declared or referenced
+ // tag. We're going to create a new Decl for it.
+ }
+
+ // Okay, we're going to make a redeclaration. If this is some kind
+ // of reference, make sure we build the redeclaration in the same DC
+ // as the original, and ignore the current access specifier.
+ if (TUK == TUK_Friend || TUK == TUK_Reference) {
+ SearchDC = PrevTagDecl->getDeclContext();
+ AS = AS_none;
+ }
+ }
+ // If we get here we have (another) forward declaration or we
+ // have a definition. Just create a new decl.
+
+ } else {
+ // If we get here, this is a definition of a new tag type in a nested
+ // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
+ // new decl/type. We set PrevDecl to NULL so that the entities
+ // have distinct types.
+ Previous.clear();
+ }
+ // If we get here, we're going to create a new Decl. If PrevDecl
+ // is non-NULL, it's a definition of the tag declared by
+ // PrevDecl. If it's NULL, we have a new definition.
+
+
+ // Otherwise, PrevDecl is not a tag, but was found with tag
+ // lookup. This is only actually possible in C++, where a few
+ // things like templates still live in the tag namespace.
+ } else {
+ // Use a better diagnostic if an elaborated-type-specifier
+ // found the wrong kind of type on the first
+ // (non-redeclaration) lookup.
+ if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
+ !Previous.isForRedeclaration()) {
+ unsigned Kind = 0;
+ if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
+ else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
+ else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
+ Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
+ Diag(PrevDecl->getLocation(), diag::note_declared_at);
+ Invalid = true;
+
+ // Otherwise, only diagnose if the declaration is in scope.
+ } else if (!isDeclInScope(PrevDecl, SearchDC, S,
+ SS.isNotEmpty() || isExplicitSpecialization)) {
+ // do nothing
+
+ // Diagnose implicit declarations introduced by elaborated types.
+ } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
+ unsigned Kind = 0;
+ if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
+ else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
+ else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
+ Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
+ Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
+ Invalid = true;
+
+ // Otherwise it's a declaration. Call out a particularly common
+ // case here.
+ } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
+ unsigned Kind = 0;
+ if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
+ Diag(NameLoc, diag::err_tag_definition_of_typedef)
+ << Name << Kind << TND->getUnderlyingType();
+ Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
+ Invalid = true;
+
+ // Otherwise, diagnose.
+ } else {
+ // The tag name clashes with something else in the target scope,
+ // issue an error and recover by making this tag be anonymous.
+ Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
+ Diag(PrevDecl->getLocation(), diag::note_previous_definition);
+ Name = nullptr;
+ Invalid = true;
+ }
+
+ // The existing declaration isn't relevant to us; we're in a
+ // new scope, so clear out the previous declaration.
+ Previous.clear();
+ }
+ }
+
+CreateNewDecl:
+
+ TagDecl *PrevDecl = nullptr;
+ if (Previous.isSingleResult())
+ PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
+
+ // If there is an identifier, use the location of the identifier as the
+ // location of the decl, otherwise use the location of the struct/union
+ // keyword.
+ SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
+
+ // Otherwise, create a new declaration. If there is a previous
+ // declaration of the same entity, the two will be linked via
+ // PrevDecl.
+ TagDecl *New;
+
+ bool IsForwardReference = false;
+ if (Kind == TTK_Enum) {
+ // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
+ // enum X { A, B, C } D; D should chain to X.
+ New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
+ cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
+ ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
+ // If this is an undefined enum, warn.
+ if (TUK != TUK_Definition && !Invalid) {
+ TagDecl *Def;
+ if ((getLangOpts().CPlusPlus11 || getLangOpts().ObjC2) &&
+ cast<EnumDecl>(New)->isFixed()) {
+ // C++0x: 7.2p2: opaque-enum-declaration.
+ // Conflicts are diagnosed above. Do nothing.
+ }
+ else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
+ Diag(Loc, diag::ext_forward_ref_enum_def)
+ << New;
+ Diag(Def->getLocation(), diag::note_previous_definition);
+ } else {
+ unsigned DiagID = diag::ext_forward_ref_enum;
+ if (getLangOpts().MSVCCompat)
+ DiagID = diag::ext_ms_forward_ref_enum;
+ else if (getLangOpts().CPlusPlus)
+ DiagID = diag::err_forward_ref_enum;
+ Diag(Loc, DiagID);
+
+ // If this is a forward-declared reference to an enumeration, make a
+ // note of it; we won't actually be introducing the declaration into
+ // the declaration context.
+ if (TUK == TUK_Reference)
+ IsForwardReference = true;
+ }
+ }
+
+ if (EnumUnderlying) {
+ EnumDecl *ED = cast<EnumDecl>(New);
+ if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
+ ED->setIntegerTypeSourceInfo(TI);
+ else
+ ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
+ ED->setPromotionType(ED->getIntegerType());
+ }
+
+ } else {
+ // struct/union/class
+
+ // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
+ // struct X { int A; } D; D should chain to X.
+ if (getLangOpts().CPlusPlus) {
+ // FIXME: Look for a way to use RecordDecl for simple structs.
+ New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
+ cast_or_null<CXXRecordDecl>(PrevDecl));
+
+ if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
+ StdBadAlloc = cast<CXXRecordDecl>(New);
+ } else
+ New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
+ cast_or_null<RecordDecl>(PrevDecl));
+ }
+
+ // C++11 [dcl.type]p3:
+ // A type-specifier-seq shall not define a class or enumeration [...].
+ if (getLangOpts().CPlusPlus && IsTypeSpecifier && TUK == TUK_Definition) {
+ Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
+ << Context.getTagDeclType(New);
+ Invalid = true;
+ }
+
+ // Maybe add qualifier info.
+ if (SS.isNotEmpty()) {
+ if (SS.isSet()) {
+ // If this is either a declaration or a definition, check the
+ // nested-name-specifier against the current context. We don't do this
+ // for explicit specializations, because they have similar checking
+ // (with more specific diagnostics) in the call to
+ // CheckMemberSpecialization, below.
+ if (!isExplicitSpecialization &&
+ (TUK == TUK_Definition || TUK == TUK_Declaration) &&
+ diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc))
+ Invalid = true;
+
+ New->setQualifierInfo(SS.getWithLocInContext(Context));
+ if (TemplateParameterLists.size() > 0) {
+ New->setTemplateParameterListsInfo(Context,
+ TemplateParameterLists.size(),
+ TemplateParameterLists.data());
+ }
+ }
+ else
+ Invalid = true;
+ }
+
+ if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
+ // Add alignment attributes if necessary; these attributes are checked when
+ // the ASTContext lays out the structure.
+ //
+ // It is important for implementing the correct semantics that this
+ // happen here (in act on tag decl). The #pragma pack stack is
+ // maintained as a result of parser callbacks which can occur at
+ // many points during the parsing of a struct declaration (because
+ // the #pragma tokens are effectively skipped over during the
+ // parsing of the struct).
+ if (TUK == TUK_Definition) {
+ AddAlignmentAttributesForRecord(RD);
+ AddMsStructLayoutForRecord(RD);
+ }
+ }
+
+ if (ModulePrivateLoc.isValid()) {
+ if (isExplicitSpecialization)
+ Diag(New->getLocation(), diag::err_module_private_specialization)
+ << 2
+ << FixItHint::CreateRemoval(ModulePrivateLoc);
+ // __module_private__ does not apply to local classes. However, we only
+ // diagnose this as an error when the declaration specifiers are
+ // freestanding. Here, we just ignore the __module_private__.
+ else if (!SearchDC->isFunctionOrMethod())
+ New->setModulePrivate();
+ }
+
+ // If this is a specialization of a member class (of a class template),
+ // check the specialization.
+ if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
+ Invalid = true;
+
+ // If we're declaring or defining a tag in function prototype scope in C,
+ // note that this type can only be used within the function and add it to
+ // the list of decls to inject into the function definition scope.
+ if ((Name || Kind == TTK_Enum) &&
+ getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
+ if (getLangOpts().CPlusPlus) {
+ // C++ [dcl.fct]p6:
+ // Types shall not be defined in return or parameter types.
+ if (TUK == TUK_Definition && !IsTypeSpecifier) {
+ Diag(Loc, diag::err_type_defined_in_param_type)
+ << Name;
+ Invalid = true;
+ }
+ } else {
+ Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
+ }
+ DeclsInPrototypeScope.push_back(New);
+ }
+
+ if (Invalid)
+ New->setInvalidDecl();
+
+ if (Attr)
+ ProcessDeclAttributeList(S, New, Attr);
+
+ // Set the lexical context. If the tag has a C++ scope specifier, the
+ // lexical context will be different from the semantic context.
+ New->setLexicalDeclContext(CurContext);
+
+ // Mark this as a friend decl if applicable.
+ // In Microsoft mode, a friend declaration also acts as a forward
+ // declaration so we always pass true to setObjectOfFriendDecl to make
+ // the tag name visible.
+ if (TUK == TUK_Friend)
+ New->setObjectOfFriendDecl(getLangOpts().MSVCCompat);
+
+ // Set the access specifier.
+ if (!Invalid && SearchDC->isRecord())
+ SetMemberAccessSpecifier(New, PrevDecl, AS);
+
+ if (TUK == TUK_Definition)
+ New->startDefinition();
+
+ // If this has an identifier, add it to the scope stack.
+ if (TUK == TUK_Friend) {
+ // We might be replacing an existing declaration in the lookup tables;
+ // if so, borrow its access specifier.
+ if (PrevDecl)
+ New->setAccess(PrevDecl->getAccess());
+
+ DeclContext *DC = New->getDeclContext()->getRedeclContext();
+ DC->makeDeclVisibleInContext(New);
+ if (Name) // can be null along some error paths
+ if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
+ PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
+ } else if (Name) {
+ S = getNonFieldDeclScope(S);
+ PushOnScopeChains(New, S, !IsForwardReference);
+ if (IsForwardReference)
+ SearchDC->makeDeclVisibleInContext(New);
+
+ } else {
+ CurContext->addDecl(New);
+ }
+
+ // If this is the C FILE type, notify the AST context.
+ if (IdentifierInfo *II = New->getIdentifier())
+ if (!New->isInvalidDecl() &&
+ New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
+ II->isStr("FILE"))
+ Context.setFILEDecl(New);
+
+ if (PrevDecl)
+ mergeDeclAttributes(New, PrevDecl);
+
+ // If there's a #pragma GCC visibility in scope, set the visibility of this
+ // record.
+ AddPushedVisibilityAttribute(New);
+
+ OwnedDecl = true;
+ // In C++, don't return an invalid declaration. We can't recover well from
+ // the cases where we make the type anonymous.
+ return (Invalid && getLangOpts().CPlusPlus) ? nullptr : New;
+}
+
+void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
+ AdjustDeclIfTemplate(TagD);
+ TagDecl *Tag = cast<TagDecl>(TagD);
+
+ // Enter the tag context.
+ PushDeclContext(S, Tag);
+
+ ActOnDocumentableDecl(TagD);
+
+ // If there's a #pragma GCC visibility in scope, set the visibility of this
+ // record.
+ AddPushedVisibilityAttribute(Tag);
+}
+
+Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
+ assert(isa<ObjCContainerDecl>(IDecl) &&
+ "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
+ DeclContext *OCD = cast<DeclContext>(IDecl);
+ assert(getContainingDC(OCD) == CurContext &&
+ "The next DeclContext should be lexically contained in the current one.");
+ CurContext = OCD;
+ return IDecl;
+}
+
+void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
+ SourceLocation FinalLoc,
+ bool IsFinalSpelledSealed,
+ SourceLocation LBraceLoc) {
+ AdjustDeclIfTemplate(TagD);
+ CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
+
+ FieldCollector->StartClass();
+
+ if (!Record->getIdentifier())
+ return;
+
+ if (FinalLoc.isValid())
+ Record->addAttr(new (Context)
+ FinalAttr(FinalLoc, Context, IsFinalSpelledSealed));
+
+ // C++ [class]p2:
+ // [...] The class-name is also inserted into the scope of the
+ // class itself; this is known as the injected-class-name. For
+ // purposes of access checking, the injected-class-name is treated
+ // as if it were a public member name.
+ CXXRecordDecl *InjectedClassName
+ = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
+ Record->getLocStart(), Record->getLocation(),
+ Record->getIdentifier(),
+ /*PrevDecl=*/nullptr,
+ /*DelayTypeCreation=*/true);
+ Context.getTypeDeclType(InjectedClassName, Record);
+ InjectedClassName->setImplicit();
+ InjectedClassName->setAccess(AS_public);
+ if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
+ InjectedClassName->setDescribedClassTemplate(Template);
+ PushOnScopeChains(InjectedClassName, S);
+ assert(InjectedClassName->isInjectedClassName() &&
+ "Broken injected-class-name");
+}
+
+void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
+ SourceLocation RBraceLoc) {
+ AdjustDeclIfTemplate(TagD);
+ TagDecl *Tag = cast<TagDecl>(TagD);
+ Tag->setRBraceLoc(RBraceLoc);
+
+ // Make sure we "complete" the definition even it is invalid.
+ if (Tag->isBeingDefined()) {
+ assert(Tag->isInvalidDecl() && "We should already have completed it");
+ if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
+ RD->completeDefinition();
+ }
+
+ if (isa<CXXRecordDecl>(Tag))
+ FieldCollector->FinishClass();
+
+ // Exit this scope of this tag's definition.
+ PopDeclContext();
+
+ if (getCurLexicalContext()->isObjCContainer() &&
+ Tag->getDeclContext()->isFileContext())
+ Tag->setTopLevelDeclInObjCContainer();
+
+ // Notify the consumer that we've defined a tag.
+ if (!Tag->isInvalidDecl())
+ Consumer.HandleTagDeclDefinition(Tag);
+}
+
+void Sema::ActOnObjCContainerFinishDefinition() {
+ // Exit this scope of this interface definition.
+ PopDeclContext();
+}
+
+void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
+ assert(DC == CurContext && "Mismatch of container contexts");
+ OriginalLexicalContext = DC;
+ ActOnObjCContainerFinishDefinition();
+}
+
+void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
+ ActOnObjCContainerStartDefinition(cast<Decl>(DC));
+ OriginalLexicalContext = nullptr;
+}
+
+void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
+ AdjustDeclIfTemplate(TagD);
+ TagDecl *Tag = cast<TagDecl>(TagD);
+ Tag->setInvalidDecl();
+
+ // Make sure we "complete" the definition even it is invalid.
+ if (Tag->isBeingDefined()) {
+ if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
+ RD->completeDefinition();
+ }
+
+ // We're undoing ActOnTagStartDefinition here, not
+ // ActOnStartCXXMemberDeclarations, so we don't have to mess with
+ // the FieldCollector.
+
+ PopDeclContext();
+}
+
+// Note that FieldName may be null for anonymous bitfields.
+ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
+ IdentifierInfo *FieldName,
+ QualType FieldTy, bool IsMsStruct,
+ Expr *BitWidth, bool *ZeroWidth) {
+ // Default to true; that shouldn't confuse checks for emptiness
+ if (ZeroWidth)
+ *ZeroWidth = true;
+
+ // C99 6.7.2.1p4 - verify the field type.
+ // C++ 9.6p3: A bit-field shall have integral or enumeration type.
+ if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
+ // Handle incomplete types with specific error.
+ if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
+ return ExprError();
+ if (FieldName)
+ return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
+ << FieldName << FieldTy << BitWidth->getSourceRange();
+ return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
+ << FieldTy << BitWidth->getSourceRange();
+ } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
+ UPPC_BitFieldWidth))
+ return ExprError();
+
+ // If the bit-width is type- or value-dependent, don't try to check
+ // it now.
+ if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
+ return BitWidth;
+
+ llvm::APSInt Value;
+ ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
+ if (ICE.isInvalid())
+ return ICE;
+ BitWidth = ICE.get();
+
+ if (Value != 0 && ZeroWidth)
+ *ZeroWidth = false;
+
+ // Zero-width bitfield is ok for anonymous field.
+ if (Value == 0 && FieldName)
+ return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
+
+ if (Value.isSigned() && Value.isNegative()) {
+ if (FieldName)
+ return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
+ << FieldName << Value.toString(10);
+ return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
+ << Value.toString(10);
+ }
+
+ if (!FieldTy->isDependentType()) {
+ uint64_t TypeSize = Context.getTypeSize(FieldTy);
+ if (Value.getZExtValue() > TypeSize) {
+ if (!getLangOpts().CPlusPlus || IsMsStruct ||
+ Context.getTargetInfo().getCXXABI().isMicrosoft()) {
+ if (FieldName)
+ return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
+ << FieldName << (unsigned)Value.getZExtValue()
+ << (unsigned)TypeSize;
+
+ return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
+ << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
+ }
+
+ if (FieldName)
+ Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
+ << FieldName << (unsigned)Value.getZExtValue()
+ << (unsigned)TypeSize;
+ else
+ Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
+ << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
+ }
+ }
+
+ return BitWidth;
+}
+
+/// ActOnField - Each field of a C struct/union is passed into this in order
+/// to create a FieldDecl object for it.
+Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
+ Declarator &D, Expr *BitfieldWidth) {
+ FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
+ DeclStart, D, static_cast<Expr*>(BitfieldWidth),
+ /*InitStyle=*/ICIS_NoInit, AS_public);
+ return Res;
+}
+
+/// HandleField - Analyze a field of a C struct or a C++ data member.
+///
+FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
+ SourceLocation DeclStart,
+ Declarator &D, Expr *BitWidth,
+ InClassInitStyle InitStyle,
+ AccessSpecifier AS) {
+ IdentifierInfo *II = D.getIdentifier();
+ SourceLocation Loc = DeclStart;
+ if (II) Loc = D.getIdentifierLoc();
+
+ TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
+ QualType T = TInfo->getType();
+ if (getLangOpts().CPlusPlus) {
+ CheckExtraCXXDefaultArguments(D);
+
+ if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
+ UPPC_DataMemberType)) {
+ D.setInvalidType();
+ T = Context.IntTy;
+ TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
+ }
+ }
+
+ // TR 18037 does not allow fields to be declared with address spaces.
+ if (T.getQualifiers().hasAddressSpace()) {
+ Diag(Loc, diag::err_field_with_address_space);
+ D.setInvalidType();
+ }
+
+ // OpenCL 1.2 spec, s6.9 r:
+ // The event type cannot be used to declare a structure or union field.
+ if (LangOpts.OpenCL && T->isEventT()) {
+ Diag(Loc, diag::err_event_t_struct_field);
+ D.setInvalidType();
+ }
+
+ DiagnoseFunctionSpecifiers(D.getDeclSpec());
+
+ if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
+ Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
+ diag::err_invalid_thread)
+ << DeclSpec::getSpecifierName(TSCS);
+
+ // Check to see if this name was declared as a member previously
+ NamedDecl *PrevDecl = nullptr;
+ LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
+ LookupName(Previous, S);
+ switch (Previous.getResultKind()) {
+ case LookupResult::Found:
+ case LookupResult::FoundUnresolvedValue:
+ PrevDecl = Previous.getAsSingle<NamedDecl>();
+ break;
+
+ case LookupResult::FoundOverloaded:
+ PrevDecl = Previous.getRepresentativeDecl();
+ break;
+
+ case LookupResult::NotFound:
+ case LookupResult::NotFoundInCurrentInstantiation:
+ case LookupResult::Ambiguous:
+ break;
+ }
+ Previous.suppressDiagnostics();
+
+ if (PrevDecl && PrevDecl->isTemplateParameter()) {
+ // Maybe we will complain about the shadowed template parameter.
+ DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
+ // Just pretend that we didn't see the previous declaration.
+ PrevDecl = nullptr;
+ }
+
+ if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
+ PrevDecl = nullptr;
+
+ bool Mutable
+ = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
+ SourceLocation TSSL = D.getLocStart();
+ FieldDecl *NewFD
+ = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
+ TSSL, AS, PrevDecl, &D);
+
+ if (NewFD->isInvalidDecl())
+ Record->setInvalidDecl();
+
+ if (D.getDeclSpec().isModulePrivateSpecified())
+ NewFD->setModulePrivate();
+
+ if (NewFD->isInvalidDecl() && PrevDecl) {
+ // Don't introduce NewFD into scope; there's already something
+ // with the same name in the same scope.
+ } else if (II) {
+ PushOnScopeChains(NewFD, S);
+ } else
+ Record->addDecl(NewFD);
+
+ return NewFD;
+}
+
+/// \brief Build a new FieldDecl and check its well-formedness.
+///
+/// This routine builds a new FieldDecl given the fields name, type,
+/// record, etc. \p PrevDecl should refer to any previous declaration
+/// with the same name and in the same scope as the field to be
+/// created.
+///
+/// \returns a new FieldDecl.
+///
+/// \todo The Declarator argument is a hack. It will be removed once
+FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
+ TypeSourceInfo *TInfo,
+ RecordDecl *Record, SourceLocation Loc,
+ bool Mutable, Expr *BitWidth,
+ InClassInitStyle InitStyle,
+ SourceLocation TSSL,
+ AccessSpecifier AS, NamedDecl *PrevDecl,
+ Declarator *D) {
+ IdentifierInfo *II = Name.getAsIdentifierInfo();
+ bool InvalidDecl = false;
+ if (D) InvalidDecl = D->isInvalidType();
+
+ // If we receive a broken type, recover by assuming 'int' and
+ // marking this declaration as invalid.
+ if (T.isNull()) {
+ InvalidDecl = true;
+ T = Context.IntTy;
+ }
+
+ QualType EltTy = Context.getBaseElementType(T);
+ if (!EltTy->isDependentType()) {
+ if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
+ // Fields of incomplete type force their record to be invalid.
+ Record->setInvalidDecl();
+ InvalidDecl = true;
+ } else {
+ NamedDecl *Def;
+ EltTy->isIncompleteType(&Def);
+ if (Def && Def->isInvalidDecl()) {
+ Record->setInvalidDecl();
+ InvalidDecl = true;
+ }
+ }
+ }
+
+ // OpenCL v1.2 s6.9.c: bitfields are not supported.
+ if (BitWidth && getLangOpts().OpenCL) {
+ Diag(Loc, diag::err_opencl_bitfields);
+ InvalidDecl = true;
+ }
+
+ // C99 6.7.2.1p8: A member of a structure or union may have any type other
+ // than a variably modified type.
+ if (!InvalidDecl && T->isVariablyModifiedType()) {
+ bool SizeIsNegative;
+ llvm::APSInt Oversized;
+
+ TypeSourceInfo *FixedTInfo =
+ TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
+ SizeIsNegative,
+ Oversized);
+ if (FixedTInfo) {
+ Diag(Loc, diag::warn_illegal_constant_array_size);
+ TInfo = FixedTInfo;
+ T = FixedTInfo->getType();
+ } else {
+ if (SizeIsNegative)
+ Diag(Loc, diag::err_typecheck_negative_array_size);
+ else if (Oversized.getBoolValue())
+ Diag(Loc, diag::err_array_too_large)
+ << Oversized.toString(10);
+ else
+ Diag(Loc, diag::err_typecheck_field_variable_size);
+ InvalidDecl = true;
+ }
+ }
+
+ // Fields can not have abstract class types
+ if (!InvalidDecl && RequireNonAbstractType(Loc, T,
+ diag::err_abstract_type_in_decl,
+ AbstractFieldType))
+ InvalidDecl = true;
+
+ bool ZeroWidth = false;
+ if (InvalidDecl)
+ BitWidth = nullptr;
+ // If this is declared as a bit-field, check the bit-field.
+ if (BitWidth) {
+ BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
+ &ZeroWidth).get();
+ if (!BitWidth) {
+ InvalidDecl = true;
+ BitWidth = nullptr;
+ ZeroWidth = false;
+ }
+ }
+
+ // Check that 'mutable' is consistent with the type of the declaration.
+ if (!InvalidDecl && Mutable) {
+ unsigned DiagID = 0;
+ if (T->isReferenceType())
+ DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference
+ : diag::err_mutable_reference;
+ else if (T.isConstQualified())
+ DiagID = diag::err_mutable_const;
+
+ if (DiagID) {
+ SourceLocation ErrLoc = Loc;
+ if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
+ ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
+ Diag(ErrLoc, DiagID);
+ if (DiagID != diag::ext_mutable_reference) {
+ Mutable = false;
+ InvalidDecl = true;
+ }
+ }
+ }
+
+ // C++11 [class.union]p8 (DR1460):
+ // At most one variant member of a union may have a
+ // brace-or-equal-initializer.
+ if (InitStyle != ICIS_NoInit)
+ checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
+
+ FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
+ BitWidth, Mutable, InitStyle);
+ if (InvalidDecl)
+ NewFD->setInvalidDecl();
+
+ if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
+ Diag(Loc, diag::err_duplicate_member) << II;
+ Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
+ NewFD->setInvalidDecl();
+ }
+
+ if (!InvalidDecl && getLangOpts().CPlusPlus) {
+ if (Record->isUnion()) {
+ if (const RecordType *RT = EltTy->getAs<RecordType>()) {
+ CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
+ if (RDecl->getDefinition()) {
+ // C++ [class.union]p1: An object of a class with a non-trivial
+ // constructor, a non-trivial copy constructor, a non-trivial
+ // destructor, or a non-trivial copy assignment operator
+ // cannot be a member of a union, nor can an array of such
+ // objects.
+ if (CheckNontrivialField(NewFD))
+ NewFD->setInvalidDecl();
+ }
+ }
+
+ // C++ [class.union]p1: If a union contains a member of reference type,
+ // the program is ill-formed, except when compiling with MSVC extensions
+ // enabled.
+ if (EltTy->isReferenceType()) {
+ Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
+ diag::ext_union_member_of_reference_type :
+ diag::err_union_member_of_reference_type)
+ << NewFD->getDeclName() << EltTy;
+ if (!getLangOpts().MicrosoftExt)
+ NewFD->setInvalidDecl();
+ }
+ }
+ }
+
+ // FIXME: We need to pass in the attributes given an AST
+ // representation, not a parser representation.
+ if (D) {
+ // FIXME: The current scope is almost... but not entirely... correct here.
+ ProcessDeclAttributes(getCurScope(), NewFD, *D);
+
+ if (NewFD->hasAttrs())
+ CheckAlignasUnderalignment(NewFD);
+ }
+
+ // In auto-retain/release, infer strong retension for fields of
+ // retainable type.
+ if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
+ NewFD->setInvalidDecl();
+
+ if (T.isObjCGCWeak())
+ Diag(Loc, diag::warn_attribute_weak_on_field);
+
+ NewFD->setAccess(AS);
+ return NewFD;
+}
+
+bool Sema::CheckNontrivialField(FieldDecl *FD) {
+ assert(FD);
+ assert(getLangOpts().CPlusPlus && "valid check only for C++");
+
+ if (FD->isInvalidDecl() || FD->getType()->isDependentType())
+ return false;
+
+ QualType EltTy = Context.getBaseElementType(FD->getType());
+ if (const RecordType *RT = EltTy->getAs<RecordType>()) {
+ CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
+ if (RDecl->getDefinition()) {
+ // We check for copy constructors before constructors
+ // because otherwise we'll never get complaints about
+ // copy constructors.
+
+ CXXSpecialMember member = CXXInvalid;
+ // We're required to check for any non-trivial constructors. Since the
+ // implicit default constructor is suppressed if there are any
+ // user-declared constructors, we just need to check that there is a
+ // trivial default constructor and a trivial copy constructor. (We don't
+ // worry about move constructors here, since this is a C++98 check.)
+ if (RDecl->hasNonTrivialCopyConstructor())
+ member = CXXCopyConstructor;
+ else if (!RDecl->hasTrivialDefaultConstructor())
+ member = CXXDefaultConstructor;
+ else if (RDecl->hasNonTrivialCopyAssignment())
+ member = CXXCopyAssignment;
+ else if (RDecl->hasNonTrivialDestructor())
+ member = CXXDestructor;
+
+ if (member != CXXInvalid) {
+ if (!getLangOpts().CPlusPlus11 &&
+ getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
+ // Objective-C++ ARC: it is an error to have a non-trivial field of
+ // a union. However, system headers in Objective-C programs
+ // occasionally have Objective-C lifetime objects within unions,
+ // and rather than cause the program to fail, we make those
+ // members unavailable.
+ SourceLocation Loc = FD->getLocation();
+ if (getSourceManager().isInSystemHeader(Loc)) {
+ if (!FD->hasAttr<UnavailableAttr>())
+ FD->addAttr(UnavailableAttr::CreateImplicit(Context,
+ "this system field has retaining ownership",
+ Loc));
+ return false;
+ }
+ }
+
+ Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
+ diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
+ diag::err_illegal_union_or_anon_struct_member)
+ << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
+ DiagnoseNontrivial(RDecl, member);
+ return !getLangOpts().CPlusPlus11;
+ }
+ }
+ }
+
+ return false;
+}
+
+/// TranslateIvarVisibility - Translate visibility from a token ID to an
+/// AST enum value.
+static ObjCIvarDecl::AccessControl
+TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
+ switch (ivarVisibility) {
+ default: llvm_unreachable("Unknown visitibility kind");
+ case tok::objc_private: return ObjCIvarDecl::Private;
+ case tok::objc_public: return ObjCIvarDecl::Public;
+ case tok::objc_protected: return ObjCIvarDecl::Protected;
+ case tok::objc_package: return ObjCIvarDecl::Package;
+ }
+}
+
+/// ActOnIvar - Each ivar field of an objective-c class is passed into this
+/// in order to create an IvarDecl object for it.
+Decl *Sema::ActOnIvar(Scope *S,
+ SourceLocation DeclStart,
+ Declarator &D, Expr *BitfieldWidth,
+ tok::ObjCKeywordKind Visibility) {
+
+ IdentifierInfo *II = D.getIdentifier();
+ Expr *BitWidth = (Expr*)BitfieldWidth;
+ SourceLocation Loc = DeclStart;
+ if (II) Loc = D.getIdentifierLoc();
+
+ // FIXME: Unnamed fields can be handled in various different ways, for
+ // example, unnamed unions inject all members into the struct namespace!
+
+ TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
+ QualType T = TInfo->getType();
+
+ if (BitWidth) {
+ // 6.7.2.1p3, 6.7.2.1p4
+ BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
+ if (!BitWidth)
+ D.setInvalidType();
+ } else {
+ // Not a bitfield.
+
+ // validate II.
+
+ }
+ if (T->isReferenceType()) {
+ Diag(Loc, diag::err_ivar_reference_type);
+ D.setInvalidType();
+ }
+ // C99 6.7.2.1p8: A member of a structure or union may have any type other
+ // than a variably modified type.
+ else if (T->isVariablyModifiedType()) {
+ Diag(Loc, diag::err_typecheck_ivar_variable_size);
+ D.setInvalidType();
+ }
+
+ // Get the visibility (access control) for this ivar.
+ ObjCIvarDecl::AccessControl ac =
+ Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
+ : ObjCIvarDecl::None;
+ // Must set ivar's DeclContext to its enclosing interface.
+ ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
+ if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
+ return nullptr;
+ ObjCContainerDecl *EnclosingContext;
+ if (ObjCImplementationDecl *IMPDecl =
+ dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
+ if (LangOpts.ObjCRuntime.isFragile()) {
+ // Case of ivar declared in an implementation. Context is that of its class.
+ EnclosingContext = IMPDecl->getClassInterface();
+ assert(EnclosingContext && "Implementation has no class interface!");
+ }
+ else
+ EnclosingContext = EnclosingDecl;
+ } else {
+ if (ObjCCategoryDecl *CDecl =
+ dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
+ if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
+ Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
+ return nullptr;
+ }
+ }
+ EnclosingContext = EnclosingDecl;
+ }
+
+ // Construct the decl.
+ ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
+ DeclStart, Loc, II, T,
+ TInfo, ac, (Expr *)BitfieldWidth);
+
+ if (II) {
+ NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
+ ForRedeclaration);
+ if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
+ && !isa<TagDecl>(PrevDecl)) {
+ Diag(Loc, diag::err_duplicate_member) << II;
+ Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
+ NewID->setInvalidDecl();
+ }
+ }
+
+ // Process attributes attached to the ivar.
+ ProcessDeclAttributes(S, NewID, D);
+
+ if (D.isInvalidType())
+ NewID->setInvalidDecl();
+
+ // In ARC, infer 'retaining' for ivars of retainable type.
+ if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
+ NewID->setInvalidDecl();
+
+ if (D.getDeclSpec().isModulePrivateSpecified())
+ NewID->setModulePrivate();
+
+ if (II) {
+ // FIXME: When interfaces are DeclContexts, we'll need to add
+ // these to the interface.
+ S->AddDecl(NewID);
+ IdResolver.AddDecl(NewID);
+ }
+
+ if (LangOpts.ObjCRuntime.isNonFragile() &&
+ !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
+ Diag(Loc, diag::warn_ivars_in_interface);
+
+ return NewID;
+}
+
+/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
+/// class and class extensions. For every class \@interface and class
+/// extension \@interface, if the last ivar is a bitfield of any type,
+/// then add an implicit `char :0` ivar to the end of that interface.
+void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
+ SmallVectorImpl<Decl *> &AllIvarDecls) {
+ if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
+ return;
+
+ Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
+ ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
+
+ if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
+ return;
+ ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
+ if (!ID) {
+ if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
+ if (!CD->IsClassExtension())
+ return;
+ }
+ // No need to add this to end of @implementation.
+ else
+ return;
+ }
+ // All conditions are met. Add a new bitfield to the tail end of ivars.
+ llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
+ Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
+
+ Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
+ DeclLoc, DeclLoc, nullptr,
+ Context.CharTy,
+ Context.getTrivialTypeSourceInfo(Context.CharTy,
+ DeclLoc),
+ ObjCIvarDecl::Private, BW,
+ true);
+ AllIvarDecls.push_back(Ivar);
+}
+
+void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
+ ArrayRef<Decl *> Fields, SourceLocation LBrac,
+ SourceLocation RBrac, AttributeList *Attr) {
+ assert(EnclosingDecl && "missing record or interface decl");
+
+ // If this is an Objective-C @implementation or category and we have
+ // new fields here we should reset the layout of the interface since
+ // it will now change.
+ if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
+ ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
+ switch (DC->getKind()) {
+ default: break;
+ case Decl::ObjCCategory:
+ Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
+ break;
+ case Decl::ObjCImplementation:
+ Context.
+ ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
+ break;
+ }
+ }
+
+ RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
+
+ // Start counting up the number of named members; make sure to include
+ // members of anonymous structs and unions in the total.
+ unsigned NumNamedMembers = 0;
+ if (Record) {
+ for (const auto *I : Record->decls()) {
+ if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
+ if (IFD->getDeclName())
+ ++NumNamedMembers;
+ }
+ }
+
+ // Verify that all the fields are okay.
+ SmallVector<FieldDecl*, 32> RecFields;
+
+ bool ARCErrReported = false;
+ for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
+ i != end; ++i) {
+ FieldDecl *FD = cast<FieldDecl>(*i);
+
+ // Get the type for the field.
+ const Type *FDTy = FD->getType().getTypePtr();
+
+ if (!FD->isAnonymousStructOrUnion()) {
+ // Remember all fields written by the user.
+ RecFields.push_back(FD);
+ }
+
+ // If the field is already invalid for some reason, don't emit more
+ // diagnostics about it.
+ if (FD->isInvalidDecl()) {
+ EnclosingDecl->setInvalidDecl();
+ continue;
+ }
+
+ // C99 6.7.2.1p2:
+ // A structure or union shall not contain a member with
+ // incomplete or function type (hence, a structure shall not
+ // contain an instance of itself, but may contain a pointer to
+ // an instance of itself), except that the last member of a
+ // structure with more than one named member may have incomplete
+ // array type; such a structure (and any union containing,
+ // possibly recursively, a member that is such a structure)
+ // shall not be a member of a structure or an element of an
+ // array.
+ if (FDTy->isFunctionType()) {
+ // Field declared as a function.
+ Diag(FD->getLocation(), diag::err_field_declared_as_function)
+ << FD->getDeclName();
+ FD->setInvalidDecl();
+ EnclosingDecl->setInvalidDecl();
+ continue;
+ } else if (FDTy->isIncompleteArrayType() && Record &&
+ ((i + 1 == Fields.end() && !Record->isUnion()) ||
+ ((getLangOpts().MicrosoftExt ||
+ getLangOpts().CPlusPlus) &&
+ (i + 1 == Fields.end() || Record->isUnion())))) {
+ // Flexible array member.
+ // Microsoft and g++ is more permissive regarding flexible array.
+ // It will accept flexible array in union and also
+ // as the sole element of a struct/class.
+ unsigned DiagID = 0;
+ if (Record->isUnion())
+ DiagID = getLangOpts().MicrosoftExt
+ ? diag::ext_flexible_array_union_ms
+ : getLangOpts().CPlusPlus
+ ? diag::ext_flexible_array_union_gnu
+ : diag::err_flexible_array_union;
+ else if (Fields.size() == 1)
+ DiagID = getLangOpts().MicrosoftExt
+ ? diag::ext_flexible_array_empty_aggregate_ms
+ : getLangOpts().CPlusPlus
+ ? diag::ext_flexible_array_empty_aggregate_gnu
+ : NumNamedMembers < 1
+ ? diag::err_flexible_array_empty_aggregate
+ : 0;
+
+ if (DiagID)
+ Diag(FD->getLocation(), DiagID) << FD->getDeclName()
+ << Record->getTagKind();
+ // While the layout of types that contain virtual bases is not specified
+ // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
+ // virtual bases after the derived members. This would make a flexible
+ // array member declared at the end of an object not adjacent to the end
+ // of the type.
+ if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record))
+ if (RD->getNumVBases() != 0)
+ Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
+ << FD->getDeclName() << Record->getTagKind();
+ if (!getLangOpts().C99)
+ Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
+ << FD->getDeclName() << Record->getTagKind();
+
+ // If the element type has a non-trivial destructor, we would not
+ // implicitly destroy the elements, so disallow it for now.
+ //
+ // FIXME: GCC allows this. We should probably either implicitly delete
+ // the destructor of the containing class, or just allow this.
+ QualType BaseElem = Context.getBaseElementType(FD->getType());
+ if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
+ Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
+ << FD->getDeclName() << FD->getType();
+ FD->setInvalidDecl();
+ EnclosingDecl->setInvalidDecl();
+ continue;
+ }
+ // Okay, we have a legal flexible array member at the end of the struct.
+ Record->setHasFlexibleArrayMember(true);
+ } else if (!FDTy->isDependentType() &&
+ RequireCompleteType(FD->getLocation(), FD->getType(),
+ diag::err_field_incomplete)) {
+ // Incomplete type
+ FD->setInvalidDecl();
+ EnclosingDecl->setInvalidDecl();
+ continue;
+ } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
+ if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) {
+ // A type which contains a flexible array member is considered to be a
+ // flexible array member.
+ Record->setHasFlexibleArrayMember(true);
+ if (!Record->isUnion()) {
+ // If this is a struct/class and this is not the last element, reject
+ // it. Note that GCC supports variable sized arrays in the middle of
+ // structures.
+ if (i + 1 != Fields.end())
+ Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
+ << FD->getDeclName() << FD->getType();
+ else {
+ // We support flexible arrays at the end of structs in
+ // other structs as an extension.
+ Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
+ << FD->getDeclName();
+ }
+ }
+ }
+ if (isa<ObjCContainerDecl>(EnclosingDecl) &&
+ RequireNonAbstractType(FD->getLocation(), FD->getType(),
+ diag::err_abstract_type_in_decl,
+ AbstractIvarType)) {
+ // Ivars can not have abstract class types
+ FD->setInvalidDecl();
+ }
+ if (Record && FDTTy->getDecl()->hasObjectMember())
+ Record->setHasObjectMember(true);
+ if (Record && FDTTy->getDecl()->hasVolatileMember())
+ Record->setHasVolatileMember(true);
+ } else if (FDTy->isObjCObjectType()) {
+ /// A field cannot be an Objective-c object
+ Diag(FD->getLocation(), diag::err_statically_allocated_object)
+ << FixItHint::CreateInsertion(FD->getLocation(), "*");
+ QualType T = Context.getObjCObjectPointerType(FD->getType());
+ FD->setType(T);
+ } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported &&
+ (!getLangOpts().CPlusPlus || Record->isUnion())) {
+ // It's an error in ARC if a field has lifetime.
+ // We don't want to report this in a system header, though,
+ // so we just make the field unavailable.
+ // FIXME: that's really not sufficient; we need to make the type
+ // itself invalid to, say, initialize or copy.
+ QualType T = FD->getType();
+ Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
+ if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
+ SourceLocation loc = FD->getLocation();
+ if (getSourceManager().isInSystemHeader(loc)) {
+ if (!FD->hasAttr<UnavailableAttr>()) {
+ FD->addAttr(UnavailableAttr::CreateImplicit(Context,
+ "this system field has retaining ownership",
+ loc));
+ }
+ } else {
+ Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
+ << T->isBlockPointerType() << Record->getTagKind();
+ }
+ ARCErrReported = true;
+ }
+ } else if (getLangOpts().ObjC1 &&
+ getLangOpts().getGC() != LangOptions::NonGC &&
+ Record && !Record->hasObjectMember()) {
+ if (FD->getType()->isObjCObjectPointerType() ||
+ FD->getType().isObjCGCStrong())
+ Record->setHasObjectMember(true);
+ else if (Context.getAsArrayType(FD->getType())) {
+ QualType BaseType = Context.getBaseElementType(FD->getType());
+ if (BaseType->isRecordType() &&
+ BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
+ Record->setHasObjectMember(true);
+ else if (BaseType->isObjCObjectPointerType() ||
+ BaseType.isObjCGCStrong())
+ Record->setHasObjectMember(true);
+ }
+ }
+ if (Record && FD->getType().isVolatileQualified())
+ Record->setHasVolatileMember(true);
+ // Keep track of the number of named members.
+ if (FD->getIdentifier())
+ ++NumNamedMembers;
+ }
+
+ // Okay, we successfully defined 'Record'.
+ if (Record) {
+ bool Completed = false;
+ if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
+ if (!CXXRecord->isInvalidDecl()) {
+ // Set access bits correctly on the directly-declared conversions.
+ for (CXXRecordDecl::conversion_iterator
+ I = CXXRecord->conversion_begin(),
+ E = CXXRecord->conversion_end(); I != E; ++I)
+ I.setAccess((*I)->getAccess());
+
+ if (!CXXRecord->isDependentType()) {
+ if (CXXRecord->hasUserDeclaredDestructor()) {
+ // Adjust user-defined destructor exception spec.
+ if (getLangOpts().CPlusPlus11)
+ AdjustDestructorExceptionSpec(CXXRecord,
+ CXXRecord->getDestructor());
+ }
+
+ // Add any implicitly-declared members to this class.
+ AddImplicitlyDeclaredMembersToClass(CXXRecord);
+
+ // If we have virtual base classes, we may end up finding multiple
+ // final overriders for a given virtual function. Check for this
+ // problem now.
+ if (CXXRecord->getNumVBases()) {
+ CXXFinalOverriderMap FinalOverriders;
+ CXXRecord->getFinalOverriders(FinalOverriders);
+
+ for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
+ MEnd = FinalOverriders.end();
+ M != MEnd; ++M) {
+ for (OverridingMethods::iterator SO = M->second.begin(),
+ SOEnd = M->second.end();
+ SO != SOEnd; ++SO) {
+ assert(SO->second.size() > 0 &&
+ "Virtual function without overridding functions?");
+ if (SO->second.size() == 1)
+ continue;
+
+ // C++ [class.virtual]p2:
+ // In a derived class, if a virtual member function of a base
+ // class subobject has more than one final overrider the
+ // program is ill-formed.
+ Diag(Record->getLocation(), diag::err_multiple_final_overriders)
+ << (const NamedDecl *)M->first << Record;
+ Diag(M->first->getLocation(),
+ diag::note_overridden_virtual_function);
+ for (OverridingMethods::overriding_iterator
+ OM = SO->second.begin(),
+ OMEnd = SO->second.end();
+ OM != OMEnd; ++OM)
+ Diag(OM->Method->getLocation(), diag::note_final_overrider)
+ << (const NamedDecl *)M->first << OM->Method->getParent();
+
+ Record->setInvalidDecl();
+ }
+ }
+ CXXRecord->completeDefinition(&FinalOverriders);
+ Completed = true;
+ }
+ }
+ }
+ }
+
+ if (!Completed)
+ Record->completeDefinition();
+
+ if (Record->hasAttrs()) {
+ CheckAlignasUnderalignment(Record);
+
+ if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
+ checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
+ IA->getRange(), IA->getBestCase(),
+ IA->getSemanticSpelling());
+ }
+
+ // Check if the structure/union declaration is a type that can have zero
+ // size in C. For C this is a language extension, for C++ it may cause
+ // compatibility problems.
+ bool CheckForZeroSize;
+ if (!getLangOpts().CPlusPlus) {
+ CheckForZeroSize = true;
+ } else {
+ // For C++ filter out types that cannot be referenced in C code.
+ CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
+ CheckForZeroSize =
+ CXXRecord->getLexicalDeclContext()->isExternCContext() &&
+ !CXXRecord->isDependentType() &&
+ CXXRecord->isCLike();
+ }
+ if (CheckForZeroSize) {
+ bool ZeroSize = true;
+ bool IsEmpty = true;
+ unsigned NonBitFields = 0;
+ for (RecordDecl::field_iterator I = Record->field_begin(),
+ E = Record->field_end();
+ (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
+ IsEmpty = false;
+ if (I->isUnnamedBitfield()) {
+ if (I->getBitWidthValue(Context) > 0)
+ ZeroSize = false;
+ } else {
+ ++NonBitFields;
+ QualType FieldType = I->getType();
+ if (FieldType->isIncompleteType() ||
+ !Context.getTypeSizeInChars(FieldType).isZero())
+ ZeroSize = false;
+ }
+ }
+
+ // Empty structs are an extension in C (C99 6.7.2.1p7). They are
+ // allowed in C++, but warn if its declaration is inside
+ // extern "C" block.
+ if (ZeroSize) {
+ Diag(RecLoc, getLangOpts().CPlusPlus ?
+ diag::warn_zero_size_struct_union_in_extern_c :
+ diag::warn_zero_size_struct_union_compat)
+ << IsEmpty << Record->isUnion() << (NonBitFields > 1);
+ }
+
+ // Structs without named members are extension in C (C99 6.7.2.1p7),
+ // but are accepted by GCC.
+ if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
+ Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
+ diag::ext_no_named_members_in_struct_union)
+ << Record->isUnion();
+ }
+ }
+ } else {
+ ObjCIvarDecl **ClsFields =
+ reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
+ if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
+ ID->setEndOfDefinitionLoc(RBrac);
+ // Add ivar's to class's DeclContext.
+ for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
+ ClsFields[i]->setLexicalDeclContext(ID);
+ ID->addDecl(ClsFields[i]);
+ }
+ // Must enforce the rule that ivars in the base classes may not be
+ // duplicates.
+ if (ID->getSuperClass())
+ DiagnoseDuplicateIvars(ID, ID->getSuperClass());
+ } else if (ObjCImplementationDecl *IMPDecl =
+ dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
+ assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
+ for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
+ // Ivar declared in @implementation never belongs to the implementation.
+ // Only it is in implementation's lexical context.
+ ClsFields[I]->setLexicalDeclContext(IMPDecl);
+ CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
+ IMPDecl->setIvarLBraceLoc(LBrac);
+ IMPDecl->setIvarRBraceLoc(RBrac);
+ } else if (ObjCCategoryDecl *CDecl =
+ dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
+ // case of ivars in class extension; all other cases have been
+ // reported as errors elsewhere.
+ // FIXME. Class extension does not have a LocEnd field.
+ // CDecl->setLocEnd(RBrac);
+ // Add ivar's to class extension's DeclContext.
+ // Diagnose redeclaration of private ivars.
+ ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
+ for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
+ if (IDecl) {
+ if (const ObjCIvarDecl *ClsIvar =
+ IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
+ Diag(ClsFields[i]->getLocation(),
+ diag::err_duplicate_ivar_declaration);
+ Diag(ClsIvar->getLocation(), diag::note_previous_definition);
+ continue;
+ }
+ for (const auto *Ext : IDecl->known_extensions()) {
+ if (const ObjCIvarDecl *ClsExtIvar
+ = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
+ Diag(ClsFields[i]->getLocation(),
+ diag::err_duplicate_ivar_declaration);
+ Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
+ continue;
+ }
+ }
+ }
+ ClsFields[i]->setLexicalDeclContext(CDecl);
+ CDecl->addDecl(ClsFields[i]);
+ }
+ CDecl->setIvarLBraceLoc(LBrac);
+ CDecl->setIvarRBraceLoc(RBrac);
+ }
+ }
+
+ if (Attr)
+ ProcessDeclAttributeList(S, Record, Attr);
+}
+
+/// \brief Determine whether the given integral value is representable within
+/// the given type T.
+static bool isRepresentableIntegerValue(ASTContext &Context,
+ llvm::APSInt &Value,
+ QualType T) {
+ assert(T->isIntegralType(Context) && "Integral type required!");
+ unsigned BitWidth = Context.getIntWidth(T);
+
+ if (Value.isUnsigned() || Value.isNonNegative()) {
+ if (T->isSignedIntegerOrEnumerationType())
+ --BitWidth;
+ return Value.getActiveBits() <= BitWidth;
+ }
+ return Value.getMinSignedBits() <= BitWidth;
+}
+
+// \brief Given an integral type, return the next larger integral type
+// (or a NULL type of no such type exists).
+static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
+ // FIXME: Int128/UInt128 support, which also needs to be introduced into
+ // enum checking below.
+ assert(T->isIntegralType(Context) && "Integral type required!");
+ const unsigned NumTypes = 4;
+ QualType SignedIntegralTypes[NumTypes] = {
+ Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
+ };
+ QualType UnsignedIntegralTypes[NumTypes] = {
+ Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
+ Context.UnsignedLongLongTy
+ };
+
+ unsigned BitWidth = Context.getTypeSize(T);
+ QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
+ : UnsignedIntegralTypes;
+ for (unsigned I = 0; I != NumTypes; ++I)
+ if (Context.getTypeSize(Types[I]) > BitWidth)
+ return Types[I];
+
+ return QualType();
+}
+
+EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
+ EnumConstantDecl *LastEnumConst,
+ SourceLocation IdLoc,
+ IdentifierInfo *Id,
+ Expr *Val) {
+ unsigned IntWidth = Context.getTargetInfo().getIntWidth();
+ llvm::APSInt EnumVal(IntWidth);
+ QualType EltTy;
+
+ if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
+ Val = nullptr;
+
+ if (Val)
+ Val = DefaultLvalueConversion(Val).get();
+
+ if (Val) {
+ if (Enum->isDependentType() || Val->isTypeDependent())
+ EltTy = Context.DependentTy;
+ else {
+ SourceLocation ExpLoc;
+ if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
+ !getLangOpts().MSVCCompat) {
+ // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
+ // constant-expression in the enumerator-definition shall be a converted
+ // constant expression of the underlying type.
+ EltTy = Enum->getIntegerType();
+ ExprResult Converted =
+ CheckConvertedConstantExpression(Val, EltTy, EnumVal,
+ CCEK_Enumerator);
+ if (Converted.isInvalid())
+ Val = nullptr;
+ else
+ Val = Converted.get();
+ } else if (!Val->isValueDependent() &&
+ !(Val = VerifyIntegerConstantExpression(Val,
+ &EnumVal).get())) {
+ // C99 6.7.2.2p2: Make sure we have an integer constant expression.
+ } else {
+ if (Enum->isFixed()) {
+ EltTy = Enum->getIntegerType();
+
+ // In Obj-C and Microsoft mode, require the enumeration value to be
+ // representable in the underlying type of the enumeration. In C++11,
+ // we perform a non-narrowing conversion as part of converted constant
+ // expression checking.
+ if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
+ if (getLangOpts().MSVCCompat) {
+ Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
+ Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get();
+ } else
+ Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
+ } else
+ Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get();
+ } else if (getLangOpts().CPlusPlus) {
+ // C++11 [dcl.enum]p5:
+ // If the underlying type is not fixed, the type of each enumerator
+ // is the type of its initializing value:
+ // - If an initializer is specified for an enumerator, the
+ // initializing value has the same type as the expression.
+ EltTy = Val->getType();
+ } else {
+ // C99 6.7.2.2p2:
+ // The expression that defines the value of an enumeration constant
+ // shall be an integer constant expression that has a value
+ // representable as an int.
+
+ // Complain if the value is not representable in an int.
+ if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
+ Diag(IdLoc, diag::ext_enum_value_not_int)
+ << EnumVal.toString(10) << Val->getSourceRange()
+ << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
+ else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
+ // Force the type of the expression to 'int'.
+ Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
+ }
+ EltTy = Val->getType();
+ }
+ }
+ }
+ }
+
+ if (!Val) {
+ if (Enum->isDependentType())
+ EltTy = Context.DependentTy;
+ else if (!LastEnumConst) {
+ // C++0x [dcl.enum]p5:
+ // If the underlying type is not fixed, the type of each enumerator
+ // is the type of its initializing value:
+ // - If no initializer is specified for the first enumerator, the
+ // initializing value has an unspecified integral type.
+ //
+ // GCC uses 'int' for its unspecified integral type, as does
+ // C99 6.7.2.2p3.
+ if (Enum->isFixed()) {
+ EltTy = Enum->getIntegerType();
+ }
+ else {
+ EltTy = Context.IntTy;
+ }
+ } else {
+ // Assign the last value + 1.
+ EnumVal = LastEnumConst->getInitVal();
+ ++EnumVal;
+ EltTy = LastEnumConst->getType();
+
+ // Check for overflow on increment.
+ if (EnumVal < LastEnumConst->getInitVal()) {
+ // C++0x [dcl.enum]p5:
+ // If the underlying type is not fixed, the type of each enumerator
+ // is the type of its initializing value:
+ //
+ // - Otherwise the type of the initializing value is the same as
+ // the type of the initializing value of the preceding enumerator
+ // unless the incremented value is not representable in that type,
+ // in which case the type is an unspecified integral type
+ // sufficient to contain the incremented value. If no such type
+ // exists, the program is ill-formed.
+ QualType T = getNextLargerIntegralType(Context, EltTy);
+ if (T.isNull() || Enum->isFixed()) {
+ // There is no integral type larger enough to represent this
+ // value. Complain, then allow the value to wrap around.
+ EnumVal = LastEnumConst->getInitVal();
+ EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
+ ++EnumVal;
+ if (Enum->isFixed())
+ // When the underlying type is fixed, this is ill-formed.
+ Diag(IdLoc, diag::err_enumerator_wrapped)
+ << EnumVal.toString(10)
+ << EltTy;
+ else
+ Diag(IdLoc, diag::ext_enumerator_increment_too_large)
+ << EnumVal.toString(10);
+ } else {
+ EltTy = T;
+ }
+
+ // Retrieve the last enumerator's value, extent that type to the
+ // type that is supposed to be large enough to represent the incremented
+ // value, then increment.
+ EnumVal = LastEnumConst->getInitVal();
+ EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
+ EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
+ ++EnumVal;
+
+ // If we're not in C++, diagnose the overflow of enumerator values,
+ // which in C99 means that the enumerator value is not representable in
+ // an int (C99 6.7.2.2p2). However, we support GCC's extension that
+ // permits enumerator values that are representable in some larger
+ // integral type.
+ if (!getLangOpts().CPlusPlus && !T.isNull())
+ Diag(IdLoc, diag::warn_enum_value_overflow);
+ } else if (!getLangOpts().CPlusPlus &&
+ !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
+ // Enforce C99 6.7.2.2p2 even when we compute the next value.
+ Diag(IdLoc, diag::ext_enum_value_not_int)
+ << EnumVal.toString(10) << 1;
+ }
+ }
+ }
+
+ if (!EltTy->isDependentType()) {
+ // Make the enumerator value match the signedness and size of the
+ // enumerator's type.
+ EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
+ EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
+ }
+
+ return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
+ Val, EnumVal);
+}
+
+Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
+ SourceLocation IILoc) {
+ if (!getLangOpts().Modules || !getLangOpts().CPlusPlus)
+ return SkipBodyInfo();
+
+ // We have an anonymous enum definition. Look up the first enumerator to
+ // determine if we should merge the definition with an existing one and
+ // skip the body.
+ NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName,
+ ForRedeclaration);
+ auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl);
+ NamedDecl *Hidden;
+ if (PrevECD &&
+ !hasVisibleDefinition(cast<NamedDecl>(PrevECD->getDeclContext()),
+ &Hidden)) {
+ SkipBodyInfo Skip;
+ Skip.ShouldSkip = true;
+ Skip.Previous = Hidden;
+ return Skip;
+ }
+
+ return SkipBodyInfo();
+}
+
+Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
+ SourceLocation IdLoc, IdentifierInfo *Id,
+ AttributeList *Attr,
+ SourceLocation EqualLoc, Expr *Val) {
+ EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
+ EnumConstantDecl *LastEnumConst =
+ cast_or_null<EnumConstantDecl>(lastEnumConst);
+
+ // The scope passed in may not be a decl scope. Zip up the scope tree until
+ // we find one that is.
+ S = getNonFieldDeclScope(S);
+
+ // Verify that there isn't already something declared with this name in this
+ // scope.
+ NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
+ ForRedeclaration);
+ if (PrevDecl && PrevDecl->isTemplateParameter()) {
+ // Maybe we will complain about the shadowed template parameter.
+ DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
+ // Just pretend that we didn't see the previous declaration.
+ PrevDecl = nullptr;
+ }
+
+ if (PrevDecl) {
+ // When in C++, we may get a TagDecl with the same name; in this case the
+ // enum constant will 'hide' the tag.
+ assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
+ "Received TagDecl when not in C++!");
+ if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
+ if (isa<EnumConstantDecl>(PrevDecl))
+ Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
+ else
+ Diag(IdLoc, diag::err_redefinition) << Id;
+ Diag(PrevDecl->getLocation(), diag::note_previous_definition);
+ return nullptr;
+ }
+ }
+
+ // C++ [class.mem]p15:
+ // If T is the name of a class, then each of the following shall have a name
+ // different from T:
+ // - every enumerator of every member of class T that is an unscoped
+ // enumerated type
+ if (CXXRecordDecl *Record
+ = dyn_cast<CXXRecordDecl>(
+ TheEnumDecl->getDeclContext()->getRedeclContext()))
+ if (!TheEnumDecl->isScoped() &&
+ Record->getIdentifier() && Record->getIdentifier() == Id)
+ Diag(IdLoc, diag::err_member_name_of_class) << Id;
+
+ EnumConstantDecl *New =
+ CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
+
+ if (New) {
+ // Process attributes.
+ if (Attr) ProcessDeclAttributeList(S, New, Attr);
+
+ // Register this decl in the current scope stack.
+ New->setAccess(TheEnumDecl->getAccess());
+ PushOnScopeChains(New, S);
+ }
+
+ ActOnDocumentableDecl(New);
+
+ return New;
+}
+
+// Returns true when the enum initial expression does not trigger the
+// duplicate enum warning. A few common cases are exempted as follows:
+// Element2 = Element1
+// Element2 = Element1 + 1
+// Element2 = Element1 - 1
+// Where Element2 and Element1 are from the same enum.
+static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
+ Expr *InitExpr = ECD->getInitExpr();
+ if (!InitExpr)
+ return true;
+ InitExpr = InitExpr->IgnoreImpCasts();
+
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
+ if (!BO->isAdditiveOp())
+ return true;
+ IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
+ if (!IL)
+ return true;
+ if (IL->getValue() != 1)
+ return true;
+
+ InitExpr = BO->getLHS();
+ }
+
+ // This checks if the elements are from the same enum.
+ DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
+ if (!DRE)
+ return true;
+
+ EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
+ if (!EnumConstant)
+ return true;
+
+ if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
+ Enum)
+ return true;
+
+ return false;
+}
+
+struct DupKey {
+ int64_t val;
+ bool isTombstoneOrEmptyKey;
+ DupKey(int64_t val, bool isTombstoneOrEmptyKey)
+ : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
+};
+
+static DupKey GetDupKey(const llvm::APSInt& Val) {
+ return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
+ false);
+}
+
+struct DenseMapInfoDupKey {
+ static DupKey getEmptyKey() { return DupKey(0, true); }
+ static DupKey getTombstoneKey() { return DupKey(1, true); }
+ static unsigned getHashValue(const DupKey Key) {
+ return (unsigned)(Key.val * 37);
+ }
+ static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
+ return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
+ LHS.val == RHS.val;
+ }
+};
+
+// Emits a warning when an element is implicitly set a value that
+// a previous element has already been set to.
+static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
+ EnumDecl *Enum,
+ QualType EnumType) {
+ if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
+ return;
+ // Avoid anonymous enums
+ if (!Enum->getIdentifier())
+ return;
+
+ // Only check for small enums.
+ if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
+ return;
+
+ typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
+ typedef SmallVector<ECDVector *, 3> DuplicatesVector;
+
+ typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
+ typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
+ ValueToVectorMap;
+
+ DuplicatesVector DupVector;
+ ValueToVectorMap EnumMap;
+
+ // Populate the EnumMap with all values represented by enum constants without
+ // an initialier.
+ for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
+ EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
+
+ // Null EnumConstantDecl means a previous diagnostic has been emitted for
+ // this constant. Skip this enum since it may be ill-formed.
+ if (!ECD) {
+ return;
+ }
+
+ if (ECD->getInitExpr())
+ continue;
+
+ DupKey Key = GetDupKey(ECD->getInitVal());
+ DeclOrVector &Entry = EnumMap[Key];
+
+ // First time encountering this value.
+ if (Entry.isNull())
+ Entry = ECD;
+ }
+
+ // Create vectors for any values that has duplicates.
+ for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
+ EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
+ if (!ValidDuplicateEnum(ECD, Enum))
+ continue;
+
+ DupKey Key = GetDupKey(ECD->getInitVal());
+
+ DeclOrVector& Entry = EnumMap[Key];
+ if (Entry.isNull())
+ continue;
+
+ if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
+ // Ensure constants are different.
+ if (D == ECD)
+ continue;
+
+ // Create new vector and push values onto it.
+ ECDVector *Vec = new ECDVector();
+ Vec->push_back(D);
+ Vec->push_back(ECD);
+
+ // Update entry to point to the duplicates vector.
+ Entry = Vec;
+
+ // Store the vector somewhere we can consult later for quick emission of
+ // diagnostics.
+ DupVector.push_back(Vec);
+ continue;
+ }
+
+ ECDVector *Vec = Entry.get<ECDVector*>();
+ // Make sure constants are not added more than once.
+ if (*Vec->begin() == ECD)
+ continue;
+
+ Vec->push_back(ECD);
+ }
+
+ // Emit diagnostics.
+ for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
+ DupVectorEnd = DupVector.end();
+ DupVectorIter != DupVectorEnd; ++DupVectorIter) {
+ ECDVector *Vec = *DupVectorIter;
+ assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
+
+ // Emit warning for one enum constant.
+ ECDVector::iterator I = Vec->begin();
+ S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
+ << (*I)->getName() << (*I)->getInitVal().toString(10)
+ << (*I)->getSourceRange();
+ ++I;
+
+ // Emit one note for each of the remaining enum constants with
+ // the same value.
+ for (ECDVector::iterator E = Vec->end(); I != E; ++I)
+ S.Diag((*I)->getLocation(), diag::note_duplicate_element)
+ << (*I)->getName() << (*I)->getInitVal().toString(10)
+ << (*I)->getSourceRange();
+ delete Vec;
+ }
+}
+
+bool
+Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
+ bool AllowMask) const {
+ FlagEnumAttr *FEAttr = ED->getAttr<FlagEnumAttr>();
+ assert(FEAttr && "looking for value in non-flag enum");
+
+ llvm::APInt FlagMask = ~FEAttr->getFlagBits();
+ unsigned Width = FlagMask.getBitWidth();
+
+ // We will try a zero-extended value for the regular check first.
+ llvm::APInt ExtVal = Val.zextOrSelf(Width);
+
+ // A value is in a flag enum if either its bits are a subset of the enum's
+ // flag bits (the first condition) or we are allowing masks and the same is
+ // true of its complement (the second condition). When masks are allowed, we
+ // allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
+ //
+ // While it's true that any value could be used as a mask, the assumption is
+ // that a mask will have all of the insignificant bits set. Anything else is
+ // likely a logic error.
+ if (!(FlagMask & ExtVal))
+ return true;
+
+ if (AllowMask) {
+ // Try a one-extended value instead. This can happen if the enum is wider
+ // than the constant used, in C with extensions to allow for wider enums.
+ // The mask will still have the correct behaviour, so we give the user the
+ // benefit of the doubt.
+ //
+ // FIXME: This heuristic can cause weird results if the enum was extended
+ // to a larger type and is signed, because then bit-masks of smaller types
+ // that get extended will fall out of range (e.g. ~0x1u). We currently don't
+ // detect that case and will get a false positive for it. In most cases,
+ // though, it can be fixed by making it a signed type (e.g. ~0x1), so it may
+ // be fine just to accept this as a warning.
+ ExtVal |= llvm::APInt::getHighBitsSet(Width, Width - Val.getBitWidth());
+ if (!(FlagMask & ~ExtVal))
+ return true;
+ }
+
+ return false;
+}
+
+void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
+ SourceLocation RBraceLoc, Decl *EnumDeclX,
+ ArrayRef<Decl *> Elements,
+ Scope *S, AttributeList *Attr) {
+ EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
+ QualType EnumType = Context.getTypeDeclType(Enum);
+
+ if (Attr)
+ ProcessDeclAttributeList(S, Enum, Attr);
+
+ if (Enum->isDependentType()) {
+ for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
+ EnumConstantDecl *ECD =
+ cast_or_null<EnumConstantDecl>(Elements[i]);
+ if (!ECD) continue;
+
+ ECD->setType(EnumType);
+ }
+
+ Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
+ return;
+ }
+
+ // TODO: If the result value doesn't fit in an int, it must be a long or long
+ // long value. ISO C does not support this, but GCC does as an extension,
+ // emit a warning.
+ unsigned IntWidth = Context.getTargetInfo().getIntWidth();
+ unsigned CharWidth = Context.getTargetInfo().getCharWidth();
+ unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
+
+ // Verify that all the values are okay, compute the size of the values, and
+ // reverse the list.
+ unsigned NumNegativeBits = 0;
+ unsigned NumPositiveBits = 0;
+
+ // Keep track of whether all elements have type int.
+ bool AllElementsInt = true;
+
+ for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
+ EnumConstantDecl *ECD =
+ cast_or_null<EnumConstantDecl>(Elements[i]);
+ if (!ECD) continue; // Already issued a diagnostic.
+
+ const llvm::APSInt &InitVal = ECD->getInitVal();
+
+ // Keep track of the size of positive and negative values.
+ if (InitVal.isUnsigned() || InitVal.isNonNegative())
+ NumPositiveBits = std::max(NumPositiveBits,
+ (unsigned)InitVal.getActiveBits());
+ else
+ NumNegativeBits = std::max(NumNegativeBits,
+ (unsigned)InitVal.getMinSignedBits());
+
+ // Keep track of whether every enum element has type int (very commmon).
+ if (AllElementsInt)
+ AllElementsInt = ECD->getType() == Context.IntTy;
+ }
+
+ // Figure out the type that should be used for this enum.
+ QualType BestType;
+ unsigned BestWidth;
+
+ // C++0x N3000 [conv.prom]p3:
+ // An rvalue of an unscoped enumeration type whose underlying
+ // type is not fixed can be converted to an rvalue of the first
+ // of the following types that can represent all the values of
+ // the enumeration: int, unsigned int, long int, unsigned long
+ // int, long long int, or unsigned long long int.
+ // C99 6.4.4.3p2:
+ // An identifier declared as an enumeration constant has type int.
+ // The C99 rule is modified by a gcc extension
+ QualType BestPromotionType;
+
+ bool Packed = Enum->hasAttr<PackedAttr>();
+ // -fshort-enums is the equivalent to specifying the packed attribute on all
+ // enum definitions.
+ if (LangOpts.ShortEnums)
+ Packed = true;
+
+ if (Enum->isFixed()) {
+ BestType = Enum->getIntegerType();
+ if (BestType->isPromotableIntegerType())
+ BestPromotionType = Context.getPromotedIntegerType(BestType);
+ else
+ BestPromotionType = BestType;
+
+ BestWidth = Context.getIntWidth(BestType);
+ }
+ else if (NumNegativeBits) {
+ // If there is a negative value, figure out the smallest integer type (of
+ // int/long/longlong) that fits.
+ // If it's packed, check also if it fits a char or a short.
+ if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
+ BestType = Context.SignedCharTy;
+ BestWidth = CharWidth;
+ } else if (Packed && NumNegativeBits <= ShortWidth &&
+ NumPositiveBits < ShortWidth) {
+ BestType = Context.ShortTy;
+ BestWidth = ShortWidth;
+ } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
+ BestType = Context.IntTy;
+ BestWidth = IntWidth;
+ } else {
+ BestWidth = Context.getTargetInfo().getLongWidth();
+
+ if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
+ BestType = Context.LongTy;
+ } else {
+ BestWidth = Context.getTargetInfo().getLongLongWidth();
+
+ if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
+ Diag(Enum->getLocation(), diag::ext_enum_too_large);
+ BestType = Context.LongLongTy;
+ }
+ }
+ BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
+ } else {
+ // If there is no negative value, figure out the smallest type that fits
+ // all of the enumerator values.
+ // If it's packed, check also if it fits a char or a short.
+ if (Packed && NumPositiveBits <= CharWidth) {
+ BestType = Context.UnsignedCharTy;
+ BestPromotionType = Context.IntTy;
+ BestWidth = CharWidth;
+ } else if (Packed && NumPositiveBits <= ShortWidth) {
+ BestType = Context.UnsignedShortTy;
+ BestPromotionType = Context.IntTy;
+ BestWidth = ShortWidth;
+ } else if (NumPositiveBits <= IntWidth) {
+ BestType = Context.UnsignedIntTy;
+ BestWidth = IntWidth;
+ BestPromotionType
+ = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
+ ? Context.UnsignedIntTy : Context.IntTy;
+ } else if (NumPositiveBits <=
+ (BestWidth = Context.getTargetInfo().getLongWidth())) {
+ BestType = Context.UnsignedLongTy;
+ BestPromotionType
+ = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
+ ? Context.UnsignedLongTy : Context.LongTy;
+ } else {
+ BestWidth = Context.getTargetInfo().getLongLongWidth();
+ assert(NumPositiveBits <= BestWidth &&
+ "How could an initializer get larger than ULL?");
+ BestType = Context.UnsignedLongLongTy;
+ BestPromotionType
+ = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
+ ? Context.UnsignedLongLongTy : Context.LongLongTy;
+ }
+ }
+
+ FlagEnumAttr *FEAttr = Enum->getAttr<FlagEnumAttr>();
+ if (FEAttr)
+ FEAttr->getFlagBits() = llvm::APInt(BestWidth, 0);
+
+ // Loop over all of the enumerator constants, changing their types to match
+ // the type of the enum if needed. If we have a flag type, we also prepare the
+ // FlagBits cache.
+ for (auto *D : Elements) {
+ auto *ECD = cast_or_null<EnumConstantDecl>(D);
+ if (!ECD) continue; // Already issued a diagnostic.
+
+ // Standard C says the enumerators have int type, but we allow, as an
+ // extension, the enumerators to be larger than int size. If each
+ // enumerator value fits in an int, type it as an int, otherwise type it the
+ // same as the enumerator decl itself. This means that in "enum { X = 1U }"
+ // that X has type 'int', not 'unsigned'.
+
+ // Determine whether the value fits into an int.
+ llvm::APSInt InitVal = ECD->getInitVal();
+
+ // If it fits into an integer type, force it. Otherwise force it to match
+ // the enum decl type.
+ QualType NewTy;
+ unsigned NewWidth;
+ bool NewSign;
+ if (!getLangOpts().CPlusPlus &&
+ !Enum->isFixed() &&
+ isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
+ NewTy = Context.IntTy;
+ NewWidth = IntWidth;
+ NewSign = true;
+ } else if (ECD->getType() == BestType) {
+ // Already the right type!
+ if (getLangOpts().CPlusPlus)
+ // C++ [dcl.enum]p4: Following the closing brace of an
+ // enum-specifier, each enumerator has the type of its
+ // enumeration.
+ ECD->setType(EnumType);
+ goto flagbits;
+ } else {
+ NewTy = BestType;
+ NewWidth = BestWidth;
+ NewSign = BestType->isSignedIntegerOrEnumerationType();
+ }
+
+ // Adjust the APSInt value.
+ InitVal = InitVal.extOrTrunc(NewWidth);
+ InitVal.setIsSigned(NewSign);
+ ECD->setInitVal(InitVal);
+
+ // Adjust the Expr initializer and type.
+ if (ECD->getInitExpr() &&
+ !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
+ ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
+ CK_IntegralCast,
+ ECD->getInitExpr(),
+ /*base paths*/ nullptr,
+ VK_RValue));
+ if (getLangOpts().CPlusPlus)
+ // C++ [dcl.enum]p4: Following the closing brace of an
+ // enum-specifier, each enumerator has the type of its
+ // enumeration.
+ ECD->setType(EnumType);
+ else
+ ECD->setType(NewTy);
+
+flagbits:
+ // Check to see if we have a constant with exactly one bit set. Note that x
+ // & (x - 1) will be nonzero if and only if x has more than one bit set.
+ if (FEAttr) {
+ llvm::APInt ExtVal = InitVal.zextOrSelf(BestWidth);
+ if (ExtVal != 0 && !(ExtVal & (ExtVal - 1))) {
+ FEAttr->getFlagBits() |= ExtVal;
+ }
+ }
+ }
+
+ if (FEAttr) {
+ for (Decl *D : Elements) {
+ EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D);
+ if (!ECD) continue; // Already issued a diagnostic.
+
+ llvm::APSInt InitVal = ECD->getInitVal();
+ if (InitVal != 0 && !IsValueInFlagEnum(Enum, InitVal, true))
+ Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range)
+ << ECD << Enum;
+ }
+ }
+
+
+
+ Enum->completeDefinition(BestType, BestPromotionType,
+ NumPositiveBits, NumNegativeBits);
+
+ CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
+
+ // Now that the enum type is defined, ensure it's not been underaligned.
+ if (Enum->hasAttrs())
+ CheckAlignasUnderalignment(Enum);
+}
+
+Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
+ SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+ StringLiteral *AsmString = cast<StringLiteral>(expr);
+
+ FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
+ AsmString, StartLoc,
+ EndLoc);
+ CurContext->addDecl(New);
+ return New;
+}
+
+static void checkModuleImportContext(Sema &S, Module *M,
+ SourceLocation ImportLoc,
+ DeclContext *DC) {
+ if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) {
+ switch (LSD->getLanguage()) {
+ case LinkageSpecDecl::lang_c:
+ if (!M->IsExternC) {
+ S.Diag(ImportLoc, diag::err_module_import_in_extern_c)
+ << M->getFullModuleName();
+ S.Diag(LSD->getLocStart(), diag::note_module_import_in_extern_c);
+ return;
+ }
+ break;
+ case LinkageSpecDecl::lang_cxx:
+ break;
+ }
+ DC = LSD->getParent();
+ }
+
+ while (isa<LinkageSpecDecl>(DC))
+ DC = DC->getParent();
+ if (!isa<TranslationUnitDecl>(DC)) {
+ S.Diag(ImportLoc, diag::err_module_import_not_at_top_level)
+ << M->getFullModuleName() << DC;
+ S.Diag(cast<Decl>(DC)->getLocStart(),
+ diag::note_module_import_not_at_top_level)
+ << DC;
+ }
+}
+
+DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
+ SourceLocation ImportLoc,
+ ModuleIdPath Path) {
+ Module *Mod =
+ getModuleLoader().loadModule(ImportLoc, Path, Module::AllVisible,
+ /*IsIncludeDirective=*/false);
+ if (!Mod)
+ return true;
+
+ VisibleModules.setVisible(Mod, ImportLoc);
+
+ checkModuleImportContext(*this, Mod, ImportLoc, CurContext);
+
+ // FIXME: we should support importing a submodule within a different submodule
+ // of the same top-level module. Until we do, make it an error rather than
+ // silently ignoring the import.
+ if (Mod->getTopLevelModuleName() == getLangOpts().CurrentModule)
+ Diag(ImportLoc, diag::err_module_self_import)
+ << Mod->getFullModuleName() << getLangOpts().CurrentModule;
+ else if (Mod->getTopLevelModuleName() == getLangOpts().ImplementationOfModule)
+ Diag(ImportLoc, diag::err_module_import_in_implementation)
+ << Mod->getFullModuleName() << getLangOpts().ImplementationOfModule;
+
+ SmallVector<SourceLocation, 2> IdentifierLocs;
+ Module *ModCheck = Mod;
+ for (unsigned I = 0, N = Path.size(); I != N; ++I) {
+ // If we've run out of module parents, just drop the remaining identifiers.
+ // We need the length to be consistent.
+ if (!ModCheck)
+ break;
+ ModCheck = ModCheck->Parent;
+
+ IdentifierLocs.push_back(Path[I].second);
+ }
+
+ ImportDecl *Import = ImportDecl::Create(Context,
+ Context.getTranslationUnitDecl(),
+ AtLoc.isValid()? AtLoc : ImportLoc,
+ Mod, IdentifierLocs);
+ Context.getTranslationUnitDecl()->addDecl(Import);
+ return Import;
+}
+
+void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
+ checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext);
+
+ // Determine whether we're in the #include buffer for a module. The #includes
+ // in that buffer do not qualify as module imports; they're just an
+ // implementation detail of us building the module.
+ //
+ // FIXME: Should we even get ActOnModuleInclude calls for those?
+ bool IsInModuleIncludes =
+ TUKind == TU_Module &&
+ getSourceManager().isWrittenInMainFile(DirectiveLoc);
+
+ // If this module import was due to an inclusion directive, create an
+ // implicit import declaration to capture it in the AST.
+ if (!IsInModuleIncludes) {
+ TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
+ ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
+ DirectiveLoc, Mod,
+ DirectiveLoc);
+ TU->addDecl(ImportD);
+ Consumer.HandleImplicitImportDecl(ImportD);
+ }
+
+ getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc);
+ VisibleModules.setVisible(Mod, DirectiveLoc);
+}
+
+void Sema::ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod) {
+ checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext);
+
+ if (getLangOpts().ModulesLocalVisibility)
+ VisibleModulesStack.push_back(std::move(VisibleModules));
+ VisibleModules.setVisible(Mod, DirectiveLoc);
+}
+
+void Sema::ActOnModuleEnd(SourceLocation DirectiveLoc, Module *Mod) {
+ checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext);
+
+ if (getLangOpts().ModulesLocalVisibility) {
+ VisibleModules = std::move(VisibleModulesStack.back());
+ VisibleModulesStack.pop_back();
+ VisibleModules.setVisible(Mod, DirectiveLoc);
+ }
+}
+
+void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc,
+ Module *Mod) {
+ // Bail if we're not allowed to implicitly import a module here.
+ if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery)
+ return;
+
+ // Create the implicit import declaration.
+ TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
+ ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
+ Loc, Mod, Loc);
+ TU->addDecl(ImportD);
+ Consumer.HandleImplicitImportDecl(ImportD);
+
+ // Make the module visible.
+ getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc);
+ VisibleModules.setVisible(Mod, Loc);
+}
+
+void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
+ IdentifierInfo* AliasName,
+ SourceLocation PragmaLoc,
+ SourceLocation NameLoc,
+ SourceLocation AliasNameLoc) {
+ Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
+ LookupOrdinaryName);
+ AsmLabelAttr *Attr = ::new (Context) AsmLabelAttr(AliasNameLoc, Context,
+ AliasName->getName(), 0);
+
+ if (PrevDecl)
+ PrevDecl->addAttr(Attr);
+ else
+ (void)ExtnameUndeclaredIdentifiers.insert(
+ std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
+}
+
+void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
+ SourceLocation PragmaLoc,
+ SourceLocation NameLoc) {
+ Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
+
+ if (PrevDecl) {
+ PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc));
+ } else {
+ (void)WeakUndeclaredIdentifiers.insert(
+ std::pair<IdentifierInfo*,WeakInfo>
+ (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc)));
+ }
+}
+
+void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
+ IdentifierInfo* AliasName,
+ SourceLocation PragmaLoc,
+ SourceLocation NameLoc,
+ SourceLocation AliasNameLoc) {
+ Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
+ LookupOrdinaryName);
+ WeakInfo W = WeakInfo(Name, NameLoc);
+
+ if (PrevDecl) {
+ if (!PrevDecl->hasAttr<AliasAttr>())
+ if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
+ DeclApplyPragmaWeak(TUScope, ND, W);
+ } else {
+ (void)WeakUndeclaredIdentifiers.insert(
+ std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
+ }
+}
+
+Decl *Sema::getObjCDeclContext() const {
+ return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
+}
+
+AvailabilityResult Sema::getCurContextAvailability() const {
+ const Decl *D = cast_or_null<Decl>(getCurObjCLexicalContext());
+ if (!D)
+ return AR_Available;
+
+ // If we are within an Objective-C method, we should consult
+ // both the availability of the method as well as the
+ // enclosing class. If the class is (say) deprecated,
+ // the entire method is considered deprecated from the
+ // purpose of checking if the current context is deprecated.
+ if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
+ AvailabilityResult R = MD->getAvailability();
+ if (R != AR_Available)
+ return R;
+ D = MD->getClassInterface();
+ }
+ // If we are within an Objective-c @implementation, it
+ // gets the same availability context as the @interface.
+ else if (const ObjCImplementationDecl *ID =
+ dyn_cast<ObjCImplementationDecl>(D)) {
+ D = ID->getClassInterface();
+ }
+ // Recover from user error.
+ return D ? D->getAvailability() : AR_Available;
+}
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaDeclAttr.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaDeclAttr.cpp
new file mode 100644
index 0000000..31fe055
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaDeclAttr.cpp
@@ -0,0 +1,5385 @@
+//===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements decl-related attribute processing.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Sema/SemaInternal.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/Mangle.h"
+#include "clang/Basic/CharInfo.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Sema/DeclSpec.h"
+#include "clang/Sema/DelayedDiagnostic.h"
+#include "clang/Sema/Lookup.h"
+#include "clang/Sema/Scope.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/MathExtras.h"
+using namespace clang;
+using namespace sema;
+
+namespace AttributeLangSupport {
+ enum LANG {
+ C,
+ Cpp,
+ ObjC
+ };
+}
+
+//===----------------------------------------------------------------------===//
+// Helper functions
+//===----------------------------------------------------------------------===//
+
+/// isFunctionOrMethod - Return true if the given decl has function
+/// type (function or function-typed variable) or an Objective-C
+/// method.
+static bool isFunctionOrMethod(const Decl *D) {
+ return (D->getFunctionType() != nullptr) || isa<ObjCMethodDecl>(D);
+}
+/// \brief Return true if the given decl has function type (function or
+/// function-typed variable) or an Objective-C method or a block.
+static bool isFunctionOrMethodOrBlock(const Decl *D) {
+ return isFunctionOrMethod(D) || isa<BlockDecl>(D);
+}
+
+/// Return true if the given decl has a declarator that should have
+/// been processed by Sema::GetTypeForDeclarator.
+static bool hasDeclarator(const Decl *D) {
+ // In some sense, TypedefDecl really *ought* to be a DeclaratorDecl.
+ return isa<DeclaratorDecl>(D) || isa<BlockDecl>(D) || isa<TypedefNameDecl>(D) ||
+ isa<ObjCPropertyDecl>(D);
+}
+
+/// hasFunctionProto - Return true if the given decl has a argument
+/// information. This decl should have already passed
+/// isFunctionOrMethod or isFunctionOrMethodOrBlock.
+static bool hasFunctionProto(const Decl *D) {
+ if (const FunctionType *FnTy = D->getFunctionType())
+ return isa<FunctionProtoType>(FnTy);
+ return isa<ObjCMethodDecl>(D) || isa<BlockDecl>(D);
+}
+
+/// getFunctionOrMethodNumParams - Return number of function or method
+/// parameters. It is an error to call this on a K&R function (use
+/// hasFunctionProto first).
+static unsigned getFunctionOrMethodNumParams(const Decl *D) {
+ if (const FunctionType *FnTy = D->getFunctionType())
+ return cast<FunctionProtoType>(FnTy)->getNumParams();
+ if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
+ return BD->getNumParams();
+ return cast<ObjCMethodDecl>(D)->param_size();
+}
+
+static QualType getFunctionOrMethodParamType(const Decl *D, unsigned Idx) {
+ if (const FunctionType *FnTy = D->getFunctionType())
+ return cast<FunctionProtoType>(FnTy)->getParamType(Idx);
+ if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
+ return BD->getParamDecl(Idx)->getType();
+
+ return cast<ObjCMethodDecl>(D)->parameters()[Idx]->getType();
+}
+
+static SourceRange getFunctionOrMethodParamRange(const Decl *D, unsigned Idx) {
+ if (const auto *FD = dyn_cast<FunctionDecl>(D))
+ return FD->getParamDecl(Idx)->getSourceRange();
+ if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
+ return MD->parameters()[Idx]->getSourceRange();
+ if (const auto *BD = dyn_cast<BlockDecl>(D))
+ return BD->getParamDecl(Idx)->getSourceRange();
+ return SourceRange();
+}
+
+static QualType getFunctionOrMethodResultType(const Decl *D) {
+ if (const FunctionType *FnTy = D->getFunctionType())
+ return cast<FunctionType>(FnTy)->getReturnType();
+ return cast<ObjCMethodDecl>(D)->getReturnType();
+}
+
+static SourceRange getFunctionOrMethodResultSourceRange(const Decl *D) {
+ if (const auto *FD = dyn_cast<FunctionDecl>(D))
+ return FD->getReturnTypeSourceRange();
+ if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
+ return MD->getReturnTypeSourceRange();
+ return SourceRange();
+}
+
+static bool isFunctionOrMethodVariadic(const Decl *D) {
+ if (const FunctionType *FnTy = D->getFunctionType()) {
+ const FunctionProtoType *proto = cast<FunctionProtoType>(FnTy);
+ return proto->isVariadic();
+ }
+ if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
+ return BD->isVariadic();
+
+ return cast<ObjCMethodDecl>(D)->isVariadic();
+}
+
+static bool isInstanceMethod(const Decl *D) {
+ if (const CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D))
+ return MethodDecl->isInstance();
+ return false;
+}
+
+static inline bool isNSStringType(QualType T, ASTContext &Ctx) {
+ const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>();
+ if (!PT)
+ return false;
+
+ ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface();
+ if (!Cls)
+ return false;
+
+ IdentifierInfo* ClsName = Cls->getIdentifier();
+
+ // FIXME: Should we walk the chain of classes?
+ return ClsName == &Ctx.Idents.get("NSString") ||
+ ClsName == &Ctx.Idents.get("NSMutableString");
+}
+
+static inline bool isCFStringType(QualType T, ASTContext &Ctx) {
+ const PointerType *PT = T->getAs<PointerType>();
+ if (!PT)
+ return false;
+
+ const RecordType *RT = PT->getPointeeType()->getAs<RecordType>();
+ if (!RT)
+ return false;
+
+ const RecordDecl *RD = RT->getDecl();
+ if (RD->getTagKind() != TTK_Struct)
+ return false;
+
+ return RD->getIdentifier() == &Ctx.Idents.get("__CFString");
+}
+
+static unsigned getNumAttributeArgs(const AttributeList &Attr) {
+ // FIXME: Include the type in the argument list.
+ return Attr.getNumArgs() + Attr.hasParsedType();
+}
+
+template <typename Compare>
+static bool checkAttributeNumArgsImpl(Sema &S, const AttributeList &Attr,
+ unsigned Num, unsigned Diag,
+ Compare Comp) {
+ if (Comp(getNumAttributeArgs(Attr), Num)) {
+ S.Diag(Attr.getLoc(), Diag) << Attr.getName() << Num;
+ return false;
+ }
+
+ return true;
+}
+
+/// \brief Check if the attribute has exactly as many args as Num. May
+/// output an error.
+static bool checkAttributeNumArgs(Sema &S, const AttributeList &Attr,
+ unsigned Num) {
+ return checkAttributeNumArgsImpl(S, Attr, Num,
+ diag::err_attribute_wrong_number_arguments,
+ std::not_equal_to<unsigned>());
+}
+
+/// \brief Check if the attribute has at least as many args as Num. May
+/// output an error.
+static bool checkAttributeAtLeastNumArgs(Sema &S, const AttributeList &Attr,
+ unsigned Num) {
+ return checkAttributeNumArgsImpl(S, Attr, Num,
+ diag::err_attribute_too_few_arguments,
+ std::less<unsigned>());
+}
+
+/// \brief Check if the attribute has at most as many args as Num. May
+/// output an error.
+static bool checkAttributeAtMostNumArgs(Sema &S, const AttributeList &Attr,
+ unsigned Num) {
+ return checkAttributeNumArgsImpl(S, Attr, Num,
+ diag::err_attribute_too_many_arguments,
+ std::greater<unsigned>());
+}
+
+/// \brief If Expr is a valid integer constant, get the value of the integer
+/// expression and return success or failure. May output an error.
+static bool checkUInt32Argument(Sema &S, const AttributeList &Attr,
+ const Expr *Expr, uint32_t &Val,
+ unsigned Idx = UINT_MAX) {
+ llvm::APSInt I(32);
+ if (Expr->isTypeDependent() || Expr->isValueDependent() ||
+ !Expr->isIntegerConstantExpr(I, S.Context)) {
+ if (Idx != UINT_MAX)
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
+ << Attr.getName() << Idx << AANT_ArgumentIntegerConstant
+ << Expr->getSourceRange();
+ else
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
+ << Attr.getName() << AANT_ArgumentIntegerConstant
+ << Expr->getSourceRange();
+ return false;
+ }
+
+ if (!I.isIntN(32)) {
+ S.Diag(Expr->getExprLoc(), diag::err_ice_too_large)
+ << I.toString(10, false) << 32 << /* Unsigned */ 1;
+ return false;
+ }
+
+ Val = (uint32_t)I.getZExtValue();
+ return true;
+}
+
+/// \brief Diagnose mutually exclusive attributes when present on a given
+/// declaration. Returns true if diagnosed.
+template <typename AttrTy>
+static bool checkAttrMutualExclusion(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ if (AttrTy *A = D->getAttr<AttrTy>()) {
+ S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
+ << Attr.getName() << A;
+ return true;
+ }
+ return false;
+}
+
+/// \brief Check if IdxExpr is a valid parameter index for a function or
+/// instance method D. May output an error.
+///
+/// \returns true if IdxExpr is a valid index.
+static bool checkFunctionOrMethodParameterIndex(Sema &S, const Decl *D,
+ const AttributeList &Attr,
+ unsigned AttrArgNum,
+ const Expr *IdxExpr,
+ uint64_t &Idx) {
+ assert(isFunctionOrMethodOrBlock(D));
+
+ // In C++ the implicit 'this' function parameter also counts.
+ // Parameters are counted from one.
+ bool HP = hasFunctionProto(D);
+ bool HasImplicitThisParam = isInstanceMethod(D);
+ bool IV = HP && isFunctionOrMethodVariadic(D);
+ unsigned NumParams =
+ (HP ? getFunctionOrMethodNumParams(D) : 0) + HasImplicitThisParam;
+
+ llvm::APSInt IdxInt;
+ if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() ||
+ !IdxExpr->isIntegerConstantExpr(IdxInt, S.Context)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
+ << Attr.getName() << AttrArgNum << AANT_ArgumentIntegerConstant
+ << IdxExpr->getSourceRange();
+ return false;
+ }
+
+ Idx = IdxInt.getLimitedValue();
+ if (Idx < 1 || (!IV && Idx > NumParams)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
+ << Attr.getName() << AttrArgNum << IdxExpr->getSourceRange();
+ return false;
+ }
+ Idx--; // Convert to zero-based.
+ if (HasImplicitThisParam) {
+ if (Idx == 0) {
+ S.Diag(Attr.getLoc(),
+ diag::err_attribute_invalid_implicit_this_argument)
+ << Attr.getName() << IdxExpr->getSourceRange();
+ return false;
+ }
+ --Idx;
+ }
+
+ return true;
+}
+
+/// \brief Check if the argument \p ArgNum of \p Attr is a ASCII string literal.
+/// If not emit an error and return false. If the argument is an identifier it
+/// will emit an error with a fixit hint and treat it as if it was a string
+/// literal.
+bool Sema::checkStringLiteralArgumentAttr(const AttributeList &Attr,
+ unsigned ArgNum, StringRef &Str,
+ SourceLocation *ArgLocation) {
+ // Look for identifiers. If we have one emit a hint to fix it to a literal.
+ if (Attr.isArgIdent(ArgNum)) {
+ IdentifierLoc *Loc = Attr.getArgAsIdent(ArgNum);
+ Diag(Loc->Loc, diag::err_attribute_argument_type)
+ << Attr.getName() << AANT_ArgumentString
+ << FixItHint::CreateInsertion(Loc->Loc, "\"")
+ << FixItHint::CreateInsertion(PP.getLocForEndOfToken(Loc->Loc), "\"");
+ Str = Loc->Ident->getName();
+ if (ArgLocation)
+ *ArgLocation = Loc->Loc;
+ return true;
+ }
+
+ // Now check for an actual string literal.
+ Expr *ArgExpr = Attr.getArgAsExpr(ArgNum);
+ StringLiteral *Literal = dyn_cast<StringLiteral>(ArgExpr->IgnoreParenCasts());
+ if (ArgLocation)
+ *ArgLocation = ArgExpr->getLocStart();
+
+ if (!Literal || !Literal->isAscii()) {
+ Diag(ArgExpr->getLocStart(), diag::err_attribute_argument_type)
+ << Attr.getName() << AANT_ArgumentString;
+ return false;
+ }
+
+ Str = Literal->getString();
+ return true;
+}
+
+/// \brief Applies the given attribute to the Decl without performing any
+/// additional semantic checking.
+template <typename AttrType>
+static void handleSimpleAttribute(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ D->addAttr(::new (S.Context) AttrType(Attr.getRange(), S.Context,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+/// \brief Check if the passed-in expression is of type int or bool.
+static bool isIntOrBool(Expr *Exp) {
+ QualType QT = Exp->getType();
+ return QT->isBooleanType() || QT->isIntegerType();
+}
+
+
+// Check to see if the type is a smart pointer of some kind. We assume
+// it's a smart pointer if it defines both operator-> and operator*.
+static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) {
+ DeclContextLookupResult Res1 = RT->getDecl()->lookup(
+ S.Context.DeclarationNames.getCXXOperatorName(OO_Star));
+ if (Res1.empty())
+ return false;
+
+ DeclContextLookupResult Res2 = RT->getDecl()->lookup(
+ S.Context.DeclarationNames.getCXXOperatorName(OO_Arrow));
+ if (Res2.empty())
+ return false;
+
+ return true;
+}
+
+/// \brief Check if passed in Decl is a pointer type.
+/// Note that this function may produce an error message.
+/// \return true if the Decl is a pointer type; false otherwise
+static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D,
+ const AttributeList &Attr) {
+ const ValueDecl *vd = cast<ValueDecl>(D);
+ QualType QT = vd->getType();
+ if (QT->isAnyPointerType())
+ return true;
+
+ if (const RecordType *RT = QT->getAs<RecordType>()) {
+ // If it's an incomplete type, it could be a smart pointer; skip it.
+ // (We don't want to force template instantiation if we can avoid it,
+ // since that would alter the order in which templates are instantiated.)
+ if (RT->isIncompleteType())
+ return true;
+
+ if (threadSafetyCheckIsSmartPointer(S, RT))
+ return true;
+ }
+
+ S.Diag(Attr.getLoc(), diag::warn_thread_attribute_decl_not_pointer)
+ << Attr.getName() << QT;
+ return false;
+}
+
+/// \brief Checks that the passed in QualType either is of RecordType or points
+/// to RecordType. Returns the relevant RecordType, null if it does not exit.
+static const RecordType *getRecordType(QualType QT) {
+ if (const RecordType *RT = QT->getAs<RecordType>())
+ return RT;
+
+ // Now check if we point to record type.
+ if (const PointerType *PT = QT->getAs<PointerType>())
+ return PT->getPointeeType()->getAs<RecordType>();
+
+ return nullptr;
+}
+
+static bool checkRecordTypeForCapability(Sema &S, QualType Ty) {
+ const RecordType *RT = getRecordType(Ty);
+
+ if (!RT)
+ return false;
+
+ // Don't check for the capability if the class hasn't been defined yet.
+ if (RT->isIncompleteType())
+ return true;
+
+ // Allow smart pointers to be used as capability objects.
+ // FIXME -- Check the type that the smart pointer points to.
+ if (threadSafetyCheckIsSmartPointer(S, RT))
+ return true;
+
+ // Check if the record itself has a capability.
+ RecordDecl *RD = RT->getDecl();
+ if (RD->hasAttr<CapabilityAttr>())
+ return true;
+
+ // Else check if any base classes have a capability.
+ if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
+ CXXBasePaths BPaths(false, false);
+ if (CRD->lookupInBases([](const CXXBaseSpecifier *BS, CXXBasePath &P,
+ void *) {
+ return BS->getType()->getAs<RecordType>()
+ ->getDecl()->hasAttr<CapabilityAttr>();
+ }, nullptr, BPaths))
+ return true;
+ }
+ return false;
+}
+
+static bool checkTypedefTypeForCapability(QualType Ty) {
+ const auto *TD = Ty->getAs<TypedefType>();
+ if (!TD)
+ return false;
+
+ TypedefNameDecl *TN = TD->getDecl();
+ if (!TN)
+ return false;
+
+ return TN->hasAttr<CapabilityAttr>();
+}
+
+static bool typeHasCapability(Sema &S, QualType Ty) {
+ if (checkTypedefTypeForCapability(Ty))
+ return true;
+
+ if (checkRecordTypeForCapability(S, Ty))
+ return true;
+
+ return false;
+}
+
+static bool isCapabilityExpr(Sema &S, const Expr *Ex) {
+ // Capability expressions are simple expressions involving the boolean logic
+ // operators &&, || or !, a simple DeclRefExpr, CastExpr or a ParenExpr. Once
+ // a DeclRefExpr is found, its type should be checked to determine whether it
+ // is a capability or not.
+
+ if (const auto *E = dyn_cast<DeclRefExpr>(Ex))
+ return typeHasCapability(S, E->getType());
+ else if (const auto *E = dyn_cast<CastExpr>(Ex))
+ return isCapabilityExpr(S, E->getSubExpr());
+ else if (const auto *E = dyn_cast<ParenExpr>(Ex))
+ return isCapabilityExpr(S, E->getSubExpr());
+ else if (const auto *E = dyn_cast<UnaryOperator>(Ex)) {
+ if (E->getOpcode() == UO_LNot)
+ return isCapabilityExpr(S, E->getSubExpr());
+ return false;
+ } else if (const auto *E = dyn_cast<BinaryOperator>(Ex)) {
+ if (E->getOpcode() == BO_LAnd || E->getOpcode() == BO_LOr)
+ return isCapabilityExpr(S, E->getLHS()) &&
+ isCapabilityExpr(S, E->getRHS());
+ return false;
+ }
+
+ return false;
+}
+
+/// \brief Checks that all attribute arguments, starting from Sidx, resolve to
+/// a capability object.
+/// \param Sidx The attribute argument index to start checking with.
+/// \param ParamIdxOk Whether an argument can be indexing into a function
+/// parameter list.
+static void checkAttrArgsAreCapabilityObjs(Sema &S, Decl *D,
+ const AttributeList &Attr,
+ SmallVectorImpl<Expr *> &Args,
+ int Sidx = 0,
+ bool ParamIdxOk = false) {
+ for (unsigned Idx = Sidx; Idx < Attr.getNumArgs(); ++Idx) {
+ Expr *ArgExp = Attr.getArgAsExpr(Idx);
+
+ if (ArgExp->isTypeDependent()) {
+ // FIXME -- need to check this again on template instantiation
+ Args.push_back(ArgExp);
+ continue;
+ }
+
+ if (StringLiteral *StrLit = dyn_cast<StringLiteral>(ArgExp)) {
+ if (StrLit->getLength() == 0 ||
+ (StrLit->isAscii() && StrLit->getString() == StringRef("*"))) {
+ // Pass empty strings to the analyzer without warnings.
+ // Treat "*" as the universal lock.
+ Args.push_back(ArgExp);
+ continue;
+ }
+
+ // We allow constant strings to be used as a placeholder for expressions
+ // that are not valid C++ syntax, but warn that they are ignored.
+ S.Diag(Attr.getLoc(), diag::warn_thread_attribute_ignored) <<
+ Attr.getName();
+ Args.push_back(ArgExp);
+ continue;
+ }
+
+ QualType ArgTy = ArgExp->getType();
+
+ // A pointer to member expression of the form &MyClass::mu is treated
+ // specially -- we need to look at the type of the member.
+ if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(ArgExp))
+ if (UOp->getOpcode() == UO_AddrOf)
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(UOp->getSubExpr()))
+ if (DRE->getDecl()->isCXXInstanceMember())
+ ArgTy = DRE->getDecl()->getType();
+
+ // First see if we can just cast to record type, or pointer to record type.
+ const RecordType *RT = getRecordType(ArgTy);
+
+ // Now check if we index into a record type function param.
+ if(!RT && ParamIdxOk) {
+ FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
+ IntegerLiteral *IL = dyn_cast<IntegerLiteral>(ArgExp);
+ if(FD && IL) {
+ unsigned int NumParams = FD->getNumParams();
+ llvm::APInt ArgValue = IL->getValue();
+ uint64_t ParamIdxFromOne = ArgValue.getZExtValue();
+ uint64_t ParamIdxFromZero = ParamIdxFromOne - 1;
+ if(!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_range)
+ << Attr.getName() << Idx + 1 << NumParams;
+ continue;
+ }
+ ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType();
+ }
+ }
+
+ // If the type does not have a capability, see if the components of the
+ // expression have capabilities. This allows for writing C code where the
+ // capability may be on the type, and the expression is a capability
+ // boolean logic expression. Eg) requires_capability(A || B && !C)
+ if (!typeHasCapability(S, ArgTy) && !isCapabilityExpr(S, ArgExp))
+ S.Diag(Attr.getLoc(), diag::warn_thread_attribute_argument_not_lockable)
+ << Attr.getName() << ArgTy;
+
+ Args.push_back(ArgExp);
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Attribute Implementations
+//===----------------------------------------------------------------------===//
+
+static void handlePtGuardedVarAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ if (!threadSafetyCheckIsPointer(S, D, Attr))
+ return;
+
+ D->addAttr(::new (S.Context)
+ PtGuardedVarAttr(Attr.getRange(), S.Context,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static bool checkGuardedByAttrCommon(Sema &S, Decl *D,
+ const AttributeList &Attr,
+ Expr* &Arg) {
+ SmallVector<Expr*, 1> Args;
+ // check that all arguments are lockable objects
+ checkAttrArgsAreCapabilityObjs(S, D, Attr, Args);
+ unsigned Size = Args.size();
+ if (Size != 1)
+ return false;
+
+ Arg = Args[0];
+
+ return true;
+}
+
+static void handleGuardedByAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ Expr *Arg = nullptr;
+ if (!checkGuardedByAttrCommon(S, D, Attr, Arg))
+ return;
+
+ D->addAttr(::new (S.Context) GuardedByAttr(Attr.getRange(), S.Context, Arg,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handlePtGuardedByAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ Expr *Arg = nullptr;
+ if (!checkGuardedByAttrCommon(S, D, Attr, Arg))
+ return;
+
+ if (!threadSafetyCheckIsPointer(S, D, Attr))
+ return;
+
+ D->addAttr(::new (S.Context) PtGuardedByAttr(Attr.getRange(),
+ S.Context, Arg,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D,
+ const AttributeList &Attr,
+ SmallVectorImpl<Expr *> &Args) {
+ if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
+ return false;
+
+ // Check that this attribute only applies to lockable types.
+ QualType QT = cast<ValueDecl>(D)->getType();
+ if (!QT->isDependentType()) {
+ const RecordType *RT = getRecordType(QT);
+ if (!RT || !RT->getDecl()->hasAttr<CapabilityAttr>()) {
+ S.Diag(Attr.getLoc(), diag::warn_thread_attribute_decl_not_lockable)
+ << Attr.getName();
+ return false;
+ }
+ }
+
+ // Check that all arguments are lockable objects.
+ checkAttrArgsAreCapabilityObjs(S, D, Attr, Args);
+ if (Args.empty())
+ return false;
+
+ return true;
+}
+
+static void handleAcquiredAfterAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ SmallVector<Expr*, 1> Args;
+ if (!checkAcquireOrderAttrCommon(S, D, Attr, Args))
+ return;
+
+ Expr **StartArg = &Args[0];
+ D->addAttr(::new (S.Context)
+ AcquiredAfterAttr(Attr.getRange(), S.Context,
+ StartArg, Args.size(),
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleAcquiredBeforeAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ SmallVector<Expr*, 1> Args;
+ if (!checkAcquireOrderAttrCommon(S, D, Attr, Args))
+ return;
+
+ Expr **StartArg = &Args[0];
+ D->addAttr(::new (S.Context)
+ AcquiredBeforeAttr(Attr.getRange(), S.Context,
+ StartArg, Args.size(),
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static bool checkLockFunAttrCommon(Sema &S, Decl *D,
+ const AttributeList &Attr,
+ SmallVectorImpl<Expr *> &Args) {
+ // zero or more arguments ok
+ // check that all arguments are lockable objects
+ checkAttrArgsAreCapabilityObjs(S, D, Attr, Args, 0, /*ParamIdxOk=*/true);
+
+ return true;
+}
+
+static void handleAssertSharedLockAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ SmallVector<Expr*, 1> Args;
+ if (!checkLockFunAttrCommon(S, D, Attr, Args))
+ return;
+
+ unsigned Size = Args.size();
+ Expr **StartArg = Size == 0 ? nullptr : &Args[0];
+ D->addAttr(::new (S.Context)
+ AssertSharedLockAttr(Attr.getRange(), S.Context, StartArg, Size,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleAssertExclusiveLockAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ SmallVector<Expr*, 1> Args;
+ if (!checkLockFunAttrCommon(S, D, Attr, Args))
+ return;
+
+ unsigned Size = Args.size();
+ Expr **StartArg = Size == 0 ? nullptr : &Args[0];
+ D->addAttr(::new (S.Context)
+ AssertExclusiveLockAttr(Attr.getRange(), S.Context,
+ StartArg, Size,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+
+static bool checkTryLockFunAttrCommon(Sema &S, Decl *D,
+ const AttributeList &Attr,
+ SmallVectorImpl<Expr *> &Args) {
+ if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
+ return false;
+
+ if (!isIntOrBool(Attr.getArgAsExpr(0))) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
+ << Attr.getName() << 1 << AANT_ArgumentIntOrBool;
+ return false;
+ }
+
+ // check that all arguments are lockable objects
+ checkAttrArgsAreCapabilityObjs(S, D, Attr, Args, 1);
+
+ return true;
+}
+
+static void handleSharedTrylockFunctionAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ SmallVector<Expr*, 2> Args;
+ if (!checkTryLockFunAttrCommon(S, D, Attr, Args))
+ return;
+
+ D->addAttr(::new (S.Context)
+ SharedTrylockFunctionAttr(Attr.getRange(), S.Context,
+ Attr.getArgAsExpr(0),
+ Args.data(), Args.size(),
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleExclusiveTrylockFunctionAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ SmallVector<Expr*, 2> Args;
+ if (!checkTryLockFunAttrCommon(S, D, Attr, Args))
+ return;
+
+ D->addAttr(::new (S.Context) ExclusiveTrylockFunctionAttr(
+ Attr.getRange(), S.Context, Attr.getArgAsExpr(0), Args.data(),
+ Args.size(), Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleLockReturnedAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ // check that the argument is lockable object
+ SmallVector<Expr*, 1> Args;
+ checkAttrArgsAreCapabilityObjs(S, D, Attr, Args);
+ unsigned Size = Args.size();
+ if (Size == 0)
+ return;
+
+ D->addAttr(::new (S.Context)
+ LockReturnedAttr(Attr.getRange(), S.Context, Args[0],
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleLocksExcludedAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
+ return;
+
+ // check that all arguments are lockable objects
+ SmallVector<Expr*, 1> Args;
+ checkAttrArgsAreCapabilityObjs(S, D, Attr, Args);
+ unsigned Size = Args.size();
+ if (Size == 0)
+ return;
+ Expr **StartArg = &Args[0];
+
+ D->addAttr(::new (S.Context)
+ LocksExcludedAttr(Attr.getRange(), S.Context, StartArg, Size,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleEnableIfAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ Expr *Cond = Attr.getArgAsExpr(0);
+ if (!Cond->isTypeDependent()) {
+ ExprResult Converted = S.PerformContextuallyConvertToBool(Cond);
+ if (Converted.isInvalid())
+ return;
+ Cond = Converted.get();
+ }
+
+ StringRef Msg;
+ if (!S.checkStringLiteralArgumentAttr(Attr, 1, Msg))
+ return;
+
+ SmallVector<PartialDiagnosticAt, 8> Diags;
+ if (!Cond->isValueDependent() &&
+ !Expr::isPotentialConstantExprUnevaluated(Cond, cast<FunctionDecl>(D),
+ Diags)) {
+ S.Diag(Attr.getLoc(), diag::err_enable_if_never_constant_expr);
+ for (int I = 0, N = Diags.size(); I != N; ++I)
+ S.Diag(Diags[I].first, Diags[I].second);
+ return;
+ }
+
+ D->addAttr(::new (S.Context)
+ EnableIfAttr(Attr.getRange(), S.Context, Cond, Msg,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleConsumableAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ ConsumableAttr::ConsumedState DefaultState;
+
+ if (Attr.isArgIdent(0)) {
+ IdentifierLoc *IL = Attr.getArgAsIdent(0);
+ if (!ConsumableAttr::ConvertStrToConsumedState(IL->Ident->getName(),
+ DefaultState)) {
+ S.Diag(IL->Loc, diag::warn_attribute_type_not_supported)
+ << Attr.getName() << IL->Ident;
+ return;
+ }
+ } else {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
+ << Attr.getName() << AANT_ArgumentIdentifier;
+ return;
+ }
+
+ D->addAttr(::new (S.Context)
+ ConsumableAttr(Attr.getRange(), S.Context, DefaultState,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+
+static bool checkForConsumableClass(Sema &S, const CXXMethodDecl *MD,
+ const AttributeList &Attr) {
+ ASTContext &CurrContext = S.getASTContext();
+ QualType ThisType = MD->getThisType(CurrContext)->getPointeeType();
+
+ if (const CXXRecordDecl *RD = ThisType->getAsCXXRecordDecl()) {
+ if (!RD->hasAttr<ConsumableAttr>()) {
+ S.Diag(Attr.getLoc(), diag::warn_attr_on_unconsumable_class) <<
+ RD->getNameAsString();
+
+ return false;
+ }
+ }
+
+ return true;
+}
+
+
+static void handleCallableWhenAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
+ return;
+
+ if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), Attr))
+ return;
+
+ SmallVector<CallableWhenAttr::ConsumedState, 3> States;
+ for (unsigned ArgIndex = 0; ArgIndex < Attr.getNumArgs(); ++ArgIndex) {
+ CallableWhenAttr::ConsumedState CallableState;
+
+ StringRef StateString;
+ SourceLocation Loc;
+ if (Attr.isArgIdent(ArgIndex)) {
+ IdentifierLoc *Ident = Attr.getArgAsIdent(ArgIndex);
+ StateString = Ident->Ident->getName();
+ Loc = Ident->Loc;
+ } else {
+ if (!S.checkStringLiteralArgumentAttr(Attr, ArgIndex, StateString, &Loc))
+ return;
+ }
+
+ if (!CallableWhenAttr::ConvertStrToConsumedState(StateString,
+ CallableState)) {
+ S.Diag(Loc, diag::warn_attribute_type_not_supported)
+ << Attr.getName() << StateString;
+ return;
+ }
+
+ States.push_back(CallableState);
+ }
+
+ D->addAttr(::new (S.Context)
+ CallableWhenAttr(Attr.getRange(), S.Context, States.data(),
+ States.size(), Attr.getAttributeSpellingListIndex()));
+}
+
+
+static void handleParamTypestateAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ ParamTypestateAttr::ConsumedState ParamState;
+
+ if (Attr.isArgIdent(0)) {
+ IdentifierLoc *Ident = Attr.getArgAsIdent(0);
+ StringRef StateString = Ident->Ident->getName();
+
+ if (!ParamTypestateAttr::ConvertStrToConsumedState(StateString,
+ ParamState)) {
+ S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
+ << Attr.getName() << StateString;
+ return;
+ }
+ } else {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) <<
+ Attr.getName() << AANT_ArgumentIdentifier;
+ return;
+ }
+
+ // FIXME: This check is currently being done in the analysis. It can be
+ // enabled here only after the parser propagates attributes at
+ // template specialization definition, not declaration.
+ //QualType ReturnType = cast<ParmVarDecl>(D)->getType();
+ //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
+ //
+ //if (!RD || !RD->hasAttr<ConsumableAttr>()) {
+ // S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
+ // ReturnType.getAsString();
+ // return;
+ //}
+
+ D->addAttr(::new (S.Context)
+ ParamTypestateAttr(Attr.getRange(), S.Context, ParamState,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+
+static void handleReturnTypestateAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ ReturnTypestateAttr::ConsumedState ReturnState;
+
+ if (Attr.isArgIdent(0)) {
+ IdentifierLoc *IL = Attr.getArgAsIdent(0);
+ if (!ReturnTypestateAttr::ConvertStrToConsumedState(IL->Ident->getName(),
+ ReturnState)) {
+ S.Diag(IL->Loc, diag::warn_attribute_type_not_supported)
+ << Attr.getName() << IL->Ident;
+ return;
+ }
+ } else {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) <<
+ Attr.getName() << AANT_ArgumentIdentifier;
+ return;
+ }
+
+ // FIXME: This check is currently being done in the analysis. It can be
+ // enabled here only after the parser propagates attributes at
+ // template specialization definition, not declaration.
+ //QualType ReturnType;
+ //
+ //if (const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D)) {
+ // ReturnType = Param->getType();
+ //
+ //} else if (const CXXConstructorDecl *Constructor =
+ // dyn_cast<CXXConstructorDecl>(D)) {
+ // ReturnType = Constructor->getThisType(S.getASTContext())->getPointeeType();
+ //
+ //} else {
+ //
+ // ReturnType = cast<FunctionDecl>(D)->getCallResultType();
+ //}
+ //
+ //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
+ //
+ //if (!RD || !RD->hasAttr<ConsumableAttr>()) {
+ // S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
+ // ReturnType.getAsString();
+ // return;
+ //}
+
+ D->addAttr(::new (S.Context)
+ ReturnTypestateAttr(Attr.getRange(), S.Context, ReturnState,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+
+static void handleSetTypestateAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), Attr))
+ return;
+
+ SetTypestateAttr::ConsumedState NewState;
+ if (Attr.isArgIdent(0)) {
+ IdentifierLoc *Ident = Attr.getArgAsIdent(0);
+ StringRef Param = Ident->Ident->getName();
+ if (!SetTypestateAttr::ConvertStrToConsumedState(Param, NewState)) {
+ S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
+ << Attr.getName() << Param;
+ return;
+ }
+ } else {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) <<
+ Attr.getName() << AANT_ArgumentIdentifier;
+ return;
+ }
+
+ D->addAttr(::new (S.Context)
+ SetTypestateAttr(Attr.getRange(), S.Context, NewState,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleTestTypestateAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), Attr))
+ return;
+
+ TestTypestateAttr::ConsumedState TestState;
+ if (Attr.isArgIdent(0)) {
+ IdentifierLoc *Ident = Attr.getArgAsIdent(0);
+ StringRef Param = Ident->Ident->getName();
+ if (!TestTypestateAttr::ConvertStrToConsumedState(Param, TestState)) {
+ S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
+ << Attr.getName() << Param;
+ return;
+ }
+ } else {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) <<
+ Attr.getName() << AANT_ArgumentIdentifier;
+ return;
+ }
+
+ D->addAttr(::new (S.Context)
+ TestTypestateAttr(Attr.getRange(), S.Context, TestState,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleExtVectorTypeAttr(Sema &S, Scope *scope, Decl *D,
+ const AttributeList &Attr) {
+ // Remember this typedef decl, we will need it later for diagnostics.
+ S.ExtVectorDecls.push_back(cast<TypedefNameDecl>(D));
+}
+
+static void handlePackedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ if (TagDecl *TD = dyn_cast<TagDecl>(D))
+ TD->addAttr(::new (S.Context) PackedAttr(Attr.getRange(), S.Context,
+ Attr.getAttributeSpellingListIndex()));
+ else if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
+ // If the alignment is less than or equal to 8 bits, the packed attribute
+ // has no effect.
+ if (!FD->getType()->isDependentType() &&
+ !FD->getType()->isIncompleteType() &&
+ S.Context.getTypeAlign(FD->getType()) <= 8)
+ S.Diag(Attr.getLoc(), diag::warn_attribute_ignored_for_field_of_type)
+ << Attr.getName() << FD->getType();
+ else
+ FD->addAttr(::new (S.Context)
+ PackedAttr(Attr.getRange(), S.Context,
+ Attr.getAttributeSpellingListIndex()));
+ } else
+ S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
+}
+
+static bool checkIBOutletCommon(Sema &S, Decl *D, const AttributeList &Attr) {
+ // The IBOutlet/IBOutletCollection attributes only apply to instance
+ // variables or properties of Objective-C classes. The outlet must also
+ // have an object reference type.
+ if (const ObjCIvarDecl *VD = dyn_cast<ObjCIvarDecl>(D)) {
+ if (!VD->getType()->getAs<ObjCObjectPointerType>()) {
+ S.Diag(Attr.getLoc(), diag::warn_iboutlet_object_type)
+ << Attr.getName() << VD->getType() << 0;
+ return false;
+ }
+ }
+ else if (const ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D)) {
+ if (!PD->getType()->getAs<ObjCObjectPointerType>()) {
+ S.Diag(Attr.getLoc(), diag::warn_iboutlet_object_type)
+ << Attr.getName() << PD->getType() << 1;
+ return false;
+ }
+ }
+ else {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_iboutlet) << Attr.getName();
+ return false;
+ }
+
+ return true;
+}
+
+static void handleIBOutlet(Sema &S, Decl *D, const AttributeList &Attr) {
+ if (!checkIBOutletCommon(S, D, Attr))
+ return;
+
+ D->addAttr(::new (S.Context)
+ IBOutletAttr(Attr.getRange(), S.Context,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleIBOutletCollection(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+
+ // The iboutletcollection attribute can have zero or one arguments.
+ if (Attr.getNumArgs() > 1) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
+ << Attr.getName() << 1;
+ return;
+ }
+
+ if (!checkIBOutletCommon(S, D, Attr))
+ return;
+
+ ParsedType PT;
+
+ if (Attr.hasParsedType())
+ PT = Attr.getTypeArg();
+ else {
+ PT = S.getTypeName(S.Context.Idents.get("NSObject"), Attr.getLoc(),
+ S.getScopeForContext(D->getDeclContext()->getParent()));
+ if (!PT) {
+ S.Diag(Attr.getLoc(), diag::err_iboutletcollection_type) << "NSObject";
+ return;
+ }
+ }
+
+ TypeSourceInfo *QTLoc = nullptr;
+ QualType QT = S.GetTypeFromParser(PT, &QTLoc);
+ if (!QTLoc)
+ QTLoc = S.Context.getTrivialTypeSourceInfo(QT, Attr.getLoc());
+
+ // Diagnose use of non-object type in iboutletcollection attribute.
+ // FIXME. Gnu attribute extension ignores use of builtin types in
+ // attributes. So, __attribute__((iboutletcollection(char))) will be
+ // treated as __attribute__((iboutletcollection())).
+ if (!QT->isObjCIdType() && !QT->isObjCObjectType()) {
+ S.Diag(Attr.getLoc(),
+ QT->isBuiltinType() ? diag::err_iboutletcollection_builtintype
+ : diag::err_iboutletcollection_type) << QT;
+ return;
+ }
+
+ D->addAttr(::new (S.Context)
+ IBOutletCollectionAttr(Attr.getRange(), S.Context, QTLoc,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+bool Sema::isValidPointerAttrType(QualType T, bool RefOkay) {
+ if (RefOkay) {
+ if (T->isReferenceType())
+ return true;
+ } else {
+ T = T.getNonReferenceType();
+ }
+
+ // The nonnull attribute, and other similar attributes, can be applied to a
+ // transparent union that contains a pointer type.
+ if (const RecordType *UT = T->getAsUnionType()) {
+ if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) {
+ RecordDecl *UD = UT->getDecl();
+ for (const auto *I : UD->fields()) {
+ QualType QT = I->getType();
+ if (QT->isAnyPointerType() || QT->isBlockPointerType())
+ return true;
+ }
+ }
+ }
+
+ return T->isAnyPointerType() || T->isBlockPointerType();
+}
+
+static bool attrNonNullArgCheck(Sema &S, QualType T, const AttributeList &Attr,
+ SourceRange AttrParmRange,
+ SourceRange TypeRange,
+ bool isReturnValue = false) {
+ if (!S.isValidPointerAttrType(T)) {
+ S.Diag(Attr.getLoc(), isReturnValue
+ ? diag::warn_attribute_return_pointers_only
+ : diag::warn_attribute_pointers_only)
+ << Attr.getName() << AttrParmRange << TypeRange;
+ return false;
+ }
+ return true;
+}
+
+static void handleNonNullAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ SmallVector<unsigned, 8> NonNullArgs;
+ for (unsigned I = 0; I < Attr.getNumArgs(); ++I) {
+ Expr *Ex = Attr.getArgAsExpr(I);
+ uint64_t Idx;
+ if (!checkFunctionOrMethodParameterIndex(S, D, Attr, I + 1, Ex, Idx))
+ return;
+
+ // Is the function argument a pointer type?
+ if (Idx < getFunctionOrMethodNumParams(D) &&
+ !attrNonNullArgCheck(S, getFunctionOrMethodParamType(D, Idx), Attr,
+ Ex->getSourceRange(),
+ getFunctionOrMethodParamRange(D, Idx)))
+ continue;
+
+ NonNullArgs.push_back(Idx);
+ }
+
+ // If no arguments were specified to __attribute__((nonnull)) then all pointer
+ // arguments have a nonnull attribute; warn if there aren't any. Skip this
+ // check if the attribute came from a macro expansion or a template
+ // instantiation.
+ if (NonNullArgs.empty() && Attr.getLoc().isFileID() &&
+ S.ActiveTemplateInstantiations.empty()) {
+ bool AnyPointers = isFunctionOrMethodVariadic(D);
+ for (unsigned I = 0, E = getFunctionOrMethodNumParams(D);
+ I != E && !AnyPointers; ++I) {
+ QualType T = getFunctionOrMethodParamType(D, I);
+ if (T->isDependentType() || S.isValidPointerAttrType(T))
+ AnyPointers = true;
+ }
+
+ if (!AnyPointers)
+ S.Diag(Attr.getLoc(), diag::warn_attribute_nonnull_no_pointers);
+ }
+
+ unsigned *Start = NonNullArgs.data();
+ unsigned Size = NonNullArgs.size();
+ llvm::array_pod_sort(Start, Start + Size);
+ D->addAttr(::new (S.Context)
+ NonNullAttr(Attr.getRange(), S.Context, Start, Size,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleNonNullAttrParameter(Sema &S, ParmVarDecl *D,
+ const AttributeList &Attr) {
+ if (Attr.getNumArgs() > 0) {
+ if (D->getFunctionType()) {
+ handleNonNullAttr(S, D, Attr);
+ } else {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_nonnull_parm_no_args)
+ << D->getSourceRange();
+ }
+ return;
+ }
+
+ // Is the argument a pointer type?
+ if (!attrNonNullArgCheck(S, D->getType(), Attr, SourceRange(),
+ D->getSourceRange()))
+ return;
+
+ D->addAttr(::new (S.Context)
+ NonNullAttr(Attr.getRange(), S.Context, nullptr, 0,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleReturnsNonNullAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ QualType ResultType = getFunctionOrMethodResultType(D);
+ SourceRange SR = getFunctionOrMethodResultSourceRange(D);
+ if (!attrNonNullArgCheck(S, ResultType, Attr, SourceRange(), SR,
+ /* isReturnValue */ true))
+ return;
+
+ D->addAttr(::new (S.Context)
+ ReturnsNonNullAttr(Attr.getRange(), S.Context,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleAssumeAlignedAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ Expr *E = Attr.getArgAsExpr(0),
+ *OE = Attr.getNumArgs() > 1 ? Attr.getArgAsExpr(1) : nullptr;
+ S.AddAssumeAlignedAttr(Attr.getRange(), D, E, OE,
+ Attr.getAttributeSpellingListIndex());
+}
+
+void Sema::AddAssumeAlignedAttr(SourceRange AttrRange, Decl *D, Expr *E,
+ Expr *OE, unsigned SpellingListIndex) {
+ QualType ResultType = getFunctionOrMethodResultType(D);
+ SourceRange SR = getFunctionOrMethodResultSourceRange(D);
+
+ AssumeAlignedAttr TmpAttr(AttrRange, Context, E, OE, SpellingListIndex);
+ SourceLocation AttrLoc = AttrRange.getBegin();
+
+ if (!isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
+ Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
+ << &TmpAttr << AttrRange << SR;
+ return;
+ }
+
+ if (!E->isValueDependent()) {
+ llvm::APSInt I(64);
+ if (!E->isIntegerConstantExpr(I, Context)) {
+ if (OE)
+ Diag(AttrLoc, diag::err_attribute_argument_n_type)
+ << &TmpAttr << 1 << AANT_ArgumentIntegerConstant
+ << E->getSourceRange();
+ else
+ Diag(AttrLoc, diag::err_attribute_argument_type)
+ << &TmpAttr << AANT_ArgumentIntegerConstant
+ << E->getSourceRange();
+ return;
+ }
+
+ if (!I.isPowerOf2()) {
+ Diag(AttrLoc, diag::err_alignment_not_power_of_two)
+ << E->getSourceRange();
+ return;
+ }
+ }
+
+ if (OE) {
+ if (!OE->isValueDependent()) {
+ llvm::APSInt I(64);
+ if (!OE->isIntegerConstantExpr(I, Context)) {
+ Diag(AttrLoc, diag::err_attribute_argument_n_type)
+ << &TmpAttr << 2 << AANT_ArgumentIntegerConstant
+ << OE->getSourceRange();
+ return;
+ }
+ }
+ }
+
+ D->addAttr(::new (Context)
+ AssumeAlignedAttr(AttrRange, Context, E, OE, SpellingListIndex));
+}
+
+static void handleOwnershipAttr(Sema &S, Decl *D, const AttributeList &AL) {
+ // This attribute must be applied to a function declaration. The first
+ // argument to the attribute must be an identifier, the name of the resource,
+ // for example: malloc. The following arguments must be argument indexes, the
+ // arguments must be of integer type for Returns, otherwise of pointer type.
+ // The difference between Holds and Takes is that a pointer may still be used
+ // after being held. free() should be __attribute((ownership_takes)), whereas
+ // a list append function may well be __attribute((ownership_holds)).
+
+ if (!AL.isArgIdent(0)) {
+ S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
+ << AL.getName() << 1 << AANT_ArgumentIdentifier;
+ return;
+ }
+
+ // Figure out our Kind.
+ OwnershipAttr::OwnershipKind K =
+ OwnershipAttr(AL.getLoc(), S.Context, nullptr, nullptr, 0,
+ AL.getAttributeSpellingListIndex()).getOwnKind();
+
+ // Check arguments.
+ switch (K) {
+ case OwnershipAttr::Takes:
+ case OwnershipAttr::Holds:
+ if (AL.getNumArgs() < 2) {
+ S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments)
+ << AL.getName() << 2;
+ return;
+ }
+ break;
+ case OwnershipAttr::Returns:
+ if (AL.getNumArgs() > 2) {
+ S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments)
+ << AL.getName() << 1;
+ return;
+ }
+ break;
+ }
+
+ IdentifierInfo *Module = AL.getArgAsIdent(0)->Ident;
+
+ // Normalize the argument, __foo__ becomes foo.
+ StringRef ModuleName = Module->getName();
+ if (ModuleName.startswith("__") && ModuleName.endswith("__") &&
+ ModuleName.size() > 4) {
+ ModuleName = ModuleName.drop_front(2).drop_back(2);
+ Module = &S.PP.getIdentifierTable().get(ModuleName);
+ }
+
+ SmallVector<unsigned, 8> OwnershipArgs;
+ for (unsigned i = 1; i < AL.getNumArgs(); ++i) {
+ Expr *Ex = AL.getArgAsExpr(i);
+ uint64_t Idx;
+ if (!checkFunctionOrMethodParameterIndex(S, D, AL, i, Ex, Idx))
+ return;
+
+ // Is the function argument a pointer type?
+ QualType T = getFunctionOrMethodParamType(D, Idx);
+ int Err = -1; // No error
+ switch (K) {
+ case OwnershipAttr::Takes:
+ case OwnershipAttr::Holds:
+ if (!T->isAnyPointerType() && !T->isBlockPointerType())
+ Err = 0;
+ break;
+ case OwnershipAttr::Returns:
+ if (!T->isIntegerType())
+ Err = 1;
+ break;
+ }
+ if (-1 != Err) {
+ S.Diag(AL.getLoc(), diag::err_ownership_type) << AL.getName() << Err
+ << Ex->getSourceRange();
+ return;
+ }
+
+ // Check we don't have a conflict with another ownership attribute.
+ for (const auto *I : D->specific_attrs<OwnershipAttr>()) {
+ // Cannot have two ownership attributes of different kinds for the same
+ // index.
+ if (I->getOwnKind() != K && I->args_end() !=
+ std::find(I->args_begin(), I->args_end(), Idx)) {
+ S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
+ << AL.getName() << I;
+ return;
+ } else if (K == OwnershipAttr::Returns &&
+ I->getOwnKind() == OwnershipAttr::Returns) {
+ // A returns attribute conflicts with any other returns attribute using
+ // a different index. Note, diagnostic reporting is 1-based, but stored
+ // argument indexes are 0-based.
+ if (std::find(I->args_begin(), I->args_end(), Idx) == I->args_end()) {
+ S.Diag(I->getLocation(), diag::err_ownership_returns_index_mismatch)
+ << *(I->args_begin()) + 1;
+ if (I->args_size())
+ S.Diag(AL.getLoc(), diag::note_ownership_returns_index_mismatch)
+ << (unsigned)Idx + 1 << Ex->getSourceRange();
+ return;
+ }
+ }
+ }
+ OwnershipArgs.push_back(Idx);
+ }
+
+ unsigned* start = OwnershipArgs.data();
+ unsigned size = OwnershipArgs.size();
+ llvm::array_pod_sort(start, start + size);
+
+ D->addAttr(::new (S.Context)
+ OwnershipAttr(AL.getLoc(), S.Context, Module, start, size,
+ AL.getAttributeSpellingListIndex()));
+}
+
+static void handleWeakRefAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ // Check the attribute arguments.
+ if (Attr.getNumArgs() > 1) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
+ << Attr.getName() << 1;
+ return;
+ }
+
+ NamedDecl *nd = cast<NamedDecl>(D);
+
+ // gcc rejects
+ // class c {
+ // static int a __attribute__((weakref ("v2")));
+ // static int b() __attribute__((weakref ("f3")));
+ // };
+ // and ignores the attributes of
+ // void f(void) {
+ // static int a __attribute__((weakref ("v2")));
+ // }
+ // we reject them
+ const DeclContext *Ctx = D->getDeclContext()->getRedeclContext();
+ if (!Ctx->isFileContext()) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_weakref_not_global_context)
+ << nd;
+ return;
+ }
+
+ // The GCC manual says
+ //
+ // At present, a declaration to which `weakref' is attached can only
+ // be `static'.
+ //
+ // It also says
+ //
+ // Without a TARGET,
+ // given as an argument to `weakref' or to `alias', `weakref' is
+ // equivalent to `weak'.
+ //
+ // gcc 4.4.1 will accept
+ // int a7 __attribute__((weakref));
+ // as
+ // int a7 __attribute__((weak));
+ // This looks like a bug in gcc. We reject that for now. We should revisit
+ // it if this behaviour is actually used.
+
+ // GCC rejects
+ // static ((alias ("y"), weakref)).
+ // Should we? How to check that weakref is before or after alias?
+
+ // FIXME: it would be good for us to keep the WeakRefAttr as-written instead
+ // of transforming it into an AliasAttr. The WeakRefAttr never uses the
+ // StringRef parameter it was given anyway.
+ StringRef Str;
+ if (Attr.getNumArgs() && S.checkStringLiteralArgumentAttr(Attr, 0, Str))
+ // GCC will accept anything as the argument of weakref. Should we
+ // check for an existing decl?
+ D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context, Str,
+ Attr.getAttributeSpellingListIndex()));
+
+ D->addAttr(::new (S.Context)
+ WeakRefAttr(Attr.getRange(), S.Context,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleAliasAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ StringRef Str;
+ if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str))
+ return;
+
+ if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
+ S.Diag(Attr.getLoc(), diag::err_alias_not_supported_on_darwin);
+ return;
+ }
+
+ // Aliases should be on declarations, not definitions.
+ if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
+ if (FD->isThisDeclarationADefinition()) {
+ S.Diag(Attr.getLoc(), diag::err_alias_is_definition) << FD;
+ return;
+ }
+ } else {
+ const auto *VD = cast<VarDecl>(D);
+ if (VD->isThisDeclarationADefinition() && VD->isExternallyVisible()) {
+ S.Diag(Attr.getLoc(), diag::err_alias_is_definition) << VD;
+ return;
+ }
+ }
+
+ // FIXME: check if target symbol exists in current file
+
+ D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context, Str,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleColdAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ if (checkAttrMutualExclusion<HotAttr>(S, D, Attr))
+ return;
+
+ D->addAttr(::new (S.Context) ColdAttr(Attr.getRange(), S.Context,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleHotAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ if (checkAttrMutualExclusion<ColdAttr>(S, D, Attr))
+ return;
+
+ D->addAttr(::new (S.Context) HotAttr(Attr.getRange(), S.Context,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleTLSModelAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ StringRef Model;
+ SourceLocation LiteralLoc;
+ // Check that it is a string.
+ if (!S.checkStringLiteralArgumentAttr(Attr, 0, Model, &LiteralLoc))
+ return;
+
+ // Check that the value.
+ if (Model != "global-dynamic" && Model != "local-dynamic"
+ && Model != "initial-exec" && Model != "local-exec") {
+ S.Diag(LiteralLoc, diag::err_attr_tlsmodel_arg);
+ return;
+ }
+
+ D->addAttr(::new (S.Context)
+ TLSModelAttr(Attr.getRange(), S.Context, Model,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleRestrictAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ QualType ResultType = getFunctionOrMethodResultType(D);
+ if (ResultType->isAnyPointerType() || ResultType->isBlockPointerType()) {
+ D->addAttr(::new (S.Context) RestrictAttr(
+ Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
+ return;
+ }
+
+ S.Diag(Attr.getLoc(), diag::warn_attribute_return_pointers_only)
+ << Attr.getName() << getFunctionOrMethodResultSourceRange(D);
+}
+
+static void handleCommonAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ if (S.LangOpts.CPlusPlus) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_not_supported_in_lang)
+ << Attr.getName() << AttributeLangSupport::Cpp;
+ return;
+ }
+
+ D->addAttr(::new (S.Context) CommonAttr(Attr.getRange(), S.Context,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleNoReturnAttr(Sema &S, Decl *D, const AttributeList &attr) {
+ if (hasDeclarator(D)) return;
+
+ if (S.CheckNoReturnAttr(attr)) return;
+
+ if (!isa<ObjCMethodDecl>(D)) {
+ S.Diag(attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << attr.getName() << ExpectedFunctionOrMethod;
+ return;
+ }
+
+ D->addAttr(::new (S.Context)
+ NoReturnAttr(attr.getRange(), S.Context,
+ attr.getAttributeSpellingListIndex()));
+}
+
+bool Sema::CheckNoReturnAttr(const AttributeList &attr) {
+ if (!checkAttributeNumArgs(*this, attr, 0)) {
+ attr.setInvalid();
+ return true;
+ }
+
+ return false;
+}
+
+static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+
+ // The checking path for 'noreturn' and 'analyzer_noreturn' are different
+ // because 'analyzer_noreturn' does not impact the type.
+ if (!isFunctionOrMethodOrBlock(D)) {
+ ValueDecl *VD = dyn_cast<ValueDecl>(D);
+ if (!VD || (!VD->getType()->isBlockPointerType() &&
+ !VD->getType()->isFunctionPointerType())) {
+ S.Diag(Attr.getLoc(),
+ Attr.isCXX11Attribute() ? diag::err_attribute_wrong_decl_type
+ : diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedFunctionMethodOrBlock;
+ return;
+ }
+ }
+
+ D->addAttr(::new (S.Context)
+ AnalyzerNoReturnAttr(Attr.getRange(), S.Context,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+// PS3 PPU-specific.
+static void handleVecReturnAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+/*
+ Returning a Vector Class in Registers
+
+ According to the PPU ABI specifications, a class with a single member of
+ vector type is returned in memory when used as the return value of a function.
+ This results in inefficient code when implementing vector classes. To return
+ the value in a single vector register, add the vecreturn attribute to the
+ class definition. This attribute is also applicable to struct types.
+
+ Example:
+
+ struct Vector
+ {
+ __vector float xyzw;
+ } __attribute__((vecreturn));
+
+ Vector Add(Vector lhs, Vector rhs)
+ {
+ Vector result;
+ result.xyzw = vec_add(lhs.xyzw, rhs.xyzw);
+ return result; // This will be returned in a register
+ }
+*/
+ if (VecReturnAttr *A = D->getAttr<VecReturnAttr>()) {
+ S.Diag(Attr.getLoc(), diag::err_repeat_attribute) << A;
+ return;
+ }
+
+ RecordDecl *record = cast<RecordDecl>(D);
+ int count = 0;
+
+ if (!isa<CXXRecordDecl>(record)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
+ return;
+ }
+
+ if (!cast<CXXRecordDecl>(record)->isPOD()) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_pod_record);
+ return;
+ }
+
+ for (const auto *I : record->fields()) {
+ if ((count == 1) || !I->getType()->isVectorType()) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
+ return;
+ }
+ count++;
+ }
+
+ D->addAttr(::new (S.Context)
+ VecReturnAttr(Attr.getRange(), S.Context,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D,
+ const AttributeList &Attr) {
+ if (isa<ParmVarDecl>(D)) {
+ // [[carries_dependency]] can only be applied to a parameter if it is a
+ // parameter of a function declaration or lambda.
+ if (!(Scope->getFlags() & clang::Scope::FunctionDeclarationScope)) {
+ S.Diag(Attr.getLoc(),
+ diag::err_carries_dependency_param_not_function_decl);
+ return;
+ }
+ }
+
+ D->addAttr(::new (S.Context) CarriesDependencyAttr(
+ Attr.getRange(), S.Context,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleUsedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
+ if (VD->hasLocalStorage()) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
+ return;
+ }
+ } else if (!isFunctionOrMethod(D)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedVariableOrFunction;
+ return;
+ }
+
+ D->addAttr(::new (S.Context)
+ UsedAttr(Attr.getRange(), S.Context,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleConstructorAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ uint32_t priority = ConstructorAttr::DefaultPriority;
+ if (Attr.getNumArgs() &&
+ !checkUInt32Argument(S, Attr, Attr.getArgAsExpr(0), priority))
+ return;
+
+ D->addAttr(::new (S.Context)
+ ConstructorAttr(Attr.getRange(), S.Context, priority,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleDestructorAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ uint32_t priority = DestructorAttr::DefaultPriority;
+ if (Attr.getNumArgs() &&
+ !checkUInt32Argument(S, Attr, Attr.getArgAsExpr(0), priority))
+ return;
+
+ D->addAttr(::new (S.Context)
+ DestructorAttr(Attr.getRange(), S.Context, priority,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+template <typename AttrTy>
+static void handleAttrWithMessage(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ // Handle the case where the attribute has a text message.
+ StringRef Str;
+ if (Attr.getNumArgs() == 1 && !S.checkStringLiteralArgumentAttr(Attr, 0, Str))
+ return;
+
+ D->addAttr(::new (S.Context) AttrTy(Attr.getRange(), S.Context, Str,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleObjCSuppresProtocolAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ if (!cast<ObjCProtocolDecl>(D)->isThisDeclarationADefinition()) {
+ S.Diag(Attr.getLoc(), diag::err_objc_attr_protocol_requires_definition)
+ << Attr.getName() << Attr.getRange();
+ return;
+ }
+
+ D->addAttr(::new (S.Context)
+ ObjCExplicitProtocolImplAttr(Attr.getRange(), S.Context,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static bool checkAvailabilityAttr(Sema &S, SourceRange Range,
+ IdentifierInfo *Platform,
+ VersionTuple Introduced,
+ VersionTuple Deprecated,
+ VersionTuple Obsoleted) {
+ StringRef PlatformName
+ = AvailabilityAttr::getPrettyPlatformName(Platform->getName());
+ if (PlatformName.empty())
+ PlatformName = Platform->getName();
+
+ // Ensure that Introduced <= Deprecated <= Obsoleted (although not all
+ // of these steps are needed).
+ if (!Introduced.empty() && !Deprecated.empty() &&
+ !(Introduced <= Deprecated)) {
+ S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
+ << 1 << PlatformName << Deprecated.getAsString()
+ << 0 << Introduced.getAsString();
+ return true;
+ }
+
+ if (!Introduced.empty() && !Obsoleted.empty() &&
+ !(Introduced <= Obsoleted)) {
+ S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
+ << 2 << PlatformName << Obsoleted.getAsString()
+ << 0 << Introduced.getAsString();
+ return true;
+ }
+
+ if (!Deprecated.empty() && !Obsoleted.empty() &&
+ !(Deprecated <= Obsoleted)) {
+ S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
+ << 2 << PlatformName << Obsoleted.getAsString()
+ << 1 << Deprecated.getAsString();
+ return true;
+ }
+
+ return false;
+}
+
+/// \brief Check whether the two versions match.
+///
+/// If either version tuple is empty, then they are assumed to match. If
+/// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y.
+static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y,
+ bool BeforeIsOkay) {
+ if (X.empty() || Y.empty())
+ return true;
+
+ if (X == Y)
+ return true;
+
+ if (BeforeIsOkay && X < Y)
+ return true;
+
+ return false;
+}
+
+AvailabilityAttr *Sema::mergeAvailabilityAttr(NamedDecl *D, SourceRange Range,
+ IdentifierInfo *Platform,
+ VersionTuple Introduced,
+ VersionTuple Deprecated,
+ VersionTuple Obsoleted,
+ bool IsUnavailable,
+ StringRef Message,
+ bool Override,
+ unsigned AttrSpellingListIndex) {
+ VersionTuple MergedIntroduced = Introduced;
+ VersionTuple MergedDeprecated = Deprecated;
+ VersionTuple MergedObsoleted = Obsoleted;
+ bool FoundAny = false;
+
+ if (D->hasAttrs()) {
+ AttrVec &Attrs = D->getAttrs();
+ for (unsigned i = 0, e = Attrs.size(); i != e;) {
+ const AvailabilityAttr *OldAA = dyn_cast<AvailabilityAttr>(Attrs[i]);
+ if (!OldAA) {
+ ++i;
+ continue;
+ }
+
+ IdentifierInfo *OldPlatform = OldAA->getPlatform();
+ if (OldPlatform != Platform) {
+ ++i;
+ continue;
+ }
+
+ FoundAny = true;
+ VersionTuple OldIntroduced = OldAA->getIntroduced();
+ VersionTuple OldDeprecated = OldAA->getDeprecated();
+ VersionTuple OldObsoleted = OldAA->getObsoleted();
+ bool OldIsUnavailable = OldAA->getUnavailable();
+
+ if (!versionsMatch(OldIntroduced, Introduced, Override) ||
+ !versionsMatch(Deprecated, OldDeprecated, Override) ||
+ !versionsMatch(Obsoleted, OldObsoleted, Override) ||
+ !(OldIsUnavailable == IsUnavailable ||
+ (Override && !OldIsUnavailable && IsUnavailable))) {
+ if (Override) {
+ int Which = -1;
+ VersionTuple FirstVersion;
+ VersionTuple SecondVersion;
+ if (!versionsMatch(OldIntroduced, Introduced, Override)) {
+ Which = 0;
+ FirstVersion = OldIntroduced;
+ SecondVersion = Introduced;
+ } else if (!versionsMatch(Deprecated, OldDeprecated, Override)) {
+ Which = 1;
+ FirstVersion = Deprecated;
+ SecondVersion = OldDeprecated;
+ } else if (!versionsMatch(Obsoleted, OldObsoleted, Override)) {
+ Which = 2;
+ FirstVersion = Obsoleted;
+ SecondVersion = OldObsoleted;
+ }
+
+ if (Which == -1) {
+ Diag(OldAA->getLocation(),
+ diag::warn_mismatched_availability_override_unavail)
+ << AvailabilityAttr::getPrettyPlatformName(Platform->getName());
+ } else {
+ Diag(OldAA->getLocation(),
+ diag::warn_mismatched_availability_override)
+ << Which
+ << AvailabilityAttr::getPrettyPlatformName(Platform->getName())
+ << FirstVersion.getAsString() << SecondVersion.getAsString();
+ }
+ Diag(Range.getBegin(), diag::note_overridden_method);
+ } else {
+ Diag(OldAA->getLocation(), diag::warn_mismatched_availability);
+ Diag(Range.getBegin(), diag::note_previous_attribute);
+ }
+
+ Attrs.erase(Attrs.begin() + i);
+ --e;
+ continue;
+ }
+
+ VersionTuple MergedIntroduced2 = MergedIntroduced;
+ VersionTuple MergedDeprecated2 = MergedDeprecated;
+ VersionTuple MergedObsoleted2 = MergedObsoleted;
+
+ if (MergedIntroduced2.empty())
+ MergedIntroduced2 = OldIntroduced;
+ if (MergedDeprecated2.empty())
+ MergedDeprecated2 = OldDeprecated;
+ if (MergedObsoleted2.empty())
+ MergedObsoleted2 = OldObsoleted;
+
+ if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform,
+ MergedIntroduced2, MergedDeprecated2,
+ MergedObsoleted2)) {
+ Attrs.erase(Attrs.begin() + i);
+ --e;
+ continue;
+ }
+
+ MergedIntroduced = MergedIntroduced2;
+ MergedDeprecated = MergedDeprecated2;
+ MergedObsoleted = MergedObsoleted2;
+ ++i;
+ }
+ }
+
+ if (FoundAny &&
+ MergedIntroduced == Introduced &&
+ MergedDeprecated == Deprecated &&
+ MergedObsoleted == Obsoleted)
+ return nullptr;
+
+ // Only create a new attribute if !Override, but we want to do
+ // the checking.
+ if (!checkAvailabilityAttr(*this, Range, Platform, MergedIntroduced,
+ MergedDeprecated, MergedObsoleted) &&
+ !Override) {
+ return ::new (Context) AvailabilityAttr(Range, Context, Platform,
+ Introduced, Deprecated,
+ Obsoleted, IsUnavailable, Message,
+ AttrSpellingListIndex);
+ }
+ return nullptr;
+}
+
+static void handleAvailabilityAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ if (!checkAttributeNumArgs(S, Attr, 1))
+ return;
+ IdentifierLoc *Platform = Attr.getArgAsIdent(0);
+ unsigned Index = Attr.getAttributeSpellingListIndex();
+
+ IdentifierInfo *II = Platform->Ident;
+ if (AvailabilityAttr::getPrettyPlatformName(II->getName()).empty())
+ S.Diag(Platform->Loc, diag::warn_availability_unknown_platform)
+ << Platform->Ident;
+
+ NamedDecl *ND = dyn_cast<NamedDecl>(D);
+ if (!ND) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
+ return;
+ }
+
+ AvailabilityChange Introduced = Attr.getAvailabilityIntroduced();
+ AvailabilityChange Deprecated = Attr.getAvailabilityDeprecated();
+ AvailabilityChange Obsoleted = Attr.getAvailabilityObsoleted();
+ bool IsUnavailable = Attr.getUnavailableLoc().isValid();
+ StringRef Str;
+ if (const StringLiteral *SE =
+ dyn_cast_or_null<StringLiteral>(Attr.getMessageExpr()))
+ Str = SE->getString();
+
+ AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(ND, Attr.getRange(), II,
+ Introduced.Version,
+ Deprecated.Version,
+ Obsoleted.Version,
+ IsUnavailable, Str,
+ /*Override=*/false,
+ Index);
+ if (NewAttr)
+ D->addAttr(NewAttr);
+}
+
+template <class T>
+static T *mergeVisibilityAttr(Sema &S, Decl *D, SourceRange range,
+ typename T::VisibilityType value,
+ unsigned attrSpellingListIndex) {
+ T *existingAttr = D->getAttr<T>();
+ if (existingAttr) {
+ typename T::VisibilityType existingValue = existingAttr->getVisibility();
+ if (existingValue == value)
+ return nullptr;
+ S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility);
+ S.Diag(range.getBegin(), diag::note_previous_attribute);
+ D->dropAttr<T>();
+ }
+ return ::new (S.Context) T(range, S.Context, value, attrSpellingListIndex);
+}
+
+VisibilityAttr *Sema::mergeVisibilityAttr(Decl *D, SourceRange Range,
+ VisibilityAttr::VisibilityType Vis,
+ unsigned AttrSpellingListIndex) {
+ return ::mergeVisibilityAttr<VisibilityAttr>(*this, D, Range, Vis,
+ AttrSpellingListIndex);
+}
+
+TypeVisibilityAttr *Sema::mergeTypeVisibilityAttr(Decl *D, SourceRange Range,
+ TypeVisibilityAttr::VisibilityType Vis,
+ unsigned AttrSpellingListIndex) {
+ return ::mergeVisibilityAttr<TypeVisibilityAttr>(*this, D, Range, Vis,
+ AttrSpellingListIndex);
+}
+
+static void handleVisibilityAttr(Sema &S, Decl *D, const AttributeList &Attr,
+ bool isTypeVisibility) {
+ // Visibility attributes don't mean anything on a typedef.
+ if (isa<TypedefNameDecl>(D)) {
+ S.Diag(Attr.getRange().getBegin(), diag::warn_attribute_ignored)
+ << Attr.getName();
+ return;
+ }
+
+ // 'type_visibility' can only go on a type or namespace.
+ if (isTypeVisibility &&
+ !(isa<TagDecl>(D) ||
+ isa<ObjCInterfaceDecl>(D) ||
+ isa<NamespaceDecl>(D))) {
+ S.Diag(Attr.getRange().getBegin(), diag::err_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedTypeOrNamespace;
+ return;
+ }
+
+ // Check that the argument is a string literal.
+ StringRef TypeStr;
+ SourceLocation LiteralLoc;
+ if (!S.checkStringLiteralArgumentAttr(Attr, 0, TypeStr, &LiteralLoc))
+ return;
+
+ VisibilityAttr::VisibilityType type;
+ if (!VisibilityAttr::ConvertStrToVisibilityType(TypeStr, type)) {
+ S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported)
+ << Attr.getName() << TypeStr;
+ return;
+ }
+
+ // Complain about attempts to use protected visibility on targets
+ // (like Darwin) that don't support it.
+ if (type == VisibilityAttr::Protected &&
+ !S.Context.getTargetInfo().hasProtectedVisibility()) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_protected_visibility);
+ type = VisibilityAttr::Default;
+ }
+
+ unsigned Index = Attr.getAttributeSpellingListIndex();
+ clang::Attr *newAttr;
+ if (isTypeVisibility) {
+ newAttr = S.mergeTypeVisibilityAttr(D, Attr.getRange(),
+ (TypeVisibilityAttr::VisibilityType) type,
+ Index);
+ } else {
+ newAttr = S.mergeVisibilityAttr(D, Attr.getRange(), type, Index);
+ }
+ if (newAttr)
+ D->addAttr(newAttr);
+}
+
+static void handleObjCMethodFamilyAttr(Sema &S, Decl *decl,
+ const AttributeList &Attr) {
+ ObjCMethodDecl *method = cast<ObjCMethodDecl>(decl);
+ if (!Attr.isArgIdent(0)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
+ << Attr.getName() << 1 << AANT_ArgumentIdentifier;
+ return;
+ }
+
+ IdentifierLoc *IL = Attr.getArgAsIdent(0);
+ ObjCMethodFamilyAttr::FamilyKind F;
+ if (!ObjCMethodFamilyAttr::ConvertStrToFamilyKind(IL->Ident->getName(), F)) {
+ S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << Attr.getName()
+ << IL->Ident;
+ return;
+ }
+
+ if (F == ObjCMethodFamilyAttr::OMF_init &&
+ !method->getReturnType()->isObjCObjectPointerType()) {
+ S.Diag(method->getLocation(), diag::err_init_method_bad_return_type)
+ << method->getReturnType();
+ // Ignore the attribute.
+ return;
+ }
+
+ method->addAttr(new (S.Context) ObjCMethodFamilyAttr(Attr.getRange(),
+ S.Context, F,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleObjCNSObject(Sema &S, Decl *D, const AttributeList &Attr) {
+ if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
+ QualType T = TD->getUnderlyingType();
+ if (!T->isCARCBridgableType()) {
+ S.Diag(TD->getLocation(), diag::err_nsobject_attribute);
+ return;
+ }
+ }
+ else if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D)) {
+ QualType T = PD->getType();
+ if (!T->isCARCBridgableType()) {
+ S.Diag(PD->getLocation(), diag::err_nsobject_attribute);
+ return;
+ }
+ }
+ else {
+ // It is okay to include this attribute on properties, e.g.:
+ //
+ // @property (retain, nonatomic) struct Bork *Q __attribute__((NSObject));
+ //
+ // In this case it follows tradition and suppresses an error in the above
+ // case.
+ S.Diag(D->getLocation(), diag::warn_nsobject_attribute);
+ }
+ D->addAttr(::new (S.Context)
+ ObjCNSObjectAttr(Attr.getRange(), S.Context,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleObjCIndependentClass(Sema &S, Decl *D, const AttributeList &Attr) {
+ if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
+ QualType T = TD->getUnderlyingType();
+ if (!T->isObjCObjectPointerType()) {
+ S.Diag(TD->getLocation(), diag::warn_ptr_independentclass_attribute);
+ return;
+ }
+ } else {
+ S.Diag(D->getLocation(), diag::warn_independentclass_attribute);
+ return;
+ }
+ D->addAttr(::new (S.Context)
+ ObjCIndependentClassAttr(Attr.getRange(), S.Context,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleBlocksAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ if (!Attr.isArgIdent(0)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
+ << Attr.getName() << 1 << AANT_ArgumentIdentifier;
+ return;
+ }
+
+ IdentifierInfo *II = Attr.getArgAsIdent(0)->Ident;
+ BlocksAttr::BlockType type;
+ if (!BlocksAttr::ConvertStrToBlockType(II->getName(), type)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
+ << Attr.getName() << II;
+ return;
+ }
+
+ D->addAttr(::new (S.Context)
+ BlocksAttr(Attr.getRange(), S.Context, type,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleSentinelAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ unsigned sentinel = (unsigned)SentinelAttr::DefaultSentinel;
+ if (Attr.getNumArgs() > 0) {
+ Expr *E = Attr.getArgAsExpr(0);
+ llvm::APSInt Idx(32);
+ if (E->isTypeDependent() || E->isValueDependent() ||
+ !E->isIntegerConstantExpr(Idx, S.Context)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
+ << Attr.getName() << 1 << AANT_ArgumentIntegerConstant
+ << E->getSourceRange();
+ return;
+ }
+
+ if (Idx.isSigned() && Idx.isNegative()) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_less_than_zero)
+ << E->getSourceRange();
+ return;
+ }
+
+ sentinel = Idx.getZExtValue();
+ }
+
+ unsigned nullPos = (unsigned)SentinelAttr::DefaultNullPos;
+ if (Attr.getNumArgs() > 1) {
+ Expr *E = Attr.getArgAsExpr(1);
+ llvm::APSInt Idx(32);
+ if (E->isTypeDependent() || E->isValueDependent() ||
+ !E->isIntegerConstantExpr(Idx, S.Context)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
+ << Attr.getName() << 2 << AANT_ArgumentIntegerConstant
+ << E->getSourceRange();
+ return;
+ }
+ nullPos = Idx.getZExtValue();
+
+ if ((Idx.isSigned() && Idx.isNegative()) || nullPos > 1) {
+ // FIXME: This error message could be improved, it would be nice
+ // to say what the bounds actually are.
+ S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_not_zero_or_one)
+ << E->getSourceRange();
+ return;
+ }
+ }
+
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ const FunctionType *FT = FD->getType()->castAs<FunctionType>();
+ if (isa<FunctionNoProtoType>(FT)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_named_arguments);
+ return;
+ }
+
+ if (!cast<FunctionProtoType>(FT)->isVariadic()) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
+ return;
+ }
+ } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
+ if (!MD->isVariadic()) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
+ return;
+ }
+ } else if (BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
+ if (!BD->isVariadic()) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1;
+ return;
+ }
+ } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
+ QualType Ty = V->getType();
+ if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
+ const FunctionType *FT = Ty->isFunctionPointerType()
+ ? D->getFunctionType()
+ : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
+ if (!cast<FunctionProtoType>(FT)->isVariadic()) {
+ int m = Ty->isFunctionPointerType() ? 0 : 1;
+ S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m;
+ return;
+ }
+ } else {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedFunctionMethodOrBlock;
+ return;
+ }
+ } else {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedFunctionMethodOrBlock;
+ return;
+ }
+ D->addAttr(::new (S.Context)
+ SentinelAttr(Attr.getRange(), S.Context, sentinel, nullPos,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleWarnUnusedResult(Sema &S, Decl *D, const AttributeList &Attr) {
+ if (D->getFunctionType() &&
+ D->getFunctionType()->getReturnType()->isVoidType()) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method)
+ << Attr.getName() << 0;
+ return;
+ }
+ if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
+ if (MD->getReturnType()->isVoidType()) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method)
+ << Attr.getName() << 1;
+ return;
+ }
+
+ D->addAttr(::new (S.Context)
+ WarnUnusedResultAttr(Attr.getRange(), S.Context,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleWeakImportAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ // weak_import only applies to variable & function declarations.
+ bool isDef = false;
+ if (!D->canBeWeakImported(isDef)) {
+ if (isDef)
+ S.Diag(Attr.getLoc(), diag::warn_attribute_invalid_on_definition)
+ << "weak_import";
+ else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) ||
+ (S.Context.getTargetInfo().getTriple().isOSDarwin() &&
+ (isa<ObjCInterfaceDecl>(D) || isa<EnumDecl>(D)))) {
+ // Nothing to warn about here.
+ } else
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedVariableOrFunction;
+
+ return;
+ }
+
+ D->addAttr(::new (S.Context)
+ WeakImportAttr(Attr.getRange(), S.Context,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+// Handles reqd_work_group_size and work_group_size_hint.
+template <typename WorkGroupAttr>
+static void handleWorkGroupSize(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ uint32_t WGSize[3];
+ for (unsigned i = 0; i < 3; ++i) {
+ const Expr *E = Attr.getArgAsExpr(i);
+ if (!checkUInt32Argument(S, Attr, E, WGSize[i], i))
+ return;
+ if (WGSize[i] == 0) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_is_zero)
+ << Attr.getName() << E->getSourceRange();
+ return;
+ }
+ }
+
+ WorkGroupAttr *Existing = D->getAttr<WorkGroupAttr>();
+ if (Existing && !(Existing->getXDim() == WGSize[0] &&
+ Existing->getYDim() == WGSize[1] &&
+ Existing->getZDim() == WGSize[2]))
+ S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute) << Attr.getName();
+
+ D->addAttr(::new (S.Context) WorkGroupAttr(Attr.getRange(), S.Context,
+ WGSize[0], WGSize[1], WGSize[2],
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleVecTypeHint(Sema &S, Decl *D, const AttributeList &Attr) {
+ if (!Attr.hasParsedType()) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
+ << Attr.getName() << 1;
+ return;
+ }
+
+ TypeSourceInfo *ParmTSI = nullptr;
+ QualType ParmType = S.GetTypeFromParser(Attr.getTypeArg(), &ParmTSI);
+ assert(ParmTSI && "no type source info for attribute argument");
+
+ if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() &&
+ (ParmType->isBooleanType() ||
+ !ParmType->isIntegralType(S.getASTContext()))) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_vec_type_hint)
+ << ParmType;
+ return;
+ }
+
+ if (VecTypeHintAttr *A = D->getAttr<VecTypeHintAttr>()) {
+ if (!S.Context.hasSameType(A->getTypeHint(), ParmType)) {
+ S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute) << Attr.getName();
+ return;
+ }
+ }
+
+ D->addAttr(::new (S.Context) VecTypeHintAttr(Attr.getLoc(), S.Context,
+ ParmTSI,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+SectionAttr *Sema::mergeSectionAttr(Decl *D, SourceRange Range,
+ StringRef Name,
+ unsigned AttrSpellingListIndex) {
+ if (SectionAttr *ExistingAttr = D->getAttr<SectionAttr>()) {
+ if (ExistingAttr->getName() == Name)
+ return nullptr;
+ Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section);
+ Diag(Range.getBegin(), diag::note_previous_attribute);
+ return nullptr;
+ }
+ return ::new (Context) SectionAttr(Range, Context, Name,
+ AttrSpellingListIndex);
+}
+
+bool Sema::checkSectionName(SourceLocation LiteralLoc, StringRef SecName) {
+ std::string Error = Context.getTargetInfo().isValidSectionSpecifier(SecName);
+ if (!Error.empty()) {
+ Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target) << Error;
+ return false;
+ }
+ return true;
+}
+
+static void handleSectionAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ // Make sure that there is a string literal as the sections's single
+ // argument.
+ StringRef Str;
+ SourceLocation LiteralLoc;
+ if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str, &LiteralLoc))
+ return;
+
+ if (!S.checkSectionName(LiteralLoc, Str))
+ return;
+
+ // If the target wants to validate the section specifier, make it happen.
+ std::string Error = S.Context.getTargetInfo().isValidSectionSpecifier(Str);
+ if (!Error.empty()) {
+ S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target)
+ << Error;
+ return;
+ }
+
+ unsigned Index = Attr.getAttributeSpellingListIndex();
+ SectionAttr *NewAttr = S.mergeSectionAttr(D, Attr.getRange(), Str, Index);
+ if (NewAttr)
+ D->addAttr(NewAttr);
+}
+
+
+static void handleCleanupAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ VarDecl *VD = cast<VarDecl>(D);
+ if (!VD->hasLocalStorage()) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
+ return;
+ }
+
+ Expr *E = Attr.getArgAsExpr(0);
+ SourceLocation Loc = E->getExprLoc();
+ FunctionDecl *FD = nullptr;
+ DeclarationNameInfo NI;
+
+ // gcc only allows for simple identifiers. Since we support more than gcc, we
+ // will warn the user.
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
+ if (DRE->hasQualifier())
+ S.Diag(Loc, diag::warn_cleanup_ext);
+ FD = dyn_cast<FunctionDecl>(DRE->getDecl());
+ NI = DRE->getNameInfo();
+ if (!FD) {
+ S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 1
+ << NI.getName();
+ return;
+ }
+ } else if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
+ if (ULE->hasExplicitTemplateArgs())
+ S.Diag(Loc, diag::warn_cleanup_ext);
+ FD = S.ResolveSingleFunctionTemplateSpecialization(ULE, true);
+ NI = ULE->getNameInfo();
+ if (!FD) {
+ S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 2
+ << NI.getName();
+ if (ULE->getType() == S.Context.OverloadTy)
+ S.NoteAllOverloadCandidates(ULE);
+ return;
+ }
+ } else {
+ S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 0;
+ return;
+ }
+
+ if (FD->getNumParams() != 1) {
+ S.Diag(Loc, diag::err_attribute_cleanup_func_must_take_one_arg)
+ << NI.getName();
+ return;
+ }
+
+ // We're currently more strict than GCC about what function types we accept.
+ // If this ever proves to be a problem it should be easy to fix.
+ QualType Ty = S.Context.getPointerType(VD->getType());
+ QualType ParamTy = FD->getParamDecl(0)->getType();
+ if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(),
+ ParamTy, Ty) != Sema::Compatible) {
+ S.Diag(Loc, diag::err_attribute_cleanup_func_arg_incompatible_type)
+ << NI.getName() << ParamTy << Ty;
+ return;
+ }
+
+ D->addAttr(::new (S.Context)
+ CleanupAttr(Attr.getRange(), S.Context, FD,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+/// Handle __attribute__((format_arg((idx)))) attribute based on
+/// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
+static void handleFormatArgAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ Expr *IdxExpr = Attr.getArgAsExpr(0);
+ uint64_t Idx;
+ if (!checkFunctionOrMethodParameterIndex(S, D, Attr, 1, IdxExpr, Idx))
+ return;
+
+ // make sure the format string is really a string
+ QualType Ty = getFunctionOrMethodParamType(D, Idx);
+
+ bool not_nsstring_type = !isNSStringType(Ty, S.Context);
+ if (not_nsstring_type &&
+ !isCFStringType(Ty, S.Context) &&
+ (!Ty->isPointerType() ||
+ !Ty->getAs<PointerType>()->getPointeeType()->isCharType())) {
+ S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
+ << (not_nsstring_type ? "a string type" : "an NSString")
+ << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0);
+ return;
+ }
+ Ty = getFunctionOrMethodResultType(D);
+ if (!isNSStringType(Ty, S.Context) &&
+ !isCFStringType(Ty, S.Context) &&
+ (!Ty->isPointerType() ||
+ !Ty->getAs<PointerType>()->getPointeeType()->isCharType())) {
+ S.Diag(Attr.getLoc(), diag::err_format_attribute_result_not)
+ << (not_nsstring_type ? "string type" : "NSString")
+ << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0);
+ return;
+ }
+
+ // We cannot use the Idx returned from checkFunctionOrMethodParameterIndex
+ // because that has corrected for the implicit this parameter, and is zero-
+ // based. The attribute expects what the user wrote explicitly.
+ llvm::APSInt Val;
+ IdxExpr->EvaluateAsInt(Val, S.Context);
+
+ D->addAttr(::new (S.Context)
+ FormatArgAttr(Attr.getRange(), S.Context, Val.getZExtValue(),
+ Attr.getAttributeSpellingListIndex()));
+}
+
+enum FormatAttrKind {
+ CFStringFormat,
+ NSStringFormat,
+ StrftimeFormat,
+ SupportedFormat,
+ IgnoredFormat,
+ InvalidFormat
+};
+
+/// getFormatAttrKind - Map from format attribute names to supported format
+/// types.
+static FormatAttrKind getFormatAttrKind(StringRef Format) {
+ return llvm::StringSwitch<FormatAttrKind>(Format)
+ // Check for formats that get handled specially.
+ .Case("NSString", NSStringFormat)
+ .Case("CFString", CFStringFormat)
+ .Case("strftime", StrftimeFormat)
+
+ // Otherwise, check for supported formats.
+ .Cases("scanf", "printf", "printf0", "strfmon", SupportedFormat)
+ .Cases("cmn_err", "vcmn_err", "zcmn_err", SupportedFormat)
+ .Case("kprintf", SupportedFormat) // OpenBSD.
+ .Case("freebsd_kprintf", SupportedFormat) // FreeBSD.
+ .Case("os_trace", SupportedFormat)
+
+ .Cases("gcc_diag", "gcc_cdiag", "gcc_cxxdiag", "gcc_tdiag", IgnoredFormat)
+ .Default(InvalidFormat);
+}
+
+/// Handle __attribute__((init_priority(priority))) attributes based on
+/// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html
+static void handleInitPriorityAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ if (!S.getLangOpts().CPlusPlus) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
+ return;
+ }
+
+ if (S.getCurFunctionOrMethodDecl()) {
+ S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr);
+ Attr.setInvalid();
+ return;
+ }
+ QualType T = cast<VarDecl>(D)->getType();
+ if (S.Context.getAsArrayType(T))
+ T = S.Context.getBaseElementType(T);
+ if (!T->getAs<RecordType>()) {
+ S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr);
+ Attr.setInvalid();
+ return;
+ }
+
+ Expr *E = Attr.getArgAsExpr(0);
+ uint32_t prioritynum;
+ if (!checkUInt32Argument(S, Attr, E, prioritynum)) {
+ Attr.setInvalid();
+ return;
+ }
+
+ if (prioritynum < 101 || prioritynum > 65535) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_outof_range)
+ << E->getSourceRange();
+ Attr.setInvalid();
+ return;
+ }
+ D->addAttr(::new (S.Context)
+ InitPriorityAttr(Attr.getRange(), S.Context, prioritynum,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+FormatAttr *Sema::mergeFormatAttr(Decl *D, SourceRange Range,
+ IdentifierInfo *Format, int FormatIdx,
+ int FirstArg,
+ unsigned AttrSpellingListIndex) {
+ // Check whether we already have an equivalent format attribute.
+ for (auto *F : D->specific_attrs<FormatAttr>()) {
+ if (F->getType() == Format &&
+ F->getFormatIdx() == FormatIdx &&
+ F->getFirstArg() == FirstArg) {
+ // If we don't have a valid location for this attribute, adopt the
+ // location.
+ if (F->getLocation().isInvalid())
+ F->setRange(Range);
+ return nullptr;
+ }
+ }
+
+ return ::new (Context) FormatAttr(Range, Context, Format, FormatIdx,
+ FirstArg, AttrSpellingListIndex);
+}
+
+/// Handle __attribute__((format(type,idx,firstarg))) attributes based on
+/// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
+static void handleFormatAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ if (!Attr.isArgIdent(0)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
+ << Attr.getName() << 1 << AANT_ArgumentIdentifier;
+ return;
+ }
+
+ // In C++ the implicit 'this' function parameter also counts, and they are
+ // counted from one.
+ bool HasImplicitThisParam = isInstanceMethod(D);
+ unsigned NumArgs = getFunctionOrMethodNumParams(D) + HasImplicitThisParam;
+
+ IdentifierInfo *II = Attr.getArgAsIdent(0)->Ident;
+ StringRef Format = II->getName();
+
+ // Normalize the argument, __foo__ becomes foo.
+ if (Format.startswith("__") && Format.endswith("__")) {
+ Format = Format.substr(2, Format.size() - 4);
+ // If we've modified the string name, we need a new identifier for it.
+ II = &S.Context.Idents.get(Format);
+ }
+
+ // Check for supported formats.
+ FormatAttrKind Kind = getFormatAttrKind(Format);
+
+ if (Kind == IgnoredFormat)
+ return;
+
+ if (Kind == InvalidFormat) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
+ << Attr.getName() << II->getName();
+ return;
+ }
+
+ // checks for the 2nd argument
+ Expr *IdxExpr = Attr.getArgAsExpr(1);
+ uint32_t Idx;
+ if (!checkUInt32Argument(S, Attr, IdxExpr, Idx, 2))
+ return;
+
+ if (Idx < 1 || Idx > NumArgs) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
+ << Attr.getName() << 2 << IdxExpr->getSourceRange();
+ return;
+ }
+
+ // FIXME: Do we need to bounds check?
+ unsigned ArgIdx = Idx - 1;
+
+ if (HasImplicitThisParam) {
+ if (ArgIdx == 0) {
+ S.Diag(Attr.getLoc(),
+ diag::err_format_attribute_implicit_this_format_string)
+ << IdxExpr->getSourceRange();
+ return;
+ }
+ ArgIdx--;
+ }
+
+ // make sure the format string is really a string
+ QualType Ty = getFunctionOrMethodParamType(D, ArgIdx);
+
+ if (Kind == CFStringFormat) {
+ if (!isCFStringType(Ty, S.Context)) {
+ S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
+ << "a CFString" << IdxExpr->getSourceRange()
+ << getFunctionOrMethodParamRange(D, ArgIdx);
+ return;
+ }
+ } else if (Kind == NSStringFormat) {
+ // FIXME: do we need to check if the type is NSString*? What are the
+ // semantics?
+ if (!isNSStringType(Ty, S.Context)) {
+ S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
+ << "an NSString" << IdxExpr->getSourceRange()
+ << getFunctionOrMethodParamRange(D, ArgIdx);
+ return;
+ }
+ } else if (!Ty->isPointerType() ||
+ !Ty->getAs<PointerType>()->getPointeeType()->isCharType()) {
+ S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
+ << "a string type" << IdxExpr->getSourceRange()
+ << getFunctionOrMethodParamRange(D, ArgIdx);
+ return;
+ }
+
+ // check the 3rd argument
+ Expr *FirstArgExpr = Attr.getArgAsExpr(2);
+ uint32_t FirstArg;
+ if (!checkUInt32Argument(S, Attr, FirstArgExpr, FirstArg, 3))
+ return;
+
+ // check if the function is variadic if the 3rd argument non-zero
+ if (FirstArg != 0) {
+ if (isFunctionOrMethodVariadic(D)) {
+ ++NumArgs; // +1 for ...
+ } else {
+ S.Diag(D->getLocation(), diag::err_format_attribute_requires_variadic);
+ return;
+ }
+ }
+
+ // strftime requires FirstArg to be 0 because it doesn't read from any
+ // variable the input is just the current time + the format string.
+ if (Kind == StrftimeFormat) {
+ if (FirstArg != 0) {
+ S.Diag(Attr.getLoc(), diag::err_format_strftime_third_parameter)
+ << FirstArgExpr->getSourceRange();
+ return;
+ }
+ // if 0 it disables parameter checking (to use with e.g. va_list)
+ } else if (FirstArg != 0 && FirstArg != NumArgs) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
+ << Attr.getName() << 3 << FirstArgExpr->getSourceRange();
+ return;
+ }
+
+ FormatAttr *NewAttr = S.mergeFormatAttr(D, Attr.getRange(), II,
+ Idx, FirstArg,
+ Attr.getAttributeSpellingListIndex());
+ if (NewAttr)
+ D->addAttr(NewAttr);
+}
+
+static void handleTransparentUnionAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ // Try to find the underlying union declaration.
+ RecordDecl *RD = nullptr;
+ TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D);
+ if (TD && TD->getUnderlyingType()->isUnionType())
+ RD = TD->getUnderlyingType()->getAsUnionType()->getDecl();
+ else
+ RD = dyn_cast<RecordDecl>(D);
+
+ if (!RD || !RD->isUnion()) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedUnion;
+ return;
+ }
+
+ if (!RD->isCompleteDefinition()) {
+ S.Diag(Attr.getLoc(),
+ diag::warn_transparent_union_attribute_not_definition);
+ return;
+ }
+
+ RecordDecl::field_iterator Field = RD->field_begin(),
+ FieldEnd = RD->field_end();
+ if (Field == FieldEnd) {
+ S.Diag(Attr.getLoc(), diag::warn_transparent_union_attribute_zero_fields);
+ return;
+ }
+
+ FieldDecl *FirstField = *Field;
+ QualType FirstType = FirstField->getType();
+ if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) {
+ S.Diag(FirstField->getLocation(),
+ diag::warn_transparent_union_attribute_floating)
+ << FirstType->isVectorType() << FirstType;
+ return;
+ }
+
+ uint64_t FirstSize = S.Context.getTypeSize(FirstType);
+ uint64_t FirstAlign = S.Context.getTypeAlign(FirstType);
+ for (; Field != FieldEnd; ++Field) {
+ QualType FieldType = Field->getType();
+ // FIXME: this isn't fully correct; we also need to test whether the
+ // members of the union would all have the same calling convention as the
+ // first member of the union. Checking just the size and alignment isn't
+ // sufficient (consider structs passed on the stack instead of in registers
+ // as an example).
+ if (S.Context.getTypeSize(FieldType) != FirstSize ||
+ S.Context.getTypeAlign(FieldType) > FirstAlign) {
+ // Warn if we drop the attribute.
+ bool isSize = S.Context.getTypeSize(FieldType) != FirstSize;
+ unsigned FieldBits = isSize? S.Context.getTypeSize(FieldType)
+ : S.Context.getTypeAlign(FieldType);
+ S.Diag(Field->getLocation(),
+ diag::warn_transparent_union_attribute_field_size_align)
+ << isSize << Field->getDeclName() << FieldBits;
+ unsigned FirstBits = isSize? FirstSize : FirstAlign;
+ S.Diag(FirstField->getLocation(),
+ diag::note_transparent_union_first_field_size_align)
+ << isSize << FirstBits;
+ return;
+ }
+ }
+
+ RD->addAttr(::new (S.Context)
+ TransparentUnionAttr(Attr.getRange(), S.Context,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleAnnotateAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ // Make sure that there is a string literal as the annotation's single
+ // argument.
+ StringRef Str;
+ if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str))
+ return;
+
+ // Don't duplicate annotations that are already set.
+ for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
+ if (I->getAnnotation() == Str)
+ return;
+ }
+
+ D->addAttr(::new (S.Context)
+ AnnotateAttr(Attr.getRange(), S.Context, Str,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleAlignValueAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ S.AddAlignValueAttr(Attr.getRange(), D, Attr.getArgAsExpr(0),
+ Attr.getAttributeSpellingListIndex());
+}
+
+void Sema::AddAlignValueAttr(SourceRange AttrRange, Decl *D, Expr *E,
+ unsigned SpellingListIndex) {
+ AlignValueAttr TmpAttr(AttrRange, Context, E, SpellingListIndex);
+ SourceLocation AttrLoc = AttrRange.getBegin();
+
+ QualType T;
+ if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D))
+ T = TD->getUnderlyingType();
+ else if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
+ T = VD->getType();
+ else
+ llvm_unreachable("Unknown decl type for align_value");
+
+ if (!T->isDependentType() && !T->isAnyPointerType() &&
+ !T->isReferenceType() && !T->isMemberPointerType()) {
+ Diag(AttrLoc, diag::warn_attribute_pointer_or_reference_only)
+ << &TmpAttr /*TmpAttr.getName()*/ << T << D->getSourceRange();
+ return;
+ }
+
+ if (!E->isValueDependent()) {
+ llvm::APSInt Alignment(32);
+ ExprResult ICE
+ = VerifyIntegerConstantExpression(E, &Alignment,
+ diag::err_align_value_attribute_argument_not_int,
+ /*AllowFold*/ false);
+ if (ICE.isInvalid())
+ return;
+
+ if (!Alignment.isPowerOf2()) {
+ Diag(AttrLoc, diag::err_alignment_not_power_of_two)
+ << E->getSourceRange();
+ return;
+ }
+
+ D->addAttr(::new (Context)
+ AlignValueAttr(AttrRange, Context, ICE.get(),
+ SpellingListIndex));
+ return;
+ }
+
+ // Save dependent expressions in the AST to be instantiated.
+ D->addAttr(::new (Context) AlignValueAttr(TmpAttr));
+ return;
+}
+
+static void handleAlignedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ // check the attribute arguments.
+ if (Attr.getNumArgs() > 1) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
+ << Attr.getName() << 1;
+ return;
+ }
+
+ if (Attr.getNumArgs() == 0) {
+ D->addAttr(::new (S.Context) AlignedAttr(Attr.getRange(), S.Context,
+ true, nullptr, Attr.getAttributeSpellingListIndex()));
+ return;
+ }
+
+ Expr *E = Attr.getArgAsExpr(0);
+ if (Attr.isPackExpansion() && !E->containsUnexpandedParameterPack()) {
+ S.Diag(Attr.getEllipsisLoc(),
+ diag::err_pack_expansion_without_parameter_packs);
+ return;
+ }
+
+ if (!Attr.isPackExpansion() && S.DiagnoseUnexpandedParameterPack(E))
+ return;
+
+ if (E->isValueDependent()) {
+ if (const auto *TND = dyn_cast<TypedefNameDecl>(D)) {
+ if (!TND->getUnderlyingType()->isDependentType()) {
+ S.Diag(Attr.getLoc(), diag::err_alignment_dependent_typedef_name)
+ << E->getSourceRange();
+ return;
+ }
+ }
+ }
+
+ S.AddAlignedAttr(Attr.getRange(), D, E, Attr.getAttributeSpellingListIndex(),
+ Attr.isPackExpansion());
+}
+
+void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, Expr *E,
+ unsigned SpellingListIndex, bool IsPackExpansion) {
+ AlignedAttr TmpAttr(AttrRange, Context, true, E, SpellingListIndex);
+ SourceLocation AttrLoc = AttrRange.getBegin();
+
+ // C++11 alignas(...) and C11 _Alignas(...) have additional requirements.
+ if (TmpAttr.isAlignas()) {
+ // C++11 [dcl.align]p1:
+ // An alignment-specifier may be applied to a variable or to a class
+ // data member, but it shall not be applied to a bit-field, a function
+ // parameter, the formal parameter of a catch clause, or a variable
+ // declared with the register storage class specifier. An
+ // alignment-specifier may also be applied to the declaration of a class
+ // or enumeration type.
+ // C11 6.7.5/2:
+ // An alignment attribute shall not be specified in a declaration of
+ // a typedef, or a bit-field, or a function, or a parameter, or an
+ // object declared with the register storage-class specifier.
+ int DiagKind = -1;
+ if (isa<ParmVarDecl>(D)) {
+ DiagKind = 0;
+ } else if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
+ if (VD->getStorageClass() == SC_Register)
+ DiagKind = 1;
+ if (VD->isExceptionVariable())
+ DiagKind = 2;
+ } else if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
+ if (FD->isBitField())
+ DiagKind = 3;
+ } else if (!isa<TagDecl>(D)) {
+ Diag(AttrLoc, diag::err_attribute_wrong_decl_type) << &TmpAttr
+ << (TmpAttr.isC11() ? ExpectedVariableOrField
+ : ExpectedVariableFieldOrTag);
+ return;
+ }
+ if (DiagKind != -1) {
+ Diag(AttrLoc, diag::err_alignas_attribute_wrong_decl_type)
+ << &TmpAttr << DiagKind;
+ return;
+ }
+ }
+
+ if (E->isTypeDependent() || E->isValueDependent()) {
+ // Save dependent expressions in the AST to be instantiated.
+ AlignedAttr *AA = ::new (Context) AlignedAttr(TmpAttr);
+ AA->setPackExpansion(IsPackExpansion);
+ D->addAttr(AA);
+ return;
+ }
+
+ // FIXME: Cache the number on the Attr object?
+ llvm::APSInt Alignment(32);
+ ExprResult ICE
+ = VerifyIntegerConstantExpression(E, &Alignment,
+ diag::err_aligned_attribute_argument_not_int,
+ /*AllowFold*/ false);
+ if (ICE.isInvalid())
+ return;
+
+ // C++11 [dcl.align]p2:
+ // -- if the constant expression evaluates to zero, the alignment
+ // specifier shall have no effect
+ // C11 6.7.5p6:
+ // An alignment specification of zero has no effect.
+ if (!(TmpAttr.isAlignas() && !Alignment) &&
+ !llvm::isPowerOf2_64(Alignment.getZExtValue())) {
+ Diag(AttrLoc, diag::err_alignment_not_power_of_two)
+ << E->getSourceRange();
+ return;
+ }
+
+ // Alignment calculations can wrap around if it's greater than 2**28.
+ unsigned MaxValidAlignment = TmpAttr.isDeclspec() ? 8192 : 268435456;
+ if (Alignment.getZExtValue() > MaxValidAlignment) {
+ Diag(AttrLoc, diag::err_attribute_aligned_too_great) << MaxValidAlignment
+ << E->getSourceRange();
+ return;
+ }
+
+ AlignedAttr *AA = ::new (Context) AlignedAttr(AttrRange, Context, true,
+ ICE.get(), SpellingListIndex);
+ AA->setPackExpansion(IsPackExpansion);
+ D->addAttr(AA);
+}
+
+void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, TypeSourceInfo *TS,
+ unsigned SpellingListIndex, bool IsPackExpansion) {
+ // FIXME: Cache the number on the Attr object if non-dependent?
+ // FIXME: Perform checking of type validity
+ AlignedAttr *AA = ::new (Context) AlignedAttr(AttrRange, Context, false, TS,
+ SpellingListIndex);
+ AA->setPackExpansion(IsPackExpansion);
+ D->addAttr(AA);
+}
+
+void Sema::CheckAlignasUnderalignment(Decl *D) {
+ assert(D->hasAttrs() && "no attributes on decl");
+
+ QualType UnderlyingTy, DiagTy;
+ if (ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
+ UnderlyingTy = DiagTy = VD->getType();
+ } else {
+ UnderlyingTy = DiagTy = Context.getTagDeclType(cast<TagDecl>(D));
+ if (EnumDecl *ED = dyn_cast<EnumDecl>(D))
+ UnderlyingTy = ED->getIntegerType();
+ }
+ if (DiagTy->isDependentType() || DiagTy->isIncompleteType())
+ return;
+
+ // C++11 [dcl.align]p5, C11 6.7.5/4:
+ // The combined effect of all alignment attributes in a declaration shall
+ // not specify an alignment that is less strict than the alignment that
+ // would otherwise be required for the entity being declared.
+ AlignedAttr *AlignasAttr = nullptr;
+ unsigned Align = 0;
+ for (auto *I : D->specific_attrs<AlignedAttr>()) {
+ if (I->isAlignmentDependent())
+ return;
+ if (I->isAlignas())
+ AlignasAttr = I;
+ Align = std::max(Align, I->getAlignment(Context));
+ }
+
+ if (AlignasAttr && Align) {
+ CharUnits RequestedAlign = Context.toCharUnitsFromBits(Align);
+ CharUnits NaturalAlign = Context.getTypeAlignInChars(UnderlyingTy);
+ if (NaturalAlign > RequestedAlign)
+ Diag(AlignasAttr->getLocation(), diag::err_alignas_underaligned)
+ << DiagTy << (unsigned)NaturalAlign.getQuantity();
+ }
+}
+
+bool Sema::checkMSInheritanceAttrOnDefinition(
+ CXXRecordDecl *RD, SourceRange Range, bool BestCase,
+ MSInheritanceAttr::Spelling SemanticSpelling) {
+ assert(RD->hasDefinition() && "RD has no definition!");
+
+ // We may not have seen base specifiers or any virtual methods yet. We will
+ // have to wait until the record is defined to catch any mismatches.
+ if (!RD->getDefinition()->isCompleteDefinition())
+ return false;
+
+ // The unspecified model never matches what a definition could need.
+ if (SemanticSpelling == MSInheritanceAttr::Keyword_unspecified_inheritance)
+ return false;
+
+ if (BestCase) {
+ if (RD->calculateInheritanceModel() == SemanticSpelling)
+ return false;
+ } else {
+ if (RD->calculateInheritanceModel() <= SemanticSpelling)
+ return false;
+ }
+
+ Diag(Range.getBegin(), diag::err_mismatched_ms_inheritance)
+ << 0 /*definition*/;
+ Diag(RD->getDefinition()->getLocation(), diag::note_defined_here)
+ << RD->getNameAsString();
+ return true;
+}
+
+/// handleModeAttr - This attribute modifies the width of a decl with primitive
+/// type.
+///
+/// Despite what would be logical, the mode attribute is a decl attribute, not a
+/// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be
+/// HImode, not an intermediate pointer.
+static void handleModeAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ // This attribute isn't documented, but glibc uses it. It changes
+ // the width of an int or unsigned int to the specified size.
+ if (!Attr.isArgIdent(0)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) << Attr.getName()
+ << AANT_ArgumentIdentifier;
+ return;
+ }
+
+ IdentifierInfo *Name = Attr.getArgAsIdent(0)->Ident;
+ StringRef Str = Name->getName();
+
+ // Normalize the attribute name, __foo__ becomes foo.
+ if (Str.startswith("__") && Str.endswith("__"))
+ Str = Str.substr(2, Str.size() - 4);
+
+ unsigned DestWidth = 0;
+ bool IntegerMode = true;
+ bool ComplexMode = false;
+ switch (Str.size()) {
+ case 2:
+ switch (Str[0]) {
+ case 'Q': DestWidth = 8; break;
+ case 'H': DestWidth = 16; break;
+ case 'S': DestWidth = 32; break;
+ case 'D': DestWidth = 64; break;
+ case 'X': DestWidth = 96; break;
+ case 'T': DestWidth = 128; break;
+ }
+ if (Str[1] == 'F') {
+ IntegerMode = false;
+ } else if (Str[1] == 'C') {
+ IntegerMode = false;
+ ComplexMode = true;
+ } else if (Str[1] != 'I') {
+ DestWidth = 0;
+ }
+ break;
+ case 4:
+ // FIXME: glibc uses 'word' to define register_t; this is narrower than a
+ // pointer on PIC16 and other embedded platforms.
+ if (Str == "word")
+ DestWidth = S.Context.getTargetInfo().getPointerWidth(0);
+ else if (Str == "byte")
+ DestWidth = S.Context.getTargetInfo().getCharWidth();
+ break;
+ case 7:
+ if (Str == "pointer")
+ DestWidth = S.Context.getTargetInfo().getPointerWidth(0);
+ break;
+ case 11:
+ if (Str == "unwind_word")
+ DestWidth = S.Context.getTargetInfo().getUnwindWordWidth();
+ break;
+ }
+
+ QualType OldTy;
+ if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D))
+ OldTy = TD->getUnderlyingType();
+ else if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
+ OldTy = VD->getType();
+ else {
+ S.Diag(D->getLocation(), diag::err_attr_wrong_decl)
+ << Attr.getName() << Attr.getRange();
+ return;
+ }
+
+ if (!OldTy->getAs<BuiltinType>() && !OldTy->isComplexType())
+ S.Diag(Attr.getLoc(), diag::err_mode_not_primitive);
+ else if (IntegerMode) {
+ if (!OldTy->isIntegralOrEnumerationType())
+ S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
+ } else if (ComplexMode) {
+ if (!OldTy->isComplexType())
+ S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
+ } else {
+ if (!OldTy->isFloatingType())
+ S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
+ }
+
+ // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t
+ // and friends, at least with glibc.
+ // FIXME: Make sure floating-point mappings are accurate
+ // FIXME: Support XF and TF types
+ if (!DestWidth) {
+ S.Diag(Attr.getLoc(), diag::err_machine_mode) << 0 /*Unknown*/ << Name;
+ return;
+ }
+
+ QualType NewTy;
+
+ if (IntegerMode)
+ NewTy = S.Context.getIntTypeForBitwidth(DestWidth,
+ OldTy->isSignedIntegerType());
+ else
+ NewTy = S.Context.getRealTypeForBitwidth(DestWidth);
+
+ if (NewTy.isNull()) {
+ S.Diag(Attr.getLoc(), diag::err_machine_mode) << 1 /*Unsupported*/ << Name;
+ return;
+ }
+
+ if (ComplexMode) {
+ NewTy = S.Context.getComplexType(NewTy);
+ }
+
+ // Install the new type.
+ if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D))
+ TD->setModedTypeSourceInfo(TD->getTypeSourceInfo(), NewTy);
+ else
+ cast<ValueDecl>(D)->setType(NewTy);
+
+ D->addAttr(::new (S.Context)
+ ModeAttr(Attr.getRange(), S.Context, Name,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleNoDebugAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
+ if (!VD->hasGlobalStorage())
+ S.Diag(Attr.getLoc(),
+ diag::warn_attribute_requires_functions_or_static_globals)
+ << Attr.getName();
+ } else if (!isFunctionOrMethod(D)) {
+ S.Diag(Attr.getLoc(),
+ diag::warn_attribute_requires_functions_or_static_globals)
+ << Attr.getName();
+ return;
+ }
+
+ D->addAttr(::new (S.Context)
+ NoDebugAttr(Attr.getRange(), S.Context,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+AlwaysInlineAttr *Sema::mergeAlwaysInlineAttr(Decl *D, SourceRange Range,
+ IdentifierInfo *Ident,
+ unsigned AttrSpellingListIndex) {
+ if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
+ Diag(Range.getBegin(), diag::warn_attribute_ignored) << Ident;
+ Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
+ return nullptr;
+ }
+
+ if (D->hasAttr<AlwaysInlineAttr>())
+ return nullptr;
+
+ return ::new (Context) AlwaysInlineAttr(Range, Context,
+ AttrSpellingListIndex);
+}
+
+MinSizeAttr *Sema::mergeMinSizeAttr(Decl *D, SourceRange Range,
+ unsigned AttrSpellingListIndex) {
+ if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
+ Diag(Range.getBegin(), diag::warn_attribute_ignored) << "'minsize'";
+ Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
+ return nullptr;
+ }
+
+ if (D->hasAttr<MinSizeAttr>())
+ return nullptr;
+
+ return ::new (Context) MinSizeAttr(Range, Context, AttrSpellingListIndex);
+}
+
+OptimizeNoneAttr *Sema::mergeOptimizeNoneAttr(Decl *D, SourceRange Range,
+ unsigned AttrSpellingListIndex) {
+ if (AlwaysInlineAttr *Inline = D->getAttr<AlwaysInlineAttr>()) {
+ Diag(Inline->getLocation(), diag::warn_attribute_ignored) << Inline;
+ Diag(Range.getBegin(), diag::note_conflicting_attribute);
+ D->dropAttr<AlwaysInlineAttr>();
+ }
+ if (MinSizeAttr *MinSize = D->getAttr<MinSizeAttr>()) {
+ Diag(MinSize->getLocation(), diag::warn_attribute_ignored) << MinSize;
+ Diag(Range.getBegin(), diag::note_conflicting_attribute);
+ D->dropAttr<MinSizeAttr>();
+ }
+
+ if (D->hasAttr<OptimizeNoneAttr>())
+ return nullptr;
+
+ return ::new (Context) OptimizeNoneAttr(Range, Context,
+ AttrSpellingListIndex);
+}
+
+static void handleAlwaysInlineAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ if (AlwaysInlineAttr *Inline = S.mergeAlwaysInlineAttr(
+ D, Attr.getRange(), Attr.getName(),
+ Attr.getAttributeSpellingListIndex()))
+ D->addAttr(Inline);
+}
+
+static void handleMinSizeAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ if (MinSizeAttr *MinSize = S.mergeMinSizeAttr(
+ D, Attr.getRange(), Attr.getAttributeSpellingListIndex()))
+ D->addAttr(MinSize);
+}
+
+static void handleOptimizeNoneAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ if (OptimizeNoneAttr *Optnone = S.mergeOptimizeNoneAttr(
+ D, Attr.getRange(), Attr.getAttributeSpellingListIndex()))
+ D->addAttr(Optnone);
+}
+
+static void handleGlobalAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ FunctionDecl *FD = cast<FunctionDecl>(D);
+ if (!FD->getReturnType()->isVoidType()) {
+ SourceRange RTRange = FD->getReturnTypeSourceRange();
+ S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
+ << FD->getType()
+ << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
+ : FixItHint());
+ return;
+ }
+
+ D->addAttr(::new (S.Context)
+ CUDAGlobalAttr(Attr.getRange(), S.Context,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleGNUInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ FunctionDecl *Fn = cast<FunctionDecl>(D);
+ if (!Fn->isInlineSpecified()) {
+ S.Diag(Attr.getLoc(), diag::warn_gnu_inline_attribute_requires_inline);
+ return;
+ }
+
+ D->addAttr(::new (S.Context)
+ GNUInlineAttr(Attr.getRange(), S.Context,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleCallConvAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ if (hasDeclarator(D)) return;
+
+ const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
+ // Diagnostic is emitted elsewhere: here we store the (valid) Attr
+ // in the Decl node for syntactic reasoning, e.g., pretty-printing.
+ CallingConv CC;
+ if (S.CheckCallingConvAttr(Attr, CC, FD))
+ return;
+
+ if (!isa<ObjCMethodDecl>(D)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedFunctionOrMethod;
+ return;
+ }
+
+ switch (Attr.getKind()) {
+ case AttributeList::AT_FastCall:
+ D->addAttr(::new (S.Context)
+ FastCallAttr(Attr.getRange(), S.Context,
+ Attr.getAttributeSpellingListIndex()));
+ return;
+ case AttributeList::AT_StdCall:
+ D->addAttr(::new (S.Context)
+ StdCallAttr(Attr.getRange(), S.Context,
+ Attr.getAttributeSpellingListIndex()));
+ return;
+ case AttributeList::AT_ThisCall:
+ D->addAttr(::new (S.Context)
+ ThisCallAttr(Attr.getRange(), S.Context,
+ Attr.getAttributeSpellingListIndex()));
+ return;
+ case AttributeList::AT_CDecl:
+ D->addAttr(::new (S.Context)
+ CDeclAttr(Attr.getRange(), S.Context,
+ Attr.getAttributeSpellingListIndex()));
+ return;
+ case AttributeList::AT_Pascal:
+ D->addAttr(::new (S.Context)
+ PascalAttr(Attr.getRange(), S.Context,
+ Attr.getAttributeSpellingListIndex()));
+ return;
+ case AttributeList::AT_VectorCall:
+ D->addAttr(::new (S.Context)
+ VectorCallAttr(Attr.getRange(), S.Context,
+ Attr.getAttributeSpellingListIndex()));
+ return;
+ case AttributeList::AT_MSABI:
+ D->addAttr(::new (S.Context)
+ MSABIAttr(Attr.getRange(), S.Context,
+ Attr.getAttributeSpellingListIndex()));
+ return;
+ case AttributeList::AT_SysVABI:
+ D->addAttr(::new (S.Context)
+ SysVABIAttr(Attr.getRange(), S.Context,
+ Attr.getAttributeSpellingListIndex()));
+ return;
+ case AttributeList::AT_Pcs: {
+ PcsAttr::PCSType PCS;
+ switch (CC) {
+ case CC_AAPCS:
+ PCS = PcsAttr::AAPCS;
+ break;
+ case CC_AAPCS_VFP:
+ PCS = PcsAttr::AAPCS_VFP;
+ break;
+ default:
+ llvm_unreachable("unexpected calling convention in pcs attribute");
+ }
+
+ D->addAttr(::new (S.Context)
+ PcsAttr(Attr.getRange(), S.Context, PCS,
+ Attr.getAttributeSpellingListIndex()));
+ return;
+ }
+ case AttributeList::AT_IntelOclBicc:
+ D->addAttr(::new (S.Context)
+ IntelOclBiccAttr(Attr.getRange(), S.Context,
+ Attr.getAttributeSpellingListIndex()));
+ return;
+
+ default:
+ llvm_unreachable("unexpected attribute kind");
+ }
+}
+
+bool Sema::CheckCallingConvAttr(const AttributeList &attr, CallingConv &CC,
+ const FunctionDecl *FD) {
+ if (attr.isInvalid())
+ return true;
+
+ unsigned ReqArgs = attr.getKind() == AttributeList::AT_Pcs ? 1 : 0;
+ if (!checkAttributeNumArgs(*this, attr, ReqArgs)) {
+ attr.setInvalid();
+ return true;
+ }
+
+ // TODO: diagnose uses of these conventions on the wrong target.
+ switch (attr.getKind()) {
+ case AttributeList::AT_CDecl: CC = CC_C; break;
+ case AttributeList::AT_FastCall: CC = CC_X86FastCall; break;
+ case AttributeList::AT_StdCall: CC = CC_X86StdCall; break;
+ case AttributeList::AT_ThisCall: CC = CC_X86ThisCall; break;
+ case AttributeList::AT_Pascal: CC = CC_X86Pascal; break;
+ case AttributeList::AT_VectorCall: CC = CC_X86VectorCall; break;
+ case AttributeList::AT_MSABI:
+ CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_C :
+ CC_X86_64Win64;
+ break;
+ case AttributeList::AT_SysVABI:
+ CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_X86_64SysV :
+ CC_C;
+ break;
+ case AttributeList::AT_Pcs: {
+ StringRef StrRef;
+ if (!checkStringLiteralArgumentAttr(attr, 0, StrRef)) {
+ attr.setInvalid();
+ return true;
+ }
+ if (StrRef == "aapcs") {
+ CC = CC_AAPCS;
+ break;
+ } else if (StrRef == "aapcs-vfp") {
+ CC = CC_AAPCS_VFP;
+ break;
+ }
+
+ attr.setInvalid();
+ Diag(attr.getLoc(), diag::err_invalid_pcs);
+ return true;
+ }
+ case AttributeList::AT_IntelOclBicc: CC = CC_IntelOclBicc; break;
+ default: llvm_unreachable("unexpected attribute kind");
+ }
+
+ const TargetInfo &TI = Context.getTargetInfo();
+ TargetInfo::CallingConvCheckResult A = TI.checkCallingConvention(CC);
+ if (A != TargetInfo::CCCR_OK) {
+ if (A == TargetInfo::CCCR_Warning)
+ Diag(attr.getLoc(), diag::warn_cconv_ignored) << attr.getName();
+
+ // This convention is not valid for the target. Use the default function or
+ // method calling convention.
+ TargetInfo::CallingConvMethodType MT = TargetInfo::CCMT_Unknown;
+ if (FD)
+ MT = FD->isCXXInstanceMember() ? TargetInfo::CCMT_Member :
+ TargetInfo::CCMT_NonMember;
+ CC = TI.getDefaultCallingConv(MT);
+ }
+
+ return false;
+}
+
+/// Checks a regparm attribute, returning true if it is ill-formed and
+/// otherwise setting numParams to the appropriate value.
+bool Sema::CheckRegparmAttr(const AttributeList &Attr, unsigned &numParams) {
+ if (Attr.isInvalid())
+ return true;
+
+ if (!checkAttributeNumArgs(*this, Attr, 1)) {
+ Attr.setInvalid();
+ return true;
+ }
+
+ uint32_t NP;
+ Expr *NumParamsExpr = Attr.getArgAsExpr(0);
+ if (!checkUInt32Argument(*this, Attr, NumParamsExpr, NP)) {
+ Attr.setInvalid();
+ return true;
+ }
+
+ if (Context.getTargetInfo().getRegParmMax() == 0) {
+ Diag(Attr.getLoc(), diag::err_attribute_regparm_wrong_platform)
+ << NumParamsExpr->getSourceRange();
+ Attr.setInvalid();
+ return true;
+ }
+
+ numParams = NP;
+ if (numParams > Context.getTargetInfo().getRegParmMax()) {
+ Diag(Attr.getLoc(), diag::err_attribute_regparm_invalid_number)
+ << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange();
+ Attr.setInvalid();
+ return true;
+ }
+
+ return false;
+}
+
+// Checks whether an argument of launch_bounds attribute is acceptable
+// May output an error.
+static bool checkLaunchBoundsArgument(Sema &S, Expr *E,
+ const CUDALaunchBoundsAttr &Attr,
+ const unsigned Idx) {
+
+ if (S.DiagnoseUnexpandedParameterPack(E))
+ return false;
+
+ // Accept template arguments for now as they depend on something else.
+ // We'll get to check them when they eventually get instantiated.
+ if (E->isValueDependent())
+ return true;
+
+ llvm::APSInt I(64);
+ if (!E->isIntegerConstantExpr(I, S.Context)) {
+ S.Diag(E->getExprLoc(), diag::err_attribute_argument_n_type)
+ << &Attr << Idx << AANT_ArgumentIntegerConstant << E->getSourceRange();
+ return false;
+ }
+ // Make sure we can fit it in 32 bits.
+ if (!I.isIntN(32)) {
+ S.Diag(E->getExprLoc(), diag::err_ice_too_large) << I.toString(10, false)
+ << 32 << /* Unsigned */ 1;
+ return false;
+ }
+ if (I < 0)
+ S.Diag(E->getExprLoc(), diag::warn_attribute_argument_n_negative)
+ << &Attr << Idx << E->getSourceRange();
+
+ return true;
+}
+
+void Sema::AddLaunchBoundsAttr(SourceRange AttrRange, Decl *D, Expr *MaxThreads,
+ Expr *MinBlocks, unsigned SpellingListIndex) {
+ CUDALaunchBoundsAttr TmpAttr(AttrRange, Context, MaxThreads, MinBlocks,
+ SpellingListIndex);
+
+ if (!checkLaunchBoundsArgument(*this, MaxThreads, TmpAttr, 0))
+ return;
+
+ if (MinBlocks && !checkLaunchBoundsArgument(*this, MinBlocks, TmpAttr, 1))
+ return;
+
+ D->addAttr(::new (Context) CUDALaunchBoundsAttr(
+ AttrRange, Context, MaxThreads, MinBlocks, SpellingListIndex));
+}
+
+static void handleLaunchBoundsAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ if (!checkAttributeAtLeastNumArgs(S, Attr, 1) ||
+ !checkAttributeAtMostNumArgs(S, Attr, 2))
+ return;
+
+ S.AddLaunchBoundsAttr(Attr.getRange(), D, Attr.getArgAsExpr(0),
+ Attr.getNumArgs() > 1 ? Attr.getArgAsExpr(1) : nullptr,
+ Attr.getAttributeSpellingListIndex());
+}
+
+static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ if (!Attr.isArgIdent(0)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
+ << Attr.getName() << /* arg num = */ 1 << AANT_ArgumentIdentifier;
+ return;
+ }
+
+ if (!checkAttributeNumArgs(S, Attr, 3))
+ return;
+
+ IdentifierInfo *ArgumentKind = Attr.getArgAsIdent(0)->Ident;
+
+ if (!isFunctionOrMethod(D) || !hasFunctionProto(D)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedFunctionOrMethod;
+ return;
+ }
+
+ uint64_t ArgumentIdx;
+ if (!checkFunctionOrMethodParameterIndex(S, D, Attr, 2, Attr.getArgAsExpr(1),
+ ArgumentIdx))
+ return;
+
+ uint64_t TypeTagIdx;
+ if (!checkFunctionOrMethodParameterIndex(S, D, Attr, 3, Attr.getArgAsExpr(2),
+ TypeTagIdx))
+ return;
+
+ bool IsPointer = (Attr.getName()->getName() == "pointer_with_type_tag");
+ if (IsPointer) {
+ // Ensure that buffer has a pointer type.
+ QualType BufferTy = getFunctionOrMethodParamType(D, ArgumentIdx);
+ if (!BufferTy->isPointerType()) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_pointers_only)
+ << Attr.getName();
+ }
+ }
+
+ D->addAttr(::new (S.Context)
+ ArgumentWithTypeTagAttr(Attr.getRange(), S.Context, ArgumentKind,
+ ArgumentIdx, TypeTagIdx, IsPointer,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ if (!Attr.isArgIdent(0)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
+ << Attr.getName() << 1 << AANT_ArgumentIdentifier;
+ return;
+ }
+
+ if (!checkAttributeNumArgs(S, Attr, 1))
+ return;
+
+ if (!isa<VarDecl>(D)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedVariable;
+ return;
+ }
+
+ IdentifierInfo *PointerKind = Attr.getArgAsIdent(0)->Ident;
+ TypeSourceInfo *MatchingCTypeLoc = nullptr;
+ S.GetTypeFromParser(Attr.getMatchingCType(), &MatchingCTypeLoc);
+ assert(MatchingCTypeLoc && "no type source info for attribute argument");
+
+ D->addAttr(::new (S.Context)
+ TypeTagForDatatypeAttr(Attr.getRange(), S.Context, PointerKind,
+ MatchingCTypeLoc,
+ Attr.getLayoutCompatible(),
+ Attr.getMustBeNull(),
+ Attr.getAttributeSpellingListIndex()));
+}
+
+//===----------------------------------------------------------------------===//
+// Checker-specific attribute handlers.
+//===----------------------------------------------------------------------===//
+
+static bool isValidSubjectOfNSReturnsRetainedAttribute(QualType type) {
+ return type->isDependentType() ||
+ type->isObjCRetainableType();
+}
+
+static bool isValidSubjectOfNSAttribute(Sema &S, QualType type) {
+ return type->isDependentType() ||
+ type->isObjCObjectPointerType() ||
+ S.Context.isObjCNSObjectType(type);
+}
+static bool isValidSubjectOfCFAttribute(Sema &S, QualType type) {
+ return type->isDependentType() ||
+ type->isPointerType() ||
+ isValidSubjectOfNSAttribute(S, type);
+}
+
+static void handleNSConsumedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ ParmVarDecl *param = cast<ParmVarDecl>(D);
+ bool typeOK, cf;
+
+ if (Attr.getKind() == AttributeList::AT_NSConsumed) {
+ typeOK = isValidSubjectOfNSAttribute(S, param->getType());
+ cf = false;
+ } else {
+ typeOK = isValidSubjectOfCFAttribute(S, param->getType());
+ cf = true;
+ }
+
+ if (!typeOK) {
+ S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_parameter_type)
+ << Attr.getRange() << Attr.getName() << cf;
+ return;
+ }
+
+ if (cf)
+ param->addAttr(::new (S.Context)
+ CFConsumedAttr(Attr.getRange(), S.Context,
+ Attr.getAttributeSpellingListIndex()));
+ else
+ param->addAttr(::new (S.Context)
+ NSConsumedAttr(Attr.getRange(), S.Context,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleNSReturnsRetainedAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+
+ QualType returnType;
+
+ if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
+ returnType = MD->getReturnType();
+ else if (S.getLangOpts().ObjCAutoRefCount && hasDeclarator(D) &&
+ (Attr.getKind() == AttributeList::AT_NSReturnsRetained))
+ return; // ignore: was handled as a type attribute
+ else if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D))
+ returnType = PD->getType();
+ else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
+ returnType = FD->getReturnType();
+ else {
+ S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getRange() << Attr.getName()
+ << ExpectedFunctionOrMethod;
+ return;
+ }
+
+ bool typeOK;
+ bool cf;
+ switch (Attr.getKind()) {
+ default: llvm_unreachable("invalid ownership attribute");
+ case AttributeList::AT_NSReturnsRetained:
+ typeOK = isValidSubjectOfNSReturnsRetainedAttribute(returnType);
+ cf = false;
+ break;
+
+ case AttributeList::AT_NSReturnsAutoreleased:
+ case AttributeList::AT_NSReturnsNotRetained:
+ typeOK = isValidSubjectOfNSAttribute(S, returnType);
+ cf = false;
+ break;
+
+ case AttributeList::AT_CFReturnsRetained:
+ case AttributeList::AT_CFReturnsNotRetained:
+ typeOK = isValidSubjectOfCFAttribute(S, returnType);
+ cf = true;
+ break;
+ }
+
+ if (!typeOK) {
+ S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_return_type)
+ << Attr.getRange() << Attr.getName() << isa<ObjCMethodDecl>(D) << cf;
+ return;
+ }
+
+ switch (Attr.getKind()) {
+ default:
+ llvm_unreachable("invalid ownership attribute");
+ case AttributeList::AT_NSReturnsAutoreleased:
+ D->addAttr(::new (S.Context) NSReturnsAutoreleasedAttr(
+ Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
+ return;
+ case AttributeList::AT_CFReturnsNotRetained:
+ D->addAttr(::new (S.Context) CFReturnsNotRetainedAttr(
+ Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
+ return;
+ case AttributeList::AT_NSReturnsNotRetained:
+ D->addAttr(::new (S.Context) NSReturnsNotRetainedAttr(
+ Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
+ return;
+ case AttributeList::AT_CFReturnsRetained:
+ D->addAttr(::new (S.Context) CFReturnsRetainedAttr(
+ Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
+ return;
+ case AttributeList::AT_NSReturnsRetained:
+ D->addAttr(::new (S.Context) NSReturnsRetainedAttr(
+ Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
+ return;
+ };
+}
+
+static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D,
+ const AttributeList &attr) {
+ const int EP_ObjCMethod = 1;
+ const int EP_ObjCProperty = 2;
+
+ SourceLocation loc = attr.getLoc();
+ QualType resultType;
+ if (isa<ObjCMethodDecl>(D))
+ resultType = cast<ObjCMethodDecl>(D)->getReturnType();
+ else
+ resultType = cast<ObjCPropertyDecl>(D)->getType();
+
+ if (!resultType->isReferenceType() &&
+ (!resultType->isPointerType() || resultType->isObjCRetainableType())) {
+ S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_return_type)
+ << SourceRange(loc)
+ << attr.getName()
+ << (isa<ObjCMethodDecl>(D) ? EP_ObjCMethod : EP_ObjCProperty)
+ << /*non-retainable pointer*/ 2;
+
+ // Drop the attribute.
+ return;
+ }
+
+ D->addAttr(::new (S.Context) ObjCReturnsInnerPointerAttr(
+ attr.getRange(), S.Context, attr.getAttributeSpellingListIndex()));
+}
+
+static void handleObjCRequiresSuperAttr(Sema &S, Decl *D,
+ const AttributeList &attr) {
+ ObjCMethodDecl *method = cast<ObjCMethodDecl>(D);
+
+ DeclContext *DC = method->getDeclContext();
+ if (const ObjCProtocolDecl *PDecl = dyn_cast_or_null<ObjCProtocolDecl>(DC)) {
+ S.Diag(D->getLocStart(), diag::warn_objc_requires_super_protocol)
+ << attr.getName() << 0;
+ S.Diag(PDecl->getLocation(), diag::note_protocol_decl);
+ return;
+ }
+ if (method->getMethodFamily() == OMF_dealloc) {
+ S.Diag(D->getLocStart(), diag::warn_objc_requires_super_protocol)
+ << attr.getName() << 1;
+ return;
+ }
+
+ method->addAttr(::new (S.Context)
+ ObjCRequiresSuperAttr(attr.getRange(), S.Context,
+ attr.getAttributeSpellingListIndex()));
+}
+
+static void handleCFAuditedTransferAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ if (checkAttrMutualExclusion<CFUnknownTransferAttr>(S, D, Attr))
+ return;
+
+ D->addAttr(::new (S.Context)
+ CFAuditedTransferAttr(Attr.getRange(), S.Context,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleCFUnknownTransferAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ if (checkAttrMutualExclusion<CFAuditedTransferAttr>(S, D, Attr))
+ return;
+
+ D->addAttr(::new (S.Context)
+ CFUnknownTransferAttr(Attr.getRange(), S.Context,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleObjCBridgeAttr(Sema &S, Scope *Sc, Decl *D,
+ const AttributeList &Attr) {
+ IdentifierLoc * Parm = Attr.isArgIdent(0) ? Attr.getArgAsIdent(0) : nullptr;
+
+ if (!Parm) {
+ S.Diag(D->getLocStart(), diag::err_objc_attr_not_id) << Attr.getName() << 0;
+ return;
+ }
+
+ // Typedefs only allow objc_bridge(id) and have some additional checking.
+ if (auto TD = dyn_cast<TypedefNameDecl>(D)) {
+ if (!Parm->Ident->isStr("id")) {
+ S.Diag(Attr.getLoc(), diag::err_objc_attr_typedef_not_id)
+ << Attr.getName();
+ return;
+ }
+
+ // Only allow 'cv void *'.
+ QualType T = TD->getUnderlyingType();
+ if (!T->isVoidPointerType()) {
+ S.Diag(Attr.getLoc(), diag::err_objc_attr_typedef_not_void_pointer);
+ return;
+ }
+ }
+
+ D->addAttr(::new (S.Context)
+ ObjCBridgeAttr(Attr.getRange(), S.Context, Parm->Ident,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleObjCBridgeMutableAttr(Sema &S, Scope *Sc, Decl *D,
+ const AttributeList &Attr) {
+ IdentifierLoc * Parm = Attr.isArgIdent(0) ? Attr.getArgAsIdent(0) : nullptr;
+
+ if (!Parm) {
+ S.Diag(D->getLocStart(), diag::err_objc_attr_not_id) << Attr.getName() << 0;
+ return;
+ }
+
+ D->addAttr(::new (S.Context)
+ ObjCBridgeMutableAttr(Attr.getRange(), S.Context, Parm->Ident,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleObjCBridgeRelatedAttr(Sema &S, Scope *Sc, Decl *D,
+ const AttributeList &Attr) {
+ IdentifierInfo *RelatedClass =
+ Attr.isArgIdent(0) ? Attr.getArgAsIdent(0)->Ident : nullptr;
+ if (!RelatedClass) {
+ S.Diag(D->getLocStart(), diag::err_objc_attr_not_id) << Attr.getName() << 0;
+ return;
+ }
+ IdentifierInfo *ClassMethod =
+ Attr.getArgAsIdent(1) ? Attr.getArgAsIdent(1)->Ident : nullptr;
+ IdentifierInfo *InstanceMethod =
+ Attr.getArgAsIdent(2) ? Attr.getArgAsIdent(2)->Ident : nullptr;
+ D->addAttr(::new (S.Context)
+ ObjCBridgeRelatedAttr(Attr.getRange(), S.Context, RelatedClass,
+ ClassMethod, InstanceMethod,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleObjCDesignatedInitializer(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ ObjCInterfaceDecl *IFace;
+ if (ObjCCategoryDecl *CatDecl =
+ dyn_cast<ObjCCategoryDecl>(D->getDeclContext()))
+ IFace = CatDecl->getClassInterface();
+ else
+ IFace = cast<ObjCInterfaceDecl>(D->getDeclContext());
+
+ if (!IFace)
+ return;
+
+ IFace->setHasDesignatedInitializers();
+ D->addAttr(::new (S.Context)
+ ObjCDesignatedInitializerAttr(Attr.getRange(), S.Context,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleObjCRuntimeName(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ StringRef MetaDataName;
+ if (!S.checkStringLiteralArgumentAttr(Attr, 0, MetaDataName))
+ return;
+ D->addAttr(::new (S.Context)
+ ObjCRuntimeNameAttr(Attr.getRange(), S.Context,
+ MetaDataName,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleObjCOwnershipAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ if (hasDeclarator(D)) return;
+
+ S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
+ << Attr.getRange() << Attr.getName() << ExpectedVariable;
+}
+
+static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ ValueDecl *vd = cast<ValueDecl>(D);
+ QualType type = vd->getType();
+
+ if (!type->isDependentType() &&
+ !type->isObjCLifetimeType()) {
+ S.Diag(Attr.getLoc(), diag::err_objc_precise_lifetime_bad_type)
+ << type;
+ return;
+ }
+
+ Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
+
+ // If we have no lifetime yet, check the lifetime we're presumably
+ // going to infer.
+ if (lifetime == Qualifiers::OCL_None && !type->isDependentType())
+ lifetime = type->getObjCARCImplicitLifetime();
+
+ switch (lifetime) {
+ case Qualifiers::OCL_None:
+ assert(type->isDependentType() &&
+ "didn't infer lifetime for non-dependent type?");
+ break;
+
+ case Qualifiers::OCL_Weak: // meaningful
+ case Qualifiers::OCL_Strong: // meaningful
+ break;
+
+ case Qualifiers::OCL_ExplicitNone:
+ case Qualifiers::OCL_Autoreleasing:
+ S.Diag(Attr.getLoc(), diag::warn_objc_precise_lifetime_meaningless)
+ << (lifetime == Qualifiers::OCL_Autoreleasing);
+ break;
+ }
+
+ D->addAttr(::new (S.Context)
+ ObjCPreciseLifetimeAttr(Attr.getRange(), S.Context,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+//===----------------------------------------------------------------------===//
+// Microsoft specific attribute handlers.
+//===----------------------------------------------------------------------===//
+
+static void handleUuidAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ if (!S.LangOpts.CPlusPlus) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_not_supported_in_lang)
+ << Attr.getName() << AttributeLangSupport::C;
+ return;
+ }
+
+ if (!isa<CXXRecordDecl>(D)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedClass;
+ return;
+ }
+
+ StringRef StrRef;
+ SourceLocation LiteralLoc;
+ if (!S.checkStringLiteralArgumentAttr(Attr, 0, StrRef, &LiteralLoc))
+ return;
+
+ // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or
+ // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}", normalize to the former.
+ if (StrRef.size() == 38 && StrRef.front() == '{' && StrRef.back() == '}')
+ StrRef = StrRef.drop_front().drop_back();
+
+ // Validate GUID length.
+ if (StrRef.size() != 36) {
+ S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
+ return;
+ }
+
+ for (unsigned i = 0; i < 36; ++i) {
+ if (i == 8 || i == 13 || i == 18 || i == 23) {
+ if (StrRef[i] != '-') {
+ S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
+ return;
+ }
+ } else if (!isHexDigit(StrRef[i])) {
+ S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
+ return;
+ }
+ }
+
+ D->addAttr(::new (S.Context) UuidAttr(Attr.getRange(), S.Context, StrRef,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleMSInheritanceAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ if (!S.LangOpts.CPlusPlus) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_not_supported_in_lang)
+ << Attr.getName() << AttributeLangSupport::C;
+ return;
+ }
+ MSInheritanceAttr *IA = S.mergeMSInheritanceAttr(
+ D, Attr.getRange(), /*BestCase=*/true,
+ Attr.getAttributeSpellingListIndex(),
+ (MSInheritanceAttr::Spelling)Attr.getSemanticSpelling());
+ if (IA)
+ D->addAttr(IA);
+}
+
+static void handleDeclspecThreadAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ VarDecl *VD = cast<VarDecl>(D);
+ if (!S.Context.getTargetInfo().isTLSSupported()) {
+ S.Diag(Attr.getLoc(), diag::err_thread_unsupported);
+ return;
+ }
+ if (VD->getTSCSpec() != TSCS_unspecified) {
+ S.Diag(Attr.getLoc(), diag::err_declspec_thread_on_thread_variable);
+ return;
+ }
+ if (VD->hasLocalStorage()) {
+ S.Diag(Attr.getLoc(), diag::err_thread_non_global) << "__declspec(thread)";
+ return;
+ }
+ VD->addAttr(::new (S.Context) ThreadAttr(
+ Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleARMInterruptAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ // Check the attribute arguments.
+ if (Attr.getNumArgs() > 1) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments)
+ << Attr.getName() << 1;
+ return;
+ }
+
+ StringRef Str;
+ SourceLocation ArgLoc;
+
+ if (Attr.getNumArgs() == 0)
+ Str = "";
+ else if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str, &ArgLoc))
+ return;
+
+ ARMInterruptAttr::InterruptType Kind;
+ if (!ARMInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
+ << Attr.getName() << Str << ArgLoc;
+ return;
+ }
+
+ unsigned Index = Attr.getAttributeSpellingListIndex();
+ D->addAttr(::new (S.Context)
+ ARMInterruptAttr(Attr.getLoc(), S.Context, Kind, Index));
+}
+
+static void handleMSP430InterruptAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ if (!checkAttributeNumArgs(S, Attr, 1))
+ return;
+
+ if (!Attr.isArgExpr(0)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) << Attr.getName()
+ << AANT_ArgumentIntegerConstant;
+ return;
+ }
+
+ // FIXME: Check for decl - it should be void ()(void).
+
+ Expr *NumParamsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
+ llvm::APSInt NumParams(32);
+ if (!NumParamsExpr->isIntegerConstantExpr(NumParams, S.Context)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
+ << Attr.getName() << AANT_ArgumentIntegerConstant
+ << NumParamsExpr->getSourceRange();
+ return;
+ }
+
+ unsigned Num = NumParams.getLimitedValue(255);
+ if ((Num & 1) || Num > 30) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
+ << Attr.getName() << (int)NumParams.getSExtValue()
+ << NumParamsExpr->getSourceRange();
+ return;
+ }
+
+ D->addAttr(::new (S.Context)
+ MSP430InterruptAttr(Attr.getLoc(), S.Context, Num,
+ Attr.getAttributeSpellingListIndex()));
+ D->addAttr(UsedAttr::CreateImplicit(S.Context));
+}
+
+static void handleInterruptAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ // Dispatch the interrupt attribute based on the current target.
+ if (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::msp430)
+ handleMSP430InterruptAttr(S, D, Attr);
+ else
+ handleARMInterruptAttr(S, D, Attr);
+}
+
+static void handleAMDGPUNumVGPRAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ uint32_t NumRegs;
+ Expr *NumRegsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
+ if (!checkUInt32Argument(S, Attr, NumRegsExpr, NumRegs))
+ return;
+
+ D->addAttr(::new (S.Context)
+ AMDGPUNumVGPRAttr(Attr.getLoc(), S.Context,
+ NumRegs,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleAMDGPUNumSGPRAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ uint32_t NumRegs;
+ Expr *NumRegsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
+ if (!checkUInt32Argument(S, Attr, NumRegsExpr, NumRegs))
+ return;
+
+ D->addAttr(::new (S.Context)
+ AMDGPUNumSGPRAttr(Attr.getLoc(), S.Context,
+ NumRegs,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleX86ForceAlignArgPointerAttr(Sema &S, Decl *D,
+ const AttributeList& Attr) {
+ // If we try to apply it to a function pointer, don't warn, but don't
+ // do anything, either. It doesn't matter anyway, because there's nothing
+ // special about calling a force_align_arg_pointer function.
+ ValueDecl *VD = dyn_cast<ValueDecl>(D);
+ if (VD && VD->getType()->isFunctionPointerType())
+ return;
+ // Also don't warn on function pointer typedefs.
+ TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D);
+ if (TD && (TD->getUnderlyingType()->isFunctionPointerType() ||
+ TD->getUnderlyingType()->isFunctionType()))
+ return;
+ // Attribute can only be applied to function types.
+ if (!isa<FunctionDecl>(D)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << /* function */0;
+ return;
+ }
+
+ D->addAttr(::new (S.Context)
+ X86ForceAlignArgPointerAttr(Attr.getRange(), S.Context,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+DLLImportAttr *Sema::mergeDLLImportAttr(Decl *D, SourceRange Range,
+ unsigned AttrSpellingListIndex) {
+ if (D->hasAttr<DLLExportAttr>()) {
+ Diag(Range.getBegin(), diag::warn_attribute_ignored) << "'dllimport'";
+ return nullptr;
+ }
+
+ if (D->hasAttr<DLLImportAttr>())
+ return nullptr;
+
+ return ::new (Context) DLLImportAttr(Range, Context, AttrSpellingListIndex);
+}
+
+DLLExportAttr *Sema::mergeDLLExportAttr(Decl *D, SourceRange Range,
+ unsigned AttrSpellingListIndex) {
+ if (DLLImportAttr *Import = D->getAttr<DLLImportAttr>()) {
+ Diag(Import->getLocation(), diag::warn_attribute_ignored) << Import;
+ D->dropAttr<DLLImportAttr>();
+ }
+
+ if (D->hasAttr<DLLExportAttr>())
+ return nullptr;
+
+ return ::new (Context) DLLExportAttr(Range, Context, AttrSpellingListIndex);
+}
+
+static void handleDLLAttr(Sema &S, Decl *D, const AttributeList &A) {
+ if (isa<ClassTemplatePartialSpecializationDecl>(D) &&
+ S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
+ S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored)
+ << A.getName();
+ return;
+ }
+
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ if (FD->isInlined() && A.getKind() == AttributeList::AT_DLLImport &&
+ !S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
+ // MinGW doesn't allow dllimport on inline functions.
+ S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored_on_inline)
+ << A.getName();
+ return;
+ }
+ }
+
+ unsigned Index = A.getAttributeSpellingListIndex();
+ Attr *NewAttr = A.getKind() == AttributeList::AT_DLLExport
+ ? (Attr *)S.mergeDLLExportAttr(D, A.getRange(), Index)
+ : (Attr *)S.mergeDLLImportAttr(D, A.getRange(), Index);
+ if (NewAttr)
+ D->addAttr(NewAttr);
+}
+
+MSInheritanceAttr *
+Sema::mergeMSInheritanceAttr(Decl *D, SourceRange Range, bool BestCase,
+ unsigned AttrSpellingListIndex,
+ MSInheritanceAttr::Spelling SemanticSpelling) {
+ if (MSInheritanceAttr *IA = D->getAttr<MSInheritanceAttr>()) {
+ if (IA->getSemanticSpelling() == SemanticSpelling)
+ return nullptr;
+ Diag(IA->getLocation(), diag::err_mismatched_ms_inheritance)
+ << 1 /*previous declaration*/;
+ Diag(Range.getBegin(), diag::note_previous_ms_inheritance);
+ D->dropAttr<MSInheritanceAttr>();
+ }
+
+ CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
+ if (RD->hasDefinition()) {
+ if (checkMSInheritanceAttrOnDefinition(RD, Range, BestCase,
+ SemanticSpelling)) {
+ return nullptr;
+ }
+ } else {
+ if (isa<ClassTemplatePartialSpecializationDecl>(RD)) {
+ Diag(Range.getBegin(), diag::warn_ignored_ms_inheritance)
+ << 1 /*partial specialization*/;
+ return nullptr;
+ }
+ if (RD->getDescribedClassTemplate()) {
+ Diag(Range.getBegin(), diag::warn_ignored_ms_inheritance)
+ << 0 /*primary template*/;
+ return nullptr;
+ }
+ }
+
+ return ::new (Context)
+ MSInheritanceAttr(Range, Context, BestCase, AttrSpellingListIndex);
+}
+
+static void handleCapabilityAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ // The capability attributes take a single string parameter for the name of
+ // the capability they represent. The lockable attribute does not take any
+ // parameters. However, semantically, both attributes represent the same
+ // concept, and so they use the same semantic attribute. Eventually, the
+ // lockable attribute will be removed.
+ //
+ // For backward compatibility, any capability which has no specified string
+ // literal will be considered a "mutex."
+ StringRef N("mutex");
+ SourceLocation LiteralLoc;
+ if (Attr.getKind() == AttributeList::AT_Capability &&
+ !S.checkStringLiteralArgumentAttr(Attr, 0, N, &LiteralLoc))
+ return;
+
+ // Currently, there are only two names allowed for a capability: role and
+ // mutex (case insensitive). Diagnose other capability names.
+ if (!N.equals_lower("mutex") && !N.equals_lower("role"))
+ S.Diag(LiteralLoc, diag::warn_invalid_capability_name) << N;
+
+ D->addAttr(::new (S.Context) CapabilityAttr(Attr.getRange(), S.Context, N,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleAssertCapabilityAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ D->addAttr(::new (S.Context) AssertCapabilityAttr(Attr.getRange(), S.Context,
+ Attr.getArgAsExpr(0),
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleAcquireCapabilityAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ SmallVector<Expr*, 1> Args;
+ if (!checkLockFunAttrCommon(S, D, Attr, Args))
+ return;
+
+ D->addAttr(::new (S.Context) AcquireCapabilityAttr(Attr.getRange(),
+ S.Context,
+ Args.data(), Args.size(),
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleTryAcquireCapabilityAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ SmallVector<Expr*, 2> Args;
+ if (!checkTryLockFunAttrCommon(S, D, Attr, Args))
+ return;
+
+ D->addAttr(::new (S.Context) TryAcquireCapabilityAttr(Attr.getRange(),
+ S.Context,
+ Attr.getArgAsExpr(0),
+ Args.data(),
+ Args.size(),
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleReleaseCapabilityAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ // Check that all arguments are lockable objects.
+ SmallVector<Expr *, 1> Args;
+ checkAttrArgsAreCapabilityObjs(S, D, Attr, Args, 0, true);
+
+ D->addAttr(::new (S.Context) ReleaseCapabilityAttr(
+ Attr.getRange(), S.Context, Args.data(), Args.size(),
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleRequiresCapabilityAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
+ return;
+
+ // check that all arguments are lockable objects
+ SmallVector<Expr*, 1> Args;
+ checkAttrArgsAreCapabilityObjs(S, D, Attr, Args);
+ if (Args.empty())
+ return;
+
+ RequiresCapabilityAttr *RCA = ::new (S.Context)
+ RequiresCapabilityAttr(Attr.getRange(), S.Context, Args.data(),
+ Args.size(), Attr.getAttributeSpellingListIndex());
+
+ D->addAttr(RCA);
+}
+
+static void handleDeprecatedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ if (auto *NSD = dyn_cast<NamespaceDecl>(D)) {
+ if (NSD->isAnonymousNamespace()) {
+ S.Diag(Attr.getLoc(), diag::warn_deprecated_anonymous_namespace);
+ // Do not want to attach the attribute to the namespace because that will
+ // cause confusing diagnostic reports for uses of declarations within the
+ // namespace.
+ return;
+ }
+ }
+
+ if (!S.getLangOpts().CPlusPlus14)
+ if (Attr.isCXX11Attribute() &&
+ !(Attr.hasScope() && Attr.getScopeName()->isStr("gnu")))
+ S.Diag(Attr.getLoc(), diag::ext_deprecated_attr_is_a_cxx14_extension);
+
+ handleAttrWithMessage<DeprecatedAttr>(S, D, Attr);
+}
+
+static void handleNoSanitizeAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
+ return;
+
+ std::vector<std::string> Sanitizers;
+
+ for (unsigned I = 0, E = Attr.getNumArgs(); I != E; ++I) {
+ StringRef SanitizerName;
+ SourceLocation LiteralLoc;
+
+ if (!S.checkStringLiteralArgumentAttr(Attr, I, SanitizerName, &LiteralLoc))
+ return;
+
+ if (parseSanitizerValue(SanitizerName, /*AllowGroups=*/true) == 0)
+ S.Diag(LiteralLoc, diag::warn_unknown_sanitizer_ignored) << SanitizerName;
+
+ Sanitizers.push_back(SanitizerName);
+ }
+
+ D->addAttr(::new (S.Context) NoSanitizeAttr(
+ Attr.getRange(), S.Context, Sanitizers.data(), Sanitizers.size(),
+ Attr.getAttributeSpellingListIndex()));
+}
+
+static void handleNoSanitizeSpecificAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ std::string SanitizerName =
+ llvm::StringSwitch<std::string>(Attr.getName()->getName())
+ .Case("no_address_safety_analysis", "address")
+ .Case("no_sanitize_address", "address")
+ .Case("no_sanitize_thread", "thread")
+ .Case("no_sanitize_memory", "memory");
+ D->addAttr(::new (S.Context)
+ NoSanitizeAttr(Attr.getRange(), S.Context, &SanitizerName, 1,
+ Attr.getAttributeSpellingListIndex()));
+}
+
+/// Handles semantic checking for features that are common to all attributes,
+/// such as checking whether a parameter was properly specified, or the correct
+/// number of arguments were passed, etc.
+static bool handleCommonAttributeFeatures(Sema &S, Scope *scope, Decl *D,
+ const AttributeList &Attr) {
+ // Several attributes carry different semantics than the parsing requires, so
+ // those are opted out of the common handling.
+ //
+ // We also bail on unknown and ignored attributes because those are handled
+ // as part of the target-specific handling logic.
+ if (Attr.hasCustomParsing() ||
+ Attr.getKind() == AttributeList::UnknownAttribute)
+ return false;
+
+ // Check whether the attribute requires specific language extensions to be
+ // enabled.
+ if (!Attr.diagnoseLangOpts(S))
+ return true;
+
+ if (Attr.getMinArgs() == Attr.getMaxArgs()) {
+ // If there are no optional arguments, then checking for the argument count
+ // is trivial.
+ if (!checkAttributeNumArgs(S, Attr, Attr.getMinArgs()))
+ return true;
+ } else {
+ // There are optional arguments, so checking is slightly more involved.
+ if (Attr.getMinArgs() &&
+ !checkAttributeAtLeastNumArgs(S, Attr, Attr.getMinArgs()))
+ return true;
+ else if (!Attr.hasVariadicArg() && Attr.getMaxArgs() &&
+ !checkAttributeAtMostNumArgs(S, Attr, Attr.getMaxArgs()))
+ return true;
+ }
+
+ // Check whether the attribute appertains to the given subject.
+ if (!Attr.diagnoseAppertainsTo(S, D))
+ return true;
+
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Top Level Sema Entry Points
+//===----------------------------------------------------------------------===//
+
+/// ProcessDeclAttribute - Apply the specific attribute to the specified decl if
+/// the attribute applies to decls. If the attribute is a type attribute, just
+/// silently ignore it if a GNU attribute.
+static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D,
+ const AttributeList &Attr,
+ bool IncludeCXX11Attributes) {
+ if (Attr.isInvalid() || Attr.getKind() == AttributeList::IgnoredAttribute)
+ return;
+
+ // Ignore C++11 attributes on declarator chunks: they appertain to the type
+ // instead.
+ if (Attr.isCXX11Attribute() && !IncludeCXX11Attributes)
+ return;
+
+ // Unknown attributes are automatically warned on. Target-specific attributes
+ // which do not apply to the current target architecture are treated as
+ // though they were unknown attributes.
+ if (Attr.getKind() == AttributeList::UnknownAttribute ||
+ !Attr.existsInTarget(S.Context.getTargetInfo().getTriple())) {
+ S.Diag(Attr.getLoc(), Attr.isDeclspecAttribute()
+ ? diag::warn_unhandled_ms_attribute_ignored
+ : diag::warn_unknown_attribute_ignored)
+ << Attr.getName();
+ return;
+ }
+
+ if (handleCommonAttributeFeatures(S, scope, D, Attr))
+ return;
+
+ switch (Attr.getKind()) {
+ default:
+ // Type attributes are handled elsewhere; silently move on.
+ assert(Attr.isTypeAttr() && "Non-type attribute not handled");
+ break;
+ case AttributeList::AT_Interrupt:
+ handleInterruptAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_X86ForceAlignArgPointer:
+ handleX86ForceAlignArgPointerAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_DLLExport:
+ case AttributeList::AT_DLLImport:
+ handleDLLAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_Mips16:
+ handleSimpleAttribute<Mips16Attr>(S, D, Attr);
+ break;
+ case AttributeList::AT_NoMips16:
+ handleSimpleAttribute<NoMips16Attr>(S, D, Attr);
+ break;
+ case AttributeList::AT_AMDGPUNumVGPR:
+ handleAMDGPUNumVGPRAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_AMDGPUNumSGPR:
+ handleAMDGPUNumSGPRAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_IBAction:
+ handleSimpleAttribute<IBActionAttr>(S, D, Attr);
+ break;
+ case AttributeList::AT_IBOutlet:
+ handleIBOutlet(S, D, Attr);
+ break;
+ case AttributeList::AT_IBOutletCollection:
+ handleIBOutletCollection(S, D, Attr);
+ break;
+ case AttributeList::AT_Alias:
+ handleAliasAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_Aligned:
+ handleAlignedAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_AlignValue:
+ handleAlignValueAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_AlwaysInline:
+ handleAlwaysInlineAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_AnalyzerNoReturn:
+ handleAnalyzerNoReturnAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_TLSModel:
+ handleTLSModelAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_Annotate:
+ handleAnnotateAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_Availability:
+ handleAvailabilityAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_CarriesDependency:
+ handleDependencyAttr(S, scope, D, Attr);
+ break;
+ case AttributeList::AT_Common:
+ handleCommonAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_CUDAConstant:
+ handleSimpleAttribute<CUDAConstantAttr>(S, D, Attr);
+ break;
+ case AttributeList::AT_Constructor:
+ handleConstructorAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_CXX11NoReturn:
+ handleSimpleAttribute<CXX11NoReturnAttr>(S, D, Attr);
+ break;
+ case AttributeList::AT_Deprecated:
+ handleDeprecatedAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_Destructor:
+ handleDestructorAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_EnableIf:
+ handleEnableIfAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_ExtVectorType:
+ handleExtVectorTypeAttr(S, scope, D, Attr);
+ break;
+ case AttributeList::AT_MinSize:
+ handleMinSizeAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_OptimizeNone:
+ handleOptimizeNoneAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_FlagEnum:
+ handleSimpleAttribute<FlagEnumAttr>(S, D, Attr);
+ break;
+ case AttributeList::AT_Flatten:
+ handleSimpleAttribute<FlattenAttr>(S, D, Attr);
+ break;
+ case AttributeList::AT_Format:
+ handleFormatAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_FormatArg:
+ handleFormatArgAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_CUDAGlobal:
+ handleGlobalAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_CUDADevice:
+ handleSimpleAttribute<CUDADeviceAttr>(S, D, Attr);
+ break;
+ case AttributeList::AT_CUDAHost:
+ handleSimpleAttribute<CUDAHostAttr>(S, D, Attr);
+ break;
+ case AttributeList::AT_GNUInline:
+ handleGNUInlineAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_CUDALaunchBounds:
+ handleLaunchBoundsAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_Restrict:
+ handleRestrictAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_MayAlias:
+ handleSimpleAttribute<MayAliasAttr>(S, D, Attr);
+ break;
+ case AttributeList::AT_Mode:
+ handleModeAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_NoCommon:
+ handleSimpleAttribute<NoCommonAttr>(S, D, Attr);
+ break;
+ case AttributeList::AT_NoSplitStack:
+ handleSimpleAttribute<NoSplitStackAttr>(S, D, Attr);
+ break;
+ case AttributeList::AT_NonNull:
+ if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(D))
+ handleNonNullAttrParameter(S, PVD, Attr);
+ else
+ handleNonNullAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_ReturnsNonNull:
+ handleReturnsNonNullAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_AssumeAligned:
+ handleAssumeAlignedAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_Overloadable:
+ handleSimpleAttribute<OverloadableAttr>(S, D, Attr);
+ break;
+ case AttributeList::AT_Ownership:
+ handleOwnershipAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_Cold:
+ handleColdAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_Hot:
+ handleHotAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_Naked:
+ handleSimpleAttribute<NakedAttr>(S, D, Attr);
+ break;
+ case AttributeList::AT_NoReturn:
+ handleNoReturnAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_NoThrow:
+ handleSimpleAttribute<NoThrowAttr>(S, D, Attr);
+ break;
+ case AttributeList::AT_CUDAShared:
+ handleSimpleAttribute<CUDASharedAttr>(S, D, Attr);
+ break;
+ case AttributeList::AT_VecReturn:
+ handleVecReturnAttr(S, D, Attr);
+ break;
+
+ case AttributeList::AT_ObjCOwnership:
+ handleObjCOwnershipAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_ObjCPreciseLifetime:
+ handleObjCPreciseLifetimeAttr(S, D, Attr);
+ break;
+
+ case AttributeList::AT_ObjCReturnsInnerPointer:
+ handleObjCReturnsInnerPointerAttr(S, D, Attr);
+ break;
+
+ case AttributeList::AT_ObjCRequiresSuper:
+ handleObjCRequiresSuperAttr(S, D, Attr);
+ break;
+
+ case AttributeList::AT_ObjCBridge:
+ handleObjCBridgeAttr(S, scope, D, Attr);
+ break;
+
+ case AttributeList::AT_ObjCBridgeMutable:
+ handleObjCBridgeMutableAttr(S, scope, D, Attr);
+ break;
+
+ case AttributeList::AT_ObjCBridgeRelated:
+ handleObjCBridgeRelatedAttr(S, scope, D, Attr);
+ break;
+
+ case AttributeList::AT_ObjCDesignatedInitializer:
+ handleObjCDesignatedInitializer(S, D, Attr);
+ break;
+
+ case AttributeList::AT_ObjCRuntimeName:
+ handleObjCRuntimeName(S, D, Attr);
+ break;
+
+ case AttributeList::AT_CFAuditedTransfer:
+ handleCFAuditedTransferAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_CFUnknownTransfer:
+ handleCFUnknownTransferAttr(S, D, Attr);
+ break;
+
+ case AttributeList::AT_CFConsumed:
+ case AttributeList::AT_NSConsumed:
+ handleNSConsumedAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_NSConsumesSelf:
+ handleSimpleAttribute<NSConsumesSelfAttr>(S, D, Attr);
+ break;
+
+ case AttributeList::AT_NSReturnsAutoreleased:
+ case AttributeList::AT_NSReturnsNotRetained:
+ case AttributeList::AT_CFReturnsNotRetained:
+ case AttributeList::AT_NSReturnsRetained:
+ case AttributeList::AT_CFReturnsRetained:
+ handleNSReturnsRetainedAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_WorkGroupSizeHint:
+ handleWorkGroupSize<WorkGroupSizeHintAttr>(S, D, Attr);
+ break;
+ case AttributeList::AT_ReqdWorkGroupSize:
+ handleWorkGroupSize<ReqdWorkGroupSizeAttr>(S, D, Attr);
+ break;
+ case AttributeList::AT_VecTypeHint:
+ handleVecTypeHint(S, D, Attr);
+ break;
+
+ case AttributeList::AT_InitPriority:
+ handleInitPriorityAttr(S, D, Attr);
+ break;
+
+ case AttributeList::AT_Packed:
+ handlePackedAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_Section:
+ handleSectionAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_Unavailable:
+ handleAttrWithMessage<UnavailableAttr>(S, D, Attr);
+ break;
+ case AttributeList::AT_ArcWeakrefUnavailable:
+ handleSimpleAttribute<ArcWeakrefUnavailableAttr>(S, D, Attr);
+ break;
+ case AttributeList::AT_ObjCRootClass:
+ handleSimpleAttribute<ObjCRootClassAttr>(S, D, Attr);
+ break;
+ case AttributeList::AT_ObjCExplicitProtocolImpl:
+ handleObjCSuppresProtocolAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_ObjCRequiresPropertyDefs:
+ handleSimpleAttribute<ObjCRequiresPropertyDefsAttr>(S, D, Attr);
+ break;
+ case AttributeList::AT_Unused:
+ handleSimpleAttribute<UnusedAttr>(S, D, Attr);
+ break;
+ case AttributeList::AT_ReturnsTwice:
+ handleSimpleAttribute<ReturnsTwiceAttr>(S, D, Attr);
+ break;
+ case AttributeList::AT_Used:
+ handleUsedAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_Visibility:
+ handleVisibilityAttr(S, D, Attr, false);
+ break;
+ case AttributeList::AT_TypeVisibility:
+ handleVisibilityAttr(S, D, Attr, true);
+ break;
+ case AttributeList::AT_WarnUnused:
+ handleSimpleAttribute<WarnUnusedAttr>(S, D, Attr);
+ break;
+ case AttributeList::AT_WarnUnusedResult:
+ handleWarnUnusedResult(S, D, Attr);
+ break;
+ case AttributeList::AT_Weak:
+ handleSimpleAttribute<WeakAttr>(S, D, Attr);
+ break;
+ case AttributeList::AT_WeakRef:
+ handleWeakRefAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_WeakImport:
+ handleWeakImportAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_TransparentUnion:
+ handleTransparentUnionAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_ObjCException:
+ handleSimpleAttribute<ObjCExceptionAttr>(S, D, Attr);
+ break;
+ case AttributeList::AT_ObjCMethodFamily:
+ handleObjCMethodFamilyAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_ObjCNSObject:
+ handleObjCNSObject(S, D, Attr);
+ break;
+ case AttributeList::AT_ObjCIndependentClass:
+ handleObjCIndependentClass(S, D, Attr);
+ break;
+ case AttributeList::AT_Blocks:
+ handleBlocksAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_Sentinel:
+ handleSentinelAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_Const:
+ handleSimpleAttribute<ConstAttr>(S, D, Attr);
+ break;
+ case AttributeList::AT_Pure:
+ handleSimpleAttribute<PureAttr>(S, D, Attr);
+ break;
+ case AttributeList::AT_Cleanup:
+ handleCleanupAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_NoDebug:
+ handleNoDebugAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_NoDuplicate:
+ handleSimpleAttribute<NoDuplicateAttr>(S, D, Attr);
+ break;
+ case AttributeList::AT_NoInline:
+ handleSimpleAttribute<NoInlineAttr>(S, D, Attr);
+ break;
+ case AttributeList::AT_NoInstrumentFunction: // Interacts with -pg.
+ handleSimpleAttribute<NoInstrumentFunctionAttr>(S, D, Attr);
+ break;
+ case AttributeList::AT_StdCall:
+ case AttributeList::AT_CDecl:
+ case AttributeList::AT_FastCall:
+ case AttributeList::AT_ThisCall:
+ case AttributeList::AT_Pascal:
+ case AttributeList::AT_VectorCall:
+ case AttributeList::AT_MSABI:
+ case AttributeList::AT_SysVABI:
+ case AttributeList::AT_Pcs:
+ case AttributeList::AT_IntelOclBicc:
+ handleCallConvAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_OpenCLKernel:
+ handleSimpleAttribute<OpenCLKernelAttr>(S, D, Attr);
+ break;
+ case AttributeList::AT_OpenCLImageAccess:
+ handleSimpleAttribute<OpenCLImageAccessAttr>(S, D, Attr);
+ break;
+
+ // Microsoft attributes:
+ case AttributeList::AT_MSNoVTable:
+ handleSimpleAttribute<MSNoVTableAttr>(S, D, Attr);
+ break;
+ case AttributeList::AT_MSStruct:
+ handleSimpleAttribute<MSStructAttr>(S, D, Attr);
+ break;
+ case AttributeList::AT_Uuid:
+ handleUuidAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_MSInheritance:
+ handleMSInheritanceAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_SelectAny:
+ handleSimpleAttribute<SelectAnyAttr>(S, D, Attr);
+ break;
+ case AttributeList::AT_Thread:
+ handleDeclspecThreadAttr(S, D, Attr);
+ break;
+
+ // Thread safety attributes:
+ case AttributeList::AT_AssertExclusiveLock:
+ handleAssertExclusiveLockAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_AssertSharedLock:
+ handleAssertSharedLockAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_GuardedVar:
+ handleSimpleAttribute<GuardedVarAttr>(S, D, Attr);
+ break;
+ case AttributeList::AT_PtGuardedVar:
+ handlePtGuardedVarAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_ScopedLockable:
+ handleSimpleAttribute<ScopedLockableAttr>(S, D, Attr);
+ break;
+ case AttributeList::AT_NoSanitize:
+ handleNoSanitizeAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_NoSanitizeSpecific:
+ handleNoSanitizeSpecificAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_NoThreadSafetyAnalysis:
+ handleSimpleAttribute<NoThreadSafetyAnalysisAttr>(S, D, Attr);
+ break;
+ case AttributeList::AT_GuardedBy:
+ handleGuardedByAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_PtGuardedBy:
+ handlePtGuardedByAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_ExclusiveTrylockFunction:
+ handleExclusiveTrylockFunctionAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_LockReturned:
+ handleLockReturnedAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_LocksExcluded:
+ handleLocksExcludedAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_SharedTrylockFunction:
+ handleSharedTrylockFunctionAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_AcquiredBefore:
+ handleAcquiredBeforeAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_AcquiredAfter:
+ handleAcquiredAfterAttr(S, D, Attr);
+ break;
+
+ // Capability analysis attributes.
+ case AttributeList::AT_Capability:
+ case AttributeList::AT_Lockable:
+ handleCapabilityAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_RequiresCapability:
+ handleRequiresCapabilityAttr(S, D, Attr);
+ break;
+
+ case AttributeList::AT_AssertCapability:
+ handleAssertCapabilityAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_AcquireCapability:
+ handleAcquireCapabilityAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_ReleaseCapability:
+ handleReleaseCapabilityAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_TryAcquireCapability:
+ handleTryAcquireCapabilityAttr(S, D, Attr);
+ break;
+
+ // Consumed analysis attributes.
+ case AttributeList::AT_Consumable:
+ handleConsumableAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_ConsumableAutoCast:
+ handleSimpleAttribute<ConsumableAutoCastAttr>(S, D, Attr);
+ break;
+ case AttributeList::AT_ConsumableSetOnRead:
+ handleSimpleAttribute<ConsumableSetOnReadAttr>(S, D, Attr);
+ break;
+ case AttributeList::AT_CallableWhen:
+ handleCallableWhenAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_ParamTypestate:
+ handleParamTypestateAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_ReturnTypestate:
+ handleReturnTypestateAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_SetTypestate:
+ handleSetTypestateAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_TestTypestate:
+ handleTestTypestateAttr(S, D, Attr);
+ break;
+
+ // Type safety attributes.
+ case AttributeList::AT_ArgumentWithTypeTag:
+ handleArgumentWithTypeTagAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_TypeTagForDatatype:
+ handleTypeTagForDatatypeAttr(S, D, Attr);
+ break;
+ }
+}
+
+/// ProcessDeclAttributeList - Apply all the decl attributes in the specified
+/// attribute list to the specified decl, ignoring any type attributes.
+void Sema::ProcessDeclAttributeList(Scope *S, Decl *D,
+ const AttributeList *AttrList,
+ bool IncludeCXX11Attributes) {
+ for (const AttributeList* l = AttrList; l; l = l->getNext())
+ ProcessDeclAttribute(*this, S, D, *l, IncludeCXX11Attributes);
+
+ // FIXME: We should be able to handle these cases in TableGen.
+ // GCC accepts
+ // static int a9 __attribute__((weakref));
+ // but that looks really pointless. We reject it.
+ if (D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) {
+ Diag(AttrList->getLoc(), diag::err_attribute_weakref_without_alias)
+ << cast<NamedDecl>(D);
+ D->dropAttr<WeakRefAttr>();
+ return;
+ }
+
+ // FIXME: We should be able to handle this in TableGen as well. It would be
+ // good to have a way to specify "these attributes must appear as a group",
+ // for these. Additionally, it would be good to have a way to specify "these
+ // attribute must never appear as a group" for attributes like cold and hot.
+ if (!D->hasAttr<OpenCLKernelAttr>()) {
+ // These attributes cannot be applied to a non-kernel function.
+ if (Attr *A = D->getAttr<ReqdWorkGroupSizeAttr>()) {
+ // FIXME: This emits a different error message than
+ // diag::err_attribute_wrong_decl_type + ExpectedKernelFunction.
+ Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
+ D->setInvalidDecl();
+ } else if (Attr *A = D->getAttr<WorkGroupSizeHintAttr>()) {
+ Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
+ D->setInvalidDecl();
+ } else if (Attr *A = D->getAttr<VecTypeHintAttr>()) {
+ Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
+ D->setInvalidDecl();
+ } else if (Attr *A = D->getAttr<AMDGPUNumVGPRAttr>()) {
+ Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
+ << A << ExpectedKernelFunction;
+ D->setInvalidDecl();
+ } else if (Attr *A = D->getAttr<AMDGPUNumSGPRAttr>()) {
+ Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
+ << A << ExpectedKernelFunction;
+ D->setInvalidDecl();
+ }
+ }
+}
+
+// Annotation attributes are the only attributes allowed after an access
+// specifier.
+bool Sema::ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl,
+ const AttributeList *AttrList) {
+ for (const AttributeList* l = AttrList; l; l = l->getNext()) {
+ if (l->getKind() == AttributeList::AT_Annotate) {
+ ProcessDeclAttribute(*this, nullptr, ASDecl, *l, l->isCXX11Attribute());
+ } else {
+ Diag(l->getLoc(), diag::err_only_annotate_after_access_spec);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/// checkUnusedDeclAttributes - Check a list of attributes to see if it
+/// contains any decl attributes that we should warn about.
+static void checkUnusedDeclAttributes(Sema &S, const AttributeList *A) {
+ for ( ; A; A = A->getNext()) {
+ // Only warn if the attribute is an unignored, non-type attribute.
+ if (A->isUsedAsTypeAttr() || A->isInvalid()) continue;
+ if (A->getKind() == AttributeList::IgnoredAttribute) continue;
+
+ if (A->getKind() == AttributeList::UnknownAttribute) {
+ S.Diag(A->getLoc(), diag::warn_unknown_attribute_ignored)
+ << A->getName() << A->getRange();
+ } else {
+ S.Diag(A->getLoc(), diag::warn_attribute_not_on_decl)
+ << A->getName() << A->getRange();
+ }
+ }
+}
+
+/// checkUnusedDeclAttributes - Given a declarator which is not being
+/// used to build a declaration, complain about any decl attributes
+/// which might be lying around on it.
+void Sema::checkUnusedDeclAttributes(Declarator &D) {
+ ::checkUnusedDeclAttributes(*this, D.getDeclSpec().getAttributes().getList());
+ ::checkUnusedDeclAttributes(*this, D.getAttributes());
+ for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i)
+ ::checkUnusedDeclAttributes(*this, D.getTypeObject(i).getAttrs());
+}
+
+/// DeclClonePragmaWeak - clone existing decl (maybe definition),
+/// \#pragma weak needs a non-definition decl and source may not have one.
+NamedDecl * Sema::DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II,
+ SourceLocation Loc) {
+ assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND));
+ NamedDecl *NewD = nullptr;
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
+ FunctionDecl *NewFD;
+ // FIXME: Missing call to CheckFunctionDeclaration().
+ // FIXME: Mangling?
+ // FIXME: Is the qualifier info correct?
+ // FIXME: Is the DeclContext correct?
+ NewFD = FunctionDecl::Create(FD->getASTContext(), FD->getDeclContext(),
+ Loc, Loc, DeclarationName(II),
+ FD->getType(), FD->getTypeSourceInfo(),
+ SC_None, false/*isInlineSpecified*/,
+ FD->hasPrototype(),
+ false/*isConstexprSpecified*/);
+ NewD = NewFD;
+
+ if (FD->getQualifier())
+ NewFD->setQualifierInfo(FD->getQualifierLoc());
+
+ // Fake up parameter variables; they are declared as if this were
+ // a typedef.
+ QualType FDTy = FD->getType();
+ if (const FunctionProtoType *FT = FDTy->getAs<FunctionProtoType>()) {
+ SmallVector<ParmVarDecl*, 16> Params;
+ for (const auto &AI : FT->param_types()) {
+ ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, AI);
+ Param->setScopeInfo(0, Params.size());
+ Params.push_back(Param);
+ }
+ NewFD->setParams(Params);
+ }
+ } else if (VarDecl *VD = dyn_cast<VarDecl>(ND)) {
+ NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(),
+ VD->getInnerLocStart(), VD->getLocation(), II,
+ VD->getType(), VD->getTypeSourceInfo(),
+ VD->getStorageClass());
+ if (VD->getQualifier()) {
+ VarDecl *NewVD = cast<VarDecl>(NewD);
+ NewVD->setQualifierInfo(VD->getQualifierLoc());
+ }
+ }
+ return NewD;
+}
+
+/// DeclApplyPragmaWeak - A declaration (maybe definition) needs \#pragma weak
+/// applied to it, possibly with an alias.
+void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W) {
+ if (W.getUsed()) return; // only do this once
+ W.setUsed(true);
+ if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...))
+ IdentifierInfo *NDId = ND->getIdentifier();
+ NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation());
+ NewD->addAttr(AliasAttr::CreateImplicit(Context, NDId->getName(),
+ W.getLocation()));
+ NewD->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation()));
+ WeakTopLevelDecl.push_back(NewD);
+ // FIXME: "hideous" code from Sema::LazilyCreateBuiltin
+ // to insert Decl at TU scope, sorry.
+ DeclContext *SavedContext = CurContext;
+ CurContext = Context.getTranslationUnitDecl();
+ NewD->setDeclContext(CurContext);
+ NewD->setLexicalDeclContext(CurContext);
+ PushOnScopeChains(NewD, S);
+ CurContext = SavedContext;
+ } else { // just add weak to existing
+ ND->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation()));
+ }
+}
+
+void Sema::ProcessPragmaWeak(Scope *S, Decl *D) {
+ // It's valid to "forward-declare" #pragma weak, in which case we
+ // have to do this.
+ LoadExternalWeakUndeclaredIdentifiers();
+ if (!WeakUndeclaredIdentifiers.empty()) {
+ NamedDecl *ND = nullptr;
+ if (VarDecl *VD = dyn_cast<VarDecl>(D))
+ if (VD->isExternC())
+ ND = VD;
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
+ if (FD->isExternC())
+ ND = FD;
+ if (ND) {
+ if (IdentifierInfo *Id = ND->getIdentifier()) {
+ auto I = WeakUndeclaredIdentifiers.find(Id);
+ if (I != WeakUndeclaredIdentifiers.end()) {
+ WeakInfo W = I->second;
+ DeclApplyPragmaWeak(S, ND, W);
+ WeakUndeclaredIdentifiers[Id] = W;
+ }
+ }
+ }
+ }
+}
+
+/// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in
+/// it, apply them to D. This is a bit tricky because PD can have attributes
+/// specified in many different places, and we need to find and apply them all.
+void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD) {
+ // Apply decl attributes from the DeclSpec if present.
+ if (const AttributeList *Attrs = PD.getDeclSpec().getAttributes().getList())
+ ProcessDeclAttributeList(S, D, Attrs);
+
+ // Walk the declarator structure, applying decl attributes that were in a type
+ // position to the decl itself. This handles cases like:
+ // int *__attr__(x)** D;
+ // when X is a decl attribute.
+ for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i)
+ if (const AttributeList *Attrs = PD.getTypeObject(i).getAttrs())
+ ProcessDeclAttributeList(S, D, Attrs, /*IncludeCXX11Attributes=*/false);
+
+ // Finally, apply any attributes on the decl itself.
+ if (const AttributeList *Attrs = PD.getAttributes())
+ ProcessDeclAttributeList(S, D, Attrs);
+}
+
+/// Is the given declaration allowed to use a forbidden type?
+static bool isForbiddenTypeAllowed(Sema &S, Decl *decl) {
+ // Private ivars are always okay. Unfortunately, people don't
+ // always properly make their ivars private, even in system headers.
+ // Plus we need to make fields okay, too.
+ // Function declarations in sys headers will be marked unavailable.
+ if (!isa<FieldDecl>(decl) && !isa<ObjCPropertyDecl>(decl) &&
+ !isa<FunctionDecl>(decl))
+ return false;
+
+ // Require it to be declared in a system header.
+ return S.Context.getSourceManager().isInSystemHeader(decl->getLocation());
+}
+
+/// Handle a delayed forbidden-type diagnostic.
+static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &diag,
+ Decl *decl) {
+ if (decl && isForbiddenTypeAllowed(S, decl)) {
+ decl->addAttr(UnavailableAttr::CreateImplicit(S.Context,
+ "this system declaration uses an unsupported type",
+ diag.Loc));
+ return;
+ }
+ if (S.getLangOpts().ObjCAutoRefCount)
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(decl)) {
+ // FIXME: we may want to suppress diagnostics for all
+ // kind of forbidden type messages on unavailable functions.
+ if (FD->hasAttr<UnavailableAttr>() &&
+ diag.getForbiddenTypeDiagnostic() ==
+ diag::err_arc_array_param_no_ownership) {
+ diag.Triggered = true;
+ return;
+ }
+ }
+
+ S.Diag(diag.Loc, diag.getForbiddenTypeDiagnostic())
+ << diag.getForbiddenTypeOperand() << diag.getForbiddenTypeArgument();
+ diag.Triggered = true;
+}
+
+
+static bool isDeclDeprecated(Decl *D) {
+ do {
+ if (D->isDeprecated())
+ return true;
+ // A category implicitly has the availability of the interface.
+ if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
+ if (const ObjCInterfaceDecl *Interface = CatD->getClassInterface())
+ return Interface->isDeprecated();
+ } while ((D = cast_or_null<Decl>(D->getDeclContext())));
+ return false;
+}
+
+static bool isDeclUnavailable(Decl *D) {
+ do {
+ if (D->isUnavailable())
+ return true;
+ // A category implicitly has the availability of the interface.
+ if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
+ if (const ObjCInterfaceDecl *Interface = CatD->getClassInterface())
+ return Interface->isUnavailable();
+ } while ((D = cast_or_null<Decl>(D->getDeclContext())));
+ return false;
+}
+
+static void DoEmitAvailabilityWarning(Sema &S, Sema::AvailabilityDiagnostic K,
+ Decl *Ctx, const NamedDecl *D,
+ StringRef Message, SourceLocation Loc,
+ const ObjCInterfaceDecl *UnknownObjCClass,
+ const ObjCPropertyDecl *ObjCProperty,
+ bool ObjCPropertyAccess) {
+ // Diagnostics for deprecated or unavailable.
+ unsigned diag, diag_message, diag_fwdclass_message;
+
+ // Matches 'diag::note_property_attribute' options.
+ unsigned property_note_select;
+
+ // Matches diag::note_availability_specified_here.
+ unsigned available_here_select_kind;
+
+ // Don't warn if our current context is deprecated or unavailable.
+ switch (K) {
+ case Sema::AD_Deprecation:
+ if (isDeclDeprecated(Ctx) || isDeclUnavailable(Ctx))
+ return;
+ diag = !ObjCPropertyAccess ? diag::warn_deprecated
+ : diag::warn_property_method_deprecated;
+ diag_message = diag::warn_deprecated_message;
+ diag_fwdclass_message = diag::warn_deprecated_fwdclass_message;
+ property_note_select = /* deprecated */ 0;
+ available_here_select_kind = /* deprecated */ 2;
+ break;
+
+ case Sema::AD_Unavailable:
+ if (isDeclUnavailable(Ctx))
+ return;
+ diag = !ObjCPropertyAccess ? diag::err_unavailable
+ : diag::err_property_method_unavailable;
+ diag_message = diag::err_unavailable_message;
+ diag_fwdclass_message = diag::warn_unavailable_fwdclass_message;
+ property_note_select = /* unavailable */ 1;
+ available_here_select_kind = /* unavailable */ 0;
+ break;
+
+ case Sema::AD_Partial:
+ diag = diag::warn_partial_availability;
+ diag_message = diag::warn_partial_message;
+ diag_fwdclass_message = diag::warn_partial_fwdclass_message;
+ property_note_select = /* partial */ 2;
+ available_here_select_kind = /* partial */ 3;
+ break;
+ }
+
+ if (!Message.empty()) {
+ S.Diag(Loc, diag_message) << D << Message;
+ if (ObjCProperty)
+ S.Diag(ObjCProperty->getLocation(), diag::note_property_attribute)
+ << ObjCProperty->getDeclName() << property_note_select;
+ } else if (!UnknownObjCClass) {
+ S.Diag(Loc, diag) << D;
+ if (ObjCProperty)
+ S.Diag(ObjCProperty->getLocation(), diag::note_property_attribute)
+ << ObjCProperty->getDeclName() << property_note_select;
+ } else {
+ S.Diag(Loc, diag_fwdclass_message) << D;
+ S.Diag(UnknownObjCClass->getLocation(), diag::note_forward_class);
+ }
+
+ S.Diag(D->getLocation(), diag::note_availability_specified_here)
+ << D << available_here_select_kind;
+ if (K == Sema::AD_Partial)
+ S.Diag(Loc, diag::note_partial_availability_silence) << D;
+}
+
+static void handleDelayedAvailabilityCheck(Sema &S, DelayedDiagnostic &DD,
+ Decl *Ctx) {
+ assert(DD.Kind == DelayedDiagnostic::Deprecation ||
+ DD.Kind == DelayedDiagnostic::Unavailable);
+ Sema::AvailabilityDiagnostic AD = DD.Kind == DelayedDiagnostic::Deprecation
+ ? Sema::AD_Deprecation
+ : Sema::AD_Unavailable;
+ DD.Triggered = true;
+ DoEmitAvailabilityWarning(
+ S, AD, Ctx, DD.getDeprecationDecl(), DD.getDeprecationMessage(), DD.Loc,
+ DD.getUnknownObjCClass(), DD.getObjCProperty(), false);
+}
+
+void Sema::PopParsingDeclaration(ParsingDeclState state, Decl *decl) {
+ assert(DelayedDiagnostics.getCurrentPool());
+ DelayedDiagnosticPool &poppedPool = *DelayedDiagnostics.getCurrentPool();
+ DelayedDiagnostics.popWithoutEmitting(state);
+
+ // When delaying diagnostics to run in the context of a parsed
+ // declaration, we only want to actually emit anything if parsing
+ // succeeds.
+ if (!decl) return;
+
+ // We emit all the active diagnostics in this pool or any of its
+ // parents. In general, we'll get one pool for the decl spec
+ // and a child pool for each declarator; in a decl group like:
+ // deprecated_typedef foo, *bar, baz();
+ // only the declarator pops will be passed decls. This is correct;
+ // we really do need to consider delayed diagnostics from the decl spec
+ // for each of the different declarations.
+ const DelayedDiagnosticPool *pool = &poppedPool;
+ do {
+ for (DelayedDiagnosticPool::pool_iterator
+ i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) {
+ // This const_cast is a bit lame. Really, Triggered should be mutable.
+ DelayedDiagnostic &diag = const_cast<DelayedDiagnostic&>(*i);
+ if (diag.Triggered)
+ continue;
+
+ switch (diag.Kind) {
+ case DelayedDiagnostic::Deprecation:
+ case DelayedDiagnostic::Unavailable:
+ // Don't bother giving deprecation/unavailable diagnostics if
+ // the decl is invalid.
+ if (!decl->isInvalidDecl())
+ handleDelayedAvailabilityCheck(*this, diag, decl);
+ break;
+
+ case DelayedDiagnostic::Access:
+ HandleDelayedAccessCheck(diag, decl);
+ break;
+
+ case DelayedDiagnostic::ForbiddenType:
+ handleDelayedForbiddenType(*this, diag, decl);
+ break;
+ }
+ }
+ } while ((pool = pool->getParent()));
+}
+
+/// Given a set of delayed diagnostics, re-emit them as if they had
+/// been delayed in the current context instead of in the given pool.
+/// Essentially, this just moves them to the current pool.
+void Sema::redelayDiagnostics(DelayedDiagnosticPool &pool) {
+ DelayedDiagnosticPool *curPool = DelayedDiagnostics.getCurrentPool();
+ assert(curPool && "re-emitting in undelayed context not supported");
+ curPool->steal(pool);
+}
+
+void Sema::EmitAvailabilityWarning(AvailabilityDiagnostic AD,
+ NamedDecl *D, StringRef Message,
+ SourceLocation Loc,
+ const ObjCInterfaceDecl *UnknownObjCClass,
+ const ObjCPropertyDecl *ObjCProperty,
+ bool ObjCPropertyAccess) {
+ // Delay if we're currently parsing a declaration.
+ if (DelayedDiagnostics.shouldDelayDiagnostics() && AD != AD_Partial) {
+ DelayedDiagnostics.add(DelayedDiagnostic::makeAvailability(
+ AD, Loc, D, UnknownObjCClass, ObjCProperty, Message,
+ ObjCPropertyAccess));
+ return;
+ }
+
+ Decl *Ctx = cast<Decl>(getCurLexicalContext());
+ DoEmitAvailabilityWarning(*this, AD, Ctx, D, Message, Loc, UnknownObjCClass,
+ ObjCProperty, ObjCPropertyAccess);
+}
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaDeclCXX.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaDeclCXX.cpp
new file mode 100644
index 0000000..b1dfe0e
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaDeclCXX.cpp
@@ -0,0 +1,13780 @@
+//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements semantic analysis for C++ declarations.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Sema/SemaInternal.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTLambda.h"
+#include "clang/AST/ASTMutationListener.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/CharUnits.h"
+#include "clang/AST/EvaluatedExprVisitor.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/AST/RecursiveASTVisitor.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/AST/TypeOrdering.h"
+#include "clang/Basic/PartialDiagnostic.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Lex/LiteralSupport.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Sema/CXXFieldCollector.h"
+#include "clang/Sema/DeclSpec.h"
+#include "clang/Sema/Initialization.h"
+#include "clang/Sema/Lookup.h"
+#include "clang/Sema/ParsedTemplate.h"
+#include "clang/Sema/Scope.h"
+#include "clang/Sema/ScopeInfo.h"
+#include "clang/Sema/Template.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallString.h"
+#include <map>
+#include <set>
+
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// CheckDefaultArgumentVisitor
+//===----------------------------------------------------------------------===//
+
+namespace {
+ /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
+ /// the default argument of a parameter to determine whether it
+ /// contains any ill-formed subexpressions. For example, this will
+ /// diagnose the use of local variables or parameters within the
+ /// default argument expression.
+ class CheckDefaultArgumentVisitor
+ : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
+ Expr *DefaultArg;
+ Sema *S;
+
+ public:
+ CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
+ : DefaultArg(defarg), S(s) {}
+
+ bool VisitExpr(Expr *Node);
+ bool VisitDeclRefExpr(DeclRefExpr *DRE);
+ bool VisitCXXThisExpr(CXXThisExpr *ThisE);
+ bool VisitLambdaExpr(LambdaExpr *Lambda);
+ bool VisitPseudoObjectExpr(PseudoObjectExpr *POE);
+ };
+
+ /// VisitExpr - Visit all of the children of this expression.
+ bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
+ bool IsInvalid = false;
+ for (Stmt::child_range I = Node->children(); I; ++I)
+ IsInvalid |= Visit(*I);
+ return IsInvalid;
+ }
+
+ /// VisitDeclRefExpr - Visit a reference to a declaration, to
+ /// determine whether this declaration can be used in the default
+ /// argument expression.
+ bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
+ NamedDecl *Decl = DRE->getDecl();
+ if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
+ // C++ [dcl.fct.default]p9
+ // Default arguments are evaluated each time the function is
+ // called. The order of evaluation of function arguments is
+ // unspecified. Consequently, parameters of a function shall not
+ // be used in default argument expressions, even if they are not
+ // evaluated. Parameters of a function declared before a default
+ // argument expression are in scope and can hide namespace and
+ // class member names.
+ return S->Diag(DRE->getLocStart(),
+ diag::err_param_default_argument_references_param)
+ << Param->getDeclName() << DefaultArg->getSourceRange();
+ } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
+ // C++ [dcl.fct.default]p7
+ // Local variables shall not be used in default argument
+ // expressions.
+ if (VDecl->isLocalVarDecl())
+ return S->Diag(DRE->getLocStart(),
+ diag::err_param_default_argument_references_local)
+ << VDecl->getDeclName() << DefaultArg->getSourceRange();
+ }
+
+ return false;
+ }
+
+ /// VisitCXXThisExpr - Visit a C++ "this" expression.
+ bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
+ // C++ [dcl.fct.default]p8:
+ // The keyword this shall not be used in a default argument of a
+ // member function.
+ return S->Diag(ThisE->getLocStart(),
+ diag::err_param_default_argument_references_this)
+ << ThisE->getSourceRange();
+ }
+
+ bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
+ bool Invalid = false;
+ for (PseudoObjectExpr::semantics_iterator
+ i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) {
+ Expr *E = *i;
+
+ // Look through bindings.
+ if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
+ E = OVE->getSourceExpr();
+ assert(E && "pseudo-object binding without source expression?");
+ }
+
+ Invalid |= Visit(E);
+ }
+ return Invalid;
+ }
+
+ bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
+ // C++11 [expr.lambda.prim]p13:
+ // A lambda-expression appearing in a default argument shall not
+ // implicitly or explicitly capture any entity.
+ if (Lambda->capture_begin() == Lambda->capture_end())
+ return false;
+
+ return S->Diag(Lambda->getLocStart(),
+ diag::err_lambda_capture_default_arg);
+ }
+}
+
+void
+Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
+ const CXXMethodDecl *Method) {
+ // If we have an MSAny spec already, don't bother.
+ if (!Method || ComputedEST == EST_MSAny)
+ return;
+
+ const FunctionProtoType *Proto
+ = Method->getType()->getAs<FunctionProtoType>();
+ Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
+ if (!Proto)
+ return;
+
+ ExceptionSpecificationType EST = Proto->getExceptionSpecType();
+
+ // If this function can throw any exceptions, make a note of that.
+ if (EST == EST_MSAny || EST == EST_None) {
+ ClearExceptions();
+ ComputedEST = EST;
+ return;
+ }
+
+ // FIXME: If the call to this decl is using any of its default arguments, we
+ // need to search them for potentially-throwing calls.
+
+ // If this function has a basic noexcept, it doesn't affect the outcome.
+ if (EST == EST_BasicNoexcept)
+ return;
+
+ // If we have a throw-all spec at this point, ignore the function.
+ if (ComputedEST == EST_None)
+ return;
+
+ // If we're still at noexcept(true) and there's a nothrow() callee,
+ // change to that specification.
+ if (EST == EST_DynamicNone) {
+ if (ComputedEST == EST_BasicNoexcept)
+ ComputedEST = EST_DynamicNone;
+ return;
+ }
+
+ // Check out noexcept specs.
+ if (EST == EST_ComputedNoexcept) {
+ FunctionProtoType::NoexceptResult NR =
+ Proto->getNoexceptSpec(Self->Context);
+ assert(NR != FunctionProtoType::NR_NoNoexcept &&
+ "Must have noexcept result for EST_ComputedNoexcept.");
+ assert(NR != FunctionProtoType::NR_Dependent &&
+ "Should not generate implicit declarations for dependent cases, "
+ "and don't know how to handle them anyway.");
+
+ // noexcept(false) -> no spec on the new function
+ if (NR == FunctionProtoType::NR_Throw) {
+ ClearExceptions();
+ ComputedEST = EST_None;
+ }
+ // noexcept(true) won't change anything either.
+ return;
+ }
+
+ assert(EST == EST_Dynamic && "EST case not considered earlier.");
+ assert(ComputedEST != EST_None &&
+ "Shouldn't collect exceptions when throw-all is guaranteed.");
+ ComputedEST = EST_Dynamic;
+ // Record the exceptions in this function's exception specification.
+ for (const auto &E : Proto->exceptions())
+ if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second)
+ Exceptions.push_back(E);
+}
+
+void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
+ if (!E || ComputedEST == EST_MSAny)
+ return;
+
+ // FIXME:
+ //
+ // C++0x [except.spec]p14:
+ // [An] implicit exception-specification specifies the type-id T if and
+ // only if T is allowed by the exception-specification of a function directly
+ // invoked by f's implicit definition; f shall allow all exceptions if any
+ // function it directly invokes allows all exceptions, and f shall allow no
+ // exceptions if every function it directly invokes allows no exceptions.
+ //
+ // Note in particular that if an implicit exception-specification is generated
+ // for a function containing a throw-expression, that specification can still
+ // be noexcept(true).
+ //
+ // Note also that 'directly invoked' is not defined in the standard, and there
+ // is no indication that we should only consider potentially-evaluated calls.
+ //
+ // Ultimately we should implement the intent of the standard: the exception
+ // specification should be the set of exceptions which can be thrown by the
+ // implicit definition. For now, we assume that any non-nothrow expression can
+ // throw any exception.
+
+ if (Self->canThrow(E))
+ ComputedEST = EST_None;
+}
+
+bool
+Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
+ SourceLocation EqualLoc) {
+ if (RequireCompleteType(Param->getLocation(), Param->getType(),
+ diag::err_typecheck_decl_incomplete_type)) {
+ Param->setInvalidDecl();
+ return true;
+ }
+
+ // C++ [dcl.fct.default]p5
+ // A default argument expression is implicitly converted (clause
+ // 4) to the parameter type. The default argument expression has
+ // the same semantic constraints as the initializer expression in
+ // a declaration of a variable of the parameter type, using the
+ // copy-initialization semantics (8.5).
+ InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
+ Param);
+ InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
+ EqualLoc);
+ InitializationSequence InitSeq(*this, Entity, Kind, Arg);
+ ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
+ if (Result.isInvalid())
+ return true;
+ Arg = Result.getAs<Expr>();
+
+ CheckCompletedExpr(Arg, EqualLoc);
+ Arg = MaybeCreateExprWithCleanups(Arg);
+
+ // Okay: add the default argument to the parameter
+ Param->setDefaultArg(Arg);
+
+ // We have already instantiated this parameter; provide each of the
+ // instantiations with the uninstantiated default argument.
+ UnparsedDefaultArgInstantiationsMap::iterator InstPos
+ = UnparsedDefaultArgInstantiations.find(Param);
+ if (InstPos != UnparsedDefaultArgInstantiations.end()) {
+ for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
+ InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
+
+ // We're done tracking this parameter's instantiations.
+ UnparsedDefaultArgInstantiations.erase(InstPos);
+ }
+
+ return false;
+}
+
+/// ActOnParamDefaultArgument - Check whether the default argument
+/// provided for a function parameter is well-formed. If so, attach it
+/// to the parameter declaration.
+void
+Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
+ Expr *DefaultArg) {
+ if (!param || !DefaultArg)
+ return;
+
+ ParmVarDecl *Param = cast<ParmVarDecl>(param);
+ UnparsedDefaultArgLocs.erase(Param);
+
+ // Default arguments are only permitted in C++
+ if (!getLangOpts().CPlusPlus) {
+ Diag(EqualLoc, diag::err_param_default_argument)
+ << DefaultArg->getSourceRange();
+ Param->setInvalidDecl();
+ return;
+ }
+
+ // Check for unexpanded parameter packs.
+ if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
+ Param->setInvalidDecl();
+ return;
+ }
+
+ // C++11 [dcl.fct.default]p3
+ // A default argument expression [...] shall not be specified for a
+ // parameter pack.
+ if (Param->isParameterPack()) {
+ Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack)
+ << DefaultArg->getSourceRange();
+ return;
+ }
+
+ // Check that the default argument is well-formed
+ CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
+ if (DefaultArgChecker.Visit(DefaultArg)) {
+ Param->setInvalidDecl();
+ return;
+ }
+
+ SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
+}
+
+/// ActOnParamUnparsedDefaultArgument - We've seen a default
+/// argument for a function parameter, but we can't parse it yet
+/// because we're inside a class definition. Note that this default
+/// argument will be parsed later.
+void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
+ SourceLocation EqualLoc,
+ SourceLocation ArgLoc) {
+ if (!param)
+ return;
+
+ ParmVarDecl *Param = cast<ParmVarDecl>(param);
+ Param->setUnparsedDefaultArg();
+ UnparsedDefaultArgLocs[Param] = ArgLoc;
+}
+
+/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
+/// the default argument for the parameter param failed.
+void Sema::ActOnParamDefaultArgumentError(Decl *param,
+ SourceLocation EqualLoc) {
+ if (!param)
+ return;
+
+ ParmVarDecl *Param = cast<ParmVarDecl>(param);
+ Param->setInvalidDecl();
+ UnparsedDefaultArgLocs.erase(Param);
+ Param->setDefaultArg(new(Context)
+ OpaqueValueExpr(EqualLoc,
+ Param->getType().getNonReferenceType(),
+ VK_RValue));
+}
+
+/// CheckExtraCXXDefaultArguments - Check for any extra default
+/// arguments in the declarator, which is not a function declaration
+/// or definition and therefore is not permitted to have default
+/// arguments. This routine should be invoked for every declarator
+/// that is not a function declaration or definition.
+void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
+ // C++ [dcl.fct.default]p3
+ // A default argument expression shall be specified only in the
+ // parameter-declaration-clause of a function declaration or in a
+ // template-parameter (14.1). It shall not be specified for a
+ // parameter pack. If it is specified in a
+ // parameter-declaration-clause, it shall not occur within a
+ // declarator or abstract-declarator of a parameter-declaration.
+ bool MightBeFunction = D.isFunctionDeclarationContext();
+ for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
+ DeclaratorChunk &chunk = D.getTypeObject(i);
+ if (chunk.Kind == DeclaratorChunk::Function) {
+ if (MightBeFunction) {
+ // This is a function declaration. It can have default arguments, but
+ // keep looking in case its return type is a function type with default
+ // arguments.
+ MightBeFunction = false;
+ continue;
+ }
+ for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e;
+ ++argIdx) {
+ ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param);
+ if (Param->hasUnparsedDefaultArg()) {
+ CachedTokens *Toks = chunk.Fun.Params[argIdx].DefaultArgTokens;
+ SourceRange SR;
+ if (Toks->size() > 1)
+ SR = SourceRange((*Toks)[1].getLocation(),
+ Toks->back().getLocation());
+ else
+ SR = UnparsedDefaultArgLocs[Param];
+ Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
+ << SR;
+ delete Toks;
+ chunk.Fun.Params[argIdx].DefaultArgTokens = nullptr;
+ } else if (Param->getDefaultArg()) {
+ Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
+ << Param->getDefaultArg()->getSourceRange();
+ Param->setDefaultArg(nullptr);
+ }
+ }
+ } else if (chunk.Kind != DeclaratorChunk::Paren) {
+ MightBeFunction = false;
+ }
+ }
+}
+
+static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
+ for (unsigned NumParams = FD->getNumParams(); NumParams > 0; --NumParams) {
+ const ParmVarDecl *PVD = FD->getParamDecl(NumParams-1);
+ if (!PVD->hasDefaultArg())
+ return false;
+ if (!PVD->hasInheritedDefaultArg())
+ return true;
+ }
+ return false;
+}
+
+/// MergeCXXFunctionDecl - Merge two declarations of the same C++
+/// function, once we already know that they have the same
+/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
+/// error, false otherwise.
+bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
+ Scope *S) {
+ bool Invalid = false;
+
+ // The declaration context corresponding to the scope is the semantic
+ // parent, unless this is a local function declaration, in which case
+ // it is that surrounding function.
+ DeclContext *ScopeDC = New->isLocalExternDecl()
+ ? New->getLexicalDeclContext()
+ : New->getDeclContext();
+
+ // Find the previous declaration for the purpose of default arguments.
+ FunctionDecl *PrevForDefaultArgs = Old;
+ for (/**/; PrevForDefaultArgs;
+ // Don't bother looking back past the latest decl if this is a local
+ // extern declaration; nothing else could work.
+ PrevForDefaultArgs = New->isLocalExternDecl()
+ ? nullptr
+ : PrevForDefaultArgs->getPreviousDecl()) {
+ // Ignore hidden declarations.
+ if (!LookupResult::isVisible(*this, PrevForDefaultArgs))
+ continue;
+
+ if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) &&
+ !New->isCXXClassMember()) {
+ // Ignore default arguments of old decl if they are not in
+ // the same scope and this is not an out-of-line definition of
+ // a member function.
+ continue;
+ }
+
+ if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) {
+ // If only one of these is a local function declaration, then they are
+ // declared in different scopes, even though isDeclInScope may think
+ // they're in the same scope. (If both are local, the scope check is
+ // sufficent, and if neither is local, then they are in the same scope.)
+ continue;
+ }
+
+ // We found our guy.
+ break;
+ }
+
+ // C++ [dcl.fct.default]p4:
+ // For non-template functions, default arguments can be added in
+ // later declarations of a function in the same
+ // scope. Declarations in different scopes have completely
+ // distinct sets of default arguments. That is, declarations in
+ // inner scopes do not acquire default arguments from
+ // declarations in outer scopes, and vice versa. In a given
+ // function declaration, all parameters subsequent to a
+ // parameter with a default argument shall have default
+ // arguments supplied in this or previous declarations. A
+ // default argument shall not be redefined by a later
+ // declaration (not even to the same value).
+ //
+ // C++ [dcl.fct.default]p6:
+ // Except for member functions of class templates, the default arguments
+ // in a member function definition that appears outside of the class
+ // definition are added to the set of default arguments provided by the
+ // member function declaration in the class definition.
+ for (unsigned p = 0, NumParams = PrevForDefaultArgs
+ ? PrevForDefaultArgs->getNumParams()
+ : 0;
+ p < NumParams; ++p) {
+ ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p);
+ ParmVarDecl *NewParam = New->getParamDecl(p);
+
+ bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false;
+ bool NewParamHasDfl = NewParam->hasDefaultArg();
+
+ if (OldParamHasDfl && NewParamHasDfl) {
+ unsigned DiagDefaultParamID =
+ diag::err_param_default_argument_redefinition;
+
+ // MSVC accepts that default parameters be redefined for member functions
+ // of template class. The new default parameter's value is ignored.
+ Invalid = true;
+ if (getLangOpts().MicrosoftExt) {
+ CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(New);
+ if (MD && MD->getParent()->getDescribedClassTemplate()) {
+ // Merge the old default argument into the new parameter.
+ NewParam->setHasInheritedDefaultArg();
+ if (OldParam->hasUninstantiatedDefaultArg())
+ NewParam->setUninstantiatedDefaultArg(
+ OldParam->getUninstantiatedDefaultArg());
+ else
+ NewParam->setDefaultArg(OldParam->getInit());
+ DiagDefaultParamID = diag::ext_param_default_argument_redefinition;
+ Invalid = false;
+ }
+ }
+
+ // FIXME: If we knew where the '=' was, we could easily provide a fix-it
+ // hint here. Alternatively, we could walk the type-source information
+ // for NewParam to find the last source location in the type... but it
+ // isn't worth the effort right now. This is the kind of test case that
+ // is hard to get right:
+ // int f(int);
+ // void g(int (*fp)(int) = f);
+ // void g(int (*fp)(int) = &f);
+ Diag(NewParam->getLocation(), DiagDefaultParamID)
+ << NewParam->getDefaultArgRange();
+
+ // Look for the function declaration where the default argument was
+ // actually written, which may be a declaration prior to Old.
+ for (auto Older = PrevForDefaultArgs;
+ OldParam->hasInheritedDefaultArg(); /**/) {
+ Older = Older->getPreviousDecl();
+ OldParam = Older->getParamDecl(p);
+ }
+
+ Diag(OldParam->getLocation(), diag::note_previous_definition)
+ << OldParam->getDefaultArgRange();
+ } else if (OldParamHasDfl) {
+ // Merge the old default argument into the new parameter.
+ // It's important to use getInit() here; getDefaultArg()
+ // strips off any top-level ExprWithCleanups.
+ NewParam->setHasInheritedDefaultArg();
+ if (OldParam->hasUnparsedDefaultArg())
+ NewParam->setUnparsedDefaultArg();
+ else if (OldParam->hasUninstantiatedDefaultArg())
+ NewParam->setUninstantiatedDefaultArg(
+ OldParam->getUninstantiatedDefaultArg());
+ else
+ NewParam->setDefaultArg(OldParam->getInit());
+ } else if (NewParamHasDfl) {
+ if (New->getDescribedFunctionTemplate()) {
+ // Paragraph 4, quoted above, only applies to non-template functions.
+ Diag(NewParam->getLocation(),
+ diag::err_param_default_argument_template_redecl)
+ << NewParam->getDefaultArgRange();
+ Diag(PrevForDefaultArgs->getLocation(),
+ diag::note_template_prev_declaration)
+ << false;
+ } else if (New->getTemplateSpecializationKind()
+ != TSK_ImplicitInstantiation &&
+ New->getTemplateSpecializationKind() != TSK_Undeclared) {
+ // C++ [temp.expr.spec]p21:
+ // Default function arguments shall not be specified in a declaration
+ // or a definition for one of the following explicit specializations:
+ // - the explicit specialization of a function template;
+ // - the explicit specialization of a member function template;
+ // - the explicit specialization of a member function of a class
+ // template where the class template specialization to which the
+ // member function specialization belongs is implicitly
+ // instantiated.
+ Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
+ << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
+ << New->getDeclName()
+ << NewParam->getDefaultArgRange();
+ } else if (New->getDeclContext()->isDependentContext()) {
+ // C++ [dcl.fct.default]p6 (DR217):
+ // Default arguments for a member function of a class template shall
+ // be specified on the initial declaration of the member function
+ // within the class template.
+ //
+ // Reading the tea leaves a bit in DR217 and its reference to DR205
+ // leads me to the conclusion that one cannot add default function
+ // arguments for an out-of-line definition of a member function of a
+ // dependent type.
+ int WhichKind = 2;
+ if (CXXRecordDecl *Record
+ = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
+ if (Record->getDescribedClassTemplate())
+ WhichKind = 0;
+ else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
+ WhichKind = 1;
+ else
+ WhichKind = 2;
+ }
+
+ Diag(NewParam->getLocation(),
+ diag::err_param_default_argument_member_template_redecl)
+ << WhichKind
+ << NewParam->getDefaultArgRange();
+ }
+ }
+ }
+
+ // DR1344: If a default argument is added outside a class definition and that
+ // default argument makes the function a special member function, the program
+ // is ill-formed. This can only happen for constructors.
+ if (isa<CXXConstructorDecl>(New) &&
+ New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
+ CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
+ OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
+ if (NewSM != OldSM) {
+ ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
+ assert(NewParam->hasDefaultArg());
+ Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
+ << NewParam->getDefaultArgRange() << NewSM;
+ Diag(Old->getLocation(), diag::note_previous_declaration);
+ }
+ }
+
+ const FunctionDecl *Def;
+ // C++11 [dcl.constexpr]p1: If any declaration of a function or function
+ // template has a constexpr specifier then all its declarations shall
+ // contain the constexpr specifier.
+ if (New->isConstexpr() != Old->isConstexpr()) {
+ Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
+ << New << New->isConstexpr();
+ Diag(Old->getLocation(), diag::note_previous_declaration);
+ Invalid = true;
+ } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() &&
+ Old->isDefined(Def)) {
+ // C++11 [dcl.fcn.spec]p4:
+ // If the definition of a function appears in a translation unit before its
+ // first declaration as inline, the program is ill-formed.
+ Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
+ Diag(Def->getLocation(), diag::note_previous_definition);
+ Invalid = true;
+ }
+
+ // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
+ // argument expression, that declaration shall be a definition and shall be
+ // the only declaration of the function or function template in the
+ // translation unit.
+ if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
+ functionDeclHasDefaultArgument(Old)) {
+ Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
+ Diag(Old->getLocation(), diag::note_previous_declaration);
+ Invalid = true;
+ }
+
+ if (CheckEquivalentExceptionSpec(Old, New))
+ Invalid = true;
+
+ return Invalid;
+}
+
+/// \brief Merge the exception specifications of two variable declarations.
+///
+/// This is called when there's a redeclaration of a VarDecl. The function
+/// checks if the redeclaration might have an exception specification and
+/// validates compatibility and merges the specs if necessary.
+void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
+ // Shortcut if exceptions are disabled.
+ if (!getLangOpts().CXXExceptions)
+ return;
+
+ assert(Context.hasSameType(New->getType(), Old->getType()) &&
+ "Should only be called if types are otherwise the same.");
+
+ QualType NewType = New->getType();
+ QualType OldType = Old->getType();
+
+ // We're only interested in pointers and references to functions, as well
+ // as pointers to member functions.
+ if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
+ NewType = R->getPointeeType();
+ OldType = OldType->getAs<ReferenceType>()->getPointeeType();
+ } else if (const PointerType *P = NewType->getAs<PointerType>()) {
+ NewType = P->getPointeeType();
+ OldType = OldType->getAs<PointerType>()->getPointeeType();
+ } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
+ NewType = M->getPointeeType();
+ OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
+ }
+
+ if (!NewType->isFunctionProtoType())
+ return;
+
+ // There's lots of special cases for functions. For function pointers, system
+ // libraries are hopefully not as broken so that we don't need these
+ // workarounds.
+ if (CheckEquivalentExceptionSpec(
+ OldType->getAs<FunctionProtoType>(), Old->getLocation(),
+ NewType->getAs<FunctionProtoType>(), New->getLocation())) {
+ New->setInvalidDecl();
+ }
+}
+
+/// CheckCXXDefaultArguments - Verify that the default arguments for a
+/// function declaration are well-formed according to C++
+/// [dcl.fct.default].
+void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
+ unsigned NumParams = FD->getNumParams();
+ unsigned p;
+
+ // Find first parameter with a default argument
+ for (p = 0; p < NumParams; ++p) {
+ ParmVarDecl *Param = FD->getParamDecl(p);
+ if (Param->hasDefaultArg())
+ break;
+ }
+
+ // C++11 [dcl.fct.default]p4:
+ // In a given function declaration, each parameter subsequent to a parameter
+ // with a default argument shall have a default argument supplied in this or
+ // a previous declaration or shall be a function parameter pack. A default
+ // argument shall not be redefined by a later declaration (not even to the
+ // same value).
+ unsigned LastMissingDefaultArg = 0;
+ for (; p < NumParams; ++p) {
+ ParmVarDecl *Param = FD->getParamDecl(p);
+ if (!Param->hasDefaultArg() && !Param->isParameterPack()) {
+ if (Param->isInvalidDecl())
+ /* We already complained about this parameter. */;
+ else if (Param->getIdentifier())
+ Diag(Param->getLocation(),
+ diag::err_param_default_argument_missing_name)
+ << Param->getIdentifier();
+ else
+ Diag(Param->getLocation(),
+ diag::err_param_default_argument_missing);
+
+ LastMissingDefaultArg = p;
+ }
+ }
+
+ if (LastMissingDefaultArg > 0) {
+ // Some default arguments were missing. Clear out all of the
+ // default arguments up to (and including) the last missing
+ // default argument, so that we leave the function parameters
+ // in a semantically valid state.
+ for (p = 0; p <= LastMissingDefaultArg; ++p) {
+ ParmVarDecl *Param = FD->getParamDecl(p);
+ if (Param->hasDefaultArg()) {
+ Param->setDefaultArg(nullptr);
+ }
+ }
+ }
+}
+
+// CheckConstexprParameterTypes - Check whether a function's parameter types
+// are all literal types. If so, return true. If not, produce a suitable
+// diagnostic and return false.
+static bool CheckConstexprParameterTypes(Sema &SemaRef,
+ const FunctionDecl *FD) {
+ unsigned ArgIndex = 0;
+ const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
+ for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(),
+ e = FT->param_type_end();
+ i != e; ++i, ++ArgIndex) {
+ const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
+ SourceLocation ParamLoc = PD->getLocation();
+ if (!(*i)->isDependentType() &&
+ SemaRef.RequireLiteralType(ParamLoc, *i,
+ diag::err_constexpr_non_literal_param,
+ ArgIndex+1, PD->getSourceRange(),
+ isa<CXXConstructorDecl>(FD)))
+ return false;
+ }
+ return true;
+}
+
+/// \brief Get diagnostic %select index for tag kind for
+/// record diagnostic message.
+/// WARNING: Indexes apply to particular diagnostics only!
+///
+/// \returns diagnostic %select index.
+static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
+ switch (Tag) {
+ case TTK_Struct: return 0;
+ case TTK_Interface: return 1;
+ case TTK_Class: return 2;
+ default: llvm_unreachable("Invalid tag kind for record diagnostic!");
+ }
+}
+
+// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
+// the requirements of a constexpr function definition or a constexpr
+// constructor definition. If so, return true. If not, produce appropriate
+// diagnostics and return false.
+//
+// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
+bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
+ const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
+ if (MD && MD->isInstance()) {
+ // C++11 [dcl.constexpr]p4:
+ // The definition of a constexpr constructor shall satisfy the following
+ // constraints:
+ // - the class shall not have any virtual base classes;
+ const CXXRecordDecl *RD = MD->getParent();
+ if (RD->getNumVBases()) {
+ Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
+ << isa<CXXConstructorDecl>(NewFD)
+ << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
+ for (const auto &I : RD->vbases())
+ Diag(I.getLocStart(),
+ diag::note_constexpr_virtual_base_here) << I.getSourceRange();
+ return false;
+ }
+ }
+
+ if (!isa<CXXConstructorDecl>(NewFD)) {
+ // C++11 [dcl.constexpr]p3:
+ // The definition of a constexpr function shall satisfy the following
+ // constraints:
+ // - it shall not be virtual;
+ const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
+ if (Method && Method->isVirtual()) {
+ Method = Method->getCanonicalDecl();
+ Diag(Method->getLocation(), diag::err_constexpr_virtual);
+
+ // If it's not obvious why this function is virtual, find an overridden
+ // function which uses the 'virtual' keyword.
+ const CXXMethodDecl *WrittenVirtual = Method;
+ while (!WrittenVirtual->isVirtualAsWritten())
+ WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
+ if (WrittenVirtual != Method)
+ Diag(WrittenVirtual->getLocation(),
+ diag::note_overridden_virtual_function);
+ return false;
+ }
+
+ // - its return type shall be a literal type;
+ QualType RT = NewFD->getReturnType();
+ if (!RT->isDependentType() &&
+ RequireLiteralType(NewFD->getLocation(), RT,
+ diag::err_constexpr_non_literal_return))
+ return false;
+ }
+
+ // - each of its parameter types shall be a literal type;
+ if (!CheckConstexprParameterTypes(*this, NewFD))
+ return false;
+
+ return true;
+}
+
+/// Check the given declaration statement is legal within a constexpr function
+/// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
+///
+/// \return true if the body is OK (maybe only as an extension), false if we
+/// have diagnosed a problem.
+static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
+ DeclStmt *DS, SourceLocation &Cxx1yLoc) {
+ // C++11 [dcl.constexpr]p3 and p4:
+ // The definition of a constexpr function(p3) or constructor(p4) [...] shall
+ // contain only
+ for (const auto *DclIt : DS->decls()) {
+ switch (DclIt->getKind()) {
+ case Decl::StaticAssert:
+ case Decl::Using:
+ case Decl::UsingShadow:
+ case Decl::UsingDirective:
+ case Decl::UnresolvedUsingTypename:
+ case Decl::UnresolvedUsingValue:
+ // - static_assert-declarations
+ // - using-declarations,
+ // - using-directives,
+ continue;
+
+ case Decl::Typedef:
+ case Decl::TypeAlias: {
+ // - typedef declarations and alias-declarations that do not define
+ // classes or enumerations,
+ const auto *TN = cast<TypedefNameDecl>(DclIt);
+ if (TN->getUnderlyingType()->isVariablyModifiedType()) {
+ // Don't allow variably-modified types in constexpr functions.
+ TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
+ SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
+ << TL.getSourceRange() << TL.getType()
+ << isa<CXXConstructorDecl>(Dcl);
+ return false;
+ }
+ continue;
+ }
+
+ case Decl::Enum:
+ case Decl::CXXRecord:
+ // C++1y allows types to be defined, not just declared.
+ if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition())
+ SemaRef.Diag(DS->getLocStart(),
+ SemaRef.getLangOpts().CPlusPlus14
+ ? diag::warn_cxx11_compat_constexpr_type_definition
+ : diag::ext_constexpr_type_definition)
+ << isa<CXXConstructorDecl>(Dcl);
+ continue;
+
+ case Decl::EnumConstant:
+ case Decl::IndirectField:
+ case Decl::ParmVar:
+ // These can only appear with other declarations which are banned in
+ // C++11 and permitted in C++1y, so ignore them.
+ continue;
+
+ case Decl::Var: {
+ // C++1y [dcl.constexpr]p3 allows anything except:
+ // a definition of a variable of non-literal type or of static or
+ // thread storage duration or for which no initialization is performed.
+ const auto *VD = cast<VarDecl>(DclIt);
+ if (VD->isThisDeclarationADefinition()) {
+ if (VD->isStaticLocal()) {
+ SemaRef.Diag(VD->getLocation(),
+ diag::err_constexpr_local_var_static)
+ << isa<CXXConstructorDecl>(Dcl)
+ << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
+ return false;
+ }
+ if (!VD->getType()->isDependentType() &&
+ SemaRef.RequireLiteralType(
+ VD->getLocation(), VD->getType(),
+ diag::err_constexpr_local_var_non_literal_type,
+ isa<CXXConstructorDecl>(Dcl)))
+ return false;
+ if (!VD->getType()->isDependentType() &&
+ !VD->hasInit() && !VD->isCXXForRangeDecl()) {
+ SemaRef.Diag(VD->getLocation(),
+ diag::err_constexpr_local_var_no_init)
+ << isa<CXXConstructorDecl>(Dcl);
+ return false;
+ }
+ }
+ SemaRef.Diag(VD->getLocation(),
+ SemaRef.getLangOpts().CPlusPlus14
+ ? diag::warn_cxx11_compat_constexpr_local_var
+ : diag::ext_constexpr_local_var)
+ << isa<CXXConstructorDecl>(Dcl);
+ continue;
+ }
+
+ case Decl::NamespaceAlias:
+ case Decl::Function:
+ // These are disallowed in C++11 and permitted in C++1y. Allow them
+ // everywhere as an extension.
+ if (!Cxx1yLoc.isValid())
+ Cxx1yLoc = DS->getLocStart();
+ continue;
+
+ default:
+ SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
+ << isa<CXXConstructorDecl>(Dcl);
+ return false;
+ }
+ }
+
+ return true;
+}
+
+/// Check that the given field is initialized within a constexpr constructor.
+///
+/// \param Dcl The constexpr constructor being checked.
+/// \param Field The field being checked. This may be a member of an anonymous
+/// struct or union nested within the class being checked.
+/// \param Inits All declarations, including anonymous struct/union members and
+/// indirect members, for which any initialization was provided.
+/// \param Diagnosed Set to true if an error is produced.
+static void CheckConstexprCtorInitializer(Sema &SemaRef,
+ const FunctionDecl *Dcl,
+ FieldDecl *Field,
+ llvm::SmallSet<Decl*, 16> &Inits,
+ bool &Diagnosed) {
+ if (Field->isInvalidDecl())
+ return;
+
+ if (Field->isUnnamedBitfield())
+ return;
+
+ // Anonymous unions with no variant members and empty anonymous structs do not
+ // need to be explicitly initialized. FIXME: Anonymous structs that contain no
+ // indirect fields don't need initializing.
+ if (Field->isAnonymousStructOrUnion() &&
+ (Field->getType()->isUnionType()
+ ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers()
+ : Field->getType()->getAsCXXRecordDecl()->isEmpty()))
+ return;
+
+ if (!Inits.count(Field)) {
+ if (!Diagnosed) {
+ SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
+ Diagnosed = true;
+ }
+ SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
+ } else if (Field->isAnonymousStructOrUnion()) {
+ const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
+ for (auto *I : RD->fields())
+ // If an anonymous union contains an anonymous struct of which any member
+ // is initialized, all members must be initialized.
+ if (!RD->isUnion() || Inits.count(I))
+ CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed);
+ }
+}
+
+/// Check the provided statement is allowed in a constexpr function
+/// definition.
+static bool
+CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
+ SmallVectorImpl<SourceLocation> &ReturnStmts,
+ SourceLocation &Cxx1yLoc) {
+ // - its function-body shall be [...] a compound-statement that contains only
+ switch (S->getStmtClass()) {
+ case Stmt::NullStmtClass:
+ // - null statements,
+ return true;
+
+ case Stmt::DeclStmtClass:
+ // - static_assert-declarations
+ // - using-declarations,
+ // - using-directives,
+ // - typedef declarations and alias-declarations that do not define
+ // classes or enumerations,
+ if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc))
+ return false;
+ return true;
+
+ case Stmt::ReturnStmtClass:
+ // - and exactly one return statement;
+ if (isa<CXXConstructorDecl>(Dcl)) {
+ // C++1y allows return statements in constexpr constructors.
+ if (!Cxx1yLoc.isValid())
+ Cxx1yLoc = S->getLocStart();
+ return true;
+ }
+
+ ReturnStmts.push_back(S->getLocStart());
+ return true;
+
+ case Stmt::CompoundStmtClass: {
+ // C++1y allows compound-statements.
+ if (!Cxx1yLoc.isValid())
+ Cxx1yLoc = S->getLocStart();
+
+ CompoundStmt *CompStmt = cast<CompoundStmt>(S);
+ for (auto *BodyIt : CompStmt->body()) {
+ if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts,
+ Cxx1yLoc))
+ return false;
+ }
+ return true;
+ }
+
+ case Stmt::AttributedStmtClass:
+ if (!Cxx1yLoc.isValid())
+ Cxx1yLoc = S->getLocStart();
+ return true;
+
+ case Stmt::IfStmtClass: {
+ // C++1y allows if-statements.
+ if (!Cxx1yLoc.isValid())
+ Cxx1yLoc = S->getLocStart();
+
+ IfStmt *If = cast<IfStmt>(S);
+ if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
+ Cxx1yLoc))
+ return false;
+ if (If->getElse() &&
+ !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
+ Cxx1yLoc))
+ return false;
+ return true;
+ }
+
+ case Stmt::WhileStmtClass:
+ case Stmt::DoStmtClass:
+ case Stmt::ForStmtClass:
+ case Stmt::CXXForRangeStmtClass:
+ case Stmt::ContinueStmtClass:
+ // C++1y allows all of these. We don't allow them as extensions in C++11,
+ // because they don't make sense without variable mutation.
+ if (!SemaRef.getLangOpts().CPlusPlus14)
+ break;
+ if (!Cxx1yLoc.isValid())
+ Cxx1yLoc = S->getLocStart();
+ for (Stmt::child_range Children = S->children(); Children; ++Children)
+ if (*Children &&
+ !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts,
+ Cxx1yLoc))
+ return false;
+ return true;
+
+ case Stmt::SwitchStmtClass:
+ case Stmt::CaseStmtClass:
+ case Stmt::DefaultStmtClass:
+ case Stmt::BreakStmtClass:
+ // C++1y allows switch-statements, and since they don't need variable
+ // mutation, we can reasonably allow them in C++11 as an extension.
+ if (!Cxx1yLoc.isValid())
+ Cxx1yLoc = S->getLocStart();
+ for (Stmt::child_range Children = S->children(); Children; ++Children)
+ if (*Children &&
+ !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts,
+ Cxx1yLoc))
+ return false;
+ return true;
+
+ default:
+ if (!isa<Expr>(S))
+ break;
+
+ // C++1y allows expression-statements.
+ if (!Cxx1yLoc.isValid())
+ Cxx1yLoc = S->getLocStart();
+ return true;
+ }
+
+ SemaRef.Diag(S->getLocStart(), diag::err_constexpr_body_invalid_stmt)
+ << isa<CXXConstructorDecl>(Dcl);
+ return false;
+}
+
+/// Check the body for the given constexpr function declaration only contains
+/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
+///
+/// \return true if the body is OK, false if we have diagnosed a problem.
+bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
+ if (isa<CXXTryStmt>(Body)) {
+ // C++11 [dcl.constexpr]p3:
+ // The definition of a constexpr function shall satisfy the following
+ // constraints: [...]
+ // - its function-body shall be = delete, = default, or a
+ // compound-statement
+ //
+ // C++11 [dcl.constexpr]p4:
+ // In the definition of a constexpr constructor, [...]
+ // - its function-body shall not be a function-try-block;
+ Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
+ << isa<CXXConstructorDecl>(Dcl);
+ return false;
+ }
+
+ SmallVector<SourceLocation, 4> ReturnStmts;
+
+ // - its function-body shall be [...] a compound-statement that contains only
+ // [... list of cases ...]
+ CompoundStmt *CompBody = cast<CompoundStmt>(Body);
+ SourceLocation Cxx1yLoc;
+ for (auto *BodyIt : CompBody->body()) {
+ if (!CheckConstexprFunctionStmt(*this, Dcl, BodyIt, ReturnStmts, Cxx1yLoc))
+ return false;
+ }
+
+ if (Cxx1yLoc.isValid())
+ Diag(Cxx1yLoc,
+ getLangOpts().CPlusPlus14
+ ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
+ : diag::ext_constexpr_body_invalid_stmt)
+ << isa<CXXConstructorDecl>(Dcl);
+
+ if (const CXXConstructorDecl *Constructor
+ = dyn_cast<CXXConstructorDecl>(Dcl)) {
+ const CXXRecordDecl *RD = Constructor->getParent();
+ // DR1359:
+ // - every non-variant non-static data member and base class sub-object
+ // shall be initialized;
+ // DR1460:
+ // - if the class is a union having variant members, exactly one of them
+ // shall be initialized;
+ if (RD->isUnion()) {
+ if (Constructor->getNumCtorInitializers() == 0 &&
+ RD->hasVariantMembers()) {
+ Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
+ return false;
+ }
+ } else if (!Constructor->isDependentContext() &&
+ !Constructor->isDelegatingConstructor()) {
+ assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
+
+ // Skip detailed checking if we have enough initializers, and we would
+ // allow at most one initializer per member.
+ bool AnyAnonStructUnionMembers = false;
+ unsigned Fields = 0;
+ for (CXXRecordDecl::field_iterator I = RD->field_begin(),
+ E = RD->field_end(); I != E; ++I, ++Fields) {
+ if (I->isAnonymousStructOrUnion()) {
+ AnyAnonStructUnionMembers = true;
+ break;
+ }
+ }
+ // DR1460:
+ // - if the class is a union-like class, but is not a union, for each of
+ // its anonymous union members having variant members, exactly one of
+ // them shall be initialized;
+ if (AnyAnonStructUnionMembers ||
+ Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
+ // Check initialization of non-static data members. Base classes are
+ // always initialized so do not need to be checked. Dependent bases
+ // might not have initializers in the member initializer list.
+ llvm::SmallSet<Decl*, 16> Inits;
+ for (const auto *I: Constructor->inits()) {
+ if (FieldDecl *FD = I->getMember())
+ Inits.insert(FD);
+ else if (IndirectFieldDecl *ID = I->getIndirectMember())
+ Inits.insert(ID->chain_begin(), ID->chain_end());
+ }
+
+ bool Diagnosed = false;
+ for (auto *I : RD->fields())
+ CheckConstexprCtorInitializer(*this, Dcl, I, Inits, Diagnosed);
+ if (Diagnosed)
+ return false;
+ }
+ }
+ } else {
+ if (ReturnStmts.empty()) {
+ // C++1y doesn't require constexpr functions to contain a 'return'
+ // statement. We still do, unless the return type might be void, because
+ // otherwise if there's no return statement, the function cannot
+ // be used in a core constant expression.
+ bool OK = getLangOpts().CPlusPlus14 &&
+ (Dcl->getReturnType()->isVoidType() ||
+ Dcl->getReturnType()->isDependentType());
+ Diag(Dcl->getLocation(),
+ OK ? diag::warn_cxx11_compat_constexpr_body_no_return
+ : diag::err_constexpr_body_no_return);
+ return OK;
+ }
+ if (ReturnStmts.size() > 1) {
+ Diag(ReturnStmts.back(),
+ getLangOpts().CPlusPlus14
+ ? diag::warn_cxx11_compat_constexpr_body_multiple_return
+ : diag::ext_constexpr_body_multiple_return);
+ for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
+ Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
+ }
+ }
+
+ // C++11 [dcl.constexpr]p5:
+ // if no function argument values exist such that the function invocation
+ // substitution would produce a constant expression, the program is
+ // ill-formed; no diagnostic required.
+ // C++11 [dcl.constexpr]p3:
+ // - every constructor call and implicit conversion used in initializing the
+ // return value shall be one of those allowed in a constant expression.
+ // C++11 [dcl.constexpr]p4:
+ // - every constructor involved in initializing non-static data members and
+ // base class sub-objects shall be a constexpr constructor.
+ SmallVector<PartialDiagnosticAt, 8> Diags;
+ if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
+ Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr)
+ << isa<CXXConstructorDecl>(Dcl);
+ for (size_t I = 0, N = Diags.size(); I != N; ++I)
+ Diag(Diags[I].first, Diags[I].second);
+ // Don't return false here: we allow this for compatibility in
+ // system headers.
+ }
+
+ return true;
+}
+
+/// isCurrentClassName - Determine whether the identifier II is the
+/// name of the class type currently being defined. In the case of
+/// nested classes, this will only return true if II is the name of
+/// the innermost class.
+bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
+ const CXXScopeSpec *SS) {
+ assert(getLangOpts().CPlusPlus && "No class names in C!");
+
+ CXXRecordDecl *CurDecl;
+ if (SS && SS->isSet() && !SS->isInvalid()) {
+ DeclContext *DC = computeDeclContext(*SS, true);
+ CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
+ } else
+ CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
+
+ if (CurDecl && CurDecl->getIdentifier())
+ return &II == CurDecl->getIdentifier();
+ return false;
+}
+
+/// \brief Determine whether the identifier II is a typo for the name of
+/// the class type currently being defined. If so, update it to the identifier
+/// that should have been used.
+bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) {
+ assert(getLangOpts().CPlusPlus && "No class names in C!");
+
+ if (!getLangOpts().SpellChecking)
+ return false;
+
+ CXXRecordDecl *CurDecl;
+ if (SS && SS->isSet() && !SS->isInvalid()) {
+ DeclContext *DC = computeDeclContext(*SS, true);
+ CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
+ } else
+ CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
+
+ if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() &&
+ 3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName())
+ < II->getLength()) {
+ II = CurDecl->getIdentifier();
+ return true;
+ }
+
+ return false;
+}
+
+/// \brief Determine whether the given class is a base class of the given
+/// class, including looking at dependent bases.
+static bool findCircularInheritance(const CXXRecordDecl *Class,
+ const CXXRecordDecl *Current) {
+ SmallVector<const CXXRecordDecl*, 8> Queue;
+
+ Class = Class->getCanonicalDecl();
+ while (true) {
+ for (const auto &I : Current->bases()) {
+ CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
+ if (!Base)
+ continue;
+
+ Base = Base->getDefinition();
+ if (!Base)
+ continue;
+
+ if (Base->getCanonicalDecl() == Class)
+ return true;
+
+ Queue.push_back(Base);
+ }
+
+ if (Queue.empty())
+ return false;
+
+ Current = Queue.pop_back_val();
+ }
+
+ return false;
+}
+
+/// \brief Perform propagation of DLL attributes from a derived class to a
+/// templated base class for MS compatibility.
+static void propagateDLLAttrToBaseClassTemplate(
+ Sema &S, CXXRecordDecl *Class, Attr *ClassAttr,
+ ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) {
+ if (getDLLAttr(
+ BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) {
+ // If the base class template has a DLL attribute, don't try to change it.
+ return;
+ }
+
+ if (BaseTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
+ // If the base class is not already specialized, we can do the propagation.
+ auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(S.getASTContext()));
+ NewAttr->setInherited(true);
+ BaseTemplateSpec->addAttr(NewAttr);
+ return;
+ }
+
+ bool DifferentAttribute = false;
+ if (Attr *SpecializationAttr = getDLLAttr(BaseTemplateSpec)) {
+ if (!SpecializationAttr->isInherited()) {
+ // The template has previously been specialized or instantiated with an
+ // explicit attribute. We should not try to change it.
+ return;
+ }
+ if (SpecializationAttr->getKind() == ClassAttr->getKind()) {
+ // The specialization already has the right attribute.
+ return;
+ }
+ DifferentAttribute = true;
+ }
+
+ // The template was previously instantiated or explicitly specialized without
+ // a dll attribute, or the template was previously instantiated with a
+ // different inherited attribute. It's too late for us to change the
+ // attribute, so warn that this is unsupported.
+ S.Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class)
+ << BaseTemplateSpec->isExplicitSpecialization() << DifferentAttribute;
+ S.Diag(ClassAttr->getLocation(), diag::note_attribute);
+ if (BaseTemplateSpec->isExplicitSpecialization()) {
+ S.Diag(BaseTemplateSpec->getLocation(),
+ diag::note_template_class_explicit_specialization_was_here)
+ << BaseTemplateSpec;
+ } else {
+ S.Diag(BaseTemplateSpec->getPointOfInstantiation(),
+ diag::note_template_class_instantiation_was_here)
+ << BaseTemplateSpec;
+ }
+}
+
+/// \brief Check the validity of a C++ base class specifier.
+///
+/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
+/// and returns NULL otherwise.
+CXXBaseSpecifier *
+Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
+ SourceRange SpecifierRange,
+ bool Virtual, AccessSpecifier Access,
+ TypeSourceInfo *TInfo,
+ SourceLocation EllipsisLoc) {
+ QualType BaseType = TInfo->getType();
+
+ // C++ [class.union]p1:
+ // A union shall not have base classes.
+ if (Class->isUnion()) {
+ Diag(Class->getLocation(), diag::err_base_clause_on_union)
+ << SpecifierRange;
+ return nullptr;
+ }
+
+ if (EllipsisLoc.isValid() &&
+ !TInfo->getType()->containsUnexpandedParameterPack()) {
+ Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
+ << TInfo->getTypeLoc().getSourceRange();
+ EllipsisLoc = SourceLocation();
+ }
+
+ SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
+
+ if (BaseType->isDependentType()) {
+ // Make sure that we don't have circular inheritance among our dependent
+ // bases. For non-dependent bases, the check for completeness below handles
+ // this.
+ if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
+ if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
+ ((BaseDecl = BaseDecl->getDefinition()) &&
+ findCircularInheritance(Class, BaseDecl))) {
+ Diag(BaseLoc, diag::err_circular_inheritance)
+ << BaseType << Context.getTypeDeclType(Class);
+
+ if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
+ Diag(BaseDecl->getLocation(), diag::note_previous_decl)
+ << BaseType;
+
+ return nullptr;
+ }
+ }
+
+ return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
+ Class->getTagKind() == TTK_Class,
+ Access, TInfo, EllipsisLoc);
+ }
+
+ // Base specifiers must be record types.
+ if (!BaseType->isRecordType()) {
+ Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
+ return nullptr;
+ }
+
+ // C++ [class.union]p1:
+ // A union shall not be used as a base class.
+ if (BaseType->isUnionType()) {
+ Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
+ return nullptr;
+ }
+
+ // For the MS ABI, propagate DLL attributes to base class templates.
+ if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
+ if (Attr *ClassAttr = getDLLAttr(Class)) {
+ if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
+ BaseType->getAsCXXRecordDecl())) {
+ propagateDLLAttrToBaseClassTemplate(*this, Class, ClassAttr,
+ BaseTemplate, BaseLoc);
+ }
+ }
+ }
+
+ // C++ [class.derived]p2:
+ // The class-name in a base-specifier shall not be an incompletely
+ // defined class.
+ if (RequireCompleteType(BaseLoc, BaseType,
+ diag::err_incomplete_base_class, SpecifierRange)) {
+ Class->setInvalidDecl();
+ return nullptr;
+ }
+
+ // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
+ RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
+ assert(BaseDecl && "Record type has no declaration");
+ BaseDecl = BaseDecl->getDefinition();
+ assert(BaseDecl && "Base type is not incomplete, but has no definition");
+ CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
+ assert(CXXBaseDecl && "Base type is not a C++ type");
+
+ // A class which contains a flexible array member is not suitable for use as a
+ // base class:
+ // - If the layout determines that a base comes before another base,
+ // the flexible array member would index into the subsequent base.
+ // - If the layout determines that base comes before the derived class,
+ // the flexible array member would index into the derived class.
+ if (CXXBaseDecl->hasFlexibleArrayMember()) {
+ Diag(BaseLoc, diag::err_base_class_has_flexible_array_member)
+ << CXXBaseDecl->getDeclName();
+ return nullptr;
+ }
+
+ // C++ [class]p3:
+ // If a class is marked final and it appears as a base-type-specifier in
+ // base-clause, the program is ill-formed.
+ if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) {
+ Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
+ << CXXBaseDecl->getDeclName()
+ << FA->isSpelledAsSealed();
+ Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at)
+ << CXXBaseDecl->getDeclName() << FA->getRange();
+ return nullptr;
+ }
+
+ if (BaseDecl->isInvalidDecl())
+ Class->setInvalidDecl();
+
+ // Create the base specifier.
+ return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
+ Class->getTagKind() == TTK_Class,
+ Access, TInfo, EllipsisLoc);
+}
+
+/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
+/// one entry in the base class list of a class specifier, for
+/// example:
+/// class foo : public bar, virtual private baz {
+/// 'public bar' and 'virtual private baz' are each base-specifiers.
+BaseResult
+Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
+ ParsedAttributes &Attributes,
+ bool Virtual, AccessSpecifier Access,
+ ParsedType basetype, SourceLocation BaseLoc,
+ SourceLocation EllipsisLoc) {
+ if (!classdecl)
+ return true;
+
+ AdjustDeclIfTemplate(classdecl);
+ CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
+ if (!Class)
+ return true;
+
+ // We haven't yet attached the base specifiers.
+ Class->setIsParsingBaseSpecifiers();
+
+ // We do not support any C++11 attributes on base-specifiers yet.
+ // Diagnose any attributes we see.
+ if (!Attributes.empty()) {
+ for (AttributeList *Attr = Attributes.getList(); Attr;
+ Attr = Attr->getNext()) {
+ if (Attr->isInvalid() ||
+ Attr->getKind() == AttributeList::IgnoredAttribute)
+ continue;
+ Diag(Attr->getLoc(),
+ Attr->getKind() == AttributeList::UnknownAttribute
+ ? diag::warn_unknown_attribute_ignored
+ : diag::err_base_specifier_attribute)
+ << Attr->getName();
+ }
+ }
+
+ TypeSourceInfo *TInfo = nullptr;
+ GetTypeFromParser(basetype, &TInfo);
+
+ if (EllipsisLoc.isInvalid() &&
+ DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
+ UPPC_BaseType))
+ return true;
+
+ if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
+ Virtual, Access, TInfo,
+ EllipsisLoc))
+ return BaseSpec;
+ else
+ Class->setInvalidDecl();
+
+ return true;
+}
+
+/// Use small set to collect indirect bases. As this is only used
+/// locally, there's no need to abstract the small size parameter.
+typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet;
+
+/// \brief Recursively add the bases of Type. Don't add Type itself.
+static void
+NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set,
+ const QualType &Type)
+{
+ // Even though the incoming type is a base, it might not be
+ // a class -- it could be a template parm, for instance.
+ if (auto Rec = Type->getAs<RecordType>()) {
+ auto Decl = Rec->getAsCXXRecordDecl();
+
+ // Iterate over its bases.
+ for (const auto &BaseSpec : Decl->bases()) {
+ QualType Base = Context.getCanonicalType(BaseSpec.getType())
+ .getUnqualifiedType();
+ if (Set.insert(Base).second)
+ // If we've not already seen it, recurse.
+ NoteIndirectBases(Context, Set, Base);
+ }
+ }
+}
+
+/// \brief Performs the actual work of attaching the given base class
+/// specifiers to a C++ class.
+bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
+ unsigned NumBases) {
+ if (NumBases == 0)
+ return false;
+
+ // Used to keep track of which base types we have already seen, so
+ // that we can properly diagnose redundant direct base types. Note
+ // that the key is always the unqualified canonical type of the base
+ // class.
+ std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
+
+ // Used to track indirect bases so we can see if a direct base is
+ // ambiguous.
+ IndirectBaseSet IndirectBaseTypes;
+
+ // Copy non-redundant base specifiers into permanent storage.
+ unsigned NumGoodBases = 0;
+ bool Invalid = false;
+ for (unsigned idx = 0; idx < NumBases; ++idx) {
+ QualType NewBaseType
+ = Context.getCanonicalType(Bases[idx]->getType());
+ NewBaseType = NewBaseType.getLocalUnqualifiedType();
+
+ CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
+ if (KnownBase) {
+ // C++ [class.mi]p3:
+ // A class shall not be specified as a direct base class of a
+ // derived class more than once.
+ Diag(Bases[idx]->getLocStart(),
+ diag::err_duplicate_base_class)
+ << KnownBase->getType()
+ << Bases[idx]->getSourceRange();
+
+ // Delete the duplicate base class specifier; we're going to
+ // overwrite its pointer later.
+ Context.Deallocate(Bases[idx]);
+
+ Invalid = true;
+ } else {
+ // Okay, add this new base class.
+ KnownBase = Bases[idx];
+ Bases[NumGoodBases++] = Bases[idx];
+
+ // Note this base's direct & indirect bases, if there could be ambiguity.
+ if (NumBases > 1)
+ NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType);
+
+ if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
+ const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
+ if (Class->isInterface() &&
+ (!RD->isInterface() ||
+ KnownBase->getAccessSpecifier() != AS_public)) {
+ // The Microsoft extension __interface does not permit bases that
+ // are not themselves public interfaces.
+ Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
+ << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName()
+ << RD->getSourceRange();
+ Invalid = true;
+ }
+ if (RD->hasAttr<WeakAttr>())
+ Class->addAttr(WeakAttr::CreateImplicit(Context));
+ }
+ }
+ }
+
+ // Attach the remaining base class specifiers to the derived class.
+ Class->setBases(Bases, NumGoodBases);
+
+ for (unsigned idx = 0; idx < NumGoodBases; ++idx) {
+ // Check whether this direct base is inaccessible due to ambiguity.
+ QualType BaseType = Bases[idx]->getType();
+ CanQualType CanonicalBase = Context.getCanonicalType(BaseType)
+ .getUnqualifiedType();
+
+ if (IndirectBaseTypes.count(CanonicalBase)) {
+ CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
+ /*DetectVirtual=*/true);
+ bool found
+ = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths);
+ assert(found);
+ (void)found;
+
+ if (Paths.isAmbiguous(CanonicalBase))
+ Diag(Bases[idx]->getLocStart (), diag::warn_inaccessible_base_class)
+ << BaseType << getAmbiguousPathsDisplayString(Paths)
+ << Bases[idx]->getSourceRange();
+ else
+ assert(Bases[idx]->isVirtual());
+ }
+
+ // Delete the base class specifier, since its data has been copied
+ // into the CXXRecordDecl.
+ Context.Deallocate(Bases[idx]);
+ }
+
+ return Invalid;
+}
+
+/// ActOnBaseSpecifiers - Attach the given base specifiers to the
+/// class, after checking whether there are any duplicate base
+/// classes.
+void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
+ unsigned NumBases) {
+ if (!ClassDecl || !Bases || !NumBases)
+ return;
+
+ AdjustDeclIfTemplate(ClassDecl);
+ AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases, NumBases);
+}
+
+/// \brief Determine whether the type \p Derived is a C++ class that is
+/// derived from the type \p Base.
+bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
+ if (!getLangOpts().CPlusPlus)
+ return false;
+
+ CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
+ if (!DerivedRD)
+ return false;
+
+ CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
+ if (!BaseRD)
+ return false;
+
+ // If either the base or the derived type is invalid, don't try to
+ // check whether one is derived from the other.
+ if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
+ return false;
+
+ // FIXME: instantiate DerivedRD if necessary. We need a PoI for this.
+ return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
+}
+
+/// \brief Determine whether the type \p Derived is a C++ class that is
+/// derived from the type \p Base.
+bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
+ if (!getLangOpts().CPlusPlus)
+ return false;
+
+ CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
+ if (!DerivedRD)
+ return false;
+
+ CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
+ if (!BaseRD)
+ return false;
+
+ return DerivedRD->isDerivedFrom(BaseRD, Paths);
+}
+
+void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
+ CXXCastPath &BasePathArray) {
+ assert(BasePathArray.empty() && "Base path array must be empty!");
+ assert(Paths.isRecordingPaths() && "Must record paths!");
+
+ const CXXBasePath &Path = Paths.front();
+
+ // We first go backward and check if we have a virtual base.
+ // FIXME: It would be better if CXXBasePath had the base specifier for
+ // the nearest virtual base.
+ unsigned Start = 0;
+ for (unsigned I = Path.size(); I != 0; --I) {
+ if (Path[I - 1].Base->isVirtual()) {
+ Start = I - 1;
+ break;
+ }
+ }
+
+ // Now add all bases.
+ for (unsigned I = Start, E = Path.size(); I != E; ++I)
+ BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
+}
+
+/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
+/// conversion (where Derived and Base are class types) is
+/// well-formed, meaning that the conversion is unambiguous (and
+/// that all of the base classes are accessible). Returns true
+/// and emits a diagnostic if the code is ill-formed, returns false
+/// otherwise. Loc is the location where this routine should point to
+/// if there is an error, and Range is the source range to highlight
+/// if there is an error.
+bool
+Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
+ unsigned InaccessibleBaseID,
+ unsigned AmbigiousBaseConvID,
+ SourceLocation Loc, SourceRange Range,
+ DeclarationName Name,
+ CXXCastPath *BasePath) {
+ // First, determine whether the path from Derived to Base is
+ // ambiguous. This is slightly more expensive than checking whether
+ // the Derived to Base conversion exists, because here we need to
+ // explore multiple paths to determine if there is an ambiguity.
+ CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
+ /*DetectVirtual=*/false);
+ bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
+ assert(DerivationOkay &&
+ "Can only be used with a derived-to-base conversion");
+ (void)DerivationOkay;
+
+ if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
+ if (InaccessibleBaseID) {
+ // Check that the base class can be accessed.
+ switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
+ InaccessibleBaseID)) {
+ case AR_inaccessible:
+ return true;
+ case AR_accessible:
+ case AR_dependent:
+ case AR_delayed:
+ break;
+ }
+ }
+
+ // Build a base path if necessary.
+ if (BasePath)
+ BuildBasePathArray(Paths, *BasePath);
+ return false;
+ }
+
+ if (AmbigiousBaseConvID) {
+ // We know that the derived-to-base conversion is ambiguous, and
+ // we're going to produce a diagnostic. Perform the derived-to-base
+ // search just one more time to compute all of the possible paths so
+ // that we can print them out. This is more expensive than any of
+ // the previous derived-to-base checks we've done, but at this point
+ // performance isn't as much of an issue.
+ Paths.clear();
+ Paths.setRecordingPaths(true);
+ bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
+ assert(StillOkay && "Can only be used with a derived-to-base conversion");
+ (void)StillOkay;
+
+ // Build up a textual representation of the ambiguous paths, e.g.,
+ // D -> B -> A, that will be used to illustrate the ambiguous
+ // conversions in the diagnostic. We only print one of the paths
+ // to each base class subobject.
+ std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
+
+ Diag(Loc, AmbigiousBaseConvID)
+ << Derived << Base << PathDisplayStr << Range << Name;
+ }
+ return true;
+}
+
+bool
+Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
+ SourceLocation Loc, SourceRange Range,
+ CXXCastPath *BasePath,
+ bool IgnoreAccess) {
+ return CheckDerivedToBaseConversion(Derived, Base,
+ IgnoreAccess ? 0
+ : diag::err_upcast_to_inaccessible_base,
+ diag::err_ambiguous_derived_to_base_conv,
+ Loc, Range, DeclarationName(),
+ BasePath);
+}
+
+
+/// @brief Builds a string representing ambiguous paths from a
+/// specific derived class to different subobjects of the same base
+/// class.
+///
+/// This function builds a string that can be used in error messages
+/// to show the different paths that one can take through the
+/// inheritance hierarchy to go from the derived class to different
+/// subobjects of a base class. The result looks something like this:
+/// @code
+/// struct D -> struct B -> struct A
+/// struct D -> struct C -> struct A
+/// @endcode
+std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
+ std::string PathDisplayStr;
+ std::set<unsigned> DisplayedPaths;
+ for (CXXBasePaths::paths_iterator Path = Paths.begin();
+ Path != Paths.end(); ++Path) {
+ if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
+ // We haven't displayed a path to this particular base
+ // class subobject yet.
+ PathDisplayStr += "\n ";
+ PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
+ for (CXXBasePath::const_iterator Element = Path->begin();
+ Element != Path->end(); ++Element)
+ PathDisplayStr += " -> " + Element->Base->getType().getAsString();
+ }
+ }
+
+ return PathDisplayStr;
+}
+
+//===----------------------------------------------------------------------===//
+// C++ class member Handling
+//===----------------------------------------------------------------------===//
+
+/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
+bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
+ SourceLocation ASLoc,
+ SourceLocation ColonLoc,
+ AttributeList *Attrs) {
+ assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
+ AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
+ ASLoc, ColonLoc);
+ CurContext->addHiddenDecl(ASDecl);
+ return ProcessAccessDeclAttributeList(ASDecl, Attrs);
+}
+
+/// CheckOverrideControl - Check C++11 override control semantics.
+void Sema::CheckOverrideControl(NamedDecl *D) {
+ if (D->isInvalidDecl())
+ return;
+
+ // We only care about "override" and "final" declarations.
+ if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>())
+ return;
+
+ CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
+
+ // We can't check dependent instance methods.
+ if (MD && MD->isInstance() &&
+ (MD->getParent()->hasAnyDependentBases() ||
+ MD->getType()->isDependentType()))
+ return;
+
+ if (MD && !MD->isVirtual()) {
+ // If we have a non-virtual method, check if if hides a virtual method.
+ // (In that case, it's most likely the method has the wrong type.)
+ SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
+ FindHiddenVirtualMethods(MD, OverloadedMethods);
+
+ if (!OverloadedMethods.empty()) {
+ if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
+ Diag(OA->getLocation(),
+ diag::override_keyword_hides_virtual_member_function)
+ << "override" << (OverloadedMethods.size() > 1);
+ } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
+ Diag(FA->getLocation(),
+ diag::override_keyword_hides_virtual_member_function)
+ << (FA->isSpelledAsSealed() ? "sealed" : "final")
+ << (OverloadedMethods.size() > 1);
+ }
+ NoteHiddenVirtualMethods(MD, OverloadedMethods);
+ MD->setInvalidDecl();
+ return;
+ }
+ // Fall through into the general case diagnostic.
+ // FIXME: We might want to attempt typo correction here.
+ }
+
+ if (!MD || !MD->isVirtual()) {
+ if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
+ Diag(OA->getLocation(),
+ diag::override_keyword_only_allowed_on_virtual_member_functions)
+ << "override" << FixItHint::CreateRemoval(OA->getLocation());
+ D->dropAttr<OverrideAttr>();
+ }
+ if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
+ Diag(FA->getLocation(),
+ diag::override_keyword_only_allowed_on_virtual_member_functions)
+ << (FA->isSpelledAsSealed() ? "sealed" : "final")
+ << FixItHint::CreateRemoval(FA->getLocation());
+ D->dropAttr<FinalAttr>();
+ }
+ return;
+ }
+
+ // C++11 [class.virtual]p5:
+ // If a function is marked with the virt-specifier override and
+ // does not override a member function of a base class, the program is
+ // ill-formed.
+ bool HasOverriddenMethods =
+ MD->begin_overridden_methods() != MD->end_overridden_methods();
+ if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
+ Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
+ << MD->getDeclName();
+}
+
+void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D) {
+ if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>())
+ return;
+ CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
+ if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>() ||
+ isa<CXXDestructorDecl>(MD))
+ return;
+
+ SourceLocation Loc = MD->getLocation();
+ SourceLocation SpellingLoc = Loc;
+ if (getSourceManager().isMacroArgExpansion(Loc))
+ SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).first;
+ SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc);
+ if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc))
+ return;
+
+ if (MD->size_overridden_methods() > 0) {
+ Diag(MD->getLocation(), diag::warn_function_marked_not_override_overriding)
+ << MD->getDeclName();
+ const CXXMethodDecl *OMD = *MD->begin_overridden_methods();
+ Diag(OMD->getLocation(), diag::note_overridden_virtual_function);
+ }
+}
+
+/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
+/// function overrides a virtual member function marked 'final', according to
+/// C++11 [class.virtual]p4.
+bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
+ const CXXMethodDecl *Old) {
+ FinalAttr *FA = Old->getAttr<FinalAttr>();
+ if (!FA)
+ return false;
+
+ Diag(New->getLocation(), diag::err_final_function_overridden)
+ << New->getDeclName()
+ << FA->isSpelledAsSealed();
+ Diag(Old->getLocation(), diag::note_overridden_virtual_function);
+ return true;
+}
+
+static bool InitializationHasSideEffects(const FieldDecl &FD) {
+ const Type *T = FD.getType()->getBaseElementTypeUnsafe();
+ // FIXME: Destruction of ObjC lifetime types has side-effects.
+ if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
+ return !RD->isCompleteDefinition() ||
+ !RD->hasTrivialDefaultConstructor() ||
+ !RD->hasTrivialDestructor();
+ return false;
+}
+
+static AttributeList *getMSPropertyAttr(AttributeList *list) {
+ for (AttributeList *it = list; it != nullptr; it = it->getNext())
+ if (it->isDeclspecPropertyAttribute())
+ return it;
+ return nullptr;
+}
+
+/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
+/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
+/// bitfield width if there is one, 'InitExpr' specifies the initializer if
+/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
+/// present (but parsing it has been deferred).
+NamedDecl *
+Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
+ MultiTemplateParamsArg TemplateParameterLists,
+ Expr *BW, const VirtSpecifiers &VS,
+ InClassInitStyle InitStyle) {
+ const DeclSpec &DS = D.getDeclSpec();
+ DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
+ DeclarationName Name = NameInfo.getName();
+ SourceLocation Loc = NameInfo.getLoc();
+
+ // For anonymous bitfields, the location should point to the type.
+ if (Loc.isInvalid())
+ Loc = D.getLocStart();
+
+ Expr *BitWidth = static_cast<Expr*>(BW);
+
+ assert(isa<CXXRecordDecl>(CurContext));
+ assert(!DS.isFriendSpecified());
+
+ bool isFunc = D.isDeclarationOfFunction();
+
+ if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
+ // The Microsoft extension __interface only permits public member functions
+ // and prohibits constructors, destructors, operators, non-public member
+ // functions, static methods and data members.
+ unsigned InvalidDecl;
+ bool ShowDeclName = true;
+ if (!isFunc)
+ InvalidDecl = (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) ? 0 : 1;
+ else if (AS != AS_public)
+ InvalidDecl = 2;
+ else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
+ InvalidDecl = 3;
+ else switch (Name.getNameKind()) {
+ case DeclarationName::CXXConstructorName:
+ InvalidDecl = 4;
+ ShowDeclName = false;
+ break;
+
+ case DeclarationName::CXXDestructorName:
+ InvalidDecl = 5;
+ ShowDeclName = false;
+ break;
+
+ case DeclarationName::CXXOperatorName:
+ case DeclarationName::CXXConversionFunctionName:
+ InvalidDecl = 6;
+ break;
+
+ default:
+ InvalidDecl = 0;
+ break;
+ }
+
+ if (InvalidDecl) {
+ if (ShowDeclName)
+ Diag(Loc, diag::err_invalid_member_in_interface)
+ << (InvalidDecl-1) << Name;
+ else
+ Diag(Loc, diag::err_invalid_member_in_interface)
+ << (InvalidDecl-1) << "";
+ return nullptr;
+ }
+ }
+
+ // C++ 9.2p6: A member shall not be declared to have automatic storage
+ // duration (auto, register) or with the extern storage-class-specifier.
+ // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
+ // data members and cannot be applied to names declared const or static,
+ // and cannot be applied to reference members.
+ switch (DS.getStorageClassSpec()) {
+ case DeclSpec::SCS_unspecified:
+ case DeclSpec::SCS_typedef:
+ case DeclSpec::SCS_static:
+ break;
+ case DeclSpec::SCS_mutable:
+ if (isFunc) {
+ Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
+
+ // FIXME: It would be nicer if the keyword was ignored only for this
+ // declarator. Otherwise we could get follow-up errors.
+ D.getMutableDeclSpec().ClearStorageClassSpecs();
+ }
+ break;
+ default:
+ Diag(DS.getStorageClassSpecLoc(),
+ diag::err_storageclass_invalid_for_member);
+ D.getMutableDeclSpec().ClearStorageClassSpecs();
+ break;
+ }
+
+ bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
+ DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
+ !isFunc);
+
+ if (DS.isConstexprSpecified() && isInstField) {
+ SemaDiagnosticBuilder B =
+ Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
+ SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
+ if (InitStyle == ICIS_NoInit) {
+ B << 0 << 0;
+ if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const)
+ B << FixItHint::CreateRemoval(ConstexprLoc);
+ else {
+ B << FixItHint::CreateReplacement(ConstexprLoc, "const");
+ D.getMutableDeclSpec().ClearConstexprSpec();
+ const char *PrevSpec;
+ unsigned DiagID;
+ bool Failed = D.getMutableDeclSpec().SetTypeQual(
+ DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts());
+ (void)Failed;
+ assert(!Failed && "Making a constexpr member const shouldn't fail");
+ }
+ } else {
+ B << 1;
+ const char *PrevSpec;
+ unsigned DiagID;
+ if (D.getMutableDeclSpec().SetStorageClassSpec(
+ *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID,
+ Context.getPrintingPolicy())) {
+ assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
+ "This is the only DeclSpec that should fail to be applied");
+ B << 1;
+ } else {
+ B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
+ isInstField = false;
+ }
+ }
+ }
+
+ NamedDecl *Member;
+ if (isInstField) {
+ CXXScopeSpec &SS = D.getCXXScopeSpec();
+
+ // Data members must have identifiers for names.
+ if (!Name.isIdentifier()) {
+ Diag(Loc, diag::err_bad_variable_name)
+ << Name;
+ return nullptr;
+ }
+
+ IdentifierInfo *II = Name.getAsIdentifierInfo();
+
+ // Member field could not be with "template" keyword.
+ // So TemplateParameterLists should be empty in this case.
+ if (TemplateParameterLists.size()) {
+ TemplateParameterList* TemplateParams = TemplateParameterLists[0];
+ if (TemplateParams->size()) {
+ // There is no such thing as a member field template.
+ Diag(D.getIdentifierLoc(), diag::err_template_member)
+ << II
+ << SourceRange(TemplateParams->getTemplateLoc(),
+ TemplateParams->getRAngleLoc());
+ } else {
+ // There is an extraneous 'template<>' for this member.
+ Diag(TemplateParams->getTemplateLoc(),
+ diag::err_template_member_noparams)
+ << II
+ << SourceRange(TemplateParams->getTemplateLoc(),
+ TemplateParams->getRAngleLoc());
+ }
+ return nullptr;
+ }
+
+ if (SS.isSet() && !SS.isInvalid()) {
+ // The user provided a superfluous scope specifier inside a class
+ // definition:
+ //
+ // class X {
+ // int X::member;
+ // };
+ if (DeclContext *DC = computeDeclContext(SS, false))
+ diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
+ else
+ Diag(D.getIdentifierLoc(), diag::err_member_qualification)
+ << Name << SS.getRange();
+
+ SS.clear();
+ }
+
+ AttributeList *MSPropertyAttr =
+ getMSPropertyAttr(D.getDeclSpec().getAttributes().getList());
+ if (MSPropertyAttr) {
+ Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
+ BitWidth, InitStyle, AS, MSPropertyAttr);
+ if (!Member)
+ return nullptr;
+ isInstField = false;
+ } else {
+ Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
+ BitWidth, InitStyle, AS);
+ assert(Member && "HandleField never returns null");
+ }
+ } else {
+ assert(InitStyle == ICIS_NoInit ||
+ D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static);
+
+ Member = HandleDeclarator(S, D, TemplateParameterLists);
+ if (!Member)
+ return nullptr;
+
+ // Non-instance-fields can't have a bitfield.
+ if (BitWidth) {
+ if (Member->isInvalidDecl()) {
+ // don't emit another diagnostic.
+ } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) {
+ // C++ 9.6p3: A bit-field shall not be a static member.
+ // "static member 'A' cannot be a bit-field"
+ Diag(Loc, diag::err_static_not_bitfield)
+ << Name << BitWidth->getSourceRange();
+ } else if (isa<TypedefDecl>(Member)) {
+ // "typedef member 'x' cannot be a bit-field"
+ Diag(Loc, diag::err_typedef_not_bitfield)
+ << Name << BitWidth->getSourceRange();
+ } else {
+ // A function typedef ("typedef int f(); f a;").
+ // C++ 9.6p3: A bit-field shall have integral or enumeration type.
+ Diag(Loc, diag::err_not_integral_type_bitfield)
+ << Name << cast<ValueDecl>(Member)->getType()
+ << BitWidth->getSourceRange();
+ }
+
+ BitWidth = nullptr;
+ Member->setInvalidDecl();
+ }
+
+ Member->setAccess(AS);
+
+ // If we have declared a member function template or static data member
+ // template, set the access of the templated declaration as well.
+ if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
+ FunTmpl->getTemplatedDecl()->setAccess(AS);
+ else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member))
+ VarTmpl->getTemplatedDecl()->setAccess(AS);
+ }
+
+ if (VS.isOverrideSpecified())
+ Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context, 0));
+ if (VS.isFinalSpecified())
+ Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context,
+ VS.isFinalSpelledSealed()));
+
+ if (VS.getLastLocation().isValid()) {
+ // Update the end location of a method that has a virt-specifiers.
+ if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
+ MD->setRangeEnd(VS.getLastLocation());
+ }
+
+ CheckOverrideControl(Member);
+
+ assert((Name || isInstField) && "No identifier for non-field ?");
+
+ if (isInstField) {
+ FieldDecl *FD = cast<FieldDecl>(Member);
+ FieldCollector->Add(FD);
+
+ if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) {
+ // Remember all explicit private FieldDecls that have a name, no side
+ // effects and are not part of a dependent type declaration.
+ if (!FD->isImplicit() && FD->getDeclName() &&
+ FD->getAccess() == AS_private &&
+ !FD->hasAttr<UnusedAttr>() &&
+ !FD->getParent()->isDependentContext() &&
+ !InitializationHasSideEffects(*FD))
+ UnusedPrivateFields.insert(FD);
+ }
+ }
+
+ return Member;
+}
+
+namespace {
+ class UninitializedFieldVisitor
+ : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
+ Sema &S;
+ // List of Decls to generate a warning on. Also remove Decls that become
+ // initialized.
+ llvm::SmallPtrSetImpl<ValueDecl*> &Decls;
+ // List of base classes of the record. Classes are removed after their
+ // initializers.
+ llvm::SmallPtrSetImpl<QualType> &BaseClasses;
+ // Vector of decls to be removed from the Decl set prior to visiting the
+ // nodes. These Decls may have been initialized in the prior initializer.
+ llvm::SmallVector<ValueDecl*, 4> DeclsToRemove;
+ // If non-null, add a note to the warning pointing back to the constructor.
+ const CXXConstructorDecl *Constructor;
+ // Variables to hold state when processing an initializer list. When
+ // InitList is true, special case initialization of FieldDecls matching
+ // InitListFieldDecl.
+ bool InitList;
+ FieldDecl *InitListFieldDecl;
+ llvm::SmallVector<unsigned, 4> InitFieldIndex;
+
+ public:
+ typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
+ UninitializedFieldVisitor(Sema &S,
+ llvm::SmallPtrSetImpl<ValueDecl*> &Decls,
+ llvm::SmallPtrSetImpl<QualType> &BaseClasses)
+ : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses),
+ Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {}
+
+ // Returns true if the use of ME is not an uninitialized use.
+ bool IsInitListMemberExprInitialized(MemberExpr *ME,
+ bool CheckReferenceOnly) {
+ llvm::SmallVector<FieldDecl*, 4> Fields;
+ bool ReferenceField = false;
+ while (ME) {
+ FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
+ if (!FD)
+ return false;
+ Fields.push_back(FD);
+ if (FD->getType()->isReferenceType())
+ ReferenceField = true;
+ ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts());
+ }
+
+ // Binding a reference to an unintialized field is not an
+ // uninitialized use.
+ if (CheckReferenceOnly && !ReferenceField)
+ return true;
+
+ llvm::SmallVector<unsigned, 4> UsedFieldIndex;
+ // Discard the first field since it is the field decl that is being
+ // initialized.
+ for (auto I = Fields.rbegin() + 1, E = Fields.rend(); I != E; ++I) {
+ UsedFieldIndex.push_back((*I)->getFieldIndex());
+ }
+
+ for (auto UsedIter = UsedFieldIndex.begin(),
+ UsedEnd = UsedFieldIndex.end(),
+ OrigIter = InitFieldIndex.begin(),
+ OrigEnd = InitFieldIndex.end();
+ UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
+ if (*UsedIter < *OrigIter)
+ return true;
+ if (*UsedIter > *OrigIter)
+ break;
+ }
+
+ return false;
+ }
+
+ void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly,
+ bool AddressOf) {
+ if (isa<EnumConstantDecl>(ME->getMemberDecl()))
+ return;
+
+ // FieldME is the inner-most MemberExpr that is not an anonymous struct
+ // or union.
+ MemberExpr *FieldME = ME;
+
+ bool AllPODFields = FieldME->getType().isPODType(S.Context);
+
+ Expr *Base = ME;
+ while (MemberExpr *SubME =
+ dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) {
+
+ if (isa<VarDecl>(SubME->getMemberDecl()))
+ return;
+
+ if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl()))
+ if (!FD->isAnonymousStructOrUnion())
+ FieldME = SubME;
+
+ if (!FieldME->getType().isPODType(S.Context))
+ AllPODFields = false;
+
+ Base = SubME->getBase();
+ }
+
+ if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts()))
+ return;
+
+ if (AddressOf && AllPODFields)
+ return;
+
+ ValueDecl* FoundVD = FieldME->getMemberDecl();
+
+ if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) {
+ while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) {
+ BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr());
+ }
+
+ if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) {
+ QualType T = BaseCast->getType();
+ if (T->isPointerType() &&
+ BaseClasses.count(T->getPointeeType())) {
+ S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit)
+ << T->getPointeeType() << FoundVD;
+ }
+ }
+ }
+
+ if (!Decls.count(FoundVD))
+ return;
+
+ const bool IsReference = FoundVD->getType()->isReferenceType();
+
+ if (InitList && !AddressOf && FoundVD == InitListFieldDecl) {
+ // Special checking for initializer lists.
+ if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) {
+ return;
+ }
+ } else {
+ // Prevent double warnings on use of unbounded references.
+ if (CheckReferenceOnly && !IsReference)
+ return;
+ }
+
+ unsigned diag = IsReference
+ ? diag::warn_reference_field_is_uninit
+ : diag::warn_field_is_uninit;
+ S.Diag(FieldME->getExprLoc(), diag) << FoundVD;
+ if (Constructor)
+ S.Diag(Constructor->getLocation(),
+ diag::note_uninit_in_this_constructor)
+ << (Constructor->isDefaultConstructor() && Constructor->isImplicit());
+
+ }
+
+ void HandleValue(Expr *E, bool AddressOf) {
+ E = E->IgnoreParens();
+
+ if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
+ HandleMemberExpr(ME, false /*CheckReferenceOnly*/,
+ AddressOf /*AddressOf*/);
+ return;
+ }
+
+ if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
+ Visit(CO->getCond());
+ HandleValue(CO->getTrueExpr(), AddressOf);
+ HandleValue(CO->getFalseExpr(), AddressOf);
+ return;
+ }
+
+ if (BinaryConditionalOperator *BCO =
+ dyn_cast<BinaryConditionalOperator>(E)) {
+ Visit(BCO->getCond());
+ HandleValue(BCO->getFalseExpr(), AddressOf);
+ return;
+ }
+
+ if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
+ HandleValue(OVE->getSourceExpr(), AddressOf);
+ return;
+ }
+
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
+ switch (BO->getOpcode()) {
+ default:
+ break;
+ case(BO_PtrMemD):
+ case(BO_PtrMemI):
+ HandleValue(BO->getLHS(), AddressOf);
+ Visit(BO->getRHS());
+ return;
+ case(BO_Comma):
+ Visit(BO->getLHS());
+ HandleValue(BO->getRHS(), AddressOf);
+ return;
+ }
+ }
+
+ Visit(E);
+ }
+
+ void CheckInitListExpr(InitListExpr *ILE) {
+ InitFieldIndex.push_back(0);
+ for (auto Child : ILE->children()) {
+ if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) {
+ CheckInitListExpr(SubList);
+ } else {
+ Visit(Child);
+ }
+ ++InitFieldIndex.back();
+ }
+ InitFieldIndex.pop_back();
+ }
+
+ void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor,
+ FieldDecl *Field, const Type *BaseClass) {
+ // Remove Decls that may have been initialized in the previous
+ // initializer.
+ for (ValueDecl* VD : DeclsToRemove)
+ Decls.erase(VD);
+ DeclsToRemove.clear();
+
+ Constructor = FieldConstructor;
+ InitListExpr *ILE = dyn_cast<InitListExpr>(E);
+
+ if (ILE && Field) {
+ InitList = true;
+ InitListFieldDecl = Field;
+ InitFieldIndex.clear();
+ CheckInitListExpr(ILE);
+ } else {
+ InitList = false;
+ Visit(E);
+ }
+
+ if (Field)
+ Decls.erase(Field);
+ if (BaseClass)
+ BaseClasses.erase(BaseClass->getCanonicalTypeInternal());
+ }
+
+ void VisitMemberExpr(MemberExpr *ME) {
+ // All uses of unbounded reference fields will warn.
+ HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/);
+ }
+
+ void VisitImplicitCastExpr(ImplicitCastExpr *E) {
+ if (E->getCastKind() == CK_LValueToRValue) {
+ HandleValue(E->getSubExpr(), false /*AddressOf*/);
+ return;
+ }
+
+ Inherited::VisitImplicitCastExpr(E);
+ }
+
+ void VisitCXXConstructExpr(CXXConstructExpr *E) {
+ if (E->getConstructor()->isCopyConstructor()) {
+ Expr *ArgExpr = E->getArg(0);
+ if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
+ if (ILE->getNumInits() == 1)
+ ArgExpr = ILE->getInit(0);
+ if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
+ if (ICE->getCastKind() == CK_NoOp)
+ ArgExpr = ICE->getSubExpr();
+ HandleValue(ArgExpr, false /*AddressOf*/);
+ return;
+ }
+ Inherited::VisitCXXConstructExpr(E);
+ }
+
+ void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
+ Expr *Callee = E->getCallee();
+ if (isa<MemberExpr>(Callee)) {
+ HandleValue(Callee, false /*AddressOf*/);
+ for (auto Arg : E->arguments())
+ Visit(Arg);
+ return;
+ }
+
+ Inherited::VisitCXXMemberCallExpr(E);
+ }
+
+ void VisitCallExpr(CallExpr *E) {
+ // Treat std::move as a use.
+ if (E->getNumArgs() == 1) {
+ if (FunctionDecl *FD = E->getDirectCallee()) {
+ if (FD->isInStdNamespace() && FD->getIdentifier() &&
+ FD->getIdentifier()->isStr("move")) {
+ HandleValue(E->getArg(0), false /*AddressOf*/);
+ return;
+ }
+ }
+ }
+
+ Inherited::VisitCallExpr(E);
+ }
+
+ void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
+ Expr *Callee = E->getCallee();
+
+ if (isa<UnresolvedLookupExpr>(Callee))
+ return Inherited::VisitCXXOperatorCallExpr(E);
+
+ Visit(Callee);
+ for (auto Arg : E->arguments())
+ HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/);
+ }
+
+ void VisitBinaryOperator(BinaryOperator *E) {
+ // If a field assignment is detected, remove the field from the
+ // uninitiailized field set.
+ if (E->getOpcode() == BO_Assign)
+ if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS()))
+ if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
+ if (!FD->getType()->isReferenceType())
+ DeclsToRemove.push_back(FD);
+
+ if (E->isCompoundAssignmentOp()) {
+ HandleValue(E->getLHS(), false /*AddressOf*/);
+ Visit(E->getRHS());
+ return;
+ }
+
+ Inherited::VisitBinaryOperator(E);
+ }
+
+ void VisitUnaryOperator(UnaryOperator *E) {
+ if (E->isIncrementDecrementOp()) {
+ HandleValue(E->getSubExpr(), false /*AddressOf*/);
+ return;
+ }
+ if (E->getOpcode() == UO_AddrOf) {
+ if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) {
+ HandleValue(ME->getBase(), true /*AddressOf*/);
+ return;
+ }
+ }
+
+ Inherited::VisitUnaryOperator(E);
+ }
+ };
+
+ // Diagnose value-uses of fields to initialize themselves, e.g.
+ // foo(foo)
+ // where foo is not also a parameter to the constructor.
+ // Also diagnose across field uninitialized use such as
+ // x(y), y(x)
+ // TODO: implement -Wuninitialized and fold this into that framework.
+ static void DiagnoseUninitializedFields(
+ Sema &SemaRef, const CXXConstructorDecl *Constructor) {
+
+ if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit,
+ Constructor->getLocation())) {
+ return;
+ }
+
+ if (Constructor->isInvalidDecl())
+ return;
+
+ const CXXRecordDecl *RD = Constructor->getParent();
+
+ if (RD->getDescribedClassTemplate())
+ return;
+
+ // Holds fields that are uninitialized.
+ llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields;
+
+ // At the beginning, all fields are uninitialized.
+ for (auto *I : RD->decls()) {
+ if (auto *FD = dyn_cast<FieldDecl>(I)) {
+ UninitializedFields.insert(FD);
+ } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) {
+ UninitializedFields.insert(IFD->getAnonField());
+ }
+ }
+
+ llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses;
+ for (auto I : RD->bases())
+ UninitializedBaseClasses.insert(I.getType().getCanonicalType());
+
+ if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
+ return;
+
+ UninitializedFieldVisitor UninitializedChecker(SemaRef,
+ UninitializedFields,
+ UninitializedBaseClasses);
+
+ for (const auto *FieldInit : Constructor->inits()) {
+ if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
+ break;
+
+ Expr *InitExpr = FieldInit->getInit();
+ if (!InitExpr)
+ continue;
+
+ if (CXXDefaultInitExpr *Default =
+ dyn_cast<CXXDefaultInitExpr>(InitExpr)) {
+ InitExpr = Default->getExpr();
+ if (!InitExpr)
+ continue;
+ // In class initializers will point to the constructor.
+ UninitializedChecker.CheckInitializer(InitExpr, Constructor,
+ FieldInit->getAnyMember(),
+ FieldInit->getBaseClass());
+ } else {
+ UninitializedChecker.CheckInitializer(InitExpr, nullptr,
+ FieldInit->getAnyMember(),
+ FieldInit->getBaseClass());
+ }
+ }
+ }
+} // namespace
+
+/// \brief Enter a new C++ default initializer scope. After calling this, the
+/// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if
+/// parsing or instantiating the initializer failed.
+void Sema::ActOnStartCXXInClassMemberInitializer() {
+ // Create a synthetic function scope to represent the call to the constructor
+ // that notionally surrounds a use of this initializer.
+ PushFunctionScope();
+}
+
+/// \brief This is invoked after parsing an in-class initializer for a
+/// non-static C++ class member, and after instantiating an in-class initializer
+/// in a class template. Such actions are deferred until the class is complete.
+void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D,
+ SourceLocation InitLoc,
+ Expr *InitExpr) {
+ // Pop the notional constructor scope we created earlier.
+ PopFunctionScopeInfo(nullptr, D);
+
+ FieldDecl *FD = dyn_cast<FieldDecl>(D);
+ assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) &&
+ "must set init style when field is created");
+
+ if (!InitExpr) {
+ D->setInvalidDecl();
+ if (FD)
+ FD->removeInClassInitializer();
+ return;
+ }
+
+ if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
+ FD->setInvalidDecl();
+ FD->removeInClassInitializer();
+ return;
+ }
+
+ ExprResult Init = InitExpr;
+ if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
+ InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
+ InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
+ ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
+ : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
+ InitializationSequence Seq(*this, Entity, Kind, InitExpr);
+ Init = Seq.Perform(*this, Entity, Kind, InitExpr);
+ if (Init.isInvalid()) {
+ FD->setInvalidDecl();
+ return;
+ }
+ }
+
+ // C++11 [class.base.init]p7:
+ // The initialization of each base and member constitutes a
+ // full-expression.
+ Init = ActOnFinishFullExpr(Init.get(), InitLoc);
+ if (Init.isInvalid()) {
+ FD->setInvalidDecl();
+ return;
+ }
+
+ InitExpr = Init.get();
+
+ FD->setInClassInitializer(InitExpr);
+}
+
+/// \brief Find the direct and/or virtual base specifiers that
+/// correspond to the given base type, for use in base initialization
+/// within a constructor.
+static bool FindBaseInitializer(Sema &SemaRef,
+ CXXRecordDecl *ClassDecl,
+ QualType BaseType,
+ const CXXBaseSpecifier *&DirectBaseSpec,
+ const CXXBaseSpecifier *&VirtualBaseSpec) {
+ // First, check for a direct base class.
+ DirectBaseSpec = nullptr;
+ for (const auto &Base : ClassDecl->bases()) {
+ if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) {
+ // We found a direct base of this type. That's what we're
+ // initializing.
+ DirectBaseSpec = &Base;
+ break;
+ }
+ }
+
+ // Check for a virtual base class.
+ // FIXME: We might be able to short-circuit this if we know in advance that
+ // there are no virtual bases.
+ VirtualBaseSpec = nullptr;
+ if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
+ // We haven't found a base yet; search the class hierarchy for a
+ // virtual base class.
+ CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
+ /*DetectVirtual=*/false);
+ if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
+ BaseType, Paths)) {
+ for (CXXBasePaths::paths_iterator Path = Paths.begin();
+ Path != Paths.end(); ++Path) {
+ if (Path->back().Base->isVirtual()) {
+ VirtualBaseSpec = Path->back().Base;
+ break;
+ }
+ }
+ }
+ }
+
+ return DirectBaseSpec || VirtualBaseSpec;
+}
+
+/// \brief Handle a C++ member initializer using braced-init-list syntax.
+MemInitResult
+Sema::ActOnMemInitializer(Decl *ConstructorD,
+ Scope *S,
+ CXXScopeSpec &SS,
+ IdentifierInfo *MemberOrBase,
+ ParsedType TemplateTypeTy,
+ const DeclSpec &DS,
+ SourceLocation IdLoc,
+ Expr *InitList,
+ SourceLocation EllipsisLoc) {
+ return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
+ DS, IdLoc, InitList,
+ EllipsisLoc);
+}
+
+/// \brief Handle a C++ member initializer using parentheses syntax.
+MemInitResult
+Sema::ActOnMemInitializer(Decl *ConstructorD,
+ Scope *S,
+ CXXScopeSpec &SS,
+ IdentifierInfo *MemberOrBase,
+ ParsedType TemplateTypeTy,
+ const DeclSpec &DS,
+ SourceLocation IdLoc,
+ SourceLocation LParenLoc,
+ ArrayRef<Expr *> Args,
+ SourceLocation RParenLoc,
+ SourceLocation EllipsisLoc) {
+ Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
+ Args, RParenLoc);
+ return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
+ DS, IdLoc, List, EllipsisLoc);
+}
+
+namespace {
+
+// Callback to only accept typo corrections that can be a valid C++ member
+// intializer: either a non-static field member or a base class.
+class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
+public:
+ explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
+ : ClassDecl(ClassDecl) {}
+
+ bool ValidateCandidate(const TypoCorrection &candidate) override {
+ if (NamedDecl *ND = candidate.getCorrectionDecl()) {
+ if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
+ return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
+ return isa<TypeDecl>(ND);
+ }
+ return false;
+ }
+
+private:
+ CXXRecordDecl *ClassDecl;
+};
+
+}
+
+/// \brief Handle a C++ member initializer.
+MemInitResult
+Sema::BuildMemInitializer(Decl *ConstructorD,
+ Scope *S,
+ CXXScopeSpec &SS,
+ IdentifierInfo *MemberOrBase,
+ ParsedType TemplateTypeTy,
+ const DeclSpec &DS,
+ SourceLocation IdLoc,
+ Expr *Init,
+ SourceLocation EllipsisLoc) {
+ ExprResult Res = CorrectDelayedTyposInExpr(Init);
+ if (!Res.isUsable())
+ return true;
+ Init = Res.get();
+
+ if (!ConstructorD)
+ return true;
+
+ AdjustDeclIfTemplate(ConstructorD);
+
+ CXXConstructorDecl *Constructor
+ = dyn_cast<CXXConstructorDecl>(ConstructorD);
+ if (!Constructor) {
+ // The user wrote a constructor initializer on a function that is
+ // not a C++ constructor. Ignore the error for now, because we may
+ // have more member initializers coming; we'll diagnose it just
+ // once in ActOnMemInitializers.
+ return true;
+ }
+
+ CXXRecordDecl *ClassDecl = Constructor->getParent();
+
+ // C++ [class.base.init]p2:
+ // Names in a mem-initializer-id are looked up in the scope of the
+ // constructor's class and, if not found in that scope, are looked
+ // up in the scope containing the constructor's definition.
+ // [Note: if the constructor's class contains a member with the
+ // same name as a direct or virtual base class of the class, a
+ // mem-initializer-id naming the member or base class and composed
+ // of a single identifier refers to the class member. A
+ // mem-initializer-id for the hidden base class may be specified
+ // using a qualified name. ]
+ if (!SS.getScopeRep() && !TemplateTypeTy) {
+ // Look for a member, first.
+ DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase);
+ if (!Result.empty()) {
+ ValueDecl *Member;
+ if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
+ (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) {
+ if (EllipsisLoc.isValid())
+ Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
+ << MemberOrBase
+ << SourceRange(IdLoc, Init->getSourceRange().getEnd());
+
+ return BuildMemberInitializer(Member, Init, IdLoc);
+ }
+ }
+ }
+ // It didn't name a member, so see if it names a class.
+ QualType BaseType;
+ TypeSourceInfo *TInfo = nullptr;
+
+ if (TemplateTypeTy) {
+ BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
+ } else if (DS.getTypeSpecType() == TST_decltype) {
+ BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
+ } else {
+ LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
+ LookupParsedName(R, S, &SS);
+
+ TypeDecl *TyD = R.getAsSingle<TypeDecl>();
+ if (!TyD) {
+ if (R.isAmbiguous()) return true;
+
+ // We don't want access-control diagnostics here.
+ R.suppressDiagnostics();
+
+ if (SS.isSet() && isDependentScopeSpecifier(SS)) {
+ bool NotUnknownSpecialization = false;
+ DeclContext *DC = computeDeclContext(SS, false);
+ if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
+ NotUnknownSpecialization = !Record->hasAnyDependentBases();
+
+ if (!NotUnknownSpecialization) {
+ // When the scope specifier can refer to a member of an unknown
+ // specialization, we take it as a type name.
+ BaseType = CheckTypenameType(ETK_None, SourceLocation(),
+ SS.getWithLocInContext(Context),
+ *MemberOrBase, IdLoc);
+ if (BaseType.isNull())
+ return true;
+
+ R.clear();
+ R.setLookupName(MemberOrBase);
+ }
+ }
+
+ // If no results were found, try to correct typos.
+ TypoCorrection Corr;
+ if (R.empty() && BaseType.isNull() &&
+ (Corr = CorrectTypo(
+ R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
+ llvm::make_unique<MemInitializerValidatorCCC>(ClassDecl),
+ CTK_ErrorRecovery, ClassDecl))) {
+ if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
+ // We have found a non-static data member with a similar
+ // name to what was typed; complain and initialize that
+ // member.
+ diagnoseTypo(Corr,
+ PDiag(diag::err_mem_init_not_member_or_class_suggest)
+ << MemberOrBase << true);
+ return BuildMemberInitializer(Member, Init, IdLoc);
+ } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
+ const CXXBaseSpecifier *DirectBaseSpec;
+ const CXXBaseSpecifier *VirtualBaseSpec;
+ if (FindBaseInitializer(*this, ClassDecl,
+ Context.getTypeDeclType(Type),
+ DirectBaseSpec, VirtualBaseSpec)) {
+ // We have found a direct or virtual base class with a
+ // similar name to what was typed; complain and initialize
+ // that base class.
+ diagnoseTypo(Corr,
+ PDiag(diag::err_mem_init_not_member_or_class_suggest)
+ << MemberOrBase << false,
+ PDiag() /*Suppress note, we provide our own.*/);
+
+ const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec
+ : VirtualBaseSpec;
+ Diag(BaseSpec->getLocStart(),
+ diag::note_base_class_specified_here)
+ << BaseSpec->getType()
+ << BaseSpec->getSourceRange();
+
+ TyD = Type;
+ }
+ }
+ }
+
+ if (!TyD && BaseType.isNull()) {
+ Diag(IdLoc, diag::err_mem_init_not_member_or_class)
+ << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
+ return true;
+ }
+ }
+
+ if (BaseType.isNull()) {
+ BaseType = Context.getTypeDeclType(TyD);
+ MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false);
+ if (SS.isSet())
+ // FIXME: preserve source range information
+ BaseType = Context.getElaboratedType(ETK_None, SS.getScopeRep(),
+ BaseType);
+ }
+ }
+
+ if (!TInfo)
+ TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
+
+ return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
+}
+
+/// Checks a member initializer expression for cases where reference (or
+/// pointer) members are bound to by-value parameters (or their addresses).
+static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
+ Expr *Init,
+ SourceLocation IdLoc) {
+ QualType MemberTy = Member->getType();
+
+ // We only handle pointers and references currently.
+ // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
+ if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
+ return;
+
+ const bool IsPointer = MemberTy->isPointerType();
+ if (IsPointer) {
+ if (const UnaryOperator *Op
+ = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
+ // The only case we're worried about with pointers requires taking the
+ // address.
+ if (Op->getOpcode() != UO_AddrOf)
+ return;
+
+ Init = Op->getSubExpr();
+ } else {
+ // We only handle address-of expression initializers for pointers.
+ return;
+ }
+ }
+
+ if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
+ // We only warn when referring to a non-reference parameter declaration.
+ const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
+ if (!Parameter || Parameter->getType()->isReferenceType())
+ return;
+
+ S.Diag(Init->getExprLoc(),
+ IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
+ : diag::warn_bind_ref_member_to_parameter)
+ << Member << Parameter << Init->getSourceRange();
+ } else {
+ // Other initializers are fine.
+ return;
+ }
+
+ S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
+ << (unsigned)IsPointer;
+}
+
+MemInitResult
+Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
+ SourceLocation IdLoc) {
+ FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
+ IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
+ assert((DirectMember || IndirectMember) &&
+ "Member must be a FieldDecl or IndirectFieldDecl");
+
+ if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
+ return true;
+
+ if (Member->isInvalidDecl())
+ return true;
+
+ MultiExprArg Args;
+ if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
+ Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
+ } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
+ Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
+ } else {
+ // Template instantiation doesn't reconstruct ParenListExprs for us.
+ Args = Init;
+ }
+
+ SourceRange InitRange = Init->getSourceRange();
+
+ if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
+ // Can't check initialization for a member of dependent type or when
+ // any of the arguments are type-dependent expressions.
+ DiscardCleanupsInEvaluationContext();
+ } else {
+ bool InitList = false;
+ if (isa<InitListExpr>(Init)) {
+ InitList = true;
+ Args = Init;
+ }
+
+ // Initialize the member.
+ InitializedEntity MemberEntity =
+ DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr)
+ : InitializedEntity::InitializeMember(IndirectMember,
+ nullptr);
+ InitializationKind Kind =
+ InitList ? InitializationKind::CreateDirectList(IdLoc)
+ : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
+ InitRange.getEnd());
+
+ InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
+ ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args,
+ nullptr);
+ if (MemberInit.isInvalid())
+ return true;
+
+ CheckForDanglingReferenceOrPointer(*this, Member, MemberInit.get(), IdLoc);
+
+ // C++11 [class.base.init]p7:
+ // The initialization of each base and member constitutes a
+ // full-expression.
+ MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin());
+ if (MemberInit.isInvalid())
+ return true;
+
+ Init = MemberInit.get();
+ }
+
+ if (DirectMember) {
+ return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
+ InitRange.getBegin(), Init,
+ InitRange.getEnd());
+ } else {
+ return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
+ InitRange.getBegin(), Init,
+ InitRange.getEnd());
+ }
+}
+
+MemInitResult
+Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
+ CXXRecordDecl *ClassDecl) {
+ SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
+ if (!LangOpts.CPlusPlus11)
+ return Diag(NameLoc, diag::err_delegating_ctor)
+ << TInfo->getTypeLoc().getLocalSourceRange();
+ Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
+
+ bool InitList = true;
+ MultiExprArg Args = Init;
+ if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
+ InitList = false;
+ Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
+ }
+
+ SourceRange InitRange = Init->getSourceRange();
+ // Initialize the object.
+ InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
+ QualType(ClassDecl->getTypeForDecl(), 0));
+ InitializationKind Kind =
+ InitList ? InitializationKind::CreateDirectList(NameLoc)
+ : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
+ InitRange.getEnd());
+ InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
+ ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
+ Args, nullptr);
+ if (DelegationInit.isInvalid())
+ return true;
+
+ assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
+ "Delegating constructor with no target?");
+
+ // C++11 [class.base.init]p7:
+ // The initialization of each base and member constitutes a
+ // full-expression.
+ DelegationInit = ActOnFinishFullExpr(DelegationInit.get(),
+ InitRange.getBegin());
+ if (DelegationInit.isInvalid())
+ return true;
+
+ // If we are in a dependent context, template instantiation will
+ // perform this type-checking again. Just save the arguments that we
+ // received in a ParenListExpr.
+ // FIXME: This isn't quite ideal, since our ASTs don't capture all
+ // of the information that we have about the base
+ // initializer. However, deconstructing the ASTs is a dicey process,
+ // and this approach is far more likely to get the corner cases right.
+ if (CurContext->isDependentContext())
+ DelegationInit = Init;
+
+ return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
+ DelegationInit.getAs<Expr>(),
+ InitRange.getEnd());
+}
+
+MemInitResult
+Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
+ Expr *Init, CXXRecordDecl *ClassDecl,
+ SourceLocation EllipsisLoc) {
+ SourceLocation BaseLoc
+ = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
+
+ if (!BaseType->isDependentType() && !BaseType->isRecordType())
+ return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
+ << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
+
+ // C++ [class.base.init]p2:
+ // [...] Unless the mem-initializer-id names a nonstatic data
+ // member of the constructor's class or a direct or virtual base
+ // of that class, the mem-initializer is ill-formed. A
+ // mem-initializer-list can initialize a base class using any
+ // name that denotes that base class type.
+ bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
+
+ SourceRange InitRange = Init->getSourceRange();
+ if (EllipsisLoc.isValid()) {
+ // This is a pack expansion.
+ if (!BaseType->containsUnexpandedParameterPack()) {
+ Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
+ << SourceRange(BaseLoc, InitRange.getEnd());
+
+ EllipsisLoc = SourceLocation();
+ }
+ } else {
+ // Check for any unexpanded parameter packs.
+ if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
+ return true;
+
+ if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
+ return true;
+ }
+
+ // Check for direct and virtual base classes.
+ const CXXBaseSpecifier *DirectBaseSpec = nullptr;
+ const CXXBaseSpecifier *VirtualBaseSpec = nullptr;
+ if (!Dependent) {
+ if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
+ BaseType))
+ return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
+
+ FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
+ VirtualBaseSpec);
+
+ // C++ [base.class.init]p2:
+ // Unless the mem-initializer-id names a nonstatic data member of the
+ // constructor's class or a direct or virtual base of that class, the
+ // mem-initializer is ill-formed.
+ if (!DirectBaseSpec && !VirtualBaseSpec) {
+ // If the class has any dependent bases, then it's possible that
+ // one of those types will resolve to the same type as
+ // BaseType. Therefore, just treat this as a dependent base
+ // class initialization. FIXME: Should we try to check the
+ // initialization anyway? It seems odd.
+ if (ClassDecl->hasAnyDependentBases())
+ Dependent = true;
+ else
+ return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
+ << BaseType << Context.getTypeDeclType(ClassDecl)
+ << BaseTInfo->getTypeLoc().getLocalSourceRange();
+ }
+ }
+
+ if (Dependent) {
+ DiscardCleanupsInEvaluationContext();
+
+ return new (Context) CXXCtorInitializer(Context, BaseTInfo,
+ /*IsVirtual=*/false,
+ InitRange.getBegin(), Init,
+ InitRange.getEnd(), EllipsisLoc);
+ }
+
+ // C++ [base.class.init]p2:
+ // If a mem-initializer-id is ambiguous because it designates both
+ // a direct non-virtual base class and an inherited virtual base
+ // class, the mem-initializer is ill-formed.
+ if (DirectBaseSpec && VirtualBaseSpec)
+ return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
+ << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
+
+ const CXXBaseSpecifier *BaseSpec = DirectBaseSpec;
+ if (!BaseSpec)
+ BaseSpec = VirtualBaseSpec;
+
+ // Initialize the base.
+ bool InitList = true;
+ MultiExprArg Args = Init;
+ if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
+ InitList = false;
+ Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
+ }
+
+ InitializedEntity BaseEntity =
+ InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
+ InitializationKind Kind =
+ InitList ? InitializationKind::CreateDirectList(BaseLoc)
+ : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
+ InitRange.getEnd());
+ InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
+ ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr);
+ if (BaseInit.isInvalid())
+ return true;
+
+ // C++11 [class.base.init]p7:
+ // The initialization of each base and member constitutes a
+ // full-expression.
+ BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin());
+ if (BaseInit.isInvalid())
+ return true;
+
+ // If we are in a dependent context, template instantiation will
+ // perform this type-checking again. Just save the arguments that we
+ // received in a ParenListExpr.
+ // FIXME: This isn't quite ideal, since our ASTs don't capture all
+ // of the information that we have about the base
+ // initializer. However, deconstructing the ASTs is a dicey process,
+ // and this approach is far more likely to get the corner cases right.
+ if (CurContext->isDependentContext())
+ BaseInit = Init;
+
+ return new (Context) CXXCtorInitializer(Context, BaseTInfo,
+ BaseSpec->isVirtual(),
+ InitRange.getBegin(),
+ BaseInit.getAs<Expr>(),
+ InitRange.getEnd(), EllipsisLoc);
+}
+
+// Create a static_cast\<T&&>(expr).
+static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
+ if (T.isNull()) T = E->getType();
+ QualType TargetType = SemaRef.BuildReferenceType(
+ T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
+ SourceLocation ExprLoc = E->getLocStart();
+ TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
+ TargetType, ExprLoc);
+
+ return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
+ SourceRange(ExprLoc, ExprLoc),
+ E->getSourceRange()).get();
+}
+
+/// ImplicitInitializerKind - How an implicit base or member initializer should
+/// initialize its base or member.
+enum ImplicitInitializerKind {
+ IIK_Default,
+ IIK_Copy,
+ IIK_Move,
+ IIK_Inherit
+};
+
+static bool
+BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
+ ImplicitInitializerKind ImplicitInitKind,
+ CXXBaseSpecifier *BaseSpec,
+ bool IsInheritedVirtualBase,
+ CXXCtorInitializer *&CXXBaseInit) {
+ InitializedEntity InitEntity
+ = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
+ IsInheritedVirtualBase);
+
+ ExprResult BaseInit;
+
+ switch (ImplicitInitKind) {
+ case IIK_Inherit: {
+ const CXXRecordDecl *Inherited =
+ Constructor->getInheritedConstructor()->getParent();
+ const CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
+ if (Base && Inherited->getCanonicalDecl() == Base->getCanonicalDecl()) {
+ // C++11 [class.inhctor]p8:
+ // Each expression in the expression-list is of the form
+ // static_cast<T&&>(p), where p is the name of the corresponding
+ // constructor parameter and T is the declared type of p.
+ SmallVector<Expr*, 16> Args;
+ for (unsigned I = 0, E = Constructor->getNumParams(); I != E; ++I) {
+ ParmVarDecl *PD = Constructor->getParamDecl(I);
+ ExprResult ArgExpr =
+ SemaRef.BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(),
+ VK_LValue, SourceLocation());
+ if (ArgExpr.isInvalid())
+ return true;
+ Args.push_back(CastForMoving(SemaRef, ArgExpr.get(), PD->getType()));
+ }
+
+ InitializationKind InitKind = InitializationKind::CreateDirect(
+ Constructor->getLocation(), SourceLocation(), SourceLocation());
+ InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, Args);
+ BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, Args);
+ break;
+ }
+ }
+ // Fall through.
+ case IIK_Default: {
+ InitializationKind InitKind
+ = InitializationKind::CreateDefault(Constructor->getLocation());
+ InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
+ BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
+ break;
+ }
+
+ case IIK_Move:
+ case IIK_Copy: {
+ bool Moving = ImplicitInitKind == IIK_Move;
+ ParmVarDecl *Param = Constructor->getParamDecl(0);
+ QualType ParamType = Param->getType().getNonReferenceType();
+
+ Expr *CopyCtorArg =
+ DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
+ SourceLocation(), Param, false,
+ Constructor->getLocation(), ParamType,
+ VK_LValue, nullptr);
+
+ SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
+
+ // Cast to the base class to avoid ambiguities.
+ QualType ArgTy =
+ SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
+ ParamType.getQualifiers());
+
+ if (Moving) {
+ CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
+ }
+
+ CXXCastPath BasePath;
+ BasePath.push_back(BaseSpec);
+ CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
+ CK_UncheckedDerivedToBase,
+ Moving ? VK_XValue : VK_LValue,
+ &BasePath).get();
+
+ InitializationKind InitKind
+ = InitializationKind::CreateDirect(Constructor->getLocation(),
+ SourceLocation(), SourceLocation());
+ InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
+ BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
+ break;
+ }
+ }
+
+ BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
+ if (BaseInit.isInvalid())
+ return true;
+
+ CXXBaseInit =
+ new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
+ SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
+ SourceLocation()),
+ BaseSpec->isVirtual(),
+ SourceLocation(),
+ BaseInit.getAs<Expr>(),
+ SourceLocation(),
+ SourceLocation());
+
+ return false;
+}
+
+static bool RefersToRValueRef(Expr *MemRef) {
+ ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
+ return Referenced->getType()->isRValueReferenceType();
+}
+
+static bool
+BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
+ ImplicitInitializerKind ImplicitInitKind,
+ FieldDecl *Field, IndirectFieldDecl *Indirect,
+ CXXCtorInitializer *&CXXMemberInit) {
+ if (Field->isInvalidDecl())
+ return true;
+
+ SourceLocation Loc = Constructor->getLocation();
+
+ if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
+ bool Moving = ImplicitInitKind == IIK_Move;
+ ParmVarDecl *Param = Constructor->getParamDecl(0);
+ QualType ParamType = Param->getType().getNonReferenceType();
+
+ // Suppress copying zero-width bitfields.
+ if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
+ return false;
+
+ Expr *MemberExprBase =
+ DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
+ SourceLocation(), Param, false,
+ Loc, ParamType, VK_LValue, nullptr);
+
+ SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
+
+ if (Moving) {
+ MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
+ }
+
+ // Build a reference to this field within the parameter.
+ CXXScopeSpec SS;
+ LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
+ Sema::LookupMemberName);
+ MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
+ : cast<ValueDecl>(Field), AS_public);
+ MemberLookup.resolveKind();
+ ExprResult CtorArg
+ = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
+ ParamType, Loc,
+ /*IsArrow=*/false,
+ SS,
+ /*TemplateKWLoc=*/SourceLocation(),
+ /*FirstQualifierInScope=*/nullptr,
+ MemberLookup,
+ /*TemplateArgs=*/nullptr);
+ if (CtorArg.isInvalid())
+ return true;
+
+ // C++11 [class.copy]p15:
+ // - if a member m has rvalue reference type T&&, it is direct-initialized
+ // with static_cast<T&&>(x.m);
+ if (RefersToRValueRef(CtorArg.get())) {
+ CtorArg = CastForMoving(SemaRef, CtorArg.get());
+ }
+
+ // When the field we are copying is an array, create index variables for
+ // each dimension of the array. We use these index variables to subscript
+ // the source array, and other clients (e.g., CodeGen) will perform the
+ // necessary iteration with these index variables.
+ SmallVector<VarDecl *, 4> IndexVariables;
+ QualType BaseType = Field->getType();
+ QualType SizeType = SemaRef.Context.getSizeType();
+ bool InitializingArray = false;
+ while (const ConstantArrayType *Array
+ = SemaRef.Context.getAsConstantArrayType(BaseType)) {
+ InitializingArray = true;
+ // Create the iteration variable for this array index.
+ IdentifierInfo *IterationVarName = nullptr;
+ {
+ SmallString<8> Str;
+ llvm::raw_svector_ostream OS(Str);
+ OS << "__i" << IndexVariables.size();
+ IterationVarName = &SemaRef.Context.Idents.get(OS.str());
+ }
+ VarDecl *IterationVar
+ = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
+ IterationVarName, SizeType,
+ SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
+ SC_None);
+ IndexVariables.push_back(IterationVar);
+
+ // Create a reference to the iteration variable.
+ ExprResult IterationVarRef
+ = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
+ assert(!IterationVarRef.isInvalid() &&
+ "Reference to invented variable cannot fail!");
+ IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.get());
+ assert(!IterationVarRef.isInvalid() &&
+ "Conversion of invented variable cannot fail!");
+
+ // Subscript the array with this iteration variable.
+ CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.get(), Loc,
+ IterationVarRef.get(),
+ Loc);
+ if (CtorArg.isInvalid())
+ return true;
+
+ BaseType = Array->getElementType();
+ }
+
+ // The array subscript expression is an lvalue, which is wrong for moving.
+ if (Moving && InitializingArray)
+ CtorArg = CastForMoving(SemaRef, CtorArg.get());
+
+ // Construct the entity that we will be initializing. For an array, this
+ // will be first element in the array, which may require several levels
+ // of array-subscript entities.
+ SmallVector<InitializedEntity, 4> Entities;
+ Entities.reserve(1 + IndexVariables.size());
+ if (Indirect)
+ Entities.push_back(InitializedEntity::InitializeMember(Indirect));
+ else
+ Entities.push_back(InitializedEntity::InitializeMember(Field));
+ for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
+ Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
+ 0,
+ Entities.back()));
+
+ // Direct-initialize to use the copy constructor.
+ InitializationKind InitKind =
+ InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
+
+ Expr *CtorArgE = CtorArg.getAs<Expr>();
+ InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
+ CtorArgE);
+
+ ExprResult MemberInit
+ = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
+ MultiExprArg(&CtorArgE, 1));
+ MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
+ if (MemberInit.isInvalid())
+ return true;
+
+ if (Indirect) {
+ assert(IndexVariables.size() == 0 &&
+ "Indirect field improperly initialized");
+ CXXMemberInit
+ = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
+ Loc, Loc,
+ MemberInit.getAs<Expr>(),
+ Loc);
+ } else
+ CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
+ Loc, MemberInit.getAs<Expr>(),
+ Loc,
+ IndexVariables.data(),
+ IndexVariables.size());
+ return false;
+ }
+
+ assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&
+ "Unhandled implicit init kind!");
+
+ QualType FieldBaseElementType =
+ SemaRef.Context.getBaseElementType(Field->getType());
+
+ if (FieldBaseElementType->isRecordType()) {
+ InitializedEntity InitEntity
+ = Indirect? InitializedEntity::InitializeMember(Indirect)
+ : InitializedEntity::InitializeMember(Field);
+ InitializationKind InitKind =
+ InitializationKind::CreateDefault(Loc);
+
+ InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
+ ExprResult MemberInit =
+ InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
+
+ MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
+ if (MemberInit.isInvalid())
+ return true;
+
+ if (Indirect)
+ CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
+ Indirect, Loc,
+ Loc,
+ MemberInit.get(),
+ Loc);
+ else
+ CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
+ Field, Loc, Loc,
+ MemberInit.get(),
+ Loc);
+ return false;
+ }
+
+ if (!Field->getParent()->isUnion()) {
+ if (FieldBaseElementType->isReferenceType()) {
+ SemaRef.Diag(Constructor->getLocation(),
+ diag::err_uninitialized_member_in_ctor)
+ << (int)Constructor->isImplicit()
+ << SemaRef.Context.getTagDeclType(Constructor->getParent())
+ << 0 << Field->getDeclName();
+ SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
+ return true;
+ }
+
+ if (FieldBaseElementType.isConstQualified()) {
+ SemaRef.Diag(Constructor->getLocation(),
+ diag::err_uninitialized_member_in_ctor)
+ << (int)Constructor->isImplicit()
+ << SemaRef.Context.getTagDeclType(Constructor->getParent())
+ << 1 << Field->getDeclName();
+ SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
+ return true;
+ }
+ }
+
+ if (SemaRef.getLangOpts().ObjCAutoRefCount &&
+ FieldBaseElementType->isObjCRetainableType() &&
+ FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
+ FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
+ // ARC:
+ // Default-initialize Objective-C pointers to NULL.
+ CXXMemberInit
+ = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
+ Loc, Loc,
+ new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
+ Loc);
+ return false;
+ }
+
+ // Nothing to initialize.
+ CXXMemberInit = nullptr;
+ return false;
+}
+
+namespace {
+struct BaseAndFieldInfo {
+ Sema &S;
+ CXXConstructorDecl *Ctor;
+ bool AnyErrorsInInits;
+ ImplicitInitializerKind IIK;
+ llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
+ SmallVector<CXXCtorInitializer*, 8> AllToInit;
+ llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember;
+
+ BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
+ : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
+ bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
+ if (Generated && Ctor->isCopyConstructor())
+ IIK = IIK_Copy;
+ else if (Generated && Ctor->isMoveConstructor())
+ IIK = IIK_Move;
+ else if (Ctor->getInheritedConstructor())
+ IIK = IIK_Inherit;
+ else
+ IIK = IIK_Default;
+ }
+
+ bool isImplicitCopyOrMove() const {
+ switch (IIK) {
+ case IIK_Copy:
+ case IIK_Move:
+ return true;
+
+ case IIK_Default:
+ case IIK_Inherit:
+ return false;
+ }
+
+ llvm_unreachable("Invalid ImplicitInitializerKind!");
+ }
+
+ bool addFieldInitializer(CXXCtorInitializer *Init) {
+ AllToInit.push_back(Init);
+
+ // Check whether this initializer makes the field "used".
+ if (Init->getInit()->HasSideEffects(S.Context))
+ S.UnusedPrivateFields.remove(Init->getAnyMember());
+
+ return false;
+ }
+
+ bool isInactiveUnionMember(FieldDecl *Field) {
+ RecordDecl *Record = Field->getParent();
+ if (!Record->isUnion())
+ return false;
+
+ if (FieldDecl *Active =
+ ActiveUnionMember.lookup(Record->getCanonicalDecl()))
+ return Active != Field->getCanonicalDecl();
+
+ // In an implicit copy or move constructor, ignore any in-class initializer.
+ if (isImplicitCopyOrMove())
+ return true;
+
+ // If there's no explicit initialization, the field is active only if it
+ // has an in-class initializer...
+ if (Field->hasInClassInitializer())
+ return false;
+ // ... or it's an anonymous struct or union whose class has an in-class
+ // initializer.
+ if (!Field->isAnonymousStructOrUnion())
+ return true;
+ CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl();
+ return !FieldRD->hasInClassInitializer();
+ }
+
+ /// \brief Determine whether the given field is, or is within, a union member
+ /// that is inactive (because there was an initializer given for a different
+ /// member of the union, or because the union was not initialized at all).
+ bool isWithinInactiveUnionMember(FieldDecl *Field,
+ IndirectFieldDecl *Indirect) {
+ if (!Indirect)
+ return isInactiveUnionMember(Field);
+
+ for (auto *C : Indirect->chain()) {
+ FieldDecl *Field = dyn_cast<FieldDecl>(C);
+ if (Field && isInactiveUnionMember(Field))
+ return true;
+ }
+ return false;
+ }
+};
+}
+
+/// \brief Determine whether the given type is an incomplete or zero-lenfgth
+/// array type.
+static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
+ if (T->isIncompleteArrayType())
+ return true;
+
+ while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
+ if (!ArrayT->getSize())
+ return true;
+
+ T = ArrayT->getElementType();
+ }
+
+ return false;
+}
+
+static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
+ FieldDecl *Field,
+ IndirectFieldDecl *Indirect = nullptr) {
+ if (Field->isInvalidDecl())
+ return false;
+
+ // Overwhelmingly common case: we have a direct initializer for this field.
+ if (CXXCtorInitializer *Init =
+ Info.AllBaseFields.lookup(Field->getCanonicalDecl()))
+ return Info.addFieldInitializer(Init);
+
+ // C++11 [class.base.init]p8:
+ // if the entity is a non-static data member that has a
+ // brace-or-equal-initializer and either
+ // -- the constructor's class is a union and no other variant member of that
+ // union is designated by a mem-initializer-id or
+ // -- the constructor's class is not a union, and, if the entity is a member
+ // of an anonymous union, no other member of that union is designated by
+ // a mem-initializer-id,
+ // the entity is initialized as specified in [dcl.init].
+ //
+ // We also apply the same rules to handle anonymous structs within anonymous
+ // unions.
+ if (Info.isWithinInactiveUnionMember(Field, Indirect))
+ return false;
+
+ if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
+ ExprResult DIE =
+ SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field);
+ if (DIE.isInvalid())
+ return true;
+ CXXCtorInitializer *Init;
+ if (Indirect)
+ Init = new (SemaRef.Context)
+ CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(),
+ SourceLocation(), DIE.get(), SourceLocation());
+ else
+ Init = new (SemaRef.Context)
+ CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(),
+ SourceLocation(), DIE.get(), SourceLocation());
+ return Info.addFieldInitializer(Init);
+ }
+
+ // Don't initialize incomplete or zero-length arrays.
+ if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
+ return false;
+
+ // Don't try to build an implicit initializer if there were semantic
+ // errors in any of the initializers (and therefore we might be
+ // missing some that the user actually wrote).
+ if (Info.AnyErrorsInInits)
+ return false;
+
+ CXXCtorInitializer *Init = nullptr;
+ if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
+ Indirect, Init))
+ return true;
+
+ if (!Init)
+ return false;
+
+ return Info.addFieldInitializer(Init);
+}
+
+bool
+Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
+ CXXCtorInitializer *Initializer) {
+ assert(Initializer->isDelegatingInitializer());
+ Constructor->setNumCtorInitializers(1);
+ CXXCtorInitializer **initializer =
+ new (Context) CXXCtorInitializer*[1];
+ memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
+ Constructor->setCtorInitializers(initializer);
+
+ if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
+ MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
+ DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
+ }
+
+ DelegatingCtorDecls.push_back(Constructor);
+
+ DiagnoseUninitializedFields(*this, Constructor);
+
+ return false;
+}
+
+bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
+ ArrayRef<CXXCtorInitializer *> Initializers) {
+ if (Constructor->isDependentContext()) {
+ // Just store the initializers as written, they will be checked during
+ // instantiation.
+ if (!Initializers.empty()) {
+ Constructor->setNumCtorInitializers(Initializers.size());
+ CXXCtorInitializer **baseOrMemberInitializers =
+ new (Context) CXXCtorInitializer*[Initializers.size()];
+ memcpy(baseOrMemberInitializers, Initializers.data(),
+ Initializers.size() * sizeof(CXXCtorInitializer*));
+ Constructor->setCtorInitializers(baseOrMemberInitializers);
+ }
+
+ // Let template instantiation know whether we had errors.
+ if (AnyErrors)
+ Constructor->setInvalidDecl();
+
+ return false;
+ }
+
+ BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
+
+ // We need to build the initializer AST according to order of construction
+ // and not what user specified in the Initializers list.
+ CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
+ if (!ClassDecl)
+ return true;
+
+ bool HadError = false;
+
+ for (unsigned i = 0; i < Initializers.size(); i++) {
+ CXXCtorInitializer *Member = Initializers[i];
+
+ if (Member->isBaseInitializer())
+ Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
+ else {
+ Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member;
+
+ if (IndirectFieldDecl *F = Member->getIndirectMember()) {
+ for (auto *C : F->chain()) {
+ FieldDecl *FD = dyn_cast<FieldDecl>(C);
+ if (FD && FD->getParent()->isUnion())
+ Info.ActiveUnionMember.insert(std::make_pair(
+ FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
+ }
+ } else if (FieldDecl *FD = Member->getMember()) {
+ if (FD->getParent()->isUnion())
+ Info.ActiveUnionMember.insert(std::make_pair(
+ FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
+ }
+ }
+ }
+
+ // Keep track of the direct virtual bases.
+ llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
+ for (auto &I : ClassDecl->bases()) {
+ if (I.isVirtual())
+ DirectVBases.insert(&I);
+ }
+
+ // Push virtual bases before others.
+ for (auto &VBase : ClassDecl->vbases()) {
+ if (CXXCtorInitializer *Value
+ = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) {
+ // [class.base.init]p7, per DR257:
+ // A mem-initializer where the mem-initializer-id names a virtual base
+ // class is ignored during execution of a constructor of any class that
+ // is not the most derived class.
+ if (ClassDecl->isAbstract()) {
+ // FIXME: Provide a fixit to remove the base specifier. This requires
+ // tracking the location of the associated comma for a base specifier.
+ Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored)
+ << VBase.getType() << ClassDecl;
+ DiagnoseAbstractType(ClassDecl);
+ }
+
+ Info.AllToInit.push_back(Value);
+ } else if (!AnyErrors && !ClassDecl->isAbstract()) {
+ // [class.base.init]p8, per DR257:
+ // If a given [...] base class is not named by a mem-initializer-id
+ // [...] and the entity is not a virtual base class of an abstract
+ // class, then [...] the entity is default-initialized.
+ bool IsInheritedVirtualBase = !DirectVBases.count(&VBase);
+ CXXCtorInitializer *CXXBaseInit;
+ if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
+ &VBase, IsInheritedVirtualBase,
+ CXXBaseInit)) {
+ HadError = true;
+ continue;
+ }
+
+ Info.AllToInit.push_back(CXXBaseInit);
+ }
+ }
+
+ // Non-virtual bases.
+ for (auto &Base : ClassDecl->bases()) {
+ // Virtuals are in the virtual base list and already constructed.
+ if (Base.isVirtual())
+ continue;
+
+ if (CXXCtorInitializer *Value
+ = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) {
+ Info.AllToInit.push_back(Value);
+ } else if (!AnyErrors) {
+ CXXCtorInitializer *CXXBaseInit;
+ if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
+ &Base, /*IsInheritedVirtualBase=*/false,
+ CXXBaseInit)) {
+ HadError = true;
+ continue;
+ }
+
+ Info.AllToInit.push_back(CXXBaseInit);
+ }
+ }
+
+ // Fields.
+ for (auto *Mem : ClassDecl->decls()) {
+ if (auto *F = dyn_cast<FieldDecl>(Mem)) {
+ // C++ [class.bit]p2:
+ // A declaration for a bit-field that omits the identifier declares an
+ // unnamed bit-field. Unnamed bit-fields are not members and cannot be
+ // initialized.
+ if (F->isUnnamedBitfield())
+ continue;
+
+ // If we're not generating the implicit copy/move constructor, then we'll
+ // handle anonymous struct/union fields based on their individual
+ // indirect fields.
+ if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
+ continue;
+
+ if (CollectFieldInitializer(*this, Info, F))
+ HadError = true;
+ continue;
+ }
+
+ // Beyond this point, we only consider default initialization.
+ if (Info.isImplicitCopyOrMove())
+ continue;
+
+ if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) {
+ if (F->getType()->isIncompleteArrayType()) {
+ assert(ClassDecl->hasFlexibleArrayMember() &&
+ "Incomplete array type is not valid");
+ continue;
+ }
+
+ // Initialize each field of an anonymous struct individually.
+ if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
+ HadError = true;
+
+ continue;
+ }
+ }
+
+ unsigned NumInitializers = Info.AllToInit.size();
+ if (NumInitializers > 0) {
+ Constructor->setNumCtorInitializers(NumInitializers);
+ CXXCtorInitializer **baseOrMemberInitializers =
+ new (Context) CXXCtorInitializer*[NumInitializers];
+ memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
+ NumInitializers * sizeof(CXXCtorInitializer*));
+ Constructor->setCtorInitializers(baseOrMemberInitializers);
+
+ // Constructors implicitly reference the base and member
+ // destructors.
+ MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
+ Constructor->getParent());
+ }
+
+ return HadError;
+}
+
+static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
+ if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
+ const RecordDecl *RD = RT->getDecl();
+ if (RD->isAnonymousStructOrUnion()) {
+ for (auto *Field : RD->fields())
+ PopulateKeysForFields(Field, IdealInits);
+ return;
+ }
+ }
+ IdealInits.push_back(Field->getCanonicalDecl());
+}
+
+static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
+ return Context.getCanonicalType(BaseType).getTypePtr();
+}
+
+static const void *GetKeyForMember(ASTContext &Context,
+ CXXCtorInitializer *Member) {
+ if (!Member->isAnyMemberInitializer())
+ return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
+
+ return Member->getAnyMember()->getCanonicalDecl();
+}
+
+static void DiagnoseBaseOrMemInitializerOrder(
+ Sema &SemaRef, const CXXConstructorDecl *Constructor,
+ ArrayRef<CXXCtorInitializer *> Inits) {
+ if (Constructor->getDeclContext()->isDependentContext())
+ return;
+
+ // Don't check initializers order unless the warning is enabled at the
+ // location of at least one initializer.
+ bool ShouldCheckOrder = false;
+ for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
+ CXXCtorInitializer *Init = Inits[InitIndex];
+ if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order,
+ Init->getSourceLocation())) {
+ ShouldCheckOrder = true;
+ break;
+ }
+ }
+ if (!ShouldCheckOrder)
+ return;
+
+ // Build the list of bases and members in the order that they'll
+ // actually be initialized. The explicit initializers should be in
+ // this same order but may be missing things.
+ SmallVector<const void*, 32> IdealInitKeys;
+
+ const CXXRecordDecl *ClassDecl = Constructor->getParent();
+
+ // 1. Virtual bases.
+ for (const auto &VBase : ClassDecl->vbases())
+ IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType()));
+
+ // 2. Non-virtual bases.
+ for (const auto &Base : ClassDecl->bases()) {
+ if (Base.isVirtual())
+ continue;
+ IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType()));
+ }
+
+ // 3. Direct fields.
+ for (auto *Field : ClassDecl->fields()) {
+ if (Field->isUnnamedBitfield())
+ continue;
+
+ PopulateKeysForFields(Field, IdealInitKeys);
+ }
+
+ unsigned NumIdealInits = IdealInitKeys.size();
+ unsigned IdealIndex = 0;
+
+ CXXCtorInitializer *PrevInit = nullptr;
+ for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
+ CXXCtorInitializer *Init = Inits[InitIndex];
+ const void *InitKey = GetKeyForMember(SemaRef.Context, Init);
+
+ // Scan forward to try to find this initializer in the idealized
+ // initializers list.
+ for (; IdealIndex != NumIdealInits; ++IdealIndex)
+ if (InitKey == IdealInitKeys[IdealIndex])
+ break;
+
+ // If we didn't find this initializer, it must be because we
+ // scanned past it on a previous iteration. That can only
+ // happen if we're out of order; emit a warning.
+ if (IdealIndex == NumIdealInits && PrevInit) {
+ Sema::SemaDiagnosticBuilder D =
+ SemaRef.Diag(PrevInit->getSourceLocation(),
+ diag::warn_initializer_out_of_order);
+
+ if (PrevInit->isAnyMemberInitializer())
+ D << 0 << PrevInit->getAnyMember()->getDeclName();
+ else
+ D << 1 << PrevInit->getTypeSourceInfo()->getType();
+
+ if (Init->isAnyMemberInitializer())
+ D << 0 << Init->getAnyMember()->getDeclName();
+ else
+ D << 1 << Init->getTypeSourceInfo()->getType();
+
+ // Move back to the initializer's location in the ideal list.
+ for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
+ if (InitKey == IdealInitKeys[IdealIndex])
+ break;
+
+ assert(IdealIndex != NumIdealInits &&
+ "initializer not found in initializer list");
+ }
+
+ PrevInit = Init;
+ }
+}
+
+namespace {
+bool CheckRedundantInit(Sema &S,
+ CXXCtorInitializer *Init,
+ CXXCtorInitializer *&PrevInit) {
+ if (!PrevInit) {
+ PrevInit = Init;
+ return false;
+ }
+
+ if (FieldDecl *Field = Init->getAnyMember())
+ S.Diag(Init->getSourceLocation(),
+ diag::err_multiple_mem_initialization)
+ << Field->getDeclName()
+ << Init->getSourceRange();
+ else {
+ const Type *BaseClass = Init->getBaseClass();
+ assert(BaseClass && "neither field nor base");
+ S.Diag(Init->getSourceLocation(),
+ diag::err_multiple_base_initialization)
+ << QualType(BaseClass, 0)
+ << Init->getSourceRange();
+ }
+ S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
+ << 0 << PrevInit->getSourceRange();
+
+ return true;
+}
+
+typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
+typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
+
+bool CheckRedundantUnionInit(Sema &S,
+ CXXCtorInitializer *Init,
+ RedundantUnionMap &Unions) {
+ FieldDecl *Field = Init->getAnyMember();
+ RecordDecl *Parent = Field->getParent();
+ NamedDecl *Child = Field;
+
+ while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
+ if (Parent->isUnion()) {
+ UnionEntry &En = Unions[Parent];
+ if (En.first && En.first != Child) {
+ S.Diag(Init->getSourceLocation(),
+ diag::err_multiple_mem_union_initialization)
+ << Field->getDeclName()
+ << Init->getSourceRange();
+ S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
+ << 0 << En.second->getSourceRange();
+ return true;
+ }
+ if (!En.first) {
+ En.first = Child;
+ En.second = Init;
+ }
+ if (!Parent->isAnonymousStructOrUnion())
+ return false;
+ }
+
+ Child = Parent;
+ Parent = cast<RecordDecl>(Parent->getDeclContext());
+ }
+
+ return false;
+}
+}
+
+/// ActOnMemInitializers - Handle the member initializers for a constructor.
+void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
+ SourceLocation ColonLoc,
+ ArrayRef<CXXCtorInitializer*> MemInits,
+ bool AnyErrors) {
+ if (!ConstructorDecl)
+ return;
+
+ AdjustDeclIfTemplate(ConstructorDecl);
+
+ CXXConstructorDecl *Constructor
+ = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
+
+ if (!Constructor) {
+ Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
+ return;
+ }
+
+ // Mapping for the duplicate initializers check.
+ // For member initializers, this is keyed with a FieldDecl*.
+ // For base initializers, this is keyed with a Type*.
+ llvm::DenseMap<const void *, CXXCtorInitializer *> Members;
+
+ // Mapping for the inconsistent anonymous-union initializers check.
+ RedundantUnionMap MemberUnions;
+
+ bool HadError = false;
+ for (unsigned i = 0; i < MemInits.size(); i++) {
+ CXXCtorInitializer *Init = MemInits[i];
+
+ // Set the source order index.
+ Init->setSourceOrder(i);
+
+ if (Init->isAnyMemberInitializer()) {
+ const void *Key = GetKeyForMember(Context, Init);
+ if (CheckRedundantInit(*this, Init, Members[Key]) ||
+ CheckRedundantUnionInit(*this, Init, MemberUnions))
+ HadError = true;
+ } else if (Init->isBaseInitializer()) {
+ const void *Key = GetKeyForMember(Context, Init);
+ if (CheckRedundantInit(*this, Init, Members[Key]))
+ HadError = true;
+ } else {
+ assert(Init->isDelegatingInitializer());
+ // This must be the only initializer
+ if (MemInits.size() != 1) {
+ Diag(Init->getSourceLocation(),
+ diag::err_delegating_initializer_alone)
+ << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
+ // We will treat this as being the only initializer.
+ }
+ SetDelegatingInitializer(Constructor, MemInits[i]);
+ // Return immediately as the initializer is set.
+ return;
+ }
+ }
+
+ if (HadError)
+ return;
+
+ DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
+
+ SetCtorInitializers(Constructor, AnyErrors, MemInits);
+
+ DiagnoseUninitializedFields(*this, Constructor);
+}
+
+void
+Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
+ CXXRecordDecl *ClassDecl) {
+ // Ignore dependent contexts. Also ignore unions, since their members never
+ // have destructors implicitly called.
+ if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
+ return;
+
+ // FIXME: all the access-control diagnostics are positioned on the
+ // field/base declaration. That's probably good; that said, the
+ // user might reasonably want to know why the destructor is being
+ // emitted, and we currently don't say.
+
+ // Non-static data members.
+ for (auto *Field : ClassDecl->fields()) {
+ if (Field->isInvalidDecl())
+ continue;
+
+ // Don't destroy incomplete or zero-length arrays.
+ if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
+ continue;
+
+ QualType FieldType = Context.getBaseElementType(Field->getType());
+
+ const RecordType* RT = FieldType->getAs<RecordType>();
+ if (!RT)
+ continue;
+
+ CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
+ if (FieldClassDecl->isInvalidDecl())
+ continue;
+ if (FieldClassDecl->hasIrrelevantDestructor())
+ continue;
+ // The destructor for an implicit anonymous union member is never invoked.
+ if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
+ continue;
+
+ CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
+ assert(Dtor && "No dtor found for FieldClassDecl!");
+ CheckDestructorAccess(Field->getLocation(), Dtor,
+ PDiag(diag::err_access_dtor_field)
+ << Field->getDeclName()
+ << FieldType);
+
+ MarkFunctionReferenced(Location, Dtor);
+ DiagnoseUseOfDecl(Dtor, Location);
+ }
+
+ llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
+
+ // Bases.
+ for (const auto &Base : ClassDecl->bases()) {
+ // Bases are always records in a well-formed non-dependent class.
+ const RecordType *RT = Base.getType()->getAs<RecordType>();
+
+ // Remember direct virtual bases.
+ if (Base.isVirtual())
+ DirectVirtualBases.insert(RT);
+
+ CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
+ // If our base class is invalid, we probably can't get its dtor anyway.
+ if (BaseClassDecl->isInvalidDecl())
+ continue;
+ if (BaseClassDecl->hasIrrelevantDestructor())
+ continue;
+
+ CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
+ assert(Dtor && "No dtor found for BaseClassDecl!");
+
+ // FIXME: caret should be on the start of the class name
+ CheckDestructorAccess(Base.getLocStart(), Dtor,
+ PDiag(diag::err_access_dtor_base)
+ << Base.getType()
+ << Base.getSourceRange(),
+ Context.getTypeDeclType(ClassDecl));
+
+ MarkFunctionReferenced(Location, Dtor);
+ DiagnoseUseOfDecl(Dtor, Location);
+ }
+
+ // Virtual bases.
+ for (const auto &VBase : ClassDecl->vbases()) {
+ // Bases are always records in a well-formed non-dependent class.
+ const RecordType *RT = VBase.getType()->castAs<RecordType>();
+
+ // Ignore direct virtual bases.
+ if (DirectVirtualBases.count(RT))
+ continue;
+
+ CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
+ // If our base class is invalid, we probably can't get its dtor anyway.
+ if (BaseClassDecl->isInvalidDecl())
+ continue;
+ if (BaseClassDecl->hasIrrelevantDestructor())
+ continue;
+
+ CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
+ assert(Dtor && "No dtor found for BaseClassDecl!");
+ if (CheckDestructorAccess(
+ ClassDecl->getLocation(), Dtor,
+ PDiag(diag::err_access_dtor_vbase)
+ << Context.getTypeDeclType(ClassDecl) << VBase.getType(),
+ Context.getTypeDeclType(ClassDecl)) ==
+ AR_accessible) {
+ CheckDerivedToBaseConversion(
+ Context.getTypeDeclType(ClassDecl), VBase.getType(),
+ diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
+ SourceRange(), DeclarationName(), nullptr);
+ }
+
+ MarkFunctionReferenced(Location, Dtor);
+ DiagnoseUseOfDecl(Dtor, Location);
+ }
+}
+
+void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
+ if (!CDtorDecl)
+ return;
+
+ if (CXXConstructorDecl *Constructor
+ = dyn_cast<CXXConstructorDecl>(CDtorDecl)) {
+ SetCtorInitializers(Constructor, /*AnyErrors=*/false);
+ DiagnoseUninitializedFields(*this, Constructor);
+ }
+}
+
+bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
+ unsigned DiagID, AbstractDiagSelID SelID) {
+ class NonAbstractTypeDiagnoser : public TypeDiagnoser {
+ unsigned DiagID;
+ AbstractDiagSelID SelID;
+
+ public:
+ NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
+ : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
+
+ void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
+ if (Suppressed) return;
+ if (SelID == -1)
+ S.Diag(Loc, DiagID) << T;
+ else
+ S.Diag(Loc, DiagID) << SelID << T;
+ }
+ } Diagnoser(DiagID, SelID);
+
+ return RequireNonAbstractType(Loc, T, Diagnoser);
+}
+
+bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
+ TypeDiagnoser &Diagnoser) {
+ if (!getLangOpts().CPlusPlus)
+ return false;
+
+ if (const ArrayType *AT = Context.getAsArrayType(T))
+ return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
+
+ if (const PointerType *PT = T->getAs<PointerType>()) {
+ // Find the innermost pointer type.
+ while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
+ PT = T;
+
+ if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
+ return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
+ }
+
+ const RecordType *RT = T->getAs<RecordType>();
+ if (!RT)
+ return false;
+
+ const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
+
+ // We can't answer whether something is abstract until it has a
+ // definition. If it's currently being defined, we'll walk back
+ // over all the declarations when we have a full definition.
+ const CXXRecordDecl *Def = RD->getDefinition();
+ if (!Def || Def->isBeingDefined())
+ return false;
+
+ if (!RD->isAbstract())
+ return false;
+
+ Diagnoser.diagnose(*this, Loc, T);
+ DiagnoseAbstractType(RD);
+
+ return true;
+}
+
+void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
+ // Check if we've already emitted the list of pure virtual functions
+ // for this class.
+ if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
+ return;
+
+ // If the diagnostic is suppressed, don't emit the notes. We're only
+ // going to emit them once, so try to attach them to a diagnostic we're
+ // actually going to show.
+ if (Diags.isLastDiagnosticIgnored())
+ return;
+
+ CXXFinalOverriderMap FinalOverriders;
+ RD->getFinalOverriders(FinalOverriders);
+
+ // Keep a set of seen pure methods so we won't diagnose the same method
+ // more than once.
+ llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
+
+ for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
+ MEnd = FinalOverriders.end();
+ M != MEnd;
+ ++M) {
+ for (OverridingMethods::iterator SO = M->second.begin(),
+ SOEnd = M->second.end();
+ SO != SOEnd; ++SO) {
+ // C++ [class.abstract]p4:
+ // A class is abstract if it contains or inherits at least one
+ // pure virtual function for which the final overrider is pure
+ // virtual.
+
+ //
+ if (SO->second.size() != 1)
+ continue;
+
+ if (!SO->second.front().Method->isPure())
+ continue;
+
+ if (!SeenPureMethods.insert(SO->second.front().Method).second)
+ continue;
+
+ Diag(SO->second.front().Method->getLocation(),
+ diag::note_pure_virtual_function)
+ << SO->second.front().Method->getDeclName() << RD->getDeclName();
+ }
+ }
+
+ if (!PureVirtualClassDiagSet)
+ PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
+ PureVirtualClassDiagSet->insert(RD);
+}
+
+namespace {
+struct AbstractUsageInfo {
+ Sema &S;
+ CXXRecordDecl *Record;
+ CanQualType AbstractType;
+ bool Invalid;
+
+ AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
+ : S(S), Record(Record),
+ AbstractType(S.Context.getCanonicalType(
+ S.Context.getTypeDeclType(Record))),
+ Invalid(false) {}
+
+ void DiagnoseAbstractType() {
+ if (Invalid) return;
+ S.DiagnoseAbstractType(Record);
+ Invalid = true;
+ }
+
+ void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
+};
+
+struct CheckAbstractUsage {
+ AbstractUsageInfo &Info;
+ const NamedDecl *Ctx;
+
+ CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
+ : Info(Info), Ctx(Ctx) {}
+
+ void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
+ switch (TL.getTypeLocClass()) {
+#define ABSTRACT_TYPELOC(CLASS, PARENT)
+#define TYPELOC(CLASS, PARENT) \
+ case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
+#include "clang/AST/TypeLocNodes.def"
+ }
+ }
+
+ void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
+ Visit(TL.getReturnLoc(), Sema::AbstractReturnType);
+ for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) {
+ if (!TL.getParam(I))
+ continue;
+
+ TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo();
+ if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
+ }
+ }
+
+ void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
+ Visit(TL.getElementLoc(), Sema::AbstractArrayType);
+ }
+
+ void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
+ // Visit the type parameters from a permissive context.
+ for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
+ TemplateArgumentLoc TAL = TL.getArgLoc(I);
+ if (TAL.getArgument().getKind() == TemplateArgument::Type)
+ if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
+ Visit(TSI->getTypeLoc(), Sema::AbstractNone);
+ // TODO: other template argument types?
+ }
+ }
+
+ // Visit pointee types from a permissive context.
+#define CheckPolymorphic(Type) \
+ void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
+ Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
+ }
+ CheckPolymorphic(PointerTypeLoc)
+ CheckPolymorphic(ReferenceTypeLoc)
+ CheckPolymorphic(MemberPointerTypeLoc)
+ CheckPolymorphic(BlockPointerTypeLoc)
+ CheckPolymorphic(AtomicTypeLoc)
+
+ /// Handle all the types we haven't given a more specific
+ /// implementation for above.
+ void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
+ // Every other kind of type that we haven't called out already
+ // that has an inner type is either (1) sugar or (2) contains that
+ // inner type in some way as a subobject.
+ if (TypeLoc Next = TL.getNextTypeLoc())
+ return Visit(Next, Sel);
+
+ // If there's no inner type and we're in a permissive context,
+ // don't diagnose.
+ if (Sel == Sema::AbstractNone) return;
+
+ // Check whether the type matches the abstract type.
+ QualType T = TL.getType();
+ if (T->isArrayType()) {
+ Sel = Sema::AbstractArrayType;
+ T = Info.S.Context.getBaseElementType(T);
+ }
+ CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
+ if (CT != Info.AbstractType) return;
+
+ // It matched; do some magic.
+ if (Sel == Sema::AbstractArrayType) {
+ Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
+ << T << TL.getSourceRange();
+ } else {
+ Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
+ << Sel << T << TL.getSourceRange();
+ }
+ Info.DiagnoseAbstractType();
+ }
+};
+
+void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
+ Sema::AbstractDiagSelID Sel) {
+ CheckAbstractUsage(*this, D).Visit(TL, Sel);
+}
+
+}
+
+/// Check for invalid uses of an abstract type in a method declaration.
+static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
+ CXXMethodDecl *MD) {
+ // No need to do the check on definitions, which require that
+ // the return/param types be complete.
+ if (MD->doesThisDeclarationHaveABody())
+ return;
+
+ // For safety's sake, just ignore it if we don't have type source
+ // information. This should never happen for non-implicit methods,
+ // but...
+ if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
+ Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
+}
+
+/// Check for invalid uses of an abstract type within a class definition.
+static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
+ CXXRecordDecl *RD) {
+ for (auto *D : RD->decls()) {
+ if (D->isImplicit()) continue;
+
+ // Methods and method templates.
+ if (isa<CXXMethodDecl>(D)) {
+ CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
+ } else if (isa<FunctionTemplateDecl>(D)) {
+ FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
+ CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
+
+ // Fields and static variables.
+ } else if (isa<FieldDecl>(D)) {
+ FieldDecl *FD = cast<FieldDecl>(D);
+ if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
+ Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
+ } else if (isa<VarDecl>(D)) {
+ VarDecl *VD = cast<VarDecl>(D);
+ if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
+ Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
+
+ // Nested classes and class templates.
+ } else if (isa<CXXRecordDecl>(D)) {
+ CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
+ } else if (isa<ClassTemplateDecl>(D)) {
+ CheckAbstractClassUsage(Info,
+ cast<ClassTemplateDecl>(D)->getTemplatedDecl());
+ }
+ }
+}
+
+/// \brief Check class-level dllimport/dllexport attribute.
+void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) {
+ Attr *ClassAttr = getDLLAttr(Class);
+
+ // MSVC inherits DLL attributes to partial class template specializations.
+ if (Context.getTargetInfo().getCXXABI().isMicrosoft() && !ClassAttr) {
+ if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) {
+ if (Attr *TemplateAttr =
+ getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) {
+ auto *A = cast<InheritableAttr>(TemplateAttr->clone(getASTContext()));
+ A->setInherited(true);
+ ClassAttr = A;
+ }
+ }
+ }
+
+ if (!ClassAttr)
+ return;
+
+ if (!Class->isExternallyVisible()) {
+ Diag(Class->getLocation(), diag::err_attribute_dll_not_extern)
+ << Class << ClassAttr;
+ return;
+ }
+
+ if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
+ !ClassAttr->isInherited()) {
+ // Diagnose dll attributes on members of class with dll attribute.
+ for (Decl *Member : Class->decls()) {
+ if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member))
+ continue;
+ InheritableAttr *MemberAttr = getDLLAttr(Member);
+ if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl())
+ continue;
+
+ Diag(MemberAttr->getLocation(),
+ diag::err_attribute_dll_member_of_dll_class)
+ << MemberAttr << ClassAttr;
+ Diag(ClassAttr->getLocation(), diag::note_previous_attribute);
+ Member->setInvalidDecl();
+ }
+ }
+
+ if (Class->getDescribedClassTemplate())
+ // Don't inherit dll attribute until the template is instantiated.
+ return;
+
+ // The class is either imported or exported.
+ const bool ClassExported = ClassAttr->getKind() == attr::DLLExport;
+ const bool ClassImported = !ClassExported;
+
+ TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
+
+ // Don't dllexport explicit class template instantiation declarations.
+ if (ClassExported && TSK == TSK_ExplicitInstantiationDeclaration) {
+ Class->dropAttr<DLLExportAttr>();
+ return;
+ }
+
+ // Force declaration of implicit members so they can inherit the attribute.
+ ForceDeclarationOfImplicitMembers(Class);
+
+ // FIXME: MSVC's docs say all bases must be exportable, but this doesn't
+ // seem to be true in practice?
+
+ for (Decl *Member : Class->decls()) {
+ VarDecl *VD = dyn_cast<VarDecl>(Member);
+ CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
+
+ // Only methods and static fields inherit the attributes.
+ if (!VD && !MD)
+ continue;
+
+ if (MD) {
+ // Don't process deleted methods.
+ if (MD->isDeleted())
+ continue;
+
+ if (MD->isInlined()) {
+ // MinGW does not import or export inline methods.
+ if (!Context.getTargetInfo().getCXXABI().isMicrosoft())
+ continue;
+
+ // MSVC versions before 2015 don't export the move assignment operators,
+ // so don't attempt to import them if we have a definition.
+ if (ClassImported && MD->isMoveAssignmentOperator() &&
+ !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015))
+ continue;
+ }
+ }
+
+ if (!cast<NamedDecl>(Member)->isExternallyVisible())
+ continue;
+
+ if (!getDLLAttr(Member)) {
+ auto *NewAttr =
+ cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
+ NewAttr->setInherited(true);
+ Member->addAttr(NewAttr);
+ }
+
+ if (MD && ClassExported) {
+ if (MD->isUserProvided()) {
+ // Instantiate non-default class member functions ...
+
+ // .. except for certain kinds of template specializations.
+ if (TSK == TSK_ExplicitInstantiationDeclaration)
+ continue;
+ if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited())
+ continue;
+
+ MarkFunctionReferenced(Class->getLocation(), MD);
+
+ // The function will be passed to the consumer when its definition is
+ // encountered.
+ } else if (!MD->isTrivial() || MD->isExplicitlyDefaulted() ||
+ MD->isCopyAssignmentOperator() ||
+ MD->isMoveAssignmentOperator()) {
+ // Synthesize and instantiate non-trivial implicit methods, explicitly
+ // defaulted methods, and the copy and move assignment operators. The
+ // latter are exported even if they are trivial, because the address of
+ // an operator can be taken and should compare equal accross libraries.
+ DiagnosticErrorTrap Trap(Diags);
+ MarkFunctionReferenced(Class->getLocation(), MD);
+ if (Trap.hasErrorOccurred()) {
+ Diag(ClassAttr->getLocation(), diag::note_due_to_dllexported_class)
+ << Class->getName() << !getLangOpts().CPlusPlus11;
+ break;
+ }
+
+ // There is no later point when we will see the definition of this
+ // function, so pass it to the consumer now.
+ Consumer.HandleTopLevelDecl(DeclGroupRef(MD));
+ }
+ }
+ }
+}
+
+/// \brief Perform semantic checks on a class definition that has been
+/// completing, introducing implicitly-declared members, checking for
+/// abstract types, etc.
+void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
+ if (!Record)
+ return;
+
+ if (Record->isAbstract() && !Record->isInvalidDecl()) {
+ AbstractUsageInfo Info(*this, Record);
+ CheckAbstractClassUsage(Info, Record);
+ }
+
+ // If this is not an aggregate type and has no user-declared constructor,
+ // complain about any non-static data members of reference or const scalar
+ // type, since they will never get initializers.
+ if (!Record->isInvalidDecl() && !Record->isDependentType() &&
+ !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
+ !Record->isLambda()) {
+ bool Complained = false;
+ for (const auto *F : Record->fields()) {
+ if (F->hasInClassInitializer() || F->isUnnamedBitfield())
+ continue;
+
+ if (F->getType()->isReferenceType() ||
+ (F->getType().isConstQualified() && F->getType()->isScalarType())) {
+ if (!Complained) {
+ Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
+ << Record->getTagKind() << Record;
+ Complained = true;
+ }
+
+ Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
+ << F->getType()->isReferenceType()
+ << F->getDeclName();
+ }
+ }
+ }
+
+ if (Record->getIdentifier()) {
+ // C++ [class.mem]p13:
+ // If T is the name of a class, then each of the following shall have a
+ // name different from T:
+ // - every member of every anonymous union that is a member of class T.
+ //
+ // C++ [class.mem]p14:
+ // In addition, if class T has a user-declared constructor (12.1), every
+ // non-static data member of class T shall have a name different from T.
+ DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
+ for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
+ ++I) {
+ NamedDecl *D = *I;
+ if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
+ isa<IndirectFieldDecl>(D)) {
+ Diag(D->getLocation(), diag::err_member_name_of_class)
+ << D->getDeclName();
+ break;
+ }
+ }
+ }
+
+ // Warn if the class has virtual methods but non-virtual public destructor.
+ if (Record->isPolymorphic() && !Record->isDependentType()) {
+ CXXDestructorDecl *dtor = Record->getDestructor();
+ if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) &&
+ !Record->hasAttr<FinalAttr>())
+ Diag(dtor ? dtor->getLocation() : Record->getLocation(),
+ diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
+ }
+
+ if (Record->isAbstract()) {
+ if (FinalAttr *FA = Record->getAttr<FinalAttr>()) {
+ Diag(Record->getLocation(), diag::warn_abstract_final_class)
+ << FA->isSpelledAsSealed();
+ DiagnoseAbstractType(Record);
+ }
+ }
+
+ bool HasMethodWithOverrideControl = false,
+ HasOverridingMethodWithoutOverrideControl = false;
+ if (!Record->isDependentType()) {
+ for (auto *M : Record->methods()) {
+ // See if a method overloads virtual methods in a base
+ // class without overriding any.
+ if (!M->isStatic())
+ DiagnoseHiddenVirtualMethods(M);
+ if (M->hasAttr<OverrideAttr>())
+ HasMethodWithOverrideControl = true;
+ else if (M->size_overridden_methods() > 0)
+ HasOverridingMethodWithoutOverrideControl = true;
+ // Check whether the explicitly-defaulted special members are valid.
+ if (!M->isInvalidDecl() && M->isExplicitlyDefaulted())
+ CheckExplicitlyDefaultedSpecialMember(M);
+
+ // For an explicitly defaulted or deleted special member, we defer
+ // determining triviality until the class is complete. That time is now!
+ if (!M->isImplicit() && !M->isUserProvided()) {
+ CXXSpecialMember CSM = getSpecialMember(M);
+ if (CSM != CXXInvalid) {
+ M->setTrivial(SpecialMemberIsTrivial(M, CSM));
+
+ // Inform the class that we've finished declaring this member.
+ Record->finishedDefaultedOrDeletedMember(M);
+ }
+ }
+ }
+ }
+
+ if (HasMethodWithOverrideControl &&
+ HasOverridingMethodWithoutOverrideControl) {
+ // At least one method has the 'override' control declared.
+ // Diagnose all other overridden methods which do not have 'override' specified on them.
+ for (auto *M : Record->methods())
+ DiagnoseAbsenceOfOverrideControl(M);
+ }
+
+ // ms_struct is a request to use the same ABI rules as MSVC. Check
+ // whether this class uses any C++ features that are implemented
+ // completely differently in MSVC, and if so, emit a diagnostic.
+ // That diagnostic defaults to an error, but we allow projects to
+ // map it down to a warning (or ignore it). It's a fairly common
+ // practice among users of the ms_struct pragma to mass-annotate
+ // headers, sweeping up a bunch of types that the project doesn't
+ // really rely on MSVC-compatible layout for. We must therefore
+ // support "ms_struct except for C++ stuff" as a secondary ABI.
+ if (Record->isMsStruct(Context) &&
+ (Record->isPolymorphic() || Record->getNumBases())) {
+ Diag(Record->getLocation(), diag::warn_cxx_ms_struct);
+ }
+
+ // Declare inheriting constructors. We do this eagerly here because:
+ // - The standard requires an eager diagnostic for conflicting inheriting
+ // constructors from different classes.
+ // - The lazy declaration of the other implicit constructors is so as to not
+ // waste space and performance on classes that are not meant to be
+ // instantiated (e.g. meta-functions). This doesn't apply to classes that
+ // have inheriting constructors.
+ DeclareInheritingConstructors(Record);
+
+ checkClassLevelDLLAttribute(Record);
+}
+
+/// Look up the special member function that would be called by a special
+/// member function for a subobject of class type.
+///
+/// \param Class The class type of the subobject.
+/// \param CSM The kind of special member function.
+/// \param FieldQuals If the subobject is a field, its cv-qualifiers.
+/// \param ConstRHS True if this is a copy operation with a const object
+/// on its RHS, that is, if the argument to the outer special member
+/// function is 'const' and this is not a field marked 'mutable'.
+static Sema::SpecialMemberOverloadResult *lookupCallFromSpecialMember(
+ Sema &S, CXXRecordDecl *Class, Sema::CXXSpecialMember CSM,
+ unsigned FieldQuals, bool ConstRHS) {
+ unsigned LHSQuals = 0;
+ if (CSM == Sema::CXXCopyAssignment || CSM == Sema::CXXMoveAssignment)
+ LHSQuals = FieldQuals;
+
+ unsigned RHSQuals = FieldQuals;
+ if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
+ RHSQuals = 0;
+ else if (ConstRHS)
+ RHSQuals |= Qualifiers::Const;
+
+ return S.LookupSpecialMember(Class, CSM,
+ RHSQuals & Qualifiers::Const,
+ RHSQuals & Qualifiers::Volatile,
+ false,
+ LHSQuals & Qualifiers::Const,
+ LHSQuals & Qualifiers::Volatile);
+}
+
+/// Is the special member function which would be selected to perform the
+/// specified operation on the specified class type a constexpr constructor?
+static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
+ Sema::CXXSpecialMember CSM,
+ unsigned Quals, bool ConstRHS) {
+ Sema::SpecialMemberOverloadResult *SMOR =
+ lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS);
+ if (!SMOR || !SMOR->getMethod())
+ // A constructor we wouldn't select can't be "involved in initializing"
+ // anything.
+ return true;
+ return SMOR->getMethod()->isConstexpr();
+}
+
+/// Determine whether the specified special member function would be constexpr
+/// if it were implicitly defined.
+static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
+ Sema::CXXSpecialMember CSM,
+ bool ConstArg) {
+ if (!S.getLangOpts().CPlusPlus11)
+ return false;
+
+ // C++11 [dcl.constexpr]p4:
+ // In the definition of a constexpr constructor [...]
+ bool Ctor = true;
+ switch (CSM) {
+ case Sema::CXXDefaultConstructor:
+ // Since default constructor lookup is essentially trivial (and cannot
+ // involve, for instance, template instantiation), we compute whether a
+ // defaulted default constructor is constexpr directly within CXXRecordDecl.
+ //
+ // This is important for performance; we need to know whether the default
+ // constructor is constexpr to determine whether the type is a literal type.
+ return ClassDecl->defaultedDefaultConstructorIsConstexpr();
+
+ case Sema::CXXCopyConstructor:
+ case Sema::CXXMoveConstructor:
+ // For copy or move constructors, we need to perform overload resolution.
+ break;
+
+ case Sema::CXXCopyAssignment:
+ case Sema::CXXMoveAssignment:
+ if (!S.getLangOpts().CPlusPlus14)
+ return false;
+ // In C++1y, we need to perform overload resolution.
+ Ctor = false;
+ break;
+
+ case Sema::CXXDestructor:
+ case Sema::CXXInvalid:
+ return false;
+ }
+
+ // -- if the class is a non-empty union, or for each non-empty anonymous
+ // union member of a non-union class, exactly one non-static data member
+ // shall be initialized; [DR1359]
+ //
+ // If we squint, this is guaranteed, since exactly one non-static data member
+ // will be initialized (if the constructor isn't deleted), we just don't know
+ // which one.
+ if (Ctor && ClassDecl->isUnion())
+ return true;
+
+ // -- the class shall not have any virtual base classes;
+ if (Ctor && ClassDecl->getNumVBases())
+ return false;
+
+ // C++1y [class.copy]p26:
+ // -- [the class] is a literal type, and
+ if (!Ctor && !ClassDecl->isLiteral())
+ return false;
+
+ // -- every constructor involved in initializing [...] base class
+ // sub-objects shall be a constexpr constructor;
+ // -- the assignment operator selected to copy/move each direct base
+ // class is a constexpr function, and
+ for (const auto &B : ClassDecl->bases()) {
+ const RecordType *BaseType = B.getType()->getAs<RecordType>();
+ if (!BaseType) continue;
+
+ CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
+ if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg))
+ return false;
+ }
+
+ // -- every constructor involved in initializing non-static data members
+ // [...] shall be a constexpr constructor;
+ // -- every non-static data member and base class sub-object shall be
+ // initialized
+ // -- for each non-static data member of X that is of class type (or array
+ // thereof), the assignment operator selected to copy/move that member is
+ // a constexpr function
+ for (const auto *F : ClassDecl->fields()) {
+ if (F->isInvalidDecl())
+ continue;
+ QualType BaseType = S.Context.getBaseElementType(F->getType());
+ if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
+ CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
+ if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM,
+ BaseType.getCVRQualifiers(),
+ ConstArg && !F->isMutable()))
+ return false;
+ }
+ }
+
+ // All OK, it's constexpr!
+ return true;
+}
+
+static Sema::ImplicitExceptionSpecification
+computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
+ switch (S.getSpecialMember(MD)) {
+ case Sema::CXXDefaultConstructor:
+ return S.ComputeDefaultedDefaultCtorExceptionSpec(Loc, MD);
+ case Sema::CXXCopyConstructor:
+ return S.ComputeDefaultedCopyCtorExceptionSpec(MD);
+ case Sema::CXXCopyAssignment:
+ return S.ComputeDefaultedCopyAssignmentExceptionSpec(MD);
+ case Sema::CXXMoveConstructor:
+ return S.ComputeDefaultedMoveCtorExceptionSpec(MD);
+ case Sema::CXXMoveAssignment:
+ return S.ComputeDefaultedMoveAssignmentExceptionSpec(MD);
+ case Sema::CXXDestructor:
+ return S.ComputeDefaultedDtorExceptionSpec(MD);
+ case Sema::CXXInvalid:
+ break;
+ }
+ assert(cast<CXXConstructorDecl>(MD)->getInheritedConstructor() &&
+ "only special members have implicit exception specs");
+ return S.ComputeInheritingCtorExceptionSpec(cast<CXXConstructorDecl>(MD));
+}
+
+static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S,
+ CXXMethodDecl *MD) {
+ FunctionProtoType::ExtProtoInfo EPI;
+
+ // Build an exception specification pointing back at this member.
+ EPI.ExceptionSpec.Type = EST_Unevaluated;
+ EPI.ExceptionSpec.SourceDecl = MD;
+
+ // Set the calling convention to the default for C++ instance methods.
+ EPI.ExtInfo = EPI.ExtInfo.withCallingConv(
+ S.Context.getDefaultCallingConvention(/*IsVariadic=*/false,
+ /*IsCXXMethod=*/true));
+ return EPI;
+}
+
+void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
+ const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
+ if (FPT->getExceptionSpecType() != EST_Unevaluated)
+ return;
+
+ // Evaluate the exception specification.
+ auto ESI = computeImplicitExceptionSpec(*this, Loc, MD).getExceptionSpec();
+
+ // Update the type of the special member to use it.
+ UpdateExceptionSpec(MD, ESI);
+
+ // A user-provided destructor can be defined outside the class. When that
+ // happens, be sure to update the exception specification on both
+ // declarations.
+ const FunctionProtoType *CanonicalFPT =
+ MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
+ if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
+ UpdateExceptionSpec(MD->getCanonicalDecl(), ESI);
+}
+
+void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
+ CXXRecordDecl *RD = MD->getParent();
+ CXXSpecialMember CSM = getSpecialMember(MD);
+
+ assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
+ "not an explicitly-defaulted special member");
+
+ // Whether this was the first-declared instance of the constructor.
+ // This affects whether we implicitly add an exception spec and constexpr.
+ bool First = MD == MD->getCanonicalDecl();
+
+ bool HadError = false;
+
+ // C++11 [dcl.fct.def.default]p1:
+ // A function that is explicitly defaulted shall
+ // -- be a special member function (checked elsewhere),
+ // -- have the same type (except for ref-qualifiers, and except that a
+ // copy operation can take a non-const reference) as an implicit
+ // declaration, and
+ // -- not have default arguments.
+ unsigned ExpectedParams = 1;
+ if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
+ ExpectedParams = 0;
+ if (MD->getNumParams() != ExpectedParams) {
+ // This also checks for default arguments: a copy or move constructor with a
+ // default argument is classified as a default constructor, and assignment
+ // operations and destructors can't have default arguments.
+ Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
+ << CSM << MD->getSourceRange();
+ HadError = true;
+ } else if (MD->isVariadic()) {
+ Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
+ << CSM << MD->getSourceRange();
+ HadError = true;
+ }
+
+ const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
+
+ bool CanHaveConstParam = false;
+ if (CSM == CXXCopyConstructor)
+ CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
+ else if (CSM == CXXCopyAssignment)
+ CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
+
+ QualType ReturnType = Context.VoidTy;
+ if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
+ // Check for return type matching.
+ ReturnType = Type->getReturnType();
+ QualType ExpectedReturnType =
+ Context.getLValueReferenceType(Context.getTypeDeclType(RD));
+ if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
+ Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
+ << (CSM == CXXMoveAssignment) << ExpectedReturnType;
+ HadError = true;
+ }
+
+ // A defaulted special member cannot have cv-qualifiers.
+ if (Type->getTypeQuals()) {
+ Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
+ << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus14;
+ HadError = true;
+ }
+ }
+
+ // Check for parameter type matching.
+ QualType ArgType = ExpectedParams ? Type->getParamType(0) : QualType();
+ bool HasConstParam = false;
+ if (ExpectedParams && ArgType->isReferenceType()) {
+ // Argument must be reference to possibly-const T.
+ QualType ReferentType = ArgType->getPointeeType();
+ HasConstParam = ReferentType.isConstQualified();
+
+ if (ReferentType.isVolatileQualified()) {
+ Diag(MD->getLocation(),
+ diag::err_defaulted_special_member_volatile_param) << CSM;
+ HadError = true;
+ }
+
+ if (HasConstParam && !CanHaveConstParam) {
+ if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
+ Diag(MD->getLocation(),
+ diag::err_defaulted_special_member_copy_const_param)
+ << (CSM == CXXCopyAssignment);
+ // FIXME: Explain why this special member can't be const.
+ } else {
+ Diag(MD->getLocation(),
+ diag::err_defaulted_special_member_move_const_param)
+ << (CSM == CXXMoveAssignment);
+ }
+ HadError = true;
+ }
+ } else if (ExpectedParams) {
+ // A copy assignment operator can take its argument by value, but a
+ // defaulted one cannot.
+ assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
+ Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
+ HadError = true;
+ }
+
+ // C++11 [dcl.fct.def.default]p2:
+ // An explicitly-defaulted function may be declared constexpr only if it
+ // would have been implicitly declared as constexpr,
+ // Do not apply this rule to members of class templates, since core issue 1358
+ // makes such functions always instantiate to constexpr functions. For
+ // functions which cannot be constexpr (for non-constructors in C++11 and for
+ // destructors in C++1y), this is checked elsewhere.
+ bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
+ HasConstParam);
+ if ((getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(MD)
+ : isa<CXXConstructorDecl>(MD)) &&
+ MD->isConstexpr() && !Constexpr &&
+ MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
+ Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
+ // FIXME: Explain why the special member can't be constexpr.
+ HadError = true;
+ }
+
+ // and may have an explicit exception-specification only if it is compatible
+ // with the exception-specification on the implicit declaration.
+ if (Type->hasExceptionSpec()) {
+ // Delay the check if this is the first declaration of the special member,
+ // since we may not have parsed some necessary in-class initializers yet.
+ if (First) {
+ // If the exception specification needs to be instantiated, do so now,
+ // before we clobber it with an EST_Unevaluated specification below.
+ if (Type->getExceptionSpecType() == EST_Uninstantiated) {
+ InstantiateExceptionSpec(MD->getLocStart(), MD);
+ Type = MD->getType()->getAs<FunctionProtoType>();
+ }
+ DelayedDefaultedMemberExceptionSpecs.push_back(std::make_pair(MD, Type));
+ } else
+ CheckExplicitlyDefaultedMemberExceptionSpec(MD, Type);
+ }
+
+ // If a function is explicitly defaulted on its first declaration,
+ if (First) {
+ // -- it is implicitly considered to be constexpr if the implicit
+ // definition would be,
+ MD->setConstexpr(Constexpr);
+
+ // -- it is implicitly considered to have the same exception-specification
+ // as if it had been implicitly declared,
+ FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
+ EPI.ExceptionSpec.Type = EST_Unevaluated;
+ EPI.ExceptionSpec.SourceDecl = MD;
+ MD->setType(Context.getFunctionType(ReturnType,
+ llvm::makeArrayRef(&ArgType,
+ ExpectedParams),
+ EPI));
+ }
+
+ if (ShouldDeleteSpecialMember(MD, CSM)) {
+ if (First) {
+ SetDeclDeleted(MD, MD->getLocation());
+ } else {
+ // C++11 [dcl.fct.def.default]p4:
+ // [For a] user-provided explicitly-defaulted function [...] if such a
+ // function is implicitly defined as deleted, the program is ill-formed.
+ Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
+ ShouldDeleteSpecialMember(MD, CSM, /*Diagnose*/true);
+ HadError = true;
+ }
+ }
+
+ if (HadError)
+ MD->setInvalidDecl();
+}
+
+/// Check whether the exception specification provided for an
+/// explicitly-defaulted special member matches the exception specification
+/// that would have been generated for an implicit special member, per
+/// C++11 [dcl.fct.def.default]p2.
+void Sema::CheckExplicitlyDefaultedMemberExceptionSpec(
+ CXXMethodDecl *MD, const FunctionProtoType *SpecifiedType) {
+ // If the exception specification was explicitly specified but hadn't been
+ // parsed when the method was defaulted, grab it now.
+ if (SpecifiedType->getExceptionSpecType() == EST_Unparsed)
+ SpecifiedType =
+ MD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
+
+ // Compute the implicit exception specification.
+ CallingConv CC = Context.getDefaultCallingConvention(/*IsVariadic=*/false,
+ /*IsCXXMethod=*/true);
+ FunctionProtoType::ExtProtoInfo EPI(CC);
+ EPI.ExceptionSpec = computeImplicitExceptionSpec(*this, MD->getLocation(), MD)
+ .getExceptionSpec();
+ const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
+ Context.getFunctionType(Context.VoidTy, None, EPI));
+
+ // Ensure that it matches.
+ CheckEquivalentExceptionSpec(
+ PDiag(diag::err_incorrect_defaulted_exception_spec)
+ << getSpecialMember(MD), PDiag(),
+ ImplicitType, SourceLocation(),
+ SpecifiedType, MD->getLocation());
+}
+
+void Sema::CheckDelayedMemberExceptionSpecs() {
+ decltype(DelayedExceptionSpecChecks) Checks;
+ decltype(DelayedDefaultedMemberExceptionSpecs) Specs;
+
+ std::swap(Checks, DelayedExceptionSpecChecks);
+ std::swap(Specs, DelayedDefaultedMemberExceptionSpecs);
+
+ // Perform any deferred checking of exception specifications for virtual
+ // destructors.
+ for (auto &Check : Checks)
+ CheckOverridingFunctionExceptionSpec(Check.first, Check.second);
+
+ // Check that any explicitly-defaulted methods have exception specifications
+ // compatible with their implicit exception specifications.
+ for (auto &Spec : Specs)
+ CheckExplicitlyDefaultedMemberExceptionSpec(Spec.first, Spec.second);
+}
+
+namespace {
+struct SpecialMemberDeletionInfo {
+ Sema &S;
+ CXXMethodDecl *MD;
+ Sema::CXXSpecialMember CSM;
+ bool Diagnose;
+
+ // Properties of the special member, computed for convenience.
+ bool IsConstructor, IsAssignment, IsMove, ConstArg;
+ SourceLocation Loc;
+
+ bool AllFieldsAreConst;
+
+ SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
+ Sema::CXXSpecialMember CSM, bool Diagnose)
+ : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
+ IsConstructor(false), IsAssignment(false), IsMove(false),
+ ConstArg(false), Loc(MD->getLocation()),
+ AllFieldsAreConst(true) {
+ switch (CSM) {
+ case Sema::CXXDefaultConstructor:
+ case Sema::CXXCopyConstructor:
+ IsConstructor = true;
+ break;
+ case Sema::CXXMoveConstructor:
+ IsConstructor = true;
+ IsMove = true;
+ break;
+ case Sema::CXXCopyAssignment:
+ IsAssignment = true;
+ break;
+ case Sema::CXXMoveAssignment:
+ IsAssignment = true;
+ IsMove = true;
+ break;
+ case Sema::CXXDestructor:
+ break;
+ case Sema::CXXInvalid:
+ llvm_unreachable("invalid special member kind");
+ }
+
+ if (MD->getNumParams()) {
+ if (const ReferenceType *RT =
+ MD->getParamDecl(0)->getType()->getAs<ReferenceType>())
+ ConstArg = RT->getPointeeType().isConstQualified();
+ }
+ }
+
+ bool inUnion() const { return MD->getParent()->isUnion(); }
+
+ /// Look up the corresponding special member in the given class.
+ Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class,
+ unsigned Quals, bool IsMutable) {
+ return lookupCallFromSpecialMember(S, Class, CSM, Quals,
+ ConstArg && !IsMutable);
+ }
+
+ typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
+
+ bool shouldDeleteForBase(CXXBaseSpecifier *Base);
+ bool shouldDeleteForField(FieldDecl *FD);
+ bool shouldDeleteForAllConstMembers();
+
+ bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
+ unsigned Quals);
+ bool shouldDeleteForSubobjectCall(Subobject Subobj,
+ Sema::SpecialMemberOverloadResult *SMOR,
+ bool IsDtorCallInCtor);
+
+ bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
+};
+}
+
+/// Is the given special member inaccessible when used on the given
+/// sub-object.
+bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
+ CXXMethodDecl *target) {
+ /// If we're operating on a base class, the object type is the
+ /// type of this special member.
+ QualType objectTy;
+ AccessSpecifier access = target->getAccess();
+ if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
+ objectTy = S.Context.getTypeDeclType(MD->getParent());
+ access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
+
+ // If we're operating on a field, the object type is the type of the field.
+ } else {
+ objectTy = S.Context.getTypeDeclType(target->getParent());
+ }
+
+ return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
+}
+
+/// Check whether we should delete a special member due to the implicit
+/// definition containing a call to a special member of a subobject.
+bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
+ Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
+ bool IsDtorCallInCtor) {
+ CXXMethodDecl *Decl = SMOR->getMethod();
+ FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
+
+ int DiagKind = -1;
+
+ if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
+ DiagKind = !Decl ? 0 : 1;
+ else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
+ DiagKind = 2;
+ else if (!isAccessible(Subobj, Decl))
+ DiagKind = 3;
+ else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
+ !Decl->isTrivial()) {
+ // A member of a union must have a trivial corresponding special member.
+ // As a weird special case, a destructor call from a union's constructor
+ // must be accessible and non-deleted, but need not be trivial. Such a
+ // destructor is never actually called, but is semantically checked as
+ // if it were.
+ DiagKind = 4;
+ }
+
+ if (DiagKind == -1)
+ return false;
+
+ if (Diagnose) {
+ if (Field) {
+ S.Diag(Field->getLocation(),
+ diag::note_deleted_special_member_class_subobject)
+ << CSM << MD->getParent() << /*IsField*/true
+ << Field << DiagKind << IsDtorCallInCtor;
+ } else {
+ CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
+ S.Diag(Base->getLocStart(),
+ diag::note_deleted_special_member_class_subobject)
+ << CSM << MD->getParent() << /*IsField*/false
+ << Base->getType() << DiagKind << IsDtorCallInCtor;
+ }
+
+ if (DiagKind == 1)
+ S.NoteDeletedFunction(Decl);
+ // FIXME: Explain inaccessibility if DiagKind == 3.
+ }
+
+ return true;
+}
+
+/// Check whether we should delete a special member function due to having a
+/// direct or virtual base class or non-static data member of class type M.
+bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
+ CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
+ FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
+ bool IsMutable = Field && Field->isMutable();
+
+ // C++11 [class.ctor]p5:
+ // -- any direct or virtual base class, or non-static data member with no
+ // brace-or-equal-initializer, has class type M (or array thereof) and
+ // either M has no default constructor or overload resolution as applied
+ // to M's default constructor results in an ambiguity or in a function
+ // that is deleted or inaccessible
+ // C++11 [class.copy]p11, C++11 [class.copy]p23:
+ // -- a direct or virtual base class B that cannot be copied/moved because
+ // overload resolution, as applied to B's corresponding special member,
+ // results in an ambiguity or a function that is deleted or inaccessible
+ // from the defaulted special member
+ // C++11 [class.dtor]p5:
+ // -- any direct or virtual base class [...] has a type with a destructor
+ // that is deleted or inaccessible
+ if (!(CSM == Sema::CXXDefaultConstructor &&
+ Field && Field->hasInClassInitializer()) &&
+ shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable),
+ false))
+ return true;
+
+ // C++11 [class.ctor]p5, C++11 [class.copy]p11:
+ // -- any direct or virtual base class or non-static data member has a
+ // type with a destructor that is deleted or inaccessible
+ if (IsConstructor) {
+ Sema::SpecialMemberOverloadResult *SMOR =
+ S.LookupSpecialMember(Class, Sema::CXXDestructor,
+ false, false, false, false, false);
+ if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
+ return true;
+ }
+
+ return false;
+}
+
+/// Check whether we should delete a special member function due to the class
+/// having a particular direct or virtual base class.
+bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
+ CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
+ return shouldDeleteForClassSubobject(BaseClass, Base, 0);
+}
+
+/// Check whether we should delete a special member function due to the class
+/// having a particular non-static data member.
+bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
+ QualType FieldType = S.Context.getBaseElementType(FD->getType());
+ CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
+
+ if (CSM == Sema::CXXDefaultConstructor) {
+ // For a default constructor, all references must be initialized in-class
+ // and, if a union, it must have a non-const member.
+ if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
+ if (Diagnose)
+ S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
+ << MD->getParent() << FD << FieldType << /*Reference*/0;
+ return true;
+ }
+ // C++11 [class.ctor]p5: any non-variant non-static data member of
+ // const-qualified type (or array thereof) with no
+ // brace-or-equal-initializer does not have a user-provided default
+ // constructor.
+ if (!inUnion() && FieldType.isConstQualified() &&
+ !FD->hasInClassInitializer() &&
+ (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
+ if (Diagnose)
+ S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
+ << MD->getParent() << FD << FD->getType() << /*Const*/1;
+ return true;
+ }
+
+ if (inUnion() && !FieldType.isConstQualified())
+ AllFieldsAreConst = false;
+ } else if (CSM == Sema::CXXCopyConstructor) {
+ // For a copy constructor, data members must not be of rvalue reference
+ // type.
+ if (FieldType->isRValueReferenceType()) {
+ if (Diagnose)
+ S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
+ << MD->getParent() << FD << FieldType;
+ return true;
+ }
+ } else if (IsAssignment) {
+ // For an assignment operator, data members must not be of reference type.
+ if (FieldType->isReferenceType()) {
+ if (Diagnose)
+ S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
+ << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
+ return true;
+ }
+ if (!FieldRecord && FieldType.isConstQualified()) {
+ // C++11 [class.copy]p23:
+ // -- a non-static data member of const non-class type (or array thereof)
+ if (Diagnose)
+ S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
+ << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
+ return true;
+ }
+ }
+
+ if (FieldRecord) {
+ // Some additional restrictions exist on the variant members.
+ if (!inUnion() && FieldRecord->isUnion() &&
+ FieldRecord->isAnonymousStructOrUnion()) {
+ bool AllVariantFieldsAreConst = true;
+
+ // FIXME: Handle anonymous unions declared within anonymous unions.
+ for (auto *UI : FieldRecord->fields()) {
+ QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
+
+ if (!UnionFieldType.isConstQualified())
+ AllVariantFieldsAreConst = false;
+
+ CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
+ if (UnionFieldRecord &&
+ shouldDeleteForClassSubobject(UnionFieldRecord, UI,
+ UnionFieldType.getCVRQualifiers()))
+ return true;
+ }
+
+ // At least one member in each anonymous union must be non-const
+ if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
+ !FieldRecord->field_empty()) {
+ if (Diagnose)
+ S.Diag(FieldRecord->getLocation(),
+ diag::note_deleted_default_ctor_all_const)
+ << MD->getParent() << /*anonymous union*/1;
+ return true;
+ }
+
+ // Don't check the implicit member of the anonymous union type.
+ // This is technically non-conformant, but sanity demands it.
+ return false;
+ }
+
+ if (shouldDeleteForClassSubobject(FieldRecord, FD,
+ FieldType.getCVRQualifiers()))
+ return true;
+ }
+
+ return false;
+}
+
+/// C++11 [class.ctor] p5:
+/// A defaulted default constructor for a class X is defined as deleted if
+/// X is a union and all of its variant members are of const-qualified type.
+bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
+ // This is a silly definition, because it gives an empty union a deleted
+ // default constructor. Don't do that.
+ if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
+ !MD->getParent()->field_empty()) {
+ if (Diagnose)
+ S.Diag(MD->getParent()->getLocation(),
+ diag::note_deleted_default_ctor_all_const)
+ << MD->getParent() << /*not anonymous union*/0;
+ return true;
+ }
+ return false;
+}
+
+/// Determine whether a defaulted special member function should be defined as
+/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
+/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
+bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
+ bool Diagnose) {
+ if (MD->isInvalidDecl())
+ return false;
+ CXXRecordDecl *RD = MD->getParent();
+ assert(!RD->isDependentType() && "do deletion after instantiation");
+ if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
+ return false;
+
+ // C++11 [expr.lambda.prim]p19:
+ // The closure type associated with a lambda-expression has a
+ // deleted (8.4.3) default constructor and a deleted copy
+ // assignment operator.
+ if (RD->isLambda() &&
+ (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
+ if (Diagnose)
+ Diag(RD->getLocation(), diag::note_lambda_decl);
+ return true;
+ }
+
+ // For an anonymous struct or union, the copy and assignment special members
+ // will never be used, so skip the check. For an anonymous union declared at
+ // namespace scope, the constructor and destructor are used.
+ if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
+ RD->isAnonymousStructOrUnion())
+ return false;
+
+ // C++11 [class.copy]p7, p18:
+ // If the class definition declares a move constructor or move assignment
+ // operator, an implicitly declared copy constructor or copy assignment
+ // operator is defined as deleted.
+ if (MD->isImplicit() &&
+ (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
+ CXXMethodDecl *UserDeclaredMove = nullptr;
+
+ // In Microsoft mode, a user-declared move only causes the deletion of the
+ // corresponding copy operation, not both copy operations.
+ if (RD->hasUserDeclaredMoveConstructor() &&
+ (!getLangOpts().MSVCCompat || CSM == CXXCopyConstructor)) {
+ if (!Diagnose) return true;
+
+ // Find any user-declared move constructor.
+ for (auto *I : RD->ctors()) {
+ if (I->isMoveConstructor()) {
+ UserDeclaredMove = I;
+ break;
+ }
+ }
+ assert(UserDeclaredMove);
+ } else if (RD->hasUserDeclaredMoveAssignment() &&
+ (!getLangOpts().MSVCCompat || CSM == CXXCopyAssignment)) {
+ if (!Diagnose) return true;
+
+ // Find any user-declared move assignment operator.
+ for (auto *I : RD->methods()) {
+ if (I->isMoveAssignmentOperator()) {
+ UserDeclaredMove = I;
+ break;
+ }
+ }
+ assert(UserDeclaredMove);
+ }
+
+ if (UserDeclaredMove) {
+ Diag(UserDeclaredMove->getLocation(),
+ diag::note_deleted_copy_user_declared_move)
+ << (CSM == CXXCopyAssignment) << RD
+ << UserDeclaredMove->isMoveAssignmentOperator();
+ return true;
+ }
+ }
+
+ // Do access control from the special member function
+ ContextRAII MethodContext(*this, MD);
+
+ // C++11 [class.dtor]p5:
+ // -- for a virtual destructor, lookup of the non-array deallocation function
+ // results in an ambiguity or in a function that is deleted or inaccessible
+ if (CSM == CXXDestructor && MD->isVirtual()) {
+ FunctionDecl *OperatorDelete = nullptr;
+ DeclarationName Name =
+ Context.DeclarationNames.getCXXOperatorName(OO_Delete);
+ if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
+ OperatorDelete, false)) {
+ if (Diagnose)
+ Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
+ return true;
+ }
+ }
+
+ SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
+
+ for (auto &BI : RD->bases())
+ if (!BI.isVirtual() &&
+ SMI.shouldDeleteForBase(&BI))
+ return true;
+
+ // Per DR1611, do not consider virtual bases of constructors of abstract
+ // classes, since we are not going to construct them.
+ if (!RD->isAbstract() || !SMI.IsConstructor) {
+ for (auto &BI : RD->vbases())
+ if (SMI.shouldDeleteForBase(&BI))
+ return true;
+ }
+
+ for (auto *FI : RD->fields())
+ if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
+ SMI.shouldDeleteForField(FI))
+ return true;
+
+ if (SMI.shouldDeleteForAllConstMembers())
+ return true;
+
+ if (getLangOpts().CUDA) {
+ // We should delete the special member in CUDA mode if target inference
+ // failed.
+ return inferCUDATargetForImplicitSpecialMember(RD, CSM, MD, SMI.ConstArg,
+ Diagnose);
+ }
+
+ return false;
+}
+
+/// Perform lookup for a special member of the specified kind, and determine
+/// whether it is trivial. If the triviality can be determined without the
+/// lookup, skip it. This is intended for use when determining whether a
+/// special member of a containing object is trivial, and thus does not ever
+/// perform overload resolution for default constructors.
+///
+/// If \p Selected is not \c NULL, \c *Selected will be filled in with the
+/// member that was most likely to be intended to be trivial, if any.
+static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
+ Sema::CXXSpecialMember CSM, unsigned Quals,
+ bool ConstRHS, CXXMethodDecl **Selected) {
+ if (Selected)
+ *Selected = nullptr;
+
+ switch (CSM) {
+ case Sema::CXXInvalid:
+ llvm_unreachable("not a special member");
+
+ case Sema::CXXDefaultConstructor:
+ // C++11 [class.ctor]p5:
+ // A default constructor is trivial if:
+ // - all the [direct subobjects] have trivial default constructors
+ //
+ // Note, no overload resolution is performed in this case.
+ if (RD->hasTrivialDefaultConstructor())
+ return true;
+
+ if (Selected) {
+ // If there's a default constructor which could have been trivial, dig it
+ // out. Otherwise, if there's any user-provided default constructor, point
+ // to that as an example of why there's not a trivial one.
+ CXXConstructorDecl *DefCtor = nullptr;
+ if (RD->needsImplicitDefaultConstructor())
+ S.DeclareImplicitDefaultConstructor(RD);
+ for (auto *CI : RD->ctors()) {
+ if (!CI->isDefaultConstructor())
+ continue;
+ DefCtor = CI;
+ if (!DefCtor->isUserProvided())
+ break;
+ }
+
+ *Selected = DefCtor;
+ }
+
+ return false;
+
+ case Sema::CXXDestructor:
+ // C++11 [class.dtor]p5:
+ // A destructor is trivial if:
+ // - all the direct [subobjects] have trivial destructors
+ if (RD->hasTrivialDestructor())
+ return true;
+
+ if (Selected) {
+ if (RD->needsImplicitDestructor())
+ S.DeclareImplicitDestructor(RD);
+ *Selected = RD->getDestructor();
+ }
+
+ return false;
+
+ case Sema::CXXCopyConstructor:
+ // C++11 [class.copy]p12:
+ // A copy constructor is trivial if:
+ // - the constructor selected to copy each direct [subobject] is trivial
+ if (RD->hasTrivialCopyConstructor()) {
+ if (Quals == Qualifiers::Const)
+ // We must either select the trivial copy constructor or reach an
+ // ambiguity; no need to actually perform overload resolution.
+ return true;
+ } else if (!Selected) {
+ return false;
+ }
+ // In C++98, we are not supposed to perform overload resolution here, but we
+ // treat that as a language defect, as suggested on cxx-abi-dev, to treat
+ // cases like B as having a non-trivial copy constructor:
+ // struct A { template<typename T> A(T&); };
+ // struct B { mutable A a; };
+ goto NeedOverloadResolution;
+
+ case Sema::CXXCopyAssignment:
+ // C++11 [class.copy]p25:
+ // A copy assignment operator is trivial if:
+ // - the assignment operator selected to copy each direct [subobject] is
+ // trivial
+ if (RD->hasTrivialCopyAssignment()) {
+ if (Quals == Qualifiers::Const)
+ return true;
+ } else if (!Selected) {
+ return false;
+ }
+ // In C++98, we are not supposed to perform overload resolution here, but we
+ // treat that as a language defect.
+ goto NeedOverloadResolution;
+
+ case Sema::CXXMoveConstructor:
+ case Sema::CXXMoveAssignment:
+ NeedOverloadResolution:
+ Sema::SpecialMemberOverloadResult *SMOR =
+ lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS);
+
+ // The standard doesn't describe how to behave if the lookup is ambiguous.
+ // We treat it as not making the member non-trivial, just like the standard
+ // mandates for the default constructor. This should rarely matter, because
+ // the member will also be deleted.
+ if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
+ return true;
+
+ if (!SMOR->getMethod()) {
+ assert(SMOR->getKind() ==
+ Sema::SpecialMemberOverloadResult::NoMemberOrDeleted);
+ return false;
+ }
+
+ // We deliberately don't check if we found a deleted special member. We're
+ // not supposed to!
+ if (Selected)
+ *Selected = SMOR->getMethod();
+ return SMOR->getMethod()->isTrivial();
+ }
+
+ llvm_unreachable("unknown special method kind");
+}
+
+static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
+ for (auto *CI : RD->ctors())
+ if (!CI->isImplicit())
+ return CI;
+
+ // Look for constructor templates.
+ typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
+ for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
+ if (CXXConstructorDecl *CD =
+ dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
+ return CD;
+ }
+
+ return nullptr;
+}
+
+/// The kind of subobject we are checking for triviality. The values of this
+/// enumeration are used in diagnostics.
+enum TrivialSubobjectKind {
+ /// The subobject is a base class.
+ TSK_BaseClass,
+ /// The subobject is a non-static data member.
+ TSK_Field,
+ /// The object is actually the complete object.
+ TSK_CompleteObject
+};
+
+/// Check whether the special member selected for a given type would be trivial.
+static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
+ QualType SubType, bool ConstRHS,
+ Sema::CXXSpecialMember CSM,
+ TrivialSubobjectKind Kind,
+ bool Diagnose) {
+ CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
+ if (!SubRD)
+ return true;
+
+ CXXMethodDecl *Selected;
+ if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
+ ConstRHS, Diagnose ? &Selected : nullptr))
+ return true;
+
+ if (Diagnose) {
+ if (ConstRHS)
+ SubType.addConst();
+
+ if (!Selected && CSM == Sema::CXXDefaultConstructor) {
+ S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
+ << Kind << SubType.getUnqualifiedType();
+ if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
+ S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
+ } else if (!Selected)
+ S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
+ << Kind << SubType.getUnqualifiedType() << CSM << SubType;
+ else if (Selected->isUserProvided()) {
+ if (Kind == TSK_CompleteObject)
+ S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
+ << Kind << SubType.getUnqualifiedType() << CSM;
+ else {
+ S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
+ << Kind << SubType.getUnqualifiedType() << CSM;
+ S.Diag(Selected->getLocation(), diag::note_declared_at);
+ }
+ } else {
+ if (Kind != TSK_CompleteObject)
+ S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
+ << Kind << SubType.getUnqualifiedType() << CSM;
+
+ // Explain why the defaulted or deleted special member isn't trivial.
+ S.SpecialMemberIsTrivial(Selected, CSM, Diagnose);
+ }
+ }
+
+ return false;
+}
+
+/// Check whether the members of a class type allow a special member to be
+/// trivial.
+static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
+ Sema::CXXSpecialMember CSM,
+ bool ConstArg, bool Diagnose) {
+ for (const auto *FI : RD->fields()) {
+ if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
+ continue;
+
+ QualType FieldType = S.Context.getBaseElementType(FI->getType());
+
+ // Pretend anonymous struct or union members are members of this class.
+ if (FI->isAnonymousStructOrUnion()) {
+ if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
+ CSM, ConstArg, Diagnose))
+ return false;
+ continue;
+ }
+
+ // C++11 [class.ctor]p5:
+ // A default constructor is trivial if [...]
+ // -- no non-static data member of its class has a
+ // brace-or-equal-initializer
+ if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
+ if (Diagnose)
+ S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << FI;
+ return false;
+ }
+
+ // Objective C ARC 4.3.5:
+ // [...] nontrivally ownership-qualified types are [...] not trivially
+ // default constructible, copy constructible, move constructible, copy
+ // assignable, move assignable, or destructible [...]
+ if (S.getLangOpts().ObjCAutoRefCount &&
+ FieldType.hasNonTrivialObjCLifetime()) {
+ if (Diagnose)
+ S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
+ << RD << FieldType.getObjCLifetime();
+ return false;
+ }
+
+ bool ConstRHS = ConstArg && !FI->isMutable();
+ if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS,
+ CSM, TSK_Field, Diagnose))
+ return false;
+ }
+
+ return true;
+}
+
+/// Diagnose why the specified class does not have a trivial special member of
+/// the given kind.
+void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
+ QualType Ty = Context.getRecordType(RD);
+
+ bool ConstArg = (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment);
+ checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM,
+ TSK_CompleteObject, /*Diagnose*/true);
+}
+
+/// Determine whether a defaulted or deleted special member function is trivial,
+/// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
+/// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
+bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
+ bool Diagnose) {
+ assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough");
+
+ CXXRecordDecl *RD = MD->getParent();
+
+ bool ConstArg = false;
+
+ // C++11 [class.copy]p12, p25: [DR1593]
+ // A [special member] is trivial if [...] its parameter-type-list is
+ // equivalent to the parameter-type-list of an implicit declaration [...]
+ switch (CSM) {
+ case CXXDefaultConstructor:
+ case CXXDestructor:
+ // Trivial default constructors and destructors cannot have parameters.
+ break;
+
+ case CXXCopyConstructor:
+ case CXXCopyAssignment: {
+ // Trivial copy operations always have const, non-volatile parameter types.
+ ConstArg = true;
+ const ParmVarDecl *Param0 = MD->getParamDecl(0);
+ const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
+ if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
+ if (Diagnose)
+ Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
+ << Param0->getSourceRange() << Param0->getType()
+ << Context.getLValueReferenceType(
+ Context.getRecordType(RD).withConst());
+ return false;
+ }
+ break;
+ }
+
+ case CXXMoveConstructor:
+ case CXXMoveAssignment: {
+ // Trivial move operations always have non-cv-qualified parameters.
+ const ParmVarDecl *Param0 = MD->getParamDecl(0);
+ const RValueReferenceType *RT =
+ Param0->getType()->getAs<RValueReferenceType>();
+ if (!RT || RT->getPointeeType().getCVRQualifiers()) {
+ if (Diagnose)
+ Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
+ << Param0->getSourceRange() << Param0->getType()
+ << Context.getRValueReferenceType(Context.getRecordType(RD));
+ return false;
+ }
+ break;
+ }
+
+ case CXXInvalid:
+ llvm_unreachable("not a special member");
+ }
+
+ if (MD->getMinRequiredArguments() < MD->getNumParams()) {
+ if (Diagnose)
+ Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
+ diag::note_nontrivial_default_arg)
+ << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
+ return false;
+ }
+ if (MD->isVariadic()) {
+ if (Diagnose)
+ Diag(MD->getLocation(), diag::note_nontrivial_variadic);
+ return false;
+ }
+
+ // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
+ // A copy/move [constructor or assignment operator] is trivial if
+ // -- the [member] selected to copy/move each direct base class subobject
+ // is trivial
+ //
+ // C++11 [class.copy]p12, C++11 [class.copy]p25:
+ // A [default constructor or destructor] is trivial if
+ // -- all the direct base classes have trivial [default constructors or
+ // destructors]
+ for (const auto &BI : RD->bases())
+ if (!checkTrivialSubobjectCall(*this, BI.getLocStart(), BI.getType(),
+ ConstArg, CSM, TSK_BaseClass, Diagnose))
+ return false;
+
+ // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
+ // A copy/move [constructor or assignment operator] for a class X is
+ // trivial if
+ // -- for each non-static data member of X that is of class type (or array
+ // thereof), the constructor selected to copy/move that member is
+ // trivial
+ //
+ // C++11 [class.copy]p12, C++11 [class.copy]p25:
+ // A [default constructor or destructor] is trivial if
+ // -- for all of the non-static data members of its class that are of class
+ // type (or array thereof), each such class has a trivial [default
+ // constructor or destructor]
+ if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, Diagnose))
+ return false;
+
+ // C++11 [class.dtor]p5:
+ // A destructor is trivial if [...]
+ // -- the destructor is not virtual
+ if (CSM == CXXDestructor && MD->isVirtual()) {
+ if (Diagnose)
+ Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
+ return false;
+ }
+
+ // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
+ // A [special member] for class X is trivial if [...]
+ // -- class X has no virtual functions and no virtual base classes
+ if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
+ if (!Diagnose)
+ return false;
+
+ if (RD->getNumVBases()) {
+ // Check for virtual bases. We already know that the corresponding
+ // member in all bases is trivial, so vbases must all be direct.
+ CXXBaseSpecifier &BS = *RD->vbases_begin();
+ assert(BS.isVirtual());
+ Diag(BS.getLocStart(), diag::note_nontrivial_has_virtual) << RD << 1;
+ return false;
+ }
+
+ // Must have a virtual method.
+ for (const auto *MI : RD->methods()) {
+ if (MI->isVirtual()) {
+ SourceLocation MLoc = MI->getLocStart();
+ Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
+ return false;
+ }
+ }
+
+ llvm_unreachable("dynamic class with no vbases and no virtual functions");
+ }
+
+ // Looks like it's trivial!
+ return true;
+}
+
+/// \brief Data used with FindHiddenVirtualMethod
+namespace {
+ struct FindHiddenVirtualMethodData {
+ Sema *S;
+ CXXMethodDecl *Method;
+ llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
+ SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
+ };
+}
+
+/// \brief Check whether any most overriden method from MD in Methods
+static bool CheckMostOverridenMethods(const CXXMethodDecl *MD,
+ const llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) {
+ if (MD->size_overridden_methods() == 0)
+ return Methods.count(MD->getCanonicalDecl());
+ for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
+ E = MD->end_overridden_methods();
+ I != E; ++I)
+ if (CheckMostOverridenMethods(*I, Methods))
+ return true;
+ return false;
+}
+
+/// \brief Member lookup function that determines whether a given C++
+/// method overloads virtual methods in a base class without overriding any,
+/// to be used with CXXRecordDecl::lookupInBases().
+static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
+ CXXBasePath &Path,
+ void *UserData) {
+ RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
+
+ FindHiddenVirtualMethodData &Data
+ = *static_cast<FindHiddenVirtualMethodData*>(UserData);
+
+ DeclarationName Name = Data.Method->getDeclName();
+ assert(Name.getNameKind() == DeclarationName::Identifier);
+
+ bool foundSameNameMethod = false;
+ SmallVector<CXXMethodDecl *, 8> overloadedMethods;
+ for (Path.Decls = BaseRecord->lookup(Name);
+ !Path.Decls.empty();
+ Path.Decls = Path.Decls.slice(1)) {
+ NamedDecl *D = Path.Decls.front();
+ if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
+ MD = MD->getCanonicalDecl();
+ foundSameNameMethod = true;
+ // Interested only in hidden virtual methods.
+ if (!MD->isVirtual())
+ continue;
+ // If the method we are checking overrides a method from its base
+ // don't warn about the other overloaded methods. Clang deviates from GCC
+ // by only diagnosing overloads of inherited virtual functions that do not
+ // override any other virtual functions in the base. GCC's
+ // -Woverloaded-virtual diagnoses any derived function hiding a virtual
+ // function from a base class. These cases may be better served by a
+ // warning (not specific to virtual functions) on call sites when the call
+ // would select a different function from the base class, were it visible.
+ // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example.
+ if (!Data.S->IsOverload(Data.Method, MD, false))
+ return true;
+ // Collect the overload only if its hidden.
+ if (!CheckMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods))
+ overloadedMethods.push_back(MD);
+ }
+ }
+
+ if (foundSameNameMethod)
+ Data.OverloadedMethods.append(overloadedMethods.begin(),
+ overloadedMethods.end());
+ return foundSameNameMethod;
+}
+
+/// \brief Add the most overriden methods from MD to Methods
+static void AddMostOverridenMethods(const CXXMethodDecl *MD,
+ llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) {
+ if (MD->size_overridden_methods() == 0)
+ Methods.insert(MD->getCanonicalDecl());
+ for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
+ E = MD->end_overridden_methods();
+ I != E; ++I)
+ AddMostOverridenMethods(*I, Methods);
+}
+
+/// \brief Check if a method overloads virtual methods in a base class without
+/// overriding any.
+void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD,
+ SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
+ if (!MD->getDeclName().isIdentifier())
+ return;
+
+ CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
+ /*bool RecordPaths=*/false,
+ /*bool DetectVirtual=*/false);
+ FindHiddenVirtualMethodData Data;
+ Data.Method = MD;
+ Data.S = this;
+
+ // Keep the base methods that were overriden or introduced in the subclass
+ // by 'using' in a set. A base method not in this set is hidden.
+ CXXRecordDecl *DC = MD->getParent();
+ DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
+ for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
+ NamedDecl *ND = *I;
+ if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
+ ND = shad->getTargetDecl();
+ if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
+ AddMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods);
+ }
+
+ if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths))
+ OverloadedMethods = Data.OverloadedMethods;
+}
+
+void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD,
+ SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
+ for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) {
+ CXXMethodDecl *overloadedMD = OverloadedMethods[i];
+ PartialDiagnostic PD = PDiag(
+ diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
+ HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
+ Diag(overloadedMD->getLocation(), PD);
+ }
+}
+
+/// \brief Diagnose methods which overload virtual methods in a base class
+/// without overriding any.
+void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) {
+ if (MD->isInvalidDecl())
+ return;
+
+ if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation()))
+ return;
+
+ SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
+ FindHiddenVirtualMethods(MD, OverloadedMethods);
+ if (!OverloadedMethods.empty()) {
+ Diag(MD->getLocation(), diag::warn_overloaded_virtual)
+ << MD << (OverloadedMethods.size() > 1);
+
+ NoteHiddenVirtualMethods(MD, OverloadedMethods);
+ }
+}
+
+void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
+ Decl *TagDecl,
+ SourceLocation LBrac,
+ SourceLocation RBrac,
+ AttributeList *AttrList) {
+ if (!TagDecl)
+ return;
+
+ AdjustDeclIfTemplate(TagDecl);
+
+ for (const AttributeList* l = AttrList; l; l = l->getNext()) {
+ if (l->getKind() != AttributeList::AT_Visibility)
+ continue;
+ l->setInvalid();
+ Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
+ l->getName();
+ }
+
+ ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
+ // strict aliasing violation!
+ reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
+ FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
+
+ CheckCompletedCXXClass(
+ dyn_cast_or_null<CXXRecordDecl>(TagDecl));
+}
+
+/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
+/// special functions, such as the default constructor, copy
+/// constructor, or destructor, to the given C++ class (C++
+/// [special]p1). This routine can only be executed just before the
+/// definition of the class is complete.
+void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
+ if (!ClassDecl->hasUserDeclaredConstructor())
+ ++ASTContext::NumImplicitDefaultConstructors;
+
+ if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
+ ++ASTContext::NumImplicitCopyConstructors;
+
+ // If the properties or semantics of the copy constructor couldn't be
+ // determined while the class was being declared, force a declaration
+ // of it now.
+ if (ClassDecl->needsOverloadResolutionForCopyConstructor())
+ DeclareImplicitCopyConstructor(ClassDecl);
+ }
+
+ if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) {
+ ++ASTContext::NumImplicitMoveConstructors;
+
+ if (ClassDecl->needsOverloadResolutionForMoveConstructor())
+ DeclareImplicitMoveConstructor(ClassDecl);
+ }
+
+ if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
+ ++ASTContext::NumImplicitCopyAssignmentOperators;
+
+ // If we have a dynamic class, then the copy assignment operator may be
+ // virtual, so we have to declare it immediately. This ensures that, e.g.,
+ // it shows up in the right place in the vtable and that we diagnose
+ // problems with the implicit exception specification.
+ if (ClassDecl->isDynamicClass() ||
+ ClassDecl->needsOverloadResolutionForCopyAssignment())
+ DeclareImplicitCopyAssignment(ClassDecl);
+ }
+
+ if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
+ ++ASTContext::NumImplicitMoveAssignmentOperators;
+
+ // Likewise for the move assignment operator.
+ if (ClassDecl->isDynamicClass() ||
+ ClassDecl->needsOverloadResolutionForMoveAssignment())
+ DeclareImplicitMoveAssignment(ClassDecl);
+ }
+
+ if (!ClassDecl->hasUserDeclaredDestructor()) {
+ ++ASTContext::NumImplicitDestructors;
+
+ // If we have a dynamic class, then the destructor may be virtual, so we
+ // have to declare the destructor immediately. This ensures that, e.g., it
+ // shows up in the right place in the vtable and that we diagnose problems
+ // with the implicit exception specification.
+ if (ClassDecl->isDynamicClass() ||
+ ClassDecl->needsOverloadResolutionForDestructor())
+ DeclareImplicitDestructor(ClassDecl);
+ }
+}
+
+unsigned Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
+ if (!D)
+ return 0;
+
+ // The order of template parameters is not important here. All names
+ // get added to the same scope.
+ SmallVector<TemplateParameterList *, 4> ParameterLists;
+
+ if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
+ D = TD->getTemplatedDecl();
+
+ if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
+ ParameterLists.push_back(PSD->getTemplateParameters());
+
+ if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) {
+ for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i)
+ ParameterLists.push_back(DD->getTemplateParameterList(i));
+
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
+ ParameterLists.push_back(FTD->getTemplateParameters());
+ }
+ }
+
+ if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
+ for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i)
+ ParameterLists.push_back(TD->getTemplateParameterList(i));
+
+ if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) {
+ if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate())
+ ParameterLists.push_back(CTD->getTemplateParameters());
+ }
+ }
+
+ unsigned Count = 0;
+ for (TemplateParameterList *Params : ParameterLists) {
+ if (Params->size() > 0)
+ // Ignore explicit specializations; they don't contribute to the template
+ // depth.
+ ++Count;
+ for (NamedDecl *Param : *Params) {
+ if (Param->getDeclName()) {
+ S->AddDecl(Param);
+ IdResolver.AddDecl(Param);
+ }
+ }
+ }
+
+ return Count;
+}
+
+void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
+ if (!RecordD) return;
+ AdjustDeclIfTemplate(RecordD);
+ CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
+ PushDeclContext(S, Record);
+}
+
+void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
+ if (!RecordD) return;
+ PopDeclContext();
+}
+
+/// This is used to implement the constant expression evaluation part of the
+/// attribute enable_if extension. There is nothing in standard C++ which would
+/// require reentering parameters.
+void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) {
+ if (!Param)
+ return;
+
+ S->AddDecl(Param);
+ if (Param->getDeclName())
+ IdResolver.AddDecl(Param);
+}
+
+/// ActOnStartDelayedCXXMethodDeclaration - We have completed
+/// parsing a top-level (non-nested) C++ class, and we are now
+/// parsing those parts of the given Method declaration that could
+/// not be parsed earlier (C++ [class.mem]p2), such as default
+/// arguments. This action should enter the scope of the given
+/// Method declaration as if we had just parsed the qualified method
+/// name. However, it should not bring the parameters into scope;
+/// that will be performed by ActOnDelayedCXXMethodParameter.
+void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
+}
+
+/// ActOnDelayedCXXMethodParameter - We've already started a delayed
+/// C++ method declaration. We're (re-)introducing the given
+/// function parameter into scope for use in parsing later parts of
+/// the method declaration. For example, we could see an
+/// ActOnParamDefaultArgument event for this parameter.
+void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
+ if (!ParamD)
+ return;
+
+ ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
+
+ // If this parameter has an unparsed default argument, clear it out
+ // to make way for the parsed default argument.
+ if (Param->hasUnparsedDefaultArg())
+ Param->setDefaultArg(nullptr);
+
+ S->AddDecl(Param);
+ if (Param->getDeclName())
+ IdResolver.AddDecl(Param);
+}
+
+/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
+/// processing the delayed method declaration for Method. The method
+/// declaration is now considered finished. There may be a separate
+/// ActOnStartOfFunctionDef action later (not necessarily
+/// immediately!) for this method, if it was also defined inside the
+/// class body.
+void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
+ if (!MethodD)
+ return;
+
+ AdjustDeclIfTemplate(MethodD);
+
+ FunctionDecl *Method = cast<FunctionDecl>(MethodD);
+
+ // Now that we have our default arguments, check the constructor
+ // again. It could produce additional diagnostics or affect whether
+ // the class has implicitly-declared destructors, among other
+ // things.
+ if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
+ CheckConstructor(Constructor);
+
+ // Check the default arguments, which we may have added.
+ if (!Method->isInvalidDecl())
+ CheckCXXDefaultArguments(Method);
+}
+
+/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
+/// the well-formedness of the constructor declarator @p D with type @p
+/// R. If there are any errors in the declarator, this routine will
+/// emit diagnostics and set the invalid bit to true. In any case, the type
+/// will be updated to reflect a well-formed type for the constructor and
+/// returned.
+QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
+ StorageClass &SC) {
+ bool isVirtual = D.getDeclSpec().isVirtualSpecified();
+
+ // C++ [class.ctor]p3:
+ // A constructor shall not be virtual (10.3) or static (9.4). A
+ // constructor can be invoked for a const, volatile or const
+ // volatile object. A constructor shall not be declared const,
+ // volatile, or const volatile (9.3.2).
+ if (isVirtual) {
+ if (!D.isInvalidType())
+ Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
+ << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
+ << SourceRange(D.getIdentifierLoc());
+ D.setInvalidType();
+ }
+ if (SC == SC_Static) {
+ if (!D.isInvalidType())
+ Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
+ << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
+ << SourceRange(D.getIdentifierLoc());
+ D.setInvalidType();
+ SC = SC_None;
+ }
+
+ if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
+ diagnoseIgnoredQualifiers(
+ diag::err_constructor_return_type, TypeQuals, SourceLocation(),
+ D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(),
+ D.getDeclSpec().getRestrictSpecLoc(),
+ D.getDeclSpec().getAtomicSpecLoc());
+ D.setInvalidType();
+ }
+
+ DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
+ if (FTI.TypeQuals != 0) {
+ if (FTI.TypeQuals & Qualifiers::Const)
+ Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
+ << "const" << SourceRange(D.getIdentifierLoc());
+ if (FTI.TypeQuals & Qualifiers::Volatile)
+ Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
+ << "volatile" << SourceRange(D.getIdentifierLoc());
+ if (FTI.TypeQuals & Qualifiers::Restrict)
+ Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
+ << "restrict" << SourceRange(D.getIdentifierLoc());
+ D.setInvalidType();
+ }
+
+ // C++0x [class.ctor]p4:
+ // A constructor shall not be declared with a ref-qualifier.
+ if (FTI.hasRefQualifier()) {
+ Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
+ << FTI.RefQualifierIsLValueRef
+ << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
+ D.setInvalidType();
+ }
+
+ // Rebuild the function type "R" without any type qualifiers (in
+ // case any of the errors above fired) and with "void" as the
+ // return type, since constructors don't have return types.
+ const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
+ if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType())
+ return R;
+
+ FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
+ EPI.TypeQuals = 0;
+ EPI.RefQualifier = RQ_None;
+
+ return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI);
+}
+
+/// CheckConstructor - Checks a fully-formed constructor for
+/// well-formedness, issuing any diagnostics required. Returns true if
+/// the constructor declarator is invalid.
+void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
+ CXXRecordDecl *ClassDecl
+ = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
+ if (!ClassDecl)
+ return Constructor->setInvalidDecl();
+
+ // C++ [class.copy]p3:
+ // A declaration of a constructor for a class X is ill-formed if
+ // its first parameter is of type (optionally cv-qualified) X and
+ // either there are no other parameters or else all other
+ // parameters have default arguments.
+ if (!Constructor->isInvalidDecl() &&
+ ((Constructor->getNumParams() == 1) ||
+ (Constructor->getNumParams() > 1 &&
+ Constructor->getParamDecl(1)->hasDefaultArg())) &&
+ Constructor->getTemplateSpecializationKind()
+ != TSK_ImplicitInstantiation) {
+ QualType ParamType = Constructor->getParamDecl(0)->getType();
+ QualType ClassTy = Context.getTagDeclType(ClassDecl);
+ if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
+ SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
+ const char *ConstRef
+ = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
+ : " const &";
+ Diag(ParamLoc, diag::err_constructor_byvalue_arg)
+ << FixItHint::CreateInsertion(ParamLoc, ConstRef);
+
+ // FIXME: Rather that making the constructor invalid, we should endeavor
+ // to fix the type.
+ Constructor->setInvalidDecl();
+ }
+ }
+}
+
+/// CheckDestructor - Checks a fully-formed destructor definition for
+/// well-formedness, issuing any diagnostics required. Returns true
+/// on error.
+bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
+ CXXRecordDecl *RD = Destructor->getParent();
+
+ if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) {
+ SourceLocation Loc;
+
+ if (!Destructor->isImplicit())
+ Loc = Destructor->getLocation();
+ else
+ Loc = RD->getLocation();
+
+ // If we have a virtual destructor, look up the deallocation function
+ FunctionDecl *OperatorDelete = nullptr;
+ DeclarationName Name =
+ Context.DeclarationNames.getCXXOperatorName(OO_Delete);
+ if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
+ return true;
+ // If there's no class-specific operator delete, look up the global
+ // non-array delete.
+ if (!OperatorDelete)
+ OperatorDelete = FindUsualDeallocationFunction(Loc, true, Name);
+
+ MarkFunctionReferenced(Loc, OperatorDelete);
+
+ Destructor->setOperatorDelete(OperatorDelete);
+ }
+
+ return false;
+}
+
+/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
+/// the well-formednes of the destructor declarator @p D with type @p
+/// R. If there are any errors in the declarator, this routine will
+/// emit diagnostics and set the declarator to invalid. Even if this happens,
+/// will be updated to reflect a well-formed type for the destructor and
+/// returned.
+QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
+ StorageClass& SC) {
+ // C++ [class.dtor]p1:
+ // [...] A typedef-name that names a class is a class-name
+ // (7.1.3); however, a typedef-name that names a class shall not
+ // be used as the identifier in the declarator for a destructor
+ // declaration.
+ QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
+ if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
+ Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
+ << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
+ else if (const TemplateSpecializationType *TST =
+ DeclaratorType->getAs<TemplateSpecializationType>())
+ if (TST->isTypeAlias())
+ Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
+ << DeclaratorType << 1;
+
+ // C++ [class.dtor]p2:
+ // A destructor is used to destroy objects of its class type. A
+ // destructor takes no parameters, and no return type can be
+ // specified for it (not even void). The address of a destructor
+ // shall not be taken. A destructor shall not be static. A
+ // destructor can be invoked for a const, volatile or const
+ // volatile object. A destructor shall not be declared const,
+ // volatile or const volatile (9.3.2).
+ if (SC == SC_Static) {
+ if (!D.isInvalidType())
+ Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
+ << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
+ << SourceRange(D.getIdentifierLoc())
+ << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
+
+ SC = SC_None;
+ }
+ if (!D.isInvalidType()) {
+ // Destructors don't have return types, but the parser will
+ // happily parse something like:
+ //
+ // class X {
+ // float ~X();
+ // };
+ //
+ // The return type will be eliminated later.
+ if (D.getDeclSpec().hasTypeSpecifier())
+ Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
+ << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
+ << SourceRange(D.getIdentifierLoc());
+ else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
+ diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals,
+ SourceLocation(),
+ D.getDeclSpec().getConstSpecLoc(),
+ D.getDeclSpec().getVolatileSpecLoc(),
+ D.getDeclSpec().getRestrictSpecLoc(),
+ D.getDeclSpec().getAtomicSpecLoc());
+ D.setInvalidType();
+ }
+ }
+
+ DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
+ if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
+ if (FTI.TypeQuals & Qualifiers::Const)
+ Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
+ << "const" << SourceRange(D.getIdentifierLoc());
+ if (FTI.TypeQuals & Qualifiers::Volatile)
+ Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
+ << "volatile" << SourceRange(D.getIdentifierLoc());
+ if (FTI.TypeQuals & Qualifiers::Restrict)
+ Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
+ << "restrict" << SourceRange(D.getIdentifierLoc());
+ D.setInvalidType();
+ }
+
+ // C++0x [class.dtor]p2:
+ // A destructor shall not be declared with a ref-qualifier.
+ if (FTI.hasRefQualifier()) {
+ Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
+ << FTI.RefQualifierIsLValueRef
+ << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
+ D.setInvalidType();
+ }
+
+ // Make sure we don't have any parameters.
+ if (FTIHasNonVoidParameters(FTI)) {
+ Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
+
+ // Delete the parameters.
+ FTI.freeParams();
+ D.setInvalidType();
+ }
+
+ // Make sure the destructor isn't variadic.
+ if (FTI.isVariadic) {
+ Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
+ D.setInvalidType();
+ }
+
+ // Rebuild the function type "R" without any type qualifiers or
+ // parameters (in case any of the errors above fired) and with
+ // "void" as the return type, since destructors don't have return
+ // types.
+ if (!D.isInvalidType())
+ return R;
+
+ const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
+ FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
+ EPI.Variadic = false;
+ EPI.TypeQuals = 0;
+ EPI.RefQualifier = RQ_None;
+ return Context.getFunctionType(Context.VoidTy, None, EPI);
+}
+
+static void extendLeft(SourceRange &R, const SourceRange &Before) {
+ if (Before.isInvalid())
+ return;
+ R.setBegin(Before.getBegin());
+ if (R.getEnd().isInvalid())
+ R.setEnd(Before.getEnd());
+}
+
+static void extendRight(SourceRange &R, const SourceRange &After) {
+ if (After.isInvalid())
+ return;
+ if (R.getBegin().isInvalid())
+ R.setBegin(After.getBegin());
+ R.setEnd(After.getEnd());
+}
+
+/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
+/// well-formednes of the conversion function declarator @p D with
+/// type @p R. If there are any errors in the declarator, this routine
+/// will emit diagnostics and return true. Otherwise, it will return
+/// false. Either way, the type @p R will be updated to reflect a
+/// well-formed type for the conversion operator.
+void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
+ StorageClass& SC) {
+ // C++ [class.conv.fct]p1:
+ // Neither parameter types nor return type can be specified. The
+ // type of a conversion function (8.3.5) is "function taking no
+ // parameter returning conversion-type-id."
+ if (SC == SC_Static) {
+ if (!D.isInvalidType())
+ Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
+ << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
+ << D.getName().getSourceRange();
+ D.setInvalidType();
+ SC = SC_None;
+ }
+
+ TypeSourceInfo *ConvTSI = nullptr;
+ QualType ConvType =
+ GetTypeFromParser(D.getName().ConversionFunctionId, &ConvTSI);
+
+ if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
+ // Conversion functions don't have return types, but the parser will
+ // happily parse something like:
+ //
+ // class X {
+ // float operator bool();
+ // };
+ //
+ // The return type will be changed later anyway.
+ Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
+ << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
+ << SourceRange(D.getIdentifierLoc());
+ D.setInvalidType();
+ }
+
+ const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
+
+ // Make sure we don't have any parameters.
+ if (Proto->getNumParams() > 0) {
+ Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
+
+ // Delete the parameters.
+ D.getFunctionTypeInfo().freeParams();
+ D.setInvalidType();
+ } else if (Proto->isVariadic()) {
+ Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
+ D.setInvalidType();
+ }
+
+ // Diagnose "&operator bool()" and other such nonsense. This
+ // is actually a gcc extension which we don't support.
+ if (Proto->getReturnType() != ConvType) {
+ bool NeedsTypedef = false;
+ SourceRange Before, After;
+
+ // Walk the chunks and extract information on them for our diagnostic.
+ bool PastFunctionChunk = false;
+ for (auto &Chunk : D.type_objects()) {
+ switch (Chunk.Kind) {
+ case DeclaratorChunk::Function:
+ if (!PastFunctionChunk) {
+ if (Chunk.Fun.HasTrailingReturnType) {
+ TypeSourceInfo *TRT = nullptr;
+ GetTypeFromParser(Chunk.Fun.getTrailingReturnType(), &TRT);
+ if (TRT) extendRight(After, TRT->getTypeLoc().getSourceRange());
+ }
+ PastFunctionChunk = true;
+ break;
+ }
+ // Fall through.
+ case DeclaratorChunk::Array:
+ NeedsTypedef = true;
+ extendRight(After, Chunk.getSourceRange());
+ break;
+
+ case DeclaratorChunk::Pointer:
+ case DeclaratorChunk::BlockPointer:
+ case DeclaratorChunk::Reference:
+ case DeclaratorChunk::MemberPointer:
+ extendLeft(Before, Chunk.getSourceRange());
+ break;
+
+ case DeclaratorChunk::Paren:
+ extendLeft(Before, Chunk.Loc);
+ extendRight(After, Chunk.EndLoc);
+ break;
+ }
+ }
+
+ SourceLocation Loc = Before.isValid() ? Before.getBegin() :
+ After.isValid() ? After.getBegin() :
+ D.getIdentifierLoc();
+ auto &&DB = Diag(Loc, diag::err_conv_function_with_complex_decl);
+ DB << Before << After;
+
+ if (!NeedsTypedef) {
+ DB << /*don't need a typedef*/0;
+
+ // If we can provide a correct fix-it hint, do so.
+ if (After.isInvalid() && ConvTSI) {
+ SourceLocation InsertLoc =
+ PP.getLocForEndOfToken(ConvTSI->getTypeLoc().getLocEnd());
+ DB << FixItHint::CreateInsertion(InsertLoc, " ")
+ << FixItHint::CreateInsertionFromRange(
+ InsertLoc, CharSourceRange::getTokenRange(Before))
+ << FixItHint::CreateRemoval(Before);
+ }
+ } else if (!Proto->getReturnType()->isDependentType()) {
+ DB << /*typedef*/1 << Proto->getReturnType();
+ } else if (getLangOpts().CPlusPlus11) {
+ DB << /*alias template*/2 << Proto->getReturnType();
+ } else {
+ DB << /*might not be fixable*/3;
+ }
+
+ // Recover by incorporating the other type chunks into the result type.
+ // Note, this does *not* change the name of the function. This is compatible
+ // with the GCC extension:
+ // struct S { &operator int(); } s;
+ // int &r = s.operator int(); // ok in GCC
+ // S::operator int&() {} // error in GCC, function name is 'operator int'.
+ ConvType = Proto->getReturnType();
+ }
+
+ // C++ [class.conv.fct]p4:
+ // The conversion-type-id shall not represent a function type nor
+ // an array type.
+ if (ConvType->isArrayType()) {
+ Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
+ ConvType = Context.getPointerType(ConvType);
+ D.setInvalidType();
+ } else if (ConvType->isFunctionType()) {
+ Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
+ ConvType = Context.getPointerType(ConvType);
+ D.setInvalidType();
+ }
+
+ // Rebuild the function type "R" without any parameters (in case any
+ // of the errors above fired) and with the conversion type as the
+ // return type.
+ if (D.isInvalidType())
+ R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo());
+
+ // C++0x explicit conversion operators.
+ if (D.getDeclSpec().isExplicitSpecified())
+ Diag(D.getDeclSpec().getExplicitSpecLoc(),
+ getLangOpts().CPlusPlus11 ?
+ diag::warn_cxx98_compat_explicit_conversion_functions :
+ diag::ext_explicit_conversion_functions)
+ << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
+}
+
+/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
+/// the declaration of the given C++ conversion function. This routine
+/// is responsible for recording the conversion function in the C++
+/// class, if possible.
+Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
+ assert(Conversion && "Expected to receive a conversion function declaration");
+
+ CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
+
+ // Make sure we aren't redeclaring the conversion function.
+ QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
+
+ // C++ [class.conv.fct]p1:
+ // [...] A conversion function is never used to convert a
+ // (possibly cv-qualified) object to the (possibly cv-qualified)
+ // same object type (or a reference to it), to a (possibly
+ // cv-qualified) base class of that type (or a reference to it),
+ // or to (possibly cv-qualified) void.
+ // FIXME: Suppress this warning if the conversion function ends up being a
+ // virtual function that overrides a virtual function in a base class.
+ QualType ClassType
+ = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
+ if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
+ ConvType = ConvTypeRef->getPointeeType();
+ if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
+ Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
+ /* Suppress diagnostics for instantiations. */;
+ else if (ConvType->isRecordType()) {
+ ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
+ if (ConvType == ClassType)
+ Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
+ << ClassType;
+ else if (IsDerivedFrom(ClassType, ConvType))
+ Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
+ << ClassType << ConvType;
+ } else if (ConvType->isVoidType()) {
+ Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
+ << ClassType << ConvType;
+ }
+
+ if (FunctionTemplateDecl *ConversionTemplate
+ = Conversion->getDescribedFunctionTemplate())
+ return ConversionTemplate;
+
+ return Conversion;
+}
+
+//===----------------------------------------------------------------------===//
+// Namespace Handling
+//===----------------------------------------------------------------------===//
+
+/// \brief Diagnose a mismatch in 'inline' qualifiers when a namespace is
+/// reopened.
+static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
+ SourceLocation Loc,
+ IdentifierInfo *II, bool *IsInline,
+ NamespaceDecl *PrevNS) {
+ assert(*IsInline != PrevNS->isInline());
+
+ // HACK: Work around a bug in libstdc++4.6's <atomic>, where
+ // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
+ // inline namespaces, with the intention of bringing names into namespace std.
+ //
+ // We support this just well enough to get that case working; this is not
+ // sufficient to support reopening namespaces as inline in general.
+ if (*IsInline && II && II->getName().startswith("__atomic") &&
+ S.getSourceManager().isInSystemHeader(Loc)) {
+ // Mark all prior declarations of the namespace as inline.
+ for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
+ NS = NS->getPreviousDecl())
+ NS->setInline(*IsInline);
+ // Patch up the lookup table for the containing namespace. This isn't really
+ // correct, but it's good enough for this particular case.
+ for (auto *I : PrevNS->decls())
+ if (auto *ND = dyn_cast<NamedDecl>(I))
+ PrevNS->getParent()->makeDeclVisibleInContext(ND);
+ return;
+ }
+
+ if (PrevNS->isInline())
+ // The user probably just forgot the 'inline', so suggest that it
+ // be added back.
+ S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
+ << FixItHint::CreateInsertion(KeywordLoc, "inline ");
+ else
+ S.Diag(Loc, diag::err_inline_namespace_mismatch) << *IsInline;
+
+ S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
+ *IsInline = PrevNS->isInline();
+}
+
+/// ActOnStartNamespaceDef - This is called at the start of a namespace
+/// definition.
+Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
+ SourceLocation InlineLoc,
+ SourceLocation NamespaceLoc,
+ SourceLocation IdentLoc,
+ IdentifierInfo *II,
+ SourceLocation LBrace,
+ AttributeList *AttrList) {
+ SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
+ // For anonymous namespace, take the location of the left brace.
+ SourceLocation Loc = II ? IdentLoc : LBrace;
+ bool IsInline = InlineLoc.isValid();
+ bool IsInvalid = false;
+ bool IsStd = false;
+ bool AddToKnown = false;
+ Scope *DeclRegionScope = NamespcScope->getParent();
+
+ NamespaceDecl *PrevNS = nullptr;
+ if (II) {
+ // C++ [namespace.def]p2:
+ // The identifier in an original-namespace-definition shall not
+ // have been previously defined in the declarative region in
+ // which the original-namespace-definition appears. The
+ // identifier in an original-namespace-definition is the name of
+ // the namespace. Subsequently in that declarative region, it is
+ // treated as an original-namespace-name.
+ //
+ // Since namespace names are unique in their scope, and we don't
+ // look through using directives, just look for any ordinary names.
+
+ const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
+ Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
+ Decl::IDNS_Namespace;
+ NamedDecl *PrevDecl = nullptr;
+ DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
+ for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
+ ++I) {
+ if ((*I)->getIdentifierNamespace() & IDNS) {
+ PrevDecl = *I;
+ break;
+ }
+ }
+
+ PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
+
+ if (PrevNS) {
+ // This is an extended namespace definition.
+ if (IsInline != PrevNS->isInline())
+ DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
+ &IsInline, PrevNS);
+ } else if (PrevDecl) {
+ // This is an invalid name redefinition.
+ Diag(Loc, diag::err_redefinition_different_kind)
+ << II;
+ Diag(PrevDecl->getLocation(), diag::note_previous_definition);
+ IsInvalid = true;
+ // Continue on to push Namespc as current DeclContext and return it.
+ } else if (II->isStr("std") &&
+ CurContext->getRedeclContext()->isTranslationUnit()) {
+ // This is the first "real" definition of the namespace "std", so update
+ // our cache of the "std" namespace to point at this definition.
+ PrevNS = getStdNamespace();
+ IsStd = true;
+ AddToKnown = !IsInline;
+ } else {
+ // We've seen this namespace for the first time.
+ AddToKnown = !IsInline;
+ }
+ } else {
+ // Anonymous namespaces.
+
+ // Determine whether the parent already has an anonymous namespace.
+ DeclContext *Parent = CurContext->getRedeclContext();
+ if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
+ PrevNS = TU->getAnonymousNamespace();
+ } else {
+ NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
+ PrevNS = ND->getAnonymousNamespace();
+ }
+
+ if (PrevNS && IsInline != PrevNS->isInline())
+ DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
+ &IsInline, PrevNS);
+ }
+
+ NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
+ StartLoc, Loc, II, PrevNS);
+ if (IsInvalid)
+ Namespc->setInvalidDecl();
+
+ ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
+
+ // FIXME: Should we be merging attributes?
+ if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
+ PushNamespaceVisibilityAttr(Attr, Loc);
+
+ if (IsStd)
+ StdNamespace = Namespc;
+ if (AddToKnown)
+ KnownNamespaces[Namespc] = false;
+
+ if (II) {
+ PushOnScopeChains(Namespc, DeclRegionScope);
+ } else {
+ // Link the anonymous namespace into its parent.
+ DeclContext *Parent = CurContext->getRedeclContext();
+ if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
+ TU->setAnonymousNamespace(Namespc);
+ } else {
+ cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
+ }
+
+ CurContext->addDecl(Namespc);
+
+ // C++ [namespace.unnamed]p1. An unnamed-namespace-definition
+ // behaves as if it were replaced by
+ // namespace unique { /* empty body */ }
+ // using namespace unique;
+ // namespace unique { namespace-body }
+ // where all occurrences of 'unique' in a translation unit are
+ // replaced by the same identifier and this identifier differs
+ // from all other identifiers in the entire program.
+
+ // We just create the namespace with an empty name and then add an
+ // implicit using declaration, just like the standard suggests.
+ //
+ // CodeGen enforces the "universally unique" aspect by giving all
+ // declarations semantically contained within an anonymous
+ // namespace internal linkage.
+
+ if (!PrevNS) {
+ UsingDirectiveDecl* UD
+ = UsingDirectiveDecl::Create(Context, Parent,
+ /* 'using' */ LBrace,
+ /* 'namespace' */ SourceLocation(),
+ /* qualifier */ NestedNameSpecifierLoc(),
+ /* identifier */ SourceLocation(),
+ Namespc,
+ /* Ancestor */ Parent);
+ UD->setImplicit();
+ Parent->addDecl(UD);
+ }
+ }
+
+ ActOnDocumentableDecl(Namespc);
+
+ // Although we could have an invalid decl (i.e. the namespace name is a
+ // redefinition), push it as current DeclContext and try to continue parsing.
+ // FIXME: We should be able to push Namespc here, so that the each DeclContext
+ // for the namespace has the declarations that showed up in that particular
+ // namespace definition.
+ PushDeclContext(NamespcScope, Namespc);
+ return Namespc;
+}
+
+/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
+/// is a namespace alias, returns the namespace it points to.
+static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
+ if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
+ return AD->getNamespace();
+ return dyn_cast_or_null<NamespaceDecl>(D);
+}
+
+/// ActOnFinishNamespaceDef - This callback is called after a namespace is
+/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
+void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
+ NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
+ assert(Namespc && "Invalid parameter, expected NamespaceDecl");
+ Namespc->setRBraceLoc(RBrace);
+ PopDeclContext();
+ if (Namespc->hasAttr<VisibilityAttr>())
+ PopPragmaVisibility(true, RBrace);
+}
+
+CXXRecordDecl *Sema::getStdBadAlloc() const {
+ return cast_or_null<CXXRecordDecl>(
+ StdBadAlloc.get(Context.getExternalSource()));
+}
+
+NamespaceDecl *Sema::getStdNamespace() const {
+ return cast_or_null<NamespaceDecl>(
+ StdNamespace.get(Context.getExternalSource()));
+}
+
+/// \brief Retrieve the special "std" namespace, which may require us to
+/// implicitly define the namespace.
+NamespaceDecl *Sema::getOrCreateStdNamespace() {
+ if (!StdNamespace) {
+ // The "std" namespace has not yet been defined, so build one implicitly.
+ StdNamespace = NamespaceDecl::Create(Context,
+ Context.getTranslationUnitDecl(),
+ /*Inline=*/false,
+ SourceLocation(), SourceLocation(),
+ &PP.getIdentifierTable().get("std"),
+ /*PrevDecl=*/nullptr);
+ getStdNamespace()->setImplicit(true);
+ }
+
+ return getStdNamespace();
+}
+
+bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
+ assert(getLangOpts().CPlusPlus &&
+ "Looking for std::initializer_list outside of C++.");
+
+ // We're looking for implicit instantiations of
+ // template <typename E> class std::initializer_list.
+
+ if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
+ return false;
+
+ ClassTemplateDecl *Template = nullptr;
+ const TemplateArgument *Arguments = nullptr;
+
+ if (const RecordType *RT = Ty->getAs<RecordType>()) {
+
+ ClassTemplateSpecializationDecl *Specialization =
+ dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
+ if (!Specialization)
+ return false;
+
+ Template = Specialization->getSpecializedTemplate();
+ Arguments = Specialization->getTemplateArgs().data();
+ } else if (const TemplateSpecializationType *TST =
+ Ty->getAs<TemplateSpecializationType>()) {
+ Template = dyn_cast_or_null<ClassTemplateDecl>(
+ TST->getTemplateName().getAsTemplateDecl());
+ Arguments = TST->getArgs();
+ }
+ if (!Template)
+ return false;
+
+ if (!StdInitializerList) {
+ // Haven't recognized std::initializer_list yet, maybe this is it.
+ CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
+ if (TemplateClass->getIdentifier() !=
+ &PP.getIdentifierTable().get("initializer_list") ||
+ !getStdNamespace()->InEnclosingNamespaceSetOf(
+ TemplateClass->getDeclContext()))
+ return false;
+ // This is a template called std::initializer_list, but is it the right
+ // template?
+ TemplateParameterList *Params = Template->getTemplateParameters();
+ if (Params->getMinRequiredArguments() != 1)
+ return false;
+ if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
+ return false;
+
+ // It's the right template.
+ StdInitializerList = Template;
+ }
+
+ if (Template->getCanonicalDecl() != StdInitializerList->getCanonicalDecl())
+ return false;
+
+ // This is an instance of std::initializer_list. Find the argument type.
+ if (Element)
+ *Element = Arguments[0].getAsType();
+ return true;
+}
+
+static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
+ NamespaceDecl *Std = S.getStdNamespace();
+ if (!Std) {
+ S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
+ return nullptr;
+ }
+
+ LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
+ Loc, Sema::LookupOrdinaryName);
+ if (!S.LookupQualifiedName(Result, Std)) {
+ S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
+ return nullptr;
+ }
+ ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
+ if (!Template) {
+ Result.suppressDiagnostics();
+ // We found something weird. Complain about the first thing we found.
+ NamedDecl *Found = *Result.begin();
+ S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
+ return nullptr;
+ }
+
+ // We found some template called std::initializer_list. Now verify that it's
+ // correct.
+ TemplateParameterList *Params = Template->getTemplateParameters();
+ if (Params->getMinRequiredArguments() != 1 ||
+ !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
+ S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
+ return nullptr;
+ }
+
+ return Template;
+}
+
+QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
+ if (!StdInitializerList) {
+ StdInitializerList = LookupStdInitializerList(*this, Loc);
+ if (!StdInitializerList)
+ return QualType();
+ }
+
+ TemplateArgumentListInfo Args(Loc, Loc);
+ Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
+ Context.getTrivialTypeSourceInfo(Element,
+ Loc)));
+ return Context.getCanonicalType(
+ CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
+}
+
+bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
+ // C++ [dcl.init.list]p2:
+ // A constructor is an initializer-list constructor if its first parameter
+ // is of type std::initializer_list<E> or reference to possibly cv-qualified
+ // std::initializer_list<E> for some type E, and either there are no other
+ // parameters or else all other parameters have default arguments.
+ if (Ctor->getNumParams() < 1 ||
+ (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
+ return false;
+
+ QualType ArgType = Ctor->getParamDecl(0)->getType();
+ if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
+ ArgType = RT->getPointeeType().getUnqualifiedType();
+
+ return isStdInitializerList(ArgType, nullptr);
+}
+
+/// \brief Determine whether a using statement is in a context where it will be
+/// apply in all contexts.
+static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
+ switch (CurContext->getDeclKind()) {
+ case Decl::TranslationUnit:
+ return true;
+ case Decl::LinkageSpec:
+ return IsUsingDirectiveInToplevelContext(CurContext->getParent());
+ default:
+ return false;
+ }
+}
+
+namespace {
+
+// Callback to only accept typo corrections that are namespaces.
+class NamespaceValidatorCCC : public CorrectionCandidateCallback {
+public:
+ bool ValidateCandidate(const TypoCorrection &candidate) override {
+ if (NamedDecl *ND = candidate.getCorrectionDecl())
+ return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
+ return false;
+ }
+};
+
+}
+
+static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
+ CXXScopeSpec &SS,
+ SourceLocation IdentLoc,
+ IdentifierInfo *Ident) {
+ R.clear();
+ if (TypoCorrection Corrected =
+ S.CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), Sc, &SS,
+ llvm::make_unique<NamespaceValidatorCCC>(),
+ Sema::CTK_ErrorRecovery)) {
+ if (DeclContext *DC = S.computeDeclContext(SS, false)) {
+ std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
+ bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
+ Ident->getName().equals(CorrectedStr);
+ S.diagnoseTypo(Corrected,
+ S.PDiag(diag::err_using_directive_member_suggest)
+ << Ident << DC << DroppedSpecifier << SS.getRange(),
+ S.PDiag(diag::note_namespace_defined_here));
+ } else {
+ S.diagnoseTypo(Corrected,
+ S.PDiag(diag::err_using_directive_suggest) << Ident,
+ S.PDiag(diag::note_namespace_defined_here));
+ }
+ R.addDecl(Corrected.getCorrectionDecl());
+ return true;
+ }
+ return false;
+}
+
+Decl *Sema::ActOnUsingDirective(Scope *S,
+ SourceLocation UsingLoc,
+ SourceLocation NamespcLoc,
+ CXXScopeSpec &SS,
+ SourceLocation IdentLoc,
+ IdentifierInfo *NamespcName,
+ AttributeList *AttrList) {
+ assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
+ assert(NamespcName && "Invalid NamespcName.");
+ assert(IdentLoc.isValid() && "Invalid NamespceName location.");
+
+ // This can only happen along a recovery path.
+ while (S->getFlags() & Scope::TemplateParamScope)
+ S = S->getParent();
+ assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
+
+ UsingDirectiveDecl *UDir = nullptr;
+ NestedNameSpecifier *Qualifier = nullptr;
+ if (SS.isSet())
+ Qualifier = SS.getScopeRep();
+
+ // Lookup namespace name.
+ LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
+ LookupParsedName(R, S, &SS);
+ if (R.isAmbiguous())
+ return nullptr;
+
+ if (R.empty()) {
+ R.clear();
+ // Allow "using namespace std;" or "using namespace ::std;" even if
+ // "std" hasn't been defined yet, for GCC compatibility.
+ if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
+ NamespcName->isStr("std")) {
+ Diag(IdentLoc, diag::ext_using_undefined_std);
+ R.addDecl(getOrCreateStdNamespace());
+ R.resolveKind();
+ }
+ // Otherwise, attempt typo correction.
+ else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
+ }
+
+ if (!R.empty()) {
+ NamedDecl *Named = R.getFoundDecl();
+ assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
+ && "expected namespace decl");
+
+ // The use of a nested name specifier may trigger deprecation warnings.
+ DiagnoseUseOfDecl(Named, IdentLoc);
+
+ // C++ [namespace.udir]p1:
+ // A using-directive specifies that the names in the nominated
+ // namespace can be used in the scope in which the
+ // using-directive appears after the using-directive. During
+ // unqualified name lookup (3.4.1), the names appear as if they
+ // were declared in the nearest enclosing namespace which
+ // contains both the using-directive and the nominated
+ // namespace. [Note: in this context, "contains" means "contains
+ // directly or indirectly". ]
+
+ // Find enclosing context containing both using-directive and
+ // nominated namespace.
+ NamespaceDecl *NS = getNamespaceDecl(Named);
+ DeclContext *CommonAncestor = cast<DeclContext>(NS);
+ while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
+ CommonAncestor = CommonAncestor->getParent();
+
+ UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
+ SS.getWithLocInContext(Context),
+ IdentLoc, Named, CommonAncestor);
+
+ if (IsUsingDirectiveInToplevelContext(CurContext) &&
+ !SourceMgr.isInMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
+ Diag(IdentLoc, diag::warn_using_directive_in_header);
+ }
+
+ PushUsingDirective(S, UDir);
+ } else {
+ Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
+ }
+
+ if (UDir)
+ ProcessDeclAttributeList(S, UDir, AttrList);
+
+ return UDir;
+}
+
+void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
+ // If the scope has an associated entity and the using directive is at
+ // namespace or translation unit scope, add the UsingDirectiveDecl into
+ // its lookup structure so qualified name lookup can find it.
+ DeclContext *Ctx = S->getEntity();
+ if (Ctx && !Ctx->isFunctionOrMethod())
+ Ctx->addDecl(UDir);
+ else
+ // Otherwise, it is at block scope. The using-directives will affect lookup
+ // only to the end of the scope.
+ S->PushUsingDirective(UDir);
+}
+
+
+Decl *Sema::ActOnUsingDeclaration(Scope *S,
+ AccessSpecifier AS,
+ bool HasUsingKeyword,
+ SourceLocation UsingLoc,
+ CXXScopeSpec &SS,
+ UnqualifiedId &Name,
+ AttributeList *AttrList,
+ bool HasTypenameKeyword,
+ SourceLocation TypenameLoc) {
+ assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
+
+ switch (Name.getKind()) {
+ case UnqualifiedId::IK_ImplicitSelfParam:
+ case UnqualifiedId::IK_Identifier:
+ case UnqualifiedId::IK_OperatorFunctionId:
+ case UnqualifiedId::IK_LiteralOperatorId:
+ case UnqualifiedId::IK_ConversionFunctionId:
+ break;
+
+ case UnqualifiedId::IK_ConstructorName:
+ case UnqualifiedId::IK_ConstructorTemplateId:
+ // C++11 inheriting constructors.
+ Diag(Name.getLocStart(),
+ getLangOpts().CPlusPlus11 ?
+ diag::warn_cxx98_compat_using_decl_constructor :
+ diag::err_using_decl_constructor)
+ << SS.getRange();
+
+ if (getLangOpts().CPlusPlus11) break;
+
+ return nullptr;
+
+ case UnqualifiedId::IK_DestructorName:
+ Diag(Name.getLocStart(), diag::err_using_decl_destructor)
+ << SS.getRange();
+ return nullptr;
+
+ case UnqualifiedId::IK_TemplateId:
+ Diag(Name.getLocStart(), diag::err_using_decl_template_id)
+ << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
+ return nullptr;
+ }
+
+ DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
+ DeclarationName TargetName = TargetNameInfo.getName();
+ if (!TargetName)
+ return nullptr;
+
+ // Warn about access declarations.
+ if (!HasUsingKeyword) {
+ Diag(Name.getLocStart(),
+ getLangOpts().CPlusPlus11 ? diag::err_access_decl
+ : diag::warn_access_decl_deprecated)
+ << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
+ }
+
+ if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
+ DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
+ return nullptr;
+
+ NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
+ TargetNameInfo, AttrList,
+ /* IsInstantiation */ false,
+ HasTypenameKeyword, TypenameLoc);
+ if (UD)
+ PushOnScopeChains(UD, S, /*AddToContext*/ false);
+
+ return UD;
+}
+
+/// \brief Determine whether a using declaration considers the given
+/// declarations as "equivalent", e.g., if they are redeclarations of
+/// the same entity or are both typedefs of the same type.
+static bool
+IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2) {
+ if (D1->getCanonicalDecl() == D2->getCanonicalDecl())
+ return true;
+
+ if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
+ if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2))
+ return Context.hasSameType(TD1->getUnderlyingType(),
+ TD2->getUnderlyingType());
+
+ return false;
+}
+
+
+/// Determines whether to create a using shadow decl for a particular
+/// decl, given the set of decls existing prior to this using lookup.
+bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
+ const LookupResult &Previous,
+ UsingShadowDecl *&PrevShadow) {
+ // Diagnose finding a decl which is not from a base class of the
+ // current class. We do this now because there are cases where this
+ // function will silently decide not to build a shadow decl, which
+ // will pre-empt further diagnostics.
+ //
+ // We don't need to do this in C++0x because we do the check once on
+ // the qualifier.
+ //
+ // FIXME: diagnose the following if we care enough:
+ // struct A { int foo; };
+ // struct B : A { using A::foo; };
+ // template <class T> struct C : A {};
+ // template <class T> struct D : C<T> { using B::foo; } // <---
+ // This is invalid (during instantiation) in C++03 because B::foo
+ // resolves to the using decl in B, which is not a base class of D<T>.
+ // We can't diagnose it immediately because C<T> is an unknown
+ // specialization. The UsingShadowDecl in D<T> then points directly
+ // to A::foo, which will look well-formed when we instantiate.
+ // The right solution is to not collapse the shadow-decl chain.
+ if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) {
+ DeclContext *OrigDC = Orig->getDeclContext();
+
+ // Handle enums and anonymous structs.
+ if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
+ CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
+ while (OrigRec->isAnonymousStructOrUnion())
+ OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
+
+ if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
+ if (OrigDC == CurContext) {
+ Diag(Using->getLocation(),
+ diag::err_using_decl_nested_name_specifier_is_current_class)
+ << Using->getQualifierLoc().getSourceRange();
+ Diag(Orig->getLocation(), diag::note_using_decl_target);
+ return true;
+ }
+
+ Diag(Using->getQualifierLoc().getBeginLoc(),
+ diag::err_using_decl_nested_name_specifier_is_not_base_class)
+ << Using->getQualifier()
+ << cast<CXXRecordDecl>(CurContext)
+ << Using->getQualifierLoc().getSourceRange();
+ Diag(Orig->getLocation(), diag::note_using_decl_target);
+ return true;
+ }
+ }
+
+ if (Previous.empty()) return false;
+
+ NamedDecl *Target = Orig;
+ if (isa<UsingShadowDecl>(Target))
+ Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
+
+ // If the target happens to be one of the previous declarations, we
+ // don't have a conflict.
+ //
+ // FIXME: but we might be increasing its access, in which case we
+ // should redeclare it.
+ NamedDecl *NonTag = nullptr, *Tag = nullptr;
+ bool FoundEquivalentDecl = false;
+ for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
+ I != E; ++I) {
+ NamedDecl *D = (*I)->getUnderlyingDecl();
+ if (IsEquivalentForUsingDecl(Context, D, Target)) {
+ if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(*I))
+ PrevShadow = Shadow;
+ FoundEquivalentDecl = true;
+ }
+
+ (isa<TagDecl>(D) ? Tag : NonTag) = D;
+ }
+
+ if (FoundEquivalentDecl)
+ return false;
+
+ if (FunctionDecl *FD = Target->getAsFunction()) {
+ NamedDecl *OldDecl = nullptr;
+ switch (CheckOverload(nullptr, FD, Previous, OldDecl,
+ /*IsForUsingDecl*/ true)) {
+ case Ovl_Overload:
+ return false;
+
+ case Ovl_NonFunction:
+ Diag(Using->getLocation(), diag::err_using_decl_conflict);
+ break;
+
+ // We found a decl with the exact signature.
+ case Ovl_Match:
+ // If we're in a record, we want to hide the target, so we
+ // return true (without a diagnostic) to tell the caller not to
+ // build a shadow decl.
+ if (CurContext->isRecord())
+ return true;
+
+ // If we're not in a record, this is an error.
+ Diag(Using->getLocation(), diag::err_using_decl_conflict);
+ break;
+ }
+
+ Diag(Target->getLocation(), diag::note_using_decl_target);
+ Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
+ return true;
+ }
+
+ // Target is not a function.
+
+ if (isa<TagDecl>(Target)) {
+ // No conflict between a tag and a non-tag.
+ if (!Tag) return false;
+
+ Diag(Using->getLocation(), diag::err_using_decl_conflict);
+ Diag(Target->getLocation(), diag::note_using_decl_target);
+ Diag(Tag->getLocation(), diag::note_using_decl_conflict);
+ return true;
+ }
+
+ // No conflict between a tag and a non-tag.
+ if (!NonTag) return false;
+
+ Diag(Using->getLocation(), diag::err_using_decl_conflict);
+ Diag(Target->getLocation(), diag::note_using_decl_target);
+ Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
+ return true;
+}
+
+/// Builds a shadow declaration corresponding to a 'using' declaration.
+UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
+ UsingDecl *UD,
+ NamedDecl *Orig,
+ UsingShadowDecl *PrevDecl) {
+
+ // If we resolved to another shadow declaration, just coalesce them.
+ NamedDecl *Target = Orig;
+ if (isa<UsingShadowDecl>(Target)) {
+ Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
+ assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
+ }
+
+ UsingShadowDecl *Shadow
+ = UsingShadowDecl::Create(Context, CurContext,
+ UD->getLocation(), UD, Target);
+ UD->addShadowDecl(Shadow);
+
+ Shadow->setAccess(UD->getAccess());
+ if (Orig->isInvalidDecl() || UD->isInvalidDecl())
+ Shadow->setInvalidDecl();
+
+ Shadow->setPreviousDecl(PrevDecl);
+
+ if (S)
+ PushOnScopeChains(Shadow, S);
+ else
+ CurContext->addDecl(Shadow);
+
+
+ return Shadow;
+}
+
+/// Hides a using shadow declaration. This is required by the current
+/// using-decl implementation when a resolvable using declaration in a
+/// class is followed by a declaration which would hide or override
+/// one or more of the using decl's targets; for example:
+///
+/// struct Base { void foo(int); };
+/// struct Derived : Base {
+/// using Base::foo;
+/// void foo(int);
+/// };
+///
+/// The governing language is C++03 [namespace.udecl]p12:
+///
+/// When a using-declaration brings names from a base class into a
+/// derived class scope, member functions in the derived class
+/// override and/or hide member functions with the same name and
+/// parameter types in a base class (rather than conflicting).
+///
+/// There are two ways to implement this:
+/// (1) optimistically create shadow decls when they're not hidden
+/// by existing declarations, or
+/// (2) don't create any shadow decls (or at least don't make them
+/// visible) until we've fully parsed/instantiated the class.
+/// The problem with (1) is that we might have to retroactively remove
+/// a shadow decl, which requires several O(n) operations because the
+/// decl structures are (very reasonably) not designed for removal.
+/// (2) avoids this but is very fiddly and phase-dependent.
+void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
+ if (Shadow->getDeclName().getNameKind() ==
+ DeclarationName::CXXConversionFunctionName)
+ cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
+
+ // Remove it from the DeclContext...
+ Shadow->getDeclContext()->removeDecl(Shadow);
+
+ // ...and the scope, if applicable...
+ if (S) {
+ S->RemoveDecl(Shadow);
+ IdResolver.RemoveDecl(Shadow);
+ }
+
+ // ...and the using decl.
+ Shadow->getUsingDecl()->removeShadowDecl(Shadow);
+
+ // TODO: complain somehow if Shadow was used. It shouldn't
+ // be possible for this to happen, because...?
+}
+
+/// Find the base specifier for a base class with the given type.
+static CXXBaseSpecifier *findDirectBaseWithType(CXXRecordDecl *Derived,
+ QualType DesiredBase,
+ bool &AnyDependentBases) {
+ // Check whether the named type is a direct base class.
+ CanQualType CanonicalDesiredBase = DesiredBase->getCanonicalTypeUnqualified();
+ for (auto &Base : Derived->bases()) {
+ CanQualType BaseType = Base.getType()->getCanonicalTypeUnqualified();
+ if (CanonicalDesiredBase == BaseType)
+ return &Base;
+ if (BaseType->isDependentType())
+ AnyDependentBases = true;
+ }
+ return nullptr;
+}
+
+namespace {
+class UsingValidatorCCC : public CorrectionCandidateCallback {
+public:
+ UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation,
+ NestedNameSpecifier *NNS, CXXRecordDecl *RequireMemberOf)
+ : HasTypenameKeyword(HasTypenameKeyword),
+ IsInstantiation(IsInstantiation), OldNNS(NNS),
+ RequireMemberOf(RequireMemberOf) {}
+
+ bool ValidateCandidate(const TypoCorrection &Candidate) override {
+ NamedDecl *ND = Candidate.getCorrectionDecl();
+
+ // Keywords are not valid here.
+ if (!ND || isa<NamespaceDecl>(ND))
+ return false;
+
+ // Completely unqualified names are invalid for a 'using' declaration.
+ if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier())
+ return false;
+
+ if (RequireMemberOf) {
+ auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND);
+ if (FoundRecord && FoundRecord->isInjectedClassName()) {
+ // No-one ever wants a using-declaration to name an injected-class-name
+ // of a base class, unless they're declaring an inheriting constructor.
+ ASTContext &Ctx = ND->getASTContext();
+ if (!Ctx.getLangOpts().CPlusPlus11)
+ return false;
+ QualType FoundType = Ctx.getRecordType(FoundRecord);
+
+ // Check that the injected-class-name is named as a member of its own
+ // type; we don't want to suggest 'using Derived::Base;', since that
+ // means something else.
+ NestedNameSpecifier *Specifier =
+ Candidate.WillReplaceSpecifier()
+ ? Candidate.getCorrectionSpecifier()
+ : OldNNS;
+ if (!Specifier->getAsType() ||
+ !Ctx.hasSameType(QualType(Specifier->getAsType(), 0), FoundType))
+ return false;
+
+ // Check that this inheriting constructor declaration actually names a
+ // direct base class of the current class.
+ bool AnyDependentBases = false;
+ if (!findDirectBaseWithType(RequireMemberOf,
+ Ctx.getRecordType(FoundRecord),
+ AnyDependentBases) &&
+ !AnyDependentBases)
+ return false;
+ } else {
+ auto *RD = dyn_cast<CXXRecordDecl>(ND->getDeclContext());
+ if (!RD || RequireMemberOf->isProvablyNotDerivedFrom(RD))
+ return false;
+
+ // FIXME: Check that the base class member is accessible?
+ }
+ }
+
+ if (isa<TypeDecl>(ND))
+ return HasTypenameKeyword || !IsInstantiation;
+
+ return !HasTypenameKeyword;
+ }
+
+private:
+ bool HasTypenameKeyword;
+ bool IsInstantiation;
+ NestedNameSpecifier *OldNNS;
+ CXXRecordDecl *RequireMemberOf;
+};
+} // end anonymous namespace
+
+/// Builds a using declaration.
+///
+/// \param IsInstantiation - Whether this call arises from an
+/// instantiation of an unresolved using declaration. We treat
+/// the lookup differently for these declarations.
+NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
+ SourceLocation UsingLoc,
+ CXXScopeSpec &SS,
+ DeclarationNameInfo NameInfo,
+ AttributeList *AttrList,
+ bool IsInstantiation,
+ bool HasTypenameKeyword,
+ SourceLocation TypenameLoc) {
+ assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
+ SourceLocation IdentLoc = NameInfo.getLoc();
+ assert(IdentLoc.isValid() && "Invalid TargetName location.");
+
+ // FIXME: We ignore attributes for now.
+
+ if (SS.isEmpty()) {
+ Diag(IdentLoc, diag::err_using_requires_qualname);
+ return nullptr;
+ }
+
+ // Do the redeclaration lookup in the current scope.
+ LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
+ ForRedeclaration);
+ Previous.setHideTags(false);
+ if (S) {
+ LookupName(Previous, S);
+
+ // It is really dumb that we have to do this.
+ LookupResult::Filter F = Previous.makeFilter();
+ while (F.hasNext()) {
+ NamedDecl *D = F.next();
+ if (!isDeclInScope(D, CurContext, S))
+ F.erase();
+ // If we found a local extern declaration that's not ordinarily visible,
+ // and this declaration is being added to a non-block scope, ignore it.
+ // We're only checking for scope conflicts here, not also for violations
+ // of the linkage rules.
+ else if (!CurContext->isFunctionOrMethod() && D->isLocalExternDecl() &&
+ !(D->getIdentifierNamespace() & Decl::IDNS_Ordinary))
+ F.erase();
+ }
+ F.done();
+ } else {
+ assert(IsInstantiation && "no scope in non-instantiation");
+ assert(CurContext->isRecord() && "scope not record in instantiation");
+ LookupQualifiedName(Previous, CurContext);
+ }
+
+ // Check for invalid redeclarations.
+ if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword,
+ SS, IdentLoc, Previous))
+ return nullptr;
+
+ // Check for bad qualifiers.
+ if (CheckUsingDeclQualifier(UsingLoc, SS, NameInfo, IdentLoc))
+ return nullptr;
+
+ DeclContext *LookupContext = computeDeclContext(SS);
+ NamedDecl *D;
+ NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
+ if (!LookupContext) {
+ if (HasTypenameKeyword) {
+ // FIXME: not all declaration name kinds are legal here
+ D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
+ UsingLoc, TypenameLoc,
+ QualifierLoc,
+ IdentLoc, NameInfo.getName());
+ } else {
+ D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
+ QualifierLoc, NameInfo);
+ }
+ D->setAccess(AS);
+ CurContext->addDecl(D);
+ return D;
+ }
+
+ auto Build = [&](bool Invalid) {
+ UsingDecl *UD =
+ UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc, NameInfo,
+ HasTypenameKeyword);
+ UD->setAccess(AS);
+ CurContext->addDecl(UD);
+ UD->setInvalidDecl(Invalid);
+ return UD;
+ };
+ auto BuildInvalid = [&]{ return Build(true); };
+ auto BuildValid = [&]{ return Build(false); };
+
+ if (RequireCompleteDeclContext(SS, LookupContext))
+ return BuildInvalid();
+
+ // Look up the target name.
+ LookupResult R(*this, NameInfo, LookupOrdinaryName);
+
+ // Unlike most lookups, we don't always want to hide tag
+ // declarations: tag names are visible through the using declaration
+ // even if hidden by ordinary names, *except* in a dependent context
+ // where it's important for the sanity of two-phase lookup.
+ if (!IsInstantiation)
+ R.setHideTags(false);
+
+ // For the purposes of this lookup, we have a base object type
+ // equal to that of the current context.
+ if (CurContext->isRecord()) {
+ R.setBaseObjectType(
+ Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
+ }
+
+ LookupQualifiedName(R, LookupContext);
+
+ // Try to correct typos if possible. If constructor name lookup finds no
+ // results, that means the named class has no explicit constructors, and we
+ // suppressed declaring implicit ones (probably because it's dependent or
+ // invalid).
+ if (R.empty() &&
+ NameInfo.getName().getNameKind() != DeclarationName::CXXConstructorName) {
+ if (TypoCorrection Corrected = CorrectTypo(
+ R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
+ llvm::make_unique<UsingValidatorCCC>(
+ HasTypenameKeyword, IsInstantiation, SS.getScopeRep(),
+ dyn_cast<CXXRecordDecl>(CurContext)),
+ CTK_ErrorRecovery)) {
+ // We reject any correction for which ND would be NULL.
+ NamedDecl *ND = Corrected.getCorrectionDecl();
+
+ // We reject candidates where DroppedSpecifier == true, hence the
+ // literal '0' below.
+ diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
+ << NameInfo.getName() << LookupContext << 0
+ << SS.getRange());
+
+ // If we corrected to an inheriting constructor, handle it as one.
+ auto *RD = dyn_cast<CXXRecordDecl>(ND);
+ if (RD && RD->isInjectedClassName()) {
+ // Fix up the information we'll use to build the using declaration.
+ if (Corrected.WillReplaceSpecifier()) {
+ NestedNameSpecifierLocBuilder Builder;
+ Builder.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
+ QualifierLoc.getSourceRange());
+ QualifierLoc = Builder.getWithLocInContext(Context);
+ }
+
+ NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
+ Context.getCanonicalType(Context.getRecordType(RD))));
+ NameInfo.setNamedTypeInfo(nullptr);
+ for (auto *Ctor : LookupConstructors(RD))
+ R.addDecl(Ctor);
+ } else {
+ // FIXME: Pick up all the declarations if we found an overloaded function.
+ R.addDecl(ND);
+ }
+ } else {
+ Diag(IdentLoc, diag::err_no_member)
+ << NameInfo.getName() << LookupContext << SS.getRange();
+ return BuildInvalid();
+ }
+ }
+
+ if (R.isAmbiguous())
+ return BuildInvalid();
+
+ if (HasTypenameKeyword) {
+ // If we asked for a typename and got a non-type decl, error out.
+ if (!R.getAsSingle<TypeDecl>()) {
+ Diag(IdentLoc, diag::err_using_typename_non_type);
+ for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
+ Diag((*I)->getUnderlyingDecl()->getLocation(),
+ diag::note_using_decl_target);
+ return BuildInvalid();
+ }
+ } else {
+ // If we asked for a non-typename and we got a type, error out,
+ // but only if this is an instantiation of an unresolved using
+ // decl. Otherwise just silently find the type name.
+ if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
+ Diag(IdentLoc, diag::err_using_dependent_value_is_type);
+ Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
+ return BuildInvalid();
+ }
+ }
+
+ // C++0x N2914 [namespace.udecl]p6:
+ // A using-declaration shall not name a namespace.
+ if (R.getAsSingle<NamespaceDecl>()) {
+ Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
+ << SS.getRange();
+ return BuildInvalid();
+ }
+
+ UsingDecl *UD = BuildValid();
+
+ // The normal rules do not apply to inheriting constructor declarations.
+ if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
+ // Suppress access diagnostics; the access check is instead performed at the
+ // point of use for an inheriting constructor.
+ R.suppressDiagnostics();
+ CheckInheritingConstructorUsingDecl(UD);
+ return UD;
+ }
+
+ // Otherwise, look up the target name.
+
+ for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
+ UsingShadowDecl *PrevDecl = nullptr;
+ if (!CheckUsingShadowDecl(UD, *I, Previous, PrevDecl))
+ BuildUsingShadowDecl(S, UD, *I, PrevDecl);
+ }
+
+ return UD;
+}
+
+/// Additional checks for a using declaration referring to a constructor name.
+bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
+ assert(!UD->hasTypename() && "expecting a constructor name");
+
+ const Type *SourceType = UD->getQualifier()->getAsType();
+ assert(SourceType &&
+ "Using decl naming constructor doesn't have type in scope spec.");
+ CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
+
+ // Check whether the named type is a direct base class.
+ bool AnyDependentBases = false;
+ auto *Base = findDirectBaseWithType(TargetClass, QualType(SourceType, 0),
+ AnyDependentBases);
+ if (!Base && !AnyDependentBases) {
+ Diag(UD->getUsingLoc(),
+ diag::err_using_decl_constructor_not_in_direct_base)
+ << UD->getNameInfo().getSourceRange()
+ << QualType(SourceType, 0) << TargetClass;
+ UD->setInvalidDecl();
+ return true;
+ }
+
+ if (Base)
+ Base->setInheritConstructors();
+
+ return false;
+}
+
+/// Checks that the given using declaration is not an invalid
+/// redeclaration. Note that this is checking only for the using decl
+/// itself, not for any ill-formedness among the UsingShadowDecls.
+bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
+ bool HasTypenameKeyword,
+ const CXXScopeSpec &SS,
+ SourceLocation NameLoc,
+ const LookupResult &Prev) {
+ // C++03 [namespace.udecl]p8:
+ // C++0x [namespace.udecl]p10:
+ // A using-declaration is a declaration and can therefore be used
+ // repeatedly where (and only where) multiple declarations are
+ // allowed.
+ //
+ // That's in non-member contexts.
+ if (!CurContext->getRedeclContext()->isRecord())
+ return false;
+
+ NestedNameSpecifier *Qual = SS.getScopeRep();
+
+ for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
+ NamedDecl *D = *I;
+
+ bool DTypename;
+ NestedNameSpecifier *DQual;
+ if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
+ DTypename = UD->hasTypename();
+ DQual = UD->getQualifier();
+ } else if (UnresolvedUsingValueDecl *UD
+ = dyn_cast<UnresolvedUsingValueDecl>(D)) {
+ DTypename = false;
+ DQual = UD->getQualifier();
+ } else if (UnresolvedUsingTypenameDecl *UD
+ = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
+ DTypename = true;
+ DQual = UD->getQualifier();
+ } else continue;
+
+ // using decls differ if one says 'typename' and the other doesn't.
+ // FIXME: non-dependent using decls?
+ if (HasTypenameKeyword != DTypename) continue;
+
+ // using decls differ if they name different scopes (but note that
+ // template instantiation can cause this check to trigger when it
+ // didn't before instantiation).
+ if (Context.getCanonicalNestedNameSpecifier(Qual) !=
+ Context.getCanonicalNestedNameSpecifier(DQual))
+ continue;
+
+ Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
+ Diag(D->getLocation(), diag::note_using_decl) << 1;
+ return true;
+ }
+
+ return false;
+}
+
+
+/// Checks that the given nested-name qualifier used in a using decl
+/// in the current context is appropriately related to the current
+/// scope. If an error is found, diagnoses it and returns true.
+bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
+ const CXXScopeSpec &SS,
+ const DeclarationNameInfo &NameInfo,
+ SourceLocation NameLoc) {
+ DeclContext *NamedContext = computeDeclContext(SS);
+
+ if (!CurContext->isRecord()) {
+ // C++03 [namespace.udecl]p3:
+ // C++0x [namespace.udecl]p8:
+ // A using-declaration for a class member shall be a member-declaration.
+
+ // If we weren't able to compute a valid scope, it must be a
+ // dependent class scope.
+ if (!NamedContext || NamedContext->isRecord()) {
+ auto *RD = dyn_cast_or_null<CXXRecordDecl>(NamedContext);
+ if (RD && RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), RD))
+ RD = nullptr;
+
+ Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
+ << SS.getRange();
+
+ // If we have a complete, non-dependent source type, try to suggest a
+ // way to get the same effect.
+ if (!RD)
+ return true;
+
+ // Find what this using-declaration was referring to.
+ LookupResult R(*this, NameInfo, LookupOrdinaryName);
+ R.setHideTags(false);
+ R.suppressDiagnostics();
+ LookupQualifiedName(R, RD);
+
+ if (R.getAsSingle<TypeDecl>()) {
+ if (getLangOpts().CPlusPlus11) {
+ // Convert 'using X::Y;' to 'using Y = X::Y;'.
+ Diag(SS.getBeginLoc(), diag::note_using_decl_class_member_workaround)
+ << 0 // alias declaration
+ << FixItHint::CreateInsertion(SS.getBeginLoc(),
+ NameInfo.getName().getAsString() +
+ " = ");
+ } else {
+ // Convert 'using X::Y;' to 'typedef X::Y Y;'.
+ SourceLocation InsertLoc =
+ PP.getLocForEndOfToken(NameInfo.getLocEnd());
+ Diag(InsertLoc, diag::note_using_decl_class_member_workaround)
+ << 1 // typedef declaration
+ << FixItHint::CreateReplacement(UsingLoc, "typedef")
+ << FixItHint::CreateInsertion(
+ InsertLoc, " " + NameInfo.getName().getAsString());
+ }
+ } else if (R.getAsSingle<VarDecl>()) {
+ // Don't provide a fixit outside C++11 mode; we don't want to suggest
+ // repeating the type of the static data member here.
+ FixItHint FixIt;
+ if (getLangOpts().CPlusPlus11) {
+ // Convert 'using X::Y;' to 'auto &Y = X::Y;'.
+ FixIt = FixItHint::CreateReplacement(
+ UsingLoc, "auto &" + NameInfo.getName().getAsString() + " = ");
+ }
+
+ Diag(UsingLoc, diag::note_using_decl_class_member_workaround)
+ << 2 // reference declaration
+ << FixIt;
+ }
+ return true;
+ }
+
+ // Otherwise, everything is known to be fine.
+ return false;
+ }
+
+ // The current scope is a record.
+
+ // If the named context is dependent, we can't decide much.
+ if (!NamedContext) {
+ // FIXME: in C++0x, we can diagnose if we can prove that the
+ // nested-name-specifier does not refer to a base class, which is
+ // still possible in some cases.
+
+ // Otherwise we have to conservatively report that things might be
+ // okay.
+ return false;
+ }
+
+ if (!NamedContext->isRecord()) {
+ // Ideally this would point at the last name in the specifier,
+ // but we don't have that level of source info.
+ Diag(SS.getRange().getBegin(),
+ diag::err_using_decl_nested_name_specifier_is_not_class)
+ << SS.getScopeRep() << SS.getRange();
+ return true;
+ }
+
+ if (!NamedContext->isDependentContext() &&
+ RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
+ return true;
+
+ if (getLangOpts().CPlusPlus11) {
+ // C++0x [namespace.udecl]p3:
+ // In a using-declaration used as a member-declaration, the
+ // nested-name-specifier shall name a base class of the class
+ // being defined.
+
+ if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
+ cast<CXXRecordDecl>(NamedContext))) {
+ if (CurContext == NamedContext) {
+ Diag(NameLoc,
+ diag::err_using_decl_nested_name_specifier_is_current_class)
+ << SS.getRange();
+ return true;
+ }
+
+ Diag(SS.getRange().getBegin(),
+ diag::err_using_decl_nested_name_specifier_is_not_base_class)
+ << SS.getScopeRep()
+ << cast<CXXRecordDecl>(CurContext)
+ << SS.getRange();
+ return true;
+ }
+
+ return false;
+ }
+
+ // C++03 [namespace.udecl]p4:
+ // A using-declaration used as a member-declaration shall refer
+ // to a member of a base class of the class being defined [etc.].
+
+ // Salient point: SS doesn't have to name a base class as long as
+ // lookup only finds members from base classes. Therefore we can
+ // diagnose here only if we can prove that that can't happen,
+ // i.e. if the class hierarchies provably don't intersect.
+
+ // TODO: it would be nice if "definitely valid" results were cached
+ // in the UsingDecl and UsingShadowDecl so that these checks didn't
+ // need to be repeated.
+
+ struct UserData {
+ llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
+
+ static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
+ UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
+ Data->Bases.insert(Base);
+ return true;
+ }
+
+ bool hasDependentBases(const CXXRecordDecl *Class) {
+ return !Class->forallBases(collect, this);
+ }
+
+ /// Returns true if the base is dependent or is one of the
+ /// accumulated base classes.
+ static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
+ UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
+ return !Data->Bases.count(Base);
+ }
+
+ bool mightShareBases(const CXXRecordDecl *Class) {
+ return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
+ }
+ };
+
+ UserData Data;
+
+ // Returns false if we find a dependent base.
+ if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
+ return false;
+
+ // Returns false if the class has a dependent base or if it or one
+ // of its bases is present in the base set of the current context.
+ if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
+ return false;
+
+ Diag(SS.getRange().getBegin(),
+ diag::err_using_decl_nested_name_specifier_is_not_base_class)
+ << SS.getScopeRep()
+ << cast<CXXRecordDecl>(CurContext)
+ << SS.getRange();
+
+ return true;
+}
+
+Decl *Sema::ActOnAliasDeclaration(Scope *S,
+ AccessSpecifier AS,
+ MultiTemplateParamsArg TemplateParamLists,
+ SourceLocation UsingLoc,
+ UnqualifiedId &Name,
+ AttributeList *AttrList,
+ TypeResult Type,
+ Decl *DeclFromDeclSpec) {
+ // Skip up to the relevant declaration scope.
+ while (S->getFlags() & Scope::TemplateParamScope)
+ S = S->getParent();
+ assert((S->getFlags() & Scope::DeclScope) &&
+ "got alias-declaration outside of declaration scope");
+
+ if (Type.isInvalid())
+ return nullptr;
+
+ bool Invalid = false;
+ DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
+ TypeSourceInfo *TInfo = nullptr;
+ GetTypeFromParser(Type.get(), &TInfo);
+
+ if (DiagnoseClassNameShadow(CurContext, NameInfo))
+ return nullptr;
+
+ if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
+ UPPC_DeclarationType)) {
+ Invalid = true;
+ TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
+ TInfo->getTypeLoc().getBeginLoc());
+ }
+
+ LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
+ LookupName(Previous, S);
+
+ // Warn about shadowing the name of a template parameter.
+ if (Previous.isSingleResult() &&
+ Previous.getFoundDecl()->isTemplateParameter()) {
+ DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
+ Previous.clear();
+ }
+
+ assert(Name.Kind == UnqualifiedId::IK_Identifier &&
+ "name in alias declaration must be an identifier");
+ TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
+ Name.StartLocation,
+ Name.Identifier, TInfo);
+
+ NewTD->setAccess(AS);
+
+ if (Invalid)
+ NewTD->setInvalidDecl();
+
+ ProcessDeclAttributeList(S, NewTD, AttrList);
+
+ CheckTypedefForVariablyModifiedType(S, NewTD);
+ Invalid |= NewTD->isInvalidDecl();
+
+ bool Redeclaration = false;
+
+ NamedDecl *NewND;
+ if (TemplateParamLists.size()) {
+ TypeAliasTemplateDecl *OldDecl = nullptr;
+ TemplateParameterList *OldTemplateParams = nullptr;
+
+ if (TemplateParamLists.size() != 1) {
+ Diag(UsingLoc, diag::err_alias_template_extra_headers)
+ << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
+ TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
+ }
+ TemplateParameterList *TemplateParams = TemplateParamLists[0];
+
+ // Only consider previous declarations in the same scope.
+ FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
+ /*ExplicitInstantiationOrSpecialization*/false);
+ if (!Previous.empty()) {
+ Redeclaration = true;
+
+ OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
+ if (!OldDecl && !Invalid) {
+ Diag(UsingLoc, diag::err_redefinition_different_kind)
+ << Name.Identifier;
+
+ NamedDecl *OldD = Previous.getRepresentativeDecl();
+ if (OldD->getLocation().isValid())
+ Diag(OldD->getLocation(), diag::note_previous_definition);
+
+ Invalid = true;
+ }
+
+ if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
+ if (TemplateParameterListsAreEqual(TemplateParams,
+ OldDecl->getTemplateParameters(),
+ /*Complain=*/true,
+ TPL_TemplateMatch))
+ OldTemplateParams = OldDecl->getTemplateParameters();
+ else
+ Invalid = true;
+
+ TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
+ if (!Invalid &&
+ !Context.hasSameType(OldTD->getUnderlyingType(),
+ NewTD->getUnderlyingType())) {
+ // FIXME: The C++0x standard does not clearly say this is ill-formed,
+ // but we can't reasonably accept it.
+ Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
+ << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
+ if (OldTD->getLocation().isValid())
+ Diag(OldTD->getLocation(), diag::note_previous_definition);
+ Invalid = true;
+ }
+ }
+ }
+
+ // Merge any previous default template arguments into our parameters,
+ // and check the parameter list.
+ if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
+ TPC_TypeAliasTemplate))
+ return nullptr;
+
+ TypeAliasTemplateDecl *NewDecl =
+ TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
+ Name.Identifier, TemplateParams,
+ NewTD);
+ NewTD->setDescribedAliasTemplate(NewDecl);
+
+ NewDecl->setAccess(AS);
+
+ if (Invalid)
+ NewDecl->setInvalidDecl();
+ else if (OldDecl)
+ NewDecl->setPreviousDecl(OldDecl);
+
+ NewND = NewDecl;
+ } else {
+ if (auto *TD = dyn_cast_or_null<TagDecl>(DeclFromDeclSpec)) {
+ setTagNameForLinkagePurposes(TD, NewTD);
+ handleTagNumbering(TD, S);
+ }
+ ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
+ NewND = NewTD;
+ }
+
+ if (!Redeclaration)
+ PushOnScopeChains(NewND, S);
+
+ ActOnDocumentableDecl(NewND);
+ return NewND;
+}
+
+Decl *Sema::ActOnNamespaceAliasDef(Scope *S, SourceLocation NamespaceLoc,
+ SourceLocation AliasLoc,
+ IdentifierInfo *Alias, CXXScopeSpec &SS,
+ SourceLocation IdentLoc,
+ IdentifierInfo *Ident) {
+
+ // Lookup the namespace name.
+ LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
+ LookupParsedName(R, S, &SS);
+
+ if (R.isAmbiguous())
+ return nullptr;
+
+ if (R.empty()) {
+ if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
+ Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
+ return nullptr;
+ }
+ }
+ assert(!R.isAmbiguous() && !R.empty());
+
+ // Check if we have a previous declaration with the same name.
+ NamedDecl *PrevDecl = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
+ ForRedeclaration);
+ if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
+ PrevDecl = nullptr;
+
+ NamedDecl *ND = R.getFoundDecl();
+
+ if (PrevDecl) {
+ if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
+ // We already have an alias with the same name that points to the same
+ // namespace; check that it matches.
+ if (!AD->getNamespace()->Equals(getNamespaceDecl(ND))) {
+ Diag(AliasLoc, diag::err_redefinition_different_namespace_alias)
+ << Alias;
+ Diag(PrevDecl->getLocation(), diag::note_previous_namespace_alias)
+ << AD->getNamespace();
+ return nullptr;
+ }
+ } else {
+ unsigned DiagID = isa<NamespaceDecl>(PrevDecl)
+ ? diag::err_redefinition
+ : diag::err_redefinition_different_kind;
+ Diag(AliasLoc, DiagID) << Alias;
+ Diag(PrevDecl->getLocation(), diag::note_previous_definition);
+ return nullptr;
+ }
+ }
+
+ // The use of a nested name specifier may trigger deprecation warnings.
+ DiagnoseUseOfDecl(ND, IdentLoc);
+
+ NamespaceAliasDecl *AliasDecl =
+ NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
+ Alias, SS.getWithLocInContext(Context),
+ IdentLoc, ND);
+ if (PrevDecl)
+ AliasDecl->setPreviousDecl(cast<NamespaceAliasDecl>(PrevDecl));
+
+ PushOnScopeChains(AliasDecl, S);
+ return AliasDecl;
+}
+
+Sema::ImplicitExceptionSpecification
+Sema::ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,
+ CXXMethodDecl *MD) {
+ CXXRecordDecl *ClassDecl = MD->getParent();
+
+ // C++ [except.spec]p14:
+ // An implicitly declared special member function (Clause 12) shall have an
+ // exception-specification. [...]
+ ImplicitExceptionSpecification ExceptSpec(*this);
+ if (ClassDecl->isInvalidDecl())
+ return ExceptSpec;
+
+ // Direct base-class constructors.
+ for (const auto &B : ClassDecl->bases()) {
+ if (B.isVirtual()) // Handled below.
+ continue;
+
+ if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
+ CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
+ CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
+ // If this is a deleted function, add it anyway. This might be conformant
+ // with the standard. This might not. I'm not sure. It might not matter.
+ if (Constructor)
+ ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
+ }
+ }
+
+ // Virtual base-class constructors.
+ for (const auto &B : ClassDecl->vbases()) {
+ if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
+ CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
+ CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
+ // If this is a deleted function, add it anyway. This might be conformant
+ // with the standard. This might not. I'm not sure. It might not matter.
+ if (Constructor)
+ ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
+ }
+ }
+
+ // Field constructors.
+ for (const auto *F : ClassDecl->fields()) {
+ if (F->hasInClassInitializer()) {
+ if (Expr *E = F->getInClassInitializer())
+ ExceptSpec.CalledExpr(E);
+ } else if (const RecordType *RecordTy
+ = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
+ CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
+ CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
+ // If this is a deleted function, add it anyway. This might be conformant
+ // with the standard. This might not. I'm not sure. It might not matter.
+ // In particular, the problem is that this function never gets called. It
+ // might just be ill-formed because this function attempts to refer to
+ // a deleted function here.
+ if (Constructor)
+ ExceptSpec.CalledDecl(F->getLocation(), Constructor);
+ }
+ }
+
+ return ExceptSpec;
+}
+
+Sema::ImplicitExceptionSpecification
+Sema::ComputeInheritingCtorExceptionSpec(CXXConstructorDecl *CD) {
+ CXXRecordDecl *ClassDecl = CD->getParent();
+
+ // C++ [except.spec]p14:
+ // An inheriting constructor [...] shall have an exception-specification. [...]
+ ImplicitExceptionSpecification ExceptSpec(*this);
+ if (ClassDecl->isInvalidDecl())
+ return ExceptSpec;
+
+ // Inherited constructor.
+ const CXXConstructorDecl *InheritedCD = CD->getInheritedConstructor();
+ const CXXRecordDecl *InheritedDecl = InheritedCD->getParent();
+ // FIXME: Copying or moving the parameters could add extra exceptions to the
+ // set, as could the default arguments for the inherited constructor. This
+ // will be addressed when we implement the resolution of core issue 1351.
+ ExceptSpec.CalledDecl(CD->getLocStart(), InheritedCD);
+
+ // Direct base-class constructors.
+ for (const auto &B : ClassDecl->bases()) {
+ if (B.isVirtual()) // Handled below.
+ continue;
+
+ if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
+ CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
+ if (BaseClassDecl == InheritedDecl)
+ continue;
+ CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
+ if (Constructor)
+ ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
+ }
+ }
+
+ // Virtual base-class constructors.
+ for (const auto &B : ClassDecl->vbases()) {
+ if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
+ CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
+ if (BaseClassDecl == InheritedDecl)
+ continue;
+ CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
+ if (Constructor)
+ ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
+ }
+ }
+
+ // Field constructors.
+ for (const auto *F : ClassDecl->fields()) {
+ if (F->hasInClassInitializer()) {
+ if (Expr *E = F->getInClassInitializer())
+ ExceptSpec.CalledExpr(E);
+ } else if (const RecordType *RecordTy
+ = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
+ CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
+ CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
+ if (Constructor)
+ ExceptSpec.CalledDecl(F->getLocation(), Constructor);
+ }
+ }
+
+ return ExceptSpec;
+}
+
+namespace {
+/// RAII object to register a special member as being currently declared.
+struct DeclaringSpecialMember {
+ Sema &S;
+ Sema::SpecialMemberDecl D;
+ bool WasAlreadyBeingDeclared;
+
+ DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
+ : S(S), D(RD, CSM) {
+ WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D).second;
+ if (WasAlreadyBeingDeclared)
+ // This almost never happens, but if it does, ensure that our cache
+ // doesn't contain a stale result.
+ S.SpecialMemberCache.clear();
+
+ // FIXME: Register a note to be produced if we encounter an error while
+ // declaring the special member.
+ }
+ ~DeclaringSpecialMember() {
+ if (!WasAlreadyBeingDeclared)
+ S.SpecialMembersBeingDeclared.erase(D);
+ }
+
+ /// \brief Are we already trying to declare this special member?
+ bool isAlreadyBeingDeclared() const {
+ return WasAlreadyBeingDeclared;
+ }
+};
+}
+
+CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
+ CXXRecordDecl *ClassDecl) {
+ // C++ [class.ctor]p5:
+ // A default constructor for a class X is a constructor of class X
+ // that can be called without an argument. If there is no
+ // user-declared constructor for class X, a default constructor is
+ // implicitly declared. An implicitly-declared default constructor
+ // is an inline public member of its class.
+ assert(ClassDecl->needsImplicitDefaultConstructor() &&
+ "Should not build implicit default constructor!");
+
+ DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
+ if (DSM.isAlreadyBeingDeclared())
+ return nullptr;
+
+ bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
+ CXXDefaultConstructor,
+ false);
+
+ // Create the actual constructor declaration.
+ CanQualType ClassType
+ = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
+ SourceLocation ClassLoc = ClassDecl->getLocation();
+ DeclarationName Name
+ = Context.DeclarationNames.getCXXConstructorName(ClassType);
+ DeclarationNameInfo NameInfo(Name, ClassLoc);
+ CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
+ Context, ClassDecl, ClassLoc, NameInfo, /*Type*/QualType(),
+ /*TInfo=*/nullptr, /*isExplicit=*/false, /*isInline=*/true,
+ /*isImplicitlyDeclared=*/true, Constexpr);
+ DefaultCon->setAccess(AS_public);
+ DefaultCon->setDefaulted();
+
+ if (getLangOpts().CUDA) {
+ inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDefaultConstructor,
+ DefaultCon,
+ /* ConstRHS */ false,
+ /* Diagnose */ false);
+ }
+
+ // Build an exception specification pointing back at this constructor.
+ FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, DefaultCon);
+ DefaultCon->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
+
+ // We don't need to use SpecialMemberIsTrivial here; triviality for default
+ // constructors is easy to compute.
+ DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
+
+ if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
+ SetDeclDeleted(DefaultCon, ClassLoc);
+
+ // Note that we have declared this constructor.
+ ++ASTContext::NumImplicitDefaultConstructorsDeclared;
+
+ if (Scope *S = getScopeForContext(ClassDecl))
+ PushOnScopeChains(DefaultCon, S, false);
+ ClassDecl->addDecl(DefaultCon);
+
+ return DefaultCon;
+}
+
+void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
+ CXXConstructorDecl *Constructor) {
+ assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
+ !Constructor->doesThisDeclarationHaveABody() &&
+ !Constructor->isDeleted()) &&
+ "DefineImplicitDefaultConstructor - call it for implicit default ctor");
+
+ CXXRecordDecl *ClassDecl = Constructor->getParent();
+ assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
+
+ SynthesizedFunctionScope Scope(*this, Constructor);
+ DiagnosticErrorTrap Trap(Diags);
+ if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
+ Trap.hasErrorOccurred()) {
+ Diag(CurrentLocation, diag::note_member_synthesized_at)
+ << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
+ Constructor->setInvalidDecl();
+ return;
+ }
+
+ // The exception specification is needed because we are defining the
+ // function.
+ ResolveExceptionSpec(CurrentLocation,
+ Constructor->getType()->castAs<FunctionProtoType>());
+
+ SourceLocation Loc = Constructor->getLocEnd().isValid()
+ ? Constructor->getLocEnd()
+ : Constructor->getLocation();
+ Constructor->setBody(new (Context) CompoundStmt(Loc));
+
+ Constructor->markUsed(Context);
+ MarkVTableUsed(CurrentLocation, ClassDecl);
+
+ if (ASTMutationListener *L = getASTMutationListener()) {
+ L->CompletedImplicitDefinition(Constructor);
+ }
+
+ DiagnoseUninitializedFields(*this, Constructor);
+}
+
+void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
+ // Perform any delayed checks on exception specifications.
+ CheckDelayedMemberExceptionSpecs();
+}
+
+namespace {
+/// Information on inheriting constructors to declare.
+class InheritingConstructorInfo {
+public:
+ InheritingConstructorInfo(Sema &SemaRef, CXXRecordDecl *Derived)
+ : SemaRef(SemaRef), Derived(Derived) {
+ // Mark the constructors that we already have in the derived class.
+ //
+ // C++11 [class.inhctor]p3: [...] a constructor is implicitly declared [...]
+ // unless there is a user-declared constructor with the same signature in
+ // the class where the using-declaration appears.
+ visitAll(Derived, &InheritingConstructorInfo::noteDeclaredInDerived);
+ }
+
+ void inheritAll(CXXRecordDecl *RD) {
+ visitAll(RD, &InheritingConstructorInfo::inherit);
+ }
+
+private:
+ /// Information about an inheriting constructor.
+ struct InheritingConstructor {
+ InheritingConstructor()
+ : DeclaredInDerived(false), BaseCtor(nullptr), DerivedCtor(nullptr) {}
+
+ /// If \c true, a constructor with this signature is already declared
+ /// in the derived class.
+ bool DeclaredInDerived;
+
+ /// The constructor which is inherited.
+ const CXXConstructorDecl *BaseCtor;
+
+ /// The derived constructor we declared.
+ CXXConstructorDecl *DerivedCtor;
+ };
+
+ /// Inheriting constructors with a given canonical type. There can be at
+ /// most one such non-template constructor, and any number of templated
+ /// constructors.
+ struct InheritingConstructorsForType {
+ InheritingConstructor NonTemplate;
+ SmallVector<std::pair<TemplateParameterList *, InheritingConstructor>, 4>
+ Templates;
+
+ InheritingConstructor &getEntry(Sema &S, const CXXConstructorDecl *Ctor) {
+ if (FunctionTemplateDecl *FTD = Ctor->getDescribedFunctionTemplate()) {
+ TemplateParameterList *ParamList = FTD->getTemplateParameters();
+ for (unsigned I = 0, N = Templates.size(); I != N; ++I)
+ if (S.TemplateParameterListsAreEqual(ParamList, Templates[I].first,
+ false, S.TPL_TemplateMatch))
+ return Templates[I].second;
+ Templates.push_back(std::make_pair(ParamList, InheritingConstructor()));
+ return Templates.back().second;
+ }
+
+ return NonTemplate;
+ }
+ };
+
+ /// Get or create the inheriting constructor record for a constructor.
+ InheritingConstructor &getEntry(const CXXConstructorDecl *Ctor,
+ QualType CtorType) {
+ return Map[CtorType.getCanonicalType()->castAs<FunctionProtoType>()]
+ .getEntry(SemaRef, Ctor);
+ }
+
+ typedef void (InheritingConstructorInfo::*VisitFn)(const CXXConstructorDecl*);
+
+ /// Process all constructors for a class.
+ void visitAll(const CXXRecordDecl *RD, VisitFn Callback) {
+ for (const auto *Ctor : RD->ctors())
+ (this->*Callback)(Ctor);
+ for (CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
+ I(RD->decls_begin()), E(RD->decls_end());
+ I != E; ++I) {
+ const FunctionDecl *FD = (*I)->getTemplatedDecl();
+ if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
+ (this->*Callback)(CD);
+ }
+ }
+
+ /// Note that a constructor (or constructor template) was declared in Derived.
+ void noteDeclaredInDerived(const CXXConstructorDecl *Ctor) {
+ getEntry(Ctor, Ctor->getType()).DeclaredInDerived = true;
+ }
+
+ /// Inherit a single constructor.
+ void inherit(const CXXConstructorDecl *Ctor) {
+ const FunctionProtoType *CtorType =
+ Ctor->getType()->castAs<FunctionProtoType>();
+ ArrayRef<QualType> ArgTypes = CtorType->getParamTypes();
+ FunctionProtoType::ExtProtoInfo EPI = CtorType->getExtProtoInfo();
+
+ SourceLocation UsingLoc = getUsingLoc(Ctor->getParent());
+
+ // Core issue (no number yet): the ellipsis is always discarded.
+ if (EPI.Variadic) {
+ SemaRef.Diag(UsingLoc, diag::warn_using_decl_constructor_ellipsis);
+ SemaRef.Diag(Ctor->getLocation(),
+ diag::note_using_decl_constructor_ellipsis);
+ EPI.Variadic = false;
+ }
+
+ // Declare a constructor for each number of parameters.
+ //
+ // C++11 [class.inhctor]p1:
+ // The candidate set of inherited constructors from the class X named in
+ // the using-declaration consists of [... modulo defects ...] for each
+ // constructor or constructor template of X, the set of constructors or
+ // constructor templates that results from omitting any ellipsis parameter
+ // specification and successively omitting parameters with a default
+ // argument from the end of the parameter-type-list
+ unsigned MinParams = minParamsToInherit(Ctor);
+ unsigned Params = Ctor->getNumParams();
+ if (Params >= MinParams) {
+ do
+ declareCtor(UsingLoc, Ctor,
+ SemaRef.Context.getFunctionType(
+ Ctor->getReturnType(), ArgTypes.slice(0, Params), EPI));
+ while (Params > MinParams &&
+ Ctor->getParamDecl(--Params)->hasDefaultArg());
+ }
+ }
+
+ /// Find the using-declaration which specified that we should inherit the
+ /// constructors of \p Base.
+ SourceLocation getUsingLoc(const CXXRecordDecl *Base) {
+ // No fancy lookup required; just look for the base constructor name
+ // directly within the derived class.
+ ASTContext &Context = SemaRef.Context;
+ DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
+ Context.getCanonicalType(Context.getRecordType(Base)));
+ DeclContext::lookup_result Decls = Derived->lookup(Name);
+ return Decls.empty() ? Derived->getLocation() : Decls[0]->getLocation();
+ }
+
+ unsigned minParamsToInherit(const CXXConstructorDecl *Ctor) {
+ // C++11 [class.inhctor]p3:
+ // [F]or each constructor template in the candidate set of inherited
+ // constructors, a constructor template is implicitly declared
+ if (Ctor->getDescribedFunctionTemplate())
+ return 0;
+
+ // For each non-template constructor in the candidate set of inherited
+ // constructors other than a constructor having no parameters or a
+ // copy/move constructor having a single parameter, a constructor is
+ // implicitly declared [...]
+ if (Ctor->getNumParams() == 0)
+ return 1;
+ if (Ctor->isCopyOrMoveConstructor())
+ return 2;
+
+ // Per discussion on core reflector, never inherit a constructor which
+ // would become a default, copy, or move constructor of Derived either.
+ const ParmVarDecl *PD = Ctor->getParamDecl(0);
+ const ReferenceType *RT = PD->getType()->getAs<ReferenceType>();
+ return (RT && RT->getPointeeCXXRecordDecl() == Derived) ? 2 : 1;
+ }
+
+ /// Declare a single inheriting constructor, inheriting the specified
+ /// constructor, with the given type.
+ void declareCtor(SourceLocation UsingLoc, const CXXConstructorDecl *BaseCtor,
+ QualType DerivedType) {
+ InheritingConstructor &Entry = getEntry(BaseCtor, DerivedType);
+
+ // C++11 [class.inhctor]p3:
+ // ... a constructor is implicitly declared with the same constructor
+ // characteristics unless there is a user-declared constructor with
+ // the same signature in the class where the using-declaration appears
+ if (Entry.DeclaredInDerived)
+ return;
+
+ // C++11 [class.inhctor]p7:
+ // If two using-declarations declare inheriting constructors with the
+ // same signature, the program is ill-formed
+ if (Entry.DerivedCtor) {
+ if (BaseCtor->getParent() != Entry.BaseCtor->getParent()) {
+ // Only diagnose this once per constructor.
+ if (Entry.DerivedCtor->isInvalidDecl())
+ return;
+ Entry.DerivedCtor->setInvalidDecl();
+
+ SemaRef.Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
+ SemaRef.Diag(BaseCtor->getLocation(),
+ diag::note_using_decl_constructor_conflict_current_ctor);
+ SemaRef.Diag(Entry.BaseCtor->getLocation(),
+ diag::note_using_decl_constructor_conflict_previous_ctor);
+ SemaRef.Diag(Entry.DerivedCtor->getLocation(),
+ diag::note_using_decl_constructor_conflict_previous_using);
+ } else {
+ // Core issue (no number): if the same inheriting constructor is
+ // produced by multiple base class constructors from the same base
+ // class, the inheriting constructor is defined as deleted.
+ SemaRef.SetDeclDeleted(Entry.DerivedCtor, UsingLoc);
+ }
+
+ return;
+ }
+
+ ASTContext &Context = SemaRef.Context;
+ DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
+ Context.getCanonicalType(Context.getRecordType(Derived)));
+ DeclarationNameInfo NameInfo(Name, UsingLoc);
+
+ TemplateParameterList *TemplateParams = nullptr;
+ if (const FunctionTemplateDecl *FTD =
+ BaseCtor->getDescribedFunctionTemplate()) {
+ TemplateParams = FTD->getTemplateParameters();
+ // We're reusing template parameters from a different DeclContext. This
+ // is questionable at best, but works out because the template depth in
+ // both places is guaranteed to be 0.
+ // FIXME: Rebuild the template parameters in the new context, and
+ // transform the function type to refer to them.
+ }
+
+ // Build type source info pointing at the using-declaration. This is
+ // required by template instantiation.
+ TypeSourceInfo *TInfo =
+ Context.getTrivialTypeSourceInfo(DerivedType, UsingLoc);
+ FunctionProtoTypeLoc ProtoLoc =
+ TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>();
+
+ CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create(
+ Context, Derived, UsingLoc, NameInfo, DerivedType,
+ TInfo, BaseCtor->isExplicit(), /*Inline=*/true,
+ /*ImplicitlyDeclared=*/true, /*Constexpr=*/BaseCtor->isConstexpr());
+
+ // Build an unevaluated exception specification for this constructor.
+ const FunctionProtoType *FPT = DerivedType->castAs<FunctionProtoType>();
+ FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
+ EPI.ExceptionSpec.Type = EST_Unevaluated;
+ EPI.ExceptionSpec.SourceDecl = DerivedCtor;
+ DerivedCtor->setType(Context.getFunctionType(FPT->getReturnType(),
+ FPT->getParamTypes(), EPI));
+
+ // Build the parameter declarations.
+ SmallVector<ParmVarDecl *, 16> ParamDecls;
+ for (unsigned I = 0, N = FPT->getNumParams(); I != N; ++I) {
+ TypeSourceInfo *TInfo =
+ Context.getTrivialTypeSourceInfo(FPT->getParamType(I), UsingLoc);
+ ParmVarDecl *PD = ParmVarDecl::Create(
+ Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/nullptr,
+ FPT->getParamType(I), TInfo, SC_None, /*DefaultArg=*/nullptr);
+ PD->setScopeInfo(0, I);
+ PD->setImplicit();
+ ParamDecls.push_back(PD);
+ ProtoLoc.setParam(I, PD);
+ }
+
+ // Set up the new constructor.
+ DerivedCtor->setAccess(BaseCtor->getAccess());
+ DerivedCtor->setParams(ParamDecls);
+ DerivedCtor->setInheritedConstructor(BaseCtor);
+ if (BaseCtor->isDeleted())
+ SemaRef.SetDeclDeleted(DerivedCtor, UsingLoc);
+
+ // If this is a constructor template, build the template declaration.
+ if (TemplateParams) {
+ FunctionTemplateDecl *DerivedTemplate =
+ FunctionTemplateDecl::Create(SemaRef.Context, Derived, UsingLoc, Name,
+ TemplateParams, DerivedCtor);
+ DerivedTemplate->setAccess(BaseCtor->getAccess());
+ DerivedCtor->setDescribedFunctionTemplate(DerivedTemplate);
+ Derived->addDecl(DerivedTemplate);
+ } else {
+ Derived->addDecl(DerivedCtor);
+ }
+
+ Entry.BaseCtor = BaseCtor;
+ Entry.DerivedCtor = DerivedCtor;
+ }
+
+ Sema &SemaRef;
+ CXXRecordDecl *Derived;
+ typedef llvm::DenseMap<const Type *, InheritingConstructorsForType> MapType;
+ MapType Map;
+};
+}
+
+void Sema::DeclareInheritingConstructors(CXXRecordDecl *ClassDecl) {
+ // Defer declaring the inheriting constructors until the class is
+ // instantiated.
+ if (ClassDecl->isDependentContext())
+ return;
+
+ // Find base classes from which we might inherit constructors.
+ SmallVector<CXXRecordDecl*, 4> InheritedBases;
+ for (const auto &BaseIt : ClassDecl->bases())
+ if (BaseIt.getInheritConstructors())
+ InheritedBases.push_back(BaseIt.getType()->getAsCXXRecordDecl());
+
+ // Go no further if we're not inheriting any constructors.
+ if (InheritedBases.empty())
+ return;
+
+ // Declare the inherited constructors.
+ InheritingConstructorInfo ICI(*this, ClassDecl);
+ for (unsigned I = 0, N = InheritedBases.size(); I != N; ++I)
+ ICI.inheritAll(InheritedBases[I]);
+}
+
+void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
+ CXXConstructorDecl *Constructor) {
+ CXXRecordDecl *ClassDecl = Constructor->getParent();
+ assert(Constructor->getInheritedConstructor() &&
+ !Constructor->doesThisDeclarationHaveABody() &&
+ !Constructor->isDeleted());
+
+ SynthesizedFunctionScope Scope(*this, Constructor);
+ DiagnosticErrorTrap Trap(Diags);
+ if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
+ Trap.hasErrorOccurred()) {
+ Diag(CurrentLocation, diag::note_inhctor_synthesized_at)
+ << Context.getTagDeclType(ClassDecl);
+ Constructor->setInvalidDecl();
+ return;
+ }
+
+ SourceLocation Loc = Constructor->getLocation();
+ Constructor->setBody(new (Context) CompoundStmt(Loc));
+
+ Constructor->markUsed(Context);
+ MarkVTableUsed(CurrentLocation, ClassDecl);
+
+ if (ASTMutationListener *L = getASTMutationListener()) {
+ L->CompletedImplicitDefinition(Constructor);
+ }
+}
+
+
+Sema::ImplicitExceptionSpecification
+Sema::ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD) {
+ CXXRecordDecl *ClassDecl = MD->getParent();
+
+ // C++ [except.spec]p14:
+ // An implicitly declared special member function (Clause 12) shall have
+ // an exception-specification.
+ ImplicitExceptionSpecification ExceptSpec(*this);
+ if (ClassDecl->isInvalidDecl())
+ return ExceptSpec;
+
+ // Direct base-class destructors.
+ for (const auto &B : ClassDecl->bases()) {
+ if (B.isVirtual()) // Handled below.
+ continue;
+
+ if (const RecordType *BaseType = B.getType()->getAs<RecordType>())
+ ExceptSpec.CalledDecl(B.getLocStart(),
+ LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
+ }
+
+ // Virtual base-class destructors.
+ for (const auto &B : ClassDecl->vbases()) {
+ if (const RecordType *BaseType = B.getType()->getAs<RecordType>())
+ ExceptSpec.CalledDecl(B.getLocStart(),
+ LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
+ }
+
+ // Field destructors.
+ for (const auto *F : ClassDecl->fields()) {
+ if (const RecordType *RecordTy
+ = Context.getBaseElementType(F->getType())->getAs<RecordType>())
+ ExceptSpec.CalledDecl(F->getLocation(),
+ LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
+ }
+
+ return ExceptSpec;
+}
+
+CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
+ // C++ [class.dtor]p2:
+ // If a class has no user-declared destructor, a destructor is
+ // declared implicitly. An implicitly-declared destructor is an
+ // inline public member of its class.
+ assert(ClassDecl->needsImplicitDestructor());
+
+ DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
+ if (DSM.isAlreadyBeingDeclared())
+ return nullptr;
+
+ // Create the actual destructor declaration.
+ CanQualType ClassType
+ = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
+ SourceLocation ClassLoc = ClassDecl->getLocation();
+ DeclarationName Name
+ = Context.DeclarationNames.getCXXDestructorName(ClassType);
+ DeclarationNameInfo NameInfo(Name, ClassLoc);
+ CXXDestructorDecl *Destructor
+ = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
+ QualType(), nullptr, /*isInline=*/true,
+ /*isImplicitlyDeclared=*/true);
+ Destructor->setAccess(AS_public);
+ Destructor->setDefaulted();
+
+ if (getLangOpts().CUDA) {
+ inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDestructor,
+ Destructor,
+ /* ConstRHS */ false,
+ /* Diagnose */ false);
+ }
+
+ // Build an exception specification pointing back at this destructor.
+ FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, Destructor);
+ Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
+
+ AddOverriddenMethods(ClassDecl, Destructor);
+
+ // We don't need to use SpecialMemberIsTrivial here; triviality for
+ // destructors is easy to compute.
+ Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
+
+ if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
+ SetDeclDeleted(Destructor, ClassLoc);
+
+ // Note that we have declared this destructor.
+ ++ASTContext::NumImplicitDestructorsDeclared;
+
+ // Introduce this destructor into its scope.
+ if (Scope *S = getScopeForContext(ClassDecl))
+ PushOnScopeChains(Destructor, S, false);
+ ClassDecl->addDecl(Destructor);
+
+ return Destructor;
+}
+
+void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
+ CXXDestructorDecl *Destructor) {
+ assert((Destructor->isDefaulted() &&
+ !Destructor->doesThisDeclarationHaveABody() &&
+ !Destructor->isDeleted()) &&
+ "DefineImplicitDestructor - call it for implicit default dtor");
+ CXXRecordDecl *ClassDecl = Destructor->getParent();
+ assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
+
+ if (Destructor->isInvalidDecl())
+ return;
+
+ SynthesizedFunctionScope Scope(*this, Destructor);
+
+ DiagnosticErrorTrap Trap(Diags);
+ MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
+ Destructor->getParent());
+
+ if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
+ Diag(CurrentLocation, diag::note_member_synthesized_at)
+ << CXXDestructor << Context.getTagDeclType(ClassDecl);
+
+ Destructor->setInvalidDecl();
+ return;
+ }
+
+ // The exception specification is needed because we are defining the
+ // function.
+ ResolveExceptionSpec(CurrentLocation,
+ Destructor->getType()->castAs<FunctionProtoType>());
+
+ SourceLocation Loc = Destructor->getLocEnd().isValid()
+ ? Destructor->getLocEnd()
+ : Destructor->getLocation();
+ Destructor->setBody(new (Context) CompoundStmt(Loc));
+ Destructor->markUsed(Context);
+ MarkVTableUsed(CurrentLocation, ClassDecl);
+
+ if (ASTMutationListener *L = getASTMutationListener()) {
+ L->CompletedImplicitDefinition(Destructor);
+ }
+}
+
+/// \brief Perform any semantic analysis which needs to be delayed until all
+/// pending class member declarations have been parsed.
+void Sema::ActOnFinishCXXMemberDecls() {
+ // If the context is an invalid C++ class, just suppress these checks.
+ if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
+ if (Record->isInvalidDecl()) {
+ DelayedDefaultedMemberExceptionSpecs.clear();
+ DelayedExceptionSpecChecks.clear();
+ return;
+ }
+ }
+}
+
+static void getDefaultArgExprsForConstructors(Sema &S, CXXRecordDecl *Class) {
+ // Don't do anything for template patterns.
+ if (Class->getDescribedClassTemplate())
+ return;
+
+ for (Decl *Member : Class->decls()) {
+ auto *CD = dyn_cast<CXXConstructorDecl>(Member);
+ if (!CD) {
+ // Recurse on nested classes.
+ if (auto *NestedRD = dyn_cast<CXXRecordDecl>(Member))
+ getDefaultArgExprsForConstructors(S, NestedRD);
+ continue;
+ } else if (!CD->isDefaultConstructor() || !CD->hasAttr<DLLExportAttr>()) {
+ continue;
+ }
+
+ for (unsigned I = 0, E = CD->getNumParams(); I != E; ++I) {
+ // Skip any default arguments that we've already instantiated.
+ if (S.Context.getDefaultArgExprForConstructor(CD, I))
+ continue;
+
+ Expr *DefaultArg = S.BuildCXXDefaultArgExpr(Class->getLocation(), CD,
+ CD->getParamDecl(I)).get();
+ S.Context.addDefaultArgExprForConstructor(CD, I, DefaultArg);
+ }
+ }
+}
+
+void Sema::ActOnFinishCXXMemberDefaultArgs(Decl *D) {
+ auto *RD = dyn_cast<CXXRecordDecl>(D);
+
+ // Default constructors that are annotated with __declspec(dllexport) which
+ // have default arguments or don't use the standard calling convention are
+ // wrapped with a thunk called the default constructor closure.
+ if (RD && Context.getTargetInfo().getCXXABI().isMicrosoft())
+ getDefaultArgExprsForConstructors(*this, RD);
+}
+
+void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl,
+ CXXDestructorDecl *Destructor) {
+ assert(getLangOpts().CPlusPlus11 &&
+ "adjusting dtor exception specs was introduced in c++11");
+
+ // C++11 [class.dtor]p3:
+ // A declaration of a destructor that does not have an exception-
+ // specification is implicitly considered to have the same exception-
+ // specification as an implicit declaration.
+ const FunctionProtoType *DtorType = Destructor->getType()->
+ getAs<FunctionProtoType>();
+ if (DtorType->hasExceptionSpec())
+ return;
+
+ // Replace the destructor's type, building off the existing one. Fortunately,
+ // the only thing of interest in the destructor type is its extended info.
+ // The return and arguments are fixed.
+ FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
+ EPI.ExceptionSpec.Type = EST_Unevaluated;
+ EPI.ExceptionSpec.SourceDecl = Destructor;
+ Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
+
+ // FIXME: If the destructor has a body that could throw, and the newly created
+ // spec doesn't allow exceptions, we should emit a warning, because this
+ // change in behavior can break conforming C++03 programs at runtime.
+ // However, we don't have a body or an exception specification yet, so it
+ // needs to be done somewhere else.
+}
+
+namespace {
+/// \brief An abstract base class for all helper classes used in building the
+// copy/move operators. These classes serve as factory functions and help us
+// avoid using the same Expr* in the AST twice.
+class ExprBuilder {
+ ExprBuilder(const ExprBuilder&) = delete;
+ ExprBuilder &operator=(const ExprBuilder&) = delete;
+
+protected:
+ static Expr *assertNotNull(Expr *E) {
+ assert(E && "Expression construction must not fail.");
+ return E;
+ }
+
+public:
+ ExprBuilder() {}
+ virtual ~ExprBuilder() {}
+
+ virtual Expr *build(Sema &S, SourceLocation Loc) const = 0;
+};
+
+class RefBuilder: public ExprBuilder {
+ VarDecl *Var;
+ QualType VarType;
+
+public:
+ Expr *build(Sema &S, SourceLocation Loc) const override {
+ return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc).get());
+ }
+
+ RefBuilder(VarDecl *Var, QualType VarType)
+ : Var(Var), VarType(VarType) {}
+};
+
+class ThisBuilder: public ExprBuilder {
+public:
+ Expr *build(Sema &S, SourceLocation Loc) const override {
+ return assertNotNull(S.ActOnCXXThis(Loc).getAs<Expr>());
+ }
+};
+
+class CastBuilder: public ExprBuilder {
+ const ExprBuilder &Builder;
+ QualType Type;
+ ExprValueKind Kind;
+ const CXXCastPath &Path;
+
+public:
+ Expr *build(Sema &S, SourceLocation Loc) const override {
+ return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type,
+ CK_UncheckedDerivedToBase, Kind,
+ &Path).get());
+ }
+
+ CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind,
+ const CXXCastPath &Path)
+ : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {}
+};
+
+class DerefBuilder: public ExprBuilder {
+ const ExprBuilder &Builder;
+
+public:
+ Expr *build(Sema &S, SourceLocation Loc) const override {
+ return assertNotNull(
+ S.CreateBuiltinUnaryOp(Loc, UO_Deref, Builder.build(S, Loc)).get());
+ }
+
+ DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
+};
+
+class MemberBuilder: public ExprBuilder {
+ const ExprBuilder &Builder;
+ QualType Type;
+ CXXScopeSpec SS;
+ bool IsArrow;
+ LookupResult &MemberLookup;
+
+public:
+ Expr *build(Sema &S, SourceLocation Loc) const override {
+ return assertNotNull(S.BuildMemberReferenceExpr(
+ Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(),
+ nullptr, MemberLookup, nullptr).get());
+ }
+
+ MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow,
+ LookupResult &MemberLookup)
+ : Builder(Builder), Type(Type), IsArrow(IsArrow),
+ MemberLookup(MemberLookup) {}
+};
+
+class MoveCastBuilder: public ExprBuilder {
+ const ExprBuilder &Builder;
+
+public:
+ Expr *build(Sema &S, SourceLocation Loc) const override {
+ return assertNotNull(CastForMoving(S, Builder.build(S, Loc)));
+ }
+
+ MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
+};
+
+class LvalueConvBuilder: public ExprBuilder {
+ const ExprBuilder &Builder;
+
+public:
+ Expr *build(Sema &S, SourceLocation Loc) const override {
+ return assertNotNull(
+ S.DefaultLvalueConversion(Builder.build(S, Loc)).get());
+ }
+
+ LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
+};
+
+class SubscriptBuilder: public ExprBuilder {
+ const ExprBuilder &Base;
+ const ExprBuilder &Index;
+
+public:
+ Expr *build(Sema &S, SourceLocation Loc) const override {
+ return assertNotNull(S.CreateBuiltinArraySubscriptExpr(
+ Base.build(S, Loc), Loc, Index.build(S, Loc), Loc).get());
+ }
+
+ SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index)
+ : Base(Base), Index(Index) {}
+};
+
+} // end anonymous namespace
+
+/// When generating a defaulted copy or move assignment operator, if a field
+/// should be copied with __builtin_memcpy rather than via explicit assignments,
+/// do so. This optimization only applies for arrays of scalars, and for arrays
+/// of class type where the selected copy/move-assignment operator is trivial.
+static StmtResult
+buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
+ const ExprBuilder &ToB, const ExprBuilder &FromB) {
+ // Compute the size of the memory buffer to be copied.
+ QualType SizeType = S.Context.getSizeType();
+ llvm::APInt Size(S.Context.getTypeSize(SizeType),
+ S.Context.getTypeSizeInChars(T).getQuantity());
+
+ // Take the address of the field references for "from" and "to". We
+ // directly construct UnaryOperators here because semantic analysis
+ // does not permit us to take the address of an xvalue.
+ Expr *From = FromB.build(S, Loc);
+ From = new (S.Context) UnaryOperator(From, UO_AddrOf,
+ S.Context.getPointerType(From->getType()),
+ VK_RValue, OK_Ordinary, Loc);
+ Expr *To = ToB.build(S, Loc);
+ To = new (S.Context) UnaryOperator(To, UO_AddrOf,
+ S.Context.getPointerType(To->getType()),
+ VK_RValue, OK_Ordinary, Loc);
+
+ const Type *E = T->getBaseElementTypeUnsafe();
+ bool NeedsCollectableMemCpy =
+ E->isRecordType() && E->getAs<RecordType>()->getDecl()->hasObjectMember();
+
+ // Create a reference to the __builtin_objc_memmove_collectable function
+ StringRef MemCpyName = NeedsCollectableMemCpy ?
+ "__builtin_objc_memmove_collectable" :
+ "__builtin_memcpy";
+ LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
+ Sema::LookupOrdinaryName);
+ S.LookupName(R, S.TUScope, true);
+
+ FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
+ if (!MemCpy)
+ // Something went horribly wrong earlier, and we will have complained
+ // about it.
+ return StmtError();
+
+ ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
+ VK_RValue, Loc, nullptr);
+ assert(MemCpyRef.isUsable() && "Builtin reference cannot fail");
+
+ Expr *CallArgs[] = {
+ To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
+ };
+ ExprResult Call = S.ActOnCallExpr(/*Scope=*/nullptr, MemCpyRef.get(),
+ Loc, CallArgs, Loc);
+
+ assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
+ return Call.getAs<Stmt>();
+}
+
+/// \brief Builds a statement that copies/moves the given entity from \p From to
+/// \c To.
+///
+/// This routine is used to copy/move the members of a class with an
+/// implicitly-declared copy/move assignment operator. When the entities being
+/// copied are arrays, this routine builds for loops to copy them.
+///
+/// \param S The Sema object used for type-checking.
+///
+/// \param Loc The location where the implicit copy/move is being generated.
+///
+/// \param T The type of the expressions being copied/moved. Both expressions
+/// must have this type.
+///
+/// \param To The expression we are copying/moving to.
+///
+/// \param From The expression we are copying/moving from.
+///
+/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
+/// Otherwise, it's a non-static member subobject.
+///
+/// \param Copying Whether we're copying or moving.
+///
+/// \param Depth Internal parameter recording the depth of the recursion.
+///
+/// \returns A statement or a loop that copies the expressions, or StmtResult(0)
+/// if a memcpy should be used instead.
+static StmtResult
+buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
+ const ExprBuilder &To, const ExprBuilder &From,
+ bool CopyingBaseSubobject, bool Copying,
+ unsigned Depth = 0) {
+ // C++11 [class.copy]p28:
+ // Each subobject is assigned in the manner appropriate to its type:
+ //
+ // - if the subobject is of class type, as if by a call to operator= with
+ // the subobject as the object expression and the corresponding
+ // subobject of x as a single function argument (as if by explicit
+ // qualification; that is, ignoring any possible virtual overriding
+ // functions in more derived classes);
+ //
+ // C++03 [class.copy]p13:
+ // - if the subobject is of class type, the copy assignment operator for
+ // the class is used (as if by explicit qualification; that is,
+ // ignoring any possible virtual overriding functions in more derived
+ // classes);
+ if (const RecordType *RecordTy = T->getAs<RecordType>()) {
+ CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
+
+ // Look for operator=.
+ DeclarationName Name
+ = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
+ LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
+ S.LookupQualifiedName(OpLookup, ClassDecl, false);
+
+ // Prior to C++11, filter out any result that isn't a copy/move-assignment
+ // operator.
+ if (!S.getLangOpts().CPlusPlus11) {
+ LookupResult::Filter F = OpLookup.makeFilter();
+ while (F.hasNext()) {
+ NamedDecl *D = F.next();
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
+ if (Method->isCopyAssignmentOperator() ||
+ (!Copying && Method->isMoveAssignmentOperator()))
+ continue;
+
+ F.erase();
+ }
+ F.done();
+ }
+
+ // Suppress the protected check (C++ [class.protected]) for each of the
+ // assignment operators we found. This strange dance is required when
+ // we're assigning via a base classes's copy-assignment operator. To
+ // ensure that we're getting the right base class subobject (without
+ // ambiguities), we need to cast "this" to that subobject type; to
+ // ensure that we don't go through the virtual call mechanism, we need
+ // to qualify the operator= name with the base class (see below). However,
+ // this means that if the base class has a protected copy assignment
+ // operator, the protected member access check will fail. So, we
+ // rewrite "protected" access to "public" access in this case, since we
+ // know by construction that we're calling from a derived class.
+ if (CopyingBaseSubobject) {
+ for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
+ L != LEnd; ++L) {
+ if (L.getAccess() == AS_protected)
+ L.setAccess(AS_public);
+ }
+ }
+
+ // Create the nested-name-specifier that will be used to qualify the
+ // reference to operator=; this is required to suppress the virtual
+ // call mechanism.
+ CXXScopeSpec SS;
+ const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
+ SS.MakeTrivial(S.Context,
+ NestedNameSpecifier::Create(S.Context, nullptr, false,
+ CanonicalT),
+ Loc);
+
+ // Create the reference to operator=.
+ ExprResult OpEqualRef
+ = S.BuildMemberReferenceExpr(To.build(S, Loc), T, Loc, /*isArrow=*/false,
+ SS, /*TemplateKWLoc=*/SourceLocation(),
+ /*FirstQualifierInScope=*/nullptr,
+ OpLookup,
+ /*TemplateArgs=*/nullptr,
+ /*SuppressQualifierCheck=*/true);
+ if (OpEqualRef.isInvalid())
+ return StmtError();
+
+ // Build the call to the assignment operator.
+
+ Expr *FromInst = From.build(S, Loc);
+ ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/nullptr,
+ OpEqualRef.getAs<Expr>(),
+ Loc, FromInst, Loc);
+ if (Call.isInvalid())
+ return StmtError();
+
+ // If we built a call to a trivial 'operator=' while copying an array,
+ // bail out. We'll replace the whole shebang with a memcpy.
+ CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
+ if (CE && CE->getMethodDecl()->isTrivial() && Depth)
+ return StmtResult((Stmt*)nullptr);
+
+ // Convert to an expression-statement, and clean up any produced
+ // temporaries.
+ return S.ActOnExprStmt(Call);
+ }
+
+ // - if the subobject is of scalar type, the built-in assignment
+ // operator is used.
+ const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
+ if (!ArrayTy) {
+ ExprResult Assignment = S.CreateBuiltinBinOp(
+ Loc, BO_Assign, To.build(S, Loc), From.build(S, Loc));
+ if (Assignment.isInvalid())
+ return StmtError();
+ return S.ActOnExprStmt(Assignment);
+ }
+
+ // - if the subobject is an array, each element is assigned, in the
+ // manner appropriate to the element type;
+
+ // Construct a loop over the array bounds, e.g.,
+ //
+ // for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
+ //
+ // that will copy each of the array elements.
+ QualType SizeType = S.Context.getSizeType();
+
+ // Create the iteration variable.
+ IdentifierInfo *IterationVarName = nullptr;
+ {
+ SmallString<8> Str;
+ llvm::raw_svector_ostream OS(Str);
+ OS << "__i" << Depth;
+ IterationVarName = &S.Context.Idents.get(OS.str());
+ }
+ VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
+ IterationVarName, SizeType,
+ S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
+ SC_None);
+
+ // Initialize the iteration variable to zero.
+ llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
+ IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
+
+ // Creates a reference to the iteration variable.
+ RefBuilder IterationVarRef(IterationVar, SizeType);
+ LvalueConvBuilder IterationVarRefRVal(IterationVarRef);
+
+ // Create the DeclStmt that holds the iteration variable.
+ Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
+
+ // Subscript the "from" and "to" expressions with the iteration variable.
+ SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal);
+ MoveCastBuilder FromIndexMove(FromIndexCopy);
+ const ExprBuilder *FromIndex;
+ if (Copying)
+ FromIndex = &FromIndexCopy;
+ else
+ FromIndex = &FromIndexMove;
+
+ SubscriptBuilder ToIndex(To, IterationVarRefRVal);
+
+ // Build the copy/move for an individual element of the array.
+ StmtResult Copy =
+ buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
+ ToIndex, *FromIndex, CopyingBaseSubobject,
+ Copying, Depth + 1);
+ // Bail out if copying fails or if we determined that we should use memcpy.
+ if (Copy.isInvalid() || !Copy.get())
+ return Copy;
+
+ // Create the comparison against the array bound.
+ llvm::APInt Upper
+ = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
+ Expr *Comparison
+ = new (S.Context) BinaryOperator(IterationVarRefRVal.build(S, Loc),
+ IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
+ BO_NE, S.Context.BoolTy,
+ VK_RValue, OK_Ordinary, Loc, false);
+
+ // Create the pre-increment of the iteration variable.
+ Expr *Increment
+ = new (S.Context) UnaryOperator(IterationVarRef.build(S, Loc), UO_PreInc,
+ SizeType, VK_LValue, OK_Ordinary, Loc);
+
+ // Construct the loop that copies all elements of this array.
+ return S.ActOnForStmt(Loc, Loc, InitStmt,
+ S.MakeFullExpr(Comparison),
+ nullptr, S.MakeFullDiscardedValueExpr(Increment),
+ Loc, Copy.get());
+}
+
+static StmtResult
+buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
+ const ExprBuilder &To, const ExprBuilder &From,
+ bool CopyingBaseSubobject, bool Copying) {
+ // Maybe we should use a memcpy?
+ if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
+ T.isTriviallyCopyableType(S.Context))
+ return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
+
+ StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
+ CopyingBaseSubobject,
+ Copying, 0));
+
+ // If we ended up picking a trivial assignment operator for an array of a
+ // non-trivially-copyable class type, just emit a memcpy.
+ if (!Result.isInvalid() && !Result.get())
+ return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
+
+ return Result;
+}
+
+Sema::ImplicitExceptionSpecification
+Sema::ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD) {
+ CXXRecordDecl *ClassDecl = MD->getParent();
+
+ ImplicitExceptionSpecification ExceptSpec(*this);
+ if (ClassDecl->isInvalidDecl())
+ return ExceptSpec;
+
+ const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
+ assert(T->getNumParams() == 1 && "not a copy assignment op");
+ unsigned ArgQuals =
+ T->getParamType(0).getNonReferenceType().getCVRQualifiers();
+
+ // C++ [except.spec]p14:
+ // An implicitly declared special member function (Clause 12) shall have an
+ // exception-specification. [...]
+
+ // It is unspecified whether or not an implicit copy assignment operator
+ // attempts to deduplicate calls to assignment operators of virtual bases are
+ // made. As such, this exception specification is effectively unspecified.
+ // Based on a similar decision made for constness in C++0x, we're erring on
+ // the side of assuming such calls to be made regardless of whether they
+ // actually happen.
+ for (const auto &Base : ClassDecl->bases()) {
+ if (Base.isVirtual())
+ continue;
+
+ CXXRecordDecl *BaseClassDecl
+ = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
+ if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
+ ArgQuals, false, 0))
+ ExceptSpec.CalledDecl(Base.getLocStart(), CopyAssign);
+ }
+
+ for (const auto &Base : ClassDecl->vbases()) {
+ CXXRecordDecl *BaseClassDecl
+ = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
+ if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
+ ArgQuals, false, 0))
+ ExceptSpec.CalledDecl(Base.getLocStart(), CopyAssign);
+ }
+
+ for (const auto *Field : ClassDecl->fields()) {
+ QualType FieldType = Context.getBaseElementType(Field->getType());
+ if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
+ if (CXXMethodDecl *CopyAssign =
+ LookupCopyingAssignment(FieldClassDecl,
+ ArgQuals | FieldType.getCVRQualifiers(),
+ false, 0))
+ ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
+ }
+ }
+
+ return ExceptSpec;
+}
+
+CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
+ // Note: The following rules are largely analoguous to the copy
+ // constructor rules. Note that virtual bases are not taken into account
+ // for determining the argument type of the operator. Note also that
+ // operators taking an object instead of a reference are allowed.
+ assert(ClassDecl->needsImplicitCopyAssignment());
+
+ DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
+ if (DSM.isAlreadyBeingDeclared())
+ return nullptr;
+
+ QualType ArgType = Context.getTypeDeclType(ClassDecl);
+ QualType RetType = Context.getLValueReferenceType(ArgType);
+ bool Const = ClassDecl->implicitCopyAssignmentHasConstParam();
+ if (Const)
+ ArgType = ArgType.withConst();
+ ArgType = Context.getLValueReferenceType(ArgType);
+
+ bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
+ CXXCopyAssignment,
+ Const);
+
+ // An implicitly-declared copy assignment operator is an inline public
+ // member of its class.
+ DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
+ SourceLocation ClassLoc = ClassDecl->getLocation();
+ DeclarationNameInfo NameInfo(Name, ClassLoc);
+ CXXMethodDecl *CopyAssignment =
+ CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
+ /*TInfo=*/nullptr, /*StorageClass=*/SC_None,
+ /*isInline=*/true, Constexpr, SourceLocation());
+ CopyAssignment->setAccess(AS_public);
+ CopyAssignment->setDefaulted();
+ CopyAssignment->setImplicit();
+
+ if (getLangOpts().CUDA) {
+ inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyAssignment,
+ CopyAssignment,
+ /* ConstRHS */ Const,
+ /* Diagnose */ false);
+ }
+
+ // Build an exception specification pointing back at this member.
+ FunctionProtoType::ExtProtoInfo EPI =
+ getImplicitMethodEPI(*this, CopyAssignment);
+ CopyAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
+
+ // Add the parameter to the operator.
+ ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
+ ClassLoc, ClassLoc,
+ /*Id=*/nullptr, ArgType,
+ /*TInfo=*/nullptr, SC_None,
+ nullptr);
+ CopyAssignment->setParams(FromParam);
+
+ AddOverriddenMethods(ClassDecl, CopyAssignment);
+
+ CopyAssignment->setTrivial(
+ ClassDecl->needsOverloadResolutionForCopyAssignment()
+ ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
+ : ClassDecl->hasTrivialCopyAssignment());
+
+ if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
+ SetDeclDeleted(CopyAssignment, ClassLoc);
+
+ // Note that we have added this copy-assignment operator.
+ ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
+
+ if (Scope *S = getScopeForContext(ClassDecl))
+ PushOnScopeChains(CopyAssignment, S, false);
+ ClassDecl->addDecl(CopyAssignment);
+
+ return CopyAssignment;
+}
+
+/// Diagnose an implicit copy operation for a class which is odr-used, but
+/// which is deprecated because the class has a user-declared copy constructor,
+/// copy assignment operator, or destructor.
+static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp,
+ SourceLocation UseLoc) {
+ assert(CopyOp->isImplicit());
+
+ CXXRecordDecl *RD = CopyOp->getParent();
+ CXXMethodDecl *UserDeclaredOperation = nullptr;
+
+ // In Microsoft mode, assignment operations don't affect constructors and
+ // vice versa.
+ if (RD->hasUserDeclaredDestructor()) {
+ UserDeclaredOperation = RD->getDestructor();
+ } else if (!isa<CXXConstructorDecl>(CopyOp) &&
+ RD->hasUserDeclaredCopyConstructor() &&
+ !S.getLangOpts().MSVCCompat) {
+ // Find any user-declared copy constructor.
+ for (auto *I : RD->ctors()) {
+ if (I->isCopyConstructor()) {
+ UserDeclaredOperation = I;
+ break;
+ }
+ }
+ assert(UserDeclaredOperation);
+ } else if (isa<CXXConstructorDecl>(CopyOp) &&
+ RD->hasUserDeclaredCopyAssignment() &&
+ !S.getLangOpts().MSVCCompat) {
+ // Find any user-declared move assignment operator.
+ for (auto *I : RD->methods()) {
+ if (I->isCopyAssignmentOperator()) {
+ UserDeclaredOperation = I;
+ break;
+ }
+ }
+ assert(UserDeclaredOperation);
+ }
+
+ if (UserDeclaredOperation) {
+ S.Diag(UserDeclaredOperation->getLocation(),
+ diag::warn_deprecated_copy_operation)
+ << RD << /*copy assignment*/!isa<CXXConstructorDecl>(CopyOp)
+ << /*destructor*/isa<CXXDestructorDecl>(UserDeclaredOperation);
+ S.Diag(UseLoc, diag::note_member_synthesized_at)
+ << (isa<CXXConstructorDecl>(CopyOp) ? Sema::CXXCopyConstructor
+ : Sema::CXXCopyAssignment)
+ << RD;
+ }
+}
+
+void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
+ CXXMethodDecl *CopyAssignOperator) {
+ assert((CopyAssignOperator->isDefaulted() &&
+ CopyAssignOperator->isOverloadedOperator() &&
+ CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
+ !CopyAssignOperator->doesThisDeclarationHaveABody() &&
+ !CopyAssignOperator->isDeleted()) &&
+ "DefineImplicitCopyAssignment called for wrong function");
+
+ CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
+
+ if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
+ CopyAssignOperator->setInvalidDecl();
+ return;
+ }
+
+ // C++11 [class.copy]p18:
+ // The [definition of an implicitly declared copy assignment operator] is
+ // deprecated if the class has a user-declared copy constructor or a
+ // user-declared destructor.
+ if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit())
+ diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator, CurrentLocation);
+
+ CopyAssignOperator->markUsed(Context);
+
+ SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
+ DiagnosticErrorTrap Trap(Diags);
+
+ // C++0x [class.copy]p30:
+ // The implicitly-defined or explicitly-defaulted copy assignment operator
+ // for a non-union class X performs memberwise copy assignment of its
+ // subobjects. The direct base classes of X are assigned first, in the
+ // order of their declaration in the base-specifier-list, and then the
+ // immediate non-static data members of X are assigned, in the order in
+ // which they were declared in the class definition.
+
+ // The statements that form the synthesized function body.
+ SmallVector<Stmt*, 8> Statements;
+
+ // The parameter for the "other" object, which we are copying from.
+ ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
+ Qualifiers OtherQuals = Other->getType().getQualifiers();
+ QualType OtherRefType = Other->getType();
+ if (const LValueReferenceType *OtherRef
+ = OtherRefType->getAs<LValueReferenceType>()) {
+ OtherRefType = OtherRef->getPointeeType();
+ OtherQuals = OtherRefType.getQualifiers();
+ }
+
+ // Our location for everything implicitly-generated.
+ SourceLocation Loc = CopyAssignOperator->getLocEnd().isValid()
+ ? CopyAssignOperator->getLocEnd()
+ : CopyAssignOperator->getLocation();
+
+ // Builds a DeclRefExpr for the "other" object.
+ RefBuilder OtherRef(Other, OtherRefType);
+
+ // Builds the "this" pointer.
+ ThisBuilder This;
+
+ // Assign base classes.
+ bool Invalid = false;
+ for (auto &Base : ClassDecl->bases()) {
+ // Form the assignment:
+ // static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
+ QualType BaseType = Base.getType().getUnqualifiedType();
+ if (!BaseType->isRecordType()) {
+ Invalid = true;
+ continue;
+ }
+
+ CXXCastPath BasePath;
+ BasePath.push_back(&Base);
+
+ // Construct the "from" expression, which is an implicit cast to the
+ // appropriately-qualified base type.
+ CastBuilder From(OtherRef, Context.getQualifiedType(BaseType, OtherQuals),
+ VK_LValue, BasePath);
+
+ // Dereference "this".
+ DerefBuilder DerefThis(This);
+ CastBuilder To(DerefThis,
+ Context.getCVRQualifiedType(
+ BaseType, CopyAssignOperator->getTypeQualifiers()),
+ VK_LValue, BasePath);
+
+ // Build the copy.
+ StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
+ To, From,
+ /*CopyingBaseSubobject=*/true,
+ /*Copying=*/true);
+ if (Copy.isInvalid()) {
+ Diag(CurrentLocation, diag::note_member_synthesized_at)
+ << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
+ CopyAssignOperator->setInvalidDecl();
+ return;
+ }
+
+ // Success! Record the copy.
+ Statements.push_back(Copy.getAs<Expr>());
+ }
+
+ // Assign non-static members.
+ for (auto *Field : ClassDecl->fields()) {
+ // FIXME: We should form some kind of AST representation for the implied
+ // memcpy in a union copy operation.
+ if (Field->isUnnamedBitfield() || Field->getParent()->isUnion())
+ continue;
+
+ if (Field->isInvalidDecl()) {
+ Invalid = true;
+ continue;
+ }
+
+ // Check for members of reference type; we can't copy those.
+ if (Field->getType()->isReferenceType()) {
+ Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
+ << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
+ Diag(Field->getLocation(), diag::note_declared_at);
+ Diag(CurrentLocation, diag::note_member_synthesized_at)
+ << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
+ Invalid = true;
+ continue;
+ }
+
+ // Check for members of const-qualified, non-class type.
+ QualType BaseType = Context.getBaseElementType(Field->getType());
+ if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
+ Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
+ << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
+ Diag(Field->getLocation(), diag::note_declared_at);
+ Diag(CurrentLocation, diag::note_member_synthesized_at)
+ << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
+ Invalid = true;
+ continue;
+ }
+
+ // Suppress assigning zero-width bitfields.
+ if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
+ continue;
+
+ QualType FieldType = Field->getType().getNonReferenceType();
+ if (FieldType->isIncompleteArrayType()) {
+ assert(ClassDecl->hasFlexibleArrayMember() &&
+ "Incomplete array type is not valid");
+ continue;
+ }
+
+ // Build references to the field in the object we're copying from and to.
+ CXXScopeSpec SS; // Intentionally empty
+ LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
+ LookupMemberName);
+ MemberLookup.addDecl(Field);
+ MemberLookup.resolveKind();
+
+ MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup);
+
+ MemberBuilder To(This, getCurrentThisType(), /*IsArrow=*/true, MemberLookup);
+
+ // Build the copy of this field.
+ StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
+ To, From,
+ /*CopyingBaseSubobject=*/false,
+ /*Copying=*/true);
+ if (Copy.isInvalid()) {
+ Diag(CurrentLocation, diag::note_member_synthesized_at)
+ << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
+ CopyAssignOperator->setInvalidDecl();
+ return;
+ }
+
+ // Success! Record the copy.
+ Statements.push_back(Copy.getAs<Stmt>());
+ }
+
+ if (!Invalid) {
+ // Add a "return *this;"
+ ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
+
+ StmtResult Return = BuildReturnStmt(Loc, ThisObj.get());
+ if (Return.isInvalid())
+ Invalid = true;
+ else {
+ Statements.push_back(Return.getAs<Stmt>());
+
+ if (Trap.hasErrorOccurred()) {
+ Diag(CurrentLocation, diag::note_member_synthesized_at)
+ << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
+ Invalid = true;
+ }
+ }
+ }
+
+ // The exception specification is needed because we are defining the
+ // function.
+ ResolveExceptionSpec(CurrentLocation,
+ CopyAssignOperator->getType()->castAs<FunctionProtoType>());
+
+ if (Invalid) {
+ CopyAssignOperator->setInvalidDecl();
+ return;
+ }
+
+ StmtResult Body;
+ {
+ CompoundScopeRAII CompoundScope(*this);
+ Body = ActOnCompoundStmt(Loc, Loc, Statements,
+ /*isStmtExpr=*/false);
+ assert(!Body.isInvalid() && "Compound statement creation cannot fail");
+ }
+ CopyAssignOperator->setBody(Body.getAs<Stmt>());
+
+ if (ASTMutationListener *L = getASTMutationListener()) {
+ L->CompletedImplicitDefinition(CopyAssignOperator);
+ }
+}
+
+Sema::ImplicitExceptionSpecification
+Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD) {
+ CXXRecordDecl *ClassDecl = MD->getParent();
+
+ ImplicitExceptionSpecification ExceptSpec(*this);
+ if (ClassDecl->isInvalidDecl())
+ return ExceptSpec;
+
+ // C++0x [except.spec]p14:
+ // An implicitly declared special member function (Clause 12) shall have an
+ // exception-specification. [...]
+
+ // It is unspecified whether or not an implicit move assignment operator
+ // attempts to deduplicate calls to assignment operators of virtual bases are
+ // made. As such, this exception specification is effectively unspecified.
+ // Based on a similar decision made for constness in C++0x, we're erring on
+ // the side of assuming such calls to be made regardless of whether they
+ // actually happen.
+ // Note that a move constructor is not implicitly declared when there are
+ // virtual bases, but it can still be user-declared and explicitly defaulted.
+ for (const auto &Base : ClassDecl->bases()) {
+ if (Base.isVirtual())
+ continue;
+
+ CXXRecordDecl *BaseClassDecl
+ = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
+ if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
+ 0, false, 0))
+ ExceptSpec.CalledDecl(Base.getLocStart(), MoveAssign);
+ }
+
+ for (const auto &Base : ClassDecl->vbases()) {
+ CXXRecordDecl *BaseClassDecl
+ = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
+ if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
+ 0, false, 0))
+ ExceptSpec.CalledDecl(Base.getLocStart(), MoveAssign);
+ }
+
+ for (const auto *Field : ClassDecl->fields()) {
+ QualType FieldType = Context.getBaseElementType(Field->getType());
+ if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
+ if (CXXMethodDecl *MoveAssign =
+ LookupMovingAssignment(FieldClassDecl,
+ FieldType.getCVRQualifiers(),
+ false, 0))
+ ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
+ }
+ }
+
+ return ExceptSpec;
+}
+
+CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
+ assert(ClassDecl->needsImplicitMoveAssignment());
+
+ DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
+ if (DSM.isAlreadyBeingDeclared())
+ return nullptr;
+
+ // Note: The following rules are largely analoguous to the move
+ // constructor rules.
+
+ QualType ArgType = Context.getTypeDeclType(ClassDecl);
+ QualType RetType = Context.getLValueReferenceType(ArgType);
+ ArgType = Context.getRValueReferenceType(ArgType);
+
+ bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
+ CXXMoveAssignment,
+ false);
+
+ // An implicitly-declared move assignment operator is an inline public
+ // member of its class.
+ DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
+ SourceLocation ClassLoc = ClassDecl->getLocation();
+ DeclarationNameInfo NameInfo(Name, ClassLoc);
+ CXXMethodDecl *MoveAssignment =
+ CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
+ /*TInfo=*/nullptr, /*StorageClass=*/SC_None,
+ /*isInline=*/true, Constexpr, SourceLocation());
+ MoveAssignment->setAccess(AS_public);
+ MoveAssignment->setDefaulted();
+ MoveAssignment->setImplicit();
+
+ if (getLangOpts().CUDA) {
+ inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveAssignment,
+ MoveAssignment,
+ /* ConstRHS */ false,
+ /* Diagnose */ false);
+ }
+
+ // Build an exception specification pointing back at this member.
+ FunctionProtoType::ExtProtoInfo EPI =
+ getImplicitMethodEPI(*this, MoveAssignment);
+ MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
+
+ // Add the parameter to the operator.
+ ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
+ ClassLoc, ClassLoc,
+ /*Id=*/nullptr, ArgType,
+ /*TInfo=*/nullptr, SC_None,
+ nullptr);
+ MoveAssignment->setParams(FromParam);
+
+ AddOverriddenMethods(ClassDecl, MoveAssignment);
+
+ MoveAssignment->setTrivial(
+ ClassDecl->needsOverloadResolutionForMoveAssignment()
+ ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
+ : ClassDecl->hasTrivialMoveAssignment());
+
+ if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
+ ClassDecl->setImplicitMoveAssignmentIsDeleted();
+ SetDeclDeleted(MoveAssignment, ClassLoc);
+ }
+
+ // Note that we have added this copy-assignment operator.
+ ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
+
+ if (Scope *S = getScopeForContext(ClassDecl))
+ PushOnScopeChains(MoveAssignment, S, false);
+ ClassDecl->addDecl(MoveAssignment);
+
+ return MoveAssignment;
+}
+
+/// Check if we're implicitly defining a move assignment operator for a class
+/// with virtual bases. Such a move assignment might move-assign the virtual
+/// base multiple times.
+static void checkMoveAssignmentForRepeatedMove(Sema &S, CXXRecordDecl *Class,
+ SourceLocation CurrentLocation) {
+ assert(!Class->isDependentContext() && "should not define dependent move");
+
+ // Only a virtual base could get implicitly move-assigned multiple times.
+ // Only a non-trivial move assignment can observe this. We only want to
+ // diagnose if we implicitly define an assignment operator that assigns
+ // two base classes, both of which move-assign the same virtual base.
+ if (Class->getNumVBases() == 0 || Class->hasTrivialMoveAssignment() ||
+ Class->getNumBases() < 2)
+ return;
+
+ llvm::SmallVector<CXXBaseSpecifier *, 16> Worklist;
+ typedef llvm::DenseMap<CXXRecordDecl*, CXXBaseSpecifier*> VBaseMap;
+ VBaseMap VBases;
+
+ for (auto &BI : Class->bases()) {
+ Worklist.push_back(&BI);
+ while (!Worklist.empty()) {
+ CXXBaseSpecifier *BaseSpec = Worklist.pop_back_val();
+ CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
+
+ // If the base has no non-trivial move assignment operators,
+ // we don't care about moves from it.
+ if (!Base->hasNonTrivialMoveAssignment())
+ continue;
+
+ // If there's nothing virtual here, skip it.
+ if (!BaseSpec->isVirtual() && !Base->getNumVBases())
+ continue;
+
+ // If we're not actually going to call a move assignment for this base,
+ // or the selected move assignment is trivial, skip it.
+ Sema::SpecialMemberOverloadResult *SMOR =
+ S.LookupSpecialMember(Base, Sema::CXXMoveAssignment,
+ /*ConstArg*/false, /*VolatileArg*/false,
+ /*RValueThis*/true, /*ConstThis*/false,
+ /*VolatileThis*/false);
+ if (!SMOR->getMethod() || SMOR->getMethod()->isTrivial() ||
+ !SMOR->getMethod()->isMoveAssignmentOperator())
+ continue;
+
+ if (BaseSpec->isVirtual()) {
+ // We're going to move-assign this virtual base, and its move
+ // assignment operator is not trivial. If this can happen for
+ // multiple distinct direct bases of Class, diagnose it. (If it
+ // only happens in one base, we'll diagnose it when synthesizing
+ // that base class's move assignment operator.)
+ CXXBaseSpecifier *&Existing =
+ VBases.insert(std::make_pair(Base->getCanonicalDecl(), &BI))
+ .first->second;
+ if (Existing && Existing != &BI) {
+ S.Diag(CurrentLocation, diag::warn_vbase_moved_multiple_times)
+ << Class << Base;
+ S.Diag(Existing->getLocStart(), diag::note_vbase_moved_here)
+ << (Base->getCanonicalDecl() ==
+ Existing->getType()->getAsCXXRecordDecl()->getCanonicalDecl())
+ << Base << Existing->getType() << Existing->getSourceRange();
+ S.Diag(BI.getLocStart(), diag::note_vbase_moved_here)
+ << (Base->getCanonicalDecl() ==
+ BI.getType()->getAsCXXRecordDecl()->getCanonicalDecl())
+ << Base << BI.getType() << BaseSpec->getSourceRange();
+
+ // Only diagnose each vbase once.
+ Existing = nullptr;
+ }
+ } else {
+ // Only walk over bases that have defaulted move assignment operators.
+ // We assume that any user-provided move assignment operator handles
+ // the multiple-moves-of-vbase case itself somehow.
+ if (!SMOR->getMethod()->isDefaulted())
+ continue;
+
+ // We're going to move the base classes of Base. Add them to the list.
+ for (auto &BI : Base->bases())
+ Worklist.push_back(&BI);
+ }
+ }
+ }
+}
+
+void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
+ CXXMethodDecl *MoveAssignOperator) {
+ assert((MoveAssignOperator->isDefaulted() &&
+ MoveAssignOperator->isOverloadedOperator() &&
+ MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
+ !MoveAssignOperator->doesThisDeclarationHaveABody() &&
+ !MoveAssignOperator->isDeleted()) &&
+ "DefineImplicitMoveAssignment called for wrong function");
+
+ CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
+
+ if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
+ MoveAssignOperator->setInvalidDecl();
+ return;
+ }
+
+ MoveAssignOperator->markUsed(Context);
+
+ SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
+ DiagnosticErrorTrap Trap(Diags);
+
+ // C++0x [class.copy]p28:
+ // The implicitly-defined or move assignment operator for a non-union class
+ // X performs memberwise move assignment of its subobjects. The direct base
+ // classes of X are assigned first, in the order of their declaration in the
+ // base-specifier-list, and then the immediate non-static data members of X
+ // are assigned, in the order in which they were declared in the class
+ // definition.
+
+ // Issue a warning if our implicit move assignment operator will move
+ // from a virtual base more than once.
+ checkMoveAssignmentForRepeatedMove(*this, ClassDecl, CurrentLocation);
+
+ // The statements that form the synthesized function body.
+ SmallVector<Stmt*, 8> Statements;
+
+ // The parameter for the "other" object, which we are move from.
+ ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
+ QualType OtherRefType = Other->getType()->
+ getAs<RValueReferenceType>()->getPointeeType();
+ assert(!OtherRefType.getQualifiers() &&
+ "Bad argument type of defaulted move assignment");
+
+ // Our location for everything implicitly-generated.
+ SourceLocation Loc = MoveAssignOperator->getLocEnd().isValid()
+ ? MoveAssignOperator->getLocEnd()
+ : MoveAssignOperator->getLocation();
+
+ // Builds a reference to the "other" object.
+ RefBuilder OtherRef(Other, OtherRefType);
+ // Cast to rvalue.
+ MoveCastBuilder MoveOther(OtherRef);
+
+ // Builds the "this" pointer.
+ ThisBuilder This;
+
+ // Assign base classes.
+ bool Invalid = false;
+ for (auto &Base : ClassDecl->bases()) {
+ // C++11 [class.copy]p28:
+ // It is unspecified whether subobjects representing virtual base classes
+ // are assigned more than once by the implicitly-defined copy assignment
+ // operator.
+ // FIXME: Do not assign to a vbase that will be assigned by some other base
+ // class. For a move-assignment, this can result in the vbase being moved
+ // multiple times.
+
+ // Form the assignment:
+ // static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
+ QualType BaseType = Base.getType().getUnqualifiedType();
+ if (!BaseType->isRecordType()) {
+ Invalid = true;
+ continue;
+ }
+
+ CXXCastPath BasePath;
+ BasePath.push_back(&Base);
+
+ // Construct the "from" expression, which is an implicit cast to the
+ // appropriately-qualified base type.
+ CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath);
+
+ // Dereference "this".
+ DerefBuilder DerefThis(This);
+
+ // Implicitly cast "this" to the appropriately-qualified base type.
+ CastBuilder To(DerefThis,
+ Context.getCVRQualifiedType(
+ BaseType, MoveAssignOperator->getTypeQualifiers()),
+ VK_LValue, BasePath);
+
+ // Build the move.
+ StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
+ To, From,
+ /*CopyingBaseSubobject=*/true,
+ /*Copying=*/false);
+ if (Move.isInvalid()) {
+ Diag(CurrentLocation, diag::note_member_synthesized_at)
+ << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
+ MoveAssignOperator->setInvalidDecl();
+ return;
+ }
+
+ // Success! Record the move.
+ Statements.push_back(Move.getAs<Expr>());
+ }
+
+ // Assign non-static members.
+ for (auto *Field : ClassDecl->fields()) {
+ // FIXME: We should form some kind of AST representation for the implied
+ // memcpy in a union copy operation.
+ if (Field->isUnnamedBitfield() || Field->getParent()->isUnion())
+ continue;
+
+ if (Field->isInvalidDecl()) {
+ Invalid = true;
+ continue;
+ }
+
+ // Check for members of reference type; we can't move those.
+ if (Field->getType()->isReferenceType()) {
+ Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
+ << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
+ Diag(Field->getLocation(), diag::note_declared_at);
+ Diag(CurrentLocation, diag::note_member_synthesized_at)
+ << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
+ Invalid = true;
+ continue;
+ }
+
+ // Check for members of const-qualified, non-class type.
+ QualType BaseType = Context.getBaseElementType(Field->getType());
+ if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
+ Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
+ << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
+ Diag(Field->getLocation(), diag::note_declared_at);
+ Diag(CurrentLocation, diag::note_member_synthesized_at)
+ << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
+ Invalid = true;
+ continue;
+ }
+
+ // Suppress assigning zero-width bitfields.
+ if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
+ continue;
+
+ QualType FieldType = Field->getType().getNonReferenceType();
+ if (FieldType->isIncompleteArrayType()) {
+ assert(ClassDecl->hasFlexibleArrayMember() &&
+ "Incomplete array type is not valid");
+ continue;
+ }
+
+ // Build references to the field in the object we're copying from and to.
+ LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
+ LookupMemberName);
+ MemberLookup.addDecl(Field);
+ MemberLookup.resolveKind();
+ MemberBuilder From(MoveOther, OtherRefType,
+ /*IsArrow=*/false, MemberLookup);
+ MemberBuilder To(This, getCurrentThisType(),
+ /*IsArrow=*/true, MemberLookup);
+
+ assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue
+ "Member reference with rvalue base must be rvalue except for reference "
+ "members, which aren't allowed for move assignment.");
+
+ // Build the move of this field.
+ StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
+ To, From,
+ /*CopyingBaseSubobject=*/false,
+ /*Copying=*/false);
+ if (Move.isInvalid()) {
+ Diag(CurrentLocation, diag::note_member_synthesized_at)
+ << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
+ MoveAssignOperator->setInvalidDecl();
+ return;
+ }
+
+ // Success! Record the copy.
+ Statements.push_back(Move.getAs<Stmt>());
+ }
+
+ if (!Invalid) {
+ // Add a "return *this;"
+ ExprResult ThisObj =
+ CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
+
+ StmtResult Return = BuildReturnStmt(Loc, ThisObj.get());
+ if (Return.isInvalid())
+ Invalid = true;
+ else {
+ Statements.push_back(Return.getAs<Stmt>());
+
+ if (Trap.hasErrorOccurred()) {
+ Diag(CurrentLocation, diag::note_member_synthesized_at)
+ << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
+ Invalid = true;
+ }
+ }
+ }
+
+ // The exception specification is needed because we are defining the
+ // function.
+ ResolveExceptionSpec(CurrentLocation,
+ MoveAssignOperator->getType()->castAs<FunctionProtoType>());
+
+ if (Invalid) {
+ MoveAssignOperator->setInvalidDecl();
+ return;
+ }
+
+ StmtResult Body;
+ {
+ CompoundScopeRAII CompoundScope(*this);
+ Body = ActOnCompoundStmt(Loc, Loc, Statements,
+ /*isStmtExpr=*/false);
+ assert(!Body.isInvalid() && "Compound statement creation cannot fail");
+ }
+ MoveAssignOperator->setBody(Body.getAs<Stmt>());
+
+ if (ASTMutationListener *L = getASTMutationListener()) {
+ L->CompletedImplicitDefinition(MoveAssignOperator);
+ }
+}
+
+Sema::ImplicitExceptionSpecification
+Sema::ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD) {
+ CXXRecordDecl *ClassDecl = MD->getParent();
+
+ ImplicitExceptionSpecification ExceptSpec(*this);
+ if (ClassDecl->isInvalidDecl())
+ return ExceptSpec;
+
+ const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
+ assert(T->getNumParams() >= 1 && "not a copy ctor");
+ unsigned Quals = T->getParamType(0).getNonReferenceType().getCVRQualifiers();
+
+ // C++ [except.spec]p14:
+ // An implicitly declared special member function (Clause 12) shall have an
+ // exception-specification. [...]
+ for (const auto &Base : ClassDecl->bases()) {
+ // Virtual bases are handled below.
+ if (Base.isVirtual())
+ continue;
+
+ CXXRecordDecl *BaseClassDecl
+ = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
+ if (CXXConstructorDecl *CopyConstructor =
+ LookupCopyingConstructor(BaseClassDecl, Quals))
+ ExceptSpec.CalledDecl(Base.getLocStart(), CopyConstructor);
+ }
+ for (const auto &Base : ClassDecl->vbases()) {
+ CXXRecordDecl *BaseClassDecl
+ = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
+ if (CXXConstructorDecl *CopyConstructor =
+ LookupCopyingConstructor(BaseClassDecl, Quals))
+ ExceptSpec.CalledDecl(Base.getLocStart(), CopyConstructor);
+ }
+ for (const auto *Field : ClassDecl->fields()) {
+ QualType FieldType = Context.getBaseElementType(Field->getType());
+ if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
+ if (CXXConstructorDecl *CopyConstructor =
+ LookupCopyingConstructor(FieldClassDecl,
+ Quals | FieldType.getCVRQualifiers()))
+ ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
+ }
+ }
+
+ return ExceptSpec;
+}
+
+CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
+ CXXRecordDecl *ClassDecl) {
+ // C++ [class.copy]p4:
+ // If the class definition does not explicitly declare a copy
+ // constructor, one is declared implicitly.
+ assert(ClassDecl->needsImplicitCopyConstructor());
+
+ DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
+ if (DSM.isAlreadyBeingDeclared())
+ return nullptr;
+
+ QualType ClassType = Context.getTypeDeclType(ClassDecl);
+ QualType ArgType = ClassType;
+ bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
+ if (Const)
+ ArgType = ArgType.withConst();
+ ArgType = Context.getLValueReferenceType(ArgType);
+
+ bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
+ CXXCopyConstructor,
+ Const);
+
+ DeclarationName Name
+ = Context.DeclarationNames.getCXXConstructorName(
+ Context.getCanonicalType(ClassType));
+ SourceLocation ClassLoc = ClassDecl->getLocation();
+ DeclarationNameInfo NameInfo(Name, ClassLoc);
+
+ // An implicitly-declared copy constructor is an inline public
+ // member of its class.
+ CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
+ Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
+ /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
+ Constexpr);
+ CopyConstructor->setAccess(AS_public);
+ CopyConstructor->setDefaulted();
+
+ if (getLangOpts().CUDA) {
+ inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyConstructor,
+ CopyConstructor,
+ /* ConstRHS */ Const,
+ /* Diagnose */ false);
+ }
+
+ // Build an exception specification pointing back at this member.
+ FunctionProtoType::ExtProtoInfo EPI =
+ getImplicitMethodEPI(*this, CopyConstructor);
+ CopyConstructor->setType(
+ Context.getFunctionType(Context.VoidTy, ArgType, EPI));
+
+ // Add the parameter to the constructor.
+ ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
+ ClassLoc, ClassLoc,
+ /*IdentifierInfo=*/nullptr,
+ ArgType, /*TInfo=*/nullptr,
+ SC_None, nullptr);
+ CopyConstructor->setParams(FromParam);
+
+ CopyConstructor->setTrivial(
+ ClassDecl->needsOverloadResolutionForCopyConstructor()
+ ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
+ : ClassDecl->hasTrivialCopyConstructor());
+
+ if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
+ SetDeclDeleted(CopyConstructor, ClassLoc);
+
+ // Note that we have declared this constructor.
+ ++ASTContext::NumImplicitCopyConstructorsDeclared;
+
+ if (Scope *S = getScopeForContext(ClassDecl))
+ PushOnScopeChains(CopyConstructor, S, false);
+ ClassDecl->addDecl(CopyConstructor);
+
+ return CopyConstructor;
+}
+
+void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
+ CXXConstructorDecl *CopyConstructor) {
+ assert((CopyConstructor->isDefaulted() &&
+ CopyConstructor->isCopyConstructor() &&
+ !CopyConstructor->doesThisDeclarationHaveABody() &&
+ !CopyConstructor->isDeleted()) &&
+ "DefineImplicitCopyConstructor - call it for implicit copy ctor");
+
+ CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
+ assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
+
+ // C++11 [class.copy]p7:
+ // The [definition of an implicitly declared copy constructor] is
+ // deprecated if the class has a user-declared copy assignment operator
+ // or a user-declared destructor.
+ if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit())
+ diagnoseDeprecatedCopyOperation(*this, CopyConstructor, CurrentLocation);
+
+ SynthesizedFunctionScope Scope(*this, CopyConstructor);
+ DiagnosticErrorTrap Trap(Diags);
+
+ if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false) ||
+ Trap.hasErrorOccurred()) {
+ Diag(CurrentLocation, diag::note_member_synthesized_at)
+ << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
+ CopyConstructor->setInvalidDecl();
+ } else {
+ SourceLocation Loc = CopyConstructor->getLocEnd().isValid()
+ ? CopyConstructor->getLocEnd()
+ : CopyConstructor->getLocation();
+ Sema::CompoundScopeRAII CompoundScope(*this);
+ CopyConstructor->setBody(
+ ActOnCompoundStmt(Loc, Loc, None, /*isStmtExpr=*/false).getAs<Stmt>());
+ }
+
+ // The exception specification is needed because we are defining the
+ // function.
+ ResolveExceptionSpec(CurrentLocation,
+ CopyConstructor->getType()->castAs<FunctionProtoType>());
+
+ CopyConstructor->markUsed(Context);
+ MarkVTableUsed(CurrentLocation, ClassDecl);
+
+ if (ASTMutationListener *L = getASTMutationListener()) {
+ L->CompletedImplicitDefinition(CopyConstructor);
+ }
+}
+
+Sema::ImplicitExceptionSpecification
+Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD) {
+ CXXRecordDecl *ClassDecl = MD->getParent();
+
+ // C++ [except.spec]p14:
+ // An implicitly declared special member function (Clause 12) shall have an
+ // exception-specification. [...]
+ ImplicitExceptionSpecification ExceptSpec(*this);
+ if (ClassDecl->isInvalidDecl())
+ return ExceptSpec;
+
+ // Direct base-class constructors.
+ for (const auto &B : ClassDecl->bases()) {
+ if (B.isVirtual()) // Handled below.
+ continue;
+
+ if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
+ CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
+ CXXConstructorDecl *Constructor =
+ LookupMovingConstructor(BaseClassDecl, 0);
+ // If this is a deleted function, add it anyway. This might be conformant
+ // with the standard. This might not. I'm not sure. It might not matter.
+ if (Constructor)
+ ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
+ }
+ }
+
+ // Virtual base-class constructors.
+ for (const auto &B : ClassDecl->vbases()) {
+ if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
+ CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
+ CXXConstructorDecl *Constructor =
+ LookupMovingConstructor(BaseClassDecl, 0);
+ // If this is a deleted function, add it anyway. This might be conformant
+ // with the standard. This might not. I'm not sure. It might not matter.
+ if (Constructor)
+ ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
+ }
+ }
+
+ // Field constructors.
+ for (const auto *F : ClassDecl->fields()) {
+ QualType FieldType = Context.getBaseElementType(F->getType());
+ if (CXXRecordDecl *FieldRecDecl = FieldType->getAsCXXRecordDecl()) {
+ CXXConstructorDecl *Constructor =
+ LookupMovingConstructor(FieldRecDecl, FieldType.getCVRQualifiers());
+ // If this is a deleted function, add it anyway. This might be conformant
+ // with the standard. This might not. I'm not sure. It might not matter.
+ // In particular, the problem is that this function never gets called. It
+ // might just be ill-formed because this function attempts to refer to
+ // a deleted function here.
+ if (Constructor)
+ ExceptSpec.CalledDecl(F->getLocation(), Constructor);
+ }
+ }
+
+ return ExceptSpec;
+}
+
+CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
+ CXXRecordDecl *ClassDecl) {
+ assert(ClassDecl->needsImplicitMoveConstructor());
+
+ DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
+ if (DSM.isAlreadyBeingDeclared())
+ return nullptr;
+
+ QualType ClassType = Context.getTypeDeclType(ClassDecl);
+ QualType ArgType = Context.getRValueReferenceType(ClassType);
+
+ bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
+ CXXMoveConstructor,
+ false);
+
+ DeclarationName Name
+ = Context.DeclarationNames.getCXXConstructorName(
+ Context.getCanonicalType(ClassType));
+ SourceLocation ClassLoc = ClassDecl->getLocation();
+ DeclarationNameInfo NameInfo(Name, ClassLoc);
+
+ // C++11 [class.copy]p11:
+ // An implicitly-declared copy/move constructor is an inline public
+ // member of its class.
+ CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
+ Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
+ /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
+ Constexpr);
+ MoveConstructor->setAccess(AS_public);
+ MoveConstructor->setDefaulted();
+
+ if (getLangOpts().CUDA) {
+ inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveConstructor,
+ MoveConstructor,
+ /* ConstRHS */ false,
+ /* Diagnose */ false);
+ }
+
+ // Build an exception specification pointing back at this member.
+ FunctionProtoType::ExtProtoInfo EPI =
+ getImplicitMethodEPI(*this, MoveConstructor);
+ MoveConstructor->setType(
+ Context.getFunctionType(Context.VoidTy, ArgType, EPI));
+
+ // Add the parameter to the constructor.
+ ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
+ ClassLoc, ClassLoc,
+ /*IdentifierInfo=*/nullptr,
+ ArgType, /*TInfo=*/nullptr,
+ SC_None, nullptr);
+ MoveConstructor->setParams(FromParam);
+
+ MoveConstructor->setTrivial(
+ ClassDecl->needsOverloadResolutionForMoveConstructor()
+ ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
+ : ClassDecl->hasTrivialMoveConstructor());
+
+ if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
+ ClassDecl->setImplicitMoveConstructorIsDeleted();
+ SetDeclDeleted(MoveConstructor, ClassLoc);
+ }
+
+ // Note that we have declared this constructor.
+ ++ASTContext::NumImplicitMoveConstructorsDeclared;
+
+ if (Scope *S = getScopeForContext(ClassDecl))
+ PushOnScopeChains(MoveConstructor, S, false);
+ ClassDecl->addDecl(MoveConstructor);
+
+ return MoveConstructor;
+}
+
+void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
+ CXXConstructorDecl *MoveConstructor) {
+ assert((MoveConstructor->isDefaulted() &&
+ MoveConstructor->isMoveConstructor() &&
+ !MoveConstructor->doesThisDeclarationHaveABody() &&
+ !MoveConstructor->isDeleted()) &&
+ "DefineImplicitMoveConstructor - call it for implicit move ctor");
+
+ CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
+ assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
+
+ SynthesizedFunctionScope Scope(*this, MoveConstructor);
+ DiagnosticErrorTrap Trap(Diags);
+
+ if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false) ||
+ Trap.hasErrorOccurred()) {
+ Diag(CurrentLocation, diag::note_member_synthesized_at)
+ << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
+ MoveConstructor->setInvalidDecl();
+ } else {
+ SourceLocation Loc = MoveConstructor->getLocEnd().isValid()
+ ? MoveConstructor->getLocEnd()
+ : MoveConstructor->getLocation();
+ Sema::CompoundScopeRAII CompoundScope(*this);
+ MoveConstructor->setBody(ActOnCompoundStmt(
+ Loc, Loc, None, /*isStmtExpr=*/ false).getAs<Stmt>());
+ }
+
+ // The exception specification is needed because we are defining the
+ // function.
+ ResolveExceptionSpec(CurrentLocation,
+ MoveConstructor->getType()->castAs<FunctionProtoType>());
+
+ MoveConstructor->markUsed(Context);
+ MarkVTableUsed(CurrentLocation, ClassDecl);
+
+ if (ASTMutationListener *L = getASTMutationListener()) {
+ L->CompletedImplicitDefinition(MoveConstructor);
+ }
+}
+
+bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
+ return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD);
+}
+
+void Sema::DefineImplicitLambdaToFunctionPointerConversion(
+ SourceLocation CurrentLocation,
+ CXXConversionDecl *Conv) {
+ CXXRecordDecl *Lambda = Conv->getParent();
+ CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
+ // If we are defining a specialization of a conversion to function-ptr
+ // cache the deduced template arguments for this specialization
+ // so that we can use them to retrieve the corresponding call-operator
+ // and static-invoker.
+ const TemplateArgumentList *DeducedTemplateArgs = nullptr;
+
+ // Retrieve the corresponding call-operator specialization.
+ if (Lambda->isGenericLambda()) {
+ assert(Conv->isFunctionTemplateSpecialization());
+ FunctionTemplateDecl *CallOpTemplate =
+ CallOp->getDescribedFunctionTemplate();
+ DeducedTemplateArgs = Conv->getTemplateSpecializationArgs();
+ void *InsertPos = nullptr;
+ FunctionDecl *CallOpSpec = CallOpTemplate->findSpecialization(
+ DeducedTemplateArgs->asArray(),
+ InsertPos);
+ assert(CallOpSpec &&
+ "Conversion operator must have a corresponding call operator");
+ CallOp = cast<CXXMethodDecl>(CallOpSpec);
+ }
+ // Mark the call operator referenced (and add to pending instantiations
+ // if necessary).
+ // For both the conversion and static-invoker template specializations
+ // we construct their body's in this function, so no need to add them
+ // to the PendingInstantiations.
+ MarkFunctionReferenced(CurrentLocation, CallOp);
+
+ SynthesizedFunctionScope Scope(*this, Conv);
+ DiagnosticErrorTrap Trap(Diags);
+
+ // Retrieve the static invoker...
+ CXXMethodDecl *Invoker = Lambda->getLambdaStaticInvoker();
+ // ... and get the corresponding specialization for a generic lambda.
+ if (Lambda->isGenericLambda()) {
+ assert(DeducedTemplateArgs &&
+ "Must have deduced template arguments from Conversion Operator");
+ FunctionTemplateDecl *InvokeTemplate =
+ Invoker->getDescribedFunctionTemplate();
+ void *InsertPos = nullptr;
+ FunctionDecl *InvokeSpec = InvokeTemplate->findSpecialization(
+ DeducedTemplateArgs->asArray(),
+ InsertPos);
+ assert(InvokeSpec &&
+ "Must have a corresponding static invoker specialization");
+ Invoker = cast<CXXMethodDecl>(InvokeSpec);
+ }
+ // Construct the body of the conversion function { return __invoke; }.
+ Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(),
+ VK_LValue, Conv->getLocation()).get();
+ assert(FunctionRef && "Can't refer to __invoke function?");
+ Stmt *Return = BuildReturnStmt(Conv->getLocation(), FunctionRef).get();
+ Conv->setBody(new (Context) CompoundStmt(Context, Return,
+ Conv->getLocation(),
+ Conv->getLocation()));
+
+ Conv->markUsed(Context);
+ Conv->setReferenced();
+
+ // Fill in the __invoke function with a dummy implementation. IR generation
+ // will fill in the actual details.
+ Invoker->markUsed(Context);
+ Invoker->setReferenced();
+ Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation()));
+
+ if (ASTMutationListener *L = getASTMutationListener()) {
+ L->CompletedImplicitDefinition(Conv);
+ L->CompletedImplicitDefinition(Invoker);
+ }
+}
+
+
+
+void Sema::DefineImplicitLambdaToBlockPointerConversion(
+ SourceLocation CurrentLocation,
+ CXXConversionDecl *Conv)
+{
+ assert(!Conv->getParent()->isGenericLambda());
+
+ Conv->markUsed(Context);
+
+ SynthesizedFunctionScope Scope(*this, Conv);
+ DiagnosticErrorTrap Trap(Diags);
+
+ // Copy-initialize the lambda object as needed to capture it.
+ Expr *This = ActOnCXXThis(CurrentLocation).get();
+ Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).get();
+
+ ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
+ Conv->getLocation(),
+ Conv, DerefThis);
+
+ // If we're not under ARC, make sure we still get the _Block_copy/autorelease
+ // behavior. Note that only the general conversion function does this
+ // (since it's unusable otherwise); in the case where we inline the
+ // block literal, it has block literal lifetime semantics.
+ if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
+ BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
+ CK_CopyAndAutoreleaseBlockObject,
+ BuildBlock.get(), nullptr, VK_RValue);
+
+ if (BuildBlock.isInvalid()) {
+ Diag(CurrentLocation, diag::note_lambda_to_block_conv);
+ Conv->setInvalidDecl();
+ return;
+ }
+
+ // Create the return statement that returns the block from the conversion
+ // function.
+ StmtResult Return = BuildReturnStmt(Conv->getLocation(), BuildBlock.get());
+ if (Return.isInvalid()) {
+ Diag(CurrentLocation, diag::note_lambda_to_block_conv);
+ Conv->setInvalidDecl();
+ return;
+ }
+
+ // Set the body of the conversion function.
+ Stmt *ReturnS = Return.get();
+ Conv->setBody(new (Context) CompoundStmt(Context, ReturnS,
+ Conv->getLocation(),
+ Conv->getLocation()));
+
+ // We're done; notify the mutation listener, if any.
+ if (ASTMutationListener *L = getASTMutationListener()) {
+ L->CompletedImplicitDefinition(Conv);
+ }
+}
+
+/// \brief Determine whether the given list arguments contains exactly one
+/// "real" (non-default) argument.
+static bool hasOneRealArgument(MultiExprArg Args) {
+ switch (Args.size()) {
+ case 0:
+ return false;
+
+ default:
+ if (!Args[1]->isDefaultArgument())
+ return false;
+
+ // fall through
+ case 1:
+ return !Args[0]->isDefaultArgument();
+ }
+
+ return false;
+}
+
+ExprResult
+Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
+ CXXConstructorDecl *Constructor,
+ MultiExprArg ExprArgs,
+ bool HadMultipleCandidates,
+ bool IsListInitialization,
+ bool IsStdInitListInitialization,
+ bool RequiresZeroInit,
+ unsigned ConstructKind,
+ SourceRange ParenRange) {
+ bool Elidable = false;
+
+ // C++0x [class.copy]p34:
+ // When certain criteria are met, an implementation is allowed to
+ // omit the copy/move construction of a class object, even if the
+ // copy/move constructor and/or destructor for the object have
+ // side effects. [...]
+ // - when a temporary class object that has not been bound to a
+ // reference (12.2) would be copied/moved to a class object
+ // with the same cv-unqualified type, the copy/move operation
+ // can be omitted by constructing the temporary object
+ // directly into the target of the omitted copy/move
+ if (ConstructKind == CXXConstructExpr::CK_Complete &&
+ Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
+ Expr *SubExpr = ExprArgs[0];
+ Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
+ }
+
+ return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
+ Elidable, ExprArgs, HadMultipleCandidates,
+ IsListInitialization,
+ IsStdInitListInitialization, RequiresZeroInit,
+ ConstructKind, ParenRange);
+}
+
+/// BuildCXXConstructExpr - Creates a complete call to a constructor,
+/// including handling of its default argument expressions.
+ExprResult
+Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
+ CXXConstructorDecl *Constructor, bool Elidable,
+ MultiExprArg ExprArgs,
+ bool HadMultipleCandidates,
+ bool IsListInitialization,
+ bool IsStdInitListInitialization,
+ bool RequiresZeroInit,
+ unsigned ConstructKind,
+ SourceRange ParenRange) {
+ MarkFunctionReferenced(ConstructLoc, Constructor);
+ return CXXConstructExpr::Create(
+ Context, DeclInitType, ConstructLoc, Constructor, Elidable, ExprArgs,
+ HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization,
+ RequiresZeroInit,
+ static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
+ ParenRange);
+}
+
+ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) {
+ assert(Field->hasInClassInitializer());
+
+ // If we already have the in-class initializer nothing needs to be done.
+ if (Field->getInClassInitializer())
+ return CXXDefaultInitExpr::Create(Context, Loc, Field);
+
+ // Maybe we haven't instantiated the in-class initializer. Go check the
+ // pattern FieldDecl to see if it has one.
+ CXXRecordDecl *ParentRD = cast<CXXRecordDecl>(Field->getParent());
+
+ if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) {
+ CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern();
+ DeclContext::lookup_result Lookup =
+ ClassPattern->lookup(Field->getDeclName());
+ assert(Lookup.size() == 1);
+ FieldDecl *Pattern = cast<FieldDecl>(Lookup[0]);
+ if (InstantiateInClassInitializer(Loc, Field, Pattern,
+ getTemplateInstantiationArgs(Field)))
+ return ExprError();
+ return CXXDefaultInitExpr::Create(Context, Loc, Field);
+ }
+
+ // DR1351:
+ // If the brace-or-equal-initializer of a non-static data member
+ // invokes a defaulted default constructor of its class or of an
+ // enclosing class in a potentially evaluated subexpression, the
+ // program is ill-formed.
+ //
+ // This resolution is unworkable: the exception specification of the
+ // default constructor can be needed in an unevaluated context, in
+ // particular, in the operand of a noexcept-expression, and we can be
+ // unable to compute an exception specification for an enclosed class.
+ //
+ // Any attempt to resolve the exception specification of a defaulted default
+ // constructor before the initializer is lexically complete will ultimately
+ // come here at which point we can diagnose it.
+ RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext();
+ if (OutermostClass == ParentRD) {
+ Diag(Field->getLocEnd(), diag::err_in_class_initializer_not_yet_parsed)
+ << ParentRD << Field;
+ } else {
+ Diag(Field->getLocEnd(),
+ diag::err_in_class_initializer_not_yet_parsed_outer_class)
+ << ParentRD << OutermostClass << Field;
+ }
+
+ return ExprError();
+}
+
+void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
+ if (VD->isInvalidDecl()) return;
+
+ CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
+ if (ClassDecl->isInvalidDecl()) return;
+ if (ClassDecl->hasIrrelevantDestructor()) return;
+ if (ClassDecl->isDependentContext()) return;
+
+ CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
+ MarkFunctionReferenced(VD->getLocation(), Destructor);
+ CheckDestructorAccess(VD->getLocation(), Destructor,
+ PDiag(diag::err_access_dtor_var)
+ << VD->getDeclName()
+ << VD->getType());
+ DiagnoseUseOfDecl(Destructor, VD->getLocation());
+
+ if (Destructor->isTrivial()) return;
+ if (!VD->hasGlobalStorage()) return;
+
+ // Emit warning for non-trivial dtor in global scope (a real global,
+ // class-static, function-static).
+ Diag(VD->getLocation(), diag::warn_exit_time_destructor);
+
+ // TODO: this should be re-enabled for static locals by !CXAAtExit
+ if (!VD->isStaticLocal())
+ Diag(VD->getLocation(), diag::warn_global_destructor);
+}
+
+/// \brief Given a constructor and the set of arguments provided for the
+/// constructor, convert the arguments and add any required default arguments
+/// to form a proper call to this constructor.
+///
+/// \returns true if an error occurred, false otherwise.
+bool
+Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
+ MultiExprArg ArgsPtr,
+ SourceLocation Loc,
+ SmallVectorImpl<Expr*> &ConvertedArgs,
+ bool AllowExplicit,
+ bool IsListInitialization) {
+ // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
+ unsigned NumArgs = ArgsPtr.size();
+ Expr **Args = ArgsPtr.data();
+
+ const FunctionProtoType *Proto
+ = Constructor->getType()->getAs<FunctionProtoType>();
+ assert(Proto && "Constructor without a prototype?");
+ unsigned NumParams = Proto->getNumParams();
+
+ // If too few arguments are available, we'll fill in the rest with defaults.
+ if (NumArgs < NumParams)
+ ConvertedArgs.reserve(NumParams);
+ else
+ ConvertedArgs.reserve(NumArgs);
+
+ VariadicCallType CallType =
+ Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
+ SmallVector<Expr *, 8> AllArgs;
+ bool Invalid = GatherArgumentsForCall(Loc, Constructor,
+ Proto, 0,
+ llvm::makeArrayRef(Args, NumArgs),
+ AllArgs,
+ CallType, AllowExplicit,
+ IsListInitialization);
+ ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
+
+ DiagnoseSentinelCalls(Constructor, Loc, AllArgs);
+
+ CheckConstructorCall(Constructor,
+ llvm::makeArrayRef(AllArgs.data(), AllArgs.size()),
+ Proto, Loc);
+
+ return Invalid;
+}
+
+static inline bool
+CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
+ const FunctionDecl *FnDecl) {
+ const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
+ if (isa<NamespaceDecl>(DC)) {
+ return SemaRef.Diag(FnDecl->getLocation(),
+ diag::err_operator_new_delete_declared_in_namespace)
+ << FnDecl->getDeclName();
+ }
+
+ if (isa<TranslationUnitDecl>(DC) &&
+ FnDecl->getStorageClass() == SC_Static) {
+ return SemaRef.Diag(FnDecl->getLocation(),
+ diag::err_operator_new_delete_declared_static)
+ << FnDecl->getDeclName();
+ }
+
+ return false;
+}
+
+static inline bool
+CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
+ CanQualType ExpectedResultType,
+ CanQualType ExpectedFirstParamType,
+ unsigned DependentParamTypeDiag,
+ unsigned InvalidParamTypeDiag) {
+ QualType ResultType =
+ FnDecl->getType()->getAs<FunctionType>()->getReturnType();
+
+ // Check that the result type is not dependent.
+ if (ResultType->isDependentType())
+ return SemaRef.Diag(FnDecl->getLocation(),
+ diag::err_operator_new_delete_dependent_result_type)
+ << FnDecl->getDeclName() << ExpectedResultType;
+
+ // Check that the result type is what we expect.
+ if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
+ return SemaRef.Diag(FnDecl->getLocation(),
+ diag::err_operator_new_delete_invalid_result_type)
+ << FnDecl->getDeclName() << ExpectedResultType;
+
+ // A function template must have at least 2 parameters.
+ if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
+ return SemaRef.Diag(FnDecl->getLocation(),
+ diag::err_operator_new_delete_template_too_few_parameters)
+ << FnDecl->getDeclName();
+
+ // The function decl must have at least 1 parameter.
+ if (FnDecl->getNumParams() == 0)
+ return SemaRef.Diag(FnDecl->getLocation(),
+ diag::err_operator_new_delete_too_few_parameters)
+ << FnDecl->getDeclName();
+
+ // Check the first parameter type is not dependent.
+ QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
+ if (FirstParamType->isDependentType())
+ return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
+ << FnDecl->getDeclName() << ExpectedFirstParamType;
+
+ // Check that the first parameter type is what we expect.
+ if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
+ ExpectedFirstParamType)
+ return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
+ << FnDecl->getDeclName() << ExpectedFirstParamType;
+
+ return false;
+}
+
+static bool
+CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
+ // C++ [basic.stc.dynamic.allocation]p1:
+ // A program is ill-formed if an allocation function is declared in a
+ // namespace scope other than global scope or declared static in global
+ // scope.
+ if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
+ return true;
+
+ CanQualType SizeTy =
+ SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
+
+ // C++ [basic.stc.dynamic.allocation]p1:
+ // The return type shall be void*. The first parameter shall have type
+ // std::size_t.
+ if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
+ SizeTy,
+ diag::err_operator_new_dependent_param_type,
+ diag::err_operator_new_param_type))
+ return true;
+
+ // C++ [basic.stc.dynamic.allocation]p1:
+ // The first parameter shall not have an associated default argument.
+ if (FnDecl->getParamDecl(0)->hasDefaultArg())
+ return SemaRef.Diag(FnDecl->getLocation(),
+ diag::err_operator_new_default_arg)
+ << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
+
+ return false;
+}
+
+static bool
+CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
+ // C++ [basic.stc.dynamic.deallocation]p1:
+ // A program is ill-formed if deallocation functions are declared in a
+ // namespace scope other than global scope or declared static in global
+ // scope.
+ if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
+ return true;
+
+ // C++ [basic.stc.dynamic.deallocation]p2:
+ // Each deallocation function shall return void and its first parameter
+ // shall be void*.
+ if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
+ SemaRef.Context.VoidPtrTy,
+ diag::err_operator_delete_dependent_param_type,
+ diag::err_operator_delete_param_type))
+ return true;
+
+ return false;
+}
+
+/// CheckOverloadedOperatorDeclaration - Check whether the declaration
+/// of this overloaded operator is well-formed. If so, returns false;
+/// otherwise, emits appropriate diagnostics and returns true.
+bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
+ assert(FnDecl && FnDecl->isOverloadedOperator() &&
+ "Expected an overloaded operator declaration");
+
+ OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
+
+ // C++ [over.oper]p5:
+ // The allocation and deallocation functions, operator new,
+ // operator new[], operator delete and operator delete[], are
+ // described completely in 3.7.3. The attributes and restrictions
+ // found in the rest of this subclause do not apply to them unless
+ // explicitly stated in 3.7.3.
+ if (Op == OO_Delete || Op == OO_Array_Delete)
+ return CheckOperatorDeleteDeclaration(*this, FnDecl);
+
+ if (Op == OO_New || Op == OO_Array_New)
+ return CheckOperatorNewDeclaration(*this, FnDecl);
+
+ // C++ [over.oper]p6:
+ // An operator function shall either be a non-static member
+ // function or be a non-member function and have at least one
+ // parameter whose type is a class, a reference to a class, an
+ // enumeration, or a reference to an enumeration.
+ if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
+ if (MethodDecl->isStatic())
+ return Diag(FnDecl->getLocation(),
+ diag::err_operator_overload_static) << FnDecl->getDeclName();
+ } else {
+ bool ClassOrEnumParam = false;
+ for (auto Param : FnDecl->params()) {
+ QualType ParamType = Param->getType().getNonReferenceType();
+ if (ParamType->isDependentType() || ParamType->isRecordType() ||
+ ParamType->isEnumeralType()) {
+ ClassOrEnumParam = true;
+ break;
+ }
+ }
+
+ if (!ClassOrEnumParam)
+ return Diag(FnDecl->getLocation(),
+ diag::err_operator_overload_needs_class_or_enum)
+ << FnDecl->getDeclName();
+ }
+
+ // C++ [over.oper]p8:
+ // An operator function cannot have default arguments (8.3.6),
+ // except where explicitly stated below.
+ //
+ // Only the function-call operator allows default arguments
+ // (C++ [over.call]p1).
+ if (Op != OO_Call) {
+ for (auto Param : FnDecl->params()) {
+ if (Param->hasDefaultArg())
+ return Diag(Param->getLocation(),
+ diag::err_operator_overload_default_arg)
+ << FnDecl->getDeclName() << Param->getDefaultArgRange();
+ }
+ }
+
+ static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
+ { false, false, false }
+#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
+ , { Unary, Binary, MemberOnly }
+#include "clang/Basic/OperatorKinds.def"
+ };
+
+ bool CanBeUnaryOperator = OperatorUses[Op][0];
+ bool CanBeBinaryOperator = OperatorUses[Op][1];
+ bool MustBeMemberOperator = OperatorUses[Op][2];
+
+ // C++ [over.oper]p8:
+ // [...] Operator functions cannot have more or fewer parameters
+ // than the number required for the corresponding operator, as
+ // described in the rest of this subclause.
+ unsigned NumParams = FnDecl->getNumParams()
+ + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
+ if (Op != OO_Call &&
+ ((NumParams == 1 && !CanBeUnaryOperator) ||
+ (NumParams == 2 && !CanBeBinaryOperator) ||
+ (NumParams < 1) || (NumParams > 2))) {
+ // We have the wrong number of parameters.
+ unsigned ErrorKind;
+ if (CanBeUnaryOperator && CanBeBinaryOperator) {
+ ErrorKind = 2; // 2 -> unary or binary.
+ } else if (CanBeUnaryOperator) {
+ ErrorKind = 0; // 0 -> unary
+ } else {
+ assert(CanBeBinaryOperator &&
+ "All non-call overloaded operators are unary or binary!");
+ ErrorKind = 1; // 1 -> binary
+ }
+
+ return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
+ << FnDecl->getDeclName() << NumParams << ErrorKind;
+ }
+
+ // Overloaded operators other than operator() cannot be variadic.
+ if (Op != OO_Call &&
+ FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
+ return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
+ << FnDecl->getDeclName();
+ }
+
+ // Some operators must be non-static member functions.
+ if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
+ return Diag(FnDecl->getLocation(),
+ diag::err_operator_overload_must_be_member)
+ << FnDecl->getDeclName();
+ }
+
+ // C++ [over.inc]p1:
+ // The user-defined function called operator++ implements the
+ // prefix and postfix ++ operator. If this function is a member
+ // function with no parameters, or a non-member function with one
+ // parameter of class or enumeration type, it defines the prefix
+ // increment operator ++ for objects of that type. If the function
+ // is a member function with one parameter (which shall be of type
+ // int) or a non-member function with two parameters (the second
+ // of which shall be of type int), it defines the postfix
+ // increment operator ++ for objects of that type.
+ if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
+ ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
+ QualType ParamType = LastParam->getType();
+
+ if (!ParamType->isSpecificBuiltinType(BuiltinType::Int) &&
+ !ParamType->isDependentType())
+ return Diag(LastParam->getLocation(),
+ diag::err_operator_overload_post_incdec_must_be_int)
+ << LastParam->getType() << (Op == OO_MinusMinus);
+ }
+
+ return false;
+}
+
+/// CheckLiteralOperatorDeclaration - Check whether the declaration
+/// of this literal operator function is well-formed. If so, returns
+/// false; otherwise, emits appropriate diagnostics and returns true.
+bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
+ if (isa<CXXMethodDecl>(FnDecl)) {
+ Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
+ << FnDecl->getDeclName();
+ return true;
+ }
+
+ if (FnDecl->isExternC()) {
+ Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
+ return true;
+ }
+
+ bool Valid = false;
+
+ // This might be the definition of a literal operator template.
+ FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
+ // This might be a specialization of a literal operator template.
+ if (!TpDecl)
+ TpDecl = FnDecl->getPrimaryTemplate();
+
+ // template <char...> type operator "" name() and
+ // template <class T, T...> type operator "" name() are the only valid
+ // template signatures, and the only valid signatures with no parameters.
+ if (TpDecl) {
+ if (FnDecl->param_size() == 0) {
+ // Must have one or two template parameters
+ TemplateParameterList *Params = TpDecl->getTemplateParameters();
+ if (Params->size() == 1) {
+ NonTypeTemplateParmDecl *PmDecl =
+ dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(0));
+
+ // The template parameter must be a char parameter pack.
+ if (PmDecl && PmDecl->isTemplateParameterPack() &&
+ Context.hasSameType(PmDecl->getType(), Context.CharTy))
+ Valid = true;
+ } else if (Params->size() == 2) {
+ TemplateTypeParmDecl *PmType =
+ dyn_cast<TemplateTypeParmDecl>(Params->getParam(0));
+ NonTypeTemplateParmDecl *PmArgs =
+ dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1));
+
+ // The second template parameter must be a parameter pack with the
+ // first template parameter as its type.
+ if (PmType && PmArgs &&
+ !PmType->isTemplateParameterPack() &&
+ PmArgs->isTemplateParameterPack()) {
+ const TemplateTypeParmType *TArgs =
+ PmArgs->getType()->getAs<TemplateTypeParmType>();
+ if (TArgs && TArgs->getDepth() == PmType->getDepth() &&
+ TArgs->getIndex() == PmType->getIndex()) {
+ Valid = true;
+ if (ActiveTemplateInstantiations.empty())
+ Diag(FnDecl->getLocation(),
+ diag::ext_string_literal_operator_template);
+ }
+ }
+ }
+ }
+ } else if (FnDecl->param_size()) {
+ // Check the first parameter
+ FunctionDecl::param_iterator Param = FnDecl->param_begin();
+
+ QualType T = (*Param)->getType().getUnqualifiedType();
+
+ // unsigned long long int, long double, and any character type are allowed
+ // as the only parameters.
+ if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
+ Context.hasSameType(T, Context.LongDoubleTy) ||
+ Context.hasSameType(T, Context.CharTy) ||
+ Context.hasSameType(T, Context.WideCharTy) ||
+ Context.hasSameType(T, Context.Char16Ty) ||
+ Context.hasSameType(T, Context.Char32Ty)) {
+ if (++Param == FnDecl->param_end())
+ Valid = true;
+ goto FinishedParams;
+ }
+
+ // Otherwise it must be a pointer to const; let's strip those qualifiers.
+ const PointerType *PT = T->getAs<PointerType>();
+ if (!PT)
+ goto FinishedParams;
+ T = PT->getPointeeType();
+ if (!T.isConstQualified() || T.isVolatileQualified())
+ goto FinishedParams;
+ T = T.getUnqualifiedType();
+
+ // Move on to the second parameter;
+ ++Param;
+
+ // If there is no second parameter, the first must be a const char *
+ if (Param == FnDecl->param_end()) {
+ if (Context.hasSameType(T, Context.CharTy))
+ Valid = true;
+ goto FinishedParams;
+ }
+
+ // const char *, const wchar_t*, const char16_t*, and const char32_t*
+ // are allowed as the first parameter to a two-parameter function
+ if (!(Context.hasSameType(T, Context.CharTy) ||
+ Context.hasSameType(T, Context.WideCharTy) ||
+ Context.hasSameType(T, Context.Char16Ty) ||
+ Context.hasSameType(T, Context.Char32Ty)))
+ goto FinishedParams;
+
+ // The second and final parameter must be an std::size_t
+ T = (*Param)->getType().getUnqualifiedType();
+ if (Context.hasSameType(T, Context.getSizeType()) &&
+ ++Param == FnDecl->param_end())
+ Valid = true;
+ }
+
+ // FIXME: This diagnostic is absolutely terrible.
+FinishedParams:
+ if (!Valid) {
+ Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
+ << FnDecl->getDeclName();
+ return true;
+ }
+
+ // A parameter-declaration-clause containing a default argument is not
+ // equivalent to any of the permitted forms.
+ for (auto Param : FnDecl->params()) {
+ if (Param->hasDefaultArg()) {
+ Diag(Param->getDefaultArgRange().getBegin(),
+ diag::err_literal_operator_default_argument)
+ << Param->getDefaultArgRange();
+ break;
+ }
+ }
+
+ StringRef LiteralName
+ = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
+ if (LiteralName[0] != '_') {
+ // C++11 [usrlit.suffix]p1:
+ // Literal suffix identifiers that do not start with an underscore
+ // are reserved for future standardization.
+ Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved)
+ << NumericLiteralParser::isValidUDSuffix(getLangOpts(), LiteralName);
+ }
+
+ return false;
+}
+
+/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
+/// linkage specification, including the language and (if present)
+/// the '{'. ExternLoc is the location of the 'extern', Lang is the
+/// language string literal. LBraceLoc, if valid, provides the location of
+/// the '{' brace. Otherwise, this linkage specification does not
+/// have any braces.
+Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
+ Expr *LangStr,
+ SourceLocation LBraceLoc) {
+ StringLiteral *Lit = cast<StringLiteral>(LangStr);
+ if (!Lit->isAscii()) {
+ Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_not_ascii)
+ << LangStr->getSourceRange();
+ return nullptr;
+ }
+
+ StringRef Lang = Lit->getString();
+ LinkageSpecDecl::LanguageIDs Language;
+ if (Lang == "C")
+ Language = LinkageSpecDecl::lang_c;
+ else if (Lang == "C++")
+ Language = LinkageSpecDecl::lang_cxx;
+ else {
+ Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_unknown)
+ << LangStr->getSourceRange();
+ return nullptr;
+ }
+
+ // FIXME: Add all the various semantics of linkage specifications
+
+ LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, ExternLoc,
+ LangStr->getExprLoc(), Language,
+ LBraceLoc.isValid());
+ CurContext->addDecl(D);
+ PushDeclContext(S, D);
+ return D;
+}
+
+/// ActOnFinishLinkageSpecification - Complete the definition of
+/// the C++ linkage specification LinkageSpec. If RBraceLoc is
+/// valid, it's the position of the closing '}' brace in a linkage
+/// specification that uses braces.
+Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
+ Decl *LinkageSpec,
+ SourceLocation RBraceLoc) {
+ if (RBraceLoc.isValid()) {
+ LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
+ LSDecl->setRBraceLoc(RBraceLoc);
+ }
+ PopDeclContext();
+ return LinkageSpec;
+}
+
+Decl *Sema::ActOnEmptyDeclaration(Scope *S,
+ AttributeList *AttrList,
+ SourceLocation SemiLoc) {
+ Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
+ // Attribute declarations appertain to empty declaration so we handle
+ // them here.
+ if (AttrList)
+ ProcessDeclAttributeList(S, ED, AttrList);
+
+ CurContext->addDecl(ED);
+ return ED;
+}
+
+/// \brief Perform semantic analysis for the variable declaration that
+/// occurs within a C++ catch clause, returning the newly-created
+/// variable.
+VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
+ TypeSourceInfo *TInfo,
+ SourceLocation StartLoc,
+ SourceLocation Loc,
+ IdentifierInfo *Name) {
+ bool Invalid = false;
+ QualType ExDeclType = TInfo->getType();
+
+ // Arrays and functions decay.
+ if (ExDeclType->isArrayType())
+ ExDeclType = Context.getArrayDecayedType(ExDeclType);
+ else if (ExDeclType->isFunctionType())
+ ExDeclType = Context.getPointerType(ExDeclType);
+
+ // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
+ // The exception-declaration shall not denote a pointer or reference to an
+ // incomplete type, other than [cv] void*.
+ // N2844 forbids rvalue references.
+ if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
+ Diag(Loc, diag::err_catch_rvalue_ref);
+ Invalid = true;
+ }
+
+ QualType BaseType = ExDeclType;
+ int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
+ unsigned DK = diag::err_catch_incomplete;
+ if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
+ BaseType = Ptr->getPointeeType();
+ Mode = 1;
+ DK = diag::err_catch_incomplete_ptr;
+ } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
+ // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
+ BaseType = Ref->getPointeeType();
+ Mode = 2;
+ DK = diag::err_catch_incomplete_ref;
+ }
+ if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
+ !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
+ Invalid = true;
+
+ if (!Invalid && !ExDeclType->isDependentType() &&
+ RequireNonAbstractType(Loc, ExDeclType,
+ diag::err_abstract_type_in_decl,
+ AbstractVariableType))
+ Invalid = true;
+
+ // Only the non-fragile NeXT runtime currently supports C++ catches
+ // of ObjC types, and no runtime supports catching ObjC types by value.
+ if (!Invalid && getLangOpts().ObjC1) {
+ QualType T = ExDeclType;
+ if (const ReferenceType *RT = T->getAs<ReferenceType>())
+ T = RT->getPointeeType();
+
+ if (T->isObjCObjectType()) {
+ Diag(Loc, diag::err_objc_object_catch);
+ Invalid = true;
+ } else if (T->isObjCObjectPointerType()) {
+ // FIXME: should this be a test for macosx-fragile specifically?
+ if (getLangOpts().ObjCRuntime.isFragile())
+ Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
+ }
+ }
+
+ VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
+ ExDeclType, TInfo, SC_None);
+ ExDecl->setExceptionVariable(true);
+
+ // In ARC, infer 'retaining' for variables of retainable type.
+ if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
+ Invalid = true;
+
+ if (!Invalid && !ExDeclType->isDependentType()) {
+ if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
+ // Insulate this from anything else we might currently be parsing.
+ EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
+
+ // C++ [except.handle]p16:
+ // The object declared in an exception-declaration or, if the
+ // exception-declaration does not specify a name, a temporary (12.2) is
+ // copy-initialized (8.5) from the exception object. [...]
+ // The object is destroyed when the handler exits, after the destruction
+ // of any automatic objects initialized within the handler.
+ //
+ // We just pretend to initialize the object with itself, then make sure
+ // it can be destroyed later.
+ QualType initType = Context.getExceptionObjectType(ExDeclType);
+
+ InitializedEntity entity =
+ InitializedEntity::InitializeVariable(ExDecl);
+ InitializationKind initKind =
+ InitializationKind::CreateCopy(Loc, SourceLocation());
+
+ Expr *opaqueValue =
+ new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
+ InitializationSequence sequence(*this, entity, initKind, opaqueValue);
+ ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue);
+ if (result.isInvalid())
+ Invalid = true;
+ else {
+ // If the constructor used was non-trivial, set this as the
+ // "initializer".
+ CXXConstructExpr *construct = result.getAs<CXXConstructExpr>();
+ if (!construct->getConstructor()->isTrivial()) {
+ Expr *init = MaybeCreateExprWithCleanups(construct);
+ ExDecl->setInit(init);
+ }
+
+ // And make sure it's destructable.
+ FinalizeVarWithDestructor(ExDecl, recordType);
+ }
+ }
+ }
+
+ if (Invalid)
+ ExDecl->setInvalidDecl();
+
+ return ExDecl;
+}
+
+/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
+/// handler.
+Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
+ TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
+ bool Invalid = D.isInvalidType();
+
+ // Check for unexpanded parameter packs.
+ if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
+ UPPC_ExceptionType)) {
+ TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
+ D.getIdentifierLoc());
+ Invalid = true;
+ }
+
+ IdentifierInfo *II = D.getIdentifier();
+ if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
+ LookupOrdinaryName,
+ ForRedeclaration)) {
+ // The scope should be freshly made just for us. There is just no way
+ // it contains any previous declaration, except for function parameters in
+ // a function-try-block's catch statement.
+ assert(!S->isDeclScope(PrevDecl));
+ if (isDeclInScope(PrevDecl, CurContext, S)) {
+ Diag(D.getIdentifierLoc(), diag::err_redefinition)
+ << D.getIdentifier();
+ Diag(PrevDecl->getLocation(), diag::note_previous_definition);
+ Invalid = true;
+ } else if (PrevDecl->isTemplateParameter())
+ // Maybe we will complain about the shadowed template parameter.
+ DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
+ }
+
+ if (D.getCXXScopeSpec().isSet() && !Invalid) {
+ Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
+ << D.getCXXScopeSpec().getRange();
+ Invalid = true;
+ }
+
+ VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
+ D.getLocStart(),
+ D.getIdentifierLoc(),
+ D.getIdentifier());
+ if (Invalid)
+ ExDecl->setInvalidDecl();
+
+ // Add the exception declaration into this scope.
+ if (II)
+ PushOnScopeChains(ExDecl, S);
+ else
+ CurContext->addDecl(ExDecl);
+
+ ProcessDeclAttributes(S, ExDecl, D);
+ return ExDecl;
+}
+
+Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
+ Expr *AssertExpr,
+ Expr *AssertMessageExpr,
+ SourceLocation RParenLoc) {
+ StringLiteral *AssertMessage =
+ AssertMessageExpr ? cast<StringLiteral>(AssertMessageExpr) : nullptr;
+
+ if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
+ return nullptr;
+
+ return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
+ AssertMessage, RParenLoc, false);
+}
+
+Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
+ Expr *AssertExpr,
+ StringLiteral *AssertMessage,
+ SourceLocation RParenLoc,
+ bool Failed) {
+ assert(AssertExpr != nullptr && "Expected non-null condition");
+ if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
+ !Failed) {
+ // In a static_assert-declaration, the constant-expression shall be a
+ // constant expression that can be contextually converted to bool.
+ ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
+ if (Converted.isInvalid())
+ Failed = true;
+
+ llvm::APSInt Cond;
+ if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
+ diag::err_static_assert_expression_is_not_constant,
+ /*AllowFold=*/false).isInvalid())
+ Failed = true;
+
+ if (!Failed && !Cond) {
+ SmallString<256> MsgBuffer;
+ llvm::raw_svector_ostream Msg(MsgBuffer);
+ if (AssertMessage)
+ AssertMessage->printPretty(Msg, nullptr, getPrintingPolicy());
+ Diag(StaticAssertLoc, diag::err_static_assert_failed)
+ << !AssertMessage << Msg.str() << AssertExpr->getSourceRange();
+ Failed = true;
+ }
+ }
+
+ Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
+ AssertExpr, AssertMessage, RParenLoc,
+ Failed);
+
+ CurContext->addDecl(Decl);
+ return Decl;
+}
+
+/// \brief Perform semantic analysis of the given friend type declaration.
+///
+/// \returns A friend declaration that.
+FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
+ SourceLocation FriendLoc,
+ TypeSourceInfo *TSInfo) {
+ assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
+
+ QualType T = TSInfo->getType();
+ SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
+
+ // C++03 [class.friend]p2:
+ // An elaborated-type-specifier shall be used in a friend declaration
+ // for a class.*
+ //
+ // * The class-key of the elaborated-type-specifier is required.
+ if (!ActiveTemplateInstantiations.empty()) {
+ // Do not complain about the form of friend template types during
+ // template instantiation; we will already have complained when the
+ // template was declared.
+ } else {
+ if (!T->isElaboratedTypeSpecifier()) {
+ // If we evaluated the type to a record type, suggest putting
+ // a tag in front.
+ if (const RecordType *RT = T->getAs<RecordType>()) {
+ RecordDecl *RD = RT->getDecl();
+
+ SmallString<16> InsertionText(" ");
+ InsertionText += RD->getKindName();
+
+ Diag(TypeRange.getBegin(),
+ getLangOpts().CPlusPlus11 ?
+ diag::warn_cxx98_compat_unelaborated_friend_type :
+ diag::ext_unelaborated_friend_type)
+ << (unsigned) RD->getTagKind()
+ << T
+ << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
+ InsertionText);
+ } else {
+ Diag(FriendLoc,
+ getLangOpts().CPlusPlus11 ?
+ diag::warn_cxx98_compat_nonclass_type_friend :
+ diag::ext_nonclass_type_friend)
+ << T
+ << TypeRange;
+ }
+ } else if (T->getAs<EnumType>()) {
+ Diag(FriendLoc,
+ getLangOpts().CPlusPlus11 ?
+ diag::warn_cxx98_compat_enum_friend :
+ diag::ext_enum_friend)
+ << T
+ << TypeRange;
+ }
+
+ // C++11 [class.friend]p3:
+ // A friend declaration that does not declare a function shall have one
+ // of the following forms:
+ // friend elaborated-type-specifier ;
+ // friend simple-type-specifier ;
+ // friend typename-specifier ;
+ if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
+ Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
+ }
+
+ // If the type specifier in a friend declaration designates a (possibly
+ // cv-qualified) class type, that class is declared as a friend; otherwise,
+ // the friend declaration is ignored.
+ return FriendDecl::Create(Context, CurContext,
+ TSInfo->getTypeLoc().getLocStart(), TSInfo,
+ FriendLoc);
+}
+
+/// Handle a friend tag declaration where the scope specifier was
+/// templated.
+Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
+ unsigned TagSpec, SourceLocation TagLoc,
+ CXXScopeSpec &SS,
+ IdentifierInfo *Name,
+ SourceLocation NameLoc,
+ AttributeList *Attr,
+ MultiTemplateParamsArg TempParamLists) {
+ TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
+
+ bool isExplicitSpecialization = false;
+ bool Invalid = false;
+
+ if (TemplateParameterList *TemplateParams =
+ MatchTemplateParametersToScopeSpecifier(
+ TagLoc, NameLoc, SS, nullptr, TempParamLists, /*friend*/ true,
+ isExplicitSpecialization, Invalid)) {
+ if (TemplateParams->size() > 0) {
+ // This is a declaration of a class template.
+ if (Invalid)
+ return nullptr;
+
+ return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc, SS, Name,
+ NameLoc, Attr, TemplateParams, AS_public,
+ /*ModulePrivateLoc=*/SourceLocation(),
+ FriendLoc, TempParamLists.size() - 1,
+ TempParamLists.data()).get();
+ } else {
+ // The "template<>" header is extraneous.
+ Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
+ << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
+ isExplicitSpecialization = true;
+ }
+ }
+
+ if (Invalid) return nullptr;
+
+ bool isAllExplicitSpecializations = true;
+ for (unsigned I = TempParamLists.size(); I-- > 0; ) {
+ if (TempParamLists[I]->size()) {
+ isAllExplicitSpecializations = false;
+ break;
+ }
+ }
+
+ // FIXME: don't ignore attributes.
+
+ // If it's explicit specializations all the way down, just forget
+ // about the template header and build an appropriate non-templated
+ // friend. TODO: for source fidelity, remember the headers.
+ if (isAllExplicitSpecializations) {
+ if (SS.isEmpty()) {
+ bool Owned = false;
+ bool IsDependent = false;
+ return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
+ Attr, AS_public,
+ /*ModulePrivateLoc=*/SourceLocation(),
+ MultiTemplateParamsArg(), Owned, IsDependent,
+ /*ScopedEnumKWLoc=*/SourceLocation(),
+ /*ScopedEnumUsesClassTag=*/false,
+ /*UnderlyingType=*/TypeResult(),
+ /*IsTypeSpecifier=*/false);
+ }
+
+ NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
+ ElaboratedTypeKeyword Keyword
+ = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
+ QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
+ *Name, NameLoc);
+ if (T.isNull())
+ return nullptr;
+
+ TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
+ if (isa<DependentNameType>(T)) {
+ DependentNameTypeLoc TL =
+ TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
+ TL.setElaboratedKeywordLoc(TagLoc);
+ TL.setQualifierLoc(QualifierLoc);
+ TL.setNameLoc(NameLoc);
+ } else {
+ ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
+ TL.setElaboratedKeywordLoc(TagLoc);
+ TL.setQualifierLoc(QualifierLoc);
+ TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
+ }
+
+ FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
+ TSI, FriendLoc, TempParamLists);
+ Friend->setAccess(AS_public);
+ CurContext->addDecl(Friend);
+ return Friend;
+ }
+
+ assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
+
+
+
+ // Handle the case of a templated-scope friend class. e.g.
+ // template <class T> class A<T>::B;
+ // FIXME: we don't support these right now.
+ Diag(NameLoc, diag::warn_template_qualified_friend_unsupported)
+ << SS.getScopeRep() << SS.getRange() << cast<CXXRecordDecl>(CurContext);
+ ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
+ QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
+ TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
+ DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
+ TL.setElaboratedKeywordLoc(TagLoc);
+ TL.setQualifierLoc(SS.getWithLocInContext(Context));
+ TL.setNameLoc(NameLoc);
+
+ FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
+ TSI, FriendLoc, TempParamLists);
+ Friend->setAccess(AS_public);
+ Friend->setUnsupportedFriend(true);
+ CurContext->addDecl(Friend);
+ return Friend;
+}
+
+
+/// Handle a friend type declaration. This works in tandem with
+/// ActOnTag.
+///
+/// Notes on friend class templates:
+///
+/// We generally treat friend class declarations as if they were
+/// declaring a class. So, for example, the elaborated type specifier
+/// in a friend declaration is required to obey the restrictions of a
+/// class-head (i.e. no typedefs in the scope chain), template
+/// parameters are required to match up with simple template-ids, &c.
+/// However, unlike when declaring a template specialization, it's
+/// okay to refer to a template specialization without an empty
+/// template parameter declaration, e.g.
+/// friend class A<T>::B<unsigned>;
+/// We permit this as a special case; if there are any template
+/// parameters present at all, require proper matching, i.e.
+/// template <> template \<class T> friend class A<int>::B;
+Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
+ MultiTemplateParamsArg TempParams) {
+ SourceLocation Loc = DS.getLocStart();
+
+ assert(DS.isFriendSpecified());
+ assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
+
+ // Try to convert the decl specifier to a type. This works for
+ // friend templates because ActOnTag never produces a ClassTemplateDecl
+ // for a TUK_Friend.
+ Declarator TheDeclarator(DS, Declarator::MemberContext);
+ TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
+ QualType T = TSI->getType();
+ if (TheDeclarator.isInvalidType())
+ return nullptr;
+
+ if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
+ return nullptr;
+
+ // This is definitely an error in C++98. It's probably meant to
+ // be forbidden in C++0x, too, but the specification is just
+ // poorly written.
+ //
+ // The problem is with declarations like the following:
+ // template <T> friend A<T>::foo;
+ // where deciding whether a class C is a friend or not now hinges
+ // on whether there exists an instantiation of A that causes
+ // 'foo' to equal C. There are restrictions on class-heads
+ // (which we declare (by fiat) elaborated friend declarations to
+ // be) that makes this tractable.
+ //
+ // FIXME: handle "template <> friend class A<T>;", which
+ // is possibly well-formed? Who even knows?
+ if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
+ Diag(Loc, diag::err_tagless_friend_type_template)
+ << DS.getSourceRange();
+ return nullptr;
+ }
+
+ // C++98 [class.friend]p1: A friend of a class is a function
+ // or class that is not a member of the class . . .
+ // This is fixed in DR77, which just barely didn't make the C++03
+ // deadline. It's also a very silly restriction that seriously
+ // affects inner classes and which nobody else seems to implement;
+ // thus we never diagnose it, not even in -pedantic.
+ //
+ // But note that we could warn about it: it's always useless to
+ // friend one of your own members (it's not, however, worthless to
+ // friend a member of an arbitrary specialization of your template).
+
+ Decl *D;
+ if (unsigned NumTempParamLists = TempParams.size())
+ D = FriendTemplateDecl::Create(Context, CurContext, Loc,
+ NumTempParamLists,
+ TempParams.data(),
+ TSI,
+ DS.getFriendSpecLoc());
+ else
+ D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
+
+ if (!D)
+ return nullptr;
+
+ D->setAccess(AS_public);
+ CurContext->addDecl(D);
+
+ return D;
+}
+
+NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
+ MultiTemplateParamsArg TemplateParams) {
+ const DeclSpec &DS = D.getDeclSpec();
+
+ assert(DS.isFriendSpecified());
+ assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
+
+ SourceLocation Loc = D.getIdentifierLoc();
+ TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
+
+ // C++ [class.friend]p1
+ // A friend of a class is a function or class....
+ // Note that this sees through typedefs, which is intended.
+ // It *doesn't* see through dependent types, which is correct
+ // according to [temp.arg.type]p3:
+ // If a declaration acquires a function type through a
+ // type dependent on a template-parameter and this causes
+ // a declaration that does not use the syntactic form of a
+ // function declarator to have a function type, the program
+ // is ill-formed.
+ if (!TInfo->getType()->isFunctionType()) {
+ Diag(Loc, diag::err_unexpected_friend);
+
+ // It might be worthwhile to try to recover by creating an
+ // appropriate declaration.
+ return nullptr;
+ }
+
+ // C++ [namespace.memdef]p3
+ // - If a friend declaration in a non-local class first declares a
+ // class or function, the friend class or function is a member
+ // of the innermost enclosing namespace.
+ // - The name of the friend is not found by simple name lookup
+ // until a matching declaration is provided in that namespace
+ // scope (either before or after the class declaration granting
+ // friendship).
+ // - If a friend function is called, its name may be found by the
+ // name lookup that considers functions from namespaces and
+ // classes associated with the types of the function arguments.
+ // - When looking for a prior declaration of a class or a function
+ // declared as a friend, scopes outside the innermost enclosing
+ // namespace scope are not considered.
+
+ CXXScopeSpec &SS = D.getCXXScopeSpec();
+ DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
+ DeclarationName Name = NameInfo.getName();
+ assert(Name);
+
+ // Check for unexpanded parameter packs.
+ if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
+ DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
+ DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
+ return nullptr;
+
+ // The context we found the declaration in, or in which we should
+ // create the declaration.
+ DeclContext *DC;
+ Scope *DCScope = S;
+ LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
+ ForRedeclaration);
+
+ // There are five cases here.
+ // - There's no scope specifier and we're in a local class. Only look
+ // for functions declared in the immediately-enclosing block scope.
+ // We recover from invalid scope qualifiers as if they just weren't there.
+ FunctionDecl *FunctionContainingLocalClass = nullptr;
+ if ((SS.isInvalid() || !SS.isSet()) &&
+ (FunctionContainingLocalClass =
+ cast<CXXRecordDecl>(CurContext)->isLocalClass())) {
+ // C++11 [class.friend]p11:
+ // If a friend declaration appears in a local class and the name
+ // specified is an unqualified name, a prior declaration is
+ // looked up without considering scopes that are outside the
+ // innermost enclosing non-class scope. For a friend function
+ // declaration, if there is no prior declaration, the program is
+ // ill-formed.
+
+ // Find the innermost enclosing non-class scope. This is the block
+ // scope containing the local class definition (or for a nested class,
+ // the outer local class).
+ DCScope = S->getFnParent();
+
+ // Look up the function name in the scope.
+ Previous.clear(LookupLocalFriendName);
+ LookupName(Previous, S, /*AllowBuiltinCreation*/false);
+
+ if (!Previous.empty()) {
+ // All possible previous declarations must have the same context:
+ // either they were declared at block scope or they are members of
+ // one of the enclosing local classes.
+ DC = Previous.getRepresentativeDecl()->getDeclContext();
+ } else {
+ // This is ill-formed, but provide the context that we would have
+ // declared the function in, if we were permitted to, for error recovery.
+ DC = FunctionContainingLocalClass;
+ }
+ adjustContextForLocalExternDecl(DC);
+
+ // C++ [class.friend]p6:
+ // A function can be defined in a friend declaration of a class if and
+ // only if the class is a non-local class (9.8), the function name is
+ // unqualified, and the function has namespace scope.
+ if (D.isFunctionDefinition()) {
+ Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
+ }
+
+ // - There's no scope specifier, in which case we just go to the
+ // appropriate scope and look for a function or function template
+ // there as appropriate.
+ } else if (SS.isInvalid() || !SS.isSet()) {
+ // C++11 [namespace.memdef]p3:
+ // If the name in a friend declaration is neither qualified nor
+ // a template-id and the declaration is a function or an
+ // elaborated-type-specifier, the lookup to determine whether
+ // the entity has been previously declared shall not consider
+ // any scopes outside the innermost enclosing namespace.
+ bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
+
+ // Find the appropriate context according to the above.
+ DC = CurContext;
+
+ // Skip class contexts. If someone can cite chapter and verse
+ // for this behavior, that would be nice --- it's what GCC and
+ // EDG do, and it seems like a reasonable intent, but the spec
+ // really only says that checks for unqualified existing
+ // declarations should stop at the nearest enclosing namespace,
+ // not that they should only consider the nearest enclosing
+ // namespace.
+ while (DC->isRecord())
+ DC = DC->getParent();
+
+ DeclContext *LookupDC = DC;
+ while (LookupDC->isTransparentContext())
+ LookupDC = LookupDC->getParent();
+
+ while (true) {
+ LookupQualifiedName(Previous, LookupDC);
+
+ if (!Previous.empty()) {
+ DC = LookupDC;
+ break;
+ }
+
+ if (isTemplateId) {
+ if (isa<TranslationUnitDecl>(LookupDC)) break;
+ } else {
+ if (LookupDC->isFileContext()) break;
+ }
+ LookupDC = LookupDC->getParent();
+ }
+
+ DCScope = getScopeForDeclContext(S, DC);
+
+ // - There's a non-dependent scope specifier, in which case we
+ // compute it and do a previous lookup there for a function
+ // or function template.
+ } else if (!SS.getScopeRep()->isDependent()) {
+ DC = computeDeclContext(SS);
+ if (!DC) return nullptr;
+
+ if (RequireCompleteDeclContext(SS, DC)) return nullptr;
+
+ LookupQualifiedName(Previous, DC);
+
+ // Ignore things found implicitly in the wrong scope.
+ // TODO: better diagnostics for this case. Suggesting the right
+ // qualified scope would be nice...
+ LookupResult::Filter F = Previous.makeFilter();
+ while (F.hasNext()) {
+ NamedDecl *D = F.next();
+ if (!DC->InEnclosingNamespaceSetOf(
+ D->getDeclContext()->getRedeclContext()))
+ F.erase();
+ }
+ F.done();
+
+ if (Previous.empty()) {
+ D.setInvalidType();
+ Diag(Loc, diag::err_qualified_friend_not_found)
+ << Name << TInfo->getType();
+ return nullptr;
+ }
+
+ // C++ [class.friend]p1: A friend of a class is a function or
+ // class that is not a member of the class . . .
+ if (DC->Equals(CurContext))
+ Diag(DS.getFriendSpecLoc(),
+ getLangOpts().CPlusPlus11 ?
+ diag::warn_cxx98_compat_friend_is_member :
+ diag::err_friend_is_member);
+
+ if (D.isFunctionDefinition()) {
+ // C++ [class.friend]p6:
+ // A function can be defined in a friend declaration of a class if and
+ // only if the class is a non-local class (9.8), the function name is
+ // unqualified, and the function has namespace scope.
+ SemaDiagnosticBuilder DB
+ = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
+
+ DB << SS.getScopeRep();
+ if (DC->isFileContext())
+ DB << FixItHint::CreateRemoval(SS.getRange());
+ SS.clear();
+ }
+
+ // - There's a scope specifier that does not match any template
+ // parameter lists, in which case we use some arbitrary context,
+ // create a method or method template, and wait for instantiation.
+ // - There's a scope specifier that does match some template
+ // parameter lists, which we don't handle right now.
+ } else {
+ if (D.isFunctionDefinition()) {
+ // C++ [class.friend]p6:
+ // A function can be defined in a friend declaration of a class if and
+ // only if the class is a non-local class (9.8), the function name is
+ // unqualified, and the function has namespace scope.
+ Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
+ << SS.getScopeRep();
+ }
+
+ DC = CurContext;
+ assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
+ }
+
+ if (!DC->isRecord()) {
+ // This implies that it has to be an operator or function.
+ if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
+ D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
+ D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
+ Diag(Loc, diag::err_introducing_special_friend) <<
+ (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
+ D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
+ return nullptr;
+ }
+ }
+
+ // FIXME: This is an egregious hack to cope with cases where the scope stack
+ // does not contain the declaration context, i.e., in an out-of-line
+ // definition of a class.
+ Scope FakeDCScope(S, Scope::DeclScope, Diags);
+ if (!DCScope) {
+ FakeDCScope.setEntity(DC);
+ DCScope = &FakeDCScope;
+ }
+
+ bool AddToScope = true;
+ NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
+ TemplateParams, AddToScope);
+ if (!ND) return nullptr;
+
+ assert(ND->getLexicalDeclContext() == CurContext);
+
+ // If we performed typo correction, we might have added a scope specifier
+ // and changed the decl context.
+ DC = ND->getDeclContext();
+
+ // Add the function declaration to the appropriate lookup tables,
+ // adjusting the redeclarations list as necessary. We don't
+ // want to do this yet if the friending class is dependent.
+ //
+ // Also update the scope-based lookup if the target context's
+ // lookup context is in lexical scope.
+ if (!CurContext->isDependentContext()) {
+ DC = DC->getRedeclContext();
+ DC->makeDeclVisibleInContext(ND);
+ if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
+ PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
+ }
+
+ FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
+ D.getIdentifierLoc(), ND,
+ DS.getFriendSpecLoc());
+ FrD->setAccess(AS_public);
+ CurContext->addDecl(FrD);
+
+ if (ND->isInvalidDecl()) {
+ FrD->setInvalidDecl();
+ } else {
+ if (DC->isRecord()) CheckFriendAccess(ND);
+
+ FunctionDecl *FD;
+ if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
+ FD = FTD->getTemplatedDecl();
+ else
+ FD = cast<FunctionDecl>(ND);
+
+ // C++11 [dcl.fct.default]p4: If a friend declaration specifies a
+ // default argument expression, that declaration shall be a definition
+ // and shall be the only declaration of the function or function
+ // template in the translation unit.
+ if (functionDeclHasDefaultArgument(FD)) {
+ if (FunctionDecl *OldFD = FD->getPreviousDecl()) {
+ Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
+ Diag(OldFD->getLocation(), diag::note_previous_declaration);
+ } else if (!D.isFunctionDefinition())
+ Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def);
+ }
+
+ // Mark templated-scope function declarations as unsupported.
+ if (FD->getNumTemplateParameterLists() && SS.isValid()) {
+ Diag(FD->getLocation(), diag::warn_template_qualified_friend_unsupported)
+ << SS.getScopeRep() << SS.getRange()
+ << cast<CXXRecordDecl>(CurContext);
+ FrD->setUnsupportedFriend(true);
+ }
+ }
+
+ return ND;
+}
+
+void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
+ AdjustDeclIfTemplate(Dcl);
+
+ FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
+ if (!Fn) {
+ Diag(DelLoc, diag::err_deleted_non_function);
+ return;
+ }
+
+ if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
+ // Don't consider the implicit declaration we generate for explicit
+ // specializations. FIXME: Do not generate these implicit declarations.
+ if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization ||
+ Prev->getPreviousDecl()) &&
+ !Prev->isDefined()) {
+ Diag(DelLoc, diag::err_deleted_decl_not_first);
+ Diag(Prev->getLocation().isInvalid() ? DelLoc : Prev->getLocation(),
+ Prev->isImplicit() ? diag::note_previous_implicit_declaration
+ : diag::note_previous_declaration);
+ }
+ // If the declaration wasn't the first, we delete the function anyway for
+ // recovery.
+ Fn = Fn->getCanonicalDecl();
+ }
+
+ // dllimport/dllexport cannot be deleted.
+ if (const InheritableAttr *DLLAttr = getDLLAttr(Fn)) {
+ Diag(Fn->getLocation(), diag::err_attribute_dll_deleted) << DLLAttr;
+ Fn->setInvalidDecl();
+ }
+
+ if (Fn->isDeleted())
+ return;
+
+ // See if we're deleting a function which is already known to override a
+ // non-deleted virtual function.
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn)) {
+ bool IssuedDiagnostic = false;
+ for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
+ E = MD->end_overridden_methods();
+ I != E; ++I) {
+ if (!(*MD->begin_overridden_methods())->isDeleted()) {
+ if (!IssuedDiagnostic) {
+ Diag(DelLoc, diag::err_deleted_override) << MD->getDeclName();
+ IssuedDiagnostic = true;
+ }
+ Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
+ }
+ }
+ }
+
+ // C++11 [basic.start.main]p3:
+ // A program that defines main as deleted [...] is ill-formed.
+ if (Fn->isMain())
+ Diag(DelLoc, diag::err_deleted_main);
+
+ Fn->setDeletedAsWritten();
+}
+
+void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
+ CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Dcl);
+
+ if (MD) {
+ if (MD->getParent()->isDependentType()) {
+ MD->setDefaulted();
+ MD->setExplicitlyDefaulted();
+ return;
+ }
+
+ CXXSpecialMember Member = getSpecialMember(MD);
+ if (Member == CXXInvalid) {
+ if (!MD->isInvalidDecl())
+ Diag(DefaultLoc, diag::err_default_special_members);
+ return;
+ }
+
+ MD->setDefaulted();
+ MD->setExplicitlyDefaulted();
+
+ // If this definition appears within the record, do the checking when
+ // the record is complete.
+ const FunctionDecl *Primary = MD;
+ if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern())
+ // Find the uninstantiated declaration that actually had the '= default'
+ // on it.
+ Pattern->isDefined(Primary);
+
+ // If the method was defaulted on its first declaration, we will have
+ // already performed the checking in CheckCompletedCXXClass. Such a
+ // declaration doesn't trigger an implicit definition.
+ if (Primary == Primary->getCanonicalDecl())
+ return;
+
+ CheckExplicitlyDefaultedSpecialMember(MD);
+
+ if (MD->isInvalidDecl())
+ return;
+
+ switch (Member) {
+ case CXXDefaultConstructor:
+ DefineImplicitDefaultConstructor(DefaultLoc,
+ cast<CXXConstructorDecl>(MD));
+ break;
+ case CXXCopyConstructor:
+ DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
+ break;
+ case CXXCopyAssignment:
+ DefineImplicitCopyAssignment(DefaultLoc, MD);
+ break;
+ case CXXDestructor:
+ DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(MD));
+ break;
+ case CXXMoveConstructor:
+ DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
+ break;
+ case CXXMoveAssignment:
+ DefineImplicitMoveAssignment(DefaultLoc, MD);
+ break;
+ case CXXInvalid:
+ llvm_unreachable("Invalid special member.");
+ }
+ } else {
+ Diag(DefaultLoc, diag::err_default_special_members);
+ }
+}
+
+static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
+ for (Stmt::child_range CI = S->children(); CI; ++CI) {
+ Stmt *SubStmt = *CI;
+ if (!SubStmt)
+ continue;
+ if (isa<ReturnStmt>(SubStmt))
+ Self.Diag(SubStmt->getLocStart(),
+ diag::err_return_in_constructor_handler);
+ if (!isa<Expr>(SubStmt))
+ SearchForReturnInStmt(Self, SubStmt);
+ }
+}
+
+void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
+ for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
+ CXXCatchStmt *Handler = TryBlock->getHandler(I);
+ SearchForReturnInStmt(*this, Handler);
+ }
+}
+
+bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
+ const CXXMethodDecl *Old) {
+ const FunctionType *NewFT = New->getType()->getAs<FunctionType>();
+ const FunctionType *OldFT = Old->getType()->getAs<FunctionType>();
+
+ CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
+
+ // If the calling conventions match, everything is fine
+ if (NewCC == OldCC)
+ return false;
+
+ // If the calling conventions mismatch because the new function is static,
+ // suppress the calling convention mismatch error; the error about static
+ // function override (err_static_overrides_virtual from
+ // Sema::CheckFunctionDeclaration) is more clear.
+ if (New->getStorageClass() == SC_Static)
+ return false;
+
+ Diag(New->getLocation(),
+ diag::err_conflicting_overriding_cc_attributes)
+ << New->getDeclName() << New->getType() << Old->getType();
+ Diag(Old->getLocation(), diag::note_overridden_virtual_function);
+ return true;
+}
+
+bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
+ const CXXMethodDecl *Old) {
+ QualType NewTy = New->getType()->getAs<FunctionType>()->getReturnType();
+ QualType OldTy = Old->getType()->getAs<FunctionType>()->getReturnType();
+
+ if (Context.hasSameType(NewTy, OldTy) ||
+ NewTy->isDependentType() || OldTy->isDependentType())
+ return false;
+
+ // Check if the return types are covariant
+ QualType NewClassTy, OldClassTy;
+
+ /// Both types must be pointers or references to classes.
+ if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
+ if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
+ NewClassTy = NewPT->getPointeeType();
+ OldClassTy = OldPT->getPointeeType();
+ }
+ } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
+ if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
+ if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
+ NewClassTy = NewRT->getPointeeType();
+ OldClassTy = OldRT->getPointeeType();
+ }
+ }
+ }
+
+ // The return types aren't either both pointers or references to a class type.
+ if (NewClassTy.isNull()) {
+ Diag(New->getLocation(),
+ diag::err_different_return_type_for_overriding_virtual_function)
+ << New->getDeclName() << NewTy << OldTy
+ << New->getReturnTypeSourceRange();
+ Diag(Old->getLocation(), diag::note_overridden_virtual_function)
+ << Old->getReturnTypeSourceRange();
+
+ return true;
+ }
+
+ // C++ [class.virtual]p6:
+ // If the return type of D::f differs from the return type of B::f, the
+ // class type in the return type of D::f shall be complete at the point of
+ // declaration of D::f or shall be the class type D.
+ if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
+ if (!RT->isBeingDefined() &&
+ RequireCompleteType(New->getLocation(), NewClassTy,
+ diag::err_covariant_return_incomplete,
+ New->getDeclName()))
+ return true;
+ }
+
+ if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
+ // Check if the new class derives from the old class.
+ if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
+ Diag(New->getLocation(), diag::err_covariant_return_not_derived)
+ << New->getDeclName() << NewTy << OldTy
+ << New->getReturnTypeSourceRange();
+ Diag(Old->getLocation(), diag::note_overridden_virtual_function)
+ << Old->getReturnTypeSourceRange();
+ return true;
+ }
+
+ // Check if we the conversion from derived to base is valid.
+ if (CheckDerivedToBaseConversion(
+ NewClassTy, OldClassTy,
+ diag::err_covariant_return_inaccessible_base,
+ diag::err_covariant_return_ambiguous_derived_to_base_conv,
+ New->getLocation(), New->getReturnTypeSourceRange(),
+ New->getDeclName(), nullptr)) {
+ // FIXME: this note won't trigger for delayed access control
+ // diagnostics, and it's impossible to get an undelayed error
+ // here from access control during the original parse because
+ // the ParsingDeclSpec/ParsingDeclarator are still in scope.
+ Diag(Old->getLocation(), diag::note_overridden_virtual_function)
+ << Old->getReturnTypeSourceRange();
+ return true;
+ }
+ }
+
+ // The qualifiers of the return types must be the same.
+ if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
+ Diag(New->getLocation(),
+ diag::err_covariant_return_type_different_qualifications)
+ << New->getDeclName() << NewTy << OldTy
+ << New->getReturnTypeSourceRange();
+ Diag(Old->getLocation(), diag::note_overridden_virtual_function)
+ << Old->getReturnTypeSourceRange();
+ return true;
+ };
+
+
+ // The new class type must have the same or less qualifiers as the old type.
+ if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
+ Diag(New->getLocation(),
+ diag::err_covariant_return_type_class_type_more_qualified)
+ << New->getDeclName() << NewTy << OldTy
+ << New->getReturnTypeSourceRange();
+ Diag(Old->getLocation(), diag::note_overridden_virtual_function)
+ << Old->getReturnTypeSourceRange();
+ return true;
+ };
+
+ return false;
+}
+
+/// \brief Mark the given method pure.
+///
+/// \param Method the method to be marked pure.
+///
+/// \param InitRange the source range that covers the "0" initializer.
+bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
+ SourceLocation EndLoc = InitRange.getEnd();
+ if (EndLoc.isValid())
+ Method->setRangeEnd(EndLoc);
+
+ if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
+ Method->setPure();
+ return false;
+ }
+
+ if (!Method->isInvalidDecl())
+ Diag(Method->getLocation(), diag::err_non_virtual_pure)
+ << Method->getDeclName() << InitRange;
+ return true;
+}
+
+/// \brief Determine whether the given declaration is a static data member.
+static bool isStaticDataMember(const Decl *D) {
+ if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(D))
+ return Var->isStaticDataMember();
+
+ return false;
+}
+
+/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
+/// an initializer for the out-of-line declaration 'Dcl'. The scope
+/// is a fresh scope pushed for just this purpose.
+///
+/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
+/// static data member of class X, names should be looked up in the scope of
+/// class X.
+void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
+ // If there is no declaration, there was an error parsing it.
+ if (!D || D->isInvalidDecl())
+ return;
+
+ // We will always have a nested name specifier here, but this declaration
+ // might not be out of line if the specifier names the current namespace:
+ // extern int n;
+ // int ::n = 0;
+ if (D->isOutOfLine())
+ EnterDeclaratorContext(S, D->getDeclContext());
+
+ // If we are parsing the initializer for a static data member, push a
+ // new expression evaluation context that is associated with this static
+ // data member.
+ if (isStaticDataMember(D))
+ PushExpressionEvaluationContext(PotentiallyEvaluated, D);
+}
+
+/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
+/// initializer for the out-of-line declaration 'D'.
+void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
+ // If there is no declaration, there was an error parsing it.
+ if (!D || D->isInvalidDecl())
+ return;
+
+ if (isStaticDataMember(D))
+ PopExpressionEvaluationContext();
+
+ if (D->isOutOfLine())
+ ExitDeclaratorContext(S);
+}
+
+/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
+/// C++ if/switch/while/for statement.
+/// e.g: "if (int x = f()) {...}"
+DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
+ // C++ 6.4p2:
+ // The declarator shall not specify a function or an array.
+ // The type-specifier-seq shall not contain typedef and shall not declare a
+ // new class or enumeration.
+ assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
+ "Parser allowed 'typedef' as storage class of condition decl.");
+
+ Decl *Dcl = ActOnDeclarator(S, D);
+ if (!Dcl)
+ return true;
+
+ if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
+ Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
+ << D.getSourceRange();
+ return true;
+ }
+
+ return Dcl;
+}
+
+void Sema::LoadExternalVTableUses() {
+ if (!ExternalSource)
+ return;
+
+ SmallVector<ExternalVTableUse, 4> VTables;
+ ExternalSource->ReadUsedVTables(VTables);
+ SmallVector<VTableUse, 4> NewUses;
+ for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
+ llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
+ = VTablesUsed.find(VTables[I].Record);
+ // Even if a definition wasn't required before, it may be required now.
+ if (Pos != VTablesUsed.end()) {
+ if (!Pos->second && VTables[I].DefinitionRequired)
+ Pos->second = true;
+ continue;
+ }
+
+ VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
+ NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
+ }
+
+ VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
+}
+
+void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
+ bool DefinitionRequired) {
+ // Ignore any vtable uses in unevaluated operands or for classes that do
+ // not have a vtable.
+ if (!Class->isDynamicClass() || Class->isDependentContext() ||
+ CurContext->isDependentContext() || isUnevaluatedContext())
+ return;
+
+ // Try to insert this class into the map.
+ LoadExternalVTableUses();
+ Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
+ std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
+ Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
+ if (!Pos.second) {
+ // If we already had an entry, check to see if we are promoting this vtable
+ // to require a definition. If so, we need to reappend to the VTableUses
+ // list, since we may have already processed the first entry.
+ if (DefinitionRequired && !Pos.first->second) {
+ Pos.first->second = true;
+ } else {
+ // Otherwise, we can early exit.
+ return;
+ }
+ } else {
+ // The Microsoft ABI requires that we perform the destructor body
+ // checks (i.e. operator delete() lookup) when the vtable is marked used, as
+ // the deleting destructor is emitted with the vtable, not with the
+ // destructor definition as in the Itanium ABI.
+ // If it has a definition, we do the check at that point instead.
+ if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
+ Class->hasUserDeclaredDestructor() &&
+ !Class->getDestructor()->isDefined() &&
+ !Class->getDestructor()->isDeleted()) {
+ CXXDestructorDecl *DD = Class->getDestructor();
+ ContextRAII SavedContext(*this, DD);
+ CheckDestructor(DD);
+ }
+ }
+
+ // Local classes need to have their virtual members marked
+ // immediately. For all other classes, we mark their virtual members
+ // at the end of the translation unit.
+ if (Class->isLocalClass())
+ MarkVirtualMembersReferenced(Loc, Class);
+ else
+ VTableUses.push_back(std::make_pair(Class, Loc));
+}
+
+bool Sema::DefineUsedVTables() {
+ LoadExternalVTableUses();
+ if (VTableUses.empty())
+ return false;
+
+ // Note: The VTableUses vector could grow as a result of marking
+ // the members of a class as "used", so we check the size each
+ // time through the loop and prefer indices (which are stable) to
+ // iterators (which are not).
+ bool DefinedAnything = false;
+ for (unsigned I = 0; I != VTableUses.size(); ++I) {
+ CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
+ if (!Class)
+ continue;
+
+ SourceLocation Loc = VTableUses[I].second;
+
+ bool DefineVTable = true;
+
+ // If this class has a key function, but that key function is
+ // defined in another translation unit, we don't need to emit the
+ // vtable even though we're using it.
+ const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
+ if (KeyFunction && !KeyFunction->hasBody()) {
+ // The key function is in another translation unit.
+ DefineVTable = false;
+ TemplateSpecializationKind TSK =
+ KeyFunction->getTemplateSpecializationKind();
+ assert(TSK != TSK_ExplicitInstantiationDefinition &&
+ TSK != TSK_ImplicitInstantiation &&
+ "Instantiations don't have key functions");
+ (void)TSK;
+ } else if (!KeyFunction) {
+ // If we have a class with no key function that is the subject
+ // of an explicit instantiation declaration, suppress the
+ // vtable; it will live with the explicit instantiation
+ // definition.
+ bool IsExplicitInstantiationDeclaration
+ = Class->getTemplateSpecializationKind()
+ == TSK_ExplicitInstantiationDeclaration;
+ for (auto R : Class->redecls()) {
+ TemplateSpecializationKind TSK
+ = cast<CXXRecordDecl>(R)->getTemplateSpecializationKind();
+ if (TSK == TSK_ExplicitInstantiationDeclaration)
+ IsExplicitInstantiationDeclaration = true;
+ else if (TSK == TSK_ExplicitInstantiationDefinition) {
+ IsExplicitInstantiationDeclaration = false;
+ break;
+ }
+ }
+
+ if (IsExplicitInstantiationDeclaration)
+ DefineVTable = false;
+ }
+
+ // The exception specifications for all virtual members may be needed even
+ // if we are not providing an authoritative form of the vtable in this TU.
+ // We may choose to emit it available_externally anyway.
+ if (!DefineVTable) {
+ MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
+ continue;
+ }
+
+ // Mark all of the virtual members of this class as referenced, so
+ // that we can build a vtable. Then, tell the AST consumer that a
+ // vtable for this class is required.
+ DefinedAnything = true;
+ MarkVirtualMembersReferenced(Loc, Class);
+ CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
+ if (VTablesUsed[Canonical])
+ Consumer.HandleVTable(Class);
+
+ // Optionally warn if we're emitting a weak vtable.
+ if (Class->isExternallyVisible() &&
+ Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
+ const FunctionDecl *KeyFunctionDef = nullptr;
+ if (!KeyFunction ||
+ (KeyFunction->hasBody(KeyFunctionDef) &&
+ KeyFunctionDef->isInlined()))
+ Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
+ TSK_ExplicitInstantiationDefinition
+ ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
+ << Class;
+ }
+ }
+ VTableUses.clear();
+
+ return DefinedAnything;
+}
+
+void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
+ const CXXRecordDecl *RD) {
+ for (const auto *I : RD->methods())
+ if (I->isVirtual() && !I->isPure())
+ ResolveExceptionSpec(Loc, I->getType()->castAs<FunctionProtoType>());
+}
+
+void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
+ const CXXRecordDecl *RD) {
+ // Mark all functions which will appear in RD's vtable as used.
+ CXXFinalOverriderMap FinalOverriders;
+ RD->getFinalOverriders(FinalOverriders);
+ for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
+ E = FinalOverriders.end();
+ I != E; ++I) {
+ for (OverridingMethods::const_iterator OI = I->second.begin(),
+ OE = I->second.end();
+ OI != OE; ++OI) {
+ assert(OI->second.size() > 0 && "no final overrider");
+ CXXMethodDecl *Overrider = OI->second.front().Method;
+
+ // C++ [basic.def.odr]p2:
+ // [...] A virtual member function is used if it is not pure. [...]
+ if (!Overrider->isPure())
+ MarkFunctionReferenced(Loc, Overrider);
+ }
+ }
+
+ // Only classes that have virtual bases need a VTT.
+ if (RD->getNumVBases() == 0)
+ return;
+
+ for (const auto &I : RD->bases()) {
+ const CXXRecordDecl *Base =
+ cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
+ if (Base->getNumVBases() == 0)
+ continue;
+ MarkVirtualMembersReferenced(Loc, Base);
+ }
+}
+
+/// SetIvarInitializers - This routine builds initialization ASTs for the
+/// Objective-C implementation whose ivars need be initialized.
+void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
+ if (!getLangOpts().CPlusPlus)
+ return;
+ if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
+ SmallVector<ObjCIvarDecl*, 8> ivars;
+ CollectIvarsToConstructOrDestruct(OID, ivars);
+ if (ivars.empty())
+ return;
+ SmallVector<CXXCtorInitializer*, 32> AllToInit;
+ for (unsigned i = 0; i < ivars.size(); i++) {
+ FieldDecl *Field = ivars[i];
+ if (Field->isInvalidDecl())
+ continue;
+
+ CXXCtorInitializer *Member;
+ InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
+ InitializationKind InitKind =
+ InitializationKind::CreateDefault(ObjCImplementation->getLocation());
+
+ InitializationSequence InitSeq(*this, InitEntity, InitKind, None);
+ ExprResult MemberInit =
+ InitSeq.Perform(*this, InitEntity, InitKind, None);
+ MemberInit = MaybeCreateExprWithCleanups(MemberInit);
+ // Note, MemberInit could actually come back empty if no initialization
+ // is required (e.g., because it would call a trivial default constructor)
+ if (!MemberInit.get() || MemberInit.isInvalid())
+ continue;
+
+ Member =
+ new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
+ SourceLocation(),
+ MemberInit.getAs<Expr>(),
+ SourceLocation());
+ AllToInit.push_back(Member);
+
+ // Be sure that the destructor is accessible and is marked as referenced.
+ if (const RecordType *RecordTy =
+ Context.getBaseElementType(Field->getType())
+ ->getAs<RecordType>()) {
+ CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
+ if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
+ MarkFunctionReferenced(Field->getLocation(), Destructor);
+ CheckDestructorAccess(Field->getLocation(), Destructor,
+ PDiag(diag::err_access_dtor_ivar)
+ << Context.getBaseElementType(Field->getType()));
+ }
+ }
+ }
+ ObjCImplementation->setIvarInitializers(Context,
+ AllToInit.data(), AllToInit.size());
+ }
+}
+
+static
+void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
+ llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
+ llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
+ llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
+ Sema &S) {
+ if (Ctor->isInvalidDecl())
+ return;
+
+ CXXConstructorDecl *Target = Ctor->getTargetConstructor();
+
+ // Target may not be determinable yet, for instance if this is a dependent
+ // call in an uninstantiated template.
+ if (Target) {
+ const FunctionDecl *FNTarget = nullptr;
+ (void)Target->hasBody(FNTarget);
+ Target = const_cast<CXXConstructorDecl*>(
+ cast_or_null<CXXConstructorDecl>(FNTarget));
+ }
+
+ CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
+ // Avoid dereferencing a null pointer here.
+ *TCanonical = Target? Target->getCanonicalDecl() : nullptr;
+
+ if (!Current.insert(Canonical).second)
+ return;
+
+ // We know that beyond here, we aren't chaining into a cycle.
+ if (!Target || !Target->isDelegatingConstructor() ||
+ Target->isInvalidDecl() || Valid.count(TCanonical)) {
+ Valid.insert(Current.begin(), Current.end());
+ Current.clear();
+ // We've hit a cycle.
+ } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
+ Current.count(TCanonical)) {
+ // If we haven't diagnosed this cycle yet, do so now.
+ if (!Invalid.count(TCanonical)) {
+ S.Diag((*Ctor->init_begin())->getSourceLocation(),
+ diag::warn_delegating_ctor_cycle)
+ << Ctor;
+
+ // Don't add a note for a function delegating directly to itself.
+ if (TCanonical != Canonical)
+ S.Diag(Target->getLocation(), diag::note_it_delegates_to);
+
+ CXXConstructorDecl *C = Target;
+ while (C->getCanonicalDecl() != Canonical) {
+ const FunctionDecl *FNTarget = nullptr;
+ (void)C->getTargetConstructor()->hasBody(FNTarget);
+ assert(FNTarget && "Ctor cycle through bodiless function");
+
+ C = const_cast<CXXConstructorDecl*>(
+ cast<CXXConstructorDecl>(FNTarget));
+ S.Diag(C->getLocation(), diag::note_which_delegates_to);
+ }
+ }
+
+ Invalid.insert(Current.begin(), Current.end());
+ Current.clear();
+ } else {
+ DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
+ }
+}
+
+
+void Sema::CheckDelegatingCtorCycles() {
+ llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
+
+ for (DelegatingCtorDeclsType::iterator
+ I = DelegatingCtorDecls.begin(ExternalSource),
+ E = DelegatingCtorDecls.end();
+ I != E; ++I)
+ DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
+
+ for (llvm::SmallSet<CXXConstructorDecl *, 4>::iterator CI = Invalid.begin(),
+ CE = Invalid.end();
+ CI != CE; ++CI)
+ (*CI)->setInvalidDecl();
+}
+
+namespace {
+ /// \brief AST visitor that finds references to the 'this' expression.
+ class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
+ Sema &S;
+
+ public:
+ explicit FindCXXThisExpr(Sema &S) : S(S) { }
+
+ bool VisitCXXThisExpr(CXXThisExpr *E) {
+ S.Diag(E->getLocation(), diag::err_this_static_member_func)
+ << E->isImplicit();
+ return false;
+ }
+ };
+}
+
+bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
+ TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
+ if (!TSInfo)
+ return false;
+
+ TypeLoc TL = TSInfo->getTypeLoc();
+ FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
+ if (!ProtoTL)
+ return false;
+
+ // C++11 [expr.prim.general]p3:
+ // [The expression this] shall not appear before the optional
+ // cv-qualifier-seq and it shall not appear within the declaration of a
+ // static member function (although its type and value category are defined
+ // within a static member function as they are within a non-static member
+ // function). [ Note: this is because declaration matching does not occur
+ // until the complete declarator is known. - end note ]
+ const FunctionProtoType *Proto = ProtoTL.getTypePtr();
+ FindCXXThisExpr Finder(*this);
+
+ // If the return type came after the cv-qualifier-seq, check it now.
+ if (Proto->hasTrailingReturn() &&
+ !Finder.TraverseTypeLoc(ProtoTL.getReturnLoc()))
+ return true;
+
+ // Check the exception specification.
+ if (checkThisInStaticMemberFunctionExceptionSpec(Method))
+ return true;
+
+ return checkThisInStaticMemberFunctionAttributes(Method);
+}
+
+bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
+ TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
+ if (!TSInfo)
+ return false;
+
+ TypeLoc TL = TSInfo->getTypeLoc();
+ FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
+ if (!ProtoTL)
+ return false;
+
+ const FunctionProtoType *Proto = ProtoTL.getTypePtr();
+ FindCXXThisExpr Finder(*this);
+
+ switch (Proto->getExceptionSpecType()) {
+ case EST_Unparsed:
+ case EST_Uninstantiated:
+ case EST_Unevaluated:
+ case EST_BasicNoexcept:
+ case EST_DynamicNone:
+ case EST_MSAny:
+ case EST_None:
+ break;
+
+ case EST_ComputedNoexcept:
+ if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
+ return true;
+
+ case EST_Dynamic:
+ for (const auto &E : Proto->exceptions()) {
+ if (!Finder.TraverseType(E))
+ return true;
+ }
+ break;
+ }
+
+ return false;
+}
+
+bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
+ FindCXXThisExpr Finder(*this);
+
+ // Check attributes.
+ for (const auto *A : Method->attrs()) {
+ // FIXME: This should be emitted by tblgen.
+ Expr *Arg = nullptr;
+ ArrayRef<Expr *> Args;
+ if (const auto *G = dyn_cast<GuardedByAttr>(A))
+ Arg = G->getArg();
+ else if (const auto *G = dyn_cast<PtGuardedByAttr>(A))
+ Arg = G->getArg();
+ else if (const auto *AA = dyn_cast<AcquiredAfterAttr>(A))
+ Args = llvm::makeArrayRef(AA->args_begin(), AA->args_size());
+ else if (const auto *AB = dyn_cast<AcquiredBeforeAttr>(A))
+ Args = llvm::makeArrayRef(AB->args_begin(), AB->args_size());
+ else if (const auto *ETLF = dyn_cast<ExclusiveTrylockFunctionAttr>(A)) {
+ Arg = ETLF->getSuccessValue();
+ Args = llvm::makeArrayRef(ETLF->args_begin(), ETLF->args_size());
+ } else if (const auto *STLF = dyn_cast<SharedTrylockFunctionAttr>(A)) {
+ Arg = STLF->getSuccessValue();
+ Args = llvm::makeArrayRef(STLF->args_begin(), STLF->args_size());
+ } else if (const auto *LR = dyn_cast<LockReturnedAttr>(A))
+ Arg = LR->getArg();
+ else if (const auto *LE = dyn_cast<LocksExcludedAttr>(A))
+ Args = llvm::makeArrayRef(LE->args_begin(), LE->args_size());
+ else if (const auto *RC = dyn_cast<RequiresCapabilityAttr>(A))
+ Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size());
+ else if (const auto *AC = dyn_cast<AcquireCapabilityAttr>(A))
+ Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size());
+ else if (const auto *AC = dyn_cast<TryAcquireCapabilityAttr>(A))
+ Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size());
+ else if (const auto *RC = dyn_cast<ReleaseCapabilityAttr>(A))
+ Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size());
+
+ if (Arg && !Finder.TraverseStmt(Arg))
+ return true;
+
+ for (unsigned I = 0, N = Args.size(); I != N; ++I) {
+ if (!Finder.TraverseStmt(Args[I]))
+ return true;
+ }
+ }
+
+ return false;
+}
+
+void Sema::checkExceptionSpecification(
+ bool IsTopLevel, ExceptionSpecificationType EST,
+ ArrayRef<ParsedType> DynamicExceptions,
+ ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr,
+ SmallVectorImpl<QualType> &Exceptions,
+ FunctionProtoType::ExceptionSpecInfo &ESI) {
+ Exceptions.clear();
+ ESI.Type = EST;
+ if (EST == EST_Dynamic) {
+ Exceptions.reserve(DynamicExceptions.size());
+ for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
+ // FIXME: Preserve type source info.
+ QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
+
+ if (IsTopLevel) {
+ SmallVector<UnexpandedParameterPack, 2> Unexpanded;
+ collectUnexpandedParameterPacks(ET, Unexpanded);
+ if (!Unexpanded.empty()) {
+ DiagnoseUnexpandedParameterPacks(
+ DynamicExceptionRanges[ei].getBegin(), UPPC_ExceptionType,
+ Unexpanded);
+ continue;
+ }
+ }
+
+ // Check that the type is valid for an exception spec, and
+ // drop it if not.
+ if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
+ Exceptions.push_back(ET);
+ }
+ ESI.Exceptions = Exceptions;
+ return;
+ }
+
+ if (EST == EST_ComputedNoexcept) {
+ // If an error occurred, there's no expression here.
+ if (NoexceptExpr) {
+ assert((NoexceptExpr->isTypeDependent() ||
+ NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
+ Context.BoolTy) &&
+ "Parser should have made sure that the expression is boolean");
+ if (IsTopLevel && NoexceptExpr &&
+ DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
+ ESI.Type = EST_BasicNoexcept;
+ return;
+ }
+
+ if (!NoexceptExpr->isValueDependent())
+ NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, nullptr,
+ diag::err_noexcept_needs_constant_expression,
+ /*AllowFold*/ false).get();
+ ESI.NoexceptExpr = NoexceptExpr;
+ }
+ return;
+ }
+}
+
+void Sema::actOnDelayedExceptionSpecification(Decl *MethodD,
+ ExceptionSpecificationType EST,
+ SourceRange SpecificationRange,
+ ArrayRef<ParsedType> DynamicExceptions,
+ ArrayRef<SourceRange> DynamicExceptionRanges,
+ Expr *NoexceptExpr) {
+ if (!MethodD)
+ return;
+
+ // Dig out the method we're referring to.
+ if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(MethodD))
+ MethodD = FunTmpl->getTemplatedDecl();
+
+ CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(MethodD);
+ if (!Method)
+ return;
+
+ // Check the exception specification.
+ llvm::SmallVector<QualType, 4> Exceptions;
+ FunctionProtoType::ExceptionSpecInfo ESI;
+ checkExceptionSpecification(/*IsTopLevel*/true, EST, DynamicExceptions,
+ DynamicExceptionRanges, NoexceptExpr, Exceptions,
+ ESI);
+
+ // Update the exception specification on the function type.
+ Context.adjustExceptionSpec(Method, ESI, /*AsWritten*/true);
+
+ if (Method->isStatic())
+ checkThisInStaticMemberFunctionExceptionSpec(Method);
+
+ if (Method->isVirtual()) {
+ // Check overrides, which we previously had to delay.
+ for (CXXMethodDecl::method_iterator O = Method->begin_overridden_methods(),
+ OEnd = Method->end_overridden_methods();
+ O != OEnd; ++O)
+ CheckOverridingFunctionExceptionSpec(Method, *O);
+ }
+}
+
+/// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class.
+///
+MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record,
+ SourceLocation DeclStart,
+ Declarator &D, Expr *BitWidth,
+ InClassInitStyle InitStyle,
+ AccessSpecifier AS,
+ AttributeList *MSPropertyAttr) {
+ IdentifierInfo *II = D.getIdentifier();
+ if (!II) {
+ Diag(DeclStart, diag::err_anonymous_property);
+ return nullptr;
+ }
+ SourceLocation Loc = D.getIdentifierLoc();
+
+ TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
+ QualType T = TInfo->getType();
+ if (getLangOpts().CPlusPlus) {
+ CheckExtraCXXDefaultArguments(D);
+
+ if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
+ UPPC_DataMemberType)) {
+ D.setInvalidType();
+ T = Context.IntTy;
+ TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
+ }
+ }
+
+ DiagnoseFunctionSpecifiers(D.getDeclSpec());
+
+ if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
+ Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
+ diag::err_invalid_thread)
+ << DeclSpec::getSpecifierName(TSCS);
+
+ // Check to see if this name was declared as a member previously
+ NamedDecl *PrevDecl = nullptr;
+ LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
+ LookupName(Previous, S);
+ switch (Previous.getResultKind()) {
+ case LookupResult::Found:
+ case LookupResult::FoundUnresolvedValue:
+ PrevDecl = Previous.getAsSingle<NamedDecl>();
+ break;
+
+ case LookupResult::FoundOverloaded:
+ PrevDecl = Previous.getRepresentativeDecl();
+ break;
+
+ case LookupResult::NotFound:
+ case LookupResult::NotFoundInCurrentInstantiation:
+ case LookupResult::Ambiguous:
+ break;
+ }
+
+ if (PrevDecl && PrevDecl->isTemplateParameter()) {
+ // Maybe we will complain about the shadowed template parameter.
+ DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
+ // Just pretend that we didn't see the previous declaration.
+ PrevDecl = nullptr;
+ }
+
+ if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
+ PrevDecl = nullptr;
+
+ SourceLocation TSSL = D.getLocStart();
+ const AttributeList::PropertyData &Data = MSPropertyAttr->getPropertyData();
+ MSPropertyDecl *NewPD = MSPropertyDecl::Create(
+ Context, Record, Loc, II, T, TInfo, TSSL, Data.GetterId, Data.SetterId);
+ ProcessDeclAttributes(TUScope, NewPD, D);
+ NewPD->setAccess(AS);
+
+ if (NewPD->isInvalidDecl())
+ Record->setInvalidDecl();
+
+ if (D.getDeclSpec().isModulePrivateSpecified())
+ NewPD->setModulePrivate();
+
+ if (NewPD->isInvalidDecl() && PrevDecl) {
+ // Don't introduce NewFD into scope; there's already something
+ // with the same name in the same scope.
+ } else if (II) {
+ PushOnScopeChains(NewPD, S);
+ } else
+ Record->addDecl(NewPD);
+
+ return NewPD;
+}
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaDeclObjC.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaDeclObjC.cpp
new file mode 100644
index 0000000..3831879
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaDeclObjC.cpp
@@ -0,0 +1,3630 @@
+//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements semantic analysis for Objective C declarations.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Sema/SemaInternal.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTMutationListener.h"
+#include "clang/AST/DataRecursiveASTVisitor.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Sema/DeclSpec.h"
+#include "clang/Sema/ExternalSemaSource.h"
+#include "clang/Sema/Lookup.h"
+#include "clang/Sema/Scope.h"
+#include "clang/Sema/ScopeInfo.h"
+#include "llvm/ADT/DenseSet.h"
+
+using namespace clang;
+
+/// Check whether the given method, which must be in the 'init'
+/// family, is a valid member of that family.
+///
+/// \param receiverTypeIfCall - if null, check this as if declaring it;
+/// if non-null, check this as if making a call to it with the given
+/// receiver type
+///
+/// \return true to indicate that there was an error and appropriate
+/// actions were taken
+bool Sema::checkInitMethod(ObjCMethodDecl *method,
+ QualType receiverTypeIfCall) {
+ if (method->isInvalidDecl()) return true;
+
+ // This castAs is safe: methods that don't return an object
+ // pointer won't be inferred as inits and will reject an explicit
+ // objc_method_family(init).
+
+ // We ignore protocols here. Should we? What about Class?
+
+ const ObjCObjectType *result =
+ method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType();
+
+ if (result->isObjCId()) {
+ return false;
+ } else if (result->isObjCClass()) {
+ // fall through: always an error
+ } else {
+ ObjCInterfaceDecl *resultClass = result->getInterface();
+ assert(resultClass && "unexpected object type!");
+
+ // It's okay for the result type to still be a forward declaration
+ // if we're checking an interface declaration.
+ if (!resultClass->hasDefinition()) {
+ if (receiverTypeIfCall.isNull() &&
+ !isa<ObjCImplementationDecl>(method->getDeclContext()))
+ return false;
+
+ // Otherwise, we try to compare class types.
+ } else {
+ // If this method was declared in a protocol, we can't check
+ // anything unless we have a receiver type that's an interface.
+ const ObjCInterfaceDecl *receiverClass = nullptr;
+ if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
+ if (receiverTypeIfCall.isNull())
+ return false;
+
+ receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
+ ->getInterfaceDecl();
+
+ // This can be null for calls to e.g. id<Foo>.
+ if (!receiverClass) return false;
+ } else {
+ receiverClass = method->getClassInterface();
+ assert(receiverClass && "method not associated with a class!");
+ }
+
+ // If either class is a subclass of the other, it's fine.
+ if (receiverClass->isSuperClassOf(resultClass) ||
+ resultClass->isSuperClassOf(receiverClass))
+ return false;
+ }
+ }
+
+ SourceLocation loc = method->getLocation();
+
+ // If we're in a system header, and this is not a call, just make
+ // the method unusable.
+ if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
+ method->addAttr(UnavailableAttr::CreateImplicit(Context,
+ "init method returns a type unrelated to its receiver type",
+ loc));
+ return true;
+ }
+
+ // Otherwise, it's an error.
+ Diag(loc, diag::err_arc_init_method_unrelated_result_type);
+ method->setInvalidDecl();
+ return true;
+}
+
+void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
+ const ObjCMethodDecl *Overridden) {
+ if (Overridden->hasRelatedResultType() &&
+ !NewMethod->hasRelatedResultType()) {
+ // This can only happen when the method follows a naming convention that
+ // implies a related result type, and the original (overridden) method has
+ // a suitable return type, but the new (overriding) method does not have
+ // a suitable return type.
+ QualType ResultType = NewMethod->getReturnType();
+ SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange();
+
+ // Figure out which class this method is part of, if any.
+ ObjCInterfaceDecl *CurrentClass
+ = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
+ if (!CurrentClass) {
+ DeclContext *DC = NewMethod->getDeclContext();
+ if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
+ CurrentClass = Cat->getClassInterface();
+ else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
+ CurrentClass = Impl->getClassInterface();
+ else if (ObjCCategoryImplDecl *CatImpl
+ = dyn_cast<ObjCCategoryImplDecl>(DC))
+ CurrentClass = CatImpl->getClassInterface();
+ }
+
+ if (CurrentClass) {
+ Diag(NewMethod->getLocation(),
+ diag::warn_related_result_type_compatibility_class)
+ << Context.getObjCInterfaceType(CurrentClass)
+ << ResultType
+ << ResultTypeRange;
+ } else {
+ Diag(NewMethod->getLocation(),
+ diag::warn_related_result_type_compatibility_protocol)
+ << ResultType
+ << ResultTypeRange;
+ }
+
+ if (ObjCMethodFamily Family = Overridden->getMethodFamily())
+ Diag(Overridden->getLocation(),
+ diag::note_related_result_type_family)
+ << /*overridden method*/ 0
+ << Family;
+ else
+ Diag(Overridden->getLocation(),
+ diag::note_related_result_type_overridden);
+ }
+ if (getLangOpts().ObjCAutoRefCount) {
+ if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
+ Overridden->hasAttr<NSReturnsRetainedAttr>())) {
+ Diag(NewMethod->getLocation(),
+ diag::err_nsreturns_retained_attribute_mismatch) << 1;
+ Diag(Overridden->getLocation(), diag::note_previous_decl)
+ << "method";
+ }
+ if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
+ Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
+ Diag(NewMethod->getLocation(),
+ diag::err_nsreturns_retained_attribute_mismatch) << 0;
+ Diag(Overridden->getLocation(), diag::note_previous_decl)
+ << "method";
+ }
+ ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
+ oe = Overridden->param_end();
+ for (ObjCMethodDecl::param_iterator
+ ni = NewMethod->param_begin(), ne = NewMethod->param_end();
+ ni != ne && oi != oe; ++ni, ++oi) {
+ const ParmVarDecl *oldDecl = (*oi);
+ ParmVarDecl *newDecl = (*ni);
+ if (newDecl->hasAttr<NSConsumedAttr>() !=
+ oldDecl->hasAttr<NSConsumedAttr>()) {
+ Diag(newDecl->getLocation(),
+ diag::err_nsconsumed_attribute_mismatch);
+ Diag(oldDecl->getLocation(), diag::note_previous_decl)
+ << "parameter";
+ }
+ }
+ }
+}
+
+/// \brief Check a method declaration for compatibility with the Objective-C
+/// ARC conventions.
+bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) {
+ ObjCMethodFamily family = method->getMethodFamily();
+ switch (family) {
+ case OMF_None:
+ case OMF_finalize:
+ case OMF_retain:
+ case OMF_release:
+ case OMF_autorelease:
+ case OMF_retainCount:
+ case OMF_self:
+ case OMF_initialize:
+ case OMF_performSelector:
+ return false;
+
+ case OMF_dealloc:
+ if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
+ SourceRange ResultTypeRange = method->getReturnTypeSourceRange();
+ if (ResultTypeRange.isInvalid())
+ Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
+ << method->getReturnType()
+ << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
+ else
+ Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
+ << method->getReturnType()
+ << FixItHint::CreateReplacement(ResultTypeRange, "void");
+ return true;
+ }
+ return false;
+
+ case OMF_init:
+ // If the method doesn't obey the init rules, don't bother annotating it.
+ if (checkInitMethod(method, QualType()))
+ return true;
+
+ method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
+
+ // Don't add a second copy of this attribute, but otherwise don't
+ // let it be suppressed.
+ if (method->hasAttr<NSReturnsRetainedAttr>())
+ return false;
+ break;
+
+ case OMF_alloc:
+ case OMF_copy:
+ case OMF_mutableCopy:
+ case OMF_new:
+ if (method->hasAttr<NSReturnsRetainedAttr>() ||
+ method->hasAttr<NSReturnsNotRetainedAttr>() ||
+ method->hasAttr<NSReturnsAutoreleasedAttr>())
+ return false;
+ break;
+ }
+
+ method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
+ return false;
+}
+
+static void DiagnoseObjCImplementedDeprecations(Sema &S,
+ NamedDecl *ND,
+ SourceLocation ImplLoc,
+ int select) {
+ if (ND && ND->isDeprecated()) {
+ S.Diag(ImplLoc, diag::warn_deprecated_def) << select;
+ if (select == 0)
+ S.Diag(ND->getLocation(), diag::note_method_declared_at)
+ << ND->getDeclName();
+ else
+ S.Diag(ND->getLocation(), diag::note_previous_decl) << "class";
+ }
+}
+
+/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
+/// pool.
+void Sema::AddAnyMethodToGlobalPool(Decl *D) {
+ ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
+
+ // If we don't have a valid method decl, simply return.
+ if (!MDecl)
+ return;
+ if (MDecl->isInstanceMethod())
+ AddInstanceMethodToGlobalPool(MDecl, true);
+ else
+ AddFactoryMethodToGlobalPool(MDecl, true);
+}
+
+/// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
+/// has explicit ownership attribute; false otherwise.
+static bool
+HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
+ QualType T = Param->getType();
+
+ if (const PointerType *PT = T->getAs<PointerType>()) {
+ T = PT->getPointeeType();
+ } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
+ T = RT->getPointeeType();
+ } else {
+ return true;
+ }
+
+ // If we have a lifetime qualifier, but it's local, we must have
+ // inferred it. So, it is implicit.
+ return !T.getLocalQualifiers().hasObjCLifetime();
+}
+
+/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
+/// and user declared, in the method definition's AST.
+void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
+ assert((getCurMethodDecl() == nullptr) && "Methodparsing confused");
+ ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
+
+ // If we don't have a valid method decl, simply return.
+ if (!MDecl)
+ return;
+
+ // Allow all of Sema to see that we are entering a method definition.
+ PushDeclContext(FnBodyScope, MDecl);
+ PushFunctionScope();
+
+ // Create Decl objects for each parameter, entrring them in the scope for
+ // binding to their use.
+
+ // Insert the invisible arguments, self and _cmd!
+ MDecl->createImplicitParams(Context, MDecl->getClassInterface());
+
+ PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
+ PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
+
+ // The ObjC parser requires parameter names so there's no need to check.
+ CheckParmsForFunctionDef(MDecl->param_begin(), MDecl->param_end(),
+ /*CheckParameterNames=*/false);
+
+ // Introduce all of the other parameters into this scope.
+ for (auto *Param : MDecl->params()) {
+ if (!Param->isInvalidDecl() &&
+ getLangOpts().ObjCAutoRefCount &&
+ !HasExplicitOwnershipAttr(*this, Param))
+ Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
+ Param->getType();
+
+ if (Param->getIdentifier())
+ PushOnScopeChains(Param, FnBodyScope);
+ }
+
+ // In ARC, disallow definition of retain/release/autorelease/retainCount
+ if (getLangOpts().ObjCAutoRefCount) {
+ switch (MDecl->getMethodFamily()) {
+ case OMF_retain:
+ case OMF_retainCount:
+ case OMF_release:
+ case OMF_autorelease:
+ Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
+ << 0 << MDecl->getSelector();
+ break;
+
+ case OMF_None:
+ case OMF_dealloc:
+ case OMF_finalize:
+ case OMF_alloc:
+ case OMF_init:
+ case OMF_mutableCopy:
+ case OMF_copy:
+ case OMF_new:
+ case OMF_self:
+ case OMF_initialize:
+ case OMF_performSelector:
+ break;
+ }
+ }
+
+ // Warn on deprecated methods under -Wdeprecated-implementations,
+ // and prepare for warning on missing super calls.
+ if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
+ ObjCMethodDecl *IMD =
+ IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
+
+ if (IMD) {
+ ObjCImplDecl *ImplDeclOfMethodDef =
+ dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
+ ObjCContainerDecl *ContDeclOfMethodDecl =
+ dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
+ ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
+ if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
+ ImplDeclOfMethodDecl = OID->getImplementation();
+ else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) {
+ if (CD->IsClassExtension()) {
+ if (ObjCInterfaceDecl *OID = CD->getClassInterface())
+ ImplDeclOfMethodDecl = OID->getImplementation();
+ } else
+ ImplDeclOfMethodDecl = CD->getImplementation();
+ }
+ // No need to issue deprecated warning if deprecated mehod in class/category
+ // is being implemented in its own implementation (no overriding is involved).
+ if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
+ DiagnoseObjCImplementedDeprecations(*this,
+ dyn_cast<NamedDecl>(IMD),
+ MDecl->getLocation(), 0);
+ }
+
+ if (MDecl->getMethodFamily() == OMF_init) {
+ if (MDecl->isDesignatedInitializerForTheInterface()) {
+ getCurFunction()->ObjCIsDesignatedInit = true;
+ getCurFunction()->ObjCWarnForNoDesignatedInitChain =
+ IC->getSuperClass() != nullptr;
+ } else if (IC->hasDesignatedInitializers()) {
+ getCurFunction()->ObjCIsSecondaryInit = true;
+ getCurFunction()->ObjCWarnForNoInitDelegation = true;
+ }
+ }
+
+ // If this is "dealloc" or "finalize", set some bit here.
+ // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
+ // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
+ // Only do this if the current class actually has a superclass.
+ if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
+ ObjCMethodFamily Family = MDecl->getMethodFamily();
+ if (Family == OMF_dealloc) {
+ if (!(getLangOpts().ObjCAutoRefCount ||
+ getLangOpts().getGC() == LangOptions::GCOnly))
+ getCurFunction()->ObjCShouldCallSuper = true;
+
+ } else if (Family == OMF_finalize) {
+ if (Context.getLangOpts().getGC() != LangOptions::NonGC)
+ getCurFunction()->ObjCShouldCallSuper = true;
+
+ } else {
+ const ObjCMethodDecl *SuperMethod =
+ SuperClass->lookupMethod(MDecl->getSelector(),
+ MDecl->isInstanceMethod());
+ getCurFunction()->ObjCShouldCallSuper =
+ (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
+ }
+ }
+ }
+}
+
+namespace {
+
+// Callback to only accept typo corrections that are Objective-C classes.
+// If an ObjCInterfaceDecl* is given to the constructor, then the validation
+// function will reject corrections to that class.
+class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback {
+ public:
+ ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
+ explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
+ : CurrentIDecl(IDecl) {}
+
+ bool ValidateCandidate(const TypoCorrection &candidate) override {
+ ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
+ return ID && !declaresSameEntity(ID, CurrentIDecl);
+ }
+
+ private:
+ ObjCInterfaceDecl *CurrentIDecl;
+};
+
+}
+
+static void diagnoseUseOfProtocols(Sema &TheSema,
+ ObjCContainerDecl *CD,
+ ObjCProtocolDecl *const *ProtoRefs,
+ unsigned NumProtoRefs,
+ const SourceLocation *ProtoLocs) {
+ assert(ProtoRefs);
+ // Diagnose availability in the context of the ObjC container.
+ Sema::ContextRAII SavedContext(TheSema, CD);
+ for (unsigned i = 0; i < NumProtoRefs; ++i) {
+ (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i]);
+ }
+}
+
+Decl *Sema::
+ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
+ IdentifierInfo *ClassName, SourceLocation ClassLoc,
+ IdentifierInfo *SuperName, SourceLocation SuperLoc,
+ Decl * const *ProtoRefs, unsigned NumProtoRefs,
+ const SourceLocation *ProtoLocs,
+ SourceLocation EndProtoLoc, AttributeList *AttrList) {
+ assert(ClassName && "Missing class identifier");
+
+ // Check for another declaration kind with the same name.
+ NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
+ LookupOrdinaryName, ForRedeclaration);
+
+ if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
+ Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
+ Diag(PrevDecl->getLocation(), diag::note_previous_definition);
+ }
+
+ // Create a declaration to describe this @interface.
+ ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
+
+ if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
+ // A previous decl with a different name is because of
+ // @compatibility_alias, for example:
+ // \code
+ // @class NewImage;
+ // @compatibility_alias OldImage NewImage;
+ // \endcode
+ // A lookup for 'OldImage' will return the 'NewImage' decl.
+ //
+ // In such a case use the real declaration name, instead of the alias one,
+ // otherwise we will break IdentifierResolver and redecls-chain invariants.
+ // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
+ // has been aliased.
+ ClassName = PrevIDecl->getIdentifier();
+ }
+
+ ObjCInterfaceDecl *IDecl
+ = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
+ PrevIDecl, ClassLoc);
+
+ if (PrevIDecl) {
+ // Class already seen. Was it a definition?
+ if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
+ Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
+ << PrevIDecl->getDeclName();
+ Diag(Def->getLocation(), diag::note_previous_definition);
+ IDecl->setInvalidDecl();
+ }
+ }
+
+ if (AttrList)
+ ProcessDeclAttributeList(TUScope, IDecl, AttrList);
+ PushOnScopeChains(IDecl, TUScope);
+
+ // Start the definition of this class. If we're in a redefinition case, there
+ // may already be a definition, so we'll end up adding to it.
+ if (!IDecl->hasDefinition())
+ IDecl->startDefinition();
+
+ if (SuperName) {
+ // Check if a different kind of symbol declared in this scope.
+ PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
+ LookupOrdinaryName);
+
+ if (!PrevDecl) {
+ // Try to correct for a typo in the superclass name without correcting
+ // to the class we're defining.
+ if (TypoCorrection Corrected =
+ CorrectTypo(DeclarationNameInfo(SuperName, SuperLoc),
+ LookupOrdinaryName, TUScope, nullptr,
+ llvm::make_unique<ObjCInterfaceValidatorCCC>(IDecl),
+ CTK_ErrorRecovery)) {
+ diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
+ << SuperName << ClassName);
+ PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
+ }
+ }
+
+ if (declaresSameEntity(PrevDecl, IDecl)) {
+ Diag(SuperLoc, diag::err_recursive_superclass)
+ << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
+ IDecl->setEndOfDefinitionLoc(ClassLoc);
+ } else {
+ ObjCInterfaceDecl *SuperClassDecl =
+ dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
+
+ // Diagnose availability in the context of the @interface.
+ ContextRAII SavedContext(*this, IDecl);
+ // Diagnose classes that inherit from deprecated classes.
+ if (SuperClassDecl)
+ (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
+
+ if (PrevDecl && !SuperClassDecl) {
+ // The previous declaration was not a class decl. Check if we have a
+ // typedef. If we do, get the underlying class type.
+ if (const TypedefNameDecl *TDecl =
+ dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
+ QualType T = TDecl->getUnderlyingType();
+ if (T->isObjCObjectType()) {
+ if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
+ SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
+ // This handles the following case:
+ // @interface NewI @end
+ // typedef NewI DeprI __attribute__((deprecated("blah")))
+ // @interface SI : DeprI /* warn here */ @end
+ (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
+ }
+ }
+ }
+
+ // This handles the following case:
+ //
+ // typedef int SuperClass;
+ // @interface MyClass : SuperClass {} @end
+ //
+ if (!SuperClassDecl) {
+ Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
+ Diag(PrevDecl->getLocation(), diag::note_previous_definition);
+ }
+ }
+
+ if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
+ if (!SuperClassDecl)
+ Diag(SuperLoc, diag::err_undef_superclass)
+ << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
+ else if (RequireCompleteType(SuperLoc,
+ Context.getObjCInterfaceType(SuperClassDecl),
+ diag::err_forward_superclass,
+ SuperClassDecl->getDeclName(),
+ ClassName,
+ SourceRange(AtInterfaceLoc, ClassLoc))) {
+ SuperClassDecl = nullptr;
+ }
+ }
+ IDecl->setSuperClass(SuperClassDecl);
+ IDecl->setSuperClassLoc(SuperLoc);
+ IDecl->setEndOfDefinitionLoc(SuperLoc);
+ }
+ } else { // we have a root class.
+ IDecl->setEndOfDefinitionLoc(ClassLoc);
+ }
+
+ // Check then save referenced protocols.
+ if (NumProtoRefs) {
+ diagnoseUseOfProtocols(*this, IDecl, (ObjCProtocolDecl*const*)ProtoRefs,
+ NumProtoRefs, ProtoLocs);
+ IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
+ ProtoLocs, Context);
+ IDecl->setEndOfDefinitionLoc(EndProtoLoc);
+ }
+
+ CheckObjCDeclScope(IDecl);
+ return ActOnObjCContainerStartDefinition(IDecl);
+}
+
+/// ActOnTypedefedProtocols - this action finds protocol list as part of the
+/// typedef'ed use for a qualified super class and adds them to the list
+/// of the protocols.
+void Sema::ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
+ IdentifierInfo *SuperName,
+ SourceLocation SuperLoc) {
+ if (!SuperName)
+ return;
+ NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
+ LookupOrdinaryName);
+ if (!IDecl)
+ return;
+
+ if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) {
+ QualType T = TDecl->getUnderlyingType();
+ if (T->isObjCObjectType())
+ if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>())
+ ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end());
+ }
+}
+
+/// ActOnCompatibilityAlias - this action is called after complete parsing of
+/// a \@compatibility_alias declaration. It sets up the alias relationships.
+Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
+ IdentifierInfo *AliasName,
+ SourceLocation AliasLocation,
+ IdentifierInfo *ClassName,
+ SourceLocation ClassLocation) {
+ // Look for previous declaration of alias name
+ NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
+ LookupOrdinaryName, ForRedeclaration);
+ if (ADecl) {
+ Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
+ Diag(ADecl->getLocation(), diag::note_previous_declaration);
+ return nullptr;
+ }
+ // Check for class declaration
+ NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
+ LookupOrdinaryName, ForRedeclaration);
+ if (const TypedefNameDecl *TDecl =
+ dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
+ QualType T = TDecl->getUnderlyingType();
+ if (T->isObjCObjectType()) {
+ if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
+ ClassName = IDecl->getIdentifier();
+ CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
+ LookupOrdinaryName, ForRedeclaration);
+ }
+ }
+ }
+ ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
+ if (!CDecl) {
+ Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
+ if (CDeclU)
+ Diag(CDeclU->getLocation(), diag::note_previous_declaration);
+ return nullptr;
+ }
+
+ // Everything checked out, instantiate a new alias declaration AST.
+ ObjCCompatibleAliasDecl *AliasDecl =
+ ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
+
+ if (!CheckObjCDeclScope(AliasDecl))
+ PushOnScopeChains(AliasDecl, TUScope);
+
+ return AliasDecl;
+}
+
+bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
+ IdentifierInfo *PName,
+ SourceLocation &Ploc, SourceLocation PrevLoc,
+ const ObjCList<ObjCProtocolDecl> &PList) {
+
+ bool res = false;
+ for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
+ E = PList.end(); I != E; ++I) {
+ if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
+ Ploc)) {
+ if (PDecl->getIdentifier() == PName) {
+ Diag(Ploc, diag::err_protocol_has_circular_dependency);
+ Diag(PrevLoc, diag::note_previous_definition);
+ res = true;
+ }
+
+ if (!PDecl->hasDefinition())
+ continue;
+
+ if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
+ PDecl->getLocation(), PDecl->getReferencedProtocols()))
+ res = true;
+ }
+ }
+ return res;
+}
+
+Decl *
+Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
+ IdentifierInfo *ProtocolName,
+ SourceLocation ProtocolLoc,
+ Decl * const *ProtoRefs,
+ unsigned NumProtoRefs,
+ const SourceLocation *ProtoLocs,
+ SourceLocation EndProtoLoc,
+ AttributeList *AttrList) {
+ bool err = false;
+ // FIXME: Deal with AttrList.
+ assert(ProtocolName && "Missing protocol identifier");
+ ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
+ ForRedeclaration);
+ ObjCProtocolDecl *PDecl = nullptr;
+ if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
+ // If we already have a definition, complain.
+ Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
+ Diag(Def->getLocation(), diag::note_previous_definition);
+
+ // Create a new protocol that is completely distinct from previous
+ // declarations, and do not make this protocol available for name lookup.
+ // That way, we'll end up completely ignoring the duplicate.
+ // FIXME: Can we turn this into an error?
+ PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
+ ProtocolLoc, AtProtoInterfaceLoc,
+ /*PrevDecl=*/nullptr);
+ PDecl->startDefinition();
+ } else {
+ if (PrevDecl) {
+ // Check for circular dependencies among protocol declarations. This can
+ // only happen if this protocol was forward-declared.
+ ObjCList<ObjCProtocolDecl> PList;
+ PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
+ err = CheckForwardProtocolDeclarationForCircularDependency(
+ ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
+ }
+
+ // Create the new declaration.
+ PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
+ ProtocolLoc, AtProtoInterfaceLoc,
+ /*PrevDecl=*/PrevDecl);
+
+ PushOnScopeChains(PDecl, TUScope);
+ PDecl->startDefinition();
+ }
+
+ if (AttrList)
+ ProcessDeclAttributeList(TUScope, PDecl, AttrList);
+
+ // Merge attributes from previous declarations.
+ if (PrevDecl)
+ mergeDeclAttributes(PDecl, PrevDecl);
+
+ if (!err && NumProtoRefs ) {
+ /// Check then save referenced protocols.
+ diagnoseUseOfProtocols(*this, PDecl, (ObjCProtocolDecl*const*)ProtoRefs,
+ NumProtoRefs, ProtoLocs);
+ PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
+ ProtoLocs, Context);
+ }
+
+ CheckObjCDeclScope(PDecl);
+ return ActOnObjCContainerStartDefinition(PDecl);
+}
+
+static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl,
+ ObjCProtocolDecl *&UndefinedProtocol) {
+ if (!PDecl->hasDefinition() || PDecl->getDefinition()->isHidden()) {
+ UndefinedProtocol = PDecl;
+ return true;
+ }
+
+ for (auto *PI : PDecl->protocols())
+ if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) {
+ UndefinedProtocol = PI;
+ return true;
+ }
+ return false;
+}
+
+/// FindProtocolDeclaration - This routine looks up protocols and
+/// issues an error if they are not declared. It returns list of
+/// protocol declarations in its 'Protocols' argument.
+void
+Sema::FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer,
+ const IdentifierLocPair *ProtocolId,
+ unsigned NumProtocols,
+ SmallVectorImpl<Decl *> &Protocols) {
+ for (unsigned i = 0; i != NumProtocols; ++i) {
+ ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first,
+ ProtocolId[i].second);
+ if (!PDecl) {
+ TypoCorrection Corrected = CorrectTypo(
+ DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second),
+ LookupObjCProtocolName, TUScope, nullptr,
+ llvm::make_unique<DeclFilterCCC<ObjCProtocolDecl>>(),
+ CTK_ErrorRecovery);
+ if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
+ diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest)
+ << ProtocolId[i].first);
+ }
+
+ if (!PDecl) {
+ Diag(ProtocolId[i].second, diag::err_undeclared_protocol)
+ << ProtocolId[i].first;
+ continue;
+ }
+ // If this is a forward protocol declaration, get its definition.
+ if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
+ PDecl = PDecl->getDefinition();
+
+ // For an objc container, delay protocol reference checking until after we
+ // can set the objc decl as the availability context, otherwise check now.
+ if (!ForObjCContainer) {
+ (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second);
+ }
+
+ // If this is a forward declaration and we are supposed to warn in this
+ // case, do it.
+ // FIXME: Recover nicely in the hidden case.
+ ObjCProtocolDecl *UndefinedProtocol;
+
+ if (WarnOnDeclarations &&
+ NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
+ Diag(ProtocolId[i].second, diag::warn_undef_protocolref)
+ << ProtocolId[i].first;
+ Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
+ << UndefinedProtocol;
+ }
+ Protocols.push_back(PDecl);
+ }
+}
+
+/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
+/// a class method in its extension.
+///
+void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
+ ObjCInterfaceDecl *ID) {
+ if (!ID)
+ return; // Possibly due to previous error
+
+ llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
+ for (auto *MD : ID->methods())
+ MethodMap[MD->getSelector()] = MD;
+
+ if (MethodMap.empty())
+ return;
+ for (const auto *Method : CAT->methods()) {
+ const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
+ if (PrevMethod &&
+ (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
+ !MatchTwoMethodDeclarations(Method, PrevMethod)) {
+ Diag(Method->getLocation(), diag::err_duplicate_method_decl)
+ << Method->getDeclName();
+ Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
+ }
+ }
+}
+
+/// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
+Sema::DeclGroupPtrTy
+Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
+ const IdentifierLocPair *IdentList,
+ unsigned NumElts,
+ AttributeList *attrList) {
+ SmallVector<Decl *, 8> DeclsInGroup;
+ for (unsigned i = 0; i != NumElts; ++i) {
+ IdentifierInfo *Ident = IdentList[i].first;
+ ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentList[i].second,
+ ForRedeclaration);
+ ObjCProtocolDecl *PDecl
+ = ObjCProtocolDecl::Create(Context, CurContext, Ident,
+ IdentList[i].second, AtProtocolLoc,
+ PrevDecl);
+
+ PushOnScopeChains(PDecl, TUScope);
+ CheckObjCDeclScope(PDecl);
+
+ if (attrList)
+ ProcessDeclAttributeList(TUScope, PDecl, attrList);
+
+ if (PrevDecl)
+ mergeDeclAttributes(PDecl, PrevDecl);
+
+ DeclsInGroup.push_back(PDecl);
+ }
+
+ return BuildDeclaratorGroup(DeclsInGroup, false);
+}
+
+Decl *Sema::
+ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
+ IdentifierInfo *ClassName, SourceLocation ClassLoc,
+ IdentifierInfo *CategoryName,
+ SourceLocation CategoryLoc,
+ Decl * const *ProtoRefs,
+ unsigned NumProtoRefs,
+ const SourceLocation *ProtoLocs,
+ SourceLocation EndProtoLoc) {
+ ObjCCategoryDecl *CDecl;
+ ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
+
+ /// Check that class of this category is already completely declared.
+
+ if (!IDecl
+ || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
+ diag::err_category_forward_interface,
+ CategoryName == nullptr)) {
+ // Create an invalid ObjCCategoryDecl to serve as context for
+ // the enclosing method declarations. We mark the decl invalid
+ // to make it clear that this isn't a valid AST.
+ CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
+ ClassLoc, CategoryLoc, CategoryName,IDecl);
+ CDecl->setInvalidDecl();
+ CurContext->addDecl(CDecl);
+
+ if (!IDecl)
+ Diag(ClassLoc, diag::err_undef_interface) << ClassName;
+ return ActOnObjCContainerStartDefinition(CDecl);
+ }
+
+ if (!CategoryName && IDecl->getImplementation()) {
+ Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
+ Diag(IDecl->getImplementation()->getLocation(),
+ diag::note_implementation_declared);
+ }
+
+ if (CategoryName) {
+ /// Check for duplicate interface declaration for this category
+ if (ObjCCategoryDecl *Previous
+ = IDecl->FindCategoryDeclaration(CategoryName)) {
+ // Class extensions can be declared multiple times, categories cannot.
+ Diag(CategoryLoc, diag::warn_dup_category_def)
+ << ClassName << CategoryName;
+ Diag(Previous->getLocation(), diag::note_previous_definition);
+ }
+ }
+
+ CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
+ ClassLoc, CategoryLoc, CategoryName, IDecl);
+ // FIXME: PushOnScopeChains?
+ CurContext->addDecl(CDecl);
+
+ if (NumProtoRefs) {
+ diagnoseUseOfProtocols(*this, CDecl, (ObjCProtocolDecl*const*)ProtoRefs,
+ NumProtoRefs, ProtoLocs);
+ CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
+ ProtoLocs, Context);
+ // Protocols in the class extension belong to the class.
+ if (CDecl->IsClassExtension())
+ IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
+ NumProtoRefs, Context);
+ }
+
+ CheckObjCDeclScope(CDecl);
+ return ActOnObjCContainerStartDefinition(CDecl);
+}
+
+/// ActOnStartCategoryImplementation - Perform semantic checks on the
+/// category implementation declaration and build an ObjCCategoryImplDecl
+/// object.
+Decl *Sema::ActOnStartCategoryImplementation(
+ SourceLocation AtCatImplLoc,
+ IdentifierInfo *ClassName, SourceLocation ClassLoc,
+ IdentifierInfo *CatName, SourceLocation CatLoc) {
+ ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
+ ObjCCategoryDecl *CatIDecl = nullptr;
+ if (IDecl && IDecl->hasDefinition()) {
+ CatIDecl = IDecl->FindCategoryDeclaration(CatName);
+ if (!CatIDecl) {
+ // Category @implementation with no corresponding @interface.
+ // Create and install one.
+ CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
+ ClassLoc, CatLoc,
+ CatName, IDecl);
+ CatIDecl->setImplicit();
+ }
+ }
+
+ ObjCCategoryImplDecl *CDecl =
+ ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
+ ClassLoc, AtCatImplLoc, CatLoc);
+ /// Check that class of this category is already completely declared.
+ if (!IDecl) {
+ Diag(ClassLoc, diag::err_undef_interface) << ClassName;
+ CDecl->setInvalidDecl();
+ } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
+ diag::err_undef_interface)) {
+ CDecl->setInvalidDecl();
+ }
+
+ // FIXME: PushOnScopeChains?
+ CurContext->addDecl(CDecl);
+
+ // If the interface is deprecated/unavailable, warn/error about it.
+ if (IDecl)
+ DiagnoseUseOfDecl(IDecl, ClassLoc);
+
+ /// Check that CatName, category name, is not used in another implementation.
+ if (CatIDecl) {
+ if (CatIDecl->getImplementation()) {
+ Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
+ << CatName;
+ Diag(CatIDecl->getImplementation()->getLocation(),
+ diag::note_previous_definition);
+ CDecl->setInvalidDecl();
+ } else {
+ CatIDecl->setImplementation(CDecl);
+ // Warn on implementating category of deprecated class under
+ // -Wdeprecated-implementations flag.
+ DiagnoseObjCImplementedDeprecations(*this,
+ dyn_cast<NamedDecl>(IDecl),
+ CDecl->getLocation(), 2);
+ }
+ }
+
+ CheckObjCDeclScope(CDecl);
+ return ActOnObjCContainerStartDefinition(CDecl);
+}
+
+Decl *Sema::ActOnStartClassImplementation(
+ SourceLocation AtClassImplLoc,
+ IdentifierInfo *ClassName, SourceLocation ClassLoc,
+ IdentifierInfo *SuperClassname,
+ SourceLocation SuperClassLoc) {
+ ObjCInterfaceDecl *IDecl = nullptr;
+ // Check for another declaration kind with the same name.
+ NamedDecl *PrevDecl
+ = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
+ ForRedeclaration);
+ if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
+ Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
+ Diag(PrevDecl->getLocation(), diag::note_previous_definition);
+ } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
+ RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
+ diag::warn_undef_interface);
+ } else {
+ // We did not find anything with the name ClassName; try to correct for
+ // typos in the class name.
+ TypoCorrection Corrected = CorrectTypo(
+ DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
+ nullptr, llvm::make_unique<ObjCInterfaceValidatorCCC>(), CTK_NonError);
+ if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
+ // Suggest the (potentially) correct interface name. Don't provide a
+ // code-modification hint or use the typo name for recovery, because
+ // this is just a warning. The program may actually be correct.
+ diagnoseTypo(Corrected,
+ PDiag(diag::warn_undef_interface_suggest) << ClassName,
+ /*ErrorRecovery*/false);
+ } else {
+ Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
+ }
+ }
+
+ // Check that super class name is valid class name
+ ObjCInterfaceDecl *SDecl = nullptr;
+ if (SuperClassname) {
+ // Check if a different kind of symbol declared in this scope.
+ PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
+ LookupOrdinaryName);
+ if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
+ Diag(SuperClassLoc, diag::err_redefinition_different_kind)
+ << SuperClassname;
+ Diag(PrevDecl->getLocation(), diag::note_previous_definition);
+ } else {
+ SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
+ if (SDecl && !SDecl->hasDefinition())
+ SDecl = nullptr;
+ if (!SDecl)
+ Diag(SuperClassLoc, diag::err_undef_superclass)
+ << SuperClassname << ClassName;
+ else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
+ // This implementation and its interface do not have the same
+ // super class.
+ Diag(SuperClassLoc, diag::err_conflicting_super_class)
+ << SDecl->getDeclName();
+ Diag(SDecl->getLocation(), diag::note_previous_definition);
+ }
+ }
+ }
+
+ if (!IDecl) {
+ // Legacy case of @implementation with no corresponding @interface.
+ // Build, chain & install the interface decl into the identifier.
+
+ // FIXME: Do we support attributes on the @implementation? If so we should
+ // copy them over.
+ IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
+ ClassName, /*PrevDecl=*/nullptr, ClassLoc,
+ true);
+ IDecl->startDefinition();
+ if (SDecl) {
+ IDecl->setSuperClass(SDecl);
+ IDecl->setSuperClassLoc(SuperClassLoc);
+ IDecl->setEndOfDefinitionLoc(SuperClassLoc);
+ } else {
+ IDecl->setEndOfDefinitionLoc(ClassLoc);
+ }
+
+ PushOnScopeChains(IDecl, TUScope);
+ } else {
+ // Mark the interface as being completed, even if it was just as
+ // @class ....;
+ // declaration; the user cannot reopen it.
+ if (!IDecl->hasDefinition())
+ IDecl->startDefinition();
+ }
+
+ ObjCImplementationDecl* IMPDecl =
+ ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
+ ClassLoc, AtClassImplLoc, SuperClassLoc);
+
+ if (CheckObjCDeclScope(IMPDecl))
+ return ActOnObjCContainerStartDefinition(IMPDecl);
+
+ // Check that there is no duplicate implementation of this class.
+ if (IDecl->getImplementation()) {
+ // FIXME: Don't leak everything!
+ Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
+ Diag(IDecl->getImplementation()->getLocation(),
+ diag::note_previous_definition);
+ IMPDecl->setInvalidDecl();
+ } else { // add it to the list.
+ IDecl->setImplementation(IMPDecl);
+ PushOnScopeChains(IMPDecl, TUScope);
+ // Warn on implementating deprecated class under
+ // -Wdeprecated-implementations flag.
+ DiagnoseObjCImplementedDeprecations(*this,
+ dyn_cast<NamedDecl>(IDecl),
+ IMPDecl->getLocation(), 1);
+ }
+ return ActOnObjCContainerStartDefinition(IMPDecl);
+}
+
+Sema::DeclGroupPtrTy
+Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
+ SmallVector<Decl *, 64> DeclsInGroup;
+ DeclsInGroup.reserve(Decls.size() + 1);
+
+ for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
+ Decl *Dcl = Decls[i];
+ if (!Dcl)
+ continue;
+ if (Dcl->getDeclContext()->isFileContext())
+ Dcl->setTopLevelDeclInObjCContainer();
+ DeclsInGroup.push_back(Dcl);
+ }
+
+ DeclsInGroup.push_back(ObjCImpDecl);
+
+ return BuildDeclaratorGroup(DeclsInGroup, false);
+}
+
+void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
+ ObjCIvarDecl **ivars, unsigned numIvars,
+ SourceLocation RBrace) {
+ assert(ImpDecl && "missing implementation decl");
+ ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
+ if (!IDecl)
+ return;
+ /// Check case of non-existing \@interface decl.
+ /// (legacy objective-c \@implementation decl without an \@interface decl).
+ /// Add implementations's ivar to the synthesize class's ivar list.
+ if (IDecl->isImplicitInterfaceDecl()) {
+ IDecl->setEndOfDefinitionLoc(RBrace);
+ // Add ivar's to class's DeclContext.
+ for (unsigned i = 0, e = numIvars; i != e; ++i) {
+ ivars[i]->setLexicalDeclContext(ImpDecl);
+ IDecl->makeDeclVisibleInContext(ivars[i]);
+ ImpDecl->addDecl(ivars[i]);
+ }
+
+ return;
+ }
+ // If implementation has empty ivar list, just return.
+ if (numIvars == 0)
+ return;
+
+ assert(ivars && "missing @implementation ivars");
+ if (LangOpts.ObjCRuntime.isNonFragile()) {
+ if (ImpDecl->getSuperClass())
+ Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
+ for (unsigned i = 0; i < numIvars; i++) {
+ ObjCIvarDecl* ImplIvar = ivars[i];
+ if (const ObjCIvarDecl *ClsIvar =
+ IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
+ Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
+ Diag(ClsIvar->getLocation(), diag::note_previous_definition);
+ continue;
+ }
+ // Check class extensions (unnamed categories) for duplicate ivars.
+ for (const auto *CDecl : IDecl->visible_extensions()) {
+ if (const ObjCIvarDecl *ClsExtIvar =
+ CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
+ Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
+ Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
+ continue;
+ }
+ }
+ // Instance ivar to Implementation's DeclContext.
+ ImplIvar->setLexicalDeclContext(ImpDecl);
+ IDecl->makeDeclVisibleInContext(ImplIvar);
+ ImpDecl->addDecl(ImplIvar);
+ }
+ return;
+ }
+ // Check interface's Ivar list against those in the implementation.
+ // names and types must match.
+ //
+ unsigned j = 0;
+ ObjCInterfaceDecl::ivar_iterator
+ IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
+ for (; numIvars > 0 && IVI != IVE; ++IVI) {
+ ObjCIvarDecl* ImplIvar = ivars[j++];
+ ObjCIvarDecl* ClsIvar = *IVI;
+ assert (ImplIvar && "missing implementation ivar");
+ assert (ClsIvar && "missing class ivar");
+
+ // First, make sure the types match.
+ if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
+ Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
+ << ImplIvar->getIdentifier()
+ << ImplIvar->getType() << ClsIvar->getType();
+ Diag(ClsIvar->getLocation(), diag::note_previous_definition);
+ } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
+ ImplIvar->getBitWidthValue(Context) !=
+ ClsIvar->getBitWidthValue(Context)) {
+ Diag(ImplIvar->getBitWidth()->getLocStart(),
+ diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
+ Diag(ClsIvar->getBitWidth()->getLocStart(),
+ diag::note_previous_definition);
+ }
+ // Make sure the names are identical.
+ if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
+ Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
+ << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
+ Diag(ClsIvar->getLocation(), diag::note_previous_definition);
+ }
+ --numIvars;
+ }
+
+ if (numIvars > 0)
+ Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
+ else if (IVI != IVE)
+ Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
+}
+
+static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc,
+ ObjCMethodDecl *method,
+ bool &IncompleteImpl,
+ unsigned DiagID,
+ NamedDecl *NeededFor = nullptr) {
+ // No point warning no definition of method which is 'unavailable'.
+ switch (method->getAvailability()) {
+ case AR_Available:
+ case AR_Deprecated:
+ break;
+
+ // Don't warn about unavailable or not-yet-introduced methods.
+ case AR_NotYetIntroduced:
+ case AR_Unavailable:
+ return;
+ }
+
+ // FIXME: For now ignore 'IncompleteImpl'.
+ // Previously we grouped all unimplemented methods under a single
+ // warning, but some users strongly voiced that they would prefer
+ // separate warnings. We will give that approach a try, as that
+ // matches what we do with protocols.
+ {
+ const Sema::SemaDiagnosticBuilder &B = S.Diag(ImpLoc, DiagID);
+ B << method;
+ if (NeededFor)
+ B << NeededFor;
+ }
+
+ // Issue a note to the original declaration.
+ SourceLocation MethodLoc = method->getLocStart();
+ if (MethodLoc.isValid())
+ S.Diag(MethodLoc, diag::note_method_declared_at) << method;
+}
+
+/// Determines if type B can be substituted for type A. Returns true if we can
+/// guarantee that anything that the user will do to an object of type A can
+/// also be done to an object of type B. This is trivially true if the two
+/// types are the same, or if B is a subclass of A. It becomes more complex
+/// in cases where protocols are involved.
+///
+/// Object types in Objective-C describe the minimum requirements for an
+/// object, rather than providing a complete description of a type. For
+/// example, if A is a subclass of B, then B* may refer to an instance of A.
+/// The principle of substitutability means that we may use an instance of A
+/// anywhere that we may use an instance of B - it will implement all of the
+/// ivars of B and all of the methods of B.
+///
+/// This substitutability is important when type checking methods, because
+/// the implementation may have stricter type definitions than the interface.
+/// The interface specifies minimum requirements, but the implementation may
+/// have more accurate ones. For example, a method may privately accept
+/// instances of B, but only publish that it accepts instances of A. Any
+/// object passed to it will be type checked against B, and so will implicitly
+/// by a valid A*. Similarly, a method may return a subclass of the class that
+/// it is declared as returning.
+///
+/// This is most important when considering subclassing. A method in a
+/// subclass must accept any object as an argument that its superclass's
+/// implementation accepts. It may, however, accept a more general type
+/// without breaking substitutability (i.e. you can still use the subclass
+/// anywhere that you can use the superclass, but not vice versa). The
+/// converse requirement applies to return types: the return type for a
+/// subclass method must be a valid object of the kind that the superclass
+/// advertises, but it may be specified more accurately. This avoids the need
+/// for explicit down-casting by callers.
+///
+/// Note: This is a stricter requirement than for assignment.
+static bool isObjCTypeSubstitutable(ASTContext &Context,
+ const ObjCObjectPointerType *A,
+ const ObjCObjectPointerType *B,
+ bool rejectId) {
+ // Reject a protocol-unqualified id.
+ if (rejectId && B->isObjCIdType()) return false;
+
+ // If B is a qualified id, then A must also be a qualified id and it must
+ // implement all of the protocols in B. It may not be a qualified class.
+ // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
+ // stricter definition so it is not substitutable for id<A>.
+ if (B->isObjCQualifiedIdType()) {
+ return A->isObjCQualifiedIdType() &&
+ Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
+ QualType(B,0),
+ false);
+ }
+
+ /*
+ // id is a special type that bypasses type checking completely. We want a
+ // warning when it is used in one place but not another.
+ if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
+
+
+ // If B is a qualified id, then A must also be a qualified id (which it isn't
+ // if we've got this far)
+ if (B->isObjCQualifiedIdType()) return false;
+ */
+
+ // Now we know that A and B are (potentially-qualified) class types. The
+ // normal rules for assignment apply.
+ return Context.canAssignObjCInterfaces(A, B);
+}
+
+static SourceRange getTypeRange(TypeSourceInfo *TSI) {
+ return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
+}
+
+static bool CheckMethodOverrideReturn(Sema &S,
+ ObjCMethodDecl *MethodImpl,
+ ObjCMethodDecl *MethodDecl,
+ bool IsProtocolMethodDecl,
+ bool IsOverridingMode,
+ bool Warn) {
+ if (IsProtocolMethodDecl &&
+ (MethodDecl->getObjCDeclQualifier() !=
+ MethodImpl->getObjCDeclQualifier())) {
+ if (Warn) {
+ S.Diag(MethodImpl->getLocation(),
+ (IsOverridingMode
+ ? diag::warn_conflicting_overriding_ret_type_modifiers
+ : diag::warn_conflicting_ret_type_modifiers))
+ << MethodImpl->getDeclName()
+ << MethodImpl->getReturnTypeSourceRange();
+ S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
+ << MethodDecl->getReturnTypeSourceRange();
+ }
+ else
+ return false;
+ }
+
+ if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(),
+ MethodDecl->getReturnType()))
+ return true;
+ if (!Warn)
+ return false;
+
+ unsigned DiagID =
+ IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
+ : diag::warn_conflicting_ret_types;
+
+ // Mismatches between ObjC pointers go into a different warning
+ // category, and sometimes they're even completely whitelisted.
+ if (const ObjCObjectPointerType *ImplPtrTy =
+ MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
+ if (const ObjCObjectPointerType *IfacePtrTy =
+ MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
+ // Allow non-matching return types as long as they don't violate
+ // the principle of substitutability. Specifically, we permit
+ // return types that are subclasses of the declared return type,
+ // or that are more-qualified versions of the declared type.
+ if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
+ return false;
+
+ DiagID =
+ IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
+ : diag::warn_non_covariant_ret_types;
+ }
+ }
+
+ S.Diag(MethodImpl->getLocation(), DiagID)
+ << MethodImpl->getDeclName() << MethodDecl->getReturnType()
+ << MethodImpl->getReturnType()
+ << MethodImpl->getReturnTypeSourceRange();
+ S.Diag(MethodDecl->getLocation(), IsOverridingMode
+ ? diag::note_previous_declaration
+ : diag::note_previous_definition)
+ << MethodDecl->getReturnTypeSourceRange();
+ return false;
+}
+
+static bool CheckMethodOverrideParam(Sema &S,
+ ObjCMethodDecl *MethodImpl,
+ ObjCMethodDecl *MethodDecl,
+ ParmVarDecl *ImplVar,
+ ParmVarDecl *IfaceVar,
+ bool IsProtocolMethodDecl,
+ bool IsOverridingMode,
+ bool Warn) {
+ if (IsProtocolMethodDecl &&
+ (ImplVar->getObjCDeclQualifier() !=
+ IfaceVar->getObjCDeclQualifier())) {
+ if (Warn) {
+ if (IsOverridingMode)
+ S.Diag(ImplVar->getLocation(),
+ diag::warn_conflicting_overriding_param_modifiers)
+ << getTypeRange(ImplVar->getTypeSourceInfo())
+ << MethodImpl->getDeclName();
+ else S.Diag(ImplVar->getLocation(),
+ diag::warn_conflicting_param_modifiers)
+ << getTypeRange(ImplVar->getTypeSourceInfo())
+ << MethodImpl->getDeclName();
+ S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
+ << getTypeRange(IfaceVar->getTypeSourceInfo());
+ }
+ else
+ return false;
+ }
+
+ QualType ImplTy = ImplVar->getType();
+ QualType IfaceTy = IfaceVar->getType();
+
+ if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
+ return true;
+
+ if (!Warn)
+ return false;
+ unsigned DiagID =
+ IsOverridingMode ? diag::warn_conflicting_overriding_param_types
+ : diag::warn_conflicting_param_types;
+
+ // Mismatches between ObjC pointers go into a different warning
+ // category, and sometimes they're even completely whitelisted.
+ if (const ObjCObjectPointerType *ImplPtrTy =
+ ImplTy->getAs<ObjCObjectPointerType>()) {
+ if (const ObjCObjectPointerType *IfacePtrTy =
+ IfaceTy->getAs<ObjCObjectPointerType>()) {
+ // Allow non-matching argument types as long as they don't
+ // violate the principle of substitutability. Specifically, the
+ // implementation must accept any objects that the superclass
+ // accepts, however it may also accept others.
+ if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
+ return false;
+
+ DiagID =
+ IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
+ : diag::warn_non_contravariant_param_types;
+ }
+ }
+
+ S.Diag(ImplVar->getLocation(), DiagID)
+ << getTypeRange(ImplVar->getTypeSourceInfo())
+ << MethodImpl->getDeclName() << IfaceTy << ImplTy;
+ S.Diag(IfaceVar->getLocation(),
+ (IsOverridingMode ? diag::note_previous_declaration
+ : diag::note_previous_definition))
+ << getTypeRange(IfaceVar->getTypeSourceInfo());
+ return false;
+}
+
+/// In ARC, check whether the conventional meanings of the two methods
+/// match. If they don't, it's a hard error.
+static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
+ ObjCMethodDecl *decl) {
+ ObjCMethodFamily implFamily = impl->getMethodFamily();
+ ObjCMethodFamily declFamily = decl->getMethodFamily();
+ if (implFamily == declFamily) return false;
+
+ // Since conventions are sorted by selector, the only possibility is
+ // that the types differ enough to cause one selector or the other
+ // to fall out of the family.
+ assert(implFamily == OMF_None || declFamily == OMF_None);
+
+ // No further diagnostics required on invalid declarations.
+ if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
+
+ const ObjCMethodDecl *unmatched = impl;
+ ObjCMethodFamily family = declFamily;
+ unsigned errorID = diag::err_arc_lost_method_convention;
+ unsigned noteID = diag::note_arc_lost_method_convention;
+ if (declFamily == OMF_None) {
+ unmatched = decl;
+ family = implFamily;
+ errorID = diag::err_arc_gained_method_convention;
+ noteID = diag::note_arc_gained_method_convention;
+ }
+
+ // Indexes into a %select clause in the diagnostic.
+ enum FamilySelector {
+ F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
+ };
+ FamilySelector familySelector = FamilySelector();
+
+ switch (family) {
+ case OMF_None: llvm_unreachable("logic error, no method convention");
+ case OMF_retain:
+ case OMF_release:
+ case OMF_autorelease:
+ case OMF_dealloc:
+ case OMF_finalize:
+ case OMF_retainCount:
+ case OMF_self:
+ case OMF_initialize:
+ case OMF_performSelector:
+ // Mismatches for these methods don't change ownership
+ // conventions, so we don't care.
+ return false;
+
+ case OMF_init: familySelector = F_init; break;
+ case OMF_alloc: familySelector = F_alloc; break;
+ case OMF_copy: familySelector = F_copy; break;
+ case OMF_mutableCopy: familySelector = F_mutableCopy; break;
+ case OMF_new: familySelector = F_new; break;
+ }
+
+ enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
+ ReasonSelector reasonSelector;
+
+ // The only reason these methods don't fall within their families is
+ // due to unusual result types.
+ if (unmatched->getReturnType()->isObjCObjectPointerType()) {
+ reasonSelector = R_UnrelatedReturn;
+ } else {
+ reasonSelector = R_NonObjectReturn;
+ }
+
+ S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
+ S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
+
+ return true;
+}
+
+void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
+ ObjCMethodDecl *MethodDecl,
+ bool IsProtocolMethodDecl) {
+ if (getLangOpts().ObjCAutoRefCount &&
+ checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
+ return;
+
+ CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
+ IsProtocolMethodDecl, false,
+ true);
+
+ for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
+ IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
+ EF = MethodDecl->param_end();
+ IM != EM && IF != EF; ++IM, ++IF) {
+ CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
+ IsProtocolMethodDecl, false, true);
+ }
+
+ if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
+ Diag(ImpMethodDecl->getLocation(),
+ diag::warn_conflicting_variadic);
+ Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
+ }
+}
+
+void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
+ ObjCMethodDecl *Overridden,
+ bool IsProtocolMethodDecl) {
+
+ CheckMethodOverrideReturn(*this, Method, Overridden,
+ IsProtocolMethodDecl, true,
+ true);
+
+ for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
+ IF = Overridden->param_begin(), EM = Method->param_end(),
+ EF = Overridden->param_end();
+ IM != EM && IF != EF; ++IM, ++IF) {
+ CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
+ IsProtocolMethodDecl, true, true);
+ }
+
+ if (Method->isVariadic() != Overridden->isVariadic()) {
+ Diag(Method->getLocation(),
+ diag::warn_conflicting_overriding_variadic);
+ Diag(Overridden->getLocation(), diag::note_previous_declaration);
+ }
+}
+
+/// WarnExactTypedMethods - This routine issues a warning if method
+/// implementation declaration matches exactly that of its declaration.
+void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
+ ObjCMethodDecl *MethodDecl,
+ bool IsProtocolMethodDecl) {
+ // don't issue warning when protocol method is optional because primary
+ // class is not required to implement it and it is safe for protocol
+ // to implement it.
+ if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
+ return;
+ // don't issue warning when primary class's method is
+ // depecated/unavailable.
+ if (MethodDecl->hasAttr<UnavailableAttr>() ||
+ MethodDecl->hasAttr<DeprecatedAttr>())
+ return;
+
+ bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
+ IsProtocolMethodDecl, false, false);
+ if (match)
+ for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
+ IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
+ EF = MethodDecl->param_end();
+ IM != EM && IF != EF; ++IM, ++IF) {
+ match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
+ *IM, *IF,
+ IsProtocolMethodDecl, false, false);
+ if (!match)
+ break;
+ }
+ if (match)
+ match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
+ if (match)
+ match = !(MethodDecl->isClassMethod() &&
+ MethodDecl->getSelector() == GetNullarySelector("load", Context));
+
+ if (match) {
+ Diag(ImpMethodDecl->getLocation(),
+ diag::warn_category_method_impl_match);
+ Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
+ << MethodDecl->getDeclName();
+ }
+}
+
+/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
+/// improve the efficiency of selector lookups and type checking by associating
+/// with each protocol / interface / category the flattened instance tables. If
+/// we used an immutable set to keep the table then it wouldn't add significant
+/// memory cost and it would be handy for lookups.
+
+typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet;
+typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
+
+static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl,
+ ProtocolNameSet &PNS) {
+ if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
+ PNS.insert(PDecl->getIdentifier());
+ for (const auto *PI : PDecl->protocols())
+ findProtocolsWithExplicitImpls(PI, PNS);
+}
+
+/// Recursively populates a set with all conformed protocols in a class
+/// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
+/// attribute.
+static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super,
+ ProtocolNameSet &PNS) {
+ if (!Super)
+ return;
+
+ for (const auto *I : Super->all_referenced_protocols())
+ findProtocolsWithExplicitImpls(I, PNS);
+
+ findProtocolsWithExplicitImpls(Super->getSuperClass(), PNS);
+}
+
+/// CheckProtocolMethodDefs - This routine checks unimplemented methods
+/// Declared in protocol, and those referenced by it.
+static void CheckProtocolMethodDefs(Sema &S,
+ SourceLocation ImpLoc,
+ ObjCProtocolDecl *PDecl,
+ bool& IncompleteImpl,
+ const Sema::SelectorSet &InsMap,
+ const Sema::SelectorSet &ClsMap,
+ ObjCContainerDecl *CDecl,
+ LazyProtocolNameSet &ProtocolsExplictImpl) {
+ ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
+ ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
+ : dyn_cast<ObjCInterfaceDecl>(CDecl);
+ assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
+
+ ObjCInterfaceDecl *Super = IDecl->getSuperClass();
+ ObjCInterfaceDecl *NSIDecl = nullptr;
+
+ // If this protocol is marked 'objc_protocol_requires_explicit_implementation'
+ // then we should check if any class in the super class hierarchy also
+ // conforms to this protocol, either directly or via protocol inheritance.
+ // If so, we can skip checking this protocol completely because we
+ // know that a parent class already satisfies this protocol.
+ //
+ // Note: we could generalize this logic for all protocols, and merely
+ // add the limit on looking at the super class chain for just
+ // specially marked protocols. This may be a good optimization. This
+ // change is restricted to 'objc_protocol_requires_explicit_implementation'
+ // protocols for now for controlled evaluation.
+ if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
+ if (!ProtocolsExplictImpl) {
+ ProtocolsExplictImpl.reset(new ProtocolNameSet);
+ findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl);
+ }
+ if (ProtocolsExplictImpl->find(PDecl->getIdentifier()) !=
+ ProtocolsExplictImpl->end())
+ return;
+
+ // If no super class conforms to the protocol, we should not search
+ // for methods in the super class to implicitly satisfy the protocol.
+ Super = nullptr;
+ }
+
+ if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) {
+ // check to see if class implements forwardInvocation method and objects
+ // of this class are derived from 'NSProxy' so that to forward requests
+ // from one object to another.
+ // Under such conditions, which means that every method possible is
+ // implemented in the class, we should not issue "Method definition not
+ // found" warnings.
+ // FIXME: Use a general GetUnarySelector method for this.
+ IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation");
+ Selector fISelector = S.Context.Selectors.getSelector(1, &II);
+ if (InsMap.count(fISelector))
+ // Is IDecl derived from 'NSProxy'? If so, no instance methods
+ // need be implemented in the implementation.
+ NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy"));
+ }
+
+ // If this is a forward protocol declaration, get its definition.
+ if (!PDecl->isThisDeclarationADefinition() &&
+ PDecl->getDefinition())
+ PDecl = PDecl->getDefinition();
+
+ // If a method lookup fails locally we still need to look and see if
+ // the method was implemented by a base class or an inherited
+ // protocol. This lookup is slow, but occurs rarely in correct code
+ // and otherwise would terminate in a warning.
+
+ // check unimplemented instance methods.
+ if (!NSIDecl)
+ for (auto *method : PDecl->instance_methods()) {
+ if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
+ !method->isPropertyAccessor() &&
+ !InsMap.count(method->getSelector()) &&
+ (!Super || !Super->lookupMethod(method->getSelector(),
+ true /* instance */,
+ false /* shallowCategory */,
+ true /* followsSuper */,
+ nullptr /* category */))) {
+ // If a method is not implemented in the category implementation but
+ // has been declared in its primary class, superclass,
+ // or in one of their protocols, no need to issue the warning.
+ // This is because method will be implemented in the primary class
+ // or one of its super class implementation.
+
+ // Ugly, but necessary. Method declared in protcol might have
+ // have been synthesized due to a property declared in the class which
+ // uses the protocol.
+ if (ObjCMethodDecl *MethodInClass =
+ IDecl->lookupMethod(method->getSelector(),
+ true /* instance */,
+ true /* shallowCategoryLookup */,
+ false /* followSuper */))
+ if (C || MethodInClass->isPropertyAccessor())
+ continue;
+ unsigned DIAG = diag::warn_unimplemented_protocol_method;
+ if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
+ WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG,
+ PDecl);
+ }
+ }
+ }
+ // check unimplemented class methods
+ for (auto *method : PDecl->class_methods()) {
+ if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
+ !ClsMap.count(method->getSelector()) &&
+ (!Super || !Super->lookupMethod(method->getSelector(),
+ false /* class method */,
+ false /* shallowCategoryLookup */,
+ true /* followSuper */,
+ nullptr /* category */))) {
+ // See above comment for instance method lookups.
+ if (C && IDecl->lookupMethod(method->getSelector(),
+ false /* class */,
+ true /* shallowCategoryLookup */,
+ false /* followSuper */))
+ continue;
+
+ unsigned DIAG = diag::warn_unimplemented_protocol_method;
+ if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
+ WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, PDecl);
+ }
+ }
+ }
+ // Check on this protocols's referenced protocols, recursively.
+ for (auto *PI : PDecl->protocols())
+ CheckProtocolMethodDefs(S, ImpLoc, PI, IncompleteImpl, InsMap, ClsMap,
+ CDecl, ProtocolsExplictImpl);
+}
+
+/// MatchAllMethodDeclarations - Check methods declared in interface
+/// or protocol against those declared in their implementations.
+///
+void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
+ const SelectorSet &ClsMap,
+ SelectorSet &InsMapSeen,
+ SelectorSet &ClsMapSeen,
+ ObjCImplDecl* IMPDecl,
+ ObjCContainerDecl* CDecl,
+ bool &IncompleteImpl,
+ bool ImmediateClass,
+ bool WarnCategoryMethodImpl) {
+ // Check and see if instance methods in class interface have been
+ // implemented in the implementation class. If so, their types match.
+ for (auto *I : CDecl->instance_methods()) {
+ if (!InsMapSeen.insert(I->getSelector()).second)
+ continue;
+ if (!I->isPropertyAccessor() &&
+ !InsMap.count(I->getSelector())) {
+ if (ImmediateClass)
+ WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
+ diag::warn_undef_method_impl);
+ continue;
+ } else {
+ ObjCMethodDecl *ImpMethodDecl =
+ IMPDecl->getInstanceMethod(I->getSelector());
+ assert(CDecl->getInstanceMethod(I->getSelector()) &&
+ "Expected to find the method through lookup as well");
+ // ImpMethodDecl may be null as in a @dynamic property.
+ if (ImpMethodDecl) {
+ if (!WarnCategoryMethodImpl)
+ WarnConflictingTypedMethods(ImpMethodDecl, I,
+ isa<ObjCProtocolDecl>(CDecl));
+ else if (!I->isPropertyAccessor())
+ WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
+ }
+ }
+ }
+
+ // Check and see if class methods in class interface have been
+ // implemented in the implementation class. If so, their types match.
+ for (auto *I : CDecl->class_methods()) {
+ if (!ClsMapSeen.insert(I->getSelector()).second)
+ continue;
+ if (!ClsMap.count(I->getSelector())) {
+ if (ImmediateClass)
+ WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
+ diag::warn_undef_method_impl);
+ } else {
+ ObjCMethodDecl *ImpMethodDecl =
+ IMPDecl->getClassMethod(I->getSelector());
+ assert(CDecl->getClassMethod(I->getSelector()) &&
+ "Expected to find the method through lookup as well");
+ if (!WarnCategoryMethodImpl)
+ WarnConflictingTypedMethods(ImpMethodDecl, I,
+ isa<ObjCProtocolDecl>(CDecl));
+ else
+ WarnExactTypedMethods(ImpMethodDecl, I,
+ isa<ObjCProtocolDecl>(CDecl));
+ }
+ }
+
+ if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) {
+ // Also, check for methods declared in protocols inherited by
+ // this protocol.
+ for (auto *PI : PD->protocols())
+ MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
+ IMPDecl, PI, IncompleteImpl, false,
+ WarnCategoryMethodImpl);
+ }
+
+ if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
+ // when checking that methods in implementation match their declaration,
+ // i.e. when WarnCategoryMethodImpl is false, check declarations in class
+ // extension; as well as those in categories.
+ if (!WarnCategoryMethodImpl) {
+ for (auto *Cat : I->visible_categories())
+ MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
+ IMPDecl, Cat, IncompleteImpl, false,
+ WarnCategoryMethodImpl);
+ } else {
+ // Also methods in class extensions need be looked at next.
+ for (auto *Ext : I->visible_extensions())
+ MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
+ IMPDecl, Ext, IncompleteImpl, false,
+ WarnCategoryMethodImpl);
+ }
+
+ // Check for any implementation of a methods declared in protocol.
+ for (auto *PI : I->all_referenced_protocols())
+ MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
+ IMPDecl, PI, IncompleteImpl, false,
+ WarnCategoryMethodImpl);
+
+ // FIXME. For now, we are not checking for extact match of methods
+ // in category implementation and its primary class's super class.
+ if (!WarnCategoryMethodImpl && I->getSuperClass())
+ MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
+ IMPDecl,
+ I->getSuperClass(), IncompleteImpl, false);
+ }
+}
+
+/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
+/// category matches with those implemented in its primary class and
+/// warns each time an exact match is found.
+void Sema::CheckCategoryVsClassMethodMatches(
+ ObjCCategoryImplDecl *CatIMPDecl) {
+ // Get category's primary class.
+ ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
+ if (!CatDecl)
+ return;
+ ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
+ if (!IDecl)
+ return;
+ ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
+ SelectorSet InsMap, ClsMap;
+
+ for (const auto *I : CatIMPDecl->instance_methods()) {
+ Selector Sel = I->getSelector();
+ // When checking for methods implemented in the category, skip over
+ // those declared in category class's super class. This is because
+ // the super class must implement the method.
+ if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true))
+ continue;
+ InsMap.insert(Sel);
+ }
+
+ for (const auto *I : CatIMPDecl->class_methods()) {
+ Selector Sel = I->getSelector();
+ if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false))
+ continue;
+ ClsMap.insert(Sel);
+ }
+ if (InsMap.empty() && ClsMap.empty())
+ return;
+
+ SelectorSet InsMapSeen, ClsMapSeen;
+ bool IncompleteImpl = false;
+ MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
+ CatIMPDecl, IDecl,
+ IncompleteImpl, false,
+ true /*WarnCategoryMethodImpl*/);
+}
+
+void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
+ ObjCContainerDecl* CDecl,
+ bool IncompleteImpl) {
+ SelectorSet InsMap;
+ // Check and see if instance methods in class interface have been
+ // implemented in the implementation class.
+ for (const auto *I : IMPDecl->instance_methods())
+ InsMap.insert(I->getSelector());
+
+ // Check and see if properties declared in the interface have either 1)
+ // an implementation or 2) there is a @synthesize/@dynamic implementation
+ // of the property in the @implementation.
+ if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
+ bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties &&
+ LangOpts.ObjCRuntime.isNonFragile() &&
+ !IDecl->isObjCRequiresPropertyDefs();
+ DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
+ }
+
+ SelectorSet ClsMap;
+ for (const auto *I : IMPDecl->class_methods())
+ ClsMap.insert(I->getSelector());
+
+ // Check for type conflict of methods declared in a class/protocol and
+ // its implementation; if any.
+ SelectorSet InsMapSeen, ClsMapSeen;
+ MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
+ IMPDecl, CDecl,
+ IncompleteImpl, true);
+
+ // check all methods implemented in category against those declared
+ // in its primary class.
+ if (ObjCCategoryImplDecl *CatDecl =
+ dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
+ CheckCategoryVsClassMethodMatches(CatDecl);
+
+ // Check the protocol list for unimplemented methods in the @implementation
+ // class.
+ // Check and see if class methods in class interface have been
+ // implemented in the implementation class.
+
+ LazyProtocolNameSet ExplicitImplProtocols;
+
+ if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
+ for (auto *PI : I->all_referenced_protocols())
+ CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), PI, IncompleteImpl,
+ InsMap, ClsMap, I, ExplicitImplProtocols);
+ // Check class extensions (unnamed categories)
+ for (auto *Ext : I->visible_extensions())
+ ImplMethodsVsClassMethods(S, IMPDecl, Ext, IncompleteImpl);
+ } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
+ // For extended class, unimplemented methods in its protocols will
+ // be reported in the primary class.
+ if (!C->IsClassExtension()) {
+ for (auto *P : C->protocols())
+ CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), P,
+ IncompleteImpl, InsMap, ClsMap, CDecl,
+ ExplicitImplProtocols);
+ DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
+ /*SynthesizeProperties=*/false);
+ }
+ } else
+ llvm_unreachable("invalid ObjCContainerDecl type.");
+}
+
+Sema::DeclGroupPtrTy
+Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
+ IdentifierInfo **IdentList,
+ SourceLocation *IdentLocs,
+ unsigned NumElts) {
+ SmallVector<Decl *, 8> DeclsInGroup;
+ for (unsigned i = 0; i != NumElts; ++i) {
+ // Check for another declaration kind with the same name.
+ NamedDecl *PrevDecl
+ = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
+ LookupOrdinaryName, ForRedeclaration);
+ if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
+ // GCC apparently allows the following idiom:
+ //
+ // typedef NSObject < XCElementTogglerP > XCElementToggler;
+ // @class XCElementToggler;
+ //
+ // Here we have chosen to ignore the forward class declaration
+ // with a warning. Since this is the implied behavior.
+ TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
+ if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
+ Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
+ Diag(PrevDecl->getLocation(), diag::note_previous_definition);
+ } else {
+ // a forward class declaration matching a typedef name of a class refers
+ // to the underlying class. Just ignore the forward class with a warning
+ // as this will force the intended behavior which is to lookup the
+ // typedef name.
+ if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
+ Diag(AtClassLoc, diag::warn_forward_class_redefinition)
+ << IdentList[i];
+ Diag(PrevDecl->getLocation(), diag::note_previous_definition);
+ continue;
+ }
+ }
+ }
+
+ // Create a declaration to describe this forward declaration.
+ ObjCInterfaceDecl *PrevIDecl
+ = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
+
+ IdentifierInfo *ClassName = IdentList[i];
+ if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
+ // A previous decl with a different name is because of
+ // @compatibility_alias, for example:
+ // \code
+ // @class NewImage;
+ // @compatibility_alias OldImage NewImage;
+ // \endcode
+ // A lookup for 'OldImage' will return the 'NewImage' decl.
+ //
+ // In such a case use the real declaration name, instead of the alias one,
+ // otherwise we will break IdentifierResolver and redecls-chain invariants.
+ // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
+ // has been aliased.
+ ClassName = PrevIDecl->getIdentifier();
+ }
+
+ ObjCInterfaceDecl *IDecl
+ = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
+ ClassName, PrevIDecl, IdentLocs[i]);
+ IDecl->setAtEndRange(IdentLocs[i]);
+
+ PushOnScopeChains(IDecl, TUScope);
+ CheckObjCDeclScope(IDecl);
+ DeclsInGroup.push_back(IDecl);
+ }
+
+ return BuildDeclaratorGroup(DeclsInGroup, false);
+}
+
+static bool tryMatchRecordTypes(ASTContext &Context,
+ Sema::MethodMatchStrategy strategy,
+ const Type *left, const Type *right);
+
+static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
+ QualType leftQT, QualType rightQT) {
+ const Type *left =
+ Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
+ const Type *right =
+ Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
+
+ if (left == right) return true;
+
+ // If we're doing a strict match, the types have to match exactly.
+ if (strategy == Sema::MMS_strict) return false;
+
+ if (left->isIncompleteType() || right->isIncompleteType()) return false;
+
+ // Otherwise, use this absurdly complicated algorithm to try to
+ // validate the basic, low-level compatibility of the two types.
+
+ // As a minimum, require the sizes and alignments to match.
+ TypeInfo LeftTI = Context.getTypeInfo(left);
+ TypeInfo RightTI = Context.getTypeInfo(right);
+ if (LeftTI.Width != RightTI.Width)
+ return false;
+
+ if (LeftTI.Align != RightTI.Align)
+ return false;
+
+ // Consider all the kinds of non-dependent canonical types:
+ // - functions and arrays aren't possible as return and parameter types
+
+ // - vector types of equal size can be arbitrarily mixed
+ if (isa<VectorType>(left)) return isa<VectorType>(right);
+ if (isa<VectorType>(right)) return false;
+
+ // - references should only match references of identical type
+ // - structs, unions, and Objective-C objects must match more-or-less
+ // exactly
+ // - everything else should be a scalar
+ if (!left->isScalarType() || !right->isScalarType())
+ return tryMatchRecordTypes(Context, strategy, left, right);
+
+ // Make scalars agree in kind, except count bools as chars, and group
+ // all non-member pointers together.
+ Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
+ Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
+ if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
+ if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
+ if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
+ leftSK = Type::STK_ObjCObjectPointer;
+ if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
+ rightSK = Type::STK_ObjCObjectPointer;
+
+ // Note that data member pointers and function member pointers don't
+ // intermix because of the size differences.
+
+ return (leftSK == rightSK);
+}
+
+static bool tryMatchRecordTypes(ASTContext &Context,
+ Sema::MethodMatchStrategy strategy,
+ const Type *lt, const Type *rt) {
+ assert(lt && rt && lt != rt);
+
+ if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
+ RecordDecl *left = cast<RecordType>(lt)->getDecl();
+ RecordDecl *right = cast<RecordType>(rt)->getDecl();
+
+ // Require union-hood to match.
+ if (left->isUnion() != right->isUnion()) return false;
+
+ // Require an exact match if either is non-POD.
+ if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
+ (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
+ return false;
+
+ // Require size and alignment to match.
+ TypeInfo LeftTI = Context.getTypeInfo(lt);
+ TypeInfo RightTI = Context.getTypeInfo(rt);
+ if (LeftTI.Width != RightTI.Width)
+ return false;
+
+ if (LeftTI.Align != RightTI.Align)
+ return false;
+
+ // Require fields to match.
+ RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
+ RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
+ for (; li != le && ri != re; ++li, ++ri) {
+ if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
+ return false;
+ }
+ return (li == le && ri == re);
+}
+
+/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
+/// returns true, or false, accordingly.
+/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
+bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
+ const ObjCMethodDecl *right,
+ MethodMatchStrategy strategy) {
+ if (!matchTypes(Context, strategy, left->getReturnType(),
+ right->getReturnType()))
+ return false;
+
+ // If either is hidden, it is not considered to match.
+ if (left->isHidden() || right->isHidden())
+ return false;
+
+ if (getLangOpts().ObjCAutoRefCount &&
+ (left->hasAttr<NSReturnsRetainedAttr>()
+ != right->hasAttr<NSReturnsRetainedAttr>() ||
+ left->hasAttr<NSConsumesSelfAttr>()
+ != right->hasAttr<NSConsumesSelfAttr>()))
+ return false;
+
+ ObjCMethodDecl::param_const_iterator
+ li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
+ re = right->param_end();
+
+ for (; li != le && ri != re; ++li, ++ri) {
+ assert(ri != right->param_end() && "Param mismatch");
+ const ParmVarDecl *lparm = *li, *rparm = *ri;
+
+ if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
+ return false;
+
+ if (getLangOpts().ObjCAutoRefCount &&
+ lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
+ return false;
+ }
+ return true;
+}
+
+void Sema::addMethodToGlobalList(ObjCMethodList *List,
+ ObjCMethodDecl *Method) {
+ // Record at the head of the list whether there were 0, 1, or >= 2 methods
+ // inside categories.
+ if (ObjCCategoryDecl *CD =
+ dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
+ if (!CD->IsClassExtension() && List->getBits() < 2)
+ List->setBits(List->getBits() + 1);
+
+ // If the list is empty, make it a singleton list.
+ if (List->getMethod() == nullptr) {
+ List->setMethod(Method);
+ List->setNext(nullptr);
+ return;
+ }
+
+ // We've seen a method with this name, see if we have already seen this type
+ // signature.
+ ObjCMethodList *Previous = List;
+ for (; List; Previous = List, List = List->getNext()) {
+ // If we are building a module, keep all of the methods.
+ if (getLangOpts().Modules && !getLangOpts().CurrentModule.empty())
+ continue;
+
+ if (!MatchTwoMethodDeclarations(Method, List->getMethod())) {
+ // Even if two method types do not match, we would like to say
+ // there is more than one declaration so unavailability/deprecated
+ // warning is not too noisy.
+ if (!Method->isDefined())
+ List->setHasMoreThanOneDecl(true);
+ continue;
+ }
+
+ ObjCMethodDecl *PrevObjCMethod = List->getMethod();
+
+ // Propagate the 'defined' bit.
+ if (Method->isDefined())
+ PrevObjCMethod->setDefined(true);
+ else {
+ // Objective-C doesn't allow an @interface for a class after its
+ // @implementation. So if Method is not defined and there already is
+ // an entry for this type signature, Method has to be for a different
+ // class than PrevObjCMethod.
+ List->setHasMoreThanOneDecl(true);
+ }
+
+ // If a method is deprecated, push it in the global pool.
+ // This is used for better diagnostics.
+ if (Method->isDeprecated()) {
+ if (!PrevObjCMethod->isDeprecated())
+ List->setMethod(Method);
+ }
+ // If the new method is unavailable, push it into global pool
+ // unless previous one is deprecated.
+ if (Method->isUnavailable()) {
+ if (PrevObjCMethod->getAvailability() < AR_Deprecated)
+ List->setMethod(Method);
+ }
+
+ return;
+ }
+
+ // We have a new signature for an existing method - add it.
+ // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
+ ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
+ Previous->setNext(new (Mem) ObjCMethodList(Method));
+}
+
+/// \brief Read the contents of the method pool for a given selector from
+/// external storage.
+void Sema::ReadMethodPool(Selector Sel) {
+ assert(ExternalSource && "We need an external AST source");
+ ExternalSource->ReadMethodPool(Sel);
+}
+
+void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
+ bool instance) {
+ // Ignore methods of invalid containers.
+ if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
+ return;
+
+ if (ExternalSource)
+ ReadMethodPool(Method->getSelector());
+
+ GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
+ if (Pos == MethodPool.end())
+ Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
+ GlobalMethods())).first;
+
+ Method->setDefined(impl);
+
+ ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
+ addMethodToGlobalList(&Entry, Method);
+}
+
+/// Determines if this is an "acceptable" loose mismatch in the global
+/// method pool. This exists mostly as a hack to get around certain
+/// global mismatches which we can't afford to make warnings / errors.
+/// Really, what we want is a way to take a method out of the global
+/// method pool.
+static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
+ ObjCMethodDecl *other) {
+ if (!chosen->isInstanceMethod())
+ return false;
+
+ Selector sel = chosen->getSelector();
+ if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
+ return false;
+
+ // Don't complain about mismatches for -length if the method we
+ // chose has an integral result type.
+ return (chosen->getReturnType()->isIntegerType());
+}
+
+bool Sema::CollectMultipleMethodsInGlobalPool(
+ Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods, bool instance) {
+ if (ExternalSource)
+ ReadMethodPool(Sel);
+
+ GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
+ if (Pos == MethodPool.end())
+ return false;
+ // Gather the non-hidden methods.
+ ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
+ for (ObjCMethodList *M = &MethList; M; M = M->getNext())
+ if (M->getMethod() && !M->getMethod()->isHidden())
+ Methods.push_back(M->getMethod());
+ return Methods.size() > 1;
+}
+
+bool Sema::AreMultipleMethodsInGlobalPool(Selector Sel, ObjCMethodDecl *BestMethod,
+ SourceRange R,
+ bool receiverIdOrClass) {
+ GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
+ // Test for no method in the pool which should not trigger any warning by
+ // caller.
+ if (Pos == MethodPool.end())
+ return true;
+ ObjCMethodList &MethList =
+ BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second;
+
+ // Diagnose finding more than one method in global pool
+ SmallVector<ObjCMethodDecl *, 4> Methods;
+ Methods.push_back(BestMethod);
+ for (ObjCMethodList *ML = &MethList; ML; ML = ML->getNext())
+ if (ObjCMethodDecl *M = ML->getMethod())
+ if (!M->isHidden() && M != BestMethod && !M->hasAttr<UnavailableAttr>())
+ Methods.push_back(M);
+ if (Methods.size() > 1)
+ DiagnoseMultipleMethodInGlobalPool(Methods, Sel, R, receiverIdOrClass);
+
+ return MethList.hasMoreThanOneDecl();
+}
+
+ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
+ bool receiverIdOrClass,
+ bool instance) {
+ if (ExternalSource)
+ ReadMethodPool(Sel);
+
+ GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
+ if (Pos == MethodPool.end())
+ return nullptr;
+
+ // Gather the non-hidden methods.
+ ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
+ SmallVector<ObjCMethodDecl *, 4> Methods;
+ for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
+ if (M->getMethod() && !M->getMethod()->isHidden())
+ return M->getMethod();
+ }
+ return nullptr;
+}
+
+void Sema::DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods,
+ Selector Sel, SourceRange R,
+ bool receiverIdOrClass) {
+ // We found multiple methods, so we may have to complain.
+ bool issueDiagnostic = false, issueError = false;
+
+ // We support a warning which complains about *any* difference in
+ // method signature.
+ bool strictSelectorMatch =
+ receiverIdOrClass &&
+ !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin());
+ if (strictSelectorMatch) {
+ for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
+ if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
+ issueDiagnostic = true;
+ break;
+ }
+ }
+ }
+
+ // If we didn't see any strict differences, we won't see any loose
+ // differences. In ARC, however, we also need to check for loose
+ // mismatches, because most of them are errors.
+ if (!strictSelectorMatch ||
+ (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
+ for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
+ // This checks if the methods differ in type mismatch.
+ if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
+ !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
+ issueDiagnostic = true;
+ if (getLangOpts().ObjCAutoRefCount)
+ issueError = true;
+ break;
+ }
+ }
+
+ if (issueDiagnostic) {
+ if (issueError)
+ Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
+ else if (strictSelectorMatch)
+ Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
+ else
+ Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
+
+ Diag(Methods[0]->getLocStart(),
+ issueError ? diag::note_possibility : diag::note_using)
+ << Methods[0]->getSourceRange();
+ for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
+ Diag(Methods[I]->getLocStart(), diag::note_also_found)
+ << Methods[I]->getSourceRange();
+ }
+ }
+}
+
+ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
+ GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
+ if (Pos == MethodPool.end())
+ return nullptr;
+
+ GlobalMethods &Methods = Pos->second;
+ for (const ObjCMethodList *Method = &Methods.first; Method;
+ Method = Method->getNext())
+ if (Method->getMethod() &&
+ (Method->getMethod()->isDefined() ||
+ Method->getMethod()->isPropertyAccessor()))
+ return Method->getMethod();
+
+ for (const ObjCMethodList *Method = &Methods.second; Method;
+ Method = Method->getNext())
+ if (Method->getMethod() &&
+ (Method->getMethod()->isDefined() ||
+ Method->getMethod()->isPropertyAccessor()))
+ return Method->getMethod();
+ return nullptr;
+}
+
+static void
+HelperSelectorsForTypoCorrection(
+ SmallVectorImpl<const ObjCMethodDecl *> &BestMethod,
+ StringRef Typo, const ObjCMethodDecl * Method) {
+ const unsigned MaxEditDistance = 1;
+ unsigned BestEditDistance = MaxEditDistance + 1;
+ std::string MethodName = Method->getSelector().getAsString();
+
+ unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
+ if (MinPossibleEditDistance > 0 &&
+ Typo.size() / MinPossibleEditDistance < 1)
+ return;
+ unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
+ if (EditDistance > MaxEditDistance)
+ return;
+ if (EditDistance == BestEditDistance)
+ BestMethod.push_back(Method);
+ else if (EditDistance < BestEditDistance) {
+ BestMethod.clear();
+ BestMethod.push_back(Method);
+ }
+}
+
+static bool HelperIsMethodInObjCType(Sema &S, Selector Sel,
+ QualType ObjectType) {
+ if (ObjectType.isNull())
+ return true;
+ if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/))
+ return true;
+ return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) !=
+ nullptr;
+}
+
+const ObjCMethodDecl *
+Sema::SelectorsForTypoCorrection(Selector Sel,
+ QualType ObjectType) {
+ unsigned NumArgs = Sel.getNumArgs();
+ SmallVector<const ObjCMethodDecl *, 8> Methods;
+ bool ObjectIsId = true, ObjectIsClass = true;
+ if (ObjectType.isNull())
+ ObjectIsId = ObjectIsClass = false;
+ else if (!ObjectType->isObjCObjectPointerType())
+ return nullptr;
+ else if (const ObjCObjectPointerType *ObjCPtr =
+ ObjectType->getAsObjCInterfacePointerType()) {
+ ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
+ ObjectIsId = ObjectIsClass = false;
+ }
+ else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
+ ObjectIsClass = false;
+ else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
+ ObjectIsId = false;
+ else
+ return nullptr;
+
+ for (GlobalMethodPool::iterator b = MethodPool.begin(),
+ e = MethodPool.end(); b != e; b++) {
+ // instance methods
+ for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
+ if (M->getMethod() &&
+ (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
+ (M->getMethod()->getSelector() != Sel)) {
+ if (ObjectIsId)
+ Methods.push_back(M->getMethod());
+ else if (!ObjectIsClass &&
+ HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
+ ObjectType))
+ Methods.push_back(M->getMethod());
+ }
+ // class methods
+ for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
+ if (M->getMethod() &&
+ (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
+ (M->getMethod()->getSelector() != Sel)) {
+ if (ObjectIsClass)
+ Methods.push_back(M->getMethod());
+ else if (!ObjectIsId &&
+ HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
+ ObjectType))
+ Methods.push_back(M->getMethod());
+ }
+ }
+
+ SmallVector<const ObjCMethodDecl *, 8> SelectedMethods;
+ for (unsigned i = 0, e = Methods.size(); i < e; i++) {
+ HelperSelectorsForTypoCorrection(SelectedMethods,
+ Sel.getAsString(), Methods[i]);
+ }
+ return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
+}
+
+/// DiagnoseDuplicateIvars -
+/// Check for duplicate ivars in the entire class at the start of
+/// \@implementation. This becomes necesssary because class extension can
+/// add ivars to a class in random order which will not be known until
+/// class's \@implementation is seen.
+void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
+ ObjCInterfaceDecl *SID) {
+ for (auto *Ivar : ID->ivars()) {
+ if (Ivar->isInvalidDecl())
+ continue;
+ if (IdentifierInfo *II = Ivar->getIdentifier()) {
+ ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
+ if (prevIvar) {
+ Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
+ Diag(prevIvar->getLocation(), diag::note_previous_declaration);
+ Ivar->setInvalidDecl();
+ }
+ }
+ }
+}
+
+Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
+ switch (CurContext->getDeclKind()) {
+ case Decl::ObjCInterface:
+ return Sema::OCK_Interface;
+ case Decl::ObjCProtocol:
+ return Sema::OCK_Protocol;
+ case Decl::ObjCCategory:
+ if (cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
+ return Sema::OCK_ClassExtension;
+ return Sema::OCK_Category;
+ case Decl::ObjCImplementation:
+ return Sema::OCK_Implementation;
+ case Decl::ObjCCategoryImpl:
+ return Sema::OCK_CategoryImplementation;
+
+ default:
+ return Sema::OCK_None;
+ }
+}
+
+// Note: For class/category implementations, allMethods is always null.
+Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods,
+ ArrayRef<DeclGroupPtrTy> allTUVars) {
+ if (getObjCContainerKind() == Sema::OCK_None)
+ return nullptr;
+
+ assert(AtEnd.isValid() && "Invalid location for '@end'");
+
+ ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
+ Decl *ClassDecl = cast<Decl>(OCD);
+
+ bool isInterfaceDeclKind =
+ isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
+ || isa<ObjCProtocolDecl>(ClassDecl);
+ bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
+
+ // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
+ llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
+ llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
+
+ for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
+ ObjCMethodDecl *Method =
+ cast_or_null<ObjCMethodDecl>(allMethods[i]);
+
+ if (!Method) continue; // Already issued a diagnostic.
+ if (Method->isInstanceMethod()) {
+ /// Check for instance method of the same name with incompatible types
+ const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
+ bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
+ : false;
+ if ((isInterfaceDeclKind && PrevMethod && !match)
+ || (checkIdenticalMethods && match)) {
+ Diag(Method->getLocation(), diag::err_duplicate_method_decl)
+ << Method->getDeclName();
+ Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
+ Method->setInvalidDecl();
+ } else {
+ if (PrevMethod) {
+ Method->setAsRedeclaration(PrevMethod);
+ if (!Context.getSourceManager().isInSystemHeader(
+ Method->getLocation()))
+ Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
+ << Method->getDeclName();
+ Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
+ }
+ InsMap[Method->getSelector()] = Method;
+ /// The following allows us to typecheck messages to "id".
+ AddInstanceMethodToGlobalPool(Method);
+ }
+ } else {
+ /// Check for class method of the same name with incompatible types
+ const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
+ bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
+ : false;
+ if ((isInterfaceDeclKind && PrevMethod && !match)
+ || (checkIdenticalMethods && match)) {
+ Diag(Method->getLocation(), diag::err_duplicate_method_decl)
+ << Method->getDeclName();
+ Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
+ Method->setInvalidDecl();
+ } else {
+ if (PrevMethod) {
+ Method->setAsRedeclaration(PrevMethod);
+ if (!Context.getSourceManager().isInSystemHeader(
+ Method->getLocation()))
+ Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
+ << Method->getDeclName();
+ Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
+ }
+ ClsMap[Method->getSelector()] = Method;
+ AddFactoryMethodToGlobalPool(Method);
+ }
+ }
+ }
+ if (isa<ObjCInterfaceDecl>(ClassDecl)) {
+ // Nothing to do here.
+ } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
+ // Categories are used to extend the class by declaring new methods.
+ // By the same token, they are also used to add new properties. No
+ // need to compare the added property to those in the class.
+
+ if (C->IsClassExtension()) {
+ ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
+ DiagnoseClassExtensionDupMethods(C, CCPrimary);
+ }
+ }
+ if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
+ if (CDecl->getIdentifier())
+ // ProcessPropertyDecl is responsible for diagnosing conflicts with any
+ // user-defined setter/getter. It also synthesizes setter/getter methods
+ // and adds them to the DeclContext and global method pools.
+ for (auto *I : CDecl->properties())
+ ProcessPropertyDecl(I, CDecl);
+ CDecl->setAtEndRange(AtEnd);
+ }
+ if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
+ IC->setAtEndRange(AtEnd);
+ if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
+ // Any property declared in a class extension might have user
+ // declared setter or getter in current class extension or one
+ // of the other class extensions. Mark them as synthesized as
+ // property will be synthesized when property with same name is
+ // seen in the @implementation.
+ for (const auto *Ext : IDecl->visible_extensions()) {
+ for (const auto *Property : Ext->properties()) {
+ // Skip over properties declared @dynamic
+ if (const ObjCPropertyImplDecl *PIDecl
+ = IC->FindPropertyImplDecl(Property->getIdentifier()))
+ if (PIDecl->getPropertyImplementation()
+ == ObjCPropertyImplDecl::Dynamic)
+ continue;
+
+ for (const auto *Ext : IDecl->visible_extensions()) {
+ if (ObjCMethodDecl *GetterMethod
+ = Ext->getInstanceMethod(Property->getGetterName()))
+ GetterMethod->setPropertyAccessor(true);
+ if (!Property->isReadOnly())
+ if (ObjCMethodDecl *SetterMethod
+ = Ext->getInstanceMethod(Property->getSetterName()))
+ SetterMethod->setPropertyAccessor(true);
+ }
+ }
+ }
+ ImplMethodsVsClassMethods(S, IC, IDecl);
+ AtomicPropertySetterGetterRules(IC, IDecl);
+ DiagnoseOwningPropertyGetterSynthesis(IC);
+ DiagnoseUnusedBackingIvarInAccessor(S, IC);
+ if (IDecl->hasDesignatedInitializers())
+ DiagnoseMissingDesignatedInitOverrides(IC, IDecl);
+
+ bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
+ if (IDecl->getSuperClass() == nullptr) {
+ // This class has no superclass, so check that it has been marked with
+ // __attribute((objc_root_class)).
+ if (!HasRootClassAttr) {
+ SourceLocation DeclLoc(IDecl->getLocation());
+ SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc));
+ Diag(DeclLoc, diag::warn_objc_root_class_missing)
+ << IDecl->getIdentifier();
+ // See if NSObject is in the current scope, and if it is, suggest
+ // adding " : NSObject " to the class declaration.
+ NamedDecl *IF = LookupSingleName(TUScope,
+ NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
+ DeclLoc, LookupOrdinaryName);
+ ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
+ if (NSObjectDecl && NSObjectDecl->getDefinition()) {
+ Diag(SuperClassLoc, diag::note_objc_needs_superclass)
+ << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
+ } else {
+ Diag(SuperClassLoc, diag::note_objc_needs_superclass);
+ }
+ }
+ } else if (HasRootClassAttr) {
+ // Complain that only root classes may have this attribute.
+ Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
+ }
+
+ if (LangOpts.ObjCRuntime.isNonFragile()) {
+ while (IDecl->getSuperClass()) {
+ DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
+ IDecl = IDecl->getSuperClass();
+ }
+ }
+ }
+ SetIvarInitializers(IC);
+ } else if (ObjCCategoryImplDecl* CatImplClass =
+ dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
+ CatImplClass->setAtEndRange(AtEnd);
+
+ // Find category interface decl and then check that all methods declared
+ // in this interface are implemented in the category @implementation.
+ if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
+ if (ObjCCategoryDecl *Cat
+ = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
+ ImplMethodsVsClassMethods(S, CatImplClass, Cat);
+ }
+ }
+ }
+ if (isInterfaceDeclKind) {
+ // Reject invalid vardecls.
+ for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
+ DeclGroupRef DG = allTUVars[i].get();
+ for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
+ if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
+ if (!VDecl->hasExternalStorage())
+ Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
+ }
+ }
+ }
+ ActOnObjCContainerFinishDefinition();
+
+ for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
+ DeclGroupRef DG = allTUVars[i].get();
+ for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
+ (*I)->setTopLevelDeclInObjCContainer();
+ Consumer.HandleTopLevelDeclInObjCContainer(DG);
+ }
+
+ ActOnDocumentableDecl(ClassDecl);
+ return ClassDecl;
+}
+
+
+/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
+/// objective-c's type qualifier from the parser version of the same info.
+static Decl::ObjCDeclQualifier
+CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
+ return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
+}
+
+/// \brief Check whether the declared result type of the given Objective-C
+/// method declaration is compatible with the method's class.
+///
+static Sema::ResultTypeCompatibilityKind
+CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
+ ObjCInterfaceDecl *CurrentClass) {
+ QualType ResultType = Method->getReturnType();
+
+ // If an Objective-C method inherits its related result type, then its
+ // declared result type must be compatible with its own class type. The
+ // declared result type is compatible if:
+ if (const ObjCObjectPointerType *ResultObjectType
+ = ResultType->getAs<ObjCObjectPointerType>()) {
+ // - it is id or qualified id, or
+ if (ResultObjectType->isObjCIdType() ||
+ ResultObjectType->isObjCQualifiedIdType())
+ return Sema::RTC_Compatible;
+
+ if (CurrentClass) {
+ if (ObjCInterfaceDecl *ResultClass
+ = ResultObjectType->getInterfaceDecl()) {
+ // - it is the same as the method's class type, or
+ if (declaresSameEntity(CurrentClass, ResultClass))
+ return Sema::RTC_Compatible;
+
+ // - it is a superclass of the method's class type
+ if (ResultClass->isSuperClassOf(CurrentClass))
+ return Sema::RTC_Compatible;
+ }
+ } else {
+ // Any Objective-C pointer type might be acceptable for a protocol
+ // method; we just don't know.
+ return Sema::RTC_Unknown;
+ }
+ }
+
+ return Sema::RTC_Incompatible;
+}
+
+namespace {
+/// A helper class for searching for methods which a particular method
+/// overrides.
+class OverrideSearch {
+public:
+ Sema &S;
+ ObjCMethodDecl *Method;
+ llvm::SmallPtrSet<ObjCMethodDecl*, 4> Overridden;
+ bool Recursive;
+
+public:
+ OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
+ Selector selector = method->getSelector();
+
+ // Bypass this search if we've never seen an instance/class method
+ // with this selector before.
+ Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
+ if (it == S.MethodPool.end()) {
+ if (!S.getExternalSource()) return;
+ S.ReadMethodPool(selector);
+
+ it = S.MethodPool.find(selector);
+ if (it == S.MethodPool.end())
+ return;
+ }
+ ObjCMethodList &list =
+ method->isInstanceMethod() ? it->second.first : it->second.second;
+ if (!list.getMethod()) return;
+
+ ObjCContainerDecl *container
+ = cast<ObjCContainerDecl>(method->getDeclContext());
+
+ // Prevent the search from reaching this container again. This is
+ // important with categories, which override methods from the
+ // interface and each other.
+ if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(container)) {
+ searchFromContainer(container);
+ if (ObjCInterfaceDecl *Interface = Category->getClassInterface())
+ searchFromContainer(Interface);
+ } else {
+ searchFromContainer(container);
+ }
+ }
+
+ typedef llvm::SmallPtrSet<ObjCMethodDecl*, 128>::iterator iterator;
+ iterator begin() const { return Overridden.begin(); }
+ iterator end() const { return Overridden.end(); }
+
+private:
+ void searchFromContainer(ObjCContainerDecl *container) {
+ if (container->isInvalidDecl()) return;
+
+ switch (container->getDeclKind()) {
+#define OBJCCONTAINER(type, base) \
+ case Decl::type: \
+ searchFrom(cast<type##Decl>(container)); \
+ break;
+#define ABSTRACT_DECL(expansion)
+#define DECL(type, base) \
+ case Decl::type:
+#include "clang/AST/DeclNodes.inc"
+ llvm_unreachable("not an ObjC container!");
+ }
+ }
+
+ void searchFrom(ObjCProtocolDecl *protocol) {
+ if (!protocol->hasDefinition())
+ return;
+
+ // A method in a protocol declaration overrides declarations from
+ // referenced ("parent") protocols.
+ search(protocol->getReferencedProtocols());
+ }
+
+ void searchFrom(ObjCCategoryDecl *category) {
+ // A method in a category declaration overrides declarations from
+ // the main class and from protocols the category references.
+ // The main class is handled in the constructor.
+ search(category->getReferencedProtocols());
+ }
+
+ void searchFrom(ObjCCategoryImplDecl *impl) {
+ // A method in a category definition that has a category
+ // declaration overrides declarations from the category
+ // declaration.
+ if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
+ search(category);
+ if (ObjCInterfaceDecl *Interface = category->getClassInterface())
+ search(Interface);
+
+ // Otherwise it overrides declarations from the class.
+ } else if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) {
+ search(Interface);
+ }
+ }
+
+ void searchFrom(ObjCInterfaceDecl *iface) {
+ // A method in a class declaration overrides declarations from
+ if (!iface->hasDefinition())
+ return;
+
+ // - categories,
+ for (auto *Cat : iface->known_categories())
+ search(Cat);
+
+ // - the super class, and
+ if (ObjCInterfaceDecl *super = iface->getSuperClass())
+ search(super);
+
+ // - any referenced protocols.
+ search(iface->getReferencedProtocols());
+ }
+
+ void searchFrom(ObjCImplementationDecl *impl) {
+ // A method in a class implementation overrides declarations from
+ // the class interface.
+ if (ObjCInterfaceDecl *Interface = impl->getClassInterface())
+ search(Interface);
+ }
+
+
+ void search(const ObjCProtocolList &protocols) {
+ for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
+ i != e; ++i)
+ search(*i);
+ }
+
+ void search(ObjCContainerDecl *container) {
+ // Check for a method in this container which matches this selector.
+ ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
+ Method->isInstanceMethod(),
+ /*AllowHidden=*/true);
+
+ // If we find one, record it and bail out.
+ if (meth) {
+ Overridden.insert(meth);
+ return;
+ }
+
+ // Otherwise, search for methods that a hypothetical method here
+ // would have overridden.
+
+ // Note that we're now in a recursive case.
+ Recursive = true;
+
+ searchFromContainer(container);
+ }
+};
+}
+
+void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
+ ObjCInterfaceDecl *CurrentClass,
+ ResultTypeCompatibilityKind RTC) {
+ // Search for overridden methods and merge information down from them.
+ OverrideSearch overrides(*this, ObjCMethod);
+ // Keep track if the method overrides any method in the class's base classes,
+ // its protocols, or its categories' protocols; we will keep that info
+ // in the ObjCMethodDecl.
+ // For this info, a method in an implementation is not considered as
+ // overriding the same method in the interface or its categories.
+ bool hasOverriddenMethodsInBaseOrProtocol = false;
+ for (OverrideSearch::iterator
+ i = overrides.begin(), e = overrides.end(); i != e; ++i) {
+ ObjCMethodDecl *overridden = *i;
+
+ if (!hasOverriddenMethodsInBaseOrProtocol) {
+ if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
+ CurrentClass != overridden->getClassInterface() ||
+ overridden->isOverriding()) {
+ hasOverriddenMethodsInBaseOrProtocol = true;
+
+ } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
+ // OverrideSearch will return as "overridden" the same method in the
+ // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
+ // check whether a category of a base class introduced a method with the
+ // same selector, after the interface method declaration.
+ // To avoid unnecessary lookups in the majority of cases, we use the
+ // extra info bits in GlobalMethodPool to check whether there were any
+ // category methods with this selector.
+ GlobalMethodPool::iterator It =
+ MethodPool.find(ObjCMethod->getSelector());
+ if (It != MethodPool.end()) {
+ ObjCMethodList &List =
+ ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
+ unsigned CategCount = List.getBits();
+ if (CategCount > 0) {
+ // If the method is in a category we'll do lookup if there were at
+ // least 2 category methods recorded, otherwise only one will do.
+ if (CategCount > 1 ||
+ !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
+ OverrideSearch overrides(*this, overridden);
+ for (OverrideSearch::iterator
+ OI= overrides.begin(), OE= overrides.end(); OI!=OE; ++OI) {
+ ObjCMethodDecl *SuperOverridden = *OI;
+ if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
+ CurrentClass != SuperOverridden->getClassInterface()) {
+ hasOverriddenMethodsInBaseOrProtocol = true;
+ overridden->setOverriding(true);
+ break;
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+
+ // Propagate down the 'related result type' bit from overridden methods.
+ if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
+ ObjCMethod->SetRelatedResultType();
+
+ // Then merge the declarations.
+ mergeObjCMethodDecls(ObjCMethod, overridden);
+
+ if (ObjCMethod->isImplicit() && overridden->isImplicit())
+ continue; // Conflicting properties are detected elsewhere.
+
+ // Check for overriding methods
+ if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
+ isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
+ CheckConflictingOverridingMethod(ObjCMethod, overridden,
+ isa<ObjCProtocolDecl>(overridden->getDeclContext()));
+
+ if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
+ isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
+ !overridden->isImplicit() /* not meant for properties */) {
+ ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
+ E = ObjCMethod->param_end();
+ ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
+ PrevE = overridden->param_end();
+ for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
+ assert(PrevI != overridden->param_end() && "Param mismatch");
+ QualType T1 = Context.getCanonicalType((*ParamI)->getType());
+ QualType T2 = Context.getCanonicalType((*PrevI)->getType());
+ // If type of argument of method in this class does not match its
+ // respective argument type in the super class method, issue warning;
+ if (!Context.typesAreCompatible(T1, T2)) {
+ Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
+ << T1 << T2;
+ Diag(overridden->getLocation(), diag::note_previous_declaration);
+ break;
+ }
+ }
+ }
+ }
+
+ ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
+}
+
+Decl *Sema::ActOnMethodDeclaration(
+ Scope *S,
+ SourceLocation MethodLoc, SourceLocation EndLoc,
+ tok::TokenKind MethodType,
+ ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
+ ArrayRef<SourceLocation> SelectorLocs,
+ Selector Sel,
+ // optional arguments. The number of types/arguments is obtained
+ // from the Sel.getNumArgs().
+ ObjCArgInfo *ArgInfo,
+ DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
+ AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
+ bool isVariadic, bool MethodDefinition) {
+ // Make sure we can establish a context for the method.
+ if (!CurContext->isObjCContainer()) {
+ Diag(MethodLoc, diag::error_missing_method_context);
+ return nullptr;
+ }
+ ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
+ Decl *ClassDecl = cast<Decl>(OCD);
+ QualType resultDeclType;
+
+ bool HasRelatedResultType = false;
+ TypeSourceInfo *ReturnTInfo = nullptr;
+ if (ReturnType) {
+ resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo);
+
+ if (CheckFunctionReturnType(resultDeclType, MethodLoc))
+ return nullptr;
+
+ HasRelatedResultType = (resultDeclType == Context.getObjCInstanceType());
+ } else { // get the type for "id".
+ resultDeclType = Context.getObjCIdType();
+ Diag(MethodLoc, diag::warn_missing_method_return_type)
+ << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
+ }
+
+ ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create(
+ Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext,
+ MethodType == tok::minus, isVariadic,
+ /*isPropertyAccessor=*/false,
+ /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
+ MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional
+ : ObjCMethodDecl::Required,
+ HasRelatedResultType);
+
+ SmallVector<ParmVarDecl*, 16> Params;
+
+ for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
+ QualType ArgType;
+ TypeSourceInfo *DI;
+
+ if (!ArgInfo[i].Type) {
+ ArgType = Context.getObjCIdType();
+ DI = nullptr;
+ } else {
+ ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
+ }
+
+ LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
+ LookupOrdinaryName, ForRedeclaration);
+ LookupName(R, S);
+ if (R.isSingleResult()) {
+ NamedDecl *PrevDecl = R.getFoundDecl();
+ if (S->isDeclScope(PrevDecl)) {
+ Diag(ArgInfo[i].NameLoc,
+ (MethodDefinition ? diag::warn_method_param_redefinition
+ : diag::warn_method_param_declaration))
+ << ArgInfo[i].Name;
+ Diag(PrevDecl->getLocation(),
+ diag::note_previous_declaration);
+ }
+ }
+
+ SourceLocation StartLoc = DI
+ ? DI->getTypeLoc().getBeginLoc()
+ : ArgInfo[i].NameLoc;
+
+ ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
+ ArgInfo[i].NameLoc, ArgInfo[i].Name,
+ ArgType, DI, SC_None);
+
+ Param->setObjCMethodScopeInfo(i);
+
+ Param->setObjCDeclQualifier(
+ CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
+
+ // Apply the attributes to the parameter.
+ ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
+
+ if (Param->hasAttr<BlocksAttr>()) {
+ Diag(Param->getLocation(), diag::err_block_on_nonlocal);
+ Param->setInvalidDecl();
+ }
+ S->AddDecl(Param);
+ IdResolver.AddDecl(Param);
+
+ Params.push_back(Param);
+ }
+
+ for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
+ ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
+ QualType ArgType = Param->getType();
+ if (ArgType.isNull())
+ ArgType = Context.getObjCIdType();
+ else
+ // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
+ ArgType = Context.getAdjustedParameterType(ArgType);
+
+ Param->setDeclContext(ObjCMethod);
+ Params.push_back(Param);
+ }
+
+ ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
+ ObjCMethod->setObjCDeclQualifier(
+ CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
+
+ if (AttrList)
+ ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
+
+ // Add the method now.
+ const ObjCMethodDecl *PrevMethod = nullptr;
+ if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
+ if (MethodType == tok::minus) {
+ PrevMethod = ImpDecl->getInstanceMethod(Sel);
+ ImpDecl->addInstanceMethod(ObjCMethod);
+ } else {
+ PrevMethod = ImpDecl->getClassMethod(Sel);
+ ImpDecl->addClassMethod(ObjCMethod);
+ }
+
+ ObjCMethodDecl *IMD = nullptr;
+ if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface())
+ IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
+ ObjCMethod->isInstanceMethod());
+ if (IMD && IMD->hasAttr<ObjCRequiresSuperAttr>() &&
+ !ObjCMethod->hasAttr<ObjCRequiresSuperAttr>()) {
+ // merge the attribute into implementation.
+ ObjCMethod->addAttr(ObjCRequiresSuperAttr::CreateImplicit(Context,
+ ObjCMethod->getLocation()));
+ }
+ if (isa<ObjCCategoryImplDecl>(ImpDecl)) {
+ ObjCMethodFamily family =
+ ObjCMethod->getSelector().getMethodFamily();
+ if (family == OMF_dealloc && IMD && IMD->isOverriding())
+ Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category)
+ << ObjCMethod->getDeclName();
+ }
+ } else {
+ cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
+ }
+
+ if (PrevMethod) {
+ // You can never have two method definitions with the same name.
+ Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
+ << ObjCMethod->getDeclName();
+ Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
+ ObjCMethod->setInvalidDecl();
+ return ObjCMethod;
+ }
+
+ // If this Objective-C method does not have a related result type, but we
+ // are allowed to infer related result types, try to do so based on the
+ // method family.
+ ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
+ if (!CurrentClass) {
+ if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
+ CurrentClass = Cat->getClassInterface();
+ else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
+ CurrentClass = Impl->getClassInterface();
+ else if (ObjCCategoryImplDecl *CatImpl
+ = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
+ CurrentClass = CatImpl->getClassInterface();
+ }
+
+ ResultTypeCompatibilityKind RTC
+ = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
+
+ CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
+
+ bool ARCError = false;
+ if (getLangOpts().ObjCAutoRefCount)
+ ARCError = CheckARCMethodDecl(ObjCMethod);
+
+ // Infer the related result type when possible.
+ if (!ARCError && RTC == Sema::RTC_Compatible &&
+ !ObjCMethod->hasRelatedResultType() &&
+ LangOpts.ObjCInferRelatedResultType) {
+ bool InferRelatedResultType = false;
+ switch (ObjCMethod->getMethodFamily()) {
+ case OMF_None:
+ case OMF_copy:
+ case OMF_dealloc:
+ case OMF_finalize:
+ case OMF_mutableCopy:
+ case OMF_release:
+ case OMF_retainCount:
+ case OMF_initialize:
+ case OMF_performSelector:
+ break;
+
+ case OMF_alloc:
+ case OMF_new:
+ InferRelatedResultType = ObjCMethod->isClassMethod();
+ break;
+
+ case OMF_init:
+ case OMF_autorelease:
+ case OMF_retain:
+ case OMF_self:
+ InferRelatedResultType = ObjCMethod->isInstanceMethod();
+ break;
+ }
+
+ if (InferRelatedResultType &&
+ !ObjCMethod->getReturnType()->isObjCIndependentClassType())
+ ObjCMethod->SetRelatedResultType();
+ }
+
+ ActOnDocumentableDecl(ObjCMethod);
+
+ return ObjCMethod;
+}
+
+bool Sema::CheckObjCDeclScope(Decl *D) {
+ // Following is also an error. But it is caused by a missing @end
+ // and diagnostic is issued elsewhere.
+ if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
+ return false;
+
+ // If we switched context to translation unit while we are still lexically in
+ // an objc container, it means the parser missed emitting an error.
+ if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
+ return false;
+
+ Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
+ D->setInvalidDecl();
+
+ return true;
+}
+
+/// Called whenever \@defs(ClassName) is encountered in the source. Inserts the
+/// instance variables of ClassName into Decls.
+void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
+ IdentifierInfo *ClassName,
+ SmallVectorImpl<Decl*> &Decls) {
+ // Check that ClassName is a valid class
+ ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
+ if (!Class) {
+ Diag(DeclStart, diag::err_undef_interface) << ClassName;
+ return;
+ }
+ if (LangOpts.ObjCRuntime.isNonFragile()) {
+ Diag(DeclStart, diag::err_atdef_nonfragile_interface);
+ return;
+ }
+
+ // Collect the instance variables
+ SmallVector<const ObjCIvarDecl*, 32> Ivars;
+ Context.DeepCollectObjCIvars(Class, true, Ivars);
+ // For each ivar, create a fresh ObjCAtDefsFieldDecl.
+ for (unsigned i = 0; i < Ivars.size(); i++) {
+ const FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
+ RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
+ Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
+ /*FIXME: StartL=*/ID->getLocation(),
+ ID->getLocation(),
+ ID->getIdentifier(), ID->getType(),
+ ID->getBitWidth());
+ Decls.push_back(FD);
+ }
+
+ // Introduce all of these fields into the appropriate scope.
+ for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
+ D != Decls.end(); ++D) {
+ FieldDecl *FD = cast<FieldDecl>(*D);
+ if (getLangOpts().CPlusPlus)
+ PushOnScopeChains(cast<FieldDecl>(FD), S);
+ else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
+ Record->addDecl(FD);
+ }
+}
+
+/// \brief Build a type-check a new Objective-C exception variable declaration.
+VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
+ SourceLocation StartLoc,
+ SourceLocation IdLoc,
+ IdentifierInfo *Id,
+ bool Invalid) {
+ // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
+ // duration shall not be qualified by an address-space qualifier."
+ // Since all parameters have automatic store duration, they can not have
+ // an address space.
+ if (T.getAddressSpace() != 0) {
+ Diag(IdLoc, diag::err_arg_with_address_space);
+ Invalid = true;
+ }
+
+ // An @catch parameter must be an unqualified object pointer type;
+ // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
+ if (Invalid) {
+ // Don't do any further checking.
+ } else if (T->isDependentType()) {
+ // Okay: we don't know what this type will instantiate to.
+ } else if (!T->isObjCObjectPointerType()) {
+ Invalid = true;
+ Diag(IdLoc ,diag::err_catch_param_not_objc_type);
+ } else if (T->isObjCQualifiedIdType()) {
+ Invalid = true;
+ Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
+ }
+
+ VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
+ T, TInfo, SC_None);
+ New->setExceptionVariable(true);
+
+ // In ARC, infer 'retaining' for variables of retainable type.
+ if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
+ Invalid = true;
+
+ if (Invalid)
+ New->setInvalidDecl();
+ return New;
+}
+
+Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
+ const DeclSpec &DS = D.getDeclSpec();
+
+ // We allow the "register" storage class on exception variables because
+ // GCC did, but we drop it completely. Any other storage class is an error.
+ if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
+ Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
+ << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
+ } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
+ Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
+ << DeclSpec::getSpecifierName(SCS);
+ }
+ if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
+ Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
+ diag::err_invalid_thread)
+ << DeclSpec::getSpecifierName(TSCS);
+ D.getMutableDeclSpec().ClearStorageClassSpecs();
+
+ DiagnoseFunctionSpecifiers(D.getDeclSpec());
+
+ // Check that there are no default arguments inside the type of this
+ // exception object (C++ only).
+ if (getLangOpts().CPlusPlus)
+ CheckExtraCXXDefaultArguments(D);
+
+ TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
+ QualType ExceptionType = TInfo->getType();
+
+ VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
+ D.getSourceRange().getBegin(),
+ D.getIdentifierLoc(),
+ D.getIdentifier(),
+ D.isInvalidType());
+
+ // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
+ if (D.getCXXScopeSpec().isSet()) {
+ Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
+ << D.getCXXScopeSpec().getRange();
+ New->setInvalidDecl();
+ }
+
+ // Add the parameter declaration into this scope.
+ S->AddDecl(New);
+ if (D.getIdentifier())
+ IdResolver.AddDecl(New);
+
+ ProcessDeclAttributes(S, New, D);
+
+ if (New->hasAttr<BlocksAttr>())
+ Diag(New->getLocation(), diag::err_block_on_nonlocal);
+ return New;
+}
+
+/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
+/// initialization.
+void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
+ SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
+ for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
+ Iv= Iv->getNextIvar()) {
+ QualType QT = Context.getBaseElementType(Iv->getType());
+ if (QT->isRecordType())
+ Ivars.push_back(Iv);
+ }
+}
+
+void Sema::DiagnoseUseOfUnimplementedSelectors() {
+ // Load referenced selectors from the external source.
+ if (ExternalSource) {
+ SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
+ ExternalSource->ReadReferencedSelectors(Sels);
+ for (unsigned I = 0, N = Sels.size(); I != N; ++I)
+ ReferencedSelectors[Sels[I].first] = Sels[I].second;
+ }
+
+ // Warning will be issued only when selector table is
+ // generated (which means there is at lease one implementation
+ // in the TU). This is to match gcc's behavior.
+ if (ReferencedSelectors.empty() ||
+ !Context.AnyObjCImplementation())
+ return;
+ for (auto &SelectorAndLocation : ReferencedSelectors) {
+ Selector Sel = SelectorAndLocation.first;
+ SourceLocation Loc = SelectorAndLocation.second;
+ if (!LookupImplementedMethodInGlobalPool(Sel))
+ Diag(Loc, diag::warn_unimplemented_selector) << Sel;
+ }
+ return;
+}
+
+ObjCIvarDecl *
+Sema::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
+ const ObjCPropertyDecl *&PDecl) const {
+ if (Method->isClassMethod())
+ return nullptr;
+ const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
+ if (!IDecl)
+ return nullptr;
+ Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true,
+ /*shallowCategoryLookup=*/false,
+ /*followSuper=*/false);
+ if (!Method || !Method->isPropertyAccessor())
+ return nullptr;
+ if ((PDecl = Method->findPropertyDecl()))
+ if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) {
+ // property backing ivar must belong to property's class
+ // or be a private ivar in class's implementation.
+ // FIXME. fix the const-ness issue.
+ IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable(
+ IV->getIdentifier());
+ return IV;
+ }
+ return nullptr;
+}
+
+namespace {
+ /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property
+ /// accessor references the backing ivar.
+ class UnusedBackingIvarChecker :
+ public DataRecursiveASTVisitor<UnusedBackingIvarChecker> {
+ public:
+ Sema &S;
+ const ObjCMethodDecl *Method;
+ const ObjCIvarDecl *IvarD;
+ bool AccessedIvar;
+ bool InvokedSelfMethod;
+
+ UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method,
+ const ObjCIvarDecl *IvarD)
+ : S(S), Method(Method), IvarD(IvarD),
+ AccessedIvar(false), InvokedSelfMethod(false) {
+ assert(IvarD);
+ }
+
+ bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
+ if (E->getDecl() == IvarD) {
+ AccessedIvar = true;
+ return false;
+ }
+ return true;
+ }
+
+ bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
+ if (E->getReceiverKind() == ObjCMessageExpr::Instance &&
+ S.isSelfExpr(E->getInstanceReceiver(), Method)) {
+ InvokedSelfMethod = true;
+ }
+ return true;
+ }
+ };
+}
+
+void Sema::DiagnoseUnusedBackingIvarInAccessor(Scope *S,
+ const ObjCImplementationDecl *ImplD) {
+ if (S->hasUnrecoverableErrorOccurred())
+ return;
+
+ for (const auto *CurMethod : ImplD->instance_methods()) {
+ unsigned DIAG = diag::warn_unused_property_backing_ivar;
+ SourceLocation Loc = CurMethod->getLocation();
+ if (Diags.isIgnored(DIAG, Loc))
+ continue;
+
+ const ObjCPropertyDecl *PDecl;
+ const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
+ if (!IV)
+ continue;
+
+ UnusedBackingIvarChecker Checker(*this, CurMethod, IV);
+ Checker.TraverseStmt(CurMethod->getBody());
+ if (Checker.AccessedIvar)
+ continue;
+
+ // Do not issue this warning if backing ivar is used somewhere and accessor
+ // implementation makes a self call. This is to prevent false positive in
+ // cases where the ivar is accessed by another method that the accessor
+ // delegates to.
+ if (!IV->isReferenced() || !Checker.InvokedSelfMethod) {
+ Diag(Loc, DIAG) << IV;
+ Diag(PDecl->getLocation(), diag::note_property_declare);
+ }
+ }
+}
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaExceptionSpec.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaExceptionSpec.cpp
new file mode 100644
index 0000000..51d6ace
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaExceptionSpec.cpp
@@ -0,0 +1,1163 @@
+//===--- SemaExceptionSpec.cpp - C++ Exception Specifications ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides Sema routines for C++ exception specification testing.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Sema/SemaInternal.h"
+#include "clang/AST/ASTMutationListener.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/Basic/Diagnostic.h"
+#include "clang/Basic/SourceManager.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallString.h"
+
+namespace clang {
+
+static const FunctionProtoType *GetUnderlyingFunction(QualType T)
+{
+ if (const PointerType *PtrTy = T->getAs<PointerType>())
+ T = PtrTy->getPointeeType();
+ else if (const ReferenceType *RefTy = T->getAs<ReferenceType>())
+ T = RefTy->getPointeeType();
+ else if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
+ T = MPTy->getPointeeType();
+ return T->getAs<FunctionProtoType>();
+}
+
+/// HACK: libstdc++ has a bug where it shadows std::swap with a member
+/// swap function then tries to call std::swap unqualified from the exception
+/// specification of that function. This function detects whether we're in
+/// such a case and turns off delay-parsing of exception specifications.
+bool Sema::isLibstdcxxEagerExceptionSpecHack(const Declarator &D) {
+ auto *RD = dyn_cast<CXXRecordDecl>(CurContext);
+
+ // All the problem cases are member functions named "swap" within class
+ // templates declared directly within namespace std.
+ if (!RD || RD->getEnclosingNamespaceContext() != getStdNamespace() ||
+ !RD->getIdentifier() || !RD->getDescribedClassTemplate() ||
+ !D.getIdentifier() || !D.getIdentifier()->isStr("swap"))
+ return false;
+
+ // Only apply this hack within a system header.
+ if (!Context.getSourceManager().isInSystemHeader(D.getLocStart()))
+ return false;
+
+ return llvm::StringSwitch<bool>(RD->getIdentifier()->getName())
+ .Case("array", true)
+ .Case("pair", true)
+ .Case("priority_queue", true)
+ .Case("stack", true)
+ .Case("queue", true)
+ .Default(false);
+}
+
+/// CheckSpecifiedExceptionType - Check if the given type is valid in an
+/// exception specification. Incomplete types, or pointers to incomplete types
+/// other than void are not allowed.
+///
+/// \param[in,out] T The exception type. This will be decayed to a pointer type
+/// when the input is an array or a function type.
+bool Sema::CheckSpecifiedExceptionType(QualType &T, const SourceRange &Range) {
+ // C++11 [except.spec]p2:
+ // A type cv T, "array of T", or "function returning T" denoted
+ // in an exception-specification is adjusted to type T, "pointer to T", or
+ // "pointer to function returning T", respectively.
+ //
+ // We also apply this rule in C++98.
+ if (T->isArrayType())
+ T = Context.getArrayDecayedType(T);
+ else if (T->isFunctionType())
+ T = Context.getPointerType(T);
+
+ int Kind = 0;
+ QualType PointeeT = T;
+ if (const PointerType *PT = T->getAs<PointerType>()) {
+ PointeeT = PT->getPointeeType();
+ Kind = 1;
+
+ // cv void* is explicitly permitted, despite being a pointer to an
+ // incomplete type.
+ if (PointeeT->isVoidType())
+ return false;
+ } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
+ PointeeT = RT->getPointeeType();
+ Kind = 2;
+
+ if (RT->isRValueReferenceType()) {
+ // C++11 [except.spec]p2:
+ // A type denoted in an exception-specification shall not denote [...]
+ // an rvalue reference type.
+ Diag(Range.getBegin(), diag::err_rref_in_exception_spec)
+ << T << Range;
+ return true;
+ }
+ }
+
+ // C++11 [except.spec]p2:
+ // A type denoted in an exception-specification shall not denote an
+ // incomplete type other than a class currently being defined [...].
+ // A type denoted in an exception-specification shall not denote a
+ // pointer or reference to an incomplete type, other than (cv) void* or a
+ // pointer or reference to a class currently being defined.
+ if (!(PointeeT->isRecordType() &&
+ PointeeT->getAs<RecordType>()->isBeingDefined()) &&
+ RequireCompleteType(Range.getBegin(), PointeeT,
+ diag::err_incomplete_in_exception_spec, Kind, Range))
+ return true;
+
+ return false;
+}
+
+/// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer
+/// to member to a function with an exception specification. This means that
+/// it is invalid to add another level of indirection.
+bool Sema::CheckDistantExceptionSpec(QualType T) {
+ if (const PointerType *PT = T->getAs<PointerType>())
+ T = PT->getPointeeType();
+ else if (const MemberPointerType *PT = T->getAs<MemberPointerType>())
+ T = PT->getPointeeType();
+ else
+ return false;
+
+ const FunctionProtoType *FnT = T->getAs<FunctionProtoType>();
+ if (!FnT)
+ return false;
+
+ return FnT->hasExceptionSpec();
+}
+
+const FunctionProtoType *
+Sema::ResolveExceptionSpec(SourceLocation Loc, const FunctionProtoType *FPT) {
+ if (FPT->getExceptionSpecType() == EST_Unparsed) {
+ Diag(Loc, diag::err_exception_spec_not_parsed);
+ return nullptr;
+ }
+
+ if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
+ return FPT;
+
+ FunctionDecl *SourceDecl = FPT->getExceptionSpecDecl();
+ const FunctionProtoType *SourceFPT =
+ SourceDecl->getType()->castAs<FunctionProtoType>();
+
+ // If the exception specification has already been resolved, just return it.
+ if (!isUnresolvedExceptionSpec(SourceFPT->getExceptionSpecType()))
+ return SourceFPT;
+
+ // Compute or instantiate the exception specification now.
+ if (SourceFPT->getExceptionSpecType() == EST_Unevaluated)
+ EvaluateImplicitExceptionSpec(Loc, cast<CXXMethodDecl>(SourceDecl));
+ else
+ InstantiateExceptionSpec(Loc, SourceDecl);
+
+ return SourceDecl->getType()->castAs<FunctionProtoType>();
+}
+
+void
+Sema::UpdateExceptionSpec(FunctionDecl *FD,
+ const FunctionProtoType::ExceptionSpecInfo &ESI) {
+ // If we've fully resolved the exception specification, notify listeners.
+ if (!isUnresolvedExceptionSpec(ESI.Type))
+ if (auto *Listener = getASTMutationListener())
+ Listener->ResolvedExceptionSpec(FD);
+
+ for (auto *Redecl : FD->redecls())
+ Context.adjustExceptionSpec(cast<FunctionDecl>(Redecl), ESI);
+}
+
+/// Determine whether a function has an implicitly-generated exception
+/// specification.
+static bool hasImplicitExceptionSpec(FunctionDecl *Decl) {
+ if (!isa<CXXDestructorDecl>(Decl) &&
+ Decl->getDeclName().getCXXOverloadedOperator() != OO_Delete &&
+ Decl->getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
+ return false;
+
+ // For a function that the user didn't declare:
+ // - if this is a destructor, its exception specification is implicit.
+ // - if this is 'operator delete' or 'operator delete[]', the exception
+ // specification is as-if an explicit exception specification was given
+ // (per [basic.stc.dynamic]p2).
+ if (!Decl->getTypeSourceInfo())
+ return isa<CXXDestructorDecl>(Decl);
+
+ const FunctionProtoType *Ty =
+ Decl->getTypeSourceInfo()->getType()->getAs<FunctionProtoType>();
+ return !Ty->hasExceptionSpec();
+}
+
+bool Sema::CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New) {
+ OverloadedOperatorKind OO = New->getDeclName().getCXXOverloadedOperator();
+ bool IsOperatorNew = OO == OO_New || OO == OO_Array_New;
+ bool MissingExceptionSpecification = false;
+ bool MissingEmptyExceptionSpecification = false;
+
+ unsigned DiagID = diag::err_mismatched_exception_spec;
+ bool ReturnValueOnError = true;
+ if (getLangOpts().MicrosoftExt) {
+ DiagID = diag::ext_mismatched_exception_spec;
+ ReturnValueOnError = false;
+ }
+
+ // Check the types as written: they must match before any exception
+ // specification adjustment is applied.
+ if (!CheckEquivalentExceptionSpec(
+ PDiag(DiagID), PDiag(diag::note_previous_declaration),
+ Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
+ New->getType()->getAs<FunctionProtoType>(), New->getLocation(),
+ &MissingExceptionSpecification, &MissingEmptyExceptionSpecification,
+ /*AllowNoexceptAllMatchWithNoSpec=*/true, IsOperatorNew)) {
+ // C++11 [except.spec]p4 [DR1492]:
+ // If a declaration of a function has an implicit
+ // exception-specification, other declarations of the function shall
+ // not specify an exception-specification.
+ if (getLangOpts().CPlusPlus11 &&
+ hasImplicitExceptionSpec(Old) != hasImplicitExceptionSpec(New)) {
+ Diag(New->getLocation(), diag::ext_implicit_exception_spec_mismatch)
+ << hasImplicitExceptionSpec(Old);
+ if (!Old->getLocation().isInvalid())
+ Diag(Old->getLocation(), diag::note_previous_declaration);
+ }
+ return false;
+ }
+
+ // The failure was something other than an missing exception
+ // specification; return an error, except in MS mode where this is a warning.
+ if (!MissingExceptionSpecification)
+ return ReturnValueOnError;
+
+ const FunctionProtoType *NewProto =
+ New->getType()->castAs<FunctionProtoType>();
+
+ // The new function declaration is only missing an empty exception
+ // specification "throw()". If the throw() specification came from a
+ // function in a system header that has C linkage, just add an empty
+ // exception specification to the "new" declaration. This is an
+ // egregious workaround for glibc, which adds throw() specifications
+ // to many libc functions as an optimization. Unfortunately, that
+ // optimization isn't permitted by the C++ standard, so we're forced
+ // to work around it here.
+ if (MissingEmptyExceptionSpecification && NewProto &&
+ (Old->getLocation().isInvalid() ||
+ Context.getSourceManager().isInSystemHeader(Old->getLocation())) &&
+ Old->isExternC()) {
+ New->setType(Context.getFunctionType(
+ NewProto->getReturnType(), NewProto->getParamTypes(),
+ NewProto->getExtProtoInfo().withExceptionSpec(EST_DynamicNone)));
+ return false;
+ }
+
+ const FunctionProtoType *OldProto =
+ Old->getType()->castAs<FunctionProtoType>();
+
+ FunctionProtoType::ExceptionSpecInfo ESI = OldProto->getExceptionSpecType();
+ if (ESI.Type == EST_Dynamic) {
+ ESI.Exceptions = OldProto->exceptions();
+ } else if (ESI.Type == EST_ComputedNoexcept) {
+ // FIXME: We can't just take the expression from the old prototype. It
+ // likely contains references to the old prototype's parameters.
+ }
+
+ // Update the type of the function with the appropriate exception
+ // specification.
+ New->setType(Context.getFunctionType(
+ NewProto->getReturnType(), NewProto->getParamTypes(),
+ NewProto->getExtProtoInfo().withExceptionSpec(ESI)));
+
+ // Warn about the lack of exception specification.
+ SmallString<128> ExceptionSpecString;
+ llvm::raw_svector_ostream OS(ExceptionSpecString);
+ switch (OldProto->getExceptionSpecType()) {
+ case EST_DynamicNone:
+ OS << "throw()";
+ break;
+
+ case EST_Dynamic: {
+ OS << "throw(";
+ bool OnFirstException = true;
+ for (const auto &E : OldProto->exceptions()) {
+ if (OnFirstException)
+ OnFirstException = false;
+ else
+ OS << ", ";
+
+ OS << E.getAsString(getPrintingPolicy());
+ }
+ OS << ")";
+ break;
+ }
+
+ case EST_BasicNoexcept:
+ OS << "noexcept";
+ break;
+
+ case EST_ComputedNoexcept:
+ OS << "noexcept(";
+ assert(OldProto->getNoexceptExpr() != nullptr && "Expected non-null Expr");
+ OldProto->getNoexceptExpr()->printPretty(OS, nullptr, getPrintingPolicy());
+ OS << ")";
+ break;
+
+ default:
+ llvm_unreachable("This spec type is compatible with none.");
+ }
+ OS.flush();
+
+ SourceLocation FixItLoc;
+ if (TypeSourceInfo *TSInfo = New->getTypeSourceInfo()) {
+ TypeLoc TL = TSInfo->getTypeLoc().IgnoreParens();
+ if (FunctionTypeLoc FTLoc = TL.getAs<FunctionTypeLoc>())
+ FixItLoc = getLocForEndOfToken(FTLoc.getLocalRangeEnd());
+ }
+
+ if (FixItLoc.isInvalid())
+ Diag(New->getLocation(), diag::warn_missing_exception_specification)
+ << New << OS.str();
+ else {
+ // FIXME: This will get more complicated with C++0x
+ // late-specified return types.
+ Diag(New->getLocation(), diag::warn_missing_exception_specification)
+ << New << OS.str()
+ << FixItHint::CreateInsertion(FixItLoc, " " + OS.str().str());
+ }
+
+ if (!Old->getLocation().isInvalid())
+ Diag(Old->getLocation(), diag::note_previous_declaration);
+
+ return false;
+}
+
+/// CheckEquivalentExceptionSpec - Check if the two types have equivalent
+/// exception specifications. Exception specifications are equivalent if
+/// they allow exactly the same set of exception types. It does not matter how
+/// that is achieved. See C++ [except.spec]p2.
+bool Sema::CheckEquivalentExceptionSpec(
+ const FunctionProtoType *Old, SourceLocation OldLoc,
+ const FunctionProtoType *New, SourceLocation NewLoc) {
+ unsigned DiagID = diag::err_mismatched_exception_spec;
+ if (getLangOpts().MicrosoftExt)
+ DiagID = diag::ext_mismatched_exception_spec;
+ bool Result = CheckEquivalentExceptionSpec(PDiag(DiagID),
+ PDiag(diag::note_previous_declaration), Old, OldLoc, New, NewLoc);
+
+ // In Microsoft mode, mismatching exception specifications just cause a warning.
+ if (getLangOpts().MicrosoftExt)
+ return false;
+ return Result;
+}
+
+/// CheckEquivalentExceptionSpec - Check if the two types have compatible
+/// exception specifications. See C++ [except.spec]p3.
+///
+/// \return \c false if the exception specifications match, \c true if there is
+/// a problem. If \c true is returned, either a diagnostic has already been
+/// produced or \c *MissingExceptionSpecification is set to \c true.
+bool Sema::CheckEquivalentExceptionSpec(const PartialDiagnostic &DiagID,
+ const PartialDiagnostic & NoteID,
+ const FunctionProtoType *Old,
+ SourceLocation OldLoc,
+ const FunctionProtoType *New,
+ SourceLocation NewLoc,
+ bool *MissingExceptionSpecification,
+ bool*MissingEmptyExceptionSpecification,
+ bool AllowNoexceptAllMatchWithNoSpec,
+ bool IsOperatorNew) {
+ // Just completely ignore this under -fno-exceptions.
+ if (!getLangOpts().CXXExceptions)
+ return false;
+
+ if (MissingExceptionSpecification)
+ *MissingExceptionSpecification = false;
+
+ if (MissingEmptyExceptionSpecification)
+ *MissingEmptyExceptionSpecification = false;
+
+ Old = ResolveExceptionSpec(NewLoc, Old);
+ if (!Old)
+ return false;
+ New = ResolveExceptionSpec(NewLoc, New);
+ if (!New)
+ return false;
+
+ // C++0x [except.spec]p3: Two exception-specifications are compatible if:
+ // - both are non-throwing, regardless of their form,
+ // - both have the form noexcept(constant-expression) and the constant-
+ // expressions are equivalent,
+ // - both are dynamic-exception-specifications that have the same set of
+ // adjusted types.
+ //
+ // C++0x [except.spec]p12: An exception-specifcation is non-throwing if it is
+ // of the form throw(), noexcept, or noexcept(constant-expression) where the
+ // constant-expression yields true.
+ //
+ // C++0x [except.spec]p4: If any declaration of a function has an exception-
+ // specifier that is not a noexcept-specification allowing all exceptions,
+ // all declarations [...] of that function shall have a compatible
+ // exception-specification.
+ //
+ // That last point basically means that noexcept(false) matches no spec.
+ // It's considered when AllowNoexceptAllMatchWithNoSpec is true.
+
+ ExceptionSpecificationType OldEST = Old->getExceptionSpecType();
+ ExceptionSpecificationType NewEST = New->getExceptionSpecType();
+
+ assert(!isUnresolvedExceptionSpec(OldEST) &&
+ !isUnresolvedExceptionSpec(NewEST) &&
+ "Shouldn't see unknown exception specifications here");
+
+ // Shortcut the case where both have no spec.
+ if (OldEST == EST_None && NewEST == EST_None)
+ return false;
+
+ FunctionProtoType::NoexceptResult OldNR = Old->getNoexceptSpec(Context);
+ FunctionProtoType::NoexceptResult NewNR = New->getNoexceptSpec(Context);
+ if (OldNR == FunctionProtoType::NR_BadNoexcept ||
+ NewNR == FunctionProtoType::NR_BadNoexcept)
+ return false;
+
+ // Dependent noexcept specifiers are compatible with each other, but nothing
+ // else.
+ // One noexcept is compatible with another if the argument is the same
+ if (OldNR == NewNR &&
+ OldNR != FunctionProtoType::NR_NoNoexcept &&
+ NewNR != FunctionProtoType::NR_NoNoexcept)
+ return false;
+ if (OldNR != NewNR &&
+ OldNR != FunctionProtoType::NR_NoNoexcept &&
+ NewNR != FunctionProtoType::NR_NoNoexcept) {
+ Diag(NewLoc, DiagID);
+ if (NoteID.getDiagID() != 0 && OldLoc.isValid())
+ Diag(OldLoc, NoteID);
+ return true;
+ }
+
+ // The MS extension throw(...) is compatible with itself.
+ if (OldEST == EST_MSAny && NewEST == EST_MSAny)
+ return false;
+
+ // It's also compatible with no spec.
+ if ((OldEST == EST_None && NewEST == EST_MSAny) ||
+ (OldEST == EST_MSAny && NewEST == EST_None))
+ return false;
+
+ // It's also compatible with noexcept(false).
+ if (OldEST == EST_MSAny && NewNR == FunctionProtoType::NR_Throw)
+ return false;
+ if (NewEST == EST_MSAny && OldNR == FunctionProtoType::NR_Throw)
+ return false;
+
+ // As described above, noexcept(false) matches no spec only for functions.
+ if (AllowNoexceptAllMatchWithNoSpec) {
+ if (OldEST == EST_None && NewNR == FunctionProtoType::NR_Throw)
+ return false;
+ if (NewEST == EST_None && OldNR == FunctionProtoType::NR_Throw)
+ return false;
+ }
+
+ // Any non-throwing specifications are compatible.
+ bool OldNonThrowing = OldNR == FunctionProtoType::NR_Nothrow ||
+ OldEST == EST_DynamicNone;
+ bool NewNonThrowing = NewNR == FunctionProtoType::NR_Nothrow ||
+ NewEST == EST_DynamicNone;
+ if (OldNonThrowing && NewNonThrowing)
+ return false;
+
+ // As a special compatibility feature, under C++0x we accept no spec and
+ // throw(std::bad_alloc) as equivalent for operator new and operator new[].
+ // This is because the implicit declaration changed, but old code would break.
+ if (getLangOpts().CPlusPlus11 && IsOperatorNew) {
+ const FunctionProtoType *WithExceptions = nullptr;
+ if (OldEST == EST_None && NewEST == EST_Dynamic)
+ WithExceptions = New;
+ else if (OldEST == EST_Dynamic && NewEST == EST_None)
+ WithExceptions = Old;
+ if (WithExceptions && WithExceptions->getNumExceptions() == 1) {
+ // One has no spec, the other throw(something). If that something is
+ // std::bad_alloc, all conditions are met.
+ QualType Exception = *WithExceptions->exception_begin();
+ if (CXXRecordDecl *ExRecord = Exception->getAsCXXRecordDecl()) {
+ IdentifierInfo* Name = ExRecord->getIdentifier();
+ if (Name && Name->getName() == "bad_alloc") {
+ // It's called bad_alloc, but is it in std?
+ if (ExRecord->isInStdNamespace()) {
+ return false;
+ }
+ }
+ }
+ }
+ }
+
+ // At this point, the only remaining valid case is two matching dynamic
+ // specifications. We return here unless both specifications are dynamic.
+ if (OldEST != EST_Dynamic || NewEST != EST_Dynamic) {
+ if (MissingExceptionSpecification && Old->hasExceptionSpec() &&
+ !New->hasExceptionSpec()) {
+ // The old type has an exception specification of some sort, but
+ // the new type does not.
+ *MissingExceptionSpecification = true;
+
+ if (MissingEmptyExceptionSpecification && OldNonThrowing) {
+ // The old type has a throw() or noexcept(true) exception specification
+ // and the new type has no exception specification, and the caller asked
+ // to handle this itself.
+ *MissingEmptyExceptionSpecification = true;
+ }
+
+ return true;
+ }
+
+ Diag(NewLoc, DiagID);
+ if (NoteID.getDiagID() != 0 && OldLoc.isValid())
+ Diag(OldLoc, NoteID);
+ return true;
+ }
+
+ assert(OldEST == EST_Dynamic && NewEST == EST_Dynamic &&
+ "Exception compatibility logic error: non-dynamic spec slipped through.");
+
+ bool Success = true;
+ // Both have a dynamic exception spec. Collect the first set, then compare
+ // to the second.
+ llvm::SmallPtrSet<CanQualType, 8> OldTypes, NewTypes;
+ for (const auto &I : Old->exceptions())
+ OldTypes.insert(Context.getCanonicalType(I).getUnqualifiedType());
+
+ for (const auto &I : New->exceptions()) {
+ CanQualType TypePtr = Context.getCanonicalType(I).getUnqualifiedType();
+ if(OldTypes.count(TypePtr))
+ NewTypes.insert(TypePtr);
+ else
+ Success = false;
+ }
+
+ Success = Success && OldTypes.size() == NewTypes.size();
+
+ if (Success) {
+ return false;
+ }
+ Diag(NewLoc, DiagID);
+ if (NoteID.getDiagID() != 0 && OldLoc.isValid())
+ Diag(OldLoc, NoteID);
+ return true;
+}
+
+/// CheckExceptionSpecSubset - Check whether the second function type's
+/// exception specification is a subset (or equivalent) of the first function
+/// type. This is used by override and pointer assignment checks.
+bool Sema::CheckExceptionSpecSubset(
+ const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID,
+ const FunctionProtoType *Superset, SourceLocation SuperLoc,
+ const FunctionProtoType *Subset, SourceLocation SubLoc) {
+
+ // Just auto-succeed under -fno-exceptions.
+ if (!getLangOpts().CXXExceptions)
+ return false;
+
+ // FIXME: As usual, we could be more specific in our error messages, but
+ // that better waits until we've got types with source locations.
+
+ if (!SubLoc.isValid())
+ SubLoc = SuperLoc;
+
+ // Resolve the exception specifications, if needed.
+ Superset = ResolveExceptionSpec(SuperLoc, Superset);
+ if (!Superset)
+ return false;
+ Subset = ResolveExceptionSpec(SubLoc, Subset);
+ if (!Subset)
+ return false;
+
+ ExceptionSpecificationType SuperEST = Superset->getExceptionSpecType();
+
+ // If superset contains everything, we're done.
+ if (SuperEST == EST_None || SuperEST == EST_MSAny)
+ return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc);
+
+ // If there are dependent noexcept specs, assume everything is fine. Unlike
+ // with the equivalency check, this is safe in this case, because we don't
+ // want to merge declarations. Checks after instantiation will catch any
+ // omissions we make here.
+ // We also shortcut checking if a noexcept expression was bad.
+
+ FunctionProtoType::NoexceptResult SuperNR =Superset->getNoexceptSpec(Context);
+ if (SuperNR == FunctionProtoType::NR_BadNoexcept ||
+ SuperNR == FunctionProtoType::NR_Dependent)
+ return false;
+
+ // Another case of the superset containing everything.
+ if (SuperNR == FunctionProtoType::NR_Throw)
+ return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc);
+
+ ExceptionSpecificationType SubEST = Subset->getExceptionSpecType();
+
+ assert(!isUnresolvedExceptionSpec(SuperEST) &&
+ !isUnresolvedExceptionSpec(SubEST) &&
+ "Shouldn't see unknown exception specifications here");
+
+ // It does not. If the subset contains everything, we've failed.
+ if (SubEST == EST_None || SubEST == EST_MSAny) {
+ Diag(SubLoc, DiagID);
+ if (NoteID.getDiagID() != 0)
+ Diag(SuperLoc, NoteID);
+ return true;
+ }
+
+ FunctionProtoType::NoexceptResult SubNR = Subset->getNoexceptSpec(Context);
+ if (SubNR == FunctionProtoType::NR_BadNoexcept ||
+ SubNR == FunctionProtoType::NR_Dependent)
+ return false;
+
+ // Another case of the subset containing everything.
+ if (SubNR == FunctionProtoType::NR_Throw) {
+ Diag(SubLoc, DiagID);
+ if (NoteID.getDiagID() != 0)
+ Diag(SuperLoc, NoteID);
+ return true;
+ }
+
+ // If the subset contains nothing, we're done.
+ if (SubEST == EST_DynamicNone || SubNR == FunctionProtoType::NR_Nothrow)
+ return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc);
+
+ // Otherwise, if the superset contains nothing, we've failed.
+ if (SuperEST == EST_DynamicNone || SuperNR == FunctionProtoType::NR_Nothrow) {
+ Diag(SubLoc, DiagID);
+ if (NoteID.getDiagID() != 0)
+ Diag(SuperLoc, NoteID);
+ return true;
+ }
+
+ assert(SuperEST == EST_Dynamic && SubEST == EST_Dynamic &&
+ "Exception spec subset: non-dynamic case slipped through.");
+
+ // Neither contains everything or nothing. Do a proper comparison.
+ for (const auto &SubI : Subset->exceptions()) {
+ // Take one type from the subset.
+ QualType CanonicalSubT = Context.getCanonicalType(SubI);
+ // Unwrap pointers and references so that we can do checks within a class
+ // hierarchy. Don't unwrap member pointers; they don't have hierarchy
+ // conversions on the pointee.
+ bool SubIsPointer = false;
+ if (const ReferenceType *RefTy = CanonicalSubT->getAs<ReferenceType>())
+ CanonicalSubT = RefTy->getPointeeType();
+ if (const PointerType *PtrTy = CanonicalSubT->getAs<PointerType>()) {
+ CanonicalSubT = PtrTy->getPointeeType();
+ SubIsPointer = true;
+ }
+ bool SubIsClass = CanonicalSubT->isRecordType();
+ CanonicalSubT = CanonicalSubT.getLocalUnqualifiedType();
+
+ CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
+ /*DetectVirtual=*/false);
+
+ bool Contained = false;
+ // Make sure it's in the superset.
+ for (const auto &SuperI : Superset->exceptions()) {
+ QualType CanonicalSuperT = Context.getCanonicalType(SuperI);
+ // SubT must be SuperT or derived from it, or pointer or reference to
+ // such types.
+ if (const ReferenceType *RefTy = CanonicalSuperT->getAs<ReferenceType>())
+ CanonicalSuperT = RefTy->getPointeeType();
+ if (SubIsPointer) {
+ if (const PointerType *PtrTy = CanonicalSuperT->getAs<PointerType>())
+ CanonicalSuperT = PtrTy->getPointeeType();
+ else {
+ continue;
+ }
+ }
+ CanonicalSuperT = CanonicalSuperT.getLocalUnqualifiedType();
+ // If the types are the same, move on to the next type in the subset.
+ if (CanonicalSubT == CanonicalSuperT) {
+ Contained = true;
+ break;
+ }
+
+ // Otherwise we need to check the inheritance.
+ if (!SubIsClass || !CanonicalSuperT->isRecordType())
+ continue;
+
+ Paths.clear();
+ if (!IsDerivedFrom(CanonicalSubT, CanonicalSuperT, Paths))
+ continue;
+
+ if (Paths.isAmbiguous(Context.getCanonicalType(CanonicalSuperT)))
+ continue;
+
+ // Do this check from a context without privileges.
+ switch (CheckBaseClassAccess(SourceLocation(),
+ CanonicalSuperT, CanonicalSubT,
+ Paths.front(),
+ /*Diagnostic*/ 0,
+ /*ForceCheck*/ true,
+ /*ForceUnprivileged*/ true)) {
+ case AR_accessible: break;
+ case AR_inaccessible: continue;
+ case AR_dependent:
+ llvm_unreachable("access check dependent for unprivileged context");
+ case AR_delayed:
+ llvm_unreachable("access check delayed in non-declaration");
+ }
+
+ Contained = true;
+ break;
+ }
+ if (!Contained) {
+ Diag(SubLoc, DiagID);
+ if (NoteID.getDiagID() != 0)
+ Diag(SuperLoc, NoteID);
+ return true;
+ }
+ }
+ // We've run half the gauntlet.
+ return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc);
+}
+
+static bool CheckSpecForTypesEquivalent(Sema &S,
+ const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID,
+ QualType Target, SourceLocation TargetLoc,
+ QualType Source, SourceLocation SourceLoc)
+{
+ const FunctionProtoType *TFunc = GetUnderlyingFunction(Target);
+ if (!TFunc)
+ return false;
+ const FunctionProtoType *SFunc = GetUnderlyingFunction(Source);
+ if (!SFunc)
+ return false;
+
+ return S.CheckEquivalentExceptionSpec(DiagID, NoteID, TFunc, TargetLoc,
+ SFunc, SourceLoc);
+}
+
+/// CheckParamExceptionSpec - Check if the parameter and return types of the
+/// two functions have equivalent exception specs. This is part of the
+/// assignment and override compatibility check. We do not check the parameters
+/// of parameter function pointers recursively, as no sane programmer would
+/// even be able to write such a function type.
+bool Sema::CheckParamExceptionSpec(const PartialDiagnostic &NoteID,
+ const FunctionProtoType *Target,
+ SourceLocation TargetLoc,
+ const FunctionProtoType *Source,
+ SourceLocation SourceLoc) {
+ if (CheckSpecForTypesEquivalent(
+ *this, PDiag(diag::err_deep_exception_specs_differ) << 0, PDiag(),
+ Target->getReturnType(), TargetLoc, Source->getReturnType(),
+ SourceLoc))
+ return true;
+
+ // We shouldn't even be testing this unless the arguments are otherwise
+ // compatible.
+ assert(Target->getNumParams() == Source->getNumParams() &&
+ "Functions have different argument counts.");
+ for (unsigned i = 0, E = Target->getNumParams(); i != E; ++i) {
+ if (CheckSpecForTypesEquivalent(
+ *this, PDiag(diag::err_deep_exception_specs_differ) << 1, PDiag(),
+ Target->getParamType(i), TargetLoc, Source->getParamType(i),
+ SourceLoc))
+ return true;
+ }
+ return false;
+}
+
+bool Sema::CheckExceptionSpecCompatibility(Expr *From, QualType ToType) {
+ // First we check for applicability.
+ // Target type must be a function, function pointer or function reference.
+ const FunctionProtoType *ToFunc = GetUnderlyingFunction(ToType);
+ if (!ToFunc || ToFunc->hasDependentExceptionSpec())
+ return false;
+
+ // SourceType must be a function or function pointer.
+ const FunctionProtoType *FromFunc = GetUnderlyingFunction(From->getType());
+ if (!FromFunc || FromFunc->hasDependentExceptionSpec())
+ return false;
+
+ // Now we've got the correct types on both sides, check their compatibility.
+ // This means that the source of the conversion can only throw a subset of
+ // the exceptions of the target, and any exception specs on arguments or
+ // return types must be equivalent.
+ //
+ // FIXME: If there is a nested dependent exception specification, we should
+ // not be checking it here. This is fine:
+ // template<typename T> void f() {
+ // void (*p)(void (*) throw(T));
+ // void (*q)(void (*) throw(int)) = p;
+ // }
+ // ... because it might be instantiated with T=int.
+ return CheckExceptionSpecSubset(PDiag(diag::err_incompatible_exception_specs),
+ PDiag(), ToFunc,
+ From->getSourceRange().getBegin(),
+ FromFunc, SourceLocation());
+}
+
+bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
+ const CXXMethodDecl *Old) {
+ // If the new exception specification hasn't been parsed yet, skip the check.
+ // We'll get called again once it's been parsed.
+ if (New->getType()->castAs<FunctionProtoType>()->getExceptionSpecType() ==
+ EST_Unparsed)
+ return false;
+ if (getLangOpts().CPlusPlus11 && isa<CXXDestructorDecl>(New)) {
+ // Don't check uninstantiated template destructors at all. We can only
+ // synthesize correct specs after the template is instantiated.
+ if (New->getParent()->isDependentType())
+ return false;
+ if (New->getParent()->isBeingDefined()) {
+ // The destructor might be updated once the definition is finished. So
+ // remember it and check later.
+ DelayedExceptionSpecChecks.push_back(std::make_pair(New, Old));
+ return false;
+ }
+ }
+ // If the old exception specification hasn't been parsed yet, remember that
+ // we need to perform this check when we get to the end of the outermost
+ // lexically-surrounding class.
+ if (Old->getType()->castAs<FunctionProtoType>()->getExceptionSpecType() ==
+ EST_Unparsed) {
+ DelayedExceptionSpecChecks.push_back(std::make_pair(New, Old));
+ return false;
+ }
+ unsigned DiagID = diag::err_override_exception_spec;
+ if (getLangOpts().MicrosoftExt)
+ DiagID = diag::ext_override_exception_spec;
+ return CheckExceptionSpecSubset(PDiag(DiagID),
+ PDiag(diag::note_overridden_virtual_function),
+ Old->getType()->getAs<FunctionProtoType>(),
+ Old->getLocation(),
+ New->getType()->getAs<FunctionProtoType>(),
+ New->getLocation());
+}
+
+static CanThrowResult canSubExprsThrow(Sema &S, const Expr *CE) {
+ Expr *E = const_cast<Expr*>(CE);
+ CanThrowResult R = CT_Cannot;
+ for (Expr::child_range I = E->children(); I && R != CT_Can; ++I)
+ R = mergeCanThrow(R, S.canThrow(cast<Expr>(*I)));
+ return R;
+}
+
+static CanThrowResult canCalleeThrow(Sema &S, const Expr *E, const Decl *D) {
+ assert(D && "Expected decl");
+
+ // See if we can get a function type from the decl somehow.
+ const ValueDecl *VD = dyn_cast<ValueDecl>(D);
+ if (!VD) // If we have no clue what we're calling, assume the worst.
+ return CT_Can;
+
+ // As an extension, we assume that __attribute__((nothrow)) functions don't
+ // throw.
+ if (isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>())
+ return CT_Cannot;
+
+ QualType T = VD->getType();
+ const FunctionProtoType *FT;
+ if ((FT = T->getAs<FunctionProtoType>())) {
+ } else if (const PointerType *PT = T->getAs<PointerType>())
+ FT = PT->getPointeeType()->getAs<FunctionProtoType>();
+ else if (const ReferenceType *RT = T->getAs<ReferenceType>())
+ FT = RT->getPointeeType()->getAs<FunctionProtoType>();
+ else if (const MemberPointerType *MT = T->getAs<MemberPointerType>())
+ FT = MT->getPointeeType()->getAs<FunctionProtoType>();
+ else if (const BlockPointerType *BT = T->getAs<BlockPointerType>())
+ FT = BT->getPointeeType()->getAs<FunctionProtoType>();
+
+ if (!FT)
+ return CT_Can;
+
+ FT = S.ResolveExceptionSpec(E->getLocStart(), FT);
+ if (!FT)
+ return CT_Can;
+
+ return FT->isNothrow(S.Context) ? CT_Cannot : CT_Can;
+}
+
+static CanThrowResult canDynamicCastThrow(const CXXDynamicCastExpr *DC) {
+ if (DC->isTypeDependent())
+ return CT_Dependent;
+
+ if (!DC->getTypeAsWritten()->isReferenceType())
+ return CT_Cannot;
+
+ if (DC->getSubExpr()->isTypeDependent())
+ return CT_Dependent;
+
+ return DC->getCastKind() == clang::CK_Dynamic? CT_Can : CT_Cannot;
+}
+
+static CanThrowResult canTypeidThrow(Sema &S, const CXXTypeidExpr *DC) {
+ if (DC->isTypeOperand())
+ return CT_Cannot;
+
+ Expr *Op = DC->getExprOperand();
+ if (Op->isTypeDependent())
+ return CT_Dependent;
+
+ const RecordType *RT = Op->getType()->getAs<RecordType>();
+ if (!RT)
+ return CT_Cannot;
+
+ if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic())
+ return CT_Cannot;
+
+ if (Op->Classify(S.Context).isPRValue())
+ return CT_Cannot;
+
+ return CT_Can;
+}
+
+CanThrowResult Sema::canThrow(const Expr *E) {
+ // C++ [expr.unary.noexcept]p3:
+ // [Can throw] if in a potentially-evaluated context the expression would
+ // contain:
+ switch (E->getStmtClass()) {
+ case Expr::CXXThrowExprClass:
+ // - a potentially evaluated throw-expression
+ return CT_Can;
+
+ case Expr::CXXDynamicCastExprClass: {
+ // - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v),
+ // where T is a reference type, that requires a run-time check
+ CanThrowResult CT = canDynamicCastThrow(cast<CXXDynamicCastExpr>(E));
+ if (CT == CT_Can)
+ return CT;
+ return mergeCanThrow(CT, canSubExprsThrow(*this, E));
+ }
+
+ case Expr::CXXTypeidExprClass:
+ // - a potentially evaluated typeid expression applied to a glvalue
+ // expression whose type is a polymorphic class type
+ return canTypeidThrow(*this, cast<CXXTypeidExpr>(E));
+
+ // - a potentially evaluated call to a function, member function, function
+ // pointer, or member function pointer that does not have a non-throwing
+ // exception-specification
+ case Expr::CallExprClass:
+ case Expr::CXXMemberCallExprClass:
+ case Expr::CXXOperatorCallExprClass:
+ case Expr::UserDefinedLiteralClass: {
+ const CallExpr *CE = cast<CallExpr>(E);
+ CanThrowResult CT;
+ if (E->isTypeDependent())
+ CT = CT_Dependent;
+ else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens()))
+ CT = CT_Cannot;
+ else if (CE->getCalleeDecl())
+ CT = canCalleeThrow(*this, E, CE->getCalleeDecl());
+ else
+ CT = CT_Can;
+ if (CT == CT_Can)
+ return CT;
+ return mergeCanThrow(CT, canSubExprsThrow(*this, E));
+ }
+
+ case Expr::CXXConstructExprClass:
+ case Expr::CXXTemporaryObjectExprClass: {
+ CanThrowResult CT = canCalleeThrow(*this, E,
+ cast<CXXConstructExpr>(E)->getConstructor());
+ if (CT == CT_Can)
+ return CT;
+ return mergeCanThrow(CT, canSubExprsThrow(*this, E));
+ }
+
+ case Expr::LambdaExprClass: {
+ const LambdaExpr *Lambda = cast<LambdaExpr>(E);
+ CanThrowResult CT = CT_Cannot;
+ for (LambdaExpr::capture_init_iterator Cap = Lambda->capture_init_begin(),
+ CapEnd = Lambda->capture_init_end();
+ Cap != CapEnd; ++Cap)
+ CT = mergeCanThrow(CT, canThrow(*Cap));
+ return CT;
+ }
+
+ case Expr::CXXNewExprClass: {
+ CanThrowResult CT;
+ if (E->isTypeDependent())
+ CT = CT_Dependent;
+ else
+ CT = canCalleeThrow(*this, E, cast<CXXNewExpr>(E)->getOperatorNew());
+ if (CT == CT_Can)
+ return CT;
+ return mergeCanThrow(CT, canSubExprsThrow(*this, E));
+ }
+
+ case Expr::CXXDeleteExprClass: {
+ CanThrowResult CT;
+ QualType DTy = cast<CXXDeleteExpr>(E)->getDestroyedType();
+ if (DTy.isNull() || DTy->isDependentType()) {
+ CT = CT_Dependent;
+ } else {
+ CT = canCalleeThrow(*this, E,
+ cast<CXXDeleteExpr>(E)->getOperatorDelete());
+ if (const RecordType *RT = DTy->getAs<RecordType>()) {
+ const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
+ const CXXDestructorDecl *DD = RD->getDestructor();
+ if (DD)
+ CT = mergeCanThrow(CT, canCalleeThrow(*this, E, DD));
+ }
+ if (CT == CT_Can)
+ return CT;
+ }
+ return mergeCanThrow(CT, canSubExprsThrow(*this, E));
+ }
+
+ case Expr::CXXBindTemporaryExprClass: {
+ // The bound temporary has to be destroyed again, which might throw.
+ CanThrowResult CT = canCalleeThrow(*this, E,
+ cast<CXXBindTemporaryExpr>(E)->getTemporary()->getDestructor());
+ if (CT == CT_Can)
+ return CT;
+ return mergeCanThrow(CT, canSubExprsThrow(*this, E));
+ }
+
+ // ObjC message sends are like function calls, but never have exception
+ // specs.
+ case Expr::ObjCMessageExprClass:
+ case Expr::ObjCPropertyRefExprClass:
+ case Expr::ObjCSubscriptRefExprClass:
+ return CT_Can;
+
+ // All the ObjC literals that are implemented as calls are
+ // potentially throwing unless we decide to close off that
+ // possibility.
+ case Expr::ObjCArrayLiteralClass:
+ case Expr::ObjCDictionaryLiteralClass:
+ case Expr::ObjCBoxedExprClass:
+ return CT_Can;
+
+ // Many other things have subexpressions, so we have to test those.
+ // Some are simple:
+ case Expr::ConditionalOperatorClass:
+ case Expr::CompoundLiteralExprClass:
+ case Expr::CXXConstCastExprClass:
+ case Expr::CXXReinterpretCastExprClass:
+ case Expr::CXXStdInitializerListExprClass:
+ case Expr::DesignatedInitExprClass:
+ case Expr::ExprWithCleanupsClass:
+ case Expr::ExtVectorElementExprClass:
+ case Expr::InitListExprClass:
+ case Expr::MemberExprClass:
+ case Expr::ObjCIsaExprClass:
+ case Expr::ObjCIvarRefExprClass:
+ case Expr::ParenExprClass:
+ case Expr::ParenListExprClass:
+ case Expr::ShuffleVectorExprClass:
+ case Expr::ConvertVectorExprClass:
+ case Expr::VAArgExprClass:
+ return canSubExprsThrow(*this, E);
+
+ // Some might be dependent for other reasons.
+ case Expr::ArraySubscriptExprClass:
+ case Expr::BinaryOperatorClass:
+ case Expr::CompoundAssignOperatorClass:
+ case Expr::CStyleCastExprClass:
+ case Expr::CXXStaticCastExprClass:
+ case Expr::CXXFunctionalCastExprClass:
+ case Expr::ImplicitCastExprClass:
+ case Expr::MaterializeTemporaryExprClass:
+ case Expr::UnaryOperatorClass: {
+ CanThrowResult CT = E->isTypeDependent() ? CT_Dependent : CT_Cannot;
+ return mergeCanThrow(CT, canSubExprsThrow(*this, E));
+ }
+
+ // FIXME: We should handle StmtExpr, but that opens a MASSIVE can of worms.
+ case Expr::StmtExprClass:
+ return CT_Can;
+
+ case Expr::CXXDefaultArgExprClass:
+ return canThrow(cast<CXXDefaultArgExpr>(E)->getExpr());
+
+ case Expr::CXXDefaultInitExprClass:
+ return canThrow(cast<CXXDefaultInitExpr>(E)->getExpr());
+
+ case Expr::ChooseExprClass:
+ if (E->isTypeDependent() || E->isValueDependent())
+ return CT_Dependent;
+ return canThrow(cast<ChooseExpr>(E)->getChosenSubExpr());
+
+ case Expr::GenericSelectionExprClass:
+ if (cast<GenericSelectionExpr>(E)->isResultDependent())
+ return CT_Dependent;
+ return canThrow(cast<GenericSelectionExpr>(E)->getResultExpr());
+
+ // Some expressions are always dependent.
+ case Expr::CXXDependentScopeMemberExprClass:
+ case Expr::CXXUnresolvedConstructExprClass:
+ case Expr::DependentScopeDeclRefExprClass:
+ case Expr::CXXFoldExprClass:
+ return CT_Dependent;
+
+ case Expr::AsTypeExprClass:
+ case Expr::BinaryConditionalOperatorClass:
+ case Expr::BlockExprClass:
+ case Expr::CUDAKernelCallExprClass:
+ case Expr::DeclRefExprClass:
+ case Expr::ObjCBridgedCastExprClass:
+ case Expr::ObjCIndirectCopyRestoreExprClass:
+ case Expr::ObjCProtocolExprClass:
+ case Expr::ObjCSelectorExprClass:
+ case Expr::OffsetOfExprClass:
+ case Expr::PackExpansionExprClass:
+ case Expr::PseudoObjectExprClass:
+ case Expr::SubstNonTypeTemplateParmExprClass:
+ case Expr::SubstNonTypeTemplateParmPackExprClass:
+ case Expr::FunctionParmPackExprClass:
+ case Expr::UnaryExprOrTypeTraitExprClass:
+ case Expr::UnresolvedLookupExprClass:
+ case Expr::UnresolvedMemberExprClass:
+ case Expr::TypoExprClass:
+ // FIXME: Can any of the above throw? If so, when?
+ return CT_Cannot;
+
+ case Expr::AddrLabelExprClass:
+ case Expr::ArrayTypeTraitExprClass:
+ case Expr::AtomicExprClass:
+ case Expr::TypeTraitExprClass:
+ case Expr::CXXBoolLiteralExprClass:
+ case Expr::CXXNoexceptExprClass:
+ case Expr::CXXNullPtrLiteralExprClass:
+ case Expr::CXXPseudoDestructorExprClass:
+ case Expr::CXXScalarValueInitExprClass:
+ case Expr::CXXThisExprClass:
+ case Expr::CXXUuidofExprClass:
+ case Expr::CharacterLiteralClass:
+ case Expr::ExpressionTraitExprClass:
+ case Expr::FloatingLiteralClass:
+ case Expr::GNUNullExprClass:
+ case Expr::ImaginaryLiteralClass:
+ case Expr::ImplicitValueInitExprClass:
+ case Expr::IntegerLiteralClass:
+ case Expr::ObjCEncodeExprClass:
+ case Expr::ObjCStringLiteralClass:
+ case Expr::ObjCBoolLiteralExprClass:
+ case Expr::OpaqueValueExprClass:
+ case Expr::PredefinedExprClass:
+ case Expr::SizeOfPackExprClass:
+ case Expr::StringLiteralClass:
+ // These expressions can never throw.
+ return CT_Cannot;
+
+ case Expr::MSPropertyRefExprClass:
+ llvm_unreachable("Invalid class for expression");
+
+#define STMT(CLASS, PARENT) case Expr::CLASS##Class:
+#define STMT_RANGE(Base, First, Last)
+#define LAST_STMT_RANGE(BASE, FIRST, LAST)
+#define EXPR(CLASS, PARENT)
+#define ABSTRACT_STMT(STMT)
+#include "clang/AST/StmtNodes.inc"
+ case Expr::NoStmtClass:
+ llvm_unreachable("Invalid class for expression");
+ }
+ llvm_unreachable("Bogus StmtClass");
+}
+
+} // end namespace clang
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaExpr.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaExpr.cpp
new file mode 100644
index 0000000..7ab269c
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaExpr.cpp
@@ -0,0 +1,14246 @@
+//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements semantic analysis for expressions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Sema/SemaInternal.h"
+#include "TreeTransform.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTLambda.h"
+#include "clang/AST/ASTMutationListener.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/EvaluatedExprVisitor.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/AST/RecursiveASTVisitor.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/Basic/PartialDiagnostic.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Lex/LiteralSupport.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Sema/AnalysisBasedWarnings.h"
+#include "clang/Sema/DeclSpec.h"
+#include "clang/Sema/DelayedDiagnostic.h"
+#include "clang/Sema/Designator.h"
+#include "clang/Sema/Initialization.h"
+#include "clang/Sema/Lookup.h"
+#include "clang/Sema/ParsedTemplate.h"
+#include "clang/Sema/Scope.h"
+#include "clang/Sema/ScopeInfo.h"
+#include "clang/Sema/SemaFixItUtils.h"
+#include "clang/Sema/Template.h"
+#include "llvm/Support/ConvertUTF.h"
+using namespace clang;
+using namespace sema;
+
+/// \brief Determine whether the use of this declaration is valid, without
+/// emitting diagnostics.
+bool Sema::CanUseDecl(NamedDecl *D) {
+ // See if this is an auto-typed variable whose initializer we are parsing.
+ if (ParsingInitForAutoVars.count(D))
+ return false;
+
+ // See if this is a deleted function.
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ if (FD->isDeleted())
+ return false;
+
+ // If the function has a deduced return type, and we can't deduce it,
+ // then we can't use it either.
+ if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
+ DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
+ return false;
+ }
+
+ // See if this function is unavailable.
+ if (D->getAvailability() == AR_Unavailable &&
+ cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
+ return false;
+
+ return true;
+}
+
+static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
+ // Warn if this is used but marked unused.
+ if (D->hasAttr<UnusedAttr>()) {
+ const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext());
+ if (DC && !DC->hasAttr<UnusedAttr>())
+ S.Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
+ }
+}
+
+static bool HasRedeclarationWithoutAvailabilityInCategory(const Decl *D) {
+ const auto *OMD = dyn_cast<ObjCMethodDecl>(D);
+ if (!OMD)
+ return false;
+ const ObjCInterfaceDecl *OID = OMD->getClassInterface();
+ if (!OID)
+ return false;
+
+ for (const ObjCCategoryDecl *Cat : OID->visible_categories())
+ if (ObjCMethodDecl *CatMeth =
+ Cat->getMethod(OMD->getSelector(), OMD->isInstanceMethod()))
+ if (!CatMeth->hasAttr<AvailabilityAttr>())
+ return true;
+ return false;
+}
+
+static AvailabilityResult
+DiagnoseAvailabilityOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc,
+ const ObjCInterfaceDecl *UnknownObjCClass,
+ bool ObjCPropertyAccess) {
+ // See if this declaration is unavailable or deprecated.
+ std::string Message;
+ AvailabilityResult Result = D->getAvailability(&Message);
+
+ // For typedefs, if the typedef declaration appears available look
+ // to the underlying type to see if it is more restrictive.
+ while (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
+ if (Result == AR_Available) {
+ if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
+ D = TT->getDecl();
+ Result = D->getAvailability(&Message);
+ continue;
+ }
+ }
+ break;
+ }
+
+ // Forward class declarations get their attributes from their definition.
+ if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(D)) {
+ if (IDecl->getDefinition()) {
+ D = IDecl->getDefinition();
+ Result = D->getAvailability(&Message);
+ }
+ }
+
+ if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D))
+ if (Result == AR_Available) {
+ const DeclContext *DC = ECD->getDeclContext();
+ if (const EnumDecl *TheEnumDecl = dyn_cast<EnumDecl>(DC))
+ Result = TheEnumDecl->getAvailability(&Message);
+ }
+
+ const ObjCPropertyDecl *ObjCPDecl = nullptr;
+ if (Result == AR_Deprecated || Result == AR_Unavailable ||
+ AR_NotYetIntroduced) {
+ if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
+ if (const ObjCPropertyDecl *PD = MD->findPropertyDecl()) {
+ AvailabilityResult PDeclResult = PD->getAvailability(nullptr);
+ if (PDeclResult == Result)
+ ObjCPDecl = PD;
+ }
+ }
+ }
+
+ switch (Result) {
+ case AR_Available:
+ break;
+
+ case AR_Deprecated:
+ if (S.getCurContextAvailability() != AR_Deprecated)
+ S.EmitAvailabilityWarning(Sema::AD_Deprecation,
+ D, Message, Loc, UnknownObjCClass, ObjCPDecl,
+ ObjCPropertyAccess);
+ break;
+
+ case AR_NotYetIntroduced: {
+ // Don't do this for enums, they can't be redeclared.
+ if (isa<EnumConstantDecl>(D) || isa<EnumDecl>(D))
+ break;
+
+ bool Warn = !D->getAttr<AvailabilityAttr>()->isInherited();
+ // Objective-C method declarations in categories are not modelled as
+ // redeclarations, so manually look for a redeclaration in a category
+ // if necessary.
+ if (Warn && HasRedeclarationWithoutAvailabilityInCategory(D))
+ Warn = false;
+ // In general, D will point to the most recent redeclaration. However,
+ // for `@class A;` decls, this isn't true -- manually go through the
+ // redecl chain in that case.
+ if (Warn && isa<ObjCInterfaceDecl>(D))
+ for (Decl *Redecl = D->getMostRecentDecl(); Redecl && Warn;
+ Redecl = Redecl->getPreviousDecl())
+ if (!Redecl->hasAttr<AvailabilityAttr>() ||
+ Redecl->getAttr<AvailabilityAttr>()->isInherited())
+ Warn = false;
+
+ if (Warn)
+ S.EmitAvailabilityWarning(Sema::AD_Partial, D, Message, Loc,
+ UnknownObjCClass, ObjCPDecl,
+ ObjCPropertyAccess);
+ break;
+ }
+
+ case AR_Unavailable:
+ if (S.getCurContextAvailability() != AR_Unavailable)
+ S.EmitAvailabilityWarning(Sema::AD_Unavailable,
+ D, Message, Loc, UnknownObjCClass, ObjCPDecl,
+ ObjCPropertyAccess);
+ break;
+
+ }
+ return Result;
+}
+
+/// \brief Emit a note explaining that this function is deleted.
+void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
+ assert(Decl->isDeleted());
+
+ CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Decl);
+
+ if (Method && Method->isDeleted() && Method->isDefaulted()) {
+ // If the method was explicitly defaulted, point at that declaration.
+ if (!Method->isImplicit())
+ Diag(Decl->getLocation(), diag::note_implicitly_deleted);
+
+ // Try to diagnose why this special member function was implicitly
+ // deleted. This might fail, if that reason no longer applies.
+ CXXSpecialMember CSM = getSpecialMember(Method);
+ if (CSM != CXXInvalid)
+ ShouldDeleteSpecialMember(Method, CSM, /*Diagnose=*/true);
+
+ return;
+ }
+
+ if (CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Decl)) {
+ if (CXXConstructorDecl *BaseCD =
+ const_cast<CXXConstructorDecl*>(CD->getInheritedConstructor())) {
+ Diag(Decl->getLocation(), diag::note_inherited_deleted_here);
+ if (BaseCD->isDeleted()) {
+ NoteDeletedFunction(BaseCD);
+ } else {
+ // FIXME: An explanation of why exactly it can't be inherited
+ // would be nice.
+ Diag(BaseCD->getLocation(), diag::note_cannot_inherit);
+ }
+ return;
+ }
+ }
+
+ Diag(Decl->getLocation(), diag::note_availability_specified_here)
+ << Decl << true;
+}
+
+/// \brief Determine whether a FunctionDecl was ever declared with an
+/// explicit storage class.
+static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
+ for (auto I : D->redecls()) {
+ if (I->getStorageClass() != SC_None)
+ return true;
+ }
+ return false;
+}
+
+/// \brief Check whether we're in an extern inline function and referring to a
+/// variable or function with internal linkage (C11 6.7.4p3).
+///
+/// This is only a warning because we used to silently accept this code, but
+/// in many cases it will not behave correctly. This is not enabled in C++ mode
+/// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
+/// and so while there may still be user mistakes, most of the time we can't
+/// prove that there are errors.
+static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
+ const NamedDecl *D,
+ SourceLocation Loc) {
+ // This is disabled under C++; there are too many ways for this to fire in
+ // contexts where the warning is a false positive, or where it is technically
+ // correct but benign.
+ if (S.getLangOpts().CPlusPlus)
+ return;
+
+ // Check if this is an inlined function or method.
+ FunctionDecl *Current = S.getCurFunctionDecl();
+ if (!Current)
+ return;
+ if (!Current->isInlined())
+ return;
+ if (!Current->isExternallyVisible())
+ return;
+
+ // Check if the decl has internal linkage.
+ if (D->getFormalLinkage() != InternalLinkage)
+ return;
+
+ // Downgrade from ExtWarn to Extension if
+ // (1) the supposedly external inline function is in the main file,
+ // and probably won't be included anywhere else.
+ // (2) the thing we're referencing is a pure function.
+ // (3) the thing we're referencing is another inline function.
+ // This last can give us false negatives, but it's better than warning on
+ // wrappers for simple C library functions.
+ const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
+ bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
+ if (!DowngradeWarning && UsedFn)
+ DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
+
+ S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
+ : diag::ext_internal_in_extern_inline)
+ << /*IsVar=*/!UsedFn << D;
+
+ S.MaybeSuggestAddingStaticToDecl(Current);
+
+ S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
+ << D;
+}
+
+void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
+ const FunctionDecl *First = Cur->getFirstDecl();
+
+ // Suggest "static" on the function, if possible.
+ if (!hasAnyExplicitStorageClass(First)) {
+ SourceLocation DeclBegin = First->getSourceRange().getBegin();
+ Diag(DeclBegin, diag::note_convert_inline_to_static)
+ << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
+ }
+}
+
+/// \brief Determine whether the use of this declaration is valid, and
+/// emit any corresponding diagnostics.
+///
+/// This routine diagnoses various problems with referencing
+/// declarations that can occur when using a declaration. For example,
+/// it might warn if a deprecated or unavailable declaration is being
+/// used, or produce an error (and return true) if a C++0x deleted
+/// function is being used.
+///
+/// \returns true if there was an error (this declaration cannot be
+/// referenced), false otherwise.
+///
+bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
+ const ObjCInterfaceDecl *UnknownObjCClass,
+ bool ObjCPropertyAccess) {
+ if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
+ // If there were any diagnostics suppressed by template argument deduction,
+ // emit them now.
+ SuppressedDiagnosticsMap::iterator
+ Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
+ if (Pos != SuppressedDiagnostics.end()) {
+ SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
+ for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
+ Diag(Suppressed[I].first, Suppressed[I].second);
+
+ // Clear out the list of suppressed diagnostics, so that we don't emit
+ // them again for this specialization. However, we don't obsolete this
+ // entry from the table, because we want to avoid ever emitting these
+ // diagnostics again.
+ Suppressed.clear();
+ }
+
+ // C++ [basic.start.main]p3:
+ // The function 'main' shall not be used within a program.
+ if (cast<FunctionDecl>(D)->isMain())
+ Diag(Loc, diag::ext_main_used);
+ }
+
+ // See if this is an auto-typed variable whose initializer we are parsing.
+ if (ParsingInitForAutoVars.count(D)) {
+ Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
+ << D->getDeclName();
+ return true;
+ }
+
+ // See if this is a deleted function.
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ if (FD->isDeleted()) {
+ Diag(Loc, diag::err_deleted_function_use);
+ NoteDeletedFunction(FD);
+ return true;
+ }
+
+ // If the function has a deduced return type, and we can't deduce it,
+ // then we can't use it either.
+ if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
+ DeduceReturnType(FD, Loc))
+ return true;
+ }
+ DiagnoseAvailabilityOfDecl(*this, D, Loc, UnknownObjCClass,
+ ObjCPropertyAccess);
+
+ DiagnoseUnusedOfDecl(*this, D, Loc);
+
+ diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
+
+ return false;
+}
+
+/// \brief Retrieve the message suffix that should be added to a
+/// diagnostic complaining about the given function being deleted or
+/// unavailable.
+std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
+ std::string Message;
+ if (FD->getAvailability(&Message))
+ return ": " + Message;
+
+ return std::string();
+}
+
+/// DiagnoseSentinelCalls - This routine checks whether a call or
+/// message-send is to a declaration with the sentinel attribute, and
+/// if so, it checks that the requirements of the sentinel are
+/// satisfied.
+void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
+ ArrayRef<Expr *> Args) {
+ const SentinelAttr *attr = D->getAttr<SentinelAttr>();
+ if (!attr)
+ return;
+
+ // The number of formal parameters of the declaration.
+ unsigned numFormalParams;
+
+ // The kind of declaration. This is also an index into a %select in
+ // the diagnostic.
+ enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
+
+ if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
+ numFormalParams = MD->param_size();
+ calleeType = CT_Method;
+ } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ numFormalParams = FD->param_size();
+ calleeType = CT_Function;
+ } else if (isa<VarDecl>(D)) {
+ QualType type = cast<ValueDecl>(D)->getType();
+ const FunctionType *fn = nullptr;
+ if (const PointerType *ptr = type->getAs<PointerType>()) {
+ fn = ptr->getPointeeType()->getAs<FunctionType>();
+ if (!fn) return;
+ calleeType = CT_Function;
+ } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
+ fn = ptr->getPointeeType()->castAs<FunctionType>();
+ calleeType = CT_Block;
+ } else {
+ return;
+ }
+
+ if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
+ numFormalParams = proto->getNumParams();
+ } else {
+ numFormalParams = 0;
+ }
+ } else {
+ return;
+ }
+
+ // "nullPos" is the number of formal parameters at the end which
+ // effectively count as part of the variadic arguments. This is
+ // useful if you would prefer to not have *any* formal parameters,
+ // but the language forces you to have at least one.
+ unsigned nullPos = attr->getNullPos();
+ assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
+ numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
+
+ // The number of arguments which should follow the sentinel.
+ unsigned numArgsAfterSentinel = attr->getSentinel();
+
+ // If there aren't enough arguments for all the formal parameters,
+ // the sentinel, and the args after the sentinel, complain.
+ if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) {
+ Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
+ Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
+ return;
+ }
+
+ // Otherwise, find the sentinel expression.
+ Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1];
+ if (!sentinelExpr) return;
+ if (sentinelExpr->isValueDependent()) return;
+ if (Context.isSentinelNullExpr(sentinelExpr)) return;
+
+ // Pick a reasonable string to insert. Optimistically use 'nil', 'nullptr',
+ // or 'NULL' if those are actually defined in the context. Only use
+ // 'nil' for ObjC methods, where it's much more likely that the
+ // variadic arguments form a list of object pointers.
+ SourceLocation MissingNilLoc
+ = PP.getLocForEndOfToken(sentinelExpr->getLocEnd());
+ std::string NullValue;
+ if (calleeType == CT_Method && PP.isMacroDefined("nil"))
+ NullValue = "nil";
+ else if (getLangOpts().CPlusPlus11)
+ NullValue = "nullptr";
+ else if (PP.isMacroDefined("NULL"))
+ NullValue = "NULL";
+ else
+ NullValue = "(void*) 0";
+
+ if (MissingNilLoc.isInvalid())
+ Diag(Loc, diag::warn_missing_sentinel) << int(calleeType);
+ else
+ Diag(MissingNilLoc, diag::warn_missing_sentinel)
+ << int(calleeType)
+ << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
+ Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
+}
+
+SourceRange Sema::getExprRange(Expr *E) const {
+ return E ? E->getSourceRange() : SourceRange();
+}
+
+//===----------------------------------------------------------------------===//
+// Standard Promotions and Conversions
+//===----------------------------------------------------------------------===//
+
+/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
+ExprResult Sema::DefaultFunctionArrayConversion(Expr *E) {
+ // Handle any placeholder expressions which made it here.
+ if (E->getType()->isPlaceholderType()) {
+ ExprResult result = CheckPlaceholderExpr(E);
+ if (result.isInvalid()) return ExprError();
+ E = result.get();
+ }
+
+ QualType Ty = E->getType();
+ assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
+
+ if (Ty->isFunctionType()) {
+ // If we are here, we are not calling a function but taking
+ // its address (which is not allowed in OpenCL v1.0 s6.8.a.3).
+ if (getLangOpts().OpenCL) {
+ Diag(E->getExprLoc(), diag::err_opencl_taking_function_address);
+ return ExprError();
+ }
+ E = ImpCastExprToType(E, Context.getPointerType(Ty),
+ CK_FunctionToPointerDecay).get();
+ } else if (Ty->isArrayType()) {
+ // In C90 mode, arrays only promote to pointers if the array expression is
+ // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
+ // type 'array of type' is converted to an expression that has type 'pointer
+ // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
+ // that has type 'array of type' ...". The relevant change is "an lvalue"
+ // (C90) to "an expression" (C99).
+ //
+ // C++ 4.2p1:
+ // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
+ // T" can be converted to an rvalue of type "pointer to T".
+ //
+ if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
+ E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
+ CK_ArrayToPointerDecay).get();
+ }
+ return E;
+}
+
+static void CheckForNullPointerDereference(Sema &S, Expr *E) {
+ // Check to see if we are dereferencing a null pointer. If so,
+ // and if not volatile-qualified, this is undefined behavior that the
+ // optimizer will delete, so warn about it. People sometimes try to use this
+ // to get a deterministic trap and are surprised by clang's behavior. This
+ // only handles the pattern "*null", which is a very syntactic check.
+ if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
+ if (UO->getOpcode() == UO_Deref &&
+ UO->getSubExpr()->IgnoreParenCasts()->
+ isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
+ !UO->getType().isVolatileQualified()) {
+ S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
+ S.PDiag(diag::warn_indirection_through_null)
+ << UO->getSubExpr()->getSourceRange());
+ S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
+ S.PDiag(diag::note_indirection_through_null));
+ }
+}
+
+static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
+ SourceLocation AssignLoc,
+ const Expr* RHS) {
+ const ObjCIvarDecl *IV = OIRE->getDecl();
+ if (!IV)
+ return;
+
+ DeclarationName MemberName = IV->getDeclName();
+ IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
+ if (!Member || !Member->isStr("isa"))
+ return;
+
+ const Expr *Base = OIRE->getBase();
+ QualType BaseType = Base->getType();
+ if (OIRE->isArrow())
+ BaseType = BaseType->getPointeeType();
+ if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
+ if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
+ ObjCInterfaceDecl *ClassDeclared = nullptr;
+ ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
+ if (!ClassDeclared->getSuperClass()
+ && (*ClassDeclared->ivar_begin()) == IV) {
+ if (RHS) {
+ NamedDecl *ObjectSetClass =
+ S.LookupSingleName(S.TUScope,
+ &S.Context.Idents.get("object_setClass"),
+ SourceLocation(), S.LookupOrdinaryName);
+ if (ObjectSetClass) {
+ SourceLocation RHSLocEnd = S.PP.getLocForEndOfToken(RHS->getLocEnd());
+ S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign) <<
+ FixItHint::CreateInsertion(OIRE->getLocStart(), "object_setClass(") <<
+ FixItHint::CreateReplacement(SourceRange(OIRE->getOpLoc(),
+ AssignLoc), ",") <<
+ FixItHint::CreateInsertion(RHSLocEnd, ")");
+ }
+ else
+ S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
+ } else {
+ NamedDecl *ObjectGetClass =
+ S.LookupSingleName(S.TUScope,
+ &S.Context.Idents.get("object_getClass"),
+ SourceLocation(), S.LookupOrdinaryName);
+ if (ObjectGetClass)
+ S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use) <<
+ FixItHint::CreateInsertion(OIRE->getLocStart(), "object_getClass(") <<
+ FixItHint::CreateReplacement(
+ SourceRange(OIRE->getOpLoc(),
+ OIRE->getLocEnd()), ")");
+ else
+ S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
+ }
+ S.Diag(IV->getLocation(), diag::note_ivar_decl);
+ }
+ }
+}
+
+ExprResult Sema::DefaultLvalueConversion(Expr *E) {
+ // Handle any placeholder expressions which made it here.
+ if (E->getType()->isPlaceholderType()) {
+ ExprResult result = CheckPlaceholderExpr(E);
+ if (result.isInvalid()) return ExprError();
+ E = result.get();
+ }
+
+ // C++ [conv.lval]p1:
+ // A glvalue of a non-function, non-array type T can be
+ // converted to a prvalue.
+ if (!E->isGLValue()) return E;
+
+ QualType T = E->getType();
+ assert(!T.isNull() && "r-value conversion on typeless expression?");
+
+ // We don't want to throw lvalue-to-rvalue casts on top of
+ // expressions of certain types in C++.
+ if (getLangOpts().CPlusPlus &&
+ (E->getType() == Context.OverloadTy ||
+ T->isDependentType() ||
+ T->isRecordType()))
+ return E;
+
+ // The C standard is actually really unclear on this point, and
+ // DR106 tells us what the result should be but not why. It's
+ // generally best to say that void types just doesn't undergo
+ // lvalue-to-rvalue at all. Note that expressions of unqualified
+ // 'void' type are never l-values, but qualified void can be.
+ if (T->isVoidType())
+ return E;
+
+ // OpenCL usually rejects direct accesses to values of 'half' type.
+ if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16 &&
+ T->isHalfType()) {
+ Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
+ << 0 << T;
+ return ExprError();
+ }
+
+ CheckForNullPointerDereference(*this, E);
+ if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
+ NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
+ &Context.Idents.get("object_getClass"),
+ SourceLocation(), LookupOrdinaryName);
+ if (ObjectGetClass)
+ Diag(E->getExprLoc(), diag::warn_objc_isa_use) <<
+ FixItHint::CreateInsertion(OISA->getLocStart(), "object_getClass(") <<
+ FixItHint::CreateReplacement(
+ SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
+ else
+ Diag(E->getExprLoc(), diag::warn_objc_isa_use);
+ }
+ else if (const ObjCIvarRefExpr *OIRE =
+ dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
+ DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
+
+ // C++ [conv.lval]p1:
+ // [...] If T is a non-class type, the type of the prvalue is the
+ // cv-unqualified version of T. Otherwise, the type of the
+ // rvalue is T.
+ //
+ // C99 6.3.2.1p2:
+ // If the lvalue has qualified type, the value has the unqualified
+ // version of the type of the lvalue; otherwise, the value has the
+ // type of the lvalue.
+ if (T.hasQualifiers())
+ T = T.getUnqualifiedType();
+
+ UpdateMarkingForLValueToRValue(E);
+
+ // Loading a __weak object implicitly retains the value, so we need a cleanup to
+ // balance that.
+ if (getLangOpts().ObjCAutoRefCount &&
+ E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
+ ExprNeedsCleanups = true;
+
+ ExprResult Res = ImplicitCastExpr::Create(Context, T, CK_LValueToRValue, E,
+ nullptr, VK_RValue);
+
+ // C11 6.3.2.1p2:
+ // ... if the lvalue has atomic type, the value has the non-atomic version
+ // of the type of the lvalue ...
+ if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
+ T = Atomic->getValueType().getUnqualifiedType();
+ Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
+ nullptr, VK_RValue);
+ }
+
+ return Res;
+}
+
+ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E) {
+ ExprResult Res = DefaultFunctionArrayConversion(E);
+ if (Res.isInvalid())
+ return ExprError();
+ Res = DefaultLvalueConversion(Res.get());
+ if (Res.isInvalid())
+ return ExprError();
+ return Res;
+}
+
+/// CallExprUnaryConversions - a special case of an unary conversion
+/// performed on a function designator of a call expression.
+ExprResult Sema::CallExprUnaryConversions(Expr *E) {
+ QualType Ty = E->getType();
+ ExprResult Res = E;
+ // Only do implicit cast for a function type, but not for a pointer
+ // to function type.
+ if (Ty->isFunctionType()) {
+ Res = ImpCastExprToType(E, Context.getPointerType(Ty),
+ CK_FunctionToPointerDecay).get();
+ if (Res.isInvalid())
+ return ExprError();
+ }
+ Res = DefaultLvalueConversion(Res.get());
+ if (Res.isInvalid())
+ return ExprError();
+ return Res.get();
+}
+
+/// UsualUnaryConversions - Performs various conversions that are common to most
+/// operators (C99 6.3). The conversions of array and function types are
+/// sometimes suppressed. For example, the array->pointer conversion doesn't
+/// apply if the array is an argument to the sizeof or address (&) operators.
+/// In these instances, this routine should *not* be called.
+ExprResult Sema::UsualUnaryConversions(Expr *E) {
+ // First, convert to an r-value.
+ ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
+ if (Res.isInvalid())
+ return ExprError();
+ E = Res.get();
+
+ QualType Ty = E->getType();
+ assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
+
+ // Half FP have to be promoted to float unless it is natively supported
+ if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
+ return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
+
+ // Try to perform integral promotions if the object has a theoretically
+ // promotable type.
+ if (Ty->isIntegralOrUnscopedEnumerationType()) {
+ // C99 6.3.1.1p2:
+ //
+ // The following may be used in an expression wherever an int or
+ // unsigned int may be used:
+ // - an object or expression with an integer type whose integer
+ // conversion rank is less than or equal to the rank of int
+ // and unsigned int.
+ // - A bit-field of type _Bool, int, signed int, or unsigned int.
+ //
+ // If an int can represent all values of the original type, the
+ // value is converted to an int; otherwise, it is converted to an
+ // unsigned int. These are called the integer promotions. All
+ // other types are unchanged by the integer promotions.
+
+ QualType PTy = Context.isPromotableBitField(E);
+ if (!PTy.isNull()) {
+ E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
+ return E;
+ }
+ if (Ty->isPromotableIntegerType()) {
+ QualType PT = Context.getPromotedIntegerType(Ty);
+ E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
+ return E;
+ }
+ }
+ return E;
+}
+
+/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
+/// do not have a prototype. Arguments that have type float or __fp16
+/// are promoted to double. All other argument types are converted by
+/// UsualUnaryConversions().
+ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
+ QualType Ty = E->getType();
+ assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
+
+ ExprResult Res = UsualUnaryConversions(E);
+ if (Res.isInvalid())
+ return ExprError();
+ E = Res.get();
+
+ // If this is a 'float' or '__fp16' (CVR qualified or typedef) promote to
+ // double.
+ const BuiltinType *BTy = Ty->getAs<BuiltinType>();
+ if (BTy && (BTy->getKind() == BuiltinType::Half ||
+ BTy->getKind() == BuiltinType::Float))
+ E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
+
+ // C++ performs lvalue-to-rvalue conversion as a default argument
+ // promotion, even on class types, but note:
+ // C++11 [conv.lval]p2:
+ // When an lvalue-to-rvalue conversion occurs in an unevaluated
+ // operand or a subexpression thereof the value contained in the
+ // referenced object is not accessed. Otherwise, if the glvalue
+ // has a class type, the conversion copy-initializes a temporary
+ // of type T from the glvalue and the result of the conversion
+ // is a prvalue for the temporary.
+ // FIXME: add some way to gate this entire thing for correctness in
+ // potentially potentially evaluated contexts.
+ if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
+ ExprResult Temp = PerformCopyInitialization(
+ InitializedEntity::InitializeTemporary(E->getType()),
+ E->getExprLoc(), E);
+ if (Temp.isInvalid())
+ return ExprError();
+ E = Temp.get();
+ }
+
+ return E;
+}
+
+/// Determine the degree of POD-ness for an expression.
+/// Incomplete types are considered POD, since this check can be performed
+/// when we're in an unevaluated context.
+Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
+ if (Ty->isIncompleteType()) {
+ // C++11 [expr.call]p7:
+ // After these conversions, if the argument does not have arithmetic,
+ // enumeration, pointer, pointer to member, or class type, the program
+ // is ill-formed.
+ //
+ // Since we've already performed array-to-pointer and function-to-pointer
+ // decay, the only such type in C++ is cv void. This also handles
+ // initializer lists as variadic arguments.
+ if (Ty->isVoidType())
+ return VAK_Invalid;
+
+ if (Ty->isObjCObjectType())
+ return VAK_Invalid;
+ return VAK_Valid;
+ }
+
+ if (Ty.isCXX98PODType(Context))
+ return VAK_Valid;
+
+ // C++11 [expr.call]p7:
+ // Passing a potentially-evaluated argument of class type (Clause 9)
+ // having a non-trivial copy constructor, a non-trivial move constructor,
+ // or a non-trivial destructor, with no corresponding parameter,
+ // is conditionally-supported with implementation-defined semantics.
+ if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
+ if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
+ if (!Record->hasNonTrivialCopyConstructor() &&
+ !Record->hasNonTrivialMoveConstructor() &&
+ !Record->hasNonTrivialDestructor())
+ return VAK_ValidInCXX11;
+
+ if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
+ return VAK_Valid;
+
+ if (Ty->isObjCObjectType())
+ return VAK_Invalid;
+
+ if (getLangOpts().MSVCCompat)
+ return VAK_MSVCUndefined;
+
+ // FIXME: In C++11, these cases are conditionally-supported, meaning we're
+ // permitted to reject them. We should consider doing so.
+ return VAK_Undefined;
+}
+
+void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
+ // Don't allow one to pass an Objective-C interface to a vararg.
+ const QualType &Ty = E->getType();
+ VarArgKind VAK = isValidVarArgType(Ty);
+
+ // Complain about passing non-POD types through varargs.
+ switch (VAK) {
+ case VAK_ValidInCXX11:
+ DiagRuntimeBehavior(
+ E->getLocStart(), nullptr,
+ PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg)
+ << Ty << CT);
+ // Fall through.
+ case VAK_Valid:
+ if (Ty->isRecordType()) {
+ // This is unlikely to be what the user intended. If the class has a
+ // 'c_str' member function, the user probably meant to call that.
+ DiagRuntimeBehavior(E->getLocStart(), nullptr,
+ PDiag(diag::warn_pass_class_arg_to_vararg)
+ << Ty << CT << hasCStrMethod(E) << ".c_str()");
+ }
+ break;
+
+ case VAK_Undefined:
+ case VAK_MSVCUndefined:
+ DiagRuntimeBehavior(
+ E->getLocStart(), nullptr,
+ PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
+ << getLangOpts().CPlusPlus11 << Ty << CT);
+ break;
+
+ case VAK_Invalid:
+ if (Ty->isObjCObjectType())
+ DiagRuntimeBehavior(
+ E->getLocStart(), nullptr,
+ PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
+ << Ty << CT);
+ else
+ Diag(E->getLocStart(), diag::err_cannot_pass_to_vararg)
+ << isa<InitListExpr>(E) << Ty << CT;
+ break;
+ }
+}
+
+/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
+/// will create a trap if the resulting type is not a POD type.
+ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
+ FunctionDecl *FDecl) {
+ if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
+ // Strip the unbridged-cast placeholder expression off, if applicable.
+ if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
+ (CT == VariadicMethod ||
+ (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
+ E = stripARCUnbridgedCast(E);
+
+ // Otherwise, do normal placeholder checking.
+ } else {
+ ExprResult ExprRes = CheckPlaceholderExpr(E);
+ if (ExprRes.isInvalid())
+ return ExprError();
+ E = ExprRes.get();
+ }
+ }
+
+ ExprResult ExprRes = DefaultArgumentPromotion(E);
+ if (ExprRes.isInvalid())
+ return ExprError();
+ E = ExprRes.get();
+
+ // Diagnostics regarding non-POD argument types are
+ // emitted along with format string checking in Sema::CheckFunctionCall().
+ if (isValidVarArgType(E->getType()) == VAK_Undefined) {
+ // Turn this into a trap.
+ CXXScopeSpec SS;
+ SourceLocation TemplateKWLoc;
+ UnqualifiedId Name;
+ Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
+ E->getLocStart());
+ ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc,
+ Name, true, false);
+ if (TrapFn.isInvalid())
+ return ExprError();
+
+ ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(),
+ E->getLocStart(), None,
+ E->getLocEnd());
+ if (Call.isInvalid())
+ return ExprError();
+
+ ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
+ Call.get(), E);
+ if (Comma.isInvalid())
+ return ExprError();
+ return Comma.get();
+ }
+
+ if (!getLangOpts().CPlusPlus &&
+ RequireCompleteType(E->getExprLoc(), E->getType(),
+ diag::err_call_incomplete_argument))
+ return ExprError();
+
+ return E;
+}
+
+/// \brief Converts an integer to complex float type. Helper function of
+/// UsualArithmeticConversions()
+///
+/// \return false if the integer expression is an integer type and is
+/// successfully converted to the complex type.
+static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
+ ExprResult &ComplexExpr,
+ QualType IntTy,
+ QualType ComplexTy,
+ bool SkipCast) {
+ if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
+ if (SkipCast) return false;
+ if (IntTy->isIntegerType()) {
+ QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
+ IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
+ IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
+ CK_FloatingRealToComplex);
+ } else {
+ assert(IntTy->isComplexIntegerType());
+ IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
+ CK_IntegralComplexToFloatingComplex);
+ }
+ return false;
+}
+
+/// \brief Handle arithmetic conversion with complex types. Helper function of
+/// UsualArithmeticConversions()
+static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
+ ExprResult &RHS, QualType LHSType,
+ QualType RHSType,
+ bool IsCompAssign) {
+ // if we have an integer operand, the result is the complex type.
+ if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
+ /*skipCast*/false))
+ return LHSType;
+ if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
+ /*skipCast*/IsCompAssign))
+ return RHSType;
+
+ // This handles complex/complex, complex/float, or float/complex.
+ // When both operands are complex, the shorter operand is converted to the
+ // type of the longer, and that is the type of the result. This corresponds
+ // to what is done when combining two real floating-point operands.
+ // The fun begins when size promotion occur across type domains.
+ // From H&S 6.3.4: When one operand is complex and the other is a real
+ // floating-point type, the less precise type is converted, within it's
+ // real or complex domain, to the precision of the other type. For example,
+ // when combining a "long double" with a "double _Complex", the
+ // "double _Complex" is promoted to "long double _Complex".
+
+ // Compute the rank of the two types, regardless of whether they are complex.
+ int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
+
+ auto *LHSComplexType = dyn_cast<ComplexType>(LHSType);
+ auto *RHSComplexType = dyn_cast<ComplexType>(RHSType);
+ QualType LHSElementType =
+ LHSComplexType ? LHSComplexType->getElementType() : LHSType;
+ QualType RHSElementType =
+ RHSComplexType ? RHSComplexType->getElementType() : RHSType;
+
+ QualType ResultType = S.Context.getComplexType(LHSElementType);
+ if (Order < 0) {
+ // Promote the precision of the LHS if not an assignment.
+ ResultType = S.Context.getComplexType(RHSElementType);
+ if (!IsCompAssign) {
+ if (LHSComplexType)
+ LHS =
+ S.ImpCastExprToType(LHS.get(), ResultType, CK_FloatingComplexCast);
+ else
+ LHS = S.ImpCastExprToType(LHS.get(), RHSElementType, CK_FloatingCast);
+ }
+ } else if (Order > 0) {
+ // Promote the precision of the RHS.
+ if (RHSComplexType)
+ RHS = S.ImpCastExprToType(RHS.get(), ResultType, CK_FloatingComplexCast);
+ else
+ RHS = S.ImpCastExprToType(RHS.get(), LHSElementType, CK_FloatingCast);
+ }
+ return ResultType;
+}
+
+/// \brief Hande arithmetic conversion from integer to float. Helper function
+/// of UsualArithmeticConversions()
+static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
+ ExprResult &IntExpr,
+ QualType FloatTy, QualType IntTy,
+ bool ConvertFloat, bool ConvertInt) {
+ if (IntTy->isIntegerType()) {
+ if (ConvertInt)
+ // Convert intExpr to the lhs floating point type.
+ IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
+ CK_IntegralToFloating);
+ return FloatTy;
+ }
+
+ // Convert both sides to the appropriate complex float.
+ assert(IntTy->isComplexIntegerType());
+ QualType result = S.Context.getComplexType(FloatTy);
+
+ // _Complex int -> _Complex float
+ if (ConvertInt)
+ IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
+ CK_IntegralComplexToFloatingComplex);
+
+ // float -> _Complex float
+ if (ConvertFloat)
+ FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
+ CK_FloatingRealToComplex);
+
+ return result;
+}
+
+/// \brief Handle arithmethic conversion with floating point types. Helper
+/// function of UsualArithmeticConversions()
+static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
+ ExprResult &RHS, QualType LHSType,
+ QualType RHSType, bool IsCompAssign) {
+ bool LHSFloat = LHSType->isRealFloatingType();
+ bool RHSFloat = RHSType->isRealFloatingType();
+
+ // If we have two real floating types, convert the smaller operand
+ // to the bigger result.
+ if (LHSFloat && RHSFloat) {
+ int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
+ if (order > 0) {
+ RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
+ return LHSType;
+ }
+
+ assert(order < 0 && "illegal float comparison");
+ if (!IsCompAssign)
+ LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
+ return RHSType;
+ }
+
+ if (LHSFloat)
+ return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
+ /*convertFloat=*/!IsCompAssign,
+ /*convertInt=*/ true);
+ assert(RHSFloat);
+ return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
+ /*convertInt=*/ true,
+ /*convertFloat=*/!IsCompAssign);
+}
+
+typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
+
+namespace {
+/// These helper callbacks are placed in an anonymous namespace to
+/// permit their use as function template parameters.
+ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
+ return S.ImpCastExprToType(op, toType, CK_IntegralCast);
+}
+
+ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
+ return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
+ CK_IntegralComplexCast);
+}
+}
+
+/// \brief Handle integer arithmetic conversions. Helper function of
+/// UsualArithmeticConversions()
+template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
+static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
+ ExprResult &RHS, QualType LHSType,
+ QualType RHSType, bool IsCompAssign) {
+ // The rules for this case are in C99 6.3.1.8
+ int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
+ bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
+ bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
+ if (LHSSigned == RHSSigned) {
+ // Same signedness; use the higher-ranked type
+ if (order >= 0) {
+ RHS = (*doRHSCast)(S, RHS.get(), LHSType);
+ return LHSType;
+ } else if (!IsCompAssign)
+ LHS = (*doLHSCast)(S, LHS.get(), RHSType);
+ return RHSType;
+ } else if (order != (LHSSigned ? 1 : -1)) {
+ // The unsigned type has greater than or equal rank to the
+ // signed type, so use the unsigned type
+ if (RHSSigned) {
+ RHS = (*doRHSCast)(S, RHS.get(), LHSType);
+ return LHSType;
+ } else if (!IsCompAssign)
+ LHS = (*doLHSCast)(S, LHS.get(), RHSType);
+ return RHSType;
+ } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
+ // The two types are different widths; if we are here, that
+ // means the signed type is larger than the unsigned type, so
+ // use the signed type.
+ if (LHSSigned) {
+ RHS = (*doRHSCast)(S, RHS.get(), LHSType);
+ return LHSType;
+ } else if (!IsCompAssign)
+ LHS = (*doLHSCast)(S, LHS.get(), RHSType);
+ return RHSType;
+ } else {
+ // The signed type is higher-ranked than the unsigned type,
+ // but isn't actually any bigger (like unsigned int and long
+ // on most 32-bit systems). Use the unsigned type corresponding
+ // to the signed type.
+ QualType result =
+ S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
+ RHS = (*doRHSCast)(S, RHS.get(), result);
+ if (!IsCompAssign)
+ LHS = (*doLHSCast)(S, LHS.get(), result);
+ return result;
+ }
+}
+
+/// \brief Handle conversions with GCC complex int extension. Helper function
+/// of UsualArithmeticConversions()
+static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
+ ExprResult &RHS, QualType LHSType,
+ QualType RHSType,
+ bool IsCompAssign) {
+ const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
+ const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
+
+ if (LHSComplexInt && RHSComplexInt) {
+ QualType LHSEltType = LHSComplexInt->getElementType();
+ QualType RHSEltType = RHSComplexInt->getElementType();
+ QualType ScalarType =
+ handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
+ (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
+
+ return S.Context.getComplexType(ScalarType);
+ }
+
+ if (LHSComplexInt) {
+ QualType LHSEltType = LHSComplexInt->getElementType();
+ QualType ScalarType =
+ handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
+ (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
+ QualType ComplexType = S.Context.getComplexType(ScalarType);
+ RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
+ CK_IntegralRealToComplex);
+
+ return ComplexType;
+ }
+
+ assert(RHSComplexInt);
+
+ QualType RHSEltType = RHSComplexInt->getElementType();
+ QualType ScalarType =
+ handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
+ (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
+ QualType ComplexType = S.Context.getComplexType(ScalarType);
+
+ if (!IsCompAssign)
+ LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
+ CK_IntegralRealToComplex);
+ return ComplexType;
+}
+
+/// UsualArithmeticConversions - Performs various conversions that are common to
+/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
+/// routine returns the first non-arithmetic type found. The client is
+/// responsible for emitting appropriate error diagnostics.
+QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
+ bool IsCompAssign) {
+ if (!IsCompAssign) {
+ LHS = UsualUnaryConversions(LHS.get());
+ if (LHS.isInvalid())
+ return QualType();
+ }
+
+ RHS = UsualUnaryConversions(RHS.get());
+ if (RHS.isInvalid())
+ return QualType();
+
+ // For conversion purposes, we ignore any qualifiers.
+ // For example, "const float" and "float" are equivalent.
+ QualType LHSType =
+ Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
+ QualType RHSType =
+ Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
+
+ // For conversion purposes, we ignore any atomic qualifier on the LHS.
+ if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
+ LHSType = AtomicLHS->getValueType();
+
+ // If both types are identical, no conversion is needed.
+ if (LHSType == RHSType)
+ return LHSType;
+
+ // If either side is a non-arithmetic type (e.g. a pointer), we are done.
+ // The caller can deal with this (e.g. pointer + int).
+ if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
+ return QualType();
+
+ // Apply unary and bitfield promotions to the LHS's type.
+ QualType LHSUnpromotedType = LHSType;
+ if (LHSType->isPromotableIntegerType())
+ LHSType = Context.getPromotedIntegerType(LHSType);
+ QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
+ if (!LHSBitfieldPromoteTy.isNull())
+ LHSType = LHSBitfieldPromoteTy;
+ if (LHSType != LHSUnpromotedType && !IsCompAssign)
+ LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
+
+ // If both types are identical, no conversion is needed.
+ if (LHSType == RHSType)
+ return LHSType;
+
+ // At this point, we have two different arithmetic types.
+
+ // Handle complex types first (C99 6.3.1.8p1).
+ if (LHSType->isComplexType() || RHSType->isComplexType())
+ return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
+ IsCompAssign);
+
+ // Now handle "real" floating types (i.e. float, double, long double).
+ if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
+ return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
+ IsCompAssign);
+
+ // Handle GCC complex int extension.
+ if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
+ return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
+ IsCompAssign);
+
+ // Finally, we have two differing integer types.
+ return handleIntegerConversion<doIntegralCast, doIntegralCast>
+ (*this, LHS, RHS, LHSType, RHSType, IsCompAssign);
+}
+
+
+//===----------------------------------------------------------------------===//
+// Semantic Analysis for various Expression Types
+//===----------------------------------------------------------------------===//
+
+
+ExprResult
+Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
+ SourceLocation DefaultLoc,
+ SourceLocation RParenLoc,
+ Expr *ControllingExpr,
+ ArrayRef<ParsedType> ArgTypes,
+ ArrayRef<Expr *> ArgExprs) {
+ unsigned NumAssocs = ArgTypes.size();
+ assert(NumAssocs == ArgExprs.size());
+
+ TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
+ for (unsigned i = 0; i < NumAssocs; ++i) {
+ if (ArgTypes[i])
+ (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
+ else
+ Types[i] = nullptr;
+ }
+
+ ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
+ ControllingExpr,
+ llvm::makeArrayRef(Types, NumAssocs),
+ ArgExprs);
+ delete [] Types;
+ return ER;
+}
+
+ExprResult
+Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
+ SourceLocation DefaultLoc,
+ SourceLocation RParenLoc,
+ Expr *ControllingExpr,
+ ArrayRef<TypeSourceInfo *> Types,
+ ArrayRef<Expr *> Exprs) {
+ unsigned NumAssocs = Types.size();
+ assert(NumAssocs == Exprs.size());
+ if (ControllingExpr->getType()->isPlaceholderType()) {
+ ExprResult result = CheckPlaceholderExpr(ControllingExpr);
+ if (result.isInvalid()) return ExprError();
+ ControllingExpr = result.get();
+ }
+
+ // The controlling expression is an unevaluated operand, so side effects are
+ // likely unintended.
+ if (ActiveTemplateInstantiations.empty() &&
+ ControllingExpr->HasSideEffects(Context, false))
+ Diag(ControllingExpr->getExprLoc(),
+ diag::warn_side_effects_unevaluated_context);
+
+ bool TypeErrorFound = false,
+ IsResultDependent = ControllingExpr->isTypeDependent(),
+ ContainsUnexpandedParameterPack
+ = ControllingExpr->containsUnexpandedParameterPack();
+
+ for (unsigned i = 0; i < NumAssocs; ++i) {
+ if (Exprs[i]->containsUnexpandedParameterPack())
+ ContainsUnexpandedParameterPack = true;
+
+ if (Types[i]) {
+ if (Types[i]->getType()->containsUnexpandedParameterPack())
+ ContainsUnexpandedParameterPack = true;
+
+ if (Types[i]->getType()->isDependentType()) {
+ IsResultDependent = true;
+ } else {
+ // C11 6.5.1.1p2 "The type name in a generic association shall specify a
+ // complete object type other than a variably modified type."
+ unsigned D = 0;
+ if (Types[i]->getType()->isIncompleteType())
+ D = diag::err_assoc_type_incomplete;
+ else if (!Types[i]->getType()->isObjectType())
+ D = diag::err_assoc_type_nonobject;
+ else if (Types[i]->getType()->isVariablyModifiedType())
+ D = diag::err_assoc_type_variably_modified;
+
+ if (D != 0) {
+ Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
+ << Types[i]->getTypeLoc().getSourceRange()
+ << Types[i]->getType();
+ TypeErrorFound = true;
+ }
+
+ // C11 6.5.1.1p2 "No two generic associations in the same generic
+ // selection shall specify compatible types."
+ for (unsigned j = i+1; j < NumAssocs; ++j)
+ if (Types[j] && !Types[j]->getType()->isDependentType() &&
+ Context.typesAreCompatible(Types[i]->getType(),
+ Types[j]->getType())) {
+ Diag(Types[j]->getTypeLoc().getBeginLoc(),
+ diag::err_assoc_compatible_types)
+ << Types[j]->getTypeLoc().getSourceRange()
+ << Types[j]->getType()
+ << Types[i]->getType();
+ Diag(Types[i]->getTypeLoc().getBeginLoc(),
+ diag::note_compat_assoc)
+ << Types[i]->getTypeLoc().getSourceRange()
+ << Types[i]->getType();
+ TypeErrorFound = true;
+ }
+ }
+ }
+ }
+ if (TypeErrorFound)
+ return ExprError();
+
+ // If we determined that the generic selection is result-dependent, don't
+ // try to compute the result expression.
+ if (IsResultDependent)
+ return new (Context) GenericSelectionExpr(
+ Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
+ ContainsUnexpandedParameterPack);
+
+ SmallVector<unsigned, 1> CompatIndices;
+ unsigned DefaultIndex = -1U;
+ for (unsigned i = 0; i < NumAssocs; ++i) {
+ if (!Types[i])
+ DefaultIndex = i;
+ else if (Context.typesAreCompatible(ControllingExpr->getType(),
+ Types[i]->getType()))
+ CompatIndices.push_back(i);
+ }
+
+ // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
+ // type compatible with at most one of the types named in its generic
+ // association list."
+ if (CompatIndices.size() > 1) {
+ // We strip parens here because the controlling expression is typically
+ // parenthesized in macro definitions.
+ ControllingExpr = ControllingExpr->IgnoreParens();
+ Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
+ << ControllingExpr->getSourceRange() << ControllingExpr->getType()
+ << (unsigned) CompatIndices.size();
+ for (SmallVectorImpl<unsigned>::iterator I = CompatIndices.begin(),
+ E = CompatIndices.end(); I != E; ++I) {
+ Diag(Types[*I]->getTypeLoc().getBeginLoc(),
+ diag::note_compat_assoc)
+ << Types[*I]->getTypeLoc().getSourceRange()
+ << Types[*I]->getType();
+ }
+ return ExprError();
+ }
+
+ // C11 6.5.1.1p2 "If a generic selection has no default generic association,
+ // its controlling expression shall have type compatible with exactly one of
+ // the types named in its generic association list."
+ if (DefaultIndex == -1U && CompatIndices.size() == 0) {
+ // We strip parens here because the controlling expression is typically
+ // parenthesized in macro definitions.
+ ControllingExpr = ControllingExpr->IgnoreParens();
+ Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
+ << ControllingExpr->getSourceRange() << ControllingExpr->getType();
+ return ExprError();
+ }
+
+ // C11 6.5.1.1p3 "If a generic selection has a generic association with a
+ // type name that is compatible with the type of the controlling expression,
+ // then the result expression of the generic selection is the expression
+ // in that generic association. Otherwise, the result expression of the
+ // generic selection is the expression in the default generic association."
+ unsigned ResultIndex =
+ CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
+
+ return new (Context) GenericSelectionExpr(
+ Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
+ ContainsUnexpandedParameterPack, ResultIndex);
+}
+
+/// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
+/// location of the token and the offset of the ud-suffix within it.
+static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
+ unsigned Offset) {
+ return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
+ S.getLangOpts());
+}
+
+/// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
+/// the corresponding cooked (non-raw) literal operator, and build a call to it.
+static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
+ IdentifierInfo *UDSuffix,
+ SourceLocation UDSuffixLoc,
+ ArrayRef<Expr*> Args,
+ SourceLocation LitEndLoc) {
+ assert(Args.size() <= 2 && "too many arguments for literal operator");
+
+ QualType ArgTy[2];
+ for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
+ ArgTy[ArgIdx] = Args[ArgIdx]->getType();
+ if (ArgTy[ArgIdx]->isArrayType())
+ ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
+ }
+
+ DeclarationName OpName =
+ S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
+ DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
+ OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
+
+ LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
+ if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
+ /*AllowRaw*/false, /*AllowTemplate*/false,
+ /*AllowStringTemplate*/false) == Sema::LOLR_Error)
+ return ExprError();
+
+ return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
+}
+
+/// ActOnStringLiteral - The specified tokens were lexed as pasted string
+/// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
+/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
+/// multiple tokens. However, the common case is that StringToks points to one
+/// string.
+///
+ExprResult
+Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
+ assert(!StringToks.empty() && "Must have at least one string!");
+
+ StringLiteralParser Literal(StringToks, PP);
+ if (Literal.hadError)
+ return ExprError();
+
+ SmallVector<SourceLocation, 4> StringTokLocs;
+ for (unsigned i = 0; i != StringToks.size(); ++i)
+ StringTokLocs.push_back(StringToks[i].getLocation());
+
+ QualType CharTy = Context.CharTy;
+ StringLiteral::StringKind Kind = StringLiteral::Ascii;
+ if (Literal.isWide()) {
+ CharTy = Context.getWideCharType();
+ Kind = StringLiteral::Wide;
+ } else if (Literal.isUTF8()) {
+ Kind = StringLiteral::UTF8;
+ } else if (Literal.isUTF16()) {
+ CharTy = Context.Char16Ty;
+ Kind = StringLiteral::UTF16;
+ } else if (Literal.isUTF32()) {
+ CharTy = Context.Char32Ty;
+ Kind = StringLiteral::UTF32;
+ } else if (Literal.isPascal()) {
+ CharTy = Context.UnsignedCharTy;
+ }
+
+ QualType CharTyConst = CharTy;
+ // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
+ if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
+ CharTyConst.addConst();
+
+ // Get an array type for the string, according to C99 6.4.5. This includes
+ // the nul terminator character as well as the string length for pascal
+ // strings.
+ QualType StrTy = Context.getConstantArrayType(CharTyConst,
+ llvm::APInt(32, Literal.GetNumStringChars()+1),
+ ArrayType::Normal, 0);
+
+ // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
+ if (getLangOpts().OpenCL) {
+ StrTy = Context.getAddrSpaceQualType(StrTy, LangAS::opencl_constant);
+ }
+
+ // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
+ StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
+ Kind, Literal.Pascal, StrTy,
+ &StringTokLocs[0],
+ StringTokLocs.size());
+ if (Literal.getUDSuffix().empty())
+ return Lit;
+
+ // We're building a user-defined literal.
+ IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
+ SourceLocation UDSuffixLoc =
+ getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
+ Literal.getUDSuffixOffset());
+
+ // Make sure we're allowed user-defined literals here.
+ if (!UDLScope)
+ return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
+
+ // C++11 [lex.ext]p5: The literal L is treated as a call of the form
+ // operator "" X (str, len)
+ QualType SizeType = Context.getSizeType();
+
+ DeclarationName OpName =
+ Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
+ DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
+ OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
+
+ QualType ArgTy[] = {
+ Context.getArrayDecayedType(StrTy), SizeType
+ };
+
+ LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
+ switch (LookupLiteralOperator(UDLScope, R, ArgTy,
+ /*AllowRaw*/false, /*AllowTemplate*/false,
+ /*AllowStringTemplate*/true)) {
+
+ case LOLR_Cooked: {
+ llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
+ IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
+ StringTokLocs[0]);
+ Expr *Args[] = { Lit, LenArg };
+
+ return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
+ }
+
+ case LOLR_StringTemplate: {
+ TemplateArgumentListInfo ExplicitArgs;
+
+ unsigned CharBits = Context.getIntWidth(CharTy);
+ bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
+ llvm::APSInt Value(CharBits, CharIsUnsigned);
+
+ TemplateArgument TypeArg(CharTy);
+ TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
+ ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
+
+ for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
+ Value = Lit->getCodeUnit(I);
+ TemplateArgument Arg(Context, Value, CharTy);
+ TemplateArgumentLocInfo ArgInfo;
+ ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
+ }
+ return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
+ &ExplicitArgs);
+ }
+ case LOLR_Raw:
+ case LOLR_Template:
+ llvm_unreachable("unexpected literal operator lookup result");
+ case LOLR_Error:
+ return ExprError();
+ }
+ llvm_unreachable("unexpected literal operator lookup result");
+}
+
+ExprResult
+Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
+ SourceLocation Loc,
+ const CXXScopeSpec *SS) {
+ DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
+ return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
+}
+
+/// BuildDeclRefExpr - Build an expression that references a
+/// declaration that does not require a closure capture.
+ExprResult
+Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
+ const DeclarationNameInfo &NameInfo,
+ const CXXScopeSpec *SS, NamedDecl *FoundD,
+ const TemplateArgumentListInfo *TemplateArgs) {
+ if (getLangOpts().CUDA)
+ if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
+ if (const FunctionDecl *Callee = dyn_cast<FunctionDecl>(D)) {
+ if (CheckCUDATarget(Caller, Callee)) {
+ Diag(NameInfo.getLoc(), diag::err_ref_bad_target)
+ << IdentifyCUDATarget(Callee) << D->getIdentifier()
+ << IdentifyCUDATarget(Caller);
+ Diag(D->getLocation(), diag::note_previous_decl)
+ << D->getIdentifier();
+ return ExprError();
+ }
+ }
+
+ bool RefersToCapturedVariable =
+ isa<VarDecl>(D) &&
+ NeedToCaptureVariable(cast<VarDecl>(D), NameInfo.getLoc());
+
+ DeclRefExpr *E;
+ if (isa<VarTemplateSpecializationDecl>(D)) {
+ VarTemplateSpecializationDecl *VarSpec =
+ cast<VarTemplateSpecializationDecl>(D);
+
+ E = DeclRefExpr::Create(Context, SS ? SS->getWithLocInContext(Context)
+ : NestedNameSpecifierLoc(),
+ VarSpec->getTemplateKeywordLoc(), D,
+ RefersToCapturedVariable, NameInfo.getLoc(), Ty, VK,
+ FoundD, TemplateArgs);
+ } else {
+ assert(!TemplateArgs && "No template arguments for non-variable"
+ " template specialization references");
+ E = DeclRefExpr::Create(Context, SS ? SS->getWithLocInContext(Context)
+ : NestedNameSpecifierLoc(),
+ SourceLocation(), D, RefersToCapturedVariable,
+ NameInfo, Ty, VK, FoundD);
+ }
+
+ MarkDeclRefReferenced(E);
+
+ if (getLangOpts().ObjCARCWeak && isa<VarDecl>(D) &&
+ Ty.getObjCLifetime() == Qualifiers::OCL_Weak &&
+ !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getLocStart()))
+ recordUseOfEvaluatedWeak(E);
+
+ // Just in case we're building an illegal pointer-to-member.
+ FieldDecl *FD = dyn_cast<FieldDecl>(D);
+ if (FD && FD->isBitField())
+ E->setObjectKind(OK_BitField);
+
+ return E;
+}
+
+/// Decomposes the given name into a DeclarationNameInfo, its location, and
+/// possibly a list of template arguments.
+///
+/// If this produces template arguments, it is permitted to call
+/// DecomposeTemplateName.
+///
+/// This actually loses a lot of source location information for
+/// non-standard name kinds; we should consider preserving that in
+/// some way.
+void
+Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
+ TemplateArgumentListInfo &Buffer,
+ DeclarationNameInfo &NameInfo,
+ const TemplateArgumentListInfo *&TemplateArgs) {
+ if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
+ Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
+ Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
+
+ ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
+ Id.TemplateId->NumArgs);
+ translateTemplateArguments(TemplateArgsPtr, Buffer);
+
+ TemplateName TName = Id.TemplateId->Template.get();
+ SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
+ NameInfo = Context.getNameForTemplate(TName, TNameLoc);
+ TemplateArgs = &Buffer;
+ } else {
+ NameInfo = GetNameFromUnqualifiedId(Id);
+ TemplateArgs = nullptr;
+ }
+}
+
+static void emitEmptyLookupTypoDiagnostic(
+ const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
+ DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
+ unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
+ DeclContext *Ctx =
+ SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
+ if (!TC) {
+ // Emit a special diagnostic for failed member lookups.
+ // FIXME: computing the declaration context might fail here (?)
+ if (Ctx)
+ SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
+ << SS.getRange();
+ else
+ SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
+ return;
+ }
+
+ std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
+ bool DroppedSpecifier =
+ TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
+ unsigned NoteID =
+ (TC.getCorrectionDecl() && isa<ImplicitParamDecl>(TC.getCorrectionDecl()))
+ ? diag::note_implicit_param_decl
+ : diag::note_previous_decl;
+ if (!Ctx)
+ SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
+ SemaRef.PDiag(NoteID));
+ else
+ SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
+ << Typo << Ctx << DroppedSpecifier
+ << SS.getRange(),
+ SemaRef.PDiag(NoteID));
+}
+
+/// Diagnose an empty lookup.
+///
+/// \return false if new lookup candidates were found
+bool
+Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
+ std::unique_ptr<CorrectionCandidateCallback> CCC,
+ TemplateArgumentListInfo *ExplicitTemplateArgs,
+ ArrayRef<Expr *> Args, TypoExpr **Out) {
+ DeclarationName Name = R.getLookupName();
+
+ unsigned diagnostic = diag::err_undeclared_var_use;
+ unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
+ if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
+ Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
+ Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
+ diagnostic = diag::err_undeclared_use;
+ diagnostic_suggest = diag::err_undeclared_use_suggest;
+ }
+
+ // If the original lookup was an unqualified lookup, fake an
+ // unqualified lookup. This is useful when (for example) the
+ // original lookup would not have found something because it was a
+ // dependent name.
+ DeclContext *DC = (SS.isEmpty() && !CallsUndergoingInstantiation.empty())
+ ? CurContext : nullptr;
+ while (DC) {
+ if (isa<CXXRecordDecl>(DC)) {
+ LookupQualifiedName(R, DC);
+
+ if (!R.empty()) {
+ // Don't give errors about ambiguities in this lookup.
+ R.suppressDiagnostics();
+
+ // During a default argument instantiation the CurContext points
+ // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
+ // function parameter list, hence add an explicit check.
+ bool isDefaultArgument = !ActiveTemplateInstantiations.empty() &&
+ ActiveTemplateInstantiations.back().Kind ==
+ ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation;
+ CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
+ bool isInstance = CurMethod &&
+ CurMethod->isInstance() &&
+ DC == CurMethod->getParent() && !isDefaultArgument;
+
+
+ // Give a code modification hint to insert 'this->'.
+ // TODO: fixit for inserting 'Base<T>::' in the other cases.
+ // Actually quite difficult!
+ if (getLangOpts().MSVCCompat)
+ diagnostic = diag::ext_found_via_dependent_bases_lookup;
+ if (isInstance) {
+ Diag(R.getNameLoc(), diagnostic) << Name
+ << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
+ UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
+ CallsUndergoingInstantiation.back()->getCallee());
+
+ CXXMethodDecl *DepMethod;
+ if (CurMethod->isDependentContext())
+ DepMethod = CurMethod;
+ else if (CurMethod->getTemplatedKind() ==
+ FunctionDecl::TK_FunctionTemplateSpecialization)
+ DepMethod = cast<CXXMethodDecl>(CurMethod->getPrimaryTemplate()->
+ getInstantiatedFromMemberTemplate()->getTemplatedDecl());
+ else
+ DepMethod = cast<CXXMethodDecl>(
+ CurMethod->getInstantiatedFromMemberFunction());
+ assert(DepMethod && "No template pattern found");
+
+ QualType DepThisType = DepMethod->getThisType(Context);
+ CheckCXXThisCapture(R.getNameLoc());
+ CXXThisExpr *DepThis = new (Context) CXXThisExpr(
+ R.getNameLoc(), DepThisType, false);
+ TemplateArgumentListInfo TList;
+ if (ULE->hasExplicitTemplateArgs())
+ ULE->copyTemplateArgumentsInto(TList);
+
+ CXXScopeSpec SS;
+ SS.Adopt(ULE->getQualifierLoc());
+ CXXDependentScopeMemberExpr *DepExpr =
+ CXXDependentScopeMemberExpr::Create(
+ Context, DepThis, DepThisType, true, SourceLocation(),
+ SS.getWithLocInContext(Context),
+ ULE->getTemplateKeywordLoc(), nullptr,
+ R.getLookupNameInfo(),
+ ULE->hasExplicitTemplateArgs() ? &TList : nullptr);
+ CallsUndergoingInstantiation.back()->setCallee(DepExpr);
+ } else {
+ Diag(R.getNameLoc(), diagnostic) << Name;
+ }
+
+ // Do we really want to note all of these?
+ for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
+ Diag((*I)->getLocation(), diag::note_dependent_var_use);
+
+ // Return true if we are inside a default argument instantiation
+ // and the found name refers to an instance member function, otherwise
+ // the function calling DiagnoseEmptyLookup will try to create an
+ // implicit member call and this is wrong for default argument.
+ if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
+ Diag(R.getNameLoc(), diag::err_member_call_without_object);
+ return true;
+ }
+
+ // Tell the callee to try to recover.
+ return false;
+ }
+
+ R.clear();
+ }
+
+ // In Microsoft mode, if we are performing lookup from within a friend
+ // function definition declared at class scope then we must set
+ // DC to the lexical parent to be able to search into the parent
+ // class.
+ if (getLangOpts().MSVCCompat && isa<FunctionDecl>(DC) &&
+ cast<FunctionDecl>(DC)->getFriendObjectKind() &&
+ DC->getLexicalParent()->isRecord())
+ DC = DC->getLexicalParent();
+ else
+ DC = DC->getParent();
+ }
+
+ // We didn't find anything, so try to correct for a typo.
+ TypoCorrection Corrected;
+ if (S && Out) {
+ SourceLocation TypoLoc = R.getNameLoc();
+ assert(!ExplicitTemplateArgs &&
+ "Diagnosing an empty lookup with explicit template args!");
+ *Out = CorrectTypoDelayed(
+ R.getLookupNameInfo(), R.getLookupKind(), S, &SS, std::move(CCC),
+ [=](const TypoCorrection &TC) {
+ emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
+ diagnostic, diagnostic_suggest);
+ },
+ nullptr, CTK_ErrorRecovery);
+ if (*Out)
+ return true;
+ } else if (S && (Corrected =
+ CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S,
+ &SS, std::move(CCC), CTK_ErrorRecovery))) {
+ std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
+ bool DroppedSpecifier =
+ Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
+ R.setLookupName(Corrected.getCorrection());
+
+ bool AcceptableWithRecovery = false;
+ bool AcceptableWithoutRecovery = false;
+ NamedDecl *ND = Corrected.getCorrectionDecl();
+ if (ND) {
+ if (Corrected.isOverloaded()) {
+ OverloadCandidateSet OCS(R.getNameLoc(),
+ OverloadCandidateSet::CSK_Normal);
+ OverloadCandidateSet::iterator Best;
+ for (TypoCorrection::decl_iterator CD = Corrected.begin(),
+ CDEnd = Corrected.end();
+ CD != CDEnd; ++CD) {
+ if (FunctionTemplateDecl *FTD =
+ dyn_cast<FunctionTemplateDecl>(*CD))
+ AddTemplateOverloadCandidate(
+ FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
+ Args, OCS);
+ else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
+ if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
+ AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
+ Args, OCS);
+ }
+ switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
+ case OR_Success:
+ ND = Best->Function;
+ Corrected.setCorrectionDecl(ND);
+ break;
+ default:
+ // FIXME: Arbitrarily pick the first declaration for the note.
+ Corrected.setCorrectionDecl(ND);
+ break;
+ }
+ }
+ R.addDecl(ND);
+ if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
+ CXXRecordDecl *Record = nullptr;
+ if (Corrected.getCorrectionSpecifier()) {
+ const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
+ Record = Ty->getAsCXXRecordDecl();
+ }
+ if (!Record)
+ Record = cast<CXXRecordDecl>(
+ ND->getDeclContext()->getRedeclContext());
+ R.setNamingClass(Record);
+ }
+
+ AcceptableWithRecovery =
+ isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND);
+ // FIXME: If we ended up with a typo for a type name or
+ // Objective-C class name, we're in trouble because the parser
+ // is in the wrong place to recover. Suggest the typo
+ // correction, but don't make it a fix-it since we're not going
+ // to recover well anyway.
+ AcceptableWithoutRecovery =
+ isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
+ } else {
+ // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
+ // because we aren't able to recover.
+ AcceptableWithoutRecovery = true;
+ }
+
+ if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
+ unsigned NoteID = (Corrected.getCorrectionDecl() &&
+ isa<ImplicitParamDecl>(Corrected.getCorrectionDecl()))
+ ? diag::note_implicit_param_decl
+ : diag::note_previous_decl;
+ if (SS.isEmpty())
+ diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
+ PDiag(NoteID), AcceptableWithRecovery);
+ else
+ diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
+ << Name << computeDeclContext(SS, false)
+ << DroppedSpecifier << SS.getRange(),
+ PDiag(NoteID), AcceptableWithRecovery);
+
+ // Tell the callee whether to try to recover.
+ return !AcceptableWithRecovery;
+ }
+ }
+ R.clear();
+
+ // Emit a special diagnostic for failed member lookups.
+ // FIXME: computing the declaration context might fail here (?)
+ if (!SS.isEmpty()) {
+ Diag(R.getNameLoc(), diag::err_no_member)
+ << Name << computeDeclContext(SS, false)
+ << SS.getRange();
+ return true;
+ }
+
+ // Give up, we can't recover.
+ Diag(R.getNameLoc(), diagnostic) << Name;
+ return true;
+}
+
+/// In Microsoft mode, if we are inside a template class whose parent class has
+/// dependent base classes, and we can't resolve an unqualified identifier, then
+/// assume the identifier is a member of a dependent base class. We can only
+/// recover successfully in static methods, instance methods, and other contexts
+/// where 'this' is available. This doesn't precisely match MSVC's
+/// instantiation model, but it's close enough.
+static Expr *
+recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
+ DeclarationNameInfo &NameInfo,
+ SourceLocation TemplateKWLoc,
+ const TemplateArgumentListInfo *TemplateArgs) {
+ // Only try to recover from lookup into dependent bases in static methods or
+ // contexts where 'this' is available.
+ QualType ThisType = S.getCurrentThisType();
+ const CXXRecordDecl *RD = nullptr;
+ if (!ThisType.isNull())
+ RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
+ else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
+ RD = MD->getParent();
+ if (!RD || !RD->hasAnyDependentBases())
+ return nullptr;
+
+ // Diagnose this as unqualified lookup into a dependent base class. If 'this'
+ // is available, suggest inserting 'this->' as a fixit.
+ SourceLocation Loc = NameInfo.getLoc();
+ auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
+ DB << NameInfo.getName() << RD;
+
+ if (!ThisType.isNull()) {
+ DB << FixItHint::CreateInsertion(Loc, "this->");
+ return CXXDependentScopeMemberExpr::Create(
+ Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
+ /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
+ /*FirstQualifierInScope=*/nullptr, NameInfo, TemplateArgs);
+ }
+
+ // Synthesize a fake NNS that points to the derived class. This will
+ // perform name lookup during template instantiation.
+ CXXScopeSpec SS;
+ auto *NNS =
+ NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
+ SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
+ return DependentScopeDeclRefExpr::Create(
+ Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
+ TemplateArgs);
+}
+
+ExprResult
+Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
+ SourceLocation TemplateKWLoc, UnqualifiedId &Id,
+ bool HasTrailingLParen, bool IsAddressOfOperand,
+ std::unique_ptr<CorrectionCandidateCallback> CCC,
+ bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
+ assert(!(IsAddressOfOperand && HasTrailingLParen) &&
+ "cannot be direct & operand and have a trailing lparen");
+ if (SS.isInvalid())
+ return ExprError();
+
+ TemplateArgumentListInfo TemplateArgsBuffer;
+
+ // Decompose the UnqualifiedId into the following data.
+ DeclarationNameInfo NameInfo;
+ const TemplateArgumentListInfo *TemplateArgs;
+ DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
+
+ DeclarationName Name = NameInfo.getName();
+ IdentifierInfo *II = Name.getAsIdentifierInfo();
+ SourceLocation NameLoc = NameInfo.getLoc();
+
+ // C++ [temp.dep.expr]p3:
+ // An id-expression is type-dependent if it contains:
+ // -- an identifier that was declared with a dependent type,
+ // (note: handled after lookup)
+ // -- a template-id that is dependent,
+ // (note: handled in BuildTemplateIdExpr)
+ // -- a conversion-function-id that specifies a dependent type,
+ // -- a nested-name-specifier that contains a class-name that
+ // names a dependent type.
+ // Determine whether this is a member of an unknown specialization;
+ // we need to handle these differently.
+ bool DependentID = false;
+ if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
+ Name.getCXXNameType()->isDependentType()) {
+ DependentID = true;
+ } else if (SS.isSet()) {
+ if (DeclContext *DC = computeDeclContext(SS, false)) {
+ if (RequireCompleteDeclContext(SS, DC))
+ return ExprError();
+ } else {
+ DependentID = true;
+ }
+ }
+
+ if (DependentID)
+ return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
+ IsAddressOfOperand, TemplateArgs);
+
+ // Perform the required lookup.
+ LookupResult R(*this, NameInfo,
+ (Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam)
+ ? LookupObjCImplicitSelfParam : LookupOrdinaryName);
+ if (TemplateArgs) {
+ // Lookup the template name again to correctly establish the context in
+ // which it was found. This is really unfortunate as we already did the
+ // lookup to determine that it was a template name in the first place. If
+ // this becomes a performance hit, we can work harder to preserve those
+ // results until we get here but it's likely not worth it.
+ bool MemberOfUnknownSpecialization;
+ LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
+ MemberOfUnknownSpecialization);
+
+ if (MemberOfUnknownSpecialization ||
+ (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
+ return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
+ IsAddressOfOperand, TemplateArgs);
+ } else {
+ bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
+ LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
+
+ // If the result might be in a dependent base class, this is a dependent
+ // id-expression.
+ if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
+ return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
+ IsAddressOfOperand, TemplateArgs);
+
+ // If this reference is in an Objective-C method, then we need to do
+ // some special Objective-C lookup, too.
+ if (IvarLookupFollowUp) {
+ ExprResult E(LookupInObjCMethod(R, S, II, true));
+ if (E.isInvalid())
+ return ExprError();
+
+ if (Expr *Ex = E.getAs<Expr>())
+ return Ex;
+ }
+ }
+
+ if (R.isAmbiguous())
+ return ExprError();
+
+ // This could be an implicitly declared function reference (legal in C90,
+ // extension in C99, forbidden in C++).
+ if (R.empty() && HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
+ NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
+ if (D) R.addDecl(D);
+ }
+
+ // Determine whether this name might be a candidate for
+ // argument-dependent lookup.
+ bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
+
+ if (R.empty() && !ADL) {
+ if (SS.isEmpty() && getLangOpts().MSVCCompat) {
+ if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
+ TemplateKWLoc, TemplateArgs))
+ return E;
+ }
+
+ // Don't diagnose an empty lookup for inline assembly.
+ if (IsInlineAsmIdentifier)
+ return ExprError();
+
+ // If this name wasn't predeclared and if this is not a function
+ // call, diagnose the problem.
+ TypoExpr *TE = nullptr;
+ auto DefaultValidator = llvm::make_unique<CorrectionCandidateCallback>(
+ II, SS.isValid() ? SS.getScopeRep() : nullptr);
+ DefaultValidator->IsAddressOfOperand = IsAddressOfOperand;
+ assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
+ "Typo correction callback misconfigured");
+ if (CCC) {
+ // Make sure the callback knows what the typo being diagnosed is.
+ CCC->setTypoName(II);
+ if (SS.isValid())
+ CCC->setTypoNNS(SS.getScopeRep());
+ }
+ if (DiagnoseEmptyLookup(S, SS, R,
+ CCC ? std::move(CCC) : std::move(DefaultValidator),
+ nullptr, None, &TE)) {
+ if (TE && KeywordReplacement) {
+ auto &State = getTypoExprState(TE);
+ auto BestTC = State.Consumer->getNextCorrection();
+ if (BestTC.isKeyword()) {
+ auto *II = BestTC.getCorrectionAsIdentifierInfo();
+ if (State.DiagHandler)
+ State.DiagHandler(BestTC);
+ KeywordReplacement->startToken();
+ KeywordReplacement->setKind(II->getTokenID());
+ KeywordReplacement->setIdentifierInfo(II);
+ KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
+ // Clean up the state associated with the TypoExpr, since it has
+ // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
+ clearDelayedTypo(TE);
+ // Signal that a correction to a keyword was performed by returning a
+ // valid-but-null ExprResult.
+ return (Expr*)nullptr;
+ }
+ State.Consumer->resetCorrectionStream();
+ }
+ return TE ? TE : ExprError();
+ }
+
+ assert(!R.empty() &&
+ "DiagnoseEmptyLookup returned false but added no results");
+
+ // If we found an Objective-C instance variable, let
+ // LookupInObjCMethod build the appropriate expression to
+ // reference the ivar.
+ if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
+ R.clear();
+ ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
+ // In a hopelessly buggy code, Objective-C instance variable
+ // lookup fails and no expression will be built to reference it.
+ if (!E.isInvalid() && !E.get())
+ return ExprError();
+ return E;
+ }
+ }
+
+ // This is guaranteed from this point on.
+ assert(!R.empty() || ADL);
+
+ // Check whether this might be a C++ implicit instance member access.
+ // C++ [class.mfct.non-static]p3:
+ // When an id-expression that is not part of a class member access
+ // syntax and not used to form a pointer to member is used in the
+ // body of a non-static member function of class X, if name lookup
+ // resolves the name in the id-expression to a non-static non-type
+ // member of some class C, the id-expression is transformed into a
+ // class member access expression using (*this) as the
+ // postfix-expression to the left of the . operator.
+ //
+ // But we don't actually need to do this for '&' operands if R
+ // resolved to a function or overloaded function set, because the
+ // expression is ill-formed if it actually works out to be a
+ // non-static member function:
+ //
+ // C++ [expr.ref]p4:
+ // Otherwise, if E1.E2 refers to a non-static member function. . .
+ // [t]he expression can be used only as the left-hand operand of a
+ // member function call.
+ //
+ // There are other safeguards against such uses, but it's important
+ // to get this right here so that we don't end up making a
+ // spuriously dependent expression if we're inside a dependent
+ // instance method.
+ if (!R.empty() && (*R.begin())->isCXXClassMember()) {
+ bool MightBeImplicitMember;
+ if (!IsAddressOfOperand)
+ MightBeImplicitMember = true;
+ else if (!SS.isEmpty())
+ MightBeImplicitMember = false;
+ else if (R.isOverloadedResult())
+ MightBeImplicitMember = false;
+ else if (R.isUnresolvableResult())
+ MightBeImplicitMember = true;
+ else
+ MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
+ isa<IndirectFieldDecl>(R.getFoundDecl()) ||
+ isa<MSPropertyDecl>(R.getFoundDecl());
+
+ if (MightBeImplicitMember)
+ return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
+ R, TemplateArgs);
+ }
+
+ if (TemplateArgs || TemplateKWLoc.isValid()) {
+
+ // In C++1y, if this is a variable template id, then check it
+ // in BuildTemplateIdExpr().
+ // The single lookup result must be a variable template declaration.
+ if (Id.getKind() == UnqualifiedId::IK_TemplateId && Id.TemplateId &&
+ Id.TemplateId->Kind == TNK_Var_template) {
+ assert(R.getAsSingle<VarTemplateDecl>() &&
+ "There should only be one declaration found.");
+ }
+
+ return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
+ }
+
+ return BuildDeclarationNameExpr(SS, R, ADL);
+}
+
+/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
+/// declaration name, generally during template instantiation.
+/// There's a large number of things which don't need to be done along
+/// this path.
+ExprResult
+Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
+ const DeclarationNameInfo &NameInfo,
+ bool IsAddressOfOperand,
+ TypeSourceInfo **RecoveryTSI) {
+ DeclContext *DC = computeDeclContext(SS, false);
+ if (!DC)
+ return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
+ NameInfo, /*TemplateArgs=*/nullptr);
+
+ if (RequireCompleteDeclContext(SS, DC))
+ return ExprError();
+
+ LookupResult R(*this, NameInfo, LookupOrdinaryName);
+ LookupQualifiedName(R, DC);
+
+ if (R.isAmbiguous())
+ return ExprError();
+
+ if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
+ return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
+ NameInfo, /*TemplateArgs=*/nullptr);
+
+ if (R.empty()) {
+ Diag(NameInfo.getLoc(), diag::err_no_member)
+ << NameInfo.getName() << DC << SS.getRange();
+ return ExprError();
+ }
+
+ if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
+ // Diagnose a missing typename if this resolved unambiguously to a type in
+ // a dependent context. If we can recover with a type, downgrade this to
+ // a warning in Microsoft compatibility mode.
+ unsigned DiagID = diag::err_typename_missing;
+ if (RecoveryTSI && getLangOpts().MSVCCompat)
+ DiagID = diag::ext_typename_missing;
+ SourceLocation Loc = SS.getBeginLoc();
+ auto D = Diag(Loc, DiagID);
+ D << SS.getScopeRep() << NameInfo.getName().getAsString()
+ << SourceRange(Loc, NameInfo.getEndLoc());
+
+ // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
+ // context.
+ if (!RecoveryTSI)
+ return ExprError();
+
+ // Only issue the fixit if we're prepared to recover.
+ D << FixItHint::CreateInsertion(Loc, "typename ");
+
+ // Recover by pretending this was an elaborated type.
+ QualType Ty = Context.getTypeDeclType(TD);
+ TypeLocBuilder TLB;
+ TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
+
+ QualType ET = getElaboratedType(ETK_None, SS, Ty);
+ ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
+ QTL.setElaboratedKeywordLoc(SourceLocation());
+ QTL.setQualifierLoc(SS.getWithLocInContext(Context));
+
+ *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
+
+ return ExprEmpty();
+ }
+
+ // Defend against this resolving to an implicit member access. We usually
+ // won't get here if this might be a legitimate a class member (we end up in
+ // BuildMemberReferenceExpr instead), but this can be valid if we're forming
+ // a pointer-to-member or in an unevaluated context in C++11.
+ if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
+ return BuildPossibleImplicitMemberExpr(SS,
+ /*TemplateKWLoc=*/SourceLocation(),
+ R, /*TemplateArgs=*/nullptr);
+
+ return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
+}
+
+/// LookupInObjCMethod - The parser has read a name in, and Sema has
+/// detected that we're currently inside an ObjC method. Perform some
+/// additional lookup.
+///
+/// Ideally, most of this would be done by lookup, but there's
+/// actually quite a lot of extra work involved.
+///
+/// Returns a null sentinel to indicate trivial success.
+ExprResult
+Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
+ IdentifierInfo *II, bool AllowBuiltinCreation) {
+ SourceLocation Loc = Lookup.getNameLoc();
+ ObjCMethodDecl *CurMethod = getCurMethodDecl();
+
+ // Check for error condition which is already reported.
+ if (!CurMethod)
+ return ExprError();
+
+ // There are two cases to handle here. 1) scoped lookup could have failed,
+ // in which case we should look for an ivar. 2) scoped lookup could have
+ // found a decl, but that decl is outside the current instance method (i.e.
+ // a global variable). In these two cases, we do a lookup for an ivar with
+ // this name, if the lookup sucedes, we replace it our current decl.
+
+ // If we're in a class method, we don't normally want to look for
+ // ivars. But if we don't find anything else, and there's an
+ // ivar, that's an error.
+ bool IsClassMethod = CurMethod->isClassMethod();
+
+ bool LookForIvars;
+ if (Lookup.empty())
+ LookForIvars = true;
+ else if (IsClassMethod)
+ LookForIvars = false;
+ else
+ LookForIvars = (Lookup.isSingleResult() &&
+ Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
+ ObjCInterfaceDecl *IFace = nullptr;
+ if (LookForIvars) {
+ IFace = CurMethod->getClassInterface();
+ ObjCInterfaceDecl *ClassDeclared;
+ ObjCIvarDecl *IV = nullptr;
+ if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
+ // Diagnose using an ivar in a class method.
+ if (IsClassMethod)
+ return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
+ << IV->getDeclName());
+
+ // If we're referencing an invalid decl, just return this as a silent
+ // error node. The error diagnostic was already emitted on the decl.
+ if (IV->isInvalidDecl())
+ return ExprError();
+
+ // Check if referencing a field with __attribute__((deprecated)).
+ if (DiagnoseUseOfDecl(IV, Loc))
+ return ExprError();
+
+ // Diagnose the use of an ivar outside of the declaring class.
+ if (IV->getAccessControl() == ObjCIvarDecl::Private &&
+ !declaresSameEntity(ClassDeclared, IFace) &&
+ !getLangOpts().DebuggerSupport)
+ Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
+
+ // FIXME: This should use a new expr for a direct reference, don't
+ // turn this into Self->ivar, just return a BareIVarExpr or something.
+ IdentifierInfo &II = Context.Idents.get("self");
+ UnqualifiedId SelfName;
+ SelfName.setIdentifier(&II, SourceLocation());
+ SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam);
+ CXXScopeSpec SelfScopeSpec;
+ SourceLocation TemplateKWLoc;
+ ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc,
+ SelfName, false, false);
+ if (SelfExpr.isInvalid())
+ return ExprError();
+
+ SelfExpr = DefaultLvalueConversion(SelfExpr.get());
+ if (SelfExpr.isInvalid())
+ return ExprError();
+
+ MarkAnyDeclReferenced(Loc, IV, true);
+
+ ObjCMethodFamily MF = CurMethod->getMethodFamily();
+ if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
+ !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
+ Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
+
+ ObjCIvarRefExpr *Result = new (Context)
+ ObjCIvarRefExpr(IV, IV->getType(), Loc, IV->getLocation(),
+ SelfExpr.get(), true, true);
+
+ if (getLangOpts().ObjCAutoRefCount) {
+ if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
+ if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
+ recordUseOfEvaluatedWeak(Result);
+ }
+ if (CurContext->isClosure())
+ Diag(Loc, diag::warn_implicitly_retains_self)
+ << FixItHint::CreateInsertion(Loc, "self->");
+ }
+
+ return Result;
+ }
+ } else if (CurMethod->isInstanceMethod()) {
+ // We should warn if a local variable hides an ivar.
+ if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
+ ObjCInterfaceDecl *ClassDeclared;
+ if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
+ if (IV->getAccessControl() != ObjCIvarDecl::Private ||
+ declaresSameEntity(IFace, ClassDeclared))
+ Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
+ }
+ }
+ } else if (Lookup.isSingleResult() &&
+ Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
+ // If accessing a stand-alone ivar in a class method, this is an error.
+ if (const ObjCIvarDecl *IV = dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl()))
+ return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
+ << IV->getDeclName());
+ }
+
+ if (Lookup.empty() && II && AllowBuiltinCreation) {
+ // FIXME. Consolidate this with similar code in LookupName.
+ if (unsigned BuiltinID = II->getBuiltinID()) {
+ if (!(getLangOpts().CPlusPlus &&
+ Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
+ NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
+ S, Lookup.isForRedeclaration(),
+ Lookup.getNameLoc());
+ if (D) Lookup.addDecl(D);
+ }
+ }
+ }
+ // Sentinel value saying that we didn't do anything special.
+ return ExprResult((Expr *)nullptr);
+}
+
+/// \brief Cast a base object to a member's actual type.
+///
+/// Logically this happens in three phases:
+///
+/// * First we cast from the base type to the naming class.
+/// The naming class is the class into which we were looking
+/// when we found the member; it's the qualifier type if a
+/// qualifier was provided, and otherwise it's the base type.
+///
+/// * Next we cast from the naming class to the declaring class.
+/// If the member we found was brought into a class's scope by
+/// a using declaration, this is that class; otherwise it's
+/// the class declaring the member.
+///
+/// * Finally we cast from the declaring class to the "true"
+/// declaring class of the member. This conversion does not
+/// obey access control.
+ExprResult
+Sema::PerformObjectMemberConversion(Expr *From,
+ NestedNameSpecifier *Qualifier,
+ NamedDecl *FoundDecl,
+ NamedDecl *Member) {
+ CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
+ if (!RD)
+ return From;
+
+ QualType DestRecordType;
+ QualType DestType;
+ QualType FromRecordType;
+ QualType FromType = From->getType();
+ bool PointerConversions = false;
+ if (isa<FieldDecl>(Member)) {
+ DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
+
+ if (FromType->getAs<PointerType>()) {
+ DestType = Context.getPointerType(DestRecordType);
+ FromRecordType = FromType->getPointeeType();
+ PointerConversions = true;
+ } else {
+ DestType = DestRecordType;
+ FromRecordType = FromType;
+ }
+ } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
+ if (Method->isStatic())
+ return From;
+
+ DestType = Method->getThisType(Context);
+ DestRecordType = DestType->getPointeeType();
+
+ if (FromType->getAs<PointerType>()) {
+ FromRecordType = FromType->getPointeeType();
+ PointerConversions = true;
+ } else {
+ FromRecordType = FromType;
+ DestType = DestRecordType;
+ }
+ } else {
+ // No conversion necessary.
+ return From;
+ }
+
+ if (DestType->isDependentType() || FromType->isDependentType())
+ return From;
+
+ // If the unqualified types are the same, no conversion is necessary.
+ if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
+ return From;
+
+ SourceRange FromRange = From->getSourceRange();
+ SourceLocation FromLoc = FromRange.getBegin();
+
+ ExprValueKind VK = From->getValueKind();
+
+ // C++ [class.member.lookup]p8:
+ // [...] Ambiguities can often be resolved by qualifying a name with its
+ // class name.
+ //
+ // If the member was a qualified name and the qualified referred to a
+ // specific base subobject type, we'll cast to that intermediate type
+ // first and then to the object in which the member is declared. That allows
+ // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
+ //
+ // class Base { public: int x; };
+ // class Derived1 : public Base { };
+ // class Derived2 : public Base { };
+ // class VeryDerived : public Derived1, public Derived2 { void f(); };
+ //
+ // void VeryDerived::f() {
+ // x = 17; // error: ambiguous base subobjects
+ // Derived1::x = 17; // okay, pick the Base subobject of Derived1
+ // }
+ if (Qualifier && Qualifier->getAsType()) {
+ QualType QType = QualType(Qualifier->getAsType(), 0);
+ assert(QType->isRecordType() && "lookup done with non-record type");
+
+ QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
+
+ // In C++98, the qualifier type doesn't actually have to be a base
+ // type of the object type, in which case we just ignore it.
+ // Otherwise build the appropriate casts.
+ if (IsDerivedFrom(FromRecordType, QRecordType)) {
+ CXXCastPath BasePath;
+ if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
+ FromLoc, FromRange, &BasePath))
+ return ExprError();
+
+ if (PointerConversions)
+ QType = Context.getPointerType(QType);
+ From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
+ VK, &BasePath).get();
+
+ FromType = QType;
+ FromRecordType = QRecordType;
+
+ // If the qualifier type was the same as the destination type,
+ // we're done.
+ if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
+ return From;
+ }
+ }
+
+ bool IgnoreAccess = false;
+
+ // If we actually found the member through a using declaration, cast
+ // down to the using declaration's type.
+ //
+ // Pointer equality is fine here because only one declaration of a
+ // class ever has member declarations.
+ if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
+ assert(isa<UsingShadowDecl>(FoundDecl));
+ QualType URecordType = Context.getTypeDeclType(
+ cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
+
+ // We only need to do this if the naming-class to declaring-class
+ // conversion is non-trivial.
+ if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
+ assert(IsDerivedFrom(FromRecordType, URecordType));
+ CXXCastPath BasePath;
+ if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
+ FromLoc, FromRange, &BasePath))
+ return ExprError();
+
+ QualType UType = URecordType;
+ if (PointerConversions)
+ UType = Context.getPointerType(UType);
+ From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
+ VK, &BasePath).get();
+ FromType = UType;
+ FromRecordType = URecordType;
+ }
+
+ // We don't do access control for the conversion from the
+ // declaring class to the true declaring class.
+ IgnoreAccess = true;
+ }
+
+ CXXCastPath BasePath;
+ if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
+ FromLoc, FromRange, &BasePath,
+ IgnoreAccess))
+ return ExprError();
+
+ return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
+ VK, &BasePath);
+}
+
+bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
+ const LookupResult &R,
+ bool HasTrailingLParen) {
+ // Only when used directly as the postfix-expression of a call.
+ if (!HasTrailingLParen)
+ return false;
+
+ // Never if a scope specifier was provided.
+ if (SS.isSet())
+ return false;
+
+ // Only in C++ or ObjC++.
+ if (!getLangOpts().CPlusPlus)
+ return false;
+
+ // Turn off ADL when we find certain kinds of declarations during
+ // normal lookup:
+ for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
+ NamedDecl *D = *I;
+
+ // C++0x [basic.lookup.argdep]p3:
+ // -- a declaration of a class member
+ // Since using decls preserve this property, we check this on the
+ // original decl.
+ if (D->isCXXClassMember())
+ return false;
+
+ // C++0x [basic.lookup.argdep]p3:
+ // -- a block-scope function declaration that is not a
+ // using-declaration
+ // NOTE: we also trigger this for function templates (in fact, we
+ // don't check the decl type at all, since all other decl types
+ // turn off ADL anyway).
+ if (isa<UsingShadowDecl>(D))
+ D = cast<UsingShadowDecl>(D)->getTargetDecl();
+ else if (D->getLexicalDeclContext()->isFunctionOrMethod())
+ return false;
+
+ // C++0x [basic.lookup.argdep]p3:
+ // -- a declaration that is neither a function or a function
+ // template
+ // And also for builtin functions.
+ if (isa<FunctionDecl>(D)) {
+ FunctionDecl *FDecl = cast<FunctionDecl>(D);
+
+ // But also builtin functions.
+ if (FDecl->getBuiltinID() && FDecl->isImplicit())
+ return false;
+ } else if (!isa<FunctionTemplateDecl>(D))
+ return false;
+ }
+
+ return true;
+}
+
+
+/// Diagnoses obvious problems with the use of the given declaration
+/// as an expression. This is only actually called for lookups that
+/// were not overloaded, and it doesn't promise that the declaration
+/// will in fact be used.
+static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
+ if (isa<TypedefNameDecl>(D)) {
+ S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
+ return true;
+ }
+
+ if (isa<ObjCInterfaceDecl>(D)) {
+ S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
+ return true;
+ }
+
+ if (isa<NamespaceDecl>(D)) {
+ S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
+ return true;
+ }
+
+ return false;
+}
+
+ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
+ LookupResult &R, bool NeedsADL,
+ bool AcceptInvalidDecl) {
+ // If this is a single, fully-resolved result and we don't need ADL,
+ // just build an ordinary singleton decl ref.
+ if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
+ return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
+ R.getRepresentativeDecl(), nullptr,
+ AcceptInvalidDecl);
+
+ // We only need to check the declaration if there's exactly one
+ // result, because in the overloaded case the results can only be
+ // functions and function templates.
+ if (R.isSingleResult() &&
+ CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
+ return ExprError();
+
+ // Otherwise, just build an unresolved lookup expression. Suppress
+ // any lookup-related diagnostics; we'll hash these out later, when
+ // we've picked a target.
+ R.suppressDiagnostics();
+
+ UnresolvedLookupExpr *ULE
+ = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
+ SS.getWithLocInContext(Context),
+ R.getLookupNameInfo(),
+ NeedsADL, R.isOverloadedResult(),
+ R.begin(), R.end());
+
+ return ULE;
+}
+
+/// \brief Complete semantic analysis for a reference to the given declaration.
+ExprResult Sema::BuildDeclarationNameExpr(
+ const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
+ NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
+ bool AcceptInvalidDecl) {
+ assert(D && "Cannot refer to a NULL declaration");
+ assert(!isa<FunctionTemplateDecl>(D) &&
+ "Cannot refer unambiguously to a function template");
+
+ SourceLocation Loc = NameInfo.getLoc();
+ if (CheckDeclInExpr(*this, Loc, D))
+ return ExprError();
+
+ if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
+ // Specifically diagnose references to class templates that are missing
+ // a template argument list.
+ Diag(Loc, diag::err_template_decl_ref) << (isa<VarTemplateDecl>(D) ? 1 : 0)
+ << Template << SS.getRange();
+ Diag(Template->getLocation(), diag::note_template_decl_here);
+ return ExprError();
+ }
+
+ // Make sure that we're referring to a value.
+ ValueDecl *VD = dyn_cast<ValueDecl>(D);
+ if (!VD) {
+ Diag(Loc, diag::err_ref_non_value)
+ << D << SS.getRange();
+ Diag(D->getLocation(), diag::note_declared_at);
+ return ExprError();
+ }
+
+ // Check whether this declaration can be used. Note that we suppress
+ // this check when we're going to perform argument-dependent lookup
+ // on this function name, because this might not be the function
+ // that overload resolution actually selects.
+ if (DiagnoseUseOfDecl(VD, Loc))
+ return ExprError();
+
+ // Only create DeclRefExpr's for valid Decl's.
+ if (VD->isInvalidDecl() && !AcceptInvalidDecl)
+ return ExprError();
+
+ // Handle members of anonymous structs and unions. If we got here,
+ // and the reference is to a class member indirect field, then this
+ // must be the subject of a pointer-to-member expression.
+ if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
+ if (!indirectField->isCXXClassMember())
+ return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
+ indirectField);
+
+ {
+ QualType type = VD->getType();
+ ExprValueKind valueKind = VK_RValue;
+
+ switch (D->getKind()) {
+ // Ignore all the non-ValueDecl kinds.
+#define ABSTRACT_DECL(kind)
+#define VALUE(type, base)
+#define DECL(type, base) \
+ case Decl::type:
+#include "clang/AST/DeclNodes.inc"
+ llvm_unreachable("invalid value decl kind");
+
+ // These shouldn't make it here.
+ case Decl::ObjCAtDefsField:
+ case Decl::ObjCIvar:
+ llvm_unreachable("forming non-member reference to ivar?");
+
+ // Enum constants are always r-values and never references.
+ // Unresolved using declarations are dependent.
+ case Decl::EnumConstant:
+ case Decl::UnresolvedUsingValue:
+ valueKind = VK_RValue;
+ break;
+
+ // Fields and indirect fields that got here must be for
+ // pointer-to-member expressions; we just call them l-values for
+ // internal consistency, because this subexpression doesn't really
+ // exist in the high-level semantics.
+ case Decl::Field:
+ case Decl::IndirectField:
+ assert(getLangOpts().CPlusPlus &&
+ "building reference to field in C?");
+
+ // These can't have reference type in well-formed programs, but
+ // for internal consistency we do this anyway.
+ type = type.getNonReferenceType();
+ valueKind = VK_LValue;
+ break;
+
+ // Non-type template parameters are either l-values or r-values
+ // depending on the type.
+ case Decl::NonTypeTemplateParm: {
+ if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
+ type = reftype->getPointeeType();
+ valueKind = VK_LValue; // even if the parameter is an r-value reference
+ break;
+ }
+
+ // For non-references, we need to strip qualifiers just in case
+ // the template parameter was declared as 'const int' or whatever.
+ valueKind = VK_RValue;
+ type = type.getUnqualifiedType();
+ break;
+ }
+
+ case Decl::Var:
+ case Decl::VarTemplateSpecialization:
+ case Decl::VarTemplatePartialSpecialization:
+ // In C, "extern void blah;" is valid and is an r-value.
+ if (!getLangOpts().CPlusPlus &&
+ !type.hasQualifiers() &&
+ type->isVoidType()) {
+ valueKind = VK_RValue;
+ break;
+ }
+ // fallthrough
+
+ case Decl::ImplicitParam:
+ case Decl::ParmVar: {
+ // These are always l-values.
+ valueKind = VK_LValue;
+ type = type.getNonReferenceType();
+
+ // FIXME: Does the addition of const really only apply in
+ // potentially-evaluated contexts? Since the variable isn't actually
+ // captured in an unevaluated context, it seems that the answer is no.
+ if (!isUnevaluatedContext()) {
+ QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
+ if (!CapturedType.isNull())
+ type = CapturedType;
+ }
+
+ break;
+ }
+
+ case Decl::Function: {
+ if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
+ if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
+ type = Context.BuiltinFnTy;
+ valueKind = VK_RValue;
+ break;
+ }
+ }
+
+ const FunctionType *fty = type->castAs<FunctionType>();
+
+ // If we're referring to a function with an __unknown_anytype
+ // result type, make the entire expression __unknown_anytype.
+ if (fty->getReturnType() == Context.UnknownAnyTy) {
+ type = Context.UnknownAnyTy;
+ valueKind = VK_RValue;
+ break;
+ }
+
+ // Functions are l-values in C++.
+ if (getLangOpts().CPlusPlus) {
+ valueKind = VK_LValue;
+ break;
+ }
+
+ // C99 DR 316 says that, if a function type comes from a
+ // function definition (without a prototype), that type is only
+ // used for checking compatibility. Therefore, when referencing
+ // the function, we pretend that we don't have the full function
+ // type.
+ if (!cast<FunctionDecl>(VD)->hasPrototype() &&
+ isa<FunctionProtoType>(fty))
+ type = Context.getFunctionNoProtoType(fty->getReturnType(),
+ fty->getExtInfo());
+
+ // Functions are r-values in C.
+ valueKind = VK_RValue;
+ break;
+ }
+
+ case Decl::MSProperty:
+ valueKind = VK_LValue;
+ break;
+
+ case Decl::CXXMethod:
+ // If we're referring to a method with an __unknown_anytype
+ // result type, make the entire expression __unknown_anytype.
+ // This should only be possible with a type written directly.
+ if (const FunctionProtoType *proto
+ = dyn_cast<FunctionProtoType>(VD->getType()))
+ if (proto->getReturnType() == Context.UnknownAnyTy) {
+ type = Context.UnknownAnyTy;
+ valueKind = VK_RValue;
+ break;
+ }
+
+ // C++ methods are l-values if static, r-values if non-static.
+ if (cast<CXXMethodDecl>(VD)->isStatic()) {
+ valueKind = VK_LValue;
+ break;
+ }
+ // fallthrough
+
+ case Decl::CXXConversion:
+ case Decl::CXXDestructor:
+ case Decl::CXXConstructor:
+ valueKind = VK_RValue;
+ break;
+ }
+
+ return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
+ TemplateArgs);
+ }
+}
+
+static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
+ SmallString<32> &Target) {
+ Target.resize(CharByteWidth * (Source.size() + 1));
+ char *ResultPtr = &Target[0];
+ const UTF8 *ErrorPtr;
+ bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
+ (void)success;
+ assert(success);
+ Target.resize(ResultPtr - &Target[0]);
+}
+
+ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
+ PredefinedExpr::IdentType IT) {
+ // Pick the current block, lambda, captured statement or function.
+ Decl *currentDecl = nullptr;
+ if (const BlockScopeInfo *BSI = getCurBlock())
+ currentDecl = BSI->TheDecl;
+ else if (const LambdaScopeInfo *LSI = getCurLambda())
+ currentDecl = LSI->CallOperator;
+ else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion())
+ currentDecl = CSI->TheCapturedDecl;
+ else
+ currentDecl = getCurFunctionOrMethodDecl();
+
+ if (!currentDecl) {
+ Diag(Loc, diag::ext_predef_outside_function);
+ currentDecl = Context.getTranslationUnitDecl();
+ }
+
+ QualType ResTy;
+ StringLiteral *SL = nullptr;
+ if (cast<DeclContext>(currentDecl)->isDependentContext())
+ ResTy = Context.DependentTy;
+ else {
+ // Pre-defined identifiers are of type char[x], where x is the length of
+ // the string.
+ auto Str = PredefinedExpr::ComputeName(IT, currentDecl);
+ unsigned Length = Str.length();
+
+ llvm::APInt LengthI(32, Length + 1);
+ if (IT == PredefinedExpr::LFunction) {
+ ResTy = Context.WideCharTy.withConst();
+ SmallString<32> RawChars;
+ ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
+ Str, RawChars);
+ ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal,
+ /*IndexTypeQuals*/ 0);
+ SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide,
+ /*Pascal*/ false, ResTy, Loc);
+ } else {
+ ResTy = Context.CharTy.withConst();
+ ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal,
+ /*IndexTypeQuals*/ 0);
+ SL = StringLiteral::Create(Context, Str, StringLiteral::Ascii,
+ /*Pascal*/ false, ResTy, Loc);
+ }
+ }
+
+ return new (Context) PredefinedExpr(Loc, ResTy, IT, SL);
+}
+
+ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
+ PredefinedExpr::IdentType IT;
+
+ switch (Kind) {
+ default: llvm_unreachable("Unknown simple primary expr!");
+ case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
+ case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
+ case tok::kw___FUNCDNAME__: IT = PredefinedExpr::FuncDName; break; // [MS]
+ case tok::kw___FUNCSIG__: IT = PredefinedExpr::FuncSig; break; // [MS]
+ case tok::kw_L__FUNCTION__: IT = PredefinedExpr::LFunction; break;
+ case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
+ }
+
+ return BuildPredefinedExpr(Loc, IT);
+}
+
+ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
+ SmallString<16> CharBuffer;
+ bool Invalid = false;
+ StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
+ if (Invalid)
+ return ExprError();
+
+ CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
+ PP, Tok.getKind());
+ if (Literal.hadError())
+ return ExprError();
+
+ QualType Ty;
+ if (Literal.isWide())
+ Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
+ else if (Literal.isUTF16())
+ Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
+ else if (Literal.isUTF32())
+ Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
+ else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
+ Ty = Context.IntTy; // 'x' -> int in C, 'wxyz' -> int in C++.
+ else
+ Ty = Context.CharTy; // 'x' -> char in C++
+
+ CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
+ if (Literal.isWide())
+ Kind = CharacterLiteral::Wide;
+ else if (Literal.isUTF16())
+ Kind = CharacterLiteral::UTF16;
+ else if (Literal.isUTF32())
+ Kind = CharacterLiteral::UTF32;
+
+ Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
+ Tok.getLocation());
+
+ if (Literal.getUDSuffix().empty())
+ return Lit;
+
+ // We're building a user-defined literal.
+ IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
+ SourceLocation UDSuffixLoc =
+ getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
+
+ // Make sure we're allowed user-defined literals here.
+ if (!UDLScope)
+ return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
+
+ // C++11 [lex.ext]p6: The literal L is treated as a call of the form
+ // operator "" X (ch)
+ return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
+ Lit, Tok.getLocation());
+}
+
+ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
+ unsigned IntSize = Context.getTargetInfo().getIntWidth();
+ return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
+ Context.IntTy, Loc);
+}
+
+static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
+ QualType Ty, SourceLocation Loc) {
+ const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
+
+ using llvm::APFloat;
+ APFloat Val(Format);
+
+ APFloat::opStatus result = Literal.GetFloatValue(Val);
+
+ // Overflow is always an error, but underflow is only an error if
+ // we underflowed to zero (APFloat reports denormals as underflow).
+ if ((result & APFloat::opOverflow) ||
+ ((result & APFloat::opUnderflow) && Val.isZero())) {
+ unsigned diagnostic;
+ SmallString<20> buffer;
+ if (result & APFloat::opOverflow) {
+ diagnostic = diag::warn_float_overflow;
+ APFloat::getLargest(Format).toString(buffer);
+ } else {
+ diagnostic = diag::warn_float_underflow;
+ APFloat::getSmallest(Format).toString(buffer);
+ }
+
+ S.Diag(Loc, diagnostic)
+ << Ty
+ << StringRef(buffer.data(), buffer.size());
+ }
+
+ bool isExact = (result == APFloat::opOK);
+ return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
+}
+
+bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) {
+ assert(E && "Invalid expression");
+
+ if (E->isValueDependent())
+ return false;
+
+ QualType QT = E->getType();
+ if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
+ Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
+ return true;
+ }
+
+ llvm::APSInt ValueAPS;
+ ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
+
+ if (R.isInvalid())
+ return true;
+
+ bool ValueIsPositive = ValueAPS.isStrictlyPositive();
+ if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
+ Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value)
+ << ValueAPS.toString(10) << ValueIsPositive;
+ return true;
+ }
+
+ return false;
+}
+
+ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
+ // Fast path for a single digit (which is quite common). A single digit
+ // cannot have a trigraph, escaped newline, radix prefix, or suffix.
+ if (Tok.getLength() == 1) {
+ const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
+ return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
+ }
+
+ SmallString<128> SpellingBuffer;
+ // NumericLiteralParser wants to overread by one character. Add padding to
+ // the buffer in case the token is copied to the buffer. If getSpelling()
+ // returns a StringRef to the memory buffer, it should have a null char at
+ // the EOF, so it is also safe.
+ SpellingBuffer.resize(Tok.getLength() + 1);
+
+ // Get the spelling of the token, which eliminates trigraphs, etc.
+ bool Invalid = false;
+ StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
+ if (Invalid)
+ return ExprError();
+
+ NumericLiteralParser Literal(TokSpelling, Tok.getLocation(), PP);
+ if (Literal.hadError)
+ return ExprError();
+
+ if (Literal.hasUDSuffix()) {
+ // We're building a user-defined literal.
+ IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
+ SourceLocation UDSuffixLoc =
+ getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
+
+ // Make sure we're allowed user-defined literals here.
+ if (!UDLScope)
+ return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
+
+ QualType CookedTy;
+ if (Literal.isFloatingLiteral()) {
+ // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
+ // long double, the literal is treated as a call of the form
+ // operator "" X (f L)
+ CookedTy = Context.LongDoubleTy;
+ } else {
+ // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
+ // unsigned long long, the literal is treated as a call of the form
+ // operator "" X (n ULL)
+ CookedTy = Context.UnsignedLongLongTy;
+ }
+
+ DeclarationName OpName =
+ Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
+ DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
+ OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
+
+ SourceLocation TokLoc = Tok.getLocation();
+
+ // Perform literal operator lookup to determine if we're building a raw
+ // literal or a cooked one.
+ LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
+ switch (LookupLiteralOperator(UDLScope, R, CookedTy,
+ /*AllowRaw*/true, /*AllowTemplate*/true,
+ /*AllowStringTemplate*/false)) {
+ case LOLR_Error:
+ return ExprError();
+
+ case LOLR_Cooked: {
+ Expr *Lit;
+ if (Literal.isFloatingLiteral()) {
+ Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
+ } else {
+ llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
+ if (Literal.GetIntegerValue(ResultVal))
+ Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
+ << /* Unsigned */ 1;
+ Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
+ Tok.getLocation());
+ }
+ return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
+ }
+
+ case LOLR_Raw: {
+ // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
+ // literal is treated as a call of the form
+ // operator "" X ("n")
+ unsigned Length = Literal.getUDSuffixOffset();
+ QualType StrTy = Context.getConstantArrayType(
+ Context.CharTy.withConst(), llvm::APInt(32, Length + 1),
+ ArrayType::Normal, 0);
+ Expr *Lit = StringLiteral::Create(
+ Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii,
+ /*Pascal*/false, StrTy, &TokLoc, 1);
+ return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
+ }
+
+ case LOLR_Template: {
+ // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
+ // template), L is treated as a call fo the form
+ // operator "" X <'c1', 'c2', ... 'ck'>()
+ // where n is the source character sequence c1 c2 ... ck.
+ TemplateArgumentListInfo ExplicitArgs;
+ unsigned CharBits = Context.getIntWidth(Context.CharTy);
+ bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
+ llvm::APSInt Value(CharBits, CharIsUnsigned);
+ for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
+ Value = TokSpelling[I];
+ TemplateArgument Arg(Context, Value, Context.CharTy);
+ TemplateArgumentLocInfo ArgInfo;
+ ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
+ }
+ return BuildLiteralOperatorCall(R, OpNameInfo, None, TokLoc,
+ &ExplicitArgs);
+ }
+ case LOLR_StringTemplate:
+ llvm_unreachable("unexpected literal operator lookup result");
+ }
+ }
+
+ Expr *Res;
+
+ if (Literal.isFloatingLiteral()) {
+ QualType Ty;
+ if (Literal.isFloat)
+ Ty = Context.FloatTy;
+ else if (!Literal.isLong)
+ Ty = Context.DoubleTy;
+ else
+ Ty = Context.LongDoubleTy;
+
+ Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
+
+ if (Ty == Context.DoubleTy) {
+ if (getLangOpts().SinglePrecisionConstants) {
+ Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
+ } else if (getLangOpts().OpenCL &&
+ !((getLangOpts().OpenCLVersion >= 120) ||
+ getOpenCLOptions().cl_khr_fp64)) {
+ Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
+ Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
+ }
+ }
+ } else if (!Literal.isIntegerLiteral()) {
+ return ExprError();
+ } else {
+ QualType Ty;
+
+ // 'long long' is a C99 or C++11 feature.
+ if (!getLangOpts().C99 && Literal.isLongLong) {
+ if (getLangOpts().CPlusPlus)
+ Diag(Tok.getLocation(),
+ getLangOpts().CPlusPlus11 ?
+ diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
+ else
+ Diag(Tok.getLocation(), diag::ext_c99_longlong);
+ }
+
+ // Get the value in the widest-possible width.
+ unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
+ // The microsoft literal suffix extensions support 128-bit literals, which
+ // may be wider than [u]intmax_t.
+ // FIXME: Actually, they don't. We seem to have accidentally invented the
+ // i128 suffix.
+ if (Literal.MicrosoftInteger == 128 && MaxWidth < 128 &&
+ Context.getTargetInfo().hasInt128Type())
+ MaxWidth = 128;
+ llvm::APInt ResultVal(MaxWidth, 0);
+
+ if (Literal.GetIntegerValue(ResultVal)) {
+ // If this value didn't fit into uintmax_t, error and force to ull.
+ Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
+ << /* Unsigned */ 1;
+ Ty = Context.UnsignedLongLongTy;
+ assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
+ "long long is not intmax_t?");
+ } else {
+ // If this value fits into a ULL, try to figure out what else it fits into
+ // according to the rules of C99 6.4.4.1p5.
+
+ // Octal, Hexadecimal, and integers with a U suffix are allowed to
+ // be an unsigned int.
+ bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
+
+ // Check from smallest to largest, picking the smallest type we can.
+ unsigned Width = 0;
+
+ // Microsoft specific integer suffixes are explicitly sized.
+ if (Literal.MicrosoftInteger) {
+ if (Literal.MicrosoftInteger > MaxWidth) {
+ // If this target doesn't support __int128, error and force to ull.
+ Diag(Tok.getLocation(), diag::err_int128_unsupported);
+ Width = MaxWidth;
+ Ty = Context.getIntMaxType();
+ } else if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
+ Width = 8;
+ Ty = Context.CharTy;
+ } else {
+ Width = Literal.MicrosoftInteger;
+ Ty = Context.getIntTypeForBitwidth(Width,
+ /*Signed=*/!Literal.isUnsigned);
+ }
+ }
+
+ if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong) {
+ // Are int/unsigned possibilities?
+ unsigned IntSize = Context.getTargetInfo().getIntWidth();
+
+ // Does it fit in a unsigned int?
+ if (ResultVal.isIntN(IntSize)) {
+ // Does it fit in a signed int?
+ if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
+ Ty = Context.IntTy;
+ else if (AllowUnsigned)
+ Ty = Context.UnsignedIntTy;
+ Width = IntSize;
+ }
+ }
+
+ // Are long/unsigned long possibilities?
+ if (Ty.isNull() && !Literal.isLongLong) {
+ unsigned LongSize = Context.getTargetInfo().getLongWidth();
+
+ // Does it fit in a unsigned long?
+ if (ResultVal.isIntN(LongSize)) {
+ // Does it fit in a signed long?
+ if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
+ Ty = Context.LongTy;
+ else if (AllowUnsigned)
+ Ty = Context.UnsignedLongTy;
+ Width = LongSize;
+ }
+ }
+
+ // Check long long if needed.
+ if (Ty.isNull()) {
+ unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
+
+ // Does it fit in a unsigned long long?
+ if (ResultVal.isIntN(LongLongSize)) {
+ // Does it fit in a signed long long?
+ // To be compatible with MSVC, hex integer literals ending with the
+ // LL or i64 suffix are always signed in Microsoft mode.
+ if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
+ (getLangOpts().MicrosoftExt && Literal.isLongLong)))
+ Ty = Context.LongLongTy;
+ else if (AllowUnsigned)
+ Ty = Context.UnsignedLongLongTy;
+ Width = LongLongSize;
+ }
+ }
+
+ // If we still couldn't decide a type, we probably have something that
+ // does not fit in a signed long long, but has no U suffix.
+ if (Ty.isNull()) {
+ Diag(Tok.getLocation(), diag::ext_integer_literal_too_large_for_signed);
+ Ty = Context.UnsignedLongLongTy;
+ Width = Context.getTargetInfo().getLongLongWidth();
+ }
+
+ if (ResultVal.getBitWidth() != Width)
+ ResultVal = ResultVal.trunc(Width);
+ }
+ Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
+ }
+
+ // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
+ if (Literal.isImaginary)
+ Res = new (Context) ImaginaryLiteral(Res,
+ Context.getComplexType(Res->getType()));
+
+ return Res;
+}
+
+ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
+ assert(E && "ActOnParenExpr() missing expr");
+ return new (Context) ParenExpr(L, R, E);
+}
+
+static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
+ SourceLocation Loc,
+ SourceRange ArgRange) {
+ // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
+ // scalar or vector data type argument..."
+ // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
+ // type (C99 6.2.5p18) or void.
+ if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
+ S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
+ << T << ArgRange;
+ return true;
+ }
+
+ assert((T->isVoidType() || !T->isIncompleteType()) &&
+ "Scalar types should always be complete");
+ return false;
+}
+
+static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
+ SourceLocation Loc,
+ SourceRange ArgRange,
+ UnaryExprOrTypeTrait TraitKind) {
+ // Invalid types must be hard errors for SFINAE in C++.
+ if (S.LangOpts.CPlusPlus)
+ return true;
+
+ // C99 6.5.3.4p1:
+ if (T->isFunctionType() &&
+ (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf)) {
+ // sizeof(function)/alignof(function) is allowed as an extension.
+ S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
+ << TraitKind << ArgRange;
+ return false;
+ }
+
+ // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
+ // this is an error (OpenCL v1.1 s6.3.k)
+ if (T->isVoidType()) {
+ unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
+ : diag::ext_sizeof_alignof_void_type;
+ S.Diag(Loc, DiagID) << TraitKind << ArgRange;
+ return false;
+ }
+
+ return true;
+}
+
+static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
+ SourceLocation Loc,
+ SourceRange ArgRange,
+ UnaryExprOrTypeTrait TraitKind) {
+ // Reject sizeof(interface) and sizeof(interface<proto>) if the
+ // runtime doesn't allow it.
+ if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
+ S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
+ << T << (TraitKind == UETT_SizeOf)
+ << ArgRange;
+ return true;
+ }
+
+ return false;
+}
+
+/// \brief Check whether E is a pointer from a decayed array type (the decayed
+/// pointer type is equal to T) and emit a warning if it is.
+static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
+ Expr *E) {
+ // Don't warn if the operation changed the type.
+ if (T != E->getType())
+ return;
+
+ // Now look for array decays.
+ ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E);
+ if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
+ return;
+
+ S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
+ << ICE->getType()
+ << ICE->getSubExpr()->getType();
+}
+
+/// \brief Check the constraints on expression operands to unary type expression
+/// and type traits.
+///
+/// Completes any types necessary and validates the constraints on the operand
+/// expression. The logic mostly mirrors the type-based overload, but may modify
+/// the expression as it completes the type for that expression through template
+/// instantiation, etc.
+bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
+ UnaryExprOrTypeTrait ExprKind) {
+ QualType ExprTy = E->getType();
+ assert(!ExprTy->isReferenceType());
+
+ if (ExprKind == UETT_VecStep)
+ return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
+ E->getSourceRange());
+
+ // Whitelist some types as extensions
+ if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
+ E->getSourceRange(), ExprKind))
+ return false;
+
+ // 'alignof' applied to an expression only requires the base element type of
+ // the expression to be complete. 'sizeof' requires the expression's type to
+ // be complete (and will attempt to complete it if it's an array of unknown
+ // bound).
+ if (ExprKind == UETT_AlignOf) {
+ if (RequireCompleteType(E->getExprLoc(),
+ Context.getBaseElementType(E->getType()),
+ diag::err_sizeof_alignof_incomplete_type, ExprKind,
+ E->getSourceRange()))
+ return true;
+ } else {
+ if (RequireCompleteExprType(E, diag::err_sizeof_alignof_incomplete_type,
+ ExprKind, E->getSourceRange()))
+ return true;
+ }
+
+ // Completing the expression's type may have changed it.
+ ExprTy = E->getType();
+ assert(!ExprTy->isReferenceType());
+
+ if (ExprTy->isFunctionType()) {
+ Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
+ << ExprKind << E->getSourceRange();
+ return true;
+ }
+
+ // The operand for sizeof and alignof is in an unevaluated expression context,
+ // so side effects could result in unintended consequences.
+ if ((ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf) &&
+ ActiveTemplateInstantiations.empty() && E->HasSideEffects(Context, false))
+ Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
+
+ if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
+ E->getSourceRange(), ExprKind))
+ return true;
+
+ if (ExprKind == UETT_SizeOf) {
+ if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
+ if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
+ QualType OType = PVD->getOriginalType();
+ QualType Type = PVD->getType();
+ if (Type->isPointerType() && OType->isArrayType()) {
+ Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
+ << Type << OType;
+ Diag(PVD->getLocation(), diag::note_declared_at);
+ }
+ }
+ }
+
+ // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
+ // decays into a pointer and returns an unintended result. This is most
+ // likely a typo for "sizeof(array) op x".
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
+ warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
+ BO->getLHS());
+ warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
+ BO->getRHS());
+ }
+ }
+
+ return false;
+}
+
+/// \brief Check the constraints on operands to unary expression and type
+/// traits.
+///
+/// This will complete any types necessary, and validate the various constraints
+/// on those operands.
+///
+/// The UsualUnaryConversions() function is *not* called by this routine.
+/// C99 6.3.2.1p[2-4] all state:
+/// Except when it is the operand of the sizeof operator ...
+///
+/// C++ [expr.sizeof]p4
+/// The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
+/// standard conversions are not applied to the operand of sizeof.
+///
+/// This policy is followed for all of the unary trait expressions.
+bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
+ SourceLocation OpLoc,
+ SourceRange ExprRange,
+ UnaryExprOrTypeTrait ExprKind) {
+ if (ExprType->isDependentType())
+ return false;
+
+ // C++ [expr.sizeof]p2:
+ // When applied to a reference or a reference type, the result
+ // is the size of the referenced type.
+ // C++11 [expr.alignof]p3:
+ // When alignof is applied to a reference type, the result
+ // shall be the alignment of the referenced type.
+ if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
+ ExprType = Ref->getPointeeType();
+
+ // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
+ // When alignof or _Alignof is applied to an array type, the result
+ // is the alignment of the element type.
+ if (ExprKind == UETT_AlignOf)
+ ExprType = Context.getBaseElementType(ExprType);
+
+ if (ExprKind == UETT_VecStep)
+ return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
+
+ // Whitelist some types as extensions
+ if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
+ ExprKind))
+ return false;
+
+ if (RequireCompleteType(OpLoc, ExprType,
+ diag::err_sizeof_alignof_incomplete_type,
+ ExprKind, ExprRange))
+ return true;
+
+ if (ExprType->isFunctionType()) {
+ Diag(OpLoc, diag::err_sizeof_alignof_function_type)
+ << ExprKind << ExprRange;
+ return true;
+ }
+
+ if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
+ ExprKind))
+ return true;
+
+ return false;
+}
+
+static bool CheckAlignOfExpr(Sema &S, Expr *E) {
+ E = E->IgnoreParens();
+
+ // Cannot know anything else if the expression is dependent.
+ if (E->isTypeDependent())
+ return false;
+
+ if (E->getObjectKind() == OK_BitField) {
+ S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield)
+ << 1 << E->getSourceRange();
+ return true;
+ }
+
+ ValueDecl *D = nullptr;
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
+ D = DRE->getDecl();
+ } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
+ D = ME->getMemberDecl();
+ }
+
+ // If it's a field, require the containing struct to have a
+ // complete definition so that we can compute the layout.
+ //
+ // This can happen in C++11 onwards, either by naming the member
+ // in a way that is not transformed into a member access expression
+ // (in an unevaluated operand, for instance), or by naming the member
+ // in a trailing-return-type.
+ //
+ // For the record, since __alignof__ on expressions is a GCC
+ // extension, GCC seems to permit this but always gives the
+ // nonsensical answer 0.
+ //
+ // We don't really need the layout here --- we could instead just
+ // directly check for all the appropriate alignment-lowing
+ // attributes --- but that would require duplicating a lot of
+ // logic that just isn't worth duplicating for such a marginal
+ // use-case.
+ if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
+ // Fast path this check, since we at least know the record has a
+ // definition if we can find a member of it.
+ if (!FD->getParent()->isCompleteDefinition()) {
+ S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
+ << E->getSourceRange();
+ return true;
+ }
+
+ // Otherwise, if it's a field, and the field doesn't have
+ // reference type, then it must have a complete type (or be a
+ // flexible array member, which we explicitly want to
+ // white-list anyway), which makes the following checks trivial.
+ if (!FD->getType()->isReferenceType())
+ return false;
+ }
+
+ return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
+}
+
+bool Sema::CheckVecStepExpr(Expr *E) {
+ E = E->IgnoreParens();
+
+ // Cannot know anything else if the expression is dependent.
+ if (E->isTypeDependent())
+ return false;
+
+ return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
+}
+
+/// \brief Build a sizeof or alignof expression given a type operand.
+ExprResult
+Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
+ SourceLocation OpLoc,
+ UnaryExprOrTypeTrait ExprKind,
+ SourceRange R) {
+ if (!TInfo)
+ return ExprError();
+
+ QualType T = TInfo->getType();
+
+ if (!T->isDependentType() &&
+ CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
+ return ExprError();
+
+ // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
+ return new (Context) UnaryExprOrTypeTraitExpr(
+ ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
+}
+
+/// \brief Build a sizeof or alignof expression given an expression
+/// operand.
+ExprResult
+Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
+ UnaryExprOrTypeTrait ExprKind) {
+ ExprResult PE = CheckPlaceholderExpr(E);
+ if (PE.isInvalid())
+ return ExprError();
+
+ E = PE.get();
+
+ // Verify that the operand is valid.
+ bool isInvalid = false;
+ if (E->isTypeDependent()) {
+ // Delay type-checking for type-dependent expressions.
+ } else if (ExprKind == UETT_AlignOf) {
+ isInvalid = CheckAlignOfExpr(*this, E);
+ } else if (ExprKind == UETT_VecStep) {
+ isInvalid = CheckVecStepExpr(E);
+ } else if (E->refersToBitField()) { // C99 6.5.3.4p1.
+ Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield) << 0;
+ isInvalid = true;
+ } else {
+ isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
+ }
+
+ if (isInvalid)
+ return ExprError();
+
+ if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
+ PE = TransformToPotentiallyEvaluated(E);
+ if (PE.isInvalid()) return ExprError();
+ E = PE.get();
+ }
+
+ // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
+ return new (Context) UnaryExprOrTypeTraitExpr(
+ ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
+}
+
+/// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
+/// expr and the same for @c alignof and @c __alignof
+/// Note that the ArgRange is invalid if isType is false.
+ExprResult
+Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
+ UnaryExprOrTypeTrait ExprKind, bool IsType,
+ void *TyOrEx, const SourceRange &ArgRange) {
+ // If error parsing type, ignore.
+ if (!TyOrEx) return ExprError();
+
+ if (IsType) {
+ TypeSourceInfo *TInfo;
+ (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
+ return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
+ }
+
+ Expr *ArgEx = (Expr *)TyOrEx;
+ ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
+ return Result;
+}
+
+static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
+ bool IsReal) {
+ if (V.get()->isTypeDependent())
+ return S.Context.DependentTy;
+
+ // _Real and _Imag are only l-values for normal l-values.
+ if (V.get()->getObjectKind() != OK_Ordinary) {
+ V = S.DefaultLvalueConversion(V.get());
+ if (V.isInvalid())
+ return QualType();
+ }
+
+ // These operators return the element type of a complex type.
+ if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
+ return CT->getElementType();
+
+ // Otherwise they pass through real integer and floating point types here.
+ if (V.get()->getType()->isArithmeticType())
+ return V.get()->getType();
+
+ // Test for placeholders.
+ ExprResult PR = S.CheckPlaceholderExpr(V.get());
+ if (PR.isInvalid()) return QualType();
+ if (PR.get() != V.get()) {
+ V = PR;
+ return CheckRealImagOperand(S, V, Loc, IsReal);
+ }
+
+ // Reject anything else.
+ S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
+ << (IsReal ? "__real" : "__imag");
+ return QualType();
+}
+
+
+
+ExprResult
+Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
+ tok::TokenKind Kind, Expr *Input) {
+ UnaryOperatorKind Opc;
+ switch (Kind) {
+ default: llvm_unreachable("Unknown unary op!");
+ case tok::plusplus: Opc = UO_PostInc; break;
+ case tok::minusminus: Opc = UO_PostDec; break;
+ }
+
+ // Since this might is a postfix expression, get rid of ParenListExprs.
+ ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
+ if (Result.isInvalid()) return ExprError();
+ Input = Result.get();
+
+ return BuildUnaryOp(S, OpLoc, Opc, Input);
+}
+
+/// \brief Diagnose if arithmetic on the given ObjC pointer is illegal.
+///
+/// \return true on error
+static bool checkArithmeticOnObjCPointer(Sema &S,
+ SourceLocation opLoc,
+ Expr *op) {
+ assert(op->getType()->isObjCObjectPointerType());
+ if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
+ !S.LangOpts.ObjCSubscriptingLegacyRuntime)
+ return false;
+
+ S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
+ << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
+ << op->getSourceRange();
+ return true;
+}
+
+ExprResult
+Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc,
+ Expr *idx, SourceLocation rbLoc) {
+ // Since this might be a postfix expression, get rid of ParenListExprs.
+ if (isa<ParenListExpr>(base)) {
+ ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
+ if (result.isInvalid()) return ExprError();
+ base = result.get();
+ }
+
+ // Handle any non-overload placeholder types in the base and index
+ // expressions. We can't handle overloads here because the other
+ // operand might be an overloadable type, in which case the overload
+ // resolution for the operator overload should get the first crack
+ // at the overload.
+ if (base->getType()->isNonOverloadPlaceholderType()) {
+ ExprResult result = CheckPlaceholderExpr(base);
+ if (result.isInvalid()) return ExprError();
+ base = result.get();
+ }
+ if (idx->getType()->isNonOverloadPlaceholderType()) {
+ ExprResult result = CheckPlaceholderExpr(idx);
+ if (result.isInvalid()) return ExprError();
+ idx = result.get();
+ }
+
+ // Build an unanalyzed expression if either operand is type-dependent.
+ if (getLangOpts().CPlusPlus &&
+ (base->isTypeDependent() || idx->isTypeDependent())) {
+ return new (Context) ArraySubscriptExpr(base, idx, Context.DependentTy,
+ VK_LValue, OK_Ordinary, rbLoc);
+ }
+
+ // Use C++ overloaded-operator rules if either operand has record
+ // type. The spec says to do this if either type is *overloadable*,
+ // but enum types can't declare subscript operators or conversion
+ // operators, so there's nothing interesting for overload resolution
+ // to do if there aren't any record types involved.
+ //
+ // ObjC pointers have their own subscripting logic that is not tied
+ // to overload resolution and so should not take this path.
+ if (getLangOpts().CPlusPlus &&
+ (base->getType()->isRecordType() ||
+ (!base->getType()->isObjCObjectPointerType() &&
+ idx->getType()->isRecordType()))) {
+ return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx);
+ }
+
+ return CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc);
+}
+
+ExprResult
+Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
+ Expr *Idx, SourceLocation RLoc) {
+ Expr *LHSExp = Base;
+ Expr *RHSExp = Idx;
+
+ // Perform default conversions.
+ if (!LHSExp->getType()->getAs<VectorType>()) {
+ ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
+ if (Result.isInvalid())
+ return ExprError();
+ LHSExp = Result.get();
+ }
+ ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
+ if (Result.isInvalid())
+ return ExprError();
+ RHSExp = Result.get();
+
+ QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
+ ExprValueKind VK = VK_LValue;
+ ExprObjectKind OK = OK_Ordinary;
+
+ // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
+ // to the expression *((e1)+(e2)). This means the array "Base" may actually be
+ // in the subscript position. As a result, we need to derive the array base
+ // and index from the expression types.
+ Expr *BaseExpr, *IndexExpr;
+ QualType ResultType;
+ if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
+ BaseExpr = LHSExp;
+ IndexExpr = RHSExp;
+ ResultType = Context.DependentTy;
+ } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
+ BaseExpr = LHSExp;
+ IndexExpr = RHSExp;
+ ResultType = PTy->getPointeeType();
+ } else if (const ObjCObjectPointerType *PTy =
+ LHSTy->getAs<ObjCObjectPointerType>()) {
+ BaseExpr = LHSExp;
+ IndexExpr = RHSExp;
+
+ // Use custom logic if this should be the pseudo-object subscript
+ // expression.
+ if (!LangOpts.isSubscriptPointerArithmetic())
+ return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr,
+ nullptr);
+
+ ResultType = PTy->getPointeeType();
+ } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
+ // Handle the uncommon case of "123[Ptr]".
+ BaseExpr = RHSExp;
+ IndexExpr = LHSExp;
+ ResultType = PTy->getPointeeType();
+ } else if (const ObjCObjectPointerType *PTy =
+ RHSTy->getAs<ObjCObjectPointerType>()) {
+ // Handle the uncommon case of "123[Ptr]".
+ BaseExpr = RHSExp;
+ IndexExpr = LHSExp;
+ ResultType = PTy->getPointeeType();
+ if (!LangOpts.isSubscriptPointerArithmetic()) {
+ Diag(LLoc, diag::err_subscript_nonfragile_interface)
+ << ResultType << BaseExpr->getSourceRange();
+ return ExprError();
+ }
+ } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
+ BaseExpr = LHSExp; // vectors: V[123]
+ IndexExpr = RHSExp;
+ VK = LHSExp->getValueKind();
+ if (VK != VK_RValue)
+ OK = OK_VectorComponent;
+
+ // FIXME: need to deal with const...
+ ResultType = VTy->getElementType();
+ } else if (LHSTy->isArrayType()) {
+ // If we see an array that wasn't promoted by
+ // DefaultFunctionArrayLvalueConversion, it must be an array that
+ // wasn't promoted because of the C90 rule that doesn't
+ // allow promoting non-lvalue arrays. Warn, then
+ // force the promotion here.
+ Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
+ LHSExp->getSourceRange();
+ LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
+ CK_ArrayToPointerDecay).get();
+ LHSTy = LHSExp->getType();
+
+ BaseExpr = LHSExp;
+ IndexExpr = RHSExp;
+ ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
+ } else if (RHSTy->isArrayType()) {
+ // Same as previous, except for 123[f().a] case
+ Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
+ RHSExp->getSourceRange();
+ RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
+ CK_ArrayToPointerDecay).get();
+ RHSTy = RHSExp->getType();
+
+ BaseExpr = RHSExp;
+ IndexExpr = LHSExp;
+ ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
+ } else {
+ return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
+ << LHSExp->getSourceRange() << RHSExp->getSourceRange());
+ }
+ // C99 6.5.2.1p1
+ if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
+ return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
+ << IndexExpr->getSourceRange());
+
+ if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
+ IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
+ && !IndexExpr->isTypeDependent())
+ Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
+
+ // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
+ // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
+ // type. Note that Functions are not objects, and that (in C99 parlance)
+ // incomplete types are not object types.
+ if (ResultType->isFunctionType()) {
+ Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
+ << ResultType << BaseExpr->getSourceRange();
+ return ExprError();
+ }
+
+ if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
+ // GNU extension: subscripting on pointer to void
+ Diag(LLoc, diag::ext_gnu_subscript_void_type)
+ << BaseExpr->getSourceRange();
+
+ // C forbids expressions of unqualified void type from being l-values.
+ // See IsCForbiddenLValueType.
+ if (!ResultType.hasQualifiers()) VK = VK_RValue;
+ } else if (!ResultType->isDependentType() &&
+ RequireCompleteType(LLoc, ResultType,
+ diag::err_subscript_incomplete_type, BaseExpr))
+ return ExprError();
+
+ assert(VK == VK_RValue || LangOpts.CPlusPlus ||
+ !ResultType.isCForbiddenLValueType());
+
+ return new (Context)
+ ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
+}
+
+ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
+ FunctionDecl *FD,
+ ParmVarDecl *Param) {
+ if (Param->hasUnparsedDefaultArg()) {
+ Diag(CallLoc,
+ diag::err_use_of_default_argument_to_function_declared_later) <<
+ FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
+ Diag(UnparsedDefaultArgLocs[Param],
+ diag::note_default_argument_declared_here);
+ return ExprError();
+ }
+
+ if (Param->hasUninstantiatedDefaultArg()) {
+ Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
+
+ EnterExpressionEvaluationContext EvalContext(*this, PotentiallyEvaluated,
+ Param);
+
+ // Instantiate the expression.
+ MultiLevelTemplateArgumentList MutiLevelArgList
+ = getTemplateInstantiationArgs(FD, nullptr, /*RelativeToPrimary=*/true);
+
+ InstantiatingTemplate Inst(*this, CallLoc, Param,
+ MutiLevelArgList.getInnermost());
+ if (Inst.isInvalid())
+ return ExprError();
+
+ ExprResult Result;
+ {
+ // C++ [dcl.fct.default]p5:
+ // The names in the [default argument] expression are bound, and
+ // the semantic constraints are checked, at the point where the
+ // default argument expression appears.
+ ContextRAII SavedContext(*this, FD);
+ LocalInstantiationScope Local(*this);
+ Result = SubstExpr(UninstExpr, MutiLevelArgList);
+ }
+ if (Result.isInvalid())
+ return ExprError();
+
+ // Check the expression as an initializer for the parameter.
+ InitializedEntity Entity
+ = InitializedEntity::InitializeParameter(Context, Param);
+ InitializationKind Kind
+ = InitializationKind::CreateCopy(Param->getLocation(),
+ /*FIXME:EqualLoc*/UninstExpr->getLocStart());
+ Expr *ResultE = Result.getAs<Expr>();
+
+ InitializationSequence InitSeq(*this, Entity, Kind, ResultE);
+ Result = InitSeq.Perform(*this, Entity, Kind, ResultE);
+ if (Result.isInvalid())
+ return ExprError();
+
+ Expr *Arg = Result.getAs<Expr>();
+ CheckCompletedExpr(Arg, Param->getOuterLocStart());
+ // Build the default argument expression.
+ return CXXDefaultArgExpr::Create(Context, CallLoc, Param, Arg);
+ }
+
+ // If the default expression creates temporaries, we need to
+ // push them to the current stack of expression temporaries so they'll
+ // be properly destroyed.
+ // FIXME: We should really be rebuilding the default argument with new
+ // bound temporaries; see the comment in PR5810.
+ // We don't need to do that with block decls, though, because
+ // blocks in default argument expression can never capture anything.
+ if (isa<ExprWithCleanups>(Param->getInit())) {
+ // Set the "needs cleanups" bit regardless of whether there are
+ // any explicit objects.
+ ExprNeedsCleanups = true;
+
+ // Append all the objects to the cleanup list. Right now, this
+ // should always be a no-op, because blocks in default argument
+ // expressions should never be able to capture anything.
+ assert(!cast<ExprWithCleanups>(Param->getInit())->getNumObjects() &&
+ "default argument expression has capturing blocks?");
+ }
+
+ // We already type-checked the argument, so we know it works.
+ // Just mark all of the declarations in this potentially-evaluated expression
+ // as being "referenced".
+ MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
+ /*SkipLocalVariables=*/true);
+ return CXXDefaultArgExpr::Create(Context, CallLoc, Param);
+}
+
+
+Sema::VariadicCallType
+Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
+ Expr *Fn) {
+ if (Proto && Proto->isVariadic()) {
+ if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
+ return VariadicConstructor;
+ else if (Fn && Fn->getType()->isBlockPointerType())
+ return VariadicBlock;
+ else if (FDecl) {
+ if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
+ if (Method->isInstance())
+ return VariadicMethod;
+ } else if (Fn && Fn->getType() == Context.BoundMemberTy)
+ return VariadicMethod;
+ return VariadicFunction;
+ }
+ return VariadicDoesNotApply;
+}
+
+namespace {
+class FunctionCallCCC : public FunctionCallFilterCCC {
+public:
+ FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
+ unsigned NumArgs, MemberExpr *ME)
+ : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
+ FunctionName(FuncName) {}
+
+ bool ValidateCandidate(const TypoCorrection &candidate) override {
+ if (!candidate.getCorrectionSpecifier() ||
+ candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
+ return false;
+ }
+
+ return FunctionCallFilterCCC::ValidateCandidate(candidate);
+ }
+
+private:
+ const IdentifierInfo *const FunctionName;
+};
+}
+
+static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
+ FunctionDecl *FDecl,
+ ArrayRef<Expr *> Args) {
+ MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
+ DeclarationName FuncName = FDecl->getDeclName();
+ SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getLocStart();
+
+ if (TypoCorrection Corrected = S.CorrectTypo(
+ DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
+ S.getScopeForContext(S.CurContext), nullptr,
+ llvm::make_unique<FunctionCallCCC>(S, FuncName.getAsIdentifierInfo(),
+ Args.size(), ME),
+ Sema::CTK_ErrorRecovery)) {
+ if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
+ if (Corrected.isOverloaded()) {
+ OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
+ OverloadCandidateSet::iterator Best;
+ for (TypoCorrection::decl_iterator CD = Corrected.begin(),
+ CDEnd = Corrected.end();
+ CD != CDEnd; ++CD) {
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
+ S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
+ OCS);
+ }
+ switch (OCS.BestViableFunction(S, NameLoc, Best)) {
+ case OR_Success:
+ ND = Best->Function;
+ Corrected.setCorrectionDecl(ND);
+ break;
+ default:
+ break;
+ }
+ }
+ if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
+ return Corrected;
+ }
+ }
+ }
+ return TypoCorrection();
+}
+
+/// ConvertArgumentsForCall - Converts the arguments specified in
+/// Args/NumArgs to the parameter types of the function FDecl with
+/// function prototype Proto. Call is the call expression itself, and
+/// Fn is the function expression. For a C++ member function, this
+/// routine does not attempt to convert the object argument. Returns
+/// true if the call is ill-formed.
+bool
+Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
+ FunctionDecl *FDecl,
+ const FunctionProtoType *Proto,
+ ArrayRef<Expr *> Args,
+ SourceLocation RParenLoc,
+ bool IsExecConfig) {
+ // Bail out early if calling a builtin with custom typechecking.
+ // We don't need to do this in the
+ if (FDecl)
+ if (unsigned ID = FDecl->getBuiltinID())
+ if (Context.BuiltinInfo.hasCustomTypechecking(ID))
+ return false;
+
+ // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
+ // assignment, to the types of the corresponding parameter, ...
+ unsigned NumParams = Proto->getNumParams();
+ bool Invalid = false;
+ unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
+ unsigned FnKind = Fn->getType()->isBlockPointerType()
+ ? 1 /* block */
+ : (IsExecConfig ? 3 /* kernel function (exec config) */
+ : 0 /* function */);
+
+ // If too few arguments are available (and we don't have default
+ // arguments for the remaining parameters), don't make the call.
+ if (Args.size() < NumParams) {
+ if (Args.size() < MinArgs) {
+ TypoCorrection TC;
+ if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
+ unsigned diag_id =
+ MinArgs == NumParams && !Proto->isVariadic()
+ ? diag::err_typecheck_call_too_few_args_suggest
+ : diag::err_typecheck_call_too_few_args_at_least_suggest;
+ diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs
+ << static_cast<unsigned>(Args.size())
+ << TC.getCorrectionRange());
+ } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
+ Diag(RParenLoc,
+ MinArgs == NumParams && !Proto->isVariadic()
+ ? diag::err_typecheck_call_too_few_args_one
+ : diag::err_typecheck_call_too_few_args_at_least_one)
+ << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange();
+ else
+ Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
+ ? diag::err_typecheck_call_too_few_args
+ : diag::err_typecheck_call_too_few_args_at_least)
+ << FnKind << MinArgs << static_cast<unsigned>(Args.size())
+ << Fn->getSourceRange();
+
+ // Emit the location of the prototype.
+ if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
+ Diag(FDecl->getLocStart(), diag::note_callee_decl)
+ << FDecl;
+
+ return true;
+ }
+ Call->setNumArgs(Context, NumParams);
+ }
+
+ // If too many are passed and not variadic, error on the extras and drop
+ // them.
+ if (Args.size() > NumParams) {
+ if (!Proto->isVariadic()) {
+ TypoCorrection TC;
+ if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
+ unsigned diag_id =
+ MinArgs == NumParams && !Proto->isVariadic()
+ ? diag::err_typecheck_call_too_many_args_suggest
+ : diag::err_typecheck_call_too_many_args_at_most_suggest;
+ diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams
+ << static_cast<unsigned>(Args.size())
+ << TC.getCorrectionRange());
+ } else if (NumParams == 1 && FDecl &&
+ FDecl->getParamDecl(0)->getDeclName())
+ Diag(Args[NumParams]->getLocStart(),
+ MinArgs == NumParams
+ ? diag::err_typecheck_call_too_many_args_one
+ : diag::err_typecheck_call_too_many_args_at_most_one)
+ << FnKind << FDecl->getParamDecl(0)
+ << static_cast<unsigned>(Args.size()) << Fn->getSourceRange()
+ << SourceRange(Args[NumParams]->getLocStart(),
+ Args.back()->getLocEnd());
+ else
+ Diag(Args[NumParams]->getLocStart(),
+ MinArgs == NumParams
+ ? diag::err_typecheck_call_too_many_args
+ : diag::err_typecheck_call_too_many_args_at_most)
+ << FnKind << NumParams << static_cast<unsigned>(Args.size())
+ << Fn->getSourceRange()
+ << SourceRange(Args[NumParams]->getLocStart(),
+ Args.back()->getLocEnd());
+
+ // Emit the location of the prototype.
+ if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
+ Diag(FDecl->getLocStart(), diag::note_callee_decl)
+ << FDecl;
+
+ // This deletes the extra arguments.
+ Call->setNumArgs(Context, NumParams);
+ return true;
+ }
+ }
+ SmallVector<Expr *, 8> AllArgs;
+ VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
+
+ Invalid = GatherArgumentsForCall(Call->getLocStart(), FDecl,
+ Proto, 0, Args, AllArgs, CallType);
+ if (Invalid)
+ return true;
+ unsigned TotalNumArgs = AllArgs.size();
+ for (unsigned i = 0; i < TotalNumArgs; ++i)
+ Call->setArg(i, AllArgs[i]);
+
+ return false;
+}
+
+bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
+ const FunctionProtoType *Proto,
+ unsigned FirstParam, ArrayRef<Expr *> Args,
+ SmallVectorImpl<Expr *> &AllArgs,
+ VariadicCallType CallType, bool AllowExplicit,
+ bool IsListInitialization) {
+ unsigned NumParams = Proto->getNumParams();
+ bool Invalid = false;
+ unsigned ArgIx = 0;
+ // Continue to check argument types (even if we have too few/many args).
+ for (unsigned i = FirstParam; i < NumParams; i++) {
+ QualType ProtoArgType = Proto->getParamType(i);
+
+ Expr *Arg;
+ ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
+ if (ArgIx < Args.size()) {
+ Arg = Args[ArgIx++];
+
+ if (RequireCompleteType(Arg->getLocStart(),
+ ProtoArgType,
+ diag::err_call_incomplete_argument, Arg))
+ return true;
+
+ // Strip the unbridged-cast placeholder expression off, if applicable.
+ bool CFAudited = false;
+ if (Arg->getType() == Context.ARCUnbridgedCastTy &&
+ FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
+ (!Param || !Param->hasAttr<CFConsumedAttr>()))
+ Arg = stripARCUnbridgedCast(Arg);
+ else if (getLangOpts().ObjCAutoRefCount &&
+ FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
+ (!Param || !Param->hasAttr<CFConsumedAttr>()))
+ CFAudited = true;
+
+ InitializedEntity Entity =
+ Param ? InitializedEntity::InitializeParameter(Context, Param,
+ ProtoArgType)
+ : InitializedEntity::InitializeParameter(
+ Context, ProtoArgType, Proto->isParamConsumed(i));
+
+ // Remember that parameter belongs to a CF audited API.
+ if (CFAudited)
+ Entity.setParameterCFAudited();
+
+ ExprResult ArgE = PerformCopyInitialization(
+ Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
+ if (ArgE.isInvalid())
+ return true;
+
+ Arg = ArgE.getAs<Expr>();
+ } else {
+ assert(Param && "can't use default arguments without a known callee");
+
+ ExprResult ArgExpr =
+ BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
+ if (ArgExpr.isInvalid())
+ return true;
+
+ Arg = ArgExpr.getAs<Expr>();
+ }
+
+ // Check for array bounds violations for each argument to the call. This
+ // check only triggers warnings when the argument isn't a more complex Expr
+ // with its own checking, such as a BinaryOperator.
+ CheckArrayAccess(Arg);
+
+ // Check for violations of C99 static array rules (C99 6.7.5.3p7).
+ CheckStaticArrayArgument(CallLoc, Param, Arg);
+
+ AllArgs.push_back(Arg);
+ }
+
+ // If this is a variadic call, handle args passed through "...".
+ if (CallType != VariadicDoesNotApply) {
+ // Assume that extern "C" functions with variadic arguments that
+ // return __unknown_anytype aren't *really* variadic.
+ if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
+ FDecl->isExternC()) {
+ for (unsigned i = ArgIx, e = Args.size(); i != e; ++i) {
+ QualType paramType; // ignored
+ ExprResult arg = checkUnknownAnyArg(CallLoc, Args[i], paramType);
+ Invalid |= arg.isInvalid();
+ AllArgs.push_back(arg.get());
+ }
+
+ // Otherwise do argument promotion, (C99 6.5.2.2p7).
+ } else {
+ for (unsigned i = ArgIx, e = Args.size(); i != e; ++i) {
+ ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], CallType,
+ FDecl);
+ Invalid |= Arg.isInvalid();
+ AllArgs.push_back(Arg.get());
+ }
+ }
+
+ // Check for array bounds violations.
+ for (unsigned i = ArgIx, e = Args.size(); i != e; ++i)
+ CheckArrayAccess(Args[i]);
+ }
+ return Invalid;
+}
+
+static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
+ TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
+ if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
+ TL = DTL.getOriginalLoc();
+ if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
+ S.Diag(PVD->getLocation(), diag::note_callee_static_array)
+ << ATL.getLocalSourceRange();
+}
+
+/// CheckStaticArrayArgument - If the given argument corresponds to a static
+/// array parameter, check that it is non-null, and that if it is formed by
+/// array-to-pointer decay, the underlying array is sufficiently large.
+///
+/// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
+/// array type derivation, then for each call to the function, the value of the
+/// corresponding actual argument shall provide access to the first element of
+/// an array with at least as many elements as specified by the size expression.
+void
+Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
+ ParmVarDecl *Param,
+ const Expr *ArgExpr) {
+ // Static array parameters are not supported in C++.
+ if (!Param || getLangOpts().CPlusPlus)
+ return;
+
+ QualType OrigTy = Param->getOriginalType();
+
+ const ArrayType *AT = Context.getAsArrayType(OrigTy);
+ if (!AT || AT->getSizeModifier() != ArrayType::Static)
+ return;
+
+ if (ArgExpr->isNullPointerConstant(Context,
+ Expr::NPC_NeverValueDependent)) {
+ Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
+ DiagnoseCalleeStaticArrayParam(*this, Param);
+ return;
+ }
+
+ const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
+ if (!CAT)
+ return;
+
+ const ConstantArrayType *ArgCAT =
+ Context.getAsConstantArrayType(ArgExpr->IgnoreParenImpCasts()->getType());
+ if (!ArgCAT)
+ return;
+
+ if (ArgCAT->getSize().ult(CAT->getSize())) {
+ Diag(CallLoc, diag::warn_static_array_too_small)
+ << ArgExpr->getSourceRange()
+ << (unsigned) ArgCAT->getSize().getZExtValue()
+ << (unsigned) CAT->getSize().getZExtValue();
+ DiagnoseCalleeStaticArrayParam(*this, Param);
+ }
+}
+
+/// Given a function expression of unknown-any type, try to rebuild it
+/// to have a function type.
+static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
+
+/// Is the given type a placeholder that we need to lower out
+/// immediately during argument processing?
+static bool isPlaceholderToRemoveAsArg(QualType type) {
+ // Placeholders are never sugared.
+ const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
+ if (!placeholder) return false;
+
+ switch (placeholder->getKind()) {
+ // Ignore all the non-placeholder types.
+#define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
+#define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
+#include "clang/AST/BuiltinTypes.def"
+ return false;
+
+ // We cannot lower out overload sets; they might validly be resolved
+ // by the call machinery.
+ case BuiltinType::Overload:
+ return false;
+
+ // Unbridged casts in ARC can be handled in some call positions and
+ // should be left in place.
+ case BuiltinType::ARCUnbridgedCast:
+ return false;
+
+ // Pseudo-objects should be converted as soon as possible.
+ case BuiltinType::PseudoObject:
+ return true;
+
+ // The debugger mode could theoretically but currently does not try
+ // to resolve unknown-typed arguments based on known parameter types.
+ case BuiltinType::UnknownAny:
+ return true;
+
+ // These are always invalid as call arguments and should be reported.
+ case BuiltinType::BoundMember:
+ case BuiltinType::BuiltinFn:
+ return true;
+ }
+ llvm_unreachable("bad builtin type kind");
+}
+
+/// Check an argument list for placeholders that we won't try to
+/// handle later.
+static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) {
+ // Apply this processing to all the arguments at once instead of
+ // dying at the first failure.
+ bool hasInvalid = false;
+ for (size_t i = 0, e = args.size(); i != e; i++) {
+ if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
+ ExprResult result = S.CheckPlaceholderExpr(args[i]);
+ if (result.isInvalid()) hasInvalid = true;
+ else args[i] = result.get();
+ } else if (hasInvalid) {
+ (void)S.CorrectDelayedTyposInExpr(args[i]);
+ }
+ }
+ return hasInvalid;
+}
+
+/// If a builtin function has a pointer argument with no explicit address
+/// space, than it should be able to accept a pointer to any address
+/// space as input. In order to do this, we need to replace the
+/// standard builtin declaration with one that uses the same address space
+/// as the call.
+///
+/// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
+/// it does not contain any pointer arguments without
+/// an address space qualifer. Otherwise the rewritten
+/// FunctionDecl is returned.
+/// TODO: Handle pointer return types.
+static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
+ const FunctionDecl *FDecl,
+ MultiExprArg ArgExprs) {
+
+ QualType DeclType = FDecl->getType();
+ const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType);
+
+ if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) ||
+ !FT || FT->isVariadic() || ArgExprs.size() != FT->getNumParams())
+ return nullptr;
+
+ bool NeedsNewDecl = false;
+ unsigned i = 0;
+ SmallVector<QualType, 8> OverloadParams;
+
+ for (QualType ParamType : FT->param_types()) {
+
+ // Convert array arguments to pointer to simplify type lookup.
+ Expr *Arg = Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]).get();
+ QualType ArgType = Arg->getType();
+ if (!ParamType->isPointerType() ||
+ ParamType.getQualifiers().hasAddressSpace() ||
+ !ArgType->isPointerType() ||
+ !ArgType->getPointeeType().getQualifiers().hasAddressSpace()) {
+ OverloadParams.push_back(ParamType);
+ continue;
+ }
+
+ NeedsNewDecl = true;
+ unsigned AS = ArgType->getPointeeType().getQualifiers().getAddressSpace();
+
+ QualType PointeeType = ParamType->getPointeeType();
+ PointeeType = Context.getAddrSpaceQualType(PointeeType, AS);
+ OverloadParams.push_back(Context.getPointerType(PointeeType));
+ }
+
+ if (!NeedsNewDecl)
+ return nullptr;
+
+ FunctionProtoType::ExtProtoInfo EPI;
+ QualType OverloadTy = Context.getFunctionType(FT->getReturnType(),
+ OverloadParams, EPI);
+ DeclContext *Parent = Context.getTranslationUnitDecl();
+ FunctionDecl *OverloadDecl = FunctionDecl::Create(Context, Parent,
+ FDecl->getLocation(),
+ FDecl->getLocation(),
+ FDecl->getIdentifier(),
+ OverloadTy,
+ /*TInfo=*/nullptr,
+ SC_Extern, false,
+ /*hasPrototype=*/true);
+ SmallVector<ParmVarDecl*, 16> Params;
+ FT = cast<FunctionProtoType>(OverloadTy);
+ for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
+ QualType ParamType = FT->getParamType(i);
+ ParmVarDecl *Parm =
+ ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(),
+ SourceLocation(), nullptr, ParamType,
+ /*TInfo=*/nullptr, SC_None, nullptr);
+ Parm->setScopeInfo(0, i);
+ Params.push_back(Parm);
+ }
+ OverloadDecl->setParams(Params);
+ return OverloadDecl;
+}
+
+/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
+/// This provides the location of the left/right parens and a list of comma
+/// locations.
+ExprResult
+Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
+ MultiExprArg ArgExprs, SourceLocation RParenLoc,
+ Expr *ExecConfig, bool IsExecConfig) {
+ // Since this might be a postfix expression, get rid of ParenListExprs.
+ ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
+ if (Result.isInvalid()) return ExprError();
+ Fn = Result.get();
+
+ if (checkArgsForPlaceholders(*this, ArgExprs))
+ return ExprError();
+
+ if (getLangOpts().CPlusPlus) {
+ // If this is a pseudo-destructor expression, build the call immediately.
+ if (isa<CXXPseudoDestructorExpr>(Fn)) {
+ if (!ArgExprs.empty()) {
+ // Pseudo-destructor calls should not have any arguments.
+ Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
+ << FixItHint::CreateRemoval(
+ SourceRange(ArgExprs[0]->getLocStart(),
+ ArgExprs.back()->getLocEnd()));
+ }
+
+ return new (Context)
+ CallExpr(Context, Fn, None, Context.VoidTy, VK_RValue, RParenLoc);
+ }
+ if (Fn->getType() == Context.PseudoObjectTy) {
+ ExprResult result = CheckPlaceholderExpr(Fn);
+ if (result.isInvalid()) return ExprError();
+ Fn = result.get();
+ }
+
+ // Determine whether this is a dependent call inside a C++ template,
+ // in which case we won't do any semantic analysis now.
+ // FIXME: Will need to cache the results of name lookup (including ADL) in
+ // Fn.
+ bool Dependent = false;
+ if (Fn->isTypeDependent())
+ Dependent = true;
+ else if (Expr::hasAnyTypeDependentArguments(ArgExprs))
+ Dependent = true;
+
+ if (Dependent) {
+ if (ExecConfig) {
+ return new (Context) CUDAKernelCallExpr(
+ Context, Fn, cast<CallExpr>(ExecConfig), ArgExprs,
+ Context.DependentTy, VK_RValue, RParenLoc);
+ } else {
+ return new (Context) CallExpr(
+ Context, Fn, ArgExprs, Context.DependentTy, VK_RValue, RParenLoc);
+ }
+ }
+
+ // Determine whether this is a call to an object (C++ [over.call.object]).
+ if (Fn->getType()->isRecordType())
+ return BuildCallToObjectOfClassType(S, Fn, LParenLoc, ArgExprs,
+ RParenLoc);
+
+ if (Fn->getType() == Context.UnknownAnyTy) {
+ ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
+ if (result.isInvalid()) return ExprError();
+ Fn = result.get();
+ }
+
+ if (Fn->getType() == Context.BoundMemberTy) {
+ return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs, RParenLoc);
+ }
+ }
+
+ // Check for overloaded calls. This can happen even in C due to extensions.
+ if (Fn->getType() == Context.OverloadTy) {
+ OverloadExpr::FindResult find = OverloadExpr::find(Fn);
+
+ // We aren't supposed to apply this logic for if there's an '&' involved.
+ if (!find.HasFormOfMemberPointer) {
+ OverloadExpr *ovl = find.Expression;
+ if (isa<UnresolvedLookupExpr>(ovl)) {
+ UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(ovl);
+ return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, ArgExprs,
+ RParenLoc, ExecConfig);
+ } else {
+ return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs,
+ RParenLoc);
+ }
+ }
+ }
+
+ // If we're directly calling a function, get the appropriate declaration.
+ if (Fn->getType() == Context.UnknownAnyTy) {
+ ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
+ if (result.isInvalid()) return ExprError();
+ Fn = result.get();
+ }
+
+ Expr *NakedFn = Fn->IgnoreParens();
+
+ NamedDecl *NDecl = nullptr;
+ if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
+ if (UnOp->getOpcode() == UO_AddrOf)
+ NakedFn = UnOp->getSubExpr()->IgnoreParens();
+
+ if (isa<DeclRefExpr>(NakedFn)) {
+ NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
+
+ FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl);
+ if (FDecl && FDecl->getBuiltinID()) {
+ // Rewrite the function decl for this builtin by replacing paramaters
+ // with no explicit address space with the address space of the arguments
+ // in ArgExprs.
+ if ((FDecl = rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) {
+ NDecl = FDecl;
+ Fn = DeclRefExpr::Create(Context, FDecl->getQualifierLoc(),
+ SourceLocation(), FDecl, false,
+ SourceLocation(), FDecl->getType(),
+ Fn->getValueKind(), FDecl);
+ }
+ }
+ } else if (isa<MemberExpr>(NakedFn))
+ NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
+
+ if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
+ if (FD->hasAttr<EnableIfAttr>()) {
+ if (const EnableIfAttr *Attr = CheckEnableIf(FD, ArgExprs, true)) {
+ Diag(Fn->getLocStart(),
+ isa<CXXMethodDecl>(FD) ?
+ diag::err_ovl_no_viable_member_function_in_call :
+ diag::err_ovl_no_viable_function_in_call)
+ << FD << FD->getSourceRange();
+ Diag(FD->getLocation(),
+ diag::note_ovl_candidate_disabled_by_enable_if_attr)
+ << Attr->getCond()->getSourceRange() << Attr->getMessage();
+ }
+ }
+ }
+
+ return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
+ ExecConfig, IsExecConfig);
+}
+
+/// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
+///
+/// __builtin_astype( value, dst type )
+///
+ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
+ SourceLocation BuiltinLoc,
+ SourceLocation RParenLoc) {
+ ExprValueKind VK = VK_RValue;
+ ExprObjectKind OK = OK_Ordinary;
+ QualType DstTy = GetTypeFromParser(ParsedDestTy);
+ QualType SrcTy = E->getType();
+ if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
+ return ExprError(Diag(BuiltinLoc,
+ diag::err_invalid_astype_of_different_size)
+ << DstTy
+ << SrcTy
+ << E->getSourceRange());
+ return new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc, RParenLoc);
+}
+
+/// ActOnConvertVectorExpr - create a new convert-vector expression from the
+/// provided arguments.
+///
+/// __builtin_convertvector( value, dst type )
+///
+ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
+ SourceLocation BuiltinLoc,
+ SourceLocation RParenLoc) {
+ TypeSourceInfo *TInfo;
+ GetTypeFromParser(ParsedDestTy, &TInfo);
+ return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
+}
+
+/// BuildResolvedCallExpr - Build a call to a resolved expression,
+/// i.e. an expression not of \p OverloadTy. The expression should
+/// unary-convert to an expression of function-pointer or
+/// block-pointer type.
+///
+/// \param NDecl the declaration being called, if available
+ExprResult
+Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
+ SourceLocation LParenLoc,
+ ArrayRef<Expr *> Args,
+ SourceLocation RParenLoc,
+ Expr *Config, bool IsExecConfig) {
+ FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
+ unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
+
+ // Promote the function operand.
+ // We special-case function promotion here because we only allow promoting
+ // builtin functions to function pointers in the callee of a call.
+ ExprResult Result;
+ if (BuiltinID &&
+ Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
+ Result = ImpCastExprToType(Fn, Context.getPointerType(FDecl->getType()),
+ CK_BuiltinFnToFnPtr).get();
+ } else {
+ Result = CallExprUnaryConversions(Fn);
+ }
+ if (Result.isInvalid())
+ return ExprError();
+ Fn = Result.get();
+
+ // Make the call expr early, before semantic checks. This guarantees cleanup
+ // of arguments and function on error.
+ CallExpr *TheCall;
+ if (Config)
+ TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
+ cast<CallExpr>(Config), Args,
+ Context.BoolTy, VK_RValue,
+ RParenLoc);
+ else
+ TheCall = new (Context) CallExpr(Context, Fn, Args, Context.BoolTy,
+ VK_RValue, RParenLoc);
+
+ // Bail out early if calling a builtin with custom typechecking.
+ if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
+ return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
+
+ retry:
+ const FunctionType *FuncT;
+ if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
+ // C99 6.5.2.2p1 - "The expression that denotes the called function shall
+ // have type pointer to function".
+ FuncT = PT->getPointeeType()->getAs<FunctionType>();
+ if (!FuncT)
+ return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
+ << Fn->getType() << Fn->getSourceRange());
+ } else if (const BlockPointerType *BPT =
+ Fn->getType()->getAs<BlockPointerType>()) {
+ FuncT = BPT->getPointeeType()->castAs<FunctionType>();
+ } else {
+ // Handle calls to expressions of unknown-any type.
+ if (Fn->getType() == Context.UnknownAnyTy) {
+ ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
+ if (rewrite.isInvalid()) return ExprError();
+ Fn = rewrite.get();
+ TheCall->setCallee(Fn);
+ goto retry;
+ }
+
+ return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
+ << Fn->getType() << Fn->getSourceRange());
+ }
+
+ if (getLangOpts().CUDA) {
+ if (Config) {
+ // CUDA: Kernel calls must be to global functions
+ if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
+ return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
+ << FDecl->getName() << Fn->getSourceRange());
+
+ // CUDA: Kernel function must have 'void' return type
+ if (!FuncT->getReturnType()->isVoidType())
+ return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
+ << Fn->getType() << Fn->getSourceRange());
+ } else {
+ // CUDA: Calls to global functions must be configured
+ if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
+ return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
+ << FDecl->getName() << Fn->getSourceRange());
+ }
+ }
+
+ // Check for a valid return type
+ if (CheckCallReturnType(FuncT->getReturnType(), Fn->getLocStart(), TheCall,
+ FDecl))
+ return ExprError();
+
+ // We know the result type of the call, set it.
+ TheCall->setType(FuncT->getCallResultType(Context));
+ TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));
+
+ const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT);
+ if (Proto) {
+ if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
+ IsExecConfig))
+ return ExprError();
+ } else {
+ assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
+
+ if (FDecl) {
+ // Check if we have too few/too many template arguments, based
+ // on our knowledge of the function definition.
+ const FunctionDecl *Def = nullptr;
+ if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
+ Proto = Def->getType()->getAs<FunctionProtoType>();
+ if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
+ Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
+ << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
+ }
+
+ // If the function we're calling isn't a function prototype, but we have
+ // a function prototype from a prior declaratiom, use that prototype.
+ if (!FDecl->hasPrototype())
+ Proto = FDecl->getType()->getAs<FunctionProtoType>();
+ }
+
+ // Promote the arguments (C99 6.5.2.2p6).
+ for (unsigned i = 0, e = Args.size(); i != e; i++) {
+ Expr *Arg = Args[i];
+
+ if (Proto && i < Proto->getNumParams()) {
+ InitializedEntity Entity = InitializedEntity::InitializeParameter(
+ Context, Proto->getParamType(i), Proto->isParamConsumed(i));
+ ExprResult ArgE =
+ PerformCopyInitialization(Entity, SourceLocation(), Arg);
+ if (ArgE.isInvalid())
+ return true;
+
+ Arg = ArgE.getAs<Expr>();
+
+ } else {
+ ExprResult ArgE = DefaultArgumentPromotion(Arg);
+
+ if (ArgE.isInvalid())
+ return true;
+
+ Arg = ArgE.getAs<Expr>();
+ }
+
+ if (RequireCompleteType(Arg->getLocStart(),
+ Arg->getType(),
+ diag::err_call_incomplete_argument, Arg))
+ return ExprError();
+
+ TheCall->setArg(i, Arg);
+ }
+ }
+
+ if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
+ if (!Method->isStatic())
+ return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
+ << Fn->getSourceRange());
+
+ // Check for sentinels
+ if (NDecl)
+ DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
+
+ // Do special checking on direct calls to functions.
+ if (FDecl) {
+ if (CheckFunctionCall(FDecl, TheCall, Proto))
+ return ExprError();
+
+ if (BuiltinID)
+ return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
+ } else if (NDecl) {
+ if (CheckPointerCall(NDecl, TheCall, Proto))
+ return ExprError();
+ } else {
+ if (CheckOtherCall(TheCall, Proto))
+ return ExprError();
+ }
+
+ return MaybeBindToTemporary(TheCall);
+}
+
+ExprResult
+Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
+ SourceLocation RParenLoc, Expr *InitExpr) {
+ assert(Ty && "ActOnCompoundLiteral(): missing type");
+ // FIXME: put back this assert when initializers are worked out.
+ //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
+
+ TypeSourceInfo *TInfo;
+ QualType literalType = GetTypeFromParser(Ty, &TInfo);
+ if (!TInfo)
+ TInfo = Context.getTrivialTypeSourceInfo(literalType);
+
+ return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
+}
+
+ExprResult
+Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
+ SourceLocation RParenLoc, Expr *LiteralExpr) {
+ QualType literalType = TInfo->getType();
+
+ if (literalType->isArrayType()) {
+ if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
+ diag::err_illegal_decl_array_incomplete_type,
+ SourceRange(LParenLoc,
+ LiteralExpr->getSourceRange().getEnd())))
+ return ExprError();
+ if (literalType->isVariableArrayType())
+ return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
+ << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
+ } else if (!literalType->isDependentType() &&
+ RequireCompleteType(LParenLoc, literalType,
+ diag::err_typecheck_decl_incomplete_type,
+ SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
+ return ExprError();
+
+ InitializedEntity Entity
+ = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
+ InitializationKind Kind
+ = InitializationKind::CreateCStyleCast(LParenLoc,
+ SourceRange(LParenLoc, RParenLoc),
+ /*InitList=*/true);
+ InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
+ ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
+ &literalType);
+ if (Result.isInvalid())
+ return ExprError();
+ LiteralExpr = Result.get();
+
+ bool isFileScope = getCurFunctionOrMethodDecl() == nullptr;
+ if (isFileScope &&
+ !LiteralExpr->isTypeDependent() &&
+ !LiteralExpr->isValueDependent() &&
+ !literalType->isDependentType()) { // 6.5.2.5p3
+ if (CheckForConstantInitializer(LiteralExpr, literalType))
+ return ExprError();
+ }
+
+ // In C, compound literals are l-values for some reason.
+ ExprValueKind VK = getLangOpts().CPlusPlus ? VK_RValue : VK_LValue;
+
+ return MaybeBindToTemporary(
+ new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
+ VK, LiteralExpr, isFileScope));
+}
+
+ExprResult
+Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
+ SourceLocation RBraceLoc) {
+ // Immediately handle non-overload placeholders. Overloads can be
+ // resolved contextually, but everything else here can't.
+ for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
+ if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
+ ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
+
+ // Ignore failures; dropping the entire initializer list because
+ // of one failure would be terrible for indexing/etc.
+ if (result.isInvalid()) continue;
+
+ InitArgList[I] = result.get();
+ }
+ }
+
+ // Semantic analysis for initializers is done by ActOnDeclarator() and
+ // CheckInitializer() - it requires knowledge of the object being intialized.
+
+ InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
+ RBraceLoc);
+ E->setType(Context.VoidTy); // FIXME: just a place holder for now.
+ return E;
+}
+
+/// Do an explicit extend of the given block pointer if we're in ARC.
+static void maybeExtendBlockObject(Sema &S, ExprResult &E) {
+ assert(E.get()->getType()->isBlockPointerType());
+ assert(E.get()->isRValue());
+
+ // Only do this in an r-value context.
+ if (!S.getLangOpts().ObjCAutoRefCount) return;
+
+ E = ImplicitCastExpr::Create(S.Context, E.get()->getType(),
+ CK_ARCExtendBlockObject, E.get(),
+ /*base path*/ nullptr, VK_RValue);
+ S.ExprNeedsCleanups = true;
+}
+
+/// Prepare a conversion of the given expression to an ObjC object
+/// pointer type.
+CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
+ QualType type = E.get()->getType();
+ if (type->isObjCObjectPointerType()) {
+ return CK_BitCast;
+ } else if (type->isBlockPointerType()) {
+ maybeExtendBlockObject(*this, E);
+ return CK_BlockPointerToObjCPointerCast;
+ } else {
+ assert(type->isPointerType());
+ return CK_CPointerToObjCPointerCast;
+ }
+}
+
+/// Prepares for a scalar cast, performing all the necessary stages
+/// except the final cast and returning the kind required.
+CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
+ // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
+ // Also, callers should have filtered out the invalid cases with
+ // pointers. Everything else should be possible.
+
+ QualType SrcTy = Src.get()->getType();
+ if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
+ return CK_NoOp;
+
+ switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
+ case Type::STK_MemberPointer:
+ llvm_unreachable("member pointer type in C");
+
+ case Type::STK_CPointer:
+ case Type::STK_BlockPointer:
+ case Type::STK_ObjCObjectPointer:
+ switch (DestTy->getScalarTypeKind()) {
+ case Type::STK_CPointer: {
+ unsigned SrcAS = SrcTy->getPointeeType().getAddressSpace();
+ unsigned DestAS = DestTy->getPointeeType().getAddressSpace();
+ if (SrcAS != DestAS)
+ return CK_AddressSpaceConversion;
+ return CK_BitCast;
+ }
+ case Type::STK_BlockPointer:
+ return (SrcKind == Type::STK_BlockPointer
+ ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
+ case Type::STK_ObjCObjectPointer:
+ if (SrcKind == Type::STK_ObjCObjectPointer)
+ return CK_BitCast;
+ if (SrcKind == Type::STK_CPointer)
+ return CK_CPointerToObjCPointerCast;
+ maybeExtendBlockObject(*this, Src);
+ return CK_BlockPointerToObjCPointerCast;
+ case Type::STK_Bool:
+ return CK_PointerToBoolean;
+ case Type::STK_Integral:
+ return CK_PointerToIntegral;
+ case Type::STK_Floating:
+ case Type::STK_FloatingComplex:
+ case Type::STK_IntegralComplex:
+ case Type::STK_MemberPointer:
+ llvm_unreachable("illegal cast from pointer");
+ }
+ llvm_unreachable("Should have returned before this");
+
+ case Type::STK_Bool: // casting from bool is like casting from an integer
+ case Type::STK_Integral:
+ switch (DestTy->getScalarTypeKind()) {
+ case Type::STK_CPointer:
+ case Type::STK_ObjCObjectPointer:
+ case Type::STK_BlockPointer:
+ if (Src.get()->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNull))
+ return CK_NullToPointer;
+ return CK_IntegralToPointer;
+ case Type::STK_Bool:
+ return CK_IntegralToBoolean;
+ case Type::STK_Integral:
+ return CK_IntegralCast;
+ case Type::STK_Floating:
+ return CK_IntegralToFloating;
+ case Type::STK_IntegralComplex:
+ Src = ImpCastExprToType(Src.get(),
+ DestTy->castAs<ComplexType>()->getElementType(),
+ CK_IntegralCast);
+ return CK_IntegralRealToComplex;
+ case Type::STK_FloatingComplex:
+ Src = ImpCastExprToType(Src.get(),
+ DestTy->castAs<ComplexType>()->getElementType(),
+ CK_IntegralToFloating);
+ return CK_FloatingRealToComplex;
+ case Type::STK_MemberPointer:
+ llvm_unreachable("member pointer type in C");
+ }
+ llvm_unreachable("Should have returned before this");
+
+ case Type::STK_Floating:
+ switch (DestTy->getScalarTypeKind()) {
+ case Type::STK_Floating:
+ return CK_FloatingCast;
+ case Type::STK_Bool:
+ return CK_FloatingToBoolean;
+ case Type::STK_Integral:
+ return CK_FloatingToIntegral;
+ case Type::STK_FloatingComplex:
+ Src = ImpCastExprToType(Src.get(),
+ DestTy->castAs<ComplexType>()->getElementType(),
+ CK_FloatingCast);
+ return CK_FloatingRealToComplex;
+ case Type::STK_IntegralComplex:
+ Src = ImpCastExprToType(Src.get(),
+ DestTy->castAs<ComplexType>()->getElementType(),
+ CK_FloatingToIntegral);
+ return CK_IntegralRealToComplex;
+ case Type::STK_CPointer:
+ case Type::STK_ObjCObjectPointer:
+ case Type::STK_BlockPointer:
+ llvm_unreachable("valid float->pointer cast?");
+ case Type::STK_MemberPointer:
+ llvm_unreachable("member pointer type in C");
+ }
+ llvm_unreachable("Should have returned before this");
+
+ case Type::STK_FloatingComplex:
+ switch (DestTy->getScalarTypeKind()) {
+ case Type::STK_FloatingComplex:
+ return CK_FloatingComplexCast;
+ case Type::STK_IntegralComplex:
+ return CK_FloatingComplexToIntegralComplex;
+ case Type::STK_Floating: {
+ QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
+ if (Context.hasSameType(ET, DestTy))
+ return CK_FloatingComplexToReal;
+ Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
+ return CK_FloatingCast;
+ }
+ case Type::STK_Bool:
+ return CK_FloatingComplexToBoolean;
+ case Type::STK_Integral:
+ Src = ImpCastExprToType(Src.get(),
+ SrcTy->castAs<ComplexType>()->getElementType(),
+ CK_FloatingComplexToReal);
+ return CK_FloatingToIntegral;
+ case Type::STK_CPointer:
+ case Type::STK_ObjCObjectPointer:
+ case Type::STK_BlockPointer:
+ llvm_unreachable("valid complex float->pointer cast?");
+ case Type::STK_MemberPointer:
+ llvm_unreachable("member pointer type in C");
+ }
+ llvm_unreachable("Should have returned before this");
+
+ case Type::STK_IntegralComplex:
+ switch (DestTy->getScalarTypeKind()) {
+ case Type::STK_FloatingComplex:
+ return CK_IntegralComplexToFloatingComplex;
+ case Type::STK_IntegralComplex:
+ return CK_IntegralComplexCast;
+ case Type::STK_Integral: {
+ QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
+ if (Context.hasSameType(ET, DestTy))
+ return CK_IntegralComplexToReal;
+ Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
+ return CK_IntegralCast;
+ }
+ case Type::STK_Bool:
+ return CK_IntegralComplexToBoolean;
+ case Type::STK_Floating:
+ Src = ImpCastExprToType(Src.get(),
+ SrcTy->castAs<ComplexType>()->getElementType(),
+ CK_IntegralComplexToReal);
+ return CK_IntegralToFloating;
+ case Type::STK_CPointer:
+ case Type::STK_ObjCObjectPointer:
+ case Type::STK_BlockPointer:
+ llvm_unreachable("valid complex int->pointer cast?");
+ case Type::STK_MemberPointer:
+ llvm_unreachable("member pointer type in C");
+ }
+ llvm_unreachable("Should have returned before this");
+ }
+
+ llvm_unreachable("Unhandled scalar cast");
+}
+
+static bool breakDownVectorType(QualType type, uint64_t &len,
+ QualType &eltType) {
+ // Vectors are simple.
+ if (const VectorType *vecType = type->getAs<VectorType>()) {
+ len = vecType->getNumElements();
+ eltType = vecType->getElementType();
+ assert(eltType->isScalarType());
+ return true;
+ }
+
+ // We allow lax conversion to and from non-vector types, but only if
+ // they're real types (i.e. non-complex, non-pointer scalar types).
+ if (!type->isRealType()) return false;
+
+ len = 1;
+ eltType = type;
+ return true;
+}
+
+static bool VectorTypesMatch(Sema &S, QualType srcTy, QualType destTy) {
+ uint64_t srcLen, destLen;
+ QualType srcElt, destElt;
+ if (!breakDownVectorType(srcTy, srcLen, srcElt)) return false;
+ if (!breakDownVectorType(destTy, destLen, destElt)) return false;
+
+ // ASTContext::getTypeSize will return the size rounded up to a
+ // power of 2, so instead of using that, we need to use the raw
+ // element size multiplied by the element count.
+ uint64_t srcEltSize = S.Context.getTypeSize(srcElt);
+ uint64_t destEltSize = S.Context.getTypeSize(destElt);
+
+ return (srcLen * srcEltSize == destLen * destEltSize);
+}
+
+/// Is this a legal conversion between two known vector types?
+bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
+ assert(destTy->isVectorType() || srcTy->isVectorType());
+
+ if (!Context.getLangOpts().LaxVectorConversions)
+ return false;
+ return VectorTypesMatch(*this, srcTy, destTy);
+}
+
+bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
+ CastKind &Kind) {
+ assert(VectorTy->isVectorType() && "Not a vector type!");
+
+ if (Ty->isVectorType() || Ty->isIntegerType()) {
+ if (!VectorTypesMatch(*this, Ty, VectorTy))
+ return Diag(R.getBegin(),
+ Ty->isVectorType() ?
+ diag::err_invalid_conversion_between_vectors :
+ diag::err_invalid_conversion_between_vector_and_integer)
+ << VectorTy << Ty << R;
+ } else
+ return Diag(R.getBegin(),
+ diag::err_invalid_conversion_between_vector_and_scalar)
+ << VectorTy << Ty << R;
+
+ Kind = CK_BitCast;
+ return false;
+}
+
+ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
+ Expr *CastExpr, CastKind &Kind) {
+ assert(DestTy->isExtVectorType() && "Not an extended vector type!");
+
+ QualType SrcTy = CastExpr->getType();
+
+ // If SrcTy is a VectorType, the total size must match to explicitly cast to
+ // an ExtVectorType.
+ // In OpenCL, casts between vectors of different types are not allowed.
+ // (See OpenCL 6.2).
+ if (SrcTy->isVectorType()) {
+ if (!VectorTypesMatch(*this, SrcTy, DestTy)
+ || (getLangOpts().OpenCL &&
+ (DestTy.getCanonicalType() != SrcTy.getCanonicalType()))) {
+ Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
+ << DestTy << SrcTy << R;
+ return ExprError();
+ }
+ Kind = CK_BitCast;
+ return CastExpr;
+ }
+
+ // All non-pointer scalars can be cast to ExtVector type. The appropriate
+ // conversion will take place first from scalar to elt type, and then
+ // splat from elt type to vector.
+ if (SrcTy->isPointerType())
+ return Diag(R.getBegin(),
+ diag::err_invalid_conversion_between_vector_and_scalar)
+ << DestTy << SrcTy << R;
+
+ QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
+ ExprResult CastExprRes = CastExpr;
+ CastKind CK = PrepareScalarCast(CastExprRes, DestElemTy);
+ if (CastExprRes.isInvalid())
+ return ExprError();
+ CastExpr = ImpCastExprToType(CastExprRes.get(), DestElemTy, CK).get();
+
+ Kind = CK_VectorSplat;
+ return CastExpr;
+}
+
+ExprResult
+Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
+ Declarator &D, ParsedType &Ty,
+ SourceLocation RParenLoc, Expr *CastExpr) {
+ assert(!D.isInvalidType() && (CastExpr != nullptr) &&
+ "ActOnCastExpr(): missing type or expr");
+
+ TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
+ if (D.isInvalidType())
+ return ExprError();
+
+ if (getLangOpts().CPlusPlus) {
+ // Check that there are no default arguments (C++ only).
+ CheckExtraCXXDefaultArguments(D);
+ } else {
+ // Make sure any TypoExprs have been dealt with.
+ ExprResult Res = CorrectDelayedTyposInExpr(CastExpr);
+ if (!Res.isUsable())
+ return ExprError();
+ CastExpr = Res.get();
+ }
+
+ checkUnusedDeclAttributes(D);
+
+ QualType castType = castTInfo->getType();
+ Ty = CreateParsedType(castType, castTInfo);
+
+ bool isVectorLiteral = false;
+
+ // Check for an altivec or OpenCL literal,
+ // i.e. all the elements are integer constants.
+ ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
+ ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
+ if ((getLangOpts().AltiVec || getLangOpts().OpenCL)
+ && castType->isVectorType() && (PE || PLE)) {
+ if (PLE && PLE->getNumExprs() == 0) {
+ Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
+ return ExprError();
+ }
+ if (PE || PLE->getNumExprs() == 1) {
+ Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
+ if (!E->getType()->isVectorType())
+ isVectorLiteral = true;
+ }
+ else
+ isVectorLiteral = true;
+ }
+
+ // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
+ // then handle it as such.
+ if (isVectorLiteral)
+ return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
+
+ // If the Expr being casted is a ParenListExpr, handle it specially.
+ // This is not an AltiVec-style cast, so turn the ParenListExpr into a
+ // sequence of BinOp comma operators.
+ if (isa<ParenListExpr>(CastExpr)) {
+ ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
+ if (Result.isInvalid()) return ExprError();
+ CastExpr = Result.get();
+ }
+
+ if (getLangOpts().CPlusPlus && !castType->isVoidType() &&
+ !getSourceManager().isInSystemMacro(LParenLoc))
+ Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
+
+ CheckTollFreeBridgeCast(castType, CastExpr);
+
+ CheckObjCBridgeRelatedCast(castType, CastExpr);
+
+ return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
+}
+
+ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
+ SourceLocation RParenLoc, Expr *E,
+ TypeSourceInfo *TInfo) {
+ assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
+ "Expected paren or paren list expression");
+
+ Expr **exprs;
+ unsigned numExprs;
+ Expr *subExpr;
+ SourceLocation LiteralLParenLoc, LiteralRParenLoc;
+ if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
+ LiteralLParenLoc = PE->getLParenLoc();
+ LiteralRParenLoc = PE->getRParenLoc();
+ exprs = PE->getExprs();
+ numExprs = PE->getNumExprs();
+ } else { // isa<ParenExpr> by assertion at function entrance
+ LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
+ LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
+ subExpr = cast<ParenExpr>(E)->getSubExpr();
+ exprs = &subExpr;
+ numExprs = 1;
+ }
+
+ QualType Ty = TInfo->getType();
+ assert(Ty->isVectorType() && "Expected vector type");
+
+ SmallVector<Expr *, 8> initExprs;
+ const VectorType *VTy = Ty->getAs<VectorType>();
+ unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
+
+ // '(...)' form of vector initialization in AltiVec: the number of
+ // initializers must be one or must match the size of the vector.
+ // If a single value is specified in the initializer then it will be
+ // replicated to all the components of the vector
+ if (VTy->getVectorKind() == VectorType::AltiVecVector) {
+ // The number of initializers must be one or must match the size of the
+ // vector. If a single value is specified in the initializer then it will
+ // be replicated to all the components of the vector
+ if (numExprs == 1) {
+ QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
+ ExprResult Literal = DefaultLvalueConversion(exprs[0]);
+ if (Literal.isInvalid())
+ return ExprError();
+ Literal = ImpCastExprToType(Literal.get(), ElemTy,
+ PrepareScalarCast(Literal, ElemTy));
+ return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
+ }
+ else if (numExprs < numElems) {
+ Diag(E->getExprLoc(),
+ diag::err_incorrect_number_of_vector_initializers);
+ return ExprError();
+ }
+ else
+ initExprs.append(exprs, exprs + numExprs);
+ }
+ else {
+ // For OpenCL, when the number of initializers is a single value,
+ // it will be replicated to all components of the vector.
+ if (getLangOpts().OpenCL &&
+ VTy->getVectorKind() == VectorType::GenericVector &&
+ numExprs == 1) {
+ QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
+ ExprResult Literal = DefaultLvalueConversion(exprs[0]);
+ if (Literal.isInvalid())
+ return ExprError();
+ Literal = ImpCastExprToType(Literal.get(), ElemTy,
+ PrepareScalarCast(Literal, ElemTy));
+ return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
+ }
+
+ initExprs.append(exprs, exprs + numExprs);
+ }
+ // FIXME: This means that pretty-printing the final AST will produce curly
+ // braces instead of the original commas.
+ InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
+ initExprs, LiteralRParenLoc);
+ initE->setType(Ty);
+ return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
+}
+
+/// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
+/// the ParenListExpr into a sequence of comma binary operators.
+ExprResult
+Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
+ ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
+ if (!E)
+ return OrigExpr;
+
+ ExprResult Result(E->getExpr(0));
+
+ for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
+ Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
+ E->getExpr(i));
+
+ if (Result.isInvalid()) return ExprError();
+
+ return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
+}
+
+ExprResult Sema::ActOnParenListExpr(SourceLocation L,
+ SourceLocation R,
+ MultiExprArg Val) {
+ Expr *expr = new (Context) ParenListExpr(Context, L, Val, R);
+ return expr;
+}
+
+/// \brief Emit a specialized diagnostic when one expression is a null pointer
+/// constant and the other is not a pointer. Returns true if a diagnostic is
+/// emitted.
+bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
+ SourceLocation QuestionLoc) {
+ Expr *NullExpr = LHSExpr;
+ Expr *NonPointerExpr = RHSExpr;
+ Expr::NullPointerConstantKind NullKind =
+ NullExpr->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNotNull);
+
+ if (NullKind == Expr::NPCK_NotNull) {
+ NullExpr = RHSExpr;
+ NonPointerExpr = LHSExpr;
+ NullKind =
+ NullExpr->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNotNull);
+ }
+
+ if (NullKind == Expr::NPCK_NotNull)
+ return false;
+
+ if (NullKind == Expr::NPCK_ZeroExpression)
+ return false;
+
+ if (NullKind == Expr::NPCK_ZeroLiteral) {
+ // In this case, check to make sure that we got here from a "NULL"
+ // string in the source code.
+ NullExpr = NullExpr->IgnoreParenImpCasts();
+ SourceLocation loc = NullExpr->getExprLoc();
+ if (!findMacroSpelling(loc, "NULL"))
+ return false;
+ }
+
+ int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
+ Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
+ << NonPointerExpr->getType() << DiagType
+ << NonPointerExpr->getSourceRange();
+ return true;
+}
+
+/// \brief Return false if the condition expression is valid, true otherwise.
+static bool checkCondition(Sema &S, Expr *Cond, SourceLocation QuestionLoc) {
+ QualType CondTy = Cond->getType();
+
+ // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
+ if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) {
+ S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
+ << CondTy << Cond->getSourceRange();
+ return true;
+ }
+
+ // C99 6.5.15p2
+ if (CondTy->isScalarType()) return false;
+
+ S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar)
+ << CondTy << Cond->getSourceRange();
+ return true;
+}
+
+/// \brief Handle when one or both operands are void type.
+static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
+ ExprResult &RHS) {
+ Expr *LHSExpr = LHS.get();
+ Expr *RHSExpr = RHS.get();
+
+ if (!LHSExpr->getType()->isVoidType())
+ S.Diag(RHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
+ << RHSExpr->getSourceRange();
+ if (!RHSExpr->getType()->isVoidType())
+ S.Diag(LHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
+ << LHSExpr->getSourceRange();
+ LHS = S.ImpCastExprToType(LHS.get(), S.Context.VoidTy, CK_ToVoid);
+ RHS = S.ImpCastExprToType(RHS.get(), S.Context.VoidTy, CK_ToVoid);
+ return S.Context.VoidTy;
+}
+
+/// \brief Return false if the NullExpr can be promoted to PointerTy,
+/// true otherwise.
+static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
+ QualType PointerTy) {
+ if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
+ !NullExpr.get()->isNullPointerConstant(S.Context,
+ Expr::NPC_ValueDependentIsNull))
+ return true;
+
+ NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
+ return false;
+}
+
+/// \brief Checks compatibility between two pointers and return the resulting
+/// type.
+static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
+ ExprResult &RHS,
+ SourceLocation Loc) {
+ QualType LHSTy = LHS.get()->getType();
+ QualType RHSTy = RHS.get()->getType();
+
+ if (S.Context.hasSameType(LHSTy, RHSTy)) {
+ // Two identical pointers types are always compatible.
+ return LHSTy;
+ }
+
+ QualType lhptee, rhptee;
+
+ // Get the pointee types.
+ bool IsBlockPointer = false;
+ if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
+ lhptee = LHSBTy->getPointeeType();
+ rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
+ IsBlockPointer = true;
+ } else {
+ lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
+ rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
+ }
+
+ // C99 6.5.15p6: If both operands are pointers to compatible types or to
+ // differently qualified versions of compatible types, the result type is
+ // a pointer to an appropriately qualified version of the composite
+ // type.
+
+ // Only CVR-qualifiers exist in the standard, and the differently-qualified
+ // clause doesn't make sense for our extensions. E.g. address space 2 should
+ // be incompatible with address space 3: they may live on different devices or
+ // anything.
+ Qualifiers lhQual = lhptee.getQualifiers();
+ Qualifiers rhQual = rhptee.getQualifiers();
+
+ unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
+ lhQual.removeCVRQualifiers();
+ rhQual.removeCVRQualifiers();
+
+ lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
+ rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
+
+ QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
+
+ if (CompositeTy.isNull()) {
+ S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers)
+ << LHSTy << RHSTy << LHS.get()->getSourceRange()
+ << RHS.get()->getSourceRange();
+ // In this situation, we assume void* type. No especially good
+ // reason, but this is what gcc does, and we do have to pick
+ // to get a consistent AST.
+ QualType incompatTy = S.Context.getPointerType(S.Context.VoidTy);
+ LHS = S.ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
+ RHS = S.ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
+ return incompatTy;
+ }
+
+ // The pointer types are compatible.
+ QualType ResultTy = CompositeTy.withCVRQualifiers(MergedCVRQual);
+ if (IsBlockPointer)
+ ResultTy = S.Context.getBlockPointerType(ResultTy);
+ else
+ ResultTy = S.Context.getPointerType(ResultTy);
+
+ LHS = S.ImpCastExprToType(LHS.get(), ResultTy, CK_BitCast);
+ RHS = S.ImpCastExprToType(RHS.get(), ResultTy, CK_BitCast);
+ return ResultTy;
+}
+
+/// \brief Returns true if QT is quelified-id and implements 'NSObject' and/or
+/// 'NSCopying' protocols (and nothing else); or QT is an NSObject and optionally
+/// implements 'NSObject' and/or NSCopying' protocols (and nothing else).
+static bool isObjCPtrBlockCompatible(Sema &S, ASTContext &C, QualType QT) {
+ if (QT->isObjCIdType())
+ return true;
+
+ const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>();
+ if (!OPT)
+ return false;
+
+ if (ObjCInterfaceDecl *ID = OPT->getInterfaceDecl())
+ if (ID->getIdentifier() != &C.Idents.get("NSObject"))
+ return false;
+
+ ObjCProtocolDecl* PNSCopying =
+ S.LookupProtocol(&C.Idents.get("NSCopying"), SourceLocation());
+ ObjCProtocolDecl* PNSObject =
+ S.LookupProtocol(&C.Idents.get("NSObject"), SourceLocation());
+
+ for (auto *Proto : OPT->quals()) {
+ if ((PNSCopying && declaresSameEntity(Proto, PNSCopying)) ||
+ (PNSObject && declaresSameEntity(Proto, PNSObject)))
+ ;
+ else
+ return false;
+ }
+ return true;
+}
+
+/// \brief Return the resulting type when the operands are both block pointers.
+static QualType checkConditionalBlockPointerCompatibility(Sema &S,
+ ExprResult &LHS,
+ ExprResult &RHS,
+ SourceLocation Loc) {
+ QualType LHSTy = LHS.get()->getType();
+ QualType RHSTy = RHS.get()->getType();
+
+ if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
+ if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
+ QualType destType = S.Context.getPointerType(S.Context.VoidTy);
+ LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
+ RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
+ return destType;
+ }
+ S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
+ << LHSTy << RHSTy << LHS.get()->getSourceRange()
+ << RHS.get()->getSourceRange();
+ return QualType();
+ }
+
+ // We have 2 block pointer types.
+ return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
+}
+
+/// \brief Return the resulting type when the operands are both pointers.
+static QualType
+checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
+ ExprResult &RHS,
+ SourceLocation Loc) {
+ // get the pointer types
+ QualType LHSTy = LHS.get()->getType();
+ QualType RHSTy = RHS.get()->getType();
+
+ // get the "pointed to" types
+ QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
+ QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
+
+ // ignore qualifiers on void (C99 6.5.15p3, clause 6)
+ if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
+ // Figure out necessary qualifiers (C99 6.5.15p6)
+ QualType destPointee
+ = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
+ QualType destType = S.Context.getPointerType(destPointee);
+ // Add qualifiers if necessary.
+ LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
+ // Promote to void*.
+ RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
+ return destType;
+ }
+ if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
+ QualType destPointee
+ = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
+ QualType destType = S.Context.getPointerType(destPointee);
+ // Add qualifiers if necessary.
+ RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
+ // Promote to void*.
+ LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
+ return destType;
+ }
+
+ return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
+}
+
+/// \brief Return false if the first expression is not an integer and the second
+/// expression is not a pointer, true otherwise.
+static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
+ Expr* PointerExpr, SourceLocation Loc,
+ bool IsIntFirstExpr) {
+ if (!PointerExpr->getType()->isPointerType() ||
+ !Int.get()->getType()->isIntegerType())
+ return false;
+
+ Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
+ Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
+
+ S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch)
+ << Expr1->getType() << Expr2->getType()
+ << Expr1->getSourceRange() << Expr2->getSourceRange();
+ Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
+ CK_IntegralToPointer);
+ return true;
+}
+
+/// \brief Simple conversion between integer and floating point types.
+///
+/// Used when handling the OpenCL conditional operator where the
+/// condition is a vector while the other operands are scalar.
+///
+/// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
+/// types are either integer or floating type. Between the two
+/// operands, the type with the higher rank is defined as the "result
+/// type". The other operand needs to be promoted to the same type. No
+/// other type promotion is allowed. We cannot use
+/// UsualArithmeticConversions() for this purpose, since it always
+/// promotes promotable types.
+static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS,
+ ExprResult &RHS,
+ SourceLocation QuestionLoc) {
+ LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get());
+ if (LHS.isInvalid())
+ return QualType();
+ RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
+ if (RHS.isInvalid())
+ return QualType();
+
+ // For conversion purposes, we ignore any qualifiers.
+ // For example, "const float" and "float" are equivalent.
+ QualType LHSType =
+ S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
+ QualType RHSType =
+ S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
+
+ if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) {
+ S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
+ << LHSType << LHS.get()->getSourceRange();
+ return QualType();
+ }
+
+ if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) {
+ S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
+ << RHSType << RHS.get()->getSourceRange();
+ return QualType();
+ }
+
+ // If both types are identical, no conversion is needed.
+ if (LHSType == RHSType)
+ return LHSType;
+
+ // Now handle "real" floating types (i.e. float, double, long double).
+ if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
+ return handleFloatConversion(S, LHS, RHS, LHSType, RHSType,
+ /*IsCompAssign = */ false);
+
+ // Finally, we have two differing integer types.
+ return handleIntegerConversion<doIntegralCast, doIntegralCast>
+ (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false);
+}
+
+/// \brief Convert scalar operands to a vector that matches the
+/// condition in length.
+///
+/// Used when handling the OpenCL conditional operator where the
+/// condition is a vector while the other operands are scalar.
+///
+/// We first compute the "result type" for the scalar operands
+/// according to OpenCL v1.1 s6.3.i. Both operands are then converted
+/// into a vector of that type where the length matches the condition
+/// vector type. s6.11.6 requires that the element types of the result
+/// and the condition must have the same number of bits.
+static QualType
+OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS,
+ QualType CondTy, SourceLocation QuestionLoc) {
+ QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc);
+ if (ResTy.isNull()) return QualType();
+
+ const VectorType *CV = CondTy->getAs<VectorType>();
+ assert(CV);
+
+ // Determine the vector result type
+ unsigned NumElements = CV->getNumElements();
+ QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements);
+
+ // Ensure that all types have the same number of bits
+ if (S.Context.getTypeSize(CV->getElementType())
+ != S.Context.getTypeSize(ResTy)) {
+ // Since VectorTy is created internally, it does not pretty print
+ // with an OpenCL name. Instead, we just print a description.
+ std::string EleTyName = ResTy.getUnqualifiedType().getAsString();
+ SmallString<64> Str;
+ llvm::raw_svector_ostream OS(Str);
+ OS << "(vector of " << NumElements << " '" << EleTyName << "' values)";
+ S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
+ << CondTy << OS.str();
+ return QualType();
+ }
+
+ // Convert operands to the vector result type
+ LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat);
+ RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat);
+
+ return VectorTy;
+}
+
+/// \brief Return false if this is a valid OpenCL condition vector
+static bool checkOpenCLConditionVector(Sema &S, Expr *Cond,
+ SourceLocation QuestionLoc) {
+ // OpenCL v1.1 s6.11.6 says the elements of the vector must be of
+ // integral type.
+ const VectorType *CondTy = Cond->getType()->getAs<VectorType>();
+ assert(CondTy);
+ QualType EleTy = CondTy->getElementType();
+ if (EleTy->isIntegerType()) return false;
+
+ S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
+ << Cond->getType() << Cond->getSourceRange();
+ return true;
+}
+
+/// \brief Return false if the vector condition type and the vector
+/// result type are compatible.
+///
+/// OpenCL v1.1 s6.11.6 requires that both vector types have the same
+/// number of elements, and their element types have the same number
+/// of bits.
+static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy,
+ SourceLocation QuestionLoc) {
+ const VectorType *CV = CondTy->getAs<VectorType>();
+ const VectorType *RV = VecResTy->getAs<VectorType>();
+ assert(CV && RV);
+
+ if (CV->getNumElements() != RV->getNumElements()) {
+ S.Diag(QuestionLoc, diag::err_conditional_vector_size)
+ << CondTy << VecResTy;
+ return true;
+ }
+
+ QualType CVE = CV->getElementType();
+ QualType RVE = RV->getElementType();
+
+ if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) {
+ S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
+ << CondTy << VecResTy;
+ return true;
+ }
+
+ return false;
+}
+
+/// \brief Return the resulting type for the conditional operator in
+/// OpenCL (aka "ternary selection operator", OpenCL v1.1
+/// s6.3.i) when the condition is a vector type.
+static QualType
+OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond,
+ ExprResult &LHS, ExprResult &RHS,
+ SourceLocation QuestionLoc) {
+ Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get());
+ if (Cond.isInvalid())
+ return QualType();
+ QualType CondTy = Cond.get()->getType();
+
+ if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc))
+ return QualType();
+
+ // If either operand is a vector then find the vector type of the
+ // result as specified in OpenCL v1.1 s6.3.i.
+ if (LHS.get()->getType()->isVectorType() ||
+ RHS.get()->getType()->isVectorType()) {
+ QualType VecResTy = S.CheckVectorOperands(LHS, RHS, QuestionLoc,
+ /*isCompAssign*/false);
+ if (VecResTy.isNull()) return QualType();
+ // The result type must match the condition type as specified in
+ // OpenCL v1.1 s6.11.6.
+ if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc))
+ return QualType();
+ return VecResTy;
+ }
+
+ // Both operands are scalar.
+ return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc);
+}
+
+/// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
+/// In that case, LHS = cond.
+/// C99 6.5.15
+QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
+ ExprResult &RHS, ExprValueKind &VK,
+ ExprObjectKind &OK,
+ SourceLocation QuestionLoc) {
+
+ ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
+ if (!LHSResult.isUsable()) return QualType();
+ LHS = LHSResult;
+
+ ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
+ if (!RHSResult.isUsable()) return QualType();
+ RHS = RHSResult;
+
+ // C++ is sufficiently different to merit its own checker.
+ if (getLangOpts().CPlusPlus)
+ return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
+
+ VK = VK_RValue;
+ OK = OK_Ordinary;
+
+ // The OpenCL operator with a vector condition is sufficiently
+ // different to merit its own checker.
+ if (getLangOpts().OpenCL && Cond.get()->getType()->isVectorType())
+ return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc);
+
+ // First, check the condition.
+ Cond = UsualUnaryConversions(Cond.get());
+ if (Cond.isInvalid())
+ return QualType();
+ if (checkCondition(*this, Cond.get(), QuestionLoc))
+ return QualType();
+
+ // Now check the two expressions.
+ if (LHS.get()->getType()->isVectorType() ||
+ RHS.get()->getType()->isVectorType())
+ return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
+
+ QualType ResTy = UsualArithmeticConversions(LHS, RHS);
+ if (LHS.isInvalid() || RHS.isInvalid())
+ return QualType();
+
+ QualType LHSTy = LHS.get()->getType();
+ QualType RHSTy = RHS.get()->getType();
+
+ // If both operands have arithmetic type, do the usual arithmetic conversions
+ // to find a common type: C99 6.5.15p3,5.
+ if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
+ LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
+ RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
+
+ return ResTy;
+ }
+
+ // If both operands are the same structure or union type, the result is that
+ // type.
+ if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3
+ if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
+ if (LHSRT->getDecl() == RHSRT->getDecl())
+ // "If both the operands have structure or union type, the result has
+ // that type." This implies that CV qualifiers are dropped.
+ return LHSTy.getUnqualifiedType();
+ // FIXME: Type of conditional expression must be complete in C mode.
+ }
+
+ // C99 6.5.15p5: "If both operands have void type, the result has void type."
+ // The following || allows only one side to be void (a GCC-ism).
+ if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
+ return checkConditionalVoidType(*this, LHS, RHS);
+ }
+
+ // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
+ // the type of the other operand."
+ if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
+ if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
+
+ // All objective-c pointer type analysis is done here.
+ QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
+ QuestionLoc);
+ if (LHS.isInvalid() || RHS.isInvalid())
+ return QualType();
+ if (!compositeType.isNull())
+ return compositeType;
+
+
+ // Handle block pointer types.
+ if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
+ return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
+ QuestionLoc);
+
+ // Check constraints for C object pointers types (C99 6.5.15p3,6).
+ if (LHSTy->isPointerType() && RHSTy->isPointerType())
+ return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
+ QuestionLoc);
+
+ // GCC compatibility: soften pointer/integer mismatch. Note that
+ // null pointers have been filtered out by this point.
+ if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
+ /*isIntFirstExpr=*/true))
+ return RHSTy;
+ if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
+ /*isIntFirstExpr=*/false))
+ return LHSTy;
+
+ // Emit a better diagnostic if one of the expressions is a null pointer
+ // constant and the other is not a pointer type. In this case, the user most
+ // likely forgot to take the address of the other expression.
+ if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
+ return QualType();
+
+ // Otherwise, the operands are not compatible.
+ Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
+ << LHSTy << RHSTy << LHS.get()->getSourceRange()
+ << RHS.get()->getSourceRange();
+ return QualType();
+}
+
+/// FindCompositeObjCPointerType - Helper method to find composite type of
+/// two objective-c pointer types of the two input expressions.
+QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
+ SourceLocation QuestionLoc) {
+ QualType LHSTy = LHS.get()->getType();
+ QualType RHSTy = RHS.get()->getType();
+
+ // Handle things like Class and struct objc_class*. Here we case the result
+ // to the pseudo-builtin, because that will be implicitly cast back to the
+ // redefinition type if an attempt is made to access its fields.
+ if (LHSTy->isObjCClassType() &&
+ (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
+ RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
+ return LHSTy;
+ }
+ if (RHSTy->isObjCClassType() &&
+ (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
+ LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
+ return RHSTy;
+ }
+ // And the same for struct objc_object* / id
+ if (LHSTy->isObjCIdType() &&
+ (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
+ RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
+ return LHSTy;
+ }
+ if (RHSTy->isObjCIdType() &&
+ (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
+ LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
+ return RHSTy;
+ }
+ // And the same for struct objc_selector* / SEL
+ if (Context.isObjCSelType(LHSTy) &&
+ (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
+ RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast);
+ return LHSTy;
+ }
+ if (Context.isObjCSelType(RHSTy) &&
+ (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
+ LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast);
+ return RHSTy;
+ }
+ // Check constraints for Objective-C object pointers types.
+ if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
+
+ if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
+ // Two identical object pointer types are always compatible.
+ return LHSTy;
+ }
+ const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
+ const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
+ QualType compositeType = LHSTy;
+
+ // If both operands are interfaces and either operand can be
+ // assigned to the other, use that type as the composite
+ // type. This allows
+ // xxx ? (A*) a : (B*) b
+ // where B is a subclass of A.
+ //
+ // Additionally, as for assignment, if either type is 'id'
+ // allow silent coercion. Finally, if the types are
+ // incompatible then make sure to use 'id' as the composite
+ // type so the result is acceptable for sending messages to.
+
+ // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
+ // It could return the composite type.
+ if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
+ compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
+ } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
+ compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
+ } else if ((LHSTy->isObjCQualifiedIdType() ||
+ RHSTy->isObjCQualifiedIdType()) &&
+ Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
+ // Need to handle "id<xx>" explicitly.
+ // GCC allows qualified id and any Objective-C type to devolve to
+ // id. Currently localizing to here until clear this should be
+ // part of ObjCQualifiedIdTypesAreCompatible.
+ compositeType = Context.getObjCIdType();
+ } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
+ compositeType = Context.getObjCIdType();
+ } else if (!(compositeType =
+ Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
+ ;
+ else {
+ Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
+ << LHSTy << RHSTy
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ QualType incompatTy = Context.getObjCIdType();
+ LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
+ RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
+ return incompatTy;
+ }
+ // The object pointer types are compatible.
+ LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast);
+ RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast);
+ return compositeType;
+ }
+ // Check Objective-C object pointer types and 'void *'
+ if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
+ if (getLangOpts().ObjCAutoRefCount) {
+ // ARC forbids the implicit conversion of object pointers to 'void *',
+ // so these types are not compatible.
+ Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ LHS = RHS = true;
+ return QualType();
+ }
+ QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
+ QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
+ QualType destPointee
+ = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
+ QualType destType = Context.getPointerType(destPointee);
+ // Add qualifiers if necessary.
+ LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp);
+ // Promote to void*.
+ RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast);
+ return destType;
+ }
+ if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
+ if (getLangOpts().ObjCAutoRefCount) {
+ // ARC forbids the implicit conversion of object pointers to 'void *',
+ // so these types are not compatible.
+ Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ LHS = RHS = true;
+ return QualType();
+ }
+ QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
+ QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
+ QualType destPointee
+ = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
+ QualType destType = Context.getPointerType(destPointee);
+ // Add qualifiers if necessary.
+ RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp);
+ // Promote to void*.
+ LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast);
+ return destType;
+ }
+ return QualType();
+}
+
+/// SuggestParentheses - Emit a note with a fixit hint that wraps
+/// ParenRange in parentheses.
+static void SuggestParentheses(Sema &Self, SourceLocation Loc,
+ const PartialDiagnostic &Note,
+ SourceRange ParenRange) {
+ SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
+ if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
+ EndLoc.isValid()) {
+ Self.Diag(Loc, Note)
+ << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
+ << FixItHint::CreateInsertion(EndLoc, ")");
+ } else {
+ // We can't display the parentheses, so just show the bare note.
+ Self.Diag(Loc, Note) << ParenRange;
+ }
+}
+
+static bool IsArithmeticOp(BinaryOperatorKind Opc) {
+ return Opc >= BO_Mul && Opc <= BO_Shr;
+}
+
+/// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
+/// expression, either using a built-in or overloaded operator,
+/// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
+/// expression.
+static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
+ Expr **RHSExprs) {
+ // Don't strip parenthesis: we should not warn if E is in parenthesis.
+ E = E->IgnoreImpCasts();
+ E = E->IgnoreConversionOperator();
+ E = E->IgnoreImpCasts();
+
+ // Built-in binary operator.
+ if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
+ if (IsArithmeticOp(OP->getOpcode())) {
+ *Opcode = OP->getOpcode();
+ *RHSExprs = OP->getRHS();
+ return true;
+ }
+ }
+
+ // Overloaded operator.
+ if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
+ if (Call->getNumArgs() != 2)
+ return false;
+
+ // Make sure this is really a binary operator that is safe to pass into
+ // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
+ OverloadedOperatorKind OO = Call->getOperator();
+ if (OO < OO_Plus || OO > OO_Arrow ||
+ OO == OO_PlusPlus || OO == OO_MinusMinus)
+ return false;
+
+ BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
+ if (IsArithmeticOp(OpKind)) {
+ *Opcode = OpKind;
+ *RHSExprs = Call->getArg(1);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+static bool IsLogicOp(BinaryOperatorKind Opc) {
+ return (Opc >= BO_LT && Opc <= BO_NE) || (Opc >= BO_LAnd && Opc <= BO_LOr);
+}
+
+/// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
+/// or is a logical expression such as (x==y) which has int type, but is
+/// commonly interpreted as boolean.
+static bool ExprLooksBoolean(Expr *E) {
+ E = E->IgnoreParenImpCasts();
+
+ if (E->getType()->isBooleanType())
+ return true;
+ if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
+ return IsLogicOp(OP->getOpcode());
+ if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
+ return OP->getOpcode() == UO_LNot;
+ if (E->getType()->isPointerType())
+ return true;
+
+ return false;
+}
+
+/// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
+/// and binary operator are mixed in a way that suggests the programmer assumed
+/// the conditional operator has higher precedence, for example:
+/// "int x = a + someBinaryCondition ? 1 : 2".
+static void DiagnoseConditionalPrecedence(Sema &Self,
+ SourceLocation OpLoc,
+ Expr *Condition,
+ Expr *LHSExpr,
+ Expr *RHSExpr) {
+ BinaryOperatorKind CondOpcode;
+ Expr *CondRHS;
+
+ if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
+ return;
+ if (!ExprLooksBoolean(CondRHS))
+ return;
+
+ // The condition is an arithmetic binary expression, with a right-
+ // hand side that looks boolean, so warn.
+
+ Self.Diag(OpLoc, diag::warn_precedence_conditional)
+ << Condition->getSourceRange()
+ << BinaryOperator::getOpcodeStr(CondOpcode);
+
+ SuggestParentheses(Self, OpLoc,
+ Self.PDiag(diag::note_precedence_silence)
+ << BinaryOperator::getOpcodeStr(CondOpcode),
+ SourceRange(Condition->getLocStart(), Condition->getLocEnd()));
+
+ SuggestParentheses(Self, OpLoc,
+ Self.PDiag(diag::note_precedence_conditional_first),
+ SourceRange(CondRHS->getLocStart(), RHSExpr->getLocEnd()));
+}
+
+/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
+/// in the case of a the GNU conditional expr extension.
+ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
+ SourceLocation ColonLoc,
+ Expr *CondExpr, Expr *LHSExpr,
+ Expr *RHSExpr) {
+ if (!getLangOpts().CPlusPlus) {
+ // C cannot handle TypoExpr nodes in the condition because it
+ // doesn't handle dependent types properly, so make sure any TypoExprs have
+ // been dealt with before checking the operands.
+ ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr);
+ if (!CondResult.isUsable()) return ExprError();
+ CondExpr = CondResult.get();
+ }
+
+ // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
+ // was the condition.
+ OpaqueValueExpr *opaqueValue = nullptr;
+ Expr *commonExpr = nullptr;
+ if (!LHSExpr) {
+ commonExpr = CondExpr;
+ // Lower out placeholder types first. This is important so that we don't
+ // try to capture a placeholder. This happens in few cases in C++; such
+ // as Objective-C++'s dictionary subscripting syntax.
+ if (commonExpr->hasPlaceholderType()) {
+ ExprResult result = CheckPlaceholderExpr(commonExpr);
+ if (!result.isUsable()) return ExprError();
+ commonExpr = result.get();
+ }
+ // We usually want to apply unary conversions *before* saving, except
+ // in the special case of a C++ l-value conditional.
+ if (!(getLangOpts().CPlusPlus
+ && !commonExpr->isTypeDependent()
+ && commonExpr->getValueKind() == RHSExpr->getValueKind()
+ && commonExpr->isGLValue()
+ && commonExpr->isOrdinaryOrBitFieldObject()
+ && RHSExpr->isOrdinaryOrBitFieldObject()
+ && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
+ ExprResult commonRes = UsualUnaryConversions(commonExpr);
+ if (commonRes.isInvalid())
+ return ExprError();
+ commonExpr = commonRes.get();
+ }
+
+ opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
+ commonExpr->getType(),
+ commonExpr->getValueKind(),
+ commonExpr->getObjectKind(),
+ commonExpr);
+ LHSExpr = CondExpr = opaqueValue;
+ }
+
+ ExprValueKind VK = VK_RValue;
+ ExprObjectKind OK = OK_Ordinary;
+ ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
+ QualType result = CheckConditionalOperands(Cond, LHS, RHS,
+ VK, OK, QuestionLoc);
+ if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
+ RHS.isInvalid())
+ return ExprError();
+
+ DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
+ RHS.get());
+
+ CheckBoolLikeConversion(Cond.get(), QuestionLoc);
+
+ if (!commonExpr)
+ return new (Context)
+ ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
+ RHS.get(), result, VK, OK);
+
+ return new (Context) BinaryConditionalOperator(
+ commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
+ ColonLoc, result, VK, OK);
+}
+
+// checkPointerTypesForAssignment - This is a very tricky routine (despite
+// being closely modeled after the C99 spec:-). The odd characteristic of this
+// routine is it effectively iqnores the qualifiers on the top level pointee.
+// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
+// FIXME: add a couple examples in this comment.
+static Sema::AssignConvertType
+checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
+ assert(LHSType.isCanonical() && "LHS not canonicalized!");
+ assert(RHSType.isCanonical() && "RHS not canonicalized!");
+
+ // get the "pointed to" type (ignoring qualifiers at the top level)
+ const Type *lhptee, *rhptee;
+ Qualifiers lhq, rhq;
+ std::tie(lhptee, lhq) =
+ cast<PointerType>(LHSType)->getPointeeType().split().asPair();
+ std::tie(rhptee, rhq) =
+ cast<PointerType>(RHSType)->getPointeeType().split().asPair();
+
+ Sema::AssignConvertType ConvTy = Sema::Compatible;
+
+ // C99 6.5.16.1p1: This following citation is common to constraints
+ // 3 & 4 (below). ...and the type *pointed to* by the left has all the
+ // qualifiers of the type *pointed to* by the right;
+
+ // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
+ if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
+ lhq.compatiblyIncludesObjCLifetime(rhq)) {
+ // Ignore lifetime for further calculation.
+ lhq.removeObjCLifetime();
+ rhq.removeObjCLifetime();
+ }
+
+ if (!lhq.compatiblyIncludes(rhq)) {
+ // Treat address-space mismatches as fatal. TODO: address subspaces
+ if (!lhq.isAddressSpaceSupersetOf(rhq))
+ ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
+
+ // It's okay to add or remove GC or lifetime qualifiers when converting to
+ // and from void*.
+ else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
+ .compatiblyIncludes(
+ rhq.withoutObjCGCAttr().withoutObjCLifetime())
+ && (lhptee->isVoidType() || rhptee->isVoidType()))
+ ; // keep old
+
+ // Treat lifetime mismatches as fatal.
+ else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
+ ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
+
+ // For GCC compatibility, other qualifier mismatches are treated
+ // as still compatible in C.
+ else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
+ }
+
+ // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
+ // incomplete type and the other is a pointer to a qualified or unqualified
+ // version of void...
+ if (lhptee->isVoidType()) {
+ if (rhptee->isIncompleteOrObjectType())
+ return ConvTy;
+
+ // As an extension, we allow cast to/from void* to function pointer.
+ assert(rhptee->isFunctionType());
+ return Sema::FunctionVoidPointer;
+ }
+
+ if (rhptee->isVoidType()) {
+ if (lhptee->isIncompleteOrObjectType())
+ return ConvTy;
+
+ // As an extension, we allow cast to/from void* to function pointer.
+ assert(lhptee->isFunctionType());
+ return Sema::FunctionVoidPointer;
+ }
+
+ // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
+ // unqualified versions of compatible types, ...
+ QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
+ if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
+ // Check if the pointee types are compatible ignoring the sign.
+ // We explicitly check for char so that we catch "char" vs
+ // "unsigned char" on systems where "char" is unsigned.
+ if (lhptee->isCharType())
+ ltrans = S.Context.UnsignedCharTy;
+ else if (lhptee->hasSignedIntegerRepresentation())
+ ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
+
+ if (rhptee->isCharType())
+ rtrans = S.Context.UnsignedCharTy;
+ else if (rhptee->hasSignedIntegerRepresentation())
+ rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
+
+ if (ltrans == rtrans) {
+ // Types are compatible ignoring the sign. Qualifier incompatibility
+ // takes priority over sign incompatibility because the sign
+ // warning can be disabled.
+ if (ConvTy != Sema::Compatible)
+ return ConvTy;
+
+ return Sema::IncompatiblePointerSign;
+ }
+
+ // If we are a multi-level pointer, it's possible that our issue is simply
+ // one of qualification - e.g. char ** -> const char ** is not allowed. If
+ // the eventual target type is the same and the pointers have the same
+ // level of indirection, this must be the issue.
+ if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
+ do {
+ lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
+ rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
+ } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
+
+ if (lhptee == rhptee)
+ return Sema::IncompatibleNestedPointerQualifiers;
+ }
+
+ // General pointer incompatibility takes priority over qualifiers.
+ return Sema::IncompatiblePointer;
+ }
+ if (!S.getLangOpts().CPlusPlus &&
+ S.IsNoReturnConversion(ltrans, rtrans, ltrans))
+ return Sema::IncompatiblePointer;
+ return ConvTy;
+}
+
+/// checkBlockPointerTypesForAssignment - This routine determines whether two
+/// block pointer types are compatible or whether a block and normal pointer
+/// are compatible. It is more restrict than comparing two function pointer
+// types.
+static Sema::AssignConvertType
+checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
+ QualType RHSType) {
+ assert(LHSType.isCanonical() && "LHS not canonicalized!");
+ assert(RHSType.isCanonical() && "RHS not canonicalized!");
+
+ QualType lhptee, rhptee;
+
+ // get the "pointed to" type (ignoring qualifiers at the top level)
+ lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
+ rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
+
+ // In C++, the types have to match exactly.
+ if (S.getLangOpts().CPlusPlus)
+ return Sema::IncompatibleBlockPointer;
+
+ Sema::AssignConvertType ConvTy = Sema::Compatible;
+
+ // For blocks we enforce that qualifiers are identical.
+ if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
+ ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
+
+ if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
+ return Sema::IncompatibleBlockPointer;
+
+ return ConvTy;
+}
+
+/// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
+/// for assignment compatibility.
+static Sema::AssignConvertType
+checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
+ QualType RHSType) {
+ assert(LHSType.isCanonical() && "LHS was not canonicalized!");
+ assert(RHSType.isCanonical() && "RHS was not canonicalized!");
+
+ if (LHSType->isObjCBuiltinType()) {
+ // Class is not compatible with ObjC object pointers.
+ if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
+ !RHSType->isObjCQualifiedClassType())
+ return Sema::IncompatiblePointer;
+ return Sema::Compatible;
+ }
+ if (RHSType->isObjCBuiltinType()) {
+ if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
+ !LHSType->isObjCQualifiedClassType())
+ return Sema::IncompatiblePointer;
+ return Sema::Compatible;
+ }
+ QualType lhptee = LHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
+ QualType rhptee = RHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
+
+ if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
+ // make an exception for id<P>
+ !LHSType->isObjCQualifiedIdType())
+ return Sema::CompatiblePointerDiscardsQualifiers;
+
+ if (S.Context.typesAreCompatible(LHSType, RHSType))
+ return Sema::Compatible;
+ if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
+ return Sema::IncompatibleObjCQualifiedId;
+ return Sema::IncompatiblePointer;
+}
+
+Sema::AssignConvertType
+Sema::CheckAssignmentConstraints(SourceLocation Loc,
+ QualType LHSType, QualType RHSType) {
+ // Fake up an opaque expression. We don't actually care about what
+ // cast operations are required, so if CheckAssignmentConstraints
+ // adds casts to this they'll be wasted, but fortunately that doesn't
+ // usually happen on valid code.
+ OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
+ ExprResult RHSPtr = &RHSExpr;
+ CastKind K = CK_Invalid;
+
+ return CheckAssignmentConstraints(LHSType, RHSPtr, K);
+}
+
+/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
+/// has code to accommodate several GCC extensions when type checking
+/// pointers. Here are some objectionable examples that GCC considers warnings:
+///
+/// int a, *pint;
+/// short *pshort;
+/// struct foo *pfoo;
+///
+/// pint = pshort; // warning: assignment from incompatible pointer type
+/// a = pint; // warning: assignment makes integer from pointer without a cast
+/// pint = a; // warning: assignment makes pointer from integer without a cast
+/// pint = pfoo; // warning: assignment from incompatible pointer type
+///
+/// As a result, the code for dealing with pointers is more complex than the
+/// C99 spec dictates.
+///
+/// Sets 'Kind' for any result kind except Incompatible.
+Sema::AssignConvertType
+Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
+ CastKind &Kind) {
+ QualType RHSType = RHS.get()->getType();
+ QualType OrigLHSType = LHSType;
+
+ // Get canonical types. We're not formatting these types, just comparing
+ // them.
+ LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
+ RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
+
+ // Common case: no conversion required.
+ if (LHSType == RHSType) {
+ Kind = CK_NoOp;
+ return Compatible;
+ }
+
+ // If we have an atomic type, try a non-atomic assignment, then just add an
+ // atomic qualification step.
+ if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
+ Sema::AssignConvertType result =
+ CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
+ if (result != Compatible)
+ return result;
+ if (Kind != CK_NoOp)
+ RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind);
+ Kind = CK_NonAtomicToAtomic;
+ return Compatible;
+ }
+
+ // If the left-hand side is a reference type, then we are in a
+ // (rare!) case where we've allowed the use of references in C,
+ // e.g., as a parameter type in a built-in function. In this case,
+ // just make sure that the type referenced is compatible with the
+ // right-hand side type. The caller is responsible for adjusting
+ // LHSType so that the resulting expression does not have reference
+ // type.
+ if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
+ if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
+ Kind = CK_LValueBitCast;
+ return Compatible;
+ }
+ return Incompatible;
+ }
+
+ // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
+ // to the same ExtVector type.
+ if (LHSType->isExtVectorType()) {
+ if (RHSType->isExtVectorType())
+ return Incompatible;
+ if (RHSType->isArithmeticType()) {
+ // CK_VectorSplat does T -> vector T, so first cast to the
+ // element type.
+ QualType elType = cast<ExtVectorType>(LHSType)->getElementType();
+ if (elType != RHSType) {
+ Kind = PrepareScalarCast(RHS, elType);
+ RHS = ImpCastExprToType(RHS.get(), elType, Kind);
+ }
+ Kind = CK_VectorSplat;
+ return Compatible;
+ }
+ }
+
+ // Conversions to or from vector type.
+ if (LHSType->isVectorType() || RHSType->isVectorType()) {
+ if (LHSType->isVectorType() && RHSType->isVectorType()) {
+ // Allow assignments of an AltiVec vector type to an equivalent GCC
+ // vector type and vice versa
+ if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
+ Kind = CK_BitCast;
+ return Compatible;
+ }
+
+ // If we are allowing lax vector conversions, and LHS and RHS are both
+ // vectors, the total size only needs to be the same. This is a bitcast;
+ // no bits are changed but the result type is different.
+ if (isLaxVectorConversion(RHSType, LHSType)) {
+ Kind = CK_BitCast;
+ return IncompatibleVectors;
+ }
+ }
+ return Incompatible;
+ }
+
+ // Arithmetic conversions.
+ if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
+ !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
+ Kind = PrepareScalarCast(RHS, LHSType);
+ return Compatible;
+ }
+
+ // Conversions to normal pointers.
+ if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
+ // U* -> T*
+ if (isa<PointerType>(RHSType)) {
+ unsigned AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
+ unsigned AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
+ Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
+ return checkPointerTypesForAssignment(*this, LHSType, RHSType);
+ }
+
+ // int -> T*
+ if (RHSType->isIntegerType()) {
+ Kind = CK_IntegralToPointer; // FIXME: null?
+ return IntToPointer;
+ }
+
+ // C pointers are not compatible with ObjC object pointers,
+ // with two exceptions:
+ if (isa<ObjCObjectPointerType>(RHSType)) {
+ // - conversions to void*
+ if (LHSPointer->getPointeeType()->isVoidType()) {
+ Kind = CK_BitCast;
+ return Compatible;
+ }
+
+ // - conversions from 'Class' to the redefinition type
+ if (RHSType->isObjCClassType() &&
+ Context.hasSameType(LHSType,
+ Context.getObjCClassRedefinitionType())) {
+ Kind = CK_BitCast;
+ return Compatible;
+ }
+
+ Kind = CK_BitCast;
+ return IncompatiblePointer;
+ }
+
+ // U^ -> void*
+ if (RHSType->getAs<BlockPointerType>()) {
+ if (LHSPointer->getPointeeType()->isVoidType()) {
+ Kind = CK_BitCast;
+ return Compatible;
+ }
+ }
+
+ return Incompatible;
+ }
+
+ // Conversions to block pointers.
+ if (isa<BlockPointerType>(LHSType)) {
+ // U^ -> T^
+ if (RHSType->isBlockPointerType()) {
+ Kind = CK_BitCast;
+ return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
+ }
+
+ // int or null -> T^
+ if (RHSType->isIntegerType()) {
+ Kind = CK_IntegralToPointer; // FIXME: null
+ return IntToBlockPointer;
+ }
+
+ // id -> T^
+ if (getLangOpts().ObjC1 && RHSType->isObjCIdType()) {
+ Kind = CK_AnyPointerToBlockPointerCast;
+ return Compatible;
+ }
+
+ // void* -> T^
+ if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
+ if (RHSPT->getPointeeType()->isVoidType()) {
+ Kind = CK_AnyPointerToBlockPointerCast;
+ return Compatible;
+ }
+
+ return Incompatible;
+ }
+
+ // Conversions to Objective-C pointers.
+ if (isa<ObjCObjectPointerType>(LHSType)) {
+ // A* -> B*
+ if (RHSType->isObjCObjectPointerType()) {
+ Kind = CK_BitCast;
+ Sema::AssignConvertType result =
+ checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
+ if (getLangOpts().ObjCAutoRefCount &&
+ result == Compatible &&
+ !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
+ result = IncompatibleObjCWeakRef;
+ return result;
+ }
+
+ // int or null -> A*
+ if (RHSType->isIntegerType()) {
+ Kind = CK_IntegralToPointer; // FIXME: null
+ return IntToPointer;
+ }
+
+ // In general, C pointers are not compatible with ObjC object pointers,
+ // with two exceptions:
+ if (isa<PointerType>(RHSType)) {
+ Kind = CK_CPointerToObjCPointerCast;
+
+ // - conversions from 'void*'
+ if (RHSType->isVoidPointerType()) {
+ return Compatible;
+ }
+
+ // - conversions to 'Class' from its redefinition type
+ if (LHSType->isObjCClassType() &&
+ Context.hasSameType(RHSType,
+ Context.getObjCClassRedefinitionType())) {
+ return Compatible;
+ }
+
+ return IncompatiblePointer;
+ }
+
+ // Only under strict condition T^ is compatible with an Objective-C pointer.
+ if (RHSType->isBlockPointerType() &&
+ isObjCPtrBlockCompatible(*this, Context, LHSType)) {
+ maybeExtendBlockObject(*this, RHS);
+ Kind = CK_BlockPointerToObjCPointerCast;
+ return Compatible;
+ }
+
+ return Incompatible;
+ }
+
+ // Conversions from pointers that are not covered by the above.
+ if (isa<PointerType>(RHSType)) {
+ // T* -> _Bool
+ if (LHSType == Context.BoolTy) {
+ Kind = CK_PointerToBoolean;
+ return Compatible;
+ }
+
+ // T* -> int
+ if (LHSType->isIntegerType()) {
+ Kind = CK_PointerToIntegral;
+ return PointerToInt;
+ }
+
+ return Incompatible;
+ }
+
+ // Conversions from Objective-C pointers that are not covered by the above.
+ if (isa<ObjCObjectPointerType>(RHSType)) {
+ // T* -> _Bool
+ if (LHSType == Context.BoolTy) {
+ Kind = CK_PointerToBoolean;
+ return Compatible;
+ }
+
+ // T* -> int
+ if (LHSType->isIntegerType()) {
+ Kind = CK_PointerToIntegral;
+ return PointerToInt;
+ }
+
+ return Incompatible;
+ }
+
+ // struct A -> struct B
+ if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
+ if (Context.typesAreCompatible(LHSType, RHSType)) {
+ Kind = CK_NoOp;
+ return Compatible;
+ }
+ }
+
+ return Incompatible;
+}
+
+/// \brief Constructs a transparent union from an expression that is
+/// used to initialize the transparent union.
+static void ConstructTransparentUnion(Sema &S, ASTContext &C,
+ ExprResult &EResult, QualType UnionType,
+ FieldDecl *Field) {
+ // Build an initializer list that designates the appropriate member
+ // of the transparent union.
+ Expr *E = EResult.get();
+ InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
+ E, SourceLocation());
+ Initializer->setType(UnionType);
+ Initializer->setInitializedFieldInUnion(Field);
+
+ // Build a compound literal constructing a value of the transparent
+ // union type from this initializer list.
+ TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
+ EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
+ VK_RValue, Initializer, false);
+}
+
+Sema::AssignConvertType
+Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
+ ExprResult &RHS) {
+ QualType RHSType = RHS.get()->getType();
+
+ // If the ArgType is a Union type, we want to handle a potential
+ // transparent_union GCC extension.
+ const RecordType *UT = ArgType->getAsUnionType();
+ if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
+ return Incompatible;
+
+ // The field to initialize within the transparent union.
+ RecordDecl *UD = UT->getDecl();
+ FieldDecl *InitField = nullptr;
+ // It's compatible if the expression matches any of the fields.
+ for (auto *it : UD->fields()) {
+ if (it->getType()->isPointerType()) {
+ // If the transparent union contains a pointer type, we allow:
+ // 1) void pointer
+ // 2) null pointer constant
+ if (RHSType->isPointerType())
+ if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
+ RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
+ InitField = it;
+ break;
+ }
+
+ if (RHS.get()->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNull)) {
+ RHS = ImpCastExprToType(RHS.get(), it->getType(),
+ CK_NullToPointer);
+ InitField = it;
+ break;
+ }
+ }
+
+ CastKind Kind = CK_Invalid;
+ if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
+ == Compatible) {
+ RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
+ InitField = it;
+ break;
+ }
+ }
+
+ if (!InitField)
+ return Incompatible;
+
+ ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
+ return Compatible;
+}
+
+Sema::AssignConvertType
+Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &RHS,
+ bool Diagnose,
+ bool DiagnoseCFAudited) {
+ if (getLangOpts().CPlusPlus) {
+ if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
+ // C++ 5.17p3: If the left operand is not of class type, the
+ // expression is implicitly converted (C++ 4) to the
+ // cv-unqualified type of the left operand.
+ ExprResult Res;
+ if (Diagnose) {
+ Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
+ AA_Assigning);
+ } else {
+ ImplicitConversionSequence ICS =
+ TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
+ /*SuppressUserConversions=*/false,
+ /*AllowExplicit=*/false,
+ /*InOverloadResolution=*/false,
+ /*CStyle=*/false,
+ /*AllowObjCWritebackConversion=*/false);
+ if (ICS.isFailure())
+ return Incompatible;
+ Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
+ ICS, AA_Assigning);
+ }
+ if (Res.isInvalid())
+ return Incompatible;
+ Sema::AssignConvertType result = Compatible;
+ if (getLangOpts().ObjCAutoRefCount &&
+ !CheckObjCARCUnavailableWeakConversion(LHSType,
+ RHS.get()->getType()))
+ result = IncompatibleObjCWeakRef;
+ RHS = Res;
+ return result;
+ }
+
+ // FIXME: Currently, we fall through and treat C++ classes like C
+ // structures.
+ // FIXME: We also fall through for atomics; not sure what should
+ // happen there, though.
+ }
+
+ // C99 6.5.16.1p1: the left operand is a pointer and the right is
+ // a null pointer constant.
+ if ((LHSType->isPointerType() || LHSType->isObjCObjectPointerType() ||
+ LHSType->isBlockPointerType()) &&
+ RHS.get()->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNull)) {
+ CastKind Kind;
+ CXXCastPath Path;
+ CheckPointerConversion(RHS.get(), LHSType, Kind, Path, false);
+ RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_RValue, &Path);
+ return Compatible;
+ }
+
+ // This check seems unnatural, however it is necessary to ensure the proper
+ // conversion of functions/arrays. If the conversion were done for all
+ // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
+ // expressions that suppress this implicit conversion (&, sizeof).
+ //
+ // Suppress this for references: C++ 8.5.3p5.
+ if (!LHSType->isReferenceType()) {
+ RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
+ if (RHS.isInvalid())
+ return Incompatible;
+ }
+
+ Expr *PRE = RHS.get()->IgnoreParenCasts();
+ if (ObjCProtocolExpr *OPE = dyn_cast<ObjCProtocolExpr>(PRE)) {
+ ObjCProtocolDecl *PDecl = OPE->getProtocol();
+ if (PDecl && !PDecl->hasDefinition()) {
+ Diag(PRE->getExprLoc(), diag::warn_atprotocol_protocol) << PDecl->getName();
+ Diag(PDecl->getLocation(), diag::note_entity_declared_at) << PDecl;
+ }
+ }
+
+ CastKind Kind = CK_Invalid;
+ Sema::AssignConvertType result =
+ CheckAssignmentConstraints(LHSType, RHS, Kind);
+
+ // C99 6.5.16.1p2: The value of the right operand is converted to the
+ // type of the assignment expression.
+ // CheckAssignmentConstraints allows the left-hand side to be a reference,
+ // so that we can use references in built-in functions even in C.
+ // The getNonReferenceType() call makes sure that the resulting expression
+ // does not have reference type.
+ if (result != Incompatible && RHS.get()->getType() != LHSType) {
+ QualType Ty = LHSType.getNonLValueExprType(Context);
+ Expr *E = RHS.get();
+ if (getLangOpts().ObjCAutoRefCount)
+ CheckObjCARCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion,
+ DiagnoseCFAudited);
+ if (getLangOpts().ObjC1 &&
+ (CheckObjCBridgeRelatedConversions(E->getLocStart(),
+ LHSType, E->getType(), E) ||
+ ConversionToObjCStringLiteralCheck(LHSType, E))) {
+ RHS = E;
+ return Compatible;
+ }
+
+ RHS = ImpCastExprToType(E, Ty, Kind);
+ }
+ return result;
+}
+
+QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
+ ExprResult &RHS) {
+ Diag(Loc, diag::err_typecheck_invalid_operands)
+ << LHS.get()->getType() << RHS.get()->getType()
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ return QualType();
+}
+
+/// Try to convert a value of non-vector type to a vector type by converting
+/// the type to the element type of the vector and then performing a splat.
+/// If the language is OpenCL, we only use conversions that promote scalar
+/// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
+/// for float->int.
+///
+/// \param scalar - if non-null, actually perform the conversions
+/// \return true if the operation fails (but without diagnosing the failure)
+static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
+ QualType scalarTy,
+ QualType vectorEltTy,
+ QualType vectorTy) {
+ // The conversion to apply to the scalar before splatting it,
+ // if necessary.
+ CastKind scalarCast = CK_Invalid;
+
+ if (vectorEltTy->isIntegralType(S.Context)) {
+ if (!scalarTy->isIntegralType(S.Context))
+ return true;
+ if (S.getLangOpts().OpenCL &&
+ S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0)
+ return true;
+ scalarCast = CK_IntegralCast;
+ } else if (vectorEltTy->isRealFloatingType()) {
+ if (scalarTy->isRealFloatingType()) {
+ if (S.getLangOpts().OpenCL &&
+ S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0)
+ return true;
+ scalarCast = CK_FloatingCast;
+ }
+ else if (scalarTy->isIntegralType(S.Context))
+ scalarCast = CK_IntegralToFloating;
+ else
+ return true;
+ } else {
+ return true;
+ }
+
+ // Adjust scalar if desired.
+ if (scalar) {
+ if (scalarCast != CK_Invalid)
+ *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast);
+ *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat);
+ }
+ return false;
+}
+
+QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc, bool IsCompAssign) {
+ if (!IsCompAssign) {
+ LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
+ if (LHS.isInvalid())
+ return QualType();
+ }
+ RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
+ if (RHS.isInvalid())
+ return QualType();
+
+ // For conversion purposes, we ignore any qualifiers.
+ // For example, "const float" and "float" are equivalent.
+ QualType LHSType = LHS.get()->getType().getUnqualifiedType();
+ QualType RHSType = RHS.get()->getType().getUnqualifiedType();
+
+ // If the vector types are identical, return.
+ if (Context.hasSameType(LHSType, RHSType))
+ return LHSType;
+
+ const VectorType *LHSVecType = LHSType->getAs<VectorType>();
+ const VectorType *RHSVecType = RHSType->getAs<VectorType>();
+ assert(LHSVecType || RHSVecType);
+
+ // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
+ if (LHSVecType && RHSVecType &&
+ Context.areCompatibleVectorTypes(LHSType, RHSType)) {
+ if (isa<ExtVectorType>(LHSVecType)) {
+ RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
+ return LHSType;
+ }
+
+ if (!IsCompAssign)
+ LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
+ return RHSType;
+ }
+
+ // If there's an ext-vector type and a scalar, try to convert the scalar to
+ // the vector element type and splat.
+ if (!RHSVecType && isa<ExtVectorType>(LHSVecType)) {
+ if (!tryVectorConvertAndSplat(*this, &RHS, RHSType,
+ LHSVecType->getElementType(), LHSType))
+ return LHSType;
+ }
+ if (!LHSVecType && isa<ExtVectorType>(RHSVecType)) {
+ if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS),
+ LHSType, RHSVecType->getElementType(),
+ RHSType))
+ return RHSType;
+ }
+
+ // If we're allowing lax vector conversions, only the total (data) size
+ // needs to be the same.
+ // FIXME: Should we really be allowing this?
+ // FIXME: We really just pick the LHS type arbitrarily?
+ if (isLaxVectorConversion(RHSType, LHSType)) {
+ QualType resultType = LHSType;
+ RHS = ImpCastExprToType(RHS.get(), resultType, CK_BitCast);
+ return resultType;
+ }
+
+ // Okay, the expression is invalid.
+
+ // If there's a non-vector, non-real operand, diagnose that.
+ if ((!RHSVecType && !RHSType->isRealType()) ||
+ (!LHSVecType && !LHSType->isRealType())) {
+ Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
+ << LHSType << RHSType
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ return QualType();
+ }
+
+ // Otherwise, use the generic diagnostic.
+ Diag(Loc, diag::err_typecheck_vector_not_convertable)
+ << LHSType << RHSType
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ return QualType();
+}
+
+// checkArithmeticNull - Detect when a NULL constant is used improperly in an
+// expression. These are mainly cases where the null pointer is used as an
+// integer instead of a pointer.
+static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc, bool IsCompare) {
+ // The canonical way to check for a GNU null is with isNullPointerConstant,
+ // but we use a bit of a hack here for speed; this is a relatively
+ // hot path, and isNullPointerConstant is slow.
+ bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
+ bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
+
+ QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
+
+ // Avoid analyzing cases where the result will either be invalid (and
+ // diagnosed as such) or entirely valid and not something to warn about.
+ if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
+ NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
+ return;
+
+ // Comparison operations would not make sense with a null pointer no matter
+ // what the other expression is.
+ if (!IsCompare) {
+ S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
+ << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
+ << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
+ return;
+ }
+
+ // The rest of the operations only make sense with a null pointer
+ // if the other expression is a pointer.
+ if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
+ NonNullType->canDecayToPointerType())
+ return;
+
+ S.Diag(Loc, diag::warn_null_in_comparison_operation)
+ << LHSNull /* LHS is NULL */ << NonNullType
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+}
+
+QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc,
+ bool IsCompAssign, bool IsDiv) {
+ checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
+
+ if (LHS.get()->getType()->isVectorType() ||
+ RHS.get()->getType()->isVectorType())
+ return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
+
+ QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
+ if (LHS.isInvalid() || RHS.isInvalid())
+ return QualType();
+
+
+ if (compType.isNull() || !compType->isArithmeticType())
+ return InvalidOperands(Loc, LHS, RHS);
+
+ // Check for division by zero.
+ llvm::APSInt RHSValue;
+ if (IsDiv && !RHS.get()->isValueDependent() &&
+ RHS.get()->EvaluateAsInt(RHSValue, Context) && RHSValue == 0)
+ DiagRuntimeBehavior(Loc, RHS.get(),
+ PDiag(diag::warn_division_by_zero)
+ << RHS.get()->getSourceRange());
+
+ return compType;
+}
+
+QualType Sema::CheckRemainderOperands(
+ ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
+ checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
+
+ if (LHS.get()->getType()->isVectorType() ||
+ RHS.get()->getType()->isVectorType()) {
+ if (LHS.get()->getType()->hasIntegerRepresentation() &&
+ RHS.get()->getType()->hasIntegerRepresentation())
+ return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
+ return InvalidOperands(Loc, LHS, RHS);
+ }
+
+ QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
+ if (LHS.isInvalid() || RHS.isInvalid())
+ return QualType();
+
+ if (compType.isNull() || !compType->isIntegerType())
+ return InvalidOperands(Loc, LHS, RHS);
+
+ // Check for remainder by zero.
+ llvm::APSInt RHSValue;
+ if (!RHS.get()->isValueDependent() &&
+ RHS.get()->EvaluateAsInt(RHSValue, Context) && RHSValue == 0)
+ DiagRuntimeBehavior(Loc, RHS.get(),
+ PDiag(diag::warn_remainder_by_zero)
+ << RHS.get()->getSourceRange());
+
+ return compType;
+}
+
+/// \brief Diagnose invalid arithmetic on two void pointers.
+static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
+ Expr *LHSExpr, Expr *RHSExpr) {
+ S.Diag(Loc, S.getLangOpts().CPlusPlus
+ ? diag::err_typecheck_pointer_arith_void_type
+ : diag::ext_gnu_void_ptr)
+ << 1 /* two pointers */ << LHSExpr->getSourceRange()
+ << RHSExpr->getSourceRange();
+}
+
+/// \brief Diagnose invalid arithmetic on a void pointer.
+static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
+ Expr *Pointer) {
+ S.Diag(Loc, S.getLangOpts().CPlusPlus
+ ? diag::err_typecheck_pointer_arith_void_type
+ : diag::ext_gnu_void_ptr)
+ << 0 /* one pointer */ << Pointer->getSourceRange();
+}
+
+/// \brief Diagnose invalid arithmetic on two function pointers.
+static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
+ Expr *LHS, Expr *RHS) {
+ assert(LHS->getType()->isAnyPointerType());
+ assert(RHS->getType()->isAnyPointerType());
+ S.Diag(Loc, S.getLangOpts().CPlusPlus
+ ? diag::err_typecheck_pointer_arith_function_type
+ : diag::ext_gnu_ptr_func_arith)
+ << 1 /* two pointers */ << LHS->getType()->getPointeeType()
+ // We only show the second type if it differs from the first.
+ << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
+ RHS->getType())
+ << RHS->getType()->getPointeeType()
+ << LHS->getSourceRange() << RHS->getSourceRange();
+}
+
+/// \brief Diagnose invalid arithmetic on a function pointer.
+static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
+ Expr *Pointer) {
+ assert(Pointer->getType()->isAnyPointerType());
+ S.Diag(Loc, S.getLangOpts().CPlusPlus
+ ? diag::err_typecheck_pointer_arith_function_type
+ : diag::ext_gnu_ptr_func_arith)
+ << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
+ << 0 /* one pointer, so only one type */
+ << Pointer->getSourceRange();
+}
+
+/// \brief Emit error if Operand is incomplete pointer type
+///
+/// \returns True if pointer has incomplete type
+static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
+ Expr *Operand) {
+ QualType ResType = Operand->getType();
+ if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
+ ResType = ResAtomicType->getValueType();
+
+ assert(ResType->isAnyPointerType() && !ResType->isDependentType());
+ QualType PointeeTy = ResType->getPointeeType();
+ return S.RequireCompleteType(Loc, PointeeTy,
+ diag::err_typecheck_arithmetic_incomplete_type,
+ PointeeTy, Operand->getSourceRange());
+}
+
+/// \brief Check the validity of an arithmetic pointer operand.
+///
+/// If the operand has pointer type, this code will check for pointer types
+/// which are invalid in arithmetic operations. These will be diagnosed
+/// appropriately, including whether or not the use is supported as an
+/// extension.
+///
+/// \returns True when the operand is valid to use (even if as an extension).
+static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
+ Expr *Operand) {
+ QualType ResType = Operand->getType();
+ if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
+ ResType = ResAtomicType->getValueType();
+
+ if (!ResType->isAnyPointerType()) return true;
+
+ QualType PointeeTy = ResType->getPointeeType();
+ if (PointeeTy->isVoidType()) {
+ diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
+ return !S.getLangOpts().CPlusPlus;
+ }
+ if (PointeeTy->isFunctionType()) {
+ diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
+ return !S.getLangOpts().CPlusPlus;
+ }
+
+ if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
+
+ return true;
+}
+
+/// \brief Check the validity of a binary arithmetic operation w.r.t. pointer
+/// operands.
+///
+/// This routine will diagnose any invalid arithmetic on pointer operands much
+/// like \see checkArithmeticOpPointerOperand. However, it has special logic
+/// for emitting a single diagnostic even for operations where both LHS and RHS
+/// are (potentially problematic) pointers.
+///
+/// \returns True when the operand is valid to use (even if as an extension).
+static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
+ Expr *LHSExpr, Expr *RHSExpr) {
+ bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
+ bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
+ if (!isLHSPointer && !isRHSPointer) return true;
+
+ QualType LHSPointeeTy, RHSPointeeTy;
+ if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
+ if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
+
+ // if both are pointers check if operation is valid wrt address spaces
+ if (isLHSPointer && isRHSPointer) {
+ const PointerType *lhsPtr = LHSExpr->getType()->getAs<PointerType>();
+ const PointerType *rhsPtr = RHSExpr->getType()->getAs<PointerType>();
+ if (!lhsPtr->isAddressSpaceOverlapping(*rhsPtr)) {
+ S.Diag(Loc,
+ diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
+ << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
+ << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
+ return false;
+ }
+ }
+
+ // Check for arithmetic on pointers to incomplete types.
+ bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
+ bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
+ if (isLHSVoidPtr || isRHSVoidPtr) {
+ if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
+ else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
+ else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
+
+ return !S.getLangOpts().CPlusPlus;
+ }
+
+ bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
+ bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
+ if (isLHSFuncPtr || isRHSFuncPtr) {
+ if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
+ else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
+ RHSExpr);
+ else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
+
+ return !S.getLangOpts().CPlusPlus;
+ }
+
+ if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
+ return false;
+ if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
+ return false;
+
+ return true;
+}
+
+/// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
+/// literal.
+static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
+ Expr *LHSExpr, Expr *RHSExpr) {
+ StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
+ Expr* IndexExpr = RHSExpr;
+ if (!StrExpr) {
+ StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
+ IndexExpr = LHSExpr;
+ }
+
+ bool IsStringPlusInt = StrExpr &&
+ IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
+ if (!IsStringPlusInt || IndexExpr->isValueDependent())
+ return;
+
+ llvm::APSInt index;
+ if (IndexExpr->EvaluateAsInt(index, Self.getASTContext())) {
+ unsigned StrLenWithNull = StrExpr->getLength() + 1;
+ if (index.isNonNegative() &&
+ index <= llvm::APSInt(llvm::APInt(index.getBitWidth(), StrLenWithNull),
+ index.isUnsigned()))
+ return;
+ }
+
+ SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
+ Self.Diag(OpLoc, diag::warn_string_plus_int)
+ << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
+
+ // Only print a fixit for "str" + int, not for int + "str".
+ if (IndexExpr == RHSExpr) {
+ SourceLocation EndLoc = Self.PP.getLocForEndOfToken(RHSExpr->getLocEnd());
+ Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
+ << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
+ << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
+ << FixItHint::CreateInsertion(EndLoc, "]");
+ } else
+ Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
+}
+
+/// \brief Emit a warning when adding a char literal to a string.
+static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
+ Expr *LHSExpr, Expr *RHSExpr) {
+ const Expr *StringRefExpr = LHSExpr;
+ const CharacterLiteral *CharExpr =
+ dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
+
+ if (!CharExpr) {
+ CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
+ StringRefExpr = RHSExpr;
+ }
+
+ if (!CharExpr || !StringRefExpr)
+ return;
+
+ const QualType StringType = StringRefExpr->getType();
+
+ // Return if not a PointerType.
+ if (!StringType->isAnyPointerType())
+ return;
+
+ // Return if not a CharacterType.
+ if (!StringType->getPointeeType()->isAnyCharacterType())
+ return;
+
+ ASTContext &Ctx = Self.getASTContext();
+ SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
+
+ const QualType CharType = CharExpr->getType();
+ if (!CharType->isAnyCharacterType() &&
+ CharType->isIntegerType() &&
+ llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
+ Self.Diag(OpLoc, diag::warn_string_plus_char)
+ << DiagRange << Ctx.CharTy;
+ } else {
+ Self.Diag(OpLoc, diag::warn_string_plus_char)
+ << DiagRange << CharExpr->getType();
+ }
+
+ // Only print a fixit for str + char, not for char + str.
+ if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
+ SourceLocation EndLoc = Self.PP.getLocForEndOfToken(RHSExpr->getLocEnd());
+ Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
+ << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
+ << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
+ << FixItHint::CreateInsertion(EndLoc, "]");
+ } else {
+ Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
+ }
+}
+
+/// \brief Emit error when two pointers are incompatible.
+static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
+ Expr *LHSExpr, Expr *RHSExpr) {
+ assert(LHSExpr->getType()->isAnyPointerType());
+ assert(RHSExpr->getType()->isAnyPointerType());
+ S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
+ << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
+ << RHSExpr->getSourceRange();
+}
+
+QualType Sema::CheckAdditionOperands( // C99 6.5.6
+ ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc,
+ QualType* CompLHSTy) {
+ checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
+
+ if (LHS.get()->getType()->isVectorType() ||
+ RHS.get()->getType()->isVectorType()) {
+ QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
+ if (CompLHSTy) *CompLHSTy = compType;
+ return compType;
+ }
+
+ QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
+ if (LHS.isInvalid() || RHS.isInvalid())
+ return QualType();
+
+ // Diagnose "string literal" '+' int and string '+' "char literal".
+ if (Opc == BO_Add) {
+ diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
+ diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
+ }
+
+ // handle the common case first (both operands are arithmetic).
+ if (!compType.isNull() && compType->isArithmeticType()) {
+ if (CompLHSTy) *CompLHSTy = compType;
+ return compType;
+ }
+
+ // Type-checking. Ultimately the pointer's going to be in PExp;
+ // note that we bias towards the LHS being the pointer.
+ Expr *PExp = LHS.get(), *IExp = RHS.get();
+
+ bool isObjCPointer;
+ if (PExp->getType()->isPointerType()) {
+ isObjCPointer = false;
+ } else if (PExp->getType()->isObjCObjectPointerType()) {
+ isObjCPointer = true;
+ } else {
+ std::swap(PExp, IExp);
+ if (PExp->getType()->isPointerType()) {
+ isObjCPointer = false;
+ } else if (PExp->getType()->isObjCObjectPointerType()) {
+ isObjCPointer = true;
+ } else {
+ return InvalidOperands(Loc, LHS, RHS);
+ }
+ }
+ assert(PExp->getType()->isAnyPointerType());
+
+ if (!IExp->getType()->isIntegerType())
+ return InvalidOperands(Loc, LHS, RHS);
+
+ if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
+ return QualType();
+
+ if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
+ return QualType();
+
+ // Check array bounds for pointer arithemtic
+ CheckArrayAccess(PExp, IExp);
+
+ if (CompLHSTy) {
+ QualType LHSTy = Context.isPromotableBitField(LHS.get());
+ if (LHSTy.isNull()) {
+ LHSTy = LHS.get()->getType();
+ if (LHSTy->isPromotableIntegerType())
+ LHSTy = Context.getPromotedIntegerType(LHSTy);
+ }
+ *CompLHSTy = LHSTy;
+ }
+
+ return PExp->getType();
+}
+
+// C99 6.5.6
+QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc,
+ QualType* CompLHSTy) {
+ checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
+
+ if (LHS.get()->getType()->isVectorType() ||
+ RHS.get()->getType()->isVectorType()) {
+ QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
+ if (CompLHSTy) *CompLHSTy = compType;
+ return compType;
+ }
+
+ QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
+ if (LHS.isInvalid() || RHS.isInvalid())
+ return QualType();
+
+ // Enforce type constraints: C99 6.5.6p3.
+
+ // Handle the common case first (both operands are arithmetic).
+ if (!compType.isNull() && compType->isArithmeticType()) {
+ if (CompLHSTy) *CompLHSTy = compType;
+ return compType;
+ }
+
+ // Either ptr - int or ptr - ptr.
+ if (LHS.get()->getType()->isAnyPointerType()) {
+ QualType lpointee = LHS.get()->getType()->getPointeeType();
+
+ // Diagnose bad cases where we step over interface counts.
+ if (LHS.get()->getType()->isObjCObjectPointerType() &&
+ checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
+ return QualType();
+
+ // The result type of a pointer-int computation is the pointer type.
+ if (RHS.get()->getType()->isIntegerType()) {
+ if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
+ return QualType();
+
+ // Check array bounds for pointer arithemtic
+ CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr,
+ /*AllowOnePastEnd*/true, /*IndexNegated*/true);
+
+ if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
+ return LHS.get()->getType();
+ }
+
+ // Handle pointer-pointer subtractions.
+ if (const PointerType *RHSPTy
+ = RHS.get()->getType()->getAs<PointerType>()) {
+ QualType rpointee = RHSPTy->getPointeeType();
+
+ if (getLangOpts().CPlusPlus) {
+ // Pointee types must be the same: C++ [expr.add]
+ if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
+ diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
+ }
+ } else {
+ // Pointee types must be compatible C99 6.5.6p3
+ if (!Context.typesAreCompatible(
+ Context.getCanonicalType(lpointee).getUnqualifiedType(),
+ Context.getCanonicalType(rpointee).getUnqualifiedType())) {
+ diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
+ return QualType();
+ }
+ }
+
+ if (!checkArithmeticBinOpPointerOperands(*this, Loc,
+ LHS.get(), RHS.get()))
+ return QualType();
+
+ // The pointee type may have zero size. As an extension, a structure or
+ // union may have zero size or an array may have zero length. In this
+ // case subtraction does not make sense.
+ if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
+ CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
+ if (ElementSize.isZero()) {
+ Diag(Loc,diag::warn_sub_ptr_zero_size_types)
+ << rpointee.getUnqualifiedType()
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ }
+ }
+
+ if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
+ return Context.getPointerDiffType();
+ }
+ }
+
+ return InvalidOperands(Loc, LHS, RHS);
+}
+
+static bool isScopedEnumerationType(QualType T) {
+ if (const EnumType *ET = T->getAs<EnumType>())
+ return ET->getDecl()->isScoped();
+ return false;
+}
+
+static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc, unsigned Opc,
+ QualType LHSType) {
+ // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
+ // so skip remaining warnings as we don't want to modify values within Sema.
+ if (S.getLangOpts().OpenCL)
+ return;
+
+ llvm::APSInt Right;
+ // Check right/shifter operand
+ if (RHS.get()->isValueDependent() ||
+ !RHS.get()->EvaluateAsInt(Right, S.Context))
+ return;
+
+ if (Right.isNegative()) {
+ S.DiagRuntimeBehavior(Loc, RHS.get(),
+ S.PDiag(diag::warn_shift_negative)
+ << RHS.get()->getSourceRange());
+ return;
+ }
+ llvm::APInt LeftBits(Right.getBitWidth(),
+ S.Context.getTypeSize(LHS.get()->getType()));
+ if (Right.uge(LeftBits)) {
+ S.DiagRuntimeBehavior(Loc, RHS.get(),
+ S.PDiag(diag::warn_shift_gt_typewidth)
+ << RHS.get()->getSourceRange());
+ return;
+ }
+ if (Opc != BO_Shl)
+ return;
+
+ // When left shifting an ICE which is signed, we can check for overflow which
+ // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
+ // integers have defined behavior modulo one more than the maximum value
+ // representable in the result type, so never warn for those.
+ llvm::APSInt Left;
+ if (LHS.get()->isValueDependent() ||
+ !LHS.get()->isIntegerConstantExpr(Left, S.Context) ||
+ LHSType->hasUnsignedIntegerRepresentation())
+ return;
+ llvm::APInt ResultBits =
+ static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
+ if (LeftBits.uge(ResultBits))
+ return;
+ llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
+ Result = Result.shl(Right);
+
+ // Print the bit representation of the signed integer as an unsigned
+ // hexadecimal number.
+ SmallString<40> HexResult;
+ Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
+
+ // If we are only missing a sign bit, this is less likely to result in actual
+ // bugs -- if the result is cast back to an unsigned type, it will have the
+ // expected value. Thus we place this behind a different warning that can be
+ // turned off separately if needed.
+ if (LeftBits == ResultBits - 1) {
+ S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
+ << HexResult << LHSType
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ return;
+ }
+
+ S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
+ << HexResult.str() << Result.getMinSignedBits() << LHSType
+ << Left.getBitWidth() << LHS.get()->getSourceRange()
+ << RHS.get()->getSourceRange();
+}
+
+/// \brief Return the resulting type when an OpenCL vector is shifted
+/// by a scalar or vector shift amount.
+static QualType checkOpenCLVectorShift(Sema &S,
+ ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc, bool IsCompAssign) {
+ // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
+ if (!LHS.get()->getType()->isVectorType()) {
+ S.Diag(Loc, diag::err_shift_rhs_only_vector)
+ << RHS.get()->getType() << LHS.get()->getType()
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ return QualType();
+ }
+
+ if (!IsCompAssign) {
+ LHS = S.UsualUnaryConversions(LHS.get());
+ if (LHS.isInvalid()) return QualType();
+ }
+
+ RHS = S.UsualUnaryConversions(RHS.get());
+ if (RHS.isInvalid()) return QualType();
+
+ QualType LHSType = LHS.get()->getType();
+ const VectorType *LHSVecTy = LHSType->getAs<VectorType>();
+ QualType LHSEleType = LHSVecTy->getElementType();
+
+ // Note that RHS might not be a vector.
+ QualType RHSType = RHS.get()->getType();
+ const VectorType *RHSVecTy = RHSType->getAs<VectorType>();
+ QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType;
+
+ // OpenCL v1.1 s6.3.j says that the operands need to be integers.
+ if (!LHSEleType->isIntegerType()) {
+ S.Diag(Loc, diag::err_typecheck_expect_int)
+ << LHS.get()->getType() << LHS.get()->getSourceRange();
+ return QualType();
+ }
+
+ if (!RHSEleType->isIntegerType()) {
+ S.Diag(Loc, diag::err_typecheck_expect_int)
+ << RHS.get()->getType() << RHS.get()->getSourceRange();
+ return QualType();
+ }
+
+ if (RHSVecTy) {
+ // OpenCL v1.1 s6.3.j says that for vector types, the operators
+ // are applied component-wise. So if RHS is a vector, then ensure
+ // that the number of elements is the same as LHS...
+ if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) {
+ S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
+ << LHS.get()->getType() << RHS.get()->getType()
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ return QualType();
+ }
+ } else {
+ // ...else expand RHS to match the number of elements in LHS.
+ QualType VecTy =
+ S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements());
+ RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
+ }
+
+ return LHSType;
+}
+
+// C99 6.5.7
+QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc, unsigned Opc,
+ bool IsCompAssign) {
+ checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
+
+ // Vector shifts promote their scalar inputs to vector type.
+ if (LHS.get()->getType()->isVectorType() ||
+ RHS.get()->getType()->isVectorType()) {
+ if (LangOpts.OpenCL)
+ return checkOpenCLVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
+ return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
+ }
+
+ // Shifts don't perform usual arithmetic conversions, they just do integer
+ // promotions on each operand. C99 6.5.7p3
+
+ // For the LHS, do usual unary conversions, but then reset them away
+ // if this is a compound assignment.
+ ExprResult OldLHS = LHS;
+ LHS = UsualUnaryConversions(LHS.get());
+ if (LHS.isInvalid())
+ return QualType();
+ QualType LHSType = LHS.get()->getType();
+ if (IsCompAssign) LHS = OldLHS;
+
+ // The RHS is simpler.
+ RHS = UsualUnaryConversions(RHS.get());
+ if (RHS.isInvalid())
+ return QualType();
+ QualType RHSType = RHS.get()->getType();
+
+ // C99 6.5.7p2: Each of the operands shall have integer type.
+ if (!LHSType->hasIntegerRepresentation() ||
+ !RHSType->hasIntegerRepresentation())
+ return InvalidOperands(Loc, LHS, RHS);
+
+ // C++0x: Don't allow scoped enums. FIXME: Use something better than
+ // hasIntegerRepresentation() above instead of this.
+ if (isScopedEnumerationType(LHSType) ||
+ isScopedEnumerationType(RHSType)) {
+ return InvalidOperands(Loc, LHS, RHS);
+ }
+ // Sanity-check shift operands
+ DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
+
+ // "The type of the result is that of the promoted left operand."
+ return LHSType;
+}
+
+static bool IsWithinTemplateSpecialization(Decl *D) {
+ if (DeclContext *DC = D->getDeclContext()) {
+ if (isa<ClassTemplateSpecializationDecl>(DC))
+ return true;
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
+ return FD->isFunctionTemplateSpecialization();
+ }
+ return false;
+}
+
+/// If two different enums are compared, raise a warning.
+static void checkEnumComparison(Sema &S, SourceLocation Loc, Expr *LHS,
+ Expr *RHS) {
+ QualType LHSStrippedType = LHS->IgnoreParenImpCasts()->getType();
+ QualType RHSStrippedType = RHS->IgnoreParenImpCasts()->getType();
+
+ const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>();
+ if (!LHSEnumType)
+ return;
+ const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>();
+ if (!RHSEnumType)
+ return;
+
+ // Ignore anonymous enums.
+ if (!LHSEnumType->getDecl()->getIdentifier())
+ return;
+ if (!RHSEnumType->getDecl()->getIdentifier())
+ return;
+
+ if (S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType))
+ return;
+
+ S.Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
+ << LHSStrippedType << RHSStrippedType
+ << LHS->getSourceRange() << RHS->getSourceRange();
+}
+
+/// \brief Diagnose bad pointer comparisons.
+static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
+ ExprResult &LHS, ExprResult &RHS,
+ bool IsError) {
+ S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
+ : diag::ext_typecheck_comparison_of_distinct_pointers)
+ << LHS.get()->getType() << RHS.get()->getType()
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+}
+
+/// \brief Returns false if the pointers are converted to a composite type,
+/// true otherwise.
+static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
+ ExprResult &LHS, ExprResult &RHS) {
+ // C++ [expr.rel]p2:
+ // [...] Pointer conversions (4.10) and qualification
+ // conversions (4.4) are performed on pointer operands (or on
+ // a pointer operand and a null pointer constant) to bring
+ // them to their composite pointer type. [...]
+ //
+ // C++ [expr.eq]p1 uses the same notion for (in)equality
+ // comparisons of pointers.
+
+ // C++ [expr.eq]p2:
+ // In addition, pointers to members can be compared, or a pointer to
+ // member and a null pointer constant. Pointer to member conversions
+ // (4.11) and qualification conversions (4.4) are performed to bring
+ // them to a common type. If one operand is a null pointer constant,
+ // the common type is the type of the other operand. Otherwise, the
+ // common type is a pointer to member type similar (4.4) to the type
+ // of one of the operands, with a cv-qualification signature (4.4)
+ // that is the union of the cv-qualification signatures of the operand
+ // types.
+
+ QualType LHSType = LHS.get()->getType();
+ QualType RHSType = RHS.get()->getType();
+ assert((LHSType->isPointerType() && RHSType->isPointerType()) ||
+ (LHSType->isMemberPointerType() && RHSType->isMemberPointerType()));
+
+ bool NonStandardCompositeType = false;
+ bool *BoolPtr = S.isSFINAEContext() ? nullptr : &NonStandardCompositeType;
+ QualType T = S.FindCompositePointerType(Loc, LHS, RHS, BoolPtr);
+ if (T.isNull()) {
+ diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
+ return true;
+ }
+
+ if (NonStandardCompositeType)
+ S.Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
+ << LHSType << RHSType << T << LHS.get()->getSourceRange()
+ << RHS.get()->getSourceRange();
+
+ LHS = S.ImpCastExprToType(LHS.get(), T, CK_BitCast);
+ RHS = S.ImpCastExprToType(RHS.get(), T, CK_BitCast);
+ return false;
+}
+
+static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
+ ExprResult &LHS,
+ ExprResult &RHS,
+ bool IsError) {
+ S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
+ : diag::ext_typecheck_comparison_of_fptr_to_void)
+ << LHS.get()->getType() << RHS.get()->getType()
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+}
+
+static bool isObjCObjectLiteral(ExprResult &E) {
+ switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
+ case Stmt::ObjCArrayLiteralClass:
+ case Stmt::ObjCDictionaryLiteralClass:
+ case Stmt::ObjCStringLiteralClass:
+ case Stmt::ObjCBoxedExprClass:
+ return true;
+ default:
+ // Note that ObjCBoolLiteral is NOT an object literal!
+ return false;
+ }
+}
+
+static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
+ const ObjCObjectPointerType *Type =
+ LHS->getType()->getAs<ObjCObjectPointerType>();
+
+ // If this is not actually an Objective-C object, bail out.
+ if (!Type)
+ return false;
+
+ // Get the LHS object's interface type.
+ QualType InterfaceType = Type->getPointeeType();
+ if (const ObjCObjectType *iQFaceTy =
+ InterfaceType->getAsObjCQualifiedInterfaceType())
+ InterfaceType = iQFaceTy->getBaseType();
+
+ // If the RHS isn't an Objective-C object, bail out.
+ if (!RHS->getType()->isObjCObjectPointerType())
+ return false;
+
+ // Try to find the -isEqual: method.
+ Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
+ ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
+ InterfaceType,
+ /*instance=*/true);
+ if (!Method) {
+ if (Type->isObjCIdType()) {
+ // For 'id', just check the global pool.
+ Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
+ /*receiverId=*/true);
+ } else {
+ // Check protocols.
+ Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
+ /*instance=*/true);
+ }
+ }
+
+ if (!Method)
+ return false;
+
+ QualType T = Method->parameters()[0]->getType();
+ if (!T->isObjCObjectPointerType())
+ return false;
+
+ QualType R = Method->getReturnType();
+ if (!R->isScalarType())
+ return false;
+
+ return true;
+}
+
+Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
+ FromE = FromE->IgnoreParenImpCasts();
+ switch (FromE->getStmtClass()) {
+ default:
+ break;
+ case Stmt::ObjCStringLiteralClass:
+ // "string literal"
+ return LK_String;
+ case Stmt::ObjCArrayLiteralClass:
+ // "array literal"
+ return LK_Array;
+ case Stmt::ObjCDictionaryLiteralClass:
+ // "dictionary literal"
+ return LK_Dictionary;
+ case Stmt::BlockExprClass:
+ return LK_Block;
+ case Stmt::ObjCBoxedExprClass: {
+ Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
+ switch (Inner->getStmtClass()) {
+ case Stmt::IntegerLiteralClass:
+ case Stmt::FloatingLiteralClass:
+ case Stmt::CharacterLiteralClass:
+ case Stmt::ObjCBoolLiteralExprClass:
+ case Stmt::CXXBoolLiteralExprClass:
+ // "numeric literal"
+ return LK_Numeric;
+ case Stmt::ImplicitCastExprClass: {
+ CastKind CK = cast<CastExpr>(Inner)->getCastKind();
+ // Boolean literals can be represented by implicit casts.
+ if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
+ return LK_Numeric;
+ break;
+ }
+ default:
+ break;
+ }
+ return LK_Boxed;
+ }
+ }
+ return LK_None;
+}
+
+static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
+ ExprResult &LHS, ExprResult &RHS,
+ BinaryOperator::Opcode Opc){
+ Expr *Literal;
+ Expr *Other;
+ if (isObjCObjectLiteral(LHS)) {
+ Literal = LHS.get();
+ Other = RHS.get();
+ } else {
+ Literal = RHS.get();
+ Other = LHS.get();
+ }
+
+ // Don't warn on comparisons against nil.
+ Other = Other->IgnoreParenCasts();
+ if (Other->isNullPointerConstant(S.getASTContext(),
+ Expr::NPC_ValueDependentIsNotNull))
+ return;
+
+ // This should be kept in sync with warn_objc_literal_comparison.
+ // LK_String should always be after the other literals, since it has its own
+ // warning flag.
+ Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
+ assert(LiteralKind != Sema::LK_Block);
+ if (LiteralKind == Sema::LK_None) {
+ llvm_unreachable("Unknown Objective-C object literal kind");
+ }
+
+ if (LiteralKind == Sema::LK_String)
+ S.Diag(Loc, diag::warn_objc_string_literal_comparison)
+ << Literal->getSourceRange();
+ else
+ S.Diag(Loc, diag::warn_objc_literal_comparison)
+ << LiteralKind << Literal->getSourceRange();
+
+ if (BinaryOperator::isEqualityOp(Opc) &&
+ hasIsEqualMethod(S, LHS.get(), RHS.get())) {
+ SourceLocation Start = LHS.get()->getLocStart();
+ SourceLocation End = S.PP.getLocForEndOfToken(RHS.get()->getLocEnd());
+ CharSourceRange OpRange =
+ CharSourceRange::getCharRange(Loc, S.PP.getLocForEndOfToken(Loc));
+
+ S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
+ << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
+ << FixItHint::CreateReplacement(OpRange, " isEqual:")
+ << FixItHint::CreateInsertion(End, "]");
+ }
+}
+
+static void diagnoseLogicalNotOnLHSofComparison(Sema &S, ExprResult &LHS,
+ ExprResult &RHS,
+ SourceLocation Loc,
+ unsigned OpaqueOpc) {
+ // This checking requires bools.
+ if (!S.getLangOpts().Bool) return;
+
+ // Check that left hand side is !something.
+ UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
+ if (!UO || UO->getOpcode() != UO_LNot) return;
+
+ // Only check if the right hand side is non-bool arithmetic type.
+ if (RHS.get()->getType()->isBooleanType()) return;
+
+ // Make sure that the something in !something is not bool.
+ Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
+ if (SubExpr->getType()->isBooleanType()) return;
+
+ // Emit warning.
+ S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_comparison)
+ << Loc;
+
+ // First note suggest !(x < y)
+ SourceLocation FirstOpen = SubExpr->getLocStart();
+ SourceLocation FirstClose = RHS.get()->getLocEnd();
+ FirstClose = S.getPreprocessor().getLocForEndOfToken(FirstClose);
+ if (FirstClose.isInvalid())
+ FirstOpen = SourceLocation();
+ S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
+ << FixItHint::CreateInsertion(FirstOpen, "(")
+ << FixItHint::CreateInsertion(FirstClose, ")");
+
+ // Second note suggests (!x) < y
+ SourceLocation SecondOpen = LHS.get()->getLocStart();
+ SourceLocation SecondClose = LHS.get()->getLocEnd();
+ SecondClose = S.getPreprocessor().getLocForEndOfToken(SecondClose);
+ if (SecondClose.isInvalid())
+ SecondOpen = SourceLocation();
+ S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
+ << FixItHint::CreateInsertion(SecondOpen, "(")
+ << FixItHint::CreateInsertion(SecondClose, ")");
+}
+
+// Get the decl for a simple expression: a reference to a variable,
+// an implicit C++ field reference, or an implicit ObjC ivar reference.
+static ValueDecl *getCompareDecl(Expr *E) {
+ if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(E))
+ return DR->getDecl();
+ if (ObjCIvarRefExpr* Ivar = dyn_cast<ObjCIvarRefExpr>(E)) {
+ if (Ivar->isFreeIvar())
+ return Ivar->getDecl();
+ }
+ if (MemberExpr* Mem = dyn_cast<MemberExpr>(E)) {
+ if (Mem->isImplicitAccess())
+ return Mem->getMemberDecl();
+ }
+ return nullptr;
+}
+
+// C99 6.5.8, C++ [expr.rel]
+QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc, unsigned OpaqueOpc,
+ bool IsRelational) {
+ checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/true);
+
+ BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
+
+ // Handle vector comparisons separately.
+ if (LHS.get()->getType()->isVectorType() ||
+ RHS.get()->getType()->isVectorType())
+ return CheckVectorCompareOperands(LHS, RHS, Loc, IsRelational);
+
+ QualType LHSType = LHS.get()->getType();
+ QualType RHSType = RHS.get()->getType();
+
+ Expr *LHSStripped = LHS.get()->IgnoreParenImpCasts();
+ Expr *RHSStripped = RHS.get()->IgnoreParenImpCasts();
+
+ checkEnumComparison(*this, Loc, LHS.get(), RHS.get());
+ diagnoseLogicalNotOnLHSofComparison(*this, LHS, RHS, Loc, OpaqueOpc);
+
+ if (!LHSType->hasFloatingRepresentation() &&
+ !(LHSType->isBlockPointerType() && IsRelational) &&
+ !LHS.get()->getLocStart().isMacroID() &&
+ !RHS.get()->getLocStart().isMacroID() &&
+ ActiveTemplateInstantiations.empty()) {
+ // For non-floating point types, check for self-comparisons of the form
+ // x == x, x != x, x < x, etc. These always evaluate to a constant, and
+ // often indicate logic errors in the program.
+ //
+ // NOTE: Don't warn about comparison expressions resulting from macro
+ // expansion. Also don't warn about comparisons which are only self
+ // comparisons within a template specialization. The warnings should catch
+ // obvious cases in the definition of the template anyways. The idea is to
+ // warn when the typed comparison operator will always evaluate to the same
+ // result.
+ ValueDecl *DL = getCompareDecl(LHSStripped);
+ ValueDecl *DR = getCompareDecl(RHSStripped);
+ if (DL && DR && DL == DR && !IsWithinTemplateSpecialization(DL)) {
+ DiagRuntimeBehavior(Loc, nullptr, PDiag(diag::warn_comparison_always)
+ << 0 // self-
+ << (Opc == BO_EQ
+ || Opc == BO_LE
+ || Opc == BO_GE));
+ } else if (DL && DR && LHSType->isArrayType() && RHSType->isArrayType() &&
+ !DL->getType()->isReferenceType() &&
+ !DR->getType()->isReferenceType()) {
+ // what is it always going to eval to?
+ char always_evals_to;
+ switch(Opc) {
+ case BO_EQ: // e.g. array1 == array2
+ always_evals_to = 0; // false
+ break;
+ case BO_NE: // e.g. array1 != array2
+ always_evals_to = 1; // true
+ break;
+ default:
+ // best we can say is 'a constant'
+ always_evals_to = 2; // e.g. array1 <= array2
+ break;
+ }
+ DiagRuntimeBehavior(Loc, nullptr, PDiag(diag::warn_comparison_always)
+ << 1 // array
+ << always_evals_to);
+ }
+
+ if (isa<CastExpr>(LHSStripped))
+ LHSStripped = LHSStripped->IgnoreParenCasts();
+ if (isa<CastExpr>(RHSStripped))
+ RHSStripped = RHSStripped->IgnoreParenCasts();
+
+ // Warn about comparisons against a string constant (unless the other
+ // operand is null), the user probably wants strcmp.
+ Expr *literalString = nullptr;
+ Expr *literalStringStripped = nullptr;
+ if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
+ !RHSStripped->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNull)) {
+ literalString = LHS.get();
+ literalStringStripped = LHSStripped;
+ } else if ((isa<StringLiteral>(RHSStripped) ||
+ isa<ObjCEncodeExpr>(RHSStripped)) &&
+ !LHSStripped->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNull)) {
+ literalString = RHS.get();
+ literalStringStripped = RHSStripped;
+ }
+
+ if (literalString) {
+ DiagRuntimeBehavior(Loc, nullptr,
+ PDiag(diag::warn_stringcompare)
+ << isa<ObjCEncodeExpr>(literalStringStripped)
+ << literalString->getSourceRange());
+ }
+ }
+
+ // C99 6.5.8p3 / C99 6.5.9p4
+ UsualArithmeticConversions(LHS, RHS);
+ if (LHS.isInvalid() || RHS.isInvalid())
+ return QualType();
+
+ LHSType = LHS.get()->getType();
+ RHSType = RHS.get()->getType();
+
+ // The result of comparisons is 'bool' in C++, 'int' in C.
+ QualType ResultTy = Context.getLogicalOperationType();
+
+ if (IsRelational) {
+ if (LHSType->isRealType() && RHSType->isRealType())
+ return ResultTy;
+ } else {
+ // Check for comparisons of floating point operands using != and ==.
+ if (LHSType->hasFloatingRepresentation())
+ CheckFloatComparison(Loc, LHS.get(), RHS.get());
+
+ if (LHSType->isArithmeticType() && RHSType->isArithmeticType())
+ return ResultTy;
+ }
+
+ const Expr::NullPointerConstantKind LHSNullKind =
+ LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
+ const Expr::NullPointerConstantKind RHSNullKind =
+ RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
+ bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
+ bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
+
+ if (!IsRelational && LHSIsNull != RHSIsNull) {
+ bool IsEquality = Opc == BO_EQ;
+ if (RHSIsNull)
+ DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality,
+ RHS.get()->getSourceRange());
+ else
+ DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality,
+ LHS.get()->getSourceRange());
+ }
+
+ // All of the following pointer-related warnings are GCC extensions, except
+ // when handling null pointer constants.
+ if (LHSType->isPointerType() && RHSType->isPointerType()) { // C99 6.5.8p2
+ QualType LCanPointeeTy =
+ LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
+ QualType RCanPointeeTy =
+ RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
+
+ if (getLangOpts().CPlusPlus) {
+ if (LCanPointeeTy == RCanPointeeTy)
+ return ResultTy;
+ if (!IsRelational &&
+ (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
+ // Valid unless comparison between non-null pointer and function pointer
+ // This is a gcc extension compatibility comparison.
+ // In a SFINAE context, we treat this as a hard error to maintain
+ // conformance with the C++ standard.
+ if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
+ && !LHSIsNull && !RHSIsNull) {
+ diagnoseFunctionPointerToVoidComparison(
+ *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
+
+ if (isSFINAEContext())
+ return QualType();
+
+ RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
+ return ResultTy;
+ }
+ }
+
+ if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
+ return QualType();
+ else
+ return ResultTy;
+ }
+ // C99 6.5.9p2 and C99 6.5.8p2
+ if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
+ RCanPointeeTy.getUnqualifiedType())) {
+ // Valid unless a relational comparison of function pointers
+ if (IsRelational && LCanPointeeTy->isFunctionType()) {
+ Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
+ << LHSType << RHSType << LHS.get()->getSourceRange()
+ << RHS.get()->getSourceRange();
+ }
+ } else if (!IsRelational &&
+ (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
+ // Valid unless comparison between non-null pointer and function pointer
+ if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
+ && !LHSIsNull && !RHSIsNull)
+ diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
+ /*isError*/false);
+ } else {
+ // Invalid
+ diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
+ }
+ if (LCanPointeeTy != RCanPointeeTy) {
+ const PointerType *lhsPtr = LHSType->getAs<PointerType>();
+ if (!lhsPtr->isAddressSpaceOverlapping(*RHSType->getAs<PointerType>())) {
+ Diag(Loc,
+ diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
+ << LHSType << RHSType << 0 /* comparison */
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ }
+ unsigned AddrSpaceL = LCanPointeeTy.getAddressSpace();
+ unsigned AddrSpaceR = RCanPointeeTy.getAddressSpace();
+ CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
+ : CK_BitCast;
+ if (LHSIsNull && !RHSIsNull)
+ LHS = ImpCastExprToType(LHS.get(), RHSType, Kind);
+ else
+ RHS = ImpCastExprToType(RHS.get(), LHSType, Kind);
+ }
+ return ResultTy;
+ }
+
+ if (getLangOpts().CPlusPlus) {
+ // Comparison of nullptr_t with itself.
+ if (LHSType->isNullPtrType() && RHSType->isNullPtrType())
+ return ResultTy;
+
+ // Comparison of pointers with null pointer constants and equality
+ // comparisons of member pointers to null pointer constants.
+ if (RHSIsNull &&
+ ((LHSType->isAnyPointerType() || LHSType->isNullPtrType()) ||
+ (!IsRelational &&
+ (LHSType->isMemberPointerType() || LHSType->isBlockPointerType())))) {
+ RHS = ImpCastExprToType(RHS.get(), LHSType,
+ LHSType->isMemberPointerType()
+ ? CK_NullToMemberPointer
+ : CK_NullToPointer);
+ return ResultTy;
+ }
+ if (LHSIsNull &&
+ ((RHSType->isAnyPointerType() || RHSType->isNullPtrType()) ||
+ (!IsRelational &&
+ (RHSType->isMemberPointerType() || RHSType->isBlockPointerType())))) {
+ LHS = ImpCastExprToType(LHS.get(), RHSType,
+ RHSType->isMemberPointerType()
+ ? CK_NullToMemberPointer
+ : CK_NullToPointer);
+ return ResultTy;
+ }
+
+ // Comparison of member pointers.
+ if (!IsRelational &&
+ LHSType->isMemberPointerType() && RHSType->isMemberPointerType()) {
+ if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
+ return QualType();
+ else
+ return ResultTy;
+ }
+
+ // Handle scoped enumeration types specifically, since they don't promote
+ // to integers.
+ if (LHS.get()->getType()->isEnumeralType() &&
+ Context.hasSameUnqualifiedType(LHS.get()->getType(),
+ RHS.get()->getType()))
+ return ResultTy;
+ }
+
+ // Handle block pointer types.
+ if (!IsRelational && LHSType->isBlockPointerType() &&
+ RHSType->isBlockPointerType()) {
+ QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
+ QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
+
+ if (!LHSIsNull && !RHSIsNull &&
+ !Context.typesAreCompatible(lpointee, rpointee)) {
+ Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
+ << LHSType << RHSType << LHS.get()->getSourceRange()
+ << RHS.get()->getSourceRange();
+ }
+ RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
+ return ResultTy;
+ }
+
+ // Allow block pointers to be compared with null pointer constants.
+ if (!IsRelational
+ && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
+ || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
+ if (!LHSIsNull && !RHSIsNull) {
+ if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
+ ->getPointeeType()->isVoidType())
+ || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
+ ->getPointeeType()->isVoidType())))
+ Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
+ << LHSType << RHSType << LHS.get()->getSourceRange()
+ << RHS.get()->getSourceRange();
+ }
+ if (LHSIsNull && !RHSIsNull)
+ LHS = ImpCastExprToType(LHS.get(), RHSType,
+ RHSType->isPointerType() ? CK_BitCast
+ : CK_AnyPointerToBlockPointerCast);
+ else
+ RHS = ImpCastExprToType(RHS.get(), LHSType,
+ LHSType->isPointerType() ? CK_BitCast
+ : CK_AnyPointerToBlockPointerCast);
+ return ResultTy;
+ }
+
+ if (LHSType->isObjCObjectPointerType() ||
+ RHSType->isObjCObjectPointerType()) {
+ const PointerType *LPT = LHSType->getAs<PointerType>();
+ const PointerType *RPT = RHSType->getAs<PointerType>();
+ if (LPT || RPT) {
+ bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
+ bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
+
+ if (!LPtrToVoid && !RPtrToVoid &&
+ !Context.typesAreCompatible(LHSType, RHSType)) {
+ diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
+ /*isError*/false);
+ }
+ if (LHSIsNull && !RHSIsNull) {
+ Expr *E = LHS.get();
+ if (getLangOpts().ObjCAutoRefCount)
+ CheckObjCARCConversion(SourceRange(), RHSType, E, CCK_ImplicitConversion);
+ LHS = ImpCastExprToType(E, RHSType,
+ RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
+ }
+ else {
+ Expr *E = RHS.get();
+ if (getLangOpts().ObjCAutoRefCount)
+ CheckObjCARCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion, false,
+ Opc);
+ RHS = ImpCastExprToType(E, LHSType,
+ LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
+ }
+ return ResultTy;
+ }
+ if (LHSType->isObjCObjectPointerType() &&
+ RHSType->isObjCObjectPointerType()) {
+ if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
+ diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
+ /*isError*/false);
+ if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
+ diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
+
+ if (LHSIsNull && !RHSIsNull)
+ LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
+ else
+ RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
+ return ResultTy;
+ }
+ }
+ if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
+ (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
+ unsigned DiagID = 0;
+ bool isError = false;
+ if (LangOpts.DebuggerSupport) {
+ // Under a debugger, allow the comparison of pointers to integers,
+ // since users tend to want to compare addresses.
+ } else if ((LHSIsNull && LHSType->isIntegerType()) ||
+ (RHSIsNull && RHSType->isIntegerType())) {
+ if (IsRelational && !getLangOpts().CPlusPlus)
+ DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
+ } else if (IsRelational && !getLangOpts().CPlusPlus)
+ DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
+ else if (getLangOpts().CPlusPlus) {
+ DiagID = diag::err_typecheck_comparison_of_pointer_integer;
+ isError = true;
+ } else
+ DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
+
+ if (DiagID) {
+ Diag(Loc, DiagID)
+ << LHSType << RHSType << LHS.get()->getSourceRange()
+ << RHS.get()->getSourceRange();
+ if (isError)
+ return QualType();
+ }
+
+ if (LHSType->isIntegerType())
+ LHS = ImpCastExprToType(LHS.get(), RHSType,
+ LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
+ else
+ RHS = ImpCastExprToType(RHS.get(), LHSType,
+ RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
+ return ResultTy;
+ }
+
+ // Handle block pointers.
+ if (!IsRelational && RHSIsNull
+ && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
+ RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
+ return ResultTy;
+ }
+ if (!IsRelational && LHSIsNull
+ && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
+ LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
+ return ResultTy;
+ }
+
+ return InvalidOperands(Loc, LHS, RHS);
+}
+
+
+// Return a signed type that is of identical size and number of elements.
+// For floating point vectors, return an integer type of identical size
+// and number of elements.
+QualType Sema::GetSignedVectorType(QualType V) {
+ const VectorType *VTy = V->getAs<VectorType>();
+ unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
+ if (TypeSize == Context.getTypeSize(Context.CharTy))
+ return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
+ else if (TypeSize == Context.getTypeSize(Context.ShortTy))
+ return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
+ else if (TypeSize == Context.getTypeSize(Context.IntTy))
+ return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
+ else if (TypeSize == Context.getTypeSize(Context.LongTy))
+ return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
+ assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
+ "Unhandled vector element size in vector compare");
+ return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
+}
+
+/// CheckVectorCompareOperands - vector comparisons are a clang extension that
+/// operates on extended vector types. Instead of producing an IntTy result,
+/// like a scalar comparison, a vector comparison produces a vector of integer
+/// types.
+QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc,
+ bool IsRelational) {
+ // Check to make sure we're operating on vectors of the same type and width,
+ // Allowing one side to be a scalar of element type.
+ QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false);
+ if (vType.isNull())
+ return vType;
+
+ QualType LHSType = LHS.get()->getType();
+
+ // If AltiVec, the comparison results in a numeric type, i.e.
+ // bool for C++, int for C
+ if (vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
+ return Context.getLogicalOperationType();
+
+ // For non-floating point types, check for self-comparisons of the form
+ // x == x, x != x, x < x, etc. These always evaluate to a constant, and
+ // often indicate logic errors in the program.
+ if (!LHSType->hasFloatingRepresentation() &&
+ ActiveTemplateInstantiations.empty()) {
+ if (DeclRefExpr* DRL
+ = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParenImpCasts()))
+ if (DeclRefExpr* DRR
+ = dyn_cast<DeclRefExpr>(RHS.get()->IgnoreParenImpCasts()))
+ if (DRL->getDecl() == DRR->getDecl())
+ DiagRuntimeBehavior(Loc, nullptr,
+ PDiag(diag::warn_comparison_always)
+ << 0 // self-
+ << 2 // "a constant"
+ );
+ }
+
+ // Check for comparisons of floating point operands using != and ==.
+ if (!IsRelational && LHSType->hasFloatingRepresentation()) {
+ assert (RHS.get()->getType()->hasFloatingRepresentation());
+ CheckFloatComparison(Loc, LHS.get(), RHS.get());
+ }
+
+ // Return a signed type for the vector.
+ return GetSignedVectorType(LHSType);
+}
+
+QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc) {
+ // Ensure that either both operands are of the same vector type, or
+ // one operand is of a vector type and the other is of its element type.
+ QualType vType = CheckVectorOperands(LHS, RHS, Loc, false);
+ if (vType.isNull())
+ return InvalidOperands(Loc, LHS, RHS);
+ if (getLangOpts().OpenCL && getLangOpts().OpenCLVersion < 120 &&
+ vType->hasFloatingRepresentation())
+ return InvalidOperands(Loc, LHS, RHS);
+
+ return GetSignedVectorType(LHS.get()->getType());
+}
+
+inline QualType Sema::CheckBitwiseOperands(
+ ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
+ checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
+
+ if (LHS.get()->getType()->isVectorType() ||
+ RHS.get()->getType()->isVectorType()) {
+ if (LHS.get()->getType()->hasIntegerRepresentation() &&
+ RHS.get()->getType()->hasIntegerRepresentation())
+ return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
+
+ return InvalidOperands(Loc, LHS, RHS);
+ }
+
+ ExprResult LHSResult = LHS, RHSResult = RHS;
+ QualType compType = UsualArithmeticConversions(LHSResult, RHSResult,
+ IsCompAssign);
+ if (LHSResult.isInvalid() || RHSResult.isInvalid())
+ return QualType();
+ LHS = LHSResult.get();
+ RHS = RHSResult.get();
+
+ if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
+ return compType;
+ return InvalidOperands(Loc, LHS, RHS);
+}
+
+inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
+ ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc) {
+
+ // Check vector operands differently.
+ if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
+ return CheckVectorLogicalOperands(LHS, RHS, Loc);
+
+ // Diagnose cases where the user write a logical and/or but probably meant a
+ // bitwise one. We do this when the LHS is a non-bool integer and the RHS
+ // is a constant.
+ if (LHS.get()->getType()->isIntegerType() &&
+ !LHS.get()->getType()->isBooleanType() &&
+ RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
+ // Don't warn in macros or template instantiations.
+ !Loc.isMacroID() && ActiveTemplateInstantiations.empty()) {
+ // If the RHS can be constant folded, and if it constant folds to something
+ // that isn't 0 or 1 (which indicate a potential logical operation that
+ // happened to fold to true/false) then warn.
+ // Parens on the RHS are ignored.
+ llvm::APSInt Result;
+ if (RHS.get()->EvaluateAsInt(Result, Context))
+ if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType() &&
+ !RHS.get()->getExprLoc().isMacroID()) ||
+ (Result != 0 && Result != 1)) {
+ Diag(Loc, diag::warn_logical_instead_of_bitwise)
+ << RHS.get()->getSourceRange()
+ << (Opc == BO_LAnd ? "&&" : "||");
+ // Suggest replacing the logical operator with the bitwise version
+ Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
+ << (Opc == BO_LAnd ? "&" : "|")
+ << FixItHint::CreateReplacement(SourceRange(
+ Loc, Lexer::getLocForEndOfToken(Loc, 0, getSourceManager(),
+ getLangOpts())),
+ Opc == BO_LAnd ? "&" : "|");
+ if (Opc == BO_LAnd)
+ // Suggest replacing "Foo() && kNonZero" with "Foo()"
+ Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
+ << FixItHint::CreateRemoval(
+ SourceRange(
+ Lexer::getLocForEndOfToken(LHS.get()->getLocEnd(),
+ 0, getSourceManager(),
+ getLangOpts()),
+ RHS.get()->getLocEnd()));
+ }
+ }
+
+ if (!Context.getLangOpts().CPlusPlus) {
+ // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
+ // not operate on the built-in scalar and vector float types.
+ if (Context.getLangOpts().OpenCL &&
+ Context.getLangOpts().OpenCLVersion < 120) {
+ if (LHS.get()->getType()->isFloatingType() ||
+ RHS.get()->getType()->isFloatingType())
+ return InvalidOperands(Loc, LHS, RHS);
+ }
+
+ LHS = UsualUnaryConversions(LHS.get());
+ if (LHS.isInvalid())
+ return QualType();
+
+ RHS = UsualUnaryConversions(RHS.get());
+ if (RHS.isInvalid())
+ return QualType();
+
+ if (!LHS.get()->getType()->isScalarType() ||
+ !RHS.get()->getType()->isScalarType())
+ return InvalidOperands(Loc, LHS, RHS);
+
+ return Context.IntTy;
+ }
+
+ // The following is safe because we only use this method for
+ // non-overloadable operands.
+
+ // C++ [expr.log.and]p1
+ // C++ [expr.log.or]p1
+ // The operands are both contextually converted to type bool.
+ ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
+ if (LHSRes.isInvalid())
+ return InvalidOperands(Loc, LHS, RHS);
+ LHS = LHSRes;
+
+ ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
+ if (RHSRes.isInvalid())
+ return InvalidOperands(Loc, LHS, RHS);
+ RHS = RHSRes;
+
+ // C++ [expr.log.and]p2
+ // C++ [expr.log.or]p2
+ // The result is a bool.
+ return Context.BoolTy;
+}
+
+static bool IsReadonlyMessage(Expr *E, Sema &S) {
+ const MemberExpr *ME = dyn_cast<MemberExpr>(E);
+ if (!ME) return false;
+ if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
+ ObjCMessageExpr *Base =
+ dyn_cast<ObjCMessageExpr>(ME->getBase()->IgnoreParenImpCasts());
+ if (!Base) return false;
+ return Base->getMethodDecl() != nullptr;
+}
+
+/// Is the given expression (which must be 'const') a reference to a
+/// variable which was originally non-const, but which has become
+/// 'const' due to being captured within a block?
+enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
+static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
+ assert(E->isLValue() && E->getType().isConstQualified());
+ E = E->IgnoreParens();
+
+ // Must be a reference to a declaration from an enclosing scope.
+ DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
+ if (!DRE) return NCCK_None;
+ if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
+
+ // The declaration must be a variable which is not declared 'const'.
+ VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
+ if (!var) return NCCK_None;
+ if (var->getType().isConstQualified()) return NCCK_None;
+ assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
+
+ // Decide whether the first capture was for a block or a lambda.
+ DeclContext *DC = S.CurContext, *Prev = nullptr;
+ while (DC != var->getDeclContext()) {
+ Prev = DC;
+ DC = DC->getParent();
+ }
+ // Unless we have an init-capture, we've gone one step too far.
+ if (!var->isInitCapture())
+ DC = Prev;
+ return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
+}
+
+static bool IsTypeModifiable(QualType Ty, bool IsDereference) {
+ Ty = Ty.getNonReferenceType();
+ if (IsDereference && Ty->isPointerType())
+ Ty = Ty->getPointeeType();
+ return !Ty.isConstQualified();
+}
+
+/// Emit the "read-only variable not assignable" error and print notes to give
+/// more information about why the variable is not assignable, such as pointing
+/// to the declaration of a const variable, showing that a method is const, or
+/// that the function is returning a const reference.
+static void DiagnoseConstAssignment(Sema &S, const Expr *E,
+ SourceLocation Loc) {
+ // Update err_typecheck_assign_const and note_typecheck_assign_const
+ // when this enum is changed.
+ enum {
+ ConstFunction,
+ ConstVariable,
+ ConstMember,
+ ConstMethod,
+ ConstUnknown, // Keep as last element
+ };
+
+ SourceRange ExprRange = E->getSourceRange();
+
+ // Only emit one error on the first const found. All other consts will emit
+ // a note to the error.
+ bool DiagnosticEmitted = false;
+
+ // Track if the current expression is the result of a derefence, and if the
+ // next checked expression is the result of a derefence.
+ bool IsDereference = false;
+ bool NextIsDereference = false;
+
+ // Loop to process MemberExpr chains.
+ while (true) {
+ IsDereference = NextIsDereference;
+ NextIsDereference = false;
+
+ E = E->IgnoreParenImpCasts();
+ if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
+ NextIsDereference = ME->isArrow();
+ const ValueDecl *VD = ME->getMemberDecl();
+ if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
+ // Mutable fields can be modified even if the class is const.
+ if (Field->isMutable()) {
+ assert(DiagnosticEmitted && "Expected diagnostic not emitted.");
+ break;
+ }
+
+ if (!IsTypeModifiable(Field->getType(), IsDereference)) {
+ if (!DiagnosticEmitted) {
+ S.Diag(Loc, diag::err_typecheck_assign_const)
+ << ExprRange << ConstMember << false /*static*/ << Field
+ << Field->getType();
+ DiagnosticEmitted = true;
+ }
+ S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
+ << ConstMember << false /*static*/ << Field << Field->getType()
+ << Field->getSourceRange();
+ }
+ E = ME->getBase();
+ continue;
+ } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) {
+ if (VDecl->getType().isConstQualified()) {
+ if (!DiagnosticEmitted) {
+ S.Diag(Loc, diag::err_typecheck_assign_const)
+ << ExprRange << ConstMember << true /*static*/ << VDecl
+ << VDecl->getType();
+ DiagnosticEmitted = true;
+ }
+ S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
+ << ConstMember << true /*static*/ << VDecl << VDecl->getType()
+ << VDecl->getSourceRange();
+ }
+ // Static fields do not inherit constness from parents.
+ break;
+ }
+ break;
+ } // End MemberExpr
+ break;
+ }
+
+ if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
+ // Function calls
+ const FunctionDecl *FD = CE->getDirectCallee();
+ if (!IsTypeModifiable(FD->getReturnType(), IsDereference)) {
+ if (!DiagnosticEmitted) {
+ S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
+ << ConstFunction << FD;
+ DiagnosticEmitted = true;
+ }
+ S.Diag(FD->getReturnTypeSourceRange().getBegin(),
+ diag::note_typecheck_assign_const)
+ << ConstFunction << FD << FD->getReturnType()
+ << FD->getReturnTypeSourceRange();
+ }
+ } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
+ // Point to variable declaration.
+ if (const ValueDecl *VD = DRE->getDecl()) {
+ if (!IsTypeModifiable(VD->getType(), IsDereference)) {
+ if (!DiagnosticEmitted) {
+ S.Diag(Loc, diag::err_typecheck_assign_const)
+ << ExprRange << ConstVariable << VD << VD->getType();
+ DiagnosticEmitted = true;
+ }
+ S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
+ << ConstVariable << VD << VD->getType() << VD->getSourceRange();
+ }
+ }
+ } else if (isa<CXXThisExpr>(E)) {
+ if (const DeclContext *DC = S.getFunctionLevelDeclContext()) {
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
+ if (MD->isConst()) {
+ if (!DiagnosticEmitted) {
+ S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
+ << ConstMethod << MD;
+ DiagnosticEmitted = true;
+ }
+ S.Diag(MD->getLocation(), diag::note_typecheck_assign_const)
+ << ConstMethod << MD << MD->getSourceRange();
+ }
+ }
+ }
+ }
+
+ if (DiagnosticEmitted)
+ return;
+
+ // Can't determine a more specific message, so display the generic error.
+ S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown;
+}
+
+/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
+/// emit an error and return true. If so, return false.
+static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
+ assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
+ SourceLocation OrigLoc = Loc;
+ Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
+ &Loc);
+ if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
+ IsLV = Expr::MLV_InvalidMessageExpression;
+ if (IsLV == Expr::MLV_Valid)
+ return false;
+
+ unsigned DiagID = 0;
+ bool NeedType = false;
+ switch (IsLV) { // C99 6.5.16p2
+ case Expr::MLV_ConstQualified:
+ // Use a specialized diagnostic when we're assigning to an object
+ // from an enclosing function or block.
+ if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
+ if (NCCK == NCCK_Block)
+ DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
+ else
+ DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
+ break;
+ }
+
+ // In ARC, use some specialized diagnostics for occasions where we
+ // infer 'const'. These are always pseudo-strong variables.
+ if (S.getLangOpts().ObjCAutoRefCount) {
+ DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
+ if (declRef && isa<VarDecl>(declRef->getDecl())) {
+ VarDecl *var = cast<VarDecl>(declRef->getDecl());
+
+ // Use the normal diagnostic if it's pseudo-__strong but the
+ // user actually wrote 'const'.
+ if (var->isARCPseudoStrong() &&
+ (!var->getTypeSourceInfo() ||
+ !var->getTypeSourceInfo()->getType().isConstQualified())) {
+ // There are two pseudo-strong cases:
+ // - self
+ ObjCMethodDecl *method = S.getCurMethodDecl();
+ if (method && var == method->getSelfDecl())
+ DiagID = method->isClassMethod()
+ ? diag::err_typecheck_arc_assign_self_class_method
+ : diag::err_typecheck_arc_assign_self;
+
+ // - fast enumeration variables
+ else
+ DiagID = diag::err_typecheck_arr_assign_enumeration;
+
+ SourceRange Assign;
+ if (Loc != OrigLoc)
+ Assign = SourceRange(OrigLoc, OrigLoc);
+ S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
+ // We need to preserve the AST regardless, so migration tool
+ // can do its job.
+ return false;
+ }
+ }
+ }
+
+ // If none of the special cases above are triggered, then this is a
+ // simple const assignment.
+ if (DiagID == 0) {
+ DiagnoseConstAssignment(S, E, Loc);
+ return true;
+ }
+
+ break;
+ case Expr::MLV_ConstAddrSpace:
+ DiagnoseConstAssignment(S, E, Loc);
+ return true;
+ case Expr::MLV_ArrayType:
+ case Expr::MLV_ArrayTemporary:
+ DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
+ NeedType = true;
+ break;
+ case Expr::MLV_NotObjectType:
+ DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
+ NeedType = true;
+ break;
+ case Expr::MLV_LValueCast:
+ DiagID = diag::err_typecheck_lvalue_casts_not_supported;
+ break;
+ case Expr::MLV_Valid:
+ llvm_unreachable("did not take early return for MLV_Valid");
+ case Expr::MLV_InvalidExpression:
+ case Expr::MLV_MemberFunction:
+ case Expr::MLV_ClassTemporary:
+ DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
+ break;
+ case Expr::MLV_IncompleteType:
+ case Expr::MLV_IncompleteVoidType:
+ return S.RequireCompleteType(Loc, E->getType(),
+ diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
+ case Expr::MLV_DuplicateVectorComponents:
+ DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
+ break;
+ case Expr::MLV_NoSetterProperty:
+ llvm_unreachable("readonly properties should be processed differently");
+ case Expr::MLV_InvalidMessageExpression:
+ DiagID = diag::error_readonly_message_assignment;
+ break;
+ case Expr::MLV_SubObjCPropertySetting:
+ DiagID = diag::error_no_subobject_property_setting;
+ break;
+ }
+
+ SourceRange Assign;
+ if (Loc != OrigLoc)
+ Assign = SourceRange(OrigLoc, OrigLoc);
+ if (NeedType)
+ S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
+ else
+ S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
+ return true;
+}
+
+static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
+ SourceLocation Loc,
+ Sema &Sema) {
+ // C / C++ fields
+ MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
+ MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
+ if (ML && MR && ML->getMemberDecl() == MR->getMemberDecl()) {
+ if (isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase()))
+ Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
+ }
+
+ // Objective-C instance variables
+ ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
+ ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
+ if (OL && OR && OL->getDecl() == OR->getDecl()) {
+ DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
+ DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
+ if (RL && RR && RL->getDecl() == RR->getDecl())
+ Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
+ }
+}
+
+// C99 6.5.16.1
+QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
+ SourceLocation Loc,
+ QualType CompoundType) {
+ assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
+
+ // Verify that LHS is a modifiable lvalue, and emit error if not.
+ if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
+ return QualType();
+
+ QualType LHSType = LHSExpr->getType();
+ QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
+ CompoundType;
+ AssignConvertType ConvTy;
+ if (CompoundType.isNull()) {
+ Expr *RHSCheck = RHS.get();
+
+ CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
+
+ QualType LHSTy(LHSType);
+ ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
+ if (RHS.isInvalid())
+ return QualType();
+ // Special case of NSObject attributes on c-style pointer types.
+ if (ConvTy == IncompatiblePointer &&
+ ((Context.isObjCNSObjectType(LHSType) &&
+ RHSType->isObjCObjectPointerType()) ||
+ (Context.isObjCNSObjectType(RHSType) &&
+ LHSType->isObjCObjectPointerType())))
+ ConvTy = Compatible;
+
+ if (ConvTy == Compatible &&
+ LHSType->isObjCObjectType())
+ Diag(Loc, diag::err_objc_object_assignment)
+ << LHSType;
+
+ // If the RHS is a unary plus or minus, check to see if they = and + are
+ // right next to each other. If so, the user may have typo'd "x =+ 4"
+ // instead of "x += 4".
+ if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
+ RHSCheck = ICE->getSubExpr();
+ if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
+ if ((UO->getOpcode() == UO_Plus ||
+ UO->getOpcode() == UO_Minus) &&
+ Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
+ // Only if the two operators are exactly adjacent.
+ Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
+ // And there is a space or other character before the subexpr of the
+ // unary +/-. We don't want to warn on "x=-1".
+ Loc.getLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
+ UO->getSubExpr()->getLocStart().isFileID()) {
+ Diag(Loc, diag::warn_not_compound_assign)
+ << (UO->getOpcode() == UO_Plus ? "+" : "-")
+ << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
+ }
+ }
+
+ if (ConvTy == Compatible) {
+ if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
+ // Warn about retain cycles where a block captures the LHS, but
+ // not if the LHS is a simple variable into which the block is
+ // being stored...unless that variable can be captured by reference!
+ const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
+ const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
+ if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
+ checkRetainCycles(LHSExpr, RHS.get());
+
+ // It is safe to assign a weak reference into a strong variable.
+ // Although this code can still have problems:
+ // id x = self.weakProp;
+ // id y = self.weakProp;
+ // we do not warn to warn spuriously when 'x' and 'y' are on separate
+ // paths through the function. This should be revisited if
+ // -Wrepeated-use-of-weak is made flow-sensitive.
+ if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
+ RHS.get()->getLocStart()))
+ getCurFunction()->markSafeWeakUse(RHS.get());
+
+ } else if (getLangOpts().ObjCAutoRefCount) {
+ checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
+ }
+ }
+ } else {
+ // Compound assignment "x += y"
+ ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
+ }
+
+ if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
+ RHS.get(), AA_Assigning))
+ return QualType();
+
+ CheckForNullPointerDereference(*this, LHSExpr);
+
+ // C99 6.5.16p3: The type of an assignment expression is the type of the
+ // left operand unless the left operand has qualified type, in which case
+ // it is the unqualified version of the type of the left operand.
+ // C99 6.5.16.1p2: In simple assignment, the value of the right operand
+ // is converted to the type of the assignment expression (above).
+ // C++ 5.17p1: the type of the assignment expression is that of its left
+ // operand.
+ return (getLangOpts().CPlusPlus
+ ? LHSType : LHSType.getUnqualifiedType());
+}
+
+// C99 6.5.17
+static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc) {
+ LHS = S.CheckPlaceholderExpr(LHS.get());
+ RHS = S.CheckPlaceholderExpr(RHS.get());
+ if (LHS.isInvalid() || RHS.isInvalid())
+ return QualType();
+
+ // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
+ // operands, but not unary promotions.
+ // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
+
+ // So we treat the LHS as a ignored value, and in C++ we allow the
+ // containing site to determine what should be done with the RHS.
+ LHS = S.IgnoredValueConversions(LHS.get());
+ if (LHS.isInvalid())
+ return QualType();
+
+ S.DiagnoseUnusedExprResult(LHS.get());
+
+ if (!S.getLangOpts().CPlusPlus) {
+ RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
+ if (RHS.isInvalid())
+ return QualType();
+ if (!RHS.get()->getType()->isVoidType())
+ S.RequireCompleteType(Loc, RHS.get()->getType(),
+ diag::err_incomplete_type);
+ }
+
+ return RHS.get()->getType();
+}
+
+/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
+/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
+static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
+ ExprValueKind &VK,
+ ExprObjectKind &OK,
+ SourceLocation OpLoc,
+ bool IsInc, bool IsPrefix) {
+ if (Op->isTypeDependent())
+ return S.Context.DependentTy;
+
+ QualType ResType = Op->getType();
+ // Atomic types can be used for increment / decrement where the non-atomic
+ // versions can, so ignore the _Atomic() specifier for the purpose of
+ // checking.
+ if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
+ ResType = ResAtomicType->getValueType();
+
+ assert(!ResType.isNull() && "no type for increment/decrement expression");
+
+ if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
+ // Decrement of bool is not allowed.
+ if (!IsInc) {
+ S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
+ return QualType();
+ }
+ // Increment of bool sets it to true, but is deprecated.
+ S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
+ } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
+ // Error on enum increments and decrements in C++ mode
+ S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
+ return QualType();
+ } else if (ResType->isRealType()) {
+ // OK!
+ } else if (ResType->isPointerType()) {
+ // C99 6.5.2.4p2, 6.5.6p2
+ if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
+ return QualType();
+ } else if (ResType->isObjCObjectPointerType()) {
+ // On modern runtimes, ObjC pointer arithmetic is forbidden.
+ // Otherwise, we just need a complete type.
+ if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
+ checkArithmeticOnObjCPointer(S, OpLoc, Op))
+ return QualType();
+ } else if (ResType->isAnyComplexType()) {
+ // C99 does not support ++/-- on complex types, we allow as an extension.
+ S.Diag(OpLoc, diag::ext_integer_increment_complex)
+ << ResType << Op->getSourceRange();
+ } else if (ResType->isPlaceholderType()) {
+ ExprResult PR = S.CheckPlaceholderExpr(Op);
+ if (PR.isInvalid()) return QualType();
+ return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc,
+ IsInc, IsPrefix);
+ } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
+ // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
+ } else if(S.getLangOpts().OpenCL && ResType->isVectorType() &&
+ ResType->getAs<VectorType>()->getElementType()->isIntegerType()) {
+ // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
+ } else {
+ S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
+ << ResType << int(IsInc) << Op->getSourceRange();
+ return QualType();
+ }
+ // At this point, we know we have a real, complex or pointer type.
+ // Now make sure the operand is a modifiable lvalue.
+ if (CheckForModifiableLvalue(Op, OpLoc, S))
+ return QualType();
+ // In C++, a prefix increment is the same type as the operand. Otherwise
+ // (in C or with postfix), the increment is the unqualified type of the
+ // operand.
+ if (IsPrefix && S.getLangOpts().CPlusPlus) {
+ VK = VK_LValue;
+ OK = Op->getObjectKind();
+ return ResType;
+ } else {
+ VK = VK_RValue;
+ return ResType.getUnqualifiedType();
+ }
+}
+
+
+/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
+/// This routine allows us to typecheck complex/recursive expressions
+/// where the declaration is needed for type checking. We only need to
+/// handle cases when the expression references a function designator
+/// or is an lvalue. Here are some examples:
+/// - &(x) => x
+/// - &*****f => f for f a function designator.
+/// - &s.xx => s
+/// - &s.zz[1].yy -> s, if zz is an array
+/// - *(x + 1) -> x, if x is an array
+/// - &"123"[2] -> 0
+/// - & __real__ x -> x
+static ValueDecl *getPrimaryDecl(Expr *E) {
+ switch (E->getStmtClass()) {
+ case Stmt::DeclRefExprClass:
+ return cast<DeclRefExpr>(E)->getDecl();
+ case Stmt::MemberExprClass:
+ // If this is an arrow operator, the address is an offset from
+ // the base's value, so the object the base refers to is
+ // irrelevant.
+ if (cast<MemberExpr>(E)->isArrow())
+ return nullptr;
+ // Otherwise, the expression refers to a part of the base
+ return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
+ case Stmt::ArraySubscriptExprClass: {
+ // FIXME: This code shouldn't be necessary! We should catch the implicit
+ // promotion of register arrays earlier.
+ Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
+ if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
+ if (ICE->getSubExpr()->getType()->isArrayType())
+ return getPrimaryDecl(ICE->getSubExpr());
+ }
+ return nullptr;
+ }
+ case Stmt::UnaryOperatorClass: {
+ UnaryOperator *UO = cast<UnaryOperator>(E);
+
+ switch(UO->getOpcode()) {
+ case UO_Real:
+ case UO_Imag:
+ case UO_Extension:
+ return getPrimaryDecl(UO->getSubExpr());
+ default:
+ return nullptr;
+ }
+ }
+ case Stmt::ParenExprClass:
+ return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
+ case Stmt::ImplicitCastExprClass:
+ // If the result of an implicit cast is an l-value, we care about
+ // the sub-expression; otherwise, the result here doesn't matter.
+ return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
+ default:
+ return nullptr;
+ }
+}
+
+namespace {
+ enum {
+ AO_Bit_Field = 0,
+ AO_Vector_Element = 1,
+ AO_Property_Expansion = 2,
+ AO_Register_Variable = 3,
+ AO_No_Error = 4
+ };
+}
+/// \brief Diagnose invalid operand for address of operations.
+///
+/// \param Type The type of operand which cannot have its address taken.
+static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
+ Expr *E, unsigned Type) {
+ S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
+}
+
+/// CheckAddressOfOperand - The operand of & must be either a function
+/// designator or an lvalue designating an object. If it is an lvalue, the
+/// object cannot be declared with storage class register or be a bit field.
+/// Note: The usual conversions are *not* applied to the operand of the &
+/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
+/// In C++, the operand might be an overloaded function name, in which case
+/// we allow the '&' but retain the overloaded-function type.
+QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
+ if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
+ if (PTy->getKind() == BuiltinType::Overload) {
+ Expr *E = OrigOp.get()->IgnoreParens();
+ if (!isa<OverloadExpr>(E)) {
+ assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
+ Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
+ << OrigOp.get()->getSourceRange();
+ return QualType();
+ }
+
+ OverloadExpr *Ovl = cast<OverloadExpr>(E);
+ if (isa<UnresolvedMemberExpr>(Ovl))
+ if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
+ Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
+ << OrigOp.get()->getSourceRange();
+ return QualType();
+ }
+
+ return Context.OverloadTy;
+ }
+
+ if (PTy->getKind() == BuiltinType::UnknownAny)
+ return Context.UnknownAnyTy;
+
+ if (PTy->getKind() == BuiltinType::BoundMember) {
+ Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
+ << OrigOp.get()->getSourceRange();
+ return QualType();
+ }
+
+ OrigOp = CheckPlaceholderExpr(OrigOp.get());
+ if (OrigOp.isInvalid()) return QualType();
+ }
+
+ if (OrigOp.get()->isTypeDependent())
+ return Context.DependentTy;
+
+ assert(!OrigOp.get()->getType()->isPlaceholderType());
+
+ // Make sure to ignore parentheses in subsequent checks
+ Expr *op = OrigOp.get()->IgnoreParens();
+
+ // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
+ if (LangOpts.OpenCL && op->getType()->isFunctionType()) {
+ Diag(op->getExprLoc(), diag::err_opencl_taking_function_address);
+ return QualType();
+ }
+
+ if (getLangOpts().C99) {
+ // Implement C99-only parts of addressof rules.
+ if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
+ if (uOp->getOpcode() == UO_Deref)
+ // Per C99 6.5.3.2, the address of a deref always returns a valid result
+ // (assuming the deref expression is valid).
+ return uOp->getSubExpr()->getType();
+ }
+ // Technically, there should be a check for array subscript
+ // expressions here, but the result of one is always an lvalue anyway.
+ }
+ ValueDecl *dcl = getPrimaryDecl(op);
+ Expr::LValueClassification lval = op->ClassifyLValue(Context);
+ unsigned AddressOfError = AO_No_Error;
+
+ if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
+ bool sfinae = (bool)isSFINAEContext();
+ Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
+ : diag::ext_typecheck_addrof_temporary)
+ << op->getType() << op->getSourceRange();
+ if (sfinae)
+ return QualType();
+ // Materialize the temporary as an lvalue so that we can take its address.
+ OrigOp = op = new (Context)
+ MaterializeTemporaryExpr(op->getType(), OrigOp.get(), true);
+ } else if (isa<ObjCSelectorExpr>(op)) {
+ return Context.getPointerType(op->getType());
+ } else if (lval == Expr::LV_MemberFunction) {
+ // If it's an instance method, make a member pointer.
+ // The expression must have exactly the form &A::foo.
+
+ // If the underlying expression isn't a decl ref, give up.
+ if (!isa<DeclRefExpr>(op)) {
+ Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
+ << OrigOp.get()->getSourceRange();
+ return QualType();
+ }
+ DeclRefExpr *DRE = cast<DeclRefExpr>(op);
+ CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
+
+ // The id-expression was parenthesized.
+ if (OrigOp.get() != DRE) {
+ Diag(OpLoc, diag::err_parens_pointer_member_function)
+ << OrigOp.get()->getSourceRange();
+
+ // The method was named without a qualifier.
+ } else if (!DRE->getQualifier()) {
+ if (MD->getParent()->getName().empty())
+ Diag(OpLoc, diag::err_unqualified_pointer_member_function)
+ << op->getSourceRange();
+ else {
+ SmallString<32> Str;
+ StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
+ Diag(OpLoc, diag::err_unqualified_pointer_member_function)
+ << op->getSourceRange()
+ << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual);
+ }
+ }
+
+ // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
+ if (isa<CXXDestructorDecl>(MD))
+ Diag(OpLoc, diag::err_typecheck_addrof_dtor) << op->getSourceRange();
+
+ QualType MPTy = Context.getMemberPointerType(
+ op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr());
+ if (Context.getTargetInfo().getCXXABI().isMicrosoft())
+ RequireCompleteType(OpLoc, MPTy, 0);
+ return MPTy;
+ } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
+ // C99 6.5.3.2p1
+ // The operand must be either an l-value or a function designator
+ if (!op->getType()->isFunctionType()) {
+ // Use a special diagnostic for loads from property references.
+ if (isa<PseudoObjectExpr>(op)) {
+ AddressOfError = AO_Property_Expansion;
+ } else {
+ Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
+ << op->getType() << op->getSourceRange();
+ return QualType();
+ }
+ }
+ } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
+ // The operand cannot be a bit-field
+ AddressOfError = AO_Bit_Field;
+ } else if (op->getObjectKind() == OK_VectorComponent) {
+ // The operand cannot be an element of a vector
+ AddressOfError = AO_Vector_Element;
+ } else if (dcl) { // C99 6.5.3.2p1
+ // We have an lvalue with a decl. Make sure the decl is not declared
+ // with the register storage-class specifier.
+ if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
+ // in C++ it is not error to take address of a register
+ // variable (c++03 7.1.1P3)
+ if (vd->getStorageClass() == SC_Register &&
+ !getLangOpts().CPlusPlus) {
+ AddressOfError = AO_Register_Variable;
+ }
+ } else if (isa<MSPropertyDecl>(dcl)) {
+ AddressOfError = AO_Property_Expansion;
+ } else if (isa<FunctionTemplateDecl>(dcl)) {
+ return Context.OverloadTy;
+ } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
+ // Okay: we can take the address of a field.
+ // Could be a pointer to member, though, if there is an explicit
+ // scope qualifier for the class.
+ if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
+ DeclContext *Ctx = dcl->getDeclContext();
+ if (Ctx && Ctx->isRecord()) {
+ if (dcl->getType()->isReferenceType()) {
+ Diag(OpLoc,
+ diag::err_cannot_form_pointer_to_member_of_reference_type)
+ << dcl->getDeclName() << dcl->getType();
+ return QualType();
+ }
+
+ while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
+ Ctx = Ctx->getParent();
+
+ QualType MPTy = Context.getMemberPointerType(
+ op->getType(),
+ Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
+ if (Context.getTargetInfo().getCXXABI().isMicrosoft())
+ RequireCompleteType(OpLoc, MPTy, 0);
+ return MPTy;
+ }
+ }
+ } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl))
+ llvm_unreachable("Unknown/unexpected decl type");
+ }
+
+ if (AddressOfError != AO_No_Error) {
+ diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
+ return QualType();
+ }
+
+ if (lval == Expr::LV_IncompleteVoidType) {
+ // Taking the address of a void variable is technically illegal, but we
+ // allow it in cases which are otherwise valid.
+ // Example: "extern void x; void* y = &x;".
+ Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
+ }
+
+ // If the operand has type "type", the result has type "pointer to type".
+ if (op->getType()->isObjCObjectType())
+ return Context.getObjCObjectPointerType(op->getType());
+ return Context.getPointerType(op->getType());
+}
+
+static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
+ const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp);
+ if (!DRE)
+ return;
+ const Decl *D = DRE->getDecl();
+ if (!D)
+ return;
+ const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D);
+ if (!Param)
+ return;
+ if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext()))
+ if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
+ return;
+ if (FunctionScopeInfo *FD = S.getCurFunction())
+ if (!FD->ModifiedNonNullParams.count(Param))
+ FD->ModifiedNonNullParams.insert(Param);
+}
+
+/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
+static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
+ SourceLocation OpLoc) {
+ if (Op->isTypeDependent())
+ return S.Context.DependentTy;
+
+ ExprResult ConvResult = S.UsualUnaryConversions(Op);
+ if (ConvResult.isInvalid())
+ return QualType();
+ Op = ConvResult.get();
+ QualType OpTy = Op->getType();
+ QualType Result;
+
+ if (isa<CXXReinterpretCastExpr>(Op)) {
+ QualType OpOrigType = Op->IgnoreParenCasts()->getType();
+ S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
+ Op->getSourceRange());
+ }
+
+ if (const PointerType *PT = OpTy->getAs<PointerType>())
+ Result = PT->getPointeeType();
+ else if (const ObjCObjectPointerType *OPT =
+ OpTy->getAs<ObjCObjectPointerType>())
+ Result = OPT->getPointeeType();
+ else {
+ ExprResult PR = S.CheckPlaceholderExpr(Op);
+ if (PR.isInvalid()) return QualType();
+ if (PR.get() != Op)
+ return CheckIndirectionOperand(S, PR.get(), VK, OpLoc);
+ }
+
+ if (Result.isNull()) {
+ S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
+ << OpTy << Op->getSourceRange();
+ return QualType();
+ }
+
+ // Note that per both C89 and C99, indirection is always legal, even if Result
+ // is an incomplete type or void. It would be possible to warn about
+ // dereferencing a void pointer, but it's completely well-defined, and such a
+ // warning is unlikely to catch any mistakes. In C++, indirection is not valid
+ // for pointers to 'void' but is fine for any other pointer type:
+ //
+ // C++ [expr.unary.op]p1:
+ // [...] the expression to which [the unary * operator] is applied shall
+ // be a pointer to an object type, or a pointer to a function type
+ if (S.getLangOpts().CPlusPlus && Result->isVoidType())
+ S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
+ << OpTy << Op->getSourceRange();
+
+ // Dereferences are usually l-values...
+ VK = VK_LValue;
+
+ // ...except that certain expressions are never l-values in C.
+ if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
+ VK = VK_RValue;
+
+ return Result;
+}
+
+BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
+ BinaryOperatorKind Opc;
+ switch (Kind) {
+ default: llvm_unreachable("Unknown binop!");
+ case tok::periodstar: Opc = BO_PtrMemD; break;
+ case tok::arrowstar: Opc = BO_PtrMemI; break;
+ case tok::star: Opc = BO_Mul; break;
+ case tok::slash: Opc = BO_Div; break;
+ case tok::percent: Opc = BO_Rem; break;
+ case tok::plus: Opc = BO_Add; break;
+ case tok::minus: Opc = BO_Sub; break;
+ case tok::lessless: Opc = BO_Shl; break;
+ case tok::greatergreater: Opc = BO_Shr; break;
+ case tok::lessequal: Opc = BO_LE; break;
+ case tok::less: Opc = BO_LT; break;
+ case tok::greaterequal: Opc = BO_GE; break;
+ case tok::greater: Opc = BO_GT; break;
+ case tok::exclaimequal: Opc = BO_NE; break;
+ case tok::equalequal: Opc = BO_EQ; break;
+ case tok::amp: Opc = BO_And; break;
+ case tok::caret: Opc = BO_Xor; break;
+ case tok::pipe: Opc = BO_Or; break;
+ case tok::ampamp: Opc = BO_LAnd; break;
+ case tok::pipepipe: Opc = BO_LOr; break;
+ case tok::equal: Opc = BO_Assign; break;
+ case tok::starequal: Opc = BO_MulAssign; break;
+ case tok::slashequal: Opc = BO_DivAssign; break;
+ case tok::percentequal: Opc = BO_RemAssign; break;
+ case tok::plusequal: Opc = BO_AddAssign; break;
+ case tok::minusequal: Opc = BO_SubAssign; break;
+ case tok::lesslessequal: Opc = BO_ShlAssign; break;
+ case tok::greatergreaterequal: Opc = BO_ShrAssign; break;
+ case tok::ampequal: Opc = BO_AndAssign; break;
+ case tok::caretequal: Opc = BO_XorAssign; break;
+ case tok::pipeequal: Opc = BO_OrAssign; break;
+ case tok::comma: Opc = BO_Comma; break;
+ }
+ return Opc;
+}
+
+static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
+ tok::TokenKind Kind) {
+ UnaryOperatorKind Opc;
+ switch (Kind) {
+ default: llvm_unreachable("Unknown unary op!");
+ case tok::plusplus: Opc = UO_PreInc; break;
+ case tok::minusminus: Opc = UO_PreDec; break;
+ case tok::amp: Opc = UO_AddrOf; break;
+ case tok::star: Opc = UO_Deref; break;
+ case tok::plus: Opc = UO_Plus; break;
+ case tok::minus: Opc = UO_Minus; break;
+ case tok::tilde: Opc = UO_Not; break;
+ case tok::exclaim: Opc = UO_LNot; break;
+ case tok::kw___real: Opc = UO_Real; break;
+ case tok::kw___imag: Opc = UO_Imag; break;
+ case tok::kw___extension__: Opc = UO_Extension; break;
+ }
+ return Opc;
+}
+
+/// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
+/// This warning is only emitted for builtin assignment operations. It is also
+/// suppressed in the event of macro expansions.
+static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
+ SourceLocation OpLoc) {
+ if (!S.ActiveTemplateInstantiations.empty())
+ return;
+ if (OpLoc.isInvalid() || OpLoc.isMacroID())
+ return;
+ LHSExpr = LHSExpr->IgnoreParenImpCasts();
+ RHSExpr = RHSExpr->IgnoreParenImpCasts();
+ const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
+ const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
+ if (!LHSDeclRef || !RHSDeclRef ||
+ LHSDeclRef->getLocation().isMacroID() ||
+ RHSDeclRef->getLocation().isMacroID())
+ return;
+ const ValueDecl *LHSDecl =
+ cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
+ const ValueDecl *RHSDecl =
+ cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
+ if (LHSDecl != RHSDecl)
+ return;
+ if (LHSDecl->getType().isVolatileQualified())
+ return;
+ if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
+ if (RefTy->getPointeeType().isVolatileQualified())
+ return;
+
+ S.Diag(OpLoc, diag::warn_self_assignment)
+ << LHSDeclRef->getType()
+ << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
+}
+
+/// Check if a bitwise-& is performed on an Objective-C pointer. This
+/// is usually indicative of introspection within the Objective-C pointer.
+static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
+ SourceLocation OpLoc) {
+ if (!S.getLangOpts().ObjC1)
+ return;
+
+ const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
+ const Expr *LHS = L.get();
+ const Expr *RHS = R.get();
+
+ if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
+ ObjCPointerExpr = LHS;
+ OtherExpr = RHS;
+ }
+ else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
+ ObjCPointerExpr = RHS;
+ OtherExpr = LHS;
+ }
+
+ // This warning is deliberately made very specific to reduce false
+ // positives with logic that uses '&' for hashing. This logic mainly
+ // looks for code trying to introspect into tagged pointers, which
+ // code should generally never do.
+ if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
+ unsigned Diag = diag::warn_objc_pointer_masking;
+ // Determine if we are introspecting the result of performSelectorXXX.
+ const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
+ // Special case messages to -performSelector and friends, which
+ // can return non-pointer values boxed in a pointer value.
+ // Some clients may wish to silence warnings in this subcase.
+ if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
+ Selector S = ME->getSelector();
+ StringRef SelArg0 = S.getNameForSlot(0);
+ if (SelArg0.startswith("performSelector"))
+ Diag = diag::warn_objc_pointer_masking_performSelector;
+ }
+
+ S.Diag(OpLoc, Diag)
+ << ObjCPointerExpr->getSourceRange();
+ }
+}
+
+static NamedDecl *getDeclFromExpr(Expr *E) {
+ if (!E)
+ return nullptr;
+ if (auto *DRE = dyn_cast<DeclRefExpr>(E))
+ return DRE->getDecl();
+ if (auto *ME = dyn_cast<MemberExpr>(E))
+ return ME->getMemberDecl();
+ if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
+ return IRE->getDecl();
+ return nullptr;
+}
+
+/// CreateBuiltinBinOp - Creates a new built-in binary operation with
+/// operator @p Opc at location @c TokLoc. This routine only supports
+/// built-in operations; ActOnBinOp handles overloaded operators.
+ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
+ BinaryOperatorKind Opc,
+ Expr *LHSExpr, Expr *RHSExpr) {
+ if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
+ // The syntax only allows initializer lists on the RHS of assignment,
+ // so we don't need to worry about accepting invalid code for
+ // non-assignment operators.
+ // C++11 5.17p9:
+ // The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
+ // of x = {} is x = T().
+ InitializationKind Kind =
+ InitializationKind::CreateDirectList(RHSExpr->getLocStart());
+ InitializedEntity Entity =
+ InitializedEntity::InitializeTemporary(LHSExpr->getType());
+ InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
+ ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
+ if (Init.isInvalid())
+ return Init;
+ RHSExpr = Init.get();
+ }
+
+ ExprResult LHS = LHSExpr, RHS = RHSExpr;
+ QualType ResultTy; // Result type of the binary operator.
+ // The following two variables are used for compound assignment operators
+ QualType CompLHSTy; // Type of LHS after promotions for computation
+ QualType CompResultTy; // Type of computation result
+ ExprValueKind VK = VK_RValue;
+ ExprObjectKind OK = OK_Ordinary;
+
+ if (!getLangOpts().CPlusPlus) {
+ // C cannot handle TypoExpr nodes on either side of a binop because it
+ // doesn't handle dependent types properly, so make sure any TypoExprs have
+ // been dealt with before checking the operands.
+ LHS = CorrectDelayedTyposInExpr(LHSExpr);
+ RHS = CorrectDelayedTyposInExpr(RHSExpr, [Opc, LHS](Expr *E) {
+ if (Opc != BO_Assign)
+ return ExprResult(E);
+ // Avoid correcting the RHS to the same Expr as the LHS.
+ Decl *D = getDeclFromExpr(E);
+ return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E;
+ });
+ if (!LHS.isUsable() || !RHS.isUsable())
+ return ExprError();
+ }
+
+ switch (Opc) {
+ case BO_Assign:
+ ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
+ if (getLangOpts().CPlusPlus &&
+ LHS.get()->getObjectKind() != OK_ObjCProperty) {
+ VK = LHS.get()->getValueKind();
+ OK = LHS.get()->getObjectKind();
+ }
+ if (!ResultTy.isNull()) {
+ DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
+ DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc);
+ }
+ RecordModifiableNonNullParam(*this, LHS.get());
+ break;
+ case BO_PtrMemD:
+ case BO_PtrMemI:
+ ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
+ Opc == BO_PtrMemI);
+ break;
+ case BO_Mul:
+ case BO_Div:
+ ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
+ Opc == BO_Div);
+ break;
+ case BO_Rem:
+ ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
+ break;
+ case BO_Add:
+ ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
+ break;
+ case BO_Sub:
+ ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
+ break;
+ case BO_Shl:
+ case BO_Shr:
+ ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
+ break;
+ case BO_LE:
+ case BO_LT:
+ case BO_GE:
+ case BO_GT:
+ ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, true);
+ break;
+ case BO_EQ:
+ case BO_NE:
+ ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, false);
+ break;
+ case BO_And:
+ checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
+ case BO_Xor:
+ case BO_Or:
+ ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc);
+ break;
+ case BO_LAnd:
+ case BO_LOr:
+ ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
+ break;
+ case BO_MulAssign:
+ case BO_DivAssign:
+ CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
+ Opc == BO_DivAssign);
+ CompLHSTy = CompResultTy;
+ if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
+ ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
+ break;
+ case BO_RemAssign:
+ CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
+ CompLHSTy = CompResultTy;
+ if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
+ ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
+ break;
+ case BO_AddAssign:
+ CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
+ if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
+ ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
+ break;
+ case BO_SubAssign:
+ CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
+ if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
+ ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
+ break;
+ case BO_ShlAssign:
+ case BO_ShrAssign:
+ CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
+ CompLHSTy = CompResultTy;
+ if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
+ ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
+ break;
+ case BO_AndAssign:
+ case BO_OrAssign: // fallthrough
+ DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
+ case BO_XorAssign:
+ CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, true);
+ CompLHSTy = CompResultTy;
+ if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
+ ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
+ break;
+ case BO_Comma:
+ ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
+ if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
+ VK = RHS.get()->getValueKind();
+ OK = RHS.get()->getObjectKind();
+ }
+ break;
+ }
+ if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
+ return ExprError();
+
+ // Check for array bounds violations for both sides of the BinaryOperator
+ CheckArrayAccess(LHS.get());
+ CheckArrayAccess(RHS.get());
+
+ if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
+ NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
+ &Context.Idents.get("object_setClass"),
+ SourceLocation(), LookupOrdinaryName);
+ if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
+ SourceLocation RHSLocEnd = PP.getLocForEndOfToken(RHS.get()->getLocEnd());
+ Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign) <<
+ FixItHint::CreateInsertion(LHS.get()->getLocStart(), "object_setClass(") <<
+ FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc), ",") <<
+ FixItHint::CreateInsertion(RHSLocEnd, ")");
+ }
+ else
+ Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
+ }
+ else if (const ObjCIvarRefExpr *OIRE =
+ dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
+ DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
+
+ if (CompResultTy.isNull())
+ return new (Context) BinaryOperator(LHS.get(), RHS.get(), Opc, ResultTy, VK,
+ OK, OpLoc, FPFeatures.fp_contract);
+ if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
+ OK_ObjCProperty) {
+ VK = VK_LValue;
+ OK = LHS.get()->getObjectKind();
+ }
+ return new (Context) CompoundAssignOperator(
+ LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, CompLHSTy, CompResultTy,
+ OpLoc, FPFeatures.fp_contract);
+}
+
+/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
+/// operators are mixed in a way that suggests that the programmer forgot that
+/// comparison operators have higher precedence. The most typical example of
+/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
+static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
+ SourceLocation OpLoc, Expr *LHSExpr,
+ Expr *RHSExpr) {
+ BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
+ BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
+
+ // Check that one of the sides is a comparison operator.
+ bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
+ bool isRightComp = RHSBO && RHSBO->isComparisonOp();
+ if (!isLeftComp && !isRightComp)
+ return;
+
+ // Bitwise operations are sometimes used as eager logical ops.
+ // Don't diagnose this.
+ bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
+ bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
+ if ((isLeftComp || isLeftBitwise) && (isRightComp || isRightBitwise))
+ return;
+
+ SourceRange DiagRange = isLeftComp ? SourceRange(LHSExpr->getLocStart(),
+ OpLoc)
+ : SourceRange(OpLoc, RHSExpr->getLocEnd());
+ StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
+ SourceRange ParensRange = isLeftComp ?
+ SourceRange(LHSBO->getRHS()->getLocStart(), RHSExpr->getLocEnd())
+ : SourceRange(LHSExpr->getLocStart(), RHSBO->getLHS()->getLocEnd());
+
+ Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
+ << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
+ SuggestParentheses(Self, OpLoc,
+ Self.PDiag(diag::note_precedence_silence) << OpStr,
+ (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
+ SuggestParentheses(Self, OpLoc,
+ Self.PDiag(diag::note_precedence_bitwise_first)
+ << BinaryOperator::getOpcodeStr(Opc),
+ ParensRange);
+}
+
+/// \brief It accepts a '&' expr that is inside a '|' one.
+/// Emit a diagnostic together with a fixit hint that wraps the '&' expression
+/// in parentheses.
+static void
+EmitDiagnosticForBitwiseAndInBitwiseOr(Sema &Self, SourceLocation OpLoc,
+ BinaryOperator *Bop) {
+ assert(Bop->getOpcode() == BO_And);
+ Self.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_and_in_bitwise_or)
+ << Bop->getSourceRange() << OpLoc;
+ SuggestParentheses(Self, Bop->getOperatorLoc(),
+ Self.PDiag(diag::note_precedence_silence)
+ << Bop->getOpcodeStr(),
+ Bop->getSourceRange());
+}
+
+/// \brief It accepts a '&&' expr that is inside a '||' one.
+/// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
+/// in parentheses.
+static void
+EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
+ BinaryOperator *Bop) {
+ assert(Bop->getOpcode() == BO_LAnd);
+ Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
+ << Bop->getSourceRange() << OpLoc;
+ SuggestParentheses(Self, Bop->getOperatorLoc(),
+ Self.PDiag(diag::note_precedence_silence)
+ << Bop->getOpcodeStr(),
+ Bop->getSourceRange());
+}
+
+/// \brief Returns true if the given expression can be evaluated as a constant
+/// 'true'.
+static bool EvaluatesAsTrue(Sema &S, Expr *E) {
+ bool Res;
+ return !E->isValueDependent() &&
+ E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
+}
+
+/// \brief Returns true if the given expression can be evaluated as a constant
+/// 'false'.
+static bool EvaluatesAsFalse(Sema &S, Expr *E) {
+ bool Res;
+ return !E->isValueDependent() &&
+ E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
+}
+
+/// \brief Look for '&&' in the left hand of a '||' expr.
+static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
+ Expr *LHSExpr, Expr *RHSExpr) {
+ if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
+ if (Bop->getOpcode() == BO_LAnd) {
+ // If it's "a && b || 0" don't warn since the precedence doesn't matter.
+ if (EvaluatesAsFalse(S, RHSExpr))
+ return;
+ // If it's "1 && a || b" don't warn since the precedence doesn't matter.
+ if (!EvaluatesAsTrue(S, Bop->getLHS()))
+ return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
+ } else if (Bop->getOpcode() == BO_LOr) {
+ if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
+ // If it's "a || b && 1 || c" we didn't warn earlier for
+ // "a || b && 1", but warn now.
+ if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
+ return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
+ }
+ }
+ }
+}
+
+/// \brief Look for '&&' in the right hand of a '||' expr.
+static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
+ Expr *LHSExpr, Expr *RHSExpr) {
+ if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
+ if (Bop->getOpcode() == BO_LAnd) {
+ // If it's "0 || a && b" don't warn since the precedence doesn't matter.
+ if (EvaluatesAsFalse(S, LHSExpr))
+ return;
+ // If it's "a || b && 1" don't warn since the precedence doesn't matter.
+ if (!EvaluatesAsTrue(S, Bop->getRHS()))
+ return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
+ }
+ }
+}
+
+/// \brief Look for '&' in the left or right hand of a '|' expr.
+static void DiagnoseBitwiseAndInBitwiseOr(Sema &S, SourceLocation OpLoc,
+ Expr *OrArg) {
+ if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrArg)) {
+ if (Bop->getOpcode() == BO_And)
+ return EmitDiagnosticForBitwiseAndInBitwiseOr(S, OpLoc, Bop);
+ }
+}
+
+static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
+ Expr *SubExpr, StringRef Shift) {
+ if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
+ if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
+ StringRef Op = Bop->getOpcodeStr();
+ S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
+ << Bop->getSourceRange() << OpLoc << Shift << Op;
+ SuggestParentheses(S, Bop->getOperatorLoc(),
+ S.PDiag(diag::note_precedence_silence) << Op,
+ Bop->getSourceRange());
+ }
+ }
+}
+
+static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
+ Expr *LHSExpr, Expr *RHSExpr) {
+ CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
+ if (!OCE)
+ return;
+
+ FunctionDecl *FD = OCE->getDirectCallee();
+ if (!FD || !FD->isOverloadedOperator())
+ return;
+
+ OverloadedOperatorKind Kind = FD->getOverloadedOperator();
+ if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
+ return;
+
+ S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
+ << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
+ << (Kind == OO_LessLess);
+ SuggestParentheses(S, OCE->getOperatorLoc(),
+ S.PDiag(diag::note_precedence_silence)
+ << (Kind == OO_LessLess ? "<<" : ">>"),
+ OCE->getSourceRange());
+ SuggestParentheses(S, OpLoc,
+ S.PDiag(diag::note_evaluate_comparison_first),
+ SourceRange(OCE->getArg(1)->getLocStart(),
+ RHSExpr->getLocEnd()));
+}
+
+/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
+/// precedence.
+static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
+ SourceLocation OpLoc, Expr *LHSExpr,
+ Expr *RHSExpr){
+ // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
+ if (BinaryOperator::isBitwiseOp(Opc))
+ DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
+
+ // Diagnose "arg1 & arg2 | arg3"
+ if (Opc == BO_Or && !OpLoc.isMacroID()/* Don't warn in macros. */) {
+ DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, LHSExpr);
+ DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, RHSExpr);
+ }
+
+ // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
+ // We don't warn for 'assert(a || b && "bad")' since this is safe.
+ if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
+ DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
+ DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
+ }
+
+ if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
+ || Opc == BO_Shr) {
+ StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
+ DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
+ DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
+ }
+
+ // Warn on overloaded shift operators and comparisons, such as:
+ // cout << 5 == 4;
+ if (BinaryOperator::isComparisonOp(Opc))
+ DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
+}
+
+// Binary Operators. 'Tok' is the token for the operator.
+ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
+ tok::TokenKind Kind,
+ Expr *LHSExpr, Expr *RHSExpr) {
+ BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
+ assert(LHSExpr && "ActOnBinOp(): missing left expression");
+ assert(RHSExpr && "ActOnBinOp(): missing right expression");
+
+ // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
+ DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
+
+ return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
+}
+
+/// Build an overloaded binary operator expression in the given scope.
+static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
+ BinaryOperatorKind Opc,
+ Expr *LHS, Expr *RHS) {
+ // Find all of the overloaded operators visible from this
+ // point. We perform both an operator-name lookup from the local
+ // scope and an argument-dependent lookup based on the types of
+ // the arguments.
+ UnresolvedSet<16> Functions;
+ OverloadedOperatorKind OverOp
+ = BinaryOperator::getOverloadedOperator(Opc);
+ if (Sc && OverOp != OO_None && OverOp != OO_Equal)
+ S.LookupOverloadedOperatorName(OverOp, Sc, LHS->getType(),
+ RHS->getType(), Functions);
+
+ // Build the (potentially-overloaded, potentially-dependent)
+ // binary operation.
+ return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
+}
+
+ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
+ BinaryOperatorKind Opc,
+ Expr *LHSExpr, Expr *RHSExpr) {
+ // We want to end up calling one of checkPseudoObjectAssignment
+ // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
+ // both expressions are overloadable or either is type-dependent),
+ // or CreateBuiltinBinOp (in any other case). We also want to get
+ // any placeholder types out of the way.
+
+ // Handle pseudo-objects in the LHS.
+ if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
+ // Assignments with a pseudo-object l-value need special analysis.
+ if (pty->getKind() == BuiltinType::PseudoObject &&
+ BinaryOperator::isAssignmentOp(Opc))
+ return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
+
+ // Don't resolve overloads if the other type is overloadable.
+ if (pty->getKind() == BuiltinType::Overload) {
+ // We can't actually test that if we still have a placeholder,
+ // though. Fortunately, none of the exceptions we see in that
+ // code below are valid when the LHS is an overload set. Note
+ // that an overload set can be dependently-typed, but it never
+ // instantiates to having an overloadable type.
+ ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
+ if (resolvedRHS.isInvalid()) return ExprError();
+ RHSExpr = resolvedRHS.get();
+
+ if (RHSExpr->isTypeDependent() ||
+ RHSExpr->getType()->isOverloadableType())
+ return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
+ }
+
+ ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
+ if (LHS.isInvalid()) return ExprError();
+ LHSExpr = LHS.get();
+ }
+
+ // Handle pseudo-objects in the RHS.
+ if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
+ // An overload in the RHS can potentially be resolved by the type
+ // being assigned to.
+ if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
+ if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
+ return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
+
+ if (LHSExpr->getType()->isOverloadableType())
+ return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
+
+ return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
+ }
+
+ // Don't resolve overloads if the other type is overloadable.
+ if (pty->getKind() == BuiltinType::Overload &&
+ LHSExpr->getType()->isOverloadableType())
+ return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
+
+ ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
+ if (!resolvedRHS.isUsable()) return ExprError();
+ RHSExpr = resolvedRHS.get();
+ }
+
+ if (getLangOpts().CPlusPlus) {
+ // If either expression is type-dependent, always build an
+ // overloaded op.
+ if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
+ return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
+
+ // Otherwise, build an overloaded op if either expression has an
+ // overloadable type.
+ if (LHSExpr->getType()->isOverloadableType() ||
+ RHSExpr->getType()->isOverloadableType())
+ return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
+ }
+
+ // Build a built-in binary operation.
+ return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
+}
+
+ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
+ UnaryOperatorKind Opc,
+ Expr *InputExpr) {
+ ExprResult Input = InputExpr;
+ ExprValueKind VK = VK_RValue;
+ ExprObjectKind OK = OK_Ordinary;
+ QualType resultType;
+ switch (Opc) {
+ case UO_PreInc:
+ case UO_PreDec:
+ case UO_PostInc:
+ case UO_PostDec:
+ resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK,
+ OpLoc,
+ Opc == UO_PreInc ||
+ Opc == UO_PostInc,
+ Opc == UO_PreInc ||
+ Opc == UO_PreDec);
+ break;
+ case UO_AddrOf:
+ resultType = CheckAddressOfOperand(Input, OpLoc);
+ RecordModifiableNonNullParam(*this, InputExpr);
+ break;
+ case UO_Deref: {
+ Input = DefaultFunctionArrayLvalueConversion(Input.get());
+ if (Input.isInvalid()) return ExprError();
+ resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
+ break;
+ }
+ case UO_Plus:
+ case UO_Minus:
+ Input = UsualUnaryConversions(Input.get());
+ if (Input.isInvalid()) return ExprError();
+ resultType = Input.get()->getType();
+ if (resultType->isDependentType())
+ break;
+ if (resultType->isArithmeticType() || // C99 6.5.3.3p1
+ resultType->isVectorType())
+ break;
+ else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
+ Opc == UO_Plus &&
+ resultType->isPointerType())
+ break;
+
+ return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
+ << resultType << Input.get()->getSourceRange());
+
+ case UO_Not: // bitwise complement
+ Input = UsualUnaryConversions(Input.get());
+ if (Input.isInvalid())
+ return ExprError();
+ resultType = Input.get()->getType();
+ if (resultType->isDependentType())
+ break;
+ // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
+ if (resultType->isComplexType() || resultType->isComplexIntegerType())
+ // C99 does not support '~' for complex conjugation.
+ Diag(OpLoc, diag::ext_integer_complement_complex)
+ << resultType << Input.get()->getSourceRange();
+ else if (resultType->hasIntegerRepresentation())
+ break;
+ else if (resultType->isExtVectorType()) {
+ if (Context.getLangOpts().OpenCL) {
+ // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
+ // on vector float types.
+ QualType T = resultType->getAs<ExtVectorType>()->getElementType();
+ if (!T->isIntegerType())
+ return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
+ << resultType << Input.get()->getSourceRange());
+ }
+ break;
+ } else {
+ return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
+ << resultType << Input.get()->getSourceRange());
+ }
+ break;
+
+ case UO_LNot: // logical negation
+ // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
+ Input = DefaultFunctionArrayLvalueConversion(Input.get());
+ if (Input.isInvalid()) return ExprError();
+ resultType = Input.get()->getType();
+
+ // Though we still have to promote half FP to float...
+ if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
+ Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get();
+ resultType = Context.FloatTy;
+ }
+
+ if (resultType->isDependentType())
+ break;
+ if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) {
+ // C99 6.5.3.3p1: ok, fallthrough;
+ if (Context.getLangOpts().CPlusPlus) {
+ // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
+ // operand contextually converted to bool.
+ Input = ImpCastExprToType(Input.get(), Context.BoolTy,
+ ScalarTypeToBooleanCastKind(resultType));
+ } else if (Context.getLangOpts().OpenCL &&
+ Context.getLangOpts().OpenCLVersion < 120) {
+ // OpenCL v1.1 6.3.h: The logical operator not (!) does not
+ // operate on scalar float types.
+ if (!resultType->isIntegerType())
+ return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
+ << resultType << Input.get()->getSourceRange());
+ }
+ } else if (resultType->isExtVectorType()) {
+ if (Context.getLangOpts().OpenCL &&
+ Context.getLangOpts().OpenCLVersion < 120) {
+ // OpenCL v1.1 6.3.h: The logical operator not (!) does not
+ // operate on vector float types.
+ QualType T = resultType->getAs<ExtVectorType>()->getElementType();
+ if (!T->isIntegerType())
+ return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
+ << resultType << Input.get()->getSourceRange());
+ }
+ // Vector logical not returns the signed variant of the operand type.
+ resultType = GetSignedVectorType(resultType);
+ break;
+ } else {
+ return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
+ << resultType << Input.get()->getSourceRange());
+ }
+
+ // LNot always has type int. C99 6.5.3.3p5.
+ // In C++, it's bool. C++ 5.3.1p8
+ resultType = Context.getLogicalOperationType();
+ break;
+ case UO_Real:
+ case UO_Imag:
+ resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
+ // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
+ // complex l-values to ordinary l-values and all other values to r-values.
+ if (Input.isInvalid()) return ExprError();
+ if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
+ if (Input.get()->getValueKind() != VK_RValue &&
+ Input.get()->getObjectKind() == OK_Ordinary)
+ VK = Input.get()->getValueKind();
+ } else if (!getLangOpts().CPlusPlus) {
+ // In C, a volatile scalar is read by __imag. In C++, it is not.
+ Input = DefaultLvalueConversion(Input.get());
+ }
+ break;
+ case UO_Extension:
+ resultType = Input.get()->getType();
+ VK = Input.get()->getValueKind();
+ OK = Input.get()->getObjectKind();
+ break;
+ }
+ if (resultType.isNull() || Input.isInvalid())
+ return ExprError();
+
+ // Check for array bounds violations in the operand of the UnaryOperator,
+ // except for the '*' and '&' operators that have to be handled specially
+ // by CheckArrayAccess (as there are special cases like &array[arraysize]
+ // that are explicitly defined as valid by the standard).
+ if (Opc != UO_AddrOf && Opc != UO_Deref)
+ CheckArrayAccess(Input.get());
+
+ return new (Context)
+ UnaryOperator(Input.get(), Opc, resultType, VK, OK, OpLoc);
+}
+
+/// \brief Determine whether the given expression is a qualified member
+/// access expression, of a form that could be turned into a pointer to member
+/// with the address-of operator.
+static bool isQualifiedMemberAccess(Expr *E) {
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
+ if (!DRE->getQualifier())
+ return false;
+
+ ValueDecl *VD = DRE->getDecl();
+ if (!VD->isCXXClassMember())
+ return false;
+
+ if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
+ return true;
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
+ return Method->isInstance();
+
+ return false;
+ }
+
+ if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
+ if (!ULE->getQualifier())
+ return false;
+
+ for (UnresolvedLookupExpr::decls_iterator D = ULE->decls_begin(),
+ DEnd = ULE->decls_end();
+ D != DEnd; ++D) {
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*D)) {
+ if (Method->isInstance())
+ return true;
+ } else {
+ // Overload set does not contain methods.
+ break;
+ }
+ }
+
+ return false;
+ }
+
+ return false;
+}
+
+ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
+ UnaryOperatorKind Opc, Expr *Input) {
+ // First things first: handle placeholders so that the
+ // overloaded-operator check considers the right type.
+ if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
+ // Increment and decrement of pseudo-object references.
+ if (pty->getKind() == BuiltinType::PseudoObject &&
+ UnaryOperator::isIncrementDecrementOp(Opc))
+ return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
+
+ // extension is always a builtin operator.
+ if (Opc == UO_Extension)
+ return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
+
+ // & gets special logic for several kinds of placeholder.
+ // The builtin code knows what to do.
+ if (Opc == UO_AddrOf &&
+ (pty->getKind() == BuiltinType::Overload ||
+ pty->getKind() == BuiltinType::UnknownAny ||
+ pty->getKind() == BuiltinType::BoundMember))
+ return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
+
+ // Anything else needs to be handled now.
+ ExprResult Result = CheckPlaceholderExpr(Input);
+ if (Result.isInvalid()) return ExprError();
+ Input = Result.get();
+ }
+
+ if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
+ UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
+ !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
+ // Find all of the overloaded operators visible from this
+ // point. We perform both an operator-name lookup from the local
+ // scope and an argument-dependent lookup based on the types of
+ // the arguments.
+ UnresolvedSet<16> Functions;
+ OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
+ if (S && OverOp != OO_None)
+ LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
+ Functions);
+
+ return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
+ }
+
+ return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
+}
+
+// Unary Operators. 'Tok' is the token for the operator.
+ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
+ tok::TokenKind Op, Expr *Input) {
+ return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
+}
+
+/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
+ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
+ LabelDecl *TheDecl) {
+ TheDecl->markUsed(Context);
+ // Create the AST node. The address of a label always has type 'void*'.
+ return new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
+ Context.getPointerType(Context.VoidTy));
+}
+
+/// Given the last statement in a statement-expression, check whether
+/// the result is a producing expression (like a call to an
+/// ns_returns_retained function) and, if so, rebuild it to hoist the
+/// release out of the full-expression. Otherwise, return null.
+/// Cannot fail.
+static Expr *maybeRebuildARCConsumingStmt(Stmt *Statement) {
+ // Should always be wrapped with one of these.
+ ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Statement);
+ if (!cleanups) return nullptr;
+
+ ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(cleanups->getSubExpr());
+ if (!cast || cast->getCastKind() != CK_ARCConsumeObject)
+ return nullptr;
+
+ // Splice out the cast. This shouldn't modify any interesting
+ // features of the statement.
+ Expr *producer = cast->getSubExpr();
+ assert(producer->getType() == cast->getType());
+ assert(producer->getValueKind() == cast->getValueKind());
+ cleanups->setSubExpr(producer);
+ return cleanups;
+}
+
+void Sema::ActOnStartStmtExpr() {
+ PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
+}
+
+void Sema::ActOnStmtExprError() {
+ // Note that function is also called by TreeTransform when leaving a
+ // StmtExpr scope without rebuilding anything.
+
+ DiscardCleanupsInEvaluationContext();
+ PopExpressionEvaluationContext();
+}
+
+ExprResult
+Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
+ SourceLocation RPLoc) { // "({..})"
+ assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
+ CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
+
+ if (hasAnyUnrecoverableErrorsInThisFunction())
+ DiscardCleanupsInEvaluationContext();
+ assert(!ExprNeedsCleanups && "cleanups within StmtExpr not correctly bound!");
+ PopExpressionEvaluationContext();
+
+ // FIXME: there are a variety of strange constraints to enforce here, for
+ // example, it is not possible to goto into a stmt expression apparently.
+ // More semantic analysis is needed.
+
+ // If there are sub-stmts in the compound stmt, take the type of the last one
+ // as the type of the stmtexpr.
+ QualType Ty = Context.VoidTy;
+ bool StmtExprMayBindToTemp = false;
+ if (!Compound->body_empty()) {
+ Stmt *LastStmt = Compound->body_back();
+ LabelStmt *LastLabelStmt = nullptr;
+ // If LastStmt is a label, skip down through into the body.
+ while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
+ LastLabelStmt = Label;
+ LastStmt = Label->getSubStmt();
+ }
+
+ if (Expr *LastE = dyn_cast<Expr>(LastStmt)) {
+ // Do function/array conversion on the last expression, but not
+ // lvalue-to-rvalue. However, initialize an unqualified type.
+ ExprResult LastExpr = DefaultFunctionArrayConversion(LastE);
+ if (LastExpr.isInvalid())
+ return ExprError();
+ Ty = LastExpr.get()->getType().getUnqualifiedType();
+
+ if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) {
+ // In ARC, if the final expression ends in a consume, splice
+ // the consume out and bind it later. In the alternate case
+ // (when dealing with a retainable type), the result
+ // initialization will create a produce. In both cases the
+ // result will be +1, and we'll need to balance that out with
+ // a bind.
+ if (Expr *rebuiltLastStmt
+ = maybeRebuildARCConsumingStmt(LastExpr.get())) {
+ LastExpr = rebuiltLastStmt;
+ } else {
+ LastExpr = PerformCopyInitialization(
+ InitializedEntity::InitializeResult(LPLoc,
+ Ty,
+ false),
+ SourceLocation(),
+ LastExpr);
+ }
+
+ if (LastExpr.isInvalid())
+ return ExprError();
+ if (LastExpr.get() != nullptr) {
+ if (!LastLabelStmt)
+ Compound->setLastStmt(LastExpr.get());
+ else
+ LastLabelStmt->setSubStmt(LastExpr.get());
+ StmtExprMayBindToTemp = true;
+ }
+ }
+ }
+ }
+
+ // FIXME: Check that expression type is complete/non-abstract; statement
+ // expressions are not lvalues.
+ Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
+ if (StmtExprMayBindToTemp)
+ return MaybeBindToTemporary(ResStmtExpr);
+ return ResStmtExpr;
+}
+
+ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
+ TypeSourceInfo *TInfo,
+ OffsetOfComponent *CompPtr,
+ unsigned NumComponents,
+ SourceLocation RParenLoc) {
+ QualType ArgTy = TInfo->getType();
+ bool Dependent = ArgTy->isDependentType();
+ SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
+
+ // We must have at least one component that refers to the type, and the first
+ // one is known to be a field designator. Verify that the ArgTy represents
+ // a struct/union/class.
+ if (!Dependent && !ArgTy->isRecordType())
+ return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
+ << ArgTy << TypeRange);
+
+ // Type must be complete per C99 7.17p3 because a declaring a variable
+ // with an incomplete type would be ill-formed.
+ if (!Dependent
+ && RequireCompleteType(BuiltinLoc, ArgTy,
+ diag::err_offsetof_incomplete_type, TypeRange))
+ return ExprError();
+
+ // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
+ // GCC extension, diagnose them.
+ // FIXME: This diagnostic isn't actually visible because the location is in
+ // a system header!
+ if (NumComponents != 1)
+ Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
+ << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
+
+ bool DidWarnAboutNonPOD = false;
+ QualType CurrentType = ArgTy;
+ typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
+ SmallVector<OffsetOfNode, 4> Comps;
+ SmallVector<Expr*, 4> Exprs;
+ for (unsigned i = 0; i != NumComponents; ++i) {
+ const OffsetOfComponent &OC = CompPtr[i];
+ if (OC.isBrackets) {
+ // Offset of an array sub-field. TODO: Should we allow vector elements?
+ if (!CurrentType->isDependentType()) {
+ const ArrayType *AT = Context.getAsArrayType(CurrentType);
+ if(!AT)
+ return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
+ << CurrentType);
+ CurrentType = AT->getElementType();
+ } else
+ CurrentType = Context.DependentTy;
+
+ ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
+ if (IdxRval.isInvalid())
+ return ExprError();
+ Expr *Idx = IdxRval.get();
+
+ // The expression must be an integral expression.
+ // FIXME: An integral constant expression?
+ if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
+ !Idx->getType()->isIntegerType())
+ return ExprError(Diag(Idx->getLocStart(),
+ diag::err_typecheck_subscript_not_integer)
+ << Idx->getSourceRange());
+
+ // Record this array index.
+ Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
+ Exprs.push_back(Idx);
+ continue;
+ }
+
+ // Offset of a field.
+ if (CurrentType->isDependentType()) {
+ // We have the offset of a field, but we can't look into the dependent
+ // type. Just record the identifier of the field.
+ Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
+ CurrentType = Context.DependentTy;
+ continue;
+ }
+
+ // We need to have a complete type to look into.
+ if (RequireCompleteType(OC.LocStart, CurrentType,
+ diag::err_offsetof_incomplete_type))
+ return ExprError();
+
+ // Look for the designated field.
+ const RecordType *RC = CurrentType->getAs<RecordType>();
+ if (!RC)
+ return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
+ << CurrentType);
+ RecordDecl *RD = RC->getDecl();
+
+ // C++ [lib.support.types]p5:
+ // The macro offsetof accepts a restricted set of type arguments in this
+ // International Standard. type shall be a POD structure or a POD union
+ // (clause 9).
+ // C++11 [support.types]p4:
+ // If type is not a standard-layout class (Clause 9), the results are
+ // undefined.
+ if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
+ bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
+ unsigned DiagID =
+ LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
+ : diag::ext_offsetof_non_pod_type;
+
+ if (!IsSafe && !DidWarnAboutNonPOD &&
+ DiagRuntimeBehavior(BuiltinLoc, nullptr,
+ PDiag(DiagID)
+ << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
+ << CurrentType))
+ DidWarnAboutNonPOD = true;
+ }
+
+ // Look for the field.
+ LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
+ LookupQualifiedName(R, RD);
+ FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
+ IndirectFieldDecl *IndirectMemberDecl = nullptr;
+ if (!MemberDecl) {
+ if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
+ MemberDecl = IndirectMemberDecl->getAnonField();
+ }
+
+ if (!MemberDecl)
+ return ExprError(Diag(BuiltinLoc, diag::err_no_member)
+ << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
+ OC.LocEnd));
+
+ // C99 7.17p3:
+ // (If the specified member is a bit-field, the behavior is undefined.)
+ //
+ // We diagnose this as an error.
+ if (MemberDecl->isBitField()) {
+ Diag(OC.LocEnd, diag::err_offsetof_bitfield)
+ << MemberDecl->getDeclName()
+ << SourceRange(BuiltinLoc, RParenLoc);
+ Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
+ return ExprError();
+ }
+
+ RecordDecl *Parent = MemberDecl->getParent();
+ if (IndirectMemberDecl)
+ Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
+
+ // If the member was found in a base class, introduce OffsetOfNodes for
+ // the base class indirections.
+ CXXBasePaths Paths;
+ if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
+ if (Paths.getDetectedVirtual()) {
+ Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
+ << MemberDecl->getDeclName()
+ << SourceRange(BuiltinLoc, RParenLoc);
+ return ExprError();
+ }
+
+ CXXBasePath &Path = Paths.front();
+ for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
+ B != BEnd; ++B)
+ Comps.push_back(OffsetOfNode(B->Base));
+ }
+
+ if (IndirectMemberDecl) {
+ for (auto *FI : IndirectMemberDecl->chain()) {
+ assert(isa<FieldDecl>(FI));
+ Comps.push_back(OffsetOfNode(OC.LocStart,
+ cast<FieldDecl>(FI), OC.LocEnd));
+ }
+ } else
+ Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
+
+ CurrentType = MemberDecl->getType().getNonReferenceType();
+ }
+
+ return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo,
+ Comps, Exprs, RParenLoc);
+}
+
+ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
+ SourceLocation BuiltinLoc,
+ SourceLocation TypeLoc,
+ ParsedType ParsedArgTy,
+ OffsetOfComponent *CompPtr,
+ unsigned NumComponents,
+ SourceLocation RParenLoc) {
+
+ TypeSourceInfo *ArgTInfo;
+ QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
+ if (ArgTy.isNull())
+ return ExprError();
+
+ if (!ArgTInfo)
+ ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
+
+ return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
+ RParenLoc);
+}
+
+
+ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
+ Expr *CondExpr,
+ Expr *LHSExpr, Expr *RHSExpr,
+ SourceLocation RPLoc) {
+ assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
+
+ ExprValueKind VK = VK_RValue;
+ ExprObjectKind OK = OK_Ordinary;
+ QualType resType;
+ bool ValueDependent = false;
+ bool CondIsTrue = false;
+ if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
+ resType = Context.DependentTy;
+ ValueDependent = true;
+ } else {
+ // The conditional expression is required to be a constant expression.
+ llvm::APSInt condEval(32);
+ ExprResult CondICE
+ = VerifyIntegerConstantExpression(CondExpr, &condEval,
+ diag::err_typecheck_choose_expr_requires_constant, false);
+ if (CondICE.isInvalid())
+ return ExprError();
+ CondExpr = CondICE.get();
+ CondIsTrue = condEval.getZExtValue();
+
+ // If the condition is > zero, then the AST type is the same as the LSHExpr.
+ Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
+
+ resType = ActiveExpr->getType();
+ ValueDependent = ActiveExpr->isValueDependent();
+ VK = ActiveExpr->getValueKind();
+ OK = ActiveExpr->getObjectKind();
+ }
+
+ return new (Context)
+ ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, VK, OK, RPLoc,
+ CondIsTrue, resType->isDependentType(), ValueDependent);
+}
+
+//===----------------------------------------------------------------------===//
+// Clang Extensions.
+//===----------------------------------------------------------------------===//
+
+/// ActOnBlockStart - This callback is invoked when a block literal is started.
+void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
+ BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
+
+ if (LangOpts.CPlusPlus) {
+ Decl *ManglingContextDecl;
+ if (MangleNumberingContext *MCtx =
+ getCurrentMangleNumberContext(Block->getDeclContext(),
+ ManglingContextDecl)) {
+ unsigned ManglingNumber = MCtx->getManglingNumber(Block);
+ Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
+ }
+ }
+
+ PushBlockScope(CurScope, Block);
+ CurContext->addDecl(Block);
+ if (CurScope)
+ PushDeclContext(CurScope, Block);
+ else
+ CurContext = Block;
+
+ getCurBlock()->HasImplicitReturnType = true;
+
+ // Enter a new evaluation context to insulate the block from any
+ // cleanups from the enclosing full-expression.
+ PushExpressionEvaluationContext(PotentiallyEvaluated);
+}
+
+void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
+ Scope *CurScope) {
+ assert(ParamInfo.getIdentifier() == nullptr &&
+ "block-id should have no identifier!");
+ assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
+ BlockScopeInfo *CurBlock = getCurBlock();
+
+ TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
+ QualType T = Sig->getType();
+
+ // FIXME: We should allow unexpanded parameter packs here, but that would,
+ // in turn, make the block expression contain unexpanded parameter packs.
+ if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
+ // Drop the parameters.
+ FunctionProtoType::ExtProtoInfo EPI;
+ EPI.HasTrailingReturn = false;
+ EPI.TypeQuals |= DeclSpec::TQ_const;
+ T = Context.getFunctionType(Context.DependentTy, None, EPI);
+ Sig = Context.getTrivialTypeSourceInfo(T);
+ }
+
+ // GetTypeForDeclarator always produces a function type for a block
+ // literal signature. Furthermore, it is always a FunctionProtoType
+ // unless the function was written with a typedef.
+ assert(T->isFunctionType() &&
+ "GetTypeForDeclarator made a non-function block signature");
+
+ // Look for an explicit signature in that function type.
+ FunctionProtoTypeLoc ExplicitSignature;
+
+ TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
+ if ((ExplicitSignature = tmp.getAs<FunctionProtoTypeLoc>())) {
+
+ // Check whether that explicit signature was synthesized by
+ // GetTypeForDeclarator. If so, don't save that as part of the
+ // written signature.
+ if (ExplicitSignature.getLocalRangeBegin() ==
+ ExplicitSignature.getLocalRangeEnd()) {
+ // This would be much cheaper if we stored TypeLocs instead of
+ // TypeSourceInfos.
+ TypeLoc Result = ExplicitSignature.getReturnLoc();
+ unsigned Size = Result.getFullDataSize();
+ Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
+ Sig->getTypeLoc().initializeFullCopy(Result, Size);
+
+ ExplicitSignature = FunctionProtoTypeLoc();
+ }
+ }
+
+ CurBlock->TheDecl->setSignatureAsWritten(Sig);
+ CurBlock->FunctionType = T;
+
+ const FunctionType *Fn = T->getAs<FunctionType>();
+ QualType RetTy = Fn->getReturnType();
+ bool isVariadic =
+ (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
+
+ CurBlock->TheDecl->setIsVariadic(isVariadic);
+
+ // Context.DependentTy is used as a placeholder for a missing block
+ // return type. TODO: what should we do with declarators like:
+ // ^ * { ... }
+ // If the answer is "apply template argument deduction"....
+ if (RetTy != Context.DependentTy) {
+ CurBlock->ReturnType = RetTy;
+ CurBlock->TheDecl->setBlockMissingReturnType(false);
+ CurBlock->HasImplicitReturnType = false;
+ }
+
+ // Push block parameters from the declarator if we had them.
+ SmallVector<ParmVarDecl*, 8> Params;
+ if (ExplicitSignature) {
+ for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
+ ParmVarDecl *Param = ExplicitSignature.getParam(I);
+ if (Param->getIdentifier() == nullptr &&
+ !Param->isImplicit() &&
+ !Param->isInvalidDecl() &&
+ !getLangOpts().CPlusPlus)
+ Diag(Param->getLocation(), diag::err_parameter_name_omitted);
+ Params.push_back(Param);
+ }
+
+ // Fake up parameter variables if we have a typedef, like
+ // ^ fntype { ... }
+ } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
+ for (const auto &I : Fn->param_types()) {
+ ParmVarDecl *Param = BuildParmVarDeclForTypedef(
+ CurBlock->TheDecl, ParamInfo.getLocStart(), I);
+ Params.push_back(Param);
+ }
+ }
+
+ // Set the parameters on the block decl.
+ if (!Params.empty()) {
+ CurBlock->TheDecl->setParams(Params);
+ CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
+ CurBlock->TheDecl->param_end(),
+ /*CheckParameterNames=*/false);
+ }
+
+ // Finally we can process decl attributes.
+ ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
+
+ // Put the parameter variables in scope.
+ for (auto AI : CurBlock->TheDecl->params()) {
+ AI->setOwningFunction(CurBlock->TheDecl);
+
+ // If this has an identifier, add it to the scope stack.
+ if (AI->getIdentifier()) {
+ CheckShadow(CurBlock->TheScope, AI);
+
+ PushOnScopeChains(AI, CurBlock->TheScope);
+ }
+ }
+}
+
+/// ActOnBlockError - If there is an error parsing a block, this callback
+/// is invoked to pop the information about the block from the action impl.
+void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
+ // Leave the expression-evaluation context.
+ DiscardCleanupsInEvaluationContext();
+ PopExpressionEvaluationContext();
+
+ // Pop off CurBlock, handle nested blocks.
+ PopDeclContext();
+ PopFunctionScopeInfo();
+}
+
+/// ActOnBlockStmtExpr - This is called when the body of a block statement
+/// literal was successfully completed. ^(int x){...}
+ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
+ Stmt *Body, Scope *CurScope) {
+ // If blocks are disabled, emit an error.
+ if (!LangOpts.Blocks)
+ Diag(CaretLoc, diag::err_blocks_disable);
+
+ // Leave the expression-evaluation context.
+ if (hasAnyUnrecoverableErrorsInThisFunction())
+ DiscardCleanupsInEvaluationContext();
+ assert(!ExprNeedsCleanups && "cleanups within block not correctly bound!");
+ PopExpressionEvaluationContext();
+
+ BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
+
+ if (BSI->HasImplicitReturnType)
+ deduceClosureReturnType(*BSI);
+
+ PopDeclContext();
+
+ QualType RetTy = Context.VoidTy;
+ if (!BSI->ReturnType.isNull())
+ RetTy = BSI->ReturnType;
+
+ bool NoReturn = BSI->TheDecl->hasAttr<NoReturnAttr>();
+ QualType BlockTy;
+
+ // Set the captured variables on the block.
+ // FIXME: Share capture structure between BlockDecl and CapturingScopeInfo!
+ SmallVector<BlockDecl::Capture, 4> Captures;
+ for (unsigned i = 0, e = BSI->Captures.size(); i != e; i++) {
+ CapturingScopeInfo::Capture &Cap = BSI->Captures[i];
+ if (Cap.isThisCapture())
+ continue;
+ BlockDecl::Capture NewCap(Cap.getVariable(), Cap.isBlockCapture(),
+ Cap.isNested(), Cap.getInitExpr());
+ Captures.push_back(NewCap);
+ }
+ BSI->TheDecl->setCaptures(Context, Captures.begin(), Captures.end(),
+ BSI->CXXThisCaptureIndex != 0);
+
+ // If the user wrote a function type in some form, try to use that.
+ if (!BSI->FunctionType.isNull()) {
+ const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
+
+ FunctionType::ExtInfo Ext = FTy->getExtInfo();
+ if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
+
+ // Turn protoless block types into nullary block types.
+ if (isa<FunctionNoProtoType>(FTy)) {
+ FunctionProtoType::ExtProtoInfo EPI;
+ EPI.ExtInfo = Ext;
+ BlockTy = Context.getFunctionType(RetTy, None, EPI);
+
+ // Otherwise, if we don't need to change anything about the function type,
+ // preserve its sugar structure.
+ } else if (FTy->getReturnType() == RetTy &&
+ (!NoReturn || FTy->getNoReturnAttr())) {
+ BlockTy = BSI->FunctionType;
+
+ // Otherwise, make the minimal modifications to the function type.
+ } else {
+ const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
+ FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
+ EPI.TypeQuals = 0; // FIXME: silently?
+ EPI.ExtInfo = Ext;
+ BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI);
+ }
+
+ // If we don't have a function type, just build one from nothing.
+ } else {
+ FunctionProtoType::ExtProtoInfo EPI;
+ EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
+ BlockTy = Context.getFunctionType(RetTy, None, EPI);
+ }
+
+ DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
+ BSI->TheDecl->param_end());
+ BlockTy = Context.getBlockPointerType(BlockTy);
+
+ // If needed, diagnose invalid gotos and switches in the block.
+ if (getCurFunction()->NeedsScopeChecking() &&
+ !PP.isCodeCompletionEnabled())
+ DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
+
+ BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
+
+ // Try to apply the named return value optimization. We have to check again
+ // if we can do this, though, because blocks keep return statements around
+ // to deduce an implicit return type.
+ if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
+ !BSI->TheDecl->isDependentContext())
+ computeNRVO(Body, BSI);
+
+ BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
+ AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
+ PopFunctionScopeInfo(&WP, Result->getBlockDecl(), Result);
+
+ // If the block isn't obviously global, i.e. it captures anything at
+ // all, then we need to do a few things in the surrounding context:
+ if (Result->getBlockDecl()->hasCaptures()) {
+ // First, this expression has a new cleanup object.
+ ExprCleanupObjects.push_back(Result->getBlockDecl());
+ ExprNeedsCleanups = true;
+
+ // It also gets a branch-protected scope if any of the captured
+ // variables needs destruction.
+ for (const auto &CI : Result->getBlockDecl()->captures()) {
+ const VarDecl *var = CI.getVariable();
+ if (var->getType().isDestructedType() != QualType::DK_none) {
+ getCurFunction()->setHasBranchProtectedScope();
+ break;
+ }
+ }
+ }
+
+ return Result;
+}
+
+ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
+ Expr *E, ParsedType Ty,
+ SourceLocation RPLoc) {
+ TypeSourceInfo *TInfo;
+ GetTypeFromParser(Ty, &TInfo);
+ return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
+}
+
+ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
+ Expr *E, TypeSourceInfo *TInfo,
+ SourceLocation RPLoc) {
+ Expr *OrigExpr = E;
+
+ // Get the va_list type
+ QualType VaListType = Context.getBuiltinVaListType();
+ if (VaListType->isArrayType()) {
+ // Deal with implicit array decay; for example, on x86-64,
+ // va_list is an array, but it's supposed to decay to
+ // a pointer for va_arg.
+ VaListType = Context.getArrayDecayedType(VaListType);
+ // Make sure the input expression also decays appropriately.
+ ExprResult Result = UsualUnaryConversions(E);
+ if (Result.isInvalid())
+ return ExprError();
+ E = Result.get();
+ } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
+ // If va_list is a record type and we are compiling in C++ mode,
+ // check the argument using reference binding.
+ InitializedEntity Entity
+ = InitializedEntity::InitializeParameter(Context,
+ Context.getLValueReferenceType(VaListType), false);
+ ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
+ if (Init.isInvalid())
+ return ExprError();
+ E = Init.getAs<Expr>();
+ } else {
+ // Otherwise, the va_list argument must be an l-value because
+ // it is modified by va_arg.
+ if (!E->isTypeDependent() &&
+ CheckForModifiableLvalue(E, BuiltinLoc, *this))
+ return ExprError();
+ }
+
+ if (!E->isTypeDependent() &&
+ !Context.hasSameType(VaListType, E->getType())) {
+ return ExprError(Diag(E->getLocStart(),
+ diag::err_first_argument_to_va_arg_not_of_type_va_list)
+ << OrigExpr->getType() << E->getSourceRange());
+ }
+
+ if (!TInfo->getType()->isDependentType()) {
+ if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
+ diag::err_second_parameter_to_va_arg_incomplete,
+ TInfo->getTypeLoc()))
+ return ExprError();
+
+ if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
+ TInfo->getType(),
+ diag::err_second_parameter_to_va_arg_abstract,
+ TInfo->getTypeLoc()))
+ return ExprError();
+
+ if (!TInfo->getType().isPODType(Context)) {
+ Diag(TInfo->getTypeLoc().getBeginLoc(),
+ TInfo->getType()->isObjCLifetimeType()
+ ? diag::warn_second_parameter_to_va_arg_ownership_qualified
+ : diag::warn_second_parameter_to_va_arg_not_pod)
+ << TInfo->getType()
+ << TInfo->getTypeLoc().getSourceRange();
+ }
+
+ // Check for va_arg where arguments of the given type will be promoted
+ // (i.e. this va_arg is guaranteed to have undefined behavior).
+ QualType PromoteType;
+ if (TInfo->getType()->isPromotableIntegerType()) {
+ PromoteType = Context.getPromotedIntegerType(TInfo->getType());
+ if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
+ PromoteType = QualType();
+ }
+ if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
+ PromoteType = Context.DoubleTy;
+ if (!PromoteType.isNull())
+ DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
+ PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
+ << TInfo->getType()
+ << PromoteType
+ << TInfo->getTypeLoc().getSourceRange());
+ }
+
+ QualType T = TInfo->getType().getNonLValueExprType(Context);
+ return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T);
+}
+
+ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
+ // The type of __null will be int or long, depending on the size of
+ // pointers on the target.
+ QualType Ty;
+ unsigned pw = Context.getTargetInfo().getPointerWidth(0);
+ if (pw == Context.getTargetInfo().getIntWidth())
+ Ty = Context.IntTy;
+ else if (pw == Context.getTargetInfo().getLongWidth())
+ Ty = Context.LongTy;
+ else if (pw == Context.getTargetInfo().getLongLongWidth())
+ Ty = Context.LongLongTy;
+ else {
+ llvm_unreachable("I don't know size of pointer!");
+ }
+
+ return new (Context) GNUNullExpr(Ty, TokenLoc);
+}
+
+bool
+Sema::ConversionToObjCStringLiteralCheck(QualType DstType, Expr *&Exp) {
+ if (!getLangOpts().ObjC1)
+ return false;
+
+ const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
+ if (!PT)
+ return false;
+
+ if (!PT->isObjCIdType()) {
+ // Check if the destination is the 'NSString' interface.
+ const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
+ if (!ID || !ID->getIdentifier()->isStr("NSString"))
+ return false;
+ }
+
+ // Ignore any parens, implicit casts (should only be
+ // array-to-pointer decays), and not-so-opaque values. The last is
+ // important for making this trigger for property assignments.
+ Expr *SrcExpr = Exp->IgnoreParenImpCasts();
+ if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
+ if (OV->getSourceExpr())
+ SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
+
+ StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr);
+ if (!SL || !SL->isAscii())
+ return false;
+ Diag(SL->getLocStart(), diag::err_missing_atsign_prefix)
+ << FixItHint::CreateInsertion(SL->getLocStart(), "@");
+ Exp = BuildObjCStringLiteral(SL->getLocStart(), SL).get();
+ return true;
+}
+
+bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
+ SourceLocation Loc,
+ QualType DstType, QualType SrcType,
+ Expr *SrcExpr, AssignmentAction Action,
+ bool *Complained) {
+ if (Complained)
+ *Complained = false;
+
+ // Decode the result (notice that AST's are still created for extensions).
+ bool CheckInferredResultType = false;
+ bool isInvalid = false;
+ unsigned DiagKind = 0;
+ FixItHint Hint;
+ ConversionFixItGenerator ConvHints;
+ bool MayHaveConvFixit = false;
+ bool MayHaveFunctionDiff = false;
+ const ObjCInterfaceDecl *IFace = nullptr;
+ const ObjCProtocolDecl *PDecl = nullptr;
+
+ switch (ConvTy) {
+ case Compatible:
+ DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
+ return false;
+
+ case PointerToInt:
+ DiagKind = diag::ext_typecheck_convert_pointer_int;
+ ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
+ MayHaveConvFixit = true;
+ break;
+ case IntToPointer:
+ DiagKind = diag::ext_typecheck_convert_int_pointer;
+ ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
+ MayHaveConvFixit = true;
+ break;
+ case IncompatiblePointer:
+ DiagKind =
+ (Action == AA_Passing_CFAudited ?
+ diag::err_arc_typecheck_convert_incompatible_pointer :
+ diag::ext_typecheck_convert_incompatible_pointer);
+ CheckInferredResultType = DstType->isObjCObjectPointerType() &&
+ SrcType->isObjCObjectPointerType();
+ if (Hint.isNull() && !CheckInferredResultType) {
+ ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
+ }
+ else if (CheckInferredResultType) {
+ SrcType = SrcType.getUnqualifiedType();
+ DstType = DstType.getUnqualifiedType();
+ }
+ MayHaveConvFixit = true;
+ break;
+ case IncompatiblePointerSign:
+ DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
+ break;
+ case FunctionVoidPointer:
+ DiagKind = diag::ext_typecheck_convert_pointer_void_func;
+ break;
+ case IncompatiblePointerDiscardsQualifiers: {
+ // Perform array-to-pointer decay if necessary.
+ if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
+
+ Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
+ Qualifiers rhq = DstType->getPointeeType().getQualifiers();
+ if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
+ DiagKind = diag::err_typecheck_incompatible_address_space;
+ break;
+
+
+ } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
+ DiagKind = diag::err_typecheck_incompatible_ownership;
+ break;
+ }
+
+ llvm_unreachable("unknown error case for discarding qualifiers!");
+ // fallthrough
+ }
+ case CompatiblePointerDiscardsQualifiers:
+ // If the qualifiers lost were because we were applying the
+ // (deprecated) C++ conversion from a string literal to a char*
+ // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
+ // Ideally, this check would be performed in
+ // checkPointerTypesForAssignment. However, that would require a
+ // bit of refactoring (so that the second argument is an
+ // expression, rather than a type), which should be done as part
+ // of a larger effort to fix checkPointerTypesForAssignment for
+ // C++ semantics.
+ if (getLangOpts().CPlusPlus &&
+ IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
+ return false;
+ DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
+ break;
+ case IncompatibleNestedPointerQualifiers:
+ DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
+ break;
+ case IntToBlockPointer:
+ DiagKind = diag::err_int_to_block_pointer;
+ break;
+ case IncompatibleBlockPointer:
+ DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
+ break;
+ case IncompatibleObjCQualifiedId: {
+ if (SrcType->isObjCQualifiedIdType()) {
+ const ObjCObjectPointerType *srcOPT =
+ SrcType->getAs<ObjCObjectPointerType>();
+ for (auto *srcProto : srcOPT->quals()) {
+ PDecl = srcProto;
+ break;
+ }
+ if (const ObjCInterfaceType *IFaceT =
+ DstType->getAs<ObjCObjectPointerType>()->getInterfaceType())
+ IFace = IFaceT->getDecl();
+ }
+ else if (DstType->isObjCQualifiedIdType()) {
+ const ObjCObjectPointerType *dstOPT =
+ DstType->getAs<ObjCObjectPointerType>();
+ for (auto *dstProto : dstOPT->quals()) {
+ PDecl = dstProto;
+ break;
+ }
+ if (const ObjCInterfaceType *IFaceT =
+ SrcType->getAs<ObjCObjectPointerType>()->getInterfaceType())
+ IFace = IFaceT->getDecl();
+ }
+ DiagKind = diag::warn_incompatible_qualified_id;
+ break;
+ }
+ case IncompatibleVectors:
+ DiagKind = diag::warn_incompatible_vectors;
+ break;
+ case IncompatibleObjCWeakRef:
+ DiagKind = diag::err_arc_weak_unavailable_assign;
+ break;
+ case Incompatible:
+ DiagKind = diag::err_typecheck_convert_incompatible;
+ ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
+ MayHaveConvFixit = true;
+ isInvalid = true;
+ MayHaveFunctionDiff = true;
+ break;
+ }
+
+ QualType FirstType, SecondType;
+ switch (Action) {
+ case AA_Assigning:
+ case AA_Initializing:
+ // The destination type comes first.
+ FirstType = DstType;
+ SecondType = SrcType;
+ break;
+
+ case AA_Returning:
+ case AA_Passing:
+ case AA_Passing_CFAudited:
+ case AA_Converting:
+ case AA_Sending:
+ case AA_Casting:
+ // The source type comes first.
+ FirstType = SrcType;
+ SecondType = DstType;
+ break;
+ }
+
+ PartialDiagnostic FDiag = PDiag(DiagKind);
+ if (Action == AA_Passing_CFAudited)
+ FDiag << FirstType << SecondType << AA_Passing << SrcExpr->getSourceRange();
+ else
+ FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
+
+ // If we can fix the conversion, suggest the FixIts.
+ assert(ConvHints.isNull() || Hint.isNull());
+ if (!ConvHints.isNull()) {
+ for (std::vector<FixItHint>::iterator HI = ConvHints.Hints.begin(),
+ HE = ConvHints.Hints.end(); HI != HE; ++HI)
+ FDiag << *HI;
+ } else {
+ FDiag << Hint;
+ }
+ if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
+
+ if (MayHaveFunctionDiff)
+ HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
+
+ Diag(Loc, FDiag);
+ if (DiagKind == diag::warn_incompatible_qualified_id &&
+ PDecl && IFace && !IFace->hasDefinition())
+ Diag(IFace->getLocation(), diag::not_incomplete_class_and_qualified_id)
+ << IFace->getName() << PDecl->getName();
+
+ if (SecondType == Context.OverloadTy)
+ NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
+ FirstType);
+
+ if (CheckInferredResultType)
+ EmitRelatedResultTypeNote(SrcExpr);
+
+ if (Action == AA_Returning && ConvTy == IncompatiblePointer)
+ EmitRelatedResultTypeNoteForReturn(DstType);
+
+ if (Complained)
+ *Complained = true;
+ return isInvalid;
+}
+
+ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
+ llvm::APSInt *Result) {
+ class SimpleICEDiagnoser : public VerifyICEDiagnoser {
+ public:
+ void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
+ S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus << SR;
+ }
+ } Diagnoser;
+
+ return VerifyIntegerConstantExpression(E, Result, Diagnoser);
+}
+
+ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
+ llvm::APSInt *Result,
+ unsigned DiagID,
+ bool AllowFold) {
+ class IDDiagnoser : public VerifyICEDiagnoser {
+ unsigned DiagID;
+
+ public:
+ IDDiagnoser(unsigned DiagID)
+ : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
+
+ void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
+ S.Diag(Loc, DiagID) << SR;
+ }
+ } Diagnoser(DiagID);
+
+ return VerifyIntegerConstantExpression(E, Result, Diagnoser, AllowFold);
+}
+
+void Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc,
+ SourceRange SR) {
+ S.Diag(Loc, diag::ext_expr_not_ice) << SR << S.LangOpts.CPlusPlus;
+}
+
+ExprResult
+Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
+ VerifyICEDiagnoser &Diagnoser,
+ bool AllowFold) {
+ SourceLocation DiagLoc = E->getLocStart();
+
+ if (getLangOpts().CPlusPlus11) {
+ // C++11 [expr.const]p5:
+ // If an expression of literal class type is used in a context where an
+ // integral constant expression is required, then that class type shall
+ // have a single non-explicit conversion function to an integral or
+ // unscoped enumeration type
+ ExprResult Converted;
+ class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
+ public:
+ CXX11ConvertDiagnoser(bool Silent)
+ : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false,
+ Silent, true) {}
+
+ SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
+ QualType T) override {
+ return S.Diag(Loc, diag::err_ice_not_integral) << T;
+ }
+
+ SemaDiagnosticBuilder diagnoseIncomplete(
+ Sema &S, SourceLocation Loc, QualType T) override {
+ return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
+ }
+
+ SemaDiagnosticBuilder diagnoseExplicitConv(
+ Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
+ return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
+ }
+
+ SemaDiagnosticBuilder noteExplicitConv(
+ Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
+ return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
+ << ConvTy->isEnumeralType() << ConvTy;
+ }
+
+ SemaDiagnosticBuilder diagnoseAmbiguous(
+ Sema &S, SourceLocation Loc, QualType T) override {
+ return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
+ }
+
+ SemaDiagnosticBuilder noteAmbiguous(
+ Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
+ return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
+ << ConvTy->isEnumeralType() << ConvTy;
+ }
+
+ SemaDiagnosticBuilder diagnoseConversion(
+ Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
+ llvm_unreachable("conversion functions are permitted");
+ }
+ } ConvertDiagnoser(Diagnoser.Suppress);
+
+ Converted = PerformContextualImplicitConversion(DiagLoc, E,
+ ConvertDiagnoser);
+ if (Converted.isInvalid())
+ return Converted;
+ E = Converted.get();
+ if (!E->getType()->isIntegralOrUnscopedEnumerationType())
+ return ExprError();
+ } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
+ // An ICE must be of integral or unscoped enumeration type.
+ if (!Diagnoser.Suppress)
+ Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
+ return ExprError();
+ }
+
+ // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
+ // in the non-ICE case.
+ if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
+ if (Result)
+ *Result = E->EvaluateKnownConstInt(Context);
+ return E;
+ }
+
+ Expr::EvalResult EvalResult;
+ SmallVector<PartialDiagnosticAt, 8> Notes;
+ EvalResult.Diag = &Notes;
+
+ // Try to evaluate the expression, and produce diagnostics explaining why it's
+ // not a constant expression as a side-effect.
+ bool Folded = E->EvaluateAsRValue(EvalResult, Context) &&
+ EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
+
+ // In C++11, we can rely on diagnostics being produced for any expression
+ // which is not a constant expression. If no diagnostics were produced, then
+ // this is a constant expression.
+ if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
+ if (Result)
+ *Result = EvalResult.Val.getInt();
+ return E;
+ }
+
+ // If our only note is the usual "invalid subexpression" note, just point
+ // the caret at its location rather than producing an essentially
+ // redundant note.
+ if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
+ diag::note_invalid_subexpr_in_const_expr) {
+ DiagLoc = Notes[0].first;
+ Notes.clear();
+ }
+
+ if (!Folded || !AllowFold) {
+ if (!Diagnoser.Suppress) {
+ Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
+ for (unsigned I = 0, N = Notes.size(); I != N; ++I)
+ Diag(Notes[I].first, Notes[I].second);
+ }
+
+ return ExprError();
+ }
+
+ Diagnoser.diagnoseFold(*this, DiagLoc, E->getSourceRange());
+ for (unsigned I = 0, N = Notes.size(); I != N; ++I)
+ Diag(Notes[I].first, Notes[I].second);
+
+ if (Result)
+ *Result = EvalResult.Val.getInt();
+ return E;
+}
+
+namespace {
+ // Handle the case where we conclude a expression which we speculatively
+ // considered to be unevaluated is actually evaluated.
+ class TransformToPE : public TreeTransform<TransformToPE> {
+ typedef TreeTransform<TransformToPE> BaseTransform;
+
+ public:
+ TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
+
+ // Make sure we redo semantic analysis
+ bool AlwaysRebuild() { return true; }
+
+ // Make sure we handle LabelStmts correctly.
+ // FIXME: This does the right thing, but maybe we need a more general
+ // fix to TreeTransform?
+ StmtResult TransformLabelStmt(LabelStmt *S) {
+ S->getDecl()->setStmt(nullptr);
+ return BaseTransform::TransformLabelStmt(S);
+ }
+
+ // We need to special-case DeclRefExprs referring to FieldDecls which
+ // are not part of a member pointer formation; normal TreeTransforming
+ // doesn't catch this case because of the way we represent them in the AST.
+ // FIXME: This is a bit ugly; is it really the best way to handle this
+ // case?
+ //
+ // Error on DeclRefExprs referring to FieldDecls.
+ ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
+ if (isa<FieldDecl>(E->getDecl()) &&
+ !SemaRef.isUnevaluatedContext())
+ return SemaRef.Diag(E->getLocation(),
+ diag::err_invalid_non_static_member_use)
+ << E->getDecl() << E->getSourceRange();
+
+ return BaseTransform::TransformDeclRefExpr(E);
+ }
+
+ // Exception: filter out member pointer formation
+ ExprResult TransformUnaryOperator(UnaryOperator *E) {
+ if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
+ return E;
+
+ return BaseTransform::TransformUnaryOperator(E);
+ }
+
+ ExprResult TransformLambdaExpr(LambdaExpr *E) {
+ // Lambdas never need to be transformed.
+ return E;
+ }
+ };
+}
+
+ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
+ assert(isUnevaluatedContext() &&
+ "Should only transform unevaluated expressions");
+ ExprEvalContexts.back().Context =
+ ExprEvalContexts[ExprEvalContexts.size()-2].Context;
+ if (isUnevaluatedContext())
+ return E;
+ return TransformToPE(*this).TransformExpr(E);
+}
+
+void
+Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
+ Decl *LambdaContextDecl,
+ bool IsDecltype) {
+ ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(),
+ ExprNeedsCleanups, LambdaContextDecl,
+ IsDecltype);
+ ExprNeedsCleanups = false;
+ if (!MaybeODRUseExprs.empty())
+ std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
+}
+
+void
+Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
+ ReuseLambdaContextDecl_t,
+ bool IsDecltype) {
+ Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
+ PushExpressionEvaluationContext(NewContext, ClosureContextDecl, IsDecltype);
+}
+
+void Sema::PopExpressionEvaluationContext() {
+ ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
+ unsigned NumTypos = Rec.NumTypos;
+
+ if (!Rec.Lambdas.empty()) {
+ if (Rec.isUnevaluated() || Rec.Context == ConstantEvaluated) {
+ unsigned D;
+ if (Rec.isUnevaluated()) {
+ // C++11 [expr.prim.lambda]p2:
+ // A lambda-expression shall not appear in an unevaluated operand
+ // (Clause 5).
+ D = diag::err_lambda_unevaluated_operand;
+ } else {
+ // C++1y [expr.const]p2:
+ // A conditional-expression e is a core constant expression unless the
+ // evaluation of e, following the rules of the abstract machine, would
+ // evaluate [...] a lambda-expression.
+ D = diag::err_lambda_in_constant_expression;
+ }
+ for (const auto *L : Rec.Lambdas)
+ Diag(L->getLocStart(), D);
+ } else {
+ // Mark the capture expressions odr-used. This was deferred
+ // during lambda expression creation.
+ for (auto *Lambda : Rec.Lambdas) {
+ for (auto *C : Lambda->capture_inits())
+ MarkDeclarationsReferencedInExpr(C);
+ }
+ }
+ }
+
+ // When are coming out of an unevaluated context, clear out any
+ // temporaries that we may have created as part of the evaluation of
+ // the expression in that context: they aren't relevant because they
+ // will never be constructed.
+ if (Rec.isUnevaluated() || Rec.Context == ConstantEvaluated) {
+ ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
+ ExprCleanupObjects.end());
+ ExprNeedsCleanups = Rec.ParentNeedsCleanups;
+ CleanupVarDeclMarking();
+ std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
+ // Otherwise, merge the contexts together.
+ } else {
+ ExprNeedsCleanups |= Rec.ParentNeedsCleanups;
+ MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
+ Rec.SavedMaybeODRUseExprs.end());
+ }
+
+ // Pop the current expression evaluation context off the stack.
+ ExprEvalContexts.pop_back();
+
+ if (!ExprEvalContexts.empty())
+ ExprEvalContexts.back().NumTypos += NumTypos;
+ else
+ assert(NumTypos == 0 && "There are outstanding typos after popping the "
+ "last ExpressionEvaluationContextRecord");
+}
+
+void Sema::DiscardCleanupsInEvaluationContext() {
+ ExprCleanupObjects.erase(
+ ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
+ ExprCleanupObjects.end());
+ ExprNeedsCleanups = false;
+ MaybeODRUseExprs.clear();
+}
+
+ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
+ if (!E->getType()->isVariablyModifiedType())
+ return E;
+ return TransformToPotentiallyEvaluated(E);
+}
+
+static bool IsPotentiallyEvaluatedContext(Sema &SemaRef) {
+ // Do not mark anything as "used" within a dependent context; wait for
+ // an instantiation.
+ if (SemaRef.CurContext->isDependentContext())
+ return false;
+
+ switch (SemaRef.ExprEvalContexts.back().Context) {
+ case Sema::Unevaluated:
+ case Sema::UnevaluatedAbstract:
+ // We are in an expression that is not potentially evaluated; do nothing.
+ // (Depending on how you read the standard, we actually do need to do
+ // something here for null pointer constants, but the standard's
+ // definition of a null pointer constant is completely crazy.)
+ return false;
+
+ case Sema::ConstantEvaluated:
+ case Sema::PotentiallyEvaluated:
+ // We are in a potentially evaluated expression (or a constant-expression
+ // in C++03); we need to do implicit template instantiation, implicitly
+ // define class members, and mark most declarations as used.
+ return true;
+
+ case Sema::PotentiallyEvaluatedIfUsed:
+ // Referenced declarations will only be used if the construct in the
+ // containing expression is used.
+ return false;
+ }
+ llvm_unreachable("Invalid context");
+}
+
+/// \brief Mark a function referenced, and check whether it is odr-used
+/// (C++ [basic.def.odr]p2, C99 6.9p3)
+void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
+ bool OdrUse) {
+ assert(Func && "No function?");
+
+ Func->setReferenced();
+
+ // C++11 [basic.def.odr]p3:
+ // A function whose name appears as a potentially-evaluated expression is
+ // odr-used if it is the unique lookup result or the selected member of a
+ // set of overloaded functions [...].
+ //
+ // We (incorrectly) mark overload resolution as an unevaluated context, so we
+ // can just check that here. Skip the rest of this function if we've already
+ // marked the function as used.
+ if (Func->isUsed(/*CheckUsedAttr=*/false) ||
+ !IsPotentiallyEvaluatedContext(*this)) {
+ // C++11 [temp.inst]p3:
+ // Unless a function template specialization has been explicitly
+ // instantiated or explicitly specialized, the function template
+ // specialization is implicitly instantiated when the specialization is
+ // referenced in a context that requires a function definition to exist.
+ //
+ // We consider constexpr function templates to be referenced in a context
+ // that requires a definition to exist whenever they are referenced.
+ //
+ // FIXME: This instantiates constexpr functions too frequently. If this is
+ // really an unevaluated context (and we're not just in the definition of a
+ // function template or overload resolution or other cases which we
+ // incorrectly consider to be unevaluated contexts), and we're not in a
+ // subexpression which we actually need to evaluate (for instance, a
+ // template argument, array bound or an expression in a braced-init-list),
+ // we are not permitted to instantiate this constexpr function definition.
+ //
+ // FIXME: This also implicitly defines special members too frequently. They
+ // are only supposed to be implicitly defined if they are odr-used, but they
+ // are not odr-used from constant expressions in unevaluated contexts.
+ // However, they cannot be referenced if they are deleted, and they are
+ // deleted whenever the implicit definition of the special member would
+ // fail.
+ if (!Func->isConstexpr() || Func->getBody())
+ return;
+ CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Func);
+ if (!Func->isImplicitlyInstantiable() && (!MD || MD->isUserProvided()))
+ return;
+ }
+
+ // Note that this declaration has been used.
+ if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
+ Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
+ if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
+ if (Constructor->isDefaultConstructor()) {
+ if (Constructor->isTrivial() && !Constructor->hasAttr<DLLExportAttr>())
+ return;
+ DefineImplicitDefaultConstructor(Loc, Constructor);
+ } else if (Constructor->isCopyConstructor()) {
+ DefineImplicitCopyConstructor(Loc, Constructor);
+ } else if (Constructor->isMoveConstructor()) {
+ DefineImplicitMoveConstructor(Loc, Constructor);
+ }
+ } else if (Constructor->getInheritedConstructor()) {
+ DefineInheritingConstructor(Loc, Constructor);
+ }
+ } else if (CXXDestructorDecl *Destructor =
+ dyn_cast<CXXDestructorDecl>(Func)) {
+ Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
+ if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
+ if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
+ return;
+ DefineImplicitDestructor(Loc, Destructor);
+ }
+ if (Destructor->isVirtual() && getLangOpts().AppleKext)
+ MarkVTableUsed(Loc, Destructor->getParent());
+ } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
+ if (MethodDecl->isOverloadedOperator() &&
+ MethodDecl->getOverloadedOperator() == OO_Equal) {
+ MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
+ if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
+ if (MethodDecl->isCopyAssignmentOperator())
+ DefineImplicitCopyAssignment(Loc, MethodDecl);
+ else
+ DefineImplicitMoveAssignment(Loc, MethodDecl);
+ }
+ } else if (isa<CXXConversionDecl>(MethodDecl) &&
+ MethodDecl->getParent()->isLambda()) {
+ CXXConversionDecl *Conversion =
+ cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
+ if (Conversion->isLambdaToBlockPointerConversion())
+ DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
+ else
+ DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
+ } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext)
+ MarkVTableUsed(Loc, MethodDecl->getParent());
+ }
+
+ // Recursive functions should be marked when used from another function.
+ // FIXME: Is this really right?
+ if (CurContext == Func) return;
+
+ // Resolve the exception specification for any function which is
+ // used: CodeGen will need it.
+ const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
+ if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
+ ResolveExceptionSpec(Loc, FPT);
+
+ if (!OdrUse) return;
+
+ // Implicit instantiation of function templates and member functions of
+ // class templates.
+ if (Func->isImplicitlyInstantiable()) {
+ bool AlreadyInstantiated = false;
+ SourceLocation PointOfInstantiation = Loc;
+ if (FunctionTemplateSpecializationInfo *SpecInfo
+ = Func->getTemplateSpecializationInfo()) {
+ if (SpecInfo->getPointOfInstantiation().isInvalid())
+ SpecInfo->setPointOfInstantiation(Loc);
+ else if (SpecInfo->getTemplateSpecializationKind()
+ == TSK_ImplicitInstantiation) {
+ AlreadyInstantiated = true;
+ PointOfInstantiation = SpecInfo->getPointOfInstantiation();
+ }
+ } else if (MemberSpecializationInfo *MSInfo
+ = Func->getMemberSpecializationInfo()) {
+ if (MSInfo->getPointOfInstantiation().isInvalid())
+ MSInfo->setPointOfInstantiation(Loc);
+ else if (MSInfo->getTemplateSpecializationKind()
+ == TSK_ImplicitInstantiation) {
+ AlreadyInstantiated = true;
+ PointOfInstantiation = MSInfo->getPointOfInstantiation();
+ }
+ }
+
+ if (!AlreadyInstantiated || Func->isConstexpr()) {
+ if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
+ cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
+ ActiveTemplateInstantiations.size())
+ PendingLocalImplicitInstantiations.push_back(
+ std::make_pair(Func, PointOfInstantiation));
+ else if (Func->isConstexpr())
+ // Do not defer instantiations of constexpr functions, to avoid the
+ // expression evaluator needing to call back into Sema if it sees a
+ // call to such a function.
+ InstantiateFunctionDefinition(PointOfInstantiation, Func);
+ else {
+ PendingInstantiations.push_back(std::make_pair(Func,
+ PointOfInstantiation));
+ // Notify the consumer that a function was implicitly instantiated.
+ Consumer.HandleCXXImplicitFunctionInstantiation(Func);
+ }
+ }
+ } else {
+ // Walk redefinitions, as some of them may be instantiable.
+ for (auto i : Func->redecls()) {
+ if (!i->isUsed(false) && i->isImplicitlyInstantiable())
+ MarkFunctionReferenced(Loc, i);
+ }
+ }
+
+ // Keep track of used but undefined functions.
+ if (!Func->isDefined()) {
+ if (mightHaveNonExternalLinkage(Func))
+ UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
+ else if (Func->getMostRecentDecl()->isInlined() &&
+ !LangOpts.GNUInline &&
+ !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
+ UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
+ }
+
+ // Normally the most current decl is marked used while processing the use and
+ // any subsequent decls are marked used by decl merging. This fails with
+ // template instantiation since marking can happen at the end of the file
+ // and, because of the two phase lookup, this function is called with at
+ // decl in the middle of a decl chain. We loop to maintain the invariant
+ // that once a decl is used, all decls after it are also used.
+ for (FunctionDecl *F = Func->getMostRecentDecl();; F = F->getPreviousDecl()) {
+ F->markUsed(Context);
+ if (F == Func)
+ break;
+ }
+}
+
+static void
+diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
+ VarDecl *var, DeclContext *DC) {
+ DeclContext *VarDC = var->getDeclContext();
+
+ // If the parameter still belongs to the translation unit, then
+ // we're actually just using one parameter in the declaration of
+ // the next.
+ if (isa<ParmVarDecl>(var) &&
+ isa<TranslationUnitDecl>(VarDC))
+ return;
+
+ // For C code, don't diagnose about capture if we're not actually in code
+ // right now; it's impossible to write a non-constant expression outside of
+ // function context, so we'll get other (more useful) diagnostics later.
+ //
+ // For C++, things get a bit more nasty... it would be nice to suppress this
+ // diagnostic for certain cases like using a local variable in an array bound
+ // for a member of a local class, but the correct predicate is not obvious.
+ if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
+ return;
+
+ if (isa<CXXMethodDecl>(VarDC) &&
+ cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
+ S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_lambda)
+ << var->getIdentifier();
+ } else if (FunctionDecl *fn = dyn_cast<FunctionDecl>(VarDC)) {
+ S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function)
+ << var->getIdentifier() << fn->getDeclName();
+ } else if (isa<BlockDecl>(VarDC)) {
+ S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_block)
+ << var->getIdentifier();
+ } else {
+ // FIXME: Is there any other context where a local variable can be
+ // declared?
+ S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_context)
+ << var->getIdentifier();
+ }
+
+ S.Diag(var->getLocation(), diag::note_entity_declared_at)
+ << var->getIdentifier();
+
+ // FIXME: Add additional diagnostic info about class etc. which prevents
+ // capture.
+}
+
+
+static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI, VarDecl *Var,
+ bool &SubCapturesAreNested,
+ QualType &CaptureType,
+ QualType &DeclRefType) {
+ // Check whether we've already captured it.
+ if (CSI->CaptureMap.count(Var)) {
+ // If we found a capture, any subcaptures are nested.
+ SubCapturesAreNested = true;
+
+ // Retrieve the capture type for this variable.
+ CaptureType = CSI->getCapture(Var).getCaptureType();
+
+ // Compute the type of an expression that refers to this variable.
+ DeclRefType = CaptureType.getNonReferenceType();
+
+ const CapturingScopeInfo::Capture &Cap = CSI->getCapture(Var);
+ if (Cap.isCopyCapture() &&
+ !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable))
+ DeclRefType.addConst();
+ return true;
+ }
+ return false;
+}
+
+// Only block literals, captured statements, and lambda expressions can
+// capture; other scopes don't work.
+static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC, VarDecl *Var,
+ SourceLocation Loc,
+ const bool Diagnose, Sema &S) {
+ if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
+ return getLambdaAwareParentOfDeclContext(DC);
+ else if (Var->hasLocalStorage()) {
+ if (Diagnose)
+ diagnoseUncapturableValueReference(S, Loc, Var, DC);
+ }
+ return nullptr;
+}
+
+// Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
+// certain types of variables (unnamed, variably modified types etc.)
+// so check for eligibility.
+static bool isVariableCapturable(CapturingScopeInfo *CSI, VarDecl *Var,
+ SourceLocation Loc,
+ const bool Diagnose, Sema &S) {
+
+ bool IsBlock = isa<BlockScopeInfo>(CSI);
+ bool IsLambda = isa<LambdaScopeInfo>(CSI);
+
+ // Lambdas are not allowed to capture unnamed variables
+ // (e.g. anonymous unions).
+ // FIXME: The C++11 rule don't actually state this explicitly, but I'm
+ // assuming that's the intent.
+ if (IsLambda && !Var->getDeclName()) {
+ if (Diagnose) {
+ S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
+ S.Diag(Var->getLocation(), diag::note_declared_at);
+ }
+ return false;
+ }
+
+ // Prohibit variably-modified types in blocks; they're difficult to deal with.
+ if (Var->getType()->isVariablyModifiedType() && IsBlock) {
+ if (Diagnose) {
+ S.Diag(Loc, diag::err_ref_vm_type);
+ S.Diag(Var->getLocation(), diag::note_previous_decl)
+ << Var->getDeclName();
+ }
+ return false;
+ }
+ // Prohibit structs with flexible array members too.
+ // We cannot capture what is in the tail end of the struct.
+ if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
+ if (VTTy->getDecl()->hasFlexibleArrayMember()) {
+ if (Diagnose) {
+ if (IsBlock)
+ S.Diag(Loc, diag::err_ref_flexarray_type);
+ else
+ S.Diag(Loc, diag::err_lambda_capture_flexarray_type)
+ << Var->getDeclName();
+ S.Diag(Var->getLocation(), diag::note_previous_decl)
+ << Var->getDeclName();
+ }
+ return false;
+ }
+ }
+ const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
+ // Lambdas and captured statements are not allowed to capture __block
+ // variables; they don't support the expected semantics.
+ if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
+ if (Diagnose) {
+ S.Diag(Loc, diag::err_capture_block_variable)
+ << Var->getDeclName() << !IsLambda;
+ S.Diag(Var->getLocation(), diag::note_previous_decl)
+ << Var->getDeclName();
+ }
+ return false;
+ }
+
+ return true;
+}
+
+// Returns true if the capture by block was successful.
+static bool captureInBlock(BlockScopeInfo *BSI, VarDecl *Var,
+ SourceLocation Loc,
+ const bool BuildAndDiagnose,
+ QualType &CaptureType,
+ QualType &DeclRefType,
+ const bool Nested,
+ Sema &S) {
+ Expr *CopyExpr = nullptr;
+ bool ByRef = false;
+
+ // Blocks are not allowed to capture arrays.
+ if (CaptureType->isArrayType()) {
+ if (BuildAndDiagnose) {
+ S.Diag(Loc, diag::err_ref_array_type);
+ S.Diag(Var->getLocation(), diag::note_previous_decl)
+ << Var->getDeclName();
+ }
+ return false;
+ }
+
+ // Forbid the block-capture of autoreleasing variables.
+ if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
+ if (BuildAndDiagnose) {
+ S.Diag(Loc, diag::err_arc_autoreleasing_capture)
+ << /*block*/ 0;
+ S.Diag(Var->getLocation(), diag::note_previous_decl)
+ << Var->getDeclName();
+ }
+ return false;
+ }
+ const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
+ if (HasBlocksAttr || CaptureType->isReferenceType()) {
+ // Block capture by reference does not change the capture or
+ // declaration reference types.
+ ByRef = true;
+ } else {
+ // Block capture by copy introduces 'const'.
+ CaptureType = CaptureType.getNonReferenceType().withConst();
+ DeclRefType = CaptureType;
+
+ if (S.getLangOpts().CPlusPlus && BuildAndDiagnose) {
+ if (const RecordType *Record = DeclRefType->getAs<RecordType>()) {
+ // The capture logic needs the destructor, so make sure we mark it.
+ // Usually this is unnecessary because most local variables have
+ // their destructors marked at declaration time, but parameters are
+ // an exception because it's technically only the call site that
+ // actually requires the destructor.
+ if (isa<ParmVarDecl>(Var))
+ S.FinalizeVarWithDestructor(Var, Record);
+
+ // Enter a new evaluation context to insulate the copy
+ // full-expression.
+ EnterExpressionEvaluationContext scope(S, S.PotentiallyEvaluated);
+
+ // According to the blocks spec, the capture of a variable from
+ // the stack requires a const copy constructor. This is not true
+ // of the copy/move done to move a __block variable to the heap.
+ Expr *DeclRef = new (S.Context) DeclRefExpr(Var, Nested,
+ DeclRefType.withConst(),
+ VK_LValue, Loc);
+
+ ExprResult Result
+ = S.PerformCopyInitialization(
+ InitializedEntity::InitializeBlock(Var->getLocation(),
+ CaptureType, false),
+ Loc, DeclRef);
+
+ // Build a full-expression copy expression if initialization
+ // succeeded and used a non-trivial constructor. Recover from
+ // errors by pretending that the copy isn't necessary.
+ if (!Result.isInvalid() &&
+ !cast<CXXConstructExpr>(Result.get())->getConstructor()
+ ->isTrivial()) {
+ Result = S.MaybeCreateExprWithCleanups(Result);
+ CopyExpr = Result.get();
+ }
+ }
+ }
+ }
+
+ // Actually capture the variable.
+ if (BuildAndDiagnose)
+ BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc,
+ SourceLocation(), CaptureType, CopyExpr);
+
+ return true;
+
+}
+
+
+/// \brief Capture the given variable in the captured region.
+static bool captureInCapturedRegion(CapturedRegionScopeInfo *RSI,
+ VarDecl *Var,
+ SourceLocation Loc,
+ const bool BuildAndDiagnose,
+ QualType &CaptureType,
+ QualType &DeclRefType,
+ const bool RefersToCapturedVariable,
+ Sema &S) {
+
+ // By default, capture variables by reference.
+ bool ByRef = true;
+ // Using an LValue reference type is consistent with Lambdas (see below).
+ CaptureType = S.Context.getLValueReferenceType(DeclRefType);
+ Expr *CopyExpr = nullptr;
+ if (BuildAndDiagnose) {
+ // The current implementation assumes that all variables are captured
+ // by references. Since there is no capture by copy, no expression
+ // evaluation will be needed.
+ RecordDecl *RD = RSI->TheRecordDecl;
+
+ FieldDecl *Field
+ = FieldDecl::Create(S.Context, RD, Loc, Loc, nullptr, CaptureType,
+ S.Context.getTrivialTypeSourceInfo(CaptureType, Loc),
+ nullptr, false, ICIS_NoInit);
+ Field->setImplicit(true);
+ Field->setAccess(AS_private);
+ RD->addDecl(Field);
+
+ CopyExpr = new (S.Context) DeclRefExpr(Var, RefersToCapturedVariable,
+ DeclRefType, VK_LValue, Loc);
+ Var->setReferenced(true);
+ Var->markUsed(S.Context);
+ }
+
+ // Actually capture the variable.
+ if (BuildAndDiagnose)
+ RSI->addCapture(Var, /*isBlock*/false, ByRef, RefersToCapturedVariable, Loc,
+ SourceLocation(), CaptureType, CopyExpr);
+
+
+ return true;
+}
+
+/// \brief Create a field within the lambda class for the variable
+/// being captured.
+static void addAsFieldToClosureType(Sema &S, LambdaScopeInfo *LSI, VarDecl *Var,
+ QualType FieldType, QualType DeclRefType,
+ SourceLocation Loc,
+ bool RefersToCapturedVariable) {
+ CXXRecordDecl *Lambda = LSI->Lambda;
+
+ // Build the non-static data member.
+ FieldDecl *Field
+ = FieldDecl::Create(S.Context, Lambda, Loc, Loc, nullptr, FieldType,
+ S.Context.getTrivialTypeSourceInfo(FieldType, Loc),
+ nullptr, false, ICIS_NoInit);
+ Field->setImplicit(true);
+ Field->setAccess(AS_private);
+ Lambda->addDecl(Field);
+}
+
+/// \brief Capture the given variable in the lambda.
+static bool captureInLambda(LambdaScopeInfo *LSI,
+ VarDecl *Var,
+ SourceLocation Loc,
+ const bool BuildAndDiagnose,
+ QualType &CaptureType,
+ QualType &DeclRefType,
+ const bool RefersToCapturedVariable,
+ const Sema::TryCaptureKind Kind,
+ SourceLocation EllipsisLoc,
+ const bool IsTopScope,
+ Sema &S) {
+
+ // Determine whether we are capturing by reference or by value.
+ bool ByRef = false;
+ if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
+ ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
+ } else {
+ ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
+ }
+
+ // Compute the type of the field that will capture this variable.
+ if (ByRef) {
+ // C++11 [expr.prim.lambda]p15:
+ // An entity is captured by reference if it is implicitly or
+ // explicitly captured but not captured by copy. It is
+ // unspecified whether additional unnamed non-static data
+ // members are declared in the closure type for entities
+ // captured by reference.
+ //
+ // FIXME: It is not clear whether we want to build an lvalue reference
+ // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
+ // to do the former, while EDG does the latter. Core issue 1249 will
+ // clarify, but for now we follow GCC because it's a more permissive and
+ // easily defensible position.
+ CaptureType = S.Context.getLValueReferenceType(DeclRefType);
+ } else {
+ // C++11 [expr.prim.lambda]p14:
+ // For each entity captured by copy, an unnamed non-static
+ // data member is declared in the closure type. The
+ // declaration order of these members is unspecified. The type
+ // of such a data member is the type of the corresponding
+ // captured entity if the entity is not a reference to an
+ // object, or the referenced type otherwise. [Note: If the
+ // captured entity is a reference to a function, the
+ // corresponding data member is also a reference to a
+ // function. - end note ]
+ if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
+ if (!RefType->getPointeeType()->isFunctionType())
+ CaptureType = RefType->getPointeeType();
+ }
+
+ // Forbid the lambda copy-capture of autoreleasing variables.
+ if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
+ if (BuildAndDiagnose) {
+ S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
+ S.Diag(Var->getLocation(), diag::note_previous_decl)
+ << Var->getDeclName();
+ }
+ return false;
+ }
+
+ // Make sure that by-copy captures are of a complete and non-abstract type.
+ if (BuildAndDiagnose) {
+ if (!CaptureType->isDependentType() &&
+ S.RequireCompleteType(Loc, CaptureType,
+ diag::err_capture_of_incomplete_type,
+ Var->getDeclName()))
+ return false;
+
+ if (S.RequireNonAbstractType(Loc, CaptureType,
+ diag::err_capture_of_abstract_type))
+ return false;
+ }
+ }
+
+ // Capture this variable in the lambda.
+ if (BuildAndDiagnose)
+ addAsFieldToClosureType(S, LSI, Var, CaptureType, DeclRefType, Loc,
+ RefersToCapturedVariable);
+
+ // Compute the type of a reference to this captured variable.
+ if (ByRef)
+ DeclRefType = CaptureType.getNonReferenceType();
+ else {
+ // C++ [expr.prim.lambda]p5:
+ // The closure type for a lambda-expression has a public inline
+ // function call operator [...]. This function call operator is
+ // declared const (9.3.1) if and only if the lambda-expression’s
+ // parameter-declaration-clause is not followed by mutable.
+ DeclRefType = CaptureType.getNonReferenceType();
+ if (!LSI->Mutable && !CaptureType->isReferenceType())
+ DeclRefType.addConst();
+ }
+
+ // Add the capture.
+ if (BuildAndDiagnose)
+ LSI->addCapture(Var, /*IsBlock=*/false, ByRef, RefersToCapturedVariable,
+ Loc, EllipsisLoc, CaptureType, /*CopyExpr=*/nullptr);
+
+ return true;
+}
+
+bool Sema::tryCaptureVariable(
+ VarDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind,
+ SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType,
+ QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) {
+ // An init-capture is notionally from the context surrounding its
+ // declaration, but its parent DC is the lambda class.
+ DeclContext *VarDC = Var->getDeclContext();
+ if (Var->isInitCapture())
+ VarDC = VarDC->getParent();
+
+ DeclContext *DC = CurContext;
+ const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
+ ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
+ // We need to sync up the Declaration Context with the
+ // FunctionScopeIndexToStopAt
+ if (FunctionScopeIndexToStopAt) {
+ unsigned FSIndex = FunctionScopes.size() - 1;
+ while (FSIndex != MaxFunctionScopesIndex) {
+ DC = getLambdaAwareParentOfDeclContext(DC);
+ --FSIndex;
+ }
+ }
+
+
+ // If the variable is declared in the current context, there is no need to
+ // capture it.
+ if (VarDC == DC) return true;
+
+ // Capture global variables if it is required to use private copy of this
+ // variable.
+ bool IsGlobal = !Var->hasLocalStorage();
+ if (IsGlobal && !(LangOpts.OpenMP && IsOpenMPCapturedVar(Var)))
+ return true;
+
+ // Walk up the stack to determine whether we can capture the variable,
+ // performing the "simple" checks that don't depend on type. We stop when
+ // we've either hit the declared scope of the variable or find an existing
+ // capture of that variable. We start from the innermost capturing-entity
+ // (the DC) and ensure that all intervening capturing-entities
+ // (blocks/lambdas etc.) between the innermost capturer and the variable`s
+ // declcontext can either capture the variable or have already captured
+ // the variable.
+ CaptureType = Var->getType();
+ DeclRefType = CaptureType.getNonReferenceType();
+ bool Nested = false;
+ bool Explicit = (Kind != TryCapture_Implicit);
+ unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
+ do {
+ // Only block literals, captured statements, and lambda expressions can
+ // capture; other scopes don't work.
+ DeclContext *ParentDC = getParentOfCapturingContextOrNull(DC, Var,
+ ExprLoc,
+ BuildAndDiagnose,
+ *this);
+ // We need to check for the parent *first* because, if we *have*
+ // private-captured a global variable, we need to recursively capture it in
+ // intermediate blocks, lambdas, etc.
+ if (!ParentDC) {
+ if (IsGlobal) {
+ FunctionScopesIndex = MaxFunctionScopesIndex - 1;
+ break;
+ }
+ return true;
+ }
+
+ FunctionScopeInfo *FSI = FunctionScopes[FunctionScopesIndex];
+ CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
+
+
+ // Check whether we've already captured it.
+ if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
+ DeclRefType))
+ break;
+ // If we are instantiating a generic lambda call operator body,
+ // we do not want to capture new variables. What was captured
+ // during either a lambdas transformation or initial parsing
+ // should be used.
+ if (isGenericLambdaCallOperatorSpecialization(DC)) {
+ if (BuildAndDiagnose) {
+ LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
+ if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
+ Diag(ExprLoc, diag::err_lambda_impcap) << Var->getDeclName();
+ Diag(Var->getLocation(), diag::note_previous_decl)
+ << Var->getDeclName();
+ Diag(LSI->Lambda->getLocStart(), diag::note_lambda_decl);
+ } else
+ diagnoseUncapturableValueReference(*this, ExprLoc, Var, DC);
+ }
+ return true;
+ }
+ // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
+ // certain types of variables (unnamed, variably modified types etc.)
+ // so check for eligibility.
+ if (!isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this))
+ return true;
+
+ // Try to capture variable-length arrays types.
+ if (Var->getType()->isVariablyModifiedType()) {
+ // We're going to walk down into the type and look for VLA
+ // expressions.
+ QualType QTy = Var->getType();
+ if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
+ QTy = PVD->getOriginalType();
+ do {
+ const Type *Ty = QTy.getTypePtr();
+ switch (Ty->getTypeClass()) {
+#define TYPE(Class, Base)
+#define ABSTRACT_TYPE(Class, Base)
+#define NON_CANONICAL_TYPE(Class, Base)
+#define DEPENDENT_TYPE(Class, Base) case Type::Class:
+#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
+#include "clang/AST/TypeNodes.def"
+ QTy = QualType();
+ break;
+ // These types are never variably-modified.
+ case Type::Builtin:
+ case Type::Complex:
+ case Type::Vector:
+ case Type::ExtVector:
+ case Type::Record:
+ case Type::Enum:
+ case Type::Elaborated:
+ case Type::TemplateSpecialization:
+ case Type::ObjCObject:
+ case Type::ObjCInterface:
+ case Type::ObjCObjectPointer:
+ llvm_unreachable("type class is never variably-modified!");
+ case Type::Adjusted:
+ QTy = cast<AdjustedType>(Ty)->getOriginalType();
+ break;
+ case Type::Decayed:
+ QTy = cast<DecayedType>(Ty)->getPointeeType();
+ break;
+ case Type::Pointer:
+ QTy = cast<PointerType>(Ty)->getPointeeType();
+ break;
+ case Type::BlockPointer:
+ QTy = cast<BlockPointerType>(Ty)->getPointeeType();
+ break;
+ case Type::LValueReference:
+ case Type::RValueReference:
+ QTy = cast<ReferenceType>(Ty)->getPointeeType();
+ break;
+ case Type::MemberPointer:
+ QTy = cast<MemberPointerType>(Ty)->getPointeeType();
+ break;
+ case Type::ConstantArray:
+ case Type::IncompleteArray:
+ // Losing element qualification here is fine.
+ QTy = cast<ArrayType>(Ty)->getElementType();
+ break;
+ case Type::VariableArray: {
+ // Losing element qualification here is fine.
+ const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
+
+ // Unknown size indication requires no size computation.
+ // Otherwise, evaluate and record it.
+ if (auto Size = VAT->getSizeExpr()) {
+ if (!CSI->isVLATypeCaptured(VAT)) {
+ RecordDecl *CapRecord = nullptr;
+ if (auto LSI = dyn_cast<LambdaScopeInfo>(CSI)) {
+ CapRecord = LSI->Lambda;
+ } else if (auto CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
+ CapRecord = CRSI->TheRecordDecl;
+ }
+ if (CapRecord) {
+ auto ExprLoc = Size->getExprLoc();
+ auto SizeType = Context.getSizeType();
+ // Build the non-static data member.
+ auto Field = FieldDecl::Create(
+ Context, CapRecord, ExprLoc, ExprLoc,
+ /*Id*/ nullptr, SizeType, /*TInfo*/ nullptr,
+ /*BW*/ nullptr, /*Mutable*/ false,
+ /*InitStyle*/ ICIS_NoInit);
+ Field->setImplicit(true);
+ Field->setAccess(AS_private);
+ Field->setCapturedVLAType(VAT);
+ CapRecord->addDecl(Field);
+
+ CSI->addVLATypeCapture(ExprLoc, SizeType);
+ }
+ }
+ }
+ QTy = VAT->getElementType();
+ break;
+ }
+ case Type::FunctionProto:
+ case Type::FunctionNoProto:
+ QTy = cast<FunctionType>(Ty)->getReturnType();
+ break;
+ case Type::Paren:
+ case Type::TypeOf:
+ case Type::UnaryTransform:
+ case Type::Attributed:
+ case Type::SubstTemplateTypeParm:
+ case Type::PackExpansion:
+ // Keep walking after single level desugaring.
+ QTy = QTy.getSingleStepDesugaredType(getASTContext());
+ break;
+ case Type::Typedef:
+ QTy = cast<TypedefType>(Ty)->desugar();
+ break;
+ case Type::Decltype:
+ QTy = cast<DecltypeType>(Ty)->desugar();
+ break;
+ case Type::Auto:
+ QTy = cast<AutoType>(Ty)->getDeducedType();
+ break;
+ case Type::TypeOfExpr:
+ QTy = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
+ break;
+ case Type::Atomic:
+ QTy = cast<AtomicType>(Ty)->getValueType();
+ break;
+ }
+ } while (!QTy.isNull() && QTy->isVariablyModifiedType());
+ }
+
+ if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
+ // No capture-default, and this is not an explicit capture
+ // so cannot capture this variable.
+ if (BuildAndDiagnose) {
+ Diag(ExprLoc, diag::err_lambda_impcap) << Var->getDeclName();
+ Diag(Var->getLocation(), diag::note_previous_decl)
+ << Var->getDeclName();
+ Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getLocStart(),
+ diag::note_lambda_decl);
+ // FIXME: If we error out because an outer lambda can not implicitly
+ // capture a variable that an inner lambda explicitly captures, we
+ // should have the inner lambda do the explicit capture - because
+ // it makes for cleaner diagnostics later. This would purely be done
+ // so that the diagnostic does not misleadingly claim that a variable
+ // can not be captured by a lambda implicitly even though it is captured
+ // explicitly. Suggestion:
+ // - create const bool VariableCaptureWasInitiallyExplicit = Explicit
+ // at the function head
+ // - cache the StartingDeclContext - this must be a lambda
+ // - captureInLambda in the innermost lambda the variable.
+ }
+ return true;
+ }
+
+ FunctionScopesIndex--;
+ DC = ParentDC;
+ Explicit = false;
+ } while (!VarDC->Equals(DC));
+
+ // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
+ // computing the type of the capture at each step, checking type-specific
+ // requirements, and adding captures if requested.
+ // If the variable had already been captured previously, we start capturing
+ // at the lambda nested within that one.
+ for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
+ ++I) {
+ CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
+
+ if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
+ if (!captureInBlock(BSI, Var, ExprLoc,
+ BuildAndDiagnose, CaptureType,
+ DeclRefType, Nested, *this))
+ return true;
+ Nested = true;
+ } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
+ if (!captureInCapturedRegion(RSI, Var, ExprLoc,
+ BuildAndDiagnose, CaptureType,
+ DeclRefType, Nested, *this))
+ return true;
+ Nested = true;
+ } else {
+ LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
+ if (!captureInLambda(LSI, Var, ExprLoc,
+ BuildAndDiagnose, CaptureType,
+ DeclRefType, Nested, Kind, EllipsisLoc,
+ /*IsTopScope*/I == N - 1, *this))
+ return true;
+ Nested = true;
+ }
+ }
+ return false;
+}
+
+bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
+ TryCaptureKind Kind, SourceLocation EllipsisLoc) {
+ QualType CaptureType;
+ QualType DeclRefType;
+ return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
+ /*BuildAndDiagnose=*/true, CaptureType,
+ DeclRefType, nullptr);
+}
+
+bool Sema::NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc) {
+ QualType CaptureType;
+ QualType DeclRefType;
+ return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
+ /*BuildAndDiagnose=*/false, CaptureType,
+ DeclRefType, nullptr);
+}
+
+QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
+ QualType CaptureType;
+ QualType DeclRefType;
+
+ // Determine whether we can capture this variable.
+ if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
+ /*BuildAndDiagnose=*/false, CaptureType,
+ DeclRefType, nullptr))
+ return QualType();
+
+ return DeclRefType;
+}
+
+
+
+// If either the type of the variable or the initializer is dependent,
+// return false. Otherwise, determine whether the variable is a constant
+// expression. Use this if you need to know if a variable that might or
+// might not be dependent is truly a constant expression.
+static inline bool IsVariableNonDependentAndAConstantExpression(VarDecl *Var,
+ ASTContext &Context) {
+
+ if (Var->getType()->isDependentType())
+ return false;
+ const VarDecl *DefVD = nullptr;
+ Var->getAnyInitializer(DefVD);
+ if (!DefVD)
+ return false;
+ EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
+ Expr *Init = cast<Expr>(Eval->Value);
+ if (Init->isValueDependent())
+ return false;
+ return IsVariableAConstantExpression(Var, Context);
+}
+
+
+void Sema::UpdateMarkingForLValueToRValue(Expr *E) {
+ // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
+ // an object that satisfies the requirements for appearing in a
+ // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
+ // is immediately applied." This function handles the lvalue-to-rvalue
+ // conversion part.
+ MaybeODRUseExprs.erase(E->IgnoreParens());
+
+ // If we are in a lambda, check if this DeclRefExpr or MemberExpr refers
+ // to a variable that is a constant expression, and if so, identify it as
+ // a reference to a variable that does not involve an odr-use of that
+ // variable.
+ if (LambdaScopeInfo *LSI = getCurLambda()) {
+ Expr *SansParensExpr = E->IgnoreParens();
+ VarDecl *Var = nullptr;
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SansParensExpr))
+ Var = dyn_cast<VarDecl>(DRE->getFoundDecl());
+ else if (MemberExpr *ME = dyn_cast<MemberExpr>(SansParensExpr))
+ Var = dyn_cast<VarDecl>(ME->getMemberDecl());
+
+ if (Var && IsVariableNonDependentAndAConstantExpression(Var, Context))
+ LSI->markVariableExprAsNonODRUsed(SansParensExpr);
+ }
+}
+
+ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
+ Res = CorrectDelayedTyposInExpr(Res);
+
+ if (!Res.isUsable())
+ return Res;
+
+ // If a constant-expression is a reference to a variable where we delay
+ // deciding whether it is an odr-use, just assume we will apply the
+ // lvalue-to-rvalue conversion. In the one case where this doesn't happen
+ // (a non-type template argument), we have special handling anyway.
+ UpdateMarkingForLValueToRValue(Res.get());
+ return Res;
+}
+
+void Sema::CleanupVarDeclMarking() {
+ for (llvm::SmallPtrSetIterator<Expr*> i = MaybeODRUseExprs.begin(),
+ e = MaybeODRUseExprs.end();
+ i != e; ++i) {
+ VarDecl *Var;
+ SourceLocation Loc;
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(*i)) {
+ Var = cast<VarDecl>(DRE->getDecl());
+ Loc = DRE->getLocation();
+ } else if (MemberExpr *ME = dyn_cast<MemberExpr>(*i)) {
+ Var = cast<VarDecl>(ME->getMemberDecl());
+ Loc = ME->getMemberLoc();
+ } else {
+ llvm_unreachable("Unexpected expression");
+ }
+
+ MarkVarDeclODRUsed(Var, Loc, *this,
+ /*MaxFunctionScopeIndex Pointer*/ nullptr);
+ }
+
+ MaybeODRUseExprs.clear();
+}
+
+
+static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
+ VarDecl *Var, Expr *E) {
+ assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E)) &&
+ "Invalid Expr argument to DoMarkVarDeclReferenced");
+ Var->setReferenced();
+
+ TemplateSpecializationKind TSK = Var->getTemplateSpecializationKind();
+ bool MarkODRUsed = true;
+
+ // If the context is not potentially evaluated, this is not an odr-use and
+ // does not trigger instantiation.
+ if (!IsPotentiallyEvaluatedContext(SemaRef)) {
+ if (SemaRef.isUnevaluatedContext())
+ return;
+
+ // If we don't yet know whether this context is going to end up being an
+ // evaluated context, and we're referencing a variable from an enclosing
+ // scope, add a potential capture.
+ //
+ // FIXME: Is this necessary? These contexts are only used for default
+ // arguments, where local variables can't be used.
+ const bool RefersToEnclosingScope =
+ (SemaRef.CurContext != Var->getDeclContext() &&
+ Var->getDeclContext()->isFunctionOrMethod() && Var->hasLocalStorage());
+ if (RefersToEnclosingScope) {
+ if (LambdaScopeInfo *const LSI = SemaRef.getCurLambda()) {
+ // If a variable could potentially be odr-used, defer marking it so
+ // until we finish analyzing the full expression for any
+ // lvalue-to-rvalue
+ // or discarded value conversions that would obviate odr-use.
+ // Add it to the list of potential captures that will be analyzed
+ // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
+ // unless the variable is a reference that was initialized by a constant
+ // expression (this will never need to be captured or odr-used).
+ assert(E && "Capture variable should be used in an expression.");
+ if (!Var->getType()->isReferenceType() ||
+ !IsVariableNonDependentAndAConstantExpression(Var, SemaRef.Context))
+ LSI->addPotentialCapture(E->IgnoreParens());
+ }
+ }
+
+ if (!isTemplateInstantiation(TSK))
+ return;
+
+ // Instantiate, but do not mark as odr-used, variable templates.
+ MarkODRUsed = false;
+ }
+
+ VarTemplateSpecializationDecl *VarSpec =
+ dyn_cast<VarTemplateSpecializationDecl>(Var);
+ assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
+ "Can't instantiate a partial template specialization.");
+
+ // Perform implicit instantiation of static data members, static data member
+ // templates of class templates, and variable template specializations. Delay
+ // instantiations of variable templates, except for those that could be used
+ // in a constant expression.
+ if (isTemplateInstantiation(TSK)) {
+ bool TryInstantiating = TSK == TSK_ImplicitInstantiation;
+
+ if (TryInstantiating && !isa<VarTemplateSpecializationDecl>(Var)) {
+ if (Var->getPointOfInstantiation().isInvalid()) {
+ // This is a modification of an existing AST node. Notify listeners.
+ if (ASTMutationListener *L = SemaRef.getASTMutationListener())
+ L->StaticDataMemberInstantiated(Var);
+ } else if (!Var->isUsableInConstantExpressions(SemaRef.Context))
+ // Don't bother trying to instantiate it again, unless we might need
+ // its initializer before we get to the end of the TU.
+ TryInstantiating = false;
+ }
+
+ if (Var->getPointOfInstantiation().isInvalid())
+ Var->setTemplateSpecializationKind(TSK, Loc);
+
+ if (TryInstantiating) {
+ SourceLocation PointOfInstantiation = Var->getPointOfInstantiation();
+ bool InstantiationDependent = false;
+ bool IsNonDependent =
+ VarSpec ? !TemplateSpecializationType::anyDependentTemplateArguments(
+ VarSpec->getTemplateArgsInfo(), InstantiationDependent)
+ : true;
+
+ // Do not instantiate specializations that are still type-dependent.
+ if (IsNonDependent) {
+ if (Var->isUsableInConstantExpressions(SemaRef.Context)) {
+ // Do not defer instantiations of variables which could be used in a
+ // constant expression.
+ SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
+ } else {
+ SemaRef.PendingInstantiations
+ .push_back(std::make_pair(Var, PointOfInstantiation));
+ }
+ }
+ }
+ }
+
+ if(!MarkODRUsed) return;
+
+ // Per C++11 [basic.def.odr], a variable is odr-used "unless it satisfies
+ // the requirements for appearing in a constant expression (5.19) and, if
+ // it is an object, the lvalue-to-rvalue conversion (4.1)
+ // is immediately applied." We check the first part here, and
+ // Sema::UpdateMarkingForLValueToRValue deals with the second part.
+ // Note that we use the C++11 definition everywhere because nothing in
+ // C++03 depends on whether we get the C++03 version correct. The second
+ // part does not apply to references, since they are not objects.
+ if (E && IsVariableAConstantExpression(Var, SemaRef.Context)) {
+ // A reference initialized by a constant expression can never be
+ // odr-used, so simply ignore it.
+ if (!Var->getType()->isReferenceType())
+ SemaRef.MaybeODRUseExprs.insert(E);
+ } else
+ MarkVarDeclODRUsed(Var, Loc, SemaRef,
+ /*MaxFunctionScopeIndex ptr*/ nullptr);
+}
+
+/// \brief Mark a variable referenced, and check whether it is odr-used
+/// (C++ [basic.def.odr]p2, C99 6.9p3). Note that this should not be
+/// used directly for normal expressions referring to VarDecl.
+void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
+ DoMarkVarDeclReferenced(*this, Loc, Var, nullptr);
+}
+
+static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
+ Decl *D, Expr *E, bool OdrUse) {
+ if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
+ DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
+ return;
+ }
+
+ SemaRef.MarkAnyDeclReferenced(Loc, D, OdrUse);
+
+ // If this is a call to a method via a cast, also mark the method in the
+ // derived class used in case codegen can devirtualize the call.
+ const MemberExpr *ME = dyn_cast<MemberExpr>(E);
+ if (!ME)
+ return;
+ CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
+ if (!MD)
+ return;
+ // Only attempt to devirtualize if this is truly a virtual call.
+ bool IsVirtualCall = MD->isVirtual() && !ME->hasQualifier();
+ if (!IsVirtualCall)
+ return;
+ const Expr *Base = ME->getBase();
+ const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
+ if (!MostDerivedClassDecl)
+ return;
+ CXXMethodDecl *DM = MD->getCorrespondingMethodInClass(MostDerivedClassDecl);
+ if (!DM || DM->isPure())
+ return;
+ SemaRef.MarkAnyDeclReferenced(Loc, DM, OdrUse);
+}
+
+/// \brief Perform reference-marking and odr-use handling for a DeclRefExpr.
+void Sema::MarkDeclRefReferenced(DeclRefExpr *E) {
+ // TODO: update this with DR# once a defect report is filed.
+ // C++11 defect. The address of a pure member should not be an ODR use, even
+ // if it's a qualified reference.
+ bool OdrUse = true;
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
+ if (Method->isVirtual())
+ OdrUse = false;
+ MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse);
+}
+
+/// \brief Perform reference-marking and odr-use handling for a MemberExpr.
+void Sema::MarkMemberReferenced(MemberExpr *E) {
+ // C++11 [basic.def.odr]p2:
+ // A non-overloaded function whose name appears as a potentially-evaluated
+ // expression or a member of a set of candidate functions, if selected by
+ // overload resolution when referred to from a potentially-evaluated
+ // expression, is odr-used, unless it is a pure virtual function and its
+ // name is not explicitly qualified.
+ bool OdrUse = true;
+ if (!E->hasQualifier()) {
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
+ if (Method->isPure())
+ OdrUse = false;
+ }
+ SourceLocation Loc = E->getMemberLoc().isValid() ?
+ E->getMemberLoc() : E->getLocStart();
+ MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, OdrUse);
+}
+
+/// \brief Perform marking for a reference to an arbitrary declaration. It
+/// marks the declaration referenced, and performs odr-use checking for
+/// functions and variables. This method should not be used when building a
+/// normal expression which refers to a variable.
+void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, bool OdrUse) {
+ if (OdrUse) {
+ if (auto *VD = dyn_cast<VarDecl>(D)) {
+ MarkVariableReferenced(Loc, VD);
+ return;
+ }
+ }
+ if (auto *FD = dyn_cast<FunctionDecl>(D)) {
+ MarkFunctionReferenced(Loc, FD, OdrUse);
+ return;
+ }
+ D->setReferenced();
+}
+
+namespace {
+ // Mark all of the declarations referenced
+ // FIXME: Not fully implemented yet! We need to have a better understanding
+ // of when we're entering
+ class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
+ Sema &S;
+ SourceLocation Loc;
+
+ public:
+ typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
+
+ MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
+
+ bool TraverseTemplateArgument(const TemplateArgument &Arg);
+ bool TraverseRecordType(RecordType *T);
+ };
+}
+
+bool MarkReferencedDecls::TraverseTemplateArgument(
+ const TemplateArgument &Arg) {
+ if (Arg.getKind() == TemplateArgument::Declaration) {
+ if (Decl *D = Arg.getAsDecl())
+ S.MarkAnyDeclReferenced(Loc, D, true);
+ }
+
+ return Inherited::TraverseTemplateArgument(Arg);
+}
+
+bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
+ if (ClassTemplateSpecializationDecl *Spec
+ = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
+ const TemplateArgumentList &Args = Spec->getTemplateArgs();
+ return TraverseTemplateArguments(Args.data(), Args.size());
+ }
+
+ return true;
+}
+
+void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
+ MarkReferencedDecls Marker(*this, Loc);
+ Marker.TraverseType(Context.getCanonicalType(T));
+}
+
+namespace {
+ /// \brief Helper class that marks all of the declarations referenced by
+ /// potentially-evaluated subexpressions as "referenced".
+ class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
+ Sema &S;
+ bool SkipLocalVariables;
+
+ public:
+ typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
+
+ EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
+ : Inherited(S.Context), S(S), SkipLocalVariables(SkipLocalVariables) { }
+
+ void VisitDeclRefExpr(DeclRefExpr *E) {
+ // If we were asked not to visit local variables, don't.
+ if (SkipLocalVariables) {
+ if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
+ if (VD->hasLocalStorage())
+ return;
+ }
+
+ S.MarkDeclRefReferenced(E);
+ }
+
+ void VisitMemberExpr(MemberExpr *E) {
+ S.MarkMemberReferenced(E);
+ Inherited::VisitMemberExpr(E);
+ }
+
+ void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
+ S.MarkFunctionReferenced(E->getLocStart(),
+ const_cast<CXXDestructorDecl*>(E->getTemporary()->getDestructor()));
+ Visit(E->getSubExpr());
+ }
+
+ void VisitCXXNewExpr(CXXNewExpr *E) {
+ if (E->getOperatorNew())
+ S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorNew());
+ if (E->getOperatorDelete())
+ S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
+ Inherited::VisitCXXNewExpr(E);
+ }
+
+ void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
+ if (E->getOperatorDelete())
+ S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
+ QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
+ if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
+ CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
+ S.MarkFunctionReferenced(E->getLocStart(),
+ S.LookupDestructor(Record));
+ }
+
+ Inherited::VisitCXXDeleteExpr(E);
+ }
+
+ void VisitCXXConstructExpr(CXXConstructExpr *E) {
+ S.MarkFunctionReferenced(E->getLocStart(), E->getConstructor());
+ Inherited::VisitCXXConstructExpr(E);
+ }
+
+ void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
+ Visit(E->getExpr());
+ }
+
+ void VisitImplicitCastExpr(ImplicitCastExpr *E) {
+ Inherited::VisitImplicitCastExpr(E);
+
+ if (E->getCastKind() == CK_LValueToRValue)
+ S.UpdateMarkingForLValueToRValue(E->getSubExpr());
+ }
+ };
+}
+
+/// \brief Mark any declarations that appear within this expression or any
+/// potentially-evaluated subexpressions as "referenced".
+///
+/// \param SkipLocalVariables If true, don't mark local variables as
+/// 'referenced'.
+void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
+ bool SkipLocalVariables) {
+ EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
+}
+
+/// \brief Emit a diagnostic that describes an effect on the run-time behavior
+/// of the program being compiled.
+///
+/// This routine emits the given diagnostic when the code currently being
+/// type-checked is "potentially evaluated", meaning that there is a
+/// possibility that the code will actually be executable. Code in sizeof()
+/// expressions, code used only during overload resolution, etc., are not
+/// potentially evaluated. This routine will suppress such diagnostics or,
+/// in the absolutely nutty case of potentially potentially evaluated
+/// expressions (C++ typeid), queue the diagnostic to potentially emit it
+/// later.
+///
+/// This routine should be used for all diagnostics that describe the run-time
+/// behavior of a program, such as passing a non-POD value through an ellipsis.
+/// Failure to do so will likely result in spurious diagnostics or failures
+/// during overload resolution or within sizeof/alignof/typeof/typeid.
+bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
+ const PartialDiagnostic &PD) {
+ switch (ExprEvalContexts.back().Context) {
+ case Unevaluated:
+ case UnevaluatedAbstract:
+ // The argument will never be evaluated, so don't complain.
+ break;
+
+ case ConstantEvaluated:
+ // Relevant diagnostics should be produced by constant evaluation.
+ break;
+
+ case PotentiallyEvaluated:
+ case PotentiallyEvaluatedIfUsed:
+ if (Statement && getCurFunctionOrMethodDecl()) {
+ FunctionScopes.back()->PossiblyUnreachableDiags.
+ push_back(sema::PossiblyUnreachableDiag(PD, Loc, Statement));
+ }
+ else
+ Diag(Loc, PD);
+
+ return true;
+ }
+
+ return false;
+}
+
+bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
+ CallExpr *CE, FunctionDecl *FD) {
+ if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
+ return false;
+
+ // If we're inside a decltype's expression, don't check for a valid return
+ // type or construct temporaries until we know whether this is the last call.
+ if (ExprEvalContexts.back().IsDecltype) {
+ ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
+ return false;
+ }
+
+ class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
+ FunctionDecl *FD;
+ CallExpr *CE;
+
+ public:
+ CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
+ : FD(FD), CE(CE) { }
+
+ void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
+ if (!FD) {
+ S.Diag(Loc, diag::err_call_incomplete_return)
+ << T << CE->getSourceRange();
+ return;
+ }
+
+ S.Diag(Loc, diag::err_call_function_incomplete_return)
+ << CE->getSourceRange() << FD->getDeclName() << T;
+ S.Diag(FD->getLocation(), diag::note_entity_declared_at)
+ << FD->getDeclName();
+ }
+ } Diagnoser(FD, CE);
+
+ if (RequireCompleteType(Loc, ReturnType, Diagnoser))
+ return true;
+
+ return false;
+}
+
+// Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
+// will prevent this condition from triggering, which is what we want.
+void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
+ SourceLocation Loc;
+
+ unsigned diagnostic = diag::warn_condition_is_assignment;
+ bool IsOrAssign = false;
+
+ if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
+ if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
+ return;
+
+ IsOrAssign = Op->getOpcode() == BO_OrAssign;
+
+ // Greylist some idioms by putting them into a warning subcategory.
+ if (ObjCMessageExpr *ME
+ = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
+ Selector Sel = ME->getSelector();
+
+ // self = [<foo> init...]
+ if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
+ diagnostic = diag::warn_condition_is_idiomatic_assignment;
+
+ // <foo> = [<bar> nextObject]
+ else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
+ diagnostic = diag::warn_condition_is_idiomatic_assignment;
+ }
+
+ Loc = Op->getOperatorLoc();
+ } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
+ if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
+ return;
+
+ IsOrAssign = Op->getOperator() == OO_PipeEqual;
+ Loc = Op->getOperatorLoc();
+ } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
+ return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
+ else {
+ // Not an assignment.
+ return;
+ }
+
+ Diag(Loc, diagnostic) << E->getSourceRange();
+
+ SourceLocation Open = E->getLocStart();
+ SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
+ Diag(Loc, diag::note_condition_assign_silence)
+ << FixItHint::CreateInsertion(Open, "(")
+ << FixItHint::CreateInsertion(Close, ")");
+
+ if (IsOrAssign)
+ Diag(Loc, diag::note_condition_or_assign_to_comparison)
+ << FixItHint::CreateReplacement(Loc, "!=");
+ else
+ Diag(Loc, diag::note_condition_assign_to_comparison)
+ << FixItHint::CreateReplacement(Loc, "==");
+}
+
+/// \brief Redundant parentheses over an equality comparison can indicate
+/// that the user intended an assignment used as condition.
+void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
+ // Don't warn if the parens came from a macro.
+ SourceLocation parenLoc = ParenE->getLocStart();
+ if (parenLoc.isInvalid() || parenLoc.isMacroID())
+ return;
+ // Don't warn for dependent expressions.
+ if (ParenE->isTypeDependent())
+ return;
+
+ Expr *E = ParenE->IgnoreParens();
+
+ if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
+ if (opE->getOpcode() == BO_EQ &&
+ opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
+ == Expr::MLV_Valid) {
+ SourceLocation Loc = opE->getOperatorLoc();
+
+ Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
+ SourceRange ParenERange = ParenE->getSourceRange();
+ Diag(Loc, diag::note_equality_comparison_silence)
+ << FixItHint::CreateRemoval(ParenERange.getBegin())
+ << FixItHint::CreateRemoval(ParenERange.getEnd());
+ Diag(Loc, diag::note_equality_comparison_to_assign)
+ << FixItHint::CreateReplacement(Loc, "=");
+ }
+}
+
+ExprResult Sema::CheckBooleanCondition(Expr *E, SourceLocation Loc) {
+ DiagnoseAssignmentAsCondition(E);
+ if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
+ DiagnoseEqualityWithExtraParens(parenE);
+
+ ExprResult result = CheckPlaceholderExpr(E);
+ if (result.isInvalid()) return ExprError();
+ E = result.get();
+
+ if (!E->isTypeDependent()) {
+ if (getLangOpts().CPlusPlus)
+ return CheckCXXBooleanCondition(E); // C++ 6.4p4
+
+ ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
+ if (ERes.isInvalid())
+ return ExprError();
+ E = ERes.get();
+
+ QualType T = E->getType();
+ if (!T->isScalarType()) { // C99 6.8.4.1p1
+ Diag(Loc, diag::err_typecheck_statement_requires_scalar)
+ << T << E->getSourceRange();
+ return ExprError();
+ }
+ CheckBoolLikeConversion(E, Loc);
+ }
+
+ return E;
+}
+
+ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
+ Expr *SubExpr) {
+ if (!SubExpr)
+ return ExprError();
+
+ return CheckBooleanCondition(SubExpr, Loc);
+}
+
+namespace {
+ /// A visitor for rebuilding a call to an __unknown_any expression
+ /// to have an appropriate type.
+ struct RebuildUnknownAnyFunction
+ : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
+
+ Sema &S;
+
+ RebuildUnknownAnyFunction(Sema &S) : S(S) {}
+
+ ExprResult VisitStmt(Stmt *S) {
+ llvm_unreachable("unexpected statement!");
+ }
+
+ ExprResult VisitExpr(Expr *E) {
+ S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
+ << E->getSourceRange();
+ return ExprError();
+ }
+
+ /// Rebuild an expression which simply semantically wraps another
+ /// expression which it shares the type and value kind of.
+ template <class T> ExprResult rebuildSugarExpr(T *E) {
+ ExprResult SubResult = Visit(E->getSubExpr());
+ if (SubResult.isInvalid()) return ExprError();
+
+ Expr *SubExpr = SubResult.get();
+ E->setSubExpr(SubExpr);
+ E->setType(SubExpr->getType());
+ E->setValueKind(SubExpr->getValueKind());
+ assert(E->getObjectKind() == OK_Ordinary);
+ return E;
+ }
+
+ ExprResult VisitParenExpr(ParenExpr *E) {
+ return rebuildSugarExpr(E);
+ }
+
+ ExprResult VisitUnaryExtension(UnaryOperator *E) {
+ return rebuildSugarExpr(E);
+ }
+
+ ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
+ ExprResult SubResult = Visit(E->getSubExpr());
+ if (SubResult.isInvalid()) return ExprError();
+
+ Expr *SubExpr = SubResult.get();
+ E->setSubExpr(SubExpr);
+ E->setType(S.Context.getPointerType(SubExpr->getType()));
+ assert(E->getValueKind() == VK_RValue);
+ assert(E->getObjectKind() == OK_Ordinary);
+ return E;
+ }
+
+ ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
+ if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
+
+ E->setType(VD->getType());
+
+ assert(E->getValueKind() == VK_RValue);
+ if (S.getLangOpts().CPlusPlus &&
+ !(isa<CXXMethodDecl>(VD) &&
+ cast<CXXMethodDecl>(VD)->isInstance()))
+ E->setValueKind(VK_LValue);
+
+ return E;
+ }
+
+ ExprResult VisitMemberExpr(MemberExpr *E) {
+ return resolveDecl(E, E->getMemberDecl());
+ }
+
+ ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
+ return resolveDecl(E, E->getDecl());
+ }
+ };
+}
+
+/// Given a function expression of unknown-any type, try to rebuild it
+/// to have a function type.
+static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
+ ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
+ if (Result.isInvalid()) return ExprError();
+ return S.DefaultFunctionArrayConversion(Result.get());
+}
+
+namespace {
+ /// A visitor for rebuilding an expression of type __unknown_anytype
+ /// into one which resolves the type directly on the referring
+ /// expression. Strict preservation of the original source
+ /// structure is not a goal.
+ struct RebuildUnknownAnyExpr
+ : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
+
+ Sema &S;
+
+ /// The current destination type.
+ QualType DestType;
+
+ RebuildUnknownAnyExpr(Sema &S, QualType CastType)
+ : S(S), DestType(CastType) {}
+
+ ExprResult VisitStmt(Stmt *S) {
+ llvm_unreachable("unexpected statement!");
+ }
+
+ ExprResult VisitExpr(Expr *E) {
+ S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
+ << E->getSourceRange();
+ return ExprError();
+ }
+
+ ExprResult VisitCallExpr(CallExpr *E);
+ ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
+
+ /// Rebuild an expression which simply semantically wraps another
+ /// expression which it shares the type and value kind of.
+ template <class T> ExprResult rebuildSugarExpr(T *E) {
+ ExprResult SubResult = Visit(E->getSubExpr());
+ if (SubResult.isInvalid()) return ExprError();
+ Expr *SubExpr = SubResult.get();
+ E->setSubExpr(SubExpr);
+ E->setType(SubExpr->getType());
+ E->setValueKind(SubExpr->getValueKind());
+ assert(E->getObjectKind() == OK_Ordinary);
+ return E;
+ }
+
+ ExprResult VisitParenExpr(ParenExpr *E) {
+ return rebuildSugarExpr(E);
+ }
+
+ ExprResult VisitUnaryExtension(UnaryOperator *E) {
+ return rebuildSugarExpr(E);
+ }
+
+ ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
+ const PointerType *Ptr = DestType->getAs<PointerType>();
+ if (!Ptr) {
+ S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
+ << E->getSourceRange();
+ return ExprError();
+ }
+ assert(E->getValueKind() == VK_RValue);
+ assert(E->getObjectKind() == OK_Ordinary);
+ E->setType(DestType);
+
+ // Build the sub-expression as if it were an object of the pointee type.
+ DestType = Ptr->getPointeeType();
+ ExprResult SubResult = Visit(E->getSubExpr());
+ if (SubResult.isInvalid()) return ExprError();
+ E->setSubExpr(SubResult.get());
+ return E;
+ }
+
+ ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
+
+ ExprResult resolveDecl(Expr *E, ValueDecl *VD);
+
+ ExprResult VisitMemberExpr(MemberExpr *E) {
+ return resolveDecl(E, E->getMemberDecl());
+ }
+
+ ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
+ return resolveDecl(E, E->getDecl());
+ }
+ };
+}
+
+/// Rebuilds a call expression which yielded __unknown_anytype.
+ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
+ Expr *CalleeExpr = E->getCallee();
+
+ enum FnKind {
+ FK_MemberFunction,
+ FK_FunctionPointer,
+ FK_BlockPointer
+ };
+
+ FnKind Kind;
+ QualType CalleeType = CalleeExpr->getType();
+ if (CalleeType == S.Context.BoundMemberTy) {
+ assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
+ Kind = FK_MemberFunction;
+ CalleeType = Expr::findBoundMemberType(CalleeExpr);
+ } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
+ CalleeType = Ptr->getPointeeType();
+ Kind = FK_FunctionPointer;
+ } else {
+ CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
+ Kind = FK_BlockPointer;
+ }
+ const FunctionType *FnType = CalleeType->castAs<FunctionType>();
+
+ // Verify that this is a legal result type of a function.
+ if (DestType->isArrayType() || DestType->isFunctionType()) {
+ unsigned diagID = diag::err_func_returning_array_function;
+ if (Kind == FK_BlockPointer)
+ diagID = diag::err_block_returning_array_function;
+
+ S.Diag(E->getExprLoc(), diagID)
+ << DestType->isFunctionType() << DestType;
+ return ExprError();
+ }
+
+ // Otherwise, go ahead and set DestType as the call's result.
+ E->setType(DestType.getNonLValueExprType(S.Context));
+ E->setValueKind(Expr::getValueKindForType(DestType));
+ assert(E->getObjectKind() == OK_Ordinary);
+
+ // Rebuild the function type, replacing the result type with DestType.
+ const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
+ if (Proto) {
+ // __unknown_anytype(...) is a special case used by the debugger when
+ // it has no idea what a function's signature is.
+ //
+ // We want to build this call essentially under the K&R
+ // unprototyped rules, but making a FunctionNoProtoType in C++
+ // would foul up all sorts of assumptions. However, we cannot
+ // simply pass all arguments as variadic arguments, nor can we
+ // portably just call the function under a non-variadic type; see
+ // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
+ // However, it turns out that in practice it is generally safe to
+ // call a function declared as "A foo(B,C,D);" under the prototype
+ // "A foo(B,C,D,...);". The only known exception is with the
+ // Windows ABI, where any variadic function is implicitly cdecl
+ // regardless of its normal CC. Therefore we change the parameter
+ // types to match the types of the arguments.
+ //
+ // This is a hack, but it is far superior to moving the
+ // corresponding target-specific code from IR-gen to Sema/AST.
+
+ ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
+ SmallVector<QualType, 8> ArgTypes;
+ if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
+ ArgTypes.reserve(E->getNumArgs());
+ for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
+ Expr *Arg = E->getArg(i);
+ QualType ArgType = Arg->getType();
+ if (E->isLValue()) {
+ ArgType = S.Context.getLValueReferenceType(ArgType);
+ } else if (E->isXValue()) {
+ ArgType = S.Context.getRValueReferenceType(ArgType);
+ }
+ ArgTypes.push_back(ArgType);
+ }
+ ParamTypes = ArgTypes;
+ }
+ DestType = S.Context.getFunctionType(DestType, ParamTypes,
+ Proto->getExtProtoInfo());
+ } else {
+ DestType = S.Context.getFunctionNoProtoType(DestType,
+ FnType->getExtInfo());
+ }
+
+ // Rebuild the appropriate pointer-to-function type.
+ switch (Kind) {
+ case FK_MemberFunction:
+ // Nothing to do.
+ break;
+
+ case FK_FunctionPointer:
+ DestType = S.Context.getPointerType(DestType);
+ break;
+
+ case FK_BlockPointer:
+ DestType = S.Context.getBlockPointerType(DestType);
+ break;
+ }
+
+ // Finally, we can recurse.
+ ExprResult CalleeResult = Visit(CalleeExpr);
+ if (!CalleeResult.isUsable()) return ExprError();
+ E->setCallee(CalleeResult.get());
+
+ // Bind a temporary if necessary.
+ return S.MaybeBindToTemporary(E);
+}
+
+ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
+ // Verify that this is a legal result type of a call.
+ if (DestType->isArrayType() || DestType->isFunctionType()) {
+ S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
+ << DestType->isFunctionType() << DestType;
+ return ExprError();
+ }
+
+ // Rewrite the method result type if available.
+ if (ObjCMethodDecl *Method = E->getMethodDecl()) {
+ assert(Method->getReturnType() == S.Context.UnknownAnyTy);
+ Method->setReturnType(DestType);
+ }
+
+ // Change the type of the message.
+ E->setType(DestType.getNonReferenceType());
+ E->setValueKind(Expr::getValueKindForType(DestType));
+
+ return S.MaybeBindToTemporary(E);
+}
+
+ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
+ // The only case we should ever see here is a function-to-pointer decay.
+ if (E->getCastKind() == CK_FunctionToPointerDecay) {
+ assert(E->getValueKind() == VK_RValue);
+ assert(E->getObjectKind() == OK_Ordinary);
+
+ E->setType(DestType);
+
+ // Rebuild the sub-expression as the pointee (function) type.
+ DestType = DestType->castAs<PointerType>()->getPointeeType();
+
+ ExprResult Result = Visit(E->getSubExpr());
+ if (!Result.isUsable()) return ExprError();
+
+ E->setSubExpr(Result.get());
+ return E;
+ } else if (E->getCastKind() == CK_LValueToRValue) {
+ assert(E->getValueKind() == VK_RValue);
+ assert(E->getObjectKind() == OK_Ordinary);
+
+ assert(isa<BlockPointerType>(E->getType()));
+
+ E->setType(DestType);
+
+ // The sub-expression has to be a lvalue reference, so rebuild it as such.
+ DestType = S.Context.getLValueReferenceType(DestType);
+
+ ExprResult Result = Visit(E->getSubExpr());
+ if (!Result.isUsable()) return ExprError();
+
+ E->setSubExpr(Result.get());
+ return E;
+ } else {
+ llvm_unreachable("Unhandled cast type!");
+ }
+}
+
+ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
+ ExprValueKind ValueKind = VK_LValue;
+ QualType Type = DestType;
+
+ // We know how to make this work for certain kinds of decls:
+
+ // - functions
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
+ if (const PointerType *Ptr = Type->getAs<PointerType>()) {
+ DestType = Ptr->getPointeeType();
+ ExprResult Result = resolveDecl(E, VD);
+ if (Result.isInvalid()) return ExprError();
+ return S.ImpCastExprToType(Result.get(), Type,
+ CK_FunctionToPointerDecay, VK_RValue);
+ }
+
+ if (!Type->isFunctionType()) {
+ S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
+ << VD << E->getSourceRange();
+ return ExprError();
+ }
+ if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
+ // We must match the FunctionDecl's type to the hack introduced in
+ // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
+ // type. See the lengthy commentary in that routine.
+ QualType FDT = FD->getType();
+ const FunctionType *FnType = FDT->castAs<FunctionType>();
+ const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType);
+ DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
+ if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
+ SourceLocation Loc = FD->getLocation();
+ FunctionDecl *NewFD = FunctionDecl::Create(FD->getASTContext(),
+ FD->getDeclContext(),
+ Loc, Loc, FD->getNameInfo().getName(),
+ DestType, FD->getTypeSourceInfo(),
+ SC_None, false/*isInlineSpecified*/,
+ FD->hasPrototype(),
+ false/*isConstexprSpecified*/);
+
+ if (FD->getQualifier())
+ NewFD->setQualifierInfo(FD->getQualifierLoc());
+
+ SmallVector<ParmVarDecl*, 16> Params;
+ for (const auto &AI : FT->param_types()) {
+ ParmVarDecl *Param =
+ S.BuildParmVarDeclForTypedef(FD, Loc, AI);
+ Param->setScopeInfo(0, Params.size());
+ Params.push_back(Param);
+ }
+ NewFD->setParams(Params);
+ DRE->setDecl(NewFD);
+ VD = DRE->getDecl();
+ }
+ }
+
+ if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
+ if (MD->isInstance()) {
+ ValueKind = VK_RValue;
+ Type = S.Context.BoundMemberTy;
+ }
+
+ // Function references aren't l-values in C.
+ if (!S.getLangOpts().CPlusPlus)
+ ValueKind = VK_RValue;
+
+ // - variables
+ } else if (isa<VarDecl>(VD)) {
+ if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
+ Type = RefTy->getPointeeType();
+ } else if (Type->isFunctionType()) {
+ S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
+ << VD << E->getSourceRange();
+ return ExprError();
+ }
+
+ // - nothing else
+ } else {
+ S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
+ << VD << E->getSourceRange();
+ return ExprError();
+ }
+
+ // Modifying the declaration like this is friendly to IR-gen but
+ // also really dangerous.
+ VD->setType(DestType);
+ E->setType(Type);
+ E->setValueKind(ValueKind);
+ return E;
+}
+
+/// Check a cast of an unknown-any type. We intentionally only
+/// trigger this for C-style casts.
+ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
+ Expr *CastExpr, CastKind &CastKind,
+ ExprValueKind &VK, CXXCastPath &Path) {
+ // Rewrite the casted expression from scratch.
+ ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
+ if (!result.isUsable()) return ExprError();
+
+ CastExpr = result.get();
+ VK = CastExpr->getValueKind();
+ CastKind = CK_NoOp;
+
+ return CastExpr;
+}
+
+ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
+ return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
+}
+
+ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
+ Expr *arg, QualType &paramType) {
+ // If the syntactic form of the argument is not an explicit cast of
+ // any sort, just do default argument promotion.
+ ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
+ if (!castArg) {
+ ExprResult result = DefaultArgumentPromotion(arg);
+ if (result.isInvalid()) return ExprError();
+ paramType = result.get()->getType();
+ return result;
+ }
+
+ // Otherwise, use the type that was written in the explicit cast.
+ assert(!arg->hasPlaceholderType());
+ paramType = castArg->getTypeAsWritten();
+
+ // Copy-initialize a parameter of that type.
+ InitializedEntity entity =
+ InitializedEntity::InitializeParameter(Context, paramType,
+ /*consumed*/ false);
+ return PerformCopyInitialization(entity, callLoc, arg);
+}
+
+static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
+ Expr *orig = E;
+ unsigned diagID = diag::err_uncasted_use_of_unknown_any;
+ while (true) {
+ E = E->IgnoreParenImpCasts();
+ if (CallExpr *call = dyn_cast<CallExpr>(E)) {
+ E = call->getCallee();
+ diagID = diag::err_uncasted_call_of_unknown_any;
+ } else {
+ break;
+ }
+ }
+
+ SourceLocation loc;
+ NamedDecl *d;
+ if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
+ loc = ref->getLocation();
+ d = ref->getDecl();
+ } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
+ loc = mem->getMemberLoc();
+ d = mem->getMemberDecl();
+ } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
+ diagID = diag::err_uncasted_call_of_unknown_any;
+ loc = msg->getSelectorStartLoc();
+ d = msg->getMethodDecl();
+ if (!d) {
+ S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
+ << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
+ << orig->getSourceRange();
+ return ExprError();
+ }
+ } else {
+ S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
+ << E->getSourceRange();
+ return ExprError();
+ }
+
+ S.Diag(loc, diagID) << d << orig->getSourceRange();
+
+ // Never recoverable.
+ return ExprError();
+}
+
+/// Check for operands with placeholder types and complain if found.
+/// Returns true if there was an error and no recovery was possible.
+ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
+ if (!getLangOpts().CPlusPlus) {
+ // C cannot handle TypoExpr nodes on either side of a binop because it
+ // doesn't handle dependent types properly, so make sure any TypoExprs have
+ // been dealt with before checking the operands.
+ ExprResult Result = CorrectDelayedTyposInExpr(E);
+ if (!Result.isUsable()) return ExprError();
+ E = Result.get();
+ }
+
+ const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
+ if (!placeholderType) return E;
+
+ switch (placeholderType->getKind()) {
+
+ // Overloaded expressions.
+ case BuiltinType::Overload: {
+ // Try to resolve a single function template specialization.
+ // This is obligatory.
+ ExprResult result = E;
+ if (ResolveAndFixSingleFunctionTemplateSpecialization(result, false)) {
+ return result;
+
+ // If that failed, try to recover with a call.
+ } else {
+ tryToRecoverWithCall(result, PDiag(diag::err_ovl_unresolvable),
+ /*complain*/ true);
+ return result;
+ }
+ }
+
+ // Bound member functions.
+ case BuiltinType::BoundMember: {
+ ExprResult result = E;
+ const Expr *BME = E->IgnoreParens();
+ PartialDiagnostic PD = PDiag(diag::err_bound_member_function);
+ // Try to give a nicer diagnostic if it is a bound member that we recognize.
+ if (isa<CXXPseudoDestructorExpr>(BME)) {
+ PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1;
+ } else if (const auto *ME = dyn_cast<MemberExpr>(BME)) {
+ if (ME->getMemberNameInfo().getName().getNameKind() ==
+ DeclarationName::CXXDestructorName)
+ PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0;
+ }
+ tryToRecoverWithCall(result, PD,
+ /*complain*/ true);
+ return result;
+ }
+
+ // ARC unbridged casts.
+ case BuiltinType::ARCUnbridgedCast: {
+ Expr *realCast = stripARCUnbridgedCast(E);
+ diagnoseARCUnbridgedCast(realCast);
+ return realCast;
+ }
+
+ // Expressions of unknown type.
+ case BuiltinType::UnknownAny:
+ return diagnoseUnknownAnyExpr(*this, E);
+
+ // Pseudo-objects.
+ case BuiltinType::PseudoObject:
+ return checkPseudoObjectRValue(E);
+
+ case BuiltinType::BuiltinFn: {
+ // Accept __noop without parens by implicitly converting it to a call expr.
+ auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
+ if (DRE) {
+ auto *FD = cast<FunctionDecl>(DRE->getDecl());
+ if (FD->getBuiltinID() == Builtin::BI__noop) {
+ E = ImpCastExprToType(E, Context.getPointerType(FD->getType()),
+ CK_BuiltinFnToFnPtr).get();
+ return new (Context) CallExpr(Context, E, None, Context.IntTy,
+ VK_RValue, SourceLocation());
+ }
+ }
+
+ Diag(E->getLocStart(), diag::err_builtin_fn_use);
+ return ExprError();
+ }
+
+ // Everything else should be impossible.
+#define BUILTIN_TYPE(Id, SingletonId) \
+ case BuiltinType::Id:
+#define PLACEHOLDER_TYPE(Id, SingletonId)
+#include "clang/AST/BuiltinTypes.def"
+ break;
+ }
+
+ llvm_unreachable("invalid placeholder type!");
+}
+
+bool Sema::CheckCaseExpression(Expr *E) {
+ if (E->isTypeDependent())
+ return true;
+ if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
+ return E->getType()->isIntegralOrEnumerationType();
+ return false;
+}
+
+/// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
+ExprResult
+Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
+ assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
+ "Unknown Objective-C Boolean value!");
+ QualType BoolT = Context.ObjCBuiltinBoolTy;
+ if (!Context.getBOOLDecl()) {
+ LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
+ Sema::LookupOrdinaryName);
+ if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
+ NamedDecl *ND = Result.getFoundDecl();
+ if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
+ Context.setBOOLDecl(TD);
+ }
+ }
+ if (Context.getBOOLDecl())
+ BoolT = Context.getBOOLType();
+ return new (Context)
+ ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc);
+}
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaExprCXX.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaExprCXX.cpp
new file mode 100644
index 0000000..7e305ff
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaExprCXX.cpp
@@ -0,0 +1,6767 @@
+//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// \brief Implements semantic analysis for C++ expressions.
+///
+//===----------------------------------------------------------------------===//
+
+#include "clang/Sema/SemaInternal.h"
+#include "TreeTransform.h"
+#include "TypeLocBuilder.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTLambda.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/CharUnits.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/EvaluatedExprVisitor.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/AST/RecursiveASTVisitor.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/Basic/PartialDiagnostic.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Sema/DeclSpec.h"
+#include "clang/Sema/Initialization.h"
+#include "clang/Sema/Lookup.h"
+#include "clang/Sema/ParsedTemplate.h"
+#include "clang/Sema/Scope.h"
+#include "clang/Sema/ScopeInfo.h"
+#include "clang/Sema/SemaLambda.h"
+#include "clang/Sema/TemplateDeduction.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Support/ErrorHandling.h"
+using namespace clang;
+using namespace sema;
+
+/// \brief Handle the result of the special case name lookup for inheriting
+/// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
+/// constructor names in member using declarations, even if 'X' is not the
+/// name of the corresponding type.
+ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
+ SourceLocation NameLoc,
+ IdentifierInfo &Name) {
+ NestedNameSpecifier *NNS = SS.getScopeRep();
+
+ // Convert the nested-name-specifier into a type.
+ QualType Type;
+ switch (NNS->getKind()) {
+ case NestedNameSpecifier::TypeSpec:
+ case NestedNameSpecifier::TypeSpecWithTemplate:
+ Type = QualType(NNS->getAsType(), 0);
+ break;
+
+ case NestedNameSpecifier::Identifier:
+ // Strip off the last layer of the nested-name-specifier and build a
+ // typename type for it.
+ assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
+ Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
+ NNS->getAsIdentifier());
+ break;
+
+ case NestedNameSpecifier::Global:
+ case NestedNameSpecifier::Super:
+ case NestedNameSpecifier::Namespace:
+ case NestedNameSpecifier::NamespaceAlias:
+ llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
+ }
+
+ // This reference to the type is located entirely at the location of the
+ // final identifier in the qualified-id.
+ return CreateParsedType(Type,
+ Context.getTrivialTypeSourceInfo(Type, NameLoc));
+}
+
+ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
+ IdentifierInfo &II,
+ SourceLocation NameLoc,
+ Scope *S, CXXScopeSpec &SS,
+ ParsedType ObjectTypePtr,
+ bool EnteringContext) {
+ // Determine where to perform name lookup.
+
+ // FIXME: This area of the standard is very messy, and the current
+ // wording is rather unclear about which scopes we search for the
+ // destructor name; see core issues 399 and 555. Issue 399 in
+ // particular shows where the current description of destructor name
+ // lookup is completely out of line with existing practice, e.g.,
+ // this appears to be ill-formed:
+ //
+ // namespace N {
+ // template <typename T> struct S {
+ // ~S();
+ // };
+ // }
+ //
+ // void f(N::S<int>* s) {
+ // s->N::S<int>::~S();
+ // }
+ //
+ // See also PR6358 and PR6359.
+ // For this reason, we're currently only doing the C++03 version of this
+ // code; the C++0x version has to wait until we get a proper spec.
+ QualType SearchType;
+ DeclContext *LookupCtx = nullptr;
+ bool isDependent = false;
+ bool LookInScope = false;
+
+ if (SS.isInvalid())
+ return ParsedType();
+
+ // If we have an object type, it's because we are in a
+ // pseudo-destructor-expression or a member access expression, and
+ // we know what type we're looking for.
+ if (ObjectTypePtr)
+ SearchType = GetTypeFromParser(ObjectTypePtr);
+
+ if (SS.isSet()) {
+ NestedNameSpecifier *NNS = SS.getScopeRep();
+
+ bool AlreadySearched = false;
+ bool LookAtPrefix = true;
+ // C++11 [basic.lookup.qual]p6:
+ // If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
+ // the type-names are looked up as types in the scope designated by the
+ // nested-name-specifier. Similarly, in a qualified-id of the form:
+ //
+ // nested-name-specifier[opt] class-name :: ~ class-name
+ //
+ // the second class-name is looked up in the same scope as the first.
+ //
+ // Here, we determine whether the code below is permitted to look at the
+ // prefix of the nested-name-specifier.
+ DeclContext *DC = computeDeclContext(SS, EnteringContext);
+ if (DC && DC->isFileContext()) {
+ AlreadySearched = true;
+ LookupCtx = DC;
+ isDependent = false;
+ } else if (DC && isa<CXXRecordDecl>(DC)) {
+ LookAtPrefix = false;
+ LookInScope = true;
+ }
+
+ // The second case from the C++03 rules quoted further above.
+ NestedNameSpecifier *Prefix = nullptr;
+ if (AlreadySearched) {
+ // Nothing left to do.
+ } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
+ CXXScopeSpec PrefixSS;
+ PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
+ LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
+ isDependent = isDependentScopeSpecifier(PrefixSS);
+ } else if (ObjectTypePtr) {
+ LookupCtx = computeDeclContext(SearchType);
+ isDependent = SearchType->isDependentType();
+ } else {
+ LookupCtx = computeDeclContext(SS, EnteringContext);
+ isDependent = LookupCtx && LookupCtx->isDependentContext();
+ }
+ } else if (ObjectTypePtr) {
+ // C++ [basic.lookup.classref]p3:
+ // If the unqualified-id is ~type-name, the type-name is looked up
+ // in the context of the entire postfix-expression. If the type T
+ // of the object expression is of a class type C, the type-name is
+ // also looked up in the scope of class C. At least one of the
+ // lookups shall find a name that refers to (possibly
+ // cv-qualified) T.
+ LookupCtx = computeDeclContext(SearchType);
+ isDependent = SearchType->isDependentType();
+ assert((isDependent || !SearchType->isIncompleteType()) &&
+ "Caller should have completed object type");
+
+ LookInScope = true;
+ } else {
+ // Perform lookup into the current scope (only).
+ LookInScope = true;
+ }
+
+ TypeDecl *NonMatchingTypeDecl = nullptr;
+ LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
+ for (unsigned Step = 0; Step != 2; ++Step) {
+ // Look for the name first in the computed lookup context (if we
+ // have one) and, if that fails to find a match, in the scope (if
+ // we're allowed to look there).
+ Found.clear();
+ if (Step == 0 && LookupCtx)
+ LookupQualifiedName(Found, LookupCtx);
+ else if (Step == 1 && LookInScope && S)
+ LookupName(Found, S);
+ else
+ continue;
+
+ // FIXME: Should we be suppressing ambiguities here?
+ if (Found.isAmbiguous())
+ return ParsedType();
+
+ if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
+ QualType T = Context.getTypeDeclType(Type);
+ MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
+
+ if (SearchType.isNull() || SearchType->isDependentType() ||
+ Context.hasSameUnqualifiedType(T, SearchType)) {
+ // We found our type!
+
+ return CreateParsedType(T,
+ Context.getTrivialTypeSourceInfo(T, NameLoc));
+ }
+
+ if (!SearchType.isNull())
+ NonMatchingTypeDecl = Type;
+ }
+
+ // If the name that we found is a class template name, and it is
+ // the same name as the template name in the last part of the
+ // nested-name-specifier (if present) or the object type, then
+ // this is the destructor for that class.
+ // FIXME: This is a workaround until we get real drafting for core
+ // issue 399, for which there isn't even an obvious direction.
+ if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
+ QualType MemberOfType;
+ if (SS.isSet()) {
+ if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
+ // Figure out the type of the context, if it has one.
+ if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
+ MemberOfType = Context.getTypeDeclType(Record);
+ }
+ }
+ if (MemberOfType.isNull())
+ MemberOfType = SearchType;
+
+ if (MemberOfType.isNull())
+ continue;
+
+ // We're referring into a class template specialization. If the
+ // class template we found is the same as the template being
+ // specialized, we found what we are looking for.
+ if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
+ if (ClassTemplateSpecializationDecl *Spec
+ = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
+ if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
+ Template->getCanonicalDecl())
+ return CreateParsedType(
+ MemberOfType,
+ Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
+ }
+
+ continue;
+ }
+
+ // We're referring to an unresolved class template
+ // specialization. Determine whether we class template we found
+ // is the same as the template being specialized or, if we don't
+ // know which template is being specialized, that it at least
+ // has the same name.
+ if (const TemplateSpecializationType *SpecType
+ = MemberOfType->getAs<TemplateSpecializationType>()) {
+ TemplateName SpecName = SpecType->getTemplateName();
+
+ // The class template we found is the same template being
+ // specialized.
+ if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
+ if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
+ return CreateParsedType(
+ MemberOfType,
+ Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
+
+ continue;
+ }
+
+ // The class template we found has the same name as the
+ // (dependent) template name being specialized.
+ if (DependentTemplateName *DepTemplate
+ = SpecName.getAsDependentTemplateName()) {
+ if (DepTemplate->isIdentifier() &&
+ DepTemplate->getIdentifier() == Template->getIdentifier())
+ return CreateParsedType(
+ MemberOfType,
+ Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
+
+ continue;
+ }
+ }
+ }
+ }
+
+ if (isDependent) {
+ // We didn't find our type, but that's okay: it's dependent
+ // anyway.
+
+ // FIXME: What if we have no nested-name-specifier?
+ QualType T = CheckTypenameType(ETK_None, SourceLocation(),
+ SS.getWithLocInContext(Context),
+ II, NameLoc);
+ return ParsedType::make(T);
+ }
+
+ if (NonMatchingTypeDecl) {
+ QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
+ Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
+ << T << SearchType;
+ Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
+ << T;
+ } else if (ObjectTypePtr)
+ Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
+ << &II;
+ else {
+ SemaDiagnosticBuilder DtorDiag = Diag(NameLoc,
+ diag::err_destructor_class_name);
+ if (S) {
+ const DeclContext *Ctx = S->getEntity();
+ if (const CXXRecordDecl *Class = dyn_cast_or_null<CXXRecordDecl>(Ctx))
+ DtorDiag << FixItHint::CreateReplacement(SourceRange(NameLoc),
+ Class->getNameAsString());
+ }
+ }
+
+ return ParsedType();
+}
+
+ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) {
+ if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType)
+ return ParsedType();
+ assert(DS.getTypeSpecType() == DeclSpec::TST_decltype
+ && "only get destructor types from declspecs");
+ QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
+ QualType SearchType = GetTypeFromParser(ObjectType);
+ if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) {
+ return ParsedType::make(T);
+ }
+
+ Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
+ << T << SearchType;
+ return ParsedType();
+}
+
+bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
+ const UnqualifiedId &Name) {
+ assert(Name.getKind() == UnqualifiedId::IK_LiteralOperatorId);
+
+ if (!SS.isValid())
+ return false;
+
+ switch (SS.getScopeRep()->getKind()) {
+ case NestedNameSpecifier::Identifier:
+ case NestedNameSpecifier::TypeSpec:
+ case NestedNameSpecifier::TypeSpecWithTemplate:
+ // Per C++11 [over.literal]p2, literal operators can only be declared at
+ // namespace scope. Therefore, this unqualified-id cannot name anything.
+ // Reject it early, because we have no AST representation for this in the
+ // case where the scope is dependent.
+ Diag(Name.getLocStart(), diag::err_literal_operator_id_outside_namespace)
+ << SS.getScopeRep();
+ return true;
+
+ case NestedNameSpecifier::Global:
+ case NestedNameSpecifier::Super:
+ case NestedNameSpecifier::Namespace:
+ case NestedNameSpecifier::NamespaceAlias:
+ return false;
+ }
+
+ llvm_unreachable("unknown nested name specifier kind");
+}
+
+/// \brief Build a C++ typeid expression with a type operand.
+ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
+ SourceLocation TypeidLoc,
+ TypeSourceInfo *Operand,
+ SourceLocation RParenLoc) {
+ // C++ [expr.typeid]p4:
+ // The top-level cv-qualifiers of the lvalue expression or the type-id
+ // that is the operand of typeid are always ignored.
+ // If the type of the type-id is a class type or a reference to a class
+ // type, the class shall be completely-defined.
+ Qualifiers Quals;
+ QualType T
+ = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
+ Quals);
+ if (T->getAs<RecordType>() &&
+ RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
+ return ExprError();
+
+ if (T->isVariablyModifiedType())
+ return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
+
+ return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
+ SourceRange(TypeidLoc, RParenLoc));
+}
+
+/// \brief Build a C++ typeid expression with an expression operand.
+ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
+ SourceLocation TypeidLoc,
+ Expr *E,
+ SourceLocation RParenLoc) {
+ bool WasEvaluated = false;
+ if (E && !E->isTypeDependent()) {
+ if (E->getType()->isPlaceholderType()) {
+ ExprResult result = CheckPlaceholderExpr(E);
+ if (result.isInvalid()) return ExprError();
+ E = result.get();
+ }
+
+ QualType T = E->getType();
+ if (const RecordType *RecordT = T->getAs<RecordType>()) {
+ CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
+ // C++ [expr.typeid]p3:
+ // [...] If the type of the expression is a class type, the class
+ // shall be completely-defined.
+ if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
+ return ExprError();
+
+ // C++ [expr.typeid]p3:
+ // When typeid is applied to an expression other than an glvalue of a
+ // polymorphic class type [...] [the] expression is an unevaluated
+ // operand. [...]
+ if (RecordD->isPolymorphic() && E->isGLValue()) {
+ // The subexpression is potentially evaluated; switch the context
+ // and recheck the subexpression.
+ ExprResult Result = TransformToPotentiallyEvaluated(E);
+ if (Result.isInvalid()) return ExprError();
+ E = Result.get();
+
+ // We require a vtable to query the type at run time.
+ MarkVTableUsed(TypeidLoc, RecordD);
+ WasEvaluated = true;
+ }
+ }
+
+ // C++ [expr.typeid]p4:
+ // [...] If the type of the type-id is a reference to a possibly
+ // cv-qualified type, the result of the typeid expression refers to a
+ // std::type_info object representing the cv-unqualified referenced
+ // type.
+ Qualifiers Quals;
+ QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
+ if (!Context.hasSameType(T, UnqualT)) {
+ T = UnqualT;
+ E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
+ }
+ }
+
+ if (E->getType()->isVariablyModifiedType())
+ return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
+ << E->getType());
+ else if (ActiveTemplateInstantiations.empty() &&
+ E->HasSideEffects(Context, WasEvaluated)) {
+ // The expression operand for typeid is in an unevaluated expression
+ // context, so side effects could result in unintended consequences.
+ Diag(E->getExprLoc(), WasEvaluated
+ ? diag::warn_side_effects_typeid
+ : diag::warn_side_effects_unevaluated_context);
+ }
+
+ return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
+ SourceRange(TypeidLoc, RParenLoc));
+}
+
+/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
+ExprResult
+Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
+ bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
+ // Find the std::type_info type.
+ if (!getStdNamespace())
+ return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
+
+ if (!CXXTypeInfoDecl) {
+ IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
+ LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
+ LookupQualifiedName(R, getStdNamespace());
+ CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
+ // Microsoft's typeinfo doesn't have type_info in std but in the global
+ // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
+ if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
+ LookupQualifiedName(R, Context.getTranslationUnitDecl());
+ CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
+ }
+ if (!CXXTypeInfoDecl)
+ return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
+ }
+
+ if (!getLangOpts().RTTI) {
+ return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
+ }
+
+ QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
+
+ if (isType) {
+ // The operand is a type; handle it as such.
+ TypeSourceInfo *TInfo = nullptr;
+ QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
+ &TInfo);
+ if (T.isNull())
+ return ExprError();
+
+ if (!TInfo)
+ TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
+
+ return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
+ }
+
+ // The operand is an expression.
+ return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
+}
+
+/// \brief Build a Microsoft __uuidof expression with a type operand.
+ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
+ SourceLocation TypeidLoc,
+ TypeSourceInfo *Operand,
+ SourceLocation RParenLoc) {
+ if (!Operand->getType()->isDependentType()) {
+ bool HasMultipleGUIDs = false;
+ if (!CXXUuidofExpr::GetUuidAttrOfType(Operand->getType(),
+ &HasMultipleGUIDs)) {
+ if (HasMultipleGUIDs)
+ return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
+ else
+ return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
+ }
+ }
+
+ return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), Operand,
+ SourceRange(TypeidLoc, RParenLoc));
+}
+
+/// \brief Build a Microsoft __uuidof expression with an expression operand.
+ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
+ SourceLocation TypeidLoc,
+ Expr *E,
+ SourceLocation RParenLoc) {
+ if (!E->getType()->isDependentType()) {
+ bool HasMultipleGUIDs = false;
+ if (!CXXUuidofExpr::GetUuidAttrOfType(E->getType(), &HasMultipleGUIDs) &&
+ !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
+ if (HasMultipleGUIDs)
+ return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
+ else
+ return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
+ }
+ }
+
+ return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), E,
+ SourceRange(TypeidLoc, RParenLoc));
+}
+
+/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
+ExprResult
+Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
+ bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
+ // If MSVCGuidDecl has not been cached, do the lookup.
+ if (!MSVCGuidDecl) {
+ IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
+ LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
+ LookupQualifiedName(R, Context.getTranslationUnitDecl());
+ MSVCGuidDecl = R.getAsSingle<RecordDecl>();
+ if (!MSVCGuidDecl)
+ return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
+ }
+
+ QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
+
+ if (isType) {
+ // The operand is a type; handle it as such.
+ TypeSourceInfo *TInfo = nullptr;
+ QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
+ &TInfo);
+ if (T.isNull())
+ return ExprError();
+
+ if (!TInfo)
+ TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
+
+ return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
+ }
+
+ // The operand is an expression.
+ return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
+}
+
+/// ActOnCXXBoolLiteral - Parse {true,false} literals.
+ExprResult
+Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
+ assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
+ "Unknown C++ Boolean value!");
+ return new (Context)
+ CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
+}
+
+/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
+ExprResult
+Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
+ return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
+}
+
+/// ActOnCXXThrow - Parse throw expressions.
+ExprResult
+Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
+ bool IsThrownVarInScope = false;
+ if (Ex) {
+ // C++0x [class.copymove]p31:
+ // When certain criteria are met, an implementation is allowed to omit the
+ // copy/move construction of a class object [...]
+ //
+ // - in a throw-expression, when the operand is the name of a
+ // non-volatile automatic object (other than a function or catch-
+ // clause parameter) whose scope does not extend beyond the end of the
+ // innermost enclosing try-block (if there is one), the copy/move
+ // operation from the operand to the exception object (15.1) can be
+ // omitted by constructing the automatic object directly into the
+ // exception object
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
+ if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
+ if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
+ for( ; S; S = S->getParent()) {
+ if (S->isDeclScope(Var)) {
+ IsThrownVarInScope = true;
+ break;
+ }
+
+ if (S->getFlags() &
+ (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
+ Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
+ Scope::TryScope))
+ break;
+ }
+ }
+ }
+ }
+
+ return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
+}
+
+ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
+ bool IsThrownVarInScope) {
+ // Don't report an error if 'throw' is used in system headers.
+ if (!getLangOpts().CXXExceptions &&
+ !getSourceManager().isInSystemHeader(OpLoc))
+ Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
+
+ if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
+ Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
+
+ if (Ex && !Ex->isTypeDependent()) {
+ QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
+ if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
+ return ExprError();
+
+ // Initialize the exception result. This implicitly weeds out
+ // abstract types or types with inaccessible copy constructors.
+
+ // C++0x [class.copymove]p31:
+ // When certain criteria are met, an implementation is allowed to omit the
+ // copy/move construction of a class object [...]
+ //
+ // - in a throw-expression, when the operand is the name of a
+ // non-volatile automatic object (other than a function or
+ // catch-clause
+ // parameter) whose scope does not extend beyond the end of the
+ // innermost enclosing try-block (if there is one), the copy/move
+ // operation from the operand to the exception object (15.1) can be
+ // omitted by constructing the automatic object directly into the
+ // exception object
+ const VarDecl *NRVOVariable = nullptr;
+ if (IsThrownVarInScope)
+ NRVOVariable = getCopyElisionCandidate(QualType(), Ex, false);
+
+ InitializedEntity Entity = InitializedEntity::InitializeException(
+ OpLoc, ExceptionObjectTy,
+ /*NRVO=*/NRVOVariable != nullptr);
+ ExprResult Res = PerformMoveOrCopyInitialization(
+ Entity, NRVOVariable, QualType(), Ex, IsThrownVarInScope);
+ if (Res.isInvalid())
+ return ExprError();
+ Ex = Res.get();
+ }
+
+ return new (Context)
+ CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
+}
+
+static void
+collectPublicBases(CXXRecordDecl *RD,
+ llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
+ llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
+ llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
+ bool ParentIsPublic) {
+ for (const CXXBaseSpecifier &BS : RD->bases()) {
+ CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
+ bool NewSubobject;
+ // Virtual bases constitute the same subobject. Non-virtual bases are
+ // always distinct subobjects.
+ if (BS.isVirtual())
+ NewSubobject = VBases.insert(BaseDecl).second;
+ else
+ NewSubobject = true;
+
+ if (NewSubobject)
+ ++SubobjectsSeen[BaseDecl];
+
+ // Only add subobjects which have public access throughout the entire chain.
+ bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
+ if (PublicPath)
+ PublicSubobjectsSeen.insert(BaseDecl);
+
+ // Recurse on to each base subobject.
+ collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
+ PublicPath);
+ }
+}
+
+static void getUnambiguousPublicSubobjects(
+ CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
+ llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
+ llvm::SmallSet<CXXRecordDecl *, 2> VBases;
+ llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
+ SubobjectsSeen[RD] = 1;
+ PublicSubobjectsSeen.insert(RD);
+ collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
+ /*ParentIsPublic=*/true);
+
+ for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
+ // Skip ambiguous objects.
+ if (SubobjectsSeen[PublicSubobject] > 1)
+ continue;
+
+ Objects.push_back(PublicSubobject);
+ }
+}
+
+/// CheckCXXThrowOperand - Validate the operand of a throw.
+bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
+ QualType ExceptionObjectTy, Expr *E) {
+ // If the type of the exception would be an incomplete type or a pointer
+ // to an incomplete type other than (cv) void the program is ill-formed.
+ QualType Ty = ExceptionObjectTy;
+ bool isPointer = false;
+ if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
+ Ty = Ptr->getPointeeType();
+ isPointer = true;
+ }
+ if (!isPointer || !Ty->isVoidType()) {
+ if (RequireCompleteType(ThrowLoc, Ty,
+ isPointer ? diag::err_throw_incomplete_ptr
+ : diag::err_throw_incomplete,
+ E->getSourceRange()))
+ return true;
+
+ if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
+ diag::err_throw_abstract_type, E))
+ return true;
+ }
+
+ // If the exception has class type, we need additional handling.
+ CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
+ if (!RD)
+ return false;
+
+ // If we are throwing a polymorphic class type or pointer thereof,
+ // exception handling will make use of the vtable.
+ MarkVTableUsed(ThrowLoc, RD);
+
+ // If a pointer is thrown, the referenced object will not be destroyed.
+ if (isPointer)
+ return false;
+
+ // If the class has a destructor, we must be able to call it.
+ if (!RD->hasIrrelevantDestructor()) {
+ if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
+ MarkFunctionReferenced(E->getExprLoc(), Destructor);
+ CheckDestructorAccess(E->getExprLoc(), Destructor,
+ PDiag(diag::err_access_dtor_exception) << Ty);
+ if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
+ return true;
+ }
+ }
+
+ // The MSVC ABI creates a list of all types which can catch the exception
+ // object. This list also references the appropriate copy constructor to call
+ // if the object is caught by value and has a non-trivial copy constructor.
+ if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
+ // We are only interested in the public, unambiguous bases contained within
+ // the exception object. Bases which are ambiguous or otherwise
+ // inaccessible are not catchable types.
+ llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
+ getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
+
+ for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
+ // Attempt to lookup the copy constructor. Various pieces of machinery
+ // will spring into action, like template instantiation, which means this
+ // cannot be a simple walk of the class's decls. Instead, we must perform
+ // lookup and overload resolution.
+ CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
+ if (!CD)
+ continue;
+
+ // Mark the constructor referenced as it is used by this throw expression.
+ MarkFunctionReferenced(E->getExprLoc(), CD);
+
+ // Skip this copy constructor if it is trivial, we don't need to record it
+ // in the catchable type data.
+ if (CD->isTrivial())
+ continue;
+
+ // The copy constructor is non-trivial, create a mapping from this class
+ // type to this constructor.
+ // N.B. The selection of copy constructor is not sensitive to this
+ // particular throw-site. Lookup will be performed at the catch-site to
+ // ensure that the copy constructor is, in fact, accessible (via
+ // friendship or any other means).
+ Context.addCopyConstructorForExceptionObject(Subobject, CD);
+
+ // We don't keep the instantiated default argument expressions around so
+ // we must rebuild them here.
+ for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
+ // Skip any default arguments that we've already instantiated.
+ if (Context.getDefaultArgExprForConstructor(CD, I))
+ continue;
+
+ Expr *DefaultArg =
+ BuildCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)).get();
+ Context.addDefaultArgExprForConstructor(CD, I, DefaultArg);
+ }
+ }
+ }
+
+ return false;
+}
+
+QualType Sema::getCurrentThisType() {
+ DeclContext *DC = getFunctionLevelDeclContext();
+ QualType ThisTy = CXXThisTypeOverride;
+ if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
+ if (method && method->isInstance())
+ ThisTy = method->getThisType(Context);
+ }
+ if (ThisTy.isNull()) {
+ if (isGenericLambdaCallOperatorSpecialization(CurContext) &&
+ CurContext->getParent()->getParent()->isRecord()) {
+ // This is a generic lambda call operator that is being instantiated
+ // within a default initializer - so use the enclosing class as 'this'.
+ // There is no enclosing member function to retrieve the 'this' pointer
+ // from.
+ QualType ClassTy = Context.getTypeDeclType(
+ cast<CXXRecordDecl>(CurContext->getParent()->getParent()));
+ // There are no cv-qualifiers for 'this' within default initializers,
+ // per [expr.prim.general]p4.
+ return Context.getPointerType(ClassTy);
+ }
+ }
+ return ThisTy;
+}
+
+Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
+ Decl *ContextDecl,
+ unsigned CXXThisTypeQuals,
+ bool Enabled)
+ : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
+{
+ if (!Enabled || !ContextDecl)
+ return;
+
+ CXXRecordDecl *Record = nullptr;
+ if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
+ Record = Template->getTemplatedDecl();
+ else
+ Record = cast<CXXRecordDecl>(ContextDecl);
+
+ S.CXXThisTypeOverride
+ = S.Context.getPointerType(
+ S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals));
+
+ this->Enabled = true;
+}
+
+
+Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
+ if (Enabled) {
+ S.CXXThisTypeOverride = OldCXXThisTypeOverride;
+ }
+}
+
+static Expr *captureThis(ASTContext &Context, RecordDecl *RD,
+ QualType ThisTy, SourceLocation Loc) {
+ FieldDecl *Field
+ = FieldDecl::Create(Context, RD, Loc, Loc, nullptr, ThisTy,
+ Context.getTrivialTypeSourceInfo(ThisTy, Loc),
+ nullptr, false, ICIS_NoInit);
+ Field->setImplicit(true);
+ Field->setAccess(AS_private);
+ RD->addDecl(Field);
+ return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit*/true);
+}
+
+bool Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit,
+ bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt) {
+ // We don't need to capture this in an unevaluated context.
+ if (isUnevaluatedContext() && !Explicit)
+ return true;
+
+ const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt ?
+ *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
+ // Otherwise, check that we can capture 'this'.
+ unsigned NumClosures = 0;
+ for (unsigned idx = MaxFunctionScopesIndex; idx != 0; idx--) {
+ if (CapturingScopeInfo *CSI =
+ dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
+ if (CSI->CXXThisCaptureIndex != 0) {
+ // 'this' is already being captured; there isn't anything more to do.
+ break;
+ }
+ LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
+ if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
+ // This context can't implicitly capture 'this'; fail out.
+ if (BuildAndDiagnose)
+ Diag(Loc, diag::err_this_capture) << Explicit;
+ return true;
+ }
+ if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
+ CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
+ CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
+ CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
+ Explicit) {
+ // This closure can capture 'this'; continue looking upwards.
+ NumClosures++;
+ Explicit = false;
+ continue;
+ }
+ // This context can't implicitly capture 'this'; fail out.
+ if (BuildAndDiagnose)
+ Diag(Loc, diag::err_this_capture) << Explicit;
+ return true;
+ }
+ break;
+ }
+ if (!BuildAndDiagnose) return false;
+ // Mark that we're implicitly capturing 'this' in all the scopes we skipped.
+ // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
+ // contexts.
+ for (unsigned idx = MaxFunctionScopesIndex; NumClosures;
+ --idx, --NumClosures) {
+ CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
+ Expr *ThisExpr = nullptr;
+ QualType ThisTy = getCurrentThisType();
+ if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI))
+ // For lambda expressions, build a field and an initializing expression.
+ ThisExpr = captureThis(Context, LSI->Lambda, ThisTy, Loc);
+ else if (CapturedRegionScopeInfo *RSI
+ = dyn_cast<CapturedRegionScopeInfo>(FunctionScopes[idx]))
+ ThisExpr = captureThis(Context, RSI->TheRecordDecl, ThisTy, Loc);
+
+ bool isNested = NumClosures > 1;
+ CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr);
+ }
+ return false;
+}
+
+ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
+ /// C++ 9.3.2: In the body of a non-static member function, the keyword this
+ /// is a non-lvalue expression whose value is the address of the object for
+ /// which the function is called.
+
+ QualType ThisTy = getCurrentThisType();
+ if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
+
+ CheckCXXThisCapture(Loc);
+ return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false);
+}
+
+bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
+ // If we're outside the body of a member function, then we'll have a specified
+ // type for 'this'.
+ if (CXXThisTypeOverride.isNull())
+ return false;
+
+ // Determine whether we're looking into a class that's currently being
+ // defined.
+ CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
+ return Class && Class->isBeingDefined();
+}
+
+ExprResult
+Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
+ SourceLocation LParenLoc,
+ MultiExprArg exprs,
+ SourceLocation RParenLoc) {
+ if (!TypeRep)
+ return ExprError();
+
+ TypeSourceInfo *TInfo;
+ QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
+ if (!TInfo)
+ TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
+
+ return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
+}
+
+/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
+/// Can be interpreted either as function-style casting ("int(x)")
+/// or class type construction ("ClassType(x,y,z)")
+/// or creation of a value-initialized type ("int()").
+ExprResult
+Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
+ SourceLocation LParenLoc,
+ MultiExprArg Exprs,
+ SourceLocation RParenLoc) {
+ QualType Ty = TInfo->getType();
+ SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
+
+ if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
+ return CXXUnresolvedConstructExpr::Create(Context, TInfo, LParenLoc, Exprs,
+ RParenLoc);
+ }
+
+ bool ListInitialization = LParenLoc.isInvalid();
+ assert((!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0])))
+ && "List initialization must have initializer list as expression.");
+ SourceRange FullRange = SourceRange(TyBeginLoc,
+ ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc);
+
+ // C++ [expr.type.conv]p1:
+ // If the expression list is a single expression, the type conversion
+ // expression is equivalent (in definedness, and if defined in meaning) to the
+ // corresponding cast expression.
+ if (Exprs.size() == 1 && !ListInitialization) {
+ Expr *Arg = Exprs[0];
+ return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc);
+ }
+
+ QualType ElemTy = Ty;
+ if (Ty->isArrayType()) {
+ if (!ListInitialization)
+ return ExprError(Diag(TyBeginLoc,
+ diag::err_value_init_for_array_type) << FullRange);
+ ElemTy = Context.getBaseElementType(Ty);
+ }
+
+ if (!Ty->isVoidType() &&
+ RequireCompleteType(TyBeginLoc, ElemTy,
+ diag::err_invalid_incomplete_type_use, FullRange))
+ return ExprError();
+
+ if (RequireNonAbstractType(TyBeginLoc, Ty,
+ diag::err_allocation_of_abstract_type))
+ return ExprError();
+
+ InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
+ InitializationKind Kind =
+ Exprs.size() ? ListInitialization
+ ? InitializationKind::CreateDirectList(TyBeginLoc)
+ : InitializationKind::CreateDirect(TyBeginLoc, LParenLoc, RParenLoc)
+ : InitializationKind::CreateValue(TyBeginLoc, LParenLoc, RParenLoc);
+ InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
+ ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
+
+ if (Result.isInvalid() || !ListInitialization)
+ return Result;
+
+ Expr *Inner = Result.get();
+ if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
+ Inner = BTE->getSubExpr();
+ if (!isa<CXXTemporaryObjectExpr>(Inner)) {
+ // If we created a CXXTemporaryObjectExpr, that node also represents the
+ // functional cast. Otherwise, create an explicit cast to represent
+ // the syntactic form of a functional-style cast that was used here.
+ //
+ // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
+ // would give a more consistent AST representation than using a
+ // CXXTemporaryObjectExpr. It's also weird that the functional cast
+ // is sometimes handled by initialization and sometimes not.
+ QualType ResultType = Result.get()->getType();
+ Result = CXXFunctionalCastExpr::Create(
+ Context, ResultType, Expr::getValueKindForType(TInfo->getType()), TInfo,
+ CK_NoOp, Result.get(), /*Path=*/nullptr, LParenLoc, RParenLoc);
+ }
+
+ return Result;
+}
+
+/// doesUsualArrayDeleteWantSize - Answers whether the usual
+/// operator delete[] for the given type has a size_t parameter.
+static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
+ QualType allocType) {
+ const RecordType *record =
+ allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
+ if (!record) return false;
+
+ // Try to find an operator delete[] in class scope.
+
+ DeclarationName deleteName =
+ S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
+ LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
+ S.LookupQualifiedName(ops, record->getDecl());
+
+ // We're just doing this for information.
+ ops.suppressDiagnostics();
+
+ // Very likely: there's no operator delete[].
+ if (ops.empty()) return false;
+
+ // If it's ambiguous, it should be illegal to call operator delete[]
+ // on this thing, so it doesn't matter if we allocate extra space or not.
+ if (ops.isAmbiguous()) return false;
+
+ LookupResult::Filter filter = ops.makeFilter();
+ while (filter.hasNext()) {
+ NamedDecl *del = filter.next()->getUnderlyingDecl();
+
+ // C++0x [basic.stc.dynamic.deallocation]p2:
+ // A template instance is never a usual deallocation function,
+ // regardless of its signature.
+ if (isa<FunctionTemplateDecl>(del)) {
+ filter.erase();
+ continue;
+ }
+
+ // C++0x [basic.stc.dynamic.deallocation]p2:
+ // If class T does not declare [an operator delete[] with one
+ // parameter] but does declare a member deallocation function
+ // named operator delete[] with exactly two parameters, the
+ // second of which has type std::size_t, then this function
+ // is a usual deallocation function.
+ if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
+ filter.erase();
+ continue;
+ }
+ }
+ filter.done();
+
+ if (!ops.isSingleResult()) return false;
+
+ const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
+ return (del->getNumParams() == 2);
+}
+
+/// \brief Parsed a C++ 'new' expression (C++ 5.3.4).
+///
+/// E.g.:
+/// @code new (memory) int[size][4] @endcode
+/// or
+/// @code ::new Foo(23, "hello") @endcode
+///
+/// \param StartLoc The first location of the expression.
+/// \param UseGlobal True if 'new' was prefixed with '::'.
+/// \param PlacementLParen Opening paren of the placement arguments.
+/// \param PlacementArgs Placement new arguments.
+/// \param PlacementRParen Closing paren of the placement arguments.
+/// \param TypeIdParens If the type is in parens, the source range.
+/// \param D The type to be allocated, as well as array dimensions.
+/// \param Initializer The initializing expression or initializer-list, or null
+/// if there is none.
+ExprResult
+Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
+ SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
+ SourceLocation PlacementRParen, SourceRange TypeIdParens,
+ Declarator &D, Expr *Initializer) {
+ bool TypeContainsAuto = D.getDeclSpec().containsPlaceholderType();
+
+ Expr *ArraySize = nullptr;
+ // If the specified type is an array, unwrap it and save the expression.
+ if (D.getNumTypeObjects() > 0 &&
+ D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
+ DeclaratorChunk &Chunk = D.getTypeObject(0);
+ if (TypeContainsAuto)
+ return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
+ << D.getSourceRange());
+ if (Chunk.Arr.hasStatic)
+ return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
+ << D.getSourceRange());
+ if (!Chunk.Arr.NumElts)
+ return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
+ << D.getSourceRange());
+
+ ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
+ D.DropFirstTypeObject();
+ }
+
+ // Every dimension shall be of constant size.
+ if (ArraySize) {
+ for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
+ if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
+ break;
+
+ DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
+ if (Expr *NumElts = (Expr *)Array.NumElts) {
+ if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
+ if (getLangOpts().CPlusPlus14) {
+ // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
+ // shall be a converted constant expression (5.19) of type std::size_t
+ // and shall evaluate to a strictly positive value.
+ unsigned IntWidth = Context.getTargetInfo().getIntWidth();
+ assert(IntWidth && "Builtin type of size 0?");
+ llvm::APSInt Value(IntWidth);
+ Array.NumElts
+ = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
+ CCEK_NewExpr)
+ .get();
+ } else {
+ Array.NumElts
+ = VerifyIntegerConstantExpression(NumElts, nullptr,
+ diag::err_new_array_nonconst)
+ .get();
+ }
+ if (!Array.NumElts)
+ return ExprError();
+ }
+ }
+ }
+ }
+
+ TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
+ QualType AllocType = TInfo->getType();
+ if (D.isInvalidType())
+ return ExprError();
+
+ SourceRange DirectInitRange;
+ if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
+ DirectInitRange = List->getSourceRange();
+
+ return BuildCXXNew(SourceRange(StartLoc, D.getLocEnd()), UseGlobal,
+ PlacementLParen,
+ PlacementArgs,
+ PlacementRParen,
+ TypeIdParens,
+ AllocType,
+ TInfo,
+ ArraySize,
+ DirectInitRange,
+ Initializer,
+ TypeContainsAuto);
+}
+
+static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
+ Expr *Init) {
+ if (!Init)
+ return true;
+ if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
+ return PLE->getNumExprs() == 0;
+ if (isa<ImplicitValueInitExpr>(Init))
+ return true;
+ else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
+ return !CCE->isListInitialization() &&
+ CCE->getConstructor()->isDefaultConstructor();
+ else if (Style == CXXNewExpr::ListInit) {
+ assert(isa<InitListExpr>(Init) &&
+ "Shouldn't create list CXXConstructExprs for arrays.");
+ return true;
+ }
+ return false;
+}
+
+ExprResult
+Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
+ SourceLocation PlacementLParen,
+ MultiExprArg PlacementArgs,
+ SourceLocation PlacementRParen,
+ SourceRange TypeIdParens,
+ QualType AllocType,
+ TypeSourceInfo *AllocTypeInfo,
+ Expr *ArraySize,
+ SourceRange DirectInitRange,
+ Expr *Initializer,
+ bool TypeMayContainAuto) {
+ SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
+ SourceLocation StartLoc = Range.getBegin();
+
+ CXXNewExpr::InitializationStyle initStyle;
+ if (DirectInitRange.isValid()) {
+ assert(Initializer && "Have parens but no initializer.");
+ initStyle = CXXNewExpr::CallInit;
+ } else if (Initializer && isa<InitListExpr>(Initializer))
+ initStyle = CXXNewExpr::ListInit;
+ else {
+ assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
+ isa<CXXConstructExpr>(Initializer)) &&
+ "Initializer expression that cannot have been implicitly created.");
+ initStyle = CXXNewExpr::NoInit;
+ }
+
+ Expr **Inits = &Initializer;
+ unsigned NumInits = Initializer ? 1 : 0;
+ if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
+ assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
+ Inits = List->getExprs();
+ NumInits = List->getNumExprs();
+ }
+
+ // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
+ if (TypeMayContainAuto && AllocType->isUndeducedType()) {
+ if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
+ return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
+ << AllocType << TypeRange);
+ if (initStyle == CXXNewExpr::ListInit ||
+ (NumInits == 1 && isa<InitListExpr>(Inits[0])))
+ return ExprError(Diag(Inits[0]->getLocStart(),
+ diag::err_auto_new_list_init)
+ << AllocType << TypeRange);
+ if (NumInits > 1) {
+ Expr *FirstBad = Inits[1];
+ return ExprError(Diag(FirstBad->getLocStart(),
+ diag::err_auto_new_ctor_multiple_expressions)
+ << AllocType << TypeRange);
+ }
+ Expr *Deduce = Inits[0];
+ QualType DeducedType;
+ if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
+ return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
+ << AllocType << Deduce->getType()
+ << TypeRange << Deduce->getSourceRange());
+ if (DeducedType.isNull())
+ return ExprError();
+ AllocType = DeducedType;
+ }
+
+ // Per C++0x [expr.new]p5, the type being constructed may be a
+ // typedef of an array type.
+ if (!ArraySize) {
+ if (const ConstantArrayType *Array
+ = Context.getAsConstantArrayType(AllocType)) {
+ ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
+ Context.getSizeType(),
+ TypeRange.getEnd());
+ AllocType = Array->getElementType();
+ }
+ }
+
+ if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
+ return ExprError();
+
+ if (initStyle == CXXNewExpr::ListInit &&
+ isStdInitializerList(AllocType, nullptr)) {
+ Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(),
+ diag::warn_dangling_std_initializer_list)
+ << /*at end of FE*/0 << Inits[0]->getSourceRange();
+ }
+
+ // In ARC, infer 'retaining' for the allocated
+ if (getLangOpts().ObjCAutoRefCount &&
+ AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
+ AllocType->isObjCLifetimeType()) {
+ AllocType = Context.getLifetimeQualifiedType(AllocType,
+ AllocType->getObjCARCImplicitLifetime());
+ }
+
+ QualType ResultType = Context.getPointerType(AllocType);
+
+ if (ArraySize && ArraySize->getType()->isNonOverloadPlaceholderType()) {
+ ExprResult result = CheckPlaceholderExpr(ArraySize);
+ if (result.isInvalid()) return ExprError();
+ ArraySize = result.get();
+ }
+ // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
+ // integral or enumeration type with a non-negative value."
+ // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
+ // enumeration type, or a class type for which a single non-explicit
+ // conversion function to integral or unscoped enumeration type exists.
+ // C++1y [expr.new]p6: The expression [...] is implicitly converted to
+ // std::size_t.
+ if (ArraySize && !ArraySize->isTypeDependent()) {
+ ExprResult ConvertedSize;
+ if (getLangOpts().CPlusPlus14) {
+ assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?");
+
+ ConvertedSize = PerformImplicitConversion(ArraySize, Context.getSizeType(),
+ AA_Converting);
+
+ if (!ConvertedSize.isInvalid() &&
+ ArraySize->getType()->getAs<RecordType>())
+ // Diagnose the compatibility of this conversion.
+ Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
+ << ArraySize->getType() << 0 << "'size_t'";
+ } else {
+ class SizeConvertDiagnoser : public ICEConvertDiagnoser {
+ protected:
+ Expr *ArraySize;
+
+ public:
+ SizeConvertDiagnoser(Expr *ArraySize)
+ : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
+ ArraySize(ArraySize) {}
+
+ SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
+ QualType T) override {
+ return S.Diag(Loc, diag::err_array_size_not_integral)
+ << S.getLangOpts().CPlusPlus11 << T;
+ }
+
+ SemaDiagnosticBuilder diagnoseIncomplete(
+ Sema &S, SourceLocation Loc, QualType T) override {
+ return S.Diag(Loc, diag::err_array_size_incomplete_type)
+ << T << ArraySize->getSourceRange();
+ }
+
+ SemaDiagnosticBuilder diagnoseExplicitConv(
+ Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
+ return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
+ }
+
+ SemaDiagnosticBuilder noteExplicitConv(
+ Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
+ return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
+ << ConvTy->isEnumeralType() << ConvTy;
+ }
+
+ SemaDiagnosticBuilder diagnoseAmbiguous(
+ Sema &S, SourceLocation Loc, QualType T) override {
+ return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
+ }
+
+ SemaDiagnosticBuilder noteAmbiguous(
+ Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
+ return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
+ << ConvTy->isEnumeralType() << ConvTy;
+ }
+
+ SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
+ QualType T,
+ QualType ConvTy) override {
+ return S.Diag(Loc,
+ S.getLangOpts().CPlusPlus11
+ ? diag::warn_cxx98_compat_array_size_conversion
+ : diag::ext_array_size_conversion)
+ << T << ConvTy->isEnumeralType() << ConvTy;
+ }
+ } SizeDiagnoser(ArraySize);
+
+ ConvertedSize = PerformContextualImplicitConversion(StartLoc, ArraySize,
+ SizeDiagnoser);
+ }
+ if (ConvertedSize.isInvalid())
+ return ExprError();
+
+ ArraySize = ConvertedSize.get();
+ QualType SizeType = ArraySize->getType();
+
+ if (!SizeType->isIntegralOrUnscopedEnumerationType())
+ return ExprError();
+
+ // C++98 [expr.new]p7:
+ // The expression in a direct-new-declarator shall have integral type
+ // with a non-negative value.
+ //
+ // Let's see if this is a constant < 0. If so, we reject it out of
+ // hand. Otherwise, if it's not a constant, we must have an unparenthesized
+ // array type.
+ //
+ // Note: such a construct has well-defined semantics in C++11: it throws
+ // std::bad_array_new_length.
+ if (!ArraySize->isValueDependent()) {
+ llvm::APSInt Value;
+ // We've already performed any required implicit conversion to integer or
+ // unscoped enumeration type.
+ if (ArraySize->isIntegerConstantExpr(Value, Context)) {
+ if (Value < llvm::APSInt(
+ llvm::APInt::getNullValue(Value.getBitWidth()),
+ Value.isUnsigned())) {
+ if (getLangOpts().CPlusPlus11)
+ Diag(ArraySize->getLocStart(),
+ diag::warn_typecheck_negative_array_new_size)
+ << ArraySize->getSourceRange();
+ else
+ return ExprError(Diag(ArraySize->getLocStart(),
+ diag::err_typecheck_negative_array_size)
+ << ArraySize->getSourceRange());
+ } else if (!AllocType->isDependentType()) {
+ unsigned ActiveSizeBits =
+ ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
+ if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
+ if (getLangOpts().CPlusPlus11)
+ Diag(ArraySize->getLocStart(),
+ diag::warn_array_new_too_large)
+ << Value.toString(10)
+ << ArraySize->getSourceRange();
+ else
+ return ExprError(Diag(ArraySize->getLocStart(),
+ diag::err_array_too_large)
+ << Value.toString(10)
+ << ArraySize->getSourceRange());
+ }
+ }
+ } else if (TypeIdParens.isValid()) {
+ // Can't have dynamic array size when the type-id is in parentheses.
+ Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
+ << ArraySize->getSourceRange()
+ << FixItHint::CreateRemoval(TypeIdParens.getBegin())
+ << FixItHint::CreateRemoval(TypeIdParens.getEnd());
+
+ TypeIdParens = SourceRange();
+ }
+ }
+
+ // Note that we do *not* convert the argument in any way. It can
+ // be signed, larger than size_t, whatever.
+ }
+
+ FunctionDecl *OperatorNew = nullptr;
+ FunctionDecl *OperatorDelete = nullptr;
+
+ if (!AllocType->isDependentType() &&
+ !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
+ FindAllocationFunctions(StartLoc,
+ SourceRange(PlacementLParen, PlacementRParen),
+ UseGlobal, AllocType, ArraySize, PlacementArgs,
+ OperatorNew, OperatorDelete))
+ return ExprError();
+
+ // If this is an array allocation, compute whether the usual array
+ // deallocation function for the type has a size_t parameter.
+ bool UsualArrayDeleteWantsSize = false;
+ if (ArraySize && !AllocType->isDependentType())
+ UsualArrayDeleteWantsSize
+ = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
+
+ SmallVector<Expr *, 8> AllPlaceArgs;
+ if (OperatorNew) {
+ const FunctionProtoType *Proto =
+ OperatorNew->getType()->getAs<FunctionProtoType>();
+ VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
+ : VariadicDoesNotApply;
+
+ // We've already converted the placement args, just fill in any default
+ // arguments. Skip the first parameter because we don't have a corresponding
+ // argument.
+ if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 1,
+ PlacementArgs, AllPlaceArgs, CallType))
+ return ExprError();
+
+ if (!AllPlaceArgs.empty())
+ PlacementArgs = AllPlaceArgs;
+
+ // FIXME: This is wrong: PlacementArgs misses out the first (size) argument.
+ DiagnoseSentinelCalls(OperatorNew, PlacementLParen, PlacementArgs);
+
+ // FIXME: Missing call to CheckFunctionCall or equivalent
+ }
+
+ // Warn if the type is over-aligned and is being allocated by global operator
+ // new.
+ if (PlacementArgs.empty() && OperatorNew &&
+ (OperatorNew->isImplicit() ||
+ getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) {
+ if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){
+ unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign();
+ if (Align > SuitableAlign)
+ Diag(StartLoc, diag::warn_overaligned_type)
+ << AllocType
+ << unsigned(Align / Context.getCharWidth())
+ << unsigned(SuitableAlign / Context.getCharWidth());
+ }
+ }
+
+ QualType InitType = AllocType;
+ // Array 'new' can't have any initializers except empty parentheses.
+ // Initializer lists are also allowed, in C++11. Rely on the parser for the
+ // dialect distinction.
+ if (ResultType->isArrayType() || ArraySize) {
+ if (!isLegalArrayNewInitializer(initStyle, Initializer)) {
+ SourceRange InitRange(Inits[0]->getLocStart(),
+ Inits[NumInits - 1]->getLocEnd());
+ Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
+ return ExprError();
+ }
+ if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) {
+ // We do the initialization typechecking against the array type
+ // corresponding to the number of initializers + 1 (to also check
+ // default-initialization).
+ unsigned NumElements = ILE->getNumInits() + 1;
+ InitType = Context.getConstantArrayType(AllocType,
+ llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements),
+ ArrayType::Normal, 0);
+ }
+ }
+
+ // If we can perform the initialization, and we've not already done so,
+ // do it now.
+ if (!AllocType->isDependentType() &&
+ !Expr::hasAnyTypeDependentArguments(
+ llvm::makeArrayRef(Inits, NumInits))) {
+ // C++11 [expr.new]p15:
+ // A new-expression that creates an object of type T initializes that
+ // object as follows:
+ InitializationKind Kind
+ // - If the new-initializer is omitted, the object is default-
+ // initialized (8.5); if no initialization is performed,
+ // the object has indeterminate value
+ = initStyle == CXXNewExpr::NoInit
+ ? InitializationKind::CreateDefault(TypeRange.getBegin())
+ // - Otherwise, the new-initializer is interpreted according to the
+ // initialization rules of 8.5 for direct-initialization.
+ : initStyle == CXXNewExpr::ListInit
+ ? InitializationKind::CreateDirectList(TypeRange.getBegin())
+ : InitializationKind::CreateDirect(TypeRange.getBegin(),
+ DirectInitRange.getBegin(),
+ DirectInitRange.getEnd());
+
+ InitializedEntity Entity
+ = InitializedEntity::InitializeNew(StartLoc, InitType);
+ InitializationSequence InitSeq(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
+ ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
+ MultiExprArg(Inits, NumInits));
+ if (FullInit.isInvalid())
+ return ExprError();
+
+ // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
+ // we don't want the initialized object to be destructed.
+ if (CXXBindTemporaryExpr *Binder =
+ dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
+ FullInit = Binder->getSubExpr();
+
+ Initializer = FullInit.get();
+ }
+
+ // Mark the new and delete operators as referenced.
+ if (OperatorNew) {
+ if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
+ return ExprError();
+ MarkFunctionReferenced(StartLoc, OperatorNew);
+ }
+ if (OperatorDelete) {
+ if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
+ return ExprError();
+ MarkFunctionReferenced(StartLoc, OperatorDelete);
+ }
+
+ // C++0x [expr.new]p17:
+ // If the new expression creates an array of objects of class type,
+ // access and ambiguity control are done for the destructor.
+ QualType BaseAllocType = Context.getBaseElementType(AllocType);
+ if (ArraySize && !BaseAllocType->isDependentType()) {
+ if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
+ if (CXXDestructorDecl *dtor = LookupDestructor(
+ cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
+ MarkFunctionReferenced(StartLoc, dtor);
+ CheckDestructorAccess(StartLoc, dtor,
+ PDiag(diag::err_access_dtor)
+ << BaseAllocType);
+ if (DiagnoseUseOfDecl(dtor, StartLoc))
+ return ExprError();
+ }
+ }
+ }
+
+ return new (Context)
+ CXXNewExpr(Context, UseGlobal, OperatorNew, OperatorDelete,
+ UsualArrayDeleteWantsSize, PlacementArgs, TypeIdParens,
+ ArraySize, initStyle, Initializer, ResultType, AllocTypeInfo,
+ Range, DirectInitRange);
+}
+
+/// \brief Checks that a type is suitable as the allocated type
+/// in a new-expression.
+bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
+ SourceRange R) {
+ // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
+ // abstract class type or array thereof.
+ if (AllocType->isFunctionType())
+ return Diag(Loc, diag::err_bad_new_type)
+ << AllocType << 0 << R;
+ else if (AllocType->isReferenceType())
+ return Diag(Loc, diag::err_bad_new_type)
+ << AllocType << 1 << R;
+ else if (!AllocType->isDependentType() &&
+ RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
+ return true;
+ else if (RequireNonAbstractType(Loc, AllocType,
+ diag::err_allocation_of_abstract_type))
+ return true;
+ else if (AllocType->isVariablyModifiedType())
+ return Diag(Loc, diag::err_variably_modified_new_type)
+ << AllocType;
+ else if (unsigned AddressSpace = AllocType.getAddressSpace())
+ return Diag(Loc, diag::err_address_space_qualified_new)
+ << AllocType.getUnqualifiedType() << AddressSpace;
+ else if (getLangOpts().ObjCAutoRefCount) {
+ if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
+ QualType BaseAllocType = Context.getBaseElementType(AT);
+ if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
+ BaseAllocType->isObjCLifetimeType())
+ return Diag(Loc, diag::err_arc_new_array_without_ownership)
+ << BaseAllocType;
+ }
+ }
+
+ return false;
+}
+
+/// \brief Determine whether the given function is a non-placement
+/// deallocation function.
+static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
+ if (FD->isInvalidDecl())
+ return false;
+
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
+ return Method->isUsualDeallocationFunction();
+
+ if (FD->getOverloadedOperator() != OO_Delete &&
+ FD->getOverloadedOperator() != OO_Array_Delete)
+ return false;
+
+ if (FD->getNumParams() == 1)
+ return true;
+
+ return S.getLangOpts().SizedDeallocation && FD->getNumParams() == 2 &&
+ S.Context.hasSameUnqualifiedType(FD->getParamDecl(1)->getType(),
+ S.Context.getSizeType());
+}
+
+/// FindAllocationFunctions - Finds the overloads of operator new and delete
+/// that are appropriate for the allocation.
+bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
+ bool UseGlobal, QualType AllocType,
+ bool IsArray, MultiExprArg PlaceArgs,
+ FunctionDecl *&OperatorNew,
+ FunctionDecl *&OperatorDelete) {
+ // --- Choosing an allocation function ---
+ // C++ 5.3.4p8 - 14 & 18
+ // 1) If UseGlobal is true, only look in the global scope. Else, also look
+ // in the scope of the allocated class.
+ // 2) If an array size is given, look for operator new[], else look for
+ // operator new.
+ // 3) The first argument is always size_t. Append the arguments from the
+ // placement form.
+
+ SmallVector<Expr*, 8> AllocArgs(1 + PlaceArgs.size());
+ // We don't care about the actual value of this argument.
+ // FIXME: Should the Sema create the expression and embed it in the syntax
+ // tree? Or should the consumer just recalculate the value?
+ IntegerLiteral Size(Context, llvm::APInt::getNullValue(
+ Context.getTargetInfo().getPointerWidth(0)),
+ Context.getSizeType(),
+ SourceLocation());
+ AllocArgs[0] = &Size;
+ std::copy(PlaceArgs.begin(), PlaceArgs.end(), AllocArgs.begin() + 1);
+
+ // C++ [expr.new]p8:
+ // If the allocated type is a non-array type, the allocation
+ // function's name is operator new and the deallocation function's
+ // name is operator delete. If the allocated type is an array
+ // type, the allocation function's name is operator new[] and the
+ // deallocation function's name is operator delete[].
+ DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
+ IsArray ? OO_Array_New : OO_New);
+ DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
+ IsArray ? OO_Array_Delete : OO_Delete);
+
+ QualType AllocElemType = Context.getBaseElementType(AllocType);
+
+ if (AllocElemType->isRecordType() && !UseGlobal) {
+ CXXRecordDecl *Record
+ = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
+ if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, Record,
+ /*AllowMissing=*/true, OperatorNew))
+ return true;
+ }
+
+ if (!OperatorNew) {
+ // Didn't find a member overload. Look for a global one.
+ DeclareGlobalNewDelete();
+ DeclContext *TUDecl = Context.getTranslationUnitDecl();
+ bool FallbackEnabled = IsArray && Context.getLangOpts().MSVCCompat;
+ if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl,
+ /*AllowMissing=*/FallbackEnabled, OperatorNew,
+ /*Diagnose=*/!FallbackEnabled)) {
+ if (!FallbackEnabled)
+ return true;
+
+ // MSVC will fall back on trying to find a matching global operator new
+ // if operator new[] cannot be found. Also, MSVC will leak by not
+ // generating a call to operator delete or operator delete[], but we
+ // will not replicate that bug.
+ NewName = Context.DeclarationNames.getCXXOperatorName(OO_New);
+ DeleteName = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
+ if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl,
+ /*AllowMissing=*/false, OperatorNew))
+ return true;
+ }
+ }
+
+ // We don't need an operator delete if we're running under
+ // -fno-exceptions.
+ if (!getLangOpts().Exceptions) {
+ OperatorDelete = nullptr;
+ return false;
+ }
+
+ // C++ [expr.new]p19:
+ //
+ // If the new-expression begins with a unary :: operator, the
+ // deallocation function's name is looked up in the global
+ // scope. Otherwise, if the allocated type is a class type T or an
+ // array thereof, the deallocation function's name is looked up in
+ // the scope of T. If this lookup fails to find the name, or if
+ // the allocated type is not a class type or array thereof, the
+ // deallocation function's name is looked up in the global scope.
+ LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
+ if (AllocElemType->isRecordType() && !UseGlobal) {
+ CXXRecordDecl *RD
+ = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
+ LookupQualifiedName(FoundDelete, RD);
+ }
+ if (FoundDelete.isAmbiguous())
+ return true; // FIXME: clean up expressions?
+
+ if (FoundDelete.empty()) {
+ DeclareGlobalNewDelete();
+ LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
+ }
+
+ FoundDelete.suppressDiagnostics();
+
+ SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
+
+ // Whether we're looking for a placement operator delete is dictated
+ // by whether we selected a placement operator new, not by whether
+ // we had explicit placement arguments. This matters for things like
+ // struct A { void *operator new(size_t, int = 0); ... };
+ // A *a = new A()
+ bool isPlacementNew = (!PlaceArgs.empty() || OperatorNew->param_size() != 1);
+
+ if (isPlacementNew) {
+ // C++ [expr.new]p20:
+ // A declaration of a placement deallocation function matches the
+ // declaration of a placement allocation function if it has the
+ // same number of parameters and, after parameter transformations
+ // (8.3.5), all parameter types except the first are
+ // identical. [...]
+ //
+ // To perform this comparison, we compute the function type that
+ // the deallocation function should have, and use that type both
+ // for template argument deduction and for comparison purposes.
+ //
+ // FIXME: this comparison should ignore CC and the like.
+ QualType ExpectedFunctionType;
+ {
+ const FunctionProtoType *Proto
+ = OperatorNew->getType()->getAs<FunctionProtoType>();
+
+ SmallVector<QualType, 4> ArgTypes;
+ ArgTypes.push_back(Context.VoidPtrTy);
+ for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
+ ArgTypes.push_back(Proto->getParamType(I));
+
+ FunctionProtoType::ExtProtoInfo EPI;
+ EPI.Variadic = Proto->isVariadic();
+
+ ExpectedFunctionType
+ = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
+ }
+
+ for (LookupResult::iterator D = FoundDelete.begin(),
+ DEnd = FoundDelete.end();
+ D != DEnd; ++D) {
+ FunctionDecl *Fn = nullptr;
+ if (FunctionTemplateDecl *FnTmpl
+ = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
+ // Perform template argument deduction to try to match the
+ // expected function type.
+ TemplateDeductionInfo Info(StartLoc);
+ if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
+ Info))
+ continue;
+ } else
+ Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
+
+ if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
+ Matches.push_back(std::make_pair(D.getPair(), Fn));
+ }
+ } else {
+ // C++ [expr.new]p20:
+ // [...] Any non-placement deallocation function matches a
+ // non-placement allocation function. [...]
+ for (LookupResult::iterator D = FoundDelete.begin(),
+ DEnd = FoundDelete.end();
+ D != DEnd; ++D) {
+ if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
+ if (isNonPlacementDeallocationFunction(*this, Fn))
+ Matches.push_back(std::make_pair(D.getPair(), Fn));
+ }
+
+ // C++1y [expr.new]p22:
+ // For a non-placement allocation function, the normal deallocation
+ // function lookup is used
+ // C++1y [expr.delete]p?:
+ // If [...] deallocation function lookup finds both a usual deallocation
+ // function with only a pointer parameter and a usual deallocation
+ // function with both a pointer parameter and a size parameter, then the
+ // selected deallocation function shall be the one with two parameters.
+ // Otherwise, the selected deallocation function shall be the function
+ // with one parameter.
+ if (getLangOpts().SizedDeallocation && Matches.size() == 2) {
+ if (Matches[0].second->getNumParams() == 1)
+ Matches.erase(Matches.begin());
+ else
+ Matches.erase(Matches.begin() + 1);
+ assert(Matches[0].second->getNumParams() == 2 &&
+ "found an unexpected usual deallocation function");
+ }
+ }
+
+ // C++ [expr.new]p20:
+ // [...] If the lookup finds a single matching deallocation
+ // function, that function will be called; otherwise, no
+ // deallocation function will be called.
+ if (Matches.size() == 1) {
+ OperatorDelete = Matches[0].second;
+
+ // C++0x [expr.new]p20:
+ // If the lookup finds the two-parameter form of a usual
+ // deallocation function (3.7.4.2) and that function, considered
+ // as a placement deallocation function, would have been
+ // selected as a match for the allocation function, the program
+ // is ill-formed.
+ if (!PlaceArgs.empty() && getLangOpts().CPlusPlus11 &&
+ isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
+ Diag(StartLoc, diag::err_placement_new_non_placement_delete)
+ << SourceRange(PlaceArgs.front()->getLocStart(),
+ PlaceArgs.back()->getLocEnd());
+ if (!OperatorDelete->isImplicit())
+ Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
+ << DeleteName;
+ } else {
+ CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
+ Matches[0].first);
+ }
+ }
+
+ return false;
+}
+
+/// \brief Find an fitting overload for the allocation function
+/// in the specified scope.
+///
+/// \param StartLoc The location of the 'new' token.
+/// \param Range The range of the placement arguments.
+/// \param Name The name of the function ('operator new' or 'operator new[]').
+/// \param Args The placement arguments specified.
+/// \param Ctx The scope in which we should search; either a class scope or the
+/// translation unit.
+/// \param AllowMissing If \c true, report an error if we can't find any
+/// allocation functions. Otherwise, succeed but don't fill in \p
+/// Operator.
+/// \param Operator Filled in with the found allocation function. Unchanged if
+/// no allocation function was found.
+/// \param Diagnose If \c true, issue errors if the allocation function is not
+/// usable.
+bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
+ DeclarationName Name, MultiExprArg Args,
+ DeclContext *Ctx,
+ bool AllowMissing, FunctionDecl *&Operator,
+ bool Diagnose) {
+ LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
+ LookupQualifiedName(R, Ctx);
+ if (R.empty()) {
+ if (AllowMissing || !Diagnose)
+ return false;
+ return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
+ << Name << Range;
+ }
+
+ if (R.isAmbiguous())
+ return true;
+
+ R.suppressDiagnostics();
+
+ OverloadCandidateSet Candidates(StartLoc, OverloadCandidateSet::CSK_Normal);
+ for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
+ Alloc != AllocEnd; ++Alloc) {
+ // Even member operator new/delete are implicitly treated as
+ // static, so don't use AddMemberCandidate.
+ NamedDecl *D = (*Alloc)->getUnderlyingDecl();
+
+ if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
+ AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
+ /*ExplicitTemplateArgs=*/nullptr,
+ Args, Candidates,
+ /*SuppressUserConversions=*/false);
+ continue;
+ }
+
+ FunctionDecl *Fn = cast<FunctionDecl>(D);
+ AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
+ /*SuppressUserConversions=*/false);
+ }
+
+ // Do the resolution.
+ OverloadCandidateSet::iterator Best;
+ switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
+ case OR_Success: {
+ // Got one!
+ FunctionDecl *FnDecl = Best->Function;
+ if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(),
+ Best->FoundDecl, Diagnose) == AR_inaccessible)
+ return true;
+
+ Operator = FnDecl;
+ return false;
+ }
+
+ case OR_No_Viable_Function:
+ if (Diagnose) {
+ Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
+ << Name << Range;
+ Candidates.NoteCandidates(*this, OCD_AllCandidates, Args);
+ }
+ return true;
+
+ case OR_Ambiguous:
+ if (Diagnose) {
+ Diag(StartLoc, diag::err_ovl_ambiguous_call)
+ << Name << Range;
+ Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args);
+ }
+ return true;
+
+ case OR_Deleted: {
+ if (Diagnose) {
+ Diag(StartLoc, diag::err_ovl_deleted_call)
+ << Best->Function->isDeleted()
+ << Name
+ << getDeletedOrUnavailableSuffix(Best->Function)
+ << Range;
+ Candidates.NoteCandidates(*this, OCD_AllCandidates, Args);
+ }
+ return true;
+ }
+ }
+ llvm_unreachable("Unreachable, bad result from BestViableFunction");
+}
+
+
+/// DeclareGlobalNewDelete - Declare the global forms of operator new and
+/// delete. These are:
+/// @code
+/// // C++03:
+/// void* operator new(std::size_t) throw(std::bad_alloc);
+/// void* operator new[](std::size_t) throw(std::bad_alloc);
+/// void operator delete(void *) throw();
+/// void operator delete[](void *) throw();
+/// // C++11:
+/// void* operator new(std::size_t);
+/// void* operator new[](std::size_t);
+/// void operator delete(void *) noexcept;
+/// void operator delete[](void *) noexcept;
+/// // C++1y:
+/// void* operator new(std::size_t);
+/// void* operator new[](std::size_t);
+/// void operator delete(void *) noexcept;
+/// void operator delete[](void *) noexcept;
+/// void operator delete(void *, std::size_t) noexcept;
+/// void operator delete[](void *, std::size_t) noexcept;
+/// @endcode
+/// Note that the placement and nothrow forms of new are *not* implicitly
+/// declared. Their use requires including \<new\>.
+void Sema::DeclareGlobalNewDelete() {
+ if (GlobalNewDeleteDeclared)
+ return;
+
+ // C++ [basic.std.dynamic]p2:
+ // [...] The following allocation and deallocation functions (18.4) are
+ // implicitly declared in global scope in each translation unit of a
+ // program
+ //
+ // C++03:
+ // void* operator new(std::size_t) throw(std::bad_alloc);
+ // void* operator new[](std::size_t) throw(std::bad_alloc);
+ // void operator delete(void*) throw();
+ // void operator delete[](void*) throw();
+ // C++11:
+ // void* operator new(std::size_t);
+ // void* operator new[](std::size_t);
+ // void operator delete(void*) noexcept;
+ // void operator delete[](void*) noexcept;
+ // C++1y:
+ // void* operator new(std::size_t);
+ // void* operator new[](std::size_t);
+ // void operator delete(void*) noexcept;
+ // void operator delete[](void*) noexcept;
+ // void operator delete(void*, std::size_t) noexcept;
+ // void operator delete[](void*, std::size_t) noexcept;
+ //
+ // These implicit declarations introduce only the function names operator
+ // new, operator new[], operator delete, operator delete[].
+ //
+ // Here, we need to refer to std::bad_alloc, so we will implicitly declare
+ // "std" or "bad_alloc" as necessary to form the exception specification.
+ // However, we do not make these implicit declarations visible to name
+ // lookup.
+ if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
+ // The "std::bad_alloc" class has not yet been declared, so build it
+ // implicitly.
+ StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
+ getOrCreateStdNamespace(),
+ SourceLocation(), SourceLocation(),
+ &PP.getIdentifierTable().get("bad_alloc"),
+ nullptr);
+ getStdBadAlloc()->setImplicit(true);
+ }
+
+ GlobalNewDeleteDeclared = true;
+
+ QualType VoidPtr = Context.getPointerType(Context.VoidTy);
+ QualType SizeT = Context.getSizeType();
+ bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew;
+
+ DeclareGlobalAllocationFunction(
+ Context.DeclarationNames.getCXXOperatorName(OO_New),
+ VoidPtr, SizeT, QualType(), AssumeSaneOperatorNew);
+ DeclareGlobalAllocationFunction(
+ Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
+ VoidPtr, SizeT, QualType(), AssumeSaneOperatorNew);
+ DeclareGlobalAllocationFunction(
+ Context.DeclarationNames.getCXXOperatorName(OO_Delete),
+ Context.VoidTy, VoidPtr);
+ DeclareGlobalAllocationFunction(
+ Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
+ Context.VoidTy, VoidPtr);
+ if (getLangOpts().SizedDeallocation) {
+ DeclareGlobalAllocationFunction(
+ Context.DeclarationNames.getCXXOperatorName(OO_Delete),
+ Context.VoidTy, VoidPtr, Context.getSizeType());
+ DeclareGlobalAllocationFunction(
+ Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
+ Context.VoidTy, VoidPtr, Context.getSizeType());
+ }
+}
+
+/// DeclareGlobalAllocationFunction - Declares a single implicit global
+/// allocation function if it doesn't already exist.
+void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
+ QualType Return,
+ QualType Param1, QualType Param2,
+ bool AddRestrictAttr) {
+ DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
+ unsigned NumParams = Param2.isNull() ? 1 : 2;
+
+ // Check if this function is already declared.
+ DeclContext::lookup_result R = GlobalCtx->lookup(Name);
+ for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
+ Alloc != AllocEnd; ++Alloc) {
+ // Only look at non-template functions, as it is the predefined,
+ // non-templated allocation function we are trying to declare here.
+ if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
+ if (Func->getNumParams() == NumParams) {
+ QualType InitialParam1Type =
+ Context.getCanonicalType(Func->getParamDecl(0)
+ ->getType().getUnqualifiedType());
+ QualType InitialParam2Type =
+ NumParams == 2
+ ? Context.getCanonicalType(Func->getParamDecl(1)
+ ->getType().getUnqualifiedType())
+ : QualType();
+ // FIXME: Do we need to check for default arguments here?
+ if (InitialParam1Type == Param1 &&
+ (NumParams == 1 || InitialParam2Type == Param2)) {
+ if (AddRestrictAttr && !Func->hasAttr<RestrictAttr>())
+ Func->addAttr(RestrictAttr::CreateImplicit(
+ Context, RestrictAttr::GNU_malloc));
+ // Make the function visible to name lookup, even if we found it in
+ // an unimported module. It either is an implicitly-declared global
+ // allocation function, or is suppressing that function.
+ Func->setHidden(false);
+ return;
+ }
+ }
+ }
+ }
+
+ FunctionProtoType::ExtProtoInfo EPI;
+
+ QualType BadAllocType;
+ bool HasBadAllocExceptionSpec
+ = (Name.getCXXOverloadedOperator() == OO_New ||
+ Name.getCXXOverloadedOperator() == OO_Array_New);
+ if (HasBadAllocExceptionSpec) {
+ if (!getLangOpts().CPlusPlus11) {
+ BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
+ assert(StdBadAlloc && "Must have std::bad_alloc declared");
+ EPI.ExceptionSpec.Type = EST_Dynamic;
+ EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType);
+ }
+ } else {
+ EPI.ExceptionSpec =
+ getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
+ }
+
+ QualType Params[] = { Param1, Param2 };
+
+ QualType FnType = Context.getFunctionType(
+ Return, llvm::makeArrayRef(Params, NumParams), EPI);
+ FunctionDecl *Alloc =
+ FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
+ SourceLocation(), Name,
+ FnType, /*TInfo=*/nullptr, SC_None, false, true);
+ Alloc->setImplicit();
+
+ // Implicit sized deallocation functions always have default visibility.
+ Alloc->addAttr(VisibilityAttr::CreateImplicit(Context,
+ VisibilityAttr::Default));
+
+ if (AddRestrictAttr)
+ Alloc->addAttr(
+ RestrictAttr::CreateImplicit(Context, RestrictAttr::GNU_malloc));
+
+ ParmVarDecl *ParamDecls[2];
+ for (unsigned I = 0; I != NumParams; ++I) {
+ ParamDecls[I] = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
+ SourceLocation(), nullptr,
+ Params[I], /*TInfo=*/nullptr,
+ SC_None, nullptr);
+ ParamDecls[I]->setImplicit();
+ }
+ Alloc->setParams(llvm::makeArrayRef(ParamDecls, NumParams));
+
+ Context.getTranslationUnitDecl()->addDecl(Alloc);
+ IdResolver.tryAddTopLevelDecl(Alloc, Name);
+}
+
+FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
+ bool CanProvideSize,
+ DeclarationName Name) {
+ DeclareGlobalNewDelete();
+
+ LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
+ LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
+
+ // C++ [expr.new]p20:
+ // [...] Any non-placement deallocation function matches a
+ // non-placement allocation function. [...]
+ llvm::SmallVector<FunctionDecl*, 2> Matches;
+ for (LookupResult::iterator D = FoundDelete.begin(),
+ DEnd = FoundDelete.end();
+ D != DEnd; ++D) {
+ if (FunctionDecl *Fn = dyn_cast<FunctionDecl>(*D))
+ if (isNonPlacementDeallocationFunction(*this, Fn))
+ Matches.push_back(Fn);
+ }
+
+ // C++1y [expr.delete]p?:
+ // If the type is complete and deallocation function lookup finds both a
+ // usual deallocation function with only a pointer parameter and a usual
+ // deallocation function with both a pointer parameter and a size
+ // parameter, then the selected deallocation function shall be the one
+ // with two parameters. Otherwise, the selected deallocation function
+ // shall be the function with one parameter.
+ if (getLangOpts().SizedDeallocation && Matches.size() == 2) {
+ unsigned NumArgs = CanProvideSize ? 2 : 1;
+ if (Matches[0]->getNumParams() != NumArgs)
+ Matches.erase(Matches.begin());
+ else
+ Matches.erase(Matches.begin() + 1);
+ assert(Matches[0]->getNumParams() == NumArgs &&
+ "found an unexpected usual deallocation function");
+ }
+
+ assert(Matches.size() == 1 &&
+ "unexpectedly have multiple usual deallocation functions");
+ return Matches.front();
+}
+
+bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
+ DeclarationName Name,
+ FunctionDecl* &Operator, bool Diagnose) {
+ LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
+ // Try to find operator delete/operator delete[] in class scope.
+ LookupQualifiedName(Found, RD);
+
+ if (Found.isAmbiguous())
+ return true;
+
+ Found.suppressDiagnostics();
+
+ SmallVector<DeclAccessPair,4> Matches;
+ for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
+ F != FEnd; ++F) {
+ NamedDecl *ND = (*F)->getUnderlyingDecl();
+
+ // Ignore template operator delete members from the check for a usual
+ // deallocation function.
+ if (isa<FunctionTemplateDecl>(ND))
+ continue;
+
+ if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
+ Matches.push_back(F.getPair());
+ }
+
+ // There's exactly one suitable operator; pick it.
+ if (Matches.size() == 1) {
+ Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
+
+ if (Operator->isDeleted()) {
+ if (Diagnose) {
+ Diag(StartLoc, diag::err_deleted_function_use);
+ NoteDeletedFunction(Operator);
+ }
+ return true;
+ }
+
+ if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
+ Matches[0], Diagnose) == AR_inaccessible)
+ return true;
+
+ return false;
+
+ // We found multiple suitable operators; complain about the ambiguity.
+ } else if (!Matches.empty()) {
+ if (Diagnose) {
+ Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
+ << Name << RD;
+
+ for (SmallVectorImpl<DeclAccessPair>::iterator
+ F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
+ Diag((*F)->getUnderlyingDecl()->getLocation(),
+ diag::note_member_declared_here) << Name;
+ }
+ return true;
+ }
+
+ // We did find operator delete/operator delete[] declarations, but
+ // none of them were suitable.
+ if (!Found.empty()) {
+ if (Diagnose) {
+ Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
+ << Name << RD;
+
+ for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
+ F != FEnd; ++F)
+ Diag((*F)->getUnderlyingDecl()->getLocation(),
+ diag::note_member_declared_here) << Name;
+ }
+ return true;
+ }
+
+ Operator = nullptr;
+ return false;
+}
+
+namespace {
+/// \brief Checks whether delete-expression, and new-expression used for
+/// initializing deletee have the same array form.
+class MismatchingNewDeleteDetector {
+public:
+ enum MismatchResult {
+ /// Indicates that there is no mismatch or a mismatch cannot be proven.
+ NoMismatch,
+ /// Indicates that variable is initialized with mismatching form of \a new.
+ VarInitMismatches,
+ /// Indicates that member is initialized with mismatching form of \a new.
+ MemberInitMismatches,
+ /// Indicates that 1 or more constructors' definitions could not been
+ /// analyzed, and they will be checked again at the end of translation unit.
+ AnalyzeLater
+ };
+
+ /// \param EndOfTU True, if this is the final analysis at the end of
+ /// translation unit. False, if this is the initial analysis at the point
+ /// delete-expression was encountered.
+ explicit MismatchingNewDeleteDetector(bool EndOfTU)
+ : IsArrayForm(false), Field(nullptr), EndOfTU(EndOfTU),
+ HasUndefinedConstructors(false) {}
+
+ /// \brief Checks whether pointee of a delete-expression is initialized with
+ /// matching form of new-expression.
+ ///
+ /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
+ /// point where delete-expression is encountered, then a warning will be
+ /// issued immediately. If return value is \c AnalyzeLater at the point where
+ /// delete-expression is seen, then member will be analyzed at the end of
+ /// translation unit. \c AnalyzeLater is returned iff at least one constructor
+ /// couldn't be analyzed. If at least one constructor initializes the member
+ /// with matching type of new, the return value is \c NoMismatch.
+ MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
+ /// \brief Analyzes a class member.
+ /// \param Field Class member to analyze.
+ /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
+ /// for deleting the \p Field.
+ MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
+ /// List of mismatching new-expressions used for initialization of the pointee
+ llvm::SmallVector<const CXXNewExpr *, 4> NewExprs;
+ /// Indicates whether delete-expression was in array form.
+ bool IsArrayForm;
+ FieldDecl *Field;
+
+private:
+ const bool EndOfTU;
+ /// \brief Indicates that there is at least one constructor without body.
+ bool HasUndefinedConstructors;
+ /// \brief Returns \c CXXNewExpr from given initialization expression.
+ /// \param E Expression used for initializing pointee in delete-expression.
+ /// E can be a single-element \c InitListExpr consisting of new-expression.
+ const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
+ /// \brief Returns whether member is initialized with mismatching form of
+ /// \c new either by the member initializer or in-class initialization.
+ ///
+ /// If bodies of all constructors are not visible at the end of translation
+ /// unit or at least one constructor initializes member with the matching
+ /// form of \c new, mismatch cannot be proven, and this function will return
+ /// \c NoMismatch.
+ MismatchResult analyzeMemberExpr(const MemberExpr *ME);
+ /// \brief Returns whether variable is initialized with mismatching form of
+ /// \c new.
+ ///
+ /// If variable is initialized with matching form of \c new or variable is not
+ /// initialized with a \c new expression, this function will return true.
+ /// If variable is initialized with mismatching form of \c new, returns false.
+ /// \param D Variable to analyze.
+ bool hasMatchingVarInit(const DeclRefExpr *D);
+ /// \brief Checks whether the constructor initializes pointee with mismatching
+ /// form of \c new.
+ ///
+ /// Returns true, if member is initialized with matching form of \c new in
+ /// member initializer list. Returns false, if member is initialized with the
+ /// matching form of \c new in this constructor's initializer or given
+ /// constructor isn't defined at the point where delete-expression is seen, or
+ /// member isn't initialized by the constructor.
+ bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
+ /// \brief Checks whether member is initialized with matching form of
+ /// \c new in member initializer list.
+ bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
+ /// Checks whether member is initialized with mismatching form of \c new by
+ /// in-class initializer.
+ MismatchResult analyzeInClassInitializer();
+};
+}
+
+MismatchingNewDeleteDetector::MismatchResult
+MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
+ NewExprs.clear();
+ assert(DE && "Expected delete-expression");
+ IsArrayForm = DE->isArrayForm();
+ const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
+ if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
+ return analyzeMemberExpr(ME);
+ } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
+ if (!hasMatchingVarInit(D))
+ return VarInitMismatches;
+ }
+ return NoMismatch;
+}
+
+const CXXNewExpr *
+MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
+ assert(E != nullptr && "Expected a valid initializer expression");
+ E = E->IgnoreParenImpCasts();
+ if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
+ if (ILE->getNumInits() == 1)
+ E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
+ }
+
+ return dyn_cast_or_null<const CXXNewExpr>(E);
+}
+
+bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
+ const CXXCtorInitializer *CI) {
+ const CXXNewExpr *NE = nullptr;
+ if (Field == CI->getMember() &&
+ (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
+ if (NE->isArray() == IsArrayForm)
+ return true;
+ else
+ NewExprs.push_back(NE);
+ }
+ return false;
+}
+
+bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
+ const CXXConstructorDecl *CD) {
+ if (CD->isImplicit())
+ return false;
+ const FunctionDecl *Definition = CD;
+ if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
+ HasUndefinedConstructors = true;
+ return EndOfTU;
+ }
+ for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
+ if (hasMatchingNewInCtorInit(CI))
+ return true;
+ }
+ return false;
+}
+
+MismatchingNewDeleteDetector::MismatchResult
+MismatchingNewDeleteDetector::analyzeInClassInitializer() {
+ assert(Field != nullptr && "This should be called only for members");
+ if (const CXXNewExpr *NE =
+ getNewExprFromInitListOrExpr(Field->getInClassInitializer())) {
+ if (NE->isArray() != IsArrayForm) {
+ NewExprs.push_back(NE);
+ return MemberInitMismatches;
+ }
+ }
+ return NoMismatch;
+}
+
+MismatchingNewDeleteDetector::MismatchResult
+MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
+ bool DeleteWasArrayForm) {
+ assert(Field != nullptr && "Analysis requires a valid class member.");
+ this->Field = Field;
+ IsArrayForm = DeleteWasArrayForm;
+ const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
+ for (const auto *CD : RD->ctors()) {
+ if (hasMatchingNewInCtor(CD))
+ return NoMismatch;
+ }
+ if (HasUndefinedConstructors)
+ return EndOfTU ? NoMismatch : AnalyzeLater;
+ if (!NewExprs.empty())
+ return MemberInitMismatches;
+ return Field->hasInClassInitializer() ? analyzeInClassInitializer()
+ : NoMismatch;
+}
+
+MismatchingNewDeleteDetector::MismatchResult
+MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
+ assert(ME != nullptr && "Expected a member expression");
+ if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
+ return analyzeField(F, IsArrayForm);
+ return NoMismatch;
+}
+
+bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
+ const CXXNewExpr *NE = nullptr;
+ if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
+ if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
+ NE->isArray() != IsArrayForm) {
+ NewExprs.push_back(NE);
+ }
+ }
+ return NewExprs.empty();
+}
+
+static void
+DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc,
+ const MismatchingNewDeleteDetector &Detector) {
+ SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
+ FixItHint H;
+ if (!Detector.IsArrayForm)
+ H = FixItHint::CreateInsertion(EndOfDelete, "[]");
+ else {
+ SourceLocation RSquare = Lexer::findLocationAfterToken(
+ DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
+ SemaRef.getLangOpts(), true);
+ if (RSquare.isValid())
+ H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
+ }
+ SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
+ << Detector.IsArrayForm << H;
+
+ for (const auto *NE : Detector.NewExprs)
+ SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
+ << Detector.IsArrayForm;
+}
+
+void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
+ if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
+ return;
+ MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
+ switch (Detector.analyzeDeleteExpr(DE)) {
+ case MismatchingNewDeleteDetector::VarInitMismatches:
+ case MismatchingNewDeleteDetector::MemberInitMismatches: {
+ DiagnoseMismatchedNewDelete(*this, DE->getLocStart(), Detector);
+ break;
+ }
+ case MismatchingNewDeleteDetector::AnalyzeLater: {
+ DeleteExprs[Detector.Field].push_back(
+ std::make_pair(DE->getLocStart(), DE->isArrayForm()));
+ break;
+ }
+ case MismatchingNewDeleteDetector::NoMismatch:
+ break;
+ }
+}
+
+void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
+ bool DeleteWasArrayForm) {
+ MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
+ switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
+ case MismatchingNewDeleteDetector::VarInitMismatches:
+ llvm_unreachable("This analysis should have been done for class members.");
+ case MismatchingNewDeleteDetector::AnalyzeLater:
+ llvm_unreachable("Analysis cannot be postponed any point beyond end of "
+ "translation unit.");
+ case MismatchingNewDeleteDetector::MemberInitMismatches:
+ DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
+ break;
+ case MismatchingNewDeleteDetector::NoMismatch:
+ break;
+ }
+}
+
+/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
+/// @code ::delete ptr; @endcode
+/// or
+/// @code delete [] ptr; @endcode
+ExprResult
+Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
+ bool ArrayForm, Expr *ExE) {
+ // C++ [expr.delete]p1:
+ // The operand shall have a pointer type, or a class type having a single
+ // non-explicit conversion function to a pointer type. The result has type
+ // void.
+ //
+ // DR599 amends "pointer type" to "pointer to object type" in both cases.
+
+ ExprResult Ex = ExE;
+ FunctionDecl *OperatorDelete = nullptr;
+ bool ArrayFormAsWritten = ArrayForm;
+ bool UsualArrayDeleteWantsSize = false;
+
+ if (!Ex.get()->isTypeDependent()) {
+ // Perform lvalue-to-rvalue cast, if needed.
+ Ex = DefaultLvalueConversion(Ex.get());
+ if (Ex.isInvalid())
+ return ExprError();
+
+ QualType Type = Ex.get()->getType();
+
+ class DeleteConverter : public ContextualImplicitConverter {
+ public:
+ DeleteConverter() : ContextualImplicitConverter(false, true) {}
+
+ bool match(QualType ConvType) override {
+ // FIXME: If we have an operator T* and an operator void*, we must pick
+ // the operator T*.
+ if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
+ if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
+ return true;
+ return false;
+ }
+
+ SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
+ QualType T) override {
+ return S.Diag(Loc, diag::err_delete_operand) << T;
+ }
+
+ SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
+ QualType T) override {
+ return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
+ }
+
+ SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
+ QualType T,
+ QualType ConvTy) override {
+ return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
+ }
+
+ SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
+ QualType ConvTy) override {
+ return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
+ << ConvTy;
+ }
+
+ SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
+ QualType T) override {
+ return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
+ }
+
+ SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
+ QualType ConvTy) override {
+ return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
+ << ConvTy;
+ }
+
+ SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
+ QualType T,
+ QualType ConvTy) override {
+ llvm_unreachable("conversion functions are permitted");
+ }
+ } Converter;
+
+ Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
+ if (Ex.isInvalid())
+ return ExprError();
+ Type = Ex.get()->getType();
+ if (!Converter.match(Type))
+ // FIXME: PerformContextualImplicitConversion should return ExprError
+ // itself in this case.
+ return ExprError();
+
+ QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
+ QualType PointeeElem = Context.getBaseElementType(Pointee);
+
+ if (unsigned AddressSpace = Pointee.getAddressSpace())
+ return Diag(Ex.get()->getLocStart(),
+ diag::err_address_space_qualified_delete)
+ << Pointee.getUnqualifiedType() << AddressSpace;
+
+ CXXRecordDecl *PointeeRD = nullptr;
+ if (Pointee->isVoidType() && !isSFINAEContext()) {
+ // The C++ standard bans deleting a pointer to a non-object type, which
+ // effectively bans deletion of "void*". However, most compilers support
+ // this, so we treat it as a warning unless we're in a SFINAE context.
+ Diag(StartLoc, diag::ext_delete_void_ptr_operand)
+ << Type << Ex.get()->getSourceRange();
+ } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
+ return ExprError(Diag(StartLoc, diag::err_delete_operand)
+ << Type << Ex.get()->getSourceRange());
+ } else if (!Pointee->isDependentType()) {
+ if (!RequireCompleteType(StartLoc, Pointee,
+ diag::warn_delete_incomplete, Ex.get())) {
+ if (const RecordType *RT = PointeeElem->getAs<RecordType>())
+ PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
+ }
+ }
+
+ if (Pointee->isArrayType() && !ArrayForm) {
+ Diag(StartLoc, diag::warn_delete_array_type)
+ << Type << Ex.get()->getSourceRange()
+ << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
+ ArrayForm = true;
+ }
+
+ DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
+ ArrayForm ? OO_Array_Delete : OO_Delete);
+
+ if (PointeeRD) {
+ if (!UseGlobal &&
+ FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
+ OperatorDelete))
+ return ExprError();
+
+ // If we're allocating an array of records, check whether the
+ // usual operator delete[] has a size_t parameter.
+ if (ArrayForm) {
+ // If the user specifically asked to use the global allocator,
+ // we'll need to do the lookup into the class.
+ if (UseGlobal)
+ UsualArrayDeleteWantsSize =
+ doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
+
+ // Otherwise, the usual operator delete[] should be the
+ // function we just found.
+ else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
+ UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
+ }
+
+ if (!PointeeRD->hasIrrelevantDestructor())
+ if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
+ MarkFunctionReferenced(StartLoc,
+ const_cast<CXXDestructorDecl*>(Dtor));
+ if (DiagnoseUseOfDecl(Dtor, StartLoc))
+ return ExprError();
+ }
+
+ // C++ [expr.delete]p3:
+ // In the first alternative (delete object), if the static type of the
+ // object to be deleted is different from its dynamic type, the static
+ // type shall be a base class of the dynamic type of the object to be
+ // deleted and the static type shall have a virtual destructor or the
+ // behavior is undefined.
+ //
+ // Note: a final class cannot be derived from, no issue there
+ if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) {
+ CXXDestructorDecl *dtor = PointeeRD->getDestructor();
+ if (dtor && !dtor->isVirtual()) {
+ if (PointeeRD->isAbstract()) {
+ // If the class is abstract, we warn by default, because we're
+ // sure the code has undefined behavior.
+ Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor)
+ << PointeeElem;
+ } else if (!ArrayForm) {
+ // Otherwise, if this is not an array delete, it's a bit suspect,
+ // but not necessarily wrong.
+ Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
+ }
+ }
+ }
+
+ }
+
+ if (!OperatorDelete)
+ // Look for a global declaration.
+ OperatorDelete = FindUsualDeallocationFunction(
+ StartLoc, !RequireCompleteType(StartLoc, Pointee, 0) &&
+ (!ArrayForm || UsualArrayDeleteWantsSize ||
+ Pointee.isDestructedType()),
+ DeleteName);
+
+ MarkFunctionReferenced(StartLoc, OperatorDelete);
+
+ // Check access and ambiguity of operator delete and destructor.
+ if (PointeeRD) {
+ if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
+ CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
+ PDiag(diag::err_access_dtor) << PointeeElem);
+ }
+ }
+ }
+
+ CXXDeleteExpr *Result = new (Context) CXXDeleteExpr(
+ Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
+ UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
+ AnalyzeDeleteExprMismatch(Result);
+ return Result;
+}
+
+/// \brief Check the use of the given variable as a C++ condition in an if,
+/// while, do-while, or switch statement.
+ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
+ SourceLocation StmtLoc,
+ bool ConvertToBoolean) {
+ if (ConditionVar->isInvalidDecl())
+ return ExprError();
+
+ QualType T = ConditionVar->getType();
+
+ // C++ [stmt.select]p2:
+ // The declarator shall not specify a function or an array.
+ if (T->isFunctionType())
+ return ExprError(Diag(ConditionVar->getLocation(),
+ diag::err_invalid_use_of_function_type)
+ << ConditionVar->getSourceRange());
+ else if (T->isArrayType())
+ return ExprError(Diag(ConditionVar->getLocation(),
+ diag::err_invalid_use_of_array_type)
+ << ConditionVar->getSourceRange());
+
+ ExprResult Condition = DeclRefExpr::Create(
+ Context, NestedNameSpecifierLoc(), SourceLocation(), ConditionVar,
+ /*enclosing*/ false, ConditionVar->getLocation(),
+ ConditionVar->getType().getNonReferenceType(), VK_LValue);
+
+ MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
+
+ if (ConvertToBoolean) {
+ Condition = CheckBooleanCondition(Condition.get(), StmtLoc);
+ if (Condition.isInvalid())
+ return ExprError();
+ }
+
+ return Condition;
+}
+
+/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
+ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
+ // C++ 6.4p4:
+ // The value of a condition that is an initialized declaration in a statement
+ // other than a switch statement is the value of the declared variable
+ // implicitly converted to type bool. If that conversion is ill-formed, the
+ // program is ill-formed.
+ // The value of a condition that is an expression is the value of the
+ // expression, implicitly converted to bool.
+ //
+ return PerformContextuallyConvertToBool(CondExpr);
+}
+
+/// Helper function to determine whether this is the (deprecated) C++
+/// conversion from a string literal to a pointer to non-const char or
+/// non-const wchar_t (for narrow and wide string literals,
+/// respectively).
+bool
+Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
+ // Look inside the implicit cast, if it exists.
+ if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
+ From = Cast->getSubExpr();
+
+ // A string literal (2.13.4) that is not a wide string literal can
+ // be converted to an rvalue of type "pointer to char"; a wide
+ // string literal can be converted to an rvalue of type "pointer
+ // to wchar_t" (C++ 4.2p2).
+ if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
+ if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
+ if (const BuiltinType *ToPointeeType
+ = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
+ // This conversion is considered only when there is an
+ // explicit appropriate pointer target type (C++ 4.2p2).
+ if (!ToPtrType->getPointeeType().hasQualifiers()) {
+ switch (StrLit->getKind()) {
+ case StringLiteral::UTF8:
+ case StringLiteral::UTF16:
+ case StringLiteral::UTF32:
+ // We don't allow UTF literals to be implicitly converted
+ break;
+ case StringLiteral::Ascii:
+ return (ToPointeeType->getKind() == BuiltinType::Char_U ||
+ ToPointeeType->getKind() == BuiltinType::Char_S);
+ case StringLiteral::Wide:
+ return ToPointeeType->isWideCharType();
+ }
+ }
+ }
+
+ return false;
+}
+
+static ExprResult BuildCXXCastArgument(Sema &S,
+ SourceLocation CastLoc,
+ QualType Ty,
+ CastKind Kind,
+ CXXMethodDecl *Method,
+ DeclAccessPair FoundDecl,
+ bool HadMultipleCandidates,
+ Expr *From) {
+ switch (Kind) {
+ default: llvm_unreachable("Unhandled cast kind!");
+ case CK_ConstructorConversion: {
+ CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
+ SmallVector<Expr*, 8> ConstructorArgs;
+
+ if (S.RequireNonAbstractType(CastLoc, Ty,
+ diag::err_allocation_of_abstract_type))
+ return ExprError();
+
+ if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
+ return ExprError();
+
+ S.CheckConstructorAccess(CastLoc, Constructor,
+ InitializedEntity::InitializeTemporary(Ty),
+ Constructor->getAccess());
+ if (S.DiagnoseUseOfDecl(Method, CastLoc))
+ return ExprError();
+
+ ExprResult Result = S.BuildCXXConstructExpr(
+ CastLoc, Ty, cast<CXXConstructorDecl>(Method),
+ ConstructorArgs, HadMultipleCandidates,
+ /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
+ CXXConstructExpr::CK_Complete, SourceRange());
+ if (Result.isInvalid())
+ return ExprError();
+
+ return S.MaybeBindToTemporary(Result.getAs<Expr>());
+ }
+
+ case CK_UserDefinedConversion: {
+ assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
+
+ S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
+ if (S.DiagnoseUseOfDecl(Method, CastLoc))
+ return ExprError();
+
+ // Create an implicit call expr that calls it.
+ CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
+ ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
+ HadMultipleCandidates);
+ if (Result.isInvalid())
+ return ExprError();
+ // Record usage of conversion in an implicit cast.
+ Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
+ CK_UserDefinedConversion, Result.get(),
+ nullptr, Result.get()->getValueKind());
+
+ return S.MaybeBindToTemporary(Result.get());
+ }
+ }
+}
+
+/// PerformImplicitConversion - Perform an implicit conversion of the
+/// expression From to the type ToType using the pre-computed implicit
+/// conversion sequence ICS. Returns the converted
+/// expression. Action is the kind of conversion we're performing,
+/// used in the error message.
+ExprResult
+Sema::PerformImplicitConversion(Expr *From, QualType ToType,
+ const ImplicitConversionSequence &ICS,
+ AssignmentAction Action,
+ CheckedConversionKind CCK) {
+ switch (ICS.getKind()) {
+ case ImplicitConversionSequence::StandardConversion: {
+ ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
+ Action, CCK);
+ if (Res.isInvalid())
+ return ExprError();
+ From = Res.get();
+ break;
+ }
+
+ case ImplicitConversionSequence::UserDefinedConversion: {
+
+ FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
+ CastKind CastKind;
+ QualType BeforeToType;
+ assert(FD && "no conversion function for user-defined conversion seq");
+ if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
+ CastKind = CK_UserDefinedConversion;
+
+ // If the user-defined conversion is specified by a conversion function,
+ // the initial standard conversion sequence converts the source type to
+ // the implicit object parameter of the conversion function.
+ BeforeToType = Context.getTagDeclType(Conv->getParent());
+ } else {
+ const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
+ CastKind = CK_ConstructorConversion;
+ // Do no conversion if dealing with ... for the first conversion.
+ if (!ICS.UserDefined.EllipsisConversion) {
+ // If the user-defined conversion is specified by a constructor, the
+ // initial standard conversion sequence converts the source type to
+ // the type required by the argument of the constructor
+ BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
+ }
+ }
+ // Watch out for ellipsis conversion.
+ if (!ICS.UserDefined.EllipsisConversion) {
+ ExprResult Res =
+ PerformImplicitConversion(From, BeforeToType,
+ ICS.UserDefined.Before, AA_Converting,
+ CCK);
+ if (Res.isInvalid())
+ return ExprError();
+ From = Res.get();
+ }
+
+ ExprResult CastArg
+ = BuildCXXCastArgument(*this,
+ From->getLocStart(),
+ ToType.getNonReferenceType(),
+ CastKind, cast<CXXMethodDecl>(FD),
+ ICS.UserDefined.FoundConversionFunction,
+ ICS.UserDefined.HadMultipleCandidates,
+ From);
+
+ if (CastArg.isInvalid())
+ return ExprError();
+
+ From = CastArg.get();
+
+ return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
+ AA_Converting, CCK);
+ }
+
+ case ImplicitConversionSequence::AmbiguousConversion:
+ ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
+ PDiag(diag::err_typecheck_ambiguous_condition)
+ << From->getSourceRange());
+ return ExprError();
+
+ case ImplicitConversionSequence::EllipsisConversion:
+ llvm_unreachable("Cannot perform an ellipsis conversion");
+
+ case ImplicitConversionSequence::BadConversion:
+ return ExprError();
+ }
+
+ // Everything went well.
+ return From;
+}
+
+/// PerformImplicitConversion - Perform an implicit conversion of the
+/// expression From to the type ToType by following the standard
+/// conversion sequence SCS. Returns the converted
+/// expression. Flavor is the context in which we're performing this
+/// conversion, for use in error messages.
+ExprResult
+Sema::PerformImplicitConversion(Expr *From, QualType ToType,
+ const StandardConversionSequence& SCS,
+ AssignmentAction Action,
+ CheckedConversionKind CCK) {
+ bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
+
+ // Overall FIXME: we are recomputing too many types here and doing far too
+ // much extra work. What this means is that we need to keep track of more
+ // information that is computed when we try the implicit conversion initially,
+ // so that we don't need to recompute anything here.
+ QualType FromType = From->getType();
+
+ if (SCS.CopyConstructor) {
+ // FIXME: When can ToType be a reference type?
+ assert(!ToType->isReferenceType());
+ if (SCS.Second == ICK_Derived_To_Base) {
+ SmallVector<Expr*, 8> ConstructorArgs;
+ if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
+ From, /*FIXME:ConstructLoc*/SourceLocation(),
+ ConstructorArgs))
+ return ExprError();
+ return BuildCXXConstructExpr(
+ /*FIXME:ConstructLoc*/ SourceLocation(), ToType, SCS.CopyConstructor,
+ ConstructorArgs, /*HadMultipleCandidates*/ false,
+ /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
+ CXXConstructExpr::CK_Complete, SourceRange());
+ }
+ return BuildCXXConstructExpr(
+ /*FIXME:ConstructLoc*/ SourceLocation(), ToType, SCS.CopyConstructor,
+ From, /*HadMultipleCandidates*/ false,
+ /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
+ CXXConstructExpr::CK_Complete, SourceRange());
+ }
+
+ // Resolve overloaded function references.
+ if (Context.hasSameType(FromType, Context.OverloadTy)) {
+ DeclAccessPair Found;
+ FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
+ true, Found);
+ if (!Fn)
+ return ExprError();
+
+ if (DiagnoseUseOfDecl(Fn, From->getLocStart()))
+ return ExprError();
+
+ From = FixOverloadedFunctionReference(From, Found, Fn);
+ FromType = From->getType();
+ }
+
+ // If we're converting to an atomic type, first convert to the corresponding
+ // non-atomic type.
+ QualType ToAtomicType;
+ if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
+ ToAtomicType = ToType;
+ ToType = ToAtomic->getValueType();
+ }
+
+ // Perform the first implicit conversion.
+ switch (SCS.First) {
+ case ICK_Identity:
+ if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
+ FromType = FromAtomic->getValueType().getUnqualifiedType();
+ From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
+ From, /*BasePath=*/nullptr, VK_RValue);
+ }
+ break;
+
+ case ICK_Lvalue_To_Rvalue: {
+ assert(From->getObjectKind() != OK_ObjCProperty);
+ ExprResult FromRes = DefaultLvalueConversion(From);
+ assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
+ From = FromRes.get();
+ FromType = From->getType();
+ break;
+ }
+
+ case ICK_Array_To_Pointer:
+ FromType = Context.getArrayDecayedType(FromType);
+ From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
+ VK_RValue, /*BasePath=*/nullptr, CCK).get();
+ break;
+
+ case ICK_Function_To_Pointer:
+ FromType = Context.getPointerType(FromType);
+ From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
+ VK_RValue, /*BasePath=*/nullptr, CCK).get();
+ break;
+
+ default:
+ llvm_unreachable("Improper first standard conversion");
+ }
+
+ // Perform the second implicit conversion
+ switch (SCS.Second) {
+ case ICK_Identity:
+ // C++ [except.spec]p5:
+ // [For] assignment to and initialization of pointers to functions,
+ // pointers to member functions, and references to functions: the
+ // target entity shall allow at least the exceptions allowed by the
+ // source value in the assignment or initialization.
+ switch (Action) {
+ case AA_Assigning:
+ case AA_Initializing:
+ // Note, function argument passing and returning are initialization.
+ case AA_Passing:
+ case AA_Returning:
+ case AA_Sending:
+ case AA_Passing_CFAudited:
+ if (CheckExceptionSpecCompatibility(From, ToType))
+ return ExprError();
+ break;
+
+ case AA_Casting:
+ case AA_Converting:
+ // Casts and implicit conversions are not initialization, so are not
+ // checked for exception specification mismatches.
+ break;
+ }
+ // Nothing else to do.
+ break;
+
+ case ICK_NoReturn_Adjustment:
+ // If both sides are functions (or pointers/references to them), there could
+ // be incompatible exception declarations.
+ if (CheckExceptionSpecCompatibility(From, ToType))
+ return ExprError();
+
+ From = ImpCastExprToType(From, ToType, CK_NoOp,
+ VK_RValue, /*BasePath=*/nullptr, CCK).get();
+ break;
+
+ case ICK_Integral_Promotion:
+ case ICK_Integral_Conversion:
+ if (ToType->isBooleanType()) {
+ assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
+ SCS.Second == ICK_Integral_Promotion &&
+ "only enums with fixed underlying type can promote to bool");
+ From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean,
+ VK_RValue, /*BasePath=*/nullptr, CCK).get();
+ } else {
+ From = ImpCastExprToType(From, ToType, CK_IntegralCast,
+ VK_RValue, /*BasePath=*/nullptr, CCK).get();
+ }
+ break;
+
+ case ICK_Floating_Promotion:
+ case ICK_Floating_Conversion:
+ From = ImpCastExprToType(From, ToType, CK_FloatingCast,
+ VK_RValue, /*BasePath=*/nullptr, CCK).get();
+ break;
+
+ case ICK_Complex_Promotion:
+ case ICK_Complex_Conversion: {
+ QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
+ QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
+ CastKind CK;
+ if (FromEl->isRealFloatingType()) {
+ if (ToEl->isRealFloatingType())
+ CK = CK_FloatingComplexCast;
+ else
+ CK = CK_FloatingComplexToIntegralComplex;
+ } else if (ToEl->isRealFloatingType()) {
+ CK = CK_IntegralComplexToFloatingComplex;
+ } else {
+ CK = CK_IntegralComplexCast;
+ }
+ From = ImpCastExprToType(From, ToType, CK,
+ VK_RValue, /*BasePath=*/nullptr, CCK).get();
+ break;
+ }
+
+ case ICK_Floating_Integral:
+ if (ToType->isRealFloatingType())
+ From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
+ VK_RValue, /*BasePath=*/nullptr, CCK).get();
+ else
+ From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
+ VK_RValue, /*BasePath=*/nullptr, CCK).get();
+ break;
+
+ case ICK_Compatible_Conversion:
+ From = ImpCastExprToType(From, ToType, CK_NoOp,
+ VK_RValue, /*BasePath=*/nullptr, CCK).get();
+ break;
+
+ case ICK_Writeback_Conversion:
+ case ICK_Pointer_Conversion: {
+ if (SCS.IncompatibleObjC && Action != AA_Casting) {
+ // Diagnose incompatible Objective-C conversions
+ if (Action == AA_Initializing || Action == AA_Assigning)
+ Diag(From->getLocStart(),
+ diag::ext_typecheck_convert_incompatible_pointer)
+ << ToType << From->getType() << Action
+ << From->getSourceRange() << 0;
+ else
+ Diag(From->getLocStart(),
+ diag::ext_typecheck_convert_incompatible_pointer)
+ << From->getType() << ToType << Action
+ << From->getSourceRange() << 0;
+
+ if (From->getType()->isObjCObjectPointerType() &&
+ ToType->isObjCObjectPointerType())
+ EmitRelatedResultTypeNote(From);
+ }
+ else if (getLangOpts().ObjCAutoRefCount &&
+ !CheckObjCARCUnavailableWeakConversion(ToType,
+ From->getType())) {
+ if (Action == AA_Initializing)
+ Diag(From->getLocStart(),
+ diag::err_arc_weak_unavailable_assign);
+ else
+ Diag(From->getLocStart(),
+ diag::err_arc_convesion_of_weak_unavailable)
+ << (Action == AA_Casting) << From->getType() << ToType
+ << From->getSourceRange();
+ }
+
+ CastKind Kind = CK_Invalid;
+ CXXCastPath BasePath;
+ if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
+ return ExprError();
+
+ // Make sure we extend blocks if necessary.
+ // FIXME: doing this here is really ugly.
+ if (Kind == CK_BlockPointerToObjCPointerCast) {
+ ExprResult E = From;
+ (void) PrepareCastToObjCObjectPointer(E);
+ From = E.get();
+ }
+ if (getLangOpts().ObjCAutoRefCount)
+ CheckObjCARCConversion(SourceRange(), ToType, From, CCK);
+ From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
+ .get();
+ break;
+ }
+
+ case ICK_Pointer_Member: {
+ CastKind Kind = CK_Invalid;
+ CXXCastPath BasePath;
+ if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
+ return ExprError();
+ if (CheckExceptionSpecCompatibility(From, ToType))
+ return ExprError();
+
+ // We may not have been able to figure out what this member pointer resolved
+ // to up until this exact point. Attempt to lock-in it's inheritance model.
+ QualType FromType = From->getType();
+ if (FromType->isMemberPointerType())
+ if (Context.getTargetInfo().getCXXABI().isMicrosoft())
+ RequireCompleteType(From->getExprLoc(), FromType, 0);
+
+ From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
+ .get();
+ break;
+ }
+
+ case ICK_Boolean_Conversion:
+ // Perform half-to-boolean conversion via float.
+ if (From->getType()->isHalfType()) {
+ From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
+ FromType = Context.FloatTy;
+ }
+
+ From = ImpCastExprToType(From, Context.BoolTy,
+ ScalarTypeToBooleanCastKind(FromType),
+ VK_RValue, /*BasePath=*/nullptr, CCK).get();
+ break;
+
+ case ICK_Derived_To_Base: {
+ CXXCastPath BasePath;
+ if (CheckDerivedToBaseConversion(From->getType(),
+ ToType.getNonReferenceType(),
+ From->getLocStart(),
+ From->getSourceRange(),
+ &BasePath,
+ CStyle))
+ return ExprError();
+
+ From = ImpCastExprToType(From, ToType.getNonReferenceType(),
+ CK_DerivedToBase, From->getValueKind(),
+ &BasePath, CCK).get();
+ break;
+ }
+
+ case ICK_Vector_Conversion:
+ From = ImpCastExprToType(From, ToType, CK_BitCast,
+ VK_RValue, /*BasePath=*/nullptr, CCK).get();
+ break;
+
+ case ICK_Vector_Splat:
+ // Vector splat from any arithmetic type to a vector.
+ // Cast to the element type.
+ {
+ QualType elType = ToType->getAs<ExtVectorType>()->getElementType();
+ if (elType != From->getType()) {
+ ExprResult E = From;
+ From = ImpCastExprToType(From, elType,
+ PrepareScalarCast(E, elType)).get();
+ }
+ From = ImpCastExprToType(From, ToType, CK_VectorSplat,
+ VK_RValue, /*BasePath=*/nullptr, CCK).get();
+ }
+ break;
+
+ case ICK_Complex_Real:
+ // Case 1. x -> _Complex y
+ if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
+ QualType ElType = ToComplex->getElementType();
+ bool isFloatingComplex = ElType->isRealFloatingType();
+
+ // x -> y
+ if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
+ // do nothing
+ } else if (From->getType()->isRealFloatingType()) {
+ From = ImpCastExprToType(From, ElType,
+ isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
+ } else {
+ assert(From->getType()->isIntegerType());
+ From = ImpCastExprToType(From, ElType,
+ isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
+ }
+ // y -> _Complex y
+ From = ImpCastExprToType(From, ToType,
+ isFloatingComplex ? CK_FloatingRealToComplex
+ : CK_IntegralRealToComplex).get();
+
+ // Case 2. _Complex x -> y
+ } else {
+ const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
+ assert(FromComplex);
+
+ QualType ElType = FromComplex->getElementType();
+ bool isFloatingComplex = ElType->isRealFloatingType();
+
+ // _Complex x -> x
+ From = ImpCastExprToType(From, ElType,
+ isFloatingComplex ? CK_FloatingComplexToReal
+ : CK_IntegralComplexToReal,
+ VK_RValue, /*BasePath=*/nullptr, CCK).get();
+
+ // x -> y
+ if (Context.hasSameUnqualifiedType(ElType, ToType)) {
+ // do nothing
+ } else if (ToType->isRealFloatingType()) {
+ From = ImpCastExprToType(From, ToType,
+ isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
+ VK_RValue, /*BasePath=*/nullptr, CCK).get();
+ } else {
+ assert(ToType->isIntegerType());
+ From = ImpCastExprToType(From, ToType,
+ isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
+ VK_RValue, /*BasePath=*/nullptr, CCK).get();
+ }
+ }
+ break;
+
+ case ICK_Block_Pointer_Conversion: {
+ From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
+ VK_RValue, /*BasePath=*/nullptr, CCK).get();
+ break;
+ }
+
+ case ICK_TransparentUnionConversion: {
+ ExprResult FromRes = From;
+ Sema::AssignConvertType ConvTy =
+ CheckTransparentUnionArgumentConstraints(ToType, FromRes);
+ if (FromRes.isInvalid())
+ return ExprError();
+ From = FromRes.get();
+ assert ((ConvTy == Sema::Compatible) &&
+ "Improper transparent union conversion");
+ (void)ConvTy;
+ break;
+ }
+
+ case ICK_Zero_Event_Conversion:
+ From = ImpCastExprToType(From, ToType,
+ CK_ZeroToOCLEvent,
+ From->getValueKind()).get();
+ break;
+
+ case ICK_Lvalue_To_Rvalue:
+ case ICK_Array_To_Pointer:
+ case ICK_Function_To_Pointer:
+ case ICK_Qualification:
+ case ICK_Num_Conversion_Kinds:
+ llvm_unreachable("Improper second standard conversion");
+ }
+
+ switch (SCS.Third) {
+ case ICK_Identity:
+ // Nothing to do.
+ break;
+
+ case ICK_Qualification: {
+ // The qualification keeps the category of the inner expression, unless the
+ // target type isn't a reference.
+ ExprValueKind VK = ToType->isReferenceType() ?
+ From->getValueKind() : VK_RValue;
+ From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
+ CK_NoOp, VK, /*BasePath=*/nullptr, CCK).get();
+
+ if (SCS.DeprecatedStringLiteralToCharPtr &&
+ !getLangOpts().WritableStrings) {
+ Diag(From->getLocStart(), getLangOpts().CPlusPlus11
+ ? diag::ext_deprecated_string_literal_conversion
+ : diag::warn_deprecated_string_literal_conversion)
+ << ToType.getNonReferenceType();
+ }
+
+ break;
+ }
+
+ default:
+ llvm_unreachable("Improper third standard conversion");
+ }
+
+ // If this conversion sequence involved a scalar -> atomic conversion, perform
+ // that conversion now.
+ if (!ToAtomicType.isNull()) {
+ assert(Context.hasSameType(
+ ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
+ From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
+ VK_RValue, nullptr, CCK).get();
+ }
+
+ return From;
+}
+
+/// \brief Check the completeness of a type in a unary type trait.
+///
+/// If the particular type trait requires a complete type, tries to complete
+/// it. If completing the type fails, a diagnostic is emitted and false
+/// returned. If completing the type succeeds or no completion was required,
+/// returns true.
+static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
+ SourceLocation Loc,
+ QualType ArgTy) {
+ // C++0x [meta.unary.prop]p3:
+ // For all of the class templates X declared in this Clause, instantiating
+ // that template with a template argument that is a class template
+ // specialization may result in the implicit instantiation of the template
+ // argument if and only if the semantics of X require that the argument
+ // must be a complete type.
+ // We apply this rule to all the type trait expressions used to implement
+ // these class templates. We also try to follow any GCC documented behavior
+ // in these expressions to ensure portability of standard libraries.
+ switch (UTT) {
+ default: llvm_unreachable("not a UTT");
+ // is_complete_type somewhat obviously cannot require a complete type.
+ case UTT_IsCompleteType:
+ // Fall-through
+
+ // These traits are modeled on the type predicates in C++0x
+ // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
+ // requiring a complete type, as whether or not they return true cannot be
+ // impacted by the completeness of the type.
+ case UTT_IsVoid:
+ case UTT_IsIntegral:
+ case UTT_IsFloatingPoint:
+ case UTT_IsArray:
+ case UTT_IsPointer:
+ case UTT_IsLvalueReference:
+ case UTT_IsRvalueReference:
+ case UTT_IsMemberFunctionPointer:
+ case UTT_IsMemberObjectPointer:
+ case UTT_IsEnum:
+ case UTT_IsUnion:
+ case UTT_IsClass:
+ case UTT_IsFunction:
+ case UTT_IsReference:
+ case UTT_IsArithmetic:
+ case UTT_IsFundamental:
+ case UTT_IsObject:
+ case UTT_IsScalar:
+ case UTT_IsCompound:
+ case UTT_IsMemberPointer:
+ // Fall-through
+
+ // These traits are modeled on type predicates in C++0x [meta.unary.prop]
+ // which requires some of its traits to have the complete type. However,
+ // the completeness of the type cannot impact these traits' semantics, and
+ // so they don't require it. This matches the comments on these traits in
+ // Table 49.
+ case UTT_IsConst:
+ case UTT_IsVolatile:
+ case UTT_IsSigned:
+ case UTT_IsUnsigned:
+ return true;
+
+ // C++0x [meta.unary.prop] Table 49 requires the following traits to be
+ // applied to a complete type.
+ case UTT_IsTrivial:
+ case UTT_IsTriviallyCopyable:
+ case UTT_IsStandardLayout:
+ case UTT_IsPOD:
+ case UTT_IsLiteral:
+ case UTT_IsEmpty:
+ case UTT_IsPolymorphic:
+ case UTT_IsAbstract:
+ case UTT_IsInterfaceClass:
+ case UTT_IsDestructible:
+ case UTT_IsNothrowDestructible:
+ // Fall-through
+
+ // These traits require a complete type.
+ case UTT_IsFinal:
+ case UTT_IsSealed:
+
+ // These trait expressions are designed to help implement predicates in
+ // [meta.unary.prop] despite not being named the same. They are specified
+ // by both GCC and the Embarcadero C++ compiler, and require the complete
+ // type due to the overarching C++0x type predicates being implemented
+ // requiring the complete type.
+ case UTT_HasNothrowAssign:
+ case UTT_HasNothrowMoveAssign:
+ case UTT_HasNothrowConstructor:
+ case UTT_HasNothrowCopy:
+ case UTT_HasTrivialAssign:
+ case UTT_HasTrivialMoveAssign:
+ case UTT_HasTrivialDefaultConstructor:
+ case UTT_HasTrivialMoveConstructor:
+ case UTT_HasTrivialCopy:
+ case UTT_HasTrivialDestructor:
+ case UTT_HasVirtualDestructor:
+ // Arrays of unknown bound are expressly allowed.
+ QualType ElTy = ArgTy;
+ if (ArgTy->isIncompleteArrayType())
+ ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
+
+ // The void type is expressly allowed.
+ if (ElTy->isVoidType())
+ return true;
+
+ return !S.RequireCompleteType(
+ Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
+ }
+}
+
+static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
+ Sema &Self, SourceLocation KeyLoc, ASTContext &C,
+ bool (CXXRecordDecl::*HasTrivial)() const,
+ bool (CXXRecordDecl::*HasNonTrivial)() const,
+ bool (CXXMethodDecl::*IsDesiredOp)() const)
+{
+ CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
+ if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
+ return true;
+
+ DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
+ DeclarationNameInfo NameInfo(Name, KeyLoc);
+ LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
+ if (Self.LookupQualifiedName(Res, RD)) {
+ bool FoundOperator = false;
+ Res.suppressDiagnostics();
+ for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
+ Op != OpEnd; ++Op) {
+ if (isa<FunctionTemplateDecl>(*Op))
+ continue;
+
+ CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
+ if((Operator->*IsDesiredOp)()) {
+ FoundOperator = true;
+ const FunctionProtoType *CPT =
+ Operator->getType()->getAs<FunctionProtoType>();
+ CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
+ if (!CPT || !CPT->isNothrow(C))
+ return false;
+ }
+ }
+ return FoundOperator;
+ }
+ return false;
+}
+
+static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
+ SourceLocation KeyLoc, QualType T) {
+ assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
+
+ ASTContext &C = Self.Context;
+ switch(UTT) {
+ default: llvm_unreachable("not a UTT");
+ // Type trait expressions corresponding to the primary type category
+ // predicates in C++0x [meta.unary.cat].
+ case UTT_IsVoid:
+ return T->isVoidType();
+ case UTT_IsIntegral:
+ return T->isIntegralType(C);
+ case UTT_IsFloatingPoint:
+ return T->isFloatingType();
+ case UTT_IsArray:
+ return T->isArrayType();
+ case UTT_IsPointer:
+ return T->isPointerType();
+ case UTT_IsLvalueReference:
+ return T->isLValueReferenceType();
+ case UTT_IsRvalueReference:
+ return T->isRValueReferenceType();
+ case UTT_IsMemberFunctionPointer:
+ return T->isMemberFunctionPointerType();
+ case UTT_IsMemberObjectPointer:
+ return T->isMemberDataPointerType();
+ case UTT_IsEnum:
+ return T->isEnumeralType();
+ case UTT_IsUnion:
+ return T->isUnionType();
+ case UTT_IsClass:
+ return T->isClassType() || T->isStructureType() || T->isInterfaceType();
+ case UTT_IsFunction:
+ return T->isFunctionType();
+
+ // Type trait expressions which correspond to the convenient composition
+ // predicates in C++0x [meta.unary.comp].
+ case UTT_IsReference:
+ return T->isReferenceType();
+ case UTT_IsArithmetic:
+ return T->isArithmeticType() && !T->isEnumeralType();
+ case UTT_IsFundamental:
+ return T->isFundamentalType();
+ case UTT_IsObject:
+ return T->isObjectType();
+ case UTT_IsScalar:
+ // Note: semantic analysis depends on Objective-C lifetime types to be
+ // considered scalar types. However, such types do not actually behave
+ // like scalar types at run time (since they may require retain/release
+ // operations), so we report them as non-scalar.
+ if (T->isObjCLifetimeType()) {
+ switch (T.getObjCLifetime()) {
+ case Qualifiers::OCL_None:
+ case Qualifiers::OCL_ExplicitNone:
+ return true;
+
+ case Qualifiers::OCL_Strong:
+ case Qualifiers::OCL_Weak:
+ case Qualifiers::OCL_Autoreleasing:
+ return false;
+ }
+ }
+
+ return T->isScalarType();
+ case UTT_IsCompound:
+ return T->isCompoundType();
+ case UTT_IsMemberPointer:
+ return T->isMemberPointerType();
+
+ // Type trait expressions which correspond to the type property predicates
+ // in C++0x [meta.unary.prop].
+ case UTT_IsConst:
+ return T.isConstQualified();
+ case UTT_IsVolatile:
+ return T.isVolatileQualified();
+ case UTT_IsTrivial:
+ return T.isTrivialType(Self.Context);
+ case UTT_IsTriviallyCopyable:
+ return T.isTriviallyCopyableType(Self.Context);
+ case UTT_IsStandardLayout:
+ return T->isStandardLayoutType();
+ case UTT_IsPOD:
+ return T.isPODType(Self.Context);
+ case UTT_IsLiteral:
+ return T->isLiteralType(Self.Context);
+ case UTT_IsEmpty:
+ if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
+ return !RD->isUnion() && RD->isEmpty();
+ return false;
+ case UTT_IsPolymorphic:
+ if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
+ return RD->isPolymorphic();
+ return false;
+ case UTT_IsAbstract:
+ if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
+ return RD->isAbstract();
+ return false;
+ case UTT_IsInterfaceClass:
+ if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
+ return RD->isInterface();
+ return false;
+ case UTT_IsFinal:
+ if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
+ return RD->hasAttr<FinalAttr>();
+ return false;
+ case UTT_IsSealed:
+ if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
+ if (FinalAttr *FA = RD->getAttr<FinalAttr>())
+ return FA->isSpelledAsSealed();
+ return false;
+ case UTT_IsSigned:
+ return T->isSignedIntegerType();
+ case UTT_IsUnsigned:
+ return T->isUnsignedIntegerType();
+
+ // Type trait expressions which query classes regarding their construction,
+ // destruction, and copying. Rather than being based directly on the
+ // related type predicates in the standard, they are specified by both
+ // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
+ // specifications.
+ //
+ // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
+ // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
+ //
+ // Note that these builtins do not behave as documented in g++: if a class
+ // has both a trivial and a non-trivial special member of a particular kind,
+ // they return false! For now, we emulate this behavior.
+ // FIXME: This appears to be a g++ bug: more complex cases reveal that it
+ // does not correctly compute triviality in the presence of multiple special
+ // members of the same kind. Revisit this once the g++ bug is fixed.
+ case UTT_HasTrivialDefaultConstructor:
+ // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
+ // If __is_pod (type) is true then the trait is true, else if type is
+ // a cv class or union type (or array thereof) with a trivial default
+ // constructor ([class.ctor]) then the trait is true, else it is false.
+ if (T.isPODType(Self.Context))
+ return true;
+ if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
+ return RD->hasTrivialDefaultConstructor() &&
+ !RD->hasNonTrivialDefaultConstructor();
+ return false;
+ case UTT_HasTrivialMoveConstructor:
+ // This trait is implemented by MSVC 2012 and needed to parse the
+ // standard library headers. Specifically this is used as the logic
+ // behind std::is_trivially_move_constructible (20.9.4.3).
+ if (T.isPODType(Self.Context))
+ return true;
+ if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
+ return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
+ return false;
+ case UTT_HasTrivialCopy:
+ // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
+ // If __is_pod (type) is true or type is a reference type then
+ // the trait is true, else if type is a cv class or union type
+ // with a trivial copy constructor ([class.copy]) then the trait
+ // is true, else it is false.
+ if (T.isPODType(Self.Context) || T->isReferenceType())
+ return true;
+ if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
+ return RD->hasTrivialCopyConstructor() &&
+ !RD->hasNonTrivialCopyConstructor();
+ return false;
+ case UTT_HasTrivialMoveAssign:
+ // This trait is implemented by MSVC 2012 and needed to parse the
+ // standard library headers. Specifically it is used as the logic
+ // behind std::is_trivially_move_assignable (20.9.4.3)
+ if (T.isPODType(Self.Context))
+ return true;
+ if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
+ return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
+ return false;
+ case UTT_HasTrivialAssign:
+ // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
+ // If type is const qualified or is a reference type then the
+ // trait is false. Otherwise if __is_pod (type) is true then the
+ // trait is true, else if type is a cv class or union type with
+ // a trivial copy assignment ([class.copy]) then the trait is
+ // true, else it is false.
+ // Note: the const and reference restrictions are interesting,
+ // given that const and reference members don't prevent a class
+ // from having a trivial copy assignment operator (but do cause
+ // errors if the copy assignment operator is actually used, q.v.
+ // [class.copy]p12).
+
+ if (T.isConstQualified())
+ return false;
+ if (T.isPODType(Self.Context))
+ return true;
+ if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
+ return RD->hasTrivialCopyAssignment() &&
+ !RD->hasNonTrivialCopyAssignment();
+ return false;
+ case UTT_IsDestructible:
+ case UTT_IsNothrowDestructible:
+ // FIXME: Implement UTT_IsDestructible and UTT_IsNothrowDestructible.
+ // For now, let's fall through.
+ case UTT_HasTrivialDestructor:
+ // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
+ // If __is_pod (type) is true or type is a reference type
+ // then the trait is true, else if type is a cv class or union
+ // type (or array thereof) with a trivial destructor
+ // ([class.dtor]) then the trait is true, else it is
+ // false.
+ if (T.isPODType(Self.Context) || T->isReferenceType())
+ return true;
+
+ // Objective-C++ ARC: autorelease types don't require destruction.
+ if (T->isObjCLifetimeType() &&
+ T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
+ return true;
+
+ if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
+ return RD->hasTrivialDestructor();
+ return false;
+ // TODO: Propagate nothrowness for implicitly declared special members.
+ case UTT_HasNothrowAssign:
+ // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
+ // If type is const qualified or is a reference type then the
+ // trait is false. Otherwise if __has_trivial_assign (type)
+ // is true then the trait is true, else if type is a cv class
+ // or union type with copy assignment operators that are known
+ // not to throw an exception then the trait is true, else it is
+ // false.
+ if (C.getBaseElementType(T).isConstQualified())
+ return false;
+ if (T->isReferenceType())
+ return false;
+ if (T.isPODType(Self.Context) || T->isObjCLifetimeType())
+ return true;
+
+ if (const RecordType *RT = T->getAs<RecordType>())
+ return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
+ &CXXRecordDecl::hasTrivialCopyAssignment,
+ &CXXRecordDecl::hasNonTrivialCopyAssignment,
+ &CXXMethodDecl::isCopyAssignmentOperator);
+ return false;
+ case UTT_HasNothrowMoveAssign:
+ // This trait is implemented by MSVC 2012 and needed to parse the
+ // standard library headers. Specifically this is used as the logic
+ // behind std::is_nothrow_move_assignable (20.9.4.3).
+ if (T.isPODType(Self.Context))
+ return true;
+
+ if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
+ return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
+ &CXXRecordDecl::hasTrivialMoveAssignment,
+ &CXXRecordDecl::hasNonTrivialMoveAssignment,
+ &CXXMethodDecl::isMoveAssignmentOperator);
+ return false;
+ case UTT_HasNothrowCopy:
+ // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
+ // If __has_trivial_copy (type) is true then the trait is true, else
+ // if type is a cv class or union type with copy constructors that are
+ // known not to throw an exception then the trait is true, else it is
+ // false.
+ if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
+ return true;
+ if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
+ if (RD->hasTrivialCopyConstructor() &&
+ !RD->hasNonTrivialCopyConstructor())
+ return true;
+
+ bool FoundConstructor = false;
+ unsigned FoundTQs;
+ DeclContext::lookup_result R = Self.LookupConstructors(RD);
+ for (DeclContext::lookup_iterator Con = R.begin(),
+ ConEnd = R.end(); Con != ConEnd; ++Con) {
+ // A template constructor is never a copy constructor.
+ // FIXME: However, it may actually be selected at the actual overload
+ // resolution point.
+ if (isa<FunctionTemplateDecl>(*Con))
+ continue;
+ CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
+ if (Constructor->isCopyConstructor(FoundTQs)) {
+ FoundConstructor = true;
+ const FunctionProtoType *CPT
+ = Constructor->getType()->getAs<FunctionProtoType>();
+ CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
+ if (!CPT)
+ return false;
+ // TODO: check whether evaluating default arguments can throw.
+ // For now, we'll be conservative and assume that they can throw.
+ if (!CPT->isNothrow(Self.Context) || CPT->getNumParams() > 1)
+ return false;
+ }
+ }
+
+ return FoundConstructor;
+ }
+ return false;
+ case UTT_HasNothrowConstructor:
+ // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
+ // If __has_trivial_constructor (type) is true then the trait is
+ // true, else if type is a cv class or union type (or array
+ // thereof) with a default constructor that is known not to
+ // throw an exception then the trait is true, else it is false.
+ if (T.isPODType(C) || T->isObjCLifetimeType())
+ return true;
+ if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
+ if (RD->hasTrivialDefaultConstructor() &&
+ !RD->hasNonTrivialDefaultConstructor())
+ return true;
+
+ bool FoundConstructor = false;
+ DeclContext::lookup_result R = Self.LookupConstructors(RD);
+ for (DeclContext::lookup_iterator Con = R.begin(),
+ ConEnd = R.end(); Con != ConEnd; ++Con) {
+ // FIXME: In C++0x, a constructor template can be a default constructor.
+ if (isa<FunctionTemplateDecl>(*Con))
+ continue;
+ CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
+ if (Constructor->isDefaultConstructor()) {
+ FoundConstructor = true;
+ const FunctionProtoType *CPT
+ = Constructor->getType()->getAs<FunctionProtoType>();
+ CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
+ if (!CPT)
+ return false;
+ // FIXME: check whether evaluating default arguments can throw.
+ // For now, we'll be conservative and assume that they can throw.
+ if (!CPT->isNothrow(Self.Context) || CPT->getNumParams() > 0)
+ return false;
+ }
+ }
+ return FoundConstructor;
+ }
+ return false;
+ case UTT_HasVirtualDestructor:
+ // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
+ // If type is a class type with a virtual destructor ([class.dtor])
+ // then the trait is true, else it is false.
+ if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
+ if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
+ return Destructor->isVirtual();
+ return false;
+
+ // These type trait expressions are modeled on the specifications for the
+ // Embarcadero C++0x type trait functions:
+ // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
+ case UTT_IsCompleteType:
+ // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
+ // Returns True if and only if T is a complete type at the point of the
+ // function call.
+ return !T->isIncompleteType();
+ }
+}
+
+/// \brief Determine whether T has a non-trivial Objective-C lifetime in
+/// ARC mode.
+static bool hasNontrivialObjCLifetime(QualType T) {
+ switch (T.getObjCLifetime()) {
+ case Qualifiers::OCL_ExplicitNone:
+ return false;
+
+ case Qualifiers::OCL_Strong:
+ case Qualifiers::OCL_Weak:
+ case Qualifiers::OCL_Autoreleasing:
+ return true;
+
+ case Qualifiers::OCL_None:
+ return T->isObjCLifetimeType();
+ }
+
+ llvm_unreachable("Unknown ObjC lifetime qualifier");
+}
+
+static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
+ QualType RhsT, SourceLocation KeyLoc);
+
+static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
+ ArrayRef<TypeSourceInfo *> Args,
+ SourceLocation RParenLoc) {
+ if (Kind <= UTT_Last)
+ return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
+
+ if (Kind <= BTT_Last)
+ return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
+ Args[1]->getType(), RParenLoc);
+
+ switch (Kind) {
+ case clang::TT_IsConstructible:
+ case clang::TT_IsNothrowConstructible:
+ case clang::TT_IsTriviallyConstructible: {
+ // C++11 [meta.unary.prop]:
+ // is_trivially_constructible is defined as:
+ //
+ // is_constructible<T, Args...>::value is true and the variable
+ // definition for is_constructible, as defined below, is known to call
+ // no operation that is not trivial.
+ //
+ // The predicate condition for a template specialization
+ // is_constructible<T, Args...> shall be satisfied if and only if the
+ // following variable definition would be well-formed for some invented
+ // variable t:
+ //
+ // T t(create<Args>()...);
+ assert(!Args.empty());
+
+ // Precondition: T and all types in the parameter pack Args shall be
+ // complete types, (possibly cv-qualified) void, or arrays of
+ // unknown bound.
+ for (unsigned I = 0, N = Args.size(); I != N; ++I) {
+ QualType ArgTy = Args[I]->getType();
+ if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
+ continue;
+
+ if (S.RequireCompleteType(KWLoc, ArgTy,
+ diag::err_incomplete_type_used_in_type_trait_expr))
+ return false;
+ }
+
+ // Make sure the first argument is a complete type.
+ if (Args[0]->getType()->isIncompleteType())
+ return false;
+
+ // Make sure the first argument is not an abstract type.
+ CXXRecordDecl *RD = Args[0]->getType()->getAsCXXRecordDecl();
+ if (RD && RD->isAbstract())
+ return false;
+
+ SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
+ SmallVector<Expr *, 2> ArgExprs;
+ ArgExprs.reserve(Args.size() - 1);
+ for (unsigned I = 1, N = Args.size(); I != N; ++I) {
+ QualType T = Args[I]->getType();
+ if (T->isObjectType() || T->isFunctionType())
+ T = S.Context.getRValueReferenceType(T);
+ OpaqueArgExprs.push_back(
+ OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(),
+ T.getNonLValueExprType(S.Context),
+ Expr::getValueKindForType(T)));
+ }
+ for (Expr &E : OpaqueArgExprs)
+ ArgExprs.push_back(&E);
+
+ // Perform the initialization in an unevaluated context within a SFINAE
+ // trap at translation unit scope.
+ EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
+ Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
+ Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
+ InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
+ InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
+ RParenLoc));
+ InitializationSequence Init(S, To, InitKind, ArgExprs);
+ if (Init.Failed())
+ return false;
+
+ ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
+ if (Result.isInvalid() || SFINAE.hasErrorOccurred())
+ return false;
+
+ if (Kind == clang::TT_IsConstructible)
+ return true;
+
+ if (Kind == clang::TT_IsNothrowConstructible)
+ return S.canThrow(Result.get()) == CT_Cannot;
+
+ if (Kind == clang::TT_IsTriviallyConstructible) {
+ // Under Objective-C ARC, if the destination has non-trivial Objective-C
+ // lifetime, this is a non-trivial construction.
+ if (S.getLangOpts().ObjCAutoRefCount &&
+ hasNontrivialObjCLifetime(Args[0]->getType().getNonReferenceType()))
+ return false;
+
+ // The initialization succeeded; now make sure there are no non-trivial
+ // calls.
+ return !Result.get()->hasNonTrivialCall(S.Context);
+ }
+
+ llvm_unreachable("unhandled type trait");
+ return false;
+ }
+ default: llvm_unreachable("not a TT");
+ }
+
+ return false;
+}
+
+ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
+ ArrayRef<TypeSourceInfo *> Args,
+ SourceLocation RParenLoc) {
+ QualType ResultType = Context.getLogicalOperationType();
+
+ if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
+ *this, Kind, KWLoc, Args[0]->getType()))
+ return ExprError();
+
+ bool Dependent = false;
+ for (unsigned I = 0, N = Args.size(); I != N; ++I) {
+ if (Args[I]->getType()->isDependentType()) {
+ Dependent = true;
+ break;
+ }
+ }
+
+ bool Result = false;
+ if (!Dependent)
+ Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
+
+ return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
+ RParenLoc, Result);
+}
+
+ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
+ ArrayRef<ParsedType> Args,
+ SourceLocation RParenLoc) {
+ SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
+ ConvertedArgs.reserve(Args.size());
+
+ for (unsigned I = 0, N = Args.size(); I != N; ++I) {
+ TypeSourceInfo *TInfo;
+ QualType T = GetTypeFromParser(Args[I], &TInfo);
+ if (!TInfo)
+ TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
+
+ ConvertedArgs.push_back(TInfo);
+ }
+
+ return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
+}
+
+static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
+ QualType RhsT, SourceLocation KeyLoc) {
+ assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
+ "Cannot evaluate traits of dependent types");
+
+ switch(BTT) {
+ case BTT_IsBaseOf: {
+ // C++0x [meta.rel]p2
+ // Base is a base class of Derived without regard to cv-qualifiers or
+ // Base and Derived are not unions and name the same class type without
+ // regard to cv-qualifiers.
+
+ const RecordType *lhsRecord = LhsT->getAs<RecordType>();
+ if (!lhsRecord) return false;
+
+ const RecordType *rhsRecord = RhsT->getAs<RecordType>();
+ if (!rhsRecord) return false;
+
+ assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
+ == (lhsRecord == rhsRecord));
+
+ if (lhsRecord == rhsRecord)
+ return !lhsRecord->getDecl()->isUnion();
+
+ // C++0x [meta.rel]p2:
+ // If Base and Derived are class types and are different types
+ // (ignoring possible cv-qualifiers) then Derived shall be a
+ // complete type.
+ if (Self.RequireCompleteType(KeyLoc, RhsT,
+ diag::err_incomplete_type_used_in_type_trait_expr))
+ return false;
+
+ return cast<CXXRecordDecl>(rhsRecord->getDecl())
+ ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
+ }
+ case BTT_IsSame:
+ return Self.Context.hasSameType(LhsT, RhsT);
+ case BTT_TypeCompatible:
+ return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
+ RhsT.getUnqualifiedType());
+ case BTT_IsConvertible:
+ case BTT_IsConvertibleTo: {
+ // C++0x [meta.rel]p4:
+ // Given the following function prototype:
+ //
+ // template <class T>
+ // typename add_rvalue_reference<T>::type create();
+ //
+ // the predicate condition for a template specialization
+ // is_convertible<From, To> shall be satisfied if and only if
+ // the return expression in the following code would be
+ // well-formed, including any implicit conversions to the return
+ // type of the function:
+ //
+ // To test() {
+ // return create<From>();
+ // }
+ //
+ // Access checking is performed as if in a context unrelated to To and
+ // From. Only the validity of the immediate context of the expression
+ // of the return-statement (including conversions to the return type)
+ // is considered.
+ //
+ // We model the initialization as a copy-initialization of a temporary
+ // of the appropriate type, which for this expression is identical to the
+ // return statement (since NRVO doesn't apply).
+
+ // Functions aren't allowed to return function or array types.
+ if (RhsT->isFunctionType() || RhsT->isArrayType())
+ return false;
+
+ // A return statement in a void function must have void type.
+ if (RhsT->isVoidType())
+ return LhsT->isVoidType();
+
+ // A function definition requires a complete, non-abstract return type.
+ if (Self.RequireCompleteType(KeyLoc, RhsT, 0) ||
+ Self.RequireNonAbstractType(KeyLoc, RhsT, 0))
+ return false;
+
+ // Compute the result of add_rvalue_reference.
+ if (LhsT->isObjectType() || LhsT->isFunctionType())
+ LhsT = Self.Context.getRValueReferenceType(LhsT);
+
+ // Build a fake source and destination for initialization.
+ InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
+ OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
+ Expr::getValueKindForType(LhsT));
+ Expr *FromPtr = &From;
+ InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
+ SourceLocation()));
+
+ // Perform the initialization in an unevaluated context within a SFINAE
+ // trap at translation unit scope.
+ EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
+ Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
+ Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
+ InitializationSequence Init(Self, To, Kind, FromPtr);
+ if (Init.Failed())
+ return false;
+
+ ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
+ return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
+ }
+
+ case BTT_IsNothrowAssignable:
+ case BTT_IsTriviallyAssignable: {
+ // C++11 [meta.unary.prop]p3:
+ // is_trivially_assignable is defined as:
+ // is_assignable<T, U>::value is true and the assignment, as defined by
+ // is_assignable, is known to call no operation that is not trivial
+ //
+ // is_assignable is defined as:
+ // The expression declval<T>() = declval<U>() is well-formed when
+ // treated as an unevaluated operand (Clause 5).
+ //
+ // For both, T and U shall be complete types, (possibly cv-qualified)
+ // void, or arrays of unknown bound.
+ if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
+ Self.RequireCompleteType(KeyLoc, LhsT,
+ diag::err_incomplete_type_used_in_type_trait_expr))
+ return false;
+ if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
+ Self.RequireCompleteType(KeyLoc, RhsT,
+ diag::err_incomplete_type_used_in_type_trait_expr))
+ return false;
+
+ // cv void is never assignable.
+ if (LhsT->isVoidType() || RhsT->isVoidType())
+ return false;
+
+ // Build expressions that emulate the effect of declval<T>() and
+ // declval<U>().
+ if (LhsT->isObjectType() || LhsT->isFunctionType())
+ LhsT = Self.Context.getRValueReferenceType(LhsT);
+ if (RhsT->isObjectType() || RhsT->isFunctionType())
+ RhsT = Self.Context.getRValueReferenceType(RhsT);
+ OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
+ Expr::getValueKindForType(LhsT));
+ OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
+ Expr::getValueKindForType(RhsT));
+
+ // Attempt the assignment in an unevaluated context within a SFINAE
+ // trap at translation unit scope.
+ EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
+ Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
+ Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
+ ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
+ &Rhs);
+ if (Result.isInvalid() || SFINAE.hasErrorOccurred())
+ return false;
+
+ if (BTT == BTT_IsNothrowAssignable)
+ return Self.canThrow(Result.get()) == CT_Cannot;
+
+ if (BTT == BTT_IsTriviallyAssignable) {
+ // Under Objective-C ARC, if the destination has non-trivial Objective-C
+ // lifetime, this is a non-trivial assignment.
+ if (Self.getLangOpts().ObjCAutoRefCount &&
+ hasNontrivialObjCLifetime(LhsT.getNonReferenceType()))
+ return false;
+
+ return !Result.get()->hasNonTrivialCall(Self.Context);
+ }
+
+ llvm_unreachable("unhandled type trait");
+ return false;
+ }
+ default: llvm_unreachable("not a BTT");
+ }
+ llvm_unreachable("Unknown type trait or not implemented");
+}
+
+ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
+ SourceLocation KWLoc,
+ ParsedType Ty,
+ Expr* DimExpr,
+ SourceLocation RParen) {
+ TypeSourceInfo *TSInfo;
+ QualType T = GetTypeFromParser(Ty, &TSInfo);
+ if (!TSInfo)
+ TSInfo = Context.getTrivialTypeSourceInfo(T);
+
+ return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
+}
+
+static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
+ QualType T, Expr *DimExpr,
+ SourceLocation KeyLoc) {
+ assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
+
+ switch(ATT) {
+ case ATT_ArrayRank:
+ if (T->isArrayType()) {
+ unsigned Dim = 0;
+ while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
+ ++Dim;
+ T = AT->getElementType();
+ }
+ return Dim;
+ }
+ return 0;
+
+ case ATT_ArrayExtent: {
+ llvm::APSInt Value;
+ uint64_t Dim;
+ if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
+ diag::err_dimension_expr_not_constant_integer,
+ false).isInvalid())
+ return 0;
+ if (Value.isSigned() && Value.isNegative()) {
+ Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
+ << DimExpr->getSourceRange();
+ return 0;
+ }
+ Dim = Value.getLimitedValue();
+
+ if (T->isArrayType()) {
+ unsigned D = 0;
+ bool Matched = false;
+ while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
+ if (Dim == D) {
+ Matched = true;
+ break;
+ }
+ ++D;
+ T = AT->getElementType();
+ }
+
+ if (Matched && T->isArrayType()) {
+ if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
+ return CAT->getSize().getLimitedValue();
+ }
+ }
+ return 0;
+ }
+ }
+ llvm_unreachable("Unknown type trait or not implemented");
+}
+
+ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
+ SourceLocation KWLoc,
+ TypeSourceInfo *TSInfo,
+ Expr* DimExpr,
+ SourceLocation RParen) {
+ QualType T = TSInfo->getType();
+
+ // FIXME: This should likely be tracked as an APInt to remove any host
+ // assumptions about the width of size_t on the target.
+ uint64_t Value = 0;
+ if (!T->isDependentType())
+ Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
+
+ // While the specification for these traits from the Embarcadero C++
+ // compiler's documentation says the return type is 'unsigned int', Clang
+ // returns 'size_t'. On Windows, the primary platform for the Embarcadero
+ // compiler, there is no difference. On several other platforms this is an
+ // important distinction.
+ return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
+ RParen, Context.getSizeType());
+}
+
+ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
+ SourceLocation KWLoc,
+ Expr *Queried,
+ SourceLocation RParen) {
+ // If error parsing the expression, ignore.
+ if (!Queried)
+ return ExprError();
+
+ ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
+
+ return Result;
+}
+
+static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
+ switch (ET) {
+ case ET_IsLValueExpr: return E->isLValue();
+ case ET_IsRValueExpr: return E->isRValue();
+ }
+ llvm_unreachable("Expression trait not covered by switch");
+}
+
+ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
+ SourceLocation KWLoc,
+ Expr *Queried,
+ SourceLocation RParen) {
+ if (Queried->isTypeDependent()) {
+ // Delay type-checking for type-dependent expressions.
+ } else if (Queried->getType()->isPlaceholderType()) {
+ ExprResult PE = CheckPlaceholderExpr(Queried);
+ if (PE.isInvalid()) return ExprError();
+ return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
+ }
+
+ bool Value = EvaluateExpressionTrait(ET, Queried);
+
+ return new (Context)
+ ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
+}
+
+QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
+ ExprValueKind &VK,
+ SourceLocation Loc,
+ bool isIndirect) {
+ assert(!LHS.get()->getType()->isPlaceholderType() &&
+ !RHS.get()->getType()->isPlaceholderType() &&
+ "placeholders should have been weeded out by now");
+
+ // The LHS undergoes lvalue conversions if this is ->*.
+ if (isIndirect) {
+ LHS = DefaultLvalueConversion(LHS.get());
+ if (LHS.isInvalid()) return QualType();
+ }
+
+ // The RHS always undergoes lvalue conversions.
+ RHS = DefaultLvalueConversion(RHS.get());
+ if (RHS.isInvalid()) return QualType();
+
+ const char *OpSpelling = isIndirect ? "->*" : ".*";
+ // C++ 5.5p2
+ // The binary operator .* [p3: ->*] binds its second operand, which shall
+ // be of type "pointer to member of T" (where T is a completely-defined
+ // class type) [...]
+ QualType RHSType = RHS.get()->getType();
+ const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
+ if (!MemPtr) {
+ Diag(Loc, diag::err_bad_memptr_rhs)
+ << OpSpelling << RHSType << RHS.get()->getSourceRange();
+ return QualType();
+ }
+
+ QualType Class(MemPtr->getClass(), 0);
+
+ // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
+ // member pointer points must be completely-defined. However, there is no
+ // reason for this semantic distinction, and the rule is not enforced by
+ // other compilers. Therefore, we do not check this property, as it is
+ // likely to be considered a defect.
+
+ // C++ 5.5p2
+ // [...] to its first operand, which shall be of class T or of a class of
+ // which T is an unambiguous and accessible base class. [p3: a pointer to
+ // such a class]
+ QualType LHSType = LHS.get()->getType();
+ if (isIndirect) {
+ if (const PointerType *Ptr = LHSType->getAs<PointerType>())
+ LHSType = Ptr->getPointeeType();
+ else {
+ Diag(Loc, diag::err_bad_memptr_lhs)
+ << OpSpelling << 1 << LHSType
+ << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
+ return QualType();
+ }
+ }
+
+ if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
+ // If we want to check the hierarchy, we need a complete type.
+ if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
+ OpSpelling, (int)isIndirect)) {
+ return QualType();
+ }
+
+ if (!IsDerivedFrom(LHSType, Class)) {
+ Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
+ << (int)isIndirect << LHS.get()->getType();
+ return QualType();
+ }
+
+ CXXCastPath BasePath;
+ if (CheckDerivedToBaseConversion(LHSType, Class, Loc,
+ SourceRange(LHS.get()->getLocStart(),
+ RHS.get()->getLocEnd()),
+ &BasePath))
+ return QualType();
+
+ // Cast LHS to type of use.
+ QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
+ ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
+ LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
+ &BasePath);
+ }
+
+ if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
+ // Diagnose use of pointer-to-member type which when used as
+ // the functional cast in a pointer-to-member expression.
+ Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
+ return QualType();
+ }
+
+ // C++ 5.5p2
+ // The result is an object or a function of the type specified by the
+ // second operand.
+ // The cv qualifiers are the union of those in the pointer and the left side,
+ // in accordance with 5.5p5 and 5.2.5.
+ QualType Result = MemPtr->getPointeeType();
+ Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
+
+ // C++0x [expr.mptr.oper]p6:
+ // In a .* expression whose object expression is an rvalue, the program is
+ // ill-formed if the second operand is a pointer to member function with
+ // ref-qualifier &. In a ->* expression or in a .* expression whose object
+ // expression is an lvalue, the program is ill-formed if the second operand
+ // is a pointer to member function with ref-qualifier &&.
+ if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
+ switch (Proto->getRefQualifier()) {
+ case RQ_None:
+ // Do nothing
+ break;
+
+ case RQ_LValue:
+ if (!isIndirect && !LHS.get()->Classify(Context).isLValue())
+ Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
+ << RHSType << 1 << LHS.get()->getSourceRange();
+ break;
+
+ case RQ_RValue:
+ if (isIndirect || !LHS.get()->Classify(Context).isRValue())
+ Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
+ << RHSType << 0 << LHS.get()->getSourceRange();
+ break;
+ }
+ }
+
+ // C++ [expr.mptr.oper]p6:
+ // The result of a .* expression whose second operand is a pointer
+ // to a data member is of the same value category as its
+ // first operand. The result of a .* expression whose second
+ // operand is a pointer to a member function is a prvalue. The
+ // result of an ->* expression is an lvalue if its second operand
+ // is a pointer to data member and a prvalue otherwise.
+ if (Result->isFunctionType()) {
+ VK = VK_RValue;
+ return Context.BoundMemberTy;
+ } else if (isIndirect) {
+ VK = VK_LValue;
+ } else {
+ VK = LHS.get()->getValueKind();
+ }
+
+ return Result;
+}
+
+/// \brief Try to convert a type to another according to C++0x 5.16p3.
+///
+/// This is part of the parameter validation for the ? operator. If either
+/// value operand is a class type, the two operands are attempted to be
+/// converted to each other. This function does the conversion in one direction.
+/// It returns true if the program is ill-formed and has already been diagnosed
+/// as such.
+static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
+ SourceLocation QuestionLoc,
+ bool &HaveConversion,
+ QualType &ToType) {
+ HaveConversion = false;
+ ToType = To->getType();
+
+ InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
+ SourceLocation());
+ // C++0x 5.16p3
+ // The process for determining whether an operand expression E1 of type T1
+ // can be converted to match an operand expression E2 of type T2 is defined
+ // as follows:
+ // -- If E2 is an lvalue:
+ bool ToIsLvalue = To->isLValue();
+ if (ToIsLvalue) {
+ // E1 can be converted to match E2 if E1 can be implicitly converted to
+ // type "lvalue reference to T2", subject to the constraint that in the
+ // conversion the reference must bind directly to E1.
+ QualType T = Self.Context.getLValueReferenceType(ToType);
+ InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
+
+ InitializationSequence InitSeq(Self, Entity, Kind, From);
+ if (InitSeq.isDirectReferenceBinding()) {
+ ToType = T;
+ HaveConversion = true;
+ return false;
+ }
+
+ if (InitSeq.isAmbiguous())
+ return InitSeq.Diagnose(Self, Entity, Kind, From);
+ }
+
+ // -- If E2 is an rvalue, or if the conversion above cannot be done:
+ // -- if E1 and E2 have class type, and the underlying class types are
+ // the same or one is a base class of the other:
+ QualType FTy = From->getType();
+ QualType TTy = To->getType();
+ const RecordType *FRec = FTy->getAs<RecordType>();
+ const RecordType *TRec = TTy->getAs<RecordType>();
+ bool FDerivedFromT = FRec && TRec && FRec != TRec &&
+ Self.IsDerivedFrom(FTy, TTy);
+ if (FRec && TRec &&
+ (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
+ // E1 can be converted to match E2 if the class of T2 is the
+ // same type as, or a base class of, the class of T1, and
+ // [cv2 > cv1].
+ if (FRec == TRec || FDerivedFromT) {
+ if (TTy.isAtLeastAsQualifiedAs(FTy)) {
+ InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
+ InitializationSequence InitSeq(Self, Entity, Kind, From);
+ if (InitSeq) {
+ HaveConversion = true;
+ return false;
+ }
+
+ if (InitSeq.isAmbiguous())
+ return InitSeq.Diagnose(Self, Entity, Kind, From);
+ }
+ }
+
+ return false;
+ }
+
+ // -- Otherwise: E1 can be converted to match E2 if E1 can be
+ // implicitly converted to the type that expression E2 would have
+ // if E2 were converted to an rvalue (or the type it has, if E2 is
+ // an rvalue).
+ //
+ // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
+ // to the array-to-pointer or function-to-pointer conversions.
+ if (!TTy->getAs<TagType>())
+ TTy = TTy.getUnqualifiedType();
+
+ InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
+ InitializationSequence InitSeq(Self, Entity, Kind, From);
+ HaveConversion = !InitSeq.Failed();
+ ToType = TTy;
+ if (InitSeq.isAmbiguous())
+ return InitSeq.Diagnose(Self, Entity, Kind, From);
+
+ return false;
+}
+
+/// \brief Try to find a common type for two according to C++0x 5.16p5.
+///
+/// This is part of the parameter validation for the ? operator. If either
+/// value operand is a class type, overload resolution is used to find a
+/// conversion to a common type.
+static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
+ SourceLocation QuestionLoc) {
+ Expr *Args[2] = { LHS.get(), RHS.get() };
+ OverloadCandidateSet CandidateSet(QuestionLoc,
+ OverloadCandidateSet::CSK_Operator);
+ Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
+ CandidateSet);
+
+ OverloadCandidateSet::iterator Best;
+ switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
+ case OR_Success: {
+ // We found a match. Perform the conversions on the arguments and move on.
+ ExprResult LHSRes =
+ Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
+ Best->Conversions[0], Sema::AA_Converting);
+ if (LHSRes.isInvalid())
+ break;
+ LHS = LHSRes;
+
+ ExprResult RHSRes =
+ Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
+ Best->Conversions[1], Sema::AA_Converting);
+ if (RHSRes.isInvalid())
+ break;
+ RHS = RHSRes;
+ if (Best->Function)
+ Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
+ return false;
+ }
+
+ case OR_No_Viable_Function:
+
+ // Emit a better diagnostic if one of the expressions is a null pointer
+ // constant and the other is a pointer type. In this case, the user most
+ // likely forgot to take the address of the other expression.
+ if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
+ return true;
+
+ Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
+ << LHS.get()->getType() << RHS.get()->getType()
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ return true;
+
+ case OR_Ambiguous:
+ Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
+ << LHS.get()->getType() << RHS.get()->getType()
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ // FIXME: Print the possible common types by printing the return types of
+ // the viable candidates.
+ break;
+
+ case OR_Deleted:
+ llvm_unreachable("Conditional operator has only built-in overloads");
+ }
+ return true;
+}
+
+/// \brief Perform an "extended" implicit conversion as returned by
+/// TryClassUnification.
+static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
+ InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
+ InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
+ SourceLocation());
+ Expr *Arg = E.get();
+ InitializationSequence InitSeq(Self, Entity, Kind, Arg);
+ ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
+ if (Result.isInvalid())
+ return true;
+
+ E = Result;
+ return false;
+}
+
+/// \brief Check the operands of ?: under C++ semantics.
+///
+/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
+/// extension. In this case, LHS == Cond. (But they're not aliases.)
+QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
+ ExprResult &RHS, ExprValueKind &VK,
+ ExprObjectKind &OK,
+ SourceLocation QuestionLoc) {
+ // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
+ // interface pointers.
+
+ // C++11 [expr.cond]p1
+ // The first expression is contextually converted to bool.
+ if (!Cond.get()->isTypeDependent()) {
+ ExprResult CondRes = CheckCXXBooleanCondition(Cond.get());
+ if (CondRes.isInvalid())
+ return QualType();
+ Cond = CondRes;
+ }
+
+ // Assume r-value.
+ VK = VK_RValue;
+ OK = OK_Ordinary;
+
+ // Either of the arguments dependent?
+ if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
+ return Context.DependentTy;
+
+ // C++11 [expr.cond]p2
+ // If either the second or the third operand has type (cv) void, ...
+ QualType LTy = LHS.get()->getType();
+ QualType RTy = RHS.get()->getType();
+ bool LVoid = LTy->isVoidType();
+ bool RVoid = RTy->isVoidType();
+ if (LVoid || RVoid) {
+ // ... one of the following shall hold:
+ // -- The second or the third operand (but not both) is a (possibly
+ // parenthesized) throw-expression; the result is of the type
+ // and value category of the other.
+ bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
+ bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
+ if (LThrow != RThrow) {
+ Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
+ VK = NonThrow->getValueKind();
+ // DR (no number yet): the result is a bit-field if the
+ // non-throw-expression operand is a bit-field.
+ OK = NonThrow->getObjectKind();
+ return NonThrow->getType();
+ }
+
+ // -- Both the second and third operands have type void; the result is of
+ // type void and is a prvalue.
+ if (LVoid && RVoid)
+ return Context.VoidTy;
+
+ // Neither holds, error.
+ Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
+ << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ return QualType();
+ }
+
+ // Neither is void.
+
+ // C++11 [expr.cond]p3
+ // Otherwise, if the second and third operand have different types, and
+ // either has (cv) class type [...] an attempt is made to convert each of
+ // those operands to the type of the other.
+ if (!Context.hasSameType(LTy, RTy) &&
+ (LTy->isRecordType() || RTy->isRecordType())) {
+ // These return true if a single direction is already ambiguous.
+ QualType L2RType, R2LType;
+ bool HaveL2R, HaveR2L;
+ if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
+ return QualType();
+ if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
+ return QualType();
+
+ // If both can be converted, [...] the program is ill-formed.
+ if (HaveL2R && HaveR2L) {
+ Diag(QuestionLoc, diag::err_conditional_ambiguous)
+ << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ return QualType();
+ }
+
+ // If exactly one conversion is possible, that conversion is applied to
+ // the chosen operand and the converted operands are used in place of the
+ // original operands for the remainder of this section.
+ if (HaveL2R) {
+ if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
+ return QualType();
+ LTy = LHS.get()->getType();
+ } else if (HaveR2L) {
+ if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
+ return QualType();
+ RTy = RHS.get()->getType();
+ }
+ }
+
+ // C++11 [expr.cond]p3
+ // if both are glvalues of the same value category and the same type except
+ // for cv-qualification, an attempt is made to convert each of those
+ // operands to the type of the other.
+ ExprValueKind LVK = LHS.get()->getValueKind();
+ ExprValueKind RVK = RHS.get()->getValueKind();
+ if (!Context.hasSameType(LTy, RTy) &&
+ Context.hasSameUnqualifiedType(LTy, RTy) &&
+ LVK == RVK && LVK != VK_RValue) {
+ // Since the unqualified types are reference-related and we require the
+ // result to be as if a reference bound directly, the only conversion
+ // we can perform is to add cv-qualifiers.
+ Qualifiers LCVR = Qualifiers::fromCVRMask(LTy.getCVRQualifiers());
+ Qualifiers RCVR = Qualifiers::fromCVRMask(RTy.getCVRQualifiers());
+ if (RCVR.isStrictSupersetOf(LCVR)) {
+ LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
+ LTy = LHS.get()->getType();
+ }
+ else if (LCVR.isStrictSupersetOf(RCVR)) {
+ RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
+ RTy = RHS.get()->getType();
+ }
+ }
+
+ // C++11 [expr.cond]p4
+ // If the second and third operands are glvalues of the same value
+ // category and have the same type, the result is of that type and
+ // value category and it is a bit-field if the second or the third
+ // operand is a bit-field, or if both are bit-fields.
+ // We only extend this to bitfields, not to the crazy other kinds of
+ // l-values.
+ bool Same = Context.hasSameType(LTy, RTy);
+ if (Same && LVK == RVK && LVK != VK_RValue &&
+ LHS.get()->isOrdinaryOrBitFieldObject() &&
+ RHS.get()->isOrdinaryOrBitFieldObject()) {
+ VK = LHS.get()->getValueKind();
+ if (LHS.get()->getObjectKind() == OK_BitField ||
+ RHS.get()->getObjectKind() == OK_BitField)
+ OK = OK_BitField;
+ return LTy;
+ }
+
+ // C++11 [expr.cond]p5
+ // Otherwise, the result is a prvalue. If the second and third operands
+ // do not have the same type, and either has (cv) class type, ...
+ if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
+ // ... overload resolution is used to determine the conversions (if any)
+ // to be applied to the operands. If the overload resolution fails, the
+ // program is ill-formed.
+ if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
+ return QualType();
+ }
+
+ // C++11 [expr.cond]p6
+ // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
+ // conversions are performed on the second and third operands.
+ LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
+ RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
+ if (LHS.isInvalid() || RHS.isInvalid())
+ return QualType();
+ LTy = LHS.get()->getType();
+ RTy = RHS.get()->getType();
+
+ // After those conversions, one of the following shall hold:
+ // -- The second and third operands have the same type; the result
+ // is of that type. If the operands have class type, the result
+ // is a prvalue temporary of the result type, which is
+ // copy-initialized from either the second operand or the third
+ // operand depending on the value of the first operand.
+ if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
+ if (LTy->isRecordType()) {
+ // The operands have class type. Make a temporary copy.
+ if (RequireNonAbstractType(QuestionLoc, LTy,
+ diag::err_allocation_of_abstract_type))
+ return QualType();
+ InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
+
+ ExprResult LHSCopy = PerformCopyInitialization(Entity,
+ SourceLocation(),
+ LHS);
+ if (LHSCopy.isInvalid())
+ return QualType();
+
+ ExprResult RHSCopy = PerformCopyInitialization(Entity,
+ SourceLocation(),
+ RHS);
+ if (RHSCopy.isInvalid())
+ return QualType();
+
+ LHS = LHSCopy;
+ RHS = RHSCopy;
+ }
+
+ return LTy;
+ }
+
+ // Extension: conditional operator involving vector types.
+ if (LTy->isVectorType() || RTy->isVectorType())
+ return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
+
+ // -- The second and third operands have arithmetic or enumeration type;
+ // the usual arithmetic conversions are performed to bring them to a
+ // common type, and the result is of that type.
+ if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
+ QualType ResTy = UsualArithmeticConversions(LHS, RHS);
+ if (LHS.isInvalid() || RHS.isInvalid())
+ return QualType();
+
+ LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
+ RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
+
+ return ResTy;
+ }
+
+ // -- The second and third operands have pointer type, or one has pointer
+ // type and the other is a null pointer constant, or both are null
+ // pointer constants, at least one of which is non-integral; pointer
+ // conversions and qualification conversions are performed to bring them
+ // to their composite pointer type. The result is of the composite
+ // pointer type.
+ // -- The second and third operands have pointer to member type, or one has
+ // pointer to member type and the other is a null pointer constant;
+ // pointer to member conversions and qualification conversions are
+ // performed to bring them to a common type, whose cv-qualification
+ // shall match the cv-qualification of either the second or the third
+ // operand. The result is of the common type.
+ bool NonStandardCompositeType = false;
+ QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
+ isSFINAEContext() ? nullptr
+ : &NonStandardCompositeType);
+ if (!Composite.isNull()) {
+ if (NonStandardCompositeType)
+ Diag(QuestionLoc,
+ diag::ext_typecheck_cond_incompatible_operands_nonstandard)
+ << LTy << RTy << Composite
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+
+ return Composite;
+ }
+
+ // Similarly, attempt to find composite type of two objective-c pointers.
+ Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
+ if (!Composite.isNull())
+ return Composite;
+
+ // Check if we are using a null with a non-pointer type.
+ if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
+ return QualType();
+
+ Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
+ << LHS.get()->getType() << RHS.get()->getType()
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ return QualType();
+}
+
+/// \brief Find a merged pointer type and convert the two expressions to it.
+///
+/// This finds the composite pointer type (or member pointer type) for @p E1
+/// and @p E2 according to C++11 5.9p2. It converts both expressions to this
+/// type and returns it.
+/// It does not emit diagnostics.
+///
+/// \param Loc The location of the operator requiring these two expressions to
+/// be converted to the composite pointer type.
+///
+/// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
+/// a non-standard (but still sane) composite type to which both expressions
+/// can be converted. When such a type is chosen, \c *NonStandardCompositeType
+/// will be set true.
+QualType Sema::FindCompositePointerType(SourceLocation Loc,
+ Expr *&E1, Expr *&E2,
+ bool *NonStandardCompositeType) {
+ if (NonStandardCompositeType)
+ *NonStandardCompositeType = false;
+
+ assert(getLangOpts().CPlusPlus && "This function assumes C++");
+ QualType T1 = E1->getType(), T2 = E2->getType();
+
+ // C++11 5.9p2
+ // Pointer conversions and qualification conversions are performed on
+ // pointer operands to bring them to their composite pointer type. If
+ // one operand is a null pointer constant, the composite pointer type is
+ // std::nullptr_t if the other operand is also a null pointer constant or,
+ // if the other operand is a pointer, the type of the other operand.
+ if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
+ !T2->isAnyPointerType() && !T2->isMemberPointerType()) {
+ if (T1->isNullPtrType() &&
+ E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
+ E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).get();
+ return T1;
+ }
+ if (T2->isNullPtrType() &&
+ E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
+ E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).get();
+ return T2;
+ }
+ return QualType();
+ }
+
+ if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
+ if (T2->isMemberPointerType())
+ E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).get();
+ else
+ E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).get();
+ return T2;
+ }
+ if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
+ if (T1->isMemberPointerType())
+ E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).get();
+ else
+ E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).get();
+ return T1;
+ }
+
+ // Now both have to be pointers or member pointers.
+ if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
+ (!T2->isPointerType() && !T2->isMemberPointerType()))
+ return QualType();
+
+ // Otherwise, of one of the operands has type "pointer to cv1 void," then
+ // the other has type "pointer to cv2 T" and the composite pointer type is
+ // "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
+ // Otherwise, the composite pointer type is a pointer type similar to the
+ // type of one of the operands, with a cv-qualification signature that is
+ // the union of the cv-qualification signatures of the operand types.
+ // In practice, the first part here is redundant; it's subsumed by the second.
+ // What we do here is, we build the two possible composite types, and try the
+ // conversions in both directions. If only one works, or if the two composite
+ // types are the same, we have succeeded.
+ // FIXME: extended qualifiers?
+ typedef SmallVector<unsigned, 4> QualifierVector;
+ QualifierVector QualifierUnion;
+ typedef SmallVector<std::pair<const Type *, const Type *>, 4>
+ ContainingClassVector;
+ ContainingClassVector MemberOfClass;
+ QualType Composite1 = Context.getCanonicalType(T1),
+ Composite2 = Context.getCanonicalType(T2);
+ unsigned NeedConstBefore = 0;
+ do {
+ const PointerType *Ptr1, *Ptr2;
+ if ((Ptr1 = Composite1->getAs<PointerType>()) &&
+ (Ptr2 = Composite2->getAs<PointerType>())) {
+ Composite1 = Ptr1->getPointeeType();
+ Composite2 = Ptr2->getPointeeType();
+
+ // If we're allowed to create a non-standard composite type, keep track
+ // of where we need to fill in additional 'const' qualifiers.
+ if (NonStandardCompositeType &&
+ Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
+ NeedConstBefore = QualifierUnion.size();
+
+ QualifierUnion.push_back(
+ Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
+ MemberOfClass.push_back(std::make_pair(nullptr, nullptr));
+ continue;
+ }
+
+ const MemberPointerType *MemPtr1, *MemPtr2;
+ if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
+ (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
+ Composite1 = MemPtr1->getPointeeType();
+ Composite2 = MemPtr2->getPointeeType();
+
+ // If we're allowed to create a non-standard composite type, keep track
+ // of where we need to fill in additional 'const' qualifiers.
+ if (NonStandardCompositeType &&
+ Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
+ NeedConstBefore = QualifierUnion.size();
+
+ QualifierUnion.push_back(
+ Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
+ MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
+ MemPtr2->getClass()));
+ continue;
+ }
+
+ // FIXME: block pointer types?
+
+ // Cannot unwrap any more types.
+ break;
+ } while (true);
+
+ if (NeedConstBefore && NonStandardCompositeType) {
+ // Extension: Add 'const' to qualifiers that come before the first qualifier
+ // mismatch, so that our (non-standard!) composite type meets the
+ // requirements of C++ [conv.qual]p4 bullet 3.
+ for (unsigned I = 0; I != NeedConstBefore; ++I) {
+ if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
+ QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
+ *NonStandardCompositeType = true;
+ }
+ }
+ }
+
+ // Rewrap the composites as pointers or member pointers with the union CVRs.
+ ContainingClassVector::reverse_iterator MOC
+ = MemberOfClass.rbegin();
+ for (QualifierVector::reverse_iterator
+ I = QualifierUnion.rbegin(),
+ E = QualifierUnion.rend();
+ I != E; (void)++I, ++MOC) {
+ Qualifiers Quals = Qualifiers::fromCVRMask(*I);
+ if (MOC->first && MOC->second) {
+ // Rebuild member pointer type
+ Composite1 = Context.getMemberPointerType(
+ Context.getQualifiedType(Composite1, Quals),
+ MOC->first);
+ Composite2 = Context.getMemberPointerType(
+ Context.getQualifiedType(Composite2, Quals),
+ MOC->second);
+ } else {
+ // Rebuild pointer type
+ Composite1
+ = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
+ Composite2
+ = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
+ }
+ }
+
+ // Try to convert to the first composite pointer type.
+ InitializedEntity Entity1
+ = InitializedEntity::InitializeTemporary(Composite1);
+ InitializationKind Kind
+ = InitializationKind::CreateCopy(Loc, SourceLocation());
+ InitializationSequence E1ToC1(*this, Entity1, Kind, E1);
+ InitializationSequence E2ToC1(*this, Entity1, Kind, E2);
+
+ if (E1ToC1 && E2ToC1) {
+ // Conversion to Composite1 is viable.
+ if (!Context.hasSameType(Composite1, Composite2)) {
+ // Composite2 is a different type from Composite1. Check whether
+ // Composite2 is also viable.
+ InitializedEntity Entity2
+ = InitializedEntity::InitializeTemporary(Composite2);
+ InitializationSequence E1ToC2(*this, Entity2, Kind, E1);
+ InitializationSequence E2ToC2(*this, Entity2, Kind, E2);
+ if (E1ToC2 && E2ToC2) {
+ // Both Composite1 and Composite2 are viable and are different;
+ // this is an ambiguity.
+ return QualType();
+ }
+ }
+
+ // Convert E1 to Composite1
+ ExprResult E1Result
+ = E1ToC1.Perform(*this, Entity1, Kind, E1);
+ if (E1Result.isInvalid())
+ return QualType();
+ E1 = E1Result.getAs<Expr>();
+
+ // Convert E2 to Composite1
+ ExprResult E2Result
+ = E2ToC1.Perform(*this, Entity1, Kind, E2);
+ if (E2Result.isInvalid())
+ return QualType();
+ E2 = E2Result.getAs<Expr>();
+
+ return Composite1;
+ }
+
+ // Check whether Composite2 is viable.
+ InitializedEntity Entity2
+ = InitializedEntity::InitializeTemporary(Composite2);
+ InitializationSequence E1ToC2(*this, Entity2, Kind, E1);
+ InitializationSequence E2ToC2(*this, Entity2, Kind, E2);
+ if (!E1ToC2 || !E2ToC2)
+ return QualType();
+
+ // Convert E1 to Composite2
+ ExprResult E1Result
+ = E1ToC2.Perform(*this, Entity2, Kind, E1);
+ if (E1Result.isInvalid())
+ return QualType();
+ E1 = E1Result.getAs<Expr>();
+
+ // Convert E2 to Composite2
+ ExprResult E2Result
+ = E2ToC2.Perform(*this, Entity2, Kind, E2);
+ if (E2Result.isInvalid())
+ return QualType();
+ E2 = E2Result.getAs<Expr>();
+
+ return Composite2;
+}
+
+ExprResult Sema::MaybeBindToTemporary(Expr *E) {
+ if (!E)
+ return ExprError();
+
+ assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
+
+ // If the result is a glvalue, we shouldn't bind it.
+ if (!E->isRValue())
+ return E;
+
+ // In ARC, calls that return a retainable type can return retained,
+ // in which case we have to insert a consuming cast.
+ if (getLangOpts().ObjCAutoRefCount &&
+ E->getType()->isObjCRetainableType()) {
+
+ bool ReturnsRetained;
+
+ // For actual calls, we compute this by examining the type of the
+ // called value.
+ if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
+ Expr *Callee = Call->getCallee()->IgnoreParens();
+ QualType T = Callee->getType();
+
+ if (T == Context.BoundMemberTy) {
+ // Handle pointer-to-members.
+ if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
+ T = BinOp->getRHS()->getType();
+ else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
+ T = Mem->getMemberDecl()->getType();
+ }
+
+ if (const PointerType *Ptr = T->getAs<PointerType>())
+ T = Ptr->getPointeeType();
+ else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
+ T = Ptr->getPointeeType();
+ else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
+ T = MemPtr->getPointeeType();
+
+ const FunctionType *FTy = T->getAs<FunctionType>();
+ assert(FTy && "call to value not of function type?");
+ ReturnsRetained = FTy->getExtInfo().getProducesResult();
+
+ // ActOnStmtExpr arranges things so that StmtExprs of retainable
+ // type always produce a +1 object.
+ } else if (isa<StmtExpr>(E)) {
+ ReturnsRetained = true;
+
+ // We hit this case with the lambda conversion-to-block optimization;
+ // we don't want any extra casts here.
+ } else if (isa<CastExpr>(E) &&
+ isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
+ return E;
+
+ // For message sends and property references, we try to find an
+ // actual method. FIXME: we should infer retention by selector in
+ // cases where we don't have an actual method.
+ } else {
+ ObjCMethodDecl *D = nullptr;
+ if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
+ D = Send->getMethodDecl();
+ } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
+ D = BoxedExpr->getBoxingMethod();
+ } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
+ D = ArrayLit->getArrayWithObjectsMethod();
+ } else if (ObjCDictionaryLiteral *DictLit
+ = dyn_cast<ObjCDictionaryLiteral>(E)) {
+ D = DictLit->getDictWithObjectsMethod();
+ }
+
+ ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
+
+ // Don't do reclaims on performSelector calls; despite their
+ // return type, the invoked method doesn't necessarily actually
+ // return an object.
+ if (!ReturnsRetained &&
+ D && D->getMethodFamily() == OMF_performSelector)
+ return E;
+ }
+
+ // Don't reclaim an object of Class type.
+ if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
+ return E;
+
+ ExprNeedsCleanups = true;
+
+ CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
+ : CK_ARCReclaimReturnedObject);
+ return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr,
+ VK_RValue);
+ }
+
+ if (!getLangOpts().CPlusPlus)
+ return E;
+
+ // Search for the base element type (cf. ASTContext::getBaseElementType) with
+ // a fast path for the common case that the type is directly a RecordType.
+ const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
+ const RecordType *RT = nullptr;
+ while (!RT) {
+ switch (T->getTypeClass()) {
+ case Type::Record:
+ RT = cast<RecordType>(T);
+ break;
+ case Type::ConstantArray:
+ case Type::IncompleteArray:
+ case Type::VariableArray:
+ case Type::DependentSizedArray:
+ T = cast<ArrayType>(T)->getElementType().getTypePtr();
+ break;
+ default:
+ return E;
+ }
+ }
+
+ // That should be enough to guarantee that this type is complete, if we're
+ // not processing a decltype expression.
+ CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
+ if (RD->isInvalidDecl() || RD->isDependentContext())
+ return E;
+
+ bool IsDecltype = ExprEvalContexts.back().IsDecltype;
+ CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD);
+
+ if (Destructor) {
+ MarkFunctionReferenced(E->getExprLoc(), Destructor);
+ CheckDestructorAccess(E->getExprLoc(), Destructor,
+ PDiag(diag::err_access_dtor_temp)
+ << E->getType());
+ if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
+ return ExprError();
+
+ // If destructor is trivial, we can avoid the extra copy.
+ if (Destructor->isTrivial())
+ return E;
+
+ // We need a cleanup, but we don't need to remember the temporary.
+ ExprNeedsCleanups = true;
+ }
+
+ CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
+ CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
+
+ if (IsDecltype)
+ ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
+
+ return Bind;
+}
+
+ExprResult
+Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
+ if (SubExpr.isInvalid())
+ return ExprError();
+
+ return MaybeCreateExprWithCleanups(SubExpr.get());
+}
+
+Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
+ assert(SubExpr && "subexpression can't be null!");
+
+ CleanupVarDeclMarking();
+
+ unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
+ assert(ExprCleanupObjects.size() >= FirstCleanup);
+ assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup);
+ if (!ExprNeedsCleanups)
+ return SubExpr;
+
+ auto Cleanups = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
+ ExprCleanupObjects.size() - FirstCleanup);
+
+ Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups);
+ DiscardCleanupsInEvaluationContext();
+
+ return E;
+}
+
+Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
+ assert(SubStmt && "sub-statement can't be null!");
+
+ CleanupVarDeclMarking();
+
+ if (!ExprNeedsCleanups)
+ return SubStmt;
+
+ // FIXME: In order to attach the temporaries, wrap the statement into
+ // a StmtExpr; currently this is only used for asm statements.
+ // This is hacky, either create a new CXXStmtWithTemporaries statement or
+ // a new AsmStmtWithTemporaries.
+ CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, SubStmt,
+ SourceLocation(),
+ SourceLocation());
+ Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
+ SourceLocation());
+ return MaybeCreateExprWithCleanups(E);
+}
+
+/// Process the expression contained within a decltype. For such expressions,
+/// certain semantic checks on temporaries are delayed until this point, and
+/// are omitted for the 'topmost' call in the decltype expression. If the
+/// topmost call bound a temporary, strip that temporary off the expression.
+ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
+ assert(ExprEvalContexts.back().IsDecltype && "not in a decltype expression");
+
+ // C++11 [expr.call]p11:
+ // If a function call is a prvalue of object type,
+ // -- if the function call is either
+ // -- the operand of a decltype-specifier, or
+ // -- the right operand of a comma operator that is the operand of a
+ // decltype-specifier,
+ // a temporary object is not introduced for the prvalue.
+
+ // Recursively rebuild ParenExprs and comma expressions to strip out the
+ // outermost CXXBindTemporaryExpr, if any.
+ if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
+ ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
+ if (SubExpr.isInvalid())
+ return ExprError();
+ if (SubExpr.get() == PE->getSubExpr())
+ return E;
+ return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get());
+ }
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
+ if (BO->getOpcode() == BO_Comma) {
+ ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
+ if (RHS.isInvalid())
+ return ExprError();
+ if (RHS.get() == BO->getRHS())
+ return E;
+ return new (Context) BinaryOperator(
+ BO->getLHS(), RHS.get(), BO_Comma, BO->getType(), BO->getValueKind(),
+ BO->getObjectKind(), BO->getOperatorLoc(), BO->isFPContractable());
+ }
+ }
+
+ CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
+ CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr())
+ : nullptr;
+ if (TopCall)
+ E = TopCall;
+ else
+ TopBind = nullptr;
+
+ // Disable the special decltype handling now.
+ ExprEvalContexts.back().IsDecltype = false;
+
+ // In MS mode, don't perform any extra checking of call return types within a
+ // decltype expression.
+ if (getLangOpts().MSVCCompat)
+ return E;
+
+ // Perform the semantic checks we delayed until this point.
+ for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
+ I != N; ++I) {
+ CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
+ if (Call == TopCall)
+ continue;
+
+ if (CheckCallReturnType(Call->getCallReturnType(Context),
+ Call->getLocStart(),
+ Call, Call->getDirectCallee()))
+ return ExprError();
+ }
+
+ // Now all relevant types are complete, check the destructors are accessible
+ // and non-deleted, and annotate them on the temporaries.
+ for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
+ I != N; ++I) {
+ CXXBindTemporaryExpr *Bind =
+ ExprEvalContexts.back().DelayedDecltypeBinds[I];
+ if (Bind == TopBind)
+ continue;
+
+ CXXTemporary *Temp = Bind->getTemporary();
+
+ CXXRecordDecl *RD =
+ Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
+ CXXDestructorDecl *Destructor = LookupDestructor(RD);
+ Temp->setDestructor(Destructor);
+
+ MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
+ CheckDestructorAccess(Bind->getExprLoc(), Destructor,
+ PDiag(diag::err_access_dtor_temp)
+ << Bind->getType());
+ if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
+ return ExprError();
+
+ // We need a cleanup, but we don't need to remember the temporary.
+ ExprNeedsCleanups = true;
+ }
+
+ // Possibly strip off the top CXXBindTemporaryExpr.
+ return E;
+}
+
+/// Note a set of 'operator->' functions that were used for a member access.
+static void noteOperatorArrows(Sema &S,
+ ArrayRef<FunctionDecl *> OperatorArrows) {
+ unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
+ // FIXME: Make this configurable?
+ unsigned Limit = 9;
+ if (OperatorArrows.size() > Limit) {
+ // Produce Limit-1 normal notes and one 'skipping' note.
+ SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
+ SkipCount = OperatorArrows.size() - (Limit - 1);
+ }
+
+ for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
+ if (I == SkipStart) {
+ S.Diag(OperatorArrows[I]->getLocation(),
+ diag::note_operator_arrows_suppressed)
+ << SkipCount;
+ I += SkipCount;
+ } else {
+ S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
+ << OperatorArrows[I]->getCallResultType();
+ ++I;
+ }
+ }
+}
+
+ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base,
+ SourceLocation OpLoc,
+ tok::TokenKind OpKind,
+ ParsedType &ObjectType,
+ bool &MayBePseudoDestructor) {
+ // Since this might be a postfix expression, get rid of ParenListExprs.
+ ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
+ if (Result.isInvalid()) return ExprError();
+ Base = Result.get();
+
+ Result = CheckPlaceholderExpr(Base);
+ if (Result.isInvalid()) return ExprError();
+ Base = Result.get();
+
+ QualType BaseType = Base->getType();
+ MayBePseudoDestructor = false;
+ if (BaseType->isDependentType()) {
+ // If we have a pointer to a dependent type and are using the -> operator,
+ // the object type is the type that the pointer points to. We might still
+ // have enough information about that type to do something useful.
+ if (OpKind == tok::arrow)
+ if (const PointerType *Ptr = BaseType->getAs<PointerType>())
+ BaseType = Ptr->getPointeeType();
+
+ ObjectType = ParsedType::make(BaseType);
+ MayBePseudoDestructor = true;
+ return Base;
+ }
+
+ // C++ [over.match.oper]p8:
+ // [...] When operator->returns, the operator-> is applied to the value
+ // returned, with the original second operand.
+ if (OpKind == tok::arrow) {
+ QualType StartingType = BaseType;
+ bool NoArrowOperatorFound = false;
+ bool FirstIteration = true;
+ FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
+ // The set of types we've considered so far.
+ llvm::SmallPtrSet<CanQualType,8> CTypes;
+ SmallVector<FunctionDecl*, 8> OperatorArrows;
+ CTypes.insert(Context.getCanonicalType(BaseType));
+
+ while (BaseType->isRecordType()) {
+ if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
+ Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
+ << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
+ noteOperatorArrows(*this, OperatorArrows);
+ Diag(OpLoc, diag::note_operator_arrow_depth)
+ << getLangOpts().ArrowDepth;
+ return ExprError();
+ }
+
+ Result = BuildOverloadedArrowExpr(
+ S, Base, OpLoc,
+ // When in a template specialization and on the first loop iteration,
+ // potentially give the default diagnostic (with the fixit in a
+ // separate note) instead of having the error reported back to here
+ // and giving a diagnostic with a fixit attached to the error itself.
+ (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
+ ? nullptr
+ : &NoArrowOperatorFound);
+ if (Result.isInvalid()) {
+ if (NoArrowOperatorFound) {
+ if (FirstIteration) {
+ Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
+ << BaseType << 1 << Base->getSourceRange()
+ << FixItHint::CreateReplacement(OpLoc, ".");
+ OpKind = tok::period;
+ break;
+ }
+ Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
+ << BaseType << Base->getSourceRange();
+ CallExpr *CE = dyn_cast<CallExpr>(Base);
+ if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) {
+ Diag(CD->getLocStart(),
+ diag::note_member_reference_arrow_from_operator_arrow);
+ }
+ }
+ return ExprError();
+ }
+ Base = Result.get();
+ if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
+ OperatorArrows.push_back(OpCall->getDirectCallee());
+ BaseType = Base->getType();
+ CanQualType CBaseType = Context.getCanonicalType(BaseType);
+ if (!CTypes.insert(CBaseType).second) {
+ Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
+ noteOperatorArrows(*this, OperatorArrows);
+ return ExprError();
+ }
+ FirstIteration = false;
+ }
+
+ if (OpKind == tok::arrow &&
+ (BaseType->isPointerType() || BaseType->isObjCObjectPointerType()))
+ BaseType = BaseType->getPointeeType();
+ }
+
+ // Objective-C properties allow "." access on Objective-C pointer types,
+ // so adjust the base type to the object type itself.
+ if (BaseType->isObjCObjectPointerType())
+ BaseType = BaseType->getPointeeType();
+
+ // C++ [basic.lookup.classref]p2:
+ // [...] If the type of the object expression is of pointer to scalar
+ // type, the unqualified-id is looked up in the context of the complete
+ // postfix-expression.
+ //
+ // This also indicates that we could be parsing a pseudo-destructor-name.
+ // Note that Objective-C class and object types can be pseudo-destructor
+ // expressions or normal member (ivar or property) access expressions.
+ if (BaseType->isObjCObjectOrInterfaceType()) {
+ MayBePseudoDestructor = true;
+ } else if (!BaseType->isRecordType()) {
+ ObjectType = ParsedType();
+ MayBePseudoDestructor = true;
+ return Base;
+ }
+
+ // The object type must be complete (or dependent), or
+ // C++11 [expr.prim.general]p3:
+ // Unlike the object expression in other contexts, *this is not required to
+ // be of complete type for purposes of class member access (5.2.5) outside
+ // the member function body.
+ if (!BaseType->isDependentType() &&
+ !isThisOutsideMemberFunctionBody(BaseType) &&
+ RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
+ return ExprError();
+
+ // C++ [basic.lookup.classref]p2:
+ // If the id-expression in a class member access (5.2.5) is an
+ // unqualified-id, and the type of the object expression is of a class
+ // type C (or of pointer to a class type C), the unqualified-id is looked
+ // up in the scope of class C. [...]
+ ObjectType = ParsedType::make(BaseType);
+ return Base;
+}
+
+static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
+ tok::TokenKind& OpKind, SourceLocation OpLoc) {
+ if (Base->hasPlaceholderType()) {
+ ExprResult result = S.CheckPlaceholderExpr(Base);
+ if (result.isInvalid()) return true;
+ Base = result.get();
+ }
+ ObjectType = Base->getType();
+
+ // C++ [expr.pseudo]p2:
+ // The left-hand side of the dot operator shall be of scalar type. The
+ // left-hand side of the arrow operator shall be of pointer to scalar type.
+ // This scalar type is the object type.
+ // Note that this is rather different from the normal handling for the
+ // arrow operator.
+ if (OpKind == tok::arrow) {
+ if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
+ ObjectType = Ptr->getPointeeType();
+ } else if (!Base->isTypeDependent()) {
+ // The user wrote "p->" when she probably meant "p."; fix it.
+ S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
+ << ObjectType << true
+ << FixItHint::CreateReplacement(OpLoc, ".");
+ if (S.isSFINAEContext())
+ return true;
+
+ OpKind = tok::period;
+ }
+ }
+
+ return false;
+}
+
+ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
+ SourceLocation OpLoc,
+ tok::TokenKind OpKind,
+ const CXXScopeSpec &SS,
+ TypeSourceInfo *ScopeTypeInfo,
+ SourceLocation CCLoc,
+ SourceLocation TildeLoc,
+ PseudoDestructorTypeStorage Destructed) {
+ TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
+
+ QualType ObjectType;
+ if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
+ return ExprError();
+
+ if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
+ !ObjectType->isVectorType()) {
+ if (getLangOpts().MSVCCompat && ObjectType->isVoidType())
+ Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
+ else {
+ Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
+ << ObjectType << Base->getSourceRange();
+ return ExprError();
+ }
+ }
+
+ // C++ [expr.pseudo]p2:
+ // [...] The cv-unqualified versions of the object type and of the type
+ // designated by the pseudo-destructor-name shall be the same type.
+ if (DestructedTypeInfo) {
+ QualType DestructedType = DestructedTypeInfo->getType();
+ SourceLocation DestructedTypeStart
+ = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
+ if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
+ if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
+ Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
+ << ObjectType << DestructedType << Base->getSourceRange()
+ << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
+
+ // Recover by setting the destructed type to the object type.
+ DestructedType = ObjectType;
+ DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
+ DestructedTypeStart);
+ Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
+ } else if (DestructedType.getObjCLifetime() !=
+ ObjectType.getObjCLifetime()) {
+
+ if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
+ // Okay: just pretend that the user provided the correctly-qualified
+ // type.
+ } else {
+ Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
+ << ObjectType << DestructedType << Base->getSourceRange()
+ << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
+ }
+
+ // Recover by setting the destructed type to the object type.
+ DestructedType = ObjectType;
+ DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
+ DestructedTypeStart);
+ Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
+ }
+ }
+ }
+
+ // C++ [expr.pseudo]p2:
+ // [...] Furthermore, the two type-names in a pseudo-destructor-name of the
+ // form
+ //
+ // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
+ //
+ // shall designate the same scalar type.
+ if (ScopeTypeInfo) {
+ QualType ScopeType = ScopeTypeInfo->getType();
+ if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
+ !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
+
+ Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
+ diag::err_pseudo_dtor_type_mismatch)
+ << ObjectType << ScopeType << Base->getSourceRange()
+ << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
+
+ ScopeType = QualType();
+ ScopeTypeInfo = nullptr;
+ }
+ }
+
+ Expr *Result
+ = new (Context) CXXPseudoDestructorExpr(Context, Base,
+ OpKind == tok::arrow, OpLoc,
+ SS.getWithLocInContext(Context),
+ ScopeTypeInfo,
+ CCLoc,
+ TildeLoc,
+ Destructed);
+
+ return Result;
+}
+
+ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
+ SourceLocation OpLoc,
+ tok::TokenKind OpKind,
+ CXXScopeSpec &SS,
+ UnqualifiedId &FirstTypeName,
+ SourceLocation CCLoc,
+ SourceLocation TildeLoc,
+ UnqualifiedId &SecondTypeName) {
+ assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
+ FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
+ "Invalid first type name in pseudo-destructor");
+ assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
+ SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
+ "Invalid second type name in pseudo-destructor");
+
+ QualType ObjectType;
+ if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
+ return ExprError();
+
+ // Compute the object type that we should use for name lookup purposes. Only
+ // record types and dependent types matter.
+ ParsedType ObjectTypePtrForLookup;
+ if (!SS.isSet()) {
+ if (ObjectType->isRecordType())
+ ObjectTypePtrForLookup = ParsedType::make(ObjectType);
+ else if (ObjectType->isDependentType())
+ ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
+ }
+
+ // Convert the name of the type being destructed (following the ~) into a
+ // type (with source-location information).
+ QualType DestructedType;
+ TypeSourceInfo *DestructedTypeInfo = nullptr;
+ PseudoDestructorTypeStorage Destructed;
+ if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
+ ParsedType T = getTypeName(*SecondTypeName.Identifier,
+ SecondTypeName.StartLocation,
+ S, &SS, true, false, ObjectTypePtrForLookup);
+ if (!T &&
+ ((SS.isSet() && !computeDeclContext(SS, false)) ||
+ (!SS.isSet() && ObjectType->isDependentType()))) {
+ // The name of the type being destroyed is a dependent name, and we
+ // couldn't find anything useful in scope. Just store the identifier and
+ // it's location, and we'll perform (qualified) name lookup again at
+ // template instantiation time.
+ Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
+ SecondTypeName.StartLocation);
+ } else if (!T) {
+ Diag(SecondTypeName.StartLocation,
+ diag::err_pseudo_dtor_destructor_non_type)
+ << SecondTypeName.Identifier << ObjectType;
+ if (isSFINAEContext())
+ return ExprError();
+
+ // Recover by assuming we had the right type all along.
+ DestructedType = ObjectType;
+ } else
+ DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
+ } else {
+ // Resolve the template-id to a type.
+ TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
+ ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
+ TemplateId->NumArgs);
+ TypeResult T = ActOnTemplateIdType(TemplateId->SS,
+ TemplateId->TemplateKWLoc,
+ TemplateId->Template,
+ TemplateId->TemplateNameLoc,
+ TemplateId->LAngleLoc,
+ TemplateArgsPtr,
+ TemplateId->RAngleLoc);
+ if (T.isInvalid() || !T.get()) {
+ // Recover by assuming we had the right type all along.
+ DestructedType = ObjectType;
+ } else
+ DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
+ }
+
+ // If we've performed some kind of recovery, (re-)build the type source
+ // information.
+ if (!DestructedType.isNull()) {
+ if (!DestructedTypeInfo)
+ DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
+ SecondTypeName.StartLocation);
+ Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
+ }
+
+ // Convert the name of the scope type (the type prior to '::') into a type.
+ TypeSourceInfo *ScopeTypeInfo = nullptr;
+ QualType ScopeType;
+ if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
+ FirstTypeName.Identifier) {
+ if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
+ ParsedType T = getTypeName(*FirstTypeName.Identifier,
+ FirstTypeName.StartLocation,
+ S, &SS, true, false, ObjectTypePtrForLookup);
+ if (!T) {
+ Diag(FirstTypeName.StartLocation,
+ diag::err_pseudo_dtor_destructor_non_type)
+ << FirstTypeName.Identifier << ObjectType;
+
+ if (isSFINAEContext())
+ return ExprError();
+
+ // Just drop this type. It's unnecessary anyway.
+ ScopeType = QualType();
+ } else
+ ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
+ } else {
+ // Resolve the template-id to a type.
+ TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
+ ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
+ TemplateId->NumArgs);
+ TypeResult T = ActOnTemplateIdType(TemplateId->SS,
+ TemplateId->TemplateKWLoc,
+ TemplateId->Template,
+ TemplateId->TemplateNameLoc,
+ TemplateId->LAngleLoc,
+ TemplateArgsPtr,
+ TemplateId->RAngleLoc);
+ if (T.isInvalid() || !T.get()) {
+ // Recover by dropping this type.
+ ScopeType = QualType();
+ } else
+ ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
+ }
+ }
+
+ if (!ScopeType.isNull() && !ScopeTypeInfo)
+ ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
+ FirstTypeName.StartLocation);
+
+
+ return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
+ ScopeTypeInfo, CCLoc, TildeLoc,
+ Destructed);
+}
+
+ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
+ SourceLocation OpLoc,
+ tok::TokenKind OpKind,
+ SourceLocation TildeLoc,
+ const DeclSpec& DS) {
+ QualType ObjectType;
+ if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
+ return ExprError();
+
+ QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc(),
+ false);
+
+ TypeLocBuilder TLB;
+ DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
+ DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
+ TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
+ PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
+
+ return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
+ nullptr, SourceLocation(), TildeLoc,
+ Destructed);
+}
+
+ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
+ CXXConversionDecl *Method,
+ bool HadMultipleCandidates) {
+ if (Method->getParent()->isLambda() &&
+ Method->getConversionType()->isBlockPointerType()) {
+ // This is a lambda coversion to block pointer; check if the argument
+ // is a LambdaExpr.
+ Expr *SubE = E;
+ CastExpr *CE = dyn_cast<CastExpr>(SubE);
+ if (CE && CE->getCastKind() == CK_NoOp)
+ SubE = CE->getSubExpr();
+ SubE = SubE->IgnoreParens();
+ if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
+ SubE = BE->getSubExpr();
+ if (isa<LambdaExpr>(SubE)) {
+ // For the conversion to block pointer on a lambda expression, we
+ // construct a special BlockLiteral instead; this doesn't really make
+ // a difference in ARC, but outside of ARC the resulting block literal
+ // follows the normal lifetime rules for block literals instead of being
+ // autoreleased.
+ DiagnosticErrorTrap Trap(Diags);
+ ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(),
+ E->getExprLoc(),
+ Method, E);
+ if (Exp.isInvalid())
+ Diag(E->getExprLoc(), diag::note_lambda_to_block_conv);
+ return Exp;
+ }
+ }
+
+ ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr,
+ FoundDecl, Method);
+ if (Exp.isInvalid())
+ return true;
+
+ MemberExpr *ME = new (Context) MemberExpr(
+ Exp.get(), /*IsArrow=*/false, SourceLocation(), Method, SourceLocation(),
+ Context.BoundMemberTy, VK_RValue, OK_Ordinary);
+ if (HadMultipleCandidates)
+ ME->setHadMultipleCandidates(true);
+ MarkMemberReferenced(ME);
+
+ QualType ResultType = Method->getReturnType();
+ ExprValueKind VK = Expr::getValueKindForType(ResultType);
+ ResultType = ResultType.getNonLValueExprType(Context);
+
+ CXXMemberCallExpr *CE =
+ new (Context) CXXMemberCallExpr(Context, ME, None, ResultType, VK,
+ Exp.get()->getLocEnd());
+ return CE;
+}
+
+ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
+ SourceLocation RParen) {
+ // If the operand is an unresolved lookup expression, the expression is ill-
+ // formed per [over.over]p1, because overloaded function names cannot be used
+ // without arguments except in explicit contexts.
+ ExprResult R = CheckPlaceholderExpr(Operand);
+ if (R.isInvalid())
+ return R;
+
+ // The operand may have been modified when checking the placeholder type.
+ Operand = R.get();
+
+ if (ActiveTemplateInstantiations.empty() &&
+ Operand->HasSideEffects(Context, false)) {
+ // The expression operand for noexcept is in an unevaluated expression
+ // context, so side effects could result in unintended consequences.
+ Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context);
+ }
+
+ CanThrowResult CanThrow = canThrow(Operand);
+ return new (Context)
+ CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen);
+}
+
+ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
+ Expr *Operand, SourceLocation RParen) {
+ return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
+}
+
+static bool IsSpecialDiscardedValue(Expr *E) {
+ // In C++11, discarded-value expressions of a certain form are special,
+ // according to [expr]p10:
+ // The lvalue-to-rvalue conversion (4.1) is applied only if the
+ // expression is an lvalue of volatile-qualified type and it has
+ // one of the following forms:
+ E = E->IgnoreParens();
+
+ // - id-expression (5.1.1),
+ if (isa<DeclRefExpr>(E))
+ return true;
+
+ // - subscripting (5.2.1),
+ if (isa<ArraySubscriptExpr>(E))
+ return true;
+
+ // - class member access (5.2.5),
+ if (isa<MemberExpr>(E))
+ return true;
+
+ // - indirection (5.3.1),
+ if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
+ if (UO->getOpcode() == UO_Deref)
+ return true;
+
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
+ // - pointer-to-member operation (5.5),
+ if (BO->isPtrMemOp())
+ return true;
+
+ // - comma expression (5.18) where the right operand is one of the above.
+ if (BO->getOpcode() == BO_Comma)
+ return IsSpecialDiscardedValue(BO->getRHS());
+ }
+
+ // - conditional expression (5.16) where both the second and the third
+ // operands are one of the above, or
+ if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
+ return IsSpecialDiscardedValue(CO->getTrueExpr()) &&
+ IsSpecialDiscardedValue(CO->getFalseExpr());
+ // The related edge case of "*x ?: *x".
+ if (BinaryConditionalOperator *BCO =
+ dyn_cast<BinaryConditionalOperator>(E)) {
+ if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
+ return IsSpecialDiscardedValue(OVE->getSourceExpr()) &&
+ IsSpecialDiscardedValue(BCO->getFalseExpr());
+ }
+
+ // Objective-C++ extensions to the rule.
+ if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
+ return true;
+
+ return false;
+}
+
+/// Perform the conversions required for an expression used in a
+/// context that ignores the result.
+ExprResult Sema::IgnoredValueConversions(Expr *E) {
+ if (E->hasPlaceholderType()) {
+ ExprResult result = CheckPlaceholderExpr(E);
+ if (result.isInvalid()) return E;
+ E = result.get();
+ }
+
+ // C99 6.3.2.1:
+ // [Except in specific positions,] an lvalue that does not have
+ // array type is converted to the value stored in the
+ // designated object (and is no longer an lvalue).
+ if (E->isRValue()) {
+ // In C, function designators (i.e. expressions of function type)
+ // are r-values, but we still want to do function-to-pointer decay
+ // on them. This is both technically correct and convenient for
+ // some clients.
+ if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
+ return DefaultFunctionArrayConversion(E);
+
+ return E;
+ }
+
+ if (getLangOpts().CPlusPlus) {
+ // The C++11 standard defines the notion of a discarded-value expression;
+ // normally, we don't need to do anything to handle it, but if it is a
+ // volatile lvalue with a special form, we perform an lvalue-to-rvalue
+ // conversion.
+ if (getLangOpts().CPlusPlus11 && E->isGLValue() &&
+ E->getType().isVolatileQualified() &&
+ IsSpecialDiscardedValue(E)) {
+ ExprResult Res = DefaultLvalueConversion(E);
+ if (Res.isInvalid())
+ return E;
+ E = Res.get();
+ }
+ return E;
+ }
+
+ // GCC seems to also exclude expressions of incomplete enum type.
+ if (const EnumType *T = E->getType()->getAs<EnumType>()) {
+ if (!T->getDecl()->isComplete()) {
+ // FIXME: stupid workaround for a codegen bug!
+ E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get();
+ return E;
+ }
+ }
+
+ ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
+ if (Res.isInvalid())
+ return E;
+ E = Res.get();
+
+ if (!E->getType()->isVoidType())
+ RequireCompleteType(E->getExprLoc(), E->getType(),
+ diag::err_incomplete_type);
+ return E;
+}
+
+// If we can unambiguously determine whether Var can never be used
+// in a constant expression, return true.
+// - if the variable and its initializer are non-dependent, then
+// we can unambiguously check if the variable is a constant expression.
+// - if the initializer is not value dependent - we can determine whether
+// it can be used to initialize a constant expression. If Init can not
+// be used to initialize a constant expression we conclude that Var can
+// never be a constant expression.
+// - FXIME: if the initializer is dependent, we can still do some analysis and
+// identify certain cases unambiguously as non-const by using a Visitor:
+// - such as those that involve odr-use of a ParmVarDecl, involve a new
+// delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
+static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var,
+ ASTContext &Context) {
+ if (isa<ParmVarDecl>(Var)) return true;
+ const VarDecl *DefVD = nullptr;
+
+ // If there is no initializer - this can not be a constant expression.
+ if (!Var->getAnyInitializer(DefVD)) return true;
+ assert(DefVD);
+ if (DefVD->isWeak()) return false;
+ EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
+
+ Expr *Init = cast<Expr>(Eval->Value);
+
+ if (Var->getType()->isDependentType() || Init->isValueDependent()) {
+ // FIXME: Teach the constant evaluator to deal with the non-dependent parts
+ // of value-dependent expressions, and use it here to determine whether the
+ // initializer is a potential constant expression.
+ return false;
+ }
+
+ return !IsVariableAConstantExpression(Var, Context);
+}
+
+/// \brief Check if the current lambda has any potential captures
+/// that must be captured by any of its enclosing lambdas that are ready to
+/// capture. If there is a lambda that can capture a nested
+/// potential-capture, go ahead and do so. Also, check to see if any
+/// variables are uncaptureable or do not involve an odr-use so do not
+/// need to be captured.
+
+static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
+ Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) {
+
+ assert(!S.isUnevaluatedContext());
+ assert(S.CurContext->isDependentContext());
+ assert(CurrentLSI->CallOperator == S.CurContext &&
+ "The current call operator must be synchronized with Sema's CurContext");
+
+ const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent();
+
+ ArrayRef<const FunctionScopeInfo *> FunctionScopesArrayRef(
+ S.FunctionScopes.data(), S.FunctionScopes.size());
+
+ // All the potentially captureable variables in the current nested
+ // lambda (within a generic outer lambda), must be captured by an
+ // outer lambda that is enclosed within a non-dependent context.
+ const unsigned NumPotentialCaptures =
+ CurrentLSI->getNumPotentialVariableCaptures();
+ for (unsigned I = 0; I != NumPotentialCaptures; ++I) {
+ Expr *VarExpr = nullptr;
+ VarDecl *Var = nullptr;
+ CurrentLSI->getPotentialVariableCapture(I, Var, VarExpr);
+ // If the variable is clearly identified as non-odr-used and the full
+ // expression is not instantiation dependent, only then do we not
+ // need to check enclosing lambda's for speculative captures.
+ // For e.g.:
+ // Even though 'x' is not odr-used, it should be captured.
+ // int test() {
+ // const int x = 10;
+ // auto L = [=](auto a) {
+ // (void) +x + a;
+ // };
+ // }
+ if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) &&
+ !IsFullExprInstantiationDependent)
+ continue;
+
+ // If we have a capture-capable lambda for the variable, go ahead and
+ // capture the variable in that lambda (and all its enclosing lambdas).
+ if (const Optional<unsigned> Index =
+ getStackIndexOfNearestEnclosingCaptureCapableLambda(
+ FunctionScopesArrayRef, Var, S)) {
+ const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
+ MarkVarDeclODRUsed(Var, VarExpr->getExprLoc(), S,
+ &FunctionScopeIndexOfCapturableLambda);
+ }
+ const bool IsVarNeverAConstantExpression =
+ VariableCanNeverBeAConstantExpression(Var, S.Context);
+ if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
+ // This full expression is not instantiation dependent or the variable
+ // can not be used in a constant expression - which means
+ // this variable must be odr-used here, so diagnose a
+ // capture violation early, if the variable is un-captureable.
+ // This is purely for diagnosing errors early. Otherwise, this
+ // error would get diagnosed when the lambda becomes capture ready.
+ QualType CaptureType, DeclRefType;
+ SourceLocation ExprLoc = VarExpr->getExprLoc();
+ if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
+ /*EllipsisLoc*/ SourceLocation(),
+ /*BuildAndDiagnose*/false, CaptureType,
+ DeclRefType, nullptr)) {
+ // We will never be able to capture this variable, and we need
+ // to be able to in any and all instantiations, so diagnose it.
+ S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
+ /*EllipsisLoc*/ SourceLocation(),
+ /*BuildAndDiagnose*/true, CaptureType,
+ DeclRefType, nullptr);
+ }
+ }
+ }
+
+ // Check if 'this' needs to be captured.
+ if (CurrentLSI->hasPotentialThisCapture()) {
+ // If we have a capture-capable lambda for 'this', go ahead and capture
+ // 'this' in that lambda (and all its enclosing lambdas).
+ if (const Optional<unsigned> Index =
+ getStackIndexOfNearestEnclosingCaptureCapableLambda(
+ FunctionScopesArrayRef, /*0 is 'this'*/ nullptr, S)) {
+ const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
+ S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation,
+ /*Explicit*/ false, /*BuildAndDiagnose*/ true,
+ &FunctionScopeIndexOfCapturableLambda);
+ }
+ }
+
+ // Reset all the potential captures at the end of each full-expression.
+ CurrentLSI->clearPotentialCaptures();
+}
+
+static ExprResult attemptRecovery(Sema &SemaRef,
+ const TypoCorrectionConsumer &Consumer,
+ TypoCorrection TC) {
+ LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(),
+ Consumer.getLookupResult().getLookupKind());
+ const CXXScopeSpec *SS = Consumer.getSS();
+ CXXScopeSpec NewSS;
+
+ // Use an approprate CXXScopeSpec for building the expr.
+ if (auto *NNS = TC.getCorrectionSpecifier())
+ NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange());
+ else if (SS && !TC.WillReplaceSpecifier())
+ NewSS = *SS;
+
+ if (auto *ND = TC.getCorrectionDecl()) {
+ R.setLookupName(ND->getDeclName());
+ R.addDecl(ND);
+ if (ND->isCXXClassMember()) {
+ // Figure out the correct naming class to add to the LookupResult.
+ CXXRecordDecl *Record = nullptr;
+ if (auto *NNS = TC.getCorrectionSpecifier())
+ Record = NNS->getAsType()->getAsCXXRecordDecl();
+ if (!Record)
+ Record =
+ dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext());
+ if (Record)
+ R.setNamingClass(Record);
+
+ // Detect and handle the case where the decl might be an implicit
+ // member.
+ bool MightBeImplicitMember;
+ if (!Consumer.isAddressOfOperand())
+ MightBeImplicitMember = true;
+ else if (!NewSS.isEmpty())
+ MightBeImplicitMember = false;
+ else if (R.isOverloadedResult())
+ MightBeImplicitMember = false;
+ else if (R.isUnresolvableResult())
+ MightBeImplicitMember = true;
+ else
+ MightBeImplicitMember = isa<FieldDecl>(ND) ||
+ isa<IndirectFieldDecl>(ND) ||
+ isa<MSPropertyDecl>(ND);
+
+ if (MightBeImplicitMember)
+ return SemaRef.BuildPossibleImplicitMemberExpr(
+ NewSS, /*TemplateKWLoc*/ SourceLocation(), R,
+ /*TemplateArgs*/ nullptr);
+ } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) {
+ return SemaRef.LookupInObjCMethod(R, Consumer.getScope(),
+ Ivar->getIdentifier());
+ }
+ }
+
+ return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false,
+ /*AcceptInvalidDecl*/ true);
+}
+
+namespace {
+class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> {
+ llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs;
+
+public:
+ explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs)
+ : TypoExprs(TypoExprs) {}
+ bool VisitTypoExpr(TypoExpr *TE) {
+ TypoExprs.insert(TE);
+ return true;
+ }
+};
+
+class TransformTypos : public TreeTransform<TransformTypos> {
+ typedef TreeTransform<TransformTypos> BaseTransform;
+
+ VarDecl *InitDecl; // A decl to avoid as a correction because it is in the
+ // process of being initialized.
+ llvm::function_ref<ExprResult(Expr *)> ExprFilter;
+ llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs;
+ llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache;
+ llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution;
+
+ /// \brief Emit diagnostics for all of the TypoExprs encountered.
+ /// If the TypoExprs were successfully corrected, then the diagnostics should
+ /// suggest the corrections. Otherwise the diagnostics will not suggest
+ /// anything (having been passed an empty TypoCorrection).
+ void EmitAllDiagnostics() {
+ for (auto E : TypoExprs) {
+ TypoExpr *TE = cast<TypoExpr>(E);
+ auto &State = SemaRef.getTypoExprState(TE);
+ if (State.DiagHandler) {
+ TypoCorrection TC = State.Consumer->getCurrentCorrection();
+ ExprResult Replacement = TransformCache[TE];
+
+ // Extract the NamedDecl from the transformed TypoExpr and add it to the
+ // TypoCorrection, replacing the existing decls. This ensures the right
+ // NamedDecl is used in diagnostics e.g. in the case where overload
+ // resolution was used to select one from several possible decls that
+ // had been stored in the TypoCorrection.
+ if (auto *ND = getDeclFromExpr(
+ Replacement.isInvalid() ? nullptr : Replacement.get()))
+ TC.setCorrectionDecl(ND);
+
+ State.DiagHandler(TC);
+ }
+ SemaRef.clearDelayedTypo(TE);
+ }
+ }
+
+ /// \brief If corrections for the first TypoExpr have been exhausted for a
+ /// given combination of the other TypoExprs, retry those corrections against
+ /// the next combination of substitutions for the other TypoExprs by advancing
+ /// to the next potential correction of the second TypoExpr. For the second
+ /// and subsequent TypoExprs, if its stream of corrections has been exhausted,
+ /// the stream is reset and the next TypoExpr's stream is advanced by one (a
+ /// TypoExpr's correction stream is advanced by removing the TypoExpr from the
+ /// TransformCache). Returns true if there is still any untried combinations
+ /// of corrections.
+ bool CheckAndAdvanceTypoExprCorrectionStreams() {
+ for (auto TE : TypoExprs) {
+ auto &State = SemaRef.getTypoExprState(TE);
+ TransformCache.erase(TE);
+ if (!State.Consumer->finished())
+ return true;
+ State.Consumer->resetCorrectionStream();
+ }
+ return false;
+ }
+
+ NamedDecl *getDeclFromExpr(Expr *E) {
+ if (auto *OE = dyn_cast_or_null<OverloadExpr>(E))
+ E = OverloadResolution[OE];
+
+ if (!E)
+ return nullptr;
+ if (auto *DRE = dyn_cast<DeclRefExpr>(E))
+ return DRE->getDecl();
+ if (auto *ME = dyn_cast<MemberExpr>(E))
+ return ME->getMemberDecl();
+ // FIXME: Add any other expr types that could be be seen by the delayed typo
+ // correction TreeTransform for which the corresponding TypoCorrection could
+ // contain multiple decls.
+ return nullptr;
+ }
+
+ ExprResult TryTransform(Expr *E) {
+ Sema::SFINAETrap Trap(SemaRef);
+ ExprResult Res = TransformExpr(E);
+ if (Trap.hasErrorOccurred() || Res.isInvalid())
+ return ExprError();
+
+ return ExprFilter(Res.get());
+ }
+
+public:
+ TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter)
+ : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {}
+
+ ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
+ MultiExprArg Args,
+ SourceLocation RParenLoc,
+ Expr *ExecConfig = nullptr) {
+ auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args,
+ RParenLoc, ExecConfig);
+ if (auto *OE = dyn_cast<OverloadExpr>(Callee)) {
+ if (Result.isUsable()) {
+ Expr *ResultCall = Result.get();
+ if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall))
+ ResultCall = BE->getSubExpr();
+ if (auto *CE = dyn_cast<CallExpr>(ResultCall))
+ OverloadResolution[OE] = CE->getCallee();
+ }
+ }
+ return Result;
+ }
+
+ ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); }
+
+ ExprResult Transform(Expr *E) {
+ ExprResult Res;
+ while (true) {
+ Res = TryTransform(E);
+
+ // Exit if either the transform was valid or if there were no TypoExprs
+ // to transform that still have any untried correction candidates..
+ if (!Res.isInvalid() ||
+ !CheckAndAdvanceTypoExprCorrectionStreams())
+ break;
+ }
+
+ // Ensure none of the TypoExprs have multiple typo correction candidates
+ // with the same edit length that pass all the checks and filters.
+ // TODO: Properly handle various permutations of possible corrections when
+ // there is more than one potentially ambiguous typo correction.
+ while (!AmbiguousTypoExprs.empty()) {
+ auto TE = AmbiguousTypoExprs.back();
+ auto Cached = TransformCache[TE];
+ auto &State = SemaRef.getTypoExprState(TE);
+ State.Consumer->saveCurrentPosition();
+ TransformCache.erase(TE);
+ if (!TryTransform(E).isInvalid()) {
+ State.Consumer->resetCorrectionStream();
+ TransformCache.erase(TE);
+ Res = ExprError();
+ break;
+ }
+ AmbiguousTypoExprs.remove(TE);
+ State.Consumer->restoreSavedPosition();
+ TransformCache[TE] = Cached;
+ }
+
+ // Ensure that all of the TypoExprs within the current Expr have been found.
+ if (!Res.isUsable())
+ FindTypoExprs(TypoExprs).TraverseStmt(E);
+
+ EmitAllDiagnostics();
+
+ return Res;
+ }
+
+ ExprResult TransformTypoExpr(TypoExpr *E) {
+ // If the TypoExpr hasn't been seen before, record it. Otherwise, return the
+ // cached transformation result if there is one and the TypoExpr isn't the
+ // first one that was encountered.
+ auto &CacheEntry = TransformCache[E];
+ if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) {
+ return CacheEntry;
+ }
+
+ auto &State = SemaRef.getTypoExprState(E);
+ assert(State.Consumer && "Cannot transform a cleared TypoExpr");
+
+ // For the first TypoExpr and an uncached TypoExpr, find the next likely
+ // typo correction and return it.
+ while (TypoCorrection TC = State.Consumer->getNextCorrection()) {
+ if (InitDecl && TC.getCorrectionDecl() == InitDecl)
+ continue;
+ ExprResult NE = State.RecoveryHandler ?
+ State.RecoveryHandler(SemaRef, E, TC) :
+ attemptRecovery(SemaRef, *State.Consumer, TC);
+ if (!NE.isInvalid()) {
+ // Check whether there may be a second viable correction with the same
+ // edit distance; if so, remember this TypoExpr may have an ambiguous
+ // correction so it can be more thoroughly vetted later.
+ TypoCorrection Next;
+ if ((Next = State.Consumer->peekNextCorrection()) &&
+ Next.getEditDistance(false) == TC.getEditDistance(false)) {
+ AmbiguousTypoExprs.insert(E);
+ } else {
+ AmbiguousTypoExprs.remove(E);
+ }
+ assert(!NE.isUnset() &&
+ "Typo was transformed into a valid-but-null ExprResult");
+ return CacheEntry = NE;
+ }
+ }
+ return CacheEntry = ExprError();
+ }
+};
+}
+
+ExprResult
+Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl,
+ llvm::function_ref<ExprResult(Expr *)> Filter) {
+ // If the current evaluation context indicates there are uncorrected typos
+ // and the current expression isn't guaranteed to not have typos, try to
+ // resolve any TypoExpr nodes that might be in the expression.
+ if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos &&
+ (E->isTypeDependent() || E->isValueDependent() ||
+ E->isInstantiationDependent())) {
+ auto TyposInContext = ExprEvalContexts.back().NumTypos;
+ assert(TyposInContext < ~0U && "Recursive call of CorrectDelayedTyposInExpr");
+ ExprEvalContexts.back().NumTypos = ~0U;
+ auto TyposResolved = DelayedTypos.size();
+ auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E);
+ ExprEvalContexts.back().NumTypos = TyposInContext;
+ TyposResolved -= DelayedTypos.size();
+ if (Result.isInvalid() || Result.get() != E) {
+ ExprEvalContexts.back().NumTypos -= TyposResolved;
+ return Result;
+ }
+ assert(TyposResolved == 0 && "Corrected typo but got same Expr back?");
+ }
+ return E;
+}
+
+ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
+ bool DiscardedValue,
+ bool IsConstexpr,
+ bool IsLambdaInitCaptureInitializer) {
+ ExprResult FullExpr = FE;
+
+ if (!FullExpr.get())
+ return ExprError();
+
+ // If we are an init-expression in a lambdas init-capture, we should not
+ // diagnose an unexpanded pack now (will be diagnosed once lambda-expr
+ // containing full-expression is done).
+ // template<class ... Ts> void test(Ts ... t) {
+ // test([&a(t)]() { <-- (t) is an init-expr that shouldn't be diagnosed now.
+ // return a;
+ // }() ...);
+ // }
+ // FIXME: This is a hack. It would be better if we pushed the lambda scope
+ // when we parse the lambda introducer, and teach capturing (but not
+ // unexpanded pack detection) to walk over LambdaScopeInfos which don't have a
+ // corresponding class yet (that is, have LambdaScopeInfo either represent a
+ // lambda where we've entered the introducer but not the body, or represent a
+ // lambda where we've entered the body, depending on where the
+ // parser/instantiation has got to).
+ if (!IsLambdaInitCaptureInitializer &&
+ DiagnoseUnexpandedParameterPack(FullExpr.get()))
+ return ExprError();
+
+ // Top-level expressions default to 'id' when we're in a debugger.
+ if (DiscardedValue && getLangOpts().DebuggerCastResultToId &&
+ FullExpr.get()->getType() == Context.UnknownAnyTy) {
+ FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType());
+ if (FullExpr.isInvalid())
+ return ExprError();
+ }
+
+ if (DiscardedValue) {
+ FullExpr = CheckPlaceholderExpr(FullExpr.get());
+ if (FullExpr.isInvalid())
+ return ExprError();
+
+ FullExpr = IgnoredValueConversions(FullExpr.get());
+ if (FullExpr.isInvalid())
+ return ExprError();
+ }
+
+ FullExpr = CorrectDelayedTyposInExpr(FullExpr.get());
+ if (FullExpr.isInvalid())
+ return ExprError();
+
+ CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
+
+ // At the end of this full expression (which could be a deeply nested
+ // lambda), if there is a potential capture within the nested lambda,
+ // have the outer capture-able lambda try and capture it.
+ // Consider the following code:
+ // void f(int, int);
+ // void f(const int&, double);
+ // void foo() {
+ // const int x = 10, y = 20;
+ // auto L = [=](auto a) {
+ // auto M = [=](auto b) {
+ // f(x, b); <-- requires x to be captured by L and M
+ // f(y, a); <-- requires y to be captured by L, but not all Ms
+ // };
+ // };
+ // }
+
+ // FIXME: Also consider what happens for something like this that involves
+ // the gnu-extension statement-expressions or even lambda-init-captures:
+ // void f() {
+ // const int n = 0;
+ // auto L = [&](auto a) {
+ // +n + ({ 0; a; });
+ // };
+ // }
+ //
+ // Here, we see +n, and then the full-expression 0; ends, so we don't
+ // capture n (and instead remove it from our list of potential captures),
+ // and then the full-expression +n + ({ 0; }); ends, but it's too late
+ // for us to see that we need to capture n after all.
+
+ LambdaScopeInfo *const CurrentLSI = getCurLambda();
+ // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer
+ // even if CurContext is not a lambda call operator. Refer to that Bug Report
+ // for an example of the code that might cause this asynchrony.
+ // By ensuring we are in the context of a lambda's call operator
+ // we can fix the bug (we only need to check whether we need to capture
+ // if we are within a lambda's body); but per the comments in that
+ // PR, a proper fix would entail :
+ // "Alternative suggestion:
+ // - Add to Sema an integer holding the smallest (outermost) scope
+ // index that we are *lexically* within, and save/restore/set to
+ // FunctionScopes.size() in InstantiatingTemplate's
+ // constructor/destructor.
+ // - Teach the handful of places that iterate over FunctionScopes to
+ // stop at the outermost enclosing lexical scope."
+ const bool IsInLambdaDeclContext = isLambdaCallOperator(CurContext);
+ if (IsInLambdaDeclContext && CurrentLSI &&
+ CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
+ CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI,
+ *this);
+ return MaybeCreateExprWithCleanups(FullExpr);
+}
+
+StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
+ if (!FullStmt) return StmtError();
+
+ return MaybeCreateStmtWithCleanups(FullStmt);
+}
+
+Sema::IfExistsResult
+Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
+ CXXScopeSpec &SS,
+ const DeclarationNameInfo &TargetNameInfo) {
+ DeclarationName TargetName = TargetNameInfo.getName();
+ if (!TargetName)
+ return IER_DoesNotExist;
+
+ // If the name itself is dependent, then the result is dependent.
+ if (TargetName.isDependentName())
+ return IER_Dependent;
+
+ // Do the redeclaration lookup in the current scope.
+ LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
+ Sema::NotForRedeclaration);
+ LookupParsedName(R, S, &SS);
+ R.suppressDiagnostics();
+
+ switch (R.getResultKind()) {
+ case LookupResult::Found:
+ case LookupResult::FoundOverloaded:
+ case LookupResult::FoundUnresolvedValue:
+ case LookupResult::Ambiguous:
+ return IER_Exists;
+
+ case LookupResult::NotFound:
+ return IER_DoesNotExist;
+
+ case LookupResult::NotFoundInCurrentInstantiation:
+ return IER_Dependent;
+ }
+
+ llvm_unreachable("Invalid LookupResult Kind!");
+}
+
+Sema::IfExistsResult
+Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
+ bool IsIfExists, CXXScopeSpec &SS,
+ UnqualifiedId &Name) {
+ DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
+
+ // Check for unexpanded parameter packs.
+ SmallVector<UnexpandedParameterPack, 4> Unexpanded;
+ collectUnexpandedParameterPacks(SS, Unexpanded);
+ collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded);
+ if (!Unexpanded.empty()) {
+ DiagnoseUnexpandedParameterPacks(KeywordLoc,
+ IsIfExists? UPPC_IfExists
+ : UPPC_IfNotExists,
+ Unexpanded);
+ return IER_Error;
+ }
+
+ return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
+}
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaExprMember.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaExprMember.cpp
new file mode 100644
index 0000000..e421349
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaExprMember.cpp
@@ -0,0 +1,1746 @@
+//===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements semantic analysis member access expressions.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/Sema/Overload.h"
+#include "clang/AST/ASTLambda.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Sema/Lookup.h"
+#include "clang/Sema/Scope.h"
+#include "clang/Sema/ScopeInfo.h"
+#include "clang/Sema/SemaInternal.h"
+
+using namespace clang;
+using namespace sema;
+
+typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> BaseSet;
+static bool BaseIsNotInSet(const CXXRecordDecl *Base, void *BasesPtr) {
+ const BaseSet &Bases = *reinterpret_cast<const BaseSet*>(BasesPtr);
+ return !Bases.count(Base->getCanonicalDecl());
+}
+
+/// Determines if the given class is provably not derived from all of
+/// the prospective base classes.
+static bool isProvablyNotDerivedFrom(Sema &SemaRef, CXXRecordDecl *Record,
+ const BaseSet &Bases) {
+ void *BasesPtr = const_cast<void*>(reinterpret_cast<const void*>(&Bases));
+ return BaseIsNotInSet(Record, BasesPtr) &&
+ Record->forallBases(BaseIsNotInSet, BasesPtr);
+}
+
+enum IMAKind {
+ /// The reference is definitely not an instance member access.
+ IMA_Static,
+
+ /// The reference may be an implicit instance member access.
+ IMA_Mixed,
+
+ /// The reference may be to an instance member, but it might be invalid if
+ /// so, because the context is not an instance method.
+ IMA_Mixed_StaticContext,
+
+ /// The reference may be to an instance member, but it is invalid if
+ /// so, because the context is from an unrelated class.
+ IMA_Mixed_Unrelated,
+
+ /// The reference is definitely an implicit instance member access.
+ IMA_Instance,
+
+ /// The reference may be to an unresolved using declaration.
+ IMA_Unresolved,
+
+ /// The reference is a contextually-permitted abstract member reference.
+ IMA_Abstract,
+
+ /// The reference may be to an unresolved using declaration and the
+ /// context is not an instance method.
+ IMA_Unresolved_StaticContext,
+
+ // The reference refers to a field which is not a member of the containing
+ // class, which is allowed because we're in C++11 mode and the context is
+ // unevaluated.
+ IMA_Field_Uneval_Context,
+
+ /// All possible referrents are instance members and the current
+ /// context is not an instance method.
+ IMA_Error_StaticContext,
+
+ /// All possible referrents are instance members of an unrelated
+ /// class.
+ IMA_Error_Unrelated
+};
+
+/// The given lookup names class member(s) and is not being used for
+/// an address-of-member expression. Classify the type of access
+/// according to whether it's possible that this reference names an
+/// instance member. This is best-effort in dependent contexts; it is okay to
+/// conservatively answer "yes", in which case some errors will simply
+/// not be caught until template-instantiation.
+static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
+ const LookupResult &R) {
+ assert(!R.empty() && (*R.begin())->isCXXClassMember());
+
+ DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
+
+ bool isStaticContext = SemaRef.CXXThisTypeOverride.isNull() &&
+ (!isa<CXXMethodDecl>(DC) || cast<CXXMethodDecl>(DC)->isStatic());
+
+ if (R.isUnresolvableResult())
+ return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
+
+ // Collect all the declaring classes of instance members we find.
+ bool hasNonInstance = false;
+ bool isField = false;
+ BaseSet Classes;
+ for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
+ NamedDecl *D = *I;
+
+ if (D->isCXXInstanceMember()) {
+ isField |= isa<FieldDecl>(D) || isa<MSPropertyDecl>(D) ||
+ isa<IndirectFieldDecl>(D);
+
+ CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
+ Classes.insert(R->getCanonicalDecl());
+ }
+ else
+ hasNonInstance = true;
+ }
+
+ // If we didn't find any instance members, it can't be an implicit
+ // member reference.
+ if (Classes.empty())
+ return IMA_Static;
+
+ // C++11 [expr.prim.general]p12:
+ // An id-expression that denotes a non-static data member or non-static
+ // member function of a class can only be used:
+ // (...)
+ // - if that id-expression denotes a non-static data member and it
+ // appears in an unevaluated operand.
+ //
+ // This rule is specific to C++11. However, we also permit this form
+ // in unevaluated inline assembly operands, like the operand to a SIZE.
+ IMAKind AbstractInstanceResult = IMA_Static; // happens to be 'false'
+ assert(!AbstractInstanceResult);
+ switch (SemaRef.ExprEvalContexts.back().Context) {
+ case Sema::Unevaluated:
+ if (isField && SemaRef.getLangOpts().CPlusPlus11)
+ AbstractInstanceResult = IMA_Field_Uneval_Context;
+ break;
+
+ case Sema::UnevaluatedAbstract:
+ AbstractInstanceResult = IMA_Abstract;
+ break;
+
+ case Sema::ConstantEvaluated:
+ case Sema::PotentiallyEvaluated:
+ case Sema::PotentiallyEvaluatedIfUsed:
+ break;
+ }
+
+ // If the current context is not an instance method, it can't be
+ // an implicit member reference.
+ if (isStaticContext) {
+ if (hasNonInstance)
+ return IMA_Mixed_StaticContext;
+
+ return AbstractInstanceResult ? AbstractInstanceResult
+ : IMA_Error_StaticContext;
+ }
+
+ CXXRecordDecl *contextClass;
+ if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
+ contextClass = MD->getParent()->getCanonicalDecl();
+ else
+ contextClass = cast<CXXRecordDecl>(DC);
+
+ // [class.mfct.non-static]p3:
+ // ...is used in the body of a non-static member function of class X,
+ // if name lookup (3.4.1) resolves the name in the id-expression to a
+ // non-static non-type member of some class C [...]
+ // ...if C is not X or a base class of X, the class member access expression
+ // is ill-formed.
+ if (R.getNamingClass() &&
+ contextClass->getCanonicalDecl() !=
+ R.getNamingClass()->getCanonicalDecl()) {
+ // If the naming class is not the current context, this was a qualified
+ // member name lookup, and it's sufficient to check that we have the naming
+ // class as a base class.
+ Classes.clear();
+ Classes.insert(R.getNamingClass()->getCanonicalDecl());
+ }
+
+ // If we can prove that the current context is unrelated to all the
+ // declaring classes, it can't be an implicit member reference (in
+ // which case it's an error if any of those members are selected).
+ if (isProvablyNotDerivedFrom(SemaRef, contextClass, Classes))
+ return hasNonInstance ? IMA_Mixed_Unrelated :
+ AbstractInstanceResult ? AbstractInstanceResult :
+ IMA_Error_Unrelated;
+
+ return (hasNonInstance ? IMA_Mixed : IMA_Instance);
+}
+
+/// Diagnose a reference to a field with no object available.
+static void diagnoseInstanceReference(Sema &SemaRef,
+ const CXXScopeSpec &SS,
+ NamedDecl *Rep,
+ const DeclarationNameInfo &nameInfo) {
+ SourceLocation Loc = nameInfo.getLoc();
+ SourceRange Range(Loc);
+ if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
+
+ // Look through using shadow decls and aliases.
+ Rep = Rep->getUnderlyingDecl();
+
+ DeclContext *FunctionLevelDC = SemaRef.getFunctionLevelDeclContext();
+ CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FunctionLevelDC);
+ CXXRecordDecl *ContextClass = Method ? Method->getParent() : nullptr;
+ CXXRecordDecl *RepClass = dyn_cast<CXXRecordDecl>(Rep->getDeclContext());
+
+ bool InStaticMethod = Method && Method->isStatic();
+ bool IsField = isa<FieldDecl>(Rep) || isa<IndirectFieldDecl>(Rep);
+
+ if (IsField && InStaticMethod)
+ // "invalid use of member 'x' in static member function"
+ SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
+ << Range << nameInfo.getName();
+ else if (ContextClass && RepClass && SS.isEmpty() && !InStaticMethod &&
+ !RepClass->Equals(ContextClass) && RepClass->Encloses(ContextClass))
+ // Unqualified lookup in a non-static member function found a member of an
+ // enclosing class.
+ SemaRef.Diag(Loc, diag::err_nested_non_static_member_use)
+ << IsField << RepClass << nameInfo.getName() << ContextClass << Range;
+ else if (IsField)
+ SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
+ << nameInfo.getName() << Range;
+ else
+ SemaRef.Diag(Loc, diag::err_member_call_without_object)
+ << Range;
+}
+
+/// Builds an expression which might be an implicit member expression.
+ExprResult
+Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
+ SourceLocation TemplateKWLoc,
+ LookupResult &R,
+ const TemplateArgumentListInfo *TemplateArgs) {
+ switch (ClassifyImplicitMemberAccess(*this, R)) {
+ case IMA_Instance:
+ return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, true);
+
+ case IMA_Mixed:
+ case IMA_Mixed_Unrelated:
+ case IMA_Unresolved:
+ return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, false);
+
+ case IMA_Field_Uneval_Context:
+ Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use)
+ << R.getLookupNameInfo().getName();
+ // Fall through.
+ case IMA_Static:
+ case IMA_Abstract:
+ case IMA_Mixed_StaticContext:
+ case IMA_Unresolved_StaticContext:
+ if (TemplateArgs || TemplateKWLoc.isValid())
+ return BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, TemplateArgs);
+ return BuildDeclarationNameExpr(SS, R, false);
+
+ case IMA_Error_StaticContext:
+ case IMA_Error_Unrelated:
+ diagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
+ R.getLookupNameInfo());
+ return ExprError();
+ }
+
+ llvm_unreachable("unexpected instance member access kind");
+}
+
+/// Check an ext-vector component access expression.
+///
+/// VK should be set in advance to the value kind of the base
+/// expression.
+static QualType
+CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
+ SourceLocation OpLoc, const IdentifierInfo *CompName,
+ SourceLocation CompLoc) {
+ // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
+ // see FIXME there.
+ //
+ // FIXME: This logic can be greatly simplified by splitting it along
+ // halving/not halving and reworking the component checking.
+ const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
+
+ // The vector accessor can't exceed the number of elements.
+ const char *compStr = CompName->getNameStart();
+
+ // This flag determines whether or not the component is one of the four
+ // special names that indicate a subset of exactly half the elements are
+ // to be selected.
+ bool HalvingSwizzle = false;
+
+ // This flag determines whether or not CompName has an 's' char prefix,
+ // indicating that it is a string of hex values to be used as vector indices.
+ bool HexSwizzle = (*compStr == 's' || *compStr == 'S') && compStr[1];
+
+ bool HasRepeated = false;
+ bool HasIndex[16] = {};
+
+ int Idx;
+
+ // Check that we've found one of the special components, or that the component
+ // names must come from the same set.
+ if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
+ !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
+ HalvingSwizzle = true;
+ } else if (!HexSwizzle &&
+ (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
+ do {
+ if (HasIndex[Idx]) HasRepeated = true;
+ HasIndex[Idx] = true;
+ compStr++;
+ } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
+ } else {
+ if (HexSwizzle) compStr++;
+ while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
+ if (HasIndex[Idx]) HasRepeated = true;
+ HasIndex[Idx] = true;
+ compStr++;
+ }
+ }
+
+ if (!HalvingSwizzle && *compStr) {
+ // We didn't get to the end of the string. This means the component names
+ // didn't come from the same set *or* we encountered an illegal name.
+ S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
+ << StringRef(compStr, 1) << SourceRange(CompLoc);
+ return QualType();
+ }
+
+ // Ensure no component accessor exceeds the width of the vector type it
+ // operates on.
+ if (!HalvingSwizzle) {
+ compStr = CompName->getNameStart();
+
+ if (HexSwizzle)
+ compStr++;
+
+ while (*compStr) {
+ if (!vecType->isAccessorWithinNumElements(*compStr++)) {
+ S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
+ << baseType << SourceRange(CompLoc);
+ return QualType();
+ }
+ }
+ }
+
+ // The component accessor looks fine - now we need to compute the actual type.
+ // The vector type is implied by the component accessor. For example,
+ // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
+ // vec4.s0 is a float, vec4.s23 is a vec3, etc.
+ // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
+ unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
+ : CompName->getLength();
+ if (HexSwizzle)
+ CompSize--;
+
+ if (CompSize == 1)
+ return vecType->getElementType();
+
+ if (HasRepeated) VK = VK_RValue;
+
+ QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
+ // Now look up the TypeDefDecl from the vector type. Without this,
+ // diagostics look bad. We want extended vector types to appear built-in.
+ for (Sema::ExtVectorDeclsType::iterator
+ I = S.ExtVectorDecls.begin(S.getExternalSource()),
+ E = S.ExtVectorDecls.end();
+ I != E; ++I) {
+ if ((*I)->getUnderlyingType() == VT)
+ return S.Context.getTypedefType(*I);
+ }
+
+ return VT; // should never get here (a typedef type should always be found).
+}
+
+static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
+ IdentifierInfo *Member,
+ const Selector &Sel,
+ ASTContext &Context) {
+ if (Member)
+ if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
+ return PD;
+ if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
+ return OMD;
+
+ for (const auto *I : PDecl->protocols()) {
+ if (Decl *D = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel,
+ Context))
+ return D;
+ }
+ return nullptr;
+}
+
+static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
+ IdentifierInfo *Member,
+ const Selector &Sel,
+ ASTContext &Context) {
+ // Check protocols on qualified interfaces.
+ Decl *GDecl = nullptr;
+ for (const auto *I : QIdTy->quals()) {
+ if (Member)
+ if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration(Member)) {
+ GDecl = PD;
+ break;
+ }
+ // Also must look for a getter or setter name which uses property syntax.
+ if (ObjCMethodDecl *OMD = I->getInstanceMethod(Sel)) {
+ GDecl = OMD;
+ break;
+ }
+ }
+ if (!GDecl) {
+ for (const auto *I : QIdTy->quals()) {
+ // Search in the protocol-qualifier list of current protocol.
+ GDecl = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel, Context);
+ if (GDecl)
+ return GDecl;
+ }
+ }
+ return GDecl;
+}
+
+ExprResult
+Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
+ bool IsArrow, SourceLocation OpLoc,
+ const CXXScopeSpec &SS,
+ SourceLocation TemplateKWLoc,
+ NamedDecl *FirstQualifierInScope,
+ const DeclarationNameInfo &NameInfo,
+ const TemplateArgumentListInfo *TemplateArgs) {
+ // Even in dependent contexts, try to diagnose base expressions with
+ // obviously wrong types, e.g.:
+ //
+ // T* t;
+ // t.f;
+ //
+ // In Obj-C++, however, the above expression is valid, since it could be
+ // accessing the 'f' property if T is an Obj-C interface. The extra check
+ // allows this, while still reporting an error if T is a struct pointer.
+ if (!IsArrow) {
+ const PointerType *PT = BaseType->getAs<PointerType>();
+ if (PT && (!getLangOpts().ObjC1 ||
+ PT->getPointeeType()->isRecordType())) {
+ assert(BaseExpr && "cannot happen with implicit member accesses");
+ Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
+ << BaseType << BaseExpr->getSourceRange() << NameInfo.getSourceRange();
+ return ExprError();
+ }
+ }
+
+ assert(BaseType->isDependentType() ||
+ NameInfo.getName().isDependentName() ||
+ isDependentScopeSpecifier(SS));
+
+ // Get the type being accessed in BaseType. If this is an arrow, the BaseExpr
+ // must have pointer type, and the accessed type is the pointee.
+ return CXXDependentScopeMemberExpr::Create(
+ Context, BaseExpr, BaseType, IsArrow, OpLoc,
+ SS.getWithLocInContext(Context), TemplateKWLoc, FirstQualifierInScope,
+ NameInfo, TemplateArgs);
+}
+
+/// We know that the given qualified member reference points only to
+/// declarations which do not belong to the static type of the base
+/// expression. Diagnose the problem.
+static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
+ Expr *BaseExpr,
+ QualType BaseType,
+ const CXXScopeSpec &SS,
+ NamedDecl *rep,
+ const DeclarationNameInfo &nameInfo) {
+ // If this is an implicit member access, use a different set of
+ // diagnostics.
+ if (!BaseExpr)
+ return diagnoseInstanceReference(SemaRef, SS, rep, nameInfo);
+
+ SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
+ << SS.getRange() << rep << BaseType;
+}
+
+// Check whether the declarations we found through a nested-name
+// specifier in a member expression are actually members of the base
+// type. The restriction here is:
+//
+// C++ [expr.ref]p2:
+// ... In these cases, the id-expression shall name a
+// member of the class or of one of its base classes.
+//
+// So it's perfectly legitimate for the nested-name specifier to name
+// an unrelated class, and for us to find an overload set including
+// decls from classes which are not superclasses, as long as the decl
+// we actually pick through overload resolution is from a superclass.
+bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
+ QualType BaseType,
+ const CXXScopeSpec &SS,
+ const LookupResult &R) {
+ CXXRecordDecl *BaseRecord =
+ cast_or_null<CXXRecordDecl>(computeDeclContext(BaseType));
+ if (!BaseRecord) {
+ // We can't check this yet because the base type is still
+ // dependent.
+ assert(BaseType->isDependentType());
+ return false;
+ }
+
+ for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
+ // If this is an implicit member reference and we find a
+ // non-instance member, it's not an error.
+ if (!BaseExpr && !(*I)->isCXXInstanceMember())
+ return false;
+
+ // Note that we use the DC of the decl, not the underlying decl.
+ DeclContext *DC = (*I)->getDeclContext();
+ while (DC->isTransparentContext())
+ DC = DC->getParent();
+
+ if (!DC->isRecord())
+ continue;
+
+ CXXRecordDecl *MemberRecord = cast<CXXRecordDecl>(DC)->getCanonicalDecl();
+ if (BaseRecord->getCanonicalDecl() == MemberRecord ||
+ !BaseRecord->isProvablyNotDerivedFrom(MemberRecord))
+ return false;
+ }
+
+ DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
+ R.getRepresentativeDecl(),
+ R.getLookupNameInfo());
+ return true;
+}
+
+namespace {
+
+// Callback to only accept typo corrections that are either a ValueDecl or a
+// FunctionTemplateDecl and are declared in the current record or, for a C++
+// classes, one of its base classes.
+class RecordMemberExprValidatorCCC : public CorrectionCandidateCallback {
+public:
+ explicit RecordMemberExprValidatorCCC(const RecordType *RTy)
+ : Record(RTy->getDecl()) {
+ // Don't add bare keywords to the consumer since they will always fail
+ // validation by virtue of not being associated with any decls.
+ WantTypeSpecifiers = false;
+ WantExpressionKeywords = false;
+ WantCXXNamedCasts = false;
+ WantFunctionLikeCasts = false;
+ WantRemainingKeywords = false;
+ }
+
+ bool ValidateCandidate(const TypoCorrection &candidate) override {
+ NamedDecl *ND = candidate.getCorrectionDecl();
+ // Don't accept candidates that cannot be member functions, constants,
+ // variables, or templates.
+ if (!ND || !(isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)))
+ return false;
+
+ // Accept candidates that occur in the current record.
+ if (Record->containsDecl(ND))
+ return true;
+
+ if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record)) {
+ // Accept candidates that occur in any of the current class' base classes.
+ for (const auto &BS : RD->bases()) {
+ if (const RecordType *BSTy =
+ dyn_cast_or_null<RecordType>(BS.getType().getTypePtrOrNull())) {
+ if (BSTy->getDecl()->containsDecl(ND))
+ return true;
+ }
+ }
+ }
+
+ return false;
+ }
+
+private:
+ const RecordDecl *const Record;
+};
+
+}
+
+static bool LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
+ Expr *BaseExpr,
+ const RecordType *RTy,
+ SourceLocation OpLoc, bool IsArrow,
+ CXXScopeSpec &SS, bool HasTemplateArgs,
+ TypoExpr *&TE) {
+ SourceRange BaseRange = BaseExpr ? BaseExpr->getSourceRange() : SourceRange();
+ RecordDecl *RDecl = RTy->getDecl();
+ if (!SemaRef.isThisOutsideMemberFunctionBody(QualType(RTy, 0)) &&
+ SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
+ diag::err_typecheck_incomplete_tag,
+ BaseRange))
+ return true;
+
+ if (HasTemplateArgs) {
+ // LookupTemplateName doesn't expect these both to exist simultaneously.
+ QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
+
+ bool MOUS;
+ SemaRef.LookupTemplateName(R, nullptr, SS, ObjectType, false, MOUS);
+ return false;
+ }
+
+ DeclContext *DC = RDecl;
+ if (SS.isSet()) {
+ // If the member name was a qualified-id, look into the
+ // nested-name-specifier.
+ DC = SemaRef.computeDeclContext(SS, false);
+
+ if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
+ SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
+ << SS.getRange() << DC;
+ return true;
+ }
+
+ assert(DC && "Cannot handle non-computable dependent contexts in lookup");
+
+ if (!isa<TypeDecl>(DC)) {
+ SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
+ << DC << SS.getRange();
+ return true;
+ }
+ }
+
+ // The record definition is complete, now look up the member.
+ SemaRef.LookupQualifiedName(R, DC, SS);
+
+ if (!R.empty())
+ return false;
+
+ DeclarationName Typo = R.getLookupName();
+ SourceLocation TypoLoc = R.getNameLoc();
+ TE = SemaRef.CorrectTypoDelayed(
+ R.getLookupNameInfo(), R.getLookupKind(), nullptr, &SS,
+ llvm::make_unique<RecordMemberExprValidatorCCC>(RTy),
+ [=, &SemaRef](const TypoCorrection &TC) {
+ if (TC) {
+ assert(!TC.isKeyword() &&
+ "Got a keyword as a correction for a member!");
+ bool DroppedSpecifier =
+ TC.WillReplaceSpecifier() &&
+ Typo.getAsString() == TC.getAsString(SemaRef.getLangOpts());
+ SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
+ << Typo << DC << DroppedSpecifier
+ << SS.getRange());
+ } else {
+ SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << DC << BaseRange;
+ }
+ },
+ [=](Sema &SemaRef, TypoExpr *TE, TypoCorrection TC) mutable {
+ R.clear(); // Ensure there's no decls lingering in the shared state.
+ R.suppressDiagnostics();
+ R.setLookupName(TC.getCorrection());
+ for (NamedDecl *ND : TC)
+ R.addDecl(ND);
+ R.resolveKind();
+ return SemaRef.BuildMemberReferenceExpr(
+ BaseExpr, BaseExpr->getType(), OpLoc, IsArrow, SS, SourceLocation(),
+ nullptr, R, nullptr);
+ },
+ Sema::CTK_ErrorRecovery, DC);
+
+ return false;
+}
+
+static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
+ ExprResult &BaseExpr, bool &IsArrow,
+ SourceLocation OpLoc, CXXScopeSpec &SS,
+ Decl *ObjCImpDecl, bool HasTemplateArgs);
+
+ExprResult
+Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
+ SourceLocation OpLoc, bool IsArrow,
+ CXXScopeSpec &SS,
+ SourceLocation TemplateKWLoc,
+ NamedDecl *FirstQualifierInScope,
+ const DeclarationNameInfo &NameInfo,
+ const TemplateArgumentListInfo *TemplateArgs,
+ ActOnMemberAccessExtraArgs *ExtraArgs) {
+ if (BaseType->isDependentType() ||
+ (SS.isSet() && isDependentScopeSpecifier(SS)))
+ return ActOnDependentMemberExpr(Base, BaseType,
+ IsArrow, OpLoc,
+ SS, TemplateKWLoc, FirstQualifierInScope,
+ NameInfo, TemplateArgs);
+
+ LookupResult R(*this, NameInfo, LookupMemberName);
+
+ // Implicit member accesses.
+ if (!Base) {
+ TypoExpr *TE = nullptr;
+ QualType RecordTy = BaseType;
+ if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
+ if (LookupMemberExprInRecord(*this, R, nullptr,
+ RecordTy->getAs<RecordType>(), OpLoc, IsArrow,
+ SS, TemplateArgs != nullptr, TE))
+ return ExprError();
+ if (TE)
+ return TE;
+
+ // Explicit member accesses.
+ } else {
+ ExprResult BaseResult = Base;
+ ExprResult Result = LookupMemberExpr(
+ *this, R, BaseResult, IsArrow, OpLoc, SS,
+ ExtraArgs ? ExtraArgs->ObjCImpDecl : nullptr,
+ TemplateArgs != nullptr);
+
+ if (BaseResult.isInvalid())
+ return ExprError();
+ Base = BaseResult.get();
+
+ if (Result.isInvalid())
+ return ExprError();
+
+ if (Result.get())
+ return Result;
+
+ // LookupMemberExpr can modify Base, and thus change BaseType
+ BaseType = Base->getType();
+ }
+
+ return BuildMemberReferenceExpr(Base, BaseType,
+ OpLoc, IsArrow, SS, TemplateKWLoc,
+ FirstQualifierInScope, R, TemplateArgs,
+ false, ExtraArgs);
+}
+
+static ExprResult
+BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
+ SourceLocation OpLoc, const CXXScopeSpec &SS,
+ FieldDecl *Field, DeclAccessPair FoundDecl,
+ const DeclarationNameInfo &MemberNameInfo);
+
+ExprResult
+Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
+ SourceLocation loc,
+ IndirectFieldDecl *indirectField,
+ DeclAccessPair foundDecl,
+ Expr *baseObjectExpr,
+ SourceLocation opLoc) {
+ // First, build the expression that refers to the base object.
+
+ bool baseObjectIsPointer = false;
+ Qualifiers baseQuals;
+
+ // Case 1: the base of the indirect field is not a field.
+ VarDecl *baseVariable = indirectField->getVarDecl();
+ CXXScopeSpec EmptySS;
+ if (baseVariable) {
+ assert(baseVariable->getType()->isRecordType());
+
+ // In principle we could have a member access expression that
+ // accesses an anonymous struct/union that's a static member of
+ // the base object's class. However, under the current standard,
+ // static data members cannot be anonymous structs or unions.
+ // Supporting this is as easy as building a MemberExpr here.
+ assert(!baseObjectExpr && "anonymous struct/union is static data member?");
+
+ DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
+
+ ExprResult result
+ = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
+ if (result.isInvalid()) return ExprError();
+
+ baseObjectExpr = result.get();
+ baseObjectIsPointer = false;
+ baseQuals = baseObjectExpr->getType().getQualifiers();
+
+ // Case 2: the base of the indirect field is a field and the user
+ // wrote a member expression.
+ } else if (baseObjectExpr) {
+ // The caller provided the base object expression. Determine
+ // whether its a pointer and whether it adds any qualifiers to the
+ // anonymous struct/union fields we're looking into.
+ QualType objectType = baseObjectExpr->getType();
+
+ if (const PointerType *ptr = objectType->getAs<PointerType>()) {
+ baseObjectIsPointer = true;
+ objectType = ptr->getPointeeType();
+ } else {
+ baseObjectIsPointer = false;
+ }
+ baseQuals = objectType.getQualifiers();
+
+ // Case 3: the base of the indirect field is a field and we should
+ // build an implicit member access.
+ } else {
+ // We've found a member of an anonymous struct/union that is
+ // inside a non-anonymous struct/union, so in a well-formed
+ // program our base object expression is "this".
+ QualType ThisTy = getCurrentThisType();
+ if (ThisTy.isNull()) {
+ Diag(loc, diag::err_invalid_member_use_in_static_method)
+ << indirectField->getDeclName();
+ return ExprError();
+ }
+
+ // Our base object expression is "this".
+ CheckCXXThisCapture(loc);
+ baseObjectExpr
+ = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/ true);
+ baseObjectIsPointer = true;
+ baseQuals = ThisTy->castAs<PointerType>()->getPointeeType().getQualifiers();
+ }
+
+ // Build the implicit member references to the field of the
+ // anonymous struct/union.
+ Expr *result = baseObjectExpr;
+ IndirectFieldDecl::chain_iterator
+ FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
+
+ // Build the first member access in the chain with full information.
+ if (!baseVariable) {
+ FieldDecl *field = cast<FieldDecl>(*FI);
+
+ // Make a nameInfo that properly uses the anonymous name.
+ DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
+
+ result = BuildFieldReferenceExpr(*this, result, baseObjectIsPointer,
+ SourceLocation(), EmptySS, field,
+ foundDecl, memberNameInfo).get();
+ if (!result)
+ return ExprError();
+
+ // FIXME: check qualified member access
+ }
+
+ // In all cases, we should now skip the first declaration in the chain.
+ ++FI;
+
+ while (FI != FEnd) {
+ FieldDecl *field = cast<FieldDecl>(*FI++);
+
+ // FIXME: these are somewhat meaningless
+ DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
+ DeclAccessPair fakeFoundDecl =
+ DeclAccessPair::make(field, field->getAccess());
+
+ result =
+ BuildFieldReferenceExpr(*this, result, /*isarrow*/ false,
+ SourceLocation(), (FI == FEnd ? SS : EmptySS),
+ field, fakeFoundDecl, memberNameInfo).get();
+ }
+
+ return result;
+}
+
+static ExprResult
+BuildMSPropertyRefExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
+ const CXXScopeSpec &SS,
+ MSPropertyDecl *PD,
+ const DeclarationNameInfo &NameInfo) {
+ // Property names are always simple identifiers and therefore never
+ // require any interesting additional storage.
+ return new (S.Context) MSPropertyRefExpr(BaseExpr, PD, IsArrow,
+ S.Context.PseudoObjectTy, VK_LValue,
+ SS.getWithLocInContext(S.Context),
+ NameInfo.getLoc());
+}
+
+/// \brief Build a MemberExpr AST node.
+static MemberExpr *BuildMemberExpr(
+ Sema &SemaRef, ASTContext &C, Expr *Base, bool isArrow,
+ SourceLocation OpLoc, const CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
+ ValueDecl *Member, DeclAccessPair FoundDecl,
+ const DeclarationNameInfo &MemberNameInfo, QualType Ty, ExprValueKind VK,
+ ExprObjectKind OK, const TemplateArgumentListInfo *TemplateArgs = nullptr) {
+ assert((!isArrow || Base->isRValue()) && "-> base must be a pointer rvalue");
+ MemberExpr *E = MemberExpr::Create(
+ C, Base, isArrow, OpLoc, SS.getWithLocInContext(C), TemplateKWLoc, Member,
+ FoundDecl, MemberNameInfo, TemplateArgs, Ty, VK, OK);
+ SemaRef.MarkMemberReferenced(E);
+ return E;
+}
+
+ExprResult
+Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
+ SourceLocation OpLoc, bool IsArrow,
+ const CXXScopeSpec &SS,
+ SourceLocation TemplateKWLoc,
+ NamedDecl *FirstQualifierInScope,
+ LookupResult &R,
+ const TemplateArgumentListInfo *TemplateArgs,
+ bool SuppressQualifierCheck,
+ ActOnMemberAccessExtraArgs *ExtraArgs) {
+ QualType BaseType = BaseExprType;
+ if (IsArrow) {
+ assert(BaseType->isPointerType());
+ BaseType = BaseType->castAs<PointerType>()->getPointeeType();
+ }
+ R.setBaseObjectType(BaseType);
+
+ LambdaScopeInfo *const CurLSI = getCurLambda();
+ // If this is an implicit member reference and the overloaded
+ // name refers to both static and non-static member functions
+ // (i.e. BaseExpr is null) and if we are currently processing a lambda,
+ // check if we should/can capture 'this'...
+ // Keep this example in mind:
+ // struct X {
+ // void f(int) { }
+ // static void f(double) { }
+ //
+ // int g() {
+ // auto L = [=](auto a) {
+ // return [](int i) {
+ // return [=](auto b) {
+ // f(b);
+ // //f(decltype(a){});
+ // };
+ // };
+ // };
+ // auto M = L(0.0);
+ // auto N = M(3);
+ // N(5.32); // OK, must not error.
+ // return 0;
+ // }
+ // };
+ //
+ if (!BaseExpr && CurLSI) {
+ SourceLocation Loc = R.getNameLoc();
+ if (SS.getRange().isValid())
+ Loc = SS.getRange().getBegin();
+ DeclContext *EnclosingFunctionCtx = CurContext->getParent()->getParent();
+ // If the enclosing function is not dependent, then this lambda is
+ // capture ready, so if we can capture this, do so.
+ if (!EnclosingFunctionCtx->isDependentContext()) {
+ // If the current lambda and all enclosing lambdas can capture 'this' -
+ // then go ahead and capture 'this' (since our unresolved overload set
+ // contains both static and non-static member functions).
+ if (!CheckCXXThisCapture(Loc, /*Explcit*/false, /*Diagnose*/false))
+ CheckCXXThisCapture(Loc);
+ } else if (CurContext->isDependentContext()) {
+ // ... since this is an implicit member reference, that might potentially
+ // involve a 'this' capture, mark 'this' for potential capture in
+ // enclosing lambdas.
+ if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
+ CurLSI->addPotentialThisCapture(Loc);
+ }
+ }
+ const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
+ DeclarationName MemberName = MemberNameInfo.getName();
+ SourceLocation MemberLoc = MemberNameInfo.getLoc();
+
+ if (R.isAmbiguous())
+ return ExprError();
+
+ if (R.empty()) {
+ // Rederive where we looked up.
+ DeclContext *DC = (SS.isSet()
+ ? computeDeclContext(SS, false)
+ : BaseType->getAs<RecordType>()->getDecl());
+
+ if (ExtraArgs) {
+ ExprResult RetryExpr;
+ if (!IsArrow && BaseExpr) {
+ SFINAETrap Trap(*this, true);
+ ParsedType ObjectType;
+ bool MayBePseudoDestructor = false;
+ RetryExpr = ActOnStartCXXMemberReference(getCurScope(), BaseExpr,
+ OpLoc, tok::arrow, ObjectType,
+ MayBePseudoDestructor);
+ if (RetryExpr.isUsable() && !Trap.hasErrorOccurred()) {
+ CXXScopeSpec TempSS(SS);
+ RetryExpr = ActOnMemberAccessExpr(
+ ExtraArgs->S, RetryExpr.get(), OpLoc, tok::arrow, TempSS,
+ TemplateKWLoc, ExtraArgs->Id, ExtraArgs->ObjCImpDecl);
+ }
+ if (Trap.hasErrorOccurred())
+ RetryExpr = ExprError();
+ }
+ if (RetryExpr.isUsable()) {
+ Diag(OpLoc, diag::err_no_member_overloaded_arrow)
+ << MemberName << DC << FixItHint::CreateReplacement(OpLoc, "->");
+ return RetryExpr;
+ }
+ }
+
+ Diag(R.getNameLoc(), diag::err_no_member)
+ << MemberName << DC
+ << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
+ return ExprError();
+ }
+
+ // Diagnose lookups that find only declarations from a non-base
+ // type. This is possible for either qualified lookups (which may
+ // have been qualified with an unrelated type) or implicit member
+ // expressions (which were found with unqualified lookup and thus
+ // may have come from an enclosing scope). Note that it's okay for
+ // lookup to find declarations from a non-base type as long as those
+ // aren't the ones picked by overload resolution.
+ if ((SS.isSet() || !BaseExpr ||
+ (isa<CXXThisExpr>(BaseExpr) &&
+ cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
+ !SuppressQualifierCheck &&
+ CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
+ return ExprError();
+
+ // Construct an unresolved result if we in fact got an unresolved
+ // result.
+ if (R.isOverloadedResult() || R.isUnresolvableResult()) {
+ // Suppress any lookup-related diagnostics; we'll do these when we
+ // pick a member.
+ R.suppressDiagnostics();
+
+ UnresolvedMemberExpr *MemExpr
+ = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
+ BaseExpr, BaseExprType,
+ IsArrow, OpLoc,
+ SS.getWithLocInContext(Context),
+ TemplateKWLoc, MemberNameInfo,
+ TemplateArgs, R.begin(), R.end());
+
+ return MemExpr;
+ }
+
+ assert(R.isSingleResult());
+ DeclAccessPair FoundDecl = R.begin().getPair();
+ NamedDecl *MemberDecl = R.getFoundDecl();
+
+ // FIXME: diagnose the presence of template arguments now.
+
+ // If the decl being referenced had an error, return an error for this
+ // sub-expr without emitting another error, in order to avoid cascading
+ // error cases.
+ if (MemberDecl->isInvalidDecl())
+ return ExprError();
+
+ // Handle the implicit-member-access case.
+ if (!BaseExpr) {
+ // If this is not an instance member, convert to a non-member access.
+ if (!MemberDecl->isCXXInstanceMember())
+ return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl);
+
+ SourceLocation Loc = R.getNameLoc();
+ if (SS.getRange().isValid())
+ Loc = SS.getRange().getBegin();
+ CheckCXXThisCapture(Loc);
+ BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
+ }
+
+ bool ShouldCheckUse = true;
+ if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
+ // Don't diagnose the use of a virtual member function unless it's
+ // explicitly qualified.
+ if (MD->isVirtual() && !SS.isSet())
+ ShouldCheckUse = false;
+ }
+
+ // Check the use of this member.
+ if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc))
+ return ExprError();
+
+ if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
+ return BuildFieldReferenceExpr(*this, BaseExpr, IsArrow, OpLoc, SS, FD,
+ FoundDecl, MemberNameInfo);
+
+ if (MSPropertyDecl *PD = dyn_cast<MSPropertyDecl>(MemberDecl))
+ return BuildMSPropertyRefExpr(*this, BaseExpr, IsArrow, SS, PD,
+ MemberNameInfo);
+
+ if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
+ // We may have found a field within an anonymous union or struct
+ // (C++ [class.union]).
+ return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
+ FoundDecl, BaseExpr,
+ OpLoc);
+
+ if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
+ return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, OpLoc, SS,
+ TemplateKWLoc, Var, FoundDecl, MemberNameInfo,
+ Var->getType().getNonReferenceType(), VK_LValue,
+ OK_Ordinary);
+ }
+
+ if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
+ ExprValueKind valueKind;
+ QualType type;
+ if (MemberFn->isInstance()) {
+ valueKind = VK_RValue;
+ type = Context.BoundMemberTy;
+ } else {
+ valueKind = VK_LValue;
+ type = MemberFn->getType();
+ }
+
+ return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, OpLoc, SS,
+ TemplateKWLoc, MemberFn, FoundDecl, MemberNameInfo,
+ type, valueKind, OK_Ordinary);
+ }
+ assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
+
+ if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
+ return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, OpLoc, SS,
+ TemplateKWLoc, Enum, FoundDecl, MemberNameInfo,
+ Enum->getType(), VK_RValue, OK_Ordinary);
+ }
+
+ // We found something that we didn't expect. Complain.
+ if (isa<TypeDecl>(MemberDecl))
+ Diag(MemberLoc, diag::err_typecheck_member_reference_type)
+ << MemberName << BaseType << int(IsArrow);
+ else
+ Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
+ << MemberName << BaseType << int(IsArrow);
+
+ Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
+ << MemberName;
+ R.suppressDiagnostics();
+ return ExprError();
+}
+
+/// Given that normal member access failed on the given expression,
+/// and given that the expression's type involves builtin-id or
+/// builtin-Class, decide whether substituting in the redefinition
+/// types would be profitable. The redefinition type is whatever
+/// this translation unit tried to typedef to id/Class; we store
+/// it to the side and then re-use it in places like this.
+static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) {
+ const ObjCObjectPointerType *opty
+ = base.get()->getType()->getAs<ObjCObjectPointerType>();
+ if (!opty) return false;
+
+ const ObjCObjectType *ty = opty->getObjectType();
+
+ QualType redef;
+ if (ty->isObjCId()) {
+ redef = S.Context.getObjCIdRedefinitionType();
+ } else if (ty->isObjCClass()) {
+ redef = S.Context.getObjCClassRedefinitionType();
+ } else {
+ return false;
+ }
+
+ // Do the substitution as long as the redefinition type isn't just a
+ // possibly-qualified pointer to builtin-id or builtin-Class again.
+ opty = redef->getAs<ObjCObjectPointerType>();
+ if (opty && !opty->getObjectType()->getInterface())
+ return false;
+
+ base = S.ImpCastExprToType(base.get(), redef, CK_BitCast);
+ return true;
+}
+
+static bool isRecordType(QualType T) {
+ return T->isRecordType();
+}
+static bool isPointerToRecordType(QualType T) {
+ if (const PointerType *PT = T->getAs<PointerType>())
+ return PT->getPointeeType()->isRecordType();
+ return false;
+}
+
+/// Perform conversions on the LHS of a member access expression.
+ExprResult
+Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) {
+ if (IsArrow && !Base->getType()->isFunctionType())
+ return DefaultFunctionArrayLvalueConversion(Base);
+
+ return CheckPlaceholderExpr(Base);
+}
+
+/// Look up the given member of the given non-type-dependent
+/// expression. This can return in one of two ways:
+/// * If it returns a sentinel null-but-valid result, the caller will
+/// assume that lookup was performed and the results written into
+/// the provided structure. It will take over from there.
+/// * Otherwise, the returned expression will be produced in place of
+/// an ordinary member expression.
+///
+/// The ObjCImpDecl bit is a gross hack that will need to be properly
+/// fixed for ObjC++.
+static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
+ ExprResult &BaseExpr, bool &IsArrow,
+ SourceLocation OpLoc, CXXScopeSpec &SS,
+ Decl *ObjCImpDecl, bool HasTemplateArgs) {
+ assert(BaseExpr.get() && "no base expression");
+
+ // Perform default conversions.
+ BaseExpr = S.PerformMemberExprBaseConversion(BaseExpr.get(), IsArrow);
+ if (BaseExpr.isInvalid())
+ return ExprError();
+
+ QualType BaseType = BaseExpr.get()->getType();
+ assert(!BaseType->isDependentType());
+
+ DeclarationName MemberName = R.getLookupName();
+ SourceLocation MemberLoc = R.getNameLoc();
+
+ // For later type-checking purposes, turn arrow accesses into dot
+ // accesses. The only access type we support that doesn't follow
+ // the C equivalence "a->b === (*a).b" is ObjC property accesses,
+ // and those never use arrows, so this is unaffected.
+ if (IsArrow) {
+ if (const PointerType *Ptr = BaseType->getAs<PointerType>())
+ BaseType = Ptr->getPointeeType();
+ else if (const ObjCObjectPointerType *Ptr
+ = BaseType->getAs<ObjCObjectPointerType>())
+ BaseType = Ptr->getPointeeType();
+ else if (BaseType->isRecordType()) {
+ // Recover from arrow accesses to records, e.g.:
+ // struct MyRecord foo;
+ // foo->bar
+ // This is actually well-formed in C++ if MyRecord has an
+ // overloaded operator->, but that should have been dealt with
+ // by now--or a diagnostic message already issued if a problem
+ // was encountered while looking for the overloaded operator->.
+ if (!S.getLangOpts().CPlusPlus) {
+ S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
+ << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
+ << FixItHint::CreateReplacement(OpLoc, ".");
+ }
+ IsArrow = false;
+ } else if (BaseType->isFunctionType()) {
+ goto fail;
+ } else {
+ S.Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
+ << BaseType << BaseExpr.get()->getSourceRange();
+ return ExprError();
+ }
+ }
+
+ // Handle field access to simple records.
+ if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
+ TypoExpr *TE = nullptr;
+ if (LookupMemberExprInRecord(S, R, BaseExpr.get(), RTy,
+ OpLoc, IsArrow, SS, HasTemplateArgs, TE))
+ return ExprError();
+
+ // Returning valid-but-null is how we indicate to the caller that
+ // the lookup result was filled in. If typo correction was attempted and
+ // failed, the lookup result will have been cleared--that combined with the
+ // valid-but-null ExprResult will trigger the appropriate diagnostics.
+ return ExprResult(TE);
+ }
+
+ // Handle ivar access to Objective-C objects.
+ if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
+ if (!SS.isEmpty() && !SS.isInvalid()) {
+ S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
+ << 1 << SS.getScopeRep()
+ << FixItHint::CreateRemoval(SS.getRange());
+ SS.clear();
+ }
+
+ IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
+
+ // There are three cases for the base type:
+ // - builtin id (qualified or unqualified)
+ // - builtin Class (qualified or unqualified)
+ // - an interface
+ ObjCInterfaceDecl *IDecl = OTy->getInterface();
+ if (!IDecl) {
+ if (S.getLangOpts().ObjCAutoRefCount &&
+ (OTy->isObjCId() || OTy->isObjCClass()))
+ goto fail;
+ // There's an implicit 'isa' ivar on all objects.
+ // But we only actually find it this way on objects of type 'id',
+ // apparently.
+ if (OTy->isObjCId() && Member->isStr("isa"))
+ return new (S.Context) ObjCIsaExpr(BaseExpr.get(), IsArrow, MemberLoc,
+ OpLoc, S.Context.getObjCClassType());
+ if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
+ return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
+ ObjCImpDecl, HasTemplateArgs);
+ goto fail;
+ }
+
+ if (S.RequireCompleteType(OpLoc, BaseType,
+ diag::err_typecheck_incomplete_tag,
+ BaseExpr.get()))
+ return ExprError();
+
+ ObjCInterfaceDecl *ClassDeclared = nullptr;
+ ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
+
+ if (!IV) {
+ // Attempt to correct for typos in ivar names.
+ auto Validator = llvm::make_unique<DeclFilterCCC<ObjCIvarDecl>>();
+ Validator->IsObjCIvarLookup = IsArrow;
+ if (TypoCorrection Corrected = S.CorrectTypo(
+ R.getLookupNameInfo(), Sema::LookupMemberName, nullptr, nullptr,
+ std::move(Validator), Sema::CTK_ErrorRecovery, IDecl)) {
+ IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>();
+ S.diagnoseTypo(
+ Corrected,
+ S.PDiag(diag::err_typecheck_member_reference_ivar_suggest)
+ << IDecl->getDeclName() << MemberName);
+
+ // Figure out the class that declares the ivar.
+ assert(!ClassDeclared);
+ Decl *D = cast<Decl>(IV->getDeclContext());
+ if (ObjCCategoryDecl *CAT = dyn_cast<ObjCCategoryDecl>(D))
+ D = CAT->getClassInterface();
+ ClassDeclared = cast<ObjCInterfaceDecl>(D);
+ } else {
+ if (IsArrow && IDecl->FindPropertyDeclaration(Member)) {
+ S.Diag(MemberLoc, diag::err_property_found_suggest)
+ << Member << BaseExpr.get()->getType()
+ << FixItHint::CreateReplacement(OpLoc, ".");
+ return ExprError();
+ }
+
+ S.Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
+ << IDecl->getDeclName() << MemberName
+ << BaseExpr.get()->getSourceRange();
+ return ExprError();
+ }
+ }
+
+ assert(ClassDeclared);
+
+ // If the decl being referenced had an error, return an error for this
+ // sub-expr without emitting another error, in order to avoid cascading
+ // error cases.
+ if (IV->isInvalidDecl())
+ return ExprError();
+
+ // Check whether we can reference this field.
+ if (S.DiagnoseUseOfDecl(IV, MemberLoc))
+ return ExprError();
+ if (IV->getAccessControl() != ObjCIvarDecl::Public &&
+ IV->getAccessControl() != ObjCIvarDecl::Package) {
+ ObjCInterfaceDecl *ClassOfMethodDecl = nullptr;
+ if (ObjCMethodDecl *MD = S.getCurMethodDecl())
+ ClassOfMethodDecl = MD->getClassInterface();
+ else if (ObjCImpDecl && S.getCurFunctionDecl()) {
+ // Case of a c-function declared inside an objc implementation.
+ // FIXME: For a c-style function nested inside an objc implementation
+ // class, there is no implementation context available, so we pass
+ // down the context as argument to this routine. Ideally, this context
+ // need be passed down in the AST node and somehow calculated from the
+ // AST for a function decl.
+ if (ObjCImplementationDecl *IMPD =
+ dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
+ ClassOfMethodDecl = IMPD->getClassInterface();
+ else if (ObjCCategoryImplDecl* CatImplClass =
+ dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
+ ClassOfMethodDecl = CatImplClass->getClassInterface();
+ }
+ if (!S.getLangOpts().DebuggerSupport) {
+ if (IV->getAccessControl() == ObjCIvarDecl::Private) {
+ if (!declaresSameEntity(ClassDeclared, IDecl) ||
+ !declaresSameEntity(ClassOfMethodDecl, ClassDeclared))
+ S.Diag(MemberLoc, diag::error_private_ivar_access)
+ << IV->getDeclName();
+ } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
+ // @protected
+ S.Diag(MemberLoc, diag::error_protected_ivar_access)
+ << IV->getDeclName();
+ }
+ }
+ bool warn = true;
+ if (S.getLangOpts().ObjCAutoRefCount) {
+ Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts();
+ if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp))
+ if (UO->getOpcode() == UO_Deref)
+ BaseExp = UO->getSubExpr()->IgnoreParenCasts();
+
+ if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp))
+ if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
+ S.Diag(DE->getLocation(), diag::error_arc_weak_ivar_access);
+ warn = false;
+ }
+ }
+ if (warn) {
+ if (ObjCMethodDecl *MD = S.getCurMethodDecl()) {
+ ObjCMethodFamily MF = MD->getMethodFamily();
+ warn = (MF != OMF_init && MF != OMF_dealloc &&
+ MF != OMF_finalize &&
+ !S.IvarBacksCurrentMethodAccessor(IDecl, MD, IV));
+ }
+ if (warn)
+ S.Diag(MemberLoc, diag::warn_direct_ivar_access) << IV->getDeclName();
+ }
+
+ ObjCIvarRefExpr *Result = new (S.Context) ObjCIvarRefExpr(
+ IV, IV->getType(), MemberLoc, OpLoc, BaseExpr.get(), IsArrow);
+
+ if (S.getLangOpts().ObjCAutoRefCount) {
+ if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
+ if (!S.Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, MemberLoc))
+ S.recordUseOfEvaluatedWeak(Result);
+ }
+ }
+
+ return Result;
+ }
+
+ // Objective-C property access.
+ const ObjCObjectPointerType *OPT;
+ if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
+ if (!SS.isEmpty() && !SS.isInvalid()) {
+ S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
+ << 0 << SS.getScopeRep() << FixItHint::CreateRemoval(SS.getRange());
+ SS.clear();
+ }
+
+ // This actually uses the base as an r-value.
+ BaseExpr = S.DefaultLvalueConversion(BaseExpr.get());
+ if (BaseExpr.isInvalid())
+ return ExprError();
+
+ assert(S.Context.hasSameUnqualifiedType(BaseType,
+ BaseExpr.get()->getType()));
+
+ IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
+
+ const ObjCObjectType *OT = OPT->getObjectType();
+
+ // id, with and without qualifiers.
+ if (OT->isObjCId()) {
+ // Check protocols on qualified interfaces.
+ Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
+ if (Decl *PMDecl =
+ FindGetterSetterNameDecl(OPT, Member, Sel, S.Context)) {
+ if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
+ // Check the use of this declaration
+ if (S.DiagnoseUseOfDecl(PD, MemberLoc))
+ return ExprError();
+
+ return new (S.Context)
+ ObjCPropertyRefExpr(PD, S.Context.PseudoObjectTy, VK_LValue,
+ OK_ObjCProperty, MemberLoc, BaseExpr.get());
+ }
+
+ if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
+ // Check the use of this method.
+ if (S.DiagnoseUseOfDecl(OMD, MemberLoc))
+ return ExprError();
+ Selector SetterSel =
+ SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
+ S.PP.getSelectorTable(),
+ Member);
+ ObjCMethodDecl *SMD = nullptr;
+ if (Decl *SDecl = FindGetterSetterNameDecl(OPT,
+ /*Property id*/ nullptr,
+ SetterSel, S.Context))
+ SMD = dyn_cast<ObjCMethodDecl>(SDecl);
+
+ return new (S.Context)
+ ObjCPropertyRefExpr(OMD, SMD, S.Context.PseudoObjectTy, VK_LValue,
+ OK_ObjCProperty, MemberLoc, BaseExpr.get());
+ }
+ }
+ // Use of id.member can only be for a property reference. Do not
+ // use the 'id' redefinition in this case.
+ if (IsArrow && ShouldTryAgainWithRedefinitionType(S, BaseExpr))
+ return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
+ ObjCImpDecl, HasTemplateArgs);
+
+ return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
+ << MemberName << BaseType);
+ }
+
+ // 'Class', unqualified only.
+ if (OT->isObjCClass()) {
+ // Only works in a method declaration (??!).
+ ObjCMethodDecl *MD = S.getCurMethodDecl();
+ if (!MD) {
+ if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
+ return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
+ ObjCImpDecl, HasTemplateArgs);
+
+ goto fail;
+ }
+
+ // Also must look for a getter name which uses property syntax.
+ Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
+ ObjCInterfaceDecl *IFace = MD->getClassInterface();
+ ObjCMethodDecl *Getter;
+ if ((Getter = IFace->lookupClassMethod(Sel))) {
+ // Check the use of this method.
+ if (S.DiagnoseUseOfDecl(Getter, MemberLoc))
+ return ExprError();
+ } else
+ Getter = IFace->lookupPrivateMethod(Sel, false);
+ // If we found a getter then this may be a valid dot-reference, we
+ // will look for the matching setter, in case it is needed.
+ Selector SetterSel =
+ SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
+ S.PP.getSelectorTable(),
+ Member);
+ ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
+ if (!Setter) {
+ // If this reference is in an @implementation, also check for 'private'
+ // methods.
+ Setter = IFace->lookupPrivateMethod(SetterSel, false);
+ }
+
+ if (Setter && S.DiagnoseUseOfDecl(Setter, MemberLoc))
+ return ExprError();
+
+ if (Getter || Setter) {
+ return new (S.Context) ObjCPropertyRefExpr(
+ Getter, Setter, S.Context.PseudoObjectTy, VK_LValue,
+ OK_ObjCProperty, MemberLoc, BaseExpr.get());
+ }
+
+ if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
+ return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
+ ObjCImpDecl, HasTemplateArgs);
+
+ return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
+ << MemberName << BaseType);
+ }
+
+ // Normal property access.
+ return S.HandleExprPropertyRefExpr(OPT, BaseExpr.get(), OpLoc, MemberName,
+ MemberLoc, SourceLocation(), QualType(),
+ false);
+ }
+
+ // Handle 'field access' to vectors, such as 'V.xx'.
+ if (BaseType->isExtVectorType()) {
+ // FIXME: this expr should store IsArrow.
+ IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
+ ExprValueKind VK;
+ if (IsArrow)
+ VK = VK_LValue;
+ else {
+ if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(BaseExpr.get()))
+ VK = POE->getSyntacticForm()->getValueKind();
+ else
+ VK = BaseExpr.get()->getValueKind();
+ }
+ QualType ret = CheckExtVectorComponent(S, BaseType, VK, OpLoc,
+ Member, MemberLoc);
+ if (ret.isNull())
+ return ExprError();
+
+ return new (S.Context)
+ ExtVectorElementExpr(ret, VK, BaseExpr.get(), *Member, MemberLoc);
+ }
+
+ // Adjust builtin-sel to the appropriate redefinition type if that's
+ // not just a pointer to builtin-sel again.
+ if (IsArrow && BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
+ !S.Context.getObjCSelRedefinitionType()->isObjCSelType()) {
+ BaseExpr = S.ImpCastExprToType(
+ BaseExpr.get(), S.Context.getObjCSelRedefinitionType(), CK_BitCast);
+ return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
+ ObjCImpDecl, HasTemplateArgs);
+ }
+
+ // Failure cases.
+ fail:
+
+ // Recover from dot accesses to pointers, e.g.:
+ // type *foo;
+ // foo.bar
+ // This is actually well-formed in two cases:
+ // - 'type' is an Objective C type
+ // - 'bar' is a pseudo-destructor name which happens to refer to
+ // the appropriate pointer type
+ if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
+ if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
+ MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
+ S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
+ << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
+ << FixItHint::CreateReplacement(OpLoc, "->");
+
+ // Recurse as an -> access.
+ IsArrow = true;
+ return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
+ ObjCImpDecl, HasTemplateArgs);
+ }
+ }
+
+ // If the user is trying to apply -> or . to a function name, it's probably
+ // because they forgot parentheses to call that function.
+ if (S.tryToRecoverWithCall(
+ BaseExpr, S.PDiag(diag::err_member_reference_needs_call),
+ /*complain*/ false,
+ IsArrow ? &isPointerToRecordType : &isRecordType)) {
+ if (BaseExpr.isInvalid())
+ return ExprError();
+ BaseExpr = S.DefaultFunctionArrayConversion(BaseExpr.get());
+ return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
+ ObjCImpDecl, HasTemplateArgs);
+ }
+
+ S.Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
+ << BaseType << BaseExpr.get()->getSourceRange() << MemberLoc;
+
+ return ExprError();
+}
+
+/// The main callback when the parser finds something like
+/// expression . [nested-name-specifier] identifier
+/// expression -> [nested-name-specifier] identifier
+/// where 'identifier' encompasses a fairly broad spectrum of
+/// possibilities, including destructor and operator references.
+///
+/// \param OpKind either tok::arrow or tok::period
+/// \param ObjCImpDecl the current Objective-C \@implementation
+/// decl; this is an ugly hack around the fact that Objective-C
+/// \@implementations aren't properly put in the context chain
+ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
+ SourceLocation OpLoc,
+ tok::TokenKind OpKind,
+ CXXScopeSpec &SS,
+ SourceLocation TemplateKWLoc,
+ UnqualifiedId &Id,
+ Decl *ObjCImpDecl) {
+ if (SS.isSet() && SS.isInvalid())
+ return ExprError();
+
+ // Warn about the explicit constructor calls Microsoft extension.
+ if (getLangOpts().MicrosoftExt &&
+ Id.getKind() == UnqualifiedId::IK_ConstructorName)
+ Diag(Id.getSourceRange().getBegin(),
+ diag::ext_ms_explicit_constructor_call);
+
+ TemplateArgumentListInfo TemplateArgsBuffer;
+
+ // Decompose the name into its component parts.
+ DeclarationNameInfo NameInfo;
+ const TemplateArgumentListInfo *TemplateArgs;
+ DecomposeUnqualifiedId(Id, TemplateArgsBuffer,
+ NameInfo, TemplateArgs);
+
+ DeclarationName Name = NameInfo.getName();
+ bool IsArrow = (OpKind == tok::arrow);
+
+ NamedDecl *FirstQualifierInScope
+ = (!SS.isSet() ? nullptr : FindFirstQualifierInScope(S, SS.getScopeRep()));
+
+ // This is a postfix expression, so get rid of ParenListExprs.
+ ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
+ if (Result.isInvalid()) return ExprError();
+ Base = Result.get();
+
+ if (Base->getType()->isDependentType() || Name.isDependentName() ||
+ isDependentScopeSpecifier(SS)) {
+ return ActOnDependentMemberExpr(Base, Base->getType(), IsArrow, OpLoc, SS,
+ TemplateKWLoc, FirstQualifierInScope,
+ NameInfo, TemplateArgs);
+ }
+
+ ActOnMemberAccessExtraArgs ExtraArgs = {S, Id, ObjCImpDecl};
+ return BuildMemberReferenceExpr(Base, Base->getType(), OpLoc, IsArrow, SS,
+ TemplateKWLoc, FirstQualifierInScope,
+ NameInfo, TemplateArgs, &ExtraArgs);
+}
+
+static ExprResult
+BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
+ SourceLocation OpLoc, const CXXScopeSpec &SS,
+ FieldDecl *Field, DeclAccessPair FoundDecl,
+ const DeclarationNameInfo &MemberNameInfo) {
+ // x.a is an l-value if 'a' has a reference type. Otherwise:
+ // x.a is an l-value/x-value/pr-value if the base is (and note
+ // that *x is always an l-value), except that if the base isn't
+ // an ordinary object then we must have an rvalue.
+ ExprValueKind VK = VK_LValue;
+ ExprObjectKind OK = OK_Ordinary;
+ if (!IsArrow) {
+ if (BaseExpr->getObjectKind() == OK_Ordinary)
+ VK = BaseExpr->getValueKind();
+ else
+ VK = VK_RValue;
+ }
+ if (VK != VK_RValue && Field->isBitField())
+ OK = OK_BitField;
+
+ // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
+ QualType MemberType = Field->getType();
+ if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
+ MemberType = Ref->getPointeeType();
+ VK = VK_LValue;
+ } else {
+ QualType BaseType = BaseExpr->getType();
+ if (IsArrow) BaseType = BaseType->getAs<PointerType>()->getPointeeType();
+
+ Qualifiers BaseQuals = BaseType.getQualifiers();
+
+ // GC attributes are never picked up by members.
+ BaseQuals.removeObjCGCAttr();
+
+ // CVR attributes from the base are picked up by members,
+ // except that 'mutable' members don't pick up 'const'.
+ if (Field->isMutable()) BaseQuals.removeConst();
+
+ Qualifiers MemberQuals
+ = S.Context.getCanonicalType(MemberType).getQualifiers();
+
+ assert(!MemberQuals.hasAddressSpace());
+
+
+ Qualifiers Combined = BaseQuals + MemberQuals;
+ if (Combined != MemberQuals)
+ MemberType = S.Context.getQualifiedType(MemberType, Combined);
+ }
+
+ S.UnusedPrivateFields.remove(Field);
+
+ ExprResult Base =
+ S.PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
+ FoundDecl, Field);
+ if (Base.isInvalid())
+ return ExprError();
+ return BuildMemberExpr(S, S.Context, Base.get(), IsArrow, OpLoc, SS,
+ /*TemplateKWLoc=*/SourceLocation(), Field, FoundDecl,
+ MemberNameInfo, MemberType, VK, OK);
+}
+
+/// Builds an implicit member access expression. The current context
+/// is known to be an instance method, and the given unqualified lookup
+/// set is known to contain only instance members, at least one of which
+/// is from an appropriate type.
+ExprResult
+Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
+ SourceLocation TemplateKWLoc,
+ LookupResult &R,
+ const TemplateArgumentListInfo *TemplateArgs,
+ bool IsKnownInstance) {
+ assert(!R.empty() && !R.isAmbiguous());
+
+ SourceLocation loc = R.getNameLoc();
+
+ // If this is known to be an instance access, go ahead and build an
+ // implicit 'this' expression now.
+ // 'this' expression now.
+ QualType ThisTy = getCurrentThisType();
+ assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'");
+
+ Expr *baseExpr = nullptr; // null signifies implicit access
+ if (IsKnownInstance) {
+ SourceLocation Loc = R.getNameLoc();
+ if (SS.getRange().isValid())
+ Loc = SS.getRange().getBegin();
+ CheckCXXThisCapture(Loc);
+ baseExpr = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/true);
+ }
+
+ return BuildMemberReferenceExpr(baseExpr, ThisTy,
+ /*OpLoc*/ SourceLocation(),
+ /*IsArrow*/ true,
+ SS, TemplateKWLoc,
+ /*FirstQualifierInScope*/ nullptr,
+ R, TemplateArgs);
+}
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaExprObjC.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaExprObjC.cpp
new file mode 100644
index 0000000..63b7485
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaExprObjC.cpp
@@ -0,0 +1,4053 @@
+//===--- SemaExprObjC.cpp - Semantic Analysis for ObjC Expressions --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements semantic analysis for Objective-C expressions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Sema/SemaInternal.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/Analysis/DomainSpecific/CocoaConventions.h"
+#include "clang/Edit/Commit.h"
+#include "clang/Edit/Rewriters.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Sema/Initialization.h"
+#include "clang/Sema/Lookup.h"
+#include "clang/Sema/Scope.h"
+#include "clang/Sema/ScopeInfo.h"
+#include "llvm/ADT/SmallString.h"
+
+using namespace clang;
+using namespace sema;
+using llvm::makeArrayRef;
+
+ExprResult Sema::ParseObjCStringLiteral(SourceLocation *AtLocs,
+ Expr **strings,
+ unsigned NumStrings) {
+ StringLiteral **Strings = reinterpret_cast<StringLiteral**>(strings);
+
+ // Most ObjC strings are formed out of a single piece. However, we *can*
+ // have strings formed out of multiple @ strings with multiple pptokens in
+ // each one, e.g. @"foo" "bar" @"baz" "qux" which need to be turned into one
+ // StringLiteral for ObjCStringLiteral to hold onto.
+ StringLiteral *S = Strings[0];
+
+ // If we have a multi-part string, merge it all together.
+ if (NumStrings != 1) {
+ // Concatenate objc strings.
+ SmallString<128> StrBuf;
+ SmallVector<SourceLocation, 8> StrLocs;
+
+ for (unsigned i = 0; i != NumStrings; ++i) {
+ S = Strings[i];
+
+ // ObjC strings can't be wide or UTF.
+ if (!S->isAscii()) {
+ Diag(S->getLocStart(), diag::err_cfstring_literal_not_string_constant)
+ << S->getSourceRange();
+ return true;
+ }
+
+ // Append the string.
+ StrBuf += S->getString();
+
+ // Get the locations of the string tokens.
+ StrLocs.append(S->tokloc_begin(), S->tokloc_end());
+ }
+
+ // Create the aggregate string with the appropriate content and location
+ // information.
+ const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
+ assert(CAT && "String literal not of constant array type!");
+ QualType StrTy = Context.getConstantArrayType(
+ CAT->getElementType(), llvm::APInt(32, StrBuf.size() + 1),
+ CAT->getSizeModifier(), CAT->getIndexTypeCVRQualifiers());
+ S = StringLiteral::Create(Context, StrBuf, StringLiteral::Ascii,
+ /*Pascal=*/false, StrTy, &StrLocs[0],
+ StrLocs.size());
+ }
+
+ return BuildObjCStringLiteral(AtLocs[0], S);
+}
+
+ExprResult Sema::BuildObjCStringLiteral(SourceLocation AtLoc, StringLiteral *S){
+ // Verify that this composite string is acceptable for ObjC strings.
+ if (CheckObjCString(S))
+ return true;
+
+ // Initialize the constant string interface lazily. This assumes
+ // the NSString interface is seen in this translation unit. Note: We
+ // don't use NSConstantString, since the runtime team considers this
+ // interface private (even though it appears in the header files).
+ QualType Ty = Context.getObjCConstantStringInterface();
+ if (!Ty.isNull()) {
+ Ty = Context.getObjCObjectPointerType(Ty);
+ } else if (getLangOpts().NoConstantCFStrings) {
+ IdentifierInfo *NSIdent=nullptr;
+ std::string StringClass(getLangOpts().ObjCConstantStringClass);
+
+ if (StringClass.empty())
+ NSIdent = &Context.Idents.get("NSConstantString");
+ else
+ NSIdent = &Context.Idents.get(StringClass);
+
+ NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLoc,
+ LookupOrdinaryName);
+ if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) {
+ Context.setObjCConstantStringInterface(StrIF);
+ Ty = Context.getObjCConstantStringInterface();
+ Ty = Context.getObjCObjectPointerType(Ty);
+ } else {
+ // If there is no NSConstantString interface defined then treat this
+ // as error and recover from it.
+ Diag(S->getLocStart(), diag::err_no_nsconstant_string_class) << NSIdent
+ << S->getSourceRange();
+ Ty = Context.getObjCIdType();
+ }
+ } else {
+ IdentifierInfo *NSIdent = NSAPIObj->getNSClassId(NSAPI::ClassId_NSString);
+ NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLoc,
+ LookupOrdinaryName);
+ if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) {
+ Context.setObjCConstantStringInterface(StrIF);
+ Ty = Context.getObjCConstantStringInterface();
+ Ty = Context.getObjCObjectPointerType(Ty);
+ } else {
+ // If there is no NSString interface defined, implicitly declare
+ // a @class NSString; and use that instead. This is to make sure
+ // type of an NSString literal is represented correctly, instead of
+ // being an 'id' type.
+ Ty = Context.getObjCNSStringType();
+ if (Ty.isNull()) {
+ ObjCInterfaceDecl *NSStringIDecl =
+ ObjCInterfaceDecl::Create (Context,
+ Context.getTranslationUnitDecl(),
+ SourceLocation(), NSIdent,
+ nullptr, SourceLocation());
+ Ty = Context.getObjCInterfaceType(NSStringIDecl);
+ Context.setObjCNSStringType(Ty);
+ }
+ Ty = Context.getObjCObjectPointerType(Ty);
+ }
+ }
+
+ return new (Context) ObjCStringLiteral(S, Ty, AtLoc);
+}
+
+/// \brief Emits an error if the given method does not exist, or if the return
+/// type is not an Objective-C object.
+static bool validateBoxingMethod(Sema &S, SourceLocation Loc,
+ const ObjCInterfaceDecl *Class,
+ Selector Sel, const ObjCMethodDecl *Method) {
+ if (!Method) {
+ // FIXME: Is there a better way to avoid quotes than using getName()?
+ S.Diag(Loc, diag::err_undeclared_boxing_method) << Sel << Class->getName();
+ return false;
+ }
+
+ // Make sure the return type is reasonable.
+ QualType ReturnType = Method->getReturnType();
+ if (!ReturnType->isObjCObjectPointerType()) {
+ S.Diag(Loc, diag::err_objc_literal_method_sig)
+ << Sel;
+ S.Diag(Method->getLocation(), diag::note_objc_literal_method_return)
+ << ReturnType;
+ return false;
+ }
+
+ return true;
+}
+
+/// \brief Retrieve the NSNumber factory method that should be used to create
+/// an Objective-C literal for the given type.
+static ObjCMethodDecl *getNSNumberFactoryMethod(Sema &S, SourceLocation Loc,
+ QualType NumberType,
+ bool isLiteral = false,
+ SourceRange R = SourceRange()) {
+ Optional<NSAPI::NSNumberLiteralMethodKind> Kind =
+ S.NSAPIObj->getNSNumberFactoryMethodKind(NumberType);
+
+ if (!Kind) {
+ if (isLiteral) {
+ S.Diag(Loc, diag::err_invalid_nsnumber_type)
+ << NumberType << R;
+ }
+ return nullptr;
+ }
+
+ // If we already looked up this method, we're done.
+ if (S.NSNumberLiteralMethods[*Kind])
+ return S.NSNumberLiteralMethods[*Kind];
+
+ Selector Sel = S.NSAPIObj->getNSNumberLiteralSelector(*Kind,
+ /*Instance=*/false);
+
+ ASTContext &CX = S.Context;
+
+ // Look up the NSNumber class, if we haven't done so already. It's cached
+ // in the Sema instance.
+ if (!S.NSNumberDecl) {
+ IdentifierInfo *NSNumberId =
+ S.NSAPIObj->getNSClassId(NSAPI::ClassId_NSNumber);
+ NamedDecl *IF = S.LookupSingleName(S.TUScope, NSNumberId,
+ Loc, Sema::LookupOrdinaryName);
+ S.NSNumberDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
+ if (!S.NSNumberDecl) {
+ if (S.getLangOpts().DebuggerObjCLiteral) {
+ // Create a stub definition of NSNumber.
+ S.NSNumberDecl = ObjCInterfaceDecl::Create(CX,
+ CX.getTranslationUnitDecl(),
+ SourceLocation(), NSNumberId,
+ nullptr, SourceLocation());
+ } else {
+ // Otherwise, require a declaration of NSNumber.
+ S.Diag(Loc, diag::err_undeclared_nsnumber);
+ return nullptr;
+ }
+ } else if (!S.NSNumberDecl->hasDefinition()) {
+ S.Diag(Loc, diag::err_undeclared_nsnumber);
+ return nullptr;
+ }
+ }
+
+ if (S.NSNumberPointer.isNull()) {
+ // generate the pointer to NSNumber type.
+ QualType NSNumberObject = CX.getObjCInterfaceType(S.NSNumberDecl);
+ S.NSNumberPointer = CX.getObjCObjectPointerType(NSNumberObject);
+ }
+
+ // Look for the appropriate method within NSNumber.
+ ObjCMethodDecl *Method = S.NSNumberDecl->lookupClassMethod(Sel);
+ if (!Method && S.getLangOpts().DebuggerObjCLiteral) {
+ // create a stub definition this NSNumber factory method.
+ TypeSourceInfo *ReturnTInfo = nullptr;
+ Method =
+ ObjCMethodDecl::Create(CX, SourceLocation(), SourceLocation(), Sel,
+ S.NSNumberPointer, ReturnTInfo, S.NSNumberDecl,
+ /*isInstance=*/false, /*isVariadic=*/false,
+ /*isPropertyAccessor=*/false,
+ /*isImplicitlyDeclared=*/true,
+ /*isDefined=*/false, ObjCMethodDecl::Required,
+ /*HasRelatedResultType=*/false);
+ ParmVarDecl *value = ParmVarDecl::Create(S.Context, Method,
+ SourceLocation(), SourceLocation(),
+ &CX.Idents.get("value"),
+ NumberType, /*TInfo=*/nullptr,
+ SC_None, nullptr);
+ Method->setMethodParams(S.Context, value, None);
+ }
+
+ if (!validateBoxingMethod(S, Loc, S.NSNumberDecl, Sel, Method))
+ return nullptr;
+
+ // Note: if the parameter type is out-of-line, we'll catch it later in the
+ // implicit conversion.
+
+ S.NSNumberLiteralMethods[*Kind] = Method;
+ return Method;
+}
+
+/// BuildObjCNumericLiteral - builds an ObjCBoxedExpr AST node for the
+/// numeric literal expression. Type of the expression will be "NSNumber *".
+ExprResult Sema::BuildObjCNumericLiteral(SourceLocation AtLoc, Expr *Number) {
+ // Determine the type of the literal.
+ QualType NumberType = Number->getType();
+ if (CharacterLiteral *Char = dyn_cast<CharacterLiteral>(Number)) {
+ // In C, character literals have type 'int'. That's not the type we want
+ // to use to determine the Objective-c literal kind.
+ switch (Char->getKind()) {
+ case CharacterLiteral::Ascii:
+ NumberType = Context.CharTy;
+ break;
+
+ case CharacterLiteral::Wide:
+ NumberType = Context.getWideCharType();
+ break;
+
+ case CharacterLiteral::UTF16:
+ NumberType = Context.Char16Ty;
+ break;
+
+ case CharacterLiteral::UTF32:
+ NumberType = Context.Char32Ty;
+ break;
+ }
+ }
+
+ // Look for the appropriate method within NSNumber.
+ // Construct the literal.
+ SourceRange NR(Number->getSourceRange());
+ ObjCMethodDecl *Method = getNSNumberFactoryMethod(*this, AtLoc, NumberType,
+ true, NR);
+ if (!Method)
+ return ExprError();
+
+ // Convert the number to the type that the parameter expects.
+ ParmVarDecl *ParamDecl = Method->parameters()[0];
+ InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
+ ParamDecl);
+ ExprResult ConvertedNumber = PerformCopyInitialization(Entity,
+ SourceLocation(),
+ Number);
+ if (ConvertedNumber.isInvalid())
+ return ExprError();
+ Number = ConvertedNumber.get();
+
+ // Use the effective source range of the literal, including the leading '@'.
+ return MaybeBindToTemporary(
+ new (Context) ObjCBoxedExpr(Number, NSNumberPointer, Method,
+ SourceRange(AtLoc, NR.getEnd())));
+}
+
+ExprResult Sema::ActOnObjCBoolLiteral(SourceLocation AtLoc,
+ SourceLocation ValueLoc,
+ bool Value) {
+ ExprResult Inner;
+ if (getLangOpts().CPlusPlus) {
+ Inner = ActOnCXXBoolLiteral(ValueLoc, Value? tok::kw_true : tok::kw_false);
+ } else {
+ // C doesn't actually have a way to represent literal values of type
+ // _Bool. So, we'll use 0/1 and implicit cast to _Bool.
+ Inner = ActOnIntegerConstant(ValueLoc, Value? 1 : 0);
+ Inner = ImpCastExprToType(Inner.get(), Context.BoolTy,
+ CK_IntegralToBoolean);
+ }
+
+ return BuildObjCNumericLiteral(AtLoc, Inner.get());
+}
+
+/// \brief Check that the given expression is a valid element of an Objective-C
+/// collection literal.
+static ExprResult CheckObjCCollectionLiteralElement(Sema &S, Expr *Element,
+ QualType T,
+ bool ArrayLiteral = false) {
+ // If the expression is type-dependent, there's nothing for us to do.
+ if (Element->isTypeDependent())
+ return Element;
+
+ ExprResult Result = S.CheckPlaceholderExpr(Element);
+ if (Result.isInvalid())
+ return ExprError();
+ Element = Result.get();
+
+ // In C++, check for an implicit conversion to an Objective-C object pointer
+ // type.
+ if (S.getLangOpts().CPlusPlus && Element->getType()->isRecordType()) {
+ InitializedEntity Entity
+ = InitializedEntity::InitializeParameter(S.Context, T,
+ /*Consumed=*/false);
+ InitializationKind Kind
+ = InitializationKind::CreateCopy(Element->getLocStart(),
+ SourceLocation());
+ InitializationSequence Seq(S, Entity, Kind, Element);
+ if (!Seq.Failed())
+ return Seq.Perform(S, Entity, Kind, Element);
+ }
+
+ Expr *OrigElement = Element;
+
+ // Perform lvalue-to-rvalue conversion.
+ Result = S.DefaultLvalueConversion(Element);
+ if (Result.isInvalid())
+ return ExprError();
+ Element = Result.get();
+
+ // Make sure that we have an Objective-C pointer type or block.
+ if (!Element->getType()->isObjCObjectPointerType() &&
+ !Element->getType()->isBlockPointerType()) {
+ bool Recovered = false;
+
+ // If this is potentially an Objective-C numeric literal, add the '@'.
+ if (isa<IntegerLiteral>(OrigElement) ||
+ isa<CharacterLiteral>(OrigElement) ||
+ isa<FloatingLiteral>(OrigElement) ||
+ isa<ObjCBoolLiteralExpr>(OrigElement) ||
+ isa<CXXBoolLiteralExpr>(OrigElement)) {
+ if (S.NSAPIObj->getNSNumberFactoryMethodKind(OrigElement->getType())) {
+ int Which = isa<CharacterLiteral>(OrigElement) ? 1
+ : (isa<CXXBoolLiteralExpr>(OrigElement) ||
+ isa<ObjCBoolLiteralExpr>(OrigElement)) ? 2
+ : 3;
+
+ S.Diag(OrigElement->getLocStart(), diag::err_box_literal_collection)
+ << Which << OrigElement->getSourceRange()
+ << FixItHint::CreateInsertion(OrigElement->getLocStart(), "@");
+
+ Result = S.BuildObjCNumericLiteral(OrigElement->getLocStart(),
+ OrigElement);
+ if (Result.isInvalid())
+ return ExprError();
+
+ Element = Result.get();
+ Recovered = true;
+ }
+ }
+ // If this is potentially an Objective-C string literal, add the '@'.
+ else if (StringLiteral *String = dyn_cast<StringLiteral>(OrigElement)) {
+ if (String->isAscii()) {
+ S.Diag(OrigElement->getLocStart(), diag::err_box_literal_collection)
+ << 0 << OrigElement->getSourceRange()
+ << FixItHint::CreateInsertion(OrigElement->getLocStart(), "@");
+
+ Result = S.BuildObjCStringLiteral(OrigElement->getLocStart(), String);
+ if (Result.isInvalid())
+ return ExprError();
+
+ Element = Result.get();
+ Recovered = true;
+ }
+ }
+
+ if (!Recovered) {
+ S.Diag(Element->getLocStart(), diag::err_invalid_collection_element)
+ << Element->getType();
+ return ExprError();
+ }
+ }
+ if (ArrayLiteral)
+ if (ObjCStringLiteral *getString =
+ dyn_cast<ObjCStringLiteral>(OrigElement)) {
+ if (StringLiteral *SL = getString->getString()) {
+ unsigned numConcat = SL->getNumConcatenated();
+ if (numConcat > 1) {
+ // Only warn if the concatenated string doesn't come from a macro.
+ bool hasMacro = false;
+ for (unsigned i = 0; i < numConcat ; ++i)
+ if (SL->getStrTokenLoc(i).isMacroID()) {
+ hasMacro = true;
+ break;
+ }
+ if (!hasMacro)
+ S.Diag(Element->getLocStart(),
+ diag::warn_concatenated_nsarray_literal)
+ << Element->getType();
+ }
+ }
+ }
+
+ // Make sure that the element has the type that the container factory
+ // function expects.
+ return S.PerformCopyInitialization(
+ InitializedEntity::InitializeParameter(S.Context, T,
+ /*Consumed=*/false),
+ Element->getLocStart(), Element);
+}
+
+ExprResult Sema::BuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr) {
+ if (ValueExpr->isTypeDependent()) {
+ ObjCBoxedExpr *BoxedExpr =
+ new (Context) ObjCBoxedExpr(ValueExpr, Context.DependentTy, nullptr, SR);
+ return BoxedExpr;
+ }
+ ObjCMethodDecl *BoxingMethod = nullptr;
+ QualType BoxedType;
+ // Convert the expression to an RValue, so we can check for pointer types...
+ ExprResult RValue = DefaultFunctionArrayLvalueConversion(ValueExpr);
+ if (RValue.isInvalid()) {
+ return ExprError();
+ }
+ ValueExpr = RValue.get();
+ QualType ValueType(ValueExpr->getType());
+ if (const PointerType *PT = ValueType->getAs<PointerType>()) {
+ QualType PointeeType = PT->getPointeeType();
+ if (Context.hasSameUnqualifiedType(PointeeType, Context.CharTy)) {
+
+ if (!NSStringDecl) {
+ IdentifierInfo *NSStringId =
+ NSAPIObj->getNSClassId(NSAPI::ClassId_NSString);
+ NamedDecl *Decl = LookupSingleName(TUScope, NSStringId,
+ SR.getBegin(), LookupOrdinaryName);
+ NSStringDecl = dyn_cast_or_null<ObjCInterfaceDecl>(Decl);
+ if (!NSStringDecl) {
+ if (getLangOpts().DebuggerObjCLiteral) {
+ // Support boxed expressions in the debugger w/o NSString declaration.
+ DeclContext *TU = Context.getTranslationUnitDecl();
+ NSStringDecl = ObjCInterfaceDecl::Create(Context, TU,
+ SourceLocation(),
+ NSStringId,
+ nullptr, SourceLocation());
+ } else {
+ Diag(SR.getBegin(), diag::err_undeclared_nsstring);
+ return ExprError();
+ }
+ } else if (!NSStringDecl->hasDefinition()) {
+ Diag(SR.getBegin(), diag::err_undeclared_nsstring);
+ return ExprError();
+ }
+ assert(NSStringDecl && "NSStringDecl should not be NULL");
+ QualType NSStringObject = Context.getObjCInterfaceType(NSStringDecl);
+ NSStringPointer = Context.getObjCObjectPointerType(NSStringObject);
+ }
+
+ if (!StringWithUTF8StringMethod) {
+ IdentifierInfo *II = &Context.Idents.get("stringWithUTF8String");
+ Selector stringWithUTF8String = Context.Selectors.getUnarySelector(II);
+
+ // Look for the appropriate method within NSString.
+ BoxingMethod = NSStringDecl->lookupClassMethod(stringWithUTF8String);
+ if (!BoxingMethod && getLangOpts().DebuggerObjCLiteral) {
+ // Debugger needs to work even if NSString hasn't been defined.
+ TypeSourceInfo *ReturnTInfo = nullptr;
+ ObjCMethodDecl *M = ObjCMethodDecl::Create(
+ Context, SourceLocation(), SourceLocation(), stringWithUTF8String,
+ NSStringPointer, ReturnTInfo, NSStringDecl,
+ /*isInstance=*/false, /*isVariadic=*/false,
+ /*isPropertyAccessor=*/false,
+ /*isImplicitlyDeclared=*/true,
+ /*isDefined=*/false, ObjCMethodDecl::Required,
+ /*HasRelatedResultType=*/false);
+ QualType ConstCharType = Context.CharTy.withConst();
+ ParmVarDecl *value =
+ ParmVarDecl::Create(Context, M,
+ SourceLocation(), SourceLocation(),
+ &Context.Idents.get("value"),
+ Context.getPointerType(ConstCharType),
+ /*TInfo=*/nullptr,
+ SC_None, nullptr);
+ M->setMethodParams(Context, value, None);
+ BoxingMethod = M;
+ }
+
+ if (!validateBoxingMethod(*this, SR.getBegin(), NSStringDecl,
+ stringWithUTF8String, BoxingMethod))
+ return ExprError();
+
+ StringWithUTF8StringMethod = BoxingMethod;
+ }
+
+ BoxingMethod = StringWithUTF8StringMethod;
+ BoxedType = NSStringPointer;
+ }
+ } else if (ValueType->isBuiltinType()) {
+ // The other types we support are numeric, char and BOOL/bool. We could also
+ // provide limited support for structure types, such as NSRange, NSRect, and
+ // NSSize. See NSValue (NSValueGeometryExtensions) in <Foundation/NSGeometry.h>
+ // for more details.
+
+ // Check for a top-level character literal.
+ if (const CharacterLiteral *Char =
+ dyn_cast<CharacterLiteral>(ValueExpr->IgnoreParens())) {
+ // In C, character literals have type 'int'. That's not the type we want
+ // to use to determine the Objective-c literal kind.
+ switch (Char->getKind()) {
+ case CharacterLiteral::Ascii:
+ ValueType = Context.CharTy;
+ break;
+
+ case CharacterLiteral::Wide:
+ ValueType = Context.getWideCharType();
+ break;
+
+ case CharacterLiteral::UTF16:
+ ValueType = Context.Char16Ty;
+ break;
+
+ case CharacterLiteral::UTF32:
+ ValueType = Context.Char32Ty;
+ break;
+ }
+ }
+ CheckForIntOverflow(ValueExpr);
+ // FIXME: Do I need to do anything special with BoolTy expressions?
+
+ // Look for the appropriate method within NSNumber.
+ BoxingMethod = getNSNumberFactoryMethod(*this, SR.getBegin(), ValueType);
+ BoxedType = NSNumberPointer;
+
+ } else if (const EnumType *ET = ValueType->getAs<EnumType>()) {
+ if (!ET->getDecl()->isComplete()) {
+ Diag(SR.getBegin(), diag::err_objc_incomplete_boxed_expression_type)
+ << ValueType << ValueExpr->getSourceRange();
+ return ExprError();
+ }
+
+ BoxingMethod = getNSNumberFactoryMethod(*this, SR.getBegin(),
+ ET->getDecl()->getIntegerType());
+ BoxedType = NSNumberPointer;
+ }
+
+ if (!BoxingMethod) {
+ Diag(SR.getBegin(), diag::err_objc_illegal_boxed_expression_type)
+ << ValueType << ValueExpr->getSourceRange();
+ return ExprError();
+ }
+
+ // Convert the expression to the type that the parameter requires.
+ ParmVarDecl *ParamDecl = BoxingMethod->parameters()[0];
+ InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
+ ParamDecl);
+ ExprResult ConvertedValueExpr = PerformCopyInitialization(Entity,
+ SourceLocation(),
+ ValueExpr);
+ if (ConvertedValueExpr.isInvalid())
+ return ExprError();
+ ValueExpr = ConvertedValueExpr.get();
+
+ ObjCBoxedExpr *BoxedExpr =
+ new (Context) ObjCBoxedExpr(ValueExpr, BoxedType,
+ BoxingMethod, SR);
+ return MaybeBindToTemporary(BoxedExpr);
+}
+
+/// Build an ObjC subscript pseudo-object expression, given that
+/// that's supported by the runtime.
+ExprResult Sema::BuildObjCSubscriptExpression(SourceLocation RB, Expr *BaseExpr,
+ Expr *IndexExpr,
+ ObjCMethodDecl *getterMethod,
+ ObjCMethodDecl *setterMethod) {
+ assert(!LangOpts.isSubscriptPointerArithmetic());
+
+ // We can't get dependent types here; our callers should have
+ // filtered them out.
+ assert((!BaseExpr->isTypeDependent() && !IndexExpr->isTypeDependent()) &&
+ "base or index cannot have dependent type here");
+
+ // Filter out placeholders in the index. In theory, overloads could
+ // be preserved here, although that might not actually work correctly.
+ ExprResult Result = CheckPlaceholderExpr(IndexExpr);
+ if (Result.isInvalid())
+ return ExprError();
+ IndexExpr = Result.get();
+
+ // Perform lvalue-to-rvalue conversion on the base.
+ Result = DefaultLvalueConversion(BaseExpr);
+ if (Result.isInvalid())
+ return ExprError();
+ BaseExpr = Result.get();
+
+ // Build the pseudo-object expression.
+ return ObjCSubscriptRefExpr::Create(Context, BaseExpr, IndexExpr,
+ Context.PseudoObjectTy, getterMethod,
+ setterMethod, RB);
+}
+
+ExprResult Sema::BuildObjCArrayLiteral(SourceRange SR, MultiExprArg Elements) {
+ // Look up the NSArray class, if we haven't done so already.
+ if (!NSArrayDecl) {
+ NamedDecl *IF = LookupSingleName(TUScope,
+ NSAPIObj->getNSClassId(NSAPI::ClassId_NSArray),
+ SR.getBegin(),
+ LookupOrdinaryName);
+ NSArrayDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
+ if (!NSArrayDecl && getLangOpts().DebuggerObjCLiteral)
+ NSArrayDecl = ObjCInterfaceDecl::Create (Context,
+ Context.getTranslationUnitDecl(),
+ SourceLocation(),
+ NSAPIObj->getNSClassId(NSAPI::ClassId_NSArray),
+ nullptr, SourceLocation());
+
+ if (!NSArrayDecl) {
+ Diag(SR.getBegin(), diag::err_undeclared_nsarray);
+ return ExprError();
+ }
+ }
+
+ // Find the arrayWithObjects:count: method, if we haven't done so already.
+ QualType IdT = Context.getObjCIdType();
+ if (!ArrayWithObjectsMethod) {
+ Selector
+ Sel = NSAPIObj->getNSArraySelector(NSAPI::NSArr_arrayWithObjectsCount);
+ ObjCMethodDecl *Method = NSArrayDecl->lookupClassMethod(Sel);
+ if (!Method && getLangOpts().DebuggerObjCLiteral) {
+ TypeSourceInfo *ReturnTInfo = nullptr;
+ Method = ObjCMethodDecl::Create(
+ Context, SourceLocation(), SourceLocation(), Sel, IdT, ReturnTInfo,
+ Context.getTranslationUnitDecl(), false /*Instance*/,
+ false /*isVariadic*/,
+ /*isPropertyAccessor=*/false,
+ /*isImplicitlyDeclared=*/true, /*isDefined=*/false,
+ ObjCMethodDecl::Required, false);
+ SmallVector<ParmVarDecl *, 2> Params;
+ ParmVarDecl *objects = ParmVarDecl::Create(Context, Method,
+ SourceLocation(),
+ SourceLocation(),
+ &Context.Idents.get("objects"),
+ Context.getPointerType(IdT),
+ /*TInfo=*/nullptr,
+ SC_None, nullptr);
+ Params.push_back(objects);
+ ParmVarDecl *cnt = ParmVarDecl::Create(Context, Method,
+ SourceLocation(),
+ SourceLocation(),
+ &Context.Idents.get("cnt"),
+ Context.UnsignedLongTy,
+ /*TInfo=*/nullptr, SC_None,
+ nullptr);
+ Params.push_back(cnt);
+ Method->setMethodParams(Context, Params, None);
+ }
+
+ if (!validateBoxingMethod(*this, SR.getBegin(), NSArrayDecl, Sel, Method))
+ return ExprError();
+
+ // Dig out the type that all elements should be converted to.
+ QualType T = Method->parameters()[0]->getType();
+ const PointerType *PtrT = T->getAs<PointerType>();
+ if (!PtrT ||
+ !Context.hasSameUnqualifiedType(PtrT->getPointeeType(), IdT)) {
+ Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
+ << Sel;
+ Diag(Method->parameters()[0]->getLocation(),
+ diag::note_objc_literal_method_param)
+ << 0 << T
+ << Context.getPointerType(IdT.withConst());
+ return ExprError();
+ }
+
+ // Check that the 'count' parameter is integral.
+ if (!Method->parameters()[1]->getType()->isIntegerType()) {
+ Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
+ << Sel;
+ Diag(Method->parameters()[1]->getLocation(),
+ diag::note_objc_literal_method_param)
+ << 1
+ << Method->parameters()[1]->getType()
+ << "integral";
+ return ExprError();
+ }
+
+ // We've found a good +arrayWithObjects:count: method. Save it!
+ ArrayWithObjectsMethod = Method;
+ }
+
+ QualType ObjectsType = ArrayWithObjectsMethod->parameters()[0]->getType();
+ QualType RequiredType = ObjectsType->castAs<PointerType>()->getPointeeType();
+
+ // Check that each of the elements provided is valid in a collection literal,
+ // performing conversions as necessary.
+ Expr **ElementsBuffer = Elements.data();
+ for (unsigned I = 0, N = Elements.size(); I != N; ++I) {
+ ExprResult Converted = CheckObjCCollectionLiteralElement(*this,
+ ElementsBuffer[I],
+ RequiredType, true);
+ if (Converted.isInvalid())
+ return ExprError();
+
+ ElementsBuffer[I] = Converted.get();
+ }
+
+ QualType Ty
+ = Context.getObjCObjectPointerType(
+ Context.getObjCInterfaceType(NSArrayDecl));
+
+ return MaybeBindToTemporary(
+ ObjCArrayLiteral::Create(Context, Elements, Ty,
+ ArrayWithObjectsMethod, SR));
+}
+
+ExprResult Sema::BuildObjCDictionaryLiteral(SourceRange SR,
+ ObjCDictionaryElement *Elements,
+ unsigned NumElements) {
+ // Look up the NSDictionary class, if we haven't done so already.
+ if (!NSDictionaryDecl) {
+ NamedDecl *IF = LookupSingleName(TUScope,
+ NSAPIObj->getNSClassId(NSAPI::ClassId_NSDictionary),
+ SR.getBegin(), LookupOrdinaryName);
+ NSDictionaryDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
+ if (!NSDictionaryDecl && getLangOpts().DebuggerObjCLiteral)
+ NSDictionaryDecl = ObjCInterfaceDecl::Create (Context,
+ Context.getTranslationUnitDecl(),
+ SourceLocation(),
+ NSAPIObj->getNSClassId(NSAPI::ClassId_NSDictionary),
+ nullptr, SourceLocation());
+
+ if (!NSDictionaryDecl) {
+ Diag(SR.getBegin(), diag::err_undeclared_nsdictionary);
+ return ExprError();
+ }
+ }
+
+ // Find the dictionaryWithObjects:forKeys:count: method, if we haven't done
+ // so already.
+ QualType IdT = Context.getObjCIdType();
+ if (!DictionaryWithObjectsMethod) {
+ Selector Sel = NSAPIObj->getNSDictionarySelector(
+ NSAPI::NSDict_dictionaryWithObjectsForKeysCount);
+ ObjCMethodDecl *Method = NSDictionaryDecl->lookupClassMethod(Sel);
+ if (!Method && getLangOpts().DebuggerObjCLiteral) {
+ Method = ObjCMethodDecl::Create(Context,
+ SourceLocation(), SourceLocation(), Sel,
+ IdT,
+ nullptr /*TypeSourceInfo */,
+ Context.getTranslationUnitDecl(),
+ false /*Instance*/, false/*isVariadic*/,
+ /*isPropertyAccessor=*/false,
+ /*isImplicitlyDeclared=*/true, /*isDefined=*/false,
+ ObjCMethodDecl::Required,
+ false);
+ SmallVector<ParmVarDecl *, 3> Params;
+ ParmVarDecl *objects = ParmVarDecl::Create(Context, Method,
+ SourceLocation(),
+ SourceLocation(),
+ &Context.Idents.get("objects"),
+ Context.getPointerType(IdT),
+ /*TInfo=*/nullptr, SC_None,
+ nullptr);
+ Params.push_back(objects);
+ ParmVarDecl *keys = ParmVarDecl::Create(Context, Method,
+ SourceLocation(),
+ SourceLocation(),
+ &Context.Idents.get("keys"),
+ Context.getPointerType(IdT),
+ /*TInfo=*/nullptr, SC_None,
+ nullptr);
+ Params.push_back(keys);
+ ParmVarDecl *cnt = ParmVarDecl::Create(Context, Method,
+ SourceLocation(),
+ SourceLocation(),
+ &Context.Idents.get("cnt"),
+ Context.UnsignedLongTy,
+ /*TInfo=*/nullptr, SC_None,
+ nullptr);
+ Params.push_back(cnt);
+ Method->setMethodParams(Context, Params, None);
+ }
+
+ if (!validateBoxingMethod(*this, SR.getBegin(), NSDictionaryDecl, Sel,
+ Method))
+ return ExprError();
+
+ // Dig out the type that all values should be converted to.
+ QualType ValueT = Method->parameters()[0]->getType();
+ const PointerType *PtrValue = ValueT->getAs<PointerType>();
+ if (!PtrValue ||
+ !Context.hasSameUnqualifiedType(PtrValue->getPointeeType(), IdT)) {
+ Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
+ << Sel;
+ Diag(Method->parameters()[0]->getLocation(),
+ diag::note_objc_literal_method_param)
+ << 0 << ValueT
+ << Context.getPointerType(IdT.withConst());
+ return ExprError();
+ }
+
+ // Dig out the type that all keys should be converted to.
+ QualType KeyT = Method->parameters()[1]->getType();
+ const PointerType *PtrKey = KeyT->getAs<PointerType>();
+ if (!PtrKey ||
+ !Context.hasSameUnqualifiedType(PtrKey->getPointeeType(),
+ IdT)) {
+ bool err = true;
+ if (PtrKey) {
+ if (QIDNSCopying.isNull()) {
+ // key argument of selector is id<NSCopying>?
+ if (ObjCProtocolDecl *NSCopyingPDecl =
+ LookupProtocol(&Context.Idents.get("NSCopying"), SR.getBegin())) {
+ ObjCProtocolDecl *PQ[] = {NSCopyingPDecl};
+ QIDNSCopying =
+ Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
+ (ObjCProtocolDecl**) PQ,1);
+ QIDNSCopying = Context.getObjCObjectPointerType(QIDNSCopying);
+ }
+ }
+ if (!QIDNSCopying.isNull())
+ err = !Context.hasSameUnqualifiedType(PtrKey->getPointeeType(),
+ QIDNSCopying);
+ }
+
+ if (err) {
+ Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
+ << Sel;
+ Diag(Method->parameters()[1]->getLocation(),
+ diag::note_objc_literal_method_param)
+ << 1 << KeyT
+ << Context.getPointerType(IdT.withConst());
+ return ExprError();
+ }
+ }
+
+ // Check that the 'count' parameter is integral.
+ QualType CountType = Method->parameters()[2]->getType();
+ if (!CountType->isIntegerType()) {
+ Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
+ << Sel;
+ Diag(Method->parameters()[2]->getLocation(),
+ diag::note_objc_literal_method_param)
+ << 2 << CountType
+ << "integral";
+ return ExprError();
+ }
+
+ // We've found a good +dictionaryWithObjects:keys:count: method; save it!
+ DictionaryWithObjectsMethod = Method;
+ }
+
+ QualType ValuesT = DictionaryWithObjectsMethod->parameters()[0]->getType();
+ QualType ValueT = ValuesT->castAs<PointerType>()->getPointeeType();
+ QualType KeysT = DictionaryWithObjectsMethod->parameters()[1]->getType();
+ QualType KeyT = KeysT->castAs<PointerType>()->getPointeeType();
+
+ // Check that each of the keys and values provided is valid in a collection
+ // literal, performing conversions as necessary.
+ bool HasPackExpansions = false;
+ for (unsigned I = 0, N = NumElements; I != N; ++I) {
+ // Check the key.
+ ExprResult Key = CheckObjCCollectionLiteralElement(*this, Elements[I].Key,
+ KeyT);
+ if (Key.isInvalid())
+ return ExprError();
+
+ // Check the value.
+ ExprResult Value
+ = CheckObjCCollectionLiteralElement(*this, Elements[I].Value, ValueT);
+ if (Value.isInvalid())
+ return ExprError();
+
+ Elements[I].Key = Key.get();
+ Elements[I].Value = Value.get();
+
+ if (Elements[I].EllipsisLoc.isInvalid())
+ continue;
+
+ if (!Elements[I].Key->containsUnexpandedParameterPack() &&
+ !Elements[I].Value->containsUnexpandedParameterPack()) {
+ Diag(Elements[I].EllipsisLoc,
+ diag::err_pack_expansion_without_parameter_packs)
+ << SourceRange(Elements[I].Key->getLocStart(),
+ Elements[I].Value->getLocEnd());
+ return ExprError();
+ }
+
+ HasPackExpansions = true;
+ }
+
+
+ QualType Ty
+ = Context.getObjCObjectPointerType(
+ Context.getObjCInterfaceType(NSDictionaryDecl));
+ return MaybeBindToTemporary(ObjCDictionaryLiteral::Create(
+ Context, makeArrayRef(Elements, NumElements), HasPackExpansions, Ty,
+ DictionaryWithObjectsMethod, SR));
+}
+
+ExprResult Sema::BuildObjCEncodeExpression(SourceLocation AtLoc,
+ TypeSourceInfo *EncodedTypeInfo,
+ SourceLocation RParenLoc) {
+ QualType EncodedType = EncodedTypeInfo->getType();
+ QualType StrTy;
+ if (EncodedType->isDependentType())
+ StrTy = Context.DependentTy;
+ else {
+ if (!EncodedType->getAsArrayTypeUnsafe() && //// Incomplete array is handled.
+ !EncodedType->isVoidType()) // void is handled too.
+ if (RequireCompleteType(AtLoc, EncodedType,
+ diag::err_incomplete_type_objc_at_encode,
+ EncodedTypeInfo->getTypeLoc()))
+ return ExprError();
+
+ std::string Str;
+ QualType NotEncodedT;
+ Context.getObjCEncodingForType(EncodedType, Str, nullptr, &NotEncodedT);
+ if (!NotEncodedT.isNull())
+ Diag(AtLoc, diag::warn_incomplete_encoded_type)
+ << EncodedType << NotEncodedT;
+
+ // The type of @encode is the same as the type of the corresponding string,
+ // which is an array type.
+ StrTy = Context.CharTy;
+ // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
+ if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
+ StrTy.addConst();
+ StrTy = Context.getConstantArrayType(StrTy, llvm::APInt(32, Str.size()+1),
+ ArrayType::Normal, 0);
+ }
+
+ return new (Context) ObjCEncodeExpr(StrTy, EncodedTypeInfo, AtLoc, RParenLoc);
+}
+
+ExprResult Sema::ParseObjCEncodeExpression(SourceLocation AtLoc,
+ SourceLocation EncodeLoc,
+ SourceLocation LParenLoc,
+ ParsedType ty,
+ SourceLocation RParenLoc) {
+ // FIXME: Preserve type source info ?
+ TypeSourceInfo *TInfo;
+ QualType EncodedType = GetTypeFromParser(ty, &TInfo);
+ if (!TInfo)
+ TInfo = Context.getTrivialTypeSourceInfo(EncodedType,
+ PP.getLocForEndOfToken(LParenLoc));
+
+ return BuildObjCEncodeExpression(AtLoc, TInfo, RParenLoc);
+}
+
+static bool HelperToDiagnoseMismatchedMethodsInGlobalPool(Sema &S,
+ SourceLocation AtLoc,
+ SourceLocation LParenLoc,
+ SourceLocation RParenLoc,
+ ObjCMethodDecl *Method,
+ ObjCMethodList &MethList) {
+ ObjCMethodList *M = &MethList;
+ bool Warned = false;
+ for (M = M->getNext(); M; M=M->getNext()) {
+ ObjCMethodDecl *MatchingMethodDecl = M->getMethod();
+ if (MatchingMethodDecl == Method ||
+ isa<ObjCImplDecl>(MatchingMethodDecl->getDeclContext()) ||
+ MatchingMethodDecl->getSelector() != Method->getSelector())
+ continue;
+ if (!S.MatchTwoMethodDeclarations(Method,
+ MatchingMethodDecl, Sema::MMS_loose)) {
+ if (!Warned) {
+ Warned = true;
+ S.Diag(AtLoc, diag::warning_multiple_selectors)
+ << Method->getSelector() << FixItHint::CreateInsertion(LParenLoc, "(")
+ << FixItHint::CreateInsertion(RParenLoc, ")");
+ S.Diag(Method->getLocation(), diag::note_method_declared_at)
+ << Method->getDeclName();
+ }
+ S.Diag(MatchingMethodDecl->getLocation(), diag::note_method_declared_at)
+ << MatchingMethodDecl->getDeclName();
+ }
+ }
+ return Warned;
+}
+
+static void DiagnoseMismatchedSelectors(Sema &S, SourceLocation AtLoc,
+ ObjCMethodDecl *Method,
+ SourceLocation LParenLoc,
+ SourceLocation RParenLoc,
+ bool WarnMultipleSelectors) {
+ if (!WarnMultipleSelectors ||
+ S.Diags.isIgnored(diag::warning_multiple_selectors, SourceLocation()))
+ return;
+ bool Warned = false;
+ for (Sema::GlobalMethodPool::iterator b = S.MethodPool.begin(),
+ e = S.MethodPool.end(); b != e; b++) {
+ // first, instance methods
+ ObjCMethodList &InstMethList = b->second.first;
+ if (HelperToDiagnoseMismatchedMethodsInGlobalPool(S, AtLoc, LParenLoc, RParenLoc,
+ Method, InstMethList))
+ Warned = true;
+
+ // second, class methods
+ ObjCMethodList &ClsMethList = b->second.second;
+ if (HelperToDiagnoseMismatchedMethodsInGlobalPool(S, AtLoc, LParenLoc, RParenLoc,
+ Method, ClsMethList) || Warned)
+ return;
+ }
+}
+
+ExprResult Sema::ParseObjCSelectorExpression(Selector Sel,
+ SourceLocation AtLoc,
+ SourceLocation SelLoc,
+ SourceLocation LParenLoc,
+ SourceLocation RParenLoc,
+ bool WarnMultipleSelectors) {
+ ObjCMethodDecl *Method = LookupInstanceMethodInGlobalPool(Sel,
+ SourceRange(LParenLoc, RParenLoc));
+ if (!Method)
+ Method = LookupFactoryMethodInGlobalPool(Sel,
+ SourceRange(LParenLoc, RParenLoc));
+ if (!Method) {
+ if (const ObjCMethodDecl *OM = SelectorsForTypoCorrection(Sel)) {
+ Selector MatchedSel = OM->getSelector();
+ SourceRange SelectorRange(LParenLoc.getLocWithOffset(1),
+ RParenLoc.getLocWithOffset(-1));
+ Diag(SelLoc, diag::warn_undeclared_selector_with_typo)
+ << Sel << MatchedSel
+ << FixItHint::CreateReplacement(SelectorRange, MatchedSel.getAsString());
+
+ } else
+ Diag(SelLoc, diag::warn_undeclared_selector) << Sel;
+ } else
+ DiagnoseMismatchedSelectors(*this, AtLoc, Method, LParenLoc, RParenLoc,
+ WarnMultipleSelectors);
+
+ if (Method &&
+ Method->getImplementationControl() != ObjCMethodDecl::Optional &&
+ !getSourceManager().isInSystemHeader(Method->getLocation()))
+ ReferencedSelectors.insert(std::make_pair(Sel, AtLoc));
+
+ // In ARC, forbid the user from using @selector for
+ // retain/release/autorelease/dealloc/retainCount.
+ if (getLangOpts().ObjCAutoRefCount) {
+ switch (Sel.getMethodFamily()) {
+ case OMF_retain:
+ case OMF_release:
+ case OMF_autorelease:
+ case OMF_retainCount:
+ case OMF_dealloc:
+ Diag(AtLoc, diag::err_arc_illegal_selector) <<
+ Sel << SourceRange(LParenLoc, RParenLoc);
+ break;
+
+ case OMF_None:
+ case OMF_alloc:
+ case OMF_copy:
+ case OMF_finalize:
+ case OMF_init:
+ case OMF_mutableCopy:
+ case OMF_new:
+ case OMF_self:
+ case OMF_initialize:
+ case OMF_performSelector:
+ break;
+ }
+ }
+ QualType Ty = Context.getObjCSelType();
+ return new (Context) ObjCSelectorExpr(Ty, Sel, AtLoc, RParenLoc);
+}
+
+ExprResult Sema::ParseObjCProtocolExpression(IdentifierInfo *ProtocolId,
+ SourceLocation AtLoc,
+ SourceLocation ProtoLoc,
+ SourceLocation LParenLoc,
+ SourceLocation ProtoIdLoc,
+ SourceLocation RParenLoc) {
+ ObjCProtocolDecl* PDecl = LookupProtocol(ProtocolId, ProtoIdLoc);
+ if (!PDecl) {
+ Diag(ProtoLoc, diag::err_undeclared_protocol) << ProtocolId;
+ return true;
+ }
+ if (PDecl->hasDefinition())
+ PDecl = PDecl->getDefinition();
+
+ QualType Ty = Context.getObjCProtoType();
+ if (Ty.isNull())
+ return true;
+ Ty = Context.getObjCObjectPointerType(Ty);
+ return new (Context) ObjCProtocolExpr(Ty, PDecl, AtLoc, ProtoIdLoc, RParenLoc);
+}
+
+/// Try to capture an implicit reference to 'self'.
+ObjCMethodDecl *Sema::tryCaptureObjCSelf(SourceLocation Loc) {
+ DeclContext *DC = getFunctionLevelDeclContext();
+
+ // If we're not in an ObjC method, error out. Note that, unlike the
+ // C++ case, we don't require an instance method --- class methods
+ // still have a 'self', and we really do still need to capture it!
+ ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(DC);
+ if (!method)
+ return nullptr;
+
+ tryCaptureVariable(method->getSelfDecl(), Loc);
+
+ return method;
+}
+
+static QualType stripObjCInstanceType(ASTContext &Context, QualType T) {
+ if (T == Context.getObjCInstanceType())
+ return Context.getObjCIdType();
+
+ return T;
+}
+
+QualType Sema::getMessageSendResultType(QualType ReceiverType,
+ ObjCMethodDecl *Method,
+ bool isClassMessage, bool isSuperMessage) {
+ assert(Method && "Must have a method");
+ if (!Method->hasRelatedResultType())
+ return Method->getSendResultType();
+
+ // If a method has a related return type:
+ // - if the method found is an instance method, but the message send
+ // was a class message send, T is the declared return type of the method
+ // found
+ if (Method->isInstanceMethod() && isClassMessage)
+ return stripObjCInstanceType(Context, Method->getSendResultType());
+
+ // - if the receiver is super, T is a pointer to the class of the
+ // enclosing method definition
+ if (isSuperMessage) {
+ if (ObjCMethodDecl *CurMethod = getCurMethodDecl())
+ if (ObjCInterfaceDecl *Class = CurMethod->getClassInterface())
+ return Context.getObjCObjectPointerType(
+ Context.getObjCInterfaceType(Class));
+ }
+
+ // - if the receiver is the name of a class U, T is a pointer to U
+ if (ReceiverType->getAs<ObjCInterfaceType>() ||
+ ReceiverType->isObjCQualifiedInterfaceType())
+ return Context.getObjCObjectPointerType(ReceiverType);
+ // - if the receiver is of type Class or qualified Class type,
+ // T is the declared return type of the method.
+ if (ReceiverType->isObjCClassType() ||
+ ReceiverType->isObjCQualifiedClassType())
+ return stripObjCInstanceType(Context, Method->getSendResultType());
+
+ // - if the receiver is id, qualified id, Class, or qualified Class, T
+ // is the receiver type, otherwise
+ // - T is the type of the receiver expression.
+ return ReceiverType;
+}
+
+/// Look for an ObjC method whose result type exactly matches the given type.
+static const ObjCMethodDecl *
+findExplicitInstancetypeDeclarer(const ObjCMethodDecl *MD,
+ QualType instancetype) {
+ if (MD->getReturnType() == instancetype)
+ return MD;
+
+ // For these purposes, a method in an @implementation overrides a
+ // declaration in the @interface.
+ if (const ObjCImplDecl *impl =
+ dyn_cast<ObjCImplDecl>(MD->getDeclContext())) {
+ const ObjCContainerDecl *iface;
+ if (const ObjCCategoryImplDecl *catImpl =
+ dyn_cast<ObjCCategoryImplDecl>(impl)) {
+ iface = catImpl->getCategoryDecl();
+ } else {
+ iface = impl->getClassInterface();
+ }
+
+ const ObjCMethodDecl *ifaceMD =
+ iface->getMethod(MD->getSelector(), MD->isInstanceMethod());
+ if (ifaceMD) return findExplicitInstancetypeDeclarer(ifaceMD, instancetype);
+ }
+
+ SmallVector<const ObjCMethodDecl *, 4> overrides;
+ MD->getOverriddenMethods(overrides);
+ for (unsigned i = 0, e = overrides.size(); i != e; ++i) {
+ if (const ObjCMethodDecl *result =
+ findExplicitInstancetypeDeclarer(overrides[i], instancetype))
+ return result;
+ }
+
+ return nullptr;
+}
+
+void Sema::EmitRelatedResultTypeNoteForReturn(QualType destType) {
+ // Only complain if we're in an ObjC method and the required return
+ // type doesn't match the method's declared return type.
+ ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurContext);
+ if (!MD || !MD->hasRelatedResultType() ||
+ Context.hasSameUnqualifiedType(destType, MD->getReturnType()))
+ return;
+
+ // Look for a method overridden by this method which explicitly uses
+ // 'instancetype'.
+ if (const ObjCMethodDecl *overridden =
+ findExplicitInstancetypeDeclarer(MD, Context.getObjCInstanceType())) {
+ SourceRange range = overridden->getReturnTypeSourceRange();
+ SourceLocation loc = range.getBegin();
+ if (loc.isInvalid())
+ loc = overridden->getLocation();
+ Diag(loc, diag::note_related_result_type_explicit)
+ << /*current method*/ 1 << range;
+ return;
+ }
+
+ // Otherwise, if we have an interesting method family, note that.
+ // This should always trigger if the above didn't.
+ if (ObjCMethodFamily family = MD->getMethodFamily())
+ Diag(MD->getLocation(), diag::note_related_result_type_family)
+ << /*current method*/ 1
+ << family;
+}
+
+void Sema::EmitRelatedResultTypeNote(const Expr *E) {
+ E = E->IgnoreParenImpCasts();
+ const ObjCMessageExpr *MsgSend = dyn_cast<ObjCMessageExpr>(E);
+ if (!MsgSend)
+ return;
+
+ const ObjCMethodDecl *Method = MsgSend->getMethodDecl();
+ if (!Method)
+ return;
+
+ if (!Method->hasRelatedResultType())
+ return;
+
+ if (Context.hasSameUnqualifiedType(
+ Method->getReturnType().getNonReferenceType(), MsgSend->getType()))
+ return;
+
+ if (!Context.hasSameUnqualifiedType(Method->getReturnType(),
+ Context.getObjCInstanceType()))
+ return;
+
+ Diag(Method->getLocation(), diag::note_related_result_type_inferred)
+ << Method->isInstanceMethod() << Method->getSelector()
+ << MsgSend->getType();
+}
+
+bool Sema::CheckMessageArgumentTypes(QualType ReceiverType,
+ MultiExprArg Args,
+ Selector Sel,
+ ArrayRef<SourceLocation> SelectorLocs,
+ ObjCMethodDecl *Method,
+ bool isClassMessage, bool isSuperMessage,
+ SourceLocation lbrac, SourceLocation rbrac,
+ SourceRange RecRange,
+ QualType &ReturnType, ExprValueKind &VK) {
+ SourceLocation SelLoc;
+ if (!SelectorLocs.empty() && SelectorLocs.front().isValid())
+ SelLoc = SelectorLocs.front();
+ else
+ SelLoc = lbrac;
+
+ if (!Method) {
+ // Apply default argument promotion as for (C99 6.5.2.2p6).
+ for (unsigned i = 0, e = Args.size(); i != e; i++) {
+ if (Args[i]->isTypeDependent())
+ continue;
+
+ ExprResult result;
+ if (getLangOpts().DebuggerSupport) {
+ QualType paramTy; // ignored
+ result = checkUnknownAnyArg(SelLoc, Args[i], paramTy);
+ } else {
+ result = DefaultArgumentPromotion(Args[i]);
+ }
+ if (result.isInvalid())
+ return true;
+ Args[i] = result.get();
+ }
+
+ unsigned DiagID;
+ if (getLangOpts().ObjCAutoRefCount)
+ DiagID = diag::err_arc_method_not_found;
+ else
+ DiagID = isClassMessage ? diag::warn_class_method_not_found
+ : diag::warn_inst_method_not_found;
+ if (!getLangOpts().DebuggerSupport) {
+ const ObjCMethodDecl *OMD = SelectorsForTypoCorrection(Sel, ReceiverType);
+ if (OMD && !OMD->isInvalidDecl()) {
+ if (getLangOpts().ObjCAutoRefCount)
+ DiagID = diag::error_method_not_found_with_typo;
+ else
+ DiagID = isClassMessage ? diag::warn_class_method_not_found_with_typo
+ : diag::warn_instance_method_not_found_with_typo;
+ Selector MatchedSel = OMD->getSelector();
+ SourceRange SelectorRange(SelectorLocs.front(), SelectorLocs.back());
+ if (MatchedSel.isUnarySelector())
+ Diag(SelLoc, DiagID)
+ << Sel<< isClassMessage << MatchedSel
+ << FixItHint::CreateReplacement(SelectorRange, MatchedSel.getAsString());
+ else
+ Diag(SelLoc, DiagID) << Sel<< isClassMessage << MatchedSel;
+ }
+ else
+ Diag(SelLoc, DiagID)
+ << Sel << isClassMessage << SourceRange(SelectorLocs.front(),
+ SelectorLocs.back());
+ // Find the class to which we are sending this message.
+ if (ReceiverType->isObjCObjectPointerType()) {
+ if (ObjCInterfaceDecl *ThisClass =
+ ReceiverType->getAs<ObjCObjectPointerType>()->getInterfaceDecl()) {
+ Diag(ThisClass->getLocation(), diag::note_receiver_class_declared);
+ if (!RecRange.isInvalid())
+ if (ThisClass->lookupClassMethod(Sel))
+ Diag(RecRange.getBegin(),diag::note_receiver_expr_here)
+ << FixItHint::CreateReplacement(RecRange,
+ ThisClass->getNameAsString());
+ }
+ }
+ }
+
+ // In debuggers, we want to use __unknown_anytype for these
+ // results so that clients can cast them.
+ if (getLangOpts().DebuggerSupport) {
+ ReturnType = Context.UnknownAnyTy;
+ } else {
+ ReturnType = Context.getObjCIdType();
+ }
+ VK = VK_RValue;
+ return false;
+ }
+
+ ReturnType = getMessageSendResultType(ReceiverType, Method, isClassMessage,
+ isSuperMessage);
+ VK = Expr::getValueKindForType(Method->getReturnType());
+
+ unsigned NumNamedArgs = Sel.getNumArgs();
+ // Method might have more arguments than selector indicates. This is due
+ // to addition of c-style arguments in method.
+ if (Method->param_size() > Sel.getNumArgs())
+ NumNamedArgs = Method->param_size();
+ // FIXME. This need be cleaned up.
+ if (Args.size() < NumNamedArgs) {
+ Diag(SelLoc, diag::err_typecheck_call_too_few_args)
+ << 2 << NumNamedArgs << static_cast<unsigned>(Args.size());
+ return false;
+ }
+
+ bool IsError = false;
+ for (unsigned i = 0; i < NumNamedArgs; i++) {
+ // We can't do any type-checking on a type-dependent argument.
+ if (Args[i]->isTypeDependent())
+ continue;
+
+ Expr *argExpr = Args[i];
+
+ ParmVarDecl *param = Method->parameters()[i];
+ assert(argExpr && "CheckMessageArgumentTypes(): missing expression");
+
+ // Strip the unbridged-cast placeholder expression off unless it's
+ // a consumed argument.
+ if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) &&
+ !param->hasAttr<CFConsumedAttr>())
+ argExpr = stripARCUnbridgedCast(argExpr);
+
+ // If the parameter is __unknown_anytype, infer its type
+ // from the argument.
+ if (param->getType() == Context.UnknownAnyTy) {
+ QualType paramType;
+ ExprResult argE = checkUnknownAnyArg(SelLoc, argExpr, paramType);
+ if (argE.isInvalid()) {
+ IsError = true;
+ } else {
+ Args[i] = argE.get();
+
+ // Update the parameter type in-place.
+ param->setType(paramType);
+ }
+ continue;
+ }
+
+ if (RequireCompleteType(argExpr->getSourceRange().getBegin(),
+ param->getType(),
+ diag::err_call_incomplete_argument, argExpr))
+ return true;
+
+ InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
+ param);
+ ExprResult ArgE = PerformCopyInitialization(Entity, SourceLocation(), argExpr);
+ if (ArgE.isInvalid())
+ IsError = true;
+ else
+ Args[i] = ArgE.getAs<Expr>();
+ }
+
+ // Promote additional arguments to variadic methods.
+ if (Method->isVariadic()) {
+ for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) {
+ if (Args[i]->isTypeDependent())
+ continue;
+
+ ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
+ nullptr);
+ IsError |= Arg.isInvalid();
+ Args[i] = Arg.get();
+ }
+ } else {
+ // Check for extra arguments to non-variadic methods.
+ if (Args.size() != NumNamedArgs) {
+ Diag(Args[NumNamedArgs]->getLocStart(),
+ diag::err_typecheck_call_too_many_args)
+ << 2 /*method*/ << NumNamedArgs << static_cast<unsigned>(Args.size())
+ << Method->getSourceRange()
+ << SourceRange(Args[NumNamedArgs]->getLocStart(),
+ Args.back()->getLocEnd());
+ }
+ }
+
+ DiagnoseSentinelCalls(Method, SelLoc, Args);
+
+ // Do additional checkings on method.
+ IsError |= CheckObjCMethodCall(
+ Method, SelLoc, makeArrayRef(Args.data(), Args.size()));
+
+ return IsError;
+}
+
+bool Sema::isSelfExpr(Expr *RExpr) {
+ // 'self' is objc 'self' in an objc method only.
+ ObjCMethodDecl *Method =
+ dyn_cast_or_null<ObjCMethodDecl>(CurContext->getNonClosureAncestor());
+ return isSelfExpr(RExpr, Method);
+}
+
+bool Sema::isSelfExpr(Expr *receiver, const ObjCMethodDecl *method) {
+ if (!method) return false;
+
+ receiver = receiver->IgnoreParenLValueCasts();
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(receiver))
+ if (DRE->getDecl() == method->getSelfDecl())
+ return true;
+ return false;
+}
+
+/// LookupMethodInType - Look up a method in an ObjCObjectType.
+ObjCMethodDecl *Sema::LookupMethodInObjectType(Selector sel, QualType type,
+ bool isInstance) {
+ const ObjCObjectType *objType = type->castAs<ObjCObjectType>();
+ if (ObjCInterfaceDecl *iface = objType->getInterface()) {
+ // Look it up in the main interface (and categories, etc.)
+ if (ObjCMethodDecl *method = iface->lookupMethod(sel, isInstance))
+ return method;
+
+ // Okay, look for "private" methods declared in any
+ // @implementations we've seen.
+ if (ObjCMethodDecl *method = iface->lookupPrivateMethod(sel, isInstance))
+ return method;
+ }
+
+ // Check qualifiers.
+ for (const auto *I : objType->quals())
+ if (ObjCMethodDecl *method = I->lookupMethod(sel, isInstance))
+ return method;
+
+ return nullptr;
+}
+
+/// LookupMethodInQualifiedType - Lookups up a method in protocol qualifier
+/// list of a qualified objective pointer type.
+ObjCMethodDecl *Sema::LookupMethodInQualifiedType(Selector Sel,
+ const ObjCObjectPointerType *OPT,
+ bool Instance)
+{
+ ObjCMethodDecl *MD = nullptr;
+ for (const auto *PROTO : OPT->quals()) {
+ if ((MD = PROTO->lookupMethod(Sel, Instance))) {
+ return MD;
+ }
+ }
+ return nullptr;
+}
+
+/// HandleExprPropertyRefExpr - Handle foo.bar where foo is a pointer to an
+/// objective C interface. This is a property reference expression.
+ExprResult Sema::
+HandleExprPropertyRefExpr(const ObjCObjectPointerType *OPT,
+ Expr *BaseExpr, SourceLocation OpLoc,
+ DeclarationName MemberName,
+ SourceLocation MemberLoc,
+ SourceLocation SuperLoc, QualType SuperType,
+ bool Super) {
+ const ObjCInterfaceType *IFaceT = OPT->getInterfaceType();
+ ObjCInterfaceDecl *IFace = IFaceT->getDecl();
+
+ if (!MemberName.isIdentifier()) {
+ Diag(MemberLoc, diag::err_invalid_property_name)
+ << MemberName << QualType(OPT, 0);
+ return ExprError();
+ }
+
+ IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
+
+ SourceRange BaseRange = Super? SourceRange(SuperLoc)
+ : BaseExpr->getSourceRange();
+ if (RequireCompleteType(MemberLoc, OPT->getPointeeType(),
+ diag::err_property_not_found_forward_class,
+ MemberName, BaseRange))
+ return ExprError();
+
+ // Search for a declared property first.
+ if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(Member)) {
+ // Check whether we can reference this property.
+ if (DiagnoseUseOfDecl(PD, MemberLoc))
+ return ExprError();
+ if (Super)
+ return new (Context)
+ ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, VK_LValue,
+ OK_ObjCProperty, MemberLoc, SuperLoc, SuperType);
+ else
+ return new (Context)
+ ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, VK_LValue,
+ OK_ObjCProperty, MemberLoc, BaseExpr);
+ }
+ // Check protocols on qualified interfaces.
+ for (const auto *I : OPT->quals())
+ if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration(Member)) {
+ // Check whether we can reference this property.
+ if (DiagnoseUseOfDecl(PD, MemberLoc))
+ return ExprError();
+
+ if (Super)
+ return new (Context) ObjCPropertyRefExpr(
+ PD, Context.PseudoObjectTy, VK_LValue, OK_ObjCProperty, MemberLoc,
+ SuperLoc, SuperType);
+ else
+ return new (Context)
+ ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, VK_LValue,
+ OK_ObjCProperty, MemberLoc, BaseExpr);
+ }
+ // If that failed, look for an "implicit" property by seeing if the nullary
+ // selector is implemented.
+
+ // FIXME: The logic for looking up nullary and unary selectors should be
+ // shared with the code in ActOnInstanceMessage.
+
+ Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
+ ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
+
+ // May be founf in property's qualified list.
+ if (!Getter)
+ Getter = LookupMethodInQualifiedType(Sel, OPT, true);
+
+ // If this reference is in an @implementation, check for 'private' methods.
+ if (!Getter)
+ Getter = IFace->lookupPrivateMethod(Sel);
+
+ if (Getter) {
+ // Check if we can reference this property.
+ if (DiagnoseUseOfDecl(Getter, MemberLoc))
+ return ExprError();
+ }
+ // If we found a getter then this may be a valid dot-reference, we
+ // will look for the matching setter, in case it is needed.
+ Selector SetterSel =
+ SelectorTable::constructSetterSelector(PP.getIdentifierTable(),
+ PP.getSelectorTable(), Member);
+ ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
+
+ // May be founf in property's qualified list.
+ if (!Setter)
+ Setter = LookupMethodInQualifiedType(SetterSel, OPT, true);
+
+ if (!Setter) {
+ // If this reference is in an @implementation, also check for 'private'
+ // methods.
+ Setter = IFace->lookupPrivateMethod(SetterSel);
+ }
+
+ if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
+ return ExprError();
+
+ // Special warning if member name used in a property-dot for a setter accessor
+ // does not use a property with same name; e.g. obj.X = ... for a property with
+ // name 'x'.
+ if (Setter && Setter->isImplicit() && Setter->isPropertyAccessor()
+ && !IFace->FindPropertyDeclaration(Member)) {
+ if (const ObjCPropertyDecl *PDecl = Setter->findPropertyDecl()) {
+ // Do not warn if user is using property-dot syntax to make call to
+ // user named setter.
+ if (!(PDecl->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter))
+ Diag(MemberLoc,
+ diag::warn_property_access_suggest)
+ << MemberName << QualType(OPT, 0) << PDecl->getName()
+ << FixItHint::CreateReplacement(MemberLoc, PDecl->getName());
+ }
+ }
+
+ if (Getter || Setter) {
+ if (Super)
+ return new (Context)
+ ObjCPropertyRefExpr(Getter, Setter, Context.PseudoObjectTy, VK_LValue,
+ OK_ObjCProperty, MemberLoc, SuperLoc, SuperType);
+ else
+ return new (Context)
+ ObjCPropertyRefExpr(Getter, Setter, Context.PseudoObjectTy, VK_LValue,
+ OK_ObjCProperty, MemberLoc, BaseExpr);
+
+ }
+
+ // Attempt to correct for typos in property names.
+ if (TypoCorrection Corrected =
+ CorrectTypo(DeclarationNameInfo(MemberName, MemberLoc),
+ LookupOrdinaryName, nullptr, nullptr,
+ llvm::make_unique<DeclFilterCCC<ObjCPropertyDecl>>(),
+ CTK_ErrorRecovery, IFace, false, OPT)) {
+ diagnoseTypo(Corrected, PDiag(diag::err_property_not_found_suggest)
+ << MemberName << QualType(OPT, 0));
+ DeclarationName TypoResult = Corrected.getCorrection();
+ return HandleExprPropertyRefExpr(OPT, BaseExpr, OpLoc,
+ TypoResult, MemberLoc,
+ SuperLoc, SuperType, Super);
+ }
+ ObjCInterfaceDecl *ClassDeclared;
+ if (ObjCIvarDecl *Ivar =
+ IFace->lookupInstanceVariable(Member, ClassDeclared)) {
+ QualType T = Ivar->getType();
+ if (const ObjCObjectPointerType * OBJPT =
+ T->getAsObjCInterfacePointerType()) {
+ if (RequireCompleteType(MemberLoc, OBJPT->getPointeeType(),
+ diag::err_property_not_as_forward_class,
+ MemberName, BaseExpr))
+ return ExprError();
+ }
+ Diag(MemberLoc,
+ diag::err_ivar_access_using_property_syntax_suggest)
+ << MemberName << QualType(OPT, 0) << Ivar->getDeclName()
+ << FixItHint::CreateReplacement(OpLoc, "->");
+ return ExprError();
+ }
+
+ Diag(MemberLoc, diag::err_property_not_found)
+ << MemberName << QualType(OPT, 0);
+ if (Setter)
+ Diag(Setter->getLocation(), diag::note_getter_unavailable)
+ << MemberName << BaseExpr->getSourceRange();
+ return ExprError();
+}
+
+
+
+ExprResult Sema::
+ActOnClassPropertyRefExpr(IdentifierInfo &receiverName,
+ IdentifierInfo &propertyName,
+ SourceLocation receiverNameLoc,
+ SourceLocation propertyNameLoc) {
+
+ IdentifierInfo *receiverNamePtr = &receiverName;
+ ObjCInterfaceDecl *IFace = getObjCInterfaceDecl(receiverNamePtr,
+ receiverNameLoc);
+
+ bool IsSuper = false;
+ if (!IFace) {
+ // If the "receiver" is 'super' in a method, handle it as an expression-like
+ // property reference.
+ if (receiverNamePtr->isStr("super")) {
+ IsSuper = true;
+
+ if (ObjCMethodDecl *CurMethod = tryCaptureObjCSelf(receiverNameLoc)) {
+ if (ObjCInterfaceDecl *Class = CurMethod->getClassInterface()) {
+ if (CurMethod->isInstanceMethod()) {
+ ObjCInterfaceDecl *Super = Class->getSuperClass();
+ if (!Super) {
+ // The current class does not have a superclass.
+ Diag(receiverNameLoc, diag::error_root_class_cannot_use_super)
+ << Class->getIdentifier();
+ return ExprError();
+ }
+ QualType T = Context.getObjCInterfaceType(Super);
+ T = Context.getObjCObjectPointerType(T);
+
+ return HandleExprPropertyRefExpr(T->getAsObjCInterfacePointerType(),
+ /*BaseExpr*/nullptr,
+ SourceLocation()/*OpLoc*/,
+ &propertyName,
+ propertyNameLoc,
+ receiverNameLoc, T, true);
+ }
+
+ // Otherwise, if this is a class method, try dispatching to our
+ // superclass.
+ IFace = Class->getSuperClass();
+ }
+ }
+ }
+
+ if (!IFace) {
+ Diag(receiverNameLoc, diag::err_expected_either) << tok::identifier
+ << tok::l_paren;
+ return ExprError();
+ }
+ }
+
+ // Search for a declared property first.
+ Selector Sel = PP.getSelectorTable().getNullarySelector(&propertyName);
+ ObjCMethodDecl *Getter = IFace->lookupClassMethod(Sel);
+
+ // If this reference is in an @implementation, check for 'private' methods.
+ if (!Getter)
+ Getter = IFace->lookupPrivateClassMethod(Sel);
+
+ if (Getter) {
+ // FIXME: refactor/share with ActOnMemberReference().
+ // Check if we can reference this property.
+ if (DiagnoseUseOfDecl(Getter, propertyNameLoc))
+ return ExprError();
+ }
+
+ // Look for the matching setter, in case it is needed.
+ Selector SetterSel =
+ SelectorTable::constructSetterSelector(PP.getIdentifierTable(),
+ PP.getSelectorTable(),
+ &propertyName);
+
+ ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
+ if (!Setter) {
+ // If this reference is in an @implementation, also check for 'private'
+ // methods.
+ Setter = IFace->lookupPrivateClassMethod(SetterSel);
+ }
+ // Look through local category implementations associated with the class.
+ if (!Setter)
+ Setter = IFace->getCategoryClassMethod(SetterSel);
+
+ if (Setter && DiagnoseUseOfDecl(Setter, propertyNameLoc))
+ return ExprError();
+
+ if (Getter || Setter) {
+ if (IsSuper)
+ return new (Context)
+ ObjCPropertyRefExpr(Getter, Setter, Context.PseudoObjectTy, VK_LValue,
+ OK_ObjCProperty, propertyNameLoc, receiverNameLoc,
+ Context.getObjCInterfaceType(IFace));
+
+ return new (Context) ObjCPropertyRefExpr(
+ Getter, Setter, Context.PseudoObjectTy, VK_LValue, OK_ObjCProperty,
+ propertyNameLoc, receiverNameLoc, IFace);
+ }
+ return ExprError(Diag(propertyNameLoc, diag::err_property_not_found)
+ << &propertyName << Context.getObjCInterfaceType(IFace));
+}
+
+namespace {
+
+class ObjCInterfaceOrSuperCCC : public CorrectionCandidateCallback {
+ public:
+ ObjCInterfaceOrSuperCCC(ObjCMethodDecl *Method) {
+ // Determine whether "super" is acceptable in the current context.
+ if (Method && Method->getClassInterface())
+ WantObjCSuper = Method->getClassInterface()->getSuperClass();
+ }
+
+ bool ValidateCandidate(const TypoCorrection &candidate) override {
+ return candidate.getCorrectionDeclAs<ObjCInterfaceDecl>() ||
+ candidate.isKeyword("super");
+ }
+};
+
+}
+
+Sema::ObjCMessageKind Sema::getObjCMessageKind(Scope *S,
+ IdentifierInfo *Name,
+ SourceLocation NameLoc,
+ bool IsSuper,
+ bool HasTrailingDot,
+ ParsedType &ReceiverType) {
+ ReceiverType = ParsedType();
+
+ // If the identifier is "super" and there is no trailing dot, we're
+ // messaging super. If the identifier is "super" and there is a
+ // trailing dot, it's an instance message.
+ if (IsSuper && S->isInObjcMethodScope())
+ return HasTrailingDot? ObjCInstanceMessage : ObjCSuperMessage;
+
+ LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
+ LookupName(Result, S);
+
+ switch (Result.getResultKind()) {
+ case LookupResult::NotFound:
+ // Normal name lookup didn't find anything. If we're in an
+ // Objective-C method, look for ivars. If we find one, we're done!
+ // FIXME: This is a hack. Ivar lookup should be part of normal
+ // lookup.
+ if (ObjCMethodDecl *Method = getCurMethodDecl()) {
+ if (!Method->getClassInterface()) {
+ // Fall back: let the parser try to parse it as an instance message.
+ return ObjCInstanceMessage;
+ }
+
+ ObjCInterfaceDecl *ClassDeclared;
+ if (Method->getClassInterface()->lookupInstanceVariable(Name,
+ ClassDeclared))
+ return ObjCInstanceMessage;
+ }
+
+ // Break out; we'll perform typo correction below.
+ break;
+
+ case LookupResult::NotFoundInCurrentInstantiation:
+ case LookupResult::FoundOverloaded:
+ case LookupResult::FoundUnresolvedValue:
+ case LookupResult::Ambiguous:
+ Result.suppressDiagnostics();
+ return ObjCInstanceMessage;
+
+ case LookupResult::Found: {
+ // If the identifier is a class or not, and there is a trailing dot,
+ // it's an instance message.
+ if (HasTrailingDot)
+ return ObjCInstanceMessage;
+ // We found something. If it's a type, then we have a class
+ // message. Otherwise, it's an instance message.
+ NamedDecl *ND = Result.getFoundDecl();
+ QualType T;
+ if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(ND))
+ T = Context.getObjCInterfaceType(Class);
+ else if (TypeDecl *Type = dyn_cast<TypeDecl>(ND)) {
+ T = Context.getTypeDeclType(Type);
+ DiagnoseUseOfDecl(Type, NameLoc);
+ }
+ else
+ return ObjCInstanceMessage;
+
+ // We have a class message, and T is the type we're
+ // messaging. Build source-location information for it.
+ TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc);
+ ReceiverType = CreateParsedType(T, TSInfo);
+ return ObjCClassMessage;
+ }
+ }
+
+ if (TypoCorrection Corrected = CorrectTypo(
+ Result.getLookupNameInfo(), Result.getLookupKind(), S, nullptr,
+ llvm::make_unique<ObjCInterfaceOrSuperCCC>(getCurMethodDecl()),
+ CTK_ErrorRecovery, nullptr, false, nullptr, false)) {
+ if (Corrected.isKeyword()) {
+ // If we've found the keyword "super" (the only keyword that would be
+ // returned by CorrectTypo), this is a send to super.
+ diagnoseTypo(Corrected,
+ PDiag(diag::err_unknown_receiver_suggest) << Name);
+ return ObjCSuperMessage;
+ } else if (ObjCInterfaceDecl *Class =
+ Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
+ // If we found a declaration, correct when it refers to an Objective-C
+ // class.
+ diagnoseTypo(Corrected,
+ PDiag(diag::err_unknown_receiver_suggest) << Name);
+ QualType T = Context.getObjCInterfaceType(Class);
+ TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc);
+ ReceiverType = CreateParsedType(T, TSInfo);
+ return ObjCClassMessage;
+ }
+ }
+
+ // Fall back: let the parser try to parse it as an instance message.
+ return ObjCInstanceMessage;
+}
+
+ExprResult Sema::ActOnSuperMessage(Scope *S,
+ SourceLocation SuperLoc,
+ Selector Sel,
+ SourceLocation LBracLoc,
+ ArrayRef<SourceLocation> SelectorLocs,
+ SourceLocation RBracLoc,
+ MultiExprArg Args) {
+ // Determine whether we are inside a method or not.
+ ObjCMethodDecl *Method = tryCaptureObjCSelf(SuperLoc);
+ if (!Method) {
+ Diag(SuperLoc, diag::err_invalid_receiver_to_message_super);
+ return ExprError();
+ }
+
+ ObjCInterfaceDecl *Class = Method->getClassInterface();
+ if (!Class) {
+ Diag(SuperLoc, diag::error_no_super_class_message)
+ << Method->getDeclName();
+ return ExprError();
+ }
+
+ ObjCInterfaceDecl *Super = Class->getSuperClass();
+ if (!Super) {
+ // The current class does not have a superclass.
+ Diag(SuperLoc, diag::error_root_class_cannot_use_super)
+ << Class->getIdentifier();
+ return ExprError();
+ }
+
+ // We are in a method whose class has a superclass, so 'super'
+ // is acting as a keyword.
+ if (Method->getSelector() == Sel)
+ getCurFunction()->ObjCShouldCallSuper = false;
+
+ if (Method->isInstanceMethod()) {
+ // Since we are in an instance method, this is an instance
+ // message to the superclass instance.
+ QualType SuperTy = Context.getObjCInterfaceType(Super);
+ SuperTy = Context.getObjCObjectPointerType(SuperTy);
+ return BuildInstanceMessage(nullptr, SuperTy, SuperLoc,
+ Sel, /*Method=*/nullptr,
+ LBracLoc, SelectorLocs, RBracLoc, Args);
+ }
+
+ // Since we are in a class method, this is a class message to
+ // the superclass.
+ return BuildClassMessage(/*ReceiverTypeInfo=*/nullptr,
+ Context.getObjCInterfaceType(Super),
+ SuperLoc, Sel, /*Method=*/nullptr,
+ LBracLoc, SelectorLocs, RBracLoc, Args);
+}
+
+
+ExprResult Sema::BuildClassMessageImplicit(QualType ReceiverType,
+ bool isSuperReceiver,
+ SourceLocation Loc,
+ Selector Sel,
+ ObjCMethodDecl *Method,
+ MultiExprArg Args) {
+ TypeSourceInfo *receiverTypeInfo = nullptr;
+ if (!ReceiverType.isNull())
+ receiverTypeInfo = Context.getTrivialTypeSourceInfo(ReceiverType);
+
+ return BuildClassMessage(receiverTypeInfo, ReceiverType,
+ /*SuperLoc=*/isSuperReceiver ? Loc : SourceLocation(),
+ Sel, Method, Loc, Loc, Loc, Args,
+ /*isImplicit=*/true);
+
+}
+
+static void applyCocoaAPICheck(Sema &S, const ObjCMessageExpr *Msg,
+ unsigned DiagID,
+ bool (*refactor)(const ObjCMessageExpr *,
+ const NSAPI &, edit::Commit &)) {
+ SourceLocation MsgLoc = Msg->getExprLoc();
+ if (S.Diags.isIgnored(DiagID, MsgLoc))
+ return;
+
+ SourceManager &SM = S.SourceMgr;
+ edit::Commit ECommit(SM, S.LangOpts);
+ if (refactor(Msg,*S.NSAPIObj, ECommit)) {
+ DiagnosticBuilder Builder = S.Diag(MsgLoc, DiagID)
+ << Msg->getSelector() << Msg->getSourceRange();
+ // FIXME: Don't emit diagnostic at all if fixits are non-commitable.
+ if (!ECommit.isCommitable())
+ return;
+ for (edit::Commit::edit_iterator
+ I = ECommit.edit_begin(), E = ECommit.edit_end(); I != E; ++I) {
+ const edit::Commit::Edit &Edit = *I;
+ switch (Edit.Kind) {
+ case edit::Commit::Act_Insert:
+ Builder.AddFixItHint(FixItHint::CreateInsertion(Edit.OrigLoc,
+ Edit.Text,
+ Edit.BeforePrev));
+ break;
+ case edit::Commit::Act_InsertFromRange:
+ Builder.AddFixItHint(
+ FixItHint::CreateInsertionFromRange(Edit.OrigLoc,
+ Edit.getInsertFromRange(SM),
+ Edit.BeforePrev));
+ break;
+ case edit::Commit::Act_Remove:
+ Builder.AddFixItHint(FixItHint::CreateRemoval(Edit.getFileRange(SM)));
+ break;
+ }
+ }
+ }
+}
+
+static void checkCocoaAPI(Sema &S, const ObjCMessageExpr *Msg) {
+ applyCocoaAPICheck(S, Msg, diag::warn_objc_redundant_literal_use,
+ edit::rewriteObjCRedundantCallWithLiteral);
+}
+
+/// \brief Diagnose use of %s directive in an NSString which is being passed
+/// as formatting string to formatting method.
+static void
+DiagnoseCStringFormatDirectiveInObjCAPI(Sema &S,
+ ObjCMethodDecl *Method,
+ Selector Sel,
+ Expr **Args, unsigned NumArgs) {
+ unsigned Idx = 0;
+ bool Format = false;
+ ObjCStringFormatFamily SFFamily = Sel.getStringFormatFamily();
+ if (SFFamily == ObjCStringFormatFamily::SFF_NSString) {
+ Idx = 0;
+ Format = true;
+ }
+ else if (Method) {
+ for (const auto *I : Method->specific_attrs<FormatAttr>()) {
+ if (S.GetFormatNSStringIdx(I, Idx)) {
+ Format = true;
+ break;
+ }
+ }
+ }
+ if (!Format || NumArgs <= Idx)
+ return;
+
+ Expr *FormatExpr = Args[Idx];
+ if (ObjCStringLiteral *OSL =
+ dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts())) {
+ StringLiteral *FormatString = OSL->getString();
+ if (S.FormatStringHasSArg(FormatString)) {
+ S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string)
+ << "%s" << 0 << 0;
+ if (Method)
+ S.Diag(Method->getLocation(), diag::note_method_declared_at)
+ << Method->getDeclName();
+ }
+ }
+}
+
+/// \brief Build an Objective-C class message expression.
+///
+/// This routine takes care of both normal class messages and
+/// class messages to the superclass.
+///
+/// \param ReceiverTypeInfo Type source information that describes the
+/// receiver of this message. This may be NULL, in which case we are
+/// sending to the superclass and \p SuperLoc must be a valid source
+/// location.
+
+/// \param ReceiverType The type of the object receiving the
+/// message. When \p ReceiverTypeInfo is non-NULL, this is the same
+/// type as that refers to. For a superclass send, this is the type of
+/// the superclass.
+///
+/// \param SuperLoc The location of the "super" keyword in a
+/// superclass message.
+///
+/// \param Sel The selector to which the message is being sent.
+///
+/// \param Method The method that this class message is invoking, if
+/// already known.
+///
+/// \param LBracLoc The location of the opening square bracket ']'.
+///
+/// \param RBracLoc The location of the closing square bracket ']'.
+///
+/// \param ArgsIn The message arguments.
+ExprResult Sema::BuildClassMessage(TypeSourceInfo *ReceiverTypeInfo,
+ QualType ReceiverType,
+ SourceLocation SuperLoc,
+ Selector Sel,
+ ObjCMethodDecl *Method,
+ SourceLocation LBracLoc,
+ ArrayRef<SourceLocation> SelectorLocs,
+ SourceLocation RBracLoc,
+ MultiExprArg ArgsIn,
+ bool isImplicit) {
+ SourceLocation Loc = SuperLoc.isValid()? SuperLoc
+ : ReceiverTypeInfo->getTypeLoc().getSourceRange().getBegin();
+ if (LBracLoc.isInvalid()) {
+ Diag(Loc, diag::err_missing_open_square_message_send)
+ << FixItHint::CreateInsertion(Loc, "[");
+ LBracLoc = Loc;
+ }
+ SourceLocation SelLoc;
+ if (!SelectorLocs.empty() && SelectorLocs.front().isValid())
+ SelLoc = SelectorLocs.front();
+ else
+ SelLoc = Loc;
+
+ if (ReceiverType->isDependentType()) {
+ // If the receiver type is dependent, we can't type-check anything
+ // at this point. Build a dependent expression.
+ unsigned NumArgs = ArgsIn.size();
+ Expr **Args = ArgsIn.data();
+ assert(SuperLoc.isInvalid() && "Message to super with dependent type");
+ return ObjCMessageExpr::Create(
+ Context, ReceiverType, VK_RValue, LBracLoc, ReceiverTypeInfo, Sel,
+ SelectorLocs, /*Method=*/nullptr, makeArrayRef(Args, NumArgs), RBracLoc,
+ isImplicit);
+ }
+
+ // Find the class to which we are sending this message.
+ ObjCInterfaceDecl *Class = nullptr;
+ const ObjCObjectType *ClassType = ReceiverType->getAs<ObjCObjectType>();
+ if (!ClassType || !(Class = ClassType->getInterface())) {
+ Diag(Loc, diag::err_invalid_receiver_class_message)
+ << ReceiverType;
+ return ExprError();
+ }
+ assert(Class && "We don't know which class we're messaging?");
+ // objc++ diagnoses during typename annotation.
+ if (!getLangOpts().CPlusPlus)
+ (void)DiagnoseUseOfDecl(Class, SelLoc);
+ // Find the method we are messaging.
+ if (!Method) {
+ SourceRange TypeRange
+ = SuperLoc.isValid()? SourceRange(SuperLoc)
+ : ReceiverTypeInfo->getTypeLoc().getSourceRange();
+ if (RequireCompleteType(Loc, Context.getObjCInterfaceType(Class),
+ (getLangOpts().ObjCAutoRefCount
+ ? diag::err_arc_receiver_forward_class
+ : diag::warn_receiver_forward_class),
+ TypeRange)) {
+ // A forward class used in messaging is treated as a 'Class'
+ Method = LookupFactoryMethodInGlobalPool(Sel,
+ SourceRange(LBracLoc, RBracLoc));
+ if (Method && !getLangOpts().ObjCAutoRefCount)
+ Diag(Method->getLocation(), diag::note_method_sent_forward_class)
+ << Method->getDeclName();
+ }
+ if (!Method)
+ Method = Class->lookupClassMethod(Sel);
+
+ // If we have an implementation in scope, check "private" methods.
+ if (!Method)
+ Method = Class->lookupPrivateClassMethod(Sel);
+
+ if (Method && DiagnoseUseOfDecl(Method, SelLoc))
+ return ExprError();
+ }
+
+ // Check the argument types and determine the result type.
+ QualType ReturnType;
+ ExprValueKind VK = VK_RValue;
+
+ unsigned NumArgs = ArgsIn.size();
+ Expr **Args = ArgsIn.data();
+ if (CheckMessageArgumentTypes(ReceiverType, MultiExprArg(Args, NumArgs),
+ Sel, SelectorLocs,
+ Method, true,
+ SuperLoc.isValid(), LBracLoc, RBracLoc,
+ SourceRange(),
+ ReturnType, VK))
+ return ExprError();
+
+ if (Method && !Method->getReturnType()->isVoidType() &&
+ RequireCompleteType(LBracLoc, Method->getReturnType(),
+ diag::err_illegal_message_expr_incomplete_type))
+ return ExprError();
+
+ // Warn about explicit call of +initialize on its own class. But not on 'super'.
+ if (Method && Method->getMethodFamily() == OMF_initialize) {
+ if (!SuperLoc.isValid()) {
+ const ObjCInterfaceDecl *ID =
+ dyn_cast<ObjCInterfaceDecl>(Method->getDeclContext());
+ if (ID == Class) {
+ Diag(Loc, diag::warn_direct_initialize_call);
+ Diag(Method->getLocation(), diag::note_method_declared_at)
+ << Method->getDeclName();
+ }
+ }
+ else if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) {
+ // [super initialize] is allowed only within an +initialize implementation
+ if (CurMeth->getMethodFamily() != OMF_initialize) {
+ Diag(Loc, diag::warn_direct_super_initialize_call);
+ Diag(Method->getLocation(), diag::note_method_declared_at)
+ << Method->getDeclName();
+ Diag(CurMeth->getLocation(), diag::note_method_declared_at)
+ << CurMeth->getDeclName();
+ }
+ }
+ }
+
+ DiagnoseCStringFormatDirectiveInObjCAPI(*this, Method, Sel, Args, NumArgs);
+
+ // Construct the appropriate ObjCMessageExpr.
+ ObjCMessageExpr *Result;
+ if (SuperLoc.isValid())
+ Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc,
+ SuperLoc, /*IsInstanceSuper=*/false,
+ ReceiverType, Sel, SelectorLocs,
+ Method, makeArrayRef(Args, NumArgs),
+ RBracLoc, isImplicit);
+ else {
+ Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc,
+ ReceiverTypeInfo, Sel, SelectorLocs,
+ Method, makeArrayRef(Args, NumArgs),
+ RBracLoc, isImplicit);
+ if (!isImplicit)
+ checkCocoaAPI(*this, Result);
+ }
+ return MaybeBindToTemporary(Result);
+}
+
+// ActOnClassMessage - used for both unary and keyword messages.
+// ArgExprs is optional - if it is present, the number of expressions
+// is obtained from Sel.getNumArgs().
+ExprResult Sema::ActOnClassMessage(Scope *S,
+ ParsedType Receiver,
+ Selector Sel,
+ SourceLocation LBracLoc,
+ ArrayRef<SourceLocation> SelectorLocs,
+ SourceLocation RBracLoc,
+ MultiExprArg Args) {
+ TypeSourceInfo *ReceiverTypeInfo;
+ QualType ReceiverType = GetTypeFromParser(Receiver, &ReceiverTypeInfo);
+ if (ReceiverType.isNull())
+ return ExprError();
+
+
+ if (!ReceiverTypeInfo)
+ ReceiverTypeInfo = Context.getTrivialTypeSourceInfo(ReceiverType, LBracLoc);
+
+ return BuildClassMessage(ReceiverTypeInfo, ReceiverType,
+ /*SuperLoc=*/SourceLocation(), Sel,
+ /*Method=*/nullptr, LBracLoc, SelectorLocs, RBracLoc,
+ Args);
+}
+
+ExprResult Sema::BuildInstanceMessageImplicit(Expr *Receiver,
+ QualType ReceiverType,
+ SourceLocation Loc,
+ Selector Sel,
+ ObjCMethodDecl *Method,
+ MultiExprArg Args) {
+ return BuildInstanceMessage(Receiver, ReceiverType,
+ /*SuperLoc=*/!Receiver ? Loc : SourceLocation(),
+ Sel, Method, Loc, Loc, Loc, Args,
+ /*isImplicit=*/true);
+}
+
+/// \brief Build an Objective-C instance message expression.
+///
+/// This routine takes care of both normal instance messages and
+/// instance messages to the superclass instance.
+///
+/// \param Receiver The expression that computes the object that will
+/// receive this message. This may be empty, in which case we are
+/// sending to the superclass instance and \p SuperLoc must be a valid
+/// source location.
+///
+/// \param ReceiverType The (static) type of the object receiving the
+/// message. When a \p Receiver expression is provided, this is the
+/// same type as that expression. For a superclass instance send, this
+/// is a pointer to the type of the superclass.
+///
+/// \param SuperLoc The location of the "super" keyword in a
+/// superclass instance message.
+///
+/// \param Sel The selector to which the message is being sent.
+///
+/// \param Method The method that this instance message is invoking, if
+/// already known.
+///
+/// \param LBracLoc The location of the opening square bracket ']'.
+///
+/// \param RBracLoc The location of the closing square bracket ']'.
+///
+/// \param ArgsIn The message arguments.
+ExprResult Sema::BuildInstanceMessage(Expr *Receiver,
+ QualType ReceiverType,
+ SourceLocation SuperLoc,
+ Selector Sel,
+ ObjCMethodDecl *Method,
+ SourceLocation LBracLoc,
+ ArrayRef<SourceLocation> SelectorLocs,
+ SourceLocation RBracLoc,
+ MultiExprArg ArgsIn,
+ bool isImplicit) {
+ // The location of the receiver.
+ SourceLocation Loc = SuperLoc.isValid()? SuperLoc : Receiver->getLocStart();
+ SourceRange RecRange =
+ SuperLoc.isValid()? SuperLoc : Receiver->getSourceRange();
+ SourceLocation SelLoc;
+ if (!SelectorLocs.empty() && SelectorLocs.front().isValid())
+ SelLoc = SelectorLocs.front();
+ else
+ SelLoc = Loc;
+
+ if (LBracLoc.isInvalid()) {
+ Diag(Loc, diag::err_missing_open_square_message_send)
+ << FixItHint::CreateInsertion(Loc, "[");
+ LBracLoc = Loc;
+ }
+
+ // If we have a receiver expression, perform appropriate promotions
+ // and determine receiver type.
+ if (Receiver) {
+ if (Receiver->hasPlaceholderType()) {
+ ExprResult Result;
+ if (Receiver->getType() == Context.UnknownAnyTy)
+ Result = forceUnknownAnyToType(Receiver, Context.getObjCIdType());
+ else
+ Result = CheckPlaceholderExpr(Receiver);
+ if (Result.isInvalid()) return ExprError();
+ Receiver = Result.get();
+ }
+
+ if (Receiver->isTypeDependent()) {
+ // If the receiver is type-dependent, we can't type-check anything
+ // at this point. Build a dependent expression.
+ unsigned NumArgs = ArgsIn.size();
+ Expr **Args = ArgsIn.data();
+ assert(SuperLoc.isInvalid() && "Message to super with dependent type");
+ return ObjCMessageExpr::Create(
+ Context, Context.DependentTy, VK_RValue, LBracLoc, Receiver, Sel,
+ SelectorLocs, /*Method=*/nullptr, makeArrayRef(Args, NumArgs),
+ RBracLoc, isImplicit);
+ }
+
+ // If necessary, apply function/array conversion to the receiver.
+ // C99 6.7.5.3p[7,8].
+ ExprResult Result = DefaultFunctionArrayLvalueConversion(Receiver);
+ if (Result.isInvalid())
+ return ExprError();
+ Receiver = Result.get();
+ ReceiverType = Receiver->getType();
+
+ // If the receiver is an ObjC pointer, a block pointer, or an
+ // __attribute__((NSObject)) pointer, we don't need to do any
+ // special conversion in order to look up a receiver.
+ if (ReceiverType->isObjCRetainableType()) {
+ // do nothing
+ } else if (!getLangOpts().ObjCAutoRefCount &&
+ !Context.getObjCIdType().isNull() &&
+ (ReceiverType->isPointerType() ||
+ ReceiverType->isIntegerType())) {
+ // Implicitly convert integers and pointers to 'id' but emit a warning.
+ // But not in ARC.
+ Diag(Loc, diag::warn_bad_receiver_type)
+ << ReceiverType
+ << Receiver->getSourceRange();
+ if (ReceiverType->isPointerType()) {
+ Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(),
+ CK_CPointerToObjCPointerCast).get();
+ } else {
+ // TODO: specialized warning on null receivers?
+ bool IsNull = Receiver->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNull);
+ CastKind Kind = IsNull ? CK_NullToPointer : CK_IntegralToPointer;
+ Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(),
+ Kind).get();
+ }
+ ReceiverType = Receiver->getType();
+ } else if (getLangOpts().CPlusPlus) {
+ // The receiver must be a complete type.
+ if (RequireCompleteType(Loc, Receiver->getType(),
+ diag::err_incomplete_receiver_type))
+ return ExprError();
+
+ ExprResult result = PerformContextuallyConvertToObjCPointer(Receiver);
+ if (result.isUsable()) {
+ Receiver = result.get();
+ ReceiverType = Receiver->getType();
+ }
+ }
+ }
+
+ // There's a somewhat weird interaction here where we assume that we
+ // won't actually have a method unless we also don't need to do some
+ // of the more detailed type-checking on the receiver.
+
+ if (!Method) {
+ // Handle messages to id.
+ bool receiverIsId = ReceiverType->isObjCIdType();
+ if (receiverIsId || ReceiverType->isBlockPointerType() ||
+ (Receiver && Context.isObjCNSObjectType(Receiver->getType()))) {
+ Method = LookupInstanceMethodInGlobalPool(Sel,
+ SourceRange(LBracLoc, RBracLoc),
+ receiverIsId);
+ if (!Method)
+ Method = LookupFactoryMethodInGlobalPool(Sel,
+ SourceRange(LBracLoc,RBracLoc),
+ receiverIsId);
+ if (Method) {
+ if (ObjCMethodDecl *BestMethod =
+ SelectBestMethod(Sel, ArgsIn, Method->isInstanceMethod()))
+ Method = BestMethod;
+ if (!AreMultipleMethodsInGlobalPool(Sel, Method,
+ SourceRange(LBracLoc, RBracLoc),
+ receiverIsId)) {
+ DiagnoseUseOfDecl(Method, SelLoc);
+ }
+ }
+ } else if (ReceiverType->isObjCClassType() ||
+ ReceiverType->isObjCQualifiedClassType()) {
+ // Handle messages to Class.
+ // We allow sending a message to a qualified Class ("Class<foo>"), which
+ // is ok as long as one of the protocols implements the selector (if not,
+ // warn).
+ if (const ObjCObjectPointerType *QClassTy
+ = ReceiverType->getAsObjCQualifiedClassType()) {
+ // Search protocols for class methods.
+ Method = LookupMethodInQualifiedType(Sel, QClassTy, false);
+ if (!Method) {
+ Method = LookupMethodInQualifiedType(Sel, QClassTy, true);
+ // warn if instance method found for a Class message.
+ if (Method) {
+ Diag(SelLoc, diag::warn_instance_method_on_class_found)
+ << Method->getSelector() << Sel;
+ Diag(Method->getLocation(), diag::note_method_declared_at)
+ << Method->getDeclName();
+ }
+ }
+ } else {
+ if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) {
+ if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) {
+ // First check the public methods in the class interface.
+ Method = ClassDecl->lookupClassMethod(Sel);
+
+ if (!Method)
+ Method = ClassDecl->lookupPrivateClassMethod(Sel);
+ }
+ if (Method && DiagnoseUseOfDecl(Method, SelLoc))
+ return ExprError();
+ }
+ if (!Method) {
+ // If not messaging 'self', look for any factory method named 'Sel'.
+ if (!Receiver || !isSelfExpr(Receiver)) {
+ Method = LookupFactoryMethodInGlobalPool(Sel,
+ SourceRange(LBracLoc, RBracLoc));
+ if (!Method) {
+ // If no class (factory) method was found, check if an _instance_
+ // method of the same name exists in the root class only.
+ Method = LookupInstanceMethodInGlobalPool(Sel,
+ SourceRange(LBracLoc, RBracLoc));
+ if (Method)
+ if (const ObjCInterfaceDecl *ID =
+ dyn_cast<ObjCInterfaceDecl>(Method->getDeclContext())) {
+ if (ID->getSuperClass())
+ Diag(SelLoc, diag::warn_root_inst_method_not_found)
+ << Sel << SourceRange(LBracLoc, RBracLoc);
+ }
+ }
+ if (Method)
+ if (ObjCMethodDecl *BestMethod =
+ SelectBestMethod(Sel, ArgsIn, Method->isInstanceMethod()))
+ Method = BestMethod;
+ }
+ }
+ }
+ } else {
+ ObjCInterfaceDecl *ClassDecl = nullptr;
+
+ // We allow sending a message to a qualified ID ("id<foo>"), which is ok as
+ // long as one of the protocols implements the selector (if not, warn).
+ // And as long as message is not deprecated/unavailable (warn if it is).
+ if (const ObjCObjectPointerType *QIdTy
+ = ReceiverType->getAsObjCQualifiedIdType()) {
+ // Search protocols for instance methods.
+ Method = LookupMethodInQualifiedType(Sel, QIdTy, true);
+ if (!Method)
+ Method = LookupMethodInQualifiedType(Sel, QIdTy, false);
+ if (Method && DiagnoseUseOfDecl(Method, SelLoc))
+ return ExprError();
+ } else if (const ObjCObjectPointerType *OCIType
+ = ReceiverType->getAsObjCInterfacePointerType()) {
+ // We allow sending a message to a pointer to an interface (an object).
+ ClassDecl = OCIType->getInterfaceDecl();
+
+ // Try to complete the type. Under ARC, this is a hard error from which
+ // we don't try to recover.
+ const ObjCInterfaceDecl *forwardClass = nullptr;
+ if (RequireCompleteType(Loc, OCIType->getPointeeType(),
+ getLangOpts().ObjCAutoRefCount
+ ? diag::err_arc_receiver_forward_instance
+ : diag::warn_receiver_forward_instance,
+ Receiver? Receiver->getSourceRange()
+ : SourceRange(SuperLoc))) {
+ if (getLangOpts().ObjCAutoRefCount)
+ return ExprError();
+
+ forwardClass = OCIType->getInterfaceDecl();
+ Diag(Receiver ? Receiver->getLocStart()
+ : SuperLoc, diag::note_receiver_is_id);
+ Method = nullptr;
+ } else {
+ Method = ClassDecl->lookupInstanceMethod(Sel);
+ }
+
+ if (!Method)
+ // Search protocol qualifiers.
+ Method = LookupMethodInQualifiedType(Sel, OCIType, true);
+
+ if (!Method) {
+ // If we have implementations in scope, check "private" methods.
+ Method = ClassDecl->lookupPrivateMethod(Sel);
+
+ if (!Method && getLangOpts().ObjCAutoRefCount) {
+ Diag(SelLoc, diag::err_arc_may_not_respond)
+ << OCIType->getPointeeType() << Sel << RecRange
+ << SourceRange(SelectorLocs.front(), SelectorLocs.back());
+ return ExprError();
+ }
+
+ if (!Method && (!Receiver || !isSelfExpr(Receiver))) {
+ // If we still haven't found a method, look in the global pool. This
+ // behavior isn't very desirable, however we need it for GCC
+ // compatibility. FIXME: should we deviate??
+ if (OCIType->qual_empty()) {
+ Method = LookupInstanceMethodInGlobalPool(Sel,
+ SourceRange(LBracLoc, RBracLoc));
+ if (Method) {
+ if (auto BestMethod =
+ SelectBestMethod(Sel, ArgsIn, Method->isInstanceMethod()))
+ Method = BestMethod;
+ AreMultipleMethodsInGlobalPool(Sel, Method,
+ SourceRange(LBracLoc, RBracLoc),
+ true);
+ }
+ if (Method && !forwardClass)
+ Diag(SelLoc, diag::warn_maynot_respond)
+ << OCIType->getInterfaceDecl()->getIdentifier()
+ << Sel << RecRange;
+ }
+ }
+ }
+ if (Method && DiagnoseUseOfDecl(Method, SelLoc, forwardClass))
+ return ExprError();
+ } else {
+ // Reject other random receiver types (e.g. structs).
+ Diag(Loc, diag::err_bad_receiver_type)
+ << ReceiverType << Receiver->getSourceRange();
+ return ExprError();
+ }
+ }
+ }
+
+ FunctionScopeInfo *DIFunctionScopeInfo =
+ (Method && Method->getMethodFamily() == OMF_init)
+ ? getEnclosingFunction() : nullptr;
+
+ if (DIFunctionScopeInfo &&
+ DIFunctionScopeInfo->ObjCIsDesignatedInit &&
+ (SuperLoc.isValid() || isSelfExpr(Receiver))) {
+ bool isDesignatedInitChain = false;
+ if (SuperLoc.isValid()) {
+ if (const ObjCObjectPointerType *
+ OCIType = ReceiverType->getAsObjCInterfacePointerType()) {
+ if (const ObjCInterfaceDecl *ID = OCIType->getInterfaceDecl()) {
+ // Either we know this is a designated initializer or we
+ // conservatively assume it because we don't know for sure.
+ if (!ID->declaresOrInheritsDesignatedInitializers() ||
+ ID->isDesignatedInitializer(Sel)) {
+ isDesignatedInitChain = true;
+ DIFunctionScopeInfo->ObjCWarnForNoDesignatedInitChain = false;
+ }
+ }
+ }
+ }
+ if (!isDesignatedInitChain) {
+ const ObjCMethodDecl *InitMethod = nullptr;
+ bool isDesignated =
+ getCurMethodDecl()->isDesignatedInitializerForTheInterface(&InitMethod);
+ assert(isDesignated && InitMethod);
+ (void)isDesignated;
+ Diag(SelLoc, SuperLoc.isValid() ?
+ diag::warn_objc_designated_init_non_designated_init_call :
+ diag::warn_objc_designated_init_non_super_designated_init_call);
+ Diag(InitMethod->getLocation(),
+ diag::note_objc_designated_init_marked_here);
+ }
+ }
+
+ if (DIFunctionScopeInfo &&
+ DIFunctionScopeInfo->ObjCIsSecondaryInit &&
+ (SuperLoc.isValid() || isSelfExpr(Receiver))) {
+ if (SuperLoc.isValid()) {
+ Diag(SelLoc, diag::warn_objc_secondary_init_super_init_call);
+ } else {
+ DIFunctionScopeInfo->ObjCWarnForNoInitDelegation = false;
+ }
+ }
+
+ // Check the message arguments.
+ unsigned NumArgs = ArgsIn.size();
+ Expr **Args = ArgsIn.data();
+ QualType ReturnType;
+ ExprValueKind VK = VK_RValue;
+ bool ClassMessage = (ReceiverType->isObjCClassType() ||
+ ReceiverType->isObjCQualifiedClassType());
+ if (CheckMessageArgumentTypes(ReceiverType, MultiExprArg(Args, NumArgs),
+ Sel, SelectorLocs, Method,
+ ClassMessage, SuperLoc.isValid(),
+ LBracLoc, RBracLoc, RecRange, ReturnType, VK))
+ return ExprError();
+
+ if (Method && !Method->getReturnType()->isVoidType() &&
+ RequireCompleteType(LBracLoc, Method->getReturnType(),
+ diag::err_illegal_message_expr_incomplete_type))
+ return ExprError();
+
+ // In ARC, forbid the user from sending messages to
+ // retain/release/autorelease/dealloc/retainCount explicitly.
+ if (getLangOpts().ObjCAutoRefCount) {
+ ObjCMethodFamily family =
+ (Method ? Method->getMethodFamily() : Sel.getMethodFamily());
+ switch (family) {
+ case OMF_init:
+ if (Method)
+ checkInitMethod(Method, ReceiverType);
+
+ case OMF_None:
+ case OMF_alloc:
+ case OMF_copy:
+ case OMF_finalize:
+ case OMF_mutableCopy:
+ case OMF_new:
+ case OMF_self:
+ case OMF_initialize:
+ break;
+
+ case OMF_dealloc:
+ case OMF_retain:
+ case OMF_release:
+ case OMF_autorelease:
+ case OMF_retainCount:
+ Diag(SelLoc, diag::err_arc_illegal_explicit_message)
+ << Sel << RecRange;
+ break;
+
+ case OMF_performSelector:
+ if (Method && NumArgs >= 1) {
+ if (ObjCSelectorExpr *SelExp = dyn_cast<ObjCSelectorExpr>(Args[0])) {
+ Selector ArgSel = SelExp->getSelector();
+ ObjCMethodDecl *SelMethod =
+ LookupInstanceMethodInGlobalPool(ArgSel,
+ SelExp->getSourceRange());
+ if (!SelMethod)
+ SelMethod =
+ LookupFactoryMethodInGlobalPool(ArgSel,
+ SelExp->getSourceRange());
+ if (SelMethod) {
+ ObjCMethodFamily SelFamily = SelMethod->getMethodFamily();
+ switch (SelFamily) {
+ case OMF_alloc:
+ case OMF_copy:
+ case OMF_mutableCopy:
+ case OMF_new:
+ case OMF_self:
+ case OMF_init:
+ // Issue error, unless ns_returns_not_retained.
+ if (!SelMethod->hasAttr<NSReturnsNotRetainedAttr>()) {
+ // selector names a +1 method
+ Diag(SelLoc,
+ diag::err_arc_perform_selector_retains);
+ Diag(SelMethod->getLocation(), diag::note_method_declared_at)
+ << SelMethod->getDeclName();
+ }
+ break;
+ default:
+ // +0 call. OK. unless ns_returns_retained.
+ if (SelMethod->hasAttr<NSReturnsRetainedAttr>()) {
+ // selector names a +1 method
+ Diag(SelLoc,
+ diag::err_arc_perform_selector_retains);
+ Diag(SelMethod->getLocation(), diag::note_method_declared_at)
+ << SelMethod->getDeclName();
+ }
+ break;
+ }
+ }
+ } else {
+ // error (may leak).
+ Diag(SelLoc, diag::warn_arc_perform_selector_leaks);
+ Diag(Args[0]->getExprLoc(), diag::note_used_here);
+ }
+ }
+ break;
+ }
+ }
+
+ DiagnoseCStringFormatDirectiveInObjCAPI(*this, Method, Sel, Args, NumArgs);
+
+ // Construct the appropriate ObjCMessageExpr instance.
+ ObjCMessageExpr *Result;
+ if (SuperLoc.isValid())
+ Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc,
+ SuperLoc, /*IsInstanceSuper=*/true,
+ ReceiverType, Sel, SelectorLocs, Method,
+ makeArrayRef(Args, NumArgs), RBracLoc,
+ isImplicit);
+ else {
+ Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc,
+ Receiver, Sel, SelectorLocs, Method,
+ makeArrayRef(Args, NumArgs), RBracLoc,
+ isImplicit);
+ if (!isImplicit)
+ checkCocoaAPI(*this, Result);
+ }
+
+ if (getLangOpts().ObjCAutoRefCount) {
+ // In ARC, annotate delegate init calls.
+ if (Result->getMethodFamily() == OMF_init &&
+ (SuperLoc.isValid() || isSelfExpr(Receiver))) {
+ // Only consider init calls *directly* in init implementations,
+ // not within blocks.
+ ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(CurContext);
+ if (method && method->getMethodFamily() == OMF_init) {
+ // The implicit assignment to self means we also don't want to
+ // consume the result.
+ Result->setDelegateInitCall(true);
+ return Result;
+ }
+ }
+
+ // In ARC, check for message sends which are likely to introduce
+ // retain cycles.
+ checkRetainCycles(Result);
+
+ if (!isImplicit && Method) {
+ if (const ObjCPropertyDecl *Prop = Method->findPropertyDecl()) {
+ bool IsWeak =
+ Prop->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak;
+ if (!IsWeak && Sel.isUnarySelector())
+ IsWeak = ReturnType.getObjCLifetime() & Qualifiers::OCL_Weak;
+ if (IsWeak &&
+ !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, LBracLoc))
+ getCurFunction()->recordUseOfWeak(Result, Prop);
+ }
+ }
+ }
+
+ CheckObjCCircularContainer(Result);
+
+ return MaybeBindToTemporary(Result);
+}
+
+static void RemoveSelectorFromWarningCache(Sema &S, Expr* Arg) {
+ if (ObjCSelectorExpr *OSE =
+ dyn_cast<ObjCSelectorExpr>(Arg->IgnoreParenCasts())) {
+ Selector Sel = OSE->getSelector();
+ SourceLocation Loc = OSE->getAtLoc();
+ auto Pos = S.ReferencedSelectors.find(Sel);
+ if (Pos != S.ReferencedSelectors.end() && Pos->second == Loc)
+ S.ReferencedSelectors.erase(Pos);
+ }
+}
+
+// ActOnInstanceMessage - used for both unary and keyword messages.
+// ArgExprs is optional - if it is present, the number of expressions
+// is obtained from Sel.getNumArgs().
+ExprResult Sema::ActOnInstanceMessage(Scope *S,
+ Expr *Receiver,
+ Selector Sel,
+ SourceLocation LBracLoc,
+ ArrayRef<SourceLocation> SelectorLocs,
+ SourceLocation RBracLoc,
+ MultiExprArg Args) {
+ if (!Receiver)
+ return ExprError();
+
+ // A ParenListExpr can show up while doing error recovery with invalid code.
+ if (isa<ParenListExpr>(Receiver)) {
+ ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Receiver);
+ if (Result.isInvalid()) return ExprError();
+ Receiver = Result.get();
+ }
+
+ if (RespondsToSelectorSel.isNull()) {
+ IdentifierInfo *SelectorId = &Context.Idents.get("respondsToSelector");
+ RespondsToSelectorSel = Context.Selectors.getUnarySelector(SelectorId);
+ }
+ if (Sel == RespondsToSelectorSel)
+ RemoveSelectorFromWarningCache(*this, Args[0]);
+
+ return BuildInstanceMessage(Receiver, Receiver->getType(),
+ /*SuperLoc=*/SourceLocation(), Sel,
+ /*Method=*/nullptr, LBracLoc, SelectorLocs,
+ RBracLoc, Args);
+}
+
+enum ARCConversionTypeClass {
+ /// int, void, struct A
+ ACTC_none,
+
+ /// id, void (^)()
+ ACTC_retainable,
+
+ /// id*, id***, void (^*)(),
+ ACTC_indirectRetainable,
+
+ /// void* might be a normal C type, or it might a CF type.
+ ACTC_voidPtr,
+
+ /// struct A*
+ ACTC_coreFoundation
+};
+static bool isAnyRetainable(ARCConversionTypeClass ACTC) {
+ return (ACTC == ACTC_retainable ||
+ ACTC == ACTC_coreFoundation ||
+ ACTC == ACTC_voidPtr);
+}
+static bool isAnyCLike(ARCConversionTypeClass ACTC) {
+ return ACTC == ACTC_none ||
+ ACTC == ACTC_voidPtr ||
+ ACTC == ACTC_coreFoundation;
+}
+
+static ARCConversionTypeClass classifyTypeForARCConversion(QualType type) {
+ bool isIndirect = false;
+
+ // Ignore an outermost reference type.
+ if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
+ type = ref->getPointeeType();
+ isIndirect = true;
+ }
+
+ // Drill through pointers and arrays recursively.
+ while (true) {
+ if (const PointerType *ptr = type->getAs<PointerType>()) {
+ type = ptr->getPointeeType();
+
+ // The first level of pointer may be the innermost pointer on a CF type.
+ if (!isIndirect) {
+ if (type->isVoidType()) return ACTC_voidPtr;
+ if (type->isRecordType()) return ACTC_coreFoundation;
+ }
+ } else if (const ArrayType *array = type->getAsArrayTypeUnsafe()) {
+ type = QualType(array->getElementType()->getBaseElementTypeUnsafe(), 0);
+ } else {
+ break;
+ }
+ isIndirect = true;
+ }
+
+ if (isIndirect) {
+ if (type->isObjCARCBridgableType())
+ return ACTC_indirectRetainable;
+ return ACTC_none;
+ }
+
+ if (type->isObjCARCBridgableType())
+ return ACTC_retainable;
+
+ return ACTC_none;
+}
+
+namespace {
+ /// A result from the cast checker.
+ enum ACCResult {
+ /// Cannot be casted.
+ ACC_invalid,
+
+ /// Can be safely retained or not retained.
+ ACC_bottom,
+
+ /// Can be casted at +0.
+ ACC_plusZero,
+
+ /// Can be casted at +1.
+ ACC_plusOne
+ };
+ ACCResult merge(ACCResult left, ACCResult right) {
+ if (left == right) return left;
+ if (left == ACC_bottom) return right;
+ if (right == ACC_bottom) return left;
+ return ACC_invalid;
+ }
+
+ /// A checker which white-lists certain expressions whose conversion
+ /// to or from retainable type would otherwise be forbidden in ARC.
+ class ARCCastChecker : public StmtVisitor<ARCCastChecker, ACCResult> {
+ typedef StmtVisitor<ARCCastChecker, ACCResult> super;
+
+ ASTContext &Context;
+ ARCConversionTypeClass SourceClass;
+ ARCConversionTypeClass TargetClass;
+ bool Diagnose;
+
+ static bool isCFType(QualType type) {
+ // Someday this can use ns_bridged. For now, it has to do this.
+ return type->isCARCBridgableType();
+ }
+
+ public:
+ ARCCastChecker(ASTContext &Context, ARCConversionTypeClass source,
+ ARCConversionTypeClass target, bool diagnose)
+ : Context(Context), SourceClass(source), TargetClass(target),
+ Diagnose(diagnose) {}
+
+ using super::Visit;
+ ACCResult Visit(Expr *e) {
+ return super::Visit(e->IgnoreParens());
+ }
+
+ ACCResult VisitStmt(Stmt *s) {
+ return ACC_invalid;
+ }
+
+ /// Null pointer constants can be casted however you please.
+ ACCResult VisitExpr(Expr *e) {
+ if (e->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
+ return ACC_bottom;
+ return ACC_invalid;
+ }
+
+ /// Objective-C string literals can be safely casted.
+ ACCResult VisitObjCStringLiteral(ObjCStringLiteral *e) {
+ // If we're casting to any retainable type, go ahead. Global
+ // strings are immune to retains, so this is bottom.
+ if (isAnyRetainable(TargetClass)) return ACC_bottom;
+
+ return ACC_invalid;
+ }
+
+ /// Look through certain implicit and explicit casts.
+ ACCResult VisitCastExpr(CastExpr *e) {
+ switch (e->getCastKind()) {
+ case CK_NullToPointer:
+ return ACC_bottom;
+
+ case CK_NoOp:
+ case CK_LValueToRValue:
+ case CK_BitCast:
+ case CK_CPointerToObjCPointerCast:
+ case CK_BlockPointerToObjCPointerCast:
+ case CK_AnyPointerToBlockPointerCast:
+ return Visit(e->getSubExpr());
+
+ default:
+ return ACC_invalid;
+ }
+ }
+
+ /// Look through unary extension.
+ ACCResult VisitUnaryExtension(UnaryOperator *e) {
+ return Visit(e->getSubExpr());
+ }
+
+ /// Ignore the LHS of a comma operator.
+ ACCResult VisitBinComma(BinaryOperator *e) {
+ return Visit(e->getRHS());
+ }
+
+ /// Conditional operators are okay if both sides are okay.
+ ACCResult VisitConditionalOperator(ConditionalOperator *e) {
+ ACCResult left = Visit(e->getTrueExpr());
+ if (left == ACC_invalid) return ACC_invalid;
+ return merge(left, Visit(e->getFalseExpr()));
+ }
+
+ /// Look through pseudo-objects.
+ ACCResult VisitPseudoObjectExpr(PseudoObjectExpr *e) {
+ // If we're getting here, we should always have a result.
+ return Visit(e->getResultExpr());
+ }
+
+ /// Statement expressions are okay if their result expression is okay.
+ ACCResult VisitStmtExpr(StmtExpr *e) {
+ return Visit(e->getSubStmt()->body_back());
+ }
+
+ /// Some declaration references are okay.
+ ACCResult VisitDeclRefExpr(DeclRefExpr *e) {
+ VarDecl *var = dyn_cast<VarDecl>(e->getDecl());
+ // References to global constants are okay.
+ if (isAnyRetainable(TargetClass) &&
+ isAnyRetainable(SourceClass) &&
+ var &&
+ var->getStorageClass() == SC_Extern &&
+ var->getType().isConstQualified()) {
+
+ // In system headers, they can also be assumed to be immune to retains.
+ // These are things like 'kCFStringTransformToLatin'.
+ if (Context.getSourceManager().isInSystemHeader(var->getLocation()))
+ return ACC_bottom;
+
+ return ACC_plusZero;
+ }
+
+ // Nothing else.
+ return ACC_invalid;
+ }
+
+ /// Some calls are okay.
+ ACCResult VisitCallExpr(CallExpr *e) {
+ if (FunctionDecl *fn = e->getDirectCallee())
+ if (ACCResult result = checkCallToFunction(fn))
+ return result;
+
+ return super::VisitCallExpr(e);
+ }
+
+ ACCResult checkCallToFunction(FunctionDecl *fn) {
+ // Require a CF*Ref return type.
+ if (!isCFType(fn->getReturnType()))
+ return ACC_invalid;
+
+ if (!isAnyRetainable(TargetClass))
+ return ACC_invalid;
+
+ // Honor an explicit 'not retained' attribute.
+ if (fn->hasAttr<CFReturnsNotRetainedAttr>())
+ return ACC_plusZero;
+
+ // Honor an explicit 'retained' attribute, except that for
+ // now we're not going to permit implicit handling of +1 results,
+ // because it's a bit frightening.
+ if (fn->hasAttr<CFReturnsRetainedAttr>())
+ return Diagnose ? ACC_plusOne
+ : ACC_invalid; // ACC_plusOne if we start accepting this
+
+ // Recognize this specific builtin function, which is used by CFSTR.
+ unsigned builtinID = fn->getBuiltinID();
+ if (builtinID == Builtin::BI__builtin___CFStringMakeConstantString)
+ return ACC_bottom;
+
+ // Otherwise, don't do anything implicit with an unaudited function.
+ if (!fn->hasAttr<CFAuditedTransferAttr>())
+ return ACC_invalid;
+
+ // Otherwise, it's +0 unless it follows the create convention.
+ if (ento::coreFoundation::followsCreateRule(fn))
+ return Diagnose ? ACC_plusOne
+ : ACC_invalid; // ACC_plusOne if we start accepting this
+
+ return ACC_plusZero;
+ }
+
+ ACCResult VisitObjCMessageExpr(ObjCMessageExpr *e) {
+ return checkCallToMethod(e->getMethodDecl());
+ }
+
+ ACCResult VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *e) {
+ ObjCMethodDecl *method;
+ if (e->isExplicitProperty())
+ method = e->getExplicitProperty()->getGetterMethodDecl();
+ else
+ method = e->getImplicitPropertyGetter();
+ return checkCallToMethod(method);
+ }
+
+ ACCResult checkCallToMethod(ObjCMethodDecl *method) {
+ if (!method) return ACC_invalid;
+
+ // Check for message sends to functions returning CF types. We
+ // just obey the Cocoa conventions with these, even though the
+ // return type is CF.
+ if (!isAnyRetainable(TargetClass) || !isCFType(method->getReturnType()))
+ return ACC_invalid;
+
+ // If the method is explicitly marked not-retained, it's +0.
+ if (method->hasAttr<CFReturnsNotRetainedAttr>())
+ return ACC_plusZero;
+
+ // If the method is explicitly marked as returning retained, or its
+ // selector follows a +1 Cocoa convention, treat it as +1.
+ if (method->hasAttr<CFReturnsRetainedAttr>())
+ return ACC_plusOne;
+
+ switch (method->getSelector().getMethodFamily()) {
+ case OMF_alloc:
+ case OMF_copy:
+ case OMF_mutableCopy:
+ case OMF_new:
+ return ACC_plusOne;
+
+ default:
+ // Otherwise, treat it as +0.
+ return ACC_plusZero;
+ }
+ }
+ };
+}
+
+bool Sema::isKnownName(StringRef name) {
+ if (name.empty())
+ return false;
+ LookupResult R(*this, &Context.Idents.get(name), SourceLocation(),
+ Sema::LookupOrdinaryName);
+ return LookupName(R, TUScope, false);
+}
+
+static void addFixitForObjCARCConversion(Sema &S,
+ DiagnosticBuilder &DiagB,
+ Sema::CheckedConversionKind CCK,
+ SourceLocation afterLParen,
+ QualType castType,
+ Expr *castExpr,
+ Expr *realCast,
+ const char *bridgeKeyword,
+ const char *CFBridgeName) {
+ // We handle C-style and implicit casts here.
+ switch (CCK) {
+ case Sema::CCK_ImplicitConversion:
+ case Sema::CCK_CStyleCast:
+ case Sema::CCK_OtherCast:
+ break;
+ case Sema::CCK_FunctionalCast:
+ return;
+ }
+
+ if (CFBridgeName) {
+ if (CCK == Sema::CCK_OtherCast) {
+ if (const CXXNamedCastExpr *NCE = dyn_cast<CXXNamedCastExpr>(realCast)) {
+ SourceRange range(NCE->getOperatorLoc(),
+ NCE->getAngleBrackets().getEnd());
+ SmallString<32> BridgeCall;
+
+ SourceManager &SM = S.getSourceManager();
+ char PrevChar = *SM.getCharacterData(range.getBegin().getLocWithOffset(-1));
+ if (Lexer::isIdentifierBodyChar(PrevChar, S.getLangOpts()))
+ BridgeCall += ' ';
+
+ BridgeCall += CFBridgeName;
+ DiagB.AddFixItHint(FixItHint::CreateReplacement(range, BridgeCall));
+ }
+ return;
+ }
+ Expr *castedE = castExpr;
+ if (CStyleCastExpr *CCE = dyn_cast<CStyleCastExpr>(castedE))
+ castedE = CCE->getSubExpr();
+ castedE = castedE->IgnoreImpCasts();
+ SourceRange range = castedE->getSourceRange();
+
+ SmallString<32> BridgeCall;
+
+ SourceManager &SM = S.getSourceManager();
+ char PrevChar = *SM.getCharacterData(range.getBegin().getLocWithOffset(-1));
+ if (Lexer::isIdentifierBodyChar(PrevChar, S.getLangOpts()))
+ BridgeCall += ' ';
+
+ BridgeCall += CFBridgeName;
+
+ if (isa<ParenExpr>(castedE)) {
+ DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(),
+ BridgeCall));
+ } else {
+ BridgeCall += '(';
+ DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(),
+ BridgeCall));
+ DiagB.AddFixItHint(FixItHint::CreateInsertion(
+ S.PP.getLocForEndOfToken(range.getEnd()),
+ ")"));
+ }
+ return;
+ }
+
+ if (CCK == Sema::CCK_CStyleCast) {
+ DiagB.AddFixItHint(FixItHint::CreateInsertion(afterLParen, bridgeKeyword));
+ } else if (CCK == Sema::CCK_OtherCast) {
+ if (const CXXNamedCastExpr *NCE = dyn_cast<CXXNamedCastExpr>(realCast)) {
+ std::string castCode = "(";
+ castCode += bridgeKeyword;
+ castCode += castType.getAsString();
+ castCode += ")";
+ SourceRange Range(NCE->getOperatorLoc(),
+ NCE->getAngleBrackets().getEnd());
+ DiagB.AddFixItHint(FixItHint::CreateReplacement(Range, castCode));
+ }
+ } else {
+ std::string castCode = "(";
+ castCode += bridgeKeyword;
+ castCode += castType.getAsString();
+ castCode += ")";
+ Expr *castedE = castExpr->IgnoreImpCasts();
+ SourceRange range = castedE->getSourceRange();
+ if (isa<ParenExpr>(castedE)) {
+ DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(),
+ castCode));
+ } else {
+ castCode += "(";
+ DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(),
+ castCode));
+ DiagB.AddFixItHint(FixItHint::CreateInsertion(
+ S.PP.getLocForEndOfToken(range.getEnd()),
+ ")"));
+ }
+ }
+}
+
+template <typename T>
+static inline T *getObjCBridgeAttr(const TypedefType *TD) {
+ TypedefNameDecl *TDNDecl = TD->getDecl();
+ QualType QT = TDNDecl->getUnderlyingType();
+ if (QT->isPointerType()) {
+ QT = QT->getPointeeType();
+ if (const RecordType *RT = QT->getAs<RecordType>())
+ if (RecordDecl *RD = RT->getDecl()->getMostRecentDecl())
+ return RD->getAttr<T>();
+ }
+ return nullptr;
+}
+
+static ObjCBridgeRelatedAttr *ObjCBridgeRelatedAttrFromType(QualType T,
+ TypedefNameDecl *&TDNDecl) {
+ while (const TypedefType *TD = dyn_cast<TypedefType>(T.getTypePtr())) {
+ TDNDecl = TD->getDecl();
+ if (ObjCBridgeRelatedAttr *ObjCBAttr =
+ getObjCBridgeAttr<ObjCBridgeRelatedAttr>(TD))
+ return ObjCBAttr;
+ T = TDNDecl->getUnderlyingType();
+ }
+ return nullptr;
+}
+
+static void
+diagnoseObjCARCConversion(Sema &S, SourceRange castRange,
+ QualType castType, ARCConversionTypeClass castACTC,
+ Expr *castExpr, Expr *realCast,
+ ARCConversionTypeClass exprACTC,
+ Sema::CheckedConversionKind CCK) {
+ SourceLocation loc =
+ (castRange.isValid() ? castRange.getBegin() : castExpr->getExprLoc());
+
+ if (S.makeUnavailableInSystemHeader(loc,
+ "converts between Objective-C and C pointers in -fobjc-arc"))
+ return;
+
+ QualType castExprType = castExpr->getType();
+ TypedefNameDecl *TDNDecl = nullptr;
+ if ((castACTC == ACTC_coreFoundation && exprACTC == ACTC_retainable &&
+ ObjCBridgeRelatedAttrFromType(castType, TDNDecl)) ||
+ (exprACTC == ACTC_coreFoundation && castACTC == ACTC_retainable &&
+ ObjCBridgeRelatedAttrFromType(castExprType, TDNDecl)))
+ return;
+
+ unsigned srcKind = 0;
+ switch (exprACTC) {
+ case ACTC_none:
+ case ACTC_coreFoundation:
+ case ACTC_voidPtr:
+ srcKind = (castExprType->isPointerType() ? 1 : 0);
+ break;
+ case ACTC_retainable:
+ srcKind = (castExprType->isBlockPointerType() ? 2 : 3);
+ break;
+ case ACTC_indirectRetainable:
+ srcKind = 4;
+ break;
+ }
+
+ // Check whether this could be fixed with a bridge cast.
+ SourceLocation afterLParen = S.PP.getLocForEndOfToken(castRange.getBegin());
+ SourceLocation noteLoc = afterLParen.isValid() ? afterLParen : loc;
+
+ // Bridge from an ARC type to a CF type.
+ if (castACTC == ACTC_retainable && isAnyRetainable(exprACTC)) {
+
+ S.Diag(loc, diag::err_arc_cast_requires_bridge)
+ << unsigned(CCK == Sema::CCK_ImplicitConversion) // cast|implicit
+ << 2 // of C pointer type
+ << castExprType
+ << unsigned(castType->isBlockPointerType()) // to ObjC|block type
+ << castType
+ << castRange
+ << castExpr->getSourceRange();
+ bool br = S.isKnownName("CFBridgingRelease");
+ ACCResult CreateRule =
+ ARCCastChecker(S.Context, exprACTC, castACTC, true).Visit(castExpr);
+ assert(CreateRule != ACC_bottom && "This cast should already be accepted.");
+ if (CreateRule != ACC_plusOne)
+ {
+ DiagnosticBuilder DiagB =
+ (CCK != Sema::CCK_OtherCast) ? S.Diag(noteLoc, diag::note_arc_bridge)
+ : S.Diag(noteLoc, diag::note_arc_cstyle_bridge);
+
+ addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen,
+ castType, castExpr, realCast, "__bridge ",
+ nullptr);
+ }
+ if (CreateRule != ACC_plusZero)
+ {
+ DiagnosticBuilder DiagB =
+ (CCK == Sema::CCK_OtherCast && !br) ?
+ S.Diag(noteLoc, diag::note_arc_cstyle_bridge_transfer) << castExprType :
+ S.Diag(br ? castExpr->getExprLoc() : noteLoc,
+ diag::note_arc_bridge_transfer)
+ << castExprType << br;
+
+ addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen,
+ castType, castExpr, realCast, "__bridge_transfer ",
+ br ? "CFBridgingRelease" : nullptr);
+ }
+
+ return;
+ }
+
+ // Bridge from a CF type to an ARC type.
+ if (exprACTC == ACTC_retainable && isAnyRetainable(castACTC)) {
+ bool br = S.isKnownName("CFBridgingRetain");
+ S.Diag(loc, diag::err_arc_cast_requires_bridge)
+ << unsigned(CCK == Sema::CCK_ImplicitConversion) // cast|implicit
+ << unsigned(castExprType->isBlockPointerType()) // of ObjC|block type
+ << castExprType
+ << 2 // to C pointer type
+ << castType
+ << castRange
+ << castExpr->getSourceRange();
+ ACCResult CreateRule =
+ ARCCastChecker(S.Context, exprACTC, castACTC, true).Visit(castExpr);
+ assert(CreateRule != ACC_bottom && "This cast should already be accepted.");
+ if (CreateRule != ACC_plusOne)
+ {
+ DiagnosticBuilder DiagB =
+ (CCK != Sema::CCK_OtherCast) ? S.Diag(noteLoc, diag::note_arc_bridge)
+ : S.Diag(noteLoc, diag::note_arc_cstyle_bridge);
+ addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen,
+ castType, castExpr, realCast, "__bridge ",
+ nullptr);
+ }
+ if (CreateRule != ACC_plusZero)
+ {
+ DiagnosticBuilder DiagB =
+ (CCK == Sema::CCK_OtherCast && !br) ?
+ S.Diag(noteLoc, diag::note_arc_cstyle_bridge_retained) << castType :
+ S.Diag(br ? castExpr->getExprLoc() : noteLoc,
+ diag::note_arc_bridge_retained)
+ << castType << br;
+
+ addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen,
+ castType, castExpr, realCast, "__bridge_retained ",
+ br ? "CFBridgingRetain" : nullptr);
+ }
+
+ return;
+ }
+
+ S.Diag(loc, diag::err_arc_mismatched_cast)
+ << (CCK != Sema::CCK_ImplicitConversion)
+ << srcKind << castExprType << castType
+ << castRange << castExpr->getSourceRange();
+}
+
+template <typename TB>
+static bool CheckObjCBridgeNSCast(Sema &S, QualType castType, Expr *castExpr,
+ bool &HadTheAttribute, bool warn) {
+ QualType T = castExpr->getType();
+ HadTheAttribute = false;
+ while (const TypedefType *TD = dyn_cast<TypedefType>(T.getTypePtr())) {
+ TypedefNameDecl *TDNDecl = TD->getDecl();
+ if (TB *ObjCBAttr = getObjCBridgeAttr<TB>(TD)) {
+ if (IdentifierInfo *Parm = ObjCBAttr->getBridgedType()) {
+ HadTheAttribute = true;
+ if (Parm->isStr("id"))
+ return true;
+
+ NamedDecl *Target = nullptr;
+ // Check for an existing type with this name.
+ LookupResult R(S, DeclarationName(Parm), SourceLocation(),
+ Sema::LookupOrdinaryName);
+ if (S.LookupName(R, S.TUScope)) {
+ Target = R.getFoundDecl();
+ if (Target && isa<ObjCInterfaceDecl>(Target)) {
+ ObjCInterfaceDecl *ExprClass = cast<ObjCInterfaceDecl>(Target);
+ if (const ObjCObjectPointerType *InterfacePointerType =
+ castType->getAsObjCInterfacePointerType()) {
+ ObjCInterfaceDecl *CastClass
+ = InterfacePointerType->getObjectType()->getInterface();
+ if ((CastClass == ExprClass) ||
+ (CastClass && CastClass->isSuperClassOf(ExprClass)))
+ return true;
+ if (warn)
+ S.Diag(castExpr->getLocStart(), diag::warn_objc_invalid_bridge)
+ << T << Target->getName() << castType->getPointeeType();
+ return false;
+ } else if (castType->isObjCIdType() ||
+ (S.Context.ObjCObjectAdoptsQTypeProtocols(
+ castType, ExprClass)))
+ // ok to cast to 'id'.
+ // casting to id<p-list> is ok if bridge type adopts all of
+ // p-list protocols.
+ return true;
+ else {
+ if (warn) {
+ S.Diag(castExpr->getLocStart(), diag::warn_objc_invalid_bridge)
+ << T << Target->getName() << castType;
+ S.Diag(TDNDecl->getLocStart(), diag::note_declared_at);
+ S.Diag(Target->getLocStart(), diag::note_declared_at);
+ }
+ return false;
+ }
+ }
+ } else if (!castType->isObjCIdType()) {
+ S.Diag(castExpr->getLocStart(), diag::err_objc_cf_bridged_not_interface)
+ << castExpr->getType() << Parm;
+ S.Diag(TDNDecl->getLocStart(), diag::note_declared_at);
+ if (Target)
+ S.Diag(Target->getLocStart(), diag::note_declared_at);
+ }
+ return true;
+ }
+ return false;
+ }
+ T = TDNDecl->getUnderlyingType();
+ }
+ return true;
+}
+
+template <typename TB>
+static bool CheckObjCBridgeCFCast(Sema &S, QualType castType, Expr *castExpr,
+ bool &HadTheAttribute, bool warn) {
+ QualType T = castType;
+ HadTheAttribute = false;
+ while (const TypedefType *TD = dyn_cast<TypedefType>(T.getTypePtr())) {
+ TypedefNameDecl *TDNDecl = TD->getDecl();
+ if (TB *ObjCBAttr = getObjCBridgeAttr<TB>(TD)) {
+ if (IdentifierInfo *Parm = ObjCBAttr->getBridgedType()) {
+ HadTheAttribute = true;
+ if (Parm->isStr("id"))
+ return true;
+
+ NamedDecl *Target = nullptr;
+ // Check for an existing type with this name.
+ LookupResult R(S, DeclarationName(Parm), SourceLocation(),
+ Sema::LookupOrdinaryName);
+ if (S.LookupName(R, S.TUScope)) {
+ Target = R.getFoundDecl();
+ if (Target && isa<ObjCInterfaceDecl>(Target)) {
+ ObjCInterfaceDecl *CastClass = cast<ObjCInterfaceDecl>(Target);
+ if (const ObjCObjectPointerType *InterfacePointerType =
+ castExpr->getType()->getAsObjCInterfacePointerType()) {
+ ObjCInterfaceDecl *ExprClass
+ = InterfacePointerType->getObjectType()->getInterface();
+ if ((CastClass == ExprClass) ||
+ (ExprClass && CastClass->isSuperClassOf(ExprClass)))
+ return true;
+ if (warn) {
+ S.Diag(castExpr->getLocStart(), diag::warn_objc_invalid_bridge_to_cf)
+ << castExpr->getType()->getPointeeType() << T;
+ S.Diag(TDNDecl->getLocStart(), diag::note_declared_at);
+ }
+ return false;
+ } else if (castExpr->getType()->isObjCIdType() ||
+ (S.Context.QIdProtocolsAdoptObjCObjectProtocols(
+ castExpr->getType(), CastClass)))
+ // ok to cast an 'id' expression to a CFtype.
+ // ok to cast an 'id<plist>' expression to CFtype provided plist
+ // adopts all of CFtype's ObjetiveC's class plist.
+ return true;
+ else {
+ if (warn) {
+ S.Diag(castExpr->getLocStart(), diag::warn_objc_invalid_bridge_to_cf)
+ << castExpr->getType() << castType;
+ S.Diag(TDNDecl->getLocStart(), diag::note_declared_at);
+ S.Diag(Target->getLocStart(), diag::note_declared_at);
+ }
+ return false;
+ }
+ }
+ }
+ S.Diag(castExpr->getLocStart(), diag::err_objc_ns_bridged_invalid_cfobject)
+ << castExpr->getType() << castType;
+ S.Diag(TDNDecl->getLocStart(), diag::note_declared_at);
+ if (Target)
+ S.Diag(Target->getLocStart(), diag::note_declared_at);
+ return true;
+ }
+ return false;
+ }
+ T = TDNDecl->getUnderlyingType();
+ }
+ return true;
+}
+
+void Sema::CheckTollFreeBridgeCast(QualType castType, Expr *castExpr) {
+ if (!getLangOpts().ObjC1)
+ return;
+ // warn in presence of __bridge casting to or from a toll free bridge cast.
+ ARCConversionTypeClass exprACTC = classifyTypeForARCConversion(castExpr->getType());
+ ARCConversionTypeClass castACTC = classifyTypeForARCConversion(castType);
+ if (castACTC == ACTC_retainable && exprACTC == ACTC_coreFoundation) {
+ bool HasObjCBridgeAttr;
+ bool ObjCBridgeAttrWillNotWarn =
+ CheckObjCBridgeNSCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr,
+ false);
+ if (ObjCBridgeAttrWillNotWarn && HasObjCBridgeAttr)
+ return;
+ bool HasObjCBridgeMutableAttr;
+ bool ObjCBridgeMutableAttrWillNotWarn =
+ CheckObjCBridgeNSCast<ObjCBridgeMutableAttr>(*this, castType, castExpr,
+ HasObjCBridgeMutableAttr, false);
+ if (ObjCBridgeMutableAttrWillNotWarn && HasObjCBridgeMutableAttr)
+ return;
+
+ if (HasObjCBridgeAttr)
+ CheckObjCBridgeNSCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr,
+ true);
+ else if (HasObjCBridgeMutableAttr)
+ CheckObjCBridgeNSCast<ObjCBridgeMutableAttr>(*this, castType, castExpr,
+ HasObjCBridgeMutableAttr, true);
+ }
+ else if (castACTC == ACTC_coreFoundation && exprACTC == ACTC_retainable) {
+ bool HasObjCBridgeAttr;
+ bool ObjCBridgeAttrWillNotWarn =
+ CheckObjCBridgeCFCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr,
+ false);
+ if (ObjCBridgeAttrWillNotWarn && HasObjCBridgeAttr)
+ return;
+ bool HasObjCBridgeMutableAttr;
+ bool ObjCBridgeMutableAttrWillNotWarn =
+ CheckObjCBridgeCFCast<ObjCBridgeMutableAttr>(*this, castType, castExpr,
+ HasObjCBridgeMutableAttr, false);
+ if (ObjCBridgeMutableAttrWillNotWarn && HasObjCBridgeMutableAttr)
+ return;
+
+ if (HasObjCBridgeAttr)
+ CheckObjCBridgeCFCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr,
+ true);
+ else if (HasObjCBridgeMutableAttr)
+ CheckObjCBridgeCFCast<ObjCBridgeMutableAttr>(*this, castType, castExpr,
+ HasObjCBridgeMutableAttr, true);
+ }
+}
+
+void Sema::CheckObjCBridgeRelatedCast(QualType castType, Expr *castExpr) {
+ QualType SrcType = castExpr->getType();
+ if (ObjCPropertyRefExpr *PRE = dyn_cast<ObjCPropertyRefExpr>(castExpr)) {
+ if (PRE->isExplicitProperty()) {
+ if (ObjCPropertyDecl *PDecl = PRE->getExplicitProperty())
+ SrcType = PDecl->getType();
+ }
+ else if (PRE->isImplicitProperty()) {
+ if (ObjCMethodDecl *Getter = PRE->getImplicitPropertyGetter())
+ SrcType = Getter->getReturnType();
+
+ }
+ }
+
+ ARCConversionTypeClass srcExprACTC = classifyTypeForARCConversion(SrcType);
+ ARCConversionTypeClass castExprACTC = classifyTypeForARCConversion(castType);
+ if (srcExprACTC != ACTC_retainable || castExprACTC != ACTC_coreFoundation)
+ return;
+ CheckObjCBridgeRelatedConversions(castExpr->getLocStart(),
+ castType, SrcType, castExpr);
+ return;
+}
+
+bool Sema::CheckTollFreeBridgeStaticCast(QualType castType, Expr *castExpr,
+ CastKind &Kind) {
+ if (!getLangOpts().ObjC1)
+ return false;
+ ARCConversionTypeClass exprACTC =
+ classifyTypeForARCConversion(castExpr->getType());
+ ARCConversionTypeClass castACTC = classifyTypeForARCConversion(castType);
+ if ((castACTC == ACTC_retainable && exprACTC == ACTC_coreFoundation) ||
+ (castACTC == ACTC_coreFoundation && exprACTC == ACTC_retainable)) {
+ CheckTollFreeBridgeCast(castType, castExpr);
+ Kind = (castACTC == ACTC_coreFoundation) ? CK_BitCast
+ : CK_CPointerToObjCPointerCast;
+ return true;
+ }
+ return false;
+}
+
+bool Sema::checkObjCBridgeRelatedComponents(SourceLocation Loc,
+ QualType DestType, QualType SrcType,
+ ObjCInterfaceDecl *&RelatedClass,
+ ObjCMethodDecl *&ClassMethod,
+ ObjCMethodDecl *&InstanceMethod,
+ TypedefNameDecl *&TDNDecl,
+ bool CfToNs) {
+ QualType T = CfToNs ? SrcType : DestType;
+ ObjCBridgeRelatedAttr *ObjCBAttr = ObjCBridgeRelatedAttrFromType(T, TDNDecl);
+ if (!ObjCBAttr)
+ return false;
+
+ IdentifierInfo *RCId = ObjCBAttr->getRelatedClass();
+ IdentifierInfo *CMId = ObjCBAttr->getClassMethod();
+ IdentifierInfo *IMId = ObjCBAttr->getInstanceMethod();
+ if (!RCId)
+ return false;
+ NamedDecl *Target = nullptr;
+ // Check for an existing type with this name.
+ LookupResult R(*this, DeclarationName(RCId), SourceLocation(),
+ Sema::LookupOrdinaryName);
+ if (!LookupName(R, TUScope)) {
+ Diag(Loc, diag::err_objc_bridged_related_invalid_class) << RCId
+ << SrcType << DestType;
+ Diag(TDNDecl->getLocStart(), diag::note_declared_at);
+ return false;
+ }
+ Target = R.getFoundDecl();
+ if (Target && isa<ObjCInterfaceDecl>(Target))
+ RelatedClass = cast<ObjCInterfaceDecl>(Target);
+ else {
+ Diag(Loc, diag::err_objc_bridged_related_invalid_class_name) << RCId
+ << SrcType << DestType;
+ Diag(TDNDecl->getLocStart(), diag::note_declared_at);
+ if (Target)
+ Diag(Target->getLocStart(), diag::note_declared_at);
+ return false;
+ }
+
+ // Check for an existing class method with the given selector name.
+ if (CfToNs && CMId) {
+ Selector Sel = Context.Selectors.getUnarySelector(CMId);
+ ClassMethod = RelatedClass->lookupMethod(Sel, false);
+ if (!ClassMethod) {
+ Diag(Loc, diag::err_objc_bridged_related_known_method)
+ << SrcType << DestType << Sel << false;
+ Diag(TDNDecl->getLocStart(), diag::note_declared_at);
+ return false;
+ }
+ }
+
+ // Check for an existing instance method with the given selector name.
+ if (!CfToNs && IMId) {
+ Selector Sel = Context.Selectors.getNullarySelector(IMId);
+ InstanceMethod = RelatedClass->lookupMethod(Sel, true);
+ if (!InstanceMethod) {
+ Diag(Loc, diag::err_objc_bridged_related_known_method)
+ << SrcType << DestType << Sel << true;
+ Diag(TDNDecl->getLocStart(), diag::note_declared_at);
+ return false;
+ }
+ }
+ return true;
+}
+
+bool
+Sema::CheckObjCBridgeRelatedConversions(SourceLocation Loc,
+ QualType DestType, QualType SrcType,
+ Expr *&SrcExpr) {
+ ARCConversionTypeClass rhsExprACTC = classifyTypeForARCConversion(SrcType);
+ ARCConversionTypeClass lhsExprACTC = classifyTypeForARCConversion(DestType);
+ bool CfToNs = (rhsExprACTC == ACTC_coreFoundation && lhsExprACTC == ACTC_retainable);
+ bool NsToCf = (rhsExprACTC == ACTC_retainable && lhsExprACTC == ACTC_coreFoundation);
+ if (!CfToNs && !NsToCf)
+ return false;
+
+ ObjCInterfaceDecl *RelatedClass;
+ ObjCMethodDecl *ClassMethod = nullptr;
+ ObjCMethodDecl *InstanceMethod = nullptr;
+ TypedefNameDecl *TDNDecl = nullptr;
+ if (!checkObjCBridgeRelatedComponents(Loc, DestType, SrcType, RelatedClass,
+ ClassMethod, InstanceMethod, TDNDecl, CfToNs))
+ return false;
+
+ if (CfToNs) {
+ // Implicit conversion from CF to ObjC object is needed.
+ if (ClassMethod) {
+ std::string ExpressionString = "[";
+ ExpressionString += RelatedClass->getNameAsString();
+ ExpressionString += " ";
+ ExpressionString += ClassMethod->getSelector().getAsString();
+ SourceLocation SrcExprEndLoc = PP.getLocForEndOfToken(SrcExpr->getLocEnd());
+ // Provide a fixit: [RelatedClass ClassMethod SrcExpr]
+ Diag(Loc, diag::err_objc_bridged_related_known_method)
+ << SrcType << DestType << ClassMethod->getSelector() << false
+ << FixItHint::CreateInsertion(SrcExpr->getLocStart(), ExpressionString)
+ << FixItHint::CreateInsertion(SrcExprEndLoc, "]");
+ Diag(RelatedClass->getLocStart(), diag::note_declared_at);
+ Diag(TDNDecl->getLocStart(), diag::note_declared_at);
+
+ QualType receiverType =
+ Context.getObjCInterfaceType(RelatedClass);
+ // Argument.
+ Expr *args[] = { SrcExpr };
+ ExprResult msg = BuildClassMessageImplicit(receiverType, false,
+ ClassMethod->getLocation(),
+ ClassMethod->getSelector(), ClassMethod,
+ MultiExprArg(args, 1));
+ SrcExpr = msg.get();
+ return true;
+ }
+ }
+ else {
+ // Implicit conversion from ObjC type to CF object is needed.
+ if (InstanceMethod) {
+ std::string ExpressionString;
+ SourceLocation SrcExprEndLoc = PP.getLocForEndOfToken(SrcExpr->getLocEnd());
+ if (InstanceMethod->isPropertyAccessor())
+ if (const ObjCPropertyDecl *PDecl = InstanceMethod->findPropertyDecl()) {
+ // fixit: ObjectExpr.propertyname when it is aproperty accessor.
+ ExpressionString = ".";
+ ExpressionString += PDecl->getNameAsString();
+ Diag(Loc, diag::err_objc_bridged_related_known_method)
+ << SrcType << DestType << InstanceMethod->getSelector() << true
+ << FixItHint::CreateInsertion(SrcExprEndLoc, ExpressionString);
+ }
+ if (ExpressionString.empty()) {
+ // Provide a fixit: [ObjectExpr InstanceMethod]
+ ExpressionString = " ";
+ ExpressionString += InstanceMethod->getSelector().getAsString();
+ ExpressionString += "]";
+
+ Diag(Loc, diag::err_objc_bridged_related_known_method)
+ << SrcType << DestType << InstanceMethod->getSelector() << true
+ << FixItHint::CreateInsertion(SrcExpr->getLocStart(), "[")
+ << FixItHint::CreateInsertion(SrcExprEndLoc, ExpressionString);
+ }
+ Diag(RelatedClass->getLocStart(), diag::note_declared_at);
+ Diag(TDNDecl->getLocStart(), diag::note_declared_at);
+
+ ExprResult msg =
+ BuildInstanceMessageImplicit(SrcExpr, SrcType,
+ InstanceMethod->getLocation(),
+ InstanceMethod->getSelector(),
+ InstanceMethod, None);
+ SrcExpr = msg.get();
+ return true;
+ }
+ }
+ return false;
+}
+
+Sema::ARCConversionResult
+Sema::CheckObjCARCConversion(SourceRange castRange, QualType castType,
+ Expr *&castExpr, CheckedConversionKind CCK,
+ bool DiagnoseCFAudited,
+ BinaryOperatorKind Opc) {
+ QualType castExprType = castExpr->getType();
+
+ // For the purposes of the classification, we assume reference types
+ // will bind to temporaries.
+ QualType effCastType = castType;
+ if (const ReferenceType *ref = castType->getAs<ReferenceType>())
+ effCastType = ref->getPointeeType();
+
+ ARCConversionTypeClass exprACTC = classifyTypeForARCConversion(castExprType);
+ ARCConversionTypeClass castACTC = classifyTypeForARCConversion(effCastType);
+ if (exprACTC == castACTC) {
+ // check for viablity and report error if casting an rvalue to a
+ // life-time qualifier.
+ if ((castACTC == ACTC_retainable) &&
+ (CCK == CCK_CStyleCast || CCK == CCK_OtherCast) &&
+ (castType != castExprType)) {
+ const Type *DT = castType.getTypePtr();
+ QualType QDT = castType;
+ // We desugar some types but not others. We ignore those
+ // that cannot happen in a cast; i.e. auto, and those which
+ // should not be de-sugared; i.e typedef.
+ if (const ParenType *PT = dyn_cast<ParenType>(DT))
+ QDT = PT->desugar();
+ else if (const TypeOfType *TP = dyn_cast<TypeOfType>(DT))
+ QDT = TP->desugar();
+ else if (const AttributedType *AT = dyn_cast<AttributedType>(DT))
+ QDT = AT->desugar();
+ if (QDT != castType &&
+ QDT.getObjCLifetime() != Qualifiers::OCL_None) {
+ SourceLocation loc =
+ (castRange.isValid() ? castRange.getBegin()
+ : castExpr->getExprLoc());
+ Diag(loc, diag::err_arc_nolifetime_behavior);
+ }
+ }
+ return ACR_okay;
+ }
+
+ if (isAnyCLike(exprACTC) && isAnyCLike(castACTC)) return ACR_okay;
+
+ // Allow all of these types to be cast to integer types (but not
+ // vice-versa).
+ if (castACTC == ACTC_none && castType->isIntegralType(Context))
+ return ACR_okay;
+
+ // Allow casts between pointers to lifetime types (e.g., __strong id*)
+ // and pointers to void (e.g., cv void *). Casting from void* to lifetime*
+ // must be explicit.
+ if (exprACTC == ACTC_indirectRetainable && castACTC == ACTC_voidPtr)
+ return ACR_okay;
+ if (castACTC == ACTC_indirectRetainable && exprACTC == ACTC_voidPtr &&
+ CCK != CCK_ImplicitConversion)
+ return ACR_okay;
+
+ switch (ARCCastChecker(Context, exprACTC, castACTC, false).Visit(castExpr)) {
+ // For invalid casts, fall through.
+ case ACC_invalid:
+ break;
+
+ // Do nothing for both bottom and +0.
+ case ACC_bottom:
+ case ACC_plusZero:
+ return ACR_okay;
+
+ // If the result is +1, consume it here.
+ case ACC_plusOne:
+ castExpr = ImplicitCastExpr::Create(Context, castExpr->getType(),
+ CK_ARCConsumeObject, castExpr,
+ nullptr, VK_RValue);
+ ExprNeedsCleanups = true;
+ return ACR_okay;
+ }
+
+ // If this is a non-implicit cast from id or block type to a
+ // CoreFoundation type, delay complaining in case the cast is used
+ // in an acceptable context.
+ if (exprACTC == ACTC_retainable && isAnyRetainable(castACTC) &&
+ CCK != CCK_ImplicitConversion)
+ return ACR_unbridged;
+
+ // Do not issue bridge cast" diagnostic when implicit casting a cstring
+ // to 'NSString *'. Let caller issue a normal mismatched diagnostic with
+ // suitable fix-it.
+ if (castACTC == ACTC_retainable && exprACTC == ACTC_none &&
+ ConversionToObjCStringLiteralCheck(castType, castExpr))
+ return ACR_okay;
+
+ // Do not issue "bridge cast" diagnostic when implicit casting
+ // a retainable object to a CF type parameter belonging to an audited
+ // CF API function. Let caller issue a normal type mismatched diagnostic
+ // instead.
+ if (!DiagnoseCFAudited || exprACTC != ACTC_retainable ||
+ castACTC != ACTC_coreFoundation)
+ if (!(exprACTC == ACTC_voidPtr && castACTC == ACTC_retainable &&
+ (Opc == BO_NE || Opc == BO_EQ)))
+ diagnoseObjCARCConversion(*this, castRange, castType, castACTC,
+ castExpr, castExpr, exprACTC, CCK);
+ return ACR_okay;
+}
+
+/// Given that we saw an expression with the ARCUnbridgedCastTy
+/// placeholder type, complain bitterly.
+void Sema::diagnoseARCUnbridgedCast(Expr *e) {
+ // We expect the spurious ImplicitCastExpr to already have been stripped.
+ assert(!e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
+ CastExpr *realCast = cast<CastExpr>(e->IgnoreParens());
+
+ SourceRange castRange;
+ QualType castType;
+ CheckedConversionKind CCK;
+
+ if (CStyleCastExpr *cast = dyn_cast<CStyleCastExpr>(realCast)) {
+ castRange = SourceRange(cast->getLParenLoc(), cast->getRParenLoc());
+ castType = cast->getTypeAsWritten();
+ CCK = CCK_CStyleCast;
+ } else if (ExplicitCastExpr *cast = dyn_cast<ExplicitCastExpr>(realCast)) {
+ castRange = cast->getTypeInfoAsWritten()->getTypeLoc().getSourceRange();
+ castType = cast->getTypeAsWritten();
+ CCK = CCK_OtherCast;
+ } else {
+ castType = cast->getType();
+ CCK = CCK_ImplicitConversion;
+ }
+
+ ARCConversionTypeClass castACTC =
+ classifyTypeForARCConversion(castType.getNonReferenceType());
+
+ Expr *castExpr = realCast->getSubExpr();
+ assert(classifyTypeForARCConversion(castExpr->getType()) == ACTC_retainable);
+
+ diagnoseObjCARCConversion(*this, castRange, castType, castACTC,
+ castExpr, realCast, ACTC_retainable, CCK);
+}
+
+/// stripARCUnbridgedCast - Given an expression of ARCUnbridgedCast
+/// type, remove the placeholder cast.
+Expr *Sema::stripARCUnbridgedCast(Expr *e) {
+ assert(e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
+
+ if (ParenExpr *pe = dyn_cast<ParenExpr>(e)) {
+ Expr *sub = stripARCUnbridgedCast(pe->getSubExpr());
+ return new (Context) ParenExpr(pe->getLParen(), pe->getRParen(), sub);
+ } else if (UnaryOperator *uo = dyn_cast<UnaryOperator>(e)) {
+ assert(uo->getOpcode() == UO_Extension);
+ Expr *sub = stripARCUnbridgedCast(uo->getSubExpr());
+ return new (Context) UnaryOperator(sub, UO_Extension, sub->getType(),
+ sub->getValueKind(), sub->getObjectKind(),
+ uo->getOperatorLoc());
+ } else if (GenericSelectionExpr *gse = dyn_cast<GenericSelectionExpr>(e)) {
+ assert(!gse->isResultDependent());
+
+ unsigned n = gse->getNumAssocs();
+ SmallVector<Expr*, 4> subExprs(n);
+ SmallVector<TypeSourceInfo*, 4> subTypes(n);
+ for (unsigned i = 0; i != n; ++i) {
+ subTypes[i] = gse->getAssocTypeSourceInfo(i);
+ Expr *sub = gse->getAssocExpr(i);
+ if (i == gse->getResultIndex())
+ sub = stripARCUnbridgedCast(sub);
+ subExprs[i] = sub;
+ }
+
+ return new (Context) GenericSelectionExpr(Context, gse->getGenericLoc(),
+ gse->getControllingExpr(),
+ subTypes, subExprs,
+ gse->getDefaultLoc(),
+ gse->getRParenLoc(),
+ gse->containsUnexpandedParameterPack(),
+ gse->getResultIndex());
+ } else {
+ assert(isa<ImplicitCastExpr>(e) && "bad form of unbridged cast!");
+ return cast<ImplicitCastExpr>(e)->getSubExpr();
+ }
+}
+
+bool Sema::CheckObjCARCUnavailableWeakConversion(QualType castType,
+ QualType exprType) {
+ QualType canCastType =
+ Context.getCanonicalType(castType).getUnqualifiedType();
+ QualType canExprType =
+ Context.getCanonicalType(exprType).getUnqualifiedType();
+ if (isa<ObjCObjectPointerType>(canCastType) &&
+ castType.getObjCLifetime() == Qualifiers::OCL_Weak &&
+ canExprType->isObjCObjectPointerType()) {
+ if (const ObjCObjectPointerType *ObjT =
+ canExprType->getAs<ObjCObjectPointerType>())
+ if (const ObjCInterfaceDecl *ObjI = ObjT->getInterfaceDecl())
+ return !ObjI->isArcWeakrefUnavailable();
+ }
+ return true;
+}
+
+/// Look for an ObjCReclaimReturnedObject cast and destroy it.
+static Expr *maybeUndoReclaimObject(Expr *e) {
+ // For now, we just undo operands that are *immediately* reclaim
+ // expressions, which prevents the vast majority of potential
+ // problems here. To catch them all, we'd need to rebuild arbitrary
+ // value-propagating subexpressions --- we can't reliably rebuild
+ // in-place because of expression sharing.
+ if (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
+ if (ice->getCastKind() == CK_ARCReclaimReturnedObject)
+ return ice->getSubExpr();
+
+ return e;
+}
+
+ExprResult Sema::BuildObjCBridgedCast(SourceLocation LParenLoc,
+ ObjCBridgeCastKind Kind,
+ SourceLocation BridgeKeywordLoc,
+ TypeSourceInfo *TSInfo,
+ Expr *SubExpr) {
+ ExprResult SubResult = UsualUnaryConversions(SubExpr);
+ if (SubResult.isInvalid()) return ExprError();
+ SubExpr = SubResult.get();
+
+ QualType T = TSInfo->getType();
+ QualType FromType = SubExpr->getType();
+
+ CastKind CK;
+
+ bool MustConsume = false;
+ if (T->isDependentType() || SubExpr->isTypeDependent()) {
+ // Okay: we'll build a dependent expression type.
+ CK = CK_Dependent;
+ } else if (T->isObjCARCBridgableType() && FromType->isCARCBridgableType()) {
+ // Casting CF -> id
+ CK = (T->isBlockPointerType() ? CK_AnyPointerToBlockPointerCast
+ : CK_CPointerToObjCPointerCast);
+ switch (Kind) {
+ case OBC_Bridge:
+ break;
+
+ case OBC_BridgeRetained: {
+ bool br = isKnownName("CFBridgingRelease");
+ Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind)
+ << 2
+ << FromType
+ << (T->isBlockPointerType()? 1 : 0)
+ << T
+ << SubExpr->getSourceRange()
+ << Kind;
+ Diag(BridgeKeywordLoc, diag::note_arc_bridge)
+ << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge");
+ Diag(BridgeKeywordLoc, diag::note_arc_bridge_transfer)
+ << FromType << br
+ << FixItHint::CreateReplacement(BridgeKeywordLoc,
+ br ? "CFBridgingRelease "
+ : "__bridge_transfer ");
+
+ Kind = OBC_Bridge;
+ break;
+ }
+
+ case OBC_BridgeTransfer:
+ // We must consume the Objective-C object produced by the cast.
+ MustConsume = true;
+ break;
+ }
+ } else if (T->isCARCBridgableType() && FromType->isObjCARCBridgableType()) {
+ // Okay: id -> CF
+ CK = CK_BitCast;
+ switch (Kind) {
+ case OBC_Bridge:
+ // Reclaiming a value that's going to be __bridge-casted to CF
+ // is very dangerous, so we don't do it.
+ SubExpr = maybeUndoReclaimObject(SubExpr);
+ break;
+
+ case OBC_BridgeRetained:
+ // Produce the object before casting it.
+ SubExpr = ImplicitCastExpr::Create(Context, FromType,
+ CK_ARCProduceObject,
+ SubExpr, nullptr, VK_RValue);
+ break;
+
+ case OBC_BridgeTransfer: {
+ bool br = isKnownName("CFBridgingRetain");
+ Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind)
+ << (FromType->isBlockPointerType()? 1 : 0)
+ << FromType
+ << 2
+ << T
+ << SubExpr->getSourceRange()
+ << Kind;
+
+ Diag(BridgeKeywordLoc, diag::note_arc_bridge)
+ << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge ");
+ Diag(BridgeKeywordLoc, diag::note_arc_bridge_retained)
+ << T << br
+ << FixItHint::CreateReplacement(BridgeKeywordLoc,
+ br ? "CFBridgingRetain " : "__bridge_retained");
+
+ Kind = OBC_Bridge;
+ break;
+ }
+ }
+ } else {
+ Diag(LParenLoc, diag::err_arc_bridge_cast_incompatible)
+ << FromType << T << Kind
+ << SubExpr->getSourceRange()
+ << TSInfo->getTypeLoc().getSourceRange();
+ return ExprError();
+ }
+
+ Expr *Result = new (Context) ObjCBridgedCastExpr(LParenLoc, Kind, CK,
+ BridgeKeywordLoc,
+ TSInfo, SubExpr);
+
+ if (MustConsume) {
+ ExprNeedsCleanups = true;
+ Result = ImplicitCastExpr::Create(Context, T, CK_ARCConsumeObject, Result,
+ nullptr, VK_RValue);
+ }
+
+ return Result;
+}
+
+ExprResult Sema::ActOnObjCBridgedCast(Scope *S,
+ SourceLocation LParenLoc,
+ ObjCBridgeCastKind Kind,
+ SourceLocation BridgeKeywordLoc,
+ ParsedType Type,
+ SourceLocation RParenLoc,
+ Expr *SubExpr) {
+ TypeSourceInfo *TSInfo = nullptr;
+ QualType T = GetTypeFromParser(Type, &TSInfo);
+ if (Kind == OBC_Bridge)
+ CheckTollFreeBridgeCast(T, SubExpr);
+ if (!TSInfo)
+ TSInfo = Context.getTrivialTypeSourceInfo(T, LParenLoc);
+ return BuildObjCBridgedCast(LParenLoc, Kind, BridgeKeywordLoc, TSInfo,
+ SubExpr);
+}
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaFixItUtils.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaFixItUtils.cpp
new file mode 100644
index 0000000..2e327ec
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaFixItUtils.cpp
@@ -0,0 +1,222 @@
+//===--- SemaFixItUtils.cpp - Sema FixIts ---------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines helper classes for generation of Sema FixItHints.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Sema/Sema.h"
+#include "clang/Sema/SemaFixItUtils.h"
+
+using namespace clang;
+
+bool ConversionFixItGenerator::compareTypesSimple(CanQualType From,
+ CanQualType To,
+ Sema &S,
+ SourceLocation Loc,
+ ExprValueKind FromVK) {
+ if (!To.isAtLeastAsQualifiedAs(From))
+ return false;
+
+ From = From.getNonReferenceType();
+ To = To.getNonReferenceType();
+
+ // If both are pointer types, work with the pointee types.
+ if (isa<PointerType>(From) && isa<PointerType>(To)) {
+ From = S.Context.getCanonicalType(
+ (cast<PointerType>(From))->getPointeeType());
+ To = S.Context.getCanonicalType(
+ (cast<PointerType>(To))->getPointeeType());
+ }
+
+ const CanQualType FromUnq = From.getUnqualifiedType();
+ const CanQualType ToUnq = To.getUnqualifiedType();
+
+ if ((FromUnq == ToUnq || (S.IsDerivedFrom(FromUnq, ToUnq)) ) &&
+ To.isAtLeastAsQualifiedAs(From))
+ return true;
+ return false;
+}
+
+bool ConversionFixItGenerator::tryToFixConversion(const Expr *FullExpr,
+ const QualType FromTy,
+ const QualType ToTy,
+ Sema &S) {
+ if (!FullExpr)
+ return false;
+
+ const CanQualType FromQTy = S.Context.getCanonicalType(FromTy);
+ const CanQualType ToQTy = S.Context.getCanonicalType(ToTy);
+ const SourceLocation Begin = FullExpr->getSourceRange().getBegin();
+ const SourceLocation End = S.PP.getLocForEndOfToken(FullExpr->getSourceRange()
+ .getEnd());
+
+ // Strip the implicit casts - those are implied by the compiler, not the
+ // original source code.
+ const Expr* Expr = FullExpr->IgnoreImpCasts();
+
+ bool NeedParen = true;
+ if (isa<ArraySubscriptExpr>(Expr) ||
+ isa<CallExpr>(Expr) ||
+ isa<DeclRefExpr>(Expr) ||
+ isa<CastExpr>(Expr) ||
+ isa<CXXNewExpr>(Expr) ||
+ isa<CXXConstructExpr>(Expr) ||
+ isa<CXXDeleteExpr>(Expr) ||
+ isa<CXXNoexceptExpr>(Expr) ||
+ isa<CXXPseudoDestructorExpr>(Expr) ||
+ isa<CXXScalarValueInitExpr>(Expr) ||
+ isa<CXXThisExpr>(Expr) ||
+ isa<CXXTypeidExpr>(Expr) ||
+ isa<CXXUnresolvedConstructExpr>(Expr) ||
+ isa<ObjCMessageExpr>(Expr) ||
+ isa<ObjCPropertyRefExpr>(Expr) ||
+ isa<ObjCProtocolExpr>(Expr) ||
+ isa<MemberExpr>(Expr) ||
+ isa<ParenExpr>(FullExpr) ||
+ isa<ParenListExpr>(Expr) ||
+ isa<SizeOfPackExpr>(Expr) ||
+ isa<UnaryOperator>(Expr))
+ NeedParen = false;
+
+ // Check if the argument needs to be dereferenced:
+ // (type * -> type) or (type * -> type &).
+ if (const PointerType *FromPtrTy = dyn_cast<PointerType>(FromQTy)) {
+ OverloadFixItKind FixKind = OFIK_Dereference;
+
+ bool CanConvert = CompareTypes(
+ S.Context.getCanonicalType(FromPtrTy->getPointeeType()), ToQTy,
+ S, Begin, VK_LValue);
+ if (CanConvert) {
+ // Do not suggest dereferencing a Null pointer.
+ if (Expr->IgnoreParenCasts()->
+ isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
+ return false;
+
+ if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Expr)) {
+ if (UO->getOpcode() == UO_AddrOf) {
+ FixKind = OFIK_RemoveTakeAddress;
+ Hints.push_back(FixItHint::CreateRemoval(
+ CharSourceRange::getTokenRange(Begin, Begin)));
+ }
+ } else if (NeedParen) {
+ Hints.push_back(FixItHint::CreateInsertion(Begin, "*("));
+ Hints.push_back(FixItHint::CreateInsertion(End, ")"));
+ } else {
+ Hints.push_back(FixItHint::CreateInsertion(Begin, "*"));
+ }
+
+ NumConversionsFixed++;
+ if (NumConversionsFixed == 1)
+ Kind = FixKind;
+ return true;
+ }
+ }
+
+ // Check if the pointer to the argument needs to be passed:
+ // (type -> type *) or (type & -> type *).
+ if (isa<PointerType>(ToQTy)) {
+ bool CanConvert = false;
+ OverloadFixItKind FixKind = OFIK_TakeAddress;
+
+ // Only suggest taking address of L-values.
+ if (!Expr->isLValue() || Expr->getObjectKind() != OK_Ordinary)
+ return false;
+
+ CanConvert = CompareTypes(S.Context.getPointerType(FromQTy), ToQTy,
+ S, Begin, VK_RValue);
+ if (CanConvert) {
+
+ if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Expr)) {
+ if (UO->getOpcode() == UO_Deref) {
+ FixKind = OFIK_RemoveDereference;
+ Hints.push_back(FixItHint::CreateRemoval(
+ CharSourceRange::getTokenRange(Begin, Begin)));
+ }
+ } else if (NeedParen) {
+ Hints.push_back(FixItHint::CreateInsertion(Begin, "&("));
+ Hints.push_back(FixItHint::CreateInsertion(End, ")"));
+ } else {
+ Hints.push_back(FixItHint::CreateInsertion(Begin, "&"));
+ }
+
+ NumConversionsFixed++;
+ if (NumConversionsFixed == 1)
+ Kind = FixKind;
+ return true;
+ }
+ }
+
+ return false;
+}
+
+static bool isMacroDefined(const Sema &S, SourceLocation Loc, StringRef Name) {
+ return (bool)S.PP.getMacroDefinitionAtLoc(&S.getASTContext().Idents.get(Name),
+ Loc);
+}
+
+static std::string getScalarZeroExpressionForType(
+ const Type &T, SourceLocation Loc, const Sema &S) {
+ assert(T.isScalarType() && "use scalar types only");
+ // Suggest "0" for non-enumeration scalar types, unless we can find a
+ // better initializer.
+ if (T.isEnumeralType())
+ return std::string();
+ if ((T.isObjCObjectPointerType() || T.isBlockPointerType()) &&
+ isMacroDefined(S, Loc, "nil"))
+ return "nil";
+ if (T.isRealFloatingType())
+ return "0.0";
+ if (T.isBooleanType() &&
+ (S.LangOpts.CPlusPlus || isMacroDefined(S, Loc, "false")))
+ return "false";
+ if (T.isPointerType() || T.isMemberPointerType()) {
+ if (S.LangOpts.CPlusPlus11)
+ return "nullptr";
+ if (isMacroDefined(S, Loc, "NULL"))
+ return "NULL";
+ }
+ if (T.isCharType())
+ return "'\\0'";
+ if (T.isWideCharType())
+ return "L'\\0'";
+ if (T.isChar16Type())
+ return "u'\\0'";
+ if (T.isChar32Type())
+ return "U'\\0'";
+ return "0";
+}
+
+std::string
+Sema::getFixItZeroInitializerForType(QualType T, SourceLocation Loc) const {
+ if (T->isScalarType()) {
+ std::string s = getScalarZeroExpressionForType(*T, Loc, *this);
+ if (!s.empty())
+ s = " = " + s;
+ return s;
+ }
+
+ const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
+ if (!RD || !RD->hasDefinition())
+ return std::string();
+ if (LangOpts.CPlusPlus11 && !RD->hasUserProvidedDefaultConstructor())
+ return "{}";
+ if (RD->isAggregate())
+ return " = {}";
+ return std::string();
+}
+
+std::string
+Sema::getFixItZeroLiteralForType(QualType T, SourceLocation Loc) const {
+ return getScalarZeroExpressionForType(*T, Loc, *this);
+}
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaInit.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaInit.cpp
new file mode 100644
index 0000000..610e0a9
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaInit.cpp
@@ -0,0 +1,7508 @@
+//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements semantic analysis for initializers.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Sema/Initialization.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Sema/Designator.h"
+#include "clang/Sema/Lookup.h"
+#include "clang/Sema/SemaInternal.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include <map>
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// Sema Initialization Checking
+//===----------------------------------------------------------------------===//
+
+/// \brief Check whether T is compatible with a wide character type (wchar_t,
+/// char16_t or char32_t).
+static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
+ if (Context.typesAreCompatible(Context.getWideCharType(), T))
+ return true;
+ if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
+ return Context.typesAreCompatible(Context.Char16Ty, T) ||
+ Context.typesAreCompatible(Context.Char32Ty, T);
+ }
+ return false;
+}
+
+enum StringInitFailureKind {
+ SIF_None,
+ SIF_NarrowStringIntoWideChar,
+ SIF_WideStringIntoChar,
+ SIF_IncompatWideStringIntoWideChar,
+ SIF_Other
+};
+
+/// \brief Check whether the array of type AT can be initialized by the Init
+/// expression by means of string initialization. Returns SIF_None if so,
+/// otherwise returns a StringInitFailureKind that describes why the
+/// initialization would not work.
+static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
+ ASTContext &Context) {
+ if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
+ return SIF_Other;
+
+ // See if this is a string literal or @encode.
+ Init = Init->IgnoreParens();
+
+ // Handle @encode, which is a narrow string.
+ if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
+ return SIF_None;
+
+ // Otherwise we can only handle string literals.
+ StringLiteral *SL = dyn_cast<StringLiteral>(Init);
+ if (!SL)
+ return SIF_Other;
+
+ const QualType ElemTy =
+ Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
+
+ switch (SL->getKind()) {
+ case StringLiteral::Ascii:
+ case StringLiteral::UTF8:
+ // char array can be initialized with a narrow string.
+ // Only allow char x[] = "foo"; not char x[] = L"foo";
+ if (ElemTy->isCharType())
+ return SIF_None;
+ if (IsWideCharCompatible(ElemTy, Context))
+ return SIF_NarrowStringIntoWideChar;
+ return SIF_Other;
+ // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
+ // "An array with element type compatible with a qualified or unqualified
+ // version of wchar_t, char16_t, or char32_t may be initialized by a wide
+ // string literal with the corresponding encoding prefix (L, u, or U,
+ // respectively), optionally enclosed in braces.
+ case StringLiteral::UTF16:
+ if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
+ return SIF_None;
+ if (ElemTy->isCharType())
+ return SIF_WideStringIntoChar;
+ if (IsWideCharCompatible(ElemTy, Context))
+ return SIF_IncompatWideStringIntoWideChar;
+ return SIF_Other;
+ case StringLiteral::UTF32:
+ if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
+ return SIF_None;
+ if (ElemTy->isCharType())
+ return SIF_WideStringIntoChar;
+ if (IsWideCharCompatible(ElemTy, Context))
+ return SIF_IncompatWideStringIntoWideChar;
+ return SIF_Other;
+ case StringLiteral::Wide:
+ if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
+ return SIF_None;
+ if (ElemTy->isCharType())
+ return SIF_WideStringIntoChar;
+ if (IsWideCharCompatible(ElemTy, Context))
+ return SIF_IncompatWideStringIntoWideChar;
+ return SIF_Other;
+ }
+
+ llvm_unreachable("missed a StringLiteral kind?");
+}
+
+static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
+ ASTContext &Context) {
+ const ArrayType *arrayType = Context.getAsArrayType(declType);
+ if (!arrayType)
+ return SIF_Other;
+ return IsStringInit(init, arrayType, Context);
+}
+
+/// Update the type of a string literal, including any surrounding parentheses,
+/// to match the type of the object which it is initializing.
+static void updateStringLiteralType(Expr *E, QualType Ty) {
+ while (true) {
+ E->setType(Ty);
+ if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E))
+ break;
+ else if (ParenExpr *PE = dyn_cast<ParenExpr>(E))
+ E = PE->getSubExpr();
+ else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
+ E = UO->getSubExpr();
+ else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E))
+ E = GSE->getResultExpr();
+ else
+ llvm_unreachable("unexpected expr in string literal init");
+ }
+}
+
+static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
+ Sema &S) {
+ // Get the length of the string as parsed.
+ auto *ConstantArrayTy =
+ cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
+ uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
+
+ if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
+ // C99 6.7.8p14. We have an array of character type with unknown size
+ // being initialized to a string literal.
+ llvm::APInt ConstVal(32, StrLength);
+ // Return a new array type (C99 6.7.8p22).
+ DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
+ ConstVal,
+ ArrayType::Normal, 0);
+ updateStringLiteralType(Str, DeclT);
+ return;
+ }
+
+ const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
+
+ // We have an array of character type with known size. However,
+ // the size may be smaller or larger than the string we are initializing.
+ // FIXME: Avoid truncation for 64-bit length strings.
+ if (S.getLangOpts().CPlusPlus) {
+ if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
+ // For Pascal strings it's OK to strip off the terminating null character,
+ // so the example below is valid:
+ //
+ // unsigned char a[2] = "\pa";
+ if (SL->isPascal())
+ StrLength--;
+ }
+
+ // [dcl.init.string]p2
+ if (StrLength > CAT->getSize().getZExtValue())
+ S.Diag(Str->getLocStart(),
+ diag::err_initializer_string_for_char_array_too_long)
+ << Str->getSourceRange();
+ } else {
+ // C99 6.7.8p14.
+ if (StrLength-1 > CAT->getSize().getZExtValue())
+ S.Diag(Str->getLocStart(),
+ diag::ext_initializer_string_for_char_array_too_long)
+ << Str->getSourceRange();
+ }
+
+ // Set the type to the actual size that we are initializing. If we have
+ // something like:
+ // char x[1] = "foo";
+ // then this will set the string literal's type to char[1].
+ updateStringLiteralType(Str, DeclT);
+}
+
+//===----------------------------------------------------------------------===//
+// Semantic checking for initializer lists.
+//===----------------------------------------------------------------------===//
+
+/// @brief Semantic checking for initializer lists.
+///
+/// The InitListChecker class contains a set of routines that each
+/// handle the initialization of a certain kind of entity, e.g.,
+/// arrays, vectors, struct/union types, scalars, etc. The
+/// InitListChecker itself performs a recursive walk of the subobject
+/// structure of the type to be initialized, while stepping through
+/// the initializer list one element at a time. The IList and Index
+/// parameters to each of the Check* routines contain the active
+/// (syntactic) initializer list and the index into that initializer
+/// list that represents the current initializer. Each routine is
+/// responsible for moving that Index forward as it consumes elements.
+///
+/// Each Check* routine also has a StructuredList/StructuredIndex
+/// arguments, which contains the current "structured" (semantic)
+/// initializer list and the index into that initializer list where we
+/// are copying initializers as we map them over to the semantic
+/// list. Once we have completed our recursive walk of the subobject
+/// structure, we will have constructed a full semantic initializer
+/// list.
+///
+/// C99 designators cause changes in the initializer list traversal,
+/// because they make the initialization "jump" into a specific
+/// subobject and then continue the initialization from that
+/// point. CheckDesignatedInitializer() recursively steps into the
+/// designated subobject and manages backing out the recursion to
+/// initialize the subobjects after the one designated.
+namespace {
+class InitListChecker {
+ Sema &SemaRef;
+ bool hadError;
+ bool VerifyOnly; // no diagnostics, no structure building
+ llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
+ InitListExpr *FullyStructuredList;
+
+ void CheckImplicitInitList(const InitializedEntity &Entity,
+ InitListExpr *ParentIList, QualType T,
+ unsigned &Index, InitListExpr *StructuredList,
+ unsigned &StructuredIndex);
+ void CheckExplicitInitList(const InitializedEntity &Entity,
+ InitListExpr *IList, QualType &T,
+ InitListExpr *StructuredList,
+ bool TopLevelObject = false);
+ void CheckListElementTypes(const InitializedEntity &Entity,
+ InitListExpr *IList, QualType &DeclType,
+ bool SubobjectIsDesignatorContext,
+ unsigned &Index,
+ InitListExpr *StructuredList,
+ unsigned &StructuredIndex,
+ bool TopLevelObject = false);
+ void CheckSubElementType(const InitializedEntity &Entity,
+ InitListExpr *IList, QualType ElemType,
+ unsigned &Index,
+ InitListExpr *StructuredList,
+ unsigned &StructuredIndex);
+ void CheckComplexType(const InitializedEntity &Entity,
+ InitListExpr *IList, QualType DeclType,
+ unsigned &Index,
+ InitListExpr *StructuredList,
+ unsigned &StructuredIndex);
+ void CheckScalarType(const InitializedEntity &Entity,
+ InitListExpr *IList, QualType DeclType,
+ unsigned &Index,
+ InitListExpr *StructuredList,
+ unsigned &StructuredIndex);
+ void CheckReferenceType(const InitializedEntity &Entity,
+ InitListExpr *IList, QualType DeclType,
+ unsigned &Index,
+ InitListExpr *StructuredList,
+ unsigned &StructuredIndex);
+ void CheckVectorType(const InitializedEntity &Entity,
+ InitListExpr *IList, QualType DeclType, unsigned &Index,
+ InitListExpr *StructuredList,
+ unsigned &StructuredIndex);
+ void CheckStructUnionTypes(const InitializedEntity &Entity,
+ InitListExpr *IList, QualType DeclType,
+ RecordDecl::field_iterator Field,
+ bool SubobjectIsDesignatorContext, unsigned &Index,
+ InitListExpr *StructuredList,
+ unsigned &StructuredIndex,
+ bool TopLevelObject = false);
+ void CheckArrayType(const InitializedEntity &Entity,
+ InitListExpr *IList, QualType &DeclType,
+ llvm::APSInt elementIndex,
+ bool SubobjectIsDesignatorContext, unsigned &Index,
+ InitListExpr *StructuredList,
+ unsigned &StructuredIndex);
+ bool CheckDesignatedInitializer(const InitializedEntity &Entity,
+ InitListExpr *IList, DesignatedInitExpr *DIE,
+ unsigned DesigIdx,
+ QualType &CurrentObjectType,
+ RecordDecl::field_iterator *NextField,
+ llvm::APSInt *NextElementIndex,
+ unsigned &Index,
+ InitListExpr *StructuredList,
+ unsigned &StructuredIndex,
+ bool FinishSubobjectInit,
+ bool TopLevelObject);
+ InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
+ QualType CurrentObjectType,
+ InitListExpr *StructuredList,
+ unsigned StructuredIndex,
+ SourceRange InitRange);
+ void UpdateStructuredListElement(InitListExpr *StructuredList,
+ unsigned &StructuredIndex,
+ Expr *expr);
+ int numArrayElements(QualType DeclType);
+ int numStructUnionElements(QualType DeclType);
+
+ static ExprResult PerformEmptyInit(Sema &SemaRef,
+ SourceLocation Loc,
+ const InitializedEntity &Entity,
+ bool VerifyOnly);
+ void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
+ const InitializedEntity &ParentEntity,
+ InitListExpr *ILE, bool &RequiresSecondPass);
+ void FillInEmptyInitializations(const InitializedEntity &Entity,
+ InitListExpr *ILE, bool &RequiresSecondPass);
+ bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
+ Expr *InitExpr, FieldDecl *Field,
+ bool TopLevelObject);
+ void CheckEmptyInitializable(const InitializedEntity &Entity,
+ SourceLocation Loc);
+
+public:
+ InitListChecker(Sema &S, const InitializedEntity &Entity,
+ InitListExpr *IL, QualType &T, bool VerifyOnly);
+ bool HadError() { return hadError; }
+
+ // @brief Retrieves the fully-structured initializer list used for
+ // semantic analysis and code generation.
+ InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
+};
+} // end anonymous namespace
+
+ExprResult InitListChecker::PerformEmptyInit(Sema &SemaRef,
+ SourceLocation Loc,
+ const InitializedEntity &Entity,
+ bool VerifyOnly) {
+ InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
+ true);
+ MultiExprArg SubInit;
+ Expr *InitExpr;
+ InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
+
+ // C++ [dcl.init.aggr]p7:
+ // If there are fewer initializer-clauses in the list than there are
+ // members in the aggregate, then each member not explicitly initialized
+ // ...
+ bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
+ Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
+ if (EmptyInitList) {
+ // C++1y / DR1070:
+ // shall be initialized [...] from an empty initializer list.
+ //
+ // We apply the resolution of this DR to C++11 but not C++98, since C++98
+ // does not have useful semantics for initialization from an init list.
+ // We treat this as copy-initialization, because aggregate initialization
+ // always performs copy-initialization on its elements.
+ //
+ // Only do this if we're initializing a class type, to avoid filling in
+ // the initializer list where possible.
+ InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
+ InitListExpr(SemaRef.Context, Loc, None, Loc);
+ InitExpr->setType(SemaRef.Context.VoidTy);
+ SubInit = InitExpr;
+ Kind = InitializationKind::CreateCopy(Loc, Loc);
+ } else {
+ // C++03:
+ // shall be value-initialized.
+ }
+
+ InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
+ // libstdc++4.6 marks the vector default constructor as explicit in
+ // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
+ // stlport does so too. Look for std::__debug for libstdc++, and for
+ // std:: for stlport. This is effectively a compiler-side implementation of
+ // LWG2193.
+ if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
+ InitializationSequence::FK_ExplicitConstructor) {
+ OverloadCandidateSet::iterator Best;
+ OverloadingResult O =
+ InitSeq.getFailedCandidateSet()
+ .BestViableFunction(SemaRef, Kind.getLocation(), Best);
+ (void)O;
+ assert(O == OR_Success && "Inconsistent overload resolution");
+ CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
+ CXXRecordDecl *R = CtorDecl->getParent();
+
+ if (CtorDecl->getMinRequiredArguments() == 0 &&
+ CtorDecl->isExplicit() && R->getDeclName() &&
+ SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
+
+
+ bool IsInStd = false;
+ for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
+ ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
+ if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
+ IsInStd = true;
+ }
+
+ if (IsInStd && llvm::StringSwitch<bool>(R->getName())
+ .Cases("basic_string", "deque", "forward_list", true)
+ .Cases("list", "map", "multimap", "multiset", true)
+ .Cases("priority_queue", "queue", "set", "stack", true)
+ .Cases("unordered_map", "unordered_set", "vector", true)
+ .Default(false)) {
+ InitSeq.InitializeFrom(
+ SemaRef, Entity,
+ InitializationKind::CreateValue(Loc, Loc, Loc, true),
+ MultiExprArg(), /*TopLevelOfInitList=*/false);
+ // Emit a warning for this. System header warnings aren't shown
+ // by default, but people working on system headers should see it.
+ if (!VerifyOnly) {
+ SemaRef.Diag(CtorDecl->getLocation(),
+ diag::warn_invalid_initializer_from_system_header);
+ SemaRef.Diag(Entity.getDecl()->getLocation(),
+ diag::note_used_in_initialization_here);
+ }
+ }
+ }
+ }
+ if (!InitSeq) {
+ if (!VerifyOnly) {
+ InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
+ if (Entity.getKind() == InitializedEntity::EK_Member)
+ SemaRef.Diag(Entity.getDecl()->getLocation(),
+ diag::note_in_omitted_aggregate_initializer)
+ << /*field*/1 << Entity.getDecl();
+ else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
+ SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
+ << /*array element*/0 << Entity.getElementIndex();
+ }
+ return ExprError();
+ }
+
+ return VerifyOnly ? ExprResult(static_cast<Expr *>(nullptr))
+ : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
+}
+
+void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
+ SourceLocation Loc) {
+ assert(VerifyOnly &&
+ "CheckEmptyInitializable is only inteded for verification mode.");
+ if (PerformEmptyInit(SemaRef, Loc, Entity, /*VerifyOnly*/true).isInvalid())
+ hadError = true;
+}
+
+void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
+ const InitializedEntity &ParentEntity,
+ InitListExpr *ILE,
+ bool &RequiresSecondPass) {
+ SourceLocation Loc = ILE->getLocEnd();
+ unsigned NumInits = ILE->getNumInits();
+ InitializedEntity MemberEntity
+ = InitializedEntity::InitializeMember(Field, &ParentEntity);
+ if (Init >= NumInits || !ILE->getInit(Init)) {
+ // C++1y [dcl.init.aggr]p7:
+ // If there are fewer initializer-clauses in the list than there are
+ // members in the aggregate, then each member not explicitly initialized
+ // shall be initialized from its brace-or-equal-initializer [...]
+ if (Field->hasInClassInitializer()) {
+ ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
+ if (DIE.isInvalid()) {
+ hadError = true;
+ return;
+ }
+ if (Init < NumInits)
+ ILE->setInit(Init, DIE.get());
+ else {
+ ILE->updateInit(SemaRef.Context, Init, DIE.get());
+ RequiresSecondPass = true;
+ }
+ return;
+ }
+
+ if (Field->getType()->isReferenceType()) {
+ // C++ [dcl.init.aggr]p9:
+ // If an incomplete or empty initializer-list leaves a
+ // member of reference type uninitialized, the program is
+ // ill-formed.
+ SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
+ << Field->getType()
+ << ILE->getSyntacticForm()->getSourceRange();
+ SemaRef.Diag(Field->getLocation(),
+ diag::note_uninit_reference_member);
+ hadError = true;
+ return;
+ }
+
+ ExprResult MemberInit = PerformEmptyInit(SemaRef, Loc, MemberEntity,
+ /*VerifyOnly*/false);
+ if (MemberInit.isInvalid()) {
+ hadError = true;
+ return;
+ }
+
+ if (hadError) {
+ // Do nothing
+ } else if (Init < NumInits) {
+ ILE->setInit(Init, MemberInit.getAs<Expr>());
+ } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
+ // Empty initialization requires a constructor call, so
+ // extend the initializer list to include the constructor
+ // call and make a note that we'll need to take another pass
+ // through the initializer list.
+ ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
+ RequiresSecondPass = true;
+ }
+ } else if (InitListExpr *InnerILE
+ = dyn_cast<InitListExpr>(ILE->getInit(Init)))
+ FillInEmptyInitializations(MemberEntity, InnerILE,
+ RequiresSecondPass);
+}
+
+/// Recursively replaces NULL values within the given initializer list
+/// with expressions that perform value-initialization of the
+/// appropriate type.
+void
+InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
+ InitListExpr *ILE,
+ bool &RequiresSecondPass) {
+ assert((ILE->getType() != SemaRef.Context.VoidTy) &&
+ "Should not have void type");
+
+ if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
+ const RecordDecl *RDecl = RType->getDecl();
+ if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
+ FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
+ Entity, ILE, RequiresSecondPass);
+ else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
+ cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
+ for (auto *Field : RDecl->fields()) {
+ if (Field->hasInClassInitializer()) {
+ FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass);
+ break;
+ }
+ }
+ } else {
+ unsigned Init = 0;
+ for (auto *Field : RDecl->fields()) {
+ if (Field->isUnnamedBitfield())
+ continue;
+
+ if (hadError)
+ return;
+
+ FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass);
+ if (hadError)
+ return;
+
+ ++Init;
+
+ // Only look at the first initialization of a union.
+ if (RDecl->isUnion())
+ break;
+ }
+ }
+
+ return;
+ }
+
+ QualType ElementType;
+
+ InitializedEntity ElementEntity = Entity;
+ unsigned NumInits = ILE->getNumInits();
+ unsigned NumElements = NumInits;
+ if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
+ ElementType = AType->getElementType();
+ if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
+ NumElements = CAType->getSize().getZExtValue();
+ ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
+ 0, Entity);
+ } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
+ ElementType = VType->getElementType();
+ NumElements = VType->getNumElements();
+ ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
+ 0, Entity);
+ } else
+ ElementType = ILE->getType();
+
+ for (unsigned Init = 0; Init != NumElements; ++Init) {
+ if (hadError)
+ return;
+
+ if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
+ ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
+ ElementEntity.setElementIndex(Init);
+
+ Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
+ if (!InitExpr && !ILE->hasArrayFiller()) {
+ ExprResult ElementInit = PerformEmptyInit(SemaRef, ILE->getLocEnd(),
+ ElementEntity,
+ /*VerifyOnly*/false);
+ if (ElementInit.isInvalid()) {
+ hadError = true;
+ return;
+ }
+
+ if (hadError) {
+ // Do nothing
+ } else if (Init < NumInits) {
+ // For arrays, just set the expression used for value-initialization
+ // of the "holes" in the array.
+ if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
+ ILE->setArrayFiller(ElementInit.getAs<Expr>());
+ else
+ ILE->setInit(Init, ElementInit.getAs<Expr>());
+ } else {
+ // For arrays, just set the expression used for value-initialization
+ // of the rest of elements and exit.
+ if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
+ ILE->setArrayFiller(ElementInit.getAs<Expr>());
+ return;
+ }
+
+ if (!isa<ImplicitValueInitExpr>(ElementInit.get())) {
+ // Empty initialization requires a constructor call, so
+ // extend the initializer list to include the constructor
+ // call and make a note that we'll need to take another pass
+ // through the initializer list.
+ ILE->updateInit(SemaRef.Context, Init, ElementInit.getAs<Expr>());
+ RequiresSecondPass = true;
+ }
+ }
+ } else if (InitListExpr *InnerILE
+ = dyn_cast_or_null<InitListExpr>(InitExpr))
+ FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass);
+ }
+}
+
+
+InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
+ InitListExpr *IL, QualType &T,
+ bool VerifyOnly)
+ : SemaRef(S), VerifyOnly(VerifyOnly) {
+ // FIXME: Check that IL isn't already the semantic form of some other
+ // InitListExpr. If it is, we'd create a broken AST.
+
+ hadError = false;
+
+ FullyStructuredList =
+ getStructuredSubobjectInit(IL, 0, T, nullptr, 0, IL->getSourceRange());
+ CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
+ /*TopLevelObject=*/true);
+
+ if (!hadError && !VerifyOnly) {
+ bool RequiresSecondPass = false;
+ FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass);
+ if (RequiresSecondPass && !hadError)
+ FillInEmptyInitializations(Entity, FullyStructuredList,
+ RequiresSecondPass);
+ }
+}
+
+int InitListChecker::numArrayElements(QualType DeclType) {
+ // FIXME: use a proper constant
+ int maxElements = 0x7FFFFFFF;
+ if (const ConstantArrayType *CAT =
+ SemaRef.Context.getAsConstantArrayType(DeclType)) {
+ maxElements = static_cast<int>(CAT->getSize().getZExtValue());
+ }
+ return maxElements;
+}
+
+int InitListChecker::numStructUnionElements(QualType DeclType) {
+ RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
+ int InitializableMembers = 0;
+ for (const auto *Field : structDecl->fields())
+ if (!Field->isUnnamedBitfield())
+ ++InitializableMembers;
+
+ if (structDecl->isUnion())
+ return std::min(InitializableMembers, 1);
+ return InitializableMembers - structDecl->hasFlexibleArrayMember();
+}
+
+/// Check whether the range of the initializer \p ParentIList from element
+/// \p Index onwards can be used to initialize an object of type \p T. Update
+/// \p Index to indicate how many elements of the list were consumed.
+///
+/// This also fills in \p StructuredList, from element \p StructuredIndex
+/// onwards, with the fully-braced, desugared form of the initialization.
+void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
+ InitListExpr *ParentIList,
+ QualType T, unsigned &Index,
+ InitListExpr *StructuredList,
+ unsigned &StructuredIndex) {
+ int maxElements = 0;
+
+ if (T->isArrayType())
+ maxElements = numArrayElements(T);
+ else if (T->isRecordType())
+ maxElements = numStructUnionElements(T);
+ else if (T->isVectorType())
+ maxElements = T->getAs<VectorType>()->getNumElements();
+ else
+ llvm_unreachable("CheckImplicitInitList(): Illegal type");
+
+ if (maxElements == 0) {
+ if (!VerifyOnly)
+ SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
+ diag::err_implicit_empty_initializer);
+ ++Index;
+ hadError = true;
+ return;
+ }
+
+ // Build a structured initializer list corresponding to this subobject.
+ InitListExpr *StructuredSubobjectInitList
+ = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
+ StructuredIndex,
+ SourceRange(ParentIList->getInit(Index)->getLocStart(),
+ ParentIList->getSourceRange().getEnd()));
+ unsigned StructuredSubobjectInitIndex = 0;
+
+ // Check the element types and build the structural subobject.
+ unsigned StartIndex = Index;
+ CheckListElementTypes(Entity, ParentIList, T,
+ /*SubobjectIsDesignatorContext=*/false, Index,
+ StructuredSubobjectInitList,
+ StructuredSubobjectInitIndex);
+
+ if (!VerifyOnly) {
+ StructuredSubobjectInitList->setType(T);
+
+ unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
+ // Update the structured sub-object initializer so that it's ending
+ // range corresponds with the end of the last initializer it used.
+ if (EndIndex < ParentIList->getNumInits()) {
+ SourceLocation EndLoc
+ = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
+ StructuredSubobjectInitList->setRBraceLoc(EndLoc);
+ }
+
+ // Complain about missing braces.
+ if (T->isArrayType() || T->isRecordType()) {
+ SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
+ diag::warn_missing_braces)
+ << StructuredSubobjectInitList->getSourceRange()
+ << FixItHint::CreateInsertion(
+ StructuredSubobjectInitList->getLocStart(), "{")
+ << FixItHint::CreateInsertion(
+ SemaRef.getLocForEndOfToken(
+ StructuredSubobjectInitList->getLocEnd()),
+ "}");
+ }
+ }
+}
+
+/// Warn that \p Entity was of scalar type and was initialized by a
+/// single-element braced initializer list.
+static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
+ SourceRange Braces) {
+ // Don't warn during template instantiation. If the initialization was
+ // non-dependent, we warned during the initial parse; otherwise, the
+ // type might not be scalar in some uses of the template.
+ if (!S.ActiveTemplateInstantiations.empty())
+ return;
+
+ unsigned DiagID = 0;
+
+ switch (Entity.getKind()) {
+ case InitializedEntity::EK_VectorElement:
+ case InitializedEntity::EK_ComplexElement:
+ case InitializedEntity::EK_ArrayElement:
+ case InitializedEntity::EK_Parameter:
+ case InitializedEntity::EK_Parameter_CF_Audited:
+ case InitializedEntity::EK_Result:
+ // Extra braces here are suspicious.
+ DiagID = diag::warn_braces_around_scalar_init;
+ break;
+
+ case InitializedEntity::EK_Member:
+ // Warn on aggregate initialization but not on ctor init list or
+ // default member initializer.
+ if (Entity.getParent())
+ DiagID = diag::warn_braces_around_scalar_init;
+ break;
+
+ case InitializedEntity::EK_Variable:
+ case InitializedEntity::EK_LambdaCapture:
+ // No warning, might be direct-list-initialization.
+ // FIXME: Should we warn for copy-list-initialization in these cases?
+ break;
+
+ case InitializedEntity::EK_New:
+ case InitializedEntity::EK_Temporary:
+ case InitializedEntity::EK_CompoundLiteralInit:
+ // No warning, braces are part of the syntax of the underlying construct.
+ break;
+
+ case InitializedEntity::EK_RelatedResult:
+ // No warning, we already warned when initializing the result.
+ break;
+
+ case InitializedEntity::EK_Exception:
+ case InitializedEntity::EK_Base:
+ case InitializedEntity::EK_Delegating:
+ case InitializedEntity::EK_BlockElement:
+ llvm_unreachable("unexpected braced scalar init");
+ }
+
+ if (DiagID) {
+ S.Diag(Braces.getBegin(), DiagID)
+ << Braces
+ << FixItHint::CreateRemoval(Braces.getBegin())
+ << FixItHint::CreateRemoval(Braces.getEnd());
+ }
+}
+
+
+/// Check whether the initializer \p IList (that was written with explicit
+/// braces) can be used to initialize an object of type \p T.
+///
+/// This also fills in \p StructuredList with the fully-braced, desugared
+/// form of the initialization.
+void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
+ InitListExpr *IList, QualType &T,
+ InitListExpr *StructuredList,
+ bool TopLevelObject) {
+ if (!VerifyOnly) {
+ SyntacticToSemantic[IList] = StructuredList;
+ StructuredList->setSyntacticForm(IList);
+ }
+
+ unsigned Index = 0, StructuredIndex = 0;
+ CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
+ Index, StructuredList, StructuredIndex, TopLevelObject);
+ if (!VerifyOnly) {
+ QualType ExprTy = T;
+ if (!ExprTy->isArrayType())
+ ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
+ IList->setType(ExprTy);
+ StructuredList->setType(ExprTy);
+ }
+ if (hadError)
+ return;
+
+ if (Index < IList->getNumInits()) {
+ // We have leftover initializers
+ if (VerifyOnly) {
+ if (SemaRef.getLangOpts().CPlusPlus ||
+ (SemaRef.getLangOpts().OpenCL &&
+ IList->getType()->isVectorType())) {
+ hadError = true;
+ }
+ return;
+ }
+
+ if (StructuredIndex == 1 &&
+ IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
+ SIF_None) {
+ unsigned DK = diag::ext_excess_initializers_in_char_array_initializer;
+ if (SemaRef.getLangOpts().CPlusPlus) {
+ DK = diag::err_excess_initializers_in_char_array_initializer;
+ hadError = true;
+ }
+ // Special-case
+ SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
+ << IList->getInit(Index)->getSourceRange();
+ } else if (!T->isIncompleteType()) {
+ // Don't complain for incomplete types, since we'll get an error
+ // elsewhere
+ QualType CurrentObjectType = StructuredList->getType();
+ int initKind =
+ CurrentObjectType->isArrayType()? 0 :
+ CurrentObjectType->isVectorType()? 1 :
+ CurrentObjectType->isScalarType()? 2 :
+ CurrentObjectType->isUnionType()? 3 :
+ 4;
+
+ unsigned DK = diag::ext_excess_initializers;
+ if (SemaRef.getLangOpts().CPlusPlus) {
+ DK = diag::err_excess_initializers;
+ hadError = true;
+ }
+ if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
+ DK = diag::err_excess_initializers;
+ hadError = true;
+ }
+
+ SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
+ << initKind << IList->getInit(Index)->getSourceRange();
+ }
+ }
+
+ if (!VerifyOnly && T->isScalarType() &&
+ IList->getNumInits() == 1 && !isa<InitListExpr>(IList->getInit(0)))
+ warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
+}
+
+void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
+ InitListExpr *IList,
+ QualType &DeclType,
+ bool SubobjectIsDesignatorContext,
+ unsigned &Index,
+ InitListExpr *StructuredList,
+ unsigned &StructuredIndex,
+ bool TopLevelObject) {
+ if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
+ // Explicitly braced initializer for complex type can be real+imaginary
+ // parts.
+ CheckComplexType(Entity, IList, DeclType, Index,
+ StructuredList, StructuredIndex);
+ } else if (DeclType->isScalarType()) {
+ CheckScalarType(Entity, IList, DeclType, Index,
+ StructuredList, StructuredIndex);
+ } else if (DeclType->isVectorType()) {
+ CheckVectorType(Entity, IList, DeclType, Index,
+ StructuredList, StructuredIndex);
+ } else if (DeclType->isRecordType()) {
+ assert(DeclType->isAggregateType() &&
+ "non-aggregate records should be handed in CheckSubElementType");
+ RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
+ CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
+ SubobjectIsDesignatorContext, Index,
+ StructuredList, StructuredIndex,
+ TopLevelObject);
+ } else if (DeclType->isArrayType()) {
+ llvm::APSInt Zero(
+ SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
+ false);
+ CheckArrayType(Entity, IList, DeclType, Zero,
+ SubobjectIsDesignatorContext, Index,
+ StructuredList, StructuredIndex);
+ } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
+ // This type is invalid, issue a diagnostic.
+ ++Index;
+ if (!VerifyOnly)
+ SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
+ << DeclType;
+ hadError = true;
+ } else if (DeclType->isReferenceType()) {
+ CheckReferenceType(Entity, IList, DeclType, Index,
+ StructuredList, StructuredIndex);
+ } else if (DeclType->isObjCObjectType()) {
+ if (!VerifyOnly)
+ SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
+ << DeclType;
+ hadError = true;
+ } else {
+ if (!VerifyOnly)
+ SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
+ << DeclType;
+ hadError = true;
+ }
+}
+
+void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
+ InitListExpr *IList,
+ QualType ElemType,
+ unsigned &Index,
+ InitListExpr *StructuredList,
+ unsigned &StructuredIndex) {
+ Expr *expr = IList->getInit(Index);
+
+ if (ElemType->isReferenceType())
+ return CheckReferenceType(Entity, IList, ElemType, Index,
+ StructuredList, StructuredIndex);
+
+ if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
+ if (!SemaRef.getLangOpts().CPlusPlus) {
+ InitListExpr *InnerStructuredList
+ = getStructuredSubobjectInit(IList, Index, ElemType,
+ StructuredList, StructuredIndex,
+ SubInitList->getSourceRange());
+ CheckExplicitInitList(Entity, SubInitList, ElemType,
+ InnerStructuredList);
+ ++StructuredIndex;
+ ++Index;
+ return;
+ }
+ // C++ initialization is handled later.
+ } else if (isa<ImplicitValueInitExpr>(expr)) {
+ // This happens during template instantiation when we see an InitListExpr
+ // that we've already checked once.
+ assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
+ "found implicit initialization for the wrong type");
+ if (!VerifyOnly)
+ UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
+ ++Index;
+ return;
+ }
+
+ if (SemaRef.getLangOpts().CPlusPlus) {
+ // C++ [dcl.init.aggr]p2:
+ // Each member is copy-initialized from the corresponding
+ // initializer-clause.
+
+ // FIXME: Better EqualLoc?
+ InitializationKind Kind =
+ InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
+ InitializationSequence Seq(SemaRef, Entity, Kind, expr,
+ /*TopLevelOfInitList*/ true);
+
+ // C++14 [dcl.init.aggr]p13:
+ // If the assignment-expression can initialize a member, the member is
+ // initialized. Otherwise [...] brace elision is assumed
+ //
+ // Brace elision is never performed if the element is not an
+ // assignment-expression.
+ if (Seq || isa<InitListExpr>(expr)) {
+ if (!VerifyOnly) {
+ ExprResult Result =
+ Seq.Perform(SemaRef, Entity, Kind, expr);
+ if (Result.isInvalid())
+ hadError = true;
+
+ UpdateStructuredListElement(StructuredList, StructuredIndex,
+ Result.getAs<Expr>());
+ } else if (!Seq)
+ hadError = true;
+ ++Index;
+ return;
+ }
+
+ // Fall through for subaggregate initialization
+ } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
+ // FIXME: Need to handle atomic aggregate types with implicit init lists.
+ return CheckScalarType(Entity, IList, ElemType, Index,
+ StructuredList, StructuredIndex);
+ } else if (const ArrayType *arrayType =
+ SemaRef.Context.getAsArrayType(ElemType)) {
+ // arrayType can be incomplete if we're initializing a flexible
+ // array member. There's nothing we can do with the completed
+ // type here, though.
+
+ if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
+ if (!VerifyOnly) {
+ CheckStringInit(expr, ElemType, arrayType, SemaRef);
+ UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
+ }
+ ++Index;
+ return;
+ }
+
+ // Fall through for subaggregate initialization.
+
+ } else {
+ assert((ElemType->isRecordType() || ElemType->isVectorType()) &&
+ "Unexpected type");
+
+ // C99 6.7.8p13:
+ //
+ // The initializer for a structure or union object that has
+ // automatic storage duration shall be either an initializer
+ // list as described below, or a single expression that has
+ // compatible structure or union type. In the latter case, the
+ // initial value of the object, including unnamed members, is
+ // that of the expression.
+ ExprResult ExprRes = expr;
+ if (SemaRef.CheckSingleAssignmentConstraints(
+ ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
+ if (ExprRes.isInvalid())
+ hadError = true;
+ else {
+ ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
+ if (ExprRes.isInvalid())
+ hadError = true;
+ }
+ UpdateStructuredListElement(StructuredList, StructuredIndex,
+ ExprRes.getAs<Expr>());
+ ++Index;
+ return;
+ }
+ ExprRes.get();
+ // Fall through for subaggregate initialization
+ }
+
+ // C++ [dcl.init.aggr]p12:
+ //
+ // [...] Otherwise, if the member is itself a non-empty
+ // subaggregate, brace elision is assumed and the initializer is
+ // considered for the initialization of the first member of
+ // the subaggregate.
+ if (!SemaRef.getLangOpts().OpenCL &&
+ (ElemType->isAggregateType() || ElemType->isVectorType())) {
+ CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
+ StructuredIndex);
+ ++StructuredIndex;
+ } else {
+ if (!VerifyOnly) {
+ // We cannot initialize this element, so let
+ // PerformCopyInitialization produce the appropriate diagnostic.
+ SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
+ /*TopLevelOfInitList=*/true);
+ }
+ hadError = true;
+ ++Index;
+ ++StructuredIndex;
+ }
+}
+
+void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
+ InitListExpr *IList, QualType DeclType,
+ unsigned &Index,
+ InitListExpr *StructuredList,
+ unsigned &StructuredIndex) {
+ assert(Index == 0 && "Index in explicit init list must be zero");
+
+ // As an extension, clang supports complex initializers, which initialize
+ // a complex number component-wise. When an explicit initializer list for
+ // a complex number contains two two initializers, this extension kicks in:
+ // it exepcts the initializer list to contain two elements convertible to
+ // the element type of the complex type. The first element initializes
+ // the real part, and the second element intitializes the imaginary part.
+
+ if (IList->getNumInits() != 2)
+ return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
+ StructuredIndex);
+
+ // This is an extension in C. (The builtin _Complex type does not exist
+ // in the C++ standard.)
+ if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
+ SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
+ << IList->getSourceRange();
+
+ // Initialize the complex number.
+ QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
+ InitializedEntity ElementEntity =
+ InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
+
+ for (unsigned i = 0; i < 2; ++i) {
+ ElementEntity.setElementIndex(Index);
+ CheckSubElementType(ElementEntity, IList, elementType, Index,
+ StructuredList, StructuredIndex);
+ }
+}
+
+
+void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
+ InitListExpr *IList, QualType DeclType,
+ unsigned &Index,
+ InitListExpr *StructuredList,
+ unsigned &StructuredIndex) {
+ if (Index >= IList->getNumInits()) {
+ if (!VerifyOnly)
+ SemaRef.Diag(IList->getLocStart(),
+ SemaRef.getLangOpts().CPlusPlus11 ?
+ diag::warn_cxx98_compat_empty_scalar_initializer :
+ diag::err_empty_scalar_initializer)
+ << IList->getSourceRange();
+ hadError = !SemaRef.getLangOpts().CPlusPlus11;
+ ++Index;
+ ++StructuredIndex;
+ return;
+ }
+
+ Expr *expr = IList->getInit(Index);
+ if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
+ // FIXME: This is invalid, and accepting it causes overload resolution
+ // to pick the wrong overload in some corner cases.
+ if (!VerifyOnly)
+ SemaRef.Diag(SubIList->getLocStart(),
+ diag::ext_many_braces_around_scalar_init)
+ << SubIList->getSourceRange();
+
+ CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
+ StructuredIndex);
+ return;
+ } else if (isa<DesignatedInitExpr>(expr)) {
+ if (!VerifyOnly)
+ SemaRef.Diag(expr->getLocStart(),
+ diag::err_designator_for_scalar_init)
+ << DeclType << expr->getSourceRange();
+ hadError = true;
+ ++Index;
+ ++StructuredIndex;
+ return;
+ }
+
+ if (VerifyOnly) {
+ if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
+ hadError = true;
+ ++Index;
+ return;
+ }
+
+ ExprResult Result =
+ SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr,
+ /*TopLevelOfInitList=*/true);
+
+ Expr *ResultExpr = nullptr;
+
+ if (Result.isInvalid())
+ hadError = true; // types weren't compatible.
+ else {
+ ResultExpr = Result.getAs<Expr>();
+
+ if (ResultExpr != expr) {
+ // The type was promoted, update initializer list.
+ IList->setInit(Index, ResultExpr);
+ }
+ }
+ if (hadError)
+ ++StructuredIndex;
+ else
+ UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
+ ++Index;
+}
+
+void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
+ InitListExpr *IList, QualType DeclType,
+ unsigned &Index,
+ InitListExpr *StructuredList,
+ unsigned &StructuredIndex) {
+ if (Index >= IList->getNumInits()) {
+ // FIXME: It would be wonderful if we could point at the actual member. In
+ // general, it would be useful to pass location information down the stack,
+ // so that we know the location (or decl) of the "current object" being
+ // initialized.
+ if (!VerifyOnly)
+ SemaRef.Diag(IList->getLocStart(),
+ diag::err_init_reference_member_uninitialized)
+ << DeclType
+ << IList->getSourceRange();
+ hadError = true;
+ ++Index;
+ ++StructuredIndex;
+ return;
+ }
+
+ Expr *expr = IList->getInit(Index);
+ if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
+ if (!VerifyOnly)
+ SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
+ << DeclType << IList->getSourceRange();
+ hadError = true;
+ ++Index;
+ ++StructuredIndex;
+ return;
+ }
+
+ if (VerifyOnly) {
+ if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
+ hadError = true;
+ ++Index;
+ return;
+ }
+
+ ExprResult Result =
+ SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr,
+ /*TopLevelOfInitList=*/true);
+
+ if (Result.isInvalid())
+ hadError = true;
+
+ expr = Result.getAs<Expr>();
+ IList->setInit(Index, expr);
+
+ if (hadError)
+ ++StructuredIndex;
+ else
+ UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
+ ++Index;
+}
+
+void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
+ InitListExpr *IList, QualType DeclType,
+ unsigned &Index,
+ InitListExpr *StructuredList,
+ unsigned &StructuredIndex) {
+ const VectorType *VT = DeclType->getAs<VectorType>();
+ unsigned maxElements = VT->getNumElements();
+ unsigned numEltsInit = 0;
+ QualType elementType = VT->getElementType();
+
+ if (Index >= IList->getNumInits()) {
+ // Make sure the element type can be value-initialized.
+ if (VerifyOnly)
+ CheckEmptyInitializable(
+ InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
+ IList->getLocEnd());
+ return;
+ }
+
+ if (!SemaRef.getLangOpts().OpenCL) {
+ // If the initializing element is a vector, try to copy-initialize
+ // instead of breaking it apart (which is doomed to failure anyway).
+ Expr *Init = IList->getInit(Index);
+ if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
+ if (VerifyOnly) {
+ if (!SemaRef.CanPerformCopyInitialization(Entity, Init))
+ hadError = true;
+ ++Index;
+ return;
+ }
+
+ ExprResult Result =
+ SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(), Init,
+ /*TopLevelOfInitList=*/true);
+
+ Expr *ResultExpr = nullptr;
+ if (Result.isInvalid())
+ hadError = true; // types weren't compatible.
+ else {
+ ResultExpr = Result.getAs<Expr>();
+
+ if (ResultExpr != Init) {
+ // The type was promoted, update initializer list.
+ IList->setInit(Index, ResultExpr);
+ }
+ }
+ if (hadError)
+ ++StructuredIndex;
+ else
+ UpdateStructuredListElement(StructuredList, StructuredIndex,
+ ResultExpr);
+ ++Index;
+ return;
+ }
+
+ InitializedEntity ElementEntity =
+ InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
+
+ for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
+ // Don't attempt to go past the end of the init list
+ if (Index >= IList->getNumInits()) {
+ if (VerifyOnly)
+ CheckEmptyInitializable(ElementEntity, IList->getLocEnd());
+ break;
+ }
+
+ ElementEntity.setElementIndex(Index);
+ CheckSubElementType(ElementEntity, IList, elementType, Index,
+ StructuredList, StructuredIndex);
+ }
+
+ if (VerifyOnly)
+ return;
+
+ bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
+ const VectorType *T = Entity.getType()->getAs<VectorType>();
+ if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
+ T->getVectorKind() == VectorType::NeonPolyVector)) {
+ // The ability to use vector initializer lists is a GNU vector extension
+ // and is unrelated to the NEON intrinsics in arm_neon.h. On little
+ // endian machines it works fine, however on big endian machines it
+ // exhibits surprising behaviour:
+ //
+ // uint32x2_t x = {42, 64};
+ // return vget_lane_u32(x, 0); // Will return 64.
+ //
+ // Because of this, explicitly call out that it is non-portable.
+ //
+ SemaRef.Diag(IList->getLocStart(),
+ diag::warn_neon_vector_initializer_non_portable);
+
+ const char *typeCode;
+ unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
+
+ if (elementType->isFloatingType())
+ typeCode = "f";
+ else if (elementType->isSignedIntegerType())
+ typeCode = "s";
+ else if (elementType->isUnsignedIntegerType())
+ typeCode = "u";
+ else
+ llvm_unreachable("Invalid element type!");
+
+ SemaRef.Diag(IList->getLocStart(),
+ SemaRef.Context.getTypeSize(VT) > 64 ?
+ diag::note_neon_vector_initializer_non_portable_q :
+ diag::note_neon_vector_initializer_non_portable)
+ << typeCode << typeSize;
+ }
+
+ return;
+ }
+
+ InitializedEntity ElementEntity =
+ InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
+
+ // OpenCL initializers allows vectors to be constructed from vectors.
+ for (unsigned i = 0; i < maxElements; ++i) {
+ // Don't attempt to go past the end of the init list
+ if (Index >= IList->getNumInits())
+ break;
+
+ ElementEntity.setElementIndex(Index);
+
+ QualType IType = IList->getInit(Index)->getType();
+ if (!IType->isVectorType()) {
+ CheckSubElementType(ElementEntity, IList, elementType, Index,
+ StructuredList, StructuredIndex);
+ ++numEltsInit;
+ } else {
+ QualType VecType;
+ const VectorType *IVT = IType->getAs<VectorType>();
+ unsigned numIElts = IVT->getNumElements();
+
+ if (IType->isExtVectorType())
+ VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
+ else
+ VecType = SemaRef.Context.getVectorType(elementType, numIElts,
+ IVT->getVectorKind());
+ CheckSubElementType(ElementEntity, IList, VecType, Index,
+ StructuredList, StructuredIndex);
+ numEltsInit += numIElts;
+ }
+ }
+
+ // OpenCL requires all elements to be initialized.
+ if (numEltsInit != maxElements) {
+ if (!VerifyOnly)
+ SemaRef.Diag(IList->getLocStart(),
+ diag::err_vector_incorrect_num_initializers)
+ << (numEltsInit < maxElements) << maxElements << numEltsInit;
+ hadError = true;
+ }
+}
+
+void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
+ InitListExpr *IList, QualType &DeclType,
+ llvm::APSInt elementIndex,
+ bool SubobjectIsDesignatorContext,
+ unsigned &Index,
+ InitListExpr *StructuredList,
+ unsigned &StructuredIndex) {
+ const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
+
+ // Check for the special-case of initializing an array with a string.
+ if (Index < IList->getNumInits()) {
+ if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
+ SIF_None) {
+ // We place the string literal directly into the resulting
+ // initializer list. This is the only place where the structure
+ // of the structured initializer list doesn't match exactly,
+ // because doing so would involve allocating one character
+ // constant for each string.
+ if (!VerifyOnly) {
+ CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
+ UpdateStructuredListElement(StructuredList, StructuredIndex,
+ IList->getInit(Index));
+ StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
+ }
+ ++Index;
+ return;
+ }
+ }
+ if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
+ // Check for VLAs; in standard C it would be possible to check this
+ // earlier, but I don't know where clang accepts VLAs (gcc accepts
+ // them in all sorts of strange places).
+ if (!VerifyOnly)
+ SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
+ diag::err_variable_object_no_init)
+ << VAT->getSizeExpr()->getSourceRange();
+ hadError = true;
+ ++Index;
+ ++StructuredIndex;
+ return;
+ }
+
+ // We might know the maximum number of elements in advance.
+ llvm::APSInt maxElements(elementIndex.getBitWidth(),
+ elementIndex.isUnsigned());
+ bool maxElementsKnown = false;
+ if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
+ maxElements = CAT->getSize();
+ elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
+ elementIndex.setIsUnsigned(maxElements.isUnsigned());
+ maxElementsKnown = true;
+ }
+
+ QualType elementType = arrayType->getElementType();
+ while (Index < IList->getNumInits()) {
+ Expr *Init = IList->getInit(Index);
+ if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
+ // If we're not the subobject that matches up with the '{' for
+ // the designator, we shouldn't be handling the
+ // designator. Return immediately.
+ if (!SubobjectIsDesignatorContext)
+ return;
+
+ // Handle this designated initializer. elementIndex will be
+ // updated to be the next array element we'll initialize.
+ if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
+ DeclType, nullptr, &elementIndex, Index,
+ StructuredList, StructuredIndex, true,
+ false)) {
+ hadError = true;
+ continue;
+ }
+
+ if (elementIndex.getBitWidth() > maxElements.getBitWidth())
+ maxElements = maxElements.extend(elementIndex.getBitWidth());
+ else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
+ elementIndex = elementIndex.extend(maxElements.getBitWidth());
+ elementIndex.setIsUnsigned(maxElements.isUnsigned());
+
+ // If the array is of incomplete type, keep track of the number of
+ // elements in the initializer.
+ if (!maxElementsKnown && elementIndex > maxElements)
+ maxElements = elementIndex;
+
+ continue;
+ }
+
+ // If we know the maximum number of elements, and we've already
+ // hit it, stop consuming elements in the initializer list.
+ if (maxElementsKnown && elementIndex == maxElements)
+ break;
+
+ InitializedEntity ElementEntity =
+ InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
+ Entity);
+ // Check this element.
+ CheckSubElementType(ElementEntity, IList, elementType, Index,
+ StructuredList, StructuredIndex);
+ ++elementIndex;
+
+ // If the array is of incomplete type, keep track of the number of
+ // elements in the initializer.
+ if (!maxElementsKnown && elementIndex > maxElements)
+ maxElements = elementIndex;
+ }
+ if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
+ // If this is an incomplete array type, the actual type needs to
+ // be calculated here.
+ llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
+ if (maxElements == Zero) {
+ // Sizing an array implicitly to zero is not allowed by ISO C,
+ // but is supported by GNU.
+ SemaRef.Diag(IList->getLocStart(),
+ diag::ext_typecheck_zero_array_size);
+ }
+
+ DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
+ ArrayType::Normal, 0);
+ }
+ if (!hadError && VerifyOnly) {
+ // Check if there are any members of the array that get value-initialized.
+ // If so, check if doing that is possible.
+ // FIXME: This needs to detect holes left by designated initializers too.
+ if (maxElementsKnown && elementIndex < maxElements)
+ CheckEmptyInitializable(InitializedEntity::InitializeElement(
+ SemaRef.Context, 0, Entity),
+ IList->getLocEnd());
+ }
+}
+
+bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
+ Expr *InitExpr,
+ FieldDecl *Field,
+ bool TopLevelObject) {
+ // Handle GNU flexible array initializers.
+ unsigned FlexArrayDiag;
+ if (isa<InitListExpr>(InitExpr) &&
+ cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
+ // Empty flexible array init always allowed as an extension
+ FlexArrayDiag = diag::ext_flexible_array_init;
+ } else if (SemaRef.getLangOpts().CPlusPlus) {
+ // Disallow flexible array init in C++; it is not required for gcc
+ // compatibility, and it needs work to IRGen correctly in general.
+ FlexArrayDiag = diag::err_flexible_array_init;
+ } else if (!TopLevelObject) {
+ // Disallow flexible array init on non-top-level object
+ FlexArrayDiag = diag::err_flexible_array_init;
+ } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
+ // Disallow flexible array init on anything which is not a variable.
+ FlexArrayDiag = diag::err_flexible_array_init;
+ } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
+ // Disallow flexible array init on local variables.
+ FlexArrayDiag = diag::err_flexible_array_init;
+ } else {
+ // Allow other cases.
+ FlexArrayDiag = diag::ext_flexible_array_init;
+ }
+
+ if (!VerifyOnly) {
+ SemaRef.Diag(InitExpr->getLocStart(),
+ FlexArrayDiag)
+ << InitExpr->getLocStart();
+ SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
+ << Field;
+ }
+
+ return FlexArrayDiag != diag::ext_flexible_array_init;
+}
+
+void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
+ InitListExpr *IList,
+ QualType DeclType,
+ RecordDecl::field_iterator Field,
+ bool SubobjectIsDesignatorContext,
+ unsigned &Index,
+ InitListExpr *StructuredList,
+ unsigned &StructuredIndex,
+ bool TopLevelObject) {
+ RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
+
+ // If the record is invalid, some of it's members are invalid. To avoid
+ // confusion, we forgo checking the intializer for the entire record.
+ if (structDecl->isInvalidDecl()) {
+ // Assume it was supposed to consume a single initializer.
+ ++Index;
+ hadError = true;
+ return;
+ }
+
+ if (DeclType->isUnionType() && IList->getNumInits() == 0) {
+ RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
+
+ // If there's a default initializer, use it.
+ if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
+ if (VerifyOnly)
+ return;
+ for (RecordDecl::field_iterator FieldEnd = RD->field_end();
+ Field != FieldEnd; ++Field) {
+ if (Field->hasInClassInitializer()) {
+ StructuredList->setInitializedFieldInUnion(*Field);
+ // FIXME: Actually build a CXXDefaultInitExpr?
+ return;
+ }
+ }
+ }
+
+ // Value-initialize the first member of the union that isn't an unnamed
+ // bitfield.
+ for (RecordDecl::field_iterator FieldEnd = RD->field_end();
+ Field != FieldEnd; ++Field) {
+ if (!Field->isUnnamedBitfield()) {
+ if (VerifyOnly)
+ CheckEmptyInitializable(
+ InitializedEntity::InitializeMember(*Field, &Entity),
+ IList->getLocEnd());
+ else
+ StructuredList->setInitializedFieldInUnion(*Field);
+ break;
+ }
+ }
+ return;
+ }
+
+ // If structDecl is a forward declaration, this loop won't do
+ // anything except look at designated initializers; That's okay,
+ // because an error should get printed out elsewhere. It might be
+ // worthwhile to skip over the rest of the initializer, though.
+ RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
+ RecordDecl::field_iterator FieldEnd = RD->field_end();
+ bool InitializedSomething = false;
+ bool CheckForMissingFields = true;
+ while (Index < IList->getNumInits()) {
+ Expr *Init = IList->getInit(Index);
+
+ if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
+ // If we're not the subobject that matches up with the '{' for
+ // the designator, we shouldn't be handling the
+ // designator. Return immediately.
+ if (!SubobjectIsDesignatorContext)
+ return;
+
+ // Handle this designated initializer. Field will be updated to
+ // the next field that we'll be initializing.
+ if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
+ DeclType, &Field, nullptr, Index,
+ StructuredList, StructuredIndex,
+ true, TopLevelObject))
+ hadError = true;
+
+ InitializedSomething = true;
+
+ // Disable check for missing fields when designators are used.
+ // This matches gcc behaviour.
+ CheckForMissingFields = false;
+ continue;
+ }
+
+ if (Field == FieldEnd) {
+ // We've run out of fields. We're done.
+ break;
+ }
+
+ // We've already initialized a member of a union. We're done.
+ if (InitializedSomething && DeclType->isUnionType())
+ break;
+
+ // If we've hit the flexible array member at the end, we're done.
+ if (Field->getType()->isIncompleteArrayType())
+ break;
+
+ if (Field->isUnnamedBitfield()) {
+ // Don't initialize unnamed bitfields, e.g. "int : 20;"
+ ++Field;
+ continue;
+ }
+
+ // Make sure we can use this declaration.
+ bool InvalidUse;
+ if (VerifyOnly)
+ InvalidUse = !SemaRef.CanUseDecl(*Field);
+ else
+ InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
+ IList->getInit(Index)->getLocStart());
+ if (InvalidUse) {
+ ++Index;
+ ++Field;
+ hadError = true;
+ continue;
+ }
+
+ InitializedEntity MemberEntity =
+ InitializedEntity::InitializeMember(*Field, &Entity);
+ CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
+ StructuredList, StructuredIndex);
+ InitializedSomething = true;
+
+ if (DeclType->isUnionType() && !VerifyOnly) {
+ // Initialize the first field within the union.
+ StructuredList->setInitializedFieldInUnion(*Field);
+ }
+
+ ++Field;
+ }
+
+ // Emit warnings for missing struct field initializers.
+ if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
+ Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
+ !DeclType->isUnionType()) {
+ // It is possible we have one or more unnamed bitfields remaining.
+ // Find first (if any) named field and emit warning.
+ for (RecordDecl::field_iterator it = Field, end = RD->field_end();
+ it != end; ++it) {
+ if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
+ SemaRef.Diag(IList->getSourceRange().getEnd(),
+ diag::warn_missing_field_initializers) << *it;
+ break;
+ }
+ }
+ }
+
+ // Check that any remaining fields can be value-initialized.
+ if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
+ !Field->getType()->isIncompleteArrayType()) {
+ // FIXME: Should check for holes left by designated initializers too.
+ for (; Field != FieldEnd && !hadError; ++Field) {
+ if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
+ CheckEmptyInitializable(
+ InitializedEntity::InitializeMember(*Field, &Entity),
+ IList->getLocEnd());
+ }
+ }
+
+ if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
+ Index >= IList->getNumInits())
+ return;
+
+ if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
+ TopLevelObject)) {
+ hadError = true;
+ ++Index;
+ return;
+ }
+
+ InitializedEntity MemberEntity =
+ InitializedEntity::InitializeMember(*Field, &Entity);
+
+ if (isa<InitListExpr>(IList->getInit(Index)))
+ CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
+ StructuredList, StructuredIndex);
+ else
+ CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
+ StructuredList, StructuredIndex);
+}
+
+/// \brief Expand a field designator that refers to a member of an
+/// anonymous struct or union into a series of field designators that
+/// refers to the field within the appropriate subobject.
+///
+static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
+ DesignatedInitExpr *DIE,
+ unsigned DesigIdx,
+ IndirectFieldDecl *IndirectField) {
+ typedef DesignatedInitExpr::Designator Designator;
+
+ // Build the replacement designators.
+ SmallVector<Designator, 4> Replacements;
+ for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
+ PE = IndirectField->chain_end(); PI != PE; ++PI) {
+ if (PI + 1 == PE)
+ Replacements.push_back(Designator((IdentifierInfo *)nullptr,
+ DIE->getDesignator(DesigIdx)->getDotLoc(),
+ DIE->getDesignator(DesigIdx)->getFieldLoc()));
+ else
+ Replacements.push_back(Designator((IdentifierInfo *)nullptr,
+ SourceLocation(), SourceLocation()));
+ assert(isa<FieldDecl>(*PI));
+ Replacements.back().setField(cast<FieldDecl>(*PI));
+ }
+
+ // Expand the current designator into the set of replacement
+ // designators, so we have a full subobject path down to where the
+ // member of the anonymous struct/union is actually stored.
+ DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
+ &Replacements[0] + Replacements.size());
+}
+
+static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
+ DesignatedInitExpr *DIE) {
+ unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
+ SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
+ for (unsigned I = 0; I < NumIndexExprs; ++I)
+ IndexExprs[I] = DIE->getSubExpr(I + 1);
+ return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(),
+ DIE->size(), IndexExprs,
+ DIE->getEqualOrColonLoc(),
+ DIE->usesGNUSyntax(), DIE->getInit());
+}
+
+namespace {
+
+// Callback to only accept typo corrections that are for field members of
+// the given struct or union.
+class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
+ public:
+ explicit FieldInitializerValidatorCCC(RecordDecl *RD)
+ : Record(RD) {}
+
+ bool ValidateCandidate(const TypoCorrection &candidate) override {
+ FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
+ return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
+ }
+
+ private:
+ RecordDecl *Record;
+};
+
+}
+
+/// @brief Check the well-formedness of a C99 designated initializer.
+///
+/// Determines whether the designated initializer @p DIE, which
+/// resides at the given @p Index within the initializer list @p
+/// IList, is well-formed for a current object of type @p DeclType
+/// (C99 6.7.8). The actual subobject that this designator refers to
+/// within the current subobject is returned in either
+/// @p NextField or @p NextElementIndex (whichever is appropriate).
+///
+/// @param IList The initializer list in which this designated
+/// initializer occurs.
+///
+/// @param DIE The designated initializer expression.
+///
+/// @param DesigIdx The index of the current designator.
+///
+/// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
+/// into which the designation in @p DIE should refer.
+///
+/// @param NextField If non-NULL and the first designator in @p DIE is
+/// a field, this will be set to the field declaration corresponding
+/// to the field named by the designator.
+///
+/// @param NextElementIndex If non-NULL and the first designator in @p
+/// DIE is an array designator or GNU array-range designator, this
+/// will be set to the last index initialized by this designator.
+///
+/// @param Index Index into @p IList where the designated initializer
+/// @p DIE occurs.
+///
+/// @param StructuredList The initializer list expression that
+/// describes all of the subobject initializers in the order they'll
+/// actually be initialized.
+///
+/// @returns true if there was an error, false otherwise.
+bool
+InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
+ InitListExpr *IList,
+ DesignatedInitExpr *DIE,
+ unsigned DesigIdx,
+ QualType &CurrentObjectType,
+ RecordDecl::field_iterator *NextField,
+ llvm::APSInt *NextElementIndex,
+ unsigned &Index,
+ InitListExpr *StructuredList,
+ unsigned &StructuredIndex,
+ bool FinishSubobjectInit,
+ bool TopLevelObject) {
+ if (DesigIdx == DIE->size()) {
+ // Check the actual initialization for the designated object type.
+ bool prevHadError = hadError;
+
+ // Temporarily remove the designator expression from the
+ // initializer list that the child calls see, so that we don't try
+ // to re-process the designator.
+ unsigned OldIndex = Index;
+ IList->setInit(OldIndex, DIE->getInit());
+
+ CheckSubElementType(Entity, IList, CurrentObjectType, Index,
+ StructuredList, StructuredIndex);
+
+ // Restore the designated initializer expression in the syntactic
+ // form of the initializer list.
+ if (IList->getInit(OldIndex) != DIE->getInit())
+ DIE->setInit(IList->getInit(OldIndex));
+ IList->setInit(OldIndex, DIE);
+
+ return hadError && !prevHadError;
+ }
+
+ DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
+ bool IsFirstDesignator = (DesigIdx == 0);
+ if (!VerifyOnly) {
+ assert((IsFirstDesignator || StructuredList) &&
+ "Need a non-designated initializer list to start from");
+
+ // Determine the structural initializer list that corresponds to the
+ // current subobject.
+ StructuredList = IsFirstDesignator? SyntacticToSemantic.lookup(IList)
+ : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
+ StructuredList, StructuredIndex,
+ SourceRange(D->getLocStart(),
+ DIE->getLocEnd()));
+ assert(StructuredList && "Expected a structured initializer list");
+ }
+
+ if (D->isFieldDesignator()) {
+ // C99 6.7.8p7:
+ //
+ // If a designator has the form
+ //
+ // . identifier
+ //
+ // then the current object (defined below) shall have
+ // structure or union type and the identifier shall be the
+ // name of a member of that type.
+ const RecordType *RT = CurrentObjectType->getAs<RecordType>();
+ if (!RT) {
+ SourceLocation Loc = D->getDotLoc();
+ if (Loc.isInvalid())
+ Loc = D->getFieldLoc();
+ if (!VerifyOnly)
+ SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
+ << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
+ ++Index;
+ return true;
+ }
+
+ FieldDecl *KnownField = D->getField();
+ if (!KnownField) {
+ IdentifierInfo *FieldName = D->getFieldName();
+ DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
+ for (NamedDecl *ND : Lookup) {
+ if (auto *FD = dyn_cast<FieldDecl>(ND)) {
+ KnownField = FD;
+ break;
+ }
+ if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
+ // In verify mode, don't modify the original.
+ if (VerifyOnly)
+ DIE = CloneDesignatedInitExpr(SemaRef, DIE);
+ ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
+ D = DIE->getDesignator(DesigIdx);
+ KnownField = cast<FieldDecl>(*IFD->chain_begin());
+ break;
+ }
+ }
+ if (!KnownField) {
+ if (VerifyOnly) {
+ ++Index;
+ return true; // No typo correction when just trying this out.
+ }
+
+ // Name lookup found something, but it wasn't a field.
+ if (!Lookup.empty()) {
+ SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
+ << FieldName;
+ SemaRef.Diag(Lookup.front()->getLocation(),
+ diag::note_field_designator_found);
+ ++Index;
+ return true;
+ }
+
+ // Name lookup didn't find anything.
+ // Determine whether this was a typo for another field name.
+ if (TypoCorrection Corrected = SemaRef.CorrectTypo(
+ DeclarationNameInfo(FieldName, D->getFieldLoc()),
+ Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr,
+ llvm::make_unique<FieldInitializerValidatorCCC>(RT->getDecl()),
+ Sema::CTK_ErrorRecovery, RT->getDecl())) {
+ SemaRef.diagnoseTypo(
+ Corrected,
+ SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
+ << FieldName << CurrentObjectType);
+ KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
+ hadError = true;
+ } else {
+ // Typo correction didn't find anything.
+ SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
+ << FieldName << CurrentObjectType;
+ ++Index;
+ return true;
+ }
+ }
+ }
+
+ unsigned FieldIndex = 0;
+ for (auto *FI : RT->getDecl()->fields()) {
+ if (FI->isUnnamedBitfield())
+ continue;
+ if (KnownField == FI)
+ break;
+ ++FieldIndex;
+ }
+
+ RecordDecl::field_iterator Field =
+ RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
+
+ // All of the fields of a union are located at the same place in
+ // the initializer list.
+ if (RT->getDecl()->isUnion()) {
+ FieldIndex = 0;
+ if (!VerifyOnly) {
+ FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
+ if (CurrentField && CurrentField != *Field) {
+ assert(StructuredList->getNumInits() == 1
+ && "A union should never have more than one initializer!");
+
+ // we're about to throw away an initializer, emit warning
+ SemaRef.Diag(D->getFieldLoc(),
+ diag::warn_initializer_overrides)
+ << D->getSourceRange();
+ Expr *ExistingInit = StructuredList->getInit(0);
+ SemaRef.Diag(ExistingInit->getLocStart(),
+ diag::note_previous_initializer)
+ << /*FIXME:has side effects=*/0
+ << ExistingInit->getSourceRange();
+
+ // remove existing initializer
+ StructuredList->resizeInits(SemaRef.Context, 0);
+ StructuredList->setInitializedFieldInUnion(nullptr);
+ }
+
+ StructuredList->setInitializedFieldInUnion(*Field);
+ }
+ }
+
+ // Make sure we can use this declaration.
+ bool InvalidUse;
+ if (VerifyOnly)
+ InvalidUse = !SemaRef.CanUseDecl(*Field);
+ else
+ InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
+ if (InvalidUse) {
+ ++Index;
+ return true;
+ }
+
+ if (!VerifyOnly) {
+ // Update the designator with the field declaration.
+ D->setField(*Field);
+
+ // Make sure that our non-designated initializer list has space
+ // for a subobject corresponding to this field.
+ if (FieldIndex >= StructuredList->getNumInits())
+ StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
+ }
+
+ // This designator names a flexible array member.
+ if (Field->getType()->isIncompleteArrayType()) {
+ bool Invalid = false;
+ if ((DesigIdx + 1) != DIE->size()) {
+ // We can't designate an object within the flexible array
+ // member (because GCC doesn't allow it).
+ if (!VerifyOnly) {
+ DesignatedInitExpr::Designator *NextD
+ = DIE->getDesignator(DesigIdx + 1);
+ SemaRef.Diag(NextD->getLocStart(),
+ diag::err_designator_into_flexible_array_member)
+ << SourceRange(NextD->getLocStart(),
+ DIE->getLocEnd());
+ SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
+ << *Field;
+ }
+ Invalid = true;
+ }
+
+ if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
+ !isa<StringLiteral>(DIE->getInit())) {
+ // The initializer is not an initializer list.
+ if (!VerifyOnly) {
+ SemaRef.Diag(DIE->getInit()->getLocStart(),
+ diag::err_flexible_array_init_needs_braces)
+ << DIE->getInit()->getSourceRange();
+ SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
+ << *Field;
+ }
+ Invalid = true;
+ }
+
+ // Check GNU flexible array initializer.
+ if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
+ TopLevelObject))
+ Invalid = true;
+
+ if (Invalid) {
+ ++Index;
+ return true;
+ }
+
+ // Initialize the array.
+ bool prevHadError = hadError;
+ unsigned newStructuredIndex = FieldIndex;
+ unsigned OldIndex = Index;
+ IList->setInit(Index, DIE->getInit());
+
+ InitializedEntity MemberEntity =
+ InitializedEntity::InitializeMember(*Field, &Entity);
+ CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
+ StructuredList, newStructuredIndex);
+
+ IList->setInit(OldIndex, DIE);
+ if (hadError && !prevHadError) {
+ ++Field;
+ ++FieldIndex;
+ if (NextField)
+ *NextField = Field;
+ StructuredIndex = FieldIndex;
+ return true;
+ }
+ } else {
+ // Recurse to check later designated subobjects.
+ QualType FieldType = Field->getType();
+ unsigned newStructuredIndex = FieldIndex;
+
+ InitializedEntity MemberEntity =
+ InitializedEntity::InitializeMember(*Field, &Entity);
+ if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
+ FieldType, nullptr, nullptr, Index,
+ StructuredList, newStructuredIndex,
+ true, false))
+ return true;
+ }
+
+ // Find the position of the next field to be initialized in this
+ // subobject.
+ ++Field;
+ ++FieldIndex;
+
+ // If this the first designator, our caller will continue checking
+ // the rest of this struct/class/union subobject.
+ if (IsFirstDesignator) {
+ if (NextField)
+ *NextField = Field;
+ StructuredIndex = FieldIndex;
+ return false;
+ }
+
+ if (!FinishSubobjectInit)
+ return false;
+
+ // We've already initialized something in the union; we're done.
+ if (RT->getDecl()->isUnion())
+ return hadError;
+
+ // Check the remaining fields within this class/struct/union subobject.
+ bool prevHadError = hadError;
+
+ CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
+ StructuredList, FieldIndex);
+ return hadError && !prevHadError;
+ }
+
+ // C99 6.7.8p6:
+ //
+ // If a designator has the form
+ //
+ // [ constant-expression ]
+ //
+ // then the current object (defined below) shall have array
+ // type and the expression shall be an integer constant
+ // expression. If the array is of unknown size, any
+ // nonnegative value is valid.
+ //
+ // Additionally, cope with the GNU extension that permits
+ // designators of the form
+ //
+ // [ constant-expression ... constant-expression ]
+ const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
+ if (!AT) {
+ if (!VerifyOnly)
+ SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
+ << CurrentObjectType;
+ ++Index;
+ return true;
+ }
+
+ Expr *IndexExpr = nullptr;
+ llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
+ if (D->isArrayDesignator()) {
+ IndexExpr = DIE->getArrayIndex(*D);
+ DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
+ DesignatedEndIndex = DesignatedStartIndex;
+ } else {
+ assert(D->isArrayRangeDesignator() && "Need array-range designator");
+
+ DesignatedStartIndex =
+ DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
+ DesignatedEndIndex =
+ DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
+ IndexExpr = DIE->getArrayRangeEnd(*D);
+
+ // Codegen can't handle evaluating array range designators that have side
+ // effects, because we replicate the AST value for each initialized element.
+ // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
+ // elements with something that has a side effect, so codegen can emit an
+ // "error unsupported" error instead of miscompiling the app.
+ if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
+ DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
+ FullyStructuredList->sawArrayRangeDesignator();
+ }
+
+ if (isa<ConstantArrayType>(AT)) {
+ llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
+ DesignatedStartIndex
+ = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
+ DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
+ DesignatedEndIndex
+ = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
+ DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
+ if (DesignatedEndIndex >= MaxElements) {
+ if (!VerifyOnly)
+ SemaRef.Diag(IndexExpr->getLocStart(),
+ diag::err_array_designator_too_large)
+ << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
+ << IndexExpr->getSourceRange();
+ ++Index;
+ return true;
+ }
+ } else {
+ // Make sure the bit-widths and signedness match.
+ if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
+ DesignatedEndIndex
+ = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
+ else if (DesignatedStartIndex.getBitWidth() <
+ DesignatedEndIndex.getBitWidth())
+ DesignatedStartIndex
+ = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
+ DesignatedStartIndex.setIsUnsigned(true);
+ DesignatedEndIndex.setIsUnsigned(true);
+ }
+
+ if (!VerifyOnly && StructuredList->isStringLiteralInit()) {
+ // We're modifying a string literal init; we have to decompose the string
+ // so we can modify the individual characters.
+ ASTContext &Context = SemaRef.Context;
+ Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
+
+ // Compute the character type
+ QualType CharTy = AT->getElementType();
+
+ // Compute the type of the integer literals.
+ QualType PromotedCharTy = CharTy;
+ if (CharTy->isPromotableIntegerType())
+ PromotedCharTy = Context.getPromotedIntegerType(CharTy);
+ unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
+
+ if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
+ // Get the length of the string.
+ uint64_t StrLen = SL->getLength();
+ if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
+ StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
+ StructuredList->resizeInits(Context, StrLen);
+
+ // Build a literal for each character in the string, and put them into
+ // the init list.
+ for (unsigned i = 0, e = StrLen; i != e; ++i) {
+ llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
+ Expr *Init = new (Context) IntegerLiteral(
+ Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
+ if (CharTy != PromotedCharTy)
+ Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
+ Init, nullptr, VK_RValue);
+ StructuredList->updateInit(Context, i, Init);
+ }
+ } else {
+ ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
+ std::string Str;
+ Context.getObjCEncodingForType(E->getEncodedType(), Str);
+
+ // Get the length of the string.
+ uint64_t StrLen = Str.size();
+ if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
+ StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
+ StructuredList->resizeInits(Context, StrLen);
+
+ // Build a literal for each character in the string, and put them into
+ // the init list.
+ for (unsigned i = 0, e = StrLen; i != e; ++i) {
+ llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
+ Expr *Init = new (Context) IntegerLiteral(
+ Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
+ if (CharTy != PromotedCharTy)
+ Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
+ Init, nullptr, VK_RValue);
+ StructuredList->updateInit(Context, i, Init);
+ }
+ }
+ }
+
+ // Make sure that our non-designated initializer list has space
+ // for a subobject corresponding to this array element.
+ if (!VerifyOnly &&
+ DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
+ StructuredList->resizeInits(SemaRef.Context,
+ DesignatedEndIndex.getZExtValue() + 1);
+
+ // Repeatedly perform subobject initializations in the range
+ // [DesignatedStartIndex, DesignatedEndIndex].
+
+ // Move to the next designator
+ unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
+ unsigned OldIndex = Index;
+
+ InitializedEntity ElementEntity =
+ InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
+
+ while (DesignatedStartIndex <= DesignatedEndIndex) {
+ // Recurse to check later designated subobjects.
+ QualType ElementType = AT->getElementType();
+ Index = OldIndex;
+
+ ElementEntity.setElementIndex(ElementIndex);
+ if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
+ ElementType, nullptr, nullptr, Index,
+ StructuredList, ElementIndex,
+ (DesignatedStartIndex == DesignatedEndIndex),
+ false))
+ return true;
+
+ // Move to the next index in the array that we'll be initializing.
+ ++DesignatedStartIndex;
+ ElementIndex = DesignatedStartIndex.getZExtValue();
+ }
+
+ // If this the first designator, our caller will continue checking
+ // the rest of this array subobject.
+ if (IsFirstDesignator) {
+ if (NextElementIndex)
+ *NextElementIndex = DesignatedStartIndex;
+ StructuredIndex = ElementIndex;
+ return false;
+ }
+
+ if (!FinishSubobjectInit)
+ return false;
+
+ // Check the remaining elements within this array subobject.
+ bool prevHadError = hadError;
+ CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
+ /*SubobjectIsDesignatorContext=*/false, Index,
+ StructuredList, ElementIndex);
+ return hadError && !prevHadError;
+}
+
+// Get the structured initializer list for a subobject of type
+// @p CurrentObjectType.
+InitListExpr *
+InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
+ QualType CurrentObjectType,
+ InitListExpr *StructuredList,
+ unsigned StructuredIndex,
+ SourceRange InitRange) {
+ if (VerifyOnly)
+ return nullptr; // No structured list in verification-only mode.
+ Expr *ExistingInit = nullptr;
+ if (!StructuredList)
+ ExistingInit = SyntacticToSemantic.lookup(IList);
+ else if (StructuredIndex < StructuredList->getNumInits())
+ ExistingInit = StructuredList->getInit(StructuredIndex);
+
+ if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
+ return Result;
+
+ if (ExistingInit) {
+ // We are creating an initializer list that initializes the
+ // subobjects of the current object, but there was already an
+ // initialization that completely initialized the current
+ // subobject, e.g., by a compound literal:
+ //
+ // struct X { int a, b; };
+ // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
+ //
+ // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
+ // designated initializer re-initializes the whole
+ // subobject [0], overwriting previous initializers.
+ SemaRef.Diag(InitRange.getBegin(),
+ diag::warn_subobject_initializer_overrides)
+ << InitRange;
+ SemaRef.Diag(ExistingInit->getLocStart(),
+ diag::note_previous_initializer)
+ << /*FIXME:has side effects=*/0
+ << ExistingInit->getSourceRange();
+ }
+
+ InitListExpr *Result
+ = new (SemaRef.Context) InitListExpr(SemaRef.Context,
+ InitRange.getBegin(), None,
+ InitRange.getEnd());
+
+ QualType ResultType = CurrentObjectType;
+ if (!ResultType->isArrayType())
+ ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
+ Result->setType(ResultType);
+
+ // Pre-allocate storage for the structured initializer list.
+ unsigned NumElements = 0;
+ unsigned NumInits = 0;
+ bool GotNumInits = false;
+ if (!StructuredList) {
+ NumInits = IList->getNumInits();
+ GotNumInits = true;
+ } else if (Index < IList->getNumInits()) {
+ if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
+ NumInits = SubList->getNumInits();
+ GotNumInits = true;
+ }
+ }
+
+ if (const ArrayType *AType
+ = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
+ if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
+ NumElements = CAType->getSize().getZExtValue();
+ // Simple heuristic so that we don't allocate a very large
+ // initializer with many empty entries at the end.
+ if (GotNumInits && NumElements > NumInits)
+ NumElements = 0;
+ }
+ } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
+ NumElements = VType->getNumElements();
+ else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
+ RecordDecl *RDecl = RType->getDecl();
+ if (RDecl->isUnion())
+ NumElements = 1;
+ else
+ NumElements = std::distance(RDecl->field_begin(), RDecl->field_end());
+ }
+
+ Result->reserveInits(SemaRef.Context, NumElements);
+
+ // Link this new initializer list into the structured initializer
+ // lists.
+ if (StructuredList)
+ StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
+ else {
+ Result->setSyntacticForm(IList);
+ SyntacticToSemantic[IList] = Result;
+ }
+
+ return Result;
+}
+
+/// Update the initializer at index @p StructuredIndex within the
+/// structured initializer list to the value @p expr.
+void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
+ unsigned &StructuredIndex,
+ Expr *expr) {
+ // No structured initializer list to update
+ if (!StructuredList)
+ return;
+
+ if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
+ StructuredIndex, expr)) {
+ // This initializer overwrites a previous initializer. Warn.
+ SemaRef.Diag(expr->getLocStart(),
+ diag::warn_initializer_overrides)
+ << expr->getSourceRange();
+ SemaRef.Diag(PrevInit->getLocStart(),
+ diag::note_previous_initializer)
+ << /*FIXME:has side effects=*/0
+ << PrevInit->getSourceRange();
+ }
+
+ ++StructuredIndex;
+}
+
+/// Check that the given Index expression is a valid array designator
+/// value. This is essentially just a wrapper around
+/// VerifyIntegerConstantExpression that also checks for negative values
+/// and produces a reasonable diagnostic if there is a
+/// failure. Returns the index expression, possibly with an implicit cast
+/// added, on success. If everything went okay, Value will receive the
+/// value of the constant expression.
+static ExprResult
+CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
+ SourceLocation Loc = Index->getLocStart();
+
+ // Make sure this is an integer constant expression.
+ ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
+ if (Result.isInvalid())
+ return Result;
+
+ if (Value.isSigned() && Value.isNegative())
+ return S.Diag(Loc, diag::err_array_designator_negative)
+ << Value.toString(10) << Index->getSourceRange();
+
+ Value.setIsUnsigned(true);
+ return Result;
+}
+
+ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
+ SourceLocation Loc,
+ bool GNUSyntax,
+ ExprResult Init) {
+ typedef DesignatedInitExpr::Designator ASTDesignator;
+
+ bool Invalid = false;
+ SmallVector<ASTDesignator, 32> Designators;
+ SmallVector<Expr *, 32> InitExpressions;
+
+ // Build designators and check array designator expressions.
+ for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
+ const Designator &D = Desig.getDesignator(Idx);
+ switch (D.getKind()) {
+ case Designator::FieldDesignator:
+ Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
+ D.getFieldLoc()));
+ break;
+
+ case Designator::ArrayDesignator: {
+ Expr *Index = static_cast<Expr *>(D.getArrayIndex());
+ llvm::APSInt IndexValue;
+ if (!Index->isTypeDependent() && !Index->isValueDependent())
+ Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
+ if (!Index)
+ Invalid = true;
+ else {
+ Designators.push_back(ASTDesignator(InitExpressions.size(),
+ D.getLBracketLoc(),
+ D.getRBracketLoc()));
+ InitExpressions.push_back(Index);
+ }
+ break;
+ }
+
+ case Designator::ArrayRangeDesignator: {
+ Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
+ Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
+ llvm::APSInt StartValue;
+ llvm::APSInt EndValue;
+ bool StartDependent = StartIndex->isTypeDependent() ||
+ StartIndex->isValueDependent();
+ bool EndDependent = EndIndex->isTypeDependent() ||
+ EndIndex->isValueDependent();
+ if (!StartDependent)
+ StartIndex =
+ CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
+ if (!EndDependent)
+ EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
+
+ if (!StartIndex || !EndIndex)
+ Invalid = true;
+ else {
+ // Make sure we're comparing values with the same bit width.
+ if (StartDependent || EndDependent) {
+ // Nothing to compute.
+ } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
+ EndValue = EndValue.extend(StartValue.getBitWidth());
+ else if (StartValue.getBitWidth() < EndValue.getBitWidth())
+ StartValue = StartValue.extend(EndValue.getBitWidth());
+
+ if (!StartDependent && !EndDependent && EndValue < StartValue) {
+ Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
+ << StartValue.toString(10) << EndValue.toString(10)
+ << StartIndex->getSourceRange() << EndIndex->getSourceRange();
+ Invalid = true;
+ } else {
+ Designators.push_back(ASTDesignator(InitExpressions.size(),
+ D.getLBracketLoc(),
+ D.getEllipsisLoc(),
+ D.getRBracketLoc()));
+ InitExpressions.push_back(StartIndex);
+ InitExpressions.push_back(EndIndex);
+ }
+ }
+ break;
+ }
+ }
+ }
+
+ if (Invalid || Init.isInvalid())
+ return ExprError();
+
+ // Clear out the expressions within the designation.
+ Desig.ClearExprs(*this);
+
+ DesignatedInitExpr *DIE
+ = DesignatedInitExpr::Create(Context,
+ Designators.data(), Designators.size(),
+ InitExpressions, Loc, GNUSyntax,
+ Init.getAs<Expr>());
+
+ if (!getLangOpts().C99)
+ Diag(DIE->getLocStart(), diag::ext_designated_init)
+ << DIE->getSourceRange();
+
+ return DIE;
+}
+
+//===----------------------------------------------------------------------===//
+// Initialization entity
+//===----------------------------------------------------------------------===//
+
+InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
+ const InitializedEntity &Parent)
+ : Parent(&Parent), Index(Index)
+{
+ if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
+ Kind = EK_ArrayElement;
+ Type = AT->getElementType();
+ } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
+ Kind = EK_VectorElement;
+ Type = VT->getElementType();
+ } else {
+ const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
+ assert(CT && "Unexpected type");
+ Kind = EK_ComplexElement;
+ Type = CT->getElementType();
+ }
+}
+
+InitializedEntity
+InitializedEntity::InitializeBase(ASTContext &Context,
+ const CXXBaseSpecifier *Base,
+ bool IsInheritedVirtualBase) {
+ InitializedEntity Result;
+ Result.Kind = EK_Base;
+ Result.Parent = nullptr;
+ Result.Base = reinterpret_cast<uintptr_t>(Base);
+ if (IsInheritedVirtualBase)
+ Result.Base |= 0x01;
+
+ Result.Type = Base->getType();
+ return Result;
+}
+
+DeclarationName InitializedEntity::getName() const {
+ switch (getKind()) {
+ case EK_Parameter:
+ case EK_Parameter_CF_Audited: {
+ ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
+ return (D ? D->getDeclName() : DeclarationName());
+ }
+
+ case EK_Variable:
+ case EK_Member:
+ return VariableOrMember->getDeclName();
+
+ case EK_LambdaCapture:
+ return DeclarationName(Capture.VarID);
+
+ case EK_Result:
+ case EK_Exception:
+ case EK_New:
+ case EK_Temporary:
+ case EK_Base:
+ case EK_Delegating:
+ case EK_ArrayElement:
+ case EK_VectorElement:
+ case EK_ComplexElement:
+ case EK_BlockElement:
+ case EK_CompoundLiteralInit:
+ case EK_RelatedResult:
+ return DeclarationName();
+ }
+
+ llvm_unreachable("Invalid EntityKind!");
+}
+
+DeclaratorDecl *InitializedEntity::getDecl() const {
+ switch (getKind()) {
+ case EK_Variable:
+ case EK_Member:
+ return VariableOrMember;
+
+ case EK_Parameter:
+ case EK_Parameter_CF_Audited:
+ return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
+
+ case EK_Result:
+ case EK_Exception:
+ case EK_New:
+ case EK_Temporary:
+ case EK_Base:
+ case EK_Delegating:
+ case EK_ArrayElement:
+ case EK_VectorElement:
+ case EK_ComplexElement:
+ case EK_BlockElement:
+ case EK_LambdaCapture:
+ case EK_CompoundLiteralInit:
+ case EK_RelatedResult:
+ return nullptr;
+ }
+
+ llvm_unreachable("Invalid EntityKind!");
+}
+
+bool InitializedEntity::allowsNRVO() const {
+ switch (getKind()) {
+ case EK_Result:
+ case EK_Exception:
+ return LocAndNRVO.NRVO;
+
+ case EK_Variable:
+ case EK_Parameter:
+ case EK_Parameter_CF_Audited:
+ case EK_Member:
+ case EK_New:
+ case EK_Temporary:
+ case EK_CompoundLiteralInit:
+ case EK_Base:
+ case EK_Delegating:
+ case EK_ArrayElement:
+ case EK_VectorElement:
+ case EK_ComplexElement:
+ case EK_BlockElement:
+ case EK_LambdaCapture:
+ case EK_RelatedResult:
+ break;
+ }
+
+ return false;
+}
+
+unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
+ assert(getParent() != this);
+ unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
+ for (unsigned I = 0; I != Depth; ++I)
+ OS << "`-";
+
+ switch (getKind()) {
+ case EK_Variable: OS << "Variable"; break;
+ case EK_Parameter: OS << "Parameter"; break;
+ case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
+ break;
+ case EK_Result: OS << "Result"; break;
+ case EK_Exception: OS << "Exception"; break;
+ case EK_Member: OS << "Member"; break;
+ case EK_New: OS << "New"; break;
+ case EK_Temporary: OS << "Temporary"; break;
+ case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
+ case EK_RelatedResult: OS << "RelatedResult"; break;
+ case EK_Base: OS << "Base"; break;
+ case EK_Delegating: OS << "Delegating"; break;
+ case EK_ArrayElement: OS << "ArrayElement " << Index; break;
+ case EK_VectorElement: OS << "VectorElement " << Index; break;
+ case EK_ComplexElement: OS << "ComplexElement " << Index; break;
+ case EK_BlockElement: OS << "Block"; break;
+ case EK_LambdaCapture:
+ OS << "LambdaCapture ";
+ OS << DeclarationName(Capture.VarID);
+ break;
+ }
+
+ if (Decl *D = getDecl()) {
+ OS << " ";
+ cast<NamedDecl>(D)->printQualifiedName(OS);
+ }
+
+ OS << " '" << getType().getAsString() << "'\n";
+
+ return Depth + 1;
+}
+
+void InitializedEntity::dump() const {
+ dumpImpl(llvm::errs());
+}
+
+//===----------------------------------------------------------------------===//
+// Initialization sequence
+//===----------------------------------------------------------------------===//
+
+void InitializationSequence::Step::Destroy() {
+ switch (Kind) {
+ case SK_ResolveAddressOfOverloadedFunction:
+ case SK_CastDerivedToBaseRValue:
+ case SK_CastDerivedToBaseXValue:
+ case SK_CastDerivedToBaseLValue:
+ case SK_BindReference:
+ case SK_BindReferenceToTemporary:
+ case SK_ExtraneousCopyToTemporary:
+ case SK_UserConversion:
+ case SK_QualificationConversionRValue:
+ case SK_QualificationConversionXValue:
+ case SK_QualificationConversionLValue:
+ case SK_AtomicConversion:
+ case SK_LValueToRValue:
+ case SK_ListInitialization:
+ case SK_UnwrapInitList:
+ case SK_RewrapInitList:
+ case SK_ConstructorInitialization:
+ case SK_ConstructorInitializationFromList:
+ case SK_ZeroInitialization:
+ case SK_CAssignment:
+ case SK_StringInit:
+ case SK_ObjCObjectConversion:
+ case SK_ArrayInit:
+ case SK_ParenthesizedArrayInit:
+ case SK_PassByIndirectCopyRestore:
+ case SK_PassByIndirectRestore:
+ case SK_ProduceObjCObject:
+ case SK_StdInitializerList:
+ case SK_StdInitializerListConstructorCall:
+ case SK_OCLSamplerInit:
+ case SK_OCLZeroEvent:
+ break;
+
+ case SK_ConversionSequence:
+ case SK_ConversionSequenceNoNarrowing:
+ delete ICS;
+ }
+}
+
+bool InitializationSequence::isDirectReferenceBinding() const {
+ return !Steps.empty() && Steps.back().Kind == SK_BindReference;
+}
+
+bool InitializationSequence::isAmbiguous() const {
+ if (!Failed())
+ return false;
+
+ switch (getFailureKind()) {
+ case FK_TooManyInitsForReference:
+ case FK_ArrayNeedsInitList:
+ case FK_ArrayNeedsInitListOrStringLiteral:
+ case FK_ArrayNeedsInitListOrWideStringLiteral:
+ case FK_NarrowStringIntoWideCharArray:
+ case FK_WideStringIntoCharArray:
+ case FK_IncompatWideStringIntoWideChar:
+ case FK_AddressOfOverloadFailed: // FIXME: Could do better
+ case FK_NonConstLValueReferenceBindingToTemporary:
+ case FK_NonConstLValueReferenceBindingToUnrelated:
+ case FK_RValueReferenceBindingToLValue:
+ case FK_ReferenceInitDropsQualifiers:
+ case FK_ReferenceInitFailed:
+ case FK_ConversionFailed:
+ case FK_ConversionFromPropertyFailed:
+ case FK_TooManyInitsForScalar:
+ case FK_ReferenceBindingToInitList:
+ case FK_InitListBadDestinationType:
+ case FK_DefaultInitOfConst:
+ case FK_Incomplete:
+ case FK_ArrayTypeMismatch:
+ case FK_NonConstantArrayInit:
+ case FK_ListInitializationFailed:
+ case FK_VariableLengthArrayHasInitializer:
+ case FK_PlaceholderType:
+ case FK_ExplicitConstructor:
+ return false;
+
+ case FK_ReferenceInitOverloadFailed:
+ case FK_UserConversionOverloadFailed:
+ case FK_ConstructorOverloadFailed:
+ case FK_ListConstructorOverloadFailed:
+ return FailedOverloadResult == OR_Ambiguous;
+ }
+
+ llvm_unreachable("Invalid EntityKind!");
+}
+
+bool InitializationSequence::isConstructorInitialization() const {
+ return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
+}
+
+void
+InitializationSequence
+::AddAddressOverloadResolutionStep(FunctionDecl *Function,
+ DeclAccessPair Found,
+ bool HadMultipleCandidates) {
+ Step S;
+ S.Kind = SK_ResolveAddressOfOverloadedFunction;
+ S.Type = Function->getType();
+ S.Function.HadMultipleCandidates = HadMultipleCandidates;
+ S.Function.Function = Function;
+ S.Function.FoundDecl = Found;
+ Steps.push_back(S);
+}
+
+void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
+ ExprValueKind VK) {
+ Step S;
+ switch (VK) {
+ case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
+ case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
+ case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
+ }
+ S.Type = BaseType;
+ Steps.push_back(S);
+}
+
+void InitializationSequence::AddReferenceBindingStep(QualType T,
+ bool BindingTemporary) {
+ Step S;
+ S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
+ S.Type = T;
+ Steps.push_back(S);
+}
+
+void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
+ Step S;
+ S.Kind = SK_ExtraneousCopyToTemporary;
+ S.Type = T;
+ Steps.push_back(S);
+}
+
+void
+InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
+ DeclAccessPair FoundDecl,
+ QualType T,
+ bool HadMultipleCandidates) {
+ Step S;
+ S.Kind = SK_UserConversion;
+ S.Type = T;
+ S.Function.HadMultipleCandidates = HadMultipleCandidates;
+ S.Function.Function = Function;
+ S.Function.FoundDecl = FoundDecl;
+ Steps.push_back(S);
+}
+
+void InitializationSequence::AddQualificationConversionStep(QualType Ty,
+ ExprValueKind VK) {
+ Step S;
+ S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
+ switch (VK) {
+ case VK_RValue:
+ S.Kind = SK_QualificationConversionRValue;
+ break;
+ case VK_XValue:
+ S.Kind = SK_QualificationConversionXValue;
+ break;
+ case VK_LValue:
+ S.Kind = SK_QualificationConversionLValue;
+ break;
+ }
+ S.Type = Ty;
+ Steps.push_back(S);
+}
+
+void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
+ Step S;
+ S.Kind = SK_AtomicConversion;
+ S.Type = Ty;
+ Steps.push_back(S);
+}
+
+void InitializationSequence::AddLValueToRValueStep(QualType Ty) {
+ assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers");
+
+ Step S;
+ S.Kind = SK_LValueToRValue;
+ S.Type = Ty;
+ Steps.push_back(S);
+}
+
+void InitializationSequence::AddConversionSequenceStep(
+ const ImplicitConversionSequence &ICS, QualType T,
+ bool TopLevelOfInitList) {
+ Step S;
+ S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
+ : SK_ConversionSequence;
+ S.Type = T;
+ S.ICS = new ImplicitConversionSequence(ICS);
+ Steps.push_back(S);
+}
+
+void InitializationSequence::AddListInitializationStep(QualType T) {
+ Step S;
+ S.Kind = SK_ListInitialization;
+ S.Type = T;
+ Steps.push_back(S);
+}
+
+void
+InitializationSequence
+::AddConstructorInitializationStep(CXXConstructorDecl *Constructor,
+ AccessSpecifier Access,
+ QualType T,
+ bool HadMultipleCandidates,
+ bool FromInitList, bool AsInitList) {
+ Step S;
+ S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
+ : SK_ConstructorInitializationFromList
+ : SK_ConstructorInitialization;
+ S.Type = T;
+ S.Function.HadMultipleCandidates = HadMultipleCandidates;
+ S.Function.Function = Constructor;
+ S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
+ Steps.push_back(S);
+}
+
+void InitializationSequence::AddZeroInitializationStep(QualType T) {
+ Step S;
+ S.Kind = SK_ZeroInitialization;
+ S.Type = T;
+ Steps.push_back(S);
+}
+
+void InitializationSequence::AddCAssignmentStep(QualType T) {
+ Step S;
+ S.Kind = SK_CAssignment;
+ S.Type = T;
+ Steps.push_back(S);
+}
+
+void InitializationSequence::AddStringInitStep(QualType T) {
+ Step S;
+ S.Kind = SK_StringInit;
+ S.Type = T;
+ Steps.push_back(S);
+}
+
+void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
+ Step S;
+ S.Kind = SK_ObjCObjectConversion;
+ S.Type = T;
+ Steps.push_back(S);
+}
+
+void InitializationSequence::AddArrayInitStep(QualType T) {
+ Step S;
+ S.Kind = SK_ArrayInit;
+ S.Type = T;
+ Steps.push_back(S);
+}
+
+void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
+ Step S;
+ S.Kind = SK_ParenthesizedArrayInit;
+ S.Type = T;
+ Steps.push_back(S);
+}
+
+void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
+ bool shouldCopy) {
+ Step s;
+ s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
+ : SK_PassByIndirectRestore);
+ s.Type = type;
+ Steps.push_back(s);
+}
+
+void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
+ Step S;
+ S.Kind = SK_ProduceObjCObject;
+ S.Type = T;
+ Steps.push_back(S);
+}
+
+void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
+ Step S;
+ S.Kind = SK_StdInitializerList;
+ S.Type = T;
+ Steps.push_back(S);
+}
+
+void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
+ Step S;
+ S.Kind = SK_OCLSamplerInit;
+ S.Type = T;
+ Steps.push_back(S);
+}
+
+void InitializationSequence::AddOCLZeroEventStep(QualType T) {
+ Step S;
+ S.Kind = SK_OCLZeroEvent;
+ S.Type = T;
+ Steps.push_back(S);
+}
+
+void InitializationSequence::RewrapReferenceInitList(QualType T,
+ InitListExpr *Syntactic) {
+ assert(Syntactic->getNumInits() == 1 &&
+ "Can only rewrap trivial init lists.");
+ Step S;
+ S.Kind = SK_UnwrapInitList;
+ S.Type = Syntactic->getInit(0)->getType();
+ Steps.insert(Steps.begin(), S);
+
+ S.Kind = SK_RewrapInitList;
+ S.Type = T;
+ S.WrappingSyntacticList = Syntactic;
+ Steps.push_back(S);
+}
+
+void InitializationSequence::SetOverloadFailure(FailureKind Failure,
+ OverloadingResult Result) {
+ setSequenceKind(FailedSequence);
+ this->Failure = Failure;
+ this->FailedOverloadResult = Result;
+}
+
+//===----------------------------------------------------------------------===//
+// Attempt initialization
+//===----------------------------------------------------------------------===//
+
+/// Tries to add a zero initializer. Returns true if that worked.
+static bool
+maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
+ const InitializedEntity &Entity) {
+ if (Entity.getKind() != InitializedEntity::EK_Variable)
+ return false;
+
+ VarDecl *VD = cast<VarDecl>(Entity.getDecl());
+ if (VD->getInit() || VD->getLocEnd().isMacroID())
+ return false;
+
+ QualType VariableTy = VD->getType().getCanonicalType();
+ SourceLocation Loc = S.getLocForEndOfToken(VD->getLocEnd());
+ std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
+ if (!Init.empty()) {
+ Sequence.AddZeroInitializationStep(Entity.getType());
+ Sequence.SetZeroInitializationFixit(Init, Loc);
+ return true;
+ }
+ return false;
+}
+
+static void MaybeProduceObjCObject(Sema &S,
+ InitializationSequence &Sequence,
+ const InitializedEntity &Entity) {
+ if (!S.getLangOpts().ObjCAutoRefCount) return;
+
+ /// When initializing a parameter, produce the value if it's marked
+ /// __attribute__((ns_consumed)).
+ if (Entity.isParameterKind()) {
+ if (!Entity.isParameterConsumed())
+ return;
+
+ assert(Entity.getType()->isObjCRetainableType() &&
+ "consuming an object of unretainable type?");
+ Sequence.AddProduceObjCObjectStep(Entity.getType());
+
+ /// When initializing a return value, if the return type is a
+ /// retainable type, then returns need to immediately retain the
+ /// object. If an autorelease is required, it will be done at the
+ /// last instant.
+ } else if (Entity.getKind() == InitializedEntity::EK_Result) {
+ if (!Entity.getType()->isObjCRetainableType())
+ return;
+
+ Sequence.AddProduceObjCObjectStep(Entity.getType());
+ }
+}
+
+static void TryListInitialization(Sema &S,
+ const InitializedEntity &Entity,
+ const InitializationKind &Kind,
+ InitListExpr *InitList,
+ InitializationSequence &Sequence);
+
+/// \brief When initializing from init list via constructor, handle
+/// initialization of an object of type std::initializer_list<T>.
+///
+/// \return true if we have handled initialization of an object of type
+/// std::initializer_list<T>, false otherwise.
+static bool TryInitializerListConstruction(Sema &S,
+ InitListExpr *List,
+ QualType DestType,
+ InitializationSequence &Sequence) {
+ QualType E;
+ if (!S.isStdInitializerList(DestType, &E))
+ return false;
+
+ if (S.RequireCompleteType(List->getExprLoc(), E, 0)) {
+ Sequence.setIncompleteTypeFailure(E);
+ return true;
+ }
+
+ // Try initializing a temporary array from the init list.
+ QualType ArrayType = S.Context.getConstantArrayType(
+ E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
+ List->getNumInits()),
+ clang::ArrayType::Normal, 0);
+ InitializedEntity HiddenArray =
+ InitializedEntity::InitializeTemporary(ArrayType);
+ InitializationKind Kind =
+ InitializationKind::CreateDirectList(List->getExprLoc());
+ TryListInitialization(S, HiddenArray, Kind, List, Sequence);
+ if (Sequence)
+ Sequence.AddStdInitializerListConstructionStep(DestType);
+ return true;
+}
+
+static OverloadingResult
+ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
+ MultiExprArg Args,
+ OverloadCandidateSet &CandidateSet,
+ DeclContext::lookup_result Ctors,
+ OverloadCandidateSet::iterator &Best,
+ bool CopyInitializing, bool AllowExplicit,
+ bool OnlyListConstructors, bool IsListInit) {
+ CandidateSet.clear();
+
+ for (NamedDecl *D : Ctors) {
+ DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
+ bool SuppressUserConversions = false;
+
+ // Find the constructor (which may be a template).
+ CXXConstructorDecl *Constructor = nullptr;
+ FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
+ if (ConstructorTmpl)
+ Constructor = cast<CXXConstructorDecl>(
+ ConstructorTmpl->getTemplatedDecl());
+ else {
+ Constructor = cast<CXXConstructorDecl>(D);
+
+ // C++11 [over.best.ics]p4:
+ // ... and the constructor or user-defined conversion function is a
+ // candidate by
+ // - 13.3.1.3, when the argument is the temporary in the second step
+ // of a class copy-initialization, or
+ // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases),
+ // user-defined conversion sequences are not considered.
+ // FIXME: This breaks backward compatibility, e.g. PR12117. As a
+ // temporary fix, let's re-instate the third bullet above until
+ // there is a resolution in the standard, i.e.,
+ // - 13.3.1.7 when the initializer list has exactly one element that is
+ // itself an initializer list and a conversion to some class X or
+ // reference to (possibly cv-qualified) X is considered for the first
+ // parameter of a constructor of X.
+ if ((CopyInitializing ||
+ (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
+ Constructor->isCopyOrMoveConstructor())
+ SuppressUserConversions = true;
+ }
+
+ if (!Constructor->isInvalidDecl() &&
+ (AllowExplicit || !Constructor->isExplicit()) &&
+ (!OnlyListConstructors || S.isInitListConstructor(Constructor))) {
+ if (ConstructorTmpl)
+ S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
+ /*ExplicitArgs*/ nullptr, Args,
+ CandidateSet, SuppressUserConversions);
+ else {
+ // C++ [over.match.copy]p1:
+ // - When initializing a temporary to be bound to the first parameter
+ // of a constructor that takes a reference to possibly cv-qualified
+ // T as its first argument, called with a single argument in the
+ // context of direct-initialization, explicit conversion functions
+ // are also considered.
+ bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
+ Args.size() == 1 &&
+ Constructor->isCopyOrMoveConstructor();
+ S.AddOverloadCandidate(Constructor, FoundDecl, Args, CandidateSet,
+ SuppressUserConversions,
+ /*PartialOverloading=*/false,
+ /*AllowExplicit=*/AllowExplicitConv);
+ }
+ }
+ }
+
+ // Perform overload resolution and return the result.
+ return CandidateSet.BestViableFunction(S, DeclLoc, Best);
+}
+
+/// \brief Attempt initialization by constructor (C++ [dcl.init]), which
+/// enumerates the constructors of the initialized entity and performs overload
+/// resolution to select the best.
+/// \param IsListInit Is this list-initialization?
+/// \param IsInitListCopy Is this non-list-initialization resulting from a
+/// list-initialization from {x} where x is the same
+/// type as the entity?
+static void TryConstructorInitialization(Sema &S,
+ const InitializedEntity &Entity,
+ const InitializationKind &Kind,
+ MultiExprArg Args, QualType DestType,
+ InitializationSequence &Sequence,
+ bool IsListInit = false,
+ bool IsInitListCopy = false) {
+ assert((!IsListInit || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
+ "IsListInit must come with a single initializer list argument.");
+
+ // The type we're constructing needs to be complete.
+ if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
+ Sequence.setIncompleteTypeFailure(DestType);
+ return;
+ }
+
+ const RecordType *DestRecordType = DestType->getAs<RecordType>();
+ assert(DestRecordType && "Constructor initialization requires record type");
+ CXXRecordDecl *DestRecordDecl
+ = cast<CXXRecordDecl>(DestRecordType->getDecl());
+
+ // Build the candidate set directly in the initialization sequence
+ // structure, so that it will persist if we fail.
+ OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
+
+ // Determine whether we are allowed to call explicit constructors or
+ // explicit conversion operators.
+ bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
+ bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
+
+ // - Otherwise, if T is a class type, constructors are considered. The
+ // applicable constructors are enumerated, and the best one is chosen
+ // through overload resolution.
+ DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
+
+ OverloadingResult Result = OR_No_Viable_Function;
+ OverloadCandidateSet::iterator Best;
+ bool AsInitializerList = false;
+
+ // C++11 [over.match.list]p1, per DR1467:
+ // When objects of non-aggregate type T are list-initialized, such that
+ // 8.5.4 [dcl.init.list] specifies that overload resolution is performed
+ // according to the rules in this section, overload resolution selects
+ // the constructor in two phases:
+ //
+ // - Initially, the candidate functions are the initializer-list
+ // constructors of the class T and the argument list consists of the
+ // initializer list as a single argument.
+ if (IsListInit) {
+ InitListExpr *ILE = cast<InitListExpr>(Args[0]);
+ AsInitializerList = true;
+
+ // If the initializer list has no elements and T has a default constructor,
+ // the first phase is omitted.
+ if (ILE->getNumInits() != 0 || !DestRecordDecl->hasDefaultConstructor())
+ Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
+ CandidateSet, Ctors, Best,
+ CopyInitialization, AllowExplicit,
+ /*OnlyListConstructor=*/true,
+ IsListInit);
+
+ // Time to unwrap the init list.
+ Args = MultiExprArg(ILE->getInits(), ILE->getNumInits());
+ }
+
+ // C++11 [over.match.list]p1:
+ // - If no viable initializer-list constructor is found, overload resolution
+ // is performed again, where the candidate functions are all the
+ // constructors of the class T and the argument list consists of the
+ // elements of the initializer list.
+ if (Result == OR_No_Viable_Function) {
+ AsInitializerList = false;
+ Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
+ CandidateSet, Ctors, Best,
+ CopyInitialization, AllowExplicit,
+ /*OnlyListConstructors=*/false,
+ IsListInit);
+ }
+ if (Result) {
+ Sequence.SetOverloadFailure(IsListInit ?
+ InitializationSequence::FK_ListConstructorOverloadFailed :
+ InitializationSequence::FK_ConstructorOverloadFailed,
+ Result);
+ return;
+ }
+
+ // C++11 [dcl.init]p6:
+ // If a program calls for the default initialization of an object
+ // of a const-qualified type T, T shall be a class type with a
+ // user-provided default constructor.
+ if (Kind.getKind() == InitializationKind::IK_Default &&
+ Entity.getType().isConstQualified() &&
+ !cast<CXXConstructorDecl>(Best->Function)->isUserProvided()) {
+ if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
+ Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
+ return;
+ }
+
+ // C++11 [over.match.list]p1:
+ // In copy-list-initialization, if an explicit constructor is chosen, the
+ // initializer is ill-formed.
+ CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
+ if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
+ Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
+ return;
+ }
+
+ // Add the constructor initialization step. Any cv-qualification conversion is
+ // subsumed by the initialization.
+ bool HadMultipleCandidates = (CandidateSet.size() > 1);
+ Sequence.AddConstructorInitializationStep(
+ CtorDecl, Best->FoundDecl.getAccess(), DestType, HadMultipleCandidates,
+ IsListInit | IsInitListCopy, AsInitializerList);
+}
+
+static bool
+ResolveOverloadedFunctionForReferenceBinding(Sema &S,
+ Expr *Initializer,
+ QualType &SourceType,
+ QualType &UnqualifiedSourceType,
+ QualType UnqualifiedTargetType,
+ InitializationSequence &Sequence) {
+ if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
+ S.Context.OverloadTy) {
+ DeclAccessPair Found;
+ bool HadMultipleCandidates = false;
+ if (FunctionDecl *Fn
+ = S.ResolveAddressOfOverloadedFunction(Initializer,
+ UnqualifiedTargetType,
+ false, Found,
+ &HadMultipleCandidates)) {
+ Sequence.AddAddressOverloadResolutionStep(Fn, Found,
+ HadMultipleCandidates);
+ SourceType = Fn->getType();
+ UnqualifiedSourceType = SourceType.getUnqualifiedType();
+ } else if (!UnqualifiedTargetType->isRecordType()) {
+ Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
+ return true;
+ }
+ }
+ return false;
+}
+
+static void TryReferenceInitializationCore(Sema &S,
+ const InitializedEntity &Entity,
+ const InitializationKind &Kind,
+ Expr *Initializer,
+ QualType cv1T1, QualType T1,
+ Qualifiers T1Quals,
+ QualType cv2T2, QualType T2,
+ Qualifiers T2Quals,
+ InitializationSequence &Sequence);
+
+static void TryValueInitialization(Sema &S,
+ const InitializedEntity &Entity,
+ const InitializationKind &Kind,
+ InitializationSequence &Sequence,
+ InitListExpr *InitList = nullptr);
+
+/// \brief Attempt list initialization of a reference.
+static void TryReferenceListInitialization(Sema &S,
+ const InitializedEntity &Entity,
+ const InitializationKind &Kind,
+ InitListExpr *InitList,
+ InitializationSequence &Sequence) {
+ // First, catch C++03 where this isn't possible.
+ if (!S.getLangOpts().CPlusPlus11) {
+ Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
+ return;
+ }
+ // Can't reference initialize a compound literal.
+ if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
+ Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
+ return;
+ }
+
+ QualType DestType = Entity.getType();
+ QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
+ Qualifiers T1Quals;
+ QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
+
+ // Reference initialization via an initializer list works thus:
+ // If the initializer list consists of a single element that is
+ // reference-related to the referenced type, bind directly to that element
+ // (possibly creating temporaries).
+ // Otherwise, initialize a temporary with the initializer list and
+ // bind to that.
+ if (InitList->getNumInits() == 1) {
+ Expr *Initializer = InitList->getInit(0);
+ QualType cv2T2 = Initializer->getType();
+ Qualifiers T2Quals;
+ QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
+
+ // If this fails, creating a temporary wouldn't work either.
+ if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
+ T1, Sequence))
+ return;
+
+ SourceLocation DeclLoc = Initializer->getLocStart();
+ bool dummy1, dummy2, dummy3;
+ Sema::ReferenceCompareResult RefRelationship
+ = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
+ dummy2, dummy3);
+ if (RefRelationship >= Sema::Ref_Related) {
+ // Try to bind the reference here.
+ TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
+ T1Quals, cv2T2, T2, T2Quals, Sequence);
+ if (Sequence)
+ Sequence.RewrapReferenceInitList(cv1T1, InitList);
+ return;
+ }
+
+ // Update the initializer if we've resolved an overloaded function.
+ if (Sequence.step_begin() != Sequence.step_end())
+ Sequence.RewrapReferenceInitList(cv1T1, InitList);
+ }
+
+ // Not reference-related. Create a temporary and bind to that.
+ InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
+
+ TryListInitialization(S, TempEntity, Kind, InitList, Sequence);
+ if (Sequence) {
+ if (DestType->isRValueReferenceType() ||
+ (T1Quals.hasConst() && !T1Quals.hasVolatile()))
+ Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
+ else
+ Sequence.SetFailed(
+ InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
+ }
+}
+
+/// \brief Attempt list initialization (C++0x [dcl.init.list])
+static void TryListInitialization(Sema &S,
+ const InitializedEntity &Entity,
+ const InitializationKind &Kind,
+ InitListExpr *InitList,
+ InitializationSequence &Sequence) {
+ QualType DestType = Entity.getType();
+
+ // C++ doesn't allow scalar initialization with more than one argument.
+ // But C99 complex numbers are scalars and it makes sense there.
+ if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
+ !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
+ Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
+ return;
+ }
+ if (DestType->isReferenceType()) {
+ TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence);
+ return;
+ }
+
+ if (DestType->isRecordType() &&
+ S.RequireCompleteType(InitList->getLocStart(), DestType, 0)) {
+ Sequence.setIncompleteTypeFailure(DestType);
+ return;
+ }
+
+ // C++11 [dcl.init.list]p3, per DR1467:
+ // - If T is a class type and the initializer list has a single element of
+ // type cv U, where U is T or a class derived from T, the object is
+ // initialized from that element (by copy-initialization for
+ // copy-list-initialization, or by direct-initialization for
+ // direct-list-initialization).
+ // - Otherwise, if T is a character array and the initializer list has a
+ // single element that is an appropriately-typed string literal
+ // (8.5.2 [dcl.init.string]), initialization is performed as described
+ // in that section.
+ // - Otherwise, if T is an aggregate, [...] (continue below).
+ if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
+ if (DestType->isRecordType()) {
+ QualType InitType = InitList->getInit(0)->getType();
+ if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
+ S.IsDerivedFrom(InitType, DestType)) {
+ Expr *InitAsExpr = InitList->getInit(0);
+ TryConstructorInitialization(S, Entity, Kind, InitAsExpr, DestType,
+ Sequence, /*InitListSyntax*/ false,
+ /*IsInitListCopy*/ true);
+ return;
+ }
+ }
+ if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
+ Expr *SubInit[1] = {InitList->getInit(0)};
+ if (!isa<VariableArrayType>(DestAT) &&
+ IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
+ InitializationKind SubKind =
+ Kind.getKind() == InitializationKind::IK_DirectList
+ ? InitializationKind::CreateDirect(Kind.getLocation(),
+ InitList->getLBraceLoc(),
+ InitList->getRBraceLoc())
+ : Kind;
+ Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
+ /*TopLevelOfInitList*/ true);
+
+ // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
+ // the element is not an appropriately-typed string literal, in which
+ // case we should proceed as in C++11 (below).
+ if (Sequence) {
+ Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
+ return;
+ }
+ }
+ }
+ }
+
+ // C++11 [dcl.init.list]p3:
+ // - If T is an aggregate, aggregate initialization is performed.
+ if (DestType->isRecordType() && !DestType->isAggregateType()) {
+ if (S.getLangOpts().CPlusPlus11) {
+ // - Otherwise, if the initializer list has no elements and T is a
+ // class type with a default constructor, the object is
+ // value-initialized.
+ if (InitList->getNumInits() == 0) {
+ CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
+ if (RD->hasDefaultConstructor()) {
+ TryValueInitialization(S, Entity, Kind, Sequence, InitList);
+ return;
+ }
+ }
+
+ // - Otherwise, if T is a specialization of std::initializer_list<E>,
+ // an initializer_list object constructed [...]
+ if (TryInitializerListConstruction(S, InitList, DestType, Sequence))
+ return;
+
+ // - Otherwise, if T is a class type, constructors are considered.
+ Expr *InitListAsExpr = InitList;
+ TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
+ Sequence, /*InitListSyntax*/ true);
+ } else
+ Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
+ return;
+ }
+
+ if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
+ InitList->getNumInits() == 1 &&
+ InitList->getInit(0)->getType()->isRecordType()) {
+ // - Otherwise, if the initializer list has a single element of type E
+ // [...references are handled above...], the object or reference is
+ // initialized from that element (by copy-initialization for
+ // copy-list-initialization, or by direct-initialization for
+ // direct-list-initialization); if a narrowing conversion is required
+ // to convert the element to T, the program is ill-formed.
+ //
+ // Per core-24034, this is direct-initialization if we were performing
+ // direct-list-initialization and copy-initialization otherwise.
+ // We can't use InitListChecker for this, because it always performs
+ // copy-initialization. This only matters if we might use an 'explicit'
+ // conversion operator, so we only need to handle the cases where the source
+ // is of record type.
+ InitializationKind SubKind =
+ Kind.getKind() == InitializationKind::IK_DirectList
+ ? InitializationKind::CreateDirect(Kind.getLocation(),
+ InitList->getLBraceLoc(),
+ InitList->getRBraceLoc())
+ : Kind;
+ Expr *SubInit[1] = { InitList->getInit(0) };
+ Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
+ /*TopLevelOfInitList*/true);
+ if (Sequence)
+ Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
+ return;
+ }
+
+ InitListChecker CheckInitList(S, Entity, InitList,
+ DestType, /*VerifyOnly=*/true);
+ if (CheckInitList.HadError()) {
+ Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
+ return;
+ }
+
+ // Add the list initialization step with the built init list.
+ Sequence.AddListInitializationStep(DestType);
+}
+
+/// \brief Try a reference initialization that involves calling a conversion
+/// function.
+static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
+ const InitializedEntity &Entity,
+ const InitializationKind &Kind,
+ Expr *Initializer,
+ bool AllowRValues,
+ InitializationSequence &Sequence) {
+ QualType DestType = Entity.getType();
+ QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
+ QualType T1 = cv1T1.getUnqualifiedType();
+ QualType cv2T2 = Initializer->getType();
+ QualType T2 = cv2T2.getUnqualifiedType();
+
+ bool DerivedToBase;
+ bool ObjCConversion;
+ bool ObjCLifetimeConversion;
+ assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
+ T1, T2, DerivedToBase,
+ ObjCConversion,
+ ObjCLifetimeConversion) &&
+ "Must have incompatible references when binding via conversion");
+ (void)DerivedToBase;
+ (void)ObjCConversion;
+ (void)ObjCLifetimeConversion;
+
+ // Build the candidate set directly in the initialization sequence
+ // structure, so that it will persist if we fail.
+ OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
+ CandidateSet.clear();
+
+ // Determine whether we are allowed to call explicit constructors or
+ // explicit conversion operators.
+ bool AllowExplicit = Kind.AllowExplicit();
+ bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
+
+ const RecordType *T1RecordType = nullptr;
+ if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
+ !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
+ // The type we're converting to is a class type. Enumerate its constructors
+ // to see if there is a suitable conversion.
+ CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
+
+ for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
+ DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
+
+ // Find the constructor (which may be a template).
+ CXXConstructorDecl *Constructor = nullptr;
+ FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
+ if (ConstructorTmpl)
+ Constructor = cast<CXXConstructorDecl>(
+ ConstructorTmpl->getTemplatedDecl());
+ else
+ Constructor = cast<CXXConstructorDecl>(D);
+
+ if (!Constructor->isInvalidDecl() &&
+ Constructor->isConvertingConstructor(AllowExplicit)) {
+ if (ConstructorTmpl)
+ S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
+ /*ExplicitArgs*/ nullptr,
+ Initializer, CandidateSet,
+ /*SuppressUserConversions=*/true);
+ else
+ S.AddOverloadCandidate(Constructor, FoundDecl,
+ Initializer, CandidateSet,
+ /*SuppressUserConversions=*/true);
+ }
+ }
+ }
+ if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
+ return OR_No_Viable_Function;
+
+ const RecordType *T2RecordType = nullptr;
+ if ((T2RecordType = T2->getAs<RecordType>()) &&
+ !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
+ // The type we're converting from is a class type, enumerate its conversion
+ // functions.
+ CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
+
+ const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
+ for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
+ NamedDecl *D = *I;
+ CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
+ if (isa<UsingShadowDecl>(D))
+ D = cast<UsingShadowDecl>(D)->getTargetDecl();
+
+ FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
+ CXXConversionDecl *Conv;
+ if (ConvTemplate)
+ Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
+ else
+ Conv = cast<CXXConversionDecl>(D);
+
+ // If the conversion function doesn't return a reference type,
+ // it can't be considered for this conversion unless we're allowed to
+ // consider rvalues.
+ // FIXME: Do we need to make sure that we only consider conversion
+ // candidates with reference-compatible results? That might be needed to
+ // break recursion.
+ if ((AllowExplicitConvs || !Conv->isExplicit()) &&
+ (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
+ if (ConvTemplate)
+ S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
+ ActingDC, Initializer,
+ DestType, CandidateSet,
+ /*AllowObjCConversionOnExplicit=*/
+ false);
+ else
+ S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
+ Initializer, DestType, CandidateSet,
+ /*AllowObjCConversionOnExplicit=*/false);
+ }
+ }
+ }
+ if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
+ return OR_No_Viable_Function;
+
+ SourceLocation DeclLoc = Initializer->getLocStart();
+
+ // Perform overload resolution. If it fails, return the failed result.
+ OverloadCandidateSet::iterator Best;
+ if (OverloadingResult Result
+ = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
+ return Result;
+
+ FunctionDecl *Function = Best->Function;
+ // This is the overload that will be used for this initialization step if we
+ // use this initialization. Mark it as referenced.
+ Function->setReferenced();
+
+ // Compute the returned type of the conversion.
+ if (isa<CXXConversionDecl>(Function))
+ T2 = Function->getReturnType();
+ else
+ T2 = cv1T1;
+
+ // Add the user-defined conversion step.
+ bool HadMultipleCandidates = (CandidateSet.size() > 1);
+ Sequence.AddUserConversionStep(Function, Best->FoundDecl,
+ T2.getNonLValueExprType(S.Context),
+ HadMultipleCandidates);
+
+ // Determine whether we need to perform derived-to-base or
+ // cv-qualification adjustments.
+ ExprValueKind VK = VK_RValue;
+ if (T2->isLValueReferenceType())
+ VK = VK_LValue;
+ else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
+ VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
+
+ bool NewDerivedToBase = false;
+ bool NewObjCConversion = false;
+ bool NewObjCLifetimeConversion = false;
+ Sema::ReferenceCompareResult NewRefRelationship
+ = S.CompareReferenceRelationship(DeclLoc, T1,
+ T2.getNonLValueExprType(S.Context),
+ NewDerivedToBase, NewObjCConversion,
+ NewObjCLifetimeConversion);
+ if (NewRefRelationship == Sema::Ref_Incompatible) {
+ // If the type we've converted to is not reference-related to the
+ // type we're looking for, then there is another conversion step
+ // we need to perform to produce a temporary of the right type
+ // that we'll be binding to.
+ ImplicitConversionSequence ICS;
+ ICS.setStandard();
+ ICS.Standard = Best->FinalConversion;
+ T2 = ICS.Standard.getToType(2);
+ Sequence.AddConversionSequenceStep(ICS, T2);
+ } else if (NewDerivedToBase)
+ Sequence.AddDerivedToBaseCastStep(
+ S.Context.getQualifiedType(T1,
+ T2.getNonReferenceType().getQualifiers()),
+ VK);
+ else if (NewObjCConversion)
+ Sequence.AddObjCObjectConversionStep(
+ S.Context.getQualifiedType(T1,
+ T2.getNonReferenceType().getQualifiers()));
+
+ if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
+ Sequence.AddQualificationConversionStep(cv1T1, VK);
+
+ Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
+ return OR_Success;
+}
+
+static void CheckCXX98CompatAccessibleCopy(Sema &S,
+ const InitializedEntity &Entity,
+ Expr *CurInitExpr);
+
+/// \brief Attempt reference initialization (C++0x [dcl.init.ref])
+static void TryReferenceInitialization(Sema &S,
+ const InitializedEntity &Entity,
+ const InitializationKind &Kind,
+ Expr *Initializer,
+ InitializationSequence &Sequence) {
+ QualType DestType = Entity.getType();
+ QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
+ Qualifiers T1Quals;
+ QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
+ QualType cv2T2 = Initializer->getType();
+ Qualifiers T2Quals;
+ QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
+
+ // If the initializer is the address of an overloaded function, try
+ // to resolve the overloaded function. If all goes well, T2 is the
+ // type of the resulting function.
+ if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
+ T1, Sequence))
+ return;
+
+ // Delegate everything else to a subfunction.
+ TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
+ T1Quals, cv2T2, T2, T2Quals, Sequence);
+}
+
+/// Converts the target of reference initialization so that it has the
+/// appropriate qualifiers and value kind.
+///
+/// In this case, 'x' is an 'int' lvalue, but it needs to be 'const int'.
+/// \code
+/// int x;
+/// const int &r = x;
+/// \endcode
+///
+/// In this case the reference is binding to a bitfield lvalue, which isn't
+/// valid. Perform a load to create a lifetime-extended temporary instead.
+/// \code
+/// const int &r = someStruct.bitfield;
+/// \endcode
+static ExprValueKind
+convertQualifiersAndValueKindIfNecessary(Sema &S,
+ InitializationSequence &Sequence,
+ Expr *Initializer,
+ QualType cv1T1,
+ Qualifiers T1Quals,
+ Qualifiers T2Quals,
+ bool IsLValueRef) {
+ bool IsNonAddressableType = Initializer->refersToBitField() ||
+ Initializer->refersToVectorElement();
+
+ if (IsNonAddressableType) {
+ // C++11 [dcl.init.ref]p5: [...] Otherwise, the reference shall be an
+ // lvalue reference to a non-volatile const type, or the reference shall be
+ // an rvalue reference.
+ //
+ // If not, we can't make a temporary and bind to that. Give up and allow the
+ // error to be diagnosed later.
+ if (IsLValueRef && (!T1Quals.hasConst() || T1Quals.hasVolatile())) {
+ assert(Initializer->isGLValue());
+ return Initializer->getValueKind();
+ }
+
+ // Force a load so we can materialize a temporary.
+ Sequence.AddLValueToRValueStep(cv1T1.getUnqualifiedType());
+ return VK_RValue;
+ }
+
+ if (T1Quals != T2Quals) {
+ Sequence.AddQualificationConversionStep(cv1T1,
+ Initializer->getValueKind());
+ }
+
+ return Initializer->getValueKind();
+}
+
+
+/// \brief Reference initialization without resolving overloaded functions.
+static void TryReferenceInitializationCore(Sema &S,
+ const InitializedEntity &Entity,
+ const InitializationKind &Kind,
+ Expr *Initializer,
+ QualType cv1T1, QualType T1,
+ Qualifiers T1Quals,
+ QualType cv2T2, QualType T2,
+ Qualifiers T2Quals,
+ InitializationSequence &Sequence) {
+ QualType DestType = Entity.getType();
+ SourceLocation DeclLoc = Initializer->getLocStart();
+ // Compute some basic properties of the types and the initializer.
+ bool isLValueRef = DestType->isLValueReferenceType();
+ bool isRValueRef = !isLValueRef;
+ bool DerivedToBase = false;
+ bool ObjCConversion = false;
+ bool ObjCLifetimeConversion = false;
+ Expr::Classification InitCategory = Initializer->Classify(S.Context);
+ Sema::ReferenceCompareResult RefRelationship
+ = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
+ ObjCConversion, ObjCLifetimeConversion);
+
+ // C++0x [dcl.init.ref]p5:
+ // A reference to type "cv1 T1" is initialized by an expression of type
+ // "cv2 T2" as follows:
+ //
+ // - If the reference is an lvalue reference and the initializer
+ // expression
+ // Note the analogous bullet points for rvalue refs to functions. Because
+ // there are no function rvalues in C++, rvalue refs to functions are treated
+ // like lvalue refs.
+ OverloadingResult ConvOvlResult = OR_Success;
+ bool T1Function = T1->isFunctionType();
+ if (isLValueRef || T1Function) {
+ if (InitCategory.isLValue() &&
+ (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
+ (Kind.isCStyleOrFunctionalCast() &&
+ RefRelationship == Sema::Ref_Related))) {
+ // - is an lvalue (but is not a bit-field), and "cv1 T1" is
+ // reference-compatible with "cv2 T2," or
+ //
+ // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
+ // bit-field when we're determining whether the reference initialization
+ // can occur. However, we do pay attention to whether it is a bit-field
+ // to decide whether we're actually binding to a temporary created from
+ // the bit-field.
+ if (DerivedToBase)
+ Sequence.AddDerivedToBaseCastStep(
+ S.Context.getQualifiedType(T1, T2Quals),
+ VK_LValue);
+ else if (ObjCConversion)
+ Sequence.AddObjCObjectConversionStep(
+ S.Context.getQualifiedType(T1, T2Quals));
+
+ ExprValueKind ValueKind =
+ convertQualifiersAndValueKindIfNecessary(S, Sequence, Initializer,
+ cv1T1, T1Quals, T2Quals,
+ isLValueRef);
+ Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue);
+ return;
+ }
+
+ // - has a class type (i.e., T2 is a class type), where T1 is not
+ // reference-related to T2, and can be implicitly converted to an
+ // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
+ // with "cv3 T3" (this conversion is selected by enumerating the
+ // applicable conversion functions (13.3.1.6) and choosing the best
+ // one through overload resolution (13.3)),
+ // If we have an rvalue ref to function type here, the rhs must be
+ // an rvalue. DR1287 removed the "implicitly" here.
+ if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
+ (isLValueRef || InitCategory.isRValue())) {
+ ConvOvlResult = TryRefInitWithConversionFunction(
+ S, Entity, Kind, Initializer, /*AllowRValues*/isRValueRef, Sequence);
+ if (ConvOvlResult == OR_Success)
+ return;
+ if (ConvOvlResult != OR_No_Viable_Function)
+ Sequence.SetOverloadFailure(
+ InitializationSequence::FK_ReferenceInitOverloadFailed,
+ ConvOvlResult);
+ }
+ }
+
+ // - Otherwise, the reference shall be an lvalue reference to a
+ // non-volatile const type (i.e., cv1 shall be const), or the reference
+ // shall be an rvalue reference.
+ if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
+ if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
+ Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
+ else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
+ Sequence.SetOverloadFailure(
+ InitializationSequence::FK_ReferenceInitOverloadFailed,
+ ConvOvlResult);
+ else
+ Sequence.SetFailed(InitCategory.isLValue()
+ ? (RefRelationship == Sema::Ref_Related
+ ? InitializationSequence::FK_ReferenceInitDropsQualifiers
+ : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
+ : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
+
+ return;
+ }
+
+ // - If the initializer expression
+ // - is an xvalue, class prvalue, array prvalue, or function lvalue and
+ // "cv1 T1" is reference-compatible with "cv2 T2"
+ // Note: functions are handled below.
+ if (!T1Function &&
+ (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
+ (Kind.isCStyleOrFunctionalCast() &&
+ RefRelationship == Sema::Ref_Related)) &&
+ (InitCategory.isXValue() ||
+ (InitCategory.isPRValue() && T2->isRecordType()) ||
+ (InitCategory.isPRValue() && T2->isArrayType()))) {
+ ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
+ if (InitCategory.isPRValue() && T2->isRecordType()) {
+ // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
+ // compiler the freedom to perform a copy here or bind to the
+ // object, while C++0x requires that we bind directly to the
+ // object. Hence, we always bind to the object without making an
+ // extra copy. However, in C++03 requires that we check for the
+ // presence of a suitable copy constructor:
+ //
+ // The constructor that would be used to make the copy shall
+ // be callable whether or not the copy is actually done.
+ if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
+ Sequence.AddExtraneousCopyToTemporary(cv2T2);
+ else if (S.getLangOpts().CPlusPlus11)
+ CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
+ }
+
+ if (DerivedToBase)
+ Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
+ ValueKind);
+ else if (ObjCConversion)
+ Sequence.AddObjCObjectConversionStep(
+ S.Context.getQualifiedType(T1, T2Quals));
+
+ ValueKind = convertQualifiersAndValueKindIfNecessary(S, Sequence,
+ Initializer, cv1T1,
+ T1Quals, T2Quals,
+ isLValueRef);
+
+ Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue);
+ return;
+ }
+
+ // - has a class type (i.e., T2 is a class type), where T1 is not
+ // reference-related to T2, and can be implicitly converted to an
+ // xvalue, class prvalue, or function lvalue of type "cv3 T3",
+ // where "cv1 T1" is reference-compatible with "cv3 T3",
+ //
+ // DR1287 removes the "implicitly" here.
+ if (T2->isRecordType()) {
+ if (RefRelationship == Sema::Ref_Incompatible) {
+ ConvOvlResult = TryRefInitWithConversionFunction(
+ S, Entity, Kind, Initializer, /*AllowRValues*/true, Sequence);
+ if (ConvOvlResult)
+ Sequence.SetOverloadFailure(
+ InitializationSequence::FK_ReferenceInitOverloadFailed,
+ ConvOvlResult);
+
+ return;
+ }
+
+ if ((RefRelationship == Sema::Ref_Compatible ||
+ RefRelationship == Sema::Ref_Compatible_With_Added_Qualification) &&
+ isRValueRef && InitCategory.isLValue()) {
+ Sequence.SetFailed(
+ InitializationSequence::FK_RValueReferenceBindingToLValue);
+ return;
+ }
+
+ Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
+ return;
+ }
+
+ // - Otherwise, a temporary of type "cv1 T1" is created and initialized
+ // from the initializer expression using the rules for a non-reference
+ // copy-initialization (8.5). The reference is then bound to the
+ // temporary. [...]
+
+ InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
+
+ // FIXME: Why do we use an implicit conversion here rather than trying
+ // copy-initialization?
+ ImplicitConversionSequence ICS
+ = S.TryImplicitConversion(Initializer, TempEntity.getType(),
+ /*SuppressUserConversions=*/false,
+ /*AllowExplicit=*/false,
+ /*FIXME:InOverloadResolution=*/false,
+ /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
+ /*AllowObjCWritebackConversion=*/false);
+
+ if (ICS.isBad()) {
+ // FIXME: Use the conversion function set stored in ICS to turn
+ // this into an overloading ambiguity diagnostic. However, we need
+ // to keep that set as an OverloadCandidateSet rather than as some
+ // other kind of set.
+ if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
+ Sequence.SetOverloadFailure(
+ InitializationSequence::FK_ReferenceInitOverloadFailed,
+ ConvOvlResult);
+ else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
+ Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
+ else
+ Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
+ return;
+ } else {
+ Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
+ }
+
+ // [...] If T1 is reference-related to T2, cv1 must be the
+ // same cv-qualification as, or greater cv-qualification
+ // than, cv2; otherwise, the program is ill-formed.
+ unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
+ unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
+ if (RefRelationship == Sema::Ref_Related &&
+ (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
+ Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
+ return;
+ }
+
+ // [...] If T1 is reference-related to T2 and the reference is an rvalue
+ // reference, the initializer expression shall not be an lvalue.
+ if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
+ InitCategory.isLValue()) {
+ Sequence.SetFailed(
+ InitializationSequence::FK_RValueReferenceBindingToLValue);
+ return;
+ }
+
+ Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
+ return;
+}
+
+/// \brief Attempt character array initialization from a string literal
+/// (C++ [dcl.init.string], C99 6.7.8).
+static void TryStringLiteralInitialization(Sema &S,
+ const InitializedEntity &Entity,
+ const InitializationKind &Kind,
+ Expr *Initializer,
+ InitializationSequence &Sequence) {
+ Sequence.AddStringInitStep(Entity.getType());
+}
+
+/// \brief Attempt value initialization (C++ [dcl.init]p7).
+static void TryValueInitialization(Sema &S,
+ const InitializedEntity &Entity,
+ const InitializationKind &Kind,
+ InitializationSequence &Sequence,
+ InitListExpr *InitList) {
+ assert((!InitList || InitList->getNumInits() == 0) &&
+ "Shouldn't use value-init for non-empty init lists");
+
+ // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
+ //
+ // To value-initialize an object of type T means:
+ QualType T = Entity.getType();
+
+ // -- if T is an array type, then each element is value-initialized;
+ T = S.Context.getBaseElementType(T);
+
+ if (const RecordType *RT = T->getAs<RecordType>()) {
+ if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
+ bool NeedZeroInitialization = true;
+ if (!S.getLangOpts().CPlusPlus11) {
+ // C++98:
+ // -- if T is a class type (clause 9) with a user-declared constructor
+ // (12.1), then the default constructor for T is called (and the
+ // initialization is ill-formed if T has no accessible default
+ // constructor);
+ if (ClassDecl->hasUserDeclaredConstructor())
+ NeedZeroInitialization = false;
+ } else {
+ // C++11:
+ // -- if T is a class type (clause 9) with either no default constructor
+ // (12.1 [class.ctor]) or a default constructor that is user-provided
+ // or deleted, then the object is default-initialized;
+ CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
+ if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
+ NeedZeroInitialization = false;
+ }
+
+ // -- if T is a (possibly cv-qualified) non-union class type without a
+ // user-provided or deleted default constructor, then the object is
+ // zero-initialized and, if T has a non-trivial default constructor,
+ // default-initialized;
+ // The 'non-union' here was removed by DR1502. The 'non-trivial default
+ // constructor' part was removed by DR1507.
+ if (NeedZeroInitialization)
+ Sequence.AddZeroInitializationStep(Entity.getType());
+
+ // C++03:
+ // -- if T is a non-union class type without a user-declared constructor,
+ // then every non-static data member and base class component of T is
+ // value-initialized;
+ // [...] A program that calls for [...] value-initialization of an
+ // entity of reference type is ill-formed.
+ //
+ // C++11 doesn't need this handling, because value-initialization does not
+ // occur recursively there, and the implicit default constructor is
+ // defined as deleted in the problematic cases.
+ if (!S.getLangOpts().CPlusPlus11 &&
+ ClassDecl->hasUninitializedReferenceMember()) {
+ Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
+ return;
+ }
+
+ // If this is list-value-initialization, pass the empty init list on when
+ // building the constructor call. This affects the semantics of a few
+ // things (such as whether an explicit default constructor can be called).
+ Expr *InitListAsExpr = InitList;
+ MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
+ bool InitListSyntax = InitList;
+
+ return TryConstructorInitialization(S, Entity, Kind, Args, T, Sequence,
+ InitListSyntax);
+ }
+ }
+
+ Sequence.AddZeroInitializationStep(Entity.getType());
+}
+
+/// \brief Attempt default initialization (C++ [dcl.init]p6).
+static void TryDefaultInitialization(Sema &S,
+ const InitializedEntity &Entity,
+ const InitializationKind &Kind,
+ InitializationSequence &Sequence) {
+ assert(Kind.getKind() == InitializationKind::IK_Default);
+
+ // C++ [dcl.init]p6:
+ // To default-initialize an object of type T means:
+ // - if T is an array type, each element is default-initialized;
+ QualType DestType = S.Context.getBaseElementType(Entity.getType());
+
+ // - if T is a (possibly cv-qualified) class type (Clause 9), the default
+ // constructor for T is called (and the initialization is ill-formed if
+ // T has no accessible default constructor);
+ if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
+ TryConstructorInitialization(S, Entity, Kind, None, DestType, Sequence);
+ return;
+ }
+
+ // - otherwise, no initialization is performed.
+
+ // If a program calls for the default initialization of an object of
+ // a const-qualified type T, T shall be a class type with a user-provided
+ // default constructor.
+ if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
+ if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
+ Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
+ return;
+ }
+
+ // If the destination type has a lifetime property, zero-initialize it.
+ if (DestType.getQualifiers().hasObjCLifetime()) {
+ Sequence.AddZeroInitializationStep(Entity.getType());
+ return;
+ }
+}
+
+/// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
+/// which enumerates all conversion functions and performs overload resolution
+/// to select the best.
+static void TryUserDefinedConversion(Sema &S,
+ QualType DestType,
+ const InitializationKind &Kind,
+ Expr *Initializer,
+ InitializationSequence &Sequence,
+ bool TopLevelOfInitList) {
+ assert(!DestType->isReferenceType() && "References are handled elsewhere");
+ QualType SourceType = Initializer->getType();
+ assert((DestType->isRecordType() || SourceType->isRecordType()) &&
+ "Must have a class type to perform a user-defined conversion");
+
+ // Build the candidate set directly in the initialization sequence
+ // structure, so that it will persist if we fail.
+ OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
+ CandidateSet.clear();
+
+ // Determine whether we are allowed to call explicit constructors or
+ // explicit conversion operators.
+ bool AllowExplicit = Kind.AllowExplicit();
+
+ if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
+ // The type we're converting to is a class type. Enumerate its constructors
+ // to see if there is a suitable conversion.
+ CXXRecordDecl *DestRecordDecl
+ = cast<CXXRecordDecl>(DestRecordType->getDecl());
+
+ // Try to complete the type we're converting to.
+ if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
+ DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
+ // The container holding the constructors can under certain conditions
+ // be changed while iterating. To be safe we copy the lookup results
+ // to a new container.
+ SmallVector<NamedDecl*, 8> CopyOfCon(R.begin(), R.end());
+ for (SmallVectorImpl<NamedDecl *>::iterator
+ Con = CopyOfCon.begin(), ConEnd = CopyOfCon.end();
+ Con != ConEnd; ++Con) {
+ NamedDecl *D = *Con;
+ DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
+
+ // Find the constructor (which may be a template).
+ CXXConstructorDecl *Constructor = nullptr;
+ FunctionTemplateDecl *ConstructorTmpl
+ = dyn_cast<FunctionTemplateDecl>(D);
+ if (ConstructorTmpl)
+ Constructor = cast<CXXConstructorDecl>(
+ ConstructorTmpl->getTemplatedDecl());
+ else
+ Constructor = cast<CXXConstructorDecl>(D);
+
+ if (!Constructor->isInvalidDecl() &&
+ Constructor->isConvertingConstructor(AllowExplicit)) {
+ if (ConstructorTmpl)
+ S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
+ /*ExplicitArgs*/ nullptr,
+ Initializer, CandidateSet,
+ /*SuppressUserConversions=*/true);
+ else
+ S.AddOverloadCandidate(Constructor, FoundDecl,
+ Initializer, CandidateSet,
+ /*SuppressUserConversions=*/true);
+ }
+ }
+ }
+ }
+
+ SourceLocation DeclLoc = Initializer->getLocStart();
+
+ if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
+ // The type we're converting from is a class type, enumerate its conversion
+ // functions.
+
+ // We can only enumerate the conversion functions for a complete type; if
+ // the type isn't complete, simply skip this step.
+ if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
+ CXXRecordDecl *SourceRecordDecl
+ = cast<CXXRecordDecl>(SourceRecordType->getDecl());
+
+ const auto &Conversions =
+ SourceRecordDecl->getVisibleConversionFunctions();
+ for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
+ NamedDecl *D = *I;
+ CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
+ if (isa<UsingShadowDecl>(D))
+ D = cast<UsingShadowDecl>(D)->getTargetDecl();
+
+ FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
+ CXXConversionDecl *Conv;
+ if (ConvTemplate)
+ Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
+ else
+ Conv = cast<CXXConversionDecl>(D);
+
+ if (AllowExplicit || !Conv->isExplicit()) {
+ if (ConvTemplate)
+ S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
+ ActingDC, Initializer, DestType,
+ CandidateSet, AllowExplicit);
+ else
+ S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
+ Initializer, DestType, CandidateSet,
+ AllowExplicit);
+ }
+ }
+ }
+ }
+
+ // Perform overload resolution. If it fails, return the failed result.
+ OverloadCandidateSet::iterator Best;
+ if (OverloadingResult Result
+ = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
+ Sequence.SetOverloadFailure(
+ InitializationSequence::FK_UserConversionOverloadFailed,
+ Result);
+ return;
+ }
+
+ FunctionDecl *Function = Best->Function;
+ Function->setReferenced();
+ bool HadMultipleCandidates = (CandidateSet.size() > 1);
+
+ if (isa<CXXConstructorDecl>(Function)) {
+ // Add the user-defined conversion step. Any cv-qualification conversion is
+ // subsumed by the initialization. Per DR5, the created temporary is of the
+ // cv-unqualified type of the destination.
+ Sequence.AddUserConversionStep(Function, Best->FoundDecl,
+ DestType.getUnqualifiedType(),
+ HadMultipleCandidates);
+ return;
+ }
+
+ // Add the user-defined conversion step that calls the conversion function.
+ QualType ConvType = Function->getCallResultType();
+ if (ConvType->getAs<RecordType>()) {
+ // If we're converting to a class type, there may be an copy of
+ // the resulting temporary object (possible to create an object of
+ // a base class type). That copy is not a separate conversion, so
+ // we just make a note of the actual destination type (possibly a
+ // base class of the type returned by the conversion function) and
+ // let the user-defined conversion step handle the conversion.
+ Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType,
+ HadMultipleCandidates);
+ return;
+ }
+
+ Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
+ HadMultipleCandidates);
+
+ // If the conversion following the call to the conversion function
+ // is interesting, add it as a separate step.
+ if (Best->FinalConversion.First || Best->FinalConversion.Second ||
+ Best->FinalConversion.Third) {
+ ImplicitConversionSequence ICS;
+ ICS.setStandard();
+ ICS.Standard = Best->FinalConversion;
+ Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
+ }
+}
+
+/// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
+/// a function with a pointer return type contains a 'return false;' statement.
+/// In C++11, 'false' is not a null pointer, so this breaks the build of any
+/// code using that header.
+///
+/// Work around this by treating 'return false;' as zero-initializing the result
+/// if it's used in a pointer-returning function in a system header.
+static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
+ const InitializedEntity &Entity,
+ const Expr *Init) {
+ return S.getLangOpts().CPlusPlus11 &&
+ Entity.getKind() == InitializedEntity::EK_Result &&
+ Entity.getType()->isPointerType() &&
+ isa<CXXBoolLiteralExpr>(Init) &&
+ !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
+ S.getSourceManager().isInSystemHeader(Init->getExprLoc());
+}
+
+/// The non-zero enum values here are indexes into diagnostic alternatives.
+enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
+
+/// Determines whether this expression is an acceptable ICR source.
+static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
+ bool isAddressOf, bool &isWeakAccess) {
+ // Skip parens.
+ e = e->IgnoreParens();
+
+ // Skip address-of nodes.
+ if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
+ if (op->getOpcode() == UO_AddrOf)
+ return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
+ isWeakAccess);
+
+ // Skip certain casts.
+ } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
+ switch (ce->getCastKind()) {
+ case CK_Dependent:
+ case CK_BitCast:
+ case CK_LValueBitCast:
+ case CK_NoOp:
+ return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
+
+ case CK_ArrayToPointerDecay:
+ return IIK_nonscalar;
+
+ case CK_NullToPointer:
+ return IIK_okay;
+
+ default:
+ break;
+ }
+
+ // If we have a declaration reference, it had better be a local variable.
+ } else if (isa<DeclRefExpr>(e)) {
+ // set isWeakAccess to true, to mean that there will be an implicit
+ // load which requires a cleanup.
+ if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
+ isWeakAccess = true;
+
+ if (!isAddressOf) return IIK_nonlocal;
+
+ VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
+ if (!var) return IIK_nonlocal;
+
+ return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
+
+ // If we have a conditional operator, check both sides.
+ } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
+ if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
+ isWeakAccess))
+ return iik;
+
+ return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
+
+ // These are never scalar.
+ } else if (isa<ArraySubscriptExpr>(e)) {
+ return IIK_nonscalar;
+
+ // Otherwise, it needs to be a null pointer constant.
+ } else {
+ return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
+ ? IIK_okay : IIK_nonlocal);
+ }
+
+ return IIK_nonlocal;
+}
+
+/// Check whether the given expression is a valid operand for an
+/// indirect copy/restore.
+static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
+ assert(src->isRValue());
+ bool isWeakAccess = false;
+ InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
+ // If isWeakAccess to true, there will be an implicit
+ // load which requires a cleanup.
+ if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
+ S.ExprNeedsCleanups = true;
+
+ if (iik == IIK_okay) return;
+
+ S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
+ << ((unsigned) iik - 1) // shift index into diagnostic explanations
+ << src->getSourceRange();
+}
+
+/// \brief Determine whether we have compatible array types for the
+/// purposes of GNU by-copy array initialization.
+static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
+ const ArrayType *Source) {
+ // If the source and destination array types are equivalent, we're
+ // done.
+ if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
+ return true;
+
+ // Make sure that the element types are the same.
+ if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
+ return false;
+
+ // The only mismatch we allow is when the destination is an
+ // incomplete array type and the source is a constant array type.
+ return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
+}
+
+static bool tryObjCWritebackConversion(Sema &S,
+ InitializationSequence &Sequence,
+ const InitializedEntity &Entity,
+ Expr *Initializer) {
+ bool ArrayDecay = false;
+ QualType ArgType = Initializer->getType();
+ QualType ArgPointee;
+ if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
+ ArrayDecay = true;
+ ArgPointee = ArgArrayType->getElementType();
+ ArgType = S.Context.getPointerType(ArgPointee);
+ }
+
+ // Handle write-back conversion.
+ QualType ConvertedArgType;
+ if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
+ ConvertedArgType))
+ return false;
+
+ // We should copy unless we're passing to an argument explicitly
+ // marked 'out'.
+ bool ShouldCopy = true;
+ if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
+ ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
+
+ // Do we need an lvalue conversion?
+ if (ArrayDecay || Initializer->isGLValue()) {
+ ImplicitConversionSequence ICS;
+ ICS.setStandard();
+ ICS.Standard.setAsIdentityConversion();
+
+ QualType ResultType;
+ if (ArrayDecay) {
+ ICS.Standard.First = ICK_Array_To_Pointer;
+ ResultType = S.Context.getPointerType(ArgPointee);
+ } else {
+ ICS.Standard.First = ICK_Lvalue_To_Rvalue;
+ ResultType = Initializer->getType().getNonLValueExprType(S.Context);
+ }
+
+ Sequence.AddConversionSequenceStep(ICS, ResultType);
+ }
+
+ Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
+ return true;
+}
+
+static bool TryOCLSamplerInitialization(Sema &S,
+ InitializationSequence &Sequence,
+ QualType DestType,
+ Expr *Initializer) {
+ if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
+ !Initializer->isIntegerConstantExpr(S.getASTContext()))
+ return false;
+
+ Sequence.AddOCLSamplerInitStep(DestType);
+ return true;
+}
+
+//
+// OpenCL 1.2 spec, s6.12.10
+//
+// The event argument can also be used to associate the
+// async_work_group_copy with a previous async copy allowing
+// an event to be shared by multiple async copies; otherwise
+// event should be zero.
+//
+static bool TryOCLZeroEventInitialization(Sema &S,
+ InitializationSequence &Sequence,
+ QualType DestType,
+ Expr *Initializer) {
+ if (!S.getLangOpts().OpenCL || !DestType->isEventT() ||
+ !Initializer->isIntegerConstantExpr(S.getASTContext()) ||
+ (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0))
+ return false;
+
+ Sequence.AddOCLZeroEventStep(DestType);
+ return true;
+}
+
+InitializationSequence::InitializationSequence(Sema &S,
+ const InitializedEntity &Entity,
+ const InitializationKind &Kind,
+ MultiExprArg Args,
+ bool TopLevelOfInitList)
+ : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
+ InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList);
+}
+
+void InitializationSequence::InitializeFrom(Sema &S,
+ const InitializedEntity &Entity,
+ const InitializationKind &Kind,
+ MultiExprArg Args,
+ bool TopLevelOfInitList) {
+ ASTContext &Context = S.Context;
+
+ // Eliminate non-overload placeholder types in the arguments. We
+ // need to do this before checking whether types are dependent
+ // because lowering a pseudo-object expression might well give us
+ // something of dependent type.
+ for (unsigned I = 0, E = Args.size(); I != E; ++I)
+ if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
+ // FIXME: should we be doing this here?
+ ExprResult result = S.CheckPlaceholderExpr(Args[I]);
+ if (result.isInvalid()) {
+ SetFailed(FK_PlaceholderType);
+ return;
+ }
+ Args[I] = result.get();
+ }
+
+ // C++0x [dcl.init]p16:
+ // The semantics of initializers are as follows. The destination type is
+ // the type of the object or reference being initialized and the source
+ // type is the type of the initializer expression. The source type is not
+ // defined when the initializer is a braced-init-list or when it is a
+ // parenthesized list of expressions.
+ QualType DestType = Entity.getType();
+
+ if (DestType->isDependentType() ||
+ Expr::hasAnyTypeDependentArguments(Args)) {
+ SequenceKind = DependentSequence;
+ return;
+ }
+
+ // Almost everything is a normal sequence.
+ setSequenceKind(NormalSequence);
+
+ QualType SourceType;
+ Expr *Initializer = nullptr;
+ if (Args.size() == 1) {
+ Initializer = Args[0];
+ if (S.getLangOpts().ObjC1) {
+ if (S.CheckObjCBridgeRelatedConversions(Initializer->getLocStart(),
+ DestType, Initializer->getType(),
+ Initializer) ||
+ S.ConversionToObjCStringLiteralCheck(DestType, Initializer))
+ Args[0] = Initializer;
+ }
+ if (!isa<InitListExpr>(Initializer))
+ SourceType = Initializer->getType();
+ }
+
+ // - If the initializer is a (non-parenthesized) braced-init-list, the
+ // object is list-initialized (8.5.4).
+ if (Kind.getKind() != InitializationKind::IK_Direct) {
+ if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
+ TryListInitialization(S, Entity, Kind, InitList, *this);
+ return;
+ }
+ }
+
+ // - If the destination type is a reference type, see 8.5.3.
+ if (DestType->isReferenceType()) {
+ // C++0x [dcl.init.ref]p1:
+ // A variable declared to be a T& or T&&, that is, "reference to type T"
+ // (8.3.2), shall be initialized by an object, or function, of type T or
+ // by an object that can be converted into a T.
+ // (Therefore, multiple arguments are not permitted.)
+ if (Args.size() != 1)
+ SetFailed(FK_TooManyInitsForReference);
+ else
+ TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
+ return;
+ }
+
+ // - If the initializer is (), the object is value-initialized.
+ if (Kind.getKind() == InitializationKind::IK_Value ||
+ (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
+ TryValueInitialization(S, Entity, Kind, *this);
+ return;
+ }
+
+ // Handle default initialization.
+ if (Kind.getKind() == InitializationKind::IK_Default) {
+ TryDefaultInitialization(S, Entity, Kind, *this);
+ return;
+ }
+
+ // - If the destination type is an array of characters, an array of
+ // char16_t, an array of char32_t, or an array of wchar_t, and the
+ // initializer is a string literal, see 8.5.2.
+ // - Otherwise, if the destination type is an array, the program is
+ // ill-formed.
+ if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
+ if (Initializer && isa<VariableArrayType>(DestAT)) {
+ SetFailed(FK_VariableLengthArrayHasInitializer);
+ return;
+ }
+
+ if (Initializer) {
+ switch (IsStringInit(Initializer, DestAT, Context)) {
+ case SIF_None:
+ TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
+ return;
+ case SIF_NarrowStringIntoWideChar:
+ SetFailed(FK_NarrowStringIntoWideCharArray);
+ return;
+ case SIF_WideStringIntoChar:
+ SetFailed(FK_WideStringIntoCharArray);
+ return;
+ case SIF_IncompatWideStringIntoWideChar:
+ SetFailed(FK_IncompatWideStringIntoWideChar);
+ return;
+ case SIF_Other:
+ break;
+ }
+ }
+
+ // Note: as an GNU C extension, we allow initialization of an
+ // array from a compound literal that creates an array of the same
+ // type, so long as the initializer has no side effects.
+ if (!S.getLangOpts().CPlusPlus && Initializer &&
+ isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
+ Initializer->getType()->isArrayType()) {
+ const ArrayType *SourceAT
+ = Context.getAsArrayType(Initializer->getType());
+ if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
+ SetFailed(FK_ArrayTypeMismatch);
+ else if (Initializer->HasSideEffects(S.Context))
+ SetFailed(FK_NonConstantArrayInit);
+ else {
+ AddArrayInitStep(DestType);
+ }
+ }
+ // Note: as a GNU C++ extension, we allow list-initialization of a
+ // class member of array type from a parenthesized initializer list.
+ else if (S.getLangOpts().CPlusPlus &&
+ Entity.getKind() == InitializedEntity::EK_Member &&
+ Initializer && isa<InitListExpr>(Initializer)) {
+ TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
+ *this);
+ AddParenthesizedArrayInitStep(DestType);
+ } else if (DestAT->getElementType()->isCharType())
+ SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
+ else if (IsWideCharCompatible(DestAT->getElementType(), Context))
+ SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
+ else
+ SetFailed(FK_ArrayNeedsInitList);
+
+ return;
+ }
+
+ // Determine whether we should consider writeback conversions for
+ // Objective-C ARC.
+ bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
+ Entity.isParameterKind();
+
+ // We're at the end of the line for C: it's either a write-back conversion
+ // or it's a C assignment. There's no need to check anything else.
+ if (!S.getLangOpts().CPlusPlus) {
+ // If allowed, check whether this is an Objective-C writeback conversion.
+ if (allowObjCWritebackConversion &&
+ tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
+ return;
+ }
+
+ if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
+ return;
+
+ if (TryOCLZeroEventInitialization(S, *this, DestType, Initializer))
+ return;
+
+ // Handle initialization in C
+ AddCAssignmentStep(DestType);
+ MaybeProduceObjCObject(S, *this, Entity);
+ return;
+ }
+
+ assert(S.getLangOpts().CPlusPlus);
+
+ // - If the destination type is a (possibly cv-qualified) class type:
+ if (DestType->isRecordType()) {
+ // - If the initialization is direct-initialization, or if it is
+ // copy-initialization where the cv-unqualified version of the
+ // source type is the same class as, or a derived class of, the
+ // class of the destination, constructors are considered. [...]
+ if (Kind.getKind() == InitializationKind::IK_Direct ||
+ (Kind.getKind() == InitializationKind::IK_Copy &&
+ (Context.hasSameUnqualifiedType(SourceType, DestType) ||
+ S.IsDerivedFrom(SourceType, DestType))))
+ TryConstructorInitialization(S, Entity, Kind, Args,
+ DestType, *this);
+ // - Otherwise (i.e., for the remaining copy-initialization cases),
+ // user-defined conversion sequences that can convert from the source
+ // type to the destination type or (when a conversion function is
+ // used) to a derived class thereof are enumerated as described in
+ // 13.3.1.4, and the best one is chosen through overload resolution
+ // (13.3).
+ else
+ TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
+ TopLevelOfInitList);
+ return;
+ }
+
+ if (Args.size() > 1) {
+ SetFailed(FK_TooManyInitsForScalar);
+ return;
+ }
+ assert(Args.size() == 1 && "Zero-argument case handled above");
+
+ // - Otherwise, if the source type is a (possibly cv-qualified) class
+ // type, conversion functions are considered.
+ if (!SourceType.isNull() && SourceType->isRecordType()) {
+ // For a conversion to _Atomic(T) from either T or a class type derived
+ // from T, initialize the T object then convert to _Atomic type.
+ bool NeedAtomicConversion = false;
+ if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
+ if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
+ S.IsDerivedFrom(SourceType, Atomic->getValueType())) {
+ DestType = Atomic->getValueType();
+ NeedAtomicConversion = true;
+ }
+ }
+
+ TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
+ TopLevelOfInitList);
+ MaybeProduceObjCObject(S, *this, Entity);
+ if (!Failed() && NeedAtomicConversion)
+ AddAtomicConversionStep(Entity.getType());
+ return;
+ }
+
+ // - Otherwise, the initial value of the object being initialized is the
+ // (possibly converted) value of the initializer expression. Standard
+ // conversions (Clause 4) will be used, if necessary, to convert the
+ // initializer expression to the cv-unqualified version of the
+ // destination type; no user-defined conversions are considered.
+
+ ImplicitConversionSequence ICS
+ = S.TryImplicitConversion(Initializer, DestType,
+ /*SuppressUserConversions*/true,
+ /*AllowExplicitConversions*/ false,
+ /*InOverloadResolution*/ false,
+ /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
+ allowObjCWritebackConversion);
+
+ if (ICS.isStandard() &&
+ ICS.Standard.Second == ICK_Writeback_Conversion) {
+ // Objective-C ARC writeback conversion.
+
+ // We should copy unless we're passing to an argument explicitly
+ // marked 'out'.
+ bool ShouldCopy = true;
+ if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
+ ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
+
+ // If there was an lvalue adjustment, add it as a separate conversion.
+ if (ICS.Standard.First == ICK_Array_To_Pointer ||
+ ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
+ ImplicitConversionSequence LvalueICS;
+ LvalueICS.setStandard();
+ LvalueICS.Standard.setAsIdentityConversion();
+ LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
+ LvalueICS.Standard.First = ICS.Standard.First;
+ AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
+ }
+
+ AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
+ } else if (ICS.isBad()) {
+ DeclAccessPair dap;
+ if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
+ AddZeroInitializationStep(Entity.getType());
+ } else if (Initializer->getType() == Context.OverloadTy &&
+ !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
+ false, dap))
+ SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
+ else
+ SetFailed(InitializationSequence::FK_ConversionFailed);
+ } else {
+ AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
+
+ MaybeProduceObjCObject(S, *this, Entity);
+ }
+}
+
+InitializationSequence::~InitializationSequence() {
+ for (SmallVectorImpl<Step>::iterator Step = Steps.begin(),
+ StepEnd = Steps.end();
+ Step != StepEnd; ++Step)
+ Step->Destroy();
+}
+
+//===----------------------------------------------------------------------===//
+// Perform initialization
+//===----------------------------------------------------------------------===//
+static Sema::AssignmentAction
+getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
+ switch(Entity.getKind()) {
+ case InitializedEntity::EK_Variable:
+ case InitializedEntity::EK_New:
+ case InitializedEntity::EK_Exception:
+ case InitializedEntity::EK_Base:
+ case InitializedEntity::EK_Delegating:
+ return Sema::AA_Initializing;
+
+ case InitializedEntity::EK_Parameter:
+ if (Entity.getDecl() &&
+ isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
+ return Sema::AA_Sending;
+
+ return Sema::AA_Passing;
+
+ case InitializedEntity::EK_Parameter_CF_Audited:
+ if (Entity.getDecl() &&
+ isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
+ return Sema::AA_Sending;
+
+ return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
+
+ case InitializedEntity::EK_Result:
+ return Sema::AA_Returning;
+
+ case InitializedEntity::EK_Temporary:
+ case InitializedEntity::EK_RelatedResult:
+ // FIXME: Can we tell apart casting vs. converting?
+ return Sema::AA_Casting;
+
+ case InitializedEntity::EK_Member:
+ case InitializedEntity::EK_ArrayElement:
+ case InitializedEntity::EK_VectorElement:
+ case InitializedEntity::EK_ComplexElement:
+ case InitializedEntity::EK_BlockElement:
+ case InitializedEntity::EK_LambdaCapture:
+ case InitializedEntity::EK_CompoundLiteralInit:
+ return Sema::AA_Initializing;
+ }
+
+ llvm_unreachable("Invalid EntityKind!");
+}
+
+/// \brief Whether we should bind a created object as a temporary when
+/// initializing the given entity.
+static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
+ switch (Entity.getKind()) {
+ case InitializedEntity::EK_ArrayElement:
+ case InitializedEntity::EK_Member:
+ case InitializedEntity::EK_Result:
+ case InitializedEntity::EK_New:
+ case InitializedEntity::EK_Variable:
+ case InitializedEntity::EK_Base:
+ case InitializedEntity::EK_Delegating:
+ case InitializedEntity::EK_VectorElement:
+ case InitializedEntity::EK_ComplexElement:
+ case InitializedEntity::EK_Exception:
+ case InitializedEntity::EK_BlockElement:
+ case InitializedEntity::EK_LambdaCapture:
+ case InitializedEntity::EK_CompoundLiteralInit:
+ return false;
+
+ case InitializedEntity::EK_Parameter:
+ case InitializedEntity::EK_Parameter_CF_Audited:
+ case InitializedEntity::EK_Temporary:
+ case InitializedEntity::EK_RelatedResult:
+ return true;
+ }
+
+ llvm_unreachable("missed an InitializedEntity kind?");
+}
+
+/// \brief Whether the given entity, when initialized with an object
+/// created for that initialization, requires destruction.
+static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
+ switch (Entity.getKind()) {
+ case InitializedEntity::EK_Result:
+ case InitializedEntity::EK_New:
+ case InitializedEntity::EK_Base:
+ case InitializedEntity::EK_Delegating:
+ case InitializedEntity::EK_VectorElement:
+ case InitializedEntity::EK_ComplexElement:
+ case InitializedEntity::EK_BlockElement:
+ case InitializedEntity::EK_LambdaCapture:
+ return false;
+
+ case InitializedEntity::EK_Member:
+ case InitializedEntity::EK_Variable:
+ case InitializedEntity::EK_Parameter:
+ case InitializedEntity::EK_Parameter_CF_Audited:
+ case InitializedEntity::EK_Temporary:
+ case InitializedEntity::EK_ArrayElement:
+ case InitializedEntity::EK_Exception:
+ case InitializedEntity::EK_CompoundLiteralInit:
+ case InitializedEntity::EK_RelatedResult:
+ return true;
+ }
+
+ llvm_unreachable("missed an InitializedEntity kind?");
+}
+
+/// \brief Look for copy and move constructors and constructor templates, for
+/// copying an object via direct-initialization (per C++11 [dcl.init]p16).
+static void LookupCopyAndMoveConstructors(Sema &S,
+ OverloadCandidateSet &CandidateSet,
+ CXXRecordDecl *Class,
+ Expr *CurInitExpr) {
+ DeclContext::lookup_result R = S.LookupConstructors(Class);
+ // The container holding the constructors can under certain conditions
+ // be changed while iterating (e.g. because of deserialization).
+ // To be safe we copy the lookup results to a new container.
+ SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
+ for (SmallVectorImpl<NamedDecl *>::iterator
+ CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
+ NamedDecl *D = *CI;
+ CXXConstructorDecl *Constructor = nullptr;
+
+ if ((Constructor = dyn_cast<CXXConstructorDecl>(D))) {
+ // Handle copy/moveconstructors, only.
+ if (!Constructor || Constructor->isInvalidDecl() ||
+ !Constructor->isCopyOrMoveConstructor() ||
+ !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
+ continue;
+
+ DeclAccessPair FoundDecl
+ = DeclAccessPair::make(Constructor, Constructor->getAccess());
+ S.AddOverloadCandidate(Constructor, FoundDecl,
+ CurInitExpr, CandidateSet);
+ continue;
+ }
+
+ // Handle constructor templates.
+ FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(D);
+ if (ConstructorTmpl->isInvalidDecl())
+ continue;
+
+ Constructor = cast<CXXConstructorDecl>(
+ ConstructorTmpl->getTemplatedDecl());
+ if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
+ continue;
+
+ // FIXME: Do we need to limit this to copy-constructor-like
+ // candidates?
+ DeclAccessPair FoundDecl
+ = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
+ S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, nullptr,
+ CurInitExpr, CandidateSet, true);
+ }
+}
+
+/// \brief Get the location at which initialization diagnostics should appear.
+static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
+ Expr *Initializer) {
+ switch (Entity.getKind()) {
+ case InitializedEntity::EK_Result:
+ return Entity.getReturnLoc();
+
+ case InitializedEntity::EK_Exception:
+ return Entity.getThrowLoc();
+
+ case InitializedEntity::EK_Variable:
+ return Entity.getDecl()->getLocation();
+
+ case InitializedEntity::EK_LambdaCapture:
+ return Entity.getCaptureLoc();
+
+ case InitializedEntity::EK_ArrayElement:
+ case InitializedEntity::EK_Member:
+ case InitializedEntity::EK_Parameter:
+ case InitializedEntity::EK_Parameter_CF_Audited:
+ case InitializedEntity::EK_Temporary:
+ case InitializedEntity::EK_New:
+ case InitializedEntity::EK_Base:
+ case InitializedEntity::EK_Delegating:
+ case InitializedEntity::EK_VectorElement:
+ case InitializedEntity::EK_ComplexElement:
+ case InitializedEntity::EK_BlockElement:
+ case InitializedEntity::EK_CompoundLiteralInit:
+ case InitializedEntity::EK_RelatedResult:
+ return Initializer->getLocStart();
+ }
+ llvm_unreachable("missed an InitializedEntity kind?");
+}
+
+/// \brief Make a (potentially elidable) temporary copy of the object
+/// provided by the given initializer by calling the appropriate copy
+/// constructor.
+///
+/// \param S The Sema object used for type-checking.
+///
+/// \param T The type of the temporary object, which must either be
+/// the type of the initializer expression or a superclass thereof.
+///
+/// \param Entity The entity being initialized.
+///
+/// \param CurInit The initializer expression.
+///
+/// \param IsExtraneousCopy Whether this is an "extraneous" copy that
+/// is permitted in C++03 (but not C++0x) when binding a reference to
+/// an rvalue.
+///
+/// \returns An expression that copies the initializer expression into
+/// a temporary object, or an error expression if a copy could not be
+/// created.
+static ExprResult CopyObject(Sema &S,
+ QualType T,
+ const InitializedEntity &Entity,
+ ExprResult CurInit,
+ bool IsExtraneousCopy) {
+ if (CurInit.isInvalid())
+ return CurInit;
+ // Determine which class type we're copying to.
+ Expr *CurInitExpr = (Expr *)CurInit.get();
+ CXXRecordDecl *Class = nullptr;
+ if (const RecordType *Record = T->getAs<RecordType>())
+ Class = cast<CXXRecordDecl>(Record->getDecl());
+ if (!Class)
+ return CurInit;
+
+ // C++0x [class.copy]p32:
+ // When certain criteria are met, an implementation is allowed to
+ // omit the copy/move construction of a class object, even if the
+ // copy/move constructor and/or destructor for the object have
+ // side effects. [...]
+ // - when a temporary class object that has not been bound to a
+ // reference (12.2) would be copied/moved to a class object
+ // with the same cv-unqualified type, the copy/move operation
+ // can be omitted by constructing the temporary object
+ // directly into the target of the omitted copy/move
+ //
+ // Note that the other three bullets are handled elsewhere. Copy
+ // elision for return statements and throw expressions are handled as part
+ // of constructor initialization, while copy elision for exception handlers
+ // is handled by the run-time.
+ bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
+ SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
+
+ // Make sure that the type we are copying is complete.
+ if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
+ return CurInit;
+
+ // Perform overload resolution using the class's copy/move constructors.
+ // Only consider constructors and constructor templates. Per
+ // C++0x [dcl.init]p16, second bullet to class types, this initialization
+ // is direct-initialization.
+ OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
+ LookupCopyAndMoveConstructors(S, CandidateSet, Class, CurInitExpr);
+
+ bool HadMultipleCandidates = (CandidateSet.size() > 1);
+
+ OverloadCandidateSet::iterator Best;
+ switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
+ case OR_Success:
+ break;
+
+ case OR_No_Viable_Function:
+ S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
+ ? diag::ext_rvalue_to_reference_temp_copy_no_viable
+ : diag::err_temp_copy_no_viable)
+ << (int)Entity.getKind() << CurInitExpr->getType()
+ << CurInitExpr->getSourceRange();
+ CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
+ if (!IsExtraneousCopy || S.isSFINAEContext())
+ return ExprError();
+ return CurInit;
+
+ case OR_Ambiguous:
+ S.Diag(Loc, diag::err_temp_copy_ambiguous)
+ << (int)Entity.getKind() << CurInitExpr->getType()
+ << CurInitExpr->getSourceRange();
+ CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
+ return ExprError();
+
+ case OR_Deleted:
+ S.Diag(Loc, diag::err_temp_copy_deleted)
+ << (int)Entity.getKind() << CurInitExpr->getType()
+ << CurInitExpr->getSourceRange();
+ S.NoteDeletedFunction(Best->Function);
+ return ExprError();
+ }
+
+ CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
+ SmallVector<Expr*, 8> ConstructorArgs;
+ CurInit.get(); // Ownership transferred into MultiExprArg, below.
+
+ S.CheckConstructorAccess(Loc, Constructor, Entity,
+ Best->FoundDecl.getAccess(), IsExtraneousCopy);
+
+ if (IsExtraneousCopy) {
+ // If this is a totally extraneous copy for C++03 reference
+ // binding purposes, just return the original initialization
+ // expression. We don't generate an (elided) copy operation here
+ // because doing so would require us to pass down a flag to avoid
+ // infinite recursion, where each step adds another extraneous,
+ // elidable copy.
+
+ // Instantiate the default arguments of any extra parameters in
+ // the selected copy constructor, as if we were going to create a
+ // proper call to the copy constructor.
+ for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
+ ParmVarDecl *Parm = Constructor->getParamDecl(I);
+ if (S.RequireCompleteType(Loc, Parm->getType(),
+ diag::err_call_incomplete_argument))
+ break;
+
+ // Build the default argument expression; we don't actually care
+ // if this succeeds or not, because this routine will complain
+ // if there was a problem.
+ S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
+ }
+
+ return CurInitExpr;
+ }
+
+ // Determine the arguments required to actually perform the
+ // constructor call (we might have derived-to-base conversions, or
+ // the copy constructor may have default arguments).
+ if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
+ return ExprError();
+
+ // Actually perform the constructor call.
+ CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
+ ConstructorArgs,
+ HadMultipleCandidates,
+ /*ListInit*/ false,
+ /*StdInitListInit*/ false,
+ /*ZeroInit*/ false,
+ CXXConstructExpr::CK_Complete,
+ SourceRange());
+
+ // If we're supposed to bind temporaries, do so.
+ if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
+ CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
+ return CurInit;
+}
+
+/// \brief Check whether elidable copy construction for binding a reference to
+/// a temporary would have succeeded if we were building in C++98 mode, for
+/// -Wc++98-compat.
+static void CheckCXX98CompatAccessibleCopy(Sema &S,
+ const InitializedEntity &Entity,
+ Expr *CurInitExpr) {
+ assert(S.getLangOpts().CPlusPlus11);
+
+ const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
+ if (!Record)
+ return;
+
+ SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
+ if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
+ return;
+
+ // Find constructors which would have been considered.
+ OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
+ LookupCopyAndMoveConstructors(
+ S, CandidateSet, cast<CXXRecordDecl>(Record->getDecl()), CurInitExpr);
+
+ // Perform overload resolution.
+ OverloadCandidateSet::iterator Best;
+ OverloadingResult OR = CandidateSet.BestViableFunction(S, Loc, Best);
+
+ PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
+ << OR << (int)Entity.getKind() << CurInitExpr->getType()
+ << CurInitExpr->getSourceRange();
+
+ switch (OR) {
+ case OR_Success:
+ S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
+ Entity, Best->FoundDecl.getAccess(), Diag);
+ // FIXME: Check default arguments as far as that's possible.
+ break;
+
+ case OR_No_Viable_Function:
+ S.Diag(Loc, Diag);
+ CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
+ break;
+
+ case OR_Ambiguous:
+ S.Diag(Loc, Diag);
+ CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
+ break;
+
+ case OR_Deleted:
+ S.Diag(Loc, Diag);
+ S.NoteDeletedFunction(Best->Function);
+ break;
+ }
+}
+
+void InitializationSequence::PrintInitLocationNote(Sema &S,
+ const InitializedEntity &Entity) {
+ if (Entity.isParameterKind() && Entity.getDecl()) {
+ if (Entity.getDecl()->getLocation().isInvalid())
+ return;
+
+ if (Entity.getDecl()->getDeclName())
+ S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
+ << Entity.getDecl()->getDeclName();
+ else
+ S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
+ }
+ else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
+ Entity.getMethodDecl())
+ S.Diag(Entity.getMethodDecl()->getLocation(),
+ diag::note_method_return_type_change)
+ << Entity.getMethodDecl()->getDeclName();
+}
+
+static bool isReferenceBinding(const InitializationSequence::Step &s) {
+ return s.Kind == InitializationSequence::SK_BindReference ||
+ s.Kind == InitializationSequence::SK_BindReferenceToTemporary;
+}
+
+/// Returns true if the parameters describe a constructor initialization of
+/// an explicit temporary object, e.g. "Point(x, y)".
+static bool isExplicitTemporary(const InitializedEntity &Entity,
+ const InitializationKind &Kind,
+ unsigned NumArgs) {
+ switch (Entity.getKind()) {
+ case InitializedEntity::EK_Temporary:
+ case InitializedEntity::EK_CompoundLiteralInit:
+ case InitializedEntity::EK_RelatedResult:
+ break;
+ default:
+ return false;
+ }
+
+ switch (Kind.getKind()) {
+ case InitializationKind::IK_DirectList:
+ return true;
+ // FIXME: Hack to work around cast weirdness.
+ case InitializationKind::IK_Direct:
+ case InitializationKind::IK_Value:
+ return NumArgs != 1;
+ default:
+ return false;
+ }
+}
+
+static ExprResult
+PerformConstructorInitialization(Sema &S,
+ const InitializedEntity &Entity,
+ const InitializationKind &Kind,
+ MultiExprArg Args,
+ const InitializationSequence::Step& Step,
+ bool &ConstructorInitRequiresZeroInit,
+ bool IsListInitialization,
+ bool IsStdInitListInitialization,
+ SourceLocation LBraceLoc,
+ SourceLocation RBraceLoc) {
+ unsigned NumArgs = Args.size();
+ CXXConstructorDecl *Constructor
+ = cast<CXXConstructorDecl>(Step.Function.Function);
+ bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
+
+ // Build a call to the selected constructor.
+ SmallVector<Expr*, 8> ConstructorArgs;
+ SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
+ ? Kind.getEqualLoc()
+ : Kind.getLocation();
+
+ if (Kind.getKind() == InitializationKind::IK_Default) {
+ // Force even a trivial, implicit default constructor to be
+ // semantically checked. We do this explicitly because we don't build
+ // the definition for completely trivial constructors.
+ assert(Constructor->getParent() && "No parent class for constructor.");
+ if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
+ Constructor->isTrivial() && !Constructor->isUsed(false))
+ S.DefineImplicitDefaultConstructor(Loc, Constructor);
+ }
+
+ ExprResult CurInit((Expr *)nullptr);
+
+ // C++ [over.match.copy]p1:
+ // - When initializing a temporary to be bound to the first parameter
+ // of a constructor that takes a reference to possibly cv-qualified
+ // T as its first argument, called with a single argument in the
+ // context of direct-initialization, explicit conversion functions
+ // are also considered.
+ bool AllowExplicitConv = Kind.AllowExplicit() && !Kind.isCopyInit() &&
+ Args.size() == 1 &&
+ Constructor->isCopyOrMoveConstructor();
+
+ // Determine the arguments required to actually perform the constructor
+ // call.
+ if (S.CompleteConstructorCall(Constructor, Args,
+ Loc, ConstructorArgs,
+ AllowExplicitConv,
+ IsListInitialization))
+ return ExprError();
+
+
+ if (isExplicitTemporary(Entity, Kind, NumArgs)) {
+ // An explicitly-constructed temporary, e.g., X(1, 2).
+ S.MarkFunctionReferenced(Loc, Constructor);
+ if (S.DiagnoseUseOfDecl(Constructor, Loc))
+ return ExprError();
+
+ TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
+ if (!TSInfo)
+ TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
+ SourceRange ParenOrBraceRange =
+ (Kind.getKind() == InitializationKind::IK_DirectList)
+ ? SourceRange(LBraceLoc, RBraceLoc)
+ : Kind.getParenRange();
+
+ CurInit = new (S.Context) CXXTemporaryObjectExpr(
+ S.Context, Constructor, TSInfo, ConstructorArgs, ParenOrBraceRange,
+ HadMultipleCandidates, IsListInitialization,
+ IsStdInitListInitialization, ConstructorInitRequiresZeroInit);
+ } else {
+ CXXConstructExpr::ConstructionKind ConstructKind =
+ CXXConstructExpr::CK_Complete;
+
+ if (Entity.getKind() == InitializedEntity::EK_Base) {
+ ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
+ CXXConstructExpr::CK_VirtualBase :
+ CXXConstructExpr::CK_NonVirtualBase;
+ } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
+ ConstructKind = CXXConstructExpr::CK_Delegating;
+ }
+
+ // Only get the parenthesis or brace range if it is a list initialization or
+ // direct construction.
+ SourceRange ParenOrBraceRange;
+ if (IsListInitialization)
+ ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
+ else if (Kind.getKind() == InitializationKind::IK_Direct)
+ ParenOrBraceRange = Kind.getParenRange();
+
+ // If the entity allows NRVO, mark the construction as elidable
+ // unconditionally.
+ if (Entity.allowsNRVO())
+ CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
+ Constructor, /*Elidable=*/true,
+ ConstructorArgs,
+ HadMultipleCandidates,
+ IsListInitialization,
+ IsStdInitListInitialization,
+ ConstructorInitRequiresZeroInit,
+ ConstructKind,
+ ParenOrBraceRange);
+ else
+ CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
+ Constructor,
+ ConstructorArgs,
+ HadMultipleCandidates,
+ IsListInitialization,
+ IsStdInitListInitialization,
+ ConstructorInitRequiresZeroInit,
+ ConstructKind,
+ ParenOrBraceRange);
+ }
+ if (CurInit.isInvalid())
+ return ExprError();
+
+ // Only check access if all of that succeeded.
+ S.CheckConstructorAccess(Loc, Constructor, Entity,
+ Step.Function.FoundDecl.getAccess());
+ if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
+ return ExprError();
+
+ if (shouldBindAsTemporary(Entity))
+ CurInit = S.MaybeBindToTemporary(CurInit.get());
+
+ return CurInit;
+}
+
+/// Determine whether the specified InitializedEntity definitely has a lifetime
+/// longer than the current full-expression. Conservatively returns false if
+/// it's unclear.
+static bool
+InitializedEntityOutlivesFullExpression(const InitializedEntity &Entity) {
+ const InitializedEntity *Top = &Entity;
+ while (Top->getParent())
+ Top = Top->getParent();
+
+ switch (Top->getKind()) {
+ case InitializedEntity::EK_Variable:
+ case InitializedEntity::EK_Result:
+ case InitializedEntity::EK_Exception:
+ case InitializedEntity::EK_Member:
+ case InitializedEntity::EK_New:
+ case InitializedEntity::EK_Base:
+ case InitializedEntity::EK_Delegating:
+ return true;
+
+ case InitializedEntity::EK_ArrayElement:
+ case InitializedEntity::EK_VectorElement:
+ case InitializedEntity::EK_BlockElement:
+ case InitializedEntity::EK_ComplexElement:
+ // Could not determine what the full initialization is. Assume it might not
+ // outlive the full-expression.
+ return false;
+
+ case InitializedEntity::EK_Parameter:
+ case InitializedEntity::EK_Parameter_CF_Audited:
+ case InitializedEntity::EK_Temporary:
+ case InitializedEntity::EK_LambdaCapture:
+ case InitializedEntity::EK_CompoundLiteralInit:
+ case InitializedEntity::EK_RelatedResult:
+ // The entity being initialized might not outlive the full-expression.
+ return false;
+ }
+
+ llvm_unreachable("unknown entity kind");
+}
+
+/// Determine the declaration which an initialized entity ultimately refers to,
+/// for the purpose of lifetime-extending a temporary bound to a reference in
+/// the initialization of \p Entity.
+static const InitializedEntity *getEntityForTemporaryLifetimeExtension(
+ const InitializedEntity *Entity,
+ const InitializedEntity *FallbackDecl = nullptr) {
+ // C++11 [class.temporary]p5:
+ switch (Entity->getKind()) {
+ case InitializedEntity::EK_Variable:
+ // The temporary [...] persists for the lifetime of the reference
+ return Entity;
+
+ case InitializedEntity::EK_Member:
+ // For subobjects, we look at the complete object.
+ if (Entity->getParent())
+ return getEntityForTemporaryLifetimeExtension(Entity->getParent(),
+ Entity);
+
+ // except:
+ // -- A temporary bound to a reference member in a constructor's
+ // ctor-initializer persists until the constructor exits.
+ return Entity;
+
+ case InitializedEntity::EK_Parameter:
+ case InitializedEntity::EK_Parameter_CF_Audited:
+ // -- A temporary bound to a reference parameter in a function call
+ // persists until the completion of the full-expression containing
+ // the call.
+ case InitializedEntity::EK_Result:
+ // -- The lifetime of a temporary bound to the returned value in a
+ // function return statement is not extended; the temporary is
+ // destroyed at the end of the full-expression in the return statement.
+ case InitializedEntity::EK_New:
+ // -- A temporary bound to a reference in a new-initializer persists
+ // until the completion of the full-expression containing the
+ // new-initializer.
+ return nullptr;
+
+ case InitializedEntity::EK_Temporary:
+ case InitializedEntity::EK_CompoundLiteralInit:
+ case InitializedEntity::EK_RelatedResult:
+ // We don't yet know the storage duration of the surrounding temporary.
+ // Assume it's got full-expression duration for now, it will patch up our
+ // storage duration if that's not correct.
+ return nullptr;
+
+ case InitializedEntity::EK_ArrayElement:
+ // For subobjects, we look at the complete object.
+ return getEntityForTemporaryLifetimeExtension(Entity->getParent(),
+ FallbackDecl);
+
+ case InitializedEntity::EK_Base:
+ case InitializedEntity::EK_Delegating:
+ // We can reach this case for aggregate initialization in a constructor:
+ // struct A { int &&r; };
+ // struct B : A { B() : A{0} {} };
+ // In this case, use the innermost field decl as the context.
+ return FallbackDecl;
+
+ case InitializedEntity::EK_BlockElement:
+ case InitializedEntity::EK_LambdaCapture:
+ case InitializedEntity::EK_Exception:
+ case InitializedEntity::EK_VectorElement:
+ case InitializedEntity::EK_ComplexElement:
+ return nullptr;
+ }
+ llvm_unreachable("unknown entity kind");
+}
+
+static void performLifetimeExtension(Expr *Init,
+ const InitializedEntity *ExtendingEntity);
+
+/// Update a glvalue expression that is used as the initializer of a reference
+/// to note that its lifetime is extended.
+/// \return \c true if any temporary had its lifetime extended.
+static bool
+performReferenceExtension(Expr *Init,
+ const InitializedEntity *ExtendingEntity) {
+ // Walk past any constructs which we can lifetime-extend across.
+ Expr *Old;
+ do {
+ Old = Init;
+
+ if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
+ if (ILE->getNumInits() == 1 && ILE->isGLValue()) {
+ // This is just redundant braces around an initializer. Step over it.
+ Init = ILE->getInit(0);
+ }
+ }
+
+ // Step over any subobject adjustments; we may have a materialized
+ // temporary inside them.
+ SmallVector<const Expr *, 2> CommaLHSs;
+ SmallVector<SubobjectAdjustment, 2> Adjustments;
+ Init = const_cast<Expr *>(
+ Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
+
+ // Per current approach for DR1376, look through casts to reference type
+ // when performing lifetime extension.
+ if (CastExpr *CE = dyn_cast<CastExpr>(Init))
+ if (CE->getSubExpr()->isGLValue())
+ Init = CE->getSubExpr();
+
+ // FIXME: Per DR1213, subscripting on an array temporary produces an xvalue.
+ // It's unclear if binding a reference to that xvalue extends the array
+ // temporary.
+ } while (Init != Old);
+
+ if (MaterializeTemporaryExpr *ME = dyn_cast<MaterializeTemporaryExpr>(Init)) {
+ // Update the storage duration of the materialized temporary.
+ // FIXME: Rebuild the expression instead of mutating it.
+ ME->setExtendingDecl(ExtendingEntity->getDecl(),
+ ExtendingEntity->allocateManglingNumber());
+ performLifetimeExtension(ME->GetTemporaryExpr(), ExtendingEntity);
+ return true;
+ }
+
+ return false;
+}
+
+/// Update a prvalue expression that is going to be materialized as a
+/// lifetime-extended temporary.
+static void performLifetimeExtension(Expr *Init,
+ const InitializedEntity *ExtendingEntity) {
+ // Dig out the expression which constructs the extended temporary.
+ SmallVector<const Expr *, 2> CommaLHSs;
+ SmallVector<SubobjectAdjustment, 2> Adjustments;
+ Init = const_cast<Expr *>(
+ Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
+
+ if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
+ Init = BTE->getSubExpr();
+
+ if (CXXStdInitializerListExpr *ILE =
+ dyn_cast<CXXStdInitializerListExpr>(Init)) {
+ performReferenceExtension(ILE->getSubExpr(), ExtendingEntity);
+ return;
+ }
+
+ if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
+ if (ILE->getType()->isArrayType()) {
+ for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
+ performLifetimeExtension(ILE->getInit(I), ExtendingEntity);
+ return;
+ }
+
+ if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
+ assert(RD->isAggregate() && "aggregate init on non-aggregate");
+
+ // If we lifetime-extend a braced initializer which is initializing an
+ // aggregate, and that aggregate contains reference members which are
+ // bound to temporaries, those temporaries are also lifetime-extended.
+ if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
+ ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
+ performReferenceExtension(ILE->getInit(0), ExtendingEntity);
+ else {
+ unsigned Index = 0;
+ for (const auto *I : RD->fields()) {
+ if (Index >= ILE->getNumInits())
+ break;
+ if (I->isUnnamedBitfield())
+ continue;
+ Expr *SubInit = ILE->getInit(Index);
+ if (I->getType()->isReferenceType())
+ performReferenceExtension(SubInit, ExtendingEntity);
+ else if (isa<InitListExpr>(SubInit) ||
+ isa<CXXStdInitializerListExpr>(SubInit))
+ // This may be either aggregate-initialization of a member or
+ // initialization of a std::initializer_list object. Either way,
+ // we should recursively lifetime-extend that initializer.
+ performLifetimeExtension(SubInit, ExtendingEntity);
+ ++Index;
+ }
+ }
+ }
+ }
+}
+
+static void warnOnLifetimeExtension(Sema &S, const InitializedEntity &Entity,
+ const Expr *Init, bool IsInitializerList,
+ const ValueDecl *ExtendingDecl) {
+ // Warn if a field lifetime-extends a temporary.
+ if (isa<FieldDecl>(ExtendingDecl)) {
+ if (IsInitializerList) {
+ S.Diag(Init->getExprLoc(), diag::warn_dangling_std_initializer_list)
+ << /*at end of constructor*/true;
+ return;
+ }
+
+ bool IsSubobjectMember = false;
+ for (const InitializedEntity *Ent = Entity.getParent(); Ent;
+ Ent = Ent->getParent()) {
+ if (Ent->getKind() != InitializedEntity::EK_Base) {
+ IsSubobjectMember = true;
+ break;
+ }
+ }
+ S.Diag(Init->getExprLoc(),
+ diag::warn_bind_ref_member_to_temporary)
+ << ExtendingDecl << Init->getSourceRange()
+ << IsSubobjectMember << IsInitializerList;
+ if (IsSubobjectMember)
+ S.Diag(ExtendingDecl->getLocation(),
+ diag::note_ref_subobject_of_member_declared_here);
+ else
+ S.Diag(ExtendingDecl->getLocation(),
+ diag::note_ref_or_ptr_member_declared_here)
+ << /*is pointer*/false;
+ }
+}
+
+static void DiagnoseNarrowingInInitList(Sema &S,
+ const ImplicitConversionSequence &ICS,
+ QualType PreNarrowingType,
+ QualType EntityType,
+ const Expr *PostInit);
+
+/// Provide warnings when std::move is used on construction.
+static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
+ bool IsReturnStmt) {
+ if (!InitExpr)
+ return;
+
+ QualType DestType = InitExpr->getType();
+ if (!DestType->isRecordType())
+ return;
+
+ unsigned DiagID = 0;
+ if (IsReturnStmt) {
+ const CXXConstructExpr *CCE =
+ dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
+ if (!CCE || CCE->getNumArgs() != 1)
+ return;
+
+ if (!CCE->getConstructor()->isCopyOrMoveConstructor())
+ return;
+
+ InitExpr = CCE->getArg(0)->IgnoreImpCasts();
+
+ // Remove implicit temporary and constructor nodes.
+ if (const MaterializeTemporaryExpr *MTE =
+ dyn_cast<MaterializeTemporaryExpr>(InitExpr)) {
+ InitExpr = MTE->GetTemporaryExpr()->IgnoreImpCasts();
+ while (const CXXConstructExpr *CCE =
+ dyn_cast<CXXConstructExpr>(InitExpr)) {
+ if (isa<CXXTemporaryObjectExpr>(CCE))
+ return;
+ if (CCE->getNumArgs() == 0)
+ return;
+ if (CCE->getNumArgs() > 1 && !isa<CXXDefaultArgExpr>(CCE->getArg(1)))
+ return;
+ InitExpr = CCE->getArg(0);
+ }
+ InitExpr = InitExpr->IgnoreImpCasts();
+ DiagID = diag::warn_redundant_move_on_return;
+ }
+ }
+
+ // Find the std::move call and get the argument.
+ const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
+ if (!CE || CE->getNumArgs() != 1)
+ return;
+
+ const FunctionDecl *MoveFunction = CE->getDirectCallee();
+ if (!MoveFunction || !MoveFunction->isInStdNamespace() ||
+ !MoveFunction->getIdentifier() ||
+ !MoveFunction->getIdentifier()->isStr("move"))
+ return;
+
+ const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
+
+ if (IsReturnStmt) {
+ const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
+ if (!DRE || DRE->refersToEnclosingVariableOrCapture())
+ return;
+
+ const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
+ if (!VD || !VD->hasLocalStorage())
+ return;
+
+ if (!VD->getType()->isRecordType())
+ return;
+
+ if (DiagID == 0) {
+ DiagID = S.Context.hasSameUnqualifiedType(DestType, VD->getType())
+ ? diag::warn_pessimizing_move_on_return
+ : diag::warn_redundant_move_on_return;
+ }
+ } else {
+ DiagID = diag::warn_pessimizing_move_on_initialization;
+ const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
+ if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType())
+ return;
+ }
+
+ S.Diag(CE->getLocStart(), DiagID);
+
+ // Get all the locations for a fix-it. Don't emit the fix-it if any location
+ // is within a macro.
+ SourceLocation CallBegin = CE->getCallee()->getLocStart();
+ if (CallBegin.isMacroID())
+ return;
+ SourceLocation RParen = CE->getRParenLoc();
+ if (RParen.isMacroID())
+ return;
+ SourceLocation LParen;
+ SourceLocation ArgLoc = Arg->getLocStart();
+
+ // Special testing for the argument location. Since the fix-it needs the
+ // location right before the argument, the argument location can be in a
+ // macro only if it is at the beginning of the macro.
+ while (ArgLoc.isMacroID() &&
+ S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
+ ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).first;
+ }
+
+ if (LParen.isMacroID())
+ return;
+
+ LParen = ArgLoc.getLocWithOffset(-1);
+
+ S.Diag(CE->getLocStart(), diag::note_remove_move)
+ << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
+ << FixItHint::CreateRemoval(SourceRange(RParen, RParen));
+}
+
+ExprResult
+InitializationSequence::Perform(Sema &S,
+ const InitializedEntity &Entity,
+ const InitializationKind &Kind,
+ MultiExprArg Args,
+ QualType *ResultType) {
+ if (Failed()) {
+ Diagnose(S, Entity, Kind, Args);
+ return ExprError();
+ }
+ if (!ZeroInitializationFixit.empty()) {
+ unsigned DiagID = diag::err_default_init_const;
+ if (Decl *D = Entity.getDecl())
+ if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>())
+ DiagID = diag::ext_default_init_const;
+
+ // The initialization would have succeeded with this fixit. Since the fixit
+ // is on the error, we need to build a valid AST in this case, so this isn't
+ // handled in the Failed() branch above.
+ QualType DestType = Entity.getType();
+ S.Diag(Kind.getLocation(), DiagID)
+ << DestType << (bool)DestType->getAs<RecordType>()
+ << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
+ ZeroInitializationFixit);
+ }
+
+ if (getKind() == DependentSequence) {
+ // If the declaration is a non-dependent, incomplete array type
+ // that has an initializer, then its type will be completed once
+ // the initializer is instantiated.
+ if (ResultType && !Entity.getType()->isDependentType() &&
+ Args.size() == 1) {
+ QualType DeclType = Entity.getType();
+ if (const IncompleteArrayType *ArrayT
+ = S.Context.getAsIncompleteArrayType(DeclType)) {
+ // FIXME: We don't currently have the ability to accurately
+ // compute the length of an initializer list without
+ // performing full type-checking of the initializer list
+ // (since we have to determine where braces are implicitly
+ // introduced and such). So, we fall back to making the array
+ // type a dependently-sized array type with no specified
+ // bound.
+ if (isa<InitListExpr>((Expr *)Args[0])) {
+ SourceRange Brackets;
+
+ // Scavange the location of the brackets from the entity, if we can.
+ if (DeclaratorDecl *DD = Entity.getDecl()) {
+ if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
+ TypeLoc TL = TInfo->getTypeLoc();
+ if (IncompleteArrayTypeLoc ArrayLoc =
+ TL.getAs<IncompleteArrayTypeLoc>())
+ Brackets = ArrayLoc.getBracketsRange();
+ }
+ }
+
+ *ResultType
+ = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
+ /*NumElts=*/nullptr,
+ ArrayT->getSizeModifier(),
+ ArrayT->getIndexTypeCVRQualifiers(),
+ Brackets);
+ }
+
+ }
+ }
+ if (Kind.getKind() == InitializationKind::IK_Direct &&
+ !Kind.isExplicitCast()) {
+ // Rebuild the ParenListExpr.
+ SourceRange ParenRange = Kind.getParenRange();
+ return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
+ Args);
+ }
+ assert(Kind.getKind() == InitializationKind::IK_Copy ||
+ Kind.isExplicitCast() ||
+ Kind.getKind() == InitializationKind::IK_DirectList);
+ return ExprResult(Args[0]);
+ }
+
+ // No steps means no initialization.
+ if (Steps.empty())
+ return ExprResult((Expr *)nullptr);
+
+ if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
+ Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
+ !Entity.isParameterKind()) {
+ // Produce a C++98 compatibility warning if we are initializing a reference
+ // from an initializer list. For parameters, we produce a better warning
+ // elsewhere.
+ Expr *Init = Args[0];
+ S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init)
+ << Init->getSourceRange();
+ }
+
+ // Diagnose cases where we initialize a pointer to an array temporary, and the
+ // pointer obviously outlives the temporary.
+ if (Args.size() == 1 && Args[0]->getType()->isArrayType() &&
+ Entity.getType()->isPointerType() &&
+ InitializedEntityOutlivesFullExpression(Entity)) {
+ Expr *Init = Args[0];
+ Expr::LValueClassification Kind = Init->ClassifyLValue(S.Context);
+ if (Kind == Expr::LV_ClassTemporary || Kind == Expr::LV_ArrayTemporary)
+ S.Diag(Init->getLocStart(), diag::warn_temporary_array_to_pointer_decay)
+ << Init->getSourceRange();
+ }
+
+ QualType DestType = Entity.getType().getNonReferenceType();
+ // FIXME: Ugly hack around the fact that Entity.getType() is not
+ // the same as Entity.getDecl()->getType() in cases involving type merging,
+ // and we want latter when it makes sense.
+ if (ResultType)
+ *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
+ Entity.getType();
+
+ ExprResult CurInit((Expr *)nullptr);
+
+ // For initialization steps that start with a single initializer,
+ // grab the only argument out the Args and place it into the "current"
+ // initializer.
+ switch (Steps.front().Kind) {
+ case SK_ResolveAddressOfOverloadedFunction:
+ case SK_CastDerivedToBaseRValue:
+ case SK_CastDerivedToBaseXValue:
+ case SK_CastDerivedToBaseLValue:
+ case SK_BindReference:
+ case SK_BindReferenceToTemporary:
+ case SK_ExtraneousCopyToTemporary:
+ case SK_UserConversion:
+ case SK_QualificationConversionLValue:
+ case SK_QualificationConversionXValue:
+ case SK_QualificationConversionRValue:
+ case SK_AtomicConversion:
+ case SK_LValueToRValue:
+ case SK_ConversionSequence:
+ case SK_ConversionSequenceNoNarrowing:
+ case SK_ListInitialization:
+ case SK_UnwrapInitList:
+ case SK_RewrapInitList:
+ case SK_CAssignment:
+ case SK_StringInit:
+ case SK_ObjCObjectConversion:
+ case SK_ArrayInit:
+ case SK_ParenthesizedArrayInit:
+ case SK_PassByIndirectCopyRestore:
+ case SK_PassByIndirectRestore:
+ case SK_ProduceObjCObject:
+ case SK_StdInitializerList:
+ case SK_OCLSamplerInit:
+ case SK_OCLZeroEvent: {
+ assert(Args.size() == 1);
+ CurInit = Args[0];
+ if (!CurInit.get()) return ExprError();
+ break;
+ }
+
+ case SK_ConstructorInitialization:
+ case SK_ConstructorInitializationFromList:
+ case SK_StdInitializerListConstructorCall:
+ case SK_ZeroInitialization:
+ break;
+ }
+
+ // Walk through the computed steps for the initialization sequence,
+ // performing the specified conversions along the way.
+ bool ConstructorInitRequiresZeroInit = false;
+ for (step_iterator Step = step_begin(), StepEnd = step_end();
+ Step != StepEnd; ++Step) {
+ if (CurInit.isInvalid())
+ return ExprError();
+
+ QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
+
+ switch (Step->Kind) {
+ case SK_ResolveAddressOfOverloadedFunction:
+ // Overload resolution determined which function invoke; update the
+ // initializer to reflect that choice.
+ S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
+ if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
+ return ExprError();
+ CurInit = S.FixOverloadedFunctionReference(CurInit,
+ Step->Function.FoundDecl,
+ Step->Function.Function);
+ break;
+
+ case SK_CastDerivedToBaseRValue:
+ case SK_CastDerivedToBaseXValue:
+ case SK_CastDerivedToBaseLValue: {
+ // We have a derived-to-base cast that produces either an rvalue or an
+ // lvalue. Perform that cast.
+
+ CXXCastPath BasePath;
+
+ // Casts to inaccessible base classes are allowed with C-style casts.
+ bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
+ if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
+ CurInit.get()->getLocStart(),
+ CurInit.get()->getSourceRange(),
+ &BasePath, IgnoreBaseAccess))
+ return ExprError();
+
+ ExprValueKind VK =
+ Step->Kind == SK_CastDerivedToBaseLValue ?
+ VK_LValue :
+ (Step->Kind == SK_CastDerivedToBaseXValue ?
+ VK_XValue :
+ VK_RValue);
+ CurInit =
+ ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase,
+ CurInit.get(), &BasePath, VK);
+ break;
+ }
+
+ case SK_BindReference:
+ // References cannot bind to bit-fields (C++ [dcl.init.ref]p5).
+ if (CurInit.get()->refersToBitField()) {
+ // We don't necessarily have an unambiguous source bit-field.
+ FieldDecl *BitField = CurInit.get()->getSourceBitField();
+ S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
+ << Entity.getType().isVolatileQualified()
+ << (BitField ? BitField->getDeclName() : DeclarationName())
+ << (BitField != nullptr)
+ << CurInit.get()->getSourceRange();
+ if (BitField)
+ S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
+
+ return ExprError();
+ }
+
+ if (CurInit.get()->refersToVectorElement()) {
+ // References cannot bind to vector elements.
+ S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
+ << Entity.getType().isVolatileQualified()
+ << CurInit.get()->getSourceRange();
+ PrintInitLocationNote(S, Entity);
+ return ExprError();
+ }
+
+ // Reference binding does not have any corresponding ASTs.
+
+ // Check exception specifications
+ if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
+ return ExprError();
+
+ // Even though we didn't materialize a temporary, the binding may still
+ // extend the lifetime of a temporary. This happens if we bind a reference
+ // to the result of a cast to reference type.
+ if (const InitializedEntity *ExtendingEntity =
+ getEntityForTemporaryLifetimeExtension(&Entity))
+ if (performReferenceExtension(CurInit.get(), ExtendingEntity))
+ warnOnLifetimeExtension(S, Entity, CurInit.get(),
+ /*IsInitializerList=*/false,
+ ExtendingEntity->getDecl());
+
+ break;
+
+ case SK_BindReferenceToTemporary: {
+ // Make sure the "temporary" is actually an rvalue.
+ assert(CurInit.get()->isRValue() && "not a temporary");
+
+ // Check exception specifications
+ if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
+ return ExprError();
+
+ // Materialize the temporary into memory.
+ MaterializeTemporaryExpr *MTE = new (S.Context) MaterializeTemporaryExpr(
+ Entity.getType().getNonReferenceType(), CurInit.get(),
+ Entity.getType()->isLValueReferenceType());
+
+ // Maybe lifetime-extend the temporary's subobjects to match the
+ // entity's lifetime.
+ if (const InitializedEntity *ExtendingEntity =
+ getEntityForTemporaryLifetimeExtension(&Entity))
+ if (performReferenceExtension(MTE, ExtendingEntity))
+ warnOnLifetimeExtension(S, Entity, CurInit.get(), /*IsInitializerList=*/false,
+ ExtendingEntity->getDecl());
+
+ // If we're binding to an Objective-C object that has lifetime, we
+ // need cleanups. Likewise if we're extending this temporary to automatic
+ // storage duration -- we need to register its cleanup during the
+ // full-expression's cleanups.
+ if ((S.getLangOpts().ObjCAutoRefCount &&
+ MTE->getType()->isObjCLifetimeType()) ||
+ (MTE->getStorageDuration() == SD_Automatic &&
+ MTE->getType().isDestructedType()))
+ S.ExprNeedsCleanups = true;
+
+ CurInit = MTE;
+ break;
+ }
+
+ case SK_ExtraneousCopyToTemporary:
+ CurInit = CopyObject(S, Step->Type, Entity, CurInit,
+ /*IsExtraneousCopy=*/true);
+ break;
+
+ case SK_UserConversion: {
+ // We have a user-defined conversion that invokes either a constructor
+ // or a conversion function.
+ CastKind CastKind;
+ bool IsCopy = false;
+ FunctionDecl *Fn = Step->Function.Function;
+ DeclAccessPair FoundFn = Step->Function.FoundDecl;
+ bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
+ bool CreatedObject = false;
+ if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
+ // Build a call to the selected constructor.
+ SmallVector<Expr*, 8> ConstructorArgs;
+ SourceLocation Loc = CurInit.get()->getLocStart();
+ CurInit.get(); // Ownership transferred into MultiExprArg, below.
+
+ // Determine the arguments required to actually perform the constructor
+ // call.
+ Expr *Arg = CurInit.get();
+ if (S.CompleteConstructorCall(Constructor,
+ MultiExprArg(&Arg, 1),
+ Loc, ConstructorArgs))
+ return ExprError();
+
+ // Build an expression that constructs a temporary.
+ CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
+ ConstructorArgs,
+ HadMultipleCandidates,
+ /*ListInit*/ false,
+ /*StdInitListInit*/ false,
+ /*ZeroInit*/ false,
+ CXXConstructExpr::CK_Complete,
+ SourceRange());
+ if (CurInit.isInvalid())
+ return ExprError();
+
+ S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
+ FoundFn.getAccess());
+ if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
+ return ExprError();
+
+ CastKind = CK_ConstructorConversion;
+ QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
+ if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
+ S.IsDerivedFrom(SourceType, Class))
+ IsCopy = true;
+
+ CreatedObject = true;
+ } else {
+ // Build a call to the conversion function.
+ CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
+ S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
+ FoundFn);
+ if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
+ return ExprError();
+
+ // FIXME: Should we move this initialization into a separate
+ // derived-to-base conversion? I believe the answer is "no", because
+ // we don't want to turn off access control here for c-style casts.
+ ExprResult CurInitExprRes =
+ S.PerformObjectArgumentInitialization(CurInit.get(),
+ /*Qualifier=*/nullptr,
+ FoundFn, Conversion);
+ if(CurInitExprRes.isInvalid())
+ return ExprError();
+ CurInit = CurInitExprRes;
+
+ // Build the actual call to the conversion function.
+ CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
+ HadMultipleCandidates);
+ if (CurInit.isInvalid() || !CurInit.get())
+ return ExprError();
+
+ CastKind = CK_UserDefinedConversion;
+
+ CreatedObject = Conversion->getReturnType()->isRecordType();
+ }
+
+ bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back());
+ bool MaybeBindToTemp = RequiresCopy || shouldBindAsTemporary(Entity);
+
+ if (!MaybeBindToTemp && CreatedObject && shouldDestroyTemporary(Entity)) {
+ QualType T = CurInit.get()->getType();
+ if (const RecordType *Record = T->getAs<RecordType>()) {
+ CXXDestructorDecl *Destructor
+ = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
+ S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
+ S.PDiag(diag::err_access_dtor_temp) << T);
+ S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor);
+ if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart()))
+ return ExprError();
+ }
+ }
+
+ CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(),
+ CastKind, CurInit.get(), nullptr,
+ CurInit.get()->getValueKind());
+ if (MaybeBindToTemp)
+ CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
+ if (RequiresCopy)
+ CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
+ CurInit, /*IsExtraneousCopy=*/false);
+ break;
+ }
+
+ case SK_QualificationConversionLValue:
+ case SK_QualificationConversionXValue:
+ case SK_QualificationConversionRValue: {
+ // Perform a qualification conversion; these can never go wrong.
+ ExprValueKind VK =
+ Step->Kind == SK_QualificationConversionLValue ?
+ VK_LValue :
+ (Step->Kind == SK_QualificationConversionXValue ?
+ VK_XValue :
+ VK_RValue);
+ CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK);
+ break;
+ }
+
+ case SK_AtomicConversion: {
+ assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic");
+ CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
+ CK_NonAtomicToAtomic, VK_RValue);
+ break;
+ }
+
+ case SK_LValueToRValue: {
+ assert(CurInit.get()->isGLValue() && "cannot load from a prvalue");
+ CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
+ CK_LValueToRValue, CurInit.get(),
+ /*BasePath=*/nullptr, VK_RValue);
+ break;
+ }
+
+ case SK_ConversionSequence:
+ case SK_ConversionSequenceNoNarrowing: {
+ Sema::CheckedConversionKind CCK
+ = Kind.isCStyleCast()? Sema::CCK_CStyleCast
+ : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
+ : Kind.isExplicitCast()? Sema::CCK_OtherCast
+ : Sema::CCK_ImplicitConversion;
+ ExprResult CurInitExprRes =
+ S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
+ getAssignmentAction(Entity), CCK);
+ if (CurInitExprRes.isInvalid())
+ return ExprError();
+ CurInit = CurInitExprRes;
+
+ if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
+ S.getLangOpts().CPlusPlus && !CurInit.get()->isValueDependent())
+ DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
+ CurInit.get());
+ break;
+ }
+
+ case SK_ListInitialization: {
+ InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
+ // If we're not initializing the top-level entity, we need to create an
+ // InitializeTemporary entity for our target type.
+ QualType Ty = Step->Type;
+ bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
+ InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
+ InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
+ InitListChecker PerformInitList(S, InitEntity,
+ InitList, Ty, /*VerifyOnly=*/false);
+ if (PerformInitList.HadError())
+ return ExprError();
+
+ // Hack: We must update *ResultType if available in order to set the
+ // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
+ // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
+ if (ResultType &&
+ ResultType->getNonReferenceType()->isIncompleteArrayType()) {
+ if ((*ResultType)->isRValueReferenceType())
+ Ty = S.Context.getRValueReferenceType(Ty);
+ else if ((*ResultType)->isLValueReferenceType())
+ Ty = S.Context.getLValueReferenceType(Ty,
+ (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
+ *ResultType = Ty;
+ }
+
+ InitListExpr *StructuredInitList =
+ PerformInitList.getFullyStructuredList();
+ CurInit.get();
+ CurInit = shouldBindAsTemporary(InitEntity)
+ ? S.MaybeBindToTemporary(StructuredInitList)
+ : StructuredInitList;
+ break;
+ }
+
+ case SK_ConstructorInitializationFromList: {
+ // When an initializer list is passed for a parameter of type "reference
+ // to object", we don't get an EK_Temporary entity, but instead an
+ // EK_Parameter entity with reference type.
+ // FIXME: This is a hack. What we really should do is create a user
+ // conversion step for this case, but this makes it considerably more
+ // complicated. For now, this will do.
+ InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
+ Entity.getType().getNonReferenceType());
+ bool UseTemporary = Entity.getType()->isReferenceType();
+ assert(Args.size() == 1 && "expected a single argument for list init");
+ InitListExpr *InitList = cast<InitListExpr>(Args[0]);
+ S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
+ << InitList->getSourceRange();
+ MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
+ CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
+ Entity,
+ Kind, Arg, *Step,
+ ConstructorInitRequiresZeroInit,
+ /*IsListInitialization*/true,
+ /*IsStdInitListInit*/false,
+ InitList->getLBraceLoc(),
+ InitList->getRBraceLoc());
+ break;
+ }
+
+ case SK_UnwrapInitList:
+ CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
+ break;
+
+ case SK_RewrapInitList: {
+ Expr *E = CurInit.get();
+ InitListExpr *Syntactic = Step->WrappingSyntacticList;
+ InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
+ Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
+ ILE->setSyntacticForm(Syntactic);
+ ILE->setType(E->getType());
+ ILE->setValueKind(E->getValueKind());
+ CurInit = ILE;
+ break;
+ }
+
+ case SK_ConstructorInitialization:
+ case SK_StdInitializerListConstructorCall: {
+ // When an initializer list is passed for a parameter of type "reference
+ // to object", we don't get an EK_Temporary entity, but instead an
+ // EK_Parameter entity with reference type.
+ // FIXME: This is a hack. What we really should do is create a user
+ // conversion step for this case, but this makes it considerably more
+ // complicated. For now, this will do.
+ InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
+ Entity.getType().getNonReferenceType());
+ bool UseTemporary = Entity.getType()->isReferenceType();
+ bool IsStdInitListInit =
+ Step->Kind == SK_StdInitializerListConstructorCall;
+ CurInit = PerformConstructorInitialization(
+ S, UseTemporary ? TempEntity : Entity, Kind, Args, *Step,
+ ConstructorInitRequiresZeroInit,
+ /*IsListInitialization*/IsStdInitListInit,
+ /*IsStdInitListInitialization*/IsStdInitListInit,
+ /*LBraceLoc*/SourceLocation(),
+ /*RBraceLoc*/SourceLocation());
+ break;
+ }
+
+ case SK_ZeroInitialization: {
+ step_iterator NextStep = Step;
+ ++NextStep;
+ if (NextStep != StepEnd &&
+ (NextStep->Kind == SK_ConstructorInitialization ||
+ NextStep->Kind == SK_ConstructorInitializationFromList)) {
+ // The need for zero-initialization is recorded directly into
+ // the call to the object's constructor within the next step.
+ ConstructorInitRequiresZeroInit = true;
+ } else if (Kind.getKind() == InitializationKind::IK_Value &&
+ S.getLangOpts().CPlusPlus &&
+ !Kind.isImplicitValueInit()) {
+ TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
+ if (!TSInfo)
+ TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
+ Kind.getRange().getBegin());
+
+ CurInit = new (S.Context) CXXScalarValueInitExpr(
+ TSInfo->getType().getNonLValueExprType(S.Context), TSInfo,
+ Kind.getRange().getEnd());
+ } else {
+ CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
+ }
+ break;
+ }
+
+ case SK_CAssignment: {
+ QualType SourceType = CurInit.get()->getType();
+ ExprResult Result = CurInit;
+ Sema::AssignConvertType ConvTy =
+ S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
+ Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
+ if (Result.isInvalid())
+ return ExprError();
+ CurInit = Result;
+
+ // If this is a call, allow conversion to a transparent union.
+ ExprResult CurInitExprRes = CurInit;
+ if (ConvTy != Sema::Compatible &&
+ Entity.isParameterKind() &&
+ S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
+ == Sema::Compatible)
+ ConvTy = Sema::Compatible;
+ if (CurInitExprRes.isInvalid())
+ return ExprError();
+ CurInit = CurInitExprRes;
+
+ bool Complained;
+ if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
+ Step->Type, SourceType,
+ CurInit.get(),
+ getAssignmentAction(Entity, true),
+ &Complained)) {
+ PrintInitLocationNote(S, Entity);
+ return ExprError();
+ } else if (Complained)
+ PrintInitLocationNote(S, Entity);
+ break;
+ }
+
+ case SK_StringInit: {
+ QualType Ty = Step->Type;
+ CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
+ S.Context.getAsArrayType(Ty), S);
+ break;
+ }
+
+ case SK_ObjCObjectConversion:
+ CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
+ CK_ObjCObjectLValueCast,
+ CurInit.get()->getValueKind());
+ break;
+
+ case SK_ArrayInit:
+ // Okay: we checked everything before creating this step. Note that
+ // this is a GNU extension.
+ S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
+ << Step->Type << CurInit.get()->getType()
+ << CurInit.get()->getSourceRange();
+
+ // If the destination type is an incomplete array type, update the
+ // type accordingly.
+ if (ResultType) {
+ if (const IncompleteArrayType *IncompleteDest
+ = S.Context.getAsIncompleteArrayType(Step->Type)) {
+ if (const ConstantArrayType *ConstantSource
+ = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
+ *ResultType = S.Context.getConstantArrayType(
+ IncompleteDest->getElementType(),
+ ConstantSource->getSize(),
+ ArrayType::Normal, 0);
+ }
+ }
+ }
+ break;
+
+ case SK_ParenthesizedArrayInit:
+ // Okay: we checked everything before creating this step. Note that
+ // this is a GNU extension.
+ S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
+ << CurInit.get()->getSourceRange();
+ break;
+
+ case SK_PassByIndirectCopyRestore:
+ case SK_PassByIndirectRestore:
+ checkIndirectCopyRestoreSource(S, CurInit.get());
+ CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
+ CurInit.get(), Step->Type,
+ Step->Kind == SK_PassByIndirectCopyRestore);
+ break;
+
+ case SK_ProduceObjCObject:
+ CurInit =
+ ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject,
+ CurInit.get(), nullptr, VK_RValue);
+ break;
+
+ case SK_StdInitializerList: {
+ S.Diag(CurInit.get()->getExprLoc(),
+ diag::warn_cxx98_compat_initializer_list_init)
+ << CurInit.get()->getSourceRange();
+
+ // Materialize the temporary into memory.
+ MaterializeTemporaryExpr *MTE = new (S.Context)
+ MaterializeTemporaryExpr(CurInit.get()->getType(), CurInit.get(),
+ /*BoundToLvalueReference=*/false);
+
+ // Maybe lifetime-extend the array temporary's subobjects to match the
+ // entity's lifetime.
+ if (const InitializedEntity *ExtendingEntity =
+ getEntityForTemporaryLifetimeExtension(&Entity))
+ if (performReferenceExtension(MTE, ExtendingEntity))
+ warnOnLifetimeExtension(S, Entity, CurInit.get(),
+ /*IsInitializerList=*/true,
+ ExtendingEntity->getDecl());
+
+ // Wrap it in a construction of a std::initializer_list<T>.
+ CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
+
+ // Bind the result, in case the library has given initializer_list a
+ // non-trivial destructor.
+ if (shouldBindAsTemporary(Entity))
+ CurInit = S.MaybeBindToTemporary(CurInit.get());
+ break;
+ }
+
+ case SK_OCLSamplerInit: {
+ assert(Step->Type->isSamplerT() &&
+ "Sampler initialization on non-sampler type.");
+
+ QualType SourceType = CurInit.get()->getType();
+
+ if (Entity.isParameterKind()) {
+ if (!SourceType->isSamplerT())
+ S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
+ << SourceType;
+ } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
+ llvm_unreachable("Invalid EntityKind!");
+ }
+
+ break;
+ }
+ case SK_OCLZeroEvent: {
+ assert(Step->Type->isEventT() &&
+ "Event initialization on non-event type.");
+
+ CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
+ CK_ZeroToOCLEvent,
+ CurInit.get()->getValueKind());
+ break;
+ }
+ }
+ }
+
+ // Diagnose non-fatal problems with the completed initialization.
+ if (Entity.getKind() == InitializedEntity::EK_Member &&
+ cast<FieldDecl>(Entity.getDecl())->isBitField())
+ S.CheckBitFieldInitialization(Kind.getLocation(),
+ cast<FieldDecl>(Entity.getDecl()),
+ CurInit.get());
+
+ // Check for std::move on construction.
+ if (const Expr *E = CurInit.get()) {
+ CheckMoveOnConstruction(S, E,
+ Entity.getKind() == InitializedEntity::EK_Result);
+ }
+
+ return CurInit;
+}
+
+/// Somewhere within T there is an uninitialized reference subobject.
+/// Dig it out and diagnose it.
+static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
+ QualType T) {
+ if (T->isReferenceType()) {
+ S.Diag(Loc, diag::err_reference_without_init)
+ << T.getNonReferenceType();
+ return true;
+ }
+
+ CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
+ if (!RD || !RD->hasUninitializedReferenceMember())
+ return false;
+
+ for (const auto *FI : RD->fields()) {
+ if (FI->isUnnamedBitfield())
+ continue;
+
+ if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
+ S.Diag(Loc, diag::note_value_initialization_here) << RD;
+ return true;
+ }
+ }
+
+ for (const auto &BI : RD->bases()) {
+ if (DiagnoseUninitializedReference(S, BI.getLocStart(), BI.getType())) {
+ S.Diag(Loc, diag::note_value_initialization_here) << RD;
+ return true;
+ }
+ }
+
+ return false;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Diagnose initialization failures
+//===----------------------------------------------------------------------===//
+
+/// Emit notes associated with an initialization that failed due to a
+/// "simple" conversion failure.
+static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
+ Expr *op) {
+ QualType destType = entity.getType();
+ if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
+ op->getType()->isObjCObjectPointerType()) {
+
+ // Emit a possible note about the conversion failing because the
+ // operand is a message send with a related result type.
+ S.EmitRelatedResultTypeNote(op);
+
+ // Emit a possible note about a return failing because we're
+ // expecting a related result type.
+ if (entity.getKind() == InitializedEntity::EK_Result)
+ S.EmitRelatedResultTypeNoteForReturn(destType);
+ }
+}
+
+static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
+ InitListExpr *InitList) {
+ QualType DestType = Entity.getType();
+
+ QualType E;
+ if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
+ QualType ArrayType = S.Context.getConstantArrayType(
+ E.withConst(),
+ llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
+ InitList->getNumInits()),
+ clang::ArrayType::Normal, 0);
+ InitializedEntity HiddenArray =
+ InitializedEntity::InitializeTemporary(ArrayType);
+ return diagnoseListInit(S, HiddenArray, InitList);
+ }
+
+ if (DestType->isReferenceType()) {
+ // A list-initialization failure for a reference means that we tried to
+ // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
+ // inner initialization failed.
+ QualType T = DestType->getAs<ReferenceType>()->getPointeeType();
+ diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
+ SourceLocation Loc = InitList->getLocStart();
+ if (auto *D = Entity.getDecl())
+ Loc = D->getLocation();
+ S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
+ return;
+ }
+
+ InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
+ /*VerifyOnly=*/false);
+ assert(DiagnoseInitList.HadError() &&
+ "Inconsistent init list check result.");
+}
+
+bool InitializationSequence::Diagnose(Sema &S,
+ const InitializedEntity &Entity,
+ const InitializationKind &Kind,
+ ArrayRef<Expr *> Args) {
+ if (!Failed())
+ return false;
+
+ QualType DestType = Entity.getType();
+ switch (Failure) {
+ case FK_TooManyInitsForReference:
+ // FIXME: Customize for the initialized entity?
+ if (Args.empty()) {
+ // Dig out the reference subobject which is uninitialized and diagnose it.
+ // If this is value-initialization, this could be nested some way within
+ // the target type.
+ assert(Kind.getKind() == InitializationKind::IK_Value ||
+ DestType->isReferenceType());
+ bool Diagnosed =
+ DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
+ assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
+ (void)Diagnosed;
+ } else // FIXME: diagnostic below could be better!
+ S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
+ << SourceRange(Args.front()->getLocStart(), Args.back()->getLocEnd());
+ break;
+
+ case FK_ArrayNeedsInitList:
+ S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
+ break;
+ case FK_ArrayNeedsInitListOrStringLiteral:
+ S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
+ break;
+ case FK_ArrayNeedsInitListOrWideStringLiteral:
+ S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
+ break;
+ case FK_NarrowStringIntoWideCharArray:
+ S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
+ break;
+ case FK_WideStringIntoCharArray:
+ S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
+ break;
+ case FK_IncompatWideStringIntoWideChar:
+ S.Diag(Kind.getLocation(),
+ diag::err_array_init_incompat_wide_string_into_wchar);
+ break;
+ case FK_ArrayTypeMismatch:
+ case FK_NonConstantArrayInit:
+ S.Diag(Kind.getLocation(),
+ (Failure == FK_ArrayTypeMismatch
+ ? diag::err_array_init_different_type
+ : diag::err_array_init_non_constant_array))
+ << DestType.getNonReferenceType()
+ << Args[0]->getType()
+ << Args[0]->getSourceRange();
+ break;
+
+ case FK_VariableLengthArrayHasInitializer:
+ S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
+ << Args[0]->getSourceRange();
+ break;
+
+ case FK_AddressOfOverloadFailed: {
+ DeclAccessPair Found;
+ S.ResolveAddressOfOverloadedFunction(Args[0],
+ DestType.getNonReferenceType(),
+ true,
+ Found);
+ break;
+ }
+
+ case FK_ReferenceInitOverloadFailed:
+ case FK_UserConversionOverloadFailed:
+ switch (FailedOverloadResult) {
+ case OR_Ambiguous:
+ if (Failure == FK_UserConversionOverloadFailed)
+ S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
+ << Args[0]->getType() << DestType
+ << Args[0]->getSourceRange();
+ else
+ S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
+ << DestType << Args[0]->getType()
+ << Args[0]->getSourceRange();
+
+ FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
+ break;
+
+ case OR_No_Viable_Function:
+ if (!S.RequireCompleteType(Kind.getLocation(),
+ DestType.getNonReferenceType(),
+ diag::err_typecheck_nonviable_condition_incomplete,
+ Args[0]->getType(), Args[0]->getSourceRange()))
+ S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
+ << Args[0]->getType() << Args[0]->getSourceRange()
+ << DestType.getNonReferenceType();
+
+ FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
+ break;
+
+ case OR_Deleted: {
+ S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
+ << Args[0]->getType() << DestType.getNonReferenceType()
+ << Args[0]->getSourceRange();
+ OverloadCandidateSet::iterator Best;
+ OverloadingResult Ovl
+ = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
+ true);
+ if (Ovl == OR_Deleted) {
+ S.NoteDeletedFunction(Best->Function);
+ } else {
+ llvm_unreachable("Inconsistent overload resolution?");
+ }
+ break;
+ }
+
+ case OR_Success:
+ llvm_unreachable("Conversion did not fail!");
+ }
+ break;
+
+ case FK_NonConstLValueReferenceBindingToTemporary:
+ if (isa<InitListExpr>(Args[0])) {
+ S.Diag(Kind.getLocation(),
+ diag::err_lvalue_reference_bind_to_initlist)
+ << DestType.getNonReferenceType().isVolatileQualified()
+ << DestType.getNonReferenceType()
+ << Args[0]->getSourceRange();
+ break;
+ }
+ // Intentional fallthrough
+
+ case FK_NonConstLValueReferenceBindingToUnrelated:
+ S.Diag(Kind.getLocation(),
+ Failure == FK_NonConstLValueReferenceBindingToTemporary
+ ? diag::err_lvalue_reference_bind_to_temporary
+ : diag::err_lvalue_reference_bind_to_unrelated)
+ << DestType.getNonReferenceType().isVolatileQualified()
+ << DestType.getNonReferenceType()
+ << Args[0]->getType()
+ << Args[0]->getSourceRange();
+ break;
+
+ case FK_RValueReferenceBindingToLValue:
+ S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
+ << DestType.getNonReferenceType() << Args[0]->getType()
+ << Args[0]->getSourceRange();
+ break;
+
+ case FK_ReferenceInitDropsQualifiers: {
+ QualType SourceType = Args[0]->getType();
+ QualType NonRefType = DestType.getNonReferenceType();
+ Qualifiers DroppedQualifiers =
+ SourceType.getQualifiers() - NonRefType.getQualifiers();
+
+ S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
+ << SourceType
+ << NonRefType
+ << DroppedQualifiers.getCVRQualifiers()
+ << Args[0]->getSourceRange();
+ break;
+ }
+
+ case FK_ReferenceInitFailed:
+ S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
+ << DestType.getNonReferenceType()
+ << Args[0]->isLValue()
+ << Args[0]->getType()
+ << Args[0]->getSourceRange();
+ emitBadConversionNotes(S, Entity, Args[0]);
+ break;
+
+ case FK_ConversionFailed: {
+ QualType FromType = Args[0]->getType();
+ PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
+ << (int)Entity.getKind()
+ << DestType
+ << Args[0]->isLValue()
+ << FromType
+ << Args[0]->getSourceRange();
+ S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
+ S.Diag(Kind.getLocation(), PDiag);
+ emitBadConversionNotes(S, Entity, Args[0]);
+ break;
+ }
+
+ case FK_ConversionFromPropertyFailed:
+ // No-op. This error has already been reported.
+ break;
+
+ case FK_TooManyInitsForScalar: {
+ SourceRange R;
+
+ auto *InitList = dyn_cast<InitListExpr>(Args[0]);
+ if (InitList && InitList->getNumInits() == 1)
+ R = SourceRange(InitList->getInit(0)->getLocEnd(), InitList->getLocEnd());
+ else
+ R = SourceRange(Args.front()->getLocEnd(), Args.back()->getLocEnd());
+
+ R.setBegin(S.getLocForEndOfToken(R.getBegin()));
+ if (Kind.isCStyleOrFunctionalCast())
+ S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
+ << R;
+ else
+ S.Diag(Kind.getLocation(), diag::err_excess_initializers)
+ << /*scalar=*/2 << R;
+ break;
+ }
+
+ case FK_ReferenceBindingToInitList:
+ S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
+ << DestType.getNonReferenceType() << Args[0]->getSourceRange();
+ break;
+
+ case FK_InitListBadDestinationType:
+ S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
+ << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
+ break;
+
+ case FK_ListConstructorOverloadFailed:
+ case FK_ConstructorOverloadFailed: {
+ SourceRange ArgsRange;
+ if (Args.size())
+ ArgsRange = SourceRange(Args.front()->getLocStart(),
+ Args.back()->getLocEnd());
+
+ if (Failure == FK_ListConstructorOverloadFailed) {
+ assert(Args.size() == 1 &&
+ "List construction from other than 1 argument.");
+ InitListExpr *InitList = cast<InitListExpr>(Args[0]);
+ Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
+ }
+
+ // FIXME: Using "DestType" for the entity we're printing is probably
+ // bad.
+ switch (FailedOverloadResult) {
+ case OR_Ambiguous:
+ S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
+ << DestType << ArgsRange;
+ FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
+ break;
+
+ case OR_No_Viable_Function:
+ if (Kind.getKind() == InitializationKind::IK_Default &&
+ (Entity.getKind() == InitializedEntity::EK_Base ||
+ Entity.getKind() == InitializedEntity::EK_Member) &&
+ isa<CXXConstructorDecl>(S.CurContext)) {
+ // This is implicit default initialization of a member or
+ // base within a constructor. If no viable function was
+ // found, notify the user that she needs to explicitly
+ // initialize this base/member.
+ CXXConstructorDecl *Constructor
+ = cast<CXXConstructorDecl>(S.CurContext);
+ if (Entity.getKind() == InitializedEntity::EK_Base) {
+ S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
+ << (Constructor->getInheritedConstructor() ? 2 :
+ Constructor->isImplicit() ? 1 : 0)
+ << S.Context.getTypeDeclType(Constructor->getParent())
+ << /*base=*/0
+ << Entity.getType();
+
+ RecordDecl *BaseDecl
+ = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
+ ->getDecl();
+ S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
+ << S.Context.getTagDeclType(BaseDecl);
+ } else {
+ S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
+ << (Constructor->getInheritedConstructor() ? 2 :
+ Constructor->isImplicit() ? 1 : 0)
+ << S.Context.getTypeDeclType(Constructor->getParent())
+ << /*member=*/1
+ << Entity.getName();
+ S.Diag(Entity.getDecl()->getLocation(),
+ diag::note_member_declared_at);
+
+ if (const RecordType *Record
+ = Entity.getType()->getAs<RecordType>())
+ S.Diag(Record->getDecl()->getLocation(),
+ diag::note_previous_decl)
+ << S.Context.getTagDeclType(Record->getDecl());
+ }
+ break;
+ }
+
+ S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
+ << DestType << ArgsRange;
+ FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
+ break;
+
+ case OR_Deleted: {
+ OverloadCandidateSet::iterator Best;
+ OverloadingResult Ovl
+ = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
+ if (Ovl != OR_Deleted) {
+ S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
+ << true << DestType << ArgsRange;
+ llvm_unreachable("Inconsistent overload resolution?");
+ break;
+ }
+
+ // If this is a defaulted or implicitly-declared function, then
+ // it was implicitly deleted. Make it clear that the deletion was
+ // implicit.
+ if (S.isImplicitlyDeleted(Best->Function))
+ S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
+ << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
+ << DestType << ArgsRange;
+ else
+ S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
+ << true << DestType << ArgsRange;
+
+ S.NoteDeletedFunction(Best->Function);
+ break;
+ }
+
+ case OR_Success:
+ llvm_unreachable("Conversion did not fail!");
+ }
+ }
+ break;
+
+ case FK_DefaultInitOfConst:
+ if (Entity.getKind() == InitializedEntity::EK_Member &&
+ isa<CXXConstructorDecl>(S.CurContext)) {
+ // This is implicit default-initialization of a const member in
+ // a constructor. Complain that it needs to be explicitly
+ // initialized.
+ CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
+ S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
+ << (Constructor->getInheritedConstructor() ? 2 :
+ Constructor->isImplicit() ? 1 : 0)
+ << S.Context.getTypeDeclType(Constructor->getParent())
+ << /*const=*/1
+ << Entity.getName();
+ S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
+ << Entity.getName();
+ } else {
+ S.Diag(Kind.getLocation(), diag::err_default_init_const)
+ << DestType << (bool)DestType->getAs<RecordType>();
+ }
+ break;
+
+ case FK_Incomplete:
+ S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
+ diag::err_init_incomplete_type);
+ break;
+
+ case FK_ListInitializationFailed: {
+ // Run the init list checker again to emit diagnostics.
+ InitListExpr *InitList = cast<InitListExpr>(Args[0]);
+ diagnoseListInit(S, Entity, InitList);
+ break;
+ }
+
+ case FK_PlaceholderType: {
+ // FIXME: Already diagnosed!
+ break;
+ }
+
+ case FK_ExplicitConstructor: {
+ S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
+ << Args[0]->getSourceRange();
+ OverloadCandidateSet::iterator Best;
+ OverloadingResult Ovl
+ = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
+ (void)Ovl;
+ assert(Ovl == OR_Success && "Inconsistent overload resolution");
+ CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
+ S.Diag(CtorDecl->getLocation(), diag::note_constructor_declared_here);
+ break;
+ }
+ }
+
+ PrintInitLocationNote(S, Entity);
+ return true;
+}
+
+void InitializationSequence::dump(raw_ostream &OS) const {
+ switch (SequenceKind) {
+ case FailedSequence: {
+ OS << "Failed sequence: ";
+ switch (Failure) {
+ case FK_TooManyInitsForReference:
+ OS << "too many initializers for reference";
+ break;
+
+ case FK_ArrayNeedsInitList:
+ OS << "array requires initializer list";
+ break;
+
+ case FK_ArrayNeedsInitListOrStringLiteral:
+ OS << "array requires initializer list or string literal";
+ break;
+
+ case FK_ArrayNeedsInitListOrWideStringLiteral:
+ OS << "array requires initializer list or wide string literal";
+ break;
+
+ case FK_NarrowStringIntoWideCharArray:
+ OS << "narrow string into wide char array";
+ break;
+
+ case FK_WideStringIntoCharArray:
+ OS << "wide string into char array";
+ break;
+
+ case FK_IncompatWideStringIntoWideChar:
+ OS << "incompatible wide string into wide char array";
+ break;
+
+ case FK_ArrayTypeMismatch:
+ OS << "array type mismatch";
+ break;
+
+ case FK_NonConstantArrayInit:
+ OS << "non-constant array initializer";
+ break;
+
+ case FK_AddressOfOverloadFailed:
+ OS << "address of overloaded function failed";
+ break;
+
+ case FK_ReferenceInitOverloadFailed:
+ OS << "overload resolution for reference initialization failed";
+ break;
+
+ case FK_NonConstLValueReferenceBindingToTemporary:
+ OS << "non-const lvalue reference bound to temporary";
+ break;
+
+ case FK_NonConstLValueReferenceBindingToUnrelated:
+ OS << "non-const lvalue reference bound to unrelated type";
+ break;
+
+ case FK_RValueReferenceBindingToLValue:
+ OS << "rvalue reference bound to an lvalue";
+ break;
+
+ case FK_ReferenceInitDropsQualifiers:
+ OS << "reference initialization drops qualifiers";
+ break;
+
+ case FK_ReferenceInitFailed:
+ OS << "reference initialization failed";
+ break;
+
+ case FK_ConversionFailed:
+ OS << "conversion failed";
+ break;
+
+ case FK_ConversionFromPropertyFailed:
+ OS << "conversion from property failed";
+ break;
+
+ case FK_TooManyInitsForScalar:
+ OS << "too many initializers for scalar";
+ break;
+
+ case FK_ReferenceBindingToInitList:
+ OS << "referencing binding to initializer list";
+ break;
+
+ case FK_InitListBadDestinationType:
+ OS << "initializer list for non-aggregate, non-scalar type";
+ break;
+
+ case FK_UserConversionOverloadFailed:
+ OS << "overloading failed for user-defined conversion";
+ break;
+
+ case FK_ConstructorOverloadFailed:
+ OS << "constructor overloading failed";
+ break;
+
+ case FK_DefaultInitOfConst:
+ OS << "default initialization of a const variable";
+ break;
+
+ case FK_Incomplete:
+ OS << "initialization of incomplete type";
+ break;
+
+ case FK_ListInitializationFailed:
+ OS << "list initialization checker failure";
+ break;
+
+ case FK_VariableLengthArrayHasInitializer:
+ OS << "variable length array has an initializer";
+ break;
+
+ case FK_PlaceholderType:
+ OS << "initializer expression isn't contextually valid";
+ break;
+
+ case FK_ListConstructorOverloadFailed:
+ OS << "list constructor overloading failed";
+ break;
+
+ case FK_ExplicitConstructor:
+ OS << "list copy initialization chose explicit constructor";
+ break;
+ }
+ OS << '\n';
+ return;
+ }
+
+ case DependentSequence:
+ OS << "Dependent sequence\n";
+ return;
+
+ case NormalSequence:
+ OS << "Normal sequence: ";
+ break;
+ }
+
+ for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
+ if (S != step_begin()) {
+ OS << " -> ";
+ }
+
+ switch (S->Kind) {
+ case SK_ResolveAddressOfOverloadedFunction:
+ OS << "resolve address of overloaded function";
+ break;
+
+ case SK_CastDerivedToBaseRValue:
+ OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
+ break;
+
+ case SK_CastDerivedToBaseXValue:
+ OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
+ break;
+
+ case SK_CastDerivedToBaseLValue:
+ OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
+ break;
+
+ case SK_BindReference:
+ OS << "bind reference to lvalue";
+ break;
+
+ case SK_BindReferenceToTemporary:
+ OS << "bind reference to a temporary";
+ break;
+
+ case SK_ExtraneousCopyToTemporary:
+ OS << "extraneous C++03 copy to temporary";
+ break;
+
+ case SK_UserConversion:
+ OS << "user-defined conversion via " << *S->Function.Function;
+ break;
+
+ case SK_QualificationConversionRValue:
+ OS << "qualification conversion (rvalue)";
+ break;
+
+ case SK_QualificationConversionXValue:
+ OS << "qualification conversion (xvalue)";
+ break;
+
+ case SK_QualificationConversionLValue:
+ OS << "qualification conversion (lvalue)";
+ break;
+
+ case SK_AtomicConversion:
+ OS << "non-atomic-to-atomic conversion";
+ break;
+
+ case SK_LValueToRValue:
+ OS << "load (lvalue to rvalue)";
+ break;
+
+ case SK_ConversionSequence:
+ OS << "implicit conversion sequence (";
+ S->ICS->dump(); // FIXME: use OS
+ OS << ")";
+ break;
+
+ case SK_ConversionSequenceNoNarrowing:
+ OS << "implicit conversion sequence with narrowing prohibited (";
+ S->ICS->dump(); // FIXME: use OS
+ OS << ")";
+ break;
+
+ case SK_ListInitialization:
+ OS << "list aggregate initialization";
+ break;
+
+ case SK_UnwrapInitList:
+ OS << "unwrap reference initializer list";
+ break;
+
+ case SK_RewrapInitList:
+ OS << "rewrap reference initializer list";
+ break;
+
+ case SK_ConstructorInitialization:
+ OS << "constructor initialization";
+ break;
+
+ case SK_ConstructorInitializationFromList:
+ OS << "list initialization via constructor";
+ break;
+
+ case SK_ZeroInitialization:
+ OS << "zero initialization";
+ break;
+
+ case SK_CAssignment:
+ OS << "C assignment";
+ break;
+
+ case SK_StringInit:
+ OS << "string initialization";
+ break;
+
+ case SK_ObjCObjectConversion:
+ OS << "Objective-C object conversion";
+ break;
+
+ case SK_ArrayInit:
+ OS << "array initialization";
+ break;
+
+ case SK_ParenthesizedArrayInit:
+ OS << "parenthesized array initialization";
+ break;
+
+ case SK_PassByIndirectCopyRestore:
+ OS << "pass by indirect copy and restore";
+ break;
+
+ case SK_PassByIndirectRestore:
+ OS << "pass by indirect restore";
+ break;
+
+ case SK_ProduceObjCObject:
+ OS << "Objective-C object retension";
+ break;
+
+ case SK_StdInitializerList:
+ OS << "std::initializer_list from initializer list";
+ break;
+
+ case SK_StdInitializerListConstructorCall:
+ OS << "list initialization from std::initializer_list";
+ break;
+
+ case SK_OCLSamplerInit:
+ OS << "OpenCL sampler_t from integer constant";
+ break;
+
+ case SK_OCLZeroEvent:
+ OS << "OpenCL event_t from zero";
+ break;
+ }
+
+ OS << " [" << S->Type.getAsString() << ']';
+ }
+
+ OS << '\n';
+}
+
+void InitializationSequence::dump() const {
+ dump(llvm::errs());
+}
+
+static void DiagnoseNarrowingInInitList(Sema &S,
+ const ImplicitConversionSequence &ICS,
+ QualType PreNarrowingType,
+ QualType EntityType,
+ const Expr *PostInit) {
+ const StandardConversionSequence *SCS = nullptr;
+ switch (ICS.getKind()) {
+ case ImplicitConversionSequence::StandardConversion:
+ SCS = &ICS.Standard;
+ break;
+ case ImplicitConversionSequence::UserDefinedConversion:
+ SCS = &ICS.UserDefined.After;
+ break;
+ case ImplicitConversionSequence::AmbiguousConversion:
+ case ImplicitConversionSequence::EllipsisConversion:
+ case ImplicitConversionSequence::BadConversion:
+ return;
+ }
+
+ // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
+ APValue ConstantValue;
+ QualType ConstantType;
+ switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
+ ConstantType)) {
+ case NK_Not_Narrowing:
+ // No narrowing occurred.
+ return;
+
+ case NK_Type_Narrowing:
+ // This was a floating-to-integer conversion, which is always considered a
+ // narrowing conversion even if the value is a constant and can be
+ // represented exactly as an integer.
+ S.Diag(PostInit->getLocStart(),
+ (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
+ ? diag::warn_init_list_type_narrowing
+ : diag::ext_init_list_type_narrowing)
+ << PostInit->getSourceRange()
+ << PreNarrowingType.getLocalUnqualifiedType()
+ << EntityType.getLocalUnqualifiedType();
+ break;
+
+ case NK_Constant_Narrowing:
+ // A constant value was narrowed.
+ S.Diag(PostInit->getLocStart(),
+ (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
+ ? diag::warn_init_list_constant_narrowing
+ : diag::ext_init_list_constant_narrowing)
+ << PostInit->getSourceRange()
+ << ConstantValue.getAsString(S.getASTContext(), ConstantType)
+ << EntityType.getLocalUnqualifiedType();
+ break;
+
+ case NK_Variable_Narrowing:
+ // A variable's value may have been narrowed.
+ S.Diag(PostInit->getLocStart(),
+ (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
+ ? diag::warn_init_list_variable_narrowing
+ : diag::ext_init_list_variable_narrowing)
+ << PostInit->getSourceRange()
+ << PreNarrowingType.getLocalUnqualifiedType()
+ << EntityType.getLocalUnqualifiedType();
+ break;
+ }
+
+ SmallString<128> StaticCast;
+ llvm::raw_svector_ostream OS(StaticCast);
+ OS << "static_cast<";
+ if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
+ // It's important to use the typedef's name if there is one so that the
+ // fixit doesn't break code using types like int64_t.
+ //
+ // FIXME: This will break if the typedef requires qualification. But
+ // getQualifiedNameAsString() includes non-machine-parsable components.
+ OS << *TT->getDecl();
+ } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
+ OS << BT->getName(S.getLangOpts());
+ else {
+ // Oops, we didn't find the actual type of the variable. Don't emit a fixit
+ // with a broken cast.
+ return;
+ }
+ OS << ">(";
+ S.Diag(PostInit->getLocStart(), diag::note_init_list_narrowing_silence)
+ << PostInit->getSourceRange()
+ << FixItHint::CreateInsertion(PostInit->getLocStart(), OS.str())
+ << FixItHint::CreateInsertion(
+ S.getLocForEndOfToken(PostInit->getLocEnd()), ")");
+}
+
+//===----------------------------------------------------------------------===//
+// Initialization helper functions
+//===----------------------------------------------------------------------===//
+bool
+Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
+ ExprResult Init) {
+ if (Init.isInvalid())
+ return false;
+
+ Expr *InitE = Init.get();
+ assert(InitE && "No initialization expression");
+
+ InitializationKind Kind
+ = InitializationKind::CreateCopy(InitE->getLocStart(), SourceLocation());
+ InitializationSequence Seq(*this, Entity, Kind, InitE);
+ return !Seq.Failed();
+}
+
+ExprResult
+Sema::PerformCopyInitialization(const InitializedEntity &Entity,
+ SourceLocation EqualLoc,
+ ExprResult Init,
+ bool TopLevelOfInitList,
+ bool AllowExplicit) {
+ if (Init.isInvalid())
+ return ExprError();
+
+ Expr *InitE = Init.get();
+ assert(InitE && "No initialization expression?");
+
+ if (EqualLoc.isInvalid())
+ EqualLoc = InitE->getLocStart();
+
+ InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
+ EqualLoc,
+ AllowExplicit);
+ InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
+
+ ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
+
+ return Result;
+}
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaLambda.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaLambda.cpp
new file mode 100644
index 0000000..8220641
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaLambda.cpp
@@ -0,0 +1,1716 @@
+//===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements semantic analysis for C++ lambda expressions.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/Sema/DeclSpec.h"
+#include "TypeLocBuilder.h"
+#include "clang/AST/ASTLambda.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Sema/Initialization.h"
+#include "clang/Sema/Lookup.h"
+#include "clang/Sema/Scope.h"
+#include "clang/Sema/ScopeInfo.h"
+#include "clang/Sema/SemaInternal.h"
+#include "clang/Sema/SemaLambda.h"
+using namespace clang;
+using namespace sema;
+
+/// \brief Examines the FunctionScopeInfo stack to determine the nearest
+/// enclosing lambda (to the current lambda) that is 'capture-ready' for
+/// the variable referenced in the current lambda (i.e. \p VarToCapture).
+/// If successful, returns the index into Sema's FunctionScopeInfo stack
+/// of the capture-ready lambda's LambdaScopeInfo.
+///
+/// Climbs down the stack of lambdas (deepest nested lambda - i.e. current
+/// lambda - is on top) to determine the index of the nearest enclosing/outer
+/// lambda that is ready to capture the \p VarToCapture being referenced in
+/// the current lambda.
+/// As we climb down the stack, we want the index of the first such lambda -
+/// that is the lambda with the highest index that is 'capture-ready'.
+///
+/// A lambda 'L' is capture-ready for 'V' (var or this) if:
+/// - its enclosing context is non-dependent
+/// - and if the chain of lambdas between L and the lambda in which
+/// V is potentially used (i.e. the lambda at the top of the scope info
+/// stack), can all capture or have already captured V.
+/// If \p VarToCapture is 'null' then we are trying to capture 'this'.
+///
+/// Note that a lambda that is deemed 'capture-ready' still needs to be checked
+/// for whether it is 'capture-capable' (see
+/// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly
+/// capture.
+///
+/// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
+/// LambdaScopeInfo inherits from). The current/deepest/innermost lambda
+/// is at the top of the stack and has the highest index.
+/// \param VarToCapture - the variable to capture. If NULL, capture 'this'.
+///
+/// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
+/// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
+/// which is capture-ready. If the return value evaluates to 'false' then
+/// no lambda is capture-ready for \p VarToCapture.
+
+static inline Optional<unsigned>
+getStackIndexOfNearestEnclosingCaptureReadyLambda(
+ ArrayRef<const clang::sema::FunctionScopeInfo *> FunctionScopes,
+ VarDecl *VarToCapture) {
+ // Label failure to capture.
+ const Optional<unsigned> NoLambdaIsCaptureReady;
+
+ assert(
+ isa<clang::sema::LambdaScopeInfo>(
+ FunctionScopes[FunctionScopes.size() - 1]) &&
+ "The function on the top of sema's function-info stack must be a lambda");
+
+ // If VarToCapture is null, we are attempting to capture 'this'.
+ const bool IsCapturingThis = !VarToCapture;
+ const bool IsCapturingVariable = !IsCapturingThis;
+
+ // Start with the current lambda at the top of the stack (highest index).
+ unsigned CurScopeIndex = FunctionScopes.size() - 1;
+ DeclContext *EnclosingDC =
+ cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator;
+
+ do {
+ const clang::sema::LambdaScopeInfo *LSI =
+ cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]);
+ // IF we have climbed down to an intervening enclosing lambda that contains
+ // the variable declaration - it obviously can/must not capture the
+ // variable.
+ // Since its enclosing DC is dependent, all the lambdas between it and the
+ // innermost nested lambda are dependent (otherwise we wouldn't have
+ // arrived here) - so we don't yet have a lambda that can capture the
+ // variable.
+ if (IsCapturingVariable &&
+ VarToCapture->getDeclContext()->Equals(EnclosingDC))
+ return NoLambdaIsCaptureReady;
+
+ // For an enclosing lambda to be capture ready for an entity, all
+ // intervening lambda's have to be able to capture that entity. If even
+ // one of the intervening lambda's is not capable of capturing the entity
+ // then no enclosing lambda can ever capture that entity.
+ // For e.g.
+ // const int x = 10;
+ // [=](auto a) { #1
+ // [](auto b) { #2 <-- an intervening lambda that can never capture 'x'
+ // [=](auto c) { #3
+ // f(x, c); <-- can not lead to x's speculative capture by #1 or #2
+ // }; }; };
+ // If they do not have a default implicit capture, check to see
+ // if the entity has already been explicitly captured.
+ // If even a single dependent enclosing lambda lacks the capability
+ // to ever capture this variable, there is no further enclosing
+ // non-dependent lambda that can capture this variable.
+ if (LSI->ImpCaptureStyle == sema::LambdaScopeInfo::ImpCap_None) {
+ if (IsCapturingVariable && !LSI->isCaptured(VarToCapture))
+ return NoLambdaIsCaptureReady;
+ if (IsCapturingThis && !LSI->isCXXThisCaptured())
+ return NoLambdaIsCaptureReady;
+ }
+ EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC);
+
+ assert(CurScopeIndex);
+ --CurScopeIndex;
+ } while (!EnclosingDC->isTranslationUnit() &&
+ EnclosingDC->isDependentContext() &&
+ isLambdaCallOperator(EnclosingDC));
+
+ assert(CurScopeIndex < (FunctionScopes.size() - 1));
+ // If the enclosingDC is not dependent, then the immediately nested lambda
+ // (one index above) is capture-ready.
+ if (!EnclosingDC->isDependentContext())
+ return CurScopeIndex + 1;
+ return NoLambdaIsCaptureReady;
+}
+
+/// \brief Examines the FunctionScopeInfo stack to determine the nearest
+/// enclosing lambda (to the current lambda) that is 'capture-capable' for
+/// the variable referenced in the current lambda (i.e. \p VarToCapture).
+/// If successful, returns the index into Sema's FunctionScopeInfo stack
+/// of the capture-capable lambda's LambdaScopeInfo.
+///
+/// Given the current stack of lambdas being processed by Sema and
+/// the variable of interest, to identify the nearest enclosing lambda (to the
+/// current lambda at the top of the stack) that can truly capture
+/// a variable, it has to have the following two properties:
+/// a) 'capture-ready' - be the innermost lambda that is 'capture-ready':
+/// - climb down the stack (i.e. starting from the innermost and examining
+/// each outer lambda step by step) checking if each enclosing
+/// lambda can either implicitly or explicitly capture the variable.
+/// Record the first such lambda that is enclosed in a non-dependent
+/// context. If no such lambda currently exists return failure.
+/// b) 'capture-capable' - make sure the 'capture-ready' lambda can truly
+/// capture the variable by checking all its enclosing lambdas:
+/// - check if all outer lambdas enclosing the 'capture-ready' lambda
+/// identified above in 'a' can also capture the variable (this is done
+/// via tryCaptureVariable for variables and CheckCXXThisCapture for
+/// 'this' by passing in the index of the Lambda identified in step 'a')
+///
+/// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
+/// LambdaScopeInfo inherits from). The current/deepest/innermost lambda
+/// is at the top of the stack.
+///
+/// \param VarToCapture - the variable to capture. If NULL, capture 'this'.
+///
+///
+/// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
+/// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
+/// which is capture-capable. If the return value evaluates to 'false' then
+/// no lambda is capture-capable for \p VarToCapture.
+
+Optional<unsigned> clang::getStackIndexOfNearestEnclosingCaptureCapableLambda(
+ ArrayRef<const sema::FunctionScopeInfo *> FunctionScopes,
+ VarDecl *VarToCapture, Sema &S) {
+
+ const Optional<unsigned> NoLambdaIsCaptureCapable;
+
+ const Optional<unsigned> OptionalStackIndex =
+ getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes,
+ VarToCapture);
+ if (!OptionalStackIndex)
+ return NoLambdaIsCaptureCapable;
+
+ const unsigned IndexOfCaptureReadyLambda = OptionalStackIndex.getValue();
+ assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) ||
+ S.getCurGenericLambda()) &&
+ "The capture ready lambda for a potential capture can only be the "
+ "current lambda if it is a generic lambda");
+
+ const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI =
+ cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]);
+
+ // If VarToCapture is null, we are attempting to capture 'this'
+ const bool IsCapturingThis = !VarToCapture;
+ const bool IsCapturingVariable = !IsCapturingThis;
+
+ if (IsCapturingVariable) {
+ // Check if the capture-ready lambda can truly capture the variable, by
+ // checking whether all enclosing lambdas of the capture-ready lambda allow
+ // the capture - i.e. make sure it is capture-capable.
+ QualType CaptureType, DeclRefType;
+ const bool CanCaptureVariable =
+ !S.tryCaptureVariable(VarToCapture,
+ /*ExprVarIsUsedInLoc*/ SourceLocation(),
+ clang::Sema::TryCapture_Implicit,
+ /*EllipsisLoc*/ SourceLocation(),
+ /*BuildAndDiagnose*/ false, CaptureType,
+ DeclRefType, &IndexOfCaptureReadyLambda);
+ if (!CanCaptureVariable)
+ return NoLambdaIsCaptureCapable;
+ } else {
+ // Check if the capture-ready lambda can truly capture 'this' by checking
+ // whether all enclosing lambdas of the capture-ready lambda can capture
+ // 'this'.
+ const bool CanCaptureThis =
+ !S.CheckCXXThisCapture(
+ CaptureReadyLambdaLSI->PotentialThisCaptureLocation,
+ /*Explicit*/ false, /*BuildAndDiagnose*/ false,
+ &IndexOfCaptureReadyLambda);
+ if (!CanCaptureThis)
+ return NoLambdaIsCaptureCapable;
+ }
+ return IndexOfCaptureReadyLambda;
+}
+
+static inline TemplateParameterList *
+getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef) {
+ if (LSI->GLTemplateParameterList)
+ return LSI->GLTemplateParameterList;
+
+ if (LSI->AutoTemplateParams.size()) {
+ SourceRange IntroRange = LSI->IntroducerRange;
+ SourceLocation LAngleLoc = IntroRange.getBegin();
+ SourceLocation RAngleLoc = IntroRange.getEnd();
+ LSI->GLTemplateParameterList = TemplateParameterList::Create(
+ SemaRef.Context,
+ /*Template kw loc*/ SourceLocation(), LAngleLoc,
+ (NamedDecl **)LSI->AutoTemplateParams.data(),
+ LSI->AutoTemplateParams.size(), RAngleLoc);
+ }
+ return LSI->GLTemplateParameterList;
+}
+
+CXXRecordDecl *Sema::createLambdaClosureType(SourceRange IntroducerRange,
+ TypeSourceInfo *Info,
+ bool KnownDependent,
+ LambdaCaptureDefault CaptureDefault) {
+ DeclContext *DC = CurContext;
+ while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
+ DC = DC->getParent();
+ bool IsGenericLambda = getGenericLambdaTemplateParameterList(getCurLambda(),
+ *this);
+ // Start constructing the lambda class.
+ CXXRecordDecl *Class = CXXRecordDecl::CreateLambda(Context, DC, Info,
+ IntroducerRange.getBegin(),
+ KnownDependent,
+ IsGenericLambda,
+ CaptureDefault);
+ DC->addDecl(Class);
+
+ return Class;
+}
+
+/// \brief Determine whether the given context is or is enclosed in an inline
+/// function.
+static bool isInInlineFunction(const DeclContext *DC) {
+ while (!DC->isFileContext()) {
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
+ if (FD->isInlined())
+ return true;
+
+ DC = DC->getLexicalParent();
+ }
+
+ return false;
+}
+
+MangleNumberingContext *
+Sema::getCurrentMangleNumberContext(const DeclContext *DC,
+ Decl *&ManglingContextDecl) {
+ // Compute the context for allocating mangling numbers in the current
+ // expression, if the ABI requires them.
+ ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl;
+
+ enum ContextKind {
+ Normal,
+ DefaultArgument,
+ DataMember,
+ StaticDataMember
+ } Kind = Normal;
+
+ // Default arguments of member function parameters that appear in a class
+ // definition, as well as the initializers of data members, receive special
+ // treatment. Identify them.
+ if (ManglingContextDecl) {
+ if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) {
+ if (const DeclContext *LexicalDC
+ = Param->getDeclContext()->getLexicalParent())
+ if (LexicalDC->isRecord())
+ Kind = DefaultArgument;
+ } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) {
+ if (Var->getDeclContext()->isRecord())
+ Kind = StaticDataMember;
+ } else if (isa<FieldDecl>(ManglingContextDecl)) {
+ Kind = DataMember;
+ }
+ }
+
+ // Itanium ABI [5.1.7]:
+ // In the following contexts [...] the one-definition rule requires closure
+ // types in different translation units to "correspond":
+ bool IsInNonspecializedTemplate =
+ !ActiveTemplateInstantiations.empty() || CurContext->isDependentContext();
+ switch (Kind) {
+ case Normal:
+ // -- the bodies of non-exported nonspecialized template functions
+ // -- the bodies of inline functions
+ if ((IsInNonspecializedTemplate &&
+ !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) ||
+ isInInlineFunction(CurContext)) {
+ ManglingContextDecl = nullptr;
+ return &Context.getManglingNumberContext(DC);
+ }
+
+ ManglingContextDecl = nullptr;
+ return nullptr;
+
+ case StaticDataMember:
+ // -- the initializers of nonspecialized static members of template classes
+ if (!IsInNonspecializedTemplate) {
+ ManglingContextDecl = nullptr;
+ return nullptr;
+ }
+ // Fall through to get the current context.
+
+ case DataMember:
+ // -- the in-class initializers of class members
+ case DefaultArgument:
+ // -- default arguments appearing in class definitions
+ return &ExprEvalContexts.back().getMangleNumberingContext(Context);
+ }
+
+ llvm_unreachable("unexpected context");
+}
+
+MangleNumberingContext &
+Sema::ExpressionEvaluationContextRecord::getMangleNumberingContext(
+ ASTContext &Ctx) {
+ assert(ManglingContextDecl && "Need to have a context declaration");
+ if (!MangleNumbering)
+ MangleNumbering = Ctx.createMangleNumberingContext();
+ return *MangleNumbering;
+}
+
+CXXMethodDecl *Sema::startLambdaDefinition(CXXRecordDecl *Class,
+ SourceRange IntroducerRange,
+ TypeSourceInfo *MethodTypeInfo,
+ SourceLocation EndLoc,
+ ArrayRef<ParmVarDecl *> Params) {
+ QualType MethodType = MethodTypeInfo->getType();
+ TemplateParameterList *TemplateParams =
+ getGenericLambdaTemplateParameterList(getCurLambda(), *this);
+ // If a lambda appears in a dependent context or is a generic lambda (has
+ // template parameters) and has an 'auto' return type, deduce it to a
+ // dependent type.
+ if (Class->isDependentContext() || TemplateParams) {
+ const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>();
+ QualType Result = FPT->getReturnType();
+ if (Result->isUndeducedType()) {
+ Result = SubstAutoType(Result, Context.DependentTy);
+ MethodType = Context.getFunctionType(Result, FPT->getParamTypes(),
+ FPT->getExtProtoInfo());
+ }
+ }
+
+ // C++11 [expr.prim.lambda]p5:
+ // The closure type for a lambda-expression has a public inline function
+ // call operator (13.5.4) whose parameters and return type are described by
+ // the lambda-expression's parameter-declaration-clause and
+ // trailing-return-type respectively.
+ DeclarationName MethodName
+ = Context.DeclarationNames.getCXXOperatorName(OO_Call);
+ DeclarationNameLoc MethodNameLoc;
+ MethodNameLoc.CXXOperatorName.BeginOpNameLoc
+ = IntroducerRange.getBegin().getRawEncoding();
+ MethodNameLoc.CXXOperatorName.EndOpNameLoc
+ = IntroducerRange.getEnd().getRawEncoding();
+ CXXMethodDecl *Method
+ = CXXMethodDecl::Create(Context, Class, EndLoc,
+ DeclarationNameInfo(MethodName,
+ IntroducerRange.getBegin(),
+ MethodNameLoc),
+ MethodType, MethodTypeInfo,
+ SC_None,
+ /*isInline=*/true,
+ /*isConstExpr=*/false,
+ EndLoc);
+ Method->setAccess(AS_public);
+
+ // Temporarily set the lexical declaration context to the current
+ // context, so that the Scope stack matches the lexical nesting.
+ Method->setLexicalDeclContext(CurContext);
+ // Create a function template if we have a template parameter list
+ FunctionTemplateDecl *const TemplateMethod = TemplateParams ?
+ FunctionTemplateDecl::Create(Context, Class,
+ Method->getLocation(), MethodName,
+ TemplateParams,
+ Method) : nullptr;
+ if (TemplateMethod) {
+ TemplateMethod->setLexicalDeclContext(CurContext);
+ TemplateMethod->setAccess(AS_public);
+ Method->setDescribedFunctionTemplate(TemplateMethod);
+ }
+
+ // Add parameters.
+ if (!Params.empty()) {
+ Method->setParams(Params);
+ CheckParmsForFunctionDef(const_cast<ParmVarDecl **>(Params.begin()),
+ const_cast<ParmVarDecl **>(Params.end()),
+ /*CheckParameterNames=*/false);
+
+ for (auto P : Method->params())
+ P->setOwningFunction(Method);
+ }
+
+ Decl *ManglingContextDecl;
+ if (MangleNumberingContext *MCtx =
+ getCurrentMangleNumberContext(Class->getDeclContext(),
+ ManglingContextDecl)) {
+ unsigned ManglingNumber = MCtx->getManglingNumber(Method);
+ Class->setLambdaMangling(ManglingNumber, ManglingContextDecl);
+ }
+
+ return Method;
+}
+
+void Sema::buildLambdaScope(LambdaScopeInfo *LSI,
+ CXXMethodDecl *CallOperator,
+ SourceRange IntroducerRange,
+ LambdaCaptureDefault CaptureDefault,
+ SourceLocation CaptureDefaultLoc,
+ bool ExplicitParams,
+ bool ExplicitResultType,
+ bool Mutable) {
+ LSI->CallOperator = CallOperator;
+ CXXRecordDecl *LambdaClass = CallOperator->getParent();
+ LSI->Lambda = LambdaClass;
+ if (CaptureDefault == LCD_ByCopy)
+ LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval;
+ else if (CaptureDefault == LCD_ByRef)
+ LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref;
+ LSI->CaptureDefaultLoc = CaptureDefaultLoc;
+ LSI->IntroducerRange = IntroducerRange;
+ LSI->ExplicitParams = ExplicitParams;
+ LSI->Mutable = Mutable;
+
+ if (ExplicitResultType) {
+ LSI->ReturnType = CallOperator->getReturnType();
+
+ if (!LSI->ReturnType->isDependentType() &&
+ !LSI->ReturnType->isVoidType()) {
+ if (RequireCompleteType(CallOperator->getLocStart(), LSI->ReturnType,
+ diag::err_lambda_incomplete_result)) {
+ // Do nothing.
+ }
+ }
+ } else {
+ LSI->HasImplicitReturnType = true;
+ }
+}
+
+void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) {
+ LSI->finishedExplicitCaptures();
+}
+
+void Sema::addLambdaParameters(CXXMethodDecl *CallOperator, Scope *CurScope) {
+ // Introduce our parameters into the function scope
+ for (unsigned p = 0, NumParams = CallOperator->getNumParams();
+ p < NumParams; ++p) {
+ ParmVarDecl *Param = CallOperator->getParamDecl(p);
+
+ // If this has an identifier, add it to the scope stack.
+ if (CurScope && Param->getIdentifier()) {
+ CheckShadow(CurScope, Param);
+
+ PushOnScopeChains(Param, CurScope);
+ }
+ }
+}
+
+/// If this expression is an enumerator-like expression of some type
+/// T, return the type T; otherwise, return null.
+///
+/// Pointer comparisons on the result here should always work because
+/// it's derived from either the parent of an EnumConstantDecl
+/// (i.e. the definition) or the declaration returned by
+/// EnumType::getDecl() (i.e. the definition).
+static EnumDecl *findEnumForBlockReturn(Expr *E) {
+ // An expression is an enumerator-like expression of type T if,
+ // ignoring parens and parens-like expressions:
+ E = E->IgnoreParens();
+
+ // - it is an enumerator whose enum type is T or
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
+ if (EnumConstantDecl *D
+ = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
+ return cast<EnumDecl>(D->getDeclContext());
+ }
+ return nullptr;
+ }
+
+ // - it is a comma expression whose RHS is an enumerator-like
+ // expression of type T or
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
+ if (BO->getOpcode() == BO_Comma)
+ return findEnumForBlockReturn(BO->getRHS());
+ return nullptr;
+ }
+
+ // - it is a statement-expression whose value expression is an
+ // enumerator-like expression of type T or
+ if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
+ if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back()))
+ return findEnumForBlockReturn(last);
+ return nullptr;
+ }
+
+ // - it is a ternary conditional operator (not the GNU ?:
+ // extension) whose second and third operands are
+ // enumerator-like expressions of type T or
+ if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
+ if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr()))
+ if (ED == findEnumForBlockReturn(CO->getFalseExpr()))
+ return ED;
+ return nullptr;
+ }
+
+ // (implicitly:)
+ // - it is an implicit integral conversion applied to an
+ // enumerator-like expression of type T or
+ if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
+ // We can sometimes see integral conversions in valid
+ // enumerator-like expressions.
+ if (ICE->getCastKind() == CK_IntegralCast)
+ return findEnumForBlockReturn(ICE->getSubExpr());
+
+ // Otherwise, just rely on the type.
+ }
+
+ // - it is an expression of that formal enum type.
+ if (const EnumType *ET = E->getType()->getAs<EnumType>()) {
+ return ET->getDecl();
+ }
+
+ // Otherwise, nope.
+ return nullptr;
+}
+
+/// Attempt to find a type T for which the returned expression of the
+/// given statement is an enumerator-like expression of that type.
+static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) {
+ if (Expr *retValue = ret->getRetValue())
+ return findEnumForBlockReturn(retValue);
+ return nullptr;
+}
+
+/// Attempt to find a common type T for which all of the returned
+/// expressions in a block are enumerator-like expressions of that
+/// type.
+static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) {
+ ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end();
+
+ // Try to find one for the first return.
+ EnumDecl *ED = findEnumForBlockReturn(*i);
+ if (!ED) return nullptr;
+
+ // Check that the rest of the returns have the same enum.
+ for (++i; i != e; ++i) {
+ if (findEnumForBlockReturn(*i) != ED)
+ return nullptr;
+ }
+
+ // Never infer an anonymous enum type.
+ if (!ED->hasNameForLinkage()) return nullptr;
+
+ return ED;
+}
+
+/// Adjust the given return statements so that they formally return
+/// the given type. It should require, at most, an IntegralCast.
+static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns,
+ QualType returnType) {
+ for (ArrayRef<ReturnStmt*>::iterator
+ i = returns.begin(), e = returns.end(); i != e; ++i) {
+ ReturnStmt *ret = *i;
+ Expr *retValue = ret->getRetValue();
+ if (S.Context.hasSameType(retValue->getType(), returnType))
+ continue;
+
+ // Right now we only support integral fixup casts.
+ assert(returnType->isIntegralOrUnscopedEnumerationType());
+ assert(retValue->getType()->isIntegralOrUnscopedEnumerationType());
+
+ ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue);
+
+ Expr *E = (cleanups ? cleanups->getSubExpr() : retValue);
+ E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast,
+ E, /*base path*/ nullptr, VK_RValue);
+ if (cleanups) {
+ cleanups->setSubExpr(E);
+ } else {
+ ret->setRetValue(E);
+ }
+ }
+}
+
+void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) {
+ assert(CSI.HasImplicitReturnType);
+ // If it was ever a placeholder, it had to been deduced to DependentTy.
+ assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType());
+
+ // C++ core issue 975:
+ // If a lambda-expression does not include a trailing-return-type,
+ // it is as if the trailing-return-type denotes the following type:
+ // - if there are no return statements in the compound-statement,
+ // or all return statements return either an expression of type
+ // void or no expression or braced-init-list, the type void;
+ // - otherwise, if all return statements return an expression
+ // and the types of the returned expressions after
+ // lvalue-to-rvalue conversion (4.1 [conv.lval]),
+ // array-to-pointer conversion (4.2 [conv.array]), and
+ // function-to-pointer conversion (4.3 [conv.func]) are the
+ // same, that common type;
+ // - otherwise, the program is ill-formed.
+ //
+ // C++ core issue 1048 additionally removes top-level cv-qualifiers
+ // from the types of returned expressions to match the C++14 auto
+ // deduction rules.
+ //
+ // In addition, in blocks in non-C++ modes, if all of the return
+ // statements are enumerator-like expressions of some type T, where
+ // T has a name for linkage, then we infer the return type of the
+ // block to be that type.
+
+ // First case: no return statements, implicit void return type.
+ ASTContext &Ctx = getASTContext();
+ if (CSI.Returns.empty()) {
+ // It's possible there were simply no /valid/ return statements.
+ // In this case, the first one we found may have at least given us a type.
+ if (CSI.ReturnType.isNull())
+ CSI.ReturnType = Ctx.VoidTy;
+ return;
+ }
+
+ // Second case: at least one return statement has dependent type.
+ // Delay type checking until instantiation.
+ assert(!CSI.ReturnType.isNull() && "We should have a tentative return type.");
+ if (CSI.ReturnType->isDependentType())
+ return;
+
+ // Try to apply the enum-fuzz rule.
+ if (!getLangOpts().CPlusPlus) {
+ assert(isa<BlockScopeInfo>(CSI));
+ const EnumDecl *ED = findCommonEnumForBlockReturns(CSI.Returns);
+ if (ED) {
+ CSI.ReturnType = Context.getTypeDeclType(ED);
+ adjustBlockReturnsToEnum(*this, CSI.Returns, CSI.ReturnType);
+ return;
+ }
+ }
+
+ // Third case: only one return statement. Don't bother doing extra work!
+ SmallVectorImpl<ReturnStmt*>::iterator I = CSI.Returns.begin(),
+ E = CSI.Returns.end();
+ if (I+1 == E)
+ return;
+
+ // General case: many return statements.
+ // Check that they all have compatible return types.
+
+ // We require the return types to strictly match here.
+ // Note that we've already done the required promotions as part of
+ // processing the return statement.
+ for (; I != E; ++I) {
+ const ReturnStmt *RS = *I;
+ const Expr *RetE = RS->getRetValue();
+
+ QualType ReturnType =
+ (RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType();
+ if (Context.hasSameType(ReturnType, CSI.ReturnType))
+ continue;
+
+ // FIXME: This is a poor diagnostic for ReturnStmts without expressions.
+ // TODO: It's possible that the *first* return is the divergent one.
+ Diag(RS->getLocStart(),
+ diag::err_typecheck_missing_return_type_incompatible)
+ << ReturnType << CSI.ReturnType
+ << isa<LambdaScopeInfo>(CSI);
+ // Continue iterating so that we keep emitting diagnostics.
+ }
+}
+
+QualType Sema::performLambdaInitCaptureInitialization(SourceLocation Loc,
+ bool ByRef,
+ IdentifierInfo *Id,
+ Expr *&Init) {
+
+ // We do not need to distinguish between direct-list-initialization
+ // and copy-list-initialization here, because we will always deduce
+ // std::initializer_list<T>, and direct- and copy-list-initialization
+ // always behave the same for such a type.
+ // FIXME: We should model whether an '=' was present.
+ const bool IsDirectInit = isa<ParenListExpr>(Init) || isa<InitListExpr>(Init);
+
+ // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to
+ // deduce against.
+ QualType DeductType = Context.getAutoDeductType();
+ TypeLocBuilder TLB;
+ TLB.pushTypeSpec(DeductType).setNameLoc(Loc);
+ if (ByRef) {
+ DeductType = BuildReferenceType(DeductType, true, Loc, Id);
+ assert(!DeductType.isNull() && "can't build reference to auto");
+ TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc);
+ }
+ TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType);
+
+ // Are we a non-list direct initialization?
+ ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
+
+ Expr *DeduceInit = Init;
+ // Initializer could be a C++ direct-initializer. Deduction only works if it
+ // contains exactly one expression.
+ if (CXXDirectInit) {
+ if (CXXDirectInit->getNumExprs() == 0) {
+ Diag(CXXDirectInit->getLocStart(), diag::err_init_capture_no_expression)
+ << DeclarationName(Id) << TSI->getType() << Loc;
+ return QualType();
+ } else if (CXXDirectInit->getNumExprs() > 1) {
+ Diag(CXXDirectInit->getExpr(1)->getLocStart(),
+ diag::err_init_capture_multiple_expressions)
+ << DeclarationName(Id) << TSI->getType() << Loc;
+ return QualType();
+ } else {
+ DeduceInit = CXXDirectInit->getExpr(0);
+ if (isa<InitListExpr>(DeduceInit))
+ Diag(CXXDirectInit->getLocStart(), diag::err_init_capture_paren_braces)
+ << DeclarationName(Id) << Loc;
+ }
+ }
+
+ // Now deduce against the initialization expression and store the deduced
+ // type below.
+ QualType DeducedType;
+ if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) {
+ if (isa<InitListExpr>(Init))
+ Diag(Loc, diag::err_init_capture_deduction_failure_from_init_list)
+ << DeclarationName(Id)
+ << (DeduceInit->getType().isNull() ? TSI->getType()
+ : DeduceInit->getType())
+ << DeduceInit->getSourceRange();
+ else
+ Diag(Loc, diag::err_init_capture_deduction_failure)
+ << DeclarationName(Id) << TSI->getType()
+ << (DeduceInit->getType().isNull() ? TSI->getType()
+ : DeduceInit->getType())
+ << DeduceInit->getSourceRange();
+ }
+ if (DeducedType.isNull())
+ return QualType();
+
+ // Perform initialization analysis and ensure any implicit conversions
+ // (such as lvalue-to-rvalue) are enforced.
+ InitializedEntity Entity =
+ InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc);
+ InitializationKind Kind =
+ IsDirectInit
+ ? (CXXDirectInit ? InitializationKind::CreateDirect(
+ Loc, Init->getLocStart(), Init->getLocEnd())
+ : InitializationKind::CreateDirectList(Loc))
+ : InitializationKind::CreateCopy(Loc, Init->getLocStart());
+
+ MultiExprArg Args = Init;
+ if (CXXDirectInit)
+ Args =
+ MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs());
+ QualType DclT;
+ InitializationSequence InitSeq(*this, Entity, Kind, Args);
+ ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
+
+ if (Result.isInvalid())
+ return QualType();
+ Init = Result.getAs<Expr>();
+
+ // The init-capture initialization is a full-expression that must be
+ // processed as one before we enter the declcontext of the lambda's
+ // call-operator.
+ Result = ActOnFinishFullExpr(Init, Loc, /*DiscardedValue*/ false,
+ /*IsConstexpr*/ false,
+ /*IsLambdaInitCaptureInitalizer*/ true);
+ if (Result.isInvalid())
+ return QualType();
+
+ Init = Result.getAs<Expr>();
+ return DeducedType;
+}
+
+VarDecl *Sema::createLambdaInitCaptureVarDecl(SourceLocation Loc,
+ QualType InitCaptureType, IdentifierInfo *Id, Expr *Init) {
+
+ TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType,
+ Loc);
+ // Create a dummy variable representing the init-capture. This is not actually
+ // used as a variable, and only exists as a way to name and refer to the
+ // init-capture.
+ // FIXME: Pass in separate source locations for '&' and identifier.
+ VarDecl *NewVD = VarDecl::Create(Context, CurContext, Loc,
+ Loc, Id, InitCaptureType, TSI, SC_Auto);
+ NewVD->setInitCapture(true);
+ NewVD->setReferenced(true);
+ NewVD->markUsed(Context);
+ NewVD->setInit(Init);
+ return NewVD;
+}
+
+FieldDecl *Sema::buildInitCaptureField(LambdaScopeInfo *LSI, VarDecl *Var) {
+ FieldDecl *Field = FieldDecl::Create(
+ Context, LSI->Lambda, Var->getLocation(), Var->getLocation(),
+ nullptr, Var->getType(), Var->getTypeSourceInfo(), nullptr, false,
+ ICIS_NoInit);
+ Field->setImplicit(true);
+ Field->setAccess(AS_private);
+ LSI->Lambda->addDecl(Field);
+
+ LSI->addCapture(Var, /*isBlock*/false, Var->getType()->isReferenceType(),
+ /*isNested*/false, Var->getLocation(), SourceLocation(),
+ Var->getType(), Var->getInit());
+ return Field;
+}
+
+void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
+ Declarator &ParamInfo,
+ Scope *CurScope) {
+ // Determine if we're within a context where we know that the lambda will
+ // be dependent, because there are template parameters in scope.
+ bool KnownDependent = false;
+ LambdaScopeInfo *const LSI = getCurLambda();
+ assert(LSI && "LambdaScopeInfo should be on stack!");
+ TemplateParameterList *TemplateParams =
+ getGenericLambdaTemplateParameterList(LSI, *this);
+
+ if (Scope *TmplScope = CurScope->getTemplateParamParent()) {
+ // Since we have our own TemplateParams, so check if an outer scope
+ // has template params, only then are we in a dependent scope.
+ if (TemplateParams) {
+ TmplScope = TmplScope->getParent();
+ TmplScope = TmplScope ? TmplScope->getTemplateParamParent() : nullptr;
+ }
+ if (TmplScope && !TmplScope->decl_empty())
+ KnownDependent = true;
+ }
+ // Determine the signature of the call operator.
+ TypeSourceInfo *MethodTyInfo;
+ bool ExplicitParams = true;
+ bool ExplicitResultType = true;
+ bool ContainsUnexpandedParameterPack = false;
+ SourceLocation EndLoc;
+ SmallVector<ParmVarDecl *, 8> Params;
+ if (ParamInfo.getNumTypeObjects() == 0) {
+ // C++11 [expr.prim.lambda]p4:
+ // If a lambda-expression does not include a lambda-declarator, it is as
+ // if the lambda-declarator were ().
+ FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
+ /*IsVariadic=*/false, /*IsCXXMethod=*/true));
+ EPI.HasTrailingReturn = true;
+ EPI.TypeQuals |= DeclSpec::TQ_const;
+ // C++1y [expr.prim.lambda]:
+ // The lambda return type is 'auto', which is replaced by the
+ // trailing-return type if provided and/or deduced from 'return'
+ // statements
+ // We don't do this before C++1y, because we don't support deduced return
+ // types there.
+ QualType DefaultTypeForNoTrailingReturn =
+ getLangOpts().CPlusPlus14 ? Context.getAutoDeductType()
+ : Context.DependentTy;
+ QualType MethodTy =
+ Context.getFunctionType(DefaultTypeForNoTrailingReturn, None, EPI);
+ MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy);
+ ExplicitParams = false;
+ ExplicitResultType = false;
+ EndLoc = Intro.Range.getEnd();
+ } else {
+ assert(ParamInfo.isFunctionDeclarator() &&
+ "lambda-declarator is a function");
+ DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo();
+
+ // C++11 [expr.prim.lambda]p5:
+ // This function call operator is declared const (9.3.1) if and only if
+ // the lambda-expression's parameter-declaration-clause is not followed
+ // by mutable. It is neither virtual nor declared volatile. [...]
+ if (!FTI.hasMutableQualifier())
+ FTI.TypeQuals |= DeclSpec::TQ_const;
+
+ MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope);
+ assert(MethodTyInfo && "no type from lambda-declarator");
+ EndLoc = ParamInfo.getSourceRange().getEnd();
+
+ ExplicitResultType = FTI.hasTrailingReturnType();
+
+ if (FTIHasNonVoidParameters(FTI)) {
+ Params.reserve(FTI.NumParams);
+ for (unsigned i = 0, e = FTI.NumParams; i != e; ++i)
+ Params.push_back(cast<ParmVarDecl>(FTI.Params[i].Param));
+ }
+
+ // Check for unexpanded parameter packs in the method type.
+ if (MethodTyInfo->getType()->containsUnexpandedParameterPack())
+ ContainsUnexpandedParameterPack = true;
+ }
+
+ CXXRecordDecl *Class = createLambdaClosureType(Intro.Range, MethodTyInfo,
+ KnownDependent, Intro.Default);
+
+ CXXMethodDecl *Method = startLambdaDefinition(Class, Intro.Range,
+ MethodTyInfo, EndLoc, Params);
+ if (ExplicitParams)
+ CheckCXXDefaultArguments(Method);
+
+ // Attributes on the lambda apply to the method.
+ ProcessDeclAttributes(CurScope, Method, ParamInfo);
+
+ // Introduce the function call operator as the current declaration context.
+ PushDeclContext(CurScope, Method);
+
+ // Build the lambda scope.
+ buildLambdaScope(LSI, Method, Intro.Range, Intro.Default, Intro.DefaultLoc,
+ ExplicitParams, ExplicitResultType, !Method->isConst());
+
+ // C++11 [expr.prim.lambda]p9:
+ // A lambda-expression whose smallest enclosing scope is a block scope is a
+ // local lambda expression; any other lambda expression shall not have a
+ // capture-default or simple-capture in its lambda-introducer.
+ //
+ // For simple-captures, this is covered by the check below that any named
+ // entity is a variable that can be captured.
+ //
+ // For DR1632, we also allow a capture-default in any context where we can
+ // odr-use 'this' (in particular, in a default initializer for a non-static
+ // data member).
+ if (Intro.Default != LCD_None && !Class->getParent()->isFunctionOrMethod() &&
+ (getCurrentThisType().isNull() ||
+ CheckCXXThisCapture(SourceLocation(), /*Explicit*/true,
+ /*BuildAndDiagnose*/false)))
+ Diag(Intro.DefaultLoc, diag::err_capture_default_non_local);
+
+ // Distinct capture names, for diagnostics.
+ llvm::SmallSet<IdentifierInfo*, 8> CaptureNames;
+
+ // Handle explicit captures.
+ SourceLocation PrevCaptureLoc
+ = Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc;
+ for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E;
+ PrevCaptureLoc = C->Loc, ++C) {
+ if (C->Kind == LCK_This) {
+ // C++11 [expr.prim.lambda]p8:
+ // An identifier or this shall not appear more than once in a
+ // lambda-capture.
+ if (LSI->isCXXThisCaptured()) {
+ Diag(C->Loc, diag::err_capture_more_than_once)
+ << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation())
+ << FixItHint::CreateRemoval(
+ SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
+ continue;
+ }
+
+ // C++11 [expr.prim.lambda]p8:
+ // If a lambda-capture includes a capture-default that is =, the
+ // lambda-capture shall not contain this [...].
+ if (Intro.Default == LCD_ByCopy) {
+ Diag(C->Loc, diag::err_this_capture_with_copy_default)
+ << FixItHint::CreateRemoval(
+ SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
+ continue;
+ }
+
+ // C++11 [expr.prim.lambda]p12:
+ // If this is captured by a local lambda expression, its nearest
+ // enclosing function shall be a non-static member function.
+ QualType ThisCaptureType = getCurrentThisType();
+ if (ThisCaptureType.isNull()) {
+ Diag(C->Loc, diag::err_this_capture) << true;
+ continue;
+ }
+
+ CheckCXXThisCapture(C->Loc, /*Explicit=*/true);
+ continue;
+ }
+
+ assert(C->Id && "missing identifier for capture");
+
+ if (C->Init.isInvalid())
+ continue;
+
+ VarDecl *Var = nullptr;
+ if (C->Init.isUsable()) {
+ Diag(C->Loc, getLangOpts().CPlusPlus14
+ ? diag::warn_cxx11_compat_init_capture
+ : diag::ext_init_capture);
+
+ if (C->Init.get()->containsUnexpandedParameterPack())
+ ContainsUnexpandedParameterPack = true;
+ // If the initializer expression is usable, but the InitCaptureType
+ // is not, then an error has occurred - so ignore the capture for now.
+ // for e.g., [n{0}] { }; <-- if no <initializer_list> is included.
+ // FIXME: we should create the init capture variable and mark it invalid
+ // in this case.
+ if (C->InitCaptureType.get().isNull())
+ continue;
+ Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(),
+ C->Id, C->Init.get());
+ // C++1y [expr.prim.lambda]p11:
+ // An init-capture behaves as if it declares and explicitly
+ // captures a variable [...] whose declarative region is the
+ // lambda-expression's compound-statement
+ if (Var)
+ PushOnScopeChains(Var, CurScope, false);
+ } else {
+ // C++11 [expr.prim.lambda]p8:
+ // If a lambda-capture includes a capture-default that is &, the
+ // identifiers in the lambda-capture shall not be preceded by &.
+ // If a lambda-capture includes a capture-default that is =, [...]
+ // each identifier it contains shall be preceded by &.
+ if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) {
+ Diag(C->Loc, diag::err_reference_capture_with_reference_default)
+ << FixItHint::CreateRemoval(
+ SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
+ continue;
+ } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) {
+ Diag(C->Loc, diag::err_copy_capture_with_copy_default)
+ << FixItHint::CreateRemoval(
+ SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
+ continue;
+ }
+
+ // C++11 [expr.prim.lambda]p10:
+ // The identifiers in a capture-list are looked up using the usual
+ // rules for unqualified name lookup (3.4.1)
+ DeclarationNameInfo Name(C->Id, C->Loc);
+ LookupResult R(*this, Name, LookupOrdinaryName);
+ LookupName(R, CurScope);
+ if (R.isAmbiguous())
+ continue;
+ if (R.empty()) {
+ // FIXME: Disable corrections that would add qualification?
+ CXXScopeSpec ScopeSpec;
+ if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R,
+ llvm::make_unique<DeclFilterCCC<VarDecl>>()))
+ continue;
+ }
+
+ Var = R.getAsSingle<VarDecl>();
+ if (Var && DiagnoseUseOfDecl(Var, C->Loc))
+ continue;
+ }
+
+ // C++11 [expr.prim.lambda]p8:
+ // An identifier or this shall not appear more than once in a
+ // lambda-capture.
+ if (!CaptureNames.insert(C->Id).second) {
+ if (Var && LSI->isCaptured(Var)) {
+ Diag(C->Loc, diag::err_capture_more_than_once)
+ << C->Id << SourceRange(LSI->getCapture(Var).getLocation())
+ << FixItHint::CreateRemoval(
+ SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
+ } else
+ // Previous capture captured something different (one or both was
+ // an init-cpature): no fixit.
+ Diag(C->Loc, diag::err_capture_more_than_once) << C->Id;
+ continue;
+ }
+
+ // C++11 [expr.prim.lambda]p10:
+ // [...] each such lookup shall find a variable with automatic storage
+ // duration declared in the reaching scope of the local lambda expression.
+ // Note that the 'reaching scope' check happens in tryCaptureVariable().
+ if (!Var) {
+ Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id;
+ continue;
+ }
+
+ // Ignore invalid decls; they'll just confuse the code later.
+ if (Var->isInvalidDecl())
+ continue;
+
+ if (!Var->hasLocalStorage()) {
+ Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id;
+ Diag(Var->getLocation(), diag::note_previous_decl) << C->Id;
+ continue;
+ }
+
+ // C++11 [expr.prim.lambda]p23:
+ // A capture followed by an ellipsis is a pack expansion (14.5.3).
+ SourceLocation EllipsisLoc;
+ if (C->EllipsisLoc.isValid()) {
+ if (Var->isParameterPack()) {
+ EllipsisLoc = C->EllipsisLoc;
+ } else {
+ Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
+ << SourceRange(C->Loc);
+
+ // Just ignore the ellipsis.
+ }
+ } else if (Var->isParameterPack()) {
+ ContainsUnexpandedParameterPack = true;
+ }
+
+ if (C->Init.isUsable()) {
+ buildInitCaptureField(LSI, Var);
+ } else {
+ TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef :
+ TryCapture_ExplicitByVal;
+ tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc);
+ }
+ }
+ finishLambdaExplicitCaptures(LSI);
+
+ LSI->ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
+
+ // Add lambda parameters into scope.
+ addLambdaParameters(Method, CurScope);
+
+ // Enter a new evaluation context to insulate the lambda from any
+ // cleanups from the enclosing full-expression.
+ PushExpressionEvaluationContext(PotentiallyEvaluated);
+}
+
+void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope,
+ bool IsInstantiation) {
+ LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(FunctionScopes.back());
+
+ // Leave the expression-evaluation context.
+ DiscardCleanupsInEvaluationContext();
+ PopExpressionEvaluationContext();
+
+ // Leave the context of the lambda.
+ if (!IsInstantiation)
+ PopDeclContext();
+
+ // Finalize the lambda.
+ CXXRecordDecl *Class = LSI->Lambda;
+ Class->setInvalidDecl();
+ SmallVector<Decl*, 4> Fields(Class->fields());
+ ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
+ SourceLocation(), nullptr);
+ CheckCompletedCXXClass(Class);
+
+ PopFunctionScopeInfo();
+}
+
+/// \brief Add a lambda's conversion to function pointer, as described in
+/// C++11 [expr.prim.lambda]p6.
+static void addFunctionPointerConversion(Sema &S,
+ SourceRange IntroducerRange,
+ CXXRecordDecl *Class,
+ CXXMethodDecl *CallOperator) {
+ // Add the conversion to function pointer.
+ const FunctionProtoType *CallOpProto =
+ CallOperator->getType()->getAs<FunctionProtoType>();
+ const FunctionProtoType::ExtProtoInfo CallOpExtInfo =
+ CallOpProto->getExtProtoInfo();
+ QualType PtrToFunctionTy;
+ QualType InvokerFunctionTy;
+ {
+ FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo;
+ CallingConv CC = S.Context.getDefaultCallingConvention(
+ CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
+ InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC);
+ InvokerExtInfo.TypeQuals = 0;
+ assert(InvokerExtInfo.RefQualifier == RQ_None &&
+ "Lambda's call operator should not have a reference qualifier");
+ InvokerFunctionTy =
+ S.Context.getFunctionType(CallOpProto->getReturnType(),
+ CallOpProto->getParamTypes(), InvokerExtInfo);
+ PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy);
+ }
+
+ // Create the type of the conversion function.
+ FunctionProtoType::ExtProtoInfo ConvExtInfo(
+ S.Context.getDefaultCallingConvention(
+ /*IsVariadic=*/false, /*IsCXXMethod=*/true));
+ // The conversion function is always const.
+ ConvExtInfo.TypeQuals = Qualifiers::Const;
+ QualType ConvTy =
+ S.Context.getFunctionType(PtrToFunctionTy, None, ConvExtInfo);
+
+ SourceLocation Loc = IntroducerRange.getBegin();
+ DeclarationName ConversionName
+ = S.Context.DeclarationNames.getCXXConversionFunctionName(
+ S.Context.getCanonicalType(PtrToFunctionTy));
+ DeclarationNameLoc ConvNameLoc;
+ // Construct a TypeSourceInfo for the conversion function, and wire
+ // all the parameters appropriately for the FunctionProtoTypeLoc
+ // so that everything works during transformation/instantiation of
+ // generic lambdas.
+ // The main reason for wiring up the parameters of the conversion
+ // function with that of the call operator is so that constructs
+ // like the following work:
+ // auto L = [](auto b) { <-- 1
+ // return [](auto a) -> decltype(a) { <-- 2
+ // return a;
+ // };
+ // };
+ // int (*fp)(int) = L(5);
+ // Because the trailing return type can contain DeclRefExprs that refer
+ // to the original call operator's variables, we hijack the call
+ // operators ParmVarDecls below.
+ TypeSourceInfo *ConvNamePtrToFunctionTSI =
+ S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc);
+ ConvNameLoc.NamedType.TInfo = ConvNamePtrToFunctionTSI;
+
+ // The conversion function is a conversion to a pointer-to-function.
+ TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc);
+ FunctionProtoTypeLoc ConvTL =
+ ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>();
+ // Get the result of the conversion function which is a pointer-to-function.
+ PointerTypeLoc PtrToFunctionTL =
+ ConvTL.getReturnLoc().getAs<PointerTypeLoc>();
+ // Do the same for the TypeSourceInfo that is used to name the conversion
+ // operator.
+ PointerTypeLoc ConvNamePtrToFunctionTL =
+ ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>();
+
+ // Get the underlying function types that the conversion function will
+ // be converting to (should match the type of the call operator).
+ FunctionProtoTypeLoc CallOpConvTL =
+ PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
+ FunctionProtoTypeLoc CallOpConvNameTL =
+ ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
+
+ // Wire up the FunctionProtoTypeLocs with the call operator's parameters.
+ // These parameter's are essentially used to transform the name and
+ // the type of the conversion operator. By using the same parameters
+ // as the call operator's we don't have to fix any back references that
+ // the trailing return type of the call operator's uses (such as
+ // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.)
+ // - we can simply use the return type of the call operator, and
+ // everything should work.
+ SmallVector<ParmVarDecl *, 4> InvokerParams;
+ for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
+ ParmVarDecl *From = CallOperator->getParamDecl(I);
+
+ InvokerParams.push_back(ParmVarDecl::Create(S.Context,
+ // Temporarily add to the TU. This is set to the invoker below.
+ S.Context.getTranslationUnitDecl(),
+ From->getLocStart(),
+ From->getLocation(),
+ From->getIdentifier(),
+ From->getType(),
+ From->getTypeSourceInfo(),
+ From->getStorageClass(),
+ /*DefaultArg=*/nullptr));
+ CallOpConvTL.setParam(I, From);
+ CallOpConvNameTL.setParam(I, From);
+ }
+
+ CXXConversionDecl *Conversion
+ = CXXConversionDecl::Create(S.Context, Class, Loc,
+ DeclarationNameInfo(ConversionName,
+ Loc, ConvNameLoc),
+ ConvTy,
+ ConvTSI,
+ /*isInline=*/true, /*isExplicit=*/false,
+ /*isConstexpr=*/false,
+ CallOperator->getBody()->getLocEnd());
+ Conversion->setAccess(AS_public);
+ Conversion->setImplicit(true);
+
+ if (Class->isGenericLambda()) {
+ // Create a template version of the conversion operator, using the template
+ // parameter list of the function call operator.
+ FunctionTemplateDecl *TemplateCallOperator =
+ CallOperator->getDescribedFunctionTemplate();
+ FunctionTemplateDecl *ConversionTemplate =
+ FunctionTemplateDecl::Create(S.Context, Class,
+ Loc, ConversionName,
+ TemplateCallOperator->getTemplateParameters(),
+ Conversion);
+ ConversionTemplate->setAccess(AS_public);
+ ConversionTemplate->setImplicit(true);
+ Conversion->setDescribedFunctionTemplate(ConversionTemplate);
+ Class->addDecl(ConversionTemplate);
+ } else
+ Class->addDecl(Conversion);
+ // Add a non-static member function that will be the result of
+ // the conversion with a certain unique ID.
+ DeclarationName InvokerName = &S.Context.Idents.get(
+ getLambdaStaticInvokerName());
+ // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo()
+ // we should get a prebuilt TrivialTypeSourceInfo from Context
+ // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc
+ // then rewire the parameters accordingly, by hoisting up the InvokeParams
+ // loop below and then use its Params to set Invoke->setParams(...) below.
+ // This would avoid the 'const' qualifier of the calloperator from
+ // contaminating the type of the invoker, which is currently adjusted
+ // in SemaTemplateDeduction.cpp:DeduceTemplateArguments. Fixing the
+ // trailing return type of the invoker would require a visitor to rebuild
+ // the trailing return type and adjusting all back DeclRefExpr's to refer
+ // to the new static invoker parameters - not the call operator's.
+ CXXMethodDecl *Invoke
+ = CXXMethodDecl::Create(S.Context, Class, Loc,
+ DeclarationNameInfo(InvokerName, Loc),
+ InvokerFunctionTy,
+ CallOperator->getTypeSourceInfo(),
+ SC_Static, /*IsInline=*/true,
+ /*IsConstexpr=*/false,
+ CallOperator->getBody()->getLocEnd());
+ for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I)
+ InvokerParams[I]->setOwningFunction(Invoke);
+ Invoke->setParams(InvokerParams);
+ Invoke->setAccess(AS_private);
+ Invoke->setImplicit(true);
+ if (Class->isGenericLambda()) {
+ FunctionTemplateDecl *TemplateCallOperator =
+ CallOperator->getDescribedFunctionTemplate();
+ FunctionTemplateDecl *StaticInvokerTemplate = FunctionTemplateDecl::Create(
+ S.Context, Class, Loc, InvokerName,
+ TemplateCallOperator->getTemplateParameters(),
+ Invoke);
+ StaticInvokerTemplate->setAccess(AS_private);
+ StaticInvokerTemplate->setImplicit(true);
+ Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate);
+ Class->addDecl(StaticInvokerTemplate);
+ } else
+ Class->addDecl(Invoke);
+}
+
+/// \brief Add a lambda's conversion to block pointer.
+static void addBlockPointerConversion(Sema &S,
+ SourceRange IntroducerRange,
+ CXXRecordDecl *Class,
+ CXXMethodDecl *CallOperator) {
+ const FunctionProtoType *Proto =
+ CallOperator->getType()->getAs<FunctionProtoType>();
+
+ // The function type inside the block pointer type is the same as the call
+ // operator with some tweaks. The calling convention is the default free
+ // function convention, and the type qualifications are lost.
+ FunctionProtoType::ExtProtoInfo BlockEPI = Proto->getExtProtoInfo();
+ BlockEPI.ExtInfo =
+ BlockEPI.ExtInfo.withCallingConv(S.Context.getDefaultCallingConvention(
+ Proto->isVariadic(), /*IsCXXMethod=*/false));
+ BlockEPI.TypeQuals = 0;
+ QualType FunctionTy = S.Context.getFunctionType(
+ Proto->getReturnType(), Proto->getParamTypes(), BlockEPI);
+ QualType BlockPtrTy = S.Context.getBlockPointerType(FunctionTy);
+
+ FunctionProtoType::ExtProtoInfo ConversionEPI(
+ S.Context.getDefaultCallingConvention(
+ /*IsVariadic=*/false, /*IsCXXMethod=*/true));
+ ConversionEPI.TypeQuals = Qualifiers::Const;
+ QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, None, ConversionEPI);
+
+ SourceLocation Loc = IntroducerRange.getBegin();
+ DeclarationName Name
+ = S.Context.DeclarationNames.getCXXConversionFunctionName(
+ S.Context.getCanonicalType(BlockPtrTy));
+ DeclarationNameLoc NameLoc;
+ NameLoc.NamedType.TInfo = S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc);
+ CXXConversionDecl *Conversion
+ = CXXConversionDecl::Create(S.Context, Class, Loc,
+ DeclarationNameInfo(Name, Loc, NameLoc),
+ ConvTy,
+ S.Context.getTrivialTypeSourceInfo(ConvTy, Loc),
+ /*isInline=*/true, /*isExplicit=*/false,
+ /*isConstexpr=*/false,
+ CallOperator->getBody()->getLocEnd());
+ Conversion->setAccess(AS_public);
+ Conversion->setImplicit(true);
+ Class->addDecl(Conversion);
+}
+
+static ExprResult performLambdaVarCaptureInitialization(
+ Sema &S, LambdaScopeInfo::Capture &Capture,
+ FieldDecl *Field,
+ SmallVectorImpl<VarDecl *> &ArrayIndexVars,
+ SmallVectorImpl<unsigned> &ArrayIndexStarts) {
+ assert(Capture.isVariableCapture() && "not a variable capture");
+
+ auto *Var = Capture.getVariable();
+ SourceLocation Loc = Capture.getLocation();
+
+ // C++11 [expr.prim.lambda]p21:
+ // When the lambda-expression is evaluated, the entities that
+ // are captured by copy are used to direct-initialize each
+ // corresponding non-static data member of the resulting closure
+ // object. (For array members, the array elements are
+ // direct-initialized in increasing subscript order.) These
+ // initializations are performed in the (unspecified) order in
+ // which the non-static data members are declared.
+
+ // C++ [expr.prim.lambda]p12:
+ // An entity captured by a lambda-expression is odr-used (3.2) in
+ // the scope containing the lambda-expression.
+ ExprResult RefResult = S.BuildDeclarationNameExpr(
+ CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
+ if (RefResult.isInvalid())
+ return ExprError();
+ Expr *Ref = RefResult.get();
+
+ QualType FieldType = Field->getType();
+
+ // When the variable has array type, create index variables for each
+ // dimension of the array. We use these index variables to subscript
+ // the source array, and other clients (e.g., CodeGen) will perform
+ // the necessary iteration with these index variables.
+ //
+ // FIXME: This is dumb. Add a proper AST representation for array
+ // copy-construction and use it here.
+ SmallVector<VarDecl *, 4> IndexVariables;
+ QualType BaseType = FieldType;
+ QualType SizeType = S.Context.getSizeType();
+ ArrayIndexStarts.push_back(ArrayIndexVars.size());
+ while (const ConstantArrayType *Array
+ = S.Context.getAsConstantArrayType(BaseType)) {
+ // Create the iteration variable for this array index.
+ IdentifierInfo *IterationVarName = nullptr;
+ {
+ SmallString<8> Str;
+ llvm::raw_svector_ostream OS(Str);
+ OS << "__i" << IndexVariables.size();
+ IterationVarName = &S.Context.Idents.get(OS.str());
+ }
+ VarDecl *IterationVar = VarDecl::Create(
+ S.Context, S.CurContext, Loc, Loc, IterationVarName, SizeType,
+ S.Context.getTrivialTypeSourceInfo(SizeType, Loc), SC_None);
+ IterationVar->setImplicit();
+ IndexVariables.push_back(IterationVar);
+ ArrayIndexVars.push_back(IterationVar);
+
+ // Create a reference to the iteration variable.
+ ExprResult IterationVarRef =
+ S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
+ assert(!IterationVarRef.isInvalid() &&
+ "Reference to invented variable cannot fail!");
+ IterationVarRef = S.DefaultLvalueConversion(IterationVarRef.get());
+ assert(!IterationVarRef.isInvalid() &&
+ "Conversion of invented variable cannot fail!");
+
+ // Subscript the array with this iteration variable.
+ ExprResult Subscript =
+ S.CreateBuiltinArraySubscriptExpr(Ref, Loc, IterationVarRef.get(), Loc);
+ if (Subscript.isInvalid())
+ return ExprError();
+
+ Ref = Subscript.get();
+ BaseType = Array->getElementType();
+ }
+
+ // Construct the entity that we will be initializing. For an array, this
+ // will be first element in the array, which may require several levels
+ // of array-subscript entities.
+ SmallVector<InitializedEntity, 4> Entities;
+ Entities.reserve(1 + IndexVariables.size());
+ Entities.push_back(InitializedEntity::InitializeLambdaCapture(
+ Var->getIdentifier(), FieldType, Loc));
+ for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
+ Entities.push_back(
+ InitializedEntity::InitializeElement(S.Context, 0, Entities.back()));
+
+ InitializationKind InitKind = InitializationKind::CreateDirect(Loc, Loc, Loc);
+ InitializationSequence Init(S, Entities.back(), InitKind, Ref);
+ return Init.Perform(S, Entities.back(), InitKind, Ref);
+}
+
+ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body,
+ Scope *CurScope) {
+ LambdaScopeInfo LSI = *cast<LambdaScopeInfo>(FunctionScopes.back());
+ ActOnFinishFunctionBody(LSI.CallOperator, Body);
+ return BuildLambdaExpr(StartLoc, Body->getLocEnd(), &LSI);
+}
+
+static LambdaCaptureDefault
+mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS) {
+ switch (ICS) {
+ case CapturingScopeInfo::ImpCap_None:
+ return LCD_None;
+ case CapturingScopeInfo::ImpCap_LambdaByval:
+ return LCD_ByCopy;
+ case CapturingScopeInfo::ImpCap_CapturedRegion:
+ case CapturingScopeInfo::ImpCap_LambdaByref:
+ return LCD_ByRef;
+ case CapturingScopeInfo::ImpCap_Block:
+ llvm_unreachable("block capture in lambda");
+ }
+ llvm_unreachable("Unknown implicit capture style");
+}
+
+ExprResult Sema::BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc,
+ LambdaScopeInfo *LSI) {
+ // Collect information from the lambda scope.
+ SmallVector<LambdaCapture, 4> Captures;
+ SmallVector<Expr *, 4> CaptureInits;
+ SourceLocation CaptureDefaultLoc = LSI->CaptureDefaultLoc;
+ LambdaCaptureDefault CaptureDefault =
+ mapImplicitCaptureStyle(LSI->ImpCaptureStyle);
+ CXXRecordDecl *Class;
+ CXXMethodDecl *CallOperator;
+ SourceRange IntroducerRange;
+ bool ExplicitParams;
+ bool ExplicitResultType;
+ bool LambdaExprNeedsCleanups;
+ bool ContainsUnexpandedParameterPack;
+ SmallVector<VarDecl *, 4> ArrayIndexVars;
+ SmallVector<unsigned, 4> ArrayIndexStarts;
+ {
+ CallOperator = LSI->CallOperator;
+ Class = LSI->Lambda;
+ IntroducerRange = LSI->IntroducerRange;
+ ExplicitParams = LSI->ExplicitParams;
+ ExplicitResultType = !LSI->HasImplicitReturnType;
+ LambdaExprNeedsCleanups = LSI->ExprNeedsCleanups;
+ ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack;
+
+ CallOperator->setLexicalDeclContext(Class);
+ Decl *TemplateOrNonTemplateCallOperatorDecl =
+ CallOperator->getDescribedFunctionTemplate()
+ ? CallOperator->getDescribedFunctionTemplate()
+ : cast<Decl>(CallOperator);
+
+ TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class);
+ Class->addDecl(TemplateOrNonTemplateCallOperatorDecl);
+
+ PopExpressionEvaluationContext();
+
+ // Translate captures.
+ auto CurField = Class->field_begin();
+ for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I, ++CurField) {
+ LambdaScopeInfo::Capture From = LSI->Captures[I];
+ assert(!From.isBlockCapture() && "Cannot capture __block variables");
+ bool IsImplicit = I >= LSI->NumExplicitCaptures;
+
+ // Handle 'this' capture.
+ if (From.isThisCapture()) {
+ Captures.push_back(
+ LambdaCapture(From.getLocation(), IsImplicit, LCK_This));
+ CaptureInits.push_back(new (Context) CXXThisExpr(From.getLocation(),
+ getCurrentThisType(),
+ /*isImplicit=*/true));
+ ArrayIndexStarts.push_back(ArrayIndexVars.size());
+ continue;
+ }
+ if (From.isVLATypeCapture()) {
+ Captures.push_back(
+ LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType));
+ CaptureInits.push_back(nullptr);
+ ArrayIndexStarts.push_back(ArrayIndexVars.size());
+ continue;
+ }
+
+ VarDecl *Var = From.getVariable();
+ LambdaCaptureKind Kind = From.isCopyCapture() ? LCK_ByCopy : LCK_ByRef;
+ Captures.push_back(LambdaCapture(From.getLocation(), IsImplicit, Kind,
+ Var, From.getEllipsisLoc()));
+ Expr *Init = From.getInitExpr();
+ if (!Init) {
+ auto InitResult = performLambdaVarCaptureInitialization(
+ *this, From, *CurField, ArrayIndexVars, ArrayIndexStarts);
+ if (InitResult.isInvalid())
+ return ExprError();
+ Init = InitResult.get();
+ } else {
+ ArrayIndexStarts.push_back(ArrayIndexVars.size());
+ }
+ CaptureInits.push_back(Init);
+ }
+
+ // C++11 [expr.prim.lambda]p6:
+ // The closure type for a lambda-expression with no lambda-capture
+ // has a public non-virtual non-explicit const conversion function
+ // to pointer to function having the same parameter and return
+ // types as the closure type's function call operator.
+ if (Captures.empty() && CaptureDefault == LCD_None)
+ addFunctionPointerConversion(*this, IntroducerRange, Class,
+ CallOperator);
+
+ // Objective-C++:
+ // The closure type for a lambda-expression has a public non-virtual
+ // non-explicit const conversion function to a block pointer having the
+ // same parameter and return types as the closure type's function call
+ // operator.
+ // FIXME: Fix generic lambda to block conversions.
+ if (getLangOpts().Blocks && getLangOpts().ObjC1 &&
+ !Class->isGenericLambda())
+ addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator);
+
+ // Finalize the lambda class.
+ SmallVector<Decl*, 4> Fields(Class->fields());
+ ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
+ SourceLocation(), nullptr);
+ CheckCompletedCXXClass(Class);
+ }
+
+ if (LambdaExprNeedsCleanups)
+ ExprNeedsCleanups = true;
+
+ LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange,
+ CaptureDefault, CaptureDefaultLoc,
+ Captures,
+ ExplicitParams, ExplicitResultType,
+ CaptureInits, ArrayIndexVars,
+ ArrayIndexStarts, EndLoc,
+ ContainsUnexpandedParameterPack);
+
+ if (!CurContext->isDependentContext()) {
+ switch (ExprEvalContexts.back().Context) {
+ // C++11 [expr.prim.lambda]p2:
+ // A lambda-expression shall not appear in an unevaluated operand
+ // (Clause 5).
+ case Unevaluated:
+ case UnevaluatedAbstract:
+ // C++1y [expr.const]p2:
+ // A conditional-expression e is a core constant expression unless the
+ // evaluation of e, following the rules of the abstract machine, would
+ // evaluate [...] a lambda-expression.
+ //
+ // This is technically incorrect, there are some constant evaluated contexts
+ // where this should be allowed. We should probably fix this when DR1607 is
+ // ratified, it lays out the exact set of conditions where we shouldn't
+ // allow a lambda-expression.
+ case ConstantEvaluated:
+ // We don't actually diagnose this case immediately, because we
+ // could be within a context where we might find out later that
+ // the expression is potentially evaluated (e.g., for typeid).
+ ExprEvalContexts.back().Lambdas.push_back(Lambda);
+ break;
+
+ case PotentiallyEvaluated:
+ case PotentiallyEvaluatedIfUsed:
+ break;
+ }
+ }
+
+ return MaybeBindToTemporary(Lambda);
+}
+
+ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation,
+ SourceLocation ConvLocation,
+ CXXConversionDecl *Conv,
+ Expr *Src) {
+ // Make sure that the lambda call operator is marked used.
+ CXXRecordDecl *Lambda = Conv->getParent();
+ CXXMethodDecl *CallOperator
+ = cast<CXXMethodDecl>(
+ Lambda->lookup(
+ Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
+ CallOperator->setReferenced();
+ CallOperator->markUsed(Context);
+
+ ExprResult Init = PerformCopyInitialization(
+ InitializedEntity::InitializeBlock(ConvLocation,
+ Src->getType(),
+ /*NRVO=*/false),
+ CurrentLocation, Src);
+ if (!Init.isInvalid())
+ Init = ActOnFinishFullExpr(Init.get());
+
+ if (Init.isInvalid())
+ return ExprError();
+
+ // Create the new block to be returned.
+ BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation);
+
+ // Set the type information.
+ Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo());
+ Block->setIsVariadic(CallOperator->isVariadic());
+ Block->setBlockMissingReturnType(false);
+
+ // Add parameters.
+ SmallVector<ParmVarDecl *, 4> BlockParams;
+ for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
+ ParmVarDecl *From = CallOperator->getParamDecl(I);
+ BlockParams.push_back(ParmVarDecl::Create(Context, Block,
+ From->getLocStart(),
+ From->getLocation(),
+ From->getIdentifier(),
+ From->getType(),
+ From->getTypeSourceInfo(),
+ From->getStorageClass(),
+ /*DefaultArg=*/nullptr));
+ }
+ Block->setParams(BlockParams);
+
+ Block->setIsConversionFromLambda(true);
+
+ // Add capture. The capture uses a fake variable, which doesn't correspond
+ // to any actual memory location. However, the initializer copy-initializes
+ // the lambda object.
+ TypeSourceInfo *CapVarTSI =
+ Context.getTrivialTypeSourceInfo(Src->getType());
+ VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation,
+ ConvLocation, nullptr,
+ Src->getType(), CapVarTSI,
+ SC_None);
+ BlockDecl::Capture Capture(/*Variable=*/CapVar, /*ByRef=*/false,
+ /*Nested=*/false, /*Copy=*/Init.get());
+ Block->setCaptures(Context, &Capture, &Capture + 1,
+ /*CapturesCXXThis=*/false);
+
+ // Add a fake function body to the block. IR generation is responsible
+ // for filling in the actual body, which cannot be expressed as an AST.
+ Block->setBody(new (Context) CompoundStmt(ConvLocation));
+
+ // Create the block literal expression.
+ Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType());
+ ExprCleanupObjects.push_back(Block);
+ ExprNeedsCleanups = true;
+
+ return BuildBlock;
+}
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaLookup.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaLookup.cpp
new file mode 100644
index 0000000..c745b13
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaLookup.cpp
@@ -0,0 +1,4700 @@
+//===--------------------- SemaLookup.cpp - Name Lookup ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements name lookup for C, C++, Objective-C, and
+// Objective-C++.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/Sema/Lookup.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTMutationListener.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclLookups.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/Basic/Builtins.h"
+#include "clang/Basic/LangOptions.h"
+#include "clang/Lex/HeaderSearch.h"
+#include "clang/Lex/ModuleLoader.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Sema/DeclSpec.h"
+#include "clang/Sema/ExternalSemaSource.h"
+#include "clang/Sema/Overload.h"
+#include "clang/Sema/Scope.h"
+#include "clang/Sema/ScopeInfo.h"
+#include "clang/Sema/Sema.h"
+#include "clang/Sema/SemaInternal.h"
+#include "clang/Sema/TemplateDeduction.h"
+#include "clang/Sema/TypoCorrection.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/StringMap.h"
+#include "llvm/ADT/TinyPtrVector.h"
+#include "llvm/ADT/edit_distance.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <algorithm>
+#include <iterator>
+#include <limits>
+#include <list>
+#include <map>
+#include <set>
+#include <utility>
+#include <vector>
+
+using namespace clang;
+using namespace sema;
+
+namespace {
+ class UnqualUsingEntry {
+ const DeclContext *Nominated;
+ const DeclContext *CommonAncestor;
+
+ public:
+ UnqualUsingEntry(const DeclContext *Nominated,
+ const DeclContext *CommonAncestor)
+ : Nominated(Nominated), CommonAncestor(CommonAncestor) {
+ }
+
+ const DeclContext *getCommonAncestor() const {
+ return CommonAncestor;
+ }
+
+ const DeclContext *getNominatedNamespace() const {
+ return Nominated;
+ }
+
+ // Sort by the pointer value of the common ancestor.
+ struct Comparator {
+ bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
+ return L.getCommonAncestor() < R.getCommonAncestor();
+ }
+
+ bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
+ return E.getCommonAncestor() < DC;
+ }
+
+ bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
+ return DC < E.getCommonAncestor();
+ }
+ };
+ };
+
+ /// A collection of using directives, as used by C++ unqualified
+ /// lookup.
+ class UnqualUsingDirectiveSet {
+ typedef SmallVector<UnqualUsingEntry, 8> ListTy;
+
+ ListTy list;
+ llvm::SmallPtrSet<DeclContext*, 8> visited;
+
+ public:
+ UnqualUsingDirectiveSet() {}
+
+ void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
+ // C++ [namespace.udir]p1:
+ // During unqualified name lookup, the names appear as if they
+ // were declared in the nearest enclosing namespace which contains
+ // both the using-directive and the nominated namespace.
+ DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
+ assert(InnermostFileDC && InnermostFileDC->isFileContext());
+
+ for (; S; S = S->getParent()) {
+ // C++ [namespace.udir]p1:
+ // A using-directive shall not appear in class scope, but may
+ // appear in namespace scope or in block scope.
+ DeclContext *Ctx = S->getEntity();
+ if (Ctx && Ctx->isFileContext()) {
+ visit(Ctx, Ctx);
+ } else if (!Ctx || Ctx->isFunctionOrMethod()) {
+ for (auto *I : S->using_directives())
+ visit(I, InnermostFileDC);
+ }
+ }
+ }
+
+ // Visits a context and collect all of its using directives
+ // recursively. Treats all using directives as if they were
+ // declared in the context.
+ //
+ // A given context is only every visited once, so it is important
+ // that contexts be visited from the inside out in order to get
+ // the effective DCs right.
+ void visit(DeclContext *DC, DeclContext *EffectiveDC) {
+ if (!visited.insert(DC).second)
+ return;
+
+ addUsingDirectives(DC, EffectiveDC);
+ }
+
+ // Visits a using directive and collects all of its using
+ // directives recursively. Treats all using directives as if they
+ // were declared in the effective DC.
+ void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
+ DeclContext *NS = UD->getNominatedNamespace();
+ if (!visited.insert(NS).second)
+ return;
+
+ addUsingDirective(UD, EffectiveDC);
+ addUsingDirectives(NS, EffectiveDC);
+ }
+
+ // Adds all the using directives in a context (and those nominated
+ // by its using directives, transitively) as if they appeared in
+ // the given effective context.
+ void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
+ SmallVector<DeclContext*,4> queue;
+ while (true) {
+ for (auto UD : DC->using_directives()) {
+ DeclContext *NS = UD->getNominatedNamespace();
+ if (visited.insert(NS).second) {
+ addUsingDirective(UD, EffectiveDC);
+ queue.push_back(NS);
+ }
+ }
+
+ if (queue.empty())
+ return;
+
+ DC = queue.pop_back_val();
+ }
+ }
+
+ // Add a using directive as if it had been declared in the given
+ // context. This helps implement C++ [namespace.udir]p3:
+ // The using-directive is transitive: if a scope contains a
+ // using-directive that nominates a second namespace that itself
+ // contains using-directives, the effect is as if the
+ // using-directives from the second namespace also appeared in
+ // the first.
+ void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
+ // Find the common ancestor between the effective context and
+ // the nominated namespace.
+ DeclContext *Common = UD->getNominatedNamespace();
+ while (!Common->Encloses(EffectiveDC))
+ Common = Common->getParent();
+ Common = Common->getPrimaryContext();
+
+ list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
+ }
+
+ void done() {
+ std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
+ }
+
+ typedef ListTy::const_iterator const_iterator;
+
+ const_iterator begin() const { return list.begin(); }
+ const_iterator end() const { return list.end(); }
+
+ llvm::iterator_range<const_iterator>
+ getNamespacesFor(DeclContext *DC) const {
+ return llvm::make_range(std::equal_range(begin(), end(),
+ DC->getPrimaryContext(),
+ UnqualUsingEntry::Comparator()));
+ }
+ };
+}
+
+// Retrieve the set of identifier namespaces that correspond to a
+// specific kind of name lookup.
+static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
+ bool CPlusPlus,
+ bool Redeclaration) {
+ unsigned IDNS = 0;
+ switch (NameKind) {
+ case Sema::LookupObjCImplicitSelfParam:
+ case Sema::LookupOrdinaryName:
+ case Sema::LookupRedeclarationWithLinkage:
+ case Sema::LookupLocalFriendName:
+ IDNS = Decl::IDNS_Ordinary;
+ if (CPlusPlus) {
+ IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
+ if (Redeclaration)
+ IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
+ }
+ if (Redeclaration)
+ IDNS |= Decl::IDNS_LocalExtern;
+ break;
+
+ case Sema::LookupOperatorName:
+ // Operator lookup is its own crazy thing; it is not the same
+ // as (e.g.) looking up an operator name for redeclaration.
+ assert(!Redeclaration && "cannot do redeclaration operator lookup");
+ IDNS = Decl::IDNS_NonMemberOperator;
+ break;
+
+ case Sema::LookupTagName:
+ if (CPlusPlus) {
+ IDNS = Decl::IDNS_Type;
+
+ // When looking for a redeclaration of a tag name, we add:
+ // 1) TagFriend to find undeclared friend decls
+ // 2) Namespace because they can't "overload" with tag decls.
+ // 3) Tag because it includes class templates, which can't
+ // "overload" with tag decls.
+ if (Redeclaration)
+ IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
+ } else {
+ IDNS = Decl::IDNS_Tag;
+ }
+ break;
+
+ case Sema::LookupLabel:
+ IDNS = Decl::IDNS_Label;
+ break;
+
+ case Sema::LookupMemberName:
+ IDNS = Decl::IDNS_Member;
+ if (CPlusPlus)
+ IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
+ break;
+
+ case Sema::LookupNestedNameSpecifierName:
+ IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
+ break;
+
+ case Sema::LookupNamespaceName:
+ IDNS = Decl::IDNS_Namespace;
+ break;
+
+ case Sema::LookupUsingDeclName:
+ assert(Redeclaration && "should only be used for redecl lookup");
+ IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
+ Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
+ Decl::IDNS_LocalExtern;
+ break;
+
+ case Sema::LookupObjCProtocolName:
+ IDNS = Decl::IDNS_ObjCProtocol;
+ break;
+
+ case Sema::LookupAnyName:
+ IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
+ | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
+ | Decl::IDNS_Type;
+ break;
+ }
+ return IDNS;
+}
+
+void LookupResult::configure() {
+ IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
+ isForRedeclaration());
+
+ // If we're looking for one of the allocation or deallocation
+ // operators, make sure that the implicitly-declared new and delete
+ // operators can be found.
+ switch (NameInfo.getName().getCXXOverloadedOperator()) {
+ case OO_New:
+ case OO_Delete:
+ case OO_Array_New:
+ case OO_Array_Delete:
+ getSema().DeclareGlobalNewDelete();
+ break;
+
+ default:
+ break;
+ }
+
+ // Compiler builtins are always visible, regardless of where they end
+ // up being declared.
+ if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
+ if (unsigned BuiltinID = Id->getBuiltinID()) {
+ if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
+ AllowHidden = true;
+ }
+ }
+}
+
+bool LookupResult::sanity() const {
+ // This function is never called by NDEBUG builds.
+ assert(ResultKind != NotFound || Decls.size() == 0);
+ assert(ResultKind != Found || Decls.size() == 1);
+ assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
+ (Decls.size() == 1 &&
+ isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
+ assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
+ assert(ResultKind != Ambiguous || Decls.size() > 1 ||
+ (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
+ Ambiguity == AmbiguousBaseSubobjectTypes)));
+ assert((Paths != nullptr) == (ResultKind == Ambiguous &&
+ (Ambiguity == AmbiguousBaseSubobjectTypes ||
+ Ambiguity == AmbiguousBaseSubobjects)));
+ return true;
+}
+
+// Necessary because CXXBasePaths is not complete in Sema.h
+void LookupResult::deletePaths(CXXBasePaths *Paths) {
+ delete Paths;
+}
+
+/// Get a representative context for a declaration such that two declarations
+/// will have the same context if they were found within the same scope.
+static DeclContext *getContextForScopeMatching(Decl *D) {
+ // For function-local declarations, use that function as the context. This
+ // doesn't account for scopes within the function; the caller must deal with
+ // those.
+ DeclContext *DC = D->getLexicalDeclContext();
+ if (DC->isFunctionOrMethod())
+ return DC;
+
+ // Otherwise, look at the semantic context of the declaration. The
+ // declaration must have been found there.
+ return D->getDeclContext()->getRedeclContext();
+}
+
+/// Resolves the result kind of this lookup.
+void LookupResult::resolveKind() {
+ unsigned N = Decls.size();
+
+ // Fast case: no possible ambiguity.
+ if (N == 0) {
+ assert(ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation);
+ return;
+ }
+
+ // If there's a single decl, we need to examine it to decide what
+ // kind of lookup this is.
+ if (N == 1) {
+ NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
+ if (isa<FunctionTemplateDecl>(D))
+ ResultKind = FoundOverloaded;
+ else if (isa<UnresolvedUsingValueDecl>(D))
+ ResultKind = FoundUnresolvedValue;
+ return;
+ }
+
+ // Don't do any extra resolution if we've already resolved as ambiguous.
+ if (ResultKind == Ambiguous) return;
+
+ llvm::SmallPtrSet<NamedDecl*, 16> Unique;
+ llvm::SmallPtrSet<QualType, 16> UniqueTypes;
+
+ bool Ambiguous = false;
+ bool HasTag = false, HasFunction = false, HasNonFunction = false;
+ bool HasFunctionTemplate = false, HasUnresolved = false;
+
+ unsigned UniqueTagIndex = 0;
+
+ unsigned I = 0;
+ while (I < N) {
+ NamedDecl *D = Decls[I]->getUnderlyingDecl();
+ D = cast<NamedDecl>(D->getCanonicalDecl());
+
+ // Ignore an invalid declaration unless it's the only one left.
+ if (D->isInvalidDecl() && I < N-1) {
+ Decls[I] = Decls[--N];
+ continue;
+ }
+
+ // Redeclarations of types via typedef can occur both within a scope
+ // and, through using declarations and directives, across scopes. There is
+ // no ambiguity if they all refer to the same type, so unique based on the
+ // canonical type.
+ if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
+ if (!TD->getDeclContext()->isRecord()) {
+ QualType T = getSema().Context.getTypeDeclType(TD);
+ if (!UniqueTypes.insert(getSema().Context.getCanonicalType(T)).second) {
+ // The type is not unique; pull something off the back and continue
+ // at this index.
+ Decls[I] = Decls[--N];
+ continue;
+ }
+ }
+ }
+
+ if (!Unique.insert(D).second) {
+ // If it's not unique, pull something off the back (and
+ // continue at this index).
+ // FIXME: This is wrong. We need to take the more recent declaration in
+ // order to get the right type, default arguments, etc. We also need to
+ // prefer visible declarations to hidden ones (for redeclaration lookup
+ // in modules builds).
+ Decls[I] = Decls[--N];
+ continue;
+ }
+
+ // Otherwise, do some decl type analysis and then continue.
+
+ if (isa<UnresolvedUsingValueDecl>(D)) {
+ HasUnresolved = true;
+ } else if (isa<TagDecl>(D)) {
+ if (HasTag)
+ Ambiguous = true;
+ UniqueTagIndex = I;
+ HasTag = true;
+ } else if (isa<FunctionTemplateDecl>(D)) {
+ HasFunction = true;
+ HasFunctionTemplate = true;
+ } else if (isa<FunctionDecl>(D)) {
+ HasFunction = true;
+ } else {
+ if (HasNonFunction)
+ Ambiguous = true;
+ HasNonFunction = true;
+ }
+ I++;
+ }
+
+ // C++ [basic.scope.hiding]p2:
+ // A class name or enumeration name can be hidden by the name of
+ // an object, function, or enumerator declared in the same
+ // scope. If a class or enumeration name and an object, function,
+ // or enumerator are declared in the same scope (in any order)
+ // with the same name, the class or enumeration name is hidden
+ // wherever the object, function, or enumerator name is visible.
+ // But it's still an error if there are distinct tag types found,
+ // even if they're not visible. (ref?)
+ if (HideTags && HasTag && !Ambiguous &&
+ (HasFunction || HasNonFunction || HasUnresolved)) {
+ if (getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
+ getContextForScopeMatching(Decls[UniqueTagIndex ? 0 : N - 1])))
+ Decls[UniqueTagIndex] = Decls[--N];
+ else
+ Ambiguous = true;
+ }
+
+ Decls.set_size(N);
+
+ if (HasNonFunction && (HasFunction || HasUnresolved))
+ Ambiguous = true;
+
+ if (Ambiguous)
+ setAmbiguous(LookupResult::AmbiguousReference);
+ else if (HasUnresolved)
+ ResultKind = LookupResult::FoundUnresolvedValue;
+ else if (N > 1 || HasFunctionTemplate)
+ ResultKind = LookupResult::FoundOverloaded;
+ else
+ ResultKind = LookupResult::Found;
+}
+
+void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
+ CXXBasePaths::const_paths_iterator I, E;
+ for (I = P.begin(), E = P.end(); I != E; ++I)
+ for (DeclContext::lookup_iterator DI = I->Decls.begin(),
+ DE = I->Decls.end(); DI != DE; ++DI)
+ addDecl(*DI);
+}
+
+void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
+ Paths = new CXXBasePaths;
+ Paths->swap(P);
+ addDeclsFromBasePaths(*Paths);
+ resolveKind();
+ setAmbiguous(AmbiguousBaseSubobjects);
+}
+
+void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
+ Paths = new CXXBasePaths;
+ Paths->swap(P);
+ addDeclsFromBasePaths(*Paths);
+ resolveKind();
+ setAmbiguous(AmbiguousBaseSubobjectTypes);
+}
+
+void LookupResult::print(raw_ostream &Out) {
+ Out << Decls.size() << " result(s)";
+ if (isAmbiguous()) Out << ", ambiguous";
+ if (Paths) Out << ", base paths present";
+
+ for (iterator I = begin(), E = end(); I != E; ++I) {
+ Out << "\n";
+ (*I)->print(Out, 2);
+ }
+}
+
+/// \brief Lookup a builtin function, when name lookup would otherwise
+/// fail.
+static bool LookupBuiltin(Sema &S, LookupResult &R) {
+ Sema::LookupNameKind NameKind = R.getLookupKind();
+
+ // If we didn't find a use of this identifier, and if the identifier
+ // corresponds to a compiler builtin, create the decl object for the builtin
+ // now, injecting it into translation unit scope, and return it.
+ if (NameKind == Sema::LookupOrdinaryName ||
+ NameKind == Sema::LookupRedeclarationWithLinkage) {
+ IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
+ if (II) {
+ if (S.getLangOpts().CPlusPlus11 && S.getLangOpts().GNUMode &&
+ II == S.getFloat128Identifier()) {
+ // libstdc++4.7's type_traits expects type __float128 to exist, so
+ // insert a dummy type to make that header build in gnu++11 mode.
+ R.addDecl(S.getASTContext().getFloat128StubType());
+ return true;
+ }
+
+ // If this is a builtin on this (or all) targets, create the decl.
+ if (unsigned BuiltinID = II->getBuiltinID()) {
+ // In C++, we don't have any predefined library functions like
+ // 'malloc'. Instead, we'll just error.
+ if (S.getLangOpts().CPlusPlus &&
+ S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
+ return false;
+
+ if (NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II,
+ BuiltinID, S.TUScope,
+ R.isForRedeclaration(),
+ R.getNameLoc())) {
+ R.addDecl(D);
+ return true;
+ }
+ }
+ }
+ }
+
+ return false;
+}
+
+/// \brief Determine whether we can declare a special member function within
+/// the class at this point.
+static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
+ // We need to have a definition for the class.
+ if (!Class->getDefinition() || Class->isDependentContext())
+ return false;
+
+ // We can't be in the middle of defining the class.
+ return !Class->isBeingDefined();
+}
+
+void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
+ if (!CanDeclareSpecialMemberFunction(Class))
+ return;
+
+ // If the default constructor has not yet been declared, do so now.
+ if (Class->needsImplicitDefaultConstructor())
+ DeclareImplicitDefaultConstructor(Class);
+
+ // If the copy constructor has not yet been declared, do so now.
+ if (Class->needsImplicitCopyConstructor())
+ DeclareImplicitCopyConstructor(Class);
+
+ // If the copy assignment operator has not yet been declared, do so now.
+ if (Class->needsImplicitCopyAssignment())
+ DeclareImplicitCopyAssignment(Class);
+
+ if (getLangOpts().CPlusPlus11) {
+ // If the move constructor has not yet been declared, do so now.
+ if (Class->needsImplicitMoveConstructor())
+ DeclareImplicitMoveConstructor(Class); // might not actually do it
+
+ // If the move assignment operator has not yet been declared, do so now.
+ if (Class->needsImplicitMoveAssignment())
+ DeclareImplicitMoveAssignment(Class); // might not actually do it
+ }
+
+ // If the destructor has not yet been declared, do so now.
+ if (Class->needsImplicitDestructor())
+ DeclareImplicitDestructor(Class);
+}
+
+/// \brief Determine whether this is the name of an implicitly-declared
+/// special member function.
+static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
+ switch (Name.getNameKind()) {
+ case DeclarationName::CXXConstructorName:
+ case DeclarationName::CXXDestructorName:
+ return true;
+
+ case DeclarationName::CXXOperatorName:
+ return Name.getCXXOverloadedOperator() == OO_Equal;
+
+ default:
+ break;
+ }
+
+ return false;
+}
+
+/// \brief If there are any implicit member functions with the given name
+/// that need to be declared in the given declaration context, do so.
+static void DeclareImplicitMemberFunctionsWithName(Sema &S,
+ DeclarationName Name,
+ const DeclContext *DC) {
+ if (!DC)
+ return;
+
+ switch (Name.getNameKind()) {
+ case DeclarationName::CXXConstructorName:
+ if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
+ if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
+ CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
+ if (Record->needsImplicitDefaultConstructor())
+ S.DeclareImplicitDefaultConstructor(Class);
+ if (Record->needsImplicitCopyConstructor())
+ S.DeclareImplicitCopyConstructor(Class);
+ if (S.getLangOpts().CPlusPlus11 &&
+ Record->needsImplicitMoveConstructor())
+ S.DeclareImplicitMoveConstructor(Class);
+ }
+ break;
+
+ case DeclarationName::CXXDestructorName:
+ if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
+ if (Record->getDefinition() && Record->needsImplicitDestructor() &&
+ CanDeclareSpecialMemberFunction(Record))
+ S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
+ break;
+
+ case DeclarationName::CXXOperatorName:
+ if (Name.getCXXOverloadedOperator() != OO_Equal)
+ break;
+
+ if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
+ if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
+ CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
+ if (Record->needsImplicitCopyAssignment())
+ S.DeclareImplicitCopyAssignment(Class);
+ if (S.getLangOpts().CPlusPlus11 &&
+ Record->needsImplicitMoveAssignment())
+ S.DeclareImplicitMoveAssignment(Class);
+ }
+ }
+ break;
+
+ default:
+ break;
+ }
+}
+
+// Adds all qualifying matches for a name within a decl context to the
+// given lookup result. Returns true if any matches were found.
+static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
+ bool Found = false;
+
+ // Lazily declare C++ special member functions.
+ if (S.getLangOpts().CPlusPlus)
+ DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), DC);
+
+ // Perform lookup into this declaration context.
+ DeclContext::lookup_result DR = DC->lookup(R.getLookupName());
+ for (DeclContext::lookup_iterator I = DR.begin(), E = DR.end(); I != E;
+ ++I) {
+ NamedDecl *D = *I;
+ if ((D = R.getAcceptableDecl(D))) {
+ R.addDecl(D);
+ Found = true;
+ }
+ }
+
+ if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
+ return true;
+
+ if (R.getLookupName().getNameKind()
+ != DeclarationName::CXXConversionFunctionName ||
+ R.getLookupName().getCXXNameType()->isDependentType() ||
+ !isa<CXXRecordDecl>(DC))
+ return Found;
+
+ // C++ [temp.mem]p6:
+ // A specialization of a conversion function template is not found by
+ // name lookup. Instead, any conversion function templates visible in the
+ // context of the use are considered. [...]
+ const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
+ if (!Record->isCompleteDefinition())
+ return Found;
+
+ for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
+ UEnd = Record->conversion_end(); U != UEnd; ++U) {
+ FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
+ if (!ConvTemplate)
+ continue;
+
+ // When we're performing lookup for the purposes of redeclaration, just
+ // add the conversion function template. When we deduce template
+ // arguments for specializations, we'll end up unifying the return
+ // type of the new declaration with the type of the function template.
+ if (R.isForRedeclaration()) {
+ R.addDecl(ConvTemplate);
+ Found = true;
+ continue;
+ }
+
+ // C++ [temp.mem]p6:
+ // [...] For each such operator, if argument deduction succeeds
+ // (14.9.2.3), the resulting specialization is used as if found by
+ // name lookup.
+ //
+ // When referencing a conversion function for any purpose other than
+ // a redeclaration (such that we'll be building an expression with the
+ // result), perform template argument deduction and place the
+ // specialization into the result set. We do this to avoid forcing all
+ // callers to perform special deduction for conversion functions.
+ TemplateDeductionInfo Info(R.getNameLoc());
+ FunctionDecl *Specialization = nullptr;
+
+ const FunctionProtoType *ConvProto
+ = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
+ assert(ConvProto && "Nonsensical conversion function template type");
+
+ // Compute the type of the function that we would expect the conversion
+ // function to have, if it were to match the name given.
+ // FIXME: Calling convention!
+ FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
+ EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
+ EPI.ExceptionSpec = EST_None;
+ QualType ExpectedType
+ = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
+ None, EPI);
+
+ // Perform template argument deduction against the type that we would
+ // expect the function to have.
+ if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
+ Specialization, Info)
+ == Sema::TDK_Success) {
+ R.addDecl(Specialization);
+ Found = true;
+ }
+ }
+
+ return Found;
+}
+
+// Performs C++ unqualified lookup into the given file context.
+static bool
+CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
+ DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
+
+ assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
+
+ // Perform direct name lookup into the LookupCtx.
+ bool Found = LookupDirect(S, R, NS);
+
+ // Perform direct name lookup into the namespaces nominated by the
+ // using directives whose common ancestor is this namespace.
+ for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
+ if (LookupDirect(S, R, UUE.getNominatedNamespace()))
+ Found = true;
+
+ R.resolveKind();
+
+ return Found;
+}
+
+static bool isNamespaceOrTranslationUnitScope(Scope *S) {
+ if (DeclContext *Ctx = S->getEntity())
+ return Ctx->isFileContext();
+ return false;
+}
+
+// Find the next outer declaration context from this scope. This
+// routine actually returns the semantic outer context, which may
+// differ from the lexical context (encoded directly in the Scope
+// stack) when we are parsing a member of a class template. In this
+// case, the second element of the pair will be true, to indicate that
+// name lookup should continue searching in this semantic context when
+// it leaves the current template parameter scope.
+static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
+ DeclContext *DC = S->getEntity();
+ DeclContext *Lexical = nullptr;
+ for (Scope *OuterS = S->getParent(); OuterS;
+ OuterS = OuterS->getParent()) {
+ if (OuterS->getEntity()) {
+ Lexical = OuterS->getEntity();
+ break;
+ }
+ }
+
+ // C++ [temp.local]p8:
+ // In the definition of a member of a class template that appears
+ // outside of the namespace containing the class template
+ // definition, the name of a template-parameter hides the name of
+ // a member of this namespace.
+ //
+ // Example:
+ //
+ // namespace N {
+ // class C { };
+ //
+ // template<class T> class B {
+ // void f(T);
+ // };
+ // }
+ //
+ // template<class C> void N::B<C>::f(C) {
+ // C b; // C is the template parameter, not N::C
+ // }
+ //
+ // In this example, the lexical context we return is the
+ // TranslationUnit, while the semantic context is the namespace N.
+ if (!Lexical || !DC || !S->getParent() ||
+ !S->getParent()->isTemplateParamScope())
+ return std::make_pair(Lexical, false);
+
+ // Find the outermost template parameter scope.
+ // For the example, this is the scope for the template parameters of
+ // template<class C>.
+ Scope *OutermostTemplateScope = S->getParent();
+ while (OutermostTemplateScope->getParent() &&
+ OutermostTemplateScope->getParent()->isTemplateParamScope())
+ OutermostTemplateScope = OutermostTemplateScope->getParent();
+
+ // Find the namespace context in which the original scope occurs. In
+ // the example, this is namespace N.
+ DeclContext *Semantic = DC;
+ while (!Semantic->isFileContext())
+ Semantic = Semantic->getParent();
+
+ // Find the declaration context just outside of the template
+ // parameter scope. This is the context in which the template is
+ // being lexically declaration (a namespace context). In the
+ // example, this is the global scope.
+ if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
+ Lexical->Encloses(Semantic))
+ return std::make_pair(Semantic, true);
+
+ return std::make_pair(Lexical, false);
+}
+
+namespace {
+/// An RAII object to specify that we want to find block scope extern
+/// declarations.
+struct FindLocalExternScope {
+ FindLocalExternScope(LookupResult &R)
+ : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
+ Decl::IDNS_LocalExtern) {
+ R.setFindLocalExtern(R.getIdentifierNamespace() & Decl::IDNS_Ordinary);
+ }
+ void restore() {
+ R.setFindLocalExtern(OldFindLocalExtern);
+ }
+ ~FindLocalExternScope() {
+ restore();
+ }
+ LookupResult &R;
+ bool OldFindLocalExtern;
+};
+}
+
+bool Sema::CppLookupName(LookupResult &R, Scope *S) {
+ assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
+
+ DeclarationName Name = R.getLookupName();
+ Sema::LookupNameKind NameKind = R.getLookupKind();
+
+ // If this is the name of an implicitly-declared special member function,
+ // go through the scope stack to implicitly declare
+ if (isImplicitlyDeclaredMemberFunctionName(Name)) {
+ for (Scope *PreS = S; PreS; PreS = PreS->getParent())
+ if (DeclContext *DC = PreS->getEntity())
+ DeclareImplicitMemberFunctionsWithName(*this, Name, DC);
+ }
+
+ // Implicitly declare member functions with the name we're looking for, if in
+ // fact we are in a scope where it matters.
+
+ Scope *Initial = S;
+ IdentifierResolver::iterator
+ I = IdResolver.begin(Name),
+ IEnd = IdResolver.end();
+
+ // First we lookup local scope.
+ // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
+ // ...During unqualified name lookup (3.4.1), the names appear as if
+ // they were declared in the nearest enclosing namespace which contains
+ // both the using-directive and the nominated namespace.
+ // [Note: in this context, "contains" means "contains directly or
+ // indirectly".
+ //
+ // For example:
+ // namespace A { int i; }
+ // void foo() {
+ // int i;
+ // {
+ // using namespace A;
+ // ++i; // finds local 'i', A::i appears at global scope
+ // }
+ // }
+ //
+ UnqualUsingDirectiveSet UDirs;
+ bool VisitedUsingDirectives = false;
+ bool LeftStartingScope = false;
+ DeclContext *OutsideOfTemplateParamDC = nullptr;
+
+ // When performing a scope lookup, we want to find local extern decls.
+ FindLocalExternScope FindLocals(R);
+
+ for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
+ DeclContext *Ctx = S->getEntity();
+
+ // Check whether the IdResolver has anything in this scope.
+ bool Found = false;
+ for (; I != IEnd && S->isDeclScope(*I); ++I) {
+ if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
+ if (NameKind == LookupRedeclarationWithLinkage) {
+ // Determine whether this (or a previous) declaration is
+ // out-of-scope.
+ if (!LeftStartingScope && !Initial->isDeclScope(*I))
+ LeftStartingScope = true;
+
+ // If we found something outside of our starting scope that
+ // does not have linkage, skip it. If it's a template parameter,
+ // we still find it, so we can diagnose the invalid redeclaration.
+ if (LeftStartingScope && !((*I)->hasLinkage()) &&
+ !(*I)->isTemplateParameter()) {
+ R.setShadowed();
+ continue;
+ }
+ }
+
+ Found = true;
+ R.addDecl(ND);
+ }
+ }
+ if (Found) {
+ R.resolveKind();
+ if (S->isClassScope())
+ if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
+ R.setNamingClass(Record);
+ return true;
+ }
+
+ if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
+ // C++11 [class.friend]p11:
+ // If a friend declaration appears in a local class and the name
+ // specified is an unqualified name, a prior declaration is
+ // looked up without considering scopes that are outside the
+ // innermost enclosing non-class scope.
+ return false;
+ }
+
+ if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
+ S->getParent() && !S->getParent()->isTemplateParamScope()) {
+ // We've just searched the last template parameter scope and
+ // found nothing, so look into the contexts between the
+ // lexical and semantic declaration contexts returned by
+ // findOuterContext(). This implements the name lookup behavior
+ // of C++ [temp.local]p8.
+ Ctx = OutsideOfTemplateParamDC;
+ OutsideOfTemplateParamDC = nullptr;
+ }
+
+ if (Ctx) {
+ DeclContext *OuterCtx;
+ bool SearchAfterTemplateScope;
+ std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
+ if (SearchAfterTemplateScope)
+ OutsideOfTemplateParamDC = OuterCtx;
+
+ for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
+ // We do not directly look into transparent contexts, since
+ // those entities will be found in the nearest enclosing
+ // non-transparent context.
+ if (Ctx->isTransparentContext())
+ continue;
+
+ // We do not look directly into function or method contexts,
+ // since all of the local variables and parameters of the
+ // function/method are present within the Scope.
+ if (Ctx->isFunctionOrMethod()) {
+ // If we have an Objective-C instance method, look for ivars
+ // in the corresponding interface.
+ if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
+ if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
+ if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
+ ObjCInterfaceDecl *ClassDeclared;
+ if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
+ Name.getAsIdentifierInfo(),
+ ClassDeclared)) {
+ if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
+ R.addDecl(ND);
+ R.resolveKind();
+ return true;
+ }
+ }
+ }
+ }
+
+ continue;
+ }
+
+ // If this is a file context, we need to perform unqualified name
+ // lookup considering using directives.
+ if (Ctx->isFileContext()) {
+ // If we haven't handled using directives yet, do so now.
+ if (!VisitedUsingDirectives) {
+ // Add using directives from this context up to the top level.
+ for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
+ if (UCtx->isTransparentContext())
+ continue;
+
+ UDirs.visit(UCtx, UCtx);
+ }
+
+ // Find the innermost file scope, so we can add using directives
+ // from local scopes.
+ Scope *InnermostFileScope = S;
+ while (InnermostFileScope &&
+ !isNamespaceOrTranslationUnitScope(InnermostFileScope))
+ InnermostFileScope = InnermostFileScope->getParent();
+ UDirs.visitScopeChain(Initial, InnermostFileScope);
+
+ UDirs.done();
+
+ VisitedUsingDirectives = true;
+ }
+
+ if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
+ R.resolveKind();
+ return true;
+ }
+
+ continue;
+ }
+
+ // Perform qualified name lookup into this context.
+ // FIXME: In some cases, we know that every name that could be found by
+ // this qualified name lookup will also be on the identifier chain. For
+ // example, inside a class without any base classes, we never need to
+ // perform qualified lookup because all of the members are on top of the
+ // identifier chain.
+ if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
+ return true;
+ }
+ }
+ }
+
+ // Stop if we ran out of scopes.
+ // FIXME: This really, really shouldn't be happening.
+ if (!S) return false;
+
+ // If we are looking for members, no need to look into global/namespace scope.
+ if (NameKind == LookupMemberName)
+ return false;
+
+ // Collect UsingDirectiveDecls in all scopes, and recursively all
+ // nominated namespaces by those using-directives.
+ //
+ // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
+ // don't build it for each lookup!
+ if (!VisitedUsingDirectives) {
+ UDirs.visitScopeChain(Initial, S);
+ UDirs.done();
+ }
+
+ // If we're not performing redeclaration lookup, do not look for local
+ // extern declarations outside of a function scope.
+ if (!R.isForRedeclaration())
+ FindLocals.restore();
+
+ // Lookup namespace scope, and global scope.
+ // Unqualified name lookup in C++ requires looking into scopes
+ // that aren't strictly lexical, and therefore we walk through the
+ // context as well as walking through the scopes.
+ for (; S; S = S->getParent()) {
+ // Check whether the IdResolver has anything in this scope.
+ bool Found = false;
+ for (; I != IEnd && S->isDeclScope(*I); ++I) {
+ if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
+ // We found something. Look for anything else in our scope
+ // with this same name and in an acceptable identifier
+ // namespace, so that we can construct an overload set if we
+ // need to.
+ Found = true;
+ R.addDecl(ND);
+ }
+ }
+
+ if (Found && S->isTemplateParamScope()) {
+ R.resolveKind();
+ return true;
+ }
+
+ DeclContext *Ctx = S->getEntity();
+ if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
+ S->getParent() && !S->getParent()->isTemplateParamScope()) {
+ // We've just searched the last template parameter scope and
+ // found nothing, so look into the contexts between the
+ // lexical and semantic declaration contexts returned by
+ // findOuterContext(). This implements the name lookup behavior
+ // of C++ [temp.local]p8.
+ Ctx = OutsideOfTemplateParamDC;
+ OutsideOfTemplateParamDC = nullptr;
+ }
+
+ if (Ctx) {
+ DeclContext *OuterCtx;
+ bool SearchAfterTemplateScope;
+ std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
+ if (SearchAfterTemplateScope)
+ OutsideOfTemplateParamDC = OuterCtx;
+
+ for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
+ // We do not directly look into transparent contexts, since
+ // those entities will be found in the nearest enclosing
+ // non-transparent context.
+ if (Ctx->isTransparentContext())
+ continue;
+
+ // If we have a context, and it's not a context stashed in the
+ // template parameter scope for an out-of-line definition, also
+ // look into that context.
+ if (!(Found && S && S->isTemplateParamScope())) {
+ assert(Ctx->isFileContext() &&
+ "We should have been looking only at file context here already.");
+
+ // Look into context considering using-directives.
+ if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
+ Found = true;
+ }
+
+ if (Found) {
+ R.resolveKind();
+ return true;
+ }
+
+ if (R.isForRedeclaration() && !Ctx->isTransparentContext())
+ return false;
+ }
+ }
+
+ if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
+ return false;
+ }
+
+ return !R.empty();
+}
+
+/// \brief Find the declaration that a class temploid member specialization was
+/// instantiated from, or the member itself if it is an explicit specialization.
+static Decl *getInstantiatedFrom(Decl *D, MemberSpecializationInfo *MSInfo) {
+ return MSInfo->isExplicitSpecialization() ? D : MSInfo->getInstantiatedFrom();
+}
+
+Module *Sema::getOwningModule(Decl *Entity) {
+ // If it's imported, grab its owning module.
+ Module *M = Entity->getImportedOwningModule();
+ if (M || !isa<NamedDecl>(Entity) || !cast<NamedDecl>(Entity)->isHidden())
+ return M;
+ assert(!Entity->isFromASTFile() &&
+ "hidden entity from AST file has no owning module");
+
+ // It's local and hidden; grab or compute its owning module.
+ M = Entity->getLocalOwningModule();
+ if (M)
+ return M;
+
+ if (auto *Containing =
+ PP.getModuleContainingLocation(Entity->getLocation())) {
+ M = Containing;
+ } else if (Entity->isInvalidDecl() || Entity->getLocation().isInvalid()) {
+ // Don't bother tracking visibility for invalid declarations with broken
+ // locations.
+ cast<NamedDecl>(Entity)->setHidden(false);
+ } else {
+ // We need to assign a module to an entity that exists outside of any
+ // module, so that we can hide it from modules that we textually enter.
+ // Invent a fake module for all such entities.
+ if (!CachedFakeTopLevelModule) {
+ CachedFakeTopLevelModule =
+ PP.getHeaderSearchInfo().getModuleMap().findOrCreateModule(
+ "<top-level>", nullptr, false, false).first;
+
+ auto &SrcMgr = PP.getSourceManager();
+ SourceLocation StartLoc =
+ SrcMgr.getLocForStartOfFile(SrcMgr.getMainFileID());
+ auto &TopLevel =
+ VisibleModulesStack.empty() ? VisibleModules : VisibleModulesStack[0];
+ TopLevel.setVisible(CachedFakeTopLevelModule, StartLoc);
+ }
+
+ M = CachedFakeTopLevelModule;
+ }
+
+ if (M)
+ Entity->setLocalOwningModule(M);
+ return M;
+}
+
+void Sema::makeMergedDefinitionVisible(NamedDecl *ND, SourceLocation Loc) {
+ auto *M = PP.getModuleContainingLocation(Loc);
+ assert(M && "hidden definition not in any module");
+ Context.mergeDefinitionIntoModule(ND, M);
+}
+
+/// \brief Find the module in which the given declaration was defined.
+static Module *getDefiningModule(Sema &S, Decl *Entity) {
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
+ // If this function was instantiated from a template, the defining module is
+ // the module containing the pattern.
+ if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
+ Entity = Pattern;
+ } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
+ if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
+ Entity = Pattern;
+ } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
+ if (MemberSpecializationInfo *MSInfo = ED->getMemberSpecializationInfo())
+ Entity = getInstantiatedFrom(ED, MSInfo);
+ } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
+ // FIXME: Map from variable template specializations back to the template.
+ if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo())
+ Entity = getInstantiatedFrom(VD, MSInfo);
+ }
+
+ // Walk up to the containing context. That might also have been instantiated
+ // from a template.
+ DeclContext *Context = Entity->getDeclContext();
+ if (Context->isFileContext())
+ return S.getOwningModule(Entity);
+ return getDefiningModule(S, cast<Decl>(Context));
+}
+
+llvm::DenseSet<Module*> &Sema::getLookupModules() {
+ unsigned N = ActiveTemplateInstantiations.size();
+ for (unsigned I = ActiveTemplateInstantiationLookupModules.size();
+ I != N; ++I) {
+ Module *M =
+ getDefiningModule(*this, ActiveTemplateInstantiations[I].Entity);
+ if (M && !LookupModulesCache.insert(M).second)
+ M = nullptr;
+ ActiveTemplateInstantiationLookupModules.push_back(M);
+ }
+ return LookupModulesCache;
+}
+
+bool Sema::hasVisibleMergedDefinition(NamedDecl *Def) {
+ for (Module *Merged : Context.getModulesWithMergedDefinition(Def))
+ if (isModuleVisible(Merged))
+ return true;
+ return false;
+}
+
+/// \brief Determine whether a declaration is visible to name lookup.
+///
+/// This routine determines whether the declaration D is visible in the current
+/// lookup context, taking into account the current template instantiation
+/// stack. During template instantiation, a declaration is visible if it is
+/// visible from a module containing any entity on the template instantiation
+/// path (by instantiating a template, you allow it to see the declarations that
+/// your module can see, including those later on in your module).
+bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) {
+ assert(D->isHidden() && "should not call this: not in slow case");
+ Module *DeclModule = SemaRef.getOwningModule(D);
+ if (!DeclModule) {
+ // getOwningModule() may have decided the declaration should not be hidden.
+ assert(!D->isHidden() && "hidden decl not from a module");
+ return true;
+ }
+
+ // If the owning module is visible, and the decl is not module private,
+ // then the decl is visible too. (Module private is ignored within the same
+ // top-level module.)
+ if (!D->isFromASTFile() || !D->isModulePrivate()) {
+ if (SemaRef.isModuleVisible(DeclModule))
+ return true;
+ // Also check merged definitions.
+ if (SemaRef.getLangOpts().ModulesLocalVisibility &&
+ SemaRef.hasVisibleMergedDefinition(D))
+ return true;
+ }
+
+ // If this declaration is not at namespace scope nor module-private,
+ // then it is visible if its lexical parent has a visible definition.
+ DeclContext *DC = D->getLexicalDeclContext();
+ if (!D->isModulePrivate() &&
+ DC && !DC->isFileContext() && !isa<LinkageSpecDecl>(DC)) {
+ // For a parameter, check whether our current template declaration's
+ // lexical context is visible, not whether there's some other visible
+ // definition of it, because parameters aren't "within" the definition.
+ if ((D->isTemplateParameter() || isa<ParmVarDecl>(D))
+ ? isVisible(SemaRef, cast<NamedDecl>(DC))
+ : SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC))) {
+ if (SemaRef.ActiveTemplateInstantiations.empty() &&
+ // FIXME: Do something better in this case.
+ !SemaRef.getLangOpts().ModulesLocalVisibility) {
+ // Cache the fact that this declaration is implicitly visible because
+ // its parent has a visible definition.
+ D->setHidden(false);
+ }
+ return true;
+ }
+ return false;
+ }
+
+ // Find the extra places where we need to look.
+ llvm::DenseSet<Module*> &LookupModules = SemaRef.getLookupModules();
+ if (LookupModules.empty())
+ return false;
+
+ // If our lookup set contains the decl's module, it's visible.
+ if (LookupModules.count(DeclModule))
+ return true;
+
+ // If the declaration isn't exported, it's not visible in any other module.
+ if (D->isModulePrivate())
+ return false;
+
+ // Check whether DeclModule is transitively exported to an import of
+ // the lookup set.
+ for (llvm::DenseSet<Module *>::iterator I = LookupModules.begin(),
+ E = LookupModules.end();
+ I != E; ++I)
+ if ((*I)->isModuleVisible(DeclModule))
+ return true;
+ return false;
+}
+
+bool Sema::isVisibleSlow(const NamedDecl *D) {
+ return LookupResult::isVisible(*this, const_cast<NamedDecl*>(D));
+}
+
+/// \brief Retrieve the visible declaration corresponding to D, if any.
+///
+/// This routine determines whether the declaration D is visible in the current
+/// module, with the current imports. If not, it checks whether any
+/// redeclaration of D is visible, and if so, returns that declaration.
+///
+/// \returns D, or a visible previous declaration of D, whichever is more recent
+/// and visible. If no declaration of D is visible, returns null.
+static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D) {
+ assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case");
+
+ for (auto RD : D->redecls()) {
+ if (auto ND = dyn_cast<NamedDecl>(RD)) {
+ // FIXME: This is wrong in the case where the previous declaration is not
+ // visible in the same scope as D. This needs to be done much more
+ // carefully.
+ if (LookupResult::isVisible(SemaRef, ND))
+ return ND;
+ }
+ }
+
+ return nullptr;
+}
+
+NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
+ return findAcceptableDecl(getSema(), D);
+}
+
+/// @brief Perform unqualified name lookup starting from a given
+/// scope.
+///
+/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
+/// used to find names within the current scope. For example, 'x' in
+/// @code
+/// int x;
+/// int f() {
+/// return x; // unqualified name look finds 'x' in the global scope
+/// }
+/// @endcode
+///
+/// Different lookup criteria can find different names. For example, a
+/// particular scope can have both a struct and a function of the same
+/// name, and each can be found by certain lookup criteria. For more
+/// information about lookup criteria, see the documentation for the
+/// class LookupCriteria.
+///
+/// @param S The scope from which unqualified name lookup will
+/// begin. If the lookup criteria permits, name lookup may also search
+/// in the parent scopes.
+///
+/// @param [in,out] R Specifies the lookup to perform (e.g., the name to
+/// look up and the lookup kind), and is updated with the results of lookup
+/// including zero or more declarations and possibly additional information
+/// used to diagnose ambiguities.
+///
+/// @returns \c true if lookup succeeded and false otherwise.
+bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
+ DeclarationName Name = R.getLookupName();
+ if (!Name) return false;
+
+ LookupNameKind NameKind = R.getLookupKind();
+
+ if (!getLangOpts().CPlusPlus) {
+ // Unqualified name lookup in C/Objective-C is purely lexical, so
+ // search in the declarations attached to the name.
+ if (NameKind == Sema::LookupRedeclarationWithLinkage) {
+ // Find the nearest non-transparent declaration scope.
+ while (!(S->getFlags() & Scope::DeclScope) ||
+ (S->getEntity() && S->getEntity()->isTransparentContext()))
+ S = S->getParent();
+ }
+
+ // When performing a scope lookup, we want to find local extern decls.
+ FindLocalExternScope FindLocals(R);
+
+ // Scan up the scope chain looking for a decl that matches this
+ // identifier that is in the appropriate namespace. This search
+ // should not take long, as shadowing of names is uncommon, and
+ // deep shadowing is extremely uncommon.
+ bool LeftStartingScope = false;
+
+ for (IdentifierResolver::iterator I = IdResolver.begin(Name),
+ IEnd = IdResolver.end();
+ I != IEnd; ++I)
+ if (NamedDecl *D = R.getAcceptableDecl(*I)) {
+ if (NameKind == LookupRedeclarationWithLinkage) {
+ // Determine whether this (or a previous) declaration is
+ // out-of-scope.
+ if (!LeftStartingScope && !S->isDeclScope(*I))
+ LeftStartingScope = true;
+
+ // If we found something outside of our starting scope that
+ // does not have linkage, skip it.
+ if (LeftStartingScope && !((*I)->hasLinkage())) {
+ R.setShadowed();
+ continue;
+ }
+ }
+ else if (NameKind == LookupObjCImplicitSelfParam &&
+ !isa<ImplicitParamDecl>(*I))
+ continue;
+
+ R.addDecl(D);
+
+ // Check whether there are any other declarations with the same name
+ // and in the same scope.
+ if (I != IEnd) {
+ // Find the scope in which this declaration was declared (if it
+ // actually exists in a Scope).
+ while (S && !S->isDeclScope(D))
+ S = S->getParent();
+
+ // If the scope containing the declaration is the translation unit,
+ // then we'll need to perform our checks based on the matching
+ // DeclContexts rather than matching scopes.
+ if (S && isNamespaceOrTranslationUnitScope(S))
+ S = nullptr;
+
+ // Compute the DeclContext, if we need it.
+ DeclContext *DC = nullptr;
+ if (!S)
+ DC = (*I)->getDeclContext()->getRedeclContext();
+
+ IdentifierResolver::iterator LastI = I;
+ for (++LastI; LastI != IEnd; ++LastI) {
+ if (S) {
+ // Match based on scope.
+ if (!S->isDeclScope(*LastI))
+ break;
+ } else {
+ // Match based on DeclContext.
+ DeclContext *LastDC
+ = (*LastI)->getDeclContext()->getRedeclContext();
+ if (!LastDC->Equals(DC))
+ break;
+ }
+
+ // If the declaration is in the right namespace and visible, add it.
+ if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
+ R.addDecl(LastD);
+ }
+
+ R.resolveKind();
+ }
+
+ return true;
+ }
+ } else {
+ // Perform C++ unqualified name lookup.
+ if (CppLookupName(R, S))
+ return true;
+ }
+
+ // If we didn't find a use of this identifier, and if the identifier
+ // corresponds to a compiler builtin, create the decl object for the builtin
+ // now, injecting it into translation unit scope, and return it.
+ if (AllowBuiltinCreation && LookupBuiltin(*this, R))
+ return true;
+
+ // If we didn't find a use of this identifier, the ExternalSource
+ // may be able to handle the situation.
+ // Note: some lookup failures are expected!
+ // See e.g. R.isForRedeclaration().
+ return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
+}
+
+/// @brief Perform qualified name lookup in the namespaces nominated by
+/// using directives by the given context.
+///
+/// C++98 [namespace.qual]p2:
+/// Given X::m (where X is a user-declared namespace), or given \::m
+/// (where X is the global namespace), let S be the set of all
+/// declarations of m in X and in the transitive closure of all
+/// namespaces nominated by using-directives in X and its used
+/// namespaces, except that using-directives are ignored in any
+/// namespace, including X, directly containing one or more
+/// declarations of m. No namespace is searched more than once in
+/// the lookup of a name. If S is the empty set, the program is
+/// ill-formed. Otherwise, if S has exactly one member, or if the
+/// context of the reference is a using-declaration
+/// (namespace.udecl), S is the required set of declarations of
+/// m. Otherwise if the use of m is not one that allows a unique
+/// declaration to be chosen from S, the program is ill-formed.
+///
+/// C++98 [namespace.qual]p5:
+/// During the lookup of a qualified namespace member name, if the
+/// lookup finds more than one declaration of the member, and if one
+/// declaration introduces a class name or enumeration name and the
+/// other declarations either introduce the same object, the same
+/// enumerator or a set of functions, the non-type name hides the
+/// class or enumeration name if and only if the declarations are
+/// from the same namespace; otherwise (the declarations are from
+/// different namespaces), the program is ill-formed.
+static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
+ DeclContext *StartDC) {
+ assert(StartDC->isFileContext() && "start context is not a file context");
+
+ DeclContext::udir_range UsingDirectives = StartDC->using_directives();
+ if (UsingDirectives.begin() == UsingDirectives.end()) return false;
+
+ // We have at least added all these contexts to the queue.
+ llvm::SmallPtrSet<DeclContext*, 8> Visited;
+ Visited.insert(StartDC);
+
+ // We have not yet looked into these namespaces, much less added
+ // their "using-children" to the queue.
+ SmallVector<NamespaceDecl*, 8> Queue;
+
+ // We have already looked into the initial namespace; seed the queue
+ // with its using-children.
+ for (auto *I : UsingDirectives) {
+ NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
+ if (Visited.insert(ND).second)
+ Queue.push_back(ND);
+ }
+
+ // The easiest way to implement the restriction in [namespace.qual]p5
+ // is to check whether any of the individual results found a tag
+ // and, if so, to declare an ambiguity if the final result is not
+ // a tag.
+ bool FoundTag = false;
+ bool FoundNonTag = false;
+
+ LookupResult LocalR(LookupResult::Temporary, R);
+
+ bool Found = false;
+ while (!Queue.empty()) {
+ NamespaceDecl *ND = Queue.pop_back_val();
+
+ // We go through some convolutions here to avoid copying results
+ // between LookupResults.
+ bool UseLocal = !R.empty();
+ LookupResult &DirectR = UseLocal ? LocalR : R;
+ bool FoundDirect = LookupDirect(S, DirectR, ND);
+
+ if (FoundDirect) {
+ // First do any local hiding.
+ DirectR.resolveKind();
+
+ // If the local result is a tag, remember that.
+ if (DirectR.isSingleTagDecl())
+ FoundTag = true;
+ else
+ FoundNonTag = true;
+
+ // Append the local results to the total results if necessary.
+ if (UseLocal) {
+ R.addAllDecls(LocalR);
+ LocalR.clear();
+ }
+ }
+
+ // If we find names in this namespace, ignore its using directives.
+ if (FoundDirect) {
+ Found = true;
+ continue;
+ }
+
+ for (auto I : ND->using_directives()) {
+ NamespaceDecl *Nom = I->getNominatedNamespace();
+ if (Visited.insert(Nom).second)
+ Queue.push_back(Nom);
+ }
+ }
+
+ if (Found) {
+ if (FoundTag && FoundNonTag)
+ R.setAmbiguousQualifiedTagHiding();
+ else
+ R.resolveKind();
+ }
+
+ return Found;
+}
+
+/// \brief Callback that looks for any member of a class with the given name.
+static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
+ CXXBasePath &Path,
+ void *Name) {
+ RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
+
+ DeclarationName N = DeclarationName::getFromOpaquePtr(Name);
+ Path.Decls = BaseRecord->lookup(N);
+ return !Path.Decls.empty();
+}
+
+/// \brief Determine whether the given set of member declarations contains only
+/// static members, nested types, and enumerators.
+template<typename InputIterator>
+static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
+ Decl *D = (*First)->getUnderlyingDecl();
+ if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
+ return true;
+
+ if (isa<CXXMethodDecl>(D)) {
+ // Determine whether all of the methods are static.
+ bool AllMethodsAreStatic = true;
+ for(; First != Last; ++First) {
+ D = (*First)->getUnderlyingDecl();
+
+ if (!isa<CXXMethodDecl>(D)) {
+ assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
+ break;
+ }
+
+ if (!cast<CXXMethodDecl>(D)->isStatic()) {
+ AllMethodsAreStatic = false;
+ break;
+ }
+ }
+
+ if (AllMethodsAreStatic)
+ return true;
+ }
+
+ return false;
+}
+
+/// \brief Perform qualified name lookup into a given context.
+///
+/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
+/// names when the context of those names is explicit specified, e.g.,
+/// "std::vector" or "x->member", or as part of unqualified name lookup.
+///
+/// Different lookup criteria can find different names. For example, a
+/// particular scope can have both a struct and a function of the same
+/// name, and each can be found by certain lookup criteria. For more
+/// information about lookup criteria, see the documentation for the
+/// class LookupCriteria.
+///
+/// \param R captures both the lookup criteria and any lookup results found.
+///
+/// \param LookupCtx The context in which qualified name lookup will
+/// search. If the lookup criteria permits, name lookup may also search
+/// in the parent contexts or (for C++ classes) base classes.
+///
+/// \param InUnqualifiedLookup true if this is qualified name lookup that
+/// occurs as part of unqualified name lookup.
+///
+/// \returns true if lookup succeeded, false if it failed.
+bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
+ bool InUnqualifiedLookup) {
+ assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
+
+ if (!R.getLookupName())
+ return false;
+
+ // Make sure that the declaration context is complete.
+ assert((!isa<TagDecl>(LookupCtx) ||
+ LookupCtx->isDependentContext() ||
+ cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
+ cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
+ "Declaration context must already be complete!");
+
+ // Perform qualified name lookup into the LookupCtx.
+ if (LookupDirect(*this, R, LookupCtx)) {
+ R.resolveKind();
+ if (isa<CXXRecordDecl>(LookupCtx))
+ R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
+ return true;
+ }
+
+ // Don't descend into implied contexts for redeclarations.
+ // C++98 [namespace.qual]p6:
+ // In a declaration for a namespace member in which the
+ // declarator-id is a qualified-id, given that the qualified-id
+ // for the namespace member has the form
+ // nested-name-specifier unqualified-id
+ // the unqualified-id shall name a member of the namespace
+ // designated by the nested-name-specifier.
+ // See also [class.mfct]p5 and [class.static.data]p2.
+ if (R.isForRedeclaration())
+ return false;
+
+ // If this is a namespace, look it up in the implied namespaces.
+ if (LookupCtx->isFileContext())
+ return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
+
+ // If this isn't a C++ class, we aren't allowed to look into base
+ // classes, we're done.
+ CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
+ if (!LookupRec || !LookupRec->getDefinition())
+ return false;
+
+ // If we're performing qualified name lookup into a dependent class,
+ // then we are actually looking into a current instantiation. If we have any
+ // dependent base classes, then we either have to delay lookup until
+ // template instantiation time (at which point all bases will be available)
+ // or we have to fail.
+ if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
+ LookupRec->hasAnyDependentBases()) {
+ R.setNotFoundInCurrentInstantiation();
+ return false;
+ }
+
+ // Perform lookup into our base classes.
+ CXXBasePaths Paths;
+ Paths.setOrigin(LookupRec);
+
+ // Look for this member in our base classes
+ CXXRecordDecl::BaseMatchesCallback *BaseCallback = nullptr;
+ switch (R.getLookupKind()) {
+ case LookupObjCImplicitSelfParam:
+ case LookupOrdinaryName:
+ case LookupMemberName:
+ case LookupRedeclarationWithLinkage:
+ case LookupLocalFriendName:
+ BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
+ break;
+
+ case LookupTagName:
+ BaseCallback = &CXXRecordDecl::FindTagMember;
+ break;
+
+ case LookupAnyName:
+ BaseCallback = &LookupAnyMember;
+ break;
+
+ case LookupUsingDeclName:
+ // This lookup is for redeclarations only.
+
+ case LookupOperatorName:
+ case LookupNamespaceName:
+ case LookupObjCProtocolName:
+ case LookupLabel:
+ // These lookups will never find a member in a C++ class (or base class).
+ return false;
+
+ case LookupNestedNameSpecifierName:
+ BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
+ break;
+ }
+
+ if (!LookupRec->lookupInBases(BaseCallback,
+ R.getLookupName().getAsOpaquePtr(), Paths))
+ return false;
+
+ R.setNamingClass(LookupRec);
+
+ // C++ [class.member.lookup]p2:
+ // [...] If the resulting set of declarations are not all from
+ // sub-objects of the same type, or the set has a nonstatic member
+ // and includes members from distinct sub-objects, there is an
+ // ambiguity and the program is ill-formed. Otherwise that set is
+ // the result of the lookup.
+ QualType SubobjectType;
+ int SubobjectNumber = 0;
+ AccessSpecifier SubobjectAccess = AS_none;
+
+ for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
+ Path != PathEnd; ++Path) {
+ const CXXBasePathElement &PathElement = Path->back();
+
+ // Pick the best (i.e. most permissive i.e. numerically lowest) access
+ // across all paths.
+ SubobjectAccess = std::min(SubobjectAccess, Path->Access);
+
+ // Determine whether we're looking at a distinct sub-object or not.
+ if (SubobjectType.isNull()) {
+ // This is the first subobject we've looked at. Record its type.
+ SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
+ SubobjectNumber = PathElement.SubobjectNumber;
+ continue;
+ }
+
+ if (SubobjectType
+ != Context.getCanonicalType(PathElement.Base->getType())) {
+ // We found members of the given name in two subobjects of
+ // different types. If the declaration sets aren't the same, this
+ // lookup is ambiguous.
+ if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end())) {
+ CXXBasePaths::paths_iterator FirstPath = Paths.begin();
+ DeclContext::lookup_iterator FirstD = FirstPath->Decls.begin();
+ DeclContext::lookup_iterator CurrentD = Path->Decls.begin();
+
+ while (FirstD != FirstPath->Decls.end() &&
+ CurrentD != Path->Decls.end()) {
+ if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() !=
+ (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl())
+ break;
+
+ ++FirstD;
+ ++CurrentD;
+ }
+
+ if (FirstD == FirstPath->Decls.end() &&
+ CurrentD == Path->Decls.end())
+ continue;
+ }
+
+ R.setAmbiguousBaseSubobjectTypes(Paths);
+ return true;
+ }
+
+ if (SubobjectNumber != PathElement.SubobjectNumber) {
+ // We have a different subobject of the same type.
+
+ // C++ [class.member.lookup]p5:
+ // A static member, a nested type or an enumerator defined in
+ // a base class T can unambiguously be found even if an object
+ // has more than one base class subobject of type T.
+ if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end()))
+ continue;
+
+ // We have found a nonstatic member name in multiple, distinct
+ // subobjects. Name lookup is ambiguous.
+ R.setAmbiguousBaseSubobjects(Paths);
+ return true;
+ }
+ }
+
+ // Lookup in a base class succeeded; return these results.
+
+ for (auto *D : Paths.front().Decls) {
+ AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
+ D->getAccess());
+ R.addDecl(D, AS);
+ }
+ R.resolveKind();
+ return true;
+}
+
+/// \brief Performs qualified name lookup or special type of lookup for
+/// "__super::" scope specifier.
+///
+/// This routine is a convenience overload meant to be called from contexts
+/// that need to perform a qualified name lookup with an optional C++ scope
+/// specifier that might require special kind of lookup.
+///
+/// \param R captures both the lookup criteria and any lookup results found.
+///
+/// \param LookupCtx The context in which qualified name lookup will
+/// search.
+///
+/// \param SS An optional C++ scope-specifier.
+///
+/// \returns true if lookup succeeded, false if it failed.
+bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
+ CXXScopeSpec &SS) {
+ auto *NNS = SS.getScopeRep();
+ if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
+ return LookupInSuper(R, NNS->getAsRecordDecl());
+ else
+
+ return LookupQualifiedName(R, LookupCtx);
+}
+
+/// @brief Performs name lookup for a name that was parsed in the
+/// source code, and may contain a C++ scope specifier.
+///
+/// This routine is a convenience routine meant to be called from
+/// contexts that receive a name and an optional C++ scope specifier
+/// (e.g., "N::M::x"). It will then perform either qualified or
+/// unqualified name lookup (with LookupQualifiedName or LookupName,
+/// respectively) on the given name and return those results. It will
+/// perform a special type of lookup for "__super::" scope specifier.
+///
+/// @param S The scope from which unqualified name lookup will
+/// begin.
+///
+/// @param SS An optional C++ scope-specifier, e.g., "::N::M".
+///
+/// @param EnteringContext Indicates whether we are going to enter the
+/// context of the scope-specifier SS (if present).
+///
+/// @returns True if any decls were found (but possibly ambiguous)
+bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
+ bool AllowBuiltinCreation, bool EnteringContext) {
+ if (SS && SS->isInvalid()) {
+ // When the scope specifier is invalid, don't even look for
+ // anything.
+ return false;
+ }
+
+ if (SS && SS->isSet()) {
+ NestedNameSpecifier *NNS = SS->getScopeRep();
+ if (NNS->getKind() == NestedNameSpecifier::Super)
+ return LookupInSuper(R, NNS->getAsRecordDecl());
+
+ if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
+ // We have resolved the scope specifier to a particular declaration
+ // contex, and will perform name lookup in that context.
+ if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
+ return false;
+
+ R.setContextRange(SS->getRange());
+ return LookupQualifiedName(R, DC);
+ }
+
+ // We could not resolve the scope specified to a specific declaration
+ // context, which means that SS refers to an unknown specialization.
+ // Name lookup can't find anything in this case.
+ R.setNotFoundInCurrentInstantiation();
+ R.setContextRange(SS->getRange());
+ return false;
+ }
+
+ // Perform unqualified name lookup starting in the given scope.
+ return LookupName(R, S, AllowBuiltinCreation);
+}
+
+/// \brief Perform qualified name lookup into all base classes of the given
+/// class.
+///
+/// \param R captures both the lookup criteria and any lookup results found.
+///
+/// \param Class The context in which qualified name lookup will
+/// search. Name lookup will search in all base classes merging the results.
+///
+/// @returns True if any decls were found (but possibly ambiguous)
+bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
+ for (const auto &BaseSpec : Class->bases()) {
+ CXXRecordDecl *RD = cast<CXXRecordDecl>(
+ BaseSpec.getType()->castAs<RecordType>()->getDecl());
+ LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
+ Result.setBaseObjectType(Context.getRecordType(Class));
+ LookupQualifiedName(Result, RD);
+ for (auto *Decl : Result)
+ R.addDecl(Decl);
+ }
+
+ R.resolveKind();
+
+ return !R.empty();
+}
+
+/// \brief Produce a diagnostic describing the ambiguity that resulted
+/// from name lookup.
+///
+/// \param Result The result of the ambiguous lookup to be diagnosed.
+void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
+ assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
+
+ DeclarationName Name = Result.getLookupName();
+ SourceLocation NameLoc = Result.getNameLoc();
+ SourceRange LookupRange = Result.getContextRange();
+
+ switch (Result.getAmbiguityKind()) {
+ case LookupResult::AmbiguousBaseSubobjects: {
+ CXXBasePaths *Paths = Result.getBasePaths();
+ QualType SubobjectType = Paths->front().back().Base->getType();
+ Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
+ << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
+ << LookupRange;
+
+ DeclContext::lookup_iterator Found = Paths->front().Decls.begin();
+ while (isa<CXXMethodDecl>(*Found) &&
+ cast<CXXMethodDecl>(*Found)->isStatic())
+ ++Found;
+
+ Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
+ break;
+ }
+
+ case LookupResult::AmbiguousBaseSubobjectTypes: {
+ Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
+ << Name << LookupRange;
+
+ CXXBasePaths *Paths = Result.getBasePaths();
+ std::set<Decl *> DeclsPrinted;
+ for (CXXBasePaths::paths_iterator Path = Paths->begin(),
+ PathEnd = Paths->end();
+ Path != PathEnd; ++Path) {
+ Decl *D = Path->Decls.front();
+ if (DeclsPrinted.insert(D).second)
+ Diag(D->getLocation(), diag::note_ambiguous_member_found);
+ }
+ break;
+ }
+
+ case LookupResult::AmbiguousTagHiding: {
+ Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
+
+ llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
+
+ for (auto *D : Result)
+ if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
+ TagDecls.insert(TD);
+ Diag(TD->getLocation(), diag::note_hidden_tag);
+ }
+
+ for (auto *D : Result)
+ if (!isa<TagDecl>(D))
+ Diag(D->getLocation(), diag::note_hiding_object);
+
+ // For recovery purposes, go ahead and implement the hiding.
+ LookupResult::Filter F = Result.makeFilter();
+ while (F.hasNext()) {
+ if (TagDecls.count(F.next()))
+ F.erase();
+ }
+ F.done();
+ break;
+ }
+
+ case LookupResult::AmbiguousReference: {
+ Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
+
+ for (auto *D : Result)
+ Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
+ break;
+ }
+ }
+}
+
+namespace {
+ struct AssociatedLookup {
+ AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
+ Sema::AssociatedNamespaceSet &Namespaces,
+ Sema::AssociatedClassSet &Classes)
+ : S(S), Namespaces(Namespaces), Classes(Classes),
+ InstantiationLoc(InstantiationLoc) {
+ }
+
+ Sema &S;
+ Sema::AssociatedNamespaceSet &Namespaces;
+ Sema::AssociatedClassSet &Classes;
+ SourceLocation InstantiationLoc;
+ };
+}
+
+static void
+addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
+
+static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
+ DeclContext *Ctx) {
+ // Add the associated namespace for this class.
+
+ // We don't use DeclContext::getEnclosingNamespaceContext() as this may
+ // be a locally scoped record.
+
+ // We skip out of inline namespaces. The innermost non-inline namespace
+ // contains all names of all its nested inline namespaces anyway, so we can
+ // replace the entire inline namespace tree with its root.
+ while (Ctx->isRecord() || Ctx->isTransparentContext() ||
+ Ctx->isInlineNamespace())
+ Ctx = Ctx->getParent();
+
+ if (Ctx->isFileContext())
+ Namespaces.insert(Ctx->getPrimaryContext());
+}
+
+// \brief Add the associated classes and namespaces for argument-dependent
+// lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
+static void
+addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
+ const TemplateArgument &Arg) {
+ // C++ [basic.lookup.koenig]p2, last bullet:
+ // -- [...] ;
+ switch (Arg.getKind()) {
+ case TemplateArgument::Null:
+ break;
+
+ case TemplateArgument::Type:
+ // [...] the namespaces and classes associated with the types of the
+ // template arguments provided for template type parameters (excluding
+ // template template parameters)
+ addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
+ break;
+
+ case TemplateArgument::Template:
+ case TemplateArgument::TemplateExpansion: {
+ // [...] the namespaces in which any template template arguments are
+ // defined; and the classes in which any member templates used as
+ // template template arguments are defined.
+ TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
+ if (ClassTemplateDecl *ClassTemplate
+ = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
+ DeclContext *Ctx = ClassTemplate->getDeclContext();
+ if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
+ Result.Classes.insert(EnclosingClass);
+ // Add the associated namespace for this class.
+ CollectEnclosingNamespace(Result.Namespaces, Ctx);
+ }
+ break;
+ }
+
+ case TemplateArgument::Declaration:
+ case TemplateArgument::Integral:
+ case TemplateArgument::Expression:
+ case TemplateArgument::NullPtr:
+ // [Note: non-type template arguments do not contribute to the set of
+ // associated namespaces. ]
+ break;
+
+ case TemplateArgument::Pack:
+ for (const auto &P : Arg.pack_elements())
+ addAssociatedClassesAndNamespaces(Result, P);
+ break;
+ }
+}
+
+// \brief Add the associated classes and namespaces for
+// argument-dependent lookup with an argument of class type
+// (C++ [basic.lookup.koenig]p2).
+static void
+addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
+ CXXRecordDecl *Class) {
+
+ // Just silently ignore anything whose name is __va_list_tag.
+ if (Class->getDeclName() == Result.S.VAListTagName)
+ return;
+
+ // C++ [basic.lookup.koenig]p2:
+ // [...]
+ // -- If T is a class type (including unions), its associated
+ // classes are: the class itself; the class of which it is a
+ // member, if any; and its direct and indirect base
+ // classes. Its associated namespaces are the namespaces in
+ // which its associated classes are defined.
+
+ // Add the class of which it is a member, if any.
+ DeclContext *Ctx = Class->getDeclContext();
+ if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
+ Result.Classes.insert(EnclosingClass);
+ // Add the associated namespace for this class.
+ CollectEnclosingNamespace(Result.Namespaces, Ctx);
+
+ // Add the class itself. If we've already seen this class, we don't
+ // need to visit base classes.
+ //
+ // FIXME: That's not correct, we may have added this class only because it
+ // was the enclosing class of another class, and in that case we won't have
+ // added its base classes yet.
+ if (!Result.Classes.insert(Class).second)
+ return;
+
+ // -- If T is a template-id, its associated namespaces and classes are
+ // the namespace in which the template is defined; for member
+ // templates, the member template's class; the namespaces and classes
+ // associated with the types of the template arguments provided for
+ // template type parameters (excluding template template parameters); the
+ // namespaces in which any template template arguments are defined; and
+ // the classes in which any member templates used as template template
+ // arguments are defined. [Note: non-type template arguments do not
+ // contribute to the set of associated namespaces. ]
+ if (ClassTemplateSpecializationDecl *Spec
+ = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
+ DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
+ if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
+ Result.Classes.insert(EnclosingClass);
+ // Add the associated namespace for this class.
+ CollectEnclosingNamespace(Result.Namespaces, Ctx);
+
+ const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
+ for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
+ addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
+ }
+
+ // Only recurse into base classes for complete types.
+ if (!Class->hasDefinition())
+ return;
+
+ // Add direct and indirect base classes along with their associated
+ // namespaces.
+ SmallVector<CXXRecordDecl *, 32> Bases;
+ Bases.push_back(Class);
+ while (!Bases.empty()) {
+ // Pop this class off the stack.
+ Class = Bases.pop_back_val();
+
+ // Visit the base classes.
+ for (const auto &Base : Class->bases()) {
+ const RecordType *BaseType = Base.getType()->getAs<RecordType>();
+ // In dependent contexts, we do ADL twice, and the first time around,
+ // the base type might be a dependent TemplateSpecializationType, or a
+ // TemplateTypeParmType. If that happens, simply ignore it.
+ // FIXME: If we want to support export, we probably need to add the
+ // namespace of the template in a TemplateSpecializationType, or even
+ // the classes and namespaces of known non-dependent arguments.
+ if (!BaseType)
+ continue;
+ CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
+ if (Result.Classes.insert(BaseDecl).second) {
+ // Find the associated namespace for this base class.
+ DeclContext *BaseCtx = BaseDecl->getDeclContext();
+ CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
+
+ // Make sure we visit the bases of this base class.
+ if (BaseDecl->bases_begin() != BaseDecl->bases_end())
+ Bases.push_back(BaseDecl);
+ }
+ }
+ }
+}
+
+// \brief Add the associated classes and namespaces for
+// argument-dependent lookup with an argument of type T
+// (C++ [basic.lookup.koenig]p2).
+static void
+addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
+ // C++ [basic.lookup.koenig]p2:
+ //
+ // For each argument type T in the function call, there is a set
+ // of zero or more associated namespaces and a set of zero or more
+ // associated classes to be considered. The sets of namespaces and
+ // classes is determined entirely by the types of the function
+ // arguments (and the namespace of any template template
+ // argument). Typedef names and using-declarations used to specify
+ // the types do not contribute to this set. The sets of namespaces
+ // and classes are determined in the following way:
+
+ SmallVector<const Type *, 16> Queue;
+ const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
+
+ while (true) {
+ switch (T->getTypeClass()) {
+
+#define TYPE(Class, Base)
+#define DEPENDENT_TYPE(Class, Base) case Type::Class:
+#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
+#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
+#define ABSTRACT_TYPE(Class, Base)
+#include "clang/AST/TypeNodes.def"
+ // T is canonical. We can also ignore dependent types because
+ // we don't need to do ADL at the definition point, but if we
+ // wanted to implement template export (or if we find some other
+ // use for associated classes and namespaces...) this would be
+ // wrong.
+ break;
+
+ // -- If T is a pointer to U or an array of U, its associated
+ // namespaces and classes are those associated with U.
+ case Type::Pointer:
+ T = cast<PointerType>(T)->getPointeeType().getTypePtr();
+ continue;
+ case Type::ConstantArray:
+ case Type::IncompleteArray:
+ case Type::VariableArray:
+ T = cast<ArrayType>(T)->getElementType().getTypePtr();
+ continue;
+
+ // -- If T is a fundamental type, its associated sets of
+ // namespaces and classes are both empty.
+ case Type::Builtin:
+ break;
+
+ // -- If T is a class type (including unions), its associated
+ // classes are: the class itself; the class of which it is a
+ // member, if any; and its direct and indirect base
+ // classes. Its associated namespaces are the namespaces in
+ // which its associated classes are defined.
+ case Type::Record: {
+ Result.S.RequireCompleteType(Result.InstantiationLoc, QualType(T, 0),
+ /*no diagnostic*/ 0);
+ CXXRecordDecl *Class
+ = cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
+ addAssociatedClassesAndNamespaces(Result, Class);
+ break;
+ }
+
+ // -- If T is an enumeration type, its associated namespace is
+ // the namespace in which it is defined. If it is class
+ // member, its associated class is the member's class; else
+ // it has no associated class.
+ case Type::Enum: {
+ EnumDecl *Enum = cast<EnumType>(T)->getDecl();
+
+ DeclContext *Ctx = Enum->getDeclContext();
+ if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
+ Result.Classes.insert(EnclosingClass);
+
+ // Add the associated namespace for this class.
+ CollectEnclosingNamespace(Result.Namespaces, Ctx);
+
+ break;
+ }
+
+ // -- If T is a function type, its associated namespaces and
+ // classes are those associated with the function parameter
+ // types and those associated with the return type.
+ case Type::FunctionProto: {
+ const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
+ for (const auto &Arg : Proto->param_types())
+ Queue.push_back(Arg.getTypePtr());
+ // fallthrough
+ }
+ case Type::FunctionNoProto: {
+ const FunctionType *FnType = cast<FunctionType>(T);
+ T = FnType->getReturnType().getTypePtr();
+ continue;
+ }
+
+ // -- If T is a pointer to a member function of a class X, its
+ // associated namespaces and classes are those associated
+ // with the function parameter types and return type,
+ // together with those associated with X.
+ //
+ // -- If T is a pointer to a data member of class X, its
+ // associated namespaces and classes are those associated
+ // with the member type together with those associated with
+ // X.
+ case Type::MemberPointer: {
+ const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
+
+ // Queue up the class type into which this points.
+ Queue.push_back(MemberPtr->getClass());
+
+ // And directly continue with the pointee type.
+ T = MemberPtr->getPointeeType().getTypePtr();
+ continue;
+ }
+
+ // As an extension, treat this like a normal pointer.
+ case Type::BlockPointer:
+ T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
+ continue;
+
+ // References aren't covered by the standard, but that's such an
+ // obvious defect that we cover them anyway.
+ case Type::LValueReference:
+ case Type::RValueReference:
+ T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
+ continue;
+
+ // These are fundamental types.
+ case Type::Vector:
+ case Type::ExtVector:
+ case Type::Complex:
+ break;
+
+ // Non-deduced auto types only get here for error cases.
+ case Type::Auto:
+ break;
+
+ // If T is an Objective-C object or interface type, or a pointer to an
+ // object or interface type, the associated namespace is the global
+ // namespace.
+ case Type::ObjCObject:
+ case Type::ObjCInterface:
+ case Type::ObjCObjectPointer:
+ Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
+ break;
+
+ // Atomic types are just wrappers; use the associations of the
+ // contained type.
+ case Type::Atomic:
+ T = cast<AtomicType>(T)->getValueType().getTypePtr();
+ continue;
+ }
+
+ if (Queue.empty())
+ break;
+ T = Queue.pop_back_val();
+ }
+}
+
+/// \brief Find the associated classes and namespaces for
+/// argument-dependent lookup for a call with the given set of
+/// arguments.
+///
+/// This routine computes the sets of associated classes and associated
+/// namespaces searched by argument-dependent lookup
+/// (C++ [basic.lookup.argdep]) for a given set of arguments.
+void Sema::FindAssociatedClassesAndNamespaces(
+ SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
+ AssociatedNamespaceSet &AssociatedNamespaces,
+ AssociatedClassSet &AssociatedClasses) {
+ AssociatedNamespaces.clear();
+ AssociatedClasses.clear();
+
+ AssociatedLookup Result(*this, InstantiationLoc,
+ AssociatedNamespaces, AssociatedClasses);
+
+ // C++ [basic.lookup.koenig]p2:
+ // For each argument type T in the function call, there is a set
+ // of zero or more associated namespaces and a set of zero or more
+ // associated classes to be considered. The sets of namespaces and
+ // classes is determined entirely by the types of the function
+ // arguments (and the namespace of any template template
+ // argument).
+ for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
+ Expr *Arg = Args[ArgIdx];
+
+ if (Arg->getType() != Context.OverloadTy) {
+ addAssociatedClassesAndNamespaces(Result, Arg->getType());
+ continue;
+ }
+
+ // [...] In addition, if the argument is the name or address of a
+ // set of overloaded functions and/or function templates, its
+ // associated classes and namespaces are the union of those
+ // associated with each of the members of the set: the namespace
+ // in which the function or function template is defined and the
+ // classes and namespaces associated with its (non-dependent)
+ // parameter types and return type.
+ Arg = Arg->IgnoreParens();
+ if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
+ if (unaryOp->getOpcode() == UO_AddrOf)
+ Arg = unaryOp->getSubExpr();
+
+ UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
+ if (!ULE) continue;
+
+ for (const auto *D : ULE->decls()) {
+ // Look through any using declarations to find the underlying function.
+ const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
+
+ // Add the classes and namespaces associated with the parameter
+ // types and return type of this function.
+ addAssociatedClassesAndNamespaces(Result, FDecl->getType());
+ }
+ }
+}
+
+NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
+ SourceLocation Loc,
+ LookupNameKind NameKind,
+ RedeclarationKind Redecl) {
+ LookupResult R(*this, Name, Loc, NameKind, Redecl);
+ LookupName(R, S);
+ return R.getAsSingle<NamedDecl>();
+}
+
+/// \brief Find the protocol with the given name, if any.
+ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
+ SourceLocation IdLoc,
+ RedeclarationKind Redecl) {
+ Decl *D = LookupSingleName(TUScope, II, IdLoc,
+ LookupObjCProtocolName, Redecl);
+ return cast_or_null<ObjCProtocolDecl>(D);
+}
+
+void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
+ QualType T1, QualType T2,
+ UnresolvedSetImpl &Functions) {
+ // C++ [over.match.oper]p3:
+ // -- The set of non-member candidates is the result of the
+ // unqualified lookup of operator@ in the context of the
+ // expression according to the usual rules for name lookup in
+ // unqualified function calls (3.4.2) except that all member
+ // functions are ignored.
+ DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
+ LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
+ LookupName(Operators, S);
+
+ assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
+ Functions.append(Operators.begin(), Operators.end());
+}
+
+Sema::SpecialMemberOverloadResult *Sema::LookupSpecialMember(CXXRecordDecl *RD,
+ CXXSpecialMember SM,
+ bool ConstArg,
+ bool VolatileArg,
+ bool RValueThis,
+ bool ConstThis,
+ bool VolatileThis) {
+ assert(CanDeclareSpecialMemberFunction(RD) &&
+ "doing special member lookup into record that isn't fully complete");
+ RD = RD->getDefinition();
+ if (RValueThis || ConstThis || VolatileThis)
+ assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
+ "constructors and destructors always have unqualified lvalue this");
+ if (ConstArg || VolatileArg)
+ assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
+ "parameter-less special members can't have qualified arguments");
+
+ llvm::FoldingSetNodeID ID;
+ ID.AddPointer(RD);
+ ID.AddInteger(SM);
+ ID.AddInteger(ConstArg);
+ ID.AddInteger(VolatileArg);
+ ID.AddInteger(RValueThis);
+ ID.AddInteger(ConstThis);
+ ID.AddInteger(VolatileThis);
+
+ void *InsertPoint;
+ SpecialMemberOverloadResult *Result =
+ SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
+
+ // This was already cached
+ if (Result)
+ return Result;
+
+ Result = BumpAlloc.Allocate<SpecialMemberOverloadResult>();
+ Result = new (Result) SpecialMemberOverloadResult(ID);
+ SpecialMemberCache.InsertNode(Result, InsertPoint);
+
+ if (SM == CXXDestructor) {
+ if (RD->needsImplicitDestructor())
+ DeclareImplicitDestructor(RD);
+ CXXDestructorDecl *DD = RD->getDestructor();
+ assert(DD && "record without a destructor");
+ Result->setMethod(DD);
+ Result->setKind(DD->isDeleted() ?
+ SpecialMemberOverloadResult::NoMemberOrDeleted :
+ SpecialMemberOverloadResult::Success);
+ return Result;
+ }
+
+ // Prepare for overload resolution. Here we construct a synthetic argument
+ // if necessary and make sure that implicit functions are declared.
+ CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
+ DeclarationName Name;
+ Expr *Arg = nullptr;
+ unsigned NumArgs;
+
+ QualType ArgType = CanTy;
+ ExprValueKind VK = VK_LValue;
+
+ if (SM == CXXDefaultConstructor) {
+ Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
+ NumArgs = 0;
+ if (RD->needsImplicitDefaultConstructor())
+ DeclareImplicitDefaultConstructor(RD);
+ } else {
+ if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
+ Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
+ if (RD->needsImplicitCopyConstructor())
+ DeclareImplicitCopyConstructor(RD);
+ if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor())
+ DeclareImplicitMoveConstructor(RD);
+ } else {
+ Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
+ if (RD->needsImplicitCopyAssignment())
+ DeclareImplicitCopyAssignment(RD);
+ if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment())
+ DeclareImplicitMoveAssignment(RD);
+ }
+
+ if (ConstArg)
+ ArgType.addConst();
+ if (VolatileArg)
+ ArgType.addVolatile();
+
+ // This isn't /really/ specified by the standard, but it's implied
+ // we should be working from an RValue in the case of move to ensure
+ // that we prefer to bind to rvalue references, and an LValue in the
+ // case of copy to ensure we don't bind to rvalue references.
+ // Possibly an XValue is actually correct in the case of move, but
+ // there is no semantic difference for class types in this restricted
+ // case.
+ if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
+ VK = VK_LValue;
+ else
+ VK = VK_RValue;
+ }
+
+ OpaqueValueExpr FakeArg(SourceLocation(), ArgType, VK);
+
+ if (SM != CXXDefaultConstructor) {
+ NumArgs = 1;
+ Arg = &FakeArg;
+ }
+
+ // Create the object argument
+ QualType ThisTy = CanTy;
+ if (ConstThis)
+ ThisTy.addConst();
+ if (VolatileThis)
+ ThisTy.addVolatile();
+ Expr::Classification Classification =
+ OpaqueValueExpr(SourceLocation(), ThisTy,
+ RValueThis ? VK_RValue : VK_LValue).Classify(Context);
+
+ // Now we perform lookup on the name we computed earlier and do overload
+ // resolution. Lookup is only performed directly into the class since there
+ // will always be a (possibly implicit) declaration to shadow any others.
+ OverloadCandidateSet OCS(RD->getLocation(), OverloadCandidateSet::CSK_Normal);
+ DeclContext::lookup_result R = RD->lookup(Name);
+
+ if (R.empty()) {
+ // We might have no default constructor because we have a lambda's closure
+ // type, rather than because there's some other declared constructor.
+ // Every class has a copy/move constructor, copy/move assignment, and
+ // destructor.
+ assert(SM == CXXDefaultConstructor &&
+ "lookup for a constructor or assignment operator was empty");
+ Result->setMethod(nullptr);
+ Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
+ return Result;
+ }
+
+ // Copy the candidates as our processing of them may load new declarations
+ // from an external source and invalidate lookup_result.
+ SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
+
+ for (auto *Cand : Candidates) {
+ if (Cand->isInvalidDecl())
+ continue;
+
+ if (UsingShadowDecl *U = dyn_cast<UsingShadowDecl>(Cand)) {
+ // FIXME: [namespace.udecl]p15 says that we should only consider a
+ // using declaration here if it does not match a declaration in the
+ // derived class. We do not implement this correctly in other cases
+ // either.
+ Cand = U->getTargetDecl();
+
+ if (Cand->isInvalidDecl())
+ continue;
+ }
+
+ if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand)) {
+ if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
+ AddMethodCandidate(M, DeclAccessPair::make(M, AS_public), RD, ThisTy,
+ Classification, llvm::makeArrayRef(&Arg, NumArgs),
+ OCS, true);
+ else
+ AddOverloadCandidate(M, DeclAccessPair::make(M, AS_public),
+ llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
+ } else if (FunctionTemplateDecl *Tmpl =
+ dyn_cast<FunctionTemplateDecl>(Cand)) {
+ if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
+ AddMethodTemplateCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
+ RD, nullptr, ThisTy, Classification,
+ llvm::makeArrayRef(&Arg, NumArgs),
+ OCS, true);
+ else
+ AddTemplateOverloadCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
+ nullptr, llvm::makeArrayRef(&Arg, NumArgs),
+ OCS, true);
+ } else {
+ assert(isa<UsingDecl>(Cand) && "illegal Kind of operator = Decl");
+ }
+ }
+
+ OverloadCandidateSet::iterator Best;
+ switch (OCS.BestViableFunction(*this, SourceLocation(), Best)) {
+ case OR_Success:
+ Result->setMethod(cast<CXXMethodDecl>(Best->Function));
+ Result->setKind(SpecialMemberOverloadResult::Success);
+ break;
+
+ case OR_Deleted:
+ Result->setMethod(cast<CXXMethodDecl>(Best->Function));
+ Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
+ break;
+
+ case OR_Ambiguous:
+ Result->setMethod(nullptr);
+ Result->setKind(SpecialMemberOverloadResult::Ambiguous);
+ break;
+
+ case OR_No_Viable_Function:
+ Result->setMethod(nullptr);
+ Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
+ break;
+ }
+
+ return Result;
+}
+
+/// \brief Look up the default constructor for the given class.
+CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
+ SpecialMemberOverloadResult *Result =
+ LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
+ false, false);
+
+ return cast_or_null<CXXConstructorDecl>(Result->getMethod());
+}
+
+/// \brief Look up the copying constructor for the given class.
+CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
+ unsigned Quals) {
+ assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
+ "non-const, non-volatile qualifiers for copy ctor arg");
+ SpecialMemberOverloadResult *Result =
+ LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
+ Quals & Qualifiers::Volatile, false, false, false);
+
+ return cast_or_null<CXXConstructorDecl>(Result->getMethod());
+}
+
+/// \brief Look up the moving constructor for the given class.
+CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
+ unsigned Quals) {
+ SpecialMemberOverloadResult *Result =
+ LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
+ Quals & Qualifiers::Volatile, false, false, false);
+
+ return cast_or_null<CXXConstructorDecl>(Result->getMethod());
+}
+
+/// \brief Look up the constructors for the given class.
+DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
+ // If the implicit constructors have not yet been declared, do so now.
+ if (CanDeclareSpecialMemberFunction(Class)) {
+ if (Class->needsImplicitDefaultConstructor())
+ DeclareImplicitDefaultConstructor(Class);
+ if (Class->needsImplicitCopyConstructor())
+ DeclareImplicitCopyConstructor(Class);
+ if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
+ DeclareImplicitMoveConstructor(Class);
+ }
+
+ CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
+ DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
+ return Class->lookup(Name);
+}
+
+/// \brief Look up the copying assignment operator for the given class.
+CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
+ unsigned Quals, bool RValueThis,
+ unsigned ThisQuals) {
+ assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
+ "non-const, non-volatile qualifiers for copy assignment arg");
+ assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
+ "non-const, non-volatile qualifiers for copy assignment this");
+ SpecialMemberOverloadResult *Result =
+ LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
+ Quals & Qualifiers::Volatile, RValueThis,
+ ThisQuals & Qualifiers::Const,
+ ThisQuals & Qualifiers::Volatile);
+
+ return Result->getMethod();
+}
+
+/// \brief Look up the moving assignment operator for the given class.
+CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
+ unsigned Quals,
+ bool RValueThis,
+ unsigned ThisQuals) {
+ assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
+ "non-const, non-volatile qualifiers for copy assignment this");
+ SpecialMemberOverloadResult *Result =
+ LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
+ Quals & Qualifiers::Volatile, RValueThis,
+ ThisQuals & Qualifiers::Const,
+ ThisQuals & Qualifiers::Volatile);
+
+ return Result->getMethod();
+}
+
+/// \brief Look for the destructor of the given class.
+///
+/// During semantic analysis, this routine should be used in lieu of
+/// CXXRecordDecl::getDestructor().
+///
+/// \returns The destructor for this class.
+CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
+ return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
+ false, false, false,
+ false, false)->getMethod());
+}
+
+/// LookupLiteralOperator - Determine which literal operator should be used for
+/// a user-defined literal, per C++11 [lex.ext].
+///
+/// Normal overload resolution is not used to select which literal operator to
+/// call for a user-defined literal. Look up the provided literal operator name,
+/// and filter the results to the appropriate set for the given argument types.
+Sema::LiteralOperatorLookupResult
+Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
+ ArrayRef<QualType> ArgTys,
+ bool AllowRaw, bool AllowTemplate,
+ bool AllowStringTemplate) {
+ LookupName(R, S);
+ assert(R.getResultKind() != LookupResult::Ambiguous &&
+ "literal operator lookup can't be ambiguous");
+
+ // Filter the lookup results appropriately.
+ LookupResult::Filter F = R.makeFilter();
+
+ bool FoundRaw = false;
+ bool FoundTemplate = false;
+ bool FoundStringTemplate = false;
+ bool FoundExactMatch = false;
+
+ while (F.hasNext()) {
+ Decl *D = F.next();
+ if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
+ D = USD->getTargetDecl();
+
+ // If the declaration we found is invalid, skip it.
+ if (D->isInvalidDecl()) {
+ F.erase();
+ continue;
+ }
+
+ bool IsRaw = false;
+ bool IsTemplate = false;
+ bool IsStringTemplate = false;
+ bool IsExactMatch = false;
+
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ if (FD->getNumParams() == 1 &&
+ FD->getParamDecl(0)->getType()->getAs<PointerType>())
+ IsRaw = true;
+ else if (FD->getNumParams() == ArgTys.size()) {
+ IsExactMatch = true;
+ for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
+ QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
+ if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
+ IsExactMatch = false;
+ break;
+ }
+ }
+ }
+ }
+ if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
+ TemplateParameterList *Params = FD->getTemplateParameters();
+ if (Params->size() == 1)
+ IsTemplate = true;
+ else
+ IsStringTemplate = true;
+ }
+
+ if (IsExactMatch) {
+ FoundExactMatch = true;
+ AllowRaw = false;
+ AllowTemplate = false;
+ AllowStringTemplate = false;
+ if (FoundRaw || FoundTemplate || FoundStringTemplate) {
+ // Go through again and remove the raw and template decls we've
+ // already found.
+ F.restart();
+ FoundRaw = FoundTemplate = FoundStringTemplate = false;
+ }
+ } else if (AllowRaw && IsRaw) {
+ FoundRaw = true;
+ } else if (AllowTemplate && IsTemplate) {
+ FoundTemplate = true;
+ } else if (AllowStringTemplate && IsStringTemplate) {
+ FoundStringTemplate = true;
+ } else {
+ F.erase();
+ }
+ }
+
+ F.done();
+
+ // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
+ // parameter type, that is used in preference to a raw literal operator
+ // or literal operator template.
+ if (FoundExactMatch)
+ return LOLR_Cooked;
+
+ // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
+ // operator template, but not both.
+ if (FoundRaw && FoundTemplate) {
+ Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
+ for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
+ NoteOverloadCandidate((*I)->getUnderlyingDecl()->getAsFunction());
+ return LOLR_Error;
+ }
+
+ if (FoundRaw)
+ return LOLR_Raw;
+
+ if (FoundTemplate)
+ return LOLR_Template;
+
+ if (FoundStringTemplate)
+ return LOLR_StringTemplate;
+
+ // Didn't find anything we could use.
+ Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
+ << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
+ << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
+ << (AllowTemplate || AllowStringTemplate);
+ return LOLR_Error;
+}
+
+void ADLResult::insert(NamedDecl *New) {
+ NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
+
+ // If we haven't yet seen a decl for this key, or the last decl
+ // was exactly this one, we're done.
+ if (Old == nullptr || Old == New) {
+ Old = New;
+ return;
+ }
+
+ // Otherwise, decide which is a more recent redeclaration.
+ FunctionDecl *OldFD = Old->getAsFunction();
+ FunctionDecl *NewFD = New->getAsFunction();
+
+ FunctionDecl *Cursor = NewFD;
+ while (true) {
+ Cursor = Cursor->getPreviousDecl();
+
+ // If we got to the end without finding OldFD, OldFD is the newer
+ // declaration; leave things as they are.
+ if (!Cursor) return;
+
+ // If we do find OldFD, then NewFD is newer.
+ if (Cursor == OldFD) break;
+
+ // Otherwise, keep looking.
+ }
+
+ Old = New;
+}
+
+void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
+ ArrayRef<Expr *> Args, ADLResult &Result) {
+ // Find all of the associated namespaces and classes based on the
+ // arguments we have.
+ AssociatedNamespaceSet AssociatedNamespaces;
+ AssociatedClassSet AssociatedClasses;
+ FindAssociatedClassesAndNamespaces(Loc, Args,
+ AssociatedNamespaces,
+ AssociatedClasses);
+
+ // C++ [basic.lookup.argdep]p3:
+ // Let X be the lookup set produced by unqualified lookup (3.4.1)
+ // and let Y be the lookup set produced by argument dependent
+ // lookup (defined as follows). If X contains [...] then Y is
+ // empty. Otherwise Y is the set of declarations found in the
+ // namespaces associated with the argument types as described
+ // below. The set of declarations found by the lookup of the name
+ // is the union of X and Y.
+ //
+ // Here, we compute Y and add its members to the overloaded
+ // candidate set.
+ for (auto *NS : AssociatedNamespaces) {
+ // When considering an associated namespace, the lookup is the
+ // same as the lookup performed when the associated namespace is
+ // used as a qualifier (3.4.3.2) except that:
+ //
+ // -- Any using-directives in the associated namespace are
+ // ignored.
+ //
+ // -- Any namespace-scope friend functions declared in
+ // associated classes are visible within their respective
+ // namespaces even if they are not visible during an ordinary
+ // lookup (11.4).
+ DeclContext::lookup_result R = NS->lookup(Name);
+ for (auto *D : R) {
+ // If the only declaration here is an ordinary friend, consider
+ // it only if it was declared in an associated classes.
+ if ((D->getIdentifierNamespace() & Decl::IDNS_Ordinary) == 0) {
+ // If it's neither ordinarily visible nor a friend, we can't find it.
+ if ((D->getIdentifierNamespace() & Decl::IDNS_OrdinaryFriend) == 0)
+ continue;
+
+ bool DeclaredInAssociatedClass = false;
+ for (Decl *DI = D; DI; DI = DI->getPreviousDecl()) {
+ DeclContext *LexDC = DI->getLexicalDeclContext();
+ if (isa<CXXRecordDecl>(LexDC) &&
+ AssociatedClasses.count(cast<CXXRecordDecl>(LexDC))) {
+ DeclaredInAssociatedClass = true;
+ break;
+ }
+ }
+ if (!DeclaredInAssociatedClass)
+ continue;
+ }
+
+ if (isa<UsingShadowDecl>(D))
+ D = cast<UsingShadowDecl>(D)->getTargetDecl();
+
+ if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D))
+ continue;
+
+ Result.insert(D);
+ }
+ }
+}
+
+//----------------------------------------------------------------------------
+// Search for all visible declarations.
+//----------------------------------------------------------------------------
+VisibleDeclConsumer::~VisibleDeclConsumer() { }
+
+bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
+
+namespace {
+
+class ShadowContextRAII;
+
+class VisibleDeclsRecord {
+public:
+ /// \brief An entry in the shadow map, which is optimized to store a
+ /// single declaration (the common case) but can also store a list
+ /// of declarations.
+ typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
+
+private:
+ /// \brief A mapping from declaration names to the declarations that have
+ /// this name within a particular scope.
+ typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
+
+ /// \brief A list of shadow maps, which is used to model name hiding.
+ std::list<ShadowMap> ShadowMaps;
+
+ /// \brief The declaration contexts we have already visited.
+ llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
+
+ friend class ShadowContextRAII;
+
+public:
+ /// \brief Determine whether we have already visited this context
+ /// (and, if not, note that we are going to visit that context now).
+ bool visitedContext(DeclContext *Ctx) {
+ return !VisitedContexts.insert(Ctx).second;
+ }
+
+ bool alreadyVisitedContext(DeclContext *Ctx) {
+ return VisitedContexts.count(Ctx);
+ }
+
+ /// \brief Determine whether the given declaration is hidden in the
+ /// current scope.
+ ///
+ /// \returns the declaration that hides the given declaration, or
+ /// NULL if no such declaration exists.
+ NamedDecl *checkHidden(NamedDecl *ND);
+
+ /// \brief Add a declaration to the current shadow map.
+ void add(NamedDecl *ND) {
+ ShadowMaps.back()[ND->getDeclName()].push_back(ND);
+ }
+};
+
+/// \brief RAII object that records when we've entered a shadow context.
+class ShadowContextRAII {
+ VisibleDeclsRecord &Visible;
+
+ typedef VisibleDeclsRecord::ShadowMap ShadowMap;
+
+public:
+ ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
+ Visible.ShadowMaps.push_back(ShadowMap());
+ }
+
+ ~ShadowContextRAII() {
+ Visible.ShadowMaps.pop_back();
+ }
+};
+
+} // end anonymous namespace
+
+NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
+ // Look through using declarations.
+ ND = ND->getUnderlyingDecl();
+
+ unsigned IDNS = ND->getIdentifierNamespace();
+ std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
+ for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
+ SM != SMEnd; ++SM) {
+ ShadowMap::iterator Pos = SM->find(ND->getDeclName());
+ if (Pos == SM->end())
+ continue;
+
+ for (auto *D : Pos->second) {
+ // A tag declaration does not hide a non-tag declaration.
+ if (D->hasTagIdentifierNamespace() &&
+ (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
+ Decl::IDNS_ObjCProtocol)))
+ continue;
+
+ // Protocols are in distinct namespaces from everything else.
+ if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
+ || (IDNS & Decl::IDNS_ObjCProtocol)) &&
+ D->getIdentifierNamespace() != IDNS)
+ continue;
+
+ // Functions and function templates in the same scope overload
+ // rather than hide. FIXME: Look for hiding based on function
+ // signatures!
+ if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
+ ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
+ SM == ShadowMaps.rbegin())
+ continue;
+
+ // We've found a declaration that hides this one.
+ return D;
+ }
+ }
+
+ return nullptr;
+}
+
+static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
+ bool QualifiedNameLookup,
+ bool InBaseClass,
+ VisibleDeclConsumer &Consumer,
+ VisibleDeclsRecord &Visited) {
+ if (!Ctx)
+ return;
+
+ // Make sure we don't visit the same context twice.
+ if (Visited.visitedContext(Ctx->getPrimaryContext()))
+ return;
+
+ // Outside C++, lookup results for the TU live on identifiers.
+ if (isa<TranslationUnitDecl>(Ctx) &&
+ !Result.getSema().getLangOpts().CPlusPlus) {
+ auto &S = Result.getSema();
+ auto &Idents = S.Context.Idents;
+
+ // Ensure all external identifiers are in the identifier table.
+ if (IdentifierInfoLookup *External = Idents.getExternalIdentifierLookup()) {
+ std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
+ for (StringRef Name = Iter->Next(); !Name.empty(); Name = Iter->Next())
+ Idents.get(Name);
+ }
+
+ // Walk all lookup results in the TU for each identifier.
+ for (const auto &Ident : Idents) {
+ for (auto I = S.IdResolver.begin(Ident.getValue()),
+ E = S.IdResolver.end();
+ I != E; ++I) {
+ if (S.IdResolver.isDeclInScope(*I, Ctx)) {
+ if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
+ Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
+ Visited.add(ND);
+ }
+ }
+ }
+ }
+
+ return;
+ }
+
+ if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
+ Result.getSema().ForceDeclarationOfImplicitMembers(Class);
+
+ // Enumerate all of the results in this context.
+ for (DeclContextLookupResult R : Ctx->lookups()) {
+ for (auto *D : R) {
+ if (auto *ND = Result.getAcceptableDecl(D)) {
+ Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
+ Visited.add(ND);
+ }
+ }
+ }
+
+ // Traverse using directives for qualified name lookup.
+ if (QualifiedNameLookup) {
+ ShadowContextRAII Shadow(Visited);
+ for (auto I : Ctx->using_directives()) {
+ LookupVisibleDecls(I->getNominatedNamespace(), Result,
+ QualifiedNameLookup, InBaseClass, Consumer, Visited);
+ }
+ }
+
+ // Traverse the contexts of inherited C++ classes.
+ if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
+ if (!Record->hasDefinition())
+ return;
+
+ for (const auto &B : Record->bases()) {
+ QualType BaseType = B.getType();
+
+ // Don't look into dependent bases, because name lookup can't look
+ // there anyway.
+ if (BaseType->isDependentType())
+ continue;
+
+ const RecordType *Record = BaseType->getAs<RecordType>();
+ if (!Record)
+ continue;
+
+ // FIXME: It would be nice to be able to determine whether referencing
+ // a particular member would be ambiguous. For example, given
+ //
+ // struct A { int member; };
+ // struct B { int member; };
+ // struct C : A, B { };
+ //
+ // void f(C *c) { c->### }
+ //
+ // accessing 'member' would result in an ambiguity. However, we
+ // could be smart enough to qualify the member with the base
+ // class, e.g.,
+ //
+ // c->B::member
+ //
+ // or
+ //
+ // c->A::member
+
+ // Find results in this base class (and its bases).
+ ShadowContextRAII Shadow(Visited);
+ LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
+ true, Consumer, Visited);
+ }
+ }
+
+ // Traverse the contexts of Objective-C classes.
+ if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
+ // Traverse categories.
+ for (auto *Cat : IFace->visible_categories()) {
+ ShadowContextRAII Shadow(Visited);
+ LookupVisibleDecls(Cat, Result, QualifiedNameLookup, false,
+ Consumer, Visited);
+ }
+
+ // Traverse protocols.
+ for (auto *I : IFace->all_referenced_protocols()) {
+ ShadowContextRAII Shadow(Visited);
+ LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
+ Visited);
+ }
+
+ // Traverse the superclass.
+ if (IFace->getSuperClass()) {
+ ShadowContextRAII Shadow(Visited);
+ LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
+ true, Consumer, Visited);
+ }
+
+ // If there is an implementation, traverse it. We do this to find
+ // synthesized ivars.
+ if (IFace->getImplementation()) {
+ ShadowContextRAII Shadow(Visited);
+ LookupVisibleDecls(IFace->getImplementation(), Result,
+ QualifiedNameLookup, InBaseClass, Consumer, Visited);
+ }
+ } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
+ for (auto *I : Protocol->protocols()) {
+ ShadowContextRAII Shadow(Visited);
+ LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
+ Visited);
+ }
+ } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
+ for (auto *I : Category->protocols()) {
+ ShadowContextRAII Shadow(Visited);
+ LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
+ Visited);
+ }
+
+ // If there is an implementation, traverse it.
+ if (Category->getImplementation()) {
+ ShadowContextRAII Shadow(Visited);
+ LookupVisibleDecls(Category->getImplementation(), Result,
+ QualifiedNameLookup, true, Consumer, Visited);
+ }
+ }
+}
+
+static void LookupVisibleDecls(Scope *S, LookupResult &Result,
+ UnqualUsingDirectiveSet &UDirs,
+ VisibleDeclConsumer &Consumer,
+ VisibleDeclsRecord &Visited) {
+ if (!S)
+ return;
+
+ if (!S->getEntity() ||
+ (!S->getParent() &&
+ !Visited.alreadyVisitedContext(S->getEntity())) ||
+ (S->getEntity())->isFunctionOrMethod()) {
+ FindLocalExternScope FindLocals(Result);
+ // Walk through the declarations in this Scope.
+ for (auto *D : S->decls()) {
+ if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
+ if ((ND = Result.getAcceptableDecl(ND))) {
+ Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
+ Visited.add(ND);
+ }
+ }
+ }
+
+ // FIXME: C++ [temp.local]p8
+ DeclContext *Entity = nullptr;
+ if (S->getEntity()) {
+ // Look into this scope's declaration context, along with any of its
+ // parent lookup contexts (e.g., enclosing classes), up to the point
+ // where we hit the context stored in the next outer scope.
+ Entity = S->getEntity();
+ DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
+
+ for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
+ Ctx = Ctx->getLookupParent()) {
+ if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
+ if (Method->isInstanceMethod()) {
+ // For instance methods, look for ivars in the method's interface.
+ LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
+ Result.getNameLoc(), Sema::LookupMemberName);
+ if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
+ LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
+ /*InBaseClass=*/false, Consumer, Visited);
+ }
+ }
+
+ // We've already performed all of the name lookup that we need
+ // to for Objective-C methods; the next context will be the
+ // outer scope.
+ break;
+ }
+
+ if (Ctx->isFunctionOrMethod())
+ continue;
+
+ LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
+ /*InBaseClass=*/false, Consumer, Visited);
+ }
+ } else if (!S->getParent()) {
+ // Look into the translation unit scope. We walk through the translation
+ // unit's declaration context, because the Scope itself won't have all of
+ // the declarations if we loaded a precompiled header.
+ // FIXME: We would like the translation unit's Scope object to point to the
+ // translation unit, so we don't need this special "if" branch. However,
+ // doing so would force the normal C++ name-lookup code to look into the
+ // translation unit decl when the IdentifierInfo chains would suffice.
+ // Once we fix that problem (which is part of a more general "don't look
+ // in DeclContexts unless we have to" optimization), we can eliminate this.
+ Entity = Result.getSema().Context.getTranslationUnitDecl();
+ LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
+ /*InBaseClass=*/false, Consumer, Visited);
+ }
+
+ if (Entity) {
+ // Lookup visible declarations in any namespaces found by using
+ // directives.
+ for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
+ LookupVisibleDecls(const_cast<DeclContext *>(UUE.getNominatedNamespace()),
+ Result, /*QualifiedNameLookup=*/false,
+ /*InBaseClass=*/false, Consumer, Visited);
+ }
+
+ // Lookup names in the parent scope.
+ ShadowContextRAII Shadow(Visited);
+ LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
+}
+
+void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
+ VisibleDeclConsumer &Consumer,
+ bool IncludeGlobalScope) {
+ // Determine the set of using directives available during
+ // unqualified name lookup.
+ Scope *Initial = S;
+ UnqualUsingDirectiveSet UDirs;
+ if (getLangOpts().CPlusPlus) {
+ // Find the first namespace or translation-unit scope.
+ while (S && !isNamespaceOrTranslationUnitScope(S))
+ S = S->getParent();
+
+ UDirs.visitScopeChain(Initial, S);
+ }
+ UDirs.done();
+
+ // Look for visible declarations.
+ LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
+ Result.setAllowHidden(Consumer.includeHiddenDecls());
+ VisibleDeclsRecord Visited;
+ if (!IncludeGlobalScope)
+ Visited.visitedContext(Context.getTranslationUnitDecl());
+ ShadowContextRAII Shadow(Visited);
+ ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
+}
+
+void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
+ VisibleDeclConsumer &Consumer,
+ bool IncludeGlobalScope) {
+ LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
+ Result.setAllowHidden(Consumer.includeHiddenDecls());
+ VisibleDeclsRecord Visited;
+ if (!IncludeGlobalScope)
+ Visited.visitedContext(Context.getTranslationUnitDecl());
+ ShadowContextRAII Shadow(Visited);
+ ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
+ /*InBaseClass=*/false, Consumer, Visited);
+}
+
+/// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
+/// If GnuLabelLoc is a valid source location, then this is a definition
+/// of an __label__ label name, otherwise it is a normal label definition
+/// or use.
+LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
+ SourceLocation GnuLabelLoc) {
+ // Do a lookup to see if we have a label with this name already.
+ NamedDecl *Res = nullptr;
+
+ if (GnuLabelLoc.isValid()) {
+ // Local label definitions always shadow existing labels.
+ Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
+ Scope *S = CurScope;
+ PushOnScopeChains(Res, S, true);
+ return cast<LabelDecl>(Res);
+ }
+
+ // Not a GNU local label.
+ Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
+ // If we found a label, check to see if it is in the same context as us.
+ // When in a Block, we don't want to reuse a label in an enclosing function.
+ if (Res && Res->getDeclContext() != CurContext)
+ Res = nullptr;
+ if (!Res) {
+ // If not forward referenced or defined already, create the backing decl.
+ Res = LabelDecl::Create(Context, CurContext, Loc, II);
+ Scope *S = CurScope->getFnParent();
+ assert(S && "Not in a function?");
+ PushOnScopeChains(Res, S, true);
+ }
+ return cast<LabelDecl>(Res);
+}
+
+//===----------------------------------------------------------------------===//
+// Typo correction
+//===----------------------------------------------------------------------===//
+
+static bool isCandidateViable(CorrectionCandidateCallback &CCC,
+ TypoCorrection &Candidate) {
+ Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
+ return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
+}
+
+static void LookupPotentialTypoResult(Sema &SemaRef,
+ LookupResult &Res,
+ IdentifierInfo *Name,
+ Scope *S, CXXScopeSpec *SS,
+ DeclContext *MemberContext,
+ bool EnteringContext,
+ bool isObjCIvarLookup,
+ bool FindHidden);
+
+/// \brief Check whether the declarations found for a typo correction are
+/// visible, and if none of them are, convert the correction to an 'import
+/// a module' correction.
+static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
+ if (TC.begin() == TC.end())
+ return;
+
+ TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
+
+ for (/**/; DI != DE; ++DI)
+ if (!LookupResult::isVisible(SemaRef, *DI))
+ break;
+ // Nothing to do if all decls are visible.
+ if (DI == DE)
+ return;
+
+ llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
+ bool AnyVisibleDecls = !NewDecls.empty();
+
+ for (/**/; DI != DE; ++DI) {
+ NamedDecl *VisibleDecl = *DI;
+ if (!LookupResult::isVisible(SemaRef, *DI))
+ VisibleDecl = findAcceptableDecl(SemaRef, *DI);
+
+ if (VisibleDecl) {
+ if (!AnyVisibleDecls) {
+ // Found a visible decl, discard all hidden ones.
+ AnyVisibleDecls = true;
+ NewDecls.clear();
+ }
+ NewDecls.push_back(VisibleDecl);
+ } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
+ NewDecls.push_back(*DI);
+ }
+
+ if (NewDecls.empty())
+ TC = TypoCorrection();
+ else {
+ TC.setCorrectionDecls(NewDecls);
+ TC.setRequiresImport(!AnyVisibleDecls);
+ }
+}
+
+// Fill the supplied vector with the IdentifierInfo pointers for each piece of
+// the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
+// fill the vector with the IdentifierInfo pointers for "foo" and "bar").
+static void getNestedNameSpecifierIdentifiers(
+ NestedNameSpecifier *NNS,
+ SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
+ if (NestedNameSpecifier *Prefix = NNS->getPrefix())
+ getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
+ else
+ Identifiers.clear();
+
+ const IdentifierInfo *II = nullptr;
+
+ switch (NNS->getKind()) {
+ case NestedNameSpecifier::Identifier:
+ II = NNS->getAsIdentifier();
+ break;
+
+ case NestedNameSpecifier::Namespace:
+ if (NNS->getAsNamespace()->isAnonymousNamespace())
+ return;
+ II = NNS->getAsNamespace()->getIdentifier();
+ break;
+
+ case NestedNameSpecifier::NamespaceAlias:
+ II = NNS->getAsNamespaceAlias()->getIdentifier();
+ break;
+
+ case NestedNameSpecifier::TypeSpecWithTemplate:
+ case NestedNameSpecifier::TypeSpec:
+ II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
+ break;
+
+ case NestedNameSpecifier::Global:
+ case NestedNameSpecifier::Super:
+ return;
+ }
+
+ if (II)
+ Identifiers.push_back(II);
+}
+
+void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
+ DeclContext *Ctx, bool InBaseClass) {
+ // Don't consider hidden names for typo correction.
+ if (Hiding)
+ return;
+
+ // Only consider entities with identifiers for names, ignoring
+ // special names (constructors, overloaded operators, selectors,
+ // etc.).
+ IdentifierInfo *Name = ND->getIdentifier();
+ if (!Name)
+ return;
+
+ // Only consider visible declarations and declarations from modules with
+ // names that exactly match.
+ if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo &&
+ !findAcceptableDecl(SemaRef, ND))
+ return;
+
+ FoundName(Name->getName());
+}
+
+void TypoCorrectionConsumer::FoundName(StringRef Name) {
+ // Compute the edit distance between the typo and the name of this
+ // entity, and add the identifier to the list of results.
+ addName(Name, nullptr);
+}
+
+void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
+ // Compute the edit distance between the typo and this keyword,
+ // and add the keyword to the list of results.
+ addName(Keyword, nullptr, nullptr, true);
+}
+
+void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
+ NestedNameSpecifier *NNS, bool isKeyword) {
+ // Use a simple length-based heuristic to determine the minimum possible
+ // edit distance. If the minimum isn't good enough, bail out early.
+ StringRef TypoStr = Typo->getName();
+ unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
+ if (MinED && TypoStr.size() / MinED < 3)
+ return;
+
+ // Compute an upper bound on the allowable edit distance, so that the
+ // edit-distance algorithm can short-circuit.
+ unsigned UpperBound = (TypoStr.size() + 2) / 3 + 1;
+ unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
+ if (ED >= UpperBound) return;
+
+ TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
+ if (isKeyword) TC.makeKeyword();
+ TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
+ addCorrection(TC);
+}
+
+static const unsigned MaxTypoDistanceResultSets = 5;
+
+void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
+ StringRef TypoStr = Typo->getName();
+ StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
+
+ // For very short typos, ignore potential corrections that have a different
+ // base identifier from the typo or which have a normalized edit distance
+ // longer than the typo itself.
+ if (TypoStr.size() < 3 &&
+ (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
+ return;
+
+ // If the correction is resolved but is not viable, ignore it.
+ if (Correction.isResolved()) {
+ checkCorrectionVisibility(SemaRef, Correction);
+ if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
+ return;
+ }
+
+ TypoResultList &CList =
+ CorrectionResults[Correction.getEditDistance(false)][Name];
+
+ if (!CList.empty() && !CList.back().isResolved())
+ CList.pop_back();
+ if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
+ std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
+ for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
+ RI != RIEnd; ++RI) {
+ // If the Correction refers to a decl already in the result list,
+ // replace the existing result if the string representation of Correction
+ // comes before the current result alphabetically, then stop as there is
+ // nothing more to be done to add Correction to the candidate set.
+ if (RI->getCorrectionDecl() == NewND) {
+ if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
+ *RI = Correction;
+ return;
+ }
+ }
+ }
+ if (CList.empty() || Correction.isResolved())
+ CList.push_back(Correction);
+
+ while (CorrectionResults.size() > MaxTypoDistanceResultSets)
+ CorrectionResults.erase(std::prev(CorrectionResults.end()));
+}
+
+void TypoCorrectionConsumer::addNamespaces(
+ const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
+ SearchNamespaces = true;
+
+ for (auto KNPair : KnownNamespaces)
+ Namespaces.addNameSpecifier(KNPair.first);
+
+ bool SSIsTemplate = false;
+ if (NestedNameSpecifier *NNS =
+ (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
+ if (const Type *T = NNS->getAsType())
+ SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
+ }
+ for (const auto *TI : SemaRef.getASTContext().types()) {
+ if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
+ CD = CD->getCanonicalDecl();
+ if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
+ !CD->isUnion() && CD->getIdentifier() &&
+ (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
+ (CD->isBeingDefined() || CD->isCompleteDefinition()))
+ Namespaces.addNameSpecifier(CD);
+ }
+ }
+}
+
+const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
+ if (++CurrentTCIndex < ValidatedCorrections.size())
+ return ValidatedCorrections[CurrentTCIndex];
+
+ CurrentTCIndex = ValidatedCorrections.size();
+ while (!CorrectionResults.empty()) {
+ auto DI = CorrectionResults.begin();
+ if (DI->second.empty()) {
+ CorrectionResults.erase(DI);
+ continue;
+ }
+
+ auto RI = DI->second.begin();
+ if (RI->second.empty()) {
+ DI->second.erase(RI);
+ performQualifiedLookups();
+ continue;
+ }
+
+ TypoCorrection TC = RI->second.pop_back_val();
+ if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
+ ValidatedCorrections.push_back(TC);
+ return ValidatedCorrections[CurrentTCIndex];
+ }
+ }
+ return ValidatedCorrections[0]; // The empty correction.
+}
+
+bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
+ IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
+ DeclContext *TempMemberContext = MemberContext;
+ CXXScopeSpec *TempSS = SS.get();
+retry_lookup:
+ LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
+ EnteringContext,
+ CorrectionValidator->IsObjCIvarLookup,
+ Name == Typo && !Candidate.WillReplaceSpecifier());
+ switch (Result.getResultKind()) {
+ case LookupResult::NotFound:
+ case LookupResult::NotFoundInCurrentInstantiation:
+ case LookupResult::FoundUnresolvedValue:
+ if (TempSS) {
+ // Immediately retry the lookup without the given CXXScopeSpec
+ TempSS = nullptr;
+ Candidate.WillReplaceSpecifier(true);
+ goto retry_lookup;
+ }
+ if (TempMemberContext) {
+ if (SS && !TempSS)
+ TempSS = SS.get();
+ TempMemberContext = nullptr;
+ goto retry_lookup;
+ }
+ if (SearchNamespaces)
+ QualifiedResults.push_back(Candidate);
+ break;
+
+ case LookupResult::Ambiguous:
+ // We don't deal with ambiguities.
+ break;
+
+ case LookupResult::Found:
+ case LookupResult::FoundOverloaded:
+ // Store all of the Decls for overloaded symbols
+ for (auto *TRD : Result)
+ Candidate.addCorrectionDecl(TRD);
+ checkCorrectionVisibility(SemaRef, Candidate);
+ if (!isCandidateViable(*CorrectionValidator, Candidate)) {
+ if (SearchNamespaces)
+ QualifiedResults.push_back(Candidate);
+ break;
+ }
+ Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
+ return true;
+ }
+ return false;
+}
+
+void TypoCorrectionConsumer::performQualifiedLookups() {
+ unsigned TypoLen = Typo->getName().size();
+ for (auto QR : QualifiedResults) {
+ for (auto NSI : Namespaces) {
+ DeclContext *Ctx = NSI.DeclCtx;
+ const Type *NSType = NSI.NameSpecifier->getAsType();
+
+ // If the current NestedNameSpecifier refers to a class and the
+ // current correction candidate is the name of that class, then skip
+ // it as it is unlikely a qualified version of the class' constructor
+ // is an appropriate correction.
+ if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() : 0) {
+ if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
+ continue;
+ }
+
+ TypoCorrection TC(QR);
+ TC.ClearCorrectionDecls();
+ TC.setCorrectionSpecifier(NSI.NameSpecifier);
+ TC.setQualifierDistance(NSI.EditDistance);
+ TC.setCallbackDistance(0); // Reset the callback distance
+
+ // If the current correction candidate and namespace combination are
+ // too far away from the original typo based on the normalized edit
+ // distance, then skip performing a qualified name lookup.
+ unsigned TmpED = TC.getEditDistance(true);
+ if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
+ TypoLen / TmpED < 3)
+ continue;
+
+ Result.clear();
+ Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
+ if (!SemaRef.LookupQualifiedName(Result, Ctx))
+ continue;
+
+ // Any corrections added below will be validated in subsequent
+ // iterations of the main while() loop over the Consumer's contents.
+ switch (Result.getResultKind()) {
+ case LookupResult::Found:
+ case LookupResult::FoundOverloaded: {
+ if (SS && SS->isValid()) {
+ std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
+ std::string OldQualified;
+ llvm::raw_string_ostream OldOStream(OldQualified);
+ SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
+ OldOStream << Typo->getName();
+ // If correction candidate would be an identical written qualified
+ // identifer, then the existing CXXScopeSpec probably included a
+ // typedef that didn't get accounted for properly.
+ if (OldOStream.str() == NewQualified)
+ break;
+ }
+ for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
+ TRD != TRDEnd; ++TRD) {
+ if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
+ NSType ? NSType->getAsCXXRecordDecl()
+ : nullptr,
+ TRD.getPair()) == Sema::AR_accessible)
+ TC.addCorrectionDecl(*TRD);
+ }
+ if (TC.isResolved()) {
+ TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
+ addCorrection(TC);
+ }
+ break;
+ }
+ case LookupResult::NotFound:
+ case LookupResult::NotFoundInCurrentInstantiation:
+ case LookupResult::Ambiguous:
+ case LookupResult::FoundUnresolvedValue:
+ break;
+ }
+ }
+ }
+ QualifiedResults.clear();
+}
+
+TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
+ ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
+ : Context(Context), CurContextChain(buildContextChain(CurContext)) {
+ if (NestedNameSpecifier *NNS =
+ CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
+ llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
+ NNS->print(SpecifierOStream, Context.getPrintingPolicy());
+
+ getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
+ }
+ // Build the list of identifiers that would be used for an absolute
+ // (from the global context) NestedNameSpecifier referring to the current
+ // context.
+ for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
+ CEnd = CurContextChain.rend();
+ C != CEnd; ++C) {
+ if (NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C))
+ CurContextIdentifiers.push_back(ND->getIdentifier());
+ }
+
+ // Add the global context as a NestedNameSpecifier
+ SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
+ NestedNameSpecifier::GlobalSpecifier(Context), 1};
+ DistanceMap[1].push_back(SI);
+}
+
+auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
+ DeclContext *Start) -> DeclContextList {
+ assert(Start && "Building a context chain from a null context");
+ DeclContextList Chain;
+ for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
+ DC = DC->getLookupParent()) {
+ NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
+ if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
+ !(ND && ND->isAnonymousNamespace()))
+ Chain.push_back(DC->getPrimaryContext());
+ }
+ return Chain;
+}
+
+unsigned
+TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
+ DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
+ unsigned NumSpecifiers = 0;
+ for (DeclContextList::reverse_iterator C = DeclChain.rbegin(),
+ CEnd = DeclChain.rend();
+ C != CEnd; ++C) {
+ if (NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C)) {
+ NNS = NestedNameSpecifier::Create(Context, NNS, ND);
+ ++NumSpecifiers;
+ } else if (RecordDecl *RD = dyn_cast_or_null<RecordDecl>(*C)) {
+ NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
+ RD->getTypeForDecl());
+ ++NumSpecifiers;
+ }
+ }
+ return NumSpecifiers;
+}
+
+void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
+ DeclContext *Ctx) {
+ NestedNameSpecifier *NNS = nullptr;
+ unsigned NumSpecifiers = 0;
+ DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
+ DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
+
+ // Eliminate common elements from the two DeclContext chains.
+ for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
+ CEnd = CurContextChain.rend();
+ C != CEnd && !NamespaceDeclChain.empty() &&
+ NamespaceDeclChain.back() == *C; ++C) {
+ NamespaceDeclChain.pop_back();
+ }
+
+ // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
+ NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
+
+ // Add an explicit leading '::' specifier if needed.
+ if (NamespaceDeclChain.empty()) {
+ // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
+ NNS = NestedNameSpecifier::GlobalSpecifier(Context);
+ NumSpecifiers =
+ buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
+ } else if (NamedDecl *ND =
+ dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
+ IdentifierInfo *Name = ND->getIdentifier();
+ bool SameNameSpecifier = false;
+ if (std::find(CurNameSpecifierIdentifiers.begin(),
+ CurNameSpecifierIdentifiers.end(),
+ Name) != CurNameSpecifierIdentifiers.end()) {
+ std::string NewNameSpecifier;
+ llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
+ SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
+ getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
+ NNS->print(SpecifierOStream, Context.getPrintingPolicy());
+ SpecifierOStream.flush();
+ SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
+ }
+ if (SameNameSpecifier ||
+ std::find(CurContextIdentifiers.begin(), CurContextIdentifiers.end(),
+ Name) != CurContextIdentifiers.end()) {
+ // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
+ NNS = NestedNameSpecifier::GlobalSpecifier(Context);
+ NumSpecifiers =
+ buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
+ }
+ }
+
+ // If the built NestedNameSpecifier would be replacing an existing
+ // NestedNameSpecifier, use the number of component identifiers that
+ // would need to be changed as the edit distance instead of the number
+ // of components in the built NestedNameSpecifier.
+ if (NNS && !CurNameSpecifierIdentifiers.empty()) {
+ SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
+ getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
+ NumSpecifiers = llvm::ComputeEditDistance(
+ llvm::makeArrayRef(CurNameSpecifierIdentifiers),
+ llvm::makeArrayRef(NewNameSpecifierIdentifiers));
+ }
+
+ SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
+ DistanceMap[NumSpecifiers].push_back(SI);
+}
+
+/// \brief Perform name lookup for a possible result for typo correction.
+static void LookupPotentialTypoResult(Sema &SemaRef,
+ LookupResult &Res,
+ IdentifierInfo *Name,
+ Scope *S, CXXScopeSpec *SS,
+ DeclContext *MemberContext,
+ bool EnteringContext,
+ bool isObjCIvarLookup,
+ bool FindHidden) {
+ Res.suppressDiagnostics();
+ Res.clear();
+ Res.setLookupName(Name);
+ Res.setAllowHidden(FindHidden);
+ if (MemberContext) {
+ if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
+ if (isObjCIvarLookup) {
+ if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
+ Res.addDecl(Ivar);
+ Res.resolveKind();
+ return;
+ }
+ }
+
+ if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(Name)) {
+ Res.addDecl(Prop);
+ Res.resolveKind();
+ return;
+ }
+ }
+
+ SemaRef.LookupQualifiedName(Res, MemberContext);
+ return;
+ }
+
+ SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
+ EnteringContext);
+
+ // Fake ivar lookup; this should really be part of
+ // LookupParsedName.
+ if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
+ if (Method->isInstanceMethod() && Method->getClassInterface() &&
+ (Res.empty() ||
+ (Res.isSingleResult() &&
+ Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
+ if (ObjCIvarDecl *IV
+ = Method->getClassInterface()->lookupInstanceVariable(Name)) {
+ Res.addDecl(IV);
+ Res.resolveKind();
+ }
+ }
+ }
+}
+
+/// \brief Add keywords to the consumer as possible typo corrections.
+static void AddKeywordsToConsumer(Sema &SemaRef,
+ TypoCorrectionConsumer &Consumer,
+ Scope *S, CorrectionCandidateCallback &CCC,
+ bool AfterNestedNameSpecifier) {
+ if (AfterNestedNameSpecifier) {
+ // For 'X::', we know exactly which keywords can appear next.
+ Consumer.addKeywordResult("template");
+ if (CCC.WantExpressionKeywords)
+ Consumer.addKeywordResult("operator");
+ return;
+ }
+
+ if (CCC.WantObjCSuper)
+ Consumer.addKeywordResult("super");
+
+ if (CCC.WantTypeSpecifiers) {
+ // Add type-specifier keywords to the set of results.
+ static const char *const CTypeSpecs[] = {
+ "char", "const", "double", "enum", "float", "int", "long", "short",
+ "signed", "struct", "union", "unsigned", "void", "volatile",
+ "_Complex", "_Imaginary",
+ // storage-specifiers as well
+ "extern", "inline", "static", "typedef"
+ };
+
+ const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs);
+ for (unsigned I = 0; I != NumCTypeSpecs; ++I)
+ Consumer.addKeywordResult(CTypeSpecs[I]);
+
+ if (SemaRef.getLangOpts().C99)
+ Consumer.addKeywordResult("restrict");
+ if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
+ Consumer.addKeywordResult("bool");
+ else if (SemaRef.getLangOpts().C99)
+ Consumer.addKeywordResult("_Bool");
+
+ if (SemaRef.getLangOpts().CPlusPlus) {
+ Consumer.addKeywordResult("class");
+ Consumer.addKeywordResult("typename");
+ Consumer.addKeywordResult("wchar_t");
+
+ if (SemaRef.getLangOpts().CPlusPlus11) {
+ Consumer.addKeywordResult("char16_t");
+ Consumer.addKeywordResult("char32_t");
+ Consumer.addKeywordResult("constexpr");
+ Consumer.addKeywordResult("decltype");
+ Consumer.addKeywordResult("thread_local");
+ }
+ }
+
+ if (SemaRef.getLangOpts().GNUMode)
+ Consumer.addKeywordResult("typeof");
+ } else if (CCC.WantFunctionLikeCasts) {
+ static const char *const CastableTypeSpecs[] = {
+ "char", "double", "float", "int", "long", "short",
+ "signed", "unsigned", "void"
+ };
+ for (auto *kw : CastableTypeSpecs)
+ Consumer.addKeywordResult(kw);
+ }
+
+ if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
+ Consumer.addKeywordResult("const_cast");
+ Consumer.addKeywordResult("dynamic_cast");
+ Consumer.addKeywordResult("reinterpret_cast");
+ Consumer.addKeywordResult("static_cast");
+ }
+
+ if (CCC.WantExpressionKeywords) {
+ Consumer.addKeywordResult("sizeof");
+ if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
+ Consumer.addKeywordResult("false");
+ Consumer.addKeywordResult("true");
+ }
+
+ if (SemaRef.getLangOpts().CPlusPlus) {
+ static const char *const CXXExprs[] = {
+ "delete", "new", "operator", "throw", "typeid"
+ };
+ const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs);
+ for (unsigned I = 0; I != NumCXXExprs; ++I)
+ Consumer.addKeywordResult(CXXExprs[I]);
+
+ if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
+ cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
+ Consumer.addKeywordResult("this");
+
+ if (SemaRef.getLangOpts().CPlusPlus11) {
+ Consumer.addKeywordResult("alignof");
+ Consumer.addKeywordResult("nullptr");
+ }
+ }
+
+ if (SemaRef.getLangOpts().C11) {
+ // FIXME: We should not suggest _Alignof if the alignof macro
+ // is present.
+ Consumer.addKeywordResult("_Alignof");
+ }
+ }
+
+ if (CCC.WantRemainingKeywords) {
+ if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
+ // Statements.
+ static const char *const CStmts[] = {
+ "do", "else", "for", "goto", "if", "return", "switch", "while" };
+ const unsigned NumCStmts = llvm::array_lengthof(CStmts);
+ for (unsigned I = 0; I != NumCStmts; ++I)
+ Consumer.addKeywordResult(CStmts[I]);
+
+ if (SemaRef.getLangOpts().CPlusPlus) {
+ Consumer.addKeywordResult("catch");
+ Consumer.addKeywordResult("try");
+ }
+
+ if (S && S->getBreakParent())
+ Consumer.addKeywordResult("break");
+
+ if (S && S->getContinueParent())
+ Consumer.addKeywordResult("continue");
+
+ if (!SemaRef.getCurFunction()->SwitchStack.empty()) {
+ Consumer.addKeywordResult("case");
+ Consumer.addKeywordResult("default");
+ }
+ } else {
+ if (SemaRef.getLangOpts().CPlusPlus) {
+ Consumer.addKeywordResult("namespace");
+ Consumer.addKeywordResult("template");
+ }
+
+ if (S && S->isClassScope()) {
+ Consumer.addKeywordResult("explicit");
+ Consumer.addKeywordResult("friend");
+ Consumer.addKeywordResult("mutable");
+ Consumer.addKeywordResult("private");
+ Consumer.addKeywordResult("protected");
+ Consumer.addKeywordResult("public");
+ Consumer.addKeywordResult("virtual");
+ }
+ }
+
+ if (SemaRef.getLangOpts().CPlusPlus) {
+ Consumer.addKeywordResult("using");
+
+ if (SemaRef.getLangOpts().CPlusPlus11)
+ Consumer.addKeywordResult("static_assert");
+ }
+ }
+}
+
+std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
+ const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
+ Scope *S, CXXScopeSpec *SS,
+ std::unique_ptr<CorrectionCandidateCallback> CCC,
+ DeclContext *MemberContext, bool EnteringContext,
+ const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
+
+ if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
+ DisableTypoCorrection)
+ return nullptr;
+
+ // In Microsoft mode, don't perform typo correction in a template member
+ // function dependent context because it interferes with the "lookup into
+ // dependent bases of class templates" feature.
+ if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
+ isa<CXXMethodDecl>(CurContext))
+ return nullptr;
+
+ // We only attempt to correct typos for identifiers.
+ IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
+ if (!Typo)
+ return nullptr;
+
+ // If the scope specifier itself was invalid, don't try to correct
+ // typos.
+ if (SS && SS->isInvalid())
+ return nullptr;
+
+ // Never try to correct typos during template deduction or
+ // instantiation.
+ if (!ActiveTemplateInstantiations.empty())
+ return nullptr;
+
+ // Don't try to correct 'super'.
+ if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
+ return nullptr;
+
+ // Abort if typo correction already failed for this specific typo.
+ IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
+ if (locs != TypoCorrectionFailures.end() &&
+ locs->second.count(TypoName.getLoc()))
+ return nullptr;
+
+ // Don't try to correct the identifier "vector" when in AltiVec mode.
+ // TODO: Figure out why typo correction misbehaves in this case, fix it, and
+ // remove this workaround.
+ if (getLangOpts().AltiVec && Typo->isStr("vector"))
+ return nullptr;
+
+ // Provide a stop gap for files that are just seriously broken. Trying
+ // to correct all typos can turn into a HUGE performance penalty, causing
+ // some files to take minutes to get rejected by the parser.
+ unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
+ if (Limit && TyposCorrected >= Limit)
+ return nullptr;
+ ++TyposCorrected;
+
+ // If we're handling a missing symbol error, using modules, and the
+ // special search all modules option is used, look for a missing import.
+ if (ErrorRecovery && getLangOpts().Modules &&
+ getLangOpts().ModulesSearchAll) {
+ // The following has the side effect of loading the missing module.
+ getModuleLoader().lookupMissingImports(Typo->getName(),
+ TypoName.getLocStart());
+ }
+
+ CorrectionCandidateCallback &CCCRef = *CCC;
+ auto Consumer = llvm::make_unique<TypoCorrectionConsumer>(
+ *this, TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
+ EnteringContext);
+
+ // Perform name lookup to find visible, similarly-named entities.
+ bool IsUnqualifiedLookup = false;
+ DeclContext *QualifiedDC = MemberContext;
+ if (MemberContext) {
+ LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
+
+ // Look in qualified interfaces.
+ if (OPT) {
+ for (auto *I : OPT->quals())
+ LookupVisibleDecls(I, LookupKind, *Consumer);
+ }
+ } else if (SS && SS->isSet()) {
+ QualifiedDC = computeDeclContext(*SS, EnteringContext);
+ if (!QualifiedDC)
+ return nullptr;
+
+ LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
+ } else {
+ IsUnqualifiedLookup = true;
+ }
+
+ // Determine whether we are going to search in the various namespaces for
+ // corrections.
+ bool SearchNamespaces
+ = getLangOpts().CPlusPlus &&
+ (IsUnqualifiedLookup || (SS && SS->isSet()));
+
+ if (IsUnqualifiedLookup || SearchNamespaces) {
+ // For unqualified lookup, look through all of the names that we have
+ // seen in this translation unit.
+ // FIXME: Re-add the ability to skip very unlikely potential corrections.
+ for (const auto &I : Context.Idents)
+ Consumer->FoundName(I.getKey());
+
+ // Walk through identifiers in external identifier sources.
+ // FIXME: Re-add the ability to skip very unlikely potential corrections.
+ if (IdentifierInfoLookup *External
+ = Context.Idents.getExternalIdentifierLookup()) {
+ std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
+ do {
+ StringRef Name = Iter->Next();
+ if (Name.empty())
+ break;
+
+ Consumer->FoundName(Name);
+ } while (true);
+ }
+ }
+
+ AddKeywordsToConsumer(*this, *Consumer, S, CCCRef, SS && SS->isNotEmpty());
+
+ // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
+ // to search those namespaces.
+ if (SearchNamespaces) {
+ // Load any externally-known namespaces.
+ if (ExternalSource && !LoadedExternalKnownNamespaces) {
+ SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
+ LoadedExternalKnownNamespaces = true;
+ ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
+ for (auto *N : ExternalKnownNamespaces)
+ KnownNamespaces[N] = true;
+ }
+
+ Consumer->addNamespaces(KnownNamespaces);
+ }
+
+ return Consumer;
+}
+
+/// \brief Try to "correct" a typo in the source code by finding
+/// visible declarations whose names are similar to the name that was
+/// present in the source code.
+///
+/// \param TypoName the \c DeclarationNameInfo structure that contains
+/// the name that was present in the source code along with its location.
+///
+/// \param LookupKind the name-lookup criteria used to search for the name.
+///
+/// \param S the scope in which name lookup occurs.
+///
+/// \param SS the nested-name-specifier that precedes the name we're
+/// looking for, if present.
+///
+/// \param CCC A CorrectionCandidateCallback object that provides further
+/// validation of typo correction candidates. It also provides flags for
+/// determining the set of keywords permitted.
+///
+/// \param MemberContext if non-NULL, the context in which to look for
+/// a member access expression.
+///
+/// \param EnteringContext whether we're entering the context described by
+/// the nested-name-specifier SS.
+///
+/// \param OPT when non-NULL, the search for visible declarations will
+/// also walk the protocols in the qualified interfaces of \p OPT.
+///
+/// \returns a \c TypoCorrection containing the corrected name if the typo
+/// along with information such as the \c NamedDecl where the corrected name
+/// was declared, and any additional \c NestedNameSpecifier needed to access
+/// it (C++ only). The \c TypoCorrection is empty if there is no correction.
+TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
+ Sema::LookupNameKind LookupKind,
+ Scope *S, CXXScopeSpec *SS,
+ std::unique_ptr<CorrectionCandidateCallback> CCC,
+ CorrectTypoKind Mode,
+ DeclContext *MemberContext,
+ bool EnteringContext,
+ const ObjCObjectPointerType *OPT,
+ bool RecordFailure) {
+ assert(CCC && "CorrectTypo requires a CorrectionCandidateCallback");
+
+ // Always let the ExternalSource have the first chance at correction, even
+ // if we would otherwise have given up.
+ if (ExternalSource) {
+ if (TypoCorrection Correction = ExternalSource->CorrectTypo(
+ TypoName, LookupKind, S, SS, *CCC, MemberContext, EnteringContext, OPT))
+ return Correction;
+ }
+
+ // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
+ // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
+ // some instances of CTC_Unknown, while WantRemainingKeywords is true
+ // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
+ bool ObjCMessageReceiver = CCC->WantObjCSuper && !CCC->WantRemainingKeywords;
+
+ IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
+ auto Consumer = makeTypoCorrectionConsumer(
+ TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
+ EnteringContext, OPT, Mode == CTK_ErrorRecovery);
+
+ if (!Consumer)
+ return TypoCorrection();
+
+ // If we haven't found anything, we're done.
+ if (Consumer->empty())
+ return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
+
+ // Make sure the best edit distance (prior to adding any namespace qualifiers)
+ // is not more that about a third of the length of the typo's identifier.
+ unsigned ED = Consumer->getBestEditDistance(true);
+ unsigned TypoLen = Typo->getName().size();
+ if (ED > 0 && TypoLen / ED < 3)
+ return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
+
+ TypoCorrection BestTC = Consumer->getNextCorrection();
+ TypoCorrection SecondBestTC = Consumer->getNextCorrection();
+ if (!BestTC)
+ return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
+
+ ED = BestTC.getEditDistance();
+
+ if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
+ // If this was an unqualified lookup and we believe the callback
+ // object wouldn't have filtered out possible corrections, note
+ // that no correction was found.
+ return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
+ }
+
+ // If only a single name remains, return that result.
+ if (!SecondBestTC ||
+ SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
+ const TypoCorrection &Result = BestTC;
+
+ // Don't correct to a keyword that's the same as the typo; the keyword
+ // wasn't actually in scope.
+ if (ED == 0 && Result.isKeyword())
+ return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
+
+ TypoCorrection TC = Result;
+ TC.setCorrectionRange(SS, TypoName);
+ checkCorrectionVisibility(*this, TC);
+ return TC;
+ } else if (SecondBestTC && ObjCMessageReceiver) {
+ // Prefer 'super' when we're completing in a message-receiver
+ // context.
+
+ if (BestTC.getCorrection().getAsString() != "super") {
+ if (SecondBestTC.getCorrection().getAsString() == "super")
+ BestTC = SecondBestTC;
+ else if ((*Consumer)["super"].front().isKeyword())
+ BestTC = (*Consumer)["super"].front();
+ }
+ // Don't correct to a keyword that's the same as the typo; the keyword
+ // wasn't actually in scope.
+ if (BestTC.getEditDistance() == 0 ||
+ BestTC.getCorrection().getAsString() != "super")
+ return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
+
+ BestTC.setCorrectionRange(SS, TypoName);
+ return BestTC;
+ }
+
+ // Record the failure's location if needed and return an empty correction. If
+ // this was an unqualified lookup and we believe the callback object did not
+ // filter out possible corrections, also cache the failure for the typo.
+ return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
+}
+
+/// \brief Try to "correct" a typo in the source code by finding
+/// visible declarations whose names are similar to the name that was
+/// present in the source code.
+///
+/// \param TypoName the \c DeclarationNameInfo structure that contains
+/// the name that was present in the source code along with its location.
+///
+/// \param LookupKind the name-lookup criteria used to search for the name.
+///
+/// \param S the scope in which name lookup occurs.
+///
+/// \param SS the nested-name-specifier that precedes the name we're
+/// looking for, if present.
+///
+/// \param CCC A CorrectionCandidateCallback object that provides further
+/// validation of typo correction candidates. It also provides flags for
+/// determining the set of keywords permitted.
+///
+/// \param TDG A TypoDiagnosticGenerator functor that will be used to print
+/// diagnostics when the actual typo correction is attempted.
+///
+/// \param TRC A TypoRecoveryCallback functor that will be used to build an
+/// Expr from a typo correction candidate.
+///
+/// \param MemberContext if non-NULL, the context in which to look for
+/// a member access expression.
+///
+/// \param EnteringContext whether we're entering the context described by
+/// the nested-name-specifier SS.
+///
+/// \param OPT when non-NULL, the search for visible declarations will
+/// also walk the protocols in the qualified interfaces of \p OPT.
+///
+/// \returns a new \c TypoExpr that will later be replaced in the AST with an
+/// Expr representing the result of performing typo correction, or nullptr if
+/// typo correction is not possible. If nullptr is returned, no diagnostics will
+/// be emitted and it is the responsibility of the caller to emit any that are
+/// needed.
+TypoExpr *Sema::CorrectTypoDelayed(
+ const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
+ Scope *S, CXXScopeSpec *SS,
+ std::unique_ptr<CorrectionCandidateCallback> CCC,
+ TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
+ DeclContext *MemberContext, bool EnteringContext,
+ const ObjCObjectPointerType *OPT) {
+ assert(CCC && "CorrectTypoDelayed requires a CorrectionCandidateCallback");
+
+ TypoCorrection Empty;
+ auto Consumer = makeTypoCorrectionConsumer(
+ TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
+ EnteringContext, OPT, Mode == CTK_ErrorRecovery);
+
+ if (!Consumer || Consumer->empty())
+ return nullptr;
+
+ // Make sure the best edit distance (prior to adding any namespace qualifiers)
+ // is not more that about a third of the length of the typo's identifier.
+ unsigned ED = Consumer->getBestEditDistance(true);
+ IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
+ if (ED > 0 && Typo->getName().size() / ED < 3)
+ return nullptr;
+
+ ExprEvalContexts.back().NumTypos++;
+ return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC));
+}
+
+void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
+ if (!CDecl) return;
+
+ if (isKeyword())
+ CorrectionDecls.clear();
+
+ CorrectionDecls.push_back(CDecl->getUnderlyingDecl());
+
+ if (!CorrectionName)
+ CorrectionName = CDecl->getDeclName();
+}
+
+std::string TypoCorrection::getAsString(const LangOptions &LO) const {
+ if (CorrectionNameSpec) {
+ std::string tmpBuffer;
+ llvm::raw_string_ostream PrefixOStream(tmpBuffer);
+ CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
+ PrefixOStream << CorrectionName;
+ return PrefixOStream.str();
+ }
+
+ return CorrectionName.getAsString();
+}
+
+bool CorrectionCandidateCallback::ValidateCandidate(
+ const TypoCorrection &candidate) {
+ if (!candidate.isResolved())
+ return true;
+
+ if (candidate.isKeyword())
+ return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
+ WantRemainingKeywords || WantObjCSuper;
+
+ bool HasNonType = false;
+ bool HasStaticMethod = false;
+ bool HasNonStaticMethod = false;
+ for (Decl *D : candidate) {
+ if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
+ D = FTD->getTemplatedDecl();
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
+ if (Method->isStatic())
+ HasStaticMethod = true;
+ else
+ HasNonStaticMethod = true;
+ }
+ if (!isa<TypeDecl>(D))
+ HasNonType = true;
+ }
+
+ if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
+ !candidate.getCorrectionSpecifier())
+ return false;
+
+ return WantTypeSpecifiers || HasNonType;
+}
+
+FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
+ bool HasExplicitTemplateArgs,
+ MemberExpr *ME)
+ : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
+ CurContext(SemaRef.CurContext), MemberFn(ME) {
+ WantTypeSpecifiers = false;
+ WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus && NumArgs == 1;
+ WantRemainingKeywords = false;
+}
+
+bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
+ if (!candidate.getCorrectionDecl())
+ return candidate.isKeyword();
+
+ for (auto *C : candidate) {
+ FunctionDecl *FD = nullptr;
+ NamedDecl *ND = C->getUnderlyingDecl();
+ if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
+ FD = FTD->getTemplatedDecl();
+ if (!HasExplicitTemplateArgs && !FD) {
+ if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
+ // If the Decl is neither a function nor a template function,
+ // determine if it is a pointer or reference to a function. If so,
+ // check against the number of arguments expected for the pointee.
+ QualType ValType = cast<ValueDecl>(ND)->getType();
+ if (ValType->isAnyPointerType() || ValType->isReferenceType())
+ ValType = ValType->getPointeeType();
+ if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
+ if (FPT->getNumParams() == NumArgs)
+ return true;
+ }
+ }
+
+ // Skip the current candidate if it is not a FunctionDecl or does not accept
+ // the current number of arguments.
+ if (!FD || !(FD->getNumParams() >= NumArgs &&
+ FD->getMinRequiredArguments() <= NumArgs))
+ continue;
+
+ // If the current candidate is a non-static C++ method, skip the candidate
+ // unless the method being corrected--or the current DeclContext, if the
+ // function being corrected is not a method--is a method in the same class
+ // or a descendent class of the candidate's parent class.
+ if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
+ if (MemberFn || !MD->isStatic()) {
+ CXXMethodDecl *CurMD =
+ MemberFn
+ ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
+ : dyn_cast_or_null<CXXMethodDecl>(CurContext);
+ CXXRecordDecl *CurRD =
+ CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
+ CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
+ if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
+ continue;
+ }
+ }
+ return true;
+ }
+ return false;
+}
+
+void Sema::diagnoseTypo(const TypoCorrection &Correction,
+ const PartialDiagnostic &TypoDiag,
+ bool ErrorRecovery) {
+ diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
+ ErrorRecovery);
+}
+
+/// Find which declaration we should import to provide the definition of
+/// the given declaration.
+static NamedDecl *getDefinitionToImport(NamedDecl *D) {
+ if (VarDecl *VD = dyn_cast<VarDecl>(D))
+ return VD->getDefinition();
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
+ return FD->isDefined(FD) ? const_cast<FunctionDecl*>(FD) : nullptr;
+ if (TagDecl *TD = dyn_cast<TagDecl>(D))
+ return TD->getDefinition();
+ if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
+ return ID->getDefinition();
+ if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
+ return PD->getDefinition();
+ if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
+ return getDefinitionToImport(TD->getTemplatedDecl());
+ return nullptr;
+}
+
+/// \brief Diagnose a successfully-corrected typo. Separated from the correction
+/// itself to allow external validation of the result, etc.
+///
+/// \param Correction The result of performing typo correction.
+/// \param TypoDiag The diagnostic to produce. This will have the corrected
+/// string added to it (and usually also a fixit).
+/// \param PrevNote A note to use when indicating the location of the entity to
+/// which we are correcting. Will have the correction string added to it.
+/// \param ErrorRecovery If \c true (the default), the caller is going to
+/// recover from the typo as if the corrected string had been typed.
+/// In this case, \c PDiag must be an error, and we will attach a fixit
+/// to it.
+void Sema::diagnoseTypo(const TypoCorrection &Correction,
+ const PartialDiagnostic &TypoDiag,
+ const PartialDiagnostic &PrevNote,
+ bool ErrorRecovery) {
+ std::string CorrectedStr = Correction.getAsString(getLangOpts());
+ std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
+ FixItHint FixTypo = FixItHint::CreateReplacement(
+ Correction.getCorrectionRange(), CorrectedStr);
+
+ // Maybe we're just missing a module import.
+ if (Correction.requiresImport()) {
+ NamedDecl *Decl = Correction.getCorrectionDecl();
+ assert(Decl && "import required but no declaration to import");
+
+ // Suggest importing a module providing the definition of this entity, if
+ // possible.
+ NamedDecl *Def = getDefinitionToImport(Decl);
+ if (!Def)
+ Def = Decl;
+ Module *Owner = getOwningModule(Def);
+ assert(Owner && "definition of hidden declaration is not in a module");
+
+ Diag(Correction.getCorrectionRange().getBegin(),
+ diag::err_module_private_declaration)
+ << Def << Owner->getFullModuleName();
+ Diag(Def->getLocation(), diag::note_previous_declaration);
+
+ // Recover by implicitly importing this module.
+ if (ErrorRecovery)
+ createImplicitModuleImportForErrorRecovery(
+ Correction.getCorrectionRange().getBegin(), Owner);
+ return;
+ }
+
+ Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
+ << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
+
+ NamedDecl *ChosenDecl =
+ Correction.isKeyword() ? nullptr : Correction.getCorrectionDecl();
+ if (PrevNote.getDiagID() && ChosenDecl)
+ Diag(ChosenDecl->getLocation(), PrevNote)
+ << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
+}
+
+TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
+ TypoDiagnosticGenerator TDG,
+ TypoRecoveryCallback TRC) {
+ assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer");
+ auto TE = new (Context) TypoExpr(Context.DependentTy);
+ auto &State = DelayedTypos[TE];
+ State.Consumer = std::move(TCC);
+ State.DiagHandler = std::move(TDG);
+ State.RecoveryHandler = std::move(TRC);
+ return TE;
+}
+
+const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
+ auto Entry = DelayedTypos.find(TE);
+ assert(Entry != DelayedTypos.end() &&
+ "Failed to get the state for a TypoExpr!");
+ return Entry->second;
+}
+
+void Sema::clearDelayedTypo(TypoExpr *TE) {
+ DelayedTypos.erase(TE);
+}
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaObjCProperty.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaObjCProperty.cpp
new file mode 100644
index 0000000..5e7b4b8
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaObjCProperty.cpp
@@ -0,0 +1,2291 @@
+//===--- SemaObjCProperty.cpp - Semantic Analysis for ObjC @property ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements semantic analysis for Objective C @property and
+// @synthesize declarations.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Sema/SemaInternal.h"
+#include "clang/AST/ASTMutationListener.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Lex/Lexer.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Sema/Initialization.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/SmallString.h"
+
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// Grammar actions.
+//===----------------------------------------------------------------------===//
+
+/// getImpliedARCOwnership - Given a set of property attributes and a
+/// type, infer an expected lifetime. The type's ownership qualification
+/// is not considered.
+///
+/// Returns OCL_None if the attributes as stated do not imply an ownership.
+/// Never returns OCL_Autoreleasing.
+static Qualifiers::ObjCLifetime getImpliedARCOwnership(
+ ObjCPropertyDecl::PropertyAttributeKind attrs,
+ QualType type) {
+ // retain, strong, copy, weak, and unsafe_unretained are only legal
+ // on properties of retainable pointer type.
+ if (attrs & (ObjCPropertyDecl::OBJC_PR_retain |
+ ObjCPropertyDecl::OBJC_PR_strong |
+ ObjCPropertyDecl::OBJC_PR_copy)) {
+ return Qualifiers::OCL_Strong;
+ } else if (attrs & ObjCPropertyDecl::OBJC_PR_weak) {
+ return Qualifiers::OCL_Weak;
+ } else if (attrs & ObjCPropertyDecl::OBJC_PR_unsafe_unretained) {
+ return Qualifiers::OCL_ExplicitNone;
+ }
+
+ // assign can appear on other types, so we have to check the
+ // property type.
+ if (attrs & ObjCPropertyDecl::OBJC_PR_assign &&
+ type->isObjCRetainableType()) {
+ return Qualifiers::OCL_ExplicitNone;
+ }
+
+ return Qualifiers::OCL_None;
+}
+
+/// Check the internal consistency of a property declaration.
+static void checkARCPropertyDecl(Sema &S, ObjCPropertyDecl *property) {
+ if (property->isInvalidDecl()) return;
+
+ ObjCPropertyDecl::PropertyAttributeKind propertyKind
+ = property->getPropertyAttributes();
+ Qualifiers::ObjCLifetime propertyLifetime
+ = property->getType().getObjCLifetime();
+
+ // Nothing to do if we don't have a lifetime.
+ if (propertyLifetime == Qualifiers::OCL_None) return;
+
+ Qualifiers::ObjCLifetime expectedLifetime
+ = getImpliedARCOwnership(propertyKind, property->getType());
+ if (!expectedLifetime) {
+ // We have a lifetime qualifier but no dominating property
+ // attribute. That's okay, but restore reasonable invariants by
+ // setting the property attribute according to the lifetime
+ // qualifier.
+ ObjCPropertyDecl::PropertyAttributeKind attr;
+ if (propertyLifetime == Qualifiers::OCL_Strong) {
+ attr = ObjCPropertyDecl::OBJC_PR_strong;
+ } else if (propertyLifetime == Qualifiers::OCL_Weak) {
+ attr = ObjCPropertyDecl::OBJC_PR_weak;
+ } else {
+ assert(propertyLifetime == Qualifiers::OCL_ExplicitNone);
+ attr = ObjCPropertyDecl::OBJC_PR_unsafe_unretained;
+ }
+ property->setPropertyAttributes(attr);
+ return;
+ }
+
+ if (propertyLifetime == expectedLifetime) return;
+
+ property->setInvalidDecl();
+ S.Diag(property->getLocation(),
+ diag::err_arc_inconsistent_property_ownership)
+ << property->getDeclName()
+ << expectedLifetime
+ << propertyLifetime;
+}
+
+static unsigned deduceWeakPropertyFromType(Sema &S, QualType T) {
+ if ((S.getLangOpts().getGC() != LangOptions::NonGC &&
+ T.isObjCGCWeak()) ||
+ (S.getLangOpts().ObjCAutoRefCount &&
+ T.getObjCLifetime() == Qualifiers::OCL_Weak))
+ return ObjCDeclSpec::DQ_PR_weak;
+ return 0;
+}
+
+/// \brief Check this Objective-C property against a property declared in the
+/// given protocol.
+static void
+CheckPropertyAgainstProtocol(Sema &S, ObjCPropertyDecl *Prop,
+ ObjCProtocolDecl *Proto,
+ llvm::SmallPtrSetImpl<ObjCProtocolDecl *> &Known) {
+ // Have we seen this protocol before?
+ if (!Known.insert(Proto).second)
+ return;
+
+ // Look for a property with the same name.
+ DeclContext::lookup_result R = Proto->lookup(Prop->getDeclName());
+ for (unsigned I = 0, N = R.size(); I != N; ++I) {
+ if (ObjCPropertyDecl *ProtoProp = dyn_cast<ObjCPropertyDecl>(R[I])) {
+ S.DiagnosePropertyMismatch(Prop, ProtoProp, Proto->getIdentifier(), true);
+ return;
+ }
+ }
+
+ // Check this property against any protocols we inherit.
+ for (auto *P : Proto->protocols())
+ CheckPropertyAgainstProtocol(S, Prop, P, Known);
+}
+
+Decl *Sema::ActOnProperty(Scope *S, SourceLocation AtLoc,
+ SourceLocation LParenLoc,
+ FieldDeclarator &FD,
+ ObjCDeclSpec &ODS,
+ Selector GetterSel,
+ Selector SetterSel,
+ bool *isOverridingProperty,
+ tok::ObjCKeywordKind MethodImplKind,
+ DeclContext *lexicalDC) {
+ unsigned Attributes = ODS.getPropertyAttributes();
+ TypeSourceInfo *TSI = GetTypeForDeclarator(FD.D, S);
+ QualType T = TSI->getType();
+ Attributes |= deduceWeakPropertyFromType(*this, T);
+
+ bool isReadWrite = ((Attributes & ObjCDeclSpec::DQ_PR_readwrite) ||
+ // default is readwrite!
+ !(Attributes & ObjCDeclSpec::DQ_PR_readonly));
+ // property is defaulted to 'assign' if it is readwrite and is
+ // not retain or copy
+ bool isAssign = ((Attributes & ObjCDeclSpec::DQ_PR_assign) ||
+ (isReadWrite &&
+ !(Attributes & ObjCDeclSpec::DQ_PR_retain) &&
+ !(Attributes & ObjCDeclSpec::DQ_PR_strong) &&
+ !(Attributes & ObjCDeclSpec::DQ_PR_copy) &&
+ !(Attributes & ObjCDeclSpec::DQ_PR_unsafe_unretained) &&
+ !(Attributes & ObjCDeclSpec::DQ_PR_weak)));
+
+ // Proceed with constructing the ObjCPropertyDecls.
+ ObjCContainerDecl *ClassDecl = cast<ObjCContainerDecl>(CurContext);
+ ObjCPropertyDecl *Res = nullptr;
+ if (ObjCCategoryDecl *CDecl = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
+ if (CDecl->IsClassExtension()) {
+ Res = HandlePropertyInClassExtension(S, AtLoc, LParenLoc,
+ FD, GetterSel, SetterSel,
+ isAssign, isReadWrite,
+ Attributes,
+ ODS.getPropertyAttributes(),
+ isOverridingProperty, TSI,
+ MethodImplKind);
+ if (!Res)
+ return nullptr;
+ }
+ }
+
+ if (!Res) {
+ Res = CreatePropertyDecl(S, ClassDecl, AtLoc, LParenLoc, FD,
+ GetterSel, SetterSel, isAssign, isReadWrite,
+ Attributes, ODS.getPropertyAttributes(),
+ TSI, MethodImplKind);
+ if (lexicalDC)
+ Res->setLexicalDeclContext(lexicalDC);
+ }
+
+ // Validate the attributes on the @property.
+ CheckObjCPropertyAttributes(Res, AtLoc, Attributes,
+ (isa<ObjCInterfaceDecl>(ClassDecl) ||
+ isa<ObjCProtocolDecl>(ClassDecl)));
+
+ if (getLangOpts().ObjCAutoRefCount)
+ checkARCPropertyDecl(*this, Res);
+
+ llvm::SmallPtrSet<ObjCProtocolDecl *, 16> KnownProtos;
+ if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
+ // For a class, compare the property against a property in our superclass.
+ bool FoundInSuper = false;
+ ObjCInterfaceDecl *CurrentInterfaceDecl = IFace;
+ while (ObjCInterfaceDecl *Super = CurrentInterfaceDecl->getSuperClass()) {
+ DeclContext::lookup_result R = Super->lookup(Res->getDeclName());
+ for (unsigned I = 0, N = R.size(); I != N; ++I) {
+ if (ObjCPropertyDecl *SuperProp = dyn_cast<ObjCPropertyDecl>(R[I])) {
+ DiagnosePropertyMismatch(Res, SuperProp, Super->getIdentifier(), false);
+ FoundInSuper = true;
+ break;
+ }
+ }
+ if (FoundInSuper)
+ break;
+ else
+ CurrentInterfaceDecl = Super;
+ }
+
+ if (FoundInSuper) {
+ // Also compare the property against a property in our protocols.
+ for (auto *P : CurrentInterfaceDecl->protocols()) {
+ CheckPropertyAgainstProtocol(*this, Res, P, KnownProtos);
+ }
+ } else {
+ // Slower path: look in all protocols we referenced.
+ for (auto *P : IFace->all_referenced_protocols()) {
+ CheckPropertyAgainstProtocol(*this, Res, P, KnownProtos);
+ }
+ }
+ } else if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
+ for (auto *P : Cat->protocols())
+ CheckPropertyAgainstProtocol(*this, Res, P, KnownProtos);
+ } else {
+ ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(ClassDecl);
+ for (auto *P : Proto->protocols())
+ CheckPropertyAgainstProtocol(*this, Res, P, KnownProtos);
+ }
+
+ ActOnDocumentableDecl(Res);
+ return Res;
+}
+
+static ObjCPropertyDecl::PropertyAttributeKind
+makePropertyAttributesAsWritten(unsigned Attributes) {
+ unsigned attributesAsWritten = 0;
+ if (Attributes & ObjCDeclSpec::DQ_PR_readonly)
+ attributesAsWritten |= ObjCPropertyDecl::OBJC_PR_readonly;
+ if (Attributes & ObjCDeclSpec::DQ_PR_readwrite)
+ attributesAsWritten |= ObjCPropertyDecl::OBJC_PR_readwrite;
+ if (Attributes & ObjCDeclSpec::DQ_PR_getter)
+ attributesAsWritten |= ObjCPropertyDecl::OBJC_PR_getter;
+ if (Attributes & ObjCDeclSpec::DQ_PR_setter)
+ attributesAsWritten |= ObjCPropertyDecl::OBJC_PR_setter;
+ if (Attributes & ObjCDeclSpec::DQ_PR_assign)
+ attributesAsWritten |= ObjCPropertyDecl::OBJC_PR_assign;
+ if (Attributes & ObjCDeclSpec::DQ_PR_retain)
+ attributesAsWritten |= ObjCPropertyDecl::OBJC_PR_retain;
+ if (Attributes & ObjCDeclSpec::DQ_PR_strong)
+ attributesAsWritten |= ObjCPropertyDecl::OBJC_PR_strong;
+ if (Attributes & ObjCDeclSpec::DQ_PR_weak)
+ attributesAsWritten |= ObjCPropertyDecl::OBJC_PR_weak;
+ if (Attributes & ObjCDeclSpec::DQ_PR_copy)
+ attributesAsWritten |= ObjCPropertyDecl::OBJC_PR_copy;
+ if (Attributes & ObjCDeclSpec::DQ_PR_unsafe_unretained)
+ attributesAsWritten |= ObjCPropertyDecl::OBJC_PR_unsafe_unretained;
+ if (Attributes & ObjCDeclSpec::DQ_PR_nonatomic)
+ attributesAsWritten |= ObjCPropertyDecl::OBJC_PR_nonatomic;
+ if (Attributes & ObjCDeclSpec::DQ_PR_atomic)
+ attributesAsWritten |= ObjCPropertyDecl::OBJC_PR_atomic;
+
+ return (ObjCPropertyDecl::PropertyAttributeKind)attributesAsWritten;
+}
+
+static bool LocPropertyAttribute( ASTContext &Context, const char *attrName,
+ SourceLocation LParenLoc, SourceLocation &Loc) {
+ if (LParenLoc.isMacroID())
+ return false;
+
+ SourceManager &SM = Context.getSourceManager();
+ std::pair<FileID, unsigned> locInfo = SM.getDecomposedLoc(LParenLoc);
+ // Try to load the file buffer.
+ bool invalidTemp = false;
+ StringRef file = SM.getBufferData(locInfo.first, &invalidTemp);
+ if (invalidTemp)
+ return false;
+ const char *tokenBegin = file.data() + locInfo.second;
+
+ // Lex from the start of the given location.
+ Lexer lexer(SM.getLocForStartOfFile(locInfo.first),
+ Context.getLangOpts(),
+ file.begin(), tokenBegin, file.end());
+ Token Tok;
+ do {
+ lexer.LexFromRawLexer(Tok);
+ if (Tok.is(tok::raw_identifier) && Tok.getRawIdentifier() == attrName) {
+ Loc = Tok.getLocation();
+ return true;
+ }
+ } while (Tok.isNot(tok::r_paren));
+ return false;
+
+}
+
+static unsigned getOwnershipRule(unsigned attr) {
+ return attr & (ObjCPropertyDecl::OBJC_PR_assign |
+ ObjCPropertyDecl::OBJC_PR_retain |
+ ObjCPropertyDecl::OBJC_PR_copy |
+ ObjCPropertyDecl::OBJC_PR_weak |
+ ObjCPropertyDecl::OBJC_PR_strong |
+ ObjCPropertyDecl::OBJC_PR_unsafe_unretained);
+}
+
+ObjCPropertyDecl *
+Sema::HandlePropertyInClassExtension(Scope *S,
+ SourceLocation AtLoc,
+ SourceLocation LParenLoc,
+ FieldDeclarator &FD,
+ Selector GetterSel, Selector SetterSel,
+ const bool isAssign,
+ const bool isReadWrite,
+ const unsigned Attributes,
+ const unsigned AttributesAsWritten,
+ bool *isOverridingProperty,
+ TypeSourceInfo *T,
+ tok::ObjCKeywordKind MethodImplKind) {
+ ObjCCategoryDecl *CDecl = cast<ObjCCategoryDecl>(CurContext);
+ // Diagnose if this property is already in continuation class.
+ DeclContext *DC = CurContext;
+ IdentifierInfo *PropertyId = FD.D.getIdentifier();
+ ObjCInterfaceDecl *CCPrimary = CDecl->getClassInterface();
+
+ if (CCPrimary) {
+ // Check for duplicate declaration of this property in current and
+ // other class extensions.
+ for (const auto *Ext : CCPrimary->known_extensions()) {
+ if (ObjCPropertyDecl *prevDecl
+ = ObjCPropertyDecl::findPropertyDecl(Ext, PropertyId)) {
+ Diag(AtLoc, diag::err_duplicate_property);
+ Diag(prevDecl->getLocation(), diag::note_property_declare);
+ return nullptr;
+ }
+ }
+ }
+
+ // Create a new ObjCPropertyDecl with the DeclContext being
+ // the class extension.
+ // FIXME. We should really be using CreatePropertyDecl for this.
+ ObjCPropertyDecl *PDecl =
+ ObjCPropertyDecl::Create(Context, DC, FD.D.getIdentifierLoc(),
+ PropertyId, AtLoc, LParenLoc, T);
+ PDecl->setPropertyAttributesAsWritten(
+ makePropertyAttributesAsWritten(AttributesAsWritten));
+ if (Attributes & ObjCDeclSpec::DQ_PR_readonly)
+ PDecl->setPropertyAttributes(ObjCPropertyDecl::OBJC_PR_readonly);
+ if (Attributes & ObjCDeclSpec::DQ_PR_readwrite)
+ PDecl->setPropertyAttributes(ObjCPropertyDecl::OBJC_PR_readwrite);
+ if (Attributes & ObjCDeclSpec::DQ_PR_nonatomic)
+ PDecl->setPropertyAttributes(ObjCPropertyDecl::OBJC_PR_nonatomic);
+ if (Attributes & ObjCDeclSpec::DQ_PR_atomic)
+ PDecl->setPropertyAttributes(ObjCPropertyDecl::OBJC_PR_atomic);
+ // Set setter/getter selector name. Needed later.
+ PDecl->setGetterName(GetterSel);
+ PDecl->setSetterName(SetterSel);
+ ProcessDeclAttributes(S, PDecl, FD.D);
+ DC->addDecl(PDecl);
+
+ // We need to look in the @interface to see if the @property was
+ // already declared.
+ if (!CCPrimary) {
+ Diag(CDecl->getLocation(), diag::err_continuation_class);
+ *isOverridingProperty = true;
+ return nullptr;
+ }
+
+ // Find the property in continuation class's primary class only.
+ ObjCPropertyDecl *PIDecl =
+ CCPrimary->FindPropertyVisibleInPrimaryClass(PropertyId);
+
+ if (!PIDecl) {
+ // No matching property found in the primary class. Just fall thru
+ // and add property to continuation class's primary class.
+ ObjCPropertyDecl *PrimaryPDecl =
+ CreatePropertyDecl(S, CCPrimary, AtLoc, LParenLoc,
+ FD, GetterSel, SetterSel, isAssign, isReadWrite,
+ Attributes,AttributesAsWritten, T, MethodImplKind, DC);
+
+ // A case of continuation class adding a new property in the class. This
+ // is not what it was meant for. However, gcc supports it and so should we.
+ // Make sure setter/getters are declared here.
+ ProcessPropertyDecl(PrimaryPDecl, CCPrimary,
+ /* redeclaredProperty = */ nullptr,
+ /* lexicalDC = */ CDecl);
+ PDecl->setGetterMethodDecl(PrimaryPDecl->getGetterMethodDecl());
+ PDecl->setSetterMethodDecl(PrimaryPDecl->getSetterMethodDecl());
+ if (ASTMutationListener *L = Context.getASTMutationListener())
+ L->AddedObjCPropertyInClassExtension(PrimaryPDecl, /*OrigProp=*/nullptr,
+ CDecl);
+ return PrimaryPDecl;
+ }
+ if (!Context.hasSameType(PIDecl->getType(), PDecl->getType())) {
+ bool IncompatibleObjC = false;
+ QualType ConvertedType;
+ // Relax the strict type matching for property type in continuation class.
+ // Allow property object type of continuation class to be different as long
+ // as it narrows the object type in its primary class property. Note that
+ // this conversion is safe only because the wider type is for a 'readonly'
+ // property in primary class and 'narrowed' type for a 'readwrite' property
+ // in continuation class.
+ QualType PrimaryClassPropertyT = Context.getCanonicalType(PIDecl->getType());
+ QualType ClassExtPropertyT = Context.getCanonicalType(PDecl->getType());
+ if (!isa<ObjCObjectPointerType>(PrimaryClassPropertyT) ||
+ !isa<ObjCObjectPointerType>(ClassExtPropertyT) ||
+ (!isObjCPointerConversion(ClassExtPropertyT, PrimaryClassPropertyT,
+ ConvertedType, IncompatibleObjC))
+ || IncompatibleObjC) {
+ Diag(AtLoc,
+ diag::err_type_mismatch_continuation_class) << PDecl->getType();
+ Diag(PIDecl->getLocation(), diag::note_property_declare);
+ return nullptr;
+ }
+ }
+
+ // The property 'PIDecl's readonly attribute will be over-ridden
+ // with continuation class's readwrite property attribute!
+ unsigned PIkind = PIDecl->getPropertyAttributesAsWritten();
+ if (isReadWrite && (PIkind & ObjCPropertyDecl::OBJC_PR_readonly)) {
+ PIkind &= ~ObjCPropertyDecl::OBJC_PR_readonly;
+ PIkind |= ObjCPropertyDecl::OBJC_PR_readwrite;
+ PIkind |= deduceWeakPropertyFromType(*this, PIDecl->getType());
+ unsigned ClassExtensionMemoryModel = getOwnershipRule(Attributes);
+ unsigned PrimaryClassMemoryModel = getOwnershipRule(PIkind);
+ if (PrimaryClassMemoryModel && ClassExtensionMemoryModel &&
+ (PrimaryClassMemoryModel != ClassExtensionMemoryModel)) {
+ Diag(AtLoc, diag::warn_property_attr_mismatch);
+ Diag(PIDecl->getLocation(), diag::note_property_declare);
+ }
+ else if (getLangOpts().ObjCAutoRefCount) {
+ QualType PrimaryPropertyQT =
+ Context.getCanonicalType(PIDecl->getType()).getUnqualifiedType();
+ if (isa<ObjCObjectPointerType>(PrimaryPropertyQT)) {
+ bool PropertyIsWeak = ((PIkind & ObjCPropertyDecl::OBJC_PR_weak) != 0);
+ Qualifiers::ObjCLifetime PrimaryPropertyLifeTime =
+ PrimaryPropertyQT.getObjCLifetime();
+ if (PrimaryPropertyLifeTime == Qualifiers::OCL_None &&
+ (Attributes & ObjCDeclSpec::DQ_PR_weak) &&
+ !PropertyIsWeak) {
+ Diag(AtLoc, diag::warn_property_implicitly_mismatched);
+ Diag(PIDecl->getLocation(), diag::note_property_declare);
+ }
+ }
+ }
+
+ DeclContext *DC = cast<DeclContext>(CCPrimary);
+ if (!ObjCPropertyDecl::findPropertyDecl(DC,
+ PIDecl->getDeclName().getAsIdentifierInfo())) {
+ // In mrr mode, 'readwrite' property must have an explicit
+ // memory attribute. If none specified, select the default (assign).
+ if (!getLangOpts().ObjCAutoRefCount) {
+ if (!(PIkind & (ObjCDeclSpec::DQ_PR_assign |
+ ObjCDeclSpec::DQ_PR_retain |
+ ObjCDeclSpec::DQ_PR_strong |
+ ObjCDeclSpec::DQ_PR_copy |
+ ObjCDeclSpec::DQ_PR_unsafe_unretained |
+ ObjCDeclSpec::DQ_PR_weak)))
+ PIkind |= ObjCPropertyDecl::OBJC_PR_assign;
+ }
+
+ // Protocol is not in the primary class. Must build one for it.
+ ObjCDeclSpec ProtocolPropertyODS;
+ // FIXME. Assuming that ObjCDeclSpec::ObjCPropertyAttributeKind
+ // and ObjCPropertyDecl::PropertyAttributeKind have identical
+ // values. Should consolidate both into one enum type.
+ ProtocolPropertyODS.
+ setPropertyAttributes((ObjCDeclSpec::ObjCPropertyAttributeKind)
+ PIkind);
+ // Must re-establish the context from class extension to primary
+ // class context.
+ ContextRAII SavedContext(*this, CCPrimary);
+
+ Decl *ProtocolPtrTy =
+ ActOnProperty(S, AtLoc, LParenLoc, FD, ProtocolPropertyODS,
+ PIDecl->getGetterName(),
+ PIDecl->getSetterName(),
+ isOverridingProperty,
+ MethodImplKind,
+ /* lexicalDC = */ CDecl);
+ PIDecl = cast<ObjCPropertyDecl>(ProtocolPtrTy);
+ }
+ PIDecl->makeitReadWriteAttribute();
+ if (Attributes & ObjCDeclSpec::DQ_PR_retain)
+ PIDecl->setPropertyAttributes(ObjCPropertyDecl::OBJC_PR_retain);
+ if (Attributes & ObjCDeclSpec::DQ_PR_strong)
+ PIDecl->setPropertyAttributes(ObjCPropertyDecl::OBJC_PR_strong);
+ if (Attributes & ObjCDeclSpec::DQ_PR_copy)
+ PIDecl->setPropertyAttributes(ObjCPropertyDecl::OBJC_PR_copy);
+ PIDecl->setSetterName(SetterSel);
+ } else {
+ // Tailor the diagnostics for the common case where a readwrite
+ // property is declared both in the @interface and the continuation.
+ // This is a common error where the user often intended the original
+ // declaration to be readonly.
+ unsigned diag =
+ (Attributes & ObjCDeclSpec::DQ_PR_readwrite) &&
+ (PIkind & ObjCPropertyDecl::OBJC_PR_readwrite)
+ ? diag::err_use_continuation_class_redeclaration_readwrite
+ : diag::err_use_continuation_class;
+ Diag(AtLoc, diag)
+ << CCPrimary->getDeclName();
+ Diag(PIDecl->getLocation(), diag::note_property_declare);
+ return nullptr;
+ }
+ *isOverridingProperty = true;
+ // Make sure setter decl is synthesized, and added to primary class's list.
+ ProcessPropertyDecl(PIDecl, CCPrimary, PDecl, CDecl);
+ PDecl->setGetterMethodDecl(PIDecl->getGetterMethodDecl());
+ PDecl->setSetterMethodDecl(PIDecl->getSetterMethodDecl());
+ if (ASTMutationListener *L = Context.getASTMutationListener())
+ L->AddedObjCPropertyInClassExtension(PDecl, PIDecl, CDecl);
+ return PDecl;
+}
+
+ObjCPropertyDecl *Sema::CreatePropertyDecl(Scope *S,
+ ObjCContainerDecl *CDecl,
+ SourceLocation AtLoc,
+ SourceLocation LParenLoc,
+ FieldDeclarator &FD,
+ Selector GetterSel,
+ Selector SetterSel,
+ const bool isAssign,
+ const bool isReadWrite,
+ const unsigned Attributes,
+ const unsigned AttributesAsWritten,
+ TypeSourceInfo *TInfo,
+ tok::ObjCKeywordKind MethodImplKind,
+ DeclContext *lexicalDC){
+ IdentifierInfo *PropertyId = FD.D.getIdentifier();
+ QualType T = TInfo->getType();
+
+ // Issue a warning if property is 'assign' as default and its object, which is
+ // gc'able conforms to NSCopying protocol
+ if (getLangOpts().getGC() != LangOptions::NonGC &&
+ isAssign && !(Attributes & ObjCDeclSpec::DQ_PR_assign))
+ if (const ObjCObjectPointerType *ObjPtrTy =
+ T->getAs<ObjCObjectPointerType>()) {
+ ObjCInterfaceDecl *IDecl = ObjPtrTy->getObjectType()->getInterface();
+ if (IDecl)
+ if (ObjCProtocolDecl* PNSCopying =
+ LookupProtocol(&Context.Idents.get("NSCopying"), AtLoc))
+ if (IDecl->ClassImplementsProtocol(PNSCopying, true))
+ Diag(AtLoc, diag::warn_implements_nscopying) << PropertyId;
+ }
+
+ if (T->isObjCObjectType()) {
+ SourceLocation StarLoc = TInfo->getTypeLoc().getLocEnd();
+ StarLoc = getLocForEndOfToken(StarLoc);
+ Diag(FD.D.getIdentifierLoc(), diag::err_statically_allocated_object)
+ << FixItHint::CreateInsertion(StarLoc, "*");
+ T = Context.getObjCObjectPointerType(T);
+ SourceLocation TLoc = TInfo->getTypeLoc().getLocStart();
+ TInfo = Context.getTrivialTypeSourceInfo(T, TLoc);
+ }
+
+ DeclContext *DC = cast<DeclContext>(CDecl);
+ ObjCPropertyDecl *PDecl = ObjCPropertyDecl::Create(Context, DC,
+ FD.D.getIdentifierLoc(),
+ PropertyId, AtLoc, LParenLoc, TInfo);
+
+ if (ObjCPropertyDecl *prevDecl =
+ ObjCPropertyDecl::findPropertyDecl(DC, PropertyId)) {
+ Diag(PDecl->getLocation(), diag::err_duplicate_property);
+ Diag(prevDecl->getLocation(), diag::note_property_declare);
+ PDecl->setInvalidDecl();
+ }
+ else {
+ DC->addDecl(PDecl);
+ if (lexicalDC)
+ PDecl->setLexicalDeclContext(lexicalDC);
+ }
+
+ if (T->isArrayType() || T->isFunctionType()) {
+ Diag(AtLoc, diag::err_property_type) << T;
+ PDecl->setInvalidDecl();
+ }
+
+ ProcessDeclAttributes(S, PDecl, FD.D);
+
+ // Regardless of setter/getter attribute, we save the default getter/setter
+ // selector names in anticipation of declaration of setter/getter methods.
+ PDecl->setGetterName(GetterSel);
+ PDecl->setSetterName(SetterSel);
+ PDecl->setPropertyAttributesAsWritten(
+ makePropertyAttributesAsWritten(AttributesAsWritten));
+
+ if (Attributes & ObjCDeclSpec::DQ_PR_readonly)
+ PDecl->setPropertyAttributes(ObjCPropertyDecl::OBJC_PR_readonly);
+
+ if (Attributes & ObjCDeclSpec::DQ_PR_getter)
+ PDecl->setPropertyAttributes(ObjCPropertyDecl::OBJC_PR_getter);
+
+ if (Attributes & ObjCDeclSpec::DQ_PR_setter)
+ PDecl->setPropertyAttributes(ObjCPropertyDecl::OBJC_PR_setter);
+
+ if (isReadWrite)
+ PDecl->setPropertyAttributes(ObjCPropertyDecl::OBJC_PR_readwrite);
+
+ if (Attributes & ObjCDeclSpec::DQ_PR_retain)
+ PDecl->setPropertyAttributes(ObjCPropertyDecl::OBJC_PR_retain);
+
+ if (Attributes & ObjCDeclSpec::DQ_PR_strong)
+ PDecl->setPropertyAttributes(ObjCPropertyDecl::OBJC_PR_strong);
+
+ if (Attributes & ObjCDeclSpec::DQ_PR_weak)
+ PDecl->setPropertyAttributes(ObjCPropertyDecl::OBJC_PR_weak);
+
+ if (Attributes & ObjCDeclSpec::DQ_PR_copy)
+ PDecl->setPropertyAttributes(ObjCPropertyDecl::OBJC_PR_copy);
+
+ if (Attributes & ObjCDeclSpec::DQ_PR_unsafe_unretained)
+ PDecl->setPropertyAttributes(ObjCPropertyDecl::OBJC_PR_unsafe_unretained);
+
+ if (isAssign)
+ PDecl->setPropertyAttributes(ObjCPropertyDecl::OBJC_PR_assign);
+
+ // In the semantic attributes, one of nonatomic or atomic is always set.
+ if (Attributes & ObjCDeclSpec::DQ_PR_nonatomic)
+ PDecl->setPropertyAttributes(ObjCPropertyDecl::OBJC_PR_nonatomic);
+ else
+ PDecl->setPropertyAttributes(ObjCPropertyDecl::OBJC_PR_atomic);
+
+ // 'unsafe_unretained' is alias for 'assign'.
+ if (Attributes & ObjCDeclSpec::DQ_PR_unsafe_unretained)
+ PDecl->setPropertyAttributes(ObjCPropertyDecl::OBJC_PR_assign);
+ if (isAssign)
+ PDecl->setPropertyAttributes(ObjCPropertyDecl::OBJC_PR_unsafe_unretained);
+
+ if (MethodImplKind == tok::objc_required)
+ PDecl->setPropertyImplementation(ObjCPropertyDecl::Required);
+ else if (MethodImplKind == tok::objc_optional)
+ PDecl->setPropertyImplementation(ObjCPropertyDecl::Optional);
+
+ return PDecl;
+}
+
+static void checkARCPropertyImpl(Sema &S, SourceLocation propertyImplLoc,
+ ObjCPropertyDecl *property,
+ ObjCIvarDecl *ivar) {
+ if (property->isInvalidDecl() || ivar->isInvalidDecl()) return;
+
+ QualType ivarType = ivar->getType();
+ Qualifiers::ObjCLifetime ivarLifetime = ivarType.getObjCLifetime();
+
+ // The lifetime implied by the property's attributes.
+ Qualifiers::ObjCLifetime propertyLifetime =
+ getImpliedARCOwnership(property->getPropertyAttributes(),
+ property->getType());
+
+ // We're fine if they match.
+ if (propertyLifetime == ivarLifetime) return;
+
+ // These aren't valid lifetimes for object ivars; don't diagnose twice.
+ if (ivarLifetime == Qualifiers::OCL_None ||
+ ivarLifetime == Qualifiers::OCL_Autoreleasing)
+ return;
+
+ // If the ivar is private, and it's implicitly __unsafe_unretained
+ // becaues of its type, then pretend it was actually implicitly
+ // __strong. This is only sound because we're processing the
+ // property implementation before parsing any method bodies.
+ if (ivarLifetime == Qualifiers::OCL_ExplicitNone &&
+ propertyLifetime == Qualifiers::OCL_Strong &&
+ ivar->getAccessControl() == ObjCIvarDecl::Private) {
+ SplitQualType split = ivarType.split();
+ if (split.Quals.hasObjCLifetime()) {
+ assert(ivarType->isObjCARCImplicitlyUnretainedType());
+ split.Quals.setObjCLifetime(Qualifiers::OCL_Strong);
+ ivarType = S.Context.getQualifiedType(split);
+ ivar->setType(ivarType);
+ return;
+ }
+ }
+
+ switch (propertyLifetime) {
+ case Qualifiers::OCL_Strong:
+ S.Diag(ivar->getLocation(), diag::err_arc_strong_property_ownership)
+ << property->getDeclName()
+ << ivar->getDeclName()
+ << ivarLifetime;
+ break;
+
+ case Qualifiers::OCL_Weak:
+ S.Diag(ivar->getLocation(), diag::error_weak_property)
+ << property->getDeclName()
+ << ivar->getDeclName();
+ break;
+
+ case Qualifiers::OCL_ExplicitNone:
+ S.Diag(ivar->getLocation(), diag::err_arc_assign_property_ownership)
+ << property->getDeclName()
+ << ivar->getDeclName()
+ << ((property->getPropertyAttributesAsWritten()
+ & ObjCPropertyDecl::OBJC_PR_assign) != 0);
+ break;
+
+ case Qualifiers::OCL_Autoreleasing:
+ llvm_unreachable("properties cannot be autoreleasing");
+
+ case Qualifiers::OCL_None:
+ // Any other property should be ignored.
+ return;
+ }
+
+ S.Diag(property->getLocation(), diag::note_property_declare);
+ if (propertyImplLoc.isValid())
+ S.Diag(propertyImplLoc, diag::note_property_synthesize);
+}
+
+/// setImpliedPropertyAttributeForReadOnlyProperty -
+/// This routine evaludates life-time attributes for a 'readonly'
+/// property with no known lifetime of its own, using backing
+/// 'ivar's attribute, if any. If no backing 'ivar', property's
+/// life-time is assumed 'strong'.
+static void setImpliedPropertyAttributeForReadOnlyProperty(
+ ObjCPropertyDecl *property, ObjCIvarDecl *ivar) {
+ Qualifiers::ObjCLifetime propertyLifetime =
+ getImpliedARCOwnership(property->getPropertyAttributes(),
+ property->getType());
+ if (propertyLifetime != Qualifiers::OCL_None)
+ return;
+
+ if (!ivar) {
+ // if no backing ivar, make property 'strong'.
+ property->setPropertyAttributes(ObjCPropertyDecl::OBJC_PR_strong);
+ return;
+ }
+ // property assumes owenership of backing ivar.
+ QualType ivarType = ivar->getType();
+ Qualifiers::ObjCLifetime ivarLifetime = ivarType.getObjCLifetime();
+ if (ivarLifetime == Qualifiers::OCL_Strong)
+ property->setPropertyAttributes(ObjCPropertyDecl::OBJC_PR_strong);
+ else if (ivarLifetime == Qualifiers::OCL_Weak)
+ property->setPropertyAttributes(ObjCPropertyDecl::OBJC_PR_weak);
+ return;
+}
+
+/// DiagnosePropertyMismatchDeclInProtocols - diagnose properties declared
+/// in inherited protocols with mismatched types. Since any of them can
+/// be candidate for synthesis.
+static void
+DiagnosePropertyMismatchDeclInProtocols(Sema &S, SourceLocation AtLoc,
+ ObjCInterfaceDecl *ClassDecl,
+ ObjCPropertyDecl *Property) {
+ ObjCInterfaceDecl::ProtocolPropertyMap PropMap;
+ for (const auto *PI : ClassDecl->all_referenced_protocols()) {
+ if (const ObjCProtocolDecl *PDecl = PI->getDefinition())
+ PDecl->collectInheritedProtocolProperties(Property, PropMap);
+ }
+ if (ObjCInterfaceDecl *SDecl = ClassDecl->getSuperClass())
+ while (SDecl) {
+ for (const auto *PI : SDecl->all_referenced_protocols()) {
+ if (const ObjCProtocolDecl *PDecl = PI->getDefinition())
+ PDecl->collectInheritedProtocolProperties(Property, PropMap);
+ }
+ SDecl = SDecl->getSuperClass();
+ }
+
+ if (PropMap.empty())
+ return;
+
+ QualType RHSType = S.Context.getCanonicalType(Property->getType());
+ bool FirsTime = true;
+ for (ObjCInterfaceDecl::ProtocolPropertyMap::iterator
+ I = PropMap.begin(), E = PropMap.end(); I != E; I++) {
+ ObjCPropertyDecl *Prop = I->second;
+ QualType LHSType = S.Context.getCanonicalType(Prop->getType());
+ if (!S.Context.propertyTypesAreCompatible(LHSType, RHSType)) {
+ bool IncompatibleObjC = false;
+ QualType ConvertedType;
+ if (!S.isObjCPointerConversion(RHSType, LHSType, ConvertedType, IncompatibleObjC)
+ || IncompatibleObjC) {
+ if (FirsTime) {
+ S.Diag(Property->getLocation(), diag::warn_protocol_property_mismatch)
+ << Property->getType();
+ FirsTime = false;
+ }
+ S.Diag(Prop->getLocation(), diag::note_protocol_property_declare)
+ << Prop->getType();
+ }
+ }
+ }
+ if (!FirsTime && AtLoc.isValid())
+ S.Diag(AtLoc, diag::note_property_synthesize);
+}
+
+/// ActOnPropertyImplDecl - This routine performs semantic checks and
+/// builds the AST node for a property implementation declaration; declared
+/// as \@synthesize or \@dynamic.
+///
+Decl *Sema::ActOnPropertyImplDecl(Scope *S,
+ SourceLocation AtLoc,
+ SourceLocation PropertyLoc,
+ bool Synthesize,
+ IdentifierInfo *PropertyId,
+ IdentifierInfo *PropertyIvar,
+ SourceLocation PropertyIvarLoc) {
+ ObjCContainerDecl *ClassImpDecl =
+ dyn_cast<ObjCContainerDecl>(CurContext);
+ // Make sure we have a context for the property implementation declaration.
+ if (!ClassImpDecl) {
+ Diag(AtLoc, diag::error_missing_property_context);
+ return nullptr;
+ }
+ if (PropertyIvarLoc.isInvalid())
+ PropertyIvarLoc = PropertyLoc;
+ SourceLocation PropertyDiagLoc = PropertyLoc;
+ if (PropertyDiagLoc.isInvalid())
+ PropertyDiagLoc = ClassImpDecl->getLocStart();
+ ObjCPropertyDecl *property = nullptr;
+ ObjCInterfaceDecl *IDecl = nullptr;
+ // Find the class or category class where this property must have
+ // a declaration.
+ ObjCImplementationDecl *IC = nullptr;
+ ObjCCategoryImplDecl *CatImplClass = nullptr;
+ if ((IC = dyn_cast<ObjCImplementationDecl>(ClassImpDecl))) {
+ IDecl = IC->getClassInterface();
+ // We always synthesize an interface for an implementation
+ // without an interface decl. So, IDecl is always non-zero.
+ assert(IDecl &&
+ "ActOnPropertyImplDecl - @implementation without @interface");
+
+ // Look for this property declaration in the @implementation's @interface
+ property = IDecl->FindPropertyDeclaration(PropertyId);
+ if (!property) {
+ Diag(PropertyLoc, diag::error_bad_property_decl) << IDecl->getDeclName();
+ return nullptr;
+ }
+ unsigned PIkind = property->getPropertyAttributesAsWritten();
+ if ((PIkind & (ObjCPropertyDecl::OBJC_PR_atomic |
+ ObjCPropertyDecl::OBJC_PR_nonatomic) ) == 0) {
+ if (AtLoc.isValid())
+ Diag(AtLoc, diag::warn_implicit_atomic_property);
+ else
+ Diag(IC->getLocation(), diag::warn_auto_implicit_atomic_property);
+ Diag(property->getLocation(), diag::note_property_declare);
+ }
+
+ if (const ObjCCategoryDecl *CD =
+ dyn_cast<ObjCCategoryDecl>(property->getDeclContext())) {
+ if (!CD->IsClassExtension()) {
+ Diag(PropertyLoc, diag::error_category_property) << CD->getDeclName();
+ Diag(property->getLocation(), diag::note_property_declare);
+ return nullptr;
+ }
+ }
+ if (Synthesize&&
+ (PIkind & ObjCPropertyDecl::OBJC_PR_readonly) &&
+ property->hasAttr<IBOutletAttr>() &&
+ !AtLoc.isValid()) {
+ bool ReadWriteProperty = false;
+ // Search into the class extensions and see if 'readonly property is
+ // redeclared 'readwrite', then no warning is to be issued.
+ for (auto *Ext : IDecl->known_extensions()) {
+ DeclContext::lookup_result R = Ext->lookup(property->getDeclName());
+ if (!R.empty())
+ if (ObjCPropertyDecl *ExtProp = dyn_cast<ObjCPropertyDecl>(R[0])) {
+ PIkind = ExtProp->getPropertyAttributesAsWritten();
+ if (PIkind & ObjCPropertyDecl::OBJC_PR_readwrite) {
+ ReadWriteProperty = true;
+ break;
+ }
+ }
+ }
+
+ if (!ReadWriteProperty) {
+ Diag(property->getLocation(), diag::warn_auto_readonly_iboutlet_property)
+ << property;
+ SourceLocation readonlyLoc;
+ if (LocPropertyAttribute(Context, "readonly",
+ property->getLParenLoc(), readonlyLoc)) {
+ SourceLocation endLoc =
+ readonlyLoc.getLocWithOffset(strlen("readonly")-1);
+ SourceRange ReadonlySourceRange(readonlyLoc, endLoc);
+ Diag(property->getLocation(),
+ diag::note_auto_readonly_iboutlet_fixup_suggest) <<
+ FixItHint::CreateReplacement(ReadonlySourceRange, "readwrite");
+ }
+ }
+ }
+ if (Synthesize && isa<ObjCProtocolDecl>(property->getDeclContext()))
+ DiagnosePropertyMismatchDeclInProtocols(*this, AtLoc, IDecl, property);
+
+ } else if ((CatImplClass = dyn_cast<ObjCCategoryImplDecl>(ClassImpDecl))) {
+ if (Synthesize) {
+ Diag(AtLoc, diag::error_synthesize_category_decl);
+ return nullptr;
+ }
+ IDecl = CatImplClass->getClassInterface();
+ if (!IDecl) {
+ Diag(AtLoc, diag::error_missing_property_interface);
+ return nullptr;
+ }
+ ObjCCategoryDecl *Category =
+ IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier());
+
+ // If category for this implementation not found, it is an error which
+ // has already been reported eralier.
+ if (!Category)
+ return nullptr;
+ // Look for this property declaration in @implementation's category
+ property = Category->FindPropertyDeclaration(PropertyId);
+ if (!property) {
+ Diag(PropertyLoc, diag::error_bad_category_property_decl)
+ << Category->getDeclName();
+ return nullptr;
+ }
+ } else {
+ Diag(AtLoc, diag::error_bad_property_context);
+ return nullptr;
+ }
+ ObjCIvarDecl *Ivar = nullptr;
+ bool CompleteTypeErr = false;
+ bool compat = true;
+ // Check that we have a valid, previously declared ivar for @synthesize
+ if (Synthesize) {
+ // @synthesize
+ if (!PropertyIvar)
+ PropertyIvar = PropertyId;
+ // Check that this is a previously declared 'ivar' in 'IDecl' interface
+ ObjCInterfaceDecl *ClassDeclared;
+ Ivar = IDecl->lookupInstanceVariable(PropertyIvar, ClassDeclared);
+ QualType PropType = property->getType();
+ QualType PropertyIvarType = PropType.getNonReferenceType();
+
+ if (RequireCompleteType(PropertyDiagLoc, PropertyIvarType,
+ diag::err_incomplete_synthesized_property,
+ property->getDeclName())) {
+ Diag(property->getLocation(), diag::note_property_declare);
+ CompleteTypeErr = true;
+ }
+
+ if (getLangOpts().ObjCAutoRefCount &&
+ (property->getPropertyAttributesAsWritten() &
+ ObjCPropertyDecl::OBJC_PR_readonly) &&
+ PropertyIvarType->isObjCRetainableType()) {
+ setImpliedPropertyAttributeForReadOnlyProperty(property, Ivar);
+ }
+
+ ObjCPropertyDecl::PropertyAttributeKind kind
+ = property->getPropertyAttributes();
+
+ // Add GC __weak to the ivar type if the property is weak.
+ if ((kind & ObjCPropertyDecl::OBJC_PR_weak) &&
+ getLangOpts().getGC() != LangOptions::NonGC) {
+ assert(!getLangOpts().ObjCAutoRefCount);
+ if (PropertyIvarType.isObjCGCStrong()) {
+ Diag(PropertyDiagLoc, diag::err_gc_weak_property_strong_type);
+ Diag(property->getLocation(), diag::note_property_declare);
+ } else {
+ PropertyIvarType =
+ Context.getObjCGCQualType(PropertyIvarType, Qualifiers::Weak);
+ }
+ }
+ if (AtLoc.isInvalid()) {
+ // Check when default synthesizing a property that there is
+ // an ivar matching property name and issue warning; since this
+ // is the most common case of not using an ivar used for backing
+ // property in non-default synthesis case.
+ ObjCInterfaceDecl *ClassDeclared=nullptr;
+ ObjCIvarDecl *originalIvar =
+ IDecl->lookupInstanceVariable(property->getIdentifier(),
+ ClassDeclared);
+ if (originalIvar) {
+ Diag(PropertyDiagLoc,
+ diag::warn_autosynthesis_property_ivar_match)
+ << PropertyId << (Ivar == nullptr) << PropertyIvar
+ << originalIvar->getIdentifier();
+ Diag(property->getLocation(), diag::note_property_declare);
+ Diag(originalIvar->getLocation(), diag::note_ivar_decl);
+ }
+ }
+
+ if (!Ivar) {
+ // In ARC, give the ivar a lifetime qualifier based on the
+ // property attributes.
+ if (getLangOpts().ObjCAutoRefCount &&
+ !PropertyIvarType.getObjCLifetime() &&
+ PropertyIvarType->isObjCRetainableType()) {
+
+ // It's an error if we have to do this and the user didn't
+ // explicitly write an ownership attribute on the property.
+ if (!property->hasWrittenStorageAttribute() &&
+ !(kind & ObjCPropertyDecl::OBJC_PR_strong)) {
+ Diag(PropertyDiagLoc,
+ diag::err_arc_objc_property_default_assign_on_object);
+ Diag(property->getLocation(), diag::note_property_declare);
+ } else {
+ Qualifiers::ObjCLifetime lifetime =
+ getImpliedARCOwnership(kind, PropertyIvarType);
+ assert(lifetime && "no lifetime for property?");
+ if (lifetime == Qualifiers::OCL_Weak) {
+ bool err = false;
+ if (const ObjCObjectPointerType *ObjT =
+ PropertyIvarType->getAs<ObjCObjectPointerType>()) {
+ const ObjCInterfaceDecl *ObjI = ObjT->getInterfaceDecl();
+ if (ObjI && ObjI->isArcWeakrefUnavailable()) {
+ Diag(property->getLocation(),
+ diag::err_arc_weak_unavailable_property) << PropertyIvarType;
+ Diag(ClassImpDecl->getLocation(), diag::note_implemented_by_class)
+ << ClassImpDecl->getName();
+ err = true;
+ }
+ }
+ if (!err && !getLangOpts().ObjCARCWeak) {
+ Diag(PropertyDiagLoc, diag::err_arc_weak_no_runtime);
+ Diag(property->getLocation(), diag::note_property_declare);
+ }
+ }
+
+ Qualifiers qs;
+ qs.addObjCLifetime(lifetime);
+ PropertyIvarType = Context.getQualifiedType(PropertyIvarType, qs);
+ }
+ }
+
+ if (kind & ObjCPropertyDecl::OBJC_PR_weak &&
+ !getLangOpts().ObjCAutoRefCount &&
+ getLangOpts().getGC() == LangOptions::NonGC) {
+ Diag(PropertyDiagLoc, diag::error_synthesize_weak_non_arc_or_gc);
+ Diag(property->getLocation(), diag::note_property_declare);
+ }
+
+ Ivar = ObjCIvarDecl::Create(Context, ClassImpDecl,
+ PropertyIvarLoc,PropertyIvarLoc, PropertyIvar,
+ PropertyIvarType, /*Dinfo=*/nullptr,
+ ObjCIvarDecl::Private,
+ (Expr *)nullptr, true);
+ if (RequireNonAbstractType(PropertyIvarLoc,
+ PropertyIvarType,
+ diag::err_abstract_type_in_decl,
+ AbstractSynthesizedIvarType)) {
+ Diag(property->getLocation(), diag::note_property_declare);
+ Ivar->setInvalidDecl();
+ } else if (CompleteTypeErr)
+ Ivar->setInvalidDecl();
+ ClassImpDecl->addDecl(Ivar);
+ IDecl->makeDeclVisibleInContext(Ivar);
+
+ if (getLangOpts().ObjCRuntime.isFragile())
+ Diag(PropertyDiagLoc, diag::error_missing_property_ivar_decl)
+ << PropertyId;
+ // Note! I deliberately want it to fall thru so, we have a
+ // a property implementation and to avoid future warnings.
+ } else if (getLangOpts().ObjCRuntime.isNonFragile() &&
+ !declaresSameEntity(ClassDeclared, IDecl)) {
+ Diag(PropertyDiagLoc, diag::error_ivar_in_superclass_use)
+ << property->getDeclName() << Ivar->getDeclName()
+ << ClassDeclared->getDeclName();
+ Diag(Ivar->getLocation(), diag::note_previous_access_declaration)
+ << Ivar << Ivar->getName();
+ // Note! I deliberately want it to fall thru so more errors are caught.
+ }
+ property->setPropertyIvarDecl(Ivar);
+
+ QualType IvarType = Context.getCanonicalType(Ivar->getType());
+
+ // Check that type of property and its ivar are type compatible.
+ if (!Context.hasSameType(PropertyIvarType, IvarType)) {
+ if (isa<ObjCObjectPointerType>(PropertyIvarType)
+ && isa<ObjCObjectPointerType>(IvarType))
+ compat =
+ Context.canAssignObjCInterfaces(
+ PropertyIvarType->getAs<ObjCObjectPointerType>(),
+ IvarType->getAs<ObjCObjectPointerType>());
+ else {
+ compat = (CheckAssignmentConstraints(PropertyIvarLoc, PropertyIvarType,
+ IvarType)
+ == Compatible);
+ }
+ if (!compat) {
+ Diag(PropertyDiagLoc, diag::error_property_ivar_type)
+ << property->getDeclName() << PropType
+ << Ivar->getDeclName() << IvarType;
+ Diag(Ivar->getLocation(), diag::note_ivar_decl);
+ // Note! I deliberately want it to fall thru so, we have a
+ // a property implementation and to avoid future warnings.
+ }
+ else {
+ // FIXME! Rules for properties are somewhat different that those
+ // for assignments. Use a new routine to consolidate all cases;
+ // specifically for property redeclarations as well as for ivars.
+ QualType lhsType =Context.getCanonicalType(PropertyIvarType).getUnqualifiedType();
+ QualType rhsType =Context.getCanonicalType(IvarType).getUnqualifiedType();
+ if (lhsType != rhsType &&
+ lhsType->isArithmeticType()) {
+ Diag(PropertyDiagLoc, diag::error_property_ivar_type)
+ << property->getDeclName() << PropType
+ << Ivar->getDeclName() << IvarType;
+ Diag(Ivar->getLocation(), diag::note_ivar_decl);
+ // Fall thru - see previous comment
+ }
+ }
+ // __weak is explicit. So it works on Canonical type.
+ if ((PropType.isObjCGCWeak() && !IvarType.isObjCGCWeak() &&
+ getLangOpts().getGC() != LangOptions::NonGC)) {
+ Diag(PropertyDiagLoc, diag::error_weak_property)
+ << property->getDeclName() << Ivar->getDeclName();
+ Diag(Ivar->getLocation(), diag::note_ivar_decl);
+ // Fall thru - see previous comment
+ }
+ // Fall thru - see previous comment
+ if ((property->getType()->isObjCObjectPointerType() ||
+ PropType.isObjCGCStrong()) && IvarType.isObjCGCWeak() &&
+ getLangOpts().getGC() != LangOptions::NonGC) {
+ Diag(PropertyDiagLoc, diag::error_strong_property)
+ << property->getDeclName() << Ivar->getDeclName();
+ // Fall thru - see previous comment
+ }
+ }
+ if (getLangOpts().ObjCAutoRefCount)
+ checkARCPropertyImpl(*this, PropertyLoc, property, Ivar);
+ } else if (PropertyIvar)
+ // @dynamic
+ Diag(PropertyDiagLoc, diag::error_dynamic_property_ivar_decl);
+
+ assert (property && "ActOnPropertyImplDecl - property declaration missing");
+ ObjCPropertyImplDecl *PIDecl =
+ ObjCPropertyImplDecl::Create(Context, CurContext, AtLoc, PropertyLoc,
+ property,
+ (Synthesize ?
+ ObjCPropertyImplDecl::Synthesize
+ : ObjCPropertyImplDecl::Dynamic),
+ Ivar, PropertyIvarLoc);
+
+ if (CompleteTypeErr || !compat)
+ PIDecl->setInvalidDecl();
+
+ if (ObjCMethodDecl *getterMethod = property->getGetterMethodDecl()) {
+ getterMethod->createImplicitParams(Context, IDecl);
+ if (getLangOpts().CPlusPlus && Synthesize && !CompleteTypeErr &&
+ Ivar->getType()->isRecordType()) {
+ // For Objective-C++, need to synthesize the AST for the IVAR object to be
+ // returned by the getter as it must conform to C++'s copy-return rules.
+ // FIXME. Eventually we want to do this for Objective-C as well.
+ SynthesizedFunctionScope Scope(*this, getterMethod);
+ ImplicitParamDecl *SelfDecl = getterMethod->getSelfDecl();
+ DeclRefExpr *SelfExpr =
+ new (Context) DeclRefExpr(SelfDecl, false, SelfDecl->getType(),
+ VK_LValue, PropertyDiagLoc);
+ MarkDeclRefReferenced(SelfExpr);
+ Expr *LoadSelfExpr =
+ ImplicitCastExpr::Create(Context, SelfDecl->getType(),
+ CK_LValueToRValue, SelfExpr, nullptr,
+ VK_RValue);
+ Expr *IvarRefExpr =
+ new (Context) ObjCIvarRefExpr(Ivar, Ivar->getType(), PropertyDiagLoc,
+ Ivar->getLocation(),
+ LoadSelfExpr, true, true);
+ ExprResult Res = PerformCopyInitialization(
+ InitializedEntity::InitializeResult(PropertyDiagLoc,
+ getterMethod->getReturnType(),
+ /*NRVO=*/false),
+ PropertyDiagLoc, IvarRefExpr);
+ if (!Res.isInvalid()) {
+ Expr *ResExpr = Res.getAs<Expr>();
+ if (ResExpr)
+ ResExpr = MaybeCreateExprWithCleanups(ResExpr);
+ PIDecl->setGetterCXXConstructor(ResExpr);
+ }
+ }
+ if (property->hasAttr<NSReturnsNotRetainedAttr>() &&
+ !getterMethod->hasAttr<NSReturnsNotRetainedAttr>()) {
+ Diag(getterMethod->getLocation(),
+ diag::warn_property_getter_owning_mismatch);
+ Diag(property->getLocation(), diag::note_property_declare);
+ }
+ if (getLangOpts().ObjCAutoRefCount && Synthesize)
+ switch (getterMethod->getMethodFamily()) {
+ case OMF_retain:
+ case OMF_retainCount:
+ case OMF_release:
+ case OMF_autorelease:
+ Diag(getterMethod->getLocation(), diag::err_arc_illegal_method_def)
+ << 1 << getterMethod->getSelector();
+ break;
+ default:
+ break;
+ }
+ }
+ if (ObjCMethodDecl *setterMethod = property->getSetterMethodDecl()) {
+ setterMethod->createImplicitParams(Context, IDecl);
+ if (getLangOpts().CPlusPlus && Synthesize && !CompleteTypeErr &&
+ Ivar->getType()->isRecordType()) {
+ // FIXME. Eventually we want to do this for Objective-C as well.
+ SynthesizedFunctionScope Scope(*this, setterMethod);
+ ImplicitParamDecl *SelfDecl = setterMethod->getSelfDecl();
+ DeclRefExpr *SelfExpr =
+ new (Context) DeclRefExpr(SelfDecl, false, SelfDecl->getType(),
+ VK_LValue, PropertyDiagLoc);
+ MarkDeclRefReferenced(SelfExpr);
+ Expr *LoadSelfExpr =
+ ImplicitCastExpr::Create(Context, SelfDecl->getType(),
+ CK_LValueToRValue, SelfExpr, nullptr,
+ VK_RValue);
+ Expr *lhs =
+ new (Context) ObjCIvarRefExpr(Ivar, Ivar->getType(), PropertyDiagLoc,
+ Ivar->getLocation(),
+ LoadSelfExpr, true, true);
+ ObjCMethodDecl::param_iterator P = setterMethod->param_begin();
+ ParmVarDecl *Param = (*P);
+ QualType T = Param->getType().getNonReferenceType();
+ DeclRefExpr *rhs = new (Context) DeclRefExpr(Param, false, T,
+ VK_LValue, PropertyDiagLoc);
+ MarkDeclRefReferenced(rhs);
+ ExprResult Res = BuildBinOp(S, PropertyDiagLoc,
+ BO_Assign, lhs, rhs);
+ if (property->getPropertyAttributes() &
+ ObjCPropertyDecl::OBJC_PR_atomic) {
+ Expr *callExpr = Res.getAs<Expr>();
+ if (const CXXOperatorCallExpr *CXXCE =
+ dyn_cast_or_null<CXXOperatorCallExpr>(callExpr))
+ if (const FunctionDecl *FuncDecl = CXXCE->getDirectCallee())
+ if (!FuncDecl->isTrivial())
+ if (property->getType()->isReferenceType()) {
+ Diag(PropertyDiagLoc,
+ diag::err_atomic_property_nontrivial_assign_op)
+ << property->getType();
+ Diag(FuncDecl->getLocStart(),
+ diag::note_callee_decl) << FuncDecl;
+ }
+ }
+ PIDecl->setSetterCXXAssignment(Res.getAs<Expr>());
+ }
+ }
+
+ if (IC) {
+ if (Synthesize)
+ if (ObjCPropertyImplDecl *PPIDecl =
+ IC->FindPropertyImplIvarDecl(PropertyIvar)) {
+ Diag(PropertyLoc, diag::error_duplicate_ivar_use)
+ << PropertyId << PPIDecl->getPropertyDecl()->getIdentifier()
+ << PropertyIvar;
+ Diag(PPIDecl->getLocation(), diag::note_previous_use);
+ }
+
+ if (ObjCPropertyImplDecl *PPIDecl
+ = IC->FindPropertyImplDecl(PropertyId)) {
+ Diag(PropertyLoc, diag::error_property_implemented) << PropertyId;
+ Diag(PPIDecl->getLocation(), diag::note_previous_declaration);
+ return nullptr;
+ }
+ IC->addPropertyImplementation(PIDecl);
+ if (getLangOpts().ObjCDefaultSynthProperties &&
+ getLangOpts().ObjCRuntime.isNonFragile() &&
+ !IDecl->isObjCRequiresPropertyDefs()) {
+ // Diagnose if an ivar was lazily synthesdized due to a previous
+ // use and if 1) property is @dynamic or 2) property is synthesized
+ // but it requires an ivar of different name.
+ ObjCInterfaceDecl *ClassDeclared=nullptr;
+ ObjCIvarDecl *Ivar = nullptr;
+ if (!Synthesize)
+ Ivar = IDecl->lookupInstanceVariable(PropertyId, ClassDeclared);
+ else {
+ if (PropertyIvar && PropertyIvar != PropertyId)
+ Ivar = IDecl->lookupInstanceVariable(PropertyId, ClassDeclared);
+ }
+ // Issue diagnostics only if Ivar belongs to current class.
+ if (Ivar && Ivar->getSynthesize() &&
+ declaresSameEntity(IC->getClassInterface(), ClassDeclared)) {
+ Diag(Ivar->getLocation(), diag::err_undeclared_var_use)
+ << PropertyId;
+ Ivar->setInvalidDecl();
+ }
+ }
+ } else {
+ if (Synthesize)
+ if (ObjCPropertyImplDecl *PPIDecl =
+ CatImplClass->FindPropertyImplIvarDecl(PropertyIvar)) {
+ Diag(PropertyDiagLoc, diag::error_duplicate_ivar_use)
+ << PropertyId << PPIDecl->getPropertyDecl()->getIdentifier()
+ << PropertyIvar;
+ Diag(PPIDecl->getLocation(), diag::note_previous_use);
+ }
+
+ if (ObjCPropertyImplDecl *PPIDecl =
+ CatImplClass->FindPropertyImplDecl(PropertyId)) {
+ Diag(PropertyDiagLoc, diag::error_property_implemented) << PropertyId;
+ Diag(PPIDecl->getLocation(), diag::note_previous_declaration);
+ return nullptr;
+ }
+ CatImplClass->addPropertyImplementation(PIDecl);
+ }
+
+ return PIDecl;
+}
+
+//===----------------------------------------------------------------------===//
+// Helper methods.
+//===----------------------------------------------------------------------===//
+
+/// DiagnosePropertyMismatch - Compares two properties for their
+/// attributes and types and warns on a variety of inconsistencies.
+///
+void
+Sema::DiagnosePropertyMismatch(ObjCPropertyDecl *Property,
+ ObjCPropertyDecl *SuperProperty,
+ const IdentifierInfo *inheritedName,
+ bool OverridingProtocolProperty) {
+ ObjCPropertyDecl::PropertyAttributeKind CAttr =
+ Property->getPropertyAttributes();
+ ObjCPropertyDecl::PropertyAttributeKind SAttr =
+ SuperProperty->getPropertyAttributes();
+
+ // We allow readonly properties without an explicit ownership
+ // (assign/unsafe_unretained/weak/retain/strong/copy) in super class
+ // to be overridden by a property with any explicit ownership in the subclass.
+ if (!OverridingProtocolProperty &&
+ !getOwnershipRule(SAttr) && getOwnershipRule(CAttr))
+ ;
+ else {
+ if ((CAttr & ObjCPropertyDecl::OBJC_PR_readonly)
+ && (SAttr & ObjCPropertyDecl::OBJC_PR_readwrite))
+ Diag(Property->getLocation(), diag::warn_readonly_property)
+ << Property->getDeclName() << inheritedName;
+ if ((CAttr & ObjCPropertyDecl::OBJC_PR_copy)
+ != (SAttr & ObjCPropertyDecl::OBJC_PR_copy))
+ Diag(Property->getLocation(), diag::warn_property_attribute)
+ << Property->getDeclName() << "copy" << inheritedName;
+ else if (!(SAttr & ObjCPropertyDecl::OBJC_PR_readonly)){
+ unsigned CAttrRetain =
+ (CAttr &
+ (ObjCPropertyDecl::OBJC_PR_retain | ObjCPropertyDecl::OBJC_PR_strong));
+ unsigned SAttrRetain =
+ (SAttr &
+ (ObjCPropertyDecl::OBJC_PR_retain | ObjCPropertyDecl::OBJC_PR_strong));
+ bool CStrong = (CAttrRetain != 0);
+ bool SStrong = (SAttrRetain != 0);
+ if (CStrong != SStrong)
+ Diag(Property->getLocation(), diag::warn_property_attribute)
+ << Property->getDeclName() << "retain (or strong)" << inheritedName;
+ }
+ }
+
+ if ((CAttr & ObjCPropertyDecl::OBJC_PR_nonatomic)
+ != (SAttr & ObjCPropertyDecl::OBJC_PR_nonatomic)) {
+ Diag(Property->getLocation(), diag::warn_property_attribute)
+ << Property->getDeclName() << "atomic" << inheritedName;
+ Diag(SuperProperty->getLocation(), diag::note_property_declare);
+ }
+ if (Property->getSetterName() != SuperProperty->getSetterName()) {
+ Diag(Property->getLocation(), diag::warn_property_attribute)
+ << Property->getDeclName() << "setter" << inheritedName;
+ Diag(SuperProperty->getLocation(), diag::note_property_declare);
+ }
+ if (Property->getGetterName() != SuperProperty->getGetterName()) {
+ Diag(Property->getLocation(), diag::warn_property_attribute)
+ << Property->getDeclName() << "getter" << inheritedName;
+ Diag(SuperProperty->getLocation(), diag::note_property_declare);
+ }
+
+ QualType LHSType =
+ Context.getCanonicalType(SuperProperty->getType());
+ QualType RHSType =
+ Context.getCanonicalType(Property->getType());
+
+ if (!Context.propertyTypesAreCompatible(LHSType, RHSType)) {
+ // Do cases not handled in above.
+ // FIXME. For future support of covariant property types, revisit this.
+ bool IncompatibleObjC = false;
+ QualType ConvertedType;
+ if (!isObjCPointerConversion(RHSType, LHSType,
+ ConvertedType, IncompatibleObjC) ||
+ IncompatibleObjC) {
+ Diag(Property->getLocation(), diag::warn_property_types_are_incompatible)
+ << Property->getType() << SuperProperty->getType() << inheritedName;
+ Diag(SuperProperty->getLocation(), diag::note_property_declare);
+ }
+ }
+}
+
+bool Sema::DiagnosePropertyAccessorMismatch(ObjCPropertyDecl *property,
+ ObjCMethodDecl *GetterMethod,
+ SourceLocation Loc) {
+ if (!GetterMethod)
+ return false;
+ QualType GetterType = GetterMethod->getReturnType().getNonReferenceType();
+ QualType PropertyIvarType = property->getType().getNonReferenceType();
+ bool compat = Context.hasSameType(PropertyIvarType, GetterType);
+ if (!compat) {
+ if (isa<ObjCObjectPointerType>(PropertyIvarType) &&
+ isa<ObjCObjectPointerType>(GetterType))
+ compat =
+ Context.canAssignObjCInterfaces(
+ GetterType->getAs<ObjCObjectPointerType>(),
+ PropertyIvarType->getAs<ObjCObjectPointerType>());
+ else if (CheckAssignmentConstraints(Loc, GetterType, PropertyIvarType)
+ != Compatible) {
+ Diag(Loc, diag::error_property_accessor_type)
+ << property->getDeclName() << PropertyIvarType
+ << GetterMethod->getSelector() << GetterType;
+ Diag(GetterMethod->getLocation(), diag::note_declared_at);
+ return true;
+ } else {
+ compat = true;
+ QualType lhsType =Context.getCanonicalType(PropertyIvarType).getUnqualifiedType();
+ QualType rhsType =Context.getCanonicalType(GetterType).getUnqualifiedType();
+ if (lhsType != rhsType && lhsType->isArithmeticType())
+ compat = false;
+ }
+ }
+
+ if (!compat) {
+ Diag(Loc, diag::warn_accessor_property_type_mismatch)
+ << property->getDeclName()
+ << GetterMethod->getSelector();
+ Diag(GetterMethod->getLocation(), diag::note_declared_at);
+ return true;
+ }
+
+ return false;
+}
+
+/// CollectImmediateProperties - This routine collects all properties in
+/// the class and its conforming protocols; but not those in its super class.
+static void CollectImmediateProperties(ObjCContainerDecl *CDecl,
+ ObjCContainerDecl::PropertyMap &PropMap,
+ ObjCContainerDecl::PropertyMap &SuperPropMap,
+ bool IncludeProtocols = true) {
+
+ if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
+ for (auto *Prop : IDecl->properties())
+ PropMap[Prop->getIdentifier()] = Prop;
+ if (IncludeProtocols) {
+ // Scan through class's protocols.
+ for (auto *PI : IDecl->all_referenced_protocols())
+ CollectImmediateProperties(PI, PropMap, SuperPropMap);
+ }
+ }
+ if (ObjCCategoryDecl *CATDecl = dyn_cast<ObjCCategoryDecl>(CDecl)) {
+ if (!CATDecl->IsClassExtension())
+ for (auto *Prop : CATDecl->properties())
+ PropMap[Prop->getIdentifier()] = Prop;
+ if (IncludeProtocols) {
+ // Scan through class's protocols.
+ for (auto *PI : CATDecl->protocols())
+ CollectImmediateProperties(PI, PropMap, SuperPropMap);
+ }
+ }
+ else if (ObjCProtocolDecl *PDecl = dyn_cast<ObjCProtocolDecl>(CDecl)) {
+ for (auto *Prop : PDecl->properties()) {
+ ObjCPropertyDecl *PropertyFromSuper = SuperPropMap[Prop->getIdentifier()];
+ // Exclude property for protocols which conform to class's super-class,
+ // as super-class has to implement the property.
+ if (!PropertyFromSuper ||
+ PropertyFromSuper->getIdentifier() != Prop->getIdentifier()) {
+ ObjCPropertyDecl *&PropEntry = PropMap[Prop->getIdentifier()];
+ if (!PropEntry)
+ PropEntry = Prop;
+ }
+ }
+ // scan through protocol's protocols.
+ for (auto *PI : PDecl->protocols())
+ CollectImmediateProperties(PI, PropMap, SuperPropMap);
+ }
+}
+
+/// CollectSuperClassPropertyImplementations - This routine collects list of
+/// properties to be implemented in super class(s) and also coming from their
+/// conforming protocols.
+static void CollectSuperClassPropertyImplementations(ObjCInterfaceDecl *CDecl,
+ ObjCInterfaceDecl::PropertyMap &PropMap) {
+ if (ObjCInterfaceDecl *SDecl = CDecl->getSuperClass()) {
+ ObjCInterfaceDecl::PropertyDeclOrder PO;
+ while (SDecl) {
+ SDecl->collectPropertiesToImplement(PropMap, PO);
+ SDecl = SDecl->getSuperClass();
+ }
+ }
+}
+
+/// IvarBacksCurrentMethodAccessor - This routine returns 'true' if 'IV' is
+/// an ivar synthesized for 'Method' and 'Method' is a property accessor
+/// declared in class 'IFace'.
+bool
+Sema::IvarBacksCurrentMethodAccessor(ObjCInterfaceDecl *IFace,
+ ObjCMethodDecl *Method, ObjCIvarDecl *IV) {
+ if (!IV->getSynthesize())
+ return false;
+ ObjCMethodDecl *IMD = IFace->lookupMethod(Method->getSelector(),
+ Method->isInstanceMethod());
+ if (!IMD || !IMD->isPropertyAccessor())
+ return false;
+
+ // look up a property declaration whose one of its accessors is implemented
+ // by this method.
+ for (const auto *Property : IFace->properties()) {
+ if ((Property->getGetterName() == IMD->getSelector() ||
+ Property->getSetterName() == IMD->getSelector()) &&
+ (Property->getPropertyIvarDecl() == IV))
+ return true;
+ }
+ return false;
+}
+
+static bool SuperClassImplementsProperty(ObjCInterfaceDecl *IDecl,
+ ObjCPropertyDecl *Prop) {
+ bool SuperClassImplementsGetter = false;
+ bool SuperClassImplementsSetter = false;
+ if (Prop->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_readonly)
+ SuperClassImplementsSetter = true;
+
+ while (IDecl->getSuperClass()) {
+ ObjCInterfaceDecl *SDecl = IDecl->getSuperClass();
+ if (!SuperClassImplementsGetter && SDecl->getInstanceMethod(Prop->getGetterName()))
+ SuperClassImplementsGetter = true;
+
+ if (!SuperClassImplementsSetter && SDecl->getInstanceMethod(Prop->getSetterName()))
+ SuperClassImplementsSetter = true;
+ if (SuperClassImplementsGetter && SuperClassImplementsSetter)
+ return true;
+ IDecl = IDecl->getSuperClass();
+ }
+ return false;
+}
+
+/// \brief Default synthesizes all properties which must be synthesized
+/// in class's \@implementation.
+void Sema::DefaultSynthesizeProperties(Scope *S, ObjCImplDecl* IMPDecl,
+ ObjCInterfaceDecl *IDecl) {
+
+ ObjCInterfaceDecl::PropertyMap PropMap;
+ ObjCInterfaceDecl::PropertyDeclOrder PropertyOrder;
+ IDecl->collectPropertiesToImplement(PropMap, PropertyOrder);
+ if (PropMap.empty())
+ return;
+ ObjCInterfaceDecl::PropertyMap SuperPropMap;
+ CollectSuperClassPropertyImplementations(IDecl, SuperPropMap);
+
+ for (unsigned i = 0, e = PropertyOrder.size(); i != e; i++) {
+ ObjCPropertyDecl *Prop = PropertyOrder[i];
+ // Is there a matching property synthesize/dynamic?
+ if (Prop->isInvalidDecl() ||
+ Prop->getPropertyImplementation() == ObjCPropertyDecl::Optional)
+ continue;
+ // Property may have been synthesized by user.
+ if (IMPDecl->FindPropertyImplDecl(Prop->getIdentifier()))
+ continue;
+ if (IMPDecl->getInstanceMethod(Prop->getGetterName())) {
+ if (Prop->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_readonly)
+ continue;
+ if (IMPDecl->getInstanceMethod(Prop->getSetterName()))
+ continue;
+ }
+ if (ObjCPropertyImplDecl *PID =
+ IMPDecl->FindPropertyImplIvarDecl(Prop->getIdentifier())) {
+ Diag(Prop->getLocation(), diag::warn_no_autosynthesis_shared_ivar_property)
+ << Prop->getIdentifier();
+ if (!PID->getLocation().isInvalid())
+ Diag(PID->getLocation(), diag::note_property_synthesize);
+ continue;
+ }
+ ObjCPropertyDecl *PropInSuperClass = SuperPropMap[Prop->getIdentifier()];
+ if (ObjCProtocolDecl *Proto =
+ dyn_cast<ObjCProtocolDecl>(Prop->getDeclContext())) {
+ // We won't auto-synthesize properties declared in protocols.
+ // Suppress the warning if class's superclass implements property's
+ // getter and implements property's setter (if readwrite property).
+ // Or, if property is going to be implemented in its super class.
+ if (!SuperClassImplementsProperty(IDecl, Prop) && !PropInSuperClass) {
+ Diag(IMPDecl->getLocation(),
+ diag::warn_auto_synthesizing_protocol_property)
+ << Prop << Proto;
+ Diag(Prop->getLocation(), diag::note_property_declare);
+ }
+ continue;
+ }
+ // If property to be implemented in the super class, ignore.
+ if (PropInSuperClass) {
+ if ((Prop->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_readwrite) &&
+ (PropInSuperClass->getPropertyAttributes() &
+ ObjCPropertyDecl::OBJC_PR_readonly) &&
+ !IMPDecl->getInstanceMethod(Prop->getSetterName()) &&
+ !IDecl->HasUserDeclaredSetterMethod(Prop)) {
+ Diag(Prop->getLocation(), diag::warn_no_autosynthesis_property)
+ << Prop->getIdentifier();
+ Diag(PropInSuperClass->getLocation(), diag::note_property_declare);
+ }
+ else {
+ Diag(Prop->getLocation(), diag::warn_autosynthesis_property_in_superclass)
+ << Prop->getIdentifier();
+ Diag(PropInSuperClass->getLocation(), diag::note_property_declare);
+ Diag(IMPDecl->getLocation(), diag::note_while_in_implementation);
+ }
+ continue;
+ }
+ // We use invalid SourceLocations for the synthesized ivars since they
+ // aren't really synthesized at a particular location; they just exist.
+ // Saying that they are located at the @implementation isn't really going
+ // to help users.
+ ObjCPropertyImplDecl *PIDecl = dyn_cast_or_null<ObjCPropertyImplDecl>(
+ ActOnPropertyImplDecl(S, SourceLocation(), SourceLocation(),
+ true,
+ /* property = */ Prop->getIdentifier(),
+ /* ivar = */ Prop->getDefaultSynthIvarName(Context),
+ Prop->getLocation()));
+ if (PIDecl) {
+ Diag(Prop->getLocation(), diag::warn_missing_explicit_synthesis);
+ Diag(IMPDecl->getLocation(), diag::note_while_in_implementation);
+ }
+ }
+}
+
+void Sema::DefaultSynthesizeProperties(Scope *S, Decl *D) {
+ if (!LangOpts.ObjCDefaultSynthProperties || LangOpts.ObjCRuntime.isFragile())
+ return;
+ ObjCImplementationDecl *IC=dyn_cast_or_null<ObjCImplementationDecl>(D);
+ if (!IC)
+ return;
+ if (ObjCInterfaceDecl* IDecl = IC->getClassInterface())
+ if (!IDecl->isObjCRequiresPropertyDefs())
+ DefaultSynthesizeProperties(S, IC, IDecl);
+}
+
+static void DiagnoseUnimplementedAccessor(Sema &S,
+ ObjCInterfaceDecl *PrimaryClass,
+ Selector Method,
+ ObjCImplDecl* IMPDecl,
+ ObjCContainerDecl *CDecl,
+ ObjCCategoryDecl *C,
+ ObjCPropertyDecl *Prop,
+ Sema::SelectorSet &SMap) {
+ // When reporting on missing property setter/getter implementation in
+ // categories, do not report when they are declared in primary class,
+ // class's protocol, or one of it super classes. This is because,
+ // the class is going to implement them.
+ if (!SMap.count(Method) &&
+ (PrimaryClass == nullptr ||
+ !PrimaryClass->lookupPropertyAccessor(Method, C))) {
+ S.Diag(IMPDecl->getLocation(),
+ isa<ObjCCategoryDecl>(CDecl) ?
+ diag::warn_setter_getter_impl_required_in_category :
+ diag::warn_setter_getter_impl_required)
+ << Prop->getDeclName() << Method;
+ S.Diag(Prop->getLocation(),
+ diag::note_property_declare);
+ if (S.LangOpts.ObjCDefaultSynthProperties &&
+ S.LangOpts.ObjCRuntime.isNonFragile())
+ if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CDecl))
+ if (const ObjCInterfaceDecl *RID = ID->isObjCRequiresPropertyDefs())
+ S.Diag(RID->getLocation(), diag::note_suppressed_class_declare);
+ }
+}
+
+void Sema::DiagnoseUnimplementedProperties(Scope *S, ObjCImplDecl* IMPDecl,
+ ObjCContainerDecl *CDecl,
+ bool SynthesizeProperties) {
+ ObjCContainerDecl::PropertyMap PropMap;
+ ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl);
+
+ if (!SynthesizeProperties) {
+ ObjCContainerDecl::PropertyMap NoNeedToImplPropMap;
+ // Gather properties which need not be implemented in this class
+ // or category.
+ if (!IDecl)
+ if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
+ // For categories, no need to implement properties declared in
+ // its primary class (and its super classes) if property is
+ // declared in one of those containers.
+ if ((IDecl = C->getClassInterface())) {
+ ObjCInterfaceDecl::PropertyDeclOrder PO;
+ IDecl->collectPropertiesToImplement(NoNeedToImplPropMap, PO);
+ }
+ }
+ if (IDecl)
+ CollectSuperClassPropertyImplementations(IDecl, NoNeedToImplPropMap);
+
+ CollectImmediateProperties(CDecl, PropMap, NoNeedToImplPropMap);
+ }
+
+ // Scan the @interface to see if any of the protocols it adopts
+ // require an explicit implementation, via attribute
+ // 'objc_protocol_requires_explicit_implementation'.
+ if (IDecl) {
+ std::unique_ptr<ObjCContainerDecl::PropertyMap> LazyMap;
+
+ for (auto *PDecl : IDecl->all_referenced_protocols()) {
+ if (!PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
+ continue;
+ // Lazily construct a set of all the properties in the @interface
+ // of the class, without looking at the superclass. We cannot
+ // use the call to CollectImmediateProperties() above as that
+ // utilizes information from the super class's properties as well
+ // as scans the adopted protocols. This work only triggers for protocols
+ // with the attribute, which is very rare, and only occurs when
+ // analyzing the @implementation.
+ if (!LazyMap) {
+ ObjCContainerDecl::PropertyMap NoNeedToImplPropMap;
+ LazyMap.reset(new ObjCContainerDecl::PropertyMap());
+ CollectImmediateProperties(CDecl, *LazyMap, NoNeedToImplPropMap,
+ /* IncludeProtocols */ false);
+ }
+ // Add the properties of 'PDecl' to the list of properties that
+ // need to be implemented.
+ for (auto *PropDecl : PDecl->properties()) {
+ if ((*LazyMap)[PropDecl->getIdentifier()])
+ continue;
+ PropMap[PropDecl->getIdentifier()] = PropDecl;
+ }
+ }
+ }
+
+ if (PropMap.empty())
+ return;
+
+ llvm::DenseSet<ObjCPropertyDecl *> PropImplMap;
+ for (const auto *I : IMPDecl->property_impls())
+ PropImplMap.insert(I->getPropertyDecl());
+
+ SelectorSet InsMap;
+ // Collect property accessors implemented in current implementation.
+ for (const auto *I : IMPDecl->instance_methods())
+ InsMap.insert(I->getSelector());
+
+ ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
+ ObjCInterfaceDecl *PrimaryClass = nullptr;
+ if (C && !C->IsClassExtension())
+ if ((PrimaryClass = C->getClassInterface()))
+ // Report unimplemented properties in the category as well.
+ if (ObjCImplDecl *IMP = PrimaryClass->getImplementation()) {
+ // When reporting on missing setter/getters, do not report when
+ // setter/getter is implemented in category's primary class
+ // implementation.
+ for (const auto *I : IMP->instance_methods())
+ InsMap.insert(I->getSelector());
+ }
+
+ for (ObjCContainerDecl::PropertyMap::iterator
+ P = PropMap.begin(), E = PropMap.end(); P != E; ++P) {
+ ObjCPropertyDecl *Prop = P->second;
+ // Is there a matching propery synthesize/dynamic?
+ if (Prop->isInvalidDecl() ||
+ Prop->getPropertyImplementation() == ObjCPropertyDecl::Optional ||
+ PropImplMap.count(Prop) ||
+ Prop->getAvailability() == AR_Unavailable)
+ continue;
+
+ // Diagnose unimplemented getters and setters.
+ DiagnoseUnimplementedAccessor(*this,
+ PrimaryClass, Prop->getGetterName(), IMPDecl, CDecl, C, Prop, InsMap);
+ if (!Prop->isReadOnly())
+ DiagnoseUnimplementedAccessor(*this,
+ PrimaryClass, Prop->getSetterName(),
+ IMPDecl, CDecl, C, Prop, InsMap);
+ }
+}
+
+void
+Sema::AtomicPropertySetterGetterRules (ObjCImplDecl* IMPDecl,
+ ObjCContainerDecl* IDecl) {
+ // Rules apply in non-GC mode only
+ if (getLangOpts().getGC() != LangOptions::NonGC)
+ return;
+ for (const auto *Property : IDecl->properties()) {
+ ObjCMethodDecl *GetterMethod = nullptr;
+ ObjCMethodDecl *SetterMethod = nullptr;
+ bool LookedUpGetterSetter = false;
+
+ unsigned Attributes = Property->getPropertyAttributes();
+ unsigned AttributesAsWritten = Property->getPropertyAttributesAsWritten();
+
+ if (!(AttributesAsWritten & ObjCPropertyDecl::OBJC_PR_atomic) &&
+ !(AttributesAsWritten & ObjCPropertyDecl::OBJC_PR_nonatomic)) {
+ GetterMethod = IMPDecl->getInstanceMethod(Property->getGetterName());
+ SetterMethod = IMPDecl->getInstanceMethod(Property->getSetterName());
+ LookedUpGetterSetter = true;
+ if (GetterMethod) {
+ Diag(GetterMethod->getLocation(),
+ diag::warn_default_atomic_custom_getter_setter)
+ << Property->getIdentifier() << 0;
+ Diag(Property->getLocation(), diag::note_property_declare);
+ }
+ if (SetterMethod) {
+ Diag(SetterMethod->getLocation(),
+ diag::warn_default_atomic_custom_getter_setter)
+ << Property->getIdentifier() << 1;
+ Diag(Property->getLocation(), diag::note_property_declare);
+ }
+ }
+
+ // We only care about readwrite atomic property.
+ if ((Attributes & ObjCPropertyDecl::OBJC_PR_nonatomic) ||
+ !(Attributes & ObjCPropertyDecl::OBJC_PR_readwrite))
+ continue;
+ if (const ObjCPropertyImplDecl *PIDecl
+ = IMPDecl->FindPropertyImplDecl(Property->getIdentifier())) {
+ if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
+ continue;
+ if (!LookedUpGetterSetter) {
+ GetterMethod = IMPDecl->getInstanceMethod(Property->getGetterName());
+ SetterMethod = IMPDecl->getInstanceMethod(Property->getSetterName());
+ }
+ if ((GetterMethod && !SetterMethod) || (!GetterMethod && SetterMethod)) {
+ SourceLocation MethodLoc =
+ (GetterMethod ? GetterMethod->getLocation()
+ : SetterMethod->getLocation());
+ Diag(MethodLoc, diag::warn_atomic_property_rule)
+ << Property->getIdentifier() << (GetterMethod != nullptr)
+ << (SetterMethod != nullptr);
+ // fixit stuff.
+ if (!AttributesAsWritten) {
+ if (Property->getLParenLoc().isValid()) {
+ // @property () ... case.
+ SourceRange PropSourceRange(Property->getAtLoc(),
+ Property->getLParenLoc());
+ Diag(Property->getLocation(), diag::note_atomic_property_fixup_suggest) <<
+ FixItHint::CreateReplacement(PropSourceRange, "@property (nonatomic");
+ }
+ else {
+ //@property id etc.
+ SourceLocation endLoc =
+ Property->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
+ endLoc = endLoc.getLocWithOffset(-1);
+ SourceRange PropSourceRange(Property->getAtLoc(), endLoc);
+ Diag(Property->getLocation(), diag::note_atomic_property_fixup_suggest) <<
+ FixItHint::CreateReplacement(PropSourceRange, "@property (nonatomic) ");
+ }
+ }
+ else if (!(AttributesAsWritten & ObjCPropertyDecl::OBJC_PR_atomic)) {
+ // @property () ... case.
+ SourceLocation endLoc = Property->getLParenLoc();
+ SourceRange PropSourceRange(Property->getAtLoc(), endLoc);
+ Diag(Property->getLocation(), diag::note_atomic_property_fixup_suggest) <<
+ FixItHint::CreateReplacement(PropSourceRange, "@property (nonatomic, ");
+ }
+ else
+ Diag(MethodLoc, diag::note_atomic_property_fixup_suggest);
+ Diag(Property->getLocation(), diag::note_property_declare);
+ }
+ }
+ }
+}
+
+void Sema::DiagnoseOwningPropertyGetterSynthesis(const ObjCImplementationDecl *D) {
+ if (getLangOpts().getGC() == LangOptions::GCOnly)
+ return;
+
+ for (const auto *PID : D->property_impls()) {
+ const ObjCPropertyDecl *PD = PID->getPropertyDecl();
+ if (PD && !PD->hasAttr<NSReturnsNotRetainedAttr>() &&
+ !D->getInstanceMethod(PD->getGetterName())) {
+ ObjCMethodDecl *method = PD->getGetterMethodDecl();
+ if (!method)
+ continue;
+ ObjCMethodFamily family = method->getMethodFamily();
+ if (family == OMF_alloc || family == OMF_copy ||
+ family == OMF_mutableCopy || family == OMF_new) {
+ if (getLangOpts().ObjCAutoRefCount)
+ Diag(PD->getLocation(), diag::err_cocoa_naming_owned_rule);
+ else
+ Diag(PD->getLocation(), diag::warn_cocoa_naming_owned_rule);
+
+ // Look for a getter explicitly declared alongside the property.
+ // If we find one, use its location for the note.
+ SourceLocation noteLoc = PD->getLocation();
+ SourceLocation fixItLoc;
+ for (auto *getterRedecl : method->redecls()) {
+ if (getterRedecl->isImplicit())
+ continue;
+ if (getterRedecl->getDeclContext() != PD->getDeclContext())
+ continue;
+ noteLoc = getterRedecl->getLocation();
+ fixItLoc = getterRedecl->getLocEnd();
+ }
+
+ Preprocessor &PP = getPreprocessor();
+ TokenValue tokens[] = {
+ tok::kw___attribute, tok::l_paren, tok::l_paren,
+ PP.getIdentifierInfo("objc_method_family"), tok::l_paren,
+ PP.getIdentifierInfo("none"), tok::r_paren,
+ tok::r_paren, tok::r_paren
+ };
+ StringRef spelling = "__attribute__((objc_method_family(none)))";
+ StringRef macroName = PP.getLastMacroWithSpelling(noteLoc, tokens);
+ if (!macroName.empty())
+ spelling = macroName;
+
+ auto noteDiag = Diag(noteLoc, diag::note_cocoa_naming_declare_family)
+ << method->getDeclName() << spelling;
+ if (fixItLoc.isValid()) {
+ SmallString<64> fixItText(" ");
+ fixItText += spelling;
+ noteDiag << FixItHint::CreateInsertion(fixItLoc, fixItText);
+ }
+ }
+ }
+ }
+}
+
+void Sema::DiagnoseMissingDesignatedInitOverrides(
+ const ObjCImplementationDecl *ImplD,
+ const ObjCInterfaceDecl *IFD) {
+ assert(IFD->hasDesignatedInitializers());
+ const ObjCInterfaceDecl *SuperD = IFD->getSuperClass();
+ if (!SuperD)
+ return;
+
+ SelectorSet InitSelSet;
+ for (const auto *I : ImplD->instance_methods())
+ if (I->getMethodFamily() == OMF_init)
+ InitSelSet.insert(I->getSelector());
+
+ SmallVector<const ObjCMethodDecl *, 8> DesignatedInits;
+ SuperD->getDesignatedInitializers(DesignatedInits);
+ for (SmallVector<const ObjCMethodDecl *, 8>::iterator
+ I = DesignatedInits.begin(), E = DesignatedInits.end(); I != E; ++I) {
+ const ObjCMethodDecl *MD = *I;
+ if (!InitSelSet.count(MD->getSelector())) {
+ Diag(ImplD->getLocation(),
+ diag::warn_objc_implementation_missing_designated_init_override)
+ << MD->getSelector();
+ Diag(MD->getLocation(), diag::note_objc_designated_init_marked_here);
+ }
+ }
+}
+
+/// AddPropertyAttrs - Propagates attributes from a property to the
+/// implicitly-declared getter or setter for that property.
+static void AddPropertyAttrs(Sema &S, ObjCMethodDecl *PropertyMethod,
+ ObjCPropertyDecl *Property) {
+ // Should we just clone all attributes over?
+ for (const auto *A : Property->attrs()) {
+ if (isa<DeprecatedAttr>(A) ||
+ isa<UnavailableAttr>(A) ||
+ isa<AvailabilityAttr>(A))
+ PropertyMethod->addAttr(A->clone(S.Context));
+ }
+}
+
+/// ProcessPropertyDecl - Make sure that any user-defined setter/getter methods
+/// have the property type and issue diagnostics if they don't.
+/// Also synthesize a getter/setter method if none exist (and update the
+/// appropriate lookup tables. FIXME: Should reconsider if adding synthesized
+/// methods is the "right" thing to do.
+void Sema::ProcessPropertyDecl(ObjCPropertyDecl *property,
+ ObjCContainerDecl *CD,
+ ObjCPropertyDecl *redeclaredProperty,
+ ObjCContainerDecl *lexicalDC) {
+
+ ObjCMethodDecl *GetterMethod, *SetterMethod;
+
+ if (CD->isInvalidDecl())
+ return;
+
+ GetterMethod = CD->getInstanceMethod(property->getGetterName());
+ SetterMethod = CD->getInstanceMethod(property->getSetterName());
+ DiagnosePropertyAccessorMismatch(property, GetterMethod,
+ property->getLocation());
+
+ if (SetterMethod) {
+ ObjCPropertyDecl::PropertyAttributeKind CAttr =
+ property->getPropertyAttributes();
+ if ((!(CAttr & ObjCPropertyDecl::OBJC_PR_readonly)) &&
+ Context.getCanonicalType(SetterMethod->getReturnType()) !=
+ Context.VoidTy)
+ Diag(SetterMethod->getLocation(), diag::err_setter_type_void);
+ if (SetterMethod->param_size() != 1 ||
+ !Context.hasSameUnqualifiedType(
+ (*SetterMethod->param_begin())->getType().getNonReferenceType(),
+ property->getType().getNonReferenceType())) {
+ Diag(property->getLocation(),
+ diag::warn_accessor_property_type_mismatch)
+ << property->getDeclName()
+ << SetterMethod->getSelector();
+ Diag(SetterMethod->getLocation(), diag::note_declared_at);
+ }
+ }
+
+ // Synthesize getter/setter methods if none exist.
+ // Find the default getter and if one not found, add one.
+ // FIXME: The synthesized property we set here is misleading. We almost always
+ // synthesize these methods unless the user explicitly provided prototypes
+ // (which is odd, but allowed). Sema should be typechecking that the
+ // declarations jive in that situation (which it is not currently).
+ if (!GetterMethod) {
+ // No instance method of same name as property getter name was found.
+ // Declare a getter method and add it to the list of methods
+ // for this class.
+ SourceLocation Loc = redeclaredProperty ?
+ redeclaredProperty->getLocation() :
+ property->getLocation();
+
+ GetterMethod = ObjCMethodDecl::Create(Context, Loc, Loc,
+ property->getGetterName(),
+ property->getType(), nullptr, CD,
+ /*isInstance=*/true, /*isVariadic=*/false,
+ /*isPropertyAccessor=*/true,
+ /*isImplicitlyDeclared=*/true, /*isDefined=*/false,
+ (property->getPropertyImplementation() ==
+ ObjCPropertyDecl::Optional) ?
+ ObjCMethodDecl::Optional :
+ ObjCMethodDecl::Required);
+ CD->addDecl(GetterMethod);
+
+ AddPropertyAttrs(*this, GetterMethod, property);
+
+ // FIXME: Eventually this shouldn't be needed, as the lexical context
+ // and the real context should be the same.
+ if (lexicalDC)
+ GetterMethod->setLexicalDeclContext(lexicalDC);
+ if (property->hasAttr<NSReturnsNotRetainedAttr>())
+ GetterMethod->addAttr(NSReturnsNotRetainedAttr::CreateImplicit(Context,
+ Loc));
+
+ if (property->hasAttr<ObjCReturnsInnerPointerAttr>())
+ GetterMethod->addAttr(
+ ObjCReturnsInnerPointerAttr::CreateImplicit(Context, Loc));
+
+ if (const SectionAttr *SA = property->getAttr<SectionAttr>())
+ GetterMethod->addAttr(
+ SectionAttr::CreateImplicit(Context, SectionAttr::GNU_section,
+ SA->getName(), Loc));
+
+ if (getLangOpts().ObjCAutoRefCount)
+ CheckARCMethodDecl(GetterMethod);
+ } else
+ // A user declared getter will be synthesize when @synthesize of
+ // the property with the same name is seen in the @implementation
+ GetterMethod->setPropertyAccessor(true);
+ property->setGetterMethodDecl(GetterMethod);
+
+ // Skip setter if property is read-only.
+ if (!property->isReadOnly()) {
+ // Find the default setter and if one not found, add one.
+ if (!SetterMethod) {
+ // No instance method of same name as property setter name was found.
+ // Declare a setter method and add it to the list of methods
+ // for this class.
+ SourceLocation Loc = redeclaredProperty ?
+ redeclaredProperty->getLocation() :
+ property->getLocation();
+
+ SetterMethod =
+ ObjCMethodDecl::Create(Context, Loc, Loc,
+ property->getSetterName(), Context.VoidTy,
+ nullptr, CD, /*isInstance=*/true,
+ /*isVariadic=*/false,
+ /*isPropertyAccessor=*/true,
+ /*isImplicitlyDeclared=*/true,
+ /*isDefined=*/false,
+ (property->getPropertyImplementation() ==
+ ObjCPropertyDecl::Optional) ?
+ ObjCMethodDecl::Optional :
+ ObjCMethodDecl::Required);
+
+ // Invent the arguments for the setter. We don't bother making a
+ // nice name for the argument.
+ ParmVarDecl *Argument = ParmVarDecl::Create(Context, SetterMethod,
+ Loc, Loc,
+ property->getIdentifier(),
+ property->getType().getUnqualifiedType(),
+ /*TInfo=*/nullptr,
+ SC_None,
+ nullptr);
+ SetterMethod->setMethodParams(Context, Argument, None);
+
+ AddPropertyAttrs(*this, SetterMethod, property);
+
+ CD->addDecl(SetterMethod);
+ // FIXME: Eventually this shouldn't be needed, as the lexical context
+ // and the real context should be the same.
+ if (lexicalDC)
+ SetterMethod->setLexicalDeclContext(lexicalDC);
+ if (const SectionAttr *SA = property->getAttr<SectionAttr>())
+ SetterMethod->addAttr(
+ SectionAttr::CreateImplicit(Context, SectionAttr::GNU_section,
+ SA->getName(), Loc));
+ // It's possible for the user to have set a very odd custom
+ // setter selector that causes it to have a method family.
+ if (getLangOpts().ObjCAutoRefCount)
+ CheckARCMethodDecl(SetterMethod);
+ } else
+ // A user declared setter will be synthesize when @synthesize of
+ // the property with the same name is seen in the @implementation
+ SetterMethod->setPropertyAccessor(true);
+ property->setSetterMethodDecl(SetterMethod);
+ }
+ // Add any synthesized methods to the global pool. This allows us to
+ // handle the following, which is supported by GCC (and part of the design).
+ //
+ // @interface Foo
+ // @property double bar;
+ // @end
+ //
+ // void thisIsUnfortunate() {
+ // id foo;
+ // double bar = [foo bar];
+ // }
+ //
+ if (GetterMethod)
+ AddInstanceMethodToGlobalPool(GetterMethod);
+ if (SetterMethod)
+ AddInstanceMethodToGlobalPool(SetterMethod);
+
+ ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(CD);
+ if (!CurrentClass) {
+ if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(CD))
+ CurrentClass = Cat->getClassInterface();
+ else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(CD))
+ CurrentClass = Impl->getClassInterface();
+ }
+ if (GetterMethod)
+ CheckObjCMethodOverrides(GetterMethod, CurrentClass, Sema::RTC_Unknown);
+ if (SetterMethod)
+ CheckObjCMethodOverrides(SetterMethod, CurrentClass, Sema::RTC_Unknown);
+}
+
+void Sema::CheckObjCPropertyAttributes(Decl *PDecl,
+ SourceLocation Loc,
+ unsigned &Attributes,
+ bool propertyInPrimaryClass) {
+ // FIXME: Improve the reported location.
+ if (!PDecl || PDecl->isInvalidDecl())
+ return;
+
+ if ((Attributes & ObjCDeclSpec::DQ_PR_readonly) &&
+ (Attributes & ObjCDeclSpec::DQ_PR_readwrite))
+ Diag(Loc, diag::err_objc_property_attr_mutually_exclusive)
+ << "readonly" << "readwrite";
+
+ ObjCPropertyDecl *PropertyDecl = cast<ObjCPropertyDecl>(PDecl);
+ QualType PropertyTy = PropertyDecl->getType();
+ unsigned PropertyOwnership = getOwnershipRule(Attributes);
+
+ // 'readonly' property with no obvious lifetime.
+ // its life time will be determined by its backing ivar.
+ if (getLangOpts().ObjCAutoRefCount &&
+ Attributes & ObjCDeclSpec::DQ_PR_readonly &&
+ PropertyTy->isObjCRetainableType() &&
+ !PropertyOwnership)
+ return;
+
+ // Check for copy or retain on non-object types.
+ if ((Attributes & (ObjCDeclSpec::DQ_PR_weak | ObjCDeclSpec::DQ_PR_copy |
+ ObjCDeclSpec::DQ_PR_retain | ObjCDeclSpec::DQ_PR_strong)) &&
+ !PropertyTy->isObjCRetainableType() &&
+ !PropertyDecl->hasAttr<ObjCNSObjectAttr>()) {
+ Diag(Loc, diag::err_objc_property_requires_object)
+ << (Attributes & ObjCDeclSpec::DQ_PR_weak ? "weak" :
+ Attributes & ObjCDeclSpec::DQ_PR_copy ? "copy" : "retain (or strong)");
+ Attributes &= ~(ObjCDeclSpec::DQ_PR_weak | ObjCDeclSpec::DQ_PR_copy |
+ ObjCDeclSpec::DQ_PR_retain | ObjCDeclSpec::DQ_PR_strong);
+ PropertyDecl->setInvalidDecl();
+ }
+
+ // Check for more than one of { assign, copy, retain }.
+ if (Attributes & ObjCDeclSpec::DQ_PR_assign) {
+ if (Attributes & ObjCDeclSpec::DQ_PR_copy) {
+ Diag(Loc, diag::err_objc_property_attr_mutually_exclusive)
+ << "assign" << "copy";
+ Attributes &= ~ObjCDeclSpec::DQ_PR_copy;
+ }
+ if (Attributes & ObjCDeclSpec::DQ_PR_retain) {
+ Diag(Loc, diag::err_objc_property_attr_mutually_exclusive)
+ << "assign" << "retain";
+ Attributes &= ~ObjCDeclSpec::DQ_PR_retain;
+ }
+ if (Attributes & ObjCDeclSpec::DQ_PR_strong) {
+ Diag(Loc, diag::err_objc_property_attr_mutually_exclusive)
+ << "assign" << "strong";
+ Attributes &= ~ObjCDeclSpec::DQ_PR_strong;
+ }
+ if (getLangOpts().ObjCAutoRefCount &&
+ (Attributes & ObjCDeclSpec::DQ_PR_weak)) {
+ Diag(Loc, diag::err_objc_property_attr_mutually_exclusive)
+ << "assign" << "weak";
+ Attributes &= ~ObjCDeclSpec::DQ_PR_weak;
+ }
+ if (PropertyDecl->hasAttr<IBOutletCollectionAttr>())
+ Diag(Loc, diag::warn_iboutletcollection_property_assign);
+ } else if (Attributes & ObjCDeclSpec::DQ_PR_unsafe_unretained) {
+ if (Attributes & ObjCDeclSpec::DQ_PR_copy) {
+ Diag(Loc, diag::err_objc_property_attr_mutually_exclusive)
+ << "unsafe_unretained" << "copy";
+ Attributes &= ~ObjCDeclSpec::DQ_PR_copy;
+ }
+ if (Attributes & ObjCDeclSpec::DQ_PR_retain) {
+ Diag(Loc, diag::err_objc_property_attr_mutually_exclusive)
+ << "unsafe_unretained" << "retain";
+ Attributes &= ~ObjCDeclSpec::DQ_PR_retain;
+ }
+ if (Attributes & ObjCDeclSpec::DQ_PR_strong) {
+ Diag(Loc, diag::err_objc_property_attr_mutually_exclusive)
+ << "unsafe_unretained" << "strong";
+ Attributes &= ~ObjCDeclSpec::DQ_PR_strong;
+ }
+ if (getLangOpts().ObjCAutoRefCount &&
+ (Attributes & ObjCDeclSpec::DQ_PR_weak)) {
+ Diag(Loc, diag::err_objc_property_attr_mutually_exclusive)
+ << "unsafe_unretained" << "weak";
+ Attributes &= ~ObjCDeclSpec::DQ_PR_weak;
+ }
+ } else if (Attributes & ObjCDeclSpec::DQ_PR_copy) {
+ if (Attributes & ObjCDeclSpec::DQ_PR_retain) {
+ Diag(Loc, diag::err_objc_property_attr_mutually_exclusive)
+ << "copy" << "retain";
+ Attributes &= ~ObjCDeclSpec::DQ_PR_retain;
+ }
+ if (Attributes & ObjCDeclSpec::DQ_PR_strong) {
+ Diag(Loc, diag::err_objc_property_attr_mutually_exclusive)
+ << "copy" << "strong";
+ Attributes &= ~ObjCDeclSpec::DQ_PR_strong;
+ }
+ if (Attributes & ObjCDeclSpec::DQ_PR_weak) {
+ Diag(Loc, diag::err_objc_property_attr_mutually_exclusive)
+ << "copy" << "weak";
+ Attributes &= ~ObjCDeclSpec::DQ_PR_weak;
+ }
+ }
+ else if ((Attributes & ObjCDeclSpec::DQ_PR_retain) &&
+ (Attributes & ObjCDeclSpec::DQ_PR_weak)) {
+ Diag(Loc, diag::err_objc_property_attr_mutually_exclusive)
+ << "retain" << "weak";
+ Attributes &= ~ObjCDeclSpec::DQ_PR_retain;
+ }
+ else if ((Attributes & ObjCDeclSpec::DQ_PR_strong) &&
+ (Attributes & ObjCDeclSpec::DQ_PR_weak)) {
+ Diag(Loc, diag::err_objc_property_attr_mutually_exclusive)
+ << "strong" << "weak";
+ Attributes &= ~ObjCDeclSpec::DQ_PR_weak;
+ }
+
+ if ((Attributes & ObjCDeclSpec::DQ_PR_atomic) &&
+ (Attributes & ObjCDeclSpec::DQ_PR_nonatomic)) {
+ Diag(Loc, diag::err_objc_property_attr_mutually_exclusive)
+ << "atomic" << "nonatomic";
+ Attributes &= ~ObjCDeclSpec::DQ_PR_atomic;
+ }
+
+ // Warn if user supplied no assignment attribute, property is
+ // readwrite, and this is an object type.
+ if (!(Attributes & (ObjCDeclSpec::DQ_PR_assign | ObjCDeclSpec::DQ_PR_copy |
+ ObjCDeclSpec::DQ_PR_unsafe_unretained |
+ ObjCDeclSpec::DQ_PR_retain | ObjCDeclSpec::DQ_PR_strong |
+ ObjCDeclSpec::DQ_PR_weak)) &&
+ PropertyTy->isObjCObjectPointerType()) {
+ if (getLangOpts().ObjCAutoRefCount)
+ // With arc, @property definitions should default to (strong) when
+ // not specified; including when property is 'readonly'.
+ PropertyDecl->setPropertyAttributes(ObjCPropertyDecl::OBJC_PR_strong);
+ else if (!(Attributes & ObjCDeclSpec::DQ_PR_readonly)) {
+ bool isAnyClassTy =
+ (PropertyTy->isObjCClassType() ||
+ PropertyTy->isObjCQualifiedClassType());
+ // In non-gc, non-arc mode, 'Class' is treated as a 'void *' no need to
+ // issue any warning.
+ if (isAnyClassTy && getLangOpts().getGC() == LangOptions::NonGC)
+ ;
+ else if (propertyInPrimaryClass) {
+ // Don't issue warning on property with no life time in class
+ // extension as it is inherited from property in primary class.
+ // Skip this warning in gc-only mode.
+ if (getLangOpts().getGC() != LangOptions::GCOnly)
+ Diag(Loc, diag::warn_objc_property_no_assignment_attribute);
+
+ // If non-gc code warn that this is likely inappropriate.
+ if (getLangOpts().getGC() == LangOptions::NonGC)
+ Diag(Loc, diag::warn_objc_property_default_assign_on_object);
+ }
+ }
+
+ // FIXME: Implement warning dependent on NSCopying being
+ // implemented. See also:
+ // <rdar://5168496&4855821&5607453&5096644&4947311&5698469&4947014&5168496>
+ // (please trim this list while you are at it).
+ }
+
+ if (!(Attributes & ObjCDeclSpec::DQ_PR_copy)
+ &&!(Attributes & ObjCDeclSpec::DQ_PR_readonly)
+ && getLangOpts().getGC() == LangOptions::GCOnly
+ && PropertyTy->isBlockPointerType())
+ Diag(Loc, diag::warn_objc_property_copy_missing_on_block);
+ else if ((Attributes & ObjCDeclSpec::DQ_PR_retain) &&
+ !(Attributes & ObjCDeclSpec::DQ_PR_readonly) &&
+ !(Attributes & ObjCDeclSpec::DQ_PR_strong) &&
+ PropertyTy->isBlockPointerType())
+ Diag(Loc, diag::warn_objc_property_retain_of_block);
+
+ if ((Attributes & ObjCDeclSpec::DQ_PR_readonly) &&
+ (Attributes & ObjCDeclSpec::DQ_PR_setter))
+ Diag(Loc, diag::warn_objc_readonly_property_has_setter);
+
+}
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaOpenMP.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaOpenMP.cpp
new file mode 100644
index 0000000..cfe8db3
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaOpenMP.cpp
@@ -0,0 +1,6262 @@
+//===--- SemaOpenMP.cpp - Semantic Analysis for OpenMP constructs ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// \brief This file implements semantic analysis for OpenMP directives and
+/// clauses.
+///
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTMutationListener.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclOpenMP.h"
+#include "clang/AST/StmtCXX.h"
+#include "clang/AST/StmtOpenMP.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Basic/OpenMPKinds.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Sema/Initialization.h"
+#include "clang/Sema/Lookup.h"
+#include "clang/Sema/Scope.h"
+#include "clang/Sema/ScopeInfo.h"
+#include "clang/Sema/SemaInternal.h"
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// Stack of data-sharing attributes for variables
+//===----------------------------------------------------------------------===//
+
+namespace {
+/// \brief Default data sharing attributes, which can be applied to directive.
+enum DefaultDataSharingAttributes {
+ DSA_unspecified = 0, /// \brief Data sharing attribute not specified.
+ DSA_none = 1 << 0, /// \brief Default data sharing attribute 'none'.
+ DSA_shared = 1 << 1 /// \brief Default data sharing attribute 'shared'.
+};
+
+template <class T> struct MatchesAny {
+ explicit MatchesAny(ArrayRef<T> Arr) : Arr(std::move(Arr)) {}
+ bool operator()(T Kind) {
+ for (auto KindEl : Arr)
+ if (KindEl == Kind)
+ return true;
+ return false;
+ }
+
+private:
+ ArrayRef<T> Arr;
+};
+struct MatchesAlways {
+ MatchesAlways() {}
+ template <class T> bool operator()(T) { return true; }
+};
+
+typedef MatchesAny<OpenMPClauseKind> MatchesAnyClause;
+typedef MatchesAny<OpenMPDirectiveKind> MatchesAnyDirective;
+
+/// \brief Stack for tracking declarations used in OpenMP directives and
+/// clauses and their data-sharing attributes.
+class DSAStackTy {
+public:
+ struct DSAVarData {
+ OpenMPDirectiveKind DKind;
+ OpenMPClauseKind CKind;
+ DeclRefExpr *RefExpr;
+ SourceLocation ImplicitDSALoc;
+ DSAVarData()
+ : DKind(OMPD_unknown), CKind(OMPC_unknown), RefExpr(nullptr),
+ ImplicitDSALoc() {}
+ };
+
+private:
+ struct DSAInfo {
+ OpenMPClauseKind Attributes;
+ DeclRefExpr *RefExpr;
+ };
+ typedef llvm::SmallDenseMap<VarDecl *, DSAInfo, 64> DeclSAMapTy;
+ typedef llvm::SmallDenseMap<VarDecl *, DeclRefExpr *, 64> AlignedMapTy;
+ typedef llvm::DenseSet<VarDecl *> LoopControlVariablesSetTy;
+
+ struct SharingMapTy {
+ DeclSAMapTy SharingMap;
+ AlignedMapTy AlignedMap;
+ LoopControlVariablesSetTy LCVSet;
+ DefaultDataSharingAttributes DefaultAttr;
+ SourceLocation DefaultAttrLoc;
+ OpenMPDirectiveKind Directive;
+ DeclarationNameInfo DirectiveName;
+ Scope *CurScope;
+ SourceLocation ConstructLoc;
+ bool OrderedRegion;
+ unsigned CollapseNumber;
+ SourceLocation InnerTeamsRegionLoc;
+ SharingMapTy(OpenMPDirectiveKind DKind, DeclarationNameInfo Name,
+ Scope *CurScope, SourceLocation Loc)
+ : SharingMap(), AlignedMap(), LCVSet(), DefaultAttr(DSA_unspecified),
+ Directive(DKind), DirectiveName(std::move(Name)), CurScope(CurScope),
+ ConstructLoc(Loc), OrderedRegion(false), CollapseNumber(1),
+ InnerTeamsRegionLoc() {}
+ SharingMapTy()
+ : SharingMap(), AlignedMap(), LCVSet(), DefaultAttr(DSA_unspecified),
+ Directive(OMPD_unknown), DirectiveName(), CurScope(nullptr),
+ ConstructLoc(), OrderedRegion(false), CollapseNumber(1),
+ InnerTeamsRegionLoc() {}
+ };
+
+ typedef SmallVector<SharingMapTy, 64> StackTy;
+
+ /// \brief Stack of used declaration and their data-sharing attributes.
+ StackTy Stack;
+ /// \brief true, if check for DSA must be from parent directive, false, if
+ /// from current directive.
+ bool FromParent;
+ Sema &SemaRef;
+
+ typedef SmallVector<SharingMapTy, 8>::reverse_iterator reverse_iterator;
+
+ DSAVarData getDSA(StackTy::reverse_iterator Iter, VarDecl *D);
+
+ /// \brief Checks if the variable is a local for OpenMP region.
+ bool isOpenMPLocal(VarDecl *D, StackTy::reverse_iterator Iter);
+
+public:
+ explicit DSAStackTy(Sema &S) : Stack(1), FromParent(false), SemaRef(S) {}
+
+ bool isFromParent() const { return FromParent; }
+ void setFromParent(bool Flag) { FromParent = Flag; }
+
+ void push(OpenMPDirectiveKind DKind, const DeclarationNameInfo &DirName,
+ Scope *CurScope, SourceLocation Loc) {
+ Stack.push_back(SharingMapTy(DKind, DirName, CurScope, Loc));
+ Stack.back().DefaultAttrLoc = Loc;
+ }
+
+ void pop() {
+ assert(Stack.size() > 1 && "Data-sharing attributes stack is empty!");
+ Stack.pop_back();
+ }
+
+ /// \brief If 'aligned' declaration for given variable \a D was not seen yet,
+ /// add it and return NULL; otherwise return previous occurrence's expression
+ /// for diagnostics.
+ DeclRefExpr *addUniqueAligned(VarDecl *D, DeclRefExpr *NewDE);
+
+ /// \brief Register specified variable as loop control variable.
+ void addLoopControlVariable(VarDecl *D);
+ /// \brief Check if the specified variable is a loop control variable for
+ /// current region.
+ bool isLoopControlVariable(VarDecl *D);
+
+ /// \brief Adds explicit data sharing attribute to the specified declaration.
+ void addDSA(VarDecl *D, DeclRefExpr *E, OpenMPClauseKind A);
+
+ /// \brief Returns data sharing attributes from top of the stack for the
+ /// specified declaration.
+ DSAVarData getTopDSA(VarDecl *D, bool FromParent);
+ /// \brief Returns data-sharing attributes for the specified declaration.
+ DSAVarData getImplicitDSA(VarDecl *D, bool FromParent);
+ /// \brief Checks if the specified variables has data-sharing attributes which
+ /// match specified \a CPred predicate in any directive which matches \a DPred
+ /// predicate.
+ template <class ClausesPredicate, class DirectivesPredicate>
+ DSAVarData hasDSA(VarDecl *D, ClausesPredicate CPred,
+ DirectivesPredicate DPred, bool FromParent);
+ /// \brief Checks if the specified variables has data-sharing attributes which
+ /// match specified \a CPred predicate in any innermost directive which
+ /// matches \a DPred predicate.
+ template <class ClausesPredicate, class DirectivesPredicate>
+ DSAVarData hasInnermostDSA(VarDecl *D, ClausesPredicate CPred,
+ DirectivesPredicate DPred,
+ bool FromParent);
+ /// \brief Finds a directive which matches specified \a DPred predicate.
+ template <class NamedDirectivesPredicate>
+ bool hasDirective(NamedDirectivesPredicate DPred, bool FromParent);
+
+ /// \brief Returns currently analyzed directive.
+ OpenMPDirectiveKind getCurrentDirective() const {
+ return Stack.back().Directive;
+ }
+ /// \brief Returns parent directive.
+ OpenMPDirectiveKind getParentDirective() const {
+ if (Stack.size() > 2)
+ return Stack[Stack.size() - 2].Directive;
+ return OMPD_unknown;
+ }
+
+ /// \brief Set default data sharing attribute to none.
+ void setDefaultDSANone(SourceLocation Loc) {
+ Stack.back().DefaultAttr = DSA_none;
+ Stack.back().DefaultAttrLoc = Loc;
+ }
+ /// \brief Set default data sharing attribute to shared.
+ void setDefaultDSAShared(SourceLocation Loc) {
+ Stack.back().DefaultAttr = DSA_shared;
+ Stack.back().DefaultAttrLoc = Loc;
+ }
+
+ DefaultDataSharingAttributes getDefaultDSA() const {
+ return Stack.back().DefaultAttr;
+ }
+ SourceLocation getDefaultDSALocation() const {
+ return Stack.back().DefaultAttrLoc;
+ }
+
+ /// \brief Checks if the specified variable is a threadprivate.
+ bool isThreadPrivate(VarDecl *D) {
+ DSAVarData DVar = getTopDSA(D, false);
+ return isOpenMPThreadPrivate(DVar.CKind);
+ }
+
+ /// \brief Marks current region as ordered (it has an 'ordered' clause).
+ void setOrderedRegion(bool IsOrdered = true) {
+ Stack.back().OrderedRegion = IsOrdered;
+ }
+ /// \brief Returns true, if parent region is ordered (has associated
+ /// 'ordered' clause), false - otherwise.
+ bool isParentOrderedRegion() const {
+ if (Stack.size() > 2)
+ return Stack[Stack.size() - 2].OrderedRegion;
+ return false;
+ }
+
+ /// \brief Set collapse value for the region.
+ void setCollapseNumber(unsigned Val) { Stack.back().CollapseNumber = Val; }
+ /// \brief Return collapse value for region.
+ unsigned getCollapseNumber() const {
+ return Stack.back().CollapseNumber;
+ }
+
+ /// \brief Marks current target region as one with closely nested teams
+ /// region.
+ void setParentTeamsRegionLoc(SourceLocation TeamsRegionLoc) {
+ if (Stack.size() > 2)
+ Stack[Stack.size() - 2].InnerTeamsRegionLoc = TeamsRegionLoc;
+ }
+ /// \brief Returns true, if current region has closely nested teams region.
+ bool hasInnerTeamsRegion() const {
+ return getInnerTeamsRegionLoc().isValid();
+ }
+ /// \brief Returns location of the nested teams region (if any).
+ SourceLocation getInnerTeamsRegionLoc() const {
+ if (Stack.size() > 1)
+ return Stack.back().InnerTeamsRegionLoc;
+ return SourceLocation();
+ }
+
+ Scope *getCurScope() const { return Stack.back().CurScope; }
+ Scope *getCurScope() { return Stack.back().CurScope; }
+ SourceLocation getConstructLoc() { return Stack.back().ConstructLoc; }
+};
+bool isParallelOrTaskRegion(OpenMPDirectiveKind DKind) {
+ return isOpenMPParallelDirective(DKind) || DKind == OMPD_task ||
+ isOpenMPTeamsDirective(DKind) || DKind == OMPD_unknown;
+}
+} // namespace
+
+DSAStackTy::DSAVarData DSAStackTy::getDSA(StackTy::reverse_iterator Iter,
+ VarDecl *D) {
+ D = D->getCanonicalDecl();
+ DSAVarData DVar;
+ if (Iter == std::prev(Stack.rend())) {
+ // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
+ // in a region but not in construct]
+ // File-scope or namespace-scope variables referenced in called routines
+ // in the region are shared unless they appear in a threadprivate
+ // directive.
+ if (!D->isFunctionOrMethodVarDecl() && !isa<ParmVarDecl>(D))
+ DVar.CKind = OMPC_shared;
+
+ // OpenMP [2.9.1.2, Data-sharing Attribute Rules for Variables Referenced
+ // in a region but not in construct]
+ // Variables with static storage duration that are declared in called
+ // routines in the region are shared.
+ if (D->hasGlobalStorage())
+ DVar.CKind = OMPC_shared;
+
+ return DVar;
+ }
+
+ DVar.DKind = Iter->Directive;
+ // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
+ // in a Construct, C/C++, predetermined, p.1]
+ // Variables with automatic storage duration that are declared in a scope
+ // inside the construct are private.
+ if (isOpenMPLocal(D, Iter) && D->isLocalVarDecl() &&
+ (D->getStorageClass() == SC_Auto || D->getStorageClass() == SC_None)) {
+ DVar.CKind = OMPC_private;
+ return DVar;
+ }
+
+ // Explicitly specified attributes and local variables with predetermined
+ // attributes.
+ if (Iter->SharingMap.count(D)) {
+ DVar.RefExpr = Iter->SharingMap[D].RefExpr;
+ DVar.CKind = Iter->SharingMap[D].Attributes;
+ DVar.ImplicitDSALoc = Iter->DefaultAttrLoc;
+ return DVar;
+ }
+
+ // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
+ // in a Construct, C/C++, implicitly determined, p.1]
+ // In a parallel or task construct, the data-sharing attributes of these
+ // variables are determined by the default clause, if present.
+ switch (Iter->DefaultAttr) {
+ case DSA_shared:
+ DVar.CKind = OMPC_shared;
+ DVar.ImplicitDSALoc = Iter->DefaultAttrLoc;
+ return DVar;
+ case DSA_none:
+ return DVar;
+ case DSA_unspecified:
+ // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
+ // in a Construct, implicitly determined, p.2]
+ // In a parallel construct, if no default clause is present, these
+ // variables are shared.
+ DVar.ImplicitDSALoc = Iter->DefaultAttrLoc;
+ if (isOpenMPParallelDirective(DVar.DKind) ||
+ isOpenMPTeamsDirective(DVar.DKind)) {
+ DVar.CKind = OMPC_shared;
+ return DVar;
+ }
+
+ // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
+ // in a Construct, implicitly determined, p.4]
+ // In a task construct, if no default clause is present, a variable that in
+ // the enclosing context is determined to be shared by all implicit tasks
+ // bound to the current team is shared.
+ if (DVar.DKind == OMPD_task) {
+ DSAVarData DVarTemp;
+ for (StackTy::reverse_iterator I = std::next(Iter), EE = Stack.rend();
+ I != EE; ++I) {
+ // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables
+ // Referenced
+ // in a Construct, implicitly determined, p.6]
+ // In a task construct, if no default clause is present, a variable
+ // whose data-sharing attribute is not determined by the rules above is
+ // firstprivate.
+ DVarTemp = getDSA(I, D);
+ if (DVarTemp.CKind != OMPC_shared) {
+ DVar.RefExpr = nullptr;
+ DVar.DKind = OMPD_task;
+ DVar.CKind = OMPC_firstprivate;
+ return DVar;
+ }
+ if (isParallelOrTaskRegion(I->Directive))
+ break;
+ }
+ DVar.DKind = OMPD_task;
+ DVar.CKind =
+ (DVarTemp.CKind == OMPC_unknown) ? OMPC_firstprivate : OMPC_shared;
+ return DVar;
+ }
+ }
+ // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
+ // in a Construct, implicitly determined, p.3]
+ // For constructs other than task, if no default clause is present, these
+ // variables inherit their data-sharing attributes from the enclosing
+ // context.
+ return getDSA(std::next(Iter), D);
+}
+
+DeclRefExpr *DSAStackTy::addUniqueAligned(VarDecl *D, DeclRefExpr *NewDE) {
+ assert(Stack.size() > 1 && "Data sharing attributes stack is empty");
+ D = D->getCanonicalDecl();
+ auto It = Stack.back().AlignedMap.find(D);
+ if (It == Stack.back().AlignedMap.end()) {
+ assert(NewDE && "Unexpected nullptr expr to be added into aligned map");
+ Stack.back().AlignedMap[D] = NewDE;
+ return nullptr;
+ } else {
+ assert(It->second && "Unexpected nullptr expr in the aligned map");
+ return It->second;
+ }
+ return nullptr;
+}
+
+void DSAStackTy::addLoopControlVariable(VarDecl *D) {
+ assert(Stack.size() > 1 && "Data-sharing attributes stack is empty");
+ D = D->getCanonicalDecl();
+ Stack.back().LCVSet.insert(D);
+}
+
+bool DSAStackTy::isLoopControlVariable(VarDecl *D) {
+ assert(Stack.size() > 1 && "Data-sharing attributes stack is empty");
+ D = D->getCanonicalDecl();
+ return Stack.back().LCVSet.count(D) > 0;
+}
+
+void DSAStackTy::addDSA(VarDecl *D, DeclRefExpr *E, OpenMPClauseKind A) {
+ D = D->getCanonicalDecl();
+ if (A == OMPC_threadprivate) {
+ Stack[0].SharingMap[D].Attributes = A;
+ Stack[0].SharingMap[D].RefExpr = E;
+ } else {
+ assert(Stack.size() > 1 && "Data-sharing attributes stack is empty");
+ Stack.back().SharingMap[D].Attributes = A;
+ Stack.back().SharingMap[D].RefExpr = E;
+ }
+}
+
+bool DSAStackTy::isOpenMPLocal(VarDecl *D, StackTy::reverse_iterator Iter) {
+ D = D->getCanonicalDecl();
+ if (Stack.size() > 2) {
+ reverse_iterator I = Iter, E = std::prev(Stack.rend());
+ Scope *TopScope = nullptr;
+ while (I != E && !isParallelOrTaskRegion(I->Directive)) {
+ ++I;
+ }
+ if (I == E)
+ return false;
+ TopScope = I->CurScope ? I->CurScope->getParent() : nullptr;
+ Scope *CurScope = getCurScope();
+ while (CurScope != TopScope && !CurScope->isDeclScope(D)) {
+ CurScope = CurScope->getParent();
+ }
+ return CurScope != TopScope;
+ }
+ return false;
+}
+
+/// \brief Build a variable declaration for OpenMP loop iteration variable.
+static VarDecl *buildVarDecl(Sema &SemaRef, SourceLocation Loc, QualType Type,
+ StringRef Name) {
+ DeclContext *DC = SemaRef.CurContext;
+ IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
+ TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
+ VarDecl *Decl =
+ VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type, TInfo, SC_None);
+ Decl->setImplicit();
+ return Decl;
+}
+
+static DeclRefExpr *buildDeclRefExpr(Sema &S, VarDecl *D, QualType Ty,
+ SourceLocation Loc,
+ bool RefersToCapture = false) {
+ D->setReferenced();
+ D->markUsed(S.Context);
+ return DeclRefExpr::Create(S.getASTContext(), NestedNameSpecifierLoc(),
+ SourceLocation(), D, RefersToCapture, Loc, Ty,
+ VK_LValue);
+}
+
+DSAStackTy::DSAVarData DSAStackTy::getTopDSA(VarDecl *D, bool FromParent) {
+ D = D->getCanonicalDecl();
+ DSAVarData DVar;
+
+ // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
+ // in a Construct, C/C++, predetermined, p.1]
+ // Variables appearing in threadprivate directives are threadprivate.
+ if (D->getTLSKind() != VarDecl::TLS_None ||
+ (D->getStorageClass() == SC_Register && D->hasAttr<AsmLabelAttr>() &&
+ !D->isLocalVarDecl())) {
+ addDSA(D, buildDeclRefExpr(SemaRef, D, D->getType().getNonReferenceType(),
+ D->getLocation()),
+ OMPC_threadprivate);
+ }
+ if (Stack[0].SharingMap.count(D)) {
+ DVar.RefExpr = Stack[0].SharingMap[D].RefExpr;
+ DVar.CKind = OMPC_threadprivate;
+ return DVar;
+ }
+
+ // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
+ // in a Construct, C/C++, predetermined, p.1]
+ // Variables with automatic storage duration that are declared in a scope
+ // inside the construct are private.
+ OpenMPDirectiveKind Kind =
+ FromParent ? getParentDirective() : getCurrentDirective();
+ auto StartI = std::next(Stack.rbegin());
+ auto EndI = std::prev(Stack.rend());
+ if (FromParent && StartI != EndI) {
+ StartI = std::next(StartI);
+ }
+ if (!isParallelOrTaskRegion(Kind)) {
+ if (isOpenMPLocal(D, StartI) &&
+ ((D->isLocalVarDecl() && (D->getStorageClass() == SC_Auto ||
+ D->getStorageClass() == SC_None)) ||
+ isa<ParmVarDecl>(D))) {
+ DVar.CKind = OMPC_private;
+ return DVar;
+ }
+
+ // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
+ // in a Construct, C/C++, predetermined, p.4]
+ // Static data members are shared.
+ // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
+ // in a Construct, C/C++, predetermined, p.7]
+ // Variables with static storage duration that are declared in a scope
+ // inside the construct are shared.
+ if (D->isStaticDataMember() || D->isStaticLocal()) {
+ DSAVarData DVarTemp =
+ hasDSA(D, isOpenMPPrivate, MatchesAlways(), FromParent);
+ if (DVarTemp.CKind != OMPC_unknown && DVarTemp.RefExpr)
+ return DVar;
+
+ DVar.CKind = OMPC_shared;
+ return DVar;
+ }
+ }
+
+ QualType Type = D->getType().getNonReferenceType().getCanonicalType();
+ bool IsConstant = Type.isConstant(SemaRef.getASTContext());
+ Type = SemaRef.getASTContext().getBaseElementType(Type);
+ // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
+ // in a Construct, C/C++, predetermined, p.6]
+ // Variables with const qualified type having no mutable member are
+ // shared.
+ CXXRecordDecl *RD =
+ SemaRef.getLangOpts().CPlusPlus ? Type->getAsCXXRecordDecl() : nullptr;
+ if (IsConstant &&
+ !(SemaRef.getLangOpts().CPlusPlus && RD && RD->hasMutableFields())) {
+ // Variables with const-qualified type having no mutable member may be
+ // listed in a firstprivate clause, even if they are static data members.
+ DSAVarData DVarTemp = hasDSA(D, MatchesAnyClause(OMPC_firstprivate),
+ MatchesAlways(), FromParent);
+ if (DVarTemp.CKind == OMPC_firstprivate && DVarTemp.RefExpr)
+ return DVar;
+
+ DVar.CKind = OMPC_shared;
+ return DVar;
+ }
+
+ // Explicitly specified attributes and local variables with predetermined
+ // attributes.
+ auto I = std::prev(StartI);
+ if (I->SharingMap.count(D)) {
+ DVar.RefExpr = I->SharingMap[D].RefExpr;
+ DVar.CKind = I->SharingMap[D].Attributes;
+ DVar.ImplicitDSALoc = I->DefaultAttrLoc;
+ }
+
+ return DVar;
+}
+
+DSAStackTy::DSAVarData DSAStackTy::getImplicitDSA(VarDecl *D, bool FromParent) {
+ D = D->getCanonicalDecl();
+ auto StartI = Stack.rbegin();
+ auto EndI = std::prev(Stack.rend());
+ if (FromParent && StartI != EndI) {
+ StartI = std::next(StartI);
+ }
+ return getDSA(StartI, D);
+}
+
+template <class ClausesPredicate, class DirectivesPredicate>
+DSAStackTy::DSAVarData DSAStackTy::hasDSA(VarDecl *D, ClausesPredicate CPred,
+ DirectivesPredicate DPred,
+ bool FromParent) {
+ D = D->getCanonicalDecl();
+ auto StartI = std::next(Stack.rbegin());
+ auto EndI = std::prev(Stack.rend());
+ if (FromParent && StartI != EndI) {
+ StartI = std::next(StartI);
+ }
+ for (auto I = StartI, EE = EndI; I != EE; ++I) {
+ if (!DPred(I->Directive) && !isParallelOrTaskRegion(I->Directive))
+ continue;
+ DSAVarData DVar = getDSA(I, D);
+ if (CPred(DVar.CKind))
+ return DVar;
+ }
+ return DSAVarData();
+}
+
+template <class ClausesPredicate, class DirectivesPredicate>
+DSAStackTy::DSAVarData
+DSAStackTy::hasInnermostDSA(VarDecl *D, ClausesPredicate CPred,
+ DirectivesPredicate DPred, bool FromParent) {
+ D = D->getCanonicalDecl();
+ auto StartI = std::next(Stack.rbegin());
+ auto EndI = std::prev(Stack.rend());
+ if (FromParent && StartI != EndI) {
+ StartI = std::next(StartI);
+ }
+ for (auto I = StartI, EE = EndI; I != EE; ++I) {
+ if (!DPred(I->Directive))
+ break;
+ DSAVarData DVar = getDSA(I, D);
+ if (CPred(DVar.CKind))
+ return DVar;
+ return DSAVarData();
+ }
+ return DSAVarData();
+}
+
+template <class NamedDirectivesPredicate>
+bool DSAStackTy::hasDirective(NamedDirectivesPredicate DPred, bool FromParent) {
+ auto StartI = std::next(Stack.rbegin());
+ auto EndI = std::prev(Stack.rend());
+ if (FromParent && StartI != EndI) {
+ StartI = std::next(StartI);
+ }
+ for (auto I = StartI, EE = EndI; I != EE; ++I) {
+ if (DPred(I->Directive, I->DirectiveName, I->ConstructLoc))
+ return true;
+ }
+ return false;
+}
+
+void Sema::InitDataSharingAttributesStack() {
+ VarDataSharingAttributesStack = new DSAStackTy(*this);
+}
+
+#define DSAStack static_cast<DSAStackTy *>(VarDataSharingAttributesStack)
+
+bool Sema::IsOpenMPCapturedVar(VarDecl *VD) {
+ assert(LangOpts.OpenMP && "OpenMP is not allowed");
+ VD = VD->getCanonicalDecl();
+ if (DSAStack->getCurrentDirective() != OMPD_unknown) {
+ if (DSAStack->isLoopControlVariable(VD) ||
+ (VD->hasLocalStorage() &&
+ isParallelOrTaskRegion(DSAStack->getCurrentDirective())))
+ return true;
+ auto DVarPrivate = DSAStack->getTopDSA(VD, DSAStack->isFromParent());
+ if (DVarPrivate.CKind != OMPC_unknown && isOpenMPPrivate(DVarPrivate.CKind))
+ return true;
+ DVarPrivate = DSAStack->hasDSA(VD, isOpenMPPrivate, MatchesAlways(),
+ DSAStack->isFromParent());
+ return DVarPrivate.CKind != OMPC_unknown;
+ }
+ return false;
+}
+
+void Sema::DestroyDataSharingAttributesStack() { delete DSAStack; }
+
+void Sema::StartOpenMPDSABlock(OpenMPDirectiveKind DKind,
+ const DeclarationNameInfo &DirName,
+ Scope *CurScope, SourceLocation Loc) {
+ DSAStack->push(DKind, DirName, CurScope, Loc);
+ PushExpressionEvaluationContext(PotentiallyEvaluated);
+}
+
+void Sema::StartOpenMPClauses() {
+ DSAStack->setFromParent(/*Flag=*/true);
+}
+
+void Sema::EndOpenMPClauses() {
+ DSAStack->setFromParent(/*Flag=*/false);
+}
+
+void Sema::EndOpenMPDSABlock(Stmt *CurDirective) {
+ // OpenMP [2.14.3.5, Restrictions, C/C++, p.1]
+ // A variable of class type (or array thereof) that appears in a lastprivate
+ // clause requires an accessible, unambiguous default constructor for the
+ // class type, unless the list item is also specified in a firstprivate
+ // clause.
+ if (auto D = dyn_cast_or_null<OMPExecutableDirective>(CurDirective)) {
+ for (auto *C : D->clauses()) {
+ if (auto *Clause = dyn_cast<OMPLastprivateClause>(C)) {
+ SmallVector<Expr *, 8> PrivateCopies;
+ for (auto *DE : Clause->varlists()) {
+ if (DE->isValueDependent() || DE->isTypeDependent()) {
+ PrivateCopies.push_back(nullptr);
+ continue;
+ }
+ auto *VD = cast<VarDecl>(cast<DeclRefExpr>(DE)->getDecl());
+ QualType Type = VD->getType();
+ auto DVar = DSAStack->getTopDSA(VD, false);
+ if (DVar.CKind == OMPC_lastprivate) {
+ // Generate helper private variable and initialize it with the
+ // default value. The address of the original variable is replaced
+ // by the address of the new private variable in CodeGen. This new
+ // variable is not added to IdResolver, so the code in the OpenMP
+ // region uses original variable for proper diagnostics.
+ auto *VDPrivate =
+ buildVarDecl(*this, DE->getExprLoc(), Type.getUnqualifiedType(),
+ VD->getName());
+ ActOnUninitializedDecl(VDPrivate, /*TypeMayContainAuto=*/false);
+ if (VDPrivate->isInvalidDecl())
+ continue;
+ PrivateCopies.push_back(buildDeclRefExpr(
+ *this, VDPrivate, DE->getType(), DE->getExprLoc()));
+ } else {
+ // The variable is also a firstprivate, so initialization sequence
+ // for private copy is generated already.
+ PrivateCopies.push_back(nullptr);
+ }
+ }
+ // Set initializers to private copies if no errors were found.
+ if (PrivateCopies.size() == Clause->varlist_size()) {
+ Clause->setPrivateCopies(PrivateCopies);
+ }
+ }
+ }
+ }
+
+ DSAStack->pop();
+ DiscardCleanupsInEvaluationContext();
+ PopExpressionEvaluationContext();
+}
+
+static bool FinishOpenMPLinearClause(OMPLinearClause &Clause, DeclRefExpr *IV,
+ Expr *NumIterations, Sema &SemaRef,
+ Scope *S);
+
+namespace {
+
+class VarDeclFilterCCC : public CorrectionCandidateCallback {
+private:
+ Sema &SemaRef;
+
+public:
+ explicit VarDeclFilterCCC(Sema &S) : SemaRef(S) {}
+ bool ValidateCandidate(const TypoCorrection &Candidate) override {
+ NamedDecl *ND = Candidate.getCorrectionDecl();
+ if (VarDecl *VD = dyn_cast_or_null<VarDecl>(ND)) {
+ return VD->hasGlobalStorage() &&
+ SemaRef.isDeclInScope(ND, SemaRef.getCurLexicalContext(),
+ SemaRef.getCurScope());
+ }
+ return false;
+ }
+};
+} // namespace
+
+ExprResult Sema::ActOnOpenMPIdExpression(Scope *CurScope,
+ CXXScopeSpec &ScopeSpec,
+ const DeclarationNameInfo &Id) {
+ LookupResult Lookup(*this, Id, LookupOrdinaryName);
+ LookupParsedName(Lookup, CurScope, &ScopeSpec, true);
+
+ if (Lookup.isAmbiguous())
+ return ExprError();
+
+ VarDecl *VD;
+ if (!Lookup.isSingleResult()) {
+ if (TypoCorrection Corrected = CorrectTypo(
+ Id, LookupOrdinaryName, CurScope, nullptr,
+ llvm::make_unique<VarDeclFilterCCC>(*this), CTK_ErrorRecovery)) {
+ diagnoseTypo(Corrected,
+ PDiag(Lookup.empty()
+ ? diag::err_undeclared_var_use_suggest
+ : diag::err_omp_expected_var_arg_suggest)
+ << Id.getName());
+ VD = Corrected.getCorrectionDeclAs<VarDecl>();
+ } else {
+ Diag(Id.getLoc(), Lookup.empty() ? diag::err_undeclared_var_use
+ : diag::err_omp_expected_var_arg)
+ << Id.getName();
+ return ExprError();
+ }
+ } else {
+ if (!(VD = Lookup.getAsSingle<VarDecl>())) {
+ Diag(Id.getLoc(), diag::err_omp_expected_var_arg) << Id.getName();
+ Diag(Lookup.getFoundDecl()->getLocation(), diag::note_declared_at);
+ return ExprError();
+ }
+ }
+ Lookup.suppressDiagnostics();
+
+ // OpenMP [2.9.2, Syntax, C/C++]
+ // Variables must be file-scope, namespace-scope, or static block-scope.
+ if (!VD->hasGlobalStorage()) {
+ Diag(Id.getLoc(), diag::err_omp_global_var_arg)
+ << getOpenMPDirectiveName(OMPD_threadprivate) << !VD->isStaticLocal();
+ bool IsDecl =
+ VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly;
+ Diag(VD->getLocation(),
+ IsDecl ? diag::note_previous_decl : diag::note_defined_here)
+ << VD;
+ return ExprError();
+ }
+
+ VarDecl *CanonicalVD = VD->getCanonicalDecl();
+ NamedDecl *ND = cast<NamedDecl>(CanonicalVD);
+ // OpenMP [2.9.2, Restrictions, C/C++, p.2]
+ // A threadprivate directive for file-scope variables must appear outside
+ // any definition or declaration.
+ if (CanonicalVD->getDeclContext()->isTranslationUnit() &&
+ !getCurLexicalContext()->isTranslationUnit()) {
+ Diag(Id.getLoc(), diag::err_omp_var_scope)
+ << getOpenMPDirectiveName(OMPD_threadprivate) << VD;
+ bool IsDecl =
+ VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly;
+ Diag(VD->getLocation(),
+ IsDecl ? diag::note_previous_decl : diag::note_defined_here)
+ << VD;
+ return ExprError();
+ }
+ // OpenMP [2.9.2, Restrictions, C/C++, p.3]
+ // A threadprivate directive for static class member variables must appear
+ // in the class definition, in the same scope in which the member
+ // variables are declared.
+ if (CanonicalVD->isStaticDataMember() &&
+ !CanonicalVD->getDeclContext()->Equals(getCurLexicalContext())) {
+ Diag(Id.getLoc(), diag::err_omp_var_scope)
+ << getOpenMPDirectiveName(OMPD_threadprivate) << VD;
+ bool IsDecl =
+ VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly;
+ Diag(VD->getLocation(),
+ IsDecl ? diag::note_previous_decl : diag::note_defined_here)
+ << VD;
+ return ExprError();
+ }
+ // OpenMP [2.9.2, Restrictions, C/C++, p.4]
+ // A threadprivate directive for namespace-scope variables must appear
+ // outside any definition or declaration other than the namespace
+ // definition itself.
+ if (CanonicalVD->getDeclContext()->isNamespace() &&
+ (!getCurLexicalContext()->isFileContext() ||
+ !getCurLexicalContext()->Encloses(CanonicalVD->getDeclContext()))) {
+ Diag(Id.getLoc(), diag::err_omp_var_scope)
+ << getOpenMPDirectiveName(OMPD_threadprivate) << VD;
+ bool IsDecl =
+ VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly;
+ Diag(VD->getLocation(),
+ IsDecl ? diag::note_previous_decl : diag::note_defined_here)
+ << VD;
+ return ExprError();
+ }
+ // OpenMP [2.9.2, Restrictions, C/C++, p.6]
+ // A threadprivate directive for static block-scope variables must appear
+ // in the scope of the variable and not in a nested scope.
+ if (CanonicalVD->isStaticLocal() && CurScope &&
+ !isDeclInScope(ND, getCurLexicalContext(), CurScope)) {
+ Diag(Id.getLoc(), diag::err_omp_var_scope)
+ << getOpenMPDirectiveName(OMPD_threadprivate) << VD;
+ bool IsDecl =
+ VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly;
+ Diag(VD->getLocation(),
+ IsDecl ? diag::note_previous_decl : diag::note_defined_here)
+ << VD;
+ return ExprError();
+ }
+
+ // OpenMP [2.9.2, Restrictions, C/C++, p.2-6]
+ // A threadprivate directive must lexically precede all references to any
+ // of the variables in its list.
+ if (VD->isUsed() && !DSAStack->isThreadPrivate(VD)) {
+ Diag(Id.getLoc(), diag::err_omp_var_used)
+ << getOpenMPDirectiveName(OMPD_threadprivate) << VD;
+ return ExprError();
+ }
+
+ QualType ExprType = VD->getType().getNonReferenceType();
+ ExprResult DE = buildDeclRefExpr(*this, VD, ExprType, Id.getLoc());
+ return DE;
+}
+
+Sema::DeclGroupPtrTy
+Sema::ActOnOpenMPThreadprivateDirective(SourceLocation Loc,
+ ArrayRef<Expr *> VarList) {
+ if (OMPThreadPrivateDecl *D = CheckOMPThreadPrivateDecl(Loc, VarList)) {
+ CurContext->addDecl(D);
+ return DeclGroupPtrTy::make(DeclGroupRef(D));
+ }
+ return DeclGroupPtrTy();
+}
+
+namespace {
+class LocalVarRefChecker : public ConstStmtVisitor<LocalVarRefChecker, bool> {
+ Sema &SemaRef;
+
+public:
+ bool VisitDeclRefExpr(const DeclRefExpr *E) {
+ if (auto VD = dyn_cast<VarDecl>(E->getDecl())) {
+ if (VD->hasLocalStorage()) {
+ SemaRef.Diag(E->getLocStart(),
+ diag::err_omp_local_var_in_threadprivate_init)
+ << E->getSourceRange();
+ SemaRef.Diag(VD->getLocation(), diag::note_defined_here)
+ << VD << VD->getSourceRange();
+ return true;
+ }
+ }
+ return false;
+ }
+ bool VisitStmt(const Stmt *S) {
+ for (auto Child : S->children()) {
+ if (Child && Visit(Child))
+ return true;
+ }
+ return false;
+ }
+ explicit LocalVarRefChecker(Sema &SemaRef) : SemaRef(SemaRef) {}
+};
+} // namespace
+
+OMPThreadPrivateDecl *
+Sema::CheckOMPThreadPrivateDecl(SourceLocation Loc, ArrayRef<Expr *> VarList) {
+ SmallVector<Expr *, 8> Vars;
+ for (auto &RefExpr : VarList) {
+ DeclRefExpr *DE = cast<DeclRefExpr>(RefExpr);
+ VarDecl *VD = cast<VarDecl>(DE->getDecl());
+ SourceLocation ILoc = DE->getExprLoc();
+
+ QualType QType = VD->getType();
+ if (QType->isDependentType() || QType->isInstantiationDependentType()) {
+ // It will be analyzed later.
+ Vars.push_back(DE);
+ continue;
+ }
+
+ // OpenMP [2.9.2, Restrictions, C/C++, p.10]
+ // A threadprivate variable must not have an incomplete type.
+ if (RequireCompleteType(ILoc, VD->getType(),
+ diag::err_omp_threadprivate_incomplete_type)) {
+ continue;
+ }
+
+ // OpenMP [2.9.2, Restrictions, C/C++, p.10]
+ // A threadprivate variable must not have a reference type.
+ if (VD->getType()->isReferenceType()) {
+ Diag(ILoc, diag::err_omp_ref_type_arg)
+ << getOpenMPDirectiveName(OMPD_threadprivate) << VD->getType();
+ bool IsDecl =
+ VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly;
+ Diag(VD->getLocation(),
+ IsDecl ? diag::note_previous_decl : diag::note_defined_here)
+ << VD;
+ continue;
+ }
+
+ // Check if this is a TLS variable.
+ if (VD->getTLSKind() != VarDecl::TLS_None ||
+ (VD->getStorageClass() == SC_Register && VD->hasAttr<AsmLabelAttr>() &&
+ !VD->isLocalVarDecl())) {
+ Diag(ILoc, diag::err_omp_var_thread_local)
+ << VD << ((VD->getTLSKind() != VarDecl::TLS_None) ? 0 : 1);
+ bool IsDecl =
+ VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly;
+ Diag(VD->getLocation(),
+ IsDecl ? diag::note_previous_decl : diag::note_defined_here)
+ << VD;
+ continue;
+ }
+
+ // Check if initial value of threadprivate variable reference variable with
+ // local storage (it is not supported by runtime).
+ if (auto Init = VD->getAnyInitializer()) {
+ LocalVarRefChecker Checker(*this);
+ if (Checker.Visit(Init))
+ continue;
+ }
+
+ Vars.push_back(RefExpr);
+ DSAStack->addDSA(VD, DE, OMPC_threadprivate);
+ VD->addAttr(OMPThreadPrivateDeclAttr::CreateImplicit(
+ Context, SourceRange(Loc, Loc)));
+ if (auto *ML = Context.getASTMutationListener())
+ ML->DeclarationMarkedOpenMPThreadPrivate(VD);
+ }
+ OMPThreadPrivateDecl *D = nullptr;
+ if (!Vars.empty()) {
+ D = OMPThreadPrivateDecl::Create(Context, getCurLexicalContext(), Loc,
+ Vars);
+ D->setAccess(AS_public);
+ }
+ return D;
+}
+
+static void ReportOriginalDSA(Sema &SemaRef, DSAStackTy *Stack,
+ const VarDecl *VD, DSAStackTy::DSAVarData DVar,
+ bool IsLoopIterVar = false) {
+ if (DVar.RefExpr) {
+ SemaRef.Diag(DVar.RefExpr->getExprLoc(), diag::note_omp_explicit_dsa)
+ << getOpenMPClauseName(DVar.CKind);
+ return;
+ }
+ enum {
+ PDSA_StaticMemberShared,
+ PDSA_StaticLocalVarShared,
+ PDSA_LoopIterVarPrivate,
+ PDSA_LoopIterVarLinear,
+ PDSA_LoopIterVarLastprivate,
+ PDSA_ConstVarShared,
+ PDSA_GlobalVarShared,
+ PDSA_TaskVarFirstprivate,
+ PDSA_LocalVarPrivate,
+ PDSA_Implicit
+ } Reason = PDSA_Implicit;
+ bool ReportHint = false;
+ auto ReportLoc = VD->getLocation();
+ if (IsLoopIterVar) {
+ if (DVar.CKind == OMPC_private)
+ Reason = PDSA_LoopIterVarPrivate;
+ else if (DVar.CKind == OMPC_lastprivate)
+ Reason = PDSA_LoopIterVarLastprivate;
+ else
+ Reason = PDSA_LoopIterVarLinear;
+ } else if (DVar.DKind == OMPD_task && DVar.CKind == OMPC_firstprivate) {
+ Reason = PDSA_TaskVarFirstprivate;
+ ReportLoc = DVar.ImplicitDSALoc;
+ } else if (VD->isStaticLocal())
+ Reason = PDSA_StaticLocalVarShared;
+ else if (VD->isStaticDataMember())
+ Reason = PDSA_StaticMemberShared;
+ else if (VD->isFileVarDecl())
+ Reason = PDSA_GlobalVarShared;
+ else if (VD->getType().isConstant(SemaRef.getASTContext()))
+ Reason = PDSA_ConstVarShared;
+ else if (VD->isLocalVarDecl() && DVar.CKind == OMPC_private) {
+ ReportHint = true;
+ Reason = PDSA_LocalVarPrivate;
+ }
+ if (Reason != PDSA_Implicit) {
+ SemaRef.Diag(ReportLoc, diag::note_omp_predetermined_dsa)
+ << Reason << ReportHint
+ << getOpenMPDirectiveName(Stack->getCurrentDirective());
+ } else if (DVar.ImplicitDSALoc.isValid()) {
+ SemaRef.Diag(DVar.ImplicitDSALoc, diag::note_omp_implicit_dsa)
+ << getOpenMPClauseName(DVar.CKind);
+ }
+}
+
+namespace {
+class DSAAttrChecker : public StmtVisitor<DSAAttrChecker, void> {
+ DSAStackTy *Stack;
+ Sema &SemaRef;
+ bool ErrorFound;
+ CapturedStmt *CS;
+ llvm::SmallVector<Expr *, 8> ImplicitFirstprivate;
+ llvm::DenseMap<VarDecl *, Expr *> VarsWithInheritedDSA;
+
+public:
+ void VisitDeclRefExpr(DeclRefExpr *E) {
+ if (auto *VD = dyn_cast<VarDecl>(E->getDecl())) {
+ // Skip internally declared variables.
+ if (VD->isLocalVarDecl() && !CS->capturesVariable(VD))
+ return;
+
+ auto DVar = Stack->getTopDSA(VD, false);
+ // Check if the variable has explicit DSA set and stop analysis if it so.
+ if (DVar.RefExpr) return;
+
+ auto ELoc = E->getExprLoc();
+ auto DKind = Stack->getCurrentDirective();
+ // The default(none) clause requires that each variable that is referenced
+ // in the construct, and does not have a predetermined data-sharing
+ // attribute, must have its data-sharing attribute explicitly determined
+ // by being listed in a data-sharing attribute clause.
+ if (DVar.CKind == OMPC_unknown && Stack->getDefaultDSA() == DSA_none &&
+ isParallelOrTaskRegion(DKind) &&
+ VarsWithInheritedDSA.count(VD) == 0) {
+ VarsWithInheritedDSA[VD] = E;
+ return;
+ }
+
+ // OpenMP [2.9.3.6, Restrictions, p.2]
+ // A list item that appears in a reduction clause of the innermost
+ // enclosing worksharing or parallel construct may not be accessed in an
+ // explicit task.
+ DVar = Stack->hasInnermostDSA(VD, MatchesAnyClause(OMPC_reduction),
+ [](OpenMPDirectiveKind K) -> bool {
+ return isOpenMPParallelDirective(K) ||
+ isOpenMPWorksharingDirective(K) ||
+ isOpenMPTeamsDirective(K);
+ },
+ false);
+ if (DKind == OMPD_task && DVar.CKind == OMPC_reduction) {
+ ErrorFound = true;
+ SemaRef.Diag(ELoc, diag::err_omp_reduction_in_task);
+ ReportOriginalDSA(SemaRef, Stack, VD, DVar);
+ return;
+ }
+
+ // Define implicit data-sharing attributes for task.
+ DVar = Stack->getImplicitDSA(VD, false);
+ if (DKind == OMPD_task && DVar.CKind != OMPC_shared)
+ ImplicitFirstprivate.push_back(E);
+ }
+ }
+ void VisitOMPExecutableDirective(OMPExecutableDirective *S) {
+ for (auto *C : S->clauses()) {
+ // Skip analysis of arguments of implicitly defined firstprivate clause
+ // for task directives.
+ if (C && (!isa<OMPFirstprivateClause>(C) || C->getLocStart().isValid()))
+ for (auto *CC : C->children()) {
+ if (CC)
+ Visit(CC);
+ }
+ }
+ }
+ void VisitStmt(Stmt *S) {
+ for (auto *C : S->children()) {
+ if (C && !isa<OMPExecutableDirective>(C))
+ Visit(C);
+ }
+ }
+
+ bool isErrorFound() { return ErrorFound; }
+ ArrayRef<Expr *> getImplicitFirstprivate() { return ImplicitFirstprivate; }
+ llvm::DenseMap<VarDecl *, Expr *> &getVarsWithInheritedDSA() {
+ return VarsWithInheritedDSA;
+ }
+
+ DSAAttrChecker(DSAStackTy *S, Sema &SemaRef, CapturedStmt *CS)
+ : Stack(S), SemaRef(SemaRef), ErrorFound(false), CS(CS) {}
+};
+} // namespace
+
+void Sema::ActOnOpenMPRegionStart(OpenMPDirectiveKind DKind, Scope *CurScope) {
+ switch (DKind) {
+ case OMPD_parallel: {
+ QualType KmpInt32Ty = Context.getIntTypeForBitwidth(32, 1);
+ QualType KmpInt32PtrTy = Context.getPointerType(KmpInt32Ty);
+ Sema::CapturedParamNameType Params[] = {
+ std::make_pair(".global_tid.", KmpInt32PtrTy),
+ std::make_pair(".bound_tid.", KmpInt32PtrTy),
+ std::make_pair(StringRef(), QualType()) // __context with shared vars
+ };
+ ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
+ Params);
+ break;
+ }
+ case OMPD_simd: {
+ Sema::CapturedParamNameType Params[] = {
+ std::make_pair(StringRef(), QualType()) // __context with shared vars
+ };
+ ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
+ Params);
+ break;
+ }
+ case OMPD_for: {
+ Sema::CapturedParamNameType Params[] = {
+ std::make_pair(StringRef(), QualType()) // __context with shared vars
+ };
+ ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
+ Params);
+ break;
+ }
+ case OMPD_for_simd: {
+ Sema::CapturedParamNameType Params[] = {
+ std::make_pair(StringRef(), QualType()) // __context with shared vars
+ };
+ ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
+ Params);
+ break;
+ }
+ case OMPD_sections: {
+ Sema::CapturedParamNameType Params[] = {
+ std::make_pair(StringRef(), QualType()) // __context with shared vars
+ };
+ ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
+ Params);
+ break;
+ }
+ case OMPD_section: {
+ Sema::CapturedParamNameType Params[] = {
+ std::make_pair(StringRef(), QualType()) // __context with shared vars
+ };
+ ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
+ Params);
+ break;
+ }
+ case OMPD_single: {
+ Sema::CapturedParamNameType Params[] = {
+ std::make_pair(StringRef(), QualType()) // __context with shared vars
+ };
+ ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
+ Params);
+ break;
+ }
+ case OMPD_master: {
+ Sema::CapturedParamNameType Params[] = {
+ std::make_pair(StringRef(), QualType()) // __context with shared vars
+ };
+ ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
+ Params);
+ break;
+ }
+ case OMPD_critical: {
+ Sema::CapturedParamNameType Params[] = {
+ std::make_pair(StringRef(), QualType()) // __context with shared vars
+ };
+ ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
+ Params);
+ break;
+ }
+ case OMPD_parallel_for: {
+ QualType KmpInt32Ty = Context.getIntTypeForBitwidth(32, 1);
+ QualType KmpInt32PtrTy = Context.getPointerType(KmpInt32Ty);
+ Sema::CapturedParamNameType Params[] = {
+ std::make_pair(".global_tid.", KmpInt32PtrTy),
+ std::make_pair(".bound_tid.", KmpInt32PtrTy),
+ std::make_pair(StringRef(), QualType()) // __context with shared vars
+ };
+ ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
+ Params);
+ break;
+ }
+ case OMPD_parallel_for_simd: {
+ QualType KmpInt32Ty = Context.getIntTypeForBitwidth(32, 1);
+ QualType KmpInt32PtrTy = Context.getPointerType(KmpInt32Ty);
+ Sema::CapturedParamNameType Params[] = {
+ std::make_pair(".global_tid.", KmpInt32PtrTy),
+ std::make_pair(".bound_tid.", KmpInt32PtrTy),
+ std::make_pair(StringRef(), QualType()) // __context with shared vars
+ };
+ ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
+ Params);
+ break;
+ }
+ case OMPD_parallel_sections: {
+ QualType KmpInt32Ty = Context.getIntTypeForBitwidth(32, 1);
+ QualType KmpInt32PtrTy = Context.getPointerType(KmpInt32Ty);
+ Sema::CapturedParamNameType Params[] = {
+ std::make_pair(".global_tid.", KmpInt32PtrTy),
+ std::make_pair(".bound_tid.", KmpInt32PtrTy),
+ std::make_pair(StringRef(), QualType()) // __context with shared vars
+ };
+ ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
+ Params);
+ break;
+ }
+ case OMPD_task: {
+ QualType KmpInt32Ty = Context.getIntTypeForBitwidth(32, 1);
+ QualType Args[] = {Context.VoidPtrTy.withConst().withRestrict()};
+ FunctionProtoType::ExtProtoInfo EPI;
+ EPI.Variadic = true;
+ QualType CopyFnType = Context.getFunctionType(Context.VoidTy, Args, EPI);
+ Sema::CapturedParamNameType Params[] = {
+ std::make_pair(".global_tid.", KmpInt32Ty),
+ std::make_pair(".part_id.", KmpInt32Ty),
+ std::make_pair(".privates.",
+ Context.VoidPtrTy.withConst().withRestrict()),
+ std::make_pair(
+ ".copy_fn.",
+ Context.getPointerType(CopyFnType).withConst().withRestrict()),
+ std::make_pair(StringRef(), QualType()) // __context with shared vars
+ };
+ ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
+ Params);
+ // Mark this captured region as inlined, because we don't use outlined
+ // function directly.
+ getCurCapturedRegion()->TheCapturedDecl->addAttr(
+ AlwaysInlineAttr::CreateImplicit(
+ Context, AlwaysInlineAttr::Keyword_forceinline, SourceRange()));
+ break;
+ }
+ case OMPD_ordered: {
+ Sema::CapturedParamNameType Params[] = {
+ std::make_pair(StringRef(), QualType()) // __context with shared vars
+ };
+ ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
+ Params);
+ break;
+ }
+ case OMPD_atomic: {
+ Sema::CapturedParamNameType Params[] = {
+ std::make_pair(StringRef(), QualType()) // __context with shared vars
+ };
+ ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
+ Params);
+ break;
+ }
+ case OMPD_target: {
+ Sema::CapturedParamNameType Params[] = {
+ std::make_pair(StringRef(), QualType()) // __context with shared vars
+ };
+ ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
+ Params);
+ break;
+ }
+ case OMPD_teams: {
+ QualType KmpInt32Ty = Context.getIntTypeForBitwidth(32, 1);
+ QualType KmpInt32PtrTy = Context.getPointerType(KmpInt32Ty);
+ Sema::CapturedParamNameType Params[] = {
+ std::make_pair(".global_tid.", KmpInt32PtrTy),
+ std::make_pair(".bound_tid.", KmpInt32PtrTy),
+ std::make_pair(StringRef(), QualType()) // __context with shared vars
+ };
+ ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
+ Params);
+ break;
+ }
+ case OMPD_threadprivate:
+ case OMPD_taskyield:
+ case OMPD_barrier:
+ case OMPD_taskwait:
+ case OMPD_flush:
+ llvm_unreachable("OpenMP Directive is not allowed");
+ case OMPD_unknown:
+ llvm_unreachable("Unknown OpenMP directive");
+ }
+}
+
+StmtResult Sema::ActOnOpenMPRegionEnd(StmtResult S,
+ ArrayRef<OMPClause *> Clauses) {
+ if (!S.isUsable()) {
+ ActOnCapturedRegionError();
+ return StmtError();
+ }
+ // This is required for proper codegen.
+ for (auto *Clause : Clauses) {
+ if (isOpenMPPrivate(Clause->getClauseKind()) ||
+ Clause->getClauseKind() == OMPC_copyprivate) {
+ // Mark all variables in private list clauses as used in inner region.
+ for (auto *VarRef : Clause->children()) {
+ if (auto *E = cast_or_null<Expr>(VarRef)) {
+ MarkDeclarationsReferencedInExpr(E);
+ }
+ }
+ } else if (isParallelOrTaskRegion(DSAStack->getCurrentDirective()) &&
+ Clause->getClauseKind() == OMPC_schedule) {
+ // Mark all variables in private list clauses as used in inner region.
+ // Required for proper codegen of combined directives.
+ // TODO: add processing for other clauses.
+ if (auto *E = cast_or_null<Expr>(
+ cast<OMPScheduleClause>(Clause)->getHelperChunkSize())) {
+ MarkDeclarationsReferencedInExpr(E);
+ }
+ }
+ }
+ return ActOnCapturedRegionEnd(S.get());
+}
+
+static bool CheckNestingOfRegions(Sema &SemaRef, DSAStackTy *Stack,
+ OpenMPDirectiveKind CurrentRegion,
+ const DeclarationNameInfo &CurrentName,
+ SourceLocation StartLoc) {
+ // Allowed nesting of constructs
+ // +------------------+-----------------+------------------------------------+
+ // | Parent directive | Child directive | Closely (!), No-Closely(+), Both(*)|
+ // +------------------+-----------------+------------------------------------+
+ // | parallel | parallel | * |
+ // | parallel | for | * |
+ // | parallel | for simd | * |
+ // | parallel | master | * |
+ // | parallel | critical | * |
+ // | parallel | simd | * |
+ // | parallel | sections | * |
+ // | parallel | section | + |
+ // | parallel | single | * |
+ // | parallel | parallel for | * |
+ // | parallel |parallel for simd| * |
+ // | parallel |parallel sections| * |
+ // | parallel | task | * |
+ // | parallel | taskyield | * |
+ // | parallel | barrier | * |
+ // | parallel | taskwait | * |
+ // | parallel | flush | * |
+ // | parallel | ordered | + |
+ // | parallel | atomic | * |
+ // | parallel | target | * |
+ // | parallel | teams | + |
+ // +------------------+-----------------+------------------------------------+
+ // | for | parallel | * |
+ // | for | for | + |
+ // | for | for simd | + |
+ // | for | master | + |
+ // | for | critical | * |
+ // | for | simd | * |
+ // | for | sections | + |
+ // | for | section | + |
+ // | for | single | + |
+ // | for | parallel for | * |
+ // | for |parallel for simd| * |
+ // | for |parallel sections| * |
+ // | for | task | * |
+ // | for | taskyield | * |
+ // | for | barrier | + |
+ // | for | taskwait | * |
+ // | for | flush | * |
+ // | for | ordered | * (if construct is ordered) |
+ // | for | atomic | * |
+ // | for | target | * |
+ // | for | teams | + |
+ // +------------------+-----------------+------------------------------------+
+ // | master | parallel | * |
+ // | master | for | + |
+ // | master | for simd | + |
+ // | master | master | * |
+ // | master | critical | * |
+ // | master | simd | * |
+ // | master | sections | + |
+ // | master | section | + |
+ // | master | single | + |
+ // | master | parallel for | * |
+ // | master |parallel for simd| * |
+ // | master |parallel sections| * |
+ // | master | task | * |
+ // | master | taskyield | * |
+ // | master | barrier | + |
+ // | master | taskwait | * |
+ // | master | flush | * |
+ // | master | ordered | + |
+ // | master | atomic | * |
+ // | master | target | * |
+ // | master | teams | + |
+ // +------------------+-----------------+------------------------------------+
+ // | critical | parallel | * |
+ // | critical | for | + |
+ // | critical | for simd | + |
+ // | critical | master | * |
+ // | critical | critical | * (should have different names) |
+ // | critical | simd | * |
+ // | critical | sections | + |
+ // | critical | section | + |
+ // | critical | single | + |
+ // | critical | parallel for | * |
+ // | critical |parallel for simd| * |
+ // | critical |parallel sections| * |
+ // | critical | task | * |
+ // | critical | taskyield | * |
+ // | critical | barrier | + |
+ // | critical | taskwait | * |
+ // | critical | ordered | + |
+ // | critical | atomic | * |
+ // | critical | target | * |
+ // | critical | teams | + |
+ // +------------------+-----------------+------------------------------------+
+ // | simd | parallel | |
+ // | simd | for | |
+ // | simd | for simd | |
+ // | simd | master | |
+ // | simd | critical | |
+ // | simd | simd | |
+ // | simd | sections | |
+ // | simd | section | |
+ // | simd | single | |
+ // | simd | parallel for | |
+ // | simd |parallel for simd| |
+ // | simd |parallel sections| |
+ // | simd | task | |
+ // | simd | taskyield | |
+ // | simd | barrier | |
+ // | simd | taskwait | |
+ // | simd | flush | |
+ // | simd | ordered | |
+ // | simd | atomic | |
+ // | simd | target | |
+ // | simd | teams | |
+ // +------------------+-----------------+------------------------------------+
+ // | for simd | parallel | |
+ // | for simd | for | |
+ // | for simd | for simd | |
+ // | for simd | master | |
+ // | for simd | critical | |
+ // | for simd | simd | |
+ // | for simd | sections | |
+ // | for simd | section | |
+ // | for simd | single | |
+ // | for simd | parallel for | |
+ // | for simd |parallel for simd| |
+ // | for simd |parallel sections| |
+ // | for simd | task | |
+ // | for simd | taskyield | |
+ // | for simd | barrier | |
+ // | for simd | taskwait | |
+ // | for simd | flush | |
+ // | for simd | ordered | |
+ // | for simd | atomic | |
+ // | for simd | target | |
+ // | for simd | teams | |
+ // +------------------+-----------------+------------------------------------+
+ // | parallel for simd| parallel | |
+ // | parallel for simd| for | |
+ // | parallel for simd| for simd | |
+ // | parallel for simd| master | |
+ // | parallel for simd| critical | |
+ // | parallel for simd| simd | |
+ // | parallel for simd| sections | |
+ // | parallel for simd| section | |
+ // | parallel for simd| single | |
+ // | parallel for simd| parallel for | |
+ // | parallel for simd|parallel for simd| |
+ // | parallel for simd|parallel sections| |
+ // | parallel for simd| task | |
+ // | parallel for simd| taskyield | |
+ // | parallel for simd| barrier | |
+ // | parallel for simd| taskwait | |
+ // | parallel for simd| flush | |
+ // | parallel for simd| ordered | |
+ // | parallel for simd| atomic | |
+ // | parallel for simd| target | |
+ // | parallel for simd| teams | |
+ // +------------------+-----------------+------------------------------------+
+ // | sections | parallel | * |
+ // | sections | for | + |
+ // | sections | for simd | + |
+ // | sections | master | + |
+ // | sections | critical | * |
+ // | sections | simd | * |
+ // | sections | sections | + |
+ // | sections | section | * |
+ // | sections | single | + |
+ // | sections | parallel for | * |
+ // | sections |parallel for simd| * |
+ // | sections |parallel sections| * |
+ // | sections | task | * |
+ // | sections | taskyield | * |
+ // | sections | barrier | + |
+ // | sections | taskwait | * |
+ // | sections | flush | * |
+ // | sections | ordered | + |
+ // | sections | atomic | * |
+ // | sections | target | * |
+ // | sections | teams | + |
+ // +------------------+-----------------+------------------------------------+
+ // | section | parallel | * |
+ // | section | for | + |
+ // | section | for simd | + |
+ // | section | master | + |
+ // | section | critical | * |
+ // | section | simd | * |
+ // | section | sections | + |
+ // | section | section | + |
+ // | section | single | + |
+ // | section | parallel for | * |
+ // | section |parallel for simd| * |
+ // | section |parallel sections| * |
+ // | section | task | * |
+ // | section | taskyield | * |
+ // | section | barrier | + |
+ // | section | taskwait | * |
+ // | section | flush | * |
+ // | section | ordered | + |
+ // | section | atomic | * |
+ // | section | target | * |
+ // | section | teams | + |
+ // +------------------+-----------------+------------------------------------+
+ // | single | parallel | * |
+ // | single | for | + |
+ // | single | for simd | + |
+ // | single | master | + |
+ // | single | critical | * |
+ // | single | simd | * |
+ // | single | sections | + |
+ // | single | section | + |
+ // | single | single | + |
+ // | single | parallel for | * |
+ // | single |parallel for simd| * |
+ // | single |parallel sections| * |
+ // | single | task | * |
+ // | single | taskyield | * |
+ // | single | barrier | + |
+ // | single | taskwait | * |
+ // | single | flush | * |
+ // | single | ordered | + |
+ // | single | atomic | * |
+ // | single | target | * |
+ // | single | teams | + |
+ // +------------------+-----------------+------------------------------------+
+ // | parallel for | parallel | * |
+ // | parallel for | for | + |
+ // | parallel for | for simd | + |
+ // | parallel for | master | + |
+ // | parallel for | critical | * |
+ // | parallel for | simd | * |
+ // | parallel for | sections | + |
+ // | parallel for | section | + |
+ // | parallel for | single | + |
+ // | parallel for | parallel for | * |
+ // | parallel for |parallel for simd| * |
+ // | parallel for |parallel sections| * |
+ // | parallel for | task | * |
+ // | parallel for | taskyield | * |
+ // | parallel for | barrier | + |
+ // | parallel for | taskwait | * |
+ // | parallel for | flush | * |
+ // | parallel for | ordered | * (if construct is ordered) |
+ // | parallel for | atomic | * |
+ // | parallel for | target | * |
+ // | parallel for | teams | + |
+ // +------------------+-----------------+------------------------------------+
+ // | parallel sections| parallel | * |
+ // | parallel sections| for | + |
+ // | parallel sections| for simd | + |
+ // | parallel sections| master | + |
+ // | parallel sections| critical | + |
+ // | parallel sections| simd | * |
+ // | parallel sections| sections | + |
+ // | parallel sections| section | * |
+ // | parallel sections| single | + |
+ // | parallel sections| parallel for | * |
+ // | parallel sections|parallel for simd| * |
+ // | parallel sections|parallel sections| * |
+ // | parallel sections| task | * |
+ // | parallel sections| taskyield | * |
+ // | parallel sections| barrier | + |
+ // | parallel sections| taskwait | * |
+ // | parallel sections| flush | * |
+ // | parallel sections| ordered | + |
+ // | parallel sections| atomic | * |
+ // | parallel sections| target | * |
+ // | parallel sections| teams | + |
+ // +------------------+-----------------+------------------------------------+
+ // | task | parallel | * |
+ // | task | for | + |
+ // | task | for simd | + |
+ // | task | master | + |
+ // | task | critical | * |
+ // | task | simd | * |
+ // | task | sections | + |
+ // | task | section | + |
+ // | task | single | + |
+ // | task | parallel for | * |
+ // | task |parallel for simd| * |
+ // | task |parallel sections| * |
+ // | task | task | * |
+ // | task | taskyield | * |
+ // | task | barrier | + |
+ // | task | taskwait | * |
+ // | task | flush | * |
+ // | task | ordered | + |
+ // | task | atomic | * |
+ // | task | target | * |
+ // | task | teams | + |
+ // +------------------+-----------------+------------------------------------+
+ // | ordered | parallel | * |
+ // | ordered | for | + |
+ // | ordered | for simd | + |
+ // | ordered | master | * |
+ // | ordered | critical | * |
+ // | ordered | simd | * |
+ // | ordered | sections | + |
+ // | ordered | section | + |
+ // | ordered | single | + |
+ // | ordered | parallel for | * |
+ // | ordered |parallel for simd| * |
+ // | ordered |parallel sections| * |
+ // | ordered | task | * |
+ // | ordered | taskyield | * |
+ // | ordered | barrier | + |
+ // | ordered | taskwait | * |
+ // | ordered | flush | * |
+ // | ordered | ordered | + |
+ // | ordered | atomic | * |
+ // | ordered | target | * |
+ // | ordered | teams | + |
+ // +------------------+-----------------+------------------------------------+
+ // | atomic | parallel | |
+ // | atomic | for | |
+ // | atomic | for simd | |
+ // | atomic | master | |
+ // | atomic | critical | |
+ // | atomic | simd | |
+ // | atomic | sections | |
+ // | atomic | section | |
+ // | atomic | single | |
+ // | atomic | parallel for | |
+ // | atomic |parallel for simd| |
+ // | atomic |parallel sections| |
+ // | atomic | task | |
+ // | atomic | taskyield | |
+ // | atomic | barrier | |
+ // | atomic | taskwait | |
+ // | atomic | flush | |
+ // | atomic | ordered | |
+ // | atomic | atomic | |
+ // | atomic | target | |
+ // | atomic | teams | |
+ // +------------------+-----------------+------------------------------------+
+ // | target | parallel | * |
+ // | target | for | * |
+ // | target | for simd | * |
+ // | target | master | * |
+ // | target | critical | * |
+ // | target | simd | * |
+ // | target | sections | * |
+ // | target | section | * |
+ // | target | single | * |
+ // | target | parallel for | * |
+ // | target |parallel for simd| * |
+ // | target |parallel sections| * |
+ // | target | task | * |
+ // | target | taskyield | * |
+ // | target | barrier | * |
+ // | target | taskwait | * |
+ // | target | flush | * |
+ // | target | ordered | * |
+ // | target | atomic | * |
+ // | target | target | * |
+ // | target | teams | * |
+ // +------------------+-----------------+------------------------------------+
+ // | teams | parallel | * |
+ // | teams | for | + |
+ // | teams | for simd | + |
+ // | teams | master | + |
+ // | teams | critical | + |
+ // | teams | simd | + |
+ // | teams | sections | + |
+ // | teams | section | + |
+ // | teams | single | + |
+ // | teams | parallel for | * |
+ // | teams |parallel for simd| * |
+ // | teams |parallel sections| * |
+ // | teams | task | + |
+ // | teams | taskyield | + |
+ // | teams | barrier | + |
+ // | teams | taskwait | + |
+ // | teams | flush | + |
+ // | teams | ordered | + |
+ // | teams | atomic | + |
+ // | teams | target | + |
+ // | teams | teams | + |
+ // +------------------+-----------------+------------------------------------+
+ if (Stack->getCurScope()) {
+ auto ParentRegion = Stack->getParentDirective();
+ bool NestingProhibited = false;
+ bool CloseNesting = true;
+ enum {
+ NoRecommend,
+ ShouldBeInParallelRegion,
+ ShouldBeInOrderedRegion,
+ ShouldBeInTargetRegion
+ } Recommend = NoRecommend;
+ if (isOpenMPSimdDirective(ParentRegion)) {
+ // OpenMP [2.16, Nesting of Regions]
+ // OpenMP constructs may not be nested inside a simd region.
+ SemaRef.Diag(StartLoc, diag::err_omp_prohibited_region_simd);
+ return true;
+ }
+ if (ParentRegion == OMPD_atomic) {
+ // OpenMP [2.16, Nesting of Regions]
+ // OpenMP constructs may not be nested inside an atomic region.
+ SemaRef.Diag(StartLoc, diag::err_omp_prohibited_region_atomic);
+ return true;
+ }
+ if (CurrentRegion == OMPD_section) {
+ // OpenMP [2.7.2, sections Construct, Restrictions]
+ // Orphaned section directives are prohibited. That is, the section
+ // directives must appear within the sections construct and must not be
+ // encountered elsewhere in the sections region.
+ if (ParentRegion != OMPD_sections &&
+ ParentRegion != OMPD_parallel_sections) {
+ SemaRef.Diag(StartLoc, diag::err_omp_orphaned_section_directive)
+ << (ParentRegion != OMPD_unknown)
+ << getOpenMPDirectiveName(ParentRegion);
+ return true;
+ }
+ return false;
+ }
+ // Allow some constructs to be orphaned (they could be used in functions,
+ // called from OpenMP regions with the required preconditions).
+ if (ParentRegion == OMPD_unknown)
+ return false;
+ if (CurrentRegion == OMPD_master) {
+ // OpenMP [2.16, Nesting of Regions]
+ // A master region may not be closely nested inside a worksharing,
+ // atomic, or explicit task region.
+ NestingProhibited = isOpenMPWorksharingDirective(ParentRegion) ||
+ ParentRegion == OMPD_task;
+ } else if (CurrentRegion == OMPD_critical && CurrentName.getName()) {
+ // OpenMP [2.16, Nesting of Regions]
+ // A critical region may not be nested (closely or otherwise) inside a
+ // critical region with the same name. Note that this restriction is not
+ // sufficient to prevent deadlock.
+ SourceLocation PreviousCriticalLoc;
+ bool DeadLock =
+ Stack->hasDirective([CurrentName, &PreviousCriticalLoc](
+ OpenMPDirectiveKind K,
+ const DeclarationNameInfo &DNI,
+ SourceLocation Loc)
+ ->bool {
+ if (K == OMPD_critical &&
+ DNI.getName() == CurrentName.getName()) {
+ PreviousCriticalLoc = Loc;
+ return true;
+ } else
+ return false;
+ },
+ false /* skip top directive */);
+ if (DeadLock) {
+ SemaRef.Diag(StartLoc,
+ diag::err_omp_prohibited_region_critical_same_name)
+ << CurrentName.getName();
+ if (PreviousCriticalLoc.isValid())
+ SemaRef.Diag(PreviousCriticalLoc,
+ diag::note_omp_previous_critical_region);
+ return true;
+ }
+ } else if (CurrentRegion == OMPD_barrier) {
+ // OpenMP [2.16, Nesting of Regions]
+ // A barrier region may not be closely nested inside a worksharing,
+ // explicit task, critical, ordered, atomic, or master region.
+ NestingProhibited =
+ isOpenMPWorksharingDirective(ParentRegion) ||
+ ParentRegion == OMPD_task || ParentRegion == OMPD_master ||
+ ParentRegion == OMPD_critical || ParentRegion == OMPD_ordered;
+ } else if (isOpenMPWorksharingDirective(CurrentRegion) &&
+ !isOpenMPParallelDirective(CurrentRegion)) {
+ // OpenMP [2.16, Nesting of Regions]
+ // A worksharing region may not be closely nested inside a worksharing,
+ // explicit task, critical, ordered, atomic, or master region.
+ NestingProhibited =
+ isOpenMPWorksharingDirective(ParentRegion) ||
+ ParentRegion == OMPD_task || ParentRegion == OMPD_master ||
+ ParentRegion == OMPD_critical || ParentRegion == OMPD_ordered;
+ Recommend = ShouldBeInParallelRegion;
+ } else if (CurrentRegion == OMPD_ordered) {
+ // OpenMP [2.16, Nesting of Regions]
+ // An ordered region may not be closely nested inside a critical,
+ // atomic, or explicit task region.
+ // An ordered region must be closely nested inside a loop region (or
+ // parallel loop region) with an ordered clause.
+ NestingProhibited = ParentRegion == OMPD_critical ||
+ ParentRegion == OMPD_task ||
+ !Stack->isParentOrderedRegion();
+ Recommend = ShouldBeInOrderedRegion;
+ } else if (isOpenMPTeamsDirective(CurrentRegion)) {
+ // OpenMP [2.16, Nesting of Regions]
+ // If specified, a teams construct must be contained within a target
+ // construct.
+ NestingProhibited = ParentRegion != OMPD_target;
+ Recommend = ShouldBeInTargetRegion;
+ Stack->setParentTeamsRegionLoc(Stack->getConstructLoc());
+ }
+ if (!NestingProhibited && isOpenMPTeamsDirective(ParentRegion)) {
+ // OpenMP [2.16, Nesting of Regions]
+ // distribute, parallel, parallel sections, parallel workshare, and the
+ // parallel loop and parallel loop SIMD constructs are the only OpenMP
+ // constructs that can be closely nested in the teams region.
+ // TODO: add distribute directive.
+ NestingProhibited = !isOpenMPParallelDirective(CurrentRegion);
+ Recommend = ShouldBeInParallelRegion;
+ }
+ if (NestingProhibited) {
+ SemaRef.Diag(StartLoc, diag::err_omp_prohibited_region)
+ << CloseNesting << getOpenMPDirectiveName(ParentRegion) << Recommend
+ << getOpenMPDirectiveName(CurrentRegion);
+ return true;
+ }
+ }
+ return false;
+}
+
+StmtResult Sema::ActOnOpenMPExecutableDirective(OpenMPDirectiveKind Kind,
+ const DeclarationNameInfo &DirName,
+ ArrayRef<OMPClause *> Clauses,
+ Stmt *AStmt,
+ SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+ StmtResult Res = StmtError();
+ if (CheckNestingOfRegions(*this, DSAStack, Kind, DirName, StartLoc))
+ return StmtError();
+
+ llvm::SmallVector<OMPClause *, 8> ClausesWithImplicit;
+ llvm::DenseMap<VarDecl *, Expr *> VarsWithInheritedDSA;
+ bool ErrorFound = false;
+ ClausesWithImplicit.append(Clauses.begin(), Clauses.end());
+ if (AStmt) {
+ assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
+
+ // Check default data sharing attributes for referenced variables.
+ DSAAttrChecker DSAChecker(DSAStack, *this, cast<CapturedStmt>(AStmt));
+ DSAChecker.Visit(cast<CapturedStmt>(AStmt)->getCapturedStmt());
+ if (DSAChecker.isErrorFound())
+ return StmtError();
+ // Generate list of implicitly defined firstprivate variables.
+ VarsWithInheritedDSA = DSAChecker.getVarsWithInheritedDSA();
+
+ if (!DSAChecker.getImplicitFirstprivate().empty()) {
+ if (OMPClause *Implicit = ActOnOpenMPFirstprivateClause(
+ DSAChecker.getImplicitFirstprivate(), SourceLocation(),
+ SourceLocation(), SourceLocation())) {
+ ClausesWithImplicit.push_back(Implicit);
+ ErrorFound = cast<OMPFirstprivateClause>(Implicit)->varlist_size() !=
+ DSAChecker.getImplicitFirstprivate().size();
+ } else
+ ErrorFound = true;
+ }
+ }
+
+ switch (Kind) {
+ case OMPD_parallel:
+ Res = ActOnOpenMPParallelDirective(ClausesWithImplicit, AStmt, StartLoc,
+ EndLoc);
+ break;
+ case OMPD_simd:
+ Res = ActOnOpenMPSimdDirective(ClausesWithImplicit, AStmt, StartLoc, EndLoc,
+ VarsWithInheritedDSA);
+ break;
+ case OMPD_for:
+ Res = ActOnOpenMPForDirective(ClausesWithImplicit, AStmt, StartLoc, EndLoc,
+ VarsWithInheritedDSA);
+ break;
+ case OMPD_for_simd:
+ Res = ActOnOpenMPForSimdDirective(ClausesWithImplicit, AStmt, StartLoc,
+ EndLoc, VarsWithInheritedDSA);
+ break;
+ case OMPD_sections:
+ Res = ActOnOpenMPSectionsDirective(ClausesWithImplicit, AStmt, StartLoc,
+ EndLoc);
+ break;
+ case OMPD_section:
+ assert(ClausesWithImplicit.empty() &&
+ "No clauses are allowed for 'omp section' directive");
+ Res = ActOnOpenMPSectionDirective(AStmt, StartLoc, EndLoc);
+ break;
+ case OMPD_single:
+ Res = ActOnOpenMPSingleDirective(ClausesWithImplicit, AStmt, StartLoc,
+ EndLoc);
+ break;
+ case OMPD_master:
+ assert(ClausesWithImplicit.empty() &&
+ "No clauses are allowed for 'omp master' directive");
+ Res = ActOnOpenMPMasterDirective(AStmt, StartLoc, EndLoc);
+ break;
+ case OMPD_critical:
+ assert(ClausesWithImplicit.empty() &&
+ "No clauses are allowed for 'omp critical' directive");
+ Res = ActOnOpenMPCriticalDirective(DirName, AStmt, StartLoc, EndLoc);
+ break;
+ case OMPD_parallel_for:
+ Res = ActOnOpenMPParallelForDirective(ClausesWithImplicit, AStmt, StartLoc,
+ EndLoc, VarsWithInheritedDSA);
+ break;
+ case OMPD_parallel_for_simd:
+ Res = ActOnOpenMPParallelForSimdDirective(
+ ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
+ break;
+ case OMPD_parallel_sections:
+ Res = ActOnOpenMPParallelSectionsDirective(ClausesWithImplicit, AStmt,
+ StartLoc, EndLoc);
+ break;
+ case OMPD_task:
+ Res =
+ ActOnOpenMPTaskDirective(ClausesWithImplicit, AStmt, StartLoc, EndLoc);
+ break;
+ case OMPD_taskyield:
+ assert(ClausesWithImplicit.empty() &&
+ "No clauses are allowed for 'omp taskyield' directive");
+ assert(AStmt == nullptr &&
+ "No associated statement allowed for 'omp taskyield' directive");
+ Res = ActOnOpenMPTaskyieldDirective(StartLoc, EndLoc);
+ break;
+ case OMPD_barrier:
+ assert(ClausesWithImplicit.empty() &&
+ "No clauses are allowed for 'omp barrier' directive");
+ assert(AStmt == nullptr &&
+ "No associated statement allowed for 'omp barrier' directive");
+ Res = ActOnOpenMPBarrierDirective(StartLoc, EndLoc);
+ break;
+ case OMPD_taskwait:
+ assert(ClausesWithImplicit.empty() &&
+ "No clauses are allowed for 'omp taskwait' directive");
+ assert(AStmt == nullptr &&
+ "No associated statement allowed for 'omp taskwait' directive");
+ Res = ActOnOpenMPTaskwaitDirective(StartLoc, EndLoc);
+ break;
+ case OMPD_flush:
+ assert(AStmt == nullptr &&
+ "No associated statement allowed for 'omp flush' directive");
+ Res = ActOnOpenMPFlushDirective(ClausesWithImplicit, StartLoc, EndLoc);
+ break;
+ case OMPD_ordered:
+ assert(ClausesWithImplicit.empty() &&
+ "No clauses are allowed for 'omp ordered' directive");
+ Res = ActOnOpenMPOrderedDirective(AStmt, StartLoc, EndLoc);
+ break;
+ case OMPD_atomic:
+ Res = ActOnOpenMPAtomicDirective(ClausesWithImplicit, AStmt, StartLoc,
+ EndLoc);
+ break;
+ case OMPD_teams:
+ Res =
+ ActOnOpenMPTeamsDirective(ClausesWithImplicit, AStmt, StartLoc, EndLoc);
+ break;
+ case OMPD_target:
+ Res = ActOnOpenMPTargetDirective(ClausesWithImplicit, AStmt, StartLoc,
+ EndLoc);
+ break;
+ case OMPD_threadprivate:
+ llvm_unreachable("OpenMP Directive is not allowed");
+ case OMPD_unknown:
+ llvm_unreachable("Unknown OpenMP directive");
+ }
+
+ for (auto P : VarsWithInheritedDSA) {
+ Diag(P.second->getExprLoc(), diag::err_omp_no_dsa_for_variable)
+ << P.first << P.second->getSourceRange();
+ }
+ if (!VarsWithInheritedDSA.empty())
+ return StmtError();
+
+ if (ErrorFound)
+ return StmtError();
+ return Res;
+}
+
+StmtResult Sema::ActOnOpenMPParallelDirective(ArrayRef<OMPClause *> Clauses,
+ Stmt *AStmt,
+ SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+ assert(AStmt && isa<CapturedStmt>(AStmt) && "Captured statement expected");
+ CapturedStmt *CS = cast<CapturedStmt>(AStmt);
+ // 1.2.2 OpenMP Language Terminology
+ // Structured block - An executable statement with a single entry at the
+ // top and a single exit at the bottom.
+ // The point of exit cannot be a branch out of the structured block.
+ // longjmp() and throw() must not violate the entry/exit criteria.
+ CS->getCapturedDecl()->setNothrow();
+
+ getCurFunction()->setHasBranchProtectedScope();
+
+ return OMPParallelDirective::Create(Context, StartLoc, EndLoc, Clauses,
+ AStmt);
+}
+
+namespace {
+/// \brief Helper class for checking canonical form of the OpenMP loops and
+/// extracting iteration space of each loop in the loop nest, that will be used
+/// for IR generation.
+class OpenMPIterationSpaceChecker {
+ /// \brief Reference to Sema.
+ Sema &SemaRef;
+ /// \brief A location for diagnostics (when there is no some better location).
+ SourceLocation DefaultLoc;
+ /// \brief A location for diagnostics (when increment is not compatible).
+ SourceLocation ConditionLoc;
+ /// \brief A source location for referring to loop init later.
+ SourceRange InitSrcRange;
+ /// \brief A source location for referring to condition later.
+ SourceRange ConditionSrcRange;
+ /// \brief A source location for referring to increment later.
+ SourceRange IncrementSrcRange;
+ /// \brief Loop variable.
+ VarDecl *Var;
+ /// \brief Reference to loop variable.
+ DeclRefExpr *VarRef;
+ /// \brief Lower bound (initializer for the var).
+ Expr *LB;
+ /// \brief Upper bound.
+ Expr *UB;
+ /// \brief Loop step (increment).
+ Expr *Step;
+ /// \brief This flag is true when condition is one of:
+ /// Var < UB
+ /// Var <= UB
+ /// UB > Var
+ /// UB >= Var
+ bool TestIsLessOp;
+ /// \brief This flag is true when condition is strict ( < or > ).
+ bool TestIsStrictOp;
+ /// \brief This flag is true when step is subtracted on each iteration.
+ bool SubtractStep;
+
+public:
+ OpenMPIterationSpaceChecker(Sema &SemaRef, SourceLocation DefaultLoc)
+ : SemaRef(SemaRef), DefaultLoc(DefaultLoc), ConditionLoc(DefaultLoc),
+ InitSrcRange(SourceRange()), ConditionSrcRange(SourceRange()),
+ IncrementSrcRange(SourceRange()), Var(nullptr), VarRef(nullptr),
+ LB(nullptr), UB(nullptr), Step(nullptr), TestIsLessOp(false),
+ TestIsStrictOp(false), SubtractStep(false) {}
+ /// \brief Check init-expr for canonical loop form and save loop counter
+ /// variable - #Var and its initialization value - #LB.
+ bool CheckInit(Stmt *S, bool EmitDiags = true);
+ /// \brief Check test-expr for canonical form, save upper-bound (#UB), flags
+ /// for less/greater and for strict/non-strict comparison.
+ bool CheckCond(Expr *S);
+ /// \brief Check incr-expr for canonical loop form and return true if it
+ /// does not conform, otherwise save loop step (#Step).
+ bool CheckInc(Expr *S);
+ /// \brief Return the loop counter variable.
+ VarDecl *GetLoopVar() const { return Var; }
+ /// \brief Return the reference expression to loop counter variable.
+ DeclRefExpr *GetLoopVarRefExpr() const { return VarRef; }
+ /// \brief Source range of the loop init.
+ SourceRange GetInitSrcRange() const { return InitSrcRange; }
+ /// \brief Source range of the loop condition.
+ SourceRange GetConditionSrcRange() const { return ConditionSrcRange; }
+ /// \brief Source range of the loop increment.
+ SourceRange GetIncrementSrcRange() const { return IncrementSrcRange; }
+ /// \brief True if the step should be subtracted.
+ bool ShouldSubtractStep() const { return SubtractStep; }
+ /// \brief Build the expression to calculate the number of iterations.
+ Expr *BuildNumIterations(Scope *S, const bool LimitedType) const;
+ /// \brief Build the precondition expression for the loops.
+ Expr *BuildPreCond(Scope *S, Expr *Cond) const;
+ /// \brief Build reference expression to the counter be used for codegen.
+ Expr *BuildCounterVar() const;
+ /// \brief Build initization of the counter be used for codegen.
+ Expr *BuildCounterInit() const;
+ /// \brief Build step of the counter be used for codegen.
+ Expr *BuildCounterStep() const;
+ /// \brief Return true if any expression is dependent.
+ bool Dependent() const;
+
+private:
+ /// \brief Check the right-hand side of an assignment in the increment
+ /// expression.
+ bool CheckIncRHS(Expr *RHS);
+ /// \brief Helper to set loop counter variable and its initializer.
+ bool SetVarAndLB(VarDecl *NewVar, DeclRefExpr *NewVarRefExpr, Expr *NewLB);
+ /// \brief Helper to set upper bound.
+ bool SetUB(Expr *NewUB, bool LessOp, bool StrictOp, const SourceRange &SR,
+ const SourceLocation &SL);
+ /// \brief Helper to set loop increment.
+ bool SetStep(Expr *NewStep, bool Subtract);
+};
+
+bool OpenMPIterationSpaceChecker::Dependent() const {
+ if (!Var) {
+ assert(!LB && !UB && !Step);
+ return false;
+ }
+ return Var->getType()->isDependentType() || (LB && LB->isValueDependent()) ||
+ (UB && UB->isValueDependent()) || (Step && Step->isValueDependent());
+}
+
+bool OpenMPIterationSpaceChecker::SetVarAndLB(VarDecl *NewVar,
+ DeclRefExpr *NewVarRefExpr,
+ Expr *NewLB) {
+ // State consistency checking to ensure correct usage.
+ assert(Var == nullptr && LB == nullptr && VarRef == nullptr &&
+ UB == nullptr && Step == nullptr && !TestIsLessOp && !TestIsStrictOp);
+ if (!NewVar || !NewLB)
+ return true;
+ Var = NewVar;
+ VarRef = NewVarRefExpr;
+ LB = NewLB;
+ return false;
+}
+
+bool OpenMPIterationSpaceChecker::SetUB(Expr *NewUB, bool LessOp, bool StrictOp,
+ const SourceRange &SR,
+ const SourceLocation &SL) {
+ // State consistency checking to ensure correct usage.
+ assert(Var != nullptr && LB != nullptr && UB == nullptr && Step == nullptr &&
+ !TestIsLessOp && !TestIsStrictOp);
+ if (!NewUB)
+ return true;
+ UB = NewUB;
+ TestIsLessOp = LessOp;
+ TestIsStrictOp = StrictOp;
+ ConditionSrcRange = SR;
+ ConditionLoc = SL;
+ return false;
+}
+
+bool OpenMPIterationSpaceChecker::SetStep(Expr *NewStep, bool Subtract) {
+ // State consistency checking to ensure correct usage.
+ assert(Var != nullptr && LB != nullptr && Step == nullptr);
+ if (!NewStep)
+ return true;
+ if (!NewStep->isValueDependent()) {
+ // Check that the step is integer expression.
+ SourceLocation StepLoc = NewStep->getLocStart();
+ ExprResult Val =
+ SemaRef.PerformOpenMPImplicitIntegerConversion(StepLoc, NewStep);
+ if (Val.isInvalid())
+ return true;
+ NewStep = Val.get();
+
+ // OpenMP [2.6, Canonical Loop Form, Restrictions]
+ // If test-expr is of form var relational-op b and relational-op is < or
+ // <= then incr-expr must cause var to increase on each iteration of the
+ // loop. If test-expr is of form var relational-op b and relational-op is
+ // > or >= then incr-expr must cause var to decrease on each iteration of
+ // the loop.
+ // If test-expr is of form b relational-op var and relational-op is < or
+ // <= then incr-expr must cause var to decrease on each iteration of the
+ // loop. If test-expr is of form b relational-op var and relational-op is
+ // > or >= then incr-expr must cause var to increase on each iteration of
+ // the loop.
+ llvm::APSInt Result;
+ bool IsConstant = NewStep->isIntegerConstantExpr(Result, SemaRef.Context);
+ bool IsUnsigned = !NewStep->getType()->hasSignedIntegerRepresentation();
+ bool IsConstNeg =
+ IsConstant && Result.isSigned() && (Subtract != Result.isNegative());
+ bool IsConstPos =
+ IsConstant && Result.isSigned() && (Subtract == Result.isNegative());
+ bool IsConstZero = IsConstant && !Result.getBoolValue();
+ if (UB && (IsConstZero ||
+ (TestIsLessOp ? (IsConstNeg || (IsUnsigned && Subtract))
+ : (IsConstPos || (IsUnsigned && !Subtract))))) {
+ SemaRef.Diag(NewStep->getExprLoc(),
+ diag::err_omp_loop_incr_not_compatible)
+ << Var << TestIsLessOp << NewStep->getSourceRange();
+ SemaRef.Diag(ConditionLoc,
+ diag::note_omp_loop_cond_requres_compatible_incr)
+ << TestIsLessOp << ConditionSrcRange;
+ return true;
+ }
+ if (TestIsLessOp == Subtract) {
+ NewStep = SemaRef.CreateBuiltinUnaryOp(NewStep->getExprLoc(), UO_Minus,
+ NewStep).get();
+ Subtract = !Subtract;
+ }
+ }
+
+ Step = NewStep;
+ SubtractStep = Subtract;
+ return false;
+}
+
+bool OpenMPIterationSpaceChecker::CheckInit(Stmt *S, bool EmitDiags) {
+ // Check init-expr for canonical loop form and save loop counter
+ // variable - #Var and its initialization value - #LB.
+ // OpenMP [2.6] Canonical loop form. init-expr may be one of the following:
+ // var = lb
+ // integer-type var = lb
+ // random-access-iterator-type var = lb
+ // pointer-type var = lb
+ //
+ if (!S) {
+ if (EmitDiags) {
+ SemaRef.Diag(DefaultLoc, diag::err_omp_loop_not_canonical_init);
+ }
+ return true;
+ }
+ InitSrcRange = S->getSourceRange();
+ if (Expr *E = dyn_cast<Expr>(S))
+ S = E->IgnoreParens();
+ if (auto BO = dyn_cast<BinaryOperator>(S)) {
+ if (BO->getOpcode() == BO_Assign)
+ if (auto DRE = dyn_cast<DeclRefExpr>(BO->getLHS()->IgnoreParens()))
+ return SetVarAndLB(dyn_cast<VarDecl>(DRE->getDecl()), DRE,
+ BO->getRHS());
+ } else if (auto DS = dyn_cast<DeclStmt>(S)) {
+ if (DS->isSingleDecl()) {
+ if (auto Var = dyn_cast_or_null<VarDecl>(DS->getSingleDecl())) {
+ if (Var->hasInit()) {
+ // Accept non-canonical init form here but emit ext. warning.
+ if (Var->getInitStyle() != VarDecl::CInit && EmitDiags)
+ SemaRef.Diag(S->getLocStart(),
+ diag::ext_omp_loop_not_canonical_init)
+ << S->getSourceRange();
+ return SetVarAndLB(Var, nullptr, Var->getInit());
+ }
+ }
+ }
+ } else if (auto CE = dyn_cast<CXXOperatorCallExpr>(S))
+ if (CE->getOperator() == OO_Equal)
+ if (auto DRE = dyn_cast<DeclRefExpr>(CE->getArg(0)))
+ return SetVarAndLB(dyn_cast<VarDecl>(DRE->getDecl()), DRE,
+ CE->getArg(1));
+
+ if (EmitDiags) {
+ SemaRef.Diag(S->getLocStart(), diag::err_omp_loop_not_canonical_init)
+ << S->getSourceRange();
+ }
+ return true;
+}
+
+/// \brief Ignore parenthesizes, implicit casts, copy constructor and return the
+/// variable (which may be the loop variable) if possible.
+static const VarDecl *GetInitVarDecl(const Expr *E) {
+ if (!E)
+ return nullptr;
+ E = E->IgnoreParenImpCasts();
+ if (auto *CE = dyn_cast_or_null<CXXConstructExpr>(E))
+ if (const CXXConstructorDecl *Ctor = CE->getConstructor())
+ if (Ctor->isCopyConstructor() && CE->getNumArgs() == 1 &&
+ CE->getArg(0) != nullptr)
+ E = CE->getArg(0)->IgnoreParenImpCasts();
+ auto DRE = dyn_cast_or_null<DeclRefExpr>(E);
+ if (!DRE)
+ return nullptr;
+ return dyn_cast<VarDecl>(DRE->getDecl());
+}
+
+bool OpenMPIterationSpaceChecker::CheckCond(Expr *S) {
+ // Check test-expr for canonical form, save upper-bound UB, flags for
+ // less/greater and for strict/non-strict comparison.
+ // OpenMP [2.6] Canonical loop form. Test-expr may be one of the following:
+ // var relational-op b
+ // b relational-op var
+ //
+ if (!S) {
+ SemaRef.Diag(DefaultLoc, diag::err_omp_loop_not_canonical_cond) << Var;
+ return true;
+ }
+ S = S->IgnoreParenImpCasts();
+ SourceLocation CondLoc = S->getLocStart();
+ if (auto BO = dyn_cast<BinaryOperator>(S)) {
+ if (BO->isRelationalOp()) {
+ if (GetInitVarDecl(BO->getLHS()) == Var)
+ return SetUB(BO->getRHS(),
+ (BO->getOpcode() == BO_LT || BO->getOpcode() == BO_LE),
+ (BO->getOpcode() == BO_LT || BO->getOpcode() == BO_GT),
+ BO->getSourceRange(), BO->getOperatorLoc());
+ if (GetInitVarDecl(BO->getRHS()) == Var)
+ return SetUB(BO->getLHS(),
+ (BO->getOpcode() == BO_GT || BO->getOpcode() == BO_GE),
+ (BO->getOpcode() == BO_LT || BO->getOpcode() == BO_GT),
+ BO->getSourceRange(), BO->getOperatorLoc());
+ }
+ } else if (auto CE = dyn_cast<CXXOperatorCallExpr>(S)) {
+ if (CE->getNumArgs() == 2) {
+ auto Op = CE->getOperator();
+ switch (Op) {
+ case OO_Greater:
+ case OO_GreaterEqual:
+ case OO_Less:
+ case OO_LessEqual:
+ if (GetInitVarDecl(CE->getArg(0)) == Var)
+ return SetUB(CE->getArg(1), Op == OO_Less || Op == OO_LessEqual,
+ Op == OO_Less || Op == OO_Greater, CE->getSourceRange(),
+ CE->getOperatorLoc());
+ if (GetInitVarDecl(CE->getArg(1)) == Var)
+ return SetUB(CE->getArg(0), Op == OO_Greater || Op == OO_GreaterEqual,
+ Op == OO_Less || Op == OO_Greater, CE->getSourceRange(),
+ CE->getOperatorLoc());
+ break;
+ default:
+ break;
+ }
+ }
+ }
+ SemaRef.Diag(CondLoc, diag::err_omp_loop_not_canonical_cond)
+ << S->getSourceRange() << Var;
+ return true;
+}
+
+bool OpenMPIterationSpaceChecker::CheckIncRHS(Expr *RHS) {
+ // RHS of canonical loop form increment can be:
+ // var + incr
+ // incr + var
+ // var - incr
+ //
+ RHS = RHS->IgnoreParenImpCasts();
+ if (auto BO = dyn_cast<BinaryOperator>(RHS)) {
+ if (BO->isAdditiveOp()) {
+ bool IsAdd = BO->getOpcode() == BO_Add;
+ if (GetInitVarDecl(BO->getLHS()) == Var)
+ return SetStep(BO->getRHS(), !IsAdd);
+ if (IsAdd && GetInitVarDecl(BO->getRHS()) == Var)
+ return SetStep(BO->getLHS(), false);
+ }
+ } else if (auto CE = dyn_cast<CXXOperatorCallExpr>(RHS)) {
+ bool IsAdd = CE->getOperator() == OO_Plus;
+ if ((IsAdd || CE->getOperator() == OO_Minus) && CE->getNumArgs() == 2) {
+ if (GetInitVarDecl(CE->getArg(0)) == Var)
+ return SetStep(CE->getArg(1), !IsAdd);
+ if (IsAdd && GetInitVarDecl(CE->getArg(1)) == Var)
+ return SetStep(CE->getArg(0), false);
+ }
+ }
+ SemaRef.Diag(RHS->getLocStart(), diag::err_omp_loop_not_canonical_incr)
+ << RHS->getSourceRange() << Var;
+ return true;
+}
+
+bool OpenMPIterationSpaceChecker::CheckInc(Expr *S) {
+ // Check incr-expr for canonical loop form and return true if it
+ // does not conform.
+ // OpenMP [2.6] Canonical loop form. Test-expr may be one of the following:
+ // ++var
+ // var++
+ // --var
+ // var--
+ // var += incr
+ // var -= incr
+ // var = var + incr
+ // var = incr + var
+ // var = var - incr
+ //
+ if (!S) {
+ SemaRef.Diag(DefaultLoc, diag::err_omp_loop_not_canonical_incr) << Var;
+ return true;
+ }
+ IncrementSrcRange = S->getSourceRange();
+ S = S->IgnoreParens();
+ if (auto UO = dyn_cast<UnaryOperator>(S)) {
+ if (UO->isIncrementDecrementOp() && GetInitVarDecl(UO->getSubExpr()) == Var)
+ return SetStep(
+ SemaRef.ActOnIntegerConstant(UO->getLocStart(),
+ (UO->isDecrementOp() ? -1 : 1)).get(),
+ false);
+ } else if (auto BO = dyn_cast<BinaryOperator>(S)) {
+ switch (BO->getOpcode()) {
+ case BO_AddAssign:
+ case BO_SubAssign:
+ if (GetInitVarDecl(BO->getLHS()) == Var)
+ return SetStep(BO->getRHS(), BO->getOpcode() == BO_SubAssign);
+ break;
+ case BO_Assign:
+ if (GetInitVarDecl(BO->getLHS()) == Var)
+ return CheckIncRHS(BO->getRHS());
+ break;
+ default:
+ break;
+ }
+ } else if (auto CE = dyn_cast<CXXOperatorCallExpr>(S)) {
+ switch (CE->getOperator()) {
+ case OO_PlusPlus:
+ case OO_MinusMinus:
+ if (GetInitVarDecl(CE->getArg(0)) == Var)
+ return SetStep(
+ SemaRef.ActOnIntegerConstant(
+ CE->getLocStart(),
+ ((CE->getOperator() == OO_MinusMinus) ? -1 : 1)).get(),
+ false);
+ break;
+ case OO_PlusEqual:
+ case OO_MinusEqual:
+ if (GetInitVarDecl(CE->getArg(0)) == Var)
+ return SetStep(CE->getArg(1), CE->getOperator() == OO_MinusEqual);
+ break;
+ case OO_Equal:
+ if (GetInitVarDecl(CE->getArg(0)) == Var)
+ return CheckIncRHS(CE->getArg(1));
+ break;
+ default:
+ break;
+ }
+ }
+ SemaRef.Diag(S->getLocStart(), diag::err_omp_loop_not_canonical_incr)
+ << S->getSourceRange() << Var;
+ return true;
+}
+
+/// \brief Build the expression to calculate the number of iterations.
+Expr *
+OpenMPIterationSpaceChecker::BuildNumIterations(Scope *S,
+ const bool LimitedType) const {
+ ExprResult Diff;
+ if (Var->getType()->isIntegerType() || Var->getType()->isPointerType() ||
+ SemaRef.getLangOpts().CPlusPlus) {
+ // Upper - Lower
+ Expr *Upper = TestIsLessOp ? UB : LB;
+ Expr *Lower = TestIsLessOp ? LB : UB;
+
+ Diff = SemaRef.BuildBinOp(S, DefaultLoc, BO_Sub, Upper, Lower);
+
+ if (!Diff.isUsable() && Var->getType()->getAsCXXRecordDecl()) {
+ // BuildBinOp already emitted error, this one is to point user to upper
+ // and lower bound, and to tell what is passed to 'operator-'.
+ SemaRef.Diag(Upper->getLocStart(), diag::err_omp_loop_diff_cxx)
+ << Upper->getSourceRange() << Lower->getSourceRange();
+ return nullptr;
+ }
+ }
+
+ if (!Diff.isUsable())
+ return nullptr;
+
+ // Upper - Lower [- 1]
+ if (TestIsStrictOp)
+ Diff = SemaRef.BuildBinOp(
+ S, DefaultLoc, BO_Sub, Diff.get(),
+ SemaRef.ActOnIntegerConstant(SourceLocation(), 1).get());
+ if (!Diff.isUsable())
+ return nullptr;
+
+ // Upper - Lower [- 1] + Step
+ Diff = SemaRef.BuildBinOp(S, DefaultLoc, BO_Add, Diff.get(),
+ Step->IgnoreImplicit());
+ if (!Diff.isUsable())
+ return nullptr;
+
+ // Parentheses (for dumping/debugging purposes only).
+ Diff = SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, Diff.get());
+ if (!Diff.isUsable())
+ return nullptr;
+
+ // (Upper - Lower [- 1] + Step) / Step
+ Diff = SemaRef.BuildBinOp(S, DefaultLoc, BO_Div, Diff.get(),
+ Step->IgnoreImplicit());
+ if (!Diff.isUsable())
+ return nullptr;
+
+ // OpenMP runtime requires 32-bit or 64-bit loop variables.
+ if (LimitedType) {
+ auto &C = SemaRef.Context;
+ QualType Type = Diff.get()->getType();
+ unsigned NewSize = (C.getTypeSize(Type) > 32) ? 64 : 32;
+ if (NewSize != C.getTypeSize(Type)) {
+ if (NewSize < C.getTypeSize(Type)) {
+ assert(NewSize == 64 && "incorrect loop var size");
+ SemaRef.Diag(DefaultLoc, diag::warn_omp_loop_64_bit_var)
+ << InitSrcRange << ConditionSrcRange;
+ }
+ QualType NewType = C.getIntTypeForBitwidth(
+ NewSize, Type->hasSignedIntegerRepresentation());
+ Diff = SemaRef.PerformImplicitConversion(Diff.get(), NewType,
+ Sema::AA_Converting, true);
+ if (!Diff.isUsable())
+ return nullptr;
+ }
+ }
+
+ return Diff.get();
+}
+
+Expr *OpenMPIterationSpaceChecker::BuildPreCond(Scope *S, Expr *Cond) const {
+ // Try to build LB <op> UB, where <op> is <, >, <=, or >=.
+ bool Suppress = SemaRef.getDiagnostics().getSuppressAllDiagnostics();
+ SemaRef.getDiagnostics().setSuppressAllDiagnostics(/*Val=*/true);
+ auto CondExpr = SemaRef.BuildBinOp(
+ S, DefaultLoc, TestIsLessOp ? (TestIsStrictOp ? BO_LT : BO_LE)
+ : (TestIsStrictOp ? BO_GT : BO_GE),
+ LB, UB);
+ SemaRef.getDiagnostics().setSuppressAllDiagnostics(Suppress);
+ // Otherwise use original loop conditon and evaluate it in runtime.
+ return CondExpr.isUsable() ? CondExpr.get() : Cond;
+}
+
+/// \brief Build reference expression to the counter be used for codegen.
+Expr *OpenMPIterationSpaceChecker::BuildCounterVar() const {
+ return buildDeclRefExpr(SemaRef, Var, Var->getType(), DefaultLoc);
+}
+
+/// \brief Build initization of the counter be used for codegen.
+Expr *OpenMPIterationSpaceChecker::BuildCounterInit() const { return LB; }
+
+/// \brief Build step of the counter be used for codegen.
+Expr *OpenMPIterationSpaceChecker::BuildCounterStep() const { return Step; }
+
+/// \brief Iteration space of a single for loop.
+struct LoopIterationSpace {
+ /// \brief Condition of the loop.
+ Expr *PreCond;
+ /// \brief This expression calculates the number of iterations in the loop.
+ /// It is always possible to calculate it before starting the loop.
+ Expr *NumIterations;
+ /// \brief The loop counter variable.
+ Expr *CounterVar;
+ /// \brief This is initializer for the initial value of #CounterVar.
+ Expr *CounterInit;
+ /// \brief This is step for the #CounterVar used to generate its update:
+ /// #CounterVar = #CounterInit + #CounterStep * CurrentIteration.
+ Expr *CounterStep;
+ /// \brief Should step be subtracted?
+ bool Subtract;
+ /// \brief Source range of the loop init.
+ SourceRange InitSrcRange;
+ /// \brief Source range of the loop condition.
+ SourceRange CondSrcRange;
+ /// \brief Source range of the loop increment.
+ SourceRange IncSrcRange;
+};
+
+} // namespace
+
+void Sema::ActOnOpenMPLoopInitialization(SourceLocation ForLoc, Stmt *Init) {
+ assert(getLangOpts().OpenMP && "OpenMP is not active.");
+ assert(Init && "Expected loop in canonical form.");
+ unsigned CollapseIteration = DSAStack->getCollapseNumber();
+ if (CollapseIteration > 0 &&
+ isOpenMPLoopDirective(DSAStack->getCurrentDirective())) {
+ OpenMPIterationSpaceChecker ISC(*this, ForLoc);
+ if (!ISC.CheckInit(Init, /*EmitDiags=*/false)) {
+ DSAStack->addLoopControlVariable(ISC.GetLoopVar());
+ }
+ DSAStack->setCollapseNumber(CollapseIteration - 1);
+ }
+}
+
+/// \brief Called on a for stmt to check and extract its iteration space
+/// for further processing (such as collapsing).
+static bool CheckOpenMPIterationSpace(
+ OpenMPDirectiveKind DKind, Stmt *S, Sema &SemaRef, DSAStackTy &DSA,
+ unsigned CurrentNestedLoopCount, unsigned NestedLoopCount,
+ Expr *NestedLoopCountExpr,
+ llvm::DenseMap<VarDecl *, Expr *> &VarsWithImplicitDSA,
+ LoopIterationSpace &ResultIterSpace) {
+ // OpenMP [2.6, Canonical Loop Form]
+ // for (init-expr; test-expr; incr-expr) structured-block
+ auto For = dyn_cast_or_null<ForStmt>(S);
+ if (!For) {
+ SemaRef.Diag(S->getLocStart(), diag::err_omp_not_for)
+ << (NestedLoopCountExpr != nullptr) << getOpenMPDirectiveName(DKind)
+ << NestedLoopCount << (CurrentNestedLoopCount > 0)
+ << CurrentNestedLoopCount;
+ if (NestedLoopCount > 1)
+ SemaRef.Diag(NestedLoopCountExpr->getExprLoc(),
+ diag::note_omp_collapse_expr)
+ << NestedLoopCountExpr->getSourceRange();
+ return true;
+ }
+ assert(For->getBody());
+
+ OpenMPIterationSpaceChecker ISC(SemaRef, For->getForLoc());
+
+ // Check init.
+ auto Init = For->getInit();
+ if (ISC.CheckInit(Init)) {
+ return true;
+ }
+
+ bool HasErrors = false;
+
+ // Check loop variable's type.
+ auto Var = ISC.GetLoopVar();
+
+ // OpenMP [2.6, Canonical Loop Form]
+ // Var is one of the following:
+ // A variable of signed or unsigned integer type.
+ // For C++, a variable of a random access iterator type.
+ // For C, a variable of a pointer type.
+ auto VarType = Var->getType();
+ if (!VarType->isDependentType() && !VarType->isIntegerType() &&
+ !VarType->isPointerType() &&
+ !(SemaRef.getLangOpts().CPlusPlus && VarType->isOverloadableType())) {
+ SemaRef.Diag(Init->getLocStart(), diag::err_omp_loop_variable_type)
+ << SemaRef.getLangOpts().CPlusPlus;
+ HasErrors = true;
+ }
+
+ // OpenMP, 2.14.1.1 Data-sharing Attribute Rules for Variables Referenced in a
+ // Construct
+ // The loop iteration variable(s) in the associated for-loop(s) of a for or
+ // parallel for construct is (are) private.
+ // The loop iteration variable in the associated for-loop of a simd construct
+ // with just one associated for-loop is linear with a constant-linear-step
+ // that is the increment of the associated for-loop.
+ // Exclude loop var from the list of variables with implicitly defined data
+ // sharing attributes.
+ VarsWithImplicitDSA.erase(Var);
+
+ // OpenMP [2.14.1.1, Data-sharing Attribute Rules for Variables Referenced in
+ // a Construct, C/C++].
+ // The loop iteration variable in the associated for-loop of a simd construct
+ // with just one associated for-loop may be listed in a linear clause with a
+ // constant-linear-step that is the increment of the associated for-loop.
+ // The loop iteration variable(s) in the associated for-loop(s) of a for or
+ // parallel for construct may be listed in a private or lastprivate clause.
+ DSAStackTy::DSAVarData DVar = DSA.getTopDSA(Var, false);
+ auto LoopVarRefExpr = ISC.GetLoopVarRefExpr();
+ // If LoopVarRefExpr is nullptr it means the corresponding loop variable is
+ // declared in the loop and it is predetermined as a private.
+ auto PredeterminedCKind =
+ isOpenMPSimdDirective(DKind)
+ ? ((NestedLoopCount == 1) ? OMPC_linear : OMPC_lastprivate)
+ : OMPC_private;
+ if (((isOpenMPSimdDirective(DKind) && DVar.CKind != OMPC_unknown &&
+ DVar.CKind != OMPC_threadprivate && DVar.CKind != PredeterminedCKind) ||
+ (isOpenMPWorksharingDirective(DKind) && !isOpenMPSimdDirective(DKind) &&
+ DVar.CKind != OMPC_unknown && DVar.CKind != OMPC_private &&
+ DVar.CKind != OMPC_lastprivate && DVar.CKind != OMPC_threadprivate)) &&
+ ((DVar.CKind != OMPC_private && DVar.CKind != OMPC_threadprivate) ||
+ DVar.RefExpr != nullptr)) {
+ SemaRef.Diag(Init->getLocStart(), diag::err_omp_loop_var_dsa)
+ << getOpenMPClauseName(DVar.CKind) << getOpenMPDirectiveName(DKind)
+ << getOpenMPClauseName(PredeterminedCKind);
+ if (DVar.RefExpr == nullptr)
+ DVar.CKind = PredeterminedCKind;
+ ReportOriginalDSA(SemaRef, &DSA, Var, DVar, /*IsLoopIterVar=*/true);
+ HasErrors = true;
+ } else if (LoopVarRefExpr != nullptr) {
+ // Make the loop iteration variable private (for worksharing constructs),
+ // linear (for simd directives with the only one associated loop) or
+ // lastprivate (for simd directives with several collapsed loops).
+ if (DVar.CKind == OMPC_unknown)
+ DVar = DSA.hasDSA(Var, isOpenMPPrivate, MatchesAlways(),
+ /*FromParent=*/false);
+ DSA.addDSA(Var, LoopVarRefExpr, PredeterminedCKind);
+ }
+
+ assert(isOpenMPLoopDirective(DKind) && "DSA for non-loop vars");
+
+ // Check test-expr.
+ HasErrors |= ISC.CheckCond(For->getCond());
+
+ // Check incr-expr.
+ HasErrors |= ISC.CheckInc(For->getInc());
+
+ if (ISC.Dependent() || SemaRef.CurContext->isDependentContext() || HasErrors)
+ return HasErrors;
+
+ // Build the loop's iteration space representation.
+ ResultIterSpace.PreCond = ISC.BuildPreCond(DSA.getCurScope(), For->getCond());
+ ResultIterSpace.NumIterations = ISC.BuildNumIterations(
+ DSA.getCurScope(), /* LimitedType */ isOpenMPWorksharingDirective(DKind));
+ ResultIterSpace.CounterVar = ISC.BuildCounterVar();
+ ResultIterSpace.CounterInit = ISC.BuildCounterInit();
+ ResultIterSpace.CounterStep = ISC.BuildCounterStep();
+ ResultIterSpace.InitSrcRange = ISC.GetInitSrcRange();
+ ResultIterSpace.CondSrcRange = ISC.GetConditionSrcRange();
+ ResultIterSpace.IncSrcRange = ISC.GetIncrementSrcRange();
+ ResultIterSpace.Subtract = ISC.ShouldSubtractStep();
+
+ HasErrors |= (ResultIterSpace.PreCond == nullptr ||
+ ResultIterSpace.NumIterations == nullptr ||
+ ResultIterSpace.CounterVar == nullptr ||
+ ResultIterSpace.CounterInit == nullptr ||
+ ResultIterSpace.CounterStep == nullptr);
+
+ return HasErrors;
+}
+
+/// \brief Build 'VarRef = Start + Iter * Step'.
+static ExprResult BuildCounterUpdate(Sema &SemaRef, Scope *S,
+ SourceLocation Loc, ExprResult VarRef,
+ ExprResult Start, ExprResult Iter,
+ ExprResult Step, bool Subtract) {
+ // Add parentheses (for debugging purposes only).
+ Iter = SemaRef.ActOnParenExpr(Loc, Loc, Iter.get());
+ if (!VarRef.isUsable() || !Start.isUsable() || !Iter.isUsable() ||
+ !Step.isUsable())
+ return ExprError();
+
+ ExprResult Update = SemaRef.BuildBinOp(S, Loc, BO_Mul, Iter.get(),
+ Step.get()->IgnoreImplicit());
+ if (!Update.isUsable())
+ return ExprError();
+
+ // Build 'VarRef = Start + Iter * Step'.
+ Update = SemaRef.BuildBinOp(S, Loc, (Subtract ? BO_Sub : BO_Add),
+ Start.get()->IgnoreImplicit(), Update.get());
+ if (!Update.isUsable())
+ return ExprError();
+
+ Update = SemaRef.PerformImplicitConversion(
+ Update.get(), VarRef.get()->getType(), Sema::AA_Converting, true);
+ if (!Update.isUsable())
+ return ExprError();
+
+ Update = SemaRef.BuildBinOp(S, Loc, BO_Assign, VarRef.get(), Update.get());
+ return Update;
+}
+
+/// \brief Convert integer expression \a E to make it have at least \a Bits
+/// bits.
+static ExprResult WidenIterationCount(unsigned Bits, Expr *E,
+ Sema &SemaRef) {
+ if (E == nullptr)
+ return ExprError();
+ auto &C = SemaRef.Context;
+ QualType OldType = E->getType();
+ unsigned HasBits = C.getTypeSize(OldType);
+ if (HasBits >= Bits)
+ return ExprResult(E);
+ // OK to convert to signed, because new type has more bits than old.
+ QualType NewType = C.getIntTypeForBitwidth(Bits, /* Signed */ true);
+ return SemaRef.PerformImplicitConversion(E, NewType, Sema::AA_Converting,
+ true);
+}
+
+/// \brief Check if the given expression \a E is a constant integer that fits
+/// into \a Bits bits.
+static bool FitsInto(unsigned Bits, bool Signed, Expr *E, Sema &SemaRef) {
+ if (E == nullptr)
+ return false;
+ llvm::APSInt Result;
+ if (E->isIntegerConstantExpr(Result, SemaRef.Context))
+ return Signed ? Result.isSignedIntN(Bits) : Result.isIntN(Bits);
+ return false;
+}
+
+/// \brief Called on a for stmt to check itself and nested loops (if any).
+/// \return Returns 0 if one of the collapsed stmts is not canonical for loop,
+/// number of collapsed loops otherwise.
+static unsigned
+CheckOpenMPLoop(OpenMPDirectiveKind DKind, Expr *NestedLoopCountExpr,
+ Stmt *AStmt, Sema &SemaRef, DSAStackTy &DSA,
+ llvm::DenseMap<VarDecl *, Expr *> &VarsWithImplicitDSA,
+ OMPLoopDirective::HelperExprs &Built) {
+ unsigned NestedLoopCount = 1;
+ if (NestedLoopCountExpr) {
+ // Found 'collapse' clause - calculate collapse number.
+ llvm::APSInt Result;
+ if (NestedLoopCountExpr->EvaluateAsInt(Result, SemaRef.getASTContext()))
+ NestedLoopCount = Result.getLimitedValue();
+ }
+ // This is helper routine for loop directives (e.g., 'for', 'simd',
+ // 'for simd', etc.).
+ SmallVector<LoopIterationSpace, 4> IterSpaces;
+ IterSpaces.resize(NestedLoopCount);
+ Stmt *CurStmt = AStmt->IgnoreContainers(/* IgnoreCaptured */ true);
+ for (unsigned Cnt = 0; Cnt < NestedLoopCount; ++Cnt) {
+ if (CheckOpenMPIterationSpace(DKind, CurStmt, SemaRef, DSA, Cnt,
+ NestedLoopCount, NestedLoopCountExpr,
+ VarsWithImplicitDSA, IterSpaces[Cnt]))
+ return 0;
+ // Move on to the next nested for loop, or to the loop body.
+ // OpenMP [2.8.1, simd construct, Restrictions]
+ // All loops associated with the construct must be perfectly nested; that
+ // is, there must be no intervening code nor any OpenMP directive between
+ // any two loops.
+ CurStmt = cast<ForStmt>(CurStmt)->getBody()->IgnoreContainers();
+ }
+
+ Built.clear(/* size */ NestedLoopCount);
+
+ if (SemaRef.CurContext->isDependentContext())
+ return NestedLoopCount;
+
+ // An example of what is generated for the following code:
+ //
+ // #pragma omp simd collapse(2)
+ // for (i = 0; i < NI; ++i)
+ // for (j = J0; j < NJ; j+=2) {
+ // <loop body>
+ // }
+ //
+ // We generate the code below.
+ // Note: the loop body may be outlined in CodeGen.
+ // Note: some counters may be C++ classes, operator- is used to find number of
+ // iterations and operator+= to calculate counter value.
+ // Note: decltype(NumIterations) must be integer type (in 'omp for', only i32
+ // or i64 is currently supported).
+ //
+ // #define NumIterations (NI * ((NJ - J0 - 1 + 2) / 2))
+ // for (int[32|64]_t IV = 0; IV < NumIterations; ++IV ) {
+ // .local.i = IV / ((NJ - J0 - 1 + 2) / 2);
+ // .local.j = J0 + (IV % ((NJ - J0 - 1 + 2) / 2)) * 2;
+ // // similar updates for vars in clauses (e.g. 'linear')
+ // <loop body (using local i and j)>
+ // }
+ // i = NI; // assign final values of counters
+ // j = NJ;
+ //
+
+ // Last iteration number is (I1 * I2 * ... In) - 1, where I1, I2 ... In are
+ // the iteration counts of the collapsed for loops.
+ // Precondition tests if there is at least one iteration (all conditions are
+ // true).
+ auto PreCond = ExprResult(IterSpaces[0].PreCond);
+ auto N0 = IterSpaces[0].NumIterations;
+ ExprResult LastIteration32 = WidenIterationCount(32 /* Bits */, N0, SemaRef);
+ ExprResult LastIteration64 = WidenIterationCount(64 /* Bits */, N0, SemaRef);
+
+ if (!LastIteration32.isUsable() || !LastIteration64.isUsable())
+ return NestedLoopCount;
+
+ auto &C = SemaRef.Context;
+ bool AllCountsNeedLessThan32Bits = C.getTypeSize(N0->getType()) < 32;
+
+ Scope *CurScope = DSA.getCurScope();
+ for (unsigned Cnt = 1; Cnt < NestedLoopCount; ++Cnt) {
+ if (PreCond.isUsable()) {
+ PreCond = SemaRef.BuildBinOp(CurScope, SourceLocation(), BO_LAnd,
+ PreCond.get(), IterSpaces[Cnt].PreCond);
+ }
+ auto N = IterSpaces[Cnt].NumIterations;
+ AllCountsNeedLessThan32Bits &= C.getTypeSize(N->getType()) < 32;
+ if (LastIteration32.isUsable())
+ LastIteration32 = SemaRef.BuildBinOp(CurScope, SourceLocation(), BO_Mul,
+ LastIteration32.get(), N);
+ if (LastIteration64.isUsable())
+ LastIteration64 = SemaRef.BuildBinOp(CurScope, SourceLocation(), BO_Mul,
+ LastIteration64.get(), N);
+ }
+
+ // Choose either the 32-bit or 64-bit version.
+ ExprResult LastIteration = LastIteration64;
+ if (LastIteration32.isUsable() &&
+ C.getTypeSize(LastIteration32.get()->getType()) == 32 &&
+ (AllCountsNeedLessThan32Bits || NestedLoopCount == 1 ||
+ FitsInto(
+ 32 /* Bits */,
+ LastIteration32.get()->getType()->hasSignedIntegerRepresentation(),
+ LastIteration64.get(), SemaRef)))
+ LastIteration = LastIteration32;
+
+ if (!LastIteration.isUsable())
+ return 0;
+
+ // Save the number of iterations.
+ ExprResult NumIterations = LastIteration;
+ {
+ LastIteration = SemaRef.BuildBinOp(
+ CurScope, SourceLocation(), BO_Sub, LastIteration.get(),
+ SemaRef.ActOnIntegerConstant(SourceLocation(), 1).get());
+ if (!LastIteration.isUsable())
+ return 0;
+ }
+
+ // Calculate the last iteration number beforehand instead of doing this on
+ // each iteration. Do not do this if the number of iterations may be kfold-ed.
+ llvm::APSInt Result;
+ bool IsConstant =
+ LastIteration.get()->isIntegerConstantExpr(Result, SemaRef.Context);
+ ExprResult CalcLastIteration;
+ if (!IsConstant) {
+ SourceLocation SaveLoc;
+ VarDecl *SaveVar =
+ buildVarDecl(SemaRef, SaveLoc, LastIteration.get()->getType(),
+ ".omp.last.iteration");
+ ExprResult SaveRef = buildDeclRefExpr(
+ SemaRef, SaveVar, LastIteration.get()->getType(), SaveLoc);
+ CalcLastIteration = SemaRef.BuildBinOp(CurScope, SaveLoc, BO_Assign,
+ SaveRef.get(), LastIteration.get());
+ LastIteration = SaveRef;
+
+ // Prepare SaveRef + 1.
+ NumIterations = SemaRef.BuildBinOp(
+ CurScope, SaveLoc, BO_Add, SaveRef.get(),
+ SemaRef.ActOnIntegerConstant(SourceLocation(), 1).get());
+ if (!NumIterations.isUsable())
+ return 0;
+ }
+
+ SourceLocation InitLoc = IterSpaces[0].InitSrcRange.getBegin();
+
+ QualType VType = LastIteration.get()->getType();
+ // Build variables passed into runtime, nesessary for worksharing directives.
+ ExprResult LB, UB, IL, ST, EUB;
+ if (isOpenMPWorksharingDirective(DKind)) {
+ // Lower bound variable, initialized with zero.
+ VarDecl *LBDecl = buildVarDecl(SemaRef, InitLoc, VType, ".omp.lb");
+ LB = buildDeclRefExpr(SemaRef, LBDecl, VType, InitLoc);
+ SemaRef.AddInitializerToDecl(
+ LBDecl, SemaRef.ActOnIntegerConstant(InitLoc, 0).get(),
+ /*DirectInit*/ false, /*TypeMayContainAuto*/ false);
+
+ // Upper bound variable, initialized with last iteration number.
+ VarDecl *UBDecl = buildVarDecl(SemaRef, InitLoc, VType, ".omp.ub");
+ UB = buildDeclRefExpr(SemaRef, UBDecl, VType, InitLoc);
+ SemaRef.AddInitializerToDecl(UBDecl, LastIteration.get(),
+ /*DirectInit*/ false,
+ /*TypeMayContainAuto*/ false);
+
+ // A 32-bit variable-flag where runtime returns 1 for the last iteration.
+ // This will be used to implement clause 'lastprivate'.
+ QualType Int32Ty = SemaRef.Context.getIntTypeForBitwidth(32, true);
+ VarDecl *ILDecl = buildVarDecl(SemaRef, InitLoc, Int32Ty, ".omp.is_last");
+ IL = buildDeclRefExpr(SemaRef, ILDecl, Int32Ty, InitLoc);
+ SemaRef.AddInitializerToDecl(
+ ILDecl, SemaRef.ActOnIntegerConstant(InitLoc, 0).get(),
+ /*DirectInit*/ false, /*TypeMayContainAuto*/ false);
+
+ // Stride variable returned by runtime (we initialize it to 1 by default).
+ VarDecl *STDecl = buildVarDecl(SemaRef, InitLoc, VType, ".omp.stride");
+ ST = buildDeclRefExpr(SemaRef, STDecl, VType, InitLoc);
+ SemaRef.AddInitializerToDecl(
+ STDecl, SemaRef.ActOnIntegerConstant(InitLoc, 1).get(),
+ /*DirectInit*/ false, /*TypeMayContainAuto*/ false);
+
+ // Build expression: UB = min(UB, LastIteration)
+ // It is nesessary for CodeGen of directives with static scheduling.
+ ExprResult IsUBGreater = SemaRef.BuildBinOp(CurScope, InitLoc, BO_GT,
+ UB.get(), LastIteration.get());
+ ExprResult CondOp = SemaRef.ActOnConditionalOp(
+ InitLoc, InitLoc, IsUBGreater.get(), LastIteration.get(), UB.get());
+ EUB = SemaRef.BuildBinOp(CurScope, InitLoc, BO_Assign, UB.get(),
+ CondOp.get());
+ EUB = SemaRef.ActOnFinishFullExpr(EUB.get());
+ }
+
+ // Build the iteration variable and its initialization before loop.
+ ExprResult IV;
+ ExprResult Init;
+ {
+ VarDecl *IVDecl = buildVarDecl(SemaRef, InitLoc, VType, ".omp.iv");
+ IV = buildDeclRefExpr(SemaRef, IVDecl, VType, InitLoc);
+ Expr *RHS = isOpenMPWorksharingDirective(DKind)
+ ? LB.get()
+ : SemaRef.ActOnIntegerConstant(SourceLocation(), 0).get();
+ Init = SemaRef.BuildBinOp(CurScope, InitLoc, BO_Assign, IV.get(), RHS);
+ Init = SemaRef.ActOnFinishFullExpr(Init.get());
+ }
+
+ // Loop condition (IV < NumIterations) or (IV <= UB) for worksharing loops.
+ SourceLocation CondLoc;
+ ExprResult Cond =
+ isOpenMPWorksharingDirective(DKind)
+ ? SemaRef.BuildBinOp(CurScope, CondLoc, BO_LE, IV.get(), UB.get())
+ : SemaRef.BuildBinOp(CurScope, CondLoc, BO_LT, IV.get(),
+ NumIterations.get());
+ // Loop condition with 1 iteration separated (IV < LastIteration)
+ ExprResult SeparatedCond = SemaRef.BuildBinOp(CurScope, CondLoc, BO_LT,
+ IV.get(), LastIteration.get());
+
+ // Loop increment (IV = IV + 1)
+ SourceLocation IncLoc;
+ ExprResult Inc =
+ SemaRef.BuildBinOp(CurScope, IncLoc, BO_Add, IV.get(),
+ SemaRef.ActOnIntegerConstant(IncLoc, 1).get());
+ if (!Inc.isUsable())
+ return 0;
+ Inc = SemaRef.BuildBinOp(CurScope, IncLoc, BO_Assign, IV.get(), Inc.get());
+ Inc = SemaRef.ActOnFinishFullExpr(Inc.get());
+ if (!Inc.isUsable())
+ return 0;
+
+ // Increments for worksharing loops (LB = LB + ST; UB = UB + ST).
+ // Used for directives with static scheduling.
+ ExprResult NextLB, NextUB;
+ if (isOpenMPWorksharingDirective(DKind)) {
+ // LB + ST
+ NextLB = SemaRef.BuildBinOp(CurScope, IncLoc, BO_Add, LB.get(), ST.get());
+ if (!NextLB.isUsable())
+ return 0;
+ // LB = LB + ST
+ NextLB =
+ SemaRef.BuildBinOp(CurScope, IncLoc, BO_Assign, LB.get(), NextLB.get());
+ NextLB = SemaRef.ActOnFinishFullExpr(NextLB.get());
+ if (!NextLB.isUsable())
+ return 0;
+ // UB + ST
+ NextUB = SemaRef.BuildBinOp(CurScope, IncLoc, BO_Add, UB.get(), ST.get());
+ if (!NextUB.isUsable())
+ return 0;
+ // UB = UB + ST
+ NextUB =
+ SemaRef.BuildBinOp(CurScope, IncLoc, BO_Assign, UB.get(), NextUB.get());
+ NextUB = SemaRef.ActOnFinishFullExpr(NextUB.get());
+ if (!NextUB.isUsable())
+ return 0;
+ }
+
+ // Build updates and final values of the loop counters.
+ bool HasErrors = false;
+ Built.Counters.resize(NestedLoopCount);
+ Built.Updates.resize(NestedLoopCount);
+ Built.Finals.resize(NestedLoopCount);
+ {
+ ExprResult Div;
+ // Go from inner nested loop to outer.
+ for (int Cnt = NestedLoopCount - 1; Cnt >= 0; --Cnt) {
+ LoopIterationSpace &IS = IterSpaces[Cnt];
+ SourceLocation UpdLoc = IS.IncSrcRange.getBegin();
+ // Build: Iter = (IV / Div) % IS.NumIters
+ // where Div is product of previous iterations' IS.NumIters.
+ ExprResult Iter;
+ if (Div.isUsable()) {
+ Iter =
+ SemaRef.BuildBinOp(CurScope, UpdLoc, BO_Div, IV.get(), Div.get());
+ } else {
+ Iter = IV;
+ assert((Cnt == (int)NestedLoopCount - 1) &&
+ "unusable div expected on first iteration only");
+ }
+
+ if (Cnt != 0 && Iter.isUsable())
+ Iter = SemaRef.BuildBinOp(CurScope, UpdLoc, BO_Rem, Iter.get(),
+ IS.NumIterations);
+ if (!Iter.isUsable()) {
+ HasErrors = true;
+ break;
+ }
+
+ // Build update: IS.CounterVar(Private) = IS.Start + Iter * IS.Step
+ auto *CounterVar = buildDeclRefExpr(
+ SemaRef, cast<VarDecl>(cast<DeclRefExpr>(IS.CounterVar)->getDecl()),
+ IS.CounterVar->getType(), IS.CounterVar->getExprLoc(),
+ /*RefersToCapture=*/true);
+ ExprResult Update =
+ BuildCounterUpdate(SemaRef, CurScope, UpdLoc, CounterVar,
+ IS.CounterInit, Iter, IS.CounterStep, IS.Subtract);
+ if (!Update.isUsable()) {
+ HasErrors = true;
+ break;
+ }
+
+ // Build final: IS.CounterVar = IS.Start + IS.NumIters * IS.Step
+ ExprResult Final = BuildCounterUpdate(
+ SemaRef, CurScope, UpdLoc, CounterVar, IS.CounterInit,
+ IS.NumIterations, IS.CounterStep, IS.Subtract);
+ if (!Final.isUsable()) {
+ HasErrors = true;
+ break;
+ }
+
+ // Build Div for the next iteration: Div <- Div * IS.NumIters
+ if (Cnt != 0) {
+ if (Div.isUnset())
+ Div = IS.NumIterations;
+ else
+ Div = SemaRef.BuildBinOp(CurScope, UpdLoc, BO_Mul, Div.get(),
+ IS.NumIterations);
+
+ // Add parentheses (for debugging purposes only).
+ if (Div.isUsable())
+ Div = SemaRef.ActOnParenExpr(UpdLoc, UpdLoc, Div.get());
+ if (!Div.isUsable()) {
+ HasErrors = true;
+ break;
+ }
+ }
+ if (!Update.isUsable() || !Final.isUsable()) {
+ HasErrors = true;
+ break;
+ }
+ // Save results
+ Built.Counters[Cnt] = IS.CounterVar;
+ Built.Updates[Cnt] = Update.get();
+ Built.Finals[Cnt] = Final.get();
+ }
+ }
+
+ if (HasErrors)
+ return 0;
+
+ // Save results
+ Built.IterationVarRef = IV.get();
+ Built.LastIteration = LastIteration.get();
+ Built.NumIterations = NumIterations.get();
+ Built.CalcLastIteration = CalcLastIteration.get();
+ Built.PreCond = PreCond.get();
+ Built.Cond = Cond.get();
+ Built.SeparatedCond = SeparatedCond.get();
+ Built.Init = Init.get();
+ Built.Inc = Inc.get();
+ Built.LB = LB.get();
+ Built.UB = UB.get();
+ Built.IL = IL.get();
+ Built.ST = ST.get();
+ Built.EUB = EUB.get();
+ Built.NLB = NextLB.get();
+ Built.NUB = NextUB.get();
+
+ return NestedLoopCount;
+}
+
+static Expr *GetCollapseNumberExpr(ArrayRef<OMPClause *> Clauses) {
+ auto &&CollapseFilter = [](const OMPClause *C) -> bool {
+ return C->getClauseKind() == OMPC_collapse;
+ };
+ OMPExecutableDirective::filtered_clause_iterator<decltype(CollapseFilter)> I(
+ Clauses, std::move(CollapseFilter));
+ if (I)
+ return cast<OMPCollapseClause>(*I)->getNumForLoops();
+ return nullptr;
+}
+
+StmtResult Sema::ActOnOpenMPSimdDirective(
+ ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
+ SourceLocation EndLoc,
+ llvm::DenseMap<VarDecl *, Expr *> &VarsWithImplicitDSA) {
+ OMPLoopDirective::HelperExprs B;
+ // In presence of clause 'collapse', it will define the nested loops number.
+ unsigned NestedLoopCount =
+ CheckOpenMPLoop(OMPD_simd, GetCollapseNumberExpr(Clauses), AStmt, *this,
+ *DSAStack, VarsWithImplicitDSA, B);
+ if (NestedLoopCount == 0)
+ return StmtError();
+
+ assert((CurContext->isDependentContext() || B.builtAll()) &&
+ "omp simd loop exprs were not built");
+
+ if (!CurContext->isDependentContext()) {
+ // Finalize the clauses that need pre-built expressions for CodeGen.
+ for (auto C : Clauses) {
+ if (auto LC = dyn_cast<OMPLinearClause>(C))
+ if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef),
+ B.NumIterations, *this, CurScope))
+ return StmtError();
+ }
+ }
+
+ getCurFunction()->setHasBranchProtectedScope();
+ return OMPSimdDirective::Create(Context, StartLoc, EndLoc, NestedLoopCount,
+ Clauses, AStmt, B);
+}
+
+StmtResult Sema::ActOnOpenMPForDirective(
+ ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
+ SourceLocation EndLoc,
+ llvm::DenseMap<VarDecl *, Expr *> &VarsWithImplicitDSA) {
+ OMPLoopDirective::HelperExprs B;
+ // In presence of clause 'collapse', it will define the nested loops number.
+ unsigned NestedLoopCount =
+ CheckOpenMPLoop(OMPD_for, GetCollapseNumberExpr(Clauses), AStmt, *this,
+ *DSAStack, VarsWithImplicitDSA, B);
+ if (NestedLoopCount == 0)
+ return StmtError();
+
+ assert((CurContext->isDependentContext() || B.builtAll()) &&
+ "omp for loop exprs were not built");
+
+ getCurFunction()->setHasBranchProtectedScope();
+ return OMPForDirective::Create(Context, StartLoc, EndLoc, NestedLoopCount,
+ Clauses, AStmt, B);
+}
+
+StmtResult Sema::ActOnOpenMPForSimdDirective(
+ ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
+ SourceLocation EndLoc,
+ llvm::DenseMap<VarDecl *, Expr *> &VarsWithImplicitDSA) {
+ OMPLoopDirective::HelperExprs B;
+ // In presence of clause 'collapse', it will define the nested loops number.
+ unsigned NestedLoopCount =
+ CheckOpenMPLoop(OMPD_for_simd, GetCollapseNumberExpr(Clauses), AStmt,
+ *this, *DSAStack, VarsWithImplicitDSA, B);
+ if (NestedLoopCount == 0)
+ return StmtError();
+
+ assert((CurContext->isDependentContext() || B.builtAll()) &&
+ "omp for simd loop exprs were not built");
+
+ getCurFunction()->setHasBranchProtectedScope();
+ return OMPForSimdDirective::Create(Context, StartLoc, EndLoc, NestedLoopCount,
+ Clauses, AStmt, B);
+}
+
+StmtResult Sema::ActOnOpenMPSectionsDirective(ArrayRef<OMPClause *> Clauses,
+ Stmt *AStmt,
+ SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+ assert(AStmt && isa<CapturedStmt>(AStmt) && "Captured statement expected");
+ auto BaseStmt = AStmt;
+ while (CapturedStmt *CS = dyn_cast_or_null<CapturedStmt>(BaseStmt))
+ BaseStmt = CS->getCapturedStmt();
+ if (auto C = dyn_cast_or_null<CompoundStmt>(BaseStmt)) {
+ auto S = C->children();
+ if (!S)
+ return StmtError();
+ // All associated statements must be '#pragma omp section' except for
+ // the first one.
+ for (++S; S; ++S) {
+ auto SectionStmt = *S;
+ if (!SectionStmt || !isa<OMPSectionDirective>(SectionStmt)) {
+ if (SectionStmt)
+ Diag(SectionStmt->getLocStart(),
+ diag::err_omp_sections_substmt_not_section);
+ return StmtError();
+ }
+ }
+ } else {
+ Diag(AStmt->getLocStart(), diag::err_omp_sections_not_compound_stmt);
+ return StmtError();
+ }
+
+ getCurFunction()->setHasBranchProtectedScope();
+
+ return OMPSectionsDirective::Create(Context, StartLoc, EndLoc, Clauses,
+ AStmt);
+}
+
+StmtResult Sema::ActOnOpenMPSectionDirective(Stmt *AStmt,
+ SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+ assert(AStmt && isa<CapturedStmt>(AStmt) && "Captured statement expected");
+
+ getCurFunction()->setHasBranchProtectedScope();
+
+ return OMPSectionDirective::Create(Context, StartLoc, EndLoc, AStmt);
+}
+
+StmtResult Sema::ActOnOpenMPSingleDirective(ArrayRef<OMPClause *> Clauses,
+ Stmt *AStmt,
+ SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+ assert(AStmt && isa<CapturedStmt>(AStmt) && "Captured statement expected");
+
+ getCurFunction()->setHasBranchProtectedScope();
+
+ // OpenMP [2.7.3, single Construct, Restrictions]
+ // The copyprivate clause must not be used with the nowait clause.
+ OMPClause *Nowait = nullptr;
+ OMPClause *Copyprivate = nullptr;
+ for (auto *Clause : Clauses) {
+ if (Clause->getClauseKind() == OMPC_nowait)
+ Nowait = Clause;
+ else if (Clause->getClauseKind() == OMPC_copyprivate)
+ Copyprivate = Clause;
+ if (Copyprivate && Nowait) {
+ Diag(Copyprivate->getLocStart(),
+ diag::err_omp_single_copyprivate_with_nowait);
+ Diag(Nowait->getLocStart(), diag::note_omp_nowait_clause_here);
+ return StmtError();
+ }
+ }
+
+ return OMPSingleDirective::Create(Context, StartLoc, EndLoc, Clauses, AStmt);
+}
+
+StmtResult Sema::ActOnOpenMPMasterDirective(Stmt *AStmt,
+ SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+ assert(AStmt && isa<CapturedStmt>(AStmt) && "Captured statement expected");
+
+ getCurFunction()->setHasBranchProtectedScope();
+
+ return OMPMasterDirective::Create(Context, StartLoc, EndLoc, AStmt);
+}
+
+StmtResult
+Sema::ActOnOpenMPCriticalDirective(const DeclarationNameInfo &DirName,
+ Stmt *AStmt, SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+ assert(AStmt && isa<CapturedStmt>(AStmt) && "Captured statement expected");
+
+ getCurFunction()->setHasBranchProtectedScope();
+
+ return OMPCriticalDirective::Create(Context, DirName, StartLoc, EndLoc,
+ AStmt);
+}
+
+StmtResult Sema::ActOnOpenMPParallelForDirective(
+ ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
+ SourceLocation EndLoc,
+ llvm::DenseMap<VarDecl *, Expr *> &VarsWithImplicitDSA) {
+ assert(AStmt && isa<CapturedStmt>(AStmt) && "Captured statement expected");
+ CapturedStmt *CS = cast<CapturedStmt>(AStmt);
+ // 1.2.2 OpenMP Language Terminology
+ // Structured block - An executable statement with a single entry at the
+ // top and a single exit at the bottom.
+ // The point of exit cannot be a branch out of the structured block.
+ // longjmp() and throw() must not violate the entry/exit criteria.
+ CS->getCapturedDecl()->setNothrow();
+
+ OMPLoopDirective::HelperExprs B;
+ // In presence of clause 'collapse', it will define the nested loops number.
+ unsigned NestedLoopCount =
+ CheckOpenMPLoop(OMPD_parallel_for, GetCollapseNumberExpr(Clauses), AStmt,
+ *this, *DSAStack, VarsWithImplicitDSA, B);
+ if (NestedLoopCount == 0)
+ return StmtError();
+
+ assert((CurContext->isDependentContext() || B.builtAll()) &&
+ "omp parallel for loop exprs were not built");
+
+ getCurFunction()->setHasBranchProtectedScope();
+ return OMPParallelForDirective::Create(Context, StartLoc, EndLoc,
+ NestedLoopCount, Clauses, AStmt, B);
+}
+
+StmtResult Sema::ActOnOpenMPParallelForSimdDirective(
+ ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
+ SourceLocation EndLoc,
+ llvm::DenseMap<VarDecl *, Expr *> &VarsWithImplicitDSA) {
+ assert(AStmt && isa<CapturedStmt>(AStmt) && "Captured statement expected");
+ CapturedStmt *CS = cast<CapturedStmt>(AStmt);
+ // 1.2.2 OpenMP Language Terminology
+ // Structured block - An executable statement with a single entry at the
+ // top and a single exit at the bottom.
+ // The point of exit cannot be a branch out of the structured block.
+ // longjmp() and throw() must not violate the entry/exit criteria.
+ CS->getCapturedDecl()->setNothrow();
+
+ OMPLoopDirective::HelperExprs B;
+ // In presence of clause 'collapse', it will define the nested loops number.
+ unsigned NestedLoopCount =
+ CheckOpenMPLoop(OMPD_parallel_for_simd, GetCollapseNumberExpr(Clauses),
+ AStmt, *this, *DSAStack, VarsWithImplicitDSA, B);
+ if (NestedLoopCount == 0)
+ return StmtError();
+
+ getCurFunction()->setHasBranchProtectedScope();
+ return OMPParallelForSimdDirective::Create(
+ Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B);
+}
+
+StmtResult
+Sema::ActOnOpenMPParallelSectionsDirective(ArrayRef<OMPClause *> Clauses,
+ Stmt *AStmt, SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+ assert(AStmt && isa<CapturedStmt>(AStmt) && "Captured statement expected");
+ auto BaseStmt = AStmt;
+ while (CapturedStmt *CS = dyn_cast_or_null<CapturedStmt>(BaseStmt))
+ BaseStmt = CS->getCapturedStmt();
+ if (auto C = dyn_cast_or_null<CompoundStmt>(BaseStmt)) {
+ auto S = C->children();
+ if (!S)
+ return StmtError();
+ // All associated statements must be '#pragma omp section' except for
+ // the first one.
+ for (++S; S; ++S) {
+ auto SectionStmt = *S;
+ if (!SectionStmt || !isa<OMPSectionDirective>(SectionStmt)) {
+ if (SectionStmt)
+ Diag(SectionStmt->getLocStart(),
+ diag::err_omp_parallel_sections_substmt_not_section);
+ return StmtError();
+ }
+ }
+ } else {
+ Diag(AStmt->getLocStart(),
+ diag::err_omp_parallel_sections_not_compound_stmt);
+ return StmtError();
+ }
+
+ getCurFunction()->setHasBranchProtectedScope();
+
+ return OMPParallelSectionsDirective::Create(Context, StartLoc, EndLoc,
+ Clauses, AStmt);
+}
+
+StmtResult Sema::ActOnOpenMPTaskDirective(ArrayRef<OMPClause *> Clauses,
+ Stmt *AStmt, SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+ assert(AStmt && isa<CapturedStmt>(AStmt) && "Captured statement expected");
+ CapturedStmt *CS = cast<CapturedStmt>(AStmt);
+ // 1.2.2 OpenMP Language Terminology
+ // Structured block - An executable statement with a single entry at the
+ // top and a single exit at the bottom.
+ // The point of exit cannot be a branch out of the structured block.
+ // longjmp() and throw() must not violate the entry/exit criteria.
+ CS->getCapturedDecl()->setNothrow();
+
+ getCurFunction()->setHasBranchProtectedScope();
+
+ return OMPTaskDirective::Create(Context, StartLoc, EndLoc, Clauses, AStmt);
+}
+
+StmtResult Sema::ActOnOpenMPTaskyieldDirective(SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+ return OMPTaskyieldDirective::Create(Context, StartLoc, EndLoc);
+}
+
+StmtResult Sema::ActOnOpenMPBarrierDirective(SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+ return OMPBarrierDirective::Create(Context, StartLoc, EndLoc);
+}
+
+StmtResult Sema::ActOnOpenMPTaskwaitDirective(SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+ return OMPTaskwaitDirective::Create(Context, StartLoc, EndLoc);
+}
+
+StmtResult Sema::ActOnOpenMPFlushDirective(ArrayRef<OMPClause *> Clauses,
+ SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+ assert(Clauses.size() <= 1 && "Extra clauses in flush directive");
+ return OMPFlushDirective::Create(Context, StartLoc, EndLoc, Clauses);
+}
+
+StmtResult Sema::ActOnOpenMPOrderedDirective(Stmt *AStmt,
+ SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+ assert(AStmt && isa<CapturedStmt>(AStmt) && "Captured statement expected");
+
+ getCurFunction()->setHasBranchProtectedScope();
+
+ return OMPOrderedDirective::Create(Context, StartLoc, EndLoc, AStmt);
+}
+
+namespace {
+/// \brief Helper class for checking expression in 'omp atomic [update]'
+/// construct.
+class OpenMPAtomicUpdateChecker {
+ /// \brief Error results for atomic update expressions.
+ enum ExprAnalysisErrorCode {
+ /// \brief A statement is not an expression statement.
+ NotAnExpression,
+ /// \brief Expression is not builtin binary or unary operation.
+ NotABinaryOrUnaryExpression,
+ /// \brief Unary operation is not post-/pre- increment/decrement operation.
+ NotAnUnaryIncDecExpression,
+ /// \brief An expression is not of scalar type.
+ NotAScalarType,
+ /// \brief A binary operation is not an assignment operation.
+ NotAnAssignmentOp,
+ /// \brief RHS part of the binary operation is not a binary expression.
+ NotABinaryExpression,
+ /// \brief RHS part is not additive/multiplicative/shift/biwise binary
+ /// expression.
+ NotABinaryOperator,
+ /// \brief RHS binary operation does not have reference to the updated LHS
+ /// part.
+ NotAnUpdateExpression,
+ /// \brief No errors is found.
+ NoError
+ };
+ /// \brief Reference to Sema.
+ Sema &SemaRef;
+ /// \brief A location for note diagnostics (when error is found).
+ SourceLocation NoteLoc;
+ /// \brief 'x' lvalue part of the source atomic expression.
+ Expr *X;
+ /// \brief 'expr' rvalue part of the source atomic expression.
+ Expr *E;
+ /// \brief Helper expression of the form
+ /// 'OpaqueValueExpr(x) binop OpaqueValueExpr(expr)' or
+ /// 'OpaqueValueExpr(expr) binop OpaqueValueExpr(x)'.
+ Expr *UpdateExpr;
+ /// \brief Is 'x' a LHS in a RHS part of full update expression. It is
+ /// important for non-associative operations.
+ bool IsXLHSInRHSPart;
+ BinaryOperatorKind Op;
+ SourceLocation OpLoc;
+ /// \brief true if the source expression is a postfix unary operation, false
+ /// if it is a prefix unary operation.
+ bool IsPostfixUpdate;
+
+public:
+ OpenMPAtomicUpdateChecker(Sema &SemaRef)
+ : SemaRef(SemaRef), X(nullptr), E(nullptr), UpdateExpr(nullptr),
+ IsXLHSInRHSPart(false), Op(BO_PtrMemD), IsPostfixUpdate(false) {}
+ /// \brief Check specified statement that it is suitable for 'atomic update'
+ /// constructs and extract 'x', 'expr' and Operation from the original
+ /// expression. If DiagId and NoteId == 0, then only check is performed
+ /// without error notification.
+ /// \param DiagId Diagnostic which should be emitted if error is found.
+ /// \param NoteId Diagnostic note for the main error message.
+ /// \return true if statement is not an update expression, false otherwise.
+ bool checkStatement(Stmt *S, unsigned DiagId = 0, unsigned NoteId = 0);
+ /// \brief Return the 'x' lvalue part of the source atomic expression.
+ Expr *getX() const { return X; }
+ /// \brief Return the 'expr' rvalue part of the source atomic expression.
+ Expr *getExpr() const { return E; }
+ /// \brief Return the update expression used in calculation of the updated
+ /// value. Always has form 'OpaqueValueExpr(x) binop OpaqueValueExpr(expr)' or
+ /// 'OpaqueValueExpr(expr) binop OpaqueValueExpr(x)'.
+ Expr *getUpdateExpr() const { return UpdateExpr; }
+ /// \brief Return true if 'x' is LHS in RHS part of full update expression,
+ /// false otherwise.
+ bool isXLHSInRHSPart() const { return IsXLHSInRHSPart; }
+
+ /// \brief true if the source expression is a postfix unary operation, false
+ /// if it is a prefix unary operation.
+ bool isPostfixUpdate() const { return IsPostfixUpdate; }
+
+private:
+ bool checkBinaryOperation(BinaryOperator *AtomicBinOp, unsigned DiagId = 0,
+ unsigned NoteId = 0);
+};
+} // namespace
+
+bool OpenMPAtomicUpdateChecker::checkBinaryOperation(
+ BinaryOperator *AtomicBinOp, unsigned DiagId, unsigned NoteId) {
+ ExprAnalysisErrorCode ErrorFound = NoError;
+ SourceLocation ErrorLoc, NoteLoc;
+ SourceRange ErrorRange, NoteRange;
+ // Allowed constructs are:
+ // x = x binop expr;
+ // x = expr binop x;
+ if (AtomicBinOp->getOpcode() == BO_Assign) {
+ X = AtomicBinOp->getLHS();
+ if (auto *AtomicInnerBinOp = dyn_cast<BinaryOperator>(
+ AtomicBinOp->getRHS()->IgnoreParenImpCasts())) {
+ if (AtomicInnerBinOp->isMultiplicativeOp() ||
+ AtomicInnerBinOp->isAdditiveOp() || AtomicInnerBinOp->isShiftOp() ||
+ AtomicInnerBinOp->isBitwiseOp()) {
+ Op = AtomicInnerBinOp->getOpcode();
+ OpLoc = AtomicInnerBinOp->getOperatorLoc();
+ auto *LHS = AtomicInnerBinOp->getLHS();
+ auto *RHS = AtomicInnerBinOp->getRHS();
+ llvm::FoldingSetNodeID XId, LHSId, RHSId;
+ X->IgnoreParenImpCasts()->Profile(XId, SemaRef.getASTContext(),
+ /*Canonical=*/true);
+ LHS->IgnoreParenImpCasts()->Profile(LHSId, SemaRef.getASTContext(),
+ /*Canonical=*/true);
+ RHS->IgnoreParenImpCasts()->Profile(RHSId, SemaRef.getASTContext(),
+ /*Canonical=*/true);
+ if (XId == LHSId) {
+ E = RHS;
+ IsXLHSInRHSPart = true;
+ } else if (XId == RHSId) {
+ E = LHS;
+ IsXLHSInRHSPart = false;
+ } else {
+ ErrorLoc = AtomicInnerBinOp->getExprLoc();
+ ErrorRange = AtomicInnerBinOp->getSourceRange();
+ NoteLoc = X->getExprLoc();
+ NoteRange = X->getSourceRange();
+ ErrorFound = NotAnUpdateExpression;
+ }
+ } else {
+ ErrorLoc = AtomicInnerBinOp->getExprLoc();
+ ErrorRange = AtomicInnerBinOp->getSourceRange();
+ NoteLoc = AtomicInnerBinOp->getOperatorLoc();
+ NoteRange = SourceRange(NoteLoc, NoteLoc);
+ ErrorFound = NotABinaryOperator;
+ }
+ } else {
+ NoteLoc = ErrorLoc = AtomicBinOp->getRHS()->getExprLoc();
+ NoteRange = ErrorRange = AtomicBinOp->getRHS()->getSourceRange();
+ ErrorFound = NotABinaryExpression;
+ }
+ } else {
+ ErrorLoc = AtomicBinOp->getExprLoc();
+ ErrorRange = AtomicBinOp->getSourceRange();
+ NoteLoc = AtomicBinOp->getOperatorLoc();
+ NoteRange = SourceRange(NoteLoc, NoteLoc);
+ ErrorFound = NotAnAssignmentOp;
+ }
+ if (ErrorFound != NoError && DiagId != 0 && NoteId != 0) {
+ SemaRef.Diag(ErrorLoc, DiagId) << ErrorRange;
+ SemaRef.Diag(NoteLoc, NoteId) << ErrorFound << NoteRange;
+ return true;
+ } else if (SemaRef.CurContext->isDependentContext())
+ E = X = UpdateExpr = nullptr;
+ return ErrorFound != NoError;
+}
+
+bool OpenMPAtomicUpdateChecker::checkStatement(Stmt *S, unsigned DiagId,
+ unsigned NoteId) {
+ ExprAnalysisErrorCode ErrorFound = NoError;
+ SourceLocation ErrorLoc, NoteLoc;
+ SourceRange ErrorRange, NoteRange;
+ // Allowed constructs are:
+ // x++;
+ // x--;
+ // ++x;
+ // --x;
+ // x binop= expr;
+ // x = x binop expr;
+ // x = expr binop x;
+ if (auto *AtomicBody = dyn_cast<Expr>(S)) {
+ AtomicBody = AtomicBody->IgnoreParenImpCasts();
+ if (AtomicBody->getType()->isScalarType() ||
+ AtomicBody->isInstantiationDependent()) {
+ if (auto *AtomicCompAssignOp = dyn_cast<CompoundAssignOperator>(
+ AtomicBody->IgnoreParenImpCasts())) {
+ // Check for Compound Assignment Operation
+ Op = BinaryOperator::getOpForCompoundAssignment(
+ AtomicCompAssignOp->getOpcode());
+ OpLoc = AtomicCompAssignOp->getOperatorLoc();
+ E = AtomicCompAssignOp->getRHS();
+ X = AtomicCompAssignOp->getLHS();
+ IsXLHSInRHSPart = true;
+ } else if (auto *AtomicBinOp = dyn_cast<BinaryOperator>(
+ AtomicBody->IgnoreParenImpCasts())) {
+ // Check for Binary Operation
+ if(checkBinaryOperation(AtomicBinOp, DiagId, NoteId))
+ return true;
+ } else if (auto *AtomicUnaryOp =
+ dyn_cast<UnaryOperator>(AtomicBody->IgnoreParenImpCasts())) {
+ // Check for Unary Operation
+ if (AtomicUnaryOp->isIncrementDecrementOp()) {
+ IsPostfixUpdate = AtomicUnaryOp->isPostfix();
+ Op = AtomicUnaryOp->isIncrementOp() ? BO_Add : BO_Sub;
+ OpLoc = AtomicUnaryOp->getOperatorLoc();
+ X = AtomicUnaryOp->getSubExpr();
+ E = SemaRef.ActOnIntegerConstant(OpLoc, /*uint64_t Val=*/1).get();
+ IsXLHSInRHSPart = true;
+ } else {
+ ErrorFound = NotAnUnaryIncDecExpression;
+ ErrorLoc = AtomicUnaryOp->getExprLoc();
+ ErrorRange = AtomicUnaryOp->getSourceRange();
+ NoteLoc = AtomicUnaryOp->getOperatorLoc();
+ NoteRange = SourceRange(NoteLoc, NoteLoc);
+ }
+ } else {
+ ErrorFound = NotABinaryOrUnaryExpression;
+ NoteLoc = ErrorLoc = AtomicBody->getExprLoc();
+ NoteRange = ErrorRange = AtomicBody->getSourceRange();
+ }
+ } else {
+ ErrorFound = NotAScalarType;
+ NoteLoc = ErrorLoc = AtomicBody->getLocStart();
+ NoteRange = ErrorRange = SourceRange(NoteLoc, NoteLoc);
+ }
+ } else {
+ ErrorFound = NotAnExpression;
+ NoteLoc = ErrorLoc = S->getLocStart();
+ NoteRange = ErrorRange = SourceRange(NoteLoc, NoteLoc);
+ }
+ if (ErrorFound != NoError && DiagId != 0 && NoteId != 0) {
+ SemaRef.Diag(ErrorLoc, DiagId) << ErrorRange;
+ SemaRef.Diag(NoteLoc, NoteId) << ErrorFound << NoteRange;
+ return true;
+ } else if (SemaRef.CurContext->isDependentContext())
+ E = X = UpdateExpr = nullptr;
+ if (ErrorFound == NoError && E && X) {
+ // Build an update expression of form 'OpaqueValueExpr(x) binop
+ // OpaqueValueExpr(expr)' or 'OpaqueValueExpr(expr) binop
+ // OpaqueValueExpr(x)' and then cast it to the type of the 'x' expression.
+ auto *OVEX = new (SemaRef.getASTContext())
+ OpaqueValueExpr(X->getExprLoc(), X->getType(), VK_RValue);
+ auto *OVEExpr = new (SemaRef.getASTContext())
+ OpaqueValueExpr(E->getExprLoc(), E->getType(), VK_RValue);
+ auto Update =
+ SemaRef.CreateBuiltinBinOp(OpLoc, Op, IsXLHSInRHSPart ? OVEX : OVEExpr,
+ IsXLHSInRHSPart ? OVEExpr : OVEX);
+ if (Update.isInvalid())
+ return true;
+ Update = SemaRef.PerformImplicitConversion(Update.get(), X->getType(),
+ Sema::AA_Casting);
+ if (Update.isInvalid())
+ return true;
+ UpdateExpr = Update.get();
+ }
+ return ErrorFound != NoError;
+}
+
+StmtResult Sema::ActOnOpenMPAtomicDirective(ArrayRef<OMPClause *> Clauses,
+ Stmt *AStmt,
+ SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+ assert(AStmt && isa<CapturedStmt>(AStmt) && "Captured statement expected");
+ auto CS = cast<CapturedStmt>(AStmt);
+ // 1.2.2 OpenMP Language Terminology
+ // Structured block - An executable statement with a single entry at the
+ // top and a single exit at the bottom.
+ // The point of exit cannot be a branch out of the structured block.
+ // longjmp() and throw() must not violate the entry/exit criteria.
+ OpenMPClauseKind AtomicKind = OMPC_unknown;
+ SourceLocation AtomicKindLoc;
+ for (auto *C : Clauses) {
+ if (C->getClauseKind() == OMPC_read || C->getClauseKind() == OMPC_write ||
+ C->getClauseKind() == OMPC_update ||
+ C->getClauseKind() == OMPC_capture) {
+ if (AtomicKind != OMPC_unknown) {
+ Diag(C->getLocStart(), diag::err_omp_atomic_several_clauses)
+ << SourceRange(C->getLocStart(), C->getLocEnd());
+ Diag(AtomicKindLoc, diag::note_omp_atomic_previous_clause)
+ << getOpenMPClauseName(AtomicKind);
+ } else {
+ AtomicKind = C->getClauseKind();
+ AtomicKindLoc = C->getLocStart();
+ }
+ }
+ }
+
+ auto Body = CS->getCapturedStmt();
+ if (auto *EWC = dyn_cast<ExprWithCleanups>(Body))
+ Body = EWC->getSubExpr();
+
+ Expr *X = nullptr;
+ Expr *V = nullptr;
+ Expr *E = nullptr;
+ Expr *UE = nullptr;
+ bool IsXLHSInRHSPart = false;
+ bool IsPostfixUpdate = false;
+ // OpenMP [2.12.6, atomic Construct]
+ // In the next expressions:
+ // * x and v (as applicable) are both l-value expressions with scalar type.
+ // * During the execution of an atomic region, multiple syntactic
+ // occurrences of x must designate the same storage location.
+ // * Neither of v and expr (as applicable) may access the storage location
+ // designated by x.
+ // * Neither of x and expr (as applicable) may access the storage location
+ // designated by v.
+ // * expr is an expression with scalar type.
+ // * binop is one of +, *, -, /, &, ^, |, <<, or >>.
+ // * binop, binop=, ++, and -- are not overloaded operators.
+ // * The expression x binop expr must be numerically equivalent to x binop
+ // (expr). This requirement is satisfied if the operators in expr have
+ // precedence greater than binop, or by using parentheses around expr or
+ // subexpressions of expr.
+ // * The expression expr binop x must be numerically equivalent to (expr)
+ // binop x. This requirement is satisfied if the operators in expr have
+ // precedence equal to or greater than binop, or by using parentheses around
+ // expr or subexpressions of expr.
+ // * For forms that allow multiple occurrences of x, the number of times
+ // that x is evaluated is unspecified.
+ if (AtomicKind == OMPC_read) {
+ enum {
+ NotAnExpression,
+ NotAnAssignmentOp,
+ NotAScalarType,
+ NotAnLValue,
+ NoError
+ } ErrorFound = NoError;
+ SourceLocation ErrorLoc, NoteLoc;
+ SourceRange ErrorRange, NoteRange;
+ // If clause is read:
+ // v = x;
+ if (auto AtomicBody = dyn_cast<Expr>(Body)) {
+ auto AtomicBinOp =
+ dyn_cast<BinaryOperator>(AtomicBody->IgnoreParenImpCasts());
+ if (AtomicBinOp && AtomicBinOp->getOpcode() == BO_Assign) {
+ X = AtomicBinOp->getRHS()->IgnoreParenImpCasts();
+ V = AtomicBinOp->getLHS()->IgnoreParenImpCasts();
+ if ((X->isInstantiationDependent() || X->getType()->isScalarType()) &&
+ (V->isInstantiationDependent() || V->getType()->isScalarType())) {
+ if (!X->isLValue() || !V->isLValue()) {
+ auto NotLValueExpr = X->isLValue() ? V : X;
+ ErrorFound = NotAnLValue;
+ ErrorLoc = AtomicBinOp->getExprLoc();
+ ErrorRange = AtomicBinOp->getSourceRange();
+ NoteLoc = NotLValueExpr->getExprLoc();
+ NoteRange = NotLValueExpr->getSourceRange();
+ }
+ } else if (!X->isInstantiationDependent() ||
+ !V->isInstantiationDependent()) {
+ auto NotScalarExpr =
+ (X->isInstantiationDependent() || X->getType()->isScalarType())
+ ? V
+ : X;
+ ErrorFound = NotAScalarType;
+ ErrorLoc = AtomicBinOp->getExprLoc();
+ ErrorRange = AtomicBinOp->getSourceRange();
+ NoteLoc = NotScalarExpr->getExprLoc();
+ NoteRange = NotScalarExpr->getSourceRange();
+ }
+ } else {
+ ErrorFound = NotAnAssignmentOp;
+ ErrorLoc = AtomicBody->getExprLoc();
+ ErrorRange = AtomicBody->getSourceRange();
+ NoteLoc = AtomicBinOp ? AtomicBinOp->getOperatorLoc()
+ : AtomicBody->getExprLoc();
+ NoteRange = AtomicBinOp ? AtomicBinOp->getSourceRange()
+ : AtomicBody->getSourceRange();
+ }
+ } else {
+ ErrorFound = NotAnExpression;
+ NoteLoc = ErrorLoc = Body->getLocStart();
+ NoteRange = ErrorRange = SourceRange(NoteLoc, NoteLoc);
+ }
+ if (ErrorFound != NoError) {
+ Diag(ErrorLoc, diag::err_omp_atomic_read_not_expression_statement)
+ << ErrorRange;
+ Diag(NoteLoc, diag::note_omp_atomic_read_write) << ErrorFound
+ << NoteRange;
+ return StmtError();
+ } else if (CurContext->isDependentContext())
+ V = X = nullptr;
+ } else if (AtomicKind == OMPC_write) {
+ enum {
+ NotAnExpression,
+ NotAnAssignmentOp,
+ NotAScalarType,
+ NotAnLValue,
+ NoError
+ } ErrorFound = NoError;
+ SourceLocation ErrorLoc, NoteLoc;
+ SourceRange ErrorRange, NoteRange;
+ // If clause is write:
+ // x = expr;
+ if (auto AtomicBody = dyn_cast<Expr>(Body)) {
+ auto AtomicBinOp =
+ dyn_cast<BinaryOperator>(AtomicBody->IgnoreParenImpCasts());
+ if (AtomicBinOp && AtomicBinOp->getOpcode() == BO_Assign) {
+ X = AtomicBinOp->getLHS();
+ E = AtomicBinOp->getRHS();
+ if ((X->isInstantiationDependent() || X->getType()->isScalarType()) &&
+ (E->isInstantiationDependent() || E->getType()->isScalarType())) {
+ if (!X->isLValue()) {
+ ErrorFound = NotAnLValue;
+ ErrorLoc = AtomicBinOp->getExprLoc();
+ ErrorRange = AtomicBinOp->getSourceRange();
+ NoteLoc = X->getExprLoc();
+ NoteRange = X->getSourceRange();
+ }
+ } else if (!X->isInstantiationDependent() ||
+ !E->isInstantiationDependent()) {
+ auto NotScalarExpr =
+ (X->isInstantiationDependent() || X->getType()->isScalarType())
+ ? E
+ : X;
+ ErrorFound = NotAScalarType;
+ ErrorLoc = AtomicBinOp->getExprLoc();
+ ErrorRange = AtomicBinOp->getSourceRange();
+ NoteLoc = NotScalarExpr->getExprLoc();
+ NoteRange = NotScalarExpr->getSourceRange();
+ }
+ } else {
+ ErrorFound = NotAnAssignmentOp;
+ ErrorLoc = AtomicBody->getExprLoc();
+ ErrorRange = AtomicBody->getSourceRange();
+ NoteLoc = AtomicBinOp ? AtomicBinOp->getOperatorLoc()
+ : AtomicBody->getExprLoc();
+ NoteRange = AtomicBinOp ? AtomicBinOp->getSourceRange()
+ : AtomicBody->getSourceRange();
+ }
+ } else {
+ ErrorFound = NotAnExpression;
+ NoteLoc = ErrorLoc = Body->getLocStart();
+ NoteRange = ErrorRange = SourceRange(NoteLoc, NoteLoc);
+ }
+ if (ErrorFound != NoError) {
+ Diag(ErrorLoc, diag::err_omp_atomic_write_not_expression_statement)
+ << ErrorRange;
+ Diag(NoteLoc, diag::note_omp_atomic_read_write) << ErrorFound
+ << NoteRange;
+ return StmtError();
+ } else if (CurContext->isDependentContext())
+ E = X = nullptr;
+ } else if (AtomicKind == OMPC_update || AtomicKind == OMPC_unknown) {
+ // If clause is update:
+ // x++;
+ // x--;
+ // ++x;
+ // --x;
+ // x binop= expr;
+ // x = x binop expr;
+ // x = expr binop x;
+ OpenMPAtomicUpdateChecker Checker(*this);
+ if (Checker.checkStatement(
+ Body, (AtomicKind == OMPC_update)
+ ? diag::err_omp_atomic_update_not_expression_statement
+ : diag::err_omp_atomic_not_expression_statement,
+ diag::note_omp_atomic_update))
+ return StmtError();
+ if (!CurContext->isDependentContext()) {
+ E = Checker.getExpr();
+ X = Checker.getX();
+ UE = Checker.getUpdateExpr();
+ IsXLHSInRHSPart = Checker.isXLHSInRHSPart();
+ }
+ } else if (AtomicKind == OMPC_capture) {
+ enum {
+ NotAnAssignmentOp,
+ NotACompoundStatement,
+ NotTwoSubstatements,
+ NotASpecificExpression,
+ NoError
+ } ErrorFound = NoError;
+ SourceLocation ErrorLoc, NoteLoc;
+ SourceRange ErrorRange, NoteRange;
+ if (auto *AtomicBody = dyn_cast<Expr>(Body)) {
+ // If clause is a capture:
+ // v = x++;
+ // v = x--;
+ // v = ++x;
+ // v = --x;
+ // v = x binop= expr;
+ // v = x = x binop expr;
+ // v = x = expr binop x;
+ auto *AtomicBinOp =
+ dyn_cast<BinaryOperator>(AtomicBody->IgnoreParenImpCasts());
+ if (AtomicBinOp && AtomicBinOp->getOpcode() == BO_Assign) {
+ V = AtomicBinOp->getLHS();
+ Body = AtomicBinOp->getRHS()->IgnoreParenImpCasts();
+ OpenMPAtomicUpdateChecker Checker(*this);
+ if (Checker.checkStatement(
+ Body, diag::err_omp_atomic_capture_not_expression_statement,
+ diag::note_omp_atomic_update))
+ return StmtError();
+ E = Checker.getExpr();
+ X = Checker.getX();
+ UE = Checker.getUpdateExpr();
+ IsXLHSInRHSPart = Checker.isXLHSInRHSPart();
+ IsPostfixUpdate = Checker.isPostfixUpdate();
+ } else {
+ ErrorLoc = AtomicBody->getExprLoc();
+ ErrorRange = AtomicBody->getSourceRange();
+ NoteLoc = AtomicBinOp ? AtomicBinOp->getOperatorLoc()
+ : AtomicBody->getExprLoc();
+ NoteRange = AtomicBinOp ? AtomicBinOp->getSourceRange()
+ : AtomicBody->getSourceRange();
+ ErrorFound = NotAnAssignmentOp;
+ }
+ if (ErrorFound != NoError) {
+ Diag(ErrorLoc, diag::err_omp_atomic_capture_not_expression_statement)
+ << ErrorRange;
+ Diag(NoteLoc, diag::note_omp_atomic_capture) << ErrorFound << NoteRange;
+ return StmtError();
+ } else if (CurContext->isDependentContext()) {
+ UE = V = E = X = nullptr;
+ }
+ } else {
+ // If clause is a capture:
+ // { v = x; x = expr; }
+ // { v = x; x++; }
+ // { v = x; x--; }
+ // { v = x; ++x; }
+ // { v = x; --x; }
+ // { v = x; x binop= expr; }
+ // { v = x; x = x binop expr; }
+ // { v = x; x = expr binop x; }
+ // { x++; v = x; }
+ // { x--; v = x; }
+ // { ++x; v = x; }
+ // { --x; v = x; }
+ // { x binop= expr; v = x; }
+ // { x = x binop expr; v = x; }
+ // { x = expr binop x; v = x; }
+ if (auto *CS = dyn_cast<CompoundStmt>(Body)) {
+ // Check that this is { expr1; expr2; }
+ if (CS->size() == 2) {
+ auto *First = CS->body_front();
+ auto *Second = CS->body_back();
+ if (auto *EWC = dyn_cast<ExprWithCleanups>(First))
+ First = EWC->getSubExpr()->IgnoreParenImpCasts();
+ if (auto *EWC = dyn_cast<ExprWithCleanups>(Second))
+ Second = EWC->getSubExpr()->IgnoreParenImpCasts();
+ // Need to find what subexpression is 'v' and what is 'x'.
+ OpenMPAtomicUpdateChecker Checker(*this);
+ bool IsUpdateExprFound = !Checker.checkStatement(Second);
+ BinaryOperator *BinOp = nullptr;
+ if (IsUpdateExprFound) {
+ BinOp = dyn_cast<BinaryOperator>(First);
+ IsUpdateExprFound = BinOp && BinOp->getOpcode() == BO_Assign;
+ }
+ if (IsUpdateExprFound && !CurContext->isDependentContext()) {
+ // { v = x; x++; }
+ // { v = x; x--; }
+ // { v = x; ++x; }
+ // { v = x; --x; }
+ // { v = x; x binop= expr; }
+ // { v = x; x = x binop expr; }
+ // { v = x; x = expr binop x; }
+ // Check that the first expression has form v = x.
+ auto *PossibleX = BinOp->getRHS()->IgnoreParenImpCasts();
+ llvm::FoldingSetNodeID XId, PossibleXId;
+ Checker.getX()->Profile(XId, Context, /*Canonical=*/true);
+ PossibleX->Profile(PossibleXId, Context, /*Canonical=*/true);
+ IsUpdateExprFound = XId == PossibleXId;
+ if (IsUpdateExprFound) {
+ V = BinOp->getLHS();
+ X = Checker.getX();
+ E = Checker.getExpr();
+ UE = Checker.getUpdateExpr();
+ IsXLHSInRHSPart = Checker.isXLHSInRHSPart();
+ IsPostfixUpdate = true;
+ }
+ }
+ if (!IsUpdateExprFound) {
+ IsUpdateExprFound = !Checker.checkStatement(First);
+ BinOp = nullptr;
+ if (IsUpdateExprFound) {
+ BinOp = dyn_cast<BinaryOperator>(Second);
+ IsUpdateExprFound = BinOp && BinOp->getOpcode() == BO_Assign;
+ }
+ if (IsUpdateExprFound && !CurContext->isDependentContext()) {
+ // { x++; v = x; }
+ // { x--; v = x; }
+ // { ++x; v = x; }
+ // { --x; v = x; }
+ // { x binop= expr; v = x; }
+ // { x = x binop expr; v = x; }
+ // { x = expr binop x; v = x; }
+ // Check that the second expression has form v = x.
+ auto *PossibleX = BinOp->getRHS()->IgnoreParenImpCasts();
+ llvm::FoldingSetNodeID XId, PossibleXId;
+ Checker.getX()->Profile(XId, Context, /*Canonical=*/true);
+ PossibleX->Profile(PossibleXId, Context, /*Canonical=*/true);
+ IsUpdateExprFound = XId == PossibleXId;
+ if (IsUpdateExprFound) {
+ V = BinOp->getLHS();
+ X = Checker.getX();
+ E = Checker.getExpr();
+ UE = Checker.getUpdateExpr();
+ IsXLHSInRHSPart = Checker.isXLHSInRHSPart();
+ IsPostfixUpdate = false;
+ }
+ }
+ }
+ if (!IsUpdateExprFound) {
+ // { v = x; x = expr; }
+ auto *FirstBinOp = dyn_cast<BinaryOperator>(First);
+ if (!FirstBinOp || FirstBinOp->getOpcode() != BO_Assign) {
+ ErrorFound = NotAnAssignmentOp;
+ NoteLoc = ErrorLoc = FirstBinOp ? FirstBinOp->getOperatorLoc()
+ : First->getLocStart();
+ NoteRange = ErrorRange = FirstBinOp
+ ? FirstBinOp->getSourceRange()
+ : SourceRange(ErrorLoc, ErrorLoc);
+ } else {
+ auto *SecondBinOp = dyn_cast<BinaryOperator>(Second);
+ if (!SecondBinOp || SecondBinOp->getOpcode() != BO_Assign) {
+ ErrorFound = NotAnAssignmentOp;
+ NoteLoc = ErrorLoc = SecondBinOp ? SecondBinOp->getOperatorLoc()
+ : Second->getLocStart();
+ NoteRange = ErrorRange = SecondBinOp
+ ? SecondBinOp->getSourceRange()
+ : SourceRange(ErrorLoc, ErrorLoc);
+ } else {
+ auto *PossibleXRHSInFirst =
+ FirstBinOp->getRHS()->IgnoreParenImpCasts();
+ auto *PossibleXLHSInSecond =
+ SecondBinOp->getLHS()->IgnoreParenImpCasts();
+ llvm::FoldingSetNodeID X1Id, X2Id;
+ PossibleXRHSInFirst->Profile(X1Id, Context, /*Canonical=*/true);
+ PossibleXLHSInSecond->Profile(X2Id, Context,
+ /*Canonical=*/true);
+ IsUpdateExprFound = X1Id == X2Id;
+ if (IsUpdateExprFound) {
+ V = FirstBinOp->getLHS();
+ X = SecondBinOp->getLHS();
+ E = SecondBinOp->getRHS();
+ UE = nullptr;
+ IsXLHSInRHSPart = false;
+ IsPostfixUpdate = true;
+ } else {
+ ErrorFound = NotASpecificExpression;
+ ErrorLoc = FirstBinOp->getExprLoc();
+ ErrorRange = FirstBinOp->getSourceRange();
+ NoteLoc = SecondBinOp->getLHS()->getExprLoc();
+ NoteRange = SecondBinOp->getRHS()->getSourceRange();
+ }
+ }
+ }
+ }
+ } else {
+ NoteLoc = ErrorLoc = Body->getLocStart();
+ NoteRange = ErrorRange =
+ SourceRange(Body->getLocStart(), Body->getLocStart());
+ ErrorFound = NotTwoSubstatements;
+ }
+ } else {
+ NoteLoc = ErrorLoc = Body->getLocStart();
+ NoteRange = ErrorRange =
+ SourceRange(Body->getLocStart(), Body->getLocStart());
+ ErrorFound = NotACompoundStatement;
+ }
+ if (ErrorFound != NoError) {
+ Diag(ErrorLoc, diag::err_omp_atomic_capture_not_compound_statement)
+ << ErrorRange;
+ Diag(NoteLoc, diag::note_omp_atomic_capture) << ErrorFound << NoteRange;
+ return StmtError();
+ } else if (CurContext->isDependentContext()) {
+ UE = V = E = X = nullptr;
+ }
+ }
+ }
+
+ getCurFunction()->setHasBranchProtectedScope();
+
+ return OMPAtomicDirective::Create(Context, StartLoc, EndLoc, Clauses, AStmt,
+ X, V, E, UE, IsXLHSInRHSPart,
+ IsPostfixUpdate);
+}
+
+StmtResult Sema::ActOnOpenMPTargetDirective(ArrayRef<OMPClause *> Clauses,
+ Stmt *AStmt,
+ SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+ assert(AStmt && isa<CapturedStmt>(AStmt) && "Captured statement expected");
+
+ // OpenMP [2.16, Nesting of Regions]
+ // If specified, a teams construct must be contained within a target
+ // construct. That target construct must contain no statements or directives
+ // outside of the teams construct.
+ if (DSAStack->hasInnerTeamsRegion()) {
+ auto S = AStmt->IgnoreContainers(/*IgnoreCaptured*/ true);
+ bool OMPTeamsFound = true;
+ if (auto *CS = dyn_cast<CompoundStmt>(S)) {
+ auto I = CS->body_begin();
+ while (I != CS->body_end()) {
+ auto OED = dyn_cast<OMPExecutableDirective>(*I);
+ if (!OED || !isOpenMPTeamsDirective(OED->getDirectiveKind())) {
+ OMPTeamsFound = false;
+ break;
+ }
+ ++I;
+ }
+ assert(I != CS->body_end() && "Not found statement");
+ S = *I;
+ }
+ if (!OMPTeamsFound) {
+ Diag(StartLoc, diag::err_omp_target_contains_not_only_teams);
+ Diag(DSAStack->getInnerTeamsRegionLoc(),
+ diag::note_omp_nested_teams_construct_here);
+ Diag(S->getLocStart(), diag::note_omp_nested_statement_here)
+ << isa<OMPExecutableDirective>(S);
+ return StmtError();
+ }
+ }
+
+ getCurFunction()->setHasBranchProtectedScope();
+
+ return OMPTargetDirective::Create(Context, StartLoc, EndLoc, Clauses, AStmt);
+}
+
+StmtResult Sema::ActOnOpenMPTeamsDirective(ArrayRef<OMPClause *> Clauses,
+ Stmt *AStmt, SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+ assert(AStmt && isa<CapturedStmt>(AStmt) && "Captured statement expected");
+ CapturedStmt *CS = cast<CapturedStmt>(AStmt);
+ // 1.2.2 OpenMP Language Terminology
+ // Structured block - An executable statement with a single entry at the
+ // top and a single exit at the bottom.
+ // The point of exit cannot be a branch out of the structured block.
+ // longjmp() and throw() must not violate the entry/exit criteria.
+ CS->getCapturedDecl()->setNothrow();
+
+ getCurFunction()->setHasBranchProtectedScope();
+
+ return OMPTeamsDirective::Create(Context, StartLoc, EndLoc, Clauses, AStmt);
+}
+
+OMPClause *Sema::ActOnOpenMPSingleExprClause(OpenMPClauseKind Kind, Expr *Expr,
+ SourceLocation StartLoc,
+ SourceLocation LParenLoc,
+ SourceLocation EndLoc) {
+ OMPClause *Res = nullptr;
+ switch (Kind) {
+ case OMPC_if:
+ Res = ActOnOpenMPIfClause(Expr, StartLoc, LParenLoc, EndLoc);
+ break;
+ case OMPC_final:
+ Res = ActOnOpenMPFinalClause(Expr, StartLoc, LParenLoc, EndLoc);
+ break;
+ case OMPC_num_threads:
+ Res = ActOnOpenMPNumThreadsClause(Expr, StartLoc, LParenLoc, EndLoc);
+ break;
+ case OMPC_safelen:
+ Res = ActOnOpenMPSafelenClause(Expr, StartLoc, LParenLoc, EndLoc);
+ break;
+ case OMPC_collapse:
+ Res = ActOnOpenMPCollapseClause(Expr, StartLoc, LParenLoc, EndLoc);
+ break;
+ case OMPC_default:
+ case OMPC_proc_bind:
+ case OMPC_schedule:
+ case OMPC_private:
+ case OMPC_firstprivate:
+ case OMPC_lastprivate:
+ case OMPC_shared:
+ case OMPC_reduction:
+ case OMPC_linear:
+ case OMPC_aligned:
+ case OMPC_copyin:
+ case OMPC_copyprivate:
+ case OMPC_ordered:
+ case OMPC_nowait:
+ case OMPC_untied:
+ case OMPC_mergeable:
+ case OMPC_threadprivate:
+ case OMPC_flush:
+ case OMPC_read:
+ case OMPC_write:
+ case OMPC_update:
+ case OMPC_capture:
+ case OMPC_seq_cst:
+ case OMPC_unknown:
+ llvm_unreachable("Clause is not allowed.");
+ }
+ return Res;
+}
+
+OMPClause *Sema::ActOnOpenMPIfClause(Expr *Condition, SourceLocation StartLoc,
+ SourceLocation LParenLoc,
+ SourceLocation EndLoc) {
+ Expr *ValExpr = Condition;
+ if (!Condition->isValueDependent() && !Condition->isTypeDependent() &&
+ !Condition->isInstantiationDependent() &&
+ !Condition->containsUnexpandedParameterPack()) {
+ ExprResult Val = ActOnBooleanCondition(DSAStack->getCurScope(),
+ Condition->getExprLoc(), Condition);
+ if (Val.isInvalid())
+ return nullptr;
+
+ ValExpr = Val.get();
+ }
+
+ return new (Context) OMPIfClause(ValExpr, StartLoc, LParenLoc, EndLoc);
+}
+
+OMPClause *Sema::ActOnOpenMPFinalClause(Expr *Condition,
+ SourceLocation StartLoc,
+ SourceLocation LParenLoc,
+ SourceLocation EndLoc) {
+ Expr *ValExpr = Condition;
+ if (!Condition->isValueDependent() && !Condition->isTypeDependent() &&
+ !Condition->isInstantiationDependent() &&
+ !Condition->containsUnexpandedParameterPack()) {
+ ExprResult Val = ActOnBooleanCondition(DSAStack->getCurScope(),
+ Condition->getExprLoc(), Condition);
+ if (Val.isInvalid())
+ return nullptr;
+
+ ValExpr = Val.get();
+ }
+
+ return new (Context) OMPFinalClause(ValExpr, StartLoc, LParenLoc, EndLoc);
+}
+ExprResult Sema::PerformOpenMPImplicitIntegerConversion(SourceLocation Loc,
+ Expr *Op) {
+ if (!Op)
+ return ExprError();
+
+ class IntConvertDiagnoser : public ICEConvertDiagnoser {
+ public:
+ IntConvertDiagnoser()
+ : ICEConvertDiagnoser(/*AllowScopedEnumerations*/ false, false, true) {}
+ SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
+ QualType T) override {
+ return S.Diag(Loc, diag::err_omp_not_integral) << T;
+ }
+ SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
+ QualType T) override {
+ return S.Diag(Loc, diag::err_omp_incomplete_type) << T;
+ }
+ SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
+ QualType T,
+ QualType ConvTy) override {
+ return S.Diag(Loc, diag::err_omp_explicit_conversion) << T << ConvTy;
+ }
+ SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
+ QualType ConvTy) override {
+ return S.Diag(Conv->getLocation(), diag::note_omp_conversion_here)
+ << ConvTy->isEnumeralType() << ConvTy;
+ }
+ SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
+ QualType T) override {
+ return S.Diag(Loc, diag::err_omp_ambiguous_conversion) << T;
+ }
+ SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
+ QualType ConvTy) override {
+ return S.Diag(Conv->getLocation(), diag::note_omp_conversion_here)
+ << ConvTy->isEnumeralType() << ConvTy;
+ }
+ SemaDiagnosticBuilder diagnoseConversion(Sema &, SourceLocation, QualType,
+ QualType) override {
+ llvm_unreachable("conversion functions are permitted");
+ }
+ } ConvertDiagnoser;
+ return PerformContextualImplicitConversion(Loc, Op, ConvertDiagnoser);
+}
+
+OMPClause *Sema::ActOnOpenMPNumThreadsClause(Expr *NumThreads,
+ SourceLocation StartLoc,
+ SourceLocation LParenLoc,
+ SourceLocation EndLoc) {
+ Expr *ValExpr = NumThreads;
+ if (!NumThreads->isValueDependent() && !NumThreads->isTypeDependent() &&
+ !NumThreads->containsUnexpandedParameterPack()) {
+ SourceLocation NumThreadsLoc = NumThreads->getLocStart();
+ ExprResult Val =
+ PerformOpenMPImplicitIntegerConversion(NumThreadsLoc, NumThreads);
+ if (Val.isInvalid())
+ return nullptr;
+
+ ValExpr = Val.get();
+
+ // OpenMP [2.5, Restrictions]
+ // The num_threads expression must evaluate to a positive integer value.
+ llvm::APSInt Result;
+ if (ValExpr->isIntegerConstantExpr(Result, Context) && Result.isSigned() &&
+ !Result.isStrictlyPositive()) {
+ Diag(NumThreadsLoc, diag::err_omp_negative_expression_in_clause)
+ << "num_threads" << NumThreads->getSourceRange();
+ return nullptr;
+ }
+ }
+
+ return new (Context)
+ OMPNumThreadsClause(ValExpr, StartLoc, LParenLoc, EndLoc);
+}
+
+ExprResult Sema::VerifyPositiveIntegerConstantInClause(Expr *E,
+ OpenMPClauseKind CKind) {
+ if (!E)
+ return ExprError();
+ if (E->isValueDependent() || E->isTypeDependent() ||
+ E->isInstantiationDependent() || E->containsUnexpandedParameterPack())
+ return E;
+ llvm::APSInt Result;
+ ExprResult ICE = VerifyIntegerConstantExpression(E, &Result);
+ if (ICE.isInvalid())
+ return ExprError();
+ if (!Result.isStrictlyPositive()) {
+ Diag(E->getExprLoc(), diag::err_omp_negative_expression_in_clause)
+ << getOpenMPClauseName(CKind) << E->getSourceRange();
+ return ExprError();
+ }
+ if (CKind == OMPC_aligned && !Result.isPowerOf2()) {
+ Diag(E->getExprLoc(), diag::warn_omp_alignment_not_power_of_two)
+ << E->getSourceRange();
+ return ExprError();
+ }
+ if (CKind == OMPC_collapse) {
+ DSAStack->setCollapseNumber(Result.getExtValue());
+ }
+ return ICE;
+}
+
+OMPClause *Sema::ActOnOpenMPSafelenClause(Expr *Len, SourceLocation StartLoc,
+ SourceLocation LParenLoc,
+ SourceLocation EndLoc) {
+ // OpenMP [2.8.1, simd construct, Description]
+ // The parameter of the safelen clause must be a constant
+ // positive integer expression.
+ ExprResult Safelen = VerifyPositiveIntegerConstantInClause(Len, OMPC_safelen);
+ if (Safelen.isInvalid())
+ return nullptr;
+ return new (Context)
+ OMPSafelenClause(Safelen.get(), StartLoc, LParenLoc, EndLoc);
+}
+
+OMPClause *Sema::ActOnOpenMPCollapseClause(Expr *NumForLoops,
+ SourceLocation StartLoc,
+ SourceLocation LParenLoc,
+ SourceLocation EndLoc) {
+ // OpenMP [2.7.1, loop construct, Description]
+ // OpenMP [2.8.1, simd construct, Description]
+ // OpenMP [2.9.6, distribute construct, Description]
+ // The parameter of the collapse clause must be a constant
+ // positive integer expression.
+ ExprResult NumForLoopsResult =
+ VerifyPositiveIntegerConstantInClause(NumForLoops, OMPC_collapse);
+ if (NumForLoopsResult.isInvalid())
+ return nullptr;
+ return new (Context)
+ OMPCollapseClause(NumForLoopsResult.get(), StartLoc, LParenLoc, EndLoc);
+}
+
+OMPClause *Sema::ActOnOpenMPSimpleClause(
+ OpenMPClauseKind Kind, unsigned Argument, SourceLocation ArgumentLoc,
+ SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) {
+ OMPClause *Res = nullptr;
+ switch (Kind) {
+ case OMPC_default:
+ Res =
+ ActOnOpenMPDefaultClause(static_cast<OpenMPDefaultClauseKind>(Argument),
+ ArgumentLoc, StartLoc, LParenLoc, EndLoc);
+ break;
+ case OMPC_proc_bind:
+ Res = ActOnOpenMPProcBindClause(
+ static_cast<OpenMPProcBindClauseKind>(Argument), ArgumentLoc, StartLoc,
+ LParenLoc, EndLoc);
+ break;
+ case OMPC_if:
+ case OMPC_final:
+ case OMPC_num_threads:
+ case OMPC_safelen:
+ case OMPC_collapse:
+ case OMPC_schedule:
+ case OMPC_private:
+ case OMPC_firstprivate:
+ case OMPC_lastprivate:
+ case OMPC_shared:
+ case OMPC_reduction:
+ case OMPC_linear:
+ case OMPC_aligned:
+ case OMPC_copyin:
+ case OMPC_copyprivate:
+ case OMPC_ordered:
+ case OMPC_nowait:
+ case OMPC_untied:
+ case OMPC_mergeable:
+ case OMPC_threadprivate:
+ case OMPC_flush:
+ case OMPC_read:
+ case OMPC_write:
+ case OMPC_update:
+ case OMPC_capture:
+ case OMPC_seq_cst:
+ case OMPC_unknown:
+ llvm_unreachable("Clause is not allowed.");
+ }
+ return Res;
+}
+
+OMPClause *Sema::ActOnOpenMPDefaultClause(OpenMPDefaultClauseKind Kind,
+ SourceLocation KindKwLoc,
+ SourceLocation StartLoc,
+ SourceLocation LParenLoc,
+ SourceLocation EndLoc) {
+ if (Kind == OMPC_DEFAULT_unknown) {
+ std::string Values;
+ static_assert(OMPC_DEFAULT_unknown > 0,
+ "OMPC_DEFAULT_unknown not greater than 0");
+ std::string Sep(", ");
+ for (unsigned i = 0; i < OMPC_DEFAULT_unknown; ++i) {
+ Values += "'";
+ Values += getOpenMPSimpleClauseTypeName(OMPC_default, i);
+ Values += "'";
+ switch (i) {
+ case OMPC_DEFAULT_unknown - 2:
+ Values += " or ";
+ break;
+ case OMPC_DEFAULT_unknown - 1:
+ break;
+ default:
+ Values += Sep;
+ break;
+ }
+ }
+ Diag(KindKwLoc, diag::err_omp_unexpected_clause_value)
+ << Values << getOpenMPClauseName(OMPC_default);
+ return nullptr;
+ }
+ switch (Kind) {
+ case OMPC_DEFAULT_none:
+ DSAStack->setDefaultDSANone(KindKwLoc);
+ break;
+ case OMPC_DEFAULT_shared:
+ DSAStack->setDefaultDSAShared(KindKwLoc);
+ break;
+ case OMPC_DEFAULT_unknown:
+ llvm_unreachable("Clause kind is not allowed.");
+ break;
+ }
+ return new (Context)
+ OMPDefaultClause(Kind, KindKwLoc, StartLoc, LParenLoc, EndLoc);
+}
+
+OMPClause *Sema::ActOnOpenMPProcBindClause(OpenMPProcBindClauseKind Kind,
+ SourceLocation KindKwLoc,
+ SourceLocation StartLoc,
+ SourceLocation LParenLoc,
+ SourceLocation EndLoc) {
+ if (Kind == OMPC_PROC_BIND_unknown) {
+ std::string Values;
+ std::string Sep(", ");
+ for (unsigned i = 0; i < OMPC_PROC_BIND_unknown; ++i) {
+ Values += "'";
+ Values += getOpenMPSimpleClauseTypeName(OMPC_proc_bind, i);
+ Values += "'";
+ switch (i) {
+ case OMPC_PROC_BIND_unknown - 2:
+ Values += " or ";
+ break;
+ case OMPC_PROC_BIND_unknown - 1:
+ break;
+ default:
+ Values += Sep;
+ break;
+ }
+ }
+ Diag(KindKwLoc, diag::err_omp_unexpected_clause_value)
+ << Values << getOpenMPClauseName(OMPC_proc_bind);
+ return nullptr;
+ }
+ return new (Context)
+ OMPProcBindClause(Kind, KindKwLoc, StartLoc, LParenLoc, EndLoc);
+}
+
+OMPClause *Sema::ActOnOpenMPSingleExprWithArgClause(
+ OpenMPClauseKind Kind, unsigned Argument, Expr *Expr,
+ SourceLocation StartLoc, SourceLocation LParenLoc,
+ SourceLocation ArgumentLoc, SourceLocation CommaLoc,
+ SourceLocation EndLoc) {
+ OMPClause *Res = nullptr;
+ switch (Kind) {
+ case OMPC_schedule:
+ Res = ActOnOpenMPScheduleClause(
+ static_cast<OpenMPScheduleClauseKind>(Argument), Expr, StartLoc,
+ LParenLoc, ArgumentLoc, CommaLoc, EndLoc);
+ break;
+ case OMPC_if:
+ case OMPC_final:
+ case OMPC_num_threads:
+ case OMPC_safelen:
+ case OMPC_collapse:
+ case OMPC_default:
+ case OMPC_proc_bind:
+ case OMPC_private:
+ case OMPC_firstprivate:
+ case OMPC_lastprivate:
+ case OMPC_shared:
+ case OMPC_reduction:
+ case OMPC_linear:
+ case OMPC_aligned:
+ case OMPC_copyin:
+ case OMPC_copyprivate:
+ case OMPC_ordered:
+ case OMPC_nowait:
+ case OMPC_untied:
+ case OMPC_mergeable:
+ case OMPC_threadprivate:
+ case OMPC_flush:
+ case OMPC_read:
+ case OMPC_write:
+ case OMPC_update:
+ case OMPC_capture:
+ case OMPC_seq_cst:
+ case OMPC_unknown:
+ llvm_unreachable("Clause is not allowed.");
+ }
+ return Res;
+}
+
+OMPClause *Sema::ActOnOpenMPScheduleClause(
+ OpenMPScheduleClauseKind Kind, Expr *ChunkSize, SourceLocation StartLoc,
+ SourceLocation LParenLoc, SourceLocation KindLoc, SourceLocation CommaLoc,
+ SourceLocation EndLoc) {
+ if (Kind == OMPC_SCHEDULE_unknown) {
+ std::string Values;
+ std::string Sep(", ");
+ for (unsigned i = 0; i < OMPC_SCHEDULE_unknown; ++i) {
+ Values += "'";
+ Values += getOpenMPSimpleClauseTypeName(OMPC_schedule, i);
+ Values += "'";
+ switch (i) {
+ case OMPC_SCHEDULE_unknown - 2:
+ Values += " or ";
+ break;
+ case OMPC_SCHEDULE_unknown - 1:
+ break;
+ default:
+ Values += Sep;
+ break;
+ }
+ }
+ Diag(KindLoc, diag::err_omp_unexpected_clause_value)
+ << Values << getOpenMPClauseName(OMPC_schedule);
+ return nullptr;
+ }
+ Expr *ValExpr = ChunkSize;
+ Expr *HelperValExpr = nullptr;
+ if (ChunkSize) {
+ if (!ChunkSize->isValueDependent() && !ChunkSize->isTypeDependent() &&
+ !ChunkSize->isInstantiationDependent() &&
+ !ChunkSize->containsUnexpandedParameterPack()) {
+ SourceLocation ChunkSizeLoc = ChunkSize->getLocStart();
+ ExprResult Val =
+ PerformOpenMPImplicitIntegerConversion(ChunkSizeLoc, ChunkSize);
+ if (Val.isInvalid())
+ return nullptr;
+
+ ValExpr = Val.get();
+
+ // OpenMP [2.7.1, Restrictions]
+ // chunk_size must be a loop invariant integer expression with a positive
+ // value.
+ llvm::APSInt Result;
+ if (ValExpr->isIntegerConstantExpr(Result, Context)) {
+ if (Result.isSigned() && !Result.isStrictlyPositive()) {
+ Diag(ChunkSizeLoc, diag::err_omp_negative_expression_in_clause)
+ << "schedule" << ChunkSize->getSourceRange();
+ return nullptr;
+ }
+ } else if (isParallelOrTaskRegion(DSAStack->getCurrentDirective())) {
+ auto *ImpVar = buildVarDecl(*this, ChunkSize->getExprLoc(),
+ ChunkSize->getType(), ".chunk.");
+ auto *ImpVarRef = buildDeclRefExpr(*this, ImpVar, ChunkSize->getType(),
+ ChunkSize->getExprLoc(),
+ /*RefersToCapture=*/true);
+ HelperValExpr = ImpVarRef;
+ }
+ }
+ }
+
+ return new (Context) OMPScheduleClause(StartLoc, LParenLoc, KindLoc, CommaLoc,
+ EndLoc, Kind, ValExpr, HelperValExpr);
+}
+
+OMPClause *Sema::ActOnOpenMPClause(OpenMPClauseKind Kind,
+ SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+ OMPClause *Res = nullptr;
+ switch (Kind) {
+ case OMPC_ordered:
+ Res = ActOnOpenMPOrderedClause(StartLoc, EndLoc);
+ break;
+ case OMPC_nowait:
+ Res = ActOnOpenMPNowaitClause(StartLoc, EndLoc);
+ break;
+ case OMPC_untied:
+ Res = ActOnOpenMPUntiedClause(StartLoc, EndLoc);
+ break;
+ case OMPC_mergeable:
+ Res = ActOnOpenMPMergeableClause(StartLoc, EndLoc);
+ break;
+ case OMPC_read:
+ Res = ActOnOpenMPReadClause(StartLoc, EndLoc);
+ break;
+ case OMPC_write:
+ Res = ActOnOpenMPWriteClause(StartLoc, EndLoc);
+ break;
+ case OMPC_update:
+ Res = ActOnOpenMPUpdateClause(StartLoc, EndLoc);
+ break;
+ case OMPC_capture:
+ Res = ActOnOpenMPCaptureClause(StartLoc, EndLoc);
+ break;
+ case OMPC_seq_cst:
+ Res = ActOnOpenMPSeqCstClause(StartLoc, EndLoc);
+ break;
+ case OMPC_if:
+ case OMPC_final:
+ case OMPC_num_threads:
+ case OMPC_safelen:
+ case OMPC_collapse:
+ case OMPC_schedule:
+ case OMPC_private:
+ case OMPC_firstprivate:
+ case OMPC_lastprivate:
+ case OMPC_shared:
+ case OMPC_reduction:
+ case OMPC_linear:
+ case OMPC_aligned:
+ case OMPC_copyin:
+ case OMPC_copyprivate:
+ case OMPC_default:
+ case OMPC_proc_bind:
+ case OMPC_threadprivate:
+ case OMPC_flush:
+ case OMPC_unknown:
+ llvm_unreachable("Clause is not allowed.");
+ }
+ return Res;
+}
+
+OMPClause *Sema::ActOnOpenMPOrderedClause(SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+ DSAStack->setOrderedRegion();
+ return new (Context) OMPOrderedClause(StartLoc, EndLoc);
+}
+
+OMPClause *Sema::ActOnOpenMPNowaitClause(SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+ return new (Context) OMPNowaitClause(StartLoc, EndLoc);
+}
+
+OMPClause *Sema::ActOnOpenMPUntiedClause(SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+ return new (Context) OMPUntiedClause(StartLoc, EndLoc);
+}
+
+OMPClause *Sema::ActOnOpenMPMergeableClause(SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+ return new (Context) OMPMergeableClause(StartLoc, EndLoc);
+}
+
+OMPClause *Sema::ActOnOpenMPReadClause(SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+ return new (Context) OMPReadClause(StartLoc, EndLoc);
+}
+
+OMPClause *Sema::ActOnOpenMPWriteClause(SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+ return new (Context) OMPWriteClause(StartLoc, EndLoc);
+}
+
+OMPClause *Sema::ActOnOpenMPUpdateClause(SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+ return new (Context) OMPUpdateClause(StartLoc, EndLoc);
+}
+
+OMPClause *Sema::ActOnOpenMPCaptureClause(SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+ return new (Context) OMPCaptureClause(StartLoc, EndLoc);
+}
+
+OMPClause *Sema::ActOnOpenMPSeqCstClause(SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+ return new (Context) OMPSeqCstClause(StartLoc, EndLoc);
+}
+
+OMPClause *Sema::ActOnOpenMPVarListClause(
+ OpenMPClauseKind Kind, ArrayRef<Expr *> VarList, Expr *TailExpr,
+ SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation ColonLoc,
+ SourceLocation EndLoc, CXXScopeSpec &ReductionIdScopeSpec,
+ const DeclarationNameInfo &ReductionId) {
+ OMPClause *Res = nullptr;
+ switch (Kind) {
+ case OMPC_private:
+ Res = ActOnOpenMPPrivateClause(VarList, StartLoc, LParenLoc, EndLoc);
+ break;
+ case OMPC_firstprivate:
+ Res = ActOnOpenMPFirstprivateClause(VarList, StartLoc, LParenLoc, EndLoc);
+ break;
+ case OMPC_lastprivate:
+ Res = ActOnOpenMPLastprivateClause(VarList, StartLoc, LParenLoc, EndLoc);
+ break;
+ case OMPC_shared:
+ Res = ActOnOpenMPSharedClause(VarList, StartLoc, LParenLoc, EndLoc);
+ break;
+ case OMPC_reduction:
+ Res = ActOnOpenMPReductionClause(VarList, StartLoc, LParenLoc, ColonLoc,
+ EndLoc, ReductionIdScopeSpec, ReductionId);
+ break;
+ case OMPC_linear:
+ Res = ActOnOpenMPLinearClause(VarList, TailExpr, StartLoc, LParenLoc,
+ ColonLoc, EndLoc);
+ break;
+ case OMPC_aligned:
+ Res = ActOnOpenMPAlignedClause(VarList, TailExpr, StartLoc, LParenLoc,
+ ColonLoc, EndLoc);
+ break;
+ case OMPC_copyin:
+ Res = ActOnOpenMPCopyinClause(VarList, StartLoc, LParenLoc, EndLoc);
+ break;
+ case OMPC_copyprivate:
+ Res = ActOnOpenMPCopyprivateClause(VarList, StartLoc, LParenLoc, EndLoc);
+ break;
+ case OMPC_flush:
+ Res = ActOnOpenMPFlushClause(VarList, StartLoc, LParenLoc, EndLoc);
+ break;
+ case OMPC_if:
+ case OMPC_final:
+ case OMPC_num_threads:
+ case OMPC_safelen:
+ case OMPC_collapse:
+ case OMPC_default:
+ case OMPC_proc_bind:
+ case OMPC_schedule:
+ case OMPC_ordered:
+ case OMPC_nowait:
+ case OMPC_untied:
+ case OMPC_mergeable:
+ case OMPC_threadprivate:
+ case OMPC_read:
+ case OMPC_write:
+ case OMPC_update:
+ case OMPC_capture:
+ case OMPC_seq_cst:
+ case OMPC_unknown:
+ llvm_unreachable("Clause is not allowed.");
+ }
+ return Res;
+}
+
+OMPClause *Sema::ActOnOpenMPPrivateClause(ArrayRef<Expr *> VarList,
+ SourceLocation StartLoc,
+ SourceLocation LParenLoc,
+ SourceLocation EndLoc) {
+ SmallVector<Expr *, 8> Vars;
+ SmallVector<Expr *, 8> PrivateCopies;
+ for (auto &RefExpr : VarList) {
+ assert(RefExpr && "NULL expr in OpenMP private clause.");
+ if (isa<DependentScopeDeclRefExpr>(RefExpr)) {
+ // It will be analyzed later.
+ Vars.push_back(RefExpr);
+ PrivateCopies.push_back(nullptr);
+ continue;
+ }
+
+ SourceLocation ELoc = RefExpr->getExprLoc();
+ // OpenMP [2.1, C/C++]
+ // A list item is a variable name.
+ // OpenMP [2.9.3.3, Restrictions, p.1]
+ // A variable that is part of another variable (as an array or
+ // structure element) cannot appear in a private clause.
+ DeclRefExpr *DE = dyn_cast_or_null<DeclRefExpr>(RefExpr);
+ if (!DE || !isa<VarDecl>(DE->getDecl())) {
+ Diag(ELoc, diag::err_omp_expected_var_name) << RefExpr->getSourceRange();
+ continue;
+ }
+ Decl *D = DE->getDecl();
+ VarDecl *VD = cast<VarDecl>(D);
+
+ QualType Type = VD->getType();
+ if (Type->isDependentType() || Type->isInstantiationDependentType()) {
+ // It will be analyzed later.
+ Vars.push_back(DE);
+ PrivateCopies.push_back(nullptr);
+ continue;
+ }
+
+ // OpenMP [2.9.3.3, Restrictions, C/C++, p.3]
+ // A variable that appears in a private clause must not have an incomplete
+ // type or a reference type.
+ if (RequireCompleteType(ELoc, Type,
+ diag::err_omp_private_incomplete_type)) {
+ continue;
+ }
+ if (Type->isReferenceType()) {
+ Diag(ELoc, diag::err_omp_clause_ref_type_arg)
+ << getOpenMPClauseName(OMPC_private) << Type;
+ bool IsDecl =
+ VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly;
+ Diag(VD->getLocation(),
+ IsDecl ? diag::note_previous_decl : diag::note_defined_here)
+ << VD;
+ continue;
+ }
+
+ // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
+ // in a Construct]
+ // Variables with the predetermined data-sharing attributes may not be
+ // listed in data-sharing attributes clauses, except for the cases
+ // listed below. For these exceptions only, listing a predetermined
+ // variable in a data-sharing attribute clause is allowed and overrides
+ // the variable's predetermined data-sharing attributes.
+ DSAStackTy::DSAVarData DVar = DSAStack->getTopDSA(VD, false);
+ if (DVar.CKind != OMPC_unknown && DVar.CKind != OMPC_private) {
+ Diag(ELoc, diag::err_omp_wrong_dsa) << getOpenMPClauseName(DVar.CKind)
+ << getOpenMPClauseName(OMPC_private);
+ ReportOriginalDSA(*this, DSAStack, VD, DVar);
+ continue;
+ }
+
+ // Variably modified types are not supported for tasks.
+ if (!Type->isAnyPointerType() && Type->isVariablyModifiedType() &&
+ DSAStack->getCurrentDirective() == OMPD_task) {
+ Diag(ELoc, diag::err_omp_variably_modified_type_not_supported)
+ << getOpenMPClauseName(OMPC_private) << Type
+ << getOpenMPDirectiveName(DSAStack->getCurrentDirective());
+ bool IsDecl =
+ VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly;
+ Diag(VD->getLocation(),
+ IsDecl ? diag::note_previous_decl : diag::note_defined_here)
+ << VD;
+ continue;
+ }
+
+ // OpenMP [2.9.3.3, Restrictions, C/C++, p.1]
+ // A variable of class type (or array thereof) that appears in a private
+ // clause requires an accessible, unambiguous default constructor for the
+ // class type.
+ // Generate helper private variable and initialize it with the default
+ // value. The address of the original variable is replaced by the address of
+ // the new private variable in CodeGen. This new variable is not added to
+ // IdResolver, so the code in the OpenMP region uses original variable for
+ // proper diagnostics.
+ Type = Type.getUnqualifiedType();
+ auto VDPrivate = buildVarDecl(*this, DE->getExprLoc(), Type, VD->getName());
+ ActOnUninitializedDecl(VDPrivate, /*TypeMayContainAuto=*/false);
+ if (VDPrivate->isInvalidDecl())
+ continue;
+ auto VDPrivateRefExpr = buildDeclRefExpr(
+ *this, VDPrivate, DE->getType().getUnqualifiedType(), DE->getExprLoc());
+
+ DSAStack->addDSA(VD, DE, OMPC_private);
+ Vars.push_back(DE);
+ PrivateCopies.push_back(VDPrivateRefExpr);
+ }
+
+ if (Vars.empty())
+ return nullptr;
+
+ return OMPPrivateClause::Create(Context, StartLoc, LParenLoc, EndLoc, Vars,
+ PrivateCopies);
+}
+
+namespace {
+class DiagsUninitializedSeveretyRAII {
+private:
+ DiagnosticsEngine &Diags;
+ SourceLocation SavedLoc;
+ bool IsIgnored;
+
+public:
+ DiagsUninitializedSeveretyRAII(DiagnosticsEngine &Diags, SourceLocation Loc,
+ bool IsIgnored)
+ : Diags(Diags), SavedLoc(Loc), IsIgnored(IsIgnored) {
+ if (!IsIgnored) {
+ Diags.setSeverity(/*Diag*/ diag::warn_uninit_self_reference_in_init,
+ /*Map*/ diag::Severity::Ignored, Loc);
+ }
+ }
+ ~DiagsUninitializedSeveretyRAII() {
+ if (!IsIgnored)
+ Diags.popMappings(SavedLoc);
+ }
+};
+}
+
+OMPClause *Sema::ActOnOpenMPFirstprivateClause(ArrayRef<Expr *> VarList,
+ SourceLocation StartLoc,
+ SourceLocation LParenLoc,
+ SourceLocation EndLoc) {
+ SmallVector<Expr *, 8> Vars;
+ SmallVector<Expr *, 8> PrivateCopies;
+ SmallVector<Expr *, 8> Inits;
+ bool IsImplicitClause =
+ StartLoc.isInvalid() && LParenLoc.isInvalid() && EndLoc.isInvalid();
+ auto ImplicitClauseLoc = DSAStack->getConstructLoc();
+
+ for (auto &RefExpr : VarList) {
+ assert(RefExpr && "NULL expr in OpenMP firstprivate clause.");
+ if (isa<DependentScopeDeclRefExpr>(RefExpr)) {
+ // It will be analyzed later.
+ Vars.push_back(RefExpr);
+ PrivateCopies.push_back(nullptr);
+ Inits.push_back(nullptr);
+ continue;
+ }
+
+ SourceLocation ELoc =
+ IsImplicitClause ? ImplicitClauseLoc : RefExpr->getExprLoc();
+ // OpenMP [2.1, C/C++]
+ // A list item is a variable name.
+ // OpenMP [2.9.3.3, Restrictions, p.1]
+ // A variable that is part of another variable (as an array or
+ // structure element) cannot appear in a private clause.
+ DeclRefExpr *DE = dyn_cast_or_null<DeclRefExpr>(RefExpr);
+ if (!DE || !isa<VarDecl>(DE->getDecl())) {
+ Diag(ELoc, diag::err_omp_expected_var_name) << RefExpr->getSourceRange();
+ continue;
+ }
+ Decl *D = DE->getDecl();
+ VarDecl *VD = cast<VarDecl>(D);
+
+ QualType Type = VD->getType();
+ if (Type->isDependentType() || Type->isInstantiationDependentType()) {
+ // It will be analyzed later.
+ Vars.push_back(DE);
+ PrivateCopies.push_back(nullptr);
+ Inits.push_back(nullptr);
+ continue;
+ }
+
+ // OpenMP [2.9.3.3, Restrictions, C/C++, p.3]
+ // A variable that appears in a private clause must not have an incomplete
+ // type or a reference type.
+ if (RequireCompleteType(ELoc, Type,
+ diag::err_omp_firstprivate_incomplete_type)) {
+ continue;
+ }
+ if (Type->isReferenceType()) {
+ if (IsImplicitClause) {
+ Diag(ImplicitClauseLoc,
+ diag::err_omp_task_predetermined_firstprivate_ref_type_arg)
+ << Type;
+ Diag(RefExpr->getExprLoc(), diag::note_used_here);
+ } else {
+ Diag(ELoc, diag::err_omp_clause_ref_type_arg)
+ << getOpenMPClauseName(OMPC_firstprivate) << Type;
+ }
+ bool IsDecl =
+ VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly;
+ Diag(VD->getLocation(),
+ IsDecl ? diag::note_previous_decl : diag::note_defined_here)
+ << VD;
+ continue;
+ }
+
+ // OpenMP [2.9.3.4, Restrictions, C/C++, p.1]
+ // A variable of class type (or array thereof) that appears in a private
+ // clause requires an accessible, unambiguous copy constructor for the
+ // class type.
+ auto ElemType = Context.getBaseElementType(Type).getNonReferenceType();
+
+ // If an implicit firstprivate variable found it was checked already.
+ if (!IsImplicitClause) {
+ DSAStackTy::DSAVarData DVar = DSAStack->getTopDSA(VD, false);
+ bool IsConstant = ElemType.isConstant(Context);
+ // OpenMP [2.4.13, Data-sharing Attribute Clauses]
+ // A list item that specifies a given variable may not appear in more
+ // than one clause on the same directive, except that a variable may be
+ // specified in both firstprivate and lastprivate clauses.
+ if (DVar.CKind != OMPC_unknown && DVar.CKind != OMPC_firstprivate &&
+ DVar.CKind != OMPC_lastprivate && DVar.RefExpr) {
+ Diag(ELoc, diag::err_omp_wrong_dsa)
+ << getOpenMPClauseName(DVar.CKind)
+ << getOpenMPClauseName(OMPC_firstprivate);
+ ReportOriginalDSA(*this, DSAStack, VD, DVar);
+ continue;
+ }
+
+ // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
+ // in a Construct]
+ // Variables with the predetermined data-sharing attributes may not be
+ // listed in data-sharing attributes clauses, except for the cases
+ // listed below. For these exceptions only, listing a predetermined
+ // variable in a data-sharing attribute clause is allowed and overrides
+ // the variable's predetermined data-sharing attributes.
+ // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
+ // in a Construct, C/C++, p.2]
+ // Variables with const-qualified type having no mutable member may be
+ // listed in a firstprivate clause, even if they are static data members.
+ if (!(IsConstant || VD->isStaticDataMember()) && !DVar.RefExpr &&
+ DVar.CKind != OMPC_unknown && DVar.CKind != OMPC_shared) {
+ Diag(ELoc, diag::err_omp_wrong_dsa)
+ << getOpenMPClauseName(DVar.CKind)
+ << getOpenMPClauseName(OMPC_firstprivate);
+ ReportOriginalDSA(*this, DSAStack, VD, DVar);
+ continue;
+ }
+
+ OpenMPDirectiveKind CurrDir = DSAStack->getCurrentDirective();
+ // OpenMP [2.9.3.4, Restrictions, p.2]
+ // A list item that is private within a parallel region must not appear
+ // in a firstprivate clause on a worksharing construct if any of the
+ // worksharing regions arising from the worksharing construct ever bind
+ // to any of the parallel regions arising from the parallel construct.
+ if (isOpenMPWorksharingDirective(CurrDir) &&
+ !isOpenMPParallelDirective(CurrDir)) {
+ DVar = DSAStack->getImplicitDSA(VD, true);
+ if (DVar.CKind != OMPC_shared &&
+ (isOpenMPParallelDirective(DVar.DKind) ||
+ DVar.DKind == OMPD_unknown)) {
+ Diag(ELoc, diag::err_omp_required_access)
+ << getOpenMPClauseName(OMPC_firstprivate)
+ << getOpenMPClauseName(OMPC_shared);
+ ReportOriginalDSA(*this, DSAStack, VD, DVar);
+ continue;
+ }
+ }
+ // OpenMP [2.9.3.4, Restrictions, p.3]
+ // A list item that appears in a reduction clause of a parallel construct
+ // must not appear in a firstprivate clause on a worksharing or task
+ // construct if any of the worksharing or task regions arising from the
+ // worksharing or task construct ever bind to any of the parallel regions
+ // arising from the parallel construct.
+ // OpenMP [2.9.3.4, Restrictions, p.4]
+ // A list item that appears in a reduction clause in worksharing
+ // construct must not appear in a firstprivate clause in a task construct
+ // encountered during execution of any of the worksharing regions arising
+ // from the worksharing construct.
+ if (CurrDir == OMPD_task) {
+ DVar =
+ DSAStack->hasInnermostDSA(VD, MatchesAnyClause(OMPC_reduction),
+ [](OpenMPDirectiveKind K) -> bool {
+ return isOpenMPParallelDirective(K) ||
+ isOpenMPWorksharingDirective(K);
+ },
+ false);
+ if (DVar.CKind == OMPC_reduction &&
+ (isOpenMPParallelDirective(DVar.DKind) ||
+ isOpenMPWorksharingDirective(DVar.DKind))) {
+ Diag(ELoc, diag::err_omp_parallel_reduction_in_task_firstprivate)
+ << getOpenMPDirectiveName(DVar.DKind);
+ ReportOriginalDSA(*this, DSAStack, VD, DVar);
+ continue;
+ }
+ }
+ }
+
+ // Variably modified types are not supported for tasks.
+ if (!Type->isAnyPointerType() && Type->isVariablyModifiedType() &&
+ DSAStack->getCurrentDirective() == OMPD_task) {
+ Diag(ELoc, diag::err_omp_variably_modified_type_not_supported)
+ << getOpenMPClauseName(OMPC_firstprivate) << Type
+ << getOpenMPDirectiveName(DSAStack->getCurrentDirective());
+ bool IsDecl =
+ VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly;
+ Diag(VD->getLocation(),
+ IsDecl ? diag::note_previous_decl : diag::note_defined_here)
+ << VD;
+ continue;
+ }
+
+ Type = Type.getUnqualifiedType();
+ auto VDPrivate = buildVarDecl(*this, ELoc, Type, VD->getName());
+ // Generate helper private variable and initialize it with the value of the
+ // original variable. The address of the original variable is replaced by
+ // the address of the new private variable in the CodeGen. This new variable
+ // is not added to IdResolver, so the code in the OpenMP region uses
+ // original variable for proper diagnostics and variable capturing.
+ Expr *VDInitRefExpr = nullptr;
+ // For arrays generate initializer for single element and replace it by the
+ // original array element in CodeGen.
+ if (Type->isArrayType()) {
+ auto VDInit =
+ buildVarDecl(*this, DE->getExprLoc(), ElemType, VD->getName());
+ VDInitRefExpr = buildDeclRefExpr(*this, VDInit, ElemType, ELoc);
+ auto Init = DefaultLvalueConversion(VDInitRefExpr).get();
+ ElemType = ElemType.getUnqualifiedType();
+ auto *VDInitTemp = buildVarDecl(*this, DE->getLocStart(), ElemType,
+ ".firstprivate.temp");
+ InitializedEntity Entity =
+ InitializedEntity::InitializeVariable(VDInitTemp);
+ InitializationKind Kind = InitializationKind::CreateCopy(ELoc, ELoc);
+
+ InitializationSequence InitSeq(*this, Entity, Kind, Init);
+ ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Init);
+ if (Result.isInvalid())
+ VDPrivate->setInvalidDecl();
+ else
+ VDPrivate->setInit(Result.getAs<Expr>());
+ } else {
+ auto *VDInit =
+ buildVarDecl(*this, DE->getLocStart(), Type, ".firstprivate.temp");
+ VDInitRefExpr =
+ buildDeclRefExpr(*this, VDInit, DE->getType(), DE->getExprLoc());
+ AddInitializerToDecl(VDPrivate,
+ DefaultLvalueConversion(VDInitRefExpr).get(),
+ /*DirectInit=*/false, /*TypeMayContainAuto=*/false);
+ }
+ if (VDPrivate->isInvalidDecl()) {
+ if (IsImplicitClause) {
+ Diag(DE->getExprLoc(),
+ diag::note_omp_task_predetermined_firstprivate_here);
+ }
+ continue;
+ }
+ CurContext->addDecl(VDPrivate);
+ auto VDPrivateRefExpr = buildDeclRefExpr(
+ *this, VDPrivate, DE->getType().getUnqualifiedType(), DE->getExprLoc());
+ DSAStack->addDSA(VD, DE, OMPC_firstprivate);
+ Vars.push_back(DE);
+ PrivateCopies.push_back(VDPrivateRefExpr);
+ Inits.push_back(VDInitRefExpr);
+ }
+
+ if (Vars.empty())
+ return nullptr;
+
+ return OMPFirstprivateClause::Create(Context, StartLoc, LParenLoc, EndLoc,
+ Vars, PrivateCopies, Inits);
+}
+
+OMPClause *Sema::ActOnOpenMPLastprivateClause(ArrayRef<Expr *> VarList,
+ SourceLocation StartLoc,
+ SourceLocation LParenLoc,
+ SourceLocation EndLoc) {
+ SmallVector<Expr *, 8> Vars;
+ SmallVector<Expr *, 8> SrcExprs;
+ SmallVector<Expr *, 8> DstExprs;
+ SmallVector<Expr *, 8> AssignmentOps;
+ for (auto &RefExpr : VarList) {
+ assert(RefExpr && "NULL expr in OpenMP lastprivate clause.");
+ if (isa<DependentScopeDeclRefExpr>(RefExpr)) {
+ // It will be analyzed later.
+ Vars.push_back(RefExpr);
+ SrcExprs.push_back(nullptr);
+ DstExprs.push_back(nullptr);
+ AssignmentOps.push_back(nullptr);
+ continue;
+ }
+
+ SourceLocation ELoc = RefExpr->getExprLoc();
+ // OpenMP [2.1, C/C++]
+ // A list item is a variable name.
+ // OpenMP [2.14.3.5, Restrictions, p.1]
+ // A variable that is part of another variable (as an array or structure
+ // element) cannot appear in a lastprivate clause.
+ DeclRefExpr *DE = dyn_cast_or_null<DeclRefExpr>(RefExpr);
+ if (!DE || !isa<VarDecl>(DE->getDecl())) {
+ Diag(ELoc, diag::err_omp_expected_var_name) << RefExpr->getSourceRange();
+ continue;
+ }
+ Decl *D = DE->getDecl();
+ VarDecl *VD = cast<VarDecl>(D);
+
+ QualType Type = VD->getType();
+ if (Type->isDependentType() || Type->isInstantiationDependentType()) {
+ // It will be analyzed later.
+ Vars.push_back(DE);
+ SrcExprs.push_back(nullptr);
+ DstExprs.push_back(nullptr);
+ AssignmentOps.push_back(nullptr);
+ continue;
+ }
+
+ // OpenMP [2.14.3.5, Restrictions, C/C++, p.2]
+ // A variable that appears in a lastprivate clause must not have an
+ // incomplete type or a reference type.
+ if (RequireCompleteType(ELoc, Type,
+ diag::err_omp_lastprivate_incomplete_type)) {
+ continue;
+ }
+ if (Type->isReferenceType()) {
+ Diag(ELoc, diag::err_omp_clause_ref_type_arg)
+ << getOpenMPClauseName(OMPC_lastprivate) << Type;
+ bool IsDecl =
+ VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly;
+ Diag(VD->getLocation(),
+ IsDecl ? diag::note_previous_decl : diag::note_defined_here)
+ << VD;
+ continue;
+ }
+
+ // OpenMP [2.14.1.1, Data-sharing Attribute Rules for Variables Referenced
+ // in a Construct]
+ // Variables with the predetermined data-sharing attributes may not be
+ // listed in data-sharing attributes clauses, except for the cases
+ // listed below.
+ DSAStackTy::DSAVarData DVar = DSAStack->getTopDSA(VD, false);
+ if (DVar.CKind != OMPC_unknown && DVar.CKind != OMPC_lastprivate &&
+ DVar.CKind != OMPC_firstprivate &&
+ (DVar.CKind != OMPC_private || DVar.RefExpr != nullptr)) {
+ Diag(ELoc, diag::err_omp_wrong_dsa)
+ << getOpenMPClauseName(DVar.CKind)
+ << getOpenMPClauseName(OMPC_lastprivate);
+ ReportOriginalDSA(*this, DSAStack, VD, DVar);
+ continue;
+ }
+
+ OpenMPDirectiveKind CurrDir = DSAStack->getCurrentDirective();
+ // OpenMP [2.14.3.5, Restrictions, p.2]
+ // A list item that is private within a parallel region, or that appears in
+ // the reduction clause of a parallel construct, must not appear in a
+ // lastprivate clause on a worksharing construct if any of the corresponding
+ // worksharing regions ever binds to any of the corresponding parallel
+ // regions.
+ DSAStackTy::DSAVarData TopDVar = DVar;
+ if (isOpenMPWorksharingDirective(CurrDir) &&
+ !isOpenMPParallelDirective(CurrDir)) {
+ DVar = DSAStack->getImplicitDSA(VD, true);
+ if (DVar.CKind != OMPC_shared) {
+ Diag(ELoc, diag::err_omp_required_access)
+ << getOpenMPClauseName(OMPC_lastprivate)
+ << getOpenMPClauseName(OMPC_shared);
+ ReportOriginalDSA(*this, DSAStack, VD, DVar);
+ continue;
+ }
+ }
+ // OpenMP [2.14.3.5, Restrictions, C++, p.1,2]
+ // A variable of class type (or array thereof) that appears in a
+ // lastprivate clause requires an accessible, unambiguous default
+ // constructor for the class type, unless the list item is also specified
+ // in a firstprivate clause.
+ // A variable of class type (or array thereof) that appears in a
+ // lastprivate clause requires an accessible, unambiguous copy assignment
+ // operator for the class type.
+ Type = Context.getBaseElementType(Type).getNonReferenceType();
+ auto *SrcVD = buildVarDecl(*this, DE->getLocStart(),
+ Type.getUnqualifiedType(), ".lastprivate.src");
+ auto *PseudoSrcExpr = buildDeclRefExpr(
+ *this, SrcVD, Type.getUnqualifiedType(), DE->getExprLoc());
+ auto *DstVD =
+ buildVarDecl(*this, DE->getLocStart(), Type, ".lastprivate.dst");
+ auto *PseudoDstExpr =
+ buildDeclRefExpr(*this, DstVD, Type, DE->getExprLoc());
+ // For arrays generate assignment operation for single element and replace
+ // it by the original array element in CodeGen.
+ auto AssignmentOp = BuildBinOp(/*S=*/nullptr, DE->getExprLoc(), BO_Assign,
+ PseudoDstExpr, PseudoSrcExpr);
+ if (AssignmentOp.isInvalid())
+ continue;
+ AssignmentOp = ActOnFinishFullExpr(AssignmentOp.get(), DE->getExprLoc(),
+ /*DiscardedValue=*/true);
+ if (AssignmentOp.isInvalid())
+ continue;
+
+ if (TopDVar.CKind != OMPC_firstprivate)
+ DSAStack->addDSA(VD, DE, OMPC_lastprivate);
+ Vars.push_back(DE);
+ SrcExprs.push_back(PseudoSrcExpr);
+ DstExprs.push_back(PseudoDstExpr);
+ AssignmentOps.push_back(AssignmentOp.get());
+ }
+
+ if (Vars.empty())
+ return nullptr;
+
+ return OMPLastprivateClause::Create(Context, StartLoc, LParenLoc, EndLoc,
+ Vars, SrcExprs, DstExprs, AssignmentOps);
+}
+
+OMPClause *Sema::ActOnOpenMPSharedClause(ArrayRef<Expr *> VarList,
+ SourceLocation StartLoc,
+ SourceLocation LParenLoc,
+ SourceLocation EndLoc) {
+ SmallVector<Expr *, 8> Vars;
+ for (auto &RefExpr : VarList) {
+ assert(RefExpr && "NULL expr in OpenMP shared clause.");
+ if (isa<DependentScopeDeclRefExpr>(RefExpr)) {
+ // It will be analyzed later.
+ Vars.push_back(RefExpr);
+ continue;
+ }
+
+ SourceLocation ELoc = RefExpr->getExprLoc();
+ // OpenMP [2.1, C/C++]
+ // A list item is a variable name.
+ // OpenMP [2.14.3.2, Restrictions, p.1]
+ // A variable that is part of another variable (as an array or structure
+ // element) cannot appear in a shared unless it is a static data member
+ // of a C++ class.
+ DeclRefExpr *DE = dyn_cast<DeclRefExpr>(RefExpr);
+ if (!DE || !isa<VarDecl>(DE->getDecl())) {
+ Diag(ELoc, diag::err_omp_expected_var_name) << RefExpr->getSourceRange();
+ continue;
+ }
+ Decl *D = DE->getDecl();
+ VarDecl *VD = cast<VarDecl>(D);
+
+ QualType Type = VD->getType();
+ if (Type->isDependentType() || Type->isInstantiationDependentType()) {
+ // It will be analyzed later.
+ Vars.push_back(DE);
+ continue;
+ }
+
+ // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
+ // in a Construct]
+ // Variables with the predetermined data-sharing attributes may not be
+ // listed in data-sharing attributes clauses, except for the cases
+ // listed below. For these exceptions only, listing a predetermined
+ // variable in a data-sharing attribute clause is allowed and overrides
+ // the variable's predetermined data-sharing attributes.
+ DSAStackTy::DSAVarData DVar = DSAStack->getTopDSA(VD, false);
+ if (DVar.CKind != OMPC_unknown && DVar.CKind != OMPC_shared &&
+ DVar.RefExpr) {
+ Diag(ELoc, diag::err_omp_wrong_dsa) << getOpenMPClauseName(DVar.CKind)
+ << getOpenMPClauseName(OMPC_shared);
+ ReportOriginalDSA(*this, DSAStack, VD, DVar);
+ continue;
+ }
+
+ DSAStack->addDSA(VD, DE, OMPC_shared);
+ Vars.push_back(DE);
+ }
+
+ if (Vars.empty())
+ return nullptr;
+
+ return OMPSharedClause::Create(Context, StartLoc, LParenLoc, EndLoc, Vars);
+}
+
+namespace {
+class DSARefChecker : public StmtVisitor<DSARefChecker, bool> {
+ DSAStackTy *Stack;
+
+public:
+ bool VisitDeclRefExpr(DeclRefExpr *E) {
+ if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) {
+ DSAStackTy::DSAVarData DVar = Stack->getTopDSA(VD, false);
+ if (DVar.CKind == OMPC_shared && !DVar.RefExpr)
+ return false;
+ if (DVar.CKind != OMPC_unknown)
+ return true;
+ DSAStackTy::DSAVarData DVarPrivate =
+ Stack->hasDSA(VD, isOpenMPPrivate, MatchesAlways(), false);
+ if (DVarPrivate.CKind != OMPC_unknown)
+ return true;
+ return false;
+ }
+ return false;
+ }
+ bool VisitStmt(Stmt *S) {
+ for (auto Child : S->children()) {
+ if (Child && Visit(Child))
+ return true;
+ }
+ return false;
+ }
+ explicit DSARefChecker(DSAStackTy *S) : Stack(S) {}
+};
+} // namespace
+
+OMPClause *Sema::ActOnOpenMPReductionClause(
+ ArrayRef<Expr *> VarList, SourceLocation StartLoc, SourceLocation LParenLoc,
+ SourceLocation ColonLoc, SourceLocation EndLoc,
+ CXXScopeSpec &ReductionIdScopeSpec,
+ const DeclarationNameInfo &ReductionId) {
+ // TODO: Allow scope specification search when 'declare reduction' is
+ // supported.
+ assert(ReductionIdScopeSpec.isEmpty() &&
+ "No support for scoped reduction identifiers yet.");
+
+ auto DN = ReductionId.getName();
+ auto OOK = DN.getCXXOverloadedOperator();
+ BinaryOperatorKind BOK = BO_Comma;
+
+ // OpenMP [2.14.3.6, reduction clause]
+ // C
+ // reduction-identifier is either an identifier or one of the following
+ // operators: +, -, *, &, |, ^, && and ||
+ // C++
+ // reduction-identifier is either an id-expression or one of the following
+ // operators: +, -, *, &, |, ^, && and ||
+ // FIXME: Only 'min' and 'max' identifiers are supported for now.
+ switch (OOK) {
+ case OO_Plus:
+ case OO_Minus:
+ BOK = BO_Add;
+ break;
+ case OO_Star:
+ BOK = BO_Mul;
+ break;
+ case OO_Amp:
+ BOK = BO_And;
+ break;
+ case OO_Pipe:
+ BOK = BO_Or;
+ break;
+ case OO_Caret:
+ BOK = BO_Xor;
+ break;
+ case OO_AmpAmp:
+ BOK = BO_LAnd;
+ break;
+ case OO_PipePipe:
+ BOK = BO_LOr;
+ break;
+ case OO_New:
+ case OO_Delete:
+ case OO_Array_New:
+ case OO_Array_Delete:
+ case OO_Slash:
+ case OO_Percent:
+ case OO_Tilde:
+ case OO_Exclaim:
+ case OO_Equal:
+ case OO_Less:
+ case OO_Greater:
+ case OO_LessEqual:
+ case OO_GreaterEqual:
+ case OO_PlusEqual:
+ case OO_MinusEqual:
+ case OO_StarEqual:
+ case OO_SlashEqual:
+ case OO_PercentEqual:
+ case OO_CaretEqual:
+ case OO_AmpEqual:
+ case OO_PipeEqual:
+ case OO_LessLess:
+ case OO_GreaterGreater:
+ case OO_LessLessEqual:
+ case OO_GreaterGreaterEqual:
+ case OO_EqualEqual:
+ case OO_ExclaimEqual:
+ case OO_PlusPlus:
+ case OO_MinusMinus:
+ case OO_Comma:
+ case OO_ArrowStar:
+ case OO_Arrow:
+ case OO_Call:
+ case OO_Subscript:
+ case OO_Conditional:
+ case NUM_OVERLOADED_OPERATORS:
+ llvm_unreachable("Unexpected reduction identifier");
+ case OO_None:
+ if (auto II = DN.getAsIdentifierInfo()) {
+ if (II->isStr("max"))
+ BOK = BO_GT;
+ else if (II->isStr("min"))
+ BOK = BO_LT;
+ }
+ break;
+ }
+ SourceRange ReductionIdRange;
+ if (ReductionIdScopeSpec.isValid()) {
+ ReductionIdRange.setBegin(ReductionIdScopeSpec.getBeginLoc());
+ }
+ ReductionIdRange.setEnd(ReductionId.getEndLoc());
+ if (BOK == BO_Comma) {
+ // Not allowed reduction identifier is found.
+ Diag(ReductionId.getLocStart(), diag::err_omp_unknown_reduction_identifier)
+ << ReductionIdRange;
+ return nullptr;
+ }
+
+ SmallVector<Expr *, 8> Vars;
+ SmallVector<Expr *, 8> LHSs;
+ SmallVector<Expr *, 8> RHSs;
+ SmallVector<Expr *, 8> ReductionOps;
+ for (auto RefExpr : VarList) {
+ assert(RefExpr && "nullptr expr in OpenMP reduction clause.");
+ if (isa<DependentScopeDeclRefExpr>(RefExpr)) {
+ // It will be analyzed later.
+ Vars.push_back(RefExpr);
+ LHSs.push_back(nullptr);
+ RHSs.push_back(nullptr);
+ ReductionOps.push_back(nullptr);
+ continue;
+ }
+
+ if (RefExpr->isTypeDependent() || RefExpr->isValueDependent() ||
+ RefExpr->isInstantiationDependent() ||
+ RefExpr->containsUnexpandedParameterPack()) {
+ // It will be analyzed later.
+ Vars.push_back(RefExpr);
+ LHSs.push_back(nullptr);
+ RHSs.push_back(nullptr);
+ ReductionOps.push_back(nullptr);
+ continue;
+ }
+
+ auto ELoc = RefExpr->getExprLoc();
+ auto ERange = RefExpr->getSourceRange();
+ // OpenMP [2.1, C/C++]
+ // A list item is a variable or array section, subject to the restrictions
+ // specified in Section 2.4 on page 42 and in each of the sections
+ // describing clauses and directives for which a list appears.
+ // OpenMP [2.14.3.3, Restrictions, p.1]
+ // A variable that is part of another variable (as an array or
+ // structure element) cannot appear in a private clause.
+ auto DE = dyn_cast<DeclRefExpr>(RefExpr);
+ if (!DE || !isa<VarDecl>(DE->getDecl())) {
+ Diag(ELoc, diag::err_omp_expected_var_name) << ERange;
+ continue;
+ }
+ auto D = DE->getDecl();
+ auto VD = cast<VarDecl>(D);
+ auto Type = VD->getType();
+ // OpenMP [2.9.3.3, Restrictions, C/C++, p.3]
+ // A variable that appears in a private clause must not have an incomplete
+ // type or a reference type.
+ if (RequireCompleteType(ELoc, Type,
+ diag::err_omp_reduction_incomplete_type))
+ continue;
+ // OpenMP [2.14.3.6, reduction clause, Restrictions]
+ // Arrays may not appear in a reduction clause.
+ if (Type.getNonReferenceType()->isArrayType()) {
+ Diag(ELoc, diag::err_omp_reduction_type_array) << Type << ERange;
+ bool IsDecl =
+ VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly;
+ Diag(VD->getLocation(),
+ IsDecl ? diag::note_previous_decl : diag::note_defined_here)
+ << VD;
+ continue;
+ }
+ // OpenMP [2.14.3.6, reduction clause, Restrictions]
+ // A list item that appears in a reduction clause must not be
+ // const-qualified.
+ if (Type.getNonReferenceType().isConstant(Context)) {
+ Diag(ELoc, diag::err_omp_const_variable)
+ << getOpenMPClauseName(OMPC_reduction) << Type << ERange;
+ bool IsDecl =
+ VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly;
+ Diag(VD->getLocation(),
+ IsDecl ? diag::note_previous_decl : diag::note_defined_here)
+ << VD;
+ continue;
+ }
+ // OpenMP [2.9.3.6, Restrictions, C/C++, p.4]
+ // If a list-item is a reference type then it must bind to the same object
+ // for all threads of the team.
+ VarDecl *VDDef = VD->getDefinition();
+ if (Type->isReferenceType() && VDDef) {
+ DSARefChecker Check(DSAStack);
+ if (Check.Visit(VDDef->getInit())) {
+ Diag(ELoc, diag::err_omp_reduction_ref_type_arg) << ERange;
+ Diag(VDDef->getLocation(), diag::note_defined_here) << VDDef;
+ continue;
+ }
+ }
+ // OpenMP [2.14.3.6, reduction clause, Restrictions]
+ // The type of a list item that appears in a reduction clause must be valid
+ // for the reduction-identifier. For a max or min reduction in C, the type
+ // of the list item must be an allowed arithmetic data type: char, int,
+ // float, double, or _Bool, possibly modified with long, short, signed, or
+ // unsigned. For a max or min reduction in C++, the type of the list item
+ // must be an allowed arithmetic data type: char, wchar_t, int, float,
+ // double, or bool, possibly modified with long, short, signed, or unsigned.
+ if ((BOK == BO_GT || BOK == BO_LT) &&
+ !(Type->isScalarType() ||
+ (getLangOpts().CPlusPlus && Type->isArithmeticType()))) {
+ Diag(ELoc, diag::err_omp_clause_not_arithmetic_type_arg)
+ << getLangOpts().CPlusPlus;
+ bool IsDecl =
+ VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly;
+ Diag(VD->getLocation(),
+ IsDecl ? diag::note_previous_decl : diag::note_defined_here)
+ << VD;
+ continue;
+ }
+ if ((BOK == BO_OrAssign || BOK == BO_AndAssign || BOK == BO_XorAssign) &&
+ !getLangOpts().CPlusPlus && Type->isFloatingType()) {
+ Diag(ELoc, diag::err_omp_clause_floating_type_arg);
+ bool IsDecl =
+ VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly;
+ Diag(VD->getLocation(),
+ IsDecl ? diag::note_previous_decl : diag::note_defined_here)
+ << VD;
+ continue;
+ }
+ // OpenMP [2.14.1.1, Data-sharing Attribute Rules for Variables Referenced
+ // in a Construct]
+ // Variables with the predetermined data-sharing attributes may not be
+ // listed in data-sharing attributes clauses, except for the cases
+ // listed below. For these exceptions only, listing a predetermined
+ // variable in a data-sharing attribute clause is allowed and overrides
+ // the variable's predetermined data-sharing attributes.
+ // OpenMP [2.14.3.6, Restrictions, p.3]
+ // Any number of reduction clauses can be specified on the directive,
+ // but a list item can appear only once in the reduction clauses for that
+ // directive.
+ DSAStackTy::DSAVarData DVar = DSAStack->getTopDSA(VD, false);
+ if (DVar.CKind == OMPC_reduction) {
+ Diag(ELoc, diag::err_omp_once_referenced)
+ << getOpenMPClauseName(OMPC_reduction);
+ if (DVar.RefExpr) {
+ Diag(DVar.RefExpr->getExprLoc(), diag::note_omp_referenced);
+ }
+ } else if (DVar.CKind != OMPC_unknown) {
+ Diag(ELoc, diag::err_omp_wrong_dsa)
+ << getOpenMPClauseName(DVar.CKind)
+ << getOpenMPClauseName(OMPC_reduction);
+ ReportOriginalDSA(*this, DSAStack, VD, DVar);
+ continue;
+ }
+
+ // OpenMP [2.14.3.6, Restrictions, p.1]
+ // A list item that appears in a reduction clause of a worksharing
+ // construct must be shared in the parallel regions to which any of the
+ // worksharing regions arising from the worksharing construct bind.
+ OpenMPDirectiveKind CurrDir = DSAStack->getCurrentDirective();
+ if (isOpenMPWorksharingDirective(CurrDir) &&
+ !isOpenMPParallelDirective(CurrDir)) {
+ DVar = DSAStack->getImplicitDSA(VD, true);
+ if (DVar.CKind != OMPC_shared) {
+ Diag(ELoc, diag::err_omp_required_access)
+ << getOpenMPClauseName(OMPC_reduction)
+ << getOpenMPClauseName(OMPC_shared);
+ ReportOriginalDSA(*this, DSAStack, VD, DVar);
+ continue;
+ }
+ }
+ Type = Type.getNonLValueExprType(Context).getUnqualifiedType();
+ auto *LHSVD = buildVarDecl(*this, ELoc, Type, ".reduction.lhs");
+ auto *RHSVD = buildVarDecl(*this, ELoc, Type, VD->getName());
+ // Add initializer for private variable.
+ Expr *Init = nullptr;
+ switch (BOK) {
+ case BO_Add:
+ case BO_Xor:
+ case BO_Or:
+ case BO_LOr:
+ // '+', '-', '^', '|', '||' reduction ops - initializer is '0'.
+ if (Type->isScalarType() || Type->isAnyComplexType()) {
+ Init = ActOnIntegerConstant(ELoc, /*Val=*/0).get();
+ }
+ break;
+ case BO_Mul:
+ case BO_LAnd:
+ if (Type->isScalarType() || Type->isAnyComplexType()) {
+ // '*' and '&&' reduction ops - initializer is '1'.
+ Init = ActOnIntegerConstant(ELoc, /*Val=*/1).get();
+ }
+ break;
+ case BO_And: {
+ // '&' reduction op - initializer is '~0'.
+ QualType OrigType = Type;
+ if (auto *ComplexTy = OrigType->getAs<ComplexType>()) {
+ Type = ComplexTy->getElementType();
+ }
+ if (Type->isRealFloatingType()) {
+ llvm::APFloat InitValue =
+ llvm::APFloat::getAllOnesValue(Context.getTypeSize(Type),
+ /*isIEEE=*/true);
+ Init = FloatingLiteral::Create(Context, InitValue, /*isexact=*/true,
+ Type, ELoc);
+ } else if (Type->isScalarType()) {
+ auto Size = Context.getTypeSize(Type);
+ QualType IntTy = Context.getIntTypeForBitwidth(Size, /*Signed=*/0);
+ llvm::APInt InitValue = llvm::APInt::getAllOnesValue(Size);
+ Init = IntegerLiteral::Create(Context, InitValue, IntTy, ELoc);
+ }
+ if (Init && OrigType->isAnyComplexType()) {
+ // Init = 0xFFFF + 0xFFFFi;
+ auto *Im = new (Context) ImaginaryLiteral(Init, OrigType);
+ Init = CreateBuiltinBinOp(ELoc, BO_Add, Init, Im).get();
+ }
+ Type = OrigType;
+ break;
+ }
+ case BO_LT:
+ case BO_GT: {
+ // 'min' reduction op - initializer is 'Largest representable number in
+ // the reduction list item type'.
+ // 'max' reduction op - initializer is 'Least representable number in
+ // the reduction list item type'.
+ if (Type->isIntegerType() || Type->isPointerType()) {
+ bool IsSigned = Type->hasSignedIntegerRepresentation();
+ auto Size = Context.getTypeSize(Type);
+ QualType IntTy =
+ Context.getIntTypeForBitwidth(Size, /*Signed=*/IsSigned);
+ llvm::APInt InitValue =
+ (BOK != BO_LT)
+ ? IsSigned ? llvm::APInt::getSignedMinValue(Size)
+ : llvm::APInt::getMinValue(Size)
+ : IsSigned ? llvm::APInt::getSignedMaxValue(Size)
+ : llvm::APInt::getMaxValue(Size);
+ Init = IntegerLiteral::Create(Context, InitValue, IntTy, ELoc);
+ if (Type->isPointerType()) {
+ // Cast to pointer type.
+ auto CastExpr = BuildCStyleCastExpr(
+ SourceLocation(), Context.getTrivialTypeSourceInfo(Type, ELoc),
+ SourceLocation(), Init);
+ if (CastExpr.isInvalid())
+ continue;
+ Init = CastExpr.get();
+ }
+ } else if (Type->isRealFloatingType()) {
+ llvm::APFloat InitValue = llvm::APFloat::getLargest(
+ Context.getFloatTypeSemantics(Type), BOK != BO_LT);
+ Init = FloatingLiteral::Create(Context, InitValue, /*isexact=*/true,
+ Type, ELoc);
+ }
+ break;
+ }
+ case BO_PtrMemD:
+ case BO_PtrMemI:
+ case BO_MulAssign:
+ case BO_Div:
+ case BO_Rem:
+ case BO_Sub:
+ case BO_Shl:
+ case BO_Shr:
+ case BO_LE:
+ case BO_GE:
+ case BO_EQ:
+ case BO_NE:
+ case BO_AndAssign:
+ case BO_XorAssign:
+ case BO_OrAssign:
+ case BO_Assign:
+ case BO_AddAssign:
+ case BO_SubAssign:
+ case BO_DivAssign:
+ case BO_RemAssign:
+ case BO_ShlAssign:
+ case BO_ShrAssign:
+ case BO_Comma:
+ llvm_unreachable("Unexpected reduction operation");
+ }
+ if (Init) {
+ AddInitializerToDecl(RHSVD, Init, /*DirectInit=*/false,
+ /*TypeMayContainAuto=*/false);
+ } else {
+ ActOnUninitializedDecl(RHSVD, /*TypeMayContainAuto=*/false);
+ }
+ if (!RHSVD->hasInit()) {
+ Diag(ELoc, diag::err_omp_reduction_id_not_compatible) << Type
+ << ReductionIdRange;
+ bool IsDecl =
+ VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly;
+ Diag(VD->getLocation(),
+ IsDecl ? diag::note_previous_decl : diag::note_defined_here)
+ << VD;
+ continue;
+ }
+ auto *LHSDRE = buildDeclRefExpr(*this, LHSVD, Type, ELoc);
+ auto *RHSDRE = buildDeclRefExpr(*this, RHSVD, Type, ELoc);
+ ExprResult ReductionOp =
+ BuildBinOp(DSAStack->getCurScope(), ReductionId.getLocStart(), BOK,
+ LHSDRE, RHSDRE);
+ if (ReductionOp.isUsable()) {
+ if (BOK != BO_LT && BOK != BO_GT) {
+ ReductionOp =
+ BuildBinOp(DSAStack->getCurScope(), ReductionId.getLocStart(),
+ BO_Assign, LHSDRE, ReductionOp.get());
+ } else {
+ auto *ConditionalOp = new (Context) ConditionalOperator(
+ ReductionOp.get(), SourceLocation(), LHSDRE, SourceLocation(),
+ RHSDRE, Type, VK_LValue, OK_Ordinary);
+ ReductionOp =
+ BuildBinOp(DSAStack->getCurScope(), ReductionId.getLocStart(),
+ BO_Assign, LHSDRE, ConditionalOp);
+ }
+ if (ReductionOp.isUsable()) {
+ ReductionOp = ActOnFinishFullExpr(ReductionOp.get());
+ }
+ }
+ if (ReductionOp.isInvalid())
+ continue;
+
+ DSAStack->addDSA(VD, DE, OMPC_reduction);
+ Vars.push_back(DE);
+ LHSs.push_back(LHSDRE);
+ RHSs.push_back(RHSDRE);
+ ReductionOps.push_back(ReductionOp.get());
+ }
+
+ if (Vars.empty())
+ return nullptr;
+
+ return OMPReductionClause::Create(
+ Context, StartLoc, LParenLoc, ColonLoc, EndLoc, Vars,
+ ReductionIdScopeSpec.getWithLocInContext(Context), ReductionId, LHSs,
+ RHSs, ReductionOps);
+}
+
+OMPClause *Sema::ActOnOpenMPLinearClause(ArrayRef<Expr *> VarList, Expr *Step,
+ SourceLocation StartLoc,
+ SourceLocation LParenLoc,
+ SourceLocation ColonLoc,
+ SourceLocation EndLoc) {
+ SmallVector<Expr *, 8> Vars;
+ SmallVector<Expr *, 8> Inits;
+ for (auto &RefExpr : VarList) {
+ assert(RefExpr && "NULL expr in OpenMP linear clause.");
+ if (isa<DependentScopeDeclRefExpr>(RefExpr)) {
+ // It will be analyzed later.
+ Vars.push_back(RefExpr);
+ Inits.push_back(nullptr);
+ continue;
+ }
+
+ // OpenMP [2.14.3.7, linear clause]
+ // A list item that appears in a linear clause is subject to the private
+ // clause semantics described in Section 2.14.3.3 on page 159 except as
+ // noted. In addition, the value of the new list item on each iteration
+ // of the associated loop(s) corresponds to the value of the original
+ // list item before entering the construct plus the logical number of
+ // the iteration times linear-step.
+
+ SourceLocation ELoc = RefExpr->getExprLoc();
+ // OpenMP [2.1, C/C++]
+ // A list item is a variable name.
+ // OpenMP [2.14.3.3, Restrictions, p.1]
+ // A variable that is part of another variable (as an array or
+ // structure element) cannot appear in a private clause.
+ DeclRefExpr *DE = dyn_cast<DeclRefExpr>(RefExpr);
+ if (!DE || !isa<VarDecl>(DE->getDecl())) {
+ Diag(ELoc, diag::err_omp_expected_var_name) << RefExpr->getSourceRange();
+ continue;
+ }
+
+ VarDecl *VD = cast<VarDecl>(DE->getDecl());
+
+ // OpenMP [2.14.3.7, linear clause]
+ // A list-item cannot appear in more than one linear clause.
+ // A list-item that appears in a linear clause cannot appear in any
+ // other data-sharing attribute clause.
+ DSAStackTy::DSAVarData DVar = DSAStack->getTopDSA(VD, false);
+ if (DVar.RefExpr) {
+ Diag(ELoc, diag::err_omp_wrong_dsa) << getOpenMPClauseName(DVar.CKind)
+ << getOpenMPClauseName(OMPC_linear);
+ ReportOriginalDSA(*this, DSAStack, VD, DVar);
+ continue;
+ }
+
+ QualType QType = VD->getType();
+ if (QType->isDependentType() || QType->isInstantiationDependentType()) {
+ // It will be analyzed later.
+ Vars.push_back(DE);
+ Inits.push_back(nullptr);
+ continue;
+ }
+
+ // A variable must not have an incomplete type or a reference type.
+ if (RequireCompleteType(ELoc, QType,
+ diag::err_omp_linear_incomplete_type)) {
+ continue;
+ }
+ if (QType->isReferenceType()) {
+ Diag(ELoc, diag::err_omp_clause_ref_type_arg)
+ << getOpenMPClauseName(OMPC_linear) << QType;
+ bool IsDecl =
+ VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly;
+ Diag(VD->getLocation(),
+ IsDecl ? diag::note_previous_decl : diag::note_defined_here)
+ << VD;
+ continue;
+ }
+
+ // A list item must not be const-qualified.
+ if (QType.isConstant(Context)) {
+ Diag(ELoc, diag::err_omp_const_variable)
+ << getOpenMPClauseName(OMPC_linear);
+ bool IsDecl =
+ VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly;
+ Diag(VD->getLocation(),
+ IsDecl ? diag::note_previous_decl : diag::note_defined_here)
+ << VD;
+ continue;
+ }
+
+ // A list item must be of integral or pointer type.
+ QType = QType.getUnqualifiedType().getCanonicalType();
+ const Type *Ty = QType.getTypePtrOrNull();
+ if (!Ty || (!Ty->isDependentType() && !Ty->isIntegralType(Context) &&
+ !Ty->isPointerType())) {
+ Diag(ELoc, diag::err_omp_linear_expected_int_or_ptr) << QType;
+ bool IsDecl =
+ VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly;
+ Diag(VD->getLocation(),
+ IsDecl ? diag::note_previous_decl : diag::note_defined_here)
+ << VD;
+ continue;
+ }
+
+ // Build var to save initial value.
+ VarDecl *Init = buildVarDecl(*this, ELoc, QType, ".linear.start");
+ AddInitializerToDecl(Init, DefaultLvalueConversion(DE).get(),
+ /*DirectInit*/ false, /*TypeMayContainAuto*/ false);
+ auto InitRef = buildDeclRefExpr(
+ *this, Init, DE->getType().getUnqualifiedType(), DE->getExprLoc());
+ DSAStack->addDSA(VD, DE, OMPC_linear);
+ Vars.push_back(DE);
+ Inits.push_back(InitRef);
+ }
+
+ if (Vars.empty())
+ return nullptr;
+
+ Expr *StepExpr = Step;
+ Expr *CalcStepExpr = nullptr;
+ if (Step && !Step->isValueDependent() && !Step->isTypeDependent() &&
+ !Step->isInstantiationDependent() &&
+ !Step->containsUnexpandedParameterPack()) {
+ SourceLocation StepLoc = Step->getLocStart();
+ ExprResult Val = PerformOpenMPImplicitIntegerConversion(StepLoc, Step);
+ if (Val.isInvalid())
+ return nullptr;
+ StepExpr = Val.get();
+
+ // Build var to save the step value.
+ VarDecl *SaveVar =
+ buildVarDecl(*this, StepLoc, StepExpr->getType(), ".linear.step");
+ ExprResult SaveRef =
+ buildDeclRefExpr(*this, SaveVar, StepExpr->getType(), StepLoc);
+ ExprResult CalcStep =
+ BuildBinOp(CurScope, StepLoc, BO_Assign, SaveRef.get(), StepExpr);
+
+ // Warn about zero linear step (it would be probably better specified as
+ // making corresponding variables 'const').
+ llvm::APSInt Result;
+ bool IsConstant = StepExpr->isIntegerConstantExpr(Result, Context);
+ if (IsConstant && !Result.isNegative() && !Result.isStrictlyPositive())
+ Diag(StepLoc, diag::warn_omp_linear_step_zero) << Vars[0]
+ << (Vars.size() > 1);
+ if (!IsConstant && CalcStep.isUsable()) {
+ // Calculate the step beforehand instead of doing this on each iteration.
+ // (This is not used if the number of iterations may be kfold-ed).
+ CalcStepExpr = CalcStep.get();
+ }
+ }
+
+ return OMPLinearClause::Create(Context, StartLoc, LParenLoc, ColonLoc, EndLoc,
+ Vars, Inits, StepExpr, CalcStepExpr);
+}
+
+static bool FinishOpenMPLinearClause(OMPLinearClause &Clause, DeclRefExpr *IV,
+ Expr *NumIterations, Sema &SemaRef,
+ Scope *S) {
+ // Walk the vars and build update/final expressions for the CodeGen.
+ SmallVector<Expr *, 8> Updates;
+ SmallVector<Expr *, 8> Finals;
+ Expr *Step = Clause.getStep();
+ Expr *CalcStep = Clause.getCalcStep();
+ // OpenMP [2.14.3.7, linear clause]
+ // If linear-step is not specified it is assumed to be 1.
+ if (Step == nullptr)
+ Step = SemaRef.ActOnIntegerConstant(SourceLocation(), 1).get();
+ else if (CalcStep)
+ Step = cast<BinaryOperator>(CalcStep)->getLHS();
+ bool HasErrors = false;
+ auto CurInit = Clause.inits().begin();
+ for (auto &RefExpr : Clause.varlists()) {
+ Expr *InitExpr = *CurInit;
+
+ // Build privatized reference to the current linear var.
+ auto DE = cast<DeclRefExpr>(RefExpr);
+ auto PrivateRef =
+ buildDeclRefExpr(SemaRef, cast<VarDecl>(DE->getDecl()),
+ DE->getType().getUnqualifiedType(), DE->getExprLoc(),
+ /*RefersToCapture=*/true);
+
+ // Build update: Var = InitExpr + IV * Step
+ ExprResult Update =
+ BuildCounterUpdate(SemaRef, S, RefExpr->getExprLoc(), PrivateRef,
+ InitExpr, IV, Step, /* Subtract */ false);
+ Update = SemaRef.ActOnFinishFullExpr(Update.get());
+
+ // Build final: Var = InitExpr + NumIterations * Step
+ ExprResult Final =
+ BuildCounterUpdate(SemaRef, S, RefExpr->getExprLoc(), PrivateRef,
+ InitExpr, NumIterations, Step, /* Subtract */ false);
+ Final = SemaRef.ActOnFinishFullExpr(Final.get());
+ if (!Update.isUsable() || !Final.isUsable()) {
+ Updates.push_back(nullptr);
+ Finals.push_back(nullptr);
+ HasErrors = true;
+ } else {
+ Updates.push_back(Update.get());
+ Finals.push_back(Final.get());
+ }
+ ++CurInit;
+ }
+ Clause.setUpdates(Updates);
+ Clause.setFinals(Finals);
+ return HasErrors;
+}
+
+OMPClause *Sema::ActOnOpenMPAlignedClause(
+ ArrayRef<Expr *> VarList, Expr *Alignment, SourceLocation StartLoc,
+ SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc) {
+
+ SmallVector<Expr *, 8> Vars;
+ for (auto &RefExpr : VarList) {
+ assert(RefExpr && "NULL expr in OpenMP aligned clause.");
+ if (isa<DependentScopeDeclRefExpr>(RefExpr)) {
+ // It will be analyzed later.
+ Vars.push_back(RefExpr);
+ continue;
+ }
+
+ SourceLocation ELoc = RefExpr->getExprLoc();
+ // OpenMP [2.1, C/C++]
+ // A list item is a variable name.
+ DeclRefExpr *DE = dyn_cast<DeclRefExpr>(RefExpr);
+ if (!DE || !isa<VarDecl>(DE->getDecl())) {
+ Diag(ELoc, diag::err_omp_expected_var_name) << RefExpr->getSourceRange();
+ continue;
+ }
+
+ VarDecl *VD = cast<VarDecl>(DE->getDecl());
+
+ // OpenMP [2.8.1, simd construct, Restrictions]
+ // The type of list items appearing in the aligned clause must be
+ // array, pointer, reference to array, or reference to pointer.
+ QualType QType = VD->getType();
+ QType = QType.getNonReferenceType().getUnqualifiedType().getCanonicalType();
+ const Type *Ty = QType.getTypePtrOrNull();
+ if (!Ty || (!Ty->isDependentType() && !Ty->isArrayType() &&
+ !Ty->isPointerType())) {
+ Diag(ELoc, diag::err_omp_aligned_expected_array_or_ptr)
+ << QType << getLangOpts().CPlusPlus << RefExpr->getSourceRange();
+ bool IsDecl =
+ VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly;
+ Diag(VD->getLocation(),
+ IsDecl ? diag::note_previous_decl : diag::note_defined_here)
+ << VD;
+ continue;
+ }
+
+ // OpenMP [2.8.1, simd construct, Restrictions]
+ // A list-item cannot appear in more than one aligned clause.
+ if (DeclRefExpr *PrevRef = DSAStack->addUniqueAligned(VD, DE)) {
+ Diag(ELoc, diag::err_omp_aligned_twice) << RefExpr->getSourceRange();
+ Diag(PrevRef->getExprLoc(), diag::note_omp_explicit_dsa)
+ << getOpenMPClauseName(OMPC_aligned);
+ continue;
+ }
+
+ Vars.push_back(DE);
+ }
+
+ // OpenMP [2.8.1, simd construct, Description]
+ // The parameter of the aligned clause, alignment, must be a constant
+ // positive integer expression.
+ // If no optional parameter is specified, implementation-defined default
+ // alignments for SIMD instructions on the target platforms are assumed.
+ if (Alignment != nullptr) {
+ ExprResult AlignResult =
+ VerifyPositiveIntegerConstantInClause(Alignment, OMPC_aligned);
+ if (AlignResult.isInvalid())
+ return nullptr;
+ Alignment = AlignResult.get();
+ }
+ if (Vars.empty())
+ return nullptr;
+
+ return OMPAlignedClause::Create(Context, StartLoc, LParenLoc, ColonLoc,
+ EndLoc, Vars, Alignment);
+}
+
+OMPClause *Sema::ActOnOpenMPCopyinClause(ArrayRef<Expr *> VarList,
+ SourceLocation StartLoc,
+ SourceLocation LParenLoc,
+ SourceLocation EndLoc) {
+ SmallVector<Expr *, 8> Vars;
+ SmallVector<Expr *, 8> SrcExprs;
+ SmallVector<Expr *, 8> DstExprs;
+ SmallVector<Expr *, 8> AssignmentOps;
+ for (auto &RefExpr : VarList) {
+ assert(RefExpr && "NULL expr in OpenMP copyin clause.");
+ if (isa<DependentScopeDeclRefExpr>(RefExpr)) {
+ // It will be analyzed later.
+ Vars.push_back(RefExpr);
+ SrcExprs.push_back(nullptr);
+ DstExprs.push_back(nullptr);
+ AssignmentOps.push_back(nullptr);
+ continue;
+ }
+
+ SourceLocation ELoc = RefExpr->getExprLoc();
+ // OpenMP [2.1, C/C++]
+ // A list item is a variable name.
+ // OpenMP [2.14.4.1, Restrictions, p.1]
+ // A list item that appears in a copyin clause must be threadprivate.
+ DeclRefExpr *DE = dyn_cast<DeclRefExpr>(RefExpr);
+ if (!DE || !isa<VarDecl>(DE->getDecl())) {
+ Diag(ELoc, diag::err_omp_expected_var_name) << RefExpr->getSourceRange();
+ continue;
+ }
+
+ Decl *D = DE->getDecl();
+ VarDecl *VD = cast<VarDecl>(D);
+
+ QualType Type = VD->getType();
+ if (Type->isDependentType() || Type->isInstantiationDependentType()) {
+ // It will be analyzed later.
+ Vars.push_back(DE);
+ SrcExprs.push_back(nullptr);
+ DstExprs.push_back(nullptr);
+ AssignmentOps.push_back(nullptr);
+ continue;
+ }
+
+ // OpenMP [2.14.4.1, Restrictions, C/C++, p.1]
+ // A list item that appears in a copyin clause must be threadprivate.
+ if (!DSAStack->isThreadPrivate(VD)) {
+ Diag(ELoc, diag::err_omp_required_access)
+ << getOpenMPClauseName(OMPC_copyin)
+ << getOpenMPDirectiveName(OMPD_threadprivate);
+ continue;
+ }
+
+ // OpenMP [2.14.4.1, Restrictions, C/C++, p.2]
+ // A variable of class type (or array thereof) that appears in a
+ // copyin clause requires an accessible, unambiguous copy assignment
+ // operator for the class type.
+ auto ElemType = Context.getBaseElementType(Type).getNonReferenceType();
+ auto *SrcVD = buildVarDecl(*this, DE->getLocStart(),
+ ElemType.getUnqualifiedType(), ".copyin.src");
+ auto *PseudoSrcExpr = buildDeclRefExpr(
+ *this, SrcVD, ElemType.getUnqualifiedType(), DE->getExprLoc());
+ auto *DstVD =
+ buildVarDecl(*this, DE->getLocStart(), ElemType, ".copyin.dst");
+ auto *PseudoDstExpr =
+ buildDeclRefExpr(*this, DstVD, ElemType, DE->getExprLoc());
+ // For arrays generate assignment operation for single element and replace
+ // it by the original array element in CodeGen.
+ auto AssignmentOp = BuildBinOp(/*S=*/nullptr, DE->getExprLoc(), BO_Assign,
+ PseudoDstExpr, PseudoSrcExpr);
+ if (AssignmentOp.isInvalid())
+ continue;
+ AssignmentOp = ActOnFinishFullExpr(AssignmentOp.get(), DE->getExprLoc(),
+ /*DiscardedValue=*/true);
+ if (AssignmentOp.isInvalid())
+ continue;
+
+ DSAStack->addDSA(VD, DE, OMPC_copyin);
+ Vars.push_back(DE);
+ SrcExprs.push_back(PseudoSrcExpr);
+ DstExprs.push_back(PseudoDstExpr);
+ AssignmentOps.push_back(AssignmentOp.get());
+ }
+
+ if (Vars.empty())
+ return nullptr;
+
+ return OMPCopyinClause::Create(Context, StartLoc, LParenLoc, EndLoc, Vars,
+ SrcExprs, DstExprs, AssignmentOps);
+}
+
+OMPClause *Sema::ActOnOpenMPCopyprivateClause(ArrayRef<Expr *> VarList,
+ SourceLocation StartLoc,
+ SourceLocation LParenLoc,
+ SourceLocation EndLoc) {
+ SmallVector<Expr *, 8> Vars;
+ SmallVector<Expr *, 8> SrcExprs;
+ SmallVector<Expr *, 8> DstExprs;
+ SmallVector<Expr *, 8> AssignmentOps;
+ for (auto &RefExpr : VarList) {
+ assert(RefExpr && "NULL expr in OpenMP copyprivate clause.");
+ if (isa<DependentScopeDeclRefExpr>(RefExpr)) {
+ // It will be analyzed later.
+ Vars.push_back(RefExpr);
+ SrcExprs.push_back(nullptr);
+ DstExprs.push_back(nullptr);
+ AssignmentOps.push_back(nullptr);
+ continue;
+ }
+
+ SourceLocation ELoc = RefExpr->getExprLoc();
+ // OpenMP [2.1, C/C++]
+ // A list item is a variable name.
+ // OpenMP [2.14.4.1, Restrictions, p.1]
+ // A list item that appears in a copyin clause must be threadprivate.
+ DeclRefExpr *DE = dyn_cast<DeclRefExpr>(RefExpr);
+ if (!DE || !isa<VarDecl>(DE->getDecl())) {
+ Diag(ELoc, diag::err_omp_expected_var_name) << RefExpr->getSourceRange();
+ continue;
+ }
+
+ Decl *D = DE->getDecl();
+ VarDecl *VD = cast<VarDecl>(D);
+
+ QualType Type = VD->getType();
+ if (Type->isDependentType() || Type->isInstantiationDependentType()) {
+ // It will be analyzed later.
+ Vars.push_back(DE);
+ SrcExprs.push_back(nullptr);
+ DstExprs.push_back(nullptr);
+ AssignmentOps.push_back(nullptr);
+ continue;
+ }
+
+ // OpenMP [2.14.4.2, Restrictions, p.2]
+ // A list item that appears in a copyprivate clause may not appear in a
+ // private or firstprivate clause on the single construct.
+ if (!DSAStack->isThreadPrivate(VD)) {
+ auto DVar = DSAStack->getTopDSA(VD, false);
+ if (DVar.CKind != OMPC_unknown && DVar.CKind != OMPC_copyprivate &&
+ DVar.RefExpr) {
+ Diag(ELoc, diag::err_omp_wrong_dsa)
+ << getOpenMPClauseName(DVar.CKind)
+ << getOpenMPClauseName(OMPC_copyprivate);
+ ReportOriginalDSA(*this, DSAStack, VD, DVar);
+ continue;
+ }
+
+ // OpenMP [2.11.4.2, Restrictions, p.1]
+ // All list items that appear in a copyprivate clause must be either
+ // threadprivate or private in the enclosing context.
+ if (DVar.CKind == OMPC_unknown) {
+ DVar = DSAStack->getImplicitDSA(VD, false);
+ if (DVar.CKind == OMPC_shared) {
+ Diag(ELoc, diag::err_omp_required_access)
+ << getOpenMPClauseName(OMPC_copyprivate)
+ << "threadprivate or private in the enclosing context";
+ ReportOriginalDSA(*this, DSAStack, VD, DVar);
+ continue;
+ }
+ }
+ }
+
+ // Variably modified types are not supported.
+ if (!Type->isAnyPointerType() && Type->isVariablyModifiedType()) {
+ Diag(ELoc, diag::err_omp_variably_modified_type_not_supported)
+ << getOpenMPClauseName(OMPC_copyprivate) << Type
+ << getOpenMPDirectiveName(DSAStack->getCurrentDirective());
+ bool IsDecl =
+ VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly;
+ Diag(VD->getLocation(),
+ IsDecl ? diag::note_previous_decl : diag::note_defined_here)
+ << VD;
+ continue;
+ }
+
+ // OpenMP [2.14.4.1, Restrictions, C/C++, p.2]
+ // A variable of class type (or array thereof) that appears in a
+ // copyin clause requires an accessible, unambiguous copy assignment
+ // operator for the class type.
+ Type = Context.getBaseElementType(Type).getUnqualifiedType();
+ auto *SrcVD =
+ buildVarDecl(*this, DE->getLocStart(), Type, ".copyprivate.src");
+ auto *PseudoSrcExpr =
+ buildDeclRefExpr(*this, SrcVD, Type, DE->getExprLoc());
+ auto *DstVD =
+ buildVarDecl(*this, DE->getLocStart(), Type, ".copyprivate.dst");
+ auto *PseudoDstExpr =
+ buildDeclRefExpr(*this, DstVD, Type, DE->getExprLoc());
+ auto AssignmentOp = BuildBinOp(/*S=*/nullptr, DE->getExprLoc(), BO_Assign,
+ PseudoDstExpr, PseudoSrcExpr);
+ if (AssignmentOp.isInvalid())
+ continue;
+ AssignmentOp = ActOnFinishFullExpr(AssignmentOp.get(), DE->getExprLoc(),
+ /*DiscardedValue=*/true);
+ if (AssignmentOp.isInvalid())
+ continue;
+
+ // No need to mark vars as copyprivate, they are already threadprivate or
+ // implicitly private.
+ Vars.push_back(DE);
+ SrcExprs.push_back(PseudoSrcExpr);
+ DstExprs.push_back(PseudoDstExpr);
+ AssignmentOps.push_back(AssignmentOp.get());
+ }
+
+ if (Vars.empty())
+ return nullptr;
+
+ return OMPCopyprivateClause::Create(Context, StartLoc, LParenLoc, EndLoc,
+ Vars, SrcExprs, DstExprs, AssignmentOps);
+}
+
+OMPClause *Sema::ActOnOpenMPFlushClause(ArrayRef<Expr *> VarList,
+ SourceLocation StartLoc,
+ SourceLocation LParenLoc,
+ SourceLocation EndLoc) {
+ if (VarList.empty())
+ return nullptr;
+
+ return OMPFlushClause::Create(Context, StartLoc, LParenLoc, EndLoc, VarList);
+}
+
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaOverload.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaOverload.cpp
new file mode 100644
index 0000000..9d87a10
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaOverload.cpp
@@ -0,0 +1,12511 @@
+//===--- SemaOverload.cpp - C++ Overloading -------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides Sema routines for C++ overloading.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Sema/Overload.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/AST/TypeOrdering.h"
+#include "clang/Basic/Diagnostic.h"
+#include "clang/Basic/DiagnosticOptions.h"
+#include "clang/Basic/PartialDiagnostic.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Sema/Initialization.h"
+#include "clang/Sema/Lookup.h"
+#include "clang/Sema/SemaInternal.h"
+#include "clang/Sema/Template.h"
+#include "clang/Sema/TemplateDeduction.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallString.h"
+#include <algorithm>
+#include <cstdlib>
+
+using namespace clang;
+using namespace sema;
+
+/// A convenience routine for creating a decayed reference to a function.
+static ExprResult
+CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl,
+ bool HadMultipleCandidates,
+ SourceLocation Loc = SourceLocation(),
+ const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
+ if (S.DiagnoseUseOfDecl(FoundDecl, Loc))
+ return ExprError();
+ // If FoundDecl is different from Fn (such as if one is a template
+ // and the other a specialization), make sure DiagnoseUseOfDecl is
+ // called on both.
+ // FIXME: This would be more comprehensively addressed by modifying
+ // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
+ // being used.
+ if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc))
+ return ExprError();
+ DeclRefExpr *DRE = new (S.Context) DeclRefExpr(Fn, false, Fn->getType(),
+ VK_LValue, Loc, LocInfo);
+ if (HadMultipleCandidates)
+ DRE->setHadMultipleCandidates(true);
+
+ S.MarkDeclRefReferenced(DRE);
+
+ ExprResult E = DRE;
+ E = S.DefaultFunctionArrayConversion(E.get());
+ if (E.isInvalid())
+ return ExprError();
+ return E;
+}
+
+static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
+ bool InOverloadResolution,
+ StandardConversionSequence &SCS,
+ bool CStyle,
+ bool AllowObjCWritebackConversion);
+
+static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
+ QualType &ToType,
+ bool InOverloadResolution,
+ StandardConversionSequence &SCS,
+ bool CStyle);
+static OverloadingResult
+IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
+ UserDefinedConversionSequence& User,
+ OverloadCandidateSet& Conversions,
+ bool AllowExplicit,
+ bool AllowObjCConversionOnExplicit);
+
+
+static ImplicitConversionSequence::CompareKind
+CompareStandardConversionSequences(Sema &S,
+ const StandardConversionSequence& SCS1,
+ const StandardConversionSequence& SCS2);
+
+static ImplicitConversionSequence::CompareKind
+CompareQualificationConversions(Sema &S,
+ const StandardConversionSequence& SCS1,
+ const StandardConversionSequence& SCS2);
+
+static ImplicitConversionSequence::CompareKind
+CompareDerivedToBaseConversions(Sema &S,
+ const StandardConversionSequence& SCS1,
+ const StandardConversionSequence& SCS2);
+
+/// GetConversionRank - Retrieve the implicit conversion rank
+/// corresponding to the given implicit conversion kind.
+ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) {
+ static const ImplicitConversionRank
+ Rank[(int)ICK_Num_Conversion_Kinds] = {
+ ICR_Exact_Match,
+ ICR_Exact_Match,
+ ICR_Exact_Match,
+ ICR_Exact_Match,
+ ICR_Exact_Match,
+ ICR_Exact_Match,
+ ICR_Promotion,
+ ICR_Promotion,
+ ICR_Promotion,
+ ICR_Conversion,
+ ICR_Conversion,
+ ICR_Conversion,
+ ICR_Conversion,
+ ICR_Conversion,
+ ICR_Conversion,
+ ICR_Conversion,
+ ICR_Conversion,
+ ICR_Conversion,
+ ICR_Conversion,
+ ICR_Conversion,
+ ICR_Complex_Real_Conversion,
+ ICR_Conversion,
+ ICR_Conversion,
+ ICR_Writeback_Conversion
+ };
+ return Rank[(int)Kind];
+}
+
+/// GetImplicitConversionName - Return the name of this kind of
+/// implicit conversion.
+static const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
+ static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
+ "No conversion",
+ "Lvalue-to-rvalue",
+ "Array-to-pointer",
+ "Function-to-pointer",
+ "Noreturn adjustment",
+ "Qualification",
+ "Integral promotion",
+ "Floating point promotion",
+ "Complex promotion",
+ "Integral conversion",
+ "Floating conversion",
+ "Complex conversion",
+ "Floating-integral conversion",
+ "Pointer conversion",
+ "Pointer-to-member conversion",
+ "Boolean conversion",
+ "Compatible-types conversion",
+ "Derived-to-base conversion",
+ "Vector conversion",
+ "Vector splat",
+ "Complex-real conversion",
+ "Block Pointer conversion",
+ "Transparent Union Conversion",
+ "Writeback conversion"
+ };
+ return Name[Kind];
+}
+
+/// StandardConversionSequence - Set the standard conversion
+/// sequence to the identity conversion.
+void StandardConversionSequence::setAsIdentityConversion() {
+ First = ICK_Identity;
+ Second = ICK_Identity;
+ Third = ICK_Identity;
+ DeprecatedStringLiteralToCharPtr = false;
+ QualificationIncludesObjCLifetime = false;
+ ReferenceBinding = false;
+ DirectBinding = false;
+ IsLvalueReference = true;
+ BindsToFunctionLvalue = false;
+ BindsToRvalue = false;
+ BindsImplicitObjectArgumentWithoutRefQualifier = false;
+ ObjCLifetimeConversionBinding = false;
+ CopyConstructor = nullptr;
+}
+
+/// getRank - Retrieve the rank of this standard conversion sequence
+/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
+/// implicit conversions.
+ImplicitConversionRank StandardConversionSequence::getRank() const {
+ ImplicitConversionRank Rank = ICR_Exact_Match;
+ if (GetConversionRank(First) > Rank)
+ Rank = GetConversionRank(First);
+ if (GetConversionRank(Second) > Rank)
+ Rank = GetConversionRank(Second);
+ if (GetConversionRank(Third) > Rank)
+ Rank = GetConversionRank(Third);
+ return Rank;
+}
+
+/// isPointerConversionToBool - Determines whether this conversion is
+/// a conversion of a pointer or pointer-to-member to bool. This is
+/// used as part of the ranking of standard conversion sequences
+/// (C++ 13.3.3.2p4).
+bool StandardConversionSequence::isPointerConversionToBool() const {
+ // Note that FromType has not necessarily been transformed by the
+ // array-to-pointer or function-to-pointer implicit conversions, so
+ // check for their presence as well as checking whether FromType is
+ // a pointer.
+ if (getToType(1)->isBooleanType() &&
+ (getFromType()->isPointerType() ||
+ getFromType()->isObjCObjectPointerType() ||
+ getFromType()->isBlockPointerType() ||
+ getFromType()->isNullPtrType() ||
+ First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
+ return true;
+
+ return false;
+}
+
+/// isPointerConversionToVoidPointer - Determines whether this
+/// conversion is a conversion of a pointer to a void pointer. This is
+/// used as part of the ranking of standard conversion sequences (C++
+/// 13.3.3.2p4).
+bool
+StandardConversionSequence::
+isPointerConversionToVoidPointer(ASTContext& Context) const {
+ QualType FromType = getFromType();
+ QualType ToType = getToType(1);
+
+ // Note that FromType has not necessarily been transformed by the
+ // array-to-pointer implicit conversion, so check for its presence
+ // and redo the conversion to get a pointer.
+ if (First == ICK_Array_To_Pointer)
+ FromType = Context.getArrayDecayedType(FromType);
+
+ if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
+ if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
+ return ToPtrType->getPointeeType()->isVoidType();
+
+ return false;
+}
+
+/// Skip any implicit casts which could be either part of a narrowing conversion
+/// or after one in an implicit conversion.
+static const Expr *IgnoreNarrowingConversion(const Expr *Converted) {
+ while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
+ switch (ICE->getCastKind()) {
+ case CK_NoOp:
+ case CK_IntegralCast:
+ case CK_IntegralToBoolean:
+ case CK_IntegralToFloating:
+ case CK_FloatingToIntegral:
+ case CK_FloatingToBoolean:
+ case CK_FloatingCast:
+ Converted = ICE->getSubExpr();
+ continue;
+
+ default:
+ return Converted;
+ }
+ }
+
+ return Converted;
+}
+
+/// Check if this standard conversion sequence represents a narrowing
+/// conversion, according to C++11 [dcl.init.list]p7.
+///
+/// \param Ctx The AST context.
+/// \param Converted The result of applying this standard conversion sequence.
+/// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the
+/// value of the expression prior to the narrowing conversion.
+/// \param ConstantType If this is an NK_Constant_Narrowing conversion, the
+/// type of the expression prior to the narrowing conversion.
+NarrowingKind
+StandardConversionSequence::getNarrowingKind(ASTContext &Ctx,
+ const Expr *Converted,
+ APValue &ConstantValue,
+ QualType &ConstantType) const {
+ assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++");
+
+ // C++11 [dcl.init.list]p7:
+ // A narrowing conversion is an implicit conversion ...
+ QualType FromType = getToType(0);
+ QualType ToType = getToType(1);
+ switch (Second) {
+ // 'bool' is an integral type; dispatch to the right place to handle it.
+ case ICK_Boolean_Conversion:
+ if (FromType->isRealFloatingType())
+ goto FloatingIntegralConversion;
+ if (FromType->isIntegralOrUnscopedEnumerationType())
+ goto IntegralConversion;
+ // Boolean conversions can be from pointers and pointers to members
+ // [conv.bool], and those aren't considered narrowing conversions.
+ return NK_Not_Narrowing;
+
+ // -- from a floating-point type to an integer type, or
+ //
+ // -- from an integer type or unscoped enumeration type to a floating-point
+ // type, except where the source is a constant expression and the actual
+ // value after conversion will fit into the target type and will produce
+ // the original value when converted back to the original type, or
+ case ICK_Floating_Integral:
+ FloatingIntegralConversion:
+ if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
+ return NK_Type_Narrowing;
+ } else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) {
+ llvm::APSInt IntConstantValue;
+ const Expr *Initializer = IgnoreNarrowingConversion(Converted);
+ if (Initializer &&
+ Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
+ // Convert the integer to the floating type.
+ llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
+ Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
+ llvm::APFloat::rmNearestTiesToEven);
+ // And back.
+ llvm::APSInt ConvertedValue = IntConstantValue;
+ bool ignored;
+ Result.convertToInteger(ConvertedValue,
+ llvm::APFloat::rmTowardZero, &ignored);
+ // If the resulting value is different, this was a narrowing conversion.
+ if (IntConstantValue != ConvertedValue) {
+ ConstantValue = APValue(IntConstantValue);
+ ConstantType = Initializer->getType();
+ return NK_Constant_Narrowing;
+ }
+ } else {
+ // Variables are always narrowings.
+ return NK_Variable_Narrowing;
+ }
+ }
+ return NK_Not_Narrowing;
+
+ // -- from long double to double or float, or from double to float, except
+ // where the source is a constant expression and the actual value after
+ // conversion is within the range of values that can be represented (even
+ // if it cannot be represented exactly), or
+ case ICK_Floating_Conversion:
+ if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
+ Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
+ // FromType is larger than ToType.
+ const Expr *Initializer = IgnoreNarrowingConversion(Converted);
+ if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
+ // Constant!
+ assert(ConstantValue.isFloat());
+ llvm::APFloat FloatVal = ConstantValue.getFloat();
+ // Convert the source value into the target type.
+ bool ignored;
+ llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
+ Ctx.getFloatTypeSemantics(ToType),
+ llvm::APFloat::rmNearestTiesToEven, &ignored);
+ // If there was no overflow, the source value is within the range of
+ // values that can be represented.
+ if (ConvertStatus & llvm::APFloat::opOverflow) {
+ ConstantType = Initializer->getType();
+ return NK_Constant_Narrowing;
+ }
+ } else {
+ return NK_Variable_Narrowing;
+ }
+ }
+ return NK_Not_Narrowing;
+
+ // -- from an integer type or unscoped enumeration type to an integer type
+ // that cannot represent all the values of the original type, except where
+ // the source is a constant expression and the actual value after
+ // conversion will fit into the target type and will produce the original
+ // value when converted back to the original type.
+ case ICK_Integral_Conversion:
+ IntegralConversion: {
+ assert(FromType->isIntegralOrUnscopedEnumerationType());
+ assert(ToType->isIntegralOrUnscopedEnumerationType());
+ const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
+ const unsigned FromWidth = Ctx.getIntWidth(FromType);
+ const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
+ const unsigned ToWidth = Ctx.getIntWidth(ToType);
+
+ if (FromWidth > ToWidth ||
+ (FromWidth == ToWidth && FromSigned != ToSigned) ||
+ (FromSigned && !ToSigned)) {
+ // Not all values of FromType can be represented in ToType.
+ llvm::APSInt InitializerValue;
+ const Expr *Initializer = IgnoreNarrowingConversion(Converted);
+ if (!Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
+ // Such conversions on variables are always narrowing.
+ return NK_Variable_Narrowing;
+ }
+ bool Narrowing = false;
+ if (FromWidth < ToWidth) {
+ // Negative -> unsigned is narrowing. Otherwise, more bits is never
+ // narrowing.
+ if (InitializerValue.isSigned() && InitializerValue.isNegative())
+ Narrowing = true;
+ } else {
+ // Add a bit to the InitializerValue so we don't have to worry about
+ // signed vs. unsigned comparisons.
+ InitializerValue = InitializerValue.extend(
+ InitializerValue.getBitWidth() + 1);
+ // Convert the initializer to and from the target width and signed-ness.
+ llvm::APSInt ConvertedValue = InitializerValue;
+ ConvertedValue = ConvertedValue.trunc(ToWidth);
+ ConvertedValue.setIsSigned(ToSigned);
+ ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
+ ConvertedValue.setIsSigned(InitializerValue.isSigned());
+ // If the result is different, this was a narrowing conversion.
+ if (ConvertedValue != InitializerValue)
+ Narrowing = true;
+ }
+ if (Narrowing) {
+ ConstantType = Initializer->getType();
+ ConstantValue = APValue(InitializerValue);
+ return NK_Constant_Narrowing;
+ }
+ }
+ return NK_Not_Narrowing;
+ }
+
+ default:
+ // Other kinds of conversions are not narrowings.
+ return NK_Not_Narrowing;
+ }
+}
+
+/// dump - Print this standard conversion sequence to standard
+/// error. Useful for debugging overloading issues.
+void StandardConversionSequence::dump() const {
+ raw_ostream &OS = llvm::errs();
+ bool PrintedSomething = false;
+ if (First != ICK_Identity) {
+ OS << GetImplicitConversionName(First);
+ PrintedSomething = true;
+ }
+
+ if (Second != ICK_Identity) {
+ if (PrintedSomething) {
+ OS << " -> ";
+ }
+ OS << GetImplicitConversionName(Second);
+
+ if (CopyConstructor) {
+ OS << " (by copy constructor)";
+ } else if (DirectBinding) {
+ OS << " (direct reference binding)";
+ } else if (ReferenceBinding) {
+ OS << " (reference binding)";
+ }
+ PrintedSomething = true;
+ }
+
+ if (Third != ICK_Identity) {
+ if (PrintedSomething) {
+ OS << " -> ";
+ }
+ OS << GetImplicitConversionName(Third);
+ PrintedSomething = true;
+ }
+
+ if (!PrintedSomething) {
+ OS << "No conversions required";
+ }
+}
+
+/// dump - Print this user-defined conversion sequence to standard
+/// error. Useful for debugging overloading issues.
+void UserDefinedConversionSequence::dump() const {
+ raw_ostream &OS = llvm::errs();
+ if (Before.First || Before.Second || Before.Third) {
+ Before.dump();
+ OS << " -> ";
+ }
+ if (ConversionFunction)
+ OS << '\'' << *ConversionFunction << '\'';
+ else
+ OS << "aggregate initialization";
+ if (After.First || After.Second || After.Third) {
+ OS << " -> ";
+ After.dump();
+ }
+}
+
+/// dump - Print this implicit conversion sequence to standard
+/// error. Useful for debugging overloading issues.
+void ImplicitConversionSequence::dump() const {
+ raw_ostream &OS = llvm::errs();
+ if (isStdInitializerListElement())
+ OS << "Worst std::initializer_list element conversion: ";
+ switch (ConversionKind) {
+ case StandardConversion:
+ OS << "Standard conversion: ";
+ Standard.dump();
+ break;
+ case UserDefinedConversion:
+ OS << "User-defined conversion: ";
+ UserDefined.dump();
+ break;
+ case EllipsisConversion:
+ OS << "Ellipsis conversion";
+ break;
+ case AmbiguousConversion:
+ OS << "Ambiguous conversion";
+ break;
+ case BadConversion:
+ OS << "Bad conversion";
+ break;
+ }
+
+ OS << "\n";
+}
+
+void AmbiguousConversionSequence::construct() {
+ new (&conversions()) ConversionSet();
+}
+
+void AmbiguousConversionSequence::destruct() {
+ conversions().~ConversionSet();
+}
+
+void
+AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
+ FromTypePtr = O.FromTypePtr;
+ ToTypePtr = O.ToTypePtr;
+ new (&conversions()) ConversionSet(O.conversions());
+}
+
+namespace {
+ // Structure used by DeductionFailureInfo to store
+ // template argument information.
+ struct DFIArguments {
+ TemplateArgument FirstArg;
+ TemplateArgument SecondArg;
+ };
+ // Structure used by DeductionFailureInfo to store
+ // template parameter and template argument information.
+ struct DFIParamWithArguments : DFIArguments {
+ TemplateParameter Param;
+ };
+}
+
+/// \brief Convert from Sema's representation of template deduction information
+/// to the form used in overload-candidate information.
+DeductionFailureInfo
+clang::MakeDeductionFailureInfo(ASTContext &Context,
+ Sema::TemplateDeductionResult TDK,
+ TemplateDeductionInfo &Info) {
+ DeductionFailureInfo Result;
+ Result.Result = static_cast<unsigned>(TDK);
+ Result.HasDiagnostic = false;
+ Result.Data = nullptr;
+ switch (TDK) {
+ case Sema::TDK_Success:
+ case Sema::TDK_Invalid:
+ case Sema::TDK_InstantiationDepth:
+ case Sema::TDK_TooManyArguments:
+ case Sema::TDK_TooFewArguments:
+ break;
+
+ case Sema::TDK_Incomplete:
+ case Sema::TDK_InvalidExplicitArguments:
+ Result.Data = Info.Param.getOpaqueValue();
+ break;
+
+ case Sema::TDK_NonDeducedMismatch: {
+ // FIXME: Should allocate from normal heap so that we can free this later.
+ DFIArguments *Saved = new (Context) DFIArguments;
+ Saved->FirstArg = Info.FirstArg;
+ Saved->SecondArg = Info.SecondArg;
+ Result.Data = Saved;
+ break;
+ }
+
+ case Sema::TDK_Inconsistent:
+ case Sema::TDK_Underqualified: {
+ // FIXME: Should allocate from normal heap so that we can free this later.
+ DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
+ Saved->Param = Info.Param;
+ Saved->FirstArg = Info.FirstArg;
+ Saved->SecondArg = Info.SecondArg;
+ Result.Data = Saved;
+ break;
+ }
+
+ case Sema::TDK_SubstitutionFailure:
+ Result.Data = Info.take();
+ if (Info.hasSFINAEDiagnostic()) {
+ PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
+ SourceLocation(), PartialDiagnostic::NullDiagnostic());
+ Info.takeSFINAEDiagnostic(*Diag);
+ Result.HasDiagnostic = true;
+ }
+ break;
+
+ case Sema::TDK_FailedOverloadResolution:
+ Result.Data = Info.Expression;
+ break;
+
+ case Sema::TDK_MiscellaneousDeductionFailure:
+ break;
+ }
+
+ return Result;
+}
+
+void DeductionFailureInfo::Destroy() {
+ switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
+ case Sema::TDK_Success:
+ case Sema::TDK_Invalid:
+ case Sema::TDK_InstantiationDepth:
+ case Sema::TDK_Incomplete:
+ case Sema::TDK_TooManyArguments:
+ case Sema::TDK_TooFewArguments:
+ case Sema::TDK_InvalidExplicitArguments:
+ case Sema::TDK_FailedOverloadResolution:
+ break;
+
+ case Sema::TDK_Inconsistent:
+ case Sema::TDK_Underqualified:
+ case Sema::TDK_NonDeducedMismatch:
+ // FIXME: Destroy the data?
+ Data = nullptr;
+ break;
+
+ case Sema::TDK_SubstitutionFailure:
+ // FIXME: Destroy the template argument list?
+ Data = nullptr;
+ if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
+ Diag->~PartialDiagnosticAt();
+ HasDiagnostic = false;
+ }
+ break;
+
+ // Unhandled
+ case Sema::TDK_MiscellaneousDeductionFailure:
+ break;
+ }
+}
+
+PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() {
+ if (HasDiagnostic)
+ return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
+ return nullptr;
+}
+
+TemplateParameter DeductionFailureInfo::getTemplateParameter() {
+ switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
+ case Sema::TDK_Success:
+ case Sema::TDK_Invalid:
+ case Sema::TDK_InstantiationDepth:
+ case Sema::TDK_TooManyArguments:
+ case Sema::TDK_TooFewArguments:
+ case Sema::TDK_SubstitutionFailure:
+ case Sema::TDK_NonDeducedMismatch:
+ case Sema::TDK_FailedOverloadResolution:
+ return TemplateParameter();
+
+ case Sema::TDK_Incomplete:
+ case Sema::TDK_InvalidExplicitArguments:
+ return TemplateParameter::getFromOpaqueValue(Data);
+
+ case Sema::TDK_Inconsistent:
+ case Sema::TDK_Underqualified:
+ return static_cast<DFIParamWithArguments*>(Data)->Param;
+
+ // Unhandled
+ case Sema::TDK_MiscellaneousDeductionFailure:
+ break;
+ }
+
+ return TemplateParameter();
+}
+
+TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() {
+ switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
+ case Sema::TDK_Success:
+ case Sema::TDK_Invalid:
+ case Sema::TDK_InstantiationDepth:
+ case Sema::TDK_TooManyArguments:
+ case Sema::TDK_TooFewArguments:
+ case Sema::TDK_Incomplete:
+ case Sema::TDK_InvalidExplicitArguments:
+ case Sema::TDK_Inconsistent:
+ case Sema::TDK_Underqualified:
+ case Sema::TDK_NonDeducedMismatch:
+ case Sema::TDK_FailedOverloadResolution:
+ return nullptr;
+
+ case Sema::TDK_SubstitutionFailure:
+ return static_cast<TemplateArgumentList*>(Data);
+
+ // Unhandled
+ case Sema::TDK_MiscellaneousDeductionFailure:
+ break;
+ }
+
+ return nullptr;
+}
+
+const TemplateArgument *DeductionFailureInfo::getFirstArg() {
+ switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
+ case Sema::TDK_Success:
+ case Sema::TDK_Invalid:
+ case Sema::TDK_InstantiationDepth:
+ case Sema::TDK_Incomplete:
+ case Sema::TDK_TooManyArguments:
+ case Sema::TDK_TooFewArguments:
+ case Sema::TDK_InvalidExplicitArguments:
+ case Sema::TDK_SubstitutionFailure:
+ case Sema::TDK_FailedOverloadResolution:
+ return nullptr;
+
+ case Sema::TDK_Inconsistent:
+ case Sema::TDK_Underqualified:
+ case Sema::TDK_NonDeducedMismatch:
+ return &static_cast<DFIArguments*>(Data)->FirstArg;
+
+ // Unhandled
+ case Sema::TDK_MiscellaneousDeductionFailure:
+ break;
+ }
+
+ return nullptr;
+}
+
+const TemplateArgument *DeductionFailureInfo::getSecondArg() {
+ switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
+ case Sema::TDK_Success:
+ case Sema::TDK_Invalid:
+ case Sema::TDK_InstantiationDepth:
+ case Sema::TDK_Incomplete:
+ case Sema::TDK_TooManyArguments:
+ case Sema::TDK_TooFewArguments:
+ case Sema::TDK_InvalidExplicitArguments:
+ case Sema::TDK_SubstitutionFailure:
+ case Sema::TDK_FailedOverloadResolution:
+ return nullptr;
+
+ case Sema::TDK_Inconsistent:
+ case Sema::TDK_Underqualified:
+ case Sema::TDK_NonDeducedMismatch:
+ return &static_cast<DFIArguments*>(Data)->SecondArg;
+
+ // Unhandled
+ case Sema::TDK_MiscellaneousDeductionFailure:
+ break;
+ }
+
+ return nullptr;
+}
+
+Expr *DeductionFailureInfo::getExpr() {
+ if (static_cast<Sema::TemplateDeductionResult>(Result) ==
+ Sema::TDK_FailedOverloadResolution)
+ return static_cast<Expr*>(Data);
+
+ return nullptr;
+}
+
+void OverloadCandidateSet::destroyCandidates() {
+ for (iterator i = begin(), e = end(); i != e; ++i) {
+ for (unsigned ii = 0, ie = i->NumConversions; ii != ie; ++ii)
+ i->Conversions[ii].~ImplicitConversionSequence();
+ if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
+ i->DeductionFailure.Destroy();
+ }
+}
+
+void OverloadCandidateSet::clear() {
+ destroyCandidates();
+ NumInlineSequences = 0;
+ Candidates.clear();
+ Functions.clear();
+}
+
+namespace {
+ class UnbridgedCastsSet {
+ struct Entry {
+ Expr **Addr;
+ Expr *Saved;
+ };
+ SmallVector<Entry, 2> Entries;
+
+ public:
+ void save(Sema &S, Expr *&E) {
+ assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
+ Entry entry = { &E, E };
+ Entries.push_back(entry);
+ E = S.stripARCUnbridgedCast(E);
+ }
+
+ void restore() {
+ for (SmallVectorImpl<Entry>::iterator
+ i = Entries.begin(), e = Entries.end(); i != e; ++i)
+ *i->Addr = i->Saved;
+ }
+ };
+}
+
+/// checkPlaceholderForOverload - Do any interesting placeholder-like
+/// preprocessing on the given expression.
+///
+/// \param unbridgedCasts a collection to which to add unbridged casts;
+/// without this, they will be immediately diagnosed as errors
+///
+/// Return true on unrecoverable error.
+static bool
+checkPlaceholderForOverload(Sema &S, Expr *&E,
+ UnbridgedCastsSet *unbridgedCasts = nullptr) {
+ if (const BuiltinType *placeholder = E->getType()->getAsPlaceholderType()) {
+ // We can't handle overloaded expressions here because overload
+ // resolution might reasonably tweak them.
+ if (placeholder->getKind() == BuiltinType::Overload) return false;
+
+ // If the context potentially accepts unbridged ARC casts, strip
+ // the unbridged cast and add it to the collection for later restoration.
+ if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
+ unbridgedCasts) {
+ unbridgedCasts->save(S, E);
+ return false;
+ }
+
+ // Go ahead and check everything else.
+ ExprResult result = S.CheckPlaceholderExpr(E);
+ if (result.isInvalid())
+ return true;
+
+ E = result.get();
+ return false;
+ }
+
+ // Nothing to do.
+ return false;
+}
+
+/// checkArgPlaceholdersForOverload - Check a set of call operands for
+/// placeholders.
+static bool checkArgPlaceholdersForOverload(Sema &S,
+ MultiExprArg Args,
+ UnbridgedCastsSet &unbridged) {
+ for (unsigned i = 0, e = Args.size(); i != e; ++i)
+ if (checkPlaceholderForOverload(S, Args[i], &unbridged))
+ return true;
+
+ return false;
+}
+
+// IsOverload - Determine whether the given New declaration is an
+// overload of the declarations in Old. This routine returns false if
+// New and Old cannot be overloaded, e.g., if New has the same
+// signature as some function in Old (C++ 1.3.10) or if the Old
+// declarations aren't functions (or function templates) at all. When
+// it does return false, MatchedDecl will point to the decl that New
+// cannot be overloaded with. This decl may be a UsingShadowDecl on
+// top of the underlying declaration.
+//
+// Example: Given the following input:
+//
+// void f(int, float); // #1
+// void f(int, int); // #2
+// int f(int, int); // #3
+//
+// When we process #1, there is no previous declaration of "f",
+// so IsOverload will not be used.
+//
+// When we process #2, Old contains only the FunctionDecl for #1. By
+// comparing the parameter types, we see that #1 and #2 are overloaded
+// (since they have different signatures), so this routine returns
+// false; MatchedDecl is unchanged.
+//
+// When we process #3, Old is an overload set containing #1 and #2. We
+// compare the signatures of #3 to #1 (they're overloaded, so we do
+// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
+// identical (return types of functions are not part of the
+// signature), IsOverload returns false and MatchedDecl will be set to
+// point to the FunctionDecl for #2.
+//
+// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced
+// into a class by a using declaration. The rules for whether to hide
+// shadow declarations ignore some properties which otherwise figure
+// into a function template's signature.
+Sema::OverloadKind
+Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
+ NamedDecl *&Match, bool NewIsUsingDecl) {
+ for (LookupResult::iterator I = Old.begin(), E = Old.end();
+ I != E; ++I) {
+ NamedDecl *OldD = *I;
+
+ bool OldIsUsingDecl = false;
+ if (isa<UsingShadowDecl>(OldD)) {
+ OldIsUsingDecl = true;
+
+ // We can always introduce two using declarations into the same
+ // context, even if they have identical signatures.
+ if (NewIsUsingDecl) continue;
+
+ OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
+ }
+
+ // If either declaration was introduced by a using declaration,
+ // we'll need to use slightly different rules for matching.
+ // Essentially, these rules are the normal rules, except that
+ // function templates hide function templates with different
+ // return types or template parameter lists.
+ bool UseMemberUsingDeclRules =
+ (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() &&
+ !New->getFriendObjectKind();
+
+ if (FunctionDecl *OldF = OldD->getAsFunction()) {
+ if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
+ if (UseMemberUsingDeclRules && OldIsUsingDecl) {
+ HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
+ continue;
+ }
+
+ if (!isa<FunctionTemplateDecl>(OldD) &&
+ !shouldLinkPossiblyHiddenDecl(*I, New))
+ continue;
+
+ Match = *I;
+ return Ovl_Match;
+ }
+ } else if (isa<UsingDecl>(OldD)) {
+ // We can overload with these, which can show up when doing
+ // redeclaration checks for UsingDecls.
+ assert(Old.getLookupKind() == LookupUsingDeclName);
+ } else if (isa<TagDecl>(OldD)) {
+ // We can always overload with tags by hiding them.
+ } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
+ // Optimistically assume that an unresolved using decl will
+ // overload; if it doesn't, we'll have to diagnose during
+ // template instantiation.
+ } else {
+ // (C++ 13p1):
+ // Only function declarations can be overloaded; object and type
+ // declarations cannot be overloaded.
+ Match = *I;
+ return Ovl_NonFunction;
+ }
+ }
+
+ return Ovl_Overload;
+}
+
+bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
+ bool UseUsingDeclRules) {
+ // C++ [basic.start.main]p2: This function shall not be overloaded.
+ if (New->isMain())
+ return false;
+
+ // MSVCRT user defined entry points cannot be overloaded.
+ if (New->isMSVCRTEntryPoint())
+ return false;
+
+ FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
+ FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
+
+ // C++ [temp.fct]p2:
+ // A function template can be overloaded with other function templates
+ // and with normal (non-template) functions.
+ if ((OldTemplate == nullptr) != (NewTemplate == nullptr))
+ return true;
+
+ // Is the function New an overload of the function Old?
+ QualType OldQType = Context.getCanonicalType(Old->getType());
+ QualType NewQType = Context.getCanonicalType(New->getType());
+
+ // Compare the signatures (C++ 1.3.10) of the two functions to
+ // determine whether they are overloads. If we find any mismatch
+ // in the signature, they are overloads.
+
+ // If either of these functions is a K&R-style function (no
+ // prototype), then we consider them to have matching signatures.
+ if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
+ isa<FunctionNoProtoType>(NewQType.getTypePtr()))
+ return false;
+
+ const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType);
+ const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType);
+
+ // The signature of a function includes the types of its
+ // parameters (C++ 1.3.10), which includes the presence or absence
+ // of the ellipsis; see C++ DR 357).
+ if (OldQType != NewQType &&
+ (OldType->getNumParams() != NewType->getNumParams() ||
+ OldType->isVariadic() != NewType->isVariadic() ||
+ !FunctionParamTypesAreEqual(OldType, NewType)))
+ return true;
+
+ // C++ [temp.over.link]p4:
+ // The signature of a function template consists of its function
+ // signature, its return type and its template parameter list. The names
+ // of the template parameters are significant only for establishing the
+ // relationship between the template parameters and the rest of the
+ // signature.
+ //
+ // We check the return type and template parameter lists for function
+ // templates first; the remaining checks follow.
+ //
+ // However, we don't consider either of these when deciding whether
+ // a member introduced by a shadow declaration is hidden.
+ if (!UseUsingDeclRules && NewTemplate &&
+ (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
+ OldTemplate->getTemplateParameters(),
+ false, TPL_TemplateMatch) ||
+ OldType->getReturnType() != NewType->getReturnType()))
+ return true;
+
+ // If the function is a class member, its signature includes the
+ // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
+ //
+ // As part of this, also check whether one of the member functions
+ // is static, in which case they are not overloads (C++
+ // 13.1p2). While not part of the definition of the signature,
+ // this check is important to determine whether these functions
+ // can be overloaded.
+ CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
+ CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
+ if (OldMethod && NewMethod &&
+ !OldMethod->isStatic() && !NewMethod->isStatic()) {
+ if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) {
+ if (!UseUsingDeclRules &&
+ (OldMethod->getRefQualifier() == RQ_None ||
+ NewMethod->getRefQualifier() == RQ_None)) {
+ // C++0x [over.load]p2:
+ // - Member function declarations with the same name and the same
+ // parameter-type-list as well as member function template
+ // declarations with the same name, the same parameter-type-list, and
+ // the same template parameter lists cannot be overloaded if any of
+ // them, but not all, have a ref-qualifier (8.3.5).
+ Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
+ << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
+ Diag(OldMethod->getLocation(), diag::note_previous_declaration);
+ }
+ return true;
+ }
+
+ // We may not have applied the implicit const for a constexpr member
+ // function yet (because we haven't yet resolved whether this is a static
+ // or non-static member function). Add it now, on the assumption that this
+ // is a redeclaration of OldMethod.
+ unsigned OldQuals = OldMethod->getTypeQualifiers();
+ unsigned NewQuals = NewMethod->getTypeQualifiers();
+ if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() &&
+ !isa<CXXConstructorDecl>(NewMethod))
+ NewQuals |= Qualifiers::Const;
+
+ // We do not allow overloading based off of '__restrict'.
+ OldQuals &= ~Qualifiers::Restrict;
+ NewQuals &= ~Qualifiers::Restrict;
+ if (OldQuals != NewQuals)
+ return true;
+ }
+
+ // enable_if attributes are an order-sensitive part of the signature.
+ for (specific_attr_iterator<EnableIfAttr>
+ NewI = New->specific_attr_begin<EnableIfAttr>(),
+ NewE = New->specific_attr_end<EnableIfAttr>(),
+ OldI = Old->specific_attr_begin<EnableIfAttr>(),
+ OldE = Old->specific_attr_end<EnableIfAttr>();
+ NewI != NewE || OldI != OldE; ++NewI, ++OldI) {
+ if (NewI == NewE || OldI == OldE)
+ return true;
+ llvm::FoldingSetNodeID NewID, OldID;
+ NewI->getCond()->Profile(NewID, Context, true);
+ OldI->getCond()->Profile(OldID, Context, true);
+ if (NewID != OldID)
+ return true;
+ }
+
+ // The signatures match; this is not an overload.
+ return false;
+}
+
+/// \brief Checks availability of the function depending on the current
+/// function context. Inside an unavailable function, unavailability is ignored.
+///
+/// \returns true if \arg FD is unavailable and current context is inside
+/// an available function, false otherwise.
+bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) {
+ return FD->isUnavailable() && !cast<Decl>(CurContext)->isUnavailable();
+}
+
+/// \brief Tries a user-defined conversion from From to ToType.
+///
+/// Produces an implicit conversion sequence for when a standard conversion
+/// is not an option. See TryImplicitConversion for more information.
+static ImplicitConversionSequence
+TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
+ bool SuppressUserConversions,
+ bool AllowExplicit,
+ bool InOverloadResolution,
+ bool CStyle,
+ bool AllowObjCWritebackConversion,
+ bool AllowObjCConversionOnExplicit) {
+ ImplicitConversionSequence ICS;
+
+ if (SuppressUserConversions) {
+ // We're not in the case above, so there is no conversion that
+ // we can perform.
+ ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
+ return ICS;
+ }
+
+ // Attempt user-defined conversion.
+ OverloadCandidateSet Conversions(From->getExprLoc(),
+ OverloadCandidateSet::CSK_Normal);
+ switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined,
+ Conversions, AllowExplicit,
+ AllowObjCConversionOnExplicit)) {
+ case OR_Success:
+ case OR_Deleted:
+ ICS.setUserDefined();
+ ICS.UserDefined.Before.setAsIdentityConversion();
+ // C++ [over.ics.user]p4:
+ // A conversion of an expression of class type to the same class
+ // type is given Exact Match rank, and a conversion of an
+ // expression of class type to a base class of that type is
+ // given Conversion rank, in spite of the fact that a copy
+ // constructor (i.e., a user-defined conversion function) is
+ // called for those cases.
+ if (CXXConstructorDecl *Constructor
+ = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
+ QualType FromCanon
+ = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
+ QualType ToCanon
+ = S.Context.getCanonicalType(ToType).getUnqualifiedType();
+ if (Constructor->isCopyConstructor() &&
+ (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) {
+ // Turn this into a "standard" conversion sequence, so that it
+ // gets ranked with standard conversion sequences.
+ ICS.setStandard();
+ ICS.Standard.setAsIdentityConversion();
+ ICS.Standard.setFromType(From->getType());
+ ICS.Standard.setAllToTypes(ToType);
+ ICS.Standard.CopyConstructor = Constructor;
+ if (ToCanon != FromCanon)
+ ICS.Standard.Second = ICK_Derived_To_Base;
+ }
+ }
+ break;
+
+ case OR_Ambiguous:
+ ICS.setAmbiguous();
+ ICS.Ambiguous.setFromType(From->getType());
+ ICS.Ambiguous.setToType(ToType);
+ for (OverloadCandidateSet::iterator Cand = Conversions.begin();
+ Cand != Conversions.end(); ++Cand)
+ if (Cand->Viable)
+ ICS.Ambiguous.addConversion(Cand->Function);
+ break;
+
+ // Fall through.
+ case OR_No_Viable_Function:
+ ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
+ break;
+ }
+
+ return ICS;
+}
+
+/// TryImplicitConversion - Attempt to perform an implicit conversion
+/// from the given expression (Expr) to the given type (ToType). This
+/// function returns an implicit conversion sequence that can be used
+/// to perform the initialization. Given
+///
+/// void f(float f);
+/// void g(int i) { f(i); }
+///
+/// this routine would produce an implicit conversion sequence to
+/// describe the initialization of f from i, which will be a standard
+/// conversion sequence containing an lvalue-to-rvalue conversion (C++
+/// 4.1) followed by a floating-integral conversion (C++ 4.9).
+//
+/// Note that this routine only determines how the conversion can be
+/// performed; it does not actually perform the conversion. As such,
+/// it will not produce any diagnostics if no conversion is available,
+/// but will instead return an implicit conversion sequence of kind
+/// "BadConversion".
+///
+/// If @p SuppressUserConversions, then user-defined conversions are
+/// not permitted.
+/// If @p AllowExplicit, then explicit user-defined conversions are
+/// permitted.
+///
+/// \param AllowObjCWritebackConversion Whether we allow the Objective-C
+/// writeback conversion, which allows __autoreleasing id* parameters to
+/// be initialized with __strong id* or __weak id* arguments.
+static ImplicitConversionSequence
+TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
+ bool SuppressUserConversions,
+ bool AllowExplicit,
+ bool InOverloadResolution,
+ bool CStyle,
+ bool AllowObjCWritebackConversion,
+ bool AllowObjCConversionOnExplicit) {
+ ImplicitConversionSequence ICS;
+ if (IsStandardConversion(S, From, ToType, InOverloadResolution,
+ ICS.Standard, CStyle, AllowObjCWritebackConversion)){
+ ICS.setStandard();
+ return ICS;
+ }
+
+ if (!S.getLangOpts().CPlusPlus) {
+ ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
+ return ICS;
+ }
+
+ // C++ [over.ics.user]p4:
+ // A conversion of an expression of class type to the same class
+ // type is given Exact Match rank, and a conversion of an
+ // expression of class type to a base class of that type is
+ // given Conversion rank, in spite of the fact that a copy/move
+ // constructor (i.e., a user-defined conversion function) is
+ // called for those cases.
+ QualType FromType = From->getType();
+ if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
+ (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
+ S.IsDerivedFrom(FromType, ToType))) {
+ ICS.setStandard();
+ ICS.Standard.setAsIdentityConversion();
+ ICS.Standard.setFromType(FromType);
+ ICS.Standard.setAllToTypes(ToType);
+
+ // We don't actually check at this point whether there is a valid
+ // copy/move constructor, since overloading just assumes that it
+ // exists. When we actually perform initialization, we'll find the
+ // appropriate constructor to copy the returned object, if needed.
+ ICS.Standard.CopyConstructor = nullptr;
+
+ // Determine whether this is considered a derived-to-base conversion.
+ if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
+ ICS.Standard.Second = ICK_Derived_To_Base;
+
+ return ICS;
+ }
+
+ return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
+ AllowExplicit, InOverloadResolution, CStyle,
+ AllowObjCWritebackConversion,
+ AllowObjCConversionOnExplicit);
+}
+
+ImplicitConversionSequence
+Sema::TryImplicitConversion(Expr *From, QualType ToType,
+ bool SuppressUserConversions,
+ bool AllowExplicit,
+ bool InOverloadResolution,
+ bool CStyle,
+ bool AllowObjCWritebackConversion) {
+ return ::TryImplicitConversion(*this, From, ToType,
+ SuppressUserConversions, AllowExplicit,
+ InOverloadResolution, CStyle,
+ AllowObjCWritebackConversion,
+ /*AllowObjCConversionOnExplicit=*/false);
+}
+
+/// PerformImplicitConversion - Perform an implicit conversion of the
+/// expression From to the type ToType. Returns the
+/// converted expression. Flavor is the kind of conversion we're
+/// performing, used in the error message. If @p AllowExplicit,
+/// explicit user-defined conversions are permitted.
+ExprResult
+Sema::PerformImplicitConversion(Expr *From, QualType ToType,
+ AssignmentAction Action, bool AllowExplicit) {
+ ImplicitConversionSequence ICS;
+ return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
+}
+
+ExprResult
+Sema::PerformImplicitConversion(Expr *From, QualType ToType,
+ AssignmentAction Action, bool AllowExplicit,
+ ImplicitConversionSequence& ICS) {
+ if (checkPlaceholderForOverload(*this, From))
+ return ExprError();
+
+ // Objective-C ARC: Determine whether we will allow the writeback conversion.
+ bool AllowObjCWritebackConversion
+ = getLangOpts().ObjCAutoRefCount &&
+ (Action == AA_Passing || Action == AA_Sending);
+ if (getLangOpts().ObjC1)
+ CheckObjCBridgeRelatedConversions(From->getLocStart(),
+ ToType, From->getType(), From);
+ ICS = ::TryImplicitConversion(*this, From, ToType,
+ /*SuppressUserConversions=*/false,
+ AllowExplicit,
+ /*InOverloadResolution=*/false,
+ /*CStyle=*/false,
+ AllowObjCWritebackConversion,
+ /*AllowObjCConversionOnExplicit=*/false);
+ return PerformImplicitConversion(From, ToType, ICS, Action);
+}
+
+/// \brief Determine whether the conversion from FromType to ToType is a valid
+/// conversion that strips "noreturn" off the nested function type.
+bool Sema::IsNoReturnConversion(QualType FromType, QualType ToType,
+ QualType &ResultTy) {
+ if (Context.hasSameUnqualifiedType(FromType, ToType))
+ return false;
+
+ // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
+ // where F adds one of the following at most once:
+ // - a pointer
+ // - a member pointer
+ // - a block pointer
+ CanQualType CanTo = Context.getCanonicalType(ToType);
+ CanQualType CanFrom = Context.getCanonicalType(FromType);
+ Type::TypeClass TyClass = CanTo->getTypeClass();
+ if (TyClass != CanFrom->getTypeClass()) return false;
+ if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
+ if (TyClass == Type::Pointer) {
+ CanTo = CanTo.getAs<PointerType>()->getPointeeType();
+ CanFrom = CanFrom.getAs<PointerType>()->getPointeeType();
+ } else if (TyClass == Type::BlockPointer) {
+ CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType();
+ CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType();
+ } else if (TyClass == Type::MemberPointer) {
+ CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType();
+ CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType();
+ } else {
+ return false;
+ }
+
+ TyClass = CanTo->getTypeClass();
+ if (TyClass != CanFrom->getTypeClass()) return false;
+ if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
+ return false;
+ }
+
+ const FunctionType *FromFn = cast<FunctionType>(CanFrom);
+ FunctionType::ExtInfo EInfo = FromFn->getExtInfo();
+ if (!EInfo.getNoReturn()) return false;
+
+ FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false));
+ assert(QualType(FromFn, 0).isCanonical());
+ if (QualType(FromFn, 0) != CanTo) return false;
+
+ ResultTy = ToType;
+ return true;
+}
+
+/// \brief Determine whether the conversion from FromType to ToType is a valid
+/// vector conversion.
+///
+/// \param ICK Will be set to the vector conversion kind, if this is a vector
+/// conversion.
+static bool IsVectorConversion(Sema &S, QualType FromType,
+ QualType ToType, ImplicitConversionKind &ICK) {
+ // We need at least one of these types to be a vector type to have a vector
+ // conversion.
+ if (!ToType->isVectorType() && !FromType->isVectorType())
+ return false;
+
+ // Identical types require no conversions.
+ if (S.Context.hasSameUnqualifiedType(FromType, ToType))
+ return false;
+
+ // There are no conversions between extended vector types, only identity.
+ if (ToType->isExtVectorType()) {
+ // There are no conversions between extended vector types other than the
+ // identity conversion.
+ if (FromType->isExtVectorType())
+ return false;
+
+ // Vector splat from any arithmetic type to a vector.
+ if (FromType->isArithmeticType()) {
+ ICK = ICK_Vector_Splat;
+ return true;
+ }
+ }
+
+ // We can perform the conversion between vector types in the following cases:
+ // 1)vector types are equivalent AltiVec and GCC vector types
+ // 2)lax vector conversions are permitted and the vector types are of the
+ // same size
+ if (ToType->isVectorType() && FromType->isVectorType()) {
+ if (S.Context.areCompatibleVectorTypes(FromType, ToType) ||
+ S.isLaxVectorConversion(FromType, ToType)) {
+ ICK = ICK_Vector_Conversion;
+ return true;
+ }
+ }
+
+ return false;
+}
+
+static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
+ bool InOverloadResolution,
+ StandardConversionSequence &SCS,
+ bool CStyle);
+
+/// IsStandardConversion - Determines whether there is a standard
+/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
+/// expression From to the type ToType. Standard conversion sequences
+/// only consider non-class types; for conversions that involve class
+/// types, use TryImplicitConversion. If a conversion exists, SCS will
+/// contain the standard conversion sequence required to perform this
+/// conversion and this routine will return true. Otherwise, this
+/// routine will return false and the value of SCS is unspecified.
+static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
+ bool InOverloadResolution,
+ StandardConversionSequence &SCS,
+ bool CStyle,
+ bool AllowObjCWritebackConversion) {
+ QualType FromType = From->getType();
+
+ // Standard conversions (C++ [conv])
+ SCS.setAsIdentityConversion();
+ SCS.IncompatibleObjC = false;
+ SCS.setFromType(FromType);
+ SCS.CopyConstructor = nullptr;
+
+ // There are no standard conversions for class types in C++, so
+ // abort early. When overloading in C, however, we do permit
+ if (FromType->isRecordType() || ToType->isRecordType()) {
+ if (S.getLangOpts().CPlusPlus)
+ return false;
+
+ // When we're overloading in C, we allow, as standard conversions,
+ }
+
+ // The first conversion can be an lvalue-to-rvalue conversion,
+ // array-to-pointer conversion, or function-to-pointer conversion
+ // (C++ 4p1).
+
+ if (FromType == S.Context.OverloadTy) {
+ DeclAccessPair AccessPair;
+ if (FunctionDecl *Fn
+ = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
+ AccessPair)) {
+ // We were able to resolve the address of the overloaded function,
+ // so we can convert to the type of that function.
+ FromType = Fn->getType();
+ SCS.setFromType(FromType);
+
+ // we can sometimes resolve &foo<int> regardless of ToType, so check
+ // if the type matches (identity) or we are converting to bool
+ if (!S.Context.hasSameUnqualifiedType(
+ S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
+ QualType resultTy;
+ // if the function type matches except for [[noreturn]], it's ok
+ if (!S.IsNoReturnConversion(FromType,
+ S.ExtractUnqualifiedFunctionType(ToType), resultTy))
+ // otherwise, only a boolean conversion is standard
+ if (!ToType->isBooleanType())
+ return false;
+ }
+
+ // Check if the "from" expression is taking the address of an overloaded
+ // function and recompute the FromType accordingly. Take advantage of the
+ // fact that non-static member functions *must* have such an address-of
+ // expression.
+ CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
+ if (Method && !Method->isStatic()) {
+ assert(isa<UnaryOperator>(From->IgnoreParens()) &&
+ "Non-unary operator on non-static member address");
+ assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
+ == UO_AddrOf &&
+ "Non-address-of operator on non-static member address");
+ const Type *ClassType
+ = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
+ FromType = S.Context.getMemberPointerType(FromType, ClassType);
+ } else if (isa<UnaryOperator>(From->IgnoreParens())) {
+ assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
+ UO_AddrOf &&
+ "Non-address-of operator for overloaded function expression");
+ FromType = S.Context.getPointerType(FromType);
+ }
+
+ // Check that we've computed the proper type after overload resolution.
+ assert(S.Context.hasSameType(
+ FromType,
+ S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
+ } else {
+ return false;
+ }
+ }
+ // Lvalue-to-rvalue conversion (C++11 4.1):
+ // A glvalue (3.10) of a non-function, non-array type T can
+ // be converted to a prvalue.
+ bool argIsLValue = From->isGLValue();
+ if (argIsLValue &&
+ !FromType->isFunctionType() && !FromType->isArrayType() &&
+ S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
+ SCS.First = ICK_Lvalue_To_Rvalue;
+
+ // C11 6.3.2.1p2:
+ // ... if the lvalue has atomic type, the value has the non-atomic version
+ // of the type of the lvalue ...
+ if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
+ FromType = Atomic->getValueType();
+
+ // If T is a non-class type, the type of the rvalue is the
+ // cv-unqualified version of T. Otherwise, the type of the rvalue
+ // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
+ // just strip the qualifiers because they don't matter.
+ FromType = FromType.getUnqualifiedType();
+ } else if (FromType->isArrayType()) {
+ // Array-to-pointer conversion (C++ 4.2)
+ SCS.First = ICK_Array_To_Pointer;
+
+ // An lvalue or rvalue of type "array of N T" or "array of unknown
+ // bound of T" can be converted to an rvalue of type "pointer to
+ // T" (C++ 4.2p1).
+ FromType = S.Context.getArrayDecayedType(FromType);
+
+ if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
+ // This conversion is deprecated in C++03 (D.4)
+ SCS.DeprecatedStringLiteralToCharPtr = true;
+
+ // For the purpose of ranking in overload resolution
+ // (13.3.3.1.1), this conversion is considered an
+ // array-to-pointer conversion followed by a qualification
+ // conversion (4.4). (C++ 4.2p2)
+ SCS.Second = ICK_Identity;
+ SCS.Third = ICK_Qualification;
+ SCS.QualificationIncludesObjCLifetime = false;
+ SCS.setAllToTypes(FromType);
+ return true;
+ }
+ } else if (FromType->isFunctionType() && argIsLValue) {
+ // Function-to-pointer conversion (C++ 4.3).
+ SCS.First = ICK_Function_To_Pointer;
+
+ // An lvalue of function type T can be converted to an rvalue of
+ // type "pointer to T." The result is a pointer to the
+ // function. (C++ 4.3p1).
+ FromType = S.Context.getPointerType(FromType);
+ } else {
+ // We don't require any conversions for the first step.
+ SCS.First = ICK_Identity;
+ }
+ SCS.setToType(0, FromType);
+
+ // The second conversion can be an integral promotion, floating
+ // point promotion, integral conversion, floating point conversion,
+ // floating-integral conversion, pointer conversion,
+ // pointer-to-member conversion, or boolean conversion (C++ 4p1).
+ // For overloading in C, this can also be a "compatible-type"
+ // conversion.
+ bool IncompatibleObjC = false;
+ ImplicitConversionKind SecondICK = ICK_Identity;
+ if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
+ // The unqualified versions of the types are the same: there's no
+ // conversion to do.
+ SCS.Second = ICK_Identity;
+ } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
+ // Integral promotion (C++ 4.5).
+ SCS.Second = ICK_Integral_Promotion;
+ FromType = ToType.getUnqualifiedType();
+ } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
+ // Floating point promotion (C++ 4.6).
+ SCS.Second = ICK_Floating_Promotion;
+ FromType = ToType.getUnqualifiedType();
+ } else if (S.IsComplexPromotion(FromType, ToType)) {
+ // Complex promotion (Clang extension)
+ SCS.Second = ICK_Complex_Promotion;
+ FromType = ToType.getUnqualifiedType();
+ } else if (ToType->isBooleanType() &&
+ (FromType->isArithmeticType() ||
+ FromType->isAnyPointerType() ||
+ FromType->isBlockPointerType() ||
+ FromType->isMemberPointerType() ||
+ FromType->isNullPtrType())) {
+ // Boolean conversions (C++ 4.12).
+ SCS.Second = ICK_Boolean_Conversion;
+ FromType = S.Context.BoolTy;
+ } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
+ ToType->isIntegralType(S.Context)) {
+ // Integral conversions (C++ 4.7).
+ SCS.Second = ICK_Integral_Conversion;
+ FromType = ToType.getUnqualifiedType();
+ } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) {
+ // Complex conversions (C99 6.3.1.6)
+ SCS.Second = ICK_Complex_Conversion;
+ FromType = ToType.getUnqualifiedType();
+ } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
+ (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
+ // Complex-real conversions (C99 6.3.1.7)
+ SCS.Second = ICK_Complex_Real;
+ FromType = ToType.getUnqualifiedType();
+ } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
+ // Floating point conversions (C++ 4.8).
+ SCS.Second = ICK_Floating_Conversion;
+ FromType = ToType.getUnqualifiedType();
+ } else if ((FromType->isRealFloatingType() &&
+ ToType->isIntegralType(S.Context)) ||
+ (FromType->isIntegralOrUnscopedEnumerationType() &&
+ ToType->isRealFloatingType())) {
+ // Floating-integral conversions (C++ 4.9).
+ SCS.Second = ICK_Floating_Integral;
+ FromType = ToType.getUnqualifiedType();
+ } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
+ SCS.Second = ICK_Block_Pointer_Conversion;
+ } else if (AllowObjCWritebackConversion &&
+ S.isObjCWritebackConversion(FromType, ToType, FromType)) {
+ SCS.Second = ICK_Writeback_Conversion;
+ } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
+ FromType, IncompatibleObjC)) {
+ // Pointer conversions (C++ 4.10).
+ SCS.Second = ICK_Pointer_Conversion;
+ SCS.IncompatibleObjC = IncompatibleObjC;
+ FromType = FromType.getUnqualifiedType();
+ } else if (S.IsMemberPointerConversion(From, FromType, ToType,
+ InOverloadResolution, FromType)) {
+ // Pointer to member conversions (4.11).
+ SCS.Second = ICK_Pointer_Member;
+ } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) {
+ SCS.Second = SecondICK;
+ FromType = ToType.getUnqualifiedType();
+ } else if (!S.getLangOpts().CPlusPlus &&
+ S.Context.typesAreCompatible(ToType, FromType)) {
+ // Compatible conversions (Clang extension for C function overloading)
+ SCS.Second = ICK_Compatible_Conversion;
+ FromType = ToType.getUnqualifiedType();
+ } else if (S.IsNoReturnConversion(FromType, ToType, FromType)) {
+ // Treat a conversion that strips "noreturn" as an identity conversion.
+ SCS.Second = ICK_NoReturn_Adjustment;
+ } else if (IsTransparentUnionStandardConversion(S, From, ToType,
+ InOverloadResolution,
+ SCS, CStyle)) {
+ SCS.Second = ICK_TransparentUnionConversion;
+ FromType = ToType;
+ } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
+ CStyle)) {
+ // tryAtomicConversion has updated the standard conversion sequence
+ // appropriately.
+ return true;
+ } else if (ToType->isEventT() &&
+ From->isIntegerConstantExpr(S.getASTContext()) &&
+ (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) {
+ SCS.Second = ICK_Zero_Event_Conversion;
+ FromType = ToType;
+ } else {
+ // No second conversion required.
+ SCS.Second = ICK_Identity;
+ }
+ SCS.setToType(1, FromType);
+
+ QualType CanonFrom;
+ QualType CanonTo;
+ // The third conversion can be a qualification conversion (C++ 4p1).
+ bool ObjCLifetimeConversion;
+ if (S.IsQualificationConversion(FromType, ToType, CStyle,
+ ObjCLifetimeConversion)) {
+ SCS.Third = ICK_Qualification;
+ SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
+ FromType = ToType;
+ CanonFrom = S.Context.getCanonicalType(FromType);
+ CanonTo = S.Context.getCanonicalType(ToType);
+ } else {
+ // No conversion required
+ SCS.Third = ICK_Identity;
+
+ // C++ [over.best.ics]p6:
+ // [...] Any difference in top-level cv-qualification is
+ // subsumed by the initialization itself and does not constitute
+ // a conversion. [...]
+ CanonFrom = S.Context.getCanonicalType(FromType);
+ CanonTo = S.Context.getCanonicalType(ToType);
+ if (CanonFrom.getLocalUnqualifiedType()
+ == CanonTo.getLocalUnqualifiedType() &&
+ CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) {
+ FromType = ToType;
+ CanonFrom = CanonTo;
+ }
+ }
+ SCS.setToType(2, FromType);
+
+ // If we have not converted the argument type to the parameter type,
+ // this is a bad conversion sequence.
+ if (CanonFrom != CanonTo)
+ return false;
+
+ return true;
+}
+
+static bool
+IsTransparentUnionStandardConversion(Sema &S, Expr* From,
+ QualType &ToType,
+ bool InOverloadResolution,
+ StandardConversionSequence &SCS,
+ bool CStyle) {
+
+ const RecordType *UT = ToType->getAsUnionType();
+ if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
+ return false;
+ // The field to initialize within the transparent union.
+ RecordDecl *UD = UT->getDecl();
+ // It's compatible if the expression matches any of the fields.
+ for (const auto *it : UD->fields()) {
+ if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
+ CStyle, /*ObjCWritebackConversion=*/false)) {
+ ToType = it->getType();
+ return true;
+ }
+ }
+ return false;
+}
+
+/// IsIntegralPromotion - Determines whether the conversion from the
+/// expression From (whose potentially-adjusted type is FromType) to
+/// ToType is an integral promotion (C++ 4.5). If so, returns true and
+/// sets PromotedType to the promoted type.
+bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
+ const BuiltinType *To = ToType->getAs<BuiltinType>();
+ // All integers are built-in.
+ if (!To) {
+ return false;
+ }
+
+ // An rvalue of type char, signed char, unsigned char, short int, or
+ // unsigned short int can be converted to an rvalue of type int if
+ // int can represent all the values of the source type; otherwise,
+ // the source rvalue can be converted to an rvalue of type unsigned
+ // int (C++ 4.5p1).
+ if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
+ !FromType->isEnumeralType()) {
+ if (// We can promote any signed, promotable integer type to an int
+ (FromType->isSignedIntegerType() ||
+ // We can promote any unsigned integer type whose size is
+ // less than int to an int.
+ (!FromType->isSignedIntegerType() &&
+ Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
+ return To->getKind() == BuiltinType::Int;
+ }
+
+ return To->getKind() == BuiltinType::UInt;
+ }
+
+ // C++11 [conv.prom]p3:
+ // A prvalue of an unscoped enumeration type whose underlying type is not
+ // fixed (7.2) can be converted to an rvalue a prvalue of the first of the
+ // following types that can represent all the values of the enumeration
+ // (i.e., the values in the range bmin to bmax as described in 7.2): int,
+ // unsigned int, long int, unsigned long int, long long int, or unsigned
+ // long long int. If none of the types in that list can represent all the
+ // values of the enumeration, an rvalue a prvalue of an unscoped enumeration
+ // type can be converted to an rvalue a prvalue of the extended integer type
+ // with lowest integer conversion rank (4.13) greater than the rank of long
+ // long in which all the values of the enumeration can be represented. If
+ // there are two such extended types, the signed one is chosen.
+ // C++11 [conv.prom]p4:
+ // A prvalue of an unscoped enumeration type whose underlying type is fixed
+ // can be converted to a prvalue of its underlying type. Moreover, if
+ // integral promotion can be applied to its underlying type, a prvalue of an
+ // unscoped enumeration type whose underlying type is fixed can also be
+ // converted to a prvalue of the promoted underlying type.
+ if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
+ // C++0x 7.2p9: Note that this implicit enum to int conversion is not
+ // provided for a scoped enumeration.
+ if (FromEnumType->getDecl()->isScoped())
+ return false;
+
+ // We can perform an integral promotion to the underlying type of the enum,
+ // even if that's not the promoted type. Note that the check for promoting
+ // the underlying type is based on the type alone, and does not consider
+ // the bitfield-ness of the actual source expression.
+ if (FromEnumType->getDecl()->isFixed()) {
+ QualType Underlying = FromEnumType->getDecl()->getIntegerType();
+ return Context.hasSameUnqualifiedType(Underlying, ToType) ||
+ IsIntegralPromotion(nullptr, Underlying, ToType);
+ }
+
+ // We have already pre-calculated the promotion type, so this is trivial.
+ if (ToType->isIntegerType() &&
+ !RequireCompleteType(From->getLocStart(), FromType, 0))
+ return Context.hasSameUnqualifiedType(
+ ToType, FromEnumType->getDecl()->getPromotionType());
+ }
+
+ // C++0x [conv.prom]p2:
+ // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
+ // to an rvalue a prvalue of the first of the following types that can
+ // represent all the values of its underlying type: int, unsigned int,
+ // long int, unsigned long int, long long int, or unsigned long long int.
+ // If none of the types in that list can represent all the values of its
+ // underlying type, an rvalue a prvalue of type char16_t, char32_t,
+ // or wchar_t can be converted to an rvalue a prvalue of its underlying
+ // type.
+ if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
+ ToType->isIntegerType()) {
+ // Determine whether the type we're converting from is signed or
+ // unsigned.
+ bool FromIsSigned = FromType->isSignedIntegerType();
+ uint64_t FromSize = Context.getTypeSize(FromType);
+
+ // The types we'll try to promote to, in the appropriate
+ // order. Try each of these types.
+ QualType PromoteTypes[6] = {
+ Context.IntTy, Context.UnsignedIntTy,
+ Context.LongTy, Context.UnsignedLongTy ,
+ Context.LongLongTy, Context.UnsignedLongLongTy
+ };
+ for (int Idx = 0; Idx < 6; ++Idx) {
+ uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
+ if (FromSize < ToSize ||
+ (FromSize == ToSize &&
+ FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
+ // We found the type that we can promote to. If this is the
+ // type we wanted, we have a promotion. Otherwise, no
+ // promotion.
+ return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
+ }
+ }
+ }
+
+ // An rvalue for an integral bit-field (9.6) can be converted to an
+ // rvalue of type int if int can represent all the values of the
+ // bit-field; otherwise, it can be converted to unsigned int if
+ // unsigned int can represent all the values of the bit-field. If
+ // the bit-field is larger yet, no integral promotion applies to
+ // it. If the bit-field has an enumerated type, it is treated as any
+ // other value of that type for promotion purposes (C++ 4.5p3).
+ // FIXME: We should delay checking of bit-fields until we actually perform the
+ // conversion.
+ if (From) {
+ if (FieldDecl *MemberDecl = From->getSourceBitField()) {
+ llvm::APSInt BitWidth;
+ if (FromType->isIntegralType(Context) &&
+ MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
+ llvm::APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
+ ToSize = Context.getTypeSize(ToType);
+
+ // Are we promoting to an int from a bitfield that fits in an int?
+ if (BitWidth < ToSize ||
+ (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
+ return To->getKind() == BuiltinType::Int;
+ }
+
+ // Are we promoting to an unsigned int from an unsigned bitfield
+ // that fits into an unsigned int?
+ if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
+ return To->getKind() == BuiltinType::UInt;
+ }
+
+ return false;
+ }
+ }
+ }
+
+ // An rvalue of type bool can be converted to an rvalue of type int,
+ // with false becoming zero and true becoming one (C++ 4.5p4).
+ if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
+ return true;
+ }
+
+ return false;
+}
+
+/// IsFloatingPointPromotion - Determines whether the conversion from
+/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
+/// returns true and sets PromotedType to the promoted type.
+bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
+ if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
+ if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
+ /// An rvalue of type float can be converted to an rvalue of type
+ /// double. (C++ 4.6p1).
+ if (FromBuiltin->getKind() == BuiltinType::Float &&
+ ToBuiltin->getKind() == BuiltinType::Double)
+ return true;
+
+ // C99 6.3.1.5p1:
+ // When a float is promoted to double or long double, or a
+ // double is promoted to long double [...].
+ if (!getLangOpts().CPlusPlus &&
+ (FromBuiltin->getKind() == BuiltinType::Float ||
+ FromBuiltin->getKind() == BuiltinType::Double) &&
+ (ToBuiltin->getKind() == BuiltinType::LongDouble))
+ return true;
+
+ // Half can be promoted to float.
+ if (!getLangOpts().NativeHalfType &&
+ FromBuiltin->getKind() == BuiltinType::Half &&
+ ToBuiltin->getKind() == BuiltinType::Float)
+ return true;
+ }
+
+ return false;
+}
+
+/// \brief Determine if a conversion is a complex promotion.
+///
+/// A complex promotion is defined as a complex -> complex conversion
+/// where the conversion between the underlying real types is a
+/// floating-point or integral promotion.
+bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
+ const ComplexType *FromComplex = FromType->getAs<ComplexType>();
+ if (!FromComplex)
+ return false;
+
+ const ComplexType *ToComplex = ToType->getAs<ComplexType>();
+ if (!ToComplex)
+ return false;
+
+ return IsFloatingPointPromotion(FromComplex->getElementType(),
+ ToComplex->getElementType()) ||
+ IsIntegralPromotion(nullptr, FromComplex->getElementType(),
+ ToComplex->getElementType());
+}
+
+/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
+/// the pointer type FromPtr to a pointer to type ToPointee, with the
+/// same type qualifiers as FromPtr has on its pointee type. ToType,
+/// if non-empty, will be a pointer to ToType that may or may not have
+/// the right set of qualifiers on its pointee.
+///
+static QualType
+BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
+ QualType ToPointee, QualType ToType,
+ ASTContext &Context,
+ bool StripObjCLifetime = false) {
+ assert((FromPtr->getTypeClass() == Type::Pointer ||
+ FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
+ "Invalid similarly-qualified pointer type");
+
+ /// Conversions to 'id' subsume cv-qualifier conversions.
+ if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
+ return ToType.getUnqualifiedType();
+
+ QualType CanonFromPointee
+ = Context.getCanonicalType(FromPtr->getPointeeType());
+ QualType CanonToPointee = Context.getCanonicalType(ToPointee);
+ Qualifiers Quals = CanonFromPointee.getQualifiers();
+
+ if (StripObjCLifetime)
+ Quals.removeObjCLifetime();
+
+ // Exact qualifier match -> return the pointer type we're converting to.
+ if (CanonToPointee.getLocalQualifiers() == Quals) {
+ // ToType is exactly what we need. Return it.
+ if (!ToType.isNull())
+ return ToType.getUnqualifiedType();
+
+ // Build a pointer to ToPointee. It has the right qualifiers
+ // already.
+ if (isa<ObjCObjectPointerType>(ToType))
+ return Context.getObjCObjectPointerType(ToPointee);
+ return Context.getPointerType(ToPointee);
+ }
+
+ // Just build a canonical type that has the right qualifiers.
+ QualType QualifiedCanonToPointee
+ = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
+
+ if (isa<ObjCObjectPointerType>(ToType))
+ return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
+ return Context.getPointerType(QualifiedCanonToPointee);
+}
+
+static bool isNullPointerConstantForConversion(Expr *Expr,
+ bool InOverloadResolution,
+ ASTContext &Context) {
+ // Handle value-dependent integral null pointer constants correctly.
+ // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
+ if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
+ Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
+ return !InOverloadResolution;
+
+ return Expr->isNullPointerConstant(Context,
+ InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
+ : Expr::NPC_ValueDependentIsNull);
+}
+
+/// IsPointerConversion - Determines whether the conversion of the
+/// expression From, which has the (possibly adjusted) type FromType,
+/// can be converted to the type ToType via a pointer conversion (C++
+/// 4.10). If so, returns true and places the converted type (that
+/// might differ from ToType in its cv-qualifiers at some level) into
+/// ConvertedType.
+///
+/// This routine also supports conversions to and from block pointers
+/// and conversions with Objective-C's 'id', 'id<protocols...>', and
+/// pointers to interfaces. FIXME: Once we've determined the
+/// appropriate overloading rules for Objective-C, we may want to
+/// split the Objective-C checks into a different routine; however,
+/// GCC seems to consider all of these conversions to be pointer
+/// conversions, so for now they live here. IncompatibleObjC will be
+/// set if the conversion is an allowed Objective-C conversion that
+/// should result in a warning.
+bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
+ bool InOverloadResolution,
+ QualType& ConvertedType,
+ bool &IncompatibleObjC) {
+ IncompatibleObjC = false;
+ if (isObjCPointerConversion(FromType, ToType, ConvertedType,
+ IncompatibleObjC))
+ return true;
+
+ // Conversion from a null pointer constant to any Objective-C pointer type.
+ if (ToType->isObjCObjectPointerType() &&
+ isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
+ ConvertedType = ToType;
+ return true;
+ }
+
+ // Blocks: Block pointers can be converted to void*.
+ if (FromType->isBlockPointerType() && ToType->isPointerType() &&
+ ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
+ ConvertedType = ToType;
+ return true;
+ }
+ // Blocks: A null pointer constant can be converted to a block
+ // pointer type.
+ if (ToType->isBlockPointerType() &&
+ isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
+ ConvertedType = ToType;
+ return true;
+ }
+
+ // If the left-hand-side is nullptr_t, the right side can be a null
+ // pointer constant.
+ if (ToType->isNullPtrType() &&
+ isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
+ ConvertedType = ToType;
+ return true;
+ }
+
+ const PointerType* ToTypePtr = ToType->getAs<PointerType>();
+ if (!ToTypePtr)
+ return false;
+
+ // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
+ if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
+ ConvertedType = ToType;
+ return true;
+ }
+
+ // Beyond this point, both types need to be pointers
+ // , including objective-c pointers.
+ QualType ToPointeeType = ToTypePtr->getPointeeType();
+ if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
+ !getLangOpts().ObjCAutoRefCount) {
+ ConvertedType = BuildSimilarlyQualifiedPointerType(
+ FromType->getAs<ObjCObjectPointerType>(),
+ ToPointeeType,
+ ToType, Context);
+ return true;
+ }
+ const PointerType *FromTypePtr = FromType->getAs<PointerType>();
+ if (!FromTypePtr)
+ return false;
+
+ QualType FromPointeeType = FromTypePtr->getPointeeType();
+
+ // If the unqualified pointee types are the same, this can't be a
+ // pointer conversion, so don't do all of the work below.
+ if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
+ return false;
+
+ // An rvalue of type "pointer to cv T," where T is an object type,
+ // can be converted to an rvalue of type "pointer to cv void" (C++
+ // 4.10p2).
+ if (FromPointeeType->isIncompleteOrObjectType() &&
+ ToPointeeType->isVoidType()) {
+ ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
+ ToPointeeType,
+ ToType, Context,
+ /*StripObjCLifetime=*/true);
+ return true;
+ }
+
+ // MSVC allows implicit function to void* type conversion.
+ if (getLangOpts().MicrosoftExt && FromPointeeType->isFunctionType() &&
+ ToPointeeType->isVoidType()) {
+ ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
+ ToPointeeType,
+ ToType, Context);
+ return true;
+ }
+
+ // When we're overloading in C, we allow a special kind of pointer
+ // conversion for compatible-but-not-identical pointee types.
+ if (!getLangOpts().CPlusPlus &&
+ Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
+ ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
+ ToPointeeType,
+ ToType, Context);
+ return true;
+ }
+
+ // C++ [conv.ptr]p3:
+ //
+ // An rvalue of type "pointer to cv D," where D is a class type,
+ // can be converted to an rvalue of type "pointer to cv B," where
+ // B is a base class (clause 10) of D. If B is an inaccessible
+ // (clause 11) or ambiguous (10.2) base class of D, a program that
+ // necessitates this conversion is ill-formed. The result of the
+ // conversion is a pointer to the base class sub-object of the
+ // derived class object. The null pointer value is converted to
+ // the null pointer value of the destination type.
+ //
+ // Note that we do not check for ambiguity or inaccessibility
+ // here. That is handled by CheckPointerConversion.
+ if (getLangOpts().CPlusPlus &&
+ FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
+ !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
+ !RequireCompleteType(From->getLocStart(), FromPointeeType, 0) &&
+ IsDerivedFrom(FromPointeeType, ToPointeeType)) {
+ ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
+ ToPointeeType,
+ ToType, Context);
+ return true;
+ }
+
+ if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
+ Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
+ ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
+ ToPointeeType,
+ ToType, Context);
+ return true;
+ }
+
+ return false;
+}
+
+/// \brief Adopt the given qualifiers for the given type.
+static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
+ Qualifiers TQs = T.getQualifiers();
+
+ // Check whether qualifiers already match.
+ if (TQs == Qs)
+ return T;
+
+ if (Qs.compatiblyIncludes(TQs))
+ return Context.getQualifiedType(T, Qs);
+
+ return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
+}
+
+/// isObjCPointerConversion - Determines whether this is an
+/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
+/// with the same arguments and return values.
+bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
+ QualType& ConvertedType,
+ bool &IncompatibleObjC) {
+ if (!getLangOpts().ObjC1)
+ return false;
+
+ // The set of qualifiers on the type we're converting from.
+ Qualifiers FromQualifiers = FromType.getQualifiers();
+
+ // First, we handle all conversions on ObjC object pointer types.
+ const ObjCObjectPointerType* ToObjCPtr =
+ ToType->getAs<ObjCObjectPointerType>();
+ const ObjCObjectPointerType *FromObjCPtr =
+ FromType->getAs<ObjCObjectPointerType>();
+
+ if (ToObjCPtr && FromObjCPtr) {
+ // If the pointee types are the same (ignoring qualifications),
+ // then this is not a pointer conversion.
+ if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
+ FromObjCPtr->getPointeeType()))
+ return false;
+
+ // Check for compatible
+ // Objective C++: We're able to convert between "id" or "Class" and a
+ // pointer to any interface (in both directions).
+ if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
+ ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
+ return true;
+ }
+ // Conversions with Objective-C's id<...>.
+ if ((FromObjCPtr->isObjCQualifiedIdType() ||
+ ToObjCPtr->isObjCQualifiedIdType()) &&
+ Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
+ /*compare=*/false)) {
+ ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
+ return true;
+ }
+ // Objective C++: We're able to convert from a pointer to an
+ // interface to a pointer to a different interface.
+ if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
+ const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
+ const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
+ if (getLangOpts().CPlusPlus && LHS && RHS &&
+ !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
+ FromObjCPtr->getPointeeType()))
+ return false;
+ ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
+ ToObjCPtr->getPointeeType(),
+ ToType, Context);
+ ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
+ return true;
+ }
+
+ if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
+ // Okay: this is some kind of implicit downcast of Objective-C
+ // interfaces, which is permitted. However, we're going to
+ // complain about it.
+ IncompatibleObjC = true;
+ ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
+ ToObjCPtr->getPointeeType(),
+ ToType, Context);
+ ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
+ return true;
+ }
+ }
+ // Beyond this point, both types need to be C pointers or block pointers.
+ QualType ToPointeeType;
+ if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
+ ToPointeeType = ToCPtr->getPointeeType();
+ else if (const BlockPointerType *ToBlockPtr =
+ ToType->getAs<BlockPointerType>()) {
+ // Objective C++: We're able to convert from a pointer to any object
+ // to a block pointer type.
+ if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
+ ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
+ return true;
+ }
+ ToPointeeType = ToBlockPtr->getPointeeType();
+ }
+ else if (FromType->getAs<BlockPointerType>() &&
+ ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
+ // Objective C++: We're able to convert from a block pointer type to a
+ // pointer to any object.
+ ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
+ return true;
+ }
+ else
+ return false;
+
+ QualType FromPointeeType;
+ if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
+ FromPointeeType = FromCPtr->getPointeeType();
+ else if (const BlockPointerType *FromBlockPtr =
+ FromType->getAs<BlockPointerType>())
+ FromPointeeType = FromBlockPtr->getPointeeType();
+ else
+ return false;
+
+ // If we have pointers to pointers, recursively check whether this
+ // is an Objective-C conversion.
+ if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
+ isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
+ IncompatibleObjC)) {
+ // We always complain about this conversion.
+ IncompatibleObjC = true;
+ ConvertedType = Context.getPointerType(ConvertedType);
+ ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
+ return true;
+ }
+ // Allow conversion of pointee being objective-c pointer to another one;
+ // as in I* to id.
+ if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
+ ToPointeeType->getAs<ObjCObjectPointerType>() &&
+ isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
+ IncompatibleObjC)) {
+
+ ConvertedType = Context.getPointerType(ConvertedType);
+ ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
+ return true;
+ }
+
+ // If we have pointers to functions or blocks, check whether the only
+ // differences in the argument and result types are in Objective-C
+ // pointer conversions. If so, we permit the conversion (but
+ // complain about it).
+ const FunctionProtoType *FromFunctionType
+ = FromPointeeType->getAs<FunctionProtoType>();
+ const FunctionProtoType *ToFunctionType
+ = ToPointeeType->getAs<FunctionProtoType>();
+ if (FromFunctionType && ToFunctionType) {
+ // If the function types are exactly the same, this isn't an
+ // Objective-C pointer conversion.
+ if (Context.getCanonicalType(FromPointeeType)
+ == Context.getCanonicalType(ToPointeeType))
+ return false;
+
+ // Perform the quick checks that will tell us whether these
+ // function types are obviously different.
+ if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
+ FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
+ FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
+ return false;
+
+ bool HasObjCConversion = false;
+ if (Context.getCanonicalType(FromFunctionType->getReturnType()) ==
+ Context.getCanonicalType(ToFunctionType->getReturnType())) {
+ // Okay, the types match exactly. Nothing to do.
+ } else if (isObjCPointerConversion(FromFunctionType->getReturnType(),
+ ToFunctionType->getReturnType(),
+ ConvertedType, IncompatibleObjC)) {
+ // Okay, we have an Objective-C pointer conversion.
+ HasObjCConversion = true;
+ } else {
+ // Function types are too different. Abort.
+ return false;
+ }
+
+ // Check argument types.
+ for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
+ ArgIdx != NumArgs; ++ArgIdx) {
+ QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
+ QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
+ if (Context.getCanonicalType(FromArgType)
+ == Context.getCanonicalType(ToArgType)) {
+ // Okay, the types match exactly. Nothing to do.
+ } else if (isObjCPointerConversion(FromArgType, ToArgType,
+ ConvertedType, IncompatibleObjC)) {
+ // Okay, we have an Objective-C pointer conversion.
+ HasObjCConversion = true;
+ } else {
+ // Argument types are too different. Abort.
+ return false;
+ }
+ }
+
+ if (HasObjCConversion) {
+ // We had an Objective-C conversion. Allow this pointer
+ // conversion, but complain about it.
+ ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
+ IncompatibleObjC = true;
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/// \brief Determine whether this is an Objective-C writeback conversion,
+/// used for parameter passing when performing automatic reference counting.
+///
+/// \param FromType The type we're converting form.
+///
+/// \param ToType The type we're converting to.
+///
+/// \param ConvertedType The type that will be produced after applying
+/// this conversion.
+bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
+ QualType &ConvertedType) {
+ if (!getLangOpts().ObjCAutoRefCount ||
+ Context.hasSameUnqualifiedType(FromType, ToType))
+ return false;
+
+ // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
+ QualType ToPointee;
+ if (const PointerType *ToPointer = ToType->getAs<PointerType>())
+ ToPointee = ToPointer->getPointeeType();
+ else
+ return false;
+
+ Qualifiers ToQuals = ToPointee.getQualifiers();
+ if (!ToPointee->isObjCLifetimeType() ||
+ ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
+ !ToQuals.withoutObjCLifetime().empty())
+ return false;
+
+ // Argument must be a pointer to __strong to __weak.
+ QualType FromPointee;
+ if (const PointerType *FromPointer = FromType->getAs<PointerType>())
+ FromPointee = FromPointer->getPointeeType();
+ else
+ return false;
+
+ Qualifiers FromQuals = FromPointee.getQualifiers();
+ if (!FromPointee->isObjCLifetimeType() ||
+ (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
+ FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
+ return false;
+
+ // Make sure that we have compatible qualifiers.
+ FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
+ if (!ToQuals.compatiblyIncludes(FromQuals))
+ return false;
+
+ // Remove qualifiers from the pointee type we're converting from; they
+ // aren't used in the compatibility check belong, and we'll be adding back
+ // qualifiers (with __autoreleasing) if the compatibility check succeeds.
+ FromPointee = FromPointee.getUnqualifiedType();
+
+ // The unqualified form of the pointee types must be compatible.
+ ToPointee = ToPointee.getUnqualifiedType();
+ bool IncompatibleObjC;
+ if (Context.typesAreCompatible(FromPointee, ToPointee))
+ FromPointee = ToPointee;
+ else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
+ IncompatibleObjC))
+ return false;
+
+ /// \brief Construct the type we're converting to, which is a pointer to
+ /// __autoreleasing pointee.
+ FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
+ ConvertedType = Context.getPointerType(FromPointee);
+ return true;
+}
+
+bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
+ QualType& ConvertedType) {
+ QualType ToPointeeType;
+ if (const BlockPointerType *ToBlockPtr =
+ ToType->getAs<BlockPointerType>())
+ ToPointeeType = ToBlockPtr->getPointeeType();
+ else
+ return false;
+
+ QualType FromPointeeType;
+ if (const BlockPointerType *FromBlockPtr =
+ FromType->getAs<BlockPointerType>())
+ FromPointeeType = FromBlockPtr->getPointeeType();
+ else
+ return false;
+ // We have pointer to blocks, check whether the only
+ // differences in the argument and result types are in Objective-C
+ // pointer conversions. If so, we permit the conversion.
+
+ const FunctionProtoType *FromFunctionType
+ = FromPointeeType->getAs<FunctionProtoType>();
+ const FunctionProtoType *ToFunctionType
+ = ToPointeeType->getAs<FunctionProtoType>();
+
+ if (!FromFunctionType || !ToFunctionType)
+ return false;
+
+ if (Context.hasSameType(FromPointeeType, ToPointeeType))
+ return true;
+
+ // Perform the quick checks that will tell us whether these
+ // function types are obviously different.
+ if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
+ FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
+ return false;
+
+ FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
+ FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
+ if (FromEInfo != ToEInfo)
+ return false;
+
+ bool IncompatibleObjC = false;
+ if (Context.hasSameType(FromFunctionType->getReturnType(),
+ ToFunctionType->getReturnType())) {
+ // Okay, the types match exactly. Nothing to do.
+ } else {
+ QualType RHS = FromFunctionType->getReturnType();
+ QualType LHS = ToFunctionType->getReturnType();
+ if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
+ !RHS.hasQualifiers() && LHS.hasQualifiers())
+ LHS = LHS.getUnqualifiedType();
+
+ if (Context.hasSameType(RHS,LHS)) {
+ // OK exact match.
+ } else if (isObjCPointerConversion(RHS, LHS,
+ ConvertedType, IncompatibleObjC)) {
+ if (IncompatibleObjC)
+ return false;
+ // Okay, we have an Objective-C pointer conversion.
+ }
+ else
+ return false;
+ }
+
+ // Check argument types.
+ for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
+ ArgIdx != NumArgs; ++ArgIdx) {
+ IncompatibleObjC = false;
+ QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
+ QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
+ if (Context.hasSameType(FromArgType, ToArgType)) {
+ // Okay, the types match exactly. Nothing to do.
+ } else if (isObjCPointerConversion(ToArgType, FromArgType,
+ ConvertedType, IncompatibleObjC)) {
+ if (IncompatibleObjC)
+ return false;
+ // Okay, we have an Objective-C pointer conversion.
+ } else
+ // Argument types are too different. Abort.
+ return false;
+ }
+ if (LangOpts.ObjCAutoRefCount &&
+ !Context.FunctionTypesMatchOnNSConsumedAttrs(FromFunctionType,
+ ToFunctionType))
+ return false;
+
+ ConvertedType = ToType;
+ return true;
+}
+
+enum {
+ ft_default,
+ ft_different_class,
+ ft_parameter_arity,
+ ft_parameter_mismatch,
+ ft_return_type,
+ ft_qualifer_mismatch
+};
+
+/// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
+/// function types. Catches different number of parameter, mismatch in
+/// parameter types, and different return types.
+void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
+ QualType FromType, QualType ToType) {
+ // If either type is not valid, include no extra info.
+ if (FromType.isNull() || ToType.isNull()) {
+ PDiag << ft_default;
+ return;
+ }
+
+ // Get the function type from the pointers.
+ if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
+ const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(),
+ *ToMember = ToType->getAs<MemberPointerType>();
+ if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) {
+ PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
+ << QualType(FromMember->getClass(), 0);
+ return;
+ }
+ FromType = FromMember->getPointeeType();
+ ToType = ToMember->getPointeeType();
+ }
+
+ if (FromType->isPointerType())
+ FromType = FromType->getPointeeType();
+ if (ToType->isPointerType())
+ ToType = ToType->getPointeeType();
+
+ // Remove references.
+ FromType = FromType.getNonReferenceType();
+ ToType = ToType.getNonReferenceType();
+
+ // Don't print extra info for non-specialized template functions.
+ if (FromType->isInstantiationDependentType() &&
+ !FromType->getAs<TemplateSpecializationType>()) {
+ PDiag << ft_default;
+ return;
+ }
+
+ // No extra info for same types.
+ if (Context.hasSameType(FromType, ToType)) {
+ PDiag << ft_default;
+ return;
+ }
+
+ const FunctionProtoType *FromFunction = FromType->getAs<FunctionProtoType>(),
+ *ToFunction = ToType->getAs<FunctionProtoType>();
+
+ // Both types need to be function types.
+ if (!FromFunction || !ToFunction) {
+ PDiag << ft_default;
+ return;
+ }
+
+ if (FromFunction->getNumParams() != ToFunction->getNumParams()) {
+ PDiag << ft_parameter_arity << ToFunction->getNumParams()
+ << FromFunction->getNumParams();
+ return;
+ }
+
+ // Handle different parameter types.
+ unsigned ArgPos;
+ if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
+ PDiag << ft_parameter_mismatch << ArgPos + 1
+ << ToFunction->getParamType(ArgPos)
+ << FromFunction->getParamType(ArgPos);
+ return;
+ }
+
+ // Handle different return type.
+ if (!Context.hasSameType(FromFunction->getReturnType(),
+ ToFunction->getReturnType())) {
+ PDiag << ft_return_type << ToFunction->getReturnType()
+ << FromFunction->getReturnType();
+ return;
+ }
+
+ unsigned FromQuals = FromFunction->getTypeQuals(),
+ ToQuals = ToFunction->getTypeQuals();
+ if (FromQuals != ToQuals) {
+ PDiag << ft_qualifer_mismatch << ToQuals << FromQuals;
+ return;
+ }
+
+ // Unable to find a difference, so add no extra info.
+ PDiag << ft_default;
+}
+
+/// FunctionParamTypesAreEqual - This routine checks two function proto types
+/// for equality of their argument types. Caller has already checked that
+/// they have same number of arguments. If the parameters are different,
+/// ArgPos will have the parameter index of the first different parameter.
+bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
+ const FunctionProtoType *NewType,
+ unsigned *ArgPos) {
+ for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(),
+ N = NewType->param_type_begin(),
+ E = OldType->param_type_end();
+ O && (O != E); ++O, ++N) {
+ if (!Context.hasSameType(O->getUnqualifiedType(),
+ N->getUnqualifiedType())) {
+ if (ArgPos)
+ *ArgPos = O - OldType->param_type_begin();
+ return false;
+ }
+ }
+ return true;
+}
+
+/// CheckPointerConversion - Check the pointer conversion from the
+/// expression From to the type ToType. This routine checks for
+/// ambiguous or inaccessible derived-to-base pointer
+/// conversions for which IsPointerConversion has already returned
+/// true. It returns true and produces a diagnostic if there was an
+/// error, or returns false otherwise.
+bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
+ CastKind &Kind,
+ CXXCastPath& BasePath,
+ bool IgnoreBaseAccess) {
+ QualType FromType = From->getType();
+ bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
+
+ Kind = CK_BitCast;
+
+ if (!IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
+ From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
+ Expr::NPCK_ZeroExpression) {
+ if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
+ DiagRuntimeBehavior(From->getExprLoc(), From,
+ PDiag(diag::warn_impcast_bool_to_null_pointer)
+ << ToType << From->getSourceRange());
+ else if (!isUnevaluatedContext())
+ Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
+ << ToType << From->getSourceRange();
+ }
+ if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
+ if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
+ QualType FromPointeeType = FromPtrType->getPointeeType(),
+ ToPointeeType = ToPtrType->getPointeeType();
+
+ if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
+ !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
+ // We must have a derived-to-base conversion. Check an
+ // ambiguous or inaccessible conversion.
+ if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
+ From->getExprLoc(),
+ From->getSourceRange(), &BasePath,
+ IgnoreBaseAccess))
+ return true;
+
+ // The conversion was successful.
+ Kind = CK_DerivedToBase;
+ }
+ }
+ } else if (const ObjCObjectPointerType *ToPtrType =
+ ToType->getAs<ObjCObjectPointerType>()) {
+ if (const ObjCObjectPointerType *FromPtrType =
+ FromType->getAs<ObjCObjectPointerType>()) {
+ // Objective-C++ conversions are always okay.
+ // FIXME: We should have a different class of conversions for the
+ // Objective-C++ implicit conversions.
+ if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
+ return false;
+ } else if (FromType->isBlockPointerType()) {
+ Kind = CK_BlockPointerToObjCPointerCast;
+ } else {
+ Kind = CK_CPointerToObjCPointerCast;
+ }
+ } else if (ToType->isBlockPointerType()) {
+ if (!FromType->isBlockPointerType())
+ Kind = CK_AnyPointerToBlockPointerCast;
+ }
+
+ // We shouldn't fall into this case unless it's valid for other
+ // reasons.
+ if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
+ Kind = CK_NullToPointer;
+
+ return false;
+}
+
+/// IsMemberPointerConversion - Determines whether the conversion of the
+/// expression From, which has the (possibly adjusted) type FromType, can be
+/// converted to the type ToType via a member pointer conversion (C++ 4.11).
+/// If so, returns true and places the converted type (that might differ from
+/// ToType in its cv-qualifiers at some level) into ConvertedType.
+bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
+ QualType ToType,
+ bool InOverloadResolution,
+ QualType &ConvertedType) {
+ const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
+ if (!ToTypePtr)
+ return false;
+
+ // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
+ if (From->isNullPointerConstant(Context,
+ InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
+ : Expr::NPC_ValueDependentIsNull)) {
+ ConvertedType = ToType;
+ return true;
+ }
+
+ // Otherwise, both types have to be member pointers.
+ const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
+ if (!FromTypePtr)
+ return false;
+
+ // A pointer to member of B can be converted to a pointer to member of D,
+ // where D is derived from B (C++ 4.11p2).
+ QualType FromClass(FromTypePtr->getClass(), 0);
+ QualType ToClass(ToTypePtr->getClass(), 0);
+
+ if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
+ !RequireCompleteType(From->getLocStart(), ToClass, 0) &&
+ IsDerivedFrom(ToClass, FromClass)) {
+ ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
+ ToClass.getTypePtr());
+ return true;
+ }
+
+ return false;
+}
+
+/// CheckMemberPointerConversion - Check the member pointer conversion from the
+/// expression From to the type ToType. This routine checks for ambiguous or
+/// virtual or inaccessible base-to-derived member pointer conversions
+/// for which IsMemberPointerConversion has already returned true. It returns
+/// true and produces a diagnostic if there was an error, or returns false
+/// otherwise.
+bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
+ CastKind &Kind,
+ CXXCastPath &BasePath,
+ bool IgnoreBaseAccess) {
+ QualType FromType = From->getType();
+ const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
+ if (!FromPtrType) {
+ // This must be a null pointer to member pointer conversion
+ assert(From->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNull) &&
+ "Expr must be null pointer constant!");
+ Kind = CK_NullToMemberPointer;
+ return false;
+ }
+
+ const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
+ assert(ToPtrType && "No member pointer cast has a target type "
+ "that is not a member pointer.");
+
+ QualType FromClass = QualType(FromPtrType->getClass(), 0);
+ QualType ToClass = QualType(ToPtrType->getClass(), 0);
+
+ // FIXME: What about dependent types?
+ assert(FromClass->isRecordType() && "Pointer into non-class.");
+ assert(ToClass->isRecordType() && "Pointer into non-class.");
+
+ CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
+ /*DetectVirtual=*/true);
+ bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
+ assert(DerivationOkay &&
+ "Should not have been called if derivation isn't OK.");
+ (void)DerivationOkay;
+
+ if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
+ getUnqualifiedType())) {
+ std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
+ Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
+ << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
+ return true;
+ }
+
+ if (const RecordType *VBase = Paths.getDetectedVirtual()) {
+ Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
+ << FromClass << ToClass << QualType(VBase, 0)
+ << From->getSourceRange();
+ return true;
+ }
+
+ if (!IgnoreBaseAccess)
+ CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
+ Paths.front(),
+ diag::err_downcast_from_inaccessible_base);
+
+ // Must be a base to derived member conversion.
+ BuildBasePathArray(Paths, BasePath);
+ Kind = CK_BaseToDerivedMemberPointer;
+ return false;
+}
+
+/// Determine whether the lifetime conversion between the two given
+/// qualifiers sets is nontrivial.
+static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals,
+ Qualifiers ToQuals) {
+ // Converting anything to const __unsafe_unretained is trivial.
+ if (ToQuals.hasConst() &&
+ ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone)
+ return false;
+
+ return true;
+}
+
+/// IsQualificationConversion - Determines whether the conversion from
+/// an rvalue of type FromType to ToType is a qualification conversion
+/// (C++ 4.4).
+///
+/// \param ObjCLifetimeConversion Output parameter that will be set to indicate
+/// when the qualification conversion involves a change in the Objective-C
+/// object lifetime.
+bool
+Sema::IsQualificationConversion(QualType FromType, QualType ToType,
+ bool CStyle, bool &ObjCLifetimeConversion) {
+ FromType = Context.getCanonicalType(FromType);
+ ToType = Context.getCanonicalType(ToType);
+ ObjCLifetimeConversion = false;
+
+ // If FromType and ToType are the same type, this is not a
+ // qualification conversion.
+ if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
+ return false;
+
+ // (C++ 4.4p4):
+ // A conversion can add cv-qualifiers at levels other than the first
+ // in multi-level pointers, subject to the following rules: [...]
+ bool PreviousToQualsIncludeConst = true;
+ bool UnwrappedAnyPointer = false;
+ while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
+ // Within each iteration of the loop, we check the qualifiers to
+ // determine if this still looks like a qualification
+ // conversion. Then, if all is well, we unwrap one more level of
+ // pointers or pointers-to-members and do it all again
+ // until there are no more pointers or pointers-to-members left to
+ // unwrap.
+ UnwrappedAnyPointer = true;
+
+ Qualifiers FromQuals = FromType.getQualifiers();
+ Qualifiers ToQuals = ToType.getQualifiers();
+
+ // Objective-C ARC:
+ // Check Objective-C lifetime conversions.
+ if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() &&
+ UnwrappedAnyPointer) {
+ if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
+ if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals))
+ ObjCLifetimeConversion = true;
+ FromQuals.removeObjCLifetime();
+ ToQuals.removeObjCLifetime();
+ } else {
+ // Qualification conversions cannot cast between different
+ // Objective-C lifetime qualifiers.
+ return false;
+ }
+ }
+
+ // Allow addition/removal of GC attributes but not changing GC attributes.
+ if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
+ (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
+ FromQuals.removeObjCGCAttr();
+ ToQuals.removeObjCGCAttr();
+ }
+
+ // -- for every j > 0, if const is in cv 1,j then const is in cv
+ // 2,j, and similarly for volatile.
+ if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
+ return false;
+
+ // -- if the cv 1,j and cv 2,j are different, then const is in
+ // every cv for 0 < k < j.
+ if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
+ && !PreviousToQualsIncludeConst)
+ return false;
+
+ // Keep track of whether all prior cv-qualifiers in the "to" type
+ // include const.
+ PreviousToQualsIncludeConst
+ = PreviousToQualsIncludeConst && ToQuals.hasConst();
+ }
+
+ // We are left with FromType and ToType being the pointee types
+ // after unwrapping the original FromType and ToType the same number
+ // of types. If we unwrapped any pointers, and if FromType and
+ // ToType have the same unqualified type (since we checked
+ // qualifiers above), then this is a qualification conversion.
+ return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
+}
+
+/// \brief - Determine whether this is a conversion from a scalar type to an
+/// atomic type.
+///
+/// If successful, updates \c SCS's second and third steps in the conversion
+/// sequence to finish the conversion.
+static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
+ bool InOverloadResolution,
+ StandardConversionSequence &SCS,
+ bool CStyle) {
+ const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
+ if (!ToAtomic)
+ return false;
+
+ StandardConversionSequence InnerSCS;
+ if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
+ InOverloadResolution, InnerSCS,
+ CStyle, /*AllowObjCWritebackConversion=*/false))
+ return false;
+
+ SCS.Second = InnerSCS.Second;
+ SCS.setToType(1, InnerSCS.getToType(1));
+ SCS.Third = InnerSCS.Third;
+ SCS.QualificationIncludesObjCLifetime
+ = InnerSCS.QualificationIncludesObjCLifetime;
+ SCS.setToType(2, InnerSCS.getToType(2));
+ return true;
+}
+
+static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
+ CXXConstructorDecl *Constructor,
+ QualType Type) {
+ const FunctionProtoType *CtorType =
+ Constructor->getType()->getAs<FunctionProtoType>();
+ if (CtorType->getNumParams() > 0) {
+ QualType FirstArg = CtorType->getParamType(0);
+ if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
+ return true;
+ }
+ return false;
+}
+
+static OverloadingResult
+IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
+ CXXRecordDecl *To,
+ UserDefinedConversionSequence &User,
+ OverloadCandidateSet &CandidateSet,
+ bool AllowExplicit) {
+ DeclContext::lookup_result R = S.LookupConstructors(To);
+ for (DeclContext::lookup_iterator Con = R.begin(), ConEnd = R.end();
+ Con != ConEnd; ++Con) {
+ NamedDecl *D = *Con;
+ DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
+
+ // Find the constructor (which may be a template).
+ CXXConstructorDecl *Constructor = nullptr;
+ FunctionTemplateDecl *ConstructorTmpl
+ = dyn_cast<FunctionTemplateDecl>(D);
+ if (ConstructorTmpl)
+ Constructor
+ = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
+ else
+ Constructor = cast<CXXConstructorDecl>(D);
+
+ bool Usable = !Constructor->isInvalidDecl() &&
+ S.isInitListConstructor(Constructor) &&
+ (AllowExplicit || !Constructor->isExplicit());
+ if (Usable) {
+ // If the first argument is (a reference to) the target type,
+ // suppress conversions.
+ bool SuppressUserConversions =
+ isFirstArgumentCompatibleWithType(S.Context, Constructor, ToType);
+ if (ConstructorTmpl)
+ S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
+ /*ExplicitArgs*/ nullptr,
+ From, CandidateSet,
+ SuppressUserConversions);
+ else
+ S.AddOverloadCandidate(Constructor, FoundDecl,
+ From, CandidateSet,
+ SuppressUserConversions);
+ }
+ }
+
+ bool HadMultipleCandidates = (CandidateSet.size() > 1);
+
+ OverloadCandidateSet::iterator Best;
+ switch (auto Result =
+ CandidateSet.BestViableFunction(S, From->getLocStart(),
+ Best, true)) {
+ case OR_Deleted:
+ case OR_Success: {
+ // Record the standard conversion we used and the conversion function.
+ CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
+ QualType ThisType = Constructor->getThisType(S.Context);
+ // Initializer lists don't have conversions as such.
+ User.Before.setAsIdentityConversion();
+ User.HadMultipleCandidates = HadMultipleCandidates;
+ User.ConversionFunction = Constructor;
+ User.FoundConversionFunction = Best->FoundDecl;
+ User.After.setAsIdentityConversion();
+ User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
+ User.After.setAllToTypes(ToType);
+ return Result;
+ }
+
+ case OR_No_Viable_Function:
+ return OR_No_Viable_Function;
+ case OR_Ambiguous:
+ return OR_Ambiguous;
+ }
+
+ llvm_unreachable("Invalid OverloadResult!");
+}
+
+/// Determines whether there is a user-defined conversion sequence
+/// (C++ [over.ics.user]) that converts expression From to the type
+/// ToType. If such a conversion exists, User will contain the
+/// user-defined conversion sequence that performs such a conversion
+/// and this routine will return true. Otherwise, this routine returns
+/// false and User is unspecified.
+///
+/// \param AllowExplicit true if the conversion should consider C++0x
+/// "explicit" conversion functions as well as non-explicit conversion
+/// functions (C++0x [class.conv.fct]p2).
+///
+/// \param AllowObjCConversionOnExplicit true if the conversion should
+/// allow an extra Objective-C pointer conversion on uses of explicit
+/// constructors. Requires \c AllowExplicit to also be set.
+static OverloadingResult
+IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
+ UserDefinedConversionSequence &User,
+ OverloadCandidateSet &CandidateSet,
+ bool AllowExplicit,
+ bool AllowObjCConversionOnExplicit) {
+ assert(AllowExplicit || !AllowObjCConversionOnExplicit);
+
+ // Whether we will only visit constructors.
+ bool ConstructorsOnly = false;
+
+ // If the type we are conversion to is a class type, enumerate its
+ // constructors.
+ if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
+ // C++ [over.match.ctor]p1:
+ // When objects of class type are direct-initialized (8.5), or
+ // copy-initialized from an expression of the same or a
+ // derived class type (8.5), overload resolution selects the
+ // constructor. [...] For copy-initialization, the candidate
+ // functions are all the converting constructors (12.3.1) of
+ // that class. The argument list is the expression-list within
+ // the parentheses of the initializer.
+ if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
+ (From->getType()->getAs<RecordType>() &&
+ S.IsDerivedFrom(From->getType(), ToType)))
+ ConstructorsOnly = true;
+
+ S.RequireCompleteType(From->getExprLoc(), ToType, 0);
+ // RequireCompleteType may have returned true due to some invalid decl
+ // during template instantiation, but ToType may be complete enough now
+ // to try to recover.
+ if (ToType->isIncompleteType()) {
+ // We're not going to find any constructors.
+ } else if (CXXRecordDecl *ToRecordDecl
+ = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
+
+ Expr **Args = &From;
+ unsigned NumArgs = 1;
+ bool ListInitializing = false;
+ if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
+ // But first, see if there is an init-list-constructor that will work.
+ OverloadingResult Result = IsInitializerListConstructorConversion(
+ S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit);
+ if (Result != OR_No_Viable_Function)
+ return Result;
+ // Never mind.
+ CandidateSet.clear();
+
+ // If we're list-initializing, we pass the individual elements as
+ // arguments, not the entire list.
+ Args = InitList->getInits();
+ NumArgs = InitList->getNumInits();
+ ListInitializing = true;
+ }
+
+ DeclContext::lookup_result R = S.LookupConstructors(ToRecordDecl);
+ for (DeclContext::lookup_iterator Con = R.begin(), ConEnd = R.end();
+ Con != ConEnd; ++Con) {
+ NamedDecl *D = *Con;
+ DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
+
+ // Find the constructor (which may be a template).
+ CXXConstructorDecl *Constructor = nullptr;
+ FunctionTemplateDecl *ConstructorTmpl
+ = dyn_cast<FunctionTemplateDecl>(D);
+ if (ConstructorTmpl)
+ Constructor
+ = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
+ else
+ Constructor = cast<CXXConstructorDecl>(D);
+
+ bool Usable = !Constructor->isInvalidDecl();
+ if (ListInitializing)
+ Usable = Usable && (AllowExplicit || !Constructor->isExplicit());
+ else
+ Usable = Usable &&Constructor->isConvertingConstructor(AllowExplicit);
+ if (Usable) {
+ bool SuppressUserConversions = !ConstructorsOnly;
+ if (SuppressUserConversions && ListInitializing) {
+ SuppressUserConversions = false;
+ if (NumArgs == 1) {
+ // If the first argument is (a reference to) the target type,
+ // suppress conversions.
+ SuppressUserConversions = isFirstArgumentCompatibleWithType(
+ S.Context, Constructor, ToType);
+ }
+ }
+ if (ConstructorTmpl)
+ S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
+ /*ExplicitArgs*/ nullptr,
+ llvm::makeArrayRef(Args, NumArgs),
+ CandidateSet, SuppressUserConversions);
+ else
+ // Allow one user-defined conversion when user specifies a
+ // From->ToType conversion via an static cast (c-style, etc).
+ S.AddOverloadCandidate(Constructor, FoundDecl,
+ llvm::makeArrayRef(Args, NumArgs),
+ CandidateSet, SuppressUserConversions);
+ }
+ }
+ }
+ }
+
+ // Enumerate conversion functions, if we're allowed to.
+ if (ConstructorsOnly || isa<InitListExpr>(From)) {
+ } else if (S.RequireCompleteType(From->getLocStart(), From->getType(), 0)) {
+ // No conversion functions from incomplete types.
+ } else if (const RecordType *FromRecordType
+ = From->getType()->getAs<RecordType>()) {
+ if (CXXRecordDecl *FromRecordDecl
+ = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
+ // Add all of the conversion functions as candidates.
+ const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions();
+ for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
+ DeclAccessPair FoundDecl = I.getPair();
+ NamedDecl *D = FoundDecl.getDecl();
+ CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
+ if (isa<UsingShadowDecl>(D))
+ D = cast<UsingShadowDecl>(D)->getTargetDecl();
+
+ CXXConversionDecl *Conv;
+ FunctionTemplateDecl *ConvTemplate;
+ if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
+ Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
+ else
+ Conv = cast<CXXConversionDecl>(D);
+
+ if (AllowExplicit || !Conv->isExplicit()) {
+ if (ConvTemplate)
+ S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
+ ActingContext, From, ToType,
+ CandidateSet,
+ AllowObjCConversionOnExplicit);
+ else
+ S.AddConversionCandidate(Conv, FoundDecl, ActingContext,
+ From, ToType, CandidateSet,
+ AllowObjCConversionOnExplicit);
+ }
+ }
+ }
+ }
+
+ bool HadMultipleCandidates = (CandidateSet.size() > 1);
+
+ OverloadCandidateSet::iterator Best;
+ switch (auto Result = CandidateSet.BestViableFunction(S, From->getLocStart(),
+ Best, true)) {
+ case OR_Success:
+ case OR_Deleted:
+ // Record the standard conversion we used and the conversion function.
+ if (CXXConstructorDecl *Constructor
+ = dyn_cast<CXXConstructorDecl>(Best->Function)) {
+ // C++ [over.ics.user]p1:
+ // If the user-defined conversion is specified by a
+ // constructor (12.3.1), the initial standard conversion
+ // sequence converts the source type to the type required by
+ // the argument of the constructor.
+ //
+ QualType ThisType = Constructor->getThisType(S.Context);
+ if (isa<InitListExpr>(From)) {
+ // Initializer lists don't have conversions as such.
+ User.Before.setAsIdentityConversion();
+ } else {
+ if (Best->Conversions[0].isEllipsis())
+ User.EllipsisConversion = true;
+ else {
+ User.Before = Best->Conversions[0].Standard;
+ User.EllipsisConversion = false;
+ }
+ }
+ User.HadMultipleCandidates = HadMultipleCandidates;
+ User.ConversionFunction = Constructor;
+ User.FoundConversionFunction = Best->FoundDecl;
+ User.After.setAsIdentityConversion();
+ User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
+ User.After.setAllToTypes(ToType);
+ return Result;
+ }
+ if (CXXConversionDecl *Conversion
+ = dyn_cast<CXXConversionDecl>(Best->Function)) {
+ // C++ [over.ics.user]p1:
+ //
+ // [...] If the user-defined conversion is specified by a
+ // conversion function (12.3.2), the initial standard
+ // conversion sequence converts the source type to the
+ // implicit object parameter of the conversion function.
+ User.Before = Best->Conversions[0].Standard;
+ User.HadMultipleCandidates = HadMultipleCandidates;
+ User.ConversionFunction = Conversion;
+ User.FoundConversionFunction = Best->FoundDecl;
+ User.EllipsisConversion = false;
+
+ // C++ [over.ics.user]p2:
+ // The second standard conversion sequence converts the
+ // result of the user-defined conversion to the target type
+ // for the sequence. Since an implicit conversion sequence
+ // is an initialization, the special rules for
+ // initialization by user-defined conversion apply when
+ // selecting the best user-defined conversion for a
+ // user-defined conversion sequence (see 13.3.3 and
+ // 13.3.3.1).
+ User.After = Best->FinalConversion;
+ return Result;
+ }
+ llvm_unreachable("Not a constructor or conversion function?");
+
+ case OR_No_Viable_Function:
+ return OR_No_Viable_Function;
+
+ case OR_Ambiguous:
+ return OR_Ambiguous;
+ }
+
+ llvm_unreachable("Invalid OverloadResult!");
+}
+
+bool
+Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
+ ImplicitConversionSequence ICS;
+ OverloadCandidateSet CandidateSet(From->getExprLoc(),
+ OverloadCandidateSet::CSK_Normal);
+ OverloadingResult OvResult =
+ IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
+ CandidateSet, false, false);
+ if (OvResult == OR_Ambiguous)
+ Diag(From->getLocStart(), diag::err_typecheck_ambiguous_condition)
+ << From->getType() << ToType << From->getSourceRange();
+ else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) {
+ if (!RequireCompleteType(From->getLocStart(), ToType,
+ diag::err_typecheck_nonviable_condition_incomplete,
+ From->getType(), From->getSourceRange()))
+ Diag(From->getLocStart(), diag::err_typecheck_nonviable_condition)
+ << From->getType() << From->getSourceRange() << ToType;
+ } else
+ return false;
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates, From);
+ return true;
+}
+
+/// \brief Compare the user-defined conversion functions or constructors
+/// of two user-defined conversion sequences to determine whether any ordering
+/// is possible.
+static ImplicitConversionSequence::CompareKind
+compareConversionFunctions(Sema &S, FunctionDecl *Function1,
+ FunctionDecl *Function2) {
+ if (!S.getLangOpts().ObjC1 || !S.getLangOpts().CPlusPlus11)
+ return ImplicitConversionSequence::Indistinguishable;
+
+ // Objective-C++:
+ // If both conversion functions are implicitly-declared conversions from
+ // a lambda closure type to a function pointer and a block pointer,
+ // respectively, always prefer the conversion to a function pointer,
+ // because the function pointer is more lightweight and is more likely
+ // to keep code working.
+ CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1);
+ if (!Conv1)
+ return ImplicitConversionSequence::Indistinguishable;
+
+ CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2);
+ if (!Conv2)
+ return ImplicitConversionSequence::Indistinguishable;
+
+ if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) {
+ bool Block1 = Conv1->getConversionType()->isBlockPointerType();
+ bool Block2 = Conv2->getConversionType()->isBlockPointerType();
+ if (Block1 != Block2)
+ return Block1 ? ImplicitConversionSequence::Worse
+ : ImplicitConversionSequence::Better;
+ }
+
+ return ImplicitConversionSequence::Indistinguishable;
+}
+
+static bool hasDeprecatedStringLiteralToCharPtrConversion(
+ const ImplicitConversionSequence &ICS) {
+ return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) ||
+ (ICS.isUserDefined() &&
+ ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr);
+}
+
+/// CompareImplicitConversionSequences - Compare two implicit
+/// conversion sequences to determine whether one is better than the
+/// other or if they are indistinguishable (C++ 13.3.3.2).
+static ImplicitConversionSequence::CompareKind
+CompareImplicitConversionSequences(Sema &S,
+ const ImplicitConversionSequence& ICS1,
+ const ImplicitConversionSequence& ICS2)
+{
+ // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
+ // conversion sequences (as defined in 13.3.3.1)
+ // -- a standard conversion sequence (13.3.3.1.1) is a better
+ // conversion sequence than a user-defined conversion sequence or
+ // an ellipsis conversion sequence, and
+ // -- a user-defined conversion sequence (13.3.3.1.2) is a better
+ // conversion sequence than an ellipsis conversion sequence
+ // (13.3.3.1.3).
+ //
+ // C++0x [over.best.ics]p10:
+ // For the purpose of ranking implicit conversion sequences as
+ // described in 13.3.3.2, the ambiguous conversion sequence is
+ // treated as a user-defined sequence that is indistinguishable
+ // from any other user-defined conversion sequence.
+
+ // String literal to 'char *' conversion has been deprecated in C++03. It has
+ // been removed from C++11. We still accept this conversion, if it happens at
+ // the best viable function. Otherwise, this conversion is considered worse
+ // than ellipsis conversion. Consider this as an extension; this is not in the
+ // standard. For example:
+ //
+ // int &f(...); // #1
+ // void f(char*); // #2
+ // void g() { int &r = f("foo"); }
+ //
+ // In C++03, we pick #2 as the best viable function.
+ // In C++11, we pick #1 as the best viable function, because ellipsis
+ // conversion is better than string-literal to char* conversion (since there
+ // is no such conversion in C++11). If there was no #1 at all or #1 couldn't
+ // convert arguments, #2 would be the best viable function in C++11.
+ // If the best viable function has this conversion, a warning will be issued
+ // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11.
+
+ if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
+ hasDeprecatedStringLiteralToCharPtrConversion(ICS1) !=
+ hasDeprecatedStringLiteralToCharPtrConversion(ICS2))
+ return hasDeprecatedStringLiteralToCharPtrConversion(ICS1)
+ ? ImplicitConversionSequence::Worse
+ : ImplicitConversionSequence::Better;
+
+ if (ICS1.getKindRank() < ICS2.getKindRank())
+ return ImplicitConversionSequence::Better;
+ if (ICS2.getKindRank() < ICS1.getKindRank())
+ return ImplicitConversionSequence::Worse;
+
+ // The following checks require both conversion sequences to be of
+ // the same kind.
+ if (ICS1.getKind() != ICS2.getKind())
+ return ImplicitConversionSequence::Indistinguishable;
+
+ ImplicitConversionSequence::CompareKind Result =
+ ImplicitConversionSequence::Indistinguishable;
+
+ // Two implicit conversion sequences of the same form are
+ // indistinguishable conversion sequences unless one of the
+ // following rules apply: (C++ 13.3.3.2p3):
+
+ // List-initialization sequence L1 is a better conversion sequence than
+ // list-initialization sequence L2 if:
+ // - L1 converts to std::initializer_list<X> for some X and L2 does not, or,
+ // if not that,
+ // - L1 converts to type "array of N1 T", L2 converts to type "array of N2 T",
+ // and N1 is smaller than N2.,
+ // even if one of the other rules in this paragraph would otherwise apply.
+ if (!ICS1.isBad()) {
+ if (ICS1.isStdInitializerListElement() &&
+ !ICS2.isStdInitializerListElement())
+ return ImplicitConversionSequence::Better;
+ if (!ICS1.isStdInitializerListElement() &&
+ ICS2.isStdInitializerListElement())
+ return ImplicitConversionSequence::Worse;
+ }
+
+ if (ICS1.isStandard())
+ // Standard conversion sequence S1 is a better conversion sequence than
+ // standard conversion sequence S2 if [...]
+ Result = CompareStandardConversionSequences(S,
+ ICS1.Standard, ICS2.Standard);
+ else if (ICS1.isUserDefined()) {
+ // User-defined conversion sequence U1 is a better conversion
+ // sequence than another user-defined conversion sequence U2 if
+ // they contain the same user-defined conversion function or
+ // constructor and if the second standard conversion sequence of
+ // U1 is better than the second standard conversion sequence of
+ // U2 (C++ 13.3.3.2p3).
+ if (ICS1.UserDefined.ConversionFunction ==
+ ICS2.UserDefined.ConversionFunction)
+ Result = CompareStandardConversionSequences(S,
+ ICS1.UserDefined.After,
+ ICS2.UserDefined.After);
+ else
+ Result = compareConversionFunctions(S,
+ ICS1.UserDefined.ConversionFunction,
+ ICS2.UserDefined.ConversionFunction);
+ }
+
+ return Result;
+}
+
+static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
+ while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
+ Qualifiers Quals;
+ T1 = Context.getUnqualifiedArrayType(T1, Quals);
+ T2 = Context.getUnqualifiedArrayType(T2, Quals);
+ }
+
+ return Context.hasSameUnqualifiedType(T1, T2);
+}
+
+// Per 13.3.3.2p3, compare the given standard conversion sequences to
+// determine if one is a proper subset of the other.
+static ImplicitConversionSequence::CompareKind
+compareStandardConversionSubsets(ASTContext &Context,
+ const StandardConversionSequence& SCS1,
+ const StandardConversionSequence& SCS2) {
+ ImplicitConversionSequence::CompareKind Result
+ = ImplicitConversionSequence::Indistinguishable;
+
+ // the identity conversion sequence is considered to be a subsequence of
+ // any non-identity conversion sequence
+ if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
+ return ImplicitConversionSequence::Better;
+ else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
+ return ImplicitConversionSequence::Worse;
+
+ if (SCS1.Second != SCS2.Second) {
+ if (SCS1.Second == ICK_Identity)
+ Result = ImplicitConversionSequence::Better;
+ else if (SCS2.Second == ICK_Identity)
+ Result = ImplicitConversionSequence::Worse;
+ else
+ return ImplicitConversionSequence::Indistinguishable;
+ } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
+ return ImplicitConversionSequence::Indistinguishable;
+
+ if (SCS1.Third == SCS2.Third) {
+ return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
+ : ImplicitConversionSequence::Indistinguishable;
+ }
+
+ if (SCS1.Third == ICK_Identity)
+ return Result == ImplicitConversionSequence::Worse
+ ? ImplicitConversionSequence::Indistinguishable
+ : ImplicitConversionSequence::Better;
+
+ if (SCS2.Third == ICK_Identity)
+ return Result == ImplicitConversionSequence::Better
+ ? ImplicitConversionSequence::Indistinguishable
+ : ImplicitConversionSequence::Worse;
+
+ return ImplicitConversionSequence::Indistinguishable;
+}
+
+/// \brief Determine whether one of the given reference bindings is better
+/// than the other based on what kind of bindings they are.
+static bool
+isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
+ const StandardConversionSequence &SCS2) {
+ // C++0x [over.ics.rank]p3b4:
+ // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
+ // implicit object parameter of a non-static member function declared
+ // without a ref-qualifier, and *either* S1 binds an rvalue reference
+ // to an rvalue and S2 binds an lvalue reference *or S1 binds an
+ // lvalue reference to a function lvalue and S2 binds an rvalue
+ // reference*.
+ //
+ // FIXME: Rvalue references. We're going rogue with the above edits,
+ // because the semantics in the current C++0x working paper (N3225 at the
+ // time of this writing) break the standard definition of std::forward
+ // and std::reference_wrapper when dealing with references to functions.
+ // Proposed wording changes submitted to CWG for consideration.
+ if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
+ SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
+ return false;
+
+ return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
+ SCS2.IsLvalueReference) ||
+ (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
+ !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue);
+}
+
+/// CompareStandardConversionSequences - Compare two standard
+/// conversion sequences to determine whether one is better than the
+/// other or if they are indistinguishable (C++ 13.3.3.2p3).
+static ImplicitConversionSequence::CompareKind
+CompareStandardConversionSequences(Sema &S,
+ const StandardConversionSequence& SCS1,
+ const StandardConversionSequence& SCS2)
+{
+ // Standard conversion sequence S1 is a better conversion sequence
+ // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
+
+ // -- S1 is a proper subsequence of S2 (comparing the conversion
+ // sequences in the canonical form defined by 13.3.3.1.1,
+ // excluding any Lvalue Transformation; the identity conversion
+ // sequence is considered to be a subsequence of any
+ // non-identity conversion sequence) or, if not that,
+ if (ImplicitConversionSequence::CompareKind CK
+ = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
+ return CK;
+
+ // -- the rank of S1 is better than the rank of S2 (by the rules
+ // defined below), or, if not that,
+ ImplicitConversionRank Rank1 = SCS1.getRank();
+ ImplicitConversionRank Rank2 = SCS2.getRank();
+ if (Rank1 < Rank2)
+ return ImplicitConversionSequence::Better;
+ else if (Rank2 < Rank1)
+ return ImplicitConversionSequence::Worse;
+
+ // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
+ // are indistinguishable unless one of the following rules
+ // applies:
+
+ // A conversion that is not a conversion of a pointer, or
+ // pointer to member, to bool is better than another conversion
+ // that is such a conversion.
+ if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
+ return SCS2.isPointerConversionToBool()
+ ? ImplicitConversionSequence::Better
+ : ImplicitConversionSequence::Worse;
+
+ // C++ [over.ics.rank]p4b2:
+ //
+ // If class B is derived directly or indirectly from class A,
+ // conversion of B* to A* is better than conversion of B* to
+ // void*, and conversion of A* to void* is better than conversion
+ // of B* to void*.
+ bool SCS1ConvertsToVoid
+ = SCS1.isPointerConversionToVoidPointer(S.Context);
+ bool SCS2ConvertsToVoid
+ = SCS2.isPointerConversionToVoidPointer(S.Context);
+ if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
+ // Exactly one of the conversion sequences is a conversion to
+ // a void pointer; it's the worse conversion.
+ return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
+ : ImplicitConversionSequence::Worse;
+ } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
+ // Neither conversion sequence converts to a void pointer; compare
+ // their derived-to-base conversions.
+ if (ImplicitConversionSequence::CompareKind DerivedCK
+ = CompareDerivedToBaseConversions(S, SCS1, SCS2))
+ return DerivedCK;
+ } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
+ !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
+ // Both conversion sequences are conversions to void
+ // pointers. Compare the source types to determine if there's an
+ // inheritance relationship in their sources.
+ QualType FromType1 = SCS1.getFromType();
+ QualType FromType2 = SCS2.getFromType();
+
+ // Adjust the types we're converting from via the array-to-pointer
+ // conversion, if we need to.
+ if (SCS1.First == ICK_Array_To_Pointer)
+ FromType1 = S.Context.getArrayDecayedType(FromType1);
+ if (SCS2.First == ICK_Array_To_Pointer)
+ FromType2 = S.Context.getArrayDecayedType(FromType2);
+
+ QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
+ QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
+
+ if (S.IsDerivedFrom(FromPointee2, FromPointee1))
+ return ImplicitConversionSequence::Better;
+ else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
+ return ImplicitConversionSequence::Worse;
+
+ // Objective-C++: If one interface is more specific than the
+ // other, it is the better one.
+ const ObjCObjectPointerType* FromObjCPtr1
+ = FromType1->getAs<ObjCObjectPointerType>();
+ const ObjCObjectPointerType* FromObjCPtr2
+ = FromType2->getAs<ObjCObjectPointerType>();
+ if (FromObjCPtr1 && FromObjCPtr2) {
+ bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
+ FromObjCPtr2);
+ bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
+ FromObjCPtr1);
+ if (AssignLeft != AssignRight) {
+ return AssignLeft? ImplicitConversionSequence::Better
+ : ImplicitConversionSequence::Worse;
+ }
+ }
+ }
+
+ // Compare based on qualification conversions (C++ 13.3.3.2p3,
+ // bullet 3).
+ if (ImplicitConversionSequence::CompareKind QualCK
+ = CompareQualificationConversions(S, SCS1, SCS2))
+ return QualCK;
+
+ if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
+ // Check for a better reference binding based on the kind of bindings.
+ if (isBetterReferenceBindingKind(SCS1, SCS2))
+ return ImplicitConversionSequence::Better;
+ else if (isBetterReferenceBindingKind(SCS2, SCS1))
+ return ImplicitConversionSequence::Worse;
+
+ // C++ [over.ics.rank]p3b4:
+ // -- S1 and S2 are reference bindings (8.5.3), and the types to
+ // which the references refer are the same type except for
+ // top-level cv-qualifiers, and the type to which the reference
+ // initialized by S2 refers is more cv-qualified than the type
+ // to which the reference initialized by S1 refers.
+ QualType T1 = SCS1.getToType(2);
+ QualType T2 = SCS2.getToType(2);
+ T1 = S.Context.getCanonicalType(T1);
+ T2 = S.Context.getCanonicalType(T2);
+ Qualifiers T1Quals, T2Quals;
+ QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
+ QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
+ if (UnqualT1 == UnqualT2) {
+ // Objective-C++ ARC: If the references refer to objects with different
+ // lifetimes, prefer bindings that don't change lifetime.
+ if (SCS1.ObjCLifetimeConversionBinding !=
+ SCS2.ObjCLifetimeConversionBinding) {
+ return SCS1.ObjCLifetimeConversionBinding
+ ? ImplicitConversionSequence::Worse
+ : ImplicitConversionSequence::Better;
+ }
+
+ // If the type is an array type, promote the element qualifiers to the
+ // type for comparison.
+ if (isa<ArrayType>(T1) && T1Quals)
+ T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
+ if (isa<ArrayType>(T2) && T2Quals)
+ T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
+ if (T2.isMoreQualifiedThan(T1))
+ return ImplicitConversionSequence::Better;
+ else if (T1.isMoreQualifiedThan(T2))
+ return ImplicitConversionSequence::Worse;
+ }
+ }
+
+ // In Microsoft mode, prefer an integral conversion to a
+ // floating-to-integral conversion if the integral conversion
+ // is between types of the same size.
+ // For example:
+ // void f(float);
+ // void f(int);
+ // int main {
+ // long a;
+ // f(a);
+ // }
+ // Here, MSVC will call f(int) instead of generating a compile error
+ // as clang will do in standard mode.
+ if (S.getLangOpts().MSVCCompat && SCS1.Second == ICK_Integral_Conversion &&
+ SCS2.Second == ICK_Floating_Integral &&
+ S.Context.getTypeSize(SCS1.getFromType()) ==
+ S.Context.getTypeSize(SCS1.getToType(2)))
+ return ImplicitConversionSequence::Better;
+
+ return ImplicitConversionSequence::Indistinguishable;
+}
+
+/// CompareQualificationConversions - Compares two standard conversion
+/// sequences to determine whether they can be ranked based on their
+/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
+static ImplicitConversionSequence::CompareKind
+CompareQualificationConversions(Sema &S,
+ const StandardConversionSequence& SCS1,
+ const StandardConversionSequence& SCS2) {
+ // C++ 13.3.3.2p3:
+ // -- S1 and S2 differ only in their qualification conversion and
+ // yield similar types T1 and T2 (C++ 4.4), respectively, and the
+ // cv-qualification signature of type T1 is a proper subset of
+ // the cv-qualification signature of type T2, and S1 is not the
+ // deprecated string literal array-to-pointer conversion (4.2).
+ if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
+ SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
+ return ImplicitConversionSequence::Indistinguishable;
+
+ // FIXME: the example in the standard doesn't use a qualification
+ // conversion (!)
+ QualType T1 = SCS1.getToType(2);
+ QualType T2 = SCS2.getToType(2);
+ T1 = S.Context.getCanonicalType(T1);
+ T2 = S.Context.getCanonicalType(T2);
+ Qualifiers T1Quals, T2Quals;
+ QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
+ QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
+
+ // If the types are the same, we won't learn anything by unwrapped
+ // them.
+ if (UnqualT1 == UnqualT2)
+ return ImplicitConversionSequence::Indistinguishable;
+
+ // If the type is an array type, promote the element qualifiers to the type
+ // for comparison.
+ if (isa<ArrayType>(T1) && T1Quals)
+ T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
+ if (isa<ArrayType>(T2) && T2Quals)
+ T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
+
+ ImplicitConversionSequence::CompareKind Result
+ = ImplicitConversionSequence::Indistinguishable;
+
+ // Objective-C++ ARC:
+ // Prefer qualification conversions not involving a change in lifetime
+ // to qualification conversions that do not change lifetime.
+ if (SCS1.QualificationIncludesObjCLifetime !=
+ SCS2.QualificationIncludesObjCLifetime) {
+ Result = SCS1.QualificationIncludesObjCLifetime
+ ? ImplicitConversionSequence::Worse
+ : ImplicitConversionSequence::Better;
+ }
+
+ while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) {
+ // Within each iteration of the loop, we check the qualifiers to
+ // determine if this still looks like a qualification
+ // conversion. Then, if all is well, we unwrap one more level of
+ // pointers or pointers-to-members and do it all again
+ // until there are no more pointers or pointers-to-members left
+ // to unwrap. This essentially mimics what
+ // IsQualificationConversion does, but here we're checking for a
+ // strict subset of qualifiers.
+ if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
+ // The qualifiers are the same, so this doesn't tell us anything
+ // about how the sequences rank.
+ ;
+ else if (T2.isMoreQualifiedThan(T1)) {
+ // T1 has fewer qualifiers, so it could be the better sequence.
+ if (Result == ImplicitConversionSequence::Worse)
+ // Neither has qualifiers that are a subset of the other's
+ // qualifiers.
+ return ImplicitConversionSequence::Indistinguishable;
+
+ Result = ImplicitConversionSequence::Better;
+ } else if (T1.isMoreQualifiedThan(T2)) {
+ // T2 has fewer qualifiers, so it could be the better sequence.
+ if (Result == ImplicitConversionSequence::Better)
+ // Neither has qualifiers that are a subset of the other's
+ // qualifiers.
+ return ImplicitConversionSequence::Indistinguishable;
+
+ Result = ImplicitConversionSequence::Worse;
+ } else {
+ // Qualifiers are disjoint.
+ return ImplicitConversionSequence::Indistinguishable;
+ }
+
+ // If the types after this point are equivalent, we're done.
+ if (S.Context.hasSameUnqualifiedType(T1, T2))
+ break;
+ }
+
+ // Check that the winning standard conversion sequence isn't using
+ // the deprecated string literal array to pointer conversion.
+ switch (Result) {
+ case ImplicitConversionSequence::Better:
+ if (SCS1.DeprecatedStringLiteralToCharPtr)
+ Result = ImplicitConversionSequence::Indistinguishable;
+ break;
+
+ case ImplicitConversionSequence::Indistinguishable:
+ break;
+
+ case ImplicitConversionSequence::Worse:
+ if (SCS2.DeprecatedStringLiteralToCharPtr)
+ Result = ImplicitConversionSequence::Indistinguishable;
+ break;
+ }
+
+ return Result;
+}
+
+/// CompareDerivedToBaseConversions - Compares two standard conversion
+/// sequences to determine whether they can be ranked based on their
+/// various kinds of derived-to-base conversions (C++
+/// [over.ics.rank]p4b3). As part of these checks, we also look at
+/// conversions between Objective-C interface types.
+static ImplicitConversionSequence::CompareKind
+CompareDerivedToBaseConversions(Sema &S,
+ const StandardConversionSequence& SCS1,
+ const StandardConversionSequence& SCS2) {
+ QualType FromType1 = SCS1.getFromType();
+ QualType ToType1 = SCS1.getToType(1);
+ QualType FromType2 = SCS2.getFromType();
+ QualType ToType2 = SCS2.getToType(1);
+
+ // Adjust the types we're converting from via the array-to-pointer
+ // conversion, if we need to.
+ if (SCS1.First == ICK_Array_To_Pointer)
+ FromType1 = S.Context.getArrayDecayedType(FromType1);
+ if (SCS2.First == ICK_Array_To_Pointer)
+ FromType2 = S.Context.getArrayDecayedType(FromType2);
+
+ // Canonicalize all of the types.
+ FromType1 = S.Context.getCanonicalType(FromType1);
+ ToType1 = S.Context.getCanonicalType(ToType1);
+ FromType2 = S.Context.getCanonicalType(FromType2);
+ ToType2 = S.Context.getCanonicalType(ToType2);
+
+ // C++ [over.ics.rank]p4b3:
+ //
+ // If class B is derived directly or indirectly from class A and
+ // class C is derived directly or indirectly from B,
+ //
+ // Compare based on pointer conversions.
+ if (SCS1.Second == ICK_Pointer_Conversion &&
+ SCS2.Second == ICK_Pointer_Conversion &&
+ /*FIXME: Remove if Objective-C id conversions get their own rank*/
+ FromType1->isPointerType() && FromType2->isPointerType() &&
+ ToType1->isPointerType() && ToType2->isPointerType()) {
+ QualType FromPointee1
+ = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
+ QualType ToPointee1
+ = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
+ QualType FromPointee2
+ = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
+ QualType ToPointee2
+ = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
+
+ // -- conversion of C* to B* is better than conversion of C* to A*,
+ if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
+ if (S.IsDerivedFrom(ToPointee1, ToPointee2))
+ return ImplicitConversionSequence::Better;
+ else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
+ return ImplicitConversionSequence::Worse;
+ }
+
+ // -- conversion of B* to A* is better than conversion of C* to A*,
+ if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
+ if (S.IsDerivedFrom(FromPointee2, FromPointee1))
+ return ImplicitConversionSequence::Better;
+ else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
+ return ImplicitConversionSequence::Worse;
+ }
+ } else if (SCS1.Second == ICK_Pointer_Conversion &&
+ SCS2.Second == ICK_Pointer_Conversion) {
+ const ObjCObjectPointerType *FromPtr1
+ = FromType1->getAs<ObjCObjectPointerType>();
+ const ObjCObjectPointerType *FromPtr2
+ = FromType2->getAs<ObjCObjectPointerType>();
+ const ObjCObjectPointerType *ToPtr1
+ = ToType1->getAs<ObjCObjectPointerType>();
+ const ObjCObjectPointerType *ToPtr2
+ = ToType2->getAs<ObjCObjectPointerType>();
+
+ if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
+ // Apply the same conversion ranking rules for Objective-C pointer types
+ // that we do for C++ pointers to class types. However, we employ the
+ // Objective-C pseudo-subtyping relationship used for assignment of
+ // Objective-C pointer types.
+ bool FromAssignLeft
+ = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
+ bool FromAssignRight
+ = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
+ bool ToAssignLeft
+ = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
+ bool ToAssignRight
+ = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
+
+ // A conversion to an a non-id object pointer type or qualified 'id'
+ // type is better than a conversion to 'id'.
+ if (ToPtr1->isObjCIdType() &&
+ (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
+ return ImplicitConversionSequence::Worse;
+ if (ToPtr2->isObjCIdType() &&
+ (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
+ return ImplicitConversionSequence::Better;
+
+ // A conversion to a non-id object pointer type is better than a
+ // conversion to a qualified 'id' type
+ if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
+ return ImplicitConversionSequence::Worse;
+ if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
+ return ImplicitConversionSequence::Better;
+
+ // A conversion to an a non-Class object pointer type or qualified 'Class'
+ // type is better than a conversion to 'Class'.
+ if (ToPtr1->isObjCClassType() &&
+ (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
+ return ImplicitConversionSequence::Worse;
+ if (ToPtr2->isObjCClassType() &&
+ (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
+ return ImplicitConversionSequence::Better;
+
+ // A conversion to a non-Class object pointer type is better than a
+ // conversion to a qualified 'Class' type.
+ if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
+ return ImplicitConversionSequence::Worse;
+ if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
+ return ImplicitConversionSequence::Better;
+
+ // -- "conversion of C* to B* is better than conversion of C* to A*,"
+ if (S.Context.hasSameType(FromType1, FromType2) &&
+ !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
+ (ToAssignLeft != ToAssignRight))
+ return ToAssignLeft? ImplicitConversionSequence::Worse
+ : ImplicitConversionSequence::Better;
+
+ // -- "conversion of B* to A* is better than conversion of C* to A*,"
+ if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
+ (FromAssignLeft != FromAssignRight))
+ return FromAssignLeft? ImplicitConversionSequence::Better
+ : ImplicitConversionSequence::Worse;
+ }
+ }
+
+ // Ranking of member-pointer types.
+ if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
+ FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
+ ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
+ const MemberPointerType * FromMemPointer1 =
+ FromType1->getAs<MemberPointerType>();
+ const MemberPointerType * ToMemPointer1 =
+ ToType1->getAs<MemberPointerType>();
+ const MemberPointerType * FromMemPointer2 =
+ FromType2->getAs<MemberPointerType>();
+ const MemberPointerType * ToMemPointer2 =
+ ToType2->getAs<MemberPointerType>();
+ const Type *FromPointeeType1 = FromMemPointer1->getClass();
+ const Type *ToPointeeType1 = ToMemPointer1->getClass();
+ const Type *FromPointeeType2 = FromMemPointer2->getClass();
+ const Type *ToPointeeType2 = ToMemPointer2->getClass();
+ QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
+ QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
+ QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
+ QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
+ // conversion of A::* to B::* is better than conversion of A::* to C::*,
+ if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
+ if (S.IsDerivedFrom(ToPointee1, ToPointee2))
+ return ImplicitConversionSequence::Worse;
+ else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
+ return ImplicitConversionSequence::Better;
+ }
+ // conversion of B::* to C::* is better than conversion of A::* to C::*
+ if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
+ if (S.IsDerivedFrom(FromPointee1, FromPointee2))
+ return ImplicitConversionSequence::Better;
+ else if (S.IsDerivedFrom(FromPointee2, FromPointee1))
+ return ImplicitConversionSequence::Worse;
+ }
+ }
+
+ if (SCS1.Second == ICK_Derived_To_Base) {
+ // -- conversion of C to B is better than conversion of C to A,
+ // -- binding of an expression of type C to a reference of type
+ // B& is better than binding an expression of type C to a
+ // reference of type A&,
+ if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
+ !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
+ if (S.IsDerivedFrom(ToType1, ToType2))
+ return ImplicitConversionSequence::Better;
+ else if (S.IsDerivedFrom(ToType2, ToType1))
+ return ImplicitConversionSequence::Worse;
+ }
+
+ // -- conversion of B to A is better than conversion of C to A.
+ // -- binding of an expression of type B to a reference of type
+ // A& is better than binding an expression of type C to a
+ // reference of type A&,
+ if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
+ S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
+ if (S.IsDerivedFrom(FromType2, FromType1))
+ return ImplicitConversionSequence::Better;
+ else if (S.IsDerivedFrom(FromType1, FromType2))
+ return ImplicitConversionSequence::Worse;
+ }
+ }
+
+ return ImplicitConversionSequence::Indistinguishable;
+}
+
+/// \brief Determine whether the given type is valid, e.g., it is not an invalid
+/// C++ class.
+static bool isTypeValid(QualType T) {
+ if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
+ return !Record->isInvalidDecl();
+
+ return true;
+}
+
+/// CompareReferenceRelationship - Compare the two types T1 and T2 to
+/// determine whether they are reference-related,
+/// reference-compatible, reference-compatible with added
+/// qualification, or incompatible, for use in C++ initialization by
+/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
+/// type, and the first type (T1) is the pointee type of the reference
+/// type being initialized.
+Sema::ReferenceCompareResult
+Sema::CompareReferenceRelationship(SourceLocation Loc,
+ QualType OrigT1, QualType OrigT2,
+ bool &DerivedToBase,
+ bool &ObjCConversion,
+ bool &ObjCLifetimeConversion) {
+ assert(!OrigT1->isReferenceType() &&
+ "T1 must be the pointee type of the reference type");
+ assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
+
+ QualType T1 = Context.getCanonicalType(OrigT1);
+ QualType T2 = Context.getCanonicalType(OrigT2);
+ Qualifiers T1Quals, T2Quals;
+ QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
+ QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
+
+ // C++ [dcl.init.ref]p4:
+ // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
+ // reference-related to "cv2 T2" if T1 is the same type as T2, or
+ // T1 is a base class of T2.
+ DerivedToBase = false;
+ ObjCConversion = false;
+ ObjCLifetimeConversion = false;
+ if (UnqualT1 == UnqualT2) {
+ // Nothing to do.
+ } else if (!RequireCompleteType(Loc, OrigT2, 0) &&
+ isTypeValid(UnqualT1) && isTypeValid(UnqualT2) &&
+ IsDerivedFrom(UnqualT2, UnqualT1))
+ DerivedToBase = true;
+ else if (UnqualT1->isObjCObjectOrInterfaceType() &&
+ UnqualT2->isObjCObjectOrInterfaceType() &&
+ Context.canBindObjCObjectType(UnqualT1, UnqualT2))
+ ObjCConversion = true;
+ else
+ return Ref_Incompatible;
+
+ // At this point, we know that T1 and T2 are reference-related (at
+ // least).
+
+ // If the type is an array type, promote the element qualifiers to the type
+ // for comparison.
+ if (isa<ArrayType>(T1) && T1Quals)
+ T1 = Context.getQualifiedType(UnqualT1, T1Quals);
+ if (isa<ArrayType>(T2) && T2Quals)
+ T2 = Context.getQualifiedType(UnqualT2, T2Quals);
+
+ // C++ [dcl.init.ref]p4:
+ // "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
+ // reference-related to T2 and cv1 is the same cv-qualification
+ // as, or greater cv-qualification than, cv2. For purposes of
+ // overload resolution, cases for which cv1 is greater
+ // cv-qualification than cv2 are identified as
+ // reference-compatible with added qualification (see 13.3.3.2).
+ //
+ // Note that we also require equivalence of Objective-C GC and address-space
+ // qualifiers when performing these computations, so that e.g., an int in
+ // address space 1 is not reference-compatible with an int in address
+ // space 2.
+ if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() &&
+ T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) {
+ if (isNonTrivialObjCLifetimeConversion(T2Quals, T1Quals))
+ ObjCLifetimeConversion = true;
+
+ T1Quals.removeObjCLifetime();
+ T2Quals.removeObjCLifetime();
+ }
+
+ if (T1Quals == T2Quals)
+ return Ref_Compatible;
+ else if (T1Quals.compatiblyIncludes(T2Quals))
+ return Ref_Compatible_With_Added_Qualification;
+ else
+ return Ref_Related;
+}
+
+/// \brief Look for a user-defined conversion to an value reference-compatible
+/// with DeclType. Return true if something definite is found.
+static bool
+FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
+ QualType DeclType, SourceLocation DeclLoc,
+ Expr *Init, QualType T2, bool AllowRvalues,
+ bool AllowExplicit) {
+ assert(T2->isRecordType() && "Can only find conversions of record types.");
+ CXXRecordDecl *T2RecordDecl
+ = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
+
+ OverloadCandidateSet CandidateSet(DeclLoc, OverloadCandidateSet::CSK_Normal);
+ const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
+ for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
+ NamedDecl *D = *I;
+ CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
+ if (isa<UsingShadowDecl>(D))
+ D = cast<UsingShadowDecl>(D)->getTargetDecl();
+
+ FunctionTemplateDecl *ConvTemplate
+ = dyn_cast<FunctionTemplateDecl>(D);
+ CXXConversionDecl *Conv;
+ if (ConvTemplate)
+ Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
+ else
+ Conv = cast<CXXConversionDecl>(D);
+
+ // If this is an explicit conversion, and we're not allowed to consider
+ // explicit conversions, skip it.
+ if (!AllowExplicit && Conv->isExplicit())
+ continue;
+
+ if (AllowRvalues) {
+ bool DerivedToBase = false;
+ bool ObjCConversion = false;
+ bool ObjCLifetimeConversion = false;
+
+ // If we are initializing an rvalue reference, don't permit conversion
+ // functions that return lvalues.
+ if (!ConvTemplate && DeclType->isRValueReferenceType()) {
+ const ReferenceType *RefType
+ = Conv->getConversionType()->getAs<LValueReferenceType>();
+ if (RefType && !RefType->getPointeeType()->isFunctionType())
+ continue;
+ }
+
+ if (!ConvTemplate &&
+ S.CompareReferenceRelationship(
+ DeclLoc,
+ Conv->getConversionType().getNonReferenceType()
+ .getUnqualifiedType(),
+ DeclType.getNonReferenceType().getUnqualifiedType(),
+ DerivedToBase, ObjCConversion, ObjCLifetimeConversion) ==
+ Sema::Ref_Incompatible)
+ continue;
+ } else {
+ // If the conversion function doesn't return a reference type,
+ // it can't be considered for this conversion. An rvalue reference
+ // is only acceptable if its referencee is a function type.
+
+ const ReferenceType *RefType =
+ Conv->getConversionType()->getAs<ReferenceType>();
+ if (!RefType ||
+ (!RefType->isLValueReferenceType() &&
+ !RefType->getPointeeType()->isFunctionType()))
+ continue;
+ }
+
+ if (ConvTemplate)
+ S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
+ Init, DeclType, CandidateSet,
+ /*AllowObjCConversionOnExplicit=*/false);
+ else
+ S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
+ DeclType, CandidateSet,
+ /*AllowObjCConversionOnExplicit=*/false);
+ }
+
+ bool HadMultipleCandidates = (CandidateSet.size() > 1);
+
+ OverloadCandidateSet::iterator Best;
+ switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
+ case OR_Success:
+ // C++ [over.ics.ref]p1:
+ //
+ // [...] If the parameter binds directly to the result of
+ // applying a conversion function to the argument
+ // expression, the implicit conversion sequence is a
+ // user-defined conversion sequence (13.3.3.1.2), with the
+ // second standard conversion sequence either an identity
+ // conversion or, if the conversion function returns an
+ // entity of a type that is a derived class of the parameter
+ // type, a derived-to-base Conversion.
+ if (!Best->FinalConversion.DirectBinding)
+ return false;
+
+ ICS.setUserDefined();
+ ICS.UserDefined.Before = Best->Conversions[0].Standard;
+ ICS.UserDefined.After = Best->FinalConversion;
+ ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
+ ICS.UserDefined.ConversionFunction = Best->Function;
+ ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
+ ICS.UserDefined.EllipsisConversion = false;
+ assert(ICS.UserDefined.After.ReferenceBinding &&
+ ICS.UserDefined.After.DirectBinding &&
+ "Expected a direct reference binding!");
+ return true;
+
+ case OR_Ambiguous:
+ ICS.setAmbiguous();
+ for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
+ Cand != CandidateSet.end(); ++Cand)
+ if (Cand->Viable)
+ ICS.Ambiguous.addConversion(Cand->Function);
+ return true;
+
+ case OR_No_Viable_Function:
+ case OR_Deleted:
+ // There was no suitable conversion, or we found a deleted
+ // conversion; continue with other checks.
+ return false;
+ }
+
+ llvm_unreachable("Invalid OverloadResult!");
+}
+
+/// \brief Compute an implicit conversion sequence for reference
+/// initialization.
+static ImplicitConversionSequence
+TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
+ SourceLocation DeclLoc,
+ bool SuppressUserConversions,
+ bool AllowExplicit) {
+ assert(DeclType->isReferenceType() && "Reference init needs a reference");
+
+ // Most paths end in a failed conversion.
+ ImplicitConversionSequence ICS;
+ ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
+
+ QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
+ QualType T2 = Init->getType();
+
+ // If the initializer is the address of an overloaded function, try
+ // to resolve the overloaded function. If all goes well, T2 is the
+ // type of the resulting function.
+ if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
+ DeclAccessPair Found;
+ if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
+ false, Found))
+ T2 = Fn->getType();
+ }
+
+ // Compute some basic properties of the types and the initializer.
+ bool isRValRef = DeclType->isRValueReferenceType();
+ bool DerivedToBase = false;
+ bool ObjCConversion = false;
+ bool ObjCLifetimeConversion = false;
+ Expr::Classification InitCategory = Init->Classify(S.Context);
+ Sema::ReferenceCompareResult RefRelationship
+ = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
+ ObjCConversion, ObjCLifetimeConversion);
+
+
+ // C++0x [dcl.init.ref]p5:
+ // A reference to type "cv1 T1" is initialized by an expression
+ // of type "cv2 T2" as follows:
+
+ // -- If reference is an lvalue reference and the initializer expression
+ if (!isRValRef) {
+ // -- is an lvalue (but is not a bit-field), and "cv1 T1" is
+ // reference-compatible with "cv2 T2," or
+ //
+ // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
+ if (InitCategory.isLValue() &&
+ RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
+ // C++ [over.ics.ref]p1:
+ // When a parameter of reference type binds directly (8.5.3)
+ // to an argument expression, the implicit conversion sequence
+ // is the identity conversion, unless the argument expression
+ // has a type that is a derived class of the parameter type,
+ // in which case the implicit conversion sequence is a
+ // derived-to-base Conversion (13.3.3.1).
+ ICS.setStandard();
+ ICS.Standard.First = ICK_Identity;
+ ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
+ : ObjCConversion? ICK_Compatible_Conversion
+ : ICK_Identity;
+ ICS.Standard.Third = ICK_Identity;
+ ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
+ ICS.Standard.setToType(0, T2);
+ ICS.Standard.setToType(1, T1);
+ ICS.Standard.setToType(2, T1);
+ ICS.Standard.ReferenceBinding = true;
+ ICS.Standard.DirectBinding = true;
+ ICS.Standard.IsLvalueReference = !isRValRef;
+ ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
+ ICS.Standard.BindsToRvalue = false;
+ ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
+ ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
+ ICS.Standard.CopyConstructor = nullptr;
+ ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
+
+ // Nothing more to do: the inaccessibility/ambiguity check for
+ // derived-to-base conversions is suppressed when we're
+ // computing the implicit conversion sequence (C++
+ // [over.best.ics]p2).
+ return ICS;
+ }
+
+ // -- has a class type (i.e., T2 is a class type), where T1 is
+ // not reference-related to T2, and can be implicitly
+ // converted to an lvalue of type "cv3 T3," where "cv1 T1"
+ // is reference-compatible with "cv3 T3" 92) (this
+ // conversion is selected by enumerating the applicable
+ // conversion functions (13.3.1.6) and choosing the best
+ // one through overload resolution (13.3)),
+ if (!SuppressUserConversions && T2->isRecordType() &&
+ !S.RequireCompleteType(DeclLoc, T2, 0) &&
+ RefRelationship == Sema::Ref_Incompatible) {
+ if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
+ Init, T2, /*AllowRvalues=*/false,
+ AllowExplicit))
+ return ICS;
+ }
+ }
+
+ // -- Otherwise, the reference shall be an lvalue reference to a
+ // non-volatile const type (i.e., cv1 shall be const), or the reference
+ // shall be an rvalue reference.
+ if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified()))
+ return ICS;
+
+ // -- If the initializer expression
+ //
+ // -- is an xvalue, class prvalue, array prvalue or function
+ // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
+ if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification &&
+ (InitCategory.isXValue() ||
+ (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
+ (InitCategory.isLValue() && T2->isFunctionType()))) {
+ ICS.setStandard();
+ ICS.Standard.First = ICK_Identity;
+ ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
+ : ObjCConversion? ICK_Compatible_Conversion
+ : ICK_Identity;
+ ICS.Standard.Third = ICK_Identity;
+ ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
+ ICS.Standard.setToType(0, T2);
+ ICS.Standard.setToType(1, T1);
+ ICS.Standard.setToType(2, T1);
+ ICS.Standard.ReferenceBinding = true;
+ // In C++0x, this is always a direct binding. In C++98/03, it's a direct
+ // binding unless we're binding to a class prvalue.
+ // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
+ // allow the use of rvalue references in C++98/03 for the benefit of
+ // standard library implementors; therefore, we need the xvalue check here.
+ ICS.Standard.DirectBinding =
+ S.getLangOpts().CPlusPlus11 ||
+ !(InitCategory.isPRValue() || T2->isRecordType());
+ ICS.Standard.IsLvalueReference = !isRValRef;
+ ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
+ ICS.Standard.BindsToRvalue = InitCategory.isRValue();
+ ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
+ ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
+ ICS.Standard.CopyConstructor = nullptr;
+ ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
+ return ICS;
+ }
+
+ // -- has a class type (i.e., T2 is a class type), where T1 is not
+ // reference-related to T2, and can be implicitly converted to
+ // an xvalue, class prvalue, or function lvalue of type
+ // "cv3 T3", where "cv1 T1" is reference-compatible with
+ // "cv3 T3",
+ //
+ // then the reference is bound to the value of the initializer
+ // expression in the first case and to the result of the conversion
+ // in the second case (or, in either case, to an appropriate base
+ // class subobject).
+ if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
+ T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) &&
+ FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
+ Init, T2, /*AllowRvalues=*/true,
+ AllowExplicit)) {
+ // In the second case, if the reference is an rvalue reference
+ // and the second standard conversion sequence of the
+ // user-defined conversion sequence includes an lvalue-to-rvalue
+ // conversion, the program is ill-formed.
+ if (ICS.isUserDefined() && isRValRef &&
+ ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
+ ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
+
+ return ICS;
+ }
+
+ // A temporary of function type cannot be created; don't even try.
+ if (T1->isFunctionType())
+ return ICS;
+
+ // -- Otherwise, a temporary of type "cv1 T1" is created and
+ // initialized from the initializer expression using the
+ // rules for a non-reference copy initialization (8.5). The
+ // reference is then bound to the temporary. If T1 is
+ // reference-related to T2, cv1 must be the same
+ // cv-qualification as, or greater cv-qualification than,
+ // cv2; otherwise, the program is ill-formed.
+ if (RefRelationship == Sema::Ref_Related) {
+ // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
+ // we would be reference-compatible or reference-compatible with
+ // added qualification. But that wasn't the case, so the reference
+ // initialization fails.
+ //
+ // Note that we only want to check address spaces and cvr-qualifiers here.
+ // ObjC GC and lifetime qualifiers aren't important.
+ Qualifiers T1Quals = T1.getQualifiers();
+ Qualifiers T2Quals = T2.getQualifiers();
+ T1Quals.removeObjCGCAttr();
+ T1Quals.removeObjCLifetime();
+ T2Quals.removeObjCGCAttr();
+ T2Quals.removeObjCLifetime();
+ if (!T1Quals.compatiblyIncludes(T2Quals))
+ return ICS;
+ }
+
+ // If at least one of the types is a class type, the types are not
+ // related, and we aren't allowed any user conversions, the
+ // reference binding fails. This case is important for breaking
+ // recursion, since TryImplicitConversion below will attempt to
+ // create a temporary through the use of a copy constructor.
+ if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
+ (T1->isRecordType() || T2->isRecordType()))
+ return ICS;
+
+ // If T1 is reference-related to T2 and the reference is an rvalue
+ // reference, the initializer expression shall not be an lvalue.
+ if (RefRelationship >= Sema::Ref_Related &&
+ isRValRef && Init->Classify(S.Context).isLValue())
+ return ICS;
+
+ // C++ [over.ics.ref]p2:
+ // When a parameter of reference type is not bound directly to
+ // an argument expression, the conversion sequence is the one
+ // required to convert the argument expression to the
+ // underlying type of the reference according to
+ // 13.3.3.1. Conceptually, this conversion sequence corresponds
+ // to copy-initializing a temporary of the underlying type with
+ // the argument expression. Any difference in top-level
+ // cv-qualification is subsumed by the initialization itself
+ // and does not constitute a conversion.
+ ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
+ /*AllowExplicit=*/false,
+ /*InOverloadResolution=*/false,
+ /*CStyle=*/false,
+ /*AllowObjCWritebackConversion=*/false,
+ /*AllowObjCConversionOnExplicit=*/false);
+
+ // Of course, that's still a reference binding.
+ if (ICS.isStandard()) {
+ ICS.Standard.ReferenceBinding = true;
+ ICS.Standard.IsLvalueReference = !isRValRef;
+ ICS.Standard.BindsToFunctionLvalue = false;
+ ICS.Standard.BindsToRvalue = true;
+ ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
+ ICS.Standard.ObjCLifetimeConversionBinding = false;
+ } else if (ICS.isUserDefined()) {
+ const ReferenceType *LValRefType =
+ ICS.UserDefined.ConversionFunction->getReturnType()
+ ->getAs<LValueReferenceType>();
+
+ // C++ [over.ics.ref]p3:
+ // Except for an implicit object parameter, for which see 13.3.1, a
+ // standard conversion sequence cannot be formed if it requires [...]
+ // binding an rvalue reference to an lvalue other than a function
+ // lvalue.
+ // Note that the function case is not possible here.
+ if (DeclType->isRValueReferenceType() && LValRefType) {
+ // FIXME: This is the wrong BadConversionSequence. The problem is binding
+ // an rvalue reference to a (non-function) lvalue, not binding an lvalue
+ // reference to an rvalue!
+ ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType);
+ return ICS;
+ }
+
+ ICS.UserDefined.Before.setAsIdentityConversion();
+ ICS.UserDefined.After.ReferenceBinding = true;
+ ICS.UserDefined.After.IsLvalueReference = !isRValRef;
+ ICS.UserDefined.After.BindsToFunctionLvalue = false;
+ ICS.UserDefined.After.BindsToRvalue = !LValRefType;
+ ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
+ ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
+ }
+
+ return ICS;
+}
+
+static ImplicitConversionSequence
+TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
+ bool SuppressUserConversions,
+ bool InOverloadResolution,
+ bool AllowObjCWritebackConversion,
+ bool AllowExplicit = false);
+
+/// TryListConversion - Try to copy-initialize a value of type ToType from the
+/// initializer list From.
+static ImplicitConversionSequence
+TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
+ bool SuppressUserConversions,
+ bool InOverloadResolution,
+ bool AllowObjCWritebackConversion) {
+ // C++11 [over.ics.list]p1:
+ // When an argument is an initializer list, it is not an expression and
+ // special rules apply for converting it to a parameter type.
+
+ ImplicitConversionSequence Result;
+ Result.setBad(BadConversionSequence::no_conversion, From, ToType);
+
+ // We need a complete type for what follows. Incomplete types can never be
+ // initialized from init lists.
+ if (S.RequireCompleteType(From->getLocStart(), ToType, 0))
+ return Result;
+
+ // Per DR1467:
+ // If the parameter type is a class X and the initializer list has a single
+ // element of type cv U, where U is X or a class derived from X, the
+ // implicit conversion sequence is the one required to convert the element
+ // to the parameter type.
+ //
+ // Otherwise, if the parameter type is a character array [... ]
+ // and the initializer list has a single element that is an
+ // appropriately-typed string literal (8.5.2 [dcl.init.string]), the
+ // implicit conversion sequence is the identity conversion.
+ if (From->getNumInits() == 1) {
+ if (ToType->isRecordType()) {
+ QualType InitType = From->getInit(0)->getType();
+ if (S.Context.hasSameUnqualifiedType(InitType, ToType) ||
+ S.IsDerivedFrom(InitType, ToType))
+ return TryCopyInitialization(S, From->getInit(0), ToType,
+ SuppressUserConversions,
+ InOverloadResolution,
+ AllowObjCWritebackConversion);
+ }
+ // FIXME: Check the other conditions here: array of character type,
+ // initializer is a string literal.
+ if (ToType->isArrayType()) {
+ InitializedEntity Entity =
+ InitializedEntity::InitializeParameter(S.Context, ToType,
+ /*Consumed=*/false);
+ if (S.CanPerformCopyInitialization(Entity, From)) {
+ Result.setStandard();
+ Result.Standard.setAsIdentityConversion();
+ Result.Standard.setFromType(ToType);
+ Result.Standard.setAllToTypes(ToType);
+ return Result;
+ }
+ }
+ }
+
+ // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below).
+ // C++11 [over.ics.list]p2:
+ // If the parameter type is std::initializer_list<X> or "array of X" and
+ // all the elements can be implicitly converted to X, the implicit
+ // conversion sequence is the worst conversion necessary to convert an
+ // element of the list to X.
+ //
+ // C++14 [over.ics.list]p3:
+ // Otherwise, if the parameter type is "array of N X", if the initializer
+ // list has exactly N elements or if it has fewer than N elements and X is
+ // default-constructible, and if all the elements of the initializer list
+ // can be implicitly converted to X, the implicit conversion sequence is
+ // the worst conversion necessary to convert an element of the list to X.
+ //
+ // FIXME: We're missing a lot of these checks.
+ bool toStdInitializerList = false;
+ QualType X;
+ if (ToType->isArrayType())
+ X = S.Context.getAsArrayType(ToType)->getElementType();
+ else
+ toStdInitializerList = S.isStdInitializerList(ToType, &X);
+ if (!X.isNull()) {
+ for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
+ Expr *Init = From->getInit(i);
+ ImplicitConversionSequence ICS =
+ TryCopyInitialization(S, Init, X, SuppressUserConversions,
+ InOverloadResolution,
+ AllowObjCWritebackConversion);
+ // If a single element isn't convertible, fail.
+ if (ICS.isBad()) {
+ Result = ICS;
+ break;
+ }
+ // Otherwise, look for the worst conversion.
+ if (Result.isBad() ||
+ CompareImplicitConversionSequences(S, ICS, Result) ==
+ ImplicitConversionSequence::Worse)
+ Result = ICS;
+ }
+
+ // For an empty list, we won't have computed any conversion sequence.
+ // Introduce the identity conversion sequence.
+ if (From->getNumInits() == 0) {
+ Result.setStandard();
+ Result.Standard.setAsIdentityConversion();
+ Result.Standard.setFromType(ToType);
+ Result.Standard.setAllToTypes(ToType);
+ }
+
+ Result.setStdInitializerListElement(toStdInitializerList);
+ return Result;
+ }
+
+ // C++14 [over.ics.list]p4:
+ // C++11 [over.ics.list]p3:
+ // Otherwise, if the parameter is a non-aggregate class X and overload
+ // resolution chooses a single best constructor [...] the implicit
+ // conversion sequence is a user-defined conversion sequence. If multiple
+ // constructors are viable but none is better than the others, the
+ // implicit conversion sequence is a user-defined conversion sequence.
+ if (ToType->isRecordType() && !ToType->isAggregateType()) {
+ // This function can deal with initializer lists.
+ return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
+ /*AllowExplicit=*/false,
+ InOverloadResolution, /*CStyle=*/false,
+ AllowObjCWritebackConversion,
+ /*AllowObjCConversionOnExplicit=*/false);
+ }
+
+ // C++14 [over.ics.list]p5:
+ // C++11 [over.ics.list]p4:
+ // Otherwise, if the parameter has an aggregate type which can be
+ // initialized from the initializer list [...] the implicit conversion
+ // sequence is a user-defined conversion sequence.
+ if (ToType->isAggregateType()) {
+ // Type is an aggregate, argument is an init list. At this point it comes
+ // down to checking whether the initialization works.
+ // FIXME: Find out whether this parameter is consumed or not.
+ InitializedEntity Entity =
+ InitializedEntity::InitializeParameter(S.Context, ToType,
+ /*Consumed=*/false);
+ if (S.CanPerformCopyInitialization(Entity, From)) {
+ Result.setUserDefined();
+ Result.UserDefined.Before.setAsIdentityConversion();
+ // Initializer lists don't have a type.
+ Result.UserDefined.Before.setFromType(QualType());
+ Result.UserDefined.Before.setAllToTypes(QualType());
+
+ Result.UserDefined.After.setAsIdentityConversion();
+ Result.UserDefined.After.setFromType(ToType);
+ Result.UserDefined.After.setAllToTypes(ToType);
+ Result.UserDefined.ConversionFunction = nullptr;
+ }
+ return Result;
+ }
+
+ // C++14 [over.ics.list]p6:
+ // C++11 [over.ics.list]p5:
+ // Otherwise, if the parameter is a reference, see 13.3.3.1.4.
+ if (ToType->isReferenceType()) {
+ // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
+ // mention initializer lists in any way. So we go by what list-
+ // initialization would do and try to extrapolate from that.
+
+ QualType T1 = ToType->getAs<ReferenceType>()->getPointeeType();
+
+ // If the initializer list has a single element that is reference-related
+ // to the parameter type, we initialize the reference from that.
+ if (From->getNumInits() == 1) {
+ Expr *Init = From->getInit(0);
+
+ QualType T2 = Init->getType();
+
+ // If the initializer is the address of an overloaded function, try
+ // to resolve the overloaded function. If all goes well, T2 is the
+ // type of the resulting function.
+ if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
+ DeclAccessPair Found;
+ if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
+ Init, ToType, false, Found))
+ T2 = Fn->getType();
+ }
+
+ // Compute some basic properties of the types and the initializer.
+ bool dummy1 = false;
+ bool dummy2 = false;
+ bool dummy3 = false;
+ Sema::ReferenceCompareResult RefRelationship
+ = S.CompareReferenceRelationship(From->getLocStart(), T1, T2, dummy1,
+ dummy2, dummy3);
+
+ if (RefRelationship >= Sema::Ref_Related) {
+ return TryReferenceInit(S, Init, ToType, /*FIXME*/From->getLocStart(),
+ SuppressUserConversions,
+ /*AllowExplicit=*/false);
+ }
+ }
+
+ // Otherwise, we bind the reference to a temporary created from the
+ // initializer list.
+ Result = TryListConversion(S, From, T1, SuppressUserConversions,
+ InOverloadResolution,
+ AllowObjCWritebackConversion);
+ if (Result.isFailure())
+ return Result;
+ assert(!Result.isEllipsis() &&
+ "Sub-initialization cannot result in ellipsis conversion.");
+
+ // Can we even bind to a temporary?
+ if (ToType->isRValueReferenceType() ||
+ (T1.isConstQualified() && !T1.isVolatileQualified())) {
+ StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
+ Result.UserDefined.After;
+ SCS.ReferenceBinding = true;
+ SCS.IsLvalueReference = ToType->isLValueReferenceType();
+ SCS.BindsToRvalue = true;
+ SCS.BindsToFunctionLvalue = false;
+ SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
+ SCS.ObjCLifetimeConversionBinding = false;
+ } else
+ Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
+ From, ToType);
+ return Result;
+ }
+
+ // C++14 [over.ics.list]p7:
+ // C++11 [over.ics.list]p6:
+ // Otherwise, if the parameter type is not a class:
+ if (!ToType->isRecordType()) {
+ // - if the initializer list has one element that is not itself an
+ // initializer list, the implicit conversion sequence is the one
+ // required to convert the element to the parameter type.
+ unsigned NumInits = From->getNumInits();
+ if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0)))
+ Result = TryCopyInitialization(S, From->getInit(0), ToType,
+ SuppressUserConversions,
+ InOverloadResolution,
+ AllowObjCWritebackConversion);
+ // - if the initializer list has no elements, the implicit conversion
+ // sequence is the identity conversion.
+ else if (NumInits == 0) {
+ Result.setStandard();
+ Result.Standard.setAsIdentityConversion();
+ Result.Standard.setFromType(ToType);
+ Result.Standard.setAllToTypes(ToType);
+ }
+ return Result;
+ }
+
+ // C++14 [over.ics.list]p8:
+ // C++11 [over.ics.list]p7:
+ // In all cases other than those enumerated above, no conversion is possible
+ return Result;
+}
+
+/// TryCopyInitialization - Try to copy-initialize a value of type
+/// ToType from the expression From. Return the implicit conversion
+/// sequence required to pass this argument, which may be a bad
+/// conversion sequence (meaning that the argument cannot be passed to
+/// a parameter of this type). If @p SuppressUserConversions, then we
+/// do not permit any user-defined conversion sequences.
+static ImplicitConversionSequence
+TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
+ bool SuppressUserConversions,
+ bool InOverloadResolution,
+ bool AllowObjCWritebackConversion,
+ bool AllowExplicit) {
+ if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
+ return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
+ InOverloadResolution,AllowObjCWritebackConversion);
+
+ if (ToType->isReferenceType())
+ return TryReferenceInit(S, From, ToType,
+ /*FIXME:*/From->getLocStart(),
+ SuppressUserConversions,
+ AllowExplicit);
+
+ return TryImplicitConversion(S, From, ToType,
+ SuppressUserConversions,
+ /*AllowExplicit=*/false,
+ InOverloadResolution,
+ /*CStyle=*/false,
+ AllowObjCWritebackConversion,
+ /*AllowObjCConversionOnExplicit=*/false);
+}
+
+static bool TryCopyInitialization(const CanQualType FromQTy,
+ const CanQualType ToQTy,
+ Sema &S,
+ SourceLocation Loc,
+ ExprValueKind FromVK) {
+ OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
+ ImplicitConversionSequence ICS =
+ TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
+
+ return !ICS.isBad();
+}
+
+/// TryObjectArgumentInitialization - Try to initialize the object
+/// parameter of the given member function (@c Method) from the
+/// expression @p From.
+static ImplicitConversionSequence
+TryObjectArgumentInitialization(Sema &S, QualType FromType,
+ Expr::Classification FromClassification,
+ CXXMethodDecl *Method,
+ CXXRecordDecl *ActingContext) {
+ QualType ClassType = S.Context.getTypeDeclType(ActingContext);
+ // [class.dtor]p2: A destructor can be invoked for a const, volatile or
+ // const volatile object.
+ unsigned Quals = isa<CXXDestructorDecl>(Method) ?
+ Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
+ QualType ImplicitParamType = S.Context.getCVRQualifiedType(ClassType, Quals);
+
+ // Set up the conversion sequence as a "bad" conversion, to allow us
+ // to exit early.
+ ImplicitConversionSequence ICS;
+
+ // We need to have an object of class type.
+ if (const PointerType *PT = FromType->getAs<PointerType>()) {
+ FromType = PT->getPointeeType();
+
+ // When we had a pointer, it's implicitly dereferenced, so we
+ // better have an lvalue.
+ assert(FromClassification.isLValue());
+ }
+
+ assert(FromType->isRecordType());
+
+ // C++0x [over.match.funcs]p4:
+ // For non-static member functions, the type of the implicit object
+ // parameter is
+ //
+ // - "lvalue reference to cv X" for functions declared without a
+ // ref-qualifier or with the & ref-qualifier
+ // - "rvalue reference to cv X" for functions declared with the &&
+ // ref-qualifier
+ //
+ // where X is the class of which the function is a member and cv is the
+ // cv-qualification on the member function declaration.
+ //
+ // However, when finding an implicit conversion sequence for the argument, we
+ // are not allowed to create temporaries or perform user-defined conversions
+ // (C++ [over.match.funcs]p5). We perform a simplified version of
+ // reference binding here, that allows class rvalues to bind to
+ // non-constant references.
+
+ // First check the qualifiers.
+ QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
+ if (ImplicitParamType.getCVRQualifiers()
+ != FromTypeCanon.getLocalCVRQualifiers() &&
+ !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
+ ICS.setBad(BadConversionSequence::bad_qualifiers,
+ FromType, ImplicitParamType);
+ return ICS;
+ }
+
+ // Check that we have either the same type or a derived type. It
+ // affects the conversion rank.
+ QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
+ ImplicitConversionKind SecondKind;
+ if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
+ SecondKind = ICK_Identity;
+ } else if (S.IsDerivedFrom(FromType, ClassType))
+ SecondKind = ICK_Derived_To_Base;
+ else {
+ ICS.setBad(BadConversionSequence::unrelated_class,
+ FromType, ImplicitParamType);
+ return ICS;
+ }
+
+ // Check the ref-qualifier.
+ switch (Method->getRefQualifier()) {
+ case RQ_None:
+ // Do nothing; we don't care about lvalueness or rvalueness.
+ break;
+
+ case RQ_LValue:
+ if (!FromClassification.isLValue() && Quals != Qualifiers::Const) {
+ // non-const lvalue reference cannot bind to an rvalue
+ ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
+ ImplicitParamType);
+ return ICS;
+ }
+ break;
+
+ case RQ_RValue:
+ if (!FromClassification.isRValue()) {
+ // rvalue reference cannot bind to an lvalue
+ ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
+ ImplicitParamType);
+ return ICS;
+ }
+ break;
+ }
+
+ // Success. Mark this as a reference binding.
+ ICS.setStandard();
+ ICS.Standard.setAsIdentityConversion();
+ ICS.Standard.Second = SecondKind;
+ ICS.Standard.setFromType(FromType);
+ ICS.Standard.setAllToTypes(ImplicitParamType);
+ ICS.Standard.ReferenceBinding = true;
+ ICS.Standard.DirectBinding = true;
+ ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
+ ICS.Standard.BindsToFunctionLvalue = false;
+ ICS.Standard.BindsToRvalue = FromClassification.isRValue();
+ ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
+ = (Method->getRefQualifier() == RQ_None);
+ return ICS;
+}
+
+/// PerformObjectArgumentInitialization - Perform initialization of
+/// the implicit object parameter for the given Method with the given
+/// expression.
+ExprResult
+Sema::PerformObjectArgumentInitialization(Expr *From,
+ NestedNameSpecifier *Qualifier,
+ NamedDecl *FoundDecl,
+ CXXMethodDecl *Method) {
+ QualType FromRecordType, DestType;
+ QualType ImplicitParamRecordType =
+ Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
+
+ Expr::Classification FromClassification;
+ if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
+ FromRecordType = PT->getPointeeType();
+ DestType = Method->getThisType(Context);
+ FromClassification = Expr::Classification::makeSimpleLValue();
+ } else {
+ FromRecordType = From->getType();
+ DestType = ImplicitParamRecordType;
+ FromClassification = From->Classify(Context);
+ }
+
+ // Note that we always use the true parent context when performing
+ // the actual argument initialization.
+ ImplicitConversionSequence ICS = TryObjectArgumentInitialization(
+ *this, From->getType(), FromClassification, Method, Method->getParent());
+ if (ICS.isBad()) {
+ if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) {
+ Qualifiers FromQs = FromRecordType.getQualifiers();
+ Qualifiers ToQs = DestType.getQualifiers();
+ unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
+ if (CVR) {
+ Diag(From->getLocStart(),
+ diag::err_member_function_call_bad_cvr)
+ << Method->getDeclName() << FromRecordType << (CVR - 1)
+ << From->getSourceRange();
+ Diag(Method->getLocation(), diag::note_previous_decl)
+ << Method->getDeclName();
+ return ExprError();
+ }
+ }
+
+ return Diag(From->getLocStart(),
+ diag::err_implicit_object_parameter_init)
+ << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
+ }
+
+ if (ICS.Standard.Second == ICK_Derived_To_Base) {
+ ExprResult FromRes =
+ PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
+ if (FromRes.isInvalid())
+ return ExprError();
+ From = FromRes.get();
+ }
+
+ if (!Context.hasSameType(From->getType(), DestType))
+ From = ImpCastExprToType(From, DestType, CK_NoOp,
+ From->getValueKind()).get();
+ return From;
+}
+
+/// TryContextuallyConvertToBool - Attempt to contextually convert the
+/// expression From to bool (C++0x [conv]p3).
+static ImplicitConversionSequence
+TryContextuallyConvertToBool(Sema &S, Expr *From) {
+ return TryImplicitConversion(S, From, S.Context.BoolTy,
+ /*SuppressUserConversions=*/false,
+ /*AllowExplicit=*/true,
+ /*InOverloadResolution=*/false,
+ /*CStyle=*/false,
+ /*AllowObjCWritebackConversion=*/false,
+ /*AllowObjCConversionOnExplicit=*/false);
+}
+
+/// PerformContextuallyConvertToBool - Perform a contextual conversion
+/// of the expression From to bool (C++0x [conv]p3).
+ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
+ if (checkPlaceholderForOverload(*this, From))
+ return ExprError();
+
+ ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
+ if (!ICS.isBad())
+ return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
+
+ if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
+ return Diag(From->getLocStart(),
+ diag::err_typecheck_bool_condition)
+ << From->getType() << From->getSourceRange();
+ return ExprError();
+}
+
+/// Check that the specified conversion is permitted in a converted constant
+/// expression, according to C++11 [expr.const]p3. Return true if the conversion
+/// is acceptable.
+static bool CheckConvertedConstantConversions(Sema &S,
+ StandardConversionSequence &SCS) {
+ // Since we know that the target type is an integral or unscoped enumeration
+ // type, most conversion kinds are impossible. All possible First and Third
+ // conversions are fine.
+ switch (SCS.Second) {
+ case ICK_Identity:
+ case ICK_NoReturn_Adjustment:
+ case ICK_Integral_Promotion:
+ case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere.
+ return true;
+
+ case ICK_Boolean_Conversion:
+ // Conversion from an integral or unscoped enumeration type to bool is
+ // classified as ICK_Boolean_Conversion, but it's also arguably an integral
+ // conversion, so we allow it in a converted constant expression.
+ //
+ // FIXME: Per core issue 1407, we should not allow this, but that breaks
+ // a lot of popular code. We should at least add a warning for this
+ // (non-conforming) extension.
+ return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
+ SCS.getToType(2)->isBooleanType();
+
+ case ICK_Pointer_Conversion:
+ case ICK_Pointer_Member:
+ // C++1z: null pointer conversions and null member pointer conversions are
+ // only permitted if the source type is std::nullptr_t.
+ return SCS.getFromType()->isNullPtrType();
+
+ case ICK_Floating_Promotion:
+ case ICK_Complex_Promotion:
+ case ICK_Floating_Conversion:
+ case ICK_Complex_Conversion:
+ case ICK_Floating_Integral:
+ case ICK_Compatible_Conversion:
+ case ICK_Derived_To_Base:
+ case ICK_Vector_Conversion:
+ case ICK_Vector_Splat:
+ case ICK_Complex_Real:
+ case ICK_Block_Pointer_Conversion:
+ case ICK_TransparentUnionConversion:
+ case ICK_Writeback_Conversion:
+ case ICK_Zero_Event_Conversion:
+ return false;
+
+ case ICK_Lvalue_To_Rvalue:
+ case ICK_Array_To_Pointer:
+ case ICK_Function_To_Pointer:
+ llvm_unreachable("found a first conversion kind in Second");
+
+ case ICK_Qualification:
+ llvm_unreachable("found a third conversion kind in Second");
+
+ case ICK_Num_Conversion_Kinds:
+ break;
+ }
+
+ llvm_unreachable("unknown conversion kind");
+}
+
+/// CheckConvertedConstantExpression - Check that the expression From is a
+/// converted constant expression of type T, perform the conversion and produce
+/// the converted expression, per C++11 [expr.const]p3.
+static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From,
+ QualType T, APValue &Value,
+ Sema::CCEKind CCE,
+ bool RequireInt) {
+ assert(S.getLangOpts().CPlusPlus11 &&
+ "converted constant expression outside C++11");
+
+ if (checkPlaceholderForOverload(S, From))
+ return ExprError();
+
+ // C++1z [expr.const]p3:
+ // A converted constant expression of type T is an expression,
+ // implicitly converted to type T, where the converted
+ // expression is a constant expression and the implicit conversion
+ // sequence contains only [... list of conversions ...].
+ ImplicitConversionSequence ICS =
+ TryCopyInitialization(S, From, T,
+ /*SuppressUserConversions=*/false,
+ /*InOverloadResolution=*/false,
+ /*AllowObjcWritebackConversion=*/false,
+ /*AllowExplicit=*/false);
+ StandardConversionSequence *SCS = nullptr;
+ switch (ICS.getKind()) {
+ case ImplicitConversionSequence::StandardConversion:
+ SCS = &ICS.Standard;
+ break;
+ case ImplicitConversionSequence::UserDefinedConversion:
+ // We are converting to a non-class type, so the Before sequence
+ // must be trivial.
+ SCS = &ICS.UserDefined.After;
+ break;
+ case ImplicitConversionSequence::AmbiguousConversion:
+ case ImplicitConversionSequence::BadConversion:
+ if (!S.DiagnoseMultipleUserDefinedConversion(From, T))
+ return S.Diag(From->getLocStart(),
+ diag::err_typecheck_converted_constant_expression)
+ << From->getType() << From->getSourceRange() << T;
+ return ExprError();
+
+ case ImplicitConversionSequence::EllipsisConversion:
+ llvm_unreachable("ellipsis conversion in converted constant expression");
+ }
+
+ // Check that we would only use permitted conversions.
+ if (!CheckConvertedConstantConversions(S, *SCS)) {
+ return S.Diag(From->getLocStart(),
+ diag::err_typecheck_converted_constant_expression_disallowed)
+ << From->getType() << From->getSourceRange() << T;
+ }
+ // [...] and where the reference binding (if any) binds directly.
+ if (SCS->ReferenceBinding && !SCS->DirectBinding) {
+ return S.Diag(From->getLocStart(),
+ diag::err_typecheck_converted_constant_expression_indirect)
+ << From->getType() << From->getSourceRange() << T;
+ }
+
+ ExprResult Result =
+ S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting);
+ if (Result.isInvalid())
+ return Result;
+
+ // Check for a narrowing implicit conversion.
+ APValue PreNarrowingValue;
+ QualType PreNarrowingType;
+ switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue,
+ PreNarrowingType)) {
+ case NK_Variable_Narrowing:
+ // Implicit conversion to a narrower type, and the value is not a constant
+ // expression. We'll diagnose this in a moment.
+ case NK_Not_Narrowing:
+ break;
+
+ case NK_Constant_Narrowing:
+ S.Diag(From->getLocStart(), diag::ext_cce_narrowing)
+ << CCE << /*Constant*/1
+ << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T;
+ break;
+
+ case NK_Type_Narrowing:
+ S.Diag(From->getLocStart(), diag::ext_cce_narrowing)
+ << CCE << /*Constant*/0 << From->getType() << T;
+ break;
+ }
+
+ // Check the expression is a constant expression.
+ SmallVector<PartialDiagnosticAt, 8> Notes;
+ Expr::EvalResult Eval;
+ Eval.Diag = &Notes;
+
+ if ((T->isReferenceType()
+ ? !Result.get()->EvaluateAsLValue(Eval, S.Context)
+ : !Result.get()->EvaluateAsRValue(Eval, S.Context)) ||
+ (RequireInt && !Eval.Val.isInt())) {
+ // The expression can't be folded, so we can't keep it at this position in
+ // the AST.
+ Result = ExprError();
+ } else {
+ Value = Eval.Val;
+
+ if (Notes.empty()) {
+ // It's a constant expression.
+ return Result;
+ }
+ }
+
+ // It's not a constant expression. Produce an appropriate diagnostic.
+ if (Notes.size() == 1 &&
+ Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr)
+ S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
+ else {
+ S.Diag(From->getLocStart(), diag::err_expr_not_cce)
+ << CCE << From->getSourceRange();
+ for (unsigned I = 0; I < Notes.size(); ++I)
+ S.Diag(Notes[I].first, Notes[I].second);
+ }
+ return ExprError();
+}
+
+ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
+ APValue &Value, CCEKind CCE) {
+ return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false);
+}
+
+ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
+ llvm::APSInt &Value,
+ CCEKind CCE) {
+ assert(T->isIntegralOrEnumerationType() && "unexpected converted const type");
+
+ APValue V;
+ auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true);
+ if (!R.isInvalid())
+ Value = V.getInt();
+ return R;
+}
+
+
+/// dropPointerConversions - If the given standard conversion sequence
+/// involves any pointer conversions, remove them. This may change
+/// the result type of the conversion sequence.
+static void dropPointerConversion(StandardConversionSequence &SCS) {
+ if (SCS.Second == ICK_Pointer_Conversion) {
+ SCS.Second = ICK_Identity;
+ SCS.Third = ICK_Identity;
+ SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
+ }
+}
+
+/// TryContextuallyConvertToObjCPointer - Attempt to contextually
+/// convert the expression From to an Objective-C pointer type.
+static ImplicitConversionSequence
+TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
+ // Do an implicit conversion to 'id'.
+ QualType Ty = S.Context.getObjCIdType();
+ ImplicitConversionSequence ICS
+ = TryImplicitConversion(S, From, Ty,
+ // FIXME: Are these flags correct?
+ /*SuppressUserConversions=*/false,
+ /*AllowExplicit=*/true,
+ /*InOverloadResolution=*/false,
+ /*CStyle=*/false,
+ /*AllowObjCWritebackConversion=*/false,
+ /*AllowObjCConversionOnExplicit=*/true);
+
+ // Strip off any final conversions to 'id'.
+ switch (ICS.getKind()) {
+ case ImplicitConversionSequence::BadConversion:
+ case ImplicitConversionSequence::AmbiguousConversion:
+ case ImplicitConversionSequence::EllipsisConversion:
+ break;
+
+ case ImplicitConversionSequence::UserDefinedConversion:
+ dropPointerConversion(ICS.UserDefined.After);
+ break;
+
+ case ImplicitConversionSequence::StandardConversion:
+ dropPointerConversion(ICS.Standard);
+ break;
+ }
+
+ return ICS;
+}
+
+/// PerformContextuallyConvertToObjCPointer - Perform a contextual
+/// conversion of the expression From to an Objective-C pointer type.
+ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
+ if (checkPlaceholderForOverload(*this, From))
+ return ExprError();
+
+ QualType Ty = Context.getObjCIdType();
+ ImplicitConversionSequence ICS =
+ TryContextuallyConvertToObjCPointer(*this, From);
+ if (!ICS.isBad())
+ return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
+ return ExprError();
+}
+
+/// Determine whether the provided type is an integral type, or an enumeration
+/// type of a permitted flavor.
+bool Sema::ICEConvertDiagnoser::match(QualType T) {
+ return AllowScopedEnumerations ? T->isIntegralOrEnumerationType()
+ : T->isIntegralOrUnscopedEnumerationType();
+}
+
+static ExprResult
+diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From,
+ Sema::ContextualImplicitConverter &Converter,
+ QualType T, UnresolvedSetImpl &ViableConversions) {
+
+ if (Converter.Suppress)
+ return ExprError();
+
+ Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange();
+ for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
+ CXXConversionDecl *Conv =
+ cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
+ QualType ConvTy = Conv->getConversionType().getNonReferenceType();
+ Converter.noteAmbiguous(SemaRef, Conv, ConvTy);
+ }
+ return From;
+}
+
+static bool
+diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
+ Sema::ContextualImplicitConverter &Converter,
+ QualType T, bool HadMultipleCandidates,
+ UnresolvedSetImpl &ExplicitConversions) {
+ if (ExplicitConversions.size() == 1 && !Converter.Suppress) {
+ DeclAccessPair Found = ExplicitConversions[0];
+ CXXConversionDecl *Conversion =
+ cast<CXXConversionDecl>(Found->getUnderlyingDecl());
+
+ // The user probably meant to invoke the given explicit
+ // conversion; use it.
+ QualType ConvTy = Conversion->getConversionType().getNonReferenceType();
+ std::string TypeStr;
+ ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy());
+
+ Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy)
+ << FixItHint::CreateInsertion(From->getLocStart(),
+ "static_cast<" + TypeStr + ">(")
+ << FixItHint::CreateInsertion(
+ SemaRef.getLocForEndOfToken(From->getLocEnd()), ")");
+ Converter.noteExplicitConv(SemaRef, Conversion, ConvTy);
+
+ // If we aren't in a SFINAE context, build a call to the
+ // explicit conversion function.
+ if (SemaRef.isSFINAEContext())
+ return true;
+
+ SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
+ ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
+ HadMultipleCandidates);
+ if (Result.isInvalid())
+ return true;
+ // Record usage of conversion in an implicit cast.
+ From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
+ CK_UserDefinedConversion, Result.get(),
+ nullptr, Result.get()->getValueKind());
+ }
+ return false;
+}
+
+static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
+ Sema::ContextualImplicitConverter &Converter,
+ QualType T, bool HadMultipleCandidates,
+ DeclAccessPair &Found) {
+ CXXConversionDecl *Conversion =
+ cast<CXXConversionDecl>(Found->getUnderlyingDecl());
+ SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
+
+ QualType ToType = Conversion->getConversionType().getNonReferenceType();
+ if (!Converter.SuppressConversion) {
+ if (SemaRef.isSFINAEContext())
+ return true;
+
+ Converter.diagnoseConversion(SemaRef, Loc, T, ToType)
+ << From->getSourceRange();
+ }
+
+ ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
+ HadMultipleCandidates);
+ if (Result.isInvalid())
+ return true;
+ // Record usage of conversion in an implicit cast.
+ From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
+ CK_UserDefinedConversion, Result.get(),
+ nullptr, Result.get()->getValueKind());
+ return false;
+}
+
+static ExprResult finishContextualImplicitConversion(
+ Sema &SemaRef, SourceLocation Loc, Expr *From,
+ Sema::ContextualImplicitConverter &Converter) {
+ if (!Converter.match(From->getType()) && !Converter.Suppress)
+ Converter.diagnoseNoMatch(SemaRef, Loc, From->getType())
+ << From->getSourceRange();
+
+ return SemaRef.DefaultLvalueConversion(From);
+}
+
+static void
+collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType,
+ UnresolvedSetImpl &ViableConversions,
+ OverloadCandidateSet &CandidateSet) {
+ for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
+ DeclAccessPair FoundDecl = ViableConversions[I];
+ NamedDecl *D = FoundDecl.getDecl();
+ CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
+ if (isa<UsingShadowDecl>(D))
+ D = cast<UsingShadowDecl>(D)->getTargetDecl();
+
+ CXXConversionDecl *Conv;
+ FunctionTemplateDecl *ConvTemplate;
+ if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
+ Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
+ else
+ Conv = cast<CXXConversionDecl>(D);
+
+ if (ConvTemplate)
+ SemaRef.AddTemplateConversionCandidate(
+ ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet,
+ /*AllowObjCConversionOnExplicit=*/false);
+ else
+ SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From,
+ ToType, CandidateSet,
+ /*AllowObjCConversionOnExplicit=*/false);
+ }
+}
+
+/// \brief Attempt to convert the given expression to a type which is accepted
+/// by the given converter.
+///
+/// This routine will attempt to convert an expression of class type to a
+/// type accepted by the specified converter. In C++11 and before, the class
+/// must have a single non-explicit conversion function converting to a matching
+/// type. In C++1y, there can be multiple such conversion functions, but only
+/// one target type.
+///
+/// \param Loc The source location of the construct that requires the
+/// conversion.
+///
+/// \param From The expression we're converting from.
+///
+/// \param Converter Used to control and diagnose the conversion process.
+///
+/// \returns The expression, converted to an integral or enumeration type if
+/// successful.
+ExprResult Sema::PerformContextualImplicitConversion(
+ SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) {
+ // We can't perform any more checking for type-dependent expressions.
+ if (From->isTypeDependent())
+ return From;
+
+ // Process placeholders immediately.
+ if (From->hasPlaceholderType()) {
+ ExprResult result = CheckPlaceholderExpr(From);
+ if (result.isInvalid())
+ return result;
+ From = result.get();
+ }
+
+ // If the expression already has a matching type, we're golden.
+ QualType T = From->getType();
+ if (Converter.match(T))
+ return DefaultLvalueConversion(From);
+
+ // FIXME: Check for missing '()' if T is a function type?
+
+ // We can only perform contextual implicit conversions on objects of class
+ // type.
+ const RecordType *RecordTy = T->getAs<RecordType>();
+ if (!RecordTy || !getLangOpts().CPlusPlus) {
+ if (!Converter.Suppress)
+ Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange();
+ return From;
+ }
+
+ // We must have a complete class type.
+ struct TypeDiagnoserPartialDiag : TypeDiagnoser {
+ ContextualImplicitConverter &Converter;
+ Expr *From;
+
+ TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From)
+ : TypeDiagnoser(Converter.Suppress), Converter(Converter), From(From) {}
+
+ void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
+ Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange();
+ }
+ } IncompleteDiagnoser(Converter, From);
+
+ if (RequireCompleteType(Loc, T, IncompleteDiagnoser))
+ return From;
+
+ // Look for a conversion to an integral or enumeration type.
+ UnresolvedSet<4>
+ ViableConversions; // These are *potentially* viable in C++1y.
+ UnresolvedSet<4> ExplicitConversions;
+ const auto &Conversions =
+ cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
+
+ bool HadMultipleCandidates =
+ (std::distance(Conversions.begin(), Conversions.end()) > 1);
+
+ // To check that there is only one target type, in C++1y:
+ QualType ToType;
+ bool HasUniqueTargetType = true;
+
+ // Collect explicit or viable (potentially in C++1y) conversions.
+ for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
+ NamedDecl *D = (*I)->getUnderlyingDecl();
+ CXXConversionDecl *Conversion;
+ FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
+ if (ConvTemplate) {
+ if (getLangOpts().CPlusPlus14)
+ Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
+ else
+ continue; // C++11 does not consider conversion operator templates(?).
+ } else
+ Conversion = cast<CXXConversionDecl>(D);
+
+ assert((!ConvTemplate || getLangOpts().CPlusPlus14) &&
+ "Conversion operator templates are considered potentially "
+ "viable in C++1y");
+
+ QualType CurToType = Conversion->getConversionType().getNonReferenceType();
+ if (Converter.match(CurToType) || ConvTemplate) {
+
+ if (Conversion->isExplicit()) {
+ // FIXME: For C++1y, do we need this restriction?
+ // cf. diagnoseNoViableConversion()
+ if (!ConvTemplate)
+ ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
+ } else {
+ if (!ConvTemplate && getLangOpts().CPlusPlus14) {
+ if (ToType.isNull())
+ ToType = CurToType.getUnqualifiedType();
+ else if (HasUniqueTargetType &&
+ (CurToType.getUnqualifiedType() != ToType))
+ HasUniqueTargetType = false;
+ }
+ ViableConversions.addDecl(I.getDecl(), I.getAccess());
+ }
+ }
+ }
+
+ if (getLangOpts().CPlusPlus14) {
+ // C++1y [conv]p6:
+ // ... An expression e of class type E appearing in such a context
+ // is said to be contextually implicitly converted to a specified
+ // type T and is well-formed if and only if e can be implicitly
+ // converted to a type T that is determined as follows: E is searched
+ // for conversion functions whose return type is cv T or reference to
+ // cv T such that T is allowed by the context. There shall be
+ // exactly one such T.
+
+ // If no unique T is found:
+ if (ToType.isNull()) {
+ if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
+ HadMultipleCandidates,
+ ExplicitConversions))
+ return ExprError();
+ return finishContextualImplicitConversion(*this, Loc, From, Converter);
+ }
+
+ // If more than one unique Ts are found:
+ if (!HasUniqueTargetType)
+ return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
+ ViableConversions);
+
+ // If one unique T is found:
+ // First, build a candidate set from the previously recorded
+ // potentially viable conversions.
+ OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
+ collectViableConversionCandidates(*this, From, ToType, ViableConversions,
+ CandidateSet);
+
+ // Then, perform overload resolution over the candidate set.
+ OverloadCandidateSet::iterator Best;
+ switch (CandidateSet.BestViableFunction(*this, Loc, Best)) {
+ case OR_Success: {
+ // Apply this conversion.
+ DeclAccessPair Found =
+ DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess());
+ if (recordConversion(*this, Loc, From, Converter, T,
+ HadMultipleCandidates, Found))
+ return ExprError();
+ break;
+ }
+ case OR_Ambiguous:
+ return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
+ ViableConversions);
+ case OR_No_Viable_Function:
+ if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
+ HadMultipleCandidates,
+ ExplicitConversions))
+ return ExprError();
+ // fall through 'OR_Deleted' case.
+ case OR_Deleted:
+ // We'll complain below about a non-integral condition type.
+ break;
+ }
+ } else {
+ switch (ViableConversions.size()) {
+ case 0: {
+ if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
+ HadMultipleCandidates,
+ ExplicitConversions))
+ return ExprError();
+
+ // We'll complain below about a non-integral condition type.
+ break;
+ }
+ case 1: {
+ // Apply this conversion.
+ DeclAccessPair Found = ViableConversions[0];
+ if (recordConversion(*this, Loc, From, Converter, T,
+ HadMultipleCandidates, Found))
+ return ExprError();
+ break;
+ }
+ default:
+ return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
+ ViableConversions);
+ }
+ }
+
+ return finishContextualImplicitConversion(*this, Loc, From, Converter);
+}
+
+/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
+/// an acceptable non-member overloaded operator for a call whose
+/// arguments have types T1 (and, if non-empty, T2). This routine
+/// implements the check in C++ [over.match.oper]p3b2 concerning
+/// enumeration types.
+static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context,
+ FunctionDecl *Fn,
+ ArrayRef<Expr *> Args) {
+ QualType T1 = Args[0]->getType();
+ QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType();
+
+ if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
+ return true;
+
+ if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
+ return true;
+
+ const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
+ if (Proto->getNumParams() < 1)
+ return false;
+
+ if (T1->isEnumeralType()) {
+ QualType ArgType = Proto->getParamType(0).getNonReferenceType();
+ if (Context.hasSameUnqualifiedType(T1, ArgType))
+ return true;
+ }
+
+ if (Proto->getNumParams() < 2)
+ return false;
+
+ if (!T2.isNull() && T2->isEnumeralType()) {
+ QualType ArgType = Proto->getParamType(1).getNonReferenceType();
+ if (Context.hasSameUnqualifiedType(T2, ArgType))
+ return true;
+ }
+
+ return false;
+}
+
+/// AddOverloadCandidate - Adds the given function to the set of
+/// candidate functions, using the given function call arguments. If
+/// @p SuppressUserConversions, then don't allow user-defined
+/// conversions via constructors or conversion operators.
+///
+/// \param PartialOverloading true if we are performing "partial" overloading
+/// based on an incomplete set of function arguments. This feature is used by
+/// code completion.
+void
+Sema::AddOverloadCandidate(FunctionDecl *Function,
+ DeclAccessPair FoundDecl,
+ ArrayRef<Expr *> Args,
+ OverloadCandidateSet &CandidateSet,
+ bool SuppressUserConversions,
+ bool PartialOverloading,
+ bool AllowExplicit) {
+ const FunctionProtoType *Proto
+ = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
+ assert(Proto && "Functions without a prototype cannot be overloaded");
+ assert(!Function->getDescribedFunctionTemplate() &&
+ "Use AddTemplateOverloadCandidate for function templates");
+
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
+ if (!isa<CXXConstructorDecl>(Method)) {
+ // If we get here, it's because we're calling a member function
+ // that is named without a member access expression (e.g.,
+ // "this->f") that was either written explicitly or created
+ // implicitly. This can happen with a qualified call to a member
+ // function, e.g., X::f(). We use an empty type for the implied
+ // object argument (C++ [over.call.func]p3), and the acting context
+ // is irrelevant.
+ AddMethodCandidate(Method, FoundDecl, Method->getParent(),
+ QualType(), Expr::Classification::makeSimpleLValue(),
+ Args, CandidateSet, SuppressUserConversions,
+ PartialOverloading);
+ return;
+ }
+ // We treat a constructor like a non-member function, since its object
+ // argument doesn't participate in overload resolution.
+ }
+
+ if (!CandidateSet.isNewCandidate(Function))
+ return;
+
+ // C++ [over.match.oper]p3:
+ // if no operand has a class type, only those non-member functions in the
+ // lookup set that have a first parameter of type T1 or "reference to
+ // (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there
+ // is a right operand) a second parameter of type T2 or "reference to
+ // (possibly cv-qualified) T2", when T2 is an enumeration type, are
+ // candidate functions.
+ if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator &&
+ !IsAcceptableNonMemberOperatorCandidate(Context, Function, Args))
+ return;
+
+ // C++11 [class.copy]p11: [DR1402]
+ // A defaulted move constructor that is defined as deleted is ignored by
+ // overload resolution.
+ CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function);
+ if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() &&
+ Constructor->isMoveConstructor())
+ return;
+
+ // Overload resolution is always an unevaluated context.
+ EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
+
+ // Add this candidate
+ OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
+ Candidate.FoundDecl = FoundDecl;
+ Candidate.Function = Function;
+ Candidate.Viable = true;
+ Candidate.IsSurrogate = false;
+ Candidate.IgnoreObjectArgument = false;
+ Candidate.ExplicitCallArguments = Args.size();
+
+ if (Constructor) {
+ // C++ [class.copy]p3:
+ // A member function template is never instantiated to perform the copy
+ // of a class object to an object of its class type.
+ QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
+ if (Args.size() == 1 &&
+ Constructor->isSpecializationCopyingObject() &&
+ (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
+ IsDerivedFrom(Args[0]->getType(), ClassType))) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_illegal_constructor;
+ return;
+ }
+ }
+
+ unsigned NumParams = Proto->getNumParams();
+
+ // (C++ 13.3.2p2): A candidate function having fewer than m
+ // parameters is viable only if it has an ellipsis in its parameter
+ // list (8.3.5).
+ if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
+ !Proto->isVariadic()) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_too_many_arguments;
+ return;
+ }
+
+ // (C++ 13.3.2p2): A candidate function having more than m parameters
+ // is viable only if the (m+1)st parameter has a default argument
+ // (8.3.6). For the purposes of overload resolution, the
+ // parameter list is truncated on the right, so that there are
+ // exactly m parameters.
+ unsigned MinRequiredArgs = Function->getMinRequiredArguments();
+ if (Args.size() < MinRequiredArgs && !PartialOverloading) {
+ // Not enough arguments.
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_too_few_arguments;
+ return;
+ }
+
+ // (CUDA B.1): Check for invalid calls between targets.
+ if (getLangOpts().CUDA)
+ if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
+ // Skip the check for callers that are implicit members, because in this
+ // case we may not yet know what the member's target is; the target is
+ // inferred for the member automatically, based on the bases and fields of
+ // the class.
+ if (!Caller->isImplicit() && CheckCUDATarget(Caller, Function)) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_bad_target;
+ return;
+ }
+
+ // Determine the implicit conversion sequences for each of the
+ // arguments.
+ for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
+ if (ArgIdx < NumParams) {
+ // (C++ 13.3.2p3): for F to be a viable function, there shall
+ // exist for each argument an implicit conversion sequence
+ // (13.3.3.1) that converts that argument to the corresponding
+ // parameter of F.
+ QualType ParamType = Proto->getParamType(ArgIdx);
+ Candidate.Conversions[ArgIdx]
+ = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
+ SuppressUserConversions,
+ /*InOverloadResolution=*/true,
+ /*AllowObjCWritebackConversion=*/
+ getLangOpts().ObjCAutoRefCount,
+ AllowExplicit);
+ if (Candidate.Conversions[ArgIdx].isBad()) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_bad_conversion;
+ return;
+ }
+ } else {
+ // (C++ 13.3.2p2): For the purposes of overload resolution, any
+ // argument for which there is no corresponding parameter is
+ // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
+ Candidate.Conversions[ArgIdx].setEllipsis();
+ }
+ }
+
+ if (EnableIfAttr *FailedAttr = CheckEnableIf(Function, Args)) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_enable_if;
+ Candidate.DeductionFailure.Data = FailedAttr;
+ return;
+ }
+}
+
+ObjCMethodDecl *Sema::SelectBestMethod(Selector Sel, MultiExprArg Args,
+ bool IsInstance) {
+ SmallVector<ObjCMethodDecl*, 4> Methods;
+ if (!CollectMultipleMethodsInGlobalPool(Sel, Methods, IsInstance))
+ return nullptr;
+
+ for (unsigned b = 0, e = Methods.size(); b < e; b++) {
+ bool Match = true;
+ ObjCMethodDecl *Method = Methods[b];
+ unsigned NumNamedArgs = Sel.getNumArgs();
+ // Method might have more arguments than selector indicates. This is due
+ // to addition of c-style arguments in method.
+ if (Method->param_size() > NumNamedArgs)
+ NumNamedArgs = Method->param_size();
+ if (Args.size() < NumNamedArgs)
+ continue;
+
+ for (unsigned i = 0; i < NumNamedArgs; i++) {
+ // We can't do any type-checking on a type-dependent argument.
+ if (Args[i]->isTypeDependent()) {
+ Match = false;
+ break;
+ }
+
+ ParmVarDecl *param = Method->parameters()[i];
+ Expr *argExpr = Args[i];
+ assert(argExpr && "SelectBestMethod(): missing expression");
+
+ // Strip the unbridged-cast placeholder expression off unless it's
+ // a consumed argument.
+ if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) &&
+ !param->hasAttr<CFConsumedAttr>())
+ argExpr = stripARCUnbridgedCast(argExpr);
+
+ // If the parameter is __unknown_anytype, move on to the next method.
+ if (param->getType() == Context.UnknownAnyTy) {
+ Match = false;
+ break;
+ }
+
+ ImplicitConversionSequence ConversionState
+ = TryCopyInitialization(*this, argExpr, param->getType(),
+ /*SuppressUserConversions*/false,
+ /*InOverloadResolution=*/true,
+ /*AllowObjCWritebackConversion=*/
+ getLangOpts().ObjCAutoRefCount,
+ /*AllowExplicit*/false);
+ if (ConversionState.isBad()) {
+ Match = false;
+ break;
+ }
+ }
+ // Promote additional arguments to variadic methods.
+ if (Match && Method->isVariadic()) {
+ for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) {
+ if (Args[i]->isTypeDependent()) {
+ Match = false;
+ break;
+ }
+ ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
+ nullptr);
+ if (Arg.isInvalid()) {
+ Match = false;
+ break;
+ }
+ }
+ } else {
+ // Check for extra arguments to non-variadic methods.
+ if (Args.size() != NumNamedArgs)
+ Match = false;
+ else if (Match && NumNamedArgs == 0 && Methods.size() > 1) {
+ // Special case when selectors have no argument. In this case, select
+ // one with the most general result type of 'id'.
+ for (unsigned b = 0, e = Methods.size(); b < e; b++) {
+ QualType ReturnT = Methods[b]->getReturnType();
+ if (ReturnT->isObjCIdType())
+ return Methods[b];
+ }
+ }
+ }
+
+ if (Match)
+ return Method;
+ }
+ return nullptr;
+}
+
+static bool IsNotEnableIfAttr(Attr *A) { return !isa<EnableIfAttr>(A); }
+
+EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function, ArrayRef<Expr *> Args,
+ bool MissingImplicitThis) {
+ // FIXME: specific_attr_iterator<EnableIfAttr> iterates in reverse order, but
+ // we need to find the first failing one.
+ if (!Function->hasAttrs())
+ return nullptr;
+ AttrVec Attrs = Function->getAttrs();
+ AttrVec::iterator E = std::remove_if(Attrs.begin(), Attrs.end(),
+ IsNotEnableIfAttr);
+ if (Attrs.begin() == E)
+ return nullptr;
+ std::reverse(Attrs.begin(), E);
+
+ SFINAETrap Trap(*this);
+
+ // Convert the arguments.
+ SmallVector<Expr *, 16> ConvertedArgs;
+ bool InitializationFailed = false;
+ bool ContainsValueDependentExpr = false;
+ for (unsigned i = 0, e = Args.size(); i != e; ++i) {
+ if (i == 0 && !MissingImplicitThis && isa<CXXMethodDecl>(Function) &&
+ !cast<CXXMethodDecl>(Function)->isStatic() &&
+ !isa<CXXConstructorDecl>(Function)) {
+ CXXMethodDecl *Method = cast<CXXMethodDecl>(Function);
+ ExprResult R =
+ PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
+ Method, Method);
+ if (R.isInvalid()) {
+ InitializationFailed = true;
+ break;
+ }
+ ContainsValueDependentExpr |= R.get()->isValueDependent();
+ ConvertedArgs.push_back(R.get());
+ } else {
+ ExprResult R =
+ PerformCopyInitialization(InitializedEntity::InitializeParameter(
+ Context,
+ Function->getParamDecl(i)),
+ SourceLocation(),
+ Args[i]);
+ if (R.isInvalid()) {
+ InitializationFailed = true;
+ break;
+ }
+ ContainsValueDependentExpr |= R.get()->isValueDependent();
+ ConvertedArgs.push_back(R.get());
+ }
+ }
+
+ if (InitializationFailed || Trap.hasErrorOccurred())
+ return cast<EnableIfAttr>(Attrs[0]);
+
+ for (AttrVec::iterator I = Attrs.begin(); I != E; ++I) {
+ APValue Result;
+ EnableIfAttr *EIA = cast<EnableIfAttr>(*I);
+ if (EIA->getCond()->isValueDependent()) {
+ // Don't even try now, we'll examine it after instantiation.
+ continue;
+ }
+
+ if (!EIA->getCond()->EvaluateWithSubstitution(
+ Result, Context, Function, llvm::makeArrayRef(ConvertedArgs))) {
+ if (!ContainsValueDependentExpr)
+ return EIA;
+ } else if (!Result.isInt() || !Result.getInt().getBoolValue()) {
+ return EIA;
+ }
+ }
+ return nullptr;
+}
+
+/// \brief Add all of the function declarations in the given function set to
+/// the overload candidate set.
+void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
+ ArrayRef<Expr *> Args,
+ OverloadCandidateSet& CandidateSet,
+ TemplateArgumentListInfo *ExplicitTemplateArgs,
+ bool SuppressUserConversions,
+ bool PartialOverloading) {
+ for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
+ NamedDecl *D = F.getDecl()->getUnderlyingDecl();
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
+ AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
+ cast<CXXMethodDecl>(FD)->getParent(),
+ Args[0]->getType(), Args[0]->Classify(Context),
+ Args.slice(1), CandidateSet,
+ SuppressUserConversions, PartialOverloading);
+ else
+ AddOverloadCandidate(FD, F.getPair(), Args, CandidateSet,
+ SuppressUserConversions, PartialOverloading);
+ } else {
+ FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
+ if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
+ !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
+ AddMethodTemplateCandidate(FunTmpl, F.getPair(),
+ cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
+ ExplicitTemplateArgs,
+ Args[0]->getType(),
+ Args[0]->Classify(Context), Args.slice(1),
+ CandidateSet, SuppressUserConversions,
+ PartialOverloading);
+ else
+ AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
+ ExplicitTemplateArgs, Args,
+ CandidateSet, SuppressUserConversions,
+ PartialOverloading);
+ }
+ }
+}
+
+/// AddMethodCandidate - Adds a named decl (which is some kind of
+/// method) as a method candidate to the given overload set.
+void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
+ QualType ObjectType,
+ Expr::Classification ObjectClassification,
+ ArrayRef<Expr *> Args,
+ OverloadCandidateSet& CandidateSet,
+ bool SuppressUserConversions) {
+ NamedDecl *Decl = FoundDecl.getDecl();
+ CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
+
+ if (isa<UsingShadowDecl>(Decl))
+ Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
+
+ if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
+ assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
+ "Expected a member function template");
+ AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
+ /*ExplicitArgs*/ nullptr,
+ ObjectType, ObjectClassification,
+ Args, CandidateSet,
+ SuppressUserConversions);
+ } else {
+ AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
+ ObjectType, ObjectClassification,
+ Args,
+ CandidateSet, SuppressUserConversions);
+ }
+}
+
+/// AddMethodCandidate - Adds the given C++ member function to the set
+/// of candidate functions, using the given function call arguments
+/// and the object argument (@c Object). For example, in a call
+/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
+/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
+/// allow user-defined conversions via constructors or conversion
+/// operators.
+void
+Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
+ CXXRecordDecl *ActingContext, QualType ObjectType,
+ Expr::Classification ObjectClassification,
+ ArrayRef<Expr *> Args,
+ OverloadCandidateSet &CandidateSet,
+ bool SuppressUserConversions,
+ bool PartialOverloading) {
+ const FunctionProtoType *Proto
+ = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
+ assert(Proto && "Methods without a prototype cannot be overloaded");
+ assert(!isa<CXXConstructorDecl>(Method) &&
+ "Use AddOverloadCandidate for constructors");
+
+ if (!CandidateSet.isNewCandidate(Method))
+ return;
+
+ // C++11 [class.copy]p23: [DR1402]
+ // A defaulted move assignment operator that is defined as deleted is
+ // ignored by overload resolution.
+ if (Method->isDefaulted() && Method->isDeleted() &&
+ Method->isMoveAssignmentOperator())
+ return;
+
+ // Overload resolution is always an unevaluated context.
+ EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
+
+ // Add this candidate
+ OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
+ Candidate.FoundDecl = FoundDecl;
+ Candidate.Function = Method;
+ Candidate.IsSurrogate = false;
+ Candidate.IgnoreObjectArgument = false;
+ Candidate.ExplicitCallArguments = Args.size();
+
+ unsigned NumParams = Proto->getNumParams();
+
+ // (C++ 13.3.2p2): A candidate function having fewer than m
+ // parameters is viable only if it has an ellipsis in its parameter
+ // list (8.3.5).
+ if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
+ !Proto->isVariadic()) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_too_many_arguments;
+ return;
+ }
+
+ // (C++ 13.3.2p2): A candidate function having more than m parameters
+ // is viable only if the (m+1)st parameter has a default argument
+ // (8.3.6). For the purposes of overload resolution, the
+ // parameter list is truncated on the right, so that there are
+ // exactly m parameters.
+ unsigned MinRequiredArgs = Method->getMinRequiredArguments();
+ if (Args.size() < MinRequiredArgs && !PartialOverloading) {
+ // Not enough arguments.
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_too_few_arguments;
+ return;
+ }
+
+ Candidate.Viable = true;
+
+ if (Method->isStatic() || ObjectType.isNull())
+ // The implicit object argument is ignored.
+ Candidate.IgnoreObjectArgument = true;
+ else {
+ // Determine the implicit conversion sequence for the object
+ // parameter.
+ Candidate.Conversions[0]
+ = TryObjectArgumentInitialization(*this, ObjectType, ObjectClassification,
+ Method, ActingContext);
+ if (Candidate.Conversions[0].isBad()) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_bad_conversion;
+ return;
+ }
+ }
+
+ // (CUDA B.1): Check for invalid calls between targets.
+ if (getLangOpts().CUDA)
+ if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
+ if (CheckCUDATarget(Caller, Method)) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_bad_target;
+ return;
+ }
+
+ // Determine the implicit conversion sequences for each of the
+ // arguments.
+ for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
+ if (ArgIdx < NumParams) {
+ // (C++ 13.3.2p3): for F to be a viable function, there shall
+ // exist for each argument an implicit conversion sequence
+ // (13.3.3.1) that converts that argument to the corresponding
+ // parameter of F.
+ QualType ParamType = Proto->getParamType(ArgIdx);
+ Candidate.Conversions[ArgIdx + 1]
+ = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
+ SuppressUserConversions,
+ /*InOverloadResolution=*/true,
+ /*AllowObjCWritebackConversion=*/
+ getLangOpts().ObjCAutoRefCount);
+ if (Candidate.Conversions[ArgIdx + 1].isBad()) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_bad_conversion;
+ return;
+ }
+ } else {
+ // (C++ 13.3.2p2): For the purposes of overload resolution, any
+ // argument for which there is no corresponding parameter is
+ // considered to "match the ellipsis" (C+ 13.3.3.1.3).
+ Candidate.Conversions[ArgIdx + 1].setEllipsis();
+ }
+ }
+
+ if (EnableIfAttr *FailedAttr = CheckEnableIf(Method, Args, true)) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_enable_if;
+ Candidate.DeductionFailure.Data = FailedAttr;
+ return;
+ }
+}
+
+/// \brief Add a C++ member function template as a candidate to the candidate
+/// set, using template argument deduction to produce an appropriate member
+/// function template specialization.
+void
+Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
+ DeclAccessPair FoundDecl,
+ CXXRecordDecl *ActingContext,
+ TemplateArgumentListInfo *ExplicitTemplateArgs,
+ QualType ObjectType,
+ Expr::Classification ObjectClassification,
+ ArrayRef<Expr *> Args,
+ OverloadCandidateSet& CandidateSet,
+ bool SuppressUserConversions,
+ bool PartialOverloading) {
+ if (!CandidateSet.isNewCandidate(MethodTmpl))
+ return;
+
+ // C++ [over.match.funcs]p7:
+ // In each case where a candidate is a function template, candidate
+ // function template specializations are generated using template argument
+ // deduction (14.8.3, 14.8.2). Those candidates are then handled as
+ // candidate functions in the usual way.113) A given name can refer to one
+ // or more function templates and also to a set of overloaded non-template
+ // functions. In such a case, the candidate functions generated from each
+ // function template are combined with the set of non-template candidate
+ // functions.
+ TemplateDeductionInfo Info(CandidateSet.getLocation());
+ FunctionDecl *Specialization = nullptr;
+ if (TemplateDeductionResult Result
+ = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, Args,
+ Specialization, Info, PartialOverloading)) {
+ OverloadCandidate &Candidate = CandidateSet.addCandidate();
+ Candidate.FoundDecl = FoundDecl;
+ Candidate.Function = MethodTmpl->getTemplatedDecl();
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_bad_deduction;
+ Candidate.IsSurrogate = false;
+ Candidate.IgnoreObjectArgument = false;
+ Candidate.ExplicitCallArguments = Args.size();
+ Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
+ Info);
+ return;
+ }
+
+ // Add the function template specialization produced by template argument
+ // deduction as a candidate.
+ assert(Specialization && "Missing member function template specialization?");
+ assert(isa<CXXMethodDecl>(Specialization) &&
+ "Specialization is not a member function?");
+ AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
+ ActingContext, ObjectType, ObjectClassification, Args,
+ CandidateSet, SuppressUserConversions, PartialOverloading);
+}
+
+/// \brief Add a C++ function template specialization as a candidate
+/// in the candidate set, using template argument deduction to produce
+/// an appropriate function template specialization.
+void
+Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
+ DeclAccessPair FoundDecl,
+ TemplateArgumentListInfo *ExplicitTemplateArgs,
+ ArrayRef<Expr *> Args,
+ OverloadCandidateSet& CandidateSet,
+ bool SuppressUserConversions,
+ bool PartialOverloading) {
+ if (!CandidateSet.isNewCandidate(FunctionTemplate))
+ return;
+
+ // C++ [over.match.funcs]p7:
+ // In each case where a candidate is a function template, candidate
+ // function template specializations are generated using template argument
+ // deduction (14.8.3, 14.8.2). Those candidates are then handled as
+ // candidate functions in the usual way.113) A given name can refer to one
+ // or more function templates and also to a set of overloaded non-template
+ // functions. In such a case, the candidate functions generated from each
+ // function template are combined with the set of non-template candidate
+ // functions.
+ TemplateDeductionInfo Info(CandidateSet.getLocation());
+ FunctionDecl *Specialization = nullptr;
+ if (TemplateDeductionResult Result
+ = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, Args,
+ Specialization, Info, PartialOverloading)) {
+ OverloadCandidate &Candidate = CandidateSet.addCandidate();
+ Candidate.FoundDecl = FoundDecl;
+ Candidate.Function = FunctionTemplate->getTemplatedDecl();
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_bad_deduction;
+ Candidate.IsSurrogate = false;
+ Candidate.IgnoreObjectArgument = false;
+ Candidate.ExplicitCallArguments = Args.size();
+ Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
+ Info);
+ return;
+ }
+
+ // Add the function template specialization produced by template argument
+ // deduction as a candidate.
+ assert(Specialization && "Missing function template specialization?");
+ AddOverloadCandidate(Specialization, FoundDecl, Args, CandidateSet,
+ SuppressUserConversions, PartialOverloading);
+}
+
+/// Determine whether this is an allowable conversion from the result
+/// of an explicit conversion operator to the expected type, per C++
+/// [over.match.conv]p1 and [over.match.ref]p1.
+///
+/// \param ConvType The return type of the conversion function.
+///
+/// \param ToType The type we are converting to.
+///
+/// \param AllowObjCPointerConversion Allow a conversion from one
+/// Objective-C pointer to another.
+///
+/// \returns true if the conversion is allowable, false otherwise.
+static bool isAllowableExplicitConversion(Sema &S,
+ QualType ConvType, QualType ToType,
+ bool AllowObjCPointerConversion) {
+ QualType ToNonRefType = ToType.getNonReferenceType();
+
+ // Easy case: the types are the same.
+ if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType))
+ return true;
+
+ // Allow qualification conversions.
+ bool ObjCLifetimeConversion;
+ if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false,
+ ObjCLifetimeConversion))
+ return true;
+
+ // If we're not allowed to consider Objective-C pointer conversions,
+ // we're done.
+ if (!AllowObjCPointerConversion)
+ return false;
+
+ // Is this an Objective-C pointer conversion?
+ bool IncompatibleObjC = false;
+ QualType ConvertedType;
+ return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType,
+ IncompatibleObjC);
+}
+
+/// AddConversionCandidate - Add a C++ conversion function as a
+/// candidate in the candidate set (C++ [over.match.conv],
+/// C++ [over.match.copy]). From is the expression we're converting from,
+/// and ToType is the type that we're eventually trying to convert to
+/// (which may or may not be the same type as the type that the
+/// conversion function produces).
+void
+Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
+ DeclAccessPair FoundDecl,
+ CXXRecordDecl *ActingContext,
+ Expr *From, QualType ToType,
+ OverloadCandidateSet& CandidateSet,
+ bool AllowObjCConversionOnExplicit) {
+ assert(!Conversion->getDescribedFunctionTemplate() &&
+ "Conversion function templates use AddTemplateConversionCandidate");
+ QualType ConvType = Conversion->getConversionType().getNonReferenceType();
+ if (!CandidateSet.isNewCandidate(Conversion))
+ return;
+
+ // If the conversion function has an undeduced return type, trigger its
+ // deduction now.
+ if (getLangOpts().CPlusPlus14 && ConvType->isUndeducedType()) {
+ if (DeduceReturnType(Conversion, From->getExprLoc()))
+ return;
+ ConvType = Conversion->getConversionType().getNonReferenceType();
+ }
+
+ // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion
+ // operator is only a candidate if its return type is the target type or
+ // can be converted to the target type with a qualification conversion.
+ if (Conversion->isExplicit() &&
+ !isAllowableExplicitConversion(*this, ConvType, ToType,
+ AllowObjCConversionOnExplicit))
+ return;
+
+ // Overload resolution is always an unevaluated context.
+ EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
+
+ // Add this candidate
+ OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
+ Candidate.FoundDecl = FoundDecl;
+ Candidate.Function = Conversion;
+ Candidate.IsSurrogate = false;
+ Candidate.IgnoreObjectArgument = false;
+ Candidate.FinalConversion.setAsIdentityConversion();
+ Candidate.FinalConversion.setFromType(ConvType);
+ Candidate.FinalConversion.setAllToTypes(ToType);
+ Candidate.Viable = true;
+ Candidate.ExplicitCallArguments = 1;
+
+ // C++ [over.match.funcs]p4:
+ // For conversion functions, the function is considered to be a member of
+ // the class of the implicit implied object argument for the purpose of
+ // defining the type of the implicit object parameter.
+ //
+ // Determine the implicit conversion sequence for the implicit
+ // object parameter.
+ QualType ImplicitParamType = From->getType();
+ if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
+ ImplicitParamType = FromPtrType->getPointeeType();
+ CXXRecordDecl *ConversionContext
+ = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
+
+ Candidate.Conversions[0]
+ = TryObjectArgumentInitialization(*this, From->getType(),
+ From->Classify(Context),
+ Conversion, ConversionContext);
+
+ if (Candidate.Conversions[0].isBad()) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_bad_conversion;
+ return;
+ }
+
+ // We won't go through a user-defined type conversion function to convert a
+ // derived to base as such conversions are given Conversion Rank. They only
+ // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
+ QualType FromCanon
+ = Context.getCanonicalType(From->getType().getUnqualifiedType());
+ QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
+ if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_trivial_conversion;
+ return;
+ }
+
+ // To determine what the conversion from the result of calling the
+ // conversion function to the type we're eventually trying to
+ // convert to (ToType), we need to synthesize a call to the
+ // conversion function and attempt copy initialization from it. This
+ // makes sure that we get the right semantics with respect to
+ // lvalues/rvalues and the type. Fortunately, we can allocate this
+ // call on the stack and we don't need its arguments to be
+ // well-formed.
+ DeclRefExpr ConversionRef(Conversion, false, Conversion->getType(),
+ VK_LValue, From->getLocStart());
+ ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
+ Context.getPointerType(Conversion->getType()),
+ CK_FunctionToPointerDecay,
+ &ConversionRef, VK_RValue);
+
+ QualType ConversionType = Conversion->getConversionType();
+ if (RequireCompleteType(From->getLocStart(), ConversionType, 0)) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_bad_final_conversion;
+ return;
+ }
+
+ ExprValueKind VK = Expr::getValueKindForType(ConversionType);
+
+ // Note that it is safe to allocate CallExpr on the stack here because
+ // there are 0 arguments (i.e., nothing is allocated using ASTContext's
+ // allocator).
+ QualType CallResultType = ConversionType.getNonLValueExprType(Context);
+ CallExpr Call(Context, &ConversionFn, None, CallResultType, VK,
+ From->getLocStart());
+ ImplicitConversionSequence ICS =
+ TryCopyInitialization(*this, &Call, ToType,
+ /*SuppressUserConversions=*/true,
+ /*InOverloadResolution=*/false,
+ /*AllowObjCWritebackConversion=*/false);
+
+ switch (ICS.getKind()) {
+ case ImplicitConversionSequence::StandardConversion:
+ Candidate.FinalConversion = ICS.Standard;
+
+ // C++ [over.ics.user]p3:
+ // If the user-defined conversion is specified by a specialization of a
+ // conversion function template, the second standard conversion sequence
+ // shall have exact match rank.
+ if (Conversion->getPrimaryTemplate() &&
+ GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
+ return;
+ }
+
+ // C++0x [dcl.init.ref]p5:
+ // In the second case, if the reference is an rvalue reference and
+ // the second standard conversion sequence of the user-defined
+ // conversion sequence includes an lvalue-to-rvalue conversion, the
+ // program is ill-formed.
+ if (ToType->isRValueReferenceType() &&
+ ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_bad_final_conversion;
+ return;
+ }
+ break;
+
+ case ImplicitConversionSequence::BadConversion:
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_bad_final_conversion;
+ return;
+
+ default:
+ llvm_unreachable(
+ "Can only end up with a standard conversion sequence or failure");
+ }
+
+ if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, None)) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_enable_if;
+ Candidate.DeductionFailure.Data = FailedAttr;
+ return;
+ }
+}
+
+/// \brief Adds a conversion function template specialization
+/// candidate to the overload set, using template argument deduction
+/// to deduce the template arguments of the conversion function
+/// template from the type that we are converting to (C++
+/// [temp.deduct.conv]).
+void
+Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
+ DeclAccessPair FoundDecl,
+ CXXRecordDecl *ActingDC,
+ Expr *From, QualType ToType,
+ OverloadCandidateSet &CandidateSet,
+ bool AllowObjCConversionOnExplicit) {
+ assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
+ "Only conversion function templates permitted here");
+
+ if (!CandidateSet.isNewCandidate(FunctionTemplate))
+ return;
+
+ TemplateDeductionInfo Info(CandidateSet.getLocation());
+ CXXConversionDecl *Specialization = nullptr;
+ if (TemplateDeductionResult Result
+ = DeduceTemplateArguments(FunctionTemplate, ToType,
+ Specialization, Info)) {
+ OverloadCandidate &Candidate = CandidateSet.addCandidate();
+ Candidate.FoundDecl = FoundDecl;
+ Candidate.Function = FunctionTemplate->getTemplatedDecl();
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_bad_deduction;
+ Candidate.IsSurrogate = false;
+ Candidate.IgnoreObjectArgument = false;
+ Candidate.ExplicitCallArguments = 1;
+ Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
+ Info);
+ return;
+ }
+
+ // Add the conversion function template specialization produced by
+ // template argument deduction as a candidate.
+ assert(Specialization && "Missing function template specialization?");
+ AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
+ CandidateSet, AllowObjCConversionOnExplicit);
+}
+
+/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
+/// converts the given @c Object to a function pointer via the
+/// conversion function @c Conversion, and then attempts to call it
+/// with the given arguments (C++ [over.call.object]p2-4). Proto is
+/// the type of function that we'll eventually be calling.
+void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
+ DeclAccessPair FoundDecl,
+ CXXRecordDecl *ActingContext,
+ const FunctionProtoType *Proto,
+ Expr *Object,
+ ArrayRef<Expr *> Args,
+ OverloadCandidateSet& CandidateSet) {
+ if (!CandidateSet.isNewCandidate(Conversion))
+ return;
+
+ // Overload resolution is always an unevaluated context.
+ EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
+
+ OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
+ Candidate.FoundDecl = FoundDecl;
+ Candidate.Function = nullptr;
+ Candidate.Surrogate = Conversion;
+ Candidate.Viable = true;
+ Candidate.IsSurrogate = true;
+ Candidate.IgnoreObjectArgument = false;
+ Candidate.ExplicitCallArguments = Args.size();
+
+ // Determine the implicit conversion sequence for the implicit
+ // object parameter.
+ ImplicitConversionSequence ObjectInit
+ = TryObjectArgumentInitialization(*this, Object->getType(),
+ Object->Classify(Context),
+ Conversion, ActingContext);
+ if (ObjectInit.isBad()) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_bad_conversion;
+ Candidate.Conversions[0] = ObjectInit;
+ return;
+ }
+
+ // The first conversion is actually a user-defined conversion whose
+ // first conversion is ObjectInit's standard conversion (which is
+ // effectively a reference binding). Record it as such.
+ Candidate.Conversions[0].setUserDefined();
+ Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
+ Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
+ Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
+ Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
+ Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
+ Candidate.Conversions[0].UserDefined.After
+ = Candidate.Conversions[0].UserDefined.Before;
+ Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
+
+ // Find the
+ unsigned NumParams = Proto->getNumParams();
+
+ // (C++ 13.3.2p2): A candidate function having fewer than m
+ // parameters is viable only if it has an ellipsis in its parameter
+ // list (8.3.5).
+ if (Args.size() > NumParams && !Proto->isVariadic()) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_too_many_arguments;
+ return;
+ }
+
+ // Function types don't have any default arguments, so just check if
+ // we have enough arguments.
+ if (Args.size() < NumParams) {
+ // Not enough arguments.
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_too_few_arguments;
+ return;
+ }
+
+ // Determine the implicit conversion sequences for each of the
+ // arguments.
+ for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
+ if (ArgIdx < NumParams) {
+ // (C++ 13.3.2p3): for F to be a viable function, there shall
+ // exist for each argument an implicit conversion sequence
+ // (13.3.3.1) that converts that argument to the corresponding
+ // parameter of F.
+ QualType ParamType = Proto->getParamType(ArgIdx);
+ Candidate.Conversions[ArgIdx + 1]
+ = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
+ /*SuppressUserConversions=*/false,
+ /*InOverloadResolution=*/false,
+ /*AllowObjCWritebackConversion=*/
+ getLangOpts().ObjCAutoRefCount);
+ if (Candidate.Conversions[ArgIdx + 1].isBad()) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_bad_conversion;
+ return;
+ }
+ } else {
+ // (C++ 13.3.2p2): For the purposes of overload resolution, any
+ // argument for which there is no corresponding parameter is
+ // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
+ Candidate.Conversions[ArgIdx + 1].setEllipsis();
+ }
+ }
+
+ if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, None)) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_enable_if;
+ Candidate.DeductionFailure.Data = FailedAttr;
+ return;
+ }
+}
+
+/// \brief Add overload candidates for overloaded operators that are
+/// member functions.
+///
+/// Add the overloaded operator candidates that are member functions
+/// for the operator Op that was used in an operator expression such
+/// as "x Op y". , Args/NumArgs provides the operator arguments, and
+/// CandidateSet will store the added overload candidates. (C++
+/// [over.match.oper]).
+void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
+ SourceLocation OpLoc,
+ ArrayRef<Expr *> Args,
+ OverloadCandidateSet& CandidateSet,
+ SourceRange OpRange) {
+ DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
+
+ // C++ [over.match.oper]p3:
+ // For a unary operator @ with an operand of a type whose
+ // cv-unqualified version is T1, and for a binary operator @ with
+ // a left operand of a type whose cv-unqualified version is T1 and
+ // a right operand of a type whose cv-unqualified version is T2,
+ // three sets of candidate functions, designated member
+ // candidates, non-member candidates and built-in candidates, are
+ // constructed as follows:
+ QualType T1 = Args[0]->getType();
+
+ // -- If T1 is a complete class type or a class currently being
+ // defined, the set of member candidates is the result of the
+ // qualified lookup of T1::operator@ (13.3.1.1.1); otherwise,
+ // the set of member candidates is empty.
+ if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
+ // Complete the type if it can be completed.
+ RequireCompleteType(OpLoc, T1, 0);
+ // If the type is neither complete nor being defined, bail out now.
+ if (!T1Rec->getDecl()->getDefinition())
+ return;
+
+ LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
+ LookupQualifiedName(Operators, T1Rec->getDecl());
+ Operators.suppressDiagnostics();
+
+ for (LookupResult::iterator Oper = Operators.begin(),
+ OperEnd = Operators.end();
+ Oper != OperEnd;
+ ++Oper)
+ AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
+ Args[0]->Classify(Context),
+ Args.slice(1),
+ CandidateSet,
+ /* SuppressUserConversions = */ false);
+ }
+}
+
+/// AddBuiltinCandidate - Add a candidate for a built-in
+/// operator. ResultTy and ParamTys are the result and parameter types
+/// of the built-in candidate, respectively. Args and NumArgs are the
+/// arguments being passed to the candidate. IsAssignmentOperator
+/// should be true when this built-in candidate is an assignment
+/// operator. NumContextualBoolArguments is the number of arguments
+/// (at the beginning of the argument list) that will be contextually
+/// converted to bool.
+void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
+ ArrayRef<Expr *> Args,
+ OverloadCandidateSet& CandidateSet,
+ bool IsAssignmentOperator,
+ unsigned NumContextualBoolArguments) {
+ // Overload resolution is always an unevaluated context.
+ EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
+
+ // Add this candidate
+ OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
+ Candidate.FoundDecl = DeclAccessPair::make(nullptr, AS_none);
+ Candidate.Function = nullptr;
+ Candidate.IsSurrogate = false;
+ Candidate.IgnoreObjectArgument = false;
+ Candidate.BuiltinTypes.ResultTy = ResultTy;
+ for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
+ Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
+
+ // Determine the implicit conversion sequences for each of the
+ // arguments.
+ Candidate.Viable = true;
+ Candidate.ExplicitCallArguments = Args.size();
+ for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
+ // C++ [over.match.oper]p4:
+ // For the built-in assignment operators, conversions of the
+ // left operand are restricted as follows:
+ // -- no temporaries are introduced to hold the left operand, and
+ // -- no user-defined conversions are applied to the left
+ // operand to achieve a type match with the left-most
+ // parameter of a built-in candidate.
+ //
+ // We block these conversions by turning off user-defined
+ // conversions, since that is the only way that initialization of
+ // a reference to a non-class type can occur from something that
+ // is not of the same type.
+ if (ArgIdx < NumContextualBoolArguments) {
+ assert(ParamTys[ArgIdx] == Context.BoolTy &&
+ "Contextual conversion to bool requires bool type");
+ Candidate.Conversions[ArgIdx]
+ = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
+ } else {
+ Candidate.Conversions[ArgIdx]
+ = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
+ ArgIdx == 0 && IsAssignmentOperator,
+ /*InOverloadResolution=*/false,
+ /*AllowObjCWritebackConversion=*/
+ getLangOpts().ObjCAutoRefCount);
+ }
+ if (Candidate.Conversions[ArgIdx].isBad()) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_bad_conversion;
+ break;
+ }
+ }
+}
+
+namespace {
+
+/// BuiltinCandidateTypeSet - A set of types that will be used for the
+/// candidate operator functions for built-in operators (C++
+/// [over.built]). The types are separated into pointer types and
+/// enumeration types.
+class BuiltinCandidateTypeSet {
+ /// TypeSet - A set of types.
+ typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
+
+ /// PointerTypes - The set of pointer types that will be used in the
+ /// built-in candidates.
+ TypeSet PointerTypes;
+
+ /// MemberPointerTypes - The set of member pointer types that will be
+ /// used in the built-in candidates.
+ TypeSet MemberPointerTypes;
+
+ /// EnumerationTypes - The set of enumeration types that will be
+ /// used in the built-in candidates.
+ TypeSet EnumerationTypes;
+
+ /// \brief The set of vector types that will be used in the built-in
+ /// candidates.
+ TypeSet VectorTypes;
+
+ /// \brief A flag indicating non-record types are viable candidates
+ bool HasNonRecordTypes;
+
+ /// \brief A flag indicating whether either arithmetic or enumeration types
+ /// were present in the candidate set.
+ bool HasArithmeticOrEnumeralTypes;
+
+ /// \brief A flag indicating whether the nullptr type was present in the
+ /// candidate set.
+ bool HasNullPtrType;
+
+ /// Sema - The semantic analysis instance where we are building the
+ /// candidate type set.
+ Sema &SemaRef;
+
+ /// Context - The AST context in which we will build the type sets.
+ ASTContext &Context;
+
+ bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
+ const Qualifiers &VisibleQuals);
+ bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
+
+public:
+ /// iterator - Iterates through the types that are part of the set.
+ typedef TypeSet::iterator iterator;
+
+ BuiltinCandidateTypeSet(Sema &SemaRef)
+ : HasNonRecordTypes(false),
+ HasArithmeticOrEnumeralTypes(false),
+ HasNullPtrType(false),
+ SemaRef(SemaRef),
+ Context(SemaRef.Context) { }
+
+ void AddTypesConvertedFrom(QualType Ty,
+ SourceLocation Loc,
+ bool AllowUserConversions,
+ bool AllowExplicitConversions,
+ const Qualifiers &VisibleTypeConversionsQuals);
+
+ /// pointer_begin - First pointer type found;
+ iterator pointer_begin() { return PointerTypes.begin(); }
+
+ /// pointer_end - Past the last pointer type found;
+ iterator pointer_end() { return PointerTypes.end(); }
+
+ /// member_pointer_begin - First member pointer type found;
+ iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
+
+ /// member_pointer_end - Past the last member pointer type found;
+ iterator member_pointer_end() { return MemberPointerTypes.end(); }
+
+ /// enumeration_begin - First enumeration type found;
+ iterator enumeration_begin() { return EnumerationTypes.begin(); }
+
+ /// enumeration_end - Past the last enumeration type found;
+ iterator enumeration_end() { return EnumerationTypes.end(); }
+
+ iterator vector_begin() { return VectorTypes.begin(); }
+ iterator vector_end() { return VectorTypes.end(); }
+
+ bool hasNonRecordTypes() { return HasNonRecordTypes; }
+ bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
+ bool hasNullPtrType() const { return HasNullPtrType; }
+};
+
+} // end anonymous namespace
+
+/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
+/// the set of pointer types along with any more-qualified variants of
+/// that type. For example, if @p Ty is "int const *", this routine
+/// will add "int const *", "int const volatile *", "int const
+/// restrict *", and "int const volatile restrict *" to the set of
+/// pointer types. Returns true if the add of @p Ty itself succeeded,
+/// false otherwise.
+///
+/// FIXME: what to do about extended qualifiers?
+bool
+BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
+ const Qualifiers &VisibleQuals) {
+
+ // Insert this type.
+ if (!PointerTypes.insert(Ty).second)
+ return false;
+
+ QualType PointeeTy;
+ const PointerType *PointerTy = Ty->getAs<PointerType>();
+ bool buildObjCPtr = false;
+ if (!PointerTy) {
+ const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>();
+ PointeeTy = PTy->getPointeeType();
+ buildObjCPtr = true;
+ } else {
+ PointeeTy = PointerTy->getPointeeType();
+ }
+
+ // Don't add qualified variants of arrays. For one, they're not allowed
+ // (the qualifier would sink to the element type), and for another, the
+ // only overload situation where it matters is subscript or pointer +- int,
+ // and those shouldn't have qualifier variants anyway.
+ if (PointeeTy->isArrayType())
+ return true;
+
+ unsigned BaseCVR = PointeeTy.getCVRQualifiers();
+ bool hasVolatile = VisibleQuals.hasVolatile();
+ bool hasRestrict = VisibleQuals.hasRestrict();
+
+ // Iterate through all strict supersets of BaseCVR.
+ for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
+ if ((CVR | BaseCVR) != CVR) continue;
+ // Skip over volatile if no volatile found anywhere in the types.
+ if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
+
+ // Skip over restrict if no restrict found anywhere in the types, or if
+ // the type cannot be restrict-qualified.
+ if ((CVR & Qualifiers::Restrict) &&
+ (!hasRestrict ||
+ (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType()))))
+ continue;
+
+ // Build qualified pointee type.
+ QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
+
+ // Build qualified pointer type.
+ QualType QPointerTy;
+ if (!buildObjCPtr)
+ QPointerTy = Context.getPointerType(QPointeeTy);
+ else
+ QPointerTy = Context.getObjCObjectPointerType(QPointeeTy);
+
+ // Insert qualified pointer type.
+ PointerTypes.insert(QPointerTy);
+ }
+
+ return true;
+}
+
+/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
+/// to the set of pointer types along with any more-qualified variants of
+/// that type. For example, if @p Ty is "int const *", this routine
+/// will add "int const *", "int const volatile *", "int const
+/// restrict *", and "int const volatile restrict *" to the set of
+/// pointer types. Returns true if the add of @p Ty itself succeeded,
+/// false otherwise.
+///
+/// FIXME: what to do about extended qualifiers?
+bool
+BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
+ QualType Ty) {
+ // Insert this type.
+ if (!MemberPointerTypes.insert(Ty).second)
+ return false;
+
+ const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
+ assert(PointerTy && "type was not a member pointer type!");
+
+ QualType PointeeTy = PointerTy->getPointeeType();
+ // Don't add qualified variants of arrays. For one, they're not allowed
+ // (the qualifier would sink to the element type), and for another, the
+ // only overload situation where it matters is subscript or pointer +- int,
+ // and those shouldn't have qualifier variants anyway.
+ if (PointeeTy->isArrayType())
+ return true;
+ const Type *ClassTy = PointerTy->getClass();
+
+ // Iterate through all strict supersets of the pointee type's CVR
+ // qualifiers.
+ unsigned BaseCVR = PointeeTy.getCVRQualifiers();
+ for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
+ if ((CVR | BaseCVR) != CVR) continue;
+
+ QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
+ MemberPointerTypes.insert(
+ Context.getMemberPointerType(QPointeeTy, ClassTy));
+ }
+
+ return true;
+}
+
+/// AddTypesConvertedFrom - Add each of the types to which the type @p
+/// Ty can be implicit converted to the given set of @p Types. We're
+/// primarily interested in pointer types and enumeration types. We also
+/// take member pointer types, for the conditional operator.
+/// AllowUserConversions is true if we should look at the conversion
+/// functions of a class type, and AllowExplicitConversions if we
+/// should also include the explicit conversion functions of a class
+/// type.
+void
+BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
+ SourceLocation Loc,
+ bool AllowUserConversions,
+ bool AllowExplicitConversions,
+ const Qualifiers &VisibleQuals) {
+ // Only deal with canonical types.
+ Ty = Context.getCanonicalType(Ty);
+
+ // Look through reference types; they aren't part of the type of an
+ // expression for the purposes of conversions.
+ if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
+ Ty = RefTy->getPointeeType();
+
+ // If we're dealing with an array type, decay to the pointer.
+ if (Ty->isArrayType())
+ Ty = SemaRef.Context.getArrayDecayedType(Ty);
+
+ // Otherwise, we don't care about qualifiers on the type.
+ Ty = Ty.getLocalUnqualifiedType();
+
+ // Flag if we ever add a non-record type.
+ const RecordType *TyRec = Ty->getAs<RecordType>();
+ HasNonRecordTypes = HasNonRecordTypes || !TyRec;
+
+ // Flag if we encounter an arithmetic type.
+ HasArithmeticOrEnumeralTypes =
+ HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
+
+ if (Ty->isObjCIdType() || Ty->isObjCClassType())
+ PointerTypes.insert(Ty);
+ else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
+ // Insert our type, and its more-qualified variants, into the set
+ // of types.
+ if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
+ return;
+ } else if (Ty->isMemberPointerType()) {
+ // Member pointers are far easier, since the pointee can't be converted.
+ if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
+ return;
+ } else if (Ty->isEnumeralType()) {
+ HasArithmeticOrEnumeralTypes = true;
+ EnumerationTypes.insert(Ty);
+ } else if (Ty->isVectorType()) {
+ // We treat vector types as arithmetic types in many contexts as an
+ // extension.
+ HasArithmeticOrEnumeralTypes = true;
+ VectorTypes.insert(Ty);
+ } else if (Ty->isNullPtrType()) {
+ HasNullPtrType = true;
+ } else if (AllowUserConversions && TyRec) {
+ // No conversion functions in incomplete types.
+ if (SemaRef.RequireCompleteType(Loc, Ty, 0))
+ return;
+
+ CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
+ for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
+ if (isa<UsingShadowDecl>(D))
+ D = cast<UsingShadowDecl>(D)->getTargetDecl();
+
+ // Skip conversion function templates; they don't tell us anything
+ // about which builtin types we can convert to.
+ if (isa<FunctionTemplateDecl>(D))
+ continue;
+
+ CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
+ if (AllowExplicitConversions || !Conv->isExplicit()) {
+ AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
+ VisibleQuals);
+ }
+ }
+ }
+}
+
+/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
+/// the volatile- and non-volatile-qualified assignment operators for the
+/// given type to the candidate set.
+static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
+ QualType T,
+ ArrayRef<Expr *> Args,
+ OverloadCandidateSet &CandidateSet) {
+ QualType ParamTypes[2];
+
+ // T& operator=(T&, T)
+ ParamTypes[0] = S.Context.getLValueReferenceType(T);
+ ParamTypes[1] = T;
+ S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
+ /*IsAssignmentOperator=*/true);
+
+ if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
+ // volatile T& operator=(volatile T&, T)
+ ParamTypes[0]
+ = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
+ ParamTypes[1] = T;
+ S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
+ /*IsAssignmentOperator=*/true);
+ }
+}
+
+/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
+/// if any, found in visible type conversion functions found in ArgExpr's type.
+static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
+ Qualifiers VRQuals;
+ const RecordType *TyRec;
+ if (const MemberPointerType *RHSMPType =
+ ArgExpr->getType()->getAs<MemberPointerType>())
+ TyRec = RHSMPType->getClass()->getAs<RecordType>();
+ else
+ TyRec = ArgExpr->getType()->getAs<RecordType>();
+ if (!TyRec) {
+ // Just to be safe, assume the worst case.
+ VRQuals.addVolatile();
+ VRQuals.addRestrict();
+ return VRQuals;
+ }
+
+ CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
+ if (!ClassDecl->hasDefinition())
+ return VRQuals;
+
+ for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
+ if (isa<UsingShadowDecl>(D))
+ D = cast<UsingShadowDecl>(D)->getTargetDecl();
+ if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
+ QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
+ if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
+ CanTy = ResTypeRef->getPointeeType();
+ // Need to go down the pointer/mempointer chain and add qualifiers
+ // as see them.
+ bool done = false;
+ while (!done) {
+ if (CanTy.isRestrictQualified())
+ VRQuals.addRestrict();
+ if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
+ CanTy = ResTypePtr->getPointeeType();
+ else if (const MemberPointerType *ResTypeMPtr =
+ CanTy->getAs<MemberPointerType>())
+ CanTy = ResTypeMPtr->getPointeeType();
+ else
+ done = true;
+ if (CanTy.isVolatileQualified())
+ VRQuals.addVolatile();
+ if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
+ return VRQuals;
+ }
+ }
+ }
+ return VRQuals;
+}
+
+namespace {
+
+/// \brief Helper class to manage the addition of builtin operator overload
+/// candidates. It provides shared state and utility methods used throughout
+/// the process, as well as a helper method to add each group of builtin
+/// operator overloads from the standard to a candidate set.
+class BuiltinOperatorOverloadBuilder {
+ // Common instance state available to all overload candidate addition methods.
+ Sema &S;
+ ArrayRef<Expr *> Args;
+ Qualifiers VisibleTypeConversionsQuals;
+ bool HasArithmeticOrEnumeralCandidateType;
+ SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
+ OverloadCandidateSet &CandidateSet;
+
+ // Define some constants used to index and iterate over the arithemetic types
+ // provided via the getArithmeticType() method below.
+ // The "promoted arithmetic types" are the arithmetic
+ // types are that preserved by promotion (C++ [over.built]p2).
+ static const unsigned FirstIntegralType = 3;
+ static const unsigned LastIntegralType = 20;
+ static const unsigned FirstPromotedIntegralType = 3,
+ LastPromotedIntegralType = 11;
+ static const unsigned FirstPromotedArithmeticType = 0,
+ LastPromotedArithmeticType = 11;
+ static const unsigned NumArithmeticTypes = 20;
+
+ /// \brief Get the canonical type for a given arithmetic type index.
+ CanQualType getArithmeticType(unsigned index) {
+ assert(index < NumArithmeticTypes);
+ static CanQualType ASTContext::* const
+ ArithmeticTypes[NumArithmeticTypes] = {
+ // Start of promoted types.
+ &ASTContext::FloatTy,
+ &ASTContext::DoubleTy,
+ &ASTContext::LongDoubleTy,
+
+ // Start of integral types.
+ &ASTContext::IntTy,
+ &ASTContext::LongTy,
+ &ASTContext::LongLongTy,
+ &ASTContext::Int128Ty,
+ &ASTContext::UnsignedIntTy,
+ &ASTContext::UnsignedLongTy,
+ &ASTContext::UnsignedLongLongTy,
+ &ASTContext::UnsignedInt128Ty,
+ // End of promoted types.
+
+ &ASTContext::BoolTy,
+ &ASTContext::CharTy,
+ &ASTContext::WCharTy,
+ &ASTContext::Char16Ty,
+ &ASTContext::Char32Ty,
+ &ASTContext::SignedCharTy,
+ &ASTContext::ShortTy,
+ &ASTContext::UnsignedCharTy,
+ &ASTContext::UnsignedShortTy,
+ // End of integral types.
+ // FIXME: What about complex? What about half?
+ };
+ return S.Context.*ArithmeticTypes[index];
+ }
+
+ /// \brief Gets the canonical type resulting from the usual arithemetic
+ /// converions for the given arithmetic types.
+ CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) {
+ // Accelerator table for performing the usual arithmetic conversions.
+ // The rules are basically:
+ // - if either is floating-point, use the wider floating-point
+ // - if same signedness, use the higher rank
+ // - if same size, use unsigned of the higher rank
+ // - use the larger type
+ // These rules, together with the axiom that higher ranks are
+ // never smaller, are sufficient to precompute all of these results
+ // *except* when dealing with signed types of higher rank.
+ // (we could precompute SLL x UI for all known platforms, but it's
+ // better not to make any assumptions).
+ // We assume that int128 has a higher rank than long long on all platforms.
+ enum PromotedType {
+ Dep=-1,
+ Flt, Dbl, LDbl, SI, SL, SLL, S128, UI, UL, ULL, U128
+ };
+ static const PromotedType ConversionsTable[LastPromotedArithmeticType]
+ [LastPromotedArithmeticType] = {
+/* Flt*/ { Flt, Dbl, LDbl, Flt, Flt, Flt, Flt, Flt, Flt, Flt, Flt },
+/* Dbl*/ { Dbl, Dbl, LDbl, Dbl, Dbl, Dbl, Dbl, Dbl, Dbl, Dbl, Dbl },
+/*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl },
+/* SI*/ { Flt, Dbl, LDbl, SI, SL, SLL, S128, UI, UL, ULL, U128 },
+/* SL*/ { Flt, Dbl, LDbl, SL, SL, SLL, S128, Dep, UL, ULL, U128 },
+/* SLL*/ { Flt, Dbl, LDbl, SLL, SLL, SLL, S128, Dep, Dep, ULL, U128 },
+/*S128*/ { Flt, Dbl, LDbl, S128, S128, S128, S128, S128, S128, S128, U128 },
+/* UI*/ { Flt, Dbl, LDbl, UI, Dep, Dep, S128, UI, UL, ULL, U128 },
+/* UL*/ { Flt, Dbl, LDbl, UL, UL, Dep, S128, UL, UL, ULL, U128 },
+/* ULL*/ { Flt, Dbl, LDbl, ULL, ULL, ULL, S128, ULL, ULL, ULL, U128 },
+/*U128*/ { Flt, Dbl, LDbl, U128, U128, U128, U128, U128, U128, U128, U128 },
+ };
+
+ assert(L < LastPromotedArithmeticType);
+ assert(R < LastPromotedArithmeticType);
+ int Idx = ConversionsTable[L][R];
+
+ // Fast path: the table gives us a concrete answer.
+ if (Idx != Dep) return getArithmeticType(Idx);
+
+ // Slow path: we need to compare widths.
+ // An invariant is that the signed type has higher rank.
+ CanQualType LT = getArithmeticType(L),
+ RT = getArithmeticType(R);
+ unsigned LW = S.Context.getIntWidth(LT),
+ RW = S.Context.getIntWidth(RT);
+
+ // If they're different widths, use the signed type.
+ if (LW > RW) return LT;
+ else if (LW < RW) return RT;
+
+ // Otherwise, use the unsigned type of the signed type's rank.
+ if (L == SL || R == SL) return S.Context.UnsignedLongTy;
+ assert(L == SLL || R == SLL);
+ return S.Context.UnsignedLongLongTy;
+ }
+
+ /// \brief Helper method to factor out the common pattern of adding overloads
+ /// for '++' and '--' builtin operators.
+ void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
+ bool HasVolatile,
+ bool HasRestrict) {
+ QualType ParamTypes[2] = {
+ S.Context.getLValueReferenceType(CandidateTy),
+ S.Context.IntTy
+ };
+
+ // Non-volatile version.
+ if (Args.size() == 1)
+ S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
+ else
+ S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
+
+ // Use a heuristic to reduce number of builtin candidates in the set:
+ // add volatile version only if there are conversions to a volatile type.
+ if (HasVolatile) {
+ ParamTypes[0] =
+ S.Context.getLValueReferenceType(
+ S.Context.getVolatileType(CandidateTy));
+ if (Args.size() == 1)
+ S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
+ else
+ S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
+ }
+
+ // Add restrict version only if there are conversions to a restrict type
+ // and our candidate type is a non-restrict-qualified pointer.
+ if (HasRestrict && CandidateTy->isAnyPointerType() &&
+ !CandidateTy.isRestrictQualified()) {
+ ParamTypes[0]
+ = S.Context.getLValueReferenceType(
+ S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict));
+ if (Args.size() == 1)
+ S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
+ else
+ S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
+
+ if (HasVolatile) {
+ ParamTypes[0]
+ = S.Context.getLValueReferenceType(
+ S.Context.getCVRQualifiedType(CandidateTy,
+ (Qualifiers::Volatile |
+ Qualifiers::Restrict)));
+ if (Args.size() == 1)
+ S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
+ else
+ S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
+ }
+ }
+
+ }
+
+public:
+ BuiltinOperatorOverloadBuilder(
+ Sema &S, ArrayRef<Expr *> Args,
+ Qualifiers VisibleTypeConversionsQuals,
+ bool HasArithmeticOrEnumeralCandidateType,
+ SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
+ OverloadCandidateSet &CandidateSet)
+ : S(S), Args(Args),
+ VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
+ HasArithmeticOrEnumeralCandidateType(
+ HasArithmeticOrEnumeralCandidateType),
+ CandidateTypes(CandidateTypes),
+ CandidateSet(CandidateSet) {
+ // Validate some of our static helper constants in debug builds.
+ assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy &&
+ "Invalid first promoted integral type");
+ assert(getArithmeticType(LastPromotedIntegralType - 1)
+ == S.Context.UnsignedInt128Ty &&
+ "Invalid last promoted integral type");
+ assert(getArithmeticType(FirstPromotedArithmeticType)
+ == S.Context.FloatTy &&
+ "Invalid first promoted arithmetic type");
+ assert(getArithmeticType(LastPromotedArithmeticType - 1)
+ == S.Context.UnsignedInt128Ty &&
+ "Invalid last promoted arithmetic type");
+ }
+
+ // C++ [over.built]p3:
+ //
+ // For every pair (T, VQ), where T is an arithmetic type, and VQ
+ // is either volatile or empty, there exist candidate operator
+ // functions of the form
+ //
+ // VQ T& operator++(VQ T&);
+ // T operator++(VQ T&, int);
+ //
+ // C++ [over.built]p4:
+ //
+ // For every pair (T, VQ), where T is an arithmetic type other
+ // than bool, and VQ is either volatile or empty, there exist
+ // candidate operator functions of the form
+ //
+ // VQ T& operator--(VQ T&);
+ // T operator--(VQ T&, int);
+ void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
+ if (!HasArithmeticOrEnumeralCandidateType)
+ return;
+
+ for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
+ Arith < NumArithmeticTypes; ++Arith) {
+ addPlusPlusMinusMinusStyleOverloads(
+ getArithmeticType(Arith),
+ VisibleTypeConversionsQuals.hasVolatile(),
+ VisibleTypeConversionsQuals.hasRestrict());
+ }
+ }
+
+ // C++ [over.built]p5:
+ //
+ // For every pair (T, VQ), where T is a cv-qualified or
+ // cv-unqualified object type, and VQ is either volatile or
+ // empty, there exist candidate operator functions of the form
+ //
+ // T*VQ& operator++(T*VQ&);
+ // T*VQ& operator--(T*VQ&);
+ // T* operator++(T*VQ&, int);
+ // T* operator--(T*VQ&, int);
+ void addPlusPlusMinusMinusPointerOverloads() {
+ for (BuiltinCandidateTypeSet::iterator
+ Ptr = CandidateTypes[0].pointer_begin(),
+ PtrEnd = CandidateTypes[0].pointer_end();
+ Ptr != PtrEnd; ++Ptr) {
+ // Skip pointer types that aren't pointers to object types.
+ if (!(*Ptr)->getPointeeType()->isObjectType())
+ continue;
+
+ addPlusPlusMinusMinusStyleOverloads(*Ptr,
+ (!(*Ptr).isVolatileQualified() &&
+ VisibleTypeConversionsQuals.hasVolatile()),
+ (!(*Ptr).isRestrictQualified() &&
+ VisibleTypeConversionsQuals.hasRestrict()));
+ }
+ }
+
+ // C++ [over.built]p6:
+ // For every cv-qualified or cv-unqualified object type T, there
+ // exist candidate operator functions of the form
+ //
+ // T& operator*(T*);
+ //
+ // C++ [over.built]p7:
+ // For every function type T that does not have cv-qualifiers or a
+ // ref-qualifier, there exist candidate operator functions of the form
+ // T& operator*(T*);
+ void addUnaryStarPointerOverloads() {
+ for (BuiltinCandidateTypeSet::iterator
+ Ptr = CandidateTypes[0].pointer_begin(),
+ PtrEnd = CandidateTypes[0].pointer_end();
+ Ptr != PtrEnd; ++Ptr) {
+ QualType ParamTy = *Ptr;
+ QualType PointeeTy = ParamTy->getPointeeType();
+ if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
+ continue;
+
+ if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
+ if (Proto->getTypeQuals() || Proto->getRefQualifier())
+ continue;
+
+ S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy),
+ &ParamTy, Args, CandidateSet);
+ }
+ }
+
+ // C++ [over.built]p9:
+ // For every promoted arithmetic type T, there exist candidate
+ // operator functions of the form
+ //
+ // T operator+(T);
+ // T operator-(T);
+ void addUnaryPlusOrMinusArithmeticOverloads() {
+ if (!HasArithmeticOrEnumeralCandidateType)
+ return;
+
+ for (unsigned Arith = FirstPromotedArithmeticType;
+ Arith < LastPromotedArithmeticType; ++Arith) {
+ QualType ArithTy = getArithmeticType(Arith);
+ S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, CandidateSet);
+ }
+
+ // Extension: We also add these operators for vector types.
+ for (BuiltinCandidateTypeSet::iterator
+ Vec = CandidateTypes[0].vector_begin(),
+ VecEnd = CandidateTypes[0].vector_end();
+ Vec != VecEnd; ++Vec) {
+ QualType VecTy = *Vec;
+ S.AddBuiltinCandidate(VecTy, &VecTy, Args, CandidateSet);
+ }
+ }
+
+ // C++ [over.built]p8:
+ // For every type T, there exist candidate operator functions of
+ // the form
+ //
+ // T* operator+(T*);
+ void addUnaryPlusPointerOverloads() {
+ for (BuiltinCandidateTypeSet::iterator
+ Ptr = CandidateTypes[0].pointer_begin(),
+ PtrEnd = CandidateTypes[0].pointer_end();
+ Ptr != PtrEnd; ++Ptr) {
+ QualType ParamTy = *Ptr;
+ S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, CandidateSet);
+ }
+ }
+
+ // C++ [over.built]p10:
+ // For every promoted integral type T, there exist candidate
+ // operator functions of the form
+ //
+ // T operator~(T);
+ void addUnaryTildePromotedIntegralOverloads() {
+ if (!HasArithmeticOrEnumeralCandidateType)
+ return;
+
+ for (unsigned Int = FirstPromotedIntegralType;
+ Int < LastPromotedIntegralType; ++Int) {
+ QualType IntTy = getArithmeticType(Int);
+ S.AddBuiltinCandidate(IntTy, &IntTy, Args, CandidateSet);
+ }
+
+ // Extension: We also add this operator for vector types.
+ for (BuiltinCandidateTypeSet::iterator
+ Vec = CandidateTypes[0].vector_begin(),
+ VecEnd = CandidateTypes[0].vector_end();
+ Vec != VecEnd; ++Vec) {
+ QualType VecTy = *Vec;
+ S.AddBuiltinCandidate(VecTy, &VecTy, Args, CandidateSet);
+ }
+ }
+
+ // C++ [over.match.oper]p16:
+ // For every pointer to member type T, there exist candidate operator
+ // functions of the form
+ //
+ // bool operator==(T,T);
+ // bool operator!=(T,T);
+ void addEqualEqualOrNotEqualMemberPointerOverloads() {
+ /// Set of (canonical) types that we've already handled.
+ llvm::SmallPtrSet<QualType, 8> AddedTypes;
+
+ for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
+ for (BuiltinCandidateTypeSet::iterator
+ MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
+ MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
+ MemPtr != MemPtrEnd;
+ ++MemPtr) {
+ // Don't add the same builtin candidate twice.
+ if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
+ continue;
+
+ QualType ParamTypes[2] = { *MemPtr, *MemPtr };
+ S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
+ }
+ }
+ }
+
+ // C++ [over.built]p15:
+ //
+ // For every T, where T is an enumeration type, a pointer type, or
+ // std::nullptr_t, there exist candidate operator functions of the form
+ //
+ // bool operator<(T, T);
+ // bool operator>(T, T);
+ // bool operator<=(T, T);
+ // bool operator>=(T, T);
+ // bool operator==(T, T);
+ // bool operator!=(T, T);
+ void addRelationalPointerOrEnumeralOverloads() {
+ // C++ [over.match.oper]p3:
+ // [...]the built-in candidates include all of the candidate operator
+ // functions defined in 13.6 that, compared to the given operator, [...]
+ // do not have the same parameter-type-list as any non-template non-member
+ // candidate.
+ //
+ // Note that in practice, this only affects enumeration types because there
+ // aren't any built-in candidates of record type, and a user-defined operator
+ // must have an operand of record or enumeration type. Also, the only other
+ // overloaded operator with enumeration arguments, operator=,
+ // cannot be overloaded for enumeration types, so this is the only place
+ // where we must suppress candidates like this.
+ llvm::DenseSet<std::pair<CanQualType, CanQualType> >
+ UserDefinedBinaryOperators;
+
+ for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
+ if (CandidateTypes[ArgIdx].enumeration_begin() !=
+ CandidateTypes[ArgIdx].enumeration_end()) {
+ for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
+ CEnd = CandidateSet.end();
+ C != CEnd; ++C) {
+ if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
+ continue;
+
+ if (C->Function->isFunctionTemplateSpecialization())
+ continue;
+
+ QualType FirstParamType =
+ C->Function->getParamDecl(0)->getType().getUnqualifiedType();
+ QualType SecondParamType =
+ C->Function->getParamDecl(1)->getType().getUnqualifiedType();
+
+ // Skip if either parameter isn't of enumeral type.
+ if (!FirstParamType->isEnumeralType() ||
+ !SecondParamType->isEnumeralType())
+ continue;
+
+ // Add this operator to the set of known user-defined operators.
+ UserDefinedBinaryOperators.insert(
+ std::make_pair(S.Context.getCanonicalType(FirstParamType),
+ S.Context.getCanonicalType(SecondParamType)));
+ }
+ }
+ }
+
+ /// Set of (canonical) types that we've already handled.
+ llvm::SmallPtrSet<QualType, 8> AddedTypes;
+
+ for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
+ for (BuiltinCandidateTypeSet::iterator
+ Ptr = CandidateTypes[ArgIdx].pointer_begin(),
+ PtrEnd = CandidateTypes[ArgIdx].pointer_end();
+ Ptr != PtrEnd; ++Ptr) {
+ // Don't add the same builtin candidate twice.
+ if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
+ continue;
+
+ QualType ParamTypes[2] = { *Ptr, *Ptr };
+ S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
+ }
+ for (BuiltinCandidateTypeSet::iterator
+ Enum = CandidateTypes[ArgIdx].enumeration_begin(),
+ EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
+ Enum != EnumEnd; ++Enum) {
+ CanQualType CanonType = S.Context.getCanonicalType(*Enum);
+
+ // Don't add the same builtin candidate twice, or if a user defined
+ // candidate exists.
+ if (!AddedTypes.insert(CanonType).second ||
+ UserDefinedBinaryOperators.count(std::make_pair(CanonType,
+ CanonType)))
+ continue;
+
+ QualType ParamTypes[2] = { *Enum, *Enum };
+ S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
+ }
+
+ if (CandidateTypes[ArgIdx].hasNullPtrType()) {
+ CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
+ if (AddedTypes.insert(NullPtrTy).second &&
+ !UserDefinedBinaryOperators.count(std::make_pair(NullPtrTy,
+ NullPtrTy))) {
+ QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
+ S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args,
+ CandidateSet);
+ }
+ }
+ }
+ }
+
+ // C++ [over.built]p13:
+ //
+ // For every cv-qualified or cv-unqualified object type T
+ // there exist candidate operator functions of the form
+ //
+ // T* operator+(T*, ptrdiff_t);
+ // T& operator[](T*, ptrdiff_t); [BELOW]
+ // T* operator-(T*, ptrdiff_t);
+ // T* operator+(ptrdiff_t, T*);
+ // T& operator[](ptrdiff_t, T*); [BELOW]
+ //
+ // C++ [over.built]p14:
+ //
+ // For every T, where T is a pointer to object type, there
+ // exist candidate operator functions of the form
+ //
+ // ptrdiff_t operator-(T, T);
+ void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
+ /// Set of (canonical) types that we've already handled.
+ llvm::SmallPtrSet<QualType, 8> AddedTypes;
+
+ for (int Arg = 0; Arg < 2; ++Arg) {
+ QualType AsymetricParamTypes[2] = {
+ S.Context.getPointerDiffType(),
+ S.Context.getPointerDiffType(),
+ };
+ for (BuiltinCandidateTypeSet::iterator
+ Ptr = CandidateTypes[Arg].pointer_begin(),
+ PtrEnd = CandidateTypes[Arg].pointer_end();
+ Ptr != PtrEnd; ++Ptr) {
+ QualType PointeeTy = (*Ptr)->getPointeeType();
+ if (!PointeeTy->isObjectType())
+ continue;
+
+ AsymetricParamTypes[Arg] = *Ptr;
+ if (Arg == 0 || Op == OO_Plus) {
+ // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
+ // T* operator+(ptrdiff_t, T*);
+ S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, CandidateSet);
+ }
+ if (Op == OO_Minus) {
+ // ptrdiff_t operator-(T, T);
+ if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
+ continue;
+
+ QualType ParamTypes[2] = { *Ptr, *Ptr };
+ S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes,
+ Args, CandidateSet);
+ }
+ }
+ }
+ }
+
+ // C++ [over.built]p12:
+ //
+ // For every pair of promoted arithmetic types L and R, there
+ // exist candidate operator functions of the form
+ //
+ // LR operator*(L, R);
+ // LR operator/(L, R);
+ // LR operator+(L, R);
+ // LR operator-(L, R);
+ // bool operator<(L, R);
+ // bool operator>(L, R);
+ // bool operator<=(L, R);
+ // bool operator>=(L, R);
+ // bool operator==(L, R);
+ // bool operator!=(L, R);
+ //
+ // where LR is the result of the usual arithmetic conversions
+ // between types L and R.
+ //
+ // C++ [over.built]p24:
+ //
+ // For every pair of promoted arithmetic types L and R, there exist
+ // candidate operator functions of the form
+ //
+ // LR operator?(bool, L, R);
+ //
+ // where LR is the result of the usual arithmetic conversions
+ // between types L and R.
+ // Our candidates ignore the first parameter.
+ void addGenericBinaryArithmeticOverloads(bool isComparison) {
+ if (!HasArithmeticOrEnumeralCandidateType)
+ return;
+
+ for (unsigned Left = FirstPromotedArithmeticType;
+ Left < LastPromotedArithmeticType; ++Left) {
+ for (unsigned Right = FirstPromotedArithmeticType;
+ Right < LastPromotedArithmeticType; ++Right) {
+ QualType LandR[2] = { getArithmeticType(Left),
+ getArithmeticType(Right) };
+ QualType Result =
+ isComparison ? S.Context.BoolTy
+ : getUsualArithmeticConversions(Left, Right);
+ S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
+ }
+ }
+
+ // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
+ // conditional operator for vector types.
+ for (BuiltinCandidateTypeSet::iterator
+ Vec1 = CandidateTypes[0].vector_begin(),
+ Vec1End = CandidateTypes[0].vector_end();
+ Vec1 != Vec1End; ++Vec1) {
+ for (BuiltinCandidateTypeSet::iterator
+ Vec2 = CandidateTypes[1].vector_begin(),
+ Vec2End = CandidateTypes[1].vector_end();
+ Vec2 != Vec2End; ++Vec2) {
+ QualType LandR[2] = { *Vec1, *Vec2 };
+ QualType Result = S.Context.BoolTy;
+ if (!isComparison) {
+ if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType())
+ Result = *Vec1;
+ else
+ Result = *Vec2;
+ }
+
+ S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
+ }
+ }
+ }
+
+ // C++ [over.built]p17:
+ //
+ // For every pair of promoted integral types L and R, there
+ // exist candidate operator functions of the form
+ //
+ // LR operator%(L, R);
+ // LR operator&(L, R);
+ // LR operator^(L, R);
+ // LR operator|(L, R);
+ // L operator<<(L, R);
+ // L operator>>(L, R);
+ //
+ // where LR is the result of the usual arithmetic conversions
+ // between types L and R.
+ void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
+ if (!HasArithmeticOrEnumeralCandidateType)
+ return;
+
+ for (unsigned Left = FirstPromotedIntegralType;
+ Left < LastPromotedIntegralType; ++Left) {
+ for (unsigned Right = FirstPromotedIntegralType;
+ Right < LastPromotedIntegralType; ++Right) {
+ QualType LandR[2] = { getArithmeticType(Left),
+ getArithmeticType(Right) };
+ QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
+ ? LandR[0]
+ : getUsualArithmeticConversions(Left, Right);
+ S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
+ }
+ }
+ }
+
+ // C++ [over.built]p20:
+ //
+ // For every pair (T, VQ), where T is an enumeration or
+ // pointer to member type and VQ is either volatile or
+ // empty, there exist candidate operator functions of the form
+ //
+ // VQ T& operator=(VQ T&, T);
+ void addAssignmentMemberPointerOrEnumeralOverloads() {
+ /// Set of (canonical) types that we've already handled.
+ llvm::SmallPtrSet<QualType, 8> AddedTypes;
+
+ for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
+ for (BuiltinCandidateTypeSet::iterator
+ Enum = CandidateTypes[ArgIdx].enumeration_begin(),
+ EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
+ Enum != EnumEnd; ++Enum) {
+ if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second)
+ continue;
+
+ AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, CandidateSet);
+ }
+
+ for (BuiltinCandidateTypeSet::iterator
+ MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
+ MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
+ MemPtr != MemPtrEnd; ++MemPtr) {
+ if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
+ continue;
+
+ AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, CandidateSet);
+ }
+ }
+ }
+
+ // C++ [over.built]p19:
+ //
+ // For every pair (T, VQ), where T is any type and VQ is either
+ // volatile or empty, there exist candidate operator functions
+ // of the form
+ //
+ // T*VQ& operator=(T*VQ&, T*);
+ //
+ // C++ [over.built]p21:
+ //
+ // For every pair (T, VQ), where T is a cv-qualified or
+ // cv-unqualified object type and VQ is either volatile or
+ // empty, there exist candidate operator functions of the form
+ //
+ // T*VQ& operator+=(T*VQ&, ptrdiff_t);
+ // T*VQ& operator-=(T*VQ&, ptrdiff_t);
+ void addAssignmentPointerOverloads(bool isEqualOp) {
+ /// Set of (canonical) types that we've already handled.
+ llvm::SmallPtrSet<QualType, 8> AddedTypes;
+
+ for (BuiltinCandidateTypeSet::iterator
+ Ptr = CandidateTypes[0].pointer_begin(),
+ PtrEnd = CandidateTypes[0].pointer_end();
+ Ptr != PtrEnd; ++Ptr) {
+ // If this is operator=, keep track of the builtin candidates we added.
+ if (isEqualOp)
+ AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
+ else if (!(*Ptr)->getPointeeType()->isObjectType())
+ continue;
+
+ // non-volatile version
+ QualType ParamTypes[2] = {
+ S.Context.getLValueReferenceType(*Ptr),
+ isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
+ };
+ S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
+ /*IsAssigmentOperator=*/ isEqualOp);
+
+ bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
+ VisibleTypeConversionsQuals.hasVolatile();
+ if (NeedVolatile) {
+ // volatile version
+ ParamTypes[0] =
+ S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
+ S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
+ /*IsAssigmentOperator=*/isEqualOp);
+ }
+
+ if (!(*Ptr).isRestrictQualified() &&
+ VisibleTypeConversionsQuals.hasRestrict()) {
+ // restrict version
+ ParamTypes[0]
+ = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
+ S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
+ /*IsAssigmentOperator=*/isEqualOp);
+
+ if (NeedVolatile) {
+ // volatile restrict version
+ ParamTypes[0]
+ = S.Context.getLValueReferenceType(
+ S.Context.getCVRQualifiedType(*Ptr,
+ (Qualifiers::Volatile |
+ Qualifiers::Restrict)));
+ S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
+ /*IsAssigmentOperator=*/isEqualOp);
+ }
+ }
+ }
+
+ if (isEqualOp) {
+ for (BuiltinCandidateTypeSet::iterator
+ Ptr = CandidateTypes[1].pointer_begin(),
+ PtrEnd = CandidateTypes[1].pointer_end();
+ Ptr != PtrEnd; ++Ptr) {
+ // Make sure we don't add the same candidate twice.
+ if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
+ continue;
+
+ QualType ParamTypes[2] = {
+ S.Context.getLValueReferenceType(*Ptr),
+ *Ptr,
+ };
+
+ // non-volatile version
+ S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
+ /*IsAssigmentOperator=*/true);
+
+ bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
+ VisibleTypeConversionsQuals.hasVolatile();
+ if (NeedVolatile) {
+ // volatile version
+ ParamTypes[0] =
+ S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
+ S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
+ /*IsAssigmentOperator=*/true);
+ }
+
+ if (!(*Ptr).isRestrictQualified() &&
+ VisibleTypeConversionsQuals.hasRestrict()) {
+ // restrict version
+ ParamTypes[0]
+ = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
+ S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
+ /*IsAssigmentOperator=*/true);
+
+ if (NeedVolatile) {
+ // volatile restrict version
+ ParamTypes[0]
+ = S.Context.getLValueReferenceType(
+ S.Context.getCVRQualifiedType(*Ptr,
+ (Qualifiers::Volatile |
+ Qualifiers::Restrict)));
+ S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
+ /*IsAssigmentOperator=*/true);
+ }
+ }
+ }
+ }
+ }
+
+ // C++ [over.built]p18:
+ //
+ // For every triple (L, VQ, R), where L is an arithmetic type,
+ // VQ is either volatile or empty, and R is a promoted
+ // arithmetic type, there exist candidate operator functions of
+ // the form
+ //
+ // VQ L& operator=(VQ L&, R);
+ // VQ L& operator*=(VQ L&, R);
+ // VQ L& operator/=(VQ L&, R);
+ // VQ L& operator+=(VQ L&, R);
+ // VQ L& operator-=(VQ L&, R);
+ void addAssignmentArithmeticOverloads(bool isEqualOp) {
+ if (!HasArithmeticOrEnumeralCandidateType)
+ return;
+
+ for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
+ for (unsigned Right = FirstPromotedArithmeticType;
+ Right < LastPromotedArithmeticType; ++Right) {
+ QualType ParamTypes[2];
+ ParamTypes[1] = getArithmeticType(Right);
+
+ // Add this built-in operator as a candidate (VQ is empty).
+ ParamTypes[0] =
+ S.Context.getLValueReferenceType(getArithmeticType(Left));
+ S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
+ /*IsAssigmentOperator=*/isEqualOp);
+
+ // Add this built-in operator as a candidate (VQ is 'volatile').
+ if (VisibleTypeConversionsQuals.hasVolatile()) {
+ ParamTypes[0] =
+ S.Context.getVolatileType(getArithmeticType(Left));
+ ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
+ S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
+ /*IsAssigmentOperator=*/isEqualOp);
+ }
+ }
+ }
+
+ // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
+ for (BuiltinCandidateTypeSet::iterator
+ Vec1 = CandidateTypes[0].vector_begin(),
+ Vec1End = CandidateTypes[0].vector_end();
+ Vec1 != Vec1End; ++Vec1) {
+ for (BuiltinCandidateTypeSet::iterator
+ Vec2 = CandidateTypes[1].vector_begin(),
+ Vec2End = CandidateTypes[1].vector_end();
+ Vec2 != Vec2End; ++Vec2) {
+ QualType ParamTypes[2];
+ ParamTypes[1] = *Vec2;
+ // Add this built-in operator as a candidate (VQ is empty).
+ ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
+ S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
+ /*IsAssigmentOperator=*/isEqualOp);
+
+ // Add this built-in operator as a candidate (VQ is 'volatile').
+ if (VisibleTypeConversionsQuals.hasVolatile()) {
+ ParamTypes[0] = S.Context.getVolatileType(*Vec1);
+ ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
+ S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
+ /*IsAssigmentOperator=*/isEqualOp);
+ }
+ }
+ }
+ }
+
+ // C++ [over.built]p22:
+ //
+ // For every triple (L, VQ, R), where L is an integral type, VQ
+ // is either volatile or empty, and R is a promoted integral
+ // type, there exist candidate operator functions of the form
+ //
+ // VQ L& operator%=(VQ L&, R);
+ // VQ L& operator<<=(VQ L&, R);
+ // VQ L& operator>>=(VQ L&, R);
+ // VQ L& operator&=(VQ L&, R);
+ // VQ L& operator^=(VQ L&, R);
+ // VQ L& operator|=(VQ L&, R);
+ void addAssignmentIntegralOverloads() {
+ if (!HasArithmeticOrEnumeralCandidateType)
+ return;
+
+ for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
+ for (unsigned Right = FirstPromotedIntegralType;
+ Right < LastPromotedIntegralType; ++Right) {
+ QualType ParamTypes[2];
+ ParamTypes[1] = getArithmeticType(Right);
+
+ // Add this built-in operator as a candidate (VQ is empty).
+ ParamTypes[0] =
+ S.Context.getLValueReferenceType(getArithmeticType(Left));
+ S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
+ if (VisibleTypeConversionsQuals.hasVolatile()) {
+ // Add this built-in operator as a candidate (VQ is 'volatile').
+ ParamTypes[0] = getArithmeticType(Left);
+ ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
+ ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
+ S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
+ }
+ }
+ }
+ }
+
+ // C++ [over.operator]p23:
+ //
+ // There also exist candidate operator functions of the form
+ //
+ // bool operator!(bool);
+ // bool operator&&(bool, bool);
+ // bool operator||(bool, bool);
+ void addExclaimOverload() {
+ QualType ParamTy = S.Context.BoolTy;
+ S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, CandidateSet,
+ /*IsAssignmentOperator=*/false,
+ /*NumContextualBoolArguments=*/1);
+ }
+ void addAmpAmpOrPipePipeOverload() {
+ QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
+ S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet,
+ /*IsAssignmentOperator=*/false,
+ /*NumContextualBoolArguments=*/2);
+ }
+
+ // C++ [over.built]p13:
+ //
+ // For every cv-qualified or cv-unqualified object type T there
+ // exist candidate operator functions of the form
+ //
+ // T* operator+(T*, ptrdiff_t); [ABOVE]
+ // T& operator[](T*, ptrdiff_t);
+ // T* operator-(T*, ptrdiff_t); [ABOVE]
+ // T* operator+(ptrdiff_t, T*); [ABOVE]
+ // T& operator[](ptrdiff_t, T*);
+ void addSubscriptOverloads() {
+ for (BuiltinCandidateTypeSet::iterator
+ Ptr = CandidateTypes[0].pointer_begin(),
+ PtrEnd = CandidateTypes[0].pointer_end();
+ Ptr != PtrEnd; ++Ptr) {
+ QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
+ QualType PointeeType = (*Ptr)->getPointeeType();
+ if (!PointeeType->isObjectType())
+ continue;
+
+ QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
+
+ // T& operator[](T*, ptrdiff_t)
+ S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
+ }
+
+ for (BuiltinCandidateTypeSet::iterator
+ Ptr = CandidateTypes[1].pointer_begin(),
+ PtrEnd = CandidateTypes[1].pointer_end();
+ Ptr != PtrEnd; ++Ptr) {
+ QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
+ QualType PointeeType = (*Ptr)->getPointeeType();
+ if (!PointeeType->isObjectType())
+ continue;
+
+ QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
+
+ // T& operator[](ptrdiff_t, T*)
+ S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
+ }
+ }
+
+ // C++ [over.built]p11:
+ // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
+ // C1 is the same type as C2 or is a derived class of C2, T is an object
+ // type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
+ // there exist candidate operator functions of the form
+ //
+ // CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
+ //
+ // where CV12 is the union of CV1 and CV2.
+ void addArrowStarOverloads() {
+ for (BuiltinCandidateTypeSet::iterator
+ Ptr = CandidateTypes[0].pointer_begin(),
+ PtrEnd = CandidateTypes[0].pointer_end();
+ Ptr != PtrEnd; ++Ptr) {
+ QualType C1Ty = (*Ptr);
+ QualType C1;
+ QualifierCollector Q1;
+ C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
+ if (!isa<RecordType>(C1))
+ continue;
+ // heuristic to reduce number of builtin candidates in the set.
+ // Add volatile/restrict version only if there are conversions to a
+ // volatile/restrict type.
+ if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
+ continue;
+ if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
+ continue;
+ for (BuiltinCandidateTypeSet::iterator
+ MemPtr = CandidateTypes[1].member_pointer_begin(),
+ MemPtrEnd = CandidateTypes[1].member_pointer_end();
+ MemPtr != MemPtrEnd; ++MemPtr) {
+ const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
+ QualType C2 = QualType(mptr->getClass(), 0);
+ C2 = C2.getUnqualifiedType();
+ if (C1 != C2 && !S.IsDerivedFrom(C1, C2))
+ break;
+ QualType ParamTypes[2] = { *Ptr, *MemPtr };
+ // build CV12 T&
+ QualType T = mptr->getPointeeType();
+ if (!VisibleTypeConversionsQuals.hasVolatile() &&
+ T.isVolatileQualified())
+ continue;
+ if (!VisibleTypeConversionsQuals.hasRestrict() &&
+ T.isRestrictQualified())
+ continue;
+ T = Q1.apply(S.Context, T);
+ QualType ResultTy = S.Context.getLValueReferenceType(T);
+ S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
+ }
+ }
+ }
+
+ // Note that we don't consider the first argument, since it has been
+ // contextually converted to bool long ago. The candidates below are
+ // therefore added as binary.
+ //
+ // C++ [over.built]p25:
+ // For every type T, where T is a pointer, pointer-to-member, or scoped
+ // enumeration type, there exist candidate operator functions of the form
+ //
+ // T operator?(bool, T, T);
+ //
+ void addConditionalOperatorOverloads() {
+ /// Set of (canonical) types that we've already handled.
+ llvm::SmallPtrSet<QualType, 8> AddedTypes;
+
+ for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
+ for (BuiltinCandidateTypeSet::iterator
+ Ptr = CandidateTypes[ArgIdx].pointer_begin(),
+ PtrEnd = CandidateTypes[ArgIdx].pointer_end();
+ Ptr != PtrEnd; ++Ptr) {
+ if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
+ continue;
+
+ QualType ParamTypes[2] = { *Ptr, *Ptr };
+ S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, CandidateSet);
+ }
+
+ for (BuiltinCandidateTypeSet::iterator
+ MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
+ MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
+ MemPtr != MemPtrEnd; ++MemPtr) {
+ if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
+ continue;
+
+ QualType ParamTypes[2] = { *MemPtr, *MemPtr };
+ S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, CandidateSet);
+ }
+
+ if (S.getLangOpts().CPlusPlus11) {
+ for (BuiltinCandidateTypeSet::iterator
+ Enum = CandidateTypes[ArgIdx].enumeration_begin(),
+ EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
+ Enum != EnumEnd; ++Enum) {
+ if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped())
+ continue;
+
+ if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second)
+ continue;
+
+ QualType ParamTypes[2] = { *Enum, *Enum };
+ S.AddBuiltinCandidate(*Enum, ParamTypes, Args, CandidateSet);
+ }
+ }
+ }
+ }
+};
+
+} // end anonymous namespace
+
+/// AddBuiltinOperatorCandidates - Add the appropriate built-in
+/// operator overloads to the candidate set (C++ [over.built]), based
+/// on the operator @p Op and the arguments given. For example, if the
+/// operator is a binary '+', this routine might add "int
+/// operator+(int, int)" to cover integer addition.
+void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
+ SourceLocation OpLoc,
+ ArrayRef<Expr *> Args,
+ OverloadCandidateSet &CandidateSet) {
+ // Find all of the types that the arguments can convert to, but only
+ // if the operator we're looking at has built-in operator candidates
+ // that make use of these types. Also record whether we encounter non-record
+ // candidate types or either arithmetic or enumeral candidate types.
+ Qualifiers VisibleTypeConversionsQuals;
+ VisibleTypeConversionsQuals.addConst();
+ for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
+ VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
+
+ bool HasNonRecordCandidateType = false;
+ bool HasArithmeticOrEnumeralCandidateType = false;
+ SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
+ for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
+ CandidateTypes.emplace_back(*this);
+ CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
+ OpLoc,
+ true,
+ (Op == OO_Exclaim ||
+ Op == OO_AmpAmp ||
+ Op == OO_PipePipe),
+ VisibleTypeConversionsQuals);
+ HasNonRecordCandidateType = HasNonRecordCandidateType ||
+ CandidateTypes[ArgIdx].hasNonRecordTypes();
+ HasArithmeticOrEnumeralCandidateType =
+ HasArithmeticOrEnumeralCandidateType ||
+ CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
+ }
+
+ // Exit early when no non-record types have been added to the candidate set
+ // for any of the arguments to the operator.
+ //
+ // We can't exit early for !, ||, or &&, since there we have always have
+ // 'bool' overloads.
+ if (!HasNonRecordCandidateType &&
+ !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
+ return;
+
+ // Setup an object to manage the common state for building overloads.
+ BuiltinOperatorOverloadBuilder OpBuilder(*this, Args,
+ VisibleTypeConversionsQuals,
+ HasArithmeticOrEnumeralCandidateType,
+ CandidateTypes, CandidateSet);
+
+ // Dispatch over the operation to add in only those overloads which apply.
+ switch (Op) {
+ case OO_None:
+ case NUM_OVERLOADED_OPERATORS:
+ llvm_unreachable("Expected an overloaded operator");
+
+ case OO_New:
+ case OO_Delete:
+ case OO_Array_New:
+ case OO_Array_Delete:
+ case OO_Call:
+ llvm_unreachable(
+ "Special operators don't use AddBuiltinOperatorCandidates");
+
+ case OO_Comma:
+ case OO_Arrow:
+ // C++ [over.match.oper]p3:
+ // -- For the operator ',', the unary operator '&', or the
+ // operator '->', the built-in candidates set is empty.
+ break;
+
+ case OO_Plus: // '+' is either unary or binary
+ if (Args.size() == 1)
+ OpBuilder.addUnaryPlusPointerOverloads();
+ // Fall through.
+
+ case OO_Minus: // '-' is either unary or binary
+ if (Args.size() == 1) {
+ OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
+ } else {
+ OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
+ OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
+ }
+ break;
+
+ case OO_Star: // '*' is either unary or binary
+ if (Args.size() == 1)
+ OpBuilder.addUnaryStarPointerOverloads();
+ else
+ OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
+ break;
+
+ case OO_Slash:
+ OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
+ break;
+
+ case OO_PlusPlus:
+ case OO_MinusMinus:
+ OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
+ OpBuilder.addPlusPlusMinusMinusPointerOverloads();
+ break;
+
+ case OO_EqualEqual:
+ case OO_ExclaimEqual:
+ OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads();
+ // Fall through.
+
+ case OO_Less:
+ case OO_Greater:
+ case OO_LessEqual:
+ case OO_GreaterEqual:
+ OpBuilder.addRelationalPointerOrEnumeralOverloads();
+ OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true);
+ break;
+
+ case OO_Percent:
+ case OO_Caret:
+ case OO_Pipe:
+ case OO_LessLess:
+ case OO_GreaterGreater:
+ OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
+ break;
+
+ case OO_Amp: // '&' is either unary or binary
+ if (Args.size() == 1)
+ // C++ [over.match.oper]p3:
+ // -- For the operator ',', the unary operator '&', or the
+ // operator '->', the built-in candidates set is empty.
+ break;
+
+ OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
+ break;
+
+ case OO_Tilde:
+ OpBuilder.addUnaryTildePromotedIntegralOverloads();
+ break;
+
+ case OO_Equal:
+ OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
+ // Fall through.
+
+ case OO_PlusEqual:
+ case OO_MinusEqual:
+ OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
+ // Fall through.
+
+ case OO_StarEqual:
+ case OO_SlashEqual:
+ OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
+ break;
+
+ case OO_PercentEqual:
+ case OO_LessLessEqual:
+ case OO_GreaterGreaterEqual:
+ case OO_AmpEqual:
+ case OO_CaretEqual:
+ case OO_PipeEqual:
+ OpBuilder.addAssignmentIntegralOverloads();
+ break;
+
+ case OO_Exclaim:
+ OpBuilder.addExclaimOverload();
+ break;
+
+ case OO_AmpAmp:
+ case OO_PipePipe:
+ OpBuilder.addAmpAmpOrPipePipeOverload();
+ break;
+
+ case OO_Subscript:
+ OpBuilder.addSubscriptOverloads();
+ break;
+
+ case OO_ArrowStar:
+ OpBuilder.addArrowStarOverloads();
+ break;
+
+ case OO_Conditional:
+ OpBuilder.addConditionalOperatorOverloads();
+ OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
+ break;
+ }
+}
+
+/// \brief Add function candidates found via argument-dependent lookup
+/// to the set of overloading candidates.
+///
+/// This routine performs argument-dependent name lookup based on the
+/// given function name (which may also be an operator name) and adds
+/// all of the overload candidates found by ADL to the overload
+/// candidate set (C++ [basic.lookup.argdep]).
+void
+Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
+ SourceLocation Loc,
+ ArrayRef<Expr *> Args,
+ TemplateArgumentListInfo *ExplicitTemplateArgs,
+ OverloadCandidateSet& CandidateSet,
+ bool PartialOverloading) {
+ ADLResult Fns;
+
+ // FIXME: This approach for uniquing ADL results (and removing
+ // redundant candidates from the set) relies on pointer-equality,
+ // which means we need to key off the canonical decl. However,
+ // always going back to the canonical decl might not get us the
+ // right set of default arguments. What default arguments are
+ // we supposed to consider on ADL candidates, anyway?
+
+ // FIXME: Pass in the explicit template arguments?
+ ArgumentDependentLookup(Name, Loc, Args, Fns);
+
+ // Erase all of the candidates we already knew about.
+ for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
+ CandEnd = CandidateSet.end();
+ Cand != CandEnd; ++Cand)
+ if (Cand->Function) {
+ Fns.erase(Cand->Function);
+ if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
+ Fns.erase(FunTmpl);
+ }
+
+ // For each of the ADL candidates we found, add it to the overload
+ // set.
+ for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
+ DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
+ if (ExplicitTemplateArgs)
+ continue;
+
+ AddOverloadCandidate(FD, FoundDecl, Args, CandidateSet, false,
+ PartialOverloading);
+ } else
+ AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
+ FoundDecl, ExplicitTemplateArgs,
+ Args, CandidateSet, PartialOverloading);
+ }
+}
+
+/// isBetterOverloadCandidate - Determines whether the first overload
+/// candidate is a better candidate than the second (C++ 13.3.3p1).
+bool clang::isBetterOverloadCandidate(Sema &S, const OverloadCandidate &Cand1,
+ const OverloadCandidate &Cand2,
+ SourceLocation Loc,
+ bool UserDefinedConversion) {
+ // Define viable functions to be better candidates than non-viable
+ // functions.
+ if (!Cand2.Viable)
+ return Cand1.Viable;
+ else if (!Cand1.Viable)
+ return false;
+
+ // C++ [over.match.best]p1:
+ //
+ // -- if F is a static member function, ICS1(F) is defined such
+ // that ICS1(F) is neither better nor worse than ICS1(G) for
+ // any function G, and, symmetrically, ICS1(G) is neither
+ // better nor worse than ICS1(F).
+ unsigned StartArg = 0;
+ if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
+ StartArg = 1;
+
+ // C++ [over.match.best]p1:
+ // A viable function F1 is defined to be a better function than another
+ // viable function F2 if for all arguments i, ICSi(F1) is not a worse
+ // conversion sequence than ICSi(F2), and then...
+ unsigned NumArgs = Cand1.NumConversions;
+ assert(Cand2.NumConversions == NumArgs && "Overload candidate mismatch");
+ bool HasBetterConversion = false;
+ for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
+ switch (CompareImplicitConversionSequences(S,
+ Cand1.Conversions[ArgIdx],
+ Cand2.Conversions[ArgIdx])) {
+ case ImplicitConversionSequence::Better:
+ // Cand1 has a better conversion sequence.
+ HasBetterConversion = true;
+ break;
+
+ case ImplicitConversionSequence::Worse:
+ // Cand1 can't be better than Cand2.
+ return false;
+
+ case ImplicitConversionSequence::Indistinguishable:
+ // Do nothing.
+ break;
+ }
+ }
+
+ // -- for some argument j, ICSj(F1) is a better conversion sequence than
+ // ICSj(F2), or, if not that,
+ if (HasBetterConversion)
+ return true;
+
+ // -- the context is an initialization by user-defined conversion
+ // (see 8.5, 13.3.1.5) and the standard conversion sequence
+ // from the return type of F1 to the destination type (i.e.,
+ // the type of the entity being initialized) is a better
+ // conversion sequence than the standard conversion sequence
+ // from the return type of F2 to the destination type.
+ if (UserDefinedConversion && Cand1.Function && Cand2.Function &&
+ isa<CXXConversionDecl>(Cand1.Function) &&
+ isa<CXXConversionDecl>(Cand2.Function)) {
+ // First check whether we prefer one of the conversion functions over the
+ // other. This only distinguishes the results in non-standard, extension
+ // cases such as the conversion from a lambda closure type to a function
+ // pointer or block.
+ ImplicitConversionSequence::CompareKind Result =
+ compareConversionFunctions(S, Cand1.Function, Cand2.Function);
+ if (Result == ImplicitConversionSequence::Indistinguishable)
+ Result = CompareStandardConversionSequences(S,
+ Cand1.FinalConversion,
+ Cand2.FinalConversion);
+
+ if (Result != ImplicitConversionSequence::Indistinguishable)
+ return Result == ImplicitConversionSequence::Better;
+
+ // FIXME: Compare kind of reference binding if conversion functions
+ // convert to a reference type used in direct reference binding, per
+ // C++14 [over.match.best]p1 section 2 bullet 3.
+ }
+
+ // -- F1 is a non-template function and F2 is a function template
+ // specialization, or, if not that,
+ bool Cand1IsSpecialization = Cand1.Function &&
+ Cand1.Function->getPrimaryTemplate();
+ bool Cand2IsSpecialization = Cand2.Function &&
+ Cand2.Function->getPrimaryTemplate();
+ if (Cand1IsSpecialization != Cand2IsSpecialization)
+ return Cand2IsSpecialization;
+
+ // -- F1 and F2 are function template specializations, and the function
+ // template for F1 is more specialized than the template for F2
+ // according to the partial ordering rules described in 14.5.5.2, or,
+ // if not that,
+ if (Cand1IsSpecialization && Cand2IsSpecialization) {
+ if (FunctionTemplateDecl *BetterTemplate
+ = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
+ Cand2.Function->getPrimaryTemplate(),
+ Loc,
+ isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
+ : TPOC_Call,
+ Cand1.ExplicitCallArguments,
+ Cand2.ExplicitCallArguments))
+ return BetterTemplate == Cand1.Function->getPrimaryTemplate();
+ }
+
+ // Check for enable_if value-based overload resolution.
+ if (Cand1.Function && Cand2.Function &&
+ (Cand1.Function->hasAttr<EnableIfAttr>() ||
+ Cand2.Function->hasAttr<EnableIfAttr>())) {
+ // FIXME: The next several lines are just
+ // specific_attr_iterator<EnableIfAttr> but going in declaration order,
+ // instead of reverse order which is how they're stored in the AST.
+ AttrVec Cand1Attrs;
+ if (Cand1.Function->hasAttrs()) {
+ Cand1Attrs = Cand1.Function->getAttrs();
+ Cand1Attrs.erase(std::remove_if(Cand1Attrs.begin(), Cand1Attrs.end(),
+ IsNotEnableIfAttr),
+ Cand1Attrs.end());
+ std::reverse(Cand1Attrs.begin(), Cand1Attrs.end());
+ }
+
+ AttrVec Cand2Attrs;
+ if (Cand2.Function->hasAttrs()) {
+ Cand2Attrs = Cand2.Function->getAttrs();
+ Cand2Attrs.erase(std::remove_if(Cand2Attrs.begin(), Cand2Attrs.end(),
+ IsNotEnableIfAttr),
+ Cand2Attrs.end());
+ std::reverse(Cand2Attrs.begin(), Cand2Attrs.end());
+ }
+
+ // Candidate 1 is better if it has strictly more attributes and
+ // the common sequence is identical.
+ if (Cand1Attrs.size() <= Cand2Attrs.size())
+ return false;
+
+ auto Cand1I = Cand1Attrs.begin();
+ for (auto &Cand2A : Cand2Attrs) {
+ auto &Cand1A = *Cand1I++;
+ llvm::FoldingSetNodeID Cand1ID, Cand2ID;
+ cast<EnableIfAttr>(Cand1A)->getCond()->Profile(Cand1ID,
+ S.getASTContext(), true);
+ cast<EnableIfAttr>(Cand2A)->getCond()->Profile(Cand2ID,
+ S.getASTContext(), true);
+ if (Cand1ID != Cand2ID)
+ return false;
+ }
+
+ return true;
+ }
+
+ return false;
+}
+
+/// \brief Computes the best viable function (C++ 13.3.3)
+/// within an overload candidate set.
+///
+/// \param Loc The location of the function name (or operator symbol) for
+/// which overload resolution occurs.
+///
+/// \param Best If overload resolution was successful or found a deleted
+/// function, \p Best points to the candidate function found.
+///
+/// \returns The result of overload resolution.
+OverloadingResult
+OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
+ iterator &Best,
+ bool UserDefinedConversion) {
+ // Find the best viable function.
+ Best = end();
+ for (iterator Cand = begin(); Cand != end(); ++Cand) {
+ if (Cand->Viable)
+ if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc,
+ UserDefinedConversion))
+ Best = Cand;
+ }
+
+ // If we didn't find any viable functions, abort.
+ if (Best == end())
+ return OR_No_Viable_Function;
+
+ // Make sure that this function is better than every other viable
+ // function. If not, we have an ambiguity.
+ for (iterator Cand = begin(); Cand != end(); ++Cand) {
+ if (Cand->Viable &&
+ Cand != Best &&
+ !isBetterOverloadCandidate(S, *Best, *Cand, Loc,
+ UserDefinedConversion)) {
+ Best = end();
+ return OR_Ambiguous;
+ }
+ }
+
+ // Best is the best viable function.
+ if (Best->Function &&
+ (Best->Function->isDeleted() ||
+ S.isFunctionConsideredUnavailable(Best->Function)))
+ return OR_Deleted;
+
+ return OR_Success;
+}
+
+namespace {
+
+enum OverloadCandidateKind {
+ oc_function,
+ oc_method,
+ oc_constructor,
+ oc_function_template,
+ oc_method_template,
+ oc_constructor_template,
+ oc_implicit_default_constructor,
+ oc_implicit_copy_constructor,
+ oc_implicit_move_constructor,
+ oc_implicit_copy_assignment,
+ oc_implicit_move_assignment,
+ oc_implicit_inherited_constructor
+};
+
+OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
+ FunctionDecl *Fn,
+ std::string &Description) {
+ bool isTemplate = false;
+
+ if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
+ isTemplate = true;
+ Description = S.getTemplateArgumentBindingsText(
+ FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
+ }
+
+ if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
+ if (!Ctor->isImplicit())
+ return isTemplate ? oc_constructor_template : oc_constructor;
+
+ if (Ctor->getInheritedConstructor())
+ return oc_implicit_inherited_constructor;
+
+ if (Ctor->isDefaultConstructor())
+ return oc_implicit_default_constructor;
+
+ if (Ctor->isMoveConstructor())
+ return oc_implicit_move_constructor;
+
+ assert(Ctor->isCopyConstructor() &&
+ "unexpected sort of implicit constructor");
+ return oc_implicit_copy_constructor;
+ }
+
+ if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
+ // This actually gets spelled 'candidate function' for now, but
+ // it doesn't hurt to split it out.
+ if (!Meth->isImplicit())
+ return isTemplate ? oc_method_template : oc_method;
+
+ if (Meth->isMoveAssignmentOperator())
+ return oc_implicit_move_assignment;
+
+ if (Meth->isCopyAssignmentOperator())
+ return oc_implicit_copy_assignment;
+
+ assert(isa<CXXConversionDecl>(Meth) && "expected conversion");
+ return oc_method;
+ }
+
+ return isTemplate ? oc_function_template : oc_function;
+}
+
+void MaybeEmitInheritedConstructorNote(Sema &S, Decl *Fn) {
+ const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn);
+ if (!Ctor) return;
+
+ Ctor = Ctor->getInheritedConstructor();
+ if (!Ctor) return;
+
+ S.Diag(Ctor->getLocation(), diag::note_ovl_candidate_inherited_constructor);
+}
+
+} // end anonymous namespace
+
+// Notes the location of an overload candidate.
+void Sema::NoteOverloadCandidate(FunctionDecl *Fn, QualType DestType) {
+ std::string FnDesc;
+ OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
+ PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
+ << (unsigned) K << FnDesc;
+ HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
+ Diag(Fn->getLocation(), PD);
+ MaybeEmitInheritedConstructorNote(*this, Fn);
+}
+
+// Notes the location of all overload candidates designated through
+// OverloadedExpr
+void Sema::NoteAllOverloadCandidates(Expr* OverloadedExpr, QualType DestType) {
+ assert(OverloadedExpr->getType() == Context.OverloadTy);
+
+ OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
+ OverloadExpr *OvlExpr = Ovl.Expression;
+
+ for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
+ IEnd = OvlExpr->decls_end();
+ I != IEnd; ++I) {
+ if (FunctionTemplateDecl *FunTmpl =
+ dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
+ NoteOverloadCandidate(FunTmpl->getTemplatedDecl(), DestType);
+ } else if (FunctionDecl *Fun
+ = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
+ NoteOverloadCandidate(Fun, DestType);
+ }
+ }
+}
+
+/// Diagnoses an ambiguous conversion. The partial diagnostic is the
+/// "lead" diagnostic; it will be given two arguments, the source and
+/// target types of the conversion.
+void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
+ Sema &S,
+ SourceLocation CaretLoc,
+ const PartialDiagnostic &PDiag) const {
+ S.Diag(CaretLoc, PDiag)
+ << Ambiguous.getFromType() << Ambiguous.getToType();
+ // FIXME: The note limiting machinery is borrowed from
+ // OverloadCandidateSet::NoteCandidates; there's an opportunity for
+ // refactoring here.
+ const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
+ unsigned CandsShown = 0;
+ AmbiguousConversionSequence::const_iterator I, E;
+ for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
+ if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
+ break;
+ ++CandsShown;
+ S.NoteOverloadCandidate(*I);
+ }
+ if (I != E)
+ S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I);
+}
+
+static void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand,
+ unsigned I) {
+ const ImplicitConversionSequence &Conv = Cand->Conversions[I];
+ assert(Conv.isBad());
+ assert(Cand->Function && "for now, candidate must be a function");
+ FunctionDecl *Fn = Cand->Function;
+
+ // There's a conversion slot for the object argument if this is a
+ // non-constructor method. Note that 'I' corresponds the
+ // conversion-slot index.
+ bool isObjectArgument = false;
+ if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
+ if (I == 0)
+ isObjectArgument = true;
+ else
+ I--;
+ }
+
+ std::string FnDesc;
+ OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
+
+ Expr *FromExpr = Conv.Bad.FromExpr;
+ QualType FromTy = Conv.Bad.getFromType();
+ QualType ToTy = Conv.Bad.getToType();
+
+ if (FromTy == S.Context.OverloadTy) {
+ assert(FromExpr && "overload set argument came from implicit argument?");
+ Expr *E = FromExpr->IgnoreParens();
+ if (isa<UnaryOperator>(E))
+ E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
+ DeclarationName Name = cast<OverloadExpr>(E)->getName();
+
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
+ << (unsigned) FnKind << FnDesc
+ << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
+ << ToTy << Name << I+1;
+ MaybeEmitInheritedConstructorNote(S, Fn);
+ return;
+ }
+
+ // Do some hand-waving analysis to see if the non-viability is due
+ // to a qualifier mismatch.
+ CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
+ CanQualType CToTy = S.Context.getCanonicalType(ToTy);
+ if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
+ CToTy = RT->getPointeeType();
+ else {
+ // TODO: detect and diagnose the full richness of const mismatches.
+ if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
+ if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
+ CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
+ }
+
+ if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
+ !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
+ Qualifiers FromQs = CFromTy.getQualifiers();
+ Qualifiers ToQs = CToTy.getQualifiers();
+
+ if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
+ << (unsigned) FnKind << FnDesc
+ << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
+ << FromTy
+ << FromQs.getAddressSpace() << ToQs.getAddressSpace()
+ << (unsigned) isObjectArgument << I+1;
+ MaybeEmitInheritedConstructorNote(S, Fn);
+ return;
+ }
+
+ if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
+ << (unsigned) FnKind << FnDesc
+ << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
+ << FromTy
+ << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
+ << (unsigned) isObjectArgument << I+1;
+ MaybeEmitInheritedConstructorNote(S, Fn);
+ return;
+ }
+
+ if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
+ << (unsigned) FnKind << FnDesc
+ << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
+ << FromTy
+ << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
+ << (unsigned) isObjectArgument << I+1;
+ MaybeEmitInheritedConstructorNote(S, Fn);
+ return;
+ }
+
+ unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
+ assert(CVR && "unexpected qualifiers mismatch");
+
+ if (isObjectArgument) {
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
+ << (unsigned) FnKind << FnDesc
+ << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
+ << FromTy << (CVR - 1);
+ } else {
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
+ << (unsigned) FnKind << FnDesc
+ << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
+ << FromTy << (CVR - 1) << I+1;
+ }
+ MaybeEmitInheritedConstructorNote(S, Fn);
+ return;
+ }
+
+ // Special diagnostic for failure to convert an initializer list, since
+ // telling the user that it has type void is not useful.
+ if (FromExpr && isa<InitListExpr>(FromExpr)) {
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
+ << (unsigned) FnKind << FnDesc
+ << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
+ << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
+ MaybeEmitInheritedConstructorNote(S, Fn);
+ return;
+ }
+
+ // Diagnose references or pointers to incomplete types differently,
+ // since it's far from impossible that the incompleteness triggered
+ // the failure.
+ QualType TempFromTy = FromTy.getNonReferenceType();
+ if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
+ TempFromTy = PTy->getPointeeType();
+ if (TempFromTy->isIncompleteType()) {
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
+ << (unsigned) FnKind << FnDesc
+ << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
+ << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
+ MaybeEmitInheritedConstructorNote(S, Fn);
+ return;
+ }
+
+ // Diagnose base -> derived pointer conversions.
+ unsigned BaseToDerivedConversion = 0;
+ if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
+ if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
+ if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
+ FromPtrTy->getPointeeType()) &&
+ !FromPtrTy->getPointeeType()->isIncompleteType() &&
+ !ToPtrTy->getPointeeType()->isIncompleteType() &&
+ S.IsDerivedFrom(ToPtrTy->getPointeeType(),
+ FromPtrTy->getPointeeType()))
+ BaseToDerivedConversion = 1;
+ }
+ } else if (const ObjCObjectPointerType *FromPtrTy
+ = FromTy->getAs<ObjCObjectPointerType>()) {
+ if (const ObjCObjectPointerType *ToPtrTy
+ = ToTy->getAs<ObjCObjectPointerType>())
+ if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
+ if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
+ if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
+ FromPtrTy->getPointeeType()) &&
+ FromIface->isSuperClassOf(ToIface))
+ BaseToDerivedConversion = 2;
+ } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
+ if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
+ !FromTy->isIncompleteType() &&
+ !ToRefTy->getPointeeType()->isIncompleteType() &&
+ S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy)) {
+ BaseToDerivedConversion = 3;
+ } else if (ToTy->isLValueReferenceType() && !FromExpr->isLValue() &&
+ ToTy.getNonReferenceType().getCanonicalType() ==
+ FromTy.getNonReferenceType().getCanonicalType()) {
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_lvalue)
+ << (unsigned) FnKind << FnDesc
+ << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
+ << (unsigned) isObjectArgument << I + 1;
+ MaybeEmitInheritedConstructorNote(S, Fn);
+ return;
+ }
+ }
+
+ if (BaseToDerivedConversion) {
+ S.Diag(Fn->getLocation(),
+ diag::note_ovl_candidate_bad_base_to_derived_conv)
+ << (unsigned) FnKind << FnDesc
+ << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
+ << (BaseToDerivedConversion - 1)
+ << FromTy << ToTy << I+1;
+ MaybeEmitInheritedConstructorNote(S, Fn);
+ return;
+ }
+
+ if (isa<ObjCObjectPointerType>(CFromTy) &&
+ isa<PointerType>(CToTy)) {
+ Qualifiers FromQs = CFromTy.getQualifiers();
+ Qualifiers ToQs = CToTy.getQualifiers();
+ if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
+ << (unsigned) FnKind << FnDesc
+ << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
+ << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
+ MaybeEmitInheritedConstructorNote(S, Fn);
+ return;
+ }
+ }
+
+ // Emit the generic diagnostic and, optionally, add the hints to it.
+ PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
+ FDiag << (unsigned) FnKind << FnDesc
+ << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
+ << FromTy << ToTy << (unsigned) isObjectArgument << I + 1
+ << (unsigned) (Cand->Fix.Kind);
+
+ // If we can fix the conversion, suggest the FixIts.
+ for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
+ HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
+ FDiag << *HI;
+ S.Diag(Fn->getLocation(), FDiag);
+
+ MaybeEmitInheritedConstructorNote(S, Fn);
+}
+
+/// Additional arity mismatch diagnosis specific to a function overload
+/// candidates. This is not covered by the more general DiagnoseArityMismatch()
+/// over a candidate in any candidate set.
+static bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand,
+ unsigned NumArgs) {
+ FunctionDecl *Fn = Cand->Function;
+ unsigned MinParams = Fn->getMinRequiredArguments();
+
+ // With invalid overloaded operators, it's possible that we think we
+ // have an arity mismatch when in fact it looks like we have the
+ // right number of arguments, because only overloaded operators have
+ // the weird behavior of overloading member and non-member functions.
+ // Just don't report anything.
+ if (Fn->isInvalidDecl() &&
+ Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
+ return true;
+
+ if (NumArgs < MinParams) {
+ assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
+ (Cand->FailureKind == ovl_fail_bad_deduction &&
+ Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
+ } else {
+ assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
+ (Cand->FailureKind == ovl_fail_bad_deduction &&
+ Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
+ }
+
+ return false;
+}
+
+/// General arity mismatch diagnosis over a candidate in a candidate set.
+static void DiagnoseArityMismatch(Sema &S, Decl *D, unsigned NumFormalArgs) {
+ assert(isa<FunctionDecl>(D) &&
+ "The templated declaration should at least be a function"
+ " when diagnosing bad template argument deduction due to too many"
+ " or too few arguments");
+
+ FunctionDecl *Fn = cast<FunctionDecl>(D);
+
+ // TODO: treat calls to a missing default constructor as a special case
+ const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
+ unsigned MinParams = Fn->getMinRequiredArguments();
+
+ // at least / at most / exactly
+ unsigned mode, modeCount;
+ if (NumFormalArgs < MinParams) {
+ if (MinParams != FnTy->getNumParams() || FnTy->isVariadic() ||
+ FnTy->isTemplateVariadic())
+ mode = 0; // "at least"
+ else
+ mode = 2; // "exactly"
+ modeCount = MinParams;
+ } else {
+ if (MinParams != FnTy->getNumParams())
+ mode = 1; // "at most"
+ else
+ mode = 2; // "exactly"
+ modeCount = FnTy->getNumParams();
+ }
+
+ std::string Description;
+ OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
+
+ if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName())
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one)
+ << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != nullptr)
+ << mode << Fn->getParamDecl(0) << NumFormalArgs;
+ else
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
+ << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != nullptr)
+ << mode << modeCount << NumFormalArgs;
+ MaybeEmitInheritedConstructorNote(S, Fn);
+}
+
+/// Arity mismatch diagnosis specific to a function overload candidate.
+static void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
+ unsigned NumFormalArgs) {
+ if (!CheckArityMismatch(S, Cand, NumFormalArgs))
+ DiagnoseArityMismatch(S, Cand->Function, NumFormalArgs);
+}
+
+static TemplateDecl *getDescribedTemplate(Decl *Templated) {
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Templated))
+ return FD->getDescribedFunctionTemplate();
+ else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Templated))
+ return RD->getDescribedClassTemplate();
+
+ llvm_unreachable("Unsupported: Getting the described template declaration"
+ " for bad deduction diagnosis");
+}
+
+/// Diagnose a failed template-argument deduction.
+static void DiagnoseBadDeduction(Sema &S, Decl *Templated,
+ DeductionFailureInfo &DeductionFailure,
+ unsigned NumArgs) {
+ TemplateParameter Param = DeductionFailure.getTemplateParameter();
+ NamedDecl *ParamD;
+ (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
+ (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
+ (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
+ switch (DeductionFailure.Result) {
+ case Sema::TDK_Success:
+ llvm_unreachable("TDK_success while diagnosing bad deduction");
+
+ case Sema::TDK_Incomplete: {
+ assert(ParamD && "no parameter found for incomplete deduction result");
+ S.Diag(Templated->getLocation(),
+ diag::note_ovl_candidate_incomplete_deduction)
+ << ParamD->getDeclName();
+ MaybeEmitInheritedConstructorNote(S, Templated);
+ return;
+ }
+
+ case Sema::TDK_Underqualified: {
+ assert(ParamD && "no parameter found for bad qualifiers deduction result");
+ TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
+
+ QualType Param = DeductionFailure.getFirstArg()->getAsType();
+
+ // Param will have been canonicalized, but it should just be a
+ // qualified version of ParamD, so move the qualifiers to that.
+ QualifierCollector Qs;
+ Qs.strip(Param);
+ QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
+ assert(S.Context.hasSameType(Param, NonCanonParam));
+
+ // Arg has also been canonicalized, but there's nothing we can do
+ // about that. It also doesn't matter as much, because it won't
+ // have any template parameters in it (because deduction isn't
+ // done on dependent types).
+ QualType Arg = DeductionFailure.getSecondArg()->getAsType();
+
+ S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified)
+ << ParamD->getDeclName() << Arg << NonCanonParam;
+ MaybeEmitInheritedConstructorNote(S, Templated);
+ return;
+ }
+
+ case Sema::TDK_Inconsistent: {
+ assert(ParamD && "no parameter found for inconsistent deduction result");
+ int which = 0;
+ if (isa<TemplateTypeParmDecl>(ParamD))
+ which = 0;
+ else if (isa<NonTypeTemplateParmDecl>(ParamD))
+ which = 1;
+ else {
+ which = 2;
+ }
+
+ S.Diag(Templated->getLocation(),
+ diag::note_ovl_candidate_inconsistent_deduction)
+ << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg()
+ << *DeductionFailure.getSecondArg();
+ MaybeEmitInheritedConstructorNote(S, Templated);
+ return;
+ }
+
+ case Sema::TDK_InvalidExplicitArguments:
+ assert(ParamD && "no parameter found for invalid explicit arguments");
+ if (ParamD->getDeclName())
+ S.Diag(Templated->getLocation(),
+ diag::note_ovl_candidate_explicit_arg_mismatch_named)
+ << ParamD->getDeclName();
+ else {
+ int index = 0;
+ if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
+ index = TTP->getIndex();
+ else if (NonTypeTemplateParmDecl *NTTP
+ = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
+ index = NTTP->getIndex();
+ else
+ index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
+ S.Diag(Templated->getLocation(),
+ diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
+ << (index + 1);
+ }
+ MaybeEmitInheritedConstructorNote(S, Templated);
+ return;
+
+ case Sema::TDK_TooManyArguments:
+ case Sema::TDK_TooFewArguments:
+ DiagnoseArityMismatch(S, Templated, NumArgs);
+ return;
+
+ case Sema::TDK_InstantiationDepth:
+ S.Diag(Templated->getLocation(),
+ diag::note_ovl_candidate_instantiation_depth);
+ MaybeEmitInheritedConstructorNote(S, Templated);
+ return;
+
+ case Sema::TDK_SubstitutionFailure: {
+ // Format the template argument list into the argument string.
+ SmallString<128> TemplateArgString;
+ if (TemplateArgumentList *Args =
+ DeductionFailure.getTemplateArgumentList()) {
+ TemplateArgString = " ";
+ TemplateArgString += S.getTemplateArgumentBindingsText(
+ getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
+ }
+
+ // If this candidate was disabled by enable_if, say so.
+ PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic();
+ if (PDiag && PDiag->second.getDiagID() ==
+ diag::err_typename_nested_not_found_enable_if) {
+ // FIXME: Use the source range of the condition, and the fully-qualified
+ // name of the enable_if template. These are both present in PDiag.
+ S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if)
+ << "'enable_if'" << TemplateArgString;
+ return;
+ }
+
+ // Format the SFINAE diagnostic into the argument string.
+ // FIXME: Add a general mechanism to include a PartialDiagnostic *'s
+ // formatted message in another diagnostic.
+ SmallString<128> SFINAEArgString;
+ SourceRange R;
+ if (PDiag) {
+ SFINAEArgString = ": ";
+ R = SourceRange(PDiag->first, PDiag->first);
+ PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString);
+ }
+
+ S.Diag(Templated->getLocation(),
+ diag::note_ovl_candidate_substitution_failure)
+ << TemplateArgString << SFINAEArgString << R;
+ MaybeEmitInheritedConstructorNote(S, Templated);
+ return;
+ }
+
+ case Sema::TDK_FailedOverloadResolution: {
+ OverloadExpr::FindResult R = OverloadExpr::find(DeductionFailure.getExpr());
+ S.Diag(Templated->getLocation(),
+ diag::note_ovl_candidate_failed_overload_resolution)
+ << R.Expression->getName();
+ return;
+ }
+
+ case Sema::TDK_NonDeducedMismatch: {
+ // FIXME: Provide a source location to indicate what we couldn't match.
+ TemplateArgument FirstTA = *DeductionFailure.getFirstArg();
+ TemplateArgument SecondTA = *DeductionFailure.getSecondArg();
+ if (FirstTA.getKind() == TemplateArgument::Template &&
+ SecondTA.getKind() == TemplateArgument::Template) {
+ TemplateName FirstTN = FirstTA.getAsTemplate();
+ TemplateName SecondTN = SecondTA.getAsTemplate();
+ if (FirstTN.getKind() == TemplateName::Template &&
+ SecondTN.getKind() == TemplateName::Template) {
+ if (FirstTN.getAsTemplateDecl()->getName() ==
+ SecondTN.getAsTemplateDecl()->getName()) {
+ // FIXME: This fixes a bad diagnostic where both templates are named
+ // the same. This particular case is a bit difficult since:
+ // 1) It is passed as a string to the diagnostic printer.
+ // 2) The diagnostic printer only attempts to find a better
+ // name for types, not decls.
+ // Ideally, this should folded into the diagnostic printer.
+ S.Diag(Templated->getLocation(),
+ diag::note_ovl_candidate_non_deduced_mismatch_qualified)
+ << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl();
+ return;
+ }
+ }
+ }
+ // FIXME: For generic lambda parameters, check if the function is a lambda
+ // call operator, and if so, emit a prettier and more informative
+ // diagnostic that mentions 'auto' and lambda in addition to
+ // (or instead of?) the canonical template type parameters.
+ S.Diag(Templated->getLocation(),
+ diag::note_ovl_candidate_non_deduced_mismatch)
+ << FirstTA << SecondTA;
+ return;
+ }
+ // TODO: diagnose these individually, then kill off
+ // note_ovl_candidate_bad_deduction, which is uselessly vague.
+ case Sema::TDK_MiscellaneousDeductionFailure:
+ S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction);
+ MaybeEmitInheritedConstructorNote(S, Templated);
+ return;
+ }
+}
+
+/// Diagnose a failed template-argument deduction, for function calls.
+static void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
+ unsigned NumArgs) {
+ unsigned TDK = Cand->DeductionFailure.Result;
+ if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) {
+ if (CheckArityMismatch(S, Cand, NumArgs))
+ return;
+ }
+ DiagnoseBadDeduction(S, Cand->Function, // pattern
+ Cand->DeductionFailure, NumArgs);
+}
+
+/// CUDA: diagnose an invalid call across targets.
+static void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
+ FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
+ FunctionDecl *Callee = Cand->Function;
+
+ Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
+ CalleeTarget = S.IdentifyCUDATarget(Callee);
+
+ std::string FnDesc;
+ OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Callee, FnDesc);
+
+ S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
+ << (unsigned)FnKind << CalleeTarget << CallerTarget;
+
+ // This could be an implicit constructor for which we could not infer the
+ // target due to a collsion. Diagnose that case.
+ CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Callee);
+ if (Meth != nullptr && Meth->isImplicit()) {
+ CXXRecordDecl *ParentClass = Meth->getParent();
+ Sema::CXXSpecialMember CSM;
+
+ switch (FnKind) {
+ default:
+ return;
+ case oc_implicit_default_constructor:
+ CSM = Sema::CXXDefaultConstructor;
+ break;
+ case oc_implicit_copy_constructor:
+ CSM = Sema::CXXCopyConstructor;
+ break;
+ case oc_implicit_move_constructor:
+ CSM = Sema::CXXMoveConstructor;
+ break;
+ case oc_implicit_copy_assignment:
+ CSM = Sema::CXXCopyAssignment;
+ break;
+ case oc_implicit_move_assignment:
+ CSM = Sema::CXXMoveAssignment;
+ break;
+ };
+
+ bool ConstRHS = false;
+ if (Meth->getNumParams()) {
+ if (const ReferenceType *RT =
+ Meth->getParamDecl(0)->getType()->getAs<ReferenceType>()) {
+ ConstRHS = RT->getPointeeType().isConstQualified();
+ }
+ }
+
+ S.inferCUDATargetForImplicitSpecialMember(ParentClass, CSM, Meth,
+ /* ConstRHS */ ConstRHS,
+ /* Diagnose */ true);
+ }
+}
+
+static void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) {
+ FunctionDecl *Callee = Cand->Function;
+ EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data);
+
+ S.Diag(Callee->getLocation(),
+ diag::note_ovl_candidate_disabled_by_enable_if_attr)
+ << Attr->getCond()->getSourceRange() << Attr->getMessage();
+}
+
+/// Generates a 'note' diagnostic for an overload candidate. We've
+/// already generated a primary error at the call site.
+///
+/// It really does need to be a single diagnostic with its caret
+/// pointed at the candidate declaration. Yes, this creates some
+/// major challenges of technical writing. Yes, this makes pointing
+/// out problems with specific arguments quite awkward. It's still
+/// better than generating twenty screens of text for every failed
+/// overload.
+///
+/// It would be great to be able to express per-candidate problems
+/// more richly for those diagnostic clients that cared, but we'd
+/// still have to be just as careful with the default diagnostics.
+static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
+ unsigned NumArgs) {
+ FunctionDecl *Fn = Cand->Function;
+
+ // Note deleted candidates, but only if they're viable.
+ if (Cand->Viable && (Fn->isDeleted() ||
+ S.isFunctionConsideredUnavailable(Fn))) {
+ std::string FnDesc;
+ OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
+
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
+ << FnKind << FnDesc
+ << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
+ MaybeEmitInheritedConstructorNote(S, Fn);
+ return;
+ }
+
+ // We don't really have anything else to say about viable candidates.
+ if (Cand->Viable) {
+ S.NoteOverloadCandidate(Fn);
+ return;
+ }
+
+ switch (Cand->FailureKind) {
+ case ovl_fail_too_many_arguments:
+ case ovl_fail_too_few_arguments:
+ return DiagnoseArityMismatch(S, Cand, NumArgs);
+
+ case ovl_fail_bad_deduction:
+ return DiagnoseBadDeduction(S, Cand, NumArgs);
+
+ case ovl_fail_illegal_constructor: {
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_illegal_constructor)
+ << (Fn->getPrimaryTemplate() ? 1 : 0);
+ MaybeEmitInheritedConstructorNote(S, Fn);
+ return;
+ }
+
+ case ovl_fail_trivial_conversion:
+ case ovl_fail_bad_final_conversion:
+ case ovl_fail_final_conversion_not_exact:
+ return S.NoteOverloadCandidate(Fn);
+
+ case ovl_fail_bad_conversion: {
+ unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
+ for (unsigned N = Cand->NumConversions; I != N; ++I)
+ if (Cand->Conversions[I].isBad())
+ return DiagnoseBadConversion(S, Cand, I);
+
+ // FIXME: this currently happens when we're called from SemaInit
+ // when user-conversion overload fails. Figure out how to handle
+ // those conditions and diagnose them well.
+ return S.NoteOverloadCandidate(Fn);
+ }
+
+ case ovl_fail_bad_target:
+ return DiagnoseBadTarget(S, Cand);
+
+ case ovl_fail_enable_if:
+ return DiagnoseFailedEnableIfAttr(S, Cand);
+ }
+}
+
+static void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
+ // Desugar the type of the surrogate down to a function type,
+ // retaining as many typedefs as possible while still showing
+ // the function type (and, therefore, its parameter types).
+ QualType FnType = Cand->Surrogate->getConversionType();
+ bool isLValueReference = false;
+ bool isRValueReference = false;
+ bool isPointer = false;
+ if (const LValueReferenceType *FnTypeRef =
+ FnType->getAs<LValueReferenceType>()) {
+ FnType = FnTypeRef->getPointeeType();
+ isLValueReference = true;
+ } else if (const RValueReferenceType *FnTypeRef =
+ FnType->getAs<RValueReferenceType>()) {
+ FnType = FnTypeRef->getPointeeType();
+ isRValueReference = true;
+ }
+ if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
+ FnType = FnTypePtr->getPointeeType();
+ isPointer = true;
+ }
+ // Desugar down to a function type.
+ FnType = QualType(FnType->getAs<FunctionType>(), 0);
+ // Reconstruct the pointer/reference as appropriate.
+ if (isPointer) FnType = S.Context.getPointerType(FnType);
+ if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
+ if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
+
+ S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
+ << FnType;
+ MaybeEmitInheritedConstructorNote(S, Cand->Surrogate);
+}
+
+static void NoteBuiltinOperatorCandidate(Sema &S, StringRef Opc,
+ SourceLocation OpLoc,
+ OverloadCandidate *Cand) {
+ assert(Cand->NumConversions <= 2 && "builtin operator is not binary");
+ std::string TypeStr("operator");
+ TypeStr += Opc;
+ TypeStr += "(";
+ TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
+ if (Cand->NumConversions == 1) {
+ TypeStr += ")";
+ S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
+ } else {
+ TypeStr += ", ";
+ TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
+ TypeStr += ")";
+ S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
+ }
+}
+
+static void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
+ OverloadCandidate *Cand) {
+ unsigned NoOperands = Cand->NumConversions;
+ for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
+ const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
+ if (ICS.isBad()) break; // all meaningless after first invalid
+ if (!ICS.isAmbiguous()) continue;
+
+ ICS.DiagnoseAmbiguousConversion(S, OpLoc,
+ S.PDiag(diag::note_ambiguous_type_conversion));
+ }
+}
+
+static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
+ if (Cand->Function)
+ return Cand->Function->getLocation();
+ if (Cand->IsSurrogate)
+ return Cand->Surrogate->getLocation();
+ return SourceLocation();
+}
+
+static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) {
+ switch ((Sema::TemplateDeductionResult)DFI.Result) {
+ case Sema::TDK_Success:
+ llvm_unreachable("TDK_success while diagnosing bad deduction");
+
+ case Sema::TDK_Invalid:
+ case Sema::TDK_Incomplete:
+ return 1;
+
+ case Sema::TDK_Underqualified:
+ case Sema::TDK_Inconsistent:
+ return 2;
+
+ case Sema::TDK_SubstitutionFailure:
+ case Sema::TDK_NonDeducedMismatch:
+ case Sema::TDK_MiscellaneousDeductionFailure:
+ return 3;
+
+ case Sema::TDK_InstantiationDepth:
+ case Sema::TDK_FailedOverloadResolution:
+ return 4;
+
+ case Sema::TDK_InvalidExplicitArguments:
+ return 5;
+
+ case Sema::TDK_TooManyArguments:
+ case Sema::TDK_TooFewArguments:
+ return 6;
+ }
+ llvm_unreachable("Unhandled deduction result");
+}
+
+namespace {
+struct CompareOverloadCandidatesForDisplay {
+ Sema &S;
+ size_t NumArgs;
+
+ CompareOverloadCandidatesForDisplay(Sema &S, size_t nArgs)
+ : S(S), NumArgs(nArgs) {}
+
+ bool operator()(const OverloadCandidate *L,
+ const OverloadCandidate *R) {
+ // Fast-path this check.
+ if (L == R) return false;
+
+ // Order first by viability.
+ if (L->Viable) {
+ if (!R->Viable) return true;
+
+ // TODO: introduce a tri-valued comparison for overload
+ // candidates. Would be more worthwhile if we had a sort
+ // that could exploit it.
+ if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true;
+ if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false;
+ } else if (R->Viable)
+ return false;
+
+ assert(L->Viable == R->Viable);
+
+ // Criteria by which we can sort non-viable candidates:
+ if (!L->Viable) {
+ // 1. Arity mismatches come after other candidates.
+ if (L->FailureKind == ovl_fail_too_many_arguments ||
+ L->FailureKind == ovl_fail_too_few_arguments) {
+ if (R->FailureKind == ovl_fail_too_many_arguments ||
+ R->FailureKind == ovl_fail_too_few_arguments) {
+ int LDist = std::abs((int)L->getNumParams() - (int)NumArgs);
+ int RDist = std::abs((int)R->getNumParams() - (int)NumArgs);
+ if (LDist == RDist) {
+ if (L->FailureKind == R->FailureKind)
+ // Sort non-surrogates before surrogates.
+ return !L->IsSurrogate && R->IsSurrogate;
+ // Sort candidates requiring fewer parameters than there were
+ // arguments given after candidates requiring more parameters
+ // than there were arguments given.
+ return L->FailureKind == ovl_fail_too_many_arguments;
+ }
+ return LDist < RDist;
+ }
+ return false;
+ }
+ if (R->FailureKind == ovl_fail_too_many_arguments ||
+ R->FailureKind == ovl_fail_too_few_arguments)
+ return true;
+
+ // 2. Bad conversions come first and are ordered by the number
+ // of bad conversions and quality of good conversions.
+ if (L->FailureKind == ovl_fail_bad_conversion) {
+ if (R->FailureKind != ovl_fail_bad_conversion)
+ return true;
+
+ // The conversion that can be fixed with a smaller number of changes,
+ // comes first.
+ unsigned numLFixes = L->Fix.NumConversionsFixed;
+ unsigned numRFixes = R->Fix.NumConversionsFixed;
+ numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
+ numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
+ if (numLFixes != numRFixes) {
+ return numLFixes < numRFixes;
+ }
+
+ // If there's any ordering between the defined conversions...
+ // FIXME: this might not be transitive.
+ assert(L->NumConversions == R->NumConversions);
+
+ int leftBetter = 0;
+ unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
+ for (unsigned E = L->NumConversions; I != E; ++I) {
+ switch (CompareImplicitConversionSequences(S,
+ L->Conversions[I],
+ R->Conversions[I])) {
+ case ImplicitConversionSequence::Better:
+ leftBetter++;
+ break;
+
+ case ImplicitConversionSequence::Worse:
+ leftBetter--;
+ break;
+
+ case ImplicitConversionSequence::Indistinguishable:
+ break;
+ }
+ }
+ if (leftBetter > 0) return true;
+ if (leftBetter < 0) return false;
+
+ } else if (R->FailureKind == ovl_fail_bad_conversion)
+ return false;
+
+ if (L->FailureKind == ovl_fail_bad_deduction) {
+ if (R->FailureKind != ovl_fail_bad_deduction)
+ return true;
+
+ if (L->DeductionFailure.Result != R->DeductionFailure.Result)
+ return RankDeductionFailure(L->DeductionFailure)
+ < RankDeductionFailure(R->DeductionFailure);
+ } else if (R->FailureKind == ovl_fail_bad_deduction)
+ return false;
+
+ // TODO: others?
+ }
+
+ // Sort everything else by location.
+ SourceLocation LLoc = GetLocationForCandidate(L);
+ SourceLocation RLoc = GetLocationForCandidate(R);
+
+ // Put candidates without locations (e.g. builtins) at the end.
+ if (LLoc.isInvalid()) return false;
+ if (RLoc.isInvalid()) return true;
+
+ return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
+ }
+};
+}
+
+/// CompleteNonViableCandidate - Normally, overload resolution only
+/// computes up to the first. Produces the FixIt set if possible.
+static void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
+ ArrayRef<Expr *> Args) {
+ assert(!Cand->Viable);
+
+ // Don't do anything on failures other than bad conversion.
+ if (Cand->FailureKind != ovl_fail_bad_conversion) return;
+
+ // We only want the FixIts if all the arguments can be corrected.
+ bool Unfixable = false;
+ // Use a implicit copy initialization to check conversion fixes.
+ Cand->Fix.setConversionChecker(TryCopyInitialization);
+
+ // Skip forward to the first bad conversion.
+ unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
+ unsigned ConvCount = Cand->NumConversions;
+ while (true) {
+ assert(ConvIdx != ConvCount && "no bad conversion in candidate");
+ ConvIdx++;
+ if (Cand->Conversions[ConvIdx - 1].isBad()) {
+ Unfixable = !Cand->TryToFixBadConversion(ConvIdx - 1, S);
+ break;
+ }
+ }
+
+ if (ConvIdx == ConvCount)
+ return;
+
+ assert(!Cand->Conversions[ConvIdx].isInitialized() &&
+ "remaining conversion is initialized?");
+
+ // FIXME: this should probably be preserved from the overload
+ // operation somehow.
+ bool SuppressUserConversions = false;
+
+ const FunctionProtoType* Proto;
+ unsigned ArgIdx = ConvIdx;
+
+ if (Cand->IsSurrogate) {
+ QualType ConvType
+ = Cand->Surrogate->getConversionType().getNonReferenceType();
+ if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
+ ConvType = ConvPtrType->getPointeeType();
+ Proto = ConvType->getAs<FunctionProtoType>();
+ ArgIdx--;
+ } else if (Cand->Function) {
+ Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
+ if (isa<CXXMethodDecl>(Cand->Function) &&
+ !isa<CXXConstructorDecl>(Cand->Function))
+ ArgIdx--;
+ } else {
+ // Builtin binary operator with a bad first conversion.
+ assert(ConvCount <= 3);
+ for (; ConvIdx != ConvCount; ++ConvIdx)
+ Cand->Conversions[ConvIdx]
+ = TryCopyInitialization(S, Args[ConvIdx],
+ Cand->BuiltinTypes.ParamTypes[ConvIdx],
+ SuppressUserConversions,
+ /*InOverloadResolution*/ true,
+ /*AllowObjCWritebackConversion=*/
+ S.getLangOpts().ObjCAutoRefCount);
+ return;
+ }
+
+ // Fill in the rest of the conversions.
+ unsigned NumParams = Proto->getNumParams();
+ for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
+ if (ArgIdx < NumParams) {
+ Cand->Conversions[ConvIdx] = TryCopyInitialization(
+ S, Args[ArgIdx], Proto->getParamType(ArgIdx), SuppressUserConversions,
+ /*InOverloadResolution=*/true,
+ /*AllowObjCWritebackConversion=*/
+ S.getLangOpts().ObjCAutoRefCount);
+ // Store the FixIt in the candidate if it exists.
+ if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
+ Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
+ }
+ else
+ Cand->Conversions[ConvIdx].setEllipsis();
+ }
+}
+
+/// PrintOverloadCandidates - When overload resolution fails, prints
+/// diagnostic messages containing the candidates in the candidate
+/// set.
+void OverloadCandidateSet::NoteCandidates(Sema &S,
+ OverloadCandidateDisplayKind OCD,
+ ArrayRef<Expr *> Args,
+ StringRef Opc,
+ SourceLocation OpLoc) {
+ // Sort the candidates by viability and position. Sorting directly would
+ // be prohibitive, so we make a set of pointers and sort those.
+ SmallVector<OverloadCandidate*, 32> Cands;
+ if (OCD == OCD_AllCandidates) Cands.reserve(size());
+ for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
+ if (Cand->Viable)
+ Cands.push_back(Cand);
+ else if (OCD == OCD_AllCandidates) {
+ CompleteNonViableCandidate(S, Cand, Args);
+ if (Cand->Function || Cand->IsSurrogate)
+ Cands.push_back(Cand);
+ // Otherwise, this a non-viable builtin candidate. We do not, in general,
+ // want to list every possible builtin candidate.
+ }
+ }
+
+ std::sort(Cands.begin(), Cands.end(),
+ CompareOverloadCandidatesForDisplay(S, Args.size()));
+
+ bool ReportedAmbiguousConversions = false;
+
+ SmallVectorImpl<OverloadCandidate*>::iterator I, E;
+ const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
+ unsigned CandsShown = 0;
+ for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
+ OverloadCandidate *Cand = *I;
+
+ // Set an arbitrary limit on the number of candidate functions we'll spam
+ // the user with. FIXME: This limit should depend on details of the
+ // candidate list.
+ if (CandsShown >= 4 && ShowOverloads == Ovl_Best) {
+ break;
+ }
+ ++CandsShown;
+
+ if (Cand->Function)
+ NoteFunctionCandidate(S, Cand, Args.size());
+ else if (Cand->IsSurrogate)
+ NoteSurrogateCandidate(S, Cand);
+ else {
+ assert(Cand->Viable &&
+ "Non-viable built-in candidates are not added to Cands.");
+ // Generally we only see ambiguities including viable builtin
+ // operators if overload resolution got screwed up by an
+ // ambiguous user-defined conversion.
+ //
+ // FIXME: It's quite possible for different conversions to see
+ // different ambiguities, though.
+ if (!ReportedAmbiguousConversions) {
+ NoteAmbiguousUserConversions(S, OpLoc, Cand);
+ ReportedAmbiguousConversions = true;
+ }
+
+ // If this is a viable builtin, print it.
+ NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
+ }
+ }
+
+ if (I != E)
+ S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
+}
+
+static SourceLocation
+GetLocationForCandidate(const TemplateSpecCandidate *Cand) {
+ return Cand->Specialization ? Cand->Specialization->getLocation()
+ : SourceLocation();
+}
+
+namespace {
+struct CompareTemplateSpecCandidatesForDisplay {
+ Sema &S;
+ CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {}
+
+ bool operator()(const TemplateSpecCandidate *L,
+ const TemplateSpecCandidate *R) {
+ // Fast-path this check.
+ if (L == R)
+ return false;
+
+ // Assuming that both candidates are not matches...
+
+ // Sort by the ranking of deduction failures.
+ if (L->DeductionFailure.Result != R->DeductionFailure.Result)
+ return RankDeductionFailure(L->DeductionFailure) <
+ RankDeductionFailure(R->DeductionFailure);
+
+ // Sort everything else by location.
+ SourceLocation LLoc = GetLocationForCandidate(L);
+ SourceLocation RLoc = GetLocationForCandidate(R);
+
+ // Put candidates without locations (e.g. builtins) at the end.
+ if (LLoc.isInvalid())
+ return false;
+ if (RLoc.isInvalid())
+ return true;
+
+ return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
+ }
+};
+}
+
+/// Diagnose a template argument deduction failure.
+/// We are treating these failures as overload failures due to bad
+/// deductions.
+void TemplateSpecCandidate::NoteDeductionFailure(Sema &S) {
+ DiagnoseBadDeduction(S, Specialization, // pattern
+ DeductionFailure, /*NumArgs=*/0);
+}
+
+void TemplateSpecCandidateSet::destroyCandidates() {
+ for (iterator i = begin(), e = end(); i != e; ++i) {
+ i->DeductionFailure.Destroy();
+ }
+}
+
+void TemplateSpecCandidateSet::clear() {
+ destroyCandidates();
+ Candidates.clear();
+}
+
+/// NoteCandidates - When no template specialization match is found, prints
+/// diagnostic messages containing the non-matching specializations that form
+/// the candidate set.
+/// This is analoguous to OverloadCandidateSet::NoteCandidates() with
+/// OCD == OCD_AllCandidates and Cand->Viable == false.
+void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) {
+ // Sort the candidates by position (assuming no candidate is a match).
+ // Sorting directly would be prohibitive, so we make a set of pointers
+ // and sort those.
+ SmallVector<TemplateSpecCandidate *, 32> Cands;
+ Cands.reserve(size());
+ for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
+ if (Cand->Specialization)
+ Cands.push_back(Cand);
+ // Otherwise, this is a non-matching builtin candidate. We do not,
+ // in general, want to list every possible builtin candidate.
+ }
+
+ std::sort(Cands.begin(), Cands.end(),
+ CompareTemplateSpecCandidatesForDisplay(S));
+
+ // FIXME: Perhaps rename OverloadsShown and getShowOverloads()
+ // for generalization purposes (?).
+ const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
+
+ SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E;
+ unsigned CandsShown = 0;
+ for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
+ TemplateSpecCandidate *Cand = *I;
+
+ // Set an arbitrary limit on the number of candidates we'll spam
+ // the user with. FIXME: This limit should depend on details of the
+ // candidate list.
+ if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
+ break;
+ ++CandsShown;
+
+ assert(Cand->Specialization &&
+ "Non-matching built-in candidates are not added to Cands.");
+ Cand->NoteDeductionFailure(S);
+ }
+
+ if (I != E)
+ S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I);
+}
+
+// [PossiblyAFunctionType] --> [Return]
+// NonFunctionType --> NonFunctionType
+// R (A) --> R(A)
+// R (*)(A) --> R (A)
+// R (&)(A) --> R (A)
+// R (S::*)(A) --> R (A)
+QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
+ QualType Ret = PossiblyAFunctionType;
+ if (const PointerType *ToTypePtr =
+ PossiblyAFunctionType->getAs<PointerType>())
+ Ret = ToTypePtr->getPointeeType();
+ else if (const ReferenceType *ToTypeRef =
+ PossiblyAFunctionType->getAs<ReferenceType>())
+ Ret = ToTypeRef->getPointeeType();
+ else if (const MemberPointerType *MemTypePtr =
+ PossiblyAFunctionType->getAs<MemberPointerType>())
+ Ret = MemTypePtr->getPointeeType();
+ Ret =
+ Context.getCanonicalType(Ret).getUnqualifiedType();
+ return Ret;
+}
+
+namespace {
+// A helper class to help with address of function resolution
+// - allows us to avoid passing around all those ugly parameters
+class AddressOfFunctionResolver {
+ Sema& S;
+ Expr* SourceExpr;
+ const QualType& TargetType;
+ QualType TargetFunctionType; // Extracted function type from target type
+
+ bool Complain;
+ //DeclAccessPair& ResultFunctionAccessPair;
+ ASTContext& Context;
+
+ bool TargetTypeIsNonStaticMemberFunction;
+ bool FoundNonTemplateFunction;
+ bool StaticMemberFunctionFromBoundPointer;
+
+ OverloadExpr::FindResult OvlExprInfo;
+ OverloadExpr *OvlExpr;
+ TemplateArgumentListInfo OvlExplicitTemplateArgs;
+ SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
+ TemplateSpecCandidateSet FailedCandidates;
+
+public:
+ AddressOfFunctionResolver(Sema &S, Expr *SourceExpr,
+ const QualType &TargetType, bool Complain)
+ : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
+ Complain(Complain), Context(S.getASTContext()),
+ TargetTypeIsNonStaticMemberFunction(
+ !!TargetType->getAs<MemberPointerType>()),
+ FoundNonTemplateFunction(false),
+ StaticMemberFunctionFromBoundPointer(false),
+ OvlExprInfo(OverloadExpr::find(SourceExpr)),
+ OvlExpr(OvlExprInfo.Expression),
+ FailedCandidates(OvlExpr->getNameLoc()) {
+ ExtractUnqualifiedFunctionTypeFromTargetType();
+
+ if (TargetFunctionType->isFunctionType()) {
+ if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr))
+ if (!UME->isImplicitAccess() &&
+ !S.ResolveSingleFunctionTemplateSpecialization(UME))
+ StaticMemberFunctionFromBoundPointer = true;
+ } else if (OvlExpr->hasExplicitTemplateArgs()) {
+ DeclAccessPair dap;
+ if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization(
+ OvlExpr, false, &dap)) {
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
+ if (!Method->isStatic()) {
+ // If the target type is a non-function type and the function found
+ // is a non-static member function, pretend as if that was the
+ // target, it's the only possible type to end up with.
+ TargetTypeIsNonStaticMemberFunction = true;
+
+ // And skip adding the function if its not in the proper form.
+ // We'll diagnose this due to an empty set of functions.
+ if (!OvlExprInfo.HasFormOfMemberPointer)
+ return;
+ }
+
+ Matches.push_back(std::make_pair(dap, Fn));
+ }
+ return;
+ }
+
+ if (OvlExpr->hasExplicitTemplateArgs())
+ OvlExpr->getExplicitTemplateArgs().copyInto(OvlExplicitTemplateArgs);
+
+ if (FindAllFunctionsThatMatchTargetTypeExactly()) {
+ // C++ [over.over]p4:
+ // If more than one function is selected, [...]
+ if (Matches.size() > 1) {
+ if (FoundNonTemplateFunction)
+ EliminateAllTemplateMatches();
+ else
+ EliminateAllExceptMostSpecializedTemplate();
+ }
+ }
+ }
+
+private:
+ bool isTargetTypeAFunction() const {
+ return TargetFunctionType->isFunctionType();
+ }
+
+ // [ToType] [Return]
+
+ // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
+ // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
+ // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
+ void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
+ TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
+ }
+
+ // return true if any matching specializations were found
+ bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
+ const DeclAccessPair& CurAccessFunPair) {
+ if (CXXMethodDecl *Method
+ = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
+ // Skip non-static function templates when converting to pointer, and
+ // static when converting to member pointer.
+ if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
+ return false;
+ }
+ else if (TargetTypeIsNonStaticMemberFunction)
+ return false;
+
+ // C++ [over.over]p2:
+ // If the name is a function template, template argument deduction is
+ // done (14.8.2.2), and if the argument deduction succeeds, the
+ // resulting template argument list is used to generate a single
+ // function template specialization, which is added to the set of
+ // overloaded functions considered.
+ FunctionDecl *Specialization = nullptr;
+ TemplateDeductionInfo Info(FailedCandidates.getLocation());
+ if (Sema::TemplateDeductionResult Result
+ = S.DeduceTemplateArguments(FunctionTemplate,
+ &OvlExplicitTemplateArgs,
+ TargetFunctionType, Specialization,
+ Info, /*InOverloadResolution=*/true)) {
+ // Make a note of the failed deduction for diagnostics.
+ FailedCandidates.addCandidate()
+ .set(FunctionTemplate->getTemplatedDecl(),
+ MakeDeductionFailureInfo(Context, Result, Info));
+ return false;
+ }
+
+ // Template argument deduction ensures that we have an exact match or
+ // compatible pointer-to-function arguments that would be adjusted by ICS.
+ // This function template specicalization works.
+ Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl());
+ assert(S.isSameOrCompatibleFunctionType(
+ Context.getCanonicalType(Specialization->getType()),
+ Context.getCanonicalType(TargetFunctionType)));
+ Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
+ return true;
+ }
+
+ bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
+ const DeclAccessPair& CurAccessFunPair) {
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
+ // Skip non-static functions when converting to pointer, and static
+ // when converting to member pointer.
+ if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
+ return false;
+ }
+ else if (TargetTypeIsNonStaticMemberFunction)
+ return false;
+
+ if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
+ if (S.getLangOpts().CUDA)
+ if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
+ if (!Caller->isImplicit() && S.CheckCUDATarget(Caller, FunDecl))
+ return false;
+
+ // If any candidate has a placeholder return type, trigger its deduction
+ // now.
+ if (S.getLangOpts().CPlusPlus14 &&
+ FunDecl->getReturnType()->isUndeducedType() &&
+ S.DeduceReturnType(FunDecl, SourceExpr->getLocStart(), Complain))
+ return false;
+
+ QualType ResultTy;
+ if (Context.hasSameUnqualifiedType(TargetFunctionType,
+ FunDecl->getType()) ||
+ S.IsNoReturnConversion(FunDecl->getType(), TargetFunctionType,
+ ResultTy)) {
+ Matches.push_back(std::make_pair(CurAccessFunPair,
+ cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
+ FoundNonTemplateFunction = true;
+ return true;
+ }
+ }
+
+ return false;
+ }
+
+ bool FindAllFunctionsThatMatchTargetTypeExactly() {
+ bool Ret = false;
+
+ // If the overload expression doesn't have the form of a pointer to
+ // member, don't try to convert it to a pointer-to-member type.
+ if (IsInvalidFormOfPointerToMemberFunction())
+ return false;
+
+ for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
+ E = OvlExpr->decls_end();
+ I != E; ++I) {
+ // Look through any using declarations to find the underlying function.
+ NamedDecl *Fn = (*I)->getUnderlyingDecl();
+
+ // C++ [over.over]p3:
+ // Non-member functions and static member functions match
+ // targets of type "pointer-to-function" or "reference-to-function."
+ // Nonstatic member functions match targets of
+ // type "pointer-to-member-function."
+ // Note that according to DR 247, the containing class does not matter.
+ if (FunctionTemplateDecl *FunctionTemplate
+ = dyn_cast<FunctionTemplateDecl>(Fn)) {
+ if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
+ Ret = true;
+ }
+ // If we have explicit template arguments supplied, skip non-templates.
+ else if (!OvlExpr->hasExplicitTemplateArgs() &&
+ AddMatchingNonTemplateFunction(Fn, I.getPair()))
+ Ret = true;
+ }
+ assert(Ret || Matches.empty());
+ return Ret;
+ }
+
+ void EliminateAllExceptMostSpecializedTemplate() {
+ // [...] and any given function template specialization F1 is
+ // eliminated if the set contains a second function template
+ // specialization whose function template is more specialized
+ // than the function template of F1 according to the partial
+ // ordering rules of 14.5.5.2.
+
+ // The algorithm specified above is quadratic. We instead use a
+ // two-pass algorithm (similar to the one used to identify the
+ // best viable function in an overload set) that identifies the
+ // best function template (if it exists).
+
+ UnresolvedSet<4> MatchesCopy; // TODO: avoid!
+ for (unsigned I = 0, E = Matches.size(); I != E; ++I)
+ MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
+
+ // TODO: It looks like FailedCandidates does not serve much purpose
+ // here, since the no_viable diagnostic has index 0.
+ UnresolvedSetIterator Result = S.getMostSpecialized(
+ MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates,
+ SourceExpr->getLocStart(), S.PDiag(),
+ S.PDiag(diag::err_addr_ovl_ambiguous) << Matches[0]
+ .second->getDeclName(),
+ S.PDiag(diag::note_ovl_candidate) << (unsigned)oc_function_template,
+ Complain, TargetFunctionType);
+
+ if (Result != MatchesCopy.end()) {
+ // Make it the first and only element
+ Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
+ Matches[0].second = cast<FunctionDecl>(*Result);
+ Matches.resize(1);
+ }
+ }
+
+ void EliminateAllTemplateMatches() {
+ // [...] any function template specializations in the set are
+ // eliminated if the set also contains a non-template function, [...]
+ for (unsigned I = 0, N = Matches.size(); I != N; ) {
+ if (Matches[I].second->getPrimaryTemplate() == nullptr)
+ ++I;
+ else {
+ Matches[I] = Matches[--N];
+ Matches.set_size(N);
+ }
+ }
+ }
+
+public:
+ void ComplainNoMatchesFound() const {
+ assert(Matches.empty());
+ S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable)
+ << OvlExpr->getName() << TargetFunctionType
+ << OvlExpr->getSourceRange();
+ if (FailedCandidates.empty())
+ S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
+ else {
+ // We have some deduction failure messages. Use them to diagnose
+ // the function templates, and diagnose the non-template candidates
+ // normally.
+ for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
+ IEnd = OvlExpr->decls_end();
+ I != IEnd; ++I)
+ if (FunctionDecl *Fun =
+ dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
+ S.NoteOverloadCandidate(Fun, TargetFunctionType);
+ FailedCandidates.NoteCandidates(S, OvlExpr->getLocStart());
+ }
+ }
+
+ bool IsInvalidFormOfPointerToMemberFunction() const {
+ return TargetTypeIsNonStaticMemberFunction &&
+ !OvlExprInfo.HasFormOfMemberPointer;
+ }
+
+ void ComplainIsInvalidFormOfPointerToMemberFunction() const {
+ // TODO: Should we condition this on whether any functions might
+ // have matched, or is it more appropriate to do that in callers?
+ // TODO: a fixit wouldn't hurt.
+ S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
+ << TargetType << OvlExpr->getSourceRange();
+ }
+
+ bool IsStaticMemberFunctionFromBoundPointer() const {
+ return StaticMemberFunctionFromBoundPointer;
+ }
+
+ void ComplainIsStaticMemberFunctionFromBoundPointer() const {
+ S.Diag(OvlExpr->getLocStart(),
+ diag::err_invalid_form_pointer_member_function)
+ << OvlExpr->getSourceRange();
+ }
+
+ void ComplainOfInvalidConversion() const {
+ S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
+ << OvlExpr->getName() << TargetType;
+ }
+
+ void ComplainMultipleMatchesFound() const {
+ assert(Matches.size() > 1);
+ S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous)
+ << OvlExpr->getName()
+ << OvlExpr->getSourceRange();
+ S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
+ }
+
+ bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
+
+ int getNumMatches() const { return Matches.size(); }
+
+ FunctionDecl* getMatchingFunctionDecl() const {
+ if (Matches.size() != 1) return nullptr;
+ return Matches[0].second;
+ }
+
+ const DeclAccessPair* getMatchingFunctionAccessPair() const {
+ if (Matches.size() != 1) return nullptr;
+ return &Matches[0].first;
+ }
+};
+}
+
+/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
+/// an overloaded function (C++ [over.over]), where @p From is an
+/// expression with overloaded function type and @p ToType is the type
+/// we're trying to resolve to. For example:
+///
+/// @code
+/// int f(double);
+/// int f(int);
+///
+/// int (*pfd)(double) = f; // selects f(double)
+/// @endcode
+///
+/// This routine returns the resulting FunctionDecl if it could be
+/// resolved, and NULL otherwise. When @p Complain is true, this
+/// routine will emit diagnostics if there is an error.
+FunctionDecl *
+Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
+ QualType TargetType,
+ bool Complain,
+ DeclAccessPair &FoundResult,
+ bool *pHadMultipleCandidates) {
+ assert(AddressOfExpr->getType() == Context.OverloadTy);
+
+ AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
+ Complain);
+ int NumMatches = Resolver.getNumMatches();
+ FunctionDecl *Fn = nullptr;
+ if (NumMatches == 0 && Complain) {
+ if (Resolver.IsInvalidFormOfPointerToMemberFunction())
+ Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
+ else
+ Resolver.ComplainNoMatchesFound();
+ }
+ else if (NumMatches > 1 && Complain)
+ Resolver.ComplainMultipleMatchesFound();
+ else if (NumMatches == 1) {
+ Fn = Resolver.getMatchingFunctionDecl();
+ assert(Fn);
+ FoundResult = *Resolver.getMatchingFunctionAccessPair();
+ if (Complain) {
+ if (Resolver.IsStaticMemberFunctionFromBoundPointer())
+ Resolver.ComplainIsStaticMemberFunctionFromBoundPointer();
+ else
+ CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
+ }
+ }
+
+ if (pHadMultipleCandidates)
+ *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
+ return Fn;
+}
+
+/// \brief Given an expression that refers to an overloaded function, try to
+/// resolve that overloaded function expression down to a single function.
+///
+/// This routine can only resolve template-ids that refer to a single function
+/// template, where that template-id refers to a single template whose template
+/// arguments are either provided by the template-id or have defaults,
+/// as described in C++0x [temp.arg.explicit]p3.
+///
+/// If no template-ids are found, no diagnostics are emitted and NULL is
+/// returned.
+FunctionDecl *
+Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
+ bool Complain,
+ DeclAccessPair *FoundResult) {
+ // C++ [over.over]p1:
+ // [...] [Note: any redundant set of parentheses surrounding the
+ // overloaded function name is ignored (5.1). ]
+ // C++ [over.over]p1:
+ // [...] The overloaded function name can be preceded by the &
+ // operator.
+
+ // If we didn't actually find any template-ids, we're done.
+ if (!ovl->hasExplicitTemplateArgs())
+ return nullptr;
+
+ TemplateArgumentListInfo ExplicitTemplateArgs;
+ ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
+ TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc());
+
+ // Look through all of the overloaded functions, searching for one
+ // whose type matches exactly.
+ FunctionDecl *Matched = nullptr;
+ for (UnresolvedSetIterator I = ovl->decls_begin(),
+ E = ovl->decls_end(); I != E; ++I) {
+ // C++0x [temp.arg.explicit]p3:
+ // [...] In contexts where deduction is done and fails, or in contexts
+ // where deduction is not done, if a template argument list is
+ // specified and it, along with any default template arguments,
+ // identifies a single function template specialization, then the
+ // template-id is an lvalue for the function template specialization.
+ FunctionTemplateDecl *FunctionTemplate
+ = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
+
+ // C++ [over.over]p2:
+ // If the name is a function template, template argument deduction is
+ // done (14.8.2.2), and if the argument deduction succeeds, the
+ // resulting template argument list is used to generate a single
+ // function template specialization, which is added to the set of
+ // overloaded functions considered.
+ FunctionDecl *Specialization = nullptr;
+ TemplateDeductionInfo Info(FailedCandidates.getLocation());
+ if (TemplateDeductionResult Result
+ = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
+ Specialization, Info,
+ /*InOverloadResolution=*/true)) {
+ // Make a note of the failed deduction for diagnostics.
+ // TODO: Actually use the failed-deduction info?
+ FailedCandidates.addCandidate()
+ .set(FunctionTemplate->getTemplatedDecl(),
+ MakeDeductionFailureInfo(Context, Result, Info));
+ continue;
+ }
+
+ assert(Specialization && "no specialization and no error?");
+
+ // Multiple matches; we can't resolve to a single declaration.
+ if (Matched) {
+ if (Complain) {
+ Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
+ << ovl->getName();
+ NoteAllOverloadCandidates(ovl);
+ }
+ return nullptr;
+ }
+
+ Matched = Specialization;
+ if (FoundResult) *FoundResult = I.getPair();
+ }
+
+ if (Matched && getLangOpts().CPlusPlus14 &&
+ Matched->getReturnType()->isUndeducedType() &&
+ DeduceReturnType(Matched, ovl->getExprLoc(), Complain))
+ return nullptr;
+
+ return Matched;
+}
+
+
+
+
+// Resolve and fix an overloaded expression that can be resolved
+// because it identifies a single function template specialization.
+//
+// Last three arguments should only be supplied if Complain = true
+//
+// Return true if it was logically possible to so resolve the
+// expression, regardless of whether or not it succeeded. Always
+// returns true if 'complain' is set.
+bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
+ ExprResult &SrcExpr, bool doFunctionPointerConverion,
+ bool complain, const SourceRange& OpRangeForComplaining,
+ QualType DestTypeForComplaining,
+ unsigned DiagIDForComplaining) {
+ assert(SrcExpr.get()->getType() == Context.OverloadTy);
+
+ OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
+
+ DeclAccessPair found;
+ ExprResult SingleFunctionExpression;
+ if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
+ ovl.Expression, /*complain*/ false, &found)) {
+ if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getLocStart())) {
+ SrcExpr = ExprError();
+ return true;
+ }
+
+ // It is only correct to resolve to an instance method if we're
+ // resolving a form that's permitted to be a pointer to member.
+ // Otherwise we'll end up making a bound member expression, which
+ // is illegal in all the contexts we resolve like this.
+ if (!ovl.HasFormOfMemberPointer &&
+ isa<CXXMethodDecl>(fn) &&
+ cast<CXXMethodDecl>(fn)->isInstance()) {
+ if (!complain) return false;
+
+ Diag(ovl.Expression->getExprLoc(),
+ diag::err_bound_member_function)
+ << 0 << ovl.Expression->getSourceRange();
+
+ // TODO: I believe we only end up here if there's a mix of
+ // static and non-static candidates (otherwise the expression
+ // would have 'bound member' type, not 'overload' type).
+ // Ideally we would note which candidate was chosen and why
+ // the static candidates were rejected.
+ SrcExpr = ExprError();
+ return true;
+ }
+
+ // Fix the expression to refer to 'fn'.
+ SingleFunctionExpression =
+ FixOverloadedFunctionReference(SrcExpr.get(), found, fn);
+
+ // If desired, do function-to-pointer decay.
+ if (doFunctionPointerConverion) {
+ SingleFunctionExpression =
+ DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.get());
+ if (SingleFunctionExpression.isInvalid()) {
+ SrcExpr = ExprError();
+ return true;
+ }
+ }
+ }
+
+ if (!SingleFunctionExpression.isUsable()) {
+ if (complain) {
+ Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
+ << ovl.Expression->getName()
+ << DestTypeForComplaining
+ << OpRangeForComplaining
+ << ovl.Expression->getQualifierLoc().getSourceRange();
+ NoteAllOverloadCandidates(SrcExpr.get());
+
+ SrcExpr = ExprError();
+ return true;
+ }
+
+ return false;
+ }
+
+ SrcExpr = SingleFunctionExpression;
+ return true;
+}
+
+/// \brief Add a single candidate to the overload set.
+static void AddOverloadedCallCandidate(Sema &S,
+ DeclAccessPair FoundDecl,
+ TemplateArgumentListInfo *ExplicitTemplateArgs,
+ ArrayRef<Expr *> Args,
+ OverloadCandidateSet &CandidateSet,
+ bool PartialOverloading,
+ bool KnownValid) {
+ NamedDecl *Callee = FoundDecl.getDecl();
+ if (isa<UsingShadowDecl>(Callee))
+ Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
+
+ if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
+ if (ExplicitTemplateArgs) {
+ assert(!KnownValid && "Explicit template arguments?");
+ return;
+ }
+ S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet,
+ /*SuppressUsedConversions=*/false,
+ PartialOverloading);
+ return;
+ }
+
+ if (FunctionTemplateDecl *FuncTemplate
+ = dyn_cast<FunctionTemplateDecl>(Callee)) {
+ S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
+ ExplicitTemplateArgs, Args, CandidateSet,
+ /*SuppressUsedConversions=*/false,
+ PartialOverloading);
+ return;
+ }
+
+ assert(!KnownValid && "unhandled case in overloaded call candidate");
+}
+
+/// \brief Add the overload candidates named by callee and/or found by argument
+/// dependent lookup to the given overload set.
+void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
+ ArrayRef<Expr *> Args,
+ OverloadCandidateSet &CandidateSet,
+ bool PartialOverloading) {
+
+#ifndef NDEBUG
+ // Verify that ArgumentDependentLookup is consistent with the rules
+ // in C++0x [basic.lookup.argdep]p3:
+ //
+ // Let X be the lookup set produced by unqualified lookup (3.4.1)
+ // and let Y be the lookup set produced by argument dependent
+ // lookup (defined as follows). If X contains
+ //
+ // -- a declaration of a class member, or
+ //
+ // -- a block-scope function declaration that is not a
+ // using-declaration, or
+ //
+ // -- a declaration that is neither a function or a function
+ // template
+ //
+ // then Y is empty.
+
+ if (ULE->requiresADL()) {
+ for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
+ E = ULE->decls_end(); I != E; ++I) {
+ assert(!(*I)->getDeclContext()->isRecord());
+ assert(isa<UsingShadowDecl>(*I) ||
+ !(*I)->getDeclContext()->isFunctionOrMethod());
+ assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
+ }
+ }
+#endif
+
+ // It would be nice to avoid this copy.
+ TemplateArgumentListInfo TABuffer;
+ TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
+ if (ULE->hasExplicitTemplateArgs()) {
+ ULE->copyTemplateArgumentsInto(TABuffer);
+ ExplicitTemplateArgs = &TABuffer;
+ }
+
+ for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
+ E = ULE->decls_end(); I != E; ++I)
+ AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
+ CandidateSet, PartialOverloading,
+ /*KnownValid*/ true);
+
+ if (ULE->requiresADL())
+ AddArgumentDependentLookupCandidates(ULE->getName(), ULE->getExprLoc(),
+ Args, ExplicitTemplateArgs,
+ CandidateSet, PartialOverloading);
+}
+
+/// Determine whether a declaration with the specified name could be moved into
+/// a different namespace.
+static bool canBeDeclaredInNamespace(const DeclarationName &Name) {
+ switch (Name.getCXXOverloadedOperator()) {
+ case OO_New: case OO_Array_New:
+ case OO_Delete: case OO_Array_Delete:
+ return false;
+
+ default:
+ return true;
+ }
+}
+
+/// Attempt to recover from an ill-formed use of a non-dependent name in a
+/// template, where the non-dependent name was declared after the template
+/// was defined. This is common in code written for a compilers which do not
+/// correctly implement two-stage name lookup.
+///
+/// Returns true if a viable candidate was found and a diagnostic was issued.
+static bool
+DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
+ const CXXScopeSpec &SS, LookupResult &R,
+ OverloadCandidateSet::CandidateSetKind CSK,
+ TemplateArgumentListInfo *ExplicitTemplateArgs,
+ ArrayRef<Expr *> Args) {
+ if (SemaRef.ActiveTemplateInstantiations.empty() || !SS.isEmpty())
+ return false;
+
+ for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
+ if (DC->isTransparentContext())
+ continue;
+
+ SemaRef.LookupQualifiedName(R, DC);
+
+ if (!R.empty()) {
+ R.suppressDiagnostics();
+
+ if (isa<CXXRecordDecl>(DC)) {
+ // Don't diagnose names we find in classes; we get much better
+ // diagnostics for these from DiagnoseEmptyLookup.
+ R.clear();
+ return false;
+ }
+
+ OverloadCandidateSet Candidates(FnLoc, CSK);
+ for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
+ AddOverloadedCallCandidate(SemaRef, I.getPair(),
+ ExplicitTemplateArgs, Args,
+ Candidates, false, /*KnownValid*/ false);
+
+ OverloadCandidateSet::iterator Best;
+ if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) {
+ // No viable functions. Don't bother the user with notes for functions
+ // which don't work and shouldn't be found anyway.
+ R.clear();
+ return false;
+ }
+
+ // Find the namespaces where ADL would have looked, and suggest
+ // declaring the function there instead.
+ Sema::AssociatedNamespaceSet AssociatedNamespaces;
+ Sema::AssociatedClassSet AssociatedClasses;
+ SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args,
+ AssociatedNamespaces,
+ AssociatedClasses);
+ Sema::AssociatedNamespaceSet SuggestedNamespaces;
+ if (canBeDeclaredInNamespace(R.getLookupName())) {
+ DeclContext *Std = SemaRef.getStdNamespace();
+ for (Sema::AssociatedNamespaceSet::iterator
+ it = AssociatedNamespaces.begin(),
+ end = AssociatedNamespaces.end(); it != end; ++it) {
+ // Never suggest declaring a function within namespace 'std'.
+ if (Std && Std->Encloses(*it))
+ continue;
+
+ // Never suggest declaring a function within a namespace with a
+ // reserved name, like __gnu_cxx.
+ NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it);
+ if (NS &&
+ NS->getQualifiedNameAsString().find("__") != std::string::npos)
+ continue;
+
+ SuggestedNamespaces.insert(*it);
+ }
+ }
+
+ SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
+ << R.getLookupName();
+ if (SuggestedNamespaces.empty()) {
+ SemaRef.Diag(Best->Function->getLocation(),
+ diag::note_not_found_by_two_phase_lookup)
+ << R.getLookupName() << 0;
+ } else if (SuggestedNamespaces.size() == 1) {
+ SemaRef.Diag(Best->Function->getLocation(),
+ diag::note_not_found_by_two_phase_lookup)
+ << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
+ } else {
+ // FIXME: It would be useful to list the associated namespaces here,
+ // but the diagnostics infrastructure doesn't provide a way to produce
+ // a localized representation of a list of items.
+ SemaRef.Diag(Best->Function->getLocation(),
+ diag::note_not_found_by_two_phase_lookup)
+ << R.getLookupName() << 2;
+ }
+
+ // Try to recover by calling this function.
+ return true;
+ }
+
+ R.clear();
+ }
+
+ return false;
+}
+
+/// Attempt to recover from ill-formed use of a non-dependent operator in a
+/// template, where the non-dependent operator was declared after the template
+/// was defined.
+///
+/// Returns true if a viable candidate was found and a diagnostic was issued.
+static bool
+DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
+ SourceLocation OpLoc,
+ ArrayRef<Expr *> Args) {
+ DeclarationName OpName =
+ SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
+ LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
+ return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
+ OverloadCandidateSet::CSK_Operator,
+ /*ExplicitTemplateArgs=*/nullptr, Args);
+}
+
+namespace {
+class BuildRecoveryCallExprRAII {
+ Sema &SemaRef;
+public:
+ BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) {
+ assert(SemaRef.IsBuildingRecoveryCallExpr == false);
+ SemaRef.IsBuildingRecoveryCallExpr = true;
+ }
+
+ ~BuildRecoveryCallExprRAII() {
+ SemaRef.IsBuildingRecoveryCallExpr = false;
+ }
+};
+
+}
+
+static std::unique_ptr<CorrectionCandidateCallback>
+MakeValidator(Sema &SemaRef, MemberExpr *ME, size_t NumArgs,
+ bool HasTemplateArgs, bool AllowTypoCorrection) {
+ if (!AllowTypoCorrection)
+ return llvm::make_unique<NoTypoCorrectionCCC>();
+ return llvm::make_unique<FunctionCallFilterCCC>(SemaRef, NumArgs,
+ HasTemplateArgs, ME);
+}
+
+/// Attempts to recover from a call where no functions were found.
+///
+/// Returns true if new candidates were found.
+static ExprResult
+BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
+ UnresolvedLookupExpr *ULE,
+ SourceLocation LParenLoc,
+ MutableArrayRef<Expr *> Args,
+ SourceLocation RParenLoc,
+ bool EmptyLookup, bool AllowTypoCorrection) {
+ // Do not try to recover if it is already building a recovery call.
+ // This stops infinite loops for template instantiations like
+ //
+ // template <typename T> auto foo(T t) -> decltype(foo(t)) {}
+ // template <typename T> auto foo(T t) -> decltype(foo(&t)) {}
+ //
+ if (SemaRef.IsBuildingRecoveryCallExpr)
+ return ExprError();
+ BuildRecoveryCallExprRAII RCE(SemaRef);
+
+ CXXScopeSpec SS;
+ SS.Adopt(ULE->getQualifierLoc());
+ SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
+
+ TemplateArgumentListInfo TABuffer;
+ TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
+ if (ULE->hasExplicitTemplateArgs()) {
+ ULE->copyTemplateArgumentsInto(TABuffer);
+ ExplicitTemplateArgs = &TABuffer;
+ }
+
+ LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
+ Sema::LookupOrdinaryName);
+ if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
+ OverloadCandidateSet::CSK_Normal,
+ ExplicitTemplateArgs, Args) &&
+ (!EmptyLookup ||
+ SemaRef.DiagnoseEmptyLookup(
+ S, SS, R,
+ MakeValidator(SemaRef, dyn_cast<MemberExpr>(Fn), Args.size(),
+ ExplicitTemplateArgs != nullptr, AllowTypoCorrection),
+ ExplicitTemplateArgs, Args)))
+ return ExprError();
+
+ assert(!R.empty() && "lookup results empty despite recovery");
+
+ // Build an implicit member call if appropriate. Just drop the
+ // casts and such from the call, we don't really care.
+ ExprResult NewFn = ExprError();
+ if ((*R.begin())->isCXXClassMember())
+ NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
+ R, ExplicitTemplateArgs);
+ else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
+ NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
+ ExplicitTemplateArgs);
+ else
+ NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
+
+ if (NewFn.isInvalid())
+ return ExprError();
+
+ // This shouldn't cause an infinite loop because we're giving it
+ // an expression with viable lookup results, which should never
+ // end up here.
+ return SemaRef.ActOnCallExpr(/*Scope*/ nullptr, NewFn.get(), LParenLoc,
+ MultiExprArg(Args.data(), Args.size()),
+ RParenLoc);
+}
+
+/// \brief Constructs and populates an OverloadedCandidateSet from
+/// the given function.
+/// \returns true when an the ExprResult output parameter has been set.
+bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn,
+ UnresolvedLookupExpr *ULE,
+ MultiExprArg Args,
+ SourceLocation RParenLoc,
+ OverloadCandidateSet *CandidateSet,
+ ExprResult *Result) {
+#ifndef NDEBUG
+ if (ULE->requiresADL()) {
+ // To do ADL, we must have found an unqualified name.
+ assert(!ULE->getQualifier() && "qualified name with ADL");
+
+ // We don't perform ADL for implicit declarations of builtins.
+ // Verify that this was correctly set up.
+ FunctionDecl *F;
+ if (ULE->decls_begin() + 1 == ULE->decls_end() &&
+ (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
+ F->getBuiltinID() && F->isImplicit())
+ llvm_unreachable("performing ADL for builtin");
+
+ // We don't perform ADL in C.
+ assert(getLangOpts().CPlusPlus && "ADL enabled in C");
+ }
+#endif
+
+ UnbridgedCastsSet UnbridgedCasts;
+ if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) {
+ *Result = ExprError();
+ return true;
+ }
+
+ // Add the functions denoted by the callee to the set of candidate
+ // functions, including those from argument-dependent lookup.
+ AddOverloadedCallCandidates(ULE, Args, *CandidateSet);
+
+ // If we found nothing, try to recover.
+ // BuildRecoveryCallExpr diagnoses the error itself, so we just bail
+ // out if it fails.
+ if (CandidateSet->empty()) {
+ // In Microsoft mode, if we are inside a template class member function then
+ // create a type dependent CallExpr. The goal is to postpone name lookup
+ // to instantiation time to be able to search into type dependent base
+ // classes.
+ if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
+ (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
+ CallExpr *CE = new (Context) CallExpr(Context, Fn, Args,
+ Context.DependentTy, VK_RValue,
+ RParenLoc);
+ CE->setTypeDependent(true);
+ *Result = CE;
+ return true;
+ }
+ return false;
+ }
+
+ UnbridgedCasts.restore();
+ return false;
+}
+
+/// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns
+/// the completed call expression. If overload resolution fails, emits
+/// diagnostics and returns ExprError()
+static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
+ UnresolvedLookupExpr *ULE,
+ SourceLocation LParenLoc,
+ MultiExprArg Args,
+ SourceLocation RParenLoc,
+ Expr *ExecConfig,
+ OverloadCandidateSet *CandidateSet,
+ OverloadCandidateSet::iterator *Best,
+ OverloadingResult OverloadResult,
+ bool AllowTypoCorrection) {
+ if (CandidateSet->empty())
+ return BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc, Args,
+ RParenLoc, /*EmptyLookup=*/true,
+ AllowTypoCorrection);
+
+ switch (OverloadResult) {
+ case OR_Success: {
+ FunctionDecl *FDecl = (*Best)->Function;
+ SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl);
+ if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc()))
+ return ExprError();
+ Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
+ return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
+ ExecConfig);
+ }
+
+ case OR_No_Viable_Function: {
+ // Try to recover by looking for viable functions which the user might
+ // have meant to call.
+ ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
+ Args, RParenLoc,
+ /*EmptyLookup=*/false,
+ AllowTypoCorrection);
+ if (!Recovery.isInvalid())
+ return Recovery;
+
+ SemaRef.Diag(Fn->getLocStart(),
+ diag::err_ovl_no_viable_function_in_call)
+ << ULE->getName() << Fn->getSourceRange();
+ CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, Args);
+ break;
+ }
+
+ case OR_Ambiguous:
+ SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_ambiguous_call)
+ << ULE->getName() << Fn->getSourceRange();
+ CandidateSet->NoteCandidates(SemaRef, OCD_ViableCandidates, Args);
+ break;
+
+ case OR_Deleted: {
+ SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_deleted_call)
+ << (*Best)->Function->isDeleted()
+ << ULE->getName()
+ << SemaRef.getDeletedOrUnavailableSuffix((*Best)->Function)
+ << Fn->getSourceRange();
+ CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, Args);
+
+ // We emitted an error for the unvailable/deleted function call but keep
+ // the call in the AST.
+ FunctionDecl *FDecl = (*Best)->Function;
+ Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
+ return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
+ ExecConfig);
+ }
+ }
+
+ // Overload resolution failed.
+ return ExprError();
+}
+
+/// BuildOverloadedCallExpr - Given the call expression that calls Fn
+/// (which eventually refers to the declaration Func) and the call
+/// arguments Args/NumArgs, attempt to resolve the function call down
+/// to a specific function. If overload resolution succeeds, returns
+/// the call expression produced by overload resolution.
+/// Otherwise, emits diagnostics and returns ExprError.
+ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn,
+ UnresolvedLookupExpr *ULE,
+ SourceLocation LParenLoc,
+ MultiExprArg Args,
+ SourceLocation RParenLoc,
+ Expr *ExecConfig,
+ bool AllowTypoCorrection) {
+ OverloadCandidateSet CandidateSet(Fn->getExprLoc(),
+ OverloadCandidateSet::CSK_Normal);
+ ExprResult result;
+
+ if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet,
+ &result))
+ return result;
+
+ OverloadCandidateSet::iterator Best;
+ OverloadingResult OverloadResult =
+ CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best);
+
+ return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args,
+ RParenLoc, ExecConfig, &CandidateSet,
+ &Best, OverloadResult,
+ AllowTypoCorrection);
+}
+
+static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
+ return Functions.size() > 1 ||
+ (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
+}
+
+/// \brief Create a unary operation that may resolve to an overloaded
+/// operator.
+///
+/// \param OpLoc The location of the operator itself (e.g., '*').
+///
+/// \param OpcIn The UnaryOperator::Opcode that describes this
+/// operator.
+///
+/// \param Fns The set of non-member functions that will be
+/// considered by overload resolution. The caller needs to build this
+/// set based on the context using, e.g.,
+/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
+/// set should not contain any member functions; those will be added
+/// by CreateOverloadedUnaryOp().
+///
+/// \param Input The input argument.
+ExprResult
+Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
+ const UnresolvedSetImpl &Fns,
+ Expr *Input) {
+ UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
+
+ OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
+ assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
+ DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
+ // TODO: provide better source location info.
+ DeclarationNameInfo OpNameInfo(OpName, OpLoc);
+
+ if (checkPlaceholderForOverload(*this, Input))
+ return ExprError();
+
+ Expr *Args[2] = { Input, nullptr };
+ unsigned NumArgs = 1;
+
+ // For post-increment and post-decrement, add the implicit '0' as
+ // the second argument, so that we know this is a post-increment or
+ // post-decrement.
+ if (Opc == UO_PostInc || Opc == UO_PostDec) {
+ llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
+ Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
+ SourceLocation());
+ NumArgs = 2;
+ }
+
+ ArrayRef<Expr *> ArgsArray(Args, NumArgs);
+
+ if (Input->isTypeDependent()) {
+ if (Fns.empty())
+ return new (Context) UnaryOperator(Input, Opc, Context.DependentTy,
+ VK_RValue, OK_Ordinary, OpLoc);
+
+ CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
+ UnresolvedLookupExpr *Fn
+ = UnresolvedLookupExpr::Create(Context, NamingClass,
+ NestedNameSpecifierLoc(), OpNameInfo,
+ /*ADL*/ true, IsOverloaded(Fns),
+ Fns.begin(), Fns.end());
+ return new (Context)
+ CXXOperatorCallExpr(Context, Op, Fn, ArgsArray, Context.DependentTy,
+ VK_RValue, OpLoc, false);
+ }
+
+ // Build an empty overload set.
+ OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
+
+ // Add the candidates from the given function set.
+ AddFunctionCandidates(Fns, ArgsArray, CandidateSet);
+
+ // Add operator candidates that are member functions.
+ AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
+
+ // Add candidates from ADL.
+ AddArgumentDependentLookupCandidates(OpName, OpLoc, ArgsArray,
+ /*ExplicitTemplateArgs*/nullptr,
+ CandidateSet);
+
+ // Add builtin operator candidates.
+ AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
+
+ bool HadMultipleCandidates = (CandidateSet.size() > 1);
+
+ // Perform overload resolution.
+ OverloadCandidateSet::iterator Best;
+ switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
+ case OR_Success: {
+ // We found a built-in operator or an overloaded operator.
+ FunctionDecl *FnDecl = Best->Function;
+
+ if (FnDecl) {
+ // We matched an overloaded operator. Build a call to that
+ // operator.
+
+ // Convert the arguments.
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
+ CheckMemberOperatorAccess(OpLoc, Args[0], nullptr, Best->FoundDecl);
+
+ ExprResult InputRes =
+ PerformObjectArgumentInitialization(Input, /*Qualifier=*/nullptr,
+ Best->FoundDecl, Method);
+ if (InputRes.isInvalid())
+ return ExprError();
+ Input = InputRes.get();
+ } else {
+ // Convert the arguments.
+ ExprResult InputInit
+ = PerformCopyInitialization(InitializedEntity::InitializeParameter(
+ Context,
+ FnDecl->getParamDecl(0)),
+ SourceLocation(),
+ Input);
+ if (InputInit.isInvalid())
+ return ExprError();
+ Input = InputInit.get();
+ }
+
+ // Build the actual expression node.
+ ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl,
+ HadMultipleCandidates, OpLoc);
+ if (FnExpr.isInvalid())
+ return ExprError();
+
+ // Determine the result type.
+ QualType ResultTy = FnDecl->getReturnType();
+ ExprValueKind VK = Expr::getValueKindForType(ResultTy);
+ ResultTy = ResultTy.getNonLValueExprType(Context);
+
+ Args[0] = Input;
+ CallExpr *TheCall =
+ new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.get(), ArgsArray,
+ ResultTy, VK, OpLoc, false);
+
+ if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl))
+ return ExprError();
+
+ return MaybeBindToTemporary(TheCall);
+ } else {
+ // We matched a built-in operator. Convert the arguments, then
+ // break out so that we will build the appropriate built-in
+ // operator node.
+ ExprResult InputRes =
+ PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
+ Best->Conversions[0], AA_Passing);
+ if (InputRes.isInvalid())
+ return ExprError();
+ Input = InputRes.get();
+ break;
+ }
+ }
+
+ case OR_No_Viable_Function:
+ // This is an erroneous use of an operator which can be overloaded by
+ // a non-member function. Check for non-member operators which were
+ // defined too late to be candidates.
+ if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray))
+ // FIXME: Recover by calling the found function.
+ return ExprError();
+
+ // No viable function; fall through to handling this as a
+ // built-in operator, which will produce an error message for us.
+ break;
+
+ case OR_Ambiguous:
+ Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary)
+ << UnaryOperator::getOpcodeStr(Opc)
+ << Input->getType()
+ << Input->getSourceRange();
+ CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, ArgsArray,
+ UnaryOperator::getOpcodeStr(Opc), OpLoc);
+ return ExprError();
+
+ case OR_Deleted:
+ Diag(OpLoc, diag::err_ovl_deleted_oper)
+ << Best->Function->isDeleted()
+ << UnaryOperator::getOpcodeStr(Opc)
+ << getDeletedOrUnavailableSuffix(Best->Function)
+ << Input->getSourceRange();
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates, ArgsArray,
+ UnaryOperator::getOpcodeStr(Opc), OpLoc);
+ return ExprError();
+ }
+
+ // Either we found no viable overloaded operator or we matched a
+ // built-in operator. In either case, fall through to trying to
+ // build a built-in operation.
+ return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
+}
+
+/// \brief Create a binary operation that may resolve to an overloaded
+/// operator.
+///
+/// \param OpLoc The location of the operator itself (e.g., '+').
+///
+/// \param OpcIn The BinaryOperator::Opcode that describes this
+/// operator.
+///
+/// \param Fns The set of non-member functions that will be
+/// considered by overload resolution. The caller needs to build this
+/// set based on the context using, e.g.,
+/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
+/// set should not contain any member functions; those will be added
+/// by CreateOverloadedBinOp().
+///
+/// \param LHS Left-hand argument.
+/// \param RHS Right-hand argument.
+ExprResult
+Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
+ unsigned OpcIn,
+ const UnresolvedSetImpl &Fns,
+ Expr *LHS, Expr *RHS) {
+ Expr *Args[2] = { LHS, RHS };
+ LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple
+
+ BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
+ OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
+ DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
+
+ // If either side is type-dependent, create an appropriate dependent
+ // expression.
+ if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
+ if (Fns.empty()) {
+ // If there are no functions to store, just build a dependent
+ // BinaryOperator or CompoundAssignment.
+ if (Opc <= BO_Assign || Opc > BO_OrAssign)
+ return new (Context) BinaryOperator(
+ Args[0], Args[1], Opc, Context.DependentTy, VK_RValue, OK_Ordinary,
+ OpLoc, FPFeatures.fp_contract);
+
+ return new (Context) CompoundAssignOperator(
+ Args[0], Args[1], Opc, Context.DependentTy, VK_LValue, OK_Ordinary,
+ Context.DependentTy, Context.DependentTy, OpLoc,
+ FPFeatures.fp_contract);
+ }
+
+ // FIXME: save results of ADL from here?
+ CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
+ // TODO: provide better source location info in DNLoc component.
+ DeclarationNameInfo OpNameInfo(OpName, OpLoc);
+ UnresolvedLookupExpr *Fn
+ = UnresolvedLookupExpr::Create(Context, NamingClass,
+ NestedNameSpecifierLoc(), OpNameInfo,
+ /*ADL*/ true, IsOverloaded(Fns),
+ Fns.begin(), Fns.end());
+ return new (Context)
+ CXXOperatorCallExpr(Context, Op, Fn, Args, Context.DependentTy,
+ VK_RValue, OpLoc, FPFeatures.fp_contract);
+ }
+
+ // Always do placeholder-like conversions on the RHS.
+ if (checkPlaceholderForOverload(*this, Args[1]))
+ return ExprError();
+
+ // Do placeholder-like conversion on the LHS; note that we should
+ // not get here with a PseudoObject LHS.
+ assert(Args[0]->getObjectKind() != OK_ObjCProperty);
+ if (checkPlaceholderForOverload(*this, Args[0]))
+ return ExprError();
+
+ // If this is the assignment operator, we only perform overload resolution
+ // if the left-hand side is a class or enumeration type. This is actually
+ // a hack. The standard requires that we do overload resolution between the
+ // various built-in candidates, but as DR507 points out, this can lead to
+ // problems. So we do it this way, which pretty much follows what GCC does.
+ // Note that we go the traditional code path for compound assignment forms.
+ if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
+ return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
+
+ // If this is the .* operator, which is not overloadable, just
+ // create a built-in binary operator.
+ if (Opc == BO_PtrMemD)
+ return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
+
+ // Build an empty overload set.
+ OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
+
+ // Add the candidates from the given function set.
+ AddFunctionCandidates(Fns, Args, CandidateSet);
+
+ // Add operator candidates that are member functions.
+ AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet);
+
+ // Add candidates from ADL. Per [over.match.oper]p2, this lookup is not
+ // performed for an assignment operator (nor for operator[] nor operator->,
+ // which don't get here).
+ if (Opc != BO_Assign)
+ AddArgumentDependentLookupCandidates(OpName, OpLoc, Args,
+ /*ExplicitTemplateArgs*/ nullptr,
+ CandidateSet);
+
+ // Add builtin operator candidates.
+ AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet);
+
+ bool HadMultipleCandidates = (CandidateSet.size() > 1);
+
+ // Perform overload resolution.
+ OverloadCandidateSet::iterator Best;
+ switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
+ case OR_Success: {
+ // We found a built-in operator or an overloaded operator.
+ FunctionDecl *FnDecl = Best->Function;
+
+ if (FnDecl) {
+ // We matched an overloaded operator. Build a call to that
+ // operator.
+
+ // Convert the arguments.
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
+ // Best->Access is only meaningful for class members.
+ CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
+
+ ExprResult Arg1 =
+ PerformCopyInitialization(
+ InitializedEntity::InitializeParameter(Context,
+ FnDecl->getParamDecl(0)),
+ SourceLocation(), Args[1]);
+ if (Arg1.isInvalid())
+ return ExprError();
+
+ ExprResult Arg0 =
+ PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
+ Best->FoundDecl, Method);
+ if (Arg0.isInvalid())
+ return ExprError();
+ Args[0] = Arg0.getAs<Expr>();
+ Args[1] = RHS = Arg1.getAs<Expr>();
+ } else {
+ // Convert the arguments.
+ ExprResult Arg0 = PerformCopyInitialization(
+ InitializedEntity::InitializeParameter(Context,
+ FnDecl->getParamDecl(0)),
+ SourceLocation(), Args[0]);
+ if (Arg0.isInvalid())
+ return ExprError();
+
+ ExprResult Arg1 =
+ PerformCopyInitialization(
+ InitializedEntity::InitializeParameter(Context,
+ FnDecl->getParamDecl(1)),
+ SourceLocation(), Args[1]);
+ if (Arg1.isInvalid())
+ return ExprError();
+ Args[0] = LHS = Arg0.getAs<Expr>();
+ Args[1] = RHS = Arg1.getAs<Expr>();
+ }
+
+ // Build the actual expression node.
+ ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
+ Best->FoundDecl,
+ HadMultipleCandidates, OpLoc);
+ if (FnExpr.isInvalid())
+ return ExprError();
+
+ // Determine the result type.
+ QualType ResultTy = FnDecl->getReturnType();
+ ExprValueKind VK = Expr::getValueKindForType(ResultTy);
+ ResultTy = ResultTy.getNonLValueExprType(Context);
+
+ CXXOperatorCallExpr *TheCall =
+ new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.get(),
+ Args, ResultTy, VK, OpLoc,
+ FPFeatures.fp_contract);
+
+ if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall,
+ FnDecl))
+ return ExprError();
+
+ ArrayRef<const Expr *> ArgsArray(Args, 2);
+ // Cut off the implicit 'this'.
+ if (isa<CXXMethodDecl>(FnDecl))
+ ArgsArray = ArgsArray.slice(1);
+
+ // Check for a self move.
+ if (Op == OO_Equal)
+ DiagnoseSelfMove(Args[0], Args[1], OpLoc);
+
+ checkCall(FnDecl, ArgsArray, 0, isa<CXXMethodDecl>(FnDecl), OpLoc,
+ TheCall->getSourceRange(), VariadicDoesNotApply);
+
+ return MaybeBindToTemporary(TheCall);
+ } else {
+ // We matched a built-in operator. Convert the arguments, then
+ // break out so that we will build the appropriate built-in
+ // operator node.
+ ExprResult ArgsRes0 =
+ PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
+ Best->Conversions[0], AA_Passing);
+ if (ArgsRes0.isInvalid())
+ return ExprError();
+ Args[0] = ArgsRes0.get();
+
+ ExprResult ArgsRes1 =
+ PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
+ Best->Conversions[1], AA_Passing);
+ if (ArgsRes1.isInvalid())
+ return ExprError();
+ Args[1] = ArgsRes1.get();
+ break;
+ }
+ }
+
+ case OR_No_Viable_Function: {
+ // C++ [over.match.oper]p9:
+ // If the operator is the operator , [...] and there are no
+ // viable functions, then the operator is assumed to be the
+ // built-in operator and interpreted according to clause 5.
+ if (Opc == BO_Comma)
+ break;
+
+ // For class as left operand for assignment or compound assigment
+ // operator do not fall through to handling in built-in, but report that
+ // no overloaded assignment operator found
+ ExprResult Result = ExprError();
+ if (Args[0]->getType()->isRecordType() &&
+ Opc >= BO_Assign && Opc <= BO_OrAssign) {
+ Diag(OpLoc, diag::err_ovl_no_viable_oper)
+ << BinaryOperator::getOpcodeStr(Opc)
+ << Args[0]->getSourceRange() << Args[1]->getSourceRange();
+ if (Args[0]->getType()->isIncompleteType()) {
+ Diag(OpLoc, diag::note_assign_lhs_incomplete)
+ << Args[0]->getType()
+ << Args[0]->getSourceRange() << Args[1]->getSourceRange();
+ }
+ } else {
+ // This is an erroneous use of an operator which can be overloaded by
+ // a non-member function. Check for non-member operators which were
+ // defined too late to be candidates.
+ if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
+ // FIXME: Recover by calling the found function.
+ return ExprError();
+
+ // No viable function; try to create a built-in operation, which will
+ // produce an error. Then, show the non-viable candidates.
+ Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
+ }
+ assert(Result.isInvalid() &&
+ "C++ binary operator overloading is missing candidates!");
+ if (Result.isInvalid())
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
+ BinaryOperator::getOpcodeStr(Opc), OpLoc);
+ return Result;
+ }
+
+ case OR_Ambiguous:
+ Diag(OpLoc, diag::err_ovl_ambiguous_oper_binary)
+ << BinaryOperator::getOpcodeStr(Opc)
+ << Args[0]->getType() << Args[1]->getType()
+ << Args[0]->getSourceRange() << Args[1]->getSourceRange();
+ CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
+ BinaryOperator::getOpcodeStr(Opc), OpLoc);
+ return ExprError();
+
+ case OR_Deleted:
+ if (isImplicitlyDeleted(Best->Function)) {
+ CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
+ Diag(OpLoc, diag::err_ovl_deleted_special_oper)
+ << Context.getRecordType(Method->getParent())
+ << getSpecialMember(Method);
+
+ // The user probably meant to call this special member. Just
+ // explain why it's deleted.
+ NoteDeletedFunction(Method);
+ return ExprError();
+ } else {
+ Diag(OpLoc, diag::err_ovl_deleted_oper)
+ << Best->Function->isDeleted()
+ << BinaryOperator::getOpcodeStr(Opc)
+ << getDeletedOrUnavailableSuffix(Best->Function)
+ << Args[0]->getSourceRange() << Args[1]->getSourceRange();
+ }
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
+ BinaryOperator::getOpcodeStr(Opc), OpLoc);
+ return ExprError();
+ }
+
+ // We matched a built-in operator; build it.
+ return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
+}
+
+ExprResult
+Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
+ SourceLocation RLoc,
+ Expr *Base, Expr *Idx) {
+ Expr *Args[2] = { Base, Idx };
+ DeclarationName OpName =
+ Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
+
+ // If either side is type-dependent, create an appropriate dependent
+ // expression.
+ if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
+
+ CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
+ // CHECKME: no 'operator' keyword?
+ DeclarationNameInfo OpNameInfo(OpName, LLoc);
+ OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
+ UnresolvedLookupExpr *Fn
+ = UnresolvedLookupExpr::Create(Context, NamingClass,
+ NestedNameSpecifierLoc(), OpNameInfo,
+ /*ADL*/ true, /*Overloaded*/ false,
+ UnresolvedSetIterator(),
+ UnresolvedSetIterator());
+ // Can't add any actual overloads yet
+
+ return new (Context)
+ CXXOperatorCallExpr(Context, OO_Subscript, Fn, Args,
+ Context.DependentTy, VK_RValue, RLoc, false);
+ }
+
+ // Handle placeholders on both operands.
+ if (checkPlaceholderForOverload(*this, Args[0]))
+ return ExprError();
+ if (checkPlaceholderForOverload(*this, Args[1]))
+ return ExprError();
+
+ // Build an empty overload set.
+ OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator);
+
+ // Subscript can only be overloaded as a member function.
+
+ // Add operator candidates that are member functions.
+ AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
+
+ // Add builtin operator candidates.
+ AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
+
+ bool HadMultipleCandidates = (CandidateSet.size() > 1);
+
+ // Perform overload resolution.
+ OverloadCandidateSet::iterator Best;
+ switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
+ case OR_Success: {
+ // We found a built-in operator or an overloaded operator.
+ FunctionDecl *FnDecl = Best->Function;
+
+ if (FnDecl) {
+ // We matched an overloaded operator. Build a call to that
+ // operator.
+
+ CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
+
+ // Convert the arguments.
+ CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
+ ExprResult Arg0 =
+ PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
+ Best->FoundDecl, Method);
+ if (Arg0.isInvalid())
+ return ExprError();
+ Args[0] = Arg0.get();
+
+ // Convert the arguments.
+ ExprResult InputInit
+ = PerformCopyInitialization(InitializedEntity::InitializeParameter(
+ Context,
+ FnDecl->getParamDecl(0)),
+ SourceLocation(),
+ Args[1]);
+ if (InputInit.isInvalid())
+ return ExprError();
+
+ Args[1] = InputInit.getAs<Expr>();
+
+ // Build the actual expression node.
+ DeclarationNameInfo OpLocInfo(OpName, LLoc);
+ OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
+ ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
+ Best->FoundDecl,
+ HadMultipleCandidates,
+ OpLocInfo.getLoc(),
+ OpLocInfo.getInfo());
+ if (FnExpr.isInvalid())
+ return ExprError();
+
+ // Determine the result type
+ QualType ResultTy = FnDecl->getReturnType();
+ ExprValueKind VK = Expr::getValueKindForType(ResultTy);
+ ResultTy = ResultTy.getNonLValueExprType(Context);
+
+ CXXOperatorCallExpr *TheCall =
+ new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
+ FnExpr.get(), Args,
+ ResultTy, VK, RLoc,
+ false);
+
+ if (CheckCallReturnType(FnDecl->getReturnType(), LLoc, TheCall, FnDecl))
+ return ExprError();
+
+ return MaybeBindToTemporary(TheCall);
+ } else {
+ // We matched a built-in operator. Convert the arguments, then
+ // break out so that we will build the appropriate built-in
+ // operator node.
+ ExprResult ArgsRes0 =
+ PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
+ Best->Conversions[0], AA_Passing);
+ if (ArgsRes0.isInvalid())
+ return ExprError();
+ Args[0] = ArgsRes0.get();
+
+ ExprResult ArgsRes1 =
+ PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
+ Best->Conversions[1], AA_Passing);
+ if (ArgsRes1.isInvalid())
+ return ExprError();
+ Args[1] = ArgsRes1.get();
+
+ break;
+ }
+ }
+
+ case OR_No_Viable_Function: {
+ if (CandidateSet.empty())
+ Diag(LLoc, diag::err_ovl_no_oper)
+ << Args[0]->getType() << /*subscript*/ 0
+ << Args[0]->getSourceRange() << Args[1]->getSourceRange();
+ else
+ Diag(LLoc, diag::err_ovl_no_viable_subscript)
+ << Args[0]->getType()
+ << Args[0]->getSourceRange() << Args[1]->getSourceRange();
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
+ "[]", LLoc);
+ return ExprError();
+ }
+
+ case OR_Ambiguous:
+ Diag(LLoc, diag::err_ovl_ambiguous_oper_binary)
+ << "[]"
+ << Args[0]->getType() << Args[1]->getType()
+ << Args[0]->getSourceRange() << Args[1]->getSourceRange();
+ CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
+ "[]", LLoc);
+ return ExprError();
+
+ case OR_Deleted:
+ Diag(LLoc, diag::err_ovl_deleted_oper)
+ << Best->Function->isDeleted() << "[]"
+ << getDeletedOrUnavailableSuffix(Best->Function)
+ << Args[0]->getSourceRange() << Args[1]->getSourceRange();
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
+ "[]", LLoc);
+ return ExprError();
+ }
+
+ // We matched a built-in operator; build it.
+ return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
+}
+
+/// BuildCallToMemberFunction - Build a call to a member
+/// function. MemExpr is the expression that refers to the member
+/// function (and includes the object parameter), Args/NumArgs are the
+/// arguments to the function call (not including the object
+/// parameter). The caller needs to validate that the member
+/// expression refers to a non-static member function or an overloaded
+/// member function.
+ExprResult
+Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
+ SourceLocation LParenLoc,
+ MultiExprArg Args,
+ SourceLocation RParenLoc) {
+ assert(MemExprE->getType() == Context.BoundMemberTy ||
+ MemExprE->getType() == Context.OverloadTy);
+
+ // Dig out the member expression. This holds both the object
+ // argument and the member function we're referring to.
+ Expr *NakedMemExpr = MemExprE->IgnoreParens();
+
+ // Determine whether this is a call to a pointer-to-member function.
+ if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
+ assert(op->getType() == Context.BoundMemberTy);
+ assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
+
+ QualType fnType =
+ op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
+
+ const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
+ QualType resultType = proto->getCallResultType(Context);
+ ExprValueKind valueKind = Expr::getValueKindForType(proto->getReturnType());
+
+ // Check that the object type isn't more qualified than the
+ // member function we're calling.
+ Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals());
+
+ QualType objectType = op->getLHS()->getType();
+ if (op->getOpcode() == BO_PtrMemI)
+ objectType = objectType->castAs<PointerType>()->getPointeeType();
+ Qualifiers objectQuals = objectType.getQualifiers();
+
+ Qualifiers difference = objectQuals - funcQuals;
+ difference.removeObjCGCAttr();
+ difference.removeAddressSpace();
+ if (difference) {
+ std::string qualsString = difference.getAsString();
+ Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
+ << fnType.getUnqualifiedType()
+ << qualsString
+ << (qualsString.find(' ') == std::string::npos ? 1 : 2);
+ }
+
+ if (resultType->isMemberPointerType())
+ if (Context.getTargetInfo().getCXXABI().isMicrosoft())
+ RequireCompleteType(LParenLoc, resultType, 0);
+
+ CXXMemberCallExpr *call
+ = new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
+ resultType, valueKind, RParenLoc);
+
+ if (CheckCallReturnType(proto->getReturnType(), op->getRHS()->getLocStart(),
+ call, nullptr))
+ return ExprError();
+
+ if (ConvertArgumentsForCall(call, op, nullptr, proto, Args, RParenLoc))
+ return ExprError();
+
+ if (CheckOtherCall(call, proto))
+ return ExprError();
+
+ return MaybeBindToTemporary(call);
+ }
+
+ if (isa<CXXPseudoDestructorExpr>(NakedMemExpr))
+ return new (Context)
+ CallExpr(Context, MemExprE, Args, Context.VoidTy, VK_RValue, RParenLoc);
+
+ UnbridgedCastsSet UnbridgedCasts;
+ if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
+ return ExprError();
+
+ MemberExpr *MemExpr;
+ CXXMethodDecl *Method = nullptr;
+ DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_public);
+ NestedNameSpecifier *Qualifier = nullptr;
+ if (isa<MemberExpr>(NakedMemExpr)) {
+ MemExpr = cast<MemberExpr>(NakedMemExpr);
+ Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
+ FoundDecl = MemExpr->getFoundDecl();
+ Qualifier = MemExpr->getQualifier();
+ UnbridgedCasts.restore();
+ } else {
+ UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
+ Qualifier = UnresExpr->getQualifier();
+
+ QualType ObjectType = UnresExpr->getBaseType();
+ Expr::Classification ObjectClassification
+ = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
+ : UnresExpr->getBase()->Classify(Context);
+
+ // Add overload candidates
+ OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(),
+ OverloadCandidateSet::CSK_Normal);
+
+ // FIXME: avoid copy.
+ TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
+ if (UnresExpr->hasExplicitTemplateArgs()) {
+ UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
+ TemplateArgs = &TemplateArgsBuffer;
+ }
+
+ for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
+ E = UnresExpr->decls_end(); I != E; ++I) {
+
+ NamedDecl *Func = *I;
+ CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
+ if (isa<UsingShadowDecl>(Func))
+ Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
+
+
+ // Microsoft supports direct constructor calls.
+ if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
+ AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(),
+ Args, CandidateSet);
+ } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
+ // If explicit template arguments were provided, we can't call a
+ // non-template member function.
+ if (TemplateArgs)
+ continue;
+
+ AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
+ ObjectClassification, Args, CandidateSet,
+ /*SuppressUserConversions=*/false);
+ } else {
+ AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
+ I.getPair(), ActingDC, TemplateArgs,
+ ObjectType, ObjectClassification,
+ Args, CandidateSet,
+ /*SuppressUsedConversions=*/false);
+ }
+ }
+
+ DeclarationName DeclName = UnresExpr->getMemberName();
+
+ UnbridgedCasts.restore();
+
+ OverloadCandidateSet::iterator Best;
+ switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(),
+ Best)) {
+ case OR_Success:
+ Method = cast<CXXMethodDecl>(Best->Function);
+ FoundDecl = Best->FoundDecl;
+ CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
+ if (DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()))
+ return ExprError();
+ // If FoundDecl is different from Method (such as if one is a template
+ // and the other a specialization), make sure DiagnoseUseOfDecl is
+ // called on both.
+ // FIXME: This would be more comprehensively addressed by modifying
+ // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
+ // being used.
+ if (Method != FoundDecl.getDecl() &&
+ DiagnoseUseOfDecl(Method, UnresExpr->getNameLoc()))
+ return ExprError();
+ break;
+
+ case OR_No_Viable_Function:
+ Diag(UnresExpr->getMemberLoc(),
+ diag::err_ovl_no_viable_member_function_in_call)
+ << DeclName << MemExprE->getSourceRange();
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
+ // FIXME: Leaking incoming expressions!
+ return ExprError();
+
+ case OR_Ambiguous:
+ Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
+ << DeclName << MemExprE->getSourceRange();
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
+ // FIXME: Leaking incoming expressions!
+ return ExprError();
+
+ case OR_Deleted:
+ Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
+ << Best->Function->isDeleted()
+ << DeclName
+ << getDeletedOrUnavailableSuffix(Best->Function)
+ << MemExprE->getSourceRange();
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
+ // FIXME: Leaking incoming expressions!
+ return ExprError();
+ }
+
+ MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
+
+ // If overload resolution picked a static member, build a
+ // non-member call based on that function.
+ if (Method->isStatic()) {
+ return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args,
+ RParenLoc);
+ }
+
+ MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
+ }
+
+ QualType ResultType = Method->getReturnType();
+ ExprValueKind VK = Expr::getValueKindForType(ResultType);
+ ResultType = ResultType.getNonLValueExprType(Context);
+
+ assert(Method && "Member call to something that isn't a method?");
+ CXXMemberCallExpr *TheCall =
+ new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
+ ResultType, VK, RParenLoc);
+
+ // (CUDA B.1): Check for invalid calls between targets.
+ if (getLangOpts().CUDA) {
+ if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext)) {
+ if (CheckCUDATarget(Caller, Method)) {
+ Diag(MemExpr->getMemberLoc(), diag::err_ref_bad_target)
+ << IdentifyCUDATarget(Method) << Method->getIdentifier()
+ << IdentifyCUDATarget(Caller);
+ return ExprError();
+ }
+ }
+ }
+
+ // Check for a valid return type.
+ if (CheckCallReturnType(Method->getReturnType(), MemExpr->getMemberLoc(),
+ TheCall, Method))
+ return ExprError();
+
+ // Convert the object argument (for a non-static member function call).
+ // We only need to do this if there was actually an overload; otherwise
+ // it was done at lookup.
+ if (!Method->isStatic()) {
+ ExprResult ObjectArg =
+ PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
+ FoundDecl, Method);
+ if (ObjectArg.isInvalid())
+ return ExprError();
+ MemExpr->setBase(ObjectArg.get());
+ }
+
+ // Convert the rest of the arguments
+ const FunctionProtoType *Proto =
+ Method->getType()->getAs<FunctionProtoType>();
+ if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args,
+ RParenLoc))
+ return ExprError();
+
+ DiagnoseSentinelCalls(Method, LParenLoc, Args);
+
+ if (CheckFunctionCall(Method, TheCall, Proto))
+ return ExprError();
+
+ if ((isa<CXXConstructorDecl>(CurContext) ||
+ isa<CXXDestructorDecl>(CurContext)) &&
+ TheCall->getMethodDecl()->isPure()) {
+ const CXXMethodDecl *MD = TheCall->getMethodDecl();
+
+ if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts())) {
+ Diag(MemExpr->getLocStart(),
+ diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
+ << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
+ << MD->getParent()->getDeclName();
+
+ Diag(MD->getLocStart(), diag::note_previous_decl) << MD->getDeclName();
+ }
+ }
+ return MaybeBindToTemporary(TheCall);
+}
+
+/// BuildCallToObjectOfClassType - Build a call to an object of class
+/// type (C++ [over.call.object]), which can end up invoking an
+/// overloaded function call operator (@c operator()) or performing a
+/// user-defined conversion on the object argument.
+ExprResult
+Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
+ SourceLocation LParenLoc,
+ MultiExprArg Args,
+ SourceLocation RParenLoc) {
+ if (checkPlaceholderForOverload(*this, Obj))
+ return ExprError();
+ ExprResult Object = Obj;
+
+ UnbridgedCastsSet UnbridgedCasts;
+ if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
+ return ExprError();
+
+ assert(Object.get()->getType()->isRecordType() &&
+ "Requires object type argument");
+ const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
+
+ // C++ [over.call.object]p1:
+ // If the primary-expression E in the function call syntax
+ // evaluates to a class object of type "cv T", then the set of
+ // candidate functions includes at least the function call
+ // operators of T. The function call operators of T are obtained by
+ // ordinary lookup of the name operator() in the context of
+ // (E).operator().
+ OverloadCandidateSet CandidateSet(LParenLoc,
+ OverloadCandidateSet::CSK_Operator);
+ DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
+
+ if (RequireCompleteType(LParenLoc, Object.get()->getType(),
+ diag::err_incomplete_object_call, Object.get()))
+ return true;
+
+ LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
+ LookupQualifiedName(R, Record->getDecl());
+ R.suppressDiagnostics();
+
+ for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
+ Oper != OperEnd; ++Oper) {
+ AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
+ Object.get()->Classify(Context),
+ Args, CandidateSet,
+ /*SuppressUserConversions=*/ false);
+ }
+
+ // C++ [over.call.object]p2:
+ // In addition, for each (non-explicit in C++0x) conversion function
+ // declared in T of the form
+ //
+ // operator conversion-type-id () cv-qualifier;
+ //
+ // where cv-qualifier is the same cv-qualification as, or a
+ // greater cv-qualification than, cv, and where conversion-type-id
+ // denotes the type "pointer to function of (P1,...,Pn) returning
+ // R", or the type "reference to pointer to function of
+ // (P1,...,Pn) returning R", or the type "reference to function
+ // of (P1,...,Pn) returning R", a surrogate call function [...]
+ // is also considered as a candidate function. Similarly,
+ // surrogate call functions are added to the set of candidate
+ // functions for each conversion function declared in an
+ // accessible base class provided the function is not hidden
+ // within T by another intervening declaration.
+ const auto &Conversions =
+ cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
+ for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
+ NamedDecl *D = *I;
+ CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
+ if (isa<UsingShadowDecl>(D))
+ D = cast<UsingShadowDecl>(D)->getTargetDecl();
+
+ // Skip over templated conversion functions; they aren't
+ // surrogates.
+ if (isa<FunctionTemplateDecl>(D))
+ continue;
+
+ CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
+ if (!Conv->isExplicit()) {
+ // Strip the reference type (if any) and then the pointer type (if
+ // any) to get down to what might be a function type.
+ QualType ConvType = Conv->getConversionType().getNonReferenceType();
+ if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
+ ConvType = ConvPtrType->getPointeeType();
+
+ if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
+ {
+ AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
+ Object.get(), Args, CandidateSet);
+ }
+ }
+ }
+
+ bool HadMultipleCandidates = (CandidateSet.size() > 1);
+
+ // Perform overload resolution.
+ OverloadCandidateSet::iterator Best;
+ switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(),
+ Best)) {
+ case OR_Success:
+ // Overload resolution succeeded; we'll build the appropriate call
+ // below.
+ break;
+
+ case OR_No_Viable_Function:
+ if (CandidateSet.empty())
+ Diag(Object.get()->getLocStart(), diag::err_ovl_no_oper)
+ << Object.get()->getType() << /*call*/ 1
+ << Object.get()->getSourceRange();
+ else
+ Diag(Object.get()->getLocStart(),
+ diag::err_ovl_no_viable_object_call)
+ << Object.get()->getType() << Object.get()->getSourceRange();
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
+ break;
+
+ case OR_Ambiguous:
+ Diag(Object.get()->getLocStart(),
+ diag::err_ovl_ambiguous_object_call)
+ << Object.get()->getType() << Object.get()->getSourceRange();
+ CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
+ break;
+
+ case OR_Deleted:
+ Diag(Object.get()->getLocStart(),
+ diag::err_ovl_deleted_object_call)
+ << Best->Function->isDeleted()
+ << Object.get()->getType()
+ << getDeletedOrUnavailableSuffix(Best->Function)
+ << Object.get()->getSourceRange();
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
+ break;
+ }
+
+ if (Best == CandidateSet.end())
+ return true;
+
+ UnbridgedCasts.restore();
+
+ if (Best->Function == nullptr) {
+ // Since there is no function declaration, this is one of the
+ // surrogate candidates. Dig out the conversion function.
+ CXXConversionDecl *Conv
+ = cast<CXXConversionDecl>(
+ Best->Conversions[0].UserDefined.ConversionFunction);
+
+ CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr,
+ Best->FoundDecl);
+ if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc))
+ return ExprError();
+ assert(Conv == Best->FoundDecl.getDecl() &&
+ "Found Decl & conversion-to-functionptr should be same, right?!");
+ // We selected one of the surrogate functions that converts the
+ // object parameter to a function pointer. Perform the conversion
+ // on the object argument, then let ActOnCallExpr finish the job.
+
+ // Create an implicit member expr to refer to the conversion operator.
+ // and then call it.
+ ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
+ Conv, HadMultipleCandidates);
+ if (Call.isInvalid())
+ return ExprError();
+ // Record usage of conversion in an implicit cast.
+ Call = ImplicitCastExpr::Create(Context, Call.get()->getType(),
+ CK_UserDefinedConversion, Call.get(),
+ nullptr, VK_RValue);
+
+ return ActOnCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc);
+ }
+
+ CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl);
+
+ // We found an overloaded operator(). Build a CXXOperatorCallExpr
+ // that calls this method, using Object for the implicit object
+ // parameter and passing along the remaining arguments.
+ CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
+
+ // An error diagnostic has already been printed when parsing the declaration.
+ if (Method->isInvalidDecl())
+ return ExprError();
+
+ const FunctionProtoType *Proto =
+ Method->getType()->getAs<FunctionProtoType>();
+
+ unsigned NumParams = Proto->getNumParams();
+
+ DeclarationNameInfo OpLocInfo(
+ Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
+ OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
+ ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
+ HadMultipleCandidates,
+ OpLocInfo.getLoc(),
+ OpLocInfo.getInfo());
+ if (NewFn.isInvalid())
+ return true;
+
+ // Build the full argument list for the method call (the implicit object
+ // parameter is placed at the beginning of the list).
+ std::unique_ptr<Expr * []> MethodArgs(new Expr *[Args.size() + 1]);
+ MethodArgs[0] = Object.get();
+ std::copy(Args.begin(), Args.end(), &MethodArgs[1]);
+
+ // Once we've built TheCall, all of the expressions are properly
+ // owned.
+ QualType ResultTy = Method->getReturnType();
+ ExprValueKind VK = Expr::getValueKindForType(ResultTy);
+ ResultTy = ResultTy.getNonLValueExprType(Context);
+
+ CXXOperatorCallExpr *TheCall = new (Context)
+ CXXOperatorCallExpr(Context, OO_Call, NewFn.get(),
+ llvm::makeArrayRef(MethodArgs.get(), Args.size() + 1),
+ ResultTy, VK, RParenLoc, false);
+ MethodArgs.reset();
+
+ if (CheckCallReturnType(Method->getReturnType(), LParenLoc, TheCall, Method))
+ return true;
+
+ // We may have default arguments. If so, we need to allocate more
+ // slots in the call for them.
+ if (Args.size() < NumParams)
+ TheCall->setNumArgs(Context, NumParams + 1);
+
+ bool IsError = false;
+
+ // Initialize the implicit object parameter.
+ ExprResult ObjRes =
+ PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/nullptr,
+ Best->FoundDecl, Method);
+ if (ObjRes.isInvalid())
+ IsError = true;
+ else
+ Object = ObjRes;
+ TheCall->setArg(0, Object.get());
+
+ // Check the argument types.
+ for (unsigned i = 0; i != NumParams; i++) {
+ Expr *Arg;
+ if (i < Args.size()) {
+ Arg = Args[i];
+
+ // Pass the argument.
+
+ ExprResult InputInit
+ = PerformCopyInitialization(InitializedEntity::InitializeParameter(
+ Context,
+ Method->getParamDecl(i)),
+ SourceLocation(), Arg);
+
+ IsError |= InputInit.isInvalid();
+ Arg = InputInit.getAs<Expr>();
+ } else {
+ ExprResult DefArg
+ = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
+ if (DefArg.isInvalid()) {
+ IsError = true;
+ break;
+ }
+
+ Arg = DefArg.getAs<Expr>();
+ }
+
+ TheCall->setArg(i + 1, Arg);
+ }
+
+ // If this is a variadic call, handle args passed through "...".
+ if (Proto->isVariadic()) {
+ // Promote the arguments (C99 6.5.2.2p7).
+ for (unsigned i = NumParams, e = Args.size(); i < e; i++) {
+ ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
+ nullptr);
+ IsError |= Arg.isInvalid();
+ TheCall->setArg(i + 1, Arg.get());
+ }
+ }
+
+ if (IsError) return true;
+
+ DiagnoseSentinelCalls(Method, LParenLoc, Args);
+
+ if (CheckFunctionCall(Method, TheCall, Proto))
+ return true;
+
+ return MaybeBindToTemporary(TheCall);
+}
+
+/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
+/// (if one exists), where @c Base is an expression of class type and
+/// @c Member is the name of the member we're trying to find.
+ExprResult
+Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
+ bool *NoArrowOperatorFound) {
+ assert(Base->getType()->isRecordType() &&
+ "left-hand side must have class type");
+
+ if (checkPlaceholderForOverload(*this, Base))
+ return ExprError();
+
+ SourceLocation Loc = Base->getExprLoc();
+
+ // C++ [over.ref]p1:
+ //
+ // [...] An expression x->m is interpreted as (x.operator->())->m
+ // for a class object x of type T if T::operator->() exists and if
+ // the operator is selected as the best match function by the
+ // overload resolution mechanism (13.3).
+ DeclarationName OpName =
+ Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
+ OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator);
+ const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
+
+ if (RequireCompleteType(Loc, Base->getType(),
+ diag::err_typecheck_incomplete_tag, Base))
+ return ExprError();
+
+ LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
+ LookupQualifiedName(R, BaseRecord->getDecl());
+ R.suppressDiagnostics();
+
+ for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
+ Oper != OperEnd; ++Oper) {
+ AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
+ None, CandidateSet, /*SuppressUserConversions=*/false);
+ }
+
+ bool HadMultipleCandidates = (CandidateSet.size() > 1);
+
+ // Perform overload resolution.
+ OverloadCandidateSet::iterator Best;
+ switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
+ case OR_Success:
+ // Overload resolution succeeded; we'll build the call below.
+ break;
+
+ case OR_No_Viable_Function:
+ if (CandidateSet.empty()) {
+ QualType BaseType = Base->getType();
+ if (NoArrowOperatorFound) {
+ // Report this specific error to the caller instead of emitting a
+ // diagnostic, as requested.
+ *NoArrowOperatorFound = true;
+ return ExprError();
+ }
+ Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
+ << BaseType << Base->getSourceRange();
+ if (BaseType->isRecordType() && !BaseType->isPointerType()) {
+ Diag(OpLoc, diag::note_typecheck_member_reference_suggestion)
+ << FixItHint::CreateReplacement(OpLoc, ".");
+ }
+ } else
+ Diag(OpLoc, diag::err_ovl_no_viable_oper)
+ << "operator->" << Base->getSourceRange();
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
+ return ExprError();
+
+ case OR_Ambiguous:
+ Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary)
+ << "->" << Base->getType() << Base->getSourceRange();
+ CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Base);
+ return ExprError();
+
+ case OR_Deleted:
+ Diag(OpLoc, diag::err_ovl_deleted_oper)
+ << Best->Function->isDeleted()
+ << "->"
+ << getDeletedOrUnavailableSuffix(Best->Function)
+ << Base->getSourceRange();
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
+ return ExprError();
+ }
+
+ CheckMemberOperatorAccess(OpLoc, Base, nullptr, Best->FoundDecl);
+
+ // Convert the object parameter.
+ CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
+ ExprResult BaseResult =
+ PerformObjectArgumentInitialization(Base, /*Qualifier=*/nullptr,
+ Best->FoundDecl, Method);
+ if (BaseResult.isInvalid())
+ return ExprError();
+ Base = BaseResult.get();
+
+ // Build the operator call.
+ ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
+ HadMultipleCandidates, OpLoc);
+ if (FnExpr.isInvalid())
+ return ExprError();
+
+ QualType ResultTy = Method->getReturnType();
+ ExprValueKind VK = Expr::getValueKindForType(ResultTy);
+ ResultTy = ResultTy.getNonLValueExprType(Context);
+ CXXOperatorCallExpr *TheCall =
+ new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.get(),
+ Base, ResultTy, VK, OpLoc, false);
+
+ if (CheckCallReturnType(Method->getReturnType(), OpLoc, TheCall, Method))
+ return ExprError();
+
+ return MaybeBindToTemporary(TheCall);
+}
+
+/// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
+/// a literal operator described by the provided lookup results.
+ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
+ DeclarationNameInfo &SuffixInfo,
+ ArrayRef<Expr*> Args,
+ SourceLocation LitEndLoc,
+ TemplateArgumentListInfo *TemplateArgs) {
+ SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
+
+ OverloadCandidateSet CandidateSet(UDSuffixLoc,
+ OverloadCandidateSet::CSK_Normal);
+ AddFunctionCandidates(R.asUnresolvedSet(), Args, CandidateSet, TemplateArgs,
+ /*SuppressUserConversions=*/true);
+
+ bool HadMultipleCandidates = (CandidateSet.size() > 1);
+
+ // Perform overload resolution. This will usually be trivial, but might need
+ // to perform substitutions for a literal operator template.
+ OverloadCandidateSet::iterator Best;
+ switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
+ case OR_Success:
+ case OR_Deleted:
+ break;
+
+ case OR_No_Viable_Function:
+ Diag(UDSuffixLoc, diag::err_ovl_no_viable_function_in_call)
+ << R.getLookupName();
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
+ return ExprError();
+
+ case OR_Ambiguous:
+ Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
+ CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
+ return ExprError();
+ }
+
+ FunctionDecl *FD = Best->Function;
+ ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl,
+ HadMultipleCandidates,
+ SuffixInfo.getLoc(),
+ SuffixInfo.getInfo());
+ if (Fn.isInvalid())
+ return true;
+
+ // Check the argument types. This should almost always be a no-op, except
+ // that array-to-pointer decay is applied to string literals.
+ Expr *ConvArgs[2];
+ for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
+ ExprResult InputInit = PerformCopyInitialization(
+ InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
+ SourceLocation(), Args[ArgIdx]);
+ if (InputInit.isInvalid())
+ return true;
+ ConvArgs[ArgIdx] = InputInit.get();
+ }
+
+ QualType ResultTy = FD->getReturnType();
+ ExprValueKind VK = Expr::getValueKindForType(ResultTy);
+ ResultTy = ResultTy.getNonLValueExprType(Context);
+
+ UserDefinedLiteral *UDL =
+ new (Context) UserDefinedLiteral(Context, Fn.get(),
+ llvm::makeArrayRef(ConvArgs, Args.size()),
+ ResultTy, VK, LitEndLoc, UDSuffixLoc);
+
+ if (CheckCallReturnType(FD->getReturnType(), UDSuffixLoc, UDL, FD))
+ return ExprError();
+
+ if (CheckFunctionCall(FD, UDL, nullptr))
+ return ExprError();
+
+ return MaybeBindToTemporary(UDL);
+}
+
+/// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the
+/// given LookupResult is non-empty, it is assumed to describe a member which
+/// will be invoked. Otherwise, the function will be found via argument
+/// dependent lookup.
+/// CallExpr is set to a valid expression and FRS_Success returned on success,
+/// otherwise CallExpr is set to ExprError() and some non-success value
+/// is returned.
+Sema::ForRangeStatus
+Sema::BuildForRangeBeginEndCall(Scope *S, SourceLocation Loc,
+ SourceLocation RangeLoc, VarDecl *Decl,
+ BeginEndFunction BEF,
+ const DeclarationNameInfo &NameInfo,
+ LookupResult &MemberLookup,
+ OverloadCandidateSet *CandidateSet,
+ Expr *Range, ExprResult *CallExpr) {
+ CandidateSet->clear();
+ if (!MemberLookup.empty()) {
+ ExprResult MemberRef =
+ BuildMemberReferenceExpr(Range, Range->getType(), Loc,
+ /*IsPtr=*/false, CXXScopeSpec(),
+ /*TemplateKWLoc=*/SourceLocation(),
+ /*FirstQualifierInScope=*/nullptr,
+ MemberLookup,
+ /*TemplateArgs=*/nullptr);
+ if (MemberRef.isInvalid()) {
+ *CallExpr = ExprError();
+ Diag(Range->getLocStart(), diag::note_in_for_range)
+ << RangeLoc << BEF << Range->getType();
+ return FRS_DiagnosticIssued;
+ }
+ *CallExpr = ActOnCallExpr(S, MemberRef.get(), Loc, None, Loc, nullptr);
+ if (CallExpr->isInvalid()) {
+ *CallExpr = ExprError();
+ Diag(Range->getLocStart(), diag::note_in_for_range)
+ << RangeLoc << BEF << Range->getType();
+ return FRS_DiagnosticIssued;
+ }
+ } else {
+ UnresolvedSet<0> FoundNames;
+ UnresolvedLookupExpr *Fn =
+ UnresolvedLookupExpr::Create(Context, /*NamingClass=*/nullptr,
+ NestedNameSpecifierLoc(), NameInfo,
+ /*NeedsADL=*/true, /*Overloaded=*/false,
+ FoundNames.begin(), FoundNames.end());
+
+ bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc,
+ CandidateSet, CallExpr);
+ if (CandidateSet->empty() || CandidateSetError) {
+ *CallExpr = ExprError();
+ return FRS_NoViableFunction;
+ }
+ OverloadCandidateSet::iterator Best;
+ OverloadingResult OverloadResult =
+ CandidateSet->BestViableFunction(*this, Fn->getLocStart(), Best);
+
+ if (OverloadResult == OR_No_Viable_Function) {
+ *CallExpr = ExprError();
+ return FRS_NoViableFunction;
+ }
+ *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range,
+ Loc, nullptr, CandidateSet, &Best,
+ OverloadResult,
+ /*AllowTypoCorrection=*/false);
+ if (CallExpr->isInvalid() || OverloadResult != OR_Success) {
+ *CallExpr = ExprError();
+ Diag(Range->getLocStart(), diag::note_in_for_range)
+ << RangeLoc << BEF << Range->getType();
+ return FRS_DiagnosticIssued;
+ }
+ }
+ return FRS_Success;
+}
+
+
+/// FixOverloadedFunctionReference - E is an expression that refers to
+/// a C++ overloaded function (possibly with some parentheses and
+/// perhaps a '&' around it). We have resolved the overloaded function
+/// to the function declaration Fn, so patch up the expression E to
+/// refer (possibly indirectly) to Fn. Returns the new expr.
+Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
+ FunctionDecl *Fn) {
+ if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
+ Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
+ Found, Fn);
+ if (SubExpr == PE->getSubExpr())
+ return PE;
+
+ return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
+ }
+
+ if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
+ Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
+ Found, Fn);
+ assert(Context.hasSameType(ICE->getSubExpr()->getType(),
+ SubExpr->getType()) &&
+ "Implicit cast type cannot be determined from overload");
+ assert(ICE->path_empty() && "fixing up hierarchy conversion?");
+ if (SubExpr == ICE->getSubExpr())
+ return ICE;
+
+ return ImplicitCastExpr::Create(Context, ICE->getType(),
+ ICE->getCastKind(),
+ SubExpr, nullptr,
+ ICE->getValueKind());
+ }
+
+ if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
+ assert(UnOp->getOpcode() == UO_AddrOf &&
+ "Can only take the address of an overloaded function");
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
+ if (Method->isStatic()) {
+ // Do nothing: static member functions aren't any different
+ // from non-member functions.
+ } else {
+ // Fix the subexpression, which really has to be an
+ // UnresolvedLookupExpr holding an overloaded member function
+ // or template.
+ Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
+ Found, Fn);
+ if (SubExpr == UnOp->getSubExpr())
+ return UnOp;
+
+ assert(isa<DeclRefExpr>(SubExpr)
+ && "fixed to something other than a decl ref");
+ assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
+ && "fixed to a member ref with no nested name qualifier");
+
+ // We have taken the address of a pointer to member
+ // function. Perform the computation here so that we get the
+ // appropriate pointer to member type.
+ QualType ClassType
+ = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
+ QualType MemPtrType
+ = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
+
+ return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
+ VK_RValue, OK_Ordinary,
+ UnOp->getOperatorLoc());
+ }
+ }
+ Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
+ Found, Fn);
+ if (SubExpr == UnOp->getSubExpr())
+ return UnOp;
+
+ return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
+ Context.getPointerType(SubExpr->getType()),
+ VK_RValue, OK_Ordinary,
+ UnOp->getOperatorLoc());
+ }
+
+ if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
+ // FIXME: avoid copy.
+ TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
+ if (ULE->hasExplicitTemplateArgs()) {
+ ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
+ TemplateArgs = &TemplateArgsBuffer;
+ }
+
+ DeclRefExpr *DRE = DeclRefExpr::Create(Context,
+ ULE->getQualifierLoc(),
+ ULE->getTemplateKeywordLoc(),
+ Fn,
+ /*enclosing*/ false, // FIXME?
+ ULE->getNameLoc(),
+ Fn->getType(),
+ VK_LValue,
+ Found.getDecl(),
+ TemplateArgs);
+ MarkDeclRefReferenced(DRE);
+ DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
+ return DRE;
+ }
+
+ if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
+ // FIXME: avoid copy.
+ TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
+ if (MemExpr->hasExplicitTemplateArgs()) {
+ MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
+ TemplateArgs = &TemplateArgsBuffer;
+ }
+
+ Expr *Base;
+
+ // If we're filling in a static method where we used to have an
+ // implicit member access, rewrite to a simple decl ref.
+ if (MemExpr->isImplicitAccess()) {
+ if (cast<CXXMethodDecl>(Fn)->isStatic()) {
+ DeclRefExpr *DRE = DeclRefExpr::Create(Context,
+ MemExpr->getQualifierLoc(),
+ MemExpr->getTemplateKeywordLoc(),
+ Fn,
+ /*enclosing*/ false,
+ MemExpr->getMemberLoc(),
+ Fn->getType(),
+ VK_LValue,
+ Found.getDecl(),
+ TemplateArgs);
+ MarkDeclRefReferenced(DRE);
+ DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
+ return DRE;
+ } else {
+ SourceLocation Loc = MemExpr->getMemberLoc();
+ if (MemExpr->getQualifier())
+ Loc = MemExpr->getQualifierLoc().getBeginLoc();
+ CheckCXXThisCapture(Loc);
+ Base = new (Context) CXXThisExpr(Loc,
+ MemExpr->getBaseType(),
+ /*isImplicit=*/true);
+ }
+ } else
+ Base = MemExpr->getBase();
+
+ ExprValueKind valueKind;
+ QualType type;
+ if (cast<CXXMethodDecl>(Fn)->isStatic()) {
+ valueKind = VK_LValue;
+ type = Fn->getType();
+ } else {
+ valueKind = VK_RValue;
+ type = Context.BoundMemberTy;
+ }
+
+ MemberExpr *ME = MemberExpr::Create(
+ Context, Base, MemExpr->isArrow(), MemExpr->getOperatorLoc(),
+ MemExpr->getQualifierLoc(), MemExpr->getTemplateKeywordLoc(), Fn, Found,
+ MemExpr->getMemberNameInfo(), TemplateArgs, type, valueKind,
+ OK_Ordinary);
+ ME->setHadMultipleCandidates(true);
+ MarkMemberReferenced(ME);
+ return ME;
+ }
+
+ llvm_unreachable("Invalid reference to overloaded function");
+}
+
+ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
+ DeclAccessPair Found,
+ FunctionDecl *Fn) {
+ return FixOverloadedFunctionReference(E.get(), Found, Fn);
+}
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaPseudoObject.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaPseudoObject.cpp
new file mode 100644
index 0000000..3e465af
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaPseudoObject.cpp
@@ -0,0 +1,1637 @@
+//===--- SemaPseudoObject.cpp - Semantic Analysis for Pseudo-Objects ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements semantic analysis for expressions involving
+// pseudo-object references. Pseudo-objects are conceptual objects
+// whose storage is entirely abstract and all accesses to which are
+// translated through some sort of abstraction barrier.
+//
+// For example, Objective-C objects can have "properties", either
+// declared or undeclared. A property may be accessed by writing
+// expr.prop
+// where 'expr' is an r-value of Objective-C pointer type and 'prop'
+// is the name of the property. If this expression is used in a context
+// needing an r-value, it is treated as if it were a message-send
+// of the associated 'getter' selector, typically:
+// [expr prop]
+// If it is used as the LHS of a simple assignment, it is treated
+// as a message-send of the associated 'setter' selector, typically:
+// [expr setProp: RHS]
+// If it is used as the LHS of a compound assignment, or the operand
+// of a unary increment or decrement, both are required; for example,
+// 'expr.prop *= 100' would be translated to:
+// [expr setProp: [expr prop] * 100]
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Sema/SemaInternal.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/Basic/CharInfo.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Sema/Initialization.h"
+#include "clang/Sema/ScopeInfo.h"
+#include "llvm/ADT/SmallString.h"
+
+using namespace clang;
+using namespace sema;
+
+namespace {
+ // Basically just a very focused copy of TreeTransform.
+ template <class T> struct Rebuilder {
+ Sema &S;
+ Rebuilder(Sema &S) : S(S) {}
+
+ T &getDerived() { return static_cast<T&>(*this); }
+
+ Expr *rebuild(Expr *e) {
+ // Fast path: nothing to look through.
+ if (typename T::specific_type *specific
+ = dyn_cast<typename T::specific_type>(e))
+ return getDerived().rebuildSpecific(specific);
+
+ // Otherwise, we should look through and rebuild anything that
+ // IgnoreParens would.
+
+ if (ParenExpr *parens = dyn_cast<ParenExpr>(e)) {
+ e = rebuild(parens->getSubExpr());
+ return new (S.Context) ParenExpr(parens->getLParen(),
+ parens->getRParen(),
+ e);
+ }
+
+ if (UnaryOperator *uop = dyn_cast<UnaryOperator>(e)) {
+ assert(uop->getOpcode() == UO_Extension);
+ e = rebuild(uop->getSubExpr());
+ return new (S.Context) UnaryOperator(e, uop->getOpcode(),
+ uop->getType(),
+ uop->getValueKind(),
+ uop->getObjectKind(),
+ uop->getOperatorLoc());
+ }
+
+ if (GenericSelectionExpr *gse = dyn_cast<GenericSelectionExpr>(e)) {
+ assert(!gse->isResultDependent());
+ unsigned resultIndex = gse->getResultIndex();
+ unsigned numAssocs = gse->getNumAssocs();
+
+ SmallVector<Expr*, 8> assocs(numAssocs);
+ SmallVector<TypeSourceInfo*, 8> assocTypes(numAssocs);
+
+ for (unsigned i = 0; i != numAssocs; ++i) {
+ Expr *assoc = gse->getAssocExpr(i);
+ if (i == resultIndex) assoc = rebuild(assoc);
+ assocs[i] = assoc;
+ assocTypes[i] = gse->getAssocTypeSourceInfo(i);
+ }
+
+ return new (S.Context) GenericSelectionExpr(S.Context,
+ gse->getGenericLoc(),
+ gse->getControllingExpr(),
+ assocTypes,
+ assocs,
+ gse->getDefaultLoc(),
+ gse->getRParenLoc(),
+ gse->containsUnexpandedParameterPack(),
+ resultIndex);
+ }
+
+ if (ChooseExpr *ce = dyn_cast<ChooseExpr>(e)) {
+ assert(!ce->isConditionDependent());
+
+ Expr *LHS = ce->getLHS(), *RHS = ce->getRHS();
+ Expr *&rebuiltExpr = ce->isConditionTrue() ? LHS : RHS;
+ rebuiltExpr = rebuild(rebuiltExpr);
+
+ return new (S.Context) ChooseExpr(ce->getBuiltinLoc(),
+ ce->getCond(),
+ LHS, RHS,
+ rebuiltExpr->getType(),
+ rebuiltExpr->getValueKind(),
+ rebuiltExpr->getObjectKind(),
+ ce->getRParenLoc(),
+ ce->isConditionTrue(),
+ rebuiltExpr->isTypeDependent(),
+ rebuiltExpr->isValueDependent());
+ }
+
+ llvm_unreachable("bad expression to rebuild!");
+ }
+ };
+
+ struct ObjCPropertyRefRebuilder : Rebuilder<ObjCPropertyRefRebuilder> {
+ Expr *NewBase;
+ ObjCPropertyRefRebuilder(Sema &S, Expr *newBase)
+ : Rebuilder<ObjCPropertyRefRebuilder>(S), NewBase(newBase) {}
+
+ typedef ObjCPropertyRefExpr specific_type;
+ Expr *rebuildSpecific(ObjCPropertyRefExpr *refExpr) {
+ // Fortunately, the constraint that we're rebuilding something
+ // with a base limits the number of cases here.
+ assert(refExpr->isObjectReceiver());
+
+ if (refExpr->isExplicitProperty()) {
+ return new (S.Context)
+ ObjCPropertyRefExpr(refExpr->getExplicitProperty(),
+ refExpr->getType(), refExpr->getValueKind(),
+ refExpr->getObjectKind(), refExpr->getLocation(),
+ NewBase);
+ }
+ return new (S.Context)
+ ObjCPropertyRefExpr(refExpr->getImplicitPropertyGetter(),
+ refExpr->getImplicitPropertySetter(),
+ refExpr->getType(), refExpr->getValueKind(),
+ refExpr->getObjectKind(),refExpr->getLocation(),
+ NewBase);
+ }
+ };
+
+ struct ObjCSubscriptRefRebuilder : Rebuilder<ObjCSubscriptRefRebuilder> {
+ Expr *NewBase;
+ Expr *NewKeyExpr;
+ ObjCSubscriptRefRebuilder(Sema &S, Expr *newBase, Expr *newKeyExpr)
+ : Rebuilder<ObjCSubscriptRefRebuilder>(S),
+ NewBase(newBase), NewKeyExpr(newKeyExpr) {}
+
+ typedef ObjCSubscriptRefExpr specific_type;
+ Expr *rebuildSpecific(ObjCSubscriptRefExpr *refExpr) {
+ assert(refExpr->getBaseExpr());
+ assert(refExpr->getKeyExpr());
+
+ return new (S.Context)
+ ObjCSubscriptRefExpr(NewBase,
+ NewKeyExpr,
+ refExpr->getType(), refExpr->getValueKind(),
+ refExpr->getObjectKind(),refExpr->getAtIndexMethodDecl(),
+ refExpr->setAtIndexMethodDecl(),
+ refExpr->getRBracket());
+ }
+ };
+
+ struct MSPropertyRefRebuilder : Rebuilder<MSPropertyRefRebuilder> {
+ Expr *NewBase;
+ MSPropertyRefRebuilder(Sema &S, Expr *newBase)
+ : Rebuilder<MSPropertyRefRebuilder>(S), NewBase(newBase) {}
+
+ typedef MSPropertyRefExpr specific_type;
+ Expr *rebuildSpecific(MSPropertyRefExpr *refExpr) {
+ assert(refExpr->getBaseExpr());
+
+ return new (S.Context)
+ MSPropertyRefExpr(NewBase, refExpr->getPropertyDecl(),
+ refExpr->isArrow(), refExpr->getType(),
+ refExpr->getValueKind(), refExpr->getQualifierLoc(),
+ refExpr->getMemberLoc());
+ }
+ };
+
+ class PseudoOpBuilder {
+ public:
+ Sema &S;
+ unsigned ResultIndex;
+ SourceLocation GenericLoc;
+ SmallVector<Expr *, 4> Semantics;
+
+ PseudoOpBuilder(Sema &S, SourceLocation genericLoc)
+ : S(S), ResultIndex(PseudoObjectExpr::NoResult),
+ GenericLoc(genericLoc) {}
+
+ virtual ~PseudoOpBuilder() {}
+
+ /// Add a normal semantic expression.
+ void addSemanticExpr(Expr *semantic) {
+ Semantics.push_back(semantic);
+ }
+
+ /// Add the 'result' semantic expression.
+ void addResultSemanticExpr(Expr *resultExpr) {
+ assert(ResultIndex == PseudoObjectExpr::NoResult);
+ ResultIndex = Semantics.size();
+ Semantics.push_back(resultExpr);
+ }
+
+ ExprResult buildRValueOperation(Expr *op);
+ ExprResult buildAssignmentOperation(Scope *Sc,
+ SourceLocation opLoc,
+ BinaryOperatorKind opcode,
+ Expr *LHS, Expr *RHS);
+ ExprResult buildIncDecOperation(Scope *Sc, SourceLocation opLoc,
+ UnaryOperatorKind opcode,
+ Expr *op);
+
+ virtual ExprResult complete(Expr *syntacticForm);
+
+ OpaqueValueExpr *capture(Expr *op);
+ OpaqueValueExpr *captureValueAsResult(Expr *op);
+
+ void setResultToLastSemantic() {
+ assert(ResultIndex == PseudoObjectExpr::NoResult);
+ ResultIndex = Semantics.size() - 1;
+ }
+
+ /// Return true if assignments have a non-void result.
+ bool CanCaptureValue(Expr *exp) {
+ if (exp->isGLValue())
+ return true;
+ QualType ty = exp->getType();
+ assert(!ty->isIncompleteType());
+ assert(!ty->isDependentType());
+
+ if (const CXXRecordDecl *ClassDecl = ty->getAsCXXRecordDecl())
+ return ClassDecl->isTriviallyCopyable();
+ return true;
+ }
+
+ virtual Expr *rebuildAndCaptureObject(Expr *) = 0;
+ virtual ExprResult buildGet() = 0;
+ virtual ExprResult buildSet(Expr *, SourceLocation,
+ bool captureSetValueAsResult) = 0;
+ };
+
+ /// A PseudoOpBuilder for Objective-C \@properties.
+ class ObjCPropertyOpBuilder : public PseudoOpBuilder {
+ ObjCPropertyRefExpr *RefExpr;
+ ObjCPropertyRefExpr *SyntacticRefExpr;
+ OpaqueValueExpr *InstanceReceiver;
+ ObjCMethodDecl *Getter;
+
+ ObjCMethodDecl *Setter;
+ Selector SetterSelector;
+ Selector GetterSelector;
+
+ public:
+ ObjCPropertyOpBuilder(Sema &S, ObjCPropertyRefExpr *refExpr) :
+ PseudoOpBuilder(S, refExpr->getLocation()), RefExpr(refExpr),
+ SyntacticRefExpr(nullptr), InstanceReceiver(nullptr), Getter(nullptr),
+ Setter(nullptr) {
+ }
+
+ ExprResult buildRValueOperation(Expr *op);
+ ExprResult buildAssignmentOperation(Scope *Sc,
+ SourceLocation opLoc,
+ BinaryOperatorKind opcode,
+ Expr *LHS, Expr *RHS);
+ ExprResult buildIncDecOperation(Scope *Sc, SourceLocation opLoc,
+ UnaryOperatorKind opcode,
+ Expr *op);
+
+ bool tryBuildGetOfReference(Expr *op, ExprResult &result);
+ bool findSetter(bool warn=true);
+ bool findGetter();
+ void DiagnoseUnsupportedPropertyUse();
+
+ Expr *rebuildAndCaptureObject(Expr *syntacticBase) override;
+ ExprResult buildGet() override;
+ ExprResult buildSet(Expr *op, SourceLocation, bool) override;
+ ExprResult complete(Expr *SyntacticForm) override;
+
+ bool isWeakProperty() const;
+ };
+
+ /// A PseudoOpBuilder for Objective-C array/dictionary indexing.
+ class ObjCSubscriptOpBuilder : public PseudoOpBuilder {
+ ObjCSubscriptRefExpr *RefExpr;
+ OpaqueValueExpr *InstanceBase;
+ OpaqueValueExpr *InstanceKey;
+ ObjCMethodDecl *AtIndexGetter;
+ Selector AtIndexGetterSelector;
+
+ ObjCMethodDecl *AtIndexSetter;
+ Selector AtIndexSetterSelector;
+
+ public:
+ ObjCSubscriptOpBuilder(Sema &S, ObjCSubscriptRefExpr *refExpr) :
+ PseudoOpBuilder(S, refExpr->getSourceRange().getBegin()),
+ RefExpr(refExpr),
+ InstanceBase(nullptr), InstanceKey(nullptr),
+ AtIndexGetter(nullptr), AtIndexSetter(nullptr) {}
+
+ ExprResult buildRValueOperation(Expr *op);
+ ExprResult buildAssignmentOperation(Scope *Sc,
+ SourceLocation opLoc,
+ BinaryOperatorKind opcode,
+ Expr *LHS, Expr *RHS);
+ Expr *rebuildAndCaptureObject(Expr *syntacticBase) override;
+
+ bool findAtIndexGetter();
+ bool findAtIndexSetter();
+
+ ExprResult buildGet() override;
+ ExprResult buildSet(Expr *op, SourceLocation, bool) override;
+ };
+
+ class MSPropertyOpBuilder : public PseudoOpBuilder {
+ MSPropertyRefExpr *RefExpr;
+
+ public:
+ MSPropertyOpBuilder(Sema &S, MSPropertyRefExpr *refExpr) :
+ PseudoOpBuilder(S, refExpr->getSourceRange().getBegin()),
+ RefExpr(refExpr) {}
+
+ Expr *rebuildAndCaptureObject(Expr *) override;
+ ExprResult buildGet() override;
+ ExprResult buildSet(Expr *op, SourceLocation, bool) override;
+ };
+}
+
+/// Capture the given expression in an OpaqueValueExpr.
+OpaqueValueExpr *PseudoOpBuilder::capture(Expr *e) {
+ // Make a new OVE whose source is the given expression.
+ OpaqueValueExpr *captured =
+ new (S.Context) OpaqueValueExpr(GenericLoc, e->getType(),
+ e->getValueKind(), e->getObjectKind(),
+ e);
+
+ // Make sure we bind that in the semantics.
+ addSemanticExpr(captured);
+ return captured;
+}
+
+/// Capture the given expression as the result of this pseudo-object
+/// operation. This routine is safe against expressions which may
+/// already be captured.
+///
+/// \returns the captured expression, which will be the
+/// same as the input if the input was already captured
+OpaqueValueExpr *PseudoOpBuilder::captureValueAsResult(Expr *e) {
+ assert(ResultIndex == PseudoObjectExpr::NoResult);
+
+ // If the expression hasn't already been captured, just capture it
+ // and set the new semantic
+ if (!isa<OpaqueValueExpr>(e)) {
+ OpaqueValueExpr *cap = capture(e);
+ setResultToLastSemantic();
+ return cap;
+ }
+
+ // Otherwise, it must already be one of our semantic expressions;
+ // set ResultIndex to its index.
+ unsigned index = 0;
+ for (;; ++index) {
+ assert(index < Semantics.size() &&
+ "captured expression not found in semantics!");
+ if (e == Semantics[index]) break;
+ }
+ ResultIndex = index;
+ return cast<OpaqueValueExpr>(e);
+}
+
+/// The routine which creates the final PseudoObjectExpr.
+ExprResult PseudoOpBuilder::complete(Expr *syntactic) {
+ return PseudoObjectExpr::Create(S.Context, syntactic,
+ Semantics, ResultIndex);
+}
+
+/// The main skeleton for building an r-value operation.
+ExprResult PseudoOpBuilder::buildRValueOperation(Expr *op) {
+ Expr *syntacticBase = rebuildAndCaptureObject(op);
+
+ ExprResult getExpr = buildGet();
+ if (getExpr.isInvalid()) return ExprError();
+ addResultSemanticExpr(getExpr.get());
+
+ return complete(syntacticBase);
+}
+
+/// The basic skeleton for building a simple or compound
+/// assignment operation.
+ExprResult
+PseudoOpBuilder::buildAssignmentOperation(Scope *Sc, SourceLocation opcLoc,
+ BinaryOperatorKind opcode,
+ Expr *LHS, Expr *RHS) {
+ assert(BinaryOperator::isAssignmentOp(opcode));
+
+ // Recover from user error
+ if (isa<UnresolvedLookupExpr>(RHS))
+ return ExprError();
+
+ Expr *syntacticLHS = rebuildAndCaptureObject(LHS);
+ OpaqueValueExpr *capturedRHS = capture(RHS);
+
+ Expr *syntactic;
+
+ ExprResult result;
+ if (opcode == BO_Assign) {
+ result = capturedRHS;
+ syntactic = new (S.Context) BinaryOperator(syntacticLHS, capturedRHS,
+ opcode, capturedRHS->getType(),
+ capturedRHS->getValueKind(),
+ OK_Ordinary, opcLoc, false);
+ } else {
+ ExprResult opLHS = buildGet();
+ if (opLHS.isInvalid()) return ExprError();
+
+ // Build an ordinary, non-compound operation.
+ BinaryOperatorKind nonCompound =
+ BinaryOperator::getOpForCompoundAssignment(opcode);
+ result = S.BuildBinOp(Sc, opcLoc, nonCompound,
+ opLHS.get(), capturedRHS);
+ if (result.isInvalid()) return ExprError();
+
+ syntactic =
+ new (S.Context) CompoundAssignOperator(syntacticLHS, capturedRHS, opcode,
+ result.get()->getType(),
+ result.get()->getValueKind(),
+ OK_Ordinary,
+ opLHS.get()->getType(),
+ result.get()->getType(),
+ opcLoc, false);
+ }
+
+ // The result of the assignment, if not void, is the value set into
+ // the l-value.
+ result = buildSet(result.get(), opcLoc, /*captureSetValueAsResult*/ true);
+ if (result.isInvalid()) return ExprError();
+ addSemanticExpr(result.get());
+
+ return complete(syntactic);
+}
+
+/// The basic skeleton for building an increment or decrement
+/// operation.
+ExprResult
+PseudoOpBuilder::buildIncDecOperation(Scope *Sc, SourceLocation opcLoc,
+ UnaryOperatorKind opcode,
+ Expr *op) {
+ assert(UnaryOperator::isIncrementDecrementOp(opcode));
+
+ Expr *syntacticOp = rebuildAndCaptureObject(op);
+
+ // Load the value.
+ ExprResult result = buildGet();
+ if (result.isInvalid()) return ExprError();
+
+ QualType resultType = result.get()->getType();
+
+ // That's the postfix result.
+ if (UnaryOperator::isPostfix(opcode) &&
+ (result.get()->isTypeDependent() || CanCaptureValue(result.get()))) {
+ result = capture(result.get());
+ setResultToLastSemantic();
+ }
+
+ // Add or subtract a literal 1.
+ llvm::APInt oneV(S.Context.getTypeSize(S.Context.IntTy), 1);
+ Expr *one = IntegerLiteral::Create(S.Context, oneV, S.Context.IntTy,
+ GenericLoc);
+
+ if (UnaryOperator::isIncrementOp(opcode)) {
+ result = S.BuildBinOp(Sc, opcLoc, BO_Add, result.get(), one);
+ } else {
+ result = S.BuildBinOp(Sc, opcLoc, BO_Sub, result.get(), one);
+ }
+ if (result.isInvalid()) return ExprError();
+
+ // Store that back into the result. The value stored is the result
+ // of a prefix operation.
+ result = buildSet(result.get(), opcLoc, UnaryOperator::isPrefix(opcode));
+ if (result.isInvalid()) return ExprError();
+ addSemanticExpr(result.get());
+
+ UnaryOperator *syntactic =
+ new (S.Context) UnaryOperator(syntacticOp, opcode, resultType,
+ VK_LValue, OK_Ordinary, opcLoc);
+ return complete(syntactic);
+}
+
+
+//===----------------------------------------------------------------------===//
+// Objective-C @property and implicit property references
+//===----------------------------------------------------------------------===//
+
+/// Look up a method in the receiver type of an Objective-C property
+/// reference.
+static ObjCMethodDecl *LookupMethodInReceiverType(Sema &S, Selector sel,
+ const ObjCPropertyRefExpr *PRE) {
+ if (PRE->isObjectReceiver()) {
+ const ObjCObjectPointerType *PT =
+ PRE->getBase()->getType()->castAs<ObjCObjectPointerType>();
+
+ // Special case for 'self' in class method implementations.
+ if (PT->isObjCClassType() &&
+ S.isSelfExpr(const_cast<Expr*>(PRE->getBase()))) {
+ // This cast is safe because isSelfExpr is only true within
+ // methods.
+ ObjCMethodDecl *method =
+ cast<ObjCMethodDecl>(S.CurContext->getNonClosureAncestor());
+ return S.LookupMethodInObjectType(sel,
+ S.Context.getObjCInterfaceType(method->getClassInterface()),
+ /*instance*/ false);
+ }
+
+ return S.LookupMethodInObjectType(sel, PT->getPointeeType(), true);
+ }
+
+ if (PRE->isSuperReceiver()) {
+ if (const ObjCObjectPointerType *PT =
+ PRE->getSuperReceiverType()->getAs<ObjCObjectPointerType>())
+ return S.LookupMethodInObjectType(sel, PT->getPointeeType(), true);
+
+ return S.LookupMethodInObjectType(sel, PRE->getSuperReceiverType(), false);
+ }
+
+ assert(PRE->isClassReceiver() && "Invalid expression");
+ QualType IT = S.Context.getObjCInterfaceType(PRE->getClassReceiver());
+ return S.LookupMethodInObjectType(sel, IT, false);
+}
+
+bool ObjCPropertyOpBuilder::isWeakProperty() const {
+ QualType T;
+ if (RefExpr->isExplicitProperty()) {
+ const ObjCPropertyDecl *Prop = RefExpr->getExplicitProperty();
+ if (Prop->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak)
+ return !Prop->hasAttr<IBOutletAttr>();
+
+ T = Prop->getType();
+ } else if (Getter) {
+ T = Getter->getReturnType();
+ } else {
+ return false;
+ }
+
+ return T.getObjCLifetime() == Qualifiers::OCL_Weak;
+}
+
+bool ObjCPropertyOpBuilder::findGetter() {
+ if (Getter) return true;
+
+ // For implicit properties, just trust the lookup we already did.
+ if (RefExpr->isImplicitProperty()) {
+ if ((Getter = RefExpr->getImplicitPropertyGetter())) {
+ GetterSelector = Getter->getSelector();
+ return true;
+ }
+ else {
+ // Must build the getter selector the hard way.
+ ObjCMethodDecl *setter = RefExpr->getImplicitPropertySetter();
+ assert(setter && "both setter and getter are null - cannot happen");
+ IdentifierInfo *setterName =
+ setter->getSelector().getIdentifierInfoForSlot(0);
+ IdentifierInfo *getterName =
+ &S.Context.Idents.get(setterName->getName().substr(3));
+ GetterSelector =
+ S.PP.getSelectorTable().getNullarySelector(getterName);
+ return false;
+ }
+ }
+
+ ObjCPropertyDecl *prop = RefExpr->getExplicitProperty();
+ Getter = LookupMethodInReceiverType(S, prop->getGetterName(), RefExpr);
+ return (Getter != nullptr);
+}
+
+/// Try to find the most accurate setter declaration for the property
+/// reference.
+///
+/// \return true if a setter was found, in which case Setter
+bool ObjCPropertyOpBuilder::findSetter(bool warn) {
+ // For implicit properties, just trust the lookup we already did.
+ if (RefExpr->isImplicitProperty()) {
+ if (ObjCMethodDecl *setter = RefExpr->getImplicitPropertySetter()) {
+ Setter = setter;
+ SetterSelector = setter->getSelector();
+ return true;
+ } else {
+ IdentifierInfo *getterName =
+ RefExpr->getImplicitPropertyGetter()->getSelector()
+ .getIdentifierInfoForSlot(0);
+ SetterSelector =
+ SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
+ S.PP.getSelectorTable(),
+ getterName);
+ return false;
+ }
+ }
+
+ // For explicit properties, this is more involved.
+ ObjCPropertyDecl *prop = RefExpr->getExplicitProperty();
+ SetterSelector = prop->getSetterName();
+
+ // Do a normal method lookup first.
+ if (ObjCMethodDecl *setter =
+ LookupMethodInReceiverType(S, SetterSelector, RefExpr)) {
+ if (setter->isPropertyAccessor() && warn)
+ if (const ObjCInterfaceDecl *IFace =
+ dyn_cast<ObjCInterfaceDecl>(setter->getDeclContext())) {
+ StringRef thisPropertyName = prop->getName();
+ // Try flipping the case of the first character.
+ char front = thisPropertyName.front();
+ front = isLowercase(front) ? toUppercase(front) : toLowercase(front);
+ SmallString<100> PropertyName = thisPropertyName;
+ PropertyName[0] = front;
+ IdentifierInfo *AltMember = &S.PP.getIdentifierTable().get(PropertyName);
+ if (ObjCPropertyDecl *prop1 = IFace->FindPropertyDeclaration(AltMember))
+ if (prop != prop1 && (prop1->getSetterMethodDecl() == setter)) {
+ S.Diag(RefExpr->getExprLoc(), diag::error_property_setter_ambiguous_use)
+ << prop << prop1 << setter->getSelector();
+ S.Diag(prop->getLocation(), diag::note_property_declare);
+ S.Diag(prop1->getLocation(), diag::note_property_declare);
+ }
+ }
+ Setter = setter;
+ return true;
+ }
+
+ // That can fail in the somewhat crazy situation that we're
+ // type-checking a message send within the @interface declaration
+ // that declared the @property. But it's not clear that that's
+ // valuable to support.
+
+ return false;
+}
+
+void ObjCPropertyOpBuilder::DiagnoseUnsupportedPropertyUse() {
+ if (S.getCurLexicalContext()->isObjCContainer() &&
+ S.getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
+ S.getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation) {
+ if (ObjCPropertyDecl *prop = RefExpr->getExplicitProperty()) {
+ S.Diag(RefExpr->getLocation(),
+ diag::err_property_function_in_objc_container);
+ S.Diag(prop->getLocation(), diag::note_property_declare);
+ }
+ }
+}
+
+/// Capture the base object of an Objective-C property expression.
+Expr *ObjCPropertyOpBuilder::rebuildAndCaptureObject(Expr *syntacticBase) {
+ assert(InstanceReceiver == nullptr);
+
+ // If we have a base, capture it in an OVE and rebuild the syntactic
+ // form to use the OVE as its base.
+ if (RefExpr->isObjectReceiver()) {
+ InstanceReceiver = capture(RefExpr->getBase());
+
+ syntacticBase =
+ ObjCPropertyRefRebuilder(S, InstanceReceiver).rebuild(syntacticBase);
+ }
+
+ if (ObjCPropertyRefExpr *
+ refE = dyn_cast<ObjCPropertyRefExpr>(syntacticBase->IgnoreParens()))
+ SyntacticRefExpr = refE;
+
+ return syntacticBase;
+}
+
+/// Load from an Objective-C property reference.
+ExprResult ObjCPropertyOpBuilder::buildGet() {
+ findGetter();
+ if (!Getter) {
+ DiagnoseUnsupportedPropertyUse();
+ return ExprError();
+ }
+
+ if (SyntacticRefExpr)
+ SyntacticRefExpr->setIsMessagingGetter();
+
+ QualType receiverType;
+ if (RefExpr->isClassReceiver()) {
+ receiverType = S.Context.getObjCInterfaceType(RefExpr->getClassReceiver());
+ } else if (RefExpr->isSuperReceiver()) {
+ receiverType = RefExpr->getSuperReceiverType();
+ } else {
+ assert(InstanceReceiver);
+ receiverType = InstanceReceiver->getType();
+ }
+ if (!Getter->isImplicit())
+ S.DiagnoseUseOfDecl(Getter, GenericLoc, nullptr, true);
+ // Build a message-send.
+ ExprResult msg;
+ if ((Getter->isInstanceMethod() && !RefExpr->isClassReceiver()) ||
+ RefExpr->isObjectReceiver()) {
+ assert(InstanceReceiver || RefExpr->isSuperReceiver());
+ msg = S.BuildInstanceMessageImplicit(InstanceReceiver, receiverType,
+ GenericLoc, Getter->getSelector(),
+ Getter, None);
+ } else {
+ msg = S.BuildClassMessageImplicit(receiverType, RefExpr->isSuperReceiver(),
+ GenericLoc, Getter->getSelector(),
+ Getter, None);
+ }
+ return msg;
+}
+
+/// Store to an Objective-C property reference.
+///
+/// \param captureSetValueAsResult If true, capture the actual
+/// value being set as the value of the property operation.
+ExprResult ObjCPropertyOpBuilder::buildSet(Expr *op, SourceLocation opcLoc,
+ bool captureSetValueAsResult) {
+ if (!findSetter(false)) {
+ DiagnoseUnsupportedPropertyUse();
+ return ExprError();
+ }
+
+ if (SyntacticRefExpr)
+ SyntacticRefExpr->setIsMessagingSetter();
+
+ QualType receiverType;
+ if (RefExpr->isClassReceiver()) {
+ receiverType = S.Context.getObjCInterfaceType(RefExpr->getClassReceiver());
+ } else if (RefExpr->isSuperReceiver()) {
+ receiverType = RefExpr->getSuperReceiverType();
+ } else {
+ assert(InstanceReceiver);
+ receiverType = InstanceReceiver->getType();
+ }
+
+ // Use assignment constraints when possible; they give us better
+ // diagnostics. "When possible" basically means anything except a
+ // C++ class type.
+ if (!S.getLangOpts().CPlusPlus || !op->getType()->isRecordType()) {
+ QualType paramType = (*Setter->param_begin())->getType();
+ if (!S.getLangOpts().CPlusPlus || !paramType->isRecordType()) {
+ ExprResult opResult = op;
+ Sema::AssignConvertType assignResult
+ = S.CheckSingleAssignmentConstraints(paramType, opResult);
+ if (S.DiagnoseAssignmentResult(assignResult, opcLoc, paramType,
+ op->getType(), opResult.get(),
+ Sema::AA_Assigning))
+ return ExprError();
+
+ op = opResult.get();
+ assert(op && "successful assignment left argument invalid?");
+ }
+ else if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(op)) {
+ Expr *Initializer = OVE->getSourceExpr();
+ // passing C++11 style initialized temporaries to objc++ properties
+ // requires special treatment by removing OpaqueValueExpr so type
+ // conversion takes place and adding the OpaqueValueExpr later on.
+ if (isa<InitListExpr>(Initializer) &&
+ Initializer->getType()->isVoidType()) {
+ op = Initializer;
+ }
+ }
+ }
+
+ // Arguments.
+ Expr *args[] = { op };
+
+ // Build a message-send.
+ ExprResult msg;
+ if (!Setter->isImplicit())
+ S.DiagnoseUseOfDecl(Setter, GenericLoc, nullptr, true);
+ if ((Setter->isInstanceMethod() && !RefExpr->isClassReceiver()) ||
+ RefExpr->isObjectReceiver()) {
+ msg = S.BuildInstanceMessageImplicit(InstanceReceiver, receiverType,
+ GenericLoc, SetterSelector, Setter,
+ MultiExprArg(args, 1));
+ } else {
+ msg = S.BuildClassMessageImplicit(receiverType, RefExpr->isSuperReceiver(),
+ GenericLoc,
+ SetterSelector, Setter,
+ MultiExprArg(args, 1));
+ }
+
+ if (!msg.isInvalid() && captureSetValueAsResult) {
+ ObjCMessageExpr *msgExpr =
+ cast<ObjCMessageExpr>(msg.get()->IgnoreImplicit());
+ Expr *arg = msgExpr->getArg(0);
+ if (CanCaptureValue(arg))
+ msgExpr->setArg(0, captureValueAsResult(arg));
+ }
+
+ return msg;
+}
+
+/// @property-specific behavior for doing lvalue-to-rvalue conversion.
+ExprResult ObjCPropertyOpBuilder::buildRValueOperation(Expr *op) {
+ // Explicit properties always have getters, but implicit ones don't.
+ // Check that before proceeding.
+ if (RefExpr->isImplicitProperty() && !RefExpr->getImplicitPropertyGetter()) {
+ S.Diag(RefExpr->getLocation(), diag::err_getter_not_found)
+ << RefExpr->getSourceRange();
+ return ExprError();
+ }
+
+ ExprResult result = PseudoOpBuilder::buildRValueOperation(op);
+ if (result.isInvalid()) return ExprError();
+
+ if (RefExpr->isExplicitProperty() && !Getter->hasRelatedResultType())
+ S.DiagnosePropertyAccessorMismatch(RefExpr->getExplicitProperty(),
+ Getter, RefExpr->getLocation());
+
+ // As a special case, if the method returns 'id', try to get
+ // a better type from the property.
+ if (RefExpr->isExplicitProperty() && result.get()->isRValue()) {
+ QualType propType = RefExpr->getExplicitProperty()->getType();
+ if (result.get()->getType()->isObjCIdType()) {
+ if (const ObjCObjectPointerType *ptr
+ = propType->getAs<ObjCObjectPointerType>()) {
+ if (!ptr->isObjCIdType())
+ result = S.ImpCastExprToType(result.get(), propType, CK_BitCast);
+ }
+ }
+ if (S.getLangOpts().ObjCAutoRefCount) {
+ Qualifiers::ObjCLifetime LT = propType.getObjCLifetime();
+ if (LT == Qualifiers::OCL_Weak)
+ if (!S.Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, RefExpr->getLocation()))
+ S.getCurFunction()->markSafeWeakUse(RefExpr);
+ }
+ }
+
+ return result;
+}
+
+/// Try to build this as a call to a getter that returns a reference.
+///
+/// \return true if it was possible, whether or not it actually
+/// succeeded
+bool ObjCPropertyOpBuilder::tryBuildGetOfReference(Expr *op,
+ ExprResult &result) {
+ if (!S.getLangOpts().CPlusPlus) return false;
+
+ findGetter();
+ if (!Getter) {
+ // The property has no setter and no getter! This can happen if the type is
+ // invalid. Error have already been reported.
+ result = ExprError();
+ return true;
+ }
+
+ // Only do this if the getter returns an l-value reference type.
+ QualType resultType = Getter->getReturnType();
+ if (!resultType->isLValueReferenceType()) return false;
+
+ result = buildRValueOperation(op);
+ return true;
+}
+
+/// @property-specific behavior for doing assignments.
+ExprResult
+ObjCPropertyOpBuilder::buildAssignmentOperation(Scope *Sc,
+ SourceLocation opcLoc,
+ BinaryOperatorKind opcode,
+ Expr *LHS, Expr *RHS) {
+ assert(BinaryOperator::isAssignmentOp(opcode));
+
+ // If there's no setter, we have no choice but to try to assign to
+ // the result of the getter.
+ if (!findSetter()) {
+ ExprResult result;
+ if (tryBuildGetOfReference(LHS, result)) {
+ if (result.isInvalid()) return ExprError();
+ return S.BuildBinOp(Sc, opcLoc, opcode, result.get(), RHS);
+ }
+
+ // Otherwise, it's an error.
+ S.Diag(opcLoc, diag::err_nosetter_property_assignment)
+ << unsigned(RefExpr->isImplicitProperty())
+ << SetterSelector
+ << LHS->getSourceRange() << RHS->getSourceRange();
+ return ExprError();
+ }
+
+ // If there is a setter, we definitely want to use it.
+
+ // Verify that we can do a compound assignment.
+ if (opcode != BO_Assign && !findGetter()) {
+ S.Diag(opcLoc, diag::err_nogetter_property_compound_assignment)
+ << LHS->getSourceRange() << RHS->getSourceRange();
+ return ExprError();
+ }
+
+ ExprResult result =
+ PseudoOpBuilder::buildAssignmentOperation(Sc, opcLoc, opcode, LHS, RHS);
+ if (result.isInvalid()) return ExprError();
+
+ // Various warnings about property assignments in ARC.
+ if (S.getLangOpts().ObjCAutoRefCount && InstanceReceiver) {
+ S.checkRetainCycles(InstanceReceiver->getSourceExpr(), RHS);
+ S.checkUnsafeExprAssigns(opcLoc, LHS, RHS);
+ }
+
+ return result;
+}
+
+/// @property-specific behavior for doing increments and decrements.
+ExprResult
+ObjCPropertyOpBuilder::buildIncDecOperation(Scope *Sc, SourceLocation opcLoc,
+ UnaryOperatorKind opcode,
+ Expr *op) {
+ // If there's no setter, we have no choice but to try to assign to
+ // the result of the getter.
+ if (!findSetter()) {
+ ExprResult result;
+ if (tryBuildGetOfReference(op, result)) {
+ if (result.isInvalid()) return ExprError();
+ return S.BuildUnaryOp(Sc, opcLoc, opcode, result.get());
+ }
+
+ // Otherwise, it's an error.
+ S.Diag(opcLoc, diag::err_nosetter_property_incdec)
+ << unsigned(RefExpr->isImplicitProperty())
+ << unsigned(UnaryOperator::isDecrementOp(opcode))
+ << SetterSelector
+ << op->getSourceRange();
+ return ExprError();
+ }
+
+ // If there is a setter, we definitely want to use it.
+
+ // We also need a getter.
+ if (!findGetter()) {
+ assert(RefExpr->isImplicitProperty());
+ S.Diag(opcLoc, diag::err_nogetter_property_incdec)
+ << unsigned(UnaryOperator::isDecrementOp(opcode))
+ << GetterSelector
+ << op->getSourceRange();
+ return ExprError();
+ }
+
+ return PseudoOpBuilder::buildIncDecOperation(Sc, opcLoc, opcode, op);
+}
+
+ExprResult ObjCPropertyOpBuilder::complete(Expr *SyntacticForm) {
+ if (S.getLangOpts().ObjCAutoRefCount && isWeakProperty() &&
+ !S.Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
+ SyntacticForm->getLocStart()))
+ S.recordUseOfEvaluatedWeak(SyntacticRefExpr,
+ SyntacticRefExpr->isMessagingGetter());
+
+ return PseudoOpBuilder::complete(SyntacticForm);
+}
+
+// ObjCSubscript build stuff.
+//
+
+/// objective-c subscripting-specific behavior for doing lvalue-to-rvalue
+/// conversion.
+/// FIXME. Remove this routine if it is proven that no additional
+/// specifity is needed.
+ExprResult ObjCSubscriptOpBuilder::buildRValueOperation(Expr *op) {
+ ExprResult result = PseudoOpBuilder::buildRValueOperation(op);
+ if (result.isInvalid()) return ExprError();
+ return result;
+}
+
+/// objective-c subscripting-specific behavior for doing assignments.
+ExprResult
+ObjCSubscriptOpBuilder::buildAssignmentOperation(Scope *Sc,
+ SourceLocation opcLoc,
+ BinaryOperatorKind opcode,
+ Expr *LHS, Expr *RHS) {
+ assert(BinaryOperator::isAssignmentOp(opcode));
+ // There must be a method to do the Index'ed assignment.
+ if (!findAtIndexSetter())
+ return ExprError();
+
+ // Verify that we can do a compound assignment.
+ if (opcode != BO_Assign && !findAtIndexGetter())
+ return ExprError();
+
+ ExprResult result =
+ PseudoOpBuilder::buildAssignmentOperation(Sc, opcLoc, opcode, LHS, RHS);
+ if (result.isInvalid()) return ExprError();
+
+ // Various warnings about objc Index'ed assignments in ARC.
+ if (S.getLangOpts().ObjCAutoRefCount && InstanceBase) {
+ S.checkRetainCycles(InstanceBase->getSourceExpr(), RHS);
+ S.checkUnsafeExprAssigns(opcLoc, LHS, RHS);
+ }
+
+ return result;
+}
+
+/// Capture the base object of an Objective-C Index'ed expression.
+Expr *ObjCSubscriptOpBuilder::rebuildAndCaptureObject(Expr *syntacticBase) {
+ assert(InstanceBase == nullptr);
+
+ // Capture base expression in an OVE and rebuild the syntactic
+ // form to use the OVE as its base expression.
+ InstanceBase = capture(RefExpr->getBaseExpr());
+ InstanceKey = capture(RefExpr->getKeyExpr());
+
+ syntacticBase =
+ ObjCSubscriptRefRebuilder(S, InstanceBase,
+ InstanceKey).rebuild(syntacticBase);
+
+ return syntacticBase;
+}
+
+/// CheckSubscriptingKind - This routine decide what type
+/// of indexing represented by "FromE" is being done.
+Sema::ObjCSubscriptKind
+ Sema::CheckSubscriptingKind(Expr *FromE) {
+ // If the expression already has integral or enumeration type, we're golden.
+ QualType T = FromE->getType();
+ if (T->isIntegralOrEnumerationType())
+ return OS_Array;
+
+ // If we don't have a class type in C++, there's no way we can get an
+ // expression of integral or enumeration type.
+ const RecordType *RecordTy = T->getAs<RecordType>();
+ if (!RecordTy &&
+ (T->isObjCObjectPointerType() || T->isVoidPointerType()))
+ // All other scalar cases are assumed to be dictionary indexing which
+ // caller handles, with diagnostics if needed.
+ return OS_Dictionary;
+ if (!getLangOpts().CPlusPlus ||
+ !RecordTy || RecordTy->isIncompleteType()) {
+ // No indexing can be done. Issue diagnostics and quit.
+ const Expr *IndexExpr = FromE->IgnoreParenImpCasts();
+ if (isa<StringLiteral>(IndexExpr))
+ Diag(FromE->getExprLoc(), diag::err_objc_subscript_pointer)
+ << T << FixItHint::CreateInsertion(FromE->getExprLoc(), "@");
+ else
+ Diag(FromE->getExprLoc(), diag::err_objc_subscript_type_conversion)
+ << T;
+ return OS_Error;
+ }
+
+ // We must have a complete class type.
+ if (RequireCompleteType(FromE->getExprLoc(), T,
+ diag::err_objc_index_incomplete_class_type, FromE))
+ return OS_Error;
+
+ // Look for a conversion to an integral, enumeration type, or
+ // objective-C pointer type.
+ int NoIntegrals=0, NoObjCIdPointers=0;
+ SmallVector<CXXConversionDecl *, 4> ConversionDecls;
+
+ for (NamedDecl *D : cast<CXXRecordDecl>(RecordTy->getDecl())
+ ->getVisibleConversionFunctions()) {
+ if (CXXConversionDecl *Conversion =
+ dyn_cast<CXXConversionDecl>(D->getUnderlyingDecl())) {
+ QualType CT = Conversion->getConversionType().getNonReferenceType();
+ if (CT->isIntegralOrEnumerationType()) {
+ ++NoIntegrals;
+ ConversionDecls.push_back(Conversion);
+ }
+ else if (CT->isObjCIdType() ||CT->isBlockPointerType()) {
+ ++NoObjCIdPointers;
+ ConversionDecls.push_back(Conversion);
+ }
+ }
+ }
+ if (NoIntegrals ==1 && NoObjCIdPointers == 0)
+ return OS_Array;
+ if (NoIntegrals == 0 && NoObjCIdPointers == 1)
+ return OS_Dictionary;
+ if (NoIntegrals == 0 && NoObjCIdPointers == 0) {
+ // No conversion function was found. Issue diagnostic and return.
+ Diag(FromE->getExprLoc(), diag::err_objc_subscript_type_conversion)
+ << FromE->getType();
+ return OS_Error;
+ }
+ Diag(FromE->getExprLoc(), diag::err_objc_multiple_subscript_type_conversion)
+ << FromE->getType();
+ for (unsigned int i = 0; i < ConversionDecls.size(); i++)
+ Diag(ConversionDecls[i]->getLocation(), diag::not_conv_function_declared_at);
+
+ return OS_Error;
+}
+
+/// CheckKeyForObjCARCConversion - This routine suggests bridge casting of CF
+/// objects used as dictionary subscript key objects.
+static void CheckKeyForObjCARCConversion(Sema &S, QualType ContainerT,
+ Expr *Key) {
+ if (ContainerT.isNull())
+ return;
+ // dictionary subscripting.
+ // - (id)objectForKeyedSubscript:(id)key;
+ IdentifierInfo *KeyIdents[] = {
+ &S.Context.Idents.get("objectForKeyedSubscript")
+ };
+ Selector GetterSelector = S.Context.Selectors.getSelector(1, KeyIdents);
+ ObjCMethodDecl *Getter = S.LookupMethodInObjectType(GetterSelector, ContainerT,
+ true /*instance*/);
+ if (!Getter)
+ return;
+ QualType T = Getter->parameters()[0]->getType();
+ S.CheckObjCARCConversion(Key->getSourceRange(),
+ T, Key, Sema::CCK_ImplicitConversion);
+}
+
+bool ObjCSubscriptOpBuilder::findAtIndexGetter() {
+ if (AtIndexGetter)
+ return true;
+
+ Expr *BaseExpr = RefExpr->getBaseExpr();
+ QualType BaseT = BaseExpr->getType();
+
+ QualType ResultType;
+ if (const ObjCObjectPointerType *PTy =
+ BaseT->getAs<ObjCObjectPointerType>()) {
+ ResultType = PTy->getPointeeType();
+ if (const ObjCObjectType *iQFaceTy =
+ ResultType->getAsObjCQualifiedInterfaceType())
+ ResultType = iQFaceTy->getBaseType();
+ }
+ Sema::ObjCSubscriptKind Res =
+ S.CheckSubscriptingKind(RefExpr->getKeyExpr());
+ if (Res == Sema::OS_Error) {
+ if (S.getLangOpts().ObjCAutoRefCount)
+ CheckKeyForObjCARCConversion(S, ResultType,
+ RefExpr->getKeyExpr());
+ return false;
+ }
+ bool arrayRef = (Res == Sema::OS_Array);
+
+ if (ResultType.isNull()) {
+ S.Diag(BaseExpr->getExprLoc(), diag::err_objc_subscript_base_type)
+ << BaseExpr->getType() << arrayRef;
+ return false;
+ }
+ if (!arrayRef) {
+ // dictionary subscripting.
+ // - (id)objectForKeyedSubscript:(id)key;
+ IdentifierInfo *KeyIdents[] = {
+ &S.Context.Idents.get("objectForKeyedSubscript")
+ };
+ AtIndexGetterSelector = S.Context.Selectors.getSelector(1, KeyIdents);
+ }
+ else {
+ // - (id)objectAtIndexedSubscript:(size_t)index;
+ IdentifierInfo *KeyIdents[] = {
+ &S.Context.Idents.get("objectAtIndexedSubscript")
+ };
+
+ AtIndexGetterSelector = S.Context.Selectors.getSelector(1, KeyIdents);
+ }
+
+ AtIndexGetter = S.LookupMethodInObjectType(AtIndexGetterSelector, ResultType,
+ true /*instance*/);
+ bool receiverIdType = (BaseT->isObjCIdType() ||
+ BaseT->isObjCQualifiedIdType());
+
+ if (!AtIndexGetter && S.getLangOpts().DebuggerObjCLiteral) {
+ AtIndexGetter = ObjCMethodDecl::Create(S.Context, SourceLocation(),
+ SourceLocation(), AtIndexGetterSelector,
+ S.Context.getObjCIdType() /*ReturnType*/,
+ nullptr /*TypeSourceInfo */,
+ S.Context.getTranslationUnitDecl(),
+ true /*Instance*/, false/*isVariadic*/,
+ /*isPropertyAccessor=*/false,
+ /*isImplicitlyDeclared=*/true, /*isDefined=*/false,
+ ObjCMethodDecl::Required,
+ false);
+ ParmVarDecl *Argument = ParmVarDecl::Create(S.Context, AtIndexGetter,
+ SourceLocation(), SourceLocation(),
+ arrayRef ? &S.Context.Idents.get("index")
+ : &S.Context.Idents.get("key"),
+ arrayRef ? S.Context.UnsignedLongTy
+ : S.Context.getObjCIdType(),
+ /*TInfo=*/nullptr,
+ SC_None,
+ nullptr);
+ AtIndexGetter->setMethodParams(S.Context, Argument, None);
+ }
+
+ if (!AtIndexGetter) {
+ if (!receiverIdType) {
+ S.Diag(BaseExpr->getExprLoc(), diag::err_objc_subscript_method_not_found)
+ << BaseExpr->getType() << 0 << arrayRef;
+ return false;
+ }
+ AtIndexGetter =
+ S.LookupInstanceMethodInGlobalPool(AtIndexGetterSelector,
+ RefExpr->getSourceRange(),
+ true);
+ }
+
+ if (AtIndexGetter) {
+ QualType T = AtIndexGetter->parameters()[0]->getType();
+ if ((arrayRef && !T->isIntegralOrEnumerationType()) ||
+ (!arrayRef && !T->isObjCObjectPointerType())) {
+ S.Diag(RefExpr->getKeyExpr()->getExprLoc(),
+ arrayRef ? diag::err_objc_subscript_index_type
+ : diag::err_objc_subscript_key_type) << T;
+ S.Diag(AtIndexGetter->parameters()[0]->getLocation(),
+ diag::note_parameter_type) << T;
+ return false;
+ }
+ QualType R = AtIndexGetter->getReturnType();
+ if (!R->isObjCObjectPointerType()) {
+ S.Diag(RefExpr->getKeyExpr()->getExprLoc(),
+ diag::err_objc_indexing_method_result_type) << R << arrayRef;
+ S.Diag(AtIndexGetter->getLocation(), diag::note_method_declared_at) <<
+ AtIndexGetter->getDeclName();
+ }
+ }
+ return true;
+}
+
+bool ObjCSubscriptOpBuilder::findAtIndexSetter() {
+ if (AtIndexSetter)
+ return true;
+
+ Expr *BaseExpr = RefExpr->getBaseExpr();
+ QualType BaseT = BaseExpr->getType();
+
+ QualType ResultType;
+ if (const ObjCObjectPointerType *PTy =
+ BaseT->getAs<ObjCObjectPointerType>()) {
+ ResultType = PTy->getPointeeType();
+ if (const ObjCObjectType *iQFaceTy =
+ ResultType->getAsObjCQualifiedInterfaceType())
+ ResultType = iQFaceTy->getBaseType();
+ }
+
+ Sema::ObjCSubscriptKind Res =
+ S.CheckSubscriptingKind(RefExpr->getKeyExpr());
+ if (Res == Sema::OS_Error) {
+ if (S.getLangOpts().ObjCAutoRefCount)
+ CheckKeyForObjCARCConversion(S, ResultType,
+ RefExpr->getKeyExpr());
+ return false;
+ }
+ bool arrayRef = (Res == Sema::OS_Array);
+
+ if (ResultType.isNull()) {
+ S.Diag(BaseExpr->getExprLoc(), diag::err_objc_subscript_base_type)
+ << BaseExpr->getType() << arrayRef;
+ return false;
+ }
+
+ if (!arrayRef) {
+ // dictionary subscripting.
+ // - (void)setObject:(id)object forKeyedSubscript:(id)key;
+ IdentifierInfo *KeyIdents[] = {
+ &S.Context.Idents.get("setObject"),
+ &S.Context.Idents.get("forKeyedSubscript")
+ };
+ AtIndexSetterSelector = S.Context.Selectors.getSelector(2, KeyIdents);
+ }
+ else {
+ // - (void)setObject:(id)object atIndexedSubscript:(NSInteger)index;
+ IdentifierInfo *KeyIdents[] = {
+ &S.Context.Idents.get("setObject"),
+ &S.Context.Idents.get("atIndexedSubscript")
+ };
+ AtIndexSetterSelector = S.Context.Selectors.getSelector(2, KeyIdents);
+ }
+ AtIndexSetter = S.LookupMethodInObjectType(AtIndexSetterSelector, ResultType,
+ true /*instance*/);
+
+ bool receiverIdType = (BaseT->isObjCIdType() ||
+ BaseT->isObjCQualifiedIdType());
+
+ if (!AtIndexSetter && S.getLangOpts().DebuggerObjCLiteral) {
+ TypeSourceInfo *ReturnTInfo = nullptr;
+ QualType ReturnType = S.Context.VoidTy;
+ AtIndexSetter = ObjCMethodDecl::Create(
+ S.Context, SourceLocation(), SourceLocation(), AtIndexSetterSelector,
+ ReturnType, ReturnTInfo, S.Context.getTranslationUnitDecl(),
+ true /*Instance*/, false /*isVariadic*/,
+ /*isPropertyAccessor=*/false,
+ /*isImplicitlyDeclared=*/true, /*isDefined=*/false,
+ ObjCMethodDecl::Required, false);
+ SmallVector<ParmVarDecl *, 2> Params;
+ ParmVarDecl *object = ParmVarDecl::Create(S.Context, AtIndexSetter,
+ SourceLocation(), SourceLocation(),
+ &S.Context.Idents.get("object"),
+ S.Context.getObjCIdType(),
+ /*TInfo=*/nullptr,
+ SC_None,
+ nullptr);
+ Params.push_back(object);
+ ParmVarDecl *key = ParmVarDecl::Create(S.Context, AtIndexSetter,
+ SourceLocation(), SourceLocation(),
+ arrayRef ? &S.Context.Idents.get("index")
+ : &S.Context.Idents.get("key"),
+ arrayRef ? S.Context.UnsignedLongTy
+ : S.Context.getObjCIdType(),
+ /*TInfo=*/nullptr,
+ SC_None,
+ nullptr);
+ Params.push_back(key);
+ AtIndexSetter->setMethodParams(S.Context, Params, None);
+ }
+
+ if (!AtIndexSetter) {
+ if (!receiverIdType) {
+ S.Diag(BaseExpr->getExprLoc(),
+ diag::err_objc_subscript_method_not_found)
+ << BaseExpr->getType() << 1 << arrayRef;
+ return false;
+ }
+ AtIndexSetter =
+ S.LookupInstanceMethodInGlobalPool(AtIndexSetterSelector,
+ RefExpr->getSourceRange(),
+ true);
+ }
+
+ bool err = false;
+ if (AtIndexSetter && arrayRef) {
+ QualType T = AtIndexSetter->parameters()[1]->getType();
+ if (!T->isIntegralOrEnumerationType()) {
+ S.Diag(RefExpr->getKeyExpr()->getExprLoc(),
+ diag::err_objc_subscript_index_type) << T;
+ S.Diag(AtIndexSetter->parameters()[1]->getLocation(),
+ diag::note_parameter_type) << T;
+ err = true;
+ }
+ T = AtIndexSetter->parameters()[0]->getType();
+ if (!T->isObjCObjectPointerType()) {
+ S.Diag(RefExpr->getBaseExpr()->getExprLoc(),
+ diag::err_objc_subscript_object_type) << T << arrayRef;
+ S.Diag(AtIndexSetter->parameters()[0]->getLocation(),
+ diag::note_parameter_type) << T;
+ err = true;
+ }
+ }
+ else if (AtIndexSetter && !arrayRef)
+ for (unsigned i=0; i <2; i++) {
+ QualType T = AtIndexSetter->parameters()[i]->getType();
+ if (!T->isObjCObjectPointerType()) {
+ if (i == 1)
+ S.Diag(RefExpr->getKeyExpr()->getExprLoc(),
+ diag::err_objc_subscript_key_type) << T;
+ else
+ S.Diag(RefExpr->getBaseExpr()->getExprLoc(),
+ diag::err_objc_subscript_dic_object_type) << T;
+ S.Diag(AtIndexSetter->parameters()[i]->getLocation(),
+ diag::note_parameter_type) << T;
+ err = true;
+ }
+ }
+
+ return !err;
+}
+
+// Get the object at "Index" position in the container.
+// [BaseExpr objectAtIndexedSubscript : IndexExpr];
+ExprResult ObjCSubscriptOpBuilder::buildGet() {
+ if (!findAtIndexGetter())
+ return ExprError();
+
+ QualType receiverType = InstanceBase->getType();
+
+ // Build a message-send.
+ ExprResult msg;
+ Expr *Index = InstanceKey;
+
+ // Arguments.
+ Expr *args[] = { Index };
+ assert(InstanceBase);
+ if (AtIndexGetter)
+ S.DiagnoseUseOfDecl(AtIndexGetter, GenericLoc);
+ msg = S.BuildInstanceMessageImplicit(InstanceBase, receiverType,
+ GenericLoc,
+ AtIndexGetterSelector, AtIndexGetter,
+ MultiExprArg(args, 1));
+ return msg;
+}
+
+/// Store into the container the "op" object at "Index"'ed location
+/// by building this messaging expression:
+/// - (void)setObject:(id)object atIndexedSubscript:(NSInteger)index;
+/// \param captureSetValueAsResult If true, capture the actual
+/// value being set as the value of the property operation.
+ExprResult ObjCSubscriptOpBuilder::buildSet(Expr *op, SourceLocation opcLoc,
+ bool captureSetValueAsResult) {
+ if (!findAtIndexSetter())
+ return ExprError();
+ if (AtIndexSetter)
+ S.DiagnoseUseOfDecl(AtIndexSetter, GenericLoc);
+ QualType receiverType = InstanceBase->getType();
+ Expr *Index = InstanceKey;
+
+ // Arguments.
+ Expr *args[] = { op, Index };
+
+ // Build a message-send.
+ ExprResult msg = S.BuildInstanceMessageImplicit(InstanceBase, receiverType,
+ GenericLoc,
+ AtIndexSetterSelector,
+ AtIndexSetter,
+ MultiExprArg(args, 2));
+
+ if (!msg.isInvalid() && captureSetValueAsResult) {
+ ObjCMessageExpr *msgExpr =
+ cast<ObjCMessageExpr>(msg.get()->IgnoreImplicit());
+ Expr *arg = msgExpr->getArg(0);
+ if (CanCaptureValue(arg))
+ msgExpr->setArg(0, captureValueAsResult(arg));
+ }
+
+ return msg;
+}
+
+//===----------------------------------------------------------------------===//
+// MSVC __declspec(property) references
+//===----------------------------------------------------------------------===//
+
+Expr *MSPropertyOpBuilder::rebuildAndCaptureObject(Expr *syntacticBase) {
+ Expr *NewBase = capture(RefExpr->getBaseExpr());
+
+ syntacticBase =
+ MSPropertyRefRebuilder(S, NewBase).rebuild(syntacticBase);
+
+ return syntacticBase;
+}
+
+ExprResult MSPropertyOpBuilder::buildGet() {
+ if (!RefExpr->getPropertyDecl()->hasGetter()) {
+ S.Diag(RefExpr->getMemberLoc(), diag::err_no_accessor_for_property)
+ << 0 /* getter */ << RefExpr->getPropertyDecl();
+ return ExprError();
+ }
+
+ UnqualifiedId GetterName;
+ IdentifierInfo *II = RefExpr->getPropertyDecl()->getGetterId();
+ GetterName.setIdentifier(II, RefExpr->getMemberLoc());
+ CXXScopeSpec SS;
+ SS.Adopt(RefExpr->getQualifierLoc());
+ ExprResult GetterExpr = S.ActOnMemberAccessExpr(
+ S.getCurScope(), RefExpr->getBaseExpr(), SourceLocation(),
+ RefExpr->isArrow() ? tok::arrow : tok::period, SS, SourceLocation(),
+ GetterName, nullptr);
+ if (GetterExpr.isInvalid()) {
+ S.Diag(RefExpr->getMemberLoc(),
+ diag::error_cannot_find_suitable_accessor) << 0 /* getter */
+ << RefExpr->getPropertyDecl();
+ return ExprError();
+ }
+
+ MultiExprArg ArgExprs;
+ return S.ActOnCallExpr(S.getCurScope(), GetterExpr.get(),
+ RefExpr->getSourceRange().getBegin(), ArgExprs,
+ RefExpr->getSourceRange().getEnd());
+}
+
+ExprResult MSPropertyOpBuilder::buildSet(Expr *op, SourceLocation sl,
+ bool captureSetValueAsResult) {
+ if (!RefExpr->getPropertyDecl()->hasSetter()) {
+ S.Diag(RefExpr->getMemberLoc(), diag::err_no_accessor_for_property)
+ << 1 /* setter */ << RefExpr->getPropertyDecl();
+ return ExprError();
+ }
+
+ UnqualifiedId SetterName;
+ IdentifierInfo *II = RefExpr->getPropertyDecl()->getSetterId();
+ SetterName.setIdentifier(II, RefExpr->getMemberLoc());
+ CXXScopeSpec SS;
+ SS.Adopt(RefExpr->getQualifierLoc());
+ ExprResult SetterExpr = S.ActOnMemberAccessExpr(
+ S.getCurScope(), RefExpr->getBaseExpr(), SourceLocation(),
+ RefExpr->isArrow() ? tok::arrow : tok::period, SS, SourceLocation(),
+ SetterName, nullptr);
+ if (SetterExpr.isInvalid()) {
+ S.Diag(RefExpr->getMemberLoc(),
+ diag::error_cannot_find_suitable_accessor) << 1 /* setter */
+ << RefExpr->getPropertyDecl();
+ return ExprError();
+ }
+
+ SmallVector<Expr*, 1> ArgExprs;
+ ArgExprs.push_back(op);
+ return S.ActOnCallExpr(S.getCurScope(), SetterExpr.get(),
+ RefExpr->getSourceRange().getBegin(), ArgExprs,
+ op->getSourceRange().getEnd());
+}
+
+//===----------------------------------------------------------------------===//
+// General Sema routines.
+//===----------------------------------------------------------------------===//
+
+ExprResult Sema::checkPseudoObjectRValue(Expr *E) {
+ Expr *opaqueRef = E->IgnoreParens();
+ if (ObjCPropertyRefExpr *refExpr
+ = dyn_cast<ObjCPropertyRefExpr>(opaqueRef)) {
+ ObjCPropertyOpBuilder builder(*this, refExpr);
+ return builder.buildRValueOperation(E);
+ }
+ else if (ObjCSubscriptRefExpr *refExpr
+ = dyn_cast<ObjCSubscriptRefExpr>(opaqueRef)) {
+ ObjCSubscriptOpBuilder builder(*this, refExpr);
+ return builder.buildRValueOperation(E);
+ } else if (MSPropertyRefExpr *refExpr
+ = dyn_cast<MSPropertyRefExpr>(opaqueRef)) {
+ MSPropertyOpBuilder builder(*this, refExpr);
+ return builder.buildRValueOperation(E);
+ } else {
+ llvm_unreachable("unknown pseudo-object kind!");
+ }
+}
+
+/// Check an increment or decrement of a pseudo-object expression.
+ExprResult Sema::checkPseudoObjectIncDec(Scope *Sc, SourceLocation opcLoc,
+ UnaryOperatorKind opcode, Expr *op) {
+ // Do nothing if the operand is dependent.
+ if (op->isTypeDependent())
+ return new (Context) UnaryOperator(op, opcode, Context.DependentTy,
+ VK_RValue, OK_Ordinary, opcLoc);
+
+ assert(UnaryOperator::isIncrementDecrementOp(opcode));
+ Expr *opaqueRef = op->IgnoreParens();
+ if (ObjCPropertyRefExpr *refExpr
+ = dyn_cast<ObjCPropertyRefExpr>(opaqueRef)) {
+ ObjCPropertyOpBuilder builder(*this, refExpr);
+ return builder.buildIncDecOperation(Sc, opcLoc, opcode, op);
+ } else if (isa<ObjCSubscriptRefExpr>(opaqueRef)) {
+ Diag(opcLoc, diag::err_illegal_container_subscripting_op);
+ return ExprError();
+ } else if (MSPropertyRefExpr *refExpr
+ = dyn_cast<MSPropertyRefExpr>(opaqueRef)) {
+ MSPropertyOpBuilder builder(*this, refExpr);
+ return builder.buildIncDecOperation(Sc, opcLoc, opcode, op);
+ } else {
+ llvm_unreachable("unknown pseudo-object kind!");
+ }
+}
+
+ExprResult Sema::checkPseudoObjectAssignment(Scope *S, SourceLocation opcLoc,
+ BinaryOperatorKind opcode,
+ Expr *LHS, Expr *RHS) {
+ // Do nothing if either argument is dependent.
+ if (LHS->isTypeDependent() || RHS->isTypeDependent())
+ return new (Context) BinaryOperator(LHS, RHS, opcode, Context.DependentTy,
+ VK_RValue, OK_Ordinary, opcLoc, false);
+
+ // Filter out non-overload placeholder types in the RHS.
+ if (RHS->getType()->isNonOverloadPlaceholderType()) {
+ ExprResult result = CheckPlaceholderExpr(RHS);
+ if (result.isInvalid()) return ExprError();
+ RHS = result.get();
+ }
+
+ Expr *opaqueRef = LHS->IgnoreParens();
+ if (ObjCPropertyRefExpr *refExpr
+ = dyn_cast<ObjCPropertyRefExpr>(opaqueRef)) {
+ ObjCPropertyOpBuilder builder(*this, refExpr);
+ return builder.buildAssignmentOperation(S, opcLoc, opcode, LHS, RHS);
+ } else if (ObjCSubscriptRefExpr *refExpr
+ = dyn_cast<ObjCSubscriptRefExpr>(opaqueRef)) {
+ ObjCSubscriptOpBuilder builder(*this, refExpr);
+ return builder.buildAssignmentOperation(S, opcLoc, opcode, LHS, RHS);
+ } else if (MSPropertyRefExpr *refExpr
+ = dyn_cast<MSPropertyRefExpr>(opaqueRef)) {
+ MSPropertyOpBuilder builder(*this, refExpr);
+ return builder.buildAssignmentOperation(S, opcLoc, opcode, LHS, RHS);
+ } else {
+ llvm_unreachable("unknown pseudo-object kind!");
+ }
+}
+
+/// Given a pseudo-object reference, rebuild it without the opaque
+/// values. Basically, undo the behavior of rebuildAndCaptureObject.
+/// This should never operate in-place.
+static Expr *stripOpaqueValuesFromPseudoObjectRef(Sema &S, Expr *E) {
+ Expr *opaqueRef = E->IgnoreParens();
+ if (ObjCPropertyRefExpr *refExpr
+ = dyn_cast<ObjCPropertyRefExpr>(opaqueRef)) {
+ // Class and super property references don't have opaque values in them.
+ if (refExpr->isClassReceiver() || refExpr->isSuperReceiver())
+ return E;
+
+ assert(refExpr->isObjectReceiver() && "Unknown receiver kind?");
+ OpaqueValueExpr *baseOVE = cast<OpaqueValueExpr>(refExpr->getBase());
+ return ObjCPropertyRefRebuilder(S, baseOVE->getSourceExpr()).rebuild(E);
+ } else if (ObjCSubscriptRefExpr *refExpr
+ = dyn_cast<ObjCSubscriptRefExpr>(opaqueRef)) {
+ OpaqueValueExpr *baseOVE = cast<OpaqueValueExpr>(refExpr->getBaseExpr());
+ OpaqueValueExpr *keyOVE = cast<OpaqueValueExpr>(refExpr->getKeyExpr());
+ return ObjCSubscriptRefRebuilder(S, baseOVE->getSourceExpr(),
+ keyOVE->getSourceExpr()).rebuild(E);
+ } else if (MSPropertyRefExpr *refExpr
+ = dyn_cast<MSPropertyRefExpr>(opaqueRef)) {
+ OpaqueValueExpr *baseOVE = cast<OpaqueValueExpr>(refExpr->getBaseExpr());
+ return MSPropertyRefRebuilder(S, baseOVE->getSourceExpr()).rebuild(E);
+ } else {
+ llvm_unreachable("unknown pseudo-object kind!");
+ }
+}
+
+/// Given a pseudo-object expression, recreate what it looks like
+/// syntactically without the attendant OpaqueValueExprs.
+///
+/// This is a hack which should be removed when TreeTransform is
+/// capable of rebuilding a tree without stripping implicit
+/// operations.
+Expr *Sema::recreateSyntacticForm(PseudoObjectExpr *E) {
+ Expr *syntax = E->getSyntacticForm();
+ if (UnaryOperator *uop = dyn_cast<UnaryOperator>(syntax)) {
+ Expr *op = stripOpaqueValuesFromPseudoObjectRef(*this, uop->getSubExpr());
+ return new (Context) UnaryOperator(op, uop->getOpcode(), uop->getType(),
+ uop->getValueKind(), uop->getObjectKind(),
+ uop->getOperatorLoc());
+ } else if (CompoundAssignOperator *cop
+ = dyn_cast<CompoundAssignOperator>(syntax)) {
+ Expr *lhs = stripOpaqueValuesFromPseudoObjectRef(*this, cop->getLHS());
+ Expr *rhs = cast<OpaqueValueExpr>(cop->getRHS())->getSourceExpr();
+ return new (Context) CompoundAssignOperator(lhs, rhs, cop->getOpcode(),
+ cop->getType(),
+ cop->getValueKind(),
+ cop->getObjectKind(),
+ cop->getComputationLHSType(),
+ cop->getComputationResultType(),
+ cop->getOperatorLoc(), false);
+ } else if (BinaryOperator *bop = dyn_cast<BinaryOperator>(syntax)) {
+ Expr *lhs = stripOpaqueValuesFromPseudoObjectRef(*this, bop->getLHS());
+ Expr *rhs = cast<OpaqueValueExpr>(bop->getRHS())->getSourceExpr();
+ return new (Context) BinaryOperator(lhs, rhs, bop->getOpcode(),
+ bop->getType(), bop->getValueKind(),
+ bop->getObjectKind(),
+ bop->getOperatorLoc(), false);
+ } else {
+ assert(syntax->hasPlaceholderType(BuiltinType::PseudoObject));
+ return stripOpaqueValuesFromPseudoObjectRef(*this, syntax);
+ }
+}
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaStmt.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaStmt.cpp
new file mode 100644
index 0000000..5c72529
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaStmt.cpp
@@ -0,0 +1,3892 @@
+//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements semantic analysis for statements.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Sema/SemaInternal.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTDiagnostic.h"
+#include "clang/AST/CharUnits.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/EvaluatedExprVisitor.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/AST/RecursiveASTVisitor.h"
+#include "clang/AST/StmtCXX.h"
+#include "clang/AST/StmtObjC.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/AST/TypeOrdering.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Sema/Initialization.h"
+#include "clang/Sema/Lookup.h"
+#include "clang/Sema/Scope.h"
+#include "clang/Sema/ScopeInfo.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/SmallVector.h"
+using namespace clang;
+using namespace sema;
+
+StmtResult Sema::ActOnExprStmt(ExprResult FE) {
+ if (FE.isInvalid())
+ return StmtError();
+
+ FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(),
+ /*DiscardedValue*/ true);
+ if (FE.isInvalid())
+ return StmtError();
+
+ // C99 6.8.3p2: The expression in an expression statement is evaluated as a
+ // void expression for its side effects. Conversion to void allows any
+ // operand, even incomplete types.
+
+ // Same thing in for stmt first clause (when expr) and third clause.
+ return StmtResult(FE.getAs<Stmt>());
+}
+
+
+StmtResult Sema::ActOnExprStmtError() {
+ DiscardCleanupsInEvaluationContext();
+ return StmtError();
+}
+
+StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
+ bool HasLeadingEmptyMacro) {
+ return new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro);
+}
+
+StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+ DeclGroupRef DG = dg.get();
+
+ // If we have an invalid decl, just return an error.
+ if (DG.isNull()) return StmtError();
+
+ return new (Context) DeclStmt(DG, StartLoc, EndLoc);
+}
+
+void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
+ DeclGroupRef DG = dg.get();
+
+ // If we don't have a declaration, or we have an invalid declaration,
+ // just return.
+ if (DG.isNull() || !DG.isSingleDecl())
+ return;
+
+ Decl *decl = DG.getSingleDecl();
+ if (!decl || decl->isInvalidDecl())
+ return;
+
+ // Only variable declarations are permitted.
+ VarDecl *var = dyn_cast<VarDecl>(decl);
+ if (!var) {
+ Diag(decl->getLocation(), diag::err_non_variable_decl_in_for);
+ decl->setInvalidDecl();
+ return;
+ }
+
+ // foreach variables are never actually initialized in the way that
+ // the parser came up with.
+ var->setInit(nullptr);
+
+ // In ARC, we don't need to retain the iteration variable of a fast
+ // enumeration loop. Rather than actually trying to catch that
+ // during declaration processing, we remove the consequences here.
+ if (getLangOpts().ObjCAutoRefCount) {
+ QualType type = var->getType();
+
+ // Only do this if we inferred the lifetime. Inferred lifetime
+ // will show up as a local qualifier because explicit lifetime
+ // should have shown up as an AttributedType instead.
+ if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
+ // Add 'const' and mark the variable as pseudo-strong.
+ var->setType(type.withConst());
+ var->setARCPseudoStrong(true);
+ }
+ }
+}
+
+/// \brief Diagnose unused comparisons, both builtin and overloaded operators.
+/// For '==' and '!=', suggest fixits for '=' or '|='.
+///
+/// Adding a cast to void (or other expression wrappers) will prevent the
+/// warning from firing.
+static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
+ SourceLocation Loc;
+ bool IsNotEqual, CanAssign, IsRelational;
+
+ if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
+ if (!Op->isComparisonOp())
+ return false;
+
+ IsRelational = Op->isRelationalOp();
+ Loc = Op->getOperatorLoc();
+ IsNotEqual = Op->getOpcode() == BO_NE;
+ CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
+ } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
+ switch (Op->getOperator()) {
+ default:
+ return false;
+ case OO_EqualEqual:
+ case OO_ExclaimEqual:
+ IsRelational = false;
+ break;
+ case OO_Less:
+ case OO_Greater:
+ case OO_GreaterEqual:
+ case OO_LessEqual:
+ IsRelational = true;
+ break;
+ }
+
+ Loc = Op->getOperatorLoc();
+ IsNotEqual = Op->getOperator() == OO_ExclaimEqual;
+ CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
+ } else {
+ // Not a typo-prone comparison.
+ return false;
+ }
+
+ // Suppress warnings when the operator, suspicious as it may be, comes from
+ // a macro expansion.
+ if (S.SourceMgr.isMacroBodyExpansion(Loc))
+ return false;
+
+ S.Diag(Loc, diag::warn_unused_comparison)
+ << (unsigned)IsRelational << (unsigned)IsNotEqual << E->getSourceRange();
+
+ // If the LHS is a plausible entity to assign to, provide a fixit hint to
+ // correct common typos.
+ if (!IsRelational && CanAssign) {
+ if (IsNotEqual)
+ S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
+ << FixItHint::CreateReplacement(Loc, "|=");
+ else
+ S.Diag(Loc, diag::note_equality_comparison_to_assign)
+ << FixItHint::CreateReplacement(Loc, "=");
+ }
+
+ return true;
+}
+
+void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
+ if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
+ return DiagnoseUnusedExprResult(Label->getSubStmt());
+
+ const Expr *E = dyn_cast_or_null<Expr>(S);
+ if (!E)
+ return;
+
+ // If we are in an unevaluated expression context, then there can be no unused
+ // results because the results aren't expected to be used in the first place.
+ if (isUnevaluatedContext())
+ return;
+
+ SourceLocation ExprLoc = E->IgnoreParens()->getExprLoc();
+ // In most cases, we don't want to warn if the expression is written in a
+ // macro body, or if the macro comes from a system header. If the offending
+ // expression is a call to a function with the warn_unused_result attribute,
+ // we warn no matter the location. Because of the order in which the various
+ // checks need to happen, we factor out the macro-related test here.
+ bool ShouldSuppress =
+ SourceMgr.isMacroBodyExpansion(ExprLoc) ||
+ SourceMgr.isInSystemMacro(ExprLoc);
+
+ const Expr *WarnExpr;
+ SourceLocation Loc;
+ SourceRange R1, R2;
+ if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context))
+ return;
+
+ // If this is a GNU statement expression expanded from a macro, it is probably
+ // unused because it is a function-like macro that can be used as either an
+ // expression or statement. Don't warn, because it is almost certainly a
+ // false positive.
+ if (isa<StmtExpr>(E) && Loc.isMacroID())
+ return;
+
+ // Okay, we have an unused result. Depending on what the base expression is,
+ // we might want to make a more specific diagnostic. Check for one of these
+ // cases now.
+ unsigned DiagID = diag::warn_unused_expr;
+ if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
+ E = Temps->getSubExpr();
+ if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
+ E = TempExpr->getSubExpr();
+
+ if (DiagnoseUnusedComparison(*this, E))
+ return;
+
+ E = WarnExpr;
+ if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
+ if (E->getType()->isVoidType())
+ return;
+
+ // If the callee has attribute pure, const, or warn_unused_result, warn with
+ // a more specific message to make it clear what is happening. If the call
+ // is written in a macro body, only warn if it has the warn_unused_result
+ // attribute.
+ if (const Decl *FD = CE->getCalleeDecl()) {
+ const FunctionDecl *Func = dyn_cast<FunctionDecl>(FD);
+ if (Func ? Func->hasUnusedResultAttr()
+ : FD->hasAttr<WarnUnusedResultAttr>()) {
+ Diag(Loc, diag::warn_unused_result) << R1 << R2;
+ return;
+ }
+ if (ShouldSuppress)
+ return;
+ if (FD->hasAttr<PureAttr>()) {
+ Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
+ return;
+ }
+ if (FD->hasAttr<ConstAttr>()) {
+ Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
+ return;
+ }
+ }
+ } else if (ShouldSuppress)
+ return;
+
+ if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
+ if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
+ Diag(Loc, diag::err_arc_unused_init_message) << R1;
+ return;
+ }
+ const ObjCMethodDecl *MD = ME->getMethodDecl();
+ if (MD) {
+ if (MD->hasAttr<WarnUnusedResultAttr>()) {
+ Diag(Loc, diag::warn_unused_result) << R1 << R2;
+ return;
+ }
+ }
+ } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
+ const Expr *Source = POE->getSyntacticForm();
+ if (isa<ObjCSubscriptRefExpr>(Source))
+ DiagID = diag::warn_unused_container_subscript_expr;
+ else
+ DiagID = diag::warn_unused_property_expr;
+ } else if (const CXXFunctionalCastExpr *FC
+ = dyn_cast<CXXFunctionalCastExpr>(E)) {
+ if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
+ isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
+ return;
+ }
+ // Diagnose "(void*) blah" as a typo for "(void) blah".
+ else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
+ TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
+ QualType T = TI->getType();
+
+ // We really do want to use the non-canonical type here.
+ if (T == Context.VoidPtrTy) {
+ PointerTypeLoc TL = TI->getTypeLoc().castAs<PointerTypeLoc>();
+
+ Diag(Loc, diag::warn_unused_voidptr)
+ << FixItHint::CreateRemoval(TL.getStarLoc());
+ return;
+ }
+ }
+
+ if (E->isGLValue() && E->getType().isVolatileQualified()) {
+ Diag(Loc, diag::warn_unused_volatile) << R1 << R2;
+ return;
+ }
+
+ DiagRuntimeBehavior(Loc, nullptr, PDiag(DiagID) << R1 << R2);
+}
+
+void Sema::ActOnStartOfCompoundStmt() {
+ PushCompoundScope();
+}
+
+void Sema::ActOnFinishOfCompoundStmt() {
+ PopCompoundScope();
+}
+
+sema::CompoundScopeInfo &Sema::getCurCompoundScope() const {
+ return getCurFunction()->CompoundScopes.back();
+}
+
+StmtResult Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
+ ArrayRef<Stmt *> Elts, bool isStmtExpr) {
+ const unsigned NumElts = Elts.size();
+
+ // If we're in C89 mode, check that we don't have any decls after stmts. If
+ // so, emit an extension diagnostic.
+ if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) {
+ // Note that __extension__ can be around a decl.
+ unsigned i = 0;
+ // Skip over all declarations.
+ for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
+ /*empty*/;
+
+ // We found the end of the list or a statement. Scan for another declstmt.
+ for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
+ /*empty*/;
+
+ if (i != NumElts) {
+ Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
+ Diag(D->getLocation(), diag::ext_mixed_decls_code);
+ }
+ }
+ // Warn about unused expressions in statements.
+ for (unsigned i = 0; i != NumElts; ++i) {
+ // Ignore statements that are last in a statement expression.
+ if (isStmtExpr && i == NumElts - 1)
+ continue;
+
+ DiagnoseUnusedExprResult(Elts[i]);
+ }
+
+ // Check for suspicious empty body (null statement) in `for' and `while'
+ // statements. Don't do anything for template instantiations, this just adds
+ // noise.
+ if (NumElts != 0 && !CurrentInstantiationScope &&
+ getCurCompoundScope().HasEmptyLoopBodies) {
+ for (unsigned i = 0; i != NumElts - 1; ++i)
+ DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
+ }
+
+ return new (Context) CompoundStmt(Context, Elts, L, R);
+}
+
+StmtResult
+Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
+ SourceLocation DotDotDotLoc, Expr *RHSVal,
+ SourceLocation ColonLoc) {
+ assert(LHSVal && "missing expression in case statement");
+
+ if (getCurFunction()->SwitchStack.empty()) {
+ Diag(CaseLoc, diag::err_case_not_in_switch);
+ return StmtError();
+ }
+
+ ExprResult LHS =
+ CorrectDelayedTyposInExpr(LHSVal, [this](class Expr *E) {
+ if (!getLangOpts().CPlusPlus11)
+ return VerifyIntegerConstantExpression(E);
+ if (Expr *CondExpr =
+ getCurFunction()->SwitchStack.back()->getCond()) {
+ QualType CondType = CondExpr->getType();
+ llvm::APSInt TempVal;
+ return CheckConvertedConstantExpression(E, CondType, TempVal,
+ CCEK_CaseValue);
+ }
+ return ExprError();
+ });
+ if (LHS.isInvalid())
+ return StmtError();
+ LHSVal = LHS.get();
+
+ if (!getLangOpts().CPlusPlus11) {
+ // C99 6.8.4.2p3: The expression shall be an integer constant.
+ // However, GCC allows any evaluatable integer expression.
+ if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent()) {
+ LHSVal = VerifyIntegerConstantExpression(LHSVal).get();
+ if (!LHSVal)
+ return StmtError();
+ }
+
+ // GCC extension: The expression shall be an integer constant.
+
+ if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent()) {
+ RHSVal = VerifyIntegerConstantExpression(RHSVal).get();
+ // Recover from an error by just forgetting about it.
+ }
+ }
+
+ LHS = ActOnFinishFullExpr(LHSVal, LHSVal->getExprLoc(), false,
+ getLangOpts().CPlusPlus11);
+ if (LHS.isInvalid())
+ return StmtError();
+
+ auto RHS = RHSVal ? ActOnFinishFullExpr(RHSVal, RHSVal->getExprLoc(), false,
+ getLangOpts().CPlusPlus11)
+ : ExprResult();
+ if (RHS.isInvalid())
+ return StmtError();
+
+ CaseStmt *CS = new (Context)
+ CaseStmt(LHS.get(), RHS.get(), CaseLoc, DotDotDotLoc, ColonLoc);
+ getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
+ return CS;
+}
+
+/// ActOnCaseStmtBody - This installs a statement as the body of a case.
+void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
+ DiagnoseUnusedExprResult(SubStmt);
+
+ CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
+ CS->setSubStmt(SubStmt);
+}
+
+StmtResult
+Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
+ Stmt *SubStmt, Scope *CurScope) {
+ DiagnoseUnusedExprResult(SubStmt);
+
+ if (getCurFunction()->SwitchStack.empty()) {
+ Diag(DefaultLoc, diag::err_default_not_in_switch);
+ return SubStmt;
+ }
+
+ DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
+ getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
+ return DS;
+}
+
+StmtResult
+Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
+ SourceLocation ColonLoc, Stmt *SubStmt) {
+ // If the label was multiply defined, reject it now.
+ if (TheDecl->getStmt()) {
+ Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
+ Diag(TheDecl->getLocation(), diag::note_previous_definition);
+ return SubStmt;
+ }
+
+ // Otherwise, things are good. Fill in the declaration and return it.
+ LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
+ TheDecl->setStmt(LS);
+ if (!TheDecl->isGnuLocal()) {
+ TheDecl->setLocStart(IdentLoc);
+ if (!TheDecl->isMSAsmLabel()) {
+ // Don't update the location of MS ASM labels. These will result in
+ // a diagnostic, and changing the location here will mess that up.
+ TheDecl->setLocation(IdentLoc);
+ }
+ }
+ return LS;
+}
+
+StmtResult Sema::ActOnAttributedStmt(SourceLocation AttrLoc,
+ ArrayRef<const Attr*> Attrs,
+ Stmt *SubStmt) {
+ // Fill in the declaration and return it.
+ AttributedStmt *LS = AttributedStmt::Create(Context, AttrLoc, Attrs, SubStmt);
+ return LS;
+}
+
+StmtResult
+Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
+ Stmt *thenStmt, SourceLocation ElseLoc,
+ Stmt *elseStmt) {
+ // If the condition was invalid, discard the if statement. We could recover
+ // better by replacing it with a valid expr, but don't do that yet.
+ if (!CondVal.get() && !CondVar) {
+ getCurFunction()->setHasDroppedStmt();
+ return StmtError();
+ }
+
+ ExprResult CondResult(CondVal.release());
+
+ VarDecl *ConditionVar = nullptr;
+ if (CondVar) {
+ ConditionVar = cast<VarDecl>(CondVar);
+ CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
+ if (CondResult.isInvalid())
+ return StmtError();
+ }
+ Expr *ConditionExpr = CondResult.getAs<Expr>();
+ if (!ConditionExpr)
+ return StmtError();
+
+ DiagnoseUnusedExprResult(thenStmt);
+
+ if (!elseStmt) {
+ DiagnoseEmptyStmtBody(ConditionExpr->getLocEnd(), thenStmt,
+ diag::warn_empty_if_body);
+ }
+
+ DiagnoseUnusedExprResult(elseStmt);
+
+ return new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
+ thenStmt, ElseLoc, elseStmt);
+}
+
+namespace {
+ struct CaseCompareFunctor {
+ bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
+ const llvm::APSInt &RHS) {
+ return LHS.first < RHS;
+ }
+ bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
+ const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
+ return LHS.first < RHS.first;
+ }
+ bool operator()(const llvm::APSInt &LHS,
+ const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
+ return LHS < RHS.first;
+ }
+ };
+}
+
+/// CmpCaseVals - Comparison predicate for sorting case values.
+///
+static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
+ const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
+ if (lhs.first < rhs.first)
+ return true;
+
+ if (lhs.first == rhs.first &&
+ lhs.second->getCaseLoc().getRawEncoding()
+ < rhs.second->getCaseLoc().getRawEncoding())
+ return true;
+ return false;
+}
+
+/// CmpEnumVals - Comparison predicate for sorting enumeration values.
+///
+static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
+ const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
+{
+ return lhs.first < rhs.first;
+}
+
+/// EqEnumVals - Comparison preficate for uniqing enumeration values.
+///
+static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
+ const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
+{
+ return lhs.first == rhs.first;
+}
+
+/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
+/// potentially integral-promoted expression @p expr.
+static QualType GetTypeBeforeIntegralPromotion(Expr *&expr) {
+ if (ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(expr))
+ expr = cleanups->getSubExpr();
+ while (ImplicitCastExpr *impcast = dyn_cast<ImplicitCastExpr>(expr)) {
+ if (impcast->getCastKind() != CK_IntegralCast) break;
+ expr = impcast->getSubExpr();
+ }
+ return expr->getType();
+}
+
+StmtResult
+Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
+ Decl *CondVar) {
+ ExprResult CondResult;
+
+ VarDecl *ConditionVar = nullptr;
+ if (CondVar) {
+ ConditionVar = cast<VarDecl>(CondVar);
+ CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
+ if (CondResult.isInvalid())
+ return StmtError();
+
+ Cond = CondResult.get();
+ }
+
+ if (!Cond)
+ return StmtError();
+
+ class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
+ Expr *Cond;
+
+ public:
+ SwitchConvertDiagnoser(Expr *Cond)
+ : ICEConvertDiagnoser(/*AllowScopedEnumerations*/true, false, true),
+ Cond(Cond) {}
+
+ SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
+ QualType T) override {
+ return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
+ }
+
+ SemaDiagnosticBuilder diagnoseIncomplete(
+ Sema &S, SourceLocation Loc, QualType T) override {
+ return S.Diag(Loc, diag::err_switch_incomplete_class_type)
+ << T << Cond->getSourceRange();
+ }
+
+ SemaDiagnosticBuilder diagnoseExplicitConv(
+ Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
+ return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
+ }
+
+ SemaDiagnosticBuilder noteExplicitConv(
+ Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
+ return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
+ << ConvTy->isEnumeralType() << ConvTy;
+ }
+
+ SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
+ QualType T) override {
+ return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
+ }
+
+ SemaDiagnosticBuilder noteAmbiguous(
+ Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
+ return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
+ << ConvTy->isEnumeralType() << ConvTy;
+ }
+
+ SemaDiagnosticBuilder diagnoseConversion(
+ Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
+ llvm_unreachable("conversion functions are permitted");
+ }
+ } SwitchDiagnoser(Cond);
+
+ CondResult =
+ PerformContextualImplicitConversion(SwitchLoc, Cond, SwitchDiagnoser);
+ if (CondResult.isInvalid()) return StmtError();
+ Cond = CondResult.get();
+
+ // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
+ CondResult = UsualUnaryConversions(Cond);
+ if (CondResult.isInvalid()) return StmtError();
+ Cond = CondResult.get();
+
+ if (!CondVar) {
+ CondResult = ActOnFinishFullExpr(Cond, SwitchLoc);
+ if (CondResult.isInvalid())
+ return StmtError();
+ Cond = CondResult.get();
+ }
+
+ getCurFunction()->setHasBranchIntoScope();
+
+ SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
+ getCurFunction()->SwitchStack.push_back(SS);
+ return SS;
+}
+
+static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
+ Val = Val.extOrTrunc(BitWidth);
+ Val.setIsSigned(IsSigned);
+}
+
+/// Check the specified case value is in range for the given unpromoted switch
+/// type.
+static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val,
+ unsigned UnpromotedWidth, bool UnpromotedSign) {
+ // If the case value was signed and negative and the switch expression is
+ // unsigned, don't bother to warn: this is implementation-defined behavior.
+ // FIXME: Introduce a second, default-ignored warning for this case?
+ if (UnpromotedWidth < Val.getBitWidth()) {
+ llvm::APSInt ConvVal(Val);
+ AdjustAPSInt(ConvVal, UnpromotedWidth, UnpromotedSign);
+ AdjustAPSInt(ConvVal, Val.getBitWidth(), Val.isSigned());
+ // FIXME: Use different diagnostics for overflow in conversion to promoted
+ // type versus "switch expression cannot have this value". Use proper
+ // IntRange checking rather than just looking at the unpromoted type here.
+ if (ConvVal != Val)
+ S.Diag(Loc, diag::warn_case_value_overflow) << Val.toString(10)
+ << ConvVal.toString(10);
+ }
+}
+
+typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy;
+
+/// Returns true if we should emit a diagnostic about this case expression not
+/// being a part of the enum used in the switch controlling expression.
+static bool ShouldDiagnoseSwitchCaseNotInEnum(const Sema &S,
+ const EnumDecl *ED,
+ const Expr *CaseExpr,
+ EnumValsTy::iterator &EI,
+ EnumValsTy::iterator &EIEnd,
+ const llvm::APSInt &Val) {
+ bool FlagType = ED->hasAttr<FlagEnumAttr>();
+
+ if (const DeclRefExpr *DRE =
+ dyn_cast<DeclRefExpr>(CaseExpr->IgnoreParenImpCasts())) {
+ if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
+ QualType VarType = VD->getType();
+ QualType EnumType = S.Context.getTypeDeclType(ED);
+ if (VD->hasGlobalStorage() && VarType.isConstQualified() &&
+ S.Context.hasSameUnqualifiedType(EnumType, VarType))
+ return false;
+ }
+ }
+
+ if (FlagType) {
+ return !S.IsValueInFlagEnum(ED, Val, false);
+ } else {
+ while (EI != EIEnd && EI->first < Val)
+ EI++;
+
+ if (EI != EIEnd && EI->first == Val)
+ return false;
+ }
+
+ return true;
+}
+
+StmtResult
+Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
+ Stmt *BodyStmt) {
+ SwitchStmt *SS = cast<SwitchStmt>(Switch);
+ assert(SS == getCurFunction()->SwitchStack.back() &&
+ "switch stack missing push/pop!");
+
+ getCurFunction()->SwitchStack.pop_back();
+
+ if (!BodyStmt) return StmtError();
+ SS->setBody(BodyStmt, SwitchLoc);
+
+ Expr *CondExpr = SS->getCond();
+ if (!CondExpr) return StmtError();
+
+ QualType CondType = CondExpr->getType();
+
+ Expr *CondExprBeforePromotion = CondExpr;
+ QualType CondTypeBeforePromotion =
+ GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
+
+ // C++ 6.4.2.p2:
+ // Integral promotions are performed (on the switch condition).
+ //
+ // A case value unrepresentable by the original switch condition
+ // type (before the promotion) doesn't make sense, even when it can
+ // be represented by the promoted type. Therefore we need to find
+ // the pre-promotion type of the switch condition.
+ if (!CondExpr->isTypeDependent()) {
+ // We have already converted the expression to an integral or enumeration
+ // type, when we started the switch statement. If we don't have an
+ // appropriate type now, just return an error.
+ if (!CondType->isIntegralOrEnumerationType())
+ return StmtError();
+
+ if (CondExpr->isKnownToHaveBooleanValue()) {
+ // switch(bool_expr) {...} is often a programmer error, e.g.
+ // switch(n && mask) { ... } // Doh - should be "n & mask".
+ // One can always use an if statement instead of switch(bool_expr).
+ Diag(SwitchLoc, diag::warn_bool_switch_condition)
+ << CondExpr->getSourceRange();
+ }
+ }
+
+ // Get the bitwidth of the switched-on value after promotions. We must
+ // convert the integer case values to this width before comparison.
+ bool HasDependentValue
+ = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
+ unsigned CondWidth = HasDependentValue ? 0 : Context.getIntWidth(CondType);
+ bool CondIsSigned = CondType->isSignedIntegerOrEnumerationType();
+
+ // Get the width and signedness that the condition might actually have, for
+ // warning purposes.
+ // FIXME: Grab an IntRange for the condition rather than using the unpromoted
+ // type.
+ unsigned CondWidthBeforePromotion
+ = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
+ bool CondIsSignedBeforePromotion
+ = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
+
+ // Accumulate all of the case values in a vector so that we can sort them
+ // and detect duplicates. This vector contains the APInt for the case after
+ // it has been converted to the condition type.
+ typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
+ CaseValsTy CaseVals;
+
+ // Keep track of any GNU case ranges we see. The APSInt is the low value.
+ typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
+ CaseRangesTy CaseRanges;
+
+ DefaultStmt *TheDefaultStmt = nullptr;
+
+ bool CaseListIsErroneous = false;
+
+ for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
+ SC = SC->getNextSwitchCase()) {
+
+ if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
+ if (TheDefaultStmt) {
+ Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
+ Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
+
+ // FIXME: Remove the default statement from the switch block so that
+ // we'll return a valid AST. This requires recursing down the AST and
+ // finding it, not something we are set up to do right now. For now,
+ // just lop the entire switch stmt out of the AST.
+ CaseListIsErroneous = true;
+ }
+ TheDefaultStmt = DS;
+
+ } else {
+ CaseStmt *CS = cast<CaseStmt>(SC);
+
+ Expr *Lo = CS->getLHS();
+
+ if (Lo->isTypeDependent() || Lo->isValueDependent()) {
+ HasDependentValue = true;
+ break;
+ }
+
+ llvm::APSInt LoVal;
+
+ if (getLangOpts().CPlusPlus11) {
+ // C++11 [stmt.switch]p2: the constant-expression shall be a converted
+ // constant expression of the promoted type of the switch condition.
+ ExprResult ConvLo =
+ CheckConvertedConstantExpression(Lo, CondType, LoVal, CCEK_CaseValue);
+ if (ConvLo.isInvalid()) {
+ CaseListIsErroneous = true;
+ continue;
+ }
+ Lo = ConvLo.get();
+ } else {
+ // We already verified that the expression has a i-c-e value (C99
+ // 6.8.4.2p3) - get that value now.
+ LoVal = Lo->EvaluateKnownConstInt(Context);
+
+ // If the LHS is not the same type as the condition, insert an implicit
+ // cast.
+ Lo = DefaultLvalueConversion(Lo).get();
+ Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).get();
+ }
+
+ // Check the unconverted value is within the range of possible values of
+ // the switch expression.
+ checkCaseValue(*this, Lo->getLocStart(), LoVal,
+ CondWidthBeforePromotion, CondIsSignedBeforePromotion);
+
+ // Convert the value to the same width/sign as the condition.
+ AdjustAPSInt(LoVal, CondWidth, CondIsSigned);
+
+ CS->setLHS(Lo);
+
+ // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
+ if (CS->getRHS()) {
+ if (CS->getRHS()->isTypeDependent() ||
+ CS->getRHS()->isValueDependent()) {
+ HasDependentValue = true;
+ break;
+ }
+ CaseRanges.push_back(std::make_pair(LoVal, CS));
+ } else
+ CaseVals.push_back(std::make_pair(LoVal, CS));
+ }
+ }
+
+ if (!HasDependentValue) {
+ // If we don't have a default statement, check whether the
+ // condition is constant.
+ llvm::APSInt ConstantCondValue;
+ bool HasConstantCond = false;
+ if (!HasDependentValue && !TheDefaultStmt) {
+ HasConstantCond = CondExpr->EvaluateAsInt(ConstantCondValue, Context,
+ Expr::SE_AllowSideEffects);
+ assert(!HasConstantCond ||
+ (ConstantCondValue.getBitWidth() == CondWidth &&
+ ConstantCondValue.isSigned() == CondIsSigned));
+ }
+ bool ShouldCheckConstantCond = HasConstantCond;
+
+ // Sort all the scalar case values so we can easily detect duplicates.
+ std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
+
+ if (!CaseVals.empty()) {
+ for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
+ if (ShouldCheckConstantCond &&
+ CaseVals[i].first == ConstantCondValue)
+ ShouldCheckConstantCond = false;
+
+ if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
+ // If we have a duplicate, report it.
+ // First, determine if either case value has a name
+ StringRef PrevString, CurrString;
+ Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
+ Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
+ if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
+ PrevString = DeclRef->getDecl()->getName();
+ }
+ if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
+ CurrString = DeclRef->getDecl()->getName();
+ }
+ SmallString<16> CaseValStr;
+ CaseVals[i-1].first.toString(CaseValStr);
+
+ if (PrevString == CurrString)
+ Diag(CaseVals[i].second->getLHS()->getLocStart(),
+ diag::err_duplicate_case) <<
+ (PrevString.empty() ? StringRef(CaseValStr) : PrevString);
+ else
+ Diag(CaseVals[i].second->getLHS()->getLocStart(),
+ diag::err_duplicate_case_differing_expr) <<
+ (PrevString.empty() ? StringRef(CaseValStr) : PrevString) <<
+ (CurrString.empty() ? StringRef(CaseValStr) : CurrString) <<
+ CaseValStr;
+
+ Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
+ diag::note_duplicate_case_prev);
+ // FIXME: We really want to remove the bogus case stmt from the
+ // substmt, but we have no way to do this right now.
+ CaseListIsErroneous = true;
+ }
+ }
+ }
+
+ // Detect duplicate case ranges, which usually don't exist at all in
+ // the first place.
+ if (!CaseRanges.empty()) {
+ // Sort all the case ranges by their low value so we can easily detect
+ // overlaps between ranges.
+ std::stable_sort(CaseRanges.begin(), CaseRanges.end());
+
+ // Scan the ranges, computing the high values and removing empty ranges.
+ std::vector<llvm::APSInt> HiVals;
+ for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
+ llvm::APSInt &LoVal = CaseRanges[i].first;
+ CaseStmt *CR = CaseRanges[i].second;
+ Expr *Hi = CR->getRHS();
+ llvm::APSInt HiVal;
+
+ if (getLangOpts().CPlusPlus11) {
+ // C++11 [stmt.switch]p2: the constant-expression shall be a converted
+ // constant expression of the promoted type of the switch condition.
+ ExprResult ConvHi =
+ CheckConvertedConstantExpression(Hi, CondType, HiVal,
+ CCEK_CaseValue);
+ if (ConvHi.isInvalid()) {
+ CaseListIsErroneous = true;
+ continue;
+ }
+ Hi = ConvHi.get();
+ } else {
+ HiVal = Hi->EvaluateKnownConstInt(Context);
+
+ // If the RHS is not the same type as the condition, insert an
+ // implicit cast.
+ Hi = DefaultLvalueConversion(Hi).get();
+ Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).get();
+ }
+
+ // Check the unconverted value is within the range of possible values of
+ // the switch expression.
+ checkCaseValue(*this, Hi->getLocStart(), HiVal,
+ CondWidthBeforePromotion, CondIsSignedBeforePromotion);
+
+ // Convert the value to the same width/sign as the condition.
+ AdjustAPSInt(HiVal, CondWidth, CondIsSigned);
+
+ CR->setRHS(Hi);
+
+ // If the low value is bigger than the high value, the case is empty.
+ if (LoVal > HiVal) {
+ Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
+ << SourceRange(CR->getLHS()->getLocStart(),
+ Hi->getLocEnd());
+ CaseRanges.erase(CaseRanges.begin()+i);
+ --i, --e;
+ continue;
+ }
+
+ if (ShouldCheckConstantCond &&
+ LoVal <= ConstantCondValue &&
+ ConstantCondValue <= HiVal)
+ ShouldCheckConstantCond = false;
+
+ HiVals.push_back(HiVal);
+ }
+
+ // Rescan the ranges, looking for overlap with singleton values and other
+ // ranges. Since the range list is sorted, we only need to compare case
+ // ranges with their neighbors.
+ for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
+ llvm::APSInt &CRLo = CaseRanges[i].first;
+ llvm::APSInt &CRHi = HiVals[i];
+ CaseStmt *CR = CaseRanges[i].second;
+
+ // Check to see whether the case range overlaps with any
+ // singleton cases.
+ CaseStmt *OverlapStmt = nullptr;
+ llvm::APSInt OverlapVal(32);
+
+ // Find the smallest value >= the lower bound. If I is in the
+ // case range, then we have overlap.
+ CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
+ CaseVals.end(), CRLo,
+ CaseCompareFunctor());
+ if (I != CaseVals.end() && I->first < CRHi) {
+ OverlapVal = I->first; // Found overlap with scalar.
+ OverlapStmt = I->second;
+ }
+
+ // Find the smallest value bigger than the upper bound.
+ I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
+ if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
+ OverlapVal = (I-1)->first; // Found overlap with scalar.
+ OverlapStmt = (I-1)->second;
+ }
+
+ // Check to see if this case stmt overlaps with the subsequent
+ // case range.
+ if (i && CRLo <= HiVals[i-1]) {
+ OverlapVal = HiVals[i-1]; // Found overlap with range.
+ OverlapStmt = CaseRanges[i-1].second;
+ }
+
+ if (OverlapStmt) {
+ // If we have a duplicate, report it.
+ Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
+ << OverlapVal.toString(10);
+ Diag(OverlapStmt->getLHS()->getLocStart(),
+ diag::note_duplicate_case_prev);
+ // FIXME: We really want to remove the bogus case stmt from the
+ // substmt, but we have no way to do this right now.
+ CaseListIsErroneous = true;
+ }
+ }
+ }
+
+ // Complain if we have a constant condition and we didn't find a match.
+ if (!CaseListIsErroneous && ShouldCheckConstantCond) {
+ // TODO: it would be nice if we printed enums as enums, chars as
+ // chars, etc.
+ Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
+ << ConstantCondValue.toString(10)
+ << CondExpr->getSourceRange();
+ }
+
+ // Check to see if switch is over an Enum and handles all of its
+ // values. We only issue a warning if there is not 'default:', but
+ // we still do the analysis to preserve this information in the AST
+ // (which can be used by flow-based analyes).
+ //
+ const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
+
+ // If switch has default case, then ignore it.
+ if (!CaseListIsErroneous && !HasConstantCond && ET) {
+ const EnumDecl *ED = ET->getDecl();
+ EnumValsTy EnumVals;
+
+ // Gather all enum values, set their type and sort them,
+ // allowing easier comparison with CaseVals.
+ for (auto *EDI : ED->enumerators()) {
+ llvm::APSInt Val = EDI->getInitVal();
+ AdjustAPSInt(Val, CondWidth, CondIsSigned);
+ EnumVals.push_back(std::make_pair(Val, EDI));
+ }
+ std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
+ auto EI = EnumVals.begin(), EIEnd =
+ std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
+
+ // See which case values aren't in enum.
+ for (CaseValsTy::const_iterator CI = CaseVals.begin();
+ CI != CaseVals.end(); CI++) {
+ Expr *CaseExpr = CI->second->getLHS();
+ if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
+ CI->first))
+ Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
+ << CondTypeBeforePromotion;
+ }
+
+ // See which of case ranges aren't in enum
+ EI = EnumVals.begin();
+ for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
+ RI != CaseRanges.end(); RI++) {
+ Expr *CaseExpr = RI->second->getLHS();
+ if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
+ RI->first))
+ Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
+ << CondTypeBeforePromotion;
+
+ llvm::APSInt Hi =
+ RI->second->getRHS()->EvaluateKnownConstInt(Context);
+ AdjustAPSInt(Hi, CondWidth, CondIsSigned);
+
+ CaseExpr = RI->second->getRHS();
+ if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
+ Hi))
+ Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
+ << CondTypeBeforePromotion;
+ }
+
+ // Check which enum vals aren't in switch
+ auto CI = CaseVals.begin();
+ auto RI = CaseRanges.begin();
+ bool hasCasesNotInSwitch = false;
+
+ SmallVector<DeclarationName,8> UnhandledNames;
+
+ for (EI = EnumVals.begin(); EI != EIEnd; EI++){
+ // Drop unneeded case values
+ while (CI != CaseVals.end() && CI->first < EI->first)
+ CI++;
+
+ if (CI != CaseVals.end() && CI->first == EI->first)
+ continue;
+
+ // Drop unneeded case ranges
+ for (; RI != CaseRanges.end(); RI++) {
+ llvm::APSInt Hi =
+ RI->second->getRHS()->EvaluateKnownConstInt(Context);
+ AdjustAPSInt(Hi, CondWidth, CondIsSigned);
+ if (EI->first <= Hi)
+ break;
+ }
+
+ if (RI == CaseRanges.end() || EI->first < RI->first) {
+ hasCasesNotInSwitch = true;
+ UnhandledNames.push_back(EI->second->getDeclName());
+ }
+ }
+
+ if (TheDefaultStmt && UnhandledNames.empty())
+ Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
+
+ // Produce a nice diagnostic if multiple values aren't handled.
+ if (!UnhandledNames.empty()) {
+ DiagnosticBuilder DB = Diag(CondExpr->getExprLoc(),
+ TheDefaultStmt ? diag::warn_def_missing_case
+ : diag::warn_missing_case)
+ << (int)UnhandledNames.size();
+
+ for (size_t I = 0, E = std::min(UnhandledNames.size(), (size_t)3);
+ I != E; ++I)
+ DB << UnhandledNames[I];
+ }
+
+ if (!hasCasesNotInSwitch)
+ SS->setAllEnumCasesCovered();
+ }
+ }
+
+ if (BodyStmt)
+ DiagnoseEmptyStmtBody(CondExpr->getLocEnd(), BodyStmt,
+ diag::warn_empty_switch_body);
+
+ // FIXME: If the case list was broken is some way, we don't have a good system
+ // to patch it up. Instead, just return the whole substmt as broken.
+ if (CaseListIsErroneous)
+ return StmtError();
+
+ return SS;
+}
+
+void
+Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
+ Expr *SrcExpr) {
+ if (Diags.isIgnored(diag::warn_not_in_enum_assignment, SrcExpr->getExprLoc()))
+ return;
+
+ if (const EnumType *ET = DstType->getAs<EnumType>())
+ if (!Context.hasSameUnqualifiedType(SrcType, DstType) &&
+ SrcType->isIntegerType()) {
+ if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() &&
+ SrcExpr->isIntegerConstantExpr(Context)) {
+ // Get the bitwidth of the enum value before promotions.
+ unsigned DstWidth = Context.getIntWidth(DstType);
+ bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType();
+
+ llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context);
+ AdjustAPSInt(RhsVal, DstWidth, DstIsSigned);
+ const EnumDecl *ED = ET->getDecl();
+
+ if (ED->hasAttr<FlagEnumAttr>()) {
+ if (!IsValueInFlagEnum(ED, RhsVal, true))
+ Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
+ << DstType.getUnqualifiedType();
+ } else {
+ typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl *>, 64>
+ EnumValsTy;
+ EnumValsTy EnumVals;
+
+ // Gather all enum values, set their type and sort them,
+ // allowing easier comparison with rhs constant.
+ for (auto *EDI : ED->enumerators()) {
+ llvm::APSInt Val = EDI->getInitVal();
+ AdjustAPSInt(Val, DstWidth, DstIsSigned);
+ EnumVals.push_back(std::make_pair(Val, EDI));
+ }
+ if (EnumVals.empty())
+ return;
+ std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
+ EnumValsTy::iterator EIend =
+ std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
+
+ // See which values aren't in the enum.
+ EnumValsTy::const_iterator EI = EnumVals.begin();
+ while (EI != EIend && EI->first < RhsVal)
+ EI++;
+ if (EI == EIend || EI->first != RhsVal) {
+ Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
+ << DstType.getUnqualifiedType();
+ }
+ }
+ }
+ }
+}
+
+StmtResult
+Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
+ Decl *CondVar, Stmt *Body) {
+ ExprResult CondResult(Cond.release());
+
+ VarDecl *ConditionVar = nullptr;
+ if (CondVar) {
+ ConditionVar = cast<VarDecl>(CondVar);
+ CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
+ if (CondResult.isInvalid())
+ return StmtError();
+ }
+ Expr *ConditionExpr = CondResult.get();
+ if (!ConditionExpr)
+ return StmtError();
+ CheckBreakContinueBinding(ConditionExpr);
+
+ DiagnoseUnusedExprResult(Body);
+
+ if (isa<NullStmt>(Body))
+ getCurCompoundScope().setHasEmptyLoopBodies();
+
+ return new (Context)
+ WhileStmt(Context, ConditionVar, ConditionExpr, Body, WhileLoc);
+}
+
+StmtResult
+Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
+ SourceLocation WhileLoc, SourceLocation CondLParen,
+ Expr *Cond, SourceLocation CondRParen) {
+ assert(Cond && "ActOnDoStmt(): missing expression");
+
+ CheckBreakContinueBinding(Cond);
+ ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
+ if (CondResult.isInvalid())
+ return StmtError();
+ Cond = CondResult.get();
+
+ CondResult = ActOnFinishFullExpr(Cond, DoLoc);
+ if (CondResult.isInvalid())
+ return StmtError();
+ Cond = CondResult.get();
+
+ DiagnoseUnusedExprResult(Body);
+
+ return new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen);
+}
+
+namespace {
+ // This visitor will traverse a conditional statement and store all
+ // the evaluated decls into a vector. Simple is set to true if none
+ // of the excluded constructs are used.
+ class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
+ llvm::SmallPtrSetImpl<VarDecl*> &Decls;
+ SmallVectorImpl<SourceRange> &Ranges;
+ bool Simple;
+ public:
+ typedef EvaluatedExprVisitor<DeclExtractor> Inherited;
+
+ DeclExtractor(Sema &S, llvm::SmallPtrSetImpl<VarDecl*> &Decls,
+ SmallVectorImpl<SourceRange> &Ranges) :
+ Inherited(S.Context),
+ Decls(Decls),
+ Ranges(Ranges),
+ Simple(true) {}
+
+ bool isSimple() { return Simple; }
+
+ // Replaces the method in EvaluatedExprVisitor.
+ void VisitMemberExpr(MemberExpr* E) {
+ Simple = false;
+ }
+
+ // Any Stmt not whitelisted will cause the condition to be marked complex.
+ void VisitStmt(Stmt *S) {
+ Simple = false;
+ }
+
+ void VisitBinaryOperator(BinaryOperator *E) {
+ Visit(E->getLHS());
+ Visit(E->getRHS());
+ }
+
+ void VisitCastExpr(CastExpr *E) {
+ Visit(E->getSubExpr());
+ }
+
+ void VisitUnaryOperator(UnaryOperator *E) {
+ // Skip checking conditionals with derefernces.
+ if (E->getOpcode() == UO_Deref)
+ Simple = false;
+ else
+ Visit(E->getSubExpr());
+ }
+
+ void VisitConditionalOperator(ConditionalOperator *E) {
+ Visit(E->getCond());
+ Visit(E->getTrueExpr());
+ Visit(E->getFalseExpr());
+ }
+
+ void VisitParenExpr(ParenExpr *E) {
+ Visit(E->getSubExpr());
+ }
+
+ void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
+ Visit(E->getOpaqueValue()->getSourceExpr());
+ Visit(E->getFalseExpr());
+ }
+
+ void VisitIntegerLiteral(IntegerLiteral *E) { }
+ void VisitFloatingLiteral(FloatingLiteral *E) { }
+ void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
+ void VisitCharacterLiteral(CharacterLiteral *E) { }
+ void VisitGNUNullExpr(GNUNullExpr *E) { }
+ void VisitImaginaryLiteral(ImaginaryLiteral *E) { }
+
+ void VisitDeclRefExpr(DeclRefExpr *E) {
+ VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
+ if (!VD) return;
+
+ Ranges.push_back(E->getSourceRange());
+
+ Decls.insert(VD);
+ }
+
+ }; // end class DeclExtractor
+
+ // DeclMatcher checks to see if the decls are used in a non-evauluated
+ // context.
+ class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
+ llvm::SmallPtrSetImpl<VarDecl*> &Decls;
+ bool FoundDecl;
+
+ public:
+ typedef EvaluatedExprVisitor<DeclMatcher> Inherited;
+
+ DeclMatcher(Sema &S, llvm::SmallPtrSetImpl<VarDecl*> &Decls,
+ Stmt *Statement) :
+ Inherited(S.Context), Decls(Decls), FoundDecl(false) {
+ if (!Statement) return;
+
+ Visit(Statement);
+ }
+
+ void VisitReturnStmt(ReturnStmt *S) {
+ FoundDecl = true;
+ }
+
+ void VisitBreakStmt(BreakStmt *S) {
+ FoundDecl = true;
+ }
+
+ void VisitGotoStmt(GotoStmt *S) {
+ FoundDecl = true;
+ }
+
+ void VisitCastExpr(CastExpr *E) {
+ if (E->getCastKind() == CK_LValueToRValue)
+ CheckLValueToRValueCast(E->getSubExpr());
+ else
+ Visit(E->getSubExpr());
+ }
+
+ void CheckLValueToRValueCast(Expr *E) {
+ E = E->IgnoreParenImpCasts();
+
+ if (isa<DeclRefExpr>(E)) {
+ return;
+ }
+
+ if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
+ Visit(CO->getCond());
+ CheckLValueToRValueCast(CO->getTrueExpr());
+ CheckLValueToRValueCast(CO->getFalseExpr());
+ return;
+ }
+
+ if (BinaryConditionalOperator *BCO =
+ dyn_cast<BinaryConditionalOperator>(E)) {
+ CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
+ CheckLValueToRValueCast(BCO->getFalseExpr());
+ return;
+ }
+
+ Visit(E);
+ }
+
+ void VisitDeclRefExpr(DeclRefExpr *E) {
+ if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
+ if (Decls.count(VD))
+ FoundDecl = true;
+ }
+
+ bool FoundDeclInUse() { return FoundDecl; }
+
+ }; // end class DeclMatcher
+
+ void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
+ Expr *Third, Stmt *Body) {
+ // Condition is empty
+ if (!Second) return;
+
+ if (S.Diags.isIgnored(diag::warn_variables_not_in_loop_body,
+ Second->getLocStart()))
+ return;
+
+ PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
+ llvm::SmallPtrSet<VarDecl*, 8> Decls;
+ SmallVector<SourceRange, 10> Ranges;
+ DeclExtractor DE(S, Decls, Ranges);
+ DE.Visit(Second);
+
+ // Don't analyze complex conditionals.
+ if (!DE.isSimple()) return;
+
+ // No decls found.
+ if (Decls.size() == 0) return;
+
+ // Don't warn on volatile, static, or global variables.
+ for (llvm::SmallPtrSetImpl<VarDecl*>::iterator I = Decls.begin(),
+ E = Decls.end();
+ I != E; ++I)
+ if ((*I)->getType().isVolatileQualified() ||
+ (*I)->hasGlobalStorage()) return;
+
+ if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
+ DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
+ DeclMatcher(S, Decls, Body).FoundDeclInUse())
+ return;
+
+ // Load decl names into diagnostic.
+ if (Decls.size() > 4)
+ PDiag << 0;
+ else {
+ PDiag << Decls.size();
+ for (llvm::SmallPtrSetImpl<VarDecl*>::iterator I = Decls.begin(),
+ E = Decls.end();
+ I != E; ++I)
+ PDiag << (*I)->getDeclName();
+ }
+
+ // Load SourceRanges into diagnostic if there is room.
+ // Otherwise, load the SourceRange of the conditional expression.
+ if (Ranges.size() <= PartialDiagnostic::MaxArguments)
+ for (SmallVectorImpl<SourceRange>::iterator I = Ranges.begin(),
+ E = Ranges.end();
+ I != E; ++I)
+ PDiag << *I;
+ else
+ PDiag << Second->getSourceRange();
+
+ S.Diag(Ranges.begin()->getBegin(), PDiag);
+ }
+
+ // If Statement is an incemement or decrement, return true and sets the
+ // variables Increment and DRE.
+ bool ProcessIterationStmt(Sema &S, Stmt* Statement, bool &Increment,
+ DeclRefExpr *&DRE) {
+ if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Statement)) {
+ switch (UO->getOpcode()) {
+ default: return false;
+ case UO_PostInc:
+ case UO_PreInc:
+ Increment = true;
+ break;
+ case UO_PostDec:
+ case UO_PreDec:
+ Increment = false;
+ break;
+ }
+ DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr());
+ return DRE;
+ }
+
+ if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(Statement)) {
+ FunctionDecl *FD = Call->getDirectCallee();
+ if (!FD || !FD->isOverloadedOperator()) return false;
+ switch (FD->getOverloadedOperator()) {
+ default: return false;
+ case OO_PlusPlus:
+ Increment = true;
+ break;
+ case OO_MinusMinus:
+ Increment = false;
+ break;
+ }
+ DRE = dyn_cast<DeclRefExpr>(Call->getArg(0));
+ return DRE;
+ }
+
+ return false;
+ }
+
+ // A visitor to determine if a continue or break statement is a
+ // subexpression.
+ class BreakContinueFinder : public EvaluatedExprVisitor<BreakContinueFinder> {
+ SourceLocation BreakLoc;
+ SourceLocation ContinueLoc;
+ public:
+ BreakContinueFinder(Sema &S, Stmt* Body) :
+ Inherited(S.Context) {
+ Visit(Body);
+ }
+
+ typedef EvaluatedExprVisitor<BreakContinueFinder> Inherited;
+
+ void VisitContinueStmt(ContinueStmt* E) {
+ ContinueLoc = E->getContinueLoc();
+ }
+
+ void VisitBreakStmt(BreakStmt* E) {
+ BreakLoc = E->getBreakLoc();
+ }
+
+ bool ContinueFound() { return ContinueLoc.isValid(); }
+ bool BreakFound() { return BreakLoc.isValid(); }
+ SourceLocation GetContinueLoc() { return ContinueLoc; }
+ SourceLocation GetBreakLoc() { return BreakLoc; }
+
+ }; // end class BreakContinueFinder
+
+ // Emit a warning when a loop increment/decrement appears twice per loop
+ // iteration. The conditions which trigger this warning are:
+ // 1) The last statement in the loop body and the third expression in the
+ // for loop are both increment or both decrement of the same variable
+ // 2) No continue statements in the loop body.
+ void CheckForRedundantIteration(Sema &S, Expr *Third, Stmt *Body) {
+ // Return when there is nothing to check.
+ if (!Body || !Third) return;
+
+ if (S.Diags.isIgnored(diag::warn_redundant_loop_iteration,
+ Third->getLocStart()))
+ return;
+
+ // Get the last statement from the loop body.
+ CompoundStmt *CS = dyn_cast<CompoundStmt>(Body);
+ if (!CS || CS->body_empty()) return;
+ Stmt *LastStmt = CS->body_back();
+ if (!LastStmt) return;
+
+ bool LoopIncrement, LastIncrement;
+ DeclRefExpr *LoopDRE, *LastDRE;
+
+ if (!ProcessIterationStmt(S, Third, LoopIncrement, LoopDRE)) return;
+ if (!ProcessIterationStmt(S, LastStmt, LastIncrement, LastDRE)) return;
+
+ // Check that the two statements are both increments or both decrements
+ // on the same variable.
+ if (LoopIncrement != LastIncrement ||
+ LoopDRE->getDecl() != LastDRE->getDecl()) return;
+
+ if (BreakContinueFinder(S, Body).ContinueFound()) return;
+
+ S.Diag(LastDRE->getLocation(), diag::warn_redundant_loop_iteration)
+ << LastDRE->getDecl() << LastIncrement;
+ S.Diag(LoopDRE->getLocation(), diag::note_loop_iteration_here)
+ << LoopIncrement;
+ }
+
+} // end namespace
+
+
+void Sema::CheckBreakContinueBinding(Expr *E) {
+ if (!E || getLangOpts().CPlusPlus)
+ return;
+ BreakContinueFinder BCFinder(*this, E);
+ Scope *BreakParent = CurScope->getBreakParent();
+ if (BCFinder.BreakFound() && BreakParent) {
+ if (BreakParent->getFlags() & Scope::SwitchScope) {
+ Diag(BCFinder.GetBreakLoc(), diag::warn_break_binds_to_switch);
+ } else {
+ Diag(BCFinder.GetBreakLoc(), diag::warn_loop_ctrl_binds_to_inner)
+ << "break";
+ }
+ } else if (BCFinder.ContinueFound() && CurScope->getContinueParent()) {
+ Diag(BCFinder.GetContinueLoc(), diag::warn_loop_ctrl_binds_to_inner)
+ << "continue";
+ }
+}
+
+StmtResult
+Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
+ Stmt *First, FullExprArg second, Decl *secondVar,
+ FullExprArg third,
+ SourceLocation RParenLoc, Stmt *Body) {
+ if (!getLangOpts().CPlusPlus) {
+ if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
+ // C99 6.8.5p3: The declaration part of a 'for' statement shall only
+ // declare identifiers for objects having storage class 'auto' or
+ // 'register'.
+ for (auto *DI : DS->decls()) {
+ VarDecl *VD = dyn_cast<VarDecl>(DI);
+ if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
+ VD = nullptr;
+ if (!VD) {
+ Diag(DI->getLocation(), diag::err_non_local_variable_decl_in_for);
+ DI->setInvalidDecl();
+ }
+ }
+ }
+ }
+
+ CheckBreakContinueBinding(second.get());
+ CheckBreakContinueBinding(third.get());
+
+ CheckForLoopConditionalStatement(*this, second.get(), third.get(), Body);
+ CheckForRedundantIteration(*this, third.get(), Body);
+
+ ExprResult SecondResult(second.release());
+ VarDecl *ConditionVar = nullptr;
+ if (secondVar) {
+ ConditionVar = cast<VarDecl>(secondVar);
+ SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
+ if (SecondResult.isInvalid())
+ return StmtError();
+ }
+
+ Expr *Third = third.release().getAs<Expr>();
+
+ DiagnoseUnusedExprResult(First);
+ DiagnoseUnusedExprResult(Third);
+ DiagnoseUnusedExprResult(Body);
+
+ if (isa<NullStmt>(Body))
+ getCurCompoundScope().setHasEmptyLoopBodies();
+
+ return new (Context) ForStmt(Context, First, SecondResult.get(), ConditionVar,
+ Third, Body, ForLoc, LParenLoc, RParenLoc);
+}
+
+/// In an Objective C collection iteration statement:
+/// for (x in y)
+/// x can be an arbitrary l-value expression. Bind it up as a
+/// full-expression.
+StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
+ // Reduce placeholder expressions here. Note that this rejects the
+ // use of pseudo-object l-values in this position.
+ ExprResult result = CheckPlaceholderExpr(E);
+ if (result.isInvalid()) return StmtError();
+ E = result.get();
+
+ ExprResult FullExpr = ActOnFinishFullExpr(E);
+ if (FullExpr.isInvalid())
+ return StmtError();
+ return StmtResult(static_cast<Stmt*>(FullExpr.get()));
+}
+
+ExprResult
+Sema::CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
+ if (!collection)
+ return ExprError();
+
+ ExprResult result = CorrectDelayedTyposInExpr(collection);
+ if (!result.isUsable())
+ return ExprError();
+ collection = result.get();
+
+ // Bail out early if we've got a type-dependent expression.
+ if (collection->isTypeDependent()) return collection;
+
+ // Perform normal l-value conversion.
+ result = DefaultFunctionArrayLvalueConversion(collection);
+ if (result.isInvalid())
+ return ExprError();
+ collection = result.get();
+
+ // The operand needs to have object-pointer type.
+ // TODO: should we do a contextual conversion?
+ const ObjCObjectPointerType *pointerType =
+ collection->getType()->getAs<ObjCObjectPointerType>();
+ if (!pointerType)
+ return Diag(forLoc, diag::err_collection_expr_type)
+ << collection->getType() << collection->getSourceRange();
+
+ // Check that the operand provides
+ // - countByEnumeratingWithState:objects:count:
+ const ObjCObjectType *objectType = pointerType->getObjectType();
+ ObjCInterfaceDecl *iface = objectType->getInterface();
+
+ // If we have a forward-declared type, we can't do this check.
+ // Under ARC, it is an error not to have a forward-declared class.
+ if (iface &&
+ RequireCompleteType(forLoc, QualType(objectType, 0),
+ getLangOpts().ObjCAutoRefCount
+ ? diag::err_arc_collection_forward
+ : 0,
+ collection)) {
+ // Otherwise, if we have any useful type information, check that
+ // the type declares the appropriate method.
+ } else if (iface || !objectType->qual_empty()) {
+ IdentifierInfo *selectorIdents[] = {
+ &Context.Idents.get("countByEnumeratingWithState"),
+ &Context.Idents.get("objects"),
+ &Context.Idents.get("count")
+ };
+ Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
+
+ ObjCMethodDecl *method = nullptr;
+
+ // If there's an interface, look in both the public and private APIs.
+ if (iface) {
+ method = iface->lookupInstanceMethod(selector);
+ if (!method) method = iface->lookupPrivateMethod(selector);
+ }
+
+ // Also check protocol qualifiers.
+ if (!method)
+ method = LookupMethodInQualifiedType(selector, pointerType,
+ /*instance*/ true);
+
+ // If we didn't find it anywhere, give up.
+ if (!method) {
+ Diag(forLoc, diag::warn_collection_expr_type)
+ << collection->getType() << selector << collection->getSourceRange();
+ }
+
+ // TODO: check for an incompatible signature?
+ }
+
+ // Wrap up any cleanups in the expression.
+ return collection;
+}
+
+StmtResult
+Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
+ Stmt *First, Expr *collection,
+ SourceLocation RParenLoc) {
+
+ ExprResult CollectionExprResult =
+ CheckObjCForCollectionOperand(ForLoc, collection);
+
+ if (First) {
+ QualType FirstType;
+ if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
+ if (!DS->isSingleDecl())
+ return StmtError(Diag((*DS->decl_begin())->getLocation(),
+ diag::err_toomany_element_decls));
+
+ VarDecl *D = dyn_cast<VarDecl>(DS->getSingleDecl());
+ if (!D || D->isInvalidDecl())
+ return StmtError();
+
+ FirstType = D->getType();
+ // C99 6.8.5p3: The declaration part of a 'for' statement shall only
+ // declare identifiers for objects having storage class 'auto' or
+ // 'register'.
+ if (!D->hasLocalStorage())
+ return StmtError(Diag(D->getLocation(),
+ diag::err_non_local_variable_decl_in_for));
+
+ // If the type contained 'auto', deduce the 'auto' to 'id'.
+ if (FirstType->getContainedAutoType()) {
+ OpaqueValueExpr OpaqueId(D->getLocation(), Context.getObjCIdType(),
+ VK_RValue);
+ Expr *DeducedInit = &OpaqueId;
+ if (DeduceAutoType(D->getTypeSourceInfo(), DeducedInit, FirstType) ==
+ DAR_Failed)
+ DiagnoseAutoDeductionFailure(D, DeducedInit);
+ if (FirstType.isNull()) {
+ D->setInvalidDecl();
+ return StmtError();
+ }
+
+ D->setType(FirstType);
+
+ if (ActiveTemplateInstantiations.empty()) {
+ SourceLocation Loc =
+ D->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
+ Diag(Loc, diag::warn_auto_var_is_id)
+ << D->getDeclName();
+ }
+ }
+
+ } else {
+ Expr *FirstE = cast<Expr>(First);
+ if (!FirstE->isTypeDependent() && !FirstE->isLValue())
+ return StmtError(Diag(First->getLocStart(),
+ diag::err_selector_element_not_lvalue)
+ << First->getSourceRange());
+
+ FirstType = static_cast<Expr*>(First)->getType();
+ if (FirstType.isConstQualified())
+ Diag(ForLoc, diag::err_selector_element_const_type)
+ << FirstType << First->getSourceRange();
+ }
+ if (!FirstType->isDependentType() &&
+ !FirstType->isObjCObjectPointerType() &&
+ !FirstType->isBlockPointerType())
+ return StmtError(Diag(ForLoc, diag::err_selector_element_type)
+ << FirstType << First->getSourceRange());
+ }
+
+ if (CollectionExprResult.isInvalid())
+ return StmtError();
+
+ CollectionExprResult = ActOnFinishFullExpr(CollectionExprResult.get());
+ if (CollectionExprResult.isInvalid())
+ return StmtError();
+
+ return new (Context) ObjCForCollectionStmt(First, CollectionExprResult.get(),
+ nullptr, ForLoc, RParenLoc);
+}
+
+/// Finish building a variable declaration for a for-range statement.
+/// \return true if an error occurs.
+static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
+ SourceLocation Loc, int DiagID) {
+ if (Decl->getType()->isUndeducedType()) {
+ ExprResult Res = SemaRef.CorrectDelayedTyposInExpr(Init);
+ if (!Res.isUsable()) {
+ Decl->setInvalidDecl();
+ return true;
+ }
+ Init = Res.get();
+ }
+
+ // Deduce the type for the iterator variable now rather than leaving it to
+ // AddInitializerToDecl, so we can produce a more suitable diagnostic.
+ QualType InitType;
+ if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) ||
+ SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitType) ==
+ Sema::DAR_Failed)
+ SemaRef.Diag(Loc, DiagID) << Init->getType();
+ if (InitType.isNull()) {
+ Decl->setInvalidDecl();
+ return true;
+ }
+ Decl->setType(InitType);
+
+ // In ARC, infer lifetime.
+ // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
+ // we're doing the equivalent of fast iteration.
+ if (SemaRef.getLangOpts().ObjCAutoRefCount &&
+ SemaRef.inferObjCARCLifetime(Decl))
+ Decl->setInvalidDecl();
+
+ SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
+ /*TypeMayContainAuto=*/false);
+ SemaRef.FinalizeDeclaration(Decl);
+ SemaRef.CurContext->addHiddenDecl(Decl);
+ return false;
+}
+
+namespace {
+
+/// Produce a note indicating which begin/end function was implicitly called
+/// by a C++11 for-range statement. This is often not obvious from the code,
+/// nor from the diagnostics produced when analysing the implicit expressions
+/// required in a for-range statement.
+void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
+ Sema::BeginEndFunction BEF) {
+ CallExpr *CE = dyn_cast<CallExpr>(E);
+ if (!CE)
+ return;
+ FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
+ if (!D)
+ return;
+ SourceLocation Loc = D->getLocation();
+
+ std::string Description;
+ bool IsTemplate = false;
+ if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
+ Description = SemaRef.getTemplateArgumentBindingsText(
+ FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
+ IsTemplate = true;
+ }
+
+ SemaRef.Diag(Loc, diag::note_for_range_begin_end)
+ << BEF << IsTemplate << Description << E->getType();
+}
+
+/// Build a variable declaration for a for-range statement.
+VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
+ QualType Type, const char *Name) {
+ DeclContext *DC = SemaRef.CurContext;
+ IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
+ TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
+ VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
+ TInfo, SC_None);
+ Decl->setImplicit();
+ return Decl;
+}
+
+}
+
+static bool ObjCEnumerationCollection(Expr *Collection) {
+ return !Collection->isTypeDependent()
+ && Collection->getType()->getAs<ObjCObjectPointerType>() != nullptr;
+}
+
+/// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
+///
+/// C++11 [stmt.ranged]:
+/// A range-based for statement is equivalent to
+///
+/// {
+/// auto && __range = range-init;
+/// for ( auto __begin = begin-expr,
+/// __end = end-expr;
+/// __begin != __end;
+/// ++__begin ) {
+/// for-range-declaration = *__begin;
+/// statement
+/// }
+/// }
+///
+/// The body of the loop is not available yet, since it cannot be analysed until
+/// we have determined the type of the for-range-declaration.
+StmtResult
+Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc,
+ Stmt *First, SourceLocation ColonLoc, Expr *Range,
+ SourceLocation RParenLoc, BuildForRangeKind Kind) {
+ if (!First)
+ return StmtError();
+
+ if (Range && ObjCEnumerationCollection(Range))
+ return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc);
+
+ DeclStmt *DS = dyn_cast<DeclStmt>(First);
+ assert(DS && "first part of for range not a decl stmt");
+
+ if (!DS->isSingleDecl()) {
+ Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
+ return StmtError();
+ }
+
+ Decl *LoopVar = DS->getSingleDecl();
+ if (LoopVar->isInvalidDecl() || !Range ||
+ DiagnoseUnexpandedParameterPack(Range, UPPC_Expression)) {
+ LoopVar->setInvalidDecl();
+ return StmtError();
+ }
+
+ // Build auto && __range = range-init
+ SourceLocation RangeLoc = Range->getLocStart();
+ VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
+ Context.getAutoRRefDeductType(),
+ "__range");
+ if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
+ diag::err_for_range_deduction_failure)) {
+ LoopVar->setInvalidDecl();
+ return StmtError();
+ }
+
+ // Claim the type doesn't contain auto: we've already done the checking.
+ DeclGroupPtrTy RangeGroup =
+ BuildDeclaratorGroup(MutableArrayRef<Decl *>((Decl **)&RangeVar, 1),
+ /*TypeMayContainAuto=*/ false);
+ StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
+ if (RangeDecl.isInvalid()) {
+ LoopVar->setInvalidDecl();
+ return StmtError();
+ }
+
+ return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(),
+ /*BeginEndDecl=*/nullptr, /*Cond=*/nullptr,
+ /*Inc=*/nullptr, DS, RParenLoc, Kind);
+}
+
+/// \brief Create the initialization, compare, and increment steps for
+/// the range-based for loop expression.
+/// This function does not handle array-based for loops,
+/// which are created in Sema::BuildCXXForRangeStmt.
+///
+/// \returns a ForRangeStatus indicating success or what kind of error occurred.
+/// BeginExpr and EndExpr are set and FRS_Success is returned on success;
+/// CandidateSet and BEF are set and some non-success value is returned on
+/// failure.
+static Sema::ForRangeStatus BuildNonArrayForRange(Sema &SemaRef, Scope *S,
+ Expr *BeginRange, Expr *EndRange,
+ QualType RangeType,
+ VarDecl *BeginVar,
+ VarDecl *EndVar,
+ SourceLocation ColonLoc,
+ OverloadCandidateSet *CandidateSet,
+ ExprResult *BeginExpr,
+ ExprResult *EndExpr,
+ Sema::BeginEndFunction *BEF) {
+ DeclarationNameInfo BeginNameInfo(
+ &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc);
+ DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"),
+ ColonLoc);
+
+ LookupResult BeginMemberLookup(SemaRef, BeginNameInfo,
+ Sema::LookupMemberName);
+ LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName);
+
+ if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
+ // - if _RangeT is a class type, the unqualified-ids begin and end are
+ // looked up in the scope of class _RangeT as if by class member access
+ // lookup (3.4.5), and if either (or both) finds at least one
+ // declaration, begin-expr and end-expr are __range.begin() and
+ // __range.end(), respectively;
+ SemaRef.LookupQualifiedName(BeginMemberLookup, D);
+ SemaRef.LookupQualifiedName(EndMemberLookup, D);
+
+ if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
+ SourceLocation RangeLoc = BeginVar->getLocation();
+ *BEF = BeginMemberLookup.empty() ? Sema::BEF_end : Sema::BEF_begin;
+
+ SemaRef.Diag(RangeLoc, diag::err_for_range_member_begin_end_mismatch)
+ << RangeLoc << BeginRange->getType() << *BEF;
+ return Sema::FRS_DiagnosticIssued;
+ }
+ } else {
+ // - otherwise, begin-expr and end-expr are begin(__range) and
+ // end(__range), respectively, where begin and end are looked up with
+ // argument-dependent lookup (3.4.2). For the purposes of this name
+ // lookup, namespace std is an associated namespace.
+
+ }
+
+ *BEF = Sema::BEF_begin;
+ Sema::ForRangeStatus RangeStatus =
+ SemaRef.BuildForRangeBeginEndCall(S, ColonLoc, ColonLoc, BeginVar,
+ Sema::BEF_begin, BeginNameInfo,
+ BeginMemberLookup, CandidateSet,
+ BeginRange, BeginExpr);
+
+ if (RangeStatus != Sema::FRS_Success)
+ return RangeStatus;
+ if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc,
+ diag::err_for_range_iter_deduction_failure)) {
+ NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF);
+ return Sema::FRS_DiagnosticIssued;
+ }
+
+ *BEF = Sema::BEF_end;
+ RangeStatus =
+ SemaRef.BuildForRangeBeginEndCall(S, ColonLoc, ColonLoc, EndVar,
+ Sema::BEF_end, EndNameInfo,
+ EndMemberLookup, CandidateSet,
+ EndRange, EndExpr);
+ if (RangeStatus != Sema::FRS_Success)
+ return RangeStatus;
+ if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc,
+ diag::err_for_range_iter_deduction_failure)) {
+ NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF);
+ return Sema::FRS_DiagnosticIssued;
+ }
+ return Sema::FRS_Success;
+}
+
+/// Speculatively attempt to dereference an invalid range expression.
+/// If the attempt fails, this function will return a valid, null StmtResult
+/// and emit no diagnostics.
+static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S,
+ SourceLocation ForLoc,
+ Stmt *LoopVarDecl,
+ SourceLocation ColonLoc,
+ Expr *Range,
+ SourceLocation RangeLoc,
+ SourceLocation RParenLoc) {
+ // Determine whether we can rebuild the for-range statement with a
+ // dereferenced range expression.
+ ExprResult AdjustedRange;
+ {
+ Sema::SFINAETrap Trap(SemaRef);
+
+ AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range);
+ if (AdjustedRange.isInvalid())
+ return StmtResult();
+
+ StmtResult SR =
+ SemaRef.ActOnCXXForRangeStmt(ForLoc, LoopVarDecl, ColonLoc,
+ AdjustedRange.get(), RParenLoc,
+ Sema::BFRK_Check);
+ if (SR.isInvalid())
+ return StmtResult();
+ }
+
+ // The attempt to dereference worked well enough that it could produce a valid
+ // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in
+ // case there are any other (non-fatal) problems with it.
+ SemaRef.Diag(RangeLoc, diag::err_for_range_dereference)
+ << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*");
+ return SemaRef.ActOnCXXForRangeStmt(ForLoc, LoopVarDecl, ColonLoc,
+ AdjustedRange.get(), RParenLoc,
+ Sema::BFRK_Rebuild);
+}
+
+namespace {
+/// RAII object to automatically invalidate a declaration if an error occurs.
+struct InvalidateOnErrorScope {
+ InvalidateOnErrorScope(Sema &SemaRef, Decl *D, bool Enabled)
+ : Trap(SemaRef.Diags), D(D), Enabled(Enabled) {}
+ ~InvalidateOnErrorScope() {
+ if (Enabled && Trap.hasErrorOccurred())
+ D->setInvalidDecl();
+ }
+
+ DiagnosticErrorTrap Trap;
+ Decl *D;
+ bool Enabled;
+};
+}
+
+/// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement.
+StmtResult
+Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
+ Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
+ Expr *Inc, Stmt *LoopVarDecl,
+ SourceLocation RParenLoc, BuildForRangeKind Kind) {
+ Scope *S = getCurScope();
+
+ DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
+ VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
+ QualType RangeVarType = RangeVar->getType();
+
+ DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
+ VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
+
+ // If we hit any errors, mark the loop variable as invalid if its type
+ // contains 'auto'.
+ InvalidateOnErrorScope Invalidate(*this, LoopVar,
+ LoopVar->getType()->isUndeducedType());
+
+ StmtResult BeginEndDecl = BeginEnd;
+ ExprResult NotEqExpr = Cond, IncrExpr = Inc;
+
+ if (RangeVarType->isDependentType()) {
+ // The range is implicitly used as a placeholder when it is dependent.
+ RangeVar->markUsed(Context);
+
+ // Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill
+ // them in properly when we instantiate the loop.
+ if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check)
+ LoopVar->setType(SubstAutoType(LoopVar->getType(), Context.DependentTy));
+ } else if (!BeginEndDecl.get()) {
+ SourceLocation RangeLoc = RangeVar->getLocation();
+
+ const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
+
+ ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
+ VK_LValue, ColonLoc);
+ if (BeginRangeRef.isInvalid())
+ return StmtError();
+
+ ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
+ VK_LValue, ColonLoc);
+ if (EndRangeRef.isInvalid())
+ return StmtError();
+
+ QualType AutoType = Context.getAutoDeductType();
+ Expr *Range = RangeVar->getInit();
+ if (!Range)
+ return StmtError();
+ QualType RangeType = Range->getType();
+
+ if (RequireCompleteType(RangeLoc, RangeType,
+ diag::err_for_range_incomplete_type))
+ return StmtError();
+
+ // Build auto __begin = begin-expr, __end = end-expr.
+ VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
+ "__begin");
+ VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
+ "__end");
+
+ // Build begin-expr and end-expr and attach to __begin and __end variables.
+ ExprResult BeginExpr, EndExpr;
+ if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
+ // - if _RangeT is an array type, begin-expr and end-expr are __range and
+ // __range + __bound, respectively, where __bound is the array bound. If
+ // _RangeT is an array of unknown size or an array of incomplete type,
+ // the program is ill-formed;
+
+ // begin-expr is __range.
+ BeginExpr = BeginRangeRef;
+ if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
+ diag::err_for_range_iter_deduction_failure)) {
+ NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
+ return StmtError();
+ }
+
+ // Find the array bound.
+ ExprResult BoundExpr;
+ if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
+ BoundExpr = IntegerLiteral::Create(
+ Context, CAT->getSize(), Context.getPointerDiffType(), RangeLoc);
+ else if (const VariableArrayType *VAT =
+ dyn_cast<VariableArrayType>(UnqAT))
+ BoundExpr = VAT->getSizeExpr();
+ else {
+ // Can't be a DependentSizedArrayType or an IncompleteArrayType since
+ // UnqAT is not incomplete and Range is not type-dependent.
+ llvm_unreachable("Unexpected array type in for-range");
+ }
+
+ // end-expr is __range + __bound.
+ EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
+ BoundExpr.get());
+ if (EndExpr.isInvalid())
+ return StmtError();
+ if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
+ diag::err_for_range_iter_deduction_failure)) {
+ NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
+ return StmtError();
+ }
+ } else {
+ OverloadCandidateSet CandidateSet(RangeLoc,
+ OverloadCandidateSet::CSK_Normal);
+ Sema::BeginEndFunction BEFFailure;
+ ForRangeStatus RangeStatus =
+ BuildNonArrayForRange(*this, S, BeginRangeRef.get(),
+ EndRangeRef.get(), RangeType,
+ BeginVar, EndVar, ColonLoc, &CandidateSet,
+ &BeginExpr, &EndExpr, &BEFFailure);
+
+ if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction &&
+ BEFFailure == BEF_begin) {
+ // If the range is being built from an array parameter, emit a
+ // a diagnostic that it is being treated as a pointer.
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Range)) {
+ if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
+ QualType ArrayTy = PVD->getOriginalType();
+ QualType PointerTy = PVD->getType();
+ if (PointerTy->isPointerType() && ArrayTy->isArrayType()) {
+ Diag(Range->getLocStart(), diag::err_range_on_array_parameter)
+ << RangeLoc << PVD << ArrayTy << PointerTy;
+ Diag(PVD->getLocation(), diag::note_declared_at);
+ return StmtError();
+ }
+ }
+ }
+
+ // If building the range failed, try dereferencing the range expression
+ // unless a diagnostic was issued or the end function is problematic.
+ StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc,
+ LoopVarDecl, ColonLoc,
+ Range, RangeLoc,
+ RParenLoc);
+ if (SR.isInvalid() || SR.isUsable())
+ return SR;
+ }
+
+ // Otherwise, emit diagnostics if we haven't already.
+ if (RangeStatus == FRS_NoViableFunction) {
+ Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get();
+ Diag(Range->getLocStart(), diag::err_for_range_invalid)
+ << RangeLoc << Range->getType() << BEFFailure;
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Range);
+ }
+ // Return an error if no fix was discovered.
+ if (RangeStatus != FRS_Success)
+ return StmtError();
+ }
+
+ assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() &&
+ "invalid range expression in for loop");
+
+ // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same.
+ QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
+ if (!Context.hasSameType(BeginType, EndType)) {
+ Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
+ << BeginType << EndType;
+ NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
+ NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
+ }
+
+ Decl *BeginEndDecls[] = { BeginVar, EndVar };
+ // Claim the type doesn't contain auto: we've already done the checking.
+ DeclGroupPtrTy BeginEndGroup =
+ BuildDeclaratorGroup(MutableArrayRef<Decl *>(BeginEndDecls, 2),
+ /*TypeMayContainAuto=*/ false);
+ BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
+
+ const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
+ ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
+ VK_LValue, ColonLoc);
+ if (BeginRef.isInvalid())
+ return StmtError();
+
+ ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
+ VK_LValue, ColonLoc);
+ if (EndRef.isInvalid())
+ return StmtError();
+
+ // Build and check __begin != __end expression.
+ NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
+ BeginRef.get(), EndRef.get());
+ NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
+ NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
+ if (NotEqExpr.isInvalid()) {
+ Diag(RangeLoc, diag::note_for_range_invalid_iterator)
+ << RangeLoc << 0 << BeginRangeRef.get()->getType();
+ NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
+ if (!Context.hasSameType(BeginType, EndType))
+ NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
+ return StmtError();
+ }
+
+ // Build and check ++__begin expression.
+ BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
+ VK_LValue, ColonLoc);
+ if (BeginRef.isInvalid())
+ return StmtError();
+
+ IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
+ IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
+ if (IncrExpr.isInvalid()) {
+ Diag(RangeLoc, diag::note_for_range_invalid_iterator)
+ << RangeLoc << 2 << BeginRangeRef.get()->getType() ;
+ NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
+ return StmtError();
+ }
+
+ // Build and check *__begin expression.
+ BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
+ VK_LValue, ColonLoc);
+ if (BeginRef.isInvalid())
+ return StmtError();
+
+ ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
+ if (DerefExpr.isInvalid()) {
+ Diag(RangeLoc, diag::note_for_range_invalid_iterator)
+ << RangeLoc << 1 << BeginRangeRef.get()->getType();
+ NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
+ return StmtError();
+ }
+
+ // Attach *__begin as initializer for VD. Don't touch it if we're just
+ // trying to determine whether this would be a valid range.
+ if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
+ AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
+ /*TypeMayContainAuto=*/true);
+ if (LoopVar->isInvalidDecl())
+ NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
+ }
+ }
+
+ // Don't bother to actually allocate the result if we're just trying to
+ // determine whether it would be valid.
+ if (Kind == BFRK_Check)
+ return StmtResult();
+
+ return new (Context) CXXForRangeStmt(
+ RangeDS, cast_or_null<DeclStmt>(BeginEndDecl.get()), NotEqExpr.get(),
+ IncrExpr.get(), LoopVarDS, /*Body=*/nullptr, ForLoc, ColonLoc, RParenLoc);
+}
+
+/// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach
+/// statement.
+StmtResult Sema::FinishObjCForCollectionStmt(Stmt *S, Stmt *B) {
+ if (!S || !B)
+ return StmtError();
+ ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S);
+
+ ForStmt->setBody(B);
+ return S;
+}
+
+// Warn when the loop variable is a const reference that creates a copy.
+// Suggest using the non-reference type for copies. If a copy can be prevented
+// suggest the const reference type that would do so.
+// For instance, given "for (const &Foo : Range)", suggest
+// "for (const Foo : Range)" to denote a copy is made for the loop. If
+// possible, also suggest "for (const &Bar : Range)" if this type prevents
+// the copy altogether.
+static void DiagnoseForRangeReferenceVariableCopies(Sema &SemaRef,
+ const VarDecl *VD,
+ QualType RangeInitType) {
+ const Expr *InitExpr = VD->getInit();
+ if (!InitExpr)
+ return;
+
+ QualType VariableType = VD->getType();
+
+ const MaterializeTemporaryExpr *MTE =
+ dyn_cast<MaterializeTemporaryExpr>(InitExpr);
+
+ // No copy made.
+ if (!MTE)
+ return;
+
+ const Expr *E = MTE->GetTemporaryExpr()->IgnoreImpCasts();
+
+ // Searching for either UnaryOperator for dereference of a pointer or
+ // CXXOperatorCallExpr for handling iterators.
+ while (!isa<CXXOperatorCallExpr>(E) && !isa<UnaryOperator>(E)) {
+ if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(E)) {
+ E = CCE->getArg(0);
+ } else if (const CXXMemberCallExpr *Call = dyn_cast<CXXMemberCallExpr>(E)) {
+ const MemberExpr *ME = cast<MemberExpr>(Call->getCallee());
+ E = ME->getBase();
+ } else {
+ const MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E);
+ E = MTE->GetTemporaryExpr();
+ }
+ E = E->IgnoreImpCasts();
+ }
+
+ bool ReturnsReference = false;
+ if (isa<UnaryOperator>(E)) {
+ ReturnsReference = true;
+ } else {
+ const CXXOperatorCallExpr *Call = cast<CXXOperatorCallExpr>(E);
+ const FunctionDecl *FD = Call->getDirectCallee();
+ QualType ReturnType = FD->getReturnType();
+ ReturnsReference = ReturnType->isReferenceType();
+ }
+
+ if (ReturnsReference) {
+ // Loop variable creates a temporary. Suggest either to go with
+ // non-reference loop variable to indiciate a copy is made, or
+ // the correct time to bind a const reference.
+ SemaRef.Diag(VD->getLocation(), diag::warn_for_range_const_reference_copy)
+ << VD << VariableType << E->getType();
+ QualType NonReferenceType = VariableType.getNonReferenceType();
+ NonReferenceType.removeLocalConst();
+ QualType NewReferenceType =
+ SemaRef.Context.getLValueReferenceType(E->getType().withConst());
+ SemaRef.Diag(VD->getLocStart(), diag::note_use_type_or_non_reference)
+ << NonReferenceType << NewReferenceType << VD->getSourceRange();
+ } else {
+ // The range always returns a copy, so a temporary is always created.
+ // Suggest removing the reference from the loop variable.
+ SemaRef.Diag(VD->getLocation(), diag::warn_for_range_variable_always_copy)
+ << VD << RangeInitType;
+ QualType NonReferenceType = VariableType.getNonReferenceType();
+ NonReferenceType.removeLocalConst();
+ SemaRef.Diag(VD->getLocStart(), diag::note_use_non_reference_type)
+ << NonReferenceType << VD->getSourceRange();
+ }
+}
+
+// Warns when the loop variable can be changed to a reference type to
+// prevent a copy. For instance, if given "for (const Foo x : Range)" suggest
+// "for (const Foo &x : Range)" if this form does not make a copy.
+static void DiagnoseForRangeConstVariableCopies(Sema &SemaRef,
+ const VarDecl *VD) {
+ const Expr *InitExpr = VD->getInit();
+ if (!InitExpr)
+ return;
+
+ QualType VariableType = VD->getType();
+
+ if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(InitExpr)) {
+ if (!CE->getConstructor()->isCopyConstructor())
+ return;
+ } else if (const CastExpr *CE = dyn_cast<CastExpr>(InitExpr)) {
+ if (CE->getCastKind() != CK_LValueToRValue)
+ return;
+ } else {
+ return;
+ }
+
+ // TODO: Determine a maximum size that a POD type can be before a diagnostic
+ // should be emitted. Also, only ignore POD types with trivial copy
+ // constructors.
+ if (VariableType.isPODType(SemaRef.Context))
+ return;
+
+ // Suggest changing from a const variable to a const reference variable
+ // if doing so will prevent a copy.
+ SemaRef.Diag(VD->getLocation(), diag::warn_for_range_copy)
+ << VD << VariableType << InitExpr->getType();
+ SemaRef.Diag(VD->getLocStart(), diag::note_use_reference_type)
+ << SemaRef.Context.getLValueReferenceType(VariableType)
+ << VD->getSourceRange();
+}
+
+/// DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them.
+/// 1) for (const foo &x : foos) where foos only returns a copy. Suggest
+/// using "const foo x" to show that a copy is made
+/// 2) for (const bar &x : foos) where bar is a temporary intialized by bar.
+/// Suggest either "const bar x" to keep the copying or "const foo& x" to
+/// prevent the copy.
+/// 3) for (const foo x : foos) where x is constructed from a reference foo.
+/// Suggest "const foo &x" to prevent the copy.
+static void DiagnoseForRangeVariableCopies(Sema &SemaRef,
+ const CXXForRangeStmt *ForStmt) {
+ if (SemaRef.Diags.isIgnored(diag::warn_for_range_const_reference_copy,
+ ForStmt->getLocStart()) &&
+ SemaRef.Diags.isIgnored(diag::warn_for_range_variable_always_copy,
+ ForStmt->getLocStart()) &&
+ SemaRef.Diags.isIgnored(diag::warn_for_range_copy,
+ ForStmt->getLocStart())) {
+ return;
+ }
+
+ const VarDecl *VD = ForStmt->getLoopVariable();
+ if (!VD)
+ return;
+
+ QualType VariableType = VD->getType();
+
+ if (VariableType->isIncompleteType())
+ return;
+
+ const Expr *InitExpr = VD->getInit();
+ if (!InitExpr)
+ return;
+
+ if (VariableType->isReferenceType()) {
+ DiagnoseForRangeReferenceVariableCopies(SemaRef, VD,
+ ForStmt->getRangeInit()->getType());
+ } else if (VariableType.isConstQualified()) {
+ DiagnoseForRangeConstVariableCopies(SemaRef, VD);
+ }
+}
+
+/// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
+/// This is a separate step from ActOnCXXForRangeStmt because analysis of the
+/// body cannot be performed until after the type of the range variable is
+/// determined.
+StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
+ if (!S || !B)
+ return StmtError();
+
+ if (isa<ObjCForCollectionStmt>(S))
+ return FinishObjCForCollectionStmt(S, B);
+
+ CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
+ ForStmt->setBody(B);
+
+ DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
+ diag::warn_empty_range_based_for_body);
+
+ DiagnoseForRangeVariableCopies(*this, ForStmt);
+
+ return S;
+}
+
+StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
+ SourceLocation LabelLoc,
+ LabelDecl *TheDecl) {
+ getCurFunction()->setHasBranchIntoScope();
+ TheDecl->markUsed(Context);
+ return new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc);
+}
+
+StmtResult
+Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
+ Expr *E) {
+ // Convert operand to void*
+ if (!E->isTypeDependent()) {
+ QualType ETy = E->getType();
+ QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
+ ExprResult ExprRes = E;
+ AssignConvertType ConvTy =
+ CheckSingleAssignmentConstraints(DestTy, ExprRes);
+ if (ExprRes.isInvalid())
+ return StmtError();
+ E = ExprRes.get();
+ if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
+ return StmtError();
+ }
+
+ ExprResult ExprRes = ActOnFinishFullExpr(E);
+ if (ExprRes.isInvalid())
+ return StmtError();
+ E = ExprRes.get();
+
+ getCurFunction()->setHasIndirectGoto();
+
+ return new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E);
+}
+
+static void CheckJumpOutOfSEHFinally(Sema &S, SourceLocation Loc,
+ const Scope &DestScope) {
+ if (!S.CurrentSEHFinally.empty() &&
+ DestScope.Contains(*S.CurrentSEHFinally.back())) {
+ S.Diag(Loc, diag::warn_jump_out_of_seh_finally);
+ }
+}
+
+StmtResult
+Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
+ Scope *S = CurScope->getContinueParent();
+ if (!S) {
+ // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
+ return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
+ }
+ CheckJumpOutOfSEHFinally(*this, ContinueLoc, *S);
+
+ return new (Context) ContinueStmt(ContinueLoc);
+}
+
+StmtResult
+Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
+ Scope *S = CurScope->getBreakParent();
+ if (!S) {
+ // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
+ return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
+ }
+ if (S->isOpenMPLoopScope())
+ return StmtError(Diag(BreakLoc, diag::err_omp_loop_cannot_use_stmt)
+ << "break");
+ CheckJumpOutOfSEHFinally(*this, BreakLoc, *S);
+
+ return new (Context) BreakStmt(BreakLoc);
+}
+
+/// \brief Determine whether the given expression is a candidate for
+/// copy elision in either a return statement or a throw expression.
+///
+/// \param ReturnType If we're determining the copy elision candidate for
+/// a return statement, this is the return type of the function. If we're
+/// determining the copy elision candidate for a throw expression, this will
+/// be a NULL type.
+///
+/// \param E The expression being returned from the function or block, or
+/// being thrown.
+///
+/// \param AllowFunctionParameter Whether we allow function parameters to
+/// be considered NRVO candidates. C++ prohibits this for NRVO itself, but
+/// we re-use this logic to determine whether we should try to move as part of
+/// a return or throw (which does allow function parameters).
+///
+/// \returns The NRVO candidate variable, if the return statement may use the
+/// NRVO, or NULL if there is no such candidate.
+VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
+ Expr *E,
+ bool AllowFunctionParameter) {
+ if (!getLangOpts().CPlusPlus)
+ return nullptr;
+
+ // - in a return statement in a function [where] ...
+ // ... the expression is the name of a non-volatile automatic object ...
+ DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
+ if (!DR || DR->refersToEnclosingVariableOrCapture())
+ return nullptr;
+ VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
+ if (!VD)
+ return nullptr;
+
+ if (isCopyElisionCandidate(ReturnType, VD, AllowFunctionParameter))
+ return VD;
+ return nullptr;
+}
+
+bool Sema::isCopyElisionCandidate(QualType ReturnType, const VarDecl *VD,
+ bool AllowFunctionParameter) {
+ QualType VDType = VD->getType();
+ // - in a return statement in a function with ...
+ // ... a class return type ...
+ if (!ReturnType.isNull() && !ReturnType->isDependentType()) {
+ if (!ReturnType->isRecordType())
+ return false;
+ // ... the same cv-unqualified type as the function return type ...
+ if (!VDType->isDependentType() &&
+ !Context.hasSameUnqualifiedType(ReturnType, VDType))
+ return false;
+ }
+
+ // ...object (other than a function or catch-clause parameter)...
+ if (VD->getKind() != Decl::Var &&
+ !(AllowFunctionParameter && VD->getKind() == Decl::ParmVar))
+ return false;
+ if (VD->isExceptionVariable()) return false;
+
+ // ...automatic...
+ if (!VD->hasLocalStorage()) return false;
+
+ // ...non-volatile...
+ if (VD->getType().isVolatileQualified()) return false;
+
+ // __block variables can't be allocated in a way that permits NRVO.
+ if (VD->hasAttr<BlocksAttr>()) return false;
+
+ // Variables with higher required alignment than their type's ABI
+ // alignment cannot use NRVO.
+ if (!VD->getType()->isDependentType() && VD->hasAttr<AlignedAttr>() &&
+ Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType()))
+ return false;
+
+ return true;
+}
+
+/// \brief Perform the initialization of a potentially-movable value, which
+/// is the result of return value.
+///
+/// This routine implements C++0x [class.copy]p33, which attempts to treat
+/// returned lvalues as rvalues in certain cases (to prefer move construction),
+/// then falls back to treating them as lvalues if that failed.
+ExprResult
+Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
+ const VarDecl *NRVOCandidate,
+ QualType ResultType,
+ Expr *Value,
+ bool AllowNRVO) {
+ // C++0x [class.copy]p33:
+ // When the criteria for elision of a copy operation are met or would
+ // be met save for the fact that the source object is a function
+ // parameter, and the object to be copied is designated by an lvalue,
+ // overload resolution to select the constructor for the copy is first
+ // performed as if the object were designated by an rvalue.
+ ExprResult Res = ExprError();
+ if (AllowNRVO &&
+ (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) {
+ ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
+ Value->getType(), CK_NoOp, Value, VK_XValue);
+
+ Expr *InitExpr = &AsRvalue;
+ InitializationKind Kind
+ = InitializationKind::CreateCopy(Value->getLocStart(),
+ Value->getLocStart());
+ InitializationSequence Seq(*this, Entity, Kind, InitExpr);
+
+ // [...] If overload resolution fails, or if the type of the first
+ // parameter of the selected constructor is not an rvalue reference
+ // to the object's type (possibly cv-qualified), overload resolution
+ // is performed again, considering the object as an lvalue.
+ if (Seq) {
+ for (InitializationSequence::step_iterator Step = Seq.step_begin(),
+ StepEnd = Seq.step_end();
+ Step != StepEnd; ++Step) {
+ if (Step->Kind != InitializationSequence::SK_ConstructorInitialization)
+ continue;
+
+ CXXConstructorDecl *Constructor
+ = cast<CXXConstructorDecl>(Step->Function.Function);
+
+ const RValueReferenceType *RRefType
+ = Constructor->getParamDecl(0)->getType()
+ ->getAs<RValueReferenceType>();
+
+ // If we don't meet the criteria, break out now.
+ if (!RRefType ||
+ !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
+ Context.getTypeDeclType(Constructor->getParent())))
+ break;
+
+ // Promote "AsRvalue" to the heap, since we now need this
+ // expression node to persist.
+ Value = ImplicitCastExpr::Create(Context, Value->getType(),
+ CK_NoOp, Value, nullptr, VK_XValue);
+
+ // Complete type-checking the initialization of the return type
+ // using the constructor we found.
+ Res = Seq.Perform(*this, Entity, Kind, Value);
+ }
+ }
+ }
+
+ // Either we didn't meet the criteria for treating an lvalue as an rvalue,
+ // above, or overload resolution failed. Either way, we need to try
+ // (again) now with the return value expression as written.
+ if (Res.isInvalid())
+ Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
+
+ return Res;
+}
+
+/// \brief Determine whether the declared return type of the specified function
+/// contains 'auto'.
+static bool hasDeducedReturnType(FunctionDecl *FD) {
+ const FunctionProtoType *FPT =
+ FD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
+ return FPT->getReturnType()->isUndeducedType();
+}
+
+/// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
+/// for capturing scopes.
+///
+StmtResult
+Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
+ // If this is the first return we've seen, infer the return type.
+ // [expr.prim.lambda]p4 in C++11; block literals follow the same rules.
+ CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
+ QualType FnRetType = CurCap->ReturnType;
+ LambdaScopeInfo *CurLambda = dyn_cast<LambdaScopeInfo>(CurCap);
+
+ if (CurLambda && hasDeducedReturnType(CurLambda->CallOperator)) {
+ // In C++1y, the return type may involve 'auto'.
+ // FIXME: Blocks might have a return type of 'auto' explicitly specified.
+ FunctionDecl *FD = CurLambda->CallOperator;
+ if (CurCap->ReturnType.isNull())
+ CurCap->ReturnType = FD->getReturnType();
+
+ AutoType *AT = CurCap->ReturnType->getContainedAutoType();
+ assert(AT && "lost auto type from lambda return type");
+ if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
+ FD->setInvalidDecl();
+ return StmtError();
+ }
+ CurCap->ReturnType = FnRetType = FD->getReturnType();
+ } else if (CurCap->HasImplicitReturnType) {
+ // For blocks/lambdas with implicit return types, we check each return
+ // statement individually, and deduce the common return type when the block
+ // or lambda is completed.
+ // FIXME: Fold this into the 'auto' codepath above.
+ if (RetValExp && !isa<InitListExpr>(RetValExp)) {
+ ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
+ if (Result.isInvalid())
+ return StmtError();
+ RetValExp = Result.get();
+
+ // DR1048: even prior to C++14, we should use the 'auto' deduction rules
+ // when deducing a return type for a lambda-expression (or by extension
+ // for a block). These rules differ from the stated C++11 rules only in
+ // that they remove top-level cv-qualifiers.
+ if (!CurContext->isDependentContext())
+ FnRetType = RetValExp->getType().getUnqualifiedType();
+ else
+ FnRetType = CurCap->ReturnType = Context.DependentTy;
+ } else {
+ if (RetValExp) {
+ // C++11 [expr.lambda.prim]p4 bans inferring the result from an
+ // initializer list, because it is not an expression (even
+ // though we represent it as one). We still deduce 'void'.
+ Diag(ReturnLoc, diag::err_lambda_return_init_list)
+ << RetValExp->getSourceRange();
+ }
+
+ FnRetType = Context.VoidTy;
+ }
+
+ // Although we'll properly infer the type of the block once it's completed,
+ // make sure we provide a return type now for better error recovery.
+ if (CurCap->ReturnType.isNull())
+ CurCap->ReturnType = FnRetType;
+ }
+ assert(!FnRetType.isNull());
+
+ if (BlockScopeInfo *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
+ if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
+ Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
+ return StmtError();
+ }
+ } else if (CapturedRegionScopeInfo *CurRegion =
+ dyn_cast<CapturedRegionScopeInfo>(CurCap)) {
+ Diag(ReturnLoc, diag::err_return_in_captured_stmt) << CurRegion->getRegionName();
+ return StmtError();
+ } else {
+ assert(CurLambda && "unknown kind of captured scope");
+ if (CurLambda->CallOperator->getType()->getAs<FunctionType>()
+ ->getNoReturnAttr()) {
+ Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
+ return StmtError();
+ }
+ }
+
+ // Otherwise, verify that this result type matches the previous one. We are
+ // pickier with blocks than for normal functions because we don't have GCC
+ // compatibility to worry about here.
+ const VarDecl *NRVOCandidate = nullptr;
+ if (FnRetType->isDependentType()) {
+ // Delay processing for now. TODO: there are lots of dependent
+ // types we can conclusively prove aren't void.
+ } else if (FnRetType->isVoidType()) {
+ if (RetValExp && !isa<InitListExpr>(RetValExp) &&
+ !(getLangOpts().CPlusPlus &&
+ (RetValExp->isTypeDependent() ||
+ RetValExp->getType()->isVoidType()))) {
+ if (!getLangOpts().CPlusPlus &&
+ RetValExp->getType()->isVoidType())
+ Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
+ else {
+ Diag(ReturnLoc, diag::err_return_block_has_expr);
+ RetValExp = nullptr;
+ }
+ }
+ } else if (!RetValExp) {
+ return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
+ } else if (!RetValExp->isTypeDependent()) {
+ // we have a non-void block with an expression, continue checking
+
+ // C99 6.8.6.4p3(136): The return statement is not an assignment. The
+ // overlap restriction of subclause 6.5.16.1 does not apply to the case of
+ // function return.
+
+ // In C++ the return statement is handled via a copy initialization.
+ // the C version of which boils down to CheckSingleAssignmentConstraints.
+ NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
+ InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
+ FnRetType,
+ NRVOCandidate != nullptr);
+ ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
+ FnRetType, RetValExp);
+ if (Res.isInvalid()) {
+ // FIXME: Cleanup temporaries here, anyway?
+ return StmtError();
+ }
+ RetValExp = Res.get();
+ CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc);
+ } else {
+ NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
+ }
+
+ if (RetValExp) {
+ ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
+ if (ER.isInvalid())
+ return StmtError();
+ RetValExp = ER.get();
+ }
+ ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp,
+ NRVOCandidate);
+
+ // If we need to check for the named return value optimization,
+ // or if we need to infer the return type,
+ // save the return statement in our scope for later processing.
+ if (CurCap->HasImplicitReturnType || NRVOCandidate)
+ FunctionScopes.back()->Returns.push_back(Result);
+
+ return Result;
+}
+
+namespace {
+/// \brief Marks all typedefs in all local classes in a type referenced.
+///
+/// In a function like
+/// auto f() {
+/// struct S { typedef int a; };
+/// return S();
+/// }
+///
+/// the local type escapes and could be referenced in some TUs but not in
+/// others. Pretend that all local typedefs are always referenced, to not warn
+/// on this. This isn't necessary if f has internal linkage, or the typedef
+/// is private.
+class LocalTypedefNameReferencer
+ : public RecursiveASTVisitor<LocalTypedefNameReferencer> {
+public:
+ LocalTypedefNameReferencer(Sema &S) : S(S) {}
+ bool VisitRecordType(const RecordType *RT);
+private:
+ Sema &S;
+};
+bool LocalTypedefNameReferencer::VisitRecordType(const RecordType *RT) {
+ auto *R = dyn_cast<CXXRecordDecl>(RT->getDecl());
+ if (!R || !R->isLocalClass() || !R->isLocalClass()->isExternallyVisible() ||
+ R->isDependentType())
+ return true;
+ for (auto *TmpD : R->decls())
+ if (auto *T = dyn_cast<TypedefNameDecl>(TmpD))
+ if (T->getAccess() != AS_private || R->hasFriends())
+ S.MarkAnyDeclReferenced(T->getLocation(), T, /*OdrUse=*/false);
+ return true;
+}
+}
+
+TypeLoc Sema::getReturnTypeLoc(FunctionDecl *FD) const {
+ TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc().IgnoreParens();
+ while (auto ATL = TL.getAs<AttributedTypeLoc>())
+ TL = ATL.getModifiedLoc().IgnoreParens();
+ return TL.castAs<FunctionProtoTypeLoc>().getReturnLoc();
+}
+
+/// Deduce the return type for a function from a returned expression, per
+/// C++1y [dcl.spec.auto]p6.
+bool Sema::DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD,
+ SourceLocation ReturnLoc,
+ Expr *&RetExpr,
+ AutoType *AT) {
+ TypeLoc OrigResultType = getReturnTypeLoc(FD);
+ QualType Deduced;
+
+ if (RetExpr && isa<InitListExpr>(RetExpr)) {
+ // If the deduction is for a return statement and the initializer is
+ // a braced-init-list, the program is ill-formed.
+ Diag(RetExpr->getExprLoc(),
+ getCurLambda() ? diag::err_lambda_return_init_list
+ : diag::err_auto_fn_return_init_list)
+ << RetExpr->getSourceRange();
+ return true;
+ }
+
+ if (FD->isDependentContext()) {
+ // C++1y [dcl.spec.auto]p12:
+ // Return type deduction [...] occurs when the definition is
+ // instantiated even if the function body contains a return
+ // statement with a non-type-dependent operand.
+ assert(AT->isDeduced() && "should have deduced to dependent type");
+ return false;
+ } else if (RetExpr) {
+ // If the deduction is for a return statement and the initializer is
+ // a braced-init-list, the program is ill-formed.
+ if (isa<InitListExpr>(RetExpr)) {
+ Diag(RetExpr->getExprLoc(), diag::err_auto_fn_return_init_list);
+ return true;
+ }
+
+ // Otherwise, [...] deduce a value for U using the rules of template
+ // argument deduction.
+ DeduceAutoResult DAR = DeduceAutoType(OrigResultType, RetExpr, Deduced);
+
+ if (DAR == DAR_Failed && !FD->isInvalidDecl())
+ Diag(RetExpr->getExprLoc(), diag::err_auto_fn_deduction_failure)
+ << OrigResultType.getType() << RetExpr->getType();
+
+ if (DAR != DAR_Succeeded)
+ return true;
+
+ // If a local type is part of the returned type, mark its fields as
+ // referenced.
+ LocalTypedefNameReferencer Referencer(*this);
+ Referencer.TraverseType(RetExpr->getType());
+ } else {
+ // In the case of a return with no operand, the initializer is considered
+ // to be void().
+ //
+ // Deduction here can only succeed if the return type is exactly 'cv auto'
+ // or 'decltype(auto)', so just check for that case directly.
+ if (!OrigResultType.getType()->getAs<AutoType>()) {
+ Diag(ReturnLoc, diag::err_auto_fn_return_void_but_not_auto)
+ << OrigResultType.getType();
+ return true;
+ }
+ // We always deduce U = void in this case.
+ Deduced = SubstAutoType(OrigResultType.getType(), Context.VoidTy);
+ if (Deduced.isNull())
+ return true;
+ }
+
+ // If a function with a declared return type that contains a placeholder type
+ // has multiple return statements, the return type is deduced for each return
+ // statement. [...] if the type deduced is not the same in each deduction,
+ // the program is ill-formed.
+ if (AT->isDeduced() && !FD->isInvalidDecl()) {
+ AutoType *NewAT = Deduced->getContainedAutoType();
+ if (!FD->isDependentContext() &&
+ !Context.hasSameType(AT->getDeducedType(), NewAT->getDeducedType())) {
+ const LambdaScopeInfo *LambdaSI = getCurLambda();
+ if (LambdaSI && LambdaSI->HasImplicitReturnType) {
+ Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible)
+ << NewAT->getDeducedType() << AT->getDeducedType()
+ << true /*IsLambda*/;
+ } else {
+ Diag(ReturnLoc, diag::err_auto_fn_different_deductions)
+ << (AT->isDecltypeAuto() ? 1 : 0)
+ << NewAT->getDeducedType() << AT->getDeducedType();
+ }
+ return true;
+ }
+ } else if (!FD->isInvalidDecl()) {
+ // Update all declarations of the function to have the deduced return type.
+ Context.adjustDeducedFunctionResultType(FD, Deduced);
+ }
+
+ return false;
+}
+
+StmtResult
+Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
+ Scope *CurScope) {
+ StmtResult R = BuildReturnStmt(ReturnLoc, RetValExp);
+ if (R.isInvalid()) {
+ return R;
+ }
+
+ if (VarDecl *VD =
+ const_cast<VarDecl*>(cast<ReturnStmt>(R.get())->getNRVOCandidate())) {
+ CurScope->addNRVOCandidate(VD);
+ } else {
+ CurScope->setNoNRVO();
+ }
+
+ CheckJumpOutOfSEHFinally(*this, ReturnLoc, *CurScope->getFnParent());
+
+ return R;
+}
+
+StmtResult Sema::BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
+ // Check for unexpanded parameter packs.
+ if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
+ return StmtError();
+
+ if (isa<CapturingScopeInfo>(getCurFunction()))
+ return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp);
+
+ QualType FnRetType;
+ QualType RelatedRetType;
+ const AttrVec *Attrs = nullptr;
+ bool isObjCMethod = false;
+
+ if (const FunctionDecl *FD = getCurFunctionDecl()) {
+ FnRetType = FD->getReturnType();
+ if (FD->hasAttrs())
+ Attrs = &FD->getAttrs();
+ if (FD->isNoReturn())
+ Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
+ << FD->getDeclName();
+ } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
+ FnRetType = MD->getReturnType();
+ isObjCMethod = true;
+ if (MD->hasAttrs())
+ Attrs = &MD->getAttrs();
+ if (MD->hasRelatedResultType() && MD->getClassInterface()) {
+ // In the implementation of a method with a related return type, the
+ // type used to type-check the validity of return statements within the
+ // method body is a pointer to the type of the class being implemented.
+ RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
+ RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
+ }
+ } else // If we don't have a function/method context, bail.
+ return StmtError();
+
+ // FIXME: Add a flag to the ScopeInfo to indicate whether we're performing
+ // deduction.
+ if (getLangOpts().CPlusPlus14) {
+ if (AutoType *AT = FnRetType->getContainedAutoType()) {
+ FunctionDecl *FD = cast<FunctionDecl>(CurContext);
+ if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
+ FD->setInvalidDecl();
+ return StmtError();
+ } else {
+ FnRetType = FD->getReturnType();
+ }
+ }
+ }
+
+ bool HasDependentReturnType = FnRetType->isDependentType();
+
+ ReturnStmt *Result = nullptr;
+ if (FnRetType->isVoidType()) {
+ if (RetValExp) {
+ if (isa<InitListExpr>(RetValExp)) {
+ // We simply never allow init lists as the return value of void
+ // functions. This is compatible because this was never allowed before,
+ // so there's no legacy code to deal with.
+ NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
+ int FunctionKind = 0;
+ if (isa<ObjCMethodDecl>(CurDecl))
+ FunctionKind = 1;
+ else if (isa<CXXConstructorDecl>(CurDecl))
+ FunctionKind = 2;
+ else if (isa<CXXDestructorDecl>(CurDecl))
+ FunctionKind = 3;
+
+ Diag(ReturnLoc, diag::err_return_init_list)
+ << CurDecl->getDeclName() << FunctionKind
+ << RetValExp->getSourceRange();
+
+ // Drop the expression.
+ RetValExp = nullptr;
+ } else if (!RetValExp->isTypeDependent()) {
+ // C99 6.8.6.4p1 (ext_ since GCC warns)
+ unsigned D = diag::ext_return_has_expr;
+ if (RetValExp->getType()->isVoidType()) {
+ NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
+ if (isa<CXXConstructorDecl>(CurDecl) ||
+ isa<CXXDestructorDecl>(CurDecl))
+ D = diag::err_ctor_dtor_returns_void;
+ else
+ D = diag::ext_return_has_void_expr;
+ }
+ else {
+ ExprResult Result = RetValExp;
+ Result = IgnoredValueConversions(Result.get());
+ if (Result.isInvalid())
+ return StmtError();
+ RetValExp = Result.get();
+ RetValExp = ImpCastExprToType(RetValExp,
+ Context.VoidTy, CK_ToVoid).get();
+ }
+ // return of void in constructor/destructor is illegal in C++.
+ if (D == diag::err_ctor_dtor_returns_void) {
+ NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
+ Diag(ReturnLoc, D)
+ << CurDecl->getDeclName() << isa<CXXDestructorDecl>(CurDecl)
+ << RetValExp->getSourceRange();
+ }
+ // return (some void expression); is legal in C++.
+ else if (D != diag::ext_return_has_void_expr ||
+ !getLangOpts().CPlusPlus) {
+ NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
+
+ int FunctionKind = 0;
+ if (isa<ObjCMethodDecl>(CurDecl))
+ FunctionKind = 1;
+ else if (isa<CXXConstructorDecl>(CurDecl))
+ FunctionKind = 2;
+ else if (isa<CXXDestructorDecl>(CurDecl))
+ FunctionKind = 3;
+
+ Diag(ReturnLoc, D)
+ << CurDecl->getDeclName() << FunctionKind
+ << RetValExp->getSourceRange();
+ }
+ }
+
+ if (RetValExp) {
+ ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
+ if (ER.isInvalid())
+ return StmtError();
+ RetValExp = ER.get();
+ }
+ }
+
+ Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, nullptr);
+ } else if (!RetValExp && !HasDependentReturnType) {
+ FunctionDecl *FD = getCurFunctionDecl();
+
+ unsigned DiagID;
+ if (getLangOpts().CPlusPlus11 && FD && FD->isConstexpr()) {
+ // C++11 [stmt.return]p2
+ DiagID = diag::err_constexpr_return_missing_expr;
+ FD->setInvalidDecl();
+ } else if (getLangOpts().C99) {
+ // C99 6.8.6.4p1 (ext_ since GCC warns)
+ DiagID = diag::ext_return_missing_expr;
+ } else {
+ // C90 6.6.6.4p4
+ DiagID = diag::warn_return_missing_expr;
+ }
+
+ if (FD)
+ Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
+ else
+ Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
+
+ Result = new (Context) ReturnStmt(ReturnLoc);
+ } else {
+ assert(RetValExp || HasDependentReturnType);
+ const VarDecl *NRVOCandidate = nullptr;
+
+ QualType RetType = RelatedRetType.isNull() ? FnRetType : RelatedRetType;
+
+ // C99 6.8.6.4p3(136): The return statement is not an assignment. The
+ // overlap restriction of subclause 6.5.16.1 does not apply to the case of
+ // function return.
+
+ // In C++ the return statement is handled via a copy initialization,
+ // the C version of which boils down to CheckSingleAssignmentConstraints.
+ if (RetValExp)
+ NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
+ if (!HasDependentReturnType && !RetValExp->isTypeDependent()) {
+ // we have a non-void function with an expression, continue checking
+ InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
+ RetType,
+ NRVOCandidate != nullptr);
+ ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
+ RetType, RetValExp);
+ if (Res.isInvalid()) {
+ // FIXME: Clean up temporaries here anyway?
+ return StmtError();
+ }
+ RetValExp = Res.getAs<Expr>();
+
+ // If we have a related result type, we need to implicitly
+ // convert back to the formal result type. We can't pretend to
+ // initialize the result again --- we might end double-retaining
+ // --- so instead we initialize a notional temporary.
+ if (!RelatedRetType.isNull()) {
+ Entity = InitializedEntity::InitializeRelatedResult(getCurMethodDecl(),
+ FnRetType);
+ Res = PerformCopyInitialization(Entity, ReturnLoc, RetValExp);
+ if (Res.isInvalid()) {
+ // FIXME: Clean up temporaries here anyway?
+ return StmtError();
+ }
+ RetValExp = Res.getAs<Expr>();
+ }
+
+ CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc, isObjCMethod, Attrs,
+ getCurFunctionDecl());
+ }
+
+ if (RetValExp) {
+ ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
+ if (ER.isInvalid())
+ return StmtError();
+ RetValExp = ER.get();
+ }
+ Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
+ }
+
+ // If we need to check for the named return value optimization, save the
+ // return statement in our scope for later processing.
+ if (Result->getNRVOCandidate())
+ FunctionScopes.back()->Returns.push_back(Result);
+
+ return Result;
+}
+
+StmtResult
+Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
+ SourceLocation RParen, Decl *Parm,
+ Stmt *Body) {
+ VarDecl *Var = cast_or_null<VarDecl>(Parm);
+ if (Var && Var->isInvalidDecl())
+ return StmtError();
+
+ return new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body);
+}
+
+StmtResult
+Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
+ return new (Context) ObjCAtFinallyStmt(AtLoc, Body);
+}
+
+StmtResult
+Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
+ MultiStmtArg CatchStmts, Stmt *Finally) {
+ if (!getLangOpts().ObjCExceptions)
+ Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
+
+ getCurFunction()->setHasBranchProtectedScope();
+ unsigned NumCatchStmts = CatchStmts.size();
+ return ObjCAtTryStmt::Create(Context, AtLoc, Try, CatchStmts.data(),
+ NumCatchStmts, Finally);
+}
+
+StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) {
+ if (Throw) {
+ ExprResult Result = DefaultLvalueConversion(Throw);
+ if (Result.isInvalid())
+ return StmtError();
+
+ Result = ActOnFinishFullExpr(Result.get());
+ if (Result.isInvalid())
+ return StmtError();
+ Throw = Result.get();
+
+ QualType ThrowType = Throw->getType();
+ // Make sure the expression type is an ObjC pointer or "void *".
+ if (!ThrowType->isDependentType() &&
+ !ThrowType->isObjCObjectPointerType()) {
+ const PointerType *PT = ThrowType->getAs<PointerType>();
+ if (!PT || !PT->getPointeeType()->isVoidType())
+ return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
+ << Throw->getType() << Throw->getSourceRange());
+ }
+ }
+
+ return new (Context) ObjCAtThrowStmt(AtLoc, Throw);
+}
+
+StmtResult
+Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
+ Scope *CurScope) {
+ if (!getLangOpts().ObjCExceptions)
+ Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
+
+ if (!Throw) {
+ // @throw without an expression designates a rethrow (which must occur
+ // in the context of an @catch clause).
+ Scope *AtCatchParent = CurScope;
+ while (AtCatchParent && !AtCatchParent->isAtCatchScope())
+ AtCatchParent = AtCatchParent->getParent();
+ if (!AtCatchParent)
+ return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
+ }
+ return BuildObjCAtThrowStmt(AtLoc, Throw);
+}
+
+ExprResult
+Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
+ ExprResult result = DefaultLvalueConversion(operand);
+ if (result.isInvalid())
+ return ExprError();
+ operand = result.get();
+
+ // Make sure the expression type is an ObjC pointer or "void *".
+ QualType type = operand->getType();
+ if (!type->isDependentType() &&
+ !type->isObjCObjectPointerType()) {
+ const PointerType *pointerType = type->getAs<PointerType>();
+ if (!pointerType || !pointerType->getPointeeType()->isVoidType()) {
+ if (getLangOpts().CPlusPlus) {
+ if (RequireCompleteType(atLoc, type,
+ diag::err_incomplete_receiver_type))
+ return Diag(atLoc, diag::error_objc_synchronized_expects_object)
+ << type << operand->getSourceRange();
+
+ ExprResult result = PerformContextuallyConvertToObjCPointer(operand);
+ if (!result.isUsable())
+ return Diag(atLoc, diag::error_objc_synchronized_expects_object)
+ << type << operand->getSourceRange();
+
+ operand = result.get();
+ } else {
+ return Diag(atLoc, diag::error_objc_synchronized_expects_object)
+ << type << operand->getSourceRange();
+ }
+ }
+ }
+
+ // The operand to @synchronized is a full-expression.
+ return ActOnFinishFullExpr(operand);
+}
+
+StmtResult
+Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
+ Stmt *SyncBody) {
+ // We can't jump into or indirect-jump out of a @synchronized block.
+ getCurFunction()->setHasBranchProtectedScope();
+ return new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody);
+}
+
+/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
+/// and creates a proper catch handler from them.
+StmtResult
+Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
+ Stmt *HandlerBlock) {
+ // There's nothing to test that ActOnExceptionDecl didn't already test.
+ return new (Context)
+ CXXCatchStmt(CatchLoc, cast_or_null<VarDecl>(ExDecl), HandlerBlock);
+}
+
+StmtResult
+Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
+ getCurFunction()->setHasBranchProtectedScope();
+ return new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body);
+}
+
+namespace {
+class CatchHandlerType {
+ QualType QT;
+ unsigned IsPointer : 1;
+
+ // This is a special constructor to be used only with DenseMapInfo's
+ // getEmptyKey() and getTombstoneKey() functions.
+ friend struct llvm::DenseMapInfo<CatchHandlerType>;
+ enum Unique { ForDenseMap };
+ CatchHandlerType(QualType QT, Unique) : QT(QT), IsPointer(false) {}
+
+public:
+ /// Used when creating a CatchHandlerType from a handler type; will determine
+ /// whether the type is a pointer or reference and will strip off the the top
+ /// level pointer and cv-qualifiers.
+ CatchHandlerType(QualType Q) : QT(Q), IsPointer(false) {
+ if (QT->isPointerType())
+ IsPointer = true;
+
+ if (IsPointer || QT->isReferenceType())
+ QT = QT->getPointeeType();
+ QT = QT.getUnqualifiedType();
+ }
+
+ /// Used when creating a CatchHandlerType from a base class type; pretends the
+ /// type passed in had the pointer qualifier, does not need to get an
+ /// unqualified type.
+ CatchHandlerType(QualType QT, bool IsPointer)
+ : QT(QT), IsPointer(IsPointer) {}
+
+ QualType underlying() const { return QT; }
+ bool isPointer() const { return IsPointer; }
+
+ friend bool operator==(const CatchHandlerType &LHS,
+ const CatchHandlerType &RHS) {
+ // If the pointer qualification does not match, we can return early.
+ if (LHS.IsPointer != RHS.IsPointer)
+ return false;
+ // Otherwise, check the underlying type without cv-qualifiers.
+ return LHS.QT == RHS.QT;
+ }
+};
+} // namespace
+
+namespace llvm {
+template <> struct DenseMapInfo<CatchHandlerType> {
+ static CatchHandlerType getEmptyKey() {
+ return CatchHandlerType(DenseMapInfo<QualType>::getEmptyKey(),
+ CatchHandlerType::ForDenseMap);
+ }
+
+ static CatchHandlerType getTombstoneKey() {
+ return CatchHandlerType(DenseMapInfo<QualType>::getTombstoneKey(),
+ CatchHandlerType::ForDenseMap);
+ }
+
+ static unsigned getHashValue(const CatchHandlerType &Base) {
+ return DenseMapInfo<QualType>::getHashValue(Base.underlying());
+ }
+
+ static bool isEqual(const CatchHandlerType &LHS,
+ const CatchHandlerType &RHS) {
+ return LHS == RHS;
+ }
+};
+
+// It's OK to treat CatchHandlerType as a POD type.
+template <> struct isPodLike<CatchHandlerType> {
+ static const bool value = true;
+};
+}
+
+namespace {
+class CatchTypePublicBases {
+ ASTContext &Ctx;
+ const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &TypesToCheck;
+ const bool CheckAgainstPointer;
+
+ CXXCatchStmt *FoundHandler;
+ CanQualType FoundHandlerType;
+
+public:
+ CatchTypePublicBases(
+ ASTContext &Ctx,
+ const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &T, bool C)
+ : Ctx(Ctx), TypesToCheck(T), CheckAgainstPointer(C),
+ FoundHandler(nullptr) {}
+
+ CXXCatchStmt *getFoundHandler() const { return FoundHandler; }
+ CanQualType getFoundHandlerType() const { return FoundHandlerType; }
+
+ static bool FindPublicBasesOfType(const CXXBaseSpecifier *S, CXXBasePath &,
+ void *User) {
+ auto &PBOT = *reinterpret_cast<CatchTypePublicBases *>(User);
+ if (S->getAccessSpecifier() == AccessSpecifier::AS_public) {
+ CatchHandlerType Check(S->getType(), PBOT.CheckAgainstPointer);
+ auto M = PBOT.TypesToCheck;
+ auto I = M.find(Check);
+ if (I != M.end()) {
+ PBOT.FoundHandler = I->second;
+ PBOT.FoundHandlerType = PBOT.Ctx.getCanonicalType(S->getType());
+ return true;
+ }
+ }
+ return false;
+ }
+};
+}
+
+/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
+/// handlers and creates a try statement from them.
+StmtResult Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
+ ArrayRef<Stmt *> Handlers) {
+ // Don't report an error if 'try' is used in system headers.
+ if (!getLangOpts().CXXExceptions &&
+ !getSourceManager().isInSystemHeader(TryLoc))
+ Diag(TryLoc, diag::err_exceptions_disabled) << "try";
+
+ if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
+ Diag(TryLoc, diag::err_omp_simd_region_cannot_use_stmt) << "try";
+
+ sema::FunctionScopeInfo *FSI = getCurFunction();
+
+ // C++ try is incompatible with SEH __try.
+ if (!getLangOpts().Borland && FSI->FirstSEHTryLoc.isValid()) {
+ Diag(TryLoc, diag::err_mixing_cxx_try_seh_try);
+ Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'";
+ }
+
+ const unsigned NumHandlers = Handlers.size();
+ assert(!Handlers.empty() &&
+ "The parser shouldn't call this if there are no handlers.");
+
+ llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> HandledTypes;
+ for (unsigned i = 0; i < NumHandlers; ++i) {
+ CXXCatchStmt *H = cast<CXXCatchStmt>(Handlers[i]);
+
+ // Diagnose when the handler is a catch-all handler, but it isn't the last
+ // handler for the try block. [except.handle]p5. Also, skip exception
+ // declarations that are invalid, since we can't usefully report on them.
+ if (!H->getExceptionDecl()) {
+ if (i < NumHandlers - 1)
+ return StmtError(Diag(H->getLocStart(), diag::err_early_catch_all));
+ continue;
+ } else if (H->getExceptionDecl()->isInvalidDecl())
+ continue;
+
+ // Walk the type hierarchy to diagnose when this type has already been
+ // handled (duplication), or cannot be handled (derivation inversion). We
+ // ignore top-level cv-qualifiers, per [except.handle]p3
+ CatchHandlerType HandlerCHT =
+ (QualType)Context.getCanonicalType(H->getCaughtType());
+
+ // We can ignore whether the type is a reference or a pointer; we need the
+ // underlying declaration type in order to get at the underlying record
+ // decl, if there is one.
+ QualType Underlying = HandlerCHT.underlying();
+ if (auto *RD = Underlying->getAsCXXRecordDecl()) {
+ if (!RD->hasDefinition())
+ continue;
+ // Check that none of the public, unambiguous base classes are in the
+ // map ([except.handle]p1). Give the base classes the same pointer
+ // qualification as the original type we are basing off of. This allows
+ // comparison against the handler type using the same top-level pointer
+ // as the original type.
+ CXXBasePaths Paths;
+ Paths.setOrigin(RD);
+ CatchTypePublicBases CTPB(Context, HandledTypes, HandlerCHT.isPointer());
+ if (RD->lookupInBases(CatchTypePublicBases::FindPublicBasesOfType, &CTPB,
+ Paths)) {
+ const CXXCatchStmt *Problem = CTPB.getFoundHandler();
+ if (!Paths.isAmbiguous(CTPB.getFoundHandlerType())) {
+ Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
+ diag::warn_exception_caught_by_earlier_handler)
+ << H->getCaughtType();
+ Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
+ diag::note_previous_exception_handler)
+ << Problem->getCaughtType();
+ }
+ }
+ }
+
+ // Add the type the list of ones we have handled; diagnose if we've already
+ // handled it.
+ auto R = HandledTypes.insert(std::make_pair(H->getCaughtType(), H));
+ if (!R.second) {
+ const CXXCatchStmt *Problem = R.first->second;
+ Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
+ diag::warn_exception_caught_by_earlier_handler)
+ << H->getCaughtType();
+ Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
+ diag::note_previous_exception_handler)
+ << Problem->getCaughtType();
+ }
+ }
+
+ FSI->setHasCXXTry(TryLoc);
+
+ return CXXTryStmt::Create(Context, TryLoc, TryBlock, Handlers);
+}
+
+StmtResult Sema::ActOnSEHTryBlock(bool IsCXXTry, SourceLocation TryLoc,
+ Stmt *TryBlock, Stmt *Handler) {
+ assert(TryBlock && Handler);
+
+ sema::FunctionScopeInfo *FSI = getCurFunction();
+
+ // SEH __try is incompatible with C++ try. Borland appears to support this,
+ // however.
+ if (!getLangOpts().Borland) {
+ if (FSI->FirstCXXTryLoc.isValid()) {
+ Diag(TryLoc, diag::err_mixing_cxx_try_seh_try);
+ Diag(FSI->FirstCXXTryLoc, diag::note_conflicting_try_here) << "'try'";
+ }
+ }
+
+ FSI->setHasSEHTry(TryLoc);
+
+ // Reject __try in Obj-C methods, blocks, and captured decls, since we don't
+ // track if they use SEH.
+ DeclContext *DC = CurContext;
+ while (DC && !DC->isFunctionOrMethod())
+ DC = DC->getParent();
+ FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(DC);
+ if (FD)
+ FD->setUsesSEHTry(true);
+ else
+ Diag(TryLoc, diag::err_seh_try_outside_functions);
+
+ return SEHTryStmt::Create(Context, IsCXXTry, TryLoc, TryBlock, Handler);
+}
+
+StmtResult
+Sema::ActOnSEHExceptBlock(SourceLocation Loc,
+ Expr *FilterExpr,
+ Stmt *Block) {
+ assert(FilterExpr && Block);
+
+ if(!FilterExpr->getType()->isIntegerType()) {
+ return StmtError(Diag(FilterExpr->getExprLoc(),
+ diag::err_filter_expression_integral)
+ << FilterExpr->getType());
+ }
+
+ return SEHExceptStmt::Create(Context,Loc,FilterExpr,Block);
+}
+
+void Sema::ActOnStartSEHFinallyBlock() {
+ CurrentSEHFinally.push_back(CurScope);
+}
+
+void Sema::ActOnAbortSEHFinallyBlock() {
+ CurrentSEHFinally.pop_back();
+}
+
+StmtResult Sema::ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block) {
+ assert(Block);
+ CurrentSEHFinally.pop_back();
+ return SEHFinallyStmt::Create(Context, Loc, Block);
+}
+
+StmtResult
+Sema::ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope) {
+ Scope *SEHTryParent = CurScope;
+ while (SEHTryParent && !SEHTryParent->isSEHTryScope())
+ SEHTryParent = SEHTryParent->getParent();
+ if (!SEHTryParent)
+ return StmtError(Diag(Loc, diag::err_ms___leave_not_in___try));
+ CheckJumpOutOfSEHFinally(*this, Loc, *SEHTryParent);
+
+ return new (Context) SEHLeaveStmt(Loc);
+}
+
+StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
+ bool IsIfExists,
+ NestedNameSpecifierLoc QualifierLoc,
+ DeclarationNameInfo NameInfo,
+ Stmt *Nested)
+{
+ return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
+ QualifierLoc, NameInfo,
+ cast<CompoundStmt>(Nested));
+}
+
+
+StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
+ bool IsIfExists,
+ CXXScopeSpec &SS,
+ UnqualifiedId &Name,
+ Stmt *Nested) {
+ return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
+ SS.getWithLocInContext(Context),
+ GetNameFromUnqualifiedId(Name),
+ Nested);
+}
+
+RecordDecl*
+Sema::CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc,
+ unsigned NumParams) {
+ DeclContext *DC = CurContext;
+ while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
+ DC = DC->getParent();
+
+ RecordDecl *RD = nullptr;
+ if (getLangOpts().CPlusPlus)
+ RD = CXXRecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc,
+ /*Id=*/nullptr);
+ else
+ RD = RecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, /*Id=*/nullptr);
+
+ RD->setCapturedRecord();
+ DC->addDecl(RD);
+ RD->setImplicit();
+ RD->startDefinition();
+
+ assert(NumParams > 0 && "CapturedStmt requires context parameter");
+ CD = CapturedDecl::Create(Context, CurContext, NumParams);
+ DC->addDecl(CD);
+ return RD;
+}
+
+static void buildCapturedStmtCaptureList(
+ SmallVectorImpl<CapturedStmt::Capture> &Captures,
+ SmallVectorImpl<Expr *> &CaptureInits,
+ ArrayRef<CapturingScopeInfo::Capture> Candidates) {
+
+ typedef ArrayRef<CapturingScopeInfo::Capture>::const_iterator CaptureIter;
+ for (CaptureIter Cap = Candidates.begin(); Cap != Candidates.end(); ++Cap) {
+
+ if (Cap->isThisCapture()) {
+ Captures.push_back(CapturedStmt::Capture(Cap->getLocation(),
+ CapturedStmt::VCK_This));
+ CaptureInits.push_back(Cap->getInitExpr());
+ continue;
+ } else if (Cap->isVLATypeCapture()) {
+ Captures.push_back(
+ CapturedStmt::Capture(Cap->getLocation(), CapturedStmt::VCK_VLAType));
+ CaptureInits.push_back(nullptr);
+ continue;
+ }
+
+ assert(Cap->isReferenceCapture() &&
+ "non-reference capture not yet implemented");
+
+ Captures.push_back(CapturedStmt::Capture(Cap->getLocation(),
+ CapturedStmt::VCK_ByRef,
+ Cap->getVariable()));
+ CaptureInits.push_back(Cap->getInitExpr());
+ }
+}
+
+void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
+ CapturedRegionKind Kind,
+ unsigned NumParams) {
+ CapturedDecl *CD = nullptr;
+ RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams);
+
+ // Build the context parameter
+ DeclContext *DC = CapturedDecl::castToDeclContext(CD);
+ IdentifierInfo *ParamName = &Context.Idents.get("__context");
+ QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
+ ImplicitParamDecl *Param
+ = ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType);
+ DC->addDecl(Param);
+
+ CD->setContextParam(0, Param);
+
+ // Enter the capturing scope for this captured region.
+ PushCapturedRegionScope(CurScope, CD, RD, Kind);
+
+ if (CurScope)
+ PushDeclContext(CurScope, CD);
+ else
+ CurContext = CD;
+
+ PushExpressionEvaluationContext(PotentiallyEvaluated);
+}
+
+void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
+ CapturedRegionKind Kind,
+ ArrayRef<CapturedParamNameType> Params) {
+ CapturedDecl *CD = nullptr;
+ RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, Params.size());
+
+ // Build the context parameter
+ DeclContext *DC = CapturedDecl::castToDeclContext(CD);
+ bool ContextIsFound = false;
+ unsigned ParamNum = 0;
+ for (ArrayRef<CapturedParamNameType>::iterator I = Params.begin(),
+ E = Params.end();
+ I != E; ++I, ++ParamNum) {
+ if (I->second.isNull()) {
+ assert(!ContextIsFound &&
+ "null type has been found already for '__context' parameter");
+ IdentifierInfo *ParamName = &Context.Idents.get("__context");
+ QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
+ ImplicitParamDecl *Param
+ = ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType);
+ DC->addDecl(Param);
+ CD->setContextParam(ParamNum, Param);
+ ContextIsFound = true;
+ } else {
+ IdentifierInfo *ParamName = &Context.Idents.get(I->first);
+ ImplicitParamDecl *Param
+ = ImplicitParamDecl::Create(Context, DC, Loc, ParamName, I->second);
+ DC->addDecl(Param);
+ CD->setParam(ParamNum, Param);
+ }
+ }
+ assert(ContextIsFound && "no null type for '__context' parameter");
+ if (!ContextIsFound) {
+ // Add __context implicitly if it is not specified.
+ IdentifierInfo *ParamName = &Context.Idents.get("__context");
+ QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
+ ImplicitParamDecl *Param =
+ ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType);
+ DC->addDecl(Param);
+ CD->setContextParam(ParamNum, Param);
+ }
+ // Enter the capturing scope for this captured region.
+ PushCapturedRegionScope(CurScope, CD, RD, Kind);
+
+ if (CurScope)
+ PushDeclContext(CurScope, CD);
+ else
+ CurContext = CD;
+
+ PushExpressionEvaluationContext(PotentiallyEvaluated);
+}
+
+void Sema::ActOnCapturedRegionError() {
+ DiscardCleanupsInEvaluationContext();
+ PopExpressionEvaluationContext();
+
+ CapturedRegionScopeInfo *RSI = getCurCapturedRegion();
+ RecordDecl *Record = RSI->TheRecordDecl;
+ Record->setInvalidDecl();
+
+ SmallVector<Decl*, 4> Fields(Record->fields());
+ ActOnFields(/*Scope=*/nullptr, Record->getLocation(), Record, Fields,
+ SourceLocation(), SourceLocation(), /*AttributeList=*/nullptr);
+
+ PopDeclContext();
+ PopFunctionScopeInfo();
+}
+
+StmtResult Sema::ActOnCapturedRegionEnd(Stmt *S) {
+ CapturedRegionScopeInfo *RSI = getCurCapturedRegion();
+
+ SmallVector<CapturedStmt::Capture, 4> Captures;
+ SmallVector<Expr *, 4> CaptureInits;
+ buildCapturedStmtCaptureList(Captures, CaptureInits, RSI->Captures);
+
+ CapturedDecl *CD = RSI->TheCapturedDecl;
+ RecordDecl *RD = RSI->TheRecordDecl;
+
+ CapturedStmt *Res = CapturedStmt::Create(getASTContext(), S,
+ RSI->CapRegionKind, Captures,
+ CaptureInits, CD, RD);
+
+ CD->setBody(Res->getCapturedStmt());
+ RD->completeDefinition();
+
+ DiscardCleanupsInEvaluationContext();
+ PopExpressionEvaluationContext();
+
+ PopDeclContext();
+ PopFunctionScopeInfo();
+
+ return Res;
+}
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaStmtAsm.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaStmtAsm.cpp
new file mode 100644
index 0000000..9f48616
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaStmtAsm.cpp
@@ -0,0 +1,644 @@
+//===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements semantic analysis for inline asm statements.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Sema/SemaInternal.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Sema/Initialization.h"
+#include "clang/Sema/Lookup.h"
+#include "clang/Sema/Scope.h"
+#include "clang/Sema/ScopeInfo.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/MC/MCParser/MCAsmParser.h"
+using namespace clang;
+using namespace sema;
+
+/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
+/// ignore "noop" casts in places where an lvalue is required by an inline asm.
+/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
+/// provide a strong guidance to not use it.
+///
+/// This method checks to see if the argument is an acceptable l-value and
+/// returns false if it is a case we can handle.
+static bool CheckAsmLValue(const Expr *E, Sema &S) {
+ // Type dependent expressions will be checked during instantiation.
+ if (E->isTypeDependent())
+ return false;
+
+ if (E->isLValue())
+ return false; // Cool, this is an lvalue.
+
+ // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
+ // are supposed to allow.
+ const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
+ if (E != E2 && E2->isLValue()) {
+ if (!S.getLangOpts().HeinousExtensions)
+ S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
+ << E->getSourceRange();
+ else
+ S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
+ << E->getSourceRange();
+ // Accept, even if we emitted an error diagnostic.
+ return false;
+ }
+
+ // None of the above, just randomly invalid non-lvalue.
+ return true;
+}
+
+/// isOperandMentioned - Return true if the specified operand # is mentioned
+/// anywhere in the decomposed asm string.
+static bool isOperandMentioned(unsigned OpNo,
+ ArrayRef<GCCAsmStmt::AsmStringPiece> AsmStrPieces) {
+ for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
+ const GCCAsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
+ if (!Piece.isOperand()) continue;
+
+ // If this is a reference to the input and if the input was the smaller
+ // one, then we have to reject this asm.
+ if (Piece.getOperandNo() == OpNo)
+ return true;
+ }
+ return false;
+}
+
+static bool CheckNakedParmReference(Expr *E, Sema &S) {
+ FunctionDecl *Func = dyn_cast<FunctionDecl>(S.CurContext);
+ if (!Func)
+ return false;
+ if (!Func->hasAttr<NakedAttr>())
+ return false;
+
+ SmallVector<Expr*, 4> WorkList;
+ WorkList.push_back(E);
+ while (WorkList.size()) {
+ Expr *E = WorkList.pop_back_val();
+ if (isa<CXXThisExpr>(E)) {
+ S.Diag(E->getLocStart(), diag::err_asm_naked_this_ref);
+ S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
+ return true;
+ }
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
+ if (isa<ParmVarDecl>(DRE->getDecl())) {
+ S.Diag(DRE->getLocStart(), diag::err_asm_naked_parm_ref);
+ S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
+ return true;
+ }
+ }
+ for (Stmt *Child : E->children()) {
+ if (Expr *E = dyn_cast_or_null<Expr>(Child))
+ WorkList.push_back(E);
+ }
+ }
+ return false;
+}
+
+StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
+ bool IsVolatile, unsigned NumOutputs,
+ unsigned NumInputs, IdentifierInfo **Names,
+ MultiExprArg constraints, MultiExprArg Exprs,
+ Expr *asmString, MultiExprArg clobbers,
+ SourceLocation RParenLoc) {
+ unsigned NumClobbers = clobbers.size();
+ StringLiteral **Constraints =
+ reinterpret_cast<StringLiteral**>(constraints.data());
+ StringLiteral *AsmString = cast<StringLiteral>(asmString);
+ StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data());
+
+ SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
+
+ // The parser verifies that there is a string literal here.
+ assert(AsmString->isAscii());
+
+ bool ValidateConstraints =
+ DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl());
+
+ for (unsigned i = 0; i != NumOutputs; i++) {
+ StringLiteral *Literal = Constraints[i];
+ assert(Literal->isAscii());
+
+ StringRef OutputName;
+ if (Names[i])
+ OutputName = Names[i]->getName();
+
+ TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
+ if (ValidateConstraints &&
+ !Context.getTargetInfo().validateOutputConstraint(Info))
+ return StmtError(Diag(Literal->getLocStart(),
+ diag::err_asm_invalid_output_constraint)
+ << Info.getConstraintStr());
+
+ ExprResult ER = CheckPlaceholderExpr(Exprs[i]);
+ if (ER.isInvalid())
+ return StmtError();
+ Exprs[i] = ER.get();
+
+ // Check that the output exprs are valid lvalues.
+ Expr *OutputExpr = Exprs[i];
+
+ // Referring to parameters is not allowed in naked functions.
+ if (CheckNakedParmReference(OutputExpr, *this))
+ return StmtError();
+
+ OutputConstraintInfos.push_back(Info);
+
+ // If this is dependent, just continue.
+ if (OutputExpr->isTypeDependent())
+ continue;
+
+ Expr::isModifiableLvalueResult IsLV =
+ OutputExpr->isModifiableLvalue(Context, /*Loc=*/nullptr);
+ switch (IsLV) {
+ case Expr::MLV_Valid:
+ // Cool, this is an lvalue.
+ break;
+ case Expr::MLV_ArrayType:
+ // This is OK too.
+ break;
+ case Expr::MLV_LValueCast: {
+ const Expr *LVal = OutputExpr->IgnoreParenNoopCasts(Context);
+ if (!getLangOpts().HeinousExtensions) {
+ Diag(LVal->getLocStart(), diag::err_invalid_asm_cast_lvalue)
+ << OutputExpr->getSourceRange();
+ } else {
+ Diag(LVal->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
+ << OutputExpr->getSourceRange();
+ }
+ // Accept, even if we emitted an error diagnostic.
+ break;
+ }
+ case Expr::MLV_IncompleteType:
+ case Expr::MLV_IncompleteVoidType:
+ if (RequireCompleteType(OutputExpr->getLocStart(), Exprs[i]->getType(),
+ diag::err_dereference_incomplete_type))
+ return StmtError();
+ default:
+ return StmtError(Diag(OutputExpr->getLocStart(),
+ diag::err_asm_invalid_lvalue_in_output)
+ << OutputExpr->getSourceRange());
+ }
+
+ unsigned Size = Context.getTypeSize(OutputExpr->getType());
+ if (!Context.getTargetInfo().validateOutputSize(Literal->getString(),
+ Size))
+ return StmtError(Diag(OutputExpr->getLocStart(),
+ diag::err_asm_invalid_output_size)
+ << Info.getConstraintStr());
+ }
+
+ SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
+
+ for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
+ StringLiteral *Literal = Constraints[i];
+ assert(Literal->isAscii());
+
+ StringRef InputName;
+ if (Names[i])
+ InputName = Names[i]->getName();
+
+ TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
+ if (ValidateConstraints &&
+ !Context.getTargetInfo().validateInputConstraint(
+ OutputConstraintInfos.data(), NumOutputs, Info)) {
+ return StmtError(Diag(Literal->getLocStart(),
+ diag::err_asm_invalid_input_constraint)
+ << Info.getConstraintStr());
+ }
+
+ ExprResult ER = CheckPlaceholderExpr(Exprs[i]);
+ if (ER.isInvalid())
+ return StmtError();
+ Exprs[i] = ER.get();
+
+ Expr *InputExpr = Exprs[i];
+
+ // Referring to parameters is not allowed in naked functions.
+ if (CheckNakedParmReference(InputExpr, *this))
+ return StmtError();
+
+ // Only allow void types for memory constraints.
+ if (Info.allowsMemory() && !Info.allowsRegister()) {
+ if (CheckAsmLValue(InputExpr, *this))
+ return StmtError(Diag(InputExpr->getLocStart(),
+ diag::err_asm_invalid_lvalue_in_input)
+ << Info.getConstraintStr()
+ << InputExpr->getSourceRange());
+ } else if (Info.requiresImmediateConstant() && !Info.allowsRegister()) {
+ llvm::APSInt Result;
+ if (!InputExpr->EvaluateAsInt(Result, Context))
+ return StmtError(
+ Diag(InputExpr->getLocStart(), diag::err_asm_immediate_expected)
+ << Info.getConstraintStr() << InputExpr->getSourceRange());
+ if (Result.slt(Info.getImmConstantMin()) ||
+ Result.sgt(Info.getImmConstantMax()))
+ return StmtError(Diag(InputExpr->getLocStart(),
+ diag::err_invalid_asm_value_for_constraint)
+ << Result.toString(10) << Info.getConstraintStr()
+ << InputExpr->getSourceRange());
+
+ } else {
+ ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
+ if (Result.isInvalid())
+ return StmtError();
+
+ Exprs[i] = Result.get();
+ }
+
+ if (Info.allowsRegister()) {
+ if (InputExpr->getType()->isVoidType()) {
+ return StmtError(Diag(InputExpr->getLocStart(),
+ diag::err_asm_invalid_type_in_input)
+ << InputExpr->getType() << Info.getConstraintStr()
+ << InputExpr->getSourceRange());
+ }
+ }
+
+ InputConstraintInfos.push_back(Info);
+
+ const Type *Ty = Exprs[i]->getType().getTypePtr();
+ if (Ty->isDependentType())
+ continue;
+
+ if (!Ty->isVoidType() || !Info.allowsMemory())
+ if (RequireCompleteType(InputExpr->getLocStart(), Exprs[i]->getType(),
+ diag::err_dereference_incomplete_type))
+ return StmtError();
+
+ unsigned Size = Context.getTypeSize(Ty);
+ if (!Context.getTargetInfo().validateInputSize(Literal->getString(),
+ Size))
+ return StmtError(Diag(InputExpr->getLocStart(),
+ diag::err_asm_invalid_input_size)
+ << Info.getConstraintStr());
+ }
+
+ // Check that the clobbers are valid.
+ for (unsigned i = 0; i != NumClobbers; i++) {
+ StringLiteral *Literal = Clobbers[i];
+ assert(Literal->isAscii());
+
+ StringRef Clobber = Literal->getString();
+
+ if (!Context.getTargetInfo().isValidClobber(Clobber))
+ return StmtError(Diag(Literal->getLocStart(),
+ diag::err_asm_unknown_register_name) << Clobber);
+ }
+
+ GCCAsmStmt *NS =
+ new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
+ NumInputs, Names, Constraints, Exprs.data(),
+ AsmString, NumClobbers, Clobbers, RParenLoc);
+ // Validate the asm string, ensuring it makes sense given the operands we
+ // have.
+ SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces;
+ unsigned DiagOffs;
+ if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
+ Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
+ << AsmString->getSourceRange();
+ return StmtError();
+ }
+
+ // Validate constraints and modifiers.
+ for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
+ GCCAsmStmt::AsmStringPiece &Piece = Pieces[i];
+ if (!Piece.isOperand()) continue;
+
+ // Look for the correct constraint index.
+ unsigned ConstraintIdx = Piece.getOperandNo();
+ unsigned NumOperands = NS->getNumOutputs() + NS->getNumInputs();
+
+ // Look for the (ConstraintIdx - NumOperands + 1)th constraint with
+ // modifier '+'.
+ if (ConstraintIdx >= NumOperands) {
+ unsigned I = 0, E = NS->getNumOutputs();
+
+ for (unsigned Cnt = ConstraintIdx - NumOperands; I != E; ++I)
+ if (OutputConstraintInfos[I].isReadWrite() && Cnt-- == 0) {
+ ConstraintIdx = I;
+ break;
+ }
+
+ assert(I != E && "Invalid operand number should have been caught in "
+ " AnalyzeAsmString");
+ }
+
+ // Now that we have the right indexes go ahead and check.
+ StringLiteral *Literal = Constraints[ConstraintIdx];
+ const Type *Ty = Exprs[ConstraintIdx]->getType().getTypePtr();
+ if (Ty->isDependentType() || Ty->isIncompleteType())
+ continue;
+
+ unsigned Size = Context.getTypeSize(Ty);
+ std::string SuggestedModifier;
+ if (!Context.getTargetInfo().validateConstraintModifier(
+ Literal->getString(), Piece.getModifier(), Size,
+ SuggestedModifier)) {
+ Diag(Exprs[ConstraintIdx]->getLocStart(),
+ diag::warn_asm_mismatched_size_modifier);
+
+ if (!SuggestedModifier.empty()) {
+ auto B = Diag(Piece.getRange().getBegin(),
+ diag::note_asm_missing_constraint_modifier)
+ << SuggestedModifier;
+ SuggestedModifier = "%" + SuggestedModifier + Piece.getString();
+ B.AddFixItHint(FixItHint::CreateReplacement(Piece.getRange(),
+ SuggestedModifier));
+ }
+ }
+ }
+
+ // Validate tied input operands for type mismatches.
+ unsigned NumAlternatives = ~0U;
+ for (unsigned i = 0, e = OutputConstraintInfos.size(); i != e; ++i) {
+ TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
+ StringRef ConstraintStr = Info.getConstraintStr();
+ unsigned AltCount = ConstraintStr.count(',') + 1;
+ if (NumAlternatives == ~0U)
+ NumAlternatives = AltCount;
+ else if (NumAlternatives != AltCount)
+ return StmtError(Diag(NS->getOutputExpr(i)->getLocStart(),
+ diag::err_asm_unexpected_constraint_alternatives)
+ << NumAlternatives << AltCount);
+ }
+ for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
+ TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
+ StringRef ConstraintStr = Info.getConstraintStr();
+ unsigned AltCount = ConstraintStr.count(',') + 1;
+ if (NumAlternatives == ~0U)
+ NumAlternatives = AltCount;
+ else if (NumAlternatives != AltCount)
+ return StmtError(Diag(NS->getInputExpr(i)->getLocStart(),
+ diag::err_asm_unexpected_constraint_alternatives)
+ << NumAlternatives << AltCount);
+
+ // If this is a tied constraint, verify that the output and input have
+ // either exactly the same type, or that they are int/ptr operands with the
+ // same size (int/long, int*/long, are ok etc).
+ if (!Info.hasTiedOperand()) continue;
+
+ unsigned TiedTo = Info.getTiedOperand();
+ unsigned InputOpNo = i+NumOutputs;
+ Expr *OutputExpr = Exprs[TiedTo];
+ Expr *InputExpr = Exprs[InputOpNo];
+
+ if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
+ continue;
+
+ QualType InTy = InputExpr->getType();
+ QualType OutTy = OutputExpr->getType();
+ if (Context.hasSameType(InTy, OutTy))
+ continue; // All types can be tied to themselves.
+
+ // Decide if the input and output are in the same domain (integer/ptr or
+ // floating point.
+ enum AsmDomain {
+ AD_Int, AD_FP, AD_Other
+ } InputDomain, OutputDomain;
+
+ if (InTy->isIntegerType() || InTy->isPointerType())
+ InputDomain = AD_Int;
+ else if (InTy->isRealFloatingType())
+ InputDomain = AD_FP;
+ else
+ InputDomain = AD_Other;
+
+ if (OutTy->isIntegerType() || OutTy->isPointerType())
+ OutputDomain = AD_Int;
+ else if (OutTy->isRealFloatingType())
+ OutputDomain = AD_FP;
+ else
+ OutputDomain = AD_Other;
+
+ // They are ok if they are the same size and in the same domain. This
+ // allows tying things like:
+ // void* to int*
+ // void* to int if they are the same size.
+ // double to long double if they are the same size.
+ //
+ uint64_t OutSize = Context.getTypeSize(OutTy);
+ uint64_t InSize = Context.getTypeSize(InTy);
+ if (OutSize == InSize && InputDomain == OutputDomain &&
+ InputDomain != AD_Other)
+ continue;
+
+ // If the smaller input/output operand is not mentioned in the asm string,
+ // then we can promote the smaller one to a larger input and the asm string
+ // won't notice.
+ bool SmallerValueMentioned = false;
+
+ // If this is a reference to the input and if the input was the smaller
+ // one, then we have to reject this asm.
+ if (isOperandMentioned(InputOpNo, Pieces)) {
+ // This is a use in the asm string of the smaller operand. Since we
+ // codegen this by promoting to a wider value, the asm will get printed
+ // "wrong".
+ SmallerValueMentioned |= InSize < OutSize;
+ }
+ if (isOperandMentioned(TiedTo, Pieces)) {
+ // If this is a reference to the output, and if the output is the larger
+ // value, then it's ok because we'll promote the input to the larger type.
+ SmallerValueMentioned |= OutSize < InSize;
+ }
+
+ // If the smaller value wasn't mentioned in the asm string, and if the
+ // output was a register, just extend the shorter one to the size of the
+ // larger one.
+ if (!SmallerValueMentioned && InputDomain != AD_Other &&
+ OutputConstraintInfos[TiedTo].allowsRegister())
+ continue;
+
+ // Either both of the operands were mentioned or the smaller one was
+ // mentioned. One more special case that we'll allow: if the tied input is
+ // integer, unmentioned, and is a constant, then we'll allow truncating it
+ // down to the size of the destination.
+ if (InputDomain == AD_Int && OutputDomain == AD_Int &&
+ !isOperandMentioned(InputOpNo, Pieces) &&
+ InputExpr->isEvaluatable(Context)) {
+ CastKind castKind =
+ (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
+ InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).get();
+ Exprs[InputOpNo] = InputExpr;
+ NS->setInputExpr(i, InputExpr);
+ continue;
+ }
+
+ Diag(InputExpr->getLocStart(),
+ diag::err_asm_tying_incompatible_types)
+ << InTy << OutTy << OutputExpr->getSourceRange()
+ << InputExpr->getSourceRange();
+ return StmtError();
+ }
+
+ return NS;
+}
+
+ExprResult Sema::LookupInlineAsmIdentifier(CXXScopeSpec &SS,
+ SourceLocation TemplateKWLoc,
+ UnqualifiedId &Id,
+ llvm::InlineAsmIdentifierInfo &Info,
+ bool IsUnevaluatedContext) {
+ Info.clear();
+
+ if (IsUnevaluatedContext)
+ PushExpressionEvaluationContext(UnevaluatedAbstract,
+ ReuseLambdaContextDecl);
+
+ ExprResult Result = ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Id,
+ /*trailing lparen*/ false,
+ /*is & operand*/ false,
+ /*CorrectionCandidateCallback=*/nullptr,
+ /*IsInlineAsmIdentifier=*/ true);
+
+ if (IsUnevaluatedContext)
+ PopExpressionEvaluationContext();
+
+ if (!Result.isUsable()) return Result;
+
+ Result = CheckPlaceholderExpr(Result.get());
+ if (!Result.isUsable()) return Result;
+
+ // Referring to parameters is not allowed in naked functions.
+ if (CheckNakedParmReference(Result.get(), *this))
+ return ExprError();
+
+ QualType T = Result.get()->getType();
+
+ // For now, reject dependent types.
+ if (T->isDependentType()) {
+ Diag(Id.getLocStart(), diag::err_asm_incomplete_type) << T;
+ return ExprError();
+ }
+
+ // Any sort of function type is fine.
+ if (T->isFunctionType()) {
+ return Result;
+ }
+
+ // Otherwise, it needs to be a complete type.
+ if (RequireCompleteExprType(Result.get(), diag::err_asm_incomplete_type)) {
+ return ExprError();
+ }
+
+ // Compute the type size (and array length if applicable?).
+ Info.Type = Info.Size = Context.getTypeSizeInChars(T).getQuantity();
+ if (T->isArrayType()) {
+ const ArrayType *ATy = Context.getAsArrayType(T);
+ Info.Type = Context.getTypeSizeInChars(ATy->getElementType()).getQuantity();
+ Info.Length = Info.Size / Info.Type;
+ }
+
+ // We can work with the expression as long as it's not an r-value.
+ if (!Result.get()->isRValue())
+ Info.IsVarDecl = true;
+
+ return Result;
+}
+
+bool Sema::LookupInlineAsmField(StringRef Base, StringRef Member,
+ unsigned &Offset, SourceLocation AsmLoc) {
+ Offset = 0;
+ LookupResult BaseResult(*this, &Context.Idents.get(Base), SourceLocation(),
+ LookupOrdinaryName);
+
+ if (!LookupName(BaseResult, getCurScope()))
+ return true;
+
+ if (!BaseResult.isSingleResult())
+ return true;
+
+ const RecordType *RT = nullptr;
+ NamedDecl *FoundDecl = BaseResult.getFoundDecl();
+ if (VarDecl *VD = dyn_cast<VarDecl>(FoundDecl))
+ RT = VD->getType()->getAs<RecordType>();
+ else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(FoundDecl)) {
+ MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
+ RT = TD->getUnderlyingType()->getAs<RecordType>();
+ } else if (TypeDecl *TD = dyn_cast<TypeDecl>(FoundDecl))
+ RT = TD->getTypeForDecl()->getAs<RecordType>();
+ if (!RT)
+ return true;
+
+ if (RequireCompleteType(AsmLoc, QualType(RT, 0), 0))
+ return true;
+
+ LookupResult FieldResult(*this, &Context.Idents.get(Member), SourceLocation(),
+ LookupMemberName);
+
+ if (!LookupQualifiedName(FieldResult, RT->getDecl()))
+ return true;
+
+ // FIXME: Handle IndirectFieldDecl?
+ FieldDecl *FD = dyn_cast<FieldDecl>(FieldResult.getFoundDecl());
+ if (!FD)
+ return true;
+
+ const ASTRecordLayout &RL = Context.getASTRecordLayout(RT->getDecl());
+ unsigned i = FD->getFieldIndex();
+ CharUnits Result = Context.toCharUnitsFromBits(RL.getFieldOffset(i));
+ Offset = (unsigned)Result.getQuantity();
+
+ return false;
+}
+
+StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc,
+ ArrayRef<Token> AsmToks,
+ StringRef AsmString,
+ unsigned NumOutputs, unsigned NumInputs,
+ ArrayRef<StringRef> Constraints,
+ ArrayRef<StringRef> Clobbers,
+ ArrayRef<Expr*> Exprs,
+ SourceLocation EndLoc) {
+ bool IsSimple = (NumOutputs != 0 || NumInputs != 0);
+ getCurFunction()->setHasBranchProtectedScope();
+ MSAsmStmt *NS =
+ new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple,
+ /*IsVolatile*/ true, AsmToks, NumOutputs, NumInputs,
+ Constraints, Exprs, AsmString,
+ Clobbers, EndLoc);
+ return NS;
+}
+
+LabelDecl *Sema::GetOrCreateMSAsmLabel(StringRef ExternalLabelName,
+ SourceLocation Location,
+ bool AlwaysCreate) {
+ LabelDecl* Label = LookupOrCreateLabel(PP.getIdentifierInfo(ExternalLabelName),
+ Location);
+
+ if (Label->isMSAsmLabel()) {
+ // If we have previously created this label implicitly, mark it as used.
+ Label->markUsed(Context);
+ } else {
+ // Otherwise, insert it, but only resolve it if we have seen the label itself.
+ std::string InternalName;
+ llvm::raw_string_ostream OS(InternalName);
+ // Create an internal name for the label. The name should not be a valid mangled
+ // name, and should be unique. We use a dot to make the name an invalid mangled
+ // name.
+ OS << "__MSASMLABEL_." << MSAsmLabelNameCounter++ << "__" << ExternalLabelName;
+ Label->setMSAsmLabel(OS.str());
+ }
+ if (AlwaysCreate) {
+ // The label might have been created implicitly from a previously encountered
+ // goto statement. So, for both newly created and looked up labels, we mark
+ // them as resolved.
+ Label->setMSAsmLabelResolved();
+ }
+ // Adjust their location for being able to generate accurate diagnostics.
+ Label->setLocation(Location);
+
+ return Label;
+}
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaStmtAttr.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaStmtAttr.cpp
new file mode 100644
index 0000000..19e2c8e
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaStmtAttr.cpp
@@ -0,0 +1,228 @@
+//===--- SemaStmtAttr.cpp - Statement Attribute Handling ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements stmt-related attribute processing.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Sema/SemaInternal.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Sema/DelayedDiagnostic.h"
+#include "clang/Sema/Lookup.h"
+#include "clang/Sema/LoopHint.h"
+#include "clang/Sema/ScopeInfo.h"
+#include "llvm/ADT/StringExtras.h"
+
+using namespace clang;
+using namespace sema;
+
+static Attr *handleFallThroughAttr(Sema &S, Stmt *St, const AttributeList &A,
+ SourceRange Range) {
+ if (!isa<NullStmt>(St)) {
+ S.Diag(A.getRange().getBegin(), diag::err_fallthrough_attr_wrong_target)
+ << St->getLocStart();
+ if (isa<SwitchCase>(St)) {
+ SourceLocation L = S.getLocForEndOfToken(Range.getEnd());
+ S.Diag(L, diag::note_fallthrough_insert_semi_fixit)
+ << FixItHint::CreateInsertion(L, ";");
+ }
+ return nullptr;
+ }
+ if (S.getCurFunction()->SwitchStack.empty()) {
+ S.Diag(A.getRange().getBegin(), diag::err_fallthrough_attr_outside_switch);
+ return nullptr;
+ }
+ return ::new (S.Context) FallThroughAttr(A.getRange(), S.Context,
+ A.getAttributeSpellingListIndex());
+}
+
+static Attr *handleLoopHintAttr(Sema &S, Stmt *St, const AttributeList &A,
+ SourceRange) {
+ IdentifierLoc *PragmaNameLoc = A.getArgAsIdent(0);
+ IdentifierLoc *OptionLoc = A.getArgAsIdent(1);
+ IdentifierLoc *StateLoc = A.getArgAsIdent(2);
+ Expr *ValueExpr = A.getArgAsExpr(3);
+
+ bool PragmaUnroll = PragmaNameLoc->Ident->getName() == "unroll";
+ bool PragmaNoUnroll = PragmaNameLoc->Ident->getName() == "nounroll";
+ if (St->getStmtClass() != Stmt::DoStmtClass &&
+ St->getStmtClass() != Stmt::ForStmtClass &&
+ St->getStmtClass() != Stmt::CXXForRangeStmtClass &&
+ St->getStmtClass() != Stmt::WhileStmtClass) {
+ const char *Pragma =
+ llvm::StringSwitch<const char *>(PragmaNameLoc->Ident->getName())
+ .Case("unroll", "#pragma unroll")
+ .Case("nounroll", "#pragma nounroll")
+ .Default("#pragma clang loop");
+ S.Diag(St->getLocStart(), diag::err_pragma_loop_precedes_nonloop) << Pragma;
+ return nullptr;
+ }
+
+ LoopHintAttr::OptionType Option;
+ LoopHintAttr::Spelling Spelling;
+ if (PragmaUnroll) {
+ Option = ValueExpr ? LoopHintAttr::UnrollCount : LoopHintAttr::Unroll;
+ Spelling = LoopHintAttr::Pragma_unroll;
+ } else if (PragmaNoUnroll) {
+ Option = LoopHintAttr::Unroll;
+ Spelling = LoopHintAttr::Pragma_nounroll;
+ } else {
+ assert(OptionLoc && OptionLoc->Ident &&
+ "Attribute must have valid option info.");
+ IdentifierInfo *OptionInfo = OptionLoc->Ident;
+ Option = llvm::StringSwitch<LoopHintAttr::OptionType>(OptionInfo->getName())
+ .Case("vectorize", LoopHintAttr::Vectorize)
+ .Case("vectorize_width", LoopHintAttr::VectorizeWidth)
+ .Case("interleave", LoopHintAttr::Interleave)
+ .Case("interleave_count", LoopHintAttr::InterleaveCount)
+ .Case("unroll", LoopHintAttr::Unroll)
+ .Case("unroll_count", LoopHintAttr::UnrollCount)
+ .Default(LoopHintAttr::Vectorize);
+ Spelling = LoopHintAttr::Pragma_clang_loop;
+ }
+
+ LoopHintAttr::LoopHintState State = LoopHintAttr::Default;
+ if (PragmaNoUnroll) {
+ State = LoopHintAttr::Disable;
+ } else if (Option == LoopHintAttr::VectorizeWidth ||
+ Option == LoopHintAttr::InterleaveCount ||
+ Option == LoopHintAttr::UnrollCount) {
+ assert(ValueExpr && "Attribute must have a valid value expression.");
+ if (S.CheckLoopHintExpr(ValueExpr, St->getLocStart()))
+ return nullptr;
+ } else if (Option == LoopHintAttr::Vectorize ||
+ Option == LoopHintAttr::Interleave ||
+ Option == LoopHintAttr::Unroll) {
+ // Default state is assumed if StateLoc is not specified, such as with
+ // '#pragma unroll'.
+ if (StateLoc && StateLoc->Ident) {
+ if (StateLoc->Ident->isStr("disable"))
+ State = LoopHintAttr::Disable;
+ else
+ State = LoopHintAttr::Enable;
+ }
+ }
+
+ return LoopHintAttr::CreateImplicit(S.Context, Spelling, Option, State,
+ ValueExpr, A.getRange());
+}
+
+static void
+CheckForIncompatibleAttributes(Sema &S,
+ const SmallVectorImpl<const Attr *> &Attrs) {
+ // There are 3 categories of loop hints attributes: vectorize, interleave,
+ // and unroll. Each comes in two variants: a state form and a numeric form.
+ // The state form selectively defaults/enables/disables the transformation
+ // for the loop (for unroll, default indicates full unrolling rather than
+ // enabling the transformation). The numeric form form provides an integer
+ // hint (for example, unroll count) to the transformer. The following array
+ // accumulates the hints encountered while iterating through the attributes
+ // to check for compatibility.
+ struct {
+ const LoopHintAttr *StateAttr;
+ const LoopHintAttr *NumericAttr;
+ } HintAttrs[] = {{nullptr, nullptr}, {nullptr, nullptr}, {nullptr, nullptr}};
+
+ for (const auto *I : Attrs) {
+ const LoopHintAttr *LH = dyn_cast<LoopHintAttr>(I);
+
+ // Skip non loop hint attributes
+ if (!LH)
+ continue;
+
+ int Option = LH->getOption();
+ int Category;
+ enum { Vectorize, Interleave, Unroll };
+ switch (Option) {
+ case LoopHintAttr::Vectorize:
+ case LoopHintAttr::VectorizeWidth:
+ Category = Vectorize;
+ break;
+ case LoopHintAttr::Interleave:
+ case LoopHintAttr::InterleaveCount:
+ Category = Interleave;
+ break;
+ case LoopHintAttr::Unroll:
+ case LoopHintAttr::UnrollCount:
+ Category = Unroll;
+ break;
+ };
+
+ auto &CategoryState = HintAttrs[Category];
+ const LoopHintAttr *PrevAttr;
+ if (Option == LoopHintAttr::Vectorize ||
+ Option == LoopHintAttr::Interleave || Option == LoopHintAttr::Unroll) {
+ // Enable|disable hint. For example, vectorize(enable).
+ PrevAttr = CategoryState.StateAttr;
+ CategoryState.StateAttr = LH;
+ } else {
+ // Numeric hint. For example, vectorize_width(8).
+ PrevAttr = CategoryState.NumericAttr;
+ CategoryState.NumericAttr = LH;
+ }
+
+ PrintingPolicy Policy(S.Context.getLangOpts());
+ SourceLocation OptionLoc = LH->getRange().getBegin();
+ if (PrevAttr)
+ // Cannot specify same type of attribute twice.
+ S.Diag(OptionLoc, diag::err_pragma_loop_compatibility)
+ << /*Duplicate=*/true << PrevAttr->getDiagnosticName(Policy)
+ << LH->getDiagnosticName(Policy);
+
+ if (CategoryState.StateAttr && CategoryState.NumericAttr &&
+ (Category == Unroll ||
+ CategoryState.StateAttr->getState() == LoopHintAttr::Disable)) {
+ // Disable hints are not compatible with numeric hints of the same
+ // category. As a special case, numeric unroll hints are also not
+ // compatible with "enable" form of the unroll pragma, unroll(full).
+ S.Diag(OptionLoc, diag::err_pragma_loop_compatibility)
+ << /*Duplicate=*/false
+ << CategoryState.StateAttr->getDiagnosticName(Policy)
+ << CategoryState.NumericAttr->getDiagnosticName(Policy);
+ }
+ }
+}
+
+static Attr *ProcessStmtAttribute(Sema &S, Stmt *St, const AttributeList &A,
+ SourceRange Range) {
+ switch (A.getKind()) {
+ case AttributeList::UnknownAttribute:
+ S.Diag(A.getLoc(), A.isDeclspecAttribute() ?
+ diag::warn_unhandled_ms_attribute_ignored :
+ diag::warn_unknown_attribute_ignored) << A.getName();
+ return nullptr;
+ case AttributeList::AT_FallThrough:
+ return handleFallThroughAttr(S, St, A, Range);
+ case AttributeList::AT_LoopHint:
+ return handleLoopHintAttr(S, St, A, Range);
+ default:
+ // if we're here, then we parsed a known attribute, but didn't recognize
+ // it as a statement attribute => it is declaration attribute
+ S.Diag(A.getRange().getBegin(), diag::err_attribute_invalid_on_stmt)
+ << A.getName() << St->getLocStart();
+ return nullptr;
+ }
+}
+
+StmtResult Sema::ProcessStmtAttributes(Stmt *S, AttributeList *AttrList,
+ SourceRange Range) {
+ SmallVector<const Attr*, 8> Attrs;
+ for (const AttributeList* l = AttrList; l; l = l->getNext()) {
+ if (Attr *a = ProcessStmtAttribute(*this, S, *l, Range))
+ Attrs.push_back(a);
+ }
+
+ CheckForIncompatibleAttributes(*this, Attrs);
+
+ if (Attrs.empty())
+ return S;
+
+ return ActOnAttributedStmt(Range.getBegin(), Attrs, S);
+}
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaTemplate.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaTemplate.cpp
new file mode 100644
index 0000000..37eeee2
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaTemplate.cpp
@@ -0,0 +1,8371 @@
+//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//===----------------------------------------------------------------------===/
+//
+// This file implements semantic analysis for C++ templates.
+//===----------------------------------------------------------------------===/
+
+#include "TreeTransform.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclFriend.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/RecursiveASTVisitor.h"
+#include "clang/AST/TypeVisitor.h"
+#include "clang/Basic/LangOptions.h"
+#include "clang/Basic/PartialDiagnostic.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Sema/DeclSpec.h"
+#include "clang/Sema/Lookup.h"
+#include "clang/Sema/ParsedTemplate.h"
+#include "clang/Sema/Scope.h"
+#include "clang/Sema/SemaInternal.h"
+#include "clang/Sema/Template.h"
+#include "clang/Sema/TemplateDeduction.h"
+#include "llvm/ADT/SmallBitVector.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringExtras.h"
+using namespace clang;
+using namespace sema;
+
+// Exported for use by Parser.
+SourceRange
+clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
+ unsigned N) {
+ if (!N) return SourceRange();
+ return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
+}
+
+/// \brief Determine whether the declaration found is acceptable as the name
+/// of a template and, if so, return that template declaration. Otherwise,
+/// returns NULL.
+static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
+ NamedDecl *Orig,
+ bool AllowFunctionTemplates) {
+ NamedDecl *D = Orig->getUnderlyingDecl();
+
+ if (isa<TemplateDecl>(D)) {
+ if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
+ return nullptr;
+
+ return Orig;
+ }
+
+ if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
+ // C++ [temp.local]p1:
+ // Like normal (non-template) classes, class templates have an
+ // injected-class-name (Clause 9). The injected-class-name
+ // can be used with or without a template-argument-list. When
+ // it is used without a template-argument-list, it is
+ // equivalent to the injected-class-name followed by the
+ // template-parameters of the class template enclosed in
+ // <>. When it is used with a template-argument-list, it
+ // refers to the specified class template specialization,
+ // which could be the current specialization or another
+ // specialization.
+ if (Record->isInjectedClassName()) {
+ Record = cast<CXXRecordDecl>(Record->getDeclContext());
+ if (Record->getDescribedClassTemplate())
+ return Record->getDescribedClassTemplate();
+
+ if (ClassTemplateSpecializationDecl *Spec
+ = dyn_cast<ClassTemplateSpecializationDecl>(Record))
+ return Spec->getSpecializedTemplate();
+ }
+
+ return nullptr;
+ }
+
+ return nullptr;
+}
+
+void Sema::FilterAcceptableTemplateNames(LookupResult &R,
+ bool AllowFunctionTemplates) {
+ // The set of class templates we've already seen.
+ llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
+ LookupResult::Filter filter = R.makeFilter();
+ while (filter.hasNext()) {
+ NamedDecl *Orig = filter.next();
+ NamedDecl *Repl = isAcceptableTemplateName(Context, Orig,
+ AllowFunctionTemplates);
+ if (!Repl)
+ filter.erase();
+ else if (Repl != Orig) {
+
+ // C++ [temp.local]p3:
+ // A lookup that finds an injected-class-name (10.2) can result in an
+ // ambiguity in certain cases (for example, if it is found in more than
+ // one base class). If all of the injected-class-names that are found
+ // refer to specializations of the same class template, and if the name
+ // is used as a template-name, the reference refers to the class
+ // template itself and not a specialization thereof, and is not
+ // ambiguous.
+ if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
+ if (!ClassTemplates.insert(ClassTmpl).second) {
+ filter.erase();
+ continue;
+ }
+
+ // FIXME: we promote access to public here as a workaround to
+ // the fact that LookupResult doesn't let us remember that we
+ // found this template through a particular injected class name,
+ // which means we end up doing nasty things to the invariants.
+ // Pretending that access is public is *much* safer.
+ filter.replace(Repl, AS_public);
+ }
+ }
+ filter.done();
+}
+
+bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
+ bool AllowFunctionTemplates) {
+ for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
+ if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates))
+ return true;
+
+ return false;
+}
+
+TemplateNameKind Sema::isTemplateName(Scope *S,
+ CXXScopeSpec &SS,
+ bool hasTemplateKeyword,
+ UnqualifiedId &Name,
+ ParsedType ObjectTypePtr,
+ bool EnteringContext,
+ TemplateTy &TemplateResult,
+ bool &MemberOfUnknownSpecialization) {
+ assert(getLangOpts().CPlusPlus && "No template names in C!");
+
+ DeclarationName TName;
+ MemberOfUnknownSpecialization = false;
+
+ switch (Name.getKind()) {
+ case UnqualifiedId::IK_Identifier:
+ TName = DeclarationName(Name.Identifier);
+ break;
+
+ case UnqualifiedId::IK_OperatorFunctionId:
+ TName = Context.DeclarationNames.getCXXOperatorName(
+ Name.OperatorFunctionId.Operator);
+ break;
+
+ case UnqualifiedId::IK_LiteralOperatorId:
+ TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
+ break;
+
+ default:
+ return TNK_Non_template;
+ }
+
+ QualType ObjectType = ObjectTypePtr.get();
+
+ LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName);
+ LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
+ MemberOfUnknownSpecialization);
+ if (R.empty()) return TNK_Non_template;
+ if (R.isAmbiguous()) {
+ // Suppress diagnostics; we'll redo this lookup later.
+ R.suppressDiagnostics();
+
+ // FIXME: we might have ambiguous templates, in which case we
+ // should at least parse them properly!
+ return TNK_Non_template;
+ }
+
+ TemplateName Template;
+ TemplateNameKind TemplateKind;
+
+ unsigned ResultCount = R.end() - R.begin();
+ if (ResultCount > 1) {
+ // We assume that we'll preserve the qualifier from a function
+ // template name in other ways.
+ Template = Context.getOverloadedTemplateName(R.begin(), R.end());
+ TemplateKind = TNK_Function_template;
+
+ // We'll do this lookup again later.
+ R.suppressDiagnostics();
+ } else {
+ TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
+
+ if (SS.isSet() && !SS.isInvalid()) {
+ NestedNameSpecifier *Qualifier = SS.getScopeRep();
+ Template = Context.getQualifiedTemplateName(Qualifier,
+ hasTemplateKeyword, TD);
+ } else {
+ Template = TemplateName(TD);
+ }
+
+ if (isa<FunctionTemplateDecl>(TD)) {
+ TemplateKind = TNK_Function_template;
+
+ // We'll do this lookup again later.
+ R.suppressDiagnostics();
+ } else {
+ assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
+ isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD));
+ TemplateKind =
+ isa<VarTemplateDecl>(TD) ? TNK_Var_template : TNK_Type_template;
+ }
+ }
+
+ TemplateResult = TemplateTy::make(Template);
+ return TemplateKind;
+}
+
+bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
+ SourceLocation IILoc,
+ Scope *S,
+ const CXXScopeSpec *SS,
+ TemplateTy &SuggestedTemplate,
+ TemplateNameKind &SuggestedKind) {
+ // We can't recover unless there's a dependent scope specifier preceding the
+ // template name.
+ // FIXME: Typo correction?
+ if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
+ computeDeclContext(*SS))
+ return false;
+
+ // The code is missing a 'template' keyword prior to the dependent template
+ // name.
+ NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
+ Diag(IILoc, diag::err_template_kw_missing)
+ << Qualifier << II.getName()
+ << FixItHint::CreateInsertion(IILoc, "template ");
+ SuggestedTemplate
+ = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
+ SuggestedKind = TNK_Dependent_template_name;
+ return true;
+}
+
+void Sema::LookupTemplateName(LookupResult &Found,
+ Scope *S, CXXScopeSpec &SS,
+ QualType ObjectType,
+ bool EnteringContext,
+ bool &MemberOfUnknownSpecialization) {
+ // Determine where to perform name lookup
+ MemberOfUnknownSpecialization = false;
+ DeclContext *LookupCtx = nullptr;
+ bool isDependent = false;
+ if (!ObjectType.isNull()) {
+ // This nested-name-specifier occurs in a member access expression, e.g.,
+ // x->B::f, and we are looking into the type of the object.
+ assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
+ LookupCtx = computeDeclContext(ObjectType);
+ isDependent = ObjectType->isDependentType();
+ assert((isDependent || !ObjectType->isIncompleteType() ||
+ ObjectType->castAs<TagType>()->isBeingDefined()) &&
+ "Caller should have completed object type");
+
+ // Template names cannot appear inside an Objective-C class or object type.
+ if (ObjectType->isObjCObjectOrInterfaceType()) {
+ Found.clear();
+ return;
+ }
+ } else if (SS.isSet()) {
+ // This nested-name-specifier occurs after another nested-name-specifier,
+ // so long into the context associated with the prior nested-name-specifier.
+ LookupCtx = computeDeclContext(SS, EnteringContext);
+ isDependent = isDependentScopeSpecifier(SS);
+
+ // The declaration context must be complete.
+ if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
+ return;
+ }
+
+ bool ObjectTypeSearchedInScope = false;
+ bool AllowFunctionTemplatesInLookup = true;
+ if (LookupCtx) {
+ // Perform "qualified" name lookup into the declaration context we
+ // computed, which is either the type of the base of a member access
+ // expression or the declaration context associated with a prior
+ // nested-name-specifier.
+ LookupQualifiedName(Found, LookupCtx);
+ if (!ObjectType.isNull() && Found.empty()) {
+ // C++ [basic.lookup.classref]p1:
+ // In a class member access expression (5.2.5), if the . or -> token is
+ // immediately followed by an identifier followed by a <, the
+ // identifier must be looked up to determine whether the < is the
+ // beginning of a template argument list (14.2) or a less-than operator.
+ // The identifier is first looked up in the class of the object
+ // expression. If the identifier is not found, it is then looked up in
+ // the context of the entire postfix-expression and shall name a class
+ // or function template.
+ if (S) LookupName(Found, S);
+ ObjectTypeSearchedInScope = true;
+ AllowFunctionTemplatesInLookup = false;
+ }
+ } else if (isDependent && (!S || ObjectType.isNull())) {
+ // We cannot look into a dependent object type or nested nme
+ // specifier.
+ MemberOfUnknownSpecialization = true;
+ return;
+ } else {
+ // Perform unqualified name lookup in the current scope.
+ LookupName(Found, S);
+
+ if (!ObjectType.isNull())
+ AllowFunctionTemplatesInLookup = false;
+ }
+
+ if (Found.empty() && !isDependent) {
+ // If we did not find any names, attempt to correct any typos.
+ DeclarationName Name = Found.getLookupName();
+ Found.clear();
+ // Simple filter callback that, for keywords, only accepts the C++ *_cast
+ auto FilterCCC = llvm::make_unique<CorrectionCandidateCallback>();
+ FilterCCC->WantTypeSpecifiers = false;
+ FilterCCC->WantExpressionKeywords = false;
+ FilterCCC->WantRemainingKeywords = false;
+ FilterCCC->WantCXXNamedCasts = true;
+ if (TypoCorrection Corrected = CorrectTypo(
+ Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS,
+ std::move(FilterCCC), CTK_ErrorRecovery, LookupCtx)) {
+ Found.setLookupName(Corrected.getCorrection());
+ if (Corrected.getCorrectionDecl())
+ Found.addDecl(Corrected.getCorrectionDecl());
+ FilterAcceptableTemplateNames(Found);
+ if (!Found.empty()) {
+ if (LookupCtx) {
+ std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
+ bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
+ Name.getAsString() == CorrectedStr;
+ diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest)
+ << Name << LookupCtx << DroppedSpecifier
+ << SS.getRange());
+ } else {
+ diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name);
+ }
+ }
+ } else {
+ Found.setLookupName(Name);
+ }
+ }
+
+ FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
+ if (Found.empty()) {
+ if (isDependent)
+ MemberOfUnknownSpecialization = true;
+ return;
+ }
+
+ if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
+ !getLangOpts().CPlusPlus11) {
+ // C++03 [basic.lookup.classref]p1:
+ // [...] If the lookup in the class of the object expression finds a
+ // template, the name is also looked up in the context of the entire
+ // postfix-expression and [...]
+ //
+ // Note: C++11 does not perform this second lookup.
+ LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
+ LookupOrdinaryName);
+ LookupName(FoundOuter, S);
+ FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
+
+ if (FoundOuter.empty()) {
+ // - if the name is not found, the name found in the class of the
+ // object expression is used, otherwise
+ } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
+ FoundOuter.isAmbiguous()) {
+ // - if the name is found in the context of the entire
+ // postfix-expression and does not name a class template, the name
+ // found in the class of the object expression is used, otherwise
+ FoundOuter.clear();
+ } else if (!Found.isSuppressingDiagnostics()) {
+ // - if the name found is a class template, it must refer to the same
+ // entity as the one found in the class of the object expression,
+ // otherwise the program is ill-formed.
+ if (!Found.isSingleResult() ||
+ Found.getFoundDecl()->getCanonicalDecl()
+ != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
+ Diag(Found.getNameLoc(),
+ diag::ext_nested_name_member_ref_lookup_ambiguous)
+ << Found.getLookupName()
+ << ObjectType;
+ Diag(Found.getRepresentativeDecl()->getLocation(),
+ diag::note_ambig_member_ref_object_type)
+ << ObjectType;
+ Diag(FoundOuter.getFoundDecl()->getLocation(),
+ diag::note_ambig_member_ref_scope);
+
+ // Recover by taking the template that we found in the object
+ // expression's type.
+ }
+ }
+ }
+}
+
+/// ActOnDependentIdExpression - Handle a dependent id-expression that
+/// was just parsed. This is only possible with an explicit scope
+/// specifier naming a dependent type.
+ExprResult
+Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
+ SourceLocation TemplateKWLoc,
+ const DeclarationNameInfo &NameInfo,
+ bool isAddressOfOperand,
+ const TemplateArgumentListInfo *TemplateArgs) {
+ DeclContext *DC = getFunctionLevelDeclContext();
+
+ if (!isAddressOfOperand &&
+ isa<CXXMethodDecl>(DC) &&
+ cast<CXXMethodDecl>(DC)->isInstance()) {
+ QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
+
+ // Since the 'this' expression is synthesized, we don't need to
+ // perform the double-lookup check.
+ NamedDecl *FirstQualifierInScope = nullptr;
+
+ return CXXDependentScopeMemberExpr::Create(
+ Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true,
+ /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc,
+ FirstQualifierInScope, NameInfo, TemplateArgs);
+ }
+
+ return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
+}
+
+ExprResult
+Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
+ SourceLocation TemplateKWLoc,
+ const DeclarationNameInfo &NameInfo,
+ const TemplateArgumentListInfo *TemplateArgs) {
+ return DependentScopeDeclRefExpr::Create(
+ Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
+ TemplateArgs);
+}
+
+/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
+/// that the template parameter 'PrevDecl' is being shadowed by a new
+/// declaration at location Loc. Returns true to indicate that this is
+/// an error, and false otherwise.
+void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
+ assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
+
+ // Microsoft Visual C++ permits template parameters to be shadowed.
+ if (getLangOpts().MicrosoftExt)
+ return;
+
+ // C++ [temp.local]p4:
+ // A template-parameter shall not be redeclared within its
+ // scope (including nested scopes).
+ Diag(Loc, diag::err_template_param_shadow)
+ << cast<NamedDecl>(PrevDecl)->getDeclName();
+ Diag(PrevDecl->getLocation(), diag::note_template_param_here);
+ return;
+}
+
+/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
+/// the parameter D to reference the templated declaration and return a pointer
+/// to the template declaration. Otherwise, do nothing to D and return null.
+TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
+ if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
+ D = Temp->getTemplatedDecl();
+ return Temp;
+ }
+ return nullptr;
+}
+
+ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
+ SourceLocation EllipsisLoc) const {
+ assert(Kind == Template &&
+ "Only template template arguments can be pack expansions here");
+ assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
+ "Template template argument pack expansion without packs");
+ ParsedTemplateArgument Result(*this);
+ Result.EllipsisLoc = EllipsisLoc;
+ return Result;
+}
+
+static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
+ const ParsedTemplateArgument &Arg) {
+
+ switch (Arg.getKind()) {
+ case ParsedTemplateArgument::Type: {
+ TypeSourceInfo *DI;
+ QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
+ if (!DI)
+ DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
+ return TemplateArgumentLoc(TemplateArgument(T), DI);
+ }
+
+ case ParsedTemplateArgument::NonType: {
+ Expr *E = static_cast<Expr *>(Arg.getAsExpr());
+ return TemplateArgumentLoc(TemplateArgument(E), E);
+ }
+
+ case ParsedTemplateArgument::Template: {
+ TemplateName Template = Arg.getAsTemplate().get();
+ TemplateArgument TArg;
+ if (Arg.getEllipsisLoc().isValid())
+ TArg = TemplateArgument(Template, Optional<unsigned int>());
+ else
+ TArg = Template;
+ return TemplateArgumentLoc(TArg,
+ Arg.getScopeSpec().getWithLocInContext(
+ SemaRef.Context),
+ Arg.getLocation(),
+ Arg.getEllipsisLoc());
+ }
+ }
+
+ llvm_unreachable("Unhandled parsed template argument");
+}
+
+/// \brief Translates template arguments as provided by the parser
+/// into template arguments used by semantic analysis.
+void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
+ TemplateArgumentListInfo &TemplateArgs) {
+ for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
+ TemplateArgs.addArgument(translateTemplateArgument(*this,
+ TemplateArgsIn[I]));
+}
+
+static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
+ SourceLocation Loc,
+ IdentifierInfo *Name) {
+ NamedDecl *PrevDecl = SemaRef.LookupSingleName(
+ S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForRedeclaration);
+ if (PrevDecl && PrevDecl->isTemplateParameter())
+ SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
+}
+
+/// ActOnTypeParameter - Called when a C++ template type parameter
+/// (e.g., "typename T") has been parsed. Typename specifies whether
+/// the keyword "typename" was used to declare the type parameter
+/// (otherwise, "class" was used), and KeyLoc is the location of the
+/// "class" or "typename" keyword. ParamName is the name of the
+/// parameter (NULL indicates an unnamed template parameter) and
+/// ParamNameLoc is the location of the parameter name (if any).
+/// If the type parameter has a default argument, it will be added
+/// later via ActOnTypeParameterDefault.
+Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename,
+ SourceLocation EllipsisLoc,
+ SourceLocation KeyLoc,
+ IdentifierInfo *ParamName,
+ SourceLocation ParamNameLoc,
+ unsigned Depth, unsigned Position,
+ SourceLocation EqualLoc,
+ ParsedType DefaultArg) {
+ assert(S->isTemplateParamScope() &&
+ "Template type parameter not in template parameter scope!");
+ bool Invalid = false;
+
+ SourceLocation Loc = ParamNameLoc;
+ if (!ParamName)
+ Loc = KeyLoc;
+
+ bool IsParameterPack = EllipsisLoc.isValid();
+ TemplateTypeParmDecl *Param
+ = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
+ KeyLoc, Loc, Depth, Position, ParamName,
+ Typename, IsParameterPack);
+ Param->setAccess(AS_public);
+ if (Invalid)
+ Param->setInvalidDecl();
+
+ if (ParamName) {
+ maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
+
+ // Add the template parameter into the current scope.
+ S->AddDecl(Param);
+ IdResolver.AddDecl(Param);
+ }
+
+ // C++0x [temp.param]p9:
+ // A default template-argument may be specified for any kind of
+ // template-parameter that is not a template parameter pack.
+ if (DefaultArg && IsParameterPack) {
+ Diag(EqualLoc, diag::err_template_param_pack_default_arg);
+ DefaultArg = ParsedType();
+ }
+
+ // Handle the default argument, if provided.
+ if (DefaultArg) {
+ TypeSourceInfo *DefaultTInfo;
+ GetTypeFromParser(DefaultArg, &DefaultTInfo);
+
+ assert(DefaultTInfo && "expected source information for type");
+
+ // Check for unexpanded parameter packs.
+ if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
+ UPPC_DefaultArgument))
+ return Param;
+
+ // Check the template argument itself.
+ if (CheckTemplateArgument(Param, DefaultTInfo)) {
+ Param->setInvalidDecl();
+ return Param;
+ }
+
+ Param->setDefaultArgument(DefaultTInfo, false);
+ }
+
+ return Param;
+}
+
+/// \brief Check that the type of a non-type template parameter is
+/// well-formed.
+///
+/// \returns the (possibly-promoted) parameter type if valid;
+/// otherwise, produces a diagnostic and returns a NULL type.
+QualType
+Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
+ // We don't allow variably-modified types as the type of non-type template
+ // parameters.
+ if (T->isVariablyModifiedType()) {
+ Diag(Loc, diag::err_variably_modified_nontype_template_param)
+ << T;
+ return QualType();
+ }
+
+ // C++ [temp.param]p4:
+ //
+ // A non-type template-parameter shall have one of the following
+ // (optionally cv-qualified) types:
+ //
+ // -- integral or enumeration type,
+ if (T->isIntegralOrEnumerationType() ||
+ // -- pointer to object or pointer to function,
+ T->isPointerType() ||
+ // -- reference to object or reference to function,
+ T->isReferenceType() ||
+ // -- pointer to member,
+ T->isMemberPointerType() ||
+ // -- std::nullptr_t.
+ T->isNullPtrType() ||
+ // If T is a dependent type, we can't do the check now, so we
+ // assume that it is well-formed.
+ T->isDependentType()) {
+ // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
+ // are ignored when determining its type.
+ return T.getUnqualifiedType();
+ }
+
+ // C++ [temp.param]p8:
+ //
+ // A non-type template-parameter of type "array of T" or
+ // "function returning T" is adjusted to be of type "pointer to
+ // T" or "pointer to function returning T", respectively.
+ else if (T->isArrayType() || T->isFunctionType())
+ return Context.getDecayedType(T);
+
+ Diag(Loc, diag::err_template_nontype_parm_bad_type)
+ << T;
+
+ return QualType();
+}
+
+Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
+ unsigned Depth,
+ unsigned Position,
+ SourceLocation EqualLoc,
+ Expr *Default) {
+ TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
+ QualType T = TInfo->getType();
+
+ assert(S->isTemplateParamScope() &&
+ "Non-type template parameter not in template parameter scope!");
+ bool Invalid = false;
+
+ T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
+ if (T.isNull()) {
+ T = Context.IntTy; // Recover with an 'int' type.
+ Invalid = true;
+ }
+
+ IdentifierInfo *ParamName = D.getIdentifier();
+ bool IsParameterPack = D.hasEllipsis();
+ NonTypeTemplateParmDecl *Param
+ = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
+ D.getLocStart(),
+ D.getIdentifierLoc(),
+ Depth, Position, ParamName, T,
+ IsParameterPack, TInfo);
+ Param->setAccess(AS_public);
+
+ if (Invalid)
+ Param->setInvalidDecl();
+
+ if (ParamName) {
+ maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
+ ParamName);
+
+ // Add the template parameter into the current scope.
+ S->AddDecl(Param);
+ IdResolver.AddDecl(Param);
+ }
+
+ // C++0x [temp.param]p9:
+ // A default template-argument may be specified for any kind of
+ // template-parameter that is not a template parameter pack.
+ if (Default && IsParameterPack) {
+ Diag(EqualLoc, diag::err_template_param_pack_default_arg);
+ Default = nullptr;
+ }
+
+ // Check the well-formedness of the default template argument, if provided.
+ if (Default) {
+ // Check for unexpanded parameter packs.
+ if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
+ return Param;
+
+ TemplateArgument Converted;
+ ExprResult DefaultRes =
+ CheckTemplateArgument(Param, Param->getType(), Default, Converted);
+ if (DefaultRes.isInvalid()) {
+ Param->setInvalidDecl();
+ return Param;
+ }
+ Default = DefaultRes.get();
+
+ Param->setDefaultArgument(Default, false);
+ }
+
+ return Param;
+}
+
+/// ActOnTemplateTemplateParameter - Called when a C++ template template
+/// parameter (e.g. T in template <template \<typename> class T> class array)
+/// has been parsed. S is the current scope.
+Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
+ SourceLocation TmpLoc,
+ TemplateParameterList *Params,
+ SourceLocation EllipsisLoc,
+ IdentifierInfo *Name,
+ SourceLocation NameLoc,
+ unsigned Depth,
+ unsigned Position,
+ SourceLocation EqualLoc,
+ ParsedTemplateArgument Default) {
+ assert(S->isTemplateParamScope() &&
+ "Template template parameter not in template parameter scope!");
+
+ // Construct the parameter object.
+ bool IsParameterPack = EllipsisLoc.isValid();
+ TemplateTemplateParmDecl *Param =
+ TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
+ NameLoc.isInvalid()? TmpLoc : NameLoc,
+ Depth, Position, IsParameterPack,
+ Name, Params);
+ Param->setAccess(AS_public);
+
+ // If the template template parameter has a name, then link the identifier
+ // into the scope and lookup mechanisms.
+ if (Name) {
+ maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
+
+ S->AddDecl(Param);
+ IdResolver.AddDecl(Param);
+ }
+
+ if (Params->size() == 0) {
+ Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
+ << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
+ Param->setInvalidDecl();
+ }
+
+ // C++0x [temp.param]p9:
+ // A default template-argument may be specified for any kind of
+ // template-parameter that is not a template parameter pack.
+ if (IsParameterPack && !Default.isInvalid()) {
+ Diag(EqualLoc, diag::err_template_param_pack_default_arg);
+ Default = ParsedTemplateArgument();
+ }
+
+ if (!Default.isInvalid()) {
+ // Check only that we have a template template argument. We don't want to
+ // try to check well-formedness now, because our template template parameter
+ // might have dependent types in its template parameters, which we wouldn't
+ // be able to match now.
+ //
+ // If none of the template template parameter's template arguments mention
+ // other template parameters, we could actually perform more checking here.
+ // However, it isn't worth doing.
+ TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
+ if (DefaultArg.getArgument().getAsTemplate().isNull()) {
+ Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
+ << DefaultArg.getSourceRange();
+ return Param;
+ }
+
+ // Check for unexpanded parameter packs.
+ if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
+ DefaultArg.getArgument().getAsTemplate(),
+ UPPC_DefaultArgument))
+ return Param;
+
+ Param->setDefaultArgument(DefaultArg, false);
+ }
+
+ return Param;
+}
+
+/// ActOnTemplateParameterList - Builds a TemplateParameterList that
+/// contains the template parameters in Params/NumParams.
+TemplateParameterList *
+Sema::ActOnTemplateParameterList(unsigned Depth,
+ SourceLocation ExportLoc,
+ SourceLocation TemplateLoc,
+ SourceLocation LAngleLoc,
+ Decl **Params, unsigned NumParams,
+ SourceLocation RAngleLoc) {
+ if (ExportLoc.isValid())
+ Diag(ExportLoc, diag::warn_template_export_unsupported);
+
+ return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
+ (NamedDecl**)Params, NumParams,
+ RAngleLoc);
+}
+
+static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
+ if (SS.isSet())
+ T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
+}
+
+DeclResult
+Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
+ SourceLocation KWLoc, CXXScopeSpec &SS,
+ IdentifierInfo *Name, SourceLocation NameLoc,
+ AttributeList *Attr,
+ TemplateParameterList *TemplateParams,
+ AccessSpecifier AS, SourceLocation ModulePrivateLoc,
+ SourceLocation FriendLoc,
+ unsigned NumOuterTemplateParamLists,
+ TemplateParameterList** OuterTemplateParamLists,
+ SkipBodyInfo *SkipBody) {
+ assert(TemplateParams && TemplateParams->size() > 0 &&
+ "No template parameters");
+ assert(TUK != TUK_Reference && "Can only declare or define class templates");
+ bool Invalid = false;
+
+ // Check that we can declare a template here.
+ if (CheckTemplateDeclScope(S, TemplateParams))
+ return true;
+
+ TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
+ assert(Kind != TTK_Enum && "can't build template of enumerated type");
+
+ // There is no such thing as an unnamed class template.
+ if (!Name) {
+ Diag(KWLoc, diag::err_template_unnamed_class);
+ return true;
+ }
+
+ // Find any previous declaration with this name. For a friend with no
+ // scope explicitly specified, we only look for tag declarations (per
+ // C++11 [basic.lookup.elab]p2).
+ DeclContext *SemanticContext;
+ LookupResult Previous(*this, Name, NameLoc,
+ (SS.isEmpty() && TUK == TUK_Friend)
+ ? LookupTagName : LookupOrdinaryName,
+ ForRedeclaration);
+ if (SS.isNotEmpty() && !SS.isInvalid()) {
+ SemanticContext = computeDeclContext(SS, true);
+ if (!SemanticContext) {
+ // FIXME: Horrible, horrible hack! We can't currently represent this
+ // in the AST, and historically we have just ignored such friend
+ // class templates, so don't complain here.
+ Diag(NameLoc, TUK == TUK_Friend
+ ? diag::warn_template_qualified_friend_ignored
+ : diag::err_template_qualified_declarator_no_match)
+ << SS.getScopeRep() << SS.getRange();
+ return TUK != TUK_Friend;
+ }
+
+ if (RequireCompleteDeclContext(SS, SemanticContext))
+ return true;
+
+ // If we're adding a template to a dependent context, we may need to
+ // rebuilding some of the types used within the template parameter list,
+ // now that we know what the current instantiation is.
+ if (SemanticContext->isDependentContext()) {
+ ContextRAII SavedContext(*this, SemanticContext);
+ if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
+ Invalid = true;
+ } else if (TUK != TUK_Friend && TUK != TUK_Reference)
+ diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc);
+
+ LookupQualifiedName(Previous, SemanticContext);
+ } else {
+ SemanticContext = CurContext;
+ LookupName(Previous, S);
+ }
+
+ if (Previous.isAmbiguous())
+ return true;
+
+ NamedDecl *PrevDecl = nullptr;
+ if (Previous.begin() != Previous.end())
+ PrevDecl = (*Previous.begin())->getUnderlyingDecl();
+
+ // If there is a previous declaration with the same name, check
+ // whether this is a valid redeclaration.
+ ClassTemplateDecl *PrevClassTemplate
+ = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
+
+ // We may have found the injected-class-name of a class template,
+ // class template partial specialization, or class template specialization.
+ // In these cases, grab the template that is being defined or specialized.
+ if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
+ cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
+ PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
+ PrevClassTemplate
+ = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
+ if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
+ PrevClassTemplate
+ = cast<ClassTemplateSpecializationDecl>(PrevDecl)
+ ->getSpecializedTemplate();
+ }
+ }
+
+ if (TUK == TUK_Friend) {
+ // C++ [namespace.memdef]p3:
+ // [...] When looking for a prior declaration of a class or a function
+ // declared as a friend, and when the name of the friend class or
+ // function is neither a qualified name nor a template-id, scopes outside
+ // the innermost enclosing namespace scope are not considered.
+ if (!SS.isSet()) {
+ DeclContext *OutermostContext = CurContext;
+ while (!OutermostContext->isFileContext())
+ OutermostContext = OutermostContext->getLookupParent();
+
+ if (PrevDecl &&
+ (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
+ OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
+ SemanticContext = PrevDecl->getDeclContext();
+ } else {
+ // Declarations in outer scopes don't matter. However, the outermost
+ // context we computed is the semantic context for our new
+ // declaration.
+ PrevDecl = PrevClassTemplate = nullptr;
+ SemanticContext = OutermostContext;
+
+ // Check that the chosen semantic context doesn't already contain a
+ // declaration of this name as a non-tag type.
+ LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
+ ForRedeclaration);
+ DeclContext *LookupContext = SemanticContext;
+ while (LookupContext->isTransparentContext())
+ LookupContext = LookupContext->getLookupParent();
+ LookupQualifiedName(Previous, LookupContext);
+
+ if (Previous.isAmbiguous())
+ return true;
+
+ if (Previous.begin() != Previous.end())
+ PrevDecl = (*Previous.begin())->getUnderlyingDecl();
+ }
+ }
+ } else if (PrevDecl &&
+ !isDeclInScope(PrevDecl, SemanticContext, S, SS.isValid()))
+ PrevDecl = PrevClassTemplate = nullptr;
+
+ if (PrevClassTemplate) {
+ // Ensure that the template parameter lists are compatible. Skip this check
+ // for a friend in a dependent context: the template parameter list itself
+ // could be dependent.
+ if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
+ !TemplateParameterListsAreEqual(TemplateParams,
+ PrevClassTemplate->getTemplateParameters(),
+ /*Complain=*/true,
+ TPL_TemplateMatch))
+ return true;
+
+ // C++ [temp.class]p4:
+ // In a redeclaration, partial specialization, explicit
+ // specialization or explicit instantiation of a class template,
+ // the class-key shall agree in kind with the original class
+ // template declaration (7.1.5.3).
+ RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
+ if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
+ TUK == TUK_Definition, KWLoc, *Name)) {
+ Diag(KWLoc, diag::err_use_with_wrong_tag)
+ << Name
+ << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
+ Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
+ Kind = PrevRecordDecl->getTagKind();
+ }
+
+ // Check for redefinition of this class template.
+ if (TUK == TUK_Definition) {
+ if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
+ // If we have a prior definition that is not visible, treat this as
+ // simply making that previous definition visible.
+ NamedDecl *Hidden = nullptr;
+ if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
+ SkipBody->ShouldSkip = true;
+ auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate();
+ assert(Tmpl && "original definition of a class template is not a "
+ "class template?");
+ makeMergedDefinitionVisible(Hidden, KWLoc);
+ makeMergedDefinitionVisible(Tmpl, KWLoc);
+ return Def;
+ }
+
+ Diag(NameLoc, diag::err_redefinition) << Name;
+ Diag(Def->getLocation(), diag::note_previous_definition);
+ // FIXME: Would it make sense to try to "forget" the previous
+ // definition, as part of error recovery?
+ return true;
+ }
+ }
+ } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
+ // Maybe we will complain about the shadowed template parameter.
+ DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
+ // Just pretend that we didn't see the previous declaration.
+ PrevDecl = nullptr;
+ } else if (PrevDecl) {
+ // C++ [temp]p5:
+ // A class template shall not have the same name as any other
+ // template, class, function, object, enumeration, enumerator,
+ // namespace, or type in the same scope (3.3), except as specified
+ // in (14.5.4).
+ Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
+ Diag(PrevDecl->getLocation(), diag::note_previous_definition);
+ return true;
+ }
+
+ // Check the template parameter list of this declaration, possibly
+ // merging in the template parameter list from the previous class
+ // template declaration. Skip this check for a friend in a dependent
+ // context, because the template parameter list might be dependent.
+ if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
+ CheckTemplateParameterList(
+ TemplateParams,
+ PrevClassTemplate ? PrevClassTemplate->getTemplateParameters()
+ : nullptr,
+ (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
+ SemanticContext->isDependentContext())
+ ? TPC_ClassTemplateMember
+ : TUK == TUK_Friend ? TPC_FriendClassTemplate
+ : TPC_ClassTemplate))
+ Invalid = true;
+
+ if (SS.isSet()) {
+ // If the name of the template was qualified, we must be defining the
+ // template out-of-line.
+ if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
+ Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
+ : diag::err_member_decl_does_not_match)
+ << Name << SemanticContext << /*IsDefinition*/true << SS.getRange();
+ Invalid = true;
+ }
+ }
+
+ CXXRecordDecl *NewClass =
+ CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
+ PrevClassTemplate?
+ PrevClassTemplate->getTemplatedDecl() : nullptr,
+ /*DelayTypeCreation=*/true);
+ SetNestedNameSpecifier(NewClass, SS);
+ if (NumOuterTemplateParamLists > 0)
+ NewClass->setTemplateParameterListsInfo(Context,
+ NumOuterTemplateParamLists,
+ OuterTemplateParamLists);
+
+ // Add alignment attributes if necessary; these attributes are checked when
+ // the ASTContext lays out the structure.
+ if (TUK == TUK_Definition) {
+ AddAlignmentAttributesForRecord(NewClass);
+ AddMsStructLayoutForRecord(NewClass);
+ }
+
+ ClassTemplateDecl *NewTemplate
+ = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
+ DeclarationName(Name), TemplateParams,
+ NewClass, PrevClassTemplate);
+ NewClass->setDescribedClassTemplate(NewTemplate);
+
+ if (ModulePrivateLoc.isValid())
+ NewTemplate->setModulePrivate();
+
+ // Build the type for the class template declaration now.
+ QualType T = NewTemplate->getInjectedClassNameSpecialization();
+ T = Context.getInjectedClassNameType(NewClass, T);
+ assert(T->isDependentType() && "Class template type is not dependent?");
+ (void)T;
+
+ // If we are providing an explicit specialization of a member that is a
+ // class template, make a note of that.
+ if (PrevClassTemplate &&
+ PrevClassTemplate->getInstantiatedFromMemberTemplate())
+ PrevClassTemplate->setMemberSpecialization();
+
+ // Set the access specifier.
+ if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
+ SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
+
+ // Set the lexical context of these templates
+ NewClass->setLexicalDeclContext(CurContext);
+ NewTemplate->setLexicalDeclContext(CurContext);
+
+ if (TUK == TUK_Definition)
+ NewClass->startDefinition();
+
+ if (Attr)
+ ProcessDeclAttributeList(S, NewClass, Attr);
+
+ if (PrevClassTemplate)
+ mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
+
+ AddPushedVisibilityAttribute(NewClass);
+
+ if (TUK != TUK_Friend) {
+ // Per C++ [basic.scope.temp]p2, skip the template parameter scopes.
+ Scope *Outer = S;
+ while ((Outer->getFlags() & Scope::TemplateParamScope) != 0)
+ Outer = Outer->getParent();
+ PushOnScopeChains(NewTemplate, Outer);
+ } else {
+ if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
+ NewTemplate->setAccess(PrevClassTemplate->getAccess());
+ NewClass->setAccess(PrevClassTemplate->getAccess());
+ }
+
+ NewTemplate->setObjectOfFriendDecl();
+
+ // Friend templates are visible in fairly strange ways.
+ if (!CurContext->isDependentContext()) {
+ DeclContext *DC = SemanticContext->getRedeclContext();
+ DC->makeDeclVisibleInContext(NewTemplate);
+ if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
+ PushOnScopeChains(NewTemplate, EnclosingScope,
+ /* AddToContext = */ false);
+ }
+
+ FriendDecl *Friend = FriendDecl::Create(
+ Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc);
+ Friend->setAccess(AS_public);
+ CurContext->addDecl(Friend);
+ }
+
+ if (Invalid) {
+ NewTemplate->setInvalidDecl();
+ NewClass->setInvalidDecl();
+ }
+
+ ActOnDocumentableDecl(NewTemplate);
+
+ return NewTemplate;
+}
+
+/// \brief Diagnose the presence of a default template argument on a
+/// template parameter, which is ill-formed in certain contexts.
+///
+/// \returns true if the default template argument should be dropped.
+static bool DiagnoseDefaultTemplateArgument(Sema &S,
+ Sema::TemplateParamListContext TPC,
+ SourceLocation ParamLoc,
+ SourceRange DefArgRange) {
+ switch (TPC) {
+ case Sema::TPC_ClassTemplate:
+ case Sema::TPC_VarTemplate:
+ case Sema::TPC_TypeAliasTemplate:
+ return false;
+
+ case Sema::TPC_FunctionTemplate:
+ case Sema::TPC_FriendFunctionTemplateDefinition:
+ // C++ [temp.param]p9:
+ // A default template-argument shall not be specified in a
+ // function template declaration or a function template
+ // definition [...]
+ // If a friend function template declaration specifies a default
+ // template-argument, that declaration shall be a definition and shall be
+ // the only declaration of the function template in the translation unit.
+ // (C++98/03 doesn't have this wording; see DR226).
+ S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
+ diag::warn_cxx98_compat_template_parameter_default_in_function_template
+ : diag::ext_template_parameter_default_in_function_template)
+ << DefArgRange;
+ return false;
+
+ case Sema::TPC_ClassTemplateMember:
+ // C++0x [temp.param]p9:
+ // A default template-argument shall not be specified in the
+ // template-parameter-lists of the definition of a member of a
+ // class template that appears outside of the member's class.
+ S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
+ << DefArgRange;
+ return true;
+
+ case Sema::TPC_FriendClassTemplate:
+ case Sema::TPC_FriendFunctionTemplate:
+ // C++ [temp.param]p9:
+ // A default template-argument shall not be specified in a
+ // friend template declaration.
+ S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
+ << DefArgRange;
+ return true;
+
+ // FIXME: C++0x [temp.param]p9 allows default template-arguments
+ // for friend function templates if there is only a single
+ // declaration (and it is a definition). Strange!
+ }
+
+ llvm_unreachable("Invalid TemplateParamListContext!");
+}
+
+/// \brief Check for unexpanded parameter packs within the template parameters
+/// of a template template parameter, recursively.
+static bool DiagnoseUnexpandedParameterPacks(Sema &S,
+ TemplateTemplateParmDecl *TTP) {
+ // A template template parameter which is a parameter pack is also a pack
+ // expansion.
+ if (TTP->isParameterPack())
+ return false;
+
+ TemplateParameterList *Params = TTP->getTemplateParameters();
+ for (unsigned I = 0, N = Params->size(); I != N; ++I) {
+ NamedDecl *P = Params->getParam(I);
+ if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
+ if (!NTTP->isParameterPack() &&
+ S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
+ NTTP->getTypeSourceInfo(),
+ Sema::UPPC_NonTypeTemplateParameterType))
+ return true;
+
+ continue;
+ }
+
+ if (TemplateTemplateParmDecl *InnerTTP
+ = dyn_cast<TemplateTemplateParmDecl>(P))
+ if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
+ return true;
+ }
+
+ return false;
+}
+
+/// \brief Checks the validity of a template parameter list, possibly
+/// considering the template parameter list from a previous
+/// declaration.
+///
+/// If an "old" template parameter list is provided, it must be
+/// equivalent (per TemplateParameterListsAreEqual) to the "new"
+/// template parameter list.
+///
+/// \param NewParams Template parameter list for a new template
+/// declaration. This template parameter list will be updated with any
+/// default arguments that are carried through from the previous
+/// template parameter list.
+///
+/// \param OldParams If provided, template parameter list from a
+/// previous declaration of the same template. Default template
+/// arguments will be merged from the old template parameter list to
+/// the new template parameter list.
+///
+/// \param TPC Describes the context in which we are checking the given
+/// template parameter list.
+///
+/// \returns true if an error occurred, false otherwise.
+bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
+ TemplateParameterList *OldParams,
+ TemplateParamListContext TPC) {
+ bool Invalid = false;
+
+ // C++ [temp.param]p10:
+ // The set of default template-arguments available for use with a
+ // template declaration or definition is obtained by merging the
+ // default arguments from the definition (if in scope) and all
+ // declarations in scope in the same way default function
+ // arguments are (8.3.6).
+ bool SawDefaultArgument = false;
+ SourceLocation PreviousDefaultArgLoc;
+
+ // Dummy initialization to avoid warnings.
+ TemplateParameterList::iterator OldParam = NewParams->end();
+ if (OldParams)
+ OldParam = OldParams->begin();
+
+ bool RemoveDefaultArguments = false;
+ for (TemplateParameterList::iterator NewParam = NewParams->begin(),
+ NewParamEnd = NewParams->end();
+ NewParam != NewParamEnd; ++NewParam) {
+ // Variables used to diagnose redundant default arguments
+ bool RedundantDefaultArg = false;
+ SourceLocation OldDefaultLoc;
+ SourceLocation NewDefaultLoc;
+
+ // Variable used to diagnose missing default arguments
+ bool MissingDefaultArg = false;
+
+ // Variable used to diagnose non-final parameter packs
+ bool SawParameterPack = false;
+
+ if (TemplateTypeParmDecl *NewTypeParm
+ = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
+ // Check the presence of a default argument here.
+ if (NewTypeParm->hasDefaultArgument() &&
+ DiagnoseDefaultTemplateArgument(*this, TPC,
+ NewTypeParm->getLocation(),
+ NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
+ .getSourceRange()))
+ NewTypeParm->removeDefaultArgument();
+
+ // Merge default arguments for template type parameters.
+ TemplateTypeParmDecl *OldTypeParm
+ = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr;
+ // FIXME: There might be a visible declaration of this template parameter.
+ if (OldTypeParm && !LookupResult::isVisible(*this, OldTypeParm))
+ OldTypeParm = nullptr;
+
+ if (NewTypeParm->isParameterPack()) {
+ assert(!NewTypeParm->hasDefaultArgument() &&
+ "Parameter packs can't have a default argument!");
+ SawParameterPack = true;
+ } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
+ NewTypeParm->hasDefaultArgument()) {
+ OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
+ NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
+ SawDefaultArgument = true;
+ RedundantDefaultArg = true;
+ PreviousDefaultArgLoc = NewDefaultLoc;
+ } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
+ // Merge the default argument from the old declaration to the
+ // new declaration.
+ NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
+ true);
+ PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
+ } else if (NewTypeParm->hasDefaultArgument()) {
+ SawDefaultArgument = true;
+ PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
+ } else if (SawDefaultArgument)
+ MissingDefaultArg = true;
+ } else if (NonTypeTemplateParmDecl *NewNonTypeParm
+ = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
+ // Check for unexpanded parameter packs.
+ if (!NewNonTypeParm->isParameterPack() &&
+ DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
+ NewNonTypeParm->getTypeSourceInfo(),
+ UPPC_NonTypeTemplateParameterType)) {
+ Invalid = true;
+ continue;
+ }
+
+ // Check the presence of a default argument here.
+ if (NewNonTypeParm->hasDefaultArgument() &&
+ DiagnoseDefaultTemplateArgument(*this, TPC,
+ NewNonTypeParm->getLocation(),
+ NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
+ NewNonTypeParm->removeDefaultArgument();
+ }
+
+ // Merge default arguments for non-type template parameters
+ NonTypeTemplateParmDecl *OldNonTypeParm
+ = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr;
+ if (OldNonTypeParm && !LookupResult::isVisible(*this, OldNonTypeParm))
+ OldNonTypeParm = nullptr;
+ if (NewNonTypeParm->isParameterPack()) {
+ assert(!NewNonTypeParm->hasDefaultArgument() &&
+ "Parameter packs can't have a default argument!");
+ if (!NewNonTypeParm->isPackExpansion())
+ SawParameterPack = true;
+ } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
+ NewNonTypeParm->hasDefaultArgument()) {
+ OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
+ NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
+ SawDefaultArgument = true;
+ RedundantDefaultArg = true;
+ PreviousDefaultArgLoc = NewDefaultLoc;
+ } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
+ // Merge the default argument from the old declaration to the
+ // new declaration.
+ // FIXME: We need to create a new kind of "default argument"
+ // expression that points to a previous non-type template
+ // parameter.
+ NewNonTypeParm->setDefaultArgument(
+ OldNonTypeParm->getDefaultArgument(),
+ /*Inherited=*/ true);
+ PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
+ } else if (NewNonTypeParm->hasDefaultArgument()) {
+ SawDefaultArgument = true;
+ PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
+ } else if (SawDefaultArgument)
+ MissingDefaultArg = true;
+ } else {
+ TemplateTemplateParmDecl *NewTemplateParm
+ = cast<TemplateTemplateParmDecl>(*NewParam);
+
+ // Check for unexpanded parameter packs, recursively.
+ if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
+ Invalid = true;
+ continue;
+ }
+
+ // Check the presence of a default argument here.
+ if (NewTemplateParm->hasDefaultArgument() &&
+ DiagnoseDefaultTemplateArgument(*this, TPC,
+ NewTemplateParm->getLocation(),
+ NewTemplateParm->getDefaultArgument().getSourceRange()))
+ NewTemplateParm->removeDefaultArgument();
+
+ // Merge default arguments for template template parameters
+ TemplateTemplateParmDecl *OldTemplateParm
+ = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr;
+ if (OldTemplateParm && !LookupResult::isVisible(*this, OldTemplateParm))
+ OldTemplateParm = nullptr;
+ if (NewTemplateParm->isParameterPack()) {
+ assert(!NewTemplateParm->hasDefaultArgument() &&
+ "Parameter packs can't have a default argument!");
+ if (!NewTemplateParm->isPackExpansion())
+ SawParameterPack = true;
+ } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
+ NewTemplateParm->hasDefaultArgument()) {
+ OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
+ NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
+ SawDefaultArgument = true;
+ RedundantDefaultArg = true;
+ PreviousDefaultArgLoc = NewDefaultLoc;
+ } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
+ // Merge the default argument from the old declaration to the
+ // new declaration.
+ // FIXME: We need to create a new kind of "default argument" expression
+ // that points to a previous template template parameter.
+ NewTemplateParm->setDefaultArgument(
+ OldTemplateParm->getDefaultArgument(),
+ /*Inherited=*/ true);
+ PreviousDefaultArgLoc
+ = OldTemplateParm->getDefaultArgument().getLocation();
+ } else if (NewTemplateParm->hasDefaultArgument()) {
+ SawDefaultArgument = true;
+ PreviousDefaultArgLoc
+ = NewTemplateParm->getDefaultArgument().getLocation();
+ } else if (SawDefaultArgument)
+ MissingDefaultArg = true;
+ }
+
+ // C++11 [temp.param]p11:
+ // If a template parameter of a primary class template or alias template
+ // is a template parameter pack, it shall be the last template parameter.
+ if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
+ (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
+ TPC == TPC_TypeAliasTemplate)) {
+ Diag((*NewParam)->getLocation(),
+ diag::err_template_param_pack_must_be_last_template_parameter);
+ Invalid = true;
+ }
+
+ if (RedundantDefaultArg) {
+ // C++ [temp.param]p12:
+ // A template-parameter shall not be given default arguments
+ // by two different declarations in the same scope.
+ Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
+ Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
+ Invalid = true;
+ } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
+ // C++ [temp.param]p11:
+ // If a template-parameter of a class template has a default
+ // template-argument, each subsequent template-parameter shall either
+ // have a default template-argument supplied or be a template parameter
+ // pack.
+ Diag((*NewParam)->getLocation(),
+ diag::err_template_param_default_arg_missing);
+ Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
+ Invalid = true;
+ RemoveDefaultArguments = true;
+ }
+
+ // If we have an old template parameter list that we're merging
+ // in, move on to the next parameter.
+ if (OldParams)
+ ++OldParam;
+ }
+
+ // We were missing some default arguments at the end of the list, so remove
+ // all of the default arguments.
+ if (RemoveDefaultArguments) {
+ for (TemplateParameterList::iterator NewParam = NewParams->begin(),
+ NewParamEnd = NewParams->end();
+ NewParam != NewParamEnd; ++NewParam) {
+ if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
+ TTP->removeDefaultArgument();
+ else if (NonTypeTemplateParmDecl *NTTP
+ = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
+ NTTP->removeDefaultArgument();
+ else
+ cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
+ }
+ }
+
+ return Invalid;
+}
+
+namespace {
+
+/// A class which looks for a use of a certain level of template
+/// parameter.
+struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
+ typedef RecursiveASTVisitor<DependencyChecker> super;
+
+ unsigned Depth;
+ bool Match;
+ SourceLocation MatchLoc;
+
+ DependencyChecker(unsigned Depth) : Depth(Depth), Match(false) {}
+
+ DependencyChecker(TemplateParameterList *Params) : Match(false) {
+ NamedDecl *ND = Params->getParam(0);
+ if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
+ Depth = PD->getDepth();
+ } else if (NonTypeTemplateParmDecl *PD =
+ dyn_cast<NonTypeTemplateParmDecl>(ND)) {
+ Depth = PD->getDepth();
+ } else {
+ Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
+ }
+ }
+
+ bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) {
+ if (ParmDepth >= Depth) {
+ Match = true;
+ MatchLoc = Loc;
+ return true;
+ }
+ return false;
+ }
+
+ bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
+ return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc());
+ }
+
+ bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
+ return !Matches(T->getDepth());
+ }
+
+ bool TraverseTemplateName(TemplateName N) {
+ if (TemplateTemplateParmDecl *PD =
+ dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
+ if (Matches(PD->getDepth()))
+ return false;
+ return super::TraverseTemplateName(N);
+ }
+
+ bool VisitDeclRefExpr(DeclRefExpr *E) {
+ if (NonTypeTemplateParmDecl *PD =
+ dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
+ if (Matches(PD->getDepth(), E->getExprLoc()))
+ return false;
+ return super::VisitDeclRefExpr(E);
+ }
+
+ bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
+ return TraverseType(T->getReplacementType());
+ }
+
+ bool
+ VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) {
+ return TraverseTemplateArgument(T->getArgumentPack());
+ }
+
+ bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
+ return TraverseType(T->getInjectedSpecializationType());
+ }
+};
+}
+
+/// Determines whether a given type depends on the given parameter
+/// list.
+static bool
+DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
+ DependencyChecker Checker(Params);
+ Checker.TraverseType(T);
+ return Checker.Match;
+}
+
+// Find the source range corresponding to the named type in the given
+// nested-name-specifier, if any.
+static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
+ QualType T,
+ const CXXScopeSpec &SS) {
+ NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
+ while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
+ if (const Type *CurType = NNS->getAsType()) {
+ if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
+ return NNSLoc.getTypeLoc().getSourceRange();
+ } else
+ break;
+
+ NNSLoc = NNSLoc.getPrefix();
+ }
+
+ return SourceRange();
+}
+
+/// \brief Match the given template parameter lists to the given scope
+/// specifier, returning the template parameter list that applies to the
+/// name.
+///
+/// \param DeclStartLoc the start of the declaration that has a scope
+/// specifier or a template parameter list.
+///
+/// \param DeclLoc The location of the declaration itself.
+///
+/// \param SS the scope specifier that will be matched to the given template
+/// parameter lists. This scope specifier precedes a qualified name that is
+/// being declared.
+///
+/// \param TemplateId The template-id following the scope specifier, if there
+/// is one. Used to check for a missing 'template<>'.
+///
+/// \param ParamLists the template parameter lists, from the outermost to the
+/// innermost template parameter lists.
+///
+/// \param IsFriend Whether to apply the slightly different rules for
+/// matching template parameters to scope specifiers in friend
+/// declarations.
+///
+/// \param IsExplicitSpecialization will be set true if the entity being
+/// declared is an explicit specialization, false otherwise.
+///
+/// \returns the template parameter list, if any, that corresponds to the
+/// name that is preceded by the scope specifier @p SS. This template
+/// parameter list may have template parameters (if we're declaring a
+/// template) or may have no template parameters (if we're declaring a
+/// template specialization), or may be NULL (if what we're declaring isn't
+/// itself a template).
+TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
+ SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
+ TemplateIdAnnotation *TemplateId,
+ ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
+ bool &IsExplicitSpecialization, bool &Invalid) {
+ IsExplicitSpecialization = false;
+ Invalid = false;
+
+ // The sequence of nested types to which we will match up the template
+ // parameter lists. We first build this list by starting with the type named
+ // by the nested-name-specifier and walking out until we run out of types.
+ SmallVector<QualType, 4> NestedTypes;
+ QualType T;
+ if (SS.getScopeRep()) {
+ if (CXXRecordDecl *Record
+ = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
+ T = Context.getTypeDeclType(Record);
+ else
+ T = QualType(SS.getScopeRep()->getAsType(), 0);
+ }
+
+ // If we found an explicit specialization that prevents us from needing
+ // 'template<>' headers, this will be set to the location of that
+ // explicit specialization.
+ SourceLocation ExplicitSpecLoc;
+
+ while (!T.isNull()) {
+ NestedTypes.push_back(T);
+
+ // Retrieve the parent of a record type.
+ if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
+ // If this type is an explicit specialization, we're done.
+ if (ClassTemplateSpecializationDecl *Spec
+ = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
+ if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
+ Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
+ ExplicitSpecLoc = Spec->getLocation();
+ break;
+ }
+ } else if (Record->getTemplateSpecializationKind()
+ == TSK_ExplicitSpecialization) {
+ ExplicitSpecLoc = Record->getLocation();
+ break;
+ }
+
+ if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
+ T = Context.getTypeDeclType(Parent);
+ else
+ T = QualType();
+ continue;
+ }
+
+ if (const TemplateSpecializationType *TST
+ = T->getAs<TemplateSpecializationType>()) {
+ if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
+ if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
+ T = Context.getTypeDeclType(Parent);
+ else
+ T = QualType();
+ continue;
+ }
+ }
+
+ // Look one step prior in a dependent template specialization type.
+ if (const DependentTemplateSpecializationType *DependentTST
+ = T->getAs<DependentTemplateSpecializationType>()) {
+ if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
+ T = QualType(NNS->getAsType(), 0);
+ else
+ T = QualType();
+ continue;
+ }
+
+ // Look one step prior in a dependent name type.
+ if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
+ if (NestedNameSpecifier *NNS = DependentName->getQualifier())
+ T = QualType(NNS->getAsType(), 0);
+ else
+ T = QualType();
+ continue;
+ }
+
+ // Retrieve the parent of an enumeration type.
+ if (const EnumType *EnumT = T->getAs<EnumType>()) {
+ // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
+ // check here.
+ EnumDecl *Enum = EnumT->getDecl();
+
+ // Get to the parent type.
+ if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
+ T = Context.getTypeDeclType(Parent);
+ else
+ T = QualType();
+ continue;
+ }
+
+ T = QualType();
+ }
+ // Reverse the nested types list, since we want to traverse from the outermost
+ // to the innermost while checking template-parameter-lists.
+ std::reverse(NestedTypes.begin(), NestedTypes.end());
+
+ // C++0x [temp.expl.spec]p17:
+ // A member or a member template may be nested within many
+ // enclosing class templates. In an explicit specialization for
+ // such a member, the member declaration shall be preceded by a
+ // template<> for each enclosing class template that is
+ // explicitly specialized.
+ bool SawNonEmptyTemplateParameterList = false;
+
+ auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) {
+ if (SawNonEmptyTemplateParameterList) {
+ Diag(DeclLoc, diag::err_specialize_member_of_template)
+ << !Recovery << Range;
+ Invalid = true;
+ IsExplicitSpecialization = false;
+ return true;
+ }
+
+ return false;
+ };
+
+ auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) {
+ // Check that we can have an explicit specialization here.
+ if (CheckExplicitSpecialization(Range, true))
+ return true;
+
+ // We don't have a template header, but we should.
+ SourceLocation ExpectedTemplateLoc;
+ if (!ParamLists.empty())
+ ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
+ else
+ ExpectedTemplateLoc = DeclStartLoc;
+
+ Diag(DeclLoc, diag::err_template_spec_needs_header)
+ << Range
+ << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
+ return false;
+ };
+
+ unsigned ParamIdx = 0;
+ for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
+ ++TypeIdx) {
+ T = NestedTypes[TypeIdx];
+
+ // Whether we expect a 'template<>' header.
+ bool NeedEmptyTemplateHeader = false;
+
+ // Whether we expect a template header with parameters.
+ bool NeedNonemptyTemplateHeader = false;
+
+ // For a dependent type, the set of template parameters that we
+ // expect to see.
+ TemplateParameterList *ExpectedTemplateParams = nullptr;
+
+ // C++0x [temp.expl.spec]p15:
+ // A member or a member template may be nested within many enclosing
+ // class templates. In an explicit specialization for such a member, the
+ // member declaration shall be preceded by a template<> for each
+ // enclosing class template that is explicitly specialized.
+ if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
+ if (ClassTemplatePartialSpecializationDecl *Partial
+ = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
+ ExpectedTemplateParams = Partial->getTemplateParameters();
+ NeedNonemptyTemplateHeader = true;
+ } else if (Record->isDependentType()) {
+ if (Record->getDescribedClassTemplate()) {
+ ExpectedTemplateParams = Record->getDescribedClassTemplate()
+ ->getTemplateParameters();
+ NeedNonemptyTemplateHeader = true;
+ }
+ } else if (ClassTemplateSpecializationDecl *Spec
+ = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
+ // C++0x [temp.expl.spec]p4:
+ // Members of an explicitly specialized class template are defined
+ // in the same manner as members of normal classes, and not using
+ // the template<> syntax.
+ if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
+ NeedEmptyTemplateHeader = true;
+ else
+ continue;
+ } else if (Record->getTemplateSpecializationKind()) {
+ if (Record->getTemplateSpecializationKind()
+ != TSK_ExplicitSpecialization &&
+ TypeIdx == NumTypes - 1)
+ IsExplicitSpecialization = true;
+
+ continue;
+ }
+ } else if (const TemplateSpecializationType *TST
+ = T->getAs<TemplateSpecializationType>()) {
+ if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
+ ExpectedTemplateParams = Template->getTemplateParameters();
+ NeedNonemptyTemplateHeader = true;
+ }
+ } else if (T->getAs<DependentTemplateSpecializationType>()) {
+ // FIXME: We actually could/should check the template arguments here
+ // against the corresponding template parameter list.
+ NeedNonemptyTemplateHeader = false;
+ }
+
+ // C++ [temp.expl.spec]p16:
+ // In an explicit specialization declaration for a member of a class
+ // template or a member template that ap- pears in namespace scope, the
+ // member template and some of its enclosing class templates may remain
+ // unspecialized, except that the declaration shall not explicitly
+ // specialize a class member template if its en- closing class templates
+ // are not explicitly specialized as well.
+ if (ParamIdx < ParamLists.size()) {
+ if (ParamLists[ParamIdx]->size() == 0) {
+ if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
+ false))
+ return nullptr;
+ } else
+ SawNonEmptyTemplateParameterList = true;
+ }
+
+ if (NeedEmptyTemplateHeader) {
+ // If we're on the last of the types, and we need a 'template<>' header
+ // here, then it's an explicit specialization.
+ if (TypeIdx == NumTypes - 1)
+ IsExplicitSpecialization = true;
+
+ if (ParamIdx < ParamLists.size()) {
+ if (ParamLists[ParamIdx]->size() > 0) {
+ // The header has template parameters when it shouldn't. Complain.
+ Diag(ParamLists[ParamIdx]->getTemplateLoc(),
+ diag::err_template_param_list_matches_nontemplate)
+ << T
+ << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
+ ParamLists[ParamIdx]->getRAngleLoc())
+ << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
+ Invalid = true;
+ return nullptr;
+ }
+
+ // Consume this template header.
+ ++ParamIdx;
+ continue;
+ }
+
+ if (!IsFriend)
+ if (DiagnoseMissingExplicitSpecialization(
+ getRangeOfTypeInNestedNameSpecifier(Context, T, SS)))
+ return nullptr;
+
+ continue;
+ }
+
+ if (NeedNonemptyTemplateHeader) {
+ // In friend declarations we can have template-ids which don't
+ // depend on the corresponding template parameter lists. But
+ // assume that empty parameter lists are supposed to match this
+ // template-id.
+ if (IsFriend && T->isDependentType()) {
+ if (ParamIdx < ParamLists.size() &&
+ DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
+ ExpectedTemplateParams = nullptr;
+ else
+ continue;
+ }
+
+ if (ParamIdx < ParamLists.size()) {
+ // Check the template parameter list, if we can.
+ if (ExpectedTemplateParams &&
+ !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
+ ExpectedTemplateParams,
+ true, TPL_TemplateMatch))
+ Invalid = true;
+
+ if (!Invalid &&
+ CheckTemplateParameterList(ParamLists[ParamIdx], nullptr,
+ TPC_ClassTemplateMember))
+ Invalid = true;
+
+ ++ParamIdx;
+ continue;
+ }
+
+ Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
+ << T
+ << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
+ Invalid = true;
+ continue;
+ }
+ }
+
+ // If there were at least as many template-ids as there were template
+ // parameter lists, then there are no template parameter lists remaining for
+ // the declaration itself.
+ if (ParamIdx >= ParamLists.size()) {
+ if (TemplateId && !IsFriend) {
+ // We don't have a template header for the declaration itself, but we
+ // should.
+ IsExplicitSpecialization = true;
+ DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc,
+ TemplateId->RAngleLoc));
+
+ // Fabricate an empty template parameter list for the invented header.
+ return TemplateParameterList::Create(Context, SourceLocation(),
+ SourceLocation(), nullptr, 0,
+ SourceLocation());
+ }
+
+ return nullptr;
+ }
+
+ // If there were too many template parameter lists, complain about that now.
+ if (ParamIdx < ParamLists.size() - 1) {
+ bool HasAnyExplicitSpecHeader = false;
+ bool AllExplicitSpecHeaders = true;
+ for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
+ if (ParamLists[I]->size() == 0)
+ HasAnyExplicitSpecHeader = true;
+ else
+ AllExplicitSpecHeaders = false;
+ }
+
+ Diag(ParamLists[ParamIdx]->getTemplateLoc(),
+ AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
+ : diag::err_template_spec_extra_headers)
+ << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
+ ParamLists[ParamLists.size() - 2]->getRAngleLoc());
+
+ // If there was a specialization somewhere, such that 'template<>' is
+ // not required, and there were any 'template<>' headers, note where the
+ // specialization occurred.
+ if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
+ Diag(ExplicitSpecLoc,
+ diag::note_explicit_template_spec_does_not_need_header)
+ << NestedTypes.back();
+
+ // We have a template parameter list with no corresponding scope, which
+ // means that the resulting template declaration can't be instantiated
+ // properly (we'll end up with dependent nodes when we shouldn't).
+ if (!AllExplicitSpecHeaders)
+ Invalid = true;
+ }
+
+ // C++ [temp.expl.spec]p16:
+ // In an explicit specialization declaration for a member of a class
+ // template or a member template that ap- pears in namespace scope, the
+ // member template and some of its enclosing class templates may remain
+ // unspecialized, except that the declaration shall not explicitly
+ // specialize a class member template if its en- closing class templates
+ // are not explicitly specialized as well.
+ if (ParamLists.back()->size() == 0 &&
+ CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
+ false))
+ return nullptr;
+
+ // Return the last template parameter list, which corresponds to the
+ // entity being declared.
+ return ParamLists.back();
+}
+
+void Sema::NoteAllFoundTemplates(TemplateName Name) {
+ if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
+ Diag(Template->getLocation(), diag::note_template_declared_here)
+ << (isa<FunctionTemplateDecl>(Template)
+ ? 0
+ : isa<ClassTemplateDecl>(Template)
+ ? 1
+ : isa<VarTemplateDecl>(Template)
+ ? 2
+ : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
+ << Template->getDeclName();
+ return;
+ }
+
+ if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
+ for (OverloadedTemplateStorage::iterator I = OST->begin(),
+ IEnd = OST->end();
+ I != IEnd; ++I)
+ Diag((*I)->getLocation(), diag::note_template_declared_here)
+ << 0 << (*I)->getDeclName();
+
+ return;
+ }
+}
+
+QualType Sema::CheckTemplateIdType(TemplateName Name,
+ SourceLocation TemplateLoc,
+ TemplateArgumentListInfo &TemplateArgs) {
+ DependentTemplateName *DTN
+ = Name.getUnderlying().getAsDependentTemplateName();
+ if (DTN && DTN->isIdentifier())
+ // When building a template-id where the template-name is dependent,
+ // assume the template is a type template. Either our assumption is
+ // correct, or the code is ill-formed and will be diagnosed when the
+ // dependent name is substituted.
+ return Context.getDependentTemplateSpecializationType(ETK_None,
+ DTN->getQualifier(),
+ DTN->getIdentifier(),
+ TemplateArgs);
+
+ TemplateDecl *Template = Name.getAsTemplateDecl();
+ if (!Template || isa<FunctionTemplateDecl>(Template) ||
+ isa<VarTemplateDecl>(Template)) {
+ // We might have a substituted template template parameter pack. If so,
+ // build a template specialization type for it.
+ if (Name.getAsSubstTemplateTemplateParmPack())
+ return Context.getTemplateSpecializationType(Name, TemplateArgs);
+
+ Diag(TemplateLoc, diag::err_template_id_not_a_type)
+ << Name;
+ NoteAllFoundTemplates(Name);
+ return QualType();
+ }
+
+ // Check that the template argument list is well-formed for this
+ // template.
+ SmallVector<TemplateArgument, 4> Converted;
+ if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
+ false, Converted))
+ return QualType();
+
+ QualType CanonType;
+
+ bool InstantiationDependent = false;
+ if (TypeAliasTemplateDecl *AliasTemplate =
+ dyn_cast<TypeAliasTemplateDecl>(Template)) {
+ // Find the canonical type for this type alias template specialization.
+ TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
+ if (Pattern->isInvalidDecl())
+ return QualType();
+
+ TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
+ Converted.data(), Converted.size());
+
+ // Only substitute for the innermost template argument list.
+ MultiLevelTemplateArgumentList TemplateArgLists;
+ TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
+ unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
+ for (unsigned I = 0; I < Depth; ++I)
+ TemplateArgLists.addOuterTemplateArguments(None);
+
+ LocalInstantiationScope Scope(*this);
+ InstantiatingTemplate Inst(*this, TemplateLoc, Template);
+ if (Inst.isInvalid())
+ return QualType();
+
+ CanonType = SubstType(Pattern->getUnderlyingType(),
+ TemplateArgLists, AliasTemplate->getLocation(),
+ AliasTemplate->getDeclName());
+ if (CanonType.isNull())
+ return QualType();
+ } else if (Name.isDependent() ||
+ TemplateSpecializationType::anyDependentTemplateArguments(
+ TemplateArgs, InstantiationDependent)) {
+ // This class template specialization is a dependent
+ // type. Therefore, its canonical type is another class template
+ // specialization type that contains all of the converted
+ // arguments in canonical form. This ensures that, e.g., A<T> and
+ // A<T, T> have identical types when A is declared as:
+ //
+ // template<typename T, typename U = T> struct A;
+ TemplateName CanonName = Context.getCanonicalTemplateName(Name);
+ CanonType = Context.getTemplateSpecializationType(CanonName,
+ Converted.data(),
+ Converted.size());
+
+ // FIXME: CanonType is not actually the canonical type, and unfortunately
+ // it is a TemplateSpecializationType that we will never use again.
+ // In the future, we need to teach getTemplateSpecializationType to only
+ // build the canonical type and return that to us.
+ CanonType = Context.getCanonicalType(CanonType);
+
+ // This might work out to be a current instantiation, in which
+ // case the canonical type needs to be the InjectedClassNameType.
+ //
+ // TODO: in theory this could be a simple hashtable lookup; most
+ // changes to CurContext don't change the set of current
+ // instantiations.
+ if (isa<ClassTemplateDecl>(Template)) {
+ for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
+ // If we get out to a namespace, we're done.
+ if (Ctx->isFileContext()) break;
+
+ // If this isn't a record, keep looking.
+ CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
+ if (!Record) continue;
+
+ // Look for one of the two cases with InjectedClassNameTypes
+ // and check whether it's the same template.
+ if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
+ !Record->getDescribedClassTemplate())
+ continue;
+
+ // Fetch the injected class name type and check whether its
+ // injected type is equal to the type we just built.
+ QualType ICNT = Context.getTypeDeclType(Record);
+ QualType Injected = cast<InjectedClassNameType>(ICNT)
+ ->getInjectedSpecializationType();
+
+ if (CanonType != Injected->getCanonicalTypeInternal())
+ continue;
+
+ // If so, the canonical type of this TST is the injected
+ // class name type of the record we just found.
+ assert(ICNT.isCanonical());
+ CanonType = ICNT;
+ break;
+ }
+ }
+ } else if (ClassTemplateDecl *ClassTemplate
+ = dyn_cast<ClassTemplateDecl>(Template)) {
+ // Find the class template specialization declaration that
+ // corresponds to these arguments.
+ void *InsertPos = nullptr;
+ ClassTemplateSpecializationDecl *Decl
+ = ClassTemplate->findSpecialization(Converted, InsertPos);
+ if (!Decl) {
+ // This is the first time we have referenced this class template
+ // specialization. Create the canonical declaration and add it to
+ // the set of specializations.
+ Decl = ClassTemplateSpecializationDecl::Create(Context,
+ ClassTemplate->getTemplatedDecl()->getTagKind(),
+ ClassTemplate->getDeclContext(),
+ ClassTemplate->getTemplatedDecl()->getLocStart(),
+ ClassTemplate->getLocation(),
+ ClassTemplate,
+ Converted.data(),
+ Converted.size(), nullptr);
+ ClassTemplate->AddSpecialization(Decl, InsertPos);
+ if (ClassTemplate->isOutOfLine())
+ Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
+ }
+
+ // Diagnose uses of this specialization.
+ (void)DiagnoseUseOfDecl(Decl, TemplateLoc);
+
+ CanonType = Context.getTypeDeclType(Decl);
+ assert(isa<RecordType>(CanonType) &&
+ "type of non-dependent specialization is not a RecordType");
+ }
+
+ // Build the fully-sugared type for this class template
+ // specialization, which refers back to the class template
+ // specialization we created or found.
+ return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
+}
+
+TypeResult
+Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
+ TemplateTy TemplateD, SourceLocation TemplateLoc,
+ SourceLocation LAngleLoc,
+ ASTTemplateArgsPtr TemplateArgsIn,
+ SourceLocation RAngleLoc,
+ bool IsCtorOrDtorName) {
+ if (SS.isInvalid())
+ return true;
+
+ TemplateName Template = TemplateD.get();
+
+ // Translate the parser's template argument list in our AST format.
+ TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
+ translateTemplateArguments(TemplateArgsIn, TemplateArgs);
+
+ if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
+ QualType T
+ = Context.getDependentTemplateSpecializationType(ETK_None,
+ DTN->getQualifier(),
+ DTN->getIdentifier(),
+ TemplateArgs);
+ // Build type-source information.
+ TypeLocBuilder TLB;
+ DependentTemplateSpecializationTypeLoc SpecTL
+ = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
+ SpecTL.setElaboratedKeywordLoc(SourceLocation());
+ SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
+ SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
+ SpecTL.setTemplateNameLoc(TemplateLoc);
+ SpecTL.setLAngleLoc(LAngleLoc);
+ SpecTL.setRAngleLoc(RAngleLoc);
+ for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
+ SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
+ return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
+ }
+
+ QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
+
+ if (Result.isNull())
+ return true;
+
+ // Build type-source information.
+ TypeLocBuilder TLB;
+ TemplateSpecializationTypeLoc SpecTL
+ = TLB.push<TemplateSpecializationTypeLoc>(Result);
+ SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
+ SpecTL.setTemplateNameLoc(TemplateLoc);
+ SpecTL.setLAngleLoc(LAngleLoc);
+ SpecTL.setRAngleLoc(RAngleLoc);
+ for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
+ SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
+
+ // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
+ // constructor or destructor name (in such a case, the scope specifier
+ // will be attached to the enclosing Decl or Expr node).
+ if (SS.isNotEmpty() && !IsCtorOrDtorName) {
+ // Create an elaborated-type-specifier containing the nested-name-specifier.
+ Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
+ ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
+ ElabTL.setElaboratedKeywordLoc(SourceLocation());
+ ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
+ }
+
+ return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
+}
+
+TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
+ TypeSpecifierType TagSpec,
+ SourceLocation TagLoc,
+ CXXScopeSpec &SS,
+ SourceLocation TemplateKWLoc,
+ TemplateTy TemplateD,
+ SourceLocation TemplateLoc,
+ SourceLocation LAngleLoc,
+ ASTTemplateArgsPtr TemplateArgsIn,
+ SourceLocation RAngleLoc) {
+ TemplateName Template = TemplateD.get();
+
+ // Translate the parser's template argument list in our AST format.
+ TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
+ translateTemplateArguments(TemplateArgsIn, TemplateArgs);
+
+ // Determine the tag kind
+ TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
+ ElaboratedTypeKeyword Keyword
+ = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
+
+ if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
+ QualType T = Context.getDependentTemplateSpecializationType(Keyword,
+ DTN->getQualifier(),
+ DTN->getIdentifier(),
+ TemplateArgs);
+
+ // Build type-source information.
+ TypeLocBuilder TLB;
+ DependentTemplateSpecializationTypeLoc SpecTL
+ = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
+ SpecTL.setElaboratedKeywordLoc(TagLoc);
+ SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
+ SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
+ SpecTL.setTemplateNameLoc(TemplateLoc);
+ SpecTL.setLAngleLoc(LAngleLoc);
+ SpecTL.setRAngleLoc(RAngleLoc);
+ for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
+ SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
+ return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
+ }
+
+ if (TypeAliasTemplateDecl *TAT =
+ dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
+ // C++0x [dcl.type.elab]p2:
+ // If the identifier resolves to a typedef-name or the simple-template-id
+ // resolves to an alias template specialization, the
+ // elaborated-type-specifier is ill-formed.
+ Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4;
+ Diag(TAT->getLocation(), diag::note_declared_at);
+ }
+
+ QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
+ if (Result.isNull())
+ return TypeResult(true);
+
+ // Check the tag kind
+ if (const RecordType *RT = Result->getAs<RecordType>()) {
+ RecordDecl *D = RT->getDecl();
+
+ IdentifierInfo *Id = D->getIdentifier();
+ assert(Id && "templated class must have an identifier");
+
+ if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
+ TagLoc, *Id)) {
+ Diag(TagLoc, diag::err_use_with_wrong_tag)
+ << Result
+ << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
+ Diag(D->getLocation(), diag::note_previous_use);
+ }
+ }
+
+ // Provide source-location information for the template specialization.
+ TypeLocBuilder TLB;
+ TemplateSpecializationTypeLoc SpecTL
+ = TLB.push<TemplateSpecializationTypeLoc>(Result);
+ SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
+ SpecTL.setTemplateNameLoc(TemplateLoc);
+ SpecTL.setLAngleLoc(LAngleLoc);
+ SpecTL.setRAngleLoc(RAngleLoc);
+ for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
+ SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
+
+ // Construct an elaborated type containing the nested-name-specifier (if any)
+ // and tag keyword.
+ Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
+ ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
+ ElabTL.setElaboratedKeywordLoc(TagLoc);
+ ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
+ return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
+}
+
+static bool CheckTemplatePartialSpecializationArgs(
+ Sema &S, SourceLocation NameLoc, TemplateParameterList *TemplateParams,
+ unsigned ExplicitArgs, SmallVectorImpl<TemplateArgument> &TemplateArgs);
+
+static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
+ NamedDecl *PrevDecl,
+ SourceLocation Loc,
+ bool IsPartialSpecialization);
+
+static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
+
+static bool isTemplateArgumentTemplateParameter(
+ const TemplateArgument &Arg, unsigned Depth, unsigned Index) {
+ switch (Arg.getKind()) {
+ case TemplateArgument::Null:
+ case TemplateArgument::NullPtr:
+ case TemplateArgument::Integral:
+ case TemplateArgument::Declaration:
+ case TemplateArgument::Pack:
+ case TemplateArgument::TemplateExpansion:
+ return false;
+
+ case TemplateArgument::Type: {
+ QualType Type = Arg.getAsType();
+ const TemplateTypeParmType *TPT =
+ Arg.getAsType()->getAs<TemplateTypeParmType>();
+ return TPT && !Type.hasQualifiers() &&
+ TPT->getDepth() == Depth && TPT->getIndex() == Index;
+ }
+
+ case TemplateArgument::Expression: {
+ DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr());
+ if (!DRE || !DRE->getDecl())
+ return false;
+ const NonTypeTemplateParmDecl *NTTP =
+ dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
+ return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index;
+ }
+
+ case TemplateArgument::Template:
+ const TemplateTemplateParmDecl *TTP =
+ dyn_cast_or_null<TemplateTemplateParmDecl>(
+ Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl());
+ return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index;
+ }
+ llvm_unreachable("unexpected kind of template argument");
+}
+
+static bool isSameAsPrimaryTemplate(TemplateParameterList *Params,
+ ArrayRef<TemplateArgument> Args) {
+ if (Params->size() != Args.size())
+ return false;
+
+ unsigned Depth = Params->getDepth();
+
+ for (unsigned I = 0, N = Args.size(); I != N; ++I) {
+ TemplateArgument Arg = Args[I];
+
+ // If the parameter is a pack expansion, the argument must be a pack
+ // whose only element is a pack expansion.
+ if (Params->getParam(I)->isParameterPack()) {
+ if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 ||
+ !Arg.pack_begin()->isPackExpansion())
+ return false;
+ Arg = Arg.pack_begin()->getPackExpansionPattern();
+ }
+
+ if (!isTemplateArgumentTemplateParameter(Arg, Depth, I))
+ return false;
+ }
+
+ return true;
+}
+
+/// Convert the parser's template argument list representation into our form.
+static TemplateArgumentListInfo
+makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) {
+ TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc,
+ TemplateId.RAngleLoc);
+ ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(),
+ TemplateId.NumArgs);
+ S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
+ return TemplateArgs;
+}
+
+DeclResult Sema::ActOnVarTemplateSpecialization(
+ Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc,
+ TemplateParameterList *TemplateParams, StorageClass SC,
+ bool IsPartialSpecialization) {
+ // D must be variable template id.
+ assert(D.getName().getKind() == UnqualifiedId::IK_TemplateId &&
+ "Variable template specialization is declared with a template it.");
+
+ TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
+ TemplateArgumentListInfo TemplateArgs =
+ makeTemplateArgumentListInfo(*this, *TemplateId);
+ SourceLocation TemplateNameLoc = D.getIdentifierLoc();
+ SourceLocation LAngleLoc = TemplateId->LAngleLoc;
+ SourceLocation RAngleLoc = TemplateId->RAngleLoc;
+
+ TemplateName Name = TemplateId->Template.get();
+
+ // The template-id must name a variable template.
+ VarTemplateDecl *VarTemplate =
+ dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl());
+ if (!VarTemplate) {
+ NamedDecl *FnTemplate;
+ if (auto *OTS = Name.getAsOverloadedTemplate())
+ FnTemplate = *OTS->begin();
+ else
+ FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
+ if (FnTemplate)
+ return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method)
+ << FnTemplate->getDeclName();
+ return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
+ << IsPartialSpecialization;
+ }
+
+ // Check for unexpanded parameter packs in any of the template arguments.
+ for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
+ if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
+ UPPC_PartialSpecialization))
+ return true;
+
+ // Check that the template argument list is well-formed for this
+ // template.
+ SmallVector<TemplateArgument, 4> Converted;
+ if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
+ false, Converted))
+ return true;
+
+ // Check that the type of this variable template specialization
+ // matches the expected type.
+ TypeSourceInfo *ExpectedDI;
+ {
+ // Do substitution on the type of the declaration
+ TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
+ Converted.data(), Converted.size());
+ InstantiatingTemplate Inst(*this, TemplateKWLoc, VarTemplate);
+ if (Inst.isInvalid())
+ return true;
+ VarDecl *Templated = VarTemplate->getTemplatedDecl();
+ ExpectedDI =
+ SubstType(Templated->getTypeSourceInfo(),
+ MultiLevelTemplateArgumentList(TemplateArgList),
+ Templated->getTypeSpecStartLoc(), Templated->getDeclName());
+ }
+ if (!ExpectedDI)
+ return true;
+
+ // Find the variable template (partial) specialization declaration that
+ // corresponds to these arguments.
+ if (IsPartialSpecialization) {
+ if (CheckTemplatePartialSpecializationArgs(
+ *this, TemplateNameLoc, VarTemplate->getTemplateParameters(),
+ TemplateArgs.size(), Converted))
+ return true;
+
+ bool InstantiationDependent;
+ if (!Name.isDependent() &&
+ !TemplateSpecializationType::anyDependentTemplateArguments(
+ TemplateArgs.getArgumentArray(), TemplateArgs.size(),
+ InstantiationDependent)) {
+ Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
+ << VarTemplate->getDeclName();
+ IsPartialSpecialization = false;
+ }
+
+ if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(),
+ Converted)) {
+ // C++ [temp.class.spec]p9b3:
+ //
+ // -- The argument list of the specialization shall not be identical
+ // to the implicit argument list of the primary template.
+ Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
+ << /*variable template*/ 1
+ << /*is definition*/(SC != SC_Extern && !CurContext->isRecord())
+ << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
+ // FIXME: Recover from this by treating the declaration as a redeclaration
+ // of the primary template.
+ return true;
+ }
+ }
+
+ void *InsertPos = nullptr;
+ VarTemplateSpecializationDecl *PrevDecl = nullptr;
+
+ if (IsPartialSpecialization)
+ // FIXME: Template parameter list matters too
+ PrevDecl = VarTemplate->findPartialSpecialization(Converted, InsertPos);
+ else
+ PrevDecl = VarTemplate->findSpecialization(Converted, InsertPos);
+
+ VarTemplateSpecializationDecl *Specialization = nullptr;
+
+ // Check whether we can declare a variable template specialization in
+ // the current scope.
+ if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
+ TemplateNameLoc,
+ IsPartialSpecialization))
+ return true;
+
+ if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
+ // Since the only prior variable template specialization with these
+ // arguments was referenced but not declared, reuse that
+ // declaration node as our own, updating its source location and
+ // the list of outer template parameters to reflect our new declaration.
+ Specialization = PrevDecl;
+ Specialization->setLocation(TemplateNameLoc);
+ PrevDecl = nullptr;
+ } else if (IsPartialSpecialization) {
+ // Create a new class template partial specialization declaration node.
+ VarTemplatePartialSpecializationDecl *PrevPartial =
+ cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
+ VarTemplatePartialSpecializationDecl *Partial =
+ VarTemplatePartialSpecializationDecl::Create(
+ Context, VarTemplate->getDeclContext(), TemplateKWLoc,
+ TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
+ Converted.data(), Converted.size(), TemplateArgs);
+
+ if (!PrevPartial)
+ VarTemplate->AddPartialSpecialization(Partial, InsertPos);
+ Specialization = Partial;
+
+ // If we are providing an explicit specialization of a member variable
+ // template specialization, make a note of that.
+ if (PrevPartial && PrevPartial->getInstantiatedFromMember())
+ PrevPartial->setMemberSpecialization();
+
+ // Check that all of the template parameters of the variable template
+ // partial specialization are deducible from the template
+ // arguments. If not, this variable template partial specialization
+ // will never be used.
+ llvm::SmallBitVector DeducibleParams(TemplateParams->size());
+ MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
+ TemplateParams->getDepth(), DeducibleParams);
+
+ if (!DeducibleParams.all()) {
+ unsigned NumNonDeducible =
+ DeducibleParams.size() - DeducibleParams.count();
+ Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
+ << /*variable template*/ 1 << (NumNonDeducible > 1)
+ << SourceRange(TemplateNameLoc, RAngleLoc);
+ for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
+ if (!DeducibleParams[I]) {
+ NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
+ if (Param->getDeclName())
+ Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter)
+ << Param->getDeclName();
+ else
+ Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter)
+ << "(anonymous)";
+ }
+ }
+ }
+ } else {
+ // Create a new class template specialization declaration node for
+ // this explicit specialization or friend declaration.
+ Specialization = VarTemplateSpecializationDecl::Create(
+ Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
+ VarTemplate, DI->getType(), DI, SC, Converted.data(), Converted.size());
+ Specialization->setTemplateArgsInfo(TemplateArgs);
+
+ if (!PrevDecl)
+ VarTemplate->AddSpecialization(Specialization, InsertPos);
+ }
+
+ // C++ [temp.expl.spec]p6:
+ // If a template, a member template or the member of a class template is
+ // explicitly specialized then that specialization shall be declared
+ // before the first use of that specialization that would cause an implicit
+ // instantiation to take place, in every translation unit in which such a
+ // use occurs; no diagnostic is required.
+ if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
+ bool Okay = false;
+ for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
+ // Is there any previous explicit specialization declaration?
+ if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
+ Okay = true;
+ break;
+ }
+ }
+
+ if (!Okay) {
+ SourceRange Range(TemplateNameLoc, RAngleLoc);
+ Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
+ << Name << Range;
+
+ Diag(PrevDecl->getPointOfInstantiation(),
+ diag::note_instantiation_required_here)
+ << (PrevDecl->getTemplateSpecializationKind() !=
+ TSK_ImplicitInstantiation);
+ return true;
+ }
+ }
+
+ Specialization->setTemplateKeywordLoc(TemplateKWLoc);
+ Specialization->setLexicalDeclContext(CurContext);
+
+ // Add the specialization into its lexical context, so that it can
+ // be seen when iterating through the list of declarations in that
+ // context. However, specializations are not found by name lookup.
+ CurContext->addDecl(Specialization);
+
+ // Note that this is an explicit specialization.
+ Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
+
+ if (PrevDecl) {
+ // Check that this isn't a redefinition of this specialization,
+ // merging with previous declarations.
+ LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName,
+ ForRedeclaration);
+ PrevSpec.addDecl(PrevDecl);
+ D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec));
+ } else if (Specialization->isStaticDataMember() &&
+ Specialization->isOutOfLine()) {
+ Specialization->setAccess(VarTemplate->getAccess());
+ }
+
+ // Link instantiations of static data members back to the template from
+ // which they were instantiated.
+ if (Specialization->isStaticDataMember())
+ Specialization->setInstantiationOfStaticDataMember(
+ VarTemplate->getTemplatedDecl(),
+ Specialization->getSpecializationKind());
+
+ return Specialization;
+}
+
+namespace {
+/// \brief A partial specialization whose template arguments have matched
+/// a given template-id.
+struct PartialSpecMatchResult {
+ VarTemplatePartialSpecializationDecl *Partial;
+ TemplateArgumentList *Args;
+};
+}
+
+DeclResult
+Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
+ SourceLocation TemplateNameLoc,
+ const TemplateArgumentListInfo &TemplateArgs) {
+ assert(Template && "A variable template id without template?");
+
+ // Check that the template argument list is well-formed for this template.
+ SmallVector<TemplateArgument, 4> Converted;
+ if (CheckTemplateArgumentList(
+ Template, TemplateNameLoc,
+ const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
+ Converted))
+ return true;
+
+ // Find the variable template specialization declaration that
+ // corresponds to these arguments.
+ void *InsertPos = nullptr;
+ if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization(
+ Converted, InsertPos))
+ // If we already have a variable template specialization, return it.
+ return Spec;
+
+ // This is the first time we have referenced this variable template
+ // specialization. Create the canonical declaration and add it to
+ // the set of specializations, based on the closest partial specialization
+ // that it represents. That is,
+ VarDecl *InstantiationPattern = Template->getTemplatedDecl();
+ TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
+ Converted.data(), Converted.size());
+ TemplateArgumentList *InstantiationArgs = &TemplateArgList;
+ bool AmbiguousPartialSpec = false;
+ typedef PartialSpecMatchResult MatchResult;
+ SmallVector<MatchResult, 4> Matched;
+ SourceLocation PointOfInstantiation = TemplateNameLoc;
+ TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation);
+
+ // 1. Attempt to find the closest partial specialization that this
+ // specializes, if any.
+ // If any of the template arguments is dependent, then this is probably
+ // a placeholder for an incomplete declarative context; which must be
+ // complete by instantiation time. Thus, do not search through the partial
+ // specializations yet.
+ // TODO: Unify with InstantiateClassTemplateSpecialization()?
+ // Perhaps better after unification of DeduceTemplateArguments() and
+ // getMoreSpecializedPartialSpecialization().
+ bool InstantiationDependent = false;
+ if (!TemplateSpecializationType::anyDependentTemplateArguments(
+ TemplateArgs, InstantiationDependent)) {
+
+ SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
+ Template->getPartialSpecializations(PartialSpecs);
+
+ for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
+ VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
+ TemplateDeductionInfo Info(FailedCandidates.getLocation());
+
+ if (TemplateDeductionResult Result =
+ DeduceTemplateArguments(Partial, TemplateArgList, Info)) {
+ // Store the failed-deduction information for use in diagnostics, later.
+ // TODO: Actually use the failed-deduction info?
+ FailedCandidates.addCandidate()
+ .set(Partial, MakeDeductionFailureInfo(Context, Result, Info));
+ (void)Result;
+ } else {
+ Matched.push_back(PartialSpecMatchResult());
+ Matched.back().Partial = Partial;
+ Matched.back().Args = Info.take();
+ }
+ }
+
+ if (Matched.size() >= 1) {
+ SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
+ if (Matched.size() == 1) {
+ // -- If exactly one matching specialization is found, the
+ // instantiation is generated from that specialization.
+ // We don't need to do anything for this.
+ } else {
+ // -- If more than one matching specialization is found, the
+ // partial order rules (14.5.4.2) are used to determine
+ // whether one of the specializations is more specialized
+ // than the others. If none of the specializations is more
+ // specialized than all of the other matching
+ // specializations, then the use of the variable template is
+ // ambiguous and the program is ill-formed.
+ for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
+ PEnd = Matched.end();
+ P != PEnd; ++P) {
+ if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
+ PointOfInstantiation) ==
+ P->Partial)
+ Best = P;
+ }
+
+ // Determine if the best partial specialization is more specialized than
+ // the others.
+ for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
+ PEnd = Matched.end();
+ P != PEnd; ++P) {
+ if (P != Best && getMoreSpecializedPartialSpecialization(
+ P->Partial, Best->Partial,
+ PointOfInstantiation) != Best->Partial) {
+ AmbiguousPartialSpec = true;
+ break;
+ }
+ }
+ }
+
+ // Instantiate using the best variable template partial specialization.
+ InstantiationPattern = Best->Partial;
+ InstantiationArgs = Best->Args;
+ } else {
+ // -- If no match is found, the instantiation is generated
+ // from the primary template.
+ // InstantiationPattern = Template->getTemplatedDecl();
+ }
+ }
+
+ // 2. Create the canonical declaration.
+ // Note that we do not instantiate the variable just yet, since
+ // instantiation is handled in DoMarkVarDeclReferenced().
+ // FIXME: LateAttrs et al.?
+ VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
+ Template, InstantiationPattern, *InstantiationArgs, TemplateArgs,
+ Converted, TemplateNameLoc, InsertPos /*, LateAttrs, StartingScope*/);
+ if (!Decl)
+ return true;
+
+ if (AmbiguousPartialSpec) {
+ // Partial ordering did not produce a clear winner. Complain.
+ Decl->setInvalidDecl();
+ Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
+ << Decl;
+
+ // Print the matching partial specializations.
+ for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
+ PEnd = Matched.end();
+ P != PEnd; ++P)
+ Diag(P->Partial->getLocation(), diag::note_partial_spec_match)
+ << getTemplateArgumentBindingsText(
+ P->Partial->getTemplateParameters(), *P->Args);
+ return true;
+ }
+
+ if (VarTemplatePartialSpecializationDecl *D =
+ dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
+ Decl->setInstantiationOf(D, InstantiationArgs);
+
+ assert(Decl && "No variable template specialization?");
+ return Decl;
+}
+
+ExprResult
+Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
+ const DeclarationNameInfo &NameInfo,
+ VarTemplateDecl *Template, SourceLocation TemplateLoc,
+ const TemplateArgumentListInfo *TemplateArgs) {
+
+ DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
+ *TemplateArgs);
+ if (Decl.isInvalid())
+ return ExprError();
+
+ VarDecl *Var = cast<VarDecl>(Decl.get());
+ if (!Var->getTemplateSpecializationKind())
+ Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
+ NameInfo.getLoc());
+
+ // Build an ordinary singleton decl ref.
+ return BuildDeclarationNameExpr(SS, NameInfo, Var,
+ /*FoundD=*/nullptr, TemplateArgs);
+}
+
+ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
+ SourceLocation TemplateKWLoc,
+ LookupResult &R,
+ bool RequiresADL,
+ const TemplateArgumentListInfo *TemplateArgs) {
+ // FIXME: Can we do any checking at this point? I guess we could check the
+ // template arguments that we have against the template name, if the template
+ // name refers to a single template. That's not a terribly common case,
+ // though.
+ // foo<int> could identify a single function unambiguously
+ // This approach does NOT work, since f<int>(1);
+ // gets resolved prior to resorting to overload resolution
+ // i.e., template<class T> void f(double);
+ // vs template<class T, class U> void f(U);
+
+ // These should be filtered out by our callers.
+ assert(!R.empty() && "empty lookup results when building templateid");
+ assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
+
+ // In C++1y, check variable template ids.
+ bool InstantiationDependent;
+ if (R.getAsSingle<VarTemplateDecl>() &&
+ !TemplateSpecializationType::anyDependentTemplateArguments(
+ *TemplateArgs, InstantiationDependent)) {
+ return CheckVarTemplateId(SS, R.getLookupNameInfo(),
+ R.getAsSingle<VarTemplateDecl>(),
+ TemplateKWLoc, TemplateArgs);
+ }
+
+ // We don't want lookup warnings at this point.
+ R.suppressDiagnostics();
+
+ UnresolvedLookupExpr *ULE
+ = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
+ SS.getWithLocInContext(Context),
+ TemplateKWLoc,
+ R.getLookupNameInfo(),
+ RequiresADL, TemplateArgs,
+ R.begin(), R.end());
+
+ return ULE;
+}
+
+// We actually only call this from template instantiation.
+ExprResult
+Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
+ SourceLocation TemplateKWLoc,
+ const DeclarationNameInfo &NameInfo,
+ const TemplateArgumentListInfo *TemplateArgs) {
+
+ assert(TemplateArgs || TemplateKWLoc.isValid());
+ DeclContext *DC;
+ if (!(DC = computeDeclContext(SS, false)) ||
+ DC->isDependentContext() ||
+ RequireCompleteDeclContext(SS, DC))
+ return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
+
+ bool MemberOfUnknownSpecialization;
+ LookupResult R(*this, NameInfo, LookupOrdinaryName);
+ LookupTemplateName(R, (Scope*)nullptr, SS, QualType(), /*Entering*/ false,
+ MemberOfUnknownSpecialization);
+
+ if (R.isAmbiguous())
+ return ExprError();
+
+ if (R.empty()) {
+ Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
+ << NameInfo.getName() << SS.getRange();
+ return ExprError();
+ }
+
+ if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
+ Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
+ << SS.getScopeRep()
+ << NameInfo.getName().getAsString() << SS.getRange();
+ Diag(Temp->getLocation(), diag::note_referenced_class_template);
+ return ExprError();
+ }
+
+ return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
+}
+
+/// \brief Form a dependent template name.
+///
+/// This action forms a dependent template name given the template
+/// name and its (presumably dependent) scope specifier. For
+/// example, given "MetaFun::template apply", the scope specifier \p
+/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
+/// of the "template" keyword, and "apply" is the \p Name.
+TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
+ CXXScopeSpec &SS,
+ SourceLocation TemplateKWLoc,
+ UnqualifiedId &Name,
+ ParsedType ObjectType,
+ bool EnteringContext,
+ TemplateTy &Result) {
+ if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
+ Diag(TemplateKWLoc,
+ getLangOpts().CPlusPlus11 ?
+ diag::warn_cxx98_compat_template_outside_of_template :
+ diag::ext_template_outside_of_template)
+ << FixItHint::CreateRemoval(TemplateKWLoc);
+
+ DeclContext *LookupCtx = nullptr;
+ if (SS.isSet())
+ LookupCtx = computeDeclContext(SS, EnteringContext);
+ if (!LookupCtx && ObjectType)
+ LookupCtx = computeDeclContext(ObjectType.get());
+ if (LookupCtx) {
+ // C++0x [temp.names]p5:
+ // If a name prefixed by the keyword template is not the name of
+ // a template, the program is ill-formed. [Note: the keyword
+ // template may not be applied to non-template members of class
+ // templates. -end note ] [ Note: as is the case with the
+ // typename prefix, the template prefix is allowed in cases
+ // where it is not strictly necessary; i.e., when the
+ // nested-name-specifier or the expression on the left of the ->
+ // or . is not dependent on a template-parameter, or the use
+ // does not appear in the scope of a template. -end note]
+ //
+ // Note: C++03 was more strict here, because it banned the use of
+ // the "template" keyword prior to a template-name that was not a
+ // dependent name. C++ DR468 relaxed this requirement (the
+ // "template" keyword is now permitted). We follow the C++0x
+ // rules, even in C++03 mode with a warning, retroactively applying the DR.
+ bool MemberOfUnknownSpecialization;
+ TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
+ ObjectType, EnteringContext, Result,
+ MemberOfUnknownSpecialization);
+ if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
+ isa<CXXRecordDecl>(LookupCtx) &&
+ (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
+ cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
+ // This is a dependent template. Handle it below.
+ } else if (TNK == TNK_Non_template) {
+ Diag(Name.getLocStart(),
+ diag::err_template_kw_refers_to_non_template)
+ << GetNameFromUnqualifiedId(Name).getName()
+ << Name.getSourceRange()
+ << TemplateKWLoc;
+ return TNK_Non_template;
+ } else {
+ // We found something; return it.
+ return TNK;
+ }
+ }
+
+ NestedNameSpecifier *Qualifier = SS.getScopeRep();
+
+ switch (Name.getKind()) {
+ case UnqualifiedId::IK_Identifier:
+ Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
+ Name.Identifier));
+ return TNK_Dependent_template_name;
+
+ case UnqualifiedId::IK_OperatorFunctionId:
+ Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
+ Name.OperatorFunctionId.Operator));
+ return TNK_Function_template;
+
+ case UnqualifiedId::IK_LiteralOperatorId:
+ llvm_unreachable("literal operator id cannot have a dependent scope");
+
+ default:
+ break;
+ }
+
+ Diag(Name.getLocStart(),
+ diag::err_template_kw_refers_to_non_template)
+ << GetNameFromUnqualifiedId(Name).getName()
+ << Name.getSourceRange()
+ << TemplateKWLoc;
+ return TNK_Non_template;
+}
+
+bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
+ TemplateArgumentLoc &AL,
+ SmallVectorImpl<TemplateArgument> &Converted) {
+ const TemplateArgument &Arg = AL.getArgument();
+ QualType ArgType;
+ TypeSourceInfo *TSI = nullptr;
+
+ // Check template type parameter.
+ switch(Arg.getKind()) {
+ case TemplateArgument::Type:
+ // C++ [temp.arg.type]p1:
+ // A template-argument for a template-parameter which is a
+ // type shall be a type-id.
+ ArgType = Arg.getAsType();
+ TSI = AL.getTypeSourceInfo();
+ break;
+ case TemplateArgument::Template: {
+ // We have a template type parameter but the template argument
+ // is a template without any arguments.
+ SourceRange SR = AL.getSourceRange();
+ TemplateName Name = Arg.getAsTemplate();
+ Diag(SR.getBegin(), diag::err_template_missing_args)
+ << Name << SR;
+ if (TemplateDecl *Decl = Name.getAsTemplateDecl())
+ Diag(Decl->getLocation(), diag::note_template_decl_here);
+
+ return true;
+ }
+ case TemplateArgument::Expression: {
+ // We have a template type parameter but the template argument is an
+ // expression; see if maybe it is missing the "typename" keyword.
+ CXXScopeSpec SS;
+ DeclarationNameInfo NameInfo;
+
+ if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) {
+ SS.Adopt(ArgExpr->getQualifierLoc());
+ NameInfo = ArgExpr->getNameInfo();
+ } else if (DependentScopeDeclRefExpr *ArgExpr =
+ dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
+ SS.Adopt(ArgExpr->getQualifierLoc());
+ NameInfo = ArgExpr->getNameInfo();
+ } else if (CXXDependentScopeMemberExpr *ArgExpr =
+ dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
+ if (ArgExpr->isImplicitAccess()) {
+ SS.Adopt(ArgExpr->getQualifierLoc());
+ NameInfo = ArgExpr->getMemberNameInfo();
+ }
+ }
+
+ if (auto *II = NameInfo.getName().getAsIdentifierInfo()) {
+ LookupResult Result(*this, NameInfo, LookupOrdinaryName);
+ LookupParsedName(Result, CurScope, &SS);
+
+ if (Result.getAsSingle<TypeDecl>() ||
+ Result.getResultKind() ==
+ LookupResult::NotFoundInCurrentInstantiation) {
+ // Suggest that the user add 'typename' before the NNS.
+ SourceLocation Loc = AL.getSourceRange().getBegin();
+ Diag(Loc, getLangOpts().MSVCCompat
+ ? diag::ext_ms_template_type_arg_missing_typename
+ : diag::err_template_arg_must_be_type_suggest)
+ << FixItHint::CreateInsertion(Loc, "typename ");
+ Diag(Param->getLocation(), diag::note_template_param_here);
+
+ // Recover by synthesizing a type using the location information that we
+ // already have.
+ ArgType =
+ Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II);
+ TypeLocBuilder TLB;
+ DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType);
+ TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/));
+ TL.setQualifierLoc(SS.getWithLocInContext(Context));
+ TL.setNameLoc(NameInfo.getLoc());
+ TSI = TLB.getTypeSourceInfo(Context, ArgType);
+
+ // Overwrite our input TemplateArgumentLoc so that we can recover
+ // properly.
+ AL = TemplateArgumentLoc(TemplateArgument(ArgType),
+ TemplateArgumentLocInfo(TSI));
+
+ break;
+ }
+ }
+ // fallthrough
+ }
+ default: {
+ // We have a template type parameter but the template argument
+ // is not a type.
+ SourceRange SR = AL.getSourceRange();
+ Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
+ Diag(Param->getLocation(), diag::note_template_param_here);
+
+ return true;
+ }
+ }
+
+ if (CheckTemplateArgument(Param, TSI))
+ return true;
+
+ // Add the converted template type argument.
+ ArgType = Context.getCanonicalType(ArgType);
+
+ // Objective-C ARC:
+ // If an explicitly-specified template argument type is a lifetime type
+ // with no lifetime qualifier, the __strong lifetime qualifier is inferred.
+ if (getLangOpts().ObjCAutoRefCount &&
+ ArgType->isObjCLifetimeType() &&
+ !ArgType.getObjCLifetime()) {
+ Qualifiers Qs;
+ Qs.setObjCLifetime(Qualifiers::OCL_Strong);
+ ArgType = Context.getQualifiedType(ArgType, Qs);
+ }
+
+ Converted.push_back(TemplateArgument(ArgType));
+ return false;
+}
+
+/// \brief Substitute template arguments into the default template argument for
+/// the given template type parameter.
+///
+/// \param SemaRef the semantic analysis object for which we are performing
+/// the substitution.
+///
+/// \param Template the template that we are synthesizing template arguments
+/// for.
+///
+/// \param TemplateLoc the location of the template name that started the
+/// template-id we are checking.
+///
+/// \param RAngleLoc the location of the right angle bracket ('>') that
+/// terminates the template-id.
+///
+/// \param Param the template template parameter whose default we are
+/// substituting into.
+///
+/// \param Converted the list of template arguments provided for template
+/// parameters that precede \p Param in the template parameter list.
+/// \returns the substituted template argument, or NULL if an error occurred.
+static TypeSourceInfo *
+SubstDefaultTemplateArgument(Sema &SemaRef,
+ TemplateDecl *Template,
+ SourceLocation TemplateLoc,
+ SourceLocation RAngleLoc,
+ TemplateTypeParmDecl *Param,
+ SmallVectorImpl<TemplateArgument> &Converted) {
+ TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
+
+ // If the argument type is dependent, instantiate it now based
+ // on the previously-computed template arguments.
+ if (ArgType->getType()->isDependentType()) {
+ Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
+ Template, Converted,
+ SourceRange(TemplateLoc, RAngleLoc));
+ if (Inst.isInvalid())
+ return nullptr;
+
+ TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
+ Converted.data(), Converted.size());
+
+ // Only substitute for the innermost template argument list.
+ MultiLevelTemplateArgumentList TemplateArgLists;
+ TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
+ for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
+ TemplateArgLists.addOuterTemplateArguments(None);
+
+ Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
+ ArgType =
+ SemaRef.SubstType(ArgType, TemplateArgLists,
+ Param->getDefaultArgumentLoc(), Param->getDeclName());
+ }
+
+ return ArgType;
+}
+
+/// \brief Substitute template arguments into the default template argument for
+/// the given non-type template parameter.
+///
+/// \param SemaRef the semantic analysis object for which we are performing
+/// the substitution.
+///
+/// \param Template the template that we are synthesizing template arguments
+/// for.
+///
+/// \param TemplateLoc the location of the template name that started the
+/// template-id we are checking.
+///
+/// \param RAngleLoc the location of the right angle bracket ('>') that
+/// terminates the template-id.
+///
+/// \param Param the non-type template parameter whose default we are
+/// substituting into.
+///
+/// \param Converted the list of template arguments provided for template
+/// parameters that precede \p Param in the template parameter list.
+///
+/// \returns the substituted template argument, or NULL if an error occurred.
+static ExprResult
+SubstDefaultTemplateArgument(Sema &SemaRef,
+ TemplateDecl *Template,
+ SourceLocation TemplateLoc,
+ SourceLocation RAngleLoc,
+ NonTypeTemplateParmDecl *Param,
+ SmallVectorImpl<TemplateArgument> &Converted) {
+ Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
+ Template, Converted,
+ SourceRange(TemplateLoc, RAngleLoc));
+ if (Inst.isInvalid())
+ return ExprError();
+
+ TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
+ Converted.data(), Converted.size());
+
+ // Only substitute for the innermost template argument list.
+ MultiLevelTemplateArgumentList TemplateArgLists;
+ TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
+ for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
+ TemplateArgLists.addOuterTemplateArguments(None);
+
+ Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
+ EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
+ return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists);
+}
+
+/// \brief Substitute template arguments into the default template argument for
+/// the given template template parameter.
+///
+/// \param SemaRef the semantic analysis object for which we are performing
+/// the substitution.
+///
+/// \param Template the template that we are synthesizing template arguments
+/// for.
+///
+/// \param TemplateLoc the location of the template name that started the
+/// template-id we are checking.
+///
+/// \param RAngleLoc the location of the right angle bracket ('>') that
+/// terminates the template-id.
+///
+/// \param Param the template template parameter whose default we are
+/// substituting into.
+///
+/// \param Converted the list of template arguments provided for template
+/// parameters that precede \p Param in the template parameter list.
+///
+/// \param QualifierLoc Will be set to the nested-name-specifier (with
+/// source-location information) that precedes the template name.
+///
+/// \returns the substituted template argument, or NULL if an error occurred.
+static TemplateName
+SubstDefaultTemplateArgument(Sema &SemaRef,
+ TemplateDecl *Template,
+ SourceLocation TemplateLoc,
+ SourceLocation RAngleLoc,
+ TemplateTemplateParmDecl *Param,
+ SmallVectorImpl<TemplateArgument> &Converted,
+ NestedNameSpecifierLoc &QualifierLoc) {
+ Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Template, Converted,
+ SourceRange(TemplateLoc, RAngleLoc));
+ if (Inst.isInvalid())
+ return TemplateName();
+
+ TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
+ Converted.data(), Converted.size());
+
+ // Only substitute for the innermost template argument list.
+ MultiLevelTemplateArgumentList TemplateArgLists;
+ TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
+ for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
+ TemplateArgLists.addOuterTemplateArguments(None);
+
+ Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
+ // Substitute into the nested-name-specifier first,
+ QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
+ if (QualifierLoc) {
+ QualifierLoc =
+ SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists);
+ if (!QualifierLoc)
+ return TemplateName();
+ }
+
+ return SemaRef.SubstTemplateName(
+ QualifierLoc,
+ Param->getDefaultArgument().getArgument().getAsTemplate(),
+ Param->getDefaultArgument().getTemplateNameLoc(),
+ TemplateArgLists);
+}
+
+/// \brief If the given template parameter has a default template
+/// argument, substitute into that default template argument and
+/// return the corresponding template argument.
+TemplateArgumentLoc
+Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
+ SourceLocation TemplateLoc,
+ SourceLocation RAngleLoc,
+ Decl *Param,
+ SmallVectorImpl<TemplateArgument>
+ &Converted,
+ bool &HasDefaultArg) {
+ HasDefaultArg = false;
+
+ if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
+ if (!TypeParm->hasDefaultArgument())
+ return TemplateArgumentLoc();
+
+ HasDefaultArg = true;
+ TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
+ TemplateLoc,
+ RAngleLoc,
+ TypeParm,
+ Converted);
+ if (DI)
+ return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
+
+ return TemplateArgumentLoc();
+ }
+
+ if (NonTypeTemplateParmDecl *NonTypeParm
+ = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
+ if (!NonTypeParm->hasDefaultArgument())
+ return TemplateArgumentLoc();
+
+ HasDefaultArg = true;
+ ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
+ TemplateLoc,
+ RAngleLoc,
+ NonTypeParm,
+ Converted);
+ if (Arg.isInvalid())
+ return TemplateArgumentLoc();
+
+ Expr *ArgE = Arg.getAs<Expr>();
+ return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
+ }
+
+ TemplateTemplateParmDecl *TempTempParm
+ = cast<TemplateTemplateParmDecl>(Param);
+ if (!TempTempParm->hasDefaultArgument())
+ return TemplateArgumentLoc();
+
+ HasDefaultArg = true;
+ NestedNameSpecifierLoc QualifierLoc;
+ TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
+ TemplateLoc,
+ RAngleLoc,
+ TempTempParm,
+ Converted,
+ QualifierLoc);
+ if (TName.isNull())
+ return TemplateArgumentLoc();
+
+ return TemplateArgumentLoc(TemplateArgument(TName),
+ TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
+ TempTempParm->getDefaultArgument().getTemplateNameLoc());
+}
+
+/// \brief Check that the given template argument corresponds to the given
+/// template parameter.
+///
+/// \param Param The template parameter against which the argument will be
+/// checked.
+///
+/// \param Arg The template argument, which may be updated due to conversions.
+///
+/// \param Template The template in which the template argument resides.
+///
+/// \param TemplateLoc The location of the template name for the template
+/// whose argument list we're matching.
+///
+/// \param RAngleLoc The location of the right angle bracket ('>') that closes
+/// the template argument list.
+///
+/// \param ArgumentPackIndex The index into the argument pack where this
+/// argument will be placed. Only valid if the parameter is a parameter pack.
+///
+/// \param Converted The checked, converted argument will be added to the
+/// end of this small vector.
+///
+/// \param CTAK Describes how we arrived at this particular template argument:
+/// explicitly written, deduced, etc.
+///
+/// \returns true on error, false otherwise.
+bool Sema::CheckTemplateArgument(NamedDecl *Param,
+ TemplateArgumentLoc &Arg,
+ NamedDecl *Template,
+ SourceLocation TemplateLoc,
+ SourceLocation RAngleLoc,
+ unsigned ArgumentPackIndex,
+ SmallVectorImpl<TemplateArgument> &Converted,
+ CheckTemplateArgumentKind CTAK) {
+ // Check template type parameters.
+ if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
+ return CheckTemplateTypeArgument(TTP, Arg, Converted);
+
+ // Check non-type template parameters.
+ if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
+ // Do substitution on the type of the non-type template parameter
+ // with the template arguments we've seen thus far. But if the
+ // template has a dependent context then we cannot substitute yet.
+ QualType NTTPType = NTTP->getType();
+ if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
+ NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
+
+ if (NTTPType->isDependentType() &&
+ !isa<TemplateTemplateParmDecl>(Template) &&
+ !Template->getDeclContext()->isDependentContext()) {
+ // Do substitution on the type of the non-type template parameter.
+ InstantiatingTemplate Inst(*this, TemplateLoc, Template,
+ NTTP, Converted,
+ SourceRange(TemplateLoc, RAngleLoc));
+ if (Inst.isInvalid())
+ return true;
+
+ TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
+ Converted.data(), Converted.size());
+ NTTPType = SubstType(NTTPType,
+ MultiLevelTemplateArgumentList(TemplateArgs),
+ NTTP->getLocation(),
+ NTTP->getDeclName());
+ // If that worked, check the non-type template parameter type
+ // for validity.
+ if (!NTTPType.isNull())
+ NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
+ NTTP->getLocation());
+ if (NTTPType.isNull())
+ return true;
+ }
+
+ switch (Arg.getArgument().getKind()) {
+ case TemplateArgument::Null:
+ llvm_unreachable("Should never see a NULL template argument here");
+
+ case TemplateArgument::Expression: {
+ TemplateArgument Result;
+ ExprResult Res =
+ CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
+ Result, CTAK);
+ if (Res.isInvalid())
+ return true;
+
+ // If the resulting expression is new, then use it in place of the
+ // old expression in the template argument.
+ if (Res.get() != Arg.getArgument().getAsExpr()) {
+ TemplateArgument TA(Res.get());
+ Arg = TemplateArgumentLoc(TA, Res.get());
+ }
+
+ Converted.push_back(Result);
+ break;
+ }
+
+ case TemplateArgument::Declaration:
+ case TemplateArgument::Integral:
+ case TemplateArgument::NullPtr:
+ // We've already checked this template argument, so just copy
+ // it to the list of converted arguments.
+ Converted.push_back(Arg.getArgument());
+ break;
+
+ case TemplateArgument::Template:
+ case TemplateArgument::TemplateExpansion:
+ // We were given a template template argument. It may not be ill-formed;
+ // see below.
+ if (DependentTemplateName *DTN
+ = Arg.getArgument().getAsTemplateOrTemplatePattern()
+ .getAsDependentTemplateName()) {
+ // We have a template argument such as \c T::template X, which we
+ // parsed as a template template argument. However, since we now
+ // know that we need a non-type template argument, convert this
+ // template name into an expression.
+
+ DeclarationNameInfo NameInfo(DTN->getIdentifier(),
+ Arg.getTemplateNameLoc());
+
+ CXXScopeSpec SS;
+ SS.Adopt(Arg.getTemplateQualifierLoc());
+ // FIXME: the template-template arg was a DependentTemplateName,
+ // so it was provided with a template keyword. However, its source
+ // location is not stored in the template argument structure.
+ SourceLocation TemplateKWLoc;
+ ExprResult E = DependentScopeDeclRefExpr::Create(
+ Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
+ nullptr);
+
+ // If we parsed the template argument as a pack expansion, create a
+ // pack expansion expression.
+ if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
+ E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc());
+ if (E.isInvalid())
+ return true;
+ }
+
+ TemplateArgument Result;
+ E = CheckTemplateArgument(NTTP, NTTPType, E.get(), Result);
+ if (E.isInvalid())
+ return true;
+
+ Converted.push_back(Result);
+ break;
+ }
+
+ // We have a template argument that actually does refer to a class
+ // template, alias template, or template template parameter, and
+ // therefore cannot be a non-type template argument.
+ Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
+ << Arg.getSourceRange();
+
+ Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+
+ case TemplateArgument::Type: {
+ // We have a non-type template parameter but the template
+ // argument is a type.
+
+ // C++ [temp.arg]p2:
+ // In a template-argument, an ambiguity between a type-id and
+ // an expression is resolved to a type-id, regardless of the
+ // form of the corresponding template-parameter.
+ //
+ // We warn specifically about this case, since it can be rather
+ // confusing for users.
+ QualType T = Arg.getArgument().getAsType();
+ SourceRange SR = Arg.getSourceRange();
+ if (T->isFunctionType())
+ Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
+ else
+ Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
+ Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+
+ case TemplateArgument::Pack:
+ llvm_unreachable("Caller must expand template argument packs");
+ }
+
+ return false;
+ }
+
+
+ // Check template template parameters.
+ TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
+
+ // Substitute into the template parameter list of the template
+ // template parameter, since previously-supplied template arguments
+ // may appear within the template template parameter.
+ {
+ // Set up a template instantiation context.
+ LocalInstantiationScope Scope(*this);
+ InstantiatingTemplate Inst(*this, TemplateLoc, Template,
+ TempParm, Converted,
+ SourceRange(TemplateLoc, RAngleLoc));
+ if (Inst.isInvalid())
+ return true;
+
+ TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
+ Converted.data(), Converted.size());
+ TempParm = cast_or_null<TemplateTemplateParmDecl>(
+ SubstDecl(TempParm, CurContext,
+ MultiLevelTemplateArgumentList(TemplateArgs)));
+ if (!TempParm)
+ return true;
+ }
+
+ switch (Arg.getArgument().getKind()) {
+ case TemplateArgument::Null:
+ llvm_unreachable("Should never see a NULL template argument here");
+
+ case TemplateArgument::Template:
+ case TemplateArgument::TemplateExpansion:
+ if (CheckTemplateArgument(TempParm, Arg, ArgumentPackIndex))
+ return true;
+
+ Converted.push_back(Arg.getArgument());
+ break;
+
+ case TemplateArgument::Expression:
+ case TemplateArgument::Type:
+ // We have a template template parameter but the template
+ // argument does not refer to a template.
+ Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
+ << getLangOpts().CPlusPlus11;
+ return true;
+
+ case TemplateArgument::Declaration:
+ llvm_unreachable("Declaration argument with template template parameter");
+ case TemplateArgument::Integral:
+ llvm_unreachable("Integral argument with template template parameter");
+ case TemplateArgument::NullPtr:
+ llvm_unreachable("Null pointer argument with template template parameter");
+
+ case TemplateArgument::Pack:
+ llvm_unreachable("Caller must expand template argument packs");
+ }
+
+ return false;
+}
+
+/// \brief Diagnose an arity mismatch in the
+static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template,
+ SourceLocation TemplateLoc,
+ TemplateArgumentListInfo &TemplateArgs) {
+ TemplateParameterList *Params = Template->getTemplateParameters();
+ unsigned NumParams = Params->size();
+ unsigned NumArgs = TemplateArgs.size();
+
+ SourceRange Range;
+ if (NumArgs > NumParams)
+ Range = SourceRange(TemplateArgs[NumParams].getLocation(),
+ TemplateArgs.getRAngleLoc());
+ S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
+ << (NumArgs > NumParams)
+ << (isa<ClassTemplateDecl>(Template)? 0 :
+ isa<FunctionTemplateDecl>(Template)? 1 :
+ isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
+ << Template << Range;
+ S.Diag(Template->getLocation(), diag::note_template_decl_here)
+ << Params->getSourceRange();
+ return true;
+}
+
+/// \brief Check whether the template parameter is a pack expansion, and if so,
+/// determine the number of parameters produced by that expansion. For instance:
+///
+/// \code
+/// template<typename ...Ts> struct A {
+/// template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B;
+/// };
+/// \endcode
+///
+/// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us
+/// is not a pack expansion, so returns an empty Optional.
+static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) {
+ if (NonTypeTemplateParmDecl *NTTP
+ = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
+ if (NTTP->isExpandedParameterPack())
+ return NTTP->getNumExpansionTypes();
+ }
+
+ if (TemplateTemplateParmDecl *TTP
+ = dyn_cast<TemplateTemplateParmDecl>(Param)) {
+ if (TTP->isExpandedParameterPack())
+ return TTP->getNumExpansionTemplateParameters();
+ }
+
+ return None;
+}
+
+/// \brief Check that the given template argument list is well-formed
+/// for specializing the given template.
+bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
+ SourceLocation TemplateLoc,
+ TemplateArgumentListInfo &TemplateArgs,
+ bool PartialTemplateArgs,
+ SmallVectorImpl<TemplateArgument> &Converted) {
+ // Make a copy of the template arguments for processing. Only make the
+ // changes at the end when successful in matching the arguments to the
+ // template.
+ TemplateArgumentListInfo NewArgs = TemplateArgs;
+
+ TemplateParameterList *Params = Template->getTemplateParameters();
+
+ SourceLocation RAngleLoc = NewArgs.getRAngleLoc();
+
+ // C++ [temp.arg]p1:
+ // [...] The type and form of each template-argument specified in
+ // a template-id shall match the type and form specified for the
+ // corresponding parameter declared by the template in its
+ // template-parameter-list.
+ bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
+ SmallVector<TemplateArgument, 2> ArgumentPack;
+ unsigned ArgIdx = 0, NumArgs = NewArgs.size();
+ LocalInstantiationScope InstScope(*this, true);
+ for (TemplateParameterList::iterator Param = Params->begin(),
+ ParamEnd = Params->end();
+ Param != ParamEnd; /* increment in loop */) {
+ // If we have an expanded parameter pack, make sure we don't have too
+ // many arguments.
+ if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
+ if (*Expansions == ArgumentPack.size()) {
+ // We're done with this parameter pack. Pack up its arguments and add
+ // them to the list.
+ Converted.push_back(
+ TemplateArgument::CreatePackCopy(Context,
+ ArgumentPack.data(),
+ ArgumentPack.size()));
+ ArgumentPack.clear();
+
+ // This argument is assigned to the next parameter.
+ ++Param;
+ continue;
+ } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
+ // Not enough arguments for this parameter pack.
+ Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
+ << false
+ << (isa<ClassTemplateDecl>(Template)? 0 :
+ isa<FunctionTemplateDecl>(Template)? 1 :
+ isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
+ << Template;
+ Diag(Template->getLocation(), diag::note_template_decl_here)
+ << Params->getSourceRange();
+ return true;
+ }
+ }
+
+ if (ArgIdx < NumArgs) {
+ // Check the template argument we were given.
+ if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template,
+ TemplateLoc, RAngleLoc,
+ ArgumentPack.size(), Converted))
+ return true;
+
+ bool PackExpansionIntoNonPack =
+ NewArgs[ArgIdx].getArgument().isPackExpansion() &&
+ (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param));
+ if (PackExpansionIntoNonPack && isa<TypeAliasTemplateDecl>(Template)) {
+ // Core issue 1430: we have a pack expansion as an argument to an
+ // alias template, and it's not part of a parameter pack. This
+ // can't be canonicalized, so reject it now.
+ Diag(NewArgs[ArgIdx].getLocation(),
+ diag::err_alias_template_expansion_into_fixed_list)
+ << NewArgs[ArgIdx].getSourceRange();
+ Diag((*Param)->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+
+ // We're now done with this argument.
+ ++ArgIdx;
+
+ if ((*Param)->isTemplateParameterPack()) {
+ // The template parameter was a template parameter pack, so take the
+ // deduced argument and place it on the argument pack. Note that we
+ // stay on the same template parameter so that we can deduce more
+ // arguments.
+ ArgumentPack.push_back(Converted.pop_back_val());
+ } else {
+ // Move to the next template parameter.
+ ++Param;
+ }
+
+ // If we just saw a pack expansion into a non-pack, then directly convert
+ // the remaining arguments, because we don't know what parameters they'll
+ // match up with.
+ if (PackExpansionIntoNonPack) {
+ if (!ArgumentPack.empty()) {
+ // If we were part way through filling in an expanded parameter pack,
+ // fall back to just producing individual arguments.
+ Converted.insert(Converted.end(),
+ ArgumentPack.begin(), ArgumentPack.end());
+ ArgumentPack.clear();
+ }
+
+ while (ArgIdx < NumArgs) {
+ Converted.push_back(NewArgs[ArgIdx].getArgument());
+ ++ArgIdx;
+ }
+
+ return false;
+ }
+
+ continue;
+ }
+
+ // If we're checking a partial template argument list, we're done.
+ if (PartialTemplateArgs) {
+ if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
+ Converted.push_back(TemplateArgument::CreatePackCopy(Context,
+ ArgumentPack.data(),
+ ArgumentPack.size()));
+
+ return false;
+ }
+
+ // If we have a template parameter pack with no more corresponding
+ // arguments, just break out now and we'll fill in the argument pack below.
+ if ((*Param)->isTemplateParameterPack()) {
+ assert(!getExpandedPackSize(*Param) &&
+ "Should have dealt with this already");
+
+ // A non-expanded parameter pack before the end of the parameter list
+ // only occurs for an ill-formed template parameter list, unless we've
+ // got a partial argument list for a function template, so just bail out.
+ if (Param + 1 != ParamEnd)
+ return true;
+
+ Converted.push_back(TemplateArgument::CreatePackCopy(Context,
+ ArgumentPack.data(),
+ ArgumentPack.size()));
+ ArgumentPack.clear();
+
+ ++Param;
+ continue;
+ }
+
+ // Check whether we have a default argument.
+ TemplateArgumentLoc Arg;
+
+ // Retrieve the default template argument from the template
+ // parameter. For each kind of template parameter, we substitute the
+ // template arguments provided thus far and any "outer" template arguments
+ // (when the template parameter was part of a nested template) into
+ // the default argument.
+ if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
+ if (!TTP->hasDefaultArgument())
+ return diagnoseArityMismatch(*this, Template, TemplateLoc, NewArgs);
+
+ TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
+ Template,
+ TemplateLoc,
+ RAngleLoc,
+ TTP,
+ Converted);
+ if (!ArgType)
+ return true;
+
+ Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
+ ArgType);
+ } else if (NonTypeTemplateParmDecl *NTTP
+ = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
+ if (!NTTP->hasDefaultArgument())
+ return diagnoseArityMismatch(*this, Template, TemplateLoc, NewArgs);
+
+ ExprResult E = SubstDefaultTemplateArgument(*this, Template,
+ TemplateLoc,
+ RAngleLoc,
+ NTTP,
+ Converted);
+ if (E.isInvalid())
+ return true;
+
+ Expr *Ex = E.getAs<Expr>();
+ Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
+ } else {
+ TemplateTemplateParmDecl *TempParm
+ = cast<TemplateTemplateParmDecl>(*Param);
+
+ if (!TempParm->hasDefaultArgument())
+ return diagnoseArityMismatch(*this, Template, TemplateLoc, NewArgs);
+
+ NestedNameSpecifierLoc QualifierLoc;
+ TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
+ TemplateLoc,
+ RAngleLoc,
+ TempParm,
+ Converted,
+ QualifierLoc);
+ if (Name.isNull())
+ return true;
+
+ Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
+ TempParm->getDefaultArgument().getTemplateNameLoc());
+ }
+
+ // Introduce an instantiation record that describes where we are using
+ // the default template argument.
+ InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted,
+ SourceRange(TemplateLoc, RAngleLoc));
+ if (Inst.isInvalid())
+ return true;
+
+ // Check the default template argument.
+ if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
+ RAngleLoc, 0, Converted))
+ return true;
+
+ // Core issue 150 (assumed resolution): if this is a template template
+ // parameter, keep track of the default template arguments from the
+ // template definition.
+ if (isTemplateTemplateParameter)
+ NewArgs.addArgument(Arg);
+
+ // Move to the next template parameter and argument.
+ ++Param;
+ ++ArgIdx;
+ }
+
+ // If we're performing a partial argument substitution, allow any trailing
+ // pack expansions; they might be empty. This can happen even if
+ // PartialTemplateArgs is false (the list of arguments is complete but
+ // still dependent).
+ if (ArgIdx < NumArgs && CurrentInstantiationScope &&
+ CurrentInstantiationScope->getPartiallySubstitutedPack()) {
+ while (ArgIdx < NumArgs && NewArgs[ArgIdx].getArgument().isPackExpansion())
+ Converted.push_back(NewArgs[ArgIdx++].getArgument());
+ }
+
+ // If we have any leftover arguments, then there were too many arguments.
+ // Complain and fail.
+ if (ArgIdx < NumArgs)
+ return diagnoseArityMismatch(*this, Template, TemplateLoc, NewArgs);
+
+ // No problems found with the new argument list, propagate changes back
+ // to caller.
+ TemplateArgs = NewArgs;
+
+ return false;
+}
+
+namespace {
+ class UnnamedLocalNoLinkageFinder
+ : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
+ {
+ Sema &S;
+ SourceRange SR;
+
+ typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
+
+ public:
+ UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
+
+ bool Visit(QualType T) {
+ return inherited::Visit(T.getTypePtr());
+ }
+
+#define TYPE(Class, Parent) \
+ bool Visit##Class##Type(const Class##Type *);
+#define ABSTRACT_TYPE(Class, Parent) \
+ bool Visit##Class##Type(const Class##Type *) { return false; }
+#define NON_CANONICAL_TYPE(Class, Parent) \
+ bool Visit##Class##Type(const Class##Type *) { return false; }
+#include "clang/AST/TypeNodes.def"
+
+ bool VisitTagDecl(const TagDecl *Tag);
+ bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
+ };
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
+ return false;
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
+ return Visit(T->getElementType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
+ return Visit(T->getPointeeType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
+ const BlockPointerType* T) {
+ return Visit(T->getPointeeType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
+ const LValueReferenceType* T) {
+ return Visit(T->getPointeeType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
+ const RValueReferenceType* T) {
+ return Visit(T->getPointeeType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
+ const MemberPointerType* T) {
+ return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
+ const ConstantArrayType* T) {
+ return Visit(T->getElementType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
+ const IncompleteArrayType* T) {
+ return Visit(T->getElementType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
+ const VariableArrayType* T) {
+ return Visit(T->getElementType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
+ const DependentSizedArrayType* T) {
+ return Visit(T->getElementType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
+ const DependentSizedExtVectorType* T) {
+ return Visit(T->getElementType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
+ return Visit(T->getElementType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
+ return Visit(T->getElementType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
+ const FunctionProtoType* T) {
+ for (const auto &A : T->param_types()) {
+ if (Visit(A))
+ return true;
+ }
+
+ return Visit(T->getReturnType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
+ const FunctionNoProtoType* T) {
+ return Visit(T->getReturnType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
+ const UnresolvedUsingType*) {
+ return false;
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
+ return false;
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
+ return Visit(T->getUnderlyingType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
+ return false;
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
+ const UnaryTransformType*) {
+ return false;
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
+ return Visit(T->getDeducedType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
+ return VisitTagDecl(T->getDecl());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
+ return VisitTagDecl(T->getDecl());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
+ const TemplateTypeParmType*) {
+ return false;
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
+ const SubstTemplateTypeParmPackType *) {
+ return false;
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
+ const TemplateSpecializationType*) {
+ return false;
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
+ const InjectedClassNameType* T) {
+ return VisitTagDecl(T->getDecl());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
+ const DependentNameType* T) {
+ return VisitNestedNameSpecifier(T->getQualifier());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
+ const DependentTemplateSpecializationType* T) {
+ return VisitNestedNameSpecifier(T->getQualifier());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
+ const PackExpansionType* T) {
+ return Visit(T->getPattern());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
+ return false;
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
+ const ObjCInterfaceType *) {
+ return false;
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
+ const ObjCObjectPointerType *) {
+ return false;
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
+ return Visit(T->getValueType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
+ if (Tag->getDeclContext()->isFunctionOrMethod()) {
+ S.Diag(SR.getBegin(),
+ S.getLangOpts().CPlusPlus11 ?
+ diag::warn_cxx98_compat_template_arg_local_type :
+ diag::ext_template_arg_local_type)
+ << S.Context.getTypeDeclType(Tag) << SR;
+ return true;
+ }
+
+ if (!Tag->hasNameForLinkage()) {
+ S.Diag(SR.getBegin(),
+ S.getLangOpts().CPlusPlus11 ?
+ diag::warn_cxx98_compat_template_arg_unnamed_type :
+ diag::ext_template_arg_unnamed_type) << SR;
+ S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
+ return true;
+ }
+
+ return false;
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
+ NestedNameSpecifier *NNS) {
+ if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
+ return true;
+
+ switch (NNS->getKind()) {
+ case NestedNameSpecifier::Identifier:
+ case NestedNameSpecifier::Namespace:
+ case NestedNameSpecifier::NamespaceAlias:
+ case NestedNameSpecifier::Global:
+ case NestedNameSpecifier::Super:
+ return false;
+
+ case NestedNameSpecifier::TypeSpec:
+ case NestedNameSpecifier::TypeSpecWithTemplate:
+ return Visit(QualType(NNS->getAsType(), 0));
+ }
+ llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
+}
+
+
+/// \brief Check a template argument against its corresponding
+/// template type parameter.
+///
+/// This routine implements the semantics of C++ [temp.arg.type]. It
+/// returns true if an error occurred, and false otherwise.
+bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
+ TypeSourceInfo *ArgInfo) {
+ assert(ArgInfo && "invalid TypeSourceInfo");
+ QualType Arg = ArgInfo->getType();
+ SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
+
+ if (Arg->isVariablyModifiedType()) {
+ return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
+ } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
+ return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
+ }
+
+ // C++03 [temp.arg.type]p2:
+ // A local type, a type with no linkage, an unnamed type or a type
+ // compounded from any of these types shall not be used as a
+ // template-argument for a template type-parameter.
+ //
+ // C++11 allows these, and even in C++03 we allow them as an extension with
+ // a warning.
+ bool NeedsCheck;
+ if (LangOpts.CPlusPlus11)
+ NeedsCheck =
+ !Diags.isIgnored(diag::warn_cxx98_compat_template_arg_unnamed_type,
+ SR.getBegin()) ||
+ !Diags.isIgnored(diag::warn_cxx98_compat_template_arg_local_type,
+ SR.getBegin());
+ else
+ NeedsCheck = Arg->hasUnnamedOrLocalType();
+
+ if (NeedsCheck) {
+ UnnamedLocalNoLinkageFinder Finder(*this, SR);
+ (void)Finder.Visit(Context.getCanonicalType(Arg));
+ }
+
+ return false;
+}
+
+enum NullPointerValueKind {
+ NPV_NotNullPointer,
+ NPV_NullPointer,
+ NPV_Error
+};
+
+/// \brief Determine whether the given template argument is a null pointer
+/// value of the appropriate type.
+static NullPointerValueKind
+isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
+ QualType ParamType, Expr *Arg) {
+ if (Arg->isValueDependent() || Arg->isTypeDependent())
+ return NPV_NotNullPointer;
+
+ if (!S.getLangOpts().CPlusPlus11)
+ return NPV_NotNullPointer;
+
+ // Determine whether we have a constant expression.
+ ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
+ if (ArgRV.isInvalid())
+ return NPV_Error;
+ Arg = ArgRV.get();
+
+ Expr::EvalResult EvalResult;
+ SmallVector<PartialDiagnosticAt, 8> Notes;
+ EvalResult.Diag = &Notes;
+ if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
+ EvalResult.HasSideEffects) {
+ SourceLocation DiagLoc = Arg->getExprLoc();
+
+ // If our only note is the usual "invalid subexpression" note, just point
+ // the caret at its location rather than producing an essentially
+ // redundant note.
+ if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
+ diag::note_invalid_subexpr_in_const_expr) {
+ DiagLoc = Notes[0].first;
+ Notes.clear();
+ }
+
+ S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
+ << Arg->getType() << Arg->getSourceRange();
+ for (unsigned I = 0, N = Notes.size(); I != N; ++I)
+ S.Diag(Notes[I].first, Notes[I].second);
+
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ return NPV_Error;
+ }
+
+ // C++11 [temp.arg.nontype]p1:
+ // - an address constant expression of type std::nullptr_t
+ if (Arg->getType()->isNullPtrType())
+ return NPV_NullPointer;
+
+ // - a constant expression that evaluates to a null pointer value (4.10); or
+ // - a constant expression that evaluates to a null member pointer value
+ // (4.11); or
+ if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
+ (EvalResult.Val.isMemberPointer() &&
+ !EvalResult.Val.getMemberPointerDecl())) {
+ // If our expression has an appropriate type, we've succeeded.
+ bool ObjCLifetimeConversion;
+ if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
+ S.IsQualificationConversion(Arg->getType(), ParamType, false,
+ ObjCLifetimeConversion))
+ return NPV_NullPointer;
+
+ // The types didn't match, but we know we got a null pointer; complain,
+ // then recover as if the types were correct.
+ S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
+ << Arg->getType() << ParamType << Arg->getSourceRange();
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ return NPV_NullPointer;
+ }
+
+ // If we don't have a null pointer value, but we do have a NULL pointer
+ // constant, suggest a cast to the appropriate type.
+ if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
+ std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
+ S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
+ << ParamType << FixItHint::CreateInsertion(Arg->getLocStart(), Code)
+ << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getLocEnd()),
+ ")");
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ return NPV_NullPointer;
+ }
+
+ // FIXME: If we ever want to support general, address-constant expressions
+ // as non-type template arguments, we should return the ExprResult here to
+ // be interpreted by the caller.
+ return NPV_NotNullPointer;
+}
+
+/// \brief Checks whether the given template argument is compatible with its
+/// template parameter.
+static bool CheckTemplateArgumentIsCompatibleWithParameter(
+ Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
+ Expr *Arg, QualType ArgType) {
+ bool ObjCLifetimeConversion;
+ if (ParamType->isPointerType() &&
+ !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
+ S.IsQualificationConversion(ArgType, ParamType, false,
+ ObjCLifetimeConversion)) {
+ // For pointer-to-object types, qualification conversions are
+ // permitted.
+ } else {
+ if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
+ if (!ParamRef->getPointeeType()->isFunctionType()) {
+ // C++ [temp.arg.nontype]p5b3:
+ // For a non-type template-parameter of type reference to
+ // object, no conversions apply. The type referred to by the
+ // reference may be more cv-qualified than the (otherwise
+ // identical) type of the template- argument. The
+ // template-parameter is bound directly to the
+ // template-argument, which shall be an lvalue.
+
+ // FIXME: Other qualifiers?
+ unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
+ unsigned ArgQuals = ArgType.getCVRQualifiers();
+
+ if ((ParamQuals | ArgQuals) != ParamQuals) {
+ S.Diag(Arg->getLocStart(),
+ diag::err_template_arg_ref_bind_ignores_quals)
+ << ParamType << Arg->getType() << Arg->getSourceRange();
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+ }
+ }
+
+ // At this point, the template argument refers to an object or
+ // function with external linkage. We now need to check whether the
+ // argument and parameter types are compatible.
+ if (!S.Context.hasSameUnqualifiedType(ArgType,
+ ParamType.getNonReferenceType())) {
+ // We can't perform this conversion or binding.
+ if (ParamType->isReferenceType())
+ S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
+ << ParamType << ArgIn->getType() << Arg->getSourceRange();
+ else
+ S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
+ << ArgIn->getType() << ParamType << Arg->getSourceRange();
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/// \brief Checks whether the given template argument is the address
+/// of an object or function according to C++ [temp.arg.nontype]p1.
+static bool
+CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
+ NonTypeTemplateParmDecl *Param,
+ QualType ParamType,
+ Expr *ArgIn,
+ TemplateArgument &Converted) {
+ bool Invalid = false;
+ Expr *Arg = ArgIn;
+ QualType ArgType = Arg->getType();
+
+ bool AddressTaken = false;
+ SourceLocation AddrOpLoc;
+ if (S.getLangOpts().MicrosoftExt) {
+ // Microsoft Visual C++ strips all casts, allows an arbitrary number of
+ // dereference and address-of operators.
+ Arg = Arg->IgnoreParenCasts();
+
+ bool ExtWarnMSTemplateArg = false;
+ UnaryOperatorKind FirstOpKind;
+ SourceLocation FirstOpLoc;
+ while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
+ UnaryOperatorKind UnOpKind = UnOp->getOpcode();
+ if (UnOpKind == UO_Deref)
+ ExtWarnMSTemplateArg = true;
+ if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) {
+ Arg = UnOp->getSubExpr()->IgnoreParenCasts();
+ if (!AddrOpLoc.isValid()) {
+ FirstOpKind = UnOpKind;
+ FirstOpLoc = UnOp->getOperatorLoc();
+ }
+ } else
+ break;
+ }
+ if (FirstOpLoc.isValid()) {
+ if (ExtWarnMSTemplateArg)
+ S.Diag(ArgIn->getLocStart(), diag::ext_ms_deref_template_argument)
+ << ArgIn->getSourceRange();
+
+ if (FirstOpKind == UO_AddrOf)
+ AddressTaken = true;
+ else if (Arg->getType()->isPointerType()) {
+ // We cannot let pointers get dereferenced here, that is obviously not a
+ // constant expression.
+ assert(FirstOpKind == UO_Deref);
+ S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
+ << Arg->getSourceRange();
+ }
+ }
+ } else {
+ // See through any implicit casts we added to fix the type.
+ Arg = Arg->IgnoreImpCasts();
+
+ // C++ [temp.arg.nontype]p1:
+ //
+ // A template-argument for a non-type, non-template
+ // template-parameter shall be one of: [...]
+ //
+ // -- the address of an object or function with external
+ // linkage, including function templates and function
+ // template-ids but excluding non-static class members,
+ // expressed as & id-expression where the & is optional if
+ // the name refers to a function or array, or if the
+ // corresponding template-parameter is a reference; or
+
+ // In C++98/03 mode, give an extension warning on any extra parentheses.
+ // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
+ bool ExtraParens = false;
+ while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
+ if (!Invalid && !ExtraParens) {
+ S.Diag(Arg->getLocStart(),
+ S.getLangOpts().CPlusPlus11
+ ? diag::warn_cxx98_compat_template_arg_extra_parens
+ : diag::ext_template_arg_extra_parens)
+ << Arg->getSourceRange();
+ ExtraParens = true;
+ }
+
+ Arg = Parens->getSubExpr();
+ }
+
+ while (SubstNonTypeTemplateParmExpr *subst =
+ dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
+ Arg = subst->getReplacement()->IgnoreImpCasts();
+
+ if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
+ if (UnOp->getOpcode() == UO_AddrOf) {
+ Arg = UnOp->getSubExpr();
+ AddressTaken = true;
+ AddrOpLoc = UnOp->getOperatorLoc();
+ }
+ }
+
+ while (SubstNonTypeTemplateParmExpr *subst =
+ dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
+ Arg = subst->getReplacement()->IgnoreImpCasts();
+ }
+
+ DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
+ ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
+
+ // If our parameter has pointer type, check for a null template value.
+ if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
+ NullPointerValueKind NPV;
+ // dllimport'd entities aren't constant but are available inside of template
+ // arguments.
+ if (Entity && Entity->hasAttr<DLLImportAttr>())
+ NPV = NPV_NotNullPointer;
+ else
+ NPV = isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn);
+ switch (NPV) {
+ case NPV_NullPointer:
+ S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
+ Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
+ /*isNullPtr=*/true);
+ return false;
+
+ case NPV_Error:
+ return true;
+
+ case NPV_NotNullPointer:
+ break;
+ }
+ }
+
+ // Stop checking the precise nature of the argument if it is value dependent,
+ // it should be checked when instantiated.
+ if (Arg->isValueDependent()) {
+ Converted = TemplateArgument(ArgIn);
+ return false;
+ }
+
+ if (isa<CXXUuidofExpr>(Arg)) {
+ if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType,
+ ArgIn, Arg, ArgType))
+ return true;
+
+ Converted = TemplateArgument(ArgIn);
+ return false;
+ }
+
+ if (!DRE) {
+ S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
+ << Arg->getSourceRange();
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+
+ // Cannot refer to non-static data members
+ if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) {
+ S.Diag(Arg->getLocStart(), diag::err_template_arg_field)
+ << Entity << Arg->getSourceRange();
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+
+ // Cannot refer to non-static member functions
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
+ if (!Method->isStatic()) {
+ S.Diag(Arg->getLocStart(), diag::err_template_arg_method)
+ << Method << Arg->getSourceRange();
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+ }
+
+ FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
+ VarDecl *Var = dyn_cast<VarDecl>(Entity);
+
+ // A non-type template argument must refer to an object or function.
+ if (!Func && !Var) {
+ // We found something, but we don't know specifically what it is.
+ S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func)
+ << Arg->getSourceRange();
+ S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
+ return true;
+ }
+
+ // Address / reference template args must have external linkage in C++98.
+ if (Entity->getFormalLinkage() == InternalLinkage) {
+ S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus11 ?
+ diag::warn_cxx98_compat_template_arg_object_internal :
+ diag::ext_template_arg_object_internal)
+ << !Func << Entity << Arg->getSourceRange();
+ S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
+ << !Func;
+ } else if (!Entity->hasLinkage()) {
+ S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage)
+ << !Func << Entity << Arg->getSourceRange();
+ S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
+ << !Func;
+ return true;
+ }
+
+ if (Func) {
+ // If the template parameter has pointer type, the function decays.
+ if (ParamType->isPointerType() && !AddressTaken)
+ ArgType = S.Context.getPointerType(Func->getType());
+ else if (AddressTaken && ParamType->isReferenceType()) {
+ // If we originally had an address-of operator, but the
+ // parameter has reference type, complain and (if things look
+ // like they will work) drop the address-of operator.
+ if (!S.Context.hasSameUnqualifiedType(Func->getType(),
+ ParamType.getNonReferenceType())) {
+ S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
+ << ParamType;
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+
+ S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
+ << ParamType
+ << FixItHint::CreateRemoval(AddrOpLoc);
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+
+ ArgType = Func->getType();
+ }
+ } else {
+ // A value of reference type is not an object.
+ if (Var->getType()->isReferenceType()) {
+ S.Diag(Arg->getLocStart(),
+ diag::err_template_arg_reference_var)
+ << Var->getType() << Arg->getSourceRange();
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+
+ // A template argument must have static storage duration.
+ if (Var->getTLSKind()) {
+ S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local)
+ << Arg->getSourceRange();
+ S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
+ return true;
+ }
+
+ // If the template parameter has pointer type, we must have taken
+ // the address of this object.
+ if (ParamType->isReferenceType()) {
+ if (AddressTaken) {
+ // If we originally had an address-of operator, but the
+ // parameter has reference type, complain and (if things look
+ // like they will work) drop the address-of operator.
+ if (!S.Context.hasSameUnqualifiedType(Var->getType(),
+ ParamType.getNonReferenceType())) {
+ S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
+ << ParamType;
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+
+ S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
+ << ParamType
+ << FixItHint::CreateRemoval(AddrOpLoc);
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+
+ ArgType = Var->getType();
+ }
+ } else if (!AddressTaken && ParamType->isPointerType()) {
+ if (Var->getType()->isArrayType()) {
+ // Array-to-pointer decay.
+ ArgType = S.Context.getArrayDecayedType(Var->getType());
+ } else {
+ // If the template parameter has pointer type but the address of
+ // this object was not taken, complain and (possibly) recover by
+ // taking the address of the entity.
+ ArgType = S.Context.getPointerType(Var->getType());
+ if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
+ S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
+ << ParamType;
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+
+ S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
+ << ParamType
+ << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
+
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ }
+ }
+ }
+
+ if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn,
+ Arg, ArgType))
+ return true;
+
+ // Create the template argument.
+ Converted =
+ TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), ParamType);
+ S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity, false);
+ return false;
+}
+
+/// \brief Checks whether the given template argument is a pointer to
+/// member constant according to C++ [temp.arg.nontype]p1.
+static bool CheckTemplateArgumentPointerToMember(Sema &S,
+ NonTypeTemplateParmDecl *Param,
+ QualType ParamType,
+ Expr *&ResultArg,
+ TemplateArgument &Converted) {
+ bool Invalid = false;
+
+ // Check for a null pointer value.
+ Expr *Arg = ResultArg;
+ switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
+ case NPV_Error:
+ return true;
+ case NPV_NullPointer:
+ S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
+ Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
+ /*isNullPtr*/true);
+ if (S.Context.getTargetInfo().getCXXABI().isMicrosoft())
+ S.RequireCompleteType(Arg->getExprLoc(), ParamType, 0);
+ return false;
+ case NPV_NotNullPointer:
+ break;
+ }
+
+ bool ObjCLifetimeConversion;
+ if (S.IsQualificationConversion(Arg->getType(),
+ ParamType.getNonReferenceType(),
+ false, ObjCLifetimeConversion)) {
+ Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp,
+ Arg->getValueKind()).get();
+ ResultArg = Arg;
+ } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(),
+ ParamType.getNonReferenceType())) {
+ // We can't perform this conversion.
+ S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
+ << Arg->getType() << ParamType << Arg->getSourceRange();
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+
+ // See through any implicit casts we added to fix the type.
+ while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
+ Arg = Cast->getSubExpr();
+
+ // C++ [temp.arg.nontype]p1:
+ //
+ // A template-argument for a non-type, non-template
+ // template-parameter shall be one of: [...]
+ //
+ // -- a pointer to member expressed as described in 5.3.1.
+ DeclRefExpr *DRE = nullptr;
+
+ // In C++98/03 mode, give an extension warning on any extra parentheses.
+ // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
+ bool ExtraParens = false;
+ while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
+ if (!Invalid && !ExtraParens) {
+ S.Diag(Arg->getLocStart(),
+ S.getLangOpts().CPlusPlus11 ?
+ diag::warn_cxx98_compat_template_arg_extra_parens :
+ diag::ext_template_arg_extra_parens)
+ << Arg->getSourceRange();
+ ExtraParens = true;
+ }
+
+ Arg = Parens->getSubExpr();
+ }
+
+ while (SubstNonTypeTemplateParmExpr *subst =
+ dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
+ Arg = subst->getReplacement()->IgnoreImpCasts();
+
+ // A pointer-to-member constant written &Class::member.
+ if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
+ if (UnOp->getOpcode() == UO_AddrOf) {
+ DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
+ if (DRE && !DRE->getQualifier())
+ DRE = nullptr;
+ }
+ }
+ // A constant of pointer-to-member type.
+ else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
+ if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
+ if (VD->getType()->isMemberPointerType()) {
+ if (isa<NonTypeTemplateParmDecl>(VD)) {
+ if (Arg->isTypeDependent() || Arg->isValueDependent()) {
+ Converted = TemplateArgument(Arg);
+ } else {
+ VD = cast<ValueDecl>(VD->getCanonicalDecl());
+ Converted = TemplateArgument(VD, ParamType);
+ }
+ return Invalid;
+ }
+ }
+ }
+
+ DRE = nullptr;
+ }
+
+ if (!DRE)
+ return S.Diag(Arg->getLocStart(),
+ diag::err_template_arg_not_pointer_to_member_form)
+ << Arg->getSourceRange();
+
+ if (isa<FieldDecl>(DRE->getDecl()) ||
+ isa<IndirectFieldDecl>(DRE->getDecl()) ||
+ isa<CXXMethodDecl>(DRE->getDecl())) {
+ assert((isa<FieldDecl>(DRE->getDecl()) ||
+ isa<IndirectFieldDecl>(DRE->getDecl()) ||
+ !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
+ "Only non-static member pointers can make it here");
+
+ // Okay: this is the address of a non-static member, and therefore
+ // a member pointer constant.
+ if (Arg->isTypeDependent() || Arg->isValueDependent()) {
+ Converted = TemplateArgument(Arg);
+ } else {
+ ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
+ Converted = TemplateArgument(D, ParamType);
+ }
+ return Invalid;
+ }
+
+ // We found something else, but we don't know specifically what it is.
+ S.Diag(Arg->getLocStart(),
+ diag::err_template_arg_not_pointer_to_member_form)
+ << Arg->getSourceRange();
+ S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
+ return true;
+}
+
+/// \brief Check a template argument against its corresponding
+/// non-type template parameter.
+///
+/// This routine implements the semantics of C++ [temp.arg.nontype].
+/// If an error occurred, it returns ExprError(); otherwise, it
+/// returns the converted template argument. \p ParamType is the
+/// type of the non-type template parameter after it has been instantiated.
+ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
+ QualType ParamType, Expr *Arg,
+ TemplateArgument &Converted,
+ CheckTemplateArgumentKind CTAK) {
+ SourceLocation StartLoc = Arg->getLocStart();
+
+ // If either the parameter has a dependent type or the argument is
+ // type-dependent, there's nothing we can check now.
+ if (ParamType->isDependentType() || Arg->isTypeDependent()) {
+ // FIXME: Produce a cloned, canonical expression?
+ Converted = TemplateArgument(Arg);
+ return Arg;
+ }
+
+ // We should have already dropped all cv-qualifiers by now.
+ assert(!ParamType.hasQualifiers() &&
+ "non-type template parameter type cannot be qualified");
+
+ if (CTAK == CTAK_Deduced &&
+ !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) {
+ // C++ [temp.deduct.type]p17:
+ // If, in the declaration of a function template with a non-type
+ // template-parameter, the non-type template-parameter is used
+ // in an expression in the function parameter-list and, if the
+ // corresponding template-argument is deduced, the
+ // template-argument type shall match the type of the
+ // template-parameter exactly, except that a template-argument
+ // deduced from an array bound may be of any integral type.
+ Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
+ << Arg->getType().getUnqualifiedType()
+ << ParamType.getUnqualifiedType();
+ Diag(Param->getLocation(), diag::note_template_param_here);
+ return ExprError();
+ }
+
+ if (getLangOpts().CPlusPlus1z) {
+ // FIXME: We can do some limited checking for a value-dependent but not
+ // type-dependent argument.
+ if (Arg->isValueDependent()) {
+ Converted = TemplateArgument(Arg);
+ return Arg;
+ }
+
+ // C++1z [temp.arg.nontype]p1:
+ // A template-argument for a non-type template parameter shall be
+ // a converted constant expression of the type of the template-parameter.
+ APValue Value;
+ ExprResult ArgResult = CheckConvertedConstantExpression(
+ Arg, ParamType, Value, CCEK_TemplateArg);
+ if (ArgResult.isInvalid())
+ return ExprError();
+
+ QualType CanonParamType = Context.getCanonicalType(ParamType);
+
+ // Convert the APValue to a TemplateArgument.
+ switch (Value.getKind()) {
+ case APValue::Uninitialized:
+ assert(ParamType->isNullPtrType());
+ Converted = TemplateArgument(CanonParamType, /*isNullPtr*/true);
+ break;
+ case APValue::Int:
+ assert(ParamType->isIntegralOrEnumerationType());
+ Converted = TemplateArgument(Context, Value.getInt(), CanonParamType);
+ break;
+ case APValue::MemberPointer: {
+ assert(ParamType->isMemberPointerType());
+
+ // FIXME: We need TemplateArgument representation and mangling for these.
+ if (!Value.getMemberPointerPath().empty()) {
+ Diag(Arg->getLocStart(),
+ diag::err_template_arg_member_ptr_base_derived_not_supported)
+ << Value.getMemberPointerDecl() << ParamType
+ << Arg->getSourceRange();
+ return ExprError();
+ }
+
+ auto *VD = const_cast<ValueDecl*>(Value.getMemberPointerDecl());
+ Converted = VD ? TemplateArgument(VD, CanonParamType)
+ : TemplateArgument(CanonParamType, /*isNullPtr*/true);
+ break;
+ }
+ case APValue::LValue: {
+ // For a non-type template-parameter of pointer or reference type,
+ // the value of the constant expression shall not refer to
+ assert(ParamType->isPointerType() || ParamType->isReferenceType() ||
+ ParamType->isNullPtrType());
+ // -- a temporary object
+ // -- a string literal
+ // -- the result of a typeid expression, or
+ // -- a predefind __func__ variable
+ if (auto *E = Value.getLValueBase().dyn_cast<const Expr*>()) {
+ if (isa<CXXUuidofExpr>(E)) {
+ Converted = TemplateArgument(const_cast<Expr*>(E));
+ break;
+ }
+ Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
+ << Arg->getSourceRange();
+ return ExprError();
+ }
+ auto *VD = const_cast<ValueDecl *>(
+ Value.getLValueBase().dyn_cast<const ValueDecl *>());
+ // -- a subobject
+ if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 &&
+ VD && VD->getType()->isArrayType() &&
+ Value.getLValuePath()[0].ArrayIndex == 0 &&
+ !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) {
+ // Per defect report (no number yet):
+ // ... other than a pointer to the first element of a complete array
+ // object.
+ } else if (!Value.hasLValuePath() || Value.getLValuePath().size() ||
+ Value.isLValueOnePastTheEnd()) {
+ Diag(StartLoc, diag::err_non_type_template_arg_subobject)
+ << Value.getAsString(Context, ParamType);
+ return ExprError();
+ }
+ assert((VD || !ParamType->isReferenceType()) &&
+ "null reference should not be a constant expression");
+ assert((!VD || !ParamType->isNullPtrType()) &&
+ "non-null value of type nullptr_t?");
+ Converted = VD ? TemplateArgument(VD, CanonParamType)
+ : TemplateArgument(CanonParamType, /*isNullPtr*/true);
+ break;
+ }
+ case APValue::AddrLabelDiff:
+ return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff);
+ case APValue::Float:
+ case APValue::ComplexInt:
+ case APValue::ComplexFloat:
+ case APValue::Vector:
+ case APValue::Array:
+ case APValue::Struct:
+ case APValue::Union:
+ llvm_unreachable("invalid kind for template argument");
+ }
+
+ return ArgResult.get();
+ }
+
+ // C++ [temp.arg.nontype]p5:
+ // The following conversions are performed on each expression used
+ // as a non-type template-argument. If a non-type
+ // template-argument cannot be converted to the type of the
+ // corresponding template-parameter then the program is
+ // ill-formed.
+ if (ParamType->isIntegralOrEnumerationType()) {
+ // C++11:
+ // -- for a non-type template-parameter of integral or
+ // enumeration type, conversions permitted in a converted
+ // constant expression are applied.
+ //
+ // C++98:
+ // -- for a non-type template-parameter of integral or
+ // enumeration type, integral promotions (4.5) and integral
+ // conversions (4.7) are applied.
+
+ if (getLangOpts().CPlusPlus11) {
+ // We can't check arbitrary value-dependent arguments.
+ // FIXME: If there's no viable conversion to the template parameter type,
+ // we should be able to diagnose that prior to instantiation.
+ if (Arg->isValueDependent()) {
+ Converted = TemplateArgument(Arg);
+ return Arg;
+ }
+
+ // C++ [temp.arg.nontype]p1:
+ // A template-argument for a non-type, non-template template-parameter
+ // shall be one of:
+ //
+ // -- for a non-type template-parameter of integral or enumeration
+ // type, a converted constant expression of the type of the
+ // template-parameter; or
+ llvm::APSInt Value;
+ ExprResult ArgResult =
+ CheckConvertedConstantExpression(Arg, ParamType, Value,
+ CCEK_TemplateArg);
+ if (ArgResult.isInvalid())
+ return ExprError();
+
+ // Widen the argument value to sizeof(parameter type). This is almost
+ // always a no-op, except when the parameter type is bool. In
+ // that case, this may extend the argument from 1 bit to 8 bits.
+ QualType IntegerType = ParamType;
+ if (const EnumType *Enum = IntegerType->getAs<EnumType>())
+ IntegerType = Enum->getDecl()->getIntegerType();
+ Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
+
+ Converted = TemplateArgument(Context, Value,
+ Context.getCanonicalType(ParamType));
+ return ArgResult;
+ }
+
+ ExprResult ArgResult = DefaultLvalueConversion(Arg);
+ if (ArgResult.isInvalid())
+ return ExprError();
+ Arg = ArgResult.get();
+
+ QualType ArgType = Arg->getType();
+
+ // C++ [temp.arg.nontype]p1:
+ // A template-argument for a non-type, non-template
+ // template-parameter shall be one of:
+ //
+ // -- an integral constant-expression of integral or enumeration
+ // type; or
+ // -- the name of a non-type template-parameter; or
+ SourceLocation NonConstantLoc;
+ llvm::APSInt Value;
+ if (!ArgType->isIntegralOrEnumerationType()) {
+ Diag(Arg->getLocStart(),
+ diag::err_template_arg_not_integral_or_enumeral)
+ << ArgType << Arg->getSourceRange();
+ Diag(Param->getLocation(), diag::note_template_param_here);
+ return ExprError();
+ } else if (!Arg->isValueDependent()) {
+ class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
+ QualType T;
+
+ public:
+ TmplArgICEDiagnoser(QualType T) : T(T) { }
+
+ void diagnoseNotICE(Sema &S, SourceLocation Loc,
+ SourceRange SR) override {
+ S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR;
+ }
+ } Diagnoser(ArgType);
+
+ Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser,
+ false).get();
+ if (!Arg)
+ return ExprError();
+ }
+
+ // From here on out, all we care about is the unqualified form
+ // of the argument type.
+ ArgType = ArgType.getUnqualifiedType();
+
+ // Try to convert the argument to the parameter's type.
+ if (Context.hasSameType(ParamType, ArgType)) {
+ // Okay: no conversion necessary
+ } else if (ParamType->isBooleanType()) {
+ // This is an integral-to-boolean conversion.
+ Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get();
+ } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
+ !ParamType->isEnumeralType()) {
+ // This is an integral promotion or conversion.
+ Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get();
+ } else {
+ // We can't perform this conversion.
+ Diag(Arg->getLocStart(),
+ diag::err_template_arg_not_convertible)
+ << Arg->getType() << ParamType << Arg->getSourceRange();
+ Diag(Param->getLocation(), diag::note_template_param_here);
+ return ExprError();
+ }
+
+ // Add the value of this argument to the list of converted
+ // arguments. We use the bitwidth and signedness of the template
+ // parameter.
+ if (Arg->isValueDependent()) {
+ // The argument is value-dependent. Create a new
+ // TemplateArgument with the converted expression.
+ Converted = TemplateArgument(Arg);
+ return Arg;
+ }
+
+ QualType IntegerType = Context.getCanonicalType(ParamType);
+ if (const EnumType *Enum = IntegerType->getAs<EnumType>())
+ IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
+
+ if (ParamType->isBooleanType()) {
+ // Value must be zero or one.
+ Value = Value != 0;
+ unsigned AllowedBits = Context.getTypeSize(IntegerType);
+ if (Value.getBitWidth() != AllowedBits)
+ Value = Value.extOrTrunc(AllowedBits);
+ Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
+ } else {
+ llvm::APSInt OldValue = Value;
+
+ // Coerce the template argument's value to the value it will have
+ // based on the template parameter's type.
+ unsigned AllowedBits = Context.getTypeSize(IntegerType);
+ if (Value.getBitWidth() != AllowedBits)
+ Value = Value.extOrTrunc(AllowedBits);
+ Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
+
+ // Complain if an unsigned parameter received a negative value.
+ if (IntegerType->isUnsignedIntegerOrEnumerationType()
+ && (OldValue.isSigned() && OldValue.isNegative())) {
+ Diag(Arg->getLocStart(), diag::warn_template_arg_negative)
+ << OldValue.toString(10) << Value.toString(10) << Param->getType()
+ << Arg->getSourceRange();
+ Diag(Param->getLocation(), diag::note_template_param_here);
+ }
+
+ // Complain if we overflowed the template parameter's type.
+ unsigned RequiredBits;
+ if (IntegerType->isUnsignedIntegerOrEnumerationType())
+ RequiredBits = OldValue.getActiveBits();
+ else if (OldValue.isUnsigned())
+ RequiredBits = OldValue.getActiveBits() + 1;
+ else
+ RequiredBits = OldValue.getMinSignedBits();
+ if (RequiredBits > AllowedBits) {
+ Diag(Arg->getLocStart(),
+ diag::warn_template_arg_too_large)
+ << OldValue.toString(10) << Value.toString(10) << Param->getType()
+ << Arg->getSourceRange();
+ Diag(Param->getLocation(), diag::note_template_param_here);
+ }
+ }
+
+ Converted = TemplateArgument(Context, Value,
+ ParamType->isEnumeralType()
+ ? Context.getCanonicalType(ParamType)
+ : IntegerType);
+ return Arg;
+ }
+
+ QualType ArgType = Arg->getType();
+ DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
+
+ // Handle pointer-to-function, reference-to-function, and
+ // pointer-to-member-function all in (roughly) the same way.
+ if (// -- For a non-type template-parameter of type pointer to
+ // function, only the function-to-pointer conversion (4.3) is
+ // applied. If the template-argument represents a set of
+ // overloaded functions (or a pointer to such), the matching
+ // function is selected from the set (13.4).
+ (ParamType->isPointerType() &&
+ ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
+ // -- For a non-type template-parameter of type reference to
+ // function, no conversions apply. If the template-argument
+ // represents a set of overloaded functions, the matching
+ // function is selected from the set (13.4).
+ (ParamType->isReferenceType() &&
+ ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
+ // -- For a non-type template-parameter of type pointer to
+ // member function, no conversions apply. If the
+ // template-argument represents a set of overloaded member
+ // functions, the matching member function is selected from
+ // the set (13.4).
+ (ParamType->isMemberPointerType() &&
+ ParamType->getAs<MemberPointerType>()->getPointeeType()
+ ->isFunctionType())) {
+
+ if (Arg->getType() == Context.OverloadTy) {
+ if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
+ true,
+ FoundResult)) {
+ if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
+ return ExprError();
+
+ Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
+ ArgType = Arg->getType();
+ } else
+ return ExprError();
+ }
+
+ if (!ParamType->isMemberPointerType()) {
+ if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
+ ParamType,
+ Arg, Converted))
+ return ExprError();
+ return Arg;
+ }
+
+ if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
+ Converted))
+ return ExprError();
+ return Arg;
+ }
+
+ if (ParamType->isPointerType()) {
+ // -- for a non-type template-parameter of type pointer to
+ // object, qualification conversions (4.4) and the
+ // array-to-pointer conversion (4.2) are applied.
+ // C++0x also allows a value of std::nullptr_t.
+ assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
+ "Only object pointers allowed here");
+
+ if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
+ ParamType,
+ Arg, Converted))
+ return ExprError();
+ return Arg;
+ }
+
+ if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
+ // -- For a non-type template-parameter of type reference to
+ // object, no conversions apply. The type referred to by the
+ // reference may be more cv-qualified than the (otherwise
+ // identical) type of the template-argument. The
+ // template-parameter is bound directly to the
+ // template-argument, which must be an lvalue.
+ assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
+ "Only object references allowed here");
+
+ if (Arg->getType() == Context.OverloadTy) {
+ if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
+ ParamRefType->getPointeeType(),
+ true,
+ FoundResult)) {
+ if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
+ return ExprError();
+
+ Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
+ ArgType = Arg->getType();
+ } else
+ return ExprError();
+ }
+
+ if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
+ ParamType,
+ Arg, Converted))
+ return ExprError();
+ return Arg;
+ }
+
+ // Deal with parameters of type std::nullptr_t.
+ if (ParamType->isNullPtrType()) {
+ if (Arg->isTypeDependent() || Arg->isValueDependent()) {
+ Converted = TemplateArgument(Arg);
+ return Arg;
+ }
+
+ switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
+ case NPV_NotNullPointer:
+ Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
+ << Arg->getType() << ParamType;
+ Diag(Param->getLocation(), diag::note_template_param_here);
+ return ExprError();
+
+ case NPV_Error:
+ return ExprError();
+
+ case NPV_NullPointer:
+ Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
+ Converted = TemplateArgument(Context.getCanonicalType(ParamType),
+ /*isNullPtr*/true);
+ return Arg;
+ }
+ }
+
+ // -- For a non-type template-parameter of type pointer to data
+ // member, qualification conversions (4.4) are applied.
+ assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
+
+ if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
+ Converted))
+ return ExprError();
+ return Arg;
+}
+
+/// \brief Check a template argument against its corresponding
+/// template template parameter.
+///
+/// This routine implements the semantics of C++ [temp.arg.template].
+/// It returns true if an error occurred, and false otherwise.
+bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
+ TemplateArgumentLoc &Arg,
+ unsigned ArgumentPackIndex) {
+ TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
+ TemplateDecl *Template = Name.getAsTemplateDecl();
+ if (!Template) {
+ // Any dependent template name is fine.
+ assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
+ return false;
+ }
+
+ // C++0x [temp.arg.template]p1:
+ // A template-argument for a template template-parameter shall be
+ // the name of a class template or an alias template, expressed as an
+ // id-expression. When the template-argument names a class template, only
+ // primary class templates are considered when matching the
+ // template template argument with the corresponding parameter;
+ // partial specializations are not considered even if their
+ // parameter lists match that of the template template parameter.
+ //
+ // Note that we also allow template template parameters here, which
+ // will happen when we are dealing with, e.g., class template
+ // partial specializations.
+ if (!isa<ClassTemplateDecl>(Template) &&
+ !isa<TemplateTemplateParmDecl>(Template) &&
+ !isa<TypeAliasTemplateDecl>(Template)) {
+ assert(isa<FunctionTemplateDecl>(Template) &&
+ "Only function templates are possible here");
+ Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
+ Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
+ << Template;
+ }
+
+ TemplateParameterList *Params = Param->getTemplateParameters();
+ if (Param->isExpandedParameterPack())
+ Params = Param->getExpansionTemplateParameters(ArgumentPackIndex);
+
+ return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
+ Params,
+ true,
+ TPL_TemplateTemplateArgumentMatch,
+ Arg.getLocation());
+}
+
+/// \brief Given a non-type template argument that refers to a
+/// declaration and the type of its corresponding non-type template
+/// parameter, produce an expression that properly refers to that
+/// declaration.
+ExprResult
+Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
+ QualType ParamType,
+ SourceLocation Loc) {
+ // C++ [temp.param]p8:
+ //
+ // A non-type template-parameter of type "array of T" or
+ // "function returning T" is adjusted to be of type "pointer to
+ // T" or "pointer to function returning T", respectively.
+ if (ParamType->isArrayType())
+ ParamType = Context.getArrayDecayedType(ParamType);
+ else if (ParamType->isFunctionType())
+ ParamType = Context.getPointerType(ParamType);
+
+ // For a NULL non-type template argument, return nullptr casted to the
+ // parameter's type.
+ if (Arg.getKind() == TemplateArgument::NullPtr) {
+ return ImpCastExprToType(
+ new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
+ ParamType,
+ ParamType->getAs<MemberPointerType>()
+ ? CK_NullToMemberPointer
+ : CK_NullToPointer);
+ }
+ assert(Arg.getKind() == TemplateArgument::Declaration &&
+ "Only declaration template arguments permitted here");
+
+ ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
+
+ if (VD->getDeclContext()->isRecord() &&
+ (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||
+ isa<IndirectFieldDecl>(VD))) {
+ // If the value is a class member, we might have a pointer-to-member.
+ // Determine whether the non-type template template parameter is of
+ // pointer-to-member type. If so, we need to build an appropriate
+ // expression for a pointer-to-member, since a "normal" DeclRefExpr
+ // would refer to the member itself.
+ if (ParamType->isMemberPointerType()) {
+ QualType ClassType
+ = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
+ NestedNameSpecifier *Qualifier
+ = NestedNameSpecifier::Create(Context, nullptr, false,
+ ClassType.getTypePtr());
+ CXXScopeSpec SS;
+ SS.MakeTrivial(Context, Qualifier, Loc);
+
+ // The actual value-ness of this is unimportant, but for
+ // internal consistency's sake, references to instance methods
+ // are r-values.
+ ExprValueKind VK = VK_LValue;
+ if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
+ VK = VK_RValue;
+
+ ExprResult RefExpr = BuildDeclRefExpr(VD,
+ VD->getType().getNonReferenceType(),
+ VK,
+ Loc,
+ &SS);
+ if (RefExpr.isInvalid())
+ return ExprError();
+
+ RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
+
+ // We might need to perform a trailing qualification conversion, since
+ // the element type on the parameter could be more qualified than the
+ // element type in the expression we constructed.
+ bool ObjCLifetimeConversion;
+ if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
+ ParamType.getUnqualifiedType(), false,
+ ObjCLifetimeConversion))
+ RefExpr = ImpCastExprToType(RefExpr.get(), ParamType.getUnqualifiedType(), CK_NoOp);
+
+ assert(!RefExpr.isInvalid() &&
+ Context.hasSameType(((Expr*) RefExpr.get())->getType(),
+ ParamType.getUnqualifiedType()));
+ return RefExpr;
+ }
+ }
+
+ QualType T = VD->getType().getNonReferenceType();
+
+ if (ParamType->isPointerType()) {
+ // When the non-type template parameter is a pointer, take the
+ // address of the declaration.
+ ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
+ if (RefExpr.isInvalid())
+ return ExprError();
+
+ if (T->isFunctionType() || T->isArrayType()) {
+ // Decay functions and arrays.
+ RefExpr = DefaultFunctionArrayConversion(RefExpr.get());
+ if (RefExpr.isInvalid())
+ return ExprError();
+
+ return RefExpr;
+ }
+
+ // Take the address of everything else
+ return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
+ }
+
+ ExprValueKind VK = VK_RValue;
+
+ // If the non-type template parameter has reference type, qualify the
+ // resulting declaration reference with the extra qualifiers on the
+ // type that the reference refers to.
+ if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
+ VK = VK_LValue;
+ T = Context.getQualifiedType(T,
+ TargetRef->getPointeeType().getQualifiers());
+ } else if (isa<FunctionDecl>(VD)) {
+ // References to functions are always lvalues.
+ VK = VK_LValue;
+ }
+
+ return BuildDeclRefExpr(VD, T, VK, Loc);
+}
+
+/// \brief Construct a new expression that refers to the given
+/// integral template argument with the given source-location
+/// information.
+///
+/// This routine takes care of the mapping from an integral template
+/// argument (which may have any integral type) to the appropriate
+/// literal value.
+ExprResult
+Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
+ SourceLocation Loc) {
+ assert(Arg.getKind() == TemplateArgument::Integral &&
+ "Operation is only valid for integral template arguments");
+ QualType OrigT = Arg.getIntegralType();
+
+ // If this is an enum type that we're instantiating, we need to use an integer
+ // type the same size as the enumerator. We don't want to build an
+ // IntegerLiteral with enum type. The integer type of an enum type can be of
+ // any integral type with C++11 enum classes, make sure we create the right
+ // type of literal for it.
+ QualType T = OrigT;
+ if (const EnumType *ET = OrigT->getAs<EnumType>())
+ T = ET->getDecl()->getIntegerType();
+
+ Expr *E;
+ if (T->isAnyCharacterType()) {
+ CharacterLiteral::CharacterKind Kind;
+ if (T->isWideCharType())
+ Kind = CharacterLiteral::Wide;
+ else if (T->isChar16Type())
+ Kind = CharacterLiteral::UTF16;
+ else if (T->isChar32Type())
+ Kind = CharacterLiteral::UTF32;
+ else
+ Kind = CharacterLiteral::Ascii;
+
+ E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(),
+ Kind, T, Loc);
+ } else if (T->isBooleanType()) {
+ E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(),
+ T, Loc);
+ } else if (T->isNullPtrType()) {
+ E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
+ } else {
+ E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc);
+ }
+
+ if (OrigT->isEnumeralType()) {
+ // FIXME: This is a hack. We need a better way to handle substituted
+ // non-type template parameters.
+ E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E,
+ nullptr,
+ Context.getTrivialTypeSourceInfo(OrigT, Loc),
+ Loc, Loc);
+ }
+
+ return E;
+}
+
+/// \brief Match two template parameters within template parameter lists.
+static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
+ bool Complain,
+ Sema::TemplateParameterListEqualKind Kind,
+ SourceLocation TemplateArgLoc) {
+ // Check the actual kind (type, non-type, template).
+ if (Old->getKind() != New->getKind()) {
+ if (Complain) {
+ unsigned NextDiag = diag::err_template_param_different_kind;
+ if (TemplateArgLoc.isValid()) {
+ S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
+ NextDiag = diag::note_template_param_different_kind;
+ }
+ S.Diag(New->getLocation(), NextDiag)
+ << (Kind != Sema::TPL_TemplateMatch);
+ S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
+ << (Kind != Sema::TPL_TemplateMatch);
+ }
+
+ return false;
+ }
+
+ // Check that both are parameter packs are neither are parameter packs.
+ // However, if we are matching a template template argument to a
+ // template template parameter, the template template parameter can have
+ // a parameter pack where the template template argument does not.
+ if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
+ !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
+ Old->isTemplateParameterPack())) {
+ if (Complain) {
+ unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
+ if (TemplateArgLoc.isValid()) {
+ S.Diag(TemplateArgLoc,
+ diag::err_template_arg_template_params_mismatch);
+ NextDiag = diag::note_template_parameter_pack_non_pack;
+ }
+
+ unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
+ : isa<NonTypeTemplateParmDecl>(New)? 1
+ : 2;
+ S.Diag(New->getLocation(), NextDiag)
+ << ParamKind << New->isParameterPack();
+ S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
+ << ParamKind << Old->isParameterPack();
+ }
+
+ return false;
+ }
+
+ // For non-type template parameters, check the type of the parameter.
+ if (NonTypeTemplateParmDecl *OldNTTP
+ = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
+ NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
+
+ // If we are matching a template template argument to a template
+ // template parameter and one of the non-type template parameter types
+ // is dependent, then we must wait until template instantiation time
+ // to actually compare the arguments.
+ if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
+ (OldNTTP->getType()->isDependentType() ||
+ NewNTTP->getType()->isDependentType()))
+ return true;
+
+ if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
+ if (Complain) {
+ unsigned NextDiag = diag::err_template_nontype_parm_different_type;
+ if (TemplateArgLoc.isValid()) {
+ S.Diag(TemplateArgLoc,
+ diag::err_template_arg_template_params_mismatch);
+ NextDiag = diag::note_template_nontype_parm_different_type;
+ }
+ S.Diag(NewNTTP->getLocation(), NextDiag)
+ << NewNTTP->getType()
+ << (Kind != Sema::TPL_TemplateMatch);
+ S.Diag(OldNTTP->getLocation(),
+ diag::note_template_nontype_parm_prev_declaration)
+ << OldNTTP->getType();
+ }
+
+ return false;
+ }
+
+ return true;
+ }
+
+ // For template template parameters, check the template parameter types.
+ // The template parameter lists of template template
+ // parameters must agree.
+ if (TemplateTemplateParmDecl *OldTTP
+ = dyn_cast<TemplateTemplateParmDecl>(Old)) {
+ TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
+ return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
+ OldTTP->getTemplateParameters(),
+ Complain,
+ (Kind == Sema::TPL_TemplateMatch
+ ? Sema::TPL_TemplateTemplateParmMatch
+ : Kind),
+ TemplateArgLoc);
+ }
+
+ return true;
+}
+
+/// \brief Diagnose a known arity mismatch when comparing template argument
+/// lists.
+static
+void DiagnoseTemplateParameterListArityMismatch(Sema &S,
+ TemplateParameterList *New,
+ TemplateParameterList *Old,
+ Sema::TemplateParameterListEqualKind Kind,
+ SourceLocation TemplateArgLoc) {
+ unsigned NextDiag = diag::err_template_param_list_different_arity;
+ if (TemplateArgLoc.isValid()) {
+ S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
+ NextDiag = diag::note_template_param_list_different_arity;
+ }
+ S.Diag(New->getTemplateLoc(), NextDiag)
+ << (New->size() > Old->size())
+ << (Kind != Sema::TPL_TemplateMatch)
+ << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
+ S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
+ << (Kind != Sema::TPL_TemplateMatch)
+ << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
+}
+
+/// \brief Determine whether the given template parameter lists are
+/// equivalent.
+///
+/// \param New The new template parameter list, typically written in the
+/// source code as part of a new template declaration.
+///
+/// \param Old The old template parameter list, typically found via
+/// name lookup of the template declared with this template parameter
+/// list.
+///
+/// \param Complain If true, this routine will produce a diagnostic if
+/// the template parameter lists are not equivalent.
+///
+/// \param Kind describes how we are to match the template parameter lists.
+///
+/// \param TemplateArgLoc If this source location is valid, then we
+/// are actually checking the template parameter list of a template
+/// argument (New) against the template parameter list of its
+/// corresponding template template parameter (Old). We produce
+/// slightly different diagnostics in this scenario.
+///
+/// \returns True if the template parameter lists are equal, false
+/// otherwise.
+bool
+Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
+ TemplateParameterList *Old,
+ bool Complain,
+ TemplateParameterListEqualKind Kind,
+ SourceLocation TemplateArgLoc) {
+ if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
+ if (Complain)
+ DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
+ TemplateArgLoc);
+
+ return false;
+ }
+
+ // C++0x [temp.arg.template]p3:
+ // A template-argument matches a template template-parameter (call it P)
+ // when each of the template parameters in the template-parameter-list of
+ // the template-argument's corresponding class template or alias template
+ // (call it A) matches the corresponding template parameter in the
+ // template-parameter-list of P. [...]
+ TemplateParameterList::iterator NewParm = New->begin();
+ TemplateParameterList::iterator NewParmEnd = New->end();
+ for (TemplateParameterList::iterator OldParm = Old->begin(),
+ OldParmEnd = Old->end();
+ OldParm != OldParmEnd; ++OldParm) {
+ if (Kind != TPL_TemplateTemplateArgumentMatch ||
+ !(*OldParm)->isTemplateParameterPack()) {
+ if (NewParm == NewParmEnd) {
+ if (Complain)
+ DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
+ TemplateArgLoc);
+
+ return false;
+ }
+
+ if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
+ Kind, TemplateArgLoc))
+ return false;
+
+ ++NewParm;
+ continue;
+ }
+
+ // C++0x [temp.arg.template]p3:
+ // [...] When P's template- parameter-list contains a template parameter
+ // pack (14.5.3), the template parameter pack will match zero or more
+ // template parameters or template parameter packs in the
+ // template-parameter-list of A with the same type and form as the
+ // template parameter pack in P (ignoring whether those template
+ // parameters are template parameter packs).
+ for (; NewParm != NewParmEnd; ++NewParm) {
+ if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
+ Kind, TemplateArgLoc))
+ return false;
+ }
+ }
+
+ // Make sure we exhausted all of the arguments.
+ if (NewParm != NewParmEnd) {
+ if (Complain)
+ DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
+ TemplateArgLoc);
+
+ return false;
+ }
+
+ return true;
+}
+
+/// \brief Check whether a template can be declared within this scope.
+///
+/// If the template declaration is valid in this scope, returns
+/// false. Otherwise, issues a diagnostic and returns true.
+bool
+Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
+ if (!S)
+ return false;
+
+ // Find the nearest enclosing declaration scope.
+ while ((S->getFlags() & Scope::DeclScope) == 0 ||
+ (S->getFlags() & Scope::TemplateParamScope) != 0)
+ S = S->getParent();
+
+ // C++ [temp]p4:
+ // A template [...] shall not have C linkage.
+ DeclContext *Ctx = S->getEntity();
+ if (Ctx && Ctx->isExternCContext())
+ return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
+ << TemplateParams->getSourceRange();
+
+ while (Ctx && isa<LinkageSpecDecl>(Ctx))
+ Ctx = Ctx->getParent();
+
+ // C++ [temp]p2:
+ // A template-declaration can appear only as a namespace scope or
+ // class scope declaration.
+ if (Ctx) {
+ if (Ctx->isFileContext())
+ return false;
+ if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) {
+ // C++ [temp.mem]p2:
+ // A local class shall not have member templates.
+ if (RD->isLocalClass())
+ return Diag(TemplateParams->getTemplateLoc(),
+ diag::err_template_inside_local_class)
+ << TemplateParams->getSourceRange();
+ else
+ return false;
+ }
+ }
+
+ return Diag(TemplateParams->getTemplateLoc(),
+ diag::err_template_outside_namespace_or_class_scope)
+ << TemplateParams->getSourceRange();
+}
+
+/// \brief Determine what kind of template specialization the given declaration
+/// is.
+static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
+ if (!D)
+ return TSK_Undeclared;
+
+ if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
+ return Record->getTemplateSpecializationKind();
+ if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
+ return Function->getTemplateSpecializationKind();
+ if (VarDecl *Var = dyn_cast<VarDecl>(D))
+ return Var->getTemplateSpecializationKind();
+
+ return TSK_Undeclared;
+}
+
+/// \brief Check whether a specialization is well-formed in the current
+/// context.
+///
+/// This routine determines whether a template specialization can be declared
+/// in the current context (C++ [temp.expl.spec]p2).
+///
+/// \param S the semantic analysis object for which this check is being
+/// performed.
+///
+/// \param Specialized the entity being specialized or instantiated, which
+/// may be a kind of template (class template, function template, etc.) or
+/// a member of a class template (member function, static data member,
+/// member class).
+///
+/// \param PrevDecl the previous declaration of this entity, if any.
+///
+/// \param Loc the location of the explicit specialization or instantiation of
+/// this entity.
+///
+/// \param IsPartialSpecialization whether this is a partial specialization of
+/// a class template.
+///
+/// \returns true if there was an error that we cannot recover from, false
+/// otherwise.
+static bool CheckTemplateSpecializationScope(Sema &S,
+ NamedDecl *Specialized,
+ NamedDecl *PrevDecl,
+ SourceLocation Loc,
+ bool IsPartialSpecialization) {
+ // Keep these "kind" numbers in sync with the %select statements in the
+ // various diagnostics emitted by this routine.
+ int EntityKind = 0;
+ if (isa<ClassTemplateDecl>(Specialized))
+ EntityKind = IsPartialSpecialization? 1 : 0;
+ else if (isa<VarTemplateDecl>(Specialized))
+ EntityKind = IsPartialSpecialization ? 3 : 2;
+ else if (isa<FunctionTemplateDecl>(Specialized))
+ EntityKind = 4;
+ else if (isa<CXXMethodDecl>(Specialized))
+ EntityKind = 5;
+ else if (isa<VarDecl>(Specialized))
+ EntityKind = 6;
+ else if (isa<RecordDecl>(Specialized))
+ EntityKind = 7;
+ else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
+ EntityKind = 8;
+ else {
+ S.Diag(Loc, diag::err_template_spec_unknown_kind)
+ << S.getLangOpts().CPlusPlus11;
+ S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
+ return true;
+ }
+
+ // C++ [temp.expl.spec]p2:
+ // An explicit specialization shall be declared in the namespace
+ // of which the template is a member, or, for member templates, in
+ // the namespace of which the enclosing class or enclosing class
+ // template is a member. An explicit specialization of a member
+ // function, member class or static data member of a class
+ // template shall be declared in the namespace of which the class
+ // template is a member. Such a declaration may also be a
+ // definition. If the declaration is not a definition, the
+ // specialization may be defined later in the name- space in which
+ // the explicit specialization was declared, or in a namespace
+ // that encloses the one in which the explicit specialization was
+ // declared.
+ if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
+ S.Diag(Loc, diag::err_template_spec_decl_function_scope)
+ << Specialized;
+ return true;
+ }
+
+ if (S.CurContext->isRecord() && !IsPartialSpecialization) {
+ if (S.getLangOpts().MicrosoftExt) {
+ // Do not warn for class scope explicit specialization during
+ // instantiation, warning was already emitted during pattern
+ // semantic analysis.
+ if (!S.ActiveTemplateInstantiations.size())
+ S.Diag(Loc, diag::ext_function_specialization_in_class)
+ << Specialized;
+ } else {
+ S.Diag(Loc, diag::err_template_spec_decl_class_scope)
+ << Specialized;
+ return true;
+ }
+ }
+
+ if (S.CurContext->isRecord() &&
+ !S.CurContext->Equals(Specialized->getDeclContext())) {
+ // Make sure that we're specializing in the right record context.
+ // Otherwise, things can go horribly wrong.
+ S.Diag(Loc, diag::err_template_spec_decl_class_scope)
+ << Specialized;
+ return true;
+ }
+
+ // C++ [temp.class.spec]p6:
+ // A class template partial specialization may be declared or redeclared
+ // in any namespace scope in which its definition may be defined (14.5.1
+ // and 14.5.2).
+ DeclContext *SpecializedContext
+ = Specialized->getDeclContext()->getEnclosingNamespaceContext();
+ DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
+
+ // Make sure that this redeclaration (or definition) occurs in an enclosing
+ // namespace.
+ // Note that HandleDeclarator() performs this check for explicit
+ // specializations of function templates, static data members, and member
+ // functions, so we skip the check here for those kinds of entities.
+ // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
+ // Should we refactor that check, so that it occurs later?
+ if (!DC->Encloses(SpecializedContext) &&
+ !(isa<FunctionTemplateDecl>(Specialized) ||
+ isa<FunctionDecl>(Specialized) ||
+ isa<VarTemplateDecl>(Specialized) ||
+ isa<VarDecl>(Specialized))) {
+ if (isa<TranslationUnitDecl>(SpecializedContext))
+ S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
+ << EntityKind << Specialized;
+ else if (isa<NamespaceDecl>(SpecializedContext)) {
+ int Diag = diag::err_template_spec_redecl_out_of_scope;
+ if (S.getLangOpts().MicrosoftExt)
+ Diag = diag::ext_ms_template_spec_redecl_out_of_scope;
+ S.Diag(Loc, Diag) << EntityKind << Specialized
+ << cast<NamedDecl>(SpecializedContext);
+ } else
+ llvm_unreachable("unexpected namespace context for specialization");
+
+ S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
+ } else if ((!PrevDecl ||
+ getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
+ getTemplateSpecializationKind(PrevDecl) ==
+ TSK_ImplicitInstantiation)) {
+ // C++ [temp.exp.spec]p2:
+ // An explicit specialization shall be declared in the namespace of which
+ // the template is a member, or, for member templates, in the namespace
+ // of which the enclosing class or enclosing class template is a member.
+ // An explicit specialization of a member function, member class or
+ // static data member of a class template shall be declared in the
+ // namespace of which the class template is a member.
+ //
+ // C++11 [temp.expl.spec]p2:
+ // An explicit specialization shall be declared in a namespace enclosing
+ // the specialized template.
+ // C++11 [temp.explicit]p3:
+ // An explicit instantiation shall appear in an enclosing namespace of its
+ // template.
+ if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) {
+ bool IsCPlusPlus11Extension = DC->Encloses(SpecializedContext);
+ if (isa<TranslationUnitDecl>(SpecializedContext)) {
+ assert(!IsCPlusPlus11Extension &&
+ "DC encloses TU but isn't in enclosing namespace set");
+ S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
+ << EntityKind << Specialized;
+ } else if (isa<NamespaceDecl>(SpecializedContext)) {
+ int Diag;
+ if (!IsCPlusPlus11Extension)
+ Diag = diag::err_template_spec_decl_out_of_scope;
+ else if (!S.getLangOpts().CPlusPlus11)
+ Diag = diag::ext_template_spec_decl_out_of_scope;
+ else
+ Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope;
+ S.Diag(Loc, Diag)
+ << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext);
+ }
+
+ S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
+ }
+ }
+
+ return false;
+}
+
+static SourceRange findTemplateParameter(unsigned Depth, Expr *E) {
+ if (!E->isInstantiationDependent())
+ return SourceLocation();
+ DependencyChecker Checker(Depth);
+ Checker.TraverseStmt(E);
+ if (Checker.Match && Checker.MatchLoc.isInvalid())
+ return E->getSourceRange();
+ return Checker.MatchLoc;
+}
+
+static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) {
+ if (!TL.getType()->isDependentType())
+ return SourceLocation();
+ DependencyChecker Checker(Depth);
+ Checker.TraverseTypeLoc(TL);
+ if (Checker.Match && Checker.MatchLoc.isInvalid())
+ return TL.getSourceRange();
+ return Checker.MatchLoc;
+}
+
+/// \brief Subroutine of Sema::CheckTemplatePartialSpecializationArgs
+/// that checks non-type template partial specialization arguments.
+static bool CheckNonTypeTemplatePartialSpecializationArgs(
+ Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param,
+ const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) {
+ for (unsigned I = 0; I != NumArgs; ++I) {
+ if (Args[I].getKind() == TemplateArgument::Pack) {
+ if (CheckNonTypeTemplatePartialSpecializationArgs(
+ S, TemplateNameLoc, Param, Args[I].pack_begin(),
+ Args[I].pack_size(), IsDefaultArgument))
+ return true;
+
+ continue;
+ }
+
+ if (Args[I].getKind() != TemplateArgument::Expression)
+ continue;
+
+ Expr *ArgExpr = Args[I].getAsExpr();
+
+ // We can have a pack expansion of any of the bullets below.
+ if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
+ ArgExpr = Expansion->getPattern();
+
+ // Strip off any implicit casts we added as part of type checking.
+ while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
+ ArgExpr = ICE->getSubExpr();
+
+ // C++ [temp.class.spec]p8:
+ // A non-type argument is non-specialized if it is the name of a
+ // non-type parameter. All other non-type arguments are
+ // specialized.
+ //
+ // Below, we check the two conditions that only apply to
+ // specialized non-type arguments, so skip any non-specialized
+ // arguments.
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
+ if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
+ continue;
+
+ // C++ [temp.class.spec]p9:
+ // Within the argument list of a class template partial
+ // specialization, the following restrictions apply:
+ // -- A partially specialized non-type argument expression
+ // shall not involve a template parameter of the partial
+ // specialization except when the argument expression is a
+ // simple identifier.
+ SourceRange ParamUseRange =
+ findTemplateParameter(Param->getDepth(), ArgExpr);
+ if (ParamUseRange.isValid()) {
+ if (IsDefaultArgument) {
+ S.Diag(TemplateNameLoc,
+ diag::err_dependent_non_type_arg_in_partial_spec);
+ S.Diag(ParamUseRange.getBegin(),
+ diag::note_dependent_non_type_default_arg_in_partial_spec)
+ << ParamUseRange;
+ } else {
+ S.Diag(ParamUseRange.getBegin(),
+ diag::err_dependent_non_type_arg_in_partial_spec)
+ << ParamUseRange;
+ }
+ return true;
+ }
+
+ // -- The type of a template parameter corresponding to a
+ // specialized non-type argument shall not be dependent on a
+ // parameter of the specialization.
+ //
+ // FIXME: We need to delay this check until instantiation in some cases:
+ //
+ // template<template<typename> class X> struct A {
+ // template<typename T, X<T> N> struct B;
+ // template<typename T> struct B<T, 0>;
+ // };
+ // template<typename> using X = int;
+ // A<X>::B<int, 0> b;
+ ParamUseRange = findTemplateParameter(
+ Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc());
+ if (ParamUseRange.isValid()) {
+ S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getLocStart(),
+ diag::err_dependent_typed_non_type_arg_in_partial_spec)
+ << Param->getType() << ParamUseRange;
+ S.Diag(Param->getLocation(), diag::note_template_param_here)
+ << (IsDefaultArgument ? ParamUseRange : SourceRange());
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/// \brief Check the non-type template arguments of a class template
+/// partial specialization according to C++ [temp.class.spec]p9.
+///
+/// \param TemplateNameLoc the location of the template name.
+/// \param TemplateParams the template parameters of the primary class
+/// template.
+/// \param NumExplicit the number of explicitly-specified template arguments.
+/// \param TemplateArgs the template arguments of the class template
+/// partial specialization.
+///
+/// \returns \c true if there was an error, \c false otherwise.
+static bool CheckTemplatePartialSpecializationArgs(
+ Sema &S, SourceLocation TemplateNameLoc,
+ TemplateParameterList *TemplateParams, unsigned NumExplicit,
+ SmallVectorImpl<TemplateArgument> &TemplateArgs) {
+ const TemplateArgument *ArgList = TemplateArgs.data();
+
+ for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
+ NonTypeTemplateParmDecl *Param
+ = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
+ if (!Param)
+ continue;
+
+ if (CheckNonTypeTemplatePartialSpecializationArgs(
+ S, TemplateNameLoc, Param, &ArgList[I], 1, I >= NumExplicit))
+ return true;
+ }
+
+ return false;
+}
+
+DeclResult
+Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
+ TagUseKind TUK,
+ SourceLocation KWLoc,
+ SourceLocation ModulePrivateLoc,
+ TemplateIdAnnotation &TemplateId,
+ AttributeList *Attr,
+ MultiTemplateParamsArg
+ TemplateParameterLists,
+ SkipBodyInfo *SkipBody) {
+ assert(TUK != TUK_Reference && "References are not specializations");
+
+ CXXScopeSpec &SS = TemplateId.SS;
+
+ // NOTE: KWLoc is the location of the tag keyword. This will instead
+ // store the location of the outermost template keyword in the declaration.
+ SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
+ ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc;
+ SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc;
+ SourceLocation LAngleLoc = TemplateId.LAngleLoc;
+ SourceLocation RAngleLoc = TemplateId.RAngleLoc;
+
+ // Find the class template we're specializing
+ TemplateName Name = TemplateId.Template.get();
+ ClassTemplateDecl *ClassTemplate
+ = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
+
+ if (!ClassTemplate) {
+ Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
+ << (Name.getAsTemplateDecl() &&
+ isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
+ return true;
+ }
+
+ bool isExplicitSpecialization = false;
+ bool isPartialSpecialization = false;
+
+ // Check the validity of the template headers that introduce this
+ // template.
+ // FIXME: We probably shouldn't complain about these headers for
+ // friend declarations.
+ bool Invalid = false;
+ TemplateParameterList *TemplateParams =
+ MatchTemplateParametersToScopeSpecifier(
+ KWLoc, TemplateNameLoc, SS, &TemplateId,
+ TemplateParameterLists, TUK == TUK_Friend, isExplicitSpecialization,
+ Invalid);
+ if (Invalid)
+ return true;
+
+ if (TemplateParams && TemplateParams->size() > 0) {
+ isPartialSpecialization = true;
+
+ if (TUK == TUK_Friend) {
+ Diag(KWLoc, diag::err_partial_specialization_friend)
+ << SourceRange(LAngleLoc, RAngleLoc);
+ return true;
+ }
+
+ // C++ [temp.class.spec]p10:
+ // The template parameter list of a specialization shall not
+ // contain default template argument values.
+ for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
+ Decl *Param = TemplateParams->getParam(I);
+ if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
+ if (TTP->hasDefaultArgument()) {
+ Diag(TTP->getDefaultArgumentLoc(),
+ diag::err_default_arg_in_partial_spec);
+ TTP->removeDefaultArgument();
+ }
+ } else if (NonTypeTemplateParmDecl *NTTP
+ = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
+ if (Expr *DefArg = NTTP->getDefaultArgument()) {
+ Diag(NTTP->getDefaultArgumentLoc(),
+ diag::err_default_arg_in_partial_spec)
+ << DefArg->getSourceRange();
+ NTTP->removeDefaultArgument();
+ }
+ } else {
+ TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
+ if (TTP->hasDefaultArgument()) {
+ Diag(TTP->getDefaultArgument().getLocation(),
+ diag::err_default_arg_in_partial_spec)
+ << TTP->getDefaultArgument().getSourceRange();
+ TTP->removeDefaultArgument();
+ }
+ }
+ }
+ } else if (TemplateParams) {
+ if (TUK == TUK_Friend)
+ Diag(KWLoc, diag::err_template_spec_friend)
+ << FixItHint::CreateRemoval(
+ SourceRange(TemplateParams->getTemplateLoc(),
+ TemplateParams->getRAngleLoc()))
+ << SourceRange(LAngleLoc, RAngleLoc);
+ else
+ isExplicitSpecialization = true;
+ } else {
+ assert(TUK == TUK_Friend && "should have a 'template<>' for this decl");
+ }
+
+ // Check that the specialization uses the same tag kind as the
+ // original template.
+ TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
+ assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
+ if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
+ Kind, TUK == TUK_Definition, KWLoc,
+ *ClassTemplate->getIdentifier())) {
+ Diag(KWLoc, diag::err_use_with_wrong_tag)
+ << ClassTemplate
+ << FixItHint::CreateReplacement(KWLoc,
+ ClassTemplate->getTemplatedDecl()->getKindName());
+ Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
+ diag::note_previous_use);
+ Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
+ }
+
+ // Translate the parser's template argument list in our AST format.
+ TemplateArgumentListInfo TemplateArgs =
+ makeTemplateArgumentListInfo(*this, TemplateId);
+
+ // Check for unexpanded parameter packs in any of the template arguments.
+ for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
+ if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
+ UPPC_PartialSpecialization))
+ return true;
+
+ // Check that the template argument list is well-formed for this
+ // template.
+ SmallVector<TemplateArgument, 4> Converted;
+ if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
+ TemplateArgs, false, Converted))
+ return true;
+
+ // Find the class template (partial) specialization declaration that
+ // corresponds to these arguments.
+ if (isPartialSpecialization) {
+ if (CheckTemplatePartialSpecializationArgs(
+ *this, TemplateNameLoc, ClassTemplate->getTemplateParameters(),
+ TemplateArgs.size(), Converted))
+ return true;
+
+ bool InstantiationDependent;
+ if (!Name.isDependent() &&
+ !TemplateSpecializationType::anyDependentTemplateArguments(
+ TemplateArgs.getArgumentArray(),
+ TemplateArgs.size(),
+ InstantiationDependent)) {
+ Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
+ << ClassTemplate->getDeclName();
+ isPartialSpecialization = false;
+ }
+ }
+
+ void *InsertPos = nullptr;
+ ClassTemplateSpecializationDecl *PrevDecl = nullptr;
+
+ if (isPartialSpecialization)
+ // FIXME: Template parameter list matters, too
+ PrevDecl = ClassTemplate->findPartialSpecialization(Converted, InsertPos);
+ else
+ PrevDecl = ClassTemplate->findSpecialization(Converted, InsertPos);
+
+ ClassTemplateSpecializationDecl *Specialization = nullptr;
+
+ // Check whether we can declare a class template specialization in
+ // the current scope.
+ if (TUK != TUK_Friend &&
+ CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
+ TemplateNameLoc,
+ isPartialSpecialization))
+ return true;
+
+ // The canonical type
+ QualType CanonType;
+ if (isPartialSpecialization) {
+ // Build the canonical type that describes the converted template
+ // arguments of the class template partial specialization.
+ TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
+ CanonType = Context.getTemplateSpecializationType(CanonTemplate,
+ Converted.data(),
+ Converted.size());
+
+ if (Context.hasSameType(CanonType,
+ ClassTemplate->getInjectedClassNameSpecialization())) {
+ // C++ [temp.class.spec]p9b3:
+ //
+ // -- The argument list of the specialization shall not be identical
+ // to the implicit argument list of the primary template.
+ Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
+ << /*class template*/0 << (TUK == TUK_Definition)
+ << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
+ return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
+ ClassTemplate->getIdentifier(),
+ TemplateNameLoc,
+ Attr,
+ TemplateParams,
+ AS_none, /*ModulePrivateLoc=*/SourceLocation(),
+ /*FriendLoc*/SourceLocation(),
+ TemplateParameterLists.size() - 1,
+ TemplateParameterLists.data());
+ }
+
+ // Create a new class template partial specialization declaration node.
+ ClassTemplatePartialSpecializationDecl *PrevPartial
+ = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
+ ClassTemplatePartialSpecializationDecl *Partial
+ = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
+ ClassTemplate->getDeclContext(),
+ KWLoc, TemplateNameLoc,
+ TemplateParams,
+ ClassTemplate,
+ Converted.data(),
+ Converted.size(),
+ TemplateArgs,
+ CanonType,
+ PrevPartial);
+ SetNestedNameSpecifier(Partial, SS);
+ if (TemplateParameterLists.size() > 1 && SS.isSet()) {
+ Partial->setTemplateParameterListsInfo(Context,
+ TemplateParameterLists.size() - 1,
+ TemplateParameterLists.data());
+ }
+
+ if (!PrevPartial)
+ ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
+ Specialization = Partial;
+
+ // If we are providing an explicit specialization of a member class
+ // template specialization, make a note of that.
+ if (PrevPartial && PrevPartial->getInstantiatedFromMember())
+ PrevPartial->setMemberSpecialization();
+
+ // Check that all of the template parameters of the class template
+ // partial specialization are deducible from the template
+ // arguments. If not, this class template partial specialization
+ // will never be used.
+ llvm::SmallBitVector DeducibleParams(TemplateParams->size());
+ MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
+ TemplateParams->getDepth(),
+ DeducibleParams);
+
+ if (!DeducibleParams.all()) {
+ unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count();
+ Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
+ << /*class template*/0 << (NumNonDeducible > 1)
+ << SourceRange(TemplateNameLoc, RAngleLoc);
+ for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
+ if (!DeducibleParams[I]) {
+ NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
+ if (Param->getDeclName())
+ Diag(Param->getLocation(),
+ diag::note_partial_spec_unused_parameter)
+ << Param->getDeclName();
+ else
+ Diag(Param->getLocation(),
+ diag::note_partial_spec_unused_parameter)
+ << "(anonymous)";
+ }
+ }
+ }
+ } else {
+ // Create a new class template specialization declaration node for
+ // this explicit specialization or friend declaration.
+ Specialization
+ = ClassTemplateSpecializationDecl::Create(Context, Kind,
+ ClassTemplate->getDeclContext(),
+ KWLoc, TemplateNameLoc,
+ ClassTemplate,
+ Converted.data(),
+ Converted.size(),
+ PrevDecl);
+ SetNestedNameSpecifier(Specialization, SS);
+ if (TemplateParameterLists.size() > 0) {
+ Specialization->setTemplateParameterListsInfo(Context,
+ TemplateParameterLists.size(),
+ TemplateParameterLists.data());
+ }
+
+ if (!PrevDecl)
+ ClassTemplate->AddSpecialization(Specialization, InsertPos);
+
+ CanonType = Context.getTypeDeclType(Specialization);
+ }
+
+ // C++ [temp.expl.spec]p6:
+ // If a template, a member template or the member of a class template is
+ // explicitly specialized then that specialization shall be declared
+ // before the first use of that specialization that would cause an implicit
+ // instantiation to take place, in every translation unit in which such a
+ // use occurs; no diagnostic is required.
+ if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
+ bool Okay = false;
+ for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
+ // Is there any previous explicit specialization declaration?
+ if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
+ Okay = true;
+ break;
+ }
+ }
+
+ if (!Okay) {
+ SourceRange Range(TemplateNameLoc, RAngleLoc);
+ Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
+ << Context.getTypeDeclType(Specialization) << Range;
+
+ Diag(PrevDecl->getPointOfInstantiation(),
+ diag::note_instantiation_required_here)
+ << (PrevDecl->getTemplateSpecializationKind()
+ != TSK_ImplicitInstantiation);
+ return true;
+ }
+ }
+
+ // If this is not a friend, note that this is an explicit specialization.
+ if (TUK != TUK_Friend)
+ Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
+
+ // Check that this isn't a redefinition of this specialization.
+ if (TUK == TUK_Definition) {
+ RecordDecl *Def = Specialization->getDefinition();
+ NamedDecl *Hidden = nullptr;
+ if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
+ SkipBody->ShouldSkip = true;
+ makeMergedDefinitionVisible(Hidden, KWLoc);
+ // From here on out, treat this as just a redeclaration.
+ TUK = TUK_Declaration;
+ } else if (Def) {
+ SourceRange Range(TemplateNameLoc, RAngleLoc);
+ Diag(TemplateNameLoc, diag::err_redefinition)
+ << Context.getTypeDeclType(Specialization) << Range;
+ Diag(Def->getLocation(), diag::note_previous_definition);
+ Specialization->setInvalidDecl();
+ return true;
+ }
+ }
+
+ if (Attr)
+ ProcessDeclAttributeList(S, Specialization, Attr);
+
+ // Add alignment attributes if necessary; these attributes are checked when
+ // the ASTContext lays out the structure.
+ if (TUK == TUK_Definition) {
+ AddAlignmentAttributesForRecord(Specialization);
+ AddMsStructLayoutForRecord(Specialization);
+ }
+
+ if (ModulePrivateLoc.isValid())
+ Diag(Specialization->getLocation(), diag::err_module_private_specialization)
+ << (isPartialSpecialization? 1 : 0)
+ << FixItHint::CreateRemoval(ModulePrivateLoc);
+
+ // Build the fully-sugared type for this class template
+ // specialization as the user wrote in the specialization
+ // itself. This means that we'll pretty-print the type retrieved
+ // from the specialization's declaration the way that the user
+ // actually wrote the specialization, rather than formatting the
+ // name based on the "canonical" representation used to store the
+ // template arguments in the specialization.
+ TypeSourceInfo *WrittenTy
+ = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
+ TemplateArgs, CanonType);
+ if (TUK != TUK_Friend) {
+ Specialization->setTypeAsWritten(WrittenTy);
+ Specialization->setTemplateKeywordLoc(TemplateKWLoc);
+ }
+
+ // C++ [temp.expl.spec]p9:
+ // A template explicit specialization is in the scope of the
+ // namespace in which the template was defined.
+ //
+ // We actually implement this paragraph where we set the semantic
+ // context (in the creation of the ClassTemplateSpecializationDecl),
+ // but we also maintain the lexical context where the actual
+ // definition occurs.
+ Specialization->setLexicalDeclContext(CurContext);
+
+ // We may be starting the definition of this specialization.
+ if (TUK == TUK_Definition)
+ Specialization->startDefinition();
+
+ if (TUK == TUK_Friend) {
+ FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
+ TemplateNameLoc,
+ WrittenTy,
+ /*FIXME:*/KWLoc);
+ Friend->setAccess(AS_public);
+ CurContext->addDecl(Friend);
+ } else {
+ // Add the specialization into its lexical context, so that it can
+ // be seen when iterating through the list of declarations in that
+ // context. However, specializations are not found by name lookup.
+ CurContext->addDecl(Specialization);
+ }
+ return Specialization;
+}
+
+Decl *Sema::ActOnTemplateDeclarator(Scope *S,
+ MultiTemplateParamsArg TemplateParameterLists,
+ Declarator &D) {
+ Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
+ ActOnDocumentableDecl(NewDecl);
+ return NewDecl;
+}
+
+Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
+ MultiTemplateParamsArg TemplateParameterLists,
+ Declarator &D) {
+ assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
+ DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
+
+ if (FTI.hasPrototype) {
+ // FIXME: Diagnose arguments without names in C.
+ }
+
+ Scope *ParentScope = FnBodyScope->getParent();
+
+ D.setFunctionDefinitionKind(FDK_Definition);
+ Decl *DP = HandleDeclarator(ParentScope, D,
+ TemplateParameterLists);
+ return ActOnStartOfFunctionDef(FnBodyScope, DP);
+}
+
+/// \brief Strips various properties off an implicit instantiation
+/// that has just been explicitly specialized.
+static void StripImplicitInstantiation(NamedDecl *D) {
+ D->dropAttr<DLLImportAttr>();
+ D->dropAttr<DLLExportAttr>();
+
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
+ FD->setInlineSpecified(false);
+}
+
+/// \brief Compute the diagnostic location for an explicit instantiation
+// declaration or definition.
+static SourceLocation DiagLocForExplicitInstantiation(
+ NamedDecl* D, SourceLocation PointOfInstantiation) {
+ // Explicit instantiations following a specialization have no effect and
+ // hence no PointOfInstantiation. In that case, walk decl backwards
+ // until a valid name loc is found.
+ SourceLocation PrevDiagLoc = PointOfInstantiation;
+ for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
+ Prev = Prev->getPreviousDecl()) {
+ PrevDiagLoc = Prev->getLocation();
+ }
+ assert(PrevDiagLoc.isValid() &&
+ "Explicit instantiation without point of instantiation?");
+ return PrevDiagLoc;
+}
+
+/// \brief Diagnose cases where we have an explicit template specialization
+/// before/after an explicit template instantiation, producing diagnostics
+/// for those cases where they are required and determining whether the
+/// new specialization/instantiation will have any effect.
+///
+/// \param NewLoc the location of the new explicit specialization or
+/// instantiation.
+///
+/// \param NewTSK the kind of the new explicit specialization or instantiation.
+///
+/// \param PrevDecl the previous declaration of the entity.
+///
+/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
+///
+/// \param PrevPointOfInstantiation if valid, indicates where the previus
+/// declaration was instantiated (either implicitly or explicitly).
+///
+/// \param HasNoEffect will be set to true to indicate that the new
+/// specialization or instantiation has no effect and should be ignored.
+///
+/// \returns true if there was an error that should prevent the introduction of
+/// the new declaration into the AST, false otherwise.
+bool
+Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
+ TemplateSpecializationKind NewTSK,
+ NamedDecl *PrevDecl,
+ TemplateSpecializationKind PrevTSK,
+ SourceLocation PrevPointOfInstantiation,
+ bool &HasNoEffect) {
+ HasNoEffect = false;
+
+ switch (NewTSK) {
+ case TSK_Undeclared:
+ case TSK_ImplicitInstantiation:
+ assert(
+ (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) &&
+ "previous declaration must be implicit!");
+ return false;
+
+ case TSK_ExplicitSpecialization:
+ switch (PrevTSK) {
+ case TSK_Undeclared:
+ case TSK_ExplicitSpecialization:
+ // Okay, we're just specializing something that is either already
+ // explicitly specialized or has merely been mentioned without any
+ // instantiation.
+ return false;
+
+ case TSK_ImplicitInstantiation:
+ if (PrevPointOfInstantiation.isInvalid()) {
+ // The declaration itself has not actually been instantiated, so it is
+ // still okay to specialize it.
+ StripImplicitInstantiation(PrevDecl);
+ return false;
+ }
+ // Fall through
+
+ case TSK_ExplicitInstantiationDeclaration:
+ case TSK_ExplicitInstantiationDefinition:
+ assert((PrevTSK == TSK_ImplicitInstantiation ||
+ PrevPointOfInstantiation.isValid()) &&
+ "Explicit instantiation without point of instantiation?");
+
+ // C++ [temp.expl.spec]p6:
+ // If a template, a member template or the member of a class template
+ // is explicitly specialized then that specialization shall be declared
+ // before the first use of that specialization that would cause an
+ // implicit instantiation to take place, in every translation unit in
+ // which such a use occurs; no diagnostic is required.
+ for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
+ // Is there any previous explicit specialization declaration?
+ if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
+ return false;
+ }
+
+ Diag(NewLoc, diag::err_specialization_after_instantiation)
+ << PrevDecl;
+ Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
+ << (PrevTSK != TSK_ImplicitInstantiation);
+
+ return true;
+ }
+
+ case TSK_ExplicitInstantiationDeclaration:
+ switch (PrevTSK) {
+ case TSK_ExplicitInstantiationDeclaration:
+ // This explicit instantiation declaration is redundant (that's okay).
+ HasNoEffect = true;
+ return false;
+
+ case TSK_Undeclared:
+ case TSK_ImplicitInstantiation:
+ // We're explicitly instantiating something that may have already been
+ // implicitly instantiated; that's fine.
+ return false;
+
+ case TSK_ExplicitSpecialization:
+ // C++0x [temp.explicit]p4:
+ // For a given set of template parameters, if an explicit instantiation
+ // of a template appears after a declaration of an explicit
+ // specialization for that template, the explicit instantiation has no
+ // effect.
+ HasNoEffect = true;
+ return false;
+
+ case TSK_ExplicitInstantiationDefinition:
+ // C++0x [temp.explicit]p10:
+ // If an entity is the subject of both an explicit instantiation
+ // declaration and an explicit instantiation definition in the same
+ // translation unit, the definition shall follow the declaration.
+ Diag(NewLoc,
+ diag::err_explicit_instantiation_declaration_after_definition);
+
+ // Explicit instantiations following a specialization have no effect and
+ // hence no PrevPointOfInstantiation. In that case, walk decl backwards
+ // until a valid name loc is found.
+ Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
+ diag::note_explicit_instantiation_definition_here);
+ HasNoEffect = true;
+ return false;
+ }
+
+ case TSK_ExplicitInstantiationDefinition:
+ switch (PrevTSK) {
+ case TSK_Undeclared:
+ case TSK_ImplicitInstantiation:
+ // We're explicitly instantiating something that may have already been
+ // implicitly instantiated; that's fine.
+ return false;
+
+ case TSK_ExplicitSpecialization:
+ // C++ DR 259, C++0x [temp.explicit]p4:
+ // For a given set of template parameters, if an explicit
+ // instantiation of a template appears after a declaration of
+ // an explicit specialization for that template, the explicit
+ // instantiation has no effect.
+ //
+ // In C++98/03 mode, we only give an extension warning here, because it
+ // is not harmful to try to explicitly instantiate something that
+ // has been explicitly specialized.
+ Diag(NewLoc, getLangOpts().CPlusPlus11 ?
+ diag::warn_cxx98_compat_explicit_instantiation_after_specialization :
+ diag::ext_explicit_instantiation_after_specialization)
+ << PrevDecl;
+ Diag(PrevDecl->getLocation(),
+ diag::note_previous_template_specialization);
+ HasNoEffect = true;
+ return false;
+
+ case TSK_ExplicitInstantiationDeclaration:
+ // We're explicity instantiating a definition for something for which we
+ // were previously asked to suppress instantiations. That's fine.
+
+ // C++0x [temp.explicit]p4:
+ // For a given set of template parameters, if an explicit instantiation
+ // of a template appears after a declaration of an explicit
+ // specialization for that template, the explicit instantiation has no
+ // effect.
+ for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
+ // Is there any previous explicit specialization declaration?
+ if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
+ HasNoEffect = true;
+ break;
+ }
+ }
+
+ return false;
+
+ case TSK_ExplicitInstantiationDefinition:
+ // C++0x [temp.spec]p5:
+ // For a given template and a given set of template-arguments,
+ // - an explicit instantiation definition shall appear at most once
+ // in a program,
+
+ // MSVCCompat: MSVC silently ignores duplicate explicit instantiations.
+ Diag(NewLoc, (getLangOpts().MSVCCompat)
+ ? diag::ext_explicit_instantiation_duplicate
+ : diag::err_explicit_instantiation_duplicate)
+ << PrevDecl;
+ Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
+ diag::note_previous_explicit_instantiation);
+ HasNoEffect = true;
+ return false;
+ }
+ }
+
+ llvm_unreachable("Missing specialization/instantiation case?");
+}
+
+/// \brief Perform semantic analysis for the given dependent function
+/// template specialization.
+///
+/// The only possible way to get a dependent function template specialization
+/// is with a friend declaration, like so:
+///
+/// \code
+/// template \<class T> void foo(T);
+/// template \<class T> class A {
+/// friend void foo<>(T);
+/// };
+/// \endcode
+///
+/// There really isn't any useful analysis we can do here, so we
+/// just store the information.
+bool
+Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
+ const TemplateArgumentListInfo &ExplicitTemplateArgs,
+ LookupResult &Previous) {
+ // Remove anything from Previous that isn't a function template in
+ // the correct context.
+ DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
+ LookupResult::Filter F = Previous.makeFilter();
+ while (F.hasNext()) {
+ NamedDecl *D = F.next()->getUnderlyingDecl();
+ if (!isa<FunctionTemplateDecl>(D) ||
+ !FDLookupContext->InEnclosingNamespaceSetOf(
+ D->getDeclContext()->getRedeclContext()))
+ F.erase();
+ }
+ F.done();
+
+ // Should this be diagnosed here?
+ if (Previous.empty()) return true;
+
+ FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
+ ExplicitTemplateArgs);
+ return false;
+}
+
+/// \brief Perform semantic analysis for the given function template
+/// specialization.
+///
+/// This routine performs all of the semantic analysis required for an
+/// explicit function template specialization. On successful completion,
+/// the function declaration \p FD will become a function template
+/// specialization.
+///
+/// \param FD the function declaration, which will be updated to become a
+/// function template specialization.
+///
+/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
+/// if any. Note that this may be valid info even when 0 arguments are
+/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
+/// as it anyway contains info on the angle brackets locations.
+///
+/// \param Previous the set of declarations that may be specialized by
+/// this function specialization.
+bool Sema::CheckFunctionTemplateSpecialization(
+ FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
+ LookupResult &Previous) {
+ // The set of function template specializations that could match this
+ // explicit function template specialization.
+ UnresolvedSet<8> Candidates;
+ TemplateSpecCandidateSet FailedCandidates(FD->getLocation());
+
+ DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
+ for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
+ I != E; ++I) {
+ NamedDecl *Ovl = (*I)->getUnderlyingDecl();
+ if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
+ // Only consider templates found within the same semantic lookup scope as
+ // FD.
+ if (!FDLookupContext->InEnclosingNamespaceSetOf(
+ Ovl->getDeclContext()->getRedeclContext()))
+ continue;
+
+ // When matching a constexpr member function template specialization
+ // against the primary template, we don't yet know whether the
+ // specialization has an implicit 'const' (because we don't know whether
+ // it will be a static member function until we know which template it
+ // specializes), so adjust it now assuming it specializes this template.
+ QualType FT = FD->getType();
+ if (FD->isConstexpr()) {
+ CXXMethodDecl *OldMD =
+ dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
+ if (OldMD && OldMD->isConst()) {
+ const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
+ FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
+ EPI.TypeQuals |= Qualifiers::Const;
+ FT = Context.getFunctionType(FPT->getReturnType(),
+ FPT->getParamTypes(), EPI);
+ }
+ }
+
+ // C++ [temp.expl.spec]p11:
+ // A trailing template-argument can be left unspecified in the
+ // template-id naming an explicit function template specialization
+ // provided it can be deduced from the function argument type.
+ // Perform template argument deduction to determine whether we may be
+ // specializing this template.
+ // FIXME: It is somewhat wasteful to build
+ TemplateDeductionInfo Info(FailedCandidates.getLocation());
+ FunctionDecl *Specialization = nullptr;
+ if (TemplateDeductionResult TDK = DeduceTemplateArguments(
+ cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()),
+ ExplicitTemplateArgs, FT, Specialization, Info)) {
+ // Template argument deduction failed; record why it failed, so
+ // that we can provide nifty diagnostics.
+ FailedCandidates.addCandidate()
+ .set(FunTmpl->getTemplatedDecl(),
+ MakeDeductionFailureInfo(Context, TDK, Info));
+ (void)TDK;
+ continue;
+ }
+
+ // Record this candidate.
+ Candidates.addDecl(Specialization, I.getAccess());
+ }
+ }
+
+ // Find the most specialized function template.
+ UnresolvedSetIterator Result = getMostSpecialized(
+ Candidates.begin(), Candidates.end(), FailedCandidates,
+ FD->getLocation(),
+ PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(),
+ PDiag(diag::err_function_template_spec_ambiguous)
+ << FD->getDeclName() << (ExplicitTemplateArgs != nullptr),
+ PDiag(diag::note_function_template_spec_matched));
+
+ if (Result == Candidates.end())
+ return true;
+
+ // Ignore access information; it doesn't figure into redeclaration checking.
+ FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
+
+ FunctionTemplateSpecializationInfo *SpecInfo
+ = Specialization->getTemplateSpecializationInfo();
+ assert(SpecInfo && "Function template specialization info missing?");
+
+ // Note: do not overwrite location info if previous template
+ // specialization kind was explicit.
+ TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
+ if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
+ Specialization->setLocation(FD->getLocation());
+ // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
+ // function can differ from the template declaration with respect to
+ // the constexpr specifier.
+ Specialization->setConstexpr(FD->isConstexpr());
+ }
+
+ // FIXME: Check if the prior specialization has a point of instantiation.
+ // If so, we have run afoul of .
+
+ // If this is a friend declaration, then we're not really declaring
+ // an explicit specialization.
+ bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
+
+ // Check the scope of this explicit specialization.
+ if (!isFriend &&
+ CheckTemplateSpecializationScope(*this,
+ Specialization->getPrimaryTemplate(),
+ Specialization, FD->getLocation(),
+ false))
+ return true;
+
+ // C++ [temp.expl.spec]p6:
+ // If a template, a member template or the member of a class template is
+ // explicitly specialized then that specialization shall be declared
+ // before the first use of that specialization that would cause an implicit
+ // instantiation to take place, in every translation unit in which such a
+ // use occurs; no diagnostic is required.
+ bool HasNoEffect = false;
+ if (!isFriend &&
+ CheckSpecializationInstantiationRedecl(FD->getLocation(),
+ TSK_ExplicitSpecialization,
+ Specialization,
+ SpecInfo->getTemplateSpecializationKind(),
+ SpecInfo->getPointOfInstantiation(),
+ HasNoEffect))
+ return true;
+
+ // Mark the prior declaration as an explicit specialization, so that later
+ // clients know that this is an explicit specialization.
+ if (!isFriend) {
+ SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
+ MarkUnusedFileScopedDecl(Specialization);
+ }
+
+ // Turn the given function declaration into a function template
+ // specialization, with the template arguments from the previous
+ // specialization.
+ // Take copies of (semantic and syntactic) template argument lists.
+ const TemplateArgumentList* TemplArgs = new (Context)
+ TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
+ FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
+ TemplArgs, /*InsertPos=*/nullptr,
+ SpecInfo->getTemplateSpecializationKind(),
+ ExplicitTemplateArgs);
+
+ // The "previous declaration" for this function template specialization is
+ // the prior function template specialization.
+ Previous.clear();
+ Previous.addDecl(Specialization);
+ return false;
+}
+
+/// \brief Perform semantic analysis for the given non-template member
+/// specialization.
+///
+/// This routine performs all of the semantic analysis required for an
+/// explicit member function specialization. On successful completion,
+/// the function declaration \p FD will become a member function
+/// specialization.
+///
+/// \param Member the member declaration, which will be updated to become a
+/// specialization.
+///
+/// \param Previous the set of declarations, one of which may be specialized
+/// by this function specialization; the set will be modified to contain the
+/// redeclared member.
+bool
+Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
+ assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
+
+ // Try to find the member we are instantiating.
+ NamedDecl *Instantiation = nullptr;
+ NamedDecl *InstantiatedFrom = nullptr;
+ MemberSpecializationInfo *MSInfo = nullptr;
+
+ if (Previous.empty()) {
+ // Nowhere to look anyway.
+ } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
+ for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
+ I != E; ++I) {
+ NamedDecl *D = (*I)->getUnderlyingDecl();
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
+ QualType Adjusted = Function->getType();
+ if (!hasExplicitCallingConv(Adjusted))
+ Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType());
+ if (Context.hasSameType(Adjusted, Method->getType())) {
+ Instantiation = Method;
+ InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
+ MSInfo = Method->getMemberSpecializationInfo();
+ break;
+ }
+ }
+ }
+ } else if (isa<VarDecl>(Member)) {
+ VarDecl *PrevVar;
+ if (Previous.isSingleResult() &&
+ (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
+ if (PrevVar->isStaticDataMember()) {
+ Instantiation = PrevVar;
+ InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
+ MSInfo = PrevVar->getMemberSpecializationInfo();
+ }
+ } else if (isa<RecordDecl>(Member)) {
+ CXXRecordDecl *PrevRecord;
+ if (Previous.isSingleResult() &&
+ (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
+ Instantiation = PrevRecord;
+ InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
+ MSInfo = PrevRecord->getMemberSpecializationInfo();
+ }
+ } else if (isa<EnumDecl>(Member)) {
+ EnumDecl *PrevEnum;
+ if (Previous.isSingleResult() &&
+ (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
+ Instantiation = PrevEnum;
+ InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
+ MSInfo = PrevEnum->getMemberSpecializationInfo();
+ }
+ }
+
+ if (!Instantiation) {
+ // There is no previous declaration that matches. Since member
+ // specializations are always out-of-line, the caller will complain about
+ // this mismatch later.
+ return false;
+ }
+
+ // If this is a friend, just bail out here before we start turning
+ // things into explicit specializations.
+ if (Member->getFriendObjectKind() != Decl::FOK_None) {
+ // Preserve instantiation information.
+ if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
+ cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
+ cast<CXXMethodDecl>(InstantiatedFrom),
+ cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
+ } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
+ cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
+ cast<CXXRecordDecl>(InstantiatedFrom),
+ cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
+ }
+
+ Previous.clear();
+ Previous.addDecl(Instantiation);
+ return false;
+ }
+
+ // Make sure that this is a specialization of a member.
+ if (!InstantiatedFrom) {
+ Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
+ << Member;
+ Diag(Instantiation->getLocation(), diag::note_specialized_decl);
+ return true;
+ }
+
+ // C++ [temp.expl.spec]p6:
+ // If a template, a member template or the member of a class template is
+ // explicitly specialized then that specialization shall be declared
+ // before the first use of that specialization that would cause an implicit
+ // instantiation to take place, in every translation unit in which such a
+ // use occurs; no diagnostic is required.
+ assert(MSInfo && "Member specialization info missing?");
+
+ bool HasNoEffect = false;
+ if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
+ TSK_ExplicitSpecialization,
+ Instantiation,
+ MSInfo->getTemplateSpecializationKind(),
+ MSInfo->getPointOfInstantiation(),
+ HasNoEffect))
+ return true;
+
+ // Check the scope of this explicit specialization.
+ if (CheckTemplateSpecializationScope(*this,
+ InstantiatedFrom,
+ Instantiation, Member->getLocation(),
+ false))
+ return true;
+
+ // Note that this is an explicit instantiation of a member.
+ // the original declaration to note that it is an explicit specialization
+ // (if it was previously an implicit instantiation). This latter step
+ // makes bookkeeping easier.
+ if (isa<FunctionDecl>(Member)) {
+ FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
+ if (InstantiationFunction->getTemplateSpecializationKind() ==
+ TSK_ImplicitInstantiation) {
+ InstantiationFunction->setTemplateSpecializationKind(
+ TSK_ExplicitSpecialization);
+ InstantiationFunction->setLocation(Member->getLocation());
+ }
+
+ cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
+ cast<CXXMethodDecl>(InstantiatedFrom),
+ TSK_ExplicitSpecialization);
+ MarkUnusedFileScopedDecl(InstantiationFunction);
+ } else if (isa<VarDecl>(Member)) {
+ VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
+ if (InstantiationVar->getTemplateSpecializationKind() ==
+ TSK_ImplicitInstantiation) {
+ InstantiationVar->setTemplateSpecializationKind(
+ TSK_ExplicitSpecialization);
+ InstantiationVar->setLocation(Member->getLocation());
+ }
+
+ cast<VarDecl>(Member)->setInstantiationOfStaticDataMember(
+ cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
+ MarkUnusedFileScopedDecl(InstantiationVar);
+ } else if (isa<CXXRecordDecl>(Member)) {
+ CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
+ if (InstantiationClass->getTemplateSpecializationKind() ==
+ TSK_ImplicitInstantiation) {
+ InstantiationClass->setTemplateSpecializationKind(
+ TSK_ExplicitSpecialization);
+ InstantiationClass->setLocation(Member->getLocation());
+ }
+
+ cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
+ cast<CXXRecordDecl>(InstantiatedFrom),
+ TSK_ExplicitSpecialization);
+ } else {
+ assert(isa<EnumDecl>(Member) && "Only member enums remain");
+ EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation);
+ if (InstantiationEnum->getTemplateSpecializationKind() ==
+ TSK_ImplicitInstantiation) {
+ InstantiationEnum->setTemplateSpecializationKind(
+ TSK_ExplicitSpecialization);
+ InstantiationEnum->setLocation(Member->getLocation());
+ }
+
+ cast<EnumDecl>(Member)->setInstantiationOfMemberEnum(
+ cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
+ }
+
+ // Save the caller the trouble of having to figure out which declaration
+ // this specialization matches.
+ Previous.clear();
+ Previous.addDecl(Instantiation);
+ return false;
+}
+
+/// \brief Check the scope of an explicit instantiation.
+///
+/// \returns true if a serious error occurs, false otherwise.
+static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
+ SourceLocation InstLoc,
+ bool WasQualifiedName) {
+ DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
+ DeclContext *CurContext = S.CurContext->getRedeclContext();
+
+ if (CurContext->isRecord()) {
+ S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
+ << D;
+ return true;
+ }
+
+ // C++11 [temp.explicit]p3:
+ // An explicit instantiation shall appear in an enclosing namespace of its
+ // template. If the name declared in the explicit instantiation is an
+ // unqualified name, the explicit instantiation shall appear in the
+ // namespace where its template is declared or, if that namespace is inline
+ // (7.3.1), any namespace from its enclosing namespace set.
+ //
+ // This is DR275, which we do not retroactively apply to C++98/03.
+ if (WasQualifiedName) {
+ if (CurContext->Encloses(OrigContext))
+ return false;
+ } else {
+ if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
+ return false;
+ }
+
+ if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
+ if (WasQualifiedName)
+ S.Diag(InstLoc,
+ S.getLangOpts().CPlusPlus11?
+ diag::err_explicit_instantiation_out_of_scope :
+ diag::warn_explicit_instantiation_out_of_scope_0x)
+ << D << NS;
+ else
+ S.Diag(InstLoc,
+ S.getLangOpts().CPlusPlus11?
+ diag::err_explicit_instantiation_unqualified_wrong_namespace :
+ diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
+ << D << NS;
+ } else
+ S.Diag(InstLoc,
+ S.getLangOpts().CPlusPlus11?
+ diag::err_explicit_instantiation_must_be_global :
+ diag::warn_explicit_instantiation_must_be_global_0x)
+ << D;
+ S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
+ return false;
+}
+
+/// \brief Determine whether the given scope specifier has a template-id in it.
+static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
+ if (!SS.isSet())
+ return false;
+
+ // C++11 [temp.explicit]p3:
+ // If the explicit instantiation is for a member function, a member class
+ // or a static data member of a class template specialization, the name of
+ // the class template specialization in the qualified-id for the member
+ // name shall be a simple-template-id.
+ //
+ // C++98 has the same restriction, just worded differently.
+ for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS;
+ NNS = NNS->getPrefix())
+ if (const Type *T = NNS->getAsType())
+ if (isa<TemplateSpecializationType>(T))
+ return true;
+
+ return false;
+}
+
+// Explicit instantiation of a class template specialization
+DeclResult
+Sema::ActOnExplicitInstantiation(Scope *S,
+ SourceLocation ExternLoc,
+ SourceLocation TemplateLoc,
+ unsigned TagSpec,
+ SourceLocation KWLoc,
+ const CXXScopeSpec &SS,
+ TemplateTy TemplateD,
+ SourceLocation TemplateNameLoc,
+ SourceLocation LAngleLoc,
+ ASTTemplateArgsPtr TemplateArgsIn,
+ SourceLocation RAngleLoc,
+ AttributeList *Attr) {
+ // Find the class template we're specializing
+ TemplateName Name = TemplateD.get();
+ TemplateDecl *TD = Name.getAsTemplateDecl();
+ // Check that the specialization uses the same tag kind as the
+ // original template.
+ TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
+ assert(Kind != TTK_Enum &&
+ "Invalid enum tag in class template explicit instantiation!");
+
+ if (isa<TypeAliasTemplateDecl>(TD)) {
+ Diag(KWLoc, diag::err_tag_reference_non_tag) << Kind;
+ Diag(TD->getTemplatedDecl()->getLocation(),
+ diag::note_previous_use);
+ return true;
+ }
+
+ ClassTemplateDecl *ClassTemplate = cast<ClassTemplateDecl>(TD);
+
+ if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
+ Kind, /*isDefinition*/false, KWLoc,
+ *ClassTemplate->getIdentifier())) {
+ Diag(KWLoc, diag::err_use_with_wrong_tag)
+ << ClassTemplate
+ << FixItHint::CreateReplacement(KWLoc,
+ ClassTemplate->getTemplatedDecl()->getKindName());
+ Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
+ diag::note_previous_use);
+ Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
+ }
+
+ // C++0x [temp.explicit]p2:
+ // There are two forms of explicit instantiation: an explicit instantiation
+ // definition and an explicit instantiation declaration. An explicit
+ // instantiation declaration begins with the extern keyword. [...]
+ TemplateSpecializationKind TSK = ExternLoc.isInvalid()
+ ? TSK_ExplicitInstantiationDefinition
+ : TSK_ExplicitInstantiationDeclaration;
+
+ if (TSK == TSK_ExplicitInstantiationDeclaration) {
+ // Check for dllexport class template instantiation declarations.
+ for (AttributeList *A = Attr; A; A = A->getNext()) {
+ if (A->getKind() == AttributeList::AT_DLLExport) {
+ Diag(ExternLoc,
+ diag::warn_attribute_dllexport_explicit_instantiation_decl);
+ Diag(A->getLoc(), diag::note_attribute);
+ break;
+ }
+ }
+
+ if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) {
+ Diag(ExternLoc,
+ diag::warn_attribute_dllexport_explicit_instantiation_decl);
+ Diag(A->getLocation(), diag::note_attribute);
+ }
+ }
+
+ // Translate the parser's template argument list in our AST format.
+ TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
+ translateTemplateArguments(TemplateArgsIn, TemplateArgs);
+
+ // Check that the template argument list is well-formed for this
+ // template.
+ SmallVector<TemplateArgument, 4> Converted;
+ if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
+ TemplateArgs, false, Converted))
+ return true;
+
+ // Find the class template specialization declaration that
+ // corresponds to these arguments.
+ void *InsertPos = nullptr;
+ ClassTemplateSpecializationDecl *PrevDecl
+ = ClassTemplate->findSpecialization(Converted, InsertPos);
+
+ TemplateSpecializationKind PrevDecl_TSK
+ = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
+
+ // C++0x [temp.explicit]p2:
+ // [...] An explicit instantiation shall appear in an enclosing
+ // namespace of its template. [...]
+ //
+ // This is C++ DR 275.
+ if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
+ SS.isSet()))
+ return true;
+
+ ClassTemplateSpecializationDecl *Specialization = nullptr;
+
+ bool HasNoEffect = false;
+ if (PrevDecl) {
+ if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
+ PrevDecl, PrevDecl_TSK,
+ PrevDecl->getPointOfInstantiation(),
+ HasNoEffect))
+ return PrevDecl;
+
+ // Even though HasNoEffect == true means that this explicit instantiation
+ // has no effect on semantics, we go on to put its syntax in the AST.
+
+ if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
+ PrevDecl_TSK == TSK_Undeclared) {
+ // Since the only prior class template specialization with these
+ // arguments was referenced but not declared, reuse that
+ // declaration node as our own, updating the source location
+ // for the template name to reflect our new declaration.
+ // (Other source locations will be updated later.)
+ Specialization = PrevDecl;
+ Specialization->setLocation(TemplateNameLoc);
+ PrevDecl = nullptr;
+ }
+ }
+
+ if (!Specialization) {
+ // Create a new class template specialization declaration node for
+ // this explicit specialization.
+ Specialization
+ = ClassTemplateSpecializationDecl::Create(Context, Kind,
+ ClassTemplate->getDeclContext(),
+ KWLoc, TemplateNameLoc,
+ ClassTemplate,
+ Converted.data(),
+ Converted.size(),
+ PrevDecl);
+ SetNestedNameSpecifier(Specialization, SS);
+
+ if (!HasNoEffect && !PrevDecl) {
+ // Insert the new specialization.
+ ClassTemplate->AddSpecialization(Specialization, InsertPos);
+ }
+ }
+
+ // Build the fully-sugared type for this explicit instantiation as
+ // the user wrote in the explicit instantiation itself. This means
+ // that we'll pretty-print the type retrieved from the
+ // specialization's declaration the way that the user actually wrote
+ // the explicit instantiation, rather than formatting the name based
+ // on the "canonical" representation used to store the template
+ // arguments in the specialization.
+ TypeSourceInfo *WrittenTy
+ = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
+ TemplateArgs,
+ Context.getTypeDeclType(Specialization));
+ Specialization->setTypeAsWritten(WrittenTy);
+
+ // Set source locations for keywords.
+ Specialization->setExternLoc(ExternLoc);
+ Specialization->setTemplateKeywordLoc(TemplateLoc);
+ Specialization->setRBraceLoc(SourceLocation());
+
+ if (Attr)
+ ProcessDeclAttributeList(S, Specialization, Attr);
+
+ // Add the explicit instantiation into its lexical context. However,
+ // since explicit instantiations are never found by name lookup, we
+ // just put it into the declaration context directly.
+ Specialization->setLexicalDeclContext(CurContext);
+ CurContext->addDecl(Specialization);
+
+ // Syntax is now OK, so return if it has no other effect on semantics.
+ if (HasNoEffect) {
+ // Set the template specialization kind.
+ Specialization->setTemplateSpecializationKind(TSK);
+ return Specialization;
+ }
+
+ // C++ [temp.explicit]p3:
+ // A definition of a class template or class member template
+ // shall be in scope at the point of the explicit instantiation of
+ // the class template or class member template.
+ //
+ // This check comes when we actually try to perform the
+ // instantiation.
+ ClassTemplateSpecializationDecl *Def
+ = cast_or_null<ClassTemplateSpecializationDecl>(
+ Specialization->getDefinition());
+ if (!Def)
+ InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
+ else if (TSK == TSK_ExplicitInstantiationDefinition) {
+ MarkVTableUsed(TemplateNameLoc, Specialization, true);
+ Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
+ }
+
+ // Instantiate the members of this class template specialization.
+ Def = cast_or_null<ClassTemplateSpecializationDecl>(
+ Specialization->getDefinition());
+ if (Def) {
+ TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
+
+ // Fix a TSK_ExplicitInstantiationDeclaration followed by a
+ // TSK_ExplicitInstantiationDefinition
+ if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
+ TSK == TSK_ExplicitInstantiationDefinition) {
+ // FIXME: Need to notify the ASTMutationListener that we did this.
+ Def->setTemplateSpecializationKind(TSK);
+
+ if (!getDLLAttr(Def) && getDLLAttr(Specialization)) {
+ auto *A = cast<InheritableAttr>(
+ getDLLAttr(Specialization)->clone(getASTContext()));
+ A->setInherited(true);
+ Def->addAttr(A);
+ checkClassLevelDLLAttribute(Def);
+ }
+ }
+
+ InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
+ }
+
+ // Set the template specialization kind.
+ Specialization->setTemplateSpecializationKind(TSK);
+ return Specialization;
+}
+
+// Explicit instantiation of a member class of a class template.
+DeclResult
+Sema::ActOnExplicitInstantiation(Scope *S,
+ SourceLocation ExternLoc,
+ SourceLocation TemplateLoc,
+ unsigned TagSpec,
+ SourceLocation KWLoc,
+ CXXScopeSpec &SS,
+ IdentifierInfo *Name,
+ SourceLocation NameLoc,
+ AttributeList *Attr) {
+
+ bool Owned = false;
+ bool IsDependent = false;
+ Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
+ KWLoc, SS, Name, NameLoc, Attr, AS_none,
+ /*ModulePrivateLoc=*/SourceLocation(),
+ MultiTemplateParamsArg(), Owned, IsDependent,
+ SourceLocation(), false, TypeResult(),
+ /*IsTypeSpecifier*/false);
+ assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
+
+ if (!TagD)
+ return true;
+
+ TagDecl *Tag = cast<TagDecl>(TagD);
+ assert(!Tag->isEnum() && "shouldn't see enumerations here");
+
+ if (Tag->isInvalidDecl())
+ return true;
+
+ CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
+ CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
+ if (!Pattern) {
+ Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
+ << Context.getTypeDeclType(Record);
+ Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
+ return true;
+ }
+
+ // C++0x [temp.explicit]p2:
+ // If the explicit instantiation is for a class or member class, the
+ // elaborated-type-specifier in the declaration shall include a
+ // simple-template-id.
+ //
+ // C++98 has the same restriction, just worded differently.
+ if (!ScopeSpecifierHasTemplateId(SS))
+ Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
+ << Record << SS.getRange();
+
+ // C++0x [temp.explicit]p2:
+ // There are two forms of explicit instantiation: an explicit instantiation
+ // definition and an explicit instantiation declaration. An explicit
+ // instantiation declaration begins with the extern keyword. [...]
+ TemplateSpecializationKind TSK
+ = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
+ : TSK_ExplicitInstantiationDeclaration;
+
+ // C++0x [temp.explicit]p2:
+ // [...] An explicit instantiation shall appear in an enclosing
+ // namespace of its template. [...]
+ //
+ // This is C++ DR 275.
+ CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
+
+ // Verify that it is okay to explicitly instantiate here.
+ CXXRecordDecl *PrevDecl
+ = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
+ if (!PrevDecl && Record->getDefinition())
+ PrevDecl = Record;
+ if (PrevDecl) {
+ MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
+ bool HasNoEffect = false;
+ assert(MSInfo && "No member specialization information?");
+ if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
+ PrevDecl,
+ MSInfo->getTemplateSpecializationKind(),
+ MSInfo->getPointOfInstantiation(),
+ HasNoEffect))
+ return true;
+ if (HasNoEffect)
+ return TagD;
+ }
+
+ CXXRecordDecl *RecordDef
+ = cast_or_null<CXXRecordDecl>(Record->getDefinition());
+ if (!RecordDef) {
+ // C++ [temp.explicit]p3:
+ // A definition of a member class of a class template shall be in scope
+ // at the point of an explicit instantiation of the member class.
+ CXXRecordDecl *Def
+ = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
+ if (!Def) {
+ Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
+ << 0 << Record->getDeclName() << Record->getDeclContext();
+ Diag(Pattern->getLocation(), diag::note_forward_declaration)
+ << Pattern;
+ return true;
+ } else {
+ if (InstantiateClass(NameLoc, Record, Def,
+ getTemplateInstantiationArgs(Record),
+ TSK))
+ return true;
+
+ RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
+ if (!RecordDef)
+ return true;
+ }
+ }
+
+ // Instantiate all of the members of the class.
+ InstantiateClassMembers(NameLoc, RecordDef,
+ getTemplateInstantiationArgs(Record), TSK);
+
+ if (TSK == TSK_ExplicitInstantiationDefinition)
+ MarkVTableUsed(NameLoc, RecordDef, true);
+
+ // FIXME: We don't have any representation for explicit instantiations of
+ // member classes. Such a representation is not needed for compilation, but it
+ // should be available for clients that want to see all of the declarations in
+ // the source code.
+ return TagD;
+}
+
+DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
+ SourceLocation ExternLoc,
+ SourceLocation TemplateLoc,
+ Declarator &D) {
+ // Explicit instantiations always require a name.
+ // TODO: check if/when DNInfo should replace Name.
+ DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
+ DeclarationName Name = NameInfo.getName();
+ if (!Name) {
+ if (!D.isInvalidType())
+ Diag(D.getDeclSpec().getLocStart(),
+ diag::err_explicit_instantiation_requires_name)
+ << D.getDeclSpec().getSourceRange()
+ << D.getSourceRange();
+
+ return true;
+ }
+
+ // The scope passed in may not be a decl scope. Zip up the scope tree until
+ // we find one that is.
+ while ((S->getFlags() & Scope::DeclScope) == 0 ||
+ (S->getFlags() & Scope::TemplateParamScope) != 0)
+ S = S->getParent();
+
+ // Determine the type of the declaration.
+ TypeSourceInfo *T = GetTypeForDeclarator(D, S);
+ QualType R = T->getType();
+ if (R.isNull())
+ return true;
+
+ // C++ [dcl.stc]p1:
+ // A storage-class-specifier shall not be specified in [...] an explicit
+ // instantiation (14.7.2) directive.
+ if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
+ Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
+ << Name;
+ return true;
+ } else if (D.getDeclSpec().getStorageClassSpec()
+ != DeclSpec::SCS_unspecified) {
+ // Complain about then remove the storage class specifier.
+ Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
+ << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
+
+ D.getMutableDeclSpec().ClearStorageClassSpecs();
+ }
+
+ // C++0x [temp.explicit]p1:
+ // [...] An explicit instantiation of a function template shall not use the
+ // inline or constexpr specifiers.
+ // Presumably, this also applies to member functions of class templates as
+ // well.
+ if (D.getDeclSpec().isInlineSpecified())
+ Diag(D.getDeclSpec().getInlineSpecLoc(),
+ getLangOpts().CPlusPlus11 ?
+ diag::err_explicit_instantiation_inline :
+ diag::warn_explicit_instantiation_inline_0x)
+ << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
+ if (D.getDeclSpec().isConstexprSpecified() && R->isFunctionType())
+ // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
+ // not already specified.
+ Diag(D.getDeclSpec().getConstexprSpecLoc(),
+ diag::err_explicit_instantiation_constexpr);
+
+ // C++0x [temp.explicit]p2:
+ // There are two forms of explicit instantiation: an explicit instantiation
+ // definition and an explicit instantiation declaration. An explicit
+ // instantiation declaration begins with the extern keyword. [...]
+ TemplateSpecializationKind TSK
+ = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
+ : TSK_ExplicitInstantiationDeclaration;
+
+ LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
+ LookupParsedName(Previous, S, &D.getCXXScopeSpec());
+
+ if (!R->isFunctionType()) {
+ // C++ [temp.explicit]p1:
+ // A [...] static data member of a class template can be explicitly
+ // instantiated from the member definition associated with its class
+ // template.
+ // C++1y [temp.explicit]p1:
+ // A [...] variable [...] template specialization can be explicitly
+ // instantiated from its template.
+ if (Previous.isAmbiguous())
+ return true;
+
+ VarDecl *Prev = Previous.getAsSingle<VarDecl>();
+ VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>();
+
+ if (!PrevTemplate) {
+ if (!Prev || !Prev->isStaticDataMember()) {
+ // We expect to see a data data member here.
+ Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
+ << Name;
+ for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
+ P != PEnd; ++P)
+ Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
+ return true;
+ }
+
+ if (!Prev->getInstantiatedFromStaticDataMember()) {
+ // FIXME: Check for explicit specialization?
+ Diag(D.getIdentifierLoc(),
+ diag::err_explicit_instantiation_data_member_not_instantiated)
+ << Prev;
+ Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
+ // FIXME: Can we provide a note showing where this was declared?
+ return true;
+ }
+ } else {
+ // Explicitly instantiate a variable template.
+
+ // C++1y [dcl.spec.auto]p6:
+ // ... A program that uses auto or decltype(auto) in a context not
+ // explicitly allowed in this section is ill-formed.
+ //
+ // This includes auto-typed variable template instantiations.
+ if (R->isUndeducedType()) {
+ Diag(T->getTypeLoc().getLocStart(),
+ diag::err_auto_not_allowed_var_inst);
+ return true;
+ }
+
+ if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
+ // C++1y [temp.explicit]p3:
+ // If the explicit instantiation is for a variable, the unqualified-id
+ // in the declaration shall be a template-id.
+ Diag(D.getIdentifierLoc(),
+ diag::err_explicit_instantiation_without_template_id)
+ << PrevTemplate;
+ Diag(PrevTemplate->getLocation(),
+ diag::note_explicit_instantiation_here);
+ return true;
+ }
+
+ // Translate the parser's template argument list into our AST format.
+ TemplateArgumentListInfo TemplateArgs =
+ makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
+
+ DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc,
+ D.getIdentifierLoc(), TemplateArgs);
+ if (Res.isInvalid())
+ return true;
+
+ // Ignore access control bits, we don't need them for redeclaration
+ // checking.
+ Prev = cast<VarDecl>(Res.get());
+ }
+
+ // C++0x [temp.explicit]p2:
+ // If the explicit instantiation is for a member function, a member class
+ // or a static data member of a class template specialization, the name of
+ // the class template specialization in the qualified-id for the member
+ // name shall be a simple-template-id.
+ //
+ // C++98 has the same restriction, just worded differently.
+ //
+ // This does not apply to variable template specializations, where the
+ // template-id is in the unqualified-id instead.
+ if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate)
+ Diag(D.getIdentifierLoc(),
+ diag::ext_explicit_instantiation_without_qualified_id)
+ << Prev << D.getCXXScopeSpec().getRange();
+
+ // Check the scope of this explicit instantiation.
+ CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
+
+ // Verify that it is okay to explicitly instantiate here.
+ TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind();
+ SourceLocation POI = Prev->getPointOfInstantiation();
+ bool HasNoEffect = false;
+ if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
+ PrevTSK, POI, HasNoEffect))
+ return true;
+
+ if (!HasNoEffect) {
+ // Instantiate static data member or variable template.
+
+ Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
+ if (PrevTemplate) {
+ // Merge attributes.
+ if (AttributeList *Attr = D.getDeclSpec().getAttributes().getList())
+ ProcessDeclAttributeList(S, Prev, Attr);
+ }
+ if (TSK == TSK_ExplicitInstantiationDefinition)
+ InstantiateVariableDefinition(D.getIdentifierLoc(), Prev);
+ }
+
+ // Check the new variable specialization against the parsed input.
+ if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) {
+ Diag(T->getTypeLoc().getLocStart(),
+ diag::err_invalid_var_template_spec_type)
+ << 0 << PrevTemplate << R << Prev->getType();
+ Diag(PrevTemplate->getLocation(), diag::note_template_declared_here)
+ << 2 << PrevTemplate->getDeclName();
+ return true;
+ }
+
+ // FIXME: Create an ExplicitInstantiation node?
+ return (Decl*) nullptr;
+ }
+
+ // If the declarator is a template-id, translate the parser's template
+ // argument list into our AST format.
+ bool HasExplicitTemplateArgs = false;
+ TemplateArgumentListInfo TemplateArgs;
+ if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
+ TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
+ HasExplicitTemplateArgs = true;
+ }
+
+ // C++ [temp.explicit]p1:
+ // A [...] function [...] can be explicitly instantiated from its template.
+ // A member function [...] of a class template can be explicitly
+ // instantiated from the member definition associated with its class
+ // template.
+ UnresolvedSet<8> Matches;
+ TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc());
+ for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
+ P != PEnd; ++P) {
+ NamedDecl *Prev = *P;
+ if (!HasExplicitTemplateArgs) {
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
+ QualType Adjusted = adjustCCAndNoReturn(R, Method->getType());
+ if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) {
+ Matches.clear();
+
+ Matches.addDecl(Method, P.getAccess());
+ if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
+ break;
+ }
+ }
+ }
+
+ FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
+ if (!FunTmpl)
+ continue;
+
+ TemplateDeductionInfo Info(FailedCandidates.getLocation());
+ FunctionDecl *Specialization = nullptr;
+ if (TemplateDeductionResult TDK
+ = DeduceTemplateArguments(FunTmpl,
+ (HasExplicitTemplateArgs ? &TemplateArgs
+ : nullptr),
+ R, Specialization, Info)) {
+ // Keep track of almost-matches.
+ FailedCandidates.addCandidate()
+ .set(FunTmpl->getTemplatedDecl(),
+ MakeDeductionFailureInfo(Context, TDK, Info));
+ (void)TDK;
+ continue;
+ }
+
+ Matches.addDecl(Specialization, P.getAccess());
+ }
+
+ // Find the most specialized function template specialization.
+ UnresolvedSetIterator Result = getMostSpecialized(
+ Matches.begin(), Matches.end(), FailedCandidates,
+ D.getIdentifierLoc(),
+ PDiag(diag::err_explicit_instantiation_not_known) << Name,
+ PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
+ PDiag(diag::note_explicit_instantiation_candidate));
+
+ if (Result == Matches.end())
+ return true;
+
+ // Ignore access control bits, we don't need them for redeclaration checking.
+ FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
+
+ // C++11 [except.spec]p4
+ // In an explicit instantiation an exception-specification may be specified,
+ // but is not required.
+ // If an exception-specification is specified in an explicit instantiation
+ // directive, it shall be compatible with the exception-specifications of
+ // other declarations of that function.
+ if (auto *FPT = R->getAs<FunctionProtoType>())
+ if (FPT->hasExceptionSpec()) {
+ unsigned DiagID =
+ diag::err_mismatched_exception_spec_explicit_instantiation;
+ if (getLangOpts().MicrosoftExt)
+ DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation;
+ bool Result = CheckEquivalentExceptionSpec(
+ PDiag(DiagID) << Specialization->getType(),
+ PDiag(diag::note_explicit_instantiation_here),
+ Specialization->getType()->getAs<FunctionProtoType>(),
+ Specialization->getLocation(), FPT, D.getLocStart());
+ // In Microsoft mode, mismatching exception specifications just cause a
+ // warning.
+ if (!getLangOpts().MicrosoftExt && Result)
+ return true;
+ }
+
+ if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
+ Diag(D.getIdentifierLoc(),
+ diag::err_explicit_instantiation_member_function_not_instantiated)
+ << Specialization
+ << (Specialization->getTemplateSpecializationKind() ==
+ TSK_ExplicitSpecialization);
+ Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
+ return true;
+ }
+
+ FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
+ if (!PrevDecl && Specialization->isThisDeclarationADefinition())
+ PrevDecl = Specialization;
+
+ if (PrevDecl) {
+ bool HasNoEffect = false;
+ if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
+ PrevDecl,
+ PrevDecl->getTemplateSpecializationKind(),
+ PrevDecl->getPointOfInstantiation(),
+ HasNoEffect))
+ return true;
+
+ // FIXME: We may still want to build some representation of this
+ // explicit specialization.
+ if (HasNoEffect)
+ return (Decl*) nullptr;
+ }
+
+ Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
+ AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
+ if (Attr)
+ ProcessDeclAttributeList(S, Specialization, Attr);
+
+ if (Specialization->isDefined()) {
+ // Let the ASTConsumer know that this function has been explicitly
+ // instantiated now, and its linkage might have changed.
+ Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization));
+ } else if (TSK == TSK_ExplicitInstantiationDefinition)
+ InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
+
+ // C++0x [temp.explicit]p2:
+ // If the explicit instantiation is for a member function, a member class
+ // or a static data member of a class template specialization, the name of
+ // the class template specialization in the qualified-id for the member
+ // name shall be a simple-template-id.
+ //
+ // C++98 has the same restriction, just worded differently.
+ FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
+ if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
+ D.getCXXScopeSpec().isSet() &&
+ !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
+ Diag(D.getIdentifierLoc(),
+ diag::ext_explicit_instantiation_without_qualified_id)
+ << Specialization << D.getCXXScopeSpec().getRange();
+
+ CheckExplicitInstantiationScope(*this,
+ FunTmpl? (NamedDecl *)FunTmpl
+ : Specialization->getInstantiatedFromMemberFunction(),
+ D.getIdentifierLoc(),
+ D.getCXXScopeSpec().isSet());
+
+ // FIXME: Create some kind of ExplicitInstantiationDecl here.
+ return (Decl*) nullptr;
+}
+
+TypeResult
+Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
+ const CXXScopeSpec &SS, IdentifierInfo *Name,
+ SourceLocation TagLoc, SourceLocation NameLoc) {
+ // This has to hold, because SS is expected to be defined.
+ assert(Name && "Expected a name in a dependent tag");
+
+ NestedNameSpecifier *NNS = SS.getScopeRep();
+ if (!NNS)
+ return true;
+
+ TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
+
+ if (TUK == TUK_Declaration || TUK == TUK_Definition) {
+ Diag(NameLoc, diag::err_dependent_tag_decl)
+ << (TUK == TUK_Definition) << Kind << SS.getRange();
+ return true;
+ }
+
+ // Create the resulting type.
+ ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
+ QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
+
+ // Create type-source location information for this type.
+ TypeLocBuilder TLB;
+ DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
+ TL.setElaboratedKeywordLoc(TagLoc);
+ TL.setQualifierLoc(SS.getWithLocInContext(Context));
+ TL.setNameLoc(NameLoc);
+ return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
+}
+
+TypeResult
+Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
+ const CXXScopeSpec &SS, const IdentifierInfo &II,
+ SourceLocation IdLoc) {
+ if (SS.isInvalid())
+ return true;
+
+ if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
+ Diag(TypenameLoc,
+ getLangOpts().CPlusPlus11 ?
+ diag::warn_cxx98_compat_typename_outside_of_template :
+ diag::ext_typename_outside_of_template)
+ << FixItHint::CreateRemoval(TypenameLoc);
+
+ NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
+ QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
+ TypenameLoc, QualifierLoc, II, IdLoc);
+ if (T.isNull())
+ return true;
+
+ TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
+ if (isa<DependentNameType>(T)) {
+ DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
+ TL.setElaboratedKeywordLoc(TypenameLoc);
+ TL.setQualifierLoc(QualifierLoc);
+ TL.setNameLoc(IdLoc);
+ } else {
+ ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
+ TL.setElaboratedKeywordLoc(TypenameLoc);
+ TL.setQualifierLoc(QualifierLoc);
+ TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
+ }
+
+ return CreateParsedType(T, TSI);
+}
+
+TypeResult
+Sema::ActOnTypenameType(Scope *S,
+ SourceLocation TypenameLoc,
+ const CXXScopeSpec &SS,
+ SourceLocation TemplateKWLoc,
+ TemplateTy TemplateIn,
+ SourceLocation TemplateNameLoc,
+ SourceLocation LAngleLoc,
+ ASTTemplateArgsPtr TemplateArgsIn,
+ SourceLocation RAngleLoc) {
+ if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
+ Diag(TypenameLoc,
+ getLangOpts().CPlusPlus11 ?
+ diag::warn_cxx98_compat_typename_outside_of_template :
+ diag::ext_typename_outside_of_template)
+ << FixItHint::CreateRemoval(TypenameLoc);
+
+ // Translate the parser's template argument list in our AST format.
+ TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
+ translateTemplateArguments(TemplateArgsIn, TemplateArgs);
+
+ TemplateName Template = TemplateIn.get();
+ if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
+ // Construct a dependent template specialization type.
+ assert(DTN && "dependent template has non-dependent name?");
+ assert(DTN->getQualifier() == SS.getScopeRep());
+ QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
+ DTN->getQualifier(),
+ DTN->getIdentifier(),
+ TemplateArgs);
+
+ // Create source-location information for this type.
+ TypeLocBuilder Builder;
+ DependentTemplateSpecializationTypeLoc SpecTL
+ = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
+ SpecTL.setElaboratedKeywordLoc(TypenameLoc);
+ SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
+ SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
+ SpecTL.setTemplateNameLoc(TemplateNameLoc);
+ SpecTL.setLAngleLoc(LAngleLoc);
+ SpecTL.setRAngleLoc(RAngleLoc);
+ for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
+ SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
+ return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
+ }
+
+ QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
+ if (T.isNull())
+ return true;
+
+ // Provide source-location information for the template specialization type.
+ TypeLocBuilder Builder;
+ TemplateSpecializationTypeLoc SpecTL
+ = Builder.push<TemplateSpecializationTypeLoc>(T);
+ SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
+ SpecTL.setTemplateNameLoc(TemplateNameLoc);
+ SpecTL.setLAngleLoc(LAngleLoc);
+ SpecTL.setRAngleLoc(RAngleLoc);
+ for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
+ SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
+
+ T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
+ ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
+ TL.setElaboratedKeywordLoc(TypenameLoc);
+ TL.setQualifierLoc(SS.getWithLocInContext(Context));
+
+ TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
+ return CreateParsedType(T, TSI);
+}
+
+
+/// Determine whether this failed name lookup should be treated as being
+/// disabled by a usage of std::enable_if.
+static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
+ SourceRange &CondRange) {
+ // We must be looking for a ::type...
+ if (!II.isStr("type"))
+ return false;
+
+ // ... within an explicitly-written template specialization...
+ if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
+ return false;
+ TypeLoc EnableIfTy = NNS.getTypeLoc();
+ TemplateSpecializationTypeLoc EnableIfTSTLoc =
+ EnableIfTy.getAs<TemplateSpecializationTypeLoc>();
+ if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0)
+ return false;
+ const TemplateSpecializationType *EnableIfTST =
+ cast<TemplateSpecializationType>(EnableIfTSTLoc.getTypePtr());
+
+ // ... which names a complete class template declaration...
+ const TemplateDecl *EnableIfDecl =
+ EnableIfTST->getTemplateName().getAsTemplateDecl();
+ if (!EnableIfDecl || EnableIfTST->isIncompleteType())
+ return false;
+
+ // ... called "enable_if".
+ const IdentifierInfo *EnableIfII =
+ EnableIfDecl->getDeclName().getAsIdentifierInfo();
+ if (!EnableIfII || !EnableIfII->isStr("enable_if"))
+ return false;
+
+ // Assume the first template argument is the condition.
+ CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange();
+ return true;
+}
+
+/// \brief Build the type that describes a C++ typename specifier,
+/// e.g., "typename T::type".
+QualType
+Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
+ SourceLocation KeywordLoc,
+ NestedNameSpecifierLoc QualifierLoc,
+ const IdentifierInfo &II,
+ SourceLocation IILoc) {
+ CXXScopeSpec SS;
+ SS.Adopt(QualifierLoc);
+
+ DeclContext *Ctx = computeDeclContext(SS);
+ if (!Ctx) {
+ // If the nested-name-specifier is dependent and couldn't be
+ // resolved to a type, build a typename type.
+ assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
+ return Context.getDependentNameType(Keyword,
+ QualifierLoc.getNestedNameSpecifier(),
+ &II);
+ }
+
+ // If the nested-name-specifier refers to the current instantiation,
+ // the "typename" keyword itself is superfluous. In C++03, the
+ // program is actually ill-formed. However, DR 382 (in C++0x CD1)
+ // allows such extraneous "typename" keywords, and we retroactively
+ // apply this DR to C++03 code with only a warning. In any case we continue.
+
+ if (RequireCompleteDeclContext(SS, Ctx))
+ return QualType();
+
+ DeclarationName Name(&II);
+ LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
+ LookupQualifiedName(Result, Ctx, SS);
+ unsigned DiagID = 0;
+ Decl *Referenced = nullptr;
+ switch (Result.getResultKind()) {
+ case LookupResult::NotFound: {
+ // If we're looking up 'type' within a template named 'enable_if', produce
+ // a more specific diagnostic.
+ SourceRange CondRange;
+ if (isEnableIf(QualifierLoc, II, CondRange)) {
+ Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if)
+ << Ctx << CondRange;
+ return QualType();
+ }
+
+ DiagID = diag::err_typename_nested_not_found;
+ break;
+ }
+
+ case LookupResult::FoundUnresolvedValue: {
+ // We found a using declaration that is a value. Most likely, the using
+ // declaration itself is meant to have the 'typename' keyword.
+ SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
+ IILoc);
+ Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
+ << Name << Ctx << FullRange;
+ if (UnresolvedUsingValueDecl *Using
+ = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
+ SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
+ Diag(Loc, diag::note_using_value_decl_missing_typename)
+ << FixItHint::CreateInsertion(Loc, "typename ");
+ }
+ }
+ // Fall through to create a dependent typename type, from which we can recover
+ // better.
+
+ case LookupResult::NotFoundInCurrentInstantiation:
+ // Okay, it's a member of an unknown instantiation.
+ return Context.getDependentNameType(Keyword,
+ QualifierLoc.getNestedNameSpecifier(),
+ &II);
+
+ case LookupResult::Found:
+ if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
+ // We found a type. Build an ElaboratedType, since the
+ // typename-specifier was just sugar.
+ MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
+ return Context.getElaboratedType(ETK_Typename,
+ QualifierLoc.getNestedNameSpecifier(),
+ Context.getTypeDeclType(Type));
+ }
+
+ DiagID = diag::err_typename_nested_not_type;
+ Referenced = Result.getFoundDecl();
+ break;
+
+ case LookupResult::FoundOverloaded:
+ DiagID = diag::err_typename_nested_not_type;
+ Referenced = *Result.begin();
+ break;
+
+ case LookupResult::Ambiguous:
+ return QualType();
+ }
+
+ // If we get here, it's because name lookup did not find a
+ // type. Emit an appropriate diagnostic and return an error.
+ SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
+ IILoc);
+ Diag(IILoc, DiagID) << FullRange << Name << Ctx;
+ if (Referenced)
+ Diag(Referenced->getLocation(), diag::note_typename_refers_here)
+ << Name;
+ return QualType();
+}
+
+namespace {
+ // See Sema::RebuildTypeInCurrentInstantiation
+ class CurrentInstantiationRebuilder
+ : public TreeTransform<CurrentInstantiationRebuilder> {
+ SourceLocation Loc;
+ DeclarationName Entity;
+
+ public:
+ typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
+
+ CurrentInstantiationRebuilder(Sema &SemaRef,
+ SourceLocation Loc,
+ DeclarationName Entity)
+ : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
+ Loc(Loc), Entity(Entity) { }
+
+ /// \brief Determine whether the given type \p T has already been
+ /// transformed.
+ ///
+ /// For the purposes of type reconstruction, a type has already been
+ /// transformed if it is NULL or if it is not dependent.
+ bool AlreadyTransformed(QualType T) {
+ return T.isNull() || !T->isDependentType();
+ }
+
+ /// \brief Returns the location of the entity whose type is being
+ /// rebuilt.
+ SourceLocation getBaseLocation() { return Loc; }
+
+ /// \brief Returns the name of the entity whose type is being rebuilt.
+ DeclarationName getBaseEntity() { return Entity; }
+
+ /// \brief Sets the "base" location and entity when that
+ /// information is known based on another transformation.
+ void setBase(SourceLocation Loc, DeclarationName Entity) {
+ this->Loc = Loc;
+ this->Entity = Entity;
+ }
+
+ ExprResult TransformLambdaExpr(LambdaExpr *E) {
+ // Lambdas never need to be transformed.
+ return E;
+ }
+ };
+}
+
+/// \brief Rebuilds a type within the context of the current instantiation.
+///
+/// The type \p T is part of the type of an out-of-line member definition of
+/// a class template (or class template partial specialization) that was parsed
+/// and constructed before we entered the scope of the class template (or
+/// partial specialization thereof). This routine will rebuild that type now
+/// that we have entered the declarator's scope, which may produce different
+/// canonical types, e.g.,
+///
+/// \code
+/// template<typename T>
+/// struct X {
+/// typedef T* pointer;
+/// pointer data();
+/// };
+///
+/// template<typename T>
+/// typename X<T>::pointer X<T>::data() { ... }
+/// \endcode
+///
+/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
+/// since we do not know that we can look into X<T> when we parsed the type.
+/// This function will rebuild the type, performing the lookup of "pointer"
+/// in X<T> and returning an ElaboratedType whose canonical type is the same
+/// as the canonical type of T*, allowing the return types of the out-of-line
+/// definition and the declaration to match.
+TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
+ SourceLocation Loc,
+ DeclarationName Name) {
+ if (!T || !T->getType()->isDependentType())
+ return T;
+
+ CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
+ return Rebuilder.TransformType(T);
+}
+
+ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
+ CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
+ DeclarationName());
+ return Rebuilder.TransformExpr(E);
+}
+
+bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
+ if (SS.isInvalid())
+ return true;
+
+ NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
+ CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
+ DeclarationName());
+ NestedNameSpecifierLoc Rebuilt
+ = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
+ if (!Rebuilt)
+ return true;
+
+ SS.Adopt(Rebuilt);
+ return false;
+}
+
+/// \brief Rebuild the template parameters now that we know we're in a current
+/// instantiation.
+bool Sema::RebuildTemplateParamsInCurrentInstantiation(
+ TemplateParameterList *Params) {
+ for (unsigned I = 0, N = Params->size(); I != N; ++I) {
+ Decl *Param = Params->getParam(I);
+
+ // There is nothing to rebuild in a type parameter.
+ if (isa<TemplateTypeParmDecl>(Param))
+ continue;
+
+ // Rebuild the template parameter list of a template template parameter.
+ if (TemplateTemplateParmDecl *TTP
+ = dyn_cast<TemplateTemplateParmDecl>(Param)) {
+ if (RebuildTemplateParamsInCurrentInstantiation(
+ TTP->getTemplateParameters()))
+ return true;
+
+ continue;
+ }
+
+ // Rebuild the type of a non-type template parameter.
+ NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
+ TypeSourceInfo *NewTSI
+ = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
+ NTTP->getLocation(),
+ NTTP->getDeclName());
+ if (!NewTSI)
+ return true;
+
+ if (NewTSI != NTTP->getTypeSourceInfo()) {
+ NTTP->setTypeSourceInfo(NewTSI);
+ NTTP->setType(NewTSI->getType());
+ }
+ }
+
+ return false;
+}
+
+/// \brief Produces a formatted string that describes the binding of
+/// template parameters to template arguments.
+std::string
+Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
+ const TemplateArgumentList &Args) {
+ return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
+}
+
+std::string
+Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
+ const TemplateArgument *Args,
+ unsigned NumArgs) {
+ SmallString<128> Str;
+ llvm::raw_svector_ostream Out(Str);
+
+ if (!Params || Params->size() == 0 || NumArgs == 0)
+ return std::string();
+
+ for (unsigned I = 0, N = Params->size(); I != N; ++I) {
+ if (I >= NumArgs)
+ break;
+
+ if (I == 0)
+ Out << "[with ";
+ else
+ Out << ", ";
+
+ if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
+ Out << Id->getName();
+ } else {
+ Out << '$' << I;
+ }
+
+ Out << " = ";
+ Args[I].print(getPrintingPolicy(), Out);
+ }
+
+ Out << ']';
+ return Out.str();
+}
+
+void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
+ CachedTokens &Toks) {
+ if (!FD)
+ return;
+
+ LateParsedTemplate *LPT = new LateParsedTemplate;
+
+ // Take tokens to avoid allocations
+ LPT->Toks.swap(Toks);
+ LPT->D = FnD;
+ LateParsedTemplateMap.insert(std::make_pair(FD, LPT));
+
+ FD->setLateTemplateParsed(true);
+}
+
+void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) {
+ if (!FD)
+ return;
+ FD->setLateTemplateParsed(false);
+}
+
+bool Sema::IsInsideALocalClassWithinATemplateFunction() {
+ DeclContext *DC = CurContext;
+
+ while (DC) {
+ if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
+ const FunctionDecl *FD = RD->isLocalClass();
+ return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
+ } else if (DC->isTranslationUnit() || DC->isNamespace())
+ return false;
+
+ DC = DC->getParent();
+ }
+ return false;
+}
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaTemplateDeduction.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaTemplateDeduction.cpp
new file mode 100644
index 0000000..6f676ad
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaTemplateDeduction.cpp
@@ -0,0 +1,4989 @@
+//===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//===----------------------------------------------------------------------===/
+//
+// This file implements C++ template argument deduction.
+//
+//===----------------------------------------------------------------------===/
+
+#include "clang/Sema/TemplateDeduction.h"
+#include "TreeTransform.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTLambda.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Sema/DeclSpec.h"
+#include "clang/Sema/Sema.h"
+#include "clang/Sema/Template.h"
+#include "llvm/ADT/SmallBitVector.h"
+#include <algorithm>
+
+namespace clang {
+ using namespace sema;
+ /// \brief Various flags that control template argument deduction.
+ ///
+ /// These flags can be bitwise-OR'd together.
+ enum TemplateDeductionFlags {
+ /// \brief No template argument deduction flags, which indicates the
+ /// strictest results for template argument deduction (as used for, e.g.,
+ /// matching class template partial specializations).
+ TDF_None = 0,
+ /// \brief Within template argument deduction from a function call, we are
+ /// matching with a parameter type for which the original parameter was
+ /// a reference.
+ TDF_ParamWithReferenceType = 0x1,
+ /// \brief Within template argument deduction from a function call, we
+ /// are matching in a case where we ignore cv-qualifiers.
+ TDF_IgnoreQualifiers = 0x02,
+ /// \brief Within template argument deduction from a function call,
+ /// we are matching in a case where we can perform template argument
+ /// deduction from a template-id of a derived class of the argument type.
+ TDF_DerivedClass = 0x04,
+ /// \brief Allow non-dependent types to differ, e.g., when performing
+ /// template argument deduction from a function call where conversions
+ /// may apply.
+ TDF_SkipNonDependent = 0x08,
+ /// \brief Whether we are performing template argument deduction for
+ /// parameters and arguments in a top-level template argument
+ TDF_TopLevelParameterTypeList = 0x10,
+ /// \brief Within template argument deduction from overload resolution per
+ /// C++ [over.over] allow matching function types that are compatible in
+ /// terms of noreturn and default calling convention adjustments.
+ TDF_InOverloadResolution = 0x20
+ };
+}
+
+using namespace clang;
+
+/// \brief Compare two APSInts, extending and switching the sign as
+/// necessary to compare their values regardless of underlying type.
+static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
+ if (Y.getBitWidth() > X.getBitWidth())
+ X = X.extend(Y.getBitWidth());
+ else if (Y.getBitWidth() < X.getBitWidth())
+ Y = Y.extend(X.getBitWidth());
+
+ // If there is a signedness mismatch, correct it.
+ if (X.isSigned() != Y.isSigned()) {
+ // If the signed value is negative, then the values cannot be the same.
+ if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
+ return false;
+
+ Y.setIsSigned(true);
+ X.setIsSigned(true);
+ }
+
+ return X == Y;
+}
+
+static Sema::TemplateDeductionResult
+DeduceTemplateArguments(Sema &S,
+ TemplateParameterList *TemplateParams,
+ const TemplateArgument &Param,
+ TemplateArgument Arg,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced);
+
+static Sema::TemplateDeductionResult
+DeduceTemplateArgumentsByTypeMatch(Sema &S,
+ TemplateParameterList *TemplateParams,
+ QualType Param,
+ QualType Arg,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &
+ Deduced,
+ unsigned TDF,
+ bool PartialOrdering = false);
+
+static Sema::TemplateDeductionResult
+DeduceTemplateArguments(Sema &S,
+ TemplateParameterList *TemplateParams,
+ const TemplateArgument *Params, unsigned NumParams,
+ const TemplateArgument *Args, unsigned NumArgs,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced);
+
+/// \brief If the given expression is of a form that permits the deduction
+/// of a non-type template parameter, return the declaration of that
+/// non-type template parameter.
+static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
+ // If we are within an alias template, the expression may have undergone
+ // any number of parameter substitutions already.
+ while (1) {
+ if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
+ E = IC->getSubExpr();
+ else if (SubstNonTypeTemplateParmExpr *Subst =
+ dyn_cast<SubstNonTypeTemplateParmExpr>(E))
+ E = Subst->getReplacement();
+ else
+ break;
+ }
+
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
+ return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
+
+ return nullptr;
+}
+
+/// \brief Determine whether two declaration pointers refer to the same
+/// declaration.
+static bool isSameDeclaration(Decl *X, Decl *Y) {
+ if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
+ X = NX->getUnderlyingDecl();
+ if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
+ Y = NY->getUnderlyingDecl();
+
+ return X->getCanonicalDecl() == Y->getCanonicalDecl();
+}
+
+/// \brief Verify that the given, deduced template arguments are compatible.
+///
+/// \returns The deduced template argument, or a NULL template argument if
+/// the deduced template arguments were incompatible.
+static DeducedTemplateArgument
+checkDeducedTemplateArguments(ASTContext &Context,
+ const DeducedTemplateArgument &X,
+ const DeducedTemplateArgument &Y) {
+ // We have no deduction for one or both of the arguments; they're compatible.
+ if (X.isNull())
+ return Y;
+ if (Y.isNull())
+ return X;
+
+ switch (X.getKind()) {
+ case TemplateArgument::Null:
+ llvm_unreachable("Non-deduced template arguments handled above");
+
+ case TemplateArgument::Type:
+ // If two template type arguments have the same type, they're compatible.
+ if (Y.getKind() == TemplateArgument::Type &&
+ Context.hasSameType(X.getAsType(), Y.getAsType()))
+ return X;
+
+ return DeducedTemplateArgument();
+
+ case TemplateArgument::Integral:
+ // If we deduced a constant in one case and either a dependent expression or
+ // declaration in another case, keep the integral constant.
+ // If both are integral constants with the same value, keep that value.
+ if (Y.getKind() == TemplateArgument::Expression ||
+ Y.getKind() == TemplateArgument::Declaration ||
+ (Y.getKind() == TemplateArgument::Integral &&
+ hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral())))
+ return DeducedTemplateArgument(X,
+ X.wasDeducedFromArrayBound() &&
+ Y.wasDeducedFromArrayBound());
+
+ // All other combinations are incompatible.
+ return DeducedTemplateArgument();
+
+ case TemplateArgument::Template:
+ if (Y.getKind() == TemplateArgument::Template &&
+ Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
+ return X;
+
+ // All other combinations are incompatible.
+ return DeducedTemplateArgument();
+
+ case TemplateArgument::TemplateExpansion:
+ if (Y.getKind() == TemplateArgument::TemplateExpansion &&
+ Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
+ Y.getAsTemplateOrTemplatePattern()))
+ return X;
+
+ // All other combinations are incompatible.
+ return DeducedTemplateArgument();
+
+ case TemplateArgument::Expression:
+ // If we deduced a dependent expression in one case and either an integral
+ // constant or a declaration in another case, keep the integral constant
+ // or declaration.
+ if (Y.getKind() == TemplateArgument::Integral ||
+ Y.getKind() == TemplateArgument::Declaration)
+ return DeducedTemplateArgument(Y, X.wasDeducedFromArrayBound() &&
+ Y.wasDeducedFromArrayBound());
+
+ if (Y.getKind() == TemplateArgument::Expression) {
+ // Compare the expressions for equality
+ llvm::FoldingSetNodeID ID1, ID2;
+ X.getAsExpr()->Profile(ID1, Context, true);
+ Y.getAsExpr()->Profile(ID2, Context, true);
+ if (ID1 == ID2)
+ return X;
+ }
+
+ // All other combinations are incompatible.
+ return DeducedTemplateArgument();
+
+ case TemplateArgument::Declaration:
+ // If we deduced a declaration and a dependent expression, keep the
+ // declaration.
+ if (Y.getKind() == TemplateArgument::Expression)
+ return X;
+
+ // If we deduced a declaration and an integral constant, keep the
+ // integral constant.
+ if (Y.getKind() == TemplateArgument::Integral)
+ return Y;
+
+ // If we deduced two declarations, make sure they they refer to the
+ // same declaration.
+ if (Y.getKind() == TemplateArgument::Declaration &&
+ isSameDeclaration(X.getAsDecl(), Y.getAsDecl()))
+ return X;
+
+ // All other combinations are incompatible.
+ return DeducedTemplateArgument();
+
+ case TemplateArgument::NullPtr:
+ // If we deduced a null pointer and a dependent expression, keep the
+ // null pointer.
+ if (Y.getKind() == TemplateArgument::Expression)
+ return X;
+
+ // If we deduced a null pointer and an integral constant, keep the
+ // integral constant.
+ if (Y.getKind() == TemplateArgument::Integral)
+ return Y;
+
+ // If we deduced two null pointers, make sure they have the same type.
+ if (Y.getKind() == TemplateArgument::NullPtr &&
+ Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType()))
+ return X;
+
+ // All other combinations are incompatible.
+ return DeducedTemplateArgument();
+
+ case TemplateArgument::Pack:
+ if (Y.getKind() != TemplateArgument::Pack ||
+ X.pack_size() != Y.pack_size())
+ return DeducedTemplateArgument();
+
+ for (TemplateArgument::pack_iterator XA = X.pack_begin(),
+ XAEnd = X.pack_end(),
+ YA = Y.pack_begin();
+ XA != XAEnd; ++XA, ++YA) {
+ // FIXME: Do we need to merge the results together here?
+ if (checkDeducedTemplateArguments(Context,
+ DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
+ DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound()))
+ .isNull())
+ return DeducedTemplateArgument();
+ }
+
+ return X;
+ }
+
+ llvm_unreachable("Invalid TemplateArgument Kind!");
+}
+
+/// \brief Deduce the value of the given non-type template parameter
+/// from the given constant.
+static Sema::TemplateDeductionResult
+DeduceNonTypeTemplateArgument(Sema &S,
+ NonTypeTemplateParmDecl *NTTP,
+ llvm::APSInt Value, QualType ValueType,
+ bool DeducedFromArrayBound,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
+ assert(NTTP->getDepth() == 0 &&
+ "Cannot deduce non-type template argument with depth > 0");
+
+ DeducedTemplateArgument NewDeduced(S.Context, Value, ValueType,
+ DeducedFromArrayBound);
+ DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
+ Deduced[NTTP->getIndex()],
+ NewDeduced);
+ if (Result.isNull()) {
+ Info.Param = NTTP;
+ Info.FirstArg = Deduced[NTTP->getIndex()];
+ Info.SecondArg = NewDeduced;
+ return Sema::TDK_Inconsistent;
+ }
+
+ Deduced[NTTP->getIndex()] = Result;
+ return Sema::TDK_Success;
+}
+
+/// \brief Deduce the value of the given non-type template parameter
+/// from the given type- or value-dependent expression.
+///
+/// \returns true if deduction succeeded, false otherwise.
+static Sema::TemplateDeductionResult
+DeduceNonTypeTemplateArgument(Sema &S,
+ NonTypeTemplateParmDecl *NTTP,
+ Expr *Value,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
+ assert(NTTP->getDepth() == 0 &&
+ "Cannot deduce non-type template argument with depth > 0");
+ assert((Value->isTypeDependent() || Value->isValueDependent()) &&
+ "Expression template argument must be type- or value-dependent.");
+
+ DeducedTemplateArgument NewDeduced(Value);
+ DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
+ Deduced[NTTP->getIndex()],
+ NewDeduced);
+
+ if (Result.isNull()) {
+ Info.Param = NTTP;
+ Info.FirstArg = Deduced[NTTP->getIndex()];
+ Info.SecondArg = NewDeduced;
+ return Sema::TDK_Inconsistent;
+ }
+
+ Deduced[NTTP->getIndex()] = Result;
+ return Sema::TDK_Success;
+}
+
+/// \brief Deduce the value of the given non-type template parameter
+/// from the given declaration.
+///
+/// \returns true if deduction succeeded, false otherwise.
+static Sema::TemplateDeductionResult
+DeduceNonTypeTemplateArgument(Sema &S,
+ NonTypeTemplateParmDecl *NTTP,
+ ValueDecl *D,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
+ assert(NTTP->getDepth() == 0 &&
+ "Cannot deduce non-type template argument with depth > 0");
+
+ D = D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr;
+ TemplateArgument New(D, NTTP->getType());
+ DeducedTemplateArgument NewDeduced(New);
+ DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
+ Deduced[NTTP->getIndex()],
+ NewDeduced);
+ if (Result.isNull()) {
+ Info.Param = NTTP;
+ Info.FirstArg = Deduced[NTTP->getIndex()];
+ Info.SecondArg = NewDeduced;
+ return Sema::TDK_Inconsistent;
+ }
+
+ Deduced[NTTP->getIndex()] = Result;
+ return Sema::TDK_Success;
+}
+
+static Sema::TemplateDeductionResult
+DeduceTemplateArguments(Sema &S,
+ TemplateParameterList *TemplateParams,
+ TemplateName Param,
+ TemplateName Arg,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
+ TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
+ if (!ParamDecl) {
+ // The parameter type is dependent and is not a template template parameter,
+ // so there is nothing that we can deduce.
+ return Sema::TDK_Success;
+ }
+
+ if (TemplateTemplateParmDecl *TempParam
+ = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
+ DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg));
+ DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
+ Deduced[TempParam->getIndex()],
+ NewDeduced);
+ if (Result.isNull()) {
+ Info.Param = TempParam;
+ Info.FirstArg = Deduced[TempParam->getIndex()];
+ Info.SecondArg = NewDeduced;
+ return Sema::TDK_Inconsistent;
+ }
+
+ Deduced[TempParam->getIndex()] = Result;
+ return Sema::TDK_Success;
+ }
+
+ // Verify that the two template names are equivalent.
+ if (S.Context.hasSameTemplateName(Param, Arg))
+ return Sema::TDK_Success;
+
+ // Mismatch of non-dependent template parameter to argument.
+ Info.FirstArg = TemplateArgument(Param);
+ Info.SecondArg = TemplateArgument(Arg);
+ return Sema::TDK_NonDeducedMismatch;
+}
+
+/// \brief Deduce the template arguments by comparing the template parameter
+/// type (which is a template-id) with the template argument type.
+///
+/// \param S the Sema
+///
+/// \param TemplateParams the template parameters that we are deducing
+///
+/// \param Param the parameter type
+///
+/// \param Arg the argument type
+///
+/// \param Info information about the template argument deduction itself
+///
+/// \param Deduced the deduced template arguments
+///
+/// \returns the result of template argument deduction so far. Note that a
+/// "success" result means that template argument deduction has not yet failed,
+/// but it may still fail, later, for other reasons.
+static Sema::TemplateDeductionResult
+DeduceTemplateArguments(Sema &S,
+ TemplateParameterList *TemplateParams,
+ const TemplateSpecializationType *Param,
+ QualType Arg,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
+ assert(Arg.isCanonical() && "Argument type must be canonical");
+
+ // Check whether the template argument is a dependent template-id.
+ if (const TemplateSpecializationType *SpecArg
+ = dyn_cast<TemplateSpecializationType>(Arg)) {
+ // Perform template argument deduction for the template name.
+ if (Sema::TemplateDeductionResult Result
+ = DeduceTemplateArguments(S, TemplateParams,
+ Param->getTemplateName(),
+ SpecArg->getTemplateName(),
+ Info, Deduced))
+ return Result;
+
+
+ // Perform template argument deduction on each template
+ // argument. Ignore any missing/extra arguments, since they could be
+ // filled in by default arguments.
+ return DeduceTemplateArguments(S, TemplateParams,
+ Param->getArgs(), Param->getNumArgs(),
+ SpecArg->getArgs(), SpecArg->getNumArgs(),
+ Info, Deduced);
+ }
+
+ // If the argument type is a class template specialization, we
+ // perform template argument deduction using its template
+ // arguments.
+ const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
+ if (!RecordArg) {
+ Info.FirstArg = TemplateArgument(QualType(Param, 0));
+ Info.SecondArg = TemplateArgument(Arg);
+ return Sema::TDK_NonDeducedMismatch;
+ }
+
+ ClassTemplateSpecializationDecl *SpecArg
+ = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
+ if (!SpecArg) {
+ Info.FirstArg = TemplateArgument(QualType(Param, 0));
+ Info.SecondArg = TemplateArgument(Arg);
+ return Sema::TDK_NonDeducedMismatch;
+ }
+
+ // Perform template argument deduction for the template name.
+ if (Sema::TemplateDeductionResult Result
+ = DeduceTemplateArguments(S,
+ TemplateParams,
+ Param->getTemplateName(),
+ TemplateName(SpecArg->getSpecializedTemplate()),
+ Info, Deduced))
+ return Result;
+
+ // Perform template argument deduction for the template arguments.
+ return DeduceTemplateArguments(S, TemplateParams,
+ Param->getArgs(), Param->getNumArgs(),
+ SpecArg->getTemplateArgs().data(),
+ SpecArg->getTemplateArgs().size(),
+ Info, Deduced);
+}
+
+/// \brief Determines whether the given type is an opaque type that
+/// might be more qualified when instantiated.
+static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
+ switch (T->getTypeClass()) {
+ case Type::TypeOfExpr:
+ case Type::TypeOf:
+ case Type::DependentName:
+ case Type::Decltype:
+ case Type::UnresolvedUsing:
+ case Type::TemplateTypeParm:
+ return true;
+
+ case Type::ConstantArray:
+ case Type::IncompleteArray:
+ case Type::VariableArray:
+ case Type::DependentSizedArray:
+ return IsPossiblyOpaquelyQualifiedType(
+ cast<ArrayType>(T)->getElementType());
+
+ default:
+ return false;
+ }
+}
+
+/// \brief Retrieve the depth and index of a template parameter.
+static std::pair<unsigned, unsigned>
+getDepthAndIndex(NamedDecl *ND) {
+ if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ND))
+ return std::make_pair(TTP->getDepth(), TTP->getIndex());
+
+ if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(ND))
+ return std::make_pair(NTTP->getDepth(), NTTP->getIndex());
+
+ TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(ND);
+ return std::make_pair(TTP->getDepth(), TTP->getIndex());
+}
+
+/// \brief Retrieve the depth and index of an unexpanded parameter pack.
+static std::pair<unsigned, unsigned>
+getDepthAndIndex(UnexpandedParameterPack UPP) {
+ if (const TemplateTypeParmType *TTP
+ = UPP.first.dyn_cast<const TemplateTypeParmType *>())
+ return std::make_pair(TTP->getDepth(), TTP->getIndex());
+
+ return getDepthAndIndex(UPP.first.get<NamedDecl *>());
+}
+
+/// \brief Helper function to build a TemplateParameter when we don't
+/// know its type statically.
+static TemplateParameter makeTemplateParameter(Decl *D) {
+ if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
+ return TemplateParameter(TTP);
+ if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
+ return TemplateParameter(NTTP);
+
+ return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
+}
+
+/// A pack that we're currently deducing.
+struct clang::DeducedPack {
+ DeducedPack(unsigned Index) : Index(Index), Outer(nullptr) {}
+
+ // The index of the pack.
+ unsigned Index;
+
+ // The old value of the pack before we started deducing it.
+ DeducedTemplateArgument Saved;
+
+ // A deferred value of this pack from an inner deduction, that couldn't be
+ // deduced because this deduction hadn't happened yet.
+ DeducedTemplateArgument DeferredDeduction;
+
+ // The new value of the pack.
+ SmallVector<DeducedTemplateArgument, 4> New;
+
+ // The outer deduction for this pack, if any.
+ DeducedPack *Outer;
+};
+
+namespace {
+/// A scope in which we're performing pack deduction.
+class PackDeductionScope {
+public:
+ PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced,
+ TemplateDeductionInfo &Info, TemplateArgument Pattern)
+ : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) {
+ // Compute the set of template parameter indices that correspond to
+ // parameter packs expanded by the pack expansion.
+ {
+ llvm::SmallBitVector SawIndices(TemplateParams->size());
+ SmallVector<UnexpandedParameterPack, 2> Unexpanded;
+ S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
+ for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
+ unsigned Depth, Index;
+ std::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
+ if (Depth == 0 && !SawIndices[Index]) {
+ SawIndices[Index] = true;
+
+ // Save the deduced template argument for the parameter pack expanded
+ // by this pack expansion, then clear out the deduction.
+ DeducedPack Pack(Index);
+ Pack.Saved = Deduced[Index];
+ Deduced[Index] = TemplateArgument();
+
+ Packs.push_back(Pack);
+ }
+ }
+ }
+ assert(!Packs.empty() && "Pack expansion without unexpanded packs?");
+
+ for (auto &Pack : Packs) {
+ if (Info.PendingDeducedPacks.size() > Pack.Index)
+ Pack.Outer = Info.PendingDeducedPacks[Pack.Index];
+ else
+ Info.PendingDeducedPacks.resize(Pack.Index + 1);
+ Info.PendingDeducedPacks[Pack.Index] = &Pack;
+
+ if (S.CurrentInstantiationScope) {
+ // If the template argument pack was explicitly specified, add that to
+ // the set of deduced arguments.
+ const TemplateArgument *ExplicitArgs;
+ unsigned NumExplicitArgs;
+ NamedDecl *PartiallySubstitutedPack =
+ S.CurrentInstantiationScope->getPartiallySubstitutedPack(
+ &ExplicitArgs, &NumExplicitArgs);
+ if (PartiallySubstitutedPack &&
+ getDepthAndIndex(PartiallySubstitutedPack).second == Pack.Index)
+ Pack.New.append(ExplicitArgs, ExplicitArgs + NumExplicitArgs);
+ }
+ }
+ }
+
+ ~PackDeductionScope() {
+ for (auto &Pack : Packs)
+ Info.PendingDeducedPacks[Pack.Index] = Pack.Outer;
+ }
+
+ /// Move to deducing the next element in each pack that is being deduced.
+ void nextPackElement() {
+ // Capture the deduced template arguments for each parameter pack expanded
+ // by this pack expansion, add them to the list of arguments we've deduced
+ // for that pack, then clear out the deduced argument.
+ for (auto &Pack : Packs) {
+ DeducedTemplateArgument &DeducedArg = Deduced[Pack.Index];
+ if (!DeducedArg.isNull()) {
+ Pack.New.push_back(DeducedArg);
+ DeducedArg = DeducedTemplateArgument();
+ }
+ }
+ }
+
+ /// \brief Finish template argument deduction for a set of argument packs,
+ /// producing the argument packs and checking for consistency with prior
+ /// deductions.
+ Sema::TemplateDeductionResult finish(bool HasAnyArguments) {
+ // Build argument packs for each of the parameter packs expanded by this
+ // pack expansion.
+ for (auto &Pack : Packs) {
+ // Put back the old value for this pack.
+ Deduced[Pack.Index] = Pack.Saved;
+
+ // Build or find a new value for this pack.
+ DeducedTemplateArgument NewPack;
+ if (HasAnyArguments && Pack.New.empty()) {
+ if (Pack.DeferredDeduction.isNull()) {
+ // We were not able to deduce anything for this parameter pack
+ // (because it only appeared in non-deduced contexts), so just
+ // restore the saved argument pack.
+ continue;
+ }
+
+ NewPack = Pack.DeferredDeduction;
+ Pack.DeferredDeduction = TemplateArgument();
+ } else if (Pack.New.empty()) {
+ // If we deduced an empty argument pack, create it now.
+ NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack());
+ } else {
+ TemplateArgument *ArgumentPack =
+ new (S.Context) TemplateArgument[Pack.New.size()];
+ std::copy(Pack.New.begin(), Pack.New.end(), ArgumentPack);
+ NewPack = DeducedTemplateArgument(
+ TemplateArgument(ArgumentPack, Pack.New.size()),
+ Pack.New[0].wasDeducedFromArrayBound());
+ }
+
+ // Pick where we're going to put the merged pack.
+ DeducedTemplateArgument *Loc;
+ if (Pack.Outer) {
+ if (Pack.Outer->DeferredDeduction.isNull()) {
+ // Defer checking this pack until we have a complete pack to compare
+ // it against.
+ Pack.Outer->DeferredDeduction = NewPack;
+ continue;
+ }
+ Loc = &Pack.Outer->DeferredDeduction;
+ } else {
+ Loc = &Deduced[Pack.Index];
+ }
+
+ // Check the new pack matches any previous value.
+ DeducedTemplateArgument OldPack = *Loc;
+ DeducedTemplateArgument Result =
+ checkDeducedTemplateArguments(S.Context, OldPack, NewPack);
+
+ // If we deferred a deduction of this pack, check that one now too.
+ if (!Result.isNull() && !Pack.DeferredDeduction.isNull()) {
+ OldPack = Result;
+ NewPack = Pack.DeferredDeduction;
+ Result = checkDeducedTemplateArguments(S.Context, OldPack, NewPack);
+ }
+
+ if (Result.isNull()) {
+ Info.Param =
+ makeTemplateParameter(TemplateParams->getParam(Pack.Index));
+ Info.FirstArg = OldPack;
+ Info.SecondArg = NewPack;
+ return Sema::TDK_Inconsistent;
+ }
+
+ *Loc = Result;
+ }
+
+ return Sema::TDK_Success;
+ }
+
+private:
+ Sema &S;
+ TemplateParameterList *TemplateParams;
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced;
+ TemplateDeductionInfo &Info;
+
+ SmallVector<DeducedPack, 2> Packs;
+};
+} // namespace
+
+/// \brief Deduce the template arguments by comparing the list of parameter
+/// types to the list of argument types, as in the parameter-type-lists of
+/// function types (C++ [temp.deduct.type]p10).
+///
+/// \param S The semantic analysis object within which we are deducing
+///
+/// \param TemplateParams The template parameters that we are deducing
+///
+/// \param Params The list of parameter types
+///
+/// \param NumParams The number of types in \c Params
+///
+/// \param Args The list of argument types
+///
+/// \param NumArgs The number of types in \c Args
+///
+/// \param Info information about the template argument deduction itself
+///
+/// \param Deduced the deduced template arguments
+///
+/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
+/// how template argument deduction is performed.
+///
+/// \param PartialOrdering If true, we are performing template argument
+/// deduction for during partial ordering for a call
+/// (C++0x [temp.deduct.partial]).
+///
+/// \returns the result of template argument deduction so far. Note that a
+/// "success" result means that template argument deduction has not yet failed,
+/// but it may still fail, later, for other reasons.
+static Sema::TemplateDeductionResult
+DeduceTemplateArguments(Sema &S,
+ TemplateParameterList *TemplateParams,
+ const QualType *Params, unsigned NumParams,
+ const QualType *Args, unsigned NumArgs,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced,
+ unsigned TDF,
+ bool PartialOrdering = false) {
+ // Fast-path check to see if we have too many/too few arguments.
+ if (NumParams != NumArgs &&
+ !(NumParams && isa<PackExpansionType>(Params[NumParams - 1])) &&
+ !(NumArgs && isa<PackExpansionType>(Args[NumArgs - 1])))
+ return Sema::TDK_MiscellaneousDeductionFailure;
+
+ // C++0x [temp.deduct.type]p10:
+ // Similarly, if P has a form that contains (T), then each parameter type
+ // Pi of the respective parameter-type- list of P is compared with the
+ // corresponding parameter type Ai of the corresponding parameter-type-list
+ // of A. [...]
+ unsigned ArgIdx = 0, ParamIdx = 0;
+ for (; ParamIdx != NumParams; ++ParamIdx) {
+ // Check argument types.
+ const PackExpansionType *Expansion
+ = dyn_cast<PackExpansionType>(Params[ParamIdx]);
+ if (!Expansion) {
+ // Simple case: compare the parameter and argument types at this point.
+
+ // Make sure we have an argument.
+ if (ArgIdx >= NumArgs)
+ return Sema::TDK_MiscellaneousDeductionFailure;
+
+ if (isa<PackExpansionType>(Args[ArgIdx])) {
+ // C++0x [temp.deduct.type]p22:
+ // If the original function parameter associated with A is a function
+ // parameter pack and the function parameter associated with P is not
+ // a function parameter pack, then template argument deduction fails.
+ return Sema::TDK_MiscellaneousDeductionFailure;
+ }
+
+ if (Sema::TemplateDeductionResult Result
+ = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ Params[ParamIdx], Args[ArgIdx],
+ Info, Deduced, TDF,
+ PartialOrdering))
+ return Result;
+
+ ++ArgIdx;
+ continue;
+ }
+
+ // C++0x [temp.deduct.type]p5:
+ // The non-deduced contexts are:
+ // - A function parameter pack that does not occur at the end of the
+ // parameter-declaration-clause.
+ if (ParamIdx + 1 < NumParams)
+ return Sema::TDK_Success;
+
+ // C++0x [temp.deduct.type]p10:
+ // If the parameter-declaration corresponding to Pi is a function
+ // parameter pack, then the type of its declarator- id is compared with
+ // each remaining parameter type in the parameter-type-list of A. Each
+ // comparison deduces template arguments for subsequent positions in the
+ // template parameter packs expanded by the function parameter pack.
+
+ QualType Pattern = Expansion->getPattern();
+ PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern);
+
+ bool HasAnyArguments = false;
+ for (; ArgIdx < NumArgs; ++ArgIdx) {
+ HasAnyArguments = true;
+
+ // Deduce template arguments from the pattern.
+ if (Sema::TemplateDeductionResult Result
+ = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, Pattern,
+ Args[ArgIdx], Info, Deduced,
+ TDF, PartialOrdering))
+ return Result;
+
+ PackScope.nextPackElement();
+ }
+
+ // Build argument packs for each of the parameter packs expanded by this
+ // pack expansion.
+ if (auto Result = PackScope.finish(HasAnyArguments))
+ return Result;
+ }
+
+ // Make sure we don't have any extra arguments.
+ if (ArgIdx < NumArgs)
+ return Sema::TDK_MiscellaneousDeductionFailure;
+
+ return Sema::TDK_Success;
+}
+
+/// \brief Determine whether the parameter has qualifiers that are either
+/// inconsistent with or a superset of the argument's qualifiers.
+static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType,
+ QualType ArgType) {
+ Qualifiers ParamQs = ParamType.getQualifiers();
+ Qualifiers ArgQs = ArgType.getQualifiers();
+
+ if (ParamQs == ArgQs)
+ return false;
+
+ // Mismatched (but not missing) Objective-C GC attributes.
+ if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() &&
+ ParamQs.hasObjCGCAttr())
+ return true;
+
+ // Mismatched (but not missing) address spaces.
+ if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() &&
+ ParamQs.hasAddressSpace())
+ return true;
+
+ // Mismatched (but not missing) Objective-C lifetime qualifiers.
+ if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() &&
+ ParamQs.hasObjCLifetime())
+ return true;
+
+ // CVR qualifier superset.
+ return (ParamQs.getCVRQualifiers() != ArgQs.getCVRQualifiers()) &&
+ ((ParamQs.getCVRQualifiers() | ArgQs.getCVRQualifiers())
+ == ParamQs.getCVRQualifiers());
+}
+
+/// \brief Compare types for equality with respect to possibly compatible
+/// function types (noreturn adjustment, implicit calling conventions). If any
+/// of parameter and argument is not a function, just perform type comparison.
+///
+/// \param Param the template parameter type.
+///
+/// \param Arg the argument type.
+bool Sema::isSameOrCompatibleFunctionType(CanQualType Param,
+ CanQualType Arg) {
+ const FunctionType *ParamFunction = Param->getAs<FunctionType>(),
+ *ArgFunction = Arg->getAs<FunctionType>();
+
+ // Just compare if not functions.
+ if (!ParamFunction || !ArgFunction)
+ return Param == Arg;
+
+ // Noreturn adjustment.
+ QualType AdjustedParam;
+ if (IsNoReturnConversion(Param, Arg, AdjustedParam))
+ return Arg == Context.getCanonicalType(AdjustedParam);
+
+ // FIXME: Compatible calling conventions.
+
+ return Param == Arg;
+}
+
+/// \brief Deduce the template arguments by comparing the parameter type and
+/// the argument type (C++ [temp.deduct.type]).
+///
+/// \param S the semantic analysis object within which we are deducing
+///
+/// \param TemplateParams the template parameters that we are deducing
+///
+/// \param ParamIn the parameter type
+///
+/// \param ArgIn the argument type
+///
+/// \param Info information about the template argument deduction itself
+///
+/// \param Deduced the deduced template arguments
+///
+/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
+/// how template argument deduction is performed.
+///
+/// \param PartialOrdering Whether we're performing template argument deduction
+/// in the context of partial ordering (C++0x [temp.deduct.partial]).
+///
+/// \returns the result of template argument deduction so far. Note that a
+/// "success" result means that template argument deduction has not yet failed,
+/// but it may still fail, later, for other reasons.
+static Sema::TemplateDeductionResult
+DeduceTemplateArgumentsByTypeMatch(Sema &S,
+ TemplateParameterList *TemplateParams,
+ QualType ParamIn, QualType ArgIn,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced,
+ unsigned TDF,
+ bool PartialOrdering) {
+ // We only want to look at the canonical types, since typedefs and
+ // sugar are not part of template argument deduction.
+ QualType Param = S.Context.getCanonicalType(ParamIn);
+ QualType Arg = S.Context.getCanonicalType(ArgIn);
+
+ // If the argument type is a pack expansion, look at its pattern.
+ // This isn't explicitly called out
+ if (const PackExpansionType *ArgExpansion
+ = dyn_cast<PackExpansionType>(Arg))
+ Arg = ArgExpansion->getPattern();
+
+ if (PartialOrdering) {
+ // C++11 [temp.deduct.partial]p5:
+ // Before the partial ordering is done, certain transformations are
+ // performed on the types used for partial ordering:
+ // - If P is a reference type, P is replaced by the type referred to.
+ const ReferenceType *ParamRef = Param->getAs<ReferenceType>();
+ if (ParamRef)
+ Param = ParamRef->getPointeeType();
+
+ // - If A is a reference type, A is replaced by the type referred to.
+ const ReferenceType *ArgRef = Arg->getAs<ReferenceType>();
+ if (ArgRef)
+ Arg = ArgRef->getPointeeType();
+
+ if (ParamRef && ArgRef && S.Context.hasSameUnqualifiedType(Param, Arg)) {
+ // C++11 [temp.deduct.partial]p9:
+ // If, for a given type, deduction succeeds in both directions (i.e.,
+ // the types are identical after the transformations above) and both
+ // P and A were reference types [...]:
+ // - if [one type] was an lvalue reference and [the other type] was
+ // not, [the other type] is not considered to be at least as
+ // specialized as [the first type]
+ // - if [one type] is more cv-qualified than [the other type],
+ // [the other type] is not considered to be at least as specialized
+ // as [the first type]
+ // Objective-C ARC adds:
+ // - [one type] has non-trivial lifetime, [the other type] has
+ // __unsafe_unretained lifetime, and the types are otherwise
+ // identical
+ //
+ // A is "considered to be at least as specialized" as P iff deduction
+ // succeeds, so we model this as a deduction failure. Note that
+ // [the first type] is P and [the other type] is A here; the standard
+ // gets this backwards.
+ Qualifiers ParamQuals = Param.getQualifiers();
+ Qualifiers ArgQuals = Arg.getQualifiers();
+ if ((ParamRef->isLValueReferenceType() &&
+ !ArgRef->isLValueReferenceType()) ||
+ ParamQuals.isStrictSupersetOf(ArgQuals) ||
+ (ParamQuals.hasNonTrivialObjCLifetime() &&
+ ArgQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone &&
+ ParamQuals.withoutObjCLifetime() ==
+ ArgQuals.withoutObjCLifetime())) {
+ Info.FirstArg = TemplateArgument(ParamIn);
+ Info.SecondArg = TemplateArgument(ArgIn);
+ return Sema::TDK_NonDeducedMismatch;
+ }
+ }
+
+ // C++11 [temp.deduct.partial]p7:
+ // Remove any top-level cv-qualifiers:
+ // - If P is a cv-qualified type, P is replaced by the cv-unqualified
+ // version of P.
+ Param = Param.getUnqualifiedType();
+ // - If A is a cv-qualified type, A is replaced by the cv-unqualified
+ // version of A.
+ Arg = Arg.getUnqualifiedType();
+ } else {
+ // C++0x [temp.deduct.call]p4 bullet 1:
+ // - If the original P is a reference type, the deduced A (i.e., the type
+ // referred to by the reference) can be more cv-qualified than the
+ // transformed A.
+ if (TDF & TDF_ParamWithReferenceType) {
+ Qualifiers Quals;
+ QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
+ Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
+ Arg.getCVRQualifiers());
+ Param = S.Context.getQualifiedType(UnqualParam, Quals);
+ }
+
+ if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) {
+ // C++0x [temp.deduct.type]p10:
+ // If P and A are function types that originated from deduction when
+ // taking the address of a function template (14.8.2.2) or when deducing
+ // template arguments from a function declaration (14.8.2.6) and Pi and
+ // Ai are parameters of the top-level parameter-type-list of P and A,
+ // respectively, Pi is adjusted if it is an rvalue reference to a
+ // cv-unqualified template parameter and Ai is an lvalue reference, in
+ // which case the type of Pi is changed to be the template parameter
+ // type (i.e., T&& is changed to simply T). [ Note: As a result, when
+ // Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be
+ // deduced as X&. - end note ]
+ TDF &= ~TDF_TopLevelParameterTypeList;
+
+ if (const RValueReferenceType *ParamRef
+ = Param->getAs<RValueReferenceType>()) {
+ if (isa<TemplateTypeParmType>(ParamRef->getPointeeType()) &&
+ !ParamRef->getPointeeType().getQualifiers())
+ if (Arg->isLValueReferenceType())
+ Param = ParamRef->getPointeeType();
+ }
+ }
+ }
+
+ // C++ [temp.deduct.type]p9:
+ // A template type argument T, a template template argument TT or a
+ // template non-type argument i can be deduced if P and A have one of
+ // the following forms:
+ //
+ // T
+ // cv-list T
+ if (const TemplateTypeParmType *TemplateTypeParm
+ = Param->getAs<TemplateTypeParmType>()) {
+ // Just skip any attempts to deduce from a placeholder type.
+ if (Arg->isPlaceholderType())
+ return Sema::TDK_Success;
+
+ unsigned Index = TemplateTypeParm->getIndex();
+ bool RecanonicalizeArg = false;
+
+ // If the argument type is an array type, move the qualifiers up to the
+ // top level, so they can be matched with the qualifiers on the parameter.
+ if (isa<ArrayType>(Arg)) {
+ Qualifiers Quals;
+ Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
+ if (Quals) {
+ Arg = S.Context.getQualifiedType(Arg, Quals);
+ RecanonicalizeArg = true;
+ }
+ }
+
+ // The argument type can not be less qualified than the parameter
+ // type.
+ if (!(TDF & TDF_IgnoreQualifiers) &&
+ hasInconsistentOrSupersetQualifiersOf(Param, Arg)) {
+ Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
+ Info.FirstArg = TemplateArgument(Param);
+ Info.SecondArg = TemplateArgument(Arg);
+ return Sema::TDK_Underqualified;
+ }
+
+ assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
+ assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
+ QualType DeducedType = Arg;
+
+ // Remove any qualifiers on the parameter from the deduced type.
+ // We checked the qualifiers for consistency above.
+ Qualifiers DeducedQs = DeducedType.getQualifiers();
+ Qualifiers ParamQs = Param.getQualifiers();
+ DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers());
+ if (ParamQs.hasObjCGCAttr())
+ DeducedQs.removeObjCGCAttr();
+ if (ParamQs.hasAddressSpace())
+ DeducedQs.removeAddressSpace();
+ if (ParamQs.hasObjCLifetime())
+ DeducedQs.removeObjCLifetime();
+
+ // Objective-C ARC:
+ // If template deduction would produce a lifetime qualifier on a type
+ // that is not a lifetime type, template argument deduction fails.
+ if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() &&
+ !DeducedType->isDependentType()) {
+ Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
+ Info.FirstArg = TemplateArgument(Param);
+ Info.SecondArg = TemplateArgument(Arg);
+ return Sema::TDK_Underqualified;
+ }
+
+ // Objective-C ARC:
+ // If template deduction would produce an argument type with lifetime type
+ // but no lifetime qualifier, the __strong lifetime qualifier is inferred.
+ if (S.getLangOpts().ObjCAutoRefCount &&
+ DeducedType->isObjCLifetimeType() &&
+ !DeducedQs.hasObjCLifetime())
+ DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong);
+
+ DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(),
+ DeducedQs);
+
+ if (RecanonicalizeArg)
+ DeducedType = S.Context.getCanonicalType(DeducedType);
+
+ DeducedTemplateArgument NewDeduced(DeducedType);
+ DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
+ Deduced[Index],
+ NewDeduced);
+ if (Result.isNull()) {
+ Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
+ Info.FirstArg = Deduced[Index];
+ Info.SecondArg = NewDeduced;
+ return Sema::TDK_Inconsistent;
+ }
+
+ Deduced[Index] = Result;
+ return Sema::TDK_Success;
+ }
+
+ // Set up the template argument deduction information for a failure.
+ Info.FirstArg = TemplateArgument(ParamIn);
+ Info.SecondArg = TemplateArgument(ArgIn);
+
+ // If the parameter is an already-substituted template parameter
+ // pack, do nothing: we don't know which of its arguments to look
+ // at, so we have to wait until all of the parameter packs in this
+ // expansion have arguments.
+ if (isa<SubstTemplateTypeParmPackType>(Param))
+ return Sema::TDK_Success;
+
+ // Check the cv-qualifiers on the parameter and argument types.
+ CanQualType CanParam = S.Context.getCanonicalType(Param);
+ CanQualType CanArg = S.Context.getCanonicalType(Arg);
+ if (!(TDF & TDF_IgnoreQualifiers)) {
+ if (TDF & TDF_ParamWithReferenceType) {
+ if (hasInconsistentOrSupersetQualifiersOf(Param, Arg))
+ return Sema::TDK_NonDeducedMismatch;
+ } else if (!IsPossiblyOpaquelyQualifiedType(Param)) {
+ if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
+ return Sema::TDK_NonDeducedMismatch;
+ }
+
+ // If the parameter type is not dependent, there is nothing to deduce.
+ if (!Param->isDependentType()) {
+ if (!(TDF & TDF_SkipNonDependent)) {
+ bool NonDeduced = (TDF & TDF_InOverloadResolution)?
+ !S.isSameOrCompatibleFunctionType(CanParam, CanArg) :
+ Param != Arg;
+ if (NonDeduced) {
+ return Sema::TDK_NonDeducedMismatch;
+ }
+ }
+ return Sema::TDK_Success;
+ }
+ } else if (!Param->isDependentType()) {
+ CanQualType ParamUnqualType = CanParam.getUnqualifiedType(),
+ ArgUnqualType = CanArg.getUnqualifiedType();
+ bool Success = (TDF & TDF_InOverloadResolution)?
+ S.isSameOrCompatibleFunctionType(ParamUnqualType,
+ ArgUnqualType) :
+ ParamUnqualType == ArgUnqualType;
+ if (Success)
+ return Sema::TDK_Success;
+ }
+
+ switch (Param->getTypeClass()) {
+ // Non-canonical types cannot appear here.
+#define NON_CANONICAL_TYPE(Class, Base) \
+ case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class);
+#define TYPE(Class, Base)
+#include "clang/AST/TypeNodes.def"
+
+ case Type::TemplateTypeParm:
+ case Type::SubstTemplateTypeParmPack:
+ llvm_unreachable("Type nodes handled above");
+
+ // These types cannot be dependent, so simply check whether the types are
+ // the same.
+ case Type::Builtin:
+ case Type::VariableArray:
+ case Type::Vector:
+ case Type::FunctionNoProto:
+ case Type::Record:
+ case Type::Enum:
+ case Type::ObjCObject:
+ case Type::ObjCInterface:
+ case Type::ObjCObjectPointer: {
+ if (TDF & TDF_SkipNonDependent)
+ return Sema::TDK_Success;
+
+ if (TDF & TDF_IgnoreQualifiers) {
+ Param = Param.getUnqualifiedType();
+ Arg = Arg.getUnqualifiedType();
+ }
+
+ return Param == Arg? Sema::TDK_Success : Sema::TDK_NonDeducedMismatch;
+ }
+
+ // _Complex T [placeholder extension]
+ case Type::Complex:
+ if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>())
+ return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ cast<ComplexType>(Param)->getElementType(),
+ ComplexArg->getElementType(),
+ Info, Deduced, TDF);
+
+ return Sema::TDK_NonDeducedMismatch;
+
+ // _Atomic T [extension]
+ case Type::Atomic:
+ if (const AtomicType *AtomicArg = Arg->getAs<AtomicType>())
+ return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ cast<AtomicType>(Param)->getValueType(),
+ AtomicArg->getValueType(),
+ Info, Deduced, TDF);
+
+ return Sema::TDK_NonDeducedMismatch;
+
+ // T *
+ case Type::Pointer: {
+ QualType PointeeType;
+ if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
+ PointeeType = PointerArg->getPointeeType();
+ } else if (const ObjCObjectPointerType *PointerArg
+ = Arg->getAs<ObjCObjectPointerType>()) {
+ PointeeType = PointerArg->getPointeeType();
+ } else {
+ return Sema::TDK_NonDeducedMismatch;
+ }
+
+ unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
+ return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ cast<PointerType>(Param)->getPointeeType(),
+ PointeeType,
+ Info, Deduced, SubTDF);
+ }
+
+ // T &
+ case Type::LValueReference: {
+ const LValueReferenceType *ReferenceArg =
+ Arg->getAs<LValueReferenceType>();
+ if (!ReferenceArg)
+ return Sema::TDK_NonDeducedMismatch;
+
+ return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ cast<LValueReferenceType>(Param)->getPointeeType(),
+ ReferenceArg->getPointeeType(), Info, Deduced, 0);
+ }
+
+ // T && [C++0x]
+ case Type::RValueReference: {
+ const RValueReferenceType *ReferenceArg =
+ Arg->getAs<RValueReferenceType>();
+ if (!ReferenceArg)
+ return Sema::TDK_NonDeducedMismatch;
+
+ return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ cast<RValueReferenceType>(Param)->getPointeeType(),
+ ReferenceArg->getPointeeType(),
+ Info, Deduced, 0);
+ }
+
+ // T [] (implied, but not stated explicitly)
+ case Type::IncompleteArray: {
+ const IncompleteArrayType *IncompleteArrayArg =
+ S.Context.getAsIncompleteArrayType(Arg);
+ if (!IncompleteArrayArg)
+ return Sema::TDK_NonDeducedMismatch;
+
+ unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
+ return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ S.Context.getAsIncompleteArrayType(Param)->getElementType(),
+ IncompleteArrayArg->getElementType(),
+ Info, Deduced, SubTDF);
+ }
+
+ // T [integer-constant]
+ case Type::ConstantArray: {
+ const ConstantArrayType *ConstantArrayArg =
+ S.Context.getAsConstantArrayType(Arg);
+ if (!ConstantArrayArg)
+ return Sema::TDK_NonDeducedMismatch;
+
+ const ConstantArrayType *ConstantArrayParm =
+ S.Context.getAsConstantArrayType(Param);
+ if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
+ return Sema::TDK_NonDeducedMismatch;
+
+ unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
+ return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ ConstantArrayParm->getElementType(),
+ ConstantArrayArg->getElementType(),
+ Info, Deduced, SubTDF);
+ }
+
+ // type [i]
+ case Type::DependentSizedArray: {
+ const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
+ if (!ArrayArg)
+ return Sema::TDK_NonDeducedMismatch;
+
+ unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
+
+ // Check the element type of the arrays
+ const DependentSizedArrayType *DependentArrayParm
+ = S.Context.getAsDependentSizedArrayType(Param);
+ if (Sema::TemplateDeductionResult Result
+ = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ DependentArrayParm->getElementType(),
+ ArrayArg->getElementType(),
+ Info, Deduced, SubTDF))
+ return Result;
+
+ // Determine the array bound is something we can deduce.
+ NonTypeTemplateParmDecl *NTTP
+ = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
+ if (!NTTP)
+ return Sema::TDK_Success;
+
+ // We can perform template argument deduction for the given non-type
+ // template parameter.
+ assert(NTTP->getDepth() == 0 &&
+ "Cannot deduce non-type template argument at depth > 0");
+ if (const ConstantArrayType *ConstantArrayArg
+ = dyn_cast<ConstantArrayType>(ArrayArg)) {
+ llvm::APSInt Size(ConstantArrayArg->getSize());
+ return DeduceNonTypeTemplateArgument(S, NTTP, Size,
+ S.Context.getSizeType(),
+ /*ArrayBound=*/true,
+ Info, Deduced);
+ }
+ if (const DependentSizedArrayType *DependentArrayArg
+ = dyn_cast<DependentSizedArrayType>(ArrayArg))
+ if (DependentArrayArg->getSizeExpr())
+ return DeduceNonTypeTemplateArgument(S, NTTP,
+ DependentArrayArg->getSizeExpr(),
+ Info, Deduced);
+
+ // Incomplete type does not match a dependently-sized array type
+ return Sema::TDK_NonDeducedMismatch;
+ }
+
+ // type(*)(T)
+ // T(*)()
+ // T(*)(T)
+ case Type::FunctionProto: {
+ unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList;
+ const FunctionProtoType *FunctionProtoArg =
+ dyn_cast<FunctionProtoType>(Arg);
+ if (!FunctionProtoArg)
+ return Sema::TDK_NonDeducedMismatch;
+
+ const FunctionProtoType *FunctionProtoParam =
+ cast<FunctionProtoType>(Param);
+
+ if (FunctionProtoParam->getTypeQuals()
+ != FunctionProtoArg->getTypeQuals() ||
+ FunctionProtoParam->getRefQualifier()
+ != FunctionProtoArg->getRefQualifier() ||
+ FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
+ return Sema::TDK_NonDeducedMismatch;
+
+ // Check return types.
+ if (Sema::TemplateDeductionResult Result =
+ DeduceTemplateArgumentsByTypeMatch(
+ S, TemplateParams, FunctionProtoParam->getReturnType(),
+ FunctionProtoArg->getReturnType(), Info, Deduced, 0))
+ return Result;
+
+ return DeduceTemplateArguments(
+ S, TemplateParams, FunctionProtoParam->param_type_begin(),
+ FunctionProtoParam->getNumParams(),
+ FunctionProtoArg->param_type_begin(),
+ FunctionProtoArg->getNumParams(), Info, Deduced, SubTDF);
+ }
+
+ case Type::InjectedClassName: {
+ // Treat a template's injected-class-name as if the template
+ // specialization type had been used.
+ Param = cast<InjectedClassNameType>(Param)
+ ->getInjectedSpecializationType();
+ assert(isa<TemplateSpecializationType>(Param) &&
+ "injected class name is not a template specialization type");
+ // fall through
+ }
+
+ // template-name<T> (where template-name refers to a class template)
+ // template-name<i>
+ // TT<T>
+ // TT<i>
+ // TT<>
+ case Type::TemplateSpecialization: {
+ const TemplateSpecializationType *SpecParam
+ = cast<TemplateSpecializationType>(Param);
+
+ // Try to deduce template arguments from the template-id.
+ Sema::TemplateDeductionResult Result
+ = DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg,
+ Info, Deduced);
+
+ if (Result && (TDF & TDF_DerivedClass)) {
+ // C++ [temp.deduct.call]p3b3:
+ // If P is a class, and P has the form template-id, then A can be a
+ // derived class of the deduced A. Likewise, if P is a pointer to a
+ // class of the form template-id, A can be a pointer to a derived
+ // class pointed to by the deduced A.
+ //
+ // More importantly:
+ // These alternatives are considered only if type deduction would
+ // otherwise fail.
+ if (const RecordType *RecordT = Arg->getAs<RecordType>()) {
+ // We cannot inspect base classes as part of deduction when the type
+ // is incomplete, so either instantiate any templates necessary to
+ // complete the type, or skip over it if it cannot be completed.
+ if (S.RequireCompleteType(Info.getLocation(), Arg, 0))
+ return Result;
+
+ // Use data recursion to crawl through the list of base classes.
+ // Visited contains the set of nodes we have already visited, while
+ // ToVisit is our stack of records that we still need to visit.
+ llvm::SmallPtrSet<const RecordType *, 8> Visited;
+ SmallVector<const RecordType *, 8> ToVisit;
+ ToVisit.push_back(RecordT);
+ bool Successful = false;
+ SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(),
+ Deduced.end());
+ while (!ToVisit.empty()) {
+ // Retrieve the next class in the inheritance hierarchy.
+ const RecordType *NextT = ToVisit.pop_back_val();
+
+ // If we have already seen this type, skip it.
+ if (!Visited.insert(NextT).second)
+ continue;
+
+ // If this is a base class, try to perform template argument
+ // deduction from it.
+ if (NextT != RecordT) {
+ TemplateDeductionInfo BaseInfo(Info.getLocation());
+ Sema::TemplateDeductionResult BaseResult
+ = DeduceTemplateArguments(S, TemplateParams, SpecParam,
+ QualType(NextT, 0), BaseInfo,
+ Deduced);
+
+ // If template argument deduction for this base was successful,
+ // note that we had some success. Otherwise, ignore any deductions
+ // from this base class.
+ if (BaseResult == Sema::TDK_Success) {
+ Successful = true;
+ DeducedOrig.clear();
+ DeducedOrig.append(Deduced.begin(), Deduced.end());
+ Info.Param = BaseInfo.Param;
+ Info.FirstArg = BaseInfo.FirstArg;
+ Info.SecondArg = BaseInfo.SecondArg;
+ }
+ else
+ Deduced = DeducedOrig;
+ }
+
+ // Visit base classes
+ CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
+ for (const auto &Base : Next->bases()) {
+ assert(Base.getType()->isRecordType() &&
+ "Base class that isn't a record?");
+ ToVisit.push_back(Base.getType()->getAs<RecordType>());
+ }
+ }
+
+ if (Successful)
+ return Sema::TDK_Success;
+ }
+
+ }
+
+ return Result;
+ }
+
+ // T type::*
+ // T T::*
+ // T (type::*)()
+ // type (T::*)()
+ // type (type::*)(T)
+ // type (T::*)(T)
+ // T (type::*)(T)
+ // T (T::*)()
+ // T (T::*)(T)
+ case Type::MemberPointer: {
+ const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
+ const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
+ if (!MemPtrArg)
+ return Sema::TDK_NonDeducedMismatch;
+
+ if (Sema::TemplateDeductionResult Result
+ = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ MemPtrParam->getPointeeType(),
+ MemPtrArg->getPointeeType(),
+ Info, Deduced,
+ TDF & TDF_IgnoreQualifiers))
+ return Result;
+
+ return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ QualType(MemPtrParam->getClass(), 0),
+ QualType(MemPtrArg->getClass(), 0),
+ Info, Deduced,
+ TDF & TDF_IgnoreQualifiers);
+ }
+
+ // (clang extension)
+ //
+ // type(^)(T)
+ // T(^)()
+ // T(^)(T)
+ case Type::BlockPointer: {
+ const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
+ const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
+
+ if (!BlockPtrArg)
+ return Sema::TDK_NonDeducedMismatch;
+
+ return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ BlockPtrParam->getPointeeType(),
+ BlockPtrArg->getPointeeType(),
+ Info, Deduced, 0);
+ }
+
+ // (clang extension)
+ //
+ // T __attribute__(((ext_vector_type(<integral constant>))))
+ case Type::ExtVector: {
+ const ExtVectorType *VectorParam = cast<ExtVectorType>(Param);
+ if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
+ // Make sure that the vectors have the same number of elements.
+ if (VectorParam->getNumElements() != VectorArg->getNumElements())
+ return Sema::TDK_NonDeducedMismatch;
+
+ // Perform deduction on the element types.
+ return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ VectorParam->getElementType(),
+ VectorArg->getElementType(),
+ Info, Deduced, TDF);
+ }
+
+ if (const DependentSizedExtVectorType *VectorArg
+ = dyn_cast<DependentSizedExtVectorType>(Arg)) {
+ // We can't check the number of elements, since the argument has a
+ // dependent number of elements. This can only occur during partial
+ // ordering.
+
+ // Perform deduction on the element types.
+ return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ VectorParam->getElementType(),
+ VectorArg->getElementType(),
+ Info, Deduced, TDF);
+ }
+
+ return Sema::TDK_NonDeducedMismatch;
+ }
+
+ // (clang extension)
+ //
+ // T __attribute__(((ext_vector_type(N))))
+ case Type::DependentSizedExtVector: {
+ const DependentSizedExtVectorType *VectorParam
+ = cast<DependentSizedExtVectorType>(Param);
+
+ if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
+ // Perform deduction on the element types.
+ if (Sema::TemplateDeductionResult Result
+ = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ VectorParam->getElementType(),
+ VectorArg->getElementType(),
+ Info, Deduced, TDF))
+ return Result;
+
+ // Perform deduction on the vector size, if we can.
+ NonTypeTemplateParmDecl *NTTP
+ = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
+ if (!NTTP)
+ return Sema::TDK_Success;
+
+ llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
+ ArgSize = VectorArg->getNumElements();
+ return DeduceNonTypeTemplateArgument(S, NTTP, ArgSize, S.Context.IntTy,
+ false, Info, Deduced);
+ }
+
+ if (const DependentSizedExtVectorType *VectorArg
+ = dyn_cast<DependentSizedExtVectorType>(Arg)) {
+ // Perform deduction on the element types.
+ if (Sema::TemplateDeductionResult Result
+ = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ VectorParam->getElementType(),
+ VectorArg->getElementType(),
+ Info, Deduced, TDF))
+ return Result;
+
+ // Perform deduction on the vector size, if we can.
+ NonTypeTemplateParmDecl *NTTP
+ = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
+ if (!NTTP)
+ return Sema::TDK_Success;
+
+ return DeduceNonTypeTemplateArgument(S, NTTP, VectorArg->getSizeExpr(),
+ Info, Deduced);
+ }
+
+ return Sema::TDK_NonDeducedMismatch;
+ }
+
+ case Type::TypeOfExpr:
+ case Type::TypeOf:
+ case Type::DependentName:
+ case Type::UnresolvedUsing:
+ case Type::Decltype:
+ case Type::UnaryTransform:
+ case Type::Auto:
+ case Type::DependentTemplateSpecialization:
+ case Type::PackExpansion:
+ // No template argument deduction for these types
+ return Sema::TDK_Success;
+ }
+
+ llvm_unreachable("Invalid Type Class!");
+}
+
+static Sema::TemplateDeductionResult
+DeduceTemplateArguments(Sema &S,
+ TemplateParameterList *TemplateParams,
+ const TemplateArgument &Param,
+ TemplateArgument Arg,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
+ // If the template argument is a pack expansion, perform template argument
+ // deduction against the pattern of that expansion. This only occurs during
+ // partial ordering.
+ if (Arg.isPackExpansion())
+ Arg = Arg.getPackExpansionPattern();
+
+ switch (Param.getKind()) {
+ case TemplateArgument::Null:
+ llvm_unreachable("Null template argument in parameter list");
+
+ case TemplateArgument::Type:
+ if (Arg.getKind() == TemplateArgument::Type)
+ return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ Param.getAsType(),
+ Arg.getAsType(),
+ Info, Deduced, 0);
+ Info.FirstArg = Param;
+ Info.SecondArg = Arg;
+ return Sema::TDK_NonDeducedMismatch;
+
+ case TemplateArgument::Template:
+ if (Arg.getKind() == TemplateArgument::Template)
+ return DeduceTemplateArguments(S, TemplateParams,
+ Param.getAsTemplate(),
+ Arg.getAsTemplate(), Info, Deduced);
+ Info.FirstArg = Param;
+ Info.SecondArg = Arg;
+ return Sema::TDK_NonDeducedMismatch;
+
+ case TemplateArgument::TemplateExpansion:
+ llvm_unreachable("caller should handle pack expansions");
+
+ case TemplateArgument::Declaration:
+ if (Arg.getKind() == TemplateArgument::Declaration &&
+ isSameDeclaration(Param.getAsDecl(), Arg.getAsDecl()))
+ return Sema::TDK_Success;
+
+ Info.FirstArg = Param;
+ Info.SecondArg = Arg;
+ return Sema::TDK_NonDeducedMismatch;
+
+ case TemplateArgument::NullPtr:
+ if (Arg.getKind() == TemplateArgument::NullPtr &&
+ S.Context.hasSameType(Param.getNullPtrType(), Arg.getNullPtrType()))
+ return Sema::TDK_Success;
+
+ Info.FirstArg = Param;
+ Info.SecondArg = Arg;
+ return Sema::TDK_NonDeducedMismatch;
+
+ case TemplateArgument::Integral:
+ if (Arg.getKind() == TemplateArgument::Integral) {
+ if (hasSameExtendedValue(Param.getAsIntegral(), Arg.getAsIntegral()))
+ return Sema::TDK_Success;
+
+ Info.FirstArg = Param;
+ Info.SecondArg = Arg;
+ return Sema::TDK_NonDeducedMismatch;
+ }
+
+ if (Arg.getKind() == TemplateArgument::Expression) {
+ Info.FirstArg = Param;
+ Info.SecondArg = Arg;
+ return Sema::TDK_NonDeducedMismatch;
+ }
+
+ Info.FirstArg = Param;
+ Info.SecondArg = Arg;
+ return Sema::TDK_NonDeducedMismatch;
+
+ case TemplateArgument::Expression: {
+ if (NonTypeTemplateParmDecl *NTTP
+ = getDeducedParameterFromExpr(Param.getAsExpr())) {
+ if (Arg.getKind() == TemplateArgument::Integral)
+ return DeduceNonTypeTemplateArgument(S, NTTP,
+ Arg.getAsIntegral(),
+ Arg.getIntegralType(),
+ /*ArrayBound=*/false,
+ Info, Deduced);
+ if (Arg.getKind() == TemplateArgument::Expression)
+ return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(),
+ Info, Deduced);
+ if (Arg.getKind() == TemplateArgument::Declaration)
+ return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(),
+ Info, Deduced);
+
+ Info.FirstArg = Param;
+ Info.SecondArg = Arg;
+ return Sema::TDK_NonDeducedMismatch;
+ }
+
+ // Can't deduce anything, but that's okay.
+ return Sema::TDK_Success;
+ }
+ case TemplateArgument::Pack:
+ llvm_unreachable("Argument packs should be expanded by the caller!");
+ }
+
+ llvm_unreachable("Invalid TemplateArgument Kind!");
+}
+
+/// \brief Determine whether there is a template argument to be used for
+/// deduction.
+///
+/// This routine "expands" argument packs in-place, overriding its input
+/// parameters so that \c Args[ArgIdx] will be the available template argument.
+///
+/// \returns true if there is another template argument (which will be at
+/// \c Args[ArgIdx]), false otherwise.
+static bool hasTemplateArgumentForDeduction(const TemplateArgument *&Args,
+ unsigned &ArgIdx,
+ unsigned &NumArgs) {
+ if (ArgIdx == NumArgs)
+ return false;
+
+ const TemplateArgument &Arg = Args[ArgIdx];
+ if (Arg.getKind() != TemplateArgument::Pack)
+ return true;
+
+ assert(ArgIdx == NumArgs - 1 && "Pack not at the end of argument list?");
+ Args = Arg.pack_begin();
+ NumArgs = Arg.pack_size();
+ ArgIdx = 0;
+ return ArgIdx < NumArgs;
+}
+
+/// \brief Determine whether the given set of template arguments has a pack
+/// expansion that is not the last template argument.
+static bool hasPackExpansionBeforeEnd(const TemplateArgument *Args,
+ unsigned NumArgs) {
+ unsigned ArgIdx = 0;
+ while (ArgIdx < NumArgs) {
+ const TemplateArgument &Arg = Args[ArgIdx];
+
+ // Unwrap argument packs.
+ if (Args[ArgIdx].getKind() == TemplateArgument::Pack) {
+ Args = Arg.pack_begin();
+ NumArgs = Arg.pack_size();
+ ArgIdx = 0;
+ continue;
+ }
+
+ ++ArgIdx;
+ if (ArgIdx == NumArgs)
+ return false;
+
+ if (Arg.isPackExpansion())
+ return true;
+ }
+
+ return false;
+}
+
+static Sema::TemplateDeductionResult
+DeduceTemplateArguments(Sema &S,
+ TemplateParameterList *TemplateParams,
+ const TemplateArgument *Params, unsigned NumParams,
+ const TemplateArgument *Args, unsigned NumArgs,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
+ // C++0x [temp.deduct.type]p9:
+ // If the template argument list of P contains a pack expansion that is not
+ // the last template argument, the entire template argument list is a
+ // non-deduced context.
+ if (hasPackExpansionBeforeEnd(Params, NumParams))
+ return Sema::TDK_Success;
+
+ // C++0x [temp.deduct.type]p9:
+ // If P has a form that contains <T> or <i>, then each argument Pi of the
+ // respective template argument list P is compared with the corresponding
+ // argument Ai of the corresponding template argument list of A.
+ unsigned ArgIdx = 0, ParamIdx = 0;
+ for (; hasTemplateArgumentForDeduction(Params, ParamIdx, NumParams);
+ ++ParamIdx) {
+ if (!Params[ParamIdx].isPackExpansion()) {
+ // The simple case: deduce template arguments by matching Pi and Ai.
+
+ // Check whether we have enough arguments.
+ if (!hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
+ return Sema::TDK_Success;
+
+ if (Args[ArgIdx].isPackExpansion()) {
+ // FIXME: We follow the logic of C++0x [temp.deduct.type]p22 here,
+ // but applied to pack expansions that are template arguments.
+ return Sema::TDK_MiscellaneousDeductionFailure;
+ }
+
+ // Perform deduction for this Pi/Ai pair.
+ if (Sema::TemplateDeductionResult Result
+ = DeduceTemplateArguments(S, TemplateParams,
+ Params[ParamIdx], Args[ArgIdx],
+ Info, Deduced))
+ return Result;
+
+ // Move to the next argument.
+ ++ArgIdx;
+ continue;
+ }
+
+ // The parameter is a pack expansion.
+
+ // C++0x [temp.deduct.type]p9:
+ // If Pi is a pack expansion, then the pattern of Pi is compared with
+ // each remaining argument in the template argument list of A. Each
+ // comparison deduces template arguments for subsequent positions in the
+ // template parameter packs expanded by Pi.
+ TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern();
+
+ // FIXME: If there are no remaining arguments, we can bail out early
+ // and set any deduced parameter packs to an empty argument pack.
+ // The latter part of this is a (minor) correctness issue.
+
+ // Prepare to deduce the packs within the pattern.
+ PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern);
+
+ // Keep track of the deduced template arguments for each parameter pack
+ // expanded by this pack expansion (the outer index) and for each
+ // template argument (the inner SmallVectors).
+ bool HasAnyArguments = false;
+ for (; hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs); ++ArgIdx) {
+ HasAnyArguments = true;
+
+ // Deduce template arguments from the pattern.
+ if (Sema::TemplateDeductionResult Result
+ = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
+ Info, Deduced))
+ return Result;
+
+ PackScope.nextPackElement();
+ }
+
+ // Build argument packs for each of the parameter packs expanded by this
+ // pack expansion.
+ if (auto Result = PackScope.finish(HasAnyArguments))
+ return Result;
+ }
+
+ return Sema::TDK_Success;
+}
+
+static Sema::TemplateDeductionResult
+DeduceTemplateArguments(Sema &S,
+ TemplateParameterList *TemplateParams,
+ const TemplateArgumentList &ParamList,
+ const TemplateArgumentList &ArgList,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
+ return DeduceTemplateArguments(S, TemplateParams,
+ ParamList.data(), ParamList.size(),
+ ArgList.data(), ArgList.size(),
+ Info, Deduced);
+}
+
+/// \brief Determine whether two template arguments are the same.
+static bool isSameTemplateArg(ASTContext &Context,
+ const TemplateArgument &X,
+ const TemplateArgument &Y) {
+ if (X.getKind() != Y.getKind())
+ return false;
+
+ switch (X.getKind()) {
+ case TemplateArgument::Null:
+ llvm_unreachable("Comparing NULL template argument");
+
+ case TemplateArgument::Type:
+ return Context.getCanonicalType(X.getAsType()) ==
+ Context.getCanonicalType(Y.getAsType());
+
+ case TemplateArgument::Declaration:
+ return isSameDeclaration(X.getAsDecl(), Y.getAsDecl());
+
+ case TemplateArgument::NullPtr:
+ return Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType());
+
+ case TemplateArgument::Template:
+ case TemplateArgument::TemplateExpansion:
+ return Context.getCanonicalTemplateName(
+ X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() ==
+ Context.getCanonicalTemplateName(
+ Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer();
+
+ case TemplateArgument::Integral:
+ return X.getAsIntegral() == Y.getAsIntegral();
+
+ case TemplateArgument::Expression: {
+ llvm::FoldingSetNodeID XID, YID;
+ X.getAsExpr()->Profile(XID, Context, true);
+ Y.getAsExpr()->Profile(YID, Context, true);
+ return XID == YID;
+ }
+
+ case TemplateArgument::Pack:
+ if (X.pack_size() != Y.pack_size())
+ return false;
+
+ for (TemplateArgument::pack_iterator XP = X.pack_begin(),
+ XPEnd = X.pack_end(),
+ YP = Y.pack_begin();
+ XP != XPEnd; ++XP, ++YP)
+ if (!isSameTemplateArg(Context, *XP, *YP))
+ return false;
+
+ return true;
+ }
+
+ llvm_unreachable("Invalid TemplateArgument Kind!");
+}
+
+/// \brief Allocate a TemplateArgumentLoc where all locations have
+/// been initialized to the given location.
+///
+/// \param S The semantic analysis object.
+///
+/// \param Arg The template argument we are producing template argument
+/// location information for.
+///
+/// \param NTTPType For a declaration template argument, the type of
+/// the non-type template parameter that corresponds to this template
+/// argument.
+///
+/// \param Loc The source location to use for the resulting template
+/// argument.
+static TemplateArgumentLoc
+getTrivialTemplateArgumentLoc(Sema &S,
+ const TemplateArgument &Arg,
+ QualType NTTPType,
+ SourceLocation Loc) {
+ switch (Arg.getKind()) {
+ case TemplateArgument::Null:
+ llvm_unreachable("Can't get a NULL template argument here");
+
+ case TemplateArgument::Type:
+ return TemplateArgumentLoc(Arg,
+ S.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
+
+ case TemplateArgument::Declaration: {
+ Expr *E
+ = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
+ .getAs<Expr>();
+ return TemplateArgumentLoc(TemplateArgument(E), E);
+ }
+
+ case TemplateArgument::NullPtr: {
+ Expr *E
+ = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
+ .getAs<Expr>();
+ return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true),
+ E);
+ }
+
+ case TemplateArgument::Integral: {
+ Expr *E
+ = S.BuildExpressionFromIntegralTemplateArgument(Arg, Loc).getAs<Expr>();
+ return TemplateArgumentLoc(TemplateArgument(E), E);
+ }
+
+ case TemplateArgument::Template:
+ case TemplateArgument::TemplateExpansion: {
+ NestedNameSpecifierLocBuilder Builder;
+ TemplateName Template = Arg.getAsTemplate();
+ if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
+ Builder.MakeTrivial(S.Context, DTN->getQualifier(), Loc);
+ else if (QualifiedTemplateName *QTN =
+ Template.getAsQualifiedTemplateName())
+ Builder.MakeTrivial(S.Context, QTN->getQualifier(), Loc);
+
+ if (Arg.getKind() == TemplateArgument::Template)
+ return TemplateArgumentLoc(Arg,
+ Builder.getWithLocInContext(S.Context),
+ Loc);
+
+
+ return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(S.Context),
+ Loc, Loc);
+ }
+
+ case TemplateArgument::Expression:
+ return TemplateArgumentLoc(Arg, Arg.getAsExpr());
+
+ case TemplateArgument::Pack:
+ return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
+ }
+
+ llvm_unreachable("Invalid TemplateArgument Kind!");
+}
+
+
+/// \brief Convert the given deduced template argument and add it to the set of
+/// fully-converted template arguments.
+static bool
+ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param,
+ DeducedTemplateArgument Arg,
+ NamedDecl *Template,
+ QualType NTTPType,
+ unsigned ArgumentPackIndex,
+ TemplateDeductionInfo &Info,
+ bool InFunctionTemplate,
+ SmallVectorImpl<TemplateArgument> &Output) {
+ if (Arg.getKind() == TemplateArgument::Pack) {
+ // This is a template argument pack, so check each of its arguments against
+ // the template parameter.
+ SmallVector<TemplateArgument, 2> PackedArgsBuilder;
+ for (const auto &P : Arg.pack_elements()) {
+ // When converting the deduced template argument, append it to the
+ // general output list. We need to do this so that the template argument
+ // checking logic has all of the prior template arguments available.
+ DeducedTemplateArgument InnerArg(P);
+ InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound());
+ if (ConvertDeducedTemplateArgument(S, Param, InnerArg, Template,
+ NTTPType, PackedArgsBuilder.size(),
+ Info, InFunctionTemplate, Output))
+ return true;
+
+ // Move the converted template argument into our argument pack.
+ PackedArgsBuilder.push_back(Output.pop_back_val());
+ }
+
+ // Create the resulting argument pack.
+ Output.push_back(TemplateArgument::CreatePackCopy(S.Context,
+ PackedArgsBuilder.data(),
+ PackedArgsBuilder.size()));
+ return false;
+ }
+
+ // Convert the deduced template argument into a template
+ // argument that we can check, almost as if the user had written
+ // the template argument explicitly.
+ TemplateArgumentLoc ArgLoc = getTrivialTemplateArgumentLoc(S, Arg, NTTPType,
+ Info.getLocation());
+
+ // Check the template argument, converting it as necessary.
+ return S.CheckTemplateArgument(Param, ArgLoc,
+ Template,
+ Template->getLocation(),
+ Template->getSourceRange().getEnd(),
+ ArgumentPackIndex,
+ Output,
+ InFunctionTemplate
+ ? (Arg.wasDeducedFromArrayBound()
+ ? Sema::CTAK_DeducedFromArrayBound
+ : Sema::CTAK_Deduced)
+ : Sema::CTAK_Specified);
+}
+
+/// Complete template argument deduction for a class template partial
+/// specialization.
+static Sema::TemplateDeductionResult
+FinishTemplateArgumentDeduction(Sema &S,
+ ClassTemplatePartialSpecializationDecl *Partial,
+ const TemplateArgumentList &TemplateArgs,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced,
+ TemplateDeductionInfo &Info) {
+ // Unevaluated SFINAE context.
+ EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
+ Sema::SFINAETrap Trap(S);
+
+ Sema::ContextRAII SavedContext(S, Partial);
+
+ // C++ [temp.deduct.type]p2:
+ // [...] or if any template argument remains neither deduced nor
+ // explicitly specified, template argument deduction fails.
+ SmallVector<TemplateArgument, 4> Builder;
+ TemplateParameterList *PartialParams = Partial->getTemplateParameters();
+ for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
+ NamedDecl *Param = PartialParams->getParam(I);
+ if (Deduced[I].isNull()) {
+ Info.Param = makeTemplateParameter(Param);
+ return Sema::TDK_Incomplete;
+ }
+
+ // We have deduced this argument, so it still needs to be
+ // checked and converted.
+
+ // First, for a non-type template parameter type that is
+ // initialized by a declaration, we need the type of the
+ // corresponding non-type template parameter.
+ QualType NTTPType;
+ if (NonTypeTemplateParmDecl *NTTP
+ = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
+ NTTPType = NTTP->getType();
+ if (NTTPType->isDependentType()) {
+ TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
+ Builder.data(), Builder.size());
+ NTTPType = S.SubstType(NTTPType,
+ MultiLevelTemplateArgumentList(TemplateArgs),
+ NTTP->getLocation(),
+ NTTP->getDeclName());
+ if (NTTPType.isNull()) {
+ Info.Param = makeTemplateParameter(Param);
+ // FIXME: These template arguments are temporary. Free them!
+ Info.reset(TemplateArgumentList::CreateCopy(S.Context,
+ Builder.data(),
+ Builder.size()));
+ return Sema::TDK_SubstitutionFailure;
+ }
+ }
+ }
+
+ if (ConvertDeducedTemplateArgument(S, Param, Deduced[I],
+ Partial, NTTPType, 0, Info, false,
+ Builder)) {
+ Info.Param = makeTemplateParameter(Param);
+ // FIXME: These template arguments are temporary. Free them!
+ Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
+ Builder.size()));
+ return Sema::TDK_SubstitutionFailure;
+ }
+ }
+
+ // Form the template argument list from the deduced template arguments.
+ TemplateArgumentList *DeducedArgumentList
+ = TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
+ Builder.size());
+
+ Info.reset(DeducedArgumentList);
+
+ // Substitute the deduced template arguments into the template
+ // arguments of the class template partial specialization, and
+ // verify that the instantiated template arguments are both valid
+ // and are equivalent to the template arguments originally provided
+ // to the class template.
+ LocalInstantiationScope InstScope(S);
+ ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
+ const ASTTemplateArgumentListInfo *PartialTemplArgInfo
+ = Partial->getTemplateArgsAsWritten();
+ const TemplateArgumentLoc *PartialTemplateArgs
+ = PartialTemplArgInfo->getTemplateArgs();
+
+ TemplateArgumentListInfo InstArgs(PartialTemplArgInfo->LAngleLoc,
+ PartialTemplArgInfo->RAngleLoc);
+
+ if (S.Subst(PartialTemplateArgs, PartialTemplArgInfo->NumTemplateArgs,
+ InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
+ unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
+ if (ParamIdx >= Partial->getTemplateParameters()->size())
+ ParamIdx = Partial->getTemplateParameters()->size() - 1;
+
+ Decl *Param
+ = const_cast<NamedDecl *>(
+ Partial->getTemplateParameters()->getParam(ParamIdx));
+ Info.Param = makeTemplateParameter(Param);
+ Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
+ return Sema::TDK_SubstitutionFailure;
+ }
+
+ SmallVector<TemplateArgument, 4> ConvertedInstArgs;
+ if (S.CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(),
+ InstArgs, false, ConvertedInstArgs))
+ return Sema::TDK_SubstitutionFailure;
+
+ TemplateParameterList *TemplateParams
+ = ClassTemplate->getTemplateParameters();
+ for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
+ TemplateArgument InstArg = ConvertedInstArgs.data()[I];
+ if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
+ Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
+ Info.FirstArg = TemplateArgs[I];
+ Info.SecondArg = InstArg;
+ return Sema::TDK_NonDeducedMismatch;
+ }
+ }
+
+ if (Trap.hasErrorOccurred())
+ return Sema::TDK_SubstitutionFailure;
+
+ return Sema::TDK_Success;
+}
+
+/// \brief Perform template argument deduction to determine whether
+/// the given template arguments match the given class template
+/// partial specialization per C++ [temp.class.spec.match].
+Sema::TemplateDeductionResult
+Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
+ const TemplateArgumentList &TemplateArgs,
+ TemplateDeductionInfo &Info) {
+ if (Partial->isInvalidDecl())
+ return TDK_Invalid;
+
+ // C++ [temp.class.spec.match]p2:
+ // A partial specialization matches a given actual template
+ // argument list if the template arguments of the partial
+ // specialization can be deduced from the actual template argument
+ // list (14.8.2).
+
+ // Unevaluated SFINAE context.
+ EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
+ SFINAETrap Trap(*this);
+
+ SmallVector<DeducedTemplateArgument, 4> Deduced;
+ Deduced.resize(Partial->getTemplateParameters()->size());
+ if (TemplateDeductionResult Result
+ = ::DeduceTemplateArguments(*this,
+ Partial->getTemplateParameters(),
+ Partial->getTemplateArgs(),
+ TemplateArgs, Info, Deduced))
+ return Result;
+
+ SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
+ InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs,
+ Info);
+ if (Inst.isInvalid())
+ return TDK_InstantiationDepth;
+
+ if (Trap.hasErrorOccurred())
+ return Sema::TDK_SubstitutionFailure;
+
+ return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
+ Deduced, Info);
+}
+
+/// Complete template argument deduction for a variable template partial
+/// specialization.
+/// TODO: Unify with ClassTemplatePartialSpecializationDecl version?
+/// May require unifying ClassTemplate(Partial)SpecializationDecl and
+/// VarTemplate(Partial)SpecializationDecl with a new data
+/// structure Template(Partial)SpecializationDecl, and
+/// using Template(Partial)SpecializationDecl as input type.
+static Sema::TemplateDeductionResult FinishTemplateArgumentDeduction(
+ Sema &S, VarTemplatePartialSpecializationDecl *Partial,
+ const TemplateArgumentList &TemplateArgs,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced,
+ TemplateDeductionInfo &Info) {
+ // Unevaluated SFINAE context.
+ EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
+ Sema::SFINAETrap Trap(S);
+
+ // C++ [temp.deduct.type]p2:
+ // [...] or if any template argument remains neither deduced nor
+ // explicitly specified, template argument deduction fails.
+ SmallVector<TemplateArgument, 4> Builder;
+ TemplateParameterList *PartialParams = Partial->getTemplateParameters();
+ for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
+ NamedDecl *Param = PartialParams->getParam(I);
+ if (Deduced[I].isNull()) {
+ Info.Param = makeTemplateParameter(Param);
+ return Sema::TDK_Incomplete;
+ }
+
+ // We have deduced this argument, so it still needs to be
+ // checked and converted.
+
+ // First, for a non-type template parameter type that is
+ // initialized by a declaration, we need the type of the
+ // corresponding non-type template parameter.
+ QualType NTTPType;
+ if (NonTypeTemplateParmDecl *NTTP =
+ dyn_cast<NonTypeTemplateParmDecl>(Param)) {
+ NTTPType = NTTP->getType();
+ if (NTTPType->isDependentType()) {
+ TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
+ Builder.data(), Builder.size());
+ NTTPType =
+ S.SubstType(NTTPType, MultiLevelTemplateArgumentList(TemplateArgs),
+ NTTP->getLocation(), NTTP->getDeclName());
+ if (NTTPType.isNull()) {
+ Info.Param = makeTemplateParameter(Param);
+ // FIXME: These template arguments are temporary. Free them!
+ Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
+ Builder.size()));
+ return Sema::TDK_SubstitutionFailure;
+ }
+ }
+ }
+
+ if (ConvertDeducedTemplateArgument(S, Param, Deduced[I], Partial, NTTPType,
+ 0, Info, false, Builder)) {
+ Info.Param = makeTemplateParameter(Param);
+ // FIXME: These template arguments are temporary. Free them!
+ Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
+ Builder.size()));
+ return Sema::TDK_SubstitutionFailure;
+ }
+ }
+
+ // Form the template argument list from the deduced template arguments.
+ TemplateArgumentList *DeducedArgumentList = TemplateArgumentList::CreateCopy(
+ S.Context, Builder.data(), Builder.size());
+
+ Info.reset(DeducedArgumentList);
+
+ // Substitute the deduced template arguments into the template
+ // arguments of the class template partial specialization, and
+ // verify that the instantiated template arguments are both valid
+ // and are equivalent to the template arguments originally provided
+ // to the class template.
+ LocalInstantiationScope InstScope(S);
+ VarTemplateDecl *VarTemplate = Partial->getSpecializedTemplate();
+ const ASTTemplateArgumentListInfo *PartialTemplArgInfo
+ = Partial->getTemplateArgsAsWritten();
+ const TemplateArgumentLoc *PartialTemplateArgs
+ = PartialTemplArgInfo->getTemplateArgs();
+
+ TemplateArgumentListInfo InstArgs(PartialTemplArgInfo->LAngleLoc,
+ PartialTemplArgInfo->RAngleLoc);
+
+ if (S.Subst(PartialTemplateArgs, PartialTemplArgInfo->NumTemplateArgs,
+ InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
+ unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
+ if (ParamIdx >= Partial->getTemplateParameters()->size())
+ ParamIdx = Partial->getTemplateParameters()->size() - 1;
+
+ Decl *Param = const_cast<NamedDecl *>(
+ Partial->getTemplateParameters()->getParam(ParamIdx));
+ Info.Param = makeTemplateParameter(Param);
+ Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
+ return Sema::TDK_SubstitutionFailure;
+ }
+ SmallVector<TemplateArgument, 4> ConvertedInstArgs;
+ if (S.CheckTemplateArgumentList(VarTemplate, Partial->getLocation(), InstArgs,
+ false, ConvertedInstArgs))
+ return Sema::TDK_SubstitutionFailure;
+
+ TemplateParameterList *TemplateParams = VarTemplate->getTemplateParameters();
+ for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
+ TemplateArgument InstArg = ConvertedInstArgs.data()[I];
+ if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
+ Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
+ Info.FirstArg = TemplateArgs[I];
+ Info.SecondArg = InstArg;
+ return Sema::TDK_NonDeducedMismatch;
+ }
+ }
+
+ if (Trap.hasErrorOccurred())
+ return Sema::TDK_SubstitutionFailure;
+
+ return Sema::TDK_Success;
+}
+
+/// \brief Perform template argument deduction to determine whether
+/// the given template arguments match the given variable template
+/// partial specialization per C++ [temp.class.spec.match].
+/// TODO: Unify with ClassTemplatePartialSpecializationDecl version?
+/// May require unifying ClassTemplate(Partial)SpecializationDecl and
+/// VarTemplate(Partial)SpecializationDecl with a new data
+/// structure Template(Partial)SpecializationDecl, and
+/// using Template(Partial)SpecializationDecl as input type.
+Sema::TemplateDeductionResult
+Sema::DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial,
+ const TemplateArgumentList &TemplateArgs,
+ TemplateDeductionInfo &Info) {
+ if (Partial->isInvalidDecl())
+ return TDK_Invalid;
+
+ // C++ [temp.class.spec.match]p2:
+ // A partial specialization matches a given actual template
+ // argument list if the template arguments of the partial
+ // specialization can be deduced from the actual template argument
+ // list (14.8.2).
+
+ // Unevaluated SFINAE context.
+ EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
+ SFINAETrap Trap(*this);
+
+ SmallVector<DeducedTemplateArgument, 4> Deduced;
+ Deduced.resize(Partial->getTemplateParameters()->size());
+ if (TemplateDeductionResult Result = ::DeduceTemplateArguments(
+ *this, Partial->getTemplateParameters(), Partial->getTemplateArgs(),
+ TemplateArgs, Info, Deduced))
+ return Result;
+
+ SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
+ InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs,
+ Info);
+ if (Inst.isInvalid())
+ return TDK_InstantiationDepth;
+
+ if (Trap.hasErrorOccurred())
+ return Sema::TDK_SubstitutionFailure;
+
+ return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
+ Deduced, Info);
+}
+
+/// \brief Determine whether the given type T is a simple-template-id type.
+static bool isSimpleTemplateIdType(QualType T) {
+ if (const TemplateSpecializationType *Spec
+ = T->getAs<TemplateSpecializationType>())
+ return Spec->getTemplateName().getAsTemplateDecl() != nullptr;
+
+ return false;
+}
+
+/// \brief Substitute the explicitly-provided template arguments into the
+/// given function template according to C++ [temp.arg.explicit].
+///
+/// \param FunctionTemplate the function template into which the explicit
+/// template arguments will be substituted.
+///
+/// \param ExplicitTemplateArgs the explicitly-specified template
+/// arguments.
+///
+/// \param Deduced the deduced template arguments, which will be populated
+/// with the converted and checked explicit template arguments.
+///
+/// \param ParamTypes will be populated with the instantiated function
+/// parameters.
+///
+/// \param FunctionType if non-NULL, the result type of the function template
+/// will also be instantiated and the pointed-to value will be updated with
+/// the instantiated function type.
+///
+/// \param Info if substitution fails for any reason, this object will be
+/// populated with more information about the failure.
+///
+/// \returns TDK_Success if substitution was successful, or some failure
+/// condition.
+Sema::TemplateDeductionResult
+Sema::SubstituteExplicitTemplateArguments(
+ FunctionTemplateDecl *FunctionTemplate,
+ TemplateArgumentListInfo &ExplicitTemplateArgs,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced,
+ SmallVectorImpl<QualType> &ParamTypes,
+ QualType *FunctionType,
+ TemplateDeductionInfo &Info) {
+ FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
+ TemplateParameterList *TemplateParams
+ = FunctionTemplate->getTemplateParameters();
+
+ if (ExplicitTemplateArgs.size() == 0) {
+ // No arguments to substitute; just copy over the parameter types and
+ // fill in the function type.
+ for (auto P : Function->params())
+ ParamTypes.push_back(P->getType());
+
+ if (FunctionType)
+ *FunctionType = Function->getType();
+ return TDK_Success;
+ }
+
+ // Unevaluated SFINAE context.
+ EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
+ SFINAETrap Trap(*this);
+
+ // C++ [temp.arg.explicit]p3:
+ // Template arguments that are present shall be specified in the
+ // declaration order of their corresponding template-parameters. The
+ // template argument list shall not specify more template-arguments than
+ // there are corresponding template-parameters.
+ SmallVector<TemplateArgument, 4> Builder;
+
+ // Enter a new template instantiation context where we check the
+ // explicitly-specified template arguments against this function template,
+ // and then substitute them into the function parameter types.
+ SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
+ InstantiatingTemplate Inst(*this, Info.getLocation(), FunctionTemplate,
+ DeducedArgs,
+ ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution,
+ Info);
+ if (Inst.isInvalid())
+ return TDK_InstantiationDepth;
+
+ if (CheckTemplateArgumentList(FunctionTemplate,
+ SourceLocation(),
+ ExplicitTemplateArgs,
+ true,
+ Builder) || Trap.hasErrorOccurred()) {
+ unsigned Index = Builder.size();
+ if (Index >= TemplateParams->size())
+ Index = TemplateParams->size() - 1;
+ Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
+ return TDK_InvalidExplicitArguments;
+ }
+
+ // Form the template argument list from the explicitly-specified
+ // template arguments.
+ TemplateArgumentList *ExplicitArgumentList
+ = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
+ Info.reset(ExplicitArgumentList);
+
+ // Template argument deduction and the final substitution should be
+ // done in the context of the templated declaration. Explicit
+ // argument substitution, on the other hand, needs to happen in the
+ // calling context.
+ ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
+
+ // If we deduced template arguments for a template parameter pack,
+ // note that the template argument pack is partially substituted and record
+ // the explicit template arguments. They'll be used as part of deduction
+ // for this template parameter pack.
+ for (unsigned I = 0, N = Builder.size(); I != N; ++I) {
+ const TemplateArgument &Arg = Builder[I];
+ if (Arg.getKind() == TemplateArgument::Pack) {
+ CurrentInstantiationScope->SetPartiallySubstitutedPack(
+ TemplateParams->getParam(I),
+ Arg.pack_begin(),
+ Arg.pack_size());
+ break;
+ }
+ }
+
+ const FunctionProtoType *Proto
+ = Function->getType()->getAs<FunctionProtoType>();
+ assert(Proto && "Function template does not have a prototype?");
+
+ // Isolate our substituted parameters from our caller.
+ LocalInstantiationScope InstScope(*this, /*MergeWithOuterScope*/true);
+
+ // Instantiate the types of each of the function parameters given the
+ // explicitly-specified template arguments. If the function has a trailing
+ // return type, substitute it after the arguments to ensure we substitute
+ // in lexical order.
+ if (Proto->hasTrailingReturn()) {
+ if (SubstParmTypes(Function->getLocation(),
+ Function->param_begin(), Function->getNumParams(),
+ MultiLevelTemplateArgumentList(*ExplicitArgumentList),
+ ParamTypes))
+ return TDK_SubstitutionFailure;
+ }
+
+ // Instantiate the return type.
+ QualType ResultType;
+ {
+ // C++11 [expr.prim.general]p3:
+ // If a declaration declares a member function or member function
+ // template of a class X, the expression this is a prvalue of type
+ // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
+ // and the end of the function-definition, member-declarator, or
+ // declarator.
+ unsigned ThisTypeQuals = 0;
+ CXXRecordDecl *ThisContext = nullptr;
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
+ ThisContext = Method->getParent();
+ ThisTypeQuals = Method->getTypeQualifiers();
+ }
+
+ CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals,
+ getLangOpts().CPlusPlus11);
+
+ ResultType =
+ SubstType(Proto->getReturnType(),
+ MultiLevelTemplateArgumentList(*ExplicitArgumentList),
+ Function->getTypeSpecStartLoc(), Function->getDeclName());
+ if (ResultType.isNull() || Trap.hasErrorOccurred())
+ return TDK_SubstitutionFailure;
+ }
+
+ // Instantiate the types of each of the function parameters given the
+ // explicitly-specified template arguments if we didn't do so earlier.
+ if (!Proto->hasTrailingReturn() &&
+ SubstParmTypes(Function->getLocation(),
+ Function->param_begin(), Function->getNumParams(),
+ MultiLevelTemplateArgumentList(*ExplicitArgumentList),
+ ParamTypes))
+ return TDK_SubstitutionFailure;
+
+ if (FunctionType) {
+ *FunctionType = BuildFunctionType(ResultType, ParamTypes,
+ Function->getLocation(),
+ Function->getDeclName(),
+ Proto->getExtProtoInfo());
+ if (FunctionType->isNull() || Trap.hasErrorOccurred())
+ return TDK_SubstitutionFailure;
+ }
+
+ // C++ [temp.arg.explicit]p2:
+ // Trailing template arguments that can be deduced (14.8.2) may be
+ // omitted from the list of explicit template-arguments. If all of the
+ // template arguments can be deduced, they may all be omitted; in this
+ // case, the empty template argument list <> itself may also be omitted.
+ //
+ // Take all of the explicitly-specified arguments and put them into
+ // the set of deduced template arguments. Explicitly-specified
+ // parameter packs, however, will be set to NULL since the deduction
+ // mechanisms handle explicitly-specified argument packs directly.
+ Deduced.reserve(TemplateParams->size());
+ for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) {
+ const TemplateArgument &Arg = ExplicitArgumentList->get(I);
+ if (Arg.getKind() == TemplateArgument::Pack)
+ Deduced.push_back(DeducedTemplateArgument());
+ else
+ Deduced.push_back(Arg);
+ }
+
+ return TDK_Success;
+}
+
+/// \brief Check whether the deduced argument type for a call to a function
+/// template matches the actual argument type per C++ [temp.deduct.call]p4.
+static bool
+CheckOriginalCallArgDeduction(Sema &S, Sema::OriginalCallArg OriginalArg,
+ QualType DeducedA) {
+ ASTContext &Context = S.Context;
+
+ QualType A = OriginalArg.OriginalArgType;
+ QualType OriginalParamType = OriginalArg.OriginalParamType;
+
+ // Check for type equality (top-level cv-qualifiers are ignored).
+ if (Context.hasSameUnqualifiedType(A, DeducedA))
+ return false;
+
+ // Strip off references on the argument types; they aren't needed for
+ // the following checks.
+ if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>())
+ DeducedA = DeducedARef->getPointeeType();
+ if (const ReferenceType *ARef = A->getAs<ReferenceType>())
+ A = ARef->getPointeeType();
+
+ // C++ [temp.deduct.call]p4:
+ // [...] However, there are three cases that allow a difference:
+ // - If the original P is a reference type, the deduced A (i.e., the
+ // type referred to by the reference) can be more cv-qualified than
+ // the transformed A.
+ if (const ReferenceType *OriginalParamRef
+ = OriginalParamType->getAs<ReferenceType>()) {
+ // We don't want to keep the reference around any more.
+ OriginalParamType = OriginalParamRef->getPointeeType();
+
+ Qualifiers AQuals = A.getQualifiers();
+ Qualifiers DeducedAQuals = DeducedA.getQualifiers();
+
+ // Under Objective-C++ ARC, the deduced type may have implicitly
+ // been given strong or (when dealing with a const reference)
+ // unsafe_unretained lifetime. If so, update the original
+ // qualifiers to include this lifetime.
+ if (S.getLangOpts().ObjCAutoRefCount &&
+ ((DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong &&
+ AQuals.getObjCLifetime() == Qualifiers::OCL_None) ||
+ (DeducedAQuals.hasConst() &&
+ DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone))) {
+ AQuals.setObjCLifetime(DeducedAQuals.getObjCLifetime());
+ }
+
+ if (AQuals == DeducedAQuals) {
+ // Qualifiers match; there's nothing to do.
+ } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) {
+ return true;
+ } else {
+ // Qualifiers are compatible, so have the argument type adopt the
+ // deduced argument type's qualifiers as if we had performed the
+ // qualification conversion.
+ A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals);
+ }
+ }
+
+ // - The transformed A can be another pointer or pointer to member
+ // type that can be converted to the deduced A via a qualification
+ // conversion.
+ //
+ // Also allow conversions which merely strip [[noreturn]] from function types
+ // (recursively) as an extension.
+ // FIXME: Currently, this doesn't play nicely with qualification conversions.
+ bool ObjCLifetimeConversion = false;
+ QualType ResultTy;
+ if ((A->isAnyPointerType() || A->isMemberPointerType()) &&
+ (S.IsQualificationConversion(A, DeducedA, false,
+ ObjCLifetimeConversion) ||
+ S.IsNoReturnConversion(A, DeducedA, ResultTy)))
+ return false;
+
+
+ // - If P is a class and P has the form simple-template-id, then the
+ // transformed A can be a derived class of the deduced A. [...]
+ // [...] Likewise, if P is a pointer to a class of the form
+ // simple-template-id, the transformed A can be a pointer to a
+ // derived class pointed to by the deduced A.
+ if (const PointerType *OriginalParamPtr
+ = OriginalParamType->getAs<PointerType>()) {
+ if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) {
+ if (const PointerType *APtr = A->getAs<PointerType>()) {
+ if (A->getPointeeType()->isRecordType()) {
+ OriginalParamType = OriginalParamPtr->getPointeeType();
+ DeducedA = DeducedAPtr->getPointeeType();
+ A = APtr->getPointeeType();
+ }
+ }
+ }
+ }
+
+ if (Context.hasSameUnqualifiedType(A, DeducedA))
+ return false;
+
+ if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) &&
+ S.IsDerivedFrom(A, DeducedA))
+ return false;
+
+ return true;
+}
+
+/// \brief Finish template argument deduction for a function template,
+/// checking the deduced template arguments for completeness and forming
+/// the function template specialization.
+///
+/// \param OriginalCallArgs If non-NULL, the original call arguments against
+/// which the deduced argument types should be compared.
+Sema::TemplateDeductionResult
+Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced,
+ unsigned NumExplicitlySpecified,
+ FunctionDecl *&Specialization,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs,
+ bool PartialOverloading) {
+ TemplateParameterList *TemplateParams
+ = FunctionTemplate->getTemplateParameters();
+
+ // Unevaluated SFINAE context.
+ EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
+ SFINAETrap Trap(*this);
+
+ // Enter a new template instantiation context while we instantiate the
+ // actual function declaration.
+ SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
+ InstantiatingTemplate Inst(*this, Info.getLocation(), FunctionTemplate,
+ DeducedArgs,
+ ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution,
+ Info);
+ if (Inst.isInvalid())
+ return TDK_InstantiationDepth;
+
+ ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
+
+ // C++ [temp.deduct.type]p2:
+ // [...] or if any template argument remains neither deduced nor
+ // explicitly specified, template argument deduction fails.
+ SmallVector<TemplateArgument, 4> Builder;
+ for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
+ NamedDecl *Param = TemplateParams->getParam(I);
+
+ if (!Deduced[I].isNull()) {
+ if (I < NumExplicitlySpecified) {
+ // We have already fully type-checked and converted this
+ // argument, because it was explicitly-specified. Just record the
+ // presence of this argument.
+ Builder.push_back(Deduced[I]);
+ // We may have had explicitly-specified template arguments for a
+ // template parameter pack (that may or may not have been extended
+ // via additional deduced arguments).
+ if (Param->isParameterPack() && CurrentInstantiationScope) {
+ if (CurrentInstantiationScope->getPartiallySubstitutedPack() ==
+ Param) {
+ // Forget the partially-substituted pack; its substitution is now
+ // complete.
+ CurrentInstantiationScope->ResetPartiallySubstitutedPack();
+ }
+ }
+ continue;
+ }
+ // We have deduced this argument, so it still needs to be
+ // checked and converted.
+
+ // First, for a non-type template parameter type that is
+ // initialized by a declaration, we need the type of the
+ // corresponding non-type template parameter.
+ QualType NTTPType;
+ if (NonTypeTemplateParmDecl *NTTP
+ = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
+ NTTPType = NTTP->getType();
+ if (NTTPType->isDependentType()) {
+ TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
+ Builder.data(), Builder.size());
+ NTTPType = SubstType(NTTPType,
+ MultiLevelTemplateArgumentList(TemplateArgs),
+ NTTP->getLocation(),
+ NTTP->getDeclName());
+ if (NTTPType.isNull()) {
+ Info.Param = makeTemplateParameter(Param);
+ // FIXME: These template arguments are temporary. Free them!
+ Info.reset(TemplateArgumentList::CreateCopy(Context,
+ Builder.data(),
+ Builder.size()));
+ return TDK_SubstitutionFailure;
+ }
+ }
+ }
+
+ if (ConvertDeducedTemplateArgument(*this, Param, Deduced[I],
+ FunctionTemplate, NTTPType, 0, Info,
+ true, Builder)) {
+ Info.Param = makeTemplateParameter(Param);
+ // FIXME: These template arguments are temporary. Free them!
+ Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
+ Builder.size()));
+ return TDK_SubstitutionFailure;
+ }
+
+ continue;
+ }
+
+ // C++0x [temp.arg.explicit]p3:
+ // A trailing template parameter pack (14.5.3) not otherwise deduced will
+ // be deduced to an empty sequence of template arguments.
+ // FIXME: Where did the word "trailing" come from?
+ if (Param->isTemplateParameterPack()) {
+ // We may have had explicitly-specified template arguments for this
+ // template parameter pack. If so, our empty deduction extends the
+ // explicitly-specified set (C++0x [temp.arg.explicit]p9).
+ const TemplateArgument *ExplicitArgs;
+ unsigned NumExplicitArgs;
+ if (CurrentInstantiationScope &&
+ CurrentInstantiationScope->getPartiallySubstitutedPack(&ExplicitArgs,
+ &NumExplicitArgs)
+ == Param) {
+ Builder.push_back(TemplateArgument(ExplicitArgs, NumExplicitArgs));
+
+ // Forget the partially-substituted pack; it's substitution is now
+ // complete.
+ CurrentInstantiationScope->ResetPartiallySubstitutedPack();
+ } else {
+ Builder.push_back(TemplateArgument::getEmptyPack());
+ }
+ continue;
+ }
+
+ // Substitute into the default template argument, if available.
+ bool HasDefaultArg = false;
+ TemplateArgumentLoc DefArg
+ = SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate,
+ FunctionTemplate->getLocation(),
+ FunctionTemplate->getSourceRange().getEnd(),
+ Param,
+ Builder, HasDefaultArg);
+
+ // If there was no default argument, deduction is incomplete.
+ if (DefArg.getArgument().isNull()) {
+ Info.Param = makeTemplateParameter(
+ const_cast<NamedDecl *>(TemplateParams->getParam(I)));
+ Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
+ Builder.size()));
+ if (PartialOverloading) break;
+
+ return HasDefaultArg ? TDK_SubstitutionFailure : TDK_Incomplete;
+ }
+
+ // Check whether we can actually use the default argument.
+ if (CheckTemplateArgument(Param, DefArg,
+ FunctionTemplate,
+ FunctionTemplate->getLocation(),
+ FunctionTemplate->getSourceRange().getEnd(),
+ 0, Builder,
+ CTAK_Specified)) {
+ Info.Param = makeTemplateParameter(
+ const_cast<NamedDecl *>(TemplateParams->getParam(I)));
+ // FIXME: These template arguments are temporary. Free them!
+ Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
+ Builder.size()));
+ return TDK_SubstitutionFailure;
+ }
+
+ // If we get here, we successfully used the default template argument.
+ }
+
+ // Form the template argument list from the deduced template arguments.
+ TemplateArgumentList *DeducedArgumentList
+ = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
+ Info.reset(DeducedArgumentList);
+
+ // Substitute the deduced template arguments into the function template
+ // declaration to produce the function template specialization.
+ DeclContext *Owner = FunctionTemplate->getDeclContext();
+ if (FunctionTemplate->getFriendObjectKind())
+ Owner = FunctionTemplate->getLexicalDeclContext();
+ Specialization = cast_or_null<FunctionDecl>(
+ SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner,
+ MultiLevelTemplateArgumentList(*DeducedArgumentList)));
+ if (!Specialization || Specialization->isInvalidDecl())
+ return TDK_SubstitutionFailure;
+
+ assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
+ FunctionTemplate->getCanonicalDecl());
+
+ // If the template argument list is owned by the function template
+ // specialization, release it.
+ if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
+ !Trap.hasErrorOccurred())
+ Info.take();
+
+ // There may have been an error that did not prevent us from constructing a
+ // declaration. Mark the declaration invalid and return with a substitution
+ // failure.
+ if (Trap.hasErrorOccurred()) {
+ Specialization->setInvalidDecl(true);
+ return TDK_SubstitutionFailure;
+ }
+
+ if (OriginalCallArgs) {
+ // C++ [temp.deduct.call]p4:
+ // In general, the deduction process attempts to find template argument
+ // values that will make the deduced A identical to A (after the type A
+ // is transformed as described above). [...]
+ for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) {
+ OriginalCallArg OriginalArg = (*OriginalCallArgs)[I];
+ unsigned ParamIdx = OriginalArg.ArgIdx;
+
+ if (ParamIdx >= Specialization->getNumParams())
+ continue;
+
+ QualType DeducedA = Specialization->getParamDecl(ParamIdx)->getType();
+ if (CheckOriginalCallArgDeduction(*this, OriginalArg, DeducedA))
+ return Sema::TDK_SubstitutionFailure;
+ }
+ }
+
+ // If we suppressed any diagnostics while performing template argument
+ // deduction, and if we haven't already instantiated this declaration,
+ // keep track of these diagnostics. They'll be emitted if this specialization
+ // is actually used.
+ if (Info.diag_begin() != Info.diag_end()) {
+ SuppressedDiagnosticsMap::iterator
+ Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl());
+ if (Pos == SuppressedDiagnostics.end())
+ SuppressedDiagnostics[Specialization->getCanonicalDecl()]
+ .append(Info.diag_begin(), Info.diag_end());
+ }
+
+ return TDK_Success;
+}
+
+/// Gets the type of a function for template-argument-deducton
+/// purposes when it's considered as part of an overload set.
+static QualType GetTypeOfFunction(Sema &S, const OverloadExpr::FindResult &R,
+ FunctionDecl *Fn) {
+ // We may need to deduce the return type of the function now.
+ if (S.getLangOpts().CPlusPlus14 && Fn->getReturnType()->isUndeducedType() &&
+ S.DeduceReturnType(Fn, R.Expression->getExprLoc(), /*Diagnose*/ false))
+ return QualType();
+
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
+ if (Method->isInstance()) {
+ // An instance method that's referenced in a form that doesn't
+ // look like a member pointer is just invalid.
+ if (!R.HasFormOfMemberPointer) return QualType();
+
+ return S.Context.getMemberPointerType(Fn->getType(),
+ S.Context.getTypeDeclType(Method->getParent()).getTypePtr());
+ }
+
+ if (!R.IsAddressOfOperand) return Fn->getType();
+ return S.Context.getPointerType(Fn->getType());
+}
+
+/// Apply the deduction rules for overload sets.
+///
+/// \return the null type if this argument should be treated as an
+/// undeduced context
+static QualType
+ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
+ Expr *Arg, QualType ParamType,
+ bool ParamWasReference) {
+
+ OverloadExpr::FindResult R = OverloadExpr::find(Arg);
+
+ OverloadExpr *Ovl = R.Expression;
+
+ // C++0x [temp.deduct.call]p4
+ unsigned TDF = 0;
+ if (ParamWasReference)
+ TDF |= TDF_ParamWithReferenceType;
+ if (R.IsAddressOfOperand)
+ TDF |= TDF_IgnoreQualifiers;
+
+ // C++0x [temp.deduct.call]p6:
+ // When P is a function type, pointer to function type, or pointer
+ // to member function type:
+
+ if (!ParamType->isFunctionType() &&
+ !ParamType->isFunctionPointerType() &&
+ !ParamType->isMemberFunctionPointerType()) {
+ if (Ovl->hasExplicitTemplateArgs()) {
+ // But we can still look for an explicit specialization.
+ if (FunctionDecl *ExplicitSpec
+ = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
+ return GetTypeOfFunction(S, R, ExplicitSpec);
+ }
+
+ return QualType();
+ }
+
+ // Gather the explicit template arguments, if any.
+ TemplateArgumentListInfo ExplicitTemplateArgs;
+ if (Ovl->hasExplicitTemplateArgs())
+ Ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
+ QualType Match;
+ for (UnresolvedSetIterator I = Ovl->decls_begin(),
+ E = Ovl->decls_end(); I != E; ++I) {
+ NamedDecl *D = (*I)->getUnderlyingDecl();
+
+ if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) {
+ // - If the argument is an overload set containing one or more
+ // function templates, the parameter is treated as a
+ // non-deduced context.
+ if (!Ovl->hasExplicitTemplateArgs())
+ return QualType();
+
+ // Otherwise, see if we can resolve a function type
+ FunctionDecl *Specialization = nullptr;
+ TemplateDeductionInfo Info(Ovl->getNameLoc());
+ if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs,
+ Specialization, Info))
+ continue;
+
+ D = Specialization;
+ }
+
+ FunctionDecl *Fn = cast<FunctionDecl>(D);
+ QualType ArgType = GetTypeOfFunction(S, R, Fn);
+ if (ArgType.isNull()) continue;
+
+ // Function-to-pointer conversion.
+ if (!ParamWasReference && ParamType->isPointerType() &&
+ ArgType->isFunctionType())
+ ArgType = S.Context.getPointerType(ArgType);
+
+ // - If the argument is an overload set (not containing function
+ // templates), trial argument deduction is attempted using each
+ // of the members of the set. If deduction succeeds for only one
+ // of the overload set members, that member is used as the
+ // argument value for the deduction. If deduction succeeds for
+ // more than one member of the overload set the parameter is
+ // treated as a non-deduced context.
+
+ // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
+ // Type deduction is done independently for each P/A pair, and
+ // the deduced template argument values are then combined.
+ // So we do not reject deductions which were made elsewhere.
+ SmallVector<DeducedTemplateArgument, 8>
+ Deduced(TemplateParams->size());
+ TemplateDeductionInfo Info(Ovl->getNameLoc());
+ Sema::TemplateDeductionResult Result
+ = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
+ ArgType, Info, Deduced, TDF);
+ if (Result) continue;
+ if (!Match.isNull()) return QualType();
+ Match = ArgType;
+ }
+
+ return Match;
+}
+
+/// \brief Perform the adjustments to the parameter and argument types
+/// described in C++ [temp.deduct.call].
+///
+/// \returns true if the caller should not attempt to perform any template
+/// argument deduction based on this P/A pair because the argument is an
+/// overloaded function set that could not be resolved.
+static bool AdjustFunctionParmAndArgTypesForDeduction(Sema &S,
+ TemplateParameterList *TemplateParams,
+ QualType &ParamType,
+ QualType &ArgType,
+ Expr *Arg,
+ unsigned &TDF) {
+ // C++0x [temp.deduct.call]p3:
+ // If P is a cv-qualified type, the top level cv-qualifiers of P's type
+ // are ignored for type deduction.
+ if (ParamType.hasQualifiers())
+ ParamType = ParamType.getUnqualifiedType();
+
+ // [...] If P is a reference type, the type referred to by P is
+ // used for type deduction.
+ const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
+ if (ParamRefType)
+ ParamType = ParamRefType->getPointeeType();
+
+ // Overload sets usually make this parameter an undeduced context,
+ // but there are sometimes special circumstances. Typically
+ // involving a template-id-expr.
+ if (ArgType == S.Context.OverloadTy) {
+ ArgType = ResolveOverloadForDeduction(S, TemplateParams,
+ Arg, ParamType,
+ ParamRefType != nullptr);
+ if (ArgType.isNull())
+ return true;
+ }
+
+ if (ParamRefType) {
+ // If the argument has incomplete array type, try to complete its type.
+ if (ArgType->isIncompleteArrayType() && !S.RequireCompleteExprType(Arg, 0))
+ ArgType = Arg->getType();
+
+ // C++0x [temp.deduct.call]p3:
+ // If P is an rvalue reference to a cv-unqualified template
+ // parameter and the argument is an lvalue, the type "lvalue
+ // reference to A" is used in place of A for type deduction.
+ if (ParamRefType->isRValueReferenceType() &&
+ !ParamType.getQualifiers() &&
+ isa<TemplateTypeParmType>(ParamType) &&
+ Arg->isLValue())
+ ArgType = S.Context.getLValueReferenceType(ArgType);
+ } else {
+ // C++ [temp.deduct.call]p2:
+ // If P is not a reference type:
+ // - If A is an array type, the pointer type produced by the
+ // array-to-pointer standard conversion (4.2) is used in place of
+ // A for type deduction; otherwise,
+ if (ArgType->isArrayType())
+ ArgType = S.Context.getArrayDecayedType(ArgType);
+ // - If A is a function type, the pointer type produced by the
+ // function-to-pointer standard conversion (4.3) is used in place
+ // of A for type deduction; otherwise,
+ else if (ArgType->isFunctionType())
+ ArgType = S.Context.getPointerType(ArgType);
+ else {
+ // - If A is a cv-qualified type, the top level cv-qualifiers of A's
+ // type are ignored for type deduction.
+ ArgType = ArgType.getUnqualifiedType();
+ }
+ }
+
+ // C++0x [temp.deduct.call]p4:
+ // In general, the deduction process attempts to find template argument
+ // values that will make the deduced A identical to A (after the type A
+ // is transformed as described above). [...]
+ TDF = TDF_SkipNonDependent;
+
+ // - If the original P is a reference type, the deduced A (i.e., the
+ // type referred to by the reference) can be more cv-qualified than
+ // the transformed A.
+ if (ParamRefType)
+ TDF |= TDF_ParamWithReferenceType;
+ // - The transformed A can be another pointer or pointer to member
+ // type that can be converted to the deduced A via a qualification
+ // conversion (4.4).
+ if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
+ ArgType->isObjCObjectPointerType())
+ TDF |= TDF_IgnoreQualifiers;
+ // - If P is a class and P has the form simple-template-id, then the
+ // transformed A can be a derived class of the deduced A. Likewise,
+ // if P is a pointer to a class of the form simple-template-id, the
+ // transformed A can be a pointer to a derived class pointed to by
+ // the deduced A.
+ if (isSimpleTemplateIdType(ParamType) ||
+ (isa<PointerType>(ParamType) &&
+ isSimpleTemplateIdType(
+ ParamType->getAs<PointerType>()->getPointeeType())))
+ TDF |= TDF_DerivedClass;
+
+ return false;
+}
+
+static bool
+hasDeducibleTemplateParameters(Sema &S, FunctionTemplateDecl *FunctionTemplate,
+ QualType T);
+
+/// \brief Perform template argument deduction by matching a parameter type
+/// against a single expression, where the expression is an element of
+/// an initializer list that was originally matched against a parameter
+/// of type \c initializer_list\<ParamType\>.
+static Sema::TemplateDeductionResult
+DeduceTemplateArgumentByListElement(Sema &S,
+ TemplateParameterList *TemplateParams,
+ QualType ParamType, Expr *Arg,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced,
+ unsigned TDF) {
+ // Handle the case where an init list contains another init list as the
+ // element.
+ if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
+ QualType X;
+ if (!S.isStdInitializerList(ParamType.getNonReferenceType(), &X))
+ return Sema::TDK_Success; // Just ignore this expression.
+
+ // Recurse down into the init list.
+ for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
+ if (Sema::TemplateDeductionResult Result =
+ DeduceTemplateArgumentByListElement(S, TemplateParams, X,
+ ILE->getInit(i),
+ Info, Deduced, TDF))
+ return Result;
+ }
+ return Sema::TDK_Success;
+ }
+
+ // For all other cases, just match by type.
+ QualType ArgType = Arg->getType();
+ if (AdjustFunctionParmAndArgTypesForDeduction(S, TemplateParams, ParamType,
+ ArgType, Arg, TDF)) {
+ Info.Expression = Arg;
+ return Sema::TDK_FailedOverloadResolution;
+ }
+ return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
+ ArgType, Info, Deduced, TDF);
+}
+
+/// \brief Perform template argument deduction from a function call
+/// (C++ [temp.deduct.call]).
+///
+/// \param FunctionTemplate the function template for which we are performing
+/// template argument deduction.
+///
+/// \param ExplicitTemplateArgs the explicit template arguments provided
+/// for this call.
+///
+/// \param Args the function call arguments
+///
+/// \param Specialization if template argument deduction was successful,
+/// this will be set to the function template specialization produced by
+/// template argument deduction.
+///
+/// \param Info the argument will be updated to provide additional information
+/// about template argument deduction.
+///
+/// \returns the result of template argument deduction.
+Sema::TemplateDeductionResult Sema::DeduceTemplateArguments(
+ FunctionTemplateDecl *FunctionTemplate,
+ TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
+ FunctionDecl *&Specialization, TemplateDeductionInfo &Info,
+ bool PartialOverloading) {
+ if (FunctionTemplate->isInvalidDecl())
+ return TDK_Invalid;
+
+ FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
+ unsigned NumParams = Function->getNumParams();
+
+ // C++ [temp.deduct.call]p1:
+ // Template argument deduction is done by comparing each function template
+ // parameter type (call it P) with the type of the corresponding argument
+ // of the call (call it A) as described below.
+ unsigned CheckArgs = Args.size();
+ if (Args.size() < Function->getMinRequiredArguments() && !PartialOverloading)
+ return TDK_TooFewArguments;
+ else if (TooManyArguments(NumParams, Args.size(), PartialOverloading)) {
+ const FunctionProtoType *Proto
+ = Function->getType()->getAs<FunctionProtoType>();
+ if (Proto->isTemplateVariadic())
+ /* Do nothing */;
+ else if (Proto->isVariadic())
+ CheckArgs = NumParams;
+ else
+ return TDK_TooManyArguments;
+ }
+
+ // The types of the parameters from which we will perform template argument
+ // deduction.
+ LocalInstantiationScope InstScope(*this);
+ TemplateParameterList *TemplateParams
+ = FunctionTemplate->getTemplateParameters();
+ SmallVector<DeducedTemplateArgument, 4> Deduced;
+ SmallVector<QualType, 4> ParamTypes;
+ unsigned NumExplicitlySpecified = 0;
+ if (ExplicitTemplateArgs) {
+ TemplateDeductionResult Result =
+ SubstituteExplicitTemplateArguments(FunctionTemplate,
+ *ExplicitTemplateArgs,
+ Deduced,
+ ParamTypes,
+ nullptr,
+ Info);
+ if (Result)
+ return Result;
+
+ NumExplicitlySpecified = Deduced.size();
+ } else {
+ // Just fill in the parameter types from the function declaration.
+ for (unsigned I = 0; I != NumParams; ++I)
+ ParamTypes.push_back(Function->getParamDecl(I)->getType());
+ }
+
+ // Deduce template arguments from the function parameters.
+ Deduced.resize(TemplateParams->size());
+ unsigned ArgIdx = 0;
+ SmallVector<OriginalCallArg, 4> OriginalCallArgs;
+ for (unsigned ParamIdx = 0, NumParamTypes = ParamTypes.size();
+ ParamIdx != NumParamTypes; ++ParamIdx) {
+ QualType OrigParamType = ParamTypes[ParamIdx];
+ QualType ParamType = OrigParamType;
+
+ const PackExpansionType *ParamExpansion
+ = dyn_cast<PackExpansionType>(ParamType);
+ if (!ParamExpansion) {
+ // Simple case: matching a function parameter to a function argument.
+ if (ArgIdx >= CheckArgs)
+ break;
+
+ Expr *Arg = Args[ArgIdx++];
+ QualType ArgType = Arg->getType();
+
+ unsigned TDF = 0;
+ if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
+ ParamType, ArgType, Arg,
+ TDF))
+ continue;
+
+ // If we have nothing to deduce, we're done.
+ if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
+ continue;
+
+ // If the argument is an initializer list ...
+ if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
+ // ... then the parameter is an undeduced context, unless the parameter
+ // type is (reference to cv) std::initializer_list<P'>, in which case
+ // deduction is done for each element of the initializer list, and the
+ // result is the deduced type if it's the same for all elements.
+ QualType X;
+ // Removing references was already done.
+ if (!isStdInitializerList(ParamType, &X))
+ continue;
+
+ for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
+ if (TemplateDeductionResult Result =
+ DeduceTemplateArgumentByListElement(*this, TemplateParams, X,
+ ILE->getInit(i),
+ Info, Deduced, TDF))
+ return Result;
+ }
+ // Don't track the argument type, since an initializer list has none.
+ continue;
+ }
+
+ // Keep track of the argument type and corresponding parameter index,
+ // so we can check for compatibility between the deduced A and A.
+ OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx-1,
+ ArgType));
+
+ if (TemplateDeductionResult Result
+ = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
+ ParamType, ArgType,
+ Info, Deduced, TDF))
+ return Result;
+
+ continue;
+ }
+
+ // C++0x [temp.deduct.call]p1:
+ // For a function parameter pack that occurs at the end of the
+ // parameter-declaration-list, the type A of each remaining argument of
+ // the call is compared with the type P of the declarator-id of the
+ // function parameter pack. Each comparison deduces template arguments
+ // for subsequent positions in the template parameter packs expanded by
+ // the function parameter pack. For a function parameter pack that does
+ // not occur at the end of the parameter-declaration-list, the type of
+ // the parameter pack is a non-deduced context.
+ if (ParamIdx + 1 < NumParamTypes)
+ break;
+
+ QualType ParamPattern = ParamExpansion->getPattern();
+ PackDeductionScope PackScope(*this, TemplateParams, Deduced, Info,
+ ParamPattern);
+
+ bool HasAnyArguments = false;
+ for (; ArgIdx < Args.size(); ++ArgIdx) {
+ HasAnyArguments = true;
+
+ QualType OrigParamType = ParamPattern;
+ ParamType = OrigParamType;
+ Expr *Arg = Args[ArgIdx];
+ QualType ArgType = Arg->getType();
+
+ unsigned TDF = 0;
+ if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
+ ParamType, ArgType, Arg,
+ TDF)) {
+ // We can't actually perform any deduction for this argument, so stop
+ // deduction at this point.
+ ++ArgIdx;
+ break;
+ }
+
+ // As above, initializer lists need special handling.
+ if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
+ QualType X;
+ if (!isStdInitializerList(ParamType, &X)) {
+ ++ArgIdx;
+ break;
+ }
+
+ for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
+ if (TemplateDeductionResult Result =
+ DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, X,
+ ILE->getInit(i)->getType(),
+ Info, Deduced, TDF))
+ return Result;
+ }
+ } else {
+
+ // Keep track of the argument type and corresponding argument index,
+ // so we can check for compatibility between the deduced A and A.
+ if (hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
+ OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx,
+ ArgType));
+
+ if (TemplateDeductionResult Result
+ = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
+ ParamType, ArgType, Info,
+ Deduced, TDF))
+ return Result;
+ }
+
+ PackScope.nextPackElement();
+ }
+
+ // Build argument packs for each of the parameter packs expanded by this
+ // pack expansion.
+ if (auto Result = PackScope.finish(HasAnyArguments))
+ return Result;
+
+ // After we've matching against a parameter pack, we're done.
+ break;
+ }
+
+ return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
+ NumExplicitlySpecified, Specialization,
+ Info, &OriginalCallArgs,
+ PartialOverloading);
+}
+
+QualType Sema::adjustCCAndNoReturn(QualType ArgFunctionType,
+ QualType FunctionType) {
+ if (ArgFunctionType.isNull())
+ return ArgFunctionType;
+
+ const FunctionProtoType *FunctionTypeP =
+ FunctionType->castAs<FunctionProtoType>();
+ CallingConv CC = FunctionTypeP->getCallConv();
+ bool NoReturn = FunctionTypeP->getNoReturnAttr();
+ const FunctionProtoType *ArgFunctionTypeP =
+ ArgFunctionType->getAs<FunctionProtoType>();
+ if (ArgFunctionTypeP->getCallConv() == CC &&
+ ArgFunctionTypeP->getNoReturnAttr() == NoReturn)
+ return ArgFunctionType;
+
+ FunctionType::ExtInfo EI = ArgFunctionTypeP->getExtInfo().withCallingConv(CC);
+ EI = EI.withNoReturn(NoReturn);
+ ArgFunctionTypeP =
+ cast<FunctionProtoType>(Context.adjustFunctionType(ArgFunctionTypeP, EI));
+ return QualType(ArgFunctionTypeP, 0);
+}
+
+/// \brief Deduce template arguments when taking the address of a function
+/// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
+/// a template.
+///
+/// \param FunctionTemplate the function template for which we are performing
+/// template argument deduction.
+///
+/// \param ExplicitTemplateArgs the explicitly-specified template
+/// arguments.
+///
+/// \param ArgFunctionType the function type that will be used as the
+/// "argument" type (A) when performing template argument deduction from the
+/// function template's function type. This type may be NULL, if there is no
+/// argument type to compare against, in C++0x [temp.arg.explicit]p3.
+///
+/// \param Specialization if template argument deduction was successful,
+/// this will be set to the function template specialization produced by
+/// template argument deduction.
+///
+/// \param Info the argument will be updated to provide additional information
+/// about template argument deduction.
+///
+/// \returns the result of template argument deduction.
+Sema::TemplateDeductionResult
+Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
+ TemplateArgumentListInfo *ExplicitTemplateArgs,
+ QualType ArgFunctionType,
+ FunctionDecl *&Specialization,
+ TemplateDeductionInfo &Info,
+ bool InOverloadResolution) {
+ if (FunctionTemplate->isInvalidDecl())
+ return TDK_Invalid;
+
+ FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
+ TemplateParameterList *TemplateParams
+ = FunctionTemplate->getTemplateParameters();
+ QualType FunctionType = Function->getType();
+ if (!InOverloadResolution)
+ ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, FunctionType);
+
+ // Substitute any explicit template arguments.
+ LocalInstantiationScope InstScope(*this);
+ SmallVector<DeducedTemplateArgument, 4> Deduced;
+ unsigned NumExplicitlySpecified = 0;
+ SmallVector<QualType, 4> ParamTypes;
+ if (ExplicitTemplateArgs) {
+ if (TemplateDeductionResult Result
+ = SubstituteExplicitTemplateArguments(FunctionTemplate,
+ *ExplicitTemplateArgs,
+ Deduced, ParamTypes,
+ &FunctionType, Info))
+ return Result;
+
+ NumExplicitlySpecified = Deduced.size();
+ }
+
+ // Unevaluated SFINAE context.
+ EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
+ SFINAETrap Trap(*this);
+
+ Deduced.resize(TemplateParams->size());
+
+ // If the function has a deduced return type, substitute it for a dependent
+ // type so that we treat it as a non-deduced context in what follows.
+ bool HasDeducedReturnType = false;
+ if (getLangOpts().CPlusPlus14 && InOverloadResolution &&
+ Function->getReturnType()->getContainedAutoType()) {
+ FunctionType = SubstAutoType(FunctionType, Context.DependentTy);
+ HasDeducedReturnType = true;
+ }
+
+ if (!ArgFunctionType.isNull()) {
+ unsigned TDF = TDF_TopLevelParameterTypeList;
+ if (InOverloadResolution) TDF |= TDF_InOverloadResolution;
+ // Deduce template arguments from the function type.
+ if (TemplateDeductionResult Result
+ = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
+ FunctionType, ArgFunctionType,
+ Info, Deduced, TDF))
+ return Result;
+ }
+
+ if (TemplateDeductionResult Result
+ = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
+ NumExplicitlySpecified,
+ Specialization, Info))
+ return Result;
+
+ // If the function has a deduced return type, deduce it now, so we can check
+ // that the deduced function type matches the requested type.
+ if (HasDeducedReturnType &&
+ Specialization->getReturnType()->isUndeducedType() &&
+ DeduceReturnType(Specialization, Info.getLocation(), false))
+ return TDK_MiscellaneousDeductionFailure;
+
+ // If the requested function type does not match the actual type of the
+ // specialization with respect to arguments of compatible pointer to function
+ // types, template argument deduction fails.
+ if (!ArgFunctionType.isNull()) {
+ if (InOverloadResolution && !isSameOrCompatibleFunctionType(
+ Context.getCanonicalType(Specialization->getType()),
+ Context.getCanonicalType(ArgFunctionType)))
+ return TDK_MiscellaneousDeductionFailure;
+ else if(!InOverloadResolution &&
+ !Context.hasSameType(Specialization->getType(), ArgFunctionType))
+ return TDK_MiscellaneousDeductionFailure;
+ }
+
+ return TDK_Success;
+}
+
+/// \brief Given a function declaration (e.g. a generic lambda conversion
+/// function) that contains an 'auto' in its result type, substitute it
+/// with TypeToReplaceAutoWith. Be careful to pass in the type you want
+/// to replace 'auto' with and not the actual result type you want
+/// to set the function to.
+static inline void
+SubstAutoWithinFunctionReturnType(FunctionDecl *F,
+ QualType TypeToReplaceAutoWith, Sema &S) {
+ assert(!TypeToReplaceAutoWith->getContainedAutoType());
+ QualType AutoResultType = F->getReturnType();
+ assert(AutoResultType->getContainedAutoType());
+ QualType DeducedResultType = S.SubstAutoType(AutoResultType,
+ TypeToReplaceAutoWith);
+ S.Context.adjustDeducedFunctionResultType(F, DeducedResultType);
+}
+
+/// \brief Given a specialized conversion operator of a generic lambda
+/// create the corresponding specializations of the call operator and
+/// the static-invoker. If the return type of the call operator is auto,
+/// deduce its return type and check if that matches the
+/// return type of the destination function ptr.
+
+static inline Sema::TemplateDeductionResult
+SpecializeCorrespondingLambdaCallOperatorAndInvoker(
+ CXXConversionDecl *ConversionSpecialized,
+ SmallVectorImpl<DeducedTemplateArgument> &DeducedArguments,
+ QualType ReturnTypeOfDestFunctionPtr,
+ TemplateDeductionInfo &TDInfo,
+ Sema &S) {
+
+ CXXRecordDecl *LambdaClass = ConversionSpecialized->getParent();
+ assert(LambdaClass && LambdaClass->isGenericLambda());
+
+ CXXMethodDecl *CallOpGeneric = LambdaClass->getLambdaCallOperator();
+ QualType CallOpResultType = CallOpGeneric->getReturnType();
+ const bool GenericLambdaCallOperatorHasDeducedReturnType =
+ CallOpResultType->getContainedAutoType();
+
+ FunctionTemplateDecl *CallOpTemplate =
+ CallOpGeneric->getDescribedFunctionTemplate();
+
+ FunctionDecl *CallOpSpecialized = nullptr;
+ // Use the deduced arguments of the conversion function, to specialize our
+ // generic lambda's call operator.
+ if (Sema::TemplateDeductionResult Result
+ = S.FinishTemplateArgumentDeduction(CallOpTemplate,
+ DeducedArguments,
+ 0, CallOpSpecialized, TDInfo))
+ return Result;
+
+ // If we need to deduce the return type, do so (instantiates the callop).
+ if (GenericLambdaCallOperatorHasDeducedReturnType &&
+ CallOpSpecialized->getReturnType()->isUndeducedType())
+ S.DeduceReturnType(CallOpSpecialized,
+ CallOpSpecialized->getPointOfInstantiation(),
+ /*Diagnose*/ true);
+
+ // Check to see if the return type of the destination ptr-to-function
+ // matches the return type of the call operator.
+ if (!S.Context.hasSameType(CallOpSpecialized->getReturnType(),
+ ReturnTypeOfDestFunctionPtr))
+ return Sema::TDK_NonDeducedMismatch;
+ // Since we have succeeded in matching the source and destination
+ // ptr-to-functions (now including return type), and have successfully
+ // specialized our corresponding call operator, we are ready to
+ // specialize the static invoker with the deduced arguments of our
+ // ptr-to-function.
+ FunctionDecl *InvokerSpecialized = nullptr;
+ FunctionTemplateDecl *InvokerTemplate = LambdaClass->
+ getLambdaStaticInvoker()->getDescribedFunctionTemplate();
+
+#ifndef NDEBUG
+ Sema::TemplateDeductionResult LLVM_ATTRIBUTE_UNUSED Result =
+#endif
+ S.FinishTemplateArgumentDeduction(InvokerTemplate, DeducedArguments, 0,
+ InvokerSpecialized, TDInfo);
+ assert(Result == Sema::TDK_Success &&
+ "If the call operator succeeded so should the invoker!");
+ // Set the result type to match the corresponding call operator
+ // specialization's result type.
+ if (GenericLambdaCallOperatorHasDeducedReturnType &&
+ InvokerSpecialized->getReturnType()->isUndeducedType()) {
+ // Be sure to get the type to replace 'auto' with and not
+ // the full result type of the call op specialization
+ // to substitute into the 'auto' of the invoker and conversion
+ // function.
+ // For e.g.
+ // int* (*fp)(int*) = [](auto* a) -> auto* { return a; };
+ // We don't want to subst 'int*' into 'auto' to get int**.
+
+ QualType TypeToReplaceAutoWith = CallOpSpecialized->getReturnType()
+ ->getContainedAutoType()
+ ->getDeducedType();
+ SubstAutoWithinFunctionReturnType(InvokerSpecialized,
+ TypeToReplaceAutoWith, S);
+ SubstAutoWithinFunctionReturnType(ConversionSpecialized,
+ TypeToReplaceAutoWith, S);
+ }
+
+ // Ensure that static invoker doesn't have a const qualifier.
+ // FIXME: When creating the InvokerTemplate in SemaLambda.cpp
+ // do not use the CallOperator's TypeSourceInfo which allows
+ // the const qualifier to leak through.
+ const FunctionProtoType *InvokerFPT = InvokerSpecialized->
+ getType().getTypePtr()->castAs<FunctionProtoType>();
+ FunctionProtoType::ExtProtoInfo EPI = InvokerFPT->getExtProtoInfo();
+ EPI.TypeQuals = 0;
+ InvokerSpecialized->setType(S.Context.getFunctionType(
+ InvokerFPT->getReturnType(), InvokerFPT->getParamTypes(), EPI));
+ return Sema::TDK_Success;
+}
+/// \brief Deduce template arguments for a templated conversion
+/// function (C++ [temp.deduct.conv]) and, if successful, produce a
+/// conversion function template specialization.
+Sema::TemplateDeductionResult
+Sema::DeduceTemplateArguments(FunctionTemplateDecl *ConversionTemplate,
+ QualType ToType,
+ CXXConversionDecl *&Specialization,
+ TemplateDeductionInfo &Info) {
+ if (ConversionTemplate->isInvalidDecl())
+ return TDK_Invalid;
+
+ CXXConversionDecl *ConversionGeneric
+ = cast<CXXConversionDecl>(ConversionTemplate->getTemplatedDecl());
+
+ QualType FromType = ConversionGeneric->getConversionType();
+
+ // Canonicalize the types for deduction.
+ QualType P = Context.getCanonicalType(FromType);
+ QualType A = Context.getCanonicalType(ToType);
+
+ // C++0x [temp.deduct.conv]p2:
+ // If P is a reference type, the type referred to by P is used for
+ // type deduction.
+ if (const ReferenceType *PRef = P->getAs<ReferenceType>())
+ P = PRef->getPointeeType();
+
+ // C++0x [temp.deduct.conv]p4:
+ // [...] If A is a reference type, the type referred to by A is used
+ // for type deduction.
+ if (const ReferenceType *ARef = A->getAs<ReferenceType>())
+ A = ARef->getPointeeType().getUnqualifiedType();
+ // C++ [temp.deduct.conv]p3:
+ //
+ // If A is not a reference type:
+ else {
+ assert(!A->isReferenceType() && "Reference types were handled above");
+
+ // - If P is an array type, the pointer type produced by the
+ // array-to-pointer standard conversion (4.2) is used in place
+ // of P for type deduction; otherwise,
+ if (P->isArrayType())
+ P = Context.getArrayDecayedType(P);
+ // - If P is a function type, the pointer type produced by the
+ // function-to-pointer standard conversion (4.3) is used in
+ // place of P for type deduction; otherwise,
+ else if (P->isFunctionType())
+ P = Context.getPointerType(P);
+ // - If P is a cv-qualified type, the top level cv-qualifiers of
+ // P's type are ignored for type deduction.
+ else
+ P = P.getUnqualifiedType();
+
+ // C++0x [temp.deduct.conv]p4:
+ // If A is a cv-qualified type, the top level cv-qualifiers of A's
+ // type are ignored for type deduction. If A is a reference type, the type
+ // referred to by A is used for type deduction.
+ A = A.getUnqualifiedType();
+ }
+
+ // Unevaluated SFINAE context.
+ EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
+ SFINAETrap Trap(*this);
+
+ // C++ [temp.deduct.conv]p1:
+ // Template argument deduction is done by comparing the return
+ // type of the template conversion function (call it P) with the
+ // type that is required as the result of the conversion (call it
+ // A) as described in 14.8.2.4.
+ TemplateParameterList *TemplateParams
+ = ConversionTemplate->getTemplateParameters();
+ SmallVector<DeducedTemplateArgument, 4> Deduced;
+ Deduced.resize(TemplateParams->size());
+
+ // C++0x [temp.deduct.conv]p4:
+ // In general, the deduction process attempts to find template
+ // argument values that will make the deduced A identical to
+ // A. However, there are two cases that allow a difference:
+ unsigned TDF = 0;
+ // - If the original A is a reference type, A can be more
+ // cv-qualified than the deduced A (i.e., the type referred to
+ // by the reference)
+ if (ToType->isReferenceType())
+ TDF |= TDF_ParamWithReferenceType;
+ // - The deduced A can be another pointer or pointer to member
+ // type that can be converted to A via a qualification
+ // conversion.
+ //
+ // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
+ // both P and A are pointers or member pointers. In this case, we
+ // just ignore cv-qualifiers completely).
+ if ((P->isPointerType() && A->isPointerType()) ||
+ (P->isMemberPointerType() && A->isMemberPointerType()))
+ TDF |= TDF_IgnoreQualifiers;
+ if (TemplateDeductionResult Result
+ = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
+ P, A, Info, Deduced, TDF))
+ return Result;
+
+ // Create an Instantiation Scope for finalizing the operator.
+ LocalInstantiationScope InstScope(*this);
+ // Finish template argument deduction.
+ FunctionDecl *ConversionSpecialized = nullptr;
+ TemplateDeductionResult Result
+ = FinishTemplateArgumentDeduction(ConversionTemplate, Deduced, 0,
+ ConversionSpecialized, Info);
+ Specialization = cast_or_null<CXXConversionDecl>(ConversionSpecialized);
+
+ // If the conversion operator is being invoked on a lambda closure to convert
+ // to a ptr-to-function, use the deduced arguments from the conversion
+ // function to specialize the corresponding call operator.
+ // e.g., int (*fp)(int) = [](auto a) { return a; };
+ if (Result == TDK_Success && isLambdaConversionOperator(ConversionGeneric)) {
+
+ // Get the return type of the destination ptr-to-function we are converting
+ // to. This is necessary for matching the lambda call operator's return
+ // type to that of the destination ptr-to-function's return type.
+ assert(A->isPointerType() &&
+ "Can only convert from lambda to ptr-to-function");
+ const FunctionType *ToFunType =
+ A->getPointeeType().getTypePtr()->getAs<FunctionType>();
+ const QualType DestFunctionPtrReturnType = ToFunType->getReturnType();
+
+ // Create the corresponding specializations of the call operator and
+ // the static-invoker; and if the return type is auto,
+ // deduce the return type and check if it matches the
+ // DestFunctionPtrReturnType.
+ // For instance:
+ // auto L = [](auto a) { return f(a); };
+ // int (*fp)(int) = L;
+ // char (*fp2)(int) = L; <-- Not OK.
+
+ Result = SpecializeCorrespondingLambdaCallOperatorAndInvoker(
+ Specialization, Deduced, DestFunctionPtrReturnType,
+ Info, *this);
+ }
+ return Result;
+}
+
+/// \brief Deduce template arguments for a function template when there is
+/// nothing to deduce against (C++0x [temp.arg.explicit]p3).
+///
+/// \param FunctionTemplate the function template for which we are performing
+/// template argument deduction.
+///
+/// \param ExplicitTemplateArgs the explicitly-specified template
+/// arguments.
+///
+/// \param Specialization if template argument deduction was successful,
+/// this will be set to the function template specialization produced by
+/// template argument deduction.
+///
+/// \param Info the argument will be updated to provide additional information
+/// about template argument deduction.
+///
+/// \returns the result of template argument deduction.
+Sema::TemplateDeductionResult
+Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
+ TemplateArgumentListInfo *ExplicitTemplateArgs,
+ FunctionDecl *&Specialization,
+ TemplateDeductionInfo &Info,
+ bool InOverloadResolution) {
+ return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
+ QualType(), Specialization, Info,
+ InOverloadResolution);
+}
+
+namespace {
+ /// Substitute the 'auto' type specifier within a type for a given replacement
+ /// type.
+ class SubstituteAutoTransform :
+ public TreeTransform<SubstituteAutoTransform> {
+ QualType Replacement;
+ public:
+ SubstituteAutoTransform(Sema &SemaRef, QualType Replacement)
+ : TreeTransform<SubstituteAutoTransform>(SemaRef),
+ Replacement(Replacement) {}
+
+ QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) {
+ // If we're building the type pattern to deduce against, don't wrap the
+ // substituted type in an AutoType. Certain template deduction rules
+ // apply only when a template type parameter appears directly (and not if
+ // the parameter is found through desugaring). For instance:
+ // auto &&lref = lvalue;
+ // must transform into "rvalue reference to T" not "rvalue reference to
+ // auto type deduced as T" in order for [temp.deduct.call]p3 to apply.
+ if (!Replacement.isNull() && isa<TemplateTypeParmType>(Replacement)) {
+ QualType Result = Replacement;
+ TemplateTypeParmTypeLoc NewTL =
+ TLB.push<TemplateTypeParmTypeLoc>(Result);
+ NewTL.setNameLoc(TL.getNameLoc());
+ return Result;
+ } else {
+ bool Dependent =
+ !Replacement.isNull() && Replacement->isDependentType();
+ QualType Result =
+ SemaRef.Context.getAutoType(Dependent ? QualType() : Replacement,
+ TL.getTypePtr()->isDecltypeAuto(),
+ Dependent);
+ AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
+ NewTL.setNameLoc(TL.getNameLoc());
+ return Result;
+ }
+ }
+
+ ExprResult TransformLambdaExpr(LambdaExpr *E) {
+ // Lambdas never need to be transformed.
+ return E;
+ }
+
+ QualType Apply(TypeLoc TL) {
+ // Create some scratch storage for the transformed type locations.
+ // FIXME: We're just going to throw this information away. Don't build it.
+ TypeLocBuilder TLB;
+ TLB.reserve(TL.getFullDataSize());
+ return TransformType(TLB, TL);
+ }
+ };
+}
+
+Sema::DeduceAutoResult
+Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init, QualType &Result) {
+ return DeduceAutoType(Type->getTypeLoc(), Init, Result);
+}
+
+/// \brief Deduce the type for an auto type-specifier (C++11 [dcl.spec.auto]p6)
+///
+/// \param Type the type pattern using the auto type-specifier.
+/// \param Init the initializer for the variable whose type is to be deduced.
+/// \param Result if type deduction was successful, this will be set to the
+/// deduced type.
+Sema::DeduceAutoResult
+Sema::DeduceAutoType(TypeLoc Type, Expr *&Init, QualType &Result) {
+ if (Init->getType()->isNonOverloadPlaceholderType()) {
+ ExprResult NonPlaceholder = CheckPlaceholderExpr(Init);
+ if (NonPlaceholder.isInvalid())
+ return DAR_FailedAlreadyDiagnosed;
+ Init = NonPlaceholder.get();
+ }
+
+ if (Init->isTypeDependent() || Type.getType()->isDependentType()) {
+ Result = SubstituteAutoTransform(*this, Context.DependentTy).Apply(Type);
+ assert(!Result.isNull() && "substituting DependentTy can't fail");
+ return DAR_Succeeded;
+ }
+
+ // If this is a 'decltype(auto)' specifier, do the decltype dance.
+ // Since 'decltype(auto)' can only occur at the top of the type, we
+ // don't need to go digging for it.
+ if (const AutoType *AT = Type.getType()->getAs<AutoType>()) {
+ if (AT->isDecltypeAuto()) {
+ if (isa<InitListExpr>(Init)) {
+ Diag(Init->getLocStart(), diag::err_decltype_auto_initializer_list);
+ return DAR_FailedAlreadyDiagnosed;
+ }
+
+ QualType Deduced = BuildDecltypeType(Init, Init->getLocStart(), false);
+ // FIXME: Support a non-canonical deduced type for 'auto'.
+ Deduced = Context.getCanonicalType(Deduced);
+ Result = SubstituteAutoTransform(*this, Deduced).Apply(Type);
+ if (Result.isNull())
+ return DAR_FailedAlreadyDiagnosed;
+ return DAR_Succeeded;
+ }
+ }
+
+ SourceLocation Loc = Init->getExprLoc();
+
+ LocalInstantiationScope InstScope(*this);
+
+ // Build template<class TemplParam> void Func(FuncParam);
+ TemplateTypeParmDecl *TemplParam =
+ TemplateTypeParmDecl::Create(Context, nullptr, SourceLocation(), Loc, 0, 0,
+ nullptr, false, false);
+ QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0);
+ NamedDecl *TemplParamPtr = TemplParam;
+ FixedSizeTemplateParameterList<1> TemplateParams(Loc, Loc, &TemplParamPtr,
+ Loc);
+
+ QualType FuncParam = SubstituteAutoTransform(*this, TemplArg).Apply(Type);
+ assert(!FuncParam.isNull() &&
+ "substituting template parameter for 'auto' failed");
+
+ // Deduce type of TemplParam in Func(Init)
+ SmallVector<DeducedTemplateArgument, 1> Deduced;
+ Deduced.resize(1);
+ QualType InitType = Init->getType();
+ unsigned TDF = 0;
+
+ TemplateDeductionInfo Info(Loc);
+
+ InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
+ if (InitList) {
+ for (unsigned i = 0, e = InitList->getNumInits(); i < e; ++i) {
+ if (DeduceTemplateArgumentByListElement(*this, &TemplateParams,
+ TemplArg,
+ InitList->getInit(i),
+ Info, Deduced, TDF))
+ return DAR_Failed;
+ }
+ } else {
+ if (AdjustFunctionParmAndArgTypesForDeduction(*this, &TemplateParams,
+ FuncParam, InitType, Init,
+ TDF))
+ return DAR_Failed;
+
+ if (DeduceTemplateArgumentsByTypeMatch(*this, &TemplateParams, FuncParam,
+ InitType, Info, Deduced, TDF))
+ return DAR_Failed;
+ }
+
+ if (Deduced[0].getKind() != TemplateArgument::Type)
+ return DAR_Failed;
+
+ QualType DeducedType = Deduced[0].getAsType();
+
+ if (InitList) {
+ DeducedType = BuildStdInitializerList(DeducedType, Loc);
+ if (DeducedType.isNull())
+ return DAR_FailedAlreadyDiagnosed;
+ }
+
+ Result = SubstituteAutoTransform(*this, DeducedType).Apply(Type);
+ if (Result.isNull())
+ return DAR_FailedAlreadyDiagnosed;
+
+ // Check that the deduced argument type is compatible with the original
+ // argument type per C++ [temp.deduct.call]p4.
+ if (!InitList && !Result.isNull() &&
+ CheckOriginalCallArgDeduction(*this,
+ Sema::OriginalCallArg(FuncParam,0,InitType),
+ Result)) {
+ Result = QualType();
+ return DAR_Failed;
+ }
+
+ return DAR_Succeeded;
+}
+
+QualType Sema::SubstAutoType(QualType TypeWithAuto,
+ QualType TypeToReplaceAuto) {
+ return SubstituteAutoTransform(*this, TypeToReplaceAuto).
+ TransformType(TypeWithAuto);
+}
+
+TypeSourceInfo* Sema::SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
+ QualType TypeToReplaceAuto) {
+ return SubstituteAutoTransform(*this, TypeToReplaceAuto).
+ TransformType(TypeWithAuto);
+}
+
+void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) {
+ if (isa<InitListExpr>(Init))
+ Diag(VDecl->getLocation(),
+ VDecl->isInitCapture()
+ ? diag::err_init_capture_deduction_failure_from_init_list
+ : diag::err_auto_var_deduction_failure_from_init_list)
+ << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange();
+ else
+ Diag(VDecl->getLocation(),
+ VDecl->isInitCapture() ? diag::err_init_capture_deduction_failure
+ : diag::err_auto_var_deduction_failure)
+ << VDecl->getDeclName() << VDecl->getType() << Init->getType()
+ << Init->getSourceRange();
+}
+
+bool Sema::DeduceReturnType(FunctionDecl *FD, SourceLocation Loc,
+ bool Diagnose) {
+ assert(FD->getReturnType()->isUndeducedType());
+
+ if (FD->getTemplateInstantiationPattern())
+ InstantiateFunctionDefinition(Loc, FD);
+
+ bool StillUndeduced = FD->getReturnType()->isUndeducedType();
+ if (StillUndeduced && Diagnose && !FD->isInvalidDecl()) {
+ Diag(Loc, diag::err_auto_fn_used_before_defined) << FD;
+ Diag(FD->getLocation(), diag::note_callee_decl) << FD;
+ }
+
+ return StillUndeduced;
+}
+
+static void
+MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
+ bool OnlyDeduced,
+ unsigned Level,
+ llvm::SmallBitVector &Deduced);
+
+/// \brief If this is a non-static member function,
+static void
+AddImplicitObjectParameterType(ASTContext &Context,
+ CXXMethodDecl *Method,
+ SmallVectorImpl<QualType> &ArgTypes) {
+ // C++11 [temp.func.order]p3:
+ // [...] The new parameter is of type "reference to cv A," where cv are
+ // the cv-qualifiers of the function template (if any) and A is
+ // the class of which the function template is a member.
+ //
+ // The standard doesn't say explicitly, but we pick the appropriate kind of
+ // reference type based on [over.match.funcs]p4.
+ QualType ArgTy = Context.getTypeDeclType(Method->getParent());
+ ArgTy = Context.getQualifiedType(ArgTy,
+ Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
+ if (Method->getRefQualifier() == RQ_RValue)
+ ArgTy = Context.getRValueReferenceType(ArgTy);
+ else
+ ArgTy = Context.getLValueReferenceType(ArgTy);
+ ArgTypes.push_back(ArgTy);
+}
+
+/// \brief Determine whether the function template \p FT1 is at least as
+/// specialized as \p FT2.
+static bool isAtLeastAsSpecializedAs(Sema &S,
+ SourceLocation Loc,
+ FunctionTemplateDecl *FT1,
+ FunctionTemplateDecl *FT2,
+ TemplatePartialOrderingContext TPOC,
+ unsigned NumCallArguments1) {
+ FunctionDecl *FD1 = FT1->getTemplatedDecl();
+ FunctionDecl *FD2 = FT2->getTemplatedDecl();
+ const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
+ const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
+
+ assert(Proto1 && Proto2 && "Function templates must have prototypes");
+ TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
+ SmallVector<DeducedTemplateArgument, 4> Deduced;
+ Deduced.resize(TemplateParams->size());
+
+ // C++0x [temp.deduct.partial]p3:
+ // The types used to determine the ordering depend on the context in which
+ // the partial ordering is done:
+ TemplateDeductionInfo Info(Loc);
+ SmallVector<QualType, 4> Args2;
+ switch (TPOC) {
+ case TPOC_Call: {
+ // - In the context of a function call, the function parameter types are
+ // used.
+ CXXMethodDecl *Method1 = dyn_cast<CXXMethodDecl>(FD1);
+ CXXMethodDecl *Method2 = dyn_cast<CXXMethodDecl>(FD2);
+
+ // C++11 [temp.func.order]p3:
+ // [...] If only one of the function templates is a non-static
+ // member, that function template is considered to have a new
+ // first parameter inserted in its function parameter list. The
+ // new parameter is of type "reference to cv A," where cv are
+ // the cv-qualifiers of the function template (if any) and A is
+ // the class of which the function template is a member.
+ //
+ // Note that we interpret this to mean "if one of the function
+ // templates is a non-static member and the other is a non-member";
+ // otherwise, the ordering rules for static functions against non-static
+ // functions don't make any sense.
+ //
+ // C++98/03 doesn't have this provision but we've extended DR532 to cover
+ // it as wording was broken prior to it.
+ SmallVector<QualType, 4> Args1;
+
+ unsigned NumComparedArguments = NumCallArguments1;
+
+ if (!Method2 && Method1 && !Method1->isStatic()) {
+ // Compare 'this' from Method1 against first parameter from Method2.
+ AddImplicitObjectParameterType(S.Context, Method1, Args1);
+ ++NumComparedArguments;
+ } else if (!Method1 && Method2 && !Method2->isStatic()) {
+ // Compare 'this' from Method2 against first parameter from Method1.
+ AddImplicitObjectParameterType(S.Context, Method2, Args2);
+ }
+
+ Args1.insert(Args1.end(), Proto1->param_type_begin(),
+ Proto1->param_type_end());
+ Args2.insert(Args2.end(), Proto2->param_type_begin(),
+ Proto2->param_type_end());
+
+ // C++ [temp.func.order]p5:
+ // The presence of unused ellipsis and default arguments has no effect on
+ // the partial ordering of function templates.
+ if (Args1.size() > NumComparedArguments)
+ Args1.resize(NumComparedArguments);
+ if (Args2.size() > NumComparedArguments)
+ Args2.resize(NumComparedArguments);
+ if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(),
+ Args1.data(), Args1.size(), Info, Deduced,
+ TDF_None, /*PartialOrdering=*/true))
+ return false;
+
+ break;
+ }
+
+ case TPOC_Conversion:
+ // - In the context of a call to a conversion operator, the return types
+ // of the conversion function templates are used.
+ if (DeduceTemplateArgumentsByTypeMatch(
+ S, TemplateParams, Proto2->getReturnType(), Proto1->getReturnType(),
+ Info, Deduced, TDF_None,
+ /*PartialOrdering=*/true))
+ return false;
+ break;
+
+ case TPOC_Other:
+ // - In other contexts (14.6.6.2) the function template's function type
+ // is used.
+ if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ FD2->getType(), FD1->getType(),
+ Info, Deduced, TDF_None,
+ /*PartialOrdering=*/true))
+ return false;
+ break;
+ }
+
+ // C++0x [temp.deduct.partial]p11:
+ // In most cases, all template parameters must have values in order for
+ // deduction to succeed, but for partial ordering purposes a template
+ // parameter may remain without a value provided it is not used in the
+ // types being used for partial ordering. [ Note: a template parameter used
+ // in a non-deduced context is considered used. -end note]
+ unsigned ArgIdx = 0, NumArgs = Deduced.size();
+ for (; ArgIdx != NumArgs; ++ArgIdx)
+ if (Deduced[ArgIdx].isNull())
+ break;
+
+ if (ArgIdx == NumArgs) {
+ // All template arguments were deduced. FT1 is at least as specialized
+ // as FT2.
+ return true;
+ }
+
+ // Figure out which template parameters were used.
+ llvm::SmallBitVector UsedParameters(TemplateParams->size());
+ switch (TPOC) {
+ case TPOC_Call:
+ for (unsigned I = 0, N = Args2.size(); I != N; ++I)
+ ::MarkUsedTemplateParameters(S.Context, Args2[I], false,
+ TemplateParams->getDepth(),
+ UsedParameters);
+ break;
+
+ case TPOC_Conversion:
+ ::MarkUsedTemplateParameters(S.Context, Proto2->getReturnType(), false,
+ TemplateParams->getDepth(), UsedParameters);
+ break;
+
+ case TPOC_Other:
+ ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false,
+ TemplateParams->getDepth(),
+ UsedParameters);
+ break;
+ }
+
+ for (; ArgIdx != NumArgs; ++ArgIdx)
+ // If this argument had no value deduced but was used in one of the types
+ // used for partial ordering, then deduction fails.
+ if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
+ return false;
+
+ return true;
+}
+
+/// \brief Determine whether this a function template whose parameter-type-list
+/// ends with a function parameter pack.
+static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) {
+ FunctionDecl *Function = FunTmpl->getTemplatedDecl();
+ unsigned NumParams = Function->getNumParams();
+ if (NumParams == 0)
+ return false;
+
+ ParmVarDecl *Last = Function->getParamDecl(NumParams - 1);
+ if (!Last->isParameterPack())
+ return false;
+
+ // Make sure that no previous parameter is a parameter pack.
+ while (--NumParams > 0) {
+ if (Function->getParamDecl(NumParams - 1)->isParameterPack())
+ return false;
+ }
+
+ return true;
+}
+
+/// \brief Returns the more specialized function template according
+/// to the rules of function template partial ordering (C++ [temp.func.order]).
+///
+/// \param FT1 the first function template
+///
+/// \param FT2 the second function template
+///
+/// \param TPOC the context in which we are performing partial ordering of
+/// function templates.
+///
+/// \param NumCallArguments1 The number of arguments in the call to FT1, used
+/// only when \c TPOC is \c TPOC_Call.
+///
+/// \param NumCallArguments2 The number of arguments in the call to FT2, used
+/// only when \c TPOC is \c TPOC_Call.
+///
+/// \returns the more specialized function template. If neither
+/// template is more specialized, returns NULL.
+FunctionTemplateDecl *
+Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
+ FunctionTemplateDecl *FT2,
+ SourceLocation Loc,
+ TemplatePartialOrderingContext TPOC,
+ unsigned NumCallArguments1,
+ unsigned NumCallArguments2) {
+ bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC,
+ NumCallArguments1);
+ bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
+ NumCallArguments2);
+
+ if (Better1 != Better2) // We have a clear winner
+ return Better1 ? FT1 : FT2;
+
+ if (!Better1 && !Better2) // Neither is better than the other
+ return nullptr;
+
+ // FIXME: This mimics what GCC implements, but doesn't match up with the
+ // proposed resolution for core issue 692. This area needs to be sorted out,
+ // but for now we attempt to maintain compatibility.
+ bool Variadic1 = isVariadicFunctionTemplate(FT1);
+ bool Variadic2 = isVariadicFunctionTemplate(FT2);
+ if (Variadic1 != Variadic2)
+ return Variadic1? FT2 : FT1;
+
+ return nullptr;
+}
+
+/// \brief Determine if the two templates are equivalent.
+static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
+ if (T1 == T2)
+ return true;
+
+ if (!T1 || !T2)
+ return false;
+
+ return T1->getCanonicalDecl() == T2->getCanonicalDecl();
+}
+
+/// \brief Retrieve the most specialized of the given function template
+/// specializations.
+///
+/// \param SpecBegin the start iterator of the function template
+/// specializations that we will be comparing.
+///
+/// \param SpecEnd the end iterator of the function template
+/// specializations, paired with \p SpecBegin.
+///
+/// \param Loc the location where the ambiguity or no-specializations
+/// diagnostic should occur.
+///
+/// \param NoneDiag partial diagnostic used to diagnose cases where there are
+/// no matching candidates.
+///
+/// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
+/// occurs.
+///
+/// \param CandidateDiag partial diagnostic used for each function template
+/// specialization that is a candidate in the ambiguous ordering. One parameter
+/// in this diagnostic should be unbound, which will correspond to the string
+/// describing the template arguments for the function template specialization.
+///
+/// \returns the most specialized function template specialization, if
+/// found. Otherwise, returns SpecEnd.
+UnresolvedSetIterator Sema::getMostSpecialized(
+ UnresolvedSetIterator SpecBegin, UnresolvedSetIterator SpecEnd,
+ TemplateSpecCandidateSet &FailedCandidates,
+ SourceLocation Loc, const PartialDiagnostic &NoneDiag,
+ const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag,
+ bool Complain, QualType TargetType) {
+ if (SpecBegin == SpecEnd) {
+ if (Complain) {
+ Diag(Loc, NoneDiag);
+ FailedCandidates.NoteCandidates(*this, Loc);
+ }
+ return SpecEnd;
+ }
+
+ if (SpecBegin + 1 == SpecEnd)
+ return SpecBegin;
+
+ // Find the function template that is better than all of the templates it
+ // has been compared to.
+ UnresolvedSetIterator Best = SpecBegin;
+ FunctionTemplateDecl *BestTemplate
+ = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
+ assert(BestTemplate && "Not a function template specialization?");
+ for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
+ FunctionTemplateDecl *Challenger
+ = cast<FunctionDecl>(*I)->getPrimaryTemplate();
+ assert(Challenger && "Not a function template specialization?");
+ if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
+ Loc, TPOC_Other, 0, 0),
+ Challenger)) {
+ Best = I;
+ BestTemplate = Challenger;
+ }
+ }
+
+ // Make sure that the "best" function template is more specialized than all
+ // of the others.
+ bool Ambiguous = false;
+ for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
+ FunctionTemplateDecl *Challenger
+ = cast<FunctionDecl>(*I)->getPrimaryTemplate();
+ if (I != Best &&
+ !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
+ Loc, TPOC_Other, 0, 0),
+ BestTemplate)) {
+ Ambiguous = true;
+ break;
+ }
+ }
+
+ if (!Ambiguous) {
+ // We found an answer. Return it.
+ return Best;
+ }
+
+ // Diagnose the ambiguity.
+ if (Complain) {
+ Diag(Loc, AmbigDiag);
+
+ // FIXME: Can we order the candidates in some sane way?
+ for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
+ PartialDiagnostic PD = CandidateDiag;
+ PD << getTemplateArgumentBindingsText(
+ cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(),
+ *cast<FunctionDecl>(*I)->getTemplateSpecializationArgs());
+ if (!TargetType.isNull())
+ HandleFunctionTypeMismatch(PD, cast<FunctionDecl>(*I)->getType(),
+ TargetType);
+ Diag((*I)->getLocation(), PD);
+ }
+ }
+
+ return SpecEnd;
+}
+
+/// \brief Returns the more specialized class template partial specialization
+/// according to the rules of partial ordering of class template partial
+/// specializations (C++ [temp.class.order]).
+///
+/// \param PS1 the first class template partial specialization
+///
+/// \param PS2 the second class template partial specialization
+///
+/// \returns the more specialized class template partial specialization. If
+/// neither partial specialization is more specialized, returns NULL.
+ClassTemplatePartialSpecializationDecl *
+Sema::getMoreSpecializedPartialSpecialization(
+ ClassTemplatePartialSpecializationDecl *PS1,
+ ClassTemplatePartialSpecializationDecl *PS2,
+ SourceLocation Loc) {
+ // C++ [temp.class.order]p1:
+ // For two class template partial specializations, the first is at least as
+ // specialized as the second if, given the following rewrite to two
+ // function templates, the first function template is at least as
+ // specialized as the second according to the ordering rules for function
+ // templates (14.6.6.2):
+ // - the first function template has the same template parameters as the
+ // first partial specialization and has a single function parameter
+ // whose type is a class template specialization with the template
+ // arguments of the first partial specialization, and
+ // - the second function template has the same template parameters as the
+ // second partial specialization and has a single function parameter
+ // whose type is a class template specialization with the template
+ // arguments of the second partial specialization.
+ //
+ // Rather than synthesize function templates, we merely perform the
+ // equivalent partial ordering by performing deduction directly on
+ // the template arguments of the class template partial
+ // specializations. This computation is slightly simpler than the
+ // general problem of function template partial ordering, because
+ // class template partial specializations are more constrained. We
+ // know that every template parameter is deducible from the class
+ // template partial specialization's template arguments, for
+ // example.
+ SmallVector<DeducedTemplateArgument, 4> Deduced;
+ TemplateDeductionInfo Info(Loc);
+
+ QualType PT1 = PS1->getInjectedSpecializationType();
+ QualType PT2 = PS2->getInjectedSpecializationType();
+
+ // Determine whether PS1 is at least as specialized as PS2
+ Deduced.resize(PS2->getTemplateParameters()->size());
+ bool Better1 = !DeduceTemplateArgumentsByTypeMatch(*this,
+ PS2->getTemplateParameters(),
+ PT2, PT1, Info, Deduced, TDF_None,
+ /*PartialOrdering=*/true);
+ if (Better1) {
+ SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end());
+ InstantiatingTemplate Inst(*this, Loc, PS2, DeducedArgs, Info);
+ Better1 = !::FinishTemplateArgumentDeduction(
+ *this, PS2, PS1->getTemplateArgs(), Deduced, Info);
+ }
+
+ // Determine whether PS2 is at least as specialized as PS1
+ Deduced.clear();
+ Deduced.resize(PS1->getTemplateParameters()->size());
+ bool Better2 = !DeduceTemplateArgumentsByTypeMatch(
+ *this, PS1->getTemplateParameters(), PT1, PT2, Info, Deduced, TDF_None,
+ /*PartialOrdering=*/true);
+ if (Better2) {
+ SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),
+ Deduced.end());
+ InstantiatingTemplate Inst(*this, Loc, PS1, DeducedArgs, Info);
+ Better2 = !::FinishTemplateArgumentDeduction(
+ *this, PS1, PS2->getTemplateArgs(), Deduced, Info);
+ }
+
+ if (Better1 == Better2)
+ return nullptr;
+
+ return Better1 ? PS1 : PS2;
+}
+
+/// TODO: Unify with ClassTemplatePartialSpecializationDecl version?
+/// May require unifying ClassTemplate(Partial)SpecializationDecl and
+/// VarTemplate(Partial)SpecializationDecl with a new data
+/// structure Template(Partial)SpecializationDecl, and
+/// using Template(Partial)SpecializationDecl as input type.
+VarTemplatePartialSpecializationDecl *
+Sema::getMoreSpecializedPartialSpecialization(
+ VarTemplatePartialSpecializationDecl *PS1,
+ VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc) {
+ SmallVector<DeducedTemplateArgument, 4> Deduced;
+ TemplateDeductionInfo Info(Loc);
+
+ assert(PS1->getSpecializedTemplate() == PS2->getSpecializedTemplate() &&
+ "the partial specializations being compared should specialize"
+ " the same template.");
+ TemplateName Name(PS1->getSpecializedTemplate());
+ TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
+ QualType PT1 = Context.getTemplateSpecializationType(
+ CanonTemplate, PS1->getTemplateArgs().data(),
+ PS1->getTemplateArgs().size());
+ QualType PT2 = Context.getTemplateSpecializationType(
+ CanonTemplate, PS2->getTemplateArgs().data(),
+ PS2->getTemplateArgs().size());
+
+ // Determine whether PS1 is at least as specialized as PS2
+ Deduced.resize(PS2->getTemplateParameters()->size());
+ bool Better1 = !DeduceTemplateArgumentsByTypeMatch(
+ *this, PS2->getTemplateParameters(), PT2, PT1, Info, Deduced, TDF_None,
+ /*PartialOrdering=*/true);
+ if (Better1) {
+ SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),
+ Deduced.end());
+ InstantiatingTemplate Inst(*this, Loc, PS2, DeducedArgs, Info);
+ Better1 = !::FinishTemplateArgumentDeduction(*this, PS2,
+ PS1->getTemplateArgs(),
+ Deduced, Info);
+ }
+
+ // Determine whether PS2 is at least as specialized as PS1
+ Deduced.clear();
+ Deduced.resize(PS1->getTemplateParameters()->size());
+ bool Better2 = !DeduceTemplateArgumentsByTypeMatch(*this,
+ PS1->getTemplateParameters(),
+ PT1, PT2, Info, Deduced, TDF_None,
+ /*PartialOrdering=*/true);
+ if (Better2) {
+ SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end());
+ InstantiatingTemplate Inst(*this, Loc, PS1, DeducedArgs, Info);
+ Better2 = !::FinishTemplateArgumentDeduction(*this, PS1,
+ PS2->getTemplateArgs(),
+ Deduced, Info);
+ }
+
+ if (Better1 == Better2)
+ return nullptr;
+
+ return Better1? PS1 : PS2;
+}
+
+static void
+MarkUsedTemplateParameters(ASTContext &Ctx,
+ const TemplateArgument &TemplateArg,
+ bool OnlyDeduced,
+ unsigned Depth,
+ llvm::SmallBitVector &Used);
+
+/// \brief Mark the template parameters that are used by the given
+/// expression.
+static void
+MarkUsedTemplateParameters(ASTContext &Ctx,
+ const Expr *E,
+ bool OnlyDeduced,
+ unsigned Depth,
+ llvm::SmallBitVector &Used) {
+ // We can deduce from a pack expansion.
+ if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
+ E = Expansion->getPattern();
+
+ // Skip through any implicit casts we added while type-checking, and any
+ // substitutions performed by template alias expansion.
+ while (1) {
+ if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
+ E = ICE->getSubExpr();
+ else if (const SubstNonTypeTemplateParmExpr *Subst =
+ dyn_cast<SubstNonTypeTemplateParmExpr>(E))
+ E = Subst->getReplacement();
+ else
+ break;
+ }
+
+ // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
+ // find other occurrences of template parameters.
+ const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
+ if (!DRE)
+ return;
+
+ const NonTypeTemplateParmDecl *NTTP
+ = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
+ if (!NTTP)
+ return;
+
+ if (NTTP->getDepth() == Depth)
+ Used[NTTP->getIndex()] = true;
+}
+
+/// \brief Mark the template parameters that are used by the given
+/// nested name specifier.
+static void
+MarkUsedTemplateParameters(ASTContext &Ctx,
+ NestedNameSpecifier *NNS,
+ bool OnlyDeduced,
+ unsigned Depth,
+ llvm::SmallBitVector &Used) {
+ if (!NNS)
+ return;
+
+ MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth,
+ Used);
+ MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0),
+ OnlyDeduced, Depth, Used);
+}
+
+/// \brief Mark the template parameters that are used by the given
+/// template name.
+static void
+MarkUsedTemplateParameters(ASTContext &Ctx,
+ TemplateName Name,
+ bool OnlyDeduced,
+ unsigned Depth,
+ llvm::SmallBitVector &Used) {
+ if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
+ if (TemplateTemplateParmDecl *TTP
+ = dyn_cast<TemplateTemplateParmDecl>(Template)) {
+ if (TTP->getDepth() == Depth)
+ Used[TTP->getIndex()] = true;
+ }
+ return;
+ }
+
+ if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
+ MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced,
+ Depth, Used);
+ if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
+ MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced,
+ Depth, Used);
+}
+
+/// \brief Mark the template parameters that are used by the given
+/// type.
+static void
+MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
+ bool OnlyDeduced,
+ unsigned Depth,
+ llvm::SmallBitVector &Used) {
+ if (T.isNull())
+ return;
+
+ // Non-dependent types have nothing deducible
+ if (!T->isDependentType())
+ return;
+
+ T = Ctx.getCanonicalType(T);
+ switch (T->getTypeClass()) {
+ case Type::Pointer:
+ MarkUsedTemplateParameters(Ctx,
+ cast<PointerType>(T)->getPointeeType(),
+ OnlyDeduced,
+ Depth,
+ Used);
+ break;
+
+ case Type::BlockPointer:
+ MarkUsedTemplateParameters(Ctx,
+ cast<BlockPointerType>(T)->getPointeeType(),
+ OnlyDeduced,
+ Depth,
+ Used);
+ break;
+
+ case Type::LValueReference:
+ case Type::RValueReference:
+ MarkUsedTemplateParameters(Ctx,
+ cast<ReferenceType>(T)->getPointeeType(),
+ OnlyDeduced,
+ Depth,
+ Used);
+ break;
+
+ case Type::MemberPointer: {
+ const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
+ MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced,
+ Depth, Used);
+ MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0),
+ OnlyDeduced, Depth, Used);
+ break;
+ }
+
+ case Type::DependentSizedArray:
+ MarkUsedTemplateParameters(Ctx,
+ cast<DependentSizedArrayType>(T)->getSizeExpr(),
+ OnlyDeduced, Depth, Used);
+ // Fall through to check the element type
+
+ case Type::ConstantArray:
+ case Type::IncompleteArray:
+ MarkUsedTemplateParameters(Ctx,
+ cast<ArrayType>(T)->getElementType(),
+ OnlyDeduced, Depth, Used);
+ break;
+
+ case Type::Vector:
+ case Type::ExtVector:
+ MarkUsedTemplateParameters(Ctx,
+ cast<VectorType>(T)->getElementType(),
+ OnlyDeduced, Depth, Used);
+ break;
+
+ case Type::DependentSizedExtVector: {
+ const DependentSizedExtVectorType *VecType
+ = cast<DependentSizedExtVectorType>(T);
+ MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
+ Depth, Used);
+ MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced,
+ Depth, Used);
+ break;
+ }
+
+ case Type::FunctionProto: {
+ const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
+ MarkUsedTemplateParameters(Ctx, Proto->getReturnType(), OnlyDeduced, Depth,
+ Used);
+ for (unsigned I = 0, N = Proto->getNumParams(); I != N; ++I)
+ MarkUsedTemplateParameters(Ctx, Proto->getParamType(I), OnlyDeduced,
+ Depth, Used);
+ break;
+ }
+
+ case Type::TemplateTypeParm: {
+ const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
+ if (TTP->getDepth() == Depth)
+ Used[TTP->getIndex()] = true;
+ break;
+ }
+
+ case Type::SubstTemplateTypeParmPack: {
+ const SubstTemplateTypeParmPackType *Subst
+ = cast<SubstTemplateTypeParmPackType>(T);
+ MarkUsedTemplateParameters(Ctx,
+ QualType(Subst->getReplacedParameter(), 0),
+ OnlyDeduced, Depth, Used);
+ MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(),
+ OnlyDeduced, Depth, Used);
+ break;
+ }
+
+ case Type::InjectedClassName:
+ T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
+ // fall through
+
+ case Type::TemplateSpecialization: {
+ const TemplateSpecializationType *Spec
+ = cast<TemplateSpecializationType>(T);
+ MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced,
+ Depth, Used);
+
+ // C++0x [temp.deduct.type]p9:
+ // If the template argument list of P contains a pack expansion that is
+ // not the last template argument, the entire template argument list is a
+ // non-deduced context.
+ if (OnlyDeduced &&
+ hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
+ break;
+
+ for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
+ MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
+ Used);
+ break;
+ }
+
+ case Type::Complex:
+ if (!OnlyDeduced)
+ MarkUsedTemplateParameters(Ctx,
+ cast<ComplexType>(T)->getElementType(),
+ OnlyDeduced, Depth, Used);
+ break;
+
+ case Type::Atomic:
+ if (!OnlyDeduced)
+ MarkUsedTemplateParameters(Ctx,
+ cast<AtomicType>(T)->getValueType(),
+ OnlyDeduced, Depth, Used);
+ break;
+
+ case Type::DependentName:
+ if (!OnlyDeduced)
+ MarkUsedTemplateParameters(Ctx,
+ cast<DependentNameType>(T)->getQualifier(),
+ OnlyDeduced, Depth, Used);
+ break;
+
+ case Type::DependentTemplateSpecialization: {
+ const DependentTemplateSpecializationType *Spec
+ = cast<DependentTemplateSpecializationType>(T);
+ if (!OnlyDeduced)
+ MarkUsedTemplateParameters(Ctx, Spec->getQualifier(),
+ OnlyDeduced, Depth, Used);
+
+ // C++0x [temp.deduct.type]p9:
+ // If the template argument list of P contains a pack expansion that is not
+ // the last template argument, the entire template argument list is a
+ // non-deduced context.
+ if (OnlyDeduced &&
+ hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
+ break;
+
+ for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
+ MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
+ Used);
+ break;
+ }
+
+ case Type::TypeOf:
+ if (!OnlyDeduced)
+ MarkUsedTemplateParameters(Ctx,
+ cast<TypeOfType>(T)->getUnderlyingType(),
+ OnlyDeduced, Depth, Used);
+ break;
+
+ case Type::TypeOfExpr:
+ if (!OnlyDeduced)
+ MarkUsedTemplateParameters(Ctx,
+ cast<TypeOfExprType>(T)->getUnderlyingExpr(),
+ OnlyDeduced, Depth, Used);
+ break;
+
+ case Type::Decltype:
+ if (!OnlyDeduced)
+ MarkUsedTemplateParameters(Ctx,
+ cast<DecltypeType>(T)->getUnderlyingExpr(),
+ OnlyDeduced, Depth, Used);
+ break;
+
+ case Type::UnaryTransform:
+ if (!OnlyDeduced)
+ MarkUsedTemplateParameters(Ctx,
+ cast<UnaryTransformType>(T)->getUnderlyingType(),
+ OnlyDeduced, Depth, Used);
+ break;
+
+ case Type::PackExpansion:
+ MarkUsedTemplateParameters(Ctx,
+ cast<PackExpansionType>(T)->getPattern(),
+ OnlyDeduced, Depth, Used);
+ break;
+
+ case Type::Auto:
+ MarkUsedTemplateParameters(Ctx,
+ cast<AutoType>(T)->getDeducedType(),
+ OnlyDeduced, Depth, Used);
+
+ // None of these types have any template parameters in them.
+ case Type::Builtin:
+ case Type::VariableArray:
+ case Type::FunctionNoProto:
+ case Type::Record:
+ case Type::Enum:
+ case Type::ObjCInterface:
+ case Type::ObjCObject:
+ case Type::ObjCObjectPointer:
+ case Type::UnresolvedUsing:
+#define TYPE(Class, Base)
+#define ABSTRACT_TYPE(Class, Base)
+#define DEPENDENT_TYPE(Class, Base)
+#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
+#include "clang/AST/TypeNodes.def"
+ break;
+ }
+}
+
+/// \brief Mark the template parameters that are used by this
+/// template argument.
+static void
+MarkUsedTemplateParameters(ASTContext &Ctx,
+ const TemplateArgument &TemplateArg,
+ bool OnlyDeduced,
+ unsigned Depth,
+ llvm::SmallBitVector &Used) {
+ switch (TemplateArg.getKind()) {
+ case TemplateArgument::Null:
+ case TemplateArgument::Integral:
+ case TemplateArgument::Declaration:
+ break;
+
+ case TemplateArgument::NullPtr:
+ MarkUsedTemplateParameters(Ctx, TemplateArg.getNullPtrType(), OnlyDeduced,
+ Depth, Used);
+ break;
+
+ case TemplateArgument::Type:
+ MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced,
+ Depth, Used);
+ break;
+
+ case TemplateArgument::Template:
+ case TemplateArgument::TemplateExpansion:
+ MarkUsedTemplateParameters(Ctx,
+ TemplateArg.getAsTemplateOrTemplatePattern(),
+ OnlyDeduced, Depth, Used);
+ break;
+
+ case TemplateArgument::Expression:
+ MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced,
+ Depth, Used);
+ break;
+
+ case TemplateArgument::Pack:
+ for (const auto &P : TemplateArg.pack_elements())
+ MarkUsedTemplateParameters(Ctx, P, OnlyDeduced, Depth, Used);
+ break;
+ }
+}
+
+/// \brief Mark which template parameters can be deduced from a given
+/// template argument list.
+///
+/// \param TemplateArgs the template argument list from which template
+/// parameters will be deduced.
+///
+/// \param Used a bit vector whose elements will be set to \c true
+/// to indicate when the corresponding template parameter will be
+/// deduced.
+void
+Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
+ bool OnlyDeduced, unsigned Depth,
+ llvm::SmallBitVector &Used) {
+ // C++0x [temp.deduct.type]p9:
+ // If the template argument list of P contains a pack expansion that is not
+ // the last template argument, the entire template argument list is a
+ // non-deduced context.
+ if (OnlyDeduced &&
+ hasPackExpansionBeforeEnd(TemplateArgs.data(), TemplateArgs.size()))
+ return;
+
+ for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
+ ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced,
+ Depth, Used);
+}
+
+/// \brief Marks all of the template parameters that will be deduced by a
+/// call to the given function template.
+void Sema::MarkDeducedTemplateParameters(
+ ASTContext &Ctx, const FunctionTemplateDecl *FunctionTemplate,
+ llvm::SmallBitVector &Deduced) {
+ TemplateParameterList *TemplateParams
+ = FunctionTemplate->getTemplateParameters();
+ Deduced.clear();
+ Deduced.resize(TemplateParams->size());
+
+ FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
+ for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
+ ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(),
+ true, TemplateParams->getDepth(), Deduced);
+}
+
+bool hasDeducibleTemplateParameters(Sema &S,
+ FunctionTemplateDecl *FunctionTemplate,
+ QualType T) {
+ if (!T->isDependentType())
+ return false;
+
+ TemplateParameterList *TemplateParams
+ = FunctionTemplate->getTemplateParameters();
+ llvm::SmallBitVector Deduced(TemplateParams->size());
+ ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(),
+ Deduced);
+
+ return Deduced.any();
+}
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaTemplateInstantiate.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaTemplateInstantiate.cpp
new file mode 100644
index 0000000..82ff7c0
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaTemplateInstantiate.cpp
@@ -0,0 +1,2889 @@
+//===------- SemaTemplateInstantiate.cpp - C++ Template Instantiation ------===/
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//===----------------------------------------------------------------------===/
+//
+// This file implements C++ template instantiation.
+//
+//===----------------------------------------------------------------------===/
+
+#include "clang/Sema/SemaInternal.h"
+#include "TreeTransform.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTLambda.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/Expr.h"
+#include "clang/Basic/LangOptions.h"
+#include "clang/Sema/DeclSpec.h"
+#include "clang/Sema/Initialization.h"
+#include "clang/Sema/Lookup.h"
+#include "clang/Sema/Template.h"
+#include "clang/Sema/TemplateDeduction.h"
+
+using namespace clang;
+using namespace sema;
+
+//===----------------------------------------------------------------------===/
+// Template Instantiation Support
+//===----------------------------------------------------------------------===/
+
+/// \brief Retrieve the template argument list(s) that should be used to
+/// instantiate the definition of the given declaration.
+///
+/// \param D the declaration for which we are computing template instantiation
+/// arguments.
+///
+/// \param Innermost if non-NULL, the innermost template argument list.
+///
+/// \param RelativeToPrimary true if we should get the template
+/// arguments relative to the primary template, even when we're
+/// dealing with a specialization. This is only relevant for function
+/// template specializations.
+///
+/// \param Pattern If non-NULL, indicates the pattern from which we will be
+/// instantiating the definition of the given declaration, \p D. This is
+/// used to determine the proper set of template instantiation arguments for
+/// friend function template specializations.
+MultiLevelTemplateArgumentList
+Sema::getTemplateInstantiationArgs(NamedDecl *D,
+ const TemplateArgumentList *Innermost,
+ bool RelativeToPrimary,
+ const FunctionDecl *Pattern) {
+ // Accumulate the set of template argument lists in this structure.
+ MultiLevelTemplateArgumentList Result;
+
+ if (Innermost)
+ Result.addOuterTemplateArguments(Innermost);
+
+ DeclContext *Ctx = dyn_cast<DeclContext>(D);
+ if (!Ctx) {
+ Ctx = D->getDeclContext();
+
+ // Add template arguments from a variable template instantiation.
+ if (VarTemplateSpecializationDecl *Spec =
+ dyn_cast<VarTemplateSpecializationDecl>(D)) {
+ // We're done when we hit an explicit specialization.
+ if (Spec->getSpecializationKind() == TSK_ExplicitSpecialization &&
+ !isa<VarTemplatePartialSpecializationDecl>(Spec))
+ return Result;
+
+ Result.addOuterTemplateArguments(&Spec->getTemplateInstantiationArgs());
+
+ // If this variable template specialization was instantiated from a
+ // specialized member that is a variable template, we're done.
+ assert(Spec->getSpecializedTemplate() && "No variable template?");
+ llvm::PointerUnion<VarTemplateDecl*,
+ VarTemplatePartialSpecializationDecl*> Specialized
+ = Spec->getSpecializedTemplateOrPartial();
+ if (VarTemplatePartialSpecializationDecl *Partial =
+ Specialized.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
+ if (Partial->isMemberSpecialization())
+ return Result;
+ } else {
+ VarTemplateDecl *Tmpl = Specialized.get<VarTemplateDecl *>();
+ if (Tmpl->isMemberSpecialization())
+ return Result;
+ }
+ }
+
+ // If we have a template template parameter with translation unit context,
+ // then we're performing substitution into a default template argument of
+ // this template template parameter before we've constructed the template
+ // that will own this template template parameter. In this case, we
+ // use empty template parameter lists for all of the outer templates
+ // to avoid performing any substitutions.
+ if (Ctx->isTranslationUnit()) {
+ if (TemplateTemplateParmDecl *TTP
+ = dyn_cast<TemplateTemplateParmDecl>(D)) {
+ for (unsigned I = 0, N = TTP->getDepth() + 1; I != N; ++I)
+ Result.addOuterTemplateArguments(None);
+ return Result;
+ }
+ }
+ }
+
+ while (!Ctx->isFileContext()) {
+ // Add template arguments from a class template instantiation.
+ if (ClassTemplateSpecializationDecl *Spec
+ = dyn_cast<ClassTemplateSpecializationDecl>(Ctx)) {
+ // We're done when we hit an explicit specialization.
+ if (Spec->getSpecializationKind() == TSK_ExplicitSpecialization &&
+ !isa<ClassTemplatePartialSpecializationDecl>(Spec))
+ break;
+
+ Result.addOuterTemplateArguments(&Spec->getTemplateInstantiationArgs());
+
+ // If this class template specialization was instantiated from a
+ // specialized member that is a class template, we're done.
+ assert(Spec->getSpecializedTemplate() && "No class template?");
+ if (Spec->getSpecializedTemplate()->isMemberSpecialization())
+ break;
+ }
+ // Add template arguments from a function template specialization.
+ else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Ctx)) {
+ if (!RelativeToPrimary &&
+ (Function->getTemplateSpecializationKind() ==
+ TSK_ExplicitSpecialization &&
+ !Function->getClassScopeSpecializationPattern()))
+ break;
+
+ if (const TemplateArgumentList *TemplateArgs
+ = Function->getTemplateSpecializationArgs()) {
+ // Add the template arguments for this specialization.
+ Result.addOuterTemplateArguments(TemplateArgs);
+
+ // If this function was instantiated from a specialized member that is
+ // a function template, we're done.
+ assert(Function->getPrimaryTemplate() && "No function template?");
+ if (Function->getPrimaryTemplate()->isMemberSpecialization())
+ break;
+
+ // If this function is a generic lambda specialization, we are done.
+ if (isGenericLambdaCallOperatorSpecialization(Function))
+ break;
+
+ } else if (FunctionTemplateDecl *FunTmpl
+ = Function->getDescribedFunctionTemplate()) {
+ // Add the "injected" template arguments.
+ Result.addOuterTemplateArguments(FunTmpl->getInjectedTemplateArgs());
+ }
+
+ // If this is a friend declaration and it declares an entity at
+ // namespace scope, take arguments from its lexical parent
+ // instead of its semantic parent, unless of course the pattern we're
+ // instantiating actually comes from the file's context!
+ if (Function->getFriendObjectKind() &&
+ Function->getDeclContext()->isFileContext() &&
+ (!Pattern || !Pattern->getLexicalDeclContext()->isFileContext())) {
+ Ctx = Function->getLexicalDeclContext();
+ RelativeToPrimary = false;
+ continue;
+ }
+ } else if (CXXRecordDecl *Rec = dyn_cast<CXXRecordDecl>(Ctx)) {
+ if (ClassTemplateDecl *ClassTemplate = Rec->getDescribedClassTemplate()) {
+ QualType T = ClassTemplate->getInjectedClassNameSpecialization();
+ const TemplateSpecializationType *TST =
+ cast<TemplateSpecializationType>(Context.getCanonicalType(T));
+ Result.addOuterTemplateArguments(
+ llvm::makeArrayRef(TST->getArgs(), TST->getNumArgs()));
+ if (ClassTemplate->isMemberSpecialization())
+ break;
+ }
+ }
+
+ Ctx = Ctx->getParent();
+ RelativeToPrimary = false;
+ }
+
+ return Result;
+}
+
+bool Sema::ActiveTemplateInstantiation::isInstantiationRecord() const {
+ switch (Kind) {
+ case TemplateInstantiation:
+ case ExceptionSpecInstantiation:
+ case DefaultTemplateArgumentInstantiation:
+ case DefaultFunctionArgumentInstantiation:
+ case ExplicitTemplateArgumentSubstitution:
+ case DeducedTemplateArgumentSubstitution:
+ case PriorTemplateArgumentSubstitution:
+ return true;
+
+ case DefaultTemplateArgumentChecking:
+ return false;
+ }
+
+ llvm_unreachable("Invalid InstantiationKind!");
+}
+
+Sema::InstantiatingTemplate::InstantiatingTemplate(
+ Sema &SemaRef, ActiveTemplateInstantiation::InstantiationKind Kind,
+ SourceLocation PointOfInstantiation, SourceRange InstantiationRange,
+ Decl *Entity, NamedDecl *Template, ArrayRef<TemplateArgument> TemplateArgs,
+ sema::TemplateDeductionInfo *DeductionInfo)
+ : SemaRef(SemaRef), SavedInNonInstantiationSFINAEContext(
+ SemaRef.InNonInstantiationSFINAEContext) {
+ // Don't allow further instantiation if a fatal error has occcured. Any
+ // diagnostics we might have raised will not be visible.
+ if (SemaRef.Diags.hasFatalErrorOccurred()) {
+ Invalid = true;
+ return;
+ }
+ Invalid = CheckInstantiationDepth(PointOfInstantiation, InstantiationRange);
+ if (!Invalid) {
+ ActiveTemplateInstantiation Inst;
+ Inst.Kind = Kind;
+ Inst.PointOfInstantiation = PointOfInstantiation;
+ Inst.Entity = Entity;
+ Inst.Template = Template;
+ Inst.TemplateArgs = TemplateArgs.data();
+ Inst.NumTemplateArgs = TemplateArgs.size();
+ Inst.DeductionInfo = DeductionInfo;
+ Inst.InstantiationRange = InstantiationRange;
+ SemaRef.InNonInstantiationSFINAEContext = false;
+ SemaRef.ActiveTemplateInstantiations.push_back(Inst);
+ if (!Inst.isInstantiationRecord())
+ ++SemaRef.NonInstantiationEntries;
+ }
+}
+
+Sema::InstantiatingTemplate::InstantiatingTemplate(
+ Sema &SemaRef, SourceLocation PointOfInstantiation, Decl *Entity,
+ SourceRange InstantiationRange)
+ : InstantiatingTemplate(SemaRef,
+ ActiveTemplateInstantiation::TemplateInstantiation,
+ PointOfInstantiation, InstantiationRange, Entity) {}
+
+Sema::InstantiatingTemplate::InstantiatingTemplate(
+ Sema &SemaRef, SourceLocation PointOfInstantiation, FunctionDecl *Entity,
+ ExceptionSpecification, SourceRange InstantiationRange)
+ : InstantiatingTemplate(
+ SemaRef, ActiveTemplateInstantiation::ExceptionSpecInstantiation,
+ PointOfInstantiation, InstantiationRange, Entity) {}
+
+Sema::InstantiatingTemplate::InstantiatingTemplate(
+ Sema &SemaRef, SourceLocation PointOfInstantiation, TemplateDecl *Template,
+ ArrayRef<TemplateArgument> TemplateArgs, SourceRange InstantiationRange)
+ : InstantiatingTemplate(
+ SemaRef,
+ ActiveTemplateInstantiation::DefaultTemplateArgumentInstantiation,
+ PointOfInstantiation, InstantiationRange, Template, nullptr,
+ TemplateArgs) {}
+
+Sema::InstantiatingTemplate::InstantiatingTemplate(
+ Sema &SemaRef, SourceLocation PointOfInstantiation,
+ FunctionTemplateDecl *FunctionTemplate,
+ ArrayRef<TemplateArgument> TemplateArgs,
+ ActiveTemplateInstantiation::InstantiationKind Kind,
+ sema::TemplateDeductionInfo &DeductionInfo, SourceRange InstantiationRange)
+ : InstantiatingTemplate(SemaRef, Kind, PointOfInstantiation,
+ InstantiationRange, FunctionTemplate, nullptr,
+ TemplateArgs, &DeductionInfo) {}
+
+Sema::InstantiatingTemplate::InstantiatingTemplate(
+ Sema &SemaRef, SourceLocation PointOfInstantiation,
+ ClassTemplatePartialSpecializationDecl *PartialSpec,
+ ArrayRef<TemplateArgument> TemplateArgs,
+ sema::TemplateDeductionInfo &DeductionInfo, SourceRange InstantiationRange)
+ : InstantiatingTemplate(
+ SemaRef,
+ ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution,
+ PointOfInstantiation, InstantiationRange, PartialSpec, nullptr,
+ TemplateArgs, &DeductionInfo) {}
+
+Sema::InstantiatingTemplate::InstantiatingTemplate(
+ Sema &SemaRef, SourceLocation PointOfInstantiation,
+ VarTemplatePartialSpecializationDecl *PartialSpec,
+ ArrayRef<TemplateArgument> TemplateArgs,
+ sema::TemplateDeductionInfo &DeductionInfo, SourceRange InstantiationRange)
+ : InstantiatingTemplate(
+ SemaRef,
+ ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution,
+ PointOfInstantiation, InstantiationRange, PartialSpec, nullptr,
+ TemplateArgs, &DeductionInfo) {}
+
+Sema::InstantiatingTemplate::InstantiatingTemplate(
+ Sema &SemaRef, SourceLocation PointOfInstantiation, ParmVarDecl *Param,
+ ArrayRef<TemplateArgument> TemplateArgs, SourceRange InstantiationRange)
+ : InstantiatingTemplate(
+ SemaRef,
+ ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation,
+ PointOfInstantiation, InstantiationRange, Param, nullptr,
+ TemplateArgs) {}
+
+Sema::InstantiatingTemplate::InstantiatingTemplate(
+ Sema &SemaRef, SourceLocation PointOfInstantiation, NamedDecl *Template,
+ NonTypeTemplateParmDecl *Param, ArrayRef<TemplateArgument> TemplateArgs,
+ SourceRange InstantiationRange)
+ : InstantiatingTemplate(
+ SemaRef,
+ ActiveTemplateInstantiation::PriorTemplateArgumentSubstitution,
+ PointOfInstantiation, InstantiationRange, Param, Template,
+ TemplateArgs) {}
+
+Sema::InstantiatingTemplate::InstantiatingTemplate(
+ Sema &SemaRef, SourceLocation PointOfInstantiation, NamedDecl *Template,
+ TemplateTemplateParmDecl *Param, ArrayRef<TemplateArgument> TemplateArgs,
+ SourceRange InstantiationRange)
+ : InstantiatingTemplate(
+ SemaRef,
+ ActiveTemplateInstantiation::PriorTemplateArgumentSubstitution,
+ PointOfInstantiation, InstantiationRange, Param, Template,
+ TemplateArgs) {}
+
+Sema::InstantiatingTemplate::InstantiatingTemplate(
+ Sema &SemaRef, SourceLocation PointOfInstantiation, TemplateDecl *Template,
+ NamedDecl *Param, ArrayRef<TemplateArgument> TemplateArgs,
+ SourceRange InstantiationRange)
+ : InstantiatingTemplate(
+ SemaRef, ActiveTemplateInstantiation::DefaultTemplateArgumentChecking,
+ PointOfInstantiation, InstantiationRange, Param, Template,
+ TemplateArgs) {}
+
+void Sema::InstantiatingTemplate::Clear() {
+ if (!Invalid) {
+ if (!SemaRef.ActiveTemplateInstantiations.back().isInstantiationRecord()) {
+ assert(SemaRef.NonInstantiationEntries > 0);
+ --SemaRef.NonInstantiationEntries;
+ }
+ SemaRef.InNonInstantiationSFINAEContext
+ = SavedInNonInstantiationSFINAEContext;
+
+ // Name lookup no longer looks in this template's defining module.
+ assert(SemaRef.ActiveTemplateInstantiations.size() >=
+ SemaRef.ActiveTemplateInstantiationLookupModules.size() &&
+ "forgot to remove a lookup module for a template instantiation");
+ if (SemaRef.ActiveTemplateInstantiations.size() ==
+ SemaRef.ActiveTemplateInstantiationLookupModules.size()) {
+ if (Module *M = SemaRef.ActiveTemplateInstantiationLookupModules.back())
+ SemaRef.LookupModulesCache.erase(M);
+ SemaRef.ActiveTemplateInstantiationLookupModules.pop_back();
+ }
+
+ SemaRef.ActiveTemplateInstantiations.pop_back();
+ Invalid = true;
+ }
+}
+
+bool Sema::InstantiatingTemplate::CheckInstantiationDepth(
+ SourceLocation PointOfInstantiation,
+ SourceRange InstantiationRange) {
+ assert(SemaRef.NonInstantiationEntries <=
+ SemaRef.ActiveTemplateInstantiations.size());
+ if ((SemaRef.ActiveTemplateInstantiations.size() -
+ SemaRef.NonInstantiationEntries)
+ <= SemaRef.getLangOpts().InstantiationDepth)
+ return false;
+
+ SemaRef.Diag(PointOfInstantiation,
+ diag::err_template_recursion_depth_exceeded)
+ << SemaRef.getLangOpts().InstantiationDepth
+ << InstantiationRange;
+ SemaRef.Diag(PointOfInstantiation, diag::note_template_recursion_depth)
+ << SemaRef.getLangOpts().InstantiationDepth;
+ return true;
+}
+
+/// \brief Prints the current instantiation stack through a series of
+/// notes.
+void Sema::PrintInstantiationStack() {
+ // Determine which template instantiations to skip, if any.
+ unsigned SkipStart = ActiveTemplateInstantiations.size(), SkipEnd = SkipStart;
+ unsigned Limit = Diags.getTemplateBacktraceLimit();
+ if (Limit && Limit < ActiveTemplateInstantiations.size()) {
+ SkipStart = Limit / 2 + Limit % 2;
+ SkipEnd = ActiveTemplateInstantiations.size() - Limit / 2;
+ }
+
+ // FIXME: In all of these cases, we need to show the template arguments
+ unsigned InstantiationIdx = 0;
+ for (SmallVectorImpl<ActiveTemplateInstantiation>::reverse_iterator
+ Active = ActiveTemplateInstantiations.rbegin(),
+ ActiveEnd = ActiveTemplateInstantiations.rend();
+ Active != ActiveEnd;
+ ++Active, ++InstantiationIdx) {
+ // Skip this instantiation?
+ if (InstantiationIdx >= SkipStart && InstantiationIdx < SkipEnd) {
+ if (InstantiationIdx == SkipStart) {
+ // Note that we're skipping instantiations.
+ Diags.Report(Active->PointOfInstantiation,
+ diag::note_instantiation_contexts_suppressed)
+ << unsigned(ActiveTemplateInstantiations.size() - Limit);
+ }
+ continue;
+ }
+
+ switch (Active->Kind) {
+ case ActiveTemplateInstantiation::TemplateInstantiation: {
+ Decl *D = Active->Entity;
+ if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
+ unsigned DiagID = diag::note_template_member_class_here;
+ if (isa<ClassTemplateSpecializationDecl>(Record))
+ DiagID = diag::note_template_class_instantiation_here;
+ Diags.Report(Active->PointOfInstantiation, DiagID)
+ << Context.getTypeDeclType(Record)
+ << Active->InstantiationRange;
+ } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
+ unsigned DiagID;
+ if (Function->getPrimaryTemplate())
+ DiagID = diag::note_function_template_spec_here;
+ else
+ DiagID = diag::note_template_member_function_here;
+ Diags.Report(Active->PointOfInstantiation, DiagID)
+ << Function
+ << Active->InstantiationRange;
+ } else if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
+ Diags.Report(Active->PointOfInstantiation,
+ VD->isStaticDataMember()?
+ diag::note_template_static_data_member_def_here
+ : diag::note_template_variable_def_here)
+ << VD
+ << Active->InstantiationRange;
+ } else if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
+ Diags.Report(Active->PointOfInstantiation,
+ diag::note_template_enum_def_here)
+ << ED
+ << Active->InstantiationRange;
+ } else if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
+ Diags.Report(Active->PointOfInstantiation,
+ diag::note_template_nsdmi_here)
+ << FD << Active->InstantiationRange;
+ } else {
+ Diags.Report(Active->PointOfInstantiation,
+ diag::note_template_type_alias_instantiation_here)
+ << cast<TypeAliasTemplateDecl>(D)
+ << Active->InstantiationRange;
+ }
+ break;
+ }
+
+ case ActiveTemplateInstantiation::DefaultTemplateArgumentInstantiation: {
+ TemplateDecl *Template = cast<TemplateDecl>(Active->Entity);
+ SmallVector<char, 128> TemplateArgsStr;
+ llvm::raw_svector_ostream OS(TemplateArgsStr);
+ Template->printName(OS);
+ TemplateSpecializationType::PrintTemplateArgumentList(OS,
+ Active->TemplateArgs,
+ Active->NumTemplateArgs,
+ getPrintingPolicy());
+ Diags.Report(Active->PointOfInstantiation,
+ diag::note_default_arg_instantiation_here)
+ << OS.str()
+ << Active->InstantiationRange;
+ break;
+ }
+
+ case ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution: {
+ FunctionTemplateDecl *FnTmpl = cast<FunctionTemplateDecl>(Active->Entity);
+ Diags.Report(Active->PointOfInstantiation,
+ diag::note_explicit_template_arg_substitution_here)
+ << FnTmpl
+ << getTemplateArgumentBindingsText(FnTmpl->getTemplateParameters(),
+ Active->TemplateArgs,
+ Active->NumTemplateArgs)
+ << Active->InstantiationRange;
+ break;
+ }
+
+ case ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution:
+ if (ClassTemplatePartialSpecializationDecl *PartialSpec =
+ dyn_cast<ClassTemplatePartialSpecializationDecl>(Active->Entity)) {
+ Diags.Report(Active->PointOfInstantiation,
+ diag::note_partial_spec_deduct_instantiation_here)
+ << Context.getTypeDeclType(PartialSpec)
+ << getTemplateArgumentBindingsText(
+ PartialSpec->getTemplateParameters(),
+ Active->TemplateArgs,
+ Active->NumTemplateArgs)
+ << Active->InstantiationRange;
+ } else {
+ FunctionTemplateDecl *FnTmpl
+ = cast<FunctionTemplateDecl>(Active->Entity);
+ Diags.Report(Active->PointOfInstantiation,
+ diag::note_function_template_deduction_instantiation_here)
+ << FnTmpl
+ << getTemplateArgumentBindingsText(FnTmpl->getTemplateParameters(),
+ Active->TemplateArgs,
+ Active->NumTemplateArgs)
+ << Active->InstantiationRange;
+ }
+ break;
+
+ case ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation: {
+ ParmVarDecl *Param = cast<ParmVarDecl>(Active->Entity);
+ FunctionDecl *FD = cast<FunctionDecl>(Param->getDeclContext());
+
+ SmallVector<char, 128> TemplateArgsStr;
+ llvm::raw_svector_ostream OS(TemplateArgsStr);
+ FD->printName(OS);
+ TemplateSpecializationType::PrintTemplateArgumentList(OS,
+ Active->TemplateArgs,
+ Active->NumTemplateArgs,
+ getPrintingPolicy());
+ Diags.Report(Active->PointOfInstantiation,
+ diag::note_default_function_arg_instantiation_here)
+ << OS.str()
+ << Active->InstantiationRange;
+ break;
+ }
+
+ case ActiveTemplateInstantiation::PriorTemplateArgumentSubstitution: {
+ NamedDecl *Parm = cast<NamedDecl>(Active->Entity);
+ std::string Name;
+ if (!Parm->getName().empty())
+ Name = std::string(" '") + Parm->getName().str() + "'";
+
+ TemplateParameterList *TemplateParams = nullptr;
+ if (TemplateDecl *Template = dyn_cast<TemplateDecl>(Active->Template))
+ TemplateParams = Template->getTemplateParameters();
+ else
+ TemplateParams =
+ cast<ClassTemplatePartialSpecializationDecl>(Active->Template)
+ ->getTemplateParameters();
+ Diags.Report(Active->PointOfInstantiation,
+ diag::note_prior_template_arg_substitution)
+ << isa<TemplateTemplateParmDecl>(Parm)
+ << Name
+ << getTemplateArgumentBindingsText(TemplateParams,
+ Active->TemplateArgs,
+ Active->NumTemplateArgs)
+ << Active->InstantiationRange;
+ break;
+ }
+
+ case ActiveTemplateInstantiation::DefaultTemplateArgumentChecking: {
+ TemplateParameterList *TemplateParams = nullptr;
+ if (TemplateDecl *Template = dyn_cast<TemplateDecl>(Active->Template))
+ TemplateParams = Template->getTemplateParameters();
+ else
+ TemplateParams =
+ cast<ClassTemplatePartialSpecializationDecl>(Active->Template)
+ ->getTemplateParameters();
+
+ Diags.Report(Active->PointOfInstantiation,
+ diag::note_template_default_arg_checking)
+ << getTemplateArgumentBindingsText(TemplateParams,
+ Active->TemplateArgs,
+ Active->NumTemplateArgs)
+ << Active->InstantiationRange;
+ break;
+ }
+
+ case ActiveTemplateInstantiation::ExceptionSpecInstantiation:
+ Diags.Report(Active->PointOfInstantiation,
+ diag::note_template_exception_spec_instantiation_here)
+ << cast<FunctionDecl>(Active->Entity)
+ << Active->InstantiationRange;
+ break;
+ }
+ }
+}
+
+Optional<TemplateDeductionInfo *> Sema::isSFINAEContext() const {
+ if (InNonInstantiationSFINAEContext)
+ return Optional<TemplateDeductionInfo *>(nullptr);
+
+ for (SmallVectorImpl<ActiveTemplateInstantiation>::const_reverse_iterator
+ Active = ActiveTemplateInstantiations.rbegin(),
+ ActiveEnd = ActiveTemplateInstantiations.rend();
+ Active != ActiveEnd;
+ ++Active)
+ {
+ switch(Active->Kind) {
+ case ActiveTemplateInstantiation::TemplateInstantiation:
+ // An instantiation of an alias template may or may not be a SFINAE
+ // context, depending on what else is on the stack.
+ if (isa<TypeAliasTemplateDecl>(Active->Entity))
+ break;
+ // Fall through.
+ case ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation:
+ case ActiveTemplateInstantiation::ExceptionSpecInstantiation:
+ // This is a template instantiation, so there is no SFINAE.
+ return None;
+
+ case ActiveTemplateInstantiation::DefaultTemplateArgumentInstantiation:
+ case ActiveTemplateInstantiation::PriorTemplateArgumentSubstitution:
+ case ActiveTemplateInstantiation::DefaultTemplateArgumentChecking:
+ // A default template argument instantiation and substitution into
+ // template parameters with arguments for prior parameters may or may
+ // not be a SFINAE context; look further up the stack.
+ break;
+
+ case ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution:
+ case ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution:
+ // We're either substitution explicitly-specified template arguments
+ // or deduced template arguments, so SFINAE applies.
+ assert(Active->DeductionInfo && "Missing deduction info pointer");
+ return Active->DeductionInfo;
+ }
+ }
+
+ return None;
+}
+
+/// \brief Retrieve the depth and index of a parameter pack.
+static std::pair<unsigned, unsigned>
+getDepthAndIndex(NamedDecl *ND) {
+ if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ND))
+ return std::make_pair(TTP->getDepth(), TTP->getIndex());
+
+ if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(ND))
+ return std::make_pair(NTTP->getDepth(), NTTP->getIndex());
+
+ TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(ND);
+ return std::make_pair(TTP->getDepth(), TTP->getIndex());
+}
+
+//===----------------------------------------------------------------------===/
+// Template Instantiation for Types
+//===----------------------------------------------------------------------===/
+namespace {
+ class TemplateInstantiator : public TreeTransform<TemplateInstantiator> {
+ const MultiLevelTemplateArgumentList &TemplateArgs;
+ SourceLocation Loc;
+ DeclarationName Entity;
+
+ public:
+ typedef TreeTransform<TemplateInstantiator> inherited;
+
+ TemplateInstantiator(Sema &SemaRef,
+ const MultiLevelTemplateArgumentList &TemplateArgs,
+ SourceLocation Loc,
+ DeclarationName Entity)
+ : inherited(SemaRef), TemplateArgs(TemplateArgs), Loc(Loc),
+ Entity(Entity) { }
+
+ /// \brief Determine whether the given type \p T has already been
+ /// transformed.
+ ///
+ /// For the purposes of template instantiation, a type has already been
+ /// transformed if it is NULL or if it is not dependent.
+ bool AlreadyTransformed(QualType T);
+
+ /// \brief Returns the location of the entity being instantiated, if known.
+ SourceLocation getBaseLocation() { return Loc; }
+
+ /// \brief Returns the name of the entity being instantiated, if any.
+ DeclarationName getBaseEntity() { return Entity; }
+
+ /// \brief Sets the "base" location and entity when that
+ /// information is known based on another transformation.
+ void setBase(SourceLocation Loc, DeclarationName Entity) {
+ this->Loc = Loc;
+ this->Entity = Entity;
+ }
+
+ bool TryExpandParameterPacks(SourceLocation EllipsisLoc,
+ SourceRange PatternRange,
+ ArrayRef<UnexpandedParameterPack> Unexpanded,
+ bool &ShouldExpand, bool &RetainExpansion,
+ Optional<unsigned> &NumExpansions) {
+ return getSema().CheckParameterPacksForExpansion(EllipsisLoc,
+ PatternRange, Unexpanded,
+ TemplateArgs,
+ ShouldExpand,
+ RetainExpansion,
+ NumExpansions);
+ }
+
+ void ExpandingFunctionParameterPack(ParmVarDecl *Pack) {
+ SemaRef.CurrentInstantiationScope->MakeInstantiatedLocalArgPack(Pack);
+ }
+
+ TemplateArgument ForgetPartiallySubstitutedPack() {
+ TemplateArgument Result;
+ if (NamedDecl *PartialPack
+ = SemaRef.CurrentInstantiationScope->getPartiallySubstitutedPack()){
+ MultiLevelTemplateArgumentList &TemplateArgs
+ = const_cast<MultiLevelTemplateArgumentList &>(this->TemplateArgs);
+ unsigned Depth, Index;
+ std::tie(Depth, Index) = getDepthAndIndex(PartialPack);
+ if (TemplateArgs.hasTemplateArgument(Depth, Index)) {
+ Result = TemplateArgs(Depth, Index);
+ TemplateArgs.setArgument(Depth, Index, TemplateArgument());
+ }
+ }
+
+ return Result;
+ }
+
+ void RememberPartiallySubstitutedPack(TemplateArgument Arg) {
+ if (Arg.isNull())
+ return;
+
+ if (NamedDecl *PartialPack
+ = SemaRef.CurrentInstantiationScope->getPartiallySubstitutedPack()){
+ MultiLevelTemplateArgumentList &TemplateArgs
+ = const_cast<MultiLevelTemplateArgumentList &>(this->TemplateArgs);
+ unsigned Depth, Index;
+ std::tie(Depth, Index) = getDepthAndIndex(PartialPack);
+ TemplateArgs.setArgument(Depth, Index, Arg);
+ }
+ }
+
+ /// \brief Transform the given declaration by instantiating a reference to
+ /// this declaration.
+ Decl *TransformDecl(SourceLocation Loc, Decl *D);
+
+ void transformAttrs(Decl *Old, Decl *New) {
+ SemaRef.InstantiateAttrs(TemplateArgs, Old, New);
+ }
+
+ void transformedLocalDecl(Decl *Old, Decl *New) {
+ // If we've instantiated the call operator of a lambda or the call
+ // operator template of a generic lambda, update the "instantiation of"
+ // information.
+ auto *NewMD = dyn_cast<CXXMethodDecl>(New);
+ if (NewMD && isLambdaCallOperator(NewMD)) {
+ auto *OldMD = dyn_cast<CXXMethodDecl>(Old);
+ if (auto *NewTD = NewMD->getDescribedFunctionTemplate())
+ NewTD->setInstantiatedFromMemberTemplate(
+ OldMD->getDescribedFunctionTemplate());
+ else
+ NewMD->setInstantiationOfMemberFunction(OldMD,
+ TSK_ImplicitInstantiation);
+ }
+
+ SemaRef.CurrentInstantiationScope->InstantiatedLocal(Old, New);
+ }
+
+ /// \brief Transform the definition of the given declaration by
+ /// instantiating it.
+ Decl *TransformDefinition(SourceLocation Loc, Decl *D);
+
+ /// \brief Transform the first qualifier within a scope by instantiating the
+ /// declaration.
+ NamedDecl *TransformFirstQualifierInScope(NamedDecl *D, SourceLocation Loc);
+
+ /// \brief Rebuild the exception declaration and register the declaration
+ /// as an instantiated local.
+ VarDecl *RebuildExceptionDecl(VarDecl *ExceptionDecl,
+ TypeSourceInfo *Declarator,
+ SourceLocation StartLoc,
+ SourceLocation NameLoc,
+ IdentifierInfo *Name);
+
+ /// \brief Rebuild the Objective-C exception declaration and register the
+ /// declaration as an instantiated local.
+ VarDecl *RebuildObjCExceptionDecl(VarDecl *ExceptionDecl,
+ TypeSourceInfo *TSInfo, QualType T);
+
+ /// \brief Check for tag mismatches when instantiating an
+ /// elaborated type.
+ QualType RebuildElaboratedType(SourceLocation KeywordLoc,
+ ElaboratedTypeKeyword Keyword,
+ NestedNameSpecifierLoc QualifierLoc,
+ QualType T);
+
+ TemplateName
+ TransformTemplateName(CXXScopeSpec &SS, TemplateName Name,
+ SourceLocation NameLoc,
+ QualType ObjectType = QualType(),
+ NamedDecl *FirstQualifierInScope = nullptr);
+
+ const LoopHintAttr *TransformLoopHintAttr(const LoopHintAttr *LH);
+
+ ExprResult TransformPredefinedExpr(PredefinedExpr *E);
+ ExprResult TransformDeclRefExpr(DeclRefExpr *E);
+ ExprResult TransformCXXDefaultArgExpr(CXXDefaultArgExpr *E);
+
+ ExprResult TransformTemplateParmRefExpr(DeclRefExpr *E,
+ NonTypeTemplateParmDecl *D);
+ ExprResult TransformSubstNonTypeTemplateParmPackExpr(
+ SubstNonTypeTemplateParmPackExpr *E);
+
+ /// \brief Rebuild a DeclRefExpr for a ParmVarDecl reference.
+ ExprResult RebuildParmVarDeclRefExpr(ParmVarDecl *PD, SourceLocation Loc);
+
+ /// \brief Transform a reference to a function parameter pack.
+ ExprResult TransformFunctionParmPackRefExpr(DeclRefExpr *E,
+ ParmVarDecl *PD);
+
+ /// \brief Transform a FunctionParmPackExpr which was built when we couldn't
+ /// expand a function parameter pack reference which refers to an expanded
+ /// pack.
+ ExprResult TransformFunctionParmPackExpr(FunctionParmPackExpr *E);
+
+ QualType TransformFunctionProtoType(TypeLocBuilder &TLB,
+ FunctionProtoTypeLoc TL) {
+ // Call the base version; it will forward to our overridden version below.
+ return inherited::TransformFunctionProtoType(TLB, TL);
+ }
+
+ template<typename Fn>
+ QualType TransformFunctionProtoType(TypeLocBuilder &TLB,
+ FunctionProtoTypeLoc TL,
+ CXXRecordDecl *ThisContext,
+ unsigned ThisTypeQuals,
+ Fn TransformExceptionSpec);
+
+ ParmVarDecl *TransformFunctionTypeParam(ParmVarDecl *OldParm,
+ int indexAdjustment,
+ Optional<unsigned> NumExpansions,
+ bool ExpectParameterPack);
+
+ /// \brief Transforms a template type parameter type by performing
+ /// substitution of the corresponding template type argument.
+ QualType TransformTemplateTypeParmType(TypeLocBuilder &TLB,
+ TemplateTypeParmTypeLoc TL);
+
+ /// \brief Transforms an already-substituted template type parameter pack
+ /// into either itself (if we aren't substituting into its pack expansion)
+ /// or the appropriate substituted argument.
+ QualType TransformSubstTemplateTypeParmPackType(TypeLocBuilder &TLB,
+ SubstTemplateTypeParmPackTypeLoc TL);
+
+ ExprResult TransformCallExpr(CallExpr *CE) {
+ getSema().CallsUndergoingInstantiation.push_back(CE);
+ ExprResult Result =
+ TreeTransform<TemplateInstantiator>::TransformCallExpr(CE);
+ getSema().CallsUndergoingInstantiation.pop_back();
+ return Result;
+ }
+
+ ExprResult TransformLambdaExpr(LambdaExpr *E) {
+ LocalInstantiationScope Scope(SemaRef, /*CombineWithOuterScope=*/true);
+ return TreeTransform<TemplateInstantiator>::TransformLambdaExpr(E);
+ }
+
+ TemplateParameterList *TransformTemplateParameterList(
+ TemplateParameterList *OrigTPL) {
+ if (!OrigTPL || !OrigTPL->size()) return OrigTPL;
+
+ DeclContext *Owner = OrigTPL->getParam(0)->getDeclContext();
+ TemplateDeclInstantiator DeclInstantiator(getSema(),
+ /* DeclContext *Owner */ Owner, TemplateArgs);
+ return DeclInstantiator.SubstTemplateParams(OrigTPL);
+ }
+ private:
+ ExprResult transformNonTypeTemplateParmRef(NonTypeTemplateParmDecl *parm,
+ SourceLocation loc,
+ TemplateArgument arg);
+ };
+}
+
+bool TemplateInstantiator::AlreadyTransformed(QualType T) {
+ if (T.isNull())
+ return true;
+
+ if (T->isInstantiationDependentType() || T->isVariablyModifiedType())
+ return false;
+
+ getSema().MarkDeclarationsReferencedInType(Loc, T);
+ return true;
+}
+
+static TemplateArgument
+getPackSubstitutedTemplateArgument(Sema &S, TemplateArgument Arg) {
+ assert(S.ArgumentPackSubstitutionIndex >= 0);
+ assert(S.ArgumentPackSubstitutionIndex < (int)Arg.pack_size());
+ Arg = Arg.pack_begin()[S.ArgumentPackSubstitutionIndex];
+ if (Arg.isPackExpansion())
+ Arg = Arg.getPackExpansionPattern();
+ return Arg;
+}
+
+Decl *TemplateInstantiator::TransformDecl(SourceLocation Loc, Decl *D) {
+ if (!D)
+ return nullptr;
+
+ if (TemplateTemplateParmDecl *TTP = dyn_cast<TemplateTemplateParmDecl>(D)) {
+ if (TTP->getDepth() < TemplateArgs.getNumLevels()) {
+ // If the corresponding template argument is NULL or non-existent, it's
+ // because we are performing instantiation from explicitly-specified
+ // template arguments in a function template, but there were some
+ // arguments left unspecified.
+ if (!TemplateArgs.hasTemplateArgument(TTP->getDepth(),
+ TTP->getPosition()))
+ return D;
+
+ TemplateArgument Arg = TemplateArgs(TTP->getDepth(), TTP->getPosition());
+
+ if (TTP->isParameterPack()) {
+ assert(Arg.getKind() == TemplateArgument::Pack &&
+ "Missing argument pack");
+ Arg = getPackSubstitutedTemplateArgument(getSema(), Arg);
+ }
+
+ TemplateName Template = Arg.getAsTemplate();
+ assert(!Template.isNull() && Template.getAsTemplateDecl() &&
+ "Wrong kind of template template argument");
+ return Template.getAsTemplateDecl();
+ }
+
+ // Fall through to find the instantiated declaration for this template
+ // template parameter.
+ }
+
+ return SemaRef.FindInstantiatedDecl(Loc, cast<NamedDecl>(D), TemplateArgs);
+}
+
+Decl *TemplateInstantiator::TransformDefinition(SourceLocation Loc, Decl *D) {
+ Decl *Inst = getSema().SubstDecl(D, getSema().CurContext, TemplateArgs);
+ if (!Inst)
+ return nullptr;
+
+ getSema().CurrentInstantiationScope->InstantiatedLocal(D, Inst);
+ return Inst;
+}
+
+NamedDecl *
+TemplateInstantiator::TransformFirstQualifierInScope(NamedDecl *D,
+ SourceLocation Loc) {
+ // If the first part of the nested-name-specifier was a template type
+ // parameter, instantiate that type parameter down to a tag type.
+ if (TemplateTypeParmDecl *TTPD = dyn_cast_or_null<TemplateTypeParmDecl>(D)) {
+ const TemplateTypeParmType *TTP
+ = cast<TemplateTypeParmType>(getSema().Context.getTypeDeclType(TTPD));
+
+ if (TTP->getDepth() < TemplateArgs.getNumLevels()) {
+ // FIXME: This needs testing w/ member access expressions.
+ TemplateArgument Arg = TemplateArgs(TTP->getDepth(), TTP->getIndex());
+
+ if (TTP->isParameterPack()) {
+ assert(Arg.getKind() == TemplateArgument::Pack &&
+ "Missing argument pack");
+
+ if (getSema().ArgumentPackSubstitutionIndex == -1)
+ return nullptr;
+
+ Arg = getPackSubstitutedTemplateArgument(getSema(), Arg);
+ }
+
+ QualType T = Arg.getAsType();
+ if (T.isNull())
+ return cast_or_null<NamedDecl>(TransformDecl(Loc, D));
+
+ if (const TagType *Tag = T->getAs<TagType>())
+ return Tag->getDecl();
+
+ // The resulting type is not a tag; complain.
+ getSema().Diag(Loc, diag::err_nested_name_spec_non_tag) << T;
+ return nullptr;
+ }
+ }
+
+ return cast_or_null<NamedDecl>(TransformDecl(Loc, D));
+}
+
+VarDecl *
+TemplateInstantiator::RebuildExceptionDecl(VarDecl *ExceptionDecl,
+ TypeSourceInfo *Declarator,
+ SourceLocation StartLoc,
+ SourceLocation NameLoc,
+ IdentifierInfo *Name) {
+ VarDecl *Var = inherited::RebuildExceptionDecl(ExceptionDecl, Declarator,
+ StartLoc, NameLoc, Name);
+ if (Var)
+ getSema().CurrentInstantiationScope->InstantiatedLocal(ExceptionDecl, Var);
+ return Var;
+}
+
+VarDecl *TemplateInstantiator::RebuildObjCExceptionDecl(VarDecl *ExceptionDecl,
+ TypeSourceInfo *TSInfo,
+ QualType T) {
+ VarDecl *Var = inherited::RebuildObjCExceptionDecl(ExceptionDecl, TSInfo, T);
+ if (Var)
+ getSema().CurrentInstantiationScope->InstantiatedLocal(ExceptionDecl, Var);
+ return Var;
+}
+
+QualType
+TemplateInstantiator::RebuildElaboratedType(SourceLocation KeywordLoc,
+ ElaboratedTypeKeyword Keyword,
+ NestedNameSpecifierLoc QualifierLoc,
+ QualType T) {
+ if (const TagType *TT = T->getAs<TagType>()) {
+ TagDecl* TD = TT->getDecl();
+
+ SourceLocation TagLocation = KeywordLoc;
+
+ IdentifierInfo *Id = TD->getIdentifier();
+
+ // TODO: should we even warn on struct/class mismatches for this? Seems
+ // like it's likely to produce a lot of spurious errors.
+ if (Id && Keyword != ETK_None && Keyword != ETK_Typename) {
+ TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForKeyword(Keyword);
+ if (!SemaRef.isAcceptableTagRedeclaration(TD, Kind, /*isDefinition*/false,
+ TagLocation, *Id)) {
+ SemaRef.Diag(TagLocation, diag::err_use_with_wrong_tag)
+ << Id
+ << FixItHint::CreateReplacement(SourceRange(TagLocation),
+ TD->getKindName());
+ SemaRef.Diag(TD->getLocation(), diag::note_previous_use);
+ }
+ }
+ }
+
+ return TreeTransform<TemplateInstantiator>::RebuildElaboratedType(KeywordLoc,
+ Keyword,
+ QualifierLoc,
+ T);
+}
+
+TemplateName TemplateInstantiator::TransformTemplateName(CXXScopeSpec &SS,
+ TemplateName Name,
+ SourceLocation NameLoc,
+ QualType ObjectType,
+ NamedDecl *FirstQualifierInScope) {
+ if (TemplateTemplateParmDecl *TTP
+ = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())) {
+ if (TTP->getDepth() < TemplateArgs.getNumLevels()) {
+ // If the corresponding template argument is NULL or non-existent, it's
+ // because we are performing instantiation from explicitly-specified
+ // template arguments in a function template, but there were some
+ // arguments left unspecified.
+ if (!TemplateArgs.hasTemplateArgument(TTP->getDepth(),
+ TTP->getPosition()))
+ return Name;
+
+ TemplateArgument Arg = TemplateArgs(TTP->getDepth(), TTP->getPosition());
+
+ if (TTP->isParameterPack()) {
+ assert(Arg.getKind() == TemplateArgument::Pack &&
+ "Missing argument pack");
+
+ if (getSema().ArgumentPackSubstitutionIndex == -1) {
+ // We have the template argument pack to substitute, but we're not
+ // actually expanding the enclosing pack expansion yet. So, just
+ // keep the entire argument pack.
+ return getSema().Context.getSubstTemplateTemplateParmPack(TTP, Arg);
+ }
+
+ Arg = getPackSubstitutedTemplateArgument(getSema(), Arg);
+ }
+
+ TemplateName Template = Arg.getAsTemplate();
+ assert(!Template.isNull() && "Null template template argument");
+
+ // We don't ever want to substitute for a qualified template name, since
+ // the qualifier is handled separately. So, look through the qualified
+ // template name to its underlying declaration.
+ if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
+ Template = TemplateName(QTN->getTemplateDecl());
+
+ Template = getSema().Context.getSubstTemplateTemplateParm(TTP, Template);
+ return Template;
+ }
+ }
+
+ if (SubstTemplateTemplateParmPackStorage *SubstPack
+ = Name.getAsSubstTemplateTemplateParmPack()) {
+ if (getSema().ArgumentPackSubstitutionIndex == -1)
+ return Name;
+
+ TemplateArgument Arg = SubstPack->getArgumentPack();
+ Arg = getPackSubstitutedTemplateArgument(getSema(), Arg);
+ return Arg.getAsTemplate();
+ }
+
+ return inherited::TransformTemplateName(SS, Name, NameLoc, ObjectType,
+ FirstQualifierInScope);
+}
+
+ExprResult
+TemplateInstantiator::TransformPredefinedExpr(PredefinedExpr *E) {
+ if (!E->isTypeDependent())
+ return E;
+
+ return getSema().BuildPredefinedExpr(E->getLocation(), E->getIdentType());
+}
+
+ExprResult
+TemplateInstantiator::TransformTemplateParmRefExpr(DeclRefExpr *E,
+ NonTypeTemplateParmDecl *NTTP) {
+ // If the corresponding template argument is NULL or non-existent, it's
+ // because we are performing instantiation from explicitly-specified
+ // template arguments in a function template, but there were some
+ // arguments left unspecified.
+ if (!TemplateArgs.hasTemplateArgument(NTTP->getDepth(),
+ NTTP->getPosition()))
+ return E;
+
+ TemplateArgument Arg = TemplateArgs(NTTP->getDepth(), NTTP->getPosition());
+ if (NTTP->isParameterPack()) {
+ assert(Arg.getKind() == TemplateArgument::Pack &&
+ "Missing argument pack");
+
+ if (getSema().ArgumentPackSubstitutionIndex == -1) {
+ // We have an argument pack, but we can't select a particular argument
+ // out of it yet. Therefore, we'll build an expression to hold on to that
+ // argument pack.
+ QualType TargetType = SemaRef.SubstType(NTTP->getType(), TemplateArgs,
+ E->getLocation(),
+ NTTP->getDeclName());
+ if (TargetType.isNull())
+ return ExprError();
+
+ return new (SemaRef.Context) SubstNonTypeTemplateParmPackExpr(TargetType,
+ NTTP,
+ E->getLocation(),
+ Arg);
+ }
+
+ Arg = getPackSubstitutedTemplateArgument(getSema(), Arg);
+ }
+
+ return transformNonTypeTemplateParmRef(NTTP, E->getLocation(), Arg);
+}
+
+const LoopHintAttr *
+TemplateInstantiator::TransformLoopHintAttr(const LoopHintAttr *LH) {
+ Expr *TransformedExpr = getDerived().TransformExpr(LH->getValue()).get();
+
+ if (TransformedExpr == LH->getValue())
+ return LH;
+
+ // Generate error if there is a problem with the value.
+ if (getSema().CheckLoopHintExpr(TransformedExpr, LH->getLocation()))
+ return LH;
+
+ // Create new LoopHintValueAttr with integral expression in place of the
+ // non-type template parameter.
+ return LoopHintAttr::CreateImplicit(
+ getSema().Context, LH->getSemanticSpelling(), LH->getOption(),
+ LH->getState(), TransformedExpr, LH->getRange());
+}
+
+ExprResult TemplateInstantiator::transformNonTypeTemplateParmRef(
+ NonTypeTemplateParmDecl *parm,
+ SourceLocation loc,
+ TemplateArgument arg) {
+ ExprResult result;
+ QualType type;
+
+ // The template argument itself might be an expression, in which
+ // case we just return that expression.
+ if (arg.getKind() == TemplateArgument::Expression) {
+ Expr *argExpr = arg.getAsExpr();
+ result = argExpr;
+ type = argExpr->getType();
+
+ } else if (arg.getKind() == TemplateArgument::Declaration ||
+ arg.getKind() == TemplateArgument::NullPtr) {
+ ValueDecl *VD;
+ if (arg.getKind() == TemplateArgument::Declaration) {
+ VD = cast<ValueDecl>(arg.getAsDecl());
+
+ // Find the instantiation of the template argument. This is
+ // required for nested templates.
+ VD = cast_or_null<ValueDecl>(
+ getSema().FindInstantiatedDecl(loc, VD, TemplateArgs));
+ if (!VD)
+ return ExprError();
+ } else {
+ // Propagate NULL template argument.
+ VD = nullptr;
+ }
+
+ // Derive the type we want the substituted decl to have. This had
+ // better be non-dependent, or these checks will have serious problems.
+ if (parm->isExpandedParameterPack()) {
+ type = parm->getExpansionType(SemaRef.ArgumentPackSubstitutionIndex);
+ } else if (parm->isParameterPack() &&
+ isa<PackExpansionType>(parm->getType())) {
+ type = SemaRef.SubstType(
+ cast<PackExpansionType>(parm->getType())->getPattern(),
+ TemplateArgs, loc, parm->getDeclName());
+ } else {
+ type = SemaRef.SubstType(parm->getType(), TemplateArgs,
+ loc, parm->getDeclName());
+ }
+ assert(!type.isNull() && "type substitution failed for param type");
+ assert(!type->isDependentType() && "param type still dependent");
+ result = SemaRef.BuildExpressionFromDeclTemplateArgument(arg, type, loc);
+
+ if (!result.isInvalid()) type = result.get()->getType();
+ } else {
+ result = SemaRef.BuildExpressionFromIntegralTemplateArgument(arg, loc);
+
+ // Note that this type can be different from the type of 'result',
+ // e.g. if it's an enum type.
+ type = arg.getIntegralType();
+ }
+ if (result.isInvalid()) return ExprError();
+
+ Expr *resultExpr = result.get();
+ return new (SemaRef.Context) SubstNonTypeTemplateParmExpr(
+ type, resultExpr->getValueKind(), loc, parm, resultExpr);
+}
+
+ExprResult
+TemplateInstantiator::TransformSubstNonTypeTemplateParmPackExpr(
+ SubstNonTypeTemplateParmPackExpr *E) {
+ if (getSema().ArgumentPackSubstitutionIndex == -1) {
+ // We aren't expanding the parameter pack, so just return ourselves.
+ return E;
+ }
+
+ TemplateArgument Arg = E->getArgumentPack();
+ Arg = getPackSubstitutedTemplateArgument(getSema(), Arg);
+ return transformNonTypeTemplateParmRef(E->getParameterPack(),
+ E->getParameterPackLocation(),
+ Arg);
+}
+
+ExprResult
+TemplateInstantiator::RebuildParmVarDeclRefExpr(ParmVarDecl *PD,
+ SourceLocation Loc) {
+ DeclarationNameInfo NameInfo(PD->getDeclName(), Loc);
+ return getSema().BuildDeclarationNameExpr(CXXScopeSpec(), NameInfo, PD);
+}
+
+ExprResult
+TemplateInstantiator::TransformFunctionParmPackExpr(FunctionParmPackExpr *E) {
+ if (getSema().ArgumentPackSubstitutionIndex != -1) {
+ // We can expand this parameter pack now.
+ ParmVarDecl *D = E->getExpansion(getSema().ArgumentPackSubstitutionIndex);
+ ValueDecl *VD = cast_or_null<ValueDecl>(TransformDecl(E->getExprLoc(), D));
+ if (!VD)
+ return ExprError();
+ return RebuildParmVarDeclRefExpr(cast<ParmVarDecl>(VD), E->getExprLoc());
+ }
+
+ QualType T = TransformType(E->getType());
+ if (T.isNull())
+ return ExprError();
+
+ // Transform each of the parameter expansions into the corresponding
+ // parameters in the instantiation of the function decl.
+ SmallVector<Decl *, 8> Parms;
+ Parms.reserve(E->getNumExpansions());
+ for (FunctionParmPackExpr::iterator I = E->begin(), End = E->end();
+ I != End; ++I) {
+ ParmVarDecl *D =
+ cast_or_null<ParmVarDecl>(TransformDecl(E->getExprLoc(), *I));
+ if (!D)
+ return ExprError();
+ Parms.push_back(D);
+ }
+
+ return FunctionParmPackExpr::Create(getSema().Context, T,
+ E->getParameterPack(),
+ E->getParameterPackLocation(), Parms);
+}
+
+ExprResult
+TemplateInstantiator::TransformFunctionParmPackRefExpr(DeclRefExpr *E,
+ ParmVarDecl *PD) {
+ typedef LocalInstantiationScope::DeclArgumentPack DeclArgumentPack;
+ llvm::PointerUnion<Decl *, DeclArgumentPack *> *Found
+ = getSema().CurrentInstantiationScope->findInstantiationOf(PD);
+ assert(Found && "no instantiation for parameter pack");
+
+ Decl *TransformedDecl;
+ if (DeclArgumentPack *Pack = Found->dyn_cast<DeclArgumentPack *>()) {
+ // If this is a reference to a function parameter pack which we can
+ // substitute but can't yet expand, build a FunctionParmPackExpr for it.
+ if (getSema().ArgumentPackSubstitutionIndex == -1) {
+ QualType T = TransformType(E->getType());
+ if (T.isNull())
+ return ExprError();
+ return FunctionParmPackExpr::Create(getSema().Context, T, PD,
+ E->getExprLoc(), *Pack);
+ }
+
+ TransformedDecl = (*Pack)[getSema().ArgumentPackSubstitutionIndex];
+ } else {
+ TransformedDecl = Found->get<Decl*>();
+ }
+
+ // We have either an unexpanded pack or a specific expansion.
+ return RebuildParmVarDeclRefExpr(cast<ParmVarDecl>(TransformedDecl),
+ E->getExprLoc());
+}
+
+ExprResult
+TemplateInstantiator::TransformDeclRefExpr(DeclRefExpr *E) {
+ NamedDecl *D = E->getDecl();
+
+ // Handle references to non-type template parameters and non-type template
+ // parameter packs.
+ if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D)) {
+ if (NTTP->getDepth() < TemplateArgs.getNumLevels())
+ return TransformTemplateParmRefExpr(E, NTTP);
+
+ // We have a non-type template parameter that isn't fully substituted;
+ // FindInstantiatedDecl will find it in the local instantiation scope.
+ }
+
+ // Handle references to function parameter packs.
+ if (ParmVarDecl *PD = dyn_cast<ParmVarDecl>(D))
+ if (PD->isParameterPack())
+ return TransformFunctionParmPackRefExpr(E, PD);
+
+ return TreeTransform<TemplateInstantiator>::TransformDeclRefExpr(E);
+}
+
+ExprResult TemplateInstantiator::TransformCXXDefaultArgExpr(
+ CXXDefaultArgExpr *E) {
+ assert(!cast<FunctionDecl>(E->getParam()->getDeclContext())->
+ getDescribedFunctionTemplate() &&
+ "Default arg expressions are never formed in dependent cases.");
+ return SemaRef.BuildCXXDefaultArgExpr(E->getUsedLocation(),
+ cast<FunctionDecl>(E->getParam()->getDeclContext()),
+ E->getParam());
+}
+
+template<typename Fn>
+QualType TemplateInstantiator::TransformFunctionProtoType(TypeLocBuilder &TLB,
+ FunctionProtoTypeLoc TL,
+ CXXRecordDecl *ThisContext,
+ unsigned ThisTypeQuals,
+ Fn TransformExceptionSpec) {
+ // We need a local instantiation scope for this function prototype.
+ LocalInstantiationScope Scope(SemaRef, /*CombineWithOuterScope=*/true);
+ return inherited::TransformFunctionProtoType(
+ TLB, TL, ThisContext, ThisTypeQuals, TransformExceptionSpec);
+}
+
+ParmVarDecl *
+TemplateInstantiator::TransformFunctionTypeParam(ParmVarDecl *OldParm,
+ int indexAdjustment,
+ Optional<unsigned> NumExpansions,
+ bool ExpectParameterPack) {
+ return SemaRef.SubstParmVarDecl(OldParm, TemplateArgs, indexAdjustment,
+ NumExpansions, ExpectParameterPack);
+}
+
+QualType
+TemplateInstantiator::TransformTemplateTypeParmType(TypeLocBuilder &TLB,
+ TemplateTypeParmTypeLoc TL) {
+ const TemplateTypeParmType *T = TL.getTypePtr();
+ if (T->getDepth() < TemplateArgs.getNumLevels()) {
+ // Replace the template type parameter with its corresponding
+ // template argument.
+
+ // If the corresponding template argument is NULL or doesn't exist, it's
+ // because we are performing instantiation from explicitly-specified
+ // template arguments in a function template class, but there were some
+ // arguments left unspecified.
+ if (!TemplateArgs.hasTemplateArgument(T->getDepth(), T->getIndex())) {
+ TemplateTypeParmTypeLoc NewTL
+ = TLB.push<TemplateTypeParmTypeLoc>(TL.getType());
+ NewTL.setNameLoc(TL.getNameLoc());
+ return TL.getType();
+ }
+
+ TemplateArgument Arg = TemplateArgs(T->getDepth(), T->getIndex());
+
+ if (T->isParameterPack()) {
+ assert(Arg.getKind() == TemplateArgument::Pack &&
+ "Missing argument pack");
+
+ if (getSema().ArgumentPackSubstitutionIndex == -1) {
+ // We have the template argument pack, but we're not expanding the
+ // enclosing pack expansion yet. Just save the template argument
+ // pack for later substitution.
+ QualType Result
+ = getSema().Context.getSubstTemplateTypeParmPackType(T, Arg);
+ SubstTemplateTypeParmPackTypeLoc NewTL
+ = TLB.push<SubstTemplateTypeParmPackTypeLoc>(Result);
+ NewTL.setNameLoc(TL.getNameLoc());
+ return Result;
+ }
+
+ Arg = getPackSubstitutedTemplateArgument(getSema(), Arg);
+ }
+
+ assert(Arg.getKind() == TemplateArgument::Type &&
+ "Template argument kind mismatch");
+
+ QualType Replacement = Arg.getAsType();
+
+ // TODO: only do this uniquing once, at the start of instantiation.
+ QualType Result
+ = getSema().Context.getSubstTemplateTypeParmType(T, Replacement);
+ SubstTemplateTypeParmTypeLoc NewTL
+ = TLB.push<SubstTemplateTypeParmTypeLoc>(Result);
+ NewTL.setNameLoc(TL.getNameLoc());
+ return Result;
+ }
+
+ // The template type parameter comes from an inner template (e.g.,
+ // the template parameter list of a member template inside the
+ // template we are instantiating). Create a new template type
+ // parameter with the template "level" reduced by one.
+ TemplateTypeParmDecl *NewTTPDecl = nullptr;
+ if (TemplateTypeParmDecl *OldTTPDecl = T->getDecl())
+ NewTTPDecl = cast_or_null<TemplateTypeParmDecl>(
+ TransformDecl(TL.getNameLoc(), OldTTPDecl));
+
+ QualType Result
+ = getSema().Context.getTemplateTypeParmType(T->getDepth()
+ - TemplateArgs.getNumLevels(),
+ T->getIndex(),
+ T->isParameterPack(),
+ NewTTPDecl);
+ TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result);
+ NewTL.setNameLoc(TL.getNameLoc());
+ return Result;
+}
+
+QualType
+TemplateInstantiator::TransformSubstTemplateTypeParmPackType(
+ TypeLocBuilder &TLB,
+ SubstTemplateTypeParmPackTypeLoc TL) {
+ if (getSema().ArgumentPackSubstitutionIndex == -1) {
+ // We aren't expanding the parameter pack, so just return ourselves.
+ SubstTemplateTypeParmPackTypeLoc NewTL
+ = TLB.push<SubstTemplateTypeParmPackTypeLoc>(TL.getType());
+ NewTL.setNameLoc(TL.getNameLoc());
+ return TL.getType();
+ }
+
+ TemplateArgument Arg = TL.getTypePtr()->getArgumentPack();
+ Arg = getPackSubstitutedTemplateArgument(getSema(), Arg);
+ QualType Result = Arg.getAsType();
+
+ Result = getSema().Context.getSubstTemplateTypeParmType(
+ TL.getTypePtr()->getReplacedParameter(),
+ Result);
+ SubstTemplateTypeParmTypeLoc NewTL
+ = TLB.push<SubstTemplateTypeParmTypeLoc>(Result);
+ NewTL.setNameLoc(TL.getNameLoc());
+ return Result;
+}
+
+/// \brief Perform substitution on the type T with a given set of template
+/// arguments.
+///
+/// This routine substitutes the given template arguments into the
+/// type T and produces the instantiated type.
+///
+/// \param T the type into which the template arguments will be
+/// substituted. If this type is not dependent, it will be returned
+/// immediately.
+///
+/// \param Args the template arguments that will be
+/// substituted for the top-level template parameters within T.
+///
+/// \param Loc the location in the source code where this substitution
+/// is being performed. It will typically be the location of the
+/// declarator (if we're instantiating the type of some declaration)
+/// or the location of the type in the source code (if, e.g., we're
+/// instantiating the type of a cast expression).
+///
+/// \param Entity the name of the entity associated with a declaration
+/// being instantiated (if any). May be empty to indicate that there
+/// is no such entity (if, e.g., this is a type that occurs as part of
+/// a cast expression) or that the entity has no name (e.g., an
+/// unnamed function parameter).
+///
+/// \returns If the instantiation succeeds, the instantiated
+/// type. Otherwise, produces diagnostics and returns a NULL type.
+TypeSourceInfo *Sema::SubstType(TypeSourceInfo *T,
+ const MultiLevelTemplateArgumentList &Args,
+ SourceLocation Loc,
+ DeclarationName Entity) {
+ assert(!ActiveTemplateInstantiations.empty() &&
+ "Cannot perform an instantiation without some context on the "
+ "instantiation stack");
+
+ if (!T->getType()->isInstantiationDependentType() &&
+ !T->getType()->isVariablyModifiedType())
+ return T;
+
+ TemplateInstantiator Instantiator(*this, Args, Loc, Entity);
+ return Instantiator.TransformType(T);
+}
+
+TypeSourceInfo *Sema::SubstType(TypeLoc TL,
+ const MultiLevelTemplateArgumentList &Args,
+ SourceLocation Loc,
+ DeclarationName Entity) {
+ assert(!ActiveTemplateInstantiations.empty() &&
+ "Cannot perform an instantiation without some context on the "
+ "instantiation stack");
+
+ if (TL.getType().isNull())
+ return nullptr;
+
+ if (!TL.getType()->isInstantiationDependentType() &&
+ !TL.getType()->isVariablyModifiedType()) {
+ // FIXME: Make a copy of the TypeLoc data here, so that we can
+ // return a new TypeSourceInfo. Inefficient!
+ TypeLocBuilder TLB;
+ TLB.pushFullCopy(TL);
+ return TLB.getTypeSourceInfo(Context, TL.getType());
+ }
+
+ TemplateInstantiator Instantiator(*this, Args, Loc, Entity);
+ TypeLocBuilder TLB;
+ TLB.reserve(TL.getFullDataSize());
+ QualType Result = Instantiator.TransformType(TLB, TL);
+ if (Result.isNull())
+ return nullptr;
+
+ return TLB.getTypeSourceInfo(Context, Result);
+}
+
+/// Deprecated form of the above.
+QualType Sema::SubstType(QualType T,
+ const MultiLevelTemplateArgumentList &TemplateArgs,
+ SourceLocation Loc, DeclarationName Entity) {
+ assert(!ActiveTemplateInstantiations.empty() &&
+ "Cannot perform an instantiation without some context on the "
+ "instantiation stack");
+
+ // If T is not a dependent type or a variably-modified type, there
+ // is nothing to do.
+ if (!T->isInstantiationDependentType() && !T->isVariablyModifiedType())
+ return T;
+
+ TemplateInstantiator Instantiator(*this, TemplateArgs, Loc, Entity);
+ return Instantiator.TransformType(T);
+}
+
+static bool NeedsInstantiationAsFunctionType(TypeSourceInfo *T) {
+ if (T->getType()->isInstantiationDependentType() ||
+ T->getType()->isVariablyModifiedType())
+ return true;
+
+ TypeLoc TL = T->getTypeLoc().IgnoreParens();
+ if (!TL.getAs<FunctionProtoTypeLoc>())
+ return false;
+
+ FunctionProtoTypeLoc FP = TL.castAs<FunctionProtoTypeLoc>();
+ for (unsigned I = 0, E = FP.getNumParams(); I != E; ++I) {
+ ParmVarDecl *P = FP.getParam(I);
+
+ // This must be synthesized from a typedef.
+ if (!P) continue;
+
+ // The parameter's type as written might be dependent even if the
+ // decayed type was not dependent.
+ if (TypeSourceInfo *TSInfo = P->getTypeSourceInfo())
+ if (TSInfo->getType()->isInstantiationDependentType())
+ return true;
+
+ // TODO: currently we always rebuild expressions. When we
+ // properly get lazier about this, we should use the same
+ // logic to avoid rebuilding prototypes here.
+ if (P->hasDefaultArg())
+ return true;
+ }
+
+ return false;
+}
+
+/// A form of SubstType intended specifically for instantiating the
+/// type of a FunctionDecl. Its purpose is solely to force the
+/// instantiation of default-argument expressions and to avoid
+/// instantiating an exception-specification.
+TypeSourceInfo *Sema::SubstFunctionDeclType(TypeSourceInfo *T,
+ const MultiLevelTemplateArgumentList &Args,
+ SourceLocation Loc,
+ DeclarationName Entity,
+ CXXRecordDecl *ThisContext,
+ unsigned ThisTypeQuals) {
+ assert(!ActiveTemplateInstantiations.empty() &&
+ "Cannot perform an instantiation without some context on the "
+ "instantiation stack");
+
+ if (!NeedsInstantiationAsFunctionType(T))
+ return T;
+
+ TemplateInstantiator Instantiator(*this, Args, Loc, Entity);
+
+ TypeLocBuilder TLB;
+
+ TypeLoc TL = T->getTypeLoc();
+ TLB.reserve(TL.getFullDataSize());
+
+ QualType Result;
+
+ if (FunctionProtoTypeLoc Proto =
+ TL.IgnoreParens().getAs<FunctionProtoTypeLoc>()) {
+ // Instantiate the type, other than its exception specification. The
+ // exception specification is instantiated in InitFunctionInstantiation
+ // once we've built the FunctionDecl.
+ // FIXME: Set the exception specification to EST_Uninstantiated here,
+ // instead of rebuilding the function type again later.
+ Result = Instantiator.TransformFunctionProtoType(
+ TLB, Proto, ThisContext, ThisTypeQuals,
+ [](FunctionProtoType::ExceptionSpecInfo &ESI,
+ bool &Changed) { return false; });
+ } else {
+ Result = Instantiator.TransformType(TLB, TL);
+ }
+ if (Result.isNull())
+ return nullptr;
+
+ return TLB.getTypeSourceInfo(Context, Result);
+}
+
+void Sema::SubstExceptionSpec(FunctionDecl *New, const FunctionProtoType *Proto,
+ const MultiLevelTemplateArgumentList &Args) {
+ FunctionProtoType::ExceptionSpecInfo ESI =
+ Proto->getExtProtoInfo().ExceptionSpec;
+ assert(ESI.Type != EST_Uninstantiated);
+
+ TemplateInstantiator Instantiator(*this, Args, New->getLocation(),
+ New->getDeclName());
+
+ SmallVector<QualType, 4> ExceptionStorage;
+ bool Changed = false;
+ if (Instantiator.TransformExceptionSpec(
+ New->getTypeSourceInfo()->getTypeLoc().getLocEnd(), ESI,
+ ExceptionStorage, Changed))
+ // On error, recover by dropping the exception specification.
+ ESI.Type = EST_None;
+
+ UpdateExceptionSpec(New, ESI);
+}
+
+ParmVarDecl *Sema::SubstParmVarDecl(ParmVarDecl *OldParm,
+ const MultiLevelTemplateArgumentList &TemplateArgs,
+ int indexAdjustment,
+ Optional<unsigned> NumExpansions,
+ bool ExpectParameterPack) {
+ TypeSourceInfo *OldDI = OldParm->getTypeSourceInfo();
+ TypeSourceInfo *NewDI = nullptr;
+
+ TypeLoc OldTL = OldDI->getTypeLoc();
+ if (PackExpansionTypeLoc ExpansionTL = OldTL.getAs<PackExpansionTypeLoc>()) {
+
+ // We have a function parameter pack. Substitute into the pattern of the
+ // expansion.
+ NewDI = SubstType(ExpansionTL.getPatternLoc(), TemplateArgs,
+ OldParm->getLocation(), OldParm->getDeclName());
+ if (!NewDI)
+ return nullptr;
+
+ if (NewDI->getType()->containsUnexpandedParameterPack()) {
+ // We still have unexpanded parameter packs, which means that
+ // our function parameter is still a function parameter pack.
+ // Therefore, make its type a pack expansion type.
+ NewDI = CheckPackExpansion(NewDI, ExpansionTL.getEllipsisLoc(),
+ NumExpansions);
+ } else if (ExpectParameterPack) {
+ // We expected to get a parameter pack but didn't (because the type
+ // itself is not a pack expansion type), so complain. This can occur when
+ // the substitution goes through an alias template that "loses" the
+ // pack expansion.
+ Diag(OldParm->getLocation(),
+ diag::err_function_parameter_pack_without_parameter_packs)
+ << NewDI->getType();
+ return nullptr;
+ }
+ } else {
+ NewDI = SubstType(OldDI, TemplateArgs, OldParm->getLocation(),
+ OldParm->getDeclName());
+ }
+
+ if (!NewDI)
+ return nullptr;
+
+ if (NewDI->getType()->isVoidType()) {
+ Diag(OldParm->getLocation(), diag::err_param_with_void_type);
+ return nullptr;
+ }
+
+ ParmVarDecl *NewParm = CheckParameter(Context.getTranslationUnitDecl(),
+ OldParm->getInnerLocStart(),
+ OldParm->getLocation(),
+ OldParm->getIdentifier(),
+ NewDI->getType(), NewDI,
+ OldParm->getStorageClass());
+ if (!NewParm)
+ return nullptr;
+
+ // Mark the (new) default argument as uninstantiated (if any).
+ if (OldParm->hasUninstantiatedDefaultArg()) {
+ Expr *Arg = OldParm->getUninstantiatedDefaultArg();
+ NewParm->setUninstantiatedDefaultArg(Arg);
+ } else if (OldParm->hasUnparsedDefaultArg()) {
+ NewParm->setUnparsedDefaultArg();
+ UnparsedDefaultArgInstantiations[OldParm].push_back(NewParm);
+ } else if (Expr *Arg = OldParm->getDefaultArg())
+ // FIXME: if we non-lazily instantiated non-dependent default args for
+ // non-dependent parameter types we could remove a bunch of duplicate
+ // conversion warnings for such arguments.
+ NewParm->setUninstantiatedDefaultArg(Arg);
+
+ NewParm->setHasInheritedDefaultArg(OldParm->hasInheritedDefaultArg());
+
+ if (OldParm->isParameterPack() && !NewParm->isParameterPack()) {
+ // Add the new parameter to the instantiated parameter pack.
+ CurrentInstantiationScope->InstantiatedLocalPackArg(OldParm, NewParm);
+ } else {
+ // Introduce an Old -> New mapping
+ CurrentInstantiationScope->InstantiatedLocal(OldParm, NewParm);
+ }
+
+ // FIXME: OldParm may come from a FunctionProtoType, in which case CurContext
+ // can be anything, is this right ?
+ NewParm->setDeclContext(CurContext);
+
+ NewParm->setScopeInfo(OldParm->getFunctionScopeDepth(),
+ OldParm->getFunctionScopeIndex() + indexAdjustment);
+
+ InstantiateAttrs(TemplateArgs, OldParm, NewParm);
+
+ return NewParm;
+}
+
+/// \brief Substitute the given template arguments into the given set of
+/// parameters, producing the set of parameter types that would be generated
+/// from such a substitution.
+bool Sema::SubstParmTypes(SourceLocation Loc,
+ ParmVarDecl **Params, unsigned NumParams,
+ const MultiLevelTemplateArgumentList &TemplateArgs,
+ SmallVectorImpl<QualType> &ParamTypes,
+ SmallVectorImpl<ParmVarDecl *> *OutParams) {
+ assert(!ActiveTemplateInstantiations.empty() &&
+ "Cannot perform an instantiation without some context on the "
+ "instantiation stack");
+
+ TemplateInstantiator Instantiator(*this, TemplateArgs, Loc,
+ DeclarationName());
+ return Instantiator.TransformFunctionTypeParams(Loc, Params, NumParams,
+ nullptr, ParamTypes,
+ OutParams);
+}
+
+/// \brief Perform substitution on the base class specifiers of the
+/// given class template specialization.
+///
+/// Produces a diagnostic and returns true on error, returns false and
+/// attaches the instantiated base classes to the class template
+/// specialization if successful.
+bool
+Sema::SubstBaseSpecifiers(CXXRecordDecl *Instantiation,
+ CXXRecordDecl *Pattern,
+ const MultiLevelTemplateArgumentList &TemplateArgs) {
+ bool Invalid = false;
+ SmallVector<CXXBaseSpecifier*, 4> InstantiatedBases;
+ for (const auto &Base : Pattern->bases()) {
+ if (!Base.getType()->isDependentType()) {
+ if (const CXXRecordDecl *RD = Base.getType()->getAsCXXRecordDecl()) {
+ if (RD->isInvalidDecl())
+ Instantiation->setInvalidDecl();
+ }
+ InstantiatedBases.push_back(new (Context) CXXBaseSpecifier(Base));
+ continue;
+ }
+
+ SourceLocation EllipsisLoc;
+ TypeSourceInfo *BaseTypeLoc;
+ if (Base.isPackExpansion()) {
+ // This is a pack expansion. See whether we should expand it now, or
+ // wait until later.
+ SmallVector<UnexpandedParameterPack, 2> Unexpanded;
+ collectUnexpandedParameterPacks(Base.getTypeSourceInfo()->getTypeLoc(),
+ Unexpanded);
+ bool ShouldExpand = false;
+ bool RetainExpansion = false;
+ Optional<unsigned> NumExpansions;
+ if (CheckParameterPacksForExpansion(Base.getEllipsisLoc(),
+ Base.getSourceRange(),
+ Unexpanded,
+ TemplateArgs, ShouldExpand,
+ RetainExpansion,
+ NumExpansions)) {
+ Invalid = true;
+ continue;
+ }
+
+ // If we should expand this pack expansion now, do so.
+ if (ShouldExpand) {
+ for (unsigned I = 0; I != *NumExpansions; ++I) {
+ Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, I);
+
+ TypeSourceInfo *BaseTypeLoc = SubstType(Base.getTypeSourceInfo(),
+ TemplateArgs,
+ Base.getSourceRange().getBegin(),
+ DeclarationName());
+ if (!BaseTypeLoc) {
+ Invalid = true;
+ continue;
+ }
+
+ if (CXXBaseSpecifier *InstantiatedBase
+ = CheckBaseSpecifier(Instantiation,
+ Base.getSourceRange(),
+ Base.isVirtual(),
+ Base.getAccessSpecifierAsWritten(),
+ BaseTypeLoc,
+ SourceLocation()))
+ InstantiatedBases.push_back(InstantiatedBase);
+ else
+ Invalid = true;
+ }
+
+ continue;
+ }
+
+ // The resulting base specifier will (still) be a pack expansion.
+ EllipsisLoc = Base.getEllipsisLoc();
+ Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, -1);
+ BaseTypeLoc = SubstType(Base.getTypeSourceInfo(),
+ TemplateArgs,
+ Base.getSourceRange().getBegin(),
+ DeclarationName());
+ } else {
+ BaseTypeLoc = SubstType(Base.getTypeSourceInfo(),
+ TemplateArgs,
+ Base.getSourceRange().getBegin(),
+ DeclarationName());
+ }
+
+ if (!BaseTypeLoc) {
+ Invalid = true;
+ continue;
+ }
+
+ if (CXXBaseSpecifier *InstantiatedBase
+ = CheckBaseSpecifier(Instantiation,
+ Base.getSourceRange(),
+ Base.isVirtual(),
+ Base.getAccessSpecifierAsWritten(),
+ BaseTypeLoc,
+ EllipsisLoc))
+ InstantiatedBases.push_back(InstantiatedBase);
+ else
+ Invalid = true;
+ }
+
+ if (!Invalid &&
+ AttachBaseSpecifiers(Instantiation, InstantiatedBases.data(),
+ InstantiatedBases.size()))
+ Invalid = true;
+
+ return Invalid;
+}
+
+// Defined via #include from SemaTemplateInstantiateDecl.cpp
+namespace clang {
+ namespace sema {
+ Attr *instantiateTemplateAttribute(const Attr *At, ASTContext &C, Sema &S,
+ const MultiLevelTemplateArgumentList &TemplateArgs);
+ }
+}
+
+/// Determine whether we would be unable to instantiate this template (because
+/// it either has no definition, or is in the process of being instantiated).
+static bool DiagnoseUninstantiableTemplate(Sema &S,
+ SourceLocation PointOfInstantiation,
+ TagDecl *Instantiation,
+ bool InstantiatedFromMember,
+ TagDecl *Pattern,
+ TagDecl *PatternDef,
+ TemplateSpecializationKind TSK,
+ bool Complain = true) {
+ if (PatternDef && !PatternDef->isBeingDefined())
+ return false;
+
+ if (!Complain || (PatternDef && PatternDef->isInvalidDecl())) {
+ // Say nothing
+ } else if (PatternDef) {
+ assert(PatternDef->isBeingDefined());
+ S.Diag(PointOfInstantiation,
+ diag::err_template_instantiate_within_definition)
+ << (TSK != TSK_ImplicitInstantiation)
+ << S.Context.getTypeDeclType(Instantiation);
+ // Not much point in noting the template declaration here, since
+ // we're lexically inside it.
+ Instantiation->setInvalidDecl();
+ } else if (InstantiatedFromMember) {
+ S.Diag(PointOfInstantiation,
+ diag::err_implicit_instantiate_member_undefined)
+ << S.Context.getTypeDeclType(Instantiation);
+ S.Diag(Pattern->getLocation(), diag::note_member_declared_at);
+ } else {
+ S.Diag(PointOfInstantiation, diag::err_template_instantiate_undefined)
+ << (TSK != TSK_ImplicitInstantiation)
+ << S.Context.getTypeDeclType(Instantiation);
+ S.Diag(Pattern->getLocation(), diag::note_template_decl_here);
+ }
+
+ // In general, Instantiation isn't marked invalid to get more than one
+ // error for multiple undefined instantiations. But the code that does
+ // explicit declaration -> explicit definition conversion can't handle
+ // invalid declarations, so mark as invalid in that case.
+ if (TSK == TSK_ExplicitInstantiationDeclaration)
+ Instantiation->setInvalidDecl();
+ return true;
+}
+
+/// \brief Instantiate the definition of a class from a given pattern.
+///
+/// \param PointOfInstantiation The point of instantiation within the
+/// source code.
+///
+/// \param Instantiation is the declaration whose definition is being
+/// instantiated. This will be either a class template specialization
+/// or a member class of a class template specialization.
+///
+/// \param Pattern is the pattern from which the instantiation
+/// occurs. This will be either the declaration of a class template or
+/// the declaration of a member class of a class template.
+///
+/// \param TemplateArgs The template arguments to be substituted into
+/// the pattern.
+///
+/// \param TSK the kind of implicit or explicit instantiation to perform.
+///
+/// \param Complain whether to complain if the class cannot be instantiated due
+/// to the lack of a definition.
+///
+/// \returns true if an error occurred, false otherwise.
+bool
+Sema::InstantiateClass(SourceLocation PointOfInstantiation,
+ CXXRecordDecl *Instantiation, CXXRecordDecl *Pattern,
+ const MultiLevelTemplateArgumentList &TemplateArgs,
+ TemplateSpecializationKind TSK,
+ bool Complain) {
+ CXXRecordDecl *PatternDef
+ = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
+ if (DiagnoseUninstantiableTemplate(*this, PointOfInstantiation, Instantiation,
+ Instantiation->getInstantiatedFromMemberClass(),
+ Pattern, PatternDef, TSK, Complain))
+ return true;
+ Pattern = PatternDef;
+
+ // \brief Record the point of instantiation.
+ if (MemberSpecializationInfo *MSInfo
+ = Instantiation->getMemberSpecializationInfo()) {
+ MSInfo->setTemplateSpecializationKind(TSK);
+ MSInfo->setPointOfInstantiation(PointOfInstantiation);
+ } else if (ClassTemplateSpecializationDecl *Spec
+ = dyn_cast<ClassTemplateSpecializationDecl>(Instantiation)) {
+ Spec->setTemplateSpecializationKind(TSK);
+ Spec->setPointOfInstantiation(PointOfInstantiation);
+ }
+
+ InstantiatingTemplate Inst(*this, PointOfInstantiation, Instantiation);
+ if (Inst.isInvalid())
+ return true;
+
+ // Enter the scope of this instantiation. We don't use
+ // PushDeclContext because we don't have a scope.
+ ContextRAII SavedContext(*this, Instantiation);
+ EnterExpressionEvaluationContext EvalContext(*this,
+ Sema::PotentiallyEvaluated);
+
+ // If this is an instantiation of a local class, merge this local
+ // instantiation scope with the enclosing scope. Otherwise, every
+ // instantiation of a class has its own local instantiation scope.
+ bool MergeWithParentScope = !Instantiation->isDefinedOutsideFunctionOrMethod();
+ LocalInstantiationScope Scope(*this, MergeWithParentScope);
+
+ // Pull attributes from the pattern onto the instantiation.
+ InstantiateAttrs(TemplateArgs, Pattern, Instantiation);
+
+ // Start the definition of this instantiation.
+ Instantiation->startDefinition();
+
+ // The instantiation is visible here, even if it was first declared in an
+ // unimported module.
+ Instantiation->setHidden(false);
+
+ // FIXME: This loses the as-written tag kind for an explicit instantiation.
+ Instantiation->setTagKind(Pattern->getTagKind());
+
+ // Do substitution on the base class specifiers.
+ if (SubstBaseSpecifiers(Instantiation, Pattern, TemplateArgs))
+ Instantiation->setInvalidDecl();
+
+ TemplateDeclInstantiator Instantiator(*this, Instantiation, TemplateArgs);
+ SmallVector<Decl*, 4> Fields;
+ // Delay instantiation of late parsed attributes.
+ LateInstantiatedAttrVec LateAttrs;
+ Instantiator.enableLateAttributeInstantiation(&LateAttrs);
+
+ for (auto *Member : Pattern->decls()) {
+ // Don't instantiate members not belonging in this semantic context.
+ // e.g. for:
+ // @code
+ // template <int i> class A {
+ // class B *g;
+ // };
+ // @endcode
+ // 'class B' has the template as lexical context but semantically it is
+ // introduced in namespace scope.
+ if (Member->getDeclContext() != Pattern)
+ continue;
+
+ if (Member->isInvalidDecl()) {
+ Instantiation->setInvalidDecl();
+ continue;
+ }
+
+ Decl *NewMember = Instantiator.Visit(Member);
+ if (NewMember) {
+ if (FieldDecl *Field = dyn_cast<FieldDecl>(NewMember)) {
+ Fields.push_back(Field);
+ } else if (EnumDecl *Enum = dyn_cast<EnumDecl>(NewMember)) {
+ // C++11 [temp.inst]p1: The implicit instantiation of a class template
+ // specialization causes the implicit instantiation of the definitions
+ // of unscoped member enumerations.
+ // Record a point of instantiation for this implicit instantiation.
+ if (TSK == TSK_ImplicitInstantiation && !Enum->isScoped() &&
+ Enum->isCompleteDefinition()) {
+ MemberSpecializationInfo *MSInfo =Enum->getMemberSpecializationInfo();
+ assert(MSInfo && "no spec info for member enum specialization");
+ MSInfo->setTemplateSpecializationKind(TSK_ImplicitInstantiation);
+ MSInfo->setPointOfInstantiation(PointOfInstantiation);
+ }
+ } else if (StaticAssertDecl *SA = dyn_cast<StaticAssertDecl>(NewMember)) {
+ if (SA->isFailed()) {
+ // A static_assert failed. Bail out; instantiating this
+ // class is probably not meaningful.
+ Instantiation->setInvalidDecl();
+ break;
+ }
+ }
+
+ if (NewMember->isInvalidDecl())
+ Instantiation->setInvalidDecl();
+ } else {
+ // FIXME: Eventually, a NULL return will mean that one of the
+ // instantiations was a semantic disaster, and we'll want to mark the
+ // declaration invalid.
+ // For now, we expect to skip some members that we can't yet handle.
+ }
+ }
+
+ // Finish checking fields.
+ ActOnFields(nullptr, Instantiation->getLocation(), Instantiation, Fields,
+ SourceLocation(), SourceLocation(), nullptr);
+ CheckCompletedCXXClass(Instantiation);
+
+ // Default arguments are parsed, if not instantiated. We can go instantiate
+ // default arg exprs for default constructors if necessary now.
+ ActOnFinishCXXMemberDefaultArgs(Instantiation);
+
+ // Instantiate late parsed attributes, and attach them to their decls.
+ // See Sema::InstantiateAttrs
+ for (LateInstantiatedAttrVec::iterator I = LateAttrs.begin(),
+ E = LateAttrs.end(); I != E; ++I) {
+ assert(CurrentInstantiationScope == Instantiator.getStartingScope());
+ CurrentInstantiationScope = I->Scope;
+
+ // Allow 'this' within late-parsed attributes.
+ NamedDecl *ND = dyn_cast<NamedDecl>(I->NewDecl);
+ CXXRecordDecl *ThisContext =
+ dyn_cast_or_null<CXXRecordDecl>(ND->getDeclContext());
+ CXXThisScopeRAII ThisScope(*this, ThisContext, /*TypeQuals*/0,
+ ND && ND->isCXXInstanceMember());
+
+ Attr *NewAttr =
+ instantiateTemplateAttribute(I->TmplAttr, Context, *this, TemplateArgs);
+ I->NewDecl->addAttr(NewAttr);
+ LocalInstantiationScope::deleteScopes(I->Scope,
+ Instantiator.getStartingScope());
+ }
+ Instantiator.disableLateAttributeInstantiation();
+ LateAttrs.clear();
+
+ ActOnFinishDelayedMemberInitializers(Instantiation);
+
+ // FIXME: We should do something similar for explicit instantiations so they
+ // end up in the right module.
+ if (TSK == TSK_ImplicitInstantiation) {
+ Instantiation->setLocation(Pattern->getLocation());
+ Instantiation->setLocStart(Pattern->getInnerLocStart());
+ Instantiation->setRBraceLoc(Pattern->getRBraceLoc());
+ }
+
+ if (!Instantiation->isInvalidDecl()) {
+ // Perform any dependent diagnostics from the pattern.
+ PerformDependentDiagnostics(Pattern, TemplateArgs);
+
+ // Instantiate any out-of-line class template partial
+ // specializations now.
+ for (TemplateDeclInstantiator::delayed_partial_spec_iterator
+ P = Instantiator.delayed_partial_spec_begin(),
+ PEnd = Instantiator.delayed_partial_spec_end();
+ P != PEnd; ++P) {
+ if (!Instantiator.InstantiateClassTemplatePartialSpecialization(
+ P->first, P->second)) {
+ Instantiation->setInvalidDecl();
+ break;
+ }
+ }
+
+ // Instantiate any out-of-line variable template partial
+ // specializations now.
+ for (TemplateDeclInstantiator::delayed_var_partial_spec_iterator
+ P = Instantiator.delayed_var_partial_spec_begin(),
+ PEnd = Instantiator.delayed_var_partial_spec_end();
+ P != PEnd; ++P) {
+ if (!Instantiator.InstantiateVarTemplatePartialSpecialization(
+ P->first, P->second)) {
+ Instantiation->setInvalidDecl();
+ break;
+ }
+ }
+ }
+
+ // Exit the scope of this instantiation.
+ SavedContext.pop();
+
+ if (!Instantiation->isInvalidDecl()) {
+ Consumer.HandleTagDeclDefinition(Instantiation);
+
+ // Always emit the vtable for an explicit instantiation definition
+ // of a polymorphic class template specialization.
+ if (TSK == TSK_ExplicitInstantiationDefinition)
+ MarkVTableUsed(PointOfInstantiation, Instantiation, true);
+ }
+
+ return Instantiation->isInvalidDecl();
+}
+
+/// \brief Instantiate the definition of an enum from a given pattern.
+///
+/// \param PointOfInstantiation The point of instantiation within the
+/// source code.
+/// \param Instantiation is the declaration whose definition is being
+/// instantiated. This will be a member enumeration of a class
+/// temploid specialization, or a local enumeration within a
+/// function temploid specialization.
+/// \param Pattern The templated declaration from which the instantiation
+/// occurs.
+/// \param TemplateArgs The template arguments to be substituted into
+/// the pattern.
+/// \param TSK The kind of implicit or explicit instantiation to perform.
+///
+/// \return \c true if an error occurred, \c false otherwise.
+bool Sema::InstantiateEnum(SourceLocation PointOfInstantiation,
+ EnumDecl *Instantiation, EnumDecl *Pattern,
+ const MultiLevelTemplateArgumentList &TemplateArgs,
+ TemplateSpecializationKind TSK) {
+ EnumDecl *PatternDef = Pattern->getDefinition();
+ if (DiagnoseUninstantiableTemplate(*this, PointOfInstantiation, Instantiation,
+ Instantiation->getInstantiatedFromMemberEnum(),
+ Pattern, PatternDef, TSK,/*Complain*/true))
+ return true;
+ Pattern = PatternDef;
+
+ // Record the point of instantiation.
+ if (MemberSpecializationInfo *MSInfo
+ = Instantiation->getMemberSpecializationInfo()) {
+ MSInfo->setTemplateSpecializationKind(TSK);
+ MSInfo->setPointOfInstantiation(PointOfInstantiation);
+ }
+
+ InstantiatingTemplate Inst(*this, PointOfInstantiation, Instantiation);
+ if (Inst.isInvalid())
+ return true;
+
+ // The instantiation is visible here, even if it was first declared in an
+ // unimported module.
+ Instantiation->setHidden(false);
+
+ // Enter the scope of this instantiation. We don't use
+ // PushDeclContext because we don't have a scope.
+ ContextRAII SavedContext(*this, Instantiation);
+ EnterExpressionEvaluationContext EvalContext(*this,
+ Sema::PotentiallyEvaluated);
+
+ LocalInstantiationScope Scope(*this, /*MergeWithParentScope*/true);
+
+ // Pull attributes from the pattern onto the instantiation.
+ InstantiateAttrs(TemplateArgs, Pattern, Instantiation);
+
+ TemplateDeclInstantiator Instantiator(*this, Instantiation, TemplateArgs);
+ Instantiator.InstantiateEnumDefinition(Instantiation, Pattern);
+
+ // Exit the scope of this instantiation.
+ SavedContext.pop();
+
+ return Instantiation->isInvalidDecl();
+}
+
+
+/// \brief Instantiate the definition of a field from the given pattern.
+///
+/// \param PointOfInstantiation The point of instantiation within the
+/// source code.
+/// \param Instantiation is the declaration whose definition is being
+/// instantiated. This will be a class of a class temploid
+/// specialization, or a local enumeration within a function temploid
+/// specialization.
+/// \param Pattern The templated declaration from which the instantiation
+/// occurs.
+/// \param TemplateArgs The template arguments to be substituted into
+/// the pattern.
+///
+/// \return \c true if an error occurred, \c false otherwise.
+bool Sema::InstantiateInClassInitializer(
+ SourceLocation PointOfInstantiation, FieldDecl *Instantiation,
+ FieldDecl *Pattern, const MultiLevelTemplateArgumentList &TemplateArgs) {
+ // If there is no initializer, we don't need to do anything.
+ if (!Pattern->hasInClassInitializer())
+ return false;
+
+ assert(Instantiation->getInClassInitStyle() ==
+ Pattern->getInClassInitStyle() &&
+ "pattern and instantiation disagree about init style");
+
+ // Error out if we haven't parsed the initializer of the pattern yet because
+ // we are waiting for the closing brace of the outer class.
+ Expr *OldInit = Pattern->getInClassInitializer();
+ if (!OldInit) {
+ RecordDecl *PatternRD = Pattern->getParent();
+ RecordDecl *OutermostClass = PatternRD->getOuterLexicalRecordContext();
+ if (OutermostClass == PatternRD) {
+ Diag(Pattern->getLocEnd(), diag::err_in_class_initializer_not_yet_parsed)
+ << PatternRD << Pattern;
+ } else {
+ Diag(Pattern->getLocEnd(),
+ diag::err_in_class_initializer_not_yet_parsed_outer_class)
+ << PatternRD << OutermostClass << Pattern;
+ }
+ Instantiation->setInvalidDecl();
+ return true;
+ }
+
+ InstantiatingTemplate Inst(*this, PointOfInstantiation, Instantiation);
+ if (Inst.isInvalid())
+ return true;
+
+ // Enter the scope of this instantiation. We don't use PushDeclContext because
+ // we don't have a scope.
+ ContextRAII SavedContext(*this, Instantiation->getParent());
+ EnterExpressionEvaluationContext EvalContext(*this,
+ Sema::PotentiallyEvaluated);
+
+ LocalInstantiationScope Scope(*this, true);
+
+ // Instantiate the initializer.
+ ActOnStartCXXInClassMemberInitializer();
+ CXXThisScopeRAII ThisScope(*this, Instantiation->getParent(), /*TypeQuals=*/0);
+
+ ExprResult NewInit = SubstInitializer(OldInit, TemplateArgs,
+ /*CXXDirectInit=*/false);
+ Expr *Init = NewInit.get();
+ assert((!Init || !isa<ParenListExpr>(Init)) && "call-style init in class");
+ ActOnFinishCXXInClassMemberInitializer(
+ Instantiation, Init ? Init->getLocStart() : SourceLocation(), Init);
+
+ // Exit the scope of this instantiation.
+ SavedContext.pop();
+
+ // Return true if the in-class initializer is still missing.
+ return !Instantiation->getInClassInitializer();
+}
+
+namespace {
+ /// \brief A partial specialization whose template arguments have matched
+ /// a given template-id.
+ struct PartialSpecMatchResult {
+ ClassTemplatePartialSpecializationDecl *Partial;
+ TemplateArgumentList *Args;
+ };
+}
+
+bool Sema::InstantiateClassTemplateSpecialization(
+ SourceLocation PointOfInstantiation,
+ ClassTemplateSpecializationDecl *ClassTemplateSpec,
+ TemplateSpecializationKind TSK, bool Complain) {
+ // Perform the actual instantiation on the canonical declaration.
+ ClassTemplateSpec = cast<ClassTemplateSpecializationDecl>(
+ ClassTemplateSpec->getCanonicalDecl());
+
+ // Check whether we have already instantiated or specialized this class
+ // template specialization.
+ if (ClassTemplateSpec->getSpecializationKind() != TSK_Undeclared) {
+ if (ClassTemplateSpec->getSpecializationKind() ==
+ TSK_ExplicitInstantiationDeclaration &&
+ TSK == TSK_ExplicitInstantiationDefinition) {
+ // An explicit instantiation definition follows an explicit instantiation
+ // declaration (C++0x [temp.explicit]p10); go ahead and perform the
+ // explicit instantiation.
+ ClassTemplateSpec->setSpecializationKind(TSK);
+
+ // If this is an explicit instantiation definition, mark the
+ // vtable as used.
+ if (TSK == TSK_ExplicitInstantiationDefinition &&
+ !ClassTemplateSpec->isInvalidDecl())
+ MarkVTableUsed(PointOfInstantiation, ClassTemplateSpec, true);
+
+ return false;
+ }
+
+ // We can only instantiate something that hasn't already been
+ // instantiated or specialized. Fail without any diagnostics: our
+ // caller will provide an error message.
+ return true;
+ }
+
+ if (ClassTemplateSpec->isInvalidDecl())
+ return true;
+
+ ClassTemplateDecl *Template = ClassTemplateSpec->getSpecializedTemplate();
+ CXXRecordDecl *Pattern = nullptr;
+
+ // C++ [temp.class.spec.match]p1:
+ // When a class template is used in a context that requires an
+ // instantiation of the class, it is necessary to determine
+ // whether the instantiation is to be generated using the primary
+ // template or one of the partial specializations. This is done by
+ // matching the template arguments of the class template
+ // specialization with the template argument lists of the partial
+ // specializations.
+ typedef PartialSpecMatchResult MatchResult;
+ SmallVector<MatchResult, 4> Matched;
+ SmallVector<ClassTemplatePartialSpecializationDecl *, 4> PartialSpecs;
+ Template->getPartialSpecializations(PartialSpecs);
+ TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation);
+ for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
+ ClassTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
+ TemplateDeductionInfo Info(FailedCandidates.getLocation());
+ if (TemplateDeductionResult Result
+ = DeduceTemplateArguments(Partial,
+ ClassTemplateSpec->getTemplateArgs(),
+ Info)) {
+ // Store the failed-deduction information for use in diagnostics, later.
+ // TODO: Actually use the failed-deduction info?
+ FailedCandidates.addCandidate()
+ .set(Partial, MakeDeductionFailureInfo(Context, Result, Info));
+ (void)Result;
+ } else {
+ Matched.push_back(PartialSpecMatchResult());
+ Matched.back().Partial = Partial;
+ Matched.back().Args = Info.take();
+ }
+ }
+
+ // If we're dealing with a member template where the template parameters
+ // have been instantiated, this provides the original template parameters
+ // from which the member template's parameters were instantiated.
+
+ if (Matched.size() >= 1) {
+ SmallVectorImpl<MatchResult>::iterator Best = Matched.begin();
+ if (Matched.size() == 1) {
+ // -- If exactly one matching specialization is found, the
+ // instantiation is generated from that specialization.
+ // We don't need to do anything for this.
+ } else {
+ // -- If more than one matching specialization is found, the
+ // partial order rules (14.5.4.2) are used to determine
+ // whether one of the specializations is more specialized
+ // than the others. If none of the specializations is more
+ // specialized than all of the other matching
+ // specializations, then the use of the class template is
+ // ambiguous and the program is ill-formed.
+ for (SmallVectorImpl<MatchResult>::iterator P = Best + 1,
+ PEnd = Matched.end();
+ P != PEnd; ++P) {
+ if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
+ PointOfInstantiation)
+ == P->Partial)
+ Best = P;
+ }
+
+ // Determine if the best partial specialization is more specialized than
+ // the others.
+ bool Ambiguous = false;
+ for (SmallVectorImpl<MatchResult>::iterator P = Matched.begin(),
+ PEnd = Matched.end();
+ P != PEnd; ++P) {
+ if (P != Best &&
+ getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
+ PointOfInstantiation)
+ != Best->Partial) {
+ Ambiguous = true;
+ break;
+ }
+ }
+
+ if (Ambiguous) {
+ // Partial ordering did not produce a clear winner. Complain.
+ ClassTemplateSpec->setInvalidDecl();
+ Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
+ << ClassTemplateSpec;
+
+ // Print the matching partial specializations.
+ for (SmallVectorImpl<MatchResult>::iterator P = Matched.begin(),
+ PEnd = Matched.end();
+ P != PEnd; ++P)
+ Diag(P->Partial->getLocation(), diag::note_partial_spec_match)
+ << getTemplateArgumentBindingsText(
+ P->Partial->getTemplateParameters(),
+ *P->Args);
+
+ return true;
+ }
+ }
+
+ // Instantiate using the best class template partial specialization.
+ ClassTemplatePartialSpecializationDecl *OrigPartialSpec = Best->Partial;
+ while (OrigPartialSpec->getInstantiatedFromMember()) {
+ // If we've found an explicit specialization of this class template,
+ // stop here and use that as the pattern.
+ if (OrigPartialSpec->isMemberSpecialization())
+ break;
+
+ OrigPartialSpec = OrigPartialSpec->getInstantiatedFromMember();
+ }
+
+ Pattern = OrigPartialSpec;
+ ClassTemplateSpec->setInstantiationOf(Best->Partial, Best->Args);
+ } else {
+ // -- If no matches are found, the instantiation is generated
+ // from the primary template.
+ ClassTemplateDecl *OrigTemplate = Template;
+ while (OrigTemplate->getInstantiatedFromMemberTemplate()) {
+ // If we've found an explicit specialization of this class template,
+ // stop here and use that as the pattern.
+ if (OrigTemplate->isMemberSpecialization())
+ break;
+
+ OrigTemplate = OrigTemplate->getInstantiatedFromMemberTemplate();
+ }
+
+ Pattern = OrigTemplate->getTemplatedDecl();
+ }
+
+ bool Result = InstantiateClass(PointOfInstantiation, ClassTemplateSpec,
+ Pattern,
+ getTemplateInstantiationArgs(ClassTemplateSpec),
+ TSK,
+ Complain);
+
+ return Result;
+}
+
+/// \brief Instantiates the definitions of all of the member
+/// of the given class, which is an instantiation of a class template
+/// or a member class of a template.
+void
+Sema::InstantiateClassMembers(SourceLocation PointOfInstantiation,
+ CXXRecordDecl *Instantiation,
+ const MultiLevelTemplateArgumentList &TemplateArgs,
+ TemplateSpecializationKind TSK) {
+ // FIXME: We need to notify the ASTMutationListener that we did all of these
+ // things, in case we have an explicit instantiation definition in a PCM, a
+ // module, or preamble, and the declaration is in an imported AST.
+ assert(
+ (TSK == TSK_ExplicitInstantiationDefinition ||
+ TSK == TSK_ExplicitInstantiationDeclaration ||
+ (TSK == TSK_ImplicitInstantiation && Instantiation->isLocalClass())) &&
+ "Unexpected template specialization kind!");
+ for (auto *D : Instantiation->decls()) {
+ bool SuppressNew = false;
+ if (auto *Function = dyn_cast<FunctionDecl>(D)) {
+ if (FunctionDecl *Pattern
+ = Function->getInstantiatedFromMemberFunction()) {
+ MemberSpecializationInfo *MSInfo
+ = Function->getMemberSpecializationInfo();
+ assert(MSInfo && "No member specialization information?");
+ if (MSInfo->getTemplateSpecializationKind()
+ == TSK_ExplicitSpecialization)
+ continue;
+
+ if (CheckSpecializationInstantiationRedecl(PointOfInstantiation, TSK,
+ Function,
+ MSInfo->getTemplateSpecializationKind(),
+ MSInfo->getPointOfInstantiation(),
+ SuppressNew) ||
+ SuppressNew)
+ continue;
+
+ // C++11 [temp.explicit]p8:
+ // An explicit instantiation definition that names a class template
+ // specialization explicitly instantiates the class template
+ // specialization and is only an explicit instantiation definition
+ // of members whose definition is visible at the point of
+ // instantiation.
+ if (TSK == TSK_ExplicitInstantiationDefinition && !Pattern->isDefined())
+ continue;
+
+ Function->setTemplateSpecializationKind(TSK, PointOfInstantiation);
+
+ if (Function->isDefined()) {
+ // Let the ASTConsumer know that this function has been explicitly
+ // instantiated now, and its linkage might have changed.
+ Consumer.HandleTopLevelDecl(DeclGroupRef(Function));
+ } else if (TSK == TSK_ExplicitInstantiationDefinition) {
+ InstantiateFunctionDefinition(PointOfInstantiation, Function);
+ } else if (TSK == TSK_ImplicitInstantiation) {
+ PendingLocalImplicitInstantiations.push_back(
+ std::make_pair(Function, PointOfInstantiation));
+ }
+ }
+ } else if (auto *Var = dyn_cast<VarDecl>(D)) {
+ if (isa<VarTemplateSpecializationDecl>(Var))
+ continue;
+
+ if (Var->isStaticDataMember()) {
+ MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
+ assert(MSInfo && "No member specialization information?");
+ if (MSInfo->getTemplateSpecializationKind()
+ == TSK_ExplicitSpecialization)
+ continue;
+
+ if (CheckSpecializationInstantiationRedecl(PointOfInstantiation, TSK,
+ Var,
+ MSInfo->getTemplateSpecializationKind(),
+ MSInfo->getPointOfInstantiation(),
+ SuppressNew) ||
+ SuppressNew)
+ continue;
+
+ if (TSK == TSK_ExplicitInstantiationDefinition) {
+ // C++0x [temp.explicit]p8:
+ // An explicit instantiation definition that names a class template
+ // specialization explicitly instantiates the class template
+ // specialization and is only an explicit instantiation definition
+ // of members whose definition is visible at the point of
+ // instantiation.
+ if (!Var->getInstantiatedFromStaticDataMember()
+ ->getOutOfLineDefinition())
+ continue;
+
+ Var->setTemplateSpecializationKind(TSK, PointOfInstantiation);
+ InstantiateStaticDataMemberDefinition(PointOfInstantiation, Var);
+ } else {
+ Var->setTemplateSpecializationKind(TSK, PointOfInstantiation);
+ }
+ }
+ } else if (auto *Record = dyn_cast<CXXRecordDecl>(D)) {
+ // Always skip the injected-class-name, along with any
+ // redeclarations of nested classes, since both would cause us
+ // to try to instantiate the members of a class twice.
+ // Skip closure types; they'll get instantiated when we instantiate
+ // the corresponding lambda-expression.
+ if (Record->isInjectedClassName() || Record->getPreviousDecl() ||
+ Record->isLambda())
+ continue;
+
+ MemberSpecializationInfo *MSInfo = Record->getMemberSpecializationInfo();
+ assert(MSInfo && "No member specialization information?");
+
+ if (MSInfo->getTemplateSpecializationKind()
+ == TSK_ExplicitSpecialization)
+ continue;
+
+ if (CheckSpecializationInstantiationRedecl(PointOfInstantiation, TSK,
+ Record,
+ MSInfo->getTemplateSpecializationKind(),
+ MSInfo->getPointOfInstantiation(),
+ SuppressNew) ||
+ SuppressNew)
+ continue;
+
+ CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
+ assert(Pattern && "Missing instantiated-from-template information");
+
+ if (!Record->getDefinition()) {
+ if (!Pattern->getDefinition()) {
+ // C++0x [temp.explicit]p8:
+ // An explicit instantiation definition that names a class template
+ // specialization explicitly instantiates the class template
+ // specialization and is only an explicit instantiation definition
+ // of members whose definition is visible at the point of
+ // instantiation.
+ if (TSK == TSK_ExplicitInstantiationDeclaration) {
+ MSInfo->setTemplateSpecializationKind(TSK);
+ MSInfo->setPointOfInstantiation(PointOfInstantiation);
+ }
+
+ continue;
+ }
+
+ InstantiateClass(PointOfInstantiation, Record, Pattern,
+ TemplateArgs,
+ TSK);
+ } else {
+ if (TSK == TSK_ExplicitInstantiationDefinition &&
+ Record->getTemplateSpecializationKind() ==
+ TSK_ExplicitInstantiationDeclaration) {
+ Record->setTemplateSpecializationKind(TSK);
+ MarkVTableUsed(PointOfInstantiation, Record, true);
+ }
+ }
+
+ Pattern = cast_or_null<CXXRecordDecl>(Record->getDefinition());
+ if (Pattern)
+ InstantiateClassMembers(PointOfInstantiation, Pattern, TemplateArgs,
+ TSK);
+ } else if (auto *Enum = dyn_cast<EnumDecl>(D)) {
+ MemberSpecializationInfo *MSInfo = Enum->getMemberSpecializationInfo();
+ assert(MSInfo && "No member specialization information?");
+
+ if (MSInfo->getTemplateSpecializationKind()
+ == TSK_ExplicitSpecialization)
+ continue;
+
+ if (CheckSpecializationInstantiationRedecl(
+ PointOfInstantiation, TSK, Enum,
+ MSInfo->getTemplateSpecializationKind(),
+ MSInfo->getPointOfInstantiation(), SuppressNew) ||
+ SuppressNew)
+ continue;
+
+ if (Enum->getDefinition())
+ continue;
+
+ EnumDecl *Pattern = Enum->getInstantiatedFromMemberEnum();
+ assert(Pattern && "Missing instantiated-from-template information");
+
+ if (TSK == TSK_ExplicitInstantiationDefinition) {
+ if (!Pattern->getDefinition())
+ continue;
+
+ InstantiateEnum(PointOfInstantiation, Enum, Pattern, TemplateArgs, TSK);
+ } else {
+ MSInfo->setTemplateSpecializationKind(TSK);
+ MSInfo->setPointOfInstantiation(PointOfInstantiation);
+ }
+ } else if (auto *Field = dyn_cast<FieldDecl>(D)) {
+ // No need to instantiate in-class initializers during explicit
+ // instantiation.
+ if (Field->hasInClassInitializer() && TSK == TSK_ImplicitInstantiation) {
+ CXXRecordDecl *ClassPattern =
+ Instantiation->getTemplateInstantiationPattern();
+ DeclContext::lookup_result Lookup =
+ ClassPattern->lookup(Field->getDeclName());
+ assert(Lookup.size() == 1);
+ FieldDecl *Pattern = cast<FieldDecl>(Lookup[0]);
+ InstantiateInClassInitializer(PointOfInstantiation, Field, Pattern,
+ TemplateArgs);
+ }
+ }
+ }
+}
+
+/// \brief Instantiate the definitions of all of the members of the
+/// given class template specialization, which was named as part of an
+/// explicit instantiation.
+void
+Sema::InstantiateClassTemplateSpecializationMembers(
+ SourceLocation PointOfInstantiation,
+ ClassTemplateSpecializationDecl *ClassTemplateSpec,
+ TemplateSpecializationKind TSK) {
+ // C++0x [temp.explicit]p7:
+ // An explicit instantiation that names a class template
+ // specialization is an explicit instantion of the same kind
+ // (declaration or definition) of each of its members (not
+ // including members inherited from base classes) that has not
+ // been previously explicitly specialized in the translation unit
+ // containing the explicit instantiation, except as described
+ // below.
+ InstantiateClassMembers(PointOfInstantiation, ClassTemplateSpec,
+ getTemplateInstantiationArgs(ClassTemplateSpec),
+ TSK);
+}
+
+StmtResult
+Sema::SubstStmt(Stmt *S, const MultiLevelTemplateArgumentList &TemplateArgs) {
+ if (!S)
+ return S;
+
+ TemplateInstantiator Instantiator(*this, TemplateArgs,
+ SourceLocation(),
+ DeclarationName());
+ return Instantiator.TransformStmt(S);
+}
+
+ExprResult
+Sema::SubstExpr(Expr *E, const MultiLevelTemplateArgumentList &TemplateArgs) {
+ if (!E)
+ return E;
+
+ TemplateInstantiator Instantiator(*this, TemplateArgs,
+ SourceLocation(),
+ DeclarationName());
+ return Instantiator.TransformExpr(E);
+}
+
+ExprResult Sema::SubstInitializer(Expr *Init,
+ const MultiLevelTemplateArgumentList &TemplateArgs,
+ bool CXXDirectInit) {
+ TemplateInstantiator Instantiator(*this, TemplateArgs,
+ SourceLocation(),
+ DeclarationName());
+ return Instantiator.TransformInitializer(Init, CXXDirectInit);
+}
+
+bool Sema::SubstExprs(Expr **Exprs, unsigned NumExprs, bool IsCall,
+ const MultiLevelTemplateArgumentList &TemplateArgs,
+ SmallVectorImpl<Expr *> &Outputs) {
+ if (NumExprs == 0)
+ return false;
+
+ TemplateInstantiator Instantiator(*this, TemplateArgs,
+ SourceLocation(),
+ DeclarationName());
+ return Instantiator.TransformExprs(Exprs, NumExprs, IsCall, Outputs);
+}
+
+NestedNameSpecifierLoc
+Sema::SubstNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS,
+ const MultiLevelTemplateArgumentList &TemplateArgs) {
+ if (!NNS)
+ return NestedNameSpecifierLoc();
+
+ TemplateInstantiator Instantiator(*this, TemplateArgs, NNS.getBeginLoc(),
+ DeclarationName());
+ return Instantiator.TransformNestedNameSpecifierLoc(NNS);
+}
+
+/// \brief Do template substitution on declaration name info.
+DeclarationNameInfo
+Sema::SubstDeclarationNameInfo(const DeclarationNameInfo &NameInfo,
+ const MultiLevelTemplateArgumentList &TemplateArgs) {
+ TemplateInstantiator Instantiator(*this, TemplateArgs, NameInfo.getLoc(),
+ NameInfo.getName());
+ return Instantiator.TransformDeclarationNameInfo(NameInfo);
+}
+
+TemplateName
+Sema::SubstTemplateName(NestedNameSpecifierLoc QualifierLoc,
+ TemplateName Name, SourceLocation Loc,
+ const MultiLevelTemplateArgumentList &TemplateArgs) {
+ TemplateInstantiator Instantiator(*this, TemplateArgs, Loc,
+ DeclarationName());
+ CXXScopeSpec SS;
+ SS.Adopt(QualifierLoc);
+ return Instantiator.TransformTemplateName(SS, Name, Loc);
+}
+
+bool Sema::Subst(const TemplateArgumentLoc *Args, unsigned NumArgs,
+ TemplateArgumentListInfo &Result,
+ const MultiLevelTemplateArgumentList &TemplateArgs) {
+ TemplateInstantiator Instantiator(*this, TemplateArgs, SourceLocation(),
+ DeclarationName());
+
+ return Instantiator.TransformTemplateArguments(Args, NumArgs, Result);
+}
+
+static const Decl *getCanonicalParmVarDecl(const Decl *D) {
+ // When storing ParmVarDecls in the local instantiation scope, we always
+ // want to use the ParmVarDecl from the canonical function declaration,
+ // since the map is then valid for any redeclaration or definition of that
+ // function.
+ if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(D)) {
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) {
+ unsigned i = PV->getFunctionScopeIndex();
+ // This parameter might be from a freestanding function type within the
+ // function and isn't necessarily referring to one of FD's parameters.
+ if (FD->getParamDecl(i) == PV)
+ return FD->getCanonicalDecl()->getParamDecl(i);
+ }
+ }
+ return D;
+}
+
+
+llvm::PointerUnion<Decl *, LocalInstantiationScope::DeclArgumentPack *> *
+LocalInstantiationScope::findInstantiationOf(const Decl *D) {
+ D = getCanonicalParmVarDecl(D);
+ for (LocalInstantiationScope *Current = this; Current;
+ Current = Current->Outer) {
+
+ // Check if we found something within this scope.
+ const Decl *CheckD = D;
+ do {
+ LocalDeclsMap::iterator Found = Current->LocalDecls.find(CheckD);
+ if (Found != Current->LocalDecls.end())
+ return &Found->second;
+
+ // If this is a tag declaration, it's possible that we need to look for
+ // a previous declaration.
+ if (const TagDecl *Tag = dyn_cast<TagDecl>(CheckD))
+ CheckD = Tag->getPreviousDecl();
+ else
+ CheckD = nullptr;
+ } while (CheckD);
+
+ // If we aren't combined with our outer scope, we're done.
+ if (!Current->CombineWithOuterScope)
+ break;
+ }
+
+ // If we're performing a partial substitution during template argument
+ // deduction, we may not have values for template parameters yet.
+ if (isa<NonTypeTemplateParmDecl>(D) || isa<TemplateTypeParmDecl>(D) ||
+ isa<TemplateTemplateParmDecl>(D))
+ return nullptr;
+
+ // Local types referenced prior to definition may require instantiation.
+ if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D))
+ if (RD->isLocalClass())
+ return nullptr;
+
+ // Enumeration types referenced prior to definition may appear as a result of
+ // error recovery.
+ if (isa<EnumDecl>(D))
+ return nullptr;
+
+ // If we didn't find the decl, then we either have a sema bug, or we have a
+ // forward reference to a label declaration. Return null to indicate that
+ // we have an uninstantiated label.
+ assert(isa<LabelDecl>(D) && "declaration not instantiated in this scope");
+ return nullptr;
+}
+
+void LocalInstantiationScope::InstantiatedLocal(const Decl *D, Decl *Inst) {
+ D = getCanonicalParmVarDecl(D);
+ llvm::PointerUnion<Decl *, DeclArgumentPack *> &Stored = LocalDecls[D];
+ if (Stored.isNull()) {
+#ifndef NDEBUG
+ // It should not be present in any surrounding scope either.
+ LocalInstantiationScope *Current = this;
+ while (Current->CombineWithOuterScope && Current->Outer) {
+ Current = Current->Outer;
+ assert(Current->LocalDecls.find(D) == Current->LocalDecls.end() &&
+ "Instantiated local in inner and outer scopes");
+ }
+#endif
+ Stored = Inst;
+ } else if (DeclArgumentPack *Pack = Stored.dyn_cast<DeclArgumentPack *>()) {
+ Pack->push_back(Inst);
+ } else {
+ assert(Stored.get<Decl *>() == Inst && "Already instantiated this local");
+ }
+}
+
+void LocalInstantiationScope::InstantiatedLocalPackArg(const Decl *D,
+ Decl *Inst) {
+ D = getCanonicalParmVarDecl(D);
+ DeclArgumentPack *Pack = LocalDecls[D].get<DeclArgumentPack *>();
+ Pack->push_back(Inst);
+}
+
+void LocalInstantiationScope::MakeInstantiatedLocalArgPack(const Decl *D) {
+#ifndef NDEBUG
+ // This should be the first time we've been told about this decl.
+ for (LocalInstantiationScope *Current = this;
+ Current && Current->CombineWithOuterScope; Current = Current->Outer)
+ assert(Current->LocalDecls.find(D) == Current->LocalDecls.end() &&
+ "Creating local pack after instantiation of local");
+#endif
+
+ D = getCanonicalParmVarDecl(D);
+ llvm::PointerUnion<Decl *, DeclArgumentPack *> &Stored = LocalDecls[D];
+ DeclArgumentPack *Pack = new DeclArgumentPack;
+ Stored = Pack;
+ ArgumentPacks.push_back(Pack);
+}
+
+void LocalInstantiationScope::SetPartiallySubstitutedPack(NamedDecl *Pack,
+ const TemplateArgument *ExplicitArgs,
+ unsigned NumExplicitArgs) {
+ assert((!PartiallySubstitutedPack || PartiallySubstitutedPack == Pack) &&
+ "Already have a partially-substituted pack");
+ assert((!PartiallySubstitutedPack
+ || NumArgsInPartiallySubstitutedPack == NumExplicitArgs) &&
+ "Wrong number of arguments in partially-substituted pack");
+ PartiallySubstitutedPack = Pack;
+ ArgsInPartiallySubstitutedPack = ExplicitArgs;
+ NumArgsInPartiallySubstitutedPack = NumExplicitArgs;
+}
+
+NamedDecl *LocalInstantiationScope::getPartiallySubstitutedPack(
+ const TemplateArgument **ExplicitArgs,
+ unsigned *NumExplicitArgs) const {
+ if (ExplicitArgs)
+ *ExplicitArgs = nullptr;
+ if (NumExplicitArgs)
+ *NumExplicitArgs = 0;
+
+ for (const LocalInstantiationScope *Current = this; Current;
+ Current = Current->Outer) {
+ if (Current->PartiallySubstitutedPack) {
+ if (ExplicitArgs)
+ *ExplicitArgs = Current->ArgsInPartiallySubstitutedPack;
+ if (NumExplicitArgs)
+ *NumExplicitArgs = Current->NumArgsInPartiallySubstitutedPack;
+
+ return Current->PartiallySubstitutedPack;
+ }
+
+ if (!Current->CombineWithOuterScope)
+ break;
+ }
+
+ return nullptr;
+}
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp
new file mode 100644
index 0000000..5c994f8
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp
@@ -0,0 +1,4713 @@
+//===--- SemaTemplateInstantiateDecl.cpp - C++ Template Decl Instantiation ===/
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//===----------------------------------------------------------------------===/
+//
+// This file implements C++ template instantiation for declarations.
+//
+//===----------------------------------------------------------------------===/
+#include "clang/Sema/SemaInternal.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTMutationListener.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/DeclVisitor.h"
+#include "clang/AST/DependentDiagnostic.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/Sema/Lookup.h"
+#include "clang/Sema/PrettyDeclStackTrace.h"
+#include "clang/Sema/Template.h"
+
+using namespace clang;
+
+static bool isDeclWithinFunction(const Decl *D) {
+ const DeclContext *DC = D->getDeclContext();
+ if (DC->isFunctionOrMethod())
+ return true;
+
+ if (DC->isRecord())
+ return cast<CXXRecordDecl>(DC)->isLocalClass();
+
+ return false;
+}
+
+template<typename DeclT>
+static bool SubstQualifier(Sema &SemaRef, const DeclT *OldDecl, DeclT *NewDecl,
+ const MultiLevelTemplateArgumentList &TemplateArgs) {
+ if (!OldDecl->getQualifierLoc())
+ return false;
+
+ assert((NewDecl->getFriendObjectKind() ||
+ !OldDecl->getLexicalDeclContext()->isDependentContext()) &&
+ "non-friend with qualified name defined in dependent context");
+ Sema::ContextRAII SavedContext(
+ SemaRef,
+ const_cast<DeclContext *>(NewDecl->getFriendObjectKind()
+ ? NewDecl->getLexicalDeclContext()
+ : OldDecl->getLexicalDeclContext()));
+
+ NestedNameSpecifierLoc NewQualifierLoc
+ = SemaRef.SubstNestedNameSpecifierLoc(OldDecl->getQualifierLoc(),
+ TemplateArgs);
+
+ if (!NewQualifierLoc)
+ return true;
+
+ NewDecl->setQualifierInfo(NewQualifierLoc);
+ return false;
+}
+
+bool TemplateDeclInstantiator::SubstQualifier(const DeclaratorDecl *OldDecl,
+ DeclaratorDecl *NewDecl) {
+ return ::SubstQualifier(SemaRef, OldDecl, NewDecl, TemplateArgs);
+}
+
+bool TemplateDeclInstantiator::SubstQualifier(const TagDecl *OldDecl,
+ TagDecl *NewDecl) {
+ return ::SubstQualifier(SemaRef, OldDecl, NewDecl, TemplateArgs);
+}
+
+// Include attribute instantiation code.
+#include "clang/Sema/AttrTemplateInstantiate.inc"
+
+static void instantiateDependentAlignedAttr(
+ Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
+ const AlignedAttr *Aligned, Decl *New, bool IsPackExpansion) {
+ if (Aligned->isAlignmentExpr()) {
+ // The alignment expression is a constant expression.
+ EnterExpressionEvaluationContext Unevaluated(S, Sema::ConstantEvaluated);
+ ExprResult Result = S.SubstExpr(Aligned->getAlignmentExpr(), TemplateArgs);
+ if (!Result.isInvalid())
+ S.AddAlignedAttr(Aligned->getLocation(), New, Result.getAs<Expr>(),
+ Aligned->getSpellingListIndex(), IsPackExpansion);
+ } else {
+ TypeSourceInfo *Result = S.SubstType(Aligned->getAlignmentType(),
+ TemplateArgs, Aligned->getLocation(),
+ DeclarationName());
+ if (Result)
+ S.AddAlignedAttr(Aligned->getLocation(), New, Result,
+ Aligned->getSpellingListIndex(), IsPackExpansion);
+ }
+}
+
+static void instantiateDependentAlignedAttr(
+ Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
+ const AlignedAttr *Aligned, Decl *New) {
+ if (!Aligned->isPackExpansion()) {
+ instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false);
+ return;
+ }
+
+ SmallVector<UnexpandedParameterPack, 2> Unexpanded;
+ if (Aligned->isAlignmentExpr())
+ S.collectUnexpandedParameterPacks(Aligned->getAlignmentExpr(),
+ Unexpanded);
+ else
+ S.collectUnexpandedParameterPacks(Aligned->getAlignmentType()->getTypeLoc(),
+ Unexpanded);
+ assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
+
+ // Determine whether we can expand this attribute pack yet.
+ bool Expand = true, RetainExpansion = false;
+ Optional<unsigned> NumExpansions;
+ // FIXME: Use the actual location of the ellipsis.
+ SourceLocation EllipsisLoc = Aligned->getLocation();
+ if (S.CheckParameterPacksForExpansion(EllipsisLoc, Aligned->getRange(),
+ Unexpanded, TemplateArgs, Expand,
+ RetainExpansion, NumExpansions))
+ return;
+
+ if (!Expand) {
+ Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, -1);
+ instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, true);
+ } else {
+ for (unsigned I = 0; I != *NumExpansions; ++I) {
+ Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, I);
+ instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false);
+ }
+ }
+}
+
+static void instantiateDependentAssumeAlignedAttr(
+ Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
+ const AssumeAlignedAttr *Aligned, Decl *New) {
+ // The alignment expression is a constant expression.
+ EnterExpressionEvaluationContext Unevaluated(S, Sema::ConstantEvaluated);
+
+ Expr *E, *OE = nullptr;
+ ExprResult Result = S.SubstExpr(Aligned->getAlignment(), TemplateArgs);
+ if (Result.isInvalid())
+ return;
+ E = Result.getAs<Expr>();
+
+ if (Aligned->getOffset()) {
+ Result = S.SubstExpr(Aligned->getOffset(), TemplateArgs);
+ if (Result.isInvalid())
+ return;
+ OE = Result.getAs<Expr>();
+ }
+
+ S.AddAssumeAlignedAttr(Aligned->getLocation(), New, E, OE,
+ Aligned->getSpellingListIndex());
+}
+
+static void instantiateDependentAlignValueAttr(
+ Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
+ const AlignValueAttr *Aligned, Decl *New) {
+ // The alignment expression is a constant expression.
+ EnterExpressionEvaluationContext Unevaluated(S, Sema::ConstantEvaluated);
+ ExprResult Result = S.SubstExpr(Aligned->getAlignment(), TemplateArgs);
+ if (!Result.isInvalid())
+ S.AddAlignValueAttr(Aligned->getLocation(), New, Result.getAs<Expr>(),
+ Aligned->getSpellingListIndex());
+}
+
+static void instantiateDependentEnableIfAttr(
+ Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
+ const EnableIfAttr *A, const Decl *Tmpl, Decl *New) {
+ Expr *Cond = nullptr;
+ {
+ EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
+ ExprResult Result = S.SubstExpr(A->getCond(), TemplateArgs);
+ if (Result.isInvalid())
+ return;
+ Cond = Result.getAs<Expr>();
+ }
+ if (A->getCond()->isTypeDependent() && !Cond->isTypeDependent()) {
+ ExprResult Converted = S.PerformContextuallyConvertToBool(Cond);
+ if (Converted.isInvalid())
+ return;
+ Cond = Converted.get();
+ }
+
+ SmallVector<PartialDiagnosticAt, 8> Diags;
+ if (A->getCond()->isValueDependent() && !Cond->isValueDependent() &&
+ !Expr::isPotentialConstantExprUnevaluated(Cond, cast<FunctionDecl>(Tmpl),
+ Diags)) {
+ S.Diag(A->getLocation(), diag::err_enable_if_never_constant_expr);
+ for (int I = 0, N = Diags.size(); I != N; ++I)
+ S.Diag(Diags[I].first, Diags[I].second);
+ return;
+ }
+
+ EnableIfAttr *EIA = new (S.getASTContext())
+ EnableIfAttr(A->getLocation(), S.getASTContext(), Cond,
+ A->getMessage(),
+ A->getSpellingListIndex());
+ New->addAttr(EIA);
+}
+
+// Constructs and adds to New a new instance of CUDALaunchBoundsAttr using
+// template A as the base and arguments from TemplateArgs.
+static void instantiateDependentCUDALaunchBoundsAttr(
+ Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
+ const CUDALaunchBoundsAttr &Attr, Decl *New) {
+ // The alignment expression is a constant expression.
+ EnterExpressionEvaluationContext Unevaluated(S, Sema::ConstantEvaluated);
+
+ ExprResult Result = S.SubstExpr(Attr.getMaxThreads(), TemplateArgs);
+ if (Result.isInvalid())
+ return;
+ Expr *MaxThreads = Result.getAs<Expr>();
+
+ Expr *MinBlocks = nullptr;
+ if (Attr.getMinBlocks()) {
+ Result = S.SubstExpr(Attr.getMinBlocks(), TemplateArgs);
+ if (Result.isInvalid())
+ return;
+ MinBlocks = Result.getAs<Expr>();
+ }
+
+ S.AddLaunchBoundsAttr(Attr.getLocation(), New, MaxThreads, MinBlocks,
+ Attr.getSpellingListIndex());
+}
+
+void Sema::InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs,
+ const Decl *Tmpl, Decl *New,
+ LateInstantiatedAttrVec *LateAttrs,
+ LocalInstantiationScope *OuterMostScope) {
+ for (const auto *TmplAttr : Tmpl->attrs()) {
+ // FIXME: This should be generalized to more than just the AlignedAttr.
+ const AlignedAttr *Aligned = dyn_cast<AlignedAttr>(TmplAttr);
+ if (Aligned && Aligned->isAlignmentDependent()) {
+ instantiateDependentAlignedAttr(*this, TemplateArgs, Aligned, New);
+ continue;
+ }
+
+ const AssumeAlignedAttr *AssumeAligned = dyn_cast<AssumeAlignedAttr>(TmplAttr);
+ if (AssumeAligned) {
+ instantiateDependentAssumeAlignedAttr(*this, TemplateArgs, AssumeAligned, New);
+ continue;
+ }
+
+ const AlignValueAttr *AlignValue = dyn_cast<AlignValueAttr>(TmplAttr);
+ if (AlignValue) {
+ instantiateDependentAlignValueAttr(*this, TemplateArgs, AlignValue, New);
+ continue;
+ }
+
+ const EnableIfAttr *EnableIf = dyn_cast<EnableIfAttr>(TmplAttr);
+ if (EnableIf && EnableIf->getCond()->isValueDependent()) {
+ instantiateDependentEnableIfAttr(*this, TemplateArgs, EnableIf, Tmpl,
+ New);
+ continue;
+ }
+
+ if (const CUDALaunchBoundsAttr *CUDALaunchBounds =
+ dyn_cast<CUDALaunchBoundsAttr>(TmplAttr)) {
+ instantiateDependentCUDALaunchBoundsAttr(*this, TemplateArgs,
+ *CUDALaunchBounds, New);
+ continue;
+ }
+
+ // Existing DLL attribute on the instantiation takes precedence.
+ if (TmplAttr->getKind() == attr::DLLExport ||
+ TmplAttr->getKind() == attr::DLLImport) {
+ if (New->hasAttr<DLLExportAttr>() || New->hasAttr<DLLImportAttr>()) {
+ continue;
+ }
+ }
+
+ assert(!TmplAttr->isPackExpansion());
+ if (TmplAttr->isLateParsed() && LateAttrs) {
+ // Late parsed attributes must be instantiated and attached after the
+ // enclosing class has been instantiated. See Sema::InstantiateClass.
+ LocalInstantiationScope *Saved = nullptr;
+ if (CurrentInstantiationScope)
+ Saved = CurrentInstantiationScope->cloneScopes(OuterMostScope);
+ LateAttrs->push_back(LateInstantiatedAttribute(TmplAttr, Saved, New));
+ } else {
+ // Allow 'this' within late-parsed attributes.
+ NamedDecl *ND = dyn_cast<NamedDecl>(New);
+ CXXRecordDecl *ThisContext =
+ dyn_cast_or_null<CXXRecordDecl>(ND->getDeclContext());
+ CXXThisScopeRAII ThisScope(*this, ThisContext, /*TypeQuals*/0,
+ ND && ND->isCXXInstanceMember());
+
+ Attr *NewAttr = sema::instantiateTemplateAttribute(TmplAttr, Context,
+ *this, TemplateArgs);
+ if (NewAttr)
+ New->addAttr(NewAttr);
+ }
+ }
+}
+
+/// Get the previous declaration of a declaration for the purposes of template
+/// instantiation. If this finds a previous declaration, then the previous
+/// declaration of the instantiation of D should be an instantiation of the
+/// result of this function.
+template<typename DeclT>
+static DeclT *getPreviousDeclForInstantiation(DeclT *D) {
+ DeclT *Result = D->getPreviousDecl();
+
+ // If the declaration is within a class, and the previous declaration was
+ // merged from a different definition of that class, then we don't have a
+ // previous declaration for the purpose of template instantiation.
+ if (Result && isa<CXXRecordDecl>(D->getDeclContext()) &&
+ D->getLexicalDeclContext() != Result->getLexicalDeclContext())
+ return nullptr;
+
+ return Result;
+}
+
+Decl *
+TemplateDeclInstantiator::VisitTranslationUnitDecl(TranslationUnitDecl *D) {
+ llvm_unreachable("Translation units cannot be instantiated");
+}
+
+Decl *
+TemplateDeclInstantiator::VisitExternCContextDecl(ExternCContextDecl *D) {
+ llvm_unreachable("extern \"C\" context cannot be instantiated");
+}
+
+Decl *
+TemplateDeclInstantiator::VisitLabelDecl(LabelDecl *D) {
+ LabelDecl *Inst = LabelDecl::Create(SemaRef.Context, Owner, D->getLocation(),
+ D->getIdentifier());
+ Owner->addDecl(Inst);
+ return Inst;
+}
+
+Decl *
+TemplateDeclInstantiator::VisitNamespaceDecl(NamespaceDecl *D) {
+ llvm_unreachable("Namespaces cannot be instantiated");
+}
+
+Decl *
+TemplateDeclInstantiator::VisitNamespaceAliasDecl(NamespaceAliasDecl *D) {
+ NamespaceAliasDecl *Inst
+ = NamespaceAliasDecl::Create(SemaRef.Context, Owner,
+ D->getNamespaceLoc(),
+ D->getAliasLoc(),
+ D->getIdentifier(),
+ D->getQualifierLoc(),
+ D->getTargetNameLoc(),
+ D->getNamespace());
+ Owner->addDecl(Inst);
+ return Inst;
+}
+
+Decl *TemplateDeclInstantiator::InstantiateTypedefNameDecl(TypedefNameDecl *D,
+ bool IsTypeAlias) {
+ bool Invalid = false;
+ TypeSourceInfo *DI = D->getTypeSourceInfo();
+ if (DI->getType()->isInstantiationDependentType() ||
+ DI->getType()->isVariablyModifiedType()) {
+ DI = SemaRef.SubstType(DI, TemplateArgs,
+ D->getLocation(), D->getDeclName());
+ if (!DI) {
+ Invalid = true;
+ DI = SemaRef.Context.getTrivialTypeSourceInfo(SemaRef.Context.IntTy);
+ }
+ } else {
+ SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType());
+ }
+
+ // HACK: g++ has a bug where it gets the value kind of ?: wrong.
+ // libstdc++ relies upon this bug in its implementation of common_type.
+ // If we happen to be processing that implementation, fake up the g++ ?:
+ // semantics. See LWG issue 2141 for more information on the bug.
+ const DecltypeType *DT = DI->getType()->getAs<DecltypeType>();
+ CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D->getDeclContext());
+ if (DT && RD && isa<ConditionalOperator>(DT->getUnderlyingExpr()) &&
+ DT->isReferenceType() &&
+ RD->getEnclosingNamespaceContext() == SemaRef.getStdNamespace() &&
+ RD->getIdentifier() && RD->getIdentifier()->isStr("common_type") &&
+ D->getIdentifier() && D->getIdentifier()->isStr("type") &&
+ SemaRef.getSourceManager().isInSystemHeader(D->getLocStart()))
+ // Fold it to the (non-reference) type which g++ would have produced.
+ DI = SemaRef.Context.getTrivialTypeSourceInfo(
+ DI->getType().getNonReferenceType());
+
+ // Create the new typedef
+ TypedefNameDecl *Typedef;
+ if (IsTypeAlias)
+ Typedef = TypeAliasDecl::Create(SemaRef.Context, Owner, D->getLocStart(),
+ D->getLocation(), D->getIdentifier(), DI);
+ else
+ Typedef = TypedefDecl::Create(SemaRef.Context, Owner, D->getLocStart(),
+ D->getLocation(), D->getIdentifier(), DI);
+ if (Invalid)
+ Typedef->setInvalidDecl();
+
+ // If the old typedef was the name for linkage purposes of an anonymous
+ // tag decl, re-establish that relationship for the new typedef.
+ if (const TagType *oldTagType = D->getUnderlyingType()->getAs<TagType>()) {
+ TagDecl *oldTag = oldTagType->getDecl();
+ if (oldTag->getTypedefNameForAnonDecl() == D && !Invalid) {
+ TagDecl *newTag = DI->getType()->castAs<TagType>()->getDecl();
+ assert(!newTag->hasNameForLinkage());
+ newTag->setTypedefNameForAnonDecl(Typedef);
+ }
+ }
+
+ if (TypedefNameDecl *Prev = getPreviousDeclForInstantiation(D)) {
+ NamedDecl *InstPrev = SemaRef.FindInstantiatedDecl(D->getLocation(), Prev,
+ TemplateArgs);
+ if (!InstPrev)
+ return nullptr;
+
+ TypedefNameDecl *InstPrevTypedef = cast<TypedefNameDecl>(InstPrev);
+
+ // If the typedef types are not identical, reject them.
+ SemaRef.isIncompatibleTypedef(InstPrevTypedef, Typedef);
+
+ Typedef->setPreviousDecl(InstPrevTypedef);
+ }
+
+ SemaRef.InstantiateAttrs(TemplateArgs, D, Typedef);
+
+ Typedef->setAccess(D->getAccess());
+
+ return Typedef;
+}
+
+Decl *TemplateDeclInstantiator::VisitTypedefDecl(TypedefDecl *D) {
+ Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/false);
+ if (Typedef)
+ Owner->addDecl(Typedef);
+ return Typedef;
+}
+
+Decl *TemplateDeclInstantiator::VisitTypeAliasDecl(TypeAliasDecl *D) {
+ Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/true);
+ if (Typedef)
+ Owner->addDecl(Typedef);
+ return Typedef;
+}
+
+Decl *
+TemplateDeclInstantiator::VisitTypeAliasTemplateDecl(TypeAliasTemplateDecl *D) {
+ // Create a local instantiation scope for this type alias template, which
+ // will contain the instantiations of the template parameters.
+ LocalInstantiationScope Scope(SemaRef);
+
+ TemplateParameterList *TempParams = D->getTemplateParameters();
+ TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
+ if (!InstParams)
+ return nullptr;
+
+ TypeAliasDecl *Pattern = D->getTemplatedDecl();
+
+ TypeAliasTemplateDecl *PrevAliasTemplate = nullptr;
+ if (getPreviousDeclForInstantiation<TypedefNameDecl>(Pattern)) {
+ DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName());
+ if (!Found.empty()) {
+ PrevAliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Found.front());
+ }
+ }
+
+ TypeAliasDecl *AliasInst = cast_or_null<TypeAliasDecl>(
+ InstantiateTypedefNameDecl(Pattern, /*IsTypeAlias=*/true));
+ if (!AliasInst)
+ return nullptr;
+
+ TypeAliasTemplateDecl *Inst
+ = TypeAliasTemplateDecl::Create(SemaRef.Context, Owner, D->getLocation(),
+ D->getDeclName(), InstParams, AliasInst);
+ AliasInst->setDescribedAliasTemplate(Inst);
+ if (PrevAliasTemplate)
+ Inst->setPreviousDecl(PrevAliasTemplate);
+
+ Inst->setAccess(D->getAccess());
+
+ if (!PrevAliasTemplate)
+ Inst->setInstantiatedFromMemberTemplate(D);
+
+ Owner->addDecl(Inst);
+
+ return Inst;
+}
+
+Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D) {
+ return VisitVarDecl(D, /*InstantiatingVarTemplate=*/false);
+}
+
+Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D,
+ bool InstantiatingVarTemplate) {
+
+ // If this is the variable for an anonymous struct or union,
+ // instantiate the anonymous struct/union type first.
+ if (const RecordType *RecordTy = D->getType()->getAs<RecordType>())
+ if (RecordTy->getDecl()->isAnonymousStructOrUnion())
+ if (!VisitCXXRecordDecl(cast<CXXRecordDecl>(RecordTy->getDecl())))
+ return nullptr;
+
+ // Do substitution on the type of the declaration
+ TypeSourceInfo *DI = SemaRef.SubstType(D->getTypeSourceInfo(),
+ TemplateArgs,
+ D->getTypeSpecStartLoc(),
+ D->getDeclName());
+ if (!DI)
+ return nullptr;
+
+ if (DI->getType()->isFunctionType()) {
+ SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function)
+ << D->isStaticDataMember() << DI->getType();
+ return nullptr;
+ }
+
+ DeclContext *DC = Owner;
+ if (D->isLocalExternDecl())
+ SemaRef.adjustContextForLocalExternDecl(DC);
+
+ // Build the instantiated declaration.
+ VarDecl *Var = VarDecl::Create(SemaRef.Context, DC, D->getInnerLocStart(),
+ D->getLocation(), D->getIdentifier(),
+ DI->getType(), DI, D->getStorageClass());
+
+ // In ARC, infer 'retaining' for variables of retainable type.
+ if (SemaRef.getLangOpts().ObjCAutoRefCount &&
+ SemaRef.inferObjCARCLifetime(Var))
+ Var->setInvalidDecl();
+
+ // Substitute the nested name specifier, if any.
+ if (SubstQualifier(D, Var))
+ return nullptr;
+
+ SemaRef.BuildVariableInstantiation(Var, D, TemplateArgs, LateAttrs, Owner,
+ StartingScope, InstantiatingVarTemplate);
+
+ if (D->isNRVOVariable()) {
+ QualType ReturnType = cast<FunctionDecl>(DC)->getReturnType();
+ if (SemaRef.isCopyElisionCandidate(ReturnType, Var, false))
+ Var->setNRVOVariable(true);
+ }
+
+ Var->setImplicit(D->isImplicit());
+
+ return Var;
+}
+
+Decl *TemplateDeclInstantiator::VisitAccessSpecDecl(AccessSpecDecl *D) {
+ AccessSpecDecl* AD
+ = AccessSpecDecl::Create(SemaRef.Context, D->getAccess(), Owner,
+ D->getAccessSpecifierLoc(), D->getColonLoc());
+ Owner->addHiddenDecl(AD);
+ return AD;
+}
+
+Decl *TemplateDeclInstantiator::VisitFieldDecl(FieldDecl *D) {
+ bool Invalid = false;
+ TypeSourceInfo *DI = D->getTypeSourceInfo();
+ if (DI->getType()->isInstantiationDependentType() ||
+ DI->getType()->isVariablyModifiedType()) {
+ DI = SemaRef.SubstType(DI, TemplateArgs,
+ D->getLocation(), D->getDeclName());
+ if (!DI) {
+ DI = D->getTypeSourceInfo();
+ Invalid = true;
+ } else if (DI->getType()->isFunctionType()) {
+ // C++ [temp.arg.type]p3:
+ // If a declaration acquires a function type through a type
+ // dependent on a template-parameter and this causes a
+ // declaration that does not use the syntactic form of a
+ // function declarator to have function type, the program is
+ // ill-formed.
+ SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function)
+ << DI->getType();
+ Invalid = true;
+ }
+ } else {
+ SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType());
+ }
+
+ Expr *BitWidth = D->getBitWidth();
+ if (Invalid)
+ BitWidth = nullptr;
+ else if (BitWidth) {
+ // The bit-width expression is a constant expression.
+ EnterExpressionEvaluationContext Unevaluated(SemaRef,
+ Sema::ConstantEvaluated);
+
+ ExprResult InstantiatedBitWidth
+ = SemaRef.SubstExpr(BitWidth, TemplateArgs);
+ if (InstantiatedBitWidth.isInvalid()) {
+ Invalid = true;
+ BitWidth = nullptr;
+ } else
+ BitWidth = InstantiatedBitWidth.getAs<Expr>();
+ }
+
+ FieldDecl *Field = SemaRef.CheckFieldDecl(D->getDeclName(),
+ DI->getType(), DI,
+ cast<RecordDecl>(Owner),
+ D->getLocation(),
+ D->isMutable(),
+ BitWidth,
+ D->getInClassInitStyle(),
+ D->getInnerLocStart(),
+ D->getAccess(),
+ nullptr);
+ if (!Field) {
+ cast<Decl>(Owner)->setInvalidDecl();
+ return nullptr;
+ }
+
+ SemaRef.InstantiateAttrs(TemplateArgs, D, Field, LateAttrs, StartingScope);
+
+ if (Field->hasAttrs())
+ SemaRef.CheckAlignasUnderalignment(Field);
+
+ if (Invalid)
+ Field->setInvalidDecl();
+
+ if (!Field->getDeclName()) {
+ // Keep track of where this decl came from.
+ SemaRef.Context.setInstantiatedFromUnnamedFieldDecl(Field, D);
+ }
+ if (CXXRecordDecl *Parent= dyn_cast<CXXRecordDecl>(Field->getDeclContext())) {
+ if (Parent->isAnonymousStructOrUnion() &&
+ Parent->getRedeclContext()->isFunctionOrMethod())
+ SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Field);
+ }
+
+ Field->setImplicit(D->isImplicit());
+ Field->setAccess(D->getAccess());
+ Owner->addDecl(Field);
+
+ return Field;
+}
+
+Decl *TemplateDeclInstantiator::VisitMSPropertyDecl(MSPropertyDecl *D) {
+ bool Invalid = false;
+ TypeSourceInfo *DI = D->getTypeSourceInfo();
+
+ if (DI->getType()->isVariablyModifiedType()) {
+ SemaRef.Diag(D->getLocation(), diag::err_property_is_variably_modified)
+ << D;
+ Invalid = true;
+ } else if (DI->getType()->isInstantiationDependentType()) {
+ DI = SemaRef.SubstType(DI, TemplateArgs,
+ D->getLocation(), D->getDeclName());
+ if (!DI) {
+ DI = D->getTypeSourceInfo();
+ Invalid = true;
+ } else if (DI->getType()->isFunctionType()) {
+ // C++ [temp.arg.type]p3:
+ // If a declaration acquires a function type through a type
+ // dependent on a template-parameter and this causes a
+ // declaration that does not use the syntactic form of a
+ // function declarator to have function type, the program is
+ // ill-formed.
+ SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function)
+ << DI->getType();
+ Invalid = true;
+ }
+ } else {
+ SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType());
+ }
+
+ MSPropertyDecl *Property = MSPropertyDecl::Create(
+ SemaRef.Context, Owner, D->getLocation(), D->getDeclName(), DI->getType(),
+ DI, D->getLocStart(), D->getGetterId(), D->getSetterId());
+
+ SemaRef.InstantiateAttrs(TemplateArgs, D, Property, LateAttrs,
+ StartingScope);
+
+ if (Invalid)
+ Property->setInvalidDecl();
+
+ Property->setAccess(D->getAccess());
+ Owner->addDecl(Property);
+
+ return Property;
+}
+
+Decl *TemplateDeclInstantiator::VisitIndirectFieldDecl(IndirectFieldDecl *D) {
+ NamedDecl **NamedChain =
+ new (SemaRef.Context)NamedDecl*[D->getChainingSize()];
+
+ int i = 0;
+ for (auto *PI : D->chain()) {
+ NamedDecl *Next = SemaRef.FindInstantiatedDecl(D->getLocation(), PI,
+ TemplateArgs);
+ if (!Next)
+ return nullptr;
+
+ NamedChain[i++] = Next;
+ }
+
+ QualType T = cast<FieldDecl>(NamedChain[i-1])->getType();
+ IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
+ SemaRef.Context, Owner, D->getLocation(), D->getIdentifier(), T,
+ NamedChain, D->getChainingSize());
+
+ for (const auto *Attr : D->attrs())
+ IndirectField->addAttr(Attr->clone(SemaRef.Context));
+
+ IndirectField->setImplicit(D->isImplicit());
+ IndirectField->setAccess(D->getAccess());
+ Owner->addDecl(IndirectField);
+ return IndirectField;
+}
+
+Decl *TemplateDeclInstantiator::VisitFriendDecl(FriendDecl *D) {
+ // Handle friend type expressions by simply substituting template
+ // parameters into the pattern type and checking the result.
+ if (TypeSourceInfo *Ty = D->getFriendType()) {
+ TypeSourceInfo *InstTy;
+ // If this is an unsupported friend, don't bother substituting template
+ // arguments into it. The actual type referred to won't be used by any
+ // parts of Clang, and may not be valid for instantiating. Just use the
+ // same info for the instantiated friend.
+ if (D->isUnsupportedFriend()) {
+ InstTy = Ty;
+ } else {
+ InstTy = SemaRef.SubstType(Ty, TemplateArgs,
+ D->getLocation(), DeclarationName());
+ }
+ if (!InstTy)
+ return nullptr;
+
+ FriendDecl *FD = SemaRef.CheckFriendTypeDecl(D->getLocStart(),
+ D->getFriendLoc(), InstTy);
+ if (!FD)
+ return nullptr;
+
+ FD->setAccess(AS_public);
+ FD->setUnsupportedFriend(D->isUnsupportedFriend());
+ Owner->addDecl(FD);
+ return FD;
+ }
+
+ NamedDecl *ND = D->getFriendDecl();
+ assert(ND && "friend decl must be a decl or a type!");
+
+ // All of the Visit implementations for the various potential friend
+ // declarations have to be carefully written to work for friend
+ // objects, with the most important detail being that the target
+ // decl should almost certainly not be placed in Owner.
+ Decl *NewND = Visit(ND);
+ if (!NewND) return nullptr;
+
+ FriendDecl *FD =
+ FriendDecl::Create(SemaRef.Context, Owner, D->getLocation(),
+ cast<NamedDecl>(NewND), D->getFriendLoc());
+ FD->setAccess(AS_public);
+ FD->setUnsupportedFriend(D->isUnsupportedFriend());
+ Owner->addDecl(FD);
+ return FD;
+}
+
+Decl *TemplateDeclInstantiator::VisitStaticAssertDecl(StaticAssertDecl *D) {
+ Expr *AssertExpr = D->getAssertExpr();
+
+ // The expression in a static assertion is a constant expression.
+ EnterExpressionEvaluationContext Unevaluated(SemaRef,
+ Sema::ConstantEvaluated);
+
+ ExprResult InstantiatedAssertExpr
+ = SemaRef.SubstExpr(AssertExpr, TemplateArgs);
+ if (InstantiatedAssertExpr.isInvalid())
+ return nullptr;
+
+ return SemaRef.BuildStaticAssertDeclaration(D->getLocation(),
+ InstantiatedAssertExpr.get(),
+ D->getMessage(),
+ D->getRParenLoc(),
+ D->isFailed());
+}
+
+Decl *TemplateDeclInstantiator::VisitEnumDecl(EnumDecl *D) {
+ EnumDecl *PrevDecl = nullptr;
+ if (EnumDecl *PatternPrev = getPreviousDeclForInstantiation(D)) {
+ NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(),
+ PatternPrev,
+ TemplateArgs);
+ if (!Prev) return nullptr;
+ PrevDecl = cast<EnumDecl>(Prev);
+ }
+
+ EnumDecl *Enum = EnumDecl::Create(SemaRef.Context, Owner, D->getLocStart(),
+ D->getLocation(), D->getIdentifier(),
+ PrevDecl, D->isScoped(),
+ D->isScopedUsingClassTag(), D->isFixed());
+ if (D->isFixed()) {
+ if (TypeSourceInfo *TI = D->getIntegerTypeSourceInfo()) {
+ // If we have type source information for the underlying type, it means it
+ // has been explicitly set by the user. Perform substitution on it before
+ // moving on.
+ SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
+ TypeSourceInfo *NewTI = SemaRef.SubstType(TI, TemplateArgs, UnderlyingLoc,
+ DeclarationName());
+ if (!NewTI || SemaRef.CheckEnumUnderlyingType(NewTI))
+ Enum->setIntegerType(SemaRef.Context.IntTy);
+ else
+ Enum->setIntegerTypeSourceInfo(NewTI);
+ } else {
+ assert(!D->getIntegerType()->isDependentType()
+ && "Dependent type without type source info");
+ Enum->setIntegerType(D->getIntegerType());
+ }
+ }
+
+ SemaRef.InstantiateAttrs(TemplateArgs, D, Enum);
+
+ Enum->setInstantiationOfMemberEnum(D, TSK_ImplicitInstantiation);
+ Enum->setAccess(D->getAccess());
+ // Forward the mangling number from the template to the instantiated decl.
+ SemaRef.Context.setManglingNumber(Enum, SemaRef.Context.getManglingNumber(D));
+ if (SubstQualifier(D, Enum)) return nullptr;
+ Owner->addDecl(Enum);
+
+ EnumDecl *Def = D->getDefinition();
+ if (Def && Def != D) {
+ // If this is an out-of-line definition of an enum member template, check
+ // that the underlying types match in the instantiation of both
+ // declarations.
+ if (TypeSourceInfo *TI = Def->getIntegerTypeSourceInfo()) {
+ SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
+ QualType DefnUnderlying =
+ SemaRef.SubstType(TI->getType(), TemplateArgs,
+ UnderlyingLoc, DeclarationName());
+ SemaRef.CheckEnumRedeclaration(Def->getLocation(), Def->isScoped(),
+ DefnUnderlying, Enum);
+ }
+ }
+
+ // C++11 [temp.inst]p1: The implicit instantiation of a class template
+ // specialization causes the implicit instantiation of the declarations, but
+ // not the definitions of scoped member enumerations.
+ //
+ // DR1484 clarifies that enumeration definitions inside of a template
+ // declaration aren't considered entities that can be separately instantiated
+ // from the rest of the entity they are declared inside of.
+ if (isDeclWithinFunction(D) ? D == Def : Def && !Enum->isScoped()) {
+ SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Enum);
+ InstantiateEnumDefinition(Enum, Def);
+ }
+
+ return Enum;
+}
+
+void TemplateDeclInstantiator::InstantiateEnumDefinition(
+ EnumDecl *Enum, EnumDecl *Pattern) {
+ Enum->startDefinition();
+
+ // Update the location to refer to the definition.
+ Enum->setLocation(Pattern->getLocation());
+
+ SmallVector<Decl*, 4> Enumerators;
+
+ EnumConstantDecl *LastEnumConst = nullptr;
+ for (auto *EC : Pattern->enumerators()) {
+ // The specified value for the enumerator.
+ ExprResult Value((Expr *)nullptr);
+ if (Expr *UninstValue = EC->getInitExpr()) {
+ // The enumerator's value expression is a constant expression.
+ EnterExpressionEvaluationContext Unevaluated(SemaRef,
+ Sema::ConstantEvaluated);
+
+ Value = SemaRef.SubstExpr(UninstValue, TemplateArgs);
+ }
+
+ // Drop the initial value and continue.
+ bool isInvalid = false;
+ if (Value.isInvalid()) {
+ Value = nullptr;
+ isInvalid = true;
+ }
+
+ EnumConstantDecl *EnumConst
+ = SemaRef.CheckEnumConstant(Enum, LastEnumConst,
+ EC->getLocation(), EC->getIdentifier(),
+ Value.get());
+
+ if (isInvalid) {
+ if (EnumConst)
+ EnumConst->setInvalidDecl();
+ Enum->setInvalidDecl();
+ }
+
+ if (EnumConst) {
+ SemaRef.InstantiateAttrs(TemplateArgs, EC, EnumConst);
+
+ EnumConst->setAccess(Enum->getAccess());
+ Enum->addDecl(EnumConst);
+ Enumerators.push_back(EnumConst);
+ LastEnumConst = EnumConst;
+
+ if (Pattern->getDeclContext()->isFunctionOrMethod() &&
+ !Enum->isScoped()) {
+ // If the enumeration is within a function or method, record the enum
+ // constant as a local.
+ SemaRef.CurrentInstantiationScope->InstantiatedLocal(EC, EnumConst);
+ }
+ }
+ }
+
+ // FIXME: Fixup LBraceLoc
+ SemaRef.ActOnEnumBody(Enum->getLocation(), SourceLocation(),
+ Enum->getRBraceLoc(), Enum,
+ Enumerators,
+ nullptr, nullptr);
+}
+
+Decl *TemplateDeclInstantiator::VisitEnumConstantDecl(EnumConstantDecl *D) {
+ llvm_unreachable("EnumConstantDecls can only occur within EnumDecls.");
+}
+
+Decl *TemplateDeclInstantiator::VisitClassTemplateDecl(ClassTemplateDecl *D) {
+ bool isFriend = (D->getFriendObjectKind() != Decl::FOK_None);
+
+ // Create a local instantiation scope for this class template, which
+ // will contain the instantiations of the template parameters.
+ LocalInstantiationScope Scope(SemaRef);
+ TemplateParameterList *TempParams = D->getTemplateParameters();
+ TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
+ if (!InstParams)
+ return nullptr;
+
+ CXXRecordDecl *Pattern = D->getTemplatedDecl();
+
+ // Instantiate the qualifier. We have to do this first in case
+ // we're a friend declaration, because if we are then we need to put
+ // the new declaration in the appropriate context.
+ NestedNameSpecifierLoc QualifierLoc = Pattern->getQualifierLoc();
+ if (QualifierLoc) {
+ QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
+ TemplateArgs);
+ if (!QualifierLoc)
+ return nullptr;
+ }
+
+ CXXRecordDecl *PrevDecl = nullptr;
+ ClassTemplateDecl *PrevClassTemplate = nullptr;
+
+ if (!isFriend && getPreviousDeclForInstantiation(Pattern)) {
+ DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName());
+ if (!Found.empty()) {
+ PrevClassTemplate = dyn_cast<ClassTemplateDecl>(Found.front());
+ if (PrevClassTemplate)
+ PrevDecl = PrevClassTemplate->getTemplatedDecl();
+ }
+ }
+
+ // If this isn't a friend, then it's a member template, in which
+ // case we just want to build the instantiation in the
+ // specialization. If it is a friend, we want to build it in
+ // the appropriate context.
+ DeclContext *DC = Owner;
+ if (isFriend) {
+ if (QualifierLoc) {
+ CXXScopeSpec SS;
+ SS.Adopt(QualifierLoc);
+ DC = SemaRef.computeDeclContext(SS);
+ if (!DC) return nullptr;
+ } else {
+ DC = SemaRef.FindInstantiatedContext(Pattern->getLocation(),
+ Pattern->getDeclContext(),
+ TemplateArgs);
+ }
+
+ // Look for a previous declaration of the template in the owning
+ // context.
+ LookupResult R(SemaRef, Pattern->getDeclName(), Pattern->getLocation(),
+ Sema::LookupOrdinaryName, Sema::ForRedeclaration);
+ SemaRef.LookupQualifiedName(R, DC);
+
+ if (R.isSingleResult()) {
+ PrevClassTemplate = R.getAsSingle<ClassTemplateDecl>();
+ if (PrevClassTemplate)
+ PrevDecl = PrevClassTemplate->getTemplatedDecl();
+ }
+
+ if (!PrevClassTemplate && QualifierLoc) {
+ SemaRef.Diag(Pattern->getLocation(), diag::err_not_tag_in_scope)
+ << D->getTemplatedDecl()->getTagKind() << Pattern->getDeclName() << DC
+ << QualifierLoc.getSourceRange();
+ return nullptr;
+ }
+
+ bool AdoptedPreviousTemplateParams = false;
+ if (PrevClassTemplate) {
+ bool Complain = true;
+
+ // HACK: libstdc++ 4.2.1 contains an ill-formed friend class
+ // template for struct std::tr1::__detail::_Map_base, where the
+ // template parameters of the friend declaration don't match the
+ // template parameters of the original declaration. In this one
+ // case, we don't complain about the ill-formed friend
+ // declaration.
+ if (isFriend && Pattern->getIdentifier() &&
+ Pattern->getIdentifier()->isStr("_Map_base") &&
+ DC->isNamespace() &&
+ cast<NamespaceDecl>(DC)->getIdentifier() &&
+ cast<NamespaceDecl>(DC)->getIdentifier()->isStr("__detail")) {
+ DeclContext *DCParent = DC->getParent();
+ if (DCParent->isNamespace() &&
+ cast<NamespaceDecl>(DCParent)->getIdentifier() &&
+ cast<NamespaceDecl>(DCParent)->getIdentifier()->isStr("tr1")) {
+ if (cast<Decl>(DCParent)->isInStdNamespace())
+ Complain = false;
+ }
+ }
+
+ TemplateParameterList *PrevParams
+ = PrevClassTemplate->getTemplateParameters();
+
+ // Make sure the parameter lists match.
+ if (!SemaRef.TemplateParameterListsAreEqual(InstParams, PrevParams,
+ Complain,
+ Sema::TPL_TemplateMatch)) {
+ if (Complain)
+ return nullptr;
+
+ AdoptedPreviousTemplateParams = true;
+ InstParams = PrevParams;
+ }
+
+ // Do some additional validation, then merge default arguments
+ // from the existing declarations.
+ if (!AdoptedPreviousTemplateParams &&
+ SemaRef.CheckTemplateParameterList(InstParams, PrevParams,
+ Sema::TPC_ClassTemplate))
+ return nullptr;
+ }
+ }
+
+ CXXRecordDecl *RecordInst
+ = CXXRecordDecl::Create(SemaRef.Context, Pattern->getTagKind(), DC,
+ Pattern->getLocStart(), Pattern->getLocation(),
+ Pattern->getIdentifier(), PrevDecl,
+ /*DelayTypeCreation=*/true);
+
+ if (QualifierLoc)
+ RecordInst->setQualifierInfo(QualifierLoc);
+
+ ClassTemplateDecl *Inst
+ = ClassTemplateDecl::Create(SemaRef.Context, DC, D->getLocation(),
+ D->getIdentifier(), InstParams, RecordInst,
+ PrevClassTemplate);
+ RecordInst->setDescribedClassTemplate(Inst);
+
+ if (isFriend) {
+ if (PrevClassTemplate)
+ Inst->setAccess(PrevClassTemplate->getAccess());
+ else
+ Inst->setAccess(D->getAccess());
+
+ Inst->setObjectOfFriendDecl();
+ // TODO: do we want to track the instantiation progeny of this
+ // friend target decl?
+ } else {
+ Inst->setAccess(D->getAccess());
+ if (!PrevClassTemplate)
+ Inst->setInstantiatedFromMemberTemplate(D);
+ }
+
+ // Trigger creation of the type for the instantiation.
+ SemaRef.Context.getInjectedClassNameType(RecordInst,
+ Inst->getInjectedClassNameSpecialization());
+
+ // Finish handling of friends.
+ if (isFriend) {
+ DC->makeDeclVisibleInContext(Inst);
+ Inst->setLexicalDeclContext(Owner);
+ RecordInst->setLexicalDeclContext(Owner);
+ return Inst;
+ }
+
+ if (D->isOutOfLine()) {
+ Inst->setLexicalDeclContext(D->getLexicalDeclContext());
+ RecordInst->setLexicalDeclContext(D->getLexicalDeclContext());
+ }
+
+ Owner->addDecl(Inst);
+
+ if (!PrevClassTemplate) {
+ // Queue up any out-of-line partial specializations of this member
+ // class template; the client will force their instantiation once
+ // the enclosing class has been instantiated.
+ SmallVector<ClassTemplatePartialSpecializationDecl *, 4> PartialSpecs;
+ D->getPartialSpecializations(PartialSpecs);
+ for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I)
+ if (PartialSpecs[I]->getFirstDecl()->isOutOfLine())
+ OutOfLinePartialSpecs.push_back(std::make_pair(Inst, PartialSpecs[I]));
+ }
+
+ return Inst;
+}
+
+Decl *
+TemplateDeclInstantiator::VisitClassTemplatePartialSpecializationDecl(
+ ClassTemplatePartialSpecializationDecl *D) {
+ ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate();
+
+ // Lookup the already-instantiated declaration in the instantiation
+ // of the class template and return that.
+ DeclContext::lookup_result Found
+ = Owner->lookup(ClassTemplate->getDeclName());
+ if (Found.empty())
+ return nullptr;
+
+ ClassTemplateDecl *InstClassTemplate
+ = dyn_cast<ClassTemplateDecl>(Found.front());
+ if (!InstClassTemplate)
+ return nullptr;
+
+ if (ClassTemplatePartialSpecializationDecl *Result
+ = InstClassTemplate->findPartialSpecInstantiatedFromMember(D))
+ return Result;
+
+ return InstantiateClassTemplatePartialSpecialization(InstClassTemplate, D);
+}
+
+Decl *TemplateDeclInstantiator::VisitVarTemplateDecl(VarTemplateDecl *D) {
+ assert(D->getTemplatedDecl()->isStaticDataMember() &&
+ "Only static data member templates are allowed.");
+
+ // Create a local instantiation scope for this variable template, which
+ // will contain the instantiations of the template parameters.
+ LocalInstantiationScope Scope(SemaRef);
+ TemplateParameterList *TempParams = D->getTemplateParameters();
+ TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
+ if (!InstParams)
+ return nullptr;
+
+ VarDecl *Pattern = D->getTemplatedDecl();
+ VarTemplateDecl *PrevVarTemplate = nullptr;
+
+ if (getPreviousDeclForInstantiation(Pattern)) {
+ DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName());
+ if (!Found.empty())
+ PrevVarTemplate = dyn_cast<VarTemplateDecl>(Found.front());
+ }
+
+ VarDecl *VarInst =
+ cast_or_null<VarDecl>(VisitVarDecl(Pattern,
+ /*InstantiatingVarTemplate=*/true));
+
+ DeclContext *DC = Owner;
+
+ VarTemplateDecl *Inst = VarTemplateDecl::Create(
+ SemaRef.Context, DC, D->getLocation(), D->getIdentifier(), InstParams,
+ VarInst);
+ VarInst->setDescribedVarTemplate(Inst);
+ Inst->setPreviousDecl(PrevVarTemplate);
+
+ Inst->setAccess(D->getAccess());
+ if (!PrevVarTemplate)
+ Inst->setInstantiatedFromMemberTemplate(D);
+
+ if (D->isOutOfLine()) {
+ Inst->setLexicalDeclContext(D->getLexicalDeclContext());
+ VarInst->setLexicalDeclContext(D->getLexicalDeclContext());
+ }
+
+ Owner->addDecl(Inst);
+
+ if (!PrevVarTemplate) {
+ // Queue up any out-of-line partial specializations of this member
+ // variable template; the client will force their instantiation once
+ // the enclosing class has been instantiated.
+ SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
+ D->getPartialSpecializations(PartialSpecs);
+ for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I)
+ if (PartialSpecs[I]->getFirstDecl()->isOutOfLine())
+ OutOfLineVarPartialSpecs.push_back(
+ std::make_pair(Inst, PartialSpecs[I]));
+ }
+
+ return Inst;
+}
+
+Decl *TemplateDeclInstantiator::VisitVarTemplatePartialSpecializationDecl(
+ VarTemplatePartialSpecializationDecl *D) {
+ assert(D->isStaticDataMember() &&
+ "Only static data member templates are allowed.");
+
+ VarTemplateDecl *VarTemplate = D->getSpecializedTemplate();
+
+ // Lookup the already-instantiated declaration and return that.
+ DeclContext::lookup_result Found = Owner->lookup(VarTemplate->getDeclName());
+ assert(!Found.empty() && "Instantiation found nothing?");
+
+ VarTemplateDecl *InstVarTemplate = dyn_cast<VarTemplateDecl>(Found.front());
+ assert(InstVarTemplate && "Instantiation did not find a variable template?");
+
+ if (VarTemplatePartialSpecializationDecl *Result =
+ InstVarTemplate->findPartialSpecInstantiatedFromMember(D))
+ return Result;
+
+ return InstantiateVarTemplatePartialSpecialization(InstVarTemplate, D);
+}
+
+Decl *
+TemplateDeclInstantiator::VisitFunctionTemplateDecl(FunctionTemplateDecl *D) {
+ // Create a local instantiation scope for this function template, which
+ // will contain the instantiations of the template parameters and then get
+ // merged with the local instantiation scope for the function template
+ // itself.
+ LocalInstantiationScope Scope(SemaRef);
+
+ TemplateParameterList *TempParams = D->getTemplateParameters();
+ TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
+ if (!InstParams)
+ return nullptr;
+
+ FunctionDecl *Instantiated = nullptr;
+ if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(D->getTemplatedDecl()))
+ Instantiated = cast_or_null<FunctionDecl>(VisitCXXMethodDecl(DMethod,
+ InstParams));
+ else
+ Instantiated = cast_or_null<FunctionDecl>(VisitFunctionDecl(
+ D->getTemplatedDecl(),
+ InstParams));
+
+ if (!Instantiated)
+ return nullptr;
+
+ // Link the instantiated function template declaration to the function
+ // template from which it was instantiated.
+ FunctionTemplateDecl *InstTemplate
+ = Instantiated->getDescribedFunctionTemplate();
+ InstTemplate->setAccess(D->getAccess());
+ assert(InstTemplate &&
+ "VisitFunctionDecl/CXXMethodDecl didn't create a template!");
+
+ bool isFriend = (InstTemplate->getFriendObjectKind() != Decl::FOK_None);
+
+ // Link the instantiation back to the pattern *unless* this is a
+ // non-definition friend declaration.
+ if (!InstTemplate->getInstantiatedFromMemberTemplate() &&
+ !(isFriend && !D->getTemplatedDecl()->isThisDeclarationADefinition()))
+ InstTemplate->setInstantiatedFromMemberTemplate(D);
+
+ // Make declarations visible in the appropriate context.
+ if (!isFriend) {
+ Owner->addDecl(InstTemplate);
+ } else if (InstTemplate->getDeclContext()->isRecord() &&
+ !getPreviousDeclForInstantiation(D)) {
+ SemaRef.CheckFriendAccess(InstTemplate);
+ }
+
+ return InstTemplate;
+}
+
+Decl *TemplateDeclInstantiator::VisitCXXRecordDecl(CXXRecordDecl *D) {
+ CXXRecordDecl *PrevDecl = nullptr;
+ if (D->isInjectedClassName())
+ PrevDecl = cast<CXXRecordDecl>(Owner);
+ else if (CXXRecordDecl *PatternPrev = getPreviousDeclForInstantiation(D)) {
+ NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(),
+ PatternPrev,
+ TemplateArgs);
+ if (!Prev) return nullptr;
+ PrevDecl = cast<CXXRecordDecl>(Prev);
+ }
+
+ CXXRecordDecl *Record
+ = CXXRecordDecl::Create(SemaRef.Context, D->getTagKind(), Owner,
+ D->getLocStart(), D->getLocation(),
+ D->getIdentifier(), PrevDecl);
+
+ // Substitute the nested name specifier, if any.
+ if (SubstQualifier(D, Record))
+ return nullptr;
+
+ Record->setImplicit(D->isImplicit());
+ // FIXME: Check against AS_none is an ugly hack to work around the issue that
+ // the tag decls introduced by friend class declarations don't have an access
+ // specifier. Remove once this area of the code gets sorted out.
+ if (D->getAccess() != AS_none)
+ Record->setAccess(D->getAccess());
+ if (!D->isInjectedClassName())
+ Record->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation);
+
+ // If the original function was part of a friend declaration,
+ // inherit its namespace state.
+ if (D->getFriendObjectKind())
+ Record->setObjectOfFriendDecl();
+
+ // Make sure that anonymous structs and unions are recorded.
+ if (D->isAnonymousStructOrUnion())
+ Record->setAnonymousStructOrUnion(true);
+
+ if (D->isLocalClass())
+ SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Record);
+
+ // Forward the mangling number from the template to the instantiated decl.
+ SemaRef.Context.setManglingNumber(Record,
+ SemaRef.Context.getManglingNumber(D));
+
+ Owner->addDecl(Record);
+
+ // DR1484 clarifies that the members of a local class are instantiated as part
+ // of the instantiation of their enclosing entity.
+ if (D->isCompleteDefinition() && D->isLocalClass()) {
+ Sema::SavePendingLocalImplicitInstantiationsRAII
+ SavedPendingLocalImplicitInstantiations(SemaRef);
+
+ SemaRef.InstantiateClass(D->getLocation(), Record, D, TemplateArgs,
+ TSK_ImplicitInstantiation,
+ /*Complain=*/true);
+
+ SemaRef.InstantiateClassMembers(D->getLocation(), Record, TemplateArgs,
+ TSK_ImplicitInstantiation);
+
+ // This class may have local implicit instantiations that need to be
+ // performed within this scope.
+ SemaRef.PerformPendingInstantiations(/*LocalOnly=*/true);
+ }
+
+ SemaRef.DiagnoseUnusedNestedTypedefs(Record);
+
+ return Record;
+}
+
+/// \brief Adjust the given function type for an instantiation of the
+/// given declaration, to cope with modifications to the function's type that
+/// aren't reflected in the type-source information.
+///
+/// \param D The declaration we're instantiating.
+/// \param TInfo The already-instantiated type.
+static QualType adjustFunctionTypeForInstantiation(ASTContext &Context,
+ FunctionDecl *D,
+ TypeSourceInfo *TInfo) {
+ const FunctionProtoType *OrigFunc
+ = D->getType()->castAs<FunctionProtoType>();
+ const FunctionProtoType *NewFunc
+ = TInfo->getType()->castAs<FunctionProtoType>();
+ if (OrigFunc->getExtInfo() == NewFunc->getExtInfo())
+ return TInfo->getType();
+
+ FunctionProtoType::ExtProtoInfo NewEPI = NewFunc->getExtProtoInfo();
+ NewEPI.ExtInfo = OrigFunc->getExtInfo();
+ return Context.getFunctionType(NewFunc->getReturnType(),
+ NewFunc->getParamTypes(), NewEPI);
+}
+
+/// Normal class members are of more specific types and therefore
+/// don't make it here. This function serves two purposes:
+/// 1) instantiating function templates
+/// 2) substituting friend declarations
+Decl *TemplateDeclInstantiator::VisitFunctionDecl(FunctionDecl *D,
+ TemplateParameterList *TemplateParams) {
+ // Check whether there is already a function template specialization for
+ // this declaration.
+ FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate();
+ if (FunctionTemplate && !TemplateParams) {
+ ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost();
+
+ void *InsertPos = nullptr;
+ FunctionDecl *SpecFunc
+ = FunctionTemplate->findSpecialization(Innermost, InsertPos);
+
+ // If we already have a function template specialization, return it.
+ if (SpecFunc)
+ return SpecFunc;
+ }
+
+ bool isFriend;
+ if (FunctionTemplate)
+ isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None);
+ else
+ isFriend = (D->getFriendObjectKind() != Decl::FOK_None);
+
+ bool MergeWithParentScope = (TemplateParams != nullptr) ||
+ Owner->isFunctionOrMethod() ||
+ !(isa<Decl>(Owner) &&
+ cast<Decl>(Owner)->isDefinedOutsideFunctionOrMethod());
+ LocalInstantiationScope Scope(SemaRef, MergeWithParentScope);
+
+ SmallVector<ParmVarDecl *, 4> Params;
+ TypeSourceInfo *TInfo = SubstFunctionType(D, Params);
+ if (!TInfo)
+ return nullptr;
+ QualType T = adjustFunctionTypeForInstantiation(SemaRef.Context, D, TInfo);
+
+ NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc();
+ if (QualifierLoc) {
+ QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
+ TemplateArgs);
+ if (!QualifierLoc)
+ return nullptr;
+ }
+
+ // If we're instantiating a local function declaration, put the result
+ // in the enclosing namespace; otherwise we need to find the instantiated
+ // context.
+ DeclContext *DC;
+ if (D->isLocalExternDecl()) {
+ DC = Owner;
+ SemaRef.adjustContextForLocalExternDecl(DC);
+ } else if (isFriend && QualifierLoc) {
+ CXXScopeSpec SS;
+ SS.Adopt(QualifierLoc);
+ DC = SemaRef.computeDeclContext(SS);
+ if (!DC) return nullptr;
+ } else {
+ DC = SemaRef.FindInstantiatedContext(D->getLocation(), D->getDeclContext(),
+ TemplateArgs);
+ }
+
+ FunctionDecl *Function =
+ FunctionDecl::Create(SemaRef.Context, DC, D->getInnerLocStart(),
+ D->getNameInfo(), T, TInfo,
+ D->getCanonicalDecl()->getStorageClass(),
+ D->isInlineSpecified(), D->hasWrittenPrototype(),
+ D->isConstexpr());
+ Function->setRangeEnd(D->getSourceRange().getEnd());
+
+ if (D->isInlined())
+ Function->setImplicitlyInline();
+
+ if (QualifierLoc)
+ Function->setQualifierInfo(QualifierLoc);
+
+ if (D->isLocalExternDecl())
+ Function->setLocalExternDecl();
+
+ DeclContext *LexicalDC = Owner;
+ if (!isFriend && D->isOutOfLine() && !D->isLocalExternDecl()) {
+ assert(D->getDeclContext()->isFileContext());
+ LexicalDC = D->getDeclContext();
+ }
+
+ Function->setLexicalDeclContext(LexicalDC);
+
+ // Attach the parameters
+ for (unsigned P = 0; P < Params.size(); ++P)
+ if (Params[P])
+ Params[P]->setOwningFunction(Function);
+ Function->setParams(Params);
+
+ SourceLocation InstantiateAtPOI;
+ if (TemplateParams) {
+ // Our resulting instantiation is actually a function template, since we
+ // are substituting only the outer template parameters. For example, given
+ //
+ // template<typename T>
+ // struct X {
+ // template<typename U> friend void f(T, U);
+ // };
+ //
+ // X<int> x;
+ //
+ // We are instantiating the friend function template "f" within X<int>,
+ // which means substituting int for T, but leaving "f" as a friend function
+ // template.
+ // Build the function template itself.
+ FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, DC,
+ Function->getLocation(),
+ Function->getDeclName(),
+ TemplateParams, Function);
+ Function->setDescribedFunctionTemplate(FunctionTemplate);
+
+ FunctionTemplate->setLexicalDeclContext(LexicalDC);
+
+ if (isFriend && D->isThisDeclarationADefinition()) {
+ // TODO: should we remember this connection regardless of whether
+ // the friend declaration provided a body?
+ FunctionTemplate->setInstantiatedFromMemberTemplate(
+ D->getDescribedFunctionTemplate());
+ }
+ } else if (FunctionTemplate) {
+ // Record this function template specialization.
+ ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost();
+ Function->setFunctionTemplateSpecialization(FunctionTemplate,
+ TemplateArgumentList::CreateCopy(SemaRef.Context,
+ Innermost.begin(),
+ Innermost.size()),
+ /*InsertPos=*/nullptr);
+ } else if (isFriend) {
+ // Note, we need this connection even if the friend doesn't have a body.
+ // Its body may exist but not have been attached yet due to deferred
+ // parsing.
+ // FIXME: It might be cleaner to set this when attaching the body to the
+ // friend function declaration, however that would require finding all the
+ // instantiations and modifying them.
+ Function->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation);
+ }
+
+ if (InitFunctionInstantiation(Function, D))
+ Function->setInvalidDecl();
+
+ bool isExplicitSpecialization = false;
+
+ LookupResult Previous(
+ SemaRef, Function->getDeclName(), SourceLocation(),
+ D->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage
+ : Sema::LookupOrdinaryName,
+ Sema::ForRedeclaration);
+
+ if (DependentFunctionTemplateSpecializationInfo *Info
+ = D->getDependentSpecializationInfo()) {
+ assert(isFriend && "non-friend has dependent specialization info?");
+
+ // This needs to be set now for future sanity.
+ Function->setObjectOfFriendDecl();
+
+ // Instantiate the explicit template arguments.
+ TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(),
+ Info->getRAngleLoc());
+ if (SemaRef.Subst(Info->getTemplateArgs(), Info->getNumTemplateArgs(),
+ ExplicitArgs, TemplateArgs))
+ return nullptr;
+
+ // Map the candidate templates to their instantiations.
+ for (unsigned I = 0, E = Info->getNumTemplates(); I != E; ++I) {
+ Decl *Temp = SemaRef.FindInstantiatedDecl(D->getLocation(),
+ Info->getTemplate(I),
+ TemplateArgs);
+ if (!Temp) return nullptr;
+
+ Previous.addDecl(cast<FunctionTemplateDecl>(Temp));
+ }
+
+ if (SemaRef.CheckFunctionTemplateSpecialization(Function,
+ &ExplicitArgs,
+ Previous))
+ Function->setInvalidDecl();
+
+ isExplicitSpecialization = true;
+
+ } else if (TemplateParams || !FunctionTemplate) {
+ // Look only into the namespace where the friend would be declared to
+ // find a previous declaration. This is the innermost enclosing namespace,
+ // as described in ActOnFriendFunctionDecl.
+ SemaRef.LookupQualifiedName(Previous, DC);
+
+ // In C++, the previous declaration we find might be a tag type
+ // (class or enum). In this case, the new declaration will hide the
+ // tag type. Note that this does does not apply if we're declaring a
+ // typedef (C++ [dcl.typedef]p4).
+ if (Previous.isSingleTagDecl())
+ Previous.clear();
+ }
+
+ SemaRef.CheckFunctionDeclaration(/*Scope*/ nullptr, Function, Previous,
+ isExplicitSpecialization);
+
+ NamedDecl *PrincipalDecl = (TemplateParams
+ ? cast<NamedDecl>(FunctionTemplate)
+ : Function);
+
+ // If the original function was part of a friend declaration,
+ // inherit its namespace state and add it to the owner.
+ if (isFriend) {
+ PrincipalDecl->setObjectOfFriendDecl();
+ DC->makeDeclVisibleInContext(PrincipalDecl);
+
+ bool QueuedInstantiation = false;
+
+ // C++11 [temp.friend]p4 (DR329):
+ // When a function is defined in a friend function declaration in a class
+ // template, the function is instantiated when the function is odr-used.
+ // The same restrictions on multiple declarations and definitions that
+ // apply to non-template function declarations and definitions also apply
+ // to these implicit definitions.
+ if (D->isThisDeclarationADefinition()) {
+ // Check for a function body.
+ const FunctionDecl *Definition = nullptr;
+ if (Function->isDefined(Definition) &&
+ Definition->getTemplateSpecializationKind() == TSK_Undeclared) {
+ SemaRef.Diag(Function->getLocation(), diag::err_redefinition)
+ << Function->getDeclName();
+ SemaRef.Diag(Definition->getLocation(), diag::note_previous_definition);
+ }
+ // Check for redefinitions due to other instantiations of this or
+ // a similar friend function.
+ else for (auto R : Function->redecls()) {
+ if (R == Function)
+ continue;
+
+ // If some prior declaration of this function has been used, we need
+ // to instantiate its definition.
+ if (!QueuedInstantiation && R->isUsed(false)) {
+ if (MemberSpecializationInfo *MSInfo =
+ Function->getMemberSpecializationInfo()) {
+ if (MSInfo->getPointOfInstantiation().isInvalid()) {
+ SourceLocation Loc = R->getLocation(); // FIXME
+ MSInfo->setPointOfInstantiation(Loc);
+ SemaRef.PendingLocalImplicitInstantiations.push_back(
+ std::make_pair(Function, Loc));
+ QueuedInstantiation = true;
+ }
+ }
+ }
+
+ // If some prior declaration of this function was a friend with an
+ // uninstantiated definition, reject it.
+ if (R->getFriendObjectKind()) {
+ if (const FunctionDecl *RPattern =
+ R->getTemplateInstantiationPattern()) {
+ if (RPattern->isDefined(RPattern)) {
+ SemaRef.Diag(Function->getLocation(), diag::err_redefinition)
+ << Function->getDeclName();
+ SemaRef.Diag(R->getLocation(), diag::note_previous_definition);
+ break;
+ }
+ }
+ }
+ }
+ }
+ }
+
+ if (Function->isLocalExternDecl() && !Function->getPreviousDecl())
+ DC->makeDeclVisibleInContext(PrincipalDecl);
+
+ if (Function->isOverloadedOperator() && !DC->isRecord() &&
+ PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
+ PrincipalDecl->setNonMemberOperator();
+
+ assert(!D->isDefaulted() && "only methods should be defaulted");
+ return Function;
+}
+
+Decl *
+TemplateDeclInstantiator::VisitCXXMethodDecl(CXXMethodDecl *D,
+ TemplateParameterList *TemplateParams,
+ bool IsClassScopeSpecialization) {
+ FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate();
+ if (FunctionTemplate && !TemplateParams) {
+ // We are creating a function template specialization from a function
+ // template. Check whether there is already a function template
+ // specialization for this particular set of template arguments.
+ ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost();
+
+ void *InsertPos = nullptr;
+ FunctionDecl *SpecFunc
+ = FunctionTemplate->findSpecialization(Innermost, InsertPos);
+
+ // If we already have a function template specialization, return it.
+ if (SpecFunc)
+ return SpecFunc;
+ }
+
+ bool isFriend;
+ if (FunctionTemplate)
+ isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None);
+ else
+ isFriend = (D->getFriendObjectKind() != Decl::FOK_None);
+
+ bool MergeWithParentScope = (TemplateParams != nullptr) ||
+ !(isa<Decl>(Owner) &&
+ cast<Decl>(Owner)->isDefinedOutsideFunctionOrMethod());
+ LocalInstantiationScope Scope(SemaRef, MergeWithParentScope);
+
+ // Instantiate enclosing template arguments for friends.
+ SmallVector<TemplateParameterList *, 4> TempParamLists;
+ unsigned NumTempParamLists = 0;
+ if (isFriend && (NumTempParamLists = D->getNumTemplateParameterLists())) {
+ TempParamLists.set_size(NumTempParamLists);
+ for (unsigned I = 0; I != NumTempParamLists; ++I) {
+ TemplateParameterList *TempParams = D->getTemplateParameterList(I);
+ TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
+ if (!InstParams)
+ return nullptr;
+ TempParamLists[I] = InstParams;
+ }
+ }
+
+ SmallVector<ParmVarDecl *, 4> Params;
+ TypeSourceInfo *TInfo = SubstFunctionType(D, Params);
+ if (!TInfo)
+ return nullptr;
+ QualType T = adjustFunctionTypeForInstantiation(SemaRef.Context, D, TInfo);
+
+ NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc();
+ if (QualifierLoc) {
+ QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
+ TemplateArgs);
+ if (!QualifierLoc)
+ return nullptr;
+ }
+
+ DeclContext *DC = Owner;
+ if (isFriend) {
+ if (QualifierLoc) {
+ CXXScopeSpec SS;
+ SS.Adopt(QualifierLoc);
+ DC = SemaRef.computeDeclContext(SS);
+
+ if (DC && SemaRef.RequireCompleteDeclContext(SS, DC))
+ return nullptr;
+ } else {
+ DC = SemaRef.FindInstantiatedContext(D->getLocation(),
+ D->getDeclContext(),
+ TemplateArgs);
+ }
+ if (!DC) return nullptr;
+ }
+
+ // Build the instantiated method declaration.
+ CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
+ CXXMethodDecl *Method = nullptr;
+
+ SourceLocation StartLoc = D->getInnerLocStart();
+ DeclarationNameInfo NameInfo
+ = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs);
+ if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
+ Method = CXXConstructorDecl::Create(SemaRef.Context, Record,
+ StartLoc, NameInfo, T, TInfo,
+ Constructor->isExplicit(),
+ Constructor->isInlineSpecified(),
+ false, Constructor->isConstexpr());
+
+ // Claim that the instantiation of a constructor or constructor template
+ // inherits the same constructor that the template does.
+ if (CXXConstructorDecl *Inh = const_cast<CXXConstructorDecl *>(
+ Constructor->getInheritedConstructor())) {
+ // If we're instantiating a specialization of a function template, our
+ // "inherited constructor" will actually itself be a function template.
+ // Instantiate a declaration of it, too.
+ if (FunctionTemplate) {
+ assert(!TemplateParams && Inh->getDescribedFunctionTemplate() &&
+ !Inh->getParent()->isDependentContext() &&
+ "inheriting constructor template in dependent context?");
+ Sema::InstantiatingTemplate Inst(SemaRef, Constructor->getLocation(),
+ Inh);
+ if (Inst.isInvalid())
+ return nullptr;
+ Sema::ContextRAII SavedContext(SemaRef, Inh->getDeclContext());
+ LocalInstantiationScope LocalScope(SemaRef);
+
+ // Use the same template arguments that we deduced for the inheriting
+ // constructor. There's no way they could be deduced differently.
+ MultiLevelTemplateArgumentList InheritedArgs;
+ InheritedArgs.addOuterTemplateArguments(TemplateArgs.getInnermost());
+ Inh = cast_or_null<CXXConstructorDecl>(
+ SemaRef.SubstDecl(Inh, Inh->getDeclContext(), InheritedArgs));
+ if (!Inh)
+ return nullptr;
+ }
+ cast<CXXConstructorDecl>(Method)->setInheritedConstructor(Inh);
+ }
+ } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
+ Method = CXXDestructorDecl::Create(SemaRef.Context, Record,
+ StartLoc, NameInfo, T, TInfo,
+ Destructor->isInlineSpecified(),
+ false);
+ } else if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) {
+ Method = CXXConversionDecl::Create(SemaRef.Context, Record,
+ StartLoc, NameInfo, T, TInfo,
+ Conversion->isInlineSpecified(),
+ Conversion->isExplicit(),
+ Conversion->isConstexpr(),
+ Conversion->getLocEnd());
+ } else {
+ StorageClass SC = D->isStatic() ? SC_Static : SC_None;
+ Method = CXXMethodDecl::Create(SemaRef.Context, Record,
+ StartLoc, NameInfo, T, TInfo,
+ SC, D->isInlineSpecified(),
+ D->isConstexpr(), D->getLocEnd());
+ }
+
+ if (D->isInlined())
+ Method->setImplicitlyInline();
+
+ if (QualifierLoc)
+ Method->setQualifierInfo(QualifierLoc);
+
+ if (TemplateParams) {
+ // Our resulting instantiation is actually a function template, since we
+ // are substituting only the outer template parameters. For example, given
+ //
+ // template<typename T>
+ // struct X {
+ // template<typename U> void f(T, U);
+ // };
+ //
+ // X<int> x;
+ //
+ // We are instantiating the member template "f" within X<int>, which means
+ // substituting int for T, but leaving "f" as a member function template.
+ // Build the function template itself.
+ FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, Record,
+ Method->getLocation(),
+ Method->getDeclName(),
+ TemplateParams, Method);
+ if (isFriend) {
+ FunctionTemplate->setLexicalDeclContext(Owner);
+ FunctionTemplate->setObjectOfFriendDecl();
+ } else if (D->isOutOfLine())
+ FunctionTemplate->setLexicalDeclContext(D->getLexicalDeclContext());
+ Method->setDescribedFunctionTemplate(FunctionTemplate);
+ } else if (FunctionTemplate) {
+ // Record this function template specialization.
+ ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost();
+ Method->setFunctionTemplateSpecialization(FunctionTemplate,
+ TemplateArgumentList::CreateCopy(SemaRef.Context,
+ Innermost.begin(),
+ Innermost.size()),
+ /*InsertPos=*/nullptr);
+ } else if (!isFriend) {
+ // Record that this is an instantiation of a member function.
+ Method->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation);
+ }
+
+ // If we are instantiating a member function defined
+ // out-of-line, the instantiation will have the same lexical
+ // context (which will be a namespace scope) as the template.
+ if (isFriend) {
+ if (NumTempParamLists)
+ Method->setTemplateParameterListsInfo(SemaRef.Context,
+ NumTempParamLists,
+ TempParamLists.data());
+
+ Method->setLexicalDeclContext(Owner);
+ Method->setObjectOfFriendDecl();
+ } else if (D->isOutOfLine())
+ Method->setLexicalDeclContext(D->getLexicalDeclContext());
+
+ // Attach the parameters
+ for (unsigned P = 0; P < Params.size(); ++P)
+ Params[P]->setOwningFunction(Method);
+ Method->setParams(Params);
+
+ if (InitMethodInstantiation(Method, D))
+ Method->setInvalidDecl();
+
+ LookupResult Previous(SemaRef, NameInfo, Sema::LookupOrdinaryName,
+ Sema::ForRedeclaration);
+
+ if (!FunctionTemplate || TemplateParams || isFriend) {
+ SemaRef.LookupQualifiedName(Previous, Record);
+
+ // In C++, the previous declaration we find might be a tag type
+ // (class or enum). In this case, the new declaration will hide the
+ // tag type. Note that this does does not apply if we're declaring a
+ // typedef (C++ [dcl.typedef]p4).
+ if (Previous.isSingleTagDecl())
+ Previous.clear();
+ }
+
+ if (!IsClassScopeSpecialization)
+ SemaRef.CheckFunctionDeclaration(nullptr, Method, Previous, false);
+
+ if (D->isPure())
+ SemaRef.CheckPureMethod(Method, SourceRange());
+
+ // Propagate access. For a non-friend declaration, the access is
+ // whatever we're propagating from. For a friend, it should be the
+ // previous declaration we just found.
+ if (isFriend && Method->getPreviousDecl())
+ Method->setAccess(Method->getPreviousDecl()->getAccess());
+ else
+ Method->setAccess(D->getAccess());
+ if (FunctionTemplate)
+ FunctionTemplate->setAccess(Method->getAccess());
+
+ SemaRef.CheckOverrideControl(Method);
+
+ // If a function is defined as defaulted or deleted, mark it as such now.
+ if (D->isExplicitlyDefaulted())
+ SemaRef.SetDeclDefaulted(Method, Method->getLocation());
+ if (D->isDeletedAsWritten())
+ SemaRef.SetDeclDeleted(Method, Method->getLocation());
+
+ // If there's a function template, let our caller handle it.
+ if (FunctionTemplate) {
+ // do nothing
+
+ // Don't hide a (potentially) valid declaration with an invalid one.
+ } else if (Method->isInvalidDecl() && !Previous.empty()) {
+ // do nothing
+
+ // Otherwise, check access to friends and make them visible.
+ } else if (isFriend) {
+ // We only need to re-check access for methods which we didn't
+ // manage to match during parsing.
+ if (!D->getPreviousDecl())
+ SemaRef.CheckFriendAccess(Method);
+
+ Record->makeDeclVisibleInContext(Method);
+
+ // Otherwise, add the declaration. We don't need to do this for
+ // class-scope specializations because we'll have matched them with
+ // the appropriate template.
+ } else if (!IsClassScopeSpecialization) {
+ Owner->addDecl(Method);
+ }
+
+ return Method;
+}
+
+Decl *TemplateDeclInstantiator::VisitCXXConstructorDecl(CXXConstructorDecl *D) {
+ return VisitCXXMethodDecl(D);
+}
+
+Decl *TemplateDeclInstantiator::VisitCXXDestructorDecl(CXXDestructorDecl *D) {
+ return VisitCXXMethodDecl(D);
+}
+
+Decl *TemplateDeclInstantiator::VisitCXXConversionDecl(CXXConversionDecl *D) {
+ return VisitCXXMethodDecl(D);
+}
+
+Decl *TemplateDeclInstantiator::VisitParmVarDecl(ParmVarDecl *D) {
+ return SemaRef.SubstParmVarDecl(D, TemplateArgs, /*indexAdjustment*/ 0, None,
+ /*ExpectParameterPack=*/ false);
+}
+
+Decl *TemplateDeclInstantiator::VisitTemplateTypeParmDecl(
+ TemplateTypeParmDecl *D) {
+ // TODO: don't always clone when decls are refcounted.
+ assert(D->getTypeForDecl()->isTemplateTypeParmType());
+
+ TemplateTypeParmDecl *Inst =
+ TemplateTypeParmDecl::Create(SemaRef.Context, Owner,
+ D->getLocStart(), D->getLocation(),
+ D->getDepth() - TemplateArgs.getNumLevels(),
+ D->getIndex(), D->getIdentifier(),
+ D->wasDeclaredWithTypename(),
+ D->isParameterPack());
+ Inst->setAccess(AS_public);
+
+ if (D->hasDefaultArgument()) {
+ TypeSourceInfo *InstantiatedDefaultArg =
+ SemaRef.SubstType(D->getDefaultArgumentInfo(), TemplateArgs,
+ D->getDefaultArgumentLoc(), D->getDeclName());
+ if (InstantiatedDefaultArg)
+ Inst->setDefaultArgument(InstantiatedDefaultArg, false);
+ }
+
+ // Introduce this template parameter's instantiation into the instantiation
+ // scope.
+ SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Inst);
+
+ return Inst;
+}
+
+Decl *TemplateDeclInstantiator::VisitNonTypeTemplateParmDecl(
+ NonTypeTemplateParmDecl *D) {
+ // Substitute into the type of the non-type template parameter.
+ TypeLoc TL = D->getTypeSourceInfo()->getTypeLoc();
+ SmallVector<TypeSourceInfo *, 4> ExpandedParameterPackTypesAsWritten;
+ SmallVector<QualType, 4> ExpandedParameterPackTypes;
+ bool IsExpandedParameterPack = false;
+ TypeSourceInfo *DI;
+ QualType T;
+ bool Invalid = false;
+
+ if (D->isExpandedParameterPack()) {
+ // The non-type template parameter pack is an already-expanded pack
+ // expansion of types. Substitute into each of the expanded types.
+ ExpandedParameterPackTypes.reserve(D->getNumExpansionTypes());
+ ExpandedParameterPackTypesAsWritten.reserve(D->getNumExpansionTypes());
+ for (unsigned I = 0, N = D->getNumExpansionTypes(); I != N; ++I) {
+ TypeSourceInfo *NewDI =SemaRef.SubstType(D->getExpansionTypeSourceInfo(I),
+ TemplateArgs,
+ D->getLocation(),
+ D->getDeclName());
+ if (!NewDI)
+ return nullptr;
+
+ ExpandedParameterPackTypesAsWritten.push_back(NewDI);
+ QualType NewT =SemaRef.CheckNonTypeTemplateParameterType(NewDI->getType(),
+ D->getLocation());
+ if (NewT.isNull())
+ return nullptr;
+ ExpandedParameterPackTypes.push_back(NewT);
+ }
+
+ IsExpandedParameterPack = true;
+ DI = D->getTypeSourceInfo();
+ T = DI->getType();
+ } else if (D->isPackExpansion()) {
+ // The non-type template parameter pack's type is a pack expansion of types.
+ // Determine whether we need to expand this parameter pack into separate
+ // types.
+ PackExpansionTypeLoc Expansion = TL.castAs<PackExpansionTypeLoc>();
+ TypeLoc Pattern = Expansion.getPatternLoc();
+ SmallVector<UnexpandedParameterPack, 2> Unexpanded;
+ SemaRef.collectUnexpandedParameterPacks(Pattern, Unexpanded);
+
+ // Determine whether the set of unexpanded parameter packs can and should
+ // be expanded.
+ bool Expand = true;
+ bool RetainExpansion = false;
+ Optional<unsigned> OrigNumExpansions
+ = Expansion.getTypePtr()->getNumExpansions();
+ Optional<unsigned> NumExpansions = OrigNumExpansions;
+ if (SemaRef.CheckParameterPacksForExpansion(Expansion.getEllipsisLoc(),
+ Pattern.getSourceRange(),
+ Unexpanded,
+ TemplateArgs,
+ Expand, RetainExpansion,
+ NumExpansions))
+ return nullptr;
+
+ if (Expand) {
+ for (unsigned I = 0; I != *NumExpansions; ++I) {
+ Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I);
+ TypeSourceInfo *NewDI = SemaRef.SubstType(Pattern, TemplateArgs,
+ D->getLocation(),
+ D->getDeclName());
+ if (!NewDI)
+ return nullptr;
+
+ ExpandedParameterPackTypesAsWritten.push_back(NewDI);
+ QualType NewT = SemaRef.CheckNonTypeTemplateParameterType(
+ NewDI->getType(),
+ D->getLocation());
+ if (NewT.isNull())
+ return nullptr;
+ ExpandedParameterPackTypes.push_back(NewT);
+ }
+
+ // Note that we have an expanded parameter pack. The "type" of this
+ // expanded parameter pack is the original expansion type, but callers
+ // will end up using the expanded parameter pack types for type-checking.
+ IsExpandedParameterPack = true;
+ DI = D->getTypeSourceInfo();
+ T = DI->getType();
+ } else {
+ // We cannot fully expand the pack expansion now, so substitute into the
+ // pattern and create a new pack expansion type.
+ Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1);
+ TypeSourceInfo *NewPattern = SemaRef.SubstType(Pattern, TemplateArgs,
+ D->getLocation(),
+ D->getDeclName());
+ if (!NewPattern)
+ return nullptr;
+
+ DI = SemaRef.CheckPackExpansion(NewPattern, Expansion.getEllipsisLoc(),
+ NumExpansions);
+ if (!DI)
+ return nullptr;
+
+ T = DI->getType();
+ }
+ } else {
+ // Simple case: substitution into a parameter that is not a parameter pack.
+ DI = SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs,
+ D->getLocation(), D->getDeclName());
+ if (!DI)
+ return nullptr;
+
+ // Check that this type is acceptable for a non-type template parameter.
+ T = SemaRef.CheckNonTypeTemplateParameterType(DI->getType(),
+ D->getLocation());
+ if (T.isNull()) {
+ T = SemaRef.Context.IntTy;
+ Invalid = true;
+ }
+ }
+
+ NonTypeTemplateParmDecl *Param;
+ if (IsExpandedParameterPack)
+ Param = NonTypeTemplateParmDecl::Create(SemaRef.Context, Owner,
+ D->getInnerLocStart(),
+ D->getLocation(),
+ D->getDepth() - TemplateArgs.getNumLevels(),
+ D->getPosition(),
+ D->getIdentifier(), T,
+ DI,
+ ExpandedParameterPackTypes.data(),
+ ExpandedParameterPackTypes.size(),
+ ExpandedParameterPackTypesAsWritten.data());
+ else
+ Param = NonTypeTemplateParmDecl::Create(SemaRef.Context, Owner,
+ D->getInnerLocStart(),
+ D->getLocation(),
+ D->getDepth() - TemplateArgs.getNumLevels(),
+ D->getPosition(),
+ D->getIdentifier(), T,
+ D->isParameterPack(), DI);
+
+ Param->setAccess(AS_public);
+ if (Invalid)
+ Param->setInvalidDecl();
+
+ if (D->hasDefaultArgument()) {
+ ExprResult Value = SemaRef.SubstExpr(D->getDefaultArgument(), TemplateArgs);
+ if (!Value.isInvalid())
+ Param->setDefaultArgument(Value.get(), false);
+ }
+
+ // Introduce this template parameter's instantiation into the instantiation
+ // scope.
+ SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param);
+ return Param;
+}
+
+static void collectUnexpandedParameterPacks(
+ Sema &S,
+ TemplateParameterList *Params,
+ SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
+ for (TemplateParameterList::const_iterator I = Params->begin(),
+ E = Params->end(); I != E; ++I) {
+ if ((*I)->isTemplateParameterPack())
+ continue;
+ if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*I))
+ S.collectUnexpandedParameterPacks(NTTP->getTypeSourceInfo()->getTypeLoc(),
+ Unexpanded);
+ if (TemplateTemplateParmDecl *TTP = dyn_cast<TemplateTemplateParmDecl>(*I))
+ collectUnexpandedParameterPacks(S, TTP->getTemplateParameters(),
+ Unexpanded);
+ }
+}
+
+Decl *
+TemplateDeclInstantiator::VisitTemplateTemplateParmDecl(
+ TemplateTemplateParmDecl *D) {
+ // Instantiate the template parameter list of the template template parameter.
+ TemplateParameterList *TempParams = D->getTemplateParameters();
+ TemplateParameterList *InstParams;
+ SmallVector<TemplateParameterList*, 8> ExpandedParams;
+
+ bool IsExpandedParameterPack = false;
+
+ if (D->isExpandedParameterPack()) {
+ // The template template parameter pack is an already-expanded pack
+ // expansion of template parameters. Substitute into each of the expanded
+ // parameters.
+ ExpandedParams.reserve(D->getNumExpansionTemplateParameters());
+ for (unsigned I = 0, N = D->getNumExpansionTemplateParameters();
+ I != N; ++I) {
+ LocalInstantiationScope Scope(SemaRef);
+ TemplateParameterList *Expansion =
+ SubstTemplateParams(D->getExpansionTemplateParameters(I));
+ if (!Expansion)
+ return nullptr;
+ ExpandedParams.push_back(Expansion);
+ }
+
+ IsExpandedParameterPack = true;
+ InstParams = TempParams;
+ } else if (D->isPackExpansion()) {
+ // The template template parameter pack expands to a pack of template
+ // template parameters. Determine whether we need to expand this parameter
+ // pack into separate parameters.
+ SmallVector<UnexpandedParameterPack, 2> Unexpanded;
+ collectUnexpandedParameterPacks(SemaRef, D->getTemplateParameters(),
+ Unexpanded);
+
+ // Determine whether the set of unexpanded parameter packs can and should
+ // be expanded.
+ bool Expand = true;
+ bool RetainExpansion = false;
+ Optional<unsigned> NumExpansions;
+ if (SemaRef.CheckParameterPacksForExpansion(D->getLocation(),
+ TempParams->getSourceRange(),
+ Unexpanded,
+ TemplateArgs,
+ Expand, RetainExpansion,
+ NumExpansions))
+ return nullptr;
+
+ if (Expand) {
+ for (unsigned I = 0; I != *NumExpansions; ++I) {
+ Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I);
+ LocalInstantiationScope Scope(SemaRef);
+ TemplateParameterList *Expansion = SubstTemplateParams(TempParams);
+ if (!Expansion)
+ return nullptr;
+ ExpandedParams.push_back(Expansion);
+ }
+
+ // Note that we have an expanded parameter pack. The "type" of this
+ // expanded parameter pack is the original expansion type, but callers
+ // will end up using the expanded parameter pack types for type-checking.
+ IsExpandedParameterPack = true;
+ InstParams = TempParams;
+ } else {
+ // We cannot fully expand the pack expansion now, so just substitute
+ // into the pattern.
+ Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1);
+
+ LocalInstantiationScope Scope(SemaRef);
+ InstParams = SubstTemplateParams(TempParams);
+ if (!InstParams)
+ return nullptr;
+ }
+ } else {
+ // Perform the actual substitution of template parameters within a new,
+ // local instantiation scope.
+ LocalInstantiationScope Scope(SemaRef);
+ InstParams = SubstTemplateParams(TempParams);
+ if (!InstParams)
+ return nullptr;
+ }
+
+ // Build the template template parameter.
+ TemplateTemplateParmDecl *Param;
+ if (IsExpandedParameterPack)
+ Param = TemplateTemplateParmDecl::Create(SemaRef.Context, Owner,
+ D->getLocation(),
+ D->getDepth() - TemplateArgs.getNumLevels(),
+ D->getPosition(),
+ D->getIdentifier(), InstParams,
+ ExpandedParams);
+ else
+ Param = TemplateTemplateParmDecl::Create(SemaRef.Context, Owner,
+ D->getLocation(),
+ D->getDepth() - TemplateArgs.getNumLevels(),
+ D->getPosition(),
+ D->isParameterPack(),
+ D->getIdentifier(), InstParams);
+ if (D->hasDefaultArgument()) {
+ NestedNameSpecifierLoc QualifierLoc =
+ D->getDefaultArgument().getTemplateQualifierLoc();
+ QualifierLoc =
+ SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgs);
+ TemplateName TName = SemaRef.SubstTemplateName(
+ QualifierLoc, D->getDefaultArgument().getArgument().getAsTemplate(),
+ D->getDefaultArgument().getTemplateNameLoc(), TemplateArgs);
+ if (!TName.isNull())
+ Param->setDefaultArgument(
+ TemplateArgumentLoc(TemplateArgument(TName),
+ D->getDefaultArgument().getTemplateQualifierLoc(),
+ D->getDefaultArgument().getTemplateNameLoc()),
+ false);
+ }
+ Param->setAccess(AS_public);
+
+ // Introduce this template parameter's instantiation into the instantiation
+ // scope.
+ SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param);
+
+ return Param;
+}
+
+Decl *TemplateDeclInstantiator::VisitUsingDirectiveDecl(UsingDirectiveDecl *D) {
+ // Using directives are never dependent (and never contain any types or
+ // expressions), so they require no explicit instantiation work.
+
+ UsingDirectiveDecl *Inst
+ = UsingDirectiveDecl::Create(SemaRef.Context, Owner, D->getLocation(),
+ D->getNamespaceKeyLocation(),
+ D->getQualifierLoc(),
+ D->getIdentLocation(),
+ D->getNominatedNamespace(),
+ D->getCommonAncestor());
+
+ // Add the using directive to its declaration context
+ // only if this is not a function or method.
+ if (!Owner->isFunctionOrMethod())
+ Owner->addDecl(Inst);
+
+ return Inst;
+}
+
+Decl *TemplateDeclInstantiator::VisitUsingDecl(UsingDecl *D) {
+
+ // The nested name specifier may be dependent, for example
+ // template <typename T> struct t {
+ // struct s1 { T f1(); };
+ // struct s2 : s1 { using s1::f1; };
+ // };
+ // template struct t<int>;
+ // Here, in using s1::f1, s1 refers to t<T>::s1;
+ // we need to substitute for t<int>::s1.
+ NestedNameSpecifierLoc QualifierLoc
+ = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(),
+ TemplateArgs);
+ if (!QualifierLoc)
+ return nullptr;
+
+ // The name info is non-dependent, so no transformation
+ // is required.
+ DeclarationNameInfo NameInfo = D->getNameInfo();
+
+ // We only need to do redeclaration lookups if we're in a class
+ // scope (in fact, it's not really even possible in non-class
+ // scopes).
+ bool CheckRedeclaration = Owner->isRecord();
+
+ LookupResult Prev(SemaRef, NameInfo, Sema::LookupUsingDeclName,
+ Sema::ForRedeclaration);
+
+ UsingDecl *NewUD = UsingDecl::Create(SemaRef.Context, Owner,
+ D->getUsingLoc(),
+ QualifierLoc,
+ NameInfo,
+ D->hasTypename());
+
+ CXXScopeSpec SS;
+ SS.Adopt(QualifierLoc);
+ if (CheckRedeclaration) {
+ Prev.setHideTags(false);
+ SemaRef.LookupQualifiedName(Prev, Owner);
+
+ // Check for invalid redeclarations.
+ if (SemaRef.CheckUsingDeclRedeclaration(D->getUsingLoc(),
+ D->hasTypename(), SS,
+ D->getLocation(), Prev))
+ NewUD->setInvalidDecl();
+
+ }
+
+ if (!NewUD->isInvalidDecl() &&
+ SemaRef.CheckUsingDeclQualifier(D->getUsingLoc(), SS, NameInfo,
+ D->getLocation()))
+ NewUD->setInvalidDecl();
+
+ SemaRef.Context.setInstantiatedFromUsingDecl(NewUD, D);
+ NewUD->setAccess(D->getAccess());
+ Owner->addDecl(NewUD);
+
+ // Don't process the shadow decls for an invalid decl.
+ if (NewUD->isInvalidDecl())
+ return NewUD;
+
+ if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
+ SemaRef.CheckInheritingConstructorUsingDecl(NewUD);
+ return NewUD;
+ }
+
+ bool isFunctionScope = Owner->isFunctionOrMethod();
+
+ // Process the shadow decls.
+ for (auto *Shadow : D->shadows()) {
+ NamedDecl *InstTarget =
+ cast_or_null<NamedDecl>(SemaRef.FindInstantiatedDecl(
+ Shadow->getLocation(), Shadow->getTargetDecl(), TemplateArgs));
+ if (!InstTarget)
+ return nullptr;
+
+ UsingShadowDecl *PrevDecl = nullptr;
+ if (CheckRedeclaration) {
+ if (SemaRef.CheckUsingShadowDecl(NewUD, InstTarget, Prev, PrevDecl))
+ continue;
+ } else if (UsingShadowDecl *OldPrev =
+ getPreviousDeclForInstantiation(Shadow)) {
+ PrevDecl = cast_or_null<UsingShadowDecl>(SemaRef.FindInstantiatedDecl(
+ Shadow->getLocation(), OldPrev, TemplateArgs));
+ }
+
+ UsingShadowDecl *InstShadow =
+ SemaRef.BuildUsingShadowDecl(/*Scope*/nullptr, NewUD, InstTarget,
+ PrevDecl);
+ SemaRef.Context.setInstantiatedFromUsingShadowDecl(InstShadow, Shadow);
+
+ if (isFunctionScope)
+ SemaRef.CurrentInstantiationScope->InstantiatedLocal(Shadow, InstShadow);
+ }
+
+ return NewUD;
+}
+
+Decl *TemplateDeclInstantiator::VisitUsingShadowDecl(UsingShadowDecl *D) {
+ // Ignore these; we handle them in bulk when processing the UsingDecl.
+ return nullptr;
+}
+
+Decl * TemplateDeclInstantiator
+ ::VisitUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *D) {
+ NestedNameSpecifierLoc QualifierLoc
+ = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(),
+ TemplateArgs);
+ if (!QualifierLoc)
+ return nullptr;
+
+ CXXScopeSpec SS;
+ SS.Adopt(QualifierLoc);
+
+ // Since NameInfo refers to a typename, it cannot be a C++ special name.
+ // Hence, no transformation is required for it.
+ DeclarationNameInfo NameInfo(D->getDeclName(), D->getLocation());
+ NamedDecl *UD =
+ SemaRef.BuildUsingDeclaration(/*Scope*/ nullptr, D->getAccess(),
+ D->getUsingLoc(), SS, NameInfo, nullptr,
+ /*instantiation*/ true,
+ /*typename*/ true, D->getTypenameLoc());
+ if (UD)
+ SemaRef.Context.setInstantiatedFromUsingDecl(cast<UsingDecl>(UD), D);
+
+ return UD;
+}
+
+Decl * TemplateDeclInstantiator
+ ::VisitUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *D) {
+ NestedNameSpecifierLoc QualifierLoc
+ = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(), TemplateArgs);
+ if (!QualifierLoc)
+ return nullptr;
+
+ CXXScopeSpec SS;
+ SS.Adopt(QualifierLoc);
+
+ DeclarationNameInfo NameInfo
+ = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs);
+
+ NamedDecl *UD =
+ SemaRef.BuildUsingDeclaration(/*Scope*/ nullptr, D->getAccess(),
+ D->getUsingLoc(), SS, NameInfo, nullptr,
+ /*instantiation*/ true,
+ /*typename*/ false, SourceLocation());
+ if (UD)
+ SemaRef.Context.setInstantiatedFromUsingDecl(cast<UsingDecl>(UD), D);
+
+ return UD;
+}
+
+
+Decl *TemplateDeclInstantiator::VisitClassScopeFunctionSpecializationDecl(
+ ClassScopeFunctionSpecializationDecl *Decl) {
+ CXXMethodDecl *OldFD = Decl->getSpecialization();
+ CXXMethodDecl *NewFD =
+ cast_or_null<CXXMethodDecl>(VisitCXXMethodDecl(OldFD, nullptr, true));
+ if (!NewFD)
+ return nullptr;
+
+ LookupResult Previous(SemaRef, NewFD->getNameInfo(), Sema::LookupOrdinaryName,
+ Sema::ForRedeclaration);
+
+ TemplateArgumentListInfo TemplateArgs;
+ TemplateArgumentListInfo *TemplateArgsPtr = nullptr;
+ if (Decl->hasExplicitTemplateArgs()) {
+ TemplateArgs = Decl->templateArgs();
+ TemplateArgsPtr = &TemplateArgs;
+ }
+
+ SemaRef.LookupQualifiedName(Previous, SemaRef.CurContext);
+ if (SemaRef.CheckFunctionTemplateSpecialization(NewFD, TemplateArgsPtr,
+ Previous)) {
+ NewFD->setInvalidDecl();
+ return NewFD;
+ }
+
+ // Associate the specialization with the pattern.
+ FunctionDecl *Specialization = cast<FunctionDecl>(Previous.getFoundDecl());
+ assert(Specialization && "Class scope Specialization is null");
+ SemaRef.Context.setClassScopeSpecializationPattern(Specialization, OldFD);
+
+ return NewFD;
+}
+
+Decl *TemplateDeclInstantiator::VisitOMPThreadPrivateDecl(
+ OMPThreadPrivateDecl *D) {
+ SmallVector<Expr *, 5> Vars;
+ for (auto *I : D->varlists()) {
+ Expr *Var = SemaRef.SubstExpr(I, TemplateArgs).get();
+ assert(isa<DeclRefExpr>(Var) && "threadprivate arg is not a DeclRefExpr");
+ Vars.push_back(Var);
+ }
+
+ OMPThreadPrivateDecl *TD =
+ SemaRef.CheckOMPThreadPrivateDecl(D->getLocation(), Vars);
+
+ TD->setAccess(AS_public);
+ Owner->addDecl(TD);
+
+ return TD;
+}
+
+Decl *TemplateDeclInstantiator::VisitFunctionDecl(FunctionDecl *D) {
+ return VisitFunctionDecl(D, nullptr);
+}
+
+Decl *TemplateDeclInstantiator::VisitCXXMethodDecl(CXXMethodDecl *D) {
+ return VisitCXXMethodDecl(D, nullptr);
+}
+
+Decl *TemplateDeclInstantiator::VisitRecordDecl(RecordDecl *D) {
+ llvm_unreachable("There are only CXXRecordDecls in C++");
+}
+
+Decl *
+TemplateDeclInstantiator::VisitClassTemplateSpecializationDecl(
+ ClassTemplateSpecializationDecl *D) {
+ // As a MS extension, we permit class-scope explicit specialization
+ // of member class templates.
+ ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate();
+ assert(ClassTemplate->getDeclContext()->isRecord() &&
+ D->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
+ "can only instantiate an explicit specialization "
+ "for a member class template");
+
+ // Lookup the already-instantiated declaration in the instantiation
+ // of the class template. FIXME: Diagnose or assert if this fails?
+ DeclContext::lookup_result Found
+ = Owner->lookup(ClassTemplate->getDeclName());
+ if (Found.empty())
+ return nullptr;
+ ClassTemplateDecl *InstClassTemplate
+ = dyn_cast<ClassTemplateDecl>(Found.front());
+ if (!InstClassTemplate)
+ return nullptr;
+
+ // Substitute into the template arguments of the class template explicit
+ // specialization.
+ TemplateSpecializationTypeLoc Loc = D->getTypeAsWritten()->getTypeLoc().
+ castAs<TemplateSpecializationTypeLoc>();
+ TemplateArgumentListInfo InstTemplateArgs(Loc.getLAngleLoc(),
+ Loc.getRAngleLoc());
+ SmallVector<TemplateArgumentLoc, 4> ArgLocs;
+ for (unsigned I = 0; I != Loc.getNumArgs(); ++I)
+ ArgLocs.push_back(Loc.getArgLoc(I));
+ if (SemaRef.Subst(ArgLocs.data(), ArgLocs.size(),
+ InstTemplateArgs, TemplateArgs))
+ return nullptr;
+
+ // Check that the template argument list is well-formed for this
+ // class template.
+ SmallVector<TemplateArgument, 4> Converted;
+ if (SemaRef.CheckTemplateArgumentList(InstClassTemplate,
+ D->getLocation(),
+ InstTemplateArgs,
+ false,
+ Converted))
+ return nullptr;
+
+ // Figure out where to insert this class template explicit specialization
+ // in the member template's set of class template explicit specializations.
+ void *InsertPos = nullptr;
+ ClassTemplateSpecializationDecl *PrevDecl =
+ InstClassTemplate->findSpecialization(Converted, InsertPos);
+
+ // Check whether we've already seen a conflicting instantiation of this
+ // declaration (for instance, if there was a prior implicit instantiation).
+ bool Ignored;
+ if (PrevDecl &&
+ SemaRef.CheckSpecializationInstantiationRedecl(D->getLocation(),
+ D->getSpecializationKind(),
+ PrevDecl,
+ PrevDecl->getSpecializationKind(),
+ PrevDecl->getPointOfInstantiation(),
+ Ignored))
+ return nullptr;
+
+ // If PrevDecl was a definition and D is also a definition, diagnose.
+ // This happens in cases like:
+ //
+ // template<typename T, typename U>
+ // struct Outer {
+ // template<typename X> struct Inner;
+ // template<> struct Inner<T> {};
+ // template<> struct Inner<U> {};
+ // };
+ //
+ // Outer<int, int> outer; // error: the explicit specializations of Inner
+ // // have the same signature.
+ if (PrevDecl && PrevDecl->getDefinition() &&
+ D->isThisDeclarationADefinition()) {
+ SemaRef.Diag(D->getLocation(), diag::err_redefinition) << PrevDecl;
+ SemaRef.Diag(PrevDecl->getDefinition()->getLocation(),
+ diag::note_previous_definition);
+ return nullptr;
+ }
+
+ // Create the class template partial specialization declaration.
+ ClassTemplateSpecializationDecl *InstD
+ = ClassTemplateSpecializationDecl::Create(SemaRef.Context,
+ D->getTagKind(),
+ Owner,
+ D->getLocStart(),
+ D->getLocation(),
+ InstClassTemplate,
+ Converted.data(),
+ Converted.size(),
+ PrevDecl);
+
+ // Add this partial specialization to the set of class template partial
+ // specializations.
+ if (!PrevDecl)
+ InstClassTemplate->AddSpecialization(InstD, InsertPos);
+
+ // Substitute the nested name specifier, if any.
+ if (SubstQualifier(D, InstD))
+ return nullptr;
+
+ // Build the canonical type that describes the converted template
+ // arguments of the class template explicit specialization.
+ QualType CanonType = SemaRef.Context.getTemplateSpecializationType(
+ TemplateName(InstClassTemplate), Converted.data(), Converted.size(),
+ SemaRef.Context.getRecordType(InstD));
+
+ // Build the fully-sugared type for this class template
+ // specialization as the user wrote in the specialization
+ // itself. This means that we'll pretty-print the type retrieved
+ // from the specialization's declaration the way that the user
+ // actually wrote the specialization, rather than formatting the
+ // name based on the "canonical" representation used to store the
+ // template arguments in the specialization.
+ TypeSourceInfo *WrittenTy = SemaRef.Context.getTemplateSpecializationTypeInfo(
+ TemplateName(InstClassTemplate), D->getLocation(), InstTemplateArgs,
+ CanonType);
+
+ InstD->setAccess(D->getAccess());
+ InstD->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation);
+ InstD->setSpecializationKind(D->getSpecializationKind());
+ InstD->setTypeAsWritten(WrittenTy);
+ InstD->setExternLoc(D->getExternLoc());
+ InstD->setTemplateKeywordLoc(D->getTemplateKeywordLoc());
+
+ Owner->addDecl(InstD);
+
+ // Instantiate the members of the class-scope explicit specialization eagerly.
+ // We don't have support for lazy instantiation of an explicit specialization
+ // yet, and MSVC eagerly instantiates in this case.
+ if (D->isThisDeclarationADefinition() &&
+ SemaRef.InstantiateClass(D->getLocation(), InstD, D, TemplateArgs,
+ TSK_ImplicitInstantiation,
+ /*Complain=*/true))
+ return nullptr;
+
+ return InstD;
+}
+
+Decl *TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl(
+ VarTemplateSpecializationDecl *D) {
+
+ TemplateArgumentListInfo VarTemplateArgsInfo;
+ VarTemplateDecl *VarTemplate = D->getSpecializedTemplate();
+ assert(VarTemplate &&
+ "A template specialization without specialized template?");
+
+ // Substitute the current template arguments.
+ const TemplateArgumentListInfo &TemplateArgsInfo = D->getTemplateArgsInfo();
+ VarTemplateArgsInfo.setLAngleLoc(TemplateArgsInfo.getLAngleLoc());
+ VarTemplateArgsInfo.setRAngleLoc(TemplateArgsInfo.getRAngleLoc());
+
+ if (SemaRef.Subst(TemplateArgsInfo.getArgumentArray(),
+ TemplateArgsInfo.size(), VarTemplateArgsInfo, TemplateArgs))
+ return nullptr;
+
+ // Check that the template argument list is well-formed for this template.
+ SmallVector<TemplateArgument, 4> Converted;
+ if (SemaRef.CheckTemplateArgumentList(
+ VarTemplate, VarTemplate->getLocStart(),
+ const_cast<TemplateArgumentListInfo &>(VarTemplateArgsInfo), false,
+ Converted))
+ return nullptr;
+
+ // Find the variable template specialization declaration that
+ // corresponds to these arguments.
+ void *InsertPos = nullptr;
+ if (VarTemplateSpecializationDecl *VarSpec = VarTemplate->findSpecialization(
+ Converted, InsertPos))
+ // If we already have a variable template specialization, return it.
+ return VarSpec;
+
+ return VisitVarTemplateSpecializationDecl(VarTemplate, D, InsertPos,
+ VarTemplateArgsInfo, Converted);
+}
+
+Decl *TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl(
+ VarTemplateDecl *VarTemplate, VarDecl *D, void *InsertPos,
+ const TemplateArgumentListInfo &TemplateArgsInfo,
+ ArrayRef<TemplateArgument> Converted) {
+
+ // If this is the variable for an anonymous struct or union,
+ // instantiate the anonymous struct/union type first.
+ if (const RecordType *RecordTy = D->getType()->getAs<RecordType>())
+ if (RecordTy->getDecl()->isAnonymousStructOrUnion())
+ if (!VisitCXXRecordDecl(cast<CXXRecordDecl>(RecordTy->getDecl())))
+ return nullptr;
+
+ // Do substitution on the type of the declaration
+ TypeSourceInfo *DI =
+ SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs,
+ D->getTypeSpecStartLoc(), D->getDeclName());
+ if (!DI)
+ return nullptr;
+
+ if (DI->getType()->isFunctionType()) {
+ SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function)
+ << D->isStaticDataMember() << DI->getType();
+ return nullptr;
+ }
+
+ // Build the instantiated declaration
+ VarTemplateSpecializationDecl *Var = VarTemplateSpecializationDecl::Create(
+ SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(),
+ VarTemplate, DI->getType(), DI, D->getStorageClass(), Converted.data(),
+ Converted.size());
+ Var->setTemplateArgsInfo(TemplateArgsInfo);
+ if (InsertPos)
+ VarTemplate->AddSpecialization(Var, InsertPos);
+
+ // Substitute the nested name specifier, if any.
+ if (SubstQualifier(D, Var))
+ return nullptr;
+
+ SemaRef.BuildVariableInstantiation(Var, D, TemplateArgs, LateAttrs,
+ Owner, StartingScope);
+
+ return Var;
+}
+
+Decl *TemplateDeclInstantiator::VisitObjCAtDefsFieldDecl(ObjCAtDefsFieldDecl *D) {
+ llvm_unreachable("@defs is not supported in Objective-C++");
+}
+
+Decl *TemplateDeclInstantiator::VisitFriendTemplateDecl(FriendTemplateDecl *D) {
+ // FIXME: We need to be able to instantiate FriendTemplateDecls.
+ unsigned DiagID = SemaRef.getDiagnostics().getCustomDiagID(
+ DiagnosticsEngine::Error,
+ "cannot instantiate %0 yet");
+ SemaRef.Diag(D->getLocation(), DiagID)
+ << D->getDeclKindName();
+
+ return nullptr;
+}
+
+Decl *TemplateDeclInstantiator::VisitDecl(Decl *D) {
+ llvm_unreachable("Unexpected decl");
+}
+
+Decl *Sema::SubstDecl(Decl *D, DeclContext *Owner,
+ const MultiLevelTemplateArgumentList &TemplateArgs) {
+ TemplateDeclInstantiator Instantiator(*this, Owner, TemplateArgs);
+ if (D->isInvalidDecl())
+ return nullptr;
+
+ return Instantiator.Visit(D);
+}
+
+/// \brief Instantiates a nested template parameter list in the current
+/// instantiation context.
+///
+/// \param L The parameter list to instantiate
+///
+/// \returns NULL if there was an error
+TemplateParameterList *
+TemplateDeclInstantiator::SubstTemplateParams(TemplateParameterList *L) {
+ // Get errors for all the parameters before bailing out.
+ bool Invalid = false;
+
+ unsigned N = L->size();
+ typedef SmallVector<NamedDecl *, 8> ParamVector;
+ ParamVector Params;
+ Params.reserve(N);
+ for (TemplateParameterList::iterator PI = L->begin(), PE = L->end();
+ PI != PE; ++PI) {
+ NamedDecl *D = cast_or_null<NamedDecl>(Visit(*PI));
+ Params.push_back(D);
+ Invalid = Invalid || !D || D->isInvalidDecl();
+ }
+
+ // Clean up if we had an error.
+ if (Invalid)
+ return nullptr;
+
+ TemplateParameterList *InstL
+ = TemplateParameterList::Create(SemaRef.Context, L->getTemplateLoc(),
+ L->getLAngleLoc(), &Params.front(), N,
+ L->getRAngleLoc());
+ return InstL;
+}
+
+/// \brief Instantiate the declaration of a class template partial
+/// specialization.
+///
+/// \param ClassTemplate the (instantiated) class template that is partially
+// specialized by the instantiation of \p PartialSpec.
+///
+/// \param PartialSpec the (uninstantiated) class template partial
+/// specialization that we are instantiating.
+///
+/// \returns The instantiated partial specialization, if successful; otherwise,
+/// NULL to indicate an error.
+ClassTemplatePartialSpecializationDecl *
+TemplateDeclInstantiator::InstantiateClassTemplatePartialSpecialization(
+ ClassTemplateDecl *ClassTemplate,
+ ClassTemplatePartialSpecializationDecl *PartialSpec) {
+ // Create a local instantiation scope for this class template partial
+ // specialization, which will contain the instantiations of the template
+ // parameters.
+ LocalInstantiationScope Scope(SemaRef);
+
+ // Substitute into the template parameters of the class template partial
+ // specialization.
+ TemplateParameterList *TempParams = PartialSpec->getTemplateParameters();
+ TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
+ if (!InstParams)
+ return nullptr;
+
+ // Substitute into the template arguments of the class template partial
+ // specialization.
+ const ASTTemplateArgumentListInfo *TemplArgInfo
+ = PartialSpec->getTemplateArgsAsWritten();
+ TemplateArgumentListInfo InstTemplateArgs(TemplArgInfo->LAngleLoc,
+ TemplArgInfo->RAngleLoc);
+ if (SemaRef.Subst(TemplArgInfo->getTemplateArgs(),
+ TemplArgInfo->NumTemplateArgs,
+ InstTemplateArgs, TemplateArgs))
+ return nullptr;
+
+ // Check that the template argument list is well-formed for this
+ // class template.
+ SmallVector<TemplateArgument, 4> Converted;
+ if (SemaRef.CheckTemplateArgumentList(ClassTemplate,
+ PartialSpec->getLocation(),
+ InstTemplateArgs,
+ false,
+ Converted))
+ return nullptr;
+
+ // Figure out where to insert this class template partial specialization
+ // in the member template's set of class template partial specializations.
+ void *InsertPos = nullptr;
+ ClassTemplateSpecializationDecl *PrevDecl
+ = ClassTemplate->findPartialSpecialization(Converted, InsertPos);
+
+ // Build the canonical type that describes the converted template
+ // arguments of the class template partial specialization.
+ QualType CanonType
+ = SemaRef.Context.getTemplateSpecializationType(TemplateName(ClassTemplate),
+ Converted.data(),
+ Converted.size());
+
+ // Build the fully-sugared type for this class template
+ // specialization as the user wrote in the specialization
+ // itself. This means that we'll pretty-print the type retrieved
+ // from the specialization's declaration the way that the user
+ // actually wrote the specialization, rather than formatting the
+ // name based on the "canonical" representation used to store the
+ // template arguments in the specialization.
+ TypeSourceInfo *WrittenTy
+ = SemaRef.Context.getTemplateSpecializationTypeInfo(
+ TemplateName(ClassTemplate),
+ PartialSpec->getLocation(),
+ InstTemplateArgs,
+ CanonType);
+
+ if (PrevDecl) {
+ // We've already seen a partial specialization with the same template
+ // parameters and template arguments. This can happen, for example, when
+ // substituting the outer template arguments ends up causing two
+ // class template partial specializations of a member class template
+ // to have identical forms, e.g.,
+ //
+ // template<typename T, typename U>
+ // struct Outer {
+ // template<typename X, typename Y> struct Inner;
+ // template<typename Y> struct Inner<T, Y>;
+ // template<typename Y> struct Inner<U, Y>;
+ // };
+ //
+ // Outer<int, int> outer; // error: the partial specializations of Inner
+ // // have the same signature.
+ SemaRef.Diag(PartialSpec->getLocation(), diag::err_partial_spec_redeclared)
+ << WrittenTy->getType();
+ SemaRef.Diag(PrevDecl->getLocation(), diag::note_prev_partial_spec_here)
+ << SemaRef.Context.getTypeDeclType(PrevDecl);
+ return nullptr;
+ }
+
+
+ // Create the class template partial specialization declaration.
+ ClassTemplatePartialSpecializationDecl *InstPartialSpec
+ = ClassTemplatePartialSpecializationDecl::Create(SemaRef.Context,
+ PartialSpec->getTagKind(),
+ Owner,
+ PartialSpec->getLocStart(),
+ PartialSpec->getLocation(),
+ InstParams,
+ ClassTemplate,
+ Converted.data(),
+ Converted.size(),
+ InstTemplateArgs,
+ CanonType,
+ nullptr);
+ // Substitute the nested name specifier, if any.
+ if (SubstQualifier(PartialSpec, InstPartialSpec))
+ return nullptr;
+
+ InstPartialSpec->setInstantiatedFromMember(PartialSpec);
+ InstPartialSpec->setTypeAsWritten(WrittenTy);
+
+ // Add this partial specialization to the set of class template partial
+ // specializations.
+ ClassTemplate->AddPartialSpecialization(InstPartialSpec,
+ /*InsertPos=*/nullptr);
+ return InstPartialSpec;
+}
+
+/// \brief Instantiate the declaration of a variable template partial
+/// specialization.
+///
+/// \param VarTemplate the (instantiated) variable template that is partially
+/// specialized by the instantiation of \p PartialSpec.
+///
+/// \param PartialSpec the (uninstantiated) variable template partial
+/// specialization that we are instantiating.
+///
+/// \returns The instantiated partial specialization, if successful; otherwise,
+/// NULL to indicate an error.
+VarTemplatePartialSpecializationDecl *
+TemplateDeclInstantiator::InstantiateVarTemplatePartialSpecialization(
+ VarTemplateDecl *VarTemplate,
+ VarTemplatePartialSpecializationDecl *PartialSpec) {
+ // Create a local instantiation scope for this variable template partial
+ // specialization, which will contain the instantiations of the template
+ // parameters.
+ LocalInstantiationScope Scope(SemaRef);
+
+ // Substitute into the template parameters of the variable template partial
+ // specialization.
+ TemplateParameterList *TempParams = PartialSpec->getTemplateParameters();
+ TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
+ if (!InstParams)
+ return nullptr;
+
+ // Substitute into the template arguments of the variable template partial
+ // specialization.
+ const ASTTemplateArgumentListInfo *TemplArgInfo
+ = PartialSpec->getTemplateArgsAsWritten();
+ TemplateArgumentListInfo InstTemplateArgs(TemplArgInfo->LAngleLoc,
+ TemplArgInfo->RAngleLoc);
+ if (SemaRef.Subst(TemplArgInfo->getTemplateArgs(),
+ TemplArgInfo->NumTemplateArgs,
+ InstTemplateArgs, TemplateArgs))
+ return nullptr;
+
+ // Check that the template argument list is well-formed for this
+ // class template.
+ SmallVector<TemplateArgument, 4> Converted;
+ if (SemaRef.CheckTemplateArgumentList(VarTemplate, PartialSpec->getLocation(),
+ InstTemplateArgs, false, Converted))
+ return nullptr;
+
+ // Figure out where to insert this variable template partial specialization
+ // in the member template's set of variable template partial specializations.
+ void *InsertPos = nullptr;
+ VarTemplateSpecializationDecl *PrevDecl =
+ VarTemplate->findPartialSpecialization(Converted, InsertPos);
+
+ // Build the canonical type that describes the converted template
+ // arguments of the variable template partial specialization.
+ QualType CanonType = SemaRef.Context.getTemplateSpecializationType(
+ TemplateName(VarTemplate), Converted.data(), Converted.size());
+
+ // Build the fully-sugared type for this variable template
+ // specialization as the user wrote in the specialization
+ // itself. This means that we'll pretty-print the type retrieved
+ // from the specialization's declaration the way that the user
+ // actually wrote the specialization, rather than formatting the
+ // name based on the "canonical" representation used to store the
+ // template arguments in the specialization.
+ TypeSourceInfo *WrittenTy = SemaRef.Context.getTemplateSpecializationTypeInfo(
+ TemplateName(VarTemplate), PartialSpec->getLocation(), InstTemplateArgs,
+ CanonType);
+
+ if (PrevDecl) {
+ // We've already seen a partial specialization with the same template
+ // parameters and template arguments. This can happen, for example, when
+ // substituting the outer template arguments ends up causing two
+ // variable template partial specializations of a member variable template
+ // to have identical forms, e.g.,
+ //
+ // template<typename T, typename U>
+ // struct Outer {
+ // template<typename X, typename Y> pair<X,Y> p;
+ // template<typename Y> pair<T, Y> p;
+ // template<typename Y> pair<U, Y> p;
+ // };
+ //
+ // Outer<int, int> outer; // error: the partial specializations of Inner
+ // // have the same signature.
+ SemaRef.Diag(PartialSpec->getLocation(),
+ diag::err_var_partial_spec_redeclared)
+ << WrittenTy->getType();
+ SemaRef.Diag(PrevDecl->getLocation(),
+ diag::note_var_prev_partial_spec_here);
+ return nullptr;
+ }
+
+ // Do substitution on the type of the declaration
+ TypeSourceInfo *DI = SemaRef.SubstType(
+ PartialSpec->getTypeSourceInfo(), TemplateArgs,
+ PartialSpec->getTypeSpecStartLoc(), PartialSpec->getDeclName());
+ if (!DI)
+ return nullptr;
+
+ if (DI->getType()->isFunctionType()) {
+ SemaRef.Diag(PartialSpec->getLocation(),
+ diag::err_variable_instantiates_to_function)
+ << PartialSpec->isStaticDataMember() << DI->getType();
+ return nullptr;
+ }
+
+ // Create the variable template partial specialization declaration.
+ VarTemplatePartialSpecializationDecl *InstPartialSpec =
+ VarTemplatePartialSpecializationDecl::Create(
+ SemaRef.Context, Owner, PartialSpec->getInnerLocStart(),
+ PartialSpec->getLocation(), InstParams, VarTemplate, DI->getType(),
+ DI, PartialSpec->getStorageClass(), Converted.data(),
+ Converted.size(), InstTemplateArgs);
+
+ // Substitute the nested name specifier, if any.
+ if (SubstQualifier(PartialSpec, InstPartialSpec))
+ return nullptr;
+
+ InstPartialSpec->setInstantiatedFromMember(PartialSpec);
+ InstPartialSpec->setTypeAsWritten(WrittenTy);
+
+ // Add this partial specialization to the set of variable template partial
+ // specializations. The instantiation of the initializer is not necessary.
+ VarTemplate->AddPartialSpecialization(InstPartialSpec, /*InsertPos=*/nullptr);
+
+ SemaRef.BuildVariableInstantiation(InstPartialSpec, PartialSpec, TemplateArgs,
+ LateAttrs, Owner, StartingScope);
+
+ return InstPartialSpec;
+}
+
+TypeSourceInfo*
+TemplateDeclInstantiator::SubstFunctionType(FunctionDecl *D,
+ SmallVectorImpl<ParmVarDecl *> &Params) {
+ TypeSourceInfo *OldTInfo = D->getTypeSourceInfo();
+ assert(OldTInfo && "substituting function without type source info");
+ assert(Params.empty() && "parameter vector is non-empty at start");
+
+ CXXRecordDecl *ThisContext = nullptr;
+ unsigned ThisTypeQuals = 0;
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
+ ThisContext = cast<CXXRecordDecl>(Owner);
+ ThisTypeQuals = Method->getTypeQualifiers();
+ }
+
+ TypeSourceInfo *NewTInfo
+ = SemaRef.SubstFunctionDeclType(OldTInfo, TemplateArgs,
+ D->getTypeSpecStartLoc(),
+ D->getDeclName(),
+ ThisContext, ThisTypeQuals);
+ if (!NewTInfo)
+ return nullptr;
+
+ TypeLoc OldTL = OldTInfo->getTypeLoc().IgnoreParens();
+ if (FunctionProtoTypeLoc OldProtoLoc = OldTL.getAs<FunctionProtoTypeLoc>()) {
+ if (NewTInfo != OldTInfo) {
+ // Get parameters from the new type info.
+ TypeLoc NewTL = NewTInfo->getTypeLoc().IgnoreParens();
+ FunctionProtoTypeLoc NewProtoLoc = NewTL.castAs<FunctionProtoTypeLoc>();
+ unsigned NewIdx = 0;
+ for (unsigned OldIdx = 0, NumOldParams = OldProtoLoc.getNumParams();
+ OldIdx != NumOldParams; ++OldIdx) {
+ ParmVarDecl *OldParam = OldProtoLoc.getParam(OldIdx);
+ LocalInstantiationScope *Scope = SemaRef.CurrentInstantiationScope;
+
+ Optional<unsigned> NumArgumentsInExpansion;
+ if (OldParam->isParameterPack())
+ NumArgumentsInExpansion =
+ SemaRef.getNumArgumentsInExpansion(OldParam->getType(),
+ TemplateArgs);
+ if (!NumArgumentsInExpansion) {
+ // Simple case: normal parameter, or a parameter pack that's
+ // instantiated to a (still-dependent) parameter pack.
+ ParmVarDecl *NewParam = NewProtoLoc.getParam(NewIdx++);
+ Params.push_back(NewParam);
+ Scope->InstantiatedLocal(OldParam, NewParam);
+ } else {
+ // Parameter pack expansion: make the instantiation an argument pack.
+ Scope->MakeInstantiatedLocalArgPack(OldParam);
+ for (unsigned I = 0; I != *NumArgumentsInExpansion; ++I) {
+ ParmVarDecl *NewParam = NewProtoLoc.getParam(NewIdx++);
+ Params.push_back(NewParam);
+ Scope->InstantiatedLocalPackArg(OldParam, NewParam);
+ }
+ }
+ }
+ } else {
+ // The function type itself was not dependent and therefore no
+ // substitution occurred. However, we still need to instantiate
+ // the function parameters themselves.
+ const FunctionProtoType *OldProto =
+ cast<FunctionProtoType>(OldProtoLoc.getType());
+ for (unsigned i = 0, i_end = OldProtoLoc.getNumParams(); i != i_end;
+ ++i) {
+ ParmVarDecl *OldParam = OldProtoLoc.getParam(i);
+ if (!OldParam) {
+ Params.push_back(SemaRef.BuildParmVarDeclForTypedef(
+ D, D->getLocation(), OldProto->getParamType(i)));
+ continue;
+ }
+
+ ParmVarDecl *Parm =
+ cast_or_null<ParmVarDecl>(VisitParmVarDecl(OldParam));
+ if (!Parm)
+ return nullptr;
+ Params.push_back(Parm);
+ }
+ }
+ } else {
+ // If the type of this function, after ignoring parentheses, is not
+ // *directly* a function type, then we're instantiating a function that
+ // was declared via a typedef or with attributes, e.g.,
+ //
+ // typedef int functype(int, int);
+ // functype func;
+ // int __cdecl meth(int, int);
+ //
+ // In this case, we'll just go instantiate the ParmVarDecls that we
+ // synthesized in the method declaration.
+ SmallVector<QualType, 4> ParamTypes;
+ if (SemaRef.SubstParmTypes(D->getLocation(), D->param_begin(),
+ D->getNumParams(), TemplateArgs, ParamTypes,
+ &Params))
+ return nullptr;
+ }
+
+ return NewTInfo;
+}
+
+/// Introduce the instantiated function parameters into the local
+/// instantiation scope, and set the parameter names to those used
+/// in the template.
+static bool addInstantiatedParametersToScope(Sema &S, FunctionDecl *Function,
+ const FunctionDecl *PatternDecl,
+ LocalInstantiationScope &Scope,
+ const MultiLevelTemplateArgumentList &TemplateArgs) {
+ unsigned FParamIdx = 0;
+ for (unsigned I = 0, N = PatternDecl->getNumParams(); I != N; ++I) {
+ const ParmVarDecl *PatternParam = PatternDecl->getParamDecl(I);
+ if (!PatternParam->isParameterPack()) {
+ // Simple case: not a parameter pack.
+ assert(FParamIdx < Function->getNumParams());
+ ParmVarDecl *FunctionParam = Function->getParamDecl(FParamIdx);
+ FunctionParam->setDeclName(PatternParam->getDeclName());
+ // If the parameter's type is not dependent, update it to match the type
+ // in the pattern. They can differ in top-level cv-qualifiers, and we want
+ // the pattern's type here. If the type is dependent, they can't differ,
+ // per core issue 1668. Substitute into the type from the pattern, in case
+ // it's instantiation-dependent.
+ // FIXME: Updating the type to work around this is at best fragile.
+ if (!PatternDecl->getType()->isDependentType()) {
+ QualType T = S.SubstType(PatternParam->getType(), TemplateArgs,
+ FunctionParam->getLocation(),
+ FunctionParam->getDeclName());
+ if (T.isNull())
+ return true;
+ FunctionParam->setType(T);
+ }
+
+ Scope.InstantiatedLocal(PatternParam, FunctionParam);
+ ++FParamIdx;
+ continue;
+ }
+
+ // Expand the parameter pack.
+ Scope.MakeInstantiatedLocalArgPack(PatternParam);
+ Optional<unsigned> NumArgumentsInExpansion
+ = S.getNumArgumentsInExpansion(PatternParam->getType(), TemplateArgs);
+ assert(NumArgumentsInExpansion &&
+ "should only be called when all template arguments are known");
+ QualType PatternType =
+ PatternParam->getType()->castAs<PackExpansionType>()->getPattern();
+ for (unsigned Arg = 0; Arg < *NumArgumentsInExpansion; ++Arg) {
+ ParmVarDecl *FunctionParam = Function->getParamDecl(FParamIdx);
+ FunctionParam->setDeclName(PatternParam->getDeclName());
+ if (!PatternDecl->getType()->isDependentType()) {
+ Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, Arg);
+ QualType T = S.SubstType(PatternType, TemplateArgs,
+ FunctionParam->getLocation(),
+ FunctionParam->getDeclName());
+ if (T.isNull())
+ return true;
+ FunctionParam->setType(T);
+ }
+
+ Scope.InstantiatedLocalPackArg(PatternParam, FunctionParam);
+ ++FParamIdx;
+ }
+ }
+
+ return false;
+}
+
+void Sema::InstantiateExceptionSpec(SourceLocation PointOfInstantiation,
+ FunctionDecl *Decl) {
+ const FunctionProtoType *Proto = Decl->getType()->castAs<FunctionProtoType>();
+ if (Proto->getExceptionSpecType() != EST_Uninstantiated)
+ return;
+
+ InstantiatingTemplate Inst(*this, PointOfInstantiation, Decl,
+ InstantiatingTemplate::ExceptionSpecification());
+ if (Inst.isInvalid()) {
+ // We hit the instantiation depth limit. Clear the exception specification
+ // so that our callers don't have to cope with EST_Uninstantiated.
+ UpdateExceptionSpec(Decl, EST_None);
+ return;
+ }
+
+ // Enter the scope of this instantiation. We don't use
+ // PushDeclContext because we don't have a scope.
+ Sema::ContextRAII savedContext(*this, Decl);
+ LocalInstantiationScope Scope(*this);
+
+ MultiLevelTemplateArgumentList TemplateArgs =
+ getTemplateInstantiationArgs(Decl, nullptr, /*RelativeToPrimary*/true);
+
+ FunctionDecl *Template = Proto->getExceptionSpecTemplate();
+ if (addInstantiatedParametersToScope(*this, Decl, Template, Scope,
+ TemplateArgs)) {
+ UpdateExceptionSpec(Decl, EST_None);
+ return;
+ }
+
+ SubstExceptionSpec(Decl, Template->getType()->castAs<FunctionProtoType>(),
+ TemplateArgs);
+}
+
+/// \brief Initializes the common fields of an instantiation function
+/// declaration (New) from the corresponding fields of its template (Tmpl).
+///
+/// \returns true if there was an error
+bool
+TemplateDeclInstantiator::InitFunctionInstantiation(FunctionDecl *New,
+ FunctionDecl *Tmpl) {
+ if (Tmpl->isDeleted())
+ New->setDeletedAsWritten();
+
+ // Forward the mangling number from the template to the instantiated decl.
+ SemaRef.Context.setManglingNumber(New,
+ SemaRef.Context.getManglingNumber(Tmpl));
+
+ // If we are performing substituting explicitly-specified template arguments
+ // or deduced template arguments into a function template and we reach this
+ // point, we are now past the point where SFINAE applies and have committed
+ // to keeping the new function template specialization. We therefore
+ // convert the active template instantiation for the function template
+ // into a template instantiation for this specific function template
+ // specialization, which is not a SFINAE context, so that we diagnose any
+ // further errors in the declaration itself.
+ typedef Sema::ActiveTemplateInstantiation ActiveInstType;
+ ActiveInstType &ActiveInst = SemaRef.ActiveTemplateInstantiations.back();
+ if (ActiveInst.Kind == ActiveInstType::ExplicitTemplateArgumentSubstitution ||
+ ActiveInst.Kind == ActiveInstType::DeducedTemplateArgumentSubstitution) {
+ if (FunctionTemplateDecl *FunTmpl
+ = dyn_cast<FunctionTemplateDecl>(ActiveInst.Entity)) {
+ assert(FunTmpl->getTemplatedDecl() == Tmpl &&
+ "Deduction from the wrong function template?");
+ (void) FunTmpl;
+ ActiveInst.Kind = ActiveInstType::TemplateInstantiation;
+ ActiveInst.Entity = New;
+ }
+ }
+
+ const FunctionProtoType *Proto = Tmpl->getType()->getAs<FunctionProtoType>();
+ assert(Proto && "Function template without prototype?");
+
+ if (Proto->hasExceptionSpec() || Proto->getNoReturnAttr()) {
+ FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
+
+ // DR1330: In C++11, defer instantiation of a non-trivial
+ // exception specification.
+ if (SemaRef.getLangOpts().CPlusPlus11 &&
+ EPI.ExceptionSpec.Type != EST_None &&
+ EPI.ExceptionSpec.Type != EST_DynamicNone &&
+ EPI.ExceptionSpec.Type != EST_BasicNoexcept) {
+ FunctionDecl *ExceptionSpecTemplate = Tmpl;
+ if (EPI.ExceptionSpec.Type == EST_Uninstantiated)
+ ExceptionSpecTemplate = EPI.ExceptionSpec.SourceTemplate;
+ ExceptionSpecificationType NewEST = EST_Uninstantiated;
+ if (EPI.ExceptionSpec.Type == EST_Unevaluated)
+ NewEST = EST_Unevaluated;
+
+ // Mark the function has having an uninstantiated exception specification.
+ const FunctionProtoType *NewProto
+ = New->getType()->getAs<FunctionProtoType>();
+ assert(NewProto && "Template instantiation without function prototype?");
+ EPI = NewProto->getExtProtoInfo();
+ EPI.ExceptionSpec.Type = NewEST;
+ EPI.ExceptionSpec.SourceDecl = New;
+ EPI.ExceptionSpec.SourceTemplate = ExceptionSpecTemplate;
+ New->setType(SemaRef.Context.getFunctionType(
+ NewProto->getReturnType(), NewProto->getParamTypes(), EPI));
+ } else {
+ SemaRef.SubstExceptionSpec(New, Proto, TemplateArgs);
+ }
+ }
+
+ // Get the definition. Leaves the variable unchanged if undefined.
+ const FunctionDecl *Definition = Tmpl;
+ Tmpl->isDefined(Definition);
+
+ SemaRef.InstantiateAttrs(TemplateArgs, Definition, New,
+ LateAttrs, StartingScope);
+
+ return false;
+}
+
+/// \brief Initializes common fields of an instantiated method
+/// declaration (New) from the corresponding fields of its template
+/// (Tmpl).
+///
+/// \returns true if there was an error
+bool
+TemplateDeclInstantiator::InitMethodInstantiation(CXXMethodDecl *New,
+ CXXMethodDecl *Tmpl) {
+ if (InitFunctionInstantiation(New, Tmpl))
+ return true;
+
+ New->setAccess(Tmpl->getAccess());
+ if (Tmpl->isVirtualAsWritten())
+ New->setVirtualAsWritten(true);
+
+ // FIXME: New needs a pointer to Tmpl
+ return false;
+}
+
+/// \brief Instantiate the definition of the given function from its
+/// template.
+///
+/// \param PointOfInstantiation the point at which the instantiation was
+/// required. Note that this is not precisely a "point of instantiation"
+/// for the function, but it's close.
+///
+/// \param Function the already-instantiated declaration of a
+/// function template specialization or member function of a class template
+/// specialization.
+///
+/// \param Recursive if true, recursively instantiates any functions that
+/// are required by this instantiation.
+///
+/// \param DefinitionRequired if true, then we are performing an explicit
+/// instantiation where the body of the function is required. Complain if
+/// there is no such body.
+void Sema::InstantiateFunctionDefinition(SourceLocation PointOfInstantiation,
+ FunctionDecl *Function,
+ bool Recursive,
+ bool DefinitionRequired) {
+ if (Function->isInvalidDecl() || Function->isDefined())
+ return;
+
+ // Never instantiate an explicit specialization except if it is a class scope
+ // explicit specialization.
+ if (Function->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
+ !Function->getClassScopeSpecializationPattern())
+ return;
+
+ // Find the function body that we'll be substituting.
+ const FunctionDecl *PatternDecl = Function->getTemplateInstantiationPattern();
+ assert(PatternDecl && "instantiating a non-template");
+
+ Stmt *Pattern = PatternDecl->getBody(PatternDecl);
+ assert(PatternDecl && "template definition is not a template");
+ if (!Pattern) {
+ // Try to find a defaulted definition
+ PatternDecl->isDefined(PatternDecl);
+ }
+ assert(PatternDecl && "template definition is not a template");
+
+ // Postpone late parsed template instantiations.
+ if (PatternDecl->isLateTemplateParsed() &&
+ !LateTemplateParser) {
+ PendingInstantiations.push_back(
+ std::make_pair(Function, PointOfInstantiation));
+ return;
+ }
+
+ // If we're performing recursive template instantiation, create our own
+ // queue of pending implicit instantiations that we will instantiate later,
+ // while we're still within our own instantiation context.
+ // This has to happen before LateTemplateParser below is called, so that
+ // it marks vtables used in late parsed templates as used.
+ SavePendingLocalImplicitInstantiationsRAII
+ SavedPendingLocalImplicitInstantiations(*this);
+ SavePendingInstantiationsAndVTableUsesRAII
+ SavePendingInstantiationsAndVTableUses(*this, /*Enabled=*/Recursive);
+
+ // Call the LateTemplateParser callback if there is a need to late parse
+ // a templated function definition.
+ if (!Pattern && PatternDecl->isLateTemplateParsed() &&
+ LateTemplateParser) {
+ // FIXME: Optimize to allow individual templates to be deserialized.
+ if (PatternDecl->isFromASTFile())
+ ExternalSource->ReadLateParsedTemplates(LateParsedTemplateMap);
+
+ LateParsedTemplate *LPT = LateParsedTemplateMap.lookup(PatternDecl);
+ assert(LPT && "missing LateParsedTemplate");
+ LateTemplateParser(OpaqueParser, *LPT);
+ Pattern = PatternDecl->getBody(PatternDecl);
+ }
+
+ if (!Pattern && !PatternDecl->isDefaulted()) {
+ if (DefinitionRequired) {
+ if (Function->getPrimaryTemplate())
+ Diag(PointOfInstantiation,
+ diag::err_explicit_instantiation_undefined_func_template)
+ << Function->getPrimaryTemplate();
+ else
+ Diag(PointOfInstantiation,
+ diag::err_explicit_instantiation_undefined_member)
+ << 1 << Function->getDeclName() << Function->getDeclContext();
+
+ if (PatternDecl)
+ Diag(PatternDecl->getLocation(),
+ diag::note_explicit_instantiation_here);
+ Function->setInvalidDecl();
+ } else if (Function->getTemplateSpecializationKind()
+ == TSK_ExplicitInstantiationDefinition) {
+ assert(!Recursive);
+ PendingInstantiations.push_back(
+ std::make_pair(Function, PointOfInstantiation));
+ }
+
+ return;
+ }
+
+ // C++1y [temp.explicit]p10:
+ // Except for inline functions, declarations with types deduced from their
+ // initializer or return value, and class template specializations, other
+ // explicit instantiation declarations have the effect of suppressing the
+ // implicit instantiation of the entity to which they refer.
+ if (Function->getTemplateSpecializationKind() ==
+ TSK_ExplicitInstantiationDeclaration &&
+ !PatternDecl->isInlined() &&
+ !PatternDecl->getReturnType()->getContainedAutoType())
+ return;
+
+ if (PatternDecl->isInlined()) {
+ // Function, and all later redeclarations of it (from imported modules,
+ // for instance), are now implicitly inline.
+ for (auto *D = Function->getMostRecentDecl(); /**/;
+ D = D->getPreviousDecl()) {
+ D->setImplicitlyInline();
+ if (D == Function)
+ break;
+ }
+ }
+
+ InstantiatingTemplate Inst(*this, PointOfInstantiation, Function);
+ if (Inst.isInvalid())
+ return;
+
+ // Copy the inner loc start from the pattern.
+ Function->setInnerLocStart(PatternDecl->getInnerLocStart());
+
+ EnterExpressionEvaluationContext EvalContext(*this,
+ Sema::PotentiallyEvaluated);
+
+ // Introduce a new scope where local variable instantiations will be
+ // recorded, unless we're actually a member function within a local
+ // class, in which case we need to merge our results with the parent
+ // scope (of the enclosing function).
+ bool MergeWithParentScope = false;
+ if (CXXRecordDecl *Rec = dyn_cast<CXXRecordDecl>(Function->getDeclContext()))
+ MergeWithParentScope = Rec->isLocalClass();
+
+ LocalInstantiationScope Scope(*this, MergeWithParentScope);
+
+ if (PatternDecl->isDefaulted())
+ SetDeclDefaulted(Function, PatternDecl->getLocation());
+ else {
+ MultiLevelTemplateArgumentList TemplateArgs =
+ getTemplateInstantiationArgs(Function, nullptr, false, PatternDecl);
+
+ // Substitute into the qualifier; we can get a substitution failure here
+ // through evil use of alias templates.
+ // FIXME: Is CurContext correct for this? Should we go to the (instantiation
+ // of the) lexical context of the pattern?
+ SubstQualifier(*this, PatternDecl, Function, TemplateArgs);
+
+ ActOnStartOfFunctionDef(nullptr, Function);
+
+ // Enter the scope of this instantiation. We don't use
+ // PushDeclContext because we don't have a scope.
+ Sema::ContextRAII savedContext(*this, Function);
+
+ if (addInstantiatedParametersToScope(*this, Function, PatternDecl, Scope,
+ TemplateArgs))
+ return;
+
+ // If this is a constructor, instantiate the member initializers.
+ if (const CXXConstructorDecl *Ctor =
+ dyn_cast<CXXConstructorDecl>(PatternDecl)) {
+ InstantiateMemInitializers(cast<CXXConstructorDecl>(Function), Ctor,
+ TemplateArgs);
+ }
+
+ // Instantiate the function body.
+ StmtResult Body = SubstStmt(Pattern, TemplateArgs);
+
+ if (Body.isInvalid())
+ Function->setInvalidDecl();
+
+ ActOnFinishFunctionBody(Function, Body.get(),
+ /*IsInstantiation=*/true);
+
+ PerformDependentDiagnostics(PatternDecl, TemplateArgs);
+
+ if (auto *Listener = getASTMutationListener())
+ Listener->FunctionDefinitionInstantiated(Function);
+
+ savedContext.pop();
+ }
+
+ DeclGroupRef DG(Function);
+ Consumer.HandleTopLevelDecl(DG);
+
+ // This class may have local implicit instantiations that need to be
+ // instantiation within this scope.
+ PerformPendingInstantiations(/*LocalOnly=*/true);
+ Scope.Exit();
+
+ if (Recursive) {
+ // Define any pending vtables.
+ DefineUsedVTables();
+
+ // Instantiate any pending implicit instantiations found during the
+ // instantiation of this template.
+ PerformPendingInstantiations();
+
+ // PendingInstantiations and VTableUses are restored through
+ // SavePendingInstantiationsAndVTableUses's destructor.
+ }
+}
+
+VarTemplateSpecializationDecl *Sema::BuildVarTemplateInstantiation(
+ VarTemplateDecl *VarTemplate, VarDecl *FromVar,
+ const TemplateArgumentList &TemplateArgList,
+ const TemplateArgumentListInfo &TemplateArgsInfo,
+ SmallVectorImpl<TemplateArgument> &Converted,
+ SourceLocation PointOfInstantiation, void *InsertPos,
+ LateInstantiatedAttrVec *LateAttrs,
+ LocalInstantiationScope *StartingScope) {
+ if (FromVar->isInvalidDecl())
+ return nullptr;
+
+ InstantiatingTemplate Inst(*this, PointOfInstantiation, FromVar);
+ if (Inst.isInvalid())
+ return nullptr;
+
+ MultiLevelTemplateArgumentList TemplateArgLists;
+ TemplateArgLists.addOuterTemplateArguments(&TemplateArgList);
+
+ // Instantiate the first declaration of the variable template: for a partial
+ // specialization of a static data member template, the first declaration may
+ // or may not be the declaration in the class; if it's in the class, we want
+ // to instantiate a member in the class (a declaration), and if it's outside,
+ // we want to instantiate a definition.
+ //
+ // If we're instantiating an explicitly-specialized member template or member
+ // partial specialization, don't do this. The member specialization completely
+ // replaces the original declaration in this case.
+ bool IsMemberSpec = false;
+ if (VarTemplatePartialSpecializationDecl *PartialSpec =
+ dyn_cast<VarTemplatePartialSpecializationDecl>(FromVar))
+ IsMemberSpec = PartialSpec->isMemberSpecialization();
+ else if (VarTemplateDecl *FromTemplate = FromVar->getDescribedVarTemplate())
+ IsMemberSpec = FromTemplate->isMemberSpecialization();
+ if (!IsMemberSpec)
+ FromVar = FromVar->getFirstDecl();
+
+ MultiLevelTemplateArgumentList MultiLevelList(TemplateArgList);
+ TemplateDeclInstantiator Instantiator(*this, FromVar->getDeclContext(),
+ MultiLevelList);
+
+ // TODO: Set LateAttrs and StartingScope ...
+
+ return cast_or_null<VarTemplateSpecializationDecl>(
+ Instantiator.VisitVarTemplateSpecializationDecl(
+ VarTemplate, FromVar, InsertPos, TemplateArgsInfo, Converted));
+}
+
+/// \brief Instantiates a variable template specialization by completing it
+/// with appropriate type information and initializer.
+VarTemplateSpecializationDecl *Sema::CompleteVarTemplateSpecializationDecl(
+ VarTemplateSpecializationDecl *VarSpec, VarDecl *PatternDecl,
+ const MultiLevelTemplateArgumentList &TemplateArgs) {
+
+ // Do substitution on the type of the declaration
+ TypeSourceInfo *DI =
+ SubstType(PatternDecl->getTypeSourceInfo(), TemplateArgs,
+ PatternDecl->getTypeSpecStartLoc(), PatternDecl->getDeclName());
+ if (!DI)
+ return nullptr;
+
+ // Update the type of this variable template specialization.
+ VarSpec->setType(DI->getType());
+
+ // Instantiate the initializer.
+ InstantiateVariableInitializer(VarSpec, PatternDecl, TemplateArgs);
+
+ return VarSpec;
+}
+
+/// BuildVariableInstantiation - Used after a new variable has been created.
+/// Sets basic variable data and decides whether to postpone the
+/// variable instantiation.
+void Sema::BuildVariableInstantiation(
+ VarDecl *NewVar, VarDecl *OldVar,
+ const MultiLevelTemplateArgumentList &TemplateArgs,
+ LateInstantiatedAttrVec *LateAttrs, DeclContext *Owner,
+ LocalInstantiationScope *StartingScope,
+ bool InstantiatingVarTemplate) {
+
+ // If we are instantiating a local extern declaration, the
+ // instantiation belongs lexically to the containing function.
+ // If we are instantiating a static data member defined
+ // out-of-line, the instantiation will have the same lexical
+ // context (which will be a namespace scope) as the template.
+ if (OldVar->isLocalExternDecl()) {
+ NewVar->setLocalExternDecl();
+ NewVar->setLexicalDeclContext(Owner);
+ } else if (OldVar->isOutOfLine())
+ NewVar->setLexicalDeclContext(OldVar->getLexicalDeclContext());
+ NewVar->setTSCSpec(OldVar->getTSCSpec());
+ NewVar->setInitStyle(OldVar->getInitStyle());
+ NewVar->setCXXForRangeDecl(OldVar->isCXXForRangeDecl());
+ NewVar->setConstexpr(OldVar->isConstexpr());
+ NewVar->setInitCapture(OldVar->isInitCapture());
+ NewVar->setPreviousDeclInSameBlockScope(
+ OldVar->isPreviousDeclInSameBlockScope());
+ NewVar->setAccess(OldVar->getAccess());
+
+ if (!OldVar->isStaticDataMember()) {
+ if (OldVar->isUsed(false))
+ NewVar->setIsUsed();
+ NewVar->setReferenced(OldVar->isReferenced());
+ }
+
+ // See if the old variable had a type-specifier that defined an anonymous tag.
+ // If it did, mark the new variable as being the declarator for the new
+ // anonymous tag.
+ if (const TagType *OldTagType = OldVar->getType()->getAs<TagType>()) {
+ TagDecl *OldTag = OldTagType->getDecl();
+ if (OldTag->getDeclaratorForAnonDecl() == OldVar) {
+ TagDecl *NewTag = NewVar->getType()->castAs<TagType>()->getDecl();
+ assert(!NewTag->hasNameForLinkage() &&
+ !NewTag->hasDeclaratorForAnonDecl());
+ NewTag->setDeclaratorForAnonDecl(NewVar);
+ }
+ }
+
+ InstantiateAttrs(TemplateArgs, OldVar, NewVar, LateAttrs, StartingScope);
+
+ LookupResult Previous(
+ *this, NewVar->getDeclName(), NewVar->getLocation(),
+ NewVar->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage
+ : Sema::LookupOrdinaryName,
+ Sema::ForRedeclaration);
+
+ if (NewVar->isLocalExternDecl() && OldVar->getPreviousDecl() &&
+ (!OldVar->getPreviousDecl()->getDeclContext()->isDependentContext() ||
+ OldVar->getPreviousDecl()->getDeclContext()==OldVar->getDeclContext())) {
+ // We have a previous declaration. Use that one, so we merge with the
+ // right type.
+ if (NamedDecl *NewPrev = FindInstantiatedDecl(
+ NewVar->getLocation(), OldVar->getPreviousDecl(), TemplateArgs))
+ Previous.addDecl(NewPrev);
+ } else if (!isa<VarTemplateSpecializationDecl>(NewVar) &&
+ OldVar->hasLinkage())
+ LookupQualifiedName(Previous, NewVar->getDeclContext(), false);
+ CheckVariableDeclaration(NewVar, Previous);
+
+ if (!InstantiatingVarTemplate) {
+ NewVar->getLexicalDeclContext()->addHiddenDecl(NewVar);
+ if (!NewVar->isLocalExternDecl() || !NewVar->getPreviousDecl())
+ NewVar->getDeclContext()->makeDeclVisibleInContext(NewVar);
+ }
+
+ if (!OldVar->isOutOfLine()) {
+ if (NewVar->getDeclContext()->isFunctionOrMethod())
+ CurrentInstantiationScope->InstantiatedLocal(OldVar, NewVar);
+ }
+
+ // Link instantiations of static data members back to the template from
+ // which they were instantiated.
+ if (NewVar->isStaticDataMember() && !InstantiatingVarTemplate)
+ NewVar->setInstantiationOfStaticDataMember(OldVar,
+ TSK_ImplicitInstantiation);
+
+ // Forward the mangling number from the template to the instantiated decl.
+ Context.setManglingNumber(NewVar, Context.getManglingNumber(OldVar));
+ Context.setStaticLocalNumber(NewVar, Context.getStaticLocalNumber(OldVar));
+
+ // Delay instantiation of the initializer for variable templates until a
+ // definition of the variable is needed. We need it right away if the type
+ // contains 'auto'.
+ if ((!isa<VarTemplateSpecializationDecl>(NewVar) &&
+ !InstantiatingVarTemplate) ||
+ NewVar->getType()->isUndeducedType())
+ InstantiateVariableInitializer(NewVar, OldVar, TemplateArgs);
+
+ // Diagnose unused local variables with dependent types, where the diagnostic
+ // will have been deferred.
+ if (!NewVar->isInvalidDecl() &&
+ NewVar->getDeclContext()->isFunctionOrMethod() &&
+ OldVar->getType()->isDependentType())
+ DiagnoseUnusedDecl(NewVar);
+}
+
+/// \brief Instantiate the initializer of a variable.
+void Sema::InstantiateVariableInitializer(
+ VarDecl *Var, VarDecl *OldVar,
+ const MultiLevelTemplateArgumentList &TemplateArgs) {
+
+ if (Var->getAnyInitializer())
+ // We already have an initializer in the class.
+ return;
+
+ if (OldVar->getInit()) {
+ if (Var->isStaticDataMember() && !OldVar->isOutOfLine())
+ PushExpressionEvaluationContext(Sema::ConstantEvaluated, OldVar);
+ else
+ PushExpressionEvaluationContext(Sema::PotentiallyEvaluated, OldVar);
+
+ // Instantiate the initializer.
+ ExprResult Init =
+ SubstInitializer(OldVar->getInit(), TemplateArgs,
+ OldVar->getInitStyle() == VarDecl::CallInit);
+ if (!Init.isInvalid()) {
+ bool TypeMayContainAuto = true;
+ Expr *InitExpr = Init.get();
+
+ if (Var->hasAttr<DLLImportAttr>() &&
+ (!InitExpr ||
+ !InitExpr->isConstantInitializer(getASTContext(), false))) {
+ // Do not dynamically initialize dllimport variables.
+ } else if (InitExpr) {
+ bool DirectInit = OldVar->isDirectInit();
+ AddInitializerToDecl(Var, InitExpr, DirectInit, TypeMayContainAuto);
+ } else
+ ActOnUninitializedDecl(Var, TypeMayContainAuto);
+ } else {
+ // FIXME: Not too happy about invalidating the declaration
+ // because of a bogus initializer.
+ Var->setInvalidDecl();
+ }
+
+ PopExpressionEvaluationContext();
+ } else if ((!Var->isStaticDataMember() || Var->isOutOfLine()) &&
+ !Var->isCXXForRangeDecl())
+ ActOnUninitializedDecl(Var, false);
+}
+
+/// \brief Instantiate the definition of the given variable from its
+/// template.
+///
+/// \param PointOfInstantiation the point at which the instantiation was
+/// required. Note that this is not precisely a "point of instantiation"
+/// for the function, but it's close.
+///
+/// \param Var the already-instantiated declaration of a static member
+/// variable of a class template specialization.
+///
+/// \param Recursive if true, recursively instantiates any functions that
+/// are required by this instantiation.
+///
+/// \param DefinitionRequired if true, then we are performing an explicit
+/// instantiation where an out-of-line definition of the member variable
+/// is required. Complain if there is no such definition.
+void Sema::InstantiateStaticDataMemberDefinition(
+ SourceLocation PointOfInstantiation,
+ VarDecl *Var,
+ bool Recursive,
+ bool DefinitionRequired) {
+ InstantiateVariableDefinition(PointOfInstantiation, Var, Recursive,
+ DefinitionRequired);
+}
+
+void Sema::InstantiateVariableDefinition(SourceLocation PointOfInstantiation,
+ VarDecl *Var, bool Recursive,
+ bool DefinitionRequired) {
+ if (Var->isInvalidDecl())
+ return;
+
+ VarTemplateSpecializationDecl *VarSpec =
+ dyn_cast<VarTemplateSpecializationDecl>(Var);
+ VarDecl *PatternDecl = nullptr, *Def = nullptr;
+ MultiLevelTemplateArgumentList TemplateArgs =
+ getTemplateInstantiationArgs(Var);
+
+ if (VarSpec) {
+ // If this is a variable template specialization, make sure that it is
+ // non-dependent, then find its instantiation pattern.
+ bool InstantiationDependent = false;
+ assert(!TemplateSpecializationType::anyDependentTemplateArguments(
+ VarSpec->getTemplateArgsInfo(), InstantiationDependent) &&
+ "Only instantiate variable template specializations that are "
+ "not type-dependent");
+ (void)InstantiationDependent;
+
+ // Find the variable initialization that we'll be substituting. If the
+ // pattern was instantiated from a member template, look back further to
+ // find the real pattern.
+ assert(VarSpec->getSpecializedTemplate() &&
+ "Specialization without specialized template?");
+ llvm::PointerUnion<VarTemplateDecl *,
+ VarTemplatePartialSpecializationDecl *> PatternPtr =
+ VarSpec->getSpecializedTemplateOrPartial();
+ if (PatternPtr.is<VarTemplatePartialSpecializationDecl *>()) {
+ VarTemplatePartialSpecializationDecl *Tmpl =
+ PatternPtr.get<VarTemplatePartialSpecializationDecl *>();
+ while (VarTemplatePartialSpecializationDecl *From =
+ Tmpl->getInstantiatedFromMember()) {
+ if (Tmpl->isMemberSpecialization())
+ break;
+
+ Tmpl = From;
+ }
+ PatternDecl = Tmpl;
+ } else {
+ VarTemplateDecl *Tmpl = PatternPtr.get<VarTemplateDecl *>();
+ while (VarTemplateDecl *From =
+ Tmpl->getInstantiatedFromMemberTemplate()) {
+ if (Tmpl->isMemberSpecialization())
+ break;
+
+ Tmpl = From;
+ }
+ PatternDecl = Tmpl->getTemplatedDecl();
+ }
+
+ // If this is a static data member template, there might be an
+ // uninstantiated initializer on the declaration. If so, instantiate
+ // it now.
+ if (PatternDecl->isStaticDataMember() &&
+ (PatternDecl = PatternDecl->getFirstDecl())->hasInit() &&
+ !Var->hasInit()) {
+ // FIXME: Factor out the duplicated instantiation context setup/tear down
+ // code here.
+ InstantiatingTemplate Inst(*this, PointOfInstantiation, Var);
+ if (Inst.isInvalid())
+ return;
+
+ // If we're performing recursive template instantiation, create our own
+ // queue of pending implicit instantiations that we will instantiate
+ // later, while we're still within our own instantiation context.
+ SavePendingInstantiationsAndVTableUsesRAII
+ SavePendingInstantiationsAndVTableUses(*this, /*Enabled=*/Recursive);
+
+ LocalInstantiationScope Local(*this);
+
+ // Enter the scope of this instantiation. We don't use
+ // PushDeclContext because we don't have a scope.
+ ContextRAII PreviousContext(*this, Var->getDeclContext());
+ InstantiateVariableInitializer(Var, PatternDecl, TemplateArgs);
+ PreviousContext.pop();
+
+ // FIXME: Need to inform the ASTConsumer that we instantiated the
+ // initializer?
+
+ // This variable may have local implicit instantiations that need to be
+ // instantiated within this scope.
+ PerformPendingInstantiations(/*LocalOnly=*/true);
+
+ Local.Exit();
+
+ if (Recursive) {
+ // Define any newly required vtables.
+ DefineUsedVTables();
+
+ // Instantiate any pending implicit instantiations found during the
+ // instantiation of this template.
+ PerformPendingInstantiations();
+
+ // PendingInstantiations and VTableUses are restored through
+ // SavePendingInstantiationsAndVTableUses's destructor.
+ }
+ }
+
+ // Find actual definition
+ Def = PatternDecl->getDefinition(getASTContext());
+ } else {
+ // If this is a static data member, find its out-of-line definition.
+ assert(Var->isStaticDataMember() && "not a static data member?");
+ PatternDecl = Var->getInstantiatedFromStaticDataMember();
+
+ assert(PatternDecl && "data member was not instantiated from a template?");
+ assert(PatternDecl->isStaticDataMember() && "not a static data member?");
+ Def = PatternDecl->getOutOfLineDefinition();
+ }
+
+ // If we don't have a definition of the variable template, we won't perform
+ // any instantiation. Rather, we rely on the user to instantiate this
+ // definition (or provide a specialization for it) in another translation
+ // unit.
+ if (!Def) {
+ if (DefinitionRequired) {
+ if (VarSpec)
+ Diag(PointOfInstantiation,
+ diag::err_explicit_instantiation_undefined_var_template) << Var;
+ else
+ Diag(PointOfInstantiation,
+ diag::err_explicit_instantiation_undefined_member)
+ << 2 << Var->getDeclName() << Var->getDeclContext();
+ Diag(PatternDecl->getLocation(),
+ diag::note_explicit_instantiation_here);
+ if (VarSpec)
+ Var->setInvalidDecl();
+ } else if (Var->getTemplateSpecializationKind()
+ == TSK_ExplicitInstantiationDefinition) {
+ PendingInstantiations.push_back(
+ std::make_pair(Var, PointOfInstantiation));
+ }
+
+ return;
+ }
+
+ TemplateSpecializationKind TSK = Var->getTemplateSpecializationKind();
+
+ // Never instantiate an explicit specialization.
+ if (TSK == TSK_ExplicitSpecialization)
+ return;
+
+ // C++11 [temp.explicit]p10:
+ // Except for inline functions, [...] explicit instantiation declarations
+ // have the effect of suppressing the implicit instantiation of the entity
+ // to which they refer.
+ if (TSK == TSK_ExplicitInstantiationDeclaration)
+ return;
+
+ // Make sure to pass the instantiated variable to the consumer at the end.
+ struct PassToConsumerRAII {
+ ASTConsumer &Consumer;
+ VarDecl *Var;
+
+ PassToConsumerRAII(ASTConsumer &Consumer, VarDecl *Var)
+ : Consumer(Consumer), Var(Var) { }
+
+ ~PassToConsumerRAII() {
+ Consumer.HandleCXXStaticMemberVarInstantiation(Var);
+ }
+ } PassToConsumerRAII(Consumer, Var);
+
+ // If we already have a definition, we're done.
+ if (VarDecl *Def = Var->getDefinition()) {
+ // We may be explicitly instantiating something we've already implicitly
+ // instantiated.
+ Def->setTemplateSpecializationKind(Var->getTemplateSpecializationKind(),
+ PointOfInstantiation);
+ return;
+ }
+
+ InstantiatingTemplate Inst(*this, PointOfInstantiation, Var);
+ if (Inst.isInvalid())
+ return;
+
+ // If we're performing recursive template instantiation, create our own
+ // queue of pending implicit instantiations that we will instantiate later,
+ // while we're still within our own instantiation context.
+ SavePendingLocalImplicitInstantiationsRAII
+ SavedPendingLocalImplicitInstantiations(*this);
+ SavePendingInstantiationsAndVTableUsesRAII
+ SavePendingInstantiationsAndVTableUses(*this, /*Enabled=*/Recursive);
+
+ // Enter the scope of this instantiation. We don't use
+ // PushDeclContext because we don't have a scope.
+ ContextRAII PreviousContext(*this, Var->getDeclContext());
+ LocalInstantiationScope Local(*this);
+
+ VarDecl *OldVar = Var;
+ if (!VarSpec)
+ Var = cast_or_null<VarDecl>(SubstDecl(Def, Var->getDeclContext(),
+ TemplateArgs));
+ else if (Var->isStaticDataMember() &&
+ Var->getLexicalDeclContext()->isRecord()) {
+ // We need to instantiate the definition of a static data member template,
+ // and all we have is the in-class declaration of it. Instantiate a separate
+ // declaration of the definition.
+ TemplateDeclInstantiator Instantiator(*this, Var->getDeclContext(),
+ TemplateArgs);
+ Var = cast_or_null<VarDecl>(Instantiator.VisitVarTemplateSpecializationDecl(
+ VarSpec->getSpecializedTemplate(), Def, nullptr,
+ VarSpec->getTemplateArgsInfo(), VarSpec->getTemplateArgs().asArray()));
+ if (Var) {
+ llvm::PointerUnion<VarTemplateDecl *,
+ VarTemplatePartialSpecializationDecl *> PatternPtr =
+ VarSpec->getSpecializedTemplateOrPartial();
+ if (VarTemplatePartialSpecializationDecl *Partial =
+ PatternPtr.dyn_cast<VarTemplatePartialSpecializationDecl *>())
+ cast<VarTemplateSpecializationDecl>(Var)->setInstantiationOf(
+ Partial, &VarSpec->getTemplateInstantiationArgs());
+
+ // Merge the definition with the declaration.
+ LookupResult R(*this, Var->getDeclName(), Var->getLocation(),
+ LookupOrdinaryName, ForRedeclaration);
+ R.addDecl(OldVar);
+ MergeVarDecl(Var, R);
+
+ // Attach the initializer.
+ InstantiateVariableInitializer(Var, Def, TemplateArgs);
+ }
+ } else
+ // Complete the existing variable's definition with an appropriately
+ // substituted type and initializer.
+ Var = CompleteVarTemplateSpecializationDecl(VarSpec, Def, TemplateArgs);
+
+ PreviousContext.pop();
+
+ if (Var) {
+ PassToConsumerRAII.Var = Var;
+ Var->setTemplateSpecializationKind(OldVar->getTemplateSpecializationKind(),
+ OldVar->getPointOfInstantiation());
+ }
+
+ // This variable may have local implicit instantiations that need to be
+ // instantiated within this scope.
+ PerformPendingInstantiations(/*LocalOnly=*/true);
+
+ Local.Exit();
+
+ if (Recursive) {
+ // Define any newly required vtables.
+ DefineUsedVTables();
+
+ // Instantiate any pending implicit instantiations found during the
+ // instantiation of this template.
+ PerformPendingInstantiations();
+
+ // PendingInstantiations and VTableUses are restored through
+ // SavePendingInstantiationsAndVTableUses's destructor.
+ }
+}
+
+void
+Sema::InstantiateMemInitializers(CXXConstructorDecl *New,
+ const CXXConstructorDecl *Tmpl,
+ const MultiLevelTemplateArgumentList &TemplateArgs) {
+
+ SmallVector<CXXCtorInitializer*, 4> NewInits;
+ bool AnyErrors = Tmpl->isInvalidDecl();
+
+ // Instantiate all the initializers.
+ for (const auto *Init : Tmpl->inits()) {
+ // Only instantiate written initializers, let Sema re-construct implicit
+ // ones.
+ if (!Init->isWritten())
+ continue;
+
+ SourceLocation EllipsisLoc;
+
+ if (Init->isPackExpansion()) {
+ // This is a pack expansion. We should expand it now.
+ TypeLoc BaseTL = Init->getTypeSourceInfo()->getTypeLoc();
+ SmallVector<UnexpandedParameterPack, 4> Unexpanded;
+ collectUnexpandedParameterPacks(BaseTL, Unexpanded);
+ collectUnexpandedParameterPacks(Init->getInit(), Unexpanded);
+ bool ShouldExpand = false;
+ bool RetainExpansion = false;
+ Optional<unsigned> NumExpansions;
+ if (CheckParameterPacksForExpansion(Init->getEllipsisLoc(),
+ BaseTL.getSourceRange(),
+ Unexpanded,
+ TemplateArgs, ShouldExpand,
+ RetainExpansion,
+ NumExpansions)) {
+ AnyErrors = true;
+ New->setInvalidDecl();
+ continue;
+ }
+ assert(ShouldExpand && "Partial instantiation of base initializer?");
+
+ // Loop over all of the arguments in the argument pack(s),
+ for (unsigned I = 0; I != *NumExpansions; ++I) {
+ Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, I);
+
+ // Instantiate the initializer.
+ ExprResult TempInit = SubstInitializer(Init->getInit(), TemplateArgs,
+ /*CXXDirectInit=*/true);
+ if (TempInit.isInvalid()) {
+ AnyErrors = true;
+ break;
+ }
+
+ // Instantiate the base type.
+ TypeSourceInfo *BaseTInfo = SubstType(Init->getTypeSourceInfo(),
+ TemplateArgs,
+ Init->getSourceLocation(),
+ New->getDeclName());
+ if (!BaseTInfo) {
+ AnyErrors = true;
+ break;
+ }
+
+ // Build the initializer.
+ MemInitResult NewInit = BuildBaseInitializer(BaseTInfo->getType(),
+ BaseTInfo, TempInit.get(),
+ New->getParent(),
+ SourceLocation());
+ if (NewInit.isInvalid()) {
+ AnyErrors = true;
+ break;
+ }
+
+ NewInits.push_back(NewInit.get());
+ }
+
+ continue;
+ }
+
+ // Instantiate the initializer.
+ ExprResult TempInit = SubstInitializer(Init->getInit(), TemplateArgs,
+ /*CXXDirectInit=*/true);
+ if (TempInit.isInvalid()) {
+ AnyErrors = true;
+ continue;
+ }
+
+ MemInitResult NewInit;
+ if (Init->isDelegatingInitializer() || Init->isBaseInitializer()) {
+ TypeSourceInfo *TInfo = SubstType(Init->getTypeSourceInfo(),
+ TemplateArgs,
+ Init->getSourceLocation(),
+ New->getDeclName());
+ if (!TInfo) {
+ AnyErrors = true;
+ New->setInvalidDecl();
+ continue;
+ }
+
+ if (Init->isBaseInitializer())
+ NewInit = BuildBaseInitializer(TInfo->getType(), TInfo, TempInit.get(),
+ New->getParent(), EllipsisLoc);
+ else
+ NewInit = BuildDelegatingInitializer(TInfo, TempInit.get(),
+ cast<CXXRecordDecl>(CurContext->getParent()));
+ } else if (Init->isMemberInitializer()) {
+ FieldDecl *Member = cast_or_null<FieldDecl>(FindInstantiatedDecl(
+ Init->getMemberLocation(),
+ Init->getMember(),
+ TemplateArgs));
+ if (!Member) {
+ AnyErrors = true;
+ New->setInvalidDecl();
+ continue;
+ }
+
+ NewInit = BuildMemberInitializer(Member, TempInit.get(),
+ Init->getSourceLocation());
+ } else if (Init->isIndirectMemberInitializer()) {
+ IndirectFieldDecl *IndirectMember =
+ cast_or_null<IndirectFieldDecl>(FindInstantiatedDecl(
+ Init->getMemberLocation(),
+ Init->getIndirectMember(), TemplateArgs));
+
+ if (!IndirectMember) {
+ AnyErrors = true;
+ New->setInvalidDecl();
+ continue;
+ }
+
+ NewInit = BuildMemberInitializer(IndirectMember, TempInit.get(),
+ Init->getSourceLocation());
+ }
+
+ if (NewInit.isInvalid()) {
+ AnyErrors = true;
+ New->setInvalidDecl();
+ } else {
+ NewInits.push_back(NewInit.get());
+ }
+ }
+
+ // Assign all the initializers to the new constructor.
+ ActOnMemInitializers(New,
+ /*FIXME: ColonLoc */
+ SourceLocation(),
+ NewInits,
+ AnyErrors);
+}
+
+// TODO: this could be templated if the various decl types used the
+// same method name.
+static bool isInstantiationOf(ClassTemplateDecl *Pattern,
+ ClassTemplateDecl *Instance) {
+ Pattern = Pattern->getCanonicalDecl();
+
+ do {
+ Instance = Instance->getCanonicalDecl();
+ if (Pattern == Instance) return true;
+ Instance = Instance->getInstantiatedFromMemberTemplate();
+ } while (Instance);
+
+ return false;
+}
+
+static bool isInstantiationOf(FunctionTemplateDecl *Pattern,
+ FunctionTemplateDecl *Instance) {
+ Pattern = Pattern->getCanonicalDecl();
+
+ do {
+ Instance = Instance->getCanonicalDecl();
+ if (Pattern == Instance) return true;
+ Instance = Instance->getInstantiatedFromMemberTemplate();
+ } while (Instance);
+
+ return false;
+}
+
+static bool
+isInstantiationOf(ClassTemplatePartialSpecializationDecl *Pattern,
+ ClassTemplatePartialSpecializationDecl *Instance) {
+ Pattern
+ = cast<ClassTemplatePartialSpecializationDecl>(Pattern->getCanonicalDecl());
+ do {
+ Instance = cast<ClassTemplatePartialSpecializationDecl>(
+ Instance->getCanonicalDecl());
+ if (Pattern == Instance)
+ return true;
+ Instance = Instance->getInstantiatedFromMember();
+ } while (Instance);
+
+ return false;
+}
+
+static bool isInstantiationOf(CXXRecordDecl *Pattern,
+ CXXRecordDecl *Instance) {
+ Pattern = Pattern->getCanonicalDecl();
+
+ do {
+ Instance = Instance->getCanonicalDecl();
+ if (Pattern == Instance) return true;
+ Instance = Instance->getInstantiatedFromMemberClass();
+ } while (Instance);
+
+ return false;
+}
+
+static bool isInstantiationOf(FunctionDecl *Pattern,
+ FunctionDecl *Instance) {
+ Pattern = Pattern->getCanonicalDecl();
+
+ do {
+ Instance = Instance->getCanonicalDecl();
+ if (Pattern == Instance) return true;
+ Instance = Instance->getInstantiatedFromMemberFunction();
+ } while (Instance);
+
+ return false;
+}
+
+static bool isInstantiationOf(EnumDecl *Pattern,
+ EnumDecl *Instance) {
+ Pattern = Pattern->getCanonicalDecl();
+
+ do {
+ Instance = Instance->getCanonicalDecl();
+ if (Pattern == Instance) return true;
+ Instance = Instance->getInstantiatedFromMemberEnum();
+ } while (Instance);
+
+ return false;
+}
+
+static bool isInstantiationOf(UsingShadowDecl *Pattern,
+ UsingShadowDecl *Instance,
+ ASTContext &C) {
+ return declaresSameEntity(C.getInstantiatedFromUsingShadowDecl(Instance),
+ Pattern);
+}
+
+static bool isInstantiationOf(UsingDecl *Pattern,
+ UsingDecl *Instance,
+ ASTContext &C) {
+ return declaresSameEntity(C.getInstantiatedFromUsingDecl(Instance), Pattern);
+}
+
+static bool isInstantiationOf(UnresolvedUsingValueDecl *Pattern,
+ UsingDecl *Instance,
+ ASTContext &C) {
+ return declaresSameEntity(C.getInstantiatedFromUsingDecl(Instance), Pattern);
+}
+
+static bool isInstantiationOf(UnresolvedUsingTypenameDecl *Pattern,
+ UsingDecl *Instance,
+ ASTContext &C) {
+ return declaresSameEntity(C.getInstantiatedFromUsingDecl(Instance), Pattern);
+}
+
+static bool isInstantiationOfStaticDataMember(VarDecl *Pattern,
+ VarDecl *Instance) {
+ assert(Instance->isStaticDataMember());
+
+ Pattern = Pattern->getCanonicalDecl();
+
+ do {
+ Instance = Instance->getCanonicalDecl();
+ if (Pattern == Instance) return true;
+ Instance = Instance->getInstantiatedFromStaticDataMember();
+ } while (Instance);
+
+ return false;
+}
+
+// Other is the prospective instantiation
+// D is the prospective pattern
+static bool isInstantiationOf(ASTContext &Ctx, NamedDecl *D, Decl *Other) {
+ if (D->getKind() != Other->getKind()) {
+ if (UnresolvedUsingTypenameDecl *UUD
+ = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
+ if (UsingDecl *UD = dyn_cast<UsingDecl>(Other)) {
+ return isInstantiationOf(UUD, UD, Ctx);
+ }
+ }
+
+ if (UnresolvedUsingValueDecl *UUD
+ = dyn_cast<UnresolvedUsingValueDecl>(D)) {
+ if (UsingDecl *UD = dyn_cast<UsingDecl>(Other)) {
+ return isInstantiationOf(UUD, UD, Ctx);
+ }
+ }
+
+ return false;
+ }
+
+ if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Other))
+ return isInstantiationOf(cast<CXXRecordDecl>(D), Record);
+
+ if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Other))
+ return isInstantiationOf(cast<FunctionDecl>(D), Function);
+
+ if (EnumDecl *Enum = dyn_cast<EnumDecl>(Other))
+ return isInstantiationOf(cast<EnumDecl>(D), Enum);
+
+ if (VarDecl *Var = dyn_cast<VarDecl>(Other))
+ if (Var->isStaticDataMember())
+ return isInstantiationOfStaticDataMember(cast<VarDecl>(D), Var);
+
+ if (ClassTemplateDecl *Temp = dyn_cast<ClassTemplateDecl>(Other))
+ return isInstantiationOf(cast<ClassTemplateDecl>(D), Temp);
+
+ if (FunctionTemplateDecl *Temp = dyn_cast<FunctionTemplateDecl>(Other))
+ return isInstantiationOf(cast<FunctionTemplateDecl>(D), Temp);
+
+ if (ClassTemplatePartialSpecializationDecl *PartialSpec
+ = dyn_cast<ClassTemplatePartialSpecializationDecl>(Other))
+ return isInstantiationOf(cast<ClassTemplatePartialSpecializationDecl>(D),
+ PartialSpec);
+
+ if (FieldDecl *Field = dyn_cast<FieldDecl>(Other)) {
+ if (!Field->getDeclName()) {
+ // This is an unnamed field.
+ return declaresSameEntity(Ctx.getInstantiatedFromUnnamedFieldDecl(Field),
+ cast<FieldDecl>(D));
+ }
+ }
+
+ if (UsingDecl *Using = dyn_cast<UsingDecl>(Other))
+ return isInstantiationOf(cast<UsingDecl>(D), Using, Ctx);
+
+ if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(Other))
+ return isInstantiationOf(cast<UsingShadowDecl>(D), Shadow, Ctx);
+
+ return D->getDeclName() && isa<NamedDecl>(Other) &&
+ D->getDeclName() == cast<NamedDecl>(Other)->getDeclName();
+}
+
+template<typename ForwardIterator>
+static NamedDecl *findInstantiationOf(ASTContext &Ctx,
+ NamedDecl *D,
+ ForwardIterator first,
+ ForwardIterator last) {
+ for (; first != last; ++first)
+ if (isInstantiationOf(Ctx, D, *first))
+ return cast<NamedDecl>(*first);
+
+ return nullptr;
+}
+
+/// \brief Finds the instantiation of the given declaration context
+/// within the current instantiation.
+///
+/// \returns NULL if there was an error
+DeclContext *Sema::FindInstantiatedContext(SourceLocation Loc, DeclContext* DC,
+ const MultiLevelTemplateArgumentList &TemplateArgs) {
+ if (NamedDecl *D = dyn_cast<NamedDecl>(DC)) {
+ Decl* ID = FindInstantiatedDecl(Loc, D, TemplateArgs);
+ return cast_or_null<DeclContext>(ID);
+ } else return DC;
+}
+
+/// \brief Find the instantiation of the given declaration within the
+/// current instantiation.
+///
+/// This routine is intended to be used when \p D is a declaration
+/// referenced from within a template, that needs to mapped into the
+/// corresponding declaration within an instantiation. For example,
+/// given:
+///
+/// \code
+/// template<typename T>
+/// struct X {
+/// enum Kind {
+/// KnownValue = sizeof(T)
+/// };
+///
+/// bool getKind() const { return KnownValue; }
+/// };
+///
+/// template struct X<int>;
+/// \endcode
+///
+/// In the instantiation of <tt>X<int>::getKind()</tt>, we need to map the
+/// \p EnumConstantDecl for \p KnownValue (which refers to
+/// <tt>X<T>::<Kind>::KnownValue</tt>) to its instantiation
+/// (<tt>X<int>::<Kind>::KnownValue</tt>). \p FindInstantiatedDecl performs
+/// this mapping from within the instantiation of <tt>X<int></tt>.
+NamedDecl *Sema::FindInstantiatedDecl(SourceLocation Loc, NamedDecl *D,
+ const MultiLevelTemplateArgumentList &TemplateArgs) {
+ DeclContext *ParentDC = D->getDeclContext();
+ // FIXME: Parmeters of pointer to functions (y below) that are themselves
+ // parameters (p below) can have their ParentDC set to the translation-unit
+ // - thus we can not consistently check if the ParentDC of such a parameter
+ // is Dependent or/and a FunctionOrMethod.
+ // For e.g. this code, during Template argument deduction tries to
+ // find an instantiated decl for (T y) when the ParentDC for y is
+ // the translation unit.
+ // e.g. template <class T> void Foo(auto (*p)(T y) -> decltype(y())) {}
+ // float baz(float(*)()) { return 0.0; }
+ // Foo(baz);
+ // The better fix here is perhaps to ensure that a ParmVarDecl, by the time
+ // it gets here, always has a FunctionOrMethod as its ParentDC??
+ // For now:
+ // - as long as we have a ParmVarDecl whose parent is non-dependent and
+ // whose type is not instantiation dependent, do nothing to the decl
+ // - otherwise find its instantiated decl.
+ if (isa<ParmVarDecl>(D) && !ParentDC->isDependentContext() &&
+ !cast<ParmVarDecl>(D)->getType()->isInstantiationDependentType())
+ return D;
+ if (isa<ParmVarDecl>(D) || isa<NonTypeTemplateParmDecl>(D) ||
+ isa<TemplateTypeParmDecl>(D) || isa<TemplateTemplateParmDecl>(D) ||
+ (ParentDC->isFunctionOrMethod() && ParentDC->isDependentContext()) ||
+ (isa<CXXRecordDecl>(D) && cast<CXXRecordDecl>(D)->isLambda())) {
+ // D is a local of some kind. Look into the map of local
+ // declarations to their instantiations.
+ if (CurrentInstantiationScope) {
+ if (auto Found = CurrentInstantiationScope->findInstantiationOf(D)) {
+ if (Decl *FD = Found->dyn_cast<Decl *>())
+ return cast<NamedDecl>(FD);
+
+ int PackIdx = ArgumentPackSubstitutionIndex;
+ assert(PackIdx != -1 &&
+ "found declaration pack but not pack expanding");
+ typedef LocalInstantiationScope::DeclArgumentPack DeclArgumentPack;
+ return cast<NamedDecl>((*Found->get<DeclArgumentPack *>())[PackIdx]);
+ }
+ }
+
+ // If we're performing a partial substitution during template argument
+ // deduction, we may not have values for template parameters yet. They
+ // just map to themselves.
+ if (isa<NonTypeTemplateParmDecl>(D) || isa<TemplateTypeParmDecl>(D) ||
+ isa<TemplateTemplateParmDecl>(D))
+ return D;
+
+ if (D->isInvalidDecl())
+ return nullptr;
+
+ // Normally this function only searches for already instantiated declaration
+ // however we have to make an exclusion for local types used before
+ // definition as in the code:
+ //
+ // template<typename T> void f1() {
+ // void g1(struct x1);
+ // struct x1 {};
+ // }
+ //
+ // In this case instantiation of the type of 'g1' requires definition of
+ // 'x1', which is defined later. Error recovery may produce an enum used
+ // before definition. In these cases we need to instantiate relevant
+ // declarations here.
+ bool NeedInstantiate = false;
+ if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D))
+ NeedInstantiate = RD->isLocalClass();
+ else
+ NeedInstantiate = isa<EnumDecl>(D);
+ if (NeedInstantiate) {
+ Decl *Inst = SubstDecl(D, CurContext, TemplateArgs);
+ CurrentInstantiationScope->InstantiatedLocal(D, Inst);
+ return cast<TypeDecl>(Inst);
+ }
+
+ // If we didn't find the decl, then we must have a label decl that hasn't
+ // been found yet. Lazily instantiate it and return it now.
+ assert(isa<LabelDecl>(D));
+
+ Decl *Inst = SubstDecl(D, CurContext, TemplateArgs);
+ assert(Inst && "Failed to instantiate label??");
+
+ CurrentInstantiationScope->InstantiatedLocal(D, Inst);
+ return cast<LabelDecl>(Inst);
+ }
+
+ // For variable template specializations, update those that are still
+ // type-dependent.
+ if (VarTemplateSpecializationDecl *VarSpec =
+ dyn_cast<VarTemplateSpecializationDecl>(D)) {
+ bool InstantiationDependent = false;
+ const TemplateArgumentListInfo &VarTemplateArgs =
+ VarSpec->getTemplateArgsInfo();
+ if (TemplateSpecializationType::anyDependentTemplateArguments(
+ VarTemplateArgs, InstantiationDependent))
+ D = cast<NamedDecl>(
+ SubstDecl(D, VarSpec->getDeclContext(), TemplateArgs));
+ return D;
+ }
+
+ if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
+ if (!Record->isDependentContext())
+ return D;
+
+ // Determine whether this record is the "templated" declaration describing
+ // a class template or class template partial specialization.
+ ClassTemplateDecl *ClassTemplate = Record->getDescribedClassTemplate();
+ if (ClassTemplate)
+ ClassTemplate = ClassTemplate->getCanonicalDecl();
+ else if (ClassTemplatePartialSpecializationDecl *PartialSpec
+ = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record))
+ ClassTemplate = PartialSpec->getSpecializedTemplate()->getCanonicalDecl();
+
+ // Walk the current context to find either the record or an instantiation of
+ // it.
+ DeclContext *DC = CurContext;
+ while (!DC->isFileContext()) {
+ // If we're performing substitution while we're inside the template
+ // definition, we'll find our own context. We're done.
+ if (DC->Equals(Record))
+ return Record;
+
+ if (CXXRecordDecl *InstRecord = dyn_cast<CXXRecordDecl>(DC)) {
+ // Check whether we're in the process of instantiating a class template
+ // specialization of the template we're mapping.
+ if (ClassTemplateSpecializationDecl *InstSpec
+ = dyn_cast<ClassTemplateSpecializationDecl>(InstRecord)){
+ ClassTemplateDecl *SpecTemplate = InstSpec->getSpecializedTemplate();
+ if (ClassTemplate && isInstantiationOf(ClassTemplate, SpecTemplate))
+ return InstRecord;
+ }
+
+ // Check whether we're in the process of instantiating a member class.
+ if (isInstantiationOf(Record, InstRecord))
+ return InstRecord;
+ }
+
+ // Move to the outer template scope.
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC)) {
+ if (FD->getFriendObjectKind() && FD->getDeclContext()->isFileContext()){
+ DC = FD->getLexicalDeclContext();
+ continue;
+ }
+ }
+
+ DC = DC->getParent();
+ }
+
+ // Fall through to deal with other dependent record types (e.g.,
+ // anonymous unions in class templates).
+ }
+
+ if (!ParentDC->isDependentContext())
+ return D;
+
+ ParentDC = FindInstantiatedContext(Loc, ParentDC, TemplateArgs);
+ if (!ParentDC)
+ return nullptr;
+
+ if (ParentDC != D->getDeclContext()) {
+ // We performed some kind of instantiation in the parent context,
+ // so now we need to look into the instantiated parent context to
+ // find the instantiation of the declaration D.
+
+ // If our context used to be dependent, we may need to instantiate
+ // it before performing lookup into that context.
+ bool IsBeingInstantiated = false;
+ if (CXXRecordDecl *Spec = dyn_cast<CXXRecordDecl>(ParentDC)) {
+ if (!Spec->isDependentContext()) {
+ QualType T = Context.getTypeDeclType(Spec);
+ const RecordType *Tag = T->getAs<RecordType>();
+ assert(Tag && "type of non-dependent record is not a RecordType");
+ if (Tag->isBeingDefined())
+ IsBeingInstantiated = true;
+ if (!Tag->isBeingDefined() &&
+ RequireCompleteType(Loc, T, diag::err_incomplete_type))
+ return nullptr;
+
+ ParentDC = Tag->getDecl();
+ }
+ }
+
+ NamedDecl *Result = nullptr;
+ if (D->getDeclName()) {
+ DeclContext::lookup_result Found = ParentDC->lookup(D->getDeclName());
+ Result = findInstantiationOf(Context, D, Found.begin(), Found.end());
+ } else {
+ // Since we don't have a name for the entity we're looking for,
+ // our only option is to walk through all of the declarations to
+ // find that name. This will occur in a few cases:
+ //
+ // - anonymous struct/union within a template
+ // - unnamed class/struct/union/enum within a template
+ //
+ // FIXME: Find a better way to find these instantiations!
+ Result = findInstantiationOf(Context, D,
+ ParentDC->decls_begin(),
+ ParentDC->decls_end());
+ }
+
+ if (!Result) {
+ if (isa<UsingShadowDecl>(D)) {
+ // UsingShadowDecls can instantiate to nothing because of using hiding.
+ } else if (Diags.hasErrorOccurred()) {
+ // We've already complained about something, so most likely this
+ // declaration failed to instantiate. There's no point in complaining
+ // further, since this is normal in invalid code.
+ } else if (IsBeingInstantiated) {
+ // The class in which this member exists is currently being
+ // instantiated, and we haven't gotten around to instantiating this
+ // member yet. This can happen when the code uses forward declarations
+ // of member classes, and introduces ordering dependencies via
+ // template instantiation.
+ Diag(Loc, diag::err_member_not_yet_instantiated)
+ << D->getDeclName()
+ << Context.getTypeDeclType(cast<CXXRecordDecl>(ParentDC));
+ Diag(D->getLocation(), diag::note_non_instantiated_member_here);
+ } else if (EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D)) {
+ // This enumeration constant was found when the template was defined,
+ // but can't be found in the instantiation. This can happen if an
+ // unscoped enumeration member is explicitly specialized.
+ EnumDecl *Enum = cast<EnumDecl>(ED->getLexicalDeclContext());
+ EnumDecl *Spec = cast<EnumDecl>(FindInstantiatedDecl(Loc, Enum,
+ TemplateArgs));
+ assert(Spec->getTemplateSpecializationKind() ==
+ TSK_ExplicitSpecialization);
+ Diag(Loc, diag::err_enumerator_does_not_exist)
+ << D->getDeclName()
+ << Context.getTypeDeclType(cast<TypeDecl>(Spec->getDeclContext()));
+ Diag(Spec->getLocation(), diag::note_enum_specialized_here)
+ << Context.getTypeDeclType(Spec);
+ } else {
+ // We should have found something, but didn't.
+ llvm_unreachable("Unable to find instantiation of declaration!");
+ }
+ }
+
+ D = Result;
+ }
+
+ return D;
+}
+
+/// \brief Performs template instantiation for all implicit template
+/// instantiations we have seen until this point.
+void Sema::PerformPendingInstantiations(bool LocalOnly) {
+ while (!PendingLocalImplicitInstantiations.empty() ||
+ (!LocalOnly && !PendingInstantiations.empty())) {
+ PendingImplicitInstantiation Inst;
+
+ if (PendingLocalImplicitInstantiations.empty()) {
+ Inst = PendingInstantiations.front();
+ PendingInstantiations.pop_front();
+ } else {
+ Inst = PendingLocalImplicitInstantiations.front();
+ PendingLocalImplicitInstantiations.pop_front();
+ }
+
+ // Instantiate function definitions
+ if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Inst.first)) {
+ PrettyDeclStackTraceEntry CrashInfo(*this, Function, SourceLocation(),
+ "instantiating function definition");
+ bool DefinitionRequired = Function->getTemplateSpecializationKind() ==
+ TSK_ExplicitInstantiationDefinition;
+ InstantiateFunctionDefinition(/*FIXME:*/Inst.second, Function, true,
+ DefinitionRequired);
+ continue;
+ }
+
+ // Instantiate variable definitions
+ VarDecl *Var = cast<VarDecl>(Inst.first);
+
+ assert((Var->isStaticDataMember() ||
+ isa<VarTemplateSpecializationDecl>(Var)) &&
+ "Not a static data member, nor a variable template"
+ " specialization?");
+
+ // Don't try to instantiate declarations if the most recent redeclaration
+ // is invalid.
+ if (Var->getMostRecentDecl()->isInvalidDecl())
+ continue;
+
+ // Check if the most recent declaration has changed the specialization kind
+ // and removed the need for implicit instantiation.
+ switch (Var->getMostRecentDecl()->getTemplateSpecializationKind()) {
+ case TSK_Undeclared:
+ llvm_unreachable("Cannot instantitiate an undeclared specialization.");
+ case TSK_ExplicitInstantiationDeclaration:
+ case TSK_ExplicitSpecialization:
+ continue; // No longer need to instantiate this type.
+ case TSK_ExplicitInstantiationDefinition:
+ // We only need an instantiation if the pending instantiation *is* the
+ // explicit instantiation.
+ if (Var != Var->getMostRecentDecl()) continue;
+ case TSK_ImplicitInstantiation:
+ break;
+ }
+
+ PrettyDeclStackTraceEntry CrashInfo(*this, Var, SourceLocation(),
+ "instantiating variable definition");
+ bool DefinitionRequired = Var->getTemplateSpecializationKind() ==
+ TSK_ExplicitInstantiationDefinition;
+
+ // Instantiate static data member definitions or variable template
+ // specializations.
+ InstantiateVariableDefinition(/*FIXME:*/ Inst.second, Var, true,
+ DefinitionRequired);
+ }
+}
+
+void Sema::PerformDependentDiagnostics(const DeclContext *Pattern,
+ const MultiLevelTemplateArgumentList &TemplateArgs) {
+ for (auto DD : Pattern->ddiags()) {
+ switch (DD->getKind()) {
+ case DependentDiagnostic::Access:
+ HandleDependentAccessCheck(*DD, TemplateArgs);
+ break;
+ }
+ }
+}
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaTemplateVariadic.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaTemplateVariadic.cpp
new file mode 100644
index 0000000..fd3ba35
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaTemplateVariadic.cpp
@@ -0,0 +1,1037 @@
+//===------- SemaTemplateVariadic.cpp - C++ Variadic Templates ------------===/
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//===----------------------------------------------------------------------===/
+//
+// This file implements semantic analysis for C++0x variadic templates.
+//===----------------------------------------------------------------------===/
+
+#include "clang/Sema/Sema.h"
+#include "TypeLocBuilder.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/RecursiveASTVisitor.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/Sema/Lookup.h"
+#include "clang/Sema/ParsedTemplate.h"
+#include "clang/Sema/ScopeInfo.h"
+#include "clang/Sema/SemaInternal.h"
+#include "clang/Sema/Template.h"
+
+using namespace clang;
+
+//----------------------------------------------------------------------------
+// Visitor that collects unexpanded parameter packs
+//----------------------------------------------------------------------------
+
+namespace {
+ /// \brief A class that collects unexpanded parameter packs.
+ class CollectUnexpandedParameterPacksVisitor :
+ public RecursiveASTVisitor<CollectUnexpandedParameterPacksVisitor>
+ {
+ typedef RecursiveASTVisitor<CollectUnexpandedParameterPacksVisitor>
+ inherited;
+
+ SmallVectorImpl<UnexpandedParameterPack> &Unexpanded;
+
+ bool InLambda;
+
+ public:
+ explicit CollectUnexpandedParameterPacksVisitor(
+ SmallVectorImpl<UnexpandedParameterPack> &Unexpanded)
+ : Unexpanded(Unexpanded), InLambda(false) { }
+
+ bool shouldWalkTypesOfTypeLocs() const { return false; }
+
+ //------------------------------------------------------------------------
+ // Recording occurrences of (unexpanded) parameter packs.
+ //------------------------------------------------------------------------
+
+ /// \brief Record occurrences of template type parameter packs.
+ bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
+ if (TL.getTypePtr()->isParameterPack())
+ Unexpanded.push_back(std::make_pair(TL.getTypePtr(), TL.getNameLoc()));
+ return true;
+ }
+
+ /// \brief Record occurrences of template type parameter packs
+ /// when we don't have proper source-location information for
+ /// them.
+ ///
+ /// Ideally, this routine would never be used.
+ bool VisitTemplateTypeParmType(TemplateTypeParmType *T) {
+ if (T->isParameterPack())
+ Unexpanded.push_back(std::make_pair(T, SourceLocation()));
+
+ return true;
+ }
+
+ /// \brief Record occurrences of function and non-type template
+ /// parameter packs in an expression.
+ bool VisitDeclRefExpr(DeclRefExpr *E) {
+ if (E->getDecl()->isParameterPack())
+ Unexpanded.push_back(std::make_pair(E->getDecl(), E->getLocation()));
+
+ return true;
+ }
+
+ /// \brief Record occurrences of template template parameter packs.
+ bool TraverseTemplateName(TemplateName Template) {
+ if (TemplateTemplateParmDecl *TTP
+ = dyn_cast_or_null<TemplateTemplateParmDecl>(
+ Template.getAsTemplateDecl()))
+ if (TTP->isParameterPack())
+ Unexpanded.push_back(std::make_pair(TTP, SourceLocation()));
+
+ return inherited::TraverseTemplateName(Template);
+ }
+
+ /// \brief Suppress traversal into Objective-C container literal
+ /// elements that are pack expansions.
+ bool TraverseObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
+ if (!E->containsUnexpandedParameterPack())
+ return true;
+
+ for (unsigned I = 0, N = E->getNumElements(); I != N; ++I) {
+ ObjCDictionaryElement Element = E->getKeyValueElement(I);
+ if (Element.isPackExpansion())
+ continue;
+
+ TraverseStmt(Element.Key);
+ TraverseStmt(Element.Value);
+ }
+ return true;
+ }
+ //------------------------------------------------------------------------
+ // Pruning the search for unexpanded parameter packs.
+ //------------------------------------------------------------------------
+
+ /// \brief Suppress traversal into statements and expressions that
+ /// do not contain unexpanded parameter packs.
+ bool TraverseStmt(Stmt *S) {
+ Expr *E = dyn_cast_or_null<Expr>(S);
+ if ((E && E->containsUnexpandedParameterPack()) || InLambda)
+ return inherited::TraverseStmt(S);
+
+ return true;
+ }
+
+ /// \brief Suppress traversal into types that do not contain
+ /// unexpanded parameter packs.
+ bool TraverseType(QualType T) {
+ if ((!T.isNull() && T->containsUnexpandedParameterPack()) || InLambda)
+ return inherited::TraverseType(T);
+
+ return true;
+ }
+
+ /// \brief Suppress traversel into types with location information
+ /// that do not contain unexpanded parameter packs.
+ bool TraverseTypeLoc(TypeLoc TL) {
+ if ((!TL.getType().isNull() &&
+ TL.getType()->containsUnexpandedParameterPack()) ||
+ InLambda)
+ return inherited::TraverseTypeLoc(TL);
+
+ return true;
+ }
+
+ /// \brief Suppress traversal of non-parameter declarations, since
+ /// they cannot contain unexpanded parameter packs.
+ bool TraverseDecl(Decl *D) {
+ if ((D && isa<ParmVarDecl>(D)) || InLambda)
+ return inherited::TraverseDecl(D);
+
+ return true;
+ }
+
+ /// \brief Suppress traversal of template argument pack expansions.
+ bool TraverseTemplateArgument(const TemplateArgument &Arg) {
+ if (Arg.isPackExpansion())
+ return true;
+
+ return inherited::TraverseTemplateArgument(Arg);
+ }
+
+ /// \brief Suppress traversal of template argument pack expansions.
+ bool TraverseTemplateArgumentLoc(const TemplateArgumentLoc &ArgLoc) {
+ if (ArgLoc.getArgument().isPackExpansion())
+ return true;
+
+ return inherited::TraverseTemplateArgumentLoc(ArgLoc);
+ }
+
+ /// \brief Note whether we're traversing a lambda containing an unexpanded
+ /// parameter pack. In this case, the unexpanded pack can occur anywhere,
+ /// including all the places where we normally wouldn't look. Within a
+ /// lambda, we don't propagate the 'contains unexpanded parameter pack' bit
+ /// outside an expression.
+ bool TraverseLambdaExpr(LambdaExpr *Lambda) {
+ // The ContainsUnexpandedParameterPack bit on a lambda is always correct,
+ // even if it's contained within another lambda.
+ if (!Lambda->containsUnexpandedParameterPack())
+ return true;
+
+ bool WasInLambda = InLambda;
+ InLambda = true;
+
+ // If any capture names a function parameter pack, that pack is expanded
+ // when the lambda is expanded.
+ for (LambdaExpr::capture_iterator I = Lambda->capture_begin(),
+ E = Lambda->capture_end();
+ I != E; ++I) {
+ if (I->capturesVariable()) {
+ VarDecl *VD = I->getCapturedVar();
+ if (VD->isParameterPack())
+ Unexpanded.push_back(std::make_pair(VD, I->getLocation()));
+ }
+ }
+
+ inherited::TraverseLambdaExpr(Lambda);
+
+ InLambda = WasInLambda;
+ return true;
+ }
+ };
+}
+
+/// \brief Determine whether it's possible for an unexpanded parameter pack to
+/// be valid in this location. This only happens when we're in a declaration
+/// that is nested within an expression that could be expanded, such as a
+/// lambda-expression within a function call.
+///
+/// This is conservatively correct, but may claim that some unexpanded packs are
+/// permitted when they are not.
+bool Sema::isUnexpandedParameterPackPermitted() {
+ for (auto *SI : FunctionScopes)
+ if (isa<sema::LambdaScopeInfo>(SI))
+ return true;
+ return false;
+}
+
+/// \brief Diagnose all of the unexpanded parameter packs in the given
+/// vector.
+bool
+Sema::DiagnoseUnexpandedParameterPacks(SourceLocation Loc,
+ UnexpandedParameterPackContext UPPC,
+ ArrayRef<UnexpandedParameterPack> Unexpanded) {
+ if (Unexpanded.empty())
+ return false;
+
+ // If we are within a lambda expression, that lambda contains an unexpanded
+ // parameter pack, and we are done.
+ // FIXME: Store 'Unexpanded' on the lambda so we don't need to recompute it
+ // later.
+ for (unsigned N = FunctionScopes.size(); N; --N) {
+ if (sema::LambdaScopeInfo *LSI =
+ dyn_cast<sema::LambdaScopeInfo>(FunctionScopes[N-1])) {
+ LSI->ContainsUnexpandedParameterPack = true;
+ return false;
+ }
+ }
+
+ SmallVector<SourceLocation, 4> Locations;
+ SmallVector<IdentifierInfo *, 4> Names;
+ llvm::SmallPtrSet<IdentifierInfo *, 4> NamesKnown;
+
+ for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
+ IdentifierInfo *Name = nullptr;
+ if (const TemplateTypeParmType *TTP
+ = Unexpanded[I].first.dyn_cast<const TemplateTypeParmType *>())
+ Name = TTP->getIdentifier();
+ else
+ Name = Unexpanded[I].first.get<NamedDecl *>()->getIdentifier();
+
+ if (Name && NamesKnown.insert(Name).second)
+ Names.push_back(Name);
+
+ if (Unexpanded[I].second.isValid())
+ Locations.push_back(Unexpanded[I].second);
+ }
+
+ DiagnosticBuilder DB = Diag(Loc, diag::err_unexpanded_parameter_pack)
+ << (int)UPPC << (int)Names.size();
+ for (size_t I = 0, E = std::min(Names.size(), (size_t)2); I != E; ++I)
+ DB << Names[I];
+
+ for (unsigned I = 0, N = Locations.size(); I != N; ++I)
+ DB << SourceRange(Locations[I]);
+ return true;
+}
+
+bool Sema::DiagnoseUnexpandedParameterPack(SourceLocation Loc,
+ TypeSourceInfo *T,
+ UnexpandedParameterPackContext UPPC) {
+ // C++0x [temp.variadic]p5:
+ // An appearance of a name of a parameter pack that is not expanded is
+ // ill-formed.
+ if (!T->getType()->containsUnexpandedParameterPack())
+ return false;
+
+ SmallVector<UnexpandedParameterPack, 2> Unexpanded;
+ CollectUnexpandedParameterPacksVisitor(Unexpanded).TraverseTypeLoc(
+ T->getTypeLoc());
+ assert(!Unexpanded.empty() && "Unable to find unexpanded parameter packs");
+ return DiagnoseUnexpandedParameterPacks(Loc, UPPC, Unexpanded);
+}
+
+bool Sema::DiagnoseUnexpandedParameterPack(Expr *E,
+ UnexpandedParameterPackContext UPPC) {
+ // C++0x [temp.variadic]p5:
+ // An appearance of a name of a parameter pack that is not expanded is
+ // ill-formed.
+ if (!E->containsUnexpandedParameterPack())
+ return false;
+
+ SmallVector<UnexpandedParameterPack, 2> Unexpanded;
+ CollectUnexpandedParameterPacksVisitor(Unexpanded).TraverseStmt(E);
+ assert(!Unexpanded.empty() && "Unable to find unexpanded parameter packs");
+ return DiagnoseUnexpandedParameterPacks(E->getLocStart(), UPPC, Unexpanded);
+}
+
+bool Sema::DiagnoseUnexpandedParameterPack(const CXXScopeSpec &SS,
+ UnexpandedParameterPackContext UPPC) {
+ // C++0x [temp.variadic]p5:
+ // An appearance of a name of a parameter pack that is not expanded is
+ // ill-formed.
+ if (!SS.getScopeRep() ||
+ !SS.getScopeRep()->containsUnexpandedParameterPack())
+ return false;
+
+ SmallVector<UnexpandedParameterPack, 2> Unexpanded;
+ CollectUnexpandedParameterPacksVisitor(Unexpanded)
+ .TraverseNestedNameSpecifier(SS.getScopeRep());
+ assert(!Unexpanded.empty() && "Unable to find unexpanded parameter packs");
+ return DiagnoseUnexpandedParameterPacks(SS.getRange().getBegin(),
+ UPPC, Unexpanded);
+}
+
+bool Sema::DiagnoseUnexpandedParameterPack(const DeclarationNameInfo &NameInfo,
+ UnexpandedParameterPackContext UPPC) {
+ // C++0x [temp.variadic]p5:
+ // An appearance of a name of a parameter pack that is not expanded is
+ // ill-formed.
+ switch (NameInfo.getName().getNameKind()) {
+ case DeclarationName::Identifier:
+ case DeclarationName::ObjCZeroArgSelector:
+ case DeclarationName::ObjCOneArgSelector:
+ case DeclarationName::ObjCMultiArgSelector:
+ case DeclarationName::CXXOperatorName:
+ case DeclarationName::CXXLiteralOperatorName:
+ case DeclarationName::CXXUsingDirective:
+ return false;
+
+ case DeclarationName::CXXConstructorName:
+ case DeclarationName::CXXDestructorName:
+ case DeclarationName::CXXConversionFunctionName:
+ // FIXME: We shouldn't need this null check!
+ if (TypeSourceInfo *TSInfo = NameInfo.getNamedTypeInfo())
+ return DiagnoseUnexpandedParameterPack(NameInfo.getLoc(), TSInfo, UPPC);
+
+ if (!NameInfo.getName().getCXXNameType()->containsUnexpandedParameterPack())
+ return false;
+
+ break;
+ }
+
+ SmallVector<UnexpandedParameterPack, 2> Unexpanded;
+ CollectUnexpandedParameterPacksVisitor(Unexpanded)
+ .TraverseType(NameInfo.getName().getCXXNameType());
+ assert(!Unexpanded.empty() && "Unable to find unexpanded parameter packs");
+ return DiagnoseUnexpandedParameterPacks(NameInfo.getLoc(), UPPC, Unexpanded);
+}
+
+bool Sema::DiagnoseUnexpandedParameterPack(SourceLocation Loc,
+ TemplateName Template,
+ UnexpandedParameterPackContext UPPC) {
+
+ if (Template.isNull() || !Template.containsUnexpandedParameterPack())
+ return false;
+
+ SmallVector<UnexpandedParameterPack, 2> Unexpanded;
+ CollectUnexpandedParameterPacksVisitor(Unexpanded)
+ .TraverseTemplateName(Template);
+ assert(!Unexpanded.empty() && "Unable to find unexpanded parameter packs");
+ return DiagnoseUnexpandedParameterPacks(Loc, UPPC, Unexpanded);
+}
+
+bool Sema::DiagnoseUnexpandedParameterPack(TemplateArgumentLoc Arg,
+ UnexpandedParameterPackContext UPPC) {
+ if (Arg.getArgument().isNull() ||
+ !Arg.getArgument().containsUnexpandedParameterPack())
+ return false;
+
+ SmallVector<UnexpandedParameterPack, 2> Unexpanded;
+ CollectUnexpandedParameterPacksVisitor(Unexpanded)
+ .TraverseTemplateArgumentLoc(Arg);
+ assert(!Unexpanded.empty() && "Unable to find unexpanded parameter packs");
+ return DiagnoseUnexpandedParameterPacks(Arg.getLocation(), UPPC, Unexpanded);
+}
+
+void Sema::collectUnexpandedParameterPacks(TemplateArgument Arg,
+ SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
+ CollectUnexpandedParameterPacksVisitor(Unexpanded)
+ .TraverseTemplateArgument(Arg);
+}
+
+void Sema::collectUnexpandedParameterPacks(TemplateArgumentLoc Arg,
+ SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
+ CollectUnexpandedParameterPacksVisitor(Unexpanded)
+ .TraverseTemplateArgumentLoc(Arg);
+}
+
+void Sema::collectUnexpandedParameterPacks(QualType T,
+ SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
+ CollectUnexpandedParameterPacksVisitor(Unexpanded).TraverseType(T);
+}
+
+void Sema::collectUnexpandedParameterPacks(TypeLoc TL,
+ SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
+ CollectUnexpandedParameterPacksVisitor(Unexpanded).TraverseTypeLoc(TL);
+}
+
+void Sema::collectUnexpandedParameterPacks(CXXScopeSpec &SS,
+ SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
+ NestedNameSpecifier *Qualifier = SS.getScopeRep();
+ if (!Qualifier)
+ return;
+
+ NestedNameSpecifierLoc QualifierLoc(Qualifier, SS.location_data());
+ CollectUnexpandedParameterPacksVisitor(Unexpanded)
+ .TraverseNestedNameSpecifierLoc(QualifierLoc);
+}
+
+void Sema::collectUnexpandedParameterPacks(const DeclarationNameInfo &NameInfo,
+ SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
+ CollectUnexpandedParameterPacksVisitor(Unexpanded)
+ .TraverseDeclarationNameInfo(NameInfo);
+}
+
+
+ParsedTemplateArgument
+Sema::ActOnPackExpansion(const ParsedTemplateArgument &Arg,
+ SourceLocation EllipsisLoc) {
+ if (Arg.isInvalid())
+ return Arg;
+
+ switch (Arg.getKind()) {
+ case ParsedTemplateArgument::Type: {
+ TypeResult Result = ActOnPackExpansion(Arg.getAsType(), EllipsisLoc);
+ if (Result.isInvalid())
+ return ParsedTemplateArgument();
+
+ return ParsedTemplateArgument(Arg.getKind(), Result.get().getAsOpaquePtr(),
+ Arg.getLocation());
+ }
+
+ case ParsedTemplateArgument::NonType: {
+ ExprResult Result = ActOnPackExpansion(Arg.getAsExpr(), EllipsisLoc);
+ if (Result.isInvalid())
+ return ParsedTemplateArgument();
+
+ return ParsedTemplateArgument(Arg.getKind(), Result.get(),
+ Arg.getLocation());
+ }
+
+ case ParsedTemplateArgument::Template:
+ if (!Arg.getAsTemplate().get().containsUnexpandedParameterPack()) {
+ SourceRange R(Arg.getLocation());
+ if (Arg.getScopeSpec().isValid())
+ R.setBegin(Arg.getScopeSpec().getBeginLoc());
+ Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
+ << R;
+ return ParsedTemplateArgument();
+ }
+
+ return Arg.getTemplatePackExpansion(EllipsisLoc);
+ }
+ llvm_unreachable("Unhandled template argument kind?");
+}
+
+TypeResult Sema::ActOnPackExpansion(ParsedType Type,
+ SourceLocation EllipsisLoc) {
+ TypeSourceInfo *TSInfo;
+ GetTypeFromParser(Type, &TSInfo);
+ if (!TSInfo)
+ return true;
+
+ TypeSourceInfo *TSResult = CheckPackExpansion(TSInfo, EllipsisLoc, None);
+ if (!TSResult)
+ return true;
+
+ return CreateParsedType(TSResult->getType(), TSResult);
+}
+
+TypeSourceInfo *
+Sema::CheckPackExpansion(TypeSourceInfo *Pattern, SourceLocation EllipsisLoc,
+ Optional<unsigned> NumExpansions) {
+ // Create the pack expansion type and source-location information.
+ QualType Result = CheckPackExpansion(Pattern->getType(),
+ Pattern->getTypeLoc().getSourceRange(),
+ EllipsisLoc, NumExpansions);
+ if (Result.isNull())
+ return nullptr;
+
+ TypeLocBuilder TLB;
+ TLB.pushFullCopy(Pattern->getTypeLoc());
+ PackExpansionTypeLoc TL = TLB.push<PackExpansionTypeLoc>(Result);
+ TL.setEllipsisLoc(EllipsisLoc);
+
+ return TLB.getTypeSourceInfo(Context, Result);
+}
+
+QualType Sema::CheckPackExpansion(QualType Pattern, SourceRange PatternRange,
+ SourceLocation EllipsisLoc,
+ Optional<unsigned> NumExpansions) {
+ // C++0x [temp.variadic]p5:
+ // The pattern of a pack expansion shall name one or more
+ // parameter packs that are not expanded by a nested pack
+ // expansion.
+ if (!Pattern->containsUnexpandedParameterPack()) {
+ Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
+ << PatternRange;
+ return QualType();
+ }
+
+ return Context.getPackExpansionType(Pattern, NumExpansions);
+}
+
+ExprResult Sema::ActOnPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc) {
+ return CheckPackExpansion(Pattern, EllipsisLoc, None);
+}
+
+ExprResult Sema::CheckPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc,
+ Optional<unsigned> NumExpansions) {
+ if (!Pattern)
+ return ExprError();
+
+ // C++0x [temp.variadic]p5:
+ // The pattern of a pack expansion shall name one or more
+ // parameter packs that are not expanded by a nested pack
+ // expansion.
+ if (!Pattern->containsUnexpandedParameterPack()) {
+ Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
+ << Pattern->getSourceRange();
+ return ExprError();
+ }
+
+ // Create the pack expansion expression and source-location information.
+ return new (Context)
+ PackExpansionExpr(Context.DependentTy, Pattern, EllipsisLoc, NumExpansions);
+}
+
+/// \brief Retrieve the depth and index of a parameter pack.
+static std::pair<unsigned, unsigned>
+getDepthAndIndex(NamedDecl *ND) {
+ if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ND))
+ return std::make_pair(TTP->getDepth(), TTP->getIndex());
+
+ if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(ND))
+ return std::make_pair(NTTP->getDepth(), NTTP->getIndex());
+
+ TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(ND);
+ return std::make_pair(TTP->getDepth(), TTP->getIndex());
+}
+
+bool Sema::CheckParameterPacksForExpansion(
+ SourceLocation EllipsisLoc, SourceRange PatternRange,
+ ArrayRef<UnexpandedParameterPack> Unexpanded,
+ const MultiLevelTemplateArgumentList &TemplateArgs, bool &ShouldExpand,
+ bool &RetainExpansion, Optional<unsigned> &NumExpansions) {
+ ShouldExpand = true;
+ RetainExpansion = false;
+ std::pair<IdentifierInfo *, SourceLocation> FirstPack;
+ bool HaveFirstPack = false;
+
+ for (ArrayRef<UnexpandedParameterPack>::iterator i = Unexpanded.begin(),
+ end = Unexpanded.end();
+ i != end; ++i) {
+ // Compute the depth and index for this parameter pack.
+ unsigned Depth = 0, Index = 0;
+ IdentifierInfo *Name;
+ bool IsFunctionParameterPack = false;
+
+ if (const TemplateTypeParmType *TTP
+ = i->first.dyn_cast<const TemplateTypeParmType *>()) {
+ Depth = TTP->getDepth();
+ Index = TTP->getIndex();
+ Name = TTP->getIdentifier();
+ } else {
+ NamedDecl *ND = i->first.get<NamedDecl *>();
+ if (isa<ParmVarDecl>(ND))
+ IsFunctionParameterPack = true;
+ else
+ std::tie(Depth, Index) = getDepthAndIndex(ND);
+
+ Name = ND->getIdentifier();
+ }
+
+ // Determine the size of this argument pack.
+ unsigned NewPackSize;
+ if (IsFunctionParameterPack) {
+ // Figure out whether we're instantiating to an argument pack or not.
+ typedef LocalInstantiationScope::DeclArgumentPack DeclArgumentPack;
+
+ llvm::PointerUnion<Decl *, DeclArgumentPack *> *Instantiation
+ = CurrentInstantiationScope->findInstantiationOf(
+ i->first.get<NamedDecl *>());
+ if (Instantiation->is<DeclArgumentPack *>()) {
+ // We could expand this function parameter pack.
+ NewPackSize = Instantiation->get<DeclArgumentPack *>()->size();
+ } else {
+ // We can't expand this function parameter pack, so we can't expand
+ // the pack expansion.
+ ShouldExpand = false;
+ continue;
+ }
+ } else {
+ // If we don't have a template argument at this depth/index, then we
+ // cannot expand the pack expansion. Make a note of this, but we still
+ // want to check any parameter packs we *do* have arguments for.
+ if (Depth >= TemplateArgs.getNumLevels() ||
+ !TemplateArgs.hasTemplateArgument(Depth, Index)) {
+ ShouldExpand = false;
+ continue;
+ }
+
+ // Determine the size of the argument pack.
+ NewPackSize = TemplateArgs(Depth, Index).pack_size();
+ }
+
+ // C++0x [temp.arg.explicit]p9:
+ // Template argument deduction can extend the sequence of template
+ // arguments corresponding to a template parameter pack, even when the
+ // sequence contains explicitly specified template arguments.
+ if (!IsFunctionParameterPack) {
+ if (NamedDecl *PartialPack
+ = CurrentInstantiationScope->getPartiallySubstitutedPack()){
+ unsigned PartialDepth, PartialIndex;
+ std::tie(PartialDepth, PartialIndex) = getDepthAndIndex(PartialPack);
+ if (PartialDepth == Depth && PartialIndex == Index)
+ RetainExpansion = true;
+ }
+ }
+
+ if (!NumExpansions) {
+ // The is the first pack we've seen for which we have an argument.
+ // Record it.
+ NumExpansions = NewPackSize;
+ FirstPack.first = Name;
+ FirstPack.second = i->second;
+ HaveFirstPack = true;
+ continue;
+ }
+
+ if (NewPackSize != *NumExpansions) {
+ // C++0x [temp.variadic]p5:
+ // All of the parameter packs expanded by a pack expansion shall have
+ // the same number of arguments specified.
+ if (HaveFirstPack)
+ Diag(EllipsisLoc, diag::err_pack_expansion_length_conflict)
+ << FirstPack.first << Name << *NumExpansions << NewPackSize
+ << SourceRange(FirstPack.second) << SourceRange(i->second);
+ else
+ Diag(EllipsisLoc, diag::err_pack_expansion_length_conflict_multilevel)
+ << Name << *NumExpansions << NewPackSize
+ << SourceRange(i->second);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+Optional<unsigned> Sema::getNumArgumentsInExpansion(QualType T,
+ const MultiLevelTemplateArgumentList &TemplateArgs) {
+ QualType Pattern = cast<PackExpansionType>(T)->getPattern();
+ SmallVector<UnexpandedParameterPack, 2> Unexpanded;
+ CollectUnexpandedParameterPacksVisitor(Unexpanded).TraverseType(Pattern);
+
+ Optional<unsigned> Result;
+ for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
+ // Compute the depth and index for this parameter pack.
+ unsigned Depth;
+ unsigned Index;
+
+ if (const TemplateTypeParmType *TTP
+ = Unexpanded[I].first.dyn_cast<const TemplateTypeParmType *>()) {
+ Depth = TTP->getDepth();
+ Index = TTP->getIndex();
+ } else {
+ NamedDecl *ND = Unexpanded[I].first.get<NamedDecl *>();
+ if (isa<ParmVarDecl>(ND)) {
+ // Function parameter pack.
+ typedef LocalInstantiationScope::DeclArgumentPack DeclArgumentPack;
+
+ llvm::PointerUnion<Decl *, DeclArgumentPack *> *Instantiation
+ = CurrentInstantiationScope->findInstantiationOf(
+ Unexpanded[I].first.get<NamedDecl *>());
+ if (Instantiation->is<Decl*>())
+ // The pattern refers to an unexpanded pack. We're not ready to expand
+ // this pack yet.
+ return None;
+
+ unsigned Size = Instantiation->get<DeclArgumentPack *>()->size();
+ assert((!Result || *Result == Size) && "inconsistent pack sizes");
+ Result = Size;
+ continue;
+ }
+
+ std::tie(Depth, Index) = getDepthAndIndex(ND);
+ }
+ if (Depth >= TemplateArgs.getNumLevels() ||
+ !TemplateArgs.hasTemplateArgument(Depth, Index))
+ // The pattern refers to an unknown template argument. We're not ready to
+ // expand this pack yet.
+ return None;
+
+ // Determine the size of the argument pack.
+ unsigned Size = TemplateArgs(Depth, Index).pack_size();
+ assert((!Result || *Result == Size) && "inconsistent pack sizes");
+ Result = Size;
+ }
+
+ return Result;
+}
+
+bool Sema::containsUnexpandedParameterPacks(Declarator &D) {
+ const DeclSpec &DS = D.getDeclSpec();
+ switch (DS.getTypeSpecType()) {
+ case TST_typename:
+ case TST_typeofType:
+ case TST_underlyingType:
+ case TST_atomic: {
+ QualType T = DS.getRepAsType().get();
+ if (!T.isNull() && T->containsUnexpandedParameterPack())
+ return true;
+ break;
+ }
+
+ case TST_typeofExpr:
+ case TST_decltype:
+ if (DS.getRepAsExpr() &&
+ DS.getRepAsExpr()->containsUnexpandedParameterPack())
+ return true;
+ break;
+
+ case TST_unspecified:
+ case TST_void:
+ case TST_char:
+ case TST_wchar:
+ case TST_char16:
+ case TST_char32:
+ case TST_int:
+ case TST_int128:
+ case TST_half:
+ case TST_float:
+ case TST_double:
+ case TST_bool:
+ case TST_decimal32:
+ case TST_decimal64:
+ case TST_decimal128:
+ case TST_enum:
+ case TST_union:
+ case TST_struct:
+ case TST_interface:
+ case TST_class:
+ case TST_auto:
+ case TST_decltype_auto:
+ case TST_unknown_anytype:
+ case TST_error:
+ break;
+ }
+
+ for (unsigned I = 0, N = D.getNumTypeObjects(); I != N; ++I) {
+ const DeclaratorChunk &Chunk = D.getTypeObject(I);
+ switch (Chunk.Kind) {
+ case DeclaratorChunk::Pointer:
+ case DeclaratorChunk::Reference:
+ case DeclaratorChunk::Paren:
+ case DeclaratorChunk::BlockPointer:
+ // These declarator chunks cannot contain any parameter packs.
+ break;
+
+ case DeclaratorChunk::Array:
+ if (Chunk.Arr.NumElts &&
+ Chunk.Arr.NumElts->containsUnexpandedParameterPack())
+ return true;
+ break;
+ case DeclaratorChunk::Function:
+ for (unsigned i = 0, e = Chunk.Fun.NumParams; i != e; ++i) {
+ ParmVarDecl *Param = cast<ParmVarDecl>(Chunk.Fun.Params[i].Param);
+ QualType ParamTy = Param->getType();
+ assert(!ParamTy.isNull() && "Couldn't parse type?");
+ if (ParamTy->containsUnexpandedParameterPack()) return true;
+ }
+
+ if (Chunk.Fun.getExceptionSpecType() == EST_Dynamic) {
+ for (unsigned i = 0; i != Chunk.Fun.NumExceptions; ++i) {
+ if (Chunk.Fun.Exceptions[i]
+ .Ty.get()
+ ->containsUnexpandedParameterPack())
+ return true;
+ }
+ } else if (Chunk.Fun.getExceptionSpecType() == EST_ComputedNoexcept &&
+ Chunk.Fun.NoexceptExpr->containsUnexpandedParameterPack())
+ return true;
+
+ if (Chunk.Fun.hasTrailingReturnType()) {
+ QualType T = Chunk.Fun.getTrailingReturnType().get();
+ if (!T.isNull() && T->containsUnexpandedParameterPack())
+ return true;
+ }
+ break;
+
+ case DeclaratorChunk::MemberPointer:
+ if (Chunk.Mem.Scope().getScopeRep() &&
+ Chunk.Mem.Scope().getScopeRep()->containsUnexpandedParameterPack())
+ return true;
+ break;
+ }
+ }
+
+ return false;
+}
+
+namespace {
+
+// Callback to only accept typo corrections that refer to parameter packs.
+class ParameterPackValidatorCCC : public CorrectionCandidateCallback {
+ public:
+ bool ValidateCandidate(const TypoCorrection &candidate) override {
+ NamedDecl *ND = candidate.getCorrectionDecl();
+ return ND && ND->isParameterPack();
+ }
+};
+
+}
+
+/// \brief Called when an expression computing the size of a parameter pack
+/// is parsed.
+///
+/// \code
+/// template<typename ...Types> struct count {
+/// static const unsigned value = sizeof...(Types);
+/// };
+/// \endcode
+///
+//
+/// \param OpLoc The location of the "sizeof" keyword.
+/// \param Name The name of the parameter pack whose size will be determined.
+/// \param NameLoc The source location of the name of the parameter pack.
+/// \param RParenLoc The location of the closing parentheses.
+ExprResult Sema::ActOnSizeofParameterPackExpr(Scope *S,
+ SourceLocation OpLoc,
+ IdentifierInfo &Name,
+ SourceLocation NameLoc,
+ SourceLocation RParenLoc) {
+ // C++0x [expr.sizeof]p5:
+ // The identifier in a sizeof... expression shall name a parameter pack.
+ LookupResult R(*this, &Name, NameLoc, LookupOrdinaryName);
+ LookupName(R, S);
+
+ NamedDecl *ParameterPack = nullptr;
+ switch (R.getResultKind()) {
+ case LookupResult::Found:
+ ParameterPack = R.getFoundDecl();
+ break;
+
+ case LookupResult::NotFound:
+ case LookupResult::NotFoundInCurrentInstantiation:
+ if (TypoCorrection Corrected =
+ CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, nullptr,
+ llvm::make_unique<ParameterPackValidatorCCC>(),
+ CTK_ErrorRecovery)) {
+ diagnoseTypo(Corrected,
+ PDiag(diag::err_sizeof_pack_no_pack_name_suggest) << &Name,
+ PDiag(diag::note_parameter_pack_here));
+ ParameterPack = Corrected.getCorrectionDecl();
+ }
+
+ case LookupResult::FoundOverloaded:
+ case LookupResult::FoundUnresolvedValue:
+ break;
+
+ case LookupResult::Ambiguous:
+ DiagnoseAmbiguousLookup(R);
+ return ExprError();
+ }
+
+ if (!ParameterPack || !ParameterPack->isParameterPack()) {
+ Diag(NameLoc, diag::err_sizeof_pack_no_pack_name)
+ << &Name;
+ return ExprError();
+ }
+
+ MarkAnyDeclReferenced(OpLoc, ParameterPack, true);
+
+ return new (Context) SizeOfPackExpr(Context.getSizeType(), OpLoc,
+ ParameterPack, NameLoc, RParenLoc);
+}
+
+TemplateArgumentLoc
+Sema::getTemplateArgumentPackExpansionPattern(
+ TemplateArgumentLoc OrigLoc,
+ SourceLocation &Ellipsis, Optional<unsigned> &NumExpansions) const {
+ const TemplateArgument &Argument = OrigLoc.getArgument();
+ assert(Argument.isPackExpansion());
+ switch (Argument.getKind()) {
+ case TemplateArgument::Type: {
+ // FIXME: We shouldn't ever have to worry about missing
+ // type-source info!
+ TypeSourceInfo *ExpansionTSInfo = OrigLoc.getTypeSourceInfo();
+ if (!ExpansionTSInfo)
+ ExpansionTSInfo = Context.getTrivialTypeSourceInfo(Argument.getAsType(),
+ Ellipsis);
+ PackExpansionTypeLoc Expansion =
+ ExpansionTSInfo->getTypeLoc().castAs<PackExpansionTypeLoc>();
+ Ellipsis = Expansion.getEllipsisLoc();
+
+ TypeLoc Pattern = Expansion.getPatternLoc();
+ NumExpansions = Expansion.getTypePtr()->getNumExpansions();
+
+ // We need to copy the TypeLoc because TemplateArgumentLocs store a
+ // TypeSourceInfo.
+ // FIXME: Find some way to avoid the copy?
+ TypeLocBuilder TLB;
+ TLB.pushFullCopy(Pattern);
+ TypeSourceInfo *PatternTSInfo =
+ TLB.getTypeSourceInfo(Context, Pattern.getType());
+ return TemplateArgumentLoc(TemplateArgument(Pattern.getType()),
+ PatternTSInfo);
+ }
+
+ case TemplateArgument::Expression: {
+ PackExpansionExpr *Expansion
+ = cast<PackExpansionExpr>(Argument.getAsExpr());
+ Expr *Pattern = Expansion->getPattern();
+ Ellipsis = Expansion->getEllipsisLoc();
+ NumExpansions = Expansion->getNumExpansions();
+ return TemplateArgumentLoc(Pattern, Pattern);
+ }
+
+ case TemplateArgument::TemplateExpansion:
+ Ellipsis = OrigLoc.getTemplateEllipsisLoc();
+ NumExpansions = Argument.getNumTemplateExpansions();
+ return TemplateArgumentLoc(Argument.getPackExpansionPattern(),
+ OrigLoc.getTemplateQualifierLoc(),
+ OrigLoc.getTemplateNameLoc());
+
+ case TemplateArgument::Declaration:
+ case TemplateArgument::NullPtr:
+ case TemplateArgument::Template:
+ case TemplateArgument::Integral:
+ case TemplateArgument::Pack:
+ case TemplateArgument::Null:
+ return TemplateArgumentLoc();
+ }
+
+ llvm_unreachable("Invalid TemplateArgument Kind!");
+}
+
+static void CheckFoldOperand(Sema &S, Expr *E) {
+ if (!E)
+ return;
+
+ E = E->IgnoreImpCasts();
+ if (isa<BinaryOperator>(E) || isa<AbstractConditionalOperator>(E)) {
+ S.Diag(E->getExprLoc(), diag::err_fold_expression_bad_operand)
+ << E->getSourceRange()
+ << FixItHint::CreateInsertion(E->getLocStart(), "(")
+ << FixItHint::CreateInsertion(E->getLocEnd(), ")");
+ }
+}
+
+ExprResult Sema::ActOnCXXFoldExpr(SourceLocation LParenLoc, Expr *LHS,
+ tok::TokenKind Operator,
+ SourceLocation EllipsisLoc, Expr *RHS,
+ SourceLocation RParenLoc) {
+ // LHS and RHS must be cast-expressions. We allow an arbitrary expression
+ // in the parser and reduce down to just cast-expressions here.
+ CheckFoldOperand(*this, LHS);
+ CheckFoldOperand(*this, RHS);
+
+ // [expr.prim.fold]p3:
+ // In a binary fold, op1 and op2 shall be the same fold-operator, and
+ // either e1 shall contain an unexpanded parameter pack or e2 shall contain
+ // an unexpanded parameter pack, but not both.
+ if (LHS && RHS &&
+ LHS->containsUnexpandedParameterPack() ==
+ RHS->containsUnexpandedParameterPack()) {
+ return Diag(EllipsisLoc,
+ LHS->containsUnexpandedParameterPack()
+ ? diag::err_fold_expression_packs_both_sides
+ : diag::err_pack_expansion_without_parameter_packs)
+ << LHS->getSourceRange() << RHS->getSourceRange();
+ }
+
+ // [expr.prim.fold]p2:
+ // In a unary fold, the cast-expression shall contain an unexpanded
+ // parameter pack.
+ if (!LHS || !RHS) {
+ Expr *Pack = LHS ? LHS : RHS;
+ assert(Pack && "fold expression with neither LHS nor RHS");
+ if (!Pack->containsUnexpandedParameterPack())
+ return Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
+ << Pack->getSourceRange();
+ }
+
+ BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Operator);
+ return BuildCXXFoldExpr(LParenLoc, LHS, Opc, EllipsisLoc, RHS, RParenLoc);
+}
+
+ExprResult Sema::BuildCXXFoldExpr(SourceLocation LParenLoc, Expr *LHS,
+ BinaryOperatorKind Operator,
+ SourceLocation EllipsisLoc, Expr *RHS,
+ SourceLocation RParenLoc) {
+ return new (Context) CXXFoldExpr(Context.DependentTy, LParenLoc, LHS,
+ Operator, EllipsisLoc, RHS, RParenLoc);
+}
+
+ExprResult Sema::BuildEmptyCXXFoldExpr(SourceLocation EllipsisLoc,
+ BinaryOperatorKind Operator) {
+ // [temp.variadic]p9:
+ // If N is zero for a unary fold-expression, the value of the expression is
+ // * -> 1
+ // + -> int()
+ // & -> -1
+ // | -> int()
+ // && -> true
+ // || -> false
+ // , -> void()
+ // if the operator is not listed [above], the instantiation is ill-formed.
+ //
+ // Note that we need to use something like int() here, not merely 0, to
+ // prevent the result from being a null pointer constant.
+ QualType ScalarType;
+ switch (Operator) {
+ case BO_Add:
+ ScalarType = Context.IntTy;
+ break;
+ case BO_Mul:
+ return ActOnIntegerConstant(EllipsisLoc, 1);
+ case BO_Or:
+ ScalarType = Context.IntTy;
+ break;
+ case BO_And:
+ return CreateBuiltinUnaryOp(EllipsisLoc, UO_Minus,
+ ActOnIntegerConstant(EllipsisLoc, 1).get());
+ case BO_LOr:
+ return ActOnCXXBoolLiteral(EllipsisLoc, tok::kw_false);
+ case BO_LAnd:
+ return ActOnCXXBoolLiteral(EllipsisLoc, tok::kw_true);
+ case BO_Comma:
+ ScalarType = Context.VoidTy;
+ break;
+
+ default:
+ return Diag(EllipsisLoc, diag::err_fold_expression_empty)
+ << BinaryOperator::getOpcodeStr(Operator);
+ }
+
+ return new (Context) CXXScalarValueInitExpr(
+ ScalarType, Context.getTrivialTypeSourceInfo(ScalarType, EllipsisLoc),
+ EllipsisLoc);
+}
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaType.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaType.cpp
new file mode 100644
index 0000000..57a4689
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaType.cpp
@@ -0,0 +1,5660 @@
+//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements type-related semantic analysis.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Sema/SemaInternal.h"
+#include "TypeLocBuilder.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTMutationListener.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/AST/TypeLocVisitor.h"
+#include "clang/Basic/PartialDiagnostic.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Parse/ParseDiagnostic.h"
+#include "clang/Sema/DeclSpec.h"
+#include "clang/Sema/DelayedDiagnostic.h"
+#include "clang/Sema/Lookup.h"
+#include "clang/Sema/ScopeInfo.h"
+#include "clang/Sema/Template.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/ErrorHandling.h"
+
+using namespace clang;
+
+enum TypeDiagSelector {
+ TDS_Function,
+ TDS_Pointer,
+ TDS_ObjCObjOrBlock
+};
+
+/// isOmittedBlockReturnType - Return true if this declarator is missing a
+/// return type because this is a omitted return type on a block literal.
+static bool isOmittedBlockReturnType(const Declarator &D) {
+ if (D.getContext() != Declarator::BlockLiteralContext ||
+ D.getDeclSpec().hasTypeSpecifier())
+ return false;
+
+ if (D.getNumTypeObjects() == 0)
+ return true; // ^{ ... }
+
+ if (D.getNumTypeObjects() == 1 &&
+ D.getTypeObject(0).Kind == DeclaratorChunk::Function)
+ return true; // ^(int X, float Y) { ... }
+
+ return false;
+}
+
+/// diagnoseBadTypeAttribute - Diagnoses a type attribute which
+/// doesn't apply to the given type.
+static void diagnoseBadTypeAttribute(Sema &S, const AttributeList &attr,
+ QualType type) {
+ TypeDiagSelector WhichType;
+ bool useExpansionLoc = true;
+ switch (attr.getKind()) {
+ case AttributeList::AT_ObjCGC: WhichType = TDS_Pointer; break;
+ case AttributeList::AT_ObjCOwnership: WhichType = TDS_ObjCObjOrBlock; break;
+ default:
+ // Assume everything else was a function attribute.
+ WhichType = TDS_Function;
+ useExpansionLoc = false;
+ break;
+ }
+
+ SourceLocation loc = attr.getLoc();
+ StringRef name = attr.getName()->getName();
+
+ // The GC attributes are usually written with macros; special-case them.
+ IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident
+ : nullptr;
+ if (useExpansionLoc && loc.isMacroID() && II) {
+ if (II->isStr("strong")) {
+ if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
+ } else if (II->isStr("weak")) {
+ if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
+ }
+ }
+
+ S.Diag(loc, diag::warn_type_attribute_wrong_type) << name << WhichType
+ << type;
+}
+
+// objc_gc applies to Objective-C pointers or, otherwise, to the
+// smallest available pointer type (i.e. 'void*' in 'void**').
+#define OBJC_POINTER_TYPE_ATTRS_CASELIST \
+ case AttributeList::AT_ObjCGC: \
+ case AttributeList::AT_ObjCOwnership
+
+// Function type attributes.
+#define FUNCTION_TYPE_ATTRS_CASELIST \
+ case AttributeList::AT_NoReturn: \
+ case AttributeList::AT_CDecl: \
+ case AttributeList::AT_FastCall: \
+ case AttributeList::AT_StdCall: \
+ case AttributeList::AT_ThisCall: \
+ case AttributeList::AT_Pascal: \
+ case AttributeList::AT_VectorCall: \
+ case AttributeList::AT_MSABI: \
+ case AttributeList::AT_SysVABI: \
+ case AttributeList::AT_Regparm: \
+ case AttributeList::AT_Pcs: \
+ case AttributeList::AT_IntelOclBicc
+
+// Microsoft-specific type qualifiers.
+#define MS_TYPE_ATTRS_CASELIST \
+ case AttributeList::AT_Ptr32: \
+ case AttributeList::AT_Ptr64: \
+ case AttributeList::AT_SPtr: \
+ case AttributeList::AT_UPtr
+
+namespace {
+ /// An object which stores processing state for the entire
+ /// GetTypeForDeclarator process.
+ class TypeProcessingState {
+ Sema &sema;
+
+ /// The declarator being processed.
+ Declarator &declarator;
+
+ /// The index of the declarator chunk we're currently processing.
+ /// May be the total number of valid chunks, indicating the
+ /// DeclSpec.
+ unsigned chunkIndex;
+
+ /// Whether there are non-trivial modifications to the decl spec.
+ bool trivial;
+
+ /// Whether we saved the attributes in the decl spec.
+ bool hasSavedAttrs;
+
+ /// The original set of attributes on the DeclSpec.
+ SmallVector<AttributeList*, 2> savedAttrs;
+
+ /// A list of attributes to diagnose the uselessness of when the
+ /// processing is complete.
+ SmallVector<AttributeList*, 2> ignoredTypeAttrs;
+
+ public:
+ TypeProcessingState(Sema &sema, Declarator &declarator)
+ : sema(sema), declarator(declarator),
+ chunkIndex(declarator.getNumTypeObjects()),
+ trivial(true), hasSavedAttrs(false) {}
+
+ Sema &getSema() const {
+ return sema;
+ }
+
+ Declarator &getDeclarator() const {
+ return declarator;
+ }
+
+ bool isProcessingDeclSpec() const {
+ return chunkIndex == declarator.getNumTypeObjects();
+ }
+
+ unsigned getCurrentChunkIndex() const {
+ return chunkIndex;
+ }
+
+ void setCurrentChunkIndex(unsigned idx) {
+ assert(idx <= declarator.getNumTypeObjects());
+ chunkIndex = idx;
+ }
+
+ AttributeList *&getCurrentAttrListRef() const {
+ if (isProcessingDeclSpec())
+ return getMutableDeclSpec().getAttributes().getListRef();
+ return declarator.getTypeObject(chunkIndex).getAttrListRef();
+ }
+
+ /// Save the current set of attributes on the DeclSpec.
+ void saveDeclSpecAttrs() {
+ // Don't try to save them multiple times.
+ if (hasSavedAttrs) return;
+
+ DeclSpec &spec = getMutableDeclSpec();
+ for (AttributeList *attr = spec.getAttributes().getList(); attr;
+ attr = attr->getNext())
+ savedAttrs.push_back(attr);
+ trivial &= savedAttrs.empty();
+ hasSavedAttrs = true;
+ }
+
+ /// Record that we had nowhere to put the given type attribute.
+ /// We will diagnose such attributes later.
+ void addIgnoredTypeAttr(AttributeList &attr) {
+ ignoredTypeAttrs.push_back(&attr);
+ }
+
+ /// Diagnose all the ignored type attributes, given that the
+ /// declarator worked out to the given type.
+ void diagnoseIgnoredTypeAttrs(QualType type) const {
+ for (SmallVectorImpl<AttributeList*>::const_iterator
+ i = ignoredTypeAttrs.begin(), e = ignoredTypeAttrs.end();
+ i != e; ++i)
+ diagnoseBadTypeAttribute(getSema(), **i, type);
+ }
+
+ ~TypeProcessingState() {
+ if (trivial) return;
+
+ restoreDeclSpecAttrs();
+ }
+
+ private:
+ DeclSpec &getMutableDeclSpec() const {
+ return const_cast<DeclSpec&>(declarator.getDeclSpec());
+ }
+
+ void restoreDeclSpecAttrs() {
+ assert(hasSavedAttrs);
+
+ if (savedAttrs.empty()) {
+ getMutableDeclSpec().getAttributes().set(nullptr);
+ return;
+ }
+
+ getMutableDeclSpec().getAttributes().set(savedAttrs[0]);
+ for (unsigned i = 0, e = savedAttrs.size() - 1; i != e; ++i)
+ savedAttrs[i]->setNext(savedAttrs[i+1]);
+ savedAttrs.back()->setNext(nullptr);
+ }
+ };
+}
+
+static void spliceAttrIntoList(AttributeList &attr, AttributeList *&head) {
+ attr.setNext(head);
+ head = &attr;
+}
+
+static void spliceAttrOutOfList(AttributeList &attr, AttributeList *&head) {
+ if (head == &attr) {
+ head = attr.getNext();
+ return;
+ }
+
+ AttributeList *cur = head;
+ while (true) {
+ assert(cur && cur->getNext() && "ran out of attrs?");
+ if (cur->getNext() == &attr) {
+ cur->setNext(attr.getNext());
+ return;
+ }
+ cur = cur->getNext();
+ }
+}
+
+static void moveAttrFromListToList(AttributeList &attr,
+ AttributeList *&fromList,
+ AttributeList *&toList) {
+ spliceAttrOutOfList(attr, fromList);
+ spliceAttrIntoList(attr, toList);
+}
+
+/// The location of a type attribute.
+enum TypeAttrLocation {
+ /// The attribute is in the decl-specifier-seq.
+ TAL_DeclSpec,
+ /// The attribute is part of a DeclaratorChunk.
+ TAL_DeclChunk,
+ /// The attribute is immediately after the declaration's name.
+ TAL_DeclName
+};
+
+static void processTypeAttrs(TypeProcessingState &state,
+ QualType &type, TypeAttrLocation TAL,
+ AttributeList *attrs);
+
+static bool handleFunctionTypeAttr(TypeProcessingState &state,
+ AttributeList &attr,
+ QualType &type);
+
+static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state,
+ AttributeList &attr,
+ QualType &type);
+
+static bool handleObjCGCTypeAttr(TypeProcessingState &state,
+ AttributeList &attr, QualType &type);
+
+static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
+ AttributeList &attr, QualType &type);
+
+static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
+ AttributeList &attr, QualType &type) {
+ if (attr.getKind() == AttributeList::AT_ObjCGC)
+ return handleObjCGCTypeAttr(state, attr, type);
+ assert(attr.getKind() == AttributeList::AT_ObjCOwnership);
+ return handleObjCOwnershipTypeAttr(state, attr, type);
+}
+
+/// Given the index of a declarator chunk, check whether that chunk
+/// directly specifies the return type of a function and, if so, find
+/// an appropriate place for it.
+///
+/// \param i - a notional index which the search will start
+/// immediately inside
+static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
+ unsigned i) {
+ assert(i <= declarator.getNumTypeObjects());
+
+ DeclaratorChunk *result = nullptr;
+
+ // First, look inwards past parens for a function declarator.
+ for (; i != 0; --i) {
+ DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
+ switch (fnChunk.Kind) {
+ case DeclaratorChunk::Paren:
+ continue;
+
+ // If we find anything except a function, bail out.
+ case DeclaratorChunk::Pointer:
+ case DeclaratorChunk::BlockPointer:
+ case DeclaratorChunk::Array:
+ case DeclaratorChunk::Reference:
+ case DeclaratorChunk::MemberPointer:
+ return result;
+
+ // If we do find a function declarator, scan inwards from that,
+ // looking for a block-pointer declarator.
+ case DeclaratorChunk::Function:
+ for (--i; i != 0; --i) {
+ DeclaratorChunk &blockChunk = declarator.getTypeObject(i-1);
+ switch (blockChunk.Kind) {
+ case DeclaratorChunk::Paren:
+ case DeclaratorChunk::Pointer:
+ case DeclaratorChunk::Array:
+ case DeclaratorChunk::Function:
+ case DeclaratorChunk::Reference:
+ case DeclaratorChunk::MemberPointer:
+ continue;
+ case DeclaratorChunk::BlockPointer:
+ result = &blockChunk;
+ goto continue_outer;
+ }
+ llvm_unreachable("bad declarator chunk kind");
+ }
+
+ // If we run out of declarators doing that, we're done.
+ return result;
+ }
+ llvm_unreachable("bad declarator chunk kind");
+
+ // Okay, reconsider from our new point.
+ continue_outer: ;
+ }
+
+ // Ran out of chunks, bail out.
+ return result;
+}
+
+/// Given that an objc_gc attribute was written somewhere on a
+/// declaration *other* than on the declarator itself (for which, use
+/// distributeObjCPointerTypeAttrFromDeclarator), and given that it
+/// didn't apply in whatever position it was written in, try to move
+/// it to a more appropriate position.
+static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
+ AttributeList &attr,
+ QualType type) {
+ Declarator &declarator = state.getDeclarator();
+
+ // Move it to the outermost normal or block pointer declarator.
+ for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
+ DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
+ switch (chunk.Kind) {
+ case DeclaratorChunk::Pointer:
+ case DeclaratorChunk::BlockPointer: {
+ // But don't move an ARC ownership attribute to the return type
+ // of a block.
+ DeclaratorChunk *destChunk = nullptr;
+ if (state.isProcessingDeclSpec() &&
+ attr.getKind() == AttributeList::AT_ObjCOwnership)
+ destChunk = maybeMovePastReturnType(declarator, i - 1);
+ if (!destChunk) destChunk = &chunk;
+
+ moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
+ destChunk->getAttrListRef());
+ return;
+ }
+
+ case DeclaratorChunk::Paren:
+ case DeclaratorChunk::Array:
+ continue;
+
+ // We may be starting at the return type of a block.
+ case DeclaratorChunk::Function:
+ if (state.isProcessingDeclSpec() &&
+ attr.getKind() == AttributeList::AT_ObjCOwnership) {
+ if (DeclaratorChunk *dest = maybeMovePastReturnType(declarator, i)) {
+ moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
+ dest->getAttrListRef());
+ return;
+ }
+ }
+ goto error;
+
+ // Don't walk through these.
+ case DeclaratorChunk::Reference:
+ case DeclaratorChunk::MemberPointer:
+ goto error;
+ }
+ }
+ error:
+
+ diagnoseBadTypeAttribute(state.getSema(), attr, type);
+}
+
+/// Distribute an objc_gc type attribute that was written on the
+/// declarator.
+static void
+distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState &state,
+ AttributeList &attr,
+ QualType &declSpecType) {
+ Declarator &declarator = state.getDeclarator();
+
+ // objc_gc goes on the innermost pointer to something that's not a
+ // pointer.
+ unsigned innermost = -1U;
+ bool considerDeclSpec = true;
+ for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
+ DeclaratorChunk &chunk = declarator.getTypeObject(i);
+ switch (chunk.Kind) {
+ case DeclaratorChunk::Pointer:
+ case DeclaratorChunk::BlockPointer:
+ innermost = i;
+ continue;
+
+ case DeclaratorChunk::Reference:
+ case DeclaratorChunk::MemberPointer:
+ case DeclaratorChunk::Paren:
+ case DeclaratorChunk::Array:
+ continue;
+
+ case DeclaratorChunk::Function:
+ considerDeclSpec = false;
+ goto done;
+ }
+ }
+ done:
+
+ // That might actually be the decl spec if we weren't blocked by
+ // anything in the declarator.
+ if (considerDeclSpec) {
+ if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
+ // Splice the attribute into the decl spec. Prevents the
+ // attribute from being applied multiple times and gives
+ // the source-location-filler something to work with.
+ state.saveDeclSpecAttrs();
+ moveAttrFromListToList(attr, declarator.getAttrListRef(),
+ declarator.getMutableDeclSpec().getAttributes().getListRef());
+ return;
+ }
+ }
+
+ // Otherwise, if we found an appropriate chunk, splice the attribute
+ // into it.
+ if (innermost != -1U) {
+ moveAttrFromListToList(attr, declarator.getAttrListRef(),
+ declarator.getTypeObject(innermost).getAttrListRef());
+ return;
+ }
+
+ // Otherwise, diagnose when we're done building the type.
+ spliceAttrOutOfList(attr, declarator.getAttrListRef());
+ state.addIgnoredTypeAttr(attr);
+}
+
+/// A function type attribute was written somewhere in a declaration
+/// *other* than on the declarator itself or in the decl spec. Given
+/// that it didn't apply in whatever position it was written in, try
+/// to move it to a more appropriate position.
+static void distributeFunctionTypeAttr(TypeProcessingState &state,
+ AttributeList &attr,
+ QualType type) {
+ Declarator &declarator = state.getDeclarator();
+
+ // Try to push the attribute from the return type of a function to
+ // the function itself.
+ for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
+ DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
+ switch (chunk.Kind) {
+ case DeclaratorChunk::Function:
+ moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
+ chunk.getAttrListRef());
+ return;
+
+ case DeclaratorChunk::Paren:
+ case DeclaratorChunk::Pointer:
+ case DeclaratorChunk::BlockPointer:
+ case DeclaratorChunk::Array:
+ case DeclaratorChunk::Reference:
+ case DeclaratorChunk::MemberPointer:
+ continue;
+ }
+ }
+
+ diagnoseBadTypeAttribute(state.getSema(), attr, type);
+}
+
+/// Try to distribute a function type attribute to the innermost
+/// function chunk or type. Returns true if the attribute was
+/// distributed, false if no location was found.
+static bool
+distributeFunctionTypeAttrToInnermost(TypeProcessingState &state,
+ AttributeList &attr,
+ AttributeList *&attrList,
+ QualType &declSpecType) {
+ Declarator &declarator = state.getDeclarator();
+
+ // Put it on the innermost function chunk, if there is one.
+ for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
+ DeclaratorChunk &chunk = declarator.getTypeObject(i);
+ if (chunk.Kind != DeclaratorChunk::Function) continue;
+
+ moveAttrFromListToList(attr, attrList, chunk.getAttrListRef());
+ return true;
+ }
+
+ return handleFunctionTypeAttr(state, attr, declSpecType);
+}
+
+/// A function type attribute was written in the decl spec. Try to
+/// apply it somewhere.
+static void
+distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
+ AttributeList &attr,
+ QualType &declSpecType) {
+ state.saveDeclSpecAttrs();
+
+ // C++11 attributes before the decl specifiers actually appertain to
+ // the declarators. Move them straight there. We don't support the
+ // 'put them wherever you like' semantics we allow for GNU attributes.
+ if (attr.isCXX11Attribute()) {
+ moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
+ state.getDeclarator().getAttrListRef());
+ return;
+ }
+
+ // Try to distribute to the innermost.
+ if (distributeFunctionTypeAttrToInnermost(state, attr,
+ state.getCurrentAttrListRef(),
+ declSpecType))
+ return;
+
+ // If that failed, diagnose the bad attribute when the declarator is
+ // fully built.
+ state.addIgnoredTypeAttr(attr);
+}
+
+/// A function type attribute was written on the declarator. Try to
+/// apply it somewhere.
+static void
+distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
+ AttributeList &attr,
+ QualType &declSpecType) {
+ Declarator &declarator = state.getDeclarator();
+
+ // Try to distribute to the innermost.
+ if (distributeFunctionTypeAttrToInnermost(state, attr,
+ declarator.getAttrListRef(),
+ declSpecType))
+ return;
+
+ // If that failed, diagnose the bad attribute when the declarator is
+ // fully built.
+ spliceAttrOutOfList(attr, declarator.getAttrListRef());
+ state.addIgnoredTypeAttr(attr);
+}
+
+/// \brief Given that there are attributes written on the declarator
+/// itself, try to distribute any type attributes to the appropriate
+/// declarator chunk.
+///
+/// These are attributes like the following:
+/// int f ATTR;
+/// int (f ATTR)();
+/// but not necessarily this:
+/// int f() ATTR;
+static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
+ QualType &declSpecType) {
+ // Collect all the type attributes from the declarator itself.
+ assert(state.getDeclarator().getAttributes() && "declarator has no attrs!");
+ AttributeList *attr = state.getDeclarator().getAttributes();
+ AttributeList *next;
+ do {
+ next = attr->getNext();
+
+ // Do not distribute C++11 attributes. They have strict rules for what
+ // they appertain to.
+ if (attr->isCXX11Attribute())
+ continue;
+
+ switch (attr->getKind()) {
+ OBJC_POINTER_TYPE_ATTRS_CASELIST:
+ distributeObjCPointerTypeAttrFromDeclarator(state, *attr, declSpecType);
+ break;
+
+ case AttributeList::AT_NSReturnsRetained:
+ if (!state.getSema().getLangOpts().ObjCAutoRefCount)
+ break;
+ // fallthrough
+
+ FUNCTION_TYPE_ATTRS_CASELIST:
+ distributeFunctionTypeAttrFromDeclarator(state, *attr, declSpecType);
+ break;
+
+ MS_TYPE_ATTRS_CASELIST:
+ // Microsoft type attributes cannot go after the declarator-id.
+ continue;
+
+ default:
+ break;
+ }
+ } while ((attr = next));
+}
+
+/// Add a synthetic '()' to a block-literal declarator if it is
+/// required, given the return type.
+static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
+ QualType declSpecType) {
+ Declarator &declarator = state.getDeclarator();
+
+ // First, check whether the declarator would produce a function,
+ // i.e. whether the innermost semantic chunk is a function.
+ if (declarator.isFunctionDeclarator()) {
+ // If so, make that declarator a prototyped declarator.
+ declarator.getFunctionTypeInfo().hasPrototype = true;
+ return;
+ }
+
+ // If there are any type objects, the type as written won't name a
+ // function, regardless of the decl spec type. This is because a
+ // block signature declarator is always an abstract-declarator, and
+ // abstract-declarators can't just be parentheses chunks. Therefore
+ // we need to build a function chunk unless there are no type
+ // objects and the decl spec type is a function.
+ if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
+ return;
+
+ // Note that there *are* cases with invalid declarators where
+ // declarators consist solely of parentheses. In general, these
+ // occur only in failed efforts to make function declarators, so
+ // faking up the function chunk is still the right thing to do.
+
+ // Otherwise, we need to fake up a function declarator.
+ SourceLocation loc = declarator.getLocStart();
+
+ // ...and *prepend* it to the declarator.
+ SourceLocation NoLoc;
+ declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
+ /*HasProto=*/true,
+ /*IsAmbiguous=*/false,
+ /*LParenLoc=*/NoLoc,
+ /*ArgInfo=*/nullptr,
+ /*NumArgs=*/0,
+ /*EllipsisLoc=*/NoLoc,
+ /*RParenLoc=*/NoLoc,
+ /*TypeQuals=*/0,
+ /*RefQualifierIsLvalueRef=*/true,
+ /*RefQualifierLoc=*/NoLoc,
+ /*ConstQualifierLoc=*/NoLoc,
+ /*VolatileQualifierLoc=*/NoLoc,
+ /*RestrictQualifierLoc=*/NoLoc,
+ /*MutableLoc=*/NoLoc, EST_None,
+ /*ESpecLoc=*/NoLoc,
+ /*Exceptions=*/nullptr,
+ /*ExceptionRanges=*/nullptr,
+ /*NumExceptions=*/0,
+ /*NoexceptExpr=*/nullptr,
+ /*ExceptionSpecTokens=*/nullptr,
+ loc, loc, declarator));
+
+ // For consistency, make sure the state still has us as processing
+ // the decl spec.
+ assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
+ state.setCurrentChunkIndex(declarator.getNumTypeObjects());
+}
+
+static void diagnoseAndRemoveTypeQualifiers(Sema &S, const DeclSpec &DS,
+ unsigned &TypeQuals,
+ QualType TypeSoFar,
+ unsigned RemoveTQs,
+ unsigned DiagID) {
+ // If this occurs outside a template instantiation, warn the user about
+ // it; they probably didn't mean to specify a redundant qualifier.
+ typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc;
+ for (QualLoc Qual : {QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()),
+ QualLoc(DeclSpec::TQ_volatile, DS.getVolatileSpecLoc()),
+ QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())}) {
+ if (!(RemoveTQs & Qual.first))
+ continue;
+
+ if (S.ActiveTemplateInstantiations.empty()) {
+ if (TypeQuals & Qual.first)
+ S.Diag(Qual.second, DiagID)
+ << DeclSpec::getSpecifierName(Qual.first) << TypeSoFar
+ << FixItHint::CreateRemoval(Qual.second);
+ }
+
+ TypeQuals &= ~Qual.first;
+ }
+}
+
+/// \brief Convert the specified declspec to the appropriate type
+/// object.
+/// \param state Specifies the declarator containing the declaration specifier
+/// to be converted, along with other associated processing state.
+/// \returns The type described by the declaration specifiers. This function
+/// never returns null.
+static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
+ // FIXME: Should move the logic from DeclSpec::Finish to here for validity
+ // checking.
+
+ Sema &S = state.getSema();
+ Declarator &declarator = state.getDeclarator();
+ const DeclSpec &DS = declarator.getDeclSpec();
+ SourceLocation DeclLoc = declarator.getIdentifierLoc();
+ if (DeclLoc.isInvalid())
+ DeclLoc = DS.getLocStart();
+
+ ASTContext &Context = S.Context;
+
+ QualType Result;
+ switch (DS.getTypeSpecType()) {
+ case DeclSpec::TST_void:
+ Result = Context.VoidTy;
+ break;
+ case DeclSpec::TST_char:
+ if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
+ Result = Context.CharTy;
+ else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
+ Result = Context.SignedCharTy;
+ else {
+ assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
+ "Unknown TSS value");
+ Result = Context.UnsignedCharTy;
+ }
+ break;
+ case DeclSpec::TST_wchar:
+ if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
+ Result = Context.WCharTy;
+ else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
+ S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
+ << DS.getSpecifierName(DS.getTypeSpecType(),
+ Context.getPrintingPolicy());
+ Result = Context.getSignedWCharType();
+ } else {
+ assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
+ "Unknown TSS value");
+ S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
+ << DS.getSpecifierName(DS.getTypeSpecType(),
+ Context.getPrintingPolicy());
+ Result = Context.getUnsignedWCharType();
+ }
+ break;
+ case DeclSpec::TST_char16:
+ assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
+ "Unknown TSS value");
+ Result = Context.Char16Ty;
+ break;
+ case DeclSpec::TST_char32:
+ assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
+ "Unknown TSS value");
+ Result = Context.Char32Ty;
+ break;
+ case DeclSpec::TST_unspecified:
+ // "<proto1,proto2>" is an objc qualified ID with a missing id.
+ if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
+ Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
+ (ObjCProtocolDecl*const*)PQ,
+ DS.getNumProtocolQualifiers());
+ Result = Context.getObjCObjectPointerType(Result);
+ break;
+ }
+
+ // If this is a missing declspec in a block literal return context, then it
+ // is inferred from the return statements inside the block.
+ // The declspec is always missing in a lambda expr context; it is either
+ // specified with a trailing return type or inferred.
+ if (S.getLangOpts().CPlusPlus14 &&
+ declarator.getContext() == Declarator::LambdaExprContext) {
+ // In C++1y, a lambda's implicit return type is 'auto'.
+ Result = Context.getAutoDeductType();
+ break;
+ } else if (declarator.getContext() == Declarator::LambdaExprContext ||
+ isOmittedBlockReturnType(declarator)) {
+ Result = Context.DependentTy;
+ break;
+ }
+
+ // Unspecified typespec defaults to int in C90. However, the C90 grammar
+ // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
+ // type-qualifier, or storage-class-specifier. If not, emit an extwarn.
+ // Note that the one exception to this is function definitions, which are
+ // allowed to be completely missing a declspec. This is handled in the
+ // parser already though by it pretending to have seen an 'int' in this
+ // case.
+ if (S.getLangOpts().ImplicitInt) {
+ // In C89 mode, we only warn if there is a completely missing declspec
+ // when one is not allowed.
+ if (DS.isEmpty()) {
+ S.Diag(DeclLoc, diag::ext_missing_declspec)
+ << DS.getSourceRange()
+ << FixItHint::CreateInsertion(DS.getLocStart(), "int");
+ }
+ } else if (!DS.hasTypeSpecifier()) {
+ // C99 and C++ require a type specifier. For example, C99 6.7.2p2 says:
+ // "At least one type specifier shall be given in the declaration
+ // specifiers in each declaration, and in the specifier-qualifier list in
+ // each struct declaration and type name."
+ if (S.getLangOpts().CPlusPlus) {
+ S.Diag(DeclLoc, diag::err_missing_type_specifier)
+ << DS.getSourceRange();
+
+ // When this occurs in C++ code, often something is very broken with the
+ // value being declared, poison it as invalid so we don't get chains of
+ // errors.
+ declarator.setInvalidType(true);
+ } else {
+ S.Diag(DeclLoc, diag::ext_missing_type_specifier)
+ << DS.getSourceRange();
+ }
+ }
+
+ // FALL THROUGH.
+ case DeclSpec::TST_int: {
+ if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
+ switch (DS.getTypeSpecWidth()) {
+ case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
+ case DeclSpec::TSW_short: Result = Context.ShortTy; break;
+ case DeclSpec::TSW_long: Result = Context.LongTy; break;
+ case DeclSpec::TSW_longlong:
+ Result = Context.LongLongTy;
+
+ // 'long long' is a C99 or C++11 feature.
+ if (!S.getLangOpts().C99) {
+ if (S.getLangOpts().CPlusPlus)
+ S.Diag(DS.getTypeSpecWidthLoc(),
+ S.getLangOpts().CPlusPlus11 ?
+ diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
+ else
+ S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
+ }
+ break;
+ }
+ } else {
+ switch (DS.getTypeSpecWidth()) {
+ case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
+ case DeclSpec::TSW_short: Result = Context.UnsignedShortTy; break;
+ case DeclSpec::TSW_long: Result = Context.UnsignedLongTy; break;
+ case DeclSpec::TSW_longlong:
+ Result = Context.UnsignedLongLongTy;
+
+ // 'long long' is a C99 or C++11 feature.
+ if (!S.getLangOpts().C99) {
+ if (S.getLangOpts().CPlusPlus)
+ S.Diag(DS.getTypeSpecWidthLoc(),
+ S.getLangOpts().CPlusPlus11 ?
+ diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
+ else
+ S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
+ }
+ break;
+ }
+ }
+ break;
+ }
+ case DeclSpec::TST_int128:
+ if (!S.Context.getTargetInfo().hasInt128Type())
+ S.Diag(DS.getTypeSpecTypeLoc(), diag::err_int128_unsupported);
+ if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
+ Result = Context.UnsignedInt128Ty;
+ else
+ Result = Context.Int128Ty;
+ break;
+ case DeclSpec::TST_half: Result = Context.HalfTy; break;
+ case DeclSpec::TST_float: Result = Context.FloatTy; break;
+ case DeclSpec::TST_double:
+ if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
+ Result = Context.LongDoubleTy;
+ else
+ Result = Context.DoubleTy;
+
+ if (S.getLangOpts().OpenCL &&
+ !((S.getLangOpts().OpenCLVersion >= 120) ||
+ S.getOpenCLOptions().cl_khr_fp64)) {
+ S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_requires_extension)
+ << Result << "cl_khr_fp64";
+ declarator.setInvalidType(true);
+ }
+ break;
+ case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
+ case DeclSpec::TST_decimal32: // _Decimal32
+ case DeclSpec::TST_decimal64: // _Decimal64
+ case DeclSpec::TST_decimal128: // _Decimal128
+ S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
+ Result = Context.IntTy;
+ declarator.setInvalidType(true);
+ break;
+ case DeclSpec::TST_class:
+ case DeclSpec::TST_enum:
+ case DeclSpec::TST_union:
+ case DeclSpec::TST_struct:
+ case DeclSpec::TST_interface: {
+ TypeDecl *D = dyn_cast_or_null<TypeDecl>(DS.getRepAsDecl());
+ if (!D) {
+ // This can happen in C++ with ambiguous lookups.
+ Result = Context.IntTy;
+ declarator.setInvalidType(true);
+ break;
+ }
+
+ // If the type is deprecated or unavailable, diagnose it.
+ S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
+
+ assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
+ DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
+
+ // TypeQuals handled by caller.
+ Result = Context.getTypeDeclType(D);
+
+ // In both C and C++, make an ElaboratedType.
+ ElaboratedTypeKeyword Keyword
+ = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
+ Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result);
+ break;
+ }
+ case DeclSpec::TST_typename: {
+ assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
+ DS.getTypeSpecSign() == 0 &&
+ "Can't handle qualifiers on typedef names yet!");
+ Result = S.GetTypeFromParser(DS.getRepAsType());
+ if (Result.isNull())
+ declarator.setInvalidType(true);
+ else if (DeclSpec::ProtocolQualifierListTy PQ
+ = DS.getProtocolQualifiers()) {
+ if (const ObjCObjectType *ObjT = Result->getAs<ObjCObjectType>()) {
+ // Silently drop any existing protocol qualifiers.
+ // TODO: determine whether that's the right thing to do.
+ if (ObjT->getNumProtocols())
+ Result = ObjT->getBaseType();
+
+ if (DS.getNumProtocolQualifiers())
+ Result = Context.getObjCObjectType(Result,
+ (ObjCProtocolDecl*const*) PQ,
+ DS.getNumProtocolQualifiers());
+ } else if (Result->isObjCIdType()) {
+ // id<protocol-list>
+ Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
+ (ObjCProtocolDecl*const*) PQ,
+ DS.getNumProtocolQualifiers());
+ Result = Context.getObjCObjectPointerType(Result);
+ } else if (Result->isObjCClassType()) {
+ // Class<protocol-list>
+ Result = Context.getObjCObjectType(Context.ObjCBuiltinClassTy,
+ (ObjCProtocolDecl*const*) PQ,
+ DS.getNumProtocolQualifiers());
+ Result = Context.getObjCObjectPointerType(Result);
+ } else {
+ S.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
+ << DS.getSourceRange();
+ declarator.setInvalidType(true);
+ }
+ } else if (S.getLangOpts().OpenCL) {
+ if (const AtomicType *AT = Result->getAs<AtomicType>()) {
+ const BuiltinType *BT = AT->getValueType()->getAs<BuiltinType>();
+ bool NoExtTypes = BT && (BT->getKind() == BuiltinType::Int ||
+ BT->getKind() == BuiltinType::UInt ||
+ BT->getKind() == BuiltinType::Float);
+ if (!S.getOpenCLOptions().cl_khr_int64_base_atomics && !NoExtTypes) {
+ S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_requires_extension)
+ << Result << "cl_khr_int64_base_atomics";
+ declarator.setInvalidType(true);
+ }
+ if (!S.getOpenCLOptions().cl_khr_int64_extended_atomics &&
+ !NoExtTypes) {
+ S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_requires_extension)
+ << Result << "cl_khr_int64_extended_atomics";
+ declarator.setInvalidType(true);
+ }
+ if (!S.getOpenCLOptions().cl_khr_fp64 && BT &&
+ BT->getKind() == BuiltinType::Double) {
+ S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_requires_extension)
+ << Result << "cl_khr_fp64";
+ declarator.setInvalidType(true);
+ }
+ }
+ }
+
+ // TypeQuals handled by caller.
+ break;
+ }
+ case DeclSpec::TST_typeofType:
+ // FIXME: Preserve type source info.
+ Result = S.GetTypeFromParser(DS.getRepAsType());
+ assert(!Result.isNull() && "Didn't get a type for typeof?");
+ if (!Result->isDependentType())
+ if (const TagType *TT = Result->getAs<TagType>())
+ S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
+ // TypeQuals handled by caller.
+ Result = Context.getTypeOfType(Result);
+ break;
+ case DeclSpec::TST_typeofExpr: {
+ Expr *E = DS.getRepAsExpr();
+ assert(E && "Didn't get an expression for typeof?");
+ // TypeQuals handled by caller.
+ Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
+ if (Result.isNull()) {
+ Result = Context.IntTy;
+ declarator.setInvalidType(true);
+ }
+ break;
+ }
+ case DeclSpec::TST_decltype: {
+ Expr *E = DS.getRepAsExpr();
+ assert(E && "Didn't get an expression for decltype?");
+ // TypeQuals handled by caller.
+ Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
+ if (Result.isNull()) {
+ Result = Context.IntTy;
+ declarator.setInvalidType(true);
+ }
+ break;
+ }
+ case DeclSpec::TST_underlyingType:
+ Result = S.GetTypeFromParser(DS.getRepAsType());
+ assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
+ Result = S.BuildUnaryTransformType(Result,
+ UnaryTransformType::EnumUnderlyingType,
+ DS.getTypeSpecTypeLoc());
+ if (Result.isNull()) {
+ Result = Context.IntTy;
+ declarator.setInvalidType(true);
+ }
+ break;
+
+ case DeclSpec::TST_auto:
+ // TypeQuals handled by caller.
+ // If auto is mentioned in a lambda parameter context, convert it to a
+ // template parameter type immediately, with the appropriate depth and
+ // index, and update sema's state (LambdaScopeInfo) for the current lambda
+ // being analyzed (which tracks the invented type template parameter).
+ if (declarator.getContext() == Declarator::LambdaExprParameterContext) {
+ sema::LambdaScopeInfo *LSI = S.getCurLambda();
+ assert(LSI && "No LambdaScopeInfo on the stack!");
+ const unsigned TemplateParameterDepth = LSI->AutoTemplateParameterDepth;
+ const unsigned AutoParameterPosition = LSI->AutoTemplateParams.size();
+ const bool IsParameterPack = declarator.hasEllipsis();
+
+ // Turns out we must create the TemplateTypeParmDecl here to
+ // retrieve the corresponding template parameter type.
+ TemplateTypeParmDecl *CorrespondingTemplateParam =
+ TemplateTypeParmDecl::Create(Context,
+ // Temporarily add to the TranslationUnit DeclContext. When the
+ // associated TemplateParameterList is attached to a template
+ // declaration (such as FunctionTemplateDecl), the DeclContext
+ // for each template parameter gets updated appropriately via
+ // a call to AdoptTemplateParameterList.
+ Context.getTranslationUnitDecl(),
+ /*KeyLoc*/ SourceLocation(),
+ /*NameLoc*/ declarator.getLocStart(),
+ TemplateParameterDepth,
+ AutoParameterPosition, // our template param index
+ /* Identifier*/ nullptr, false, IsParameterPack);
+ LSI->AutoTemplateParams.push_back(CorrespondingTemplateParam);
+ // Replace the 'auto' in the function parameter with this invented
+ // template type parameter.
+ Result = QualType(CorrespondingTemplateParam->getTypeForDecl(), 0);
+ } else {
+ Result = Context.getAutoType(QualType(), /*decltype(auto)*/false, false);
+ }
+ break;
+
+ case DeclSpec::TST_decltype_auto:
+ Result = Context.getAutoType(QualType(),
+ /*decltype(auto)*/true,
+ /*IsDependent*/ false);
+ break;
+
+ case DeclSpec::TST_unknown_anytype:
+ Result = Context.UnknownAnyTy;
+ break;
+
+ case DeclSpec::TST_atomic:
+ Result = S.GetTypeFromParser(DS.getRepAsType());
+ assert(!Result.isNull() && "Didn't get a type for _Atomic?");
+ Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
+ if (Result.isNull()) {
+ Result = Context.IntTy;
+ declarator.setInvalidType(true);
+ }
+ break;
+
+ case DeclSpec::TST_error:
+ Result = Context.IntTy;
+ declarator.setInvalidType(true);
+ break;
+ }
+
+ // Handle complex types.
+ if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
+ if (S.getLangOpts().Freestanding)
+ S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
+ Result = Context.getComplexType(Result);
+ } else if (DS.isTypeAltiVecVector()) {
+ unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
+ assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
+ VectorType::VectorKind VecKind = VectorType::AltiVecVector;
+ if (DS.isTypeAltiVecPixel())
+ VecKind = VectorType::AltiVecPixel;
+ else if (DS.isTypeAltiVecBool())
+ VecKind = VectorType::AltiVecBool;
+ Result = Context.getVectorType(Result, 128/typeSize, VecKind);
+ }
+
+ // FIXME: Imaginary.
+ if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
+ S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
+
+ // Before we process any type attributes, synthesize a block literal
+ // function declarator if necessary.
+ if (declarator.getContext() == Declarator::BlockLiteralContext)
+ maybeSynthesizeBlockSignature(state, Result);
+
+ // Apply any type attributes from the decl spec. This may cause the
+ // list of type attributes to be temporarily saved while the type
+ // attributes are pushed around.
+ if (AttributeList *attrs = DS.getAttributes().getList())
+ processTypeAttrs(state, Result, TAL_DeclSpec, attrs);
+
+ // Apply const/volatile/restrict qualifiers to T.
+ if (unsigned TypeQuals = DS.getTypeQualifiers()) {
+ // Warn about CV qualifiers on function types.
+ // C99 6.7.3p8:
+ // If the specification of a function type includes any type qualifiers,
+ // the behavior is undefined.
+ // C++11 [dcl.fct]p7:
+ // The effect of a cv-qualifier-seq in a function declarator is not the
+ // same as adding cv-qualification on top of the function type. In the
+ // latter case, the cv-qualifiers are ignored.
+ if (TypeQuals && Result->isFunctionType()) {
+ diagnoseAndRemoveTypeQualifiers(
+ S, DS, TypeQuals, Result, DeclSpec::TQ_const | DeclSpec::TQ_volatile,
+ S.getLangOpts().CPlusPlus
+ ? diag::warn_typecheck_function_qualifiers_ignored
+ : diag::warn_typecheck_function_qualifiers_unspecified);
+ // No diagnostic for 'restrict' or '_Atomic' applied to a
+ // function type; we'll diagnose those later, in BuildQualifiedType.
+ }
+
+ // C++11 [dcl.ref]p1:
+ // Cv-qualified references are ill-formed except when the
+ // cv-qualifiers are introduced through the use of a typedef-name
+ // or decltype-specifier, in which case the cv-qualifiers are ignored.
+ //
+ // There don't appear to be any other contexts in which a cv-qualified
+ // reference type could be formed, so the 'ill-formed' clause here appears
+ // to never happen.
+ if (TypeQuals && Result->isReferenceType()) {
+ diagnoseAndRemoveTypeQualifiers(
+ S, DS, TypeQuals, Result,
+ DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic,
+ diag::warn_typecheck_reference_qualifiers);
+ }
+
+ // C90 6.5.3 constraints: "The same type qualifier shall not appear more
+ // than once in the same specifier-list or qualifier-list, either directly
+ // or via one or more typedefs."
+ if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
+ && TypeQuals & Result.getCVRQualifiers()) {
+ if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
+ S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
+ << "const";
+ }
+
+ if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
+ S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
+ << "volatile";
+ }
+
+ // C90 doesn't have restrict nor _Atomic, so it doesn't force us to
+ // produce a warning in this case.
+ }
+
+ QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
+
+ // If adding qualifiers fails, just use the unqualified type.
+ if (Qualified.isNull())
+ declarator.setInvalidType(true);
+ else
+ Result = Qualified;
+ }
+
+ assert(!Result.isNull() && "This function should not return a null type");
+ return Result;
+}
+
+static std::string getPrintableNameForEntity(DeclarationName Entity) {
+ if (Entity)
+ return Entity.getAsString();
+
+ return "type name";
+}
+
+QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
+ Qualifiers Qs, const DeclSpec *DS) {
+ if (T.isNull())
+ return QualType();
+
+ // Enforce C99 6.7.3p2: "Types other than pointer types derived from
+ // object or incomplete types shall not be restrict-qualified."
+ if (Qs.hasRestrict()) {
+ unsigned DiagID = 0;
+ QualType ProblemTy;
+
+ if (T->isAnyPointerType() || T->isReferenceType() ||
+ T->isMemberPointerType()) {
+ QualType EltTy;
+ if (T->isObjCObjectPointerType())
+ EltTy = T;
+ else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
+ EltTy = PTy->getPointeeType();
+ else
+ EltTy = T->getPointeeType();
+
+ // If we have a pointer or reference, the pointee must have an object
+ // incomplete type.
+ if (!EltTy->isIncompleteOrObjectType()) {
+ DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
+ ProblemTy = EltTy;
+ }
+ } else if (!T->isDependentType()) {
+ DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
+ ProblemTy = T;
+ }
+
+ if (DiagID) {
+ Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
+ Qs.removeRestrict();
+ }
+ }
+
+ return Context.getQualifiedType(T, Qs);
+}
+
+QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
+ unsigned CVRA, const DeclSpec *DS) {
+ if (T.isNull())
+ return QualType();
+
+ // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic.
+ unsigned CVR = CVRA & ~DeclSpec::TQ_atomic;
+
+ // C11 6.7.3/5:
+ // If the same qualifier appears more than once in the same
+ // specifier-qualifier-list, either directly or via one or more typedefs,
+ // the behavior is the same as if it appeared only once.
+ //
+ // It's not specified what happens when the _Atomic qualifier is applied to
+ // a type specified with the _Atomic specifier, but we assume that this
+ // should be treated as if the _Atomic qualifier appeared multiple times.
+ if (CVRA & DeclSpec::TQ_atomic && !T->isAtomicType()) {
+ // C11 6.7.3/5:
+ // If other qualifiers appear along with the _Atomic qualifier in a
+ // specifier-qualifier-list, the resulting type is the so-qualified
+ // atomic type.
+ //
+ // Don't need to worry about array types here, since _Atomic can't be
+ // applied to such types.
+ SplitQualType Split = T.getSplitUnqualifiedType();
+ T = BuildAtomicType(QualType(Split.Ty, 0),
+ DS ? DS->getAtomicSpecLoc() : Loc);
+ if (T.isNull())
+ return T;
+ Split.Quals.addCVRQualifiers(CVR);
+ return BuildQualifiedType(T, Loc, Split.Quals);
+ }
+
+ return BuildQualifiedType(T, Loc, Qualifiers::fromCVRMask(CVR), DS);
+}
+
+/// \brief Build a paren type including \p T.
+QualType Sema::BuildParenType(QualType T) {
+ return Context.getParenType(T);
+}
+
+/// Given that we're building a pointer or reference to the given
+static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
+ SourceLocation loc,
+ bool isReference) {
+ // Bail out if retention is unrequired or already specified.
+ if (!type->isObjCLifetimeType() ||
+ type.getObjCLifetime() != Qualifiers::OCL_None)
+ return type;
+
+ Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
+
+ // If the object type is const-qualified, we can safely use
+ // __unsafe_unretained. This is safe (because there are no read
+ // barriers), and it'll be safe to coerce anything but __weak* to
+ // the resulting type.
+ if (type.isConstQualified()) {
+ implicitLifetime = Qualifiers::OCL_ExplicitNone;
+
+ // Otherwise, check whether the static type does not require
+ // retaining. This currently only triggers for Class (possibly
+ // protocol-qualifed, and arrays thereof).
+ } else if (type->isObjCARCImplicitlyUnretainedType()) {
+ implicitLifetime = Qualifiers::OCL_ExplicitNone;
+
+ // If we are in an unevaluated context, like sizeof, skip adding a
+ // qualification.
+ } else if (S.isUnevaluatedContext()) {
+ return type;
+
+ // If that failed, give an error and recover using __strong. __strong
+ // is the option most likely to prevent spurious second-order diagnostics,
+ // like when binding a reference to a field.
+ } else {
+ // These types can show up in private ivars in system headers, so
+ // we need this to not be an error in those cases. Instead we
+ // want to delay.
+ if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
+ S.DelayedDiagnostics.add(
+ sema::DelayedDiagnostic::makeForbiddenType(loc,
+ diag::err_arc_indirect_no_ownership, type, isReference));
+ } else {
+ S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
+ }
+ implicitLifetime = Qualifiers::OCL_Strong;
+ }
+ assert(implicitLifetime && "didn't infer any lifetime!");
+
+ Qualifiers qs;
+ qs.addObjCLifetime(implicitLifetime);
+ return S.Context.getQualifiedType(type, qs);
+}
+
+static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
+ std::string Quals =
+ Qualifiers::fromCVRMask(FnTy->getTypeQuals()).getAsString();
+
+ switch (FnTy->getRefQualifier()) {
+ case RQ_None:
+ break;
+
+ case RQ_LValue:
+ if (!Quals.empty())
+ Quals += ' ';
+ Quals += '&';
+ break;
+
+ case RQ_RValue:
+ if (!Quals.empty())
+ Quals += ' ';
+ Quals += "&&";
+ break;
+ }
+
+ return Quals;
+}
+
+namespace {
+/// Kinds of declarator that cannot contain a qualified function type.
+///
+/// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6:
+/// a function type with a cv-qualifier or a ref-qualifier can only appear
+/// at the topmost level of a type.
+///
+/// Parens and member pointers are permitted. We don't diagnose array and
+/// function declarators, because they don't allow function types at all.
+///
+/// The values of this enum are used in diagnostics.
+enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference };
+}
+
+/// Check whether the type T is a qualified function type, and if it is,
+/// diagnose that it cannot be contained within the given kind of declarator.
+static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc,
+ QualifiedFunctionKind QFK) {
+ // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
+ const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
+ if (!FPT || (FPT->getTypeQuals() == 0 && FPT->getRefQualifier() == RQ_None))
+ return false;
+
+ S.Diag(Loc, diag::err_compound_qualified_function_type)
+ << QFK << isa<FunctionType>(T.IgnoreParens()) << T
+ << getFunctionQualifiersAsString(FPT);
+ return true;
+}
+
+/// \brief Build a pointer type.
+///
+/// \param T The type to which we'll be building a pointer.
+///
+/// \param Loc The location of the entity whose type involves this
+/// pointer type or, if there is no such entity, the location of the
+/// type that will have pointer type.
+///
+/// \param Entity The name of the entity that involves the pointer
+/// type, if known.
+///
+/// \returns A suitable pointer type, if there are no
+/// errors. Otherwise, returns a NULL type.
+QualType Sema::BuildPointerType(QualType T,
+ SourceLocation Loc, DeclarationName Entity) {
+ if (T->isReferenceType()) {
+ // C++ 8.3.2p4: There shall be no ... pointers to references ...
+ Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
+ << getPrintableNameForEntity(Entity) << T;
+ return QualType();
+ }
+
+ if (checkQualifiedFunction(*this, T, Loc, QFK_Pointer))
+ return QualType();
+
+ assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
+
+ // In ARC, it is forbidden to build pointers to unqualified pointers.
+ if (getLangOpts().ObjCAutoRefCount)
+ T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
+
+ // Build the pointer type.
+ return Context.getPointerType(T);
+}
+
+/// \brief Build a reference type.
+///
+/// \param T The type to which we'll be building a reference.
+///
+/// \param Loc The location of the entity whose type involves this
+/// reference type or, if there is no such entity, the location of the
+/// type that will have reference type.
+///
+/// \param Entity The name of the entity that involves the reference
+/// type, if known.
+///
+/// \returns A suitable reference type, if there are no
+/// errors. Otherwise, returns a NULL type.
+QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
+ SourceLocation Loc,
+ DeclarationName Entity) {
+ assert(Context.getCanonicalType(T) != Context.OverloadTy &&
+ "Unresolved overloaded function type");
+
+ // C++0x [dcl.ref]p6:
+ // If a typedef (7.1.3), a type template-parameter (14.3.1), or a
+ // decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
+ // type T, an attempt to create the type "lvalue reference to cv TR" creates
+ // the type "lvalue reference to T", while an attempt to create the type
+ // "rvalue reference to cv TR" creates the type TR.
+ bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
+
+ // C++ [dcl.ref]p4: There shall be no references to references.
+ //
+ // According to C++ DR 106, references to references are only
+ // diagnosed when they are written directly (e.g., "int & &"),
+ // but not when they happen via a typedef:
+ //
+ // typedef int& intref;
+ // typedef intref& intref2;
+ //
+ // Parser::ParseDeclaratorInternal diagnoses the case where
+ // references are written directly; here, we handle the
+ // collapsing of references-to-references as described in C++0x.
+ // DR 106 and 540 introduce reference-collapsing into C++98/03.
+
+ // C++ [dcl.ref]p1:
+ // A declarator that specifies the type "reference to cv void"
+ // is ill-formed.
+ if (T->isVoidType()) {
+ Diag(Loc, diag::err_reference_to_void);
+ return QualType();
+ }
+
+ if (checkQualifiedFunction(*this, T, Loc, QFK_Reference))
+ return QualType();
+
+ // In ARC, it is forbidden to build references to unqualified pointers.
+ if (getLangOpts().ObjCAutoRefCount)
+ T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
+
+ // Handle restrict on references.
+ if (LValueRef)
+ return Context.getLValueReferenceType(T, SpelledAsLValue);
+ return Context.getRValueReferenceType(T);
+}
+
+/// Check whether the specified array size makes the array type a VLA. If so,
+/// return true, if not, return the size of the array in SizeVal.
+static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal) {
+ // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
+ // (like gnu99, but not c99) accept any evaluatable value as an extension.
+ class VLADiagnoser : public Sema::VerifyICEDiagnoser {
+ public:
+ VLADiagnoser() : Sema::VerifyICEDiagnoser(true) {}
+
+ void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
+ }
+
+ void diagnoseFold(Sema &S, SourceLocation Loc, SourceRange SR) override {
+ S.Diag(Loc, diag::ext_vla_folded_to_constant) << SR;
+ }
+ } Diagnoser;
+
+ return S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser,
+ S.LangOpts.GNUMode).isInvalid();
+}
+
+
+/// \brief Build an array type.
+///
+/// \param T The type of each element in the array.
+///
+/// \param ASM C99 array size modifier (e.g., '*', 'static').
+///
+/// \param ArraySize Expression describing the size of the array.
+///
+/// \param Brackets The range from the opening '[' to the closing ']'.
+///
+/// \param Entity The name of the entity that involves the array
+/// type, if known.
+///
+/// \returns A suitable array type, if there are no errors. Otherwise,
+/// returns a NULL type.
+QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
+ Expr *ArraySize, unsigned Quals,
+ SourceRange Brackets, DeclarationName Entity) {
+
+ SourceLocation Loc = Brackets.getBegin();
+ if (getLangOpts().CPlusPlus) {
+ // C++ [dcl.array]p1:
+ // T is called the array element type; this type shall not be a reference
+ // type, the (possibly cv-qualified) type void, a function type or an
+ // abstract class type.
+ //
+ // C++ [dcl.array]p3:
+ // When several "array of" specifications are adjacent, [...] only the
+ // first of the constant expressions that specify the bounds of the arrays
+ // may be omitted.
+ //
+ // Note: function types are handled in the common path with C.
+ if (T->isReferenceType()) {
+ Diag(Loc, diag::err_illegal_decl_array_of_references)
+ << getPrintableNameForEntity(Entity) << T;
+ return QualType();
+ }
+
+ if (T->isVoidType() || T->isIncompleteArrayType()) {
+ Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
+ return QualType();
+ }
+
+ if (RequireNonAbstractType(Brackets.getBegin(), T,
+ diag::err_array_of_abstract_type))
+ return QualType();
+
+ // Mentioning a member pointer type for an array type causes us to lock in
+ // an inheritance model, even if it's inside an unused typedef.
+ if (Context.getTargetInfo().getCXXABI().isMicrosoft())
+ if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
+ if (!MPTy->getClass()->isDependentType())
+ RequireCompleteType(Loc, T, 0);
+
+ } else {
+ // C99 6.7.5.2p1: If the element type is an incomplete or function type,
+ // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
+ if (RequireCompleteType(Loc, T,
+ diag::err_illegal_decl_array_incomplete_type))
+ return QualType();
+ }
+
+ if (T->isFunctionType()) {
+ Diag(Loc, diag::err_illegal_decl_array_of_functions)
+ << getPrintableNameForEntity(Entity) << T;
+ return QualType();
+ }
+
+ if (const RecordType *EltTy = T->getAs<RecordType>()) {
+ // If the element type is a struct or union that contains a variadic
+ // array, accept it as a GNU extension: C99 6.7.2.1p2.
+ if (EltTy->getDecl()->hasFlexibleArrayMember())
+ Diag(Loc, diag::ext_flexible_array_in_array) << T;
+ } else if (T->isObjCObjectType()) {
+ Diag(Loc, diag::err_objc_array_of_interfaces) << T;
+ return QualType();
+ }
+
+ // Do placeholder conversions on the array size expression.
+ if (ArraySize && ArraySize->hasPlaceholderType()) {
+ ExprResult Result = CheckPlaceholderExpr(ArraySize);
+ if (Result.isInvalid()) return QualType();
+ ArraySize = Result.get();
+ }
+
+ // Do lvalue-to-rvalue conversions on the array size expression.
+ if (ArraySize && !ArraySize->isRValue()) {
+ ExprResult Result = DefaultLvalueConversion(ArraySize);
+ if (Result.isInvalid())
+ return QualType();
+
+ ArraySize = Result.get();
+ }
+
+ // C99 6.7.5.2p1: The size expression shall have integer type.
+ // C++11 allows contextual conversions to such types.
+ if (!getLangOpts().CPlusPlus11 &&
+ ArraySize && !ArraySize->isTypeDependent() &&
+ !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
+ Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
+ << ArraySize->getType() << ArraySize->getSourceRange();
+ return QualType();
+ }
+
+ llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
+ if (!ArraySize) {
+ if (ASM == ArrayType::Star)
+ T = Context.getVariableArrayType(T, nullptr, ASM, Quals, Brackets);
+ else
+ T = Context.getIncompleteArrayType(T, ASM, Quals);
+ } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
+ T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
+ } else if ((!T->isDependentType() && !T->isIncompleteType() &&
+ !T->isConstantSizeType()) ||
+ isArraySizeVLA(*this, ArraySize, ConstVal)) {
+ // Even in C++11, don't allow contextual conversions in the array bound
+ // of a VLA.
+ if (getLangOpts().CPlusPlus11 &&
+ !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
+ Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
+ << ArraySize->getType() << ArraySize->getSourceRange();
+ return QualType();
+ }
+
+ // C99: an array with an element type that has a non-constant-size is a VLA.
+ // C99: an array with a non-ICE size is a VLA. We accept any expression
+ // that we can fold to a non-zero positive value as an extension.
+ T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
+ } else {
+ // C99 6.7.5.2p1: If the expression is a constant expression, it shall
+ // have a value greater than zero.
+ if (ConstVal.isSigned() && ConstVal.isNegative()) {
+ if (Entity)
+ Diag(ArraySize->getLocStart(), diag::err_decl_negative_array_size)
+ << getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
+ else
+ Diag(ArraySize->getLocStart(), diag::err_typecheck_negative_array_size)
+ << ArraySize->getSourceRange();
+ return QualType();
+ }
+ if (ConstVal == 0) {
+ // GCC accepts zero sized static arrays. We allow them when
+ // we're not in a SFINAE context.
+ Diag(ArraySize->getLocStart(),
+ isSFINAEContext()? diag::err_typecheck_zero_array_size
+ : diag::ext_typecheck_zero_array_size)
+ << ArraySize->getSourceRange();
+
+ if (ASM == ArrayType::Static) {
+ Diag(ArraySize->getLocStart(),
+ diag::warn_typecheck_zero_static_array_size)
+ << ArraySize->getSourceRange();
+ ASM = ArrayType::Normal;
+ }
+ } else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
+ !T->isIncompleteType() && !T->isUndeducedType()) {
+ // Is the array too large?
+ unsigned ActiveSizeBits
+ = ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
+ if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
+ Diag(ArraySize->getLocStart(), diag::err_array_too_large)
+ << ConstVal.toString(10)
+ << ArraySize->getSourceRange();
+ return QualType();
+ }
+ }
+
+ T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
+ }
+
+ // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
+ if (getLangOpts().OpenCL && T->isVariableArrayType()) {
+ Diag(Loc, diag::err_opencl_vla);
+ return QualType();
+ }
+ // If this is not C99, extwarn about VLA's and C99 array size modifiers.
+ if (!getLangOpts().C99) {
+ if (T->isVariableArrayType()) {
+ // Prohibit the use of non-POD types in VLAs.
+ QualType BaseT = Context.getBaseElementType(T);
+ if (!T->isDependentType() &&
+ !RequireCompleteType(Loc, BaseT, 0) &&
+ !BaseT.isPODType(Context) &&
+ !BaseT->isObjCLifetimeType()) {
+ Diag(Loc, diag::err_vla_non_pod)
+ << BaseT;
+ return QualType();
+ }
+ // Prohibit the use of VLAs during template argument deduction.
+ else if (isSFINAEContext()) {
+ Diag(Loc, diag::err_vla_in_sfinae);
+ return QualType();
+ }
+ // Just extwarn about VLAs.
+ else
+ Diag(Loc, diag::ext_vla);
+ } else if (ASM != ArrayType::Normal || Quals != 0)
+ Diag(Loc,
+ getLangOpts().CPlusPlus? diag::err_c99_array_usage_cxx
+ : diag::ext_c99_array_usage) << ASM;
+ }
+
+ if (T->isVariableArrayType()) {
+ // Warn about VLAs for -Wvla.
+ Diag(Loc, diag::warn_vla_used);
+ }
+
+ return T;
+}
+
+/// \brief Build an ext-vector type.
+///
+/// Run the required checks for the extended vector type.
+QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
+ SourceLocation AttrLoc) {
+ // unlike gcc's vector_size attribute, we do not allow vectors to be defined
+ // in conjunction with complex types (pointers, arrays, functions, etc.).
+ if (!T->isDependentType() &&
+ !T->isIntegerType() && !T->isRealFloatingType()) {
+ Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
+ return QualType();
+ }
+
+ if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
+ llvm::APSInt vecSize(32);
+ if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
+ Diag(AttrLoc, diag::err_attribute_argument_type)
+ << "ext_vector_type" << AANT_ArgumentIntegerConstant
+ << ArraySize->getSourceRange();
+ return QualType();
+ }
+
+ // unlike gcc's vector_size attribute, the size is specified as the
+ // number of elements, not the number of bytes.
+ unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
+
+ if (vectorSize == 0) {
+ Diag(AttrLoc, diag::err_attribute_zero_size)
+ << ArraySize->getSourceRange();
+ return QualType();
+ }
+
+ if (VectorType::isVectorSizeTooLarge(vectorSize)) {
+ Diag(AttrLoc, diag::err_attribute_size_too_large)
+ << ArraySize->getSourceRange();
+ return QualType();
+ }
+
+ return Context.getExtVectorType(T, vectorSize);
+ }
+
+ return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
+}
+
+bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) {
+ if (T->isArrayType() || T->isFunctionType()) {
+ Diag(Loc, diag::err_func_returning_array_function)
+ << T->isFunctionType() << T;
+ return true;
+ }
+
+ // Functions cannot return half FP.
+ if (T->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
+ Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
+ FixItHint::CreateInsertion(Loc, "*");
+ return true;
+ }
+
+ // Methods cannot return interface types. All ObjC objects are
+ // passed by reference.
+ if (T->isObjCObjectType()) {
+ Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value) << 0 << T;
+ return 0;
+ }
+
+ return false;
+}
+
+QualType Sema::BuildFunctionType(QualType T,
+ MutableArrayRef<QualType> ParamTypes,
+ SourceLocation Loc, DeclarationName Entity,
+ const FunctionProtoType::ExtProtoInfo &EPI) {
+ bool Invalid = false;
+
+ Invalid |= CheckFunctionReturnType(T, Loc);
+
+ for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
+ // FIXME: Loc is too inprecise here, should use proper locations for args.
+ QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
+ if (ParamType->isVoidType()) {
+ Diag(Loc, diag::err_param_with_void_type);
+ Invalid = true;
+ } else if (ParamType->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
+ // Disallow half FP arguments.
+ Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
+ FixItHint::CreateInsertion(Loc, "*");
+ Invalid = true;
+ }
+
+ ParamTypes[Idx] = ParamType;
+ }
+
+ if (Invalid)
+ return QualType();
+
+ return Context.getFunctionType(T, ParamTypes, EPI);
+}
+
+/// \brief Build a member pointer type \c T Class::*.
+///
+/// \param T the type to which the member pointer refers.
+/// \param Class the class type into which the member pointer points.
+/// \param Loc the location where this type begins
+/// \param Entity the name of the entity that will have this member pointer type
+///
+/// \returns a member pointer type, if successful, or a NULL type if there was
+/// an error.
+QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
+ SourceLocation Loc,
+ DeclarationName Entity) {
+ // Verify that we're not building a pointer to pointer to function with
+ // exception specification.
+ if (CheckDistantExceptionSpec(T)) {
+ Diag(Loc, diag::err_distant_exception_spec);
+ return QualType();
+ }
+
+ // C++ 8.3.3p3: A pointer to member shall not point to ... a member
+ // with reference type, or "cv void."
+ if (T->isReferenceType()) {
+ Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
+ << getPrintableNameForEntity(Entity) << T;
+ return QualType();
+ }
+
+ if (T->isVoidType()) {
+ Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
+ << getPrintableNameForEntity(Entity);
+ return QualType();
+ }
+
+ if (!Class->isDependentType() && !Class->isRecordType()) {
+ Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
+ return QualType();
+ }
+
+ // Adjust the default free function calling convention to the default method
+ // calling convention.
+ if (T->isFunctionType())
+ adjustMemberFunctionCC(T, /*IsStatic=*/false);
+
+ return Context.getMemberPointerType(T, Class.getTypePtr());
+}
+
+/// \brief Build a block pointer type.
+///
+/// \param T The type to which we'll be building a block pointer.
+///
+/// \param Loc The source location, used for diagnostics.
+///
+/// \param Entity The name of the entity that involves the block pointer
+/// type, if known.
+///
+/// \returns A suitable block pointer type, if there are no
+/// errors. Otherwise, returns a NULL type.
+QualType Sema::BuildBlockPointerType(QualType T,
+ SourceLocation Loc,
+ DeclarationName Entity) {
+ if (!T->isFunctionType()) {
+ Diag(Loc, diag::err_nonfunction_block_type);
+ return QualType();
+ }
+
+ if (checkQualifiedFunction(*this, T, Loc, QFK_BlockPointer))
+ return QualType();
+
+ return Context.getBlockPointerType(T);
+}
+
+QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
+ QualType QT = Ty.get();
+ if (QT.isNull()) {
+ if (TInfo) *TInfo = nullptr;
+ return QualType();
+ }
+
+ TypeSourceInfo *DI = nullptr;
+ if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
+ QT = LIT->getType();
+ DI = LIT->getTypeSourceInfo();
+ }
+
+ if (TInfo) *TInfo = DI;
+ return QT;
+}
+
+static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
+ Qualifiers::ObjCLifetime ownership,
+ unsigned chunkIndex);
+
+/// Given that this is the declaration of a parameter under ARC,
+/// attempt to infer attributes and such for pointer-to-whatever
+/// types.
+static void inferARCWriteback(TypeProcessingState &state,
+ QualType &declSpecType) {
+ Sema &S = state.getSema();
+ Declarator &declarator = state.getDeclarator();
+
+ // TODO: should we care about decl qualifiers?
+
+ // Check whether the declarator has the expected form. We walk
+ // from the inside out in order to make the block logic work.
+ unsigned outermostPointerIndex = 0;
+ bool isBlockPointer = false;
+ unsigned numPointers = 0;
+ for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
+ unsigned chunkIndex = i;
+ DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
+ switch (chunk.Kind) {
+ case DeclaratorChunk::Paren:
+ // Ignore parens.
+ break;
+
+ case DeclaratorChunk::Reference:
+ case DeclaratorChunk::Pointer:
+ // Count the number of pointers. Treat references
+ // interchangeably as pointers; if they're mis-ordered, normal
+ // type building will discover that.
+ outermostPointerIndex = chunkIndex;
+ numPointers++;
+ break;
+
+ case DeclaratorChunk::BlockPointer:
+ // If we have a pointer to block pointer, that's an acceptable
+ // indirect reference; anything else is not an application of
+ // the rules.
+ if (numPointers != 1) return;
+ numPointers++;
+ outermostPointerIndex = chunkIndex;
+ isBlockPointer = true;
+
+ // We don't care about pointer structure in return values here.
+ goto done;
+
+ case DeclaratorChunk::Array: // suppress if written (id[])?
+ case DeclaratorChunk::Function:
+ case DeclaratorChunk::MemberPointer:
+ return;
+ }
+ }
+ done:
+
+ // If we have *one* pointer, then we want to throw the qualifier on
+ // the declaration-specifiers, which means that it needs to be a
+ // retainable object type.
+ if (numPointers == 1) {
+ // If it's not a retainable object type, the rule doesn't apply.
+ if (!declSpecType->isObjCRetainableType()) return;
+
+ // If it already has lifetime, don't do anything.
+ if (declSpecType.getObjCLifetime()) return;
+
+ // Otherwise, modify the type in-place.
+ Qualifiers qs;
+
+ if (declSpecType->isObjCARCImplicitlyUnretainedType())
+ qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
+ else
+ qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
+ declSpecType = S.Context.getQualifiedType(declSpecType, qs);
+
+ // If we have *two* pointers, then we want to throw the qualifier on
+ // the outermost pointer.
+ } else if (numPointers == 2) {
+ // If we don't have a block pointer, we need to check whether the
+ // declaration-specifiers gave us something that will turn into a
+ // retainable object pointer after we slap the first pointer on it.
+ if (!isBlockPointer && !declSpecType->isObjCObjectType())
+ return;
+
+ // Look for an explicit lifetime attribute there.
+ DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
+ if (chunk.Kind != DeclaratorChunk::Pointer &&
+ chunk.Kind != DeclaratorChunk::BlockPointer)
+ return;
+ for (const AttributeList *attr = chunk.getAttrs(); attr;
+ attr = attr->getNext())
+ if (attr->getKind() == AttributeList::AT_ObjCOwnership)
+ return;
+
+ transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
+ outermostPointerIndex);
+
+ // Any other number of pointers/references does not trigger the rule.
+ } else return;
+
+ // TODO: mark whether we did this inference?
+}
+
+void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
+ SourceLocation FallbackLoc,
+ SourceLocation ConstQualLoc,
+ SourceLocation VolatileQualLoc,
+ SourceLocation RestrictQualLoc,
+ SourceLocation AtomicQualLoc) {
+ if (!Quals)
+ return;
+
+ struct Qual {
+ unsigned Mask;
+ const char *Name;
+ SourceLocation Loc;
+ } const QualKinds[4] = {
+ { DeclSpec::TQ_const, "const", ConstQualLoc },
+ { DeclSpec::TQ_volatile, "volatile", VolatileQualLoc },
+ { DeclSpec::TQ_restrict, "restrict", RestrictQualLoc },
+ { DeclSpec::TQ_atomic, "_Atomic", AtomicQualLoc }
+ };
+
+ SmallString<32> QualStr;
+ unsigned NumQuals = 0;
+ SourceLocation Loc;
+ FixItHint FixIts[4];
+
+ // Build a string naming the redundant qualifiers.
+ for (unsigned I = 0; I != 4; ++I) {
+ if (Quals & QualKinds[I].Mask) {
+ if (!QualStr.empty()) QualStr += ' ';
+ QualStr += QualKinds[I].Name;
+
+ // If we have a location for the qualifier, offer a fixit.
+ SourceLocation QualLoc = QualKinds[I].Loc;
+ if (!QualLoc.isInvalid()) {
+ FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
+ if (Loc.isInvalid() ||
+ getSourceManager().isBeforeInTranslationUnit(QualLoc, Loc))
+ Loc = QualLoc;
+ }
+
+ ++NumQuals;
+ }
+ }
+
+ Diag(Loc.isInvalid() ? FallbackLoc : Loc, DiagID)
+ << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
+}
+
+// Diagnose pointless type qualifiers on the return type of a function.
+static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy,
+ Declarator &D,
+ unsigned FunctionChunkIndex) {
+ if (D.getTypeObject(FunctionChunkIndex).Fun.hasTrailingReturnType()) {
+ // FIXME: TypeSourceInfo doesn't preserve location information for
+ // qualifiers.
+ S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
+ RetTy.getLocalCVRQualifiers(),
+ D.getIdentifierLoc());
+ return;
+ }
+
+ for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
+ End = D.getNumTypeObjects();
+ OuterChunkIndex != End; ++OuterChunkIndex) {
+ DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
+ switch (OuterChunk.Kind) {
+ case DeclaratorChunk::Paren:
+ continue;
+
+ case DeclaratorChunk::Pointer: {
+ DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
+ S.diagnoseIgnoredQualifiers(
+ diag::warn_qual_return_type,
+ PTI.TypeQuals,
+ SourceLocation(),
+ SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
+ SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
+ SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
+ SourceLocation::getFromRawEncoding(PTI.AtomicQualLoc));
+ return;
+ }
+
+ case DeclaratorChunk::Function:
+ case DeclaratorChunk::BlockPointer:
+ case DeclaratorChunk::Reference:
+ case DeclaratorChunk::Array:
+ case DeclaratorChunk::MemberPointer:
+ // FIXME: We can't currently provide an accurate source location and a
+ // fix-it hint for these.
+ unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
+ S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
+ RetTy.getCVRQualifiers() | AtomicQual,
+ D.getIdentifierLoc());
+ return;
+ }
+
+ llvm_unreachable("unknown declarator chunk kind");
+ }
+
+ // If the qualifiers come from a conversion function type, don't diagnose
+ // them -- they're not necessarily redundant, since such a conversion
+ // operator can be explicitly called as "x.operator const int()".
+ if (D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId)
+ return;
+
+ // Just parens all the way out to the decl specifiers. Diagnose any qualifiers
+ // which are present there.
+ S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
+ D.getDeclSpec().getTypeQualifiers(),
+ D.getIdentifierLoc(),
+ D.getDeclSpec().getConstSpecLoc(),
+ D.getDeclSpec().getVolatileSpecLoc(),
+ D.getDeclSpec().getRestrictSpecLoc(),
+ D.getDeclSpec().getAtomicSpecLoc());
+}
+
+static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
+ TypeSourceInfo *&ReturnTypeInfo) {
+ Sema &SemaRef = state.getSema();
+ Declarator &D = state.getDeclarator();
+ QualType T;
+ ReturnTypeInfo = nullptr;
+
+ // The TagDecl owned by the DeclSpec.
+ TagDecl *OwnedTagDecl = nullptr;
+
+ bool ContainsPlaceholderType = false;
+
+ switch (D.getName().getKind()) {
+ case UnqualifiedId::IK_ImplicitSelfParam:
+ case UnqualifiedId::IK_OperatorFunctionId:
+ case UnqualifiedId::IK_Identifier:
+ case UnqualifiedId::IK_LiteralOperatorId:
+ case UnqualifiedId::IK_TemplateId:
+ T = ConvertDeclSpecToType(state);
+ ContainsPlaceholderType = D.getDeclSpec().containsPlaceholderType();
+
+ if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
+ OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
+ // Owned declaration is embedded in declarator.
+ OwnedTagDecl->setEmbeddedInDeclarator(true);
+ }
+ break;
+
+ case UnqualifiedId::IK_ConstructorName:
+ case UnqualifiedId::IK_ConstructorTemplateId:
+ case UnqualifiedId::IK_DestructorName:
+ // Constructors and destructors don't have return types. Use
+ // "void" instead.
+ T = SemaRef.Context.VoidTy;
+ if (AttributeList *attrs = D.getDeclSpec().getAttributes().getList())
+ processTypeAttrs(state, T, TAL_DeclSpec, attrs);
+ break;
+
+ case UnqualifiedId::IK_ConversionFunctionId:
+ // The result type of a conversion function is the type that it
+ // converts to.
+ T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
+ &ReturnTypeInfo);
+ ContainsPlaceholderType = T->getContainedAutoType();
+ break;
+ }
+
+ if (D.getAttributes())
+ distributeTypeAttrsFromDeclarator(state, T);
+
+ // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
+ // In C++11, a function declarator using 'auto' must have a trailing return
+ // type (this is checked later) and we can skip this. In other languages
+ // using auto, we need to check regardless.
+ // C++14 In generic lambdas allow 'auto' in their parameters.
+ if (ContainsPlaceholderType &&
+ (!SemaRef.getLangOpts().CPlusPlus11 || !D.isFunctionDeclarator())) {
+ int Error = -1;
+
+ switch (D.getContext()) {
+ case Declarator::KNRTypeListContext:
+ llvm_unreachable("K&R type lists aren't allowed in C++");
+ case Declarator::LambdaExprContext:
+ llvm_unreachable("Can't specify a type specifier in lambda grammar");
+ case Declarator::ObjCParameterContext:
+ case Declarator::ObjCResultContext:
+ case Declarator::PrototypeContext:
+ Error = 0;
+ break;
+ case Declarator::LambdaExprParameterContext:
+ if (!(SemaRef.getLangOpts().CPlusPlus14
+ && D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto))
+ Error = 14;
+ break;
+ case Declarator::MemberContext:
+ if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)
+ break;
+ switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
+ case TTK_Enum: llvm_unreachable("unhandled tag kind");
+ case TTK_Struct: Error = 1; /* Struct member */ break;
+ case TTK_Union: Error = 2; /* Union member */ break;
+ case TTK_Class: Error = 3; /* Class member */ break;
+ case TTK_Interface: Error = 4; /* Interface member */ break;
+ }
+ break;
+ case Declarator::CXXCatchContext:
+ case Declarator::ObjCCatchContext:
+ Error = 5; // Exception declaration
+ break;
+ case Declarator::TemplateParamContext:
+ Error = 6; // Template parameter
+ break;
+ case Declarator::BlockLiteralContext:
+ Error = 7; // Block literal
+ break;
+ case Declarator::TemplateTypeArgContext:
+ Error = 8; // Template type argument
+ break;
+ case Declarator::AliasDeclContext:
+ case Declarator::AliasTemplateContext:
+ Error = 10; // Type alias
+ break;
+ case Declarator::TrailingReturnContext:
+ if (!SemaRef.getLangOpts().CPlusPlus14)
+ Error = 11; // Function return type
+ break;
+ case Declarator::ConversionIdContext:
+ if (!SemaRef.getLangOpts().CPlusPlus14)
+ Error = 12; // conversion-type-id
+ break;
+ case Declarator::TypeNameContext:
+ Error = 13; // Generic
+ break;
+ case Declarator::FileContext:
+ case Declarator::BlockContext:
+ case Declarator::ForContext:
+ case Declarator::ConditionContext:
+ case Declarator::CXXNewContext:
+ break;
+ }
+
+ if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
+ Error = 9;
+
+ // In Objective-C it is an error to use 'auto' on a function declarator.
+ if (D.isFunctionDeclarator())
+ Error = 11;
+
+ // C++11 [dcl.spec.auto]p2: 'auto' is always fine if the declarator
+ // contains a trailing return type. That is only legal at the outermost
+ // level. Check all declarator chunks (outermost first) anyway, to give
+ // better diagnostics.
+ if (SemaRef.getLangOpts().CPlusPlus11 && Error != -1) {
+ for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
+ unsigned chunkIndex = e - i - 1;
+ state.setCurrentChunkIndex(chunkIndex);
+ DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
+ if (DeclType.Kind == DeclaratorChunk::Function) {
+ const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
+ if (FTI.hasTrailingReturnType()) {
+ Error = -1;
+ break;
+ }
+ }
+ }
+ }
+
+ SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
+ if (D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId)
+ AutoRange = D.getName().getSourceRange();
+
+ if (Error != -1) {
+ const bool IsDeclTypeAuto =
+ D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_decltype_auto;
+ SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
+ << IsDeclTypeAuto << Error << AutoRange;
+ T = SemaRef.Context.IntTy;
+ D.setInvalidType(true);
+ } else
+ SemaRef.Diag(AutoRange.getBegin(),
+ diag::warn_cxx98_compat_auto_type_specifier)
+ << AutoRange;
+ }
+
+ if (SemaRef.getLangOpts().CPlusPlus &&
+ OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
+ // Check the contexts where C++ forbids the declaration of a new class
+ // or enumeration in a type-specifier-seq.
+ switch (D.getContext()) {
+ case Declarator::TrailingReturnContext:
+ // Class and enumeration definitions are syntactically not allowed in
+ // trailing return types.
+ llvm_unreachable("parser should not have allowed this");
+ break;
+ case Declarator::FileContext:
+ case Declarator::MemberContext:
+ case Declarator::BlockContext:
+ case Declarator::ForContext:
+ case Declarator::BlockLiteralContext:
+ case Declarator::LambdaExprContext:
+ // C++11 [dcl.type]p3:
+ // A type-specifier-seq shall not define a class or enumeration unless
+ // it appears in the type-id of an alias-declaration (7.1.3) that is not
+ // the declaration of a template-declaration.
+ case Declarator::AliasDeclContext:
+ break;
+ case Declarator::AliasTemplateContext:
+ SemaRef.Diag(OwnedTagDecl->getLocation(),
+ diag::err_type_defined_in_alias_template)
+ << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
+ D.setInvalidType(true);
+ break;
+ case Declarator::TypeNameContext:
+ case Declarator::ConversionIdContext:
+ case Declarator::TemplateParamContext:
+ case Declarator::CXXNewContext:
+ case Declarator::CXXCatchContext:
+ case Declarator::ObjCCatchContext:
+ case Declarator::TemplateTypeArgContext:
+ SemaRef.Diag(OwnedTagDecl->getLocation(),
+ diag::err_type_defined_in_type_specifier)
+ << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
+ D.setInvalidType(true);
+ break;
+ case Declarator::PrototypeContext:
+ case Declarator::LambdaExprParameterContext:
+ case Declarator::ObjCParameterContext:
+ case Declarator::ObjCResultContext:
+ case Declarator::KNRTypeListContext:
+ // C++ [dcl.fct]p6:
+ // Types shall not be defined in return or parameter types.
+ SemaRef.Diag(OwnedTagDecl->getLocation(),
+ diag::err_type_defined_in_param_type)
+ << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
+ D.setInvalidType(true);
+ break;
+ case Declarator::ConditionContext:
+ // C++ 6.4p2:
+ // The type-specifier-seq shall not contain typedef and shall not declare
+ // a new class or enumeration.
+ SemaRef.Diag(OwnedTagDecl->getLocation(),
+ diag::err_type_defined_in_condition);
+ D.setInvalidType(true);
+ break;
+ }
+ }
+
+ assert(!T.isNull() && "This function should not return a null type");
+ return T;
+}
+
+/// Produce an appropriate diagnostic for an ambiguity between a function
+/// declarator and a C++ direct-initializer.
+static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
+ DeclaratorChunk &DeclType, QualType RT) {
+ const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
+ assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");
+
+ // If the return type is void there is no ambiguity.
+ if (RT->isVoidType())
+ return;
+
+ // An initializer for a non-class type can have at most one argument.
+ if (!RT->isRecordType() && FTI.NumParams > 1)
+ return;
+
+ // An initializer for a reference must have exactly one argument.
+ if (RT->isReferenceType() && FTI.NumParams != 1)
+ return;
+
+ // Only warn if this declarator is declaring a function at block scope, and
+ // doesn't have a storage class (such as 'extern') specified.
+ if (!D.isFunctionDeclarator() ||
+ D.getFunctionDefinitionKind() != FDK_Declaration ||
+ !S.CurContext->isFunctionOrMethod() ||
+ D.getDeclSpec().getStorageClassSpec()
+ != DeclSpec::SCS_unspecified)
+ return;
+
+ // Inside a condition, a direct initializer is not permitted. We allow one to
+ // be parsed in order to give better diagnostics in condition parsing.
+ if (D.getContext() == Declarator::ConditionContext)
+ return;
+
+ SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
+
+ S.Diag(DeclType.Loc,
+ FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration
+ : diag::warn_empty_parens_are_function_decl)
+ << ParenRange;
+
+ // If the declaration looks like:
+ // T var1,
+ // f();
+ // and name lookup finds a function named 'f', then the ',' was
+ // probably intended to be a ';'.
+ if (!D.isFirstDeclarator() && D.getIdentifier()) {
+ FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
+ FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
+ if (Comma.getFileID() != Name.getFileID() ||
+ Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
+ LookupResult Result(S, D.getIdentifier(), SourceLocation(),
+ Sema::LookupOrdinaryName);
+ if (S.LookupName(Result, S.getCurScope()))
+ S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
+ << FixItHint::CreateReplacement(D.getCommaLoc(), ";")
+ << D.getIdentifier();
+ }
+ }
+
+ if (FTI.NumParams > 0) {
+ // For a declaration with parameters, eg. "T var(T());", suggest adding
+ // parens around the first parameter to turn the declaration into a
+ // variable declaration.
+ SourceRange Range = FTI.Params[0].Param->getSourceRange();
+ SourceLocation B = Range.getBegin();
+ SourceLocation E = S.getLocForEndOfToken(Range.getEnd());
+ // FIXME: Maybe we should suggest adding braces instead of parens
+ // in C++11 for classes that don't have an initializer_list constructor.
+ S.Diag(B, diag::note_additional_parens_for_variable_declaration)
+ << FixItHint::CreateInsertion(B, "(")
+ << FixItHint::CreateInsertion(E, ")");
+ } else {
+ // For a declaration without parameters, eg. "T var();", suggest replacing
+ // the parens with an initializer to turn the declaration into a variable
+ // declaration.
+ const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
+
+ // Empty parens mean value-initialization, and no parens mean
+ // default initialization. These are equivalent if the default
+ // constructor is user-provided or if zero-initialization is a
+ // no-op.
+ if (RD && RD->hasDefinition() &&
+ (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
+ S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
+ << FixItHint::CreateRemoval(ParenRange);
+ else {
+ std::string Init =
+ S.getFixItZeroInitializerForType(RT, ParenRange.getBegin());
+ if (Init.empty() && S.LangOpts.CPlusPlus11)
+ Init = "{}";
+ if (!Init.empty())
+ S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
+ << FixItHint::CreateReplacement(ParenRange, Init);
+ }
+ }
+}
+
+/// Helper for figuring out the default CC for a function declarator type. If
+/// this is the outermost chunk, then we can determine the CC from the
+/// declarator context. If not, then this could be either a member function
+/// type or normal function type.
+static CallingConv
+getCCForDeclaratorChunk(Sema &S, Declarator &D,
+ const DeclaratorChunk::FunctionTypeInfo &FTI,
+ unsigned ChunkIndex) {
+ assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function);
+
+ bool IsCXXInstanceMethod = false;
+
+ if (S.getLangOpts().CPlusPlus) {
+ // Look inwards through parentheses to see if this chunk will form a
+ // member pointer type or if we're the declarator. Any type attributes
+ // between here and there will override the CC we choose here.
+ unsigned I = ChunkIndex;
+ bool FoundNonParen = false;
+ while (I && !FoundNonParen) {
+ --I;
+ if (D.getTypeObject(I).Kind != DeclaratorChunk::Paren)
+ FoundNonParen = true;
+ }
+
+ if (FoundNonParen) {
+ // If we're not the declarator, we're a regular function type unless we're
+ // in a member pointer.
+ IsCXXInstanceMethod =
+ D.getTypeObject(I).Kind == DeclaratorChunk::MemberPointer;
+ } else if (D.getContext() == Declarator::LambdaExprContext) {
+ // This can only be a call operator for a lambda, which is an instance
+ // method.
+ IsCXXInstanceMethod = true;
+ } else {
+ // We're the innermost decl chunk, so must be a function declarator.
+ assert(D.isFunctionDeclarator());
+
+ // If we're inside a record, we're declaring a method, but it could be
+ // explicitly or implicitly static.
+ IsCXXInstanceMethod =
+ D.isFirstDeclarationOfMember() &&
+ D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
+ !D.isStaticMember();
+ }
+ }
+
+ CallingConv CC = S.Context.getDefaultCallingConvention(FTI.isVariadic,
+ IsCXXInstanceMethod);
+
+ // Attribute AT_OpenCLKernel affects the calling convention only on
+ // the SPIR target, hence it cannot be treated as a calling
+ // convention attribute. This is the simplest place to infer
+ // "spir_kernel" for OpenCL kernels on SPIR.
+ if (CC == CC_SpirFunction) {
+ for (const AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
+ Attr; Attr = Attr->getNext()) {
+ if (Attr->getKind() == AttributeList::AT_OpenCLKernel) {
+ CC = CC_SpirKernel;
+ break;
+ }
+ }
+ }
+
+ return CC;
+}
+
+static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
+ QualType declSpecType,
+ TypeSourceInfo *TInfo) {
+ // The TypeSourceInfo that this function returns will not be a null type.
+ // If there is an error, this function will fill in a dummy type as fallback.
+ QualType T = declSpecType;
+ Declarator &D = state.getDeclarator();
+ Sema &S = state.getSema();
+ ASTContext &Context = S.Context;
+ const LangOptions &LangOpts = S.getLangOpts();
+
+ // The name we're declaring, if any.
+ DeclarationName Name;
+ if (D.getIdentifier())
+ Name = D.getIdentifier();
+
+ // Does this declaration declare a typedef-name?
+ bool IsTypedefName =
+ D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
+ D.getContext() == Declarator::AliasDeclContext ||
+ D.getContext() == Declarator::AliasTemplateContext;
+
+ // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
+ bool IsQualifiedFunction = T->isFunctionProtoType() &&
+ (T->castAs<FunctionProtoType>()->getTypeQuals() != 0 ||
+ T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
+
+ // If T is 'decltype(auto)', the only declarators we can have are parens
+ // and at most one function declarator if this is a function declaration.
+ if (const AutoType *AT = T->getAs<AutoType>()) {
+ if (AT->isDecltypeAuto()) {
+ for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
+ unsigned Index = E - I - 1;
+ DeclaratorChunk &DeclChunk = D.getTypeObject(Index);
+ unsigned DiagId = diag::err_decltype_auto_compound_type;
+ unsigned DiagKind = 0;
+ switch (DeclChunk.Kind) {
+ case DeclaratorChunk::Paren:
+ continue;
+ case DeclaratorChunk::Function: {
+ unsigned FnIndex;
+ if (D.isFunctionDeclarationContext() &&
+ D.isFunctionDeclarator(FnIndex) && FnIndex == Index)
+ continue;
+ DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
+ break;
+ }
+ case DeclaratorChunk::Pointer:
+ case DeclaratorChunk::BlockPointer:
+ case DeclaratorChunk::MemberPointer:
+ DiagKind = 0;
+ break;
+ case DeclaratorChunk::Reference:
+ DiagKind = 1;
+ break;
+ case DeclaratorChunk::Array:
+ DiagKind = 2;
+ break;
+ }
+
+ S.Diag(DeclChunk.Loc, DiagId) << DiagKind;
+ D.setInvalidType(true);
+ break;
+ }
+ }
+ }
+
+ // Walk the DeclTypeInfo, building the recursive type as we go.
+ // DeclTypeInfos are ordered from the identifier out, which is
+ // opposite of what we want :).
+ for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
+ unsigned chunkIndex = e - i - 1;
+ state.setCurrentChunkIndex(chunkIndex);
+ DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
+ IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren;
+ switch (DeclType.Kind) {
+ case DeclaratorChunk::Paren:
+ T = S.BuildParenType(T);
+ break;
+ case DeclaratorChunk::BlockPointer:
+ // If blocks are disabled, emit an error.
+ if (!LangOpts.Blocks)
+ S.Diag(DeclType.Loc, diag::err_blocks_disable);
+
+ T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
+ if (DeclType.Cls.TypeQuals)
+ T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
+ break;
+ case DeclaratorChunk::Pointer:
+ // Verify that we're not building a pointer to pointer to function with
+ // exception specification.
+ if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
+ S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
+ D.setInvalidType(true);
+ // Build the type anyway.
+ }
+ if (LangOpts.ObjC1 && T->getAs<ObjCObjectType>()) {
+ T = Context.getObjCObjectPointerType(T);
+ if (DeclType.Ptr.TypeQuals)
+ T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
+ break;
+ }
+ T = S.BuildPointerType(T, DeclType.Loc, Name);
+ if (DeclType.Ptr.TypeQuals)
+ T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
+
+ break;
+ case DeclaratorChunk::Reference: {
+ // Verify that we're not building a reference to pointer to function with
+ // exception specification.
+ if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
+ S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
+ D.setInvalidType(true);
+ // Build the type anyway.
+ }
+ T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
+
+ if (DeclType.Ref.HasRestrict)
+ T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
+ break;
+ }
+ case DeclaratorChunk::Array: {
+ // Verify that we're not building an array of pointers to function with
+ // exception specification.
+ if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
+ S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
+ D.setInvalidType(true);
+ // Build the type anyway.
+ }
+ DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
+ Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
+ ArrayType::ArraySizeModifier ASM;
+ if (ATI.isStar)
+ ASM = ArrayType::Star;
+ else if (ATI.hasStatic)
+ ASM = ArrayType::Static;
+ else
+ ASM = ArrayType::Normal;
+ if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
+ // FIXME: This check isn't quite right: it allows star in prototypes
+ // for function definitions, and disallows some edge cases detailed
+ // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
+ S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
+ ASM = ArrayType::Normal;
+ D.setInvalidType(true);
+ }
+
+ // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
+ // shall appear only in a declaration of a function parameter with an
+ // array type, ...
+ if (ASM == ArrayType::Static || ATI.TypeQuals) {
+ if (!(D.isPrototypeContext() ||
+ D.getContext() == Declarator::KNRTypeListContext)) {
+ S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
+ (ASM == ArrayType::Static ? "'static'" : "type qualifier");
+ // Remove the 'static' and the type qualifiers.
+ if (ASM == ArrayType::Static)
+ ASM = ArrayType::Normal;
+ ATI.TypeQuals = 0;
+ D.setInvalidType(true);
+ }
+
+ // C99 6.7.5.2p1: ... and then only in the outermost array type
+ // derivation.
+ unsigned x = chunkIndex;
+ while (x != 0) {
+ // Walk outwards along the declarator chunks.
+ x--;
+ const DeclaratorChunk &DC = D.getTypeObject(x);
+ switch (DC.Kind) {
+ case DeclaratorChunk::Paren:
+ continue;
+ case DeclaratorChunk::Array:
+ case DeclaratorChunk::Pointer:
+ case DeclaratorChunk::Reference:
+ case DeclaratorChunk::MemberPointer:
+ S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
+ (ASM == ArrayType::Static ? "'static'" : "type qualifier");
+ if (ASM == ArrayType::Static)
+ ASM = ArrayType::Normal;
+ ATI.TypeQuals = 0;
+ D.setInvalidType(true);
+ break;
+ case DeclaratorChunk::Function:
+ case DeclaratorChunk::BlockPointer:
+ // These are invalid anyway, so just ignore.
+ break;
+ }
+ }
+ }
+ const AutoType *AT = T->getContainedAutoType();
+ // Allow arrays of auto if we are a generic lambda parameter.
+ // i.e. [](auto (&array)[5]) { return array[0]; }; OK
+ if (AT && D.getContext() != Declarator::LambdaExprParameterContext) {
+ // We've already diagnosed this for decltype(auto).
+ if (!AT->isDecltypeAuto())
+ S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto)
+ << getPrintableNameForEntity(Name) << T;
+ T = QualType();
+ break;
+ }
+
+ T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
+ SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
+ break;
+ }
+ case DeclaratorChunk::Function: {
+ // If the function declarator has a prototype (i.e. it is not () and
+ // does not have a K&R-style identifier list), then the arguments are part
+ // of the type, otherwise the argument list is ().
+ const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
+ IsQualifiedFunction = FTI.TypeQuals || FTI.hasRefQualifier();
+
+ // Check for auto functions and trailing return type and adjust the
+ // return type accordingly.
+ if (!D.isInvalidType()) {
+ // trailing-return-type is only required if we're declaring a function,
+ // and not, for instance, a pointer to a function.
+ if (D.getDeclSpec().containsPlaceholderType() &&
+ !FTI.hasTrailingReturnType() && chunkIndex == 0 &&
+ !S.getLangOpts().CPlusPlus14) {
+ S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
+ D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto
+ ? diag::err_auto_missing_trailing_return
+ : diag::err_deduced_return_type);
+ T = Context.IntTy;
+ D.setInvalidType(true);
+ } else if (FTI.hasTrailingReturnType()) {
+ // T must be exactly 'auto' at this point. See CWG issue 681.
+ if (isa<ParenType>(T)) {
+ S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
+ diag::err_trailing_return_in_parens)
+ << T << D.getDeclSpec().getSourceRange();
+ D.setInvalidType(true);
+ } else if (D.getContext() != Declarator::LambdaExprContext &&
+ (T.hasQualifiers() || !isa<AutoType>(T) ||
+ cast<AutoType>(T)->isDecltypeAuto())) {
+ S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
+ diag::err_trailing_return_without_auto)
+ << T << D.getDeclSpec().getSourceRange();
+ D.setInvalidType(true);
+ }
+ T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
+ if (T.isNull()) {
+ // An error occurred parsing the trailing return type.
+ T = Context.IntTy;
+ D.setInvalidType(true);
+ }
+ }
+ }
+
+ // C99 6.7.5.3p1: The return type may not be a function or array type.
+ // For conversion functions, we'll diagnose this particular error later.
+ if ((T->isArrayType() || T->isFunctionType()) &&
+ (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
+ unsigned diagID = diag::err_func_returning_array_function;
+ // Last processing chunk in block context means this function chunk
+ // represents the block.
+ if (chunkIndex == 0 &&
+ D.getContext() == Declarator::BlockLiteralContext)
+ diagID = diag::err_block_returning_array_function;
+ S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
+ T = Context.IntTy;
+ D.setInvalidType(true);
+ }
+
+ // Do not allow returning half FP value.
+ // FIXME: This really should be in BuildFunctionType.
+ if (T->isHalfType()) {
+ if (S.getLangOpts().OpenCL) {
+ if (!S.getOpenCLOptions().cl_khr_fp16) {
+ S.Diag(D.getIdentifierLoc(), diag::err_opencl_half_return) << T;
+ D.setInvalidType(true);
+ }
+ } else if (!S.getLangOpts().HalfArgsAndReturns) {
+ S.Diag(D.getIdentifierLoc(),
+ diag::err_parameters_retval_cannot_have_fp16_type) << 1;
+ D.setInvalidType(true);
+ }
+ }
+
+ // Methods cannot return interface types. All ObjC objects are
+ // passed by reference.
+ if (T->isObjCObjectType()) {
+ SourceLocation DiagLoc, FixitLoc;
+ if (TInfo) {
+ DiagLoc = TInfo->getTypeLoc().getLocStart();
+ FixitLoc = S.getLocForEndOfToken(TInfo->getTypeLoc().getLocEnd());
+ } else {
+ DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
+ FixitLoc = S.getLocForEndOfToken(D.getDeclSpec().getLocEnd());
+ }
+ S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value)
+ << 0 << T
+ << FixItHint::CreateInsertion(FixitLoc, "*");
+
+ T = Context.getObjCObjectPointerType(T);
+ if (TInfo) {
+ TypeLocBuilder TLB;
+ TLB.pushFullCopy(TInfo->getTypeLoc());
+ ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T);
+ TLoc.setStarLoc(FixitLoc);
+ TInfo = TLB.getTypeSourceInfo(Context, T);
+ }
+
+ D.setInvalidType(true);
+ }
+
+ // cv-qualifiers on return types are pointless except when the type is a
+ // class type in C++.
+ if ((T.getCVRQualifiers() || T->isAtomicType()) &&
+ !(S.getLangOpts().CPlusPlus &&
+ (T->isDependentType() || T->isRecordType()))) {
+ if (T->isVoidType() && !S.getLangOpts().CPlusPlus &&
+ D.getFunctionDefinitionKind() == FDK_Definition) {
+ // [6.9.1/3] qualified void return is invalid on a C
+ // function definition. Apparently ok on declarations and
+ // in C++ though (!)
+ S.Diag(DeclType.Loc, diag::err_func_returning_qualified_void) << T;
+ } else
+ diagnoseRedundantReturnTypeQualifiers(S, T, D, chunkIndex);
+ }
+
+ // Objective-C ARC ownership qualifiers are ignored on the function
+ // return type (by type canonicalization). Complain if this attribute
+ // was written here.
+ if (T.getQualifiers().hasObjCLifetime()) {
+ SourceLocation AttrLoc;
+ if (chunkIndex + 1 < D.getNumTypeObjects()) {
+ DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
+ for (const AttributeList *Attr = ReturnTypeChunk.getAttrs();
+ Attr; Attr = Attr->getNext()) {
+ if (Attr->getKind() == AttributeList::AT_ObjCOwnership) {
+ AttrLoc = Attr->getLoc();
+ break;
+ }
+ }
+ }
+ if (AttrLoc.isInvalid()) {
+ for (const AttributeList *Attr
+ = D.getDeclSpec().getAttributes().getList();
+ Attr; Attr = Attr->getNext()) {
+ if (Attr->getKind() == AttributeList::AT_ObjCOwnership) {
+ AttrLoc = Attr->getLoc();
+ break;
+ }
+ }
+ }
+
+ if (AttrLoc.isValid()) {
+ // The ownership attributes are almost always written via
+ // the predefined
+ // __strong/__weak/__autoreleasing/__unsafe_unretained.
+ if (AttrLoc.isMacroID())
+ AttrLoc = S.SourceMgr.getImmediateExpansionRange(AttrLoc).first;
+
+ S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
+ << T.getQualifiers().getObjCLifetime();
+ }
+ }
+
+ if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) {
+ // C++ [dcl.fct]p6:
+ // Types shall not be defined in return or parameter types.
+ TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
+ S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
+ << Context.getTypeDeclType(Tag);
+ }
+
+ // Exception specs are not allowed in typedefs. Complain, but add it
+ // anyway.
+ if (IsTypedefName && FTI.getExceptionSpecType())
+ S.Diag(FTI.getExceptionSpecLoc(), diag::err_exception_spec_in_typedef)
+ << (D.getContext() == Declarator::AliasDeclContext ||
+ D.getContext() == Declarator::AliasTemplateContext);
+
+ // If we see "T var();" or "T var(T());" at block scope, it is probably
+ // an attempt to initialize a variable, not a function declaration.
+ if (FTI.isAmbiguous)
+ warnAboutAmbiguousFunction(S, D, DeclType, T);
+
+ FunctionType::ExtInfo EI(getCCForDeclaratorChunk(S, D, FTI, chunkIndex));
+
+ if (!FTI.NumParams && !FTI.isVariadic && !LangOpts.CPlusPlus) {
+ // Simple void foo(), where the incoming T is the result type.
+ T = Context.getFunctionNoProtoType(T, EI);
+ } else {
+ // We allow a zero-parameter variadic function in C if the
+ // function is marked with the "overloadable" attribute. Scan
+ // for this attribute now.
+ if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus) {
+ bool Overloadable = false;
+ for (const AttributeList *Attrs = D.getAttributes();
+ Attrs; Attrs = Attrs->getNext()) {
+ if (Attrs->getKind() == AttributeList::AT_Overloadable) {
+ Overloadable = true;
+ break;
+ }
+ }
+
+ if (!Overloadable)
+ S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param);
+ }
+
+ if (FTI.NumParams && FTI.Params[0].Param == nullptr) {
+ // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
+ // definition.
+ S.Diag(FTI.Params[0].IdentLoc,
+ diag::err_ident_list_in_fn_declaration);
+ D.setInvalidType(true);
+ // Recover by creating a K&R-style function type.
+ T = Context.getFunctionNoProtoType(T, EI);
+ break;
+ }
+
+ FunctionProtoType::ExtProtoInfo EPI;
+ EPI.ExtInfo = EI;
+ EPI.Variadic = FTI.isVariadic;
+ EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
+ EPI.TypeQuals = FTI.TypeQuals;
+ EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
+ : FTI.RefQualifierIsLValueRef? RQ_LValue
+ : RQ_RValue;
+
+ // Otherwise, we have a function with a parameter list that is
+ // potentially variadic.
+ SmallVector<QualType, 16> ParamTys;
+ ParamTys.reserve(FTI.NumParams);
+
+ SmallVector<bool, 16> ConsumedParameters;
+ ConsumedParameters.reserve(FTI.NumParams);
+ bool HasAnyConsumedParameters = false;
+
+ for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
+ ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
+ QualType ParamTy = Param->getType();
+ assert(!ParamTy.isNull() && "Couldn't parse type?");
+
+ // Look for 'void'. void is allowed only as a single parameter to a
+ // function with no other parameters (C99 6.7.5.3p10). We record
+ // int(void) as a FunctionProtoType with an empty parameter list.
+ if (ParamTy->isVoidType()) {
+ // If this is something like 'float(int, void)', reject it. 'void'
+ // is an incomplete type (C99 6.2.5p19) and function decls cannot
+ // have parameters of incomplete type.
+ if (FTI.NumParams != 1 || FTI.isVariadic) {
+ S.Diag(DeclType.Loc, diag::err_void_only_param);
+ ParamTy = Context.IntTy;
+ Param->setType(ParamTy);
+ } else if (FTI.Params[i].Ident) {
+ // Reject, but continue to parse 'int(void abc)'.
+ S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type);
+ ParamTy = Context.IntTy;
+ Param->setType(ParamTy);
+ } else {
+ // Reject, but continue to parse 'float(const void)'.
+ if (ParamTy.hasQualifiers())
+ S.Diag(DeclType.Loc, diag::err_void_param_qualified);
+
+ // Do not add 'void' to the list.
+ break;
+ }
+ } else if (ParamTy->isHalfType()) {
+ // Disallow half FP parameters.
+ // FIXME: This really should be in BuildFunctionType.
+ if (S.getLangOpts().OpenCL) {
+ if (!S.getOpenCLOptions().cl_khr_fp16) {
+ S.Diag(Param->getLocation(),
+ diag::err_opencl_half_param) << ParamTy;
+ D.setInvalidType();
+ Param->setInvalidDecl();
+ }
+ } else if (!S.getLangOpts().HalfArgsAndReturns) {
+ S.Diag(Param->getLocation(),
+ diag::err_parameters_retval_cannot_have_fp16_type) << 0;
+ D.setInvalidType();
+ }
+ } else if (!FTI.hasPrototype) {
+ if (ParamTy->isPromotableIntegerType()) {
+ ParamTy = Context.getPromotedIntegerType(ParamTy);
+ Param->setKNRPromoted(true);
+ } else if (const BuiltinType* BTy = ParamTy->getAs<BuiltinType>()) {
+ if (BTy->getKind() == BuiltinType::Float) {
+ ParamTy = Context.DoubleTy;
+ Param->setKNRPromoted(true);
+ }
+ }
+ }
+
+ if (LangOpts.ObjCAutoRefCount) {
+ bool Consumed = Param->hasAttr<NSConsumedAttr>();
+ ConsumedParameters.push_back(Consumed);
+ HasAnyConsumedParameters |= Consumed;
+ }
+
+ ParamTys.push_back(ParamTy);
+ }
+
+ if (HasAnyConsumedParameters)
+ EPI.ConsumedParameters = ConsumedParameters.data();
+
+ SmallVector<QualType, 4> Exceptions;
+ SmallVector<ParsedType, 2> DynamicExceptions;
+ SmallVector<SourceRange, 2> DynamicExceptionRanges;
+ Expr *NoexceptExpr = nullptr;
+
+ if (FTI.getExceptionSpecType() == EST_Dynamic) {
+ // FIXME: It's rather inefficient to have to split into two vectors
+ // here.
+ unsigned N = FTI.NumExceptions;
+ DynamicExceptions.reserve(N);
+ DynamicExceptionRanges.reserve(N);
+ for (unsigned I = 0; I != N; ++I) {
+ DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
+ DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
+ }
+ } else if (FTI.getExceptionSpecType() == EST_ComputedNoexcept) {
+ NoexceptExpr = FTI.NoexceptExpr;
+ }
+
+ S.checkExceptionSpecification(D.isFunctionDeclarationContext(),
+ FTI.getExceptionSpecType(),
+ DynamicExceptions,
+ DynamicExceptionRanges,
+ NoexceptExpr,
+ Exceptions,
+ EPI.ExceptionSpec);
+
+ T = Context.getFunctionType(T, ParamTys, EPI);
+ }
+
+ break;
+ }
+ case DeclaratorChunk::MemberPointer:
+ // The scope spec must refer to a class, or be dependent.
+ CXXScopeSpec &SS = DeclType.Mem.Scope();
+ QualType ClsType;
+ if (SS.isInvalid()) {
+ // Avoid emitting extra errors if we already errored on the scope.
+ D.setInvalidType(true);
+ } else if (S.isDependentScopeSpecifier(SS) ||
+ dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
+ NestedNameSpecifier *NNS = SS.getScopeRep();
+ NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
+ switch (NNS->getKind()) {
+ case NestedNameSpecifier::Identifier:
+ ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
+ NNS->getAsIdentifier());
+ break;
+
+ case NestedNameSpecifier::Namespace:
+ case NestedNameSpecifier::NamespaceAlias:
+ case NestedNameSpecifier::Global:
+ case NestedNameSpecifier::Super:
+ llvm_unreachable("Nested-name-specifier must name a type");
+
+ case NestedNameSpecifier::TypeSpec:
+ case NestedNameSpecifier::TypeSpecWithTemplate:
+ ClsType = QualType(NNS->getAsType(), 0);
+ // Note: if the NNS has a prefix and ClsType is a nondependent
+ // TemplateSpecializationType, then the NNS prefix is NOT included
+ // in ClsType; hence we wrap ClsType into an ElaboratedType.
+ // NOTE: in particular, no wrap occurs if ClsType already is an
+ // Elaborated, DependentName, or DependentTemplateSpecialization.
+ if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
+ ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
+ break;
+ }
+ } else {
+ S.Diag(DeclType.Mem.Scope().getBeginLoc(),
+ diag::err_illegal_decl_mempointer_in_nonclass)
+ << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
+ << DeclType.Mem.Scope().getRange();
+ D.setInvalidType(true);
+ }
+
+ if (!ClsType.isNull())
+ T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc,
+ D.getIdentifier());
+ if (T.isNull()) {
+ T = Context.IntTy;
+ D.setInvalidType(true);
+ } else if (DeclType.Mem.TypeQuals) {
+ T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
+ }
+ break;
+ }
+
+ if (T.isNull()) {
+ D.setInvalidType(true);
+ T = Context.IntTy;
+ }
+
+ // See if there are any attributes on this declarator chunk.
+ if (AttributeList *attrs = const_cast<AttributeList*>(DeclType.getAttrs()))
+ processTypeAttrs(state, T, TAL_DeclChunk, attrs);
+ }
+
+ assert(!T.isNull() && "T must not be null after this point");
+
+ if (LangOpts.CPlusPlus && T->isFunctionType()) {
+ const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
+ assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
+
+ // C++ 8.3.5p4:
+ // A cv-qualifier-seq shall only be part of the function type
+ // for a nonstatic member function, the function type to which a pointer
+ // to member refers, or the top-level function type of a function typedef
+ // declaration.
+ //
+ // Core issue 547 also allows cv-qualifiers on function types that are
+ // top-level template type arguments.
+ bool FreeFunction;
+ if (!D.getCXXScopeSpec().isSet()) {
+ FreeFunction = ((D.getContext() != Declarator::MemberContext &&
+ D.getContext() != Declarator::LambdaExprContext) ||
+ D.getDeclSpec().isFriendSpecified());
+ } else {
+ DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
+ FreeFunction = (DC && !DC->isRecord());
+ }
+
+ // C++11 [dcl.fct]p6 (w/DR1417):
+ // An attempt to specify a function type with a cv-qualifier-seq or a
+ // ref-qualifier (including by typedef-name) is ill-formed unless it is:
+ // - the function type for a non-static member function,
+ // - the function type to which a pointer to member refers,
+ // - the top-level function type of a function typedef declaration or
+ // alias-declaration,
+ // - the type-id in the default argument of a type-parameter, or
+ // - the type-id of a template-argument for a type-parameter
+ //
+ // FIXME: Checking this here is insufficient. We accept-invalid on:
+ //
+ // template<typename T> struct S { void f(T); };
+ // S<int() const> s;
+ //
+ // ... for instance.
+ if (IsQualifiedFunction &&
+ !(!FreeFunction &&
+ D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
+ !IsTypedefName &&
+ D.getContext() != Declarator::TemplateTypeArgContext) {
+ SourceLocation Loc = D.getLocStart();
+ SourceRange RemovalRange;
+ unsigned I;
+ if (D.isFunctionDeclarator(I)) {
+ SmallVector<SourceLocation, 4> RemovalLocs;
+ const DeclaratorChunk &Chunk = D.getTypeObject(I);
+ assert(Chunk.Kind == DeclaratorChunk::Function);
+ if (Chunk.Fun.hasRefQualifier())
+ RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
+ if (Chunk.Fun.TypeQuals & Qualifiers::Const)
+ RemovalLocs.push_back(Chunk.Fun.getConstQualifierLoc());
+ if (Chunk.Fun.TypeQuals & Qualifiers::Volatile)
+ RemovalLocs.push_back(Chunk.Fun.getVolatileQualifierLoc());
+ if (Chunk.Fun.TypeQuals & Qualifiers::Restrict)
+ RemovalLocs.push_back(Chunk.Fun.getRestrictQualifierLoc());
+ if (!RemovalLocs.empty()) {
+ std::sort(RemovalLocs.begin(), RemovalLocs.end(),
+ BeforeThanCompare<SourceLocation>(S.getSourceManager()));
+ RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
+ Loc = RemovalLocs.front();
+ }
+ }
+
+ S.Diag(Loc, diag::err_invalid_qualified_function_type)
+ << FreeFunction << D.isFunctionDeclarator() << T
+ << getFunctionQualifiersAsString(FnTy)
+ << FixItHint::CreateRemoval(RemovalRange);
+
+ // Strip the cv-qualifiers and ref-qualifiers from the type.
+ FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
+ EPI.TypeQuals = 0;
+ EPI.RefQualifier = RQ_None;
+
+ T = Context.getFunctionType(FnTy->getReturnType(), FnTy->getParamTypes(),
+ EPI);
+ // Rebuild any parens around the identifier in the function type.
+ for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
+ if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
+ break;
+ T = S.BuildParenType(T);
+ }
+ }
+ }
+
+ // Apply any undistributed attributes from the declarator.
+ if (AttributeList *attrs = D.getAttributes())
+ processTypeAttrs(state, T, TAL_DeclName, attrs);
+
+ // Diagnose any ignored type attributes.
+ state.diagnoseIgnoredTypeAttrs(T);
+
+ // C++0x [dcl.constexpr]p9:
+ // A constexpr specifier used in an object declaration declares the object
+ // as const.
+ if (D.getDeclSpec().isConstexprSpecified() && T->isObjectType()) {
+ T.addConst();
+ }
+
+ // If there was an ellipsis in the declarator, the declaration declares a
+ // parameter pack whose type may be a pack expansion type.
+ if (D.hasEllipsis()) {
+ // C++0x [dcl.fct]p13:
+ // A declarator-id or abstract-declarator containing an ellipsis shall
+ // only be used in a parameter-declaration. Such a parameter-declaration
+ // is a parameter pack (14.5.3). [...]
+ switch (D.getContext()) {
+ case Declarator::PrototypeContext:
+ case Declarator::LambdaExprParameterContext:
+ // C++0x [dcl.fct]p13:
+ // [...] When it is part of a parameter-declaration-clause, the
+ // parameter pack is a function parameter pack (14.5.3). The type T
+ // of the declarator-id of the function parameter pack shall contain
+ // a template parameter pack; each template parameter pack in T is
+ // expanded by the function parameter pack.
+ //
+ // We represent function parameter packs as function parameters whose
+ // type is a pack expansion.
+ if (!T->containsUnexpandedParameterPack()) {
+ S.Diag(D.getEllipsisLoc(),
+ diag::err_function_parameter_pack_without_parameter_packs)
+ << T << D.getSourceRange();
+ D.setEllipsisLoc(SourceLocation());
+ } else {
+ T = Context.getPackExpansionType(T, None);
+ }
+ break;
+ case Declarator::TemplateParamContext:
+ // C++0x [temp.param]p15:
+ // If a template-parameter is a [...] is a parameter-declaration that
+ // declares a parameter pack (8.3.5), then the template-parameter is a
+ // template parameter pack (14.5.3).
+ //
+ // Note: core issue 778 clarifies that, if there are any unexpanded
+ // parameter packs in the type of the non-type template parameter, then
+ // it expands those parameter packs.
+ if (T->containsUnexpandedParameterPack())
+ T = Context.getPackExpansionType(T, None);
+ else
+ S.Diag(D.getEllipsisLoc(),
+ LangOpts.CPlusPlus11
+ ? diag::warn_cxx98_compat_variadic_templates
+ : diag::ext_variadic_templates);
+ break;
+
+ case Declarator::FileContext:
+ case Declarator::KNRTypeListContext:
+ case Declarator::ObjCParameterContext: // FIXME: special diagnostic here?
+ case Declarator::ObjCResultContext: // FIXME: special diagnostic here?
+ case Declarator::TypeNameContext:
+ case Declarator::CXXNewContext:
+ case Declarator::AliasDeclContext:
+ case Declarator::AliasTemplateContext:
+ case Declarator::MemberContext:
+ case Declarator::BlockContext:
+ case Declarator::ForContext:
+ case Declarator::ConditionContext:
+ case Declarator::CXXCatchContext:
+ case Declarator::ObjCCatchContext:
+ case Declarator::BlockLiteralContext:
+ case Declarator::LambdaExprContext:
+ case Declarator::ConversionIdContext:
+ case Declarator::TrailingReturnContext:
+ case Declarator::TemplateTypeArgContext:
+ // FIXME: We may want to allow parameter packs in block-literal contexts
+ // in the future.
+ S.Diag(D.getEllipsisLoc(),
+ diag::err_ellipsis_in_declarator_not_parameter);
+ D.setEllipsisLoc(SourceLocation());
+ break;
+ }
+ }
+
+ assert(!T.isNull() && "T must not be null at the end of this function");
+ if (D.isInvalidType())
+ return Context.getTrivialTypeSourceInfo(T);
+
+ return S.GetTypeSourceInfoForDeclarator(D, T, TInfo);
+}
+
+/// GetTypeForDeclarator - Convert the type for the specified
+/// declarator to Type instances.
+///
+/// The result of this call will never be null, but the associated
+/// type may be a null type if there's an unrecoverable error.
+TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
+ // Determine the type of the declarator. Not all forms of declarator
+ // have a type.
+
+ TypeProcessingState state(*this, D);
+
+ TypeSourceInfo *ReturnTypeInfo = nullptr;
+ QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
+
+ if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
+ inferARCWriteback(state, T);
+
+ return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
+}
+
+static void transferARCOwnershipToDeclSpec(Sema &S,
+ QualType &declSpecTy,
+ Qualifiers::ObjCLifetime ownership) {
+ if (declSpecTy->isObjCRetainableType() &&
+ declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
+ Qualifiers qs;
+ qs.addObjCLifetime(ownership);
+ declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
+ }
+}
+
+static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
+ Qualifiers::ObjCLifetime ownership,
+ unsigned chunkIndex) {
+ Sema &S = state.getSema();
+ Declarator &D = state.getDeclarator();
+
+ // Look for an explicit lifetime attribute.
+ DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
+ for (const AttributeList *attr = chunk.getAttrs(); attr;
+ attr = attr->getNext())
+ if (attr->getKind() == AttributeList::AT_ObjCOwnership)
+ return;
+
+ const char *attrStr = nullptr;
+ switch (ownership) {
+ case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
+ case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
+ case Qualifiers::OCL_Strong: attrStr = "strong"; break;
+ case Qualifiers::OCL_Weak: attrStr = "weak"; break;
+ case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
+ }
+
+ IdentifierLoc *Arg = new (S.Context) IdentifierLoc;
+ Arg->Ident = &S.Context.Idents.get(attrStr);
+ Arg->Loc = SourceLocation();
+
+ ArgsUnion Args(Arg);
+
+ // If there wasn't one, add one (with an invalid source location
+ // so that we don't make an AttributedType for it).
+ AttributeList *attr = D.getAttributePool()
+ .create(&S.Context.Idents.get("objc_ownership"), SourceLocation(),
+ /*scope*/ nullptr, SourceLocation(),
+ /*args*/ &Args, 1, AttributeList::AS_GNU);
+ spliceAttrIntoList(*attr, chunk.getAttrListRef());
+
+ // TODO: mark whether we did this inference?
+}
+
+/// \brief Used for transferring ownership in casts resulting in l-values.
+static void transferARCOwnership(TypeProcessingState &state,
+ QualType &declSpecTy,
+ Qualifiers::ObjCLifetime ownership) {
+ Sema &S = state.getSema();
+ Declarator &D = state.getDeclarator();
+
+ int inner = -1;
+ bool hasIndirection = false;
+ for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
+ DeclaratorChunk &chunk = D.getTypeObject(i);
+ switch (chunk.Kind) {
+ case DeclaratorChunk::Paren:
+ // Ignore parens.
+ break;
+
+ case DeclaratorChunk::Array:
+ case DeclaratorChunk::Reference:
+ case DeclaratorChunk::Pointer:
+ if (inner != -1)
+ hasIndirection = true;
+ inner = i;
+ break;
+
+ case DeclaratorChunk::BlockPointer:
+ if (inner != -1)
+ transferARCOwnershipToDeclaratorChunk(state, ownership, i);
+ return;
+
+ case DeclaratorChunk::Function:
+ case DeclaratorChunk::MemberPointer:
+ return;
+ }
+ }
+
+ if (inner == -1)
+ return;
+
+ DeclaratorChunk &chunk = D.getTypeObject(inner);
+ if (chunk.Kind == DeclaratorChunk::Pointer) {
+ if (declSpecTy->isObjCRetainableType())
+ return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
+ if (declSpecTy->isObjCObjectType() && hasIndirection)
+ return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
+ } else {
+ assert(chunk.Kind == DeclaratorChunk::Array ||
+ chunk.Kind == DeclaratorChunk::Reference);
+ return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
+ }
+}
+
+TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
+ TypeProcessingState state(*this, D);
+
+ TypeSourceInfo *ReturnTypeInfo = nullptr;
+ QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
+
+ if (getLangOpts().ObjCAutoRefCount) {
+ Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
+ if (ownership != Qualifiers::OCL_None)
+ transferARCOwnership(state, declSpecTy, ownership);
+ }
+
+ return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
+}
+
+/// Map an AttributedType::Kind to an AttributeList::Kind.
+static AttributeList::Kind getAttrListKind(AttributedType::Kind kind) {
+ switch (kind) {
+ case AttributedType::attr_address_space:
+ return AttributeList::AT_AddressSpace;
+ case AttributedType::attr_regparm:
+ return AttributeList::AT_Regparm;
+ case AttributedType::attr_vector_size:
+ return AttributeList::AT_VectorSize;
+ case AttributedType::attr_neon_vector_type:
+ return AttributeList::AT_NeonVectorType;
+ case AttributedType::attr_neon_polyvector_type:
+ return AttributeList::AT_NeonPolyVectorType;
+ case AttributedType::attr_objc_gc:
+ return AttributeList::AT_ObjCGC;
+ case AttributedType::attr_objc_ownership:
+ return AttributeList::AT_ObjCOwnership;
+ case AttributedType::attr_noreturn:
+ return AttributeList::AT_NoReturn;
+ case AttributedType::attr_cdecl:
+ return AttributeList::AT_CDecl;
+ case AttributedType::attr_fastcall:
+ return AttributeList::AT_FastCall;
+ case AttributedType::attr_stdcall:
+ return AttributeList::AT_StdCall;
+ case AttributedType::attr_thiscall:
+ return AttributeList::AT_ThisCall;
+ case AttributedType::attr_pascal:
+ return AttributeList::AT_Pascal;
+ case AttributedType::attr_vectorcall:
+ return AttributeList::AT_VectorCall;
+ case AttributedType::attr_pcs:
+ case AttributedType::attr_pcs_vfp:
+ return AttributeList::AT_Pcs;
+ case AttributedType::attr_inteloclbicc:
+ return AttributeList::AT_IntelOclBicc;
+ case AttributedType::attr_ms_abi:
+ return AttributeList::AT_MSABI;
+ case AttributedType::attr_sysv_abi:
+ return AttributeList::AT_SysVABI;
+ case AttributedType::attr_ptr32:
+ return AttributeList::AT_Ptr32;
+ case AttributedType::attr_ptr64:
+ return AttributeList::AT_Ptr64;
+ case AttributedType::attr_sptr:
+ return AttributeList::AT_SPtr;
+ case AttributedType::attr_uptr:
+ return AttributeList::AT_UPtr;
+ }
+ llvm_unreachable("unexpected attribute kind!");
+}
+
+static void fillAttributedTypeLoc(AttributedTypeLoc TL,
+ const AttributeList *attrs) {
+ AttributedType::Kind kind = TL.getAttrKind();
+
+ assert(attrs && "no type attributes in the expected location!");
+ AttributeList::Kind parsedKind = getAttrListKind(kind);
+ while (attrs->getKind() != parsedKind) {
+ attrs = attrs->getNext();
+ assert(attrs && "no matching attribute in expected location!");
+ }
+
+ TL.setAttrNameLoc(attrs->getLoc());
+ if (TL.hasAttrExprOperand()) {
+ assert(attrs->isArgExpr(0) && "mismatched attribute operand kind");
+ TL.setAttrExprOperand(attrs->getArgAsExpr(0));
+ } else if (TL.hasAttrEnumOperand()) {
+ assert((attrs->isArgIdent(0) || attrs->isArgExpr(0)) &&
+ "unexpected attribute operand kind");
+ if (attrs->isArgIdent(0))
+ TL.setAttrEnumOperandLoc(attrs->getArgAsIdent(0)->Loc);
+ else
+ TL.setAttrEnumOperandLoc(attrs->getArgAsExpr(0)->getExprLoc());
+ }
+
+ // FIXME: preserve this information to here.
+ if (TL.hasAttrOperand())
+ TL.setAttrOperandParensRange(SourceRange());
+}
+
+namespace {
+ class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
+ ASTContext &Context;
+ const DeclSpec &DS;
+
+ public:
+ TypeSpecLocFiller(ASTContext &Context, const DeclSpec &DS)
+ : Context(Context), DS(DS) {}
+
+ void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
+ fillAttributedTypeLoc(TL, DS.getAttributes().getList());
+ Visit(TL.getModifiedLoc());
+ }
+ void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
+ Visit(TL.getUnqualifiedLoc());
+ }
+ void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
+ TL.setNameLoc(DS.getTypeSpecTypeLoc());
+ }
+ void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
+ TL.setNameLoc(DS.getTypeSpecTypeLoc());
+ // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
+ // addition field. What we have is good enough for dispay of location
+ // of 'fixit' on interface name.
+ TL.setNameEndLoc(DS.getLocEnd());
+ }
+ void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
+ // Handle the base type, which might not have been written explicitly.
+ if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
+ TL.setHasBaseTypeAsWritten(false);
+ TL.getBaseLoc().initialize(Context, SourceLocation());
+ } else {
+ TL.setHasBaseTypeAsWritten(true);
+ Visit(TL.getBaseLoc());
+ }
+
+ // Protocol qualifiers.
+ if (DS.getProtocolQualifiers()) {
+ assert(TL.getNumProtocols() > 0);
+ assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
+ TL.setLAngleLoc(DS.getProtocolLAngleLoc());
+ TL.setRAngleLoc(DS.getSourceRange().getEnd());
+ for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
+ TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
+ } else {
+ assert(TL.getNumProtocols() == 0);
+ TL.setLAngleLoc(SourceLocation());
+ TL.setRAngleLoc(SourceLocation());
+ }
+ }
+ void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
+ TL.setStarLoc(SourceLocation());
+ Visit(TL.getPointeeLoc());
+ }
+ void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
+ TypeSourceInfo *TInfo = nullptr;
+ Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
+
+ // If we got no declarator info from previous Sema routines,
+ // just fill with the typespec loc.
+ if (!TInfo) {
+ TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
+ return;
+ }
+
+ TypeLoc OldTL = TInfo->getTypeLoc();
+ if (TInfo->getType()->getAs<ElaboratedType>()) {
+ ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
+ TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
+ .castAs<TemplateSpecializationTypeLoc>();
+ TL.copy(NamedTL);
+ } else {
+ TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>());
+ assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc());
+ }
+
+ }
+ void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
+ assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
+ TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
+ TL.setParensRange(DS.getTypeofParensRange());
+ }
+ void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
+ assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
+ TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
+ TL.setParensRange(DS.getTypeofParensRange());
+ assert(DS.getRepAsType());
+ TypeSourceInfo *TInfo = nullptr;
+ Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
+ TL.setUnderlyingTInfo(TInfo);
+ }
+ void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
+ // FIXME: This holds only because we only have one unary transform.
+ assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType);
+ TL.setKWLoc(DS.getTypeSpecTypeLoc());
+ TL.setParensRange(DS.getTypeofParensRange());
+ assert(DS.getRepAsType());
+ TypeSourceInfo *TInfo = nullptr;
+ Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
+ TL.setUnderlyingTInfo(TInfo);
+ }
+ void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
+ // By default, use the source location of the type specifier.
+ TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
+ if (TL.needsExtraLocalData()) {
+ // Set info for the written builtin specifiers.
+ TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
+ // Try to have a meaningful source location.
+ if (TL.getWrittenSignSpec() != TSS_unspecified)
+ // Sign spec loc overrides the others (e.g., 'unsigned long').
+ TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
+ else if (TL.getWrittenWidthSpec() != TSW_unspecified)
+ // Width spec loc overrides type spec loc (e.g., 'short int').
+ TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
+ }
+ }
+ void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
+ ElaboratedTypeKeyword Keyword
+ = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
+ if (DS.getTypeSpecType() == TST_typename) {
+ TypeSourceInfo *TInfo = nullptr;
+ Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
+ if (TInfo) {
+ TL.copy(TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>());
+ return;
+ }
+ }
+ TL.setElaboratedKeywordLoc(Keyword != ETK_None
+ ? DS.getTypeSpecTypeLoc()
+ : SourceLocation());
+ const CXXScopeSpec& SS = DS.getTypeSpecScope();
+ TL.setQualifierLoc(SS.getWithLocInContext(Context));
+ Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
+ }
+ void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
+ assert(DS.getTypeSpecType() == TST_typename);
+ TypeSourceInfo *TInfo = nullptr;
+ Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
+ assert(TInfo);
+ TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
+ }
+ void VisitDependentTemplateSpecializationTypeLoc(
+ DependentTemplateSpecializationTypeLoc TL) {
+ assert(DS.getTypeSpecType() == TST_typename);
+ TypeSourceInfo *TInfo = nullptr;
+ Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
+ assert(TInfo);
+ TL.copy(
+ TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
+ }
+ void VisitTagTypeLoc(TagTypeLoc TL) {
+ TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
+ }
+ void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
+ // An AtomicTypeLoc can come from either an _Atomic(...) type specifier
+ // or an _Atomic qualifier.
+ if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
+ TL.setKWLoc(DS.getTypeSpecTypeLoc());
+ TL.setParensRange(DS.getTypeofParensRange());
+
+ TypeSourceInfo *TInfo = nullptr;
+ Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
+ assert(TInfo);
+ TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
+ } else {
+ TL.setKWLoc(DS.getAtomicSpecLoc());
+ // No parens, to indicate this was spelled as an _Atomic qualifier.
+ TL.setParensRange(SourceRange());
+ Visit(TL.getValueLoc());
+ }
+ }
+
+ void VisitTypeLoc(TypeLoc TL) {
+ // FIXME: add other typespec types and change this to an assert.
+ TL.initialize(Context, DS.getTypeSpecTypeLoc());
+ }
+ };
+
+ class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
+ ASTContext &Context;
+ const DeclaratorChunk &Chunk;
+
+ public:
+ DeclaratorLocFiller(ASTContext &Context, const DeclaratorChunk &Chunk)
+ : Context(Context), Chunk(Chunk) {}
+
+ void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
+ llvm_unreachable("qualified type locs not expected here!");
+ }
+ void VisitDecayedTypeLoc(DecayedTypeLoc TL) {
+ llvm_unreachable("decayed type locs not expected here!");
+ }
+
+ void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
+ fillAttributedTypeLoc(TL, Chunk.getAttrs());
+ }
+ void VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
+ // nothing
+ }
+ void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
+ assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
+ TL.setCaretLoc(Chunk.Loc);
+ }
+ void VisitPointerTypeLoc(PointerTypeLoc TL) {
+ assert(Chunk.Kind == DeclaratorChunk::Pointer);
+ TL.setStarLoc(Chunk.Loc);
+ }
+ void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
+ assert(Chunk.Kind == DeclaratorChunk::Pointer);
+ TL.setStarLoc(Chunk.Loc);
+ }
+ void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
+ assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
+ const CXXScopeSpec& SS = Chunk.Mem.Scope();
+ NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
+
+ const Type* ClsTy = TL.getClass();
+ QualType ClsQT = QualType(ClsTy, 0);
+ TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
+ // Now copy source location info into the type loc component.
+ TypeLoc ClsTL = ClsTInfo->getTypeLoc();
+ switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
+ case NestedNameSpecifier::Identifier:
+ assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
+ {
+ DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>();
+ DNTLoc.setElaboratedKeywordLoc(SourceLocation());
+ DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
+ DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
+ }
+ break;
+
+ case NestedNameSpecifier::TypeSpec:
+ case NestedNameSpecifier::TypeSpecWithTemplate:
+ if (isa<ElaboratedType>(ClsTy)) {
+ ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
+ ETLoc.setElaboratedKeywordLoc(SourceLocation());
+ ETLoc.setQualifierLoc(NNSLoc.getPrefix());
+ TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
+ NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
+ } else {
+ ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
+ }
+ break;
+
+ case NestedNameSpecifier::Namespace:
+ case NestedNameSpecifier::NamespaceAlias:
+ case NestedNameSpecifier::Global:
+ case NestedNameSpecifier::Super:
+ llvm_unreachable("Nested-name-specifier must name a type");
+ }
+
+ // Finally fill in MemberPointerLocInfo fields.
+ TL.setStarLoc(Chunk.Loc);
+ TL.setClassTInfo(ClsTInfo);
+ }
+ void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
+ assert(Chunk.Kind == DeclaratorChunk::Reference);
+ // 'Amp' is misleading: this might have been originally
+ /// spelled with AmpAmp.
+ TL.setAmpLoc(Chunk.Loc);
+ }
+ void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
+ assert(Chunk.Kind == DeclaratorChunk::Reference);
+ assert(!Chunk.Ref.LValueRef);
+ TL.setAmpAmpLoc(Chunk.Loc);
+ }
+ void VisitArrayTypeLoc(ArrayTypeLoc TL) {
+ assert(Chunk.Kind == DeclaratorChunk::Array);
+ TL.setLBracketLoc(Chunk.Loc);
+ TL.setRBracketLoc(Chunk.EndLoc);
+ TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
+ }
+ void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
+ assert(Chunk.Kind == DeclaratorChunk::Function);
+ TL.setLocalRangeBegin(Chunk.Loc);
+ TL.setLocalRangeEnd(Chunk.EndLoc);
+
+ const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
+ TL.setLParenLoc(FTI.getLParenLoc());
+ TL.setRParenLoc(FTI.getRParenLoc());
+ for (unsigned i = 0, e = TL.getNumParams(), tpi = 0; i != e; ++i) {
+ ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
+ TL.setParam(tpi++, Param);
+ }
+ // FIXME: exception specs
+ }
+ void VisitParenTypeLoc(ParenTypeLoc TL) {
+ assert(Chunk.Kind == DeclaratorChunk::Paren);
+ TL.setLParenLoc(Chunk.Loc);
+ TL.setRParenLoc(Chunk.EndLoc);
+ }
+
+ void VisitTypeLoc(TypeLoc TL) {
+ llvm_unreachable("unsupported TypeLoc kind in declarator!");
+ }
+ };
+}
+
+static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
+ SourceLocation Loc;
+ switch (Chunk.Kind) {
+ case DeclaratorChunk::Function:
+ case DeclaratorChunk::Array:
+ case DeclaratorChunk::Paren:
+ llvm_unreachable("cannot be _Atomic qualified");
+
+ case DeclaratorChunk::Pointer:
+ Loc = SourceLocation::getFromRawEncoding(Chunk.Ptr.AtomicQualLoc);
+ break;
+
+ case DeclaratorChunk::BlockPointer:
+ case DeclaratorChunk::Reference:
+ case DeclaratorChunk::MemberPointer:
+ // FIXME: Provide a source location for the _Atomic keyword.
+ break;
+ }
+
+ ATL.setKWLoc(Loc);
+ ATL.setParensRange(SourceRange());
+}
+
+/// \brief Create and instantiate a TypeSourceInfo with type source information.
+///
+/// \param T QualType referring to the type as written in source code.
+///
+/// \param ReturnTypeInfo For declarators whose return type does not show
+/// up in the normal place in the declaration specifiers (such as a C++
+/// conversion function), this pointer will refer to a type source information
+/// for that return type.
+TypeSourceInfo *
+Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
+ TypeSourceInfo *ReturnTypeInfo) {
+ TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
+ UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
+
+ // Handle parameter packs whose type is a pack expansion.
+ if (isa<PackExpansionType>(T)) {
+ CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
+ CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
+ }
+
+ for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
+ // An AtomicTypeLoc might be produced by an atomic qualifier in this
+ // declarator chunk.
+ if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
+ fillAtomicQualLoc(ATL, D.getTypeObject(i));
+ CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
+ }
+
+ while (AttributedTypeLoc TL = CurrTL.getAs<AttributedTypeLoc>()) {
+ fillAttributedTypeLoc(TL, D.getTypeObject(i).getAttrs());
+ CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
+ }
+
+ // FIXME: Ordering here?
+ while (AdjustedTypeLoc TL = CurrTL.getAs<AdjustedTypeLoc>())
+ CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
+
+ DeclaratorLocFiller(Context, D.getTypeObject(i)).Visit(CurrTL);
+ CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
+ }
+
+ // If we have different source information for the return type, use
+ // that. This really only applies to C++ conversion functions.
+ if (ReturnTypeInfo) {
+ TypeLoc TL = ReturnTypeInfo->getTypeLoc();
+ assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
+ memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
+ } else {
+ TypeSpecLocFiller(Context, D.getDeclSpec()).Visit(CurrTL);
+ }
+
+ return TInfo;
+}
+
+/// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
+ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
+ // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
+ // and Sema during declaration parsing. Try deallocating/caching them when
+ // it's appropriate, instead of allocating them and keeping them around.
+ LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
+ TypeAlignment);
+ new (LocT) LocInfoType(T, TInfo);
+ assert(LocT->getTypeClass() != T->getTypeClass() &&
+ "LocInfoType's TypeClass conflicts with an existing Type class");
+ return ParsedType::make(QualType(LocT, 0));
+}
+
+void LocInfoType::getAsStringInternal(std::string &Str,
+ const PrintingPolicy &Policy) const {
+ llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
+ " was used directly instead of getting the QualType through"
+ " GetTypeFromParser");
+}
+
+TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
+ // C99 6.7.6: Type names have no identifier. This is already validated by
+ // the parser.
+ assert(D.getIdentifier() == nullptr &&
+ "Type name should have no identifier!");
+
+ TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
+ QualType T = TInfo->getType();
+ if (D.isInvalidType())
+ return true;
+
+ // Make sure there are no unused decl attributes on the declarator.
+ // We don't want to do this for ObjC parameters because we're going
+ // to apply them to the actual parameter declaration.
+ // Likewise, we don't want to do this for alias declarations, because
+ // we are actually going to build a declaration from this eventually.
+ if (D.getContext() != Declarator::ObjCParameterContext &&
+ D.getContext() != Declarator::AliasDeclContext &&
+ D.getContext() != Declarator::AliasTemplateContext)
+ checkUnusedDeclAttributes(D);
+
+ if (getLangOpts().CPlusPlus) {
+ // Check that there are no default arguments (C++ only).
+ CheckExtraCXXDefaultArguments(D);
+ }
+
+ return CreateParsedType(T, TInfo);
+}
+
+ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
+ QualType T = Context.getObjCInstanceType();
+ TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
+ return CreateParsedType(T, TInfo);
+}
+
+
+//===----------------------------------------------------------------------===//
+// Type Attribute Processing
+//===----------------------------------------------------------------------===//
+
+/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
+/// specified type. The attribute contains 1 argument, the id of the address
+/// space for the type.
+static void HandleAddressSpaceTypeAttribute(QualType &Type,
+ const AttributeList &Attr, Sema &S){
+
+ // If this type is already address space qualified, reject it.
+ // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified by
+ // qualifiers for two or more different address spaces."
+ if (Type.getAddressSpace()) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
+ Attr.setInvalid();
+ return;
+ }
+
+ // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
+ // qualified by an address-space qualifier."
+ if (Type->isFunctionType()) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
+ Attr.setInvalid();
+ return;
+ }
+
+ unsigned ASIdx;
+ if (Attr.getKind() == AttributeList::AT_AddressSpace) {
+ // Check the attribute arguments.
+ if (Attr.getNumArgs() != 1) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
+ << Attr.getName() << 1;
+ Attr.setInvalid();
+ return;
+ }
+ Expr *ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
+ llvm::APSInt addrSpace(32);
+ if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
+ !ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
+ << Attr.getName() << AANT_ArgumentIntegerConstant
+ << ASArgExpr->getSourceRange();
+ Attr.setInvalid();
+ return;
+ }
+
+ // Bounds checking.
+ if (addrSpace.isSigned()) {
+ if (addrSpace.isNegative()) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
+ << ASArgExpr->getSourceRange();
+ Attr.setInvalid();
+ return;
+ }
+ addrSpace.setIsSigned(false);
+ }
+ llvm::APSInt max(addrSpace.getBitWidth());
+ max = Qualifiers::MaxAddressSpace;
+ if (addrSpace > max) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
+ << int(Qualifiers::MaxAddressSpace) << ASArgExpr->getSourceRange();
+ Attr.setInvalid();
+ return;
+ }
+ ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
+ } else {
+ // The keyword-based type attributes imply which address space to use.
+ switch (Attr.getKind()) {
+ case AttributeList::AT_OpenCLGlobalAddressSpace:
+ ASIdx = LangAS::opencl_global; break;
+ case AttributeList::AT_OpenCLLocalAddressSpace:
+ ASIdx = LangAS::opencl_local; break;
+ case AttributeList::AT_OpenCLConstantAddressSpace:
+ ASIdx = LangAS::opencl_constant; break;
+ case AttributeList::AT_OpenCLGenericAddressSpace:
+ ASIdx = LangAS::opencl_generic; break;
+ default:
+ assert(Attr.getKind() == AttributeList::AT_OpenCLPrivateAddressSpace);
+ ASIdx = 0; break;
+ }
+ }
+
+ Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
+}
+
+/// Does this type have a "direct" ownership qualifier? That is,
+/// is it written like "__strong id", as opposed to something like
+/// "typeof(foo)", where that happens to be strong?
+static bool hasDirectOwnershipQualifier(QualType type) {
+ // Fast path: no qualifier at all.
+ assert(type.getQualifiers().hasObjCLifetime());
+
+ while (true) {
+ // __strong id
+ if (const AttributedType *attr = dyn_cast<AttributedType>(type)) {
+ if (attr->getAttrKind() == AttributedType::attr_objc_ownership)
+ return true;
+
+ type = attr->getModifiedType();
+
+ // X *__strong (...)
+ } else if (const ParenType *paren = dyn_cast<ParenType>(type)) {
+ type = paren->getInnerType();
+
+ // That's it for things we want to complain about. In particular,
+ // we do not want to look through typedefs, typeof(expr),
+ // typeof(type), or any other way that the type is somehow
+ // abstracted.
+ } else {
+
+ return false;
+ }
+ }
+}
+
+/// handleObjCOwnershipTypeAttr - Process an objc_ownership
+/// attribute on the specified type.
+///
+/// Returns 'true' if the attribute was handled.
+static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
+ AttributeList &attr,
+ QualType &type) {
+ bool NonObjCPointer = false;
+
+ if (!type->isDependentType() && !type->isUndeducedType()) {
+ if (const PointerType *ptr = type->getAs<PointerType>()) {
+ QualType pointee = ptr->getPointeeType();
+ if (pointee->isObjCRetainableType() || pointee->isPointerType())
+ return false;
+ // It is important not to lose the source info that there was an attribute
+ // applied to non-objc pointer. We will create an attributed type but
+ // its type will be the same as the original type.
+ NonObjCPointer = true;
+ } else if (!type->isObjCRetainableType()) {
+ return false;
+ }
+
+ // Don't accept an ownership attribute in the declspec if it would
+ // just be the return type of a block pointer.
+ if (state.isProcessingDeclSpec()) {
+ Declarator &D = state.getDeclarator();
+ if (maybeMovePastReturnType(D, D.getNumTypeObjects()))
+ return false;
+ }
+ }
+
+ Sema &S = state.getSema();
+ SourceLocation AttrLoc = attr.getLoc();
+ if (AttrLoc.isMacroID())
+ AttrLoc = S.getSourceManager().getImmediateExpansionRange(AttrLoc).first;
+
+ if (!attr.isArgIdent(0)) {
+ S.Diag(AttrLoc, diag::err_attribute_argument_type)
+ << attr.getName() << AANT_ArgumentString;
+ attr.setInvalid();
+ return true;
+ }
+
+ // Consume lifetime attributes without further comment outside of
+ // ARC mode.
+ if (!S.getLangOpts().ObjCAutoRefCount)
+ return true;
+
+ IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
+ Qualifiers::ObjCLifetime lifetime;
+ if (II->isStr("none"))
+ lifetime = Qualifiers::OCL_ExplicitNone;
+ else if (II->isStr("strong"))
+ lifetime = Qualifiers::OCL_Strong;
+ else if (II->isStr("weak"))
+ lifetime = Qualifiers::OCL_Weak;
+ else if (II->isStr("autoreleasing"))
+ lifetime = Qualifiers::OCL_Autoreleasing;
+ else {
+ S.Diag(AttrLoc, diag::warn_attribute_type_not_supported)
+ << attr.getName() << II;
+ attr.setInvalid();
+ return true;
+ }
+
+ SplitQualType underlyingType = type.split();
+
+ // Check for redundant/conflicting ownership qualifiers.
+ if (Qualifiers::ObjCLifetime previousLifetime
+ = type.getQualifiers().getObjCLifetime()) {
+ // If it's written directly, that's an error.
+ if (hasDirectOwnershipQualifier(type)) {
+ S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
+ << type;
+ return true;
+ }
+
+ // Otherwise, if the qualifiers actually conflict, pull sugar off
+ // until we reach a type that is directly qualified.
+ if (previousLifetime != lifetime) {
+ // This should always terminate: the canonical type is
+ // qualified, so some bit of sugar must be hiding it.
+ while (!underlyingType.Quals.hasObjCLifetime()) {
+ underlyingType = underlyingType.getSingleStepDesugaredType();
+ }
+ underlyingType.Quals.removeObjCLifetime();
+ }
+ }
+
+ underlyingType.Quals.addObjCLifetime(lifetime);
+
+ if (NonObjCPointer) {
+ StringRef name = attr.getName()->getName();
+ switch (lifetime) {
+ case Qualifiers::OCL_None:
+ case Qualifiers::OCL_ExplicitNone:
+ break;
+ case Qualifiers::OCL_Strong: name = "__strong"; break;
+ case Qualifiers::OCL_Weak: name = "__weak"; break;
+ case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
+ }
+ S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name
+ << TDS_ObjCObjOrBlock << type;
+ }
+
+ QualType origType = type;
+ if (!NonObjCPointer)
+ type = S.Context.getQualifiedType(underlyingType);
+
+ // If we have a valid source location for the attribute, use an
+ // AttributedType instead.
+ if (AttrLoc.isValid())
+ type = S.Context.getAttributedType(AttributedType::attr_objc_ownership,
+ origType, type);
+
+ // Forbid __weak if the runtime doesn't support it.
+ if (lifetime == Qualifiers::OCL_Weak &&
+ !S.getLangOpts().ObjCARCWeak && !NonObjCPointer) {
+
+ // Actually, delay this until we know what we're parsing.
+ if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
+ S.DelayedDiagnostics.add(
+ sema::DelayedDiagnostic::makeForbiddenType(
+ S.getSourceManager().getExpansionLoc(AttrLoc),
+ diag::err_arc_weak_no_runtime, type, /*ignored*/ 0));
+ } else {
+ S.Diag(AttrLoc, diag::err_arc_weak_no_runtime);
+ }
+
+ attr.setInvalid();
+ return true;
+ }
+
+ // Forbid __weak for class objects marked as
+ // objc_arc_weak_reference_unavailable
+ if (lifetime == Qualifiers::OCL_Weak) {
+ if (const ObjCObjectPointerType *ObjT =
+ type->getAs<ObjCObjectPointerType>()) {
+ if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
+ if (Class->isArcWeakrefUnavailable()) {
+ S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
+ S.Diag(ObjT->getInterfaceDecl()->getLocation(),
+ diag::note_class_declared);
+ }
+ }
+ }
+ }
+
+ return true;
+}
+
+/// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
+/// attribute on the specified type. Returns true to indicate that
+/// the attribute was handled, false to indicate that the type does
+/// not permit the attribute.
+static bool handleObjCGCTypeAttr(TypeProcessingState &state,
+ AttributeList &attr,
+ QualType &type) {
+ Sema &S = state.getSema();
+
+ // Delay if this isn't some kind of pointer.
+ if (!type->isPointerType() &&
+ !type->isObjCObjectPointerType() &&
+ !type->isBlockPointerType())
+ return false;
+
+ if (type.getObjCGCAttr() != Qualifiers::GCNone) {
+ S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
+ attr.setInvalid();
+ return true;
+ }
+
+ // Check the attribute arguments.
+ if (!attr.isArgIdent(0)) {
+ S.Diag(attr.getLoc(), diag::err_attribute_argument_type)
+ << attr.getName() << AANT_ArgumentString;
+ attr.setInvalid();
+ return true;
+ }
+ Qualifiers::GC GCAttr;
+ if (attr.getNumArgs() > 1) {
+ S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments)
+ << attr.getName() << 1;
+ attr.setInvalid();
+ return true;
+ }
+
+ IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
+ if (II->isStr("weak"))
+ GCAttr = Qualifiers::Weak;
+ else if (II->isStr("strong"))
+ GCAttr = Qualifiers::Strong;
+ else {
+ S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
+ << attr.getName() << II;
+ attr.setInvalid();
+ return true;
+ }
+
+ QualType origType = type;
+ type = S.Context.getObjCGCQualType(origType, GCAttr);
+
+ // Make an attributed type to preserve the source information.
+ if (attr.getLoc().isValid())
+ type = S.Context.getAttributedType(AttributedType::attr_objc_gc,
+ origType, type);
+
+ return true;
+}
+
+namespace {
+ /// A helper class to unwrap a type down to a function for the
+ /// purposes of applying attributes there.
+ ///
+ /// Use:
+ /// FunctionTypeUnwrapper unwrapped(SemaRef, T);
+ /// if (unwrapped.isFunctionType()) {
+ /// const FunctionType *fn = unwrapped.get();
+ /// // change fn somehow
+ /// T = unwrapped.wrap(fn);
+ /// }
+ struct FunctionTypeUnwrapper {
+ enum WrapKind {
+ Desugar,
+ Parens,
+ Pointer,
+ BlockPointer,
+ Reference,
+ MemberPointer
+ };
+
+ QualType Original;
+ const FunctionType *Fn;
+ SmallVector<unsigned char /*WrapKind*/, 8> Stack;
+
+ FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
+ while (true) {
+ const Type *Ty = T.getTypePtr();
+ if (isa<FunctionType>(Ty)) {
+ Fn = cast<FunctionType>(Ty);
+ return;
+ } else if (isa<ParenType>(Ty)) {
+ T = cast<ParenType>(Ty)->getInnerType();
+ Stack.push_back(Parens);
+ } else if (isa<PointerType>(Ty)) {
+ T = cast<PointerType>(Ty)->getPointeeType();
+ Stack.push_back(Pointer);
+ } else if (isa<BlockPointerType>(Ty)) {
+ T = cast<BlockPointerType>(Ty)->getPointeeType();
+ Stack.push_back(BlockPointer);
+ } else if (isa<MemberPointerType>(Ty)) {
+ T = cast<MemberPointerType>(Ty)->getPointeeType();
+ Stack.push_back(MemberPointer);
+ } else if (isa<ReferenceType>(Ty)) {
+ T = cast<ReferenceType>(Ty)->getPointeeType();
+ Stack.push_back(Reference);
+ } else {
+ const Type *DTy = Ty->getUnqualifiedDesugaredType();
+ if (Ty == DTy) {
+ Fn = nullptr;
+ return;
+ }
+
+ T = QualType(DTy, 0);
+ Stack.push_back(Desugar);
+ }
+ }
+ }
+
+ bool isFunctionType() const { return (Fn != nullptr); }
+ const FunctionType *get() const { return Fn; }
+
+ QualType wrap(Sema &S, const FunctionType *New) {
+ // If T wasn't modified from the unwrapped type, do nothing.
+ if (New == get()) return Original;
+
+ Fn = New;
+ return wrap(S.Context, Original, 0);
+ }
+
+ private:
+ QualType wrap(ASTContext &C, QualType Old, unsigned I) {
+ if (I == Stack.size())
+ return C.getQualifiedType(Fn, Old.getQualifiers());
+
+ // Build up the inner type, applying the qualifiers from the old
+ // type to the new type.
+ SplitQualType SplitOld = Old.split();
+
+ // As a special case, tail-recurse if there are no qualifiers.
+ if (SplitOld.Quals.empty())
+ return wrap(C, SplitOld.Ty, I);
+ return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
+ }
+
+ QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
+ if (I == Stack.size()) return QualType(Fn, 0);
+
+ switch (static_cast<WrapKind>(Stack[I++])) {
+ case Desugar:
+ // This is the point at which we potentially lose source
+ // information.
+ return wrap(C, Old->getUnqualifiedDesugaredType(), I);
+
+ case Parens: {
+ QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
+ return C.getParenType(New);
+ }
+
+ case Pointer: {
+ QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
+ return C.getPointerType(New);
+ }
+
+ case BlockPointer: {
+ QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
+ return C.getBlockPointerType(New);
+ }
+
+ case MemberPointer: {
+ const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
+ QualType New = wrap(C, OldMPT->getPointeeType(), I);
+ return C.getMemberPointerType(New, OldMPT->getClass());
+ }
+
+ case Reference: {
+ const ReferenceType *OldRef = cast<ReferenceType>(Old);
+ QualType New = wrap(C, OldRef->getPointeeType(), I);
+ if (isa<LValueReferenceType>(OldRef))
+ return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
+ else
+ return C.getRValueReferenceType(New);
+ }
+ }
+
+ llvm_unreachable("unknown wrapping kind");
+ }
+ };
+}
+
+static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State,
+ AttributeList &Attr,
+ QualType &Type) {
+ Sema &S = State.getSema();
+
+ AttributeList::Kind Kind = Attr.getKind();
+ QualType Desugared = Type;
+ const AttributedType *AT = dyn_cast<AttributedType>(Type);
+ while (AT) {
+ AttributedType::Kind CurAttrKind = AT->getAttrKind();
+
+ // You cannot specify duplicate type attributes, so if the attribute has
+ // already been applied, flag it.
+ if (getAttrListKind(CurAttrKind) == Kind) {
+ S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute_exact)
+ << Attr.getName();
+ return true;
+ }
+
+ // You cannot have both __sptr and __uptr on the same type, nor can you
+ // have __ptr32 and __ptr64.
+ if ((CurAttrKind == AttributedType::attr_ptr32 &&
+ Kind == AttributeList::AT_Ptr64) ||
+ (CurAttrKind == AttributedType::attr_ptr64 &&
+ Kind == AttributeList::AT_Ptr32)) {
+ S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
+ << "'__ptr32'" << "'__ptr64'";
+ return true;
+ } else if ((CurAttrKind == AttributedType::attr_sptr &&
+ Kind == AttributeList::AT_UPtr) ||
+ (CurAttrKind == AttributedType::attr_uptr &&
+ Kind == AttributeList::AT_SPtr)) {
+ S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
+ << "'__sptr'" << "'__uptr'";
+ return true;
+ }
+
+ Desugared = AT->getEquivalentType();
+ AT = dyn_cast<AttributedType>(Desugared);
+ }
+
+ // Pointer type qualifiers can only operate on pointer types, but not
+ // pointer-to-member types.
+ if (!isa<PointerType>(Desugared)) {
+ S.Diag(Attr.getLoc(), Type->isMemberPointerType() ?
+ diag::err_attribute_no_member_pointers :
+ diag::err_attribute_pointers_only) << Attr.getName();
+ return true;
+ }
+
+ AttributedType::Kind TAK;
+ switch (Kind) {
+ default: llvm_unreachable("Unknown attribute kind");
+ case AttributeList::AT_Ptr32: TAK = AttributedType::attr_ptr32; break;
+ case AttributeList::AT_Ptr64: TAK = AttributedType::attr_ptr64; break;
+ case AttributeList::AT_SPtr: TAK = AttributedType::attr_sptr; break;
+ case AttributeList::AT_UPtr: TAK = AttributedType::attr_uptr; break;
+ }
+
+ Type = S.Context.getAttributedType(TAK, Type, Type);
+ return false;
+}
+
+static AttributedType::Kind getCCTypeAttrKind(AttributeList &Attr) {
+ assert(!Attr.isInvalid());
+ switch (Attr.getKind()) {
+ default:
+ llvm_unreachable("not a calling convention attribute");
+ case AttributeList::AT_CDecl:
+ return AttributedType::attr_cdecl;
+ case AttributeList::AT_FastCall:
+ return AttributedType::attr_fastcall;
+ case AttributeList::AT_StdCall:
+ return AttributedType::attr_stdcall;
+ case AttributeList::AT_ThisCall:
+ return AttributedType::attr_thiscall;
+ case AttributeList::AT_Pascal:
+ return AttributedType::attr_pascal;
+ case AttributeList::AT_VectorCall:
+ return AttributedType::attr_vectorcall;
+ case AttributeList::AT_Pcs: {
+ // The attribute may have had a fixit applied where we treated an
+ // identifier as a string literal. The contents of the string are valid,
+ // but the form may not be.
+ StringRef Str;
+ if (Attr.isArgExpr(0))
+ Str = cast<StringLiteral>(Attr.getArgAsExpr(0))->getString();
+ else
+ Str = Attr.getArgAsIdent(0)->Ident->getName();
+ return llvm::StringSwitch<AttributedType::Kind>(Str)
+ .Case("aapcs", AttributedType::attr_pcs)
+ .Case("aapcs-vfp", AttributedType::attr_pcs_vfp);
+ }
+ case AttributeList::AT_IntelOclBicc:
+ return AttributedType::attr_inteloclbicc;
+ case AttributeList::AT_MSABI:
+ return AttributedType::attr_ms_abi;
+ case AttributeList::AT_SysVABI:
+ return AttributedType::attr_sysv_abi;
+ }
+ llvm_unreachable("unexpected attribute kind!");
+}
+
+/// Process an individual function attribute. Returns true to
+/// indicate that the attribute was handled, false if it wasn't.
+static bool handleFunctionTypeAttr(TypeProcessingState &state,
+ AttributeList &attr,
+ QualType &type) {
+ Sema &S = state.getSema();
+
+ FunctionTypeUnwrapper unwrapped(S, type);
+
+ if (attr.getKind() == AttributeList::AT_NoReturn) {
+ if (S.CheckNoReturnAttr(attr))
+ return true;
+
+ // Delay if this is not a function type.
+ if (!unwrapped.isFunctionType())
+ return false;
+
+ // Otherwise we can process right away.
+ FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
+ type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
+ return true;
+ }
+
+ // ns_returns_retained is not always a type attribute, but if we got
+ // here, we're treating it as one right now.
+ if (attr.getKind() == AttributeList::AT_NSReturnsRetained) {
+ assert(S.getLangOpts().ObjCAutoRefCount &&
+ "ns_returns_retained treated as type attribute in non-ARC");
+ if (attr.getNumArgs()) return true;
+
+ // Delay if this is not a function type.
+ if (!unwrapped.isFunctionType())
+ return false;
+
+ FunctionType::ExtInfo EI
+ = unwrapped.get()->getExtInfo().withProducesResult(true);
+ type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
+ return true;
+ }
+
+ if (attr.getKind() == AttributeList::AT_Regparm) {
+ unsigned value;
+ if (S.CheckRegparmAttr(attr, value))
+ return true;
+
+ // Delay if this is not a function type.
+ if (!unwrapped.isFunctionType())
+ return false;
+
+ // Diagnose regparm with fastcall.
+ const FunctionType *fn = unwrapped.get();
+ CallingConv CC = fn->getCallConv();
+ if (CC == CC_X86FastCall) {
+ S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
+ << FunctionType::getNameForCallConv(CC)
+ << "regparm";
+ attr.setInvalid();
+ return true;
+ }
+
+ FunctionType::ExtInfo EI =
+ unwrapped.get()->getExtInfo().withRegParm(value);
+ type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
+ return true;
+ }
+
+ // Delay if the type didn't work out to a function.
+ if (!unwrapped.isFunctionType()) return false;
+
+ // Otherwise, a calling convention.
+ CallingConv CC;
+ if (S.CheckCallingConvAttr(attr, CC))
+ return true;
+
+ const FunctionType *fn = unwrapped.get();
+ CallingConv CCOld = fn->getCallConv();
+ AttributedType::Kind CCAttrKind = getCCTypeAttrKind(attr);
+
+ if (CCOld != CC) {
+ // Error out on when there's already an attribute on the type
+ // and the CCs don't match.
+ const AttributedType *AT = S.getCallingConvAttributedType(type);
+ if (AT && AT->getAttrKind() != CCAttrKind) {
+ S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
+ << FunctionType::getNameForCallConv(CC)
+ << FunctionType::getNameForCallConv(CCOld);
+ attr.setInvalid();
+ return true;
+ }
+ }
+
+ // Diagnose use of callee-cleanup calling convention on variadic functions.
+ if (!supportsVariadicCall(CC)) {
+ const FunctionProtoType *FnP = dyn_cast<FunctionProtoType>(fn);
+ if (FnP && FnP->isVariadic()) {
+ unsigned DiagID = diag::err_cconv_varargs;
+ // stdcall and fastcall are ignored with a warning for GCC and MS
+ // compatibility.
+ if (CC == CC_X86StdCall || CC == CC_X86FastCall)
+ DiagID = diag::warn_cconv_varargs;
+
+ S.Diag(attr.getLoc(), DiagID) << FunctionType::getNameForCallConv(CC);
+ attr.setInvalid();
+ return true;
+ }
+ }
+
+ // Also diagnose fastcall with regparm.
+ if (CC == CC_X86FastCall && fn->getHasRegParm()) {
+ S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
+ << "regparm" << FunctionType::getNameForCallConv(CC_X86FastCall);
+ attr.setInvalid();
+ return true;
+ }
+
+ // Modify the CC from the wrapped function type, wrap it all back, and then
+ // wrap the whole thing in an AttributedType as written. The modified type
+ // might have a different CC if we ignored the attribute.
+ FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
+ QualType Equivalent =
+ unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
+ type = S.Context.getAttributedType(CCAttrKind, type, Equivalent);
+ return true;
+}
+
+bool Sema::hasExplicitCallingConv(QualType &T) {
+ QualType R = T.IgnoreParens();
+ while (const AttributedType *AT = dyn_cast<AttributedType>(R)) {
+ if (AT->isCallingConv())
+ return true;
+ R = AT->getModifiedType().IgnoreParens();
+ }
+ return false;
+}
+
+void Sema::adjustMemberFunctionCC(QualType &T, bool IsStatic) {
+ FunctionTypeUnwrapper Unwrapped(*this, T);
+ const FunctionType *FT = Unwrapped.get();
+ bool IsVariadic = (isa<FunctionProtoType>(FT) &&
+ cast<FunctionProtoType>(FT)->isVariadic());
+
+ // Only adjust types with the default convention. For example, on Windows we
+ // should adjust a __cdecl type to __thiscall for instance methods, and a
+ // __thiscall type to __cdecl for static methods.
+ CallingConv CurCC = FT->getCallConv();
+ CallingConv FromCC =
+ Context.getDefaultCallingConvention(IsVariadic, IsStatic);
+ CallingConv ToCC = Context.getDefaultCallingConvention(IsVariadic, !IsStatic);
+ if (CurCC != FromCC || FromCC == ToCC)
+ return;
+
+ if (hasExplicitCallingConv(T))
+ return;
+
+ FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(ToCC));
+ QualType Wrapped = Unwrapped.wrap(*this, FT);
+ T = Context.getAdjustedType(T, Wrapped);
+}
+
+/// HandleVectorSizeAttribute - this attribute is only applicable to integral
+/// and float scalars, although arrays, pointers, and function return values are
+/// allowed in conjunction with this construct. Aggregates with this attribute
+/// are invalid, even if they are of the same size as a corresponding scalar.
+/// The raw attribute should contain precisely 1 argument, the vector size for
+/// the variable, measured in bytes. If curType and rawAttr are well formed,
+/// this routine will return a new vector type.
+static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr,
+ Sema &S) {
+ // Check the attribute arguments.
+ if (Attr.getNumArgs() != 1) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
+ << Attr.getName() << 1;
+ Attr.setInvalid();
+ return;
+ }
+ Expr *sizeExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
+ llvm::APSInt vecSize(32);
+ if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
+ !sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
+ << Attr.getName() << AANT_ArgumentIntegerConstant
+ << sizeExpr->getSourceRange();
+ Attr.setInvalid();
+ return;
+ }
+ // The base type must be integer (not Boolean or enumeration) or float, and
+ // can't already be a vector.
+ if (!CurType->isBuiltinType() || CurType->isBooleanType() ||
+ (!CurType->isIntegerType() && !CurType->isRealFloatingType())) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
+ Attr.setInvalid();
+ return;
+ }
+ unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
+ // vecSize is specified in bytes - convert to bits.
+ unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
+
+ // the vector size needs to be an integral multiple of the type size.
+ if (vectorSize % typeSize) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
+ << sizeExpr->getSourceRange();
+ Attr.setInvalid();
+ return;
+ }
+ if (VectorType::isVectorSizeTooLarge(vectorSize / typeSize)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_size_too_large)
+ << sizeExpr->getSourceRange();
+ Attr.setInvalid();
+ return;
+ }
+ if (vectorSize == 0) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
+ << sizeExpr->getSourceRange();
+ Attr.setInvalid();
+ return;
+ }
+
+ // Success! Instantiate the vector type, the number of elements is > 0, and
+ // not required to be a power of 2, unlike GCC.
+ CurType = S.Context.getVectorType(CurType, vectorSize/typeSize,
+ VectorType::GenericVector);
+}
+
+/// \brief Process the OpenCL-like ext_vector_type attribute when it occurs on
+/// a type.
+static void HandleExtVectorTypeAttr(QualType &CurType,
+ const AttributeList &Attr,
+ Sema &S) {
+ // check the attribute arguments.
+ if (Attr.getNumArgs() != 1) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
+ << Attr.getName() << 1;
+ return;
+ }
+
+ Expr *sizeExpr;
+
+ // Special case where the argument is a template id.
+ if (Attr.isArgIdent(0)) {
+ CXXScopeSpec SS;
+ SourceLocation TemplateKWLoc;
+ UnqualifiedId id;
+ id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
+
+ ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
+ id, false, false);
+ if (Size.isInvalid())
+ return;
+
+ sizeExpr = Size.get();
+ } else {
+ sizeExpr = Attr.getArgAsExpr(0);
+ }
+
+ // Create the vector type.
+ QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
+ if (!T.isNull())
+ CurType = T;
+}
+
+static bool isPermittedNeonBaseType(QualType &Ty,
+ VectorType::VectorKind VecKind, Sema &S) {
+ const BuiltinType *BTy = Ty->getAs<BuiltinType>();
+ if (!BTy)
+ return false;
+
+ llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
+
+ // Signed poly is mathematically wrong, but has been baked into some ABIs by
+ // now.
+ bool IsPolyUnsigned = Triple.getArch() == llvm::Triple::aarch64 ||
+ Triple.getArch() == llvm::Triple::aarch64_be;
+ if (VecKind == VectorType::NeonPolyVector) {
+ if (IsPolyUnsigned) {
+ // AArch64 polynomial vectors are unsigned and support poly64.
+ return BTy->getKind() == BuiltinType::UChar ||
+ BTy->getKind() == BuiltinType::UShort ||
+ BTy->getKind() == BuiltinType::ULong ||
+ BTy->getKind() == BuiltinType::ULongLong;
+ } else {
+ // AArch32 polynomial vector are signed.
+ return BTy->getKind() == BuiltinType::SChar ||
+ BTy->getKind() == BuiltinType::Short;
+ }
+ }
+
+ // Non-polynomial vector types: the usual suspects are allowed, as well as
+ // float64_t on AArch64.
+ bool Is64Bit = Triple.getArch() == llvm::Triple::aarch64 ||
+ Triple.getArch() == llvm::Triple::aarch64_be;
+
+ if (Is64Bit && BTy->getKind() == BuiltinType::Double)
+ return true;
+
+ return BTy->getKind() == BuiltinType::SChar ||
+ BTy->getKind() == BuiltinType::UChar ||
+ BTy->getKind() == BuiltinType::Short ||
+ BTy->getKind() == BuiltinType::UShort ||
+ BTy->getKind() == BuiltinType::Int ||
+ BTy->getKind() == BuiltinType::UInt ||
+ BTy->getKind() == BuiltinType::Long ||
+ BTy->getKind() == BuiltinType::ULong ||
+ BTy->getKind() == BuiltinType::LongLong ||
+ BTy->getKind() == BuiltinType::ULongLong ||
+ BTy->getKind() == BuiltinType::Float ||
+ BTy->getKind() == BuiltinType::Half;
+}
+
+/// HandleNeonVectorTypeAttr - The "neon_vector_type" and
+/// "neon_polyvector_type" attributes are used to create vector types that
+/// are mangled according to ARM's ABI. Otherwise, these types are identical
+/// to those created with the "vector_size" attribute. Unlike "vector_size"
+/// the argument to these Neon attributes is the number of vector elements,
+/// not the vector size in bytes. The vector width and element type must
+/// match one of the standard Neon vector types.
+static void HandleNeonVectorTypeAttr(QualType& CurType,
+ const AttributeList &Attr, Sema &S,
+ VectorType::VectorKind VecKind) {
+ // Target must have NEON
+ if (!S.Context.getTargetInfo().hasFeature("neon")) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) << Attr.getName();
+ Attr.setInvalid();
+ return;
+ }
+ // Check the attribute arguments.
+ if (Attr.getNumArgs() != 1) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
+ << Attr.getName() << 1;
+ Attr.setInvalid();
+ return;
+ }
+ // The number of elements must be an ICE.
+ Expr *numEltsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
+ llvm::APSInt numEltsInt(32);
+ if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
+ !numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
+ << Attr.getName() << AANT_ArgumentIntegerConstant
+ << numEltsExpr->getSourceRange();
+ Attr.setInvalid();
+ return;
+ }
+ // Only certain element types are supported for Neon vectors.
+ if (!isPermittedNeonBaseType(CurType, VecKind, S)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
+ Attr.setInvalid();
+ return;
+ }
+
+ // The total size of the vector must be 64 or 128 bits.
+ unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
+ unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
+ unsigned vecSize = typeSize * numElts;
+ if (vecSize != 64 && vecSize != 128) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
+ Attr.setInvalid();
+ return;
+ }
+
+ CurType = S.Context.getVectorType(CurType, numElts, VecKind);
+}
+
+static void processTypeAttrs(TypeProcessingState &state, QualType &type,
+ TypeAttrLocation TAL, AttributeList *attrs) {
+ // Scan through and apply attributes to this type where it makes sense. Some
+ // attributes (such as __address_space__, __vector_size__, etc) apply to the
+ // type, but others can be present in the type specifiers even though they
+ // apply to the decl. Here we apply type attributes and ignore the rest.
+
+ AttributeList *next;
+ do {
+ AttributeList &attr = *attrs;
+ next = attr.getNext();
+
+ // Skip attributes that were marked to be invalid.
+ if (attr.isInvalid())
+ continue;
+
+ if (attr.isCXX11Attribute()) {
+ // [[gnu::...]] attributes are treated as declaration attributes, so may
+ // not appertain to a DeclaratorChunk, even if we handle them as type
+ // attributes.
+ if (attr.getScopeName() && attr.getScopeName()->isStr("gnu")) {
+ if (TAL == TAL_DeclChunk) {
+ state.getSema().Diag(attr.getLoc(),
+ diag::warn_cxx11_gnu_attribute_on_type)
+ << attr.getName();
+ continue;
+ }
+ } else if (TAL != TAL_DeclChunk) {
+ // Otherwise, only consider type processing for a C++11 attribute if
+ // it's actually been applied to a type.
+ continue;
+ }
+ }
+
+ // If this is an attribute we can handle, do so now,
+ // otherwise, add it to the FnAttrs list for rechaining.
+ switch (attr.getKind()) {
+ default:
+ // A C++11 attribute on a declarator chunk must appertain to a type.
+ if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk) {
+ state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
+ << attr.getName();
+ attr.setUsedAsTypeAttr();
+ }
+ break;
+
+ case AttributeList::UnknownAttribute:
+ if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk)
+ state.getSema().Diag(attr.getLoc(),
+ diag::warn_unknown_attribute_ignored)
+ << attr.getName();
+ break;
+
+ case AttributeList::IgnoredAttribute:
+ break;
+
+ case AttributeList::AT_MayAlias:
+ // FIXME: This attribute needs to actually be handled, but if we ignore
+ // it it breaks large amounts of Linux software.
+ attr.setUsedAsTypeAttr();
+ break;
+ case AttributeList::AT_OpenCLPrivateAddressSpace:
+ case AttributeList::AT_OpenCLGlobalAddressSpace:
+ case AttributeList::AT_OpenCLLocalAddressSpace:
+ case AttributeList::AT_OpenCLConstantAddressSpace:
+ case AttributeList::AT_OpenCLGenericAddressSpace:
+ case AttributeList::AT_AddressSpace:
+ HandleAddressSpaceTypeAttribute(type, attr, state.getSema());
+ attr.setUsedAsTypeAttr();
+ break;
+ OBJC_POINTER_TYPE_ATTRS_CASELIST:
+ if (!handleObjCPointerTypeAttr(state, attr, type))
+ distributeObjCPointerTypeAttr(state, attr, type);
+ attr.setUsedAsTypeAttr();
+ break;
+ case AttributeList::AT_VectorSize:
+ HandleVectorSizeAttr(type, attr, state.getSema());
+ attr.setUsedAsTypeAttr();
+ break;
+ case AttributeList::AT_ExtVectorType:
+ HandleExtVectorTypeAttr(type, attr, state.getSema());
+ attr.setUsedAsTypeAttr();
+ break;
+ case AttributeList::AT_NeonVectorType:
+ HandleNeonVectorTypeAttr(type, attr, state.getSema(),
+ VectorType::NeonVector);
+ attr.setUsedAsTypeAttr();
+ break;
+ case AttributeList::AT_NeonPolyVectorType:
+ HandleNeonVectorTypeAttr(type, attr, state.getSema(),
+ VectorType::NeonPolyVector);
+ attr.setUsedAsTypeAttr();
+ break;
+ case AttributeList::AT_OpenCLImageAccess:
+ // FIXME: there should be some type checking happening here, I would
+ // imagine, but the original handler's checking was entirely superfluous.
+ attr.setUsedAsTypeAttr();
+ break;
+
+ MS_TYPE_ATTRS_CASELIST:
+ if (!handleMSPointerTypeQualifierAttr(state, attr, type))
+ attr.setUsedAsTypeAttr();
+ break;
+
+ case AttributeList::AT_NSReturnsRetained:
+ if (!state.getSema().getLangOpts().ObjCAutoRefCount)
+ break;
+ // fallthrough into the function attrs
+
+ FUNCTION_TYPE_ATTRS_CASELIST:
+ attr.setUsedAsTypeAttr();
+
+ // Never process function type attributes as part of the
+ // declaration-specifiers.
+ if (TAL == TAL_DeclSpec)
+ distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
+
+ // Otherwise, handle the possible delays.
+ else if (!handleFunctionTypeAttr(state, attr, type))
+ distributeFunctionTypeAttr(state, attr, type);
+ break;
+ }
+ } while ((attrs = next));
+}
+
+/// \brief Ensure that the type of the given expression is complete.
+///
+/// This routine checks whether the expression \p E has a complete type. If the
+/// expression refers to an instantiable construct, that instantiation is
+/// performed as needed to complete its type. Furthermore
+/// Sema::RequireCompleteType is called for the expression's type (or in the
+/// case of a reference type, the referred-to type).
+///
+/// \param E The expression whose type is required to be complete.
+/// \param Diagnoser The object that will emit a diagnostic if the type is
+/// incomplete.
+///
+/// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
+/// otherwise.
+bool Sema::RequireCompleteExprType(Expr *E, TypeDiagnoser &Diagnoser){
+ QualType T = E->getType();
+
+ // Fast path the case where the type is already complete.
+ if (!T->isIncompleteType())
+ // FIXME: The definition might not be visible.
+ return false;
+
+ // Incomplete array types may be completed by the initializer attached to
+ // their definitions. For static data members of class templates and for
+ // variable templates, we need to instantiate the definition to get this
+ // initializer and complete the type.
+ if (T->isIncompleteArrayType()) {
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
+ if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
+ if (isTemplateInstantiation(Var->getTemplateSpecializationKind())) {
+ SourceLocation PointOfInstantiation = E->getExprLoc();
+
+ if (MemberSpecializationInfo *MSInfo =
+ Var->getMemberSpecializationInfo()) {
+ // If we don't already have a point of instantiation, this is it.
+ if (MSInfo->getPointOfInstantiation().isInvalid()) {
+ MSInfo->setPointOfInstantiation(PointOfInstantiation);
+
+ // This is a modification of an existing AST node. Notify
+ // listeners.
+ if (ASTMutationListener *L = getASTMutationListener())
+ L->StaticDataMemberInstantiated(Var);
+ }
+ } else {
+ VarTemplateSpecializationDecl *VarSpec =
+ cast<VarTemplateSpecializationDecl>(Var);
+ if (VarSpec->getPointOfInstantiation().isInvalid())
+ VarSpec->setPointOfInstantiation(PointOfInstantiation);
+ }
+
+ InstantiateVariableDefinition(PointOfInstantiation, Var);
+
+ // Update the type to the newly instantiated definition's type both
+ // here and within the expression.
+ if (VarDecl *Def = Var->getDefinition()) {
+ DRE->setDecl(Def);
+ T = Def->getType();
+ DRE->setType(T);
+ E->setType(T);
+ }
+
+ // We still go on to try to complete the type independently, as it
+ // may also require instantiations or diagnostics if it remains
+ // incomplete.
+ }
+ }
+ }
+ }
+
+ // FIXME: Are there other cases which require instantiating something other
+ // than the type to complete the type of an expression?
+
+ // Look through reference types and complete the referred type.
+ if (const ReferenceType *Ref = T->getAs<ReferenceType>())
+ T = Ref->getPointeeType();
+
+ return RequireCompleteType(E->getExprLoc(), T, Diagnoser);
+}
+
+namespace {
+ struct TypeDiagnoserDiag : Sema::TypeDiagnoser {
+ unsigned DiagID;
+
+ TypeDiagnoserDiag(unsigned DiagID)
+ : Sema::TypeDiagnoser(DiagID == 0), DiagID(DiagID) {}
+
+ void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
+ if (Suppressed) return;
+ S.Diag(Loc, DiagID) << T;
+ }
+ };
+}
+
+bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
+ TypeDiagnoserDiag Diagnoser(DiagID);
+ return RequireCompleteExprType(E, Diagnoser);
+}
+
+/// @brief Ensure that the type T is a complete type.
+///
+/// This routine checks whether the type @p T is complete in any
+/// context where a complete type is required. If @p T is a complete
+/// type, returns false. If @p T is a class template specialization,
+/// this routine then attempts to perform class template
+/// instantiation. If instantiation fails, or if @p T is incomplete
+/// and cannot be completed, issues the diagnostic @p diag (giving it
+/// the type @p T) and returns true.
+///
+/// @param Loc The location in the source that the incomplete type
+/// diagnostic should refer to.
+///
+/// @param T The type that this routine is examining for completeness.
+///
+/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
+/// @c false otherwise.
+bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
+ TypeDiagnoser &Diagnoser) {
+ if (RequireCompleteTypeImpl(Loc, T, Diagnoser))
+ return true;
+ if (const TagType *Tag = T->getAs<TagType>()) {
+ if (!Tag->getDecl()->isCompleteDefinitionRequired()) {
+ Tag->getDecl()->setCompleteDefinitionRequired();
+ Consumer.HandleTagDeclRequiredDefinition(Tag->getDecl());
+ }
+ }
+ return false;
+}
+
+/// \brief Determine whether there is any declaration of \p D that was ever a
+/// definition (perhaps before module merging) and is currently visible.
+/// \param D The definition of the entity.
+/// \param Suggested Filled in with the declaration that should be made visible
+/// in order to provide a definition of this entity.
+bool Sema::hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested) {
+ // Easy case: if we don't have modules, all declarations are visible.
+ if (!getLangOpts().Modules)
+ return true;
+
+ // If this definition was instantiated from a template, map back to the
+ // pattern from which it was instantiated.
+ if (isa<TagDecl>(D) && cast<TagDecl>(D)->isBeingDefined()) {
+ // We're in the middle of defining it; this definition should be treated
+ // as visible.
+ return true;
+ } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
+ if (auto *Pattern = RD->getTemplateInstantiationPattern())
+ RD = Pattern;
+ D = RD->getDefinition();
+ } else if (auto *ED = dyn_cast<EnumDecl>(D)) {
+ while (auto *NewED = ED->getInstantiatedFromMemberEnum())
+ ED = NewED;
+ if (ED->isFixed()) {
+ // If the enum has a fixed underlying type, any declaration of it will do.
+ *Suggested = nullptr;
+ for (auto *Redecl : ED->redecls()) {
+ if (LookupResult::isVisible(*this, Redecl))
+ return true;
+ if (Redecl->isThisDeclarationADefinition() ||
+ (Redecl->isCanonicalDecl() && !*Suggested))
+ *Suggested = Redecl;
+ }
+ return false;
+ }
+ D = ED->getDefinition();
+ }
+ assert(D && "missing definition for pattern of instantiated definition");
+
+ // FIXME: If we merged any other decl into D, and that declaration is visible,
+ // then we should consider a definition to be visible.
+ *Suggested = D;
+ return LookupResult::isVisible(*this, D);
+}
+
+/// Locks in the inheritance model for the given class and all of its bases.
+static void assignInheritanceModel(Sema &S, CXXRecordDecl *RD) {
+ RD = RD->getMostRecentDecl();
+ if (!RD->hasAttr<MSInheritanceAttr>()) {
+ MSInheritanceAttr::Spelling IM;
+
+ switch (S.MSPointerToMemberRepresentationMethod) {
+ case LangOptions::PPTMK_BestCase:
+ IM = RD->calculateInheritanceModel();
+ break;
+ case LangOptions::PPTMK_FullGeneralitySingleInheritance:
+ IM = MSInheritanceAttr::Keyword_single_inheritance;
+ break;
+ case LangOptions::PPTMK_FullGeneralityMultipleInheritance:
+ IM = MSInheritanceAttr::Keyword_multiple_inheritance;
+ break;
+ case LangOptions::PPTMK_FullGeneralityVirtualInheritance:
+ IM = MSInheritanceAttr::Keyword_unspecified_inheritance;
+ break;
+ }
+
+ RD->addAttr(MSInheritanceAttr::CreateImplicit(
+ S.getASTContext(), IM,
+ /*BestCase=*/S.MSPointerToMemberRepresentationMethod ==
+ LangOptions::PPTMK_BestCase,
+ S.ImplicitMSInheritanceAttrLoc.isValid()
+ ? S.ImplicitMSInheritanceAttrLoc
+ : RD->getSourceRange()));
+ }
+}
+
+/// \brief The implementation of RequireCompleteType
+bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
+ TypeDiagnoser &Diagnoser) {
+ // FIXME: Add this assertion to make sure we always get instantiation points.
+ // assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
+ // FIXME: Add this assertion to help us flush out problems with
+ // checking for dependent types and type-dependent expressions.
+ //
+ // assert(!T->isDependentType() &&
+ // "Can't ask whether a dependent type is complete");
+
+ // If we have a complete type, we're done.
+ NamedDecl *Def = nullptr;
+ if (!T->isIncompleteType(&Def)) {
+ // If we know about the definition but it is not visible, complain.
+ NamedDecl *SuggestedDef = nullptr;
+ if (!Diagnoser.Suppressed && Def &&
+ !hasVisibleDefinition(Def, &SuggestedDef)) {
+ // Suppress this error outside of a SFINAE context if we've already
+ // emitted the error once for this type. There's no usefulness in
+ // repeating the diagnostic.
+ // FIXME: Add a Fix-It that imports the corresponding module or includes
+ // the header.
+ Module *Owner = getOwningModule(SuggestedDef);
+ Diag(Loc, diag::err_module_private_definition)
+ << T << Owner->getFullModuleName();
+ Diag(SuggestedDef->getLocation(), diag::note_previous_definition);
+
+ // Try to recover by implicitly importing this module.
+ createImplicitModuleImportForErrorRecovery(Loc, Owner);
+ }
+
+ // We lock in the inheritance model once somebody has asked us to ensure
+ // that a pointer-to-member type is complete.
+ if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
+ if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) {
+ if (!MPTy->getClass()->isDependentType()) {
+ RequireCompleteType(Loc, QualType(MPTy->getClass(), 0), 0);
+ assignInheritanceModel(*this, MPTy->getMostRecentCXXRecordDecl());
+ }
+ }
+ }
+
+ return false;
+ }
+
+ const TagType *Tag = T->getAs<TagType>();
+ const ObjCInterfaceType *IFace = T->getAs<ObjCInterfaceType>();
+
+ // If there's an unimported definition of this type in a module (for
+ // instance, because we forward declared it, then imported the definition),
+ // import that definition now.
+ //
+ // FIXME: What about other cases where an import extends a redeclaration
+ // chain for a declaration that can be accessed through a mechanism other
+ // than name lookup (eg, referenced in a template, or a variable whose type
+ // could be completed by the module)?
+ if (Tag || IFace) {
+ NamedDecl *D =
+ Tag ? static_cast<NamedDecl *>(Tag->getDecl()) : IFace->getDecl();
+
+ // Avoid diagnosing invalid decls as incomplete.
+ if (D->isInvalidDecl())
+ return true;
+
+ // Give the external AST source a chance to complete the type.
+ if (auto *Source = Context.getExternalSource()) {
+ if (Tag)
+ Source->CompleteType(Tag->getDecl());
+ else
+ Source->CompleteType(IFace->getDecl());
+
+ // If the external source completed the type, go through the motions
+ // again to ensure we're allowed to use the completed type.
+ if (!T->isIncompleteType())
+ return RequireCompleteTypeImpl(Loc, T, Diagnoser);
+ }
+ }
+
+ // If we have a class template specialization or a class member of a
+ // class template specialization, or an array with known size of such,
+ // try to instantiate it.
+ QualType MaybeTemplate = T;
+ while (const ConstantArrayType *Array
+ = Context.getAsConstantArrayType(MaybeTemplate))
+ MaybeTemplate = Array->getElementType();
+ if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
+ if (ClassTemplateSpecializationDecl *ClassTemplateSpec
+ = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
+ if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
+ return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
+ TSK_ImplicitInstantiation,
+ /*Complain=*/!Diagnoser.Suppressed);
+ } else if (CXXRecordDecl *Rec
+ = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
+ CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass();
+ if (!Rec->isBeingDefined() && Pattern) {
+ MemberSpecializationInfo *MSI = Rec->getMemberSpecializationInfo();
+ assert(MSI && "Missing member specialization information?");
+ // This record was instantiated from a class within a template.
+ if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
+ return InstantiateClass(Loc, Rec, Pattern,
+ getTemplateInstantiationArgs(Rec),
+ TSK_ImplicitInstantiation,
+ /*Complain=*/!Diagnoser.Suppressed);
+ }
+ }
+ }
+
+ if (Diagnoser.Suppressed)
+ return true;
+
+ // We have an incomplete type. Produce a diagnostic.
+ if (Ident___float128 &&
+ T == Context.getTypeDeclType(Context.getFloat128StubType())) {
+ Diag(Loc, diag::err_typecheck_decl_incomplete_type___float128);
+ return true;
+ }
+
+ Diagnoser.diagnose(*this, Loc, T);
+
+ // If the type was a forward declaration of a class/struct/union
+ // type, produce a note.
+ if (Tag && !Tag->getDecl()->isInvalidDecl())
+ Diag(Tag->getDecl()->getLocation(),
+ Tag->isBeingDefined() ? diag::note_type_being_defined
+ : diag::note_forward_declaration)
+ << QualType(Tag, 0);
+
+ // If the Objective-C class was a forward declaration, produce a note.
+ if (IFace && !IFace->getDecl()->isInvalidDecl())
+ Diag(IFace->getDecl()->getLocation(), diag::note_forward_class);
+
+ // If we have external information that we can use to suggest a fix,
+ // produce a note.
+ if (ExternalSource)
+ ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T);
+
+ return true;
+}
+
+bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
+ unsigned DiagID) {
+ TypeDiagnoserDiag Diagnoser(DiagID);
+ return RequireCompleteType(Loc, T, Diagnoser);
+}
+
+/// \brief Get diagnostic %select index for tag kind for
+/// literal type diagnostic message.
+/// WARNING: Indexes apply to particular diagnostics only!
+///
+/// \returns diagnostic %select index.
+static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
+ switch (Tag) {
+ case TTK_Struct: return 0;
+ case TTK_Interface: return 1;
+ case TTK_Class: return 2;
+ default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
+ }
+}
+
+/// @brief Ensure that the type T is a literal type.
+///
+/// This routine checks whether the type @p T is a literal type. If @p T is an
+/// incomplete type, an attempt is made to complete it. If @p T is a literal
+/// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
+/// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
+/// it the type @p T), along with notes explaining why the type is not a
+/// literal type, and returns true.
+///
+/// @param Loc The location in the source that the non-literal type
+/// diagnostic should refer to.
+///
+/// @param T The type that this routine is examining for literalness.
+///
+/// @param Diagnoser Emits a diagnostic if T is not a literal type.
+///
+/// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
+/// @c false otherwise.
+bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
+ TypeDiagnoser &Diagnoser) {
+ assert(!T->isDependentType() && "type should not be dependent");
+
+ QualType ElemType = Context.getBaseElementType(T);
+ RequireCompleteType(Loc, ElemType, 0);
+
+ if (T->isLiteralType(Context))
+ return false;
+
+ if (Diagnoser.Suppressed)
+ return true;
+
+ Diagnoser.diagnose(*this, Loc, T);
+
+ if (T->isVariableArrayType())
+ return true;
+
+ const RecordType *RT = ElemType->getAs<RecordType>();
+ if (!RT)
+ return true;
+
+ const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
+
+ // A partially-defined class type can't be a literal type, because a literal
+ // class type must have a trivial destructor (which can't be checked until
+ // the class definition is complete).
+ if (!RD->isCompleteDefinition()) {
+ RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T);
+ return true;
+ }
+
+ // If the class has virtual base classes, then it's not an aggregate, and
+ // cannot have any constexpr constructors or a trivial default constructor,
+ // so is non-literal. This is better to diagnose than the resulting absence
+ // of constexpr constructors.
+ if (RD->getNumVBases()) {
+ Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
+ << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
+ for (const auto &I : RD->vbases())
+ Diag(I.getLocStart(), diag::note_constexpr_virtual_base_here)
+ << I.getSourceRange();
+ } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
+ !RD->hasTrivialDefaultConstructor()) {
+ Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
+ } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
+ for (const auto &I : RD->bases()) {
+ if (!I.getType()->isLiteralType(Context)) {
+ Diag(I.getLocStart(),
+ diag::note_non_literal_base_class)
+ << RD << I.getType() << I.getSourceRange();
+ return true;
+ }
+ }
+ for (const auto *I : RD->fields()) {
+ if (!I->getType()->isLiteralType(Context) ||
+ I->getType().isVolatileQualified()) {
+ Diag(I->getLocation(), diag::note_non_literal_field)
+ << RD << I << I->getType()
+ << I->getType().isVolatileQualified();
+ return true;
+ }
+ }
+ } else if (!RD->hasTrivialDestructor()) {
+ // All fields and bases are of literal types, so have trivial destructors.
+ // If this class's destructor is non-trivial it must be user-declared.
+ CXXDestructorDecl *Dtor = RD->getDestructor();
+ assert(Dtor && "class has literal fields and bases but no dtor?");
+ if (!Dtor)
+ return true;
+
+ Diag(Dtor->getLocation(), Dtor->isUserProvided() ?
+ diag::note_non_literal_user_provided_dtor :
+ diag::note_non_literal_nontrivial_dtor) << RD;
+ if (!Dtor->isUserProvided())
+ SpecialMemberIsTrivial(Dtor, CXXDestructor, /*Diagnose*/true);
+ }
+
+ return true;
+}
+
+bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
+ TypeDiagnoserDiag Diagnoser(DiagID);
+ return RequireLiteralType(Loc, T, Diagnoser);
+}
+
+/// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
+/// and qualified by the nested-name-specifier contained in SS.
+QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
+ const CXXScopeSpec &SS, QualType T) {
+ if (T.isNull())
+ return T;
+ NestedNameSpecifier *NNS;
+ if (SS.isValid())
+ NNS = SS.getScopeRep();
+ else {
+ if (Keyword == ETK_None)
+ return T;
+ NNS = nullptr;
+ }
+ return Context.getElaboratedType(Keyword, NNS, T);
+}
+
+QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
+ ExprResult ER = CheckPlaceholderExpr(E);
+ if (ER.isInvalid()) return QualType();
+ E = ER.get();
+
+ if (!E->isTypeDependent()) {
+ QualType T = E->getType();
+ if (const TagType *TT = T->getAs<TagType>())
+ DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
+ }
+ return Context.getTypeOfExprType(E);
+}
+
+/// getDecltypeForExpr - Given an expr, will return the decltype for
+/// that expression, according to the rules in C++11
+/// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
+static QualType getDecltypeForExpr(Sema &S, Expr *E) {
+ if (E->isTypeDependent())
+ return S.Context.DependentTy;
+
+ // C++11 [dcl.type.simple]p4:
+ // The type denoted by decltype(e) is defined as follows:
+ //
+ // - if e is an unparenthesized id-expression or an unparenthesized class
+ // member access (5.2.5), decltype(e) is the type of the entity named
+ // by e. If there is no such entity, or if e names a set of overloaded
+ // functions, the program is ill-formed;
+ //
+ // We apply the same rules for Objective-C ivar and property references.
+ if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
+ if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
+ return VD->getType();
+ } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
+ if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
+ return FD->getType();
+ } else if (const ObjCIvarRefExpr *IR = dyn_cast<ObjCIvarRefExpr>(E)) {
+ return IR->getDecl()->getType();
+ } else if (const ObjCPropertyRefExpr *PR = dyn_cast<ObjCPropertyRefExpr>(E)) {
+ if (PR->isExplicitProperty())
+ return PR->getExplicitProperty()->getType();
+ } else if (auto *PE = dyn_cast<PredefinedExpr>(E)) {
+ return PE->getType();
+ }
+
+ // C++11 [expr.lambda.prim]p18:
+ // Every occurrence of decltype((x)) where x is a possibly
+ // parenthesized id-expression that names an entity of automatic
+ // storage duration is treated as if x were transformed into an
+ // access to a corresponding data member of the closure type that
+ // would have been declared if x were an odr-use of the denoted
+ // entity.
+ using namespace sema;
+ if (S.getCurLambda()) {
+ if (isa<ParenExpr>(E)) {
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
+ if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
+ QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
+ if (!T.isNull())
+ return S.Context.getLValueReferenceType(T);
+ }
+ }
+ }
+ }
+
+
+ // C++11 [dcl.type.simple]p4:
+ // [...]
+ QualType T = E->getType();
+ switch (E->getValueKind()) {
+ // - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
+ // type of e;
+ case VK_XValue: T = S.Context.getRValueReferenceType(T); break;
+ // - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
+ // type of e;
+ case VK_LValue: T = S.Context.getLValueReferenceType(T); break;
+ // - otherwise, decltype(e) is the type of e.
+ case VK_RValue: break;
+ }
+
+ return T;
+}
+
+QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc,
+ bool AsUnevaluated) {
+ ExprResult ER = CheckPlaceholderExpr(E);
+ if (ER.isInvalid()) return QualType();
+ E = ER.get();
+
+ if (AsUnevaluated && ActiveTemplateInstantiations.empty() &&
+ E->HasSideEffects(Context, false)) {
+ // The expression operand for decltype is in an unevaluated expression
+ // context, so side effects could result in unintended consequences.
+ Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
+ }
+
+ return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
+}
+
+QualType Sema::BuildUnaryTransformType(QualType BaseType,
+ UnaryTransformType::UTTKind UKind,
+ SourceLocation Loc) {
+ switch (UKind) {
+ case UnaryTransformType::EnumUnderlyingType:
+ if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
+ Diag(Loc, diag::err_only_enums_have_underlying_types);
+ return QualType();
+ } else {
+ QualType Underlying = BaseType;
+ if (!BaseType->isDependentType()) {
+ // The enum could be incomplete if we're parsing its definition or
+ // recovering from an error.
+ NamedDecl *FwdDecl = nullptr;
+ if (BaseType->isIncompleteType(&FwdDecl)) {
+ Diag(Loc, diag::err_underlying_type_of_incomplete_enum) << BaseType;
+ Diag(FwdDecl->getLocation(), diag::note_forward_declaration) << FwdDecl;
+ return QualType();
+ }
+
+ EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
+ assert(ED && "EnumType has no EnumDecl");
+
+ DiagnoseUseOfDecl(ED, Loc);
+
+ Underlying = ED->getIntegerType();
+ assert(!Underlying.isNull());
+ }
+ return Context.getUnaryTransformType(BaseType, Underlying,
+ UnaryTransformType::EnumUnderlyingType);
+ }
+ }
+ llvm_unreachable("unknown unary transform type");
+}
+
+QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
+ if (!T->isDependentType()) {
+ // FIXME: It isn't entirely clear whether incomplete atomic types
+ // are allowed or not; for simplicity, ban them for the moment.
+ if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
+ return QualType();
+
+ int DisallowedKind = -1;
+ if (T->isArrayType())
+ DisallowedKind = 1;
+ else if (T->isFunctionType())
+ DisallowedKind = 2;
+ else if (T->isReferenceType())
+ DisallowedKind = 3;
+ else if (T->isAtomicType())
+ DisallowedKind = 4;
+ else if (T.hasQualifiers())
+ DisallowedKind = 5;
+ else if (!T.isTriviallyCopyableType(Context))
+ // Some other non-trivially-copyable type (probably a C++ class)
+ DisallowedKind = 6;
+
+ if (DisallowedKind != -1) {
+ Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
+ return QualType();
+ }
+
+ // FIXME: Do we need any handling for ARC here?
+ }
+
+ // Build the pointer type.
+ return Context.getAtomicType(T);
+}
diff --git a/contrib/llvm/tools/clang/lib/Sema/TreeTransform.h b/contrib/llvm/tools/clang/lib/Sema/TreeTransform.h
new file mode 100644
index 0000000..f5249fd
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/TreeTransform.h
@@ -0,0 +1,10834 @@
+//===------- TreeTransform.h - Semantic Tree Transformation -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//===----------------------------------------------------------------------===//
+//
+// This file implements a semantic tree transformation that takes a given
+// AST and rebuilds it, possibly transforming some nodes in the process.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_SEMA_TREETRANSFORM_H
+#define LLVM_CLANG_LIB_SEMA_TREETRANSFORM_H
+
+#include "TypeLocBuilder.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/AST/Stmt.h"
+#include "clang/AST/StmtCXX.h"
+#include "clang/AST/StmtObjC.h"
+#include "clang/AST/StmtOpenMP.h"
+#include "clang/Sema/Designator.h"
+#include "clang/Sema/Lookup.h"
+#include "clang/Sema/Ownership.h"
+#include "clang/Sema/ParsedTemplate.h"
+#include "clang/Sema/ScopeInfo.h"
+#include "clang/Sema/SemaDiagnostic.h"
+#include "clang/Sema/SemaInternal.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <algorithm>
+
+namespace clang {
+using namespace sema;
+
+/// \brief A semantic tree transformation that allows one to transform one
+/// abstract syntax tree into another.
+///
+/// A new tree transformation is defined by creating a new subclass \c X of
+/// \c TreeTransform<X> and then overriding certain operations to provide
+/// behavior specific to that transformation. For example, template
+/// instantiation is implemented as a tree transformation where the
+/// transformation of TemplateTypeParmType nodes involves substituting the
+/// template arguments for their corresponding template parameters; a similar
+/// transformation is performed for non-type template parameters and
+/// template template parameters.
+///
+/// This tree-transformation template uses static polymorphism to allow
+/// subclasses to customize any of its operations. Thus, a subclass can
+/// override any of the transformation or rebuild operators by providing an
+/// operation with the same signature as the default implementation. The
+/// overridding function should not be virtual.
+///
+/// Semantic tree transformations are split into two stages, either of which
+/// can be replaced by a subclass. The "transform" step transforms an AST node
+/// or the parts of an AST node using the various transformation functions,
+/// then passes the pieces on to the "rebuild" step, which constructs a new AST
+/// node of the appropriate kind from the pieces. The default transformation
+/// routines recursively transform the operands to composite AST nodes (e.g.,
+/// the pointee type of a PointerType node) and, if any of those operand nodes
+/// were changed by the transformation, invokes the rebuild operation to create
+/// a new AST node.
+///
+/// Subclasses can customize the transformation at various levels. The
+/// most coarse-grained transformations involve replacing TransformType(),
+/// TransformExpr(), TransformDecl(), TransformNestedNameSpecifierLoc(),
+/// TransformTemplateName(), or TransformTemplateArgument() with entirely
+/// new implementations.
+///
+/// For more fine-grained transformations, subclasses can replace any of the
+/// \c TransformXXX functions (where XXX is the name of an AST node, e.g.,
+/// PointerType, StmtExpr) to alter the transformation. As mentioned previously,
+/// replacing TransformTemplateTypeParmType() allows template instantiation
+/// to substitute template arguments for their corresponding template
+/// parameters. Additionally, subclasses can override the \c RebuildXXX
+/// functions to control how AST nodes are rebuilt when their operands change.
+/// By default, \c TreeTransform will invoke semantic analysis to rebuild
+/// AST nodes. However, certain other tree transformations (e.g, cloning) may
+/// be able to use more efficient rebuild steps.
+///
+/// There are a handful of other functions that can be overridden, allowing one
+/// to avoid traversing nodes that don't need any transformation
+/// (\c AlreadyTransformed()), force rebuilding AST nodes even when their
+/// operands have not changed (\c AlwaysRebuild()), and customize the
+/// default locations and entity names used for type-checking
+/// (\c getBaseLocation(), \c getBaseEntity()).
+template<typename Derived>
+class TreeTransform {
+ /// \brief Private RAII object that helps us forget and then re-remember
+ /// the template argument corresponding to a partially-substituted parameter
+ /// pack.
+ class ForgetPartiallySubstitutedPackRAII {
+ Derived &Self;
+ TemplateArgument Old;
+
+ public:
+ ForgetPartiallySubstitutedPackRAII(Derived &Self) : Self(Self) {
+ Old = Self.ForgetPartiallySubstitutedPack();
+ }
+
+ ~ForgetPartiallySubstitutedPackRAII() {
+ Self.RememberPartiallySubstitutedPack(Old);
+ }
+ };
+
+protected:
+ Sema &SemaRef;
+
+ /// \brief The set of local declarations that have been transformed, for
+ /// cases where we are forced to build new declarations within the transformer
+ /// rather than in the subclass (e.g., lambda closure types).
+ llvm::DenseMap<Decl *, Decl *> TransformedLocalDecls;
+
+public:
+ /// \brief Initializes a new tree transformer.
+ TreeTransform(Sema &SemaRef) : SemaRef(SemaRef) { }
+
+ /// \brief Retrieves a reference to the derived class.
+ Derived &getDerived() { return static_cast<Derived&>(*this); }
+
+ /// \brief Retrieves a reference to the derived class.
+ const Derived &getDerived() const {
+ return static_cast<const Derived&>(*this);
+ }
+
+ static inline ExprResult Owned(Expr *E) { return E; }
+ static inline StmtResult Owned(Stmt *S) { return S; }
+
+ /// \brief Retrieves a reference to the semantic analysis object used for
+ /// this tree transform.
+ Sema &getSema() const { return SemaRef; }
+
+ /// \brief Whether the transformation should always rebuild AST nodes, even
+ /// if none of the children have changed.
+ ///
+ /// Subclasses may override this function to specify when the transformation
+ /// should rebuild all AST nodes.
+ ///
+ /// We must always rebuild all AST nodes when performing variadic template
+ /// pack expansion, in order to avoid violating the AST invariant that each
+ /// statement node appears at most once in its containing declaration.
+ bool AlwaysRebuild() { return SemaRef.ArgumentPackSubstitutionIndex != -1; }
+
+ /// \brief Returns the location of the entity being transformed, if that
+ /// information was not available elsewhere in the AST.
+ ///
+ /// By default, returns no source-location information. Subclasses can
+ /// provide an alternative implementation that provides better location
+ /// information.
+ SourceLocation getBaseLocation() { return SourceLocation(); }
+
+ /// \brief Returns the name of the entity being transformed, if that
+ /// information was not available elsewhere in the AST.
+ ///
+ /// By default, returns an empty name. Subclasses can provide an alternative
+ /// implementation with a more precise name.
+ DeclarationName getBaseEntity() { return DeclarationName(); }
+
+ /// \brief Sets the "base" location and entity when that
+ /// information is known based on another transformation.
+ ///
+ /// By default, the source location and entity are ignored. Subclasses can
+ /// override this function to provide a customized implementation.
+ void setBase(SourceLocation Loc, DeclarationName Entity) { }
+
+ /// \brief RAII object that temporarily sets the base location and entity
+ /// used for reporting diagnostics in types.
+ class TemporaryBase {
+ TreeTransform &Self;
+ SourceLocation OldLocation;
+ DeclarationName OldEntity;
+
+ public:
+ TemporaryBase(TreeTransform &Self, SourceLocation Location,
+ DeclarationName Entity) : Self(Self) {
+ OldLocation = Self.getDerived().getBaseLocation();
+ OldEntity = Self.getDerived().getBaseEntity();
+
+ if (Location.isValid())
+ Self.getDerived().setBase(Location, Entity);
+ }
+
+ ~TemporaryBase() {
+ Self.getDerived().setBase(OldLocation, OldEntity);
+ }
+ };
+
+ /// \brief Determine whether the given type \p T has already been
+ /// transformed.
+ ///
+ /// Subclasses can provide an alternative implementation of this routine
+ /// to short-circuit evaluation when it is known that a given type will
+ /// not change. For example, template instantiation need not traverse
+ /// non-dependent types.
+ bool AlreadyTransformed(QualType T) {
+ return T.isNull();
+ }
+
+ /// \brief Determine whether the given call argument should be dropped, e.g.,
+ /// because it is a default argument.
+ ///
+ /// Subclasses can provide an alternative implementation of this routine to
+ /// determine which kinds of call arguments get dropped. By default,
+ /// CXXDefaultArgument nodes are dropped (prior to transformation).
+ bool DropCallArgument(Expr *E) {
+ return E->isDefaultArgument();
+ }
+
+ /// \brief Determine whether we should expand a pack expansion with the
+ /// given set of parameter packs into separate arguments by repeatedly
+ /// transforming the pattern.
+ ///
+ /// By default, the transformer never tries to expand pack expansions.
+ /// Subclasses can override this routine to provide different behavior.
+ ///
+ /// \param EllipsisLoc The location of the ellipsis that identifies the
+ /// pack expansion.
+ ///
+ /// \param PatternRange The source range that covers the entire pattern of
+ /// the pack expansion.
+ ///
+ /// \param Unexpanded The set of unexpanded parameter packs within the
+ /// pattern.
+ ///
+ /// \param ShouldExpand Will be set to \c true if the transformer should
+ /// expand the corresponding pack expansions into separate arguments. When
+ /// set, \c NumExpansions must also be set.
+ ///
+ /// \param RetainExpansion Whether the caller should add an unexpanded
+ /// pack expansion after all of the expanded arguments. This is used
+ /// when extending explicitly-specified template argument packs per
+ /// C++0x [temp.arg.explicit]p9.
+ ///
+ /// \param NumExpansions The number of separate arguments that will be in
+ /// the expanded form of the corresponding pack expansion. This is both an
+ /// input and an output parameter, which can be set by the caller if the
+ /// number of expansions is known a priori (e.g., due to a prior substitution)
+ /// and will be set by the callee when the number of expansions is known.
+ /// The callee must set this value when \c ShouldExpand is \c true; it may
+ /// set this value in other cases.
+ ///
+ /// \returns true if an error occurred (e.g., because the parameter packs
+ /// are to be instantiated with arguments of different lengths), false
+ /// otherwise. If false, \c ShouldExpand (and possibly \c NumExpansions)
+ /// must be set.
+ bool TryExpandParameterPacks(SourceLocation EllipsisLoc,
+ SourceRange PatternRange,
+ ArrayRef<UnexpandedParameterPack> Unexpanded,
+ bool &ShouldExpand,
+ bool &RetainExpansion,
+ Optional<unsigned> &NumExpansions) {
+ ShouldExpand = false;
+ return false;
+ }
+
+ /// \brief "Forget" about the partially-substituted pack template argument,
+ /// when performing an instantiation that must preserve the parameter pack
+ /// use.
+ ///
+ /// This routine is meant to be overridden by the template instantiator.
+ TemplateArgument ForgetPartiallySubstitutedPack() {
+ return TemplateArgument();
+ }
+
+ /// \brief "Remember" the partially-substituted pack template argument
+ /// after performing an instantiation that must preserve the parameter pack
+ /// use.
+ ///
+ /// This routine is meant to be overridden by the template instantiator.
+ void RememberPartiallySubstitutedPack(TemplateArgument Arg) { }
+
+ /// \brief Note to the derived class when a function parameter pack is
+ /// being expanded.
+ void ExpandingFunctionParameterPack(ParmVarDecl *Pack) { }
+
+ /// \brief Transforms the given type into another type.
+ ///
+ /// By default, this routine transforms a type by creating a
+ /// TypeSourceInfo for it and delegating to the appropriate
+ /// function. This is expensive, but we don't mind, because
+ /// this method is deprecated anyway; all users should be
+ /// switched to storing TypeSourceInfos.
+ ///
+ /// \returns the transformed type.
+ QualType TransformType(QualType T);
+
+ /// \brief Transforms the given type-with-location into a new
+ /// type-with-location.
+ ///
+ /// By default, this routine transforms a type by delegating to the
+ /// appropriate TransformXXXType to build a new type. Subclasses
+ /// may override this function (to take over all type
+ /// transformations) or some set of the TransformXXXType functions
+ /// to alter the transformation.
+ TypeSourceInfo *TransformType(TypeSourceInfo *DI);
+
+ /// \brief Transform the given type-with-location into a new
+ /// type, collecting location information in the given builder
+ /// as necessary.
+ ///
+ QualType TransformType(TypeLocBuilder &TLB, TypeLoc TL);
+
+ /// \brief Transform the given statement.
+ ///
+ /// By default, this routine transforms a statement by delegating to the
+ /// appropriate TransformXXXStmt function to transform a specific kind of
+ /// statement or the TransformExpr() function to transform an expression.
+ /// Subclasses may override this function to transform statements using some
+ /// other mechanism.
+ ///
+ /// \returns the transformed statement.
+ StmtResult TransformStmt(Stmt *S);
+
+ /// \brief Transform the given statement.
+ ///
+ /// By default, this routine transforms a statement by delegating to the
+ /// appropriate TransformOMPXXXClause function to transform a specific kind
+ /// of clause. Subclasses may override this function to transform statements
+ /// using some other mechanism.
+ ///
+ /// \returns the transformed OpenMP clause.
+ OMPClause *TransformOMPClause(OMPClause *S);
+
+ /// \brief Transform the given attribute.
+ ///
+ /// By default, this routine transforms a statement by delegating to the
+ /// appropriate TransformXXXAttr function to transform a specific kind
+ /// of attribute. Subclasses may override this function to transform
+ /// attributed statements using some other mechanism.
+ ///
+ /// \returns the transformed attribute
+ const Attr *TransformAttr(const Attr *S);
+
+/// \brief Transform the specified attribute.
+///
+/// Subclasses should override the transformation of attributes with a pragma
+/// spelling to transform expressions stored within the attribute.
+///
+/// \returns the transformed attribute.
+#define ATTR(X)
+#define PRAGMA_SPELLING_ATTR(X) \
+ const X##Attr *Transform##X##Attr(const X##Attr *R) { return R; }
+#include "clang/Basic/AttrList.inc"
+
+ /// \brief Transform the given expression.
+ ///
+ /// By default, this routine transforms an expression by delegating to the
+ /// appropriate TransformXXXExpr function to build a new expression.
+ /// Subclasses may override this function to transform expressions using some
+ /// other mechanism.
+ ///
+ /// \returns the transformed expression.
+ ExprResult TransformExpr(Expr *E);
+
+ /// \brief Transform the given initializer.
+ ///
+ /// By default, this routine transforms an initializer by stripping off the
+ /// semantic nodes added by initialization, then passing the result to
+ /// TransformExpr or TransformExprs.
+ ///
+ /// \returns the transformed initializer.
+ ExprResult TransformInitializer(Expr *Init, bool NotCopyInit);
+
+ /// \brief Transform the given list of expressions.
+ ///
+ /// This routine transforms a list of expressions by invoking
+ /// \c TransformExpr() for each subexpression. However, it also provides
+ /// support for variadic templates by expanding any pack expansions (if the
+ /// derived class permits such expansion) along the way. When pack expansions
+ /// are present, the number of outputs may not equal the number of inputs.
+ ///
+ /// \param Inputs The set of expressions to be transformed.
+ ///
+ /// \param NumInputs The number of expressions in \c Inputs.
+ ///
+ /// \param IsCall If \c true, then this transform is being performed on
+ /// function-call arguments, and any arguments that should be dropped, will
+ /// be.
+ ///
+ /// \param Outputs The transformed input expressions will be added to this
+ /// vector.
+ ///
+ /// \param ArgChanged If non-NULL, will be set \c true if any argument changed
+ /// due to transformation.
+ ///
+ /// \returns true if an error occurred, false otherwise.
+ bool TransformExprs(Expr **Inputs, unsigned NumInputs, bool IsCall,
+ SmallVectorImpl<Expr *> &Outputs,
+ bool *ArgChanged = nullptr);
+
+ /// \brief Transform the given declaration, which is referenced from a type
+ /// or expression.
+ ///
+ /// By default, acts as the identity function on declarations, unless the
+ /// transformer has had to transform the declaration itself. Subclasses
+ /// may override this function to provide alternate behavior.
+ Decl *TransformDecl(SourceLocation Loc, Decl *D) {
+ llvm::DenseMap<Decl *, Decl *>::iterator Known
+ = TransformedLocalDecls.find(D);
+ if (Known != TransformedLocalDecls.end())
+ return Known->second;
+
+ return D;
+ }
+
+ /// \brief Transform the attributes associated with the given declaration and
+ /// place them on the new declaration.
+ ///
+ /// By default, this operation does nothing. Subclasses may override this
+ /// behavior to transform attributes.
+ void transformAttrs(Decl *Old, Decl *New) { }
+
+ /// \brief Note that a local declaration has been transformed by this
+ /// transformer.
+ ///
+ /// Local declarations are typically transformed via a call to
+ /// TransformDefinition. However, in some cases (e.g., lambda expressions),
+ /// the transformer itself has to transform the declarations. This routine
+ /// can be overridden by a subclass that keeps track of such mappings.
+ void transformedLocalDecl(Decl *Old, Decl *New) {
+ TransformedLocalDecls[Old] = New;
+ }
+
+ /// \brief Transform the definition of the given declaration.
+ ///
+ /// By default, invokes TransformDecl() to transform the declaration.
+ /// Subclasses may override this function to provide alternate behavior.
+ Decl *TransformDefinition(SourceLocation Loc, Decl *D) {
+ return getDerived().TransformDecl(Loc, D);
+ }
+
+ /// \brief Transform the given declaration, which was the first part of a
+ /// nested-name-specifier in a member access expression.
+ ///
+ /// This specific declaration transformation only applies to the first
+ /// identifier in a nested-name-specifier of a member access expression, e.g.,
+ /// the \c T in \c x->T::member
+ ///
+ /// By default, invokes TransformDecl() to transform the declaration.
+ /// Subclasses may override this function to provide alternate behavior.
+ NamedDecl *TransformFirstQualifierInScope(NamedDecl *D, SourceLocation Loc) {
+ return cast_or_null<NamedDecl>(getDerived().TransformDecl(Loc, D));
+ }
+
+ /// \brief Transform the given nested-name-specifier with source-location
+ /// information.
+ ///
+ /// By default, transforms all of the types and declarations within the
+ /// nested-name-specifier. Subclasses may override this function to provide
+ /// alternate behavior.
+ NestedNameSpecifierLoc
+ TransformNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS,
+ QualType ObjectType = QualType(),
+ NamedDecl *FirstQualifierInScope = nullptr);
+
+ /// \brief Transform the given declaration name.
+ ///
+ /// By default, transforms the types of conversion function, constructor,
+ /// and destructor names and then (if needed) rebuilds the declaration name.
+ /// Identifiers and selectors are returned unmodified. Sublcasses may
+ /// override this function to provide alternate behavior.
+ DeclarationNameInfo
+ TransformDeclarationNameInfo(const DeclarationNameInfo &NameInfo);
+
+ /// \brief Transform the given template name.
+ ///
+ /// \param SS The nested-name-specifier that qualifies the template
+ /// name. This nested-name-specifier must already have been transformed.
+ ///
+ /// \param Name The template name to transform.
+ ///
+ /// \param NameLoc The source location of the template name.
+ ///
+ /// \param ObjectType If we're translating a template name within a member
+ /// access expression, this is the type of the object whose member template
+ /// is being referenced.
+ ///
+ /// \param FirstQualifierInScope If the first part of a nested-name-specifier
+ /// also refers to a name within the current (lexical) scope, this is the
+ /// declaration it refers to.
+ ///
+ /// By default, transforms the template name by transforming the declarations
+ /// and nested-name-specifiers that occur within the template name.
+ /// Subclasses may override this function to provide alternate behavior.
+ TemplateName
+ TransformTemplateName(CXXScopeSpec &SS, TemplateName Name,
+ SourceLocation NameLoc,
+ QualType ObjectType = QualType(),
+ NamedDecl *FirstQualifierInScope = nullptr);
+
+ /// \brief Transform the given template argument.
+ ///
+ /// By default, this operation transforms the type, expression, or
+ /// declaration stored within the template argument and constructs a
+ /// new template argument from the transformed result. Subclasses may
+ /// override this function to provide alternate behavior.
+ ///
+ /// Returns true if there was an error.
+ bool TransformTemplateArgument(const TemplateArgumentLoc &Input,
+ TemplateArgumentLoc &Output);
+
+ /// \brief Transform the given set of template arguments.
+ ///
+ /// By default, this operation transforms all of the template arguments
+ /// in the input set using \c TransformTemplateArgument(), and appends
+ /// the transformed arguments to the output list.
+ ///
+ /// Note that this overload of \c TransformTemplateArguments() is merely
+ /// a convenience function. Subclasses that wish to override this behavior
+ /// should override the iterator-based member template version.
+ ///
+ /// \param Inputs The set of template arguments to be transformed.
+ ///
+ /// \param NumInputs The number of template arguments in \p Inputs.
+ ///
+ /// \param Outputs The set of transformed template arguments output by this
+ /// routine.
+ ///
+ /// Returns true if an error occurred.
+ bool TransformTemplateArguments(const TemplateArgumentLoc *Inputs,
+ unsigned NumInputs,
+ TemplateArgumentListInfo &Outputs) {
+ return TransformTemplateArguments(Inputs, Inputs + NumInputs, Outputs);
+ }
+
+ /// \brief Transform the given set of template arguments.
+ ///
+ /// By default, this operation transforms all of the template arguments
+ /// in the input set using \c TransformTemplateArgument(), and appends
+ /// the transformed arguments to the output list.
+ ///
+ /// \param First An iterator to the first template argument.
+ ///
+ /// \param Last An iterator one step past the last template argument.
+ ///
+ /// \param Outputs The set of transformed template arguments output by this
+ /// routine.
+ ///
+ /// Returns true if an error occurred.
+ template<typename InputIterator>
+ bool TransformTemplateArguments(InputIterator First,
+ InputIterator Last,
+ TemplateArgumentListInfo &Outputs);
+
+ /// \brief Fakes up a TemplateArgumentLoc for a given TemplateArgument.
+ void InventTemplateArgumentLoc(const TemplateArgument &Arg,
+ TemplateArgumentLoc &ArgLoc);
+
+ /// \brief Fakes up a TypeSourceInfo for a type.
+ TypeSourceInfo *InventTypeSourceInfo(QualType T) {
+ return SemaRef.Context.getTrivialTypeSourceInfo(T,
+ getDerived().getBaseLocation());
+ }
+
+#define ABSTRACT_TYPELOC(CLASS, PARENT)
+#define TYPELOC(CLASS, PARENT) \
+ QualType Transform##CLASS##Type(TypeLocBuilder &TLB, CLASS##TypeLoc T);
+#include "clang/AST/TypeLocNodes.def"
+
+ template<typename Fn>
+ QualType TransformFunctionProtoType(TypeLocBuilder &TLB,
+ FunctionProtoTypeLoc TL,
+ CXXRecordDecl *ThisContext,
+ unsigned ThisTypeQuals,
+ Fn TransformExceptionSpec);
+
+ bool TransformExceptionSpec(SourceLocation Loc,
+ FunctionProtoType::ExceptionSpecInfo &ESI,
+ SmallVectorImpl<QualType> &Exceptions,
+ bool &Changed);
+
+ StmtResult TransformSEHHandler(Stmt *Handler);
+
+ QualType
+ TransformTemplateSpecializationType(TypeLocBuilder &TLB,
+ TemplateSpecializationTypeLoc TL,
+ TemplateName Template);
+
+ QualType
+ TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB,
+ DependentTemplateSpecializationTypeLoc TL,
+ TemplateName Template,
+ CXXScopeSpec &SS);
+
+ QualType TransformDependentTemplateSpecializationType(
+ TypeLocBuilder &TLB, DependentTemplateSpecializationTypeLoc TL,
+ NestedNameSpecifierLoc QualifierLoc);
+
+ /// \brief Transforms the parameters of a function type into the
+ /// given vectors.
+ ///
+ /// The result vectors should be kept in sync; null entries in the
+ /// variables vector are acceptable.
+ ///
+ /// Return true on error.
+ bool TransformFunctionTypeParams(SourceLocation Loc,
+ ParmVarDecl **Params, unsigned NumParams,
+ const QualType *ParamTypes,
+ SmallVectorImpl<QualType> &PTypes,
+ SmallVectorImpl<ParmVarDecl*> *PVars);
+
+ /// \brief Transforms a single function-type parameter. Return null
+ /// on error.
+ ///
+ /// \param indexAdjustment - A number to add to the parameter's
+ /// scope index; can be negative
+ ParmVarDecl *TransformFunctionTypeParam(ParmVarDecl *OldParm,
+ int indexAdjustment,
+ Optional<unsigned> NumExpansions,
+ bool ExpectParameterPack);
+
+ QualType TransformReferenceType(TypeLocBuilder &TLB, ReferenceTypeLoc TL);
+
+ StmtResult TransformCompoundStmt(CompoundStmt *S, bool IsStmtExpr);
+ ExprResult TransformCXXNamedCastExpr(CXXNamedCastExpr *E);
+
+ TemplateParameterList *TransformTemplateParameterList(
+ TemplateParameterList *TPL) {
+ return TPL;
+ }
+
+ ExprResult TransformAddressOfOperand(Expr *E);
+
+ ExprResult TransformDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *E,
+ bool IsAddressOfOperand,
+ TypeSourceInfo **RecoveryTSI);
+
+ ExprResult TransformParenDependentScopeDeclRefExpr(
+ ParenExpr *PE, DependentScopeDeclRefExpr *DRE, bool IsAddressOfOperand,
+ TypeSourceInfo **RecoveryTSI);
+
+ StmtResult TransformOMPExecutableDirective(OMPExecutableDirective *S);
+
+// FIXME: We use LLVM_ATTRIBUTE_NOINLINE because inlining causes a ridiculous
+// amount of stack usage with clang.
+#define STMT(Node, Parent) \
+ LLVM_ATTRIBUTE_NOINLINE \
+ StmtResult Transform##Node(Node *S);
+#define EXPR(Node, Parent) \
+ LLVM_ATTRIBUTE_NOINLINE \
+ ExprResult Transform##Node(Node *E);
+#define ABSTRACT_STMT(Stmt)
+#include "clang/AST/StmtNodes.inc"
+
+#define OPENMP_CLAUSE(Name, Class) \
+ LLVM_ATTRIBUTE_NOINLINE \
+ OMPClause *Transform ## Class(Class *S);
+#include "clang/Basic/OpenMPKinds.def"
+
+ /// \brief Build a new pointer type given its pointee type.
+ ///
+ /// By default, performs semantic analysis when building the pointer type.
+ /// Subclasses may override this routine to provide different behavior.
+ QualType RebuildPointerType(QualType PointeeType, SourceLocation Sigil);
+
+ /// \brief Build a new block pointer type given its pointee type.
+ ///
+ /// By default, performs semantic analysis when building the block pointer
+ /// type. Subclasses may override this routine to provide different behavior.
+ QualType RebuildBlockPointerType(QualType PointeeType, SourceLocation Sigil);
+
+ /// \brief Build a new reference type given the type it references.
+ ///
+ /// By default, performs semantic analysis when building the
+ /// reference type. Subclasses may override this routine to provide
+ /// different behavior.
+ ///
+ /// \param LValue whether the type was written with an lvalue sigil
+ /// or an rvalue sigil.
+ QualType RebuildReferenceType(QualType ReferentType,
+ bool LValue,
+ SourceLocation Sigil);
+
+ /// \brief Build a new member pointer type given the pointee type and the
+ /// class type it refers into.
+ ///
+ /// By default, performs semantic analysis when building the member pointer
+ /// type. Subclasses may override this routine to provide different behavior.
+ QualType RebuildMemberPointerType(QualType PointeeType, QualType ClassType,
+ SourceLocation Sigil);
+
+ /// \brief Build a new array type given the element type, size
+ /// modifier, size of the array (if known), size expression, and index type
+ /// qualifiers.
+ ///
+ /// By default, performs semantic analysis when building the array type.
+ /// Subclasses may override this routine to provide different behavior.
+ /// Also by default, all of the other Rebuild*Array
+ QualType RebuildArrayType(QualType ElementType,
+ ArrayType::ArraySizeModifier SizeMod,
+ const llvm::APInt *Size,
+ Expr *SizeExpr,
+ unsigned IndexTypeQuals,
+ SourceRange BracketsRange);
+
+ /// \brief Build a new constant array type given the element type, size
+ /// modifier, (known) size of the array, and index type qualifiers.
+ ///
+ /// By default, performs semantic analysis when building the array type.
+ /// Subclasses may override this routine to provide different behavior.
+ QualType RebuildConstantArrayType(QualType ElementType,
+ ArrayType::ArraySizeModifier SizeMod,
+ const llvm::APInt &Size,
+ unsigned IndexTypeQuals,
+ SourceRange BracketsRange);
+
+ /// \brief Build a new incomplete array type given the element type, size
+ /// modifier, and index type qualifiers.
+ ///
+ /// By default, performs semantic analysis when building the array type.
+ /// Subclasses may override this routine to provide different behavior.
+ QualType RebuildIncompleteArrayType(QualType ElementType,
+ ArrayType::ArraySizeModifier SizeMod,
+ unsigned IndexTypeQuals,
+ SourceRange BracketsRange);
+
+ /// \brief Build a new variable-length array type given the element type,
+ /// size modifier, size expression, and index type qualifiers.
+ ///
+ /// By default, performs semantic analysis when building the array type.
+ /// Subclasses may override this routine to provide different behavior.
+ QualType RebuildVariableArrayType(QualType ElementType,
+ ArrayType::ArraySizeModifier SizeMod,
+ Expr *SizeExpr,
+ unsigned IndexTypeQuals,
+ SourceRange BracketsRange);
+
+ /// \brief Build a new dependent-sized array type given the element type,
+ /// size modifier, size expression, and index type qualifiers.
+ ///
+ /// By default, performs semantic analysis when building the array type.
+ /// Subclasses may override this routine to provide different behavior.
+ QualType RebuildDependentSizedArrayType(QualType ElementType,
+ ArrayType::ArraySizeModifier SizeMod,
+ Expr *SizeExpr,
+ unsigned IndexTypeQuals,
+ SourceRange BracketsRange);
+
+ /// \brief Build a new vector type given the element type and
+ /// number of elements.
+ ///
+ /// By default, performs semantic analysis when building the vector type.
+ /// Subclasses may override this routine to provide different behavior.
+ QualType RebuildVectorType(QualType ElementType, unsigned NumElements,
+ VectorType::VectorKind VecKind);
+
+ /// \brief Build a new extended vector type given the element type and
+ /// number of elements.
+ ///
+ /// By default, performs semantic analysis when building the vector type.
+ /// Subclasses may override this routine to provide different behavior.
+ QualType RebuildExtVectorType(QualType ElementType, unsigned NumElements,
+ SourceLocation AttributeLoc);
+
+ /// \brief Build a new potentially dependently-sized extended vector type
+ /// given the element type and number of elements.
+ ///
+ /// By default, performs semantic analysis when building the vector type.
+ /// Subclasses may override this routine to provide different behavior.
+ QualType RebuildDependentSizedExtVectorType(QualType ElementType,
+ Expr *SizeExpr,
+ SourceLocation AttributeLoc);
+
+ /// \brief Build a new function type.
+ ///
+ /// By default, performs semantic analysis when building the function type.
+ /// Subclasses may override this routine to provide different behavior.
+ QualType RebuildFunctionProtoType(QualType T,
+ MutableArrayRef<QualType> ParamTypes,
+ const FunctionProtoType::ExtProtoInfo &EPI);
+
+ /// \brief Build a new unprototyped function type.
+ QualType RebuildFunctionNoProtoType(QualType ResultType);
+
+ /// \brief Rebuild an unresolved typename type, given the decl that
+ /// the UnresolvedUsingTypenameDecl was transformed to.
+ QualType RebuildUnresolvedUsingType(Decl *D);
+
+ /// \brief Build a new typedef type.
+ QualType RebuildTypedefType(TypedefNameDecl *Typedef) {
+ return SemaRef.Context.getTypeDeclType(Typedef);
+ }
+
+ /// \brief Build a new class/struct/union type.
+ QualType RebuildRecordType(RecordDecl *Record) {
+ return SemaRef.Context.getTypeDeclType(Record);
+ }
+
+ /// \brief Build a new Enum type.
+ QualType RebuildEnumType(EnumDecl *Enum) {
+ return SemaRef.Context.getTypeDeclType(Enum);
+ }
+
+ /// \brief Build a new typeof(expr) type.
+ ///
+ /// By default, performs semantic analysis when building the typeof type.
+ /// Subclasses may override this routine to provide different behavior.
+ QualType RebuildTypeOfExprType(Expr *Underlying, SourceLocation Loc);
+
+ /// \brief Build a new typeof(type) type.
+ ///
+ /// By default, builds a new TypeOfType with the given underlying type.
+ QualType RebuildTypeOfType(QualType Underlying);
+
+ /// \brief Build a new unary transform type.
+ QualType RebuildUnaryTransformType(QualType BaseType,
+ UnaryTransformType::UTTKind UKind,
+ SourceLocation Loc);
+
+ /// \brief Build a new C++11 decltype type.
+ ///
+ /// By default, performs semantic analysis when building the decltype type.
+ /// Subclasses may override this routine to provide different behavior.
+ QualType RebuildDecltypeType(Expr *Underlying, SourceLocation Loc);
+
+ /// \brief Build a new C++11 auto type.
+ ///
+ /// By default, builds a new AutoType with the given deduced type.
+ QualType RebuildAutoType(QualType Deduced, bool IsDecltypeAuto) {
+ // Note, IsDependent is always false here: we implicitly convert an 'auto'
+ // which has been deduced to a dependent type into an undeduced 'auto', so
+ // that we'll retry deduction after the transformation.
+ return SemaRef.Context.getAutoType(Deduced, IsDecltypeAuto,
+ /*IsDependent*/ false);
+ }
+
+ /// \brief Build a new template specialization type.
+ ///
+ /// By default, performs semantic analysis when building the template
+ /// specialization type. Subclasses may override this routine to provide
+ /// different behavior.
+ QualType RebuildTemplateSpecializationType(TemplateName Template,
+ SourceLocation TemplateLoc,
+ TemplateArgumentListInfo &Args);
+
+ /// \brief Build a new parenthesized type.
+ ///
+ /// By default, builds a new ParenType type from the inner type.
+ /// Subclasses may override this routine to provide different behavior.
+ QualType RebuildParenType(QualType InnerType) {
+ return SemaRef.Context.getParenType(InnerType);
+ }
+
+ /// \brief Build a new qualified name type.
+ ///
+ /// By default, builds a new ElaboratedType type from the keyword,
+ /// the nested-name-specifier and the named type.
+ /// Subclasses may override this routine to provide different behavior.
+ QualType RebuildElaboratedType(SourceLocation KeywordLoc,
+ ElaboratedTypeKeyword Keyword,
+ NestedNameSpecifierLoc QualifierLoc,
+ QualType Named) {
+ return SemaRef.Context.getElaboratedType(Keyword,
+ QualifierLoc.getNestedNameSpecifier(),
+ Named);
+ }
+
+ /// \brief Build a new typename type that refers to a template-id.
+ ///
+ /// By default, builds a new DependentNameType type from the
+ /// nested-name-specifier and the given type. Subclasses may override
+ /// this routine to provide different behavior.
+ QualType RebuildDependentTemplateSpecializationType(
+ ElaboratedTypeKeyword Keyword,
+ NestedNameSpecifierLoc QualifierLoc,
+ const IdentifierInfo *Name,
+ SourceLocation NameLoc,
+ TemplateArgumentListInfo &Args) {
+ // Rebuild the template name.
+ // TODO: avoid TemplateName abstraction
+ CXXScopeSpec SS;
+ SS.Adopt(QualifierLoc);
+ TemplateName InstName
+ = getDerived().RebuildTemplateName(SS, *Name, NameLoc, QualType(),
+ nullptr);
+
+ if (InstName.isNull())
+ return QualType();
+
+ // If it's still dependent, make a dependent specialization.
+ if (InstName.getAsDependentTemplateName())
+ return SemaRef.Context.getDependentTemplateSpecializationType(Keyword,
+ QualifierLoc.getNestedNameSpecifier(),
+ Name,
+ Args);
+
+ // Otherwise, make an elaborated type wrapping a non-dependent
+ // specialization.
+ QualType T =
+ getDerived().RebuildTemplateSpecializationType(InstName, NameLoc, Args);
+ if (T.isNull()) return QualType();
+
+ if (Keyword == ETK_None && QualifierLoc.getNestedNameSpecifier() == nullptr)
+ return T;
+
+ return SemaRef.Context.getElaboratedType(Keyword,
+ QualifierLoc.getNestedNameSpecifier(),
+ T);
+ }
+
+ /// \brief Build a new typename type that refers to an identifier.
+ ///
+ /// By default, performs semantic analysis when building the typename type
+ /// (or elaborated type). Subclasses may override this routine to provide
+ /// different behavior.
+ QualType RebuildDependentNameType(ElaboratedTypeKeyword Keyword,
+ SourceLocation KeywordLoc,
+ NestedNameSpecifierLoc QualifierLoc,
+ const IdentifierInfo *Id,
+ SourceLocation IdLoc) {
+ CXXScopeSpec SS;
+ SS.Adopt(QualifierLoc);
+
+ if (QualifierLoc.getNestedNameSpecifier()->isDependent()) {
+ // If the name is still dependent, just build a new dependent name type.
+ if (!SemaRef.computeDeclContext(SS))
+ return SemaRef.Context.getDependentNameType(Keyword,
+ QualifierLoc.getNestedNameSpecifier(),
+ Id);
+ }
+
+ if (Keyword == ETK_None || Keyword == ETK_Typename)
+ return SemaRef.CheckTypenameType(Keyword, KeywordLoc, QualifierLoc,
+ *Id, IdLoc);
+
+ TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForKeyword(Keyword);
+
+ // We had a dependent elaborated-type-specifier that has been transformed
+ // into a non-dependent elaborated-type-specifier. Find the tag we're
+ // referring to.
+ LookupResult Result(SemaRef, Id, IdLoc, Sema::LookupTagName);
+ DeclContext *DC = SemaRef.computeDeclContext(SS, false);
+ if (!DC)
+ return QualType();
+
+ if (SemaRef.RequireCompleteDeclContext(SS, DC))
+ return QualType();
+
+ TagDecl *Tag = nullptr;
+ SemaRef.LookupQualifiedName(Result, DC);
+ switch (Result.getResultKind()) {
+ case LookupResult::NotFound:
+ case LookupResult::NotFoundInCurrentInstantiation:
+ break;
+
+ case LookupResult::Found:
+ Tag = Result.getAsSingle<TagDecl>();
+ break;
+
+ case LookupResult::FoundOverloaded:
+ case LookupResult::FoundUnresolvedValue:
+ llvm_unreachable("Tag lookup cannot find non-tags");
+
+ case LookupResult::Ambiguous:
+ // Let the LookupResult structure handle ambiguities.
+ return QualType();
+ }
+
+ if (!Tag) {
+ // Check where the name exists but isn't a tag type and use that to emit
+ // better diagnostics.
+ LookupResult Result(SemaRef, Id, IdLoc, Sema::LookupTagName);
+ SemaRef.LookupQualifiedName(Result, DC);
+ switch (Result.getResultKind()) {
+ case LookupResult::Found:
+ case LookupResult::FoundOverloaded:
+ case LookupResult::FoundUnresolvedValue: {
+ NamedDecl *SomeDecl = Result.getRepresentativeDecl();
+ unsigned Kind = 0;
+ if (isa<TypedefDecl>(SomeDecl)) Kind = 1;
+ else if (isa<TypeAliasDecl>(SomeDecl)) Kind = 2;
+ else if (isa<ClassTemplateDecl>(SomeDecl)) Kind = 3;
+ SemaRef.Diag(IdLoc, diag::err_tag_reference_non_tag) << Kind;
+ SemaRef.Diag(SomeDecl->getLocation(), diag::note_declared_at);
+ break;
+ }
+ default:
+ SemaRef.Diag(IdLoc, diag::err_not_tag_in_scope)
+ << Kind << Id << DC << QualifierLoc.getSourceRange();
+ break;
+ }
+ return QualType();
+ }
+
+ if (!SemaRef.isAcceptableTagRedeclaration(Tag, Kind, /*isDefinition*/false,
+ IdLoc, *Id)) {
+ SemaRef.Diag(KeywordLoc, diag::err_use_with_wrong_tag) << Id;
+ SemaRef.Diag(Tag->getLocation(), diag::note_previous_use);
+ return QualType();
+ }
+
+ // Build the elaborated-type-specifier type.
+ QualType T = SemaRef.Context.getTypeDeclType(Tag);
+ return SemaRef.Context.getElaboratedType(Keyword,
+ QualifierLoc.getNestedNameSpecifier(),
+ T);
+ }
+
+ /// \brief Build a new pack expansion type.
+ ///
+ /// By default, builds a new PackExpansionType type from the given pattern.
+ /// Subclasses may override this routine to provide different behavior.
+ QualType RebuildPackExpansionType(QualType Pattern,
+ SourceRange PatternRange,
+ SourceLocation EllipsisLoc,
+ Optional<unsigned> NumExpansions) {
+ return getSema().CheckPackExpansion(Pattern, PatternRange, EllipsisLoc,
+ NumExpansions);
+ }
+
+ /// \brief Build a new atomic type given its value type.
+ ///
+ /// By default, performs semantic analysis when building the atomic type.
+ /// Subclasses may override this routine to provide different behavior.
+ QualType RebuildAtomicType(QualType ValueType, SourceLocation KWLoc);
+
+ /// \brief Build a new template name given a nested name specifier, a flag
+ /// indicating whether the "template" keyword was provided, and the template
+ /// that the template name refers to.
+ ///
+ /// By default, builds the new template name directly. Subclasses may override
+ /// this routine to provide different behavior.
+ TemplateName RebuildTemplateName(CXXScopeSpec &SS,
+ bool TemplateKW,
+ TemplateDecl *Template);
+
+ /// \brief Build a new template name given a nested name specifier and the
+ /// name that is referred to as a template.
+ ///
+ /// By default, performs semantic analysis to determine whether the name can
+ /// be resolved to a specific template, then builds the appropriate kind of
+ /// template name. Subclasses may override this routine to provide different
+ /// behavior.
+ TemplateName RebuildTemplateName(CXXScopeSpec &SS,
+ const IdentifierInfo &Name,
+ SourceLocation NameLoc,
+ QualType ObjectType,
+ NamedDecl *FirstQualifierInScope);
+
+ /// \brief Build a new template name given a nested name specifier and the
+ /// overloaded operator name that is referred to as a template.
+ ///
+ /// By default, performs semantic analysis to determine whether the name can
+ /// be resolved to a specific template, then builds the appropriate kind of
+ /// template name. Subclasses may override this routine to provide different
+ /// behavior.
+ TemplateName RebuildTemplateName(CXXScopeSpec &SS,
+ OverloadedOperatorKind Operator,
+ SourceLocation NameLoc,
+ QualType ObjectType);
+
+ /// \brief Build a new template name given a template template parameter pack
+ /// and the
+ ///
+ /// By default, performs semantic analysis to determine whether the name can
+ /// be resolved to a specific template, then builds the appropriate kind of
+ /// template name. Subclasses may override this routine to provide different
+ /// behavior.
+ TemplateName RebuildTemplateName(TemplateTemplateParmDecl *Param,
+ const TemplateArgument &ArgPack) {
+ return getSema().Context.getSubstTemplateTemplateParmPack(Param, ArgPack);
+ }
+
+ /// \brief Build a new compound statement.
+ ///
+ /// By default, performs semantic analysis to build the new statement.
+ /// Subclasses may override this routine to provide different behavior.
+ StmtResult RebuildCompoundStmt(SourceLocation LBraceLoc,
+ MultiStmtArg Statements,
+ SourceLocation RBraceLoc,
+ bool IsStmtExpr) {
+ return getSema().ActOnCompoundStmt(LBraceLoc, RBraceLoc, Statements,
+ IsStmtExpr);
+ }
+
+ /// \brief Build a new case statement.
+ ///
+ /// By default, performs semantic analysis to build the new statement.
+ /// Subclasses may override this routine to provide different behavior.
+ StmtResult RebuildCaseStmt(SourceLocation CaseLoc,
+ Expr *LHS,
+ SourceLocation EllipsisLoc,
+ Expr *RHS,
+ SourceLocation ColonLoc) {
+ return getSema().ActOnCaseStmt(CaseLoc, LHS, EllipsisLoc, RHS,
+ ColonLoc);
+ }
+
+ /// \brief Attach the body to a new case statement.
+ ///
+ /// By default, performs semantic analysis to build the new statement.
+ /// Subclasses may override this routine to provide different behavior.
+ StmtResult RebuildCaseStmtBody(Stmt *S, Stmt *Body) {
+ getSema().ActOnCaseStmtBody(S, Body);
+ return S;
+ }
+
+ /// \brief Build a new default statement.
+ ///
+ /// By default, performs semantic analysis to build the new statement.
+ /// Subclasses may override this routine to provide different behavior.
+ StmtResult RebuildDefaultStmt(SourceLocation DefaultLoc,
+ SourceLocation ColonLoc,
+ Stmt *SubStmt) {
+ return getSema().ActOnDefaultStmt(DefaultLoc, ColonLoc, SubStmt,
+ /*CurScope=*/nullptr);
+ }
+
+ /// \brief Build a new label statement.
+ ///
+ /// By default, performs semantic analysis to build the new statement.
+ /// Subclasses may override this routine to provide different behavior.
+ StmtResult RebuildLabelStmt(SourceLocation IdentLoc, LabelDecl *L,
+ SourceLocation ColonLoc, Stmt *SubStmt) {
+ return SemaRef.ActOnLabelStmt(IdentLoc, L, ColonLoc, SubStmt);
+ }
+
+ /// \brief Build a new label statement.
+ ///
+ /// By default, performs semantic analysis to build the new statement.
+ /// Subclasses may override this routine to provide different behavior.
+ StmtResult RebuildAttributedStmt(SourceLocation AttrLoc,
+ ArrayRef<const Attr*> Attrs,
+ Stmt *SubStmt) {
+ return SemaRef.ActOnAttributedStmt(AttrLoc, Attrs, SubStmt);
+ }
+
+ /// \brief Build a new "if" statement.
+ ///
+ /// By default, performs semantic analysis to build the new statement.
+ /// Subclasses may override this routine to provide different behavior.
+ StmtResult RebuildIfStmt(SourceLocation IfLoc, Sema::FullExprArg Cond,
+ VarDecl *CondVar, Stmt *Then,
+ SourceLocation ElseLoc, Stmt *Else) {
+ return getSema().ActOnIfStmt(IfLoc, Cond, CondVar, Then, ElseLoc, Else);
+ }
+
+ /// \brief Start building a new switch statement.
+ ///
+ /// By default, performs semantic analysis to build the new statement.
+ /// Subclasses may override this routine to provide different behavior.
+ StmtResult RebuildSwitchStmtStart(SourceLocation SwitchLoc,
+ Expr *Cond, VarDecl *CondVar) {
+ return getSema().ActOnStartOfSwitchStmt(SwitchLoc, Cond,
+ CondVar);
+ }
+
+ /// \brief Attach the body to the switch statement.
+ ///
+ /// By default, performs semantic analysis to build the new statement.
+ /// Subclasses may override this routine to provide different behavior.
+ StmtResult RebuildSwitchStmtBody(SourceLocation SwitchLoc,
+ Stmt *Switch, Stmt *Body) {
+ return getSema().ActOnFinishSwitchStmt(SwitchLoc, Switch, Body);
+ }
+
+ /// \brief Build a new while statement.
+ ///
+ /// By default, performs semantic analysis to build the new statement.
+ /// Subclasses may override this routine to provide different behavior.
+ StmtResult RebuildWhileStmt(SourceLocation WhileLoc, Sema::FullExprArg Cond,
+ VarDecl *CondVar, Stmt *Body) {
+ return getSema().ActOnWhileStmt(WhileLoc, Cond, CondVar, Body);
+ }
+
+ /// \brief Build a new do-while statement.
+ ///
+ /// By default, performs semantic analysis to build the new statement.
+ /// Subclasses may override this routine to provide different behavior.
+ StmtResult RebuildDoStmt(SourceLocation DoLoc, Stmt *Body,
+ SourceLocation WhileLoc, SourceLocation LParenLoc,
+ Expr *Cond, SourceLocation RParenLoc) {
+ return getSema().ActOnDoStmt(DoLoc, Body, WhileLoc, LParenLoc,
+ Cond, RParenLoc);
+ }
+
+ /// \brief Build a new for statement.
+ ///
+ /// By default, performs semantic analysis to build the new statement.
+ /// Subclasses may override this routine to provide different behavior.
+ StmtResult RebuildForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
+ Stmt *Init, Sema::FullExprArg Cond,
+ VarDecl *CondVar, Sema::FullExprArg Inc,
+ SourceLocation RParenLoc, Stmt *Body) {
+ return getSema().ActOnForStmt(ForLoc, LParenLoc, Init, Cond,
+ CondVar, Inc, RParenLoc, Body);
+ }
+
+ /// \brief Build a new goto statement.
+ ///
+ /// By default, performs semantic analysis to build the new statement.
+ /// Subclasses may override this routine to provide different behavior.
+ StmtResult RebuildGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc,
+ LabelDecl *Label) {
+ return getSema().ActOnGotoStmt(GotoLoc, LabelLoc, Label);
+ }
+
+ /// \brief Build a new indirect goto statement.
+ ///
+ /// By default, performs semantic analysis to build the new statement.
+ /// Subclasses may override this routine to provide different behavior.
+ StmtResult RebuildIndirectGotoStmt(SourceLocation GotoLoc,
+ SourceLocation StarLoc,
+ Expr *Target) {
+ return getSema().ActOnIndirectGotoStmt(GotoLoc, StarLoc, Target);
+ }
+
+ /// \brief Build a new return statement.
+ ///
+ /// By default, performs semantic analysis to build the new statement.
+ /// Subclasses may override this routine to provide different behavior.
+ StmtResult RebuildReturnStmt(SourceLocation ReturnLoc, Expr *Result) {
+ return getSema().BuildReturnStmt(ReturnLoc, Result);
+ }
+
+ /// \brief Build a new declaration statement.
+ ///
+ /// By default, performs semantic analysis to build the new statement.
+ /// Subclasses may override this routine to provide different behavior.
+ StmtResult RebuildDeclStmt(MutableArrayRef<Decl *> Decls,
+ SourceLocation StartLoc, SourceLocation EndLoc) {
+ Sema::DeclGroupPtrTy DG = getSema().BuildDeclaratorGroup(Decls);
+ return getSema().ActOnDeclStmt(DG, StartLoc, EndLoc);
+ }
+
+ /// \brief Build a new inline asm statement.
+ ///
+ /// By default, performs semantic analysis to build the new statement.
+ /// Subclasses may override this routine to provide different behavior.
+ StmtResult RebuildGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
+ bool IsVolatile, unsigned NumOutputs,
+ unsigned NumInputs, IdentifierInfo **Names,
+ MultiExprArg Constraints, MultiExprArg Exprs,
+ Expr *AsmString, MultiExprArg Clobbers,
+ SourceLocation RParenLoc) {
+ return getSema().ActOnGCCAsmStmt(AsmLoc, IsSimple, IsVolatile, NumOutputs,
+ NumInputs, Names, Constraints, Exprs,
+ AsmString, Clobbers, RParenLoc);
+ }
+
+ /// \brief Build a new MS style inline asm statement.
+ ///
+ /// By default, performs semantic analysis to build the new statement.
+ /// Subclasses may override this routine to provide different behavior.
+ StmtResult RebuildMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc,
+ ArrayRef<Token> AsmToks,
+ StringRef AsmString,
+ unsigned NumOutputs, unsigned NumInputs,
+ ArrayRef<StringRef> Constraints,
+ ArrayRef<StringRef> Clobbers,
+ ArrayRef<Expr*> Exprs,
+ SourceLocation EndLoc) {
+ return getSema().ActOnMSAsmStmt(AsmLoc, LBraceLoc, AsmToks, AsmString,
+ NumOutputs, NumInputs,
+ Constraints, Clobbers, Exprs, EndLoc);
+ }
+
+ /// \brief Build a new Objective-C \@try statement.
+ ///
+ /// By default, performs semantic analysis to build the new statement.
+ /// Subclasses may override this routine to provide different behavior.
+ StmtResult RebuildObjCAtTryStmt(SourceLocation AtLoc,
+ Stmt *TryBody,
+ MultiStmtArg CatchStmts,
+ Stmt *Finally) {
+ return getSema().ActOnObjCAtTryStmt(AtLoc, TryBody, CatchStmts,
+ Finally);
+ }
+
+ /// \brief Rebuild an Objective-C exception declaration.
+ ///
+ /// By default, performs semantic analysis to build the new declaration.
+ /// Subclasses may override this routine to provide different behavior.
+ VarDecl *RebuildObjCExceptionDecl(VarDecl *ExceptionDecl,
+ TypeSourceInfo *TInfo, QualType T) {
+ return getSema().BuildObjCExceptionDecl(TInfo, T,
+ ExceptionDecl->getInnerLocStart(),
+ ExceptionDecl->getLocation(),
+ ExceptionDecl->getIdentifier());
+ }
+
+ /// \brief Build a new Objective-C \@catch statement.
+ ///
+ /// By default, performs semantic analysis to build the new statement.
+ /// Subclasses may override this routine to provide different behavior.
+ StmtResult RebuildObjCAtCatchStmt(SourceLocation AtLoc,
+ SourceLocation RParenLoc,
+ VarDecl *Var,
+ Stmt *Body) {
+ return getSema().ActOnObjCAtCatchStmt(AtLoc, RParenLoc,
+ Var, Body);
+ }
+
+ /// \brief Build a new Objective-C \@finally statement.
+ ///
+ /// By default, performs semantic analysis to build the new statement.
+ /// Subclasses may override this routine to provide different behavior.
+ StmtResult RebuildObjCAtFinallyStmt(SourceLocation AtLoc,
+ Stmt *Body) {
+ return getSema().ActOnObjCAtFinallyStmt(AtLoc, Body);
+ }
+
+ /// \brief Build a new Objective-C \@throw statement.
+ ///
+ /// By default, performs semantic analysis to build the new statement.
+ /// Subclasses may override this routine to provide different behavior.
+ StmtResult RebuildObjCAtThrowStmt(SourceLocation AtLoc,
+ Expr *Operand) {
+ return getSema().BuildObjCAtThrowStmt(AtLoc, Operand);
+ }
+
+ /// \brief Build a new OpenMP executable directive.
+ ///
+ /// By default, performs semantic analysis to build the new statement.
+ /// Subclasses may override this routine to provide different behavior.
+ StmtResult RebuildOMPExecutableDirective(OpenMPDirectiveKind Kind,
+ DeclarationNameInfo DirName,
+ ArrayRef<OMPClause *> Clauses,
+ Stmt *AStmt, SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+ return getSema().ActOnOpenMPExecutableDirective(Kind, DirName, Clauses,
+ AStmt, StartLoc, EndLoc);
+ }
+
+ /// \brief Build a new OpenMP 'if' clause.
+ ///
+ /// By default, performs semantic analysis to build the new OpenMP clause.
+ /// Subclasses may override this routine to provide different behavior.
+ OMPClause *RebuildOMPIfClause(Expr *Condition,
+ SourceLocation StartLoc,
+ SourceLocation LParenLoc,
+ SourceLocation EndLoc) {
+ return getSema().ActOnOpenMPIfClause(Condition, StartLoc,
+ LParenLoc, EndLoc);
+ }
+
+ /// \brief Build a new OpenMP 'final' clause.
+ ///
+ /// By default, performs semantic analysis to build the new OpenMP clause.
+ /// Subclasses may override this routine to provide different behavior.
+ OMPClause *RebuildOMPFinalClause(Expr *Condition, SourceLocation StartLoc,
+ SourceLocation LParenLoc,
+ SourceLocation EndLoc) {
+ return getSema().ActOnOpenMPFinalClause(Condition, StartLoc, LParenLoc,
+ EndLoc);
+ }
+
+ /// \brief Build a new OpenMP 'num_threads' clause.
+ ///
+ /// By default, performs semantic analysis to build the new OpenMP clause.
+ /// Subclasses may override this routine to provide different behavior.
+ OMPClause *RebuildOMPNumThreadsClause(Expr *NumThreads,
+ SourceLocation StartLoc,
+ SourceLocation LParenLoc,
+ SourceLocation EndLoc) {
+ return getSema().ActOnOpenMPNumThreadsClause(NumThreads, StartLoc,
+ LParenLoc, EndLoc);
+ }
+
+ /// \brief Build a new OpenMP 'safelen' clause.
+ ///
+ /// By default, performs semantic analysis to build the new OpenMP clause.
+ /// Subclasses may override this routine to provide different behavior.
+ OMPClause *RebuildOMPSafelenClause(Expr *Len, SourceLocation StartLoc,
+ SourceLocation LParenLoc,
+ SourceLocation EndLoc) {
+ return getSema().ActOnOpenMPSafelenClause(Len, StartLoc, LParenLoc, EndLoc);
+ }
+
+ /// \brief Build a new OpenMP 'collapse' clause.
+ ///
+ /// By default, performs semantic analysis to build the new OpenMP clause.
+ /// Subclasses may override this routine to provide different behavior.
+ OMPClause *RebuildOMPCollapseClause(Expr *Num, SourceLocation StartLoc,
+ SourceLocation LParenLoc,
+ SourceLocation EndLoc) {
+ return getSema().ActOnOpenMPCollapseClause(Num, StartLoc, LParenLoc,
+ EndLoc);
+ }
+
+ /// \brief Build a new OpenMP 'default' clause.
+ ///
+ /// By default, performs semantic analysis to build the new OpenMP clause.
+ /// Subclasses may override this routine to provide different behavior.
+ OMPClause *RebuildOMPDefaultClause(OpenMPDefaultClauseKind Kind,
+ SourceLocation KindKwLoc,
+ SourceLocation StartLoc,
+ SourceLocation LParenLoc,
+ SourceLocation EndLoc) {
+ return getSema().ActOnOpenMPDefaultClause(Kind, KindKwLoc,
+ StartLoc, LParenLoc, EndLoc);
+ }
+
+ /// \brief Build a new OpenMP 'proc_bind' clause.
+ ///
+ /// By default, performs semantic analysis to build the new OpenMP clause.
+ /// Subclasses may override this routine to provide different behavior.
+ OMPClause *RebuildOMPProcBindClause(OpenMPProcBindClauseKind Kind,
+ SourceLocation KindKwLoc,
+ SourceLocation StartLoc,
+ SourceLocation LParenLoc,
+ SourceLocation EndLoc) {
+ return getSema().ActOnOpenMPProcBindClause(Kind, KindKwLoc,
+ StartLoc, LParenLoc, EndLoc);
+ }
+
+ /// \brief Build a new OpenMP 'schedule' clause.
+ ///
+ /// By default, performs semantic analysis to build the new OpenMP clause.
+ /// Subclasses may override this routine to provide different behavior.
+ OMPClause *RebuildOMPScheduleClause(OpenMPScheduleClauseKind Kind,
+ Expr *ChunkSize,
+ SourceLocation StartLoc,
+ SourceLocation LParenLoc,
+ SourceLocation KindLoc,
+ SourceLocation CommaLoc,
+ SourceLocation EndLoc) {
+ return getSema().ActOnOpenMPScheduleClause(
+ Kind, ChunkSize, StartLoc, LParenLoc, KindLoc, CommaLoc, EndLoc);
+ }
+
+ /// \brief Build a new OpenMP 'private' clause.
+ ///
+ /// By default, performs semantic analysis to build the new OpenMP clause.
+ /// Subclasses may override this routine to provide different behavior.
+ OMPClause *RebuildOMPPrivateClause(ArrayRef<Expr *> VarList,
+ SourceLocation StartLoc,
+ SourceLocation LParenLoc,
+ SourceLocation EndLoc) {
+ return getSema().ActOnOpenMPPrivateClause(VarList, StartLoc, LParenLoc,
+ EndLoc);
+ }
+
+ /// \brief Build a new OpenMP 'firstprivate' clause.
+ ///
+ /// By default, performs semantic analysis to build the new OpenMP clause.
+ /// Subclasses may override this routine to provide different behavior.
+ OMPClause *RebuildOMPFirstprivateClause(ArrayRef<Expr *> VarList,
+ SourceLocation StartLoc,
+ SourceLocation LParenLoc,
+ SourceLocation EndLoc) {
+ return getSema().ActOnOpenMPFirstprivateClause(VarList, StartLoc, LParenLoc,
+ EndLoc);
+ }
+
+ /// \brief Build a new OpenMP 'lastprivate' clause.
+ ///
+ /// By default, performs semantic analysis to build the new OpenMP clause.
+ /// Subclasses may override this routine to provide different behavior.
+ OMPClause *RebuildOMPLastprivateClause(ArrayRef<Expr *> VarList,
+ SourceLocation StartLoc,
+ SourceLocation LParenLoc,
+ SourceLocation EndLoc) {
+ return getSema().ActOnOpenMPLastprivateClause(VarList, StartLoc, LParenLoc,
+ EndLoc);
+ }
+
+ /// \brief Build a new OpenMP 'shared' clause.
+ ///
+ /// By default, performs semantic analysis to build the new OpenMP clause.
+ /// Subclasses may override this routine to provide different behavior.
+ OMPClause *RebuildOMPSharedClause(ArrayRef<Expr *> VarList,
+ SourceLocation StartLoc,
+ SourceLocation LParenLoc,
+ SourceLocation EndLoc) {
+ return getSema().ActOnOpenMPSharedClause(VarList, StartLoc, LParenLoc,
+ EndLoc);
+ }
+
+ /// \brief Build a new OpenMP 'reduction' clause.
+ ///
+ /// By default, performs semantic analysis to build the new statement.
+ /// Subclasses may override this routine to provide different behavior.
+ OMPClause *RebuildOMPReductionClause(ArrayRef<Expr *> VarList,
+ SourceLocation StartLoc,
+ SourceLocation LParenLoc,
+ SourceLocation ColonLoc,
+ SourceLocation EndLoc,
+ CXXScopeSpec &ReductionIdScopeSpec,
+ const DeclarationNameInfo &ReductionId) {
+ return getSema().ActOnOpenMPReductionClause(
+ VarList, StartLoc, LParenLoc, ColonLoc, EndLoc, ReductionIdScopeSpec,
+ ReductionId);
+ }
+
+ /// \brief Build a new OpenMP 'linear' clause.
+ ///
+ /// By default, performs semantic analysis to build the new OpenMP clause.
+ /// Subclasses may override this routine to provide different behavior.
+ OMPClause *RebuildOMPLinearClause(ArrayRef<Expr *> VarList, Expr *Step,
+ SourceLocation StartLoc,
+ SourceLocation LParenLoc,
+ SourceLocation ColonLoc,
+ SourceLocation EndLoc) {
+ return getSema().ActOnOpenMPLinearClause(VarList, Step, StartLoc, LParenLoc,
+ ColonLoc, EndLoc);
+ }
+
+ /// \brief Build a new OpenMP 'aligned' clause.
+ ///
+ /// By default, performs semantic analysis to build the new OpenMP clause.
+ /// Subclasses may override this routine to provide different behavior.
+ OMPClause *RebuildOMPAlignedClause(ArrayRef<Expr *> VarList, Expr *Alignment,
+ SourceLocation StartLoc,
+ SourceLocation LParenLoc,
+ SourceLocation ColonLoc,
+ SourceLocation EndLoc) {
+ return getSema().ActOnOpenMPAlignedClause(VarList, Alignment, StartLoc,
+ LParenLoc, ColonLoc, EndLoc);
+ }
+
+ /// \brief Build a new OpenMP 'copyin' clause.
+ ///
+ /// By default, performs semantic analysis to build the new OpenMP clause.
+ /// Subclasses may override this routine to provide different behavior.
+ OMPClause *RebuildOMPCopyinClause(ArrayRef<Expr *> VarList,
+ SourceLocation StartLoc,
+ SourceLocation LParenLoc,
+ SourceLocation EndLoc) {
+ return getSema().ActOnOpenMPCopyinClause(VarList, StartLoc, LParenLoc,
+ EndLoc);
+ }
+
+ /// \brief Build a new OpenMP 'copyprivate' clause.
+ ///
+ /// By default, performs semantic analysis to build the new OpenMP clause.
+ /// Subclasses may override this routine to provide different behavior.
+ OMPClause *RebuildOMPCopyprivateClause(ArrayRef<Expr *> VarList,
+ SourceLocation StartLoc,
+ SourceLocation LParenLoc,
+ SourceLocation EndLoc) {
+ return getSema().ActOnOpenMPCopyprivateClause(VarList, StartLoc, LParenLoc,
+ EndLoc);
+ }
+
+ /// \brief Build a new OpenMP 'flush' pseudo clause.
+ ///
+ /// By default, performs semantic analysis to build the new OpenMP clause.
+ /// Subclasses may override this routine to provide different behavior.
+ OMPClause *RebuildOMPFlushClause(ArrayRef<Expr *> VarList,
+ SourceLocation StartLoc,
+ SourceLocation LParenLoc,
+ SourceLocation EndLoc) {
+ return getSema().ActOnOpenMPFlushClause(VarList, StartLoc, LParenLoc,
+ EndLoc);
+ }
+
+ /// \brief Rebuild the operand to an Objective-C \@synchronized statement.
+ ///
+ /// By default, performs semantic analysis to build the new statement.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildObjCAtSynchronizedOperand(SourceLocation atLoc,
+ Expr *object) {
+ return getSema().ActOnObjCAtSynchronizedOperand(atLoc, object);
+ }
+
+ /// \brief Build a new Objective-C \@synchronized statement.
+ ///
+ /// By default, performs semantic analysis to build the new statement.
+ /// Subclasses may override this routine to provide different behavior.
+ StmtResult RebuildObjCAtSynchronizedStmt(SourceLocation AtLoc,
+ Expr *Object, Stmt *Body) {
+ return getSema().ActOnObjCAtSynchronizedStmt(AtLoc, Object, Body);
+ }
+
+ /// \brief Build a new Objective-C \@autoreleasepool statement.
+ ///
+ /// By default, performs semantic analysis to build the new statement.
+ /// Subclasses may override this routine to provide different behavior.
+ StmtResult RebuildObjCAutoreleasePoolStmt(SourceLocation AtLoc,
+ Stmt *Body) {
+ return getSema().ActOnObjCAutoreleasePoolStmt(AtLoc, Body);
+ }
+
+ /// \brief Build a new Objective-C fast enumeration statement.
+ ///
+ /// By default, performs semantic analysis to build the new statement.
+ /// Subclasses may override this routine to provide different behavior.
+ StmtResult RebuildObjCForCollectionStmt(SourceLocation ForLoc,
+ Stmt *Element,
+ Expr *Collection,
+ SourceLocation RParenLoc,
+ Stmt *Body) {
+ StmtResult ForEachStmt = getSema().ActOnObjCForCollectionStmt(ForLoc,
+ Element,
+ Collection,
+ RParenLoc);
+ if (ForEachStmt.isInvalid())
+ return StmtError();
+
+ return getSema().FinishObjCForCollectionStmt(ForEachStmt.get(), Body);
+ }
+
+ /// \brief Build a new C++ exception declaration.
+ ///
+ /// By default, performs semantic analysis to build the new decaration.
+ /// Subclasses may override this routine to provide different behavior.
+ VarDecl *RebuildExceptionDecl(VarDecl *ExceptionDecl,
+ TypeSourceInfo *Declarator,
+ SourceLocation StartLoc,
+ SourceLocation IdLoc,
+ IdentifierInfo *Id) {
+ VarDecl *Var = getSema().BuildExceptionDeclaration(nullptr, Declarator,
+ StartLoc, IdLoc, Id);
+ if (Var)
+ getSema().CurContext->addDecl(Var);
+ return Var;
+ }
+
+ /// \brief Build a new C++ catch statement.
+ ///
+ /// By default, performs semantic analysis to build the new statement.
+ /// Subclasses may override this routine to provide different behavior.
+ StmtResult RebuildCXXCatchStmt(SourceLocation CatchLoc,
+ VarDecl *ExceptionDecl,
+ Stmt *Handler) {
+ return Owned(new (getSema().Context) CXXCatchStmt(CatchLoc, ExceptionDecl,
+ Handler));
+ }
+
+ /// \brief Build a new C++ try statement.
+ ///
+ /// By default, performs semantic analysis to build the new statement.
+ /// Subclasses may override this routine to provide different behavior.
+ StmtResult RebuildCXXTryStmt(SourceLocation TryLoc, Stmt *TryBlock,
+ ArrayRef<Stmt *> Handlers) {
+ return getSema().ActOnCXXTryBlock(TryLoc, TryBlock, Handlers);
+ }
+
+ /// \brief Build a new C++0x range-based for statement.
+ ///
+ /// By default, performs semantic analysis to build the new statement.
+ /// Subclasses may override this routine to provide different behavior.
+ StmtResult RebuildCXXForRangeStmt(SourceLocation ForLoc,
+ SourceLocation ColonLoc,
+ Stmt *Range, Stmt *BeginEnd,
+ Expr *Cond, Expr *Inc,
+ Stmt *LoopVar,
+ SourceLocation RParenLoc) {
+ // If we've just learned that the range is actually an Objective-C
+ // collection, treat this as an Objective-C fast enumeration loop.
+ if (DeclStmt *RangeStmt = dyn_cast<DeclStmt>(Range)) {
+ if (RangeStmt->isSingleDecl()) {
+ if (VarDecl *RangeVar = dyn_cast<VarDecl>(RangeStmt->getSingleDecl())) {
+ if (RangeVar->isInvalidDecl())
+ return StmtError();
+
+ Expr *RangeExpr = RangeVar->getInit();
+ if (!RangeExpr->isTypeDependent() &&
+ RangeExpr->getType()->isObjCObjectPointerType())
+ return getSema().ActOnObjCForCollectionStmt(ForLoc, LoopVar, RangeExpr,
+ RParenLoc);
+ }
+ }
+ }
+
+ return getSema().BuildCXXForRangeStmt(ForLoc, ColonLoc, Range, BeginEnd,
+ Cond, Inc, LoopVar, RParenLoc,
+ Sema::BFRK_Rebuild);
+ }
+
+ /// \brief Build a new C++0x range-based for statement.
+ ///
+ /// By default, performs semantic analysis to build the new statement.
+ /// Subclasses may override this routine to provide different behavior.
+ StmtResult RebuildMSDependentExistsStmt(SourceLocation KeywordLoc,
+ bool IsIfExists,
+ NestedNameSpecifierLoc QualifierLoc,
+ DeclarationNameInfo NameInfo,
+ Stmt *Nested) {
+ return getSema().BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
+ QualifierLoc, NameInfo, Nested);
+ }
+
+ /// \brief Attach body to a C++0x range-based for statement.
+ ///
+ /// By default, performs semantic analysis to finish the new statement.
+ /// Subclasses may override this routine to provide different behavior.
+ StmtResult FinishCXXForRangeStmt(Stmt *ForRange, Stmt *Body) {
+ return getSema().FinishCXXForRangeStmt(ForRange, Body);
+ }
+
+ StmtResult RebuildSEHTryStmt(bool IsCXXTry, SourceLocation TryLoc,
+ Stmt *TryBlock, Stmt *Handler) {
+ return getSema().ActOnSEHTryBlock(IsCXXTry, TryLoc, TryBlock, Handler);
+ }
+
+ StmtResult RebuildSEHExceptStmt(SourceLocation Loc, Expr *FilterExpr,
+ Stmt *Block) {
+ return getSema().ActOnSEHExceptBlock(Loc, FilterExpr, Block);
+ }
+
+ StmtResult RebuildSEHFinallyStmt(SourceLocation Loc, Stmt *Block) {
+ return SEHFinallyStmt::Create(getSema().getASTContext(), Loc, Block);
+ }
+
+ /// \brief Build a new predefined expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildPredefinedExpr(SourceLocation Loc,
+ PredefinedExpr::IdentType IT) {
+ return getSema().BuildPredefinedExpr(Loc, IT);
+ }
+
+ /// \brief Build a new expression that references a declaration.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildDeclarationNameExpr(const CXXScopeSpec &SS,
+ LookupResult &R,
+ bool RequiresADL) {
+ return getSema().BuildDeclarationNameExpr(SS, R, RequiresADL);
+ }
+
+
+ /// \brief Build a new expression that references a declaration.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildDeclRefExpr(NestedNameSpecifierLoc QualifierLoc,
+ ValueDecl *VD,
+ const DeclarationNameInfo &NameInfo,
+ TemplateArgumentListInfo *TemplateArgs) {
+ CXXScopeSpec SS;
+ SS.Adopt(QualifierLoc);
+
+ // FIXME: loses template args.
+
+ return getSema().BuildDeclarationNameExpr(SS, NameInfo, VD);
+ }
+
+ /// \brief Build a new expression in parentheses.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildParenExpr(Expr *SubExpr, SourceLocation LParen,
+ SourceLocation RParen) {
+ return getSema().ActOnParenExpr(LParen, RParen, SubExpr);
+ }
+
+ /// \brief Build a new pseudo-destructor expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildCXXPseudoDestructorExpr(Expr *Base,
+ SourceLocation OperatorLoc,
+ bool isArrow,
+ CXXScopeSpec &SS,
+ TypeSourceInfo *ScopeType,
+ SourceLocation CCLoc,
+ SourceLocation TildeLoc,
+ PseudoDestructorTypeStorage Destroyed);
+
+ /// \brief Build a new unary operator expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildUnaryOperator(SourceLocation OpLoc,
+ UnaryOperatorKind Opc,
+ Expr *SubExpr) {
+ return getSema().BuildUnaryOp(/*Scope=*/nullptr, OpLoc, Opc, SubExpr);
+ }
+
+ /// \brief Build a new builtin offsetof expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildOffsetOfExpr(SourceLocation OperatorLoc,
+ TypeSourceInfo *Type,
+ Sema::OffsetOfComponent *Components,
+ unsigned NumComponents,
+ SourceLocation RParenLoc) {
+ return getSema().BuildBuiltinOffsetOf(OperatorLoc, Type, Components,
+ NumComponents, RParenLoc);
+ }
+
+ /// \brief Build a new sizeof, alignof or vec_step expression with a
+ /// type argument.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildUnaryExprOrTypeTrait(TypeSourceInfo *TInfo,
+ SourceLocation OpLoc,
+ UnaryExprOrTypeTrait ExprKind,
+ SourceRange R) {
+ return getSema().CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, R);
+ }
+
+ /// \brief Build a new sizeof, alignof or vec step expression with an
+ /// expression argument.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildUnaryExprOrTypeTrait(Expr *SubExpr, SourceLocation OpLoc,
+ UnaryExprOrTypeTrait ExprKind,
+ SourceRange R) {
+ ExprResult Result
+ = getSema().CreateUnaryExprOrTypeTraitExpr(SubExpr, OpLoc, ExprKind);
+ if (Result.isInvalid())
+ return ExprError();
+
+ return Result;
+ }
+
+ /// \brief Build a new array subscript expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildArraySubscriptExpr(Expr *LHS,
+ SourceLocation LBracketLoc,
+ Expr *RHS,
+ SourceLocation RBracketLoc) {
+ return getSema().ActOnArraySubscriptExpr(/*Scope=*/nullptr, LHS,
+ LBracketLoc, RHS,
+ RBracketLoc);
+ }
+
+ /// \brief Build a new call expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
+ MultiExprArg Args,
+ SourceLocation RParenLoc,
+ Expr *ExecConfig = nullptr) {
+ return getSema().ActOnCallExpr(/*Scope=*/nullptr, Callee, LParenLoc,
+ Args, RParenLoc, ExecConfig);
+ }
+
+ /// \brief Build a new member access expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildMemberExpr(Expr *Base, SourceLocation OpLoc,
+ bool isArrow,
+ NestedNameSpecifierLoc QualifierLoc,
+ SourceLocation TemplateKWLoc,
+ const DeclarationNameInfo &MemberNameInfo,
+ ValueDecl *Member,
+ NamedDecl *FoundDecl,
+ const TemplateArgumentListInfo *ExplicitTemplateArgs,
+ NamedDecl *FirstQualifierInScope) {
+ ExprResult BaseResult = getSema().PerformMemberExprBaseConversion(Base,
+ isArrow);
+ if (!Member->getDeclName()) {
+ // We have a reference to an unnamed field. This is always the
+ // base of an anonymous struct/union member access, i.e. the
+ // field is always of record type.
+ assert(!QualifierLoc && "Can't have an unnamed field with a qualifier!");
+ assert(Member->getType()->isRecordType() &&
+ "unnamed member not of record type?");
+
+ BaseResult =
+ getSema().PerformObjectMemberConversion(BaseResult.get(),
+ QualifierLoc.getNestedNameSpecifier(),
+ FoundDecl, Member);
+ if (BaseResult.isInvalid())
+ return ExprError();
+ Base = BaseResult.get();
+ ExprValueKind VK = isArrow ? VK_LValue : Base->getValueKind();
+ MemberExpr *ME = new (getSema().Context)
+ MemberExpr(Base, isArrow, OpLoc, Member, MemberNameInfo,
+ cast<FieldDecl>(Member)->getType(), VK, OK_Ordinary);
+ return ME;
+ }
+
+ CXXScopeSpec SS;
+ SS.Adopt(QualifierLoc);
+
+ Base = BaseResult.get();
+ QualType BaseType = Base->getType();
+
+ // FIXME: this involves duplicating earlier analysis in a lot of
+ // cases; we should avoid this when possible.
+ LookupResult R(getSema(), MemberNameInfo, Sema::LookupMemberName);
+ R.addDecl(FoundDecl);
+ R.resolveKind();
+
+ return getSema().BuildMemberReferenceExpr(Base, BaseType, OpLoc, isArrow,
+ SS, TemplateKWLoc,
+ FirstQualifierInScope,
+ R, ExplicitTemplateArgs);
+ }
+
+ /// \brief Build a new binary operator expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildBinaryOperator(SourceLocation OpLoc,
+ BinaryOperatorKind Opc,
+ Expr *LHS, Expr *RHS) {
+ return getSema().BuildBinOp(/*Scope=*/nullptr, OpLoc, Opc, LHS, RHS);
+ }
+
+ /// \brief Build a new conditional operator expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildConditionalOperator(Expr *Cond,
+ SourceLocation QuestionLoc,
+ Expr *LHS,
+ SourceLocation ColonLoc,
+ Expr *RHS) {
+ return getSema().ActOnConditionalOp(QuestionLoc, ColonLoc, Cond,
+ LHS, RHS);
+ }
+
+ /// \brief Build a new C-style cast expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildCStyleCastExpr(SourceLocation LParenLoc,
+ TypeSourceInfo *TInfo,
+ SourceLocation RParenLoc,
+ Expr *SubExpr) {
+ return getSema().BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc,
+ SubExpr);
+ }
+
+ /// \brief Build a new compound literal expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildCompoundLiteralExpr(SourceLocation LParenLoc,
+ TypeSourceInfo *TInfo,
+ SourceLocation RParenLoc,
+ Expr *Init) {
+ return getSema().BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc,
+ Init);
+ }
+
+ /// \brief Build a new extended vector element access expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildExtVectorElementExpr(Expr *Base,
+ SourceLocation OpLoc,
+ SourceLocation AccessorLoc,
+ IdentifierInfo &Accessor) {
+
+ CXXScopeSpec SS;
+ DeclarationNameInfo NameInfo(&Accessor, AccessorLoc);
+ return getSema().BuildMemberReferenceExpr(Base, Base->getType(),
+ OpLoc, /*IsArrow*/ false,
+ SS, SourceLocation(),
+ /*FirstQualifierInScope*/ nullptr,
+ NameInfo,
+ /* TemplateArgs */ nullptr);
+ }
+
+ /// \brief Build a new initializer list expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildInitList(SourceLocation LBraceLoc,
+ MultiExprArg Inits,
+ SourceLocation RBraceLoc,
+ QualType ResultTy) {
+ ExprResult Result
+ = SemaRef.ActOnInitList(LBraceLoc, Inits, RBraceLoc);
+ if (Result.isInvalid() || ResultTy->isDependentType())
+ return Result;
+
+ // Patch in the result type we were given, which may have been computed
+ // when the initial InitListExpr was built.
+ InitListExpr *ILE = cast<InitListExpr>((Expr *)Result.get());
+ ILE->setType(ResultTy);
+ return Result;
+ }
+
+ /// \brief Build a new designated initializer expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildDesignatedInitExpr(Designation &Desig,
+ MultiExprArg ArrayExprs,
+ SourceLocation EqualOrColonLoc,
+ bool GNUSyntax,
+ Expr *Init) {
+ ExprResult Result
+ = SemaRef.ActOnDesignatedInitializer(Desig, EqualOrColonLoc, GNUSyntax,
+ Init);
+ if (Result.isInvalid())
+ return ExprError();
+
+ return Result;
+ }
+
+ /// \brief Build a new value-initialized expression.
+ ///
+ /// By default, builds the implicit value initialization without performing
+ /// any semantic analysis. Subclasses may override this routine to provide
+ /// different behavior.
+ ExprResult RebuildImplicitValueInitExpr(QualType T) {
+ return new (SemaRef.Context) ImplicitValueInitExpr(T);
+ }
+
+ /// \brief Build a new \c va_arg expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildVAArgExpr(SourceLocation BuiltinLoc,
+ Expr *SubExpr, TypeSourceInfo *TInfo,
+ SourceLocation RParenLoc) {
+ return getSema().BuildVAArgExpr(BuiltinLoc,
+ SubExpr, TInfo,
+ RParenLoc);
+ }
+
+ /// \brief Build a new expression list in parentheses.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildParenListExpr(SourceLocation LParenLoc,
+ MultiExprArg SubExprs,
+ SourceLocation RParenLoc) {
+ return getSema().ActOnParenListExpr(LParenLoc, RParenLoc, SubExprs);
+ }
+
+ /// \brief Build a new address-of-label expression.
+ ///
+ /// By default, performs semantic analysis, using the name of the label
+ /// rather than attempting to map the label statement itself.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildAddrLabelExpr(SourceLocation AmpAmpLoc,
+ SourceLocation LabelLoc, LabelDecl *Label) {
+ return getSema().ActOnAddrLabel(AmpAmpLoc, LabelLoc, Label);
+ }
+
+ /// \brief Build a new GNU statement expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildStmtExpr(SourceLocation LParenLoc,
+ Stmt *SubStmt,
+ SourceLocation RParenLoc) {
+ return getSema().ActOnStmtExpr(LParenLoc, SubStmt, RParenLoc);
+ }
+
+ /// \brief Build a new __builtin_choose_expr expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildChooseExpr(SourceLocation BuiltinLoc,
+ Expr *Cond, Expr *LHS, Expr *RHS,
+ SourceLocation RParenLoc) {
+ return SemaRef.ActOnChooseExpr(BuiltinLoc,
+ Cond, LHS, RHS,
+ RParenLoc);
+ }
+
+ /// \brief Build a new generic selection expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildGenericSelectionExpr(SourceLocation KeyLoc,
+ SourceLocation DefaultLoc,
+ SourceLocation RParenLoc,
+ Expr *ControllingExpr,
+ ArrayRef<TypeSourceInfo *> Types,
+ ArrayRef<Expr *> Exprs) {
+ return getSema().CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
+ ControllingExpr, Types, Exprs);
+ }
+
+ /// \brief Build a new overloaded operator call expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// The semantic analysis provides the behavior of template instantiation,
+ /// copying with transformations that turn what looks like an overloaded
+ /// operator call into a use of a builtin operator, performing
+ /// argument-dependent lookup, etc. Subclasses may override this routine to
+ /// provide different behavior.
+ ExprResult RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op,
+ SourceLocation OpLoc,
+ Expr *Callee,
+ Expr *First,
+ Expr *Second);
+
+ /// \brief Build a new C++ "named" cast expression, such as static_cast or
+ /// reinterpret_cast.
+ ///
+ /// By default, this routine dispatches to one of the more-specific routines
+ /// for a particular named case, e.g., RebuildCXXStaticCastExpr().
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildCXXNamedCastExpr(SourceLocation OpLoc,
+ Stmt::StmtClass Class,
+ SourceLocation LAngleLoc,
+ TypeSourceInfo *TInfo,
+ SourceLocation RAngleLoc,
+ SourceLocation LParenLoc,
+ Expr *SubExpr,
+ SourceLocation RParenLoc) {
+ switch (Class) {
+ case Stmt::CXXStaticCastExprClass:
+ return getDerived().RebuildCXXStaticCastExpr(OpLoc, LAngleLoc, TInfo,
+ RAngleLoc, LParenLoc,
+ SubExpr, RParenLoc);
+
+ case Stmt::CXXDynamicCastExprClass:
+ return getDerived().RebuildCXXDynamicCastExpr(OpLoc, LAngleLoc, TInfo,
+ RAngleLoc, LParenLoc,
+ SubExpr, RParenLoc);
+
+ case Stmt::CXXReinterpretCastExprClass:
+ return getDerived().RebuildCXXReinterpretCastExpr(OpLoc, LAngleLoc, TInfo,
+ RAngleLoc, LParenLoc,
+ SubExpr,
+ RParenLoc);
+
+ case Stmt::CXXConstCastExprClass:
+ return getDerived().RebuildCXXConstCastExpr(OpLoc, LAngleLoc, TInfo,
+ RAngleLoc, LParenLoc,
+ SubExpr, RParenLoc);
+
+ default:
+ llvm_unreachable("Invalid C++ named cast");
+ }
+ }
+
+ /// \brief Build a new C++ static_cast expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildCXXStaticCastExpr(SourceLocation OpLoc,
+ SourceLocation LAngleLoc,
+ TypeSourceInfo *TInfo,
+ SourceLocation RAngleLoc,
+ SourceLocation LParenLoc,
+ Expr *SubExpr,
+ SourceLocation RParenLoc) {
+ return getSema().BuildCXXNamedCast(OpLoc, tok::kw_static_cast,
+ TInfo, SubExpr,
+ SourceRange(LAngleLoc, RAngleLoc),
+ SourceRange(LParenLoc, RParenLoc));
+ }
+
+ /// \brief Build a new C++ dynamic_cast expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildCXXDynamicCastExpr(SourceLocation OpLoc,
+ SourceLocation LAngleLoc,
+ TypeSourceInfo *TInfo,
+ SourceLocation RAngleLoc,
+ SourceLocation LParenLoc,
+ Expr *SubExpr,
+ SourceLocation RParenLoc) {
+ return getSema().BuildCXXNamedCast(OpLoc, tok::kw_dynamic_cast,
+ TInfo, SubExpr,
+ SourceRange(LAngleLoc, RAngleLoc),
+ SourceRange(LParenLoc, RParenLoc));
+ }
+
+ /// \brief Build a new C++ reinterpret_cast expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildCXXReinterpretCastExpr(SourceLocation OpLoc,
+ SourceLocation LAngleLoc,
+ TypeSourceInfo *TInfo,
+ SourceLocation RAngleLoc,
+ SourceLocation LParenLoc,
+ Expr *SubExpr,
+ SourceLocation RParenLoc) {
+ return getSema().BuildCXXNamedCast(OpLoc, tok::kw_reinterpret_cast,
+ TInfo, SubExpr,
+ SourceRange(LAngleLoc, RAngleLoc),
+ SourceRange(LParenLoc, RParenLoc));
+ }
+
+ /// \brief Build a new C++ const_cast expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildCXXConstCastExpr(SourceLocation OpLoc,
+ SourceLocation LAngleLoc,
+ TypeSourceInfo *TInfo,
+ SourceLocation RAngleLoc,
+ SourceLocation LParenLoc,
+ Expr *SubExpr,
+ SourceLocation RParenLoc) {
+ return getSema().BuildCXXNamedCast(OpLoc, tok::kw_const_cast,
+ TInfo, SubExpr,
+ SourceRange(LAngleLoc, RAngleLoc),
+ SourceRange(LParenLoc, RParenLoc));
+ }
+
+ /// \brief Build a new C++ functional-style cast expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildCXXFunctionalCastExpr(TypeSourceInfo *TInfo,
+ SourceLocation LParenLoc,
+ Expr *Sub,
+ SourceLocation RParenLoc) {
+ return getSema().BuildCXXTypeConstructExpr(TInfo, LParenLoc,
+ MultiExprArg(&Sub, 1),
+ RParenLoc);
+ }
+
+ /// \brief Build a new C++ typeid(type) expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildCXXTypeidExpr(QualType TypeInfoType,
+ SourceLocation TypeidLoc,
+ TypeSourceInfo *Operand,
+ SourceLocation RParenLoc) {
+ return getSema().BuildCXXTypeId(TypeInfoType, TypeidLoc, Operand,
+ RParenLoc);
+ }
+
+
+ /// \brief Build a new C++ typeid(expr) expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildCXXTypeidExpr(QualType TypeInfoType,
+ SourceLocation TypeidLoc,
+ Expr *Operand,
+ SourceLocation RParenLoc) {
+ return getSema().BuildCXXTypeId(TypeInfoType, TypeidLoc, Operand,
+ RParenLoc);
+ }
+
+ /// \brief Build a new C++ __uuidof(type) expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildCXXUuidofExpr(QualType TypeInfoType,
+ SourceLocation TypeidLoc,
+ TypeSourceInfo *Operand,
+ SourceLocation RParenLoc) {
+ return getSema().BuildCXXUuidof(TypeInfoType, TypeidLoc, Operand,
+ RParenLoc);
+ }
+
+ /// \brief Build a new C++ __uuidof(expr) expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildCXXUuidofExpr(QualType TypeInfoType,
+ SourceLocation TypeidLoc,
+ Expr *Operand,
+ SourceLocation RParenLoc) {
+ return getSema().BuildCXXUuidof(TypeInfoType, TypeidLoc, Operand,
+ RParenLoc);
+ }
+
+ /// \brief Build a new C++ "this" expression.
+ ///
+ /// By default, builds a new "this" expression without performing any
+ /// semantic analysis. Subclasses may override this routine to provide
+ /// different behavior.
+ ExprResult RebuildCXXThisExpr(SourceLocation ThisLoc,
+ QualType ThisType,
+ bool isImplicit) {
+ getSema().CheckCXXThisCapture(ThisLoc);
+ return new (getSema().Context) CXXThisExpr(ThisLoc, ThisType, isImplicit);
+ }
+
+ /// \brief Build a new C++ throw expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildCXXThrowExpr(SourceLocation ThrowLoc, Expr *Sub,
+ bool IsThrownVariableInScope) {
+ return getSema().BuildCXXThrow(ThrowLoc, Sub, IsThrownVariableInScope);
+ }
+
+ /// \brief Build a new C++ default-argument expression.
+ ///
+ /// By default, builds a new default-argument expression, which does not
+ /// require any semantic analysis. Subclasses may override this routine to
+ /// provide different behavior.
+ ExprResult RebuildCXXDefaultArgExpr(SourceLocation Loc,
+ ParmVarDecl *Param) {
+ return CXXDefaultArgExpr::Create(getSema().Context, Loc, Param);
+ }
+
+ /// \brief Build a new C++11 default-initialization expression.
+ ///
+ /// By default, builds a new default field initialization expression, which
+ /// does not require any semantic analysis. Subclasses may override this
+ /// routine to provide different behavior.
+ ExprResult RebuildCXXDefaultInitExpr(SourceLocation Loc,
+ FieldDecl *Field) {
+ return CXXDefaultInitExpr::Create(getSema().Context, Loc, Field);
+ }
+
+ /// \brief Build a new C++ zero-initialization expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildCXXScalarValueInitExpr(TypeSourceInfo *TSInfo,
+ SourceLocation LParenLoc,
+ SourceLocation RParenLoc) {
+ return getSema().BuildCXXTypeConstructExpr(TSInfo, LParenLoc,
+ None, RParenLoc);
+ }
+
+ /// \brief Build a new C++ "new" expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildCXXNewExpr(SourceLocation StartLoc,
+ bool UseGlobal,
+ SourceLocation PlacementLParen,
+ MultiExprArg PlacementArgs,
+ SourceLocation PlacementRParen,
+ SourceRange TypeIdParens,
+ QualType AllocatedType,
+ TypeSourceInfo *AllocatedTypeInfo,
+ Expr *ArraySize,
+ SourceRange DirectInitRange,
+ Expr *Initializer) {
+ return getSema().BuildCXXNew(StartLoc, UseGlobal,
+ PlacementLParen,
+ PlacementArgs,
+ PlacementRParen,
+ TypeIdParens,
+ AllocatedType,
+ AllocatedTypeInfo,
+ ArraySize,
+ DirectInitRange,
+ Initializer);
+ }
+
+ /// \brief Build a new C++ "delete" expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildCXXDeleteExpr(SourceLocation StartLoc,
+ bool IsGlobalDelete,
+ bool IsArrayForm,
+ Expr *Operand) {
+ return getSema().ActOnCXXDelete(StartLoc, IsGlobalDelete, IsArrayForm,
+ Operand);
+ }
+
+ /// \brief Build a new type trait expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildTypeTrait(TypeTrait Trait,
+ SourceLocation StartLoc,
+ ArrayRef<TypeSourceInfo *> Args,
+ SourceLocation RParenLoc) {
+ return getSema().BuildTypeTrait(Trait, StartLoc, Args, RParenLoc);
+ }
+
+ /// \brief Build a new array type trait expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildArrayTypeTrait(ArrayTypeTrait Trait,
+ SourceLocation StartLoc,
+ TypeSourceInfo *TSInfo,
+ Expr *DimExpr,
+ SourceLocation RParenLoc) {
+ return getSema().BuildArrayTypeTrait(Trait, StartLoc, TSInfo, DimExpr, RParenLoc);
+ }
+
+ /// \brief Build a new expression trait expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildExpressionTrait(ExpressionTrait Trait,
+ SourceLocation StartLoc,
+ Expr *Queried,
+ SourceLocation RParenLoc) {
+ return getSema().BuildExpressionTrait(Trait, StartLoc, Queried, RParenLoc);
+ }
+
+ /// \brief Build a new (previously unresolved) declaration reference
+ /// expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildDependentScopeDeclRefExpr(
+ NestedNameSpecifierLoc QualifierLoc,
+ SourceLocation TemplateKWLoc,
+ const DeclarationNameInfo &NameInfo,
+ const TemplateArgumentListInfo *TemplateArgs,
+ bool IsAddressOfOperand,
+ TypeSourceInfo **RecoveryTSI) {
+ CXXScopeSpec SS;
+ SS.Adopt(QualifierLoc);
+
+ if (TemplateArgs || TemplateKWLoc.isValid())
+ return getSema().BuildQualifiedTemplateIdExpr(SS, TemplateKWLoc, NameInfo,
+ TemplateArgs);
+
+ return getSema().BuildQualifiedDeclarationNameExpr(
+ SS, NameInfo, IsAddressOfOperand, RecoveryTSI);
+ }
+
+ /// \brief Build a new template-id expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildTemplateIdExpr(const CXXScopeSpec &SS,
+ SourceLocation TemplateKWLoc,
+ LookupResult &R,
+ bool RequiresADL,
+ const TemplateArgumentListInfo *TemplateArgs) {
+ return getSema().BuildTemplateIdExpr(SS, TemplateKWLoc, R, RequiresADL,
+ TemplateArgs);
+ }
+
+ /// \brief Build a new object-construction expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildCXXConstructExpr(QualType T,
+ SourceLocation Loc,
+ CXXConstructorDecl *Constructor,
+ bool IsElidable,
+ MultiExprArg Args,
+ bool HadMultipleCandidates,
+ bool ListInitialization,
+ bool StdInitListInitialization,
+ bool RequiresZeroInit,
+ CXXConstructExpr::ConstructionKind ConstructKind,
+ SourceRange ParenRange) {
+ SmallVector<Expr*, 8> ConvertedArgs;
+ if (getSema().CompleteConstructorCall(Constructor, Args, Loc,
+ ConvertedArgs))
+ return ExprError();
+
+ return getSema().BuildCXXConstructExpr(Loc, T, Constructor, IsElidable,
+ ConvertedArgs,
+ HadMultipleCandidates,
+ ListInitialization,
+ StdInitListInitialization,
+ RequiresZeroInit, ConstructKind,
+ ParenRange);
+ }
+
+ /// \brief Build a new object-construction expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildCXXTemporaryObjectExpr(TypeSourceInfo *TSInfo,
+ SourceLocation LParenLoc,
+ MultiExprArg Args,
+ SourceLocation RParenLoc) {
+ return getSema().BuildCXXTypeConstructExpr(TSInfo,
+ LParenLoc,
+ Args,
+ RParenLoc);
+ }
+
+ /// \brief Build a new object-construction expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildCXXUnresolvedConstructExpr(TypeSourceInfo *TSInfo,
+ SourceLocation LParenLoc,
+ MultiExprArg Args,
+ SourceLocation RParenLoc) {
+ return getSema().BuildCXXTypeConstructExpr(TSInfo,
+ LParenLoc,
+ Args,
+ RParenLoc);
+ }
+
+ /// \brief Build a new member reference expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildCXXDependentScopeMemberExpr(Expr *BaseE,
+ QualType BaseType,
+ bool IsArrow,
+ SourceLocation OperatorLoc,
+ NestedNameSpecifierLoc QualifierLoc,
+ SourceLocation TemplateKWLoc,
+ NamedDecl *FirstQualifierInScope,
+ const DeclarationNameInfo &MemberNameInfo,
+ const TemplateArgumentListInfo *TemplateArgs) {
+ CXXScopeSpec SS;
+ SS.Adopt(QualifierLoc);
+
+ return SemaRef.BuildMemberReferenceExpr(BaseE, BaseType,
+ OperatorLoc, IsArrow,
+ SS, TemplateKWLoc,
+ FirstQualifierInScope,
+ MemberNameInfo,
+ TemplateArgs);
+ }
+
+ /// \brief Build a new member reference expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildUnresolvedMemberExpr(Expr *BaseE, QualType BaseType,
+ SourceLocation OperatorLoc,
+ bool IsArrow,
+ NestedNameSpecifierLoc QualifierLoc,
+ SourceLocation TemplateKWLoc,
+ NamedDecl *FirstQualifierInScope,
+ LookupResult &R,
+ const TemplateArgumentListInfo *TemplateArgs) {
+ CXXScopeSpec SS;
+ SS.Adopt(QualifierLoc);
+
+ return SemaRef.BuildMemberReferenceExpr(BaseE, BaseType,
+ OperatorLoc, IsArrow,
+ SS, TemplateKWLoc,
+ FirstQualifierInScope,
+ R, TemplateArgs);
+ }
+
+ /// \brief Build a new noexcept expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildCXXNoexceptExpr(SourceRange Range, Expr *Arg) {
+ return SemaRef.BuildCXXNoexceptExpr(Range.getBegin(), Arg, Range.getEnd());
+ }
+
+ /// \brief Build a new expression to compute the length of a parameter pack.
+ ExprResult RebuildSizeOfPackExpr(SourceLocation OperatorLoc, NamedDecl *Pack,
+ SourceLocation PackLoc,
+ SourceLocation RParenLoc,
+ Optional<unsigned> Length) {
+ if (Length)
+ return new (SemaRef.Context) SizeOfPackExpr(SemaRef.Context.getSizeType(),
+ OperatorLoc, Pack, PackLoc,
+ RParenLoc, *Length);
+
+ return new (SemaRef.Context) SizeOfPackExpr(SemaRef.Context.getSizeType(),
+ OperatorLoc, Pack, PackLoc,
+ RParenLoc);
+ }
+
+ /// \brief Build a new Objective-C boxed expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr) {
+ return getSema().BuildObjCBoxedExpr(SR, ValueExpr);
+ }
+
+ /// \brief Build a new Objective-C array literal.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildObjCArrayLiteral(SourceRange Range,
+ Expr **Elements, unsigned NumElements) {
+ return getSema().BuildObjCArrayLiteral(Range,
+ MultiExprArg(Elements, NumElements));
+ }
+
+ ExprResult RebuildObjCSubscriptRefExpr(SourceLocation RB,
+ Expr *Base, Expr *Key,
+ ObjCMethodDecl *getterMethod,
+ ObjCMethodDecl *setterMethod) {
+ return getSema().BuildObjCSubscriptExpression(RB, Base, Key,
+ getterMethod, setterMethod);
+ }
+
+ /// \brief Build a new Objective-C dictionary literal.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildObjCDictionaryLiteral(SourceRange Range,
+ ObjCDictionaryElement *Elements,
+ unsigned NumElements) {
+ return getSema().BuildObjCDictionaryLiteral(Range, Elements, NumElements);
+ }
+
+ /// \brief Build a new Objective-C \@encode expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildObjCEncodeExpr(SourceLocation AtLoc,
+ TypeSourceInfo *EncodeTypeInfo,
+ SourceLocation RParenLoc) {
+ return SemaRef.BuildObjCEncodeExpression(AtLoc, EncodeTypeInfo, RParenLoc);
+ }
+
+ /// \brief Build a new Objective-C class message.
+ ExprResult RebuildObjCMessageExpr(TypeSourceInfo *ReceiverTypeInfo,
+ Selector Sel,
+ ArrayRef<SourceLocation> SelectorLocs,
+ ObjCMethodDecl *Method,
+ SourceLocation LBracLoc,
+ MultiExprArg Args,
+ SourceLocation RBracLoc) {
+ return SemaRef.BuildClassMessage(ReceiverTypeInfo,
+ ReceiverTypeInfo->getType(),
+ /*SuperLoc=*/SourceLocation(),
+ Sel, Method, LBracLoc, SelectorLocs,
+ RBracLoc, Args);
+ }
+
+ /// \brief Build a new Objective-C instance message.
+ ExprResult RebuildObjCMessageExpr(Expr *Receiver,
+ Selector Sel,
+ ArrayRef<SourceLocation> SelectorLocs,
+ ObjCMethodDecl *Method,
+ SourceLocation LBracLoc,
+ MultiExprArg Args,
+ SourceLocation RBracLoc) {
+ return SemaRef.BuildInstanceMessage(Receiver,
+ Receiver->getType(),
+ /*SuperLoc=*/SourceLocation(),
+ Sel, Method, LBracLoc, SelectorLocs,
+ RBracLoc, Args);
+ }
+
+ /// \brief Build a new Objective-C instance/class message to 'super'.
+ ExprResult RebuildObjCMessageExpr(SourceLocation SuperLoc,
+ Selector Sel,
+ ArrayRef<SourceLocation> SelectorLocs,
+ ObjCMethodDecl *Method,
+ SourceLocation LBracLoc,
+ MultiExprArg Args,
+ SourceLocation RBracLoc) {
+ ObjCInterfaceDecl *Class = Method->getClassInterface();
+ QualType ReceiverTy = SemaRef.Context.getObjCInterfaceType(Class);
+
+ return Method->isInstanceMethod() ? SemaRef.BuildInstanceMessage(nullptr,
+ ReceiverTy,
+ SuperLoc,
+ Sel, Method, LBracLoc, SelectorLocs,
+ RBracLoc, Args)
+ : SemaRef.BuildClassMessage(nullptr,
+ ReceiverTy,
+ SuperLoc,
+ Sel, Method, LBracLoc, SelectorLocs,
+ RBracLoc, Args);
+
+
+ }
+
+ /// \brief Build a new Objective-C ivar reference expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildObjCIvarRefExpr(Expr *BaseArg, ObjCIvarDecl *Ivar,
+ SourceLocation IvarLoc,
+ bool IsArrow, bool IsFreeIvar) {
+ // FIXME: We lose track of the IsFreeIvar bit.
+ CXXScopeSpec SS;
+ DeclarationNameInfo NameInfo(Ivar->getDeclName(), IvarLoc);
+ return getSema().BuildMemberReferenceExpr(BaseArg, BaseArg->getType(),
+ /*FIXME:*/IvarLoc, IsArrow,
+ SS, SourceLocation(),
+ /*FirstQualifierInScope=*/nullptr,
+ NameInfo,
+ /*TemplateArgs=*/nullptr);
+ }
+
+ /// \brief Build a new Objective-C property reference expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildObjCPropertyRefExpr(Expr *BaseArg,
+ ObjCPropertyDecl *Property,
+ SourceLocation PropertyLoc) {
+ CXXScopeSpec SS;
+ DeclarationNameInfo NameInfo(Property->getDeclName(), PropertyLoc);
+ return getSema().BuildMemberReferenceExpr(BaseArg, BaseArg->getType(),
+ /*FIXME:*/PropertyLoc,
+ /*IsArrow=*/false,
+ SS, SourceLocation(),
+ /*FirstQualifierInScope=*/nullptr,
+ NameInfo,
+ /*TemplateArgs=*/nullptr);
+ }
+
+ /// \brief Build a new Objective-C property reference expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildObjCPropertyRefExpr(Expr *Base, QualType T,
+ ObjCMethodDecl *Getter,
+ ObjCMethodDecl *Setter,
+ SourceLocation PropertyLoc) {
+ // Since these expressions can only be value-dependent, we do not
+ // need to perform semantic analysis again.
+ return Owned(
+ new (getSema().Context) ObjCPropertyRefExpr(Getter, Setter, T,
+ VK_LValue, OK_ObjCProperty,
+ PropertyLoc, Base));
+ }
+
+ /// \brief Build a new Objective-C "isa" expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildObjCIsaExpr(Expr *BaseArg, SourceLocation IsaLoc,
+ SourceLocation OpLoc, bool IsArrow) {
+ CXXScopeSpec SS;
+ DeclarationNameInfo NameInfo(&getSema().Context.Idents.get("isa"), IsaLoc);
+ return getSema().BuildMemberReferenceExpr(BaseArg, BaseArg->getType(),
+ OpLoc, IsArrow,
+ SS, SourceLocation(),
+ /*FirstQualifierInScope=*/nullptr,
+ NameInfo,
+ /*TemplateArgs=*/nullptr);
+ }
+
+ /// \brief Build a new shuffle vector expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildShuffleVectorExpr(SourceLocation BuiltinLoc,
+ MultiExprArg SubExprs,
+ SourceLocation RParenLoc) {
+ // Find the declaration for __builtin_shufflevector
+ const IdentifierInfo &Name
+ = SemaRef.Context.Idents.get("__builtin_shufflevector");
+ TranslationUnitDecl *TUDecl = SemaRef.Context.getTranslationUnitDecl();
+ DeclContext::lookup_result Lookup = TUDecl->lookup(DeclarationName(&Name));
+ assert(!Lookup.empty() && "No __builtin_shufflevector?");
+
+ // Build a reference to the __builtin_shufflevector builtin
+ FunctionDecl *Builtin = cast<FunctionDecl>(Lookup.front());
+ Expr *Callee = new (SemaRef.Context) DeclRefExpr(Builtin, false,
+ SemaRef.Context.BuiltinFnTy,
+ VK_RValue, BuiltinLoc);
+ QualType CalleePtrTy = SemaRef.Context.getPointerType(Builtin->getType());
+ Callee = SemaRef.ImpCastExprToType(Callee, CalleePtrTy,
+ CK_BuiltinFnToFnPtr).get();
+
+ // Build the CallExpr
+ ExprResult TheCall = new (SemaRef.Context) CallExpr(
+ SemaRef.Context, Callee, SubExprs, Builtin->getCallResultType(),
+ Expr::getValueKindForType(Builtin->getReturnType()), RParenLoc);
+
+ // Type-check the __builtin_shufflevector expression.
+ return SemaRef.SemaBuiltinShuffleVector(cast<CallExpr>(TheCall.get()));
+ }
+
+ /// \brief Build a new convert vector expression.
+ ExprResult RebuildConvertVectorExpr(SourceLocation BuiltinLoc,
+ Expr *SrcExpr, TypeSourceInfo *DstTInfo,
+ SourceLocation RParenLoc) {
+ return SemaRef.SemaConvertVectorExpr(SrcExpr, DstTInfo,
+ BuiltinLoc, RParenLoc);
+ }
+
+ /// \brief Build a new template argument pack expansion.
+ ///
+ /// By default, performs semantic analysis to build a new pack expansion
+ /// for a template argument. Subclasses may override this routine to provide
+ /// different behavior.
+ TemplateArgumentLoc RebuildPackExpansion(TemplateArgumentLoc Pattern,
+ SourceLocation EllipsisLoc,
+ Optional<unsigned> NumExpansions) {
+ switch (Pattern.getArgument().getKind()) {
+ case TemplateArgument::Expression: {
+ ExprResult Result
+ = getSema().CheckPackExpansion(Pattern.getSourceExpression(),
+ EllipsisLoc, NumExpansions);
+ if (Result.isInvalid())
+ return TemplateArgumentLoc();
+
+ return TemplateArgumentLoc(Result.get(), Result.get());
+ }
+
+ case TemplateArgument::Template:
+ return TemplateArgumentLoc(TemplateArgument(
+ Pattern.getArgument().getAsTemplate(),
+ NumExpansions),
+ Pattern.getTemplateQualifierLoc(),
+ Pattern.getTemplateNameLoc(),
+ EllipsisLoc);
+
+ case TemplateArgument::Null:
+ case TemplateArgument::Integral:
+ case TemplateArgument::Declaration:
+ case TemplateArgument::Pack:
+ case TemplateArgument::TemplateExpansion:
+ case TemplateArgument::NullPtr:
+ llvm_unreachable("Pack expansion pattern has no parameter packs");
+
+ case TemplateArgument::Type:
+ if (TypeSourceInfo *Expansion
+ = getSema().CheckPackExpansion(Pattern.getTypeSourceInfo(),
+ EllipsisLoc,
+ NumExpansions))
+ return TemplateArgumentLoc(TemplateArgument(Expansion->getType()),
+ Expansion);
+ break;
+ }
+
+ return TemplateArgumentLoc();
+ }
+
+ /// \brief Build a new expression pack expansion.
+ ///
+ /// By default, performs semantic analysis to build a new pack expansion
+ /// for an expression. Subclasses may override this routine to provide
+ /// different behavior.
+ ExprResult RebuildPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc,
+ Optional<unsigned> NumExpansions) {
+ return getSema().CheckPackExpansion(Pattern, EllipsisLoc, NumExpansions);
+ }
+
+ /// \brief Build a new C++1z fold-expression.
+ ///
+ /// By default, performs semantic analysis in order to build a new fold
+ /// expression.
+ ExprResult RebuildCXXFoldExpr(SourceLocation LParenLoc, Expr *LHS,
+ BinaryOperatorKind Operator,
+ SourceLocation EllipsisLoc, Expr *RHS,
+ SourceLocation RParenLoc) {
+ return getSema().BuildCXXFoldExpr(LParenLoc, LHS, Operator, EllipsisLoc,
+ RHS, RParenLoc);
+ }
+
+ /// \brief Build an empty C++1z fold-expression with the given operator.
+ ///
+ /// By default, produces the fallback value for the fold-expression, or
+ /// produce an error if there is no fallback value.
+ ExprResult RebuildEmptyCXXFoldExpr(SourceLocation EllipsisLoc,
+ BinaryOperatorKind Operator) {
+ return getSema().BuildEmptyCXXFoldExpr(EllipsisLoc, Operator);
+ }
+
+ /// \brief Build a new atomic operation expression.
+ ///
+ /// By default, performs semantic analysis to build the new expression.
+ /// Subclasses may override this routine to provide different behavior.
+ ExprResult RebuildAtomicExpr(SourceLocation BuiltinLoc,
+ MultiExprArg SubExprs,
+ QualType RetTy,
+ AtomicExpr::AtomicOp Op,
+ SourceLocation RParenLoc) {
+ // Just create the expression; there is not any interesting semantic
+ // analysis here because we can't actually build an AtomicExpr until
+ // we are sure it is semantically sound.
+ return new (SemaRef.Context) AtomicExpr(BuiltinLoc, SubExprs, RetTy, Op,
+ RParenLoc);
+ }
+
+private:
+ TypeLoc TransformTypeInObjectScope(TypeLoc TL,
+ QualType ObjectType,
+ NamedDecl *FirstQualifierInScope,
+ CXXScopeSpec &SS);
+
+ TypeSourceInfo *TransformTypeInObjectScope(TypeSourceInfo *TSInfo,
+ QualType ObjectType,
+ NamedDecl *FirstQualifierInScope,
+ CXXScopeSpec &SS);
+
+ TypeSourceInfo *TransformTSIInObjectScope(TypeLoc TL, QualType ObjectType,
+ NamedDecl *FirstQualifierInScope,
+ CXXScopeSpec &SS);
+};
+
+template<typename Derived>
+StmtResult TreeTransform<Derived>::TransformStmt(Stmt *S) {
+ if (!S)
+ return S;
+
+ switch (S->getStmtClass()) {
+ case Stmt::NoStmtClass: break;
+
+ // Transform individual statement nodes
+#define STMT(Node, Parent) \
+ case Stmt::Node##Class: return getDerived().Transform##Node(cast<Node>(S));
+#define ABSTRACT_STMT(Node)
+#define EXPR(Node, Parent)
+#include "clang/AST/StmtNodes.inc"
+
+ // Transform expressions by calling TransformExpr.
+#define STMT(Node, Parent)
+#define ABSTRACT_STMT(Stmt)
+#define EXPR(Node, Parent) case Stmt::Node##Class:
+#include "clang/AST/StmtNodes.inc"
+ {
+ ExprResult E = getDerived().TransformExpr(cast<Expr>(S));
+ if (E.isInvalid())
+ return StmtError();
+
+ return getSema().ActOnExprStmt(E);
+ }
+ }
+
+ return S;
+}
+
+template<typename Derived>
+OMPClause *TreeTransform<Derived>::TransformOMPClause(OMPClause *S) {
+ if (!S)
+ return S;
+
+ switch (S->getClauseKind()) {
+ default: break;
+ // Transform individual clause nodes
+#define OPENMP_CLAUSE(Name, Class) \
+ case OMPC_ ## Name : \
+ return getDerived().Transform ## Class(cast<Class>(S));
+#include "clang/Basic/OpenMPKinds.def"
+ }
+
+ return S;
+}
+
+
+template<typename Derived>
+ExprResult TreeTransform<Derived>::TransformExpr(Expr *E) {
+ if (!E)
+ return E;
+
+ switch (E->getStmtClass()) {
+ case Stmt::NoStmtClass: break;
+#define STMT(Node, Parent) case Stmt::Node##Class: break;
+#define ABSTRACT_STMT(Stmt)
+#define EXPR(Node, Parent) \
+ case Stmt::Node##Class: return getDerived().Transform##Node(cast<Node>(E));
+#include "clang/AST/StmtNodes.inc"
+ }
+
+ return E;
+}
+
+template<typename Derived>
+ExprResult TreeTransform<Derived>::TransformInitializer(Expr *Init,
+ bool NotCopyInit) {
+ // Initializers are instantiated like expressions, except that various outer
+ // layers are stripped.
+ if (!Init)
+ return Init;
+
+ if (ExprWithCleanups *ExprTemp = dyn_cast<ExprWithCleanups>(Init))
+ Init = ExprTemp->getSubExpr();
+
+ if (MaterializeTemporaryExpr *MTE = dyn_cast<MaterializeTemporaryExpr>(Init))
+ Init = MTE->GetTemporaryExpr();
+
+ while (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(Init))
+ Init = Binder->getSubExpr();
+
+ if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Init))
+ Init = ICE->getSubExprAsWritten();
+
+ if (CXXStdInitializerListExpr *ILE =
+ dyn_cast<CXXStdInitializerListExpr>(Init))
+ return TransformInitializer(ILE->getSubExpr(), NotCopyInit);
+
+ // If this is copy-initialization, we only need to reconstruct
+ // InitListExprs. Other forms of copy-initialization will be a no-op if
+ // the initializer is already the right type.
+ CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init);
+ if (!NotCopyInit && !(Construct && Construct->isListInitialization()))
+ return getDerived().TransformExpr(Init);
+
+ // Revert value-initialization back to empty parens.
+ if (CXXScalarValueInitExpr *VIE = dyn_cast<CXXScalarValueInitExpr>(Init)) {
+ SourceRange Parens = VIE->getSourceRange();
+ return getDerived().RebuildParenListExpr(Parens.getBegin(), None,
+ Parens.getEnd());
+ }
+
+ // FIXME: We shouldn't build ImplicitValueInitExprs for direct-initialization.
+ if (isa<ImplicitValueInitExpr>(Init))
+ return getDerived().RebuildParenListExpr(SourceLocation(), None,
+ SourceLocation());
+
+ // Revert initialization by constructor back to a parenthesized or braced list
+ // of expressions. Any other form of initializer can just be reused directly.
+ if (!Construct || isa<CXXTemporaryObjectExpr>(Construct))
+ return getDerived().TransformExpr(Init);
+
+ // If the initialization implicitly converted an initializer list to a
+ // std::initializer_list object, unwrap the std::initializer_list too.
+ if (Construct && Construct->isStdInitListInitialization())
+ return TransformInitializer(Construct->getArg(0), NotCopyInit);
+
+ SmallVector<Expr*, 8> NewArgs;
+ bool ArgChanged = false;
+ if (getDerived().TransformExprs(Construct->getArgs(), Construct->getNumArgs(),
+ /*IsCall*/true, NewArgs, &ArgChanged))
+ return ExprError();
+
+ // If this was list initialization, revert to list form.
+ if (Construct->isListInitialization())
+ return getDerived().RebuildInitList(Construct->getLocStart(), NewArgs,
+ Construct->getLocEnd(),
+ Construct->getType());
+
+ // Build a ParenListExpr to represent anything else.
+ SourceRange Parens = Construct->getParenOrBraceRange();
+ if (Parens.isInvalid()) {
+ // This was a variable declaration's initialization for which no initializer
+ // was specified.
+ assert(NewArgs.empty() &&
+ "no parens or braces but have direct init with arguments?");
+ return ExprEmpty();
+ }
+ return getDerived().RebuildParenListExpr(Parens.getBegin(), NewArgs,
+ Parens.getEnd());
+}
+
+template<typename Derived>
+bool TreeTransform<Derived>::TransformExprs(Expr **Inputs,
+ unsigned NumInputs,
+ bool IsCall,
+ SmallVectorImpl<Expr *> &Outputs,
+ bool *ArgChanged) {
+ for (unsigned I = 0; I != NumInputs; ++I) {
+ // If requested, drop call arguments that need to be dropped.
+ if (IsCall && getDerived().DropCallArgument(Inputs[I])) {
+ if (ArgChanged)
+ *ArgChanged = true;
+
+ break;
+ }
+
+ if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(Inputs[I])) {
+ Expr *Pattern = Expansion->getPattern();
+
+ SmallVector<UnexpandedParameterPack, 2> Unexpanded;
+ getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded);
+ assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
+
+ // Determine whether the set of unexpanded parameter packs can and should
+ // be expanded.
+ bool Expand = true;
+ bool RetainExpansion = false;
+ Optional<unsigned> OrigNumExpansions = Expansion->getNumExpansions();
+ Optional<unsigned> NumExpansions = OrigNumExpansions;
+ if (getDerived().TryExpandParameterPacks(Expansion->getEllipsisLoc(),
+ Pattern->getSourceRange(),
+ Unexpanded,
+ Expand, RetainExpansion,
+ NumExpansions))
+ return true;
+
+ if (!Expand) {
+ // The transform has determined that we should perform a simple
+ // transformation on the pack expansion, producing another pack
+ // expansion.
+ Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
+ ExprResult OutPattern = getDerived().TransformExpr(Pattern);
+ if (OutPattern.isInvalid())
+ return true;
+
+ ExprResult Out = getDerived().RebuildPackExpansion(OutPattern.get(),
+ Expansion->getEllipsisLoc(),
+ NumExpansions);
+ if (Out.isInvalid())
+ return true;
+
+ if (ArgChanged)
+ *ArgChanged = true;
+ Outputs.push_back(Out.get());
+ continue;
+ }
+
+ // Record right away that the argument was changed. This needs
+ // to happen even if the array expands to nothing.
+ if (ArgChanged) *ArgChanged = true;
+
+ // The transform has determined that we should perform an elementwise
+ // expansion of the pattern. Do so.
+ for (unsigned I = 0; I != *NumExpansions; ++I) {
+ Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
+ ExprResult Out = getDerived().TransformExpr(Pattern);
+ if (Out.isInvalid())
+ return true;
+
+ // FIXME: Can this happen? We should not try to expand the pack
+ // in this case.
+ if (Out.get()->containsUnexpandedParameterPack()) {
+ Out = getDerived().RebuildPackExpansion(
+ Out.get(), Expansion->getEllipsisLoc(), OrigNumExpansions);
+ if (Out.isInvalid())
+ return true;
+ }
+
+ Outputs.push_back(Out.get());
+ }
+
+ // If we're supposed to retain a pack expansion, do so by temporarily
+ // forgetting the partially-substituted parameter pack.
+ if (RetainExpansion) {
+ ForgetPartiallySubstitutedPackRAII Forget(getDerived());
+
+ ExprResult Out = getDerived().TransformExpr(Pattern);
+ if (Out.isInvalid())
+ return true;
+
+ Out = getDerived().RebuildPackExpansion(
+ Out.get(), Expansion->getEllipsisLoc(), OrigNumExpansions);
+ if (Out.isInvalid())
+ return true;
+
+ Outputs.push_back(Out.get());
+ }
+
+ continue;
+ }
+
+ ExprResult Result =
+ IsCall ? getDerived().TransformInitializer(Inputs[I], /*DirectInit*/false)
+ : getDerived().TransformExpr(Inputs[I]);
+ if (Result.isInvalid())
+ return true;
+
+ if (Result.get() != Inputs[I] && ArgChanged)
+ *ArgChanged = true;
+
+ Outputs.push_back(Result.get());
+ }
+
+ return false;
+}
+
+template<typename Derived>
+NestedNameSpecifierLoc
+TreeTransform<Derived>::TransformNestedNameSpecifierLoc(
+ NestedNameSpecifierLoc NNS,
+ QualType ObjectType,
+ NamedDecl *FirstQualifierInScope) {
+ SmallVector<NestedNameSpecifierLoc, 4> Qualifiers;
+ for (NestedNameSpecifierLoc Qualifier = NNS; Qualifier;
+ Qualifier = Qualifier.getPrefix())
+ Qualifiers.push_back(Qualifier);
+
+ CXXScopeSpec SS;
+ while (!Qualifiers.empty()) {
+ NestedNameSpecifierLoc Q = Qualifiers.pop_back_val();
+ NestedNameSpecifier *QNNS = Q.getNestedNameSpecifier();
+
+ switch (QNNS->getKind()) {
+ case NestedNameSpecifier::Identifier:
+ if (SemaRef.BuildCXXNestedNameSpecifier(/*Scope=*/nullptr,
+ *QNNS->getAsIdentifier(),
+ Q.getLocalBeginLoc(),
+ Q.getLocalEndLoc(),
+ ObjectType, false, SS,
+ FirstQualifierInScope, false))
+ return NestedNameSpecifierLoc();
+
+ break;
+
+ case NestedNameSpecifier::Namespace: {
+ NamespaceDecl *NS
+ = cast_or_null<NamespaceDecl>(
+ getDerived().TransformDecl(
+ Q.getLocalBeginLoc(),
+ QNNS->getAsNamespace()));
+ SS.Extend(SemaRef.Context, NS, Q.getLocalBeginLoc(), Q.getLocalEndLoc());
+ break;
+ }
+
+ case NestedNameSpecifier::NamespaceAlias: {
+ NamespaceAliasDecl *Alias
+ = cast_or_null<NamespaceAliasDecl>(
+ getDerived().TransformDecl(Q.getLocalBeginLoc(),
+ QNNS->getAsNamespaceAlias()));
+ SS.Extend(SemaRef.Context, Alias, Q.getLocalBeginLoc(),
+ Q.getLocalEndLoc());
+ break;
+ }
+
+ case NestedNameSpecifier::Global:
+ // There is no meaningful transformation that one could perform on the
+ // global scope.
+ SS.MakeGlobal(SemaRef.Context, Q.getBeginLoc());
+ break;
+
+ case NestedNameSpecifier::Super: {
+ CXXRecordDecl *RD =
+ cast_or_null<CXXRecordDecl>(getDerived().TransformDecl(
+ SourceLocation(), QNNS->getAsRecordDecl()));
+ SS.MakeSuper(SemaRef.Context, RD, Q.getBeginLoc(), Q.getEndLoc());
+ break;
+ }
+
+ case NestedNameSpecifier::TypeSpecWithTemplate:
+ case NestedNameSpecifier::TypeSpec: {
+ TypeLoc TL = TransformTypeInObjectScope(Q.getTypeLoc(), ObjectType,
+ FirstQualifierInScope, SS);
+
+ if (!TL)
+ return NestedNameSpecifierLoc();
+
+ if (TL.getType()->isDependentType() || TL.getType()->isRecordType() ||
+ (SemaRef.getLangOpts().CPlusPlus11 &&
+ TL.getType()->isEnumeralType())) {
+ assert(!TL.getType().hasLocalQualifiers() &&
+ "Can't get cv-qualifiers here");
+ if (TL.getType()->isEnumeralType())
+ SemaRef.Diag(TL.getBeginLoc(),
+ diag::warn_cxx98_compat_enum_nested_name_spec);
+ SS.Extend(SemaRef.Context, /*FIXME:*/SourceLocation(), TL,
+ Q.getLocalEndLoc());
+ break;
+ }
+ // If the nested-name-specifier is an invalid type def, don't emit an
+ // error because a previous error should have already been emitted.
+ TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>();
+ if (!TTL || !TTL.getTypedefNameDecl()->isInvalidDecl()) {
+ SemaRef.Diag(TL.getBeginLoc(), diag::err_nested_name_spec_non_tag)
+ << TL.getType() << SS.getRange();
+ }
+ return NestedNameSpecifierLoc();
+ }
+ }
+
+ // The qualifier-in-scope and object type only apply to the leftmost entity.
+ FirstQualifierInScope = nullptr;
+ ObjectType = QualType();
+ }
+
+ // Don't rebuild the nested-name-specifier if we don't have to.
+ if (SS.getScopeRep() == NNS.getNestedNameSpecifier() &&
+ !getDerived().AlwaysRebuild())
+ return NNS;
+
+ // If we can re-use the source-location data from the original
+ // nested-name-specifier, do so.
+ if (SS.location_size() == NNS.getDataLength() &&
+ memcmp(SS.location_data(), NNS.getOpaqueData(), SS.location_size()) == 0)
+ return NestedNameSpecifierLoc(SS.getScopeRep(), NNS.getOpaqueData());
+
+ // Allocate new nested-name-specifier location information.
+ return SS.getWithLocInContext(SemaRef.Context);
+}
+
+template<typename Derived>
+DeclarationNameInfo
+TreeTransform<Derived>
+::TransformDeclarationNameInfo(const DeclarationNameInfo &NameInfo) {
+ DeclarationName Name = NameInfo.getName();
+ if (!Name)
+ return DeclarationNameInfo();
+
+ switch (Name.getNameKind()) {
+ case DeclarationName::Identifier:
+ case DeclarationName::ObjCZeroArgSelector:
+ case DeclarationName::ObjCOneArgSelector:
+ case DeclarationName::ObjCMultiArgSelector:
+ case DeclarationName::CXXOperatorName:
+ case DeclarationName::CXXLiteralOperatorName:
+ case DeclarationName::CXXUsingDirective:
+ return NameInfo;
+
+ case DeclarationName::CXXConstructorName:
+ case DeclarationName::CXXDestructorName:
+ case DeclarationName::CXXConversionFunctionName: {
+ TypeSourceInfo *NewTInfo;
+ CanQualType NewCanTy;
+ if (TypeSourceInfo *OldTInfo = NameInfo.getNamedTypeInfo()) {
+ NewTInfo = getDerived().TransformType(OldTInfo);
+ if (!NewTInfo)
+ return DeclarationNameInfo();
+ NewCanTy = SemaRef.Context.getCanonicalType(NewTInfo->getType());
+ }
+ else {
+ NewTInfo = nullptr;
+ TemporaryBase Rebase(*this, NameInfo.getLoc(), Name);
+ QualType NewT = getDerived().TransformType(Name.getCXXNameType());
+ if (NewT.isNull())
+ return DeclarationNameInfo();
+ NewCanTy = SemaRef.Context.getCanonicalType(NewT);
+ }
+
+ DeclarationName NewName
+ = SemaRef.Context.DeclarationNames.getCXXSpecialName(Name.getNameKind(),
+ NewCanTy);
+ DeclarationNameInfo NewNameInfo(NameInfo);
+ NewNameInfo.setName(NewName);
+ NewNameInfo.setNamedTypeInfo(NewTInfo);
+ return NewNameInfo;
+ }
+ }
+
+ llvm_unreachable("Unknown name kind.");
+}
+
+template<typename Derived>
+TemplateName
+TreeTransform<Derived>::TransformTemplateName(CXXScopeSpec &SS,
+ TemplateName Name,
+ SourceLocation NameLoc,
+ QualType ObjectType,
+ NamedDecl *FirstQualifierInScope) {
+ if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName()) {
+ TemplateDecl *Template = QTN->getTemplateDecl();
+ assert(Template && "qualified template name must refer to a template");
+
+ TemplateDecl *TransTemplate
+ = cast_or_null<TemplateDecl>(getDerived().TransformDecl(NameLoc,
+ Template));
+ if (!TransTemplate)
+ return TemplateName();
+
+ if (!getDerived().AlwaysRebuild() &&
+ SS.getScopeRep() == QTN->getQualifier() &&
+ TransTemplate == Template)
+ return Name;
+
+ return getDerived().RebuildTemplateName(SS, QTN->hasTemplateKeyword(),
+ TransTemplate);
+ }
+
+ if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
+ if (SS.getScopeRep()) {
+ // These apply to the scope specifier, not the template.
+ ObjectType = QualType();
+ FirstQualifierInScope = nullptr;
+ }
+
+ if (!getDerived().AlwaysRebuild() &&
+ SS.getScopeRep() == DTN->getQualifier() &&
+ ObjectType.isNull())
+ return Name;
+
+ if (DTN->isIdentifier()) {
+ return getDerived().RebuildTemplateName(SS,
+ *DTN->getIdentifier(),
+ NameLoc,
+ ObjectType,
+ FirstQualifierInScope);
+ }
+
+ return getDerived().RebuildTemplateName(SS, DTN->getOperator(), NameLoc,
+ ObjectType);
+ }
+
+ if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
+ TemplateDecl *TransTemplate
+ = cast_or_null<TemplateDecl>(getDerived().TransformDecl(NameLoc,
+ Template));
+ if (!TransTemplate)
+ return TemplateName();
+
+ if (!getDerived().AlwaysRebuild() &&
+ TransTemplate == Template)
+ return Name;
+
+ return TemplateName(TransTemplate);
+ }
+
+ if (SubstTemplateTemplateParmPackStorage *SubstPack
+ = Name.getAsSubstTemplateTemplateParmPack()) {
+ TemplateTemplateParmDecl *TransParam
+ = cast_or_null<TemplateTemplateParmDecl>(
+ getDerived().TransformDecl(NameLoc, SubstPack->getParameterPack()));
+ if (!TransParam)
+ return TemplateName();
+
+ if (!getDerived().AlwaysRebuild() &&
+ TransParam == SubstPack->getParameterPack())
+ return Name;
+
+ return getDerived().RebuildTemplateName(TransParam,
+ SubstPack->getArgumentPack());
+ }
+
+ // These should be getting filtered out before they reach the AST.
+ llvm_unreachable("overloaded function decl survived to here");
+}
+
+template<typename Derived>
+void TreeTransform<Derived>::InventTemplateArgumentLoc(
+ const TemplateArgument &Arg,
+ TemplateArgumentLoc &Output) {
+ SourceLocation Loc = getDerived().getBaseLocation();
+ switch (Arg.getKind()) {
+ case TemplateArgument::Null:
+ llvm_unreachable("null template argument in TreeTransform");
+ break;
+
+ case TemplateArgument::Type:
+ Output = TemplateArgumentLoc(Arg,
+ SemaRef.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
+
+ break;
+
+ case TemplateArgument::Template:
+ case TemplateArgument::TemplateExpansion: {
+ NestedNameSpecifierLocBuilder Builder;
+ TemplateName Template = Arg.getAsTemplate();
+ if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
+ Builder.MakeTrivial(SemaRef.Context, DTN->getQualifier(), Loc);
+ else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
+ Builder.MakeTrivial(SemaRef.Context, QTN->getQualifier(), Loc);
+
+ if (Arg.getKind() == TemplateArgument::Template)
+ Output = TemplateArgumentLoc(Arg,
+ Builder.getWithLocInContext(SemaRef.Context),
+ Loc);
+ else
+ Output = TemplateArgumentLoc(Arg,
+ Builder.getWithLocInContext(SemaRef.Context),
+ Loc, Loc);
+
+ break;
+ }
+
+ case TemplateArgument::Expression:
+ Output = TemplateArgumentLoc(Arg, Arg.getAsExpr());
+ break;
+
+ case TemplateArgument::Declaration:
+ case TemplateArgument::Integral:
+ case TemplateArgument::Pack:
+ case TemplateArgument::NullPtr:
+ Output = TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
+ break;
+ }
+}
+
+template<typename Derived>
+bool TreeTransform<Derived>::TransformTemplateArgument(
+ const TemplateArgumentLoc &Input,
+ TemplateArgumentLoc &Output) {
+ const TemplateArgument &Arg = Input.getArgument();
+ switch (Arg.getKind()) {
+ case TemplateArgument::Null:
+ case TemplateArgument::Integral:
+ case TemplateArgument::Pack:
+ case TemplateArgument::Declaration:
+ case TemplateArgument::NullPtr:
+ llvm_unreachable("Unexpected TemplateArgument");
+
+ case TemplateArgument::Type: {
+ TypeSourceInfo *DI = Input.getTypeSourceInfo();
+ if (!DI)
+ DI = InventTypeSourceInfo(Input.getArgument().getAsType());
+
+ DI = getDerived().TransformType(DI);
+ if (!DI) return true;
+
+ Output = TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
+ return false;
+ }
+
+ case TemplateArgument::Template: {
+ NestedNameSpecifierLoc QualifierLoc = Input.getTemplateQualifierLoc();
+ if (QualifierLoc) {
+ QualifierLoc = getDerived().TransformNestedNameSpecifierLoc(QualifierLoc);
+ if (!QualifierLoc)
+ return true;
+ }
+
+ CXXScopeSpec SS;
+ SS.Adopt(QualifierLoc);
+ TemplateName Template
+ = getDerived().TransformTemplateName(SS, Arg.getAsTemplate(),
+ Input.getTemplateNameLoc());
+ if (Template.isNull())
+ return true;
+
+ Output = TemplateArgumentLoc(TemplateArgument(Template), QualifierLoc,
+ Input.getTemplateNameLoc());
+ return false;
+ }
+
+ case TemplateArgument::TemplateExpansion:
+ llvm_unreachable("Caller should expand pack expansions");
+
+ case TemplateArgument::Expression: {
+ // Template argument expressions are constant expressions.
+ EnterExpressionEvaluationContext Unevaluated(getSema(),
+ Sema::ConstantEvaluated);
+
+ Expr *InputExpr = Input.getSourceExpression();
+ if (!InputExpr) InputExpr = Input.getArgument().getAsExpr();
+
+ ExprResult E = getDerived().TransformExpr(InputExpr);
+ E = SemaRef.ActOnConstantExpression(E);
+ if (E.isInvalid()) return true;
+ Output = TemplateArgumentLoc(TemplateArgument(E.get()), E.get());
+ return false;
+ }
+ }
+
+ // Work around bogus GCC warning
+ return true;
+}
+
+/// \brief Iterator adaptor that invents template argument location information
+/// for each of the template arguments in its underlying iterator.
+template<typename Derived, typename InputIterator>
+class TemplateArgumentLocInventIterator {
+ TreeTransform<Derived> &Self;
+ InputIterator Iter;
+
+public:
+ typedef TemplateArgumentLoc value_type;
+ typedef TemplateArgumentLoc reference;
+ typedef typename std::iterator_traits<InputIterator>::difference_type
+ difference_type;
+ typedef std::input_iterator_tag iterator_category;
+
+ class pointer {
+ TemplateArgumentLoc Arg;
+
+ public:
+ explicit pointer(TemplateArgumentLoc Arg) : Arg(Arg) { }
+
+ const TemplateArgumentLoc *operator->() const { return &Arg; }
+ };
+
+ TemplateArgumentLocInventIterator() { }
+
+ explicit TemplateArgumentLocInventIterator(TreeTransform<Derived> &Self,
+ InputIterator Iter)
+ : Self(Self), Iter(Iter) { }
+
+ TemplateArgumentLocInventIterator &operator++() {
+ ++Iter;
+ return *this;
+ }
+
+ TemplateArgumentLocInventIterator operator++(int) {
+ TemplateArgumentLocInventIterator Old(*this);
+ ++(*this);
+ return Old;
+ }
+
+ reference operator*() const {
+ TemplateArgumentLoc Result;
+ Self.InventTemplateArgumentLoc(*Iter, Result);
+ return Result;
+ }
+
+ pointer operator->() const { return pointer(**this); }
+
+ friend bool operator==(const TemplateArgumentLocInventIterator &X,
+ const TemplateArgumentLocInventIterator &Y) {
+ return X.Iter == Y.Iter;
+ }
+
+ friend bool operator!=(const TemplateArgumentLocInventIterator &X,
+ const TemplateArgumentLocInventIterator &Y) {
+ return X.Iter != Y.Iter;
+ }
+};
+
+template<typename Derived>
+template<typename InputIterator>
+bool TreeTransform<Derived>::TransformTemplateArguments(InputIterator First,
+ InputIterator Last,
+ TemplateArgumentListInfo &Outputs) {
+ for (; First != Last; ++First) {
+ TemplateArgumentLoc Out;
+ TemplateArgumentLoc In = *First;
+
+ if (In.getArgument().getKind() == TemplateArgument::Pack) {
+ // Unpack argument packs, which we translate them into separate
+ // arguments.
+ // FIXME: We could do much better if we could guarantee that the
+ // TemplateArgumentLocInfo for the pack expansion would be usable for
+ // all of the template arguments in the argument pack.
+ typedef TemplateArgumentLocInventIterator<Derived,
+ TemplateArgument::pack_iterator>
+ PackLocIterator;
+ if (TransformTemplateArguments(PackLocIterator(*this,
+ In.getArgument().pack_begin()),
+ PackLocIterator(*this,
+ In.getArgument().pack_end()),
+ Outputs))
+ return true;
+
+ continue;
+ }
+
+ if (In.getArgument().isPackExpansion()) {
+ // We have a pack expansion, for which we will be substituting into
+ // the pattern.
+ SourceLocation Ellipsis;
+ Optional<unsigned> OrigNumExpansions;
+ TemplateArgumentLoc Pattern
+ = getSema().getTemplateArgumentPackExpansionPattern(
+ In, Ellipsis, OrigNumExpansions);
+
+ SmallVector<UnexpandedParameterPack, 2> Unexpanded;
+ getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded);
+ assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
+
+ // Determine whether the set of unexpanded parameter packs can and should
+ // be expanded.
+ bool Expand = true;
+ bool RetainExpansion = false;
+ Optional<unsigned> NumExpansions = OrigNumExpansions;
+ if (getDerived().TryExpandParameterPacks(Ellipsis,
+ Pattern.getSourceRange(),
+ Unexpanded,
+ Expand,
+ RetainExpansion,
+ NumExpansions))
+ return true;
+
+ if (!Expand) {
+ // The transform has determined that we should perform a simple
+ // transformation on the pack expansion, producing another pack
+ // expansion.
+ TemplateArgumentLoc OutPattern;
+ Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
+ if (getDerived().TransformTemplateArgument(Pattern, OutPattern))
+ return true;
+
+ Out = getDerived().RebuildPackExpansion(OutPattern, Ellipsis,
+ NumExpansions);
+ if (Out.getArgument().isNull())
+ return true;
+
+ Outputs.addArgument(Out);
+ continue;
+ }
+
+ // The transform has determined that we should perform an elementwise
+ // expansion of the pattern. Do so.
+ for (unsigned I = 0; I != *NumExpansions; ++I) {
+ Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
+
+ if (getDerived().TransformTemplateArgument(Pattern, Out))
+ return true;
+
+ if (Out.getArgument().containsUnexpandedParameterPack()) {
+ Out = getDerived().RebuildPackExpansion(Out, Ellipsis,
+ OrigNumExpansions);
+ if (Out.getArgument().isNull())
+ return true;
+ }
+
+ Outputs.addArgument(Out);
+ }
+
+ // If we're supposed to retain a pack expansion, do so by temporarily
+ // forgetting the partially-substituted parameter pack.
+ if (RetainExpansion) {
+ ForgetPartiallySubstitutedPackRAII Forget(getDerived());
+
+ if (getDerived().TransformTemplateArgument(Pattern, Out))
+ return true;
+
+ Out = getDerived().RebuildPackExpansion(Out, Ellipsis,
+ OrigNumExpansions);
+ if (Out.getArgument().isNull())
+ return true;
+
+ Outputs.addArgument(Out);
+ }
+
+ continue;
+ }
+
+ // The simple case:
+ if (getDerived().TransformTemplateArgument(In, Out))
+ return true;
+
+ Outputs.addArgument(Out);
+ }
+
+ return false;
+
+}
+
+//===----------------------------------------------------------------------===//
+// Type transformation
+//===----------------------------------------------------------------------===//
+
+template<typename Derived>
+QualType TreeTransform<Derived>::TransformType(QualType T) {
+ if (getDerived().AlreadyTransformed(T))
+ return T;
+
+ // Temporary workaround. All of these transformations should
+ // eventually turn into transformations on TypeLocs.
+ TypeSourceInfo *DI = getSema().Context.getTrivialTypeSourceInfo(T,
+ getDerived().getBaseLocation());
+
+ TypeSourceInfo *NewDI = getDerived().TransformType(DI);
+
+ if (!NewDI)
+ return QualType();
+
+ return NewDI->getType();
+}
+
+template<typename Derived>
+TypeSourceInfo *TreeTransform<Derived>::TransformType(TypeSourceInfo *DI) {
+ // Refine the base location to the type's location.
+ TemporaryBase Rebase(*this, DI->getTypeLoc().getBeginLoc(),
+ getDerived().getBaseEntity());
+ if (getDerived().AlreadyTransformed(DI->getType()))
+ return DI;
+
+ TypeLocBuilder TLB;
+
+ TypeLoc TL = DI->getTypeLoc();
+ TLB.reserve(TL.getFullDataSize());
+
+ QualType Result = getDerived().TransformType(TLB, TL);
+ if (Result.isNull())
+ return nullptr;
+
+ return TLB.getTypeSourceInfo(SemaRef.Context, Result);
+}
+
+template<typename Derived>
+QualType
+TreeTransform<Derived>::TransformType(TypeLocBuilder &TLB, TypeLoc T) {
+ switch (T.getTypeLocClass()) {
+#define ABSTRACT_TYPELOC(CLASS, PARENT)
+#define TYPELOC(CLASS, PARENT) \
+ case TypeLoc::CLASS: \
+ return getDerived().Transform##CLASS##Type(TLB, \
+ T.castAs<CLASS##TypeLoc>());
+#include "clang/AST/TypeLocNodes.def"
+ }
+
+ llvm_unreachable("unhandled type loc!");
+}
+
+/// FIXME: By default, this routine adds type qualifiers only to types
+/// that can have qualifiers, and silently suppresses those qualifiers
+/// that are not permitted (e.g., qualifiers on reference or function
+/// types). This is the right thing for template instantiation, but
+/// probably not for other clients.
+template<typename Derived>
+QualType
+TreeTransform<Derived>::TransformQualifiedType(TypeLocBuilder &TLB,
+ QualifiedTypeLoc T) {
+ Qualifiers Quals = T.getType().getLocalQualifiers();
+
+ QualType Result = getDerived().TransformType(TLB, T.getUnqualifiedLoc());
+ if (Result.isNull())
+ return QualType();
+
+ // Silently suppress qualifiers if the result type can't be qualified.
+ // FIXME: this is the right thing for template instantiation, but
+ // probably not for other clients.
+ if (Result->isFunctionType() || Result->isReferenceType())
+ return Result;
+
+ // Suppress Objective-C lifetime qualifiers if they don't make sense for the
+ // resulting type.
+ if (Quals.hasObjCLifetime()) {
+ if (!Result->isObjCLifetimeType() && !Result->isDependentType())
+ Quals.removeObjCLifetime();
+ else if (Result.getObjCLifetime()) {
+ // Objective-C ARC:
+ // A lifetime qualifier applied to a substituted template parameter
+ // overrides the lifetime qualifier from the template argument.
+ const AutoType *AutoTy;
+ if (const SubstTemplateTypeParmType *SubstTypeParam
+ = dyn_cast<SubstTemplateTypeParmType>(Result)) {
+ QualType Replacement = SubstTypeParam->getReplacementType();
+ Qualifiers Qs = Replacement.getQualifiers();
+ Qs.removeObjCLifetime();
+ Replacement
+ = SemaRef.Context.getQualifiedType(Replacement.getUnqualifiedType(),
+ Qs);
+ Result = SemaRef.Context.getSubstTemplateTypeParmType(
+ SubstTypeParam->getReplacedParameter(),
+ Replacement);
+ TLB.TypeWasModifiedSafely(Result);
+ } else if ((AutoTy = dyn_cast<AutoType>(Result)) && AutoTy->isDeduced()) {
+ // 'auto' types behave the same way as template parameters.
+ QualType Deduced = AutoTy->getDeducedType();
+ Qualifiers Qs = Deduced.getQualifiers();
+ Qs.removeObjCLifetime();
+ Deduced = SemaRef.Context.getQualifiedType(Deduced.getUnqualifiedType(),
+ Qs);
+ Result = SemaRef.Context.getAutoType(Deduced, AutoTy->isDecltypeAuto(),
+ AutoTy->isDependentType());
+ TLB.TypeWasModifiedSafely(Result);
+ } else {
+ // Otherwise, complain about the addition of a qualifier to an
+ // already-qualified type.
+ SourceRange R = T.getUnqualifiedLoc().getSourceRange();
+ SemaRef.Diag(R.getBegin(), diag::err_attr_objc_ownership_redundant)
+ << Result << R;
+
+ Quals.removeObjCLifetime();
+ }
+ }
+ }
+ if (!Quals.empty()) {
+ Result = SemaRef.BuildQualifiedType(Result, T.getBeginLoc(), Quals);
+ // BuildQualifiedType might not add qualifiers if they are invalid.
+ if (Result.hasLocalQualifiers())
+ TLB.push<QualifiedTypeLoc>(Result);
+ // No location information to preserve.
+ }
+
+ return Result;
+}
+
+template<typename Derived>
+TypeLoc
+TreeTransform<Derived>::TransformTypeInObjectScope(TypeLoc TL,
+ QualType ObjectType,
+ NamedDecl *UnqualLookup,
+ CXXScopeSpec &SS) {
+ if (getDerived().AlreadyTransformed(TL.getType()))
+ return TL;
+
+ TypeSourceInfo *TSI =
+ TransformTSIInObjectScope(TL, ObjectType, UnqualLookup, SS);
+ if (TSI)
+ return TSI->getTypeLoc();
+ return TypeLoc();
+}
+
+template<typename Derived>
+TypeSourceInfo *
+TreeTransform<Derived>::TransformTypeInObjectScope(TypeSourceInfo *TSInfo,
+ QualType ObjectType,
+ NamedDecl *UnqualLookup,
+ CXXScopeSpec &SS) {
+ if (getDerived().AlreadyTransformed(TSInfo->getType()))
+ return TSInfo;
+
+ return TransformTSIInObjectScope(TSInfo->getTypeLoc(), ObjectType,
+ UnqualLookup, SS);
+}
+
+template <typename Derived>
+TypeSourceInfo *TreeTransform<Derived>::TransformTSIInObjectScope(
+ TypeLoc TL, QualType ObjectType, NamedDecl *UnqualLookup,
+ CXXScopeSpec &SS) {
+ QualType T = TL.getType();
+ assert(!getDerived().AlreadyTransformed(T));
+
+ TypeLocBuilder TLB;
+ QualType Result;
+
+ if (isa<TemplateSpecializationType>(T)) {
+ TemplateSpecializationTypeLoc SpecTL =
+ TL.castAs<TemplateSpecializationTypeLoc>();
+
+ TemplateName Template
+ = getDerived().TransformTemplateName(SS,
+ SpecTL.getTypePtr()->getTemplateName(),
+ SpecTL.getTemplateNameLoc(),
+ ObjectType, UnqualLookup);
+ if (Template.isNull())
+ return nullptr;
+
+ Result = getDerived().TransformTemplateSpecializationType(TLB, SpecTL,
+ Template);
+ } else if (isa<DependentTemplateSpecializationType>(T)) {
+ DependentTemplateSpecializationTypeLoc SpecTL =
+ TL.castAs<DependentTemplateSpecializationTypeLoc>();
+
+ TemplateName Template
+ = getDerived().RebuildTemplateName(SS,
+ *SpecTL.getTypePtr()->getIdentifier(),
+ SpecTL.getTemplateNameLoc(),
+ ObjectType, UnqualLookup);
+ if (Template.isNull())
+ return nullptr;
+
+ Result = getDerived().TransformDependentTemplateSpecializationType(TLB,
+ SpecTL,
+ Template,
+ SS);
+ } else {
+ // Nothing special needs to be done for these.
+ Result = getDerived().TransformType(TLB, TL);
+ }
+
+ if (Result.isNull())
+ return nullptr;
+
+ return TLB.getTypeSourceInfo(SemaRef.Context, Result);
+}
+
+template <class TyLoc> static inline
+QualType TransformTypeSpecType(TypeLocBuilder &TLB, TyLoc T) {
+ TyLoc NewT = TLB.push<TyLoc>(T.getType());
+ NewT.setNameLoc(T.getNameLoc());
+ return T.getType();
+}
+
+template<typename Derived>
+QualType TreeTransform<Derived>::TransformBuiltinType(TypeLocBuilder &TLB,
+ BuiltinTypeLoc T) {
+ BuiltinTypeLoc NewT = TLB.push<BuiltinTypeLoc>(T.getType());
+ NewT.setBuiltinLoc(T.getBuiltinLoc());
+ if (T.needsExtraLocalData())
+ NewT.getWrittenBuiltinSpecs() = T.getWrittenBuiltinSpecs();
+ return T.getType();
+}
+
+template<typename Derived>
+QualType TreeTransform<Derived>::TransformComplexType(TypeLocBuilder &TLB,
+ ComplexTypeLoc T) {
+ // FIXME: recurse?
+ return TransformTypeSpecType(TLB, T);
+}
+
+template <typename Derived>
+QualType TreeTransform<Derived>::TransformAdjustedType(TypeLocBuilder &TLB,
+ AdjustedTypeLoc TL) {
+ // Adjustments applied during transformation are handled elsewhere.
+ return getDerived().TransformType(TLB, TL.getOriginalLoc());
+}
+
+template<typename Derived>
+QualType TreeTransform<Derived>::TransformDecayedType(TypeLocBuilder &TLB,
+ DecayedTypeLoc TL) {
+ QualType OriginalType = getDerived().TransformType(TLB, TL.getOriginalLoc());
+ if (OriginalType.isNull())
+ return QualType();
+
+ QualType Result = TL.getType();
+ if (getDerived().AlwaysRebuild() ||
+ OriginalType != TL.getOriginalLoc().getType())
+ Result = SemaRef.Context.getDecayedType(OriginalType);
+ TLB.push<DecayedTypeLoc>(Result);
+ // Nothing to set for DecayedTypeLoc.
+ return Result;
+}
+
+template<typename Derived>
+QualType TreeTransform<Derived>::TransformPointerType(TypeLocBuilder &TLB,
+ PointerTypeLoc TL) {
+ QualType PointeeType
+ = getDerived().TransformType(TLB, TL.getPointeeLoc());
+ if (PointeeType.isNull())
+ return QualType();
+
+ QualType Result = TL.getType();
+ if (PointeeType->getAs<ObjCObjectType>()) {
+ // A dependent pointer type 'T *' has is being transformed such
+ // that an Objective-C class type is being replaced for 'T'. The
+ // resulting pointer type is an ObjCObjectPointerType, not a
+ // PointerType.
+ Result = SemaRef.Context.getObjCObjectPointerType(PointeeType);
+
+ ObjCObjectPointerTypeLoc NewT = TLB.push<ObjCObjectPointerTypeLoc>(Result);
+ NewT.setStarLoc(TL.getStarLoc());
+ return Result;
+ }
+
+ if (getDerived().AlwaysRebuild() ||
+ PointeeType != TL.getPointeeLoc().getType()) {
+ Result = getDerived().RebuildPointerType(PointeeType, TL.getSigilLoc());
+ if (Result.isNull())
+ return QualType();
+ }
+
+ // Objective-C ARC can add lifetime qualifiers to the type that we're
+ // pointing to.
+ TLB.TypeWasModifiedSafely(Result->getPointeeType());
+
+ PointerTypeLoc NewT = TLB.push<PointerTypeLoc>(Result);
+ NewT.setSigilLoc(TL.getSigilLoc());
+ return Result;
+}
+
+template<typename Derived>
+QualType
+TreeTransform<Derived>::TransformBlockPointerType(TypeLocBuilder &TLB,
+ BlockPointerTypeLoc TL) {
+ QualType PointeeType
+ = getDerived().TransformType(TLB, TL.getPointeeLoc());
+ if (PointeeType.isNull())
+ return QualType();
+
+ QualType Result = TL.getType();
+ if (getDerived().AlwaysRebuild() ||
+ PointeeType != TL.getPointeeLoc().getType()) {
+ Result = getDerived().RebuildBlockPointerType(PointeeType,
+ TL.getSigilLoc());
+ if (Result.isNull())
+ return QualType();
+ }
+
+ BlockPointerTypeLoc NewT = TLB.push<BlockPointerTypeLoc>(Result);
+ NewT.setSigilLoc(TL.getSigilLoc());
+ return Result;
+}
+
+/// Transforms a reference type. Note that somewhat paradoxically we
+/// don't care whether the type itself is an l-value type or an r-value
+/// type; we only care if the type was *written* as an l-value type
+/// or an r-value type.
+template<typename Derived>
+QualType
+TreeTransform<Derived>::TransformReferenceType(TypeLocBuilder &TLB,
+ ReferenceTypeLoc TL) {
+ const ReferenceType *T = TL.getTypePtr();
+
+ // Note that this works with the pointee-as-written.
+ QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc());
+ if (PointeeType.isNull())
+ return QualType();
+
+ QualType Result = TL.getType();
+ if (getDerived().AlwaysRebuild() ||
+ PointeeType != T->getPointeeTypeAsWritten()) {
+ Result = getDerived().RebuildReferenceType(PointeeType,
+ T->isSpelledAsLValue(),
+ TL.getSigilLoc());
+ if (Result.isNull())
+ return QualType();
+ }
+
+ // Objective-C ARC can add lifetime qualifiers to the type that we're
+ // referring to.
+ TLB.TypeWasModifiedSafely(
+ Result->getAs<ReferenceType>()->getPointeeTypeAsWritten());
+
+ // r-value references can be rebuilt as l-value references.
+ ReferenceTypeLoc NewTL;
+ if (isa<LValueReferenceType>(Result))
+ NewTL = TLB.push<LValueReferenceTypeLoc>(Result);
+ else
+ NewTL = TLB.push<RValueReferenceTypeLoc>(Result);
+ NewTL.setSigilLoc(TL.getSigilLoc());
+
+ return Result;
+}
+
+template<typename Derived>
+QualType
+TreeTransform<Derived>::TransformLValueReferenceType(TypeLocBuilder &TLB,
+ LValueReferenceTypeLoc TL) {
+ return TransformReferenceType(TLB, TL);
+}
+
+template<typename Derived>
+QualType
+TreeTransform<Derived>::TransformRValueReferenceType(TypeLocBuilder &TLB,
+ RValueReferenceTypeLoc TL) {
+ return TransformReferenceType(TLB, TL);
+}
+
+template<typename Derived>
+QualType
+TreeTransform<Derived>::TransformMemberPointerType(TypeLocBuilder &TLB,
+ MemberPointerTypeLoc TL) {
+ QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc());
+ if (PointeeType.isNull())
+ return QualType();
+
+ TypeSourceInfo* OldClsTInfo = TL.getClassTInfo();
+ TypeSourceInfo *NewClsTInfo = nullptr;
+ if (OldClsTInfo) {
+ NewClsTInfo = getDerived().TransformType(OldClsTInfo);
+ if (!NewClsTInfo)
+ return QualType();
+ }
+
+ const MemberPointerType *T = TL.getTypePtr();
+ QualType OldClsType = QualType(T->getClass(), 0);
+ QualType NewClsType;
+ if (NewClsTInfo)
+ NewClsType = NewClsTInfo->getType();
+ else {
+ NewClsType = getDerived().TransformType(OldClsType);
+ if (NewClsType.isNull())
+ return QualType();
+ }
+
+ QualType Result = TL.getType();
+ if (getDerived().AlwaysRebuild() ||
+ PointeeType != T->getPointeeType() ||
+ NewClsType != OldClsType) {
+ Result = getDerived().RebuildMemberPointerType(PointeeType, NewClsType,
+ TL.getStarLoc());
+ if (Result.isNull())
+ return QualType();
+ }
+
+ // If we had to adjust the pointee type when building a member pointer, make
+ // sure to push TypeLoc info for it.
+ const MemberPointerType *MPT = Result->getAs<MemberPointerType>();
+ if (MPT && PointeeType != MPT->getPointeeType()) {
+ assert(isa<AdjustedType>(MPT->getPointeeType()));
+ TLB.push<AdjustedTypeLoc>(MPT->getPointeeType());
+ }
+
+ MemberPointerTypeLoc NewTL = TLB.push<MemberPointerTypeLoc>(Result);
+ NewTL.setSigilLoc(TL.getSigilLoc());
+ NewTL.setClassTInfo(NewClsTInfo);
+
+ return Result;
+}
+
+template<typename Derived>
+QualType
+TreeTransform<Derived>::TransformConstantArrayType(TypeLocBuilder &TLB,
+ ConstantArrayTypeLoc TL) {
+ const ConstantArrayType *T = TL.getTypePtr();
+ QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
+ if (ElementType.isNull())
+ return QualType();
+
+ QualType Result = TL.getType();
+ if (getDerived().AlwaysRebuild() ||
+ ElementType != T->getElementType()) {
+ Result = getDerived().RebuildConstantArrayType(ElementType,
+ T->getSizeModifier(),
+ T->getSize(),
+ T->getIndexTypeCVRQualifiers(),
+ TL.getBracketsRange());
+ if (Result.isNull())
+ return QualType();
+ }
+
+ // We might have either a ConstantArrayType or a VariableArrayType now:
+ // a ConstantArrayType is allowed to have an element type which is a
+ // VariableArrayType if the type is dependent. Fortunately, all array
+ // types have the same location layout.
+ ArrayTypeLoc NewTL = TLB.push<ArrayTypeLoc>(Result);
+ NewTL.setLBracketLoc(TL.getLBracketLoc());
+ NewTL.setRBracketLoc(TL.getRBracketLoc());
+
+ Expr *Size = TL.getSizeExpr();
+ if (Size) {
+ EnterExpressionEvaluationContext Unevaluated(SemaRef,
+ Sema::ConstantEvaluated);
+ Size = getDerived().TransformExpr(Size).template getAs<Expr>();
+ Size = SemaRef.ActOnConstantExpression(Size).get();
+ }
+ NewTL.setSizeExpr(Size);
+
+ return Result;
+}
+
+template<typename Derived>
+QualType TreeTransform<Derived>::TransformIncompleteArrayType(
+ TypeLocBuilder &TLB,
+ IncompleteArrayTypeLoc TL) {
+ const IncompleteArrayType *T = TL.getTypePtr();
+ QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
+ if (ElementType.isNull())
+ return QualType();
+
+ QualType Result = TL.getType();
+ if (getDerived().AlwaysRebuild() ||
+ ElementType != T->getElementType()) {
+ Result = getDerived().RebuildIncompleteArrayType(ElementType,
+ T->getSizeModifier(),
+ T->getIndexTypeCVRQualifiers(),
+ TL.getBracketsRange());
+ if (Result.isNull())
+ return QualType();
+ }
+
+ IncompleteArrayTypeLoc NewTL = TLB.push<IncompleteArrayTypeLoc>(Result);
+ NewTL.setLBracketLoc(TL.getLBracketLoc());
+ NewTL.setRBracketLoc(TL.getRBracketLoc());
+ NewTL.setSizeExpr(nullptr);
+
+ return Result;
+}
+
+template<typename Derived>
+QualType
+TreeTransform<Derived>::TransformVariableArrayType(TypeLocBuilder &TLB,
+ VariableArrayTypeLoc TL) {
+ const VariableArrayType *T = TL.getTypePtr();
+ QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
+ if (ElementType.isNull())
+ return QualType();
+
+ ExprResult SizeResult
+ = getDerived().TransformExpr(T->getSizeExpr());
+ if (SizeResult.isInvalid())
+ return QualType();
+
+ Expr *Size = SizeResult.get();
+
+ QualType Result = TL.getType();
+ if (getDerived().AlwaysRebuild() ||
+ ElementType != T->getElementType() ||
+ Size != T->getSizeExpr()) {
+ Result = getDerived().RebuildVariableArrayType(ElementType,
+ T->getSizeModifier(),
+ Size,
+ T->getIndexTypeCVRQualifiers(),
+ TL.getBracketsRange());
+ if (Result.isNull())
+ return QualType();
+ }
+
+ // We might have constant size array now, but fortunately it has the same
+ // location layout.
+ ArrayTypeLoc NewTL = TLB.push<ArrayTypeLoc>(Result);
+ NewTL.setLBracketLoc(TL.getLBracketLoc());
+ NewTL.setRBracketLoc(TL.getRBracketLoc());
+ NewTL.setSizeExpr(Size);
+
+ return Result;
+}
+
+template<typename Derived>
+QualType
+TreeTransform<Derived>::TransformDependentSizedArrayType(TypeLocBuilder &TLB,
+ DependentSizedArrayTypeLoc TL) {
+ const DependentSizedArrayType *T = TL.getTypePtr();
+ QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
+ if (ElementType.isNull())
+ return QualType();
+
+ // Array bounds are constant expressions.
+ EnterExpressionEvaluationContext Unevaluated(SemaRef,
+ Sema::ConstantEvaluated);
+
+ // Prefer the expression from the TypeLoc; the other may have been uniqued.
+ Expr *origSize = TL.getSizeExpr();
+ if (!origSize) origSize = T->getSizeExpr();
+
+ ExprResult sizeResult
+ = getDerived().TransformExpr(origSize);
+ sizeResult = SemaRef.ActOnConstantExpression(sizeResult);
+ if (sizeResult.isInvalid())
+ return QualType();
+
+ Expr *size = sizeResult.get();
+
+ QualType Result = TL.getType();
+ if (getDerived().AlwaysRebuild() ||
+ ElementType != T->getElementType() ||
+ size != origSize) {
+ Result = getDerived().RebuildDependentSizedArrayType(ElementType,
+ T->getSizeModifier(),
+ size,
+ T->getIndexTypeCVRQualifiers(),
+ TL.getBracketsRange());
+ if (Result.isNull())
+ return QualType();
+ }
+
+ // We might have any sort of array type now, but fortunately they
+ // all have the same location layout.
+ ArrayTypeLoc NewTL = TLB.push<ArrayTypeLoc>(Result);
+ NewTL.setLBracketLoc(TL.getLBracketLoc());
+ NewTL.setRBracketLoc(TL.getRBracketLoc());
+ NewTL.setSizeExpr(size);
+
+ return Result;
+}
+
+template<typename Derived>
+QualType TreeTransform<Derived>::TransformDependentSizedExtVectorType(
+ TypeLocBuilder &TLB,
+ DependentSizedExtVectorTypeLoc TL) {
+ const DependentSizedExtVectorType *T = TL.getTypePtr();
+
+ // FIXME: ext vector locs should be nested
+ QualType ElementType = getDerived().TransformType(T->getElementType());
+ if (ElementType.isNull())
+ return QualType();
+
+ // Vector sizes are constant expressions.
+ EnterExpressionEvaluationContext Unevaluated(SemaRef,
+ Sema::ConstantEvaluated);
+
+ ExprResult Size = getDerived().TransformExpr(T->getSizeExpr());
+ Size = SemaRef.ActOnConstantExpression(Size);
+ if (Size.isInvalid())
+ return QualType();
+
+ QualType Result = TL.getType();
+ if (getDerived().AlwaysRebuild() ||
+ ElementType != T->getElementType() ||
+ Size.get() != T->getSizeExpr()) {
+ Result = getDerived().RebuildDependentSizedExtVectorType(ElementType,
+ Size.get(),
+ T->getAttributeLoc());
+ if (Result.isNull())
+ return QualType();
+ }
+
+ // Result might be dependent or not.
+ if (isa<DependentSizedExtVectorType>(Result)) {
+ DependentSizedExtVectorTypeLoc NewTL
+ = TLB.push<DependentSizedExtVectorTypeLoc>(Result);
+ NewTL.setNameLoc(TL.getNameLoc());
+ } else {
+ ExtVectorTypeLoc NewTL = TLB.push<ExtVectorTypeLoc>(Result);
+ NewTL.setNameLoc(TL.getNameLoc());
+ }
+
+ return Result;
+}
+
+template<typename Derived>
+QualType TreeTransform<Derived>::TransformVectorType(TypeLocBuilder &TLB,
+ VectorTypeLoc TL) {
+ const VectorType *T = TL.getTypePtr();
+ QualType ElementType = getDerived().TransformType(T->getElementType());
+ if (ElementType.isNull())
+ return QualType();
+
+ QualType Result = TL.getType();
+ if (getDerived().AlwaysRebuild() ||
+ ElementType != T->getElementType()) {
+ Result = getDerived().RebuildVectorType(ElementType, T->getNumElements(),
+ T->getVectorKind());
+ if (Result.isNull())
+ return QualType();
+ }
+
+ VectorTypeLoc NewTL = TLB.push<VectorTypeLoc>(Result);
+ NewTL.setNameLoc(TL.getNameLoc());
+
+ return Result;
+}
+
+template<typename Derived>
+QualType TreeTransform<Derived>::TransformExtVectorType(TypeLocBuilder &TLB,
+ ExtVectorTypeLoc TL) {
+ const VectorType *T = TL.getTypePtr();
+ QualType ElementType = getDerived().TransformType(T->getElementType());
+ if (ElementType.isNull())
+ return QualType();
+
+ QualType Result = TL.getType();
+ if (getDerived().AlwaysRebuild() ||
+ ElementType != T->getElementType()) {
+ Result = getDerived().RebuildExtVectorType(ElementType,
+ T->getNumElements(),
+ /*FIXME*/ SourceLocation());
+ if (Result.isNull())
+ return QualType();
+ }
+
+ ExtVectorTypeLoc NewTL = TLB.push<ExtVectorTypeLoc>(Result);
+ NewTL.setNameLoc(TL.getNameLoc());
+
+ return Result;
+}
+
+template <typename Derived>
+ParmVarDecl *TreeTransform<Derived>::TransformFunctionTypeParam(
+ ParmVarDecl *OldParm, int indexAdjustment, Optional<unsigned> NumExpansions,
+ bool ExpectParameterPack) {
+ TypeSourceInfo *OldDI = OldParm->getTypeSourceInfo();
+ TypeSourceInfo *NewDI = nullptr;
+
+ if (NumExpansions && isa<PackExpansionType>(OldDI->getType())) {
+ // If we're substituting into a pack expansion type and we know the
+ // length we want to expand to, just substitute for the pattern.
+ TypeLoc OldTL = OldDI->getTypeLoc();
+ PackExpansionTypeLoc OldExpansionTL = OldTL.castAs<PackExpansionTypeLoc>();
+
+ TypeLocBuilder TLB;
+ TypeLoc NewTL = OldDI->getTypeLoc();
+ TLB.reserve(NewTL.getFullDataSize());
+
+ QualType Result = getDerived().TransformType(TLB,
+ OldExpansionTL.getPatternLoc());
+ if (Result.isNull())
+ return nullptr;
+
+ Result = RebuildPackExpansionType(Result,
+ OldExpansionTL.getPatternLoc().getSourceRange(),
+ OldExpansionTL.getEllipsisLoc(),
+ NumExpansions);
+ if (Result.isNull())
+ return nullptr;
+
+ PackExpansionTypeLoc NewExpansionTL
+ = TLB.push<PackExpansionTypeLoc>(Result);
+ NewExpansionTL.setEllipsisLoc(OldExpansionTL.getEllipsisLoc());
+ NewDI = TLB.getTypeSourceInfo(SemaRef.Context, Result);
+ } else
+ NewDI = getDerived().TransformType(OldDI);
+ if (!NewDI)
+ return nullptr;
+
+ if (NewDI == OldDI && indexAdjustment == 0)
+ return OldParm;
+
+ ParmVarDecl *newParm = ParmVarDecl::Create(SemaRef.Context,
+ OldParm->getDeclContext(),
+ OldParm->getInnerLocStart(),
+ OldParm->getLocation(),
+ OldParm->getIdentifier(),
+ NewDI->getType(),
+ NewDI,
+ OldParm->getStorageClass(),
+ /* DefArg */ nullptr);
+ newParm->setScopeInfo(OldParm->getFunctionScopeDepth(),
+ OldParm->getFunctionScopeIndex() + indexAdjustment);
+ return newParm;
+}
+
+template<typename Derived>
+bool TreeTransform<Derived>::
+ TransformFunctionTypeParams(SourceLocation Loc,
+ ParmVarDecl **Params, unsigned NumParams,
+ const QualType *ParamTypes,
+ SmallVectorImpl<QualType> &OutParamTypes,
+ SmallVectorImpl<ParmVarDecl*> *PVars) {
+ int indexAdjustment = 0;
+
+ for (unsigned i = 0; i != NumParams; ++i) {
+ if (ParmVarDecl *OldParm = Params[i]) {
+ assert(OldParm->getFunctionScopeIndex() == i);
+
+ Optional<unsigned> NumExpansions;
+ ParmVarDecl *NewParm = nullptr;
+ if (OldParm->isParameterPack()) {
+ // We have a function parameter pack that may need to be expanded.
+ SmallVector<UnexpandedParameterPack, 2> Unexpanded;
+
+ // Find the parameter packs that could be expanded.
+ TypeLoc TL = OldParm->getTypeSourceInfo()->getTypeLoc();
+ PackExpansionTypeLoc ExpansionTL = TL.castAs<PackExpansionTypeLoc>();
+ TypeLoc Pattern = ExpansionTL.getPatternLoc();
+ SemaRef.collectUnexpandedParameterPacks(Pattern, Unexpanded);
+ assert(Unexpanded.size() > 0 && "Could not find parameter packs!");
+
+ // Determine whether we should expand the parameter packs.
+ bool ShouldExpand = false;
+ bool RetainExpansion = false;
+ Optional<unsigned> OrigNumExpansions =
+ ExpansionTL.getTypePtr()->getNumExpansions();
+ NumExpansions = OrigNumExpansions;
+ if (getDerived().TryExpandParameterPacks(ExpansionTL.getEllipsisLoc(),
+ Pattern.getSourceRange(),
+ Unexpanded,
+ ShouldExpand,
+ RetainExpansion,
+ NumExpansions)) {
+ return true;
+ }
+
+ if (ShouldExpand) {
+ // Expand the function parameter pack into multiple, separate
+ // parameters.
+ getDerived().ExpandingFunctionParameterPack(OldParm);
+ for (unsigned I = 0; I != *NumExpansions; ++I) {
+ Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
+ ParmVarDecl *NewParm
+ = getDerived().TransformFunctionTypeParam(OldParm,
+ indexAdjustment++,
+ OrigNumExpansions,
+ /*ExpectParameterPack=*/false);
+ if (!NewParm)
+ return true;
+
+ OutParamTypes.push_back(NewParm->getType());
+ if (PVars)
+ PVars->push_back(NewParm);
+ }
+
+ // If we're supposed to retain a pack expansion, do so by temporarily
+ // forgetting the partially-substituted parameter pack.
+ if (RetainExpansion) {
+ ForgetPartiallySubstitutedPackRAII Forget(getDerived());
+ ParmVarDecl *NewParm
+ = getDerived().TransformFunctionTypeParam(OldParm,
+ indexAdjustment++,
+ OrigNumExpansions,
+ /*ExpectParameterPack=*/false);
+ if (!NewParm)
+ return true;
+
+ OutParamTypes.push_back(NewParm->getType());
+ if (PVars)
+ PVars->push_back(NewParm);
+ }
+
+ // The next parameter should have the same adjustment as the
+ // last thing we pushed, but we post-incremented indexAdjustment
+ // on every push. Also, if we push nothing, the adjustment should
+ // go down by one.
+ indexAdjustment--;
+
+ // We're done with the pack expansion.
+ continue;
+ }
+
+ // We'll substitute the parameter now without expanding the pack
+ // expansion.
+ Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
+ NewParm = getDerived().TransformFunctionTypeParam(OldParm,
+ indexAdjustment,
+ NumExpansions,
+ /*ExpectParameterPack=*/true);
+ } else {
+ NewParm = getDerived().TransformFunctionTypeParam(
+ OldParm, indexAdjustment, None, /*ExpectParameterPack=*/ false);
+ }
+
+ if (!NewParm)
+ return true;
+
+ OutParamTypes.push_back(NewParm->getType());
+ if (PVars)
+ PVars->push_back(NewParm);
+ continue;
+ }
+
+ // Deal with the possibility that we don't have a parameter
+ // declaration for this parameter.
+ QualType OldType = ParamTypes[i];
+ bool IsPackExpansion = false;
+ Optional<unsigned> NumExpansions;
+ QualType NewType;
+ if (const PackExpansionType *Expansion
+ = dyn_cast<PackExpansionType>(OldType)) {
+ // We have a function parameter pack that may need to be expanded.
+ QualType Pattern = Expansion->getPattern();
+ SmallVector<UnexpandedParameterPack, 2> Unexpanded;
+ getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded);
+
+ // Determine whether we should expand the parameter packs.
+ bool ShouldExpand = false;
+ bool RetainExpansion = false;
+ if (getDerived().TryExpandParameterPacks(Loc, SourceRange(),
+ Unexpanded,
+ ShouldExpand,
+ RetainExpansion,
+ NumExpansions)) {
+ return true;
+ }
+
+ if (ShouldExpand) {
+ // Expand the function parameter pack into multiple, separate
+ // parameters.
+ for (unsigned I = 0; I != *NumExpansions; ++I) {
+ Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
+ QualType NewType = getDerived().TransformType(Pattern);
+ if (NewType.isNull())
+ return true;
+
+ OutParamTypes.push_back(NewType);
+ if (PVars)
+ PVars->push_back(nullptr);
+ }
+
+ // We're done with the pack expansion.
+ continue;
+ }
+
+ // If we're supposed to retain a pack expansion, do so by temporarily
+ // forgetting the partially-substituted parameter pack.
+ if (RetainExpansion) {
+ ForgetPartiallySubstitutedPackRAII Forget(getDerived());
+ QualType NewType = getDerived().TransformType(Pattern);
+ if (NewType.isNull())
+ return true;
+
+ OutParamTypes.push_back(NewType);
+ if (PVars)
+ PVars->push_back(nullptr);
+ }
+
+ // We'll substitute the parameter now without expanding the pack
+ // expansion.
+ OldType = Expansion->getPattern();
+ IsPackExpansion = true;
+ Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
+ NewType = getDerived().TransformType(OldType);
+ } else {
+ NewType = getDerived().TransformType(OldType);
+ }
+
+ if (NewType.isNull())
+ return true;
+
+ if (IsPackExpansion)
+ NewType = getSema().Context.getPackExpansionType(NewType,
+ NumExpansions);
+
+ OutParamTypes.push_back(NewType);
+ if (PVars)
+ PVars->push_back(nullptr);
+ }
+
+#ifndef NDEBUG
+ if (PVars) {
+ for (unsigned i = 0, e = PVars->size(); i != e; ++i)
+ if (ParmVarDecl *parm = (*PVars)[i])
+ assert(parm->getFunctionScopeIndex() == i);
+ }
+#endif
+
+ return false;
+}
+
+template<typename Derived>
+QualType
+TreeTransform<Derived>::TransformFunctionProtoType(TypeLocBuilder &TLB,
+ FunctionProtoTypeLoc TL) {
+ SmallVector<QualType, 4> ExceptionStorage;
+ TreeTransform *This = this; // Work around gcc.gnu.org/PR56135.
+ return getDerived().TransformFunctionProtoType(
+ TLB, TL, nullptr, 0,
+ [&](FunctionProtoType::ExceptionSpecInfo &ESI, bool &Changed) {
+ return This->TransformExceptionSpec(TL.getBeginLoc(), ESI,
+ ExceptionStorage, Changed);
+ });
+}
+
+template<typename Derived> template<typename Fn>
+QualType TreeTransform<Derived>::TransformFunctionProtoType(
+ TypeLocBuilder &TLB, FunctionProtoTypeLoc TL, CXXRecordDecl *ThisContext,
+ unsigned ThisTypeQuals, Fn TransformExceptionSpec) {
+ // Transform the parameters and return type.
+ //
+ // We are required to instantiate the params and return type in source order.
+ // When the function has a trailing return type, we instantiate the
+ // parameters before the return type, since the return type can then refer
+ // to the parameters themselves (via decltype, sizeof, etc.).
+ //
+ SmallVector<QualType, 4> ParamTypes;
+ SmallVector<ParmVarDecl*, 4> ParamDecls;
+ const FunctionProtoType *T = TL.getTypePtr();
+
+ QualType ResultType;
+
+ if (T->hasTrailingReturn()) {
+ if (getDerived().TransformFunctionTypeParams(
+ TL.getBeginLoc(), TL.getParmArray(), TL.getNumParams(),
+ TL.getTypePtr()->param_type_begin(), ParamTypes, &ParamDecls))
+ return QualType();
+
+ {
+ // C++11 [expr.prim.general]p3:
+ // If a declaration declares a member function or member function
+ // template of a class X, the expression this is a prvalue of type
+ // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
+ // and the end of the function-definition, member-declarator, or
+ // declarator.
+ Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, ThisTypeQuals);
+
+ ResultType = getDerived().TransformType(TLB, TL.getReturnLoc());
+ if (ResultType.isNull())
+ return QualType();
+ }
+ }
+ else {
+ ResultType = getDerived().TransformType(TLB, TL.getReturnLoc());
+ if (ResultType.isNull())
+ return QualType();
+
+ if (getDerived().TransformFunctionTypeParams(
+ TL.getBeginLoc(), TL.getParmArray(), TL.getNumParams(),
+ TL.getTypePtr()->param_type_begin(), ParamTypes, &ParamDecls))
+ return QualType();
+ }
+
+ FunctionProtoType::ExtProtoInfo EPI = T->getExtProtoInfo();
+
+ bool EPIChanged = false;
+ if (TransformExceptionSpec(EPI.ExceptionSpec, EPIChanged))
+ return QualType();
+
+ // FIXME: Need to transform ConsumedParameters for variadic template
+ // expansion.
+
+ QualType Result = TL.getType();
+ if (getDerived().AlwaysRebuild() || ResultType != T->getReturnType() ||
+ T->getNumParams() != ParamTypes.size() ||
+ !std::equal(T->param_type_begin(), T->param_type_end(),
+ ParamTypes.begin()) || EPIChanged) {
+ Result = getDerived().RebuildFunctionProtoType(ResultType, ParamTypes, EPI);
+ if (Result.isNull())
+ return QualType();
+ }
+
+ FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result);
+ NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
+ NewTL.setLParenLoc(TL.getLParenLoc());
+ NewTL.setRParenLoc(TL.getRParenLoc());
+ NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
+ for (unsigned i = 0, e = NewTL.getNumParams(); i != e; ++i)
+ NewTL.setParam(i, ParamDecls[i]);
+
+ return Result;
+}
+
+template<typename Derived>
+bool TreeTransform<Derived>::TransformExceptionSpec(
+ SourceLocation Loc, FunctionProtoType::ExceptionSpecInfo &ESI,
+ SmallVectorImpl<QualType> &Exceptions, bool &Changed) {
+ assert(ESI.Type != EST_Uninstantiated && ESI.Type != EST_Unevaluated);
+
+ // Instantiate a dynamic noexcept expression, if any.
+ if (ESI.Type == EST_ComputedNoexcept) {
+ EnterExpressionEvaluationContext Unevaluated(getSema(),
+ Sema::ConstantEvaluated);
+ ExprResult NoexceptExpr = getDerived().TransformExpr(ESI.NoexceptExpr);
+ if (NoexceptExpr.isInvalid())
+ return true;
+
+ NoexceptExpr = getSema().CheckBooleanCondition(
+ NoexceptExpr.get(), NoexceptExpr.get()->getLocStart());
+ if (NoexceptExpr.isInvalid())
+ return true;
+
+ if (!NoexceptExpr.get()->isValueDependent()) {
+ NoexceptExpr = getSema().VerifyIntegerConstantExpression(
+ NoexceptExpr.get(), nullptr,
+ diag::err_noexcept_needs_constant_expression,
+ /*AllowFold*/false);
+ if (NoexceptExpr.isInvalid())
+ return true;
+ }
+
+ if (ESI.NoexceptExpr != NoexceptExpr.get())
+ Changed = true;
+ ESI.NoexceptExpr = NoexceptExpr.get();
+ }
+
+ if (ESI.Type != EST_Dynamic)
+ return false;
+
+ // Instantiate a dynamic exception specification's type.
+ for (QualType T : ESI.Exceptions) {
+ if (const PackExpansionType *PackExpansion =
+ T->getAs<PackExpansionType>()) {
+ Changed = true;
+
+ // We have a pack expansion. Instantiate it.
+ SmallVector<UnexpandedParameterPack, 2> Unexpanded;
+ SemaRef.collectUnexpandedParameterPacks(PackExpansion->getPattern(),
+ Unexpanded);
+ assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
+
+ // Determine whether the set of unexpanded parameter packs can and
+ // should
+ // be expanded.
+ bool Expand = false;
+ bool RetainExpansion = false;
+ Optional<unsigned> NumExpansions = PackExpansion->getNumExpansions();
+ // FIXME: Track the location of the ellipsis (and track source location
+ // information for the types in the exception specification in general).
+ if (getDerived().TryExpandParameterPacks(
+ Loc, SourceRange(), Unexpanded, Expand,
+ RetainExpansion, NumExpansions))
+ return true;
+
+ if (!Expand) {
+ // We can't expand this pack expansion into separate arguments yet;
+ // just substitute into the pattern and create a new pack expansion
+ // type.
+ Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
+ QualType U = getDerived().TransformType(PackExpansion->getPattern());
+ if (U.isNull())
+ return true;
+
+ U = SemaRef.Context.getPackExpansionType(U, NumExpansions);
+ Exceptions.push_back(U);
+ continue;
+ }
+
+ // Substitute into the pack expansion pattern for each slice of the
+ // pack.
+ for (unsigned ArgIdx = 0; ArgIdx != *NumExpansions; ++ArgIdx) {
+ Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), ArgIdx);
+
+ QualType U = getDerived().TransformType(PackExpansion->getPattern());
+ if (U.isNull() || SemaRef.CheckSpecifiedExceptionType(U, Loc))
+ return true;
+
+ Exceptions.push_back(U);
+ }
+ } else {
+ QualType U = getDerived().TransformType(T);
+ if (U.isNull() || SemaRef.CheckSpecifiedExceptionType(U, Loc))
+ return true;
+ if (T != U)
+ Changed = true;
+
+ Exceptions.push_back(U);
+ }
+ }
+
+ ESI.Exceptions = Exceptions;
+ return false;
+}
+
+template<typename Derived>
+QualType TreeTransform<Derived>::TransformFunctionNoProtoType(
+ TypeLocBuilder &TLB,
+ FunctionNoProtoTypeLoc TL) {
+ const FunctionNoProtoType *T = TL.getTypePtr();
+ QualType ResultType = getDerived().TransformType(TLB, TL.getReturnLoc());
+ if (ResultType.isNull())
+ return QualType();
+
+ QualType Result = TL.getType();
+ if (getDerived().AlwaysRebuild() || ResultType != T->getReturnType())
+ Result = getDerived().RebuildFunctionNoProtoType(ResultType);
+
+ FunctionNoProtoTypeLoc NewTL = TLB.push<FunctionNoProtoTypeLoc>(Result);
+ NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
+ NewTL.setLParenLoc(TL.getLParenLoc());
+ NewTL.setRParenLoc(TL.getRParenLoc());
+ NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
+
+ return Result;
+}
+
+template<typename Derived> QualType
+TreeTransform<Derived>::TransformUnresolvedUsingType(TypeLocBuilder &TLB,
+ UnresolvedUsingTypeLoc TL) {
+ const UnresolvedUsingType *T = TL.getTypePtr();
+ Decl *D = getDerived().TransformDecl(TL.getNameLoc(), T->getDecl());
+ if (!D)
+ return QualType();
+
+ QualType Result = TL.getType();
+ if (getDerived().AlwaysRebuild() || D != T->getDecl()) {
+ Result = getDerived().RebuildUnresolvedUsingType(D);
+ if (Result.isNull())
+ return QualType();
+ }
+
+ // We might get an arbitrary type spec type back. We should at
+ // least always get a type spec type, though.
+ TypeSpecTypeLoc NewTL = TLB.pushTypeSpec(Result);
+ NewTL.setNameLoc(TL.getNameLoc());
+
+ return Result;
+}
+
+template<typename Derived>
+QualType TreeTransform<Derived>::TransformTypedefType(TypeLocBuilder &TLB,
+ TypedefTypeLoc TL) {
+ const TypedefType *T = TL.getTypePtr();
+ TypedefNameDecl *Typedef
+ = cast_or_null<TypedefNameDecl>(getDerived().TransformDecl(TL.getNameLoc(),
+ T->getDecl()));
+ if (!Typedef)
+ return QualType();
+
+ QualType Result = TL.getType();
+ if (getDerived().AlwaysRebuild() ||
+ Typedef != T->getDecl()) {
+ Result = getDerived().RebuildTypedefType(Typedef);
+ if (Result.isNull())
+ return QualType();
+ }
+
+ TypedefTypeLoc NewTL = TLB.push<TypedefTypeLoc>(Result);
+ NewTL.setNameLoc(TL.getNameLoc());
+
+ return Result;
+}
+
+template<typename Derived>
+QualType TreeTransform<Derived>::TransformTypeOfExprType(TypeLocBuilder &TLB,
+ TypeOfExprTypeLoc TL) {
+ // typeof expressions are not potentially evaluated contexts
+ EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated,
+ Sema::ReuseLambdaContextDecl);
+
+ ExprResult E = getDerived().TransformExpr(TL.getUnderlyingExpr());
+ if (E.isInvalid())
+ return QualType();
+
+ E = SemaRef.HandleExprEvaluationContextForTypeof(E.get());
+ if (E.isInvalid())
+ return QualType();
+
+ QualType Result = TL.getType();
+ if (getDerived().AlwaysRebuild() ||
+ E.get() != TL.getUnderlyingExpr()) {
+ Result = getDerived().RebuildTypeOfExprType(E.get(), TL.getTypeofLoc());
+ if (Result.isNull())
+ return QualType();
+ }
+ else E.get();
+
+ TypeOfExprTypeLoc NewTL = TLB.push<TypeOfExprTypeLoc>(Result);
+ NewTL.setTypeofLoc(TL.getTypeofLoc());
+ NewTL.setLParenLoc(TL.getLParenLoc());
+ NewTL.setRParenLoc(TL.getRParenLoc());
+
+ return Result;
+}
+
+template<typename Derived>
+QualType TreeTransform<Derived>::TransformTypeOfType(TypeLocBuilder &TLB,
+ TypeOfTypeLoc TL) {
+ TypeSourceInfo* Old_Under_TI = TL.getUnderlyingTInfo();
+ TypeSourceInfo* New_Under_TI = getDerived().TransformType(Old_Under_TI);
+ if (!New_Under_TI)
+ return QualType();
+
+ QualType Result = TL.getType();
+ if (getDerived().AlwaysRebuild() || New_Under_TI != Old_Under_TI) {
+ Result = getDerived().RebuildTypeOfType(New_Under_TI->getType());
+ if (Result.isNull())
+ return QualType();
+ }
+
+ TypeOfTypeLoc NewTL = TLB.push<TypeOfTypeLoc>(Result);
+ NewTL.setTypeofLoc(TL.getTypeofLoc());
+ NewTL.setLParenLoc(TL.getLParenLoc());
+ NewTL.setRParenLoc(TL.getRParenLoc());
+ NewTL.setUnderlyingTInfo(New_Under_TI);
+
+ return Result;
+}
+
+template<typename Derived>
+QualType TreeTransform<Derived>::TransformDecltypeType(TypeLocBuilder &TLB,
+ DecltypeTypeLoc TL) {
+ const DecltypeType *T = TL.getTypePtr();
+
+ // decltype expressions are not potentially evaluated contexts
+ EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated,
+ nullptr, /*IsDecltype=*/ true);
+
+ ExprResult E = getDerived().TransformExpr(T->getUnderlyingExpr());
+ if (E.isInvalid())
+ return QualType();
+
+ E = getSema().ActOnDecltypeExpression(E.get());
+ if (E.isInvalid())
+ return QualType();
+
+ QualType Result = TL.getType();
+ if (getDerived().AlwaysRebuild() ||
+ E.get() != T->getUnderlyingExpr()) {
+ Result = getDerived().RebuildDecltypeType(E.get(), TL.getNameLoc());
+ if (Result.isNull())
+ return QualType();
+ }
+ else E.get();
+
+ DecltypeTypeLoc NewTL = TLB.push<DecltypeTypeLoc>(Result);
+ NewTL.setNameLoc(TL.getNameLoc());
+
+ return Result;
+}
+
+template<typename Derived>
+QualType TreeTransform<Derived>::TransformUnaryTransformType(
+ TypeLocBuilder &TLB,
+ UnaryTransformTypeLoc TL) {
+ QualType Result = TL.getType();
+ if (Result->isDependentType()) {
+ const UnaryTransformType *T = TL.getTypePtr();
+ QualType NewBase =
+ getDerived().TransformType(TL.getUnderlyingTInfo())->getType();
+ Result = getDerived().RebuildUnaryTransformType(NewBase,
+ T->getUTTKind(),
+ TL.getKWLoc());
+ if (Result.isNull())
+ return QualType();
+ }
+
+ UnaryTransformTypeLoc NewTL = TLB.push<UnaryTransformTypeLoc>(Result);
+ NewTL.setKWLoc(TL.getKWLoc());
+ NewTL.setParensRange(TL.getParensRange());
+ NewTL.setUnderlyingTInfo(TL.getUnderlyingTInfo());
+ return Result;
+}
+
+template<typename Derived>
+QualType TreeTransform<Derived>::TransformAutoType(TypeLocBuilder &TLB,
+ AutoTypeLoc TL) {
+ const AutoType *T = TL.getTypePtr();
+ QualType OldDeduced = T->getDeducedType();
+ QualType NewDeduced;
+ if (!OldDeduced.isNull()) {
+ NewDeduced = getDerived().TransformType(OldDeduced);
+ if (NewDeduced.isNull())
+ return QualType();
+ }
+
+ QualType Result = TL.getType();
+ if (getDerived().AlwaysRebuild() || NewDeduced != OldDeduced ||
+ T->isDependentType()) {
+ Result = getDerived().RebuildAutoType(NewDeduced, T->isDecltypeAuto());
+ if (Result.isNull())
+ return QualType();
+ }
+
+ AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
+ NewTL.setNameLoc(TL.getNameLoc());
+
+ return Result;
+}
+
+template<typename Derived>
+QualType TreeTransform<Derived>::TransformRecordType(TypeLocBuilder &TLB,
+ RecordTypeLoc TL) {
+ const RecordType *T = TL.getTypePtr();
+ RecordDecl *Record
+ = cast_or_null<RecordDecl>(getDerived().TransformDecl(TL.getNameLoc(),
+ T->getDecl()));
+ if (!Record)
+ return QualType();
+
+ QualType Result = TL.getType();
+ if (getDerived().AlwaysRebuild() ||
+ Record != T->getDecl()) {
+ Result = getDerived().RebuildRecordType(Record);
+ if (Result.isNull())
+ return QualType();
+ }
+
+ RecordTypeLoc NewTL = TLB.push<RecordTypeLoc>(Result);
+ NewTL.setNameLoc(TL.getNameLoc());
+
+ return Result;
+}
+
+template<typename Derived>
+QualType TreeTransform<Derived>::TransformEnumType(TypeLocBuilder &TLB,
+ EnumTypeLoc TL) {
+ const EnumType *T = TL.getTypePtr();
+ EnumDecl *Enum
+ = cast_or_null<EnumDecl>(getDerived().TransformDecl(TL.getNameLoc(),
+ T->getDecl()));
+ if (!Enum)
+ return QualType();
+
+ QualType Result = TL.getType();
+ if (getDerived().AlwaysRebuild() ||
+ Enum != T->getDecl()) {
+ Result = getDerived().RebuildEnumType(Enum);
+ if (Result.isNull())
+ return QualType();
+ }
+
+ EnumTypeLoc NewTL = TLB.push<EnumTypeLoc>(Result);
+ NewTL.setNameLoc(TL.getNameLoc());
+
+ return Result;
+}
+
+template<typename Derived>
+QualType TreeTransform<Derived>::TransformInjectedClassNameType(
+ TypeLocBuilder &TLB,
+ InjectedClassNameTypeLoc TL) {
+ Decl *D = getDerived().TransformDecl(TL.getNameLoc(),
+ TL.getTypePtr()->getDecl());
+ if (!D) return QualType();
+
+ QualType T = SemaRef.Context.getTypeDeclType(cast<TypeDecl>(D));
+ TLB.pushTypeSpec(T).setNameLoc(TL.getNameLoc());
+ return T;
+}
+
+template<typename Derived>
+QualType TreeTransform<Derived>::TransformTemplateTypeParmType(
+ TypeLocBuilder &TLB,
+ TemplateTypeParmTypeLoc TL) {
+ return TransformTypeSpecType(TLB, TL);
+}
+
+template<typename Derived>
+QualType TreeTransform<Derived>::TransformSubstTemplateTypeParmType(
+ TypeLocBuilder &TLB,
+ SubstTemplateTypeParmTypeLoc TL) {
+ const SubstTemplateTypeParmType *T = TL.getTypePtr();
+
+ // Substitute into the replacement type, which itself might involve something
+ // that needs to be transformed. This only tends to occur with default
+ // template arguments of template template parameters.
+ TemporaryBase Rebase(*this, TL.getNameLoc(), DeclarationName());
+ QualType Replacement = getDerived().TransformType(T->getReplacementType());
+ if (Replacement.isNull())
+ return QualType();
+
+ // Always canonicalize the replacement type.
+ Replacement = SemaRef.Context.getCanonicalType(Replacement);
+ QualType Result
+ = SemaRef.Context.getSubstTemplateTypeParmType(T->getReplacedParameter(),
+ Replacement);
+
+ // Propagate type-source information.
+ SubstTemplateTypeParmTypeLoc NewTL
+ = TLB.push<SubstTemplateTypeParmTypeLoc>(Result);
+ NewTL.setNameLoc(TL.getNameLoc());
+ return Result;
+
+}
+
+template<typename Derived>
+QualType TreeTransform<Derived>::TransformSubstTemplateTypeParmPackType(
+ TypeLocBuilder &TLB,
+ SubstTemplateTypeParmPackTypeLoc TL) {
+ return TransformTypeSpecType(TLB, TL);
+}
+
+template<typename Derived>
+QualType TreeTransform<Derived>::TransformTemplateSpecializationType(
+ TypeLocBuilder &TLB,
+ TemplateSpecializationTypeLoc TL) {
+ const TemplateSpecializationType *T = TL.getTypePtr();
+
+ // The nested-name-specifier never matters in a TemplateSpecializationType,
+ // because we can't have a dependent nested-name-specifier anyway.
+ CXXScopeSpec SS;
+ TemplateName Template
+ = getDerived().TransformTemplateName(SS, T->getTemplateName(),
+ TL.getTemplateNameLoc());
+ if (Template.isNull())
+ return QualType();
+
+ return getDerived().TransformTemplateSpecializationType(TLB, TL, Template);
+}
+
+template<typename Derived>
+QualType TreeTransform<Derived>::TransformAtomicType(TypeLocBuilder &TLB,
+ AtomicTypeLoc TL) {
+ QualType ValueType = getDerived().TransformType(TLB, TL.getValueLoc());
+ if (ValueType.isNull())
+ return QualType();
+
+ QualType Result = TL.getType();
+ if (getDerived().AlwaysRebuild() ||
+ ValueType != TL.getValueLoc().getType()) {
+ Result = getDerived().RebuildAtomicType(ValueType, TL.getKWLoc());
+ if (Result.isNull())
+ return QualType();
+ }
+
+ AtomicTypeLoc NewTL = TLB.push<AtomicTypeLoc>(Result);
+ NewTL.setKWLoc(TL.getKWLoc());
+ NewTL.setLParenLoc(TL.getLParenLoc());
+ NewTL.setRParenLoc(TL.getRParenLoc());
+
+ return Result;
+}
+
+ /// \brief Simple iterator that traverses the template arguments in a
+ /// container that provides a \c getArgLoc() member function.
+ ///
+ /// This iterator is intended to be used with the iterator form of
+ /// \c TreeTransform<Derived>::TransformTemplateArguments().
+ template<typename ArgLocContainer>
+ class TemplateArgumentLocContainerIterator {
+ ArgLocContainer *Container;
+ unsigned Index;
+
+ public:
+ typedef TemplateArgumentLoc value_type;
+ typedef TemplateArgumentLoc reference;
+ typedef int difference_type;
+ typedef std::input_iterator_tag iterator_category;
+
+ class pointer {
+ TemplateArgumentLoc Arg;
+
+ public:
+ explicit pointer(TemplateArgumentLoc Arg) : Arg(Arg) { }
+
+ const TemplateArgumentLoc *operator->() const {
+ return &Arg;
+ }
+ };
+
+
+ TemplateArgumentLocContainerIterator() {}
+
+ TemplateArgumentLocContainerIterator(ArgLocContainer &Container,
+ unsigned Index)
+ : Container(&Container), Index(Index) { }
+
+ TemplateArgumentLocContainerIterator &operator++() {
+ ++Index;
+ return *this;
+ }
+
+ TemplateArgumentLocContainerIterator operator++(int) {
+ TemplateArgumentLocContainerIterator Old(*this);
+ ++(*this);
+ return Old;
+ }
+
+ TemplateArgumentLoc operator*() const {
+ return Container->getArgLoc(Index);
+ }
+
+ pointer operator->() const {
+ return pointer(Container->getArgLoc(Index));
+ }
+
+ friend bool operator==(const TemplateArgumentLocContainerIterator &X,
+ const TemplateArgumentLocContainerIterator &Y) {
+ return X.Container == Y.Container && X.Index == Y.Index;
+ }
+
+ friend bool operator!=(const TemplateArgumentLocContainerIterator &X,
+ const TemplateArgumentLocContainerIterator &Y) {
+ return !(X == Y);
+ }
+ };
+
+
+template <typename Derived>
+QualType TreeTransform<Derived>::TransformTemplateSpecializationType(
+ TypeLocBuilder &TLB,
+ TemplateSpecializationTypeLoc TL,
+ TemplateName Template) {
+ TemplateArgumentListInfo NewTemplateArgs;
+ NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc());
+ NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc());
+ typedef TemplateArgumentLocContainerIterator<TemplateSpecializationTypeLoc>
+ ArgIterator;
+ if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0),
+ ArgIterator(TL, TL.getNumArgs()),
+ NewTemplateArgs))
+ return QualType();
+
+ // FIXME: maybe don't rebuild if all the template arguments are the same.
+
+ QualType Result =
+ getDerived().RebuildTemplateSpecializationType(Template,
+ TL.getTemplateNameLoc(),
+ NewTemplateArgs);
+
+ if (!Result.isNull()) {
+ // Specializations of template template parameters are represented as
+ // TemplateSpecializationTypes, and substitution of type alias templates
+ // within a dependent context can transform them into
+ // DependentTemplateSpecializationTypes.
+ if (isa<DependentTemplateSpecializationType>(Result)) {
+ DependentTemplateSpecializationTypeLoc NewTL
+ = TLB.push<DependentTemplateSpecializationTypeLoc>(Result);
+ NewTL.setElaboratedKeywordLoc(SourceLocation());
+ NewTL.setQualifierLoc(NestedNameSpecifierLoc());
+ NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
+ NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
+ NewTL.setLAngleLoc(TL.getLAngleLoc());
+ NewTL.setRAngleLoc(TL.getRAngleLoc());
+ for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
+ NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
+ return Result;
+ }
+
+ TemplateSpecializationTypeLoc NewTL
+ = TLB.push<TemplateSpecializationTypeLoc>(Result);
+ NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
+ NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
+ NewTL.setLAngleLoc(TL.getLAngleLoc());
+ NewTL.setRAngleLoc(TL.getRAngleLoc());
+ for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
+ NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
+ }
+
+ return Result;
+}
+
+template <typename Derived>
+QualType TreeTransform<Derived>::TransformDependentTemplateSpecializationType(
+ TypeLocBuilder &TLB,
+ DependentTemplateSpecializationTypeLoc TL,
+ TemplateName Template,
+ CXXScopeSpec &SS) {
+ TemplateArgumentListInfo NewTemplateArgs;
+ NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc());
+ NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc());
+ typedef TemplateArgumentLocContainerIterator<
+ DependentTemplateSpecializationTypeLoc> ArgIterator;
+ if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0),
+ ArgIterator(TL, TL.getNumArgs()),
+ NewTemplateArgs))
+ return QualType();
+
+ // FIXME: maybe don't rebuild if all the template arguments are the same.
+
+ if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
+ QualType Result
+ = getSema().Context.getDependentTemplateSpecializationType(
+ TL.getTypePtr()->getKeyword(),
+ DTN->getQualifier(),
+ DTN->getIdentifier(),
+ NewTemplateArgs);
+
+ DependentTemplateSpecializationTypeLoc NewTL
+ = TLB.push<DependentTemplateSpecializationTypeLoc>(Result);
+ NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
+ NewTL.setQualifierLoc(SS.getWithLocInContext(SemaRef.Context));
+ NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
+ NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
+ NewTL.setLAngleLoc(TL.getLAngleLoc());
+ NewTL.setRAngleLoc(TL.getRAngleLoc());
+ for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
+ NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
+ return Result;
+ }
+
+ QualType Result
+ = getDerived().RebuildTemplateSpecializationType(Template,
+ TL.getTemplateNameLoc(),
+ NewTemplateArgs);
+
+ if (!Result.isNull()) {
+ /// FIXME: Wrap this in an elaborated-type-specifier?
+ TemplateSpecializationTypeLoc NewTL
+ = TLB.push<TemplateSpecializationTypeLoc>(Result);
+ NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
+ NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
+ NewTL.setLAngleLoc(TL.getLAngleLoc());
+ NewTL.setRAngleLoc(TL.getRAngleLoc());
+ for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
+ NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
+ }
+
+ return Result;
+}
+
+template<typename Derived>
+QualType
+TreeTransform<Derived>::TransformElaboratedType(TypeLocBuilder &TLB,
+ ElaboratedTypeLoc TL) {
+ const ElaboratedType *T = TL.getTypePtr();
+
+ NestedNameSpecifierLoc QualifierLoc;
+ // NOTE: the qualifier in an ElaboratedType is optional.
+ if (TL.getQualifierLoc()) {
+ QualifierLoc
+ = getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc());
+ if (!QualifierLoc)
+ return QualType();
+ }
+
+ QualType NamedT = getDerived().TransformType(TLB, TL.getNamedTypeLoc());
+ if (NamedT.isNull())
+ return QualType();
+
+ // C++0x [dcl.type.elab]p2:
+ // If the identifier resolves to a typedef-name or the simple-template-id
+ // resolves to an alias template specialization, the
+ // elaborated-type-specifier is ill-formed.
+ if (T->getKeyword() != ETK_None && T->getKeyword() != ETK_Typename) {
+ if (const TemplateSpecializationType *TST =
+ NamedT->getAs<TemplateSpecializationType>()) {
+ TemplateName Template = TST->getTemplateName();
+ if (TypeAliasTemplateDecl *TAT = dyn_cast_or_null<TypeAliasTemplateDecl>(
+ Template.getAsTemplateDecl())) {
+ SemaRef.Diag(TL.getNamedTypeLoc().getBeginLoc(),
+ diag::err_tag_reference_non_tag) << 4;
+ SemaRef.Diag(TAT->getLocation(), diag::note_declared_at);
+ }
+ }
+ }
+
+ QualType Result = TL.getType();
+ if (getDerived().AlwaysRebuild() ||
+ QualifierLoc != TL.getQualifierLoc() ||
+ NamedT != T->getNamedType()) {
+ Result = getDerived().RebuildElaboratedType(TL.getElaboratedKeywordLoc(),
+ T->getKeyword(),
+ QualifierLoc, NamedT);
+ if (Result.isNull())
+ return QualType();
+ }
+
+ ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result);
+ NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
+ NewTL.setQualifierLoc(QualifierLoc);
+ return Result;
+}
+
+template<typename Derived>
+QualType TreeTransform<Derived>::TransformAttributedType(
+ TypeLocBuilder &TLB,
+ AttributedTypeLoc TL) {
+ const AttributedType *oldType = TL.getTypePtr();
+ QualType modifiedType = getDerived().TransformType(TLB, TL.getModifiedLoc());
+ if (modifiedType.isNull())
+ return QualType();
+
+ QualType result = TL.getType();
+
+ // FIXME: dependent operand expressions?
+ if (getDerived().AlwaysRebuild() ||
+ modifiedType != oldType->getModifiedType()) {
+ // TODO: this is really lame; we should really be rebuilding the
+ // equivalent type from first principles.
+ QualType equivalentType
+ = getDerived().TransformType(oldType->getEquivalentType());
+ if (equivalentType.isNull())
+ return QualType();
+ result = SemaRef.Context.getAttributedType(oldType->getAttrKind(),
+ modifiedType,
+ equivalentType);
+ }
+
+ AttributedTypeLoc newTL = TLB.push<AttributedTypeLoc>(result);
+ newTL.setAttrNameLoc(TL.getAttrNameLoc());
+ if (TL.hasAttrOperand())
+ newTL.setAttrOperandParensRange(TL.getAttrOperandParensRange());
+ if (TL.hasAttrExprOperand())
+ newTL.setAttrExprOperand(TL.getAttrExprOperand());
+ else if (TL.hasAttrEnumOperand())
+ newTL.setAttrEnumOperandLoc(TL.getAttrEnumOperandLoc());
+
+ return result;
+}
+
+template<typename Derived>
+QualType
+TreeTransform<Derived>::TransformParenType(TypeLocBuilder &TLB,
+ ParenTypeLoc TL) {
+ QualType Inner = getDerived().TransformType(TLB, TL.getInnerLoc());
+ if (Inner.isNull())
+ return QualType();
+
+ QualType Result = TL.getType();
+ if (getDerived().AlwaysRebuild() ||
+ Inner != TL.getInnerLoc().getType()) {
+ Result = getDerived().RebuildParenType(Inner);
+ if (Result.isNull())
+ return QualType();
+ }
+
+ ParenTypeLoc NewTL = TLB.push<ParenTypeLoc>(Result);
+ NewTL.setLParenLoc(TL.getLParenLoc());
+ NewTL.setRParenLoc(TL.getRParenLoc());
+ return Result;
+}
+
+template<typename Derived>
+QualType TreeTransform<Derived>::TransformDependentNameType(TypeLocBuilder &TLB,
+ DependentNameTypeLoc TL) {
+ const DependentNameType *T = TL.getTypePtr();
+
+ NestedNameSpecifierLoc QualifierLoc
+ = getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc());
+ if (!QualifierLoc)
+ return QualType();
+
+ QualType Result
+ = getDerived().RebuildDependentNameType(T->getKeyword(),
+ TL.getElaboratedKeywordLoc(),
+ QualifierLoc,
+ T->getIdentifier(),
+ TL.getNameLoc());
+ if (Result.isNull())
+ return QualType();
+
+ if (const ElaboratedType* ElabT = Result->getAs<ElaboratedType>()) {
+ QualType NamedT = ElabT->getNamedType();
+ TLB.pushTypeSpec(NamedT).setNameLoc(TL.getNameLoc());
+
+ ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result);
+ NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
+ NewTL.setQualifierLoc(QualifierLoc);
+ } else {
+ DependentNameTypeLoc NewTL = TLB.push<DependentNameTypeLoc>(Result);
+ NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
+ NewTL.setQualifierLoc(QualifierLoc);
+ NewTL.setNameLoc(TL.getNameLoc());
+ }
+ return Result;
+}
+
+template<typename Derived>
+QualType TreeTransform<Derived>::
+ TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB,
+ DependentTemplateSpecializationTypeLoc TL) {
+ NestedNameSpecifierLoc QualifierLoc;
+ if (TL.getQualifierLoc()) {
+ QualifierLoc
+ = getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc());
+ if (!QualifierLoc)
+ return QualType();
+ }
+
+ return getDerived()
+ .TransformDependentTemplateSpecializationType(TLB, TL, QualifierLoc);
+}
+
+template<typename Derived>
+QualType TreeTransform<Derived>::
+TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB,
+ DependentTemplateSpecializationTypeLoc TL,
+ NestedNameSpecifierLoc QualifierLoc) {
+ const DependentTemplateSpecializationType *T = TL.getTypePtr();
+
+ TemplateArgumentListInfo NewTemplateArgs;
+ NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc());
+ NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc());
+
+ typedef TemplateArgumentLocContainerIterator<
+ DependentTemplateSpecializationTypeLoc> ArgIterator;
+ if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0),
+ ArgIterator(TL, TL.getNumArgs()),
+ NewTemplateArgs))
+ return QualType();
+
+ QualType Result
+ = getDerived().RebuildDependentTemplateSpecializationType(T->getKeyword(),
+ QualifierLoc,
+ T->getIdentifier(),
+ TL.getTemplateNameLoc(),
+ NewTemplateArgs);
+ if (Result.isNull())
+ return QualType();
+
+ if (const ElaboratedType *ElabT = dyn_cast<ElaboratedType>(Result)) {
+ QualType NamedT = ElabT->getNamedType();
+
+ // Copy information relevant to the template specialization.
+ TemplateSpecializationTypeLoc NamedTL
+ = TLB.push<TemplateSpecializationTypeLoc>(NamedT);
+ NamedTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
+ NamedTL.setTemplateNameLoc(TL.getTemplateNameLoc());
+ NamedTL.setLAngleLoc(TL.getLAngleLoc());
+ NamedTL.setRAngleLoc(TL.getRAngleLoc());
+ for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I)
+ NamedTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo());
+
+ // Copy information relevant to the elaborated type.
+ ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result);
+ NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
+ NewTL.setQualifierLoc(QualifierLoc);
+ } else if (isa<DependentTemplateSpecializationType>(Result)) {
+ DependentTemplateSpecializationTypeLoc SpecTL
+ = TLB.push<DependentTemplateSpecializationTypeLoc>(Result);
+ SpecTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
+ SpecTL.setQualifierLoc(QualifierLoc);
+ SpecTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
+ SpecTL.setTemplateNameLoc(TL.getTemplateNameLoc());
+ SpecTL.setLAngleLoc(TL.getLAngleLoc());
+ SpecTL.setRAngleLoc(TL.getRAngleLoc());
+ for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I)
+ SpecTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo());
+ } else {
+ TemplateSpecializationTypeLoc SpecTL
+ = TLB.push<TemplateSpecializationTypeLoc>(Result);
+ SpecTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
+ SpecTL.setTemplateNameLoc(TL.getTemplateNameLoc());
+ SpecTL.setLAngleLoc(TL.getLAngleLoc());
+ SpecTL.setRAngleLoc(TL.getRAngleLoc());
+ for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I)
+ SpecTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo());
+ }
+ return Result;
+}
+
+template<typename Derived>
+QualType TreeTransform<Derived>::TransformPackExpansionType(TypeLocBuilder &TLB,
+ PackExpansionTypeLoc TL) {
+ QualType Pattern
+ = getDerived().TransformType(TLB, TL.getPatternLoc());
+ if (Pattern.isNull())
+ return QualType();
+
+ QualType Result = TL.getType();
+ if (getDerived().AlwaysRebuild() ||
+ Pattern != TL.getPatternLoc().getType()) {
+ Result = getDerived().RebuildPackExpansionType(Pattern,
+ TL.getPatternLoc().getSourceRange(),
+ TL.getEllipsisLoc(),
+ TL.getTypePtr()->getNumExpansions());
+ if (Result.isNull())
+ return QualType();
+ }
+
+ PackExpansionTypeLoc NewT = TLB.push<PackExpansionTypeLoc>(Result);
+ NewT.setEllipsisLoc(TL.getEllipsisLoc());
+ return Result;
+}
+
+template<typename Derived>
+QualType
+TreeTransform<Derived>::TransformObjCInterfaceType(TypeLocBuilder &TLB,
+ ObjCInterfaceTypeLoc TL) {
+ // ObjCInterfaceType is never dependent.
+ TLB.pushFullCopy(TL);
+ return TL.getType();
+}
+
+template<typename Derived>
+QualType
+TreeTransform<Derived>::TransformObjCObjectType(TypeLocBuilder &TLB,
+ ObjCObjectTypeLoc TL) {
+ // ObjCObjectType is never dependent.
+ TLB.pushFullCopy(TL);
+ return TL.getType();
+}
+
+template<typename Derived>
+QualType
+TreeTransform<Derived>::TransformObjCObjectPointerType(TypeLocBuilder &TLB,
+ ObjCObjectPointerTypeLoc TL) {
+ // ObjCObjectPointerType is never dependent.
+ TLB.pushFullCopy(TL);
+ return TL.getType();
+}
+
+//===----------------------------------------------------------------------===//
+// Statement transformation
+//===----------------------------------------------------------------------===//
+template<typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformNullStmt(NullStmt *S) {
+ return S;
+}
+
+template<typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformCompoundStmt(CompoundStmt *S) {
+ return getDerived().TransformCompoundStmt(S, false);
+}
+
+template<typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformCompoundStmt(CompoundStmt *S,
+ bool IsStmtExpr) {
+ Sema::CompoundScopeRAII CompoundScope(getSema());
+
+ bool SubStmtInvalid = false;
+ bool SubStmtChanged = false;
+ SmallVector<Stmt*, 8> Statements;
+ for (auto *B : S->body()) {
+ StmtResult Result = getDerived().TransformStmt(B);
+ if (Result.isInvalid()) {
+ // Immediately fail if this was a DeclStmt, since it's very
+ // likely that this will cause problems for future statements.
+ if (isa<DeclStmt>(B))
+ return StmtError();
+
+ // Otherwise, just keep processing substatements and fail later.
+ SubStmtInvalid = true;
+ continue;
+ }
+
+ SubStmtChanged = SubStmtChanged || Result.get() != B;
+ Statements.push_back(Result.getAs<Stmt>());
+ }
+
+ if (SubStmtInvalid)
+ return StmtError();
+
+ if (!getDerived().AlwaysRebuild() &&
+ !SubStmtChanged)
+ return S;
+
+ return getDerived().RebuildCompoundStmt(S->getLBracLoc(),
+ Statements,
+ S->getRBracLoc(),
+ IsStmtExpr);
+}
+
+template<typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformCaseStmt(CaseStmt *S) {
+ ExprResult LHS, RHS;
+ {
+ EnterExpressionEvaluationContext Unevaluated(SemaRef,
+ Sema::ConstantEvaluated);
+
+ // Transform the left-hand case value.
+ LHS = getDerived().TransformExpr(S->getLHS());
+ LHS = SemaRef.ActOnConstantExpression(LHS);
+ if (LHS.isInvalid())
+ return StmtError();
+
+ // Transform the right-hand case value (for the GNU case-range extension).
+ RHS = getDerived().TransformExpr(S->getRHS());
+ RHS = SemaRef.ActOnConstantExpression(RHS);
+ if (RHS.isInvalid())
+ return StmtError();
+ }
+
+ // Build the case statement.
+ // Case statements are always rebuilt so that they will attached to their
+ // transformed switch statement.
+ StmtResult Case = getDerived().RebuildCaseStmt(S->getCaseLoc(),
+ LHS.get(),
+ S->getEllipsisLoc(),
+ RHS.get(),
+ S->getColonLoc());
+ if (Case.isInvalid())
+ return StmtError();
+
+ // Transform the statement following the case
+ StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt());
+ if (SubStmt.isInvalid())
+ return StmtError();
+
+ // Attach the body to the case statement
+ return getDerived().RebuildCaseStmtBody(Case.get(), SubStmt.get());
+}
+
+template<typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformDefaultStmt(DefaultStmt *S) {
+ // Transform the statement following the default case
+ StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt());
+ if (SubStmt.isInvalid())
+ return StmtError();
+
+ // Default statements are always rebuilt
+ return getDerived().RebuildDefaultStmt(S->getDefaultLoc(), S->getColonLoc(),
+ SubStmt.get());
+}
+
+template<typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformLabelStmt(LabelStmt *S) {
+ StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt());
+ if (SubStmt.isInvalid())
+ return StmtError();
+
+ Decl *LD = getDerived().TransformDecl(S->getDecl()->getLocation(),
+ S->getDecl());
+ if (!LD)
+ return StmtError();
+
+
+ // FIXME: Pass the real colon location in.
+ return getDerived().RebuildLabelStmt(S->getIdentLoc(),
+ cast<LabelDecl>(LD), SourceLocation(),
+ SubStmt.get());
+}
+
+template <typename Derived>
+const Attr *TreeTransform<Derived>::TransformAttr(const Attr *R) {
+ if (!R)
+ return R;
+
+ switch (R->getKind()) {
+// Transform attributes with a pragma spelling by calling TransformXXXAttr.
+#define ATTR(X)
+#define PRAGMA_SPELLING_ATTR(X) \
+ case attr::X: \
+ return getDerived().Transform##X##Attr(cast<X##Attr>(R));
+#include "clang/Basic/AttrList.inc"
+ default:
+ return R;
+ }
+}
+
+template <typename Derived>
+StmtResult TreeTransform<Derived>::TransformAttributedStmt(AttributedStmt *S) {
+ bool AttrsChanged = false;
+ SmallVector<const Attr *, 1> Attrs;
+
+ // Visit attributes and keep track if any are transformed.
+ for (const auto *I : S->getAttrs()) {
+ const Attr *R = getDerived().TransformAttr(I);
+ AttrsChanged |= (I != R);
+ Attrs.push_back(R);
+ }
+
+ StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt());
+ if (SubStmt.isInvalid())
+ return StmtError();
+
+ if (SubStmt.get() == S->getSubStmt() && !AttrsChanged)
+ return S;
+
+ return getDerived().RebuildAttributedStmt(S->getAttrLoc(), Attrs,
+ SubStmt.get());
+}
+
+template<typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformIfStmt(IfStmt *S) {
+ // Transform the condition
+ ExprResult Cond;
+ VarDecl *ConditionVar = nullptr;
+ if (S->getConditionVariable()) {
+ ConditionVar
+ = cast_or_null<VarDecl>(
+ getDerived().TransformDefinition(
+ S->getConditionVariable()->getLocation(),
+ S->getConditionVariable()));
+ if (!ConditionVar)
+ return StmtError();
+ } else {
+ Cond = getDerived().TransformExpr(S->getCond());
+
+ if (Cond.isInvalid())
+ return StmtError();
+
+ // Convert the condition to a boolean value.
+ if (S->getCond()) {
+ ExprResult CondE = getSema().ActOnBooleanCondition(nullptr, S->getIfLoc(),
+ Cond.get());
+ if (CondE.isInvalid())
+ return StmtError();
+
+ Cond = CondE.get();
+ }
+ }
+
+ Sema::FullExprArg FullCond(getSema().MakeFullExpr(Cond.get()));
+ if (!S->getConditionVariable() && S->getCond() && !FullCond.get())
+ return StmtError();
+
+ // Transform the "then" branch.
+ StmtResult Then = getDerived().TransformStmt(S->getThen());
+ if (Then.isInvalid())
+ return StmtError();
+
+ // Transform the "else" branch.
+ StmtResult Else = getDerived().TransformStmt(S->getElse());
+ if (Else.isInvalid())
+ return StmtError();
+
+ if (!getDerived().AlwaysRebuild() &&
+ FullCond.get() == S->getCond() &&
+ ConditionVar == S->getConditionVariable() &&
+ Then.get() == S->getThen() &&
+ Else.get() == S->getElse())
+ return S;
+
+ return getDerived().RebuildIfStmt(S->getIfLoc(), FullCond, ConditionVar,
+ Then.get(),
+ S->getElseLoc(), Else.get());
+}
+
+template<typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformSwitchStmt(SwitchStmt *S) {
+ // Transform the condition.
+ ExprResult Cond;
+ VarDecl *ConditionVar = nullptr;
+ if (S->getConditionVariable()) {
+ ConditionVar
+ = cast_or_null<VarDecl>(
+ getDerived().TransformDefinition(
+ S->getConditionVariable()->getLocation(),
+ S->getConditionVariable()));
+ if (!ConditionVar)
+ return StmtError();
+ } else {
+ Cond = getDerived().TransformExpr(S->getCond());
+
+ if (Cond.isInvalid())
+ return StmtError();
+ }
+
+ // Rebuild the switch statement.
+ StmtResult Switch
+ = getDerived().RebuildSwitchStmtStart(S->getSwitchLoc(), Cond.get(),
+ ConditionVar);
+ if (Switch.isInvalid())
+ return StmtError();
+
+ // Transform the body of the switch statement.
+ StmtResult Body = getDerived().TransformStmt(S->getBody());
+ if (Body.isInvalid())
+ return StmtError();
+
+ // Complete the switch statement.
+ return getDerived().RebuildSwitchStmtBody(S->getSwitchLoc(), Switch.get(),
+ Body.get());
+}
+
+template<typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformWhileStmt(WhileStmt *S) {
+ // Transform the condition
+ ExprResult Cond;
+ VarDecl *ConditionVar = nullptr;
+ if (S->getConditionVariable()) {
+ ConditionVar
+ = cast_or_null<VarDecl>(
+ getDerived().TransformDefinition(
+ S->getConditionVariable()->getLocation(),
+ S->getConditionVariable()));
+ if (!ConditionVar)
+ return StmtError();
+ } else {
+ Cond = getDerived().TransformExpr(S->getCond());
+
+ if (Cond.isInvalid())
+ return StmtError();
+
+ if (S->getCond()) {
+ // Convert the condition to a boolean value.
+ ExprResult CondE = getSema().ActOnBooleanCondition(nullptr,
+ S->getWhileLoc(),
+ Cond.get());
+ if (CondE.isInvalid())
+ return StmtError();
+ Cond = CondE;
+ }
+ }
+
+ Sema::FullExprArg FullCond(getSema().MakeFullExpr(Cond.get()));
+ if (!S->getConditionVariable() && S->getCond() && !FullCond.get())
+ return StmtError();
+
+ // Transform the body
+ StmtResult Body = getDerived().TransformStmt(S->getBody());
+ if (Body.isInvalid())
+ return StmtError();
+
+ if (!getDerived().AlwaysRebuild() &&
+ FullCond.get() == S->getCond() &&
+ ConditionVar == S->getConditionVariable() &&
+ Body.get() == S->getBody())
+ return Owned(S);
+
+ return getDerived().RebuildWhileStmt(S->getWhileLoc(), FullCond,
+ ConditionVar, Body.get());
+}
+
+template<typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformDoStmt(DoStmt *S) {
+ // Transform the body
+ StmtResult Body = getDerived().TransformStmt(S->getBody());
+ if (Body.isInvalid())
+ return StmtError();
+
+ // Transform the condition
+ ExprResult Cond = getDerived().TransformExpr(S->getCond());
+ if (Cond.isInvalid())
+ return StmtError();
+
+ if (!getDerived().AlwaysRebuild() &&
+ Cond.get() == S->getCond() &&
+ Body.get() == S->getBody())
+ return S;
+
+ return getDerived().RebuildDoStmt(S->getDoLoc(), Body.get(), S->getWhileLoc(),
+ /*FIXME:*/S->getWhileLoc(), Cond.get(),
+ S->getRParenLoc());
+}
+
+template<typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformForStmt(ForStmt *S) {
+ // Transform the initialization statement
+ StmtResult Init = getDerived().TransformStmt(S->getInit());
+ if (Init.isInvalid())
+ return StmtError();
+
+ // Transform the condition
+ ExprResult Cond;
+ VarDecl *ConditionVar = nullptr;
+ if (S->getConditionVariable()) {
+ ConditionVar
+ = cast_or_null<VarDecl>(
+ getDerived().TransformDefinition(
+ S->getConditionVariable()->getLocation(),
+ S->getConditionVariable()));
+ if (!ConditionVar)
+ return StmtError();
+ } else {
+ Cond = getDerived().TransformExpr(S->getCond());
+
+ if (Cond.isInvalid())
+ return StmtError();
+
+ if (S->getCond()) {
+ // Convert the condition to a boolean value.
+ ExprResult CondE = getSema().ActOnBooleanCondition(nullptr,
+ S->getForLoc(),
+ Cond.get());
+ if (CondE.isInvalid())
+ return StmtError();
+
+ Cond = CondE.get();
+ }
+ }
+
+ Sema::FullExprArg FullCond(getSema().MakeFullExpr(Cond.get()));
+ if (!S->getConditionVariable() && S->getCond() && !FullCond.get())
+ return StmtError();
+
+ // Transform the increment
+ ExprResult Inc = getDerived().TransformExpr(S->getInc());
+ if (Inc.isInvalid())
+ return StmtError();
+
+ Sema::FullExprArg FullInc(getSema().MakeFullDiscardedValueExpr(Inc.get()));
+ if (S->getInc() && !FullInc.get())
+ return StmtError();
+
+ // Transform the body
+ StmtResult Body = getDerived().TransformStmt(S->getBody());
+ if (Body.isInvalid())
+ return StmtError();
+
+ if (!getDerived().AlwaysRebuild() &&
+ Init.get() == S->getInit() &&
+ FullCond.get() == S->getCond() &&
+ Inc.get() == S->getInc() &&
+ Body.get() == S->getBody())
+ return S;
+
+ return getDerived().RebuildForStmt(S->getForLoc(), S->getLParenLoc(),
+ Init.get(), FullCond, ConditionVar,
+ FullInc, S->getRParenLoc(), Body.get());
+}
+
+template<typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformGotoStmt(GotoStmt *S) {
+ Decl *LD = getDerived().TransformDecl(S->getLabel()->getLocation(),
+ S->getLabel());
+ if (!LD)
+ return StmtError();
+
+ // Goto statements must always be rebuilt, to resolve the label.
+ return getDerived().RebuildGotoStmt(S->getGotoLoc(), S->getLabelLoc(),
+ cast<LabelDecl>(LD));
+}
+
+template<typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformIndirectGotoStmt(IndirectGotoStmt *S) {
+ ExprResult Target = getDerived().TransformExpr(S->getTarget());
+ if (Target.isInvalid())
+ return StmtError();
+ Target = SemaRef.MaybeCreateExprWithCleanups(Target.get());
+
+ if (!getDerived().AlwaysRebuild() &&
+ Target.get() == S->getTarget())
+ return S;
+
+ return getDerived().RebuildIndirectGotoStmt(S->getGotoLoc(), S->getStarLoc(),
+ Target.get());
+}
+
+template<typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformContinueStmt(ContinueStmt *S) {
+ return S;
+}
+
+template<typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformBreakStmt(BreakStmt *S) {
+ return S;
+}
+
+template<typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformReturnStmt(ReturnStmt *S) {
+ ExprResult Result = getDerived().TransformInitializer(S->getRetValue(),
+ /*NotCopyInit*/false);
+ if (Result.isInvalid())
+ return StmtError();
+
+ // FIXME: We always rebuild the return statement because there is no way
+ // to tell whether the return type of the function has changed.
+ return getDerived().RebuildReturnStmt(S->getReturnLoc(), Result.get());
+}
+
+template<typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformDeclStmt(DeclStmt *S) {
+ bool DeclChanged = false;
+ SmallVector<Decl *, 4> Decls;
+ for (auto *D : S->decls()) {
+ Decl *Transformed = getDerived().TransformDefinition(D->getLocation(), D);
+ if (!Transformed)
+ return StmtError();
+
+ if (Transformed != D)
+ DeclChanged = true;
+
+ Decls.push_back(Transformed);
+ }
+
+ if (!getDerived().AlwaysRebuild() && !DeclChanged)
+ return S;
+
+ return getDerived().RebuildDeclStmt(Decls, S->getStartLoc(), S->getEndLoc());
+}
+
+template<typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformGCCAsmStmt(GCCAsmStmt *S) {
+
+ SmallVector<Expr*, 8> Constraints;
+ SmallVector<Expr*, 8> Exprs;
+ SmallVector<IdentifierInfo *, 4> Names;
+
+ ExprResult AsmString;
+ SmallVector<Expr*, 8> Clobbers;
+
+ bool ExprsChanged = false;
+
+ // Go through the outputs.
+ for (unsigned I = 0, E = S->getNumOutputs(); I != E; ++I) {
+ Names.push_back(S->getOutputIdentifier(I));
+
+ // No need to transform the constraint literal.
+ Constraints.push_back(S->getOutputConstraintLiteral(I));
+
+ // Transform the output expr.
+ Expr *OutputExpr = S->getOutputExpr(I);
+ ExprResult Result = getDerived().TransformExpr(OutputExpr);
+ if (Result.isInvalid())
+ return StmtError();
+
+ ExprsChanged |= Result.get() != OutputExpr;
+
+ Exprs.push_back(Result.get());
+ }
+
+ // Go through the inputs.
+ for (unsigned I = 0, E = S->getNumInputs(); I != E; ++I) {
+ Names.push_back(S->getInputIdentifier(I));
+
+ // No need to transform the constraint literal.
+ Constraints.push_back(S->getInputConstraintLiteral(I));
+
+ // Transform the input expr.
+ Expr *InputExpr = S->getInputExpr(I);
+ ExprResult Result = getDerived().TransformExpr(InputExpr);
+ if (Result.isInvalid())
+ return StmtError();
+
+ ExprsChanged |= Result.get() != InputExpr;
+
+ Exprs.push_back(Result.get());
+ }
+
+ if (!getDerived().AlwaysRebuild() && !ExprsChanged)
+ return S;
+
+ // Go through the clobbers.
+ for (unsigned I = 0, E = S->getNumClobbers(); I != E; ++I)
+ Clobbers.push_back(S->getClobberStringLiteral(I));
+
+ // No need to transform the asm string literal.
+ AsmString = S->getAsmString();
+ return getDerived().RebuildGCCAsmStmt(S->getAsmLoc(), S->isSimple(),
+ S->isVolatile(), S->getNumOutputs(),
+ S->getNumInputs(), Names.data(),
+ Constraints, Exprs, AsmString.get(),
+ Clobbers, S->getRParenLoc());
+}
+
+template<typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformMSAsmStmt(MSAsmStmt *S) {
+ ArrayRef<Token> AsmToks =
+ llvm::makeArrayRef(S->getAsmToks(), S->getNumAsmToks());
+
+ bool HadError = false, HadChange = false;
+
+ ArrayRef<Expr*> SrcExprs = S->getAllExprs();
+ SmallVector<Expr*, 8> TransformedExprs;
+ TransformedExprs.reserve(SrcExprs.size());
+ for (unsigned i = 0, e = SrcExprs.size(); i != e; ++i) {
+ ExprResult Result = getDerived().TransformExpr(SrcExprs[i]);
+ if (!Result.isUsable()) {
+ HadError = true;
+ } else {
+ HadChange |= (Result.get() != SrcExprs[i]);
+ TransformedExprs.push_back(Result.get());
+ }
+ }
+
+ if (HadError) return StmtError();
+ if (!HadChange && !getDerived().AlwaysRebuild())
+ return Owned(S);
+
+ return getDerived().RebuildMSAsmStmt(S->getAsmLoc(), S->getLBraceLoc(),
+ AsmToks, S->getAsmString(),
+ S->getNumOutputs(), S->getNumInputs(),
+ S->getAllConstraints(), S->getClobbers(),
+ TransformedExprs, S->getEndLoc());
+}
+
+template<typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformObjCAtTryStmt(ObjCAtTryStmt *S) {
+ // Transform the body of the @try.
+ StmtResult TryBody = getDerived().TransformStmt(S->getTryBody());
+ if (TryBody.isInvalid())
+ return StmtError();
+
+ // Transform the @catch statements (if present).
+ bool AnyCatchChanged = false;
+ SmallVector<Stmt*, 8> CatchStmts;
+ for (unsigned I = 0, N = S->getNumCatchStmts(); I != N; ++I) {
+ StmtResult Catch = getDerived().TransformStmt(S->getCatchStmt(I));
+ if (Catch.isInvalid())
+ return StmtError();
+ if (Catch.get() != S->getCatchStmt(I))
+ AnyCatchChanged = true;
+ CatchStmts.push_back(Catch.get());
+ }
+
+ // Transform the @finally statement (if present).
+ StmtResult Finally;
+ if (S->getFinallyStmt()) {
+ Finally = getDerived().TransformStmt(S->getFinallyStmt());
+ if (Finally.isInvalid())
+ return StmtError();
+ }
+
+ // If nothing changed, just retain this statement.
+ if (!getDerived().AlwaysRebuild() &&
+ TryBody.get() == S->getTryBody() &&
+ !AnyCatchChanged &&
+ Finally.get() == S->getFinallyStmt())
+ return S;
+
+ // Build a new statement.
+ return getDerived().RebuildObjCAtTryStmt(S->getAtTryLoc(), TryBody.get(),
+ CatchStmts, Finally.get());
+}
+
+template<typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformObjCAtCatchStmt(ObjCAtCatchStmt *S) {
+ // Transform the @catch parameter, if there is one.
+ VarDecl *Var = nullptr;
+ if (VarDecl *FromVar = S->getCatchParamDecl()) {
+ TypeSourceInfo *TSInfo = nullptr;
+ if (FromVar->getTypeSourceInfo()) {
+ TSInfo = getDerived().TransformType(FromVar->getTypeSourceInfo());
+ if (!TSInfo)
+ return StmtError();
+ }
+
+ QualType T;
+ if (TSInfo)
+ T = TSInfo->getType();
+ else {
+ T = getDerived().TransformType(FromVar->getType());
+ if (T.isNull())
+ return StmtError();
+ }
+
+ Var = getDerived().RebuildObjCExceptionDecl(FromVar, TSInfo, T);
+ if (!Var)
+ return StmtError();
+ }
+
+ StmtResult Body = getDerived().TransformStmt(S->getCatchBody());
+ if (Body.isInvalid())
+ return StmtError();
+
+ return getDerived().RebuildObjCAtCatchStmt(S->getAtCatchLoc(),
+ S->getRParenLoc(),
+ Var, Body.get());
+}
+
+template<typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformObjCAtFinallyStmt(ObjCAtFinallyStmt *S) {
+ // Transform the body.
+ StmtResult Body = getDerived().TransformStmt(S->getFinallyBody());
+ if (Body.isInvalid())
+ return StmtError();
+
+ // If nothing changed, just retain this statement.
+ if (!getDerived().AlwaysRebuild() &&
+ Body.get() == S->getFinallyBody())
+ return S;
+
+ // Build a new statement.
+ return getDerived().RebuildObjCAtFinallyStmt(S->getAtFinallyLoc(),
+ Body.get());
+}
+
+template<typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformObjCAtThrowStmt(ObjCAtThrowStmt *S) {
+ ExprResult Operand;
+ if (S->getThrowExpr()) {
+ Operand = getDerived().TransformExpr(S->getThrowExpr());
+ if (Operand.isInvalid())
+ return StmtError();
+ }
+
+ if (!getDerived().AlwaysRebuild() &&
+ Operand.get() == S->getThrowExpr())
+ return S;
+
+ return getDerived().RebuildObjCAtThrowStmt(S->getThrowLoc(), Operand.get());
+}
+
+template<typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformObjCAtSynchronizedStmt(
+ ObjCAtSynchronizedStmt *S) {
+ // Transform the object we are locking.
+ ExprResult Object = getDerived().TransformExpr(S->getSynchExpr());
+ if (Object.isInvalid())
+ return StmtError();
+ Object =
+ getDerived().RebuildObjCAtSynchronizedOperand(S->getAtSynchronizedLoc(),
+ Object.get());
+ if (Object.isInvalid())
+ return StmtError();
+
+ // Transform the body.
+ StmtResult Body = getDerived().TransformStmt(S->getSynchBody());
+ if (Body.isInvalid())
+ return StmtError();
+
+ // If nothing change, just retain the current statement.
+ if (!getDerived().AlwaysRebuild() &&
+ Object.get() == S->getSynchExpr() &&
+ Body.get() == S->getSynchBody())
+ return S;
+
+ // Build a new statement.
+ return getDerived().RebuildObjCAtSynchronizedStmt(S->getAtSynchronizedLoc(),
+ Object.get(), Body.get());
+}
+
+template<typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformObjCAutoreleasePoolStmt(
+ ObjCAutoreleasePoolStmt *S) {
+ // Transform the body.
+ StmtResult Body = getDerived().TransformStmt(S->getSubStmt());
+ if (Body.isInvalid())
+ return StmtError();
+
+ // If nothing changed, just retain this statement.
+ if (!getDerived().AlwaysRebuild() &&
+ Body.get() == S->getSubStmt())
+ return S;
+
+ // Build a new statement.
+ return getDerived().RebuildObjCAutoreleasePoolStmt(
+ S->getAtLoc(), Body.get());
+}
+
+template<typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformObjCForCollectionStmt(
+ ObjCForCollectionStmt *S) {
+ // Transform the element statement.
+ StmtResult Element = getDerived().TransformStmt(S->getElement());
+ if (Element.isInvalid())
+ return StmtError();
+
+ // Transform the collection expression.
+ ExprResult Collection = getDerived().TransformExpr(S->getCollection());
+ if (Collection.isInvalid())
+ return StmtError();
+
+ // Transform the body.
+ StmtResult Body = getDerived().TransformStmt(S->getBody());
+ if (Body.isInvalid())
+ return StmtError();
+
+ // If nothing changed, just retain this statement.
+ if (!getDerived().AlwaysRebuild() &&
+ Element.get() == S->getElement() &&
+ Collection.get() == S->getCollection() &&
+ Body.get() == S->getBody())
+ return S;
+
+ // Build a new statement.
+ return getDerived().RebuildObjCForCollectionStmt(S->getForLoc(),
+ Element.get(),
+ Collection.get(),
+ S->getRParenLoc(),
+ Body.get());
+}
+
+template <typename Derived>
+StmtResult TreeTransform<Derived>::TransformCXXCatchStmt(CXXCatchStmt *S) {
+ // Transform the exception declaration, if any.
+ VarDecl *Var = nullptr;
+ if (VarDecl *ExceptionDecl = S->getExceptionDecl()) {
+ TypeSourceInfo *T =
+ getDerived().TransformType(ExceptionDecl->getTypeSourceInfo());
+ if (!T)
+ return StmtError();
+
+ Var = getDerived().RebuildExceptionDecl(
+ ExceptionDecl, T, ExceptionDecl->getInnerLocStart(),
+ ExceptionDecl->getLocation(), ExceptionDecl->getIdentifier());
+ if (!Var || Var->isInvalidDecl())
+ return StmtError();
+ }
+
+ // Transform the actual exception handler.
+ StmtResult Handler = getDerived().TransformStmt(S->getHandlerBlock());
+ if (Handler.isInvalid())
+ return StmtError();
+
+ if (!getDerived().AlwaysRebuild() && !Var &&
+ Handler.get() == S->getHandlerBlock())
+ return S;
+
+ return getDerived().RebuildCXXCatchStmt(S->getCatchLoc(), Var, Handler.get());
+}
+
+template <typename Derived>
+StmtResult TreeTransform<Derived>::TransformCXXTryStmt(CXXTryStmt *S) {
+ // Transform the try block itself.
+ StmtResult TryBlock = getDerived().TransformCompoundStmt(S->getTryBlock());
+ if (TryBlock.isInvalid())
+ return StmtError();
+
+ // Transform the handlers.
+ bool HandlerChanged = false;
+ SmallVector<Stmt *, 8> Handlers;
+ for (unsigned I = 0, N = S->getNumHandlers(); I != N; ++I) {
+ StmtResult Handler = getDerived().TransformCXXCatchStmt(S->getHandler(I));
+ if (Handler.isInvalid())
+ return StmtError();
+
+ HandlerChanged = HandlerChanged || Handler.get() != S->getHandler(I);
+ Handlers.push_back(Handler.getAs<Stmt>());
+ }
+
+ if (!getDerived().AlwaysRebuild() && TryBlock.get() == S->getTryBlock() &&
+ !HandlerChanged)
+ return S;
+
+ return getDerived().RebuildCXXTryStmt(S->getTryLoc(), TryBlock.get(),
+ Handlers);
+}
+
+template<typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformCXXForRangeStmt(CXXForRangeStmt *S) {
+ StmtResult Range = getDerived().TransformStmt(S->getRangeStmt());
+ if (Range.isInvalid())
+ return StmtError();
+
+ StmtResult BeginEnd = getDerived().TransformStmt(S->getBeginEndStmt());
+ if (BeginEnd.isInvalid())
+ return StmtError();
+
+ ExprResult Cond = getDerived().TransformExpr(S->getCond());
+ if (Cond.isInvalid())
+ return StmtError();
+ if (Cond.get())
+ Cond = SemaRef.CheckBooleanCondition(Cond.get(), S->getColonLoc());
+ if (Cond.isInvalid())
+ return StmtError();
+ if (Cond.get())
+ Cond = SemaRef.MaybeCreateExprWithCleanups(Cond.get());
+
+ ExprResult Inc = getDerived().TransformExpr(S->getInc());
+ if (Inc.isInvalid())
+ return StmtError();
+ if (Inc.get())
+ Inc = SemaRef.MaybeCreateExprWithCleanups(Inc.get());
+
+ StmtResult LoopVar = getDerived().TransformStmt(S->getLoopVarStmt());
+ if (LoopVar.isInvalid())
+ return StmtError();
+
+ StmtResult NewStmt = S;
+ if (getDerived().AlwaysRebuild() ||
+ Range.get() != S->getRangeStmt() ||
+ BeginEnd.get() != S->getBeginEndStmt() ||
+ Cond.get() != S->getCond() ||
+ Inc.get() != S->getInc() ||
+ LoopVar.get() != S->getLoopVarStmt()) {
+ NewStmt = getDerived().RebuildCXXForRangeStmt(S->getForLoc(),
+ S->getColonLoc(), Range.get(),
+ BeginEnd.get(), Cond.get(),
+ Inc.get(), LoopVar.get(),
+ S->getRParenLoc());
+ if (NewStmt.isInvalid())
+ return StmtError();
+ }
+
+ StmtResult Body = getDerived().TransformStmt(S->getBody());
+ if (Body.isInvalid())
+ return StmtError();
+
+ // Body has changed but we didn't rebuild the for-range statement. Rebuild
+ // it now so we have a new statement to attach the body to.
+ if (Body.get() != S->getBody() && NewStmt.get() == S) {
+ NewStmt = getDerived().RebuildCXXForRangeStmt(S->getForLoc(),
+ S->getColonLoc(), Range.get(),
+ BeginEnd.get(), Cond.get(),
+ Inc.get(), LoopVar.get(),
+ S->getRParenLoc());
+ if (NewStmt.isInvalid())
+ return StmtError();
+ }
+
+ if (NewStmt.get() == S)
+ return S;
+
+ return FinishCXXForRangeStmt(NewStmt.get(), Body.get());
+}
+
+template<typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformMSDependentExistsStmt(
+ MSDependentExistsStmt *S) {
+ // Transform the nested-name-specifier, if any.
+ NestedNameSpecifierLoc QualifierLoc;
+ if (S->getQualifierLoc()) {
+ QualifierLoc
+ = getDerived().TransformNestedNameSpecifierLoc(S->getQualifierLoc());
+ if (!QualifierLoc)
+ return StmtError();
+ }
+
+ // Transform the declaration name.
+ DeclarationNameInfo NameInfo = S->getNameInfo();
+ if (NameInfo.getName()) {
+ NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo);
+ if (!NameInfo.getName())
+ return StmtError();
+ }
+
+ // Check whether anything changed.
+ if (!getDerived().AlwaysRebuild() &&
+ QualifierLoc == S->getQualifierLoc() &&
+ NameInfo.getName() == S->getNameInfo().getName())
+ return S;
+
+ // Determine whether this name exists, if we can.
+ CXXScopeSpec SS;
+ SS.Adopt(QualifierLoc);
+ bool Dependent = false;
+ switch (getSema().CheckMicrosoftIfExistsSymbol(/*S=*/nullptr, SS, NameInfo)) {
+ case Sema::IER_Exists:
+ if (S->isIfExists())
+ break;
+
+ return new (getSema().Context) NullStmt(S->getKeywordLoc());
+
+ case Sema::IER_DoesNotExist:
+ if (S->isIfNotExists())
+ break;
+
+ return new (getSema().Context) NullStmt(S->getKeywordLoc());
+
+ case Sema::IER_Dependent:
+ Dependent = true;
+ break;
+
+ case Sema::IER_Error:
+ return StmtError();
+ }
+
+ // We need to continue with the instantiation, so do so now.
+ StmtResult SubStmt = getDerived().TransformCompoundStmt(S->getSubStmt());
+ if (SubStmt.isInvalid())
+ return StmtError();
+
+ // If we have resolved the name, just transform to the substatement.
+ if (!Dependent)
+ return SubStmt;
+
+ // The name is still dependent, so build a dependent expression again.
+ return getDerived().RebuildMSDependentExistsStmt(S->getKeywordLoc(),
+ S->isIfExists(),
+ QualifierLoc,
+ NameInfo,
+ SubStmt.get());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformMSPropertyRefExpr(MSPropertyRefExpr *E) {
+ NestedNameSpecifierLoc QualifierLoc;
+ if (E->getQualifierLoc()) {
+ QualifierLoc
+ = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
+ if (!QualifierLoc)
+ return ExprError();
+ }
+
+ MSPropertyDecl *PD = cast_or_null<MSPropertyDecl>(
+ getDerived().TransformDecl(E->getMemberLoc(), E->getPropertyDecl()));
+ if (!PD)
+ return ExprError();
+
+ ExprResult Base = getDerived().TransformExpr(E->getBaseExpr());
+ if (Base.isInvalid())
+ return ExprError();
+
+ return new (SemaRef.getASTContext())
+ MSPropertyRefExpr(Base.get(), PD, E->isArrow(),
+ SemaRef.getASTContext().PseudoObjectTy, VK_LValue,
+ QualifierLoc, E->getMemberLoc());
+}
+
+template <typename Derived>
+StmtResult TreeTransform<Derived>::TransformSEHTryStmt(SEHTryStmt *S) {
+ StmtResult TryBlock = getDerived().TransformCompoundStmt(S->getTryBlock());
+ if (TryBlock.isInvalid())
+ return StmtError();
+
+ StmtResult Handler = getDerived().TransformSEHHandler(S->getHandler());
+ if (Handler.isInvalid())
+ return StmtError();
+
+ if (!getDerived().AlwaysRebuild() && TryBlock.get() == S->getTryBlock() &&
+ Handler.get() == S->getHandler())
+ return S;
+
+ return getDerived().RebuildSEHTryStmt(S->getIsCXXTry(), S->getTryLoc(),
+ TryBlock.get(), Handler.get());
+}
+
+template <typename Derived>
+StmtResult TreeTransform<Derived>::TransformSEHFinallyStmt(SEHFinallyStmt *S) {
+ StmtResult Block = getDerived().TransformCompoundStmt(S->getBlock());
+ if (Block.isInvalid())
+ return StmtError();
+
+ return getDerived().RebuildSEHFinallyStmt(S->getFinallyLoc(), Block.get());
+}
+
+template <typename Derived>
+StmtResult TreeTransform<Derived>::TransformSEHExceptStmt(SEHExceptStmt *S) {
+ ExprResult FilterExpr = getDerived().TransformExpr(S->getFilterExpr());
+ if (FilterExpr.isInvalid())
+ return StmtError();
+
+ StmtResult Block = getDerived().TransformCompoundStmt(S->getBlock());
+ if (Block.isInvalid())
+ return StmtError();
+
+ return getDerived().RebuildSEHExceptStmt(S->getExceptLoc(), FilterExpr.get(),
+ Block.get());
+}
+
+template <typename Derived>
+StmtResult TreeTransform<Derived>::TransformSEHHandler(Stmt *Handler) {
+ if (isa<SEHFinallyStmt>(Handler))
+ return getDerived().TransformSEHFinallyStmt(cast<SEHFinallyStmt>(Handler));
+ else
+ return getDerived().TransformSEHExceptStmt(cast<SEHExceptStmt>(Handler));
+}
+
+template<typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformSEHLeaveStmt(SEHLeaveStmt *S) {
+ return S;
+}
+
+//===----------------------------------------------------------------------===//
+// OpenMP directive transformation
+//===----------------------------------------------------------------------===//
+template <typename Derived>
+StmtResult TreeTransform<Derived>::TransformOMPExecutableDirective(
+ OMPExecutableDirective *D) {
+
+ // Transform the clauses
+ llvm::SmallVector<OMPClause *, 16> TClauses;
+ ArrayRef<OMPClause *> Clauses = D->clauses();
+ TClauses.reserve(Clauses.size());
+ for (ArrayRef<OMPClause *>::iterator I = Clauses.begin(), E = Clauses.end();
+ I != E; ++I) {
+ if (*I) {
+ OMPClause *Clause = getDerived().TransformOMPClause(*I);
+ if (Clause)
+ TClauses.push_back(Clause);
+ } else {
+ TClauses.push_back(nullptr);
+ }
+ }
+ StmtResult AssociatedStmt;
+ if (D->hasAssociatedStmt()) {
+ if (!D->getAssociatedStmt()) {
+ return StmtError();
+ }
+ getDerived().getSema().ActOnOpenMPRegionStart(D->getDirectiveKind(),
+ /*CurScope=*/nullptr);
+ StmtResult Body;
+ {
+ Sema::CompoundScopeRAII CompoundScope(getSema());
+ Body = getDerived().TransformStmt(
+ cast<CapturedStmt>(D->getAssociatedStmt())->getCapturedStmt());
+ }
+ AssociatedStmt =
+ getDerived().getSema().ActOnOpenMPRegionEnd(Body, TClauses);
+ if (AssociatedStmt.isInvalid()) {
+ return StmtError();
+ }
+ }
+ if (TClauses.size() != Clauses.size()) {
+ return StmtError();
+ }
+
+ // Transform directive name for 'omp critical' directive.
+ DeclarationNameInfo DirName;
+ if (D->getDirectiveKind() == OMPD_critical) {
+ DirName = cast<OMPCriticalDirective>(D)->getDirectiveName();
+ DirName = getDerived().TransformDeclarationNameInfo(DirName);
+ }
+
+ return getDerived().RebuildOMPExecutableDirective(
+ D->getDirectiveKind(), DirName, TClauses, AssociatedStmt.get(),
+ D->getLocStart(), D->getLocEnd());
+}
+
+template <typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformOMPParallelDirective(OMPParallelDirective *D) {
+ DeclarationNameInfo DirName;
+ getDerived().getSema().StartOpenMPDSABlock(OMPD_parallel, DirName, nullptr,
+ D->getLocStart());
+ StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
+ getDerived().getSema().EndOpenMPDSABlock(Res.get());
+ return Res;
+}
+
+template <typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformOMPSimdDirective(OMPSimdDirective *D) {
+ DeclarationNameInfo DirName;
+ getDerived().getSema().StartOpenMPDSABlock(OMPD_simd, DirName, nullptr,
+ D->getLocStart());
+ StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
+ getDerived().getSema().EndOpenMPDSABlock(Res.get());
+ return Res;
+}
+
+template <typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformOMPForDirective(OMPForDirective *D) {
+ DeclarationNameInfo DirName;
+ getDerived().getSema().StartOpenMPDSABlock(OMPD_for, DirName, nullptr,
+ D->getLocStart());
+ StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
+ getDerived().getSema().EndOpenMPDSABlock(Res.get());
+ return Res;
+}
+
+template <typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformOMPForSimdDirective(OMPForSimdDirective *D) {
+ DeclarationNameInfo DirName;
+ getDerived().getSema().StartOpenMPDSABlock(OMPD_for_simd, DirName, nullptr,
+ D->getLocStart());
+ StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
+ getDerived().getSema().EndOpenMPDSABlock(Res.get());
+ return Res;
+}
+
+template <typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformOMPSectionsDirective(OMPSectionsDirective *D) {
+ DeclarationNameInfo DirName;
+ getDerived().getSema().StartOpenMPDSABlock(OMPD_sections, DirName, nullptr,
+ D->getLocStart());
+ StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
+ getDerived().getSema().EndOpenMPDSABlock(Res.get());
+ return Res;
+}
+
+template <typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformOMPSectionDirective(OMPSectionDirective *D) {
+ DeclarationNameInfo DirName;
+ getDerived().getSema().StartOpenMPDSABlock(OMPD_section, DirName, nullptr,
+ D->getLocStart());
+ StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
+ getDerived().getSema().EndOpenMPDSABlock(Res.get());
+ return Res;
+}
+
+template <typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformOMPSingleDirective(OMPSingleDirective *D) {
+ DeclarationNameInfo DirName;
+ getDerived().getSema().StartOpenMPDSABlock(OMPD_single, DirName, nullptr,
+ D->getLocStart());
+ StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
+ getDerived().getSema().EndOpenMPDSABlock(Res.get());
+ return Res;
+}
+
+template <typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformOMPMasterDirective(OMPMasterDirective *D) {
+ DeclarationNameInfo DirName;
+ getDerived().getSema().StartOpenMPDSABlock(OMPD_master, DirName, nullptr,
+ D->getLocStart());
+ StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
+ getDerived().getSema().EndOpenMPDSABlock(Res.get());
+ return Res;
+}
+
+template <typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformOMPCriticalDirective(OMPCriticalDirective *D) {
+ getDerived().getSema().StartOpenMPDSABlock(
+ OMPD_critical, D->getDirectiveName(), nullptr, D->getLocStart());
+ StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
+ getDerived().getSema().EndOpenMPDSABlock(Res.get());
+ return Res;
+}
+
+template <typename Derived>
+StmtResult TreeTransform<Derived>::TransformOMPParallelForDirective(
+ OMPParallelForDirective *D) {
+ DeclarationNameInfo DirName;
+ getDerived().getSema().StartOpenMPDSABlock(OMPD_parallel_for, DirName,
+ nullptr, D->getLocStart());
+ StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
+ getDerived().getSema().EndOpenMPDSABlock(Res.get());
+ return Res;
+}
+
+template <typename Derived>
+StmtResult TreeTransform<Derived>::TransformOMPParallelForSimdDirective(
+ OMPParallelForSimdDirective *D) {
+ DeclarationNameInfo DirName;
+ getDerived().getSema().StartOpenMPDSABlock(OMPD_parallel_for_simd, DirName,
+ nullptr, D->getLocStart());
+ StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
+ getDerived().getSema().EndOpenMPDSABlock(Res.get());
+ return Res;
+}
+
+template <typename Derived>
+StmtResult TreeTransform<Derived>::TransformOMPParallelSectionsDirective(
+ OMPParallelSectionsDirective *D) {
+ DeclarationNameInfo DirName;
+ getDerived().getSema().StartOpenMPDSABlock(OMPD_parallel_sections, DirName,
+ nullptr, D->getLocStart());
+ StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
+ getDerived().getSema().EndOpenMPDSABlock(Res.get());
+ return Res;
+}
+
+template <typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformOMPTaskDirective(OMPTaskDirective *D) {
+ DeclarationNameInfo DirName;
+ getDerived().getSema().StartOpenMPDSABlock(OMPD_task, DirName, nullptr,
+ D->getLocStart());
+ StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
+ getDerived().getSema().EndOpenMPDSABlock(Res.get());
+ return Res;
+}
+
+template <typename Derived>
+StmtResult TreeTransform<Derived>::TransformOMPTaskyieldDirective(
+ OMPTaskyieldDirective *D) {
+ DeclarationNameInfo DirName;
+ getDerived().getSema().StartOpenMPDSABlock(OMPD_taskyield, DirName, nullptr,
+ D->getLocStart());
+ StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
+ getDerived().getSema().EndOpenMPDSABlock(Res.get());
+ return Res;
+}
+
+template <typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformOMPBarrierDirective(OMPBarrierDirective *D) {
+ DeclarationNameInfo DirName;
+ getDerived().getSema().StartOpenMPDSABlock(OMPD_barrier, DirName, nullptr,
+ D->getLocStart());
+ StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
+ getDerived().getSema().EndOpenMPDSABlock(Res.get());
+ return Res;
+}
+
+template <typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformOMPTaskwaitDirective(OMPTaskwaitDirective *D) {
+ DeclarationNameInfo DirName;
+ getDerived().getSema().StartOpenMPDSABlock(OMPD_taskwait, DirName, nullptr,
+ D->getLocStart());
+ StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
+ getDerived().getSema().EndOpenMPDSABlock(Res.get());
+ return Res;
+}
+
+template <typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformOMPFlushDirective(OMPFlushDirective *D) {
+ DeclarationNameInfo DirName;
+ getDerived().getSema().StartOpenMPDSABlock(OMPD_flush, DirName, nullptr,
+ D->getLocStart());
+ StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
+ getDerived().getSema().EndOpenMPDSABlock(Res.get());
+ return Res;
+}
+
+template <typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformOMPOrderedDirective(OMPOrderedDirective *D) {
+ DeclarationNameInfo DirName;
+ getDerived().getSema().StartOpenMPDSABlock(OMPD_ordered, DirName, nullptr,
+ D->getLocStart());
+ StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
+ getDerived().getSema().EndOpenMPDSABlock(Res.get());
+ return Res;
+}
+
+template <typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformOMPAtomicDirective(OMPAtomicDirective *D) {
+ DeclarationNameInfo DirName;
+ getDerived().getSema().StartOpenMPDSABlock(OMPD_atomic, DirName, nullptr,
+ D->getLocStart());
+ StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
+ getDerived().getSema().EndOpenMPDSABlock(Res.get());
+ return Res;
+}
+
+template <typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformOMPTargetDirective(OMPTargetDirective *D) {
+ DeclarationNameInfo DirName;
+ getDerived().getSema().StartOpenMPDSABlock(OMPD_target, DirName, nullptr,
+ D->getLocStart());
+ StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
+ getDerived().getSema().EndOpenMPDSABlock(Res.get());
+ return Res;
+}
+
+template <typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformOMPTeamsDirective(OMPTeamsDirective *D) {
+ DeclarationNameInfo DirName;
+ getDerived().getSema().StartOpenMPDSABlock(OMPD_teams, DirName, nullptr,
+ D->getLocStart());
+ StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
+ getDerived().getSema().EndOpenMPDSABlock(Res.get());
+ return Res;
+}
+
+//===----------------------------------------------------------------------===//
+// OpenMP clause transformation
+//===----------------------------------------------------------------------===//
+template <typename Derived>
+OMPClause *TreeTransform<Derived>::TransformOMPIfClause(OMPIfClause *C) {
+ ExprResult Cond = getDerived().TransformExpr(C->getCondition());
+ if (Cond.isInvalid())
+ return nullptr;
+ return getDerived().RebuildOMPIfClause(Cond.get(), C->getLocStart(),
+ C->getLParenLoc(), C->getLocEnd());
+}
+
+template <typename Derived>
+OMPClause *TreeTransform<Derived>::TransformOMPFinalClause(OMPFinalClause *C) {
+ ExprResult Cond = getDerived().TransformExpr(C->getCondition());
+ if (Cond.isInvalid())
+ return nullptr;
+ return getDerived().RebuildOMPFinalClause(Cond.get(), C->getLocStart(),
+ C->getLParenLoc(), C->getLocEnd());
+}
+
+template <typename Derived>
+OMPClause *
+TreeTransform<Derived>::TransformOMPNumThreadsClause(OMPNumThreadsClause *C) {
+ ExprResult NumThreads = getDerived().TransformExpr(C->getNumThreads());
+ if (NumThreads.isInvalid())
+ return nullptr;
+ return getDerived().RebuildOMPNumThreadsClause(
+ NumThreads.get(), C->getLocStart(), C->getLParenLoc(), C->getLocEnd());
+}
+
+template <typename Derived>
+OMPClause *
+TreeTransform<Derived>::TransformOMPSafelenClause(OMPSafelenClause *C) {
+ ExprResult E = getDerived().TransformExpr(C->getSafelen());
+ if (E.isInvalid())
+ return nullptr;
+ return getDerived().RebuildOMPSafelenClause(
+ E.get(), C->getLocStart(), C->getLParenLoc(), C->getLocEnd());
+}
+
+template <typename Derived>
+OMPClause *
+TreeTransform<Derived>::TransformOMPCollapseClause(OMPCollapseClause *C) {
+ ExprResult E = getDerived().TransformExpr(C->getNumForLoops());
+ if (E.isInvalid())
+ return 0;
+ return getDerived().RebuildOMPCollapseClause(
+ E.get(), C->getLocStart(), C->getLParenLoc(), C->getLocEnd());
+}
+
+template <typename Derived>
+OMPClause *
+TreeTransform<Derived>::TransformOMPDefaultClause(OMPDefaultClause *C) {
+ return getDerived().RebuildOMPDefaultClause(
+ C->getDefaultKind(), C->getDefaultKindKwLoc(), C->getLocStart(),
+ C->getLParenLoc(), C->getLocEnd());
+}
+
+template <typename Derived>
+OMPClause *
+TreeTransform<Derived>::TransformOMPProcBindClause(OMPProcBindClause *C) {
+ return getDerived().RebuildOMPProcBindClause(
+ C->getProcBindKind(), C->getProcBindKindKwLoc(), C->getLocStart(),
+ C->getLParenLoc(), C->getLocEnd());
+}
+
+template <typename Derived>
+OMPClause *
+TreeTransform<Derived>::TransformOMPScheduleClause(OMPScheduleClause *C) {
+ ExprResult E = getDerived().TransformExpr(C->getChunkSize());
+ if (E.isInvalid())
+ return nullptr;
+ return getDerived().RebuildOMPScheduleClause(
+ C->getScheduleKind(), E.get(), C->getLocStart(), C->getLParenLoc(),
+ C->getScheduleKindLoc(), C->getCommaLoc(), C->getLocEnd());
+}
+
+template <typename Derived>
+OMPClause *
+TreeTransform<Derived>::TransformOMPOrderedClause(OMPOrderedClause *C) {
+ // No need to rebuild this clause, no template-dependent parameters.
+ return C;
+}
+
+template <typename Derived>
+OMPClause *
+TreeTransform<Derived>::TransformOMPNowaitClause(OMPNowaitClause *C) {
+ // No need to rebuild this clause, no template-dependent parameters.
+ return C;
+}
+
+template <typename Derived>
+OMPClause *
+TreeTransform<Derived>::TransformOMPUntiedClause(OMPUntiedClause *C) {
+ // No need to rebuild this clause, no template-dependent parameters.
+ return C;
+}
+
+template <typename Derived>
+OMPClause *
+TreeTransform<Derived>::TransformOMPMergeableClause(OMPMergeableClause *C) {
+ // No need to rebuild this clause, no template-dependent parameters.
+ return C;
+}
+
+template <typename Derived>
+OMPClause *TreeTransform<Derived>::TransformOMPReadClause(OMPReadClause *C) {
+ // No need to rebuild this clause, no template-dependent parameters.
+ return C;
+}
+
+template <typename Derived>
+OMPClause *TreeTransform<Derived>::TransformOMPWriteClause(OMPWriteClause *C) {
+ // No need to rebuild this clause, no template-dependent parameters.
+ return C;
+}
+
+template <typename Derived>
+OMPClause *
+TreeTransform<Derived>::TransformOMPUpdateClause(OMPUpdateClause *C) {
+ // No need to rebuild this clause, no template-dependent parameters.
+ return C;
+}
+
+template <typename Derived>
+OMPClause *
+TreeTransform<Derived>::TransformOMPCaptureClause(OMPCaptureClause *C) {
+ // No need to rebuild this clause, no template-dependent parameters.
+ return C;
+}
+
+template <typename Derived>
+OMPClause *
+TreeTransform<Derived>::TransformOMPSeqCstClause(OMPSeqCstClause *C) {
+ // No need to rebuild this clause, no template-dependent parameters.
+ return C;
+}
+
+template <typename Derived>
+OMPClause *
+TreeTransform<Derived>::TransformOMPPrivateClause(OMPPrivateClause *C) {
+ llvm::SmallVector<Expr *, 16> Vars;
+ Vars.reserve(C->varlist_size());
+ for (auto *VE : C->varlists()) {
+ ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
+ if (EVar.isInvalid())
+ return nullptr;
+ Vars.push_back(EVar.get());
+ }
+ return getDerived().RebuildOMPPrivateClause(
+ Vars, C->getLocStart(), C->getLParenLoc(), C->getLocEnd());
+}
+
+template <typename Derived>
+OMPClause *TreeTransform<Derived>::TransformOMPFirstprivateClause(
+ OMPFirstprivateClause *C) {
+ llvm::SmallVector<Expr *, 16> Vars;
+ Vars.reserve(C->varlist_size());
+ for (auto *VE : C->varlists()) {
+ ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
+ if (EVar.isInvalid())
+ return nullptr;
+ Vars.push_back(EVar.get());
+ }
+ return getDerived().RebuildOMPFirstprivateClause(
+ Vars, C->getLocStart(), C->getLParenLoc(), C->getLocEnd());
+}
+
+template <typename Derived>
+OMPClause *
+TreeTransform<Derived>::TransformOMPLastprivateClause(OMPLastprivateClause *C) {
+ llvm::SmallVector<Expr *, 16> Vars;
+ Vars.reserve(C->varlist_size());
+ for (auto *VE : C->varlists()) {
+ ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
+ if (EVar.isInvalid())
+ return nullptr;
+ Vars.push_back(EVar.get());
+ }
+ return getDerived().RebuildOMPLastprivateClause(
+ Vars, C->getLocStart(), C->getLParenLoc(), C->getLocEnd());
+}
+
+template <typename Derived>
+OMPClause *
+TreeTransform<Derived>::TransformOMPSharedClause(OMPSharedClause *C) {
+ llvm::SmallVector<Expr *, 16> Vars;
+ Vars.reserve(C->varlist_size());
+ for (auto *VE : C->varlists()) {
+ ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
+ if (EVar.isInvalid())
+ return nullptr;
+ Vars.push_back(EVar.get());
+ }
+ return getDerived().RebuildOMPSharedClause(Vars, C->getLocStart(),
+ C->getLParenLoc(), C->getLocEnd());
+}
+
+template <typename Derived>
+OMPClause *
+TreeTransform<Derived>::TransformOMPReductionClause(OMPReductionClause *C) {
+ llvm::SmallVector<Expr *, 16> Vars;
+ Vars.reserve(C->varlist_size());
+ for (auto *VE : C->varlists()) {
+ ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
+ if (EVar.isInvalid())
+ return nullptr;
+ Vars.push_back(EVar.get());
+ }
+ CXXScopeSpec ReductionIdScopeSpec;
+ ReductionIdScopeSpec.Adopt(C->getQualifierLoc());
+
+ DeclarationNameInfo NameInfo = C->getNameInfo();
+ if (NameInfo.getName()) {
+ NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo);
+ if (!NameInfo.getName())
+ return nullptr;
+ }
+ return getDerived().RebuildOMPReductionClause(
+ Vars, C->getLocStart(), C->getLParenLoc(), C->getColonLoc(),
+ C->getLocEnd(), ReductionIdScopeSpec, NameInfo);
+}
+
+template <typename Derived>
+OMPClause *
+TreeTransform<Derived>::TransformOMPLinearClause(OMPLinearClause *C) {
+ llvm::SmallVector<Expr *, 16> Vars;
+ Vars.reserve(C->varlist_size());
+ for (auto *VE : C->varlists()) {
+ ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
+ if (EVar.isInvalid())
+ return nullptr;
+ Vars.push_back(EVar.get());
+ }
+ ExprResult Step = getDerived().TransformExpr(C->getStep());
+ if (Step.isInvalid())
+ return nullptr;
+ return getDerived().RebuildOMPLinearClause(Vars, Step.get(), C->getLocStart(),
+ C->getLParenLoc(),
+ C->getColonLoc(), C->getLocEnd());
+}
+
+template <typename Derived>
+OMPClause *
+TreeTransform<Derived>::TransformOMPAlignedClause(OMPAlignedClause *C) {
+ llvm::SmallVector<Expr *, 16> Vars;
+ Vars.reserve(C->varlist_size());
+ for (auto *VE : C->varlists()) {
+ ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
+ if (EVar.isInvalid())
+ return nullptr;
+ Vars.push_back(EVar.get());
+ }
+ ExprResult Alignment = getDerived().TransformExpr(C->getAlignment());
+ if (Alignment.isInvalid())
+ return nullptr;
+ return getDerived().RebuildOMPAlignedClause(
+ Vars, Alignment.get(), C->getLocStart(), C->getLParenLoc(),
+ C->getColonLoc(), C->getLocEnd());
+}
+
+template <typename Derived>
+OMPClause *
+TreeTransform<Derived>::TransformOMPCopyinClause(OMPCopyinClause *C) {
+ llvm::SmallVector<Expr *, 16> Vars;
+ Vars.reserve(C->varlist_size());
+ for (auto *VE : C->varlists()) {
+ ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
+ if (EVar.isInvalid())
+ return nullptr;
+ Vars.push_back(EVar.get());
+ }
+ return getDerived().RebuildOMPCopyinClause(Vars, C->getLocStart(),
+ C->getLParenLoc(), C->getLocEnd());
+}
+
+template <typename Derived>
+OMPClause *
+TreeTransform<Derived>::TransformOMPCopyprivateClause(OMPCopyprivateClause *C) {
+ llvm::SmallVector<Expr *, 16> Vars;
+ Vars.reserve(C->varlist_size());
+ for (auto *VE : C->varlists()) {
+ ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
+ if (EVar.isInvalid())
+ return nullptr;
+ Vars.push_back(EVar.get());
+ }
+ return getDerived().RebuildOMPCopyprivateClause(
+ Vars, C->getLocStart(), C->getLParenLoc(), C->getLocEnd());
+}
+
+template <typename Derived>
+OMPClause *TreeTransform<Derived>::TransformOMPFlushClause(OMPFlushClause *C) {
+ llvm::SmallVector<Expr *, 16> Vars;
+ Vars.reserve(C->varlist_size());
+ for (auto *VE : C->varlists()) {
+ ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
+ if (EVar.isInvalid())
+ return nullptr;
+ Vars.push_back(EVar.get());
+ }
+ return getDerived().RebuildOMPFlushClause(Vars, C->getLocStart(),
+ C->getLParenLoc(), C->getLocEnd());
+}
+
+//===----------------------------------------------------------------------===//
+// Expression transformation
+//===----------------------------------------------------------------------===//
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformPredefinedExpr(PredefinedExpr *E) {
+ if (!E->isTypeDependent())
+ return E;
+
+ return getDerived().RebuildPredefinedExpr(E->getLocation(),
+ E->getIdentType());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformDeclRefExpr(DeclRefExpr *E) {
+ NestedNameSpecifierLoc QualifierLoc;
+ if (E->getQualifierLoc()) {
+ QualifierLoc
+ = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
+ if (!QualifierLoc)
+ return ExprError();
+ }
+
+ ValueDecl *ND
+ = cast_or_null<ValueDecl>(getDerived().TransformDecl(E->getLocation(),
+ E->getDecl()));
+ if (!ND)
+ return ExprError();
+
+ DeclarationNameInfo NameInfo = E->getNameInfo();
+ if (NameInfo.getName()) {
+ NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo);
+ if (!NameInfo.getName())
+ return ExprError();
+ }
+
+ if (!getDerived().AlwaysRebuild() &&
+ QualifierLoc == E->getQualifierLoc() &&
+ ND == E->getDecl() &&
+ NameInfo.getName() == E->getDecl()->getDeclName() &&
+ !E->hasExplicitTemplateArgs()) {
+
+ // Mark it referenced in the new context regardless.
+ // FIXME: this is a bit instantiation-specific.
+ SemaRef.MarkDeclRefReferenced(E);
+
+ return E;
+ }
+
+ TemplateArgumentListInfo TransArgs, *TemplateArgs = nullptr;
+ if (E->hasExplicitTemplateArgs()) {
+ TemplateArgs = &TransArgs;
+ TransArgs.setLAngleLoc(E->getLAngleLoc());
+ TransArgs.setRAngleLoc(E->getRAngleLoc());
+ if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
+ E->getNumTemplateArgs(),
+ TransArgs))
+ return ExprError();
+ }
+
+ return getDerived().RebuildDeclRefExpr(QualifierLoc, ND, NameInfo,
+ TemplateArgs);
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformIntegerLiteral(IntegerLiteral *E) {
+ return E;
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformFloatingLiteral(FloatingLiteral *E) {
+ return E;
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformImaginaryLiteral(ImaginaryLiteral *E) {
+ return E;
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformStringLiteral(StringLiteral *E) {
+ return E;
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformCharacterLiteral(CharacterLiteral *E) {
+ return E;
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformUserDefinedLiteral(UserDefinedLiteral *E) {
+ if (FunctionDecl *FD = E->getDirectCallee())
+ SemaRef.MarkFunctionReferenced(E->getLocStart(), FD);
+ return SemaRef.MaybeBindToTemporary(E);
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformGenericSelectionExpr(GenericSelectionExpr *E) {
+ ExprResult ControllingExpr =
+ getDerived().TransformExpr(E->getControllingExpr());
+ if (ControllingExpr.isInvalid())
+ return ExprError();
+
+ SmallVector<Expr *, 4> AssocExprs;
+ SmallVector<TypeSourceInfo *, 4> AssocTypes;
+ for (unsigned i = 0; i != E->getNumAssocs(); ++i) {
+ TypeSourceInfo *TS = E->getAssocTypeSourceInfo(i);
+ if (TS) {
+ TypeSourceInfo *AssocType = getDerived().TransformType(TS);
+ if (!AssocType)
+ return ExprError();
+ AssocTypes.push_back(AssocType);
+ } else {
+ AssocTypes.push_back(nullptr);
+ }
+
+ ExprResult AssocExpr = getDerived().TransformExpr(E->getAssocExpr(i));
+ if (AssocExpr.isInvalid())
+ return ExprError();
+ AssocExprs.push_back(AssocExpr.get());
+ }
+
+ return getDerived().RebuildGenericSelectionExpr(E->getGenericLoc(),
+ E->getDefaultLoc(),
+ E->getRParenLoc(),
+ ControllingExpr.get(),
+ AssocTypes,
+ AssocExprs);
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformParenExpr(ParenExpr *E) {
+ ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
+ if (SubExpr.isInvalid())
+ return ExprError();
+
+ if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr())
+ return E;
+
+ return getDerived().RebuildParenExpr(SubExpr.get(), E->getLParen(),
+ E->getRParen());
+}
+
+/// \brief The operand of a unary address-of operator has special rules: it's
+/// allowed to refer to a non-static member of a class even if there's no 'this'
+/// object available.
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformAddressOfOperand(Expr *E) {
+ if (DependentScopeDeclRefExpr *DRE = dyn_cast<DependentScopeDeclRefExpr>(E))
+ return getDerived().TransformDependentScopeDeclRefExpr(DRE, true, nullptr);
+ else
+ return getDerived().TransformExpr(E);
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformUnaryOperator(UnaryOperator *E) {
+ ExprResult SubExpr;
+ if (E->getOpcode() == UO_AddrOf)
+ SubExpr = TransformAddressOfOperand(E->getSubExpr());
+ else
+ SubExpr = TransformExpr(E->getSubExpr());
+ if (SubExpr.isInvalid())
+ return ExprError();
+
+ if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr())
+ return E;
+
+ return getDerived().RebuildUnaryOperator(E->getOperatorLoc(),
+ E->getOpcode(),
+ SubExpr.get());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformOffsetOfExpr(OffsetOfExpr *E) {
+ // Transform the type.
+ TypeSourceInfo *Type = getDerived().TransformType(E->getTypeSourceInfo());
+ if (!Type)
+ return ExprError();
+
+ // Transform all of the components into components similar to what the
+ // parser uses.
+ // FIXME: It would be slightly more efficient in the non-dependent case to
+ // just map FieldDecls, rather than requiring the rebuilder to look for
+ // the fields again. However, __builtin_offsetof is rare enough in
+ // template code that we don't care.
+ bool ExprChanged = false;
+ typedef Sema::OffsetOfComponent Component;
+ typedef OffsetOfExpr::OffsetOfNode Node;
+ SmallVector<Component, 4> Components;
+ for (unsigned I = 0, N = E->getNumComponents(); I != N; ++I) {
+ const Node &ON = E->getComponent(I);
+ Component Comp;
+ Comp.isBrackets = true;
+ Comp.LocStart = ON.getSourceRange().getBegin();
+ Comp.LocEnd = ON.getSourceRange().getEnd();
+ switch (ON.getKind()) {
+ case Node::Array: {
+ Expr *FromIndex = E->getIndexExpr(ON.getArrayExprIndex());
+ ExprResult Index = getDerived().TransformExpr(FromIndex);
+ if (Index.isInvalid())
+ return ExprError();
+
+ ExprChanged = ExprChanged || Index.get() != FromIndex;
+ Comp.isBrackets = true;
+ Comp.U.E = Index.get();
+ break;
+ }
+
+ case Node::Field:
+ case Node::Identifier:
+ Comp.isBrackets = false;
+ Comp.U.IdentInfo = ON.getFieldName();
+ if (!Comp.U.IdentInfo)
+ continue;
+
+ break;
+
+ case Node::Base:
+ // Will be recomputed during the rebuild.
+ continue;
+ }
+
+ Components.push_back(Comp);
+ }
+
+ // If nothing changed, retain the existing expression.
+ if (!getDerived().AlwaysRebuild() &&
+ Type == E->getTypeSourceInfo() &&
+ !ExprChanged)
+ return E;
+
+ // Build a new offsetof expression.
+ return getDerived().RebuildOffsetOfExpr(E->getOperatorLoc(), Type,
+ Components.data(), Components.size(),
+ E->getRParenLoc());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformOpaqueValueExpr(OpaqueValueExpr *E) {
+ assert(getDerived().AlreadyTransformed(E->getType()) &&
+ "opaque value expression requires transformation");
+ return E;
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformTypoExpr(TypoExpr *E) {
+ return E;
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformPseudoObjectExpr(PseudoObjectExpr *E) {
+ // Rebuild the syntactic form. The original syntactic form has
+ // opaque-value expressions in it, so strip those away and rebuild
+ // the result. This is a really awful way of doing this, but the
+ // better solution (rebuilding the semantic expressions and
+ // rebinding OVEs as necessary) doesn't work; we'd need
+ // TreeTransform to not strip away implicit conversions.
+ Expr *newSyntacticForm = SemaRef.recreateSyntacticForm(E);
+ ExprResult result = getDerived().TransformExpr(newSyntacticForm);
+ if (result.isInvalid()) return ExprError();
+
+ // If that gives us a pseudo-object result back, the pseudo-object
+ // expression must have been an lvalue-to-rvalue conversion which we
+ // should reapply.
+ if (result.get()->hasPlaceholderType(BuiltinType::PseudoObject))
+ result = SemaRef.checkPseudoObjectRValue(result.get());
+
+ return result;
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformUnaryExprOrTypeTraitExpr(
+ UnaryExprOrTypeTraitExpr *E) {
+ if (E->isArgumentType()) {
+ TypeSourceInfo *OldT = E->getArgumentTypeInfo();
+
+ TypeSourceInfo *NewT = getDerived().TransformType(OldT);
+ if (!NewT)
+ return ExprError();
+
+ if (!getDerived().AlwaysRebuild() && OldT == NewT)
+ return E;
+
+ return getDerived().RebuildUnaryExprOrTypeTrait(NewT, E->getOperatorLoc(),
+ E->getKind(),
+ E->getSourceRange());
+ }
+
+ // C++0x [expr.sizeof]p1:
+ // The operand is either an expression, which is an unevaluated operand
+ // [...]
+ EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated,
+ Sema::ReuseLambdaContextDecl);
+
+ // Try to recover if we have something like sizeof(T::X) where X is a type.
+ // Notably, there must be *exactly* one set of parens if X is a type.
+ TypeSourceInfo *RecoveryTSI = nullptr;
+ ExprResult SubExpr;
+ auto *PE = dyn_cast<ParenExpr>(E->getArgumentExpr());
+ if (auto *DRE =
+ PE ? dyn_cast<DependentScopeDeclRefExpr>(PE->getSubExpr()) : nullptr)
+ SubExpr = getDerived().TransformParenDependentScopeDeclRefExpr(
+ PE, DRE, false, &RecoveryTSI);
+ else
+ SubExpr = getDerived().TransformExpr(E->getArgumentExpr());
+
+ if (RecoveryTSI) {
+ return getDerived().RebuildUnaryExprOrTypeTrait(
+ RecoveryTSI, E->getOperatorLoc(), E->getKind(), E->getSourceRange());
+ } else if (SubExpr.isInvalid())
+ return ExprError();
+
+ if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getArgumentExpr())
+ return E;
+
+ return getDerived().RebuildUnaryExprOrTypeTrait(SubExpr.get(),
+ E->getOperatorLoc(),
+ E->getKind(),
+ E->getSourceRange());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformArraySubscriptExpr(ArraySubscriptExpr *E) {
+ ExprResult LHS = getDerived().TransformExpr(E->getLHS());
+ if (LHS.isInvalid())
+ return ExprError();
+
+ ExprResult RHS = getDerived().TransformExpr(E->getRHS());
+ if (RHS.isInvalid())
+ return ExprError();
+
+
+ if (!getDerived().AlwaysRebuild() &&
+ LHS.get() == E->getLHS() &&
+ RHS.get() == E->getRHS())
+ return E;
+
+ return getDerived().RebuildArraySubscriptExpr(LHS.get(),
+ /*FIXME:*/E->getLHS()->getLocStart(),
+ RHS.get(),
+ E->getRBracketLoc());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformCallExpr(CallExpr *E) {
+ // Transform the callee.
+ ExprResult Callee = getDerived().TransformExpr(E->getCallee());
+ if (Callee.isInvalid())
+ return ExprError();
+
+ // Transform arguments.
+ bool ArgChanged = false;
+ SmallVector<Expr*, 8> Args;
+ if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
+ &ArgChanged))
+ return ExprError();
+
+ if (!getDerived().AlwaysRebuild() &&
+ Callee.get() == E->getCallee() &&
+ !ArgChanged)
+ return SemaRef.MaybeBindToTemporary(E);
+
+ // FIXME: Wrong source location information for the '('.
+ SourceLocation FakeLParenLoc
+ = ((Expr *)Callee.get())->getSourceRange().getBegin();
+ return getDerived().RebuildCallExpr(Callee.get(), FakeLParenLoc,
+ Args,
+ E->getRParenLoc());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformMemberExpr(MemberExpr *E) {
+ ExprResult Base = getDerived().TransformExpr(E->getBase());
+ if (Base.isInvalid())
+ return ExprError();
+
+ NestedNameSpecifierLoc QualifierLoc;
+ if (E->hasQualifier()) {
+ QualifierLoc
+ = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
+
+ if (!QualifierLoc)
+ return ExprError();
+ }
+ SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc();
+
+ ValueDecl *Member
+ = cast_or_null<ValueDecl>(getDerived().TransformDecl(E->getMemberLoc(),
+ E->getMemberDecl()));
+ if (!Member)
+ return ExprError();
+
+ NamedDecl *FoundDecl = E->getFoundDecl();
+ if (FoundDecl == E->getMemberDecl()) {
+ FoundDecl = Member;
+ } else {
+ FoundDecl = cast_or_null<NamedDecl>(
+ getDerived().TransformDecl(E->getMemberLoc(), FoundDecl));
+ if (!FoundDecl)
+ return ExprError();
+ }
+
+ if (!getDerived().AlwaysRebuild() &&
+ Base.get() == E->getBase() &&
+ QualifierLoc == E->getQualifierLoc() &&
+ Member == E->getMemberDecl() &&
+ FoundDecl == E->getFoundDecl() &&
+ !E->hasExplicitTemplateArgs()) {
+
+ // Mark it referenced in the new context regardless.
+ // FIXME: this is a bit instantiation-specific.
+ SemaRef.MarkMemberReferenced(E);
+
+ return E;
+ }
+
+ TemplateArgumentListInfo TransArgs;
+ if (E->hasExplicitTemplateArgs()) {
+ TransArgs.setLAngleLoc(E->getLAngleLoc());
+ TransArgs.setRAngleLoc(E->getRAngleLoc());
+ if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
+ E->getNumTemplateArgs(),
+ TransArgs))
+ return ExprError();
+ }
+
+ // FIXME: Bogus source location for the operator
+ SourceLocation FakeOperatorLoc =
+ SemaRef.getLocForEndOfToken(E->getBase()->getSourceRange().getEnd());
+
+ // FIXME: to do this check properly, we will need to preserve the
+ // first-qualifier-in-scope here, just in case we had a dependent
+ // base (and therefore couldn't do the check) and a
+ // nested-name-qualifier (and therefore could do the lookup).
+ NamedDecl *FirstQualifierInScope = nullptr;
+
+ return getDerived().RebuildMemberExpr(Base.get(), FakeOperatorLoc,
+ E->isArrow(),
+ QualifierLoc,
+ TemplateKWLoc,
+ E->getMemberNameInfo(),
+ Member,
+ FoundDecl,
+ (E->hasExplicitTemplateArgs()
+ ? &TransArgs : nullptr),
+ FirstQualifierInScope);
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformBinaryOperator(BinaryOperator *E) {
+ ExprResult LHS = getDerived().TransformExpr(E->getLHS());
+ if (LHS.isInvalid())
+ return ExprError();
+
+ ExprResult RHS = getDerived().TransformExpr(E->getRHS());
+ if (RHS.isInvalid())
+ return ExprError();
+
+ if (!getDerived().AlwaysRebuild() &&
+ LHS.get() == E->getLHS() &&
+ RHS.get() == E->getRHS())
+ return E;
+
+ Sema::FPContractStateRAII FPContractState(getSema());
+ getSema().FPFeatures.fp_contract = E->isFPContractable();
+
+ return getDerived().RebuildBinaryOperator(E->getOperatorLoc(), E->getOpcode(),
+ LHS.get(), RHS.get());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformCompoundAssignOperator(
+ CompoundAssignOperator *E) {
+ return getDerived().TransformBinaryOperator(E);
+}
+
+template<typename Derived>
+ExprResult TreeTransform<Derived>::
+TransformBinaryConditionalOperator(BinaryConditionalOperator *e) {
+ // Just rebuild the common and RHS expressions and see whether we
+ // get any changes.
+
+ ExprResult commonExpr = getDerived().TransformExpr(e->getCommon());
+ if (commonExpr.isInvalid())
+ return ExprError();
+
+ ExprResult rhs = getDerived().TransformExpr(e->getFalseExpr());
+ if (rhs.isInvalid())
+ return ExprError();
+
+ if (!getDerived().AlwaysRebuild() &&
+ commonExpr.get() == e->getCommon() &&
+ rhs.get() == e->getFalseExpr())
+ return e;
+
+ return getDerived().RebuildConditionalOperator(commonExpr.get(),
+ e->getQuestionLoc(),
+ nullptr,
+ e->getColonLoc(),
+ rhs.get());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformConditionalOperator(ConditionalOperator *E) {
+ ExprResult Cond = getDerived().TransformExpr(E->getCond());
+ if (Cond.isInvalid())
+ return ExprError();
+
+ ExprResult LHS = getDerived().TransformExpr(E->getLHS());
+ if (LHS.isInvalid())
+ return ExprError();
+
+ ExprResult RHS = getDerived().TransformExpr(E->getRHS());
+ if (RHS.isInvalid())
+ return ExprError();
+
+ if (!getDerived().AlwaysRebuild() &&
+ Cond.get() == E->getCond() &&
+ LHS.get() == E->getLHS() &&
+ RHS.get() == E->getRHS())
+ return E;
+
+ return getDerived().RebuildConditionalOperator(Cond.get(),
+ E->getQuestionLoc(),
+ LHS.get(),
+ E->getColonLoc(),
+ RHS.get());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformImplicitCastExpr(ImplicitCastExpr *E) {
+ // Implicit casts are eliminated during transformation, since they
+ // will be recomputed by semantic analysis after transformation.
+ return getDerived().TransformExpr(E->getSubExprAsWritten());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformCStyleCastExpr(CStyleCastExpr *E) {
+ TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten());
+ if (!Type)
+ return ExprError();
+
+ ExprResult SubExpr
+ = getDerived().TransformExpr(E->getSubExprAsWritten());
+ if (SubExpr.isInvalid())
+ return ExprError();
+
+ if (!getDerived().AlwaysRebuild() &&
+ Type == E->getTypeInfoAsWritten() &&
+ SubExpr.get() == E->getSubExpr())
+ return E;
+
+ return getDerived().RebuildCStyleCastExpr(E->getLParenLoc(),
+ Type,
+ E->getRParenLoc(),
+ SubExpr.get());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformCompoundLiteralExpr(CompoundLiteralExpr *E) {
+ TypeSourceInfo *OldT = E->getTypeSourceInfo();
+ TypeSourceInfo *NewT = getDerived().TransformType(OldT);
+ if (!NewT)
+ return ExprError();
+
+ ExprResult Init = getDerived().TransformExpr(E->getInitializer());
+ if (Init.isInvalid())
+ return ExprError();
+
+ if (!getDerived().AlwaysRebuild() &&
+ OldT == NewT &&
+ Init.get() == E->getInitializer())
+ return SemaRef.MaybeBindToTemporary(E);
+
+ // Note: the expression type doesn't necessarily match the
+ // type-as-written, but that's okay, because it should always be
+ // derivable from the initializer.
+
+ return getDerived().RebuildCompoundLiteralExpr(E->getLParenLoc(), NewT,
+ /*FIXME:*/E->getInitializer()->getLocEnd(),
+ Init.get());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformExtVectorElementExpr(ExtVectorElementExpr *E) {
+ ExprResult Base = getDerived().TransformExpr(E->getBase());
+ if (Base.isInvalid())
+ return ExprError();
+
+ if (!getDerived().AlwaysRebuild() &&
+ Base.get() == E->getBase())
+ return E;
+
+ // FIXME: Bad source location
+ SourceLocation FakeOperatorLoc =
+ SemaRef.getLocForEndOfToken(E->getBase()->getLocEnd());
+ return getDerived().RebuildExtVectorElementExpr(Base.get(), FakeOperatorLoc,
+ E->getAccessorLoc(),
+ E->getAccessor());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformInitListExpr(InitListExpr *E) {
+ if (InitListExpr *Syntactic = E->getSyntacticForm())
+ E = Syntactic;
+
+ bool InitChanged = false;
+
+ SmallVector<Expr*, 4> Inits;
+ if (getDerived().TransformExprs(E->getInits(), E->getNumInits(), false,
+ Inits, &InitChanged))
+ return ExprError();
+
+ if (!getDerived().AlwaysRebuild() && !InitChanged) {
+ // FIXME: Attempt to reuse the existing syntactic form of the InitListExpr
+ // in some cases. We can't reuse it in general, because the syntactic and
+ // semantic forms are linked, and we can't know that semantic form will
+ // match even if the syntactic form does.
+ }
+
+ return getDerived().RebuildInitList(E->getLBraceLoc(), Inits,
+ E->getRBraceLoc(), E->getType());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformDesignatedInitExpr(DesignatedInitExpr *E) {
+ Designation Desig;
+
+ // transform the initializer value
+ ExprResult Init = getDerived().TransformExpr(E->getInit());
+ if (Init.isInvalid())
+ return ExprError();
+
+ // transform the designators.
+ SmallVector<Expr*, 4> ArrayExprs;
+ bool ExprChanged = false;
+ for (DesignatedInitExpr::designators_iterator D = E->designators_begin(),
+ DEnd = E->designators_end();
+ D != DEnd; ++D) {
+ if (D->isFieldDesignator()) {
+ Desig.AddDesignator(Designator::getField(D->getFieldName(),
+ D->getDotLoc(),
+ D->getFieldLoc()));
+ continue;
+ }
+
+ if (D->isArrayDesignator()) {
+ ExprResult Index = getDerived().TransformExpr(E->getArrayIndex(*D));
+ if (Index.isInvalid())
+ return ExprError();
+
+ Desig.AddDesignator(Designator::getArray(Index.get(),
+ D->getLBracketLoc()));
+
+ ExprChanged = ExprChanged || Init.get() != E->getArrayIndex(*D);
+ ArrayExprs.push_back(Index.get());
+ continue;
+ }
+
+ assert(D->isArrayRangeDesignator() && "New kind of designator?");
+ ExprResult Start
+ = getDerived().TransformExpr(E->getArrayRangeStart(*D));
+ if (Start.isInvalid())
+ return ExprError();
+
+ ExprResult End = getDerived().TransformExpr(E->getArrayRangeEnd(*D));
+ if (End.isInvalid())
+ return ExprError();
+
+ Desig.AddDesignator(Designator::getArrayRange(Start.get(),
+ End.get(),
+ D->getLBracketLoc(),
+ D->getEllipsisLoc()));
+
+ ExprChanged = ExprChanged || Start.get() != E->getArrayRangeStart(*D) ||
+ End.get() != E->getArrayRangeEnd(*D);
+
+ ArrayExprs.push_back(Start.get());
+ ArrayExprs.push_back(End.get());
+ }
+
+ if (!getDerived().AlwaysRebuild() &&
+ Init.get() == E->getInit() &&
+ !ExprChanged)
+ return E;
+
+ return getDerived().RebuildDesignatedInitExpr(Desig, ArrayExprs,
+ E->getEqualOrColonLoc(),
+ E->usesGNUSyntax(), Init.get());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformImplicitValueInitExpr(
+ ImplicitValueInitExpr *E) {
+ TemporaryBase Rebase(*this, E->getLocStart(), DeclarationName());
+
+ // FIXME: Will we ever have proper type location here? Will we actually
+ // need to transform the type?
+ QualType T = getDerived().TransformType(E->getType());
+ if (T.isNull())
+ return ExprError();
+
+ if (!getDerived().AlwaysRebuild() &&
+ T == E->getType())
+ return E;
+
+ return getDerived().RebuildImplicitValueInitExpr(T);
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformVAArgExpr(VAArgExpr *E) {
+ TypeSourceInfo *TInfo = getDerived().TransformType(E->getWrittenTypeInfo());
+ if (!TInfo)
+ return ExprError();
+
+ ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
+ if (SubExpr.isInvalid())
+ return ExprError();
+
+ if (!getDerived().AlwaysRebuild() &&
+ TInfo == E->getWrittenTypeInfo() &&
+ SubExpr.get() == E->getSubExpr())
+ return E;
+
+ return getDerived().RebuildVAArgExpr(E->getBuiltinLoc(), SubExpr.get(),
+ TInfo, E->getRParenLoc());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformParenListExpr(ParenListExpr *E) {
+ bool ArgumentChanged = false;
+ SmallVector<Expr*, 4> Inits;
+ if (TransformExprs(E->getExprs(), E->getNumExprs(), true, Inits,
+ &ArgumentChanged))
+ return ExprError();
+
+ return getDerived().RebuildParenListExpr(E->getLParenLoc(),
+ Inits,
+ E->getRParenLoc());
+}
+
+/// \brief Transform an address-of-label expression.
+///
+/// By default, the transformation of an address-of-label expression always
+/// rebuilds the expression, so that the label identifier can be resolved to
+/// the corresponding label statement by semantic analysis.
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformAddrLabelExpr(AddrLabelExpr *E) {
+ Decl *LD = getDerived().TransformDecl(E->getLabel()->getLocation(),
+ E->getLabel());
+ if (!LD)
+ return ExprError();
+
+ return getDerived().RebuildAddrLabelExpr(E->getAmpAmpLoc(), E->getLabelLoc(),
+ cast<LabelDecl>(LD));
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformStmtExpr(StmtExpr *E) {
+ SemaRef.ActOnStartStmtExpr();
+ StmtResult SubStmt
+ = getDerived().TransformCompoundStmt(E->getSubStmt(), true);
+ if (SubStmt.isInvalid()) {
+ SemaRef.ActOnStmtExprError();
+ return ExprError();
+ }
+
+ if (!getDerived().AlwaysRebuild() &&
+ SubStmt.get() == E->getSubStmt()) {
+ // Calling this an 'error' is unintuitive, but it does the right thing.
+ SemaRef.ActOnStmtExprError();
+ return SemaRef.MaybeBindToTemporary(E);
+ }
+
+ return getDerived().RebuildStmtExpr(E->getLParenLoc(),
+ SubStmt.get(),
+ E->getRParenLoc());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformChooseExpr(ChooseExpr *E) {
+ ExprResult Cond = getDerived().TransformExpr(E->getCond());
+ if (Cond.isInvalid())
+ return ExprError();
+
+ ExprResult LHS = getDerived().TransformExpr(E->getLHS());
+ if (LHS.isInvalid())
+ return ExprError();
+
+ ExprResult RHS = getDerived().TransformExpr(E->getRHS());
+ if (RHS.isInvalid())
+ return ExprError();
+
+ if (!getDerived().AlwaysRebuild() &&
+ Cond.get() == E->getCond() &&
+ LHS.get() == E->getLHS() &&
+ RHS.get() == E->getRHS())
+ return E;
+
+ return getDerived().RebuildChooseExpr(E->getBuiltinLoc(),
+ Cond.get(), LHS.get(), RHS.get(),
+ E->getRParenLoc());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformGNUNullExpr(GNUNullExpr *E) {
+ return E;
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
+ switch (E->getOperator()) {
+ case OO_New:
+ case OO_Delete:
+ case OO_Array_New:
+ case OO_Array_Delete:
+ llvm_unreachable("new and delete operators cannot use CXXOperatorCallExpr");
+
+ case OO_Call: {
+ // This is a call to an object's operator().
+ assert(E->getNumArgs() >= 1 && "Object call is missing arguments");
+
+ // Transform the object itself.
+ ExprResult Object = getDerived().TransformExpr(E->getArg(0));
+ if (Object.isInvalid())
+ return ExprError();
+
+ // FIXME: Poor location information
+ SourceLocation FakeLParenLoc = SemaRef.getLocForEndOfToken(
+ static_cast<Expr *>(Object.get())->getLocEnd());
+
+ // Transform the call arguments.
+ SmallVector<Expr*, 8> Args;
+ if (getDerived().TransformExprs(E->getArgs() + 1, E->getNumArgs() - 1, true,
+ Args))
+ return ExprError();
+
+ return getDerived().RebuildCallExpr(Object.get(), FakeLParenLoc,
+ Args,
+ E->getLocEnd());
+ }
+
+#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
+ case OO_##Name:
+#define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
+#include "clang/Basic/OperatorKinds.def"
+ case OO_Subscript:
+ // Handled below.
+ break;
+
+ case OO_Conditional:
+ llvm_unreachable("conditional operator is not actually overloadable");
+
+ case OO_None:
+ case NUM_OVERLOADED_OPERATORS:
+ llvm_unreachable("not an overloaded operator?");
+ }
+
+ ExprResult Callee = getDerived().TransformExpr(E->getCallee());
+ if (Callee.isInvalid())
+ return ExprError();
+
+ ExprResult First;
+ if (E->getOperator() == OO_Amp)
+ First = getDerived().TransformAddressOfOperand(E->getArg(0));
+ else
+ First = getDerived().TransformExpr(E->getArg(0));
+ if (First.isInvalid())
+ return ExprError();
+
+ ExprResult Second;
+ if (E->getNumArgs() == 2) {
+ Second = getDerived().TransformExpr(E->getArg(1));
+ if (Second.isInvalid())
+ return ExprError();
+ }
+
+ if (!getDerived().AlwaysRebuild() &&
+ Callee.get() == E->getCallee() &&
+ First.get() == E->getArg(0) &&
+ (E->getNumArgs() != 2 || Second.get() == E->getArg(1)))
+ return SemaRef.MaybeBindToTemporary(E);
+
+ Sema::FPContractStateRAII FPContractState(getSema());
+ getSema().FPFeatures.fp_contract = E->isFPContractable();
+
+ return getDerived().RebuildCXXOperatorCallExpr(E->getOperator(),
+ E->getOperatorLoc(),
+ Callee.get(),
+ First.get(),
+ Second.get());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformCXXMemberCallExpr(CXXMemberCallExpr *E) {
+ return getDerived().TransformCallExpr(E);
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformCUDAKernelCallExpr(CUDAKernelCallExpr *E) {
+ // Transform the callee.
+ ExprResult Callee = getDerived().TransformExpr(E->getCallee());
+ if (Callee.isInvalid())
+ return ExprError();
+
+ // Transform exec config.
+ ExprResult EC = getDerived().TransformCallExpr(E->getConfig());
+ if (EC.isInvalid())
+ return ExprError();
+
+ // Transform arguments.
+ bool ArgChanged = false;
+ SmallVector<Expr*, 8> Args;
+ if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
+ &ArgChanged))
+ return ExprError();
+
+ if (!getDerived().AlwaysRebuild() &&
+ Callee.get() == E->getCallee() &&
+ !ArgChanged)
+ return SemaRef.MaybeBindToTemporary(E);
+
+ // FIXME: Wrong source location information for the '('.
+ SourceLocation FakeLParenLoc
+ = ((Expr *)Callee.get())->getSourceRange().getBegin();
+ return getDerived().RebuildCallExpr(Callee.get(), FakeLParenLoc,
+ Args,
+ E->getRParenLoc(), EC.get());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformCXXNamedCastExpr(CXXNamedCastExpr *E) {
+ TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten());
+ if (!Type)
+ return ExprError();
+
+ ExprResult SubExpr
+ = getDerived().TransformExpr(E->getSubExprAsWritten());
+ if (SubExpr.isInvalid())
+ return ExprError();
+
+ if (!getDerived().AlwaysRebuild() &&
+ Type == E->getTypeInfoAsWritten() &&
+ SubExpr.get() == E->getSubExpr())
+ return E;
+ return getDerived().RebuildCXXNamedCastExpr(
+ E->getOperatorLoc(), E->getStmtClass(), E->getAngleBrackets().getBegin(),
+ Type, E->getAngleBrackets().getEnd(),
+ // FIXME. this should be '(' location
+ E->getAngleBrackets().getEnd(), SubExpr.get(), E->getRParenLoc());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformCXXStaticCastExpr(CXXStaticCastExpr *E) {
+ return getDerived().TransformCXXNamedCastExpr(E);
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformCXXDynamicCastExpr(CXXDynamicCastExpr *E) {
+ return getDerived().TransformCXXNamedCastExpr(E);
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformCXXReinterpretCastExpr(
+ CXXReinterpretCastExpr *E) {
+ return getDerived().TransformCXXNamedCastExpr(E);
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformCXXConstCastExpr(CXXConstCastExpr *E) {
+ return getDerived().TransformCXXNamedCastExpr(E);
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformCXXFunctionalCastExpr(
+ CXXFunctionalCastExpr *E) {
+ TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten());
+ if (!Type)
+ return ExprError();
+
+ ExprResult SubExpr
+ = getDerived().TransformExpr(E->getSubExprAsWritten());
+ if (SubExpr.isInvalid())
+ return ExprError();
+
+ if (!getDerived().AlwaysRebuild() &&
+ Type == E->getTypeInfoAsWritten() &&
+ SubExpr.get() == E->getSubExpr())
+ return E;
+
+ return getDerived().RebuildCXXFunctionalCastExpr(Type,
+ E->getLParenLoc(),
+ SubExpr.get(),
+ E->getRParenLoc());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformCXXTypeidExpr(CXXTypeidExpr *E) {
+ if (E->isTypeOperand()) {
+ TypeSourceInfo *TInfo
+ = getDerived().TransformType(E->getTypeOperandSourceInfo());
+ if (!TInfo)
+ return ExprError();
+
+ if (!getDerived().AlwaysRebuild() &&
+ TInfo == E->getTypeOperandSourceInfo())
+ return E;
+
+ return getDerived().RebuildCXXTypeidExpr(E->getType(),
+ E->getLocStart(),
+ TInfo,
+ E->getLocEnd());
+ }
+
+ // We don't know whether the subexpression is potentially evaluated until
+ // after we perform semantic analysis. We speculatively assume it is
+ // unevaluated; it will get fixed later if the subexpression is in fact
+ // potentially evaluated.
+ EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated,
+ Sema::ReuseLambdaContextDecl);
+
+ ExprResult SubExpr = getDerived().TransformExpr(E->getExprOperand());
+ if (SubExpr.isInvalid())
+ return ExprError();
+
+ if (!getDerived().AlwaysRebuild() &&
+ SubExpr.get() == E->getExprOperand())
+ return E;
+
+ return getDerived().RebuildCXXTypeidExpr(E->getType(),
+ E->getLocStart(),
+ SubExpr.get(),
+ E->getLocEnd());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformCXXUuidofExpr(CXXUuidofExpr *E) {
+ if (E->isTypeOperand()) {
+ TypeSourceInfo *TInfo
+ = getDerived().TransformType(E->getTypeOperandSourceInfo());
+ if (!TInfo)
+ return ExprError();
+
+ if (!getDerived().AlwaysRebuild() &&
+ TInfo == E->getTypeOperandSourceInfo())
+ return E;
+
+ return getDerived().RebuildCXXUuidofExpr(E->getType(),
+ E->getLocStart(),
+ TInfo,
+ E->getLocEnd());
+ }
+
+ EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
+
+ ExprResult SubExpr = getDerived().TransformExpr(E->getExprOperand());
+ if (SubExpr.isInvalid())
+ return ExprError();
+
+ if (!getDerived().AlwaysRebuild() &&
+ SubExpr.get() == E->getExprOperand())
+ return E;
+
+ return getDerived().RebuildCXXUuidofExpr(E->getType(),
+ E->getLocStart(),
+ SubExpr.get(),
+ E->getLocEnd());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) {
+ return E;
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformCXXNullPtrLiteralExpr(
+ CXXNullPtrLiteralExpr *E) {
+ return E;
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformCXXThisExpr(CXXThisExpr *E) {
+ QualType T = getSema().getCurrentThisType();
+
+ if (!getDerived().AlwaysRebuild() && T == E->getType()) {
+ // Make sure that we capture 'this'.
+ getSema().CheckCXXThisCapture(E->getLocStart());
+ return E;
+ }
+
+ return getDerived().RebuildCXXThisExpr(E->getLocStart(), T, E->isImplicit());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformCXXThrowExpr(CXXThrowExpr *E) {
+ ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
+ if (SubExpr.isInvalid())
+ return ExprError();
+
+ if (!getDerived().AlwaysRebuild() &&
+ SubExpr.get() == E->getSubExpr())
+ return E;
+
+ return getDerived().RebuildCXXThrowExpr(E->getThrowLoc(), SubExpr.get(),
+ E->isThrownVariableInScope());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
+ ParmVarDecl *Param
+ = cast_or_null<ParmVarDecl>(getDerived().TransformDecl(E->getLocStart(),
+ E->getParam()));
+ if (!Param)
+ return ExprError();
+
+ if (!getDerived().AlwaysRebuild() &&
+ Param == E->getParam())
+ return E;
+
+ return getDerived().RebuildCXXDefaultArgExpr(E->getUsedLocation(), Param);
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformCXXDefaultInitExpr(CXXDefaultInitExpr *E) {
+ FieldDecl *Field
+ = cast_or_null<FieldDecl>(getDerived().TransformDecl(E->getLocStart(),
+ E->getField()));
+ if (!Field)
+ return ExprError();
+
+ if (!getDerived().AlwaysRebuild() && Field == E->getField())
+ return E;
+
+ return getDerived().RebuildCXXDefaultInitExpr(E->getExprLoc(), Field);
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformCXXScalarValueInitExpr(
+ CXXScalarValueInitExpr *E) {
+ TypeSourceInfo *T = getDerived().TransformType(E->getTypeSourceInfo());
+ if (!T)
+ return ExprError();
+
+ if (!getDerived().AlwaysRebuild() &&
+ T == E->getTypeSourceInfo())
+ return E;
+
+ return getDerived().RebuildCXXScalarValueInitExpr(T,
+ /*FIXME:*/T->getTypeLoc().getEndLoc(),
+ E->getRParenLoc());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformCXXNewExpr(CXXNewExpr *E) {
+ // Transform the type that we're allocating
+ TypeSourceInfo *AllocTypeInfo
+ = getDerived().TransformType(E->getAllocatedTypeSourceInfo());
+ if (!AllocTypeInfo)
+ return ExprError();
+
+ // Transform the size of the array we're allocating (if any).
+ ExprResult ArraySize = getDerived().TransformExpr(E->getArraySize());
+ if (ArraySize.isInvalid())
+ return ExprError();
+
+ // Transform the placement arguments (if any).
+ bool ArgumentChanged = false;
+ SmallVector<Expr*, 8> PlacementArgs;
+ if (getDerived().TransformExprs(E->getPlacementArgs(),
+ E->getNumPlacementArgs(), true,
+ PlacementArgs, &ArgumentChanged))
+ return ExprError();
+
+ // Transform the initializer (if any).
+ Expr *OldInit = E->getInitializer();
+ ExprResult NewInit;
+ if (OldInit)
+ NewInit = getDerived().TransformInitializer(OldInit, true);
+ if (NewInit.isInvalid())
+ return ExprError();
+
+ // Transform new operator and delete operator.
+ FunctionDecl *OperatorNew = nullptr;
+ if (E->getOperatorNew()) {
+ OperatorNew = cast_or_null<FunctionDecl>(
+ getDerived().TransformDecl(E->getLocStart(),
+ E->getOperatorNew()));
+ if (!OperatorNew)
+ return ExprError();
+ }
+
+ FunctionDecl *OperatorDelete = nullptr;
+ if (E->getOperatorDelete()) {
+ OperatorDelete = cast_or_null<FunctionDecl>(
+ getDerived().TransformDecl(E->getLocStart(),
+ E->getOperatorDelete()));
+ if (!OperatorDelete)
+ return ExprError();
+ }
+
+ if (!getDerived().AlwaysRebuild() &&
+ AllocTypeInfo == E->getAllocatedTypeSourceInfo() &&
+ ArraySize.get() == E->getArraySize() &&
+ NewInit.get() == OldInit &&
+ OperatorNew == E->getOperatorNew() &&
+ OperatorDelete == E->getOperatorDelete() &&
+ !ArgumentChanged) {
+ // Mark any declarations we need as referenced.
+ // FIXME: instantiation-specific.
+ if (OperatorNew)
+ SemaRef.MarkFunctionReferenced(E->getLocStart(), OperatorNew);
+ if (OperatorDelete)
+ SemaRef.MarkFunctionReferenced(E->getLocStart(), OperatorDelete);
+
+ if (E->isArray() && !E->getAllocatedType()->isDependentType()) {
+ QualType ElementType
+ = SemaRef.Context.getBaseElementType(E->getAllocatedType());
+ if (const RecordType *RecordT = ElementType->getAs<RecordType>()) {
+ CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordT->getDecl());
+ if (CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(Record)) {
+ SemaRef.MarkFunctionReferenced(E->getLocStart(), Destructor);
+ }
+ }
+ }
+
+ return E;
+ }
+
+ QualType AllocType = AllocTypeInfo->getType();
+ if (!ArraySize.get()) {
+ // If no array size was specified, but the new expression was
+ // instantiated with an array type (e.g., "new T" where T is
+ // instantiated with "int[4]"), extract the outer bound from the
+ // array type as our array size. We do this with constant and
+ // dependently-sized array types.
+ const ArrayType *ArrayT = SemaRef.Context.getAsArrayType(AllocType);
+ if (!ArrayT) {
+ // Do nothing
+ } else if (const ConstantArrayType *ConsArrayT
+ = dyn_cast<ConstantArrayType>(ArrayT)) {
+ ArraySize = IntegerLiteral::Create(SemaRef.Context, ConsArrayT->getSize(),
+ SemaRef.Context.getSizeType(),
+ /*FIXME:*/ E->getLocStart());
+ AllocType = ConsArrayT->getElementType();
+ } else if (const DependentSizedArrayType *DepArrayT
+ = dyn_cast<DependentSizedArrayType>(ArrayT)) {
+ if (DepArrayT->getSizeExpr()) {
+ ArraySize = DepArrayT->getSizeExpr();
+ AllocType = DepArrayT->getElementType();
+ }
+ }
+ }
+
+ return getDerived().RebuildCXXNewExpr(E->getLocStart(),
+ E->isGlobalNew(),
+ /*FIXME:*/E->getLocStart(),
+ PlacementArgs,
+ /*FIXME:*/E->getLocStart(),
+ E->getTypeIdParens(),
+ AllocType,
+ AllocTypeInfo,
+ ArraySize.get(),
+ E->getDirectInitRange(),
+ NewInit.get());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformCXXDeleteExpr(CXXDeleteExpr *E) {
+ ExprResult Operand = getDerived().TransformExpr(E->getArgument());
+ if (Operand.isInvalid())
+ return ExprError();
+
+ // Transform the delete operator, if known.
+ FunctionDecl *OperatorDelete = nullptr;
+ if (E->getOperatorDelete()) {
+ OperatorDelete = cast_or_null<FunctionDecl>(
+ getDerived().TransformDecl(E->getLocStart(),
+ E->getOperatorDelete()));
+ if (!OperatorDelete)
+ return ExprError();
+ }
+
+ if (!getDerived().AlwaysRebuild() &&
+ Operand.get() == E->getArgument() &&
+ OperatorDelete == E->getOperatorDelete()) {
+ // Mark any declarations we need as referenced.
+ // FIXME: instantiation-specific.
+ if (OperatorDelete)
+ SemaRef.MarkFunctionReferenced(E->getLocStart(), OperatorDelete);
+
+ if (!E->getArgument()->isTypeDependent()) {
+ QualType Destroyed = SemaRef.Context.getBaseElementType(
+ E->getDestroyedType());
+ if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
+ CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
+ SemaRef.MarkFunctionReferenced(E->getLocStart(),
+ SemaRef.LookupDestructor(Record));
+ }
+ }
+
+ return E;
+ }
+
+ return getDerived().RebuildCXXDeleteExpr(E->getLocStart(),
+ E->isGlobalDelete(),
+ E->isArrayForm(),
+ Operand.get());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformCXXPseudoDestructorExpr(
+ CXXPseudoDestructorExpr *E) {
+ ExprResult Base = getDerived().TransformExpr(E->getBase());
+ if (Base.isInvalid())
+ return ExprError();
+
+ ParsedType ObjectTypePtr;
+ bool MayBePseudoDestructor = false;
+ Base = SemaRef.ActOnStartCXXMemberReference(nullptr, Base.get(),
+ E->getOperatorLoc(),
+ E->isArrow()? tok::arrow : tok::period,
+ ObjectTypePtr,
+ MayBePseudoDestructor);
+ if (Base.isInvalid())
+ return ExprError();
+
+ QualType ObjectType = ObjectTypePtr.get();
+ NestedNameSpecifierLoc QualifierLoc = E->getQualifierLoc();
+ if (QualifierLoc) {
+ QualifierLoc
+ = getDerived().TransformNestedNameSpecifierLoc(QualifierLoc, ObjectType);
+ if (!QualifierLoc)
+ return ExprError();
+ }
+ CXXScopeSpec SS;
+ SS.Adopt(QualifierLoc);
+
+ PseudoDestructorTypeStorage Destroyed;
+ if (E->getDestroyedTypeInfo()) {
+ TypeSourceInfo *DestroyedTypeInfo
+ = getDerived().TransformTypeInObjectScope(E->getDestroyedTypeInfo(),
+ ObjectType, nullptr, SS);
+ if (!DestroyedTypeInfo)
+ return ExprError();
+ Destroyed = DestroyedTypeInfo;
+ } else if (!ObjectType.isNull() && ObjectType->isDependentType()) {
+ // We aren't likely to be able to resolve the identifier down to a type
+ // now anyway, so just retain the identifier.
+ Destroyed = PseudoDestructorTypeStorage(E->getDestroyedTypeIdentifier(),
+ E->getDestroyedTypeLoc());
+ } else {
+ // Look for a destructor known with the given name.
+ ParsedType T = SemaRef.getDestructorName(E->getTildeLoc(),
+ *E->getDestroyedTypeIdentifier(),
+ E->getDestroyedTypeLoc(),
+ /*Scope=*/nullptr,
+ SS, ObjectTypePtr,
+ false);
+ if (!T)
+ return ExprError();
+
+ Destroyed
+ = SemaRef.Context.getTrivialTypeSourceInfo(SemaRef.GetTypeFromParser(T),
+ E->getDestroyedTypeLoc());
+ }
+
+ TypeSourceInfo *ScopeTypeInfo = nullptr;
+ if (E->getScopeTypeInfo()) {
+ CXXScopeSpec EmptySS;
+ ScopeTypeInfo = getDerived().TransformTypeInObjectScope(
+ E->getScopeTypeInfo(), ObjectType, nullptr, EmptySS);
+ if (!ScopeTypeInfo)
+ return ExprError();
+ }
+
+ return getDerived().RebuildCXXPseudoDestructorExpr(Base.get(),
+ E->getOperatorLoc(),
+ E->isArrow(),
+ SS,
+ ScopeTypeInfo,
+ E->getColonColonLoc(),
+ E->getTildeLoc(),
+ Destroyed);
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformUnresolvedLookupExpr(
+ UnresolvedLookupExpr *Old) {
+ LookupResult R(SemaRef, Old->getName(), Old->getNameLoc(),
+ Sema::LookupOrdinaryName);
+
+ // Transform all the decls.
+ for (UnresolvedLookupExpr::decls_iterator I = Old->decls_begin(),
+ E = Old->decls_end(); I != E; ++I) {
+ NamedDecl *InstD = static_cast<NamedDecl*>(
+ getDerived().TransformDecl(Old->getNameLoc(),
+ *I));
+ if (!InstD) {
+ // Silently ignore these if a UsingShadowDecl instantiated to nothing.
+ // This can happen because of dependent hiding.
+ if (isa<UsingShadowDecl>(*I))
+ continue;
+ else {
+ R.clear();
+ return ExprError();
+ }
+ }
+
+ // Expand using declarations.
+ if (isa<UsingDecl>(InstD)) {
+ UsingDecl *UD = cast<UsingDecl>(InstD);
+ for (auto *I : UD->shadows())
+ R.addDecl(I);
+ continue;
+ }
+
+ R.addDecl(InstD);
+ }
+
+ // Resolve a kind, but don't do any further analysis. If it's
+ // ambiguous, the callee needs to deal with it.
+ R.resolveKind();
+
+ // Rebuild the nested-name qualifier, if present.
+ CXXScopeSpec SS;
+ if (Old->getQualifierLoc()) {
+ NestedNameSpecifierLoc QualifierLoc
+ = getDerived().TransformNestedNameSpecifierLoc(Old->getQualifierLoc());
+ if (!QualifierLoc)
+ return ExprError();
+
+ SS.Adopt(QualifierLoc);
+ }
+
+ if (Old->getNamingClass()) {
+ CXXRecordDecl *NamingClass
+ = cast_or_null<CXXRecordDecl>(getDerived().TransformDecl(
+ Old->getNameLoc(),
+ Old->getNamingClass()));
+ if (!NamingClass) {
+ R.clear();
+ return ExprError();
+ }
+
+ R.setNamingClass(NamingClass);
+ }
+
+ SourceLocation TemplateKWLoc = Old->getTemplateKeywordLoc();
+
+ // If we have neither explicit template arguments, nor the template keyword,
+ // it's a normal declaration name.
+ if (!Old->hasExplicitTemplateArgs() && !TemplateKWLoc.isValid())
+ return getDerived().RebuildDeclarationNameExpr(SS, R, Old->requiresADL());
+
+ // If we have template arguments, rebuild them, then rebuild the
+ // templateid expression.
+ TemplateArgumentListInfo TransArgs(Old->getLAngleLoc(), Old->getRAngleLoc());
+ if (Old->hasExplicitTemplateArgs() &&
+ getDerived().TransformTemplateArguments(Old->getTemplateArgs(),
+ Old->getNumTemplateArgs(),
+ TransArgs)) {
+ R.clear();
+ return ExprError();
+ }
+
+ return getDerived().RebuildTemplateIdExpr(SS, TemplateKWLoc, R,
+ Old->requiresADL(), &TransArgs);
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformTypeTraitExpr(TypeTraitExpr *E) {
+ bool ArgChanged = false;
+ SmallVector<TypeSourceInfo *, 4> Args;
+ for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I) {
+ TypeSourceInfo *From = E->getArg(I);
+ TypeLoc FromTL = From->getTypeLoc();
+ if (!FromTL.getAs<PackExpansionTypeLoc>()) {
+ TypeLocBuilder TLB;
+ TLB.reserve(FromTL.getFullDataSize());
+ QualType To = getDerived().TransformType(TLB, FromTL);
+ if (To.isNull())
+ return ExprError();
+
+ if (To == From->getType())
+ Args.push_back(From);
+ else {
+ Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To));
+ ArgChanged = true;
+ }
+ continue;
+ }
+
+ ArgChanged = true;
+
+ // We have a pack expansion. Instantiate it.
+ PackExpansionTypeLoc ExpansionTL = FromTL.castAs<PackExpansionTypeLoc>();
+ TypeLoc PatternTL = ExpansionTL.getPatternLoc();
+ SmallVector<UnexpandedParameterPack, 2> Unexpanded;
+ SemaRef.collectUnexpandedParameterPacks(PatternTL, Unexpanded);
+
+ // Determine whether the set of unexpanded parameter packs can and should
+ // be expanded.
+ bool Expand = true;
+ bool RetainExpansion = false;
+ Optional<unsigned> OrigNumExpansions =
+ ExpansionTL.getTypePtr()->getNumExpansions();
+ Optional<unsigned> NumExpansions = OrigNumExpansions;
+ if (getDerived().TryExpandParameterPacks(ExpansionTL.getEllipsisLoc(),
+ PatternTL.getSourceRange(),
+ Unexpanded,
+ Expand, RetainExpansion,
+ NumExpansions))
+ return ExprError();
+
+ if (!Expand) {
+ // The transform has determined that we should perform a simple
+ // transformation on the pack expansion, producing another pack
+ // expansion.
+ Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
+
+ TypeLocBuilder TLB;
+ TLB.reserve(From->getTypeLoc().getFullDataSize());
+
+ QualType To = getDerived().TransformType(TLB, PatternTL);
+ if (To.isNull())
+ return ExprError();
+
+ To = getDerived().RebuildPackExpansionType(To,
+ PatternTL.getSourceRange(),
+ ExpansionTL.getEllipsisLoc(),
+ NumExpansions);
+ if (To.isNull())
+ return ExprError();
+
+ PackExpansionTypeLoc ToExpansionTL
+ = TLB.push<PackExpansionTypeLoc>(To);
+ ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc());
+ Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To));
+ continue;
+ }
+
+ // Expand the pack expansion by substituting for each argument in the
+ // pack(s).
+ for (unsigned I = 0; I != *NumExpansions; ++I) {
+ Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I);
+ TypeLocBuilder TLB;
+ TLB.reserve(PatternTL.getFullDataSize());
+ QualType To = getDerived().TransformType(TLB, PatternTL);
+ if (To.isNull())
+ return ExprError();
+
+ if (To->containsUnexpandedParameterPack()) {
+ To = getDerived().RebuildPackExpansionType(To,
+ PatternTL.getSourceRange(),
+ ExpansionTL.getEllipsisLoc(),
+ NumExpansions);
+ if (To.isNull())
+ return ExprError();
+
+ PackExpansionTypeLoc ToExpansionTL
+ = TLB.push<PackExpansionTypeLoc>(To);
+ ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc());
+ }
+
+ Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To));
+ }
+
+ if (!RetainExpansion)
+ continue;
+
+ // If we're supposed to retain a pack expansion, do so by temporarily
+ // forgetting the partially-substituted parameter pack.
+ ForgetPartiallySubstitutedPackRAII Forget(getDerived());
+
+ TypeLocBuilder TLB;
+ TLB.reserve(From->getTypeLoc().getFullDataSize());
+
+ QualType To = getDerived().TransformType(TLB, PatternTL);
+ if (To.isNull())
+ return ExprError();
+
+ To = getDerived().RebuildPackExpansionType(To,
+ PatternTL.getSourceRange(),
+ ExpansionTL.getEllipsisLoc(),
+ NumExpansions);
+ if (To.isNull())
+ return ExprError();
+
+ PackExpansionTypeLoc ToExpansionTL
+ = TLB.push<PackExpansionTypeLoc>(To);
+ ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc());
+ Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To));
+ }
+
+ if (!getDerived().AlwaysRebuild() && !ArgChanged)
+ return E;
+
+ return getDerived().RebuildTypeTrait(E->getTrait(),
+ E->getLocStart(),
+ Args,
+ E->getLocEnd());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformArrayTypeTraitExpr(ArrayTypeTraitExpr *E) {
+ TypeSourceInfo *T = getDerived().TransformType(E->getQueriedTypeSourceInfo());
+ if (!T)
+ return ExprError();
+
+ if (!getDerived().AlwaysRebuild() &&
+ T == E->getQueriedTypeSourceInfo())
+ return E;
+
+ ExprResult SubExpr;
+ {
+ EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
+ SubExpr = getDerived().TransformExpr(E->getDimensionExpression());
+ if (SubExpr.isInvalid())
+ return ExprError();
+
+ if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getDimensionExpression())
+ return E;
+ }
+
+ return getDerived().RebuildArrayTypeTrait(E->getTrait(),
+ E->getLocStart(),
+ T,
+ SubExpr.get(),
+ E->getLocEnd());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformExpressionTraitExpr(ExpressionTraitExpr *E) {
+ ExprResult SubExpr;
+ {
+ EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
+ SubExpr = getDerived().TransformExpr(E->getQueriedExpression());
+ if (SubExpr.isInvalid())
+ return ExprError();
+
+ if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getQueriedExpression())
+ return E;
+ }
+
+ return getDerived().RebuildExpressionTrait(
+ E->getTrait(), E->getLocStart(), SubExpr.get(), E->getLocEnd());
+}
+
+template <typename Derived>
+ExprResult TreeTransform<Derived>::TransformParenDependentScopeDeclRefExpr(
+ ParenExpr *PE, DependentScopeDeclRefExpr *DRE, bool AddrTaken,
+ TypeSourceInfo **RecoveryTSI) {
+ ExprResult NewDRE = getDerived().TransformDependentScopeDeclRefExpr(
+ DRE, AddrTaken, RecoveryTSI);
+
+ // Propagate both errors and recovered types, which return ExprEmpty.
+ if (!NewDRE.isUsable())
+ return NewDRE;
+
+ // We got an expr, wrap it up in parens.
+ if (!getDerived().AlwaysRebuild() && NewDRE.get() == DRE)
+ return PE;
+ return getDerived().RebuildParenExpr(NewDRE.get(), PE->getLParen(),
+ PE->getRParen());
+}
+
+template <typename Derived>
+ExprResult TreeTransform<Derived>::TransformDependentScopeDeclRefExpr(
+ DependentScopeDeclRefExpr *E) {
+ return TransformDependentScopeDeclRefExpr(E, /*IsAddressOfOperand=*/false,
+ nullptr);
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformDependentScopeDeclRefExpr(
+ DependentScopeDeclRefExpr *E,
+ bool IsAddressOfOperand,
+ TypeSourceInfo **RecoveryTSI) {
+ assert(E->getQualifierLoc());
+ NestedNameSpecifierLoc QualifierLoc
+ = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
+ if (!QualifierLoc)
+ return ExprError();
+ SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc();
+
+ // TODO: If this is a conversion-function-id, verify that the
+ // destination type name (if present) resolves the same way after
+ // instantiation as it did in the local scope.
+
+ DeclarationNameInfo NameInfo
+ = getDerived().TransformDeclarationNameInfo(E->getNameInfo());
+ if (!NameInfo.getName())
+ return ExprError();
+
+ if (!E->hasExplicitTemplateArgs()) {
+ if (!getDerived().AlwaysRebuild() &&
+ QualifierLoc == E->getQualifierLoc() &&
+ // Note: it is sufficient to compare the Name component of NameInfo:
+ // if name has not changed, DNLoc has not changed either.
+ NameInfo.getName() == E->getDeclName())
+ return E;
+
+ return getDerived().RebuildDependentScopeDeclRefExpr(
+ QualifierLoc, TemplateKWLoc, NameInfo, /*TemplateArgs=*/nullptr,
+ IsAddressOfOperand, RecoveryTSI);
+ }
+
+ TemplateArgumentListInfo TransArgs(E->getLAngleLoc(), E->getRAngleLoc());
+ if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
+ E->getNumTemplateArgs(),
+ TransArgs))
+ return ExprError();
+
+ return getDerived().RebuildDependentScopeDeclRefExpr(
+ QualifierLoc, TemplateKWLoc, NameInfo, &TransArgs, IsAddressOfOperand,
+ RecoveryTSI);
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformCXXConstructExpr(CXXConstructExpr *E) {
+ // CXXConstructExprs other than for list-initialization and
+ // CXXTemporaryObjectExpr are always implicit, so when we have
+ // a 1-argument construction we just transform that argument.
+ if ((E->getNumArgs() == 1 ||
+ (E->getNumArgs() > 1 && getDerived().DropCallArgument(E->getArg(1)))) &&
+ (!getDerived().DropCallArgument(E->getArg(0))) &&
+ !E->isListInitialization())
+ return getDerived().TransformExpr(E->getArg(0));
+
+ TemporaryBase Rebase(*this, /*FIXME*/E->getLocStart(), DeclarationName());
+
+ QualType T = getDerived().TransformType(E->getType());
+ if (T.isNull())
+ return ExprError();
+
+ CXXConstructorDecl *Constructor
+ = cast_or_null<CXXConstructorDecl>(
+ getDerived().TransformDecl(E->getLocStart(),
+ E->getConstructor()));
+ if (!Constructor)
+ return ExprError();
+
+ bool ArgumentChanged = false;
+ SmallVector<Expr*, 8> Args;
+ if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
+ &ArgumentChanged))
+ return ExprError();
+
+ if (!getDerived().AlwaysRebuild() &&
+ T == E->getType() &&
+ Constructor == E->getConstructor() &&
+ !ArgumentChanged) {
+ // Mark the constructor as referenced.
+ // FIXME: Instantiation-specific
+ SemaRef.MarkFunctionReferenced(E->getLocStart(), Constructor);
+ return E;
+ }
+
+ return getDerived().RebuildCXXConstructExpr(T, /*FIXME:*/E->getLocStart(),
+ Constructor, E->isElidable(),
+ Args,
+ E->hadMultipleCandidates(),
+ E->isListInitialization(),
+ E->isStdInitListInitialization(),
+ E->requiresZeroInitialization(),
+ E->getConstructionKind(),
+ E->getParenOrBraceRange());
+}
+
+/// \brief Transform a C++ temporary-binding expression.
+///
+/// Since CXXBindTemporaryExpr nodes are implicitly generated, we just
+/// transform the subexpression and return that.
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
+ return getDerived().TransformExpr(E->getSubExpr());
+}
+
+/// \brief Transform a C++ expression that contains cleanups that should
+/// be run after the expression is evaluated.
+///
+/// Since ExprWithCleanups nodes are implicitly generated, we
+/// just transform the subexpression and return that.
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformExprWithCleanups(ExprWithCleanups *E) {
+ return getDerived().TransformExpr(E->getSubExpr());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformCXXTemporaryObjectExpr(
+ CXXTemporaryObjectExpr *E) {
+ TypeSourceInfo *T = getDerived().TransformType(E->getTypeSourceInfo());
+ if (!T)
+ return ExprError();
+
+ CXXConstructorDecl *Constructor
+ = cast_or_null<CXXConstructorDecl>(
+ getDerived().TransformDecl(E->getLocStart(),
+ E->getConstructor()));
+ if (!Constructor)
+ return ExprError();
+
+ bool ArgumentChanged = false;
+ SmallVector<Expr*, 8> Args;
+ Args.reserve(E->getNumArgs());
+ if (TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
+ &ArgumentChanged))
+ return ExprError();
+
+ if (!getDerived().AlwaysRebuild() &&
+ T == E->getTypeSourceInfo() &&
+ Constructor == E->getConstructor() &&
+ !ArgumentChanged) {
+ // FIXME: Instantiation-specific
+ SemaRef.MarkFunctionReferenced(E->getLocStart(), Constructor);
+ return SemaRef.MaybeBindToTemporary(E);
+ }
+
+ // FIXME: Pass in E->isListInitialization().
+ return getDerived().RebuildCXXTemporaryObjectExpr(T,
+ /*FIXME:*/T->getTypeLoc().getEndLoc(),
+ Args,
+ E->getLocEnd());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformLambdaExpr(LambdaExpr *E) {
+ // Transform any init-capture expressions before entering the scope of the
+ // lambda body, because they are not semantically within that scope.
+ typedef std::pair<ExprResult, QualType> InitCaptureInfoTy;
+ SmallVector<InitCaptureInfoTy, 8> InitCaptureExprsAndTypes;
+ InitCaptureExprsAndTypes.resize(E->explicit_capture_end() -
+ E->explicit_capture_begin());
+ for (LambdaExpr::capture_iterator C = E->capture_begin(),
+ CEnd = E->capture_end();
+ C != CEnd; ++C) {
+ if (!E->isInitCapture(C))
+ continue;
+ EnterExpressionEvaluationContext EEEC(getSema(),
+ Sema::PotentiallyEvaluated);
+ ExprResult NewExprInitResult = getDerived().TransformInitializer(
+ C->getCapturedVar()->getInit(),
+ C->getCapturedVar()->getInitStyle() == VarDecl::CallInit);
+
+ if (NewExprInitResult.isInvalid())
+ return ExprError();
+ Expr *NewExprInit = NewExprInitResult.get();
+
+ VarDecl *OldVD = C->getCapturedVar();
+ QualType NewInitCaptureType =
+ getSema().performLambdaInitCaptureInitialization(C->getLocation(),
+ OldVD->getType()->isReferenceType(), OldVD->getIdentifier(),
+ NewExprInit);
+ NewExprInitResult = NewExprInit;
+ InitCaptureExprsAndTypes[C - E->capture_begin()] =
+ std::make_pair(NewExprInitResult, NewInitCaptureType);
+ }
+
+ // Transform the template parameters, and add them to the current
+ // instantiation scope. The null case is handled correctly.
+ auto TPL = getDerived().TransformTemplateParameterList(
+ E->getTemplateParameterList());
+
+ // Transform the type of the original lambda's call operator.
+ // The transformation MUST be done in the CurrentInstantiationScope since
+ // it introduces a mapping of the original to the newly created
+ // transformed parameters.
+ TypeSourceInfo *NewCallOpTSI = nullptr;
+ {
+ TypeSourceInfo *OldCallOpTSI = E->getCallOperator()->getTypeSourceInfo();
+ FunctionProtoTypeLoc OldCallOpFPTL =
+ OldCallOpTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>();
+
+ TypeLocBuilder NewCallOpTLBuilder;
+ SmallVector<QualType, 4> ExceptionStorage;
+ TreeTransform *This = this; // Work around gcc.gnu.org/PR56135.
+ QualType NewCallOpType = TransformFunctionProtoType(
+ NewCallOpTLBuilder, OldCallOpFPTL, nullptr, 0,
+ [&](FunctionProtoType::ExceptionSpecInfo &ESI, bool &Changed) {
+ return This->TransformExceptionSpec(OldCallOpFPTL.getBeginLoc(), ESI,
+ ExceptionStorage, Changed);
+ });
+ if (NewCallOpType.isNull())
+ return ExprError();
+ NewCallOpTSI = NewCallOpTLBuilder.getTypeSourceInfo(getSema().Context,
+ NewCallOpType);
+ }
+
+ LambdaScopeInfo *LSI = getSema().PushLambdaScope();
+ Sema::FunctionScopeRAII FuncScopeCleanup(getSema());
+ LSI->GLTemplateParameterList = TPL;
+
+ // Create the local class that will describe the lambda.
+ CXXRecordDecl *Class
+ = getSema().createLambdaClosureType(E->getIntroducerRange(),
+ NewCallOpTSI,
+ /*KnownDependent=*/false,
+ E->getCaptureDefault());
+ getDerived().transformedLocalDecl(E->getLambdaClass(), Class);
+
+ // Build the call operator.
+ CXXMethodDecl *NewCallOperator = getSema().startLambdaDefinition(
+ Class, E->getIntroducerRange(), NewCallOpTSI,
+ E->getCallOperator()->getLocEnd(),
+ NewCallOpTSI->getTypeLoc().castAs<FunctionProtoTypeLoc>().getParams());
+ LSI->CallOperator = NewCallOperator;
+
+ getDerived().transformAttrs(E->getCallOperator(), NewCallOperator);
+ getDerived().transformedLocalDecl(E->getCallOperator(), NewCallOperator);
+
+ // Introduce the context of the call operator.
+ Sema::ContextRAII SavedContext(getSema(), NewCallOperator,
+ /*NewThisContext*/false);
+
+ // Enter the scope of the lambda.
+ getSema().buildLambdaScope(LSI, NewCallOperator,
+ E->getIntroducerRange(),
+ E->getCaptureDefault(),
+ E->getCaptureDefaultLoc(),
+ E->hasExplicitParameters(),
+ E->hasExplicitResultType(),
+ E->isMutable());
+
+ bool Invalid = false;
+
+ // Transform captures.
+ bool FinishedExplicitCaptures = false;
+ for (LambdaExpr::capture_iterator C = E->capture_begin(),
+ CEnd = E->capture_end();
+ C != CEnd; ++C) {
+ // When we hit the first implicit capture, tell Sema that we've finished
+ // the list of explicit captures.
+ if (!FinishedExplicitCaptures && C->isImplicit()) {
+ getSema().finishLambdaExplicitCaptures(LSI);
+ FinishedExplicitCaptures = true;
+ }
+
+ // Capturing 'this' is trivial.
+ if (C->capturesThis()) {
+ getSema().CheckCXXThisCapture(C->getLocation(), C->isExplicit());
+ continue;
+ }
+ // Captured expression will be recaptured during captured variables
+ // rebuilding.
+ if (C->capturesVLAType())
+ continue;
+
+ // Rebuild init-captures, including the implied field declaration.
+ if (E->isInitCapture(C)) {
+ InitCaptureInfoTy InitExprTypePair =
+ InitCaptureExprsAndTypes[C - E->capture_begin()];
+ ExprResult Init = InitExprTypePair.first;
+ QualType InitQualType = InitExprTypePair.second;
+ if (Init.isInvalid() || InitQualType.isNull()) {
+ Invalid = true;
+ continue;
+ }
+ VarDecl *OldVD = C->getCapturedVar();
+ VarDecl *NewVD = getSema().createLambdaInitCaptureVarDecl(
+ OldVD->getLocation(), InitExprTypePair.second,
+ OldVD->getIdentifier(), Init.get());
+ if (!NewVD)
+ Invalid = true;
+ else {
+ getDerived().transformedLocalDecl(OldVD, NewVD);
+ }
+ getSema().buildInitCaptureField(LSI, NewVD);
+ continue;
+ }
+
+ assert(C->capturesVariable() && "unexpected kind of lambda capture");
+
+ // Determine the capture kind for Sema.
+ Sema::TryCaptureKind Kind
+ = C->isImplicit()? Sema::TryCapture_Implicit
+ : C->getCaptureKind() == LCK_ByCopy
+ ? Sema::TryCapture_ExplicitByVal
+ : Sema::TryCapture_ExplicitByRef;
+ SourceLocation EllipsisLoc;
+ if (C->isPackExpansion()) {
+ UnexpandedParameterPack Unexpanded(C->getCapturedVar(), C->getLocation());
+ bool ShouldExpand = false;
+ bool RetainExpansion = false;
+ Optional<unsigned> NumExpansions;
+ if (getDerived().TryExpandParameterPacks(C->getEllipsisLoc(),
+ C->getLocation(),
+ Unexpanded,
+ ShouldExpand, RetainExpansion,
+ NumExpansions)) {
+ Invalid = true;
+ continue;
+ }
+
+ if (ShouldExpand) {
+ // The transform has determined that we should perform an expansion;
+ // transform and capture each of the arguments.
+ // expansion of the pattern. Do so.
+ VarDecl *Pack = C->getCapturedVar();
+ for (unsigned I = 0; I != *NumExpansions; ++I) {
+ Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
+ VarDecl *CapturedVar
+ = cast_or_null<VarDecl>(getDerived().TransformDecl(C->getLocation(),
+ Pack));
+ if (!CapturedVar) {
+ Invalid = true;
+ continue;
+ }
+
+ // Capture the transformed variable.
+ getSema().tryCaptureVariable(CapturedVar, C->getLocation(), Kind);
+ }
+
+ // FIXME: Retain a pack expansion if RetainExpansion is true.
+
+ continue;
+ }
+
+ EllipsisLoc = C->getEllipsisLoc();
+ }
+
+ // Transform the captured variable.
+ VarDecl *CapturedVar
+ = cast_or_null<VarDecl>(getDerived().TransformDecl(C->getLocation(),
+ C->getCapturedVar()));
+ if (!CapturedVar || CapturedVar->isInvalidDecl()) {
+ Invalid = true;
+ continue;
+ }
+
+ // Capture the transformed variable.
+ getSema().tryCaptureVariable(CapturedVar, C->getLocation(), Kind);
+ }
+ if (!FinishedExplicitCaptures)
+ getSema().finishLambdaExplicitCaptures(LSI);
+
+ // Enter a new evaluation context to insulate the lambda from any
+ // cleanups from the enclosing full-expression.
+ getSema().PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
+
+ // Instantiate the body of the lambda expression.
+ StmtResult Body =
+ Invalid ? StmtError() : getDerived().TransformStmt(E->getBody());
+
+ // ActOnLambda* will pop the function scope for us.
+ FuncScopeCleanup.disable();
+
+ if (Body.isInvalid()) {
+ SavedContext.pop();
+ getSema().ActOnLambdaError(E->getLocStart(), /*CurScope=*/nullptr,
+ /*IsInstantiation=*/true);
+ return ExprError();
+ }
+
+ // Copy the LSI before ActOnFinishFunctionBody removes it.
+ // FIXME: This is dumb. Store the lambda information somewhere that outlives
+ // the call operator.
+ auto LSICopy = *LSI;
+ getSema().ActOnFinishFunctionBody(NewCallOperator, Body.get(),
+ /*IsInstantiation*/ true);
+ SavedContext.pop();
+
+ return getSema().BuildLambdaExpr(E->getLocStart(), Body.get()->getLocEnd(),
+ &LSICopy);
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformCXXUnresolvedConstructExpr(
+ CXXUnresolvedConstructExpr *E) {
+ TypeSourceInfo *T = getDerived().TransformType(E->getTypeSourceInfo());
+ if (!T)
+ return ExprError();
+
+ bool ArgumentChanged = false;
+ SmallVector<Expr*, 8> Args;
+ Args.reserve(E->arg_size());
+ if (getDerived().TransformExprs(E->arg_begin(), E->arg_size(), true, Args,
+ &ArgumentChanged))
+ return ExprError();
+
+ if (!getDerived().AlwaysRebuild() &&
+ T == E->getTypeSourceInfo() &&
+ !ArgumentChanged)
+ return E;
+
+ // FIXME: we're faking the locations of the commas
+ return getDerived().RebuildCXXUnresolvedConstructExpr(T,
+ E->getLParenLoc(),
+ Args,
+ E->getRParenLoc());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformCXXDependentScopeMemberExpr(
+ CXXDependentScopeMemberExpr *E) {
+ // Transform the base of the expression.
+ ExprResult Base((Expr*) nullptr);
+ Expr *OldBase;
+ QualType BaseType;
+ QualType ObjectType;
+ if (!E->isImplicitAccess()) {
+ OldBase = E->getBase();
+ Base = getDerived().TransformExpr(OldBase);
+ if (Base.isInvalid())
+ return ExprError();
+
+ // Start the member reference and compute the object's type.
+ ParsedType ObjectTy;
+ bool MayBePseudoDestructor = false;
+ Base = SemaRef.ActOnStartCXXMemberReference(nullptr, Base.get(),
+ E->getOperatorLoc(),
+ E->isArrow()? tok::arrow : tok::period,
+ ObjectTy,
+ MayBePseudoDestructor);
+ if (Base.isInvalid())
+ return ExprError();
+
+ ObjectType = ObjectTy.get();
+ BaseType = ((Expr*) Base.get())->getType();
+ } else {
+ OldBase = nullptr;
+ BaseType = getDerived().TransformType(E->getBaseType());
+ ObjectType = BaseType->getAs<PointerType>()->getPointeeType();
+ }
+
+ // Transform the first part of the nested-name-specifier that qualifies
+ // the member name.
+ NamedDecl *FirstQualifierInScope
+ = getDerived().TransformFirstQualifierInScope(
+ E->getFirstQualifierFoundInScope(),
+ E->getQualifierLoc().getBeginLoc());
+
+ NestedNameSpecifierLoc QualifierLoc;
+ if (E->getQualifier()) {
+ QualifierLoc
+ = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc(),
+ ObjectType,
+ FirstQualifierInScope);
+ if (!QualifierLoc)
+ return ExprError();
+ }
+
+ SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc();
+
+ // TODO: If this is a conversion-function-id, verify that the
+ // destination type name (if present) resolves the same way after
+ // instantiation as it did in the local scope.
+
+ DeclarationNameInfo NameInfo
+ = getDerived().TransformDeclarationNameInfo(E->getMemberNameInfo());
+ if (!NameInfo.getName())
+ return ExprError();
+
+ if (!E->hasExplicitTemplateArgs()) {
+ // This is a reference to a member without an explicitly-specified
+ // template argument list. Optimize for this common case.
+ if (!getDerived().AlwaysRebuild() &&
+ Base.get() == OldBase &&
+ BaseType == E->getBaseType() &&
+ QualifierLoc == E->getQualifierLoc() &&
+ NameInfo.getName() == E->getMember() &&
+ FirstQualifierInScope == E->getFirstQualifierFoundInScope())
+ return E;
+
+ return getDerived().RebuildCXXDependentScopeMemberExpr(Base.get(),
+ BaseType,
+ E->isArrow(),
+ E->getOperatorLoc(),
+ QualifierLoc,
+ TemplateKWLoc,
+ FirstQualifierInScope,
+ NameInfo,
+ /*TemplateArgs*/nullptr);
+ }
+
+ TemplateArgumentListInfo TransArgs(E->getLAngleLoc(), E->getRAngleLoc());
+ if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
+ E->getNumTemplateArgs(),
+ TransArgs))
+ return ExprError();
+
+ return getDerived().RebuildCXXDependentScopeMemberExpr(Base.get(),
+ BaseType,
+ E->isArrow(),
+ E->getOperatorLoc(),
+ QualifierLoc,
+ TemplateKWLoc,
+ FirstQualifierInScope,
+ NameInfo,
+ &TransArgs);
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformUnresolvedMemberExpr(UnresolvedMemberExpr *Old) {
+ // Transform the base of the expression.
+ ExprResult Base((Expr*) nullptr);
+ QualType BaseType;
+ if (!Old->isImplicitAccess()) {
+ Base = getDerived().TransformExpr(Old->getBase());
+ if (Base.isInvalid())
+ return ExprError();
+ Base = getSema().PerformMemberExprBaseConversion(Base.get(),
+ Old->isArrow());
+ if (Base.isInvalid())
+ return ExprError();
+ BaseType = Base.get()->getType();
+ } else {
+ BaseType = getDerived().TransformType(Old->getBaseType());
+ }
+
+ NestedNameSpecifierLoc QualifierLoc;
+ if (Old->getQualifierLoc()) {
+ QualifierLoc
+ = getDerived().TransformNestedNameSpecifierLoc(Old->getQualifierLoc());
+ if (!QualifierLoc)
+ return ExprError();
+ }
+
+ SourceLocation TemplateKWLoc = Old->getTemplateKeywordLoc();
+
+ LookupResult R(SemaRef, Old->getMemberNameInfo(),
+ Sema::LookupOrdinaryName);
+
+ // Transform all the decls.
+ for (UnresolvedMemberExpr::decls_iterator I = Old->decls_begin(),
+ E = Old->decls_end(); I != E; ++I) {
+ NamedDecl *InstD = static_cast<NamedDecl*>(
+ getDerived().TransformDecl(Old->getMemberLoc(),
+ *I));
+ if (!InstD) {
+ // Silently ignore these if a UsingShadowDecl instantiated to nothing.
+ // This can happen because of dependent hiding.
+ if (isa<UsingShadowDecl>(*I))
+ continue;
+ else {
+ R.clear();
+ return ExprError();
+ }
+ }
+
+ // Expand using declarations.
+ if (isa<UsingDecl>(InstD)) {
+ UsingDecl *UD = cast<UsingDecl>(InstD);
+ for (auto *I : UD->shadows())
+ R.addDecl(I);
+ continue;
+ }
+
+ R.addDecl(InstD);
+ }
+
+ R.resolveKind();
+
+ // Determine the naming class.
+ if (Old->getNamingClass()) {
+ CXXRecordDecl *NamingClass
+ = cast_or_null<CXXRecordDecl>(getDerived().TransformDecl(
+ Old->getMemberLoc(),
+ Old->getNamingClass()));
+ if (!NamingClass)
+ return ExprError();
+
+ R.setNamingClass(NamingClass);
+ }
+
+ TemplateArgumentListInfo TransArgs;
+ if (Old->hasExplicitTemplateArgs()) {
+ TransArgs.setLAngleLoc(Old->getLAngleLoc());
+ TransArgs.setRAngleLoc(Old->getRAngleLoc());
+ if (getDerived().TransformTemplateArguments(Old->getTemplateArgs(),
+ Old->getNumTemplateArgs(),
+ TransArgs))
+ return ExprError();
+ }
+
+ // FIXME: to do this check properly, we will need to preserve the
+ // first-qualifier-in-scope here, just in case we had a dependent
+ // base (and therefore couldn't do the check) and a
+ // nested-name-qualifier (and therefore could do the lookup).
+ NamedDecl *FirstQualifierInScope = nullptr;
+
+ return getDerived().RebuildUnresolvedMemberExpr(Base.get(),
+ BaseType,
+ Old->getOperatorLoc(),
+ Old->isArrow(),
+ QualifierLoc,
+ TemplateKWLoc,
+ FirstQualifierInScope,
+ R,
+ (Old->hasExplicitTemplateArgs()
+ ? &TransArgs : nullptr));
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformCXXNoexceptExpr(CXXNoexceptExpr *E) {
+ EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
+ ExprResult SubExpr = getDerived().TransformExpr(E->getOperand());
+ if (SubExpr.isInvalid())
+ return ExprError();
+
+ if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getOperand())
+ return E;
+
+ return getDerived().RebuildCXXNoexceptExpr(E->getSourceRange(),SubExpr.get());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformPackExpansionExpr(PackExpansionExpr *E) {
+ ExprResult Pattern = getDerived().TransformExpr(E->getPattern());
+ if (Pattern.isInvalid())
+ return ExprError();
+
+ if (!getDerived().AlwaysRebuild() && Pattern.get() == E->getPattern())
+ return E;
+
+ return getDerived().RebuildPackExpansion(Pattern.get(), E->getEllipsisLoc(),
+ E->getNumExpansions());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformSizeOfPackExpr(SizeOfPackExpr *E) {
+ // If E is not value-dependent, then nothing will change when we transform it.
+ // Note: This is an instantiation-centric view.
+ if (!E->isValueDependent())
+ return E;
+
+ // Note: None of the implementations of TryExpandParameterPacks can ever
+ // produce a diagnostic when given only a single unexpanded parameter pack,
+ // so
+ UnexpandedParameterPack Unexpanded(E->getPack(), E->getPackLoc());
+ bool ShouldExpand = false;
+ bool RetainExpansion = false;
+ Optional<unsigned> NumExpansions;
+ if (getDerived().TryExpandParameterPacks(E->getOperatorLoc(), E->getPackLoc(),
+ Unexpanded,
+ ShouldExpand, RetainExpansion,
+ NumExpansions))
+ return ExprError();
+
+ if (RetainExpansion)
+ return E;
+
+ NamedDecl *Pack = E->getPack();
+ if (!ShouldExpand) {
+ Pack = cast_or_null<NamedDecl>(getDerived().TransformDecl(E->getPackLoc(),
+ Pack));
+ if (!Pack)
+ return ExprError();
+ }
+
+
+ // We now know the length of the parameter pack, so build a new expression
+ // that stores that length.
+ return getDerived().RebuildSizeOfPackExpr(E->getOperatorLoc(), Pack,
+ E->getPackLoc(), E->getRParenLoc(),
+ NumExpansions);
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformSubstNonTypeTemplateParmPackExpr(
+ SubstNonTypeTemplateParmPackExpr *E) {
+ // Default behavior is to do nothing with this transformation.
+ return E;
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformSubstNonTypeTemplateParmExpr(
+ SubstNonTypeTemplateParmExpr *E) {
+ // Default behavior is to do nothing with this transformation.
+ return E;
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformFunctionParmPackExpr(FunctionParmPackExpr *E) {
+ // Default behavior is to do nothing with this transformation.
+ return E;
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformMaterializeTemporaryExpr(
+ MaterializeTemporaryExpr *E) {
+ return getDerived().TransformExpr(E->GetTemporaryExpr());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformCXXFoldExpr(CXXFoldExpr *E) {
+ Expr *Pattern = E->getPattern();
+
+ SmallVector<UnexpandedParameterPack, 2> Unexpanded;
+ getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded);
+ assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
+
+ // Determine whether the set of unexpanded parameter packs can and should
+ // be expanded.
+ bool Expand = true;
+ bool RetainExpansion = false;
+ Optional<unsigned> NumExpansions;
+ if (getDerived().TryExpandParameterPacks(E->getEllipsisLoc(),
+ Pattern->getSourceRange(),
+ Unexpanded,
+ Expand, RetainExpansion,
+ NumExpansions))
+ return true;
+
+ if (!Expand) {
+ // Do not expand any packs here, just transform and rebuild a fold
+ // expression.
+ Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
+
+ ExprResult LHS =
+ E->getLHS() ? getDerived().TransformExpr(E->getLHS()) : ExprResult();
+ if (LHS.isInvalid())
+ return true;
+
+ ExprResult RHS =
+ E->getRHS() ? getDerived().TransformExpr(E->getRHS()) : ExprResult();
+ if (RHS.isInvalid())
+ return true;
+
+ if (!getDerived().AlwaysRebuild() &&
+ LHS.get() == E->getLHS() && RHS.get() == E->getRHS())
+ return E;
+
+ return getDerived().RebuildCXXFoldExpr(
+ E->getLocStart(), LHS.get(), E->getOperator(), E->getEllipsisLoc(),
+ RHS.get(), E->getLocEnd());
+ }
+
+ // The transform has determined that we should perform an elementwise
+ // expansion of the pattern. Do so.
+ ExprResult Result = getDerived().TransformExpr(E->getInit());
+ if (Result.isInvalid())
+ return true;
+ bool LeftFold = E->isLeftFold();
+
+ // If we're retaining an expansion for a right fold, it is the innermost
+ // component and takes the init (if any).
+ if (!LeftFold && RetainExpansion) {
+ ForgetPartiallySubstitutedPackRAII Forget(getDerived());
+
+ ExprResult Out = getDerived().TransformExpr(Pattern);
+ if (Out.isInvalid())
+ return true;
+
+ Result = getDerived().RebuildCXXFoldExpr(
+ E->getLocStart(), Out.get(), E->getOperator(), E->getEllipsisLoc(),
+ Result.get(), E->getLocEnd());
+ if (Result.isInvalid())
+ return true;
+ }
+
+ for (unsigned I = 0; I != *NumExpansions; ++I) {
+ Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(
+ getSema(), LeftFold ? I : *NumExpansions - I - 1);
+ ExprResult Out = getDerived().TransformExpr(Pattern);
+ if (Out.isInvalid())
+ return true;
+
+ if (Out.get()->containsUnexpandedParameterPack()) {
+ // We still have a pack; retain a pack expansion for this slice.
+ Result = getDerived().RebuildCXXFoldExpr(
+ E->getLocStart(),
+ LeftFold ? Result.get() : Out.get(),
+ E->getOperator(), E->getEllipsisLoc(),
+ LeftFold ? Out.get() : Result.get(),
+ E->getLocEnd());
+ } else if (Result.isUsable()) {
+ // We've got down to a single element; build a binary operator.
+ Result = getDerived().RebuildBinaryOperator(
+ E->getEllipsisLoc(), E->getOperator(),
+ LeftFold ? Result.get() : Out.get(),
+ LeftFold ? Out.get() : Result.get());
+ } else
+ Result = Out;
+
+ if (Result.isInvalid())
+ return true;
+ }
+
+ // If we're retaining an expansion for a left fold, it is the outermost
+ // component and takes the complete expansion so far as its init (if any).
+ if (LeftFold && RetainExpansion) {
+ ForgetPartiallySubstitutedPackRAII Forget(getDerived());
+
+ ExprResult Out = getDerived().TransformExpr(Pattern);
+ if (Out.isInvalid())
+ return true;
+
+ Result = getDerived().RebuildCXXFoldExpr(
+ E->getLocStart(), Result.get(),
+ E->getOperator(), E->getEllipsisLoc(),
+ Out.get(), E->getLocEnd());
+ if (Result.isInvalid())
+ return true;
+ }
+
+ // If we had no init and an empty pack, and we're not retaining an expansion,
+ // then produce a fallback value or error.
+ if (Result.isUnset())
+ return getDerived().RebuildEmptyCXXFoldExpr(E->getEllipsisLoc(),
+ E->getOperator());
+
+ return Result;
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformCXXStdInitializerListExpr(
+ CXXStdInitializerListExpr *E) {
+ return getDerived().TransformExpr(E->getSubExpr());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformObjCStringLiteral(ObjCStringLiteral *E) {
+ return SemaRef.MaybeBindToTemporary(E);
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformObjCBoolLiteralExpr(ObjCBoolLiteralExpr *E) {
+ return E;
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformObjCBoxedExpr(ObjCBoxedExpr *E) {
+ ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
+ if (SubExpr.isInvalid())
+ return ExprError();
+
+ if (!getDerived().AlwaysRebuild() &&
+ SubExpr.get() == E->getSubExpr())
+ return E;
+
+ return getDerived().RebuildObjCBoxedExpr(E->getSourceRange(), SubExpr.get());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformObjCArrayLiteral(ObjCArrayLiteral *E) {
+ // Transform each of the elements.
+ SmallVector<Expr *, 8> Elements;
+ bool ArgChanged = false;
+ if (getDerived().TransformExprs(E->getElements(), E->getNumElements(),
+ /*IsCall=*/false, Elements, &ArgChanged))
+ return ExprError();
+
+ if (!getDerived().AlwaysRebuild() && !ArgChanged)
+ return SemaRef.MaybeBindToTemporary(E);
+
+ return getDerived().RebuildObjCArrayLiteral(E->getSourceRange(),
+ Elements.data(),
+ Elements.size());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformObjCDictionaryLiteral(
+ ObjCDictionaryLiteral *E) {
+ // Transform each of the elements.
+ SmallVector<ObjCDictionaryElement, 8> Elements;
+ bool ArgChanged = false;
+ for (unsigned I = 0, N = E->getNumElements(); I != N; ++I) {
+ ObjCDictionaryElement OrigElement = E->getKeyValueElement(I);
+
+ if (OrigElement.isPackExpansion()) {
+ // This key/value element is a pack expansion.
+ SmallVector<UnexpandedParameterPack, 2> Unexpanded;
+ getSema().collectUnexpandedParameterPacks(OrigElement.Key, Unexpanded);
+ getSema().collectUnexpandedParameterPacks(OrigElement.Value, Unexpanded);
+ assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
+
+ // Determine whether the set of unexpanded parameter packs can
+ // and should be expanded.
+ bool Expand = true;
+ bool RetainExpansion = false;
+ Optional<unsigned> OrigNumExpansions = OrigElement.NumExpansions;
+ Optional<unsigned> NumExpansions = OrigNumExpansions;
+ SourceRange PatternRange(OrigElement.Key->getLocStart(),
+ OrigElement.Value->getLocEnd());
+ if (getDerived().TryExpandParameterPacks(OrigElement.EllipsisLoc,
+ PatternRange,
+ Unexpanded,
+ Expand, RetainExpansion,
+ NumExpansions))
+ return ExprError();
+
+ if (!Expand) {
+ // The transform has determined that we should perform a simple
+ // transformation on the pack expansion, producing another pack
+ // expansion.
+ Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
+ ExprResult Key = getDerived().TransformExpr(OrigElement.Key);
+ if (Key.isInvalid())
+ return ExprError();
+
+ if (Key.get() != OrigElement.Key)
+ ArgChanged = true;
+
+ ExprResult Value = getDerived().TransformExpr(OrigElement.Value);
+ if (Value.isInvalid())
+ return ExprError();
+
+ if (Value.get() != OrigElement.Value)
+ ArgChanged = true;
+
+ ObjCDictionaryElement Expansion = {
+ Key.get(), Value.get(), OrigElement.EllipsisLoc, NumExpansions
+ };
+ Elements.push_back(Expansion);
+ continue;
+ }
+
+ // Record right away that the argument was changed. This needs
+ // to happen even if the array expands to nothing.
+ ArgChanged = true;
+
+ // The transform has determined that we should perform an elementwise
+ // expansion of the pattern. Do so.
+ for (unsigned I = 0; I != *NumExpansions; ++I) {
+ Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
+ ExprResult Key = getDerived().TransformExpr(OrigElement.Key);
+ if (Key.isInvalid())
+ return ExprError();
+
+ ExprResult Value = getDerived().TransformExpr(OrigElement.Value);
+ if (Value.isInvalid())
+ return ExprError();
+
+ ObjCDictionaryElement Element = {
+ Key.get(), Value.get(), SourceLocation(), NumExpansions
+ };
+
+ // If any unexpanded parameter packs remain, we still have a
+ // pack expansion.
+ // FIXME: Can this really happen?
+ if (Key.get()->containsUnexpandedParameterPack() ||
+ Value.get()->containsUnexpandedParameterPack())
+ Element.EllipsisLoc = OrigElement.EllipsisLoc;
+
+ Elements.push_back(Element);
+ }
+
+ // FIXME: Retain a pack expansion if RetainExpansion is true.
+
+ // We've finished with this pack expansion.
+ continue;
+ }
+
+ // Transform and check key.
+ ExprResult Key = getDerived().TransformExpr(OrigElement.Key);
+ if (Key.isInvalid())
+ return ExprError();
+
+ if (Key.get() != OrigElement.Key)
+ ArgChanged = true;
+
+ // Transform and check value.
+ ExprResult Value
+ = getDerived().TransformExpr(OrigElement.Value);
+ if (Value.isInvalid())
+ return ExprError();
+
+ if (Value.get() != OrigElement.Value)
+ ArgChanged = true;
+
+ ObjCDictionaryElement Element = {
+ Key.get(), Value.get(), SourceLocation(), None
+ };
+ Elements.push_back(Element);
+ }
+
+ if (!getDerived().AlwaysRebuild() && !ArgChanged)
+ return SemaRef.MaybeBindToTemporary(E);
+
+ return getDerived().RebuildObjCDictionaryLiteral(E->getSourceRange(),
+ Elements.data(),
+ Elements.size());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformObjCEncodeExpr(ObjCEncodeExpr *E) {
+ TypeSourceInfo *EncodedTypeInfo
+ = getDerived().TransformType(E->getEncodedTypeSourceInfo());
+ if (!EncodedTypeInfo)
+ return ExprError();
+
+ if (!getDerived().AlwaysRebuild() &&
+ EncodedTypeInfo == E->getEncodedTypeSourceInfo())
+ return E;
+
+ return getDerived().RebuildObjCEncodeExpr(E->getAtLoc(),
+ EncodedTypeInfo,
+ E->getRParenLoc());
+}
+
+template<typename Derived>
+ExprResult TreeTransform<Derived>::
+TransformObjCIndirectCopyRestoreExpr(ObjCIndirectCopyRestoreExpr *E) {
+ // This is a kind of implicit conversion, and it needs to get dropped
+ // and recomputed for the same general reasons that ImplicitCastExprs
+ // do, as well a more specific one: this expression is only valid when
+ // it appears *immediately* as an argument expression.
+ return getDerived().TransformExpr(E->getSubExpr());
+}
+
+template<typename Derived>
+ExprResult TreeTransform<Derived>::
+TransformObjCBridgedCastExpr(ObjCBridgedCastExpr *E) {
+ TypeSourceInfo *TSInfo
+ = getDerived().TransformType(E->getTypeInfoAsWritten());
+ if (!TSInfo)
+ return ExprError();
+
+ ExprResult Result = getDerived().TransformExpr(E->getSubExpr());
+ if (Result.isInvalid())
+ return ExprError();
+
+ if (!getDerived().AlwaysRebuild() &&
+ TSInfo == E->getTypeInfoAsWritten() &&
+ Result.get() == E->getSubExpr())
+ return E;
+
+ return SemaRef.BuildObjCBridgedCast(E->getLParenLoc(), E->getBridgeKind(),
+ E->getBridgeKeywordLoc(), TSInfo,
+ Result.get());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformObjCMessageExpr(ObjCMessageExpr *E) {
+ // Transform arguments.
+ bool ArgChanged = false;
+ SmallVector<Expr*, 8> Args;
+ Args.reserve(E->getNumArgs());
+ if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), false, Args,
+ &ArgChanged))
+ return ExprError();
+
+ if (E->getReceiverKind() == ObjCMessageExpr::Class) {
+ // Class message: transform the receiver type.
+ TypeSourceInfo *ReceiverTypeInfo
+ = getDerived().TransformType(E->getClassReceiverTypeInfo());
+ if (!ReceiverTypeInfo)
+ return ExprError();
+
+ // If nothing changed, just retain the existing message send.
+ if (!getDerived().AlwaysRebuild() &&
+ ReceiverTypeInfo == E->getClassReceiverTypeInfo() && !ArgChanged)
+ return SemaRef.MaybeBindToTemporary(E);
+
+ // Build a new class message send.
+ SmallVector<SourceLocation, 16> SelLocs;
+ E->getSelectorLocs(SelLocs);
+ return getDerived().RebuildObjCMessageExpr(ReceiverTypeInfo,
+ E->getSelector(),
+ SelLocs,
+ E->getMethodDecl(),
+ E->getLeftLoc(),
+ Args,
+ E->getRightLoc());
+ }
+ else if (E->getReceiverKind() == ObjCMessageExpr::SuperClass ||
+ E->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
+ // Build a new class message send to 'super'.
+ SmallVector<SourceLocation, 16> SelLocs;
+ E->getSelectorLocs(SelLocs);
+ return getDerived().RebuildObjCMessageExpr(E->getSuperLoc(),
+ E->getSelector(),
+ SelLocs,
+ E->getMethodDecl(),
+ E->getLeftLoc(),
+ Args,
+ E->getRightLoc());
+ }
+
+ // Instance message: transform the receiver
+ assert(E->getReceiverKind() == ObjCMessageExpr::Instance &&
+ "Only class and instance messages may be instantiated");
+ ExprResult Receiver
+ = getDerived().TransformExpr(E->getInstanceReceiver());
+ if (Receiver.isInvalid())
+ return ExprError();
+
+ // If nothing changed, just retain the existing message send.
+ if (!getDerived().AlwaysRebuild() &&
+ Receiver.get() == E->getInstanceReceiver() && !ArgChanged)
+ return SemaRef.MaybeBindToTemporary(E);
+
+ // Build a new instance message send.
+ SmallVector<SourceLocation, 16> SelLocs;
+ E->getSelectorLocs(SelLocs);
+ return getDerived().RebuildObjCMessageExpr(Receiver.get(),
+ E->getSelector(),
+ SelLocs,
+ E->getMethodDecl(),
+ E->getLeftLoc(),
+ Args,
+ E->getRightLoc());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformObjCSelectorExpr(ObjCSelectorExpr *E) {
+ return E;
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformObjCProtocolExpr(ObjCProtocolExpr *E) {
+ return E;
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformObjCIvarRefExpr(ObjCIvarRefExpr *E) {
+ // Transform the base expression.
+ ExprResult Base = getDerived().TransformExpr(E->getBase());
+ if (Base.isInvalid())
+ return ExprError();
+
+ // We don't need to transform the ivar; it will never change.
+
+ // If nothing changed, just retain the existing expression.
+ if (!getDerived().AlwaysRebuild() &&
+ Base.get() == E->getBase())
+ return E;
+
+ return getDerived().RebuildObjCIvarRefExpr(Base.get(), E->getDecl(),
+ E->getLocation(),
+ E->isArrow(), E->isFreeIvar());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
+ // 'super' and types never change. Property never changes. Just
+ // retain the existing expression.
+ if (!E->isObjectReceiver())
+ return E;
+
+ // Transform the base expression.
+ ExprResult Base = getDerived().TransformExpr(E->getBase());
+ if (Base.isInvalid())
+ return ExprError();
+
+ // We don't need to transform the property; it will never change.
+
+ // If nothing changed, just retain the existing expression.
+ if (!getDerived().AlwaysRebuild() &&
+ Base.get() == E->getBase())
+ return E;
+
+ if (E->isExplicitProperty())
+ return getDerived().RebuildObjCPropertyRefExpr(Base.get(),
+ E->getExplicitProperty(),
+ E->getLocation());
+
+ return getDerived().RebuildObjCPropertyRefExpr(Base.get(),
+ SemaRef.Context.PseudoObjectTy,
+ E->getImplicitPropertyGetter(),
+ E->getImplicitPropertySetter(),
+ E->getLocation());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformObjCSubscriptRefExpr(ObjCSubscriptRefExpr *E) {
+ // Transform the base expression.
+ ExprResult Base = getDerived().TransformExpr(E->getBaseExpr());
+ if (Base.isInvalid())
+ return ExprError();
+
+ // Transform the key expression.
+ ExprResult Key = getDerived().TransformExpr(E->getKeyExpr());
+ if (Key.isInvalid())
+ return ExprError();
+
+ // If nothing changed, just retain the existing expression.
+ if (!getDerived().AlwaysRebuild() &&
+ Key.get() == E->getKeyExpr() && Base.get() == E->getBaseExpr())
+ return E;
+
+ return getDerived().RebuildObjCSubscriptRefExpr(E->getRBracket(),
+ Base.get(), Key.get(),
+ E->getAtIndexMethodDecl(),
+ E->setAtIndexMethodDecl());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformObjCIsaExpr(ObjCIsaExpr *E) {
+ // Transform the base expression.
+ ExprResult Base = getDerived().TransformExpr(E->getBase());
+ if (Base.isInvalid())
+ return ExprError();
+
+ // If nothing changed, just retain the existing expression.
+ if (!getDerived().AlwaysRebuild() &&
+ Base.get() == E->getBase())
+ return E;
+
+ return getDerived().RebuildObjCIsaExpr(Base.get(), E->getIsaMemberLoc(),
+ E->getOpLoc(),
+ E->isArrow());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformShuffleVectorExpr(ShuffleVectorExpr *E) {
+ bool ArgumentChanged = false;
+ SmallVector<Expr*, 8> SubExprs;
+ SubExprs.reserve(E->getNumSubExprs());
+ if (getDerived().TransformExprs(E->getSubExprs(), E->getNumSubExprs(), false,
+ SubExprs, &ArgumentChanged))
+ return ExprError();
+
+ if (!getDerived().AlwaysRebuild() &&
+ !ArgumentChanged)
+ return E;
+
+ return getDerived().RebuildShuffleVectorExpr(E->getBuiltinLoc(),
+ SubExprs,
+ E->getRParenLoc());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformConvertVectorExpr(ConvertVectorExpr *E) {
+ ExprResult SrcExpr = getDerived().TransformExpr(E->getSrcExpr());
+ if (SrcExpr.isInvalid())
+ return ExprError();
+
+ TypeSourceInfo *Type = getDerived().TransformType(E->getTypeSourceInfo());
+ if (!Type)
+ return ExprError();
+
+ if (!getDerived().AlwaysRebuild() &&
+ Type == E->getTypeSourceInfo() &&
+ SrcExpr.get() == E->getSrcExpr())
+ return E;
+
+ return getDerived().RebuildConvertVectorExpr(E->getBuiltinLoc(),
+ SrcExpr.get(), Type,
+ E->getRParenLoc());
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformBlockExpr(BlockExpr *E) {
+ BlockDecl *oldBlock = E->getBlockDecl();
+
+ SemaRef.ActOnBlockStart(E->getCaretLocation(), /*Scope=*/nullptr);
+ BlockScopeInfo *blockScope = SemaRef.getCurBlock();
+
+ blockScope->TheDecl->setIsVariadic(oldBlock->isVariadic());
+ blockScope->TheDecl->setBlockMissingReturnType(
+ oldBlock->blockMissingReturnType());
+
+ SmallVector<ParmVarDecl*, 4> params;
+ SmallVector<QualType, 4> paramTypes;
+
+ // Parameter substitution.
+ if (getDerived().TransformFunctionTypeParams(E->getCaretLocation(),
+ oldBlock->param_begin(),
+ oldBlock->param_size(),
+ nullptr, paramTypes, &params)) {
+ getSema().ActOnBlockError(E->getCaretLocation(), /*Scope=*/nullptr);
+ return ExprError();
+ }
+
+ const FunctionProtoType *exprFunctionType = E->getFunctionType();
+ QualType exprResultType =
+ getDerived().TransformType(exprFunctionType->getReturnType());
+
+ QualType functionType =
+ getDerived().RebuildFunctionProtoType(exprResultType, paramTypes,
+ exprFunctionType->getExtProtoInfo());
+ blockScope->FunctionType = functionType;
+
+ // Set the parameters on the block decl.
+ if (!params.empty())
+ blockScope->TheDecl->setParams(params);
+
+ if (!oldBlock->blockMissingReturnType()) {
+ blockScope->HasImplicitReturnType = false;
+ blockScope->ReturnType = exprResultType;
+ }
+
+ // Transform the body
+ StmtResult body = getDerived().TransformStmt(E->getBody());
+ if (body.isInvalid()) {
+ getSema().ActOnBlockError(E->getCaretLocation(), /*Scope=*/nullptr);
+ return ExprError();
+ }
+
+#ifndef NDEBUG
+ // In builds with assertions, make sure that we captured everything we
+ // captured before.
+ if (!SemaRef.getDiagnostics().hasErrorOccurred()) {
+ for (const auto &I : oldBlock->captures()) {
+ VarDecl *oldCapture = I.getVariable();
+
+ // Ignore parameter packs.
+ if (isa<ParmVarDecl>(oldCapture) &&
+ cast<ParmVarDecl>(oldCapture)->isParameterPack())
+ continue;
+
+ VarDecl *newCapture =
+ cast<VarDecl>(getDerived().TransformDecl(E->getCaretLocation(),
+ oldCapture));
+ assert(blockScope->CaptureMap.count(newCapture));
+ }
+ assert(oldBlock->capturesCXXThis() == blockScope->isCXXThisCaptured());
+ }
+#endif
+
+ return SemaRef.ActOnBlockStmtExpr(E->getCaretLocation(), body.get(),
+ /*Scope=*/nullptr);
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformAsTypeExpr(AsTypeExpr *E) {
+ llvm_unreachable("Cannot transform asType expressions yet");
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformAtomicExpr(AtomicExpr *E) {
+ QualType RetTy = getDerived().TransformType(E->getType());
+ bool ArgumentChanged = false;
+ SmallVector<Expr*, 8> SubExprs;
+ SubExprs.reserve(E->getNumSubExprs());
+ if (getDerived().TransformExprs(E->getSubExprs(), E->getNumSubExprs(), false,
+ SubExprs, &ArgumentChanged))
+ return ExprError();
+
+ if (!getDerived().AlwaysRebuild() &&
+ !ArgumentChanged)
+ return E;
+
+ return getDerived().RebuildAtomicExpr(E->getBuiltinLoc(), SubExprs,
+ RetTy, E->getOp(), E->getRParenLoc());
+}
+
+//===----------------------------------------------------------------------===//
+// Type reconstruction
+//===----------------------------------------------------------------------===//
+
+template<typename Derived>
+QualType TreeTransform<Derived>::RebuildPointerType(QualType PointeeType,
+ SourceLocation Star) {
+ return SemaRef.BuildPointerType(PointeeType, Star,
+ getDerived().getBaseEntity());
+}
+
+template<typename Derived>
+QualType TreeTransform<Derived>::RebuildBlockPointerType(QualType PointeeType,
+ SourceLocation Star) {
+ return SemaRef.BuildBlockPointerType(PointeeType, Star,
+ getDerived().getBaseEntity());
+}
+
+template<typename Derived>
+QualType
+TreeTransform<Derived>::RebuildReferenceType(QualType ReferentType,
+ bool WrittenAsLValue,
+ SourceLocation Sigil) {
+ return SemaRef.BuildReferenceType(ReferentType, WrittenAsLValue,
+ Sigil, getDerived().getBaseEntity());
+}
+
+template<typename Derived>
+QualType
+TreeTransform<Derived>::RebuildMemberPointerType(QualType PointeeType,
+ QualType ClassType,
+ SourceLocation Sigil) {
+ return SemaRef.BuildMemberPointerType(PointeeType, ClassType, Sigil,
+ getDerived().getBaseEntity());
+}
+
+template<typename Derived>
+QualType
+TreeTransform<Derived>::RebuildArrayType(QualType ElementType,
+ ArrayType::ArraySizeModifier SizeMod,
+ const llvm::APInt *Size,
+ Expr *SizeExpr,
+ unsigned IndexTypeQuals,
+ SourceRange BracketsRange) {
+ if (SizeExpr || !Size)
+ return SemaRef.BuildArrayType(ElementType, SizeMod, SizeExpr,
+ IndexTypeQuals, BracketsRange,
+ getDerived().getBaseEntity());
+
+ QualType Types[] = {
+ SemaRef.Context.UnsignedCharTy, SemaRef.Context.UnsignedShortTy,
+ SemaRef.Context.UnsignedIntTy, SemaRef.Context.UnsignedLongTy,
+ SemaRef.Context.UnsignedLongLongTy, SemaRef.Context.UnsignedInt128Ty
+ };
+ const unsigned NumTypes = llvm::array_lengthof(Types);
+ QualType SizeType;
+ for (unsigned I = 0; I != NumTypes; ++I)
+ if (Size->getBitWidth() == SemaRef.Context.getIntWidth(Types[I])) {
+ SizeType = Types[I];
+ break;
+ }
+
+ // Note that we can return a VariableArrayType here in the case where
+ // the element type was a dependent VariableArrayType.
+ IntegerLiteral *ArraySize
+ = IntegerLiteral::Create(SemaRef.Context, *Size, SizeType,
+ /*FIXME*/BracketsRange.getBegin());
+ return SemaRef.BuildArrayType(ElementType, SizeMod, ArraySize,
+ IndexTypeQuals, BracketsRange,
+ getDerived().getBaseEntity());
+}
+
+template<typename Derived>
+QualType
+TreeTransform<Derived>::RebuildConstantArrayType(QualType ElementType,
+ ArrayType::ArraySizeModifier SizeMod,
+ const llvm::APInt &Size,
+ unsigned IndexTypeQuals,
+ SourceRange BracketsRange) {
+ return getDerived().RebuildArrayType(ElementType, SizeMod, &Size, nullptr,
+ IndexTypeQuals, BracketsRange);
+}
+
+template<typename Derived>
+QualType
+TreeTransform<Derived>::RebuildIncompleteArrayType(QualType ElementType,
+ ArrayType::ArraySizeModifier SizeMod,
+ unsigned IndexTypeQuals,
+ SourceRange BracketsRange) {
+ return getDerived().RebuildArrayType(ElementType, SizeMod, nullptr, nullptr,
+ IndexTypeQuals, BracketsRange);
+}
+
+template<typename Derived>
+QualType
+TreeTransform<Derived>::RebuildVariableArrayType(QualType ElementType,
+ ArrayType::ArraySizeModifier SizeMod,
+ Expr *SizeExpr,
+ unsigned IndexTypeQuals,
+ SourceRange BracketsRange) {
+ return getDerived().RebuildArrayType(ElementType, SizeMod, nullptr,
+ SizeExpr,
+ IndexTypeQuals, BracketsRange);
+}
+
+template<typename Derived>
+QualType
+TreeTransform<Derived>::RebuildDependentSizedArrayType(QualType ElementType,
+ ArrayType::ArraySizeModifier SizeMod,
+ Expr *SizeExpr,
+ unsigned IndexTypeQuals,
+ SourceRange BracketsRange) {
+ return getDerived().RebuildArrayType(ElementType, SizeMod, nullptr,
+ SizeExpr,
+ IndexTypeQuals, BracketsRange);
+}
+
+template<typename Derived>
+QualType TreeTransform<Derived>::RebuildVectorType(QualType ElementType,
+ unsigned NumElements,
+ VectorType::VectorKind VecKind) {
+ // FIXME: semantic checking!
+ return SemaRef.Context.getVectorType(ElementType, NumElements, VecKind);
+}
+
+template<typename Derived>
+QualType TreeTransform<Derived>::RebuildExtVectorType(QualType ElementType,
+ unsigned NumElements,
+ SourceLocation AttributeLoc) {
+ llvm::APInt numElements(SemaRef.Context.getIntWidth(SemaRef.Context.IntTy),
+ NumElements, true);
+ IntegerLiteral *VectorSize
+ = IntegerLiteral::Create(SemaRef.Context, numElements, SemaRef.Context.IntTy,
+ AttributeLoc);
+ return SemaRef.BuildExtVectorType(ElementType, VectorSize, AttributeLoc);
+}
+
+template<typename Derived>
+QualType
+TreeTransform<Derived>::RebuildDependentSizedExtVectorType(QualType ElementType,
+ Expr *SizeExpr,
+ SourceLocation AttributeLoc) {
+ return SemaRef.BuildExtVectorType(ElementType, SizeExpr, AttributeLoc);
+}
+
+template<typename Derived>
+QualType TreeTransform<Derived>::RebuildFunctionProtoType(
+ QualType T,
+ MutableArrayRef<QualType> ParamTypes,
+ const FunctionProtoType::ExtProtoInfo &EPI) {
+ return SemaRef.BuildFunctionType(T, ParamTypes,
+ getDerived().getBaseLocation(),
+ getDerived().getBaseEntity(),
+ EPI);
+}
+
+template<typename Derived>
+QualType TreeTransform<Derived>::RebuildFunctionNoProtoType(QualType T) {
+ return SemaRef.Context.getFunctionNoProtoType(T);
+}
+
+template<typename Derived>
+QualType TreeTransform<Derived>::RebuildUnresolvedUsingType(Decl *D) {
+ assert(D && "no decl found");
+ if (D->isInvalidDecl()) return QualType();
+
+ // FIXME: Doesn't account for ObjCInterfaceDecl!
+ TypeDecl *Ty;
+ if (isa<UsingDecl>(D)) {
+ UsingDecl *Using = cast<UsingDecl>(D);
+ assert(Using->hasTypename() &&
+ "UnresolvedUsingTypenameDecl transformed to non-typename using");
+
+ // A valid resolved using typename decl points to exactly one type decl.
+ assert(++Using->shadow_begin() == Using->shadow_end());
+ Ty = cast<TypeDecl>((*Using->shadow_begin())->getTargetDecl());
+
+ } else {
+ assert(isa<UnresolvedUsingTypenameDecl>(D) &&
+ "UnresolvedUsingTypenameDecl transformed to non-using decl");
+ Ty = cast<UnresolvedUsingTypenameDecl>(D);
+ }
+
+ return SemaRef.Context.getTypeDeclType(Ty);
+}
+
+template<typename Derived>
+QualType TreeTransform<Derived>::RebuildTypeOfExprType(Expr *E,
+ SourceLocation Loc) {
+ return SemaRef.BuildTypeofExprType(E, Loc);
+}
+
+template<typename Derived>
+QualType TreeTransform<Derived>::RebuildTypeOfType(QualType Underlying) {
+ return SemaRef.Context.getTypeOfType(Underlying);
+}
+
+template<typename Derived>
+QualType TreeTransform<Derived>::RebuildDecltypeType(Expr *E,
+ SourceLocation Loc) {
+ return SemaRef.BuildDecltypeType(E, Loc);
+}
+
+template<typename Derived>
+QualType TreeTransform<Derived>::RebuildUnaryTransformType(QualType BaseType,
+ UnaryTransformType::UTTKind UKind,
+ SourceLocation Loc) {
+ return SemaRef.BuildUnaryTransformType(BaseType, UKind, Loc);
+}
+
+template<typename Derived>
+QualType TreeTransform<Derived>::RebuildTemplateSpecializationType(
+ TemplateName Template,
+ SourceLocation TemplateNameLoc,
+ TemplateArgumentListInfo &TemplateArgs) {
+ return SemaRef.CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
+}
+
+template<typename Derived>
+QualType TreeTransform<Derived>::RebuildAtomicType(QualType ValueType,
+ SourceLocation KWLoc) {
+ return SemaRef.BuildAtomicType(ValueType, KWLoc);
+}
+
+template<typename Derived>
+TemplateName
+TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS,
+ bool TemplateKW,
+ TemplateDecl *Template) {
+ return SemaRef.Context.getQualifiedTemplateName(SS.getScopeRep(), TemplateKW,
+ Template);
+}
+
+template<typename Derived>
+TemplateName
+TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS,
+ const IdentifierInfo &Name,
+ SourceLocation NameLoc,
+ QualType ObjectType,
+ NamedDecl *FirstQualifierInScope) {
+ UnqualifiedId TemplateName;
+ TemplateName.setIdentifier(&Name, NameLoc);
+ Sema::TemplateTy Template;
+ SourceLocation TemplateKWLoc; // FIXME: retrieve it from caller.
+ getSema().ActOnDependentTemplateName(/*Scope=*/nullptr,
+ SS, TemplateKWLoc, TemplateName,
+ ParsedType::make(ObjectType),
+ /*EnteringContext=*/false,
+ Template);
+ return Template.get();
+}
+
+template<typename Derived>
+TemplateName
+TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS,
+ OverloadedOperatorKind Operator,
+ SourceLocation NameLoc,
+ QualType ObjectType) {
+ UnqualifiedId Name;
+ // FIXME: Bogus location information.
+ SourceLocation SymbolLocations[3] = { NameLoc, NameLoc, NameLoc };
+ Name.setOperatorFunctionId(NameLoc, Operator, SymbolLocations);
+ SourceLocation TemplateKWLoc; // FIXME: retrieve it from caller.
+ Sema::TemplateTy Template;
+ getSema().ActOnDependentTemplateName(/*Scope=*/nullptr,
+ SS, TemplateKWLoc, Name,
+ ParsedType::make(ObjectType),
+ /*EnteringContext=*/false,
+ Template);
+ return Template.get();
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op,
+ SourceLocation OpLoc,
+ Expr *OrigCallee,
+ Expr *First,
+ Expr *Second) {
+ Expr *Callee = OrigCallee->IgnoreParenCasts();
+ bool isPostIncDec = Second && (Op == OO_PlusPlus || Op == OO_MinusMinus);
+
+ if (First->getObjectKind() == OK_ObjCProperty) {
+ BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op);
+ if (BinaryOperator::isAssignmentOp(Opc))
+ return SemaRef.checkPseudoObjectAssignment(/*Scope=*/nullptr, OpLoc, Opc,
+ First, Second);
+ ExprResult Result = SemaRef.CheckPlaceholderExpr(First);
+ if (Result.isInvalid())
+ return ExprError();
+ First = Result.get();
+ }
+
+ if (Second && Second->getObjectKind() == OK_ObjCProperty) {
+ ExprResult Result = SemaRef.CheckPlaceholderExpr(Second);
+ if (Result.isInvalid())
+ return ExprError();
+ Second = Result.get();
+ }
+
+ // Determine whether this should be a builtin operation.
+ if (Op == OO_Subscript) {
+ if (!First->getType()->isOverloadableType() &&
+ !Second->getType()->isOverloadableType())
+ return getSema().CreateBuiltinArraySubscriptExpr(First,
+ Callee->getLocStart(),
+ Second, OpLoc);
+ } else if (Op == OO_Arrow) {
+ // -> is never a builtin operation.
+ return SemaRef.BuildOverloadedArrowExpr(nullptr, First, OpLoc);
+ } else if (Second == nullptr || isPostIncDec) {
+ if (!First->getType()->isOverloadableType()) {
+ // The argument is not of overloadable type, so try to create a
+ // built-in unary operation.
+ UnaryOperatorKind Opc
+ = UnaryOperator::getOverloadedOpcode(Op, isPostIncDec);
+
+ return getSema().CreateBuiltinUnaryOp(OpLoc, Opc, First);
+ }
+ } else {
+ if (!First->getType()->isOverloadableType() &&
+ !Second->getType()->isOverloadableType()) {
+ // Neither of the arguments is an overloadable type, so try to
+ // create a built-in binary operation.
+ BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op);
+ ExprResult Result
+ = SemaRef.CreateBuiltinBinOp(OpLoc, Opc, First, Second);
+ if (Result.isInvalid())
+ return ExprError();
+
+ return Result;
+ }
+ }
+
+ // Compute the transformed set of functions (and function templates) to be
+ // used during overload resolution.
+ UnresolvedSet<16> Functions;
+
+ if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Callee)) {
+ assert(ULE->requiresADL());
+ Functions.append(ULE->decls_begin(), ULE->decls_end());
+ } else {
+ // If we've resolved this to a particular non-member function, just call
+ // that function. If we resolved it to a member function,
+ // CreateOverloaded* will find that function for us.
+ NamedDecl *ND = cast<DeclRefExpr>(Callee)->getDecl();
+ if (!isa<CXXMethodDecl>(ND))
+ Functions.addDecl(ND);
+ }
+
+ // Add any functions found via argument-dependent lookup.
+ Expr *Args[2] = { First, Second };
+ unsigned NumArgs = 1 + (Second != nullptr);
+
+ // Create the overloaded operator invocation for unary operators.
+ if (NumArgs == 1 || isPostIncDec) {
+ UnaryOperatorKind Opc
+ = UnaryOperator::getOverloadedOpcode(Op, isPostIncDec);
+ return SemaRef.CreateOverloadedUnaryOp(OpLoc, Opc, Functions, First);
+ }
+
+ if (Op == OO_Subscript) {
+ SourceLocation LBrace;
+ SourceLocation RBrace;
+
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Callee)) {
+ DeclarationNameLoc NameLoc = DRE->getNameInfo().getInfo();
+ LBrace = SourceLocation::getFromRawEncoding(
+ NameLoc.CXXOperatorName.BeginOpNameLoc);
+ RBrace = SourceLocation::getFromRawEncoding(
+ NameLoc.CXXOperatorName.EndOpNameLoc);
+ } else {
+ LBrace = Callee->getLocStart();
+ RBrace = OpLoc;
+ }
+
+ return SemaRef.CreateOverloadedArraySubscriptExpr(LBrace, RBrace,
+ First, Second);
+ }
+
+ // Create the overloaded operator invocation for binary operators.
+ BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op);
+ ExprResult Result
+ = SemaRef.CreateOverloadedBinOp(OpLoc, Opc, Functions, Args[0], Args[1]);
+ if (Result.isInvalid())
+ return ExprError();
+
+ return Result;
+}
+
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::RebuildCXXPseudoDestructorExpr(Expr *Base,
+ SourceLocation OperatorLoc,
+ bool isArrow,
+ CXXScopeSpec &SS,
+ TypeSourceInfo *ScopeType,
+ SourceLocation CCLoc,
+ SourceLocation TildeLoc,
+ PseudoDestructorTypeStorage Destroyed) {
+ QualType BaseType = Base->getType();
+ if (Base->isTypeDependent() || Destroyed.getIdentifier() ||
+ (!isArrow && !BaseType->getAs<RecordType>()) ||
+ (isArrow && BaseType->getAs<PointerType>() &&
+ !BaseType->getAs<PointerType>()->getPointeeType()
+ ->template getAs<RecordType>())){
+ // This pseudo-destructor expression is still a pseudo-destructor.
+ return SemaRef.BuildPseudoDestructorExpr(
+ Base, OperatorLoc, isArrow ? tok::arrow : tok::period, SS, ScopeType,
+ CCLoc, TildeLoc, Destroyed);
+ }
+
+ TypeSourceInfo *DestroyedType = Destroyed.getTypeSourceInfo();
+ DeclarationName Name(SemaRef.Context.DeclarationNames.getCXXDestructorName(
+ SemaRef.Context.getCanonicalType(DestroyedType->getType())));
+ DeclarationNameInfo NameInfo(Name, Destroyed.getLocation());
+ NameInfo.setNamedTypeInfo(DestroyedType);
+
+ // The scope type is now known to be a valid nested name specifier
+ // component. Tack it on to the end of the nested name specifier.
+ if (ScopeType) {
+ if (!ScopeType->getType()->getAs<TagType>()) {
+ getSema().Diag(ScopeType->getTypeLoc().getBeginLoc(),
+ diag::err_expected_class_or_namespace)
+ << ScopeType->getType() << getSema().getLangOpts().CPlusPlus;
+ return ExprError();
+ }
+ SS.Extend(SemaRef.Context, SourceLocation(), ScopeType->getTypeLoc(),
+ CCLoc);
+ }
+
+ SourceLocation TemplateKWLoc; // FIXME: retrieve it from caller.
+ return getSema().BuildMemberReferenceExpr(Base, BaseType,
+ OperatorLoc, isArrow,
+ SS, TemplateKWLoc,
+ /*FIXME: FirstQualifier*/ nullptr,
+ NameInfo,
+ /*TemplateArgs*/ nullptr);
+}
+
+template<typename Derived>
+StmtResult
+TreeTransform<Derived>::TransformCapturedStmt(CapturedStmt *S) {
+ SourceLocation Loc = S->getLocStart();
+ CapturedDecl *CD = S->getCapturedDecl();
+ unsigned NumParams = CD->getNumParams();
+ unsigned ContextParamPos = CD->getContextParamPosition();
+ SmallVector<Sema::CapturedParamNameType, 4> Params;
+ for (unsigned I = 0; I < NumParams; ++I) {
+ if (I != ContextParamPos) {
+ Params.push_back(
+ std::make_pair(
+ CD->getParam(I)->getName(),
+ getDerived().TransformType(CD->getParam(I)->getType())));
+ } else {
+ Params.push_back(std::make_pair(StringRef(), QualType()));
+ }
+ }
+ getSema().ActOnCapturedRegionStart(Loc, /*CurScope*/nullptr,
+ S->getCapturedRegionKind(), Params);
+ StmtResult Body;
+ {
+ Sema::CompoundScopeRAII CompoundScope(getSema());
+ Body = getDerived().TransformStmt(S->getCapturedStmt());
+ }
+
+ if (Body.isInvalid()) {
+ getSema().ActOnCapturedRegionError();
+ return StmtError();
+ }
+
+ return getSema().ActOnCapturedRegionEnd(Body.get());
+}
+
+} // end namespace clang
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/Sema/TypeLocBuilder.cpp b/contrib/llvm/tools/clang/lib/Sema/TypeLocBuilder.cpp
new file mode 100644
index 0000000..be99540
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/TypeLocBuilder.cpp
@@ -0,0 +1,136 @@
+//===--- TypeLocBuilder.cpp - Type Source Info collector ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This files defines TypeLocBuilder, a class for building TypeLocs
+// bottom-up.
+//
+//===----------------------------------------------------------------------===//
+
+#include "TypeLocBuilder.h"
+
+using namespace clang;
+
+void TypeLocBuilder::pushFullCopy(TypeLoc L) {
+ size_t Size = L.getFullDataSize();
+ reserve(Size);
+
+ SmallVector<TypeLoc, 4> TypeLocs;
+ TypeLoc CurTL = L;
+ while (CurTL) {
+ TypeLocs.push_back(CurTL);
+ CurTL = CurTL.getNextTypeLoc();
+ }
+
+ for (unsigned i = 0, e = TypeLocs.size(); i < e; ++i) {
+ TypeLoc CurTL = TypeLocs[e-i-1];
+ switch (CurTL.getTypeLocClass()) {
+#define ABSTRACT_TYPELOC(CLASS, PARENT)
+#define TYPELOC(CLASS, PARENT) \
+ case TypeLoc::CLASS: { \
+ CLASS##TypeLoc NewTL = push<class CLASS##TypeLoc>(CurTL.getType()); \
+ memcpy(NewTL.getOpaqueData(), CurTL.getOpaqueData(), NewTL.getLocalDataSize()); \
+ break; \
+ }
+#include "clang/AST/TypeLocNodes.def"
+ }
+ }
+}
+
+void TypeLocBuilder::grow(size_t NewCapacity) {
+ assert(NewCapacity > Capacity);
+
+ // Allocate the new buffer and copy the old data into it.
+ char *NewBuffer = new char[NewCapacity];
+ unsigned NewIndex = Index + NewCapacity - Capacity;
+ memcpy(&NewBuffer[NewIndex],
+ &Buffer[Index],
+ Capacity - Index);
+
+ if (Buffer != InlineBuffer.buffer)
+ delete[] Buffer;
+
+ Buffer = NewBuffer;
+ Capacity = NewCapacity;
+ Index = NewIndex;
+}
+
+TypeLoc TypeLocBuilder::pushImpl(QualType T, size_t LocalSize, unsigned LocalAlignment) {
+#ifndef NDEBUG
+ QualType TLast = TypeLoc(T, nullptr).getNextTypeLoc().getType();
+ assert(TLast == LastTy &&
+ "mismatch between last type and new type's inner type");
+ LastTy = T;
+#endif
+
+ assert(LocalAlignment <= BufferMaxAlignment && "Unexpected alignment");
+
+ // If we need to grow, grow by a factor of 2.
+ if (LocalSize > Index) {
+ size_t RequiredCapacity = Capacity + (LocalSize - Index);
+ size_t NewCapacity = Capacity * 2;
+ while (RequiredCapacity > NewCapacity)
+ NewCapacity *= 2;
+ grow(NewCapacity);
+ }
+
+ // Because we're adding elements to the TypeLoc backwards, we have to
+ // do some extra work to keep everything aligned appropriately.
+ // FIXME: This algorithm is a absolute mess because every TypeLoc returned
+ // needs to be valid. Partial TypeLocs are a terrible idea.
+ // FIXME: 4 and 8 are sufficient at the moment, but it's pretty ugly to
+ // hardcode them.
+ if (LocalAlignment == 4) {
+ if (NumBytesAtAlign8 == 0) {
+ NumBytesAtAlign4 += LocalSize;
+ } else {
+ unsigned Padding = NumBytesAtAlign4 % 8;
+ if (Padding == 0) {
+ if (LocalSize % 8 == 0) {
+ // Everything is set: there's no padding and we don't need to add
+ // any.
+ } else {
+ assert(LocalSize % 8 == 4);
+ // No existing padding; add in 4 bytes padding
+ memmove(&Buffer[Index - 4], &Buffer[Index], NumBytesAtAlign4);
+ Index -= 4;
+ }
+ } else {
+ assert(Padding == 4);
+ if (LocalSize % 8 == 0) {
+ // Everything is set: there's 4 bytes padding and we don't need
+ // to add any.
+ } else {
+ assert(LocalSize % 8 == 4);
+ // There are 4 bytes padding, but we don't need any; remove it.
+ memmove(&Buffer[Index + 4], &Buffer[Index], NumBytesAtAlign4);
+ Index += 4;
+ }
+ }
+ NumBytesAtAlign4 += LocalSize;
+ }
+ } else if (LocalAlignment == 8) {
+ if (!NumBytesAtAlign8 && NumBytesAtAlign4 % 8 != 0) {
+ // No existing padding and misaligned members; add in 4 bytes padding
+ memmove(&Buffer[Index - 4], &Buffer[Index], NumBytesAtAlign4);
+ Index -= 4;
+ }
+ // Forget about any padding.
+ NumBytesAtAlign4 = 0;
+ NumBytesAtAlign8 += LocalSize;
+ } else {
+ assert(LocalSize == 0);
+ }
+
+ Index -= LocalSize;
+
+ assert(Capacity - Index == TypeLoc::getFullDataSizeForType(T) &&
+ "incorrect data size provided to CreateTypeSourceInfo!");
+
+ return getTemporaryTypeLoc(T);
+}
diff --git a/contrib/llvm/tools/clang/lib/Sema/TypeLocBuilder.h b/contrib/llvm/tools/clang/lib/Sema/TypeLocBuilder.h
new file mode 100644
index 0000000..82844b3
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/TypeLocBuilder.h
@@ -0,0 +1,151 @@
+//===--- TypeLocBuilder.h - Type Source Info collector ----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This files defines TypeLocBuilder, a class for building TypeLocs
+// bottom-up.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_SEMA_TYPELOCBUILDER_H
+#define LLVM_CLANG_LIB_SEMA_TYPELOCBUILDER_H
+
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/TypeLoc.h"
+
+namespace clang {
+
+class TypeLocBuilder {
+ enum { InlineCapacity = 8 * sizeof(SourceLocation) };
+
+ /// The underlying location-data buffer. Data grows from the end
+ /// of the buffer backwards.
+ char *Buffer;
+
+ /// The capacity of the current buffer.
+ size_t Capacity;
+
+ /// The index of the first occupied byte in the buffer.
+ size_t Index;
+
+#ifndef NDEBUG
+ /// The last type pushed on this builder.
+ QualType LastTy;
+#endif
+
+ /// The inline buffer.
+ enum { BufferMaxAlignment = llvm::AlignOf<void*>::Alignment };
+ llvm::AlignedCharArray<BufferMaxAlignment, InlineCapacity> InlineBuffer;
+ unsigned NumBytesAtAlign4, NumBytesAtAlign8;
+
+ public:
+ TypeLocBuilder()
+ : Buffer(InlineBuffer.buffer), Capacity(InlineCapacity),
+ Index(InlineCapacity), NumBytesAtAlign4(0), NumBytesAtAlign8(0)
+ {
+ }
+
+ ~TypeLocBuilder() {
+ if (Buffer != InlineBuffer.buffer)
+ delete[] Buffer;
+ }
+
+ /// Ensures that this buffer has at least as much capacity as described.
+ void reserve(size_t Requested) {
+ if (Requested > Capacity)
+ // For now, match the request exactly.
+ grow(Requested);
+ }
+
+ /// Pushes a copy of the given TypeLoc onto this builder. The builder
+ /// must be empty for this to work.
+ void pushFullCopy(TypeLoc L);
+
+ /// Pushes space for a typespec TypeLoc. Invalidates any TypeLocs
+ /// previously retrieved from this builder.
+ TypeSpecTypeLoc pushTypeSpec(QualType T) {
+ size_t LocalSize = TypeSpecTypeLoc::LocalDataSize;
+ unsigned LocalAlign = TypeSpecTypeLoc::LocalDataAlignment;
+ return pushImpl(T, LocalSize, LocalAlign).castAs<TypeSpecTypeLoc>();
+ }
+
+ /// Resets this builder to the newly-initialized state.
+ void clear() {
+#ifndef NDEBUG
+ LastTy = QualType();
+#endif
+ Index = Capacity;
+ NumBytesAtAlign4 = NumBytesAtAlign8 = 0;
+ }
+
+ /// \brief Tell the TypeLocBuilder that the type it is storing has been
+ /// modified in some safe way that doesn't affect type-location information.
+ void TypeWasModifiedSafely(QualType T) {
+#ifndef NDEBUG
+ LastTy = T;
+#endif
+ }
+
+ /// Pushes space for a new TypeLoc of the given type. Invalidates
+ /// any TypeLocs previously retrieved from this builder.
+ template <class TyLocType> TyLocType push(QualType T) {
+ TyLocType Loc = TypeLoc(T, nullptr).castAs<TyLocType>();
+ size_t LocalSize = Loc.getLocalDataSize();
+ unsigned LocalAlign = Loc.getLocalDataAlignment();
+ return pushImpl(T, LocalSize, LocalAlign).castAs<TyLocType>();
+ }
+
+ /// Creates a TypeSourceInfo for the given type.
+ TypeSourceInfo *getTypeSourceInfo(ASTContext& Context, QualType T) {
+#ifndef NDEBUG
+ assert(T == LastTy && "type doesn't match last type pushed!");
+#endif
+
+ size_t FullDataSize = Capacity - Index;
+ TypeSourceInfo *DI = Context.CreateTypeSourceInfo(T, FullDataSize);
+ memcpy(DI->getTypeLoc().getOpaqueData(), &Buffer[Index], FullDataSize);
+ return DI;
+ }
+
+ /// \brief Copies the type-location information to the given AST context and
+ /// returns a \c TypeLoc referring into the AST context.
+ TypeLoc getTypeLocInContext(ASTContext &Context, QualType T) {
+#ifndef NDEBUG
+ assert(T == LastTy && "type doesn't match last type pushed!");
+#endif
+
+ size_t FullDataSize = Capacity - Index;
+ void *Mem = Context.Allocate(FullDataSize);
+ memcpy(Mem, &Buffer[Index], FullDataSize);
+ return TypeLoc(T, Mem);
+ }
+
+private:
+
+ TypeLoc pushImpl(QualType T, size_t LocalSize, unsigned LocalAlignment);
+
+ /// Grow to the given capacity.
+ void grow(size_t NewCapacity);
+
+ /// \brief Retrieve a temporary TypeLoc that refers into this \c TypeLocBuilder
+ /// object.
+ ///
+ /// The resulting \c TypeLoc should only be used so long as the
+ /// \c TypeLocBuilder is active and has not had more type information
+ /// pushed into it.
+ TypeLoc getTemporaryTypeLoc(QualType T) {
+#ifndef NDEBUG
+ assert(LastTy == T && "type doesn't match last type pushed!");
+#endif
+ return TypeLoc(T, &Buffer[Index]);
+ }
+};
+
+}
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/Serialization/ASTCommon.cpp b/contrib/llvm/tools/clang/lib/Serialization/ASTCommon.cpp
new file mode 100644
index 0000000..85c574c
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Serialization/ASTCommon.cpp
@@ -0,0 +1,253 @@
+//===--- ASTCommon.cpp - Common stuff for ASTReader/ASTWriter----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines common functions that both ASTReader and ASTWriter use.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ASTCommon.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/Basic/IdentifierTable.h"
+#include "clang/Serialization/ASTDeserializationListener.h"
+#include "llvm/ADT/StringExtras.h"
+
+using namespace clang;
+
+// Give ASTDeserializationListener's VTable a home.
+ASTDeserializationListener::~ASTDeserializationListener() { }
+
+serialization::TypeIdx
+serialization::TypeIdxFromBuiltin(const BuiltinType *BT) {
+ unsigned ID = 0;
+ switch (BT->getKind()) {
+ case BuiltinType::Void: ID = PREDEF_TYPE_VOID_ID; break;
+ case BuiltinType::Bool: ID = PREDEF_TYPE_BOOL_ID; break;
+ case BuiltinType::Char_U: ID = PREDEF_TYPE_CHAR_U_ID; break;
+ case BuiltinType::UChar: ID = PREDEF_TYPE_UCHAR_ID; break;
+ case BuiltinType::UShort: ID = PREDEF_TYPE_USHORT_ID; break;
+ case BuiltinType::UInt: ID = PREDEF_TYPE_UINT_ID; break;
+ case BuiltinType::ULong: ID = PREDEF_TYPE_ULONG_ID; break;
+ case BuiltinType::ULongLong: ID = PREDEF_TYPE_ULONGLONG_ID; break;
+ case BuiltinType::UInt128: ID = PREDEF_TYPE_UINT128_ID; break;
+ case BuiltinType::Char_S: ID = PREDEF_TYPE_CHAR_S_ID; break;
+ case BuiltinType::SChar: ID = PREDEF_TYPE_SCHAR_ID; break;
+ case BuiltinType::WChar_S:
+ case BuiltinType::WChar_U: ID = PREDEF_TYPE_WCHAR_ID; break;
+ case BuiltinType::Short: ID = PREDEF_TYPE_SHORT_ID; break;
+ case BuiltinType::Int: ID = PREDEF_TYPE_INT_ID; break;
+ case BuiltinType::Long: ID = PREDEF_TYPE_LONG_ID; break;
+ case BuiltinType::LongLong: ID = PREDEF_TYPE_LONGLONG_ID; break;
+ case BuiltinType::Int128: ID = PREDEF_TYPE_INT128_ID; break;
+ case BuiltinType::Half: ID = PREDEF_TYPE_HALF_ID; break;
+ case BuiltinType::Float: ID = PREDEF_TYPE_FLOAT_ID; break;
+ case BuiltinType::Double: ID = PREDEF_TYPE_DOUBLE_ID; break;
+ case BuiltinType::LongDouble: ID = PREDEF_TYPE_LONGDOUBLE_ID; break;
+ case BuiltinType::NullPtr: ID = PREDEF_TYPE_NULLPTR_ID; break;
+ case BuiltinType::Char16: ID = PREDEF_TYPE_CHAR16_ID; break;
+ case BuiltinType::Char32: ID = PREDEF_TYPE_CHAR32_ID; break;
+ case BuiltinType::Overload: ID = PREDEF_TYPE_OVERLOAD_ID; break;
+ case BuiltinType::BoundMember:ID = PREDEF_TYPE_BOUND_MEMBER; break;
+ case BuiltinType::PseudoObject:ID = PREDEF_TYPE_PSEUDO_OBJECT;break;
+ case BuiltinType::Dependent: ID = PREDEF_TYPE_DEPENDENT_ID; break;
+ case BuiltinType::UnknownAny: ID = PREDEF_TYPE_UNKNOWN_ANY; break;
+ case BuiltinType::ARCUnbridgedCast:
+ ID = PREDEF_TYPE_ARC_UNBRIDGED_CAST; break;
+ case BuiltinType::ObjCId: ID = PREDEF_TYPE_OBJC_ID; break;
+ case BuiltinType::ObjCClass: ID = PREDEF_TYPE_OBJC_CLASS; break;
+ case BuiltinType::ObjCSel: ID = PREDEF_TYPE_OBJC_SEL; break;
+ case BuiltinType::OCLImage1d: ID = PREDEF_TYPE_IMAGE1D_ID; break;
+ case BuiltinType::OCLImage1dArray: ID = PREDEF_TYPE_IMAGE1D_ARR_ID; break;
+ case BuiltinType::OCLImage1dBuffer: ID = PREDEF_TYPE_IMAGE1D_BUFF_ID; break;
+ case BuiltinType::OCLImage2d: ID = PREDEF_TYPE_IMAGE2D_ID; break;
+ case BuiltinType::OCLImage2dArray: ID = PREDEF_TYPE_IMAGE2D_ARR_ID; break;
+ case BuiltinType::OCLImage3d: ID = PREDEF_TYPE_IMAGE3D_ID; break;
+ case BuiltinType::OCLSampler: ID = PREDEF_TYPE_SAMPLER_ID; break;
+ case BuiltinType::OCLEvent: ID = PREDEF_TYPE_EVENT_ID; break;
+ case BuiltinType::BuiltinFn:
+ ID = PREDEF_TYPE_BUILTIN_FN; break;
+
+ }
+
+ return TypeIdx(ID);
+}
+
+unsigned serialization::ComputeHash(Selector Sel) {
+ unsigned N = Sel.getNumArgs();
+ if (N == 0)
+ ++N;
+ unsigned R = 5381;
+ for (unsigned I = 0; I != N; ++I)
+ if (IdentifierInfo *II = Sel.getIdentifierInfoForSlot(I))
+ R = llvm::HashString(II->getName(), R);
+ return R;
+}
+
+const DeclContext *
+serialization::getDefinitiveDeclContext(const DeclContext *DC) {
+ switch (DC->getDeclKind()) {
+ // These entities may have multiple definitions.
+ case Decl::TranslationUnit:
+ case Decl::ExternCContext:
+ case Decl::Namespace:
+ case Decl::LinkageSpec:
+ return nullptr;
+
+ // C/C++ tag types can only be defined in one place.
+ case Decl::Enum:
+ case Decl::Record:
+ if (const TagDecl *Def = cast<TagDecl>(DC)->getDefinition())
+ return Def;
+ return nullptr;
+
+ // FIXME: These can be defined in one place... except special member
+ // functions and out-of-line definitions.
+ case Decl::CXXRecord:
+ case Decl::ClassTemplateSpecialization:
+ case Decl::ClassTemplatePartialSpecialization:
+ return nullptr;
+
+ // Each function, method, and block declaration is its own DeclContext.
+ case Decl::Function:
+ case Decl::CXXMethod:
+ case Decl::CXXConstructor:
+ case Decl::CXXDestructor:
+ case Decl::CXXConversion:
+ case Decl::ObjCMethod:
+ case Decl::Block:
+ case Decl::Captured:
+ // Objective C categories, category implementations, and class
+ // implementations can only be defined in one place.
+ case Decl::ObjCCategory:
+ case Decl::ObjCCategoryImpl:
+ case Decl::ObjCImplementation:
+ return DC;
+
+ case Decl::ObjCProtocol:
+ if (const ObjCProtocolDecl *Def
+ = cast<ObjCProtocolDecl>(DC)->getDefinition())
+ return Def;
+ return nullptr;
+
+ // FIXME: These are defined in one place, but properties in class extensions
+ // end up being back-patched into the main interface. See
+ // Sema::HandlePropertyInClassExtension for the offending code.
+ case Decl::ObjCInterface:
+ return nullptr;
+
+ default:
+ llvm_unreachable("Unhandled DeclContext in AST reader");
+ }
+
+ llvm_unreachable("Unhandled decl kind");
+}
+
+bool serialization::isRedeclarableDeclKind(unsigned Kind) {
+ switch (static_cast<Decl::Kind>(Kind)) {
+ case Decl::TranslationUnit:
+ case Decl::ExternCContext:
+ // Special case of a "merged" declaration.
+ return true;
+
+ case Decl::Namespace:
+ case Decl::NamespaceAlias:
+ case Decl::Typedef:
+ case Decl::TypeAlias:
+ case Decl::Enum:
+ case Decl::Record:
+ case Decl::CXXRecord:
+ case Decl::ClassTemplateSpecialization:
+ case Decl::ClassTemplatePartialSpecialization:
+ case Decl::VarTemplateSpecialization:
+ case Decl::VarTemplatePartialSpecialization:
+ case Decl::Function:
+ case Decl::CXXMethod:
+ case Decl::CXXConstructor:
+ case Decl::CXXDestructor:
+ case Decl::CXXConversion:
+ case Decl::UsingShadow:
+ case Decl::Var:
+ case Decl::FunctionTemplate:
+ case Decl::ClassTemplate:
+ case Decl::VarTemplate:
+ case Decl::TypeAliasTemplate:
+ case Decl::ObjCProtocol:
+ case Decl::ObjCInterface:
+ case Decl::Empty:
+ return true;
+
+ // Never redeclarable.
+ case Decl::UsingDirective:
+ case Decl::Label:
+ case Decl::UnresolvedUsingTypename:
+ case Decl::TemplateTypeParm:
+ case Decl::EnumConstant:
+ case Decl::UnresolvedUsingValue:
+ case Decl::IndirectField:
+ case Decl::Field:
+ case Decl::MSProperty:
+ case Decl::ObjCIvar:
+ case Decl::ObjCAtDefsField:
+ case Decl::NonTypeTemplateParm:
+ case Decl::TemplateTemplateParm:
+ case Decl::Using:
+ case Decl::ObjCMethod:
+ case Decl::ObjCCategory:
+ case Decl::ObjCCategoryImpl:
+ case Decl::ObjCImplementation:
+ case Decl::ObjCProperty:
+ case Decl::ObjCCompatibleAlias:
+ case Decl::LinkageSpec:
+ case Decl::ObjCPropertyImpl:
+ case Decl::FileScopeAsm:
+ case Decl::AccessSpec:
+ case Decl::Friend:
+ case Decl::FriendTemplate:
+ case Decl::StaticAssert:
+ case Decl::Block:
+ case Decl::Captured:
+ case Decl::ClassScopeFunctionSpecialization:
+ case Decl::Import:
+ case Decl::OMPThreadPrivate:
+ return false;
+
+ // These indirectly derive from Redeclarable<T> but are not actually
+ // redeclarable.
+ case Decl::ImplicitParam:
+ case Decl::ParmVar:
+ return false;
+ }
+
+ llvm_unreachable("Unhandled declaration kind");
+}
+
+bool serialization::needsAnonymousDeclarationNumber(const NamedDecl *D) {
+ // Friend declarations in dependent contexts aren't anonymous in the usual
+ // sense, but they cannot be found by name lookup in their semantic context
+ // (or indeed in any context), so we treat them as anonymous.
+ //
+ // This doesn't apply to friend tag decls; Sema makes those available to name
+ // lookup in the surrounding context.
+ if (D->getFriendObjectKind() &&
+ D->getLexicalDeclContext()->isDependentContext() && !isa<TagDecl>(D)) {
+ // For function templates and class templates, the template is numbered and
+ // not its pattern.
+ if (auto *FD = dyn_cast<FunctionDecl>(D))
+ return !FD->getDescribedFunctionTemplate();
+ if (auto *RD = dyn_cast<CXXRecordDecl>(D))
+ return !RD->getDescribedClassTemplate();
+ return true;
+ }
+
+ // Otherwise, we only care about anonymous class members.
+ if (D->getDeclName() || !isa<CXXRecordDecl>(D->getLexicalDeclContext()))
+ return false;
+ return isa<TagDecl>(D) || isa<FieldDecl>(D);
+}
+
diff --git a/contrib/llvm/tools/clang/lib/Serialization/ASTCommon.h b/contrib/llvm/tools/clang/lib/Serialization/ASTCommon.h
new file mode 100644
index 0000000..79d1817
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Serialization/ASTCommon.h
@@ -0,0 +1,113 @@
+//===- ASTCommon.h - Common stuff for ASTReader/ASTWriter -*- C++ -*-=========//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines common functions that both ASTReader and ASTWriter use.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_SERIALIZATION_ASTCOMMON_H
+#define LLVM_CLANG_LIB_SERIALIZATION_ASTCOMMON_H
+
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclFriend.h"
+#include "clang/Serialization/ASTBitCodes.h"
+
+namespace clang {
+
+namespace serialization {
+
+enum DeclUpdateKind {
+ UPD_CXX_ADDED_IMPLICIT_MEMBER,
+ UPD_CXX_ADDED_TEMPLATE_SPECIALIZATION,
+ UPD_CXX_ADDED_ANONYMOUS_NAMESPACE,
+ UPD_CXX_ADDED_FUNCTION_DEFINITION,
+ UPD_CXX_INSTANTIATED_STATIC_DATA_MEMBER,
+ UPD_CXX_INSTANTIATED_CLASS_DEFINITION,
+ UPD_CXX_RESOLVED_DTOR_DELETE,
+ UPD_CXX_RESOLVED_EXCEPTION_SPEC,
+ UPD_CXX_DEDUCED_RETURN_TYPE,
+ UPD_DECL_MARKED_USED,
+ UPD_MANGLING_NUMBER,
+ UPD_STATIC_LOCAL_NUMBER,
+ UPD_DECL_MARKED_OPENMP_THREADPRIVATE,
+ UPD_DECL_EXPORTED
+};
+
+TypeIdx TypeIdxFromBuiltin(const BuiltinType *BT);
+
+template <typename IdxForTypeTy>
+TypeID MakeTypeID(ASTContext &Context, QualType T, IdxForTypeTy IdxForType) {
+ if (T.isNull())
+ return PREDEF_TYPE_NULL_ID;
+
+ unsigned FastQuals = T.getLocalFastQualifiers();
+ T.removeLocalFastQualifiers();
+
+ if (T.hasLocalNonFastQualifiers())
+ return IdxForType(T).asTypeID(FastQuals);
+
+ assert(!T.hasLocalQualifiers());
+
+ if (const BuiltinType *BT = dyn_cast<BuiltinType>(T.getTypePtr()))
+ return TypeIdxFromBuiltin(BT).asTypeID(FastQuals);
+
+ if (T == Context.AutoDeductTy)
+ return TypeIdx(PREDEF_TYPE_AUTO_DEDUCT).asTypeID(FastQuals);
+ if (T == Context.AutoRRefDeductTy)
+ return TypeIdx(PREDEF_TYPE_AUTO_RREF_DEDUCT).asTypeID(FastQuals);
+ if (T == Context.VaListTagTy)
+ return TypeIdx(PREDEF_TYPE_VA_LIST_TAG).asTypeID(FastQuals);
+
+ return IdxForType(T).asTypeID(FastQuals);
+}
+
+unsigned ComputeHash(Selector Sel);
+
+/// \brief Retrieve the "definitive" declaration that provides all of the
+/// visible entries for the given declaration context, if there is one.
+///
+/// The "definitive" declaration is the only place where we need to look to
+/// find information about the declarations within the given declaration
+/// context. For example, C++ and Objective-C classes, C structs/unions, and
+/// Objective-C protocols, categories, and extensions are all defined in a
+/// single place in the source code, so they have definitive declarations
+/// associated with them. C++ namespaces, on the other hand, can have
+/// multiple definitions.
+const DeclContext *getDefinitiveDeclContext(const DeclContext *DC);
+
+/// \brief Determine whether the given declaration kind is redeclarable.
+bool isRedeclarableDeclKind(unsigned Kind);
+
+/// \brief Determine whether the given declaration needs an anonymous
+/// declaration number.
+bool needsAnonymousDeclarationNumber(const NamedDecl *D);
+
+/// \brief Visit each declaration within \c DC that needs an anonymous
+/// declaration number and call \p Visit with the declaration and its number.
+template<typename Fn> void numberAnonymousDeclsWithin(const DeclContext *DC,
+ Fn Visit) {
+ unsigned Index = 0;
+ for (Decl *LexicalD : DC->decls()) {
+ // For a friend decl, we care about the declaration within it, if any.
+ if (auto *FD = dyn_cast<FriendDecl>(LexicalD))
+ LexicalD = FD->getFriendDecl();
+
+ auto *ND = dyn_cast_or_null<NamedDecl>(LexicalD);
+ if (!ND || !needsAnonymousDeclarationNumber(ND))
+ continue;
+
+ Visit(ND, Index++);
+ }
+}
+
+} // namespace serialization
+
+} // namespace clang
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/Serialization/ASTReader.cpp b/contrib/llvm/tools/clang/lib/Serialization/ASTReader.cpp
new file mode 100644
index 0000000..5e3a827
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Serialization/ASTReader.cpp
@@ -0,0 +1,8452 @@
+//===-- ASTReader.cpp - AST File Reader ----------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the ASTReader class, which reads AST files.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Serialization/ASTReader.h"
+#include "ASTCommon.h"
+#include "ASTReaderInternals.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/NestedNameSpecifier.h"
+#include "clang/AST/Type.h"
+#include "clang/AST/TypeLocVisitor.h"
+#include "clang/Basic/DiagnosticOptions.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/SourceManagerInternals.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Basic/TargetOptions.h"
+#include "clang/Basic/Version.h"
+#include "clang/Basic/VersionTuple.h"
+#include "clang/Frontend/Utils.h"
+#include "clang/Lex/HeaderSearch.h"
+#include "clang/Lex/HeaderSearchOptions.h"
+#include "clang/Lex/MacroInfo.h"
+#include "clang/Lex/PreprocessingRecord.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Lex/PreprocessorOptions.h"
+#include "clang/Sema/Scope.h"
+#include "clang/Sema/Sema.h"
+#include "clang/Serialization/ASTDeserializationListener.h"
+#include "clang/Serialization/GlobalModuleIndex.h"
+#include "clang/Serialization/ModuleManager.h"
+#include "clang/Serialization/SerializationDiagnostic.h"
+#include "llvm/ADT/Hashing.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Bitcode/BitstreamReader.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/SaveAndRestore.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cstdio>
+#include <iterator>
+#include <system_error>
+
+using namespace clang;
+using namespace clang::serialization;
+using namespace clang::serialization::reader;
+using llvm::BitstreamCursor;
+
+
+//===----------------------------------------------------------------------===//
+// ChainedASTReaderListener implementation
+//===----------------------------------------------------------------------===//
+
+bool
+ChainedASTReaderListener::ReadFullVersionInformation(StringRef FullVersion) {
+ return First->ReadFullVersionInformation(FullVersion) ||
+ Second->ReadFullVersionInformation(FullVersion);
+}
+void ChainedASTReaderListener::ReadModuleName(StringRef ModuleName) {
+ First->ReadModuleName(ModuleName);
+ Second->ReadModuleName(ModuleName);
+}
+void ChainedASTReaderListener::ReadModuleMapFile(StringRef ModuleMapPath) {
+ First->ReadModuleMapFile(ModuleMapPath);
+ Second->ReadModuleMapFile(ModuleMapPath);
+}
+bool
+ChainedASTReaderListener::ReadLanguageOptions(const LangOptions &LangOpts,
+ bool Complain,
+ bool AllowCompatibleDifferences) {
+ return First->ReadLanguageOptions(LangOpts, Complain,
+ AllowCompatibleDifferences) ||
+ Second->ReadLanguageOptions(LangOpts, Complain,
+ AllowCompatibleDifferences);
+}
+bool ChainedASTReaderListener::ReadTargetOptions(
+ const TargetOptions &TargetOpts, bool Complain,
+ bool AllowCompatibleDifferences) {
+ return First->ReadTargetOptions(TargetOpts, Complain,
+ AllowCompatibleDifferences) ||
+ Second->ReadTargetOptions(TargetOpts, Complain,
+ AllowCompatibleDifferences);
+}
+bool ChainedASTReaderListener::ReadDiagnosticOptions(
+ IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts, bool Complain) {
+ return First->ReadDiagnosticOptions(DiagOpts, Complain) ||
+ Second->ReadDiagnosticOptions(DiagOpts, Complain);
+}
+bool
+ChainedASTReaderListener::ReadFileSystemOptions(const FileSystemOptions &FSOpts,
+ bool Complain) {
+ return First->ReadFileSystemOptions(FSOpts, Complain) ||
+ Second->ReadFileSystemOptions(FSOpts, Complain);
+}
+
+bool ChainedASTReaderListener::ReadHeaderSearchOptions(
+ const HeaderSearchOptions &HSOpts, StringRef SpecificModuleCachePath,
+ bool Complain) {
+ return First->ReadHeaderSearchOptions(HSOpts, SpecificModuleCachePath,
+ Complain) ||
+ Second->ReadHeaderSearchOptions(HSOpts, SpecificModuleCachePath,
+ Complain);
+}
+bool ChainedASTReaderListener::ReadPreprocessorOptions(
+ const PreprocessorOptions &PPOpts, bool Complain,
+ std::string &SuggestedPredefines) {
+ return First->ReadPreprocessorOptions(PPOpts, Complain,
+ SuggestedPredefines) ||
+ Second->ReadPreprocessorOptions(PPOpts, Complain, SuggestedPredefines);
+}
+void ChainedASTReaderListener::ReadCounter(const serialization::ModuleFile &M,
+ unsigned Value) {
+ First->ReadCounter(M, Value);
+ Second->ReadCounter(M, Value);
+}
+bool ChainedASTReaderListener::needsInputFileVisitation() {
+ return First->needsInputFileVisitation() ||
+ Second->needsInputFileVisitation();
+}
+bool ChainedASTReaderListener::needsSystemInputFileVisitation() {
+ return First->needsSystemInputFileVisitation() ||
+ Second->needsSystemInputFileVisitation();
+}
+void ChainedASTReaderListener::visitModuleFile(StringRef Filename) {
+ First->visitModuleFile(Filename);
+ Second->visitModuleFile(Filename);
+}
+bool ChainedASTReaderListener::visitInputFile(StringRef Filename,
+ bool isSystem,
+ bool isOverridden) {
+ bool Continue = false;
+ if (First->needsInputFileVisitation() &&
+ (!isSystem || First->needsSystemInputFileVisitation()))
+ Continue |= First->visitInputFile(Filename, isSystem, isOverridden);
+ if (Second->needsInputFileVisitation() &&
+ (!isSystem || Second->needsSystemInputFileVisitation()))
+ Continue |= Second->visitInputFile(Filename, isSystem, isOverridden);
+ return Continue;
+}
+
+//===----------------------------------------------------------------------===//
+// PCH validator implementation
+//===----------------------------------------------------------------------===//
+
+ASTReaderListener::~ASTReaderListener() {}
+
+/// \brief Compare the given set of language options against an existing set of
+/// language options.
+///
+/// \param Diags If non-NULL, diagnostics will be emitted via this engine.
+/// \param AllowCompatibleDifferences If true, differences between compatible
+/// language options will be permitted.
+///
+/// \returns true if the languagae options mis-match, false otherwise.
+static bool checkLanguageOptions(const LangOptions &LangOpts,
+ const LangOptions &ExistingLangOpts,
+ DiagnosticsEngine *Diags,
+ bool AllowCompatibleDifferences = true) {
+#define LANGOPT(Name, Bits, Default, Description) \
+ if (ExistingLangOpts.Name != LangOpts.Name) { \
+ if (Diags) \
+ Diags->Report(diag::err_pch_langopt_mismatch) \
+ << Description << LangOpts.Name << ExistingLangOpts.Name; \
+ return true; \
+ }
+
+#define VALUE_LANGOPT(Name, Bits, Default, Description) \
+ if (ExistingLangOpts.Name != LangOpts.Name) { \
+ if (Diags) \
+ Diags->Report(diag::err_pch_langopt_value_mismatch) \
+ << Description; \
+ return true; \
+ }
+
+#define ENUM_LANGOPT(Name, Type, Bits, Default, Description) \
+ if (ExistingLangOpts.get##Name() != LangOpts.get##Name()) { \
+ if (Diags) \
+ Diags->Report(diag::err_pch_langopt_value_mismatch) \
+ << Description; \
+ return true; \
+ }
+
+#define COMPATIBLE_LANGOPT(Name, Bits, Default, Description) \
+ if (!AllowCompatibleDifferences) \
+ LANGOPT(Name, Bits, Default, Description)
+
+#define COMPATIBLE_ENUM_LANGOPT(Name, Bits, Default, Description) \
+ if (!AllowCompatibleDifferences) \
+ ENUM_LANGOPT(Name, Bits, Default, Description)
+
+#define BENIGN_LANGOPT(Name, Bits, Default, Description)
+#define BENIGN_ENUM_LANGOPT(Name, Type, Bits, Default, Description)
+#include "clang/Basic/LangOptions.def"
+
+ if (ExistingLangOpts.ObjCRuntime != LangOpts.ObjCRuntime) {
+ if (Diags)
+ Diags->Report(diag::err_pch_langopt_value_mismatch)
+ << "target Objective-C runtime";
+ return true;
+ }
+
+ if (ExistingLangOpts.CommentOpts.BlockCommandNames !=
+ LangOpts.CommentOpts.BlockCommandNames) {
+ if (Diags)
+ Diags->Report(diag::err_pch_langopt_value_mismatch)
+ << "block command names";
+ return true;
+ }
+
+ return false;
+}
+
+/// \brief Compare the given set of target options against an existing set of
+/// target options.
+///
+/// \param Diags If non-NULL, diagnostics will be emitted via this engine.
+///
+/// \returns true if the target options mis-match, false otherwise.
+static bool checkTargetOptions(const TargetOptions &TargetOpts,
+ const TargetOptions &ExistingTargetOpts,
+ DiagnosticsEngine *Diags,
+ bool AllowCompatibleDifferences = true) {
+#define CHECK_TARGET_OPT(Field, Name) \
+ if (TargetOpts.Field != ExistingTargetOpts.Field) { \
+ if (Diags) \
+ Diags->Report(diag::err_pch_targetopt_mismatch) \
+ << Name << TargetOpts.Field << ExistingTargetOpts.Field; \
+ return true; \
+ }
+
+ // The triple and ABI must match exactly.
+ CHECK_TARGET_OPT(Triple, "target");
+ CHECK_TARGET_OPT(ABI, "target ABI");
+
+ // We can tolerate different CPUs in many cases, notably when one CPU
+ // supports a strict superset of another. When allowing compatible
+ // differences skip this check.
+ if (!AllowCompatibleDifferences)
+ CHECK_TARGET_OPT(CPU, "target CPU");
+
+#undef CHECK_TARGET_OPT
+
+ // Compare feature sets.
+ SmallVector<StringRef, 4> ExistingFeatures(
+ ExistingTargetOpts.FeaturesAsWritten.begin(),
+ ExistingTargetOpts.FeaturesAsWritten.end());
+ SmallVector<StringRef, 4> ReadFeatures(TargetOpts.FeaturesAsWritten.begin(),
+ TargetOpts.FeaturesAsWritten.end());
+ std::sort(ExistingFeatures.begin(), ExistingFeatures.end());
+ std::sort(ReadFeatures.begin(), ReadFeatures.end());
+
+ // We compute the set difference in both directions explicitly so that we can
+ // diagnose the differences differently.
+ SmallVector<StringRef, 4> UnmatchedExistingFeatures, UnmatchedReadFeatures;
+ std::set_difference(
+ ExistingFeatures.begin(), ExistingFeatures.end(), ReadFeatures.begin(),
+ ReadFeatures.end(), std::back_inserter(UnmatchedExistingFeatures));
+ std::set_difference(ReadFeatures.begin(), ReadFeatures.end(),
+ ExistingFeatures.begin(), ExistingFeatures.end(),
+ std::back_inserter(UnmatchedReadFeatures));
+
+ // If we are allowing compatible differences and the read feature set is
+ // a strict subset of the existing feature set, there is nothing to diagnose.
+ if (AllowCompatibleDifferences && UnmatchedReadFeatures.empty())
+ return false;
+
+ if (Diags) {
+ for (StringRef Feature : UnmatchedReadFeatures)
+ Diags->Report(diag::err_pch_targetopt_feature_mismatch)
+ << /* is-existing-feature */ false << Feature;
+ for (StringRef Feature : UnmatchedExistingFeatures)
+ Diags->Report(diag::err_pch_targetopt_feature_mismatch)
+ << /* is-existing-feature */ true << Feature;
+ }
+
+ return !UnmatchedReadFeatures.empty() || !UnmatchedExistingFeatures.empty();
+}
+
+bool
+PCHValidator::ReadLanguageOptions(const LangOptions &LangOpts,
+ bool Complain,
+ bool AllowCompatibleDifferences) {
+ const LangOptions &ExistingLangOpts = PP.getLangOpts();
+ return checkLanguageOptions(LangOpts, ExistingLangOpts,
+ Complain ? &Reader.Diags : nullptr,
+ AllowCompatibleDifferences);
+}
+
+bool PCHValidator::ReadTargetOptions(const TargetOptions &TargetOpts,
+ bool Complain,
+ bool AllowCompatibleDifferences) {
+ const TargetOptions &ExistingTargetOpts = PP.getTargetInfo().getTargetOpts();
+ return checkTargetOptions(TargetOpts, ExistingTargetOpts,
+ Complain ? &Reader.Diags : nullptr,
+ AllowCompatibleDifferences);
+}
+
+namespace {
+ typedef llvm::StringMap<std::pair<StringRef, bool /*IsUndef*/> >
+ MacroDefinitionsMap;
+ typedef llvm::DenseMap<DeclarationName, SmallVector<NamedDecl *, 8> >
+ DeclsMap;
+}
+
+static bool checkDiagnosticGroupMappings(DiagnosticsEngine &StoredDiags,
+ DiagnosticsEngine &Diags,
+ bool Complain) {
+ typedef DiagnosticsEngine::Level Level;
+
+ // Check current mappings for new -Werror mappings, and the stored mappings
+ // for cases that were explicitly mapped to *not* be errors that are now
+ // errors because of options like -Werror.
+ DiagnosticsEngine *MappingSources[] = { &Diags, &StoredDiags };
+
+ for (DiagnosticsEngine *MappingSource : MappingSources) {
+ for (auto DiagIDMappingPair : MappingSource->getDiagnosticMappings()) {
+ diag::kind DiagID = DiagIDMappingPair.first;
+ Level CurLevel = Diags.getDiagnosticLevel(DiagID, SourceLocation());
+ if (CurLevel < DiagnosticsEngine::Error)
+ continue; // not significant
+ Level StoredLevel =
+ StoredDiags.getDiagnosticLevel(DiagID, SourceLocation());
+ if (StoredLevel < DiagnosticsEngine::Error) {
+ if (Complain)
+ Diags.Report(diag::err_pch_diagopt_mismatch) << "-Werror=" +
+ Diags.getDiagnosticIDs()->getWarningOptionForDiag(DiagID).str();
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+static bool isExtHandlingFromDiagsError(DiagnosticsEngine &Diags) {
+ diag::Severity Ext = Diags.getExtensionHandlingBehavior();
+ if (Ext == diag::Severity::Warning && Diags.getWarningsAsErrors())
+ return true;
+ return Ext >= diag::Severity::Error;
+}
+
+static bool checkDiagnosticMappings(DiagnosticsEngine &StoredDiags,
+ DiagnosticsEngine &Diags,
+ bool IsSystem, bool Complain) {
+ // Top-level options
+ if (IsSystem) {
+ if (Diags.getSuppressSystemWarnings())
+ return false;
+ // If -Wsystem-headers was not enabled before, be conservative
+ if (StoredDiags.getSuppressSystemWarnings()) {
+ if (Complain)
+ Diags.Report(diag::err_pch_diagopt_mismatch) << "-Wsystem-headers";
+ return true;
+ }
+ }
+
+ if (Diags.getWarningsAsErrors() && !StoredDiags.getWarningsAsErrors()) {
+ if (Complain)
+ Diags.Report(diag::err_pch_diagopt_mismatch) << "-Werror";
+ return true;
+ }
+
+ if (Diags.getWarningsAsErrors() && Diags.getEnableAllWarnings() &&
+ !StoredDiags.getEnableAllWarnings()) {
+ if (Complain)
+ Diags.Report(diag::err_pch_diagopt_mismatch) << "-Weverything -Werror";
+ return true;
+ }
+
+ if (isExtHandlingFromDiagsError(Diags) &&
+ !isExtHandlingFromDiagsError(StoredDiags)) {
+ if (Complain)
+ Diags.Report(diag::err_pch_diagopt_mismatch) << "-pedantic-errors";
+ return true;
+ }
+
+ return checkDiagnosticGroupMappings(StoredDiags, Diags, Complain);
+}
+
+bool PCHValidator::ReadDiagnosticOptions(
+ IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts, bool Complain) {
+ DiagnosticsEngine &ExistingDiags = PP.getDiagnostics();
+ IntrusiveRefCntPtr<DiagnosticIDs> DiagIDs(ExistingDiags.getDiagnosticIDs());
+ IntrusiveRefCntPtr<DiagnosticsEngine> Diags(
+ new DiagnosticsEngine(DiagIDs, DiagOpts.get()));
+ // This should never fail, because we would have processed these options
+ // before writing them to an ASTFile.
+ ProcessWarningOptions(*Diags, *DiagOpts, /*Report*/false);
+
+ ModuleManager &ModuleMgr = Reader.getModuleManager();
+ assert(ModuleMgr.size() >= 1 && "what ASTFile is this then");
+
+ // If the original import came from a file explicitly generated by the user,
+ // don't check the diagnostic mappings.
+ // FIXME: currently this is approximated by checking whether this is not a
+ // module import of an implicitly-loaded module file.
+ // Note: ModuleMgr.rbegin() may not be the current module, but it must be in
+ // the transitive closure of its imports, since unrelated modules cannot be
+ // imported until after this module finishes validation.
+ ModuleFile *TopImport = *ModuleMgr.rbegin();
+ while (!TopImport->ImportedBy.empty())
+ TopImport = TopImport->ImportedBy[0];
+ if (TopImport->Kind != MK_ImplicitModule)
+ return false;
+
+ StringRef ModuleName = TopImport->ModuleName;
+ assert(!ModuleName.empty() && "diagnostic options read before module name");
+
+ Module *M = PP.getHeaderSearchInfo().lookupModule(ModuleName);
+ assert(M && "missing module");
+
+ // FIXME: if the diagnostics are incompatible, save a DiagnosticOptions that
+ // contains the union of their flags.
+ return checkDiagnosticMappings(*Diags, ExistingDiags, M->IsSystem, Complain);
+}
+
+/// \brief Collect the macro definitions provided by the given preprocessor
+/// options.
+static void
+collectMacroDefinitions(const PreprocessorOptions &PPOpts,
+ MacroDefinitionsMap &Macros,
+ SmallVectorImpl<StringRef> *MacroNames = nullptr) {
+ for (unsigned I = 0, N = PPOpts.Macros.size(); I != N; ++I) {
+ StringRef Macro = PPOpts.Macros[I].first;
+ bool IsUndef = PPOpts.Macros[I].second;
+
+ std::pair<StringRef, StringRef> MacroPair = Macro.split('=');
+ StringRef MacroName = MacroPair.first;
+ StringRef MacroBody = MacroPair.second;
+
+ // For an #undef'd macro, we only care about the name.
+ if (IsUndef) {
+ if (MacroNames && !Macros.count(MacroName))
+ MacroNames->push_back(MacroName);
+
+ Macros[MacroName] = std::make_pair("", true);
+ continue;
+ }
+
+ // For a #define'd macro, figure out the actual definition.
+ if (MacroName.size() == Macro.size())
+ MacroBody = "1";
+ else {
+ // Note: GCC drops anything following an end-of-line character.
+ StringRef::size_type End = MacroBody.find_first_of("\n\r");
+ MacroBody = MacroBody.substr(0, End);
+ }
+
+ if (MacroNames && !Macros.count(MacroName))
+ MacroNames->push_back(MacroName);
+ Macros[MacroName] = std::make_pair(MacroBody, false);
+ }
+}
+
+/// \brief Check the preprocessor options deserialized from the control block
+/// against the preprocessor options in an existing preprocessor.
+///
+/// \param Diags If non-null, produce diagnostics for any mismatches incurred.
+static bool checkPreprocessorOptions(const PreprocessorOptions &PPOpts,
+ const PreprocessorOptions &ExistingPPOpts,
+ DiagnosticsEngine *Diags,
+ FileManager &FileMgr,
+ std::string &SuggestedPredefines,
+ const LangOptions &LangOpts) {
+ // Check macro definitions.
+ MacroDefinitionsMap ASTFileMacros;
+ collectMacroDefinitions(PPOpts, ASTFileMacros);
+ MacroDefinitionsMap ExistingMacros;
+ SmallVector<StringRef, 4> ExistingMacroNames;
+ collectMacroDefinitions(ExistingPPOpts, ExistingMacros, &ExistingMacroNames);
+
+ for (unsigned I = 0, N = ExistingMacroNames.size(); I != N; ++I) {
+ // Dig out the macro definition in the existing preprocessor options.
+ StringRef MacroName = ExistingMacroNames[I];
+ std::pair<StringRef, bool> Existing = ExistingMacros[MacroName];
+
+ // Check whether we know anything about this macro name or not.
+ llvm::StringMap<std::pair<StringRef, bool /*IsUndef*/> >::iterator Known
+ = ASTFileMacros.find(MacroName);
+ if (Known == ASTFileMacros.end()) {
+ // FIXME: Check whether this identifier was referenced anywhere in the
+ // AST file. If so, we should reject the AST file. Unfortunately, this
+ // information isn't in the control block. What shall we do about it?
+
+ if (Existing.second) {
+ SuggestedPredefines += "#undef ";
+ SuggestedPredefines += MacroName.str();
+ SuggestedPredefines += '\n';
+ } else {
+ SuggestedPredefines += "#define ";
+ SuggestedPredefines += MacroName.str();
+ SuggestedPredefines += ' ';
+ SuggestedPredefines += Existing.first.str();
+ SuggestedPredefines += '\n';
+ }
+ continue;
+ }
+
+ // If the macro was defined in one but undef'd in the other, we have a
+ // conflict.
+ if (Existing.second != Known->second.second) {
+ if (Diags) {
+ Diags->Report(diag::err_pch_macro_def_undef)
+ << MacroName << Known->second.second;
+ }
+ return true;
+ }
+
+ // If the macro was #undef'd in both, or if the macro bodies are identical,
+ // it's fine.
+ if (Existing.second || Existing.first == Known->second.first)
+ continue;
+
+ // The macro bodies differ; complain.
+ if (Diags) {
+ Diags->Report(diag::err_pch_macro_def_conflict)
+ << MacroName << Known->second.first << Existing.first;
+ }
+ return true;
+ }
+
+ // Check whether we're using predefines.
+ if (PPOpts.UsePredefines != ExistingPPOpts.UsePredefines) {
+ if (Diags) {
+ Diags->Report(diag::err_pch_undef) << ExistingPPOpts.UsePredefines;
+ }
+ return true;
+ }
+
+ // Detailed record is important since it is used for the module cache hash.
+ if (LangOpts.Modules &&
+ PPOpts.DetailedRecord != ExistingPPOpts.DetailedRecord) {
+ if (Diags) {
+ Diags->Report(diag::err_pch_pp_detailed_record) << PPOpts.DetailedRecord;
+ }
+ return true;
+ }
+
+ // Compute the #include and #include_macros lines we need.
+ for (unsigned I = 0, N = ExistingPPOpts.Includes.size(); I != N; ++I) {
+ StringRef File = ExistingPPOpts.Includes[I];
+ if (File == ExistingPPOpts.ImplicitPCHInclude)
+ continue;
+
+ if (std::find(PPOpts.Includes.begin(), PPOpts.Includes.end(), File)
+ != PPOpts.Includes.end())
+ continue;
+
+ SuggestedPredefines += "#include \"";
+ SuggestedPredefines += File;
+ SuggestedPredefines += "\"\n";
+ }
+
+ for (unsigned I = 0, N = ExistingPPOpts.MacroIncludes.size(); I != N; ++I) {
+ StringRef File = ExistingPPOpts.MacroIncludes[I];
+ if (std::find(PPOpts.MacroIncludes.begin(), PPOpts.MacroIncludes.end(),
+ File)
+ != PPOpts.MacroIncludes.end())
+ continue;
+
+ SuggestedPredefines += "#__include_macros \"";
+ SuggestedPredefines += File;
+ SuggestedPredefines += "\"\n##\n";
+ }
+
+ return false;
+}
+
+bool PCHValidator::ReadPreprocessorOptions(const PreprocessorOptions &PPOpts,
+ bool Complain,
+ std::string &SuggestedPredefines) {
+ const PreprocessorOptions &ExistingPPOpts = PP.getPreprocessorOpts();
+
+ return checkPreprocessorOptions(PPOpts, ExistingPPOpts,
+ Complain? &Reader.Diags : nullptr,
+ PP.getFileManager(),
+ SuggestedPredefines,
+ PP.getLangOpts());
+}
+
+/// Check the header search options deserialized from the control block
+/// against the header search options in an existing preprocessor.
+///
+/// \param Diags If non-null, produce diagnostics for any mismatches incurred.
+static bool checkHeaderSearchOptions(const HeaderSearchOptions &HSOpts,
+ StringRef SpecificModuleCachePath,
+ StringRef ExistingModuleCachePath,
+ DiagnosticsEngine *Diags,
+ const LangOptions &LangOpts) {
+ if (LangOpts.Modules) {
+ if (SpecificModuleCachePath != ExistingModuleCachePath) {
+ if (Diags)
+ Diags->Report(diag::err_pch_modulecache_mismatch)
+ << SpecificModuleCachePath << ExistingModuleCachePath;
+ return true;
+ }
+ }
+
+ return false;
+}
+
+bool PCHValidator::ReadHeaderSearchOptions(const HeaderSearchOptions &HSOpts,
+ StringRef SpecificModuleCachePath,
+ bool Complain) {
+ return checkHeaderSearchOptions(HSOpts, SpecificModuleCachePath,
+ PP.getHeaderSearchInfo().getModuleCachePath(),
+ Complain ? &Reader.Diags : nullptr,
+ PP.getLangOpts());
+}
+
+void PCHValidator::ReadCounter(const ModuleFile &M, unsigned Value) {
+ PP.setCounterValue(Value);
+}
+
+//===----------------------------------------------------------------------===//
+// AST reader implementation
+//===----------------------------------------------------------------------===//
+
+void ASTReader::setDeserializationListener(ASTDeserializationListener *Listener,
+ bool TakeOwnership) {
+ DeserializationListener = Listener;
+ OwnsDeserializationListener = TakeOwnership;
+}
+
+
+
+unsigned ASTSelectorLookupTrait::ComputeHash(Selector Sel) {
+ return serialization::ComputeHash(Sel);
+}
+
+
+std::pair<unsigned, unsigned>
+ASTSelectorLookupTrait::ReadKeyDataLength(const unsigned char*& d) {
+ using namespace llvm::support;
+ unsigned KeyLen = endian::readNext<uint16_t, little, unaligned>(d);
+ unsigned DataLen = endian::readNext<uint16_t, little, unaligned>(d);
+ return std::make_pair(KeyLen, DataLen);
+}
+
+ASTSelectorLookupTrait::internal_key_type
+ASTSelectorLookupTrait::ReadKey(const unsigned char* d, unsigned) {
+ using namespace llvm::support;
+ SelectorTable &SelTable = Reader.getContext().Selectors;
+ unsigned N = endian::readNext<uint16_t, little, unaligned>(d);
+ IdentifierInfo *FirstII = Reader.getLocalIdentifier(
+ F, endian::readNext<uint32_t, little, unaligned>(d));
+ if (N == 0)
+ return SelTable.getNullarySelector(FirstII);
+ else if (N == 1)
+ return SelTable.getUnarySelector(FirstII);
+
+ SmallVector<IdentifierInfo *, 16> Args;
+ Args.push_back(FirstII);
+ for (unsigned I = 1; I != N; ++I)
+ Args.push_back(Reader.getLocalIdentifier(
+ F, endian::readNext<uint32_t, little, unaligned>(d)));
+
+ return SelTable.getSelector(N, Args.data());
+}
+
+ASTSelectorLookupTrait::data_type
+ASTSelectorLookupTrait::ReadData(Selector, const unsigned char* d,
+ unsigned DataLen) {
+ using namespace llvm::support;
+
+ data_type Result;
+
+ Result.ID = Reader.getGlobalSelectorID(
+ F, endian::readNext<uint32_t, little, unaligned>(d));
+ unsigned FullInstanceBits = endian::readNext<uint16_t, little, unaligned>(d);
+ unsigned FullFactoryBits = endian::readNext<uint16_t, little, unaligned>(d);
+ Result.InstanceBits = FullInstanceBits & 0x3;
+ Result.InstanceHasMoreThanOneDecl = (FullInstanceBits >> 2) & 0x1;
+ Result.FactoryBits = FullFactoryBits & 0x3;
+ Result.FactoryHasMoreThanOneDecl = (FullFactoryBits >> 2) & 0x1;
+ unsigned NumInstanceMethods = FullInstanceBits >> 3;
+ unsigned NumFactoryMethods = FullFactoryBits >> 3;
+
+ // Load instance methods
+ for (unsigned I = 0; I != NumInstanceMethods; ++I) {
+ if (ObjCMethodDecl *Method = Reader.GetLocalDeclAs<ObjCMethodDecl>(
+ F, endian::readNext<uint32_t, little, unaligned>(d)))
+ Result.Instance.push_back(Method);
+ }
+
+ // Load factory methods
+ for (unsigned I = 0; I != NumFactoryMethods; ++I) {
+ if (ObjCMethodDecl *Method = Reader.GetLocalDeclAs<ObjCMethodDecl>(
+ F, endian::readNext<uint32_t, little, unaligned>(d)))
+ Result.Factory.push_back(Method);
+ }
+
+ return Result;
+}
+
+unsigned ASTIdentifierLookupTraitBase::ComputeHash(const internal_key_type& a) {
+ return llvm::HashString(a);
+}
+
+std::pair<unsigned, unsigned>
+ASTIdentifierLookupTraitBase::ReadKeyDataLength(const unsigned char*& d) {
+ using namespace llvm::support;
+ unsigned DataLen = endian::readNext<uint16_t, little, unaligned>(d);
+ unsigned KeyLen = endian::readNext<uint16_t, little, unaligned>(d);
+ return std::make_pair(KeyLen, DataLen);
+}
+
+ASTIdentifierLookupTraitBase::internal_key_type
+ASTIdentifierLookupTraitBase::ReadKey(const unsigned char* d, unsigned n) {
+ assert(n >= 2 && d[n-1] == '\0');
+ return StringRef((const char*) d, n-1);
+}
+
+/// \brief Whether the given identifier is "interesting".
+static bool isInterestingIdentifier(IdentifierInfo &II) {
+ return II.isPoisoned() ||
+ II.isExtensionToken() ||
+ II.getObjCOrBuiltinID() ||
+ II.hasRevertedTokenIDToIdentifier() ||
+ II.hadMacroDefinition() ||
+ II.getFETokenInfo<void>();
+}
+
+IdentifierInfo *ASTIdentifierLookupTrait::ReadData(const internal_key_type& k,
+ const unsigned char* d,
+ unsigned DataLen) {
+ using namespace llvm::support;
+ unsigned RawID = endian::readNext<uint32_t, little, unaligned>(d);
+ bool IsInteresting = RawID & 0x01;
+
+ // Wipe out the "is interesting" bit.
+ RawID = RawID >> 1;
+
+ IdentID ID = Reader.getGlobalIdentifierID(F, RawID);
+ if (!IsInteresting) {
+ // For uninteresting identifiers, just build the IdentifierInfo
+ // and associate it with the persistent ID.
+ IdentifierInfo *II = KnownII;
+ if (!II) {
+ II = &Reader.getIdentifierTable().getOwn(k);
+ KnownII = II;
+ }
+ Reader.SetIdentifierInfo(ID, II);
+ if (!II->isFromAST()) {
+ bool WasInteresting = isInterestingIdentifier(*II);
+ II->setIsFromAST();
+ if (WasInteresting)
+ II->setChangedSinceDeserialization();
+ }
+ Reader.markIdentifierUpToDate(II);
+ return II;
+ }
+
+ unsigned ObjCOrBuiltinID = endian::readNext<uint16_t, little, unaligned>(d);
+ unsigned Bits = endian::readNext<uint16_t, little, unaligned>(d);
+ bool CPlusPlusOperatorKeyword = Bits & 0x01;
+ Bits >>= 1;
+ bool HasRevertedTokenIDToIdentifier = Bits & 0x01;
+ Bits >>= 1;
+ bool Poisoned = Bits & 0x01;
+ Bits >>= 1;
+ bool ExtensionToken = Bits & 0x01;
+ Bits >>= 1;
+ bool hadMacroDefinition = Bits & 0x01;
+ Bits >>= 1;
+
+ assert(Bits == 0 && "Extra bits in the identifier?");
+ DataLen -= 8;
+
+ // Build the IdentifierInfo itself and link the identifier ID with
+ // the new IdentifierInfo.
+ IdentifierInfo *II = KnownII;
+ if (!II) {
+ II = &Reader.getIdentifierTable().getOwn(StringRef(k));
+ KnownII = II;
+ }
+ Reader.markIdentifierUpToDate(II);
+ if (!II->isFromAST()) {
+ bool WasInteresting = isInterestingIdentifier(*II);
+ II->setIsFromAST();
+ if (WasInteresting)
+ II->setChangedSinceDeserialization();
+ }
+
+ // Set or check the various bits in the IdentifierInfo structure.
+ // Token IDs are read-only.
+ if (HasRevertedTokenIDToIdentifier && II->getTokenID() != tok::identifier)
+ II->RevertTokenIDToIdentifier();
+ II->setObjCOrBuiltinID(ObjCOrBuiltinID);
+ assert(II->isExtensionToken() == ExtensionToken &&
+ "Incorrect extension token flag");
+ (void)ExtensionToken;
+ if (Poisoned)
+ II->setIsPoisoned(true);
+ assert(II->isCPlusPlusOperatorKeyword() == CPlusPlusOperatorKeyword &&
+ "Incorrect C++ operator keyword flag");
+ (void)CPlusPlusOperatorKeyword;
+
+ // If this identifier is a macro, deserialize the macro
+ // definition.
+ if (hadMacroDefinition) {
+ uint32_t MacroDirectivesOffset =
+ endian::readNext<uint32_t, little, unaligned>(d);
+ DataLen -= 4;
+
+ Reader.addPendingMacro(II, &F, MacroDirectivesOffset);
+ }
+
+ Reader.SetIdentifierInfo(ID, II);
+
+ // Read all of the declarations visible at global scope with this
+ // name.
+ if (DataLen > 0) {
+ SmallVector<uint32_t, 4> DeclIDs;
+ for (; DataLen > 0; DataLen -= 4)
+ DeclIDs.push_back(Reader.getGlobalDeclID(
+ F, endian::readNext<uint32_t, little, unaligned>(d)));
+ Reader.SetGloballyVisibleDecls(II, DeclIDs);
+ }
+
+ return II;
+}
+
+unsigned
+ASTDeclContextNameLookupTrait::ComputeHash(const DeclNameKey &Key) const {
+ llvm::FoldingSetNodeID ID;
+ ID.AddInteger(Key.Kind);
+
+ switch (Key.Kind) {
+ case DeclarationName::Identifier:
+ case DeclarationName::CXXLiteralOperatorName:
+ ID.AddString(((IdentifierInfo*)Key.Data)->getName());
+ break;
+ case DeclarationName::ObjCZeroArgSelector:
+ case DeclarationName::ObjCOneArgSelector:
+ case DeclarationName::ObjCMultiArgSelector:
+ ID.AddInteger(serialization::ComputeHash(Selector(Key.Data)));
+ break;
+ case DeclarationName::CXXOperatorName:
+ ID.AddInteger((OverloadedOperatorKind)Key.Data);
+ break;
+ case DeclarationName::CXXConstructorName:
+ case DeclarationName::CXXDestructorName:
+ case DeclarationName::CXXConversionFunctionName:
+ case DeclarationName::CXXUsingDirective:
+ break;
+ }
+
+ return ID.ComputeHash();
+}
+
+ASTDeclContextNameLookupTrait::internal_key_type
+ASTDeclContextNameLookupTrait::GetInternalKey(
+ const external_key_type& Name) const {
+ DeclNameKey Key;
+ Key.Kind = Name.getNameKind();
+ switch (Name.getNameKind()) {
+ case DeclarationName::Identifier:
+ Key.Data = (uint64_t)Name.getAsIdentifierInfo();
+ break;
+ case DeclarationName::ObjCZeroArgSelector:
+ case DeclarationName::ObjCOneArgSelector:
+ case DeclarationName::ObjCMultiArgSelector:
+ Key.Data = (uint64_t)Name.getObjCSelector().getAsOpaquePtr();
+ break;
+ case DeclarationName::CXXOperatorName:
+ Key.Data = Name.getCXXOverloadedOperator();
+ break;
+ case DeclarationName::CXXLiteralOperatorName:
+ Key.Data = (uint64_t)Name.getCXXLiteralIdentifier();
+ break;
+ case DeclarationName::CXXConstructorName:
+ case DeclarationName::CXXDestructorName:
+ case DeclarationName::CXXConversionFunctionName:
+ case DeclarationName::CXXUsingDirective:
+ Key.Data = 0;
+ break;
+ }
+
+ return Key;
+}
+
+std::pair<unsigned, unsigned>
+ASTDeclContextNameLookupTrait::ReadKeyDataLength(const unsigned char*& d) {
+ using namespace llvm::support;
+ unsigned KeyLen = endian::readNext<uint16_t, little, unaligned>(d);
+ unsigned DataLen = endian::readNext<uint16_t, little, unaligned>(d);
+ return std::make_pair(KeyLen, DataLen);
+}
+
+ASTDeclContextNameLookupTrait::internal_key_type
+ASTDeclContextNameLookupTrait::ReadKey(const unsigned char* d, unsigned) {
+ using namespace llvm::support;
+
+ DeclNameKey Key;
+ Key.Kind = (DeclarationName::NameKind)*d++;
+ switch (Key.Kind) {
+ case DeclarationName::Identifier:
+ Key.Data = (uint64_t)Reader.getLocalIdentifier(
+ F, endian::readNext<uint32_t, little, unaligned>(d));
+ break;
+ case DeclarationName::ObjCZeroArgSelector:
+ case DeclarationName::ObjCOneArgSelector:
+ case DeclarationName::ObjCMultiArgSelector:
+ Key.Data =
+ (uint64_t)Reader.getLocalSelector(
+ F, endian::readNext<uint32_t, little, unaligned>(
+ d)).getAsOpaquePtr();
+ break;
+ case DeclarationName::CXXOperatorName:
+ Key.Data = *d++; // OverloadedOperatorKind
+ break;
+ case DeclarationName::CXXLiteralOperatorName:
+ Key.Data = (uint64_t)Reader.getLocalIdentifier(
+ F, endian::readNext<uint32_t, little, unaligned>(d));
+ break;
+ case DeclarationName::CXXConstructorName:
+ case DeclarationName::CXXDestructorName:
+ case DeclarationName::CXXConversionFunctionName:
+ case DeclarationName::CXXUsingDirective:
+ Key.Data = 0;
+ break;
+ }
+
+ return Key;
+}
+
+ASTDeclContextNameLookupTrait::data_type
+ASTDeclContextNameLookupTrait::ReadData(internal_key_type,
+ const unsigned char* d,
+ unsigned DataLen) {
+ using namespace llvm::support;
+ unsigned NumDecls = endian::readNext<uint16_t, little, unaligned>(d);
+ LE32DeclID *Start = reinterpret_cast<LE32DeclID *>(
+ const_cast<unsigned char *>(d));
+ return std::make_pair(Start, Start + NumDecls);
+}
+
+bool ASTReader::ReadDeclContextStorage(ModuleFile &M,
+ BitstreamCursor &Cursor,
+ const std::pair<uint64_t, uint64_t> &Offsets,
+ DeclContextInfo &Info) {
+ SavedStreamPosition SavedPosition(Cursor);
+ // First the lexical decls.
+ if (Offsets.first != 0) {
+ Cursor.JumpToBit(Offsets.first);
+
+ RecordData Record;
+ StringRef Blob;
+ unsigned Code = Cursor.ReadCode();
+ unsigned RecCode = Cursor.readRecord(Code, Record, &Blob);
+ if (RecCode != DECL_CONTEXT_LEXICAL) {
+ Error("Expected lexical block");
+ return true;
+ }
+
+ Info.LexicalDecls = reinterpret_cast<const KindDeclIDPair*>(Blob.data());
+ Info.NumLexicalDecls = Blob.size() / sizeof(KindDeclIDPair);
+ }
+
+ // Now the lookup table.
+ if (Offsets.second != 0) {
+ Cursor.JumpToBit(Offsets.second);
+
+ RecordData Record;
+ StringRef Blob;
+ unsigned Code = Cursor.ReadCode();
+ unsigned RecCode = Cursor.readRecord(Code, Record, &Blob);
+ if (RecCode != DECL_CONTEXT_VISIBLE) {
+ Error("Expected visible lookup table block");
+ return true;
+ }
+ Info.NameLookupTableData = ASTDeclContextNameLookupTable::Create(
+ (const unsigned char *)Blob.data() + Record[0],
+ (const unsigned char *)Blob.data() + sizeof(uint32_t),
+ (const unsigned char *)Blob.data(),
+ ASTDeclContextNameLookupTrait(*this, M));
+ }
+
+ return false;
+}
+
+void ASTReader::Error(StringRef Msg) {
+ Error(diag::err_fe_pch_malformed, Msg);
+ if (Context.getLangOpts().Modules && !Diags.isDiagnosticInFlight()) {
+ Diag(diag::note_module_cache_path)
+ << PP.getHeaderSearchInfo().getModuleCachePath();
+ }
+}
+
+void ASTReader::Error(unsigned DiagID,
+ StringRef Arg1, StringRef Arg2) {
+ if (Diags.isDiagnosticInFlight())
+ Diags.SetDelayedDiagnostic(DiagID, Arg1, Arg2);
+ else
+ Diag(DiagID) << Arg1 << Arg2;
+}
+
+//===----------------------------------------------------------------------===//
+// Source Manager Deserialization
+//===----------------------------------------------------------------------===//
+
+/// \brief Read the line table in the source manager block.
+/// \returns true if there was an error.
+bool ASTReader::ParseLineTable(ModuleFile &F,
+ const RecordData &Record) {
+ unsigned Idx = 0;
+ LineTableInfo &LineTable = SourceMgr.getLineTable();
+
+ // Parse the file names
+ std::map<int, int> FileIDs;
+ for (int I = 0, N = Record[Idx++]; I != N; ++I) {
+ // Extract the file name
+ auto Filename = ReadPath(F, Record, Idx);
+ FileIDs[I] = LineTable.getLineTableFilenameID(Filename);
+ }
+
+ // Parse the line entries
+ std::vector<LineEntry> Entries;
+ while (Idx < Record.size()) {
+ int FID = Record[Idx++];
+ assert(FID >= 0 && "Serialized line entries for non-local file.");
+ // Remap FileID from 1-based old view.
+ FID += F.SLocEntryBaseID - 1;
+
+ // Extract the line entries
+ unsigned NumEntries = Record[Idx++];
+ assert(NumEntries && "Numentries is 00000");
+ Entries.clear();
+ Entries.reserve(NumEntries);
+ for (unsigned I = 0; I != NumEntries; ++I) {
+ unsigned FileOffset = Record[Idx++];
+ unsigned LineNo = Record[Idx++];
+ int FilenameID = FileIDs[Record[Idx++]];
+ SrcMgr::CharacteristicKind FileKind
+ = (SrcMgr::CharacteristicKind)Record[Idx++];
+ unsigned IncludeOffset = Record[Idx++];
+ Entries.push_back(LineEntry::get(FileOffset, LineNo, FilenameID,
+ FileKind, IncludeOffset));
+ }
+ LineTable.AddEntry(FileID::get(FID), Entries);
+ }
+
+ return false;
+}
+
+/// \brief Read a source manager block
+bool ASTReader::ReadSourceManagerBlock(ModuleFile &F) {
+ using namespace SrcMgr;
+
+ BitstreamCursor &SLocEntryCursor = F.SLocEntryCursor;
+
+ // Set the source-location entry cursor to the current position in
+ // the stream. This cursor will be used to read the contents of the
+ // source manager block initially, and then lazily read
+ // source-location entries as needed.
+ SLocEntryCursor = F.Stream;
+
+ // The stream itself is going to skip over the source manager block.
+ if (F.Stream.SkipBlock()) {
+ Error("malformed block record in AST file");
+ return true;
+ }
+
+ // Enter the source manager block.
+ if (SLocEntryCursor.EnterSubBlock(SOURCE_MANAGER_BLOCK_ID)) {
+ Error("malformed source manager block record in AST file");
+ return true;
+ }
+
+ RecordData Record;
+ while (true) {
+ llvm::BitstreamEntry E = SLocEntryCursor.advanceSkippingSubblocks();
+
+ switch (E.Kind) {
+ case llvm::BitstreamEntry::SubBlock: // Handled for us already.
+ case llvm::BitstreamEntry::Error:
+ Error("malformed block record in AST file");
+ return true;
+ case llvm::BitstreamEntry::EndBlock:
+ return false;
+ case llvm::BitstreamEntry::Record:
+ // The interesting case.
+ break;
+ }
+
+ // Read a record.
+ Record.clear();
+ StringRef Blob;
+ switch (SLocEntryCursor.readRecord(E.ID, Record, &Blob)) {
+ default: // Default behavior: ignore.
+ break;
+
+ case SM_SLOC_FILE_ENTRY:
+ case SM_SLOC_BUFFER_ENTRY:
+ case SM_SLOC_EXPANSION_ENTRY:
+ // Once we hit one of the source location entries, we're done.
+ return false;
+ }
+ }
+}
+
+/// \brief If a header file is not found at the path that we expect it to be
+/// and the PCH file was moved from its original location, try to resolve the
+/// file by assuming that header+PCH were moved together and the header is in
+/// the same place relative to the PCH.
+static std::string
+resolveFileRelativeToOriginalDir(const std::string &Filename,
+ const std::string &OriginalDir,
+ const std::string &CurrDir) {
+ assert(OriginalDir != CurrDir &&
+ "No point trying to resolve the file if the PCH dir didn't change");
+ using namespace llvm::sys;
+ SmallString<128> filePath(Filename);
+ fs::make_absolute(filePath);
+ assert(path::is_absolute(OriginalDir));
+ SmallString<128> currPCHPath(CurrDir);
+
+ path::const_iterator fileDirI = path::begin(path::parent_path(filePath)),
+ fileDirE = path::end(path::parent_path(filePath));
+ path::const_iterator origDirI = path::begin(OriginalDir),
+ origDirE = path::end(OriginalDir);
+ // Skip the common path components from filePath and OriginalDir.
+ while (fileDirI != fileDirE && origDirI != origDirE &&
+ *fileDirI == *origDirI) {
+ ++fileDirI;
+ ++origDirI;
+ }
+ for (; origDirI != origDirE; ++origDirI)
+ path::append(currPCHPath, "..");
+ path::append(currPCHPath, fileDirI, fileDirE);
+ path::append(currPCHPath, path::filename(Filename));
+ return currPCHPath.str();
+}
+
+bool ASTReader::ReadSLocEntry(int ID) {
+ if (ID == 0)
+ return false;
+
+ if (unsigned(-ID) - 2 >= getTotalNumSLocs() || ID > 0) {
+ Error("source location entry ID out-of-range for AST file");
+ return true;
+ }
+
+ ModuleFile *F = GlobalSLocEntryMap.find(-ID)->second;
+ F->SLocEntryCursor.JumpToBit(F->SLocEntryOffsets[ID - F->SLocEntryBaseID]);
+ BitstreamCursor &SLocEntryCursor = F->SLocEntryCursor;
+ unsigned BaseOffset = F->SLocEntryBaseOffset;
+
+ ++NumSLocEntriesRead;
+ llvm::BitstreamEntry Entry = SLocEntryCursor.advance();
+ if (Entry.Kind != llvm::BitstreamEntry::Record) {
+ Error("incorrectly-formatted source location entry in AST file");
+ return true;
+ }
+
+ RecordData Record;
+ StringRef Blob;
+ switch (SLocEntryCursor.readRecord(Entry.ID, Record, &Blob)) {
+ default:
+ Error("incorrectly-formatted source location entry in AST file");
+ return true;
+
+ case SM_SLOC_FILE_ENTRY: {
+ // We will detect whether a file changed and return 'Failure' for it, but
+ // we will also try to fail gracefully by setting up the SLocEntry.
+ unsigned InputID = Record[4];
+ InputFile IF = getInputFile(*F, InputID);
+ const FileEntry *File = IF.getFile();
+ bool OverriddenBuffer = IF.isOverridden();
+
+ // Note that we only check if a File was returned. If it was out-of-date
+ // we have complained but we will continue creating a FileID to recover
+ // gracefully.
+ if (!File)
+ return true;
+
+ SourceLocation IncludeLoc = ReadSourceLocation(*F, Record[1]);
+ if (IncludeLoc.isInvalid() && F->Kind != MK_MainFile) {
+ // This is the module's main file.
+ IncludeLoc = getImportLocation(F);
+ }
+ SrcMgr::CharacteristicKind
+ FileCharacter = (SrcMgr::CharacteristicKind)Record[2];
+ FileID FID = SourceMgr.createFileID(File, IncludeLoc, FileCharacter,
+ ID, BaseOffset + Record[0]);
+ SrcMgr::FileInfo &FileInfo =
+ const_cast<SrcMgr::FileInfo&>(SourceMgr.getSLocEntry(FID).getFile());
+ FileInfo.NumCreatedFIDs = Record[5];
+ if (Record[3])
+ FileInfo.setHasLineDirectives();
+
+ const DeclID *FirstDecl = F->FileSortedDecls + Record[6];
+ unsigned NumFileDecls = Record[7];
+ if (NumFileDecls) {
+ assert(F->FileSortedDecls && "FILE_SORTED_DECLS not encountered yet ?");
+ FileDeclIDs[FID] = FileDeclsInfo(F, llvm::makeArrayRef(FirstDecl,
+ NumFileDecls));
+ }
+
+ const SrcMgr::ContentCache *ContentCache
+ = SourceMgr.getOrCreateContentCache(File,
+ /*isSystemFile=*/FileCharacter != SrcMgr::C_User);
+ if (OverriddenBuffer && !ContentCache->BufferOverridden &&
+ ContentCache->ContentsEntry == ContentCache->OrigEntry) {
+ unsigned Code = SLocEntryCursor.ReadCode();
+ Record.clear();
+ unsigned RecCode = SLocEntryCursor.readRecord(Code, Record, &Blob);
+
+ if (RecCode != SM_SLOC_BUFFER_BLOB) {
+ Error("AST record has invalid code");
+ return true;
+ }
+
+ std::unique_ptr<llvm::MemoryBuffer> Buffer
+ = llvm::MemoryBuffer::getMemBuffer(Blob.drop_back(1), File->getName());
+ SourceMgr.overrideFileContents(File, std::move(Buffer));
+ }
+
+ break;
+ }
+
+ case SM_SLOC_BUFFER_ENTRY: {
+ const char *Name = Blob.data();
+ unsigned Offset = Record[0];
+ SrcMgr::CharacteristicKind
+ FileCharacter = (SrcMgr::CharacteristicKind)Record[2];
+ SourceLocation IncludeLoc = ReadSourceLocation(*F, Record[1]);
+ if (IncludeLoc.isInvalid() &&
+ (F->Kind == MK_ImplicitModule || F->Kind == MK_ExplicitModule)) {
+ IncludeLoc = getImportLocation(F);
+ }
+ unsigned Code = SLocEntryCursor.ReadCode();
+ Record.clear();
+ unsigned RecCode
+ = SLocEntryCursor.readRecord(Code, Record, &Blob);
+
+ if (RecCode != SM_SLOC_BUFFER_BLOB) {
+ Error("AST record has invalid code");
+ return true;
+ }
+
+ std::unique_ptr<llvm::MemoryBuffer> Buffer =
+ llvm::MemoryBuffer::getMemBuffer(Blob.drop_back(1), Name);
+ SourceMgr.createFileID(std::move(Buffer), FileCharacter, ID,
+ BaseOffset + Offset, IncludeLoc);
+ break;
+ }
+
+ case SM_SLOC_EXPANSION_ENTRY: {
+ SourceLocation SpellingLoc = ReadSourceLocation(*F, Record[1]);
+ SourceMgr.createExpansionLoc(SpellingLoc,
+ ReadSourceLocation(*F, Record[2]),
+ ReadSourceLocation(*F, Record[3]),
+ Record[4],
+ ID,
+ BaseOffset + Record[0]);
+ break;
+ }
+ }
+
+ return false;
+}
+
+std::pair<SourceLocation, StringRef> ASTReader::getModuleImportLoc(int ID) {
+ if (ID == 0)
+ return std::make_pair(SourceLocation(), "");
+
+ if (unsigned(-ID) - 2 >= getTotalNumSLocs() || ID > 0) {
+ Error("source location entry ID out-of-range for AST file");
+ return std::make_pair(SourceLocation(), "");
+ }
+
+ // Find which module file this entry lands in.
+ ModuleFile *M = GlobalSLocEntryMap.find(-ID)->second;
+ if (M->Kind != MK_ImplicitModule && M->Kind != MK_ExplicitModule)
+ return std::make_pair(SourceLocation(), "");
+
+ // FIXME: Can we map this down to a particular submodule? That would be
+ // ideal.
+ return std::make_pair(M->ImportLoc, StringRef(M->ModuleName));
+}
+
+/// \brief Find the location where the module F is imported.
+SourceLocation ASTReader::getImportLocation(ModuleFile *F) {
+ if (F->ImportLoc.isValid())
+ return F->ImportLoc;
+
+ // Otherwise we have a PCH. It's considered to be "imported" at the first
+ // location of its includer.
+ if (F->ImportedBy.empty() || !F->ImportedBy[0]) {
+ // Main file is the importer.
+ assert(!SourceMgr.getMainFileID().isInvalid() && "missing main file");
+ return SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID());
+ }
+ return F->ImportedBy[0]->FirstLoc;
+}
+
+/// ReadBlockAbbrevs - Enter a subblock of the specified BlockID with the
+/// specified cursor. Read the abbreviations that are at the top of the block
+/// and then leave the cursor pointing into the block.
+bool ASTReader::ReadBlockAbbrevs(BitstreamCursor &Cursor, unsigned BlockID) {
+ if (Cursor.EnterSubBlock(BlockID)) {
+ Error("malformed block record in AST file");
+ return Failure;
+ }
+
+ while (true) {
+ uint64_t Offset = Cursor.GetCurrentBitNo();
+ unsigned Code = Cursor.ReadCode();
+
+ // We expect all abbrevs to be at the start of the block.
+ if (Code != llvm::bitc::DEFINE_ABBREV) {
+ Cursor.JumpToBit(Offset);
+ return false;
+ }
+ Cursor.ReadAbbrevRecord();
+ }
+}
+
+Token ASTReader::ReadToken(ModuleFile &F, const RecordDataImpl &Record,
+ unsigned &Idx) {
+ Token Tok;
+ Tok.startToken();
+ Tok.setLocation(ReadSourceLocation(F, Record, Idx));
+ Tok.setLength(Record[Idx++]);
+ if (IdentifierInfo *II = getLocalIdentifier(F, Record[Idx++]))
+ Tok.setIdentifierInfo(II);
+ Tok.setKind((tok::TokenKind)Record[Idx++]);
+ Tok.setFlag((Token::TokenFlags)Record[Idx++]);
+ return Tok;
+}
+
+MacroInfo *ASTReader::ReadMacroRecord(ModuleFile &F, uint64_t Offset) {
+ BitstreamCursor &Stream = F.MacroCursor;
+
+ // Keep track of where we are in the stream, then jump back there
+ // after reading this macro.
+ SavedStreamPosition SavedPosition(Stream);
+
+ Stream.JumpToBit(Offset);
+ RecordData Record;
+ SmallVector<IdentifierInfo*, 16> MacroArgs;
+ MacroInfo *Macro = nullptr;
+
+ while (true) {
+ // Advance to the next record, but if we get to the end of the block, don't
+ // pop it (removing all the abbreviations from the cursor) since we want to
+ // be able to reseek within the block and read entries.
+ unsigned Flags = BitstreamCursor::AF_DontPopBlockAtEnd;
+ llvm::BitstreamEntry Entry = Stream.advanceSkippingSubblocks(Flags);
+
+ switch (Entry.Kind) {
+ case llvm::BitstreamEntry::SubBlock: // Handled for us already.
+ case llvm::BitstreamEntry::Error:
+ Error("malformed block record in AST file");
+ return Macro;
+ case llvm::BitstreamEntry::EndBlock:
+ return Macro;
+ case llvm::BitstreamEntry::Record:
+ // The interesting case.
+ break;
+ }
+
+ // Read a record.
+ Record.clear();
+ PreprocessorRecordTypes RecType =
+ (PreprocessorRecordTypes)Stream.readRecord(Entry.ID, Record);
+ switch (RecType) {
+ case PP_MODULE_MACRO:
+ case PP_MACRO_DIRECTIVE_HISTORY:
+ return Macro;
+
+ case PP_MACRO_OBJECT_LIKE:
+ case PP_MACRO_FUNCTION_LIKE: {
+ // If we already have a macro, that means that we've hit the end
+ // of the definition of the macro we were looking for. We're
+ // done.
+ if (Macro)
+ return Macro;
+
+ unsigned NextIndex = 1; // Skip identifier ID.
+ SubmoduleID SubModID = getGlobalSubmoduleID(F, Record[NextIndex++]);
+ SourceLocation Loc = ReadSourceLocation(F, Record, NextIndex);
+ MacroInfo *MI = PP.AllocateDeserializedMacroInfo(Loc, SubModID);
+ MI->setDefinitionEndLoc(ReadSourceLocation(F, Record, NextIndex));
+ MI->setIsUsed(Record[NextIndex++]);
+ MI->setUsedForHeaderGuard(Record[NextIndex++]);
+
+ if (RecType == PP_MACRO_FUNCTION_LIKE) {
+ // Decode function-like macro info.
+ bool isC99VarArgs = Record[NextIndex++];
+ bool isGNUVarArgs = Record[NextIndex++];
+ bool hasCommaPasting = Record[NextIndex++];
+ MacroArgs.clear();
+ unsigned NumArgs = Record[NextIndex++];
+ for (unsigned i = 0; i != NumArgs; ++i)
+ MacroArgs.push_back(getLocalIdentifier(F, Record[NextIndex++]));
+
+ // Install function-like macro info.
+ MI->setIsFunctionLike();
+ if (isC99VarArgs) MI->setIsC99Varargs();
+ if (isGNUVarArgs) MI->setIsGNUVarargs();
+ if (hasCommaPasting) MI->setHasCommaPasting();
+ MI->setArgumentList(MacroArgs.data(), MacroArgs.size(),
+ PP.getPreprocessorAllocator());
+ }
+
+ // Remember that we saw this macro last so that we add the tokens that
+ // form its body to it.
+ Macro = MI;
+
+ if (NextIndex + 1 == Record.size() && PP.getPreprocessingRecord() &&
+ Record[NextIndex]) {
+ // We have a macro definition. Register the association
+ PreprocessedEntityID
+ GlobalID = getGlobalPreprocessedEntityID(F, Record[NextIndex]);
+ PreprocessingRecord &PPRec = *PP.getPreprocessingRecord();
+ PreprocessingRecord::PPEntityID PPID =
+ PPRec.getPPEntityID(GlobalID - 1, /*isLoaded=*/true);
+ MacroDefinitionRecord *PPDef = cast_or_null<MacroDefinitionRecord>(
+ PPRec.getPreprocessedEntity(PPID));
+ if (PPDef)
+ PPRec.RegisterMacroDefinition(Macro, PPDef);
+ }
+
+ ++NumMacrosRead;
+ break;
+ }
+
+ case PP_TOKEN: {
+ // If we see a TOKEN before a PP_MACRO_*, then the file is
+ // erroneous, just pretend we didn't see this.
+ if (!Macro) break;
+
+ unsigned Idx = 0;
+ Token Tok = ReadToken(F, Record, Idx);
+ Macro->AddTokenToBody(Tok);
+ break;
+ }
+ }
+ }
+}
+
+PreprocessedEntityID
+ASTReader::getGlobalPreprocessedEntityID(ModuleFile &M, unsigned LocalID) const {
+ ContinuousRangeMap<uint32_t, int, 2>::const_iterator
+ I = M.PreprocessedEntityRemap.find(LocalID - NUM_PREDEF_PP_ENTITY_IDS);
+ assert(I != M.PreprocessedEntityRemap.end()
+ && "Invalid index into preprocessed entity index remap");
+
+ return LocalID + I->second;
+}
+
+unsigned HeaderFileInfoTrait::ComputeHash(internal_key_ref ikey) {
+ return llvm::hash_combine(ikey.Size, ikey.ModTime);
+}
+
+HeaderFileInfoTrait::internal_key_type
+HeaderFileInfoTrait::GetInternalKey(const FileEntry *FE) {
+ internal_key_type ikey = { FE->getSize(), FE->getModificationTime(),
+ FE->getName(), /*Imported*/false };
+ return ikey;
+}
+
+bool HeaderFileInfoTrait::EqualKey(internal_key_ref a, internal_key_ref b) {
+ if (a.Size != b.Size || a.ModTime != b.ModTime)
+ return false;
+
+ if (llvm::sys::path::is_absolute(a.Filename) &&
+ strcmp(a.Filename, b.Filename) == 0)
+ return true;
+
+ // Determine whether the actual files are equivalent.
+ FileManager &FileMgr = Reader.getFileManager();
+ auto GetFile = [&](const internal_key_type &Key) -> const FileEntry* {
+ if (!Key.Imported)
+ return FileMgr.getFile(Key.Filename);
+
+ std::string Resolved = Key.Filename;
+ Reader.ResolveImportedPath(M, Resolved);
+ return FileMgr.getFile(Resolved);
+ };
+
+ const FileEntry *FEA = GetFile(a);
+ const FileEntry *FEB = GetFile(b);
+ return FEA && FEA == FEB;
+}
+
+std::pair<unsigned, unsigned>
+HeaderFileInfoTrait::ReadKeyDataLength(const unsigned char*& d) {
+ using namespace llvm::support;
+ unsigned KeyLen = (unsigned) endian::readNext<uint16_t, little, unaligned>(d);
+ unsigned DataLen = (unsigned) *d++;
+ return std::make_pair(KeyLen, DataLen);
+}
+
+HeaderFileInfoTrait::internal_key_type
+HeaderFileInfoTrait::ReadKey(const unsigned char *d, unsigned) {
+ using namespace llvm::support;
+ internal_key_type ikey;
+ ikey.Size = off_t(endian::readNext<uint64_t, little, unaligned>(d));
+ ikey.ModTime = time_t(endian::readNext<uint64_t, little, unaligned>(d));
+ ikey.Filename = (const char *)d;
+ ikey.Imported = true;
+ return ikey;
+}
+
+HeaderFileInfoTrait::data_type
+HeaderFileInfoTrait::ReadData(internal_key_ref key, const unsigned char *d,
+ unsigned DataLen) {
+ const unsigned char *End = d + DataLen;
+ using namespace llvm::support;
+ HeaderFileInfo HFI;
+ unsigned Flags = *d++;
+ HFI.HeaderRole = static_cast<ModuleMap::ModuleHeaderRole>
+ ((Flags >> 6) & 0x03);
+ HFI.isImport = (Flags >> 5) & 0x01;
+ HFI.isPragmaOnce = (Flags >> 4) & 0x01;
+ HFI.DirInfo = (Flags >> 2) & 0x03;
+ HFI.Resolved = (Flags >> 1) & 0x01;
+ HFI.IndexHeaderMapHeader = Flags & 0x01;
+ HFI.NumIncludes = endian::readNext<uint16_t, little, unaligned>(d);
+ HFI.ControllingMacroID = Reader.getGlobalIdentifierID(
+ M, endian::readNext<uint32_t, little, unaligned>(d));
+ if (unsigned FrameworkOffset =
+ endian::readNext<uint32_t, little, unaligned>(d)) {
+ // The framework offset is 1 greater than the actual offset,
+ // since 0 is used as an indicator for "no framework name".
+ StringRef FrameworkName(FrameworkStrings + FrameworkOffset - 1);
+ HFI.Framework = HS->getUniqueFrameworkName(FrameworkName);
+ }
+
+ if (d != End) {
+ uint32_t LocalSMID = endian::readNext<uint32_t, little, unaligned>(d);
+ if (LocalSMID) {
+ // This header is part of a module. Associate it with the module to enable
+ // implicit module import.
+ SubmoduleID GlobalSMID = Reader.getGlobalSubmoduleID(M, LocalSMID);
+ Module *Mod = Reader.getSubmodule(GlobalSMID);
+ HFI.isModuleHeader = true;
+ FileManager &FileMgr = Reader.getFileManager();
+ ModuleMap &ModMap =
+ Reader.getPreprocessor().getHeaderSearchInfo().getModuleMap();
+ // FIXME: This information should be propagated through the
+ // SUBMODULE_HEADER etc records rather than from here.
+ // FIXME: We don't ever mark excluded headers.
+ std::string Filename = key.Filename;
+ if (key.Imported)
+ Reader.ResolveImportedPath(M, Filename);
+ Module::Header H = { key.Filename, FileMgr.getFile(Filename) };
+ ModMap.addHeader(Mod, H, HFI.getHeaderRole());
+ }
+ }
+
+ assert(End == d && "Wrong data length in HeaderFileInfo deserialization");
+ (void)End;
+
+ // This HeaderFileInfo was externally loaded.
+ HFI.External = true;
+ return HFI;
+}
+
+void ASTReader::addPendingMacro(IdentifierInfo *II,
+ ModuleFile *M,
+ uint64_t MacroDirectivesOffset) {
+ assert(NumCurrentElementsDeserializing > 0 &&"Missing deserialization guard");
+ PendingMacroIDs[II].push_back(PendingMacroInfo(M, MacroDirectivesOffset));
+}
+
+void ASTReader::ReadDefinedMacros() {
+ // Note that we are loading defined macros.
+ Deserializing Macros(this);
+
+ for (ModuleReverseIterator I = ModuleMgr.rbegin(),
+ E = ModuleMgr.rend(); I != E; ++I) {
+ BitstreamCursor &MacroCursor = (*I)->MacroCursor;
+
+ // If there was no preprocessor block, skip this file.
+ if (!MacroCursor.getBitStreamReader())
+ continue;
+
+ BitstreamCursor Cursor = MacroCursor;
+ Cursor.JumpToBit((*I)->MacroStartOffset);
+
+ RecordData Record;
+ while (true) {
+ llvm::BitstreamEntry E = Cursor.advanceSkippingSubblocks();
+
+ switch (E.Kind) {
+ case llvm::BitstreamEntry::SubBlock: // Handled for us already.
+ case llvm::BitstreamEntry::Error:
+ Error("malformed block record in AST file");
+ return;
+ case llvm::BitstreamEntry::EndBlock:
+ goto NextCursor;
+
+ case llvm::BitstreamEntry::Record:
+ Record.clear();
+ switch (Cursor.readRecord(E.ID, Record)) {
+ default: // Default behavior: ignore.
+ break;
+
+ case PP_MACRO_OBJECT_LIKE:
+ case PP_MACRO_FUNCTION_LIKE:
+ getLocalIdentifier(**I, Record[0]);
+ break;
+
+ case PP_TOKEN:
+ // Ignore tokens.
+ break;
+ }
+ break;
+ }
+ }
+ NextCursor: ;
+ }
+}
+
+namespace {
+ /// \brief Visitor class used to look up identifirs in an AST file.
+ class IdentifierLookupVisitor {
+ StringRef Name;
+ unsigned PriorGeneration;
+ unsigned &NumIdentifierLookups;
+ unsigned &NumIdentifierLookupHits;
+ IdentifierInfo *Found;
+
+ public:
+ IdentifierLookupVisitor(StringRef Name, unsigned PriorGeneration,
+ unsigned &NumIdentifierLookups,
+ unsigned &NumIdentifierLookupHits)
+ : Name(Name), PriorGeneration(PriorGeneration),
+ NumIdentifierLookups(NumIdentifierLookups),
+ NumIdentifierLookupHits(NumIdentifierLookupHits),
+ Found()
+ {
+ }
+
+ static bool visit(ModuleFile &M, void *UserData) {
+ IdentifierLookupVisitor *This
+ = static_cast<IdentifierLookupVisitor *>(UserData);
+
+ // If we've already searched this module file, skip it now.
+ if (M.Generation <= This->PriorGeneration)
+ return true;
+
+ ASTIdentifierLookupTable *IdTable
+ = (ASTIdentifierLookupTable *)M.IdentifierLookupTable;
+ if (!IdTable)
+ return false;
+
+ ASTIdentifierLookupTrait Trait(IdTable->getInfoObj().getReader(),
+ M, This->Found);
+ ++This->NumIdentifierLookups;
+ ASTIdentifierLookupTable::iterator Pos = IdTable->find(This->Name,&Trait);
+ if (Pos == IdTable->end())
+ return false;
+
+ // Dereferencing the iterator has the effect of building the
+ // IdentifierInfo node and populating it with the various
+ // declarations it needs.
+ ++This->NumIdentifierLookupHits;
+ This->Found = *Pos;
+ return true;
+ }
+
+ // \brief Retrieve the identifier info found within the module
+ // files.
+ IdentifierInfo *getIdentifierInfo() const { return Found; }
+ };
+}
+
+void ASTReader::updateOutOfDateIdentifier(IdentifierInfo &II) {
+ // Note that we are loading an identifier.
+ Deserializing AnIdentifier(this);
+
+ unsigned PriorGeneration = 0;
+ if (getContext().getLangOpts().Modules)
+ PriorGeneration = IdentifierGeneration[&II];
+
+ // If there is a global index, look there first to determine which modules
+ // provably do not have any results for this identifier.
+ GlobalModuleIndex::HitSet Hits;
+ GlobalModuleIndex::HitSet *HitsPtr = nullptr;
+ if (!loadGlobalIndex()) {
+ if (GlobalIndex->lookupIdentifier(II.getName(), Hits)) {
+ HitsPtr = &Hits;
+ }
+ }
+
+ IdentifierLookupVisitor Visitor(II.getName(), PriorGeneration,
+ NumIdentifierLookups,
+ NumIdentifierLookupHits);
+ ModuleMgr.visit(IdentifierLookupVisitor::visit, &Visitor, HitsPtr);
+ markIdentifierUpToDate(&II);
+}
+
+void ASTReader::markIdentifierUpToDate(IdentifierInfo *II) {
+ if (!II)
+ return;
+
+ II->setOutOfDate(false);
+
+ // Update the generation for this identifier.
+ if (getContext().getLangOpts().Modules)
+ IdentifierGeneration[II] = getGeneration();
+}
+
+void ASTReader::resolvePendingMacro(IdentifierInfo *II,
+ const PendingMacroInfo &PMInfo) {
+ ModuleFile &M = *PMInfo.M;
+
+ BitstreamCursor &Cursor = M.MacroCursor;
+ SavedStreamPosition SavedPosition(Cursor);
+ Cursor.JumpToBit(PMInfo.MacroDirectivesOffset);
+
+ struct ModuleMacroRecord {
+ SubmoduleID SubModID;
+ MacroInfo *MI;
+ SmallVector<SubmoduleID, 8> Overrides;
+ };
+ llvm::SmallVector<ModuleMacroRecord, 8> ModuleMacros;
+
+ // We expect to see a sequence of PP_MODULE_MACRO records listing exported
+ // macros, followed by a PP_MACRO_DIRECTIVE_HISTORY record with the complete
+ // macro histroy.
+ RecordData Record;
+ while (true) {
+ llvm::BitstreamEntry Entry =
+ Cursor.advance(BitstreamCursor::AF_DontPopBlockAtEnd);
+ if (Entry.Kind != llvm::BitstreamEntry::Record) {
+ Error("malformed block record in AST file");
+ return;
+ }
+
+ Record.clear();
+ switch ((PreprocessorRecordTypes)Cursor.readRecord(Entry.ID, Record)) {
+ case PP_MACRO_DIRECTIVE_HISTORY:
+ break;
+
+ case PP_MODULE_MACRO: {
+ ModuleMacros.push_back(ModuleMacroRecord());
+ auto &Info = ModuleMacros.back();
+ Info.SubModID = getGlobalSubmoduleID(M, Record[0]);
+ Info.MI = getMacro(getGlobalMacroID(M, Record[1]));
+ for (int I = 2, N = Record.size(); I != N; ++I)
+ Info.Overrides.push_back(getGlobalSubmoduleID(M, Record[I]));
+ continue;
+ }
+
+ default:
+ Error("malformed block record in AST file");
+ return;
+ }
+
+ // We found the macro directive history; that's the last record
+ // for this macro.
+ break;
+ }
+
+ // Module macros are listed in reverse dependency order.
+ {
+ std::reverse(ModuleMacros.begin(), ModuleMacros.end());
+ llvm::SmallVector<ModuleMacro*, 8> Overrides;
+ for (auto &MMR : ModuleMacros) {
+ Overrides.clear();
+ for (unsigned ModID : MMR.Overrides) {
+ Module *Mod = getSubmodule(ModID);
+ auto *Macro = PP.getModuleMacro(Mod, II);
+ assert(Macro && "missing definition for overridden macro");
+ Overrides.push_back(Macro);
+ }
+
+ bool Inserted = false;
+ Module *Owner = getSubmodule(MMR.SubModID);
+ PP.addModuleMacro(Owner, II, MMR.MI, Overrides, Inserted);
+ }
+ }
+
+ // Don't read the directive history for a module; we don't have anywhere
+ // to put it.
+ if (M.Kind == MK_ImplicitModule || M.Kind == MK_ExplicitModule)
+ return;
+
+ // Deserialize the macro directives history in reverse source-order.
+ MacroDirective *Latest = nullptr, *Earliest = nullptr;
+ unsigned Idx = 0, N = Record.size();
+ while (Idx < N) {
+ MacroDirective *MD = nullptr;
+ SourceLocation Loc = ReadSourceLocation(M, Record, Idx);
+ MacroDirective::Kind K = (MacroDirective::Kind)Record[Idx++];
+ switch (K) {
+ case MacroDirective::MD_Define: {
+ MacroInfo *MI = getMacro(getGlobalMacroID(M, Record[Idx++]));
+ MD = PP.AllocateDefMacroDirective(MI, Loc);
+ break;
+ }
+ case MacroDirective::MD_Undefine: {
+ MD = PP.AllocateUndefMacroDirective(Loc);
+ break;
+ }
+ case MacroDirective::MD_Visibility:
+ bool isPublic = Record[Idx++];
+ MD = PP.AllocateVisibilityMacroDirective(Loc, isPublic);
+ break;
+ }
+
+ if (!Latest)
+ Latest = MD;
+ if (Earliest)
+ Earliest->setPrevious(MD);
+ Earliest = MD;
+ }
+
+ if (Latest)
+ PP.setLoadedMacroDirective(II, Latest);
+}
+
+ASTReader::InputFileInfo
+ASTReader::readInputFileInfo(ModuleFile &F, unsigned ID) {
+ // Go find this input file.
+ BitstreamCursor &Cursor = F.InputFilesCursor;
+ SavedStreamPosition SavedPosition(Cursor);
+ Cursor.JumpToBit(F.InputFileOffsets[ID-1]);
+
+ unsigned Code = Cursor.ReadCode();
+ RecordData Record;
+ StringRef Blob;
+
+ unsigned Result = Cursor.readRecord(Code, Record, &Blob);
+ assert(static_cast<InputFileRecordTypes>(Result) == INPUT_FILE &&
+ "invalid record type for input file");
+ (void)Result;
+
+ std::string Filename;
+ off_t StoredSize;
+ time_t StoredTime;
+ bool Overridden;
+
+ assert(Record[0] == ID && "Bogus stored ID or offset");
+ StoredSize = static_cast<off_t>(Record[1]);
+ StoredTime = static_cast<time_t>(Record[2]);
+ Overridden = static_cast<bool>(Record[3]);
+ Filename = Blob;
+ ResolveImportedPath(F, Filename);
+
+ InputFileInfo R = { std::move(Filename), StoredSize, StoredTime, Overridden };
+ return R;
+}
+
+std::string ASTReader::getInputFileName(ModuleFile &F, unsigned int ID) {
+ return readInputFileInfo(F, ID).Filename;
+}
+
+InputFile ASTReader::getInputFile(ModuleFile &F, unsigned ID, bool Complain) {
+ // If this ID is bogus, just return an empty input file.
+ if (ID == 0 || ID > F.InputFilesLoaded.size())
+ return InputFile();
+
+ // If we've already loaded this input file, return it.
+ if (F.InputFilesLoaded[ID-1].getFile())
+ return F.InputFilesLoaded[ID-1];
+
+ if (F.InputFilesLoaded[ID-1].isNotFound())
+ return InputFile();
+
+ // Go find this input file.
+ BitstreamCursor &Cursor = F.InputFilesCursor;
+ SavedStreamPosition SavedPosition(Cursor);
+ Cursor.JumpToBit(F.InputFileOffsets[ID-1]);
+
+ InputFileInfo FI = readInputFileInfo(F, ID);
+ off_t StoredSize = FI.StoredSize;
+ time_t StoredTime = FI.StoredTime;
+ bool Overridden = FI.Overridden;
+ StringRef Filename = FI.Filename;
+
+ const FileEntry *File
+ = Overridden? FileMgr.getVirtualFile(Filename, StoredSize, StoredTime)
+ : FileMgr.getFile(Filename, /*OpenFile=*/false);
+
+ // If we didn't find the file, resolve it relative to the
+ // original directory from which this AST file was created.
+ if (File == nullptr && !F.OriginalDir.empty() && !CurrentDir.empty() &&
+ F.OriginalDir != CurrentDir) {
+ std::string Resolved = resolveFileRelativeToOriginalDir(Filename,
+ F.OriginalDir,
+ CurrentDir);
+ if (!Resolved.empty())
+ File = FileMgr.getFile(Resolved);
+ }
+
+ // For an overridden file, create a virtual file with the stored
+ // size/timestamp.
+ if (Overridden && File == nullptr) {
+ File = FileMgr.getVirtualFile(Filename, StoredSize, StoredTime);
+ }
+
+ if (File == nullptr) {
+ if (Complain) {
+ std::string ErrorStr = "could not find file '";
+ ErrorStr += Filename;
+ ErrorStr += "' referenced by AST file";
+ Error(ErrorStr.c_str());
+ }
+ // Record that we didn't find the file.
+ F.InputFilesLoaded[ID-1] = InputFile::getNotFound();
+ return InputFile();
+ }
+
+ // Check if there was a request to override the contents of the file
+ // that was part of the precompiled header. Overridding such a file
+ // can lead to problems when lexing using the source locations from the
+ // PCH.
+ SourceManager &SM = getSourceManager();
+ if (!Overridden && SM.isFileOverridden(File)) {
+ if (Complain)
+ Error(diag::err_fe_pch_file_overridden, Filename);
+ // After emitting the diagnostic, recover by disabling the override so
+ // that the original file will be used.
+ SM.disableFileContentsOverride(File);
+ // The FileEntry is a virtual file entry with the size of the contents
+ // that would override the original contents. Set it to the original's
+ // size/time.
+ FileMgr.modifyFileEntry(const_cast<FileEntry*>(File),
+ StoredSize, StoredTime);
+ }
+
+ bool IsOutOfDate = false;
+
+ // For an overridden file, there is nothing to validate.
+ if (!Overridden && //
+ (StoredSize != File->getSize() ||
+#if defined(LLVM_ON_WIN32)
+ false
+#else
+ // In our regression testing, the Windows file system seems to
+ // have inconsistent modification times that sometimes
+ // erroneously trigger this error-handling path.
+ //
+ // This also happens in networked file systems, so disable this
+ // check if validation is disabled or if we have an explicitly
+ // built PCM file.
+ //
+ // FIXME: Should we also do this for PCH files? They could also
+ // reasonably get shared across a network during a distributed build.
+ (StoredTime != File->getModificationTime() && !DisableValidation &&
+ F.Kind != MK_ExplicitModule)
+#endif
+ )) {
+ if (Complain) {
+ // Build a list of the PCH imports that got us here (in reverse).
+ SmallVector<ModuleFile *, 4> ImportStack(1, &F);
+ while (ImportStack.back()->ImportedBy.size() > 0)
+ ImportStack.push_back(ImportStack.back()->ImportedBy[0]);
+
+ // The top-level PCH is stale.
+ StringRef TopLevelPCHName(ImportStack.back()->FileName);
+ Error(diag::err_fe_pch_file_modified, Filename, TopLevelPCHName);
+
+ // Print the import stack.
+ if (ImportStack.size() > 1 && !Diags.isDiagnosticInFlight()) {
+ Diag(diag::note_pch_required_by)
+ << Filename << ImportStack[0]->FileName;
+ for (unsigned I = 1; I < ImportStack.size(); ++I)
+ Diag(diag::note_pch_required_by)
+ << ImportStack[I-1]->FileName << ImportStack[I]->FileName;
+ }
+
+ if (!Diags.isDiagnosticInFlight())
+ Diag(diag::note_pch_rebuild_required) << TopLevelPCHName;
+ }
+
+ IsOutOfDate = true;
+ }
+
+ InputFile IF = InputFile(File, Overridden, IsOutOfDate);
+
+ // Note that we've loaded this input file.
+ F.InputFilesLoaded[ID-1] = IF;
+ return IF;
+}
+
+/// \brief If we are loading a relocatable PCH or module file, and the filename
+/// is not an absolute path, add the system or module root to the beginning of
+/// the file name.
+void ASTReader::ResolveImportedPath(ModuleFile &M, std::string &Filename) {
+ // Resolve relative to the base directory, if we have one.
+ if (!M.BaseDirectory.empty())
+ return ResolveImportedPath(Filename, M.BaseDirectory);
+}
+
+void ASTReader::ResolveImportedPath(std::string &Filename, StringRef Prefix) {
+ if (Filename.empty() || llvm::sys::path::is_absolute(Filename))
+ return;
+
+ SmallString<128> Buffer;
+ llvm::sys::path::append(Buffer, Prefix, Filename);
+ Filename.assign(Buffer.begin(), Buffer.end());
+}
+
+ASTReader::ASTReadResult
+ASTReader::ReadControlBlock(ModuleFile &F,
+ SmallVectorImpl<ImportedModule> &Loaded,
+ const ModuleFile *ImportedBy,
+ unsigned ClientLoadCapabilities) {
+ BitstreamCursor &Stream = F.Stream;
+
+ if (Stream.EnterSubBlock(CONTROL_BLOCK_ID)) {
+ Error("malformed block record in AST file");
+ return Failure;
+ }
+
+ // Should we allow the configuration of the module file to differ from the
+ // configuration of the current translation unit in a compatible way?
+ //
+ // FIXME: Allow this for files explicitly specified with -include-pch too.
+ bool AllowCompatibleConfigurationMismatch = F.Kind == MK_ExplicitModule;
+
+ // Read all of the records and blocks in the control block.
+ RecordData Record;
+ unsigned NumInputs = 0;
+ unsigned NumUserInputs = 0;
+ while (1) {
+ llvm::BitstreamEntry Entry = Stream.advance();
+
+ switch (Entry.Kind) {
+ case llvm::BitstreamEntry::Error:
+ Error("malformed block record in AST file");
+ return Failure;
+ case llvm::BitstreamEntry::EndBlock: {
+ // Validate input files.
+ const HeaderSearchOptions &HSOpts =
+ PP.getHeaderSearchInfo().getHeaderSearchOpts();
+
+ // All user input files reside at the index range [0, NumUserInputs), and
+ // system input files reside at [NumUserInputs, NumInputs).
+ if (!DisableValidation) {
+ bool Complain = (ClientLoadCapabilities & ARR_OutOfDate) == 0;
+
+ // If we are reading a module, we will create a verification timestamp,
+ // so we verify all input files. Otherwise, verify only user input
+ // files.
+
+ unsigned N = NumUserInputs;
+ if (ValidateSystemInputs ||
+ (HSOpts.ModulesValidateOncePerBuildSession &&
+ F.InputFilesValidationTimestamp <= HSOpts.BuildSessionTimestamp &&
+ F.Kind == MK_ImplicitModule))
+ N = NumInputs;
+
+ for (unsigned I = 0; I < N; ++I) {
+ InputFile IF = getInputFile(F, I+1, Complain);
+ if (!IF.getFile() || IF.isOutOfDate())
+ return OutOfDate;
+ }
+ }
+
+ if (Listener)
+ Listener->visitModuleFile(F.FileName);
+
+ if (Listener && Listener->needsInputFileVisitation()) {
+ unsigned N = Listener->needsSystemInputFileVisitation() ? NumInputs
+ : NumUserInputs;
+ for (unsigned I = 0; I < N; ++I) {
+ bool IsSystem = I >= NumUserInputs;
+ InputFileInfo FI = readInputFileInfo(F, I+1);
+ Listener->visitInputFile(FI.Filename, IsSystem, FI.Overridden);
+ }
+ }
+
+ return Success;
+ }
+
+ case llvm::BitstreamEntry::SubBlock:
+ switch (Entry.ID) {
+ case INPUT_FILES_BLOCK_ID:
+ F.InputFilesCursor = Stream;
+ if (Stream.SkipBlock() || // Skip with the main cursor
+ // Read the abbreviations
+ ReadBlockAbbrevs(F.InputFilesCursor, INPUT_FILES_BLOCK_ID)) {
+ Error("malformed block record in AST file");
+ return Failure;
+ }
+ continue;
+
+ default:
+ if (Stream.SkipBlock()) {
+ Error("malformed block record in AST file");
+ return Failure;
+ }
+ continue;
+ }
+
+ case llvm::BitstreamEntry::Record:
+ // The interesting case.
+ break;
+ }
+
+ // Read and process a record.
+ Record.clear();
+ StringRef Blob;
+ switch ((ControlRecordTypes)Stream.readRecord(Entry.ID, Record, &Blob)) {
+ case METADATA: {
+ if (Record[0] != VERSION_MAJOR && !DisableValidation) {
+ if ((ClientLoadCapabilities & ARR_VersionMismatch) == 0)
+ Diag(Record[0] < VERSION_MAJOR? diag::err_pch_version_too_old
+ : diag::err_pch_version_too_new);
+ return VersionMismatch;
+ }
+
+ bool hasErrors = Record[5];
+ if (hasErrors && !DisableValidation && !AllowASTWithCompilerErrors) {
+ Diag(diag::err_pch_with_compiler_errors);
+ return HadErrors;
+ }
+
+ F.RelocatablePCH = Record[4];
+ // Relative paths in a relocatable PCH are relative to our sysroot.
+ if (F.RelocatablePCH)
+ F.BaseDirectory = isysroot.empty() ? "/" : isysroot;
+
+ const std::string &CurBranch = getClangFullRepositoryVersion();
+ StringRef ASTBranch = Blob;
+ if (StringRef(CurBranch) != ASTBranch && !DisableValidation) {
+ if ((ClientLoadCapabilities & ARR_VersionMismatch) == 0)
+ Diag(diag::err_pch_different_branch) << ASTBranch << CurBranch;
+ return VersionMismatch;
+ }
+ break;
+ }
+
+ case SIGNATURE:
+ assert((!F.Signature || F.Signature == Record[0]) && "signature changed");
+ F.Signature = Record[0];
+ break;
+
+ case IMPORTS: {
+ // Load each of the imported PCH files.
+ unsigned Idx = 0, N = Record.size();
+ while (Idx < N) {
+ // Read information about the AST file.
+ ModuleKind ImportedKind = (ModuleKind)Record[Idx++];
+ // The import location will be the local one for now; we will adjust
+ // all import locations of module imports after the global source
+ // location info are setup.
+ SourceLocation ImportLoc =
+ SourceLocation::getFromRawEncoding(Record[Idx++]);
+ off_t StoredSize = (off_t)Record[Idx++];
+ time_t StoredModTime = (time_t)Record[Idx++];
+ ASTFileSignature StoredSignature = Record[Idx++];
+ auto ImportedFile = ReadPath(F, Record, Idx);
+
+ // Load the AST file.
+ switch(ReadASTCore(ImportedFile, ImportedKind, ImportLoc, &F, Loaded,
+ StoredSize, StoredModTime, StoredSignature,
+ ClientLoadCapabilities)) {
+ case Failure: return Failure;
+ // If we have to ignore the dependency, we'll have to ignore this too.
+ case Missing:
+ case OutOfDate: return OutOfDate;
+ case VersionMismatch: return VersionMismatch;
+ case ConfigurationMismatch: return ConfigurationMismatch;
+ case HadErrors: return HadErrors;
+ case Success: break;
+ }
+ }
+ break;
+ }
+
+ case KNOWN_MODULE_FILES:
+ break;
+
+ case LANGUAGE_OPTIONS: {
+ bool Complain = (ClientLoadCapabilities & ARR_ConfigurationMismatch) == 0;
+ // FIXME: The &F == *ModuleMgr.begin() check is wrong for modules.
+ if (Listener && &F == *ModuleMgr.begin() &&
+ ParseLanguageOptions(Record, Complain, *Listener,
+ AllowCompatibleConfigurationMismatch) &&
+ !DisableValidation && !AllowConfigurationMismatch)
+ return ConfigurationMismatch;
+ break;
+ }
+
+ case TARGET_OPTIONS: {
+ bool Complain = (ClientLoadCapabilities & ARR_ConfigurationMismatch)==0;
+ if (Listener && &F == *ModuleMgr.begin() &&
+ ParseTargetOptions(Record, Complain, *Listener,
+ AllowCompatibleConfigurationMismatch) &&
+ !DisableValidation && !AllowConfigurationMismatch)
+ return ConfigurationMismatch;
+ break;
+ }
+
+ case DIAGNOSTIC_OPTIONS: {
+ bool Complain = (ClientLoadCapabilities & ARR_OutOfDate)==0;
+ if (Listener && &F == *ModuleMgr.begin() &&
+ !AllowCompatibleConfigurationMismatch &&
+ ParseDiagnosticOptions(Record, Complain, *Listener) &&
+ !DisableValidation)
+ return OutOfDate;
+ break;
+ }
+
+ case FILE_SYSTEM_OPTIONS: {
+ bool Complain = (ClientLoadCapabilities & ARR_ConfigurationMismatch)==0;
+ if (Listener && &F == *ModuleMgr.begin() &&
+ !AllowCompatibleConfigurationMismatch &&
+ ParseFileSystemOptions(Record, Complain, *Listener) &&
+ !DisableValidation && !AllowConfigurationMismatch)
+ return ConfigurationMismatch;
+ break;
+ }
+
+ case HEADER_SEARCH_OPTIONS: {
+ bool Complain = (ClientLoadCapabilities & ARR_ConfigurationMismatch)==0;
+ if (Listener && &F == *ModuleMgr.begin() &&
+ !AllowCompatibleConfigurationMismatch &&
+ ParseHeaderSearchOptions(Record, Complain, *Listener) &&
+ !DisableValidation && !AllowConfigurationMismatch)
+ return ConfigurationMismatch;
+ break;
+ }
+
+ case PREPROCESSOR_OPTIONS: {
+ bool Complain = (ClientLoadCapabilities & ARR_ConfigurationMismatch)==0;
+ if (Listener && &F == *ModuleMgr.begin() &&
+ !AllowCompatibleConfigurationMismatch &&
+ ParsePreprocessorOptions(Record, Complain, *Listener,
+ SuggestedPredefines) &&
+ !DisableValidation && !AllowConfigurationMismatch)
+ return ConfigurationMismatch;
+ break;
+ }
+
+ case ORIGINAL_FILE:
+ F.OriginalSourceFileID = FileID::get(Record[0]);
+ F.ActualOriginalSourceFileName = Blob;
+ F.OriginalSourceFileName = F.ActualOriginalSourceFileName;
+ ResolveImportedPath(F, F.OriginalSourceFileName);
+ break;
+
+ case ORIGINAL_FILE_ID:
+ F.OriginalSourceFileID = FileID::get(Record[0]);
+ break;
+
+ case ORIGINAL_PCH_DIR:
+ F.OriginalDir = Blob;
+ break;
+
+ case MODULE_NAME:
+ F.ModuleName = Blob;
+ if (Listener)
+ Listener->ReadModuleName(F.ModuleName);
+ break;
+
+ case MODULE_DIRECTORY: {
+ assert(!F.ModuleName.empty() &&
+ "MODULE_DIRECTORY found before MODULE_NAME");
+ // If we've already loaded a module map file covering this module, we may
+ // have a better path for it (relative to the current build).
+ Module *M = PP.getHeaderSearchInfo().lookupModule(F.ModuleName);
+ if (M && M->Directory) {
+ // If we're implicitly loading a module, the base directory can't
+ // change between the build and use.
+ if (F.Kind != MK_ExplicitModule) {
+ const DirectoryEntry *BuildDir =
+ PP.getFileManager().getDirectory(Blob);
+ if (!BuildDir || BuildDir != M->Directory) {
+ if ((ClientLoadCapabilities & ARR_OutOfDate) == 0)
+ Diag(diag::err_imported_module_relocated)
+ << F.ModuleName << Blob << M->Directory->getName();
+ return OutOfDate;
+ }
+ }
+ F.BaseDirectory = M->Directory->getName();
+ } else {
+ F.BaseDirectory = Blob;
+ }
+ break;
+ }
+
+ case MODULE_MAP_FILE:
+ if (ASTReadResult Result =
+ ReadModuleMapFileBlock(Record, F, ImportedBy, ClientLoadCapabilities))
+ return Result;
+ break;
+
+ case INPUT_FILE_OFFSETS:
+ NumInputs = Record[0];
+ NumUserInputs = Record[1];
+ F.InputFileOffsets = (const uint64_t *)Blob.data();
+ F.InputFilesLoaded.resize(NumInputs);
+ break;
+ }
+ }
+}
+
+ASTReader::ASTReadResult
+ASTReader::ReadASTBlock(ModuleFile &F, unsigned ClientLoadCapabilities) {
+ BitstreamCursor &Stream = F.Stream;
+
+ if (Stream.EnterSubBlock(AST_BLOCK_ID)) {
+ Error("malformed block record in AST file");
+ return Failure;
+ }
+
+ // Read all of the records and blocks for the AST file.
+ RecordData Record;
+ while (1) {
+ llvm::BitstreamEntry Entry = Stream.advance();
+
+ switch (Entry.Kind) {
+ case llvm::BitstreamEntry::Error:
+ Error("error at end of module block in AST file");
+ return Failure;
+ case llvm::BitstreamEntry::EndBlock: {
+ // Outside of C++, we do not store a lookup map for the translation unit.
+ // Instead, mark it as needing a lookup map to be built if this module
+ // contains any declarations lexically within it (which it always does!).
+ // This usually has no cost, since we very rarely need the lookup map for
+ // the translation unit outside C++.
+ DeclContext *DC = Context.getTranslationUnitDecl();
+ if (DC->hasExternalLexicalStorage() &&
+ !getContext().getLangOpts().CPlusPlus)
+ DC->setMustBuildLookupTable();
+
+ return Success;
+ }
+ case llvm::BitstreamEntry::SubBlock:
+ switch (Entry.ID) {
+ case DECLTYPES_BLOCK_ID:
+ // We lazily load the decls block, but we want to set up the
+ // DeclsCursor cursor to point into it. Clone our current bitcode
+ // cursor to it, enter the block and read the abbrevs in that block.
+ // With the main cursor, we just skip over it.
+ F.DeclsCursor = Stream;
+ if (Stream.SkipBlock() || // Skip with the main cursor.
+ // Read the abbrevs.
+ ReadBlockAbbrevs(F.DeclsCursor, DECLTYPES_BLOCK_ID)) {
+ Error("malformed block record in AST file");
+ return Failure;
+ }
+ break;
+
+ case PREPROCESSOR_BLOCK_ID:
+ F.MacroCursor = Stream;
+ if (!PP.getExternalSource())
+ PP.setExternalSource(this);
+
+ if (Stream.SkipBlock() ||
+ ReadBlockAbbrevs(F.MacroCursor, PREPROCESSOR_BLOCK_ID)) {
+ Error("malformed block record in AST file");
+ return Failure;
+ }
+ F.MacroStartOffset = F.MacroCursor.GetCurrentBitNo();
+ break;
+
+ case PREPROCESSOR_DETAIL_BLOCK_ID:
+ F.PreprocessorDetailCursor = Stream;
+ if (Stream.SkipBlock() ||
+ ReadBlockAbbrevs(F.PreprocessorDetailCursor,
+ PREPROCESSOR_DETAIL_BLOCK_ID)) {
+ Error("malformed preprocessor detail record in AST file");
+ return Failure;
+ }
+ F.PreprocessorDetailStartOffset
+ = F.PreprocessorDetailCursor.GetCurrentBitNo();
+
+ if (!PP.getPreprocessingRecord())
+ PP.createPreprocessingRecord();
+ if (!PP.getPreprocessingRecord()->getExternalSource())
+ PP.getPreprocessingRecord()->SetExternalSource(*this);
+ break;
+
+ case SOURCE_MANAGER_BLOCK_ID:
+ if (ReadSourceManagerBlock(F))
+ return Failure;
+ break;
+
+ case SUBMODULE_BLOCK_ID:
+ if (ASTReadResult Result = ReadSubmoduleBlock(F, ClientLoadCapabilities))
+ return Result;
+ break;
+
+ case COMMENTS_BLOCK_ID: {
+ BitstreamCursor C = Stream;
+ if (Stream.SkipBlock() ||
+ ReadBlockAbbrevs(C, COMMENTS_BLOCK_ID)) {
+ Error("malformed comments block in AST file");
+ return Failure;
+ }
+ CommentsCursors.push_back(std::make_pair(C, &F));
+ break;
+ }
+
+ default:
+ if (Stream.SkipBlock()) {
+ Error("malformed block record in AST file");
+ return Failure;
+ }
+ break;
+ }
+ continue;
+
+ case llvm::BitstreamEntry::Record:
+ // The interesting case.
+ break;
+ }
+
+ // Read and process a record.
+ Record.clear();
+ StringRef Blob;
+ switch ((ASTRecordTypes)Stream.readRecord(Entry.ID, Record, &Blob)) {
+ default: // Default behavior: ignore.
+ break;
+
+ case TYPE_OFFSET: {
+ if (F.LocalNumTypes != 0) {
+ Error("duplicate TYPE_OFFSET record in AST file");
+ return Failure;
+ }
+ F.TypeOffsets = (const uint32_t *)Blob.data();
+ F.LocalNumTypes = Record[0];
+ unsigned LocalBaseTypeIndex = Record[1];
+ F.BaseTypeIndex = getTotalNumTypes();
+
+ if (F.LocalNumTypes > 0) {
+ // Introduce the global -> local mapping for types within this module.
+ GlobalTypeMap.insert(std::make_pair(getTotalNumTypes(), &F));
+
+ // Introduce the local -> global mapping for types within this module.
+ F.TypeRemap.insertOrReplace(
+ std::make_pair(LocalBaseTypeIndex,
+ F.BaseTypeIndex - LocalBaseTypeIndex));
+
+ TypesLoaded.resize(TypesLoaded.size() + F.LocalNumTypes);
+ }
+ break;
+ }
+
+ case DECL_OFFSET: {
+ if (F.LocalNumDecls != 0) {
+ Error("duplicate DECL_OFFSET record in AST file");
+ return Failure;
+ }
+ F.DeclOffsets = (const DeclOffset *)Blob.data();
+ F.LocalNumDecls = Record[0];
+ unsigned LocalBaseDeclID = Record[1];
+ F.BaseDeclID = getTotalNumDecls();
+
+ if (F.LocalNumDecls > 0) {
+ // Introduce the global -> local mapping for declarations within this
+ // module.
+ GlobalDeclMap.insert(
+ std::make_pair(getTotalNumDecls() + NUM_PREDEF_DECL_IDS, &F));
+
+ // Introduce the local -> global mapping for declarations within this
+ // module.
+ F.DeclRemap.insertOrReplace(
+ std::make_pair(LocalBaseDeclID, F.BaseDeclID - LocalBaseDeclID));
+
+ // Introduce the global -> local mapping for declarations within this
+ // module.
+ F.GlobalToLocalDeclIDs[&F] = LocalBaseDeclID;
+
+ DeclsLoaded.resize(DeclsLoaded.size() + F.LocalNumDecls);
+ }
+ break;
+ }
+
+ case TU_UPDATE_LEXICAL: {
+ DeclContext *TU = Context.getTranslationUnitDecl();
+ DeclContextInfo &Info = F.DeclContextInfos[TU];
+ Info.LexicalDecls = reinterpret_cast<const KindDeclIDPair *>(Blob.data());
+ Info.NumLexicalDecls
+ = static_cast<unsigned int>(Blob.size() / sizeof(KindDeclIDPair));
+ TU->setHasExternalLexicalStorage(true);
+ break;
+ }
+
+ case UPDATE_VISIBLE: {
+ unsigned Idx = 0;
+ serialization::DeclID ID = ReadDeclID(F, Record, Idx);
+ ASTDeclContextNameLookupTable *Table =
+ ASTDeclContextNameLookupTable::Create(
+ (const unsigned char *)Blob.data() + Record[Idx++],
+ (const unsigned char *)Blob.data() + sizeof(uint32_t),
+ (const unsigned char *)Blob.data(),
+ ASTDeclContextNameLookupTrait(*this, F));
+ if (Decl *D = GetExistingDecl(ID)) {
+ auto *DC = cast<DeclContext>(D);
+ DC->getPrimaryContext()->setHasExternalVisibleStorage(true);
+ auto *&LookupTable = F.DeclContextInfos[DC].NameLookupTableData;
+ delete LookupTable;
+ LookupTable = Table;
+ } else
+ PendingVisibleUpdates[ID].push_back(std::make_pair(Table, &F));
+ break;
+ }
+
+ case IDENTIFIER_TABLE:
+ F.IdentifierTableData = Blob.data();
+ if (Record[0]) {
+ F.IdentifierLookupTable = ASTIdentifierLookupTable::Create(
+ (const unsigned char *)F.IdentifierTableData + Record[0],
+ (const unsigned char *)F.IdentifierTableData + sizeof(uint32_t),
+ (const unsigned char *)F.IdentifierTableData,
+ ASTIdentifierLookupTrait(*this, F));
+
+ PP.getIdentifierTable().setExternalIdentifierLookup(this);
+ }
+ break;
+
+ case IDENTIFIER_OFFSET: {
+ if (F.LocalNumIdentifiers != 0) {
+ Error("duplicate IDENTIFIER_OFFSET record in AST file");
+ return Failure;
+ }
+ F.IdentifierOffsets = (const uint32_t *)Blob.data();
+ F.LocalNumIdentifiers = Record[0];
+ unsigned LocalBaseIdentifierID = Record[1];
+ F.BaseIdentifierID = getTotalNumIdentifiers();
+
+ if (F.LocalNumIdentifiers > 0) {
+ // Introduce the global -> local mapping for identifiers within this
+ // module.
+ GlobalIdentifierMap.insert(std::make_pair(getTotalNumIdentifiers() + 1,
+ &F));
+
+ // Introduce the local -> global mapping for identifiers within this
+ // module.
+ F.IdentifierRemap.insertOrReplace(
+ std::make_pair(LocalBaseIdentifierID,
+ F.BaseIdentifierID - LocalBaseIdentifierID));
+
+ IdentifiersLoaded.resize(IdentifiersLoaded.size()
+ + F.LocalNumIdentifiers);
+ }
+ break;
+ }
+
+ case EAGERLY_DESERIALIZED_DECLS:
+ // FIXME: Skip reading this record if our ASTConsumer doesn't care
+ // about "interesting" decls (for instance, if we're building a module).
+ for (unsigned I = 0, N = Record.size(); I != N; ++I)
+ EagerlyDeserializedDecls.push_back(getGlobalDeclID(F, Record[I]));
+ break;
+
+ case SPECIAL_TYPES:
+ if (SpecialTypes.empty()) {
+ for (unsigned I = 0, N = Record.size(); I != N; ++I)
+ SpecialTypes.push_back(getGlobalTypeID(F, Record[I]));
+ break;
+ }
+
+ if (SpecialTypes.size() != Record.size()) {
+ Error("invalid special-types record");
+ return Failure;
+ }
+
+ for (unsigned I = 0, N = Record.size(); I != N; ++I) {
+ serialization::TypeID ID = getGlobalTypeID(F, Record[I]);
+ if (!SpecialTypes[I])
+ SpecialTypes[I] = ID;
+ // FIXME: If ID && SpecialTypes[I] != ID, do we need a separate
+ // merge step?
+ }
+ break;
+
+ case STATISTICS:
+ TotalNumStatements += Record[0];
+ TotalNumMacros += Record[1];
+ TotalLexicalDeclContexts += Record[2];
+ TotalVisibleDeclContexts += Record[3];
+ break;
+
+ case UNUSED_FILESCOPED_DECLS:
+ for (unsigned I = 0, N = Record.size(); I != N; ++I)
+ UnusedFileScopedDecls.push_back(getGlobalDeclID(F, Record[I]));
+ break;
+
+ case DELEGATING_CTORS:
+ for (unsigned I = 0, N = Record.size(); I != N; ++I)
+ DelegatingCtorDecls.push_back(getGlobalDeclID(F, Record[I]));
+ break;
+
+ case WEAK_UNDECLARED_IDENTIFIERS:
+ if (Record.size() % 4 != 0) {
+ Error("invalid weak identifiers record");
+ return Failure;
+ }
+
+ // FIXME: Ignore weak undeclared identifiers from non-original PCH
+ // files. This isn't the way to do it :)
+ WeakUndeclaredIdentifiers.clear();
+
+ // Translate the weak, undeclared identifiers into global IDs.
+ for (unsigned I = 0, N = Record.size(); I < N; /* in loop */) {
+ WeakUndeclaredIdentifiers.push_back(
+ getGlobalIdentifierID(F, Record[I++]));
+ WeakUndeclaredIdentifiers.push_back(
+ getGlobalIdentifierID(F, Record[I++]));
+ WeakUndeclaredIdentifiers.push_back(
+ ReadSourceLocation(F, Record, I).getRawEncoding());
+ WeakUndeclaredIdentifiers.push_back(Record[I++]);
+ }
+ break;
+
+ case SELECTOR_OFFSETS: {
+ F.SelectorOffsets = (const uint32_t *)Blob.data();
+ F.LocalNumSelectors = Record[0];
+ unsigned LocalBaseSelectorID = Record[1];
+ F.BaseSelectorID = getTotalNumSelectors();
+
+ if (F.LocalNumSelectors > 0) {
+ // Introduce the global -> local mapping for selectors within this
+ // module.
+ GlobalSelectorMap.insert(std::make_pair(getTotalNumSelectors()+1, &F));
+
+ // Introduce the local -> global mapping for selectors within this
+ // module.
+ F.SelectorRemap.insertOrReplace(
+ std::make_pair(LocalBaseSelectorID,
+ F.BaseSelectorID - LocalBaseSelectorID));
+
+ SelectorsLoaded.resize(SelectorsLoaded.size() + F.LocalNumSelectors);
+ }
+ break;
+ }
+
+ case METHOD_POOL:
+ F.SelectorLookupTableData = (const unsigned char *)Blob.data();
+ if (Record[0])
+ F.SelectorLookupTable
+ = ASTSelectorLookupTable::Create(
+ F.SelectorLookupTableData + Record[0],
+ F.SelectorLookupTableData,
+ ASTSelectorLookupTrait(*this, F));
+ TotalNumMethodPoolEntries += Record[1];
+ break;
+
+ case REFERENCED_SELECTOR_POOL:
+ if (!Record.empty()) {
+ for (unsigned Idx = 0, N = Record.size() - 1; Idx < N; /* in loop */) {
+ ReferencedSelectorsData.push_back(getGlobalSelectorID(F,
+ Record[Idx++]));
+ ReferencedSelectorsData.push_back(ReadSourceLocation(F, Record, Idx).
+ getRawEncoding());
+ }
+ }
+ break;
+
+ case PP_COUNTER_VALUE:
+ if (!Record.empty() && Listener)
+ Listener->ReadCounter(F, Record[0]);
+ break;
+
+ case FILE_SORTED_DECLS:
+ F.FileSortedDecls = (const DeclID *)Blob.data();
+ F.NumFileSortedDecls = Record[0];
+ break;
+
+ case SOURCE_LOCATION_OFFSETS: {
+ F.SLocEntryOffsets = (const uint32_t *)Blob.data();
+ F.LocalNumSLocEntries = Record[0];
+ unsigned SLocSpaceSize = Record[1];
+ std::tie(F.SLocEntryBaseID, F.SLocEntryBaseOffset) =
+ SourceMgr.AllocateLoadedSLocEntries(F.LocalNumSLocEntries,
+ SLocSpaceSize);
+ // Make our entry in the range map. BaseID is negative and growing, so
+ // we invert it. Because we invert it, though, we need the other end of
+ // the range.
+ unsigned RangeStart =
+ unsigned(-F.SLocEntryBaseID) - F.LocalNumSLocEntries + 1;
+ GlobalSLocEntryMap.insert(std::make_pair(RangeStart, &F));
+ F.FirstLoc = SourceLocation::getFromRawEncoding(F.SLocEntryBaseOffset);
+
+ // SLocEntryBaseOffset is lower than MaxLoadedOffset and decreasing.
+ assert((F.SLocEntryBaseOffset & (1U << 31U)) == 0);
+ GlobalSLocOffsetMap.insert(
+ std::make_pair(SourceManager::MaxLoadedOffset - F.SLocEntryBaseOffset
+ - SLocSpaceSize,&F));
+
+ // Initialize the remapping table.
+ // Invalid stays invalid.
+ F.SLocRemap.insertOrReplace(std::make_pair(0U, 0));
+ // This module. Base was 2 when being compiled.
+ F.SLocRemap.insertOrReplace(std::make_pair(2U,
+ static_cast<int>(F.SLocEntryBaseOffset - 2)));
+
+ TotalNumSLocEntries += F.LocalNumSLocEntries;
+ break;
+ }
+
+ case MODULE_OFFSET_MAP: {
+ // Additional remapping information.
+ const unsigned char *Data = (const unsigned char*)Blob.data();
+ const unsigned char *DataEnd = Data + Blob.size();
+
+ // If we see this entry before SOURCE_LOCATION_OFFSETS, add placeholders.
+ if (F.SLocRemap.find(0) == F.SLocRemap.end()) {
+ F.SLocRemap.insert(std::make_pair(0U, 0));
+ F.SLocRemap.insert(std::make_pair(2U, 1));
+ }
+
+ // Continuous range maps we may be updating in our module.
+ typedef ContinuousRangeMap<uint32_t, int, 2>::Builder
+ RemapBuilder;
+ RemapBuilder SLocRemap(F.SLocRemap);
+ RemapBuilder IdentifierRemap(F.IdentifierRemap);
+ RemapBuilder MacroRemap(F.MacroRemap);
+ RemapBuilder PreprocessedEntityRemap(F.PreprocessedEntityRemap);
+ RemapBuilder SubmoduleRemap(F.SubmoduleRemap);
+ RemapBuilder SelectorRemap(F.SelectorRemap);
+ RemapBuilder DeclRemap(F.DeclRemap);
+ RemapBuilder TypeRemap(F.TypeRemap);
+
+ while(Data < DataEnd) {
+ using namespace llvm::support;
+ uint16_t Len = endian::readNext<uint16_t, little, unaligned>(Data);
+ StringRef Name = StringRef((const char*)Data, Len);
+ Data += Len;
+ ModuleFile *OM = ModuleMgr.lookup(Name);
+ if (!OM) {
+ Error("SourceLocation remap refers to unknown module");
+ return Failure;
+ }
+
+ uint32_t SLocOffset =
+ endian::readNext<uint32_t, little, unaligned>(Data);
+ uint32_t IdentifierIDOffset =
+ endian::readNext<uint32_t, little, unaligned>(Data);
+ uint32_t MacroIDOffset =
+ endian::readNext<uint32_t, little, unaligned>(Data);
+ uint32_t PreprocessedEntityIDOffset =
+ endian::readNext<uint32_t, little, unaligned>(Data);
+ uint32_t SubmoduleIDOffset =
+ endian::readNext<uint32_t, little, unaligned>(Data);
+ uint32_t SelectorIDOffset =
+ endian::readNext<uint32_t, little, unaligned>(Data);
+ uint32_t DeclIDOffset =
+ endian::readNext<uint32_t, little, unaligned>(Data);
+ uint32_t TypeIndexOffset =
+ endian::readNext<uint32_t, little, unaligned>(Data);
+
+ uint32_t None = std::numeric_limits<uint32_t>::max();
+
+ auto mapOffset = [&](uint32_t Offset, uint32_t BaseOffset,
+ RemapBuilder &Remap) {
+ if (Offset != None)
+ Remap.insert(std::make_pair(Offset,
+ static_cast<int>(BaseOffset - Offset)));
+ };
+ mapOffset(SLocOffset, OM->SLocEntryBaseOffset, SLocRemap);
+ mapOffset(IdentifierIDOffset, OM->BaseIdentifierID, IdentifierRemap);
+ mapOffset(MacroIDOffset, OM->BaseMacroID, MacroRemap);
+ mapOffset(PreprocessedEntityIDOffset, OM->BasePreprocessedEntityID,
+ PreprocessedEntityRemap);
+ mapOffset(SubmoduleIDOffset, OM->BaseSubmoduleID, SubmoduleRemap);
+ mapOffset(SelectorIDOffset, OM->BaseSelectorID, SelectorRemap);
+ mapOffset(DeclIDOffset, OM->BaseDeclID, DeclRemap);
+ mapOffset(TypeIndexOffset, OM->BaseTypeIndex, TypeRemap);
+
+ // Global -> local mappings.
+ F.GlobalToLocalDeclIDs[OM] = DeclIDOffset;
+ }
+ break;
+ }
+
+ case SOURCE_MANAGER_LINE_TABLE:
+ if (ParseLineTable(F, Record))
+ return Failure;
+ break;
+
+ case SOURCE_LOCATION_PRELOADS: {
+ // Need to transform from the local view (1-based IDs) to the global view,
+ // which is based off F.SLocEntryBaseID.
+ if (!F.PreloadSLocEntries.empty()) {
+ Error("Multiple SOURCE_LOCATION_PRELOADS records in AST file");
+ return Failure;
+ }
+
+ F.PreloadSLocEntries.swap(Record);
+ break;
+ }
+
+ case EXT_VECTOR_DECLS:
+ for (unsigned I = 0, N = Record.size(); I != N; ++I)
+ ExtVectorDecls.push_back(getGlobalDeclID(F, Record[I]));
+ break;
+
+ case VTABLE_USES:
+ if (Record.size() % 3 != 0) {
+ Error("Invalid VTABLE_USES record");
+ return Failure;
+ }
+
+ // Later tables overwrite earlier ones.
+ // FIXME: Modules will have some trouble with this. This is clearly not
+ // the right way to do this.
+ VTableUses.clear();
+
+ for (unsigned Idx = 0, N = Record.size(); Idx != N; /* In loop */) {
+ VTableUses.push_back(getGlobalDeclID(F, Record[Idx++]));
+ VTableUses.push_back(
+ ReadSourceLocation(F, Record, Idx).getRawEncoding());
+ VTableUses.push_back(Record[Idx++]);
+ }
+ break;
+
+ case PENDING_IMPLICIT_INSTANTIATIONS:
+ if (PendingInstantiations.size() % 2 != 0) {
+ Error("Invalid existing PendingInstantiations");
+ return Failure;
+ }
+
+ if (Record.size() % 2 != 0) {
+ Error("Invalid PENDING_IMPLICIT_INSTANTIATIONS block");
+ return Failure;
+ }
+
+ for (unsigned I = 0, N = Record.size(); I != N; /* in loop */) {
+ PendingInstantiations.push_back(getGlobalDeclID(F, Record[I++]));
+ PendingInstantiations.push_back(
+ ReadSourceLocation(F, Record, I).getRawEncoding());
+ }
+ break;
+
+ case SEMA_DECL_REFS:
+ if (Record.size() != 2) {
+ Error("Invalid SEMA_DECL_REFS block");
+ return Failure;
+ }
+ for (unsigned I = 0, N = Record.size(); I != N; ++I)
+ SemaDeclRefs.push_back(getGlobalDeclID(F, Record[I]));
+ break;
+
+ case PPD_ENTITIES_OFFSETS: {
+ F.PreprocessedEntityOffsets = (const PPEntityOffset *)Blob.data();
+ assert(Blob.size() % sizeof(PPEntityOffset) == 0);
+ F.NumPreprocessedEntities = Blob.size() / sizeof(PPEntityOffset);
+
+ unsigned LocalBasePreprocessedEntityID = Record[0];
+
+ unsigned StartingID;
+ if (!PP.getPreprocessingRecord())
+ PP.createPreprocessingRecord();
+ if (!PP.getPreprocessingRecord()->getExternalSource())
+ PP.getPreprocessingRecord()->SetExternalSource(*this);
+ StartingID
+ = PP.getPreprocessingRecord()
+ ->allocateLoadedEntities(F.NumPreprocessedEntities);
+ F.BasePreprocessedEntityID = StartingID;
+
+ if (F.NumPreprocessedEntities > 0) {
+ // Introduce the global -> local mapping for preprocessed entities in
+ // this module.
+ GlobalPreprocessedEntityMap.insert(std::make_pair(StartingID, &F));
+
+ // Introduce the local -> global mapping for preprocessed entities in
+ // this module.
+ F.PreprocessedEntityRemap.insertOrReplace(
+ std::make_pair(LocalBasePreprocessedEntityID,
+ F.BasePreprocessedEntityID - LocalBasePreprocessedEntityID));
+ }
+
+ break;
+ }
+
+ case DECL_UPDATE_OFFSETS: {
+ if (Record.size() % 2 != 0) {
+ Error("invalid DECL_UPDATE_OFFSETS block in AST file");
+ return Failure;
+ }
+ for (unsigned I = 0, N = Record.size(); I != N; I += 2) {
+ GlobalDeclID ID = getGlobalDeclID(F, Record[I]);
+ DeclUpdateOffsets[ID].push_back(std::make_pair(&F, Record[I + 1]));
+
+ // If we've already loaded the decl, perform the updates when we finish
+ // loading this block.
+ if (Decl *D = GetExistingDecl(ID))
+ PendingUpdateRecords.push_back(std::make_pair(ID, D));
+ }
+ break;
+ }
+
+ case DECL_REPLACEMENTS: {
+ if (Record.size() % 3 != 0) {
+ Error("invalid DECL_REPLACEMENTS block in AST file");
+ return Failure;
+ }
+ for (unsigned I = 0, N = Record.size(); I != N; I += 3)
+ ReplacedDecls[getGlobalDeclID(F, Record[I])]
+ = ReplacedDeclInfo(&F, Record[I+1], Record[I+2]);
+ break;
+ }
+
+ case OBJC_CATEGORIES_MAP: {
+ if (F.LocalNumObjCCategoriesInMap != 0) {
+ Error("duplicate OBJC_CATEGORIES_MAP record in AST file");
+ return Failure;
+ }
+
+ F.LocalNumObjCCategoriesInMap = Record[0];
+ F.ObjCCategoriesMap = (const ObjCCategoriesInfo *)Blob.data();
+ break;
+ }
+
+ case OBJC_CATEGORIES:
+ F.ObjCCategories.swap(Record);
+ break;
+
+ case CXX_BASE_SPECIFIER_OFFSETS: {
+ if (F.LocalNumCXXBaseSpecifiers != 0) {
+ Error("duplicate CXX_BASE_SPECIFIER_OFFSETS record in AST file");
+ return Failure;
+ }
+
+ F.LocalNumCXXBaseSpecifiers = Record[0];
+ F.CXXBaseSpecifiersOffsets = (const uint32_t *)Blob.data();
+ break;
+ }
+
+ case CXX_CTOR_INITIALIZERS_OFFSETS: {
+ if (F.LocalNumCXXCtorInitializers != 0) {
+ Error("duplicate CXX_CTOR_INITIALIZERS_OFFSETS record in AST file");
+ return Failure;
+ }
+
+ F.LocalNumCXXCtorInitializers = Record[0];
+ F.CXXCtorInitializersOffsets = (const uint32_t *)Blob.data();
+ break;
+ }
+
+ case DIAG_PRAGMA_MAPPINGS:
+ if (F.PragmaDiagMappings.empty())
+ F.PragmaDiagMappings.swap(Record);
+ else
+ F.PragmaDiagMappings.insert(F.PragmaDiagMappings.end(),
+ Record.begin(), Record.end());
+ break;
+
+ case CUDA_SPECIAL_DECL_REFS:
+ // Later tables overwrite earlier ones.
+ // FIXME: Modules will have trouble with this.
+ CUDASpecialDeclRefs.clear();
+ for (unsigned I = 0, N = Record.size(); I != N; ++I)
+ CUDASpecialDeclRefs.push_back(getGlobalDeclID(F, Record[I]));
+ break;
+
+ case HEADER_SEARCH_TABLE: {
+ F.HeaderFileInfoTableData = Blob.data();
+ F.LocalNumHeaderFileInfos = Record[1];
+ if (Record[0]) {
+ F.HeaderFileInfoTable
+ = HeaderFileInfoLookupTable::Create(
+ (const unsigned char *)F.HeaderFileInfoTableData + Record[0],
+ (const unsigned char *)F.HeaderFileInfoTableData,
+ HeaderFileInfoTrait(*this, F,
+ &PP.getHeaderSearchInfo(),
+ Blob.data() + Record[2]));
+
+ PP.getHeaderSearchInfo().SetExternalSource(this);
+ if (!PP.getHeaderSearchInfo().getExternalLookup())
+ PP.getHeaderSearchInfo().SetExternalLookup(this);
+ }
+ break;
+ }
+
+ case FP_PRAGMA_OPTIONS:
+ // Later tables overwrite earlier ones.
+ FPPragmaOptions.swap(Record);
+ break;
+
+ case OPENCL_EXTENSIONS:
+ // Later tables overwrite earlier ones.
+ OpenCLExtensions.swap(Record);
+ break;
+
+ case TENTATIVE_DEFINITIONS:
+ for (unsigned I = 0, N = Record.size(); I != N; ++I)
+ TentativeDefinitions.push_back(getGlobalDeclID(F, Record[I]));
+ break;
+
+ case KNOWN_NAMESPACES:
+ for (unsigned I = 0, N = Record.size(); I != N; ++I)
+ KnownNamespaces.push_back(getGlobalDeclID(F, Record[I]));
+ break;
+
+ case UNDEFINED_BUT_USED:
+ if (UndefinedButUsed.size() % 2 != 0) {
+ Error("Invalid existing UndefinedButUsed");
+ return Failure;
+ }
+
+ if (Record.size() % 2 != 0) {
+ Error("invalid undefined-but-used record");
+ return Failure;
+ }
+ for (unsigned I = 0, N = Record.size(); I != N; /* in loop */) {
+ UndefinedButUsed.push_back(getGlobalDeclID(F, Record[I++]));
+ UndefinedButUsed.push_back(
+ ReadSourceLocation(F, Record, I).getRawEncoding());
+ }
+ break;
+ case DELETE_EXPRS_TO_ANALYZE:
+ for (unsigned I = 0, N = Record.size(); I != N;) {
+ DelayedDeleteExprs.push_back(getGlobalDeclID(F, Record[I++]));
+ const uint64_t Count = Record[I++];
+ DelayedDeleteExprs.push_back(Count);
+ for (uint64_t C = 0; C < Count; ++C) {
+ DelayedDeleteExprs.push_back(ReadSourceLocation(F, Record, I).getRawEncoding());
+ bool IsArrayForm = Record[I++] == 1;
+ DelayedDeleteExprs.push_back(IsArrayForm);
+ }
+ }
+ break;
+
+ case IMPORTED_MODULES: {
+ if (F.Kind != MK_ImplicitModule && F.Kind != MK_ExplicitModule) {
+ // If we aren't loading a module (which has its own exports), make
+ // all of the imported modules visible.
+ // FIXME: Deal with macros-only imports.
+ for (unsigned I = 0, N = Record.size(); I != N; /**/) {
+ unsigned GlobalID = getGlobalSubmoduleID(F, Record[I++]);
+ SourceLocation Loc = ReadSourceLocation(F, Record, I);
+ if (GlobalID)
+ ImportedModules.push_back(ImportedSubmodule(GlobalID, Loc));
+ }
+ }
+ break;
+ }
+
+ case LOCAL_REDECLARATIONS: {
+ F.RedeclarationChains.swap(Record);
+ break;
+ }
+
+ case LOCAL_REDECLARATIONS_MAP: {
+ if (F.LocalNumRedeclarationsInMap != 0) {
+ Error("duplicate LOCAL_REDECLARATIONS_MAP record in AST file");
+ return Failure;
+ }
+
+ F.LocalNumRedeclarationsInMap = Record[0];
+ F.RedeclarationsMap = (const LocalRedeclarationsInfo *)Blob.data();
+ break;
+ }
+
+ case MACRO_OFFSET: {
+ if (F.LocalNumMacros != 0) {
+ Error("duplicate MACRO_OFFSET record in AST file");
+ return Failure;
+ }
+ F.MacroOffsets = (const uint32_t *)Blob.data();
+ F.LocalNumMacros = Record[0];
+ unsigned LocalBaseMacroID = Record[1];
+ F.BaseMacroID = getTotalNumMacros();
+
+ if (F.LocalNumMacros > 0) {
+ // Introduce the global -> local mapping for macros within this module.
+ GlobalMacroMap.insert(std::make_pair(getTotalNumMacros() + 1, &F));
+
+ // Introduce the local -> global mapping for macros within this module.
+ F.MacroRemap.insertOrReplace(
+ std::make_pair(LocalBaseMacroID,
+ F.BaseMacroID - LocalBaseMacroID));
+
+ MacrosLoaded.resize(MacrosLoaded.size() + F.LocalNumMacros);
+ }
+ break;
+ }
+
+ case LATE_PARSED_TEMPLATE: {
+ LateParsedTemplates.append(Record.begin(), Record.end());
+ break;
+ }
+
+ case OPTIMIZE_PRAGMA_OPTIONS:
+ if (Record.size() != 1) {
+ Error("invalid pragma optimize record");
+ return Failure;
+ }
+ OptimizeOffPragmaLocation = ReadSourceLocation(F, Record[0]);
+ break;
+
+ case UNUSED_LOCAL_TYPEDEF_NAME_CANDIDATES:
+ for (unsigned I = 0, N = Record.size(); I != N; ++I)
+ UnusedLocalTypedefNameCandidates.push_back(
+ getGlobalDeclID(F, Record[I]));
+ break;
+ }
+ }
+}
+
+ASTReader::ASTReadResult
+ASTReader::ReadModuleMapFileBlock(RecordData &Record, ModuleFile &F,
+ const ModuleFile *ImportedBy,
+ unsigned ClientLoadCapabilities) {
+ unsigned Idx = 0;
+ F.ModuleMapPath = ReadPath(F, Record, Idx);
+
+ if (F.Kind == MK_ExplicitModule) {
+ // For an explicitly-loaded module, we don't care whether the original
+ // module map file exists or matches.
+ return Success;
+ }
+
+ // Try to resolve ModuleName in the current header search context and
+ // verify that it is found in the same module map file as we saved. If the
+ // top-level AST file is a main file, skip this check because there is no
+ // usable header search context.
+ assert(!F.ModuleName.empty() &&
+ "MODULE_NAME should come before MODULE_MAP_FILE");
+ if (F.Kind == MK_ImplicitModule &&
+ (*ModuleMgr.begin())->Kind != MK_MainFile) {
+ // An implicitly-loaded module file should have its module listed in some
+ // module map file that we've already loaded.
+ Module *M = PP.getHeaderSearchInfo().lookupModule(F.ModuleName);
+ auto &Map = PP.getHeaderSearchInfo().getModuleMap();
+ const FileEntry *ModMap = M ? Map.getModuleMapFileForUniquing(M) : nullptr;
+ if (!ModMap) {
+ assert(ImportedBy && "top-level import should be verified");
+ if ((ClientLoadCapabilities & ARR_Missing) == 0)
+ Diag(diag::err_imported_module_not_found) << F.ModuleName << F.FileName
+ << ImportedBy->FileName
+ << F.ModuleMapPath;
+ return Missing;
+ }
+
+ assert(M->Name == F.ModuleName && "found module with different name");
+
+ // Check the primary module map file.
+ const FileEntry *StoredModMap = FileMgr.getFile(F.ModuleMapPath);
+ if (StoredModMap == nullptr || StoredModMap != ModMap) {
+ assert(ModMap && "found module is missing module map file");
+ assert(ImportedBy && "top-level import should be verified");
+ if ((ClientLoadCapabilities & ARR_OutOfDate) == 0)
+ Diag(diag::err_imported_module_modmap_changed)
+ << F.ModuleName << ImportedBy->FileName
+ << ModMap->getName() << F.ModuleMapPath;
+ return OutOfDate;
+ }
+
+ llvm::SmallPtrSet<const FileEntry *, 1> AdditionalStoredMaps;
+ for (unsigned I = 0, N = Record[Idx++]; I < N; ++I) {
+ // FIXME: we should use input files rather than storing names.
+ std::string Filename = ReadPath(F, Record, Idx);
+ const FileEntry *F =
+ FileMgr.getFile(Filename, false, false);
+ if (F == nullptr) {
+ if ((ClientLoadCapabilities & ARR_OutOfDate) == 0)
+ Error("could not find file '" + Filename +"' referenced by AST file");
+ return OutOfDate;
+ }
+ AdditionalStoredMaps.insert(F);
+ }
+
+ // Check any additional module map files (e.g. module.private.modulemap)
+ // that are not in the pcm.
+ if (auto *AdditionalModuleMaps = Map.getAdditionalModuleMapFiles(M)) {
+ for (const FileEntry *ModMap : *AdditionalModuleMaps) {
+ // Remove files that match
+ // Note: SmallPtrSet::erase is really remove
+ if (!AdditionalStoredMaps.erase(ModMap)) {
+ if ((ClientLoadCapabilities & ARR_OutOfDate) == 0)
+ Diag(diag::err_module_different_modmap)
+ << F.ModuleName << /*new*/0 << ModMap->getName();
+ return OutOfDate;
+ }
+ }
+ }
+
+ // Check any additional module map files that are in the pcm, but not
+ // found in header search. Cases that match are already removed.
+ for (const FileEntry *ModMap : AdditionalStoredMaps) {
+ if ((ClientLoadCapabilities & ARR_OutOfDate) == 0)
+ Diag(diag::err_module_different_modmap)
+ << F.ModuleName << /*not new*/1 << ModMap->getName();
+ return OutOfDate;
+ }
+ }
+
+ if (Listener)
+ Listener->ReadModuleMapFile(F.ModuleMapPath);
+ return Success;
+}
+
+
+/// \brief Move the given method to the back of the global list of methods.
+static void moveMethodToBackOfGlobalList(Sema &S, ObjCMethodDecl *Method) {
+ // Find the entry for this selector in the method pool.
+ Sema::GlobalMethodPool::iterator Known
+ = S.MethodPool.find(Method->getSelector());
+ if (Known == S.MethodPool.end())
+ return;
+
+ // Retrieve the appropriate method list.
+ ObjCMethodList &Start = Method->isInstanceMethod()? Known->second.first
+ : Known->second.second;
+ bool Found = false;
+ for (ObjCMethodList *List = &Start; List; List = List->getNext()) {
+ if (!Found) {
+ if (List->getMethod() == Method) {
+ Found = true;
+ } else {
+ // Keep searching.
+ continue;
+ }
+ }
+
+ if (List->getNext())
+ List->setMethod(List->getNext()->getMethod());
+ else
+ List->setMethod(Method);
+ }
+}
+
+void ASTReader::makeNamesVisible(const HiddenNames &Names, Module *Owner) {
+ assert(Owner->NameVisibility != Module::Hidden && "nothing to make visible?");
+ for (Decl *D : Names) {
+ bool wasHidden = D->Hidden;
+ D->Hidden = false;
+
+ if (wasHidden && SemaObj) {
+ if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D)) {
+ moveMethodToBackOfGlobalList(*SemaObj, Method);
+ }
+ }
+ }
+}
+
+void ASTReader::makeModuleVisible(Module *Mod,
+ Module::NameVisibilityKind NameVisibility,
+ SourceLocation ImportLoc) {
+ llvm::SmallPtrSet<Module *, 4> Visited;
+ SmallVector<Module *, 4> Stack;
+ Stack.push_back(Mod);
+ while (!Stack.empty()) {
+ Mod = Stack.pop_back_val();
+
+ if (NameVisibility <= Mod->NameVisibility) {
+ // This module already has this level of visibility (or greater), so
+ // there is nothing more to do.
+ continue;
+ }
+
+ if (!Mod->isAvailable()) {
+ // Modules that aren't available cannot be made visible.
+ continue;
+ }
+
+ // Update the module's name visibility.
+ Mod->NameVisibility = NameVisibility;
+
+ // If we've already deserialized any names from this module,
+ // mark them as visible.
+ HiddenNamesMapType::iterator Hidden = HiddenNamesMap.find(Mod);
+ if (Hidden != HiddenNamesMap.end()) {
+ auto HiddenNames = std::move(*Hidden);
+ HiddenNamesMap.erase(Hidden);
+ makeNamesVisible(HiddenNames.second, HiddenNames.first);
+ assert(HiddenNamesMap.find(Mod) == HiddenNamesMap.end() &&
+ "making names visible added hidden names");
+ }
+
+ // Push any exported modules onto the stack to be marked as visible.
+ SmallVector<Module *, 16> Exports;
+ Mod->getExportedModules(Exports);
+ for (SmallVectorImpl<Module *>::iterator
+ I = Exports.begin(), E = Exports.end(); I != E; ++I) {
+ Module *Exported = *I;
+ if (Visited.insert(Exported).second)
+ Stack.push_back(Exported);
+ }
+ }
+}
+
+bool ASTReader::loadGlobalIndex() {
+ if (GlobalIndex)
+ return false;
+
+ if (TriedLoadingGlobalIndex || !UseGlobalIndex ||
+ !Context.getLangOpts().Modules)
+ return true;
+
+ // Try to load the global index.
+ TriedLoadingGlobalIndex = true;
+ StringRef ModuleCachePath
+ = getPreprocessor().getHeaderSearchInfo().getModuleCachePath();
+ std::pair<GlobalModuleIndex *, GlobalModuleIndex::ErrorCode> Result
+ = GlobalModuleIndex::readIndex(ModuleCachePath);
+ if (!Result.first)
+ return true;
+
+ GlobalIndex.reset(Result.first);
+ ModuleMgr.setGlobalIndex(GlobalIndex.get());
+ return false;
+}
+
+bool ASTReader::isGlobalIndexUnavailable() const {
+ return Context.getLangOpts().Modules && UseGlobalIndex &&
+ !hasGlobalIndex() && TriedLoadingGlobalIndex;
+}
+
+static void updateModuleTimestamp(ModuleFile &MF) {
+ // Overwrite the timestamp file contents so that file's mtime changes.
+ std::string TimestampFilename = MF.getTimestampFilename();
+ std::error_code EC;
+ llvm::raw_fd_ostream OS(TimestampFilename, EC, llvm::sys::fs::F_Text);
+ if (EC)
+ return;
+ OS << "Timestamp file\n";
+}
+
+ASTReader::ASTReadResult ASTReader::ReadAST(const std::string &FileName,
+ ModuleKind Type,
+ SourceLocation ImportLoc,
+ unsigned ClientLoadCapabilities) {
+ llvm::SaveAndRestore<SourceLocation>
+ SetCurImportLocRAII(CurrentImportLoc, ImportLoc);
+
+ // Defer any pending actions until we get to the end of reading the AST file.
+ Deserializing AnASTFile(this);
+
+ // Bump the generation number.
+ unsigned PreviousGeneration = incrementGeneration(Context);
+
+ unsigned NumModules = ModuleMgr.size();
+ SmallVector<ImportedModule, 4> Loaded;
+ switch(ASTReadResult ReadResult = ReadASTCore(FileName, Type, ImportLoc,
+ /*ImportedBy=*/nullptr, Loaded,
+ 0, 0, 0,
+ ClientLoadCapabilities)) {
+ case Failure:
+ case Missing:
+ case OutOfDate:
+ case VersionMismatch:
+ case ConfigurationMismatch:
+ case HadErrors: {
+ llvm::SmallPtrSet<ModuleFile *, 4> LoadedSet;
+ for (const ImportedModule &IM : Loaded)
+ LoadedSet.insert(IM.Mod);
+
+ ModuleMgr.removeModules(ModuleMgr.begin() + NumModules, ModuleMgr.end(),
+ LoadedSet,
+ Context.getLangOpts().Modules
+ ? &PP.getHeaderSearchInfo().getModuleMap()
+ : nullptr);
+
+ // If we find that any modules are unusable, the global index is going
+ // to be out-of-date. Just remove it.
+ GlobalIndex.reset();
+ ModuleMgr.setGlobalIndex(nullptr);
+ return ReadResult;
+ }
+ case Success:
+ break;
+ }
+
+ // Here comes stuff that we only do once the entire chain is loaded.
+
+ // Load the AST blocks of all of the modules that we loaded.
+ for (SmallVectorImpl<ImportedModule>::iterator M = Loaded.begin(),
+ MEnd = Loaded.end();
+ M != MEnd; ++M) {
+ ModuleFile &F = *M->Mod;
+
+ // Read the AST block.
+ if (ASTReadResult Result = ReadASTBlock(F, ClientLoadCapabilities))
+ return Result;
+
+ // Once read, set the ModuleFile bit base offset and update the size in
+ // bits of all files we've seen.
+ F.GlobalBitOffset = TotalModulesSizeInBits;
+ TotalModulesSizeInBits += F.SizeInBits;
+ GlobalBitOffsetsMap.insert(std::make_pair(F.GlobalBitOffset, &F));
+
+ // Preload SLocEntries.
+ for (unsigned I = 0, N = F.PreloadSLocEntries.size(); I != N; ++I) {
+ int Index = int(F.PreloadSLocEntries[I] - 1) + F.SLocEntryBaseID;
+ // Load it through the SourceManager and don't call ReadSLocEntry()
+ // directly because the entry may have already been loaded in which case
+ // calling ReadSLocEntry() directly would trigger an assertion in
+ // SourceManager.
+ SourceMgr.getLoadedSLocEntryByID(Index);
+ }
+ }
+
+ // Setup the import locations and notify the module manager that we've
+ // committed to these module files.
+ for (SmallVectorImpl<ImportedModule>::iterator M = Loaded.begin(),
+ MEnd = Loaded.end();
+ M != MEnd; ++M) {
+ ModuleFile &F = *M->Mod;
+
+ ModuleMgr.moduleFileAccepted(&F);
+
+ // Set the import location.
+ F.DirectImportLoc = ImportLoc;
+ if (!M->ImportedBy)
+ F.ImportLoc = M->ImportLoc;
+ else
+ F.ImportLoc = ReadSourceLocation(*M->ImportedBy,
+ M->ImportLoc.getRawEncoding());
+ }
+
+ // Mark all of the identifiers in the identifier table as being out of date,
+ // so that various accessors know to check the loaded modules when the
+ // identifier is used.
+ for (IdentifierTable::iterator Id = PP.getIdentifierTable().begin(),
+ IdEnd = PP.getIdentifierTable().end();
+ Id != IdEnd; ++Id)
+ Id->second->setOutOfDate(true);
+
+ // Resolve any unresolved module exports.
+ for (unsigned I = 0, N = UnresolvedModuleRefs.size(); I != N; ++I) {
+ UnresolvedModuleRef &Unresolved = UnresolvedModuleRefs[I];
+ SubmoduleID GlobalID = getGlobalSubmoduleID(*Unresolved.File,Unresolved.ID);
+ Module *ResolvedMod = getSubmodule(GlobalID);
+
+ switch (Unresolved.Kind) {
+ case UnresolvedModuleRef::Conflict:
+ if (ResolvedMod) {
+ Module::Conflict Conflict;
+ Conflict.Other = ResolvedMod;
+ Conflict.Message = Unresolved.String.str();
+ Unresolved.Mod->Conflicts.push_back(Conflict);
+ }
+ continue;
+
+ case UnresolvedModuleRef::Import:
+ if (ResolvedMod)
+ Unresolved.Mod->Imports.insert(ResolvedMod);
+ continue;
+
+ case UnresolvedModuleRef::Export:
+ if (ResolvedMod || Unresolved.IsWildcard)
+ Unresolved.Mod->Exports.push_back(
+ Module::ExportDecl(ResolvedMod, Unresolved.IsWildcard));
+ continue;
+ }
+ }
+ UnresolvedModuleRefs.clear();
+
+ // FIXME: How do we load the 'use'd modules? They may not be submodules.
+ // Might be unnecessary as use declarations are only used to build the
+ // module itself.
+
+ InitializeContext();
+
+ if (SemaObj)
+ UpdateSema();
+
+ if (DeserializationListener)
+ DeserializationListener->ReaderInitialized(this);
+
+ ModuleFile &PrimaryModule = ModuleMgr.getPrimaryModule();
+ if (!PrimaryModule.OriginalSourceFileID.isInvalid()) {
+ PrimaryModule.OriginalSourceFileID
+ = FileID::get(PrimaryModule.SLocEntryBaseID
+ + PrimaryModule.OriginalSourceFileID.getOpaqueValue() - 1);
+
+ // If this AST file is a precompiled preamble, then set the
+ // preamble file ID of the source manager to the file source file
+ // from which the preamble was built.
+ if (Type == MK_Preamble) {
+ SourceMgr.setPreambleFileID(PrimaryModule.OriginalSourceFileID);
+ } else if (Type == MK_MainFile) {
+ SourceMgr.setMainFileID(PrimaryModule.OriginalSourceFileID);
+ }
+ }
+
+ // For any Objective-C class definitions we have already loaded, make sure
+ // that we load any additional categories.
+ for (unsigned I = 0, N = ObjCClassesLoaded.size(); I != N; ++I) {
+ loadObjCCategories(ObjCClassesLoaded[I]->getGlobalID(),
+ ObjCClassesLoaded[I],
+ PreviousGeneration);
+ }
+
+ if (PP.getHeaderSearchInfo()
+ .getHeaderSearchOpts()
+ .ModulesValidateOncePerBuildSession) {
+ // Now we are certain that the module and all modules it depends on are
+ // up to date. Create or update timestamp files for modules that are
+ // located in the module cache (not for PCH files that could be anywhere
+ // in the filesystem).
+ for (unsigned I = 0, N = Loaded.size(); I != N; ++I) {
+ ImportedModule &M = Loaded[I];
+ if (M.Mod->Kind == MK_ImplicitModule) {
+ updateModuleTimestamp(*M.Mod);
+ }
+ }
+ }
+
+ return Success;
+}
+
+static ASTFileSignature readASTFileSignature(llvm::BitstreamReader &StreamFile);
+
+/// \brief Whether \p Stream starts with the AST/PCH file magic number 'CPCH'.
+static bool startsWithASTFileMagic(BitstreamCursor &Stream) {
+ return Stream.Read(8) == 'C' &&
+ Stream.Read(8) == 'P' &&
+ Stream.Read(8) == 'C' &&
+ Stream.Read(8) == 'H';
+}
+
+ASTReader::ASTReadResult
+ASTReader::ReadASTCore(StringRef FileName,
+ ModuleKind Type,
+ SourceLocation ImportLoc,
+ ModuleFile *ImportedBy,
+ SmallVectorImpl<ImportedModule> &Loaded,
+ off_t ExpectedSize, time_t ExpectedModTime,
+ ASTFileSignature ExpectedSignature,
+ unsigned ClientLoadCapabilities) {
+ ModuleFile *M;
+ std::string ErrorStr;
+ ModuleManager::AddModuleResult AddResult
+ = ModuleMgr.addModule(FileName, Type, ImportLoc, ImportedBy,
+ getGeneration(), ExpectedSize, ExpectedModTime,
+ ExpectedSignature, readASTFileSignature,
+ M, ErrorStr);
+
+ switch (AddResult) {
+ case ModuleManager::AlreadyLoaded:
+ return Success;
+
+ case ModuleManager::NewlyLoaded:
+ // Load module file below.
+ break;
+
+ case ModuleManager::Missing:
+ // The module file was missing; if the client can handle that, return
+ // it.
+ if (ClientLoadCapabilities & ARR_Missing)
+ return Missing;
+
+ // Otherwise, return an error.
+ {
+ std::string Msg = "Unable to load module \"" + FileName.str() + "\": "
+ + ErrorStr;
+ Error(Msg);
+ }
+ return Failure;
+
+ case ModuleManager::OutOfDate:
+ // We couldn't load the module file because it is out-of-date. If the
+ // client can handle out-of-date, return it.
+ if (ClientLoadCapabilities & ARR_OutOfDate)
+ return OutOfDate;
+
+ // Otherwise, return an error.
+ {
+ std::string Msg = "Unable to load module \"" + FileName.str() + "\": "
+ + ErrorStr;
+ Error(Msg);
+ }
+ return Failure;
+ }
+
+ assert(M && "Missing module file");
+
+ // FIXME: This seems rather a hack. Should CurrentDir be part of the
+ // module?
+ if (FileName != "-") {
+ CurrentDir = llvm::sys::path::parent_path(FileName);
+ if (CurrentDir.empty()) CurrentDir = ".";
+ }
+
+ ModuleFile &F = *M;
+ BitstreamCursor &Stream = F.Stream;
+ Stream.init(&F.StreamFile);
+ F.SizeInBits = F.Buffer->getBufferSize() * 8;
+
+ // Sniff for the signature.
+ if (!startsWithASTFileMagic(Stream)) {
+ Diag(diag::err_not_a_pch_file) << FileName;
+ return Failure;
+ }
+
+ // This is used for compatibility with older PCH formats.
+ bool HaveReadControlBlock = false;
+
+ while (1) {
+ llvm::BitstreamEntry Entry = Stream.advance();
+
+ switch (Entry.Kind) {
+ case llvm::BitstreamEntry::Error:
+ case llvm::BitstreamEntry::EndBlock:
+ case llvm::BitstreamEntry::Record:
+ Error("invalid record at top-level of AST file");
+ return Failure;
+
+ case llvm::BitstreamEntry::SubBlock:
+ break;
+ }
+
+ // We only know the control subblock ID.
+ switch (Entry.ID) {
+ case llvm::bitc::BLOCKINFO_BLOCK_ID:
+ if (Stream.ReadBlockInfoBlock()) {
+ Error("malformed BlockInfoBlock in AST file");
+ return Failure;
+ }
+ break;
+ case CONTROL_BLOCK_ID:
+ HaveReadControlBlock = true;
+ switch (ReadControlBlock(F, Loaded, ImportedBy, ClientLoadCapabilities)) {
+ case Success:
+ break;
+
+ case Failure: return Failure;
+ case Missing: return Missing;
+ case OutOfDate: return OutOfDate;
+ case VersionMismatch: return VersionMismatch;
+ case ConfigurationMismatch: return ConfigurationMismatch;
+ case HadErrors: return HadErrors;
+ }
+ break;
+ case AST_BLOCK_ID:
+ if (!HaveReadControlBlock) {
+ if ((ClientLoadCapabilities & ARR_VersionMismatch) == 0)
+ Diag(diag::err_pch_version_too_old);
+ return VersionMismatch;
+ }
+
+ // Record that we've loaded this module.
+ Loaded.push_back(ImportedModule(M, ImportedBy, ImportLoc));
+ return Success;
+
+ default:
+ if (Stream.SkipBlock()) {
+ Error("malformed block record in AST file");
+ return Failure;
+ }
+ break;
+ }
+ }
+
+ return Success;
+}
+
+void ASTReader::InitializeContext() {
+ // If there's a listener, notify them that we "read" the translation unit.
+ if (DeserializationListener)
+ DeserializationListener->DeclRead(PREDEF_DECL_TRANSLATION_UNIT_ID,
+ Context.getTranslationUnitDecl());
+
+ // FIXME: Find a better way to deal with collisions between these
+ // built-in types. Right now, we just ignore the problem.
+
+ // Load the special types.
+ if (SpecialTypes.size() >= NumSpecialTypeIDs) {
+ if (unsigned String = SpecialTypes[SPECIAL_TYPE_CF_CONSTANT_STRING]) {
+ if (!Context.CFConstantStringTypeDecl)
+ Context.setCFConstantStringType(GetType(String));
+ }
+
+ if (unsigned File = SpecialTypes[SPECIAL_TYPE_FILE]) {
+ QualType FileType = GetType(File);
+ if (FileType.isNull()) {
+ Error("FILE type is NULL");
+ return;
+ }
+
+ if (!Context.FILEDecl) {
+ if (const TypedefType *Typedef = FileType->getAs<TypedefType>())
+ Context.setFILEDecl(Typedef->getDecl());
+ else {
+ const TagType *Tag = FileType->getAs<TagType>();
+ if (!Tag) {
+ Error("Invalid FILE type in AST file");
+ return;
+ }
+ Context.setFILEDecl(Tag->getDecl());
+ }
+ }
+ }
+
+ if (unsigned Jmp_buf = SpecialTypes[SPECIAL_TYPE_JMP_BUF]) {
+ QualType Jmp_bufType = GetType(Jmp_buf);
+ if (Jmp_bufType.isNull()) {
+ Error("jmp_buf type is NULL");
+ return;
+ }
+
+ if (!Context.jmp_bufDecl) {
+ if (const TypedefType *Typedef = Jmp_bufType->getAs<TypedefType>())
+ Context.setjmp_bufDecl(Typedef->getDecl());
+ else {
+ const TagType *Tag = Jmp_bufType->getAs<TagType>();
+ if (!Tag) {
+ Error("Invalid jmp_buf type in AST file");
+ return;
+ }
+ Context.setjmp_bufDecl(Tag->getDecl());
+ }
+ }
+ }
+
+ if (unsigned Sigjmp_buf = SpecialTypes[SPECIAL_TYPE_SIGJMP_BUF]) {
+ QualType Sigjmp_bufType = GetType(Sigjmp_buf);
+ if (Sigjmp_bufType.isNull()) {
+ Error("sigjmp_buf type is NULL");
+ return;
+ }
+
+ if (!Context.sigjmp_bufDecl) {
+ if (const TypedefType *Typedef = Sigjmp_bufType->getAs<TypedefType>())
+ Context.setsigjmp_bufDecl(Typedef->getDecl());
+ else {
+ const TagType *Tag = Sigjmp_bufType->getAs<TagType>();
+ assert(Tag && "Invalid sigjmp_buf type in AST file");
+ Context.setsigjmp_bufDecl(Tag->getDecl());
+ }
+ }
+ }
+
+ if (unsigned ObjCIdRedef
+ = SpecialTypes[SPECIAL_TYPE_OBJC_ID_REDEFINITION]) {
+ if (Context.ObjCIdRedefinitionType.isNull())
+ Context.ObjCIdRedefinitionType = GetType(ObjCIdRedef);
+ }
+
+ if (unsigned ObjCClassRedef
+ = SpecialTypes[SPECIAL_TYPE_OBJC_CLASS_REDEFINITION]) {
+ if (Context.ObjCClassRedefinitionType.isNull())
+ Context.ObjCClassRedefinitionType = GetType(ObjCClassRedef);
+ }
+
+ if (unsigned ObjCSelRedef
+ = SpecialTypes[SPECIAL_TYPE_OBJC_SEL_REDEFINITION]) {
+ if (Context.ObjCSelRedefinitionType.isNull())
+ Context.ObjCSelRedefinitionType = GetType(ObjCSelRedef);
+ }
+
+ if (unsigned Ucontext_t = SpecialTypes[SPECIAL_TYPE_UCONTEXT_T]) {
+ QualType Ucontext_tType = GetType(Ucontext_t);
+ if (Ucontext_tType.isNull()) {
+ Error("ucontext_t type is NULL");
+ return;
+ }
+
+ if (!Context.ucontext_tDecl) {
+ if (const TypedefType *Typedef = Ucontext_tType->getAs<TypedefType>())
+ Context.setucontext_tDecl(Typedef->getDecl());
+ else {
+ const TagType *Tag = Ucontext_tType->getAs<TagType>();
+ assert(Tag && "Invalid ucontext_t type in AST file");
+ Context.setucontext_tDecl(Tag->getDecl());
+ }
+ }
+ }
+ }
+
+ ReadPragmaDiagnosticMappings(Context.getDiagnostics());
+
+ // If there were any CUDA special declarations, deserialize them.
+ if (!CUDASpecialDeclRefs.empty()) {
+ assert(CUDASpecialDeclRefs.size() == 1 && "More decl refs than expected!");
+ Context.setcudaConfigureCallDecl(
+ cast<FunctionDecl>(GetDecl(CUDASpecialDeclRefs[0])));
+ }
+
+ // Re-export any modules that were imported by a non-module AST file.
+ // FIXME: This does not make macro-only imports visible again.
+ for (auto &Import : ImportedModules) {
+ if (Module *Imported = getSubmodule(Import.ID)) {
+ makeModuleVisible(Imported, Module::AllVisible,
+ /*ImportLoc=*/Import.ImportLoc);
+ PP.makeModuleVisible(Imported, Import.ImportLoc);
+ }
+ }
+ ImportedModules.clear();
+}
+
+void ASTReader::finalizeForWriting() {
+ // Nothing to do for now.
+}
+
+/// \brief Given a cursor at the start of an AST file, scan ahead and drop the
+/// cursor into the start of the given block ID, returning false on success and
+/// true on failure.
+static bool SkipCursorToBlock(BitstreamCursor &Cursor, unsigned BlockID) {
+ while (1) {
+ llvm::BitstreamEntry Entry = Cursor.advance();
+ switch (Entry.Kind) {
+ case llvm::BitstreamEntry::Error:
+ case llvm::BitstreamEntry::EndBlock:
+ return true;
+
+ case llvm::BitstreamEntry::Record:
+ // Ignore top-level records.
+ Cursor.skipRecord(Entry.ID);
+ break;
+
+ case llvm::BitstreamEntry::SubBlock:
+ if (Entry.ID == BlockID) {
+ if (Cursor.EnterSubBlock(BlockID))
+ return true;
+ // Found it!
+ return false;
+ }
+
+ if (Cursor.SkipBlock())
+ return true;
+ }
+ }
+}
+
+/// \brief Reads and return the signature record from \p StreamFile's control
+/// block, or else returns 0.
+static ASTFileSignature readASTFileSignature(llvm::BitstreamReader &StreamFile){
+ BitstreamCursor Stream(StreamFile);
+ if (!startsWithASTFileMagic(Stream))
+ return 0;
+
+ // Scan for the CONTROL_BLOCK_ID block.
+ if (SkipCursorToBlock(Stream, CONTROL_BLOCK_ID))
+ return 0;
+
+ // Scan for SIGNATURE inside the control block.
+ ASTReader::RecordData Record;
+ while (1) {
+ llvm::BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
+ if (Entry.Kind == llvm::BitstreamEntry::EndBlock ||
+ Entry.Kind != llvm::BitstreamEntry::Record)
+ return 0;
+
+ Record.clear();
+ StringRef Blob;
+ if (SIGNATURE == Stream.readRecord(Entry.ID, Record, &Blob))
+ return Record[0];
+ }
+}
+
+/// \brief Retrieve the name of the original source file name
+/// directly from the AST file, without actually loading the AST
+/// file.
+std::string ASTReader::getOriginalSourceFile(const std::string &ASTFileName,
+ FileManager &FileMgr,
+ DiagnosticsEngine &Diags) {
+ // Open the AST file.
+ auto Buffer = FileMgr.getBufferForFile(ASTFileName);
+ if (!Buffer) {
+ Diags.Report(diag::err_fe_unable_to_read_pch_file)
+ << ASTFileName << Buffer.getError().message();
+ return std::string();
+ }
+
+ // Initialize the stream
+ llvm::BitstreamReader StreamFile;
+ StreamFile.init((const unsigned char *)(*Buffer)->getBufferStart(),
+ (const unsigned char *)(*Buffer)->getBufferEnd());
+ BitstreamCursor Stream(StreamFile);
+
+ // Sniff for the signature.
+ if (!startsWithASTFileMagic(Stream)) {
+ Diags.Report(diag::err_fe_not_a_pch_file) << ASTFileName;
+ return std::string();
+ }
+
+ // Scan for the CONTROL_BLOCK_ID block.
+ if (SkipCursorToBlock(Stream, CONTROL_BLOCK_ID)) {
+ Diags.Report(diag::err_fe_pch_malformed_block) << ASTFileName;
+ return std::string();
+ }
+
+ // Scan for ORIGINAL_FILE inside the control block.
+ RecordData Record;
+ while (1) {
+ llvm::BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
+ if (Entry.Kind == llvm::BitstreamEntry::EndBlock)
+ return std::string();
+
+ if (Entry.Kind != llvm::BitstreamEntry::Record) {
+ Diags.Report(diag::err_fe_pch_malformed_block) << ASTFileName;
+ return std::string();
+ }
+
+ Record.clear();
+ StringRef Blob;
+ if (Stream.readRecord(Entry.ID, Record, &Blob) == ORIGINAL_FILE)
+ return Blob.str();
+ }
+}
+
+namespace {
+ class SimplePCHValidator : public ASTReaderListener {
+ const LangOptions &ExistingLangOpts;
+ const TargetOptions &ExistingTargetOpts;
+ const PreprocessorOptions &ExistingPPOpts;
+ std::string ExistingModuleCachePath;
+ FileManager &FileMgr;
+
+ public:
+ SimplePCHValidator(const LangOptions &ExistingLangOpts,
+ const TargetOptions &ExistingTargetOpts,
+ const PreprocessorOptions &ExistingPPOpts,
+ StringRef ExistingModuleCachePath,
+ FileManager &FileMgr)
+ : ExistingLangOpts(ExistingLangOpts),
+ ExistingTargetOpts(ExistingTargetOpts),
+ ExistingPPOpts(ExistingPPOpts),
+ ExistingModuleCachePath(ExistingModuleCachePath),
+ FileMgr(FileMgr)
+ {
+ }
+
+ bool ReadLanguageOptions(const LangOptions &LangOpts, bool Complain,
+ bool AllowCompatibleDifferences) override {
+ return checkLanguageOptions(ExistingLangOpts, LangOpts, nullptr,
+ AllowCompatibleDifferences);
+ }
+ bool ReadTargetOptions(const TargetOptions &TargetOpts, bool Complain,
+ bool AllowCompatibleDifferences) override {
+ return checkTargetOptions(ExistingTargetOpts, TargetOpts, nullptr,
+ AllowCompatibleDifferences);
+ }
+ bool ReadHeaderSearchOptions(const HeaderSearchOptions &HSOpts,
+ StringRef SpecificModuleCachePath,
+ bool Complain) override {
+ return checkHeaderSearchOptions(HSOpts, SpecificModuleCachePath,
+ ExistingModuleCachePath,
+ nullptr, ExistingLangOpts);
+ }
+ bool ReadPreprocessorOptions(const PreprocessorOptions &PPOpts,
+ bool Complain,
+ std::string &SuggestedPredefines) override {
+ return checkPreprocessorOptions(ExistingPPOpts, PPOpts, nullptr, FileMgr,
+ SuggestedPredefines, ExistingLangOpts);
+ }
+ };
+}
+
+bool ASTReader::readASTFileControlBlock(StringRef Filename,
+ FileManager &FileMgr,
+ ASTReaderListener &Listener) {
+ // Open the AST file.
+ // FIXME: This allows use of the VFS; we do not allow use of the
+ // VFS when actually loading a module.
+ auto Buffer = FileMgr.getBufferForFile(Filename);
+ if (!Buffer) {
+ return true;
+ }
+
+ // Initialize the stream
+ llvm::BitstreamReader StreamFile;
+ StreamFile.init((const unsigned char *)(*Buffer)->getBufferStart(),
+ (const unsigned char *)(*Buffer)->getBufferEnd());
+ BitstreamCursor Stream(StreamFile);
+
+ // Sniff for the signature.
+ if (!startsWithASTFileMagic(Stream))
+ return true;
+
+ // Scan for the CONTROL_BLOCK_ID block.
+ if (SkipCursorToBlock(Stream, CONTROL_BLOCK_ID))
+ return true;
+
+ bool NeedsInputFiles = Listener.needsInputFileVisitation();
+ bool NeedsSystemInputFiles = Listener.needsSystemInputFileVisitation();
+ bool NeedsImports = Listener.needsImportVisitation();
+ BitstreamCursor InputFilesCursor;
+ if (NeedsInputFiles) {
+ InputFilesCursor = Stream;
+ if (SkipCursorToBlock(InputFilesCursor, INPUT_FILES_BLOCK_ID))
+ return true;
+
+ // Read the abbreviations
+ while (true) {
+ uint64_t Offset = InputFilesCursor.GetCurrentBitNo();
+ unsigned Code = InputFilesCursor.ReadCode();
+
+ // We expect all abbrevs to be at the start of the block.
+ if (Code != llvm::bitc::DEFINE_ABBREV) {
+ InputFilesCursor.JumpToBit(Offset);
+ break;
+ }
+ InputFilesCursor.ReadAbbrevRecord();
+ }
+ }
+
+ // Scan for ORIGINAL_FILE inside the control block.
+ RecordData Record;
+ std::string ModuleDir;
+ while (1) {
+ llvm::BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
+ if (Entry.Kind == llvm::BitstreamEntry::EndBlock)
+ return false;
+
+ if (Entry.Kind != llvm::BitstreamEntry::Record)
+ return true;
+
+ Record.clear();
+ StringRef Blob;
+ unsigned RecCode = Stream.readRecord(Entry.ID, Record, &Blob);
+ switch ((ControlRecordTypes)RecCode) {
+ case METADATA: {
+ if (Record[0] != VERSION_MAJOR)
+ return true;
+
+ if (Listener.ReadFullVersionInformation(Blob))
+ return true;
+
+ break;
+ }
+ case MODULE_NAME:
+ Listener.ReadModuleName(Blob);
+ break;
+ case MODULE_DIRECTORY:
+ ModuleDir = Blob;
+ break;
+ case MODULE_MAP_FILE: {
+ unsigned Idx = 0;
+ auto Path = ReadString(Record, Idx);
+ ResolveImportedPath(Path, ModuleDir);
+ Listener.ReadModuleMapFile(Path);
+ break;
+ }
+ case LANGUAGE_OPTIONS:
+ if (ParseLanguageOptions(Record, false, Listener,
+ /*AllowCompatibleConfigurationMismatch*/false))
+ return true;
+ break;
+
+ case TARGET_OPTIONS:
+ if (ParseTargetOptions(Record, false, Listener,
+ /*AllowCompatibleConfigurationMismatch*/ false))
+ return true;
+ break;
+
+ case DIAGNOSTIC_OPTIONS:
+ if (ParseDiagnosticOptions(Record, false, Listener))
+ return true;
+ break;
+
+ case FILE_SYSTEM_OPTIONS:
+ if (ParseFileSystemOptions(Record, false, Listener))
+ return true;
+ break;
+
+ case HEADER_SEARCH_OPTIONS:
+ if (ParseHeaderSearchOptions(Record, false, Listener))
+ return true;
+ break;
+
+ case PREPROCESSOR_OPTIONS: {
+ std::string IgnoredSuggestedPredefines;
+ if (ParsePreprocessorOptions(Record, false, Listener,
+ IgnoredSuggestedPredefines))
+ return true;
+ break;
+ }
+
+ case INPUT_FILE_OFFSETS: {
+ if (!NeedsInputFiles)
+ break;
+
+ unsigned NumInputFiles = Record[0];
+ unsigned NumUserFiles = Record[1];
+ const uint64_t *InputFileOffs = (const uint64_t *)Blob.data();
+ for (unsigned I = 0; I != NumInputFiles; ++I) {
+ // Go find this input file.
+ bool isSystemFile = I >= NumUserFiles;
+
+ if (isSystemFile && !NeedsSystemInputFiles)
+ break; // the rest are system input files
+
+ BitstreamCursor &Cursor = InputFilesCursor;
+ SavedStreamPosition SavedPosition(Cursor);
+ Cursor.JumpToBit(InputFileOffs[I]);
+
+ unsigned Code = Cursor.ReadCode();
+ RecordData Record;
+ StringRef Blob;
+ bool shouldContinue = false;
+ switch ((InputFileRecordTypes)Cursor.readRecord(Code, Record, &Blob)) {
+ case INPUT_FILE:
+ bool Overridden = static_cast<bool>(Record[3]);
+ std::string Filename = Blob;
+ ResolveImportedPath(Filename, ModuleDir);
+ shouldContinue =
+ Listener.visitInputFile(Filename, isSystemFile, Overridden);
+ break;
+ }
+ if (!shouldContinue)
+ break;
+ }
+ break;
+ }
+
+ case IMPORTS: {
+ if (!NeedsImports)
+ break;
+
+ unsigned Idx = 0, N = Record.size();
+ while (Idx < N) {
+ // Read information about the AST file.
+ Idx += 5; // ImportLoc, Size, ModTime, Signature
+ std::string Filename = ReadString(Record, Idx);
+ ResolveImportedPath(Filename, ModuleDir);
+ Listener.visitImport(Filename);
+ }
+ break;
+ }
+
+ case KNOWN_MODULE_FILES: {
+ // Known-but-not-technically-used module files are treated as imports.
+ if (!NeedsImports)
+ break;
+
+ unsigned Idx = 0, N = Record.size();
+ while (Idx < N) {
+ std::string Filename = ReadString(Record, Idx);
+ ResolveImportedPath(Filename, ModuleDir);
+ Listener.visitImport(Filename);
+ }
+ break;
+ }
+
+ default:
+ // No other validation to perform.
+ break;
+ }
+ }
+}
+
+
+bool ASTReader::isAcceptableASTFile(StringRef Filename,
+ FileManager &FileMgr,
+ const LangOptions &LangOpts,
+ const TargetOptions &TargetOpts,
+ const PreprocessorOptions &PPOpts,
+ std::string ExistingModuleCachePath) {
+ SimplePCHValidator validator(LangOpts, TargetOpts, PPOpts,
+ ExistingModuleCachePath, FileMgr);
+ return !readASTFileControlBlock(Filename, FileMgr, validator);
+}
+
+ASTReader::ASTReadResult
+ASTReader::ReadSubmoduleBlock(ModuleFile &F, unsigned ClientLoadCapabilities) {
+ // Enter the submodule block.
+ if (F.Stream.EnterSubBlock(SUBMODULE_BLOCK_ID)) {
+ Error("malformed submodule block record in AST file");
+ return Failure;
+ }
+
+ ModuleMap &ModMap = PP.getHeaderSearchInfo().getModuleMap();
+ bool First = true;
+ Module *CurrentModule = nullptr;
+ RecordData Record;
+ while (true) {
+ llvm::BitstreamEntry Entry = F.Stream.advanceSkippingSubblocks();
+
+ switch (Entry.Kind) {
+ case llvm::BitstreamEntry::SubBlock: // Handled for us already.
+ case llvm::BitstreamEntry::Error:
+ Error("malformed block record in AST file");
+ return Failure;
+ case llvm::BitstreamEntry::EndBlock:
+ return Success;
+ case llvm::BitstreamEntry::Record:
+ // The interesting case.
+ break;
+ }
+
+ // Read a record.
+ StringRef Blob;
+ Record.clear();
+ auto Kind = F.Stream.readRecord(Entry.ID, Record, &Blob);
+
+ if ((Kind == SUBMODULE_METADATA) != First) {
+ Error("submodule metadata record should be at beginning of block");
+ return Failure;
+ }
+ First = false;
+
+ // Submodule information is only valid if we have a current module.
+ // FIXME: Should we error on these cases?
+ if (!CurrentModule && Kind != SUBMODULE_METADATA &&
+ Kind != SUBMODULE_DEFINITION)
+ continue;
+
+ switch (Kind) {
+ default: // Default behavior: ignore.
+ break;
+
+ case SUBMODULE_DEFINITION: {
+ if (Record.size() < 8) {
+ Error("malformed module definition");
+ return Failure;
+ }
+
+ StringRef Name = Blob;
+ unsigned Idx = 0;
+ SubmoduleID GlobalID = getGlobalSubmoduleID(F, Record[Idx++]);
+ SubmoduleID Parent = getGlobalSubmoduleID(F, Record[Idx++]);
+ bool IsFramework = Record[Idx++];
+ bool IsExplicit = Record[Idx++];
+ bool IsSystem = Record[Idx++];
+ bool IsExternC = Record[Idx++];
+ bool InferSubmodules = Record[Idx++];
+ bool InferExplicitSubmodules = Record[Idx++];
+ bool InferExportWildcard = Record[Idx++];
+ bool ConfigMacrosExhaustive = Record[Idx++];
+
+ Module *ParentModule = nullptr;
+ if (Parent)
+ ParentModule = getSubmodule(Parent);
+
+ // Retrieve this (sub)module from the module map, creating it if
+ // necessary.
+ CurrentModule = ModMap.findOrCreateModule(Name, ParentModule, IsFramework,
+ IsExplicit).first;
+
+ // FIXME: set the definition loc for CurrentModule, or call
+ // ModMap.setInferredModuleAllowedBy()
+
+ SubmoduleID GlobalIndex = GlobalID - NUM_PREDEF_SUBMODULE_IDS;
+ if (GlobalIndex >= SubmodulesLoaded.size() ||
+ SubmodulesLoaded[GlobalIndex]) {
+ Error("too many submodules");
+ return Failure;
+ }
+
+ if (!ParentModule) {
+ if (const FileEntry *CurFile = CurrentModule->getASTFile()) {
+ if (CurFile != F.File) {
+ if (!Diags.isDiagnosticInFlight()) {
+ Diag(diag::err_module_file_conflict)
+ << CurrentModule->getTopLevelModuleName()
+ << CurFile->getName()
+ << F.File->getName();
+ }
+ return Failure;
+ }
+ }
+
+ CurrentModule->setASTFile(F.File);
+ }
+
+ CurrentModule->IsFromModuleFile = true;
+ CurrentModule->IsSystem = IsSystem || CurrentModule->IsSystem;
+ CurrentModule->IsExternC = IsExternC;
+ CurrentModule->InferSubmodules = InferSubmodules;
+ CurrentModule->InferExplicitSubmodules = InferExplicitSubmodules;
+ CurrentModule->InferExportWildcard = InferExportWildcard;
+ CurrentModule->ConfigMacrosExhaustive = ConfigMacrosExhaustive;
+ if (DeserializationListener)
+ DeserializationListener->ModuleRead(GlobalID, CurrentModule);
+
+ SubmodulesLoaded[GlobalIndex] = CurrentModule;
+
+ // Clear out data that will be replaced by what is the module file.
+ CurrentModule->LinkLibraries.clear();
+ CurrentModule->ConfigMacros.clear();
+ CurrentModule->UnresolvedConflicts.clear();
+ CurrentModule->Conflicts.clear();
+ break;
+ }
+
+ case SUBMODULE_UMBRELLA_HEADER: {
+ std::string Filename = Blob;
+ ResolveImportedPath(F, Filename);
+ if (auto *Umbrella = PP.getFileManager().getFile(Filename)) {
+ if (!CurrentModule->getUmbrellaHeader())
+ ModMap.setUmbrellaHeader(CurrentModule, Umbrella, Blob);
+ else if (CurrentModule->getUmbrellaHeader().Entry != Umbrella) {
+ // This can be a spurious difference caused by changing the VFS to
+ // point to a different copy of the file, and it is too late to
+ // to rebuild safely.
+ // FIXME: If we wrote the virtual paths instead of the 'real' paths,
+ // after input file validation only real problems would remain and we
+ // could just error. For now, assume it's okay.
+ break;
+ }
+ }
+ break;
+ }
+
+ case SUBMODULE_HEADER:
+ case SUBMODULE_EXCLUDED_HEADER:
+ case SUBMODULE_PRIVATE_HEADER:
+ // We lazily associate headers with their modules via the HeaderInfo table.
+ // FIXME: Re-evaluate this section; maybe only store InputFile IDs instead
+ // of complete filenames or remove it entirely.
+ break;
+
+ case SUBMODULE_TEXTUAL_HEADER:
+ case SUBMODULE_PRIVATE_TEXTUAL_HEADER:
+ // FIXME: Textual headers are not marked in the HeaderInfo table. Load
+ // them here.
+ break;
+
+ case SUBMODULE_TOPHEADER: {
+ CurrentModule->addTopHeaderFilename(Blob);
+ break;
+ }
+
+ case SUBMODULE_UMBRELLA_DIR: {
+ std::string Dirname = Blob;
+ ResolveImportedPath(F, Dirname);
+ if (auto *Umbrella = PP.getFileManager().getDirectory(Dirname)) {
+ if (!CurrentModule->getUmbrellaDir())
+ ModMap.setUmbrellaDir(CurrentModule, Umbrella, Blob);
+ else if (CurrentModule->getUmbrellaDir().Entry != Umbrella) {
+ if ((ClientLoadCapabilities & ARR_OutOfDate) == 0)
+ Error("mismatched umbrella directories in submodule");
+ return OutOfDate;
+ }
+ }
+ break;
+ }
+
+ case SUBMODULE_METADATA: {
+ F.BaseSubmoduleID = getTotalNumSubmodules();
+ F.LocalNumSubmodules = Record[0];
+ unsigned LocalBaseSubmoduleID = Record[1];
+ if (F.LocalNumSubmodules > 0) {
+ // Introduce the global -> local mapping for submodules within this
+ // module.
+ GlobalSubmoduleMap.insert(std::make_pair(getTotalNumSubmodules()+1,&F));
+
+ // Introduce the local -> global mapping for submodules within this
+ // module.
+ F.SubmoduleRemap.insertOrReplace(
+ std::make_pair(LocalBaseSubmoduleID,
+ F.BaseSubmoduleID - LocalBaseSubmoduleID));
+
+ SubmodulesLoaded.resize(SubmodulesLoaded.size() + F.LocalNumSubmodules);
+ }
+ break;
+ }
+
+ case SUBMODULE_IMPORTS: {
+ for (unsigned Idx = 0; Idx != Record.size(); ++Idx) {
+ UnresolvedModuleRef Unresolved;
+ Unresolved.File = &F;
+ Unresolved.Mod = CurrentModule;
+ Unresolved.ID = Record[Idx];
+ Unresolved.Kind = UnresolvedModuleRef::Import;
+ Unresolved.IsWildcard = false;
+ UnresolvedModuleRefs.push_back(Unresolved);
+ }
+ break;
+ }
+
+ case SUBMODULE_EXPORTS: {
+ for (unsigned Idx = 0; Idx + 1 < Record.size(); Idx += 2) {
+ UnresolvedModuleRef Unresolved;
+ Unresolved.File = &F;
+ Unresolved.Mod = CurrentModule;
+ Unresolved.ID = Record[Idx];
+ Unresolved.Kind = UnresolvedModuleRef::Export;
+ Unresolved.IsWildcard = Record[Idx + 1];
+ UnresolvedModuleRefs.push_back(Unresolved);
+ }
+
+ // Once we've loaded the set of exports, there's no reason to keep
+ // the parsed, unresolved exports around.
+ CurrentModule->UnresolvedExports.clear();
+ break;
+ }
+ case SUBMODULE_REQUIRES: {
+ CurrentModule->addRequirement(Blob, Record[0], Context.getLangOpts(),
+ Context.getTargetInfo());
+ break;
+ }
+
+ case SUBMODULE_LINK_LIBRARY:
+ CurrentModule->LinkLibraries.push_back(
+ Module::LinkLibrary(Blob, Record[0]));
+ break;
+
+ case SUBMODULE_CONFIG_MACRO:
+ CurrentModule->ConfigMacros.push_back(Blob.str());
+ break;
+
+ case SUBMODULE_CONFLICT: {
+ UnresolvedModuleRef Unresolved;
+ Unresolved.File = &F;
+ Unresolved.Mod = CurrentModule;
+ Unresolved.ID = Record[0];
+ Unresolved.Kind = UnresolvedModuleRef::Conflict;
+ Unresolved.IsWildcard = false;
+ Unresolved.String = Blob;
+ UnresolvedModuleRefs.push_back(Unresolved);
+ break;
+ }
+ }
+ }
+}
+
+/// \brief Parse the record that corresponds to a LangOptions data
+/// structure.
+///
+/// This routine parses the language options from the AST file and then gives
+/// them to the AST listener if one is set.
+///
+/// \returns true if the listener deems the file unacceptable, false otherwise.
+bool ASTReader::ParseLanguageOptions(const RecordData &Record,
+ bool Complain,
+ ASTReaderListener &Listener,
+ bool AllowCompatibleDifferences) {
+ LangOptions LangOpts;
+ unsigned Idx = 0;
+#define LANGOPT(Name, Bits, Default, Description) \
+ LangOpts.Name = Record[Idx++];
+#define ENUM_LANGOPT(Name, Type, Bits, Default, Description) \
+ LangOpts.set##Name(static_cast<LangOptions::Type>(Record[Idx++]));
+#include "clang/Basic/LangOptions.def"
+#define SANITIZER(NAME, ID) \
+ LangOpts.Sanitize.set(SanitizerKind::ID, Record[Idx++]);
+#include "clang/Basic/Sanitizers.def"
+
+ ObjCRuntime::Kind runtimeKind = (ObjCRuntime::Kind) Record[Idx++];
+ VersionTuple runtimeVersion = ReadVersionTuple(Record, Idx);
+ LangOpts.ObjCRuntime = ObjCRuntime(runtimeKind, runtimeVersion);
+
+ unsigned Length = Record[Idx++];
+ LangOpts.CurrentModule.assign(Record.begin() + Idx,
+ Record.begin() + Idx + Length);
+
+ Idx += Length;
+
+ // Comment options.
+ for (unsigned N = Record[Idx++]; N; --N) {
+ LangOpts.CommentOpts.BlockCommandNames.push_back(
+ ReadString(Record, Idx));
+ }
+ LangOpts.CommentOpts.ParseAllComments = Record[Idx++];
+
+ return Listener.ReadLanguageOptions(LangOpts, Complain,
+ AllowCompatibleDifferences);
+}
+
+bool ASTReader::ParseTargetOptions(const RecordData &Record, bool Complain,
+ ASTReaderListener &Listener,
+ bool AllowCompatibleDifferences) {
+ unsigned Idx = 0;
+ TargetOptions TargetOpts;
+ TargetOpts.Triple = ReadString(Record, Idx);
+ TargetOpts.CPU = ReadString(Record, Idx);
+ TargetOpts.ABI = ReadString(Record, Idx);
+ for (unsigned N = Record[Idx++]; N; --N) {
+ TargetOpts.FeaturesAsWritten.push_back(ReadString(Record, Idx));
+ }
+ for (unsigned N = Record[Idx++]; N; --N) {
+ TargetOpts.Features.push_back(ReadString(Record, Idx));
+ }
+
+ return Listener.ReadTargetOptions(TargetOpts, Complain,
+ AllowCompatibleDifferences);
+}
+
+bool ASTReader::ParseDiagnosticOptions(const RecordData &Record, bool Complain,
+ ASTReaderListener &Listener) {
+ IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts(new DiagnosticOptions);
+ unsigned Idx = 0;
+#define DIAGOPT(Name, Bits, Default) DiagOpts->Name = Record[Idx++];
+#define ENUM_DIAGOPT(Name, Type, Bits, Default) \
+ DiagOpts->set##Name(static_cast<Type>(Record[Idx++]));
+#include "clang/Basic/DiagnosticOptions.def"
+
+ for (unsigned N = Record[Idx++]; N; --N)
+ DiagOpts->Warnings.push_back(ReadString(Record, Idx));
+ for (unsigned N = Record[Idx++]; N; --N)
+ DiagOpts->Remarks.push_back(ReadString(Record, Idx));
+
+ return Listener.ReadDiagnosticOptions(DiagOpts, Complain);
+}
+
+bool ASTReader::ParseFileSystemOptions(const RecordData &Record, bool Complain,
+ ASTReaderListener &Listener) {
+ FileSystemOptions FSOpts;
+ unsigned Idx = 0;
+ FSOpts.WorkingDir = ReadString(Record, Idx);
+ return Listener.ReadFileSystemOptions(FSOpts, Complain);
+}
+
+bool ASTReader::ParseHeaderSearchOptions(const RecordData &Record,
+ bool Complain,
+ ASTReaderListener &Listener) {
+ HeaderSearchOptions HSOpts;
+ unsigned Idx = 0;
+ HSOpts.Sysroot = ReadString(Record, Idx);
+
+ // Include entries.
+ for (unsigned N = Record[Idx++]; N; --N) {
+ std::string Path = ReadString(Record, Idx);
+ frontend::IncludeDirGroup Group
+ = static_cast<frontend::IncludeDirGroup>(Record[Idx++]);
+ bool IsFramework = Record[Idx++];
+ bool IgnoreSysRoot = Record[Idx++];
+ HSOpts.UserEntries.push_back(
+ HeaderSearchOptions::Entry(Path, Group, IsFramework, IgnoreSysRoot));
+ }
+
+ // System header prefixes.
+ for (unsigned N = Record[Idx++]; N; --N) {
+ std::string Prefix = ReadString(Record, Idx);
+ bool IsSystemHeader = Record[Idx++];
+ HSOpts.SystemHeaderPrefixes.push_back(
+ HeaderSearchOptions::SystemHeaderPrefix(Prefix, IsSystemHeader));
+ }
+
+ HSOpts.ResourceDir = ReadString(Record, Idx);
+ HSOpts.ModuleCachePath = ReadString(Record, Idx);
+ HSOpts.ModuleUserBuildPath = ReadString(Record, Idx);
+ HSOpts.DisableModuleHash = Record[Idx++];
+ HSOpts.UseBuiltinIncludes = Record[Idx++];
+ HSOpts.UseStandardSystemIncludes = Record[Idx++];
+ HSOpts.UseStandardCXXIncludes = Record[Idx++];
+ HSOpts.UseLibcxx = Record[Idx++];
+ std::string SpecificModuleCachePath = ReadString(Record, Idx);
+
+ return Listener.ReadHeaderSearchOptions(HSOpts, SpecificModuleCachePath,
+ Complain);
+}
+
+bool ASTReader::ParsePreprocessorOptions(const RecordData &Record,
+ bool Complain,
+ ASTReaderListener &Listener,
+ std::string &SuggestedPredefines) {
+ PreprocessorOptions PPOpts;
+ unsigned Idx = 0;
+
+ // Macro definitions/undefs
+ for (unsigned N = Record[Idx++]; N; --N) {
+ std::string Macro = ReadString(Record, Idx);
+ bool IsUndef = Record[Idx++];
+ PPOpts.Macros.push_back(std::make_pair(Macro, IsUndef));
+ }
+
+ // Includes
+ for (unsigned N = Record[Idx++]; N; --N) {
+ PPOpts.Includes.push_back(ReadString(Record, Idx));
+ }
+
+ // Macro Includes
+ for (unsigned N = Record[Idx++]; N; --N) {
+ PPOpts.MacroIncludes.push_back(ReadString(Record, Idx));
+ }
+
+ PPOpts.UsePredefines = Record[Idx++];
+ PPOpts.DetailedRecord = Record[Idx++];
+ PPOpts.ImplicitPCHInclude = ReadString(Record, Idx);
+ PPOpts.ImplicitPTHInclude = ReadString(Record, Idx);
+ PPOpts.ObjCXXARCStandardLibrary =
+ static_cast<ObjCXXARCStandardLibraryKind>(Record[Idx++]);
+ SuggestedPredefines.clear();
+ return Listener.ReadPreprocessorOptions(PPOpts, Complain,
+ SuggestedPredefines);
+}
+
+std::pair<ModuleFile *, unsigned>
+ASTReader::getModulePreprocessedEntity(unsigned GlobalIndex) {
+ GlobalPreprocessedEntityMapType::iterator
+ I = GlobalPreprocessedEntityMap.find(GlobalIndex);
+ assert(I != GlobalPreprocessedEntityMap.end() &&
+ "Corrupted global preprocessed entity map");
+ ModuleFile *M = I->second;
+ unsigned LocalIndex = GlobalIndex - M->BasePreprocessedEntityID;
+ return std::make_pair(M, LocalIndex);
+}
+
+llvm::iterator_range<PreprocessingRecord::iterator>
+ASTReader::getModulePreprocessedEntities(ModuleFile &Mod) const {
+ if (PreprocessingRecord *PPRec = PP.getPreprocessingRecord())
+ return PPRec->getIteratorsForLoadedRange(Mod.BasePreprocessedEntityID,
+ Mod.NumPreprocessedEntities);
+
+ return llvm::make_range(PreprocessingRecord::iterator(),
+ PreprocessingRecord::iterator());
+}
+
+llvm::iterator_range<ASTReader::ModuleDeclIterator>
+ASTReader::getModuleFileLevelDecls(ModuleFile &Mod) {
+ return llvm::make_range(
+ ModuleDeclIterator(this, &Mod, Mod.FileSortedDecls),
+ ModuleDeclIterator(this, &Mod,
+ Mod.FileSortedDecls + Mod.NumFileSortedDecls));
+}
+
+PreprocessedEntity *ASTReader::ReadPreprocessedEntity(unsigned Index) {
+ PreprocessedEntityID PPID = Index+1;
+ std::pair<ModuleFile *, unsigned> PPInfo = getModulePreprocessedEntity(Index);
+ ModuleFile &M = *PPInfo.first;
+ unsigned LocalIndex = PPInfo.second;
+ const PPEntityOffset &PPOffs = M.PreprocessedEntityOffsets[LocalIndex];
+
+ if (!PP.getPreprocessingRecord()) {
+ Error("no preprocessing record");
+ return nullptr;
+ }
+
+ SavedStreamPosition SavedPosition(M.PreprocessorDetailCursor);
+ M.PreprocessorDetailCursor.JumpToBit(PPOffs.BitOffset);
+
+ llvm::BitstreamEntry Entry =
+ M.PreprocessorDetailCursor.advance(BitstreamCursor::AF_DontPopBlockAtEnd);
+ if (Entry.Kind != llvm::BitstreamEntry::Record)
+ return nullptr;
+
+ // Read the record.
+ SourceRange Range(ReadSourceLocation(M, PPOffs.Begin),
+ ReadSourceLocation(M, PPOffs.End));
+ PreprocessingRecord &PPRec = *PP.getPreprocessingRecord();
+ StringRef Blob;
+ RecordData Record;
+ PreprocessorDetailRecordTypes RecType =
+ (PreprocessorDetailRecordTypes)M.PreprocessorDetailCursor.readRecord(
+ Entry.ID, Record, &Blob);
+ switch (RecType) {
+ case PPD_MACRO_EXPANSION: {
+ bool isBuiltin = Record[0];
+ IdentifierInfo *Name = nullptr;
+ MacroDefinitionRecord *Def = nullptr;
+ if (isBuiltin)
+ Name = getLocalIdentifier(M, Record[1]);
+ else {
+ PreprocessedEntityID GlobalID =
+ getGlobalPreprocessedEntityID(M, Record[1]);
+ Def = cast<MacroDefinitionRecord>(
+ PPRec.getLoadedPreprocessedEntity(GlobalID - 1));
+ }
+
+ MacroExpansion *ME;
+ if (isBuiltin)
+ ME = new (PPRec) MacroExpansion(Name, Range);
+ else
+ ME = new (PPRec) MacroExpansion(Def, Range);
+
+ return ME;
+ }
+
+ case PPD_MACRO_DEFINITION: {
+ // Decode the identifier info and then check again; if the macro is
+ // still defined and associated with the identifier,
+ IdentifierInfo *II = getLocalIdentifier(M, Record[0]);
+ MacroDefinitionRecord *MD = new (PPRec) MacroDefinitionRecord(II, Range);
+
+ if (DeserializationListener)
+ DeserializationListener->MacroDefinitionRead(PPID, MD);
+
+ return MD;
+ }
+
+ case PPD_INCLUSION_DIRECTIVE: {
+ const char *FullFileNameStart = Blob.data() + Record[0];
+ StringRef FullFileName(FullFileNameStart, Blob.size() - Record[0]);
+ const FileEntry *File = nullptr;
+ if (!FullFileName.empty())
+ File = PP.getFileManager().getFile(FullFileName);
+
+ // FIXME: Stable encoding
+ InclusionDirective::InclusionKind Kind
+ = static_cast<InclusionDirective::InclusionKind>(Record[2]);
+ InclusionDirective *ID
+ = new (PPRec) InclusionDirective(PPRec, Kind,
+ StringRef(Blob.data(), Record[0]),
+ Record[1], Record[3],
+ File,
+ Range);
+ return ID;
+ }
+ }
+
+ llvm_unreachable("Invalid PreprocessorDetailRecordTypes");
+}
+
+/// \brief \arg SLocMapI points at a chunk of a module that contains no
+/// preprocessed entities or the entities it contains are not the ones we are
+/// looking for. Find the next module that contains entities and return the ID
+/// of the first entry.
+PreprocessedEntityID ASTReader::findNextPreprocessedEntity(
+ GlobalSLocOffsetMapType::const_iterator SLocMapI) const {
+ ++SLocMapI;
+ for (GlobalSLocOffsetMapType::const_iterator
+ EndI = GlobalSLocOffsetMap.end(); SLocMapI != EndI; ++SLocMapI) {
+ ModuleFile &M = *SLocMapI->second;
+ if (M.NumPreprocessedEntities)
+ return M.BasePreprocessedEntityID;
+ }
+
+ return getTotalNumPreprocessedEntities();
+}
+
+namespace {
+
+template <unsigned PPEntityOffset::*PPLoc>
+struct PPEntityComp {
+ const ASTReader &Reader;
+ ModuleFile &M;
+
+ PPEntityComp(const ASTReader &Reader, ModuleFile &M) : Reader(Reader), M(M) { }
+
+ bool operator()(const PPEntityOffset &L, const PPEntityOffset &R) const {
+ SourceLocation LHS = getLoc(L);
+ SourceLocation RHS = getLoc(R);
+ return Reader.getSourceManager().isBeforeInTranslationUnit(LHS, RHS);
+ }
+
+ bool operator()(const PPEntityOffset &L, SourceLocation RHS) const {
+ SourceLocation LHS = getLoc(L);
+ return Reader.getSourceManager().isBeforeInTranslationUnit(LHS, RHS);
+ }
+
+ bool operator()(SourceLocation LHS, const PPEntityOffset &R) const {
+ SourceLocation RHS = getLoc(R);
+ return Reader.getSourceManager().isBeforeInTranslationUnit(LHS, RHS);
+ }
+
+ SourceLocation getLoc(const PPEntityOffset &PPE) const {
+ return Reader.ReadSourceLocation(M, PPE.*PPLoc);
+ }
+};
+
+}
+
+PreprocessedEntityID ASTReader::findPreprocessedEntity(SourceLocation Loc,
+ bool EndsAfter) const {
+ if (SourceMgr.isLocalSourceLocation(Loc))
+ return getTotalNumPreprocessedEntities();
+
+ GlobalSLocOffsetMapType::const_iterator SLocMapI = GlobalSLocOffsetMap.find(
+ SourceManager::MaxLoadedOffset - Loc.getOffset() - 1);
+ assert(SLocMapI != GlobalSLocOffsetMap.end() &&
+ "Corrupted global sloc offset map");
+
+ if (SLocMapI->second->NumPreprocessedEntities == 0)
+ return findNextPreprocessedEntity(SLocMapI);
+
+ ModuleFile &M = *SLocMapI->second;
+ typedef const PPEntityOffset *pp_iterator;
+ pp_iterator pp_begin = M.PreprocessedEntityOffsets;
+ pp_iterator pp_end = pp_begin + M.NumPreprocessedEntities;
+
+ size_t Count = M.NumPreprocessedEntities;
+ size_t Half;
+ pp_iterator First = pp_begin;
+ pp_iterator PPI;
+
+ if (EndsAfter) {
+ PPI = std::upper_bound(pp_begin, pp_end, Loc,
+ PPEntityComp<&PPEntityOffset::Begin>(*this, M));
+ } else {
+ // Do a binary search manually instead of using std::lower_bound because
+ // The end locations of entities may be unordered (when a macro expansion
+ // is inside another macro argument), but for this case it is not important
+ // whether we get the first macro expansion or its containing macro.
+ while (Count > 0) {
+ Half = Count / 2;
+ PPI = First;
+ std::advance(PPI, Half);
+ if (SourceMgr.isBeforeInTranslationUnit(ReadSourceLocation(M, PPI->End),
+ Loc)) {
+ First = PPI;
+ ++First;
+ Count = Count - Half - 1;
+ } else
+ Count = Half;
+ }
+ }
+
+ if (PPI == pp_end)
+ return findNextPreprocessedEntity(SLocMapI);
+
+ return M.BasePreprocessedEntityID + (PPI - pp_begin);
+}
+
+/// \brief Returns a pair of [Begin, End) indices of preallocated
+/// preprocessed entities that \arg Range encompasses.
+std::pair<unsigned, unsigned>
+ ASTReader::findPreprocessedEntitiesInRange(SourceRange Range) {
+ if (Range.isInvalid())
+ return std::make_pair(0,0);
+ assert(!SourceMgr.isBeforeInTranslationUnit(Range.getEnd(),Range.getBegin()));
+
+ PreprocessedEntityID BeginID =
+ findPreprocessedEntity(Range.getBegin(), false);
+ PreprocessedEntityID EndID = findPreprocessedEntity(Range.getEnd(), true);
+ return std::make_pair(BeginID, EndID);
+}
+
+/// \brief Optionally returns true or false if the preallocated preprocessed
+/// entity with index \arg Index came from file \arg FID.
+Optional<bool> ASTReader::isPreprocessedEntityInFileID(unsigned Index,
+ FileID FID) {
+ if (FID.isInvalid())
+ return false;
+
+ std::pair<ModuleFile *, unsigned> PPInfo = getModulePreprocessedEntity(Index);
+ ModuleFile &M = *PPInfo.first;
+ unsigned LocalIndex = PPInfo.second;
+ const PPEntityOffset &PPOffs = M.PreprocessedEntityOffsets[LocalIndex];
+
+ SourceLocation Loc = ReadSourceLocation(M, PPOffs.Begin);
+ if (Loc.isInvalid())
+ return false;
+
+ if (SourceMgr.isInFileID(SourceMgr.getFileLoc(Loc), FID))
+ return true;
+ else
+ return false;
+}
+
+namespace {
+ /// \brief Visitor used to search for information about a header file.
+ class HeaderFileInfoVisitor {
+ const FileEntry *FE;
+
+ Optional<HeaderFileInfo> HFI;
+
+ public:
+ explicit HeaderFileInfoVisitor(const FileEntry *FE)
+ : FE(FE) { }
+
+ static bool visit(ModuleFile &M, void *UserData) {
+ HeaderFileInfoVisitor *This
+ = static_cast<HeaderFileInfoVisitor *>(UserData);
+
+ HeaderFileInfoLookupTable *Table
+ = static_cast<HeaderFileInfoLookupTable *>(M.HeaderFileInfoTable);
+ if (!Table)
+ return false;
+
+ // Look in the on-disk hash table for an entry for this file name.
+ HeaderFileInfoLookupTable::iterator Pos = Table->find(This->FE);
+ if (Pos == Table->end())
+ return false;
+
+ This->HFI = *Pos;
+ return true;
+ }
+
+ Optional<HeaderFileInfo> getHeaderFileInfo() const { return HFI; }
+ };
+}
+
+HeaderFileInfo ASTReader::GetHeaderFileInfo(const FileEntry *FE) {
+ HeaderFileInfoVisitor Visitor(FE);
+ ModuleMgr.visit(&HeaderFileInfoVisitor::visit, &Visitor);
+ if (Optional<HeaderFileInfo> HFI = Visitor.getHeaderFileInfo())
+ return *HFI;
+
+ return HeaderFileInfo();
+}
+
+void ASTReader::ReadPragmaDiagnosticMappings(DiagnosticsEngine &Diag) {
+ // FIXME: Make it work properly with modules.
+ SmallVector<DiagnosticsEngine::DiagState *, 32> DiagStates;
+ for (ModuleIterator I = ModuleMgr.begin(), E = ModuleMgr.end(); I != E; ++I) {
+ ModuleFile &F = *(*I);
+ unsigned Idx = 0;
+ DiagStates.clear();
+ assert(!Diag.DiagStates.empty());
+ DiagStates.push_back(&Diag.DiagStates.front()); // the command-line one.
+ while (Idx < F.PragmaDiagMappings.size()) {
+ SourceLocation Loc = ReadSourceLocation(F, F.PragmaDiagMappings[Idx++]);
+ unsigned DiagStateID = F.PragmaDiagMappings[Idx++];
+ if (DiagStateID != 0) {
+ Diag.DiagStatePoints.push_back(
+ DiagnosticsEngine::DiagStatePoint(DiagStates[DiagStateID-1],
+ FullSourceLoc(Loc, SourceMgr)));
+ continue;
+ }
+
+ assert(DiagStateID == 0);
+ // A new DiagState was created here.
+ Diag.DiagStates.push_back(*Diag.GetCurDiagState());
+ DiagnosticsEngine::DiagState *NewState = &Diag.DiagStates.back();
+ DiagStates.push_back(NewState);
+ Diag.DiagStatePoints.push_back(
+ DiagnosticsEngine::DiagStatePoint(NewState,
+ FullSourceLoc(Loc, SourceMgr)));
+ while (1) {
+ assert(Idx < F.PragmaDiagMappings.size() &&
+ "Invalid data, didn't find '-1' marking end of diag/map pairs");
+ if (Idx >= F.PragmaDiagMappings.size()) {
+ break; // Something is messed up but at least avoid infinite loop in
+ // release build.
+ }
+ unsigned DiagID = F.PragmaDiagMappings[Idx++];
+ if (DiagID == (unsigned)-1) {
+ break; // no more diag/map pairs for this location.
+ }
+ diag::Severity Map = (diag::Severity)F.PragmaDiagMappings[Idx++];
+ DiagnosticMapping Mapping = Diag.makeUserMapping(Map, Loc);
+ Diag.GetCurDiagState()->setMapping(DiagID, Mapping);
+ }
+ }
+ }
+}
+
+/// \brief Get the correct cursor and offset for loading a type.
+ASTReader::RecordLocation ASTReader::TypeCursorForIndex(unsigned Index) {
+ GlobalTypeMapType::iterator I = GlobalTypeMap.find(Index);
+ assert(I != GlobalTypeMap.end() && "Corrupted global type map");
+ ModuleFile *M = I->second;
+ return RecordLocation(M, M->TypeOffsets[Index - M->BaseTypeIndex]);
+}
+
+/// \brief Read and return the type with the given index..
+///
+/// The index is the type ID, shifted and minus the number of predefs. This
+/// routine actually reads the record corresponding to the type at the given
+/// location. It is a helper routine for GetType, which deals with reading type
+/// IDs.
+QualType ASTReader::readTypeRecord(unsigned Index) {
+ RecordLocation Loc = TypeCursorForIndex(Index);
+ BitstreamCursor &DeclsCursor = Loc.F->DeclsCursor;
+
+ // Keep track of where we are in the stream, then jump back there
+ // after reading this type.
+ SavedStreamPosition SavedPosition(DeclsCursor);
+
+ ReadingKindTracker ReadingKind(Read_Type, *this);
+
+ // Note that we are loading a type record.
+ Deserializing AType(this);
+
+ unsigned Idx = 0;
+ DeclsCursor.JumpToBit(Loc.Offset);
+ RecordData Record;
+ unsigned Code = DeclsCursor.ReadCode();
+ switch ((TypeCode)DeclsCursor.readRecord(Code, Record)) {
+ case TYPE_EXT_QUAL: {
+ if (Record.size() != 2) {
+ Error("Incorrect encoding of extended qualifier type");
+ return QualType();
+ }
+ QualType Base = readType(*Loc.F, Record, Idx);
+ Qualifiers Quals = Qualifiers::fromOpaqueValue(Record[Idx++]);
+ return Context.getQualifiedType(Base, Quals);
+ }
+
+ case TYPE_COMPLEX: {
+ if (Record.size() != 1) {
+ Error("Incorrect encoding of complex type");
+ return QualType();
+ }
+ QualType ElemType = readType(*Loc.F, Record, Idx);
+ return Context.getComplexType(ElemType);
+ }
+
+ case TYPE_POINTER: {
+ if (Record.size() != 1) {
+ Error("Incorrect encoding of pointer type");
+ return QualType();
+ }
+ QualType PointeeType = readType(*Loc.F, Record, Idx);
+ return Context.getPointerType(PointeeType);
+ }
+
+ case TYPE_DECAYED: {
+ if (Record.size() != 1) {
+ Error("Incorrect encoding of decayed type");
+ return QualType();
+ }
+ QualType OriginalType = readType(*Loc.F, Record, Idx);
+ QualType DT = Context.getAdjustedParameterType(OriginalType);
+ if (!isa<DecayedType>(DT))
+ Error("Decayed type does not decay");
+ return DT;
+ }
+
+ case TYPE_ADJUSTED: {
+ if (Record.size() != 2) {
+ Error("Incorrect encoding of adjusted type");
+ return QualType();
+ }
+ QualType OriginalTy = readType(*Loc.F, Record, Idx);
+ QualType AdjustedTy = readType(*Loc.F, Record, Idx);
+ return Context.getAdjustedType(OriginalTy, AdjustedTy);
+ }
+
+ case TYPE_BLOCK_POINTER: {
+ if (Record.size() != 1) {
+ Error("Incorrect encoding of block pointer type");
+ return QualType();
+ }
+ QualType PointeeType = readType(*Loc.F, Record, Idx);
+ return Context.getBlockPointerType(PointeeType);
+ }
+
+ case TYPE_LVALUE_REFERENCE: {
+ if (Record.size() != 2) {
+ Error("Incorrect encoding of lvalue reference type");
+ return QualType();
+ }
+ QualType PointeeType = readType(*Loc.F, Record, Idx);
+ return Context.getLValueReferenceType(PointeeType, Record[1]);
+ }
+
+ case TYPE_RVALUE_REFERENCE: {
+ if (Record.size() != 1) {
+ Error("Incorrect encoding of rvalue reference type");
+ return QualType();
+ }
+ QualType PointeeType = readType(*Loc.F, Record, Idx);
+ return Context.getRValueReferenceType(PointeeType);
+ }
+
+ case TYPE_MEMBER_POINTER: {
+ if (Record.size() != 2) {
+ Error("Incorrect encoding of member pointer type");
+ return QualType();
+ }
+ QualType PointeeType = readType(*Loc.F, Record, Idx);
+ QualType ClassType = readType(*Loc.F, Record, Idx);
+ if (PointeeType.isNull() || ClassType.isNull())
+ return QualType();
+
+ return Context.getMemberPointerType(PointeeType, ClassType.getTypePtr());
+ }
+
+ case TYPE_CONSTANT_ARRAY: {
+ QualType ElementType = readType(*Loc.F, Record, Idx);
+ ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1];
+ unsigned IndexTypeQuals = Record[2];
+ unsigned Idx = 3;
+ llvm::APInt Size = ReadAPInt(Record, Idx);
+ return Context.getConstantArrayType(ElementType, Size,
+ ASM, IndexTypeQuals);
+ }
+
+ case TYPE_INCOMPLETE_ARRAY: {
+ QualType ElementType = readType(*Loc.F, Record, Idx);
+ ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1];
+ unsigned IndexTypeQuals = Record[2];
+ return Context.getIncompleteArrayType(ElementType, ASM, IndexTypeQuals);
+ }
+
+ case TYPE_VARIABLE_ARRAY: {
+ QualType ElementType = readType(*Loc.F, Record, Idx);
+ ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1];
+ unsigned IndexTypeQuals = Record[2];
+ SourceLocation LBLoc = ReadSourceLocation(*Loc.F, Record[3]);
+ SourceLocation RBLoc = ReadSourceLocation(*Loc.F, Record[4]);
+ return Context.getVariableArrayType(ElementType, ReadExpr(*Loc.F),
+ ASM, IndexTypeQuals,
+ SourceRange(LBLoc, RBLoc));
+ }
+
+ case TYPE_VECTOR: {
+ if (Record.size() != 3) {
+ Error("incorrect encoding of vector type in AST file");
+ return QualType();
+ }
+
+ QualType ElementType = readType(*Loc.F, Record, Idx);
+ unsigned NumElements = Record[1];
+ unsigned VecKind = Record[2];
+ return Context.getVectorType(ElementType, NumElements,
+ (VectorType::VectorKind)VecKind);
+ }
+
+ case TYPE_EXT_VECTOR: {
+ if (Record.size() != 3) {
+ Error("incorrect encoding of extended vector type in AST file");
+ return QualType();
+ }
+
+ QualType ElementType = readType(*Loc.F, Record, Idx);
+ unsigned NumElements = Record[1];
+ return Context.getExtVectorType(ElementType, NumElements);
+ }
+
+ case TYPE_FUNCTION_NO_PROTO: {
+ if (Record.size() != 6) {
+ Error("incorrect encoding of no-proto function type");
+ return QualType();
+ }
+ QualType ResultType = readType(*Loc.F, Record, Idx);
+ FunctionType::ExtInfo Info(Record[1], Record[2], Record[3],
+ (CallingConv)Record[4], Record[5]);
+ return Context.getFunctionNoProtoType(ResultType, Info);
+ }
+
+ case TYPE_FUNCTION_PROTO: {
+ QualType ResultType = readType(*Loc.F, Record, Idx);
+
+ FunctionProtoType::ExtProtoInfo EPI;
+ EPI.ExtInfo = FunctionType::ExtInfo(/*noreturn*/ Record[1],
+ /*hasregparm*/ Record[2],
+ /*regparm*/ Record[3],
+ static_cast<CallingConv>(Record[4]),
+ /*produces*/ Record[5]);
+
+ unsigned Idx = 6;
+
+ EPI.Variadic = Record[Idx++];
+ EPI.HasTrailingReturn = Record[Idx++];
+ EPI.TypeQuals = Record[Idx++];
+ EPI.RefQualifier = static_cast<RefQualifierKind>(Record[Idx++]);
+ SmallVector<QualType, 8> ExceptionStorage;
+ readExceptionSpec(*Loc.F, ExceptionStorage, EPI.ExceptionSpec, Record, Idx);
+
+ unsigned NumParams = Record[Idx++];
+ SmallVector<QualType, 16> ParamTypes;
+ for (unsigned I = 0; I != NumParams; ++I)
+ ParamTypes.push_back(readType(*Loc.F, Record, Idx));
+
+ return Context.getFunctionType(ResultType, ParamTypes, EPI);
+ }
+
+ case TYPE_UNRESOLVED_USING: {
+ unsigned Idx = 0;
+ return Context.getTypeDeclType(
+ ReadDeclAs<UnresolvedUsingTypenameDecl>(*Loc.F, Record, Idx));
+ }
+
+ case TYPE_TYPEDEF: {
+ if (Record.size() != 2) {
+ Error("incorrect encoding of typedef type");
+ return QualType();
+ }
+ unsigned Idx = 0;
+ TypedefNameDecl *Decl = ReadDeclAs<TypedefNameDecl>(*Loc.F, Record, Idx);
+ QualType Canonical = readType(*Loc.F, Record, Idx);
+ if (!Canonical.isNull())
+ Canonical = Context.getCanonicalType(Canonical);
+ return Context.getTypedefType(Decl, Canonical);
+ }
+
+ case TYPE_TYPEOF_EXPR:
+ return Context.getTypeOfExprType(ReadExpr(*Loc.F));
+
+ case TYPE_TYPEOF: {
+ if (Record.size() != 1) {
+ Error("incorrect encoding of typeof(type) in AST file");
+ return QualType();
+ }
+ QualType UnderlyingType = readType(*Loc.F, Record, Idx);
+ return Context.getTypeOfType(UnderlyingType);
+ }
+
+ case TYPE_DECLTYPE: {
+ QualType UnderlyingType = readType(*Loc.F, Record, Idx);
+ return Context.getDecltypeType(ReadExpr(*Loc.F), UnderlyingType);
+ }
+
+ case TYPE_UNARY_TRANSFORM: {
+ QualType BaseType = readType(*Loc.F, Record, Idx);
+ QualType UnderlyingType = readType(*Loc.F, Record, Idx);
+ UnaryTransformType::UTTKind UKind = (UnaryTransformType::UTTKind)Record[2];
+ return Context.getUnaryTransformType(BaseType, UnderlyingType, UKind);
+ }
+
+ case TYPE_AUTO: {
+ QualType Deduced = readType(*Loc.F, Record, Idx);
+ bool IsDecltypeAuto = Record[Idx++];
+ bool IsDependent = Deduced.isNull() ? Record[Idx++] : false;
+ return Context.getAutoType(Deduced, IsDecltypeAuto, IsDependent);
+ }
+
+ case TYPE_RECORD: {
+ if (Record.size() != 2) {
+ Error("incorrect encoding of record type");
+ return QualType();
+ }
+ unsigned Idx = 0;
+ bool IsDependent = Record[Idx++];
+ RecordDecl *RD = ReadDeclAs<RecordDecl>(*Loc.F, Record, Idx);
+ RD = cast_or_null<RecordDecl>(RD->getCanonicalDecl());
+ QualType T = Context.getRecordType(RD);
+ const_cast<Type*>(T.getTypePtr())->setDependent(IsDependent);
+ return T;
+ }
+
+ case TYPE_ENUM: {
+ if (Record.size() != 2) {
+ Error("incorrect encoding of enum type");
+ return QualType();
+ }
+ unsigned Idx = 0;
+ bool IsDependent = Record[Idx++];
+ QualType T
+ = Context.getEnumType(ReadDeclAs<EnumDecl>(*Loc.F, Record, Idx));
+ const_cast<Type*>(T.getTypePtr())->setDependent(IsDependent);
+ return T;
+ }
+
+ case TYPE_ATTRIBUTED: {
+ if (Record.size() != 3) {
+ Error("incorrect encoding of attributed type");
+ return QualType();
+ }
+ QualType modifiedType = readType(*Loc.F, Record, Idx);
+ QualType equivalentType = readType(*Loc.F, Record, Idx);
+ AttributedType::Kind kind = static_cast<AttributedType::Kind>(Record[2]);
+ return Context.getAttributedType(kind, modifiedType, equivalentType);
+ }
+
+ case TYPE_PAREN: {
+ if (Record.size() != 1) {
+ Error("incorrect encoding of paren type");
+ return QualType();
+ }
+ QualType InnerType = readType(*Loc.F, Record, Idx);
+ return Context.getParenType(InnerType);
+ }
+
+ case TYPE_PACK_EXPANSION: {
+ if (Record.size() != 2) {
+ Error("incorrect encoding of pack expansion type");
+ return QualType();
+ }
+ QualType Pattern = readType(*Loc.F, Record, Idx);
+ if (Pattern.isNull())
+ return QualType();
+ Optional<unsigned> NumExpansions;
+ if (Record[1])
+ NumExpansions = Record[1] - 1;
+ return Context.getPackExpansionType(Pattern, NumExpansions);
+ }
+
+ case TYPE_ELABORATED: {
+ unsigned Idx = 0;
+ ElaboratedTypeKeyword Keyword = (ElaboratedTypeKeyword)Record[Idx++];
+ NestedNameSpecifier *NNS = ReadNestedNameSpecifier(*Loc.F, Record, Idx);
+ QualType NamedType = readType(*Loc.F, Record, Idx);
+ return Context.getElaboratedType(Keyword, NNS, NamedType);
+ }
+
+ case TYPE_OBJC_INTERFACE: {
+ unsigned Idx = 0;
+ ObjCInterfaceDecl *ItfD
+ = ReadDeclAs<ObjCInterfaceDecl>(*Loc.F, Record, Idx);
+ return Context.getObjCInterfaceType(ItfD->getCanonicalDecl());
+ }
+
+ case TYPE_OBJC_OBJECT: {
+ unsigned Idx = 0;
+ QualType Base = readType(*Loc.F, Record, Idx);
+ unsigned NumProtos = Record[Idx++];
+ SmallVector<ObjCProtocolDecl*, 4> Protos;
+ for (unsigned I = 0; I != NumProtos; ++I)
+ Protos.push_back(ReadDeclAs<ObjCProtocolDecl>(*Loc.F, Record, Idx));
+ return Context.getObjCObjectType(Base, Protos.data(), NumProtos);
+ }
+
+ case TYPE_OBJC_OBJECT_POINTER: {
+ unsigned Idx = 0;
+ QualType Pointee = readType(*Loc.F, Record, Idx);
+ return Context.getObjCObjectPointerType(Pointee);
+ }
+
+ case TYPE_SUBST_TEMPLATE_TYPE_PARM: {
+ unsigned Idx = 0;
+ QualType Parm = readType(*Loc.F, Record, Idx);
+ QualType Replacement = readType(*Loc.F, Record, Idx);
+ return Context.getSubstTemplateTypeParmType(
+ cast<TemplateTypeParmType>(Parm),
+ Context.getCanonicalType(Replacement));
+ }
+
+ case TYPE_SUBST_TEMPLATE_TYPE_PARM_PACK: {
+ unsigned Idx = 0;
+ QualType Parm = readType(*Loc.F, Record, Idx);
+ TemplateArgument ArgPack = ReadTemplateArgument(*Loc.F, Record, Idx);
+ return Context.getSubstTemplateTypeParmPackType(
+ cast<TemplateTypeParmType>(Parm),
+ ArgPack);
+ }
+
+ case TYPE_INJECTED_CLASS_NAME: {
+ CXXRecordDecl *D = ReadDeclAs<CXXRecordDecl>(*Loc.F, Record, Idx);
+ QualType TST = readType(*Loc.F, Record, Idx); // probably derivable
+ // FIXME: ASTContext::getInjectedClassNameType is not currently suitable
+ // for AST reading, too much interdependencies.
+ const Type *T = nullptr;
+ for (auto *DI = D; DI; DI = DI->getPreviousDecl()) {
+ if (const Type *Existing = DI->getTypeForDecl()) {
+ T = Existing;
+ break;
+ }
+ }
+ if (!T) {
+ T = new (Context, TypeAlignment) InjectedClassNameType(D, TST);
+ for (auto *DI = D; DI; DI = DI->getPreviousDecl())
+ DI->setTypeForDecl(T);
+ }
+ return QualType(T, 0);
+ }
+
+ case TYPE_TEMPLATE_TYPE_PARM: {
+ unsigned Idx = 0;
+ unsigned Depth = Record[Idx++];
+ unsigned Index = Record[Idx++];
+ bool Pack = Record[Idx++];
+ TemplateTypeParmDecl *D
+ = ReadDeclAs<TemplateTypeParmDecl>(*Loc.F, Record, Idx);
+ return Context.getTemplateTypeParmType(Depth, Index, Pack, D);
+ }
+
+ case TYPE_DEPENDENT_NAME: {
+ unsigned Idx = 0;
+ ElaboratedTypeKeyword Keyword = (ElaboratedTypeKeyword)Record[Idx++];
+ NestedNameSpecifier *NNS = ReadNestedNameSpecifier(*Loc.F, Record, Idx);
+ const IdentifierInfo *Name = this->GetIdentifierInfo(*Loc.F, Record, Idx);
+ QualType Canon = readType(*Loc.F, Record, Idx);
+ if (!Canon.isNull())
+ Canon = Context.getCanonicalType(Canon);
+ return Context.getDependentNameType(Keyword, NNS, Name, Canon);
+ }
+
+ case TYPE_DEPENDENT_TEMPLATE_SPECIALIZATION: {
+ unsigned Idx = 0;
+ ElaboratedTypeKeyword Keyword = (ElaboratedTypeKeyword)Record[Idx++];
+ NestedNameSpecifier *NNS = ReadNestedNameSpecifier(*Loc.F, Record, Idx);
+ const IdentifierInfo *Name = this->GetIdentifierInfo(*Loc.F, Record, Idx);
+ unsigned NumArgs = Record[Idx++];
+ SmallVector<TemplateArgument, 8> Args;
+ Args.reserve(NumArgs);
+ while (NumArgs--)
+ Args.push_back(ReadTemplateArgument(*Loc.F, Record, Idx));
+ return Context.getDependentTemplateSpecializationType(Keyword, NNS, Name,
+ Args.size(), Args.data());
+ }
+
+ case TYPE_DEPENDENT_SIZED_ARRAY: {
+ unsigned Idx = 0;
+
+ // ArrayType
+ QualType ElementType = readType(*Loc.F, Record, Idx);
+ ArrayType::ArraySizeModifier ASM
+ = (ArrayType::ArraySizeModifier)Record[Idx++];
+ unsigned IndexTypeQuals = Record[Idx++];
+
+ // DependentSizedArrayType
+ Expr *NumElts = ReadExpr(*Loc.F);
+ SourceRange Brackets = ReadSourceRange(*Loc.F, Record, Idx);
+
+ return Context.getDependentSizedArrayType(ElementType, NumElts, ASM,
+ IndexTypeQuals, Brackets);
+ }
+
+ case TYPE_TEMPLATE_SPECIALIZATION: {
+ unsigned Idx = 0;
+ bool IsDependent = Record[Idx++];
+ TemplateName Name = ReadTemplateName(*Loc.F, Record, Idx);
+ SmallVector<TemplateArgument, 8> Args;
+ ReadTemplateArgumentList(Args, *Loc.F, Record, Idx);
+ QualType Underlying = readType(*Loc.F, Record, Idx);
+ QualType T;
+ if (Underlying.isNull())
+ T = Context.getCanonicalTemplateSpecializationType(Name, Args.data(),
+ Args.size());
+ else
+ T = Context.getTemplateSpecializationType(Name, Args.data(),
+ Args.size(), Underlying);
+ const_cast<Type*>(T.getTypePtr())->setDependent(IsDependent);
+ return T;
+ }
+
+ case TYPE_ATOMIC: {
+ if (Record.size() != 1) {
+ Error("Incorrect encoding of atomic type");
+ return QualType();
+ }
+ QualType ValueType = readType(*Loc.F, Record, Idx);
+ return Context.getAtomicType(ValueType);
+ }
+ }
+ llvm_unreachable("Invalid TypeCode!");
+}
+
+void ASTReader::readExceptionSpec(ModuleFile &ModuleFile,
+ SmallVectorImpl<QualType> &Exceptions,
+ FunctionProtoType::ExceptionSpecInfo &ESI,
+ const RecordData &Record, unsigned &Idx) {
+ ExceptionSpecificationType EST =
+ static_cast<ExceptionSpecificationType>(Record[Idx++]);
+ ESI.Type = EST;
+ if (EST == EST_Dynamic) {
+ for (unsigned I = 0, N = Record[Idx++]; I != N; ++I)
+ Exceptions.push_back(readType(ModuleFile, Record, Idx));
+ ESI.Exceptions = Exceptions;
+ } else if (EST == EST_ComputedNoexcept) {
+ ESI.NoexceptExpr = ReadExpr(ModuleFile);
+ } else if (EST == EST_Uninstantiated) {
+ ESI.SourceDecl = ReadDeclAs<FunctionDecl>(ModuleFile, Record, Idx);
+ ESI.SourceTemplate = ReadDeclAs<FunctionDecl>(ModuleFile, Record, Idx);
+ } else if (EST == EST_Unevaluated) {
+ ESI.SourceDecl = ReadDeclAs<FunctionDecl>(ModuleFile, Record, Idx);
+ }
+}
+
+class clang::TypeLocReader : public TypeLocVisitor<TypeLocReader> {
+ ASTReader &Reader;
+ ModuleFile &F;
+ const ASTReader::RecordData &Record;
+ unsigned &Idx;
+
+ SourceLocation ReadSourceLocation(const ASTReader::RecordData &R,
+ unsigned &I) {
+ return Reader.ReadSourceLocation(F, R, I);
+ }
+
+ template<typename T>
+ T *ReadDeclAs(const ASTReader::RecordData &Record, unsigned &Idx) {
+ return Reader.ReadDeclAs<T>(F, Record, Idx);
+ }
+
+public:
+ TypeLocReader(ASTReader &Reader, ModuleFile &F,
+ const ASTReader::RecordData &Record, unsigned &Idx)
+ : Reader(Reader), F(F), Record(Record), Idx(Idx)
+ { }
+
+ // We want compile-time assurance that we've enumerated all of
+ // these, so unfortunately we have to declare them first, then
+ // define them out-of-line.
+#define ABSTRACT_TYPELOC(CLASS, PARENT)
+#define TYPELOC(CLASS, PARENT) \
+ void Visit##CLASS##TypeLoc(CLASS##TypeLoc TyLoc);
+#include "clang/AST/TypeLocNodes.def"
+
+ void VisitFunctionTypeLoc(FunctionTypeLoc);
+ void VisitArrayTypeLoc(ArrayTypeLoc);
+};
+
+void TypeLocReader::VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
+ // nothing to do
+}
+void TypeLocReader::VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
+ TL.setBuiltinLoc(ReadSourceLocation(Record, Idx));
+ if (TL.needsExtraLocalData()) {
+ TL.setWrittenTypeSpec(static_cast<DeclSpec::TST>(Record[Idx++]));
+ TL.setWrittenSignSpec(static_cast<DeclSpec::TSS>(Record[Idx++]));
+ TL.setWrittenWidthSpec(static_cast<DeclSpec::TSW>(Record[Idx++]));
+ TL.setModeAttr(Record[Idx++]);
+ }
+}
+void TypeLocReader::VisitComplexTypeLoc(ComplexTypeLoc TL) {
+ TL.setNameLoc(ReadSourceLocation(Record, Idx));
+}
+void TypeLocReader::VisitPointerTypeLoc(PointerTypeLoc TL) {
+ TL.setStarLoc(ReadSourceLocation(Record, Idx));
+}
+void TypeLocReader::VisitDecayedTypeLoc(DecayedTypeLoc TL) {
+ // nothing to do
+}
+void TypeLocReader::VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
+ // nothing to do
+}
+void TypeLocReader::VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
+ TL.setCaretLoc(ReadSourceLocation(Record, Idx));
+}
+void TypeLocReader::VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
+ TL.setAmpLoc(ReadSourceLocation(Record, Idx));
+}
+void TypeLocReader::VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
+ TL.setAmpAmpLoc(ReadSourceLocation(Record, Idx));
+}
+void TypeLocReader::VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
+ TL.setStarLoc(ReadSourceLocation(Record, Idx));
+ TL.setClassTInfo(Reader.GetTypeSourceInfo(F, Record, Idx));
+}
+void TypeLocReader::VisitArrayTypeLoc(ArrayTypeLoc TL) {
+ TL.setLBracketLoc(ReadSourceLocation(Record, Idx));
+ TL.setRBracketLoc(ReadSourceLocation(Record, Idx));
+ if (Record[Idx++])
+ TL.setSizeExpr(Reader.ReadExpr(F));
+ else
+ TL.setSizeExpr(nullptr);
+}
+void TypeLocReader::VisitConstantArrayTypeLoc(ConstantArrayTypeLoc TL) {
+ VisitArrayTypeLoc(TL);
+}
+void TypeLocReader::VisitIncompleteArrayTypeLoc(IncompleteArrayTypeLoc TL) {
+ VisitArrayTypeLoc(TL);
+}
+void TypeLocReader::VisitVariableArrayTypeLoc(VariableArrayTypeLoc TL) {
+ VisitArrayTypeLoc(TL);
+}
+void TypeLocReader::VisitDependentSizedArrayTypeLoc(
+ DependentSizedArrayTypeLoc TL) {
+ VisitArrayTypeLoc(TL);
+}
+void TypeLocReader::VisitDependentSizedExtVectorTypeLoc(
+ DependentSizedExtVectorTypeLoc TL) {
+ TL.setNameLoc(ReadSourceLocation(Record, Idx));
+}
+void TypeLocReader::VisitVectorTypeLoc(VectorTypeLoc TL) {
+ TL.setNameLoc(ReadSourceLocation(Record, Idx));
+}
+void TypeLocReader::VisitExtVectorTypeLoc(ExtVectorTypeLoc TL) {
+ TL.setNameLoc(ReadSourceLocation(Record, Idx));
+}
+void TypeLocReader::VisitFunctionTypeLoc(FunctionTypeLoc TL) {
+ TL.setLocalRangeBegin(ReadSourceLocation(Record, Idx));
+ TL.setLParenLoc(ReadSourceLocation(Record, Idx));
+ TL.setRParenLoc(ReadSourceLocation(Record, Idx));
+ TL.setLocalRangeEnd(ReadSourceLocation(Record, Idx));
+ for (unsigned i = 0, e = TL.getNumParams(); i != e; ++i) {
+ TL.setParam(i, ReadDeclAs<ParmVarDecl>(Record, Idx));
+ }
+}
+void TypeLocReader::VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc TL) {
+ VisitFunctionTypeLoc(TL);
+}
+void TypeLocReader::VisitFunctionNoProtoTypeLoc(FunctionNoProtoTypeLoc TL) {
+ VisitFunctionTypeLoc(TL);
+}
+void TypeLocReader::VisitUnresolvedUsingTypeLoc(UnresolvedUsingTypeLoc TL) {
+ TL.setNameLoc(ReadSourceLocation(Record, Idx));
+}
+void TypeLocReader::VisitTypedefTypeLoc(TypedefTypeLoc TL) {
+ TL.setNameLoc(ReadSourceLocation(Record, Idx));
+}
+void TypeLocReader::VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
+ TL.setTypeofLoc(ReadSourceLocation(Record, Idx));
+ TL.setLParenLoc(ReadSourceLocation(Record, Idx));
+ TL.setRParenLoc(ReadSourceLocation(Record, Idx));
+}
+void TypeLocReader::VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
+ TL.setTypeofLoc(ReadSourceLocation(Record, Idx));
+ TL.setLParenLoc(ReadSourceLocation(Record, Idx));
+ TL.setRParenLoc(ReadSourceLocation(Record, Idx));
+ TL.setUnderlyingTInfo(Reader.GetTypeSourceInfo(F, Record, Idx));
+}
+void TypeLocReader::VisitDecltypeTypeLoc(DecltypeTypeLoc TL) {
+ TL.setNameLoc(ReadSourceLocation(Record, Idx));
+}
+void TypeLocReader::VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
+ TL.setKWLoc(ReadSourceLocation(Record, Idx));
+ TL.setLParenLoc(ReadSourceLocation(Record, Idx));
+ TL.setRParenLoc(ReadSourceLocation(Record, Idx));
+ TL.setUnderlyingTInfo(Reader.GetTypeSourceInfo(F, Record, Idx));
+}
+void TypeLocReader::VisitAutoTypeLoc(AutoTypeLoc TL) {
+ TL.setNameLoc(ReadSourceLocation(Record, Idx));
+}
+void TypeLocReader::VisitRecordTypeLoc(RecordTypeLoc TL) {
+ TL.setNameLoc(ReadSourceLocation(Record, Idx));
+}
+void TypeLocReader::VisitEnumTypeLoc(EnumTypeLoc TL) {
+ TL.setNameLoc(ReadSourceLocation(Record, Idx));
+}
+void TypeLocReader::VisitAttributedTypeLoc(AttributedTypeLoc TL) {
+ TL.setAttrNameLoc(ReadSourceLocation(Record, Idx));
+ if (TL.hasAttrOperand()) {
+ SourceRange range;
+ range.setBegin(ReadSourceLocation(Record, Idx));
+ range.setEnd(ReadSourceLocation(Record, Idx));
+ TL.setAttrOperandParensRange(range);
+ }
+ if (TL.hasAttrExprOperand()) {
+ if (Record[Idx++])
+ TL.setAttrExprOperand(Reader.ReadExpr(F));
+ else
+ TL.setAttrExprOperand(nullptr);
+ } else if (TL.hasAttrEnumOperand())
+ TL.setAttrEnumOperandLoc(ReadSourceLocation(Record, Idx));
+}
+void TypeLocReader::VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
+ TL.setNameLoc(ReadSourceLocation(Record, Idx));
+}
+void TypeLocReader::VisitSubstTemplateTypeParmTypeLoc(
+ SubstTemplateTypeParmTypeLoc TL) {
+ TL.setNameLoc(ReadSourceLocation(Record, Idx));
+}
+void TypeLocReader::VisitSubstTemplateTypeParmPackTypeLoc(
+ SubstTemplateTypeParmPackTypeLoc TL) {
+ TL.setNameLoc(ReadSourceLocation(Record, Idx));
+}
+void TypeLocReader::VisitTemplateSpecializationTypeLoc(
+ TemplateSpecializationTypeLoc TL) {
+ TL.setTemplateKeywordLoc(ReadSourceLocation(Record, Idx));
+ TL.setTemplateNameLoc(ReadSourceLocation(Record, Idx));
+ TL.setLAngleLoc(ReadSourceLocation(Record, Idx));
+ TL.setRAngleLoc(ReadSourceLocation(Record, Idx));
+ for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
+ TL.setArgLocInfo(i,
+ Reader.GetTemplateArgumentLocInfo(F,
+ TL.getTypePtr()->getArg(i).getKind(),
+ Record, Idx));
+}
+void TypeLocReader::VisitParenTypeLoc(ParenTypeLoc TL) {
+ TL.setLParenLoc(ReadSourceLocation(Record, Idx));
+ TL.setRParenLoc(ReadSourceLocation(Record, Idx));
+}
+void TypeLocReader::VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
+ TL.setElaboratedKeywordLoc(ReadSourceLocation(Record, Idx));
+ TL.setQualifierLoc(Reader.ReadNestedNameSpecifierLoc(F, Record, Idx));
+}
+void TypeLocReader::VisitInjectedClassNameTypeLoc(InjectedClassNameTypeLoc TL) {
+ TL.setNameLoc(ReadSourceLocation(Record, Idx));
+}
+void TypeLocReader::VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
+ TL.setElaboratedKeywordLoc(ReadSourceLocation(Record, Idx));
+ TL.setQualifierLoc(Reader.ReadNestedNameSpecifierLoc(F, Record, Idx));
+ TL.setNameLoc(ReadSourceLocation(Record, Idx));
+}
+void TypeLocReader::VisitDependentTemplateSpecializationTypeLoc(
+ DependentTemplateSpecializationTypeLoc TL) {
+ TL.setElaboratedKeywordLoc(ReadSourceLocation(Record, Idx));
+ TL.setQualifierLoc(Reader.ReadNestedNameSpecifierLoc(F, Record, Idx));
+ TL.setTemplateKeywordLoc(ReadSourceLocation(Record, Idx));
+ TL.setTemplateNameLoc(ReadSourceLocation(Record, Idx));
+ TL.setLAngleLoc(ReadSourceLocation(Record, Idx));
+ TL.setRAngleLoc(ReadSourceLocation(Record, Idx));
+ for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I)
+ TL.setArgLocInfo(I,
+ Reader.GetTemplateArgumentLocInfo(F,
+ TL.getTypePtr()->getArg(I).getKind(),
+ Record, Idx));
+}
+void TypeLocReader::VisitPackExpansionTypeLoc(PackExpansionTypeLoc TL) {
+ TL.setEllipsisLoc(ReadSourceLocation(Record, Idx));
+}
+void TypeLocReader::VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
+ TL.setNameLoc(ReadSourceLocation(Record, Idx));
+}
+void TypeLocReader::VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
+ TL.setHasBaseTypeAsWritten(Record[Idx++]);
+ TL.setLAngleLoc(ReadSourceLocation(Record, Idx));
+ TL.setRAngleLoc(ReadSourceLocation(Record, Idx));
+ for (unsigned i = 0, e = TL.getNumProtocols(); i != e; ++i)
+ TL.setProtocolLoc(i, ReadSourceLocation(Record, Idx));
+}
+void TypeLocReader::VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
+ TL.setStarLoc(ReadSourceLocation(Record, Idx));
+}
+void TypeLocReader::VisitAtomicTypeLoc(AtomicTypeLoc TL) {
+ TL.setKWLoc(ReadSourceLocation(Record, Idx));
+ TL.setLParenLoc(ReadSourceLocation(Record, Idx));
+ TL.setRParenLoc(ReadSourceLocation(Record, Idx));
+}
+
+TypeSourceInfo *ASTReader::GetTypeSourceInfo(ModuleFile &F,
+ const RecordData &Record,
+ unsigned &Idx) {
+ QualType InfoTy = readType(F, Record, Idx);
+ if (InfoTy.isNull())
+ return nullptr;
+
+ TypeSourceInfo *TInfo = getContext().CreateTypeSourceInfo(InfoTy);
+ TypeLocReader TLR(*this, F, Record, Idx);
+ for (TypeLoc TL = TInfo->getTypeLoc(); !TL.isNull(); TL = TL.getNextTypeLoc())
+ TLR.Visit(TL);
+ return TInfo;
+}
+
+QualType ASTReader::GetType(TypeID ID) {
+ unsigned FastQuals = ID & Qualifiers::FastMask;
+ unsigned Index = ID >> Qualifiers::FastWidth;
+
+ if (Index < NUM_PREDEF_TYPE_IDS) {
+ QualType T;
+ switch ((PredefinedTypeIDs)Index) {
+ case PREDEF_TYPE_NULL_ID: return QualType();
+ case PREDEF_TYPE_VOID_ID: T = Context.VoidTy; break;
+ case PREDEF_TYPE_BOOL_ID: T = Context.BoolTy; break;
+
+ case PREDEF_TYPE_CHAR_U_ID:
+ case PREDEF_TYPE_CHAR_S_ID:
+ // FIXME: Check that the signedness of CharTy is correct!
+ T = Context.CharTy;
+ break;
+
+ case PREDEF_TYPE_UCHAR_ID: T = Context.UnsignedCharTy; break;
+ case PREDEF_TYPE_USHORT_ID: T = Context.UnsignedShortTy; break;
+ case PREDEF_TYPE_UINT_ID: T = Context.UnsignedIntTy; break;
+ case PREDEF_TYPE_ULONG_ID: T = Context.UnsignedLongTy; break;
+ case PREDEF_TYPE_ULONGLONG_ID: T = Context.UnsignedLongLongTy; break;
+ case PREDEF_TYPE_UINT128_ID: T = Context.UnsignedInt128Ty; break;
+ case PREDEF_TYPE_SCHAR_ID: T = Context.SignedCharTy; break;
+ case PREDEF_TYPE_WCHAR_ID: T = Context.WCharTy; break;
+ case PREDEF_TYPE_SHORT_ID: T = Context.ShortTy; break;
+ case PREDEF_TYPE_INT_ID: T = Context.IntTy; break;
+ case PREDEF_TYPE_LONG_ID: T = Context.LongTy; break;
+ case PREDEF_TYPE_LONGLONG_ID: T = Context.LongLongTy; break;
+ case PREDEF_TYPE_INT128_ID: T = Context.Int128Ty; break;
+ case PREDEF_TYPE_HALF_ID: T = Context.HalfTy; break;
+ case PREDEF_TYPE_FLOAT_ID: T = Context.FloatTy; break;
+ case PREDEF_TYPE_DOUBLE_ID: T = Context.DoubleTy; break;
+ case PREDEF_TYPE_LONGDOUBLE_ID: T = Context.LongDoubleTy; break;
+ case PREDEF_TYPE_OVERLOAD_ID: T = Context.OverloadTy; break;
+ case PREDEF_TYPE_BOUND_MEMBER: T = Context.BoundMemberTy; break;
+ case PREDEF_TYPE_PSEUDO_OBJECT: T = Context.PseudoObjectTy; break;
+ case PREDEF_TYPE_DEPENDENT_ID: T = Context.DependentTy; break;
+ case PREDEF_TYPE_UNKNOWN_ANY: T = Context.UnknownAnyTy; break;
+ case PREDEF_TYPE_NULLPTR_ID: T = Context.NullPtrTy; break;
+ case PREDEF_TYPE_CHAR16_ID: T = Context.Char16Ty; break;
+ case PREDEF_TYPE_CHAR32_ID: T = Context.Char32Ty; break;
+ case PREDEF_TYPE_OBJC_ID: T = Context.ObjCBuiltinIdTy; break;
+ case PREDEF_TYPE_OBJC_CLASS: T = Context.ObjCBuiltinClassTy; break;
+ case PREDEF_TYPE_OBJC_SEL: T = Context.ObjCBuiltinSelTy; break;
+ case PREDEF_TYPE_IMAGE1D_ID: T = Context.OCLImage1dTy; break;
+ case PREDEF_TYPE_IMAGE1D_ARR_ID: T = Context.OCLImage1dArrayTy; break;
+ case PREDEF_TYPE_IMAGE1D_BUFF_ID: T = Context.OCLImage1dBufferTy; break;
+ case PREDEF_TYPE_IMAGE2D_ID: T = Context.OCLImage2dTy; break;
+ case PREDEF_TYPE_IMAGE2D_ARR_ID: T = Context.OCLImage2dArrayTy; break;
+ case PREDEF_TYPE_IMAGE3D_ID: T = Context.OCLImage3dTy; break;
+ case PREDEF_TYPE_SAMPLER_ID: T = Context.OCLSamplerTy; break;
+ case PREDEF_TYPE_EVENT_ID: T = Context.OCLEventTy; break;
+ case PREDEF_TYPE_AUTO_DEDUCT: T = Context.getAutoDeductType(); break;
+
+ case PREDEF_TYPE_AUTO_RREF_DEDUCT:
+ T = Context.getAutoRRefDeductType();
+ break;
+
+ case PREDEF_TYPE_ARC_UNBRIDGED_CAST:
+ T = Context.ARCUnbridgedCastTy;
+ break;
+
+ case PREDEF_TYPE_VA_LIST_TAG:
+ T = Context.getVaListTagType();
+ break;
+
+ case PREDEF_TYPE_BUILTIN_FN:
+ T = Context.BuiltinFnTy;
+ break;
+ }
+
+ assert(!T.isNull() && "Unknown predefined type");
+ return T.withFastQualifiers(FastQuals);
+ }
+
+ Index -= NUM_PREDEF_TYPE_IDS;
+ assert(Index < TypesLoaded.size() && "Type index out-of-range");
+ if (TypesLoaded[Index].isNull()) {
+ TypesLoaded[Index] = readTypeRecord(Index);
+ if (TypesLoaded[Index].isNull())
+ return QualType();
+
+ TypesLoaded[Index]->setFromAST();
+ if (DeserializationListener)
+ DeserializationListener->TypeRead(TypeIdx::fromTypeID(ID),
+ TypesLoaded[Index]);
+ }
+
+ return TypesLoaded[Index].withFastQualifiers(FastQuals);
+}
+
+QualType ASTReader::getLocalType(ModuleFile &F, unsigned LocalID) {
+ return GetType(getGlobalTypeID(F, LocalID));
+}
+
+serialization::TypeID
+ASTReader::getGlobalTypeID(ModuleFile &F, unsigned LocalID) const {
+ unsigned FastQuals = LocalID & Qualifiers::FastMask;
+ unsigned LocalIndex = LocalID >> Qualifiers::FastWidth;
+
+ if (LocalIndex < NUM_PREDEF_TYPE_IDS)
+ return LocalID;
+
+ ContinuousRangeMap<uint32_t, int, 2>::iterator I
+ = F.TypeRemap.find(LocalIndex - NUM_PREDEF_TYPE_IDS);
+ assert(I != F.TypeRemap.end() && "Invalid index into type index remap");
+
+ unsigned GlobalIndex = LocalIndex + I->second;
+ return (GlobalIndex << Qualifiers::FastWidth) | FastQuals;
+}
+
+TemplateArgumentLocInfo
+ASTReader::GetTemplateArgumentLocInfo(ModuleFile &F,
+ TemplateArgument::ArgKind Kind,
+ const RecordData &Record,
+ unsigned &Index) {
+ switch (Kind) {
+ case TemplateArgument::Expression:
+ return ReadExpr(F);
+ case TemplateArgument::Type:
+ return GetTypeSourceInfo(F, Record, Index);
+ case TemplateArgument::Template: {
+ NestedNameSpecifierLoc QualifierLoc = ReadNestedNameSpecifierLoc(F, Record,
+ Index);
+ SourceLocation TemplateNameLoc = ReadSourceLocation(F, Record, Index);
+ return TemplateArgumentLocInfo(QualifierLoc, TemplateNameLoc,
+ SourceLocation());
+ }
+ case TemplateArgument::TemplateExpansion: {
+ NestedNameSpecifierLoc QualifierLoc = ReadNestedNameSpecifierLoc(F, Record,
+ Index);
+ SourceLocation TemplateNameLoc = ReadSourceLocation(F, Record, Index);
+ SourceLocation EllipsisLoc = ReadSourceLocation(F, Record, Index);
+ return TemplateArgumentLocInfo(QualifierLoc, TemplateNameLoc,
+ EllipsisLoc);
+ }
+ case TemplateArgument::Null:
+ case TemplateArgument::Integral:
+ case TemplateArgument::Declaration:
+ case TemplateArgument::NullPtr:
+ case TemplateArgument::Pack:
+ // FIXME: Is this right?
+ return TemplateArgumentLocInfo();
+ }
+ llvm_unreachable("unexpected template argument loc");
+}
+
+TemplateArgumentLoc
+ASTReader::ReadTemplateArgumentLoc(ModuleFile &F,
+ const RecordData &Record, unsigned &Index) {
+ TemplateArgument Arg = ReadTemplateArgument(F, Record, Index);
+
+ if (Arg.getKind() == TemplateArgument::Expression) {
+ if (Record[Index++]) // bool InfoHasSameExpr.
+ return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo(Arg.getAsExpr()));
+ }
+ return TemplateArgumentLoc(Arg, GetTemplateArgumentLocInfo(F, Arg.getKind(),
+ Record, Index));
+}
+
+const ASTTemplateArgumentListInfo*
+ASTReader::ReadASTTemplateArgumentListInfo(ModuleFile &F,
+ const RecordData &Record,
+ unsigned &Index) {
+ SourceLocation LAngleLoc = ReadSourceLocation(F, Record, Index);
+ SourceLocation RAngleLoc = ReadSourceLocation(F, Record, Index);
+ unsigned NumArgsAsWritten = Record[Index++];
+ TemplateArgumentListInfo TemplArgsInfo(LAngleLoc, RAngleLoc);
+ for (unsigned i = 0; i != NumArgsAsWritten; ++i)
+ TemplArgsInfo.addArgument(ReadTemplateArgumentLoc(F, Record, Index));
+ return ASTTemplateArgumentListInfo::Create(getContext(), TemplArgsInfo);
+}
+
+Decl *ASTReader::GetExternalDecl(uint32_t ID) {
+ return GetDecl(ID);
+}
+
+template<typename TemplateSpecializationDecl>
+static void completeRedeclChainForTemplateSpecialization(Decl *D) {
+ if (auto *TSD = dyn_cast<TemplateSpecializationDecl>(D))
+ TSD->getSpecializedTemplate()->LoadLazySpecializations();
+}
+
+void ASTReader::CompleteRedeclChain(const Decl *D) {
+ if (NumCurrentElementsDeserializing) {
+ // We arrange to not care about the complete redeclaration chain while we're
+ // deserializing. Just remember that the AST has marked this one as complete
+ // but that it's not actually complete yet, so we know we still need to
+ // complete it later.
+ PendingIncompleteDeclChains.push_back(const_cast<Decl*>(D));
+ return;
+ }
+
+ const DeclContext *DC = D->getDeclContext()->getRedeclContext();
+
+ // If this is a named declaration, complete it by looking it up
+ // within its context.
+ //
+ // FIXME: Merging a function definition should merge
+ // all mergeable entities within it.
+ if (isa<TranslationUnitDecl>(DC) || isa<NamespaceDecl>(DC) ||
+ isa<CXXRecordDecl>(DC) || isa<EnumDecl>(DC)) {
+ if (DeclarationName Name = cast<NamedDecl>(D)->getDeclName()) {
+ auto *II = Name.getAsIdentifierInfo();
+ if (isa<TranslationUnitDecl>(DC) && II) {
+ // Outside of C++, we don't have a lookup table for the TU, so update
+ // the identifier instead. In C++, either way should work fine.
+ if (II->isOutOfDate())
+ updateOutOfDateIdentifier(*II);
+ } else
+ DC->lookup(Name);
+ } else if (needsAnonymousDeclarationNumber(cast<NamedDecl>(D))) {
+ // FIXME: It'd be nice to do something a bit more targeted here.
+ D->getDeclContext()->decls_begin();
+ }
+ }
+
+ if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D))
+ CTSD->getSpecializedTemplate()->LoadLazySpecializations();
+ if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(D))
+ VTSD->getSpecializedTemplate()->LoadLazySpecializations();
+ if (auto *FD = dyn_cast<FunctionDecl>(D)) {
+ if (auto *Template = FD->getPrimaryTemplate())
+ Template->LoadLazySpecializations();
+ }
+}
+
+uint64_t ASTReader::ReadCXXCtorInitializersRef(ModuleFile &M,
+ const RecordData &Record,
+ unsigned &Idx) {
+ if (Idx >= Record.size() || Record[Idx] > M.LocalNumCXXCtorInitializers) {
+ Error("malformed AST file: missing C++ ctor initializers");
+ return 0;
+ }
+
+ unsigned LocalID = Record[Idx++];
+ return getGlobalBitOffset(M, M.CXXCtorInitializersOffsets[LocalID - 1]);
+}
+
+CXXCtorInitializer **
+ASTReader::GetExternalCXXCtorInitializers(uint64_t Offset) {
+ RecordLocation Loc = getLocalBitOffset(Offset);
+ BitstreamCursor &Cursor = Loc.F->DeclsCursor;
+ SavedStreamPosition SavedPosition(Cursor);
+ Cursor.JumpToBit(Loc.Offset);
+ ReadingKindTracker ReadingKind(Read_Decl, *this);
+
+ RecordData Record;
+ unsigned Code = Cursor.ReadCode();
+ unsigned RecCode = Cursor.readRecord(Code, Record);
+ if (RecCode != DECL_CXX_CTOR_INITIALIZERS) {
+ Error("malformed AST file: missing C++ ctor initializers");
+ return nullptr;
+ }
+
+ unsigned Idx = 0;
+ return ReadCXXCtorInitializers(*Loc.F, Record, Idx);
+}
+
+uint64_t ASTReader::readCXXBaseSpecifiers(ModuleFile &M,
+ const RecordData &Record,
+ unsigned &Idx) {
+ if (Idx >= Record.size() || Record[Idx] > M.LocalNumCXXBaseSpecifiers) {
+ Error("malformed AST file: missing C++ base specifier");
+ return 0;
+ }
+
+ unsigned LocalID = Record[Idx++];
+ return getGlobalBitOffset(M, M.CXXBaseSpecifiersOffsets[LocalID - 1]);
+}
+
+CXXBaseSpecifier *ASTReader::GetExternalCXXBaseSpecifiers(uint64_t Offset) {
+ RecordLocation Loc = getLocalBitOffset(Offset);
+ BitstreamCursor &Cursor = Loc.F->DeclsCursor;
+ SavedStreamPosition SavedPosition(Cursor);
+ Cursor.JumpToBit(Loc.Offset);
+ ReadingKindTracker ReadingKind(Read_Decl, *this);
+ RecordData Record;
+ unsigned Code = Cursor.ReadCode();
+ unsigned RecCode = Cursor.readRecord(Code, Record);
+ if (RecCode != DECL_CXX_BASE_SPECIFIERS) {
+ Error("malformed AST file: missing C++ base specifiers");
+ return nullptr;
+ }
+
+ unsigned Idx = 0;
+ unsigned NumBases = Record[Idx++];
+ void *Mem = Context.Allocate(sizeof(CXXBaseSpecifier) * NumBases);
+ CXXBaseSpecifier *Bases = new (Mem) CXXBaseSpecifier [NumBases];
+ for (unsigned I = 0; I != NumBases; ++I)
+ Bases[I] = ReadCXXBaseSpecifier(*Loc.F, Record, Idx);
+ return Bases;
+}
+
+serialization::DeclID
+ASTReader::getGlobalDeclID(ModuleFile &F, LocalDeclID LocalID) const {
+ if (LocalID < NUM_PREDEF_DECL_IDS)
+ return LocalID;
+
+ ContinuousRangeMap<uint32_t, int, 2>::iterator I
+ = F.DeclRemap.find(LocalID - NUM_PREDEF_DECL_IDS);
+ assert(I != F.DeclRemap.end() && "Invalid index into decl index remap");
+
+ return LocalID + I->second;
+}
+
+bool ASTReader::isDeclIDFromModule(serialization::GlobalDeclID ID,
+ ModuleFile &M) const {
+ // Predefined decls aren't from any module.
+ if (ID < NUM_PREDEF_DECL_IDS)
+ return false;
+
+ GlobalDeclMapType::const_iterator I = GlobalDeclMap.find(ID);
+ assert(I != GlobalDeclMap.end() && "Corrupted global declaration map");
+ return &M == I->second;
+}
+
+ModuleFile *ASTReader::getOwningModuleFile(const Decl *D) {
+ if (!D->isFromASTFile())
+ return nullptr;
+ GlobalDeclMapType::const_iterator I = GlobalDeclMap.find(D->getGlobalID());
+ assert(I != GlobalDeclMap.end() && "Corrupted global declaration map");
+ return I->second;
+}
+
+SourceLocation ASTReader::getSourceLocationForDeclID(GlobalDeclID ID) {
+ if (ID < NUM_PREDEF_DECL_IDS)
+ return SourceLocation();
+
+ unsigned Index = ID - NUM_PREDEF_DECL_IDS;
+
+ if (Index > DeclsLoaded.size()) {
+ Error("declaration ID out-of-range for AST file");
+ return SourceLocation();
+ }
+
+ if (Decl *D = DeclsLoaded[Index])
+ return D->getLocation();
+
+ unsigned RawLocation = 0;
+ RecordLocation Rec = DeclCursorForID(ID, RawLocation);
+ return ReadSourceLocation(*Rec.F, RawLocation);
+}
+
+static Decl *getPredefinedDecl(ASTContext &Context, PredefinedDeclIDs ID) {
+ switch (ID) {
+ case PREDEF_DECL_NULL_ID:
+ return nullptr;
+
+ case PREDEF_DECL_TRANSLATION_UNIT_ID:
+ return Context.getTranslationUnitDecl();
+
+ case PREDEF_DECL_OBJC_ID_ID:
+ return Context.getObjCIdDecl();
+
+ case PREDEF_DECL_OBJC_SEL_ID:
+ return Context.getObjCSelDecl();
+
+ case PREDEF_DECL_OBJC_CLASS_ID:
+ return Context.getObjCClassDecl();
+
+ case PREDEF_DECL_OBJC_PROTOCOL_ID:
+ return Context.getObjCProtocolDecl();
+
+ case PREDEF_DECL_INT_128_ID:
+ return Context.getInt128Decl();
+
+ case PREDEF_DECL_UNSIGNED_INT_128_ID:
+ return Context.getUInt128Decl();
+
+ case PREDEF_DECL_OBJC_INSTANCETYPE_ID:
+ return Context.getObjCInstanceTypeDecl();
+
+ case PREDEF_DECL_BUILTIN_VA_LIST_ID:
+ return Context.getBuiltinVaListDecl();
+
+ case PREDEF_DECL_EXTERN_C_CONTEXT_ID:
+ return Context.getExternCContextDecl();
+ }
+ llvm_unreachable("PredefinedDeclIDs unknown enum value");
+}
+
+Decl *ASTReader::GetExistingDecl(DeclID ID) {
+ if (ID < NUM_PREDEF_DECL_IDS) {
+ Decl *D = getPredefinedDecl(Context, (PredefinedDeclIDs)ID);
+ if (D) {
+ // Track that we have merged the declaration with ID \p ID into the
+ // pre-existing predefined declaration \p D.
+ auto &Merged = MergedDecls[D->getCanonicalDecl()];
+ if (Merged.empty())
+ Merged.push_back(ID);
+ }
+ return D;
+ }
+
+ unsigned Index = ID - NUM_PREDEF_DECL_IDS;
+
+ if (Index >= DeclsLoaded.size()) {
+ assert(0 && "declaration ID out-of-range for AST file");
+ Error("declaration ID out-of-range for AST file");
+ return nullptr;
+ }
+
+ return DeclsLoaded[Index];
+}
+
+Decl *ASTReader::GetDecl(DeclID ID) {
+ if (ID < NUM_PREDEF_DECL_IDS)
+ return GetExistingDecl(ID);
+
+ unsigned Index = ID - NUM_PREDEF_DECL_IDS;
+
+ if (Index >= DeclsLoaded.size()) {
+ assert(0 && "declaration ID out-of-range for AST file");
+ Error("declaration ID out-of-range for AST file");
+ return nullptr;
+ }
+
+ if (!DeclsLoaded[Index]) {
+ ReadDeclRecord(ID);
+ if (DeserializationListener)
+ DeserializationListener->DeclRead(ID, DeclsLoaded[Index]);
+ }
+
+ return DeclsLoaded[Index];
+}
+
+DeclID ASTReader::mapGlobalIDToModuleFileGlobalID(ModuleFile &M,
+ DeclID GlobalID) {
+ if (GlobalID < NUM_PREDEF_DECL_IDS)
+ return GlobalID;
+
+ GlobalDeclMapType::const_iterator I = GlobalDeclMap.find(GlobalID);
+ assert(I != GlobalDeclMap.end() && "Corrupted global declaration map");
+ ModuleFile *Owner = I->second;
+
+ llvm::DenseMap<ModuleFile *, serialization::DeclID>::iterator Pos
+ = M.GlobalToLocalDeclIDs.find(Owner);
+ if (Pos == M.GlobalToLocalDeclIDs.end())
+ return 0;
+
+ return GlobalID - Owner->BaseDeclID + Pos->second;
+}
+
+serialization::DeclID ASTReader::ReadDeclID(ModuleFile &F,
+ const RecordData &Record,
+ unsigned &Idx) {
+ if (Idx >= Record.size()) {
+ Error("Corrupted AST file");
+ return 0;
+ }
+
+ return getGlobalDeclID(F, Record[Idx++]);
+}
+
+/// \brief Resolve the offset of a statement into a statement.
+///
+/// This operation will read a new statement from the external
+/// source each time it is called, and is meant to be used via a
+/// LazyOffsetPtr (which is used by Decls for the body of functions, etc).
+Stmt *ASTReader::GetExternalDeclStmt(uint64_t Offset) {
+ // Switch case IDs are per Decl.
+ ClearSwitchCaseIDs();
+
+ // Offset here is a global offset across the entire chain.
+ RecordLocation Loc = getLocalBitOffset(Offset);
+ Loc.F->DeclsCursor.JumpToBit(Loc.Offset);
+ return ReadStmtFromStream(*Loc.F);
+}
+
+namespace {
+ class FindExternalLexicalDeclsVisitor {
+ ASTReader &Reader;
+ const DeclContext *DC;
+ bool (*isKindWeWant)(Decl::Kind);
+
+ SmallVectorImpl<Decl*> &Decls;
+ bool PredefsVisited[NUM_PREDEF_DECL_IDS];
+
+ public:
+ FindExternalLexicalDeclsVisitor(ASTReader &Reader, const DeclContext *DC,
+ bool (*isKindWeWant)(Decl::Kind),
+ SmallVectorImpl<Decl*> &Decls)
+ : Reader(Reader), DC(DC), isKindWeWant(isKindWeWant), Decls(Decls)
+ {
+ for (unsigned I = 0; I != NUM_PREDEF_DECL_IDS; ++I)
+ PredefsVisited[I] = false;
+ }
+
+ static bool visitPostorder(ModuleFile &M, void *UserData) {
+ FindExternalLexicalDeclsVisitor *This
+ = static_cast<FindExternalLexicalDeclsVisitor *>(UserData);
+
+ ModuleFile::DeclContextInfosMap::iterator Info
+ = M.DeclContextInfos.find(This->DC);
+ if (Info == M.DeclContextInfos.end() || !Info->second.LexicalDecls)
+ return false;
+
+ // Load all of the declaration IDs
+ for (const KindDeclIDPair *ID = Info->second.LexicalDecls,
+ *IDE = ID + Info->second.NumLexicalDecls;
+ ID != IDE; ++ID) {
+ if (This->isKindWeWant && !This->isKindWeWant((Decl::Kind)ID->first))
+ continue;
+
+ // Don't add predefined declarations to the lexical context more
+ // than once.
+ if (ID->second < NUM_PREDEF_DECL_IDS) {
+ if (This->PredefsVisited[ID->second])
+ continue;
+
+ This->PredefsVisited[ID->second] = true;
+ }
+
+ if (Decl *D = This->Reader.GetLocalDecl(M, ID->second)) {
+ if (!This->DC->isDeclInLexicalTraversal(D))
+ This->Decls.push_back(D);
+ }
+ }
+
+ return false;
+ }
+ };
+}
+
+ExternalLoadResult ASTReader::FindExternalLexicalDecls(const DeclContext *DC,
+ bool (*isKindWeWant)(Decl::Kind),
+ SmallVectorImpl<Decl*> &Decls) {
+ // There might be lexical decls in multiple modules, for the TU at
+ // least. Walk all of the modules in the order they were loaded.
+ FindExternalLexicalDeclsVisitor Visitor(*this, DC, isKindWeWant, Decls);
+ ModuleMgr.visitDepthFirst(
+ nullptr, &FindExternalLexicalDeclsVisitor::visitPostorder, &Visitor);
+ ++NumLexicalDeclContextsRead;
+ return ELR_Success;
+}
+
+namespace {
+
+class DeclIDComp {
+ ASTReader &Reader;
+ ModuleFile &Mod;
+
+public:
+ DeclIDComp(ASTReader &Reader, ModuleFile &M) : Reader(Reader), Mod(M) {}
+
+ bool operator()(LocalDeclID L, LocalDeclID R) const {
+ SourceLocation LHS = getLocation(L);
+ SourceLocation RHS = getLocation(R);
+ return Reader.getSourceManager().isBeforeInTranslationUnit(LHS, RHS);
+ }
+
+ bool operator()(SourceLocation LHS, LocalDeclID R) const {
+ SourceLocation RHS = getLocation(R);
+ return Reader.getSourceManager().isBeforeInTranslationUnit(LHS, RHS);
+ }
+
+ bool operator()(LocalDeclID L, SourceLocation RHS) const {
+ SourceLocation LHS = getLocation(L);
+ return Reader.getSourceManager().isBeforeInTranslationUnit(LHS, RHS);
+ }
+
+ SourceLocation getLocation(LocalDeclID ID) const {
+ return Reader.getSourceManager().getFileLoc(
+ Reader.getSourceLocationForDeclID(Reader.getGlobalDeclID(Mod, ID)));
+ }
+};
+
+}
+
+void ASTReader::FindFileRegionDecls(FileID File,
+ unsigned Offset, unsigned Length,
+ SmallVectorImpl<Decl *> &Decls) {
+ SourceManager &SM = getSourceManager();
+
+ llvm::DenseMap<FileID, FileDeclsInfo>::iterator I = FileDeclIDs.find(File);
+ if (I == FileDeclIDs.end())
+ return;
+
+ FileDeclsInfo &DInfo = I->second;
+ if (DInfo.Decls.empty())
+ return;
+
+ SourceLocation
+ BeginLoc = SM.getLocForStartOfFile(File).getLocWithOffset(Offset);
+ SourceLocation EndLoc = BeginLoc.getLocWithOffset(Length);
+
+ DeclIDComp DIDComp(*this, *DInfo.Mod);
+ ArrayRef<serialization::LocalDeclID>::iterator
+ BeginIt = std::lower_bound(DInfo.Decls.begin(), DInfo.Decls.end(),
+ BeginLoc, DIDComp);
+ if (BeginIt != DInfo.Decls.begin())
+ --BeginIt;
+
+ // If we are pointing at a top-level decl inside an objc container, we need
+ // to backtrack until we find it otherwise we will fail to report that the
+ // region overlaps with an objc container.
+ while (BeginIt != DInfo.Decls.begin() &&
+ GetDecl(getGlobalDeclID(*DInfo.Mod, *BeginIt))
+ ->isTopLevelDeclInObjCContainer())
+ --BeginIt;
+
+ ArrayRef<serialization::LocalDeclID>::iterator
+ EndIt = std::upper_bound(DInfo.Decls.begin(), DInfo.Decls.end(),
+ EndLoc, DIDComp);
+ if (EndIt != DInfo.Decls.end())
+ ++EndIt;
+
+ for (ArrayRef<serialization::LocalDeclID>::iterator
+ DIt = BeginIt; DIt != EndIt; ++DIt)
+ Decls.push_back(GetDecl(getGlobalDeclID(*DInfo.Mod, *DIt)));
+}
+
+namespace {
+ /// \brief ModuleFile visitor used to perform name lookup into a
+ /// declaration context.
+ class DeclContextNameLookupVisitor {
+ ASTReader &Reader;
+ ArrayRef<const DeclContext *> Contexts;
+ DeclarationName Name;
+ SmallVectorImpl<NamedDecl *> &Decls;
+ llvm::SmallPtrSetImpl<NamedDecl *> &DeclSet;
+
+ public:
+ DeclContextNameLookupVisitor(ASTReader &Reader,
+ ArrayRef<const DeclContext *> Contexts,
+ DeclarationName Name,
+ SmallVectorImpl<NamedDecl *> &Decls,
+ llvm::SmallPtrSetImpl<NamedDecl *> &DeclSet)
+ : Reader(Reader), Contexts(Contexts), Name(Name), Decls(Decls),
+ DeclSet(DeclSet) { }
+
+ static bool visit(ModuleFile &M, void *UserData) {
+ DeclContextNameLookupVisitor *This
+ = static_cast<DeclContextNameLookupVisitor *>(UserData);
+
+ // Check whether we have any visible declaration information for
+ // this context in this module.
+ ModuleFile::DeclContextInfosMap::iterator Info;
+ bool FoundInfo = false;
+ for (auto *DC : This->Contexts) {
+ Info = M.DeclContextInfos.find(DC);
+ if (Info != M.DeclContextInfos.end() &&
+ Info->second.NameLookupTableData) {
+ FoundInfo = true;
+ break;
+ }
+ }
+
+ if (!FoundInfo)
+ return false;
+
+ // Look for this name within this module.
+ ASTDeclContextNameLookupTable *LookupTable =
+ Info->second.NameLookupTableData;
+ ASTDeclContextNameLookupTable::iterator Pos
+ = LookupTable->find(This->Name);
+ if (Pos == LookupTable->end())
+ return false;
+
+ bool FoundAnything = false;
+ ASTDeclContextNameLookupTrait::data_type Data = *Pos;
+ for (; Data.first != Data.second; ++Data.first) {
+ NamedDecl *ND = This->Reader.GetLocalDeclAs<NamedDecl>(M, *Data.first);
+ if (!ND)
+ continue;
+
+ if (ND->getDeclName() != This->Name) {
+ // A name might be null because the decl's redeclarable part is
+ // currently read before reading its name. The lookup is triggered by
+ // building that decl (likely indirectly), and so it is later in the
+ // sense of "already existing" and can be ignored here.
+ // FIXME: This should not happen; deserializing declarations should
+ // not perform lookups since that can lead to deserialization cycles.
+ continue;
+ }
+
+ // Record this declaration.
+ FoundAnything = true;
+ if (This->DeclSet.insert(ND).second)
+ This->Decls.push_back(ND);
+ }
+
+ return FoundAnything;
+ }
+ };
+}
+
+/// \brief Retrieve the "definitive" module file for the definition of the
+/// given declaration context, if there is one.
+///
+/// The "definitive" module file is the only place where we need to look to
+/// find information about the declarations within the given declaration
+/// context. For example, C++ and Objective-C classes, C structs/unions, and
+/// Objective-C protocols, categories, and extensions are all defined in a
+/// single place in the source code, so they have definitive module files
+/// associated with them. C++ namespaces, on the other hand, can have
+/// definitions in multiple different module files.
+///
+/// Note: this needs to be kept in sync with ASTWriter::AddedVisibleDecl's
+/// NDEBUG checking.
+static ModuleFile *getDefinitiveModuleFileFor(const DeclContext *DC,
+ ASTReader &Reader) {
+ if (const DeclContext *DefDC = getDefinitiveDeclContext(DC))
+ return Reader.getOwningModuleFile(cast<Decl>(DefDC));
+
+ return nullptr;
+}
+
+bool
+ASTReader::FindExternalVisibleDeclsByName(const DeclContext *DC,
+ DeclarationName Name) {
+ assert(DC->hasExternalVisibleStorage() &&
+ "DeclContext has no visible decls in storage");
+ if (!Name)
+ return false;
+
+ Deserializing LookupResults(this);
+
+ SmallVector<NamedDecl *, 64> Decls;
+ llvm::SmallPtrSet<NamedDecl*, 64> DeclSet;
+
+ // Compute the declaration contexts we need to look into. Multiple such
+ // declaration contexts occur when two declaration contexts from disjoint
+ // modules get merged, e.g., when two namespaces with the same name are
+ // independently defined in separate modules.
+ SmallVector<const DeclContext *, 2> Contexts;
+ Contexts.push_back(DC);
+
+ if (DC->isNamespace()) {
+ auto Merged = MergedDecls.find(const_cast<Decl *>(cast<Decl>(DC)));
+ if (Merged != MergedDecls.end()) {
+ for (unsigned I = 0, N = Merged->second.size(); I != N; ++I)
+ Contexts.push_back(cast<DeclContext>(GetDecl(Merged->second[I])));
+ }
+ }
+
+ auto LookUpInContexts = [&](ArrayRef<const DeclContext*> Contexts) {
+ DeclContextNameLookupVisitor Visitor(*this, Contexts, Name, Decls, DeclSet);
+
+ // If we can definitively determine which module file to look into,
+ // only look there. Otherwise, look in all module files.
+ ModuleFile *Definitive;
+ if (Contexts.size() == 1 &&
+ (Definitive = getDefinitiveModuleFileFor(Contexts[0], *this))) {
+ DeclContextNameLookupVisitor::visit(*Definitive, &Visitor);
+ } else {
+ ModuleMgr.visit(&DeclContextNameLookupVisitor::visit, &Visitor);
+ }
+ };
+
+ LookUpInContexts(Contexts);
+
+ // If this might be an implicit special member function, then also search
+ // all merged definitions of the surrounding class. We need to search them
+ // individually, because finding an entity in one of them doesn't imply that
+ // we can't find a different entity in another one.
+ if (isa<CXXRecordDecl>(DC)) {
+ auto Merged = MergedLookups.find(DC);
+ if (Merged != MergedLookups.end()) {
+ for (unsigned I = 0; I != Merged->second.size(); ++I) {
+ const DeclContext *Context = Merged->second[I];
+ LookUpInContexts(Context);
+ // We might have just added some more merged lookups. If so, our
+ // iterator is now invalid, so grab a fresh one before continuing.
+ Merged = MergedLookups.find(DC);
+ }
+ }
+ }
+
+ ++NumVisibleDeclContextsRead;
+ SetExternalVisibleDeclsForName(DC, Name, Decls);
+ return !Decls.empty();
+}
+
+namespace {
+ /// \brief ModuleFile visitor used to retrieve all visible names in a
+ /// declaration context.
+ class DeclContextAllNamesVisitor {
+ ASTReader &Reader;
+ SmallVectorImpl<const DeclContext *> &Contexts;
+ DeclsMap &Decls;
+ llvm::SmallPtrSet<NamedDecl *, 256> DeclSet;
+ bool VisitAll;
+
+ public:
+ DeclContextAllNamesVisitor(ASTReader &Reader,
+ SmallVectorImpl<const DeclContext *> &Contexts,
+ DeclsMap &Decls, bool VisitAll)
+ : Reader(Reader), Contexts(Contexts), Decls(Decls), VisitAll(VisitAll) { }
+
+ static bool visit(ModuleFile &M, void *UserData) {
+ DeclContextAllNamesVisitor *This
+ = static_cast<DeclContextAllNamesVisitor *>(UserData);
+
+ // Check whether we have any visible declaration information for
+ // this context in this module.
+ ModuleFile::DeclContextInfosMap::iterator Info;
+ bool FoundInfo = false;
+ for (unsigned I = 0, N = This->Contexts.size(); I != N; ++I) {
+ Info = M.DeclContextInfos.find(This->Contexts[I]);
+ if (Info != M.DeclContextInfos.end() &&
+ Info->second.NameLookupTableData) {
+ FoundInfo = true;
+ break;
+ }
+ }
+
+ if (!FoundInfo)
+ return false;
+
+ ASTDeclContextNameLookupTable *LookupTable =
+ Info->second.NameLookupTableData;
+ bool FoundAnything = false;
+ for (ASTDeclContextNameLookupTable::data_iterator
+ I = LookupTable->data_begin(), E = LookupTable->data_end();
+ I != E;
+ ++I) {
+ ASTDeclContextNameLookupTrait::data_type Data = *I;
+ for (; Data.first != Data.second; ++Data.first) {
+ NamedDecl *ND = This->Reader.GetLocalDeclAs<NamedDecl>(M,
+ *Data.first);
+ if (!ND)
+ continue;
+
+ // Record this declaration.
+ FoundAnything = true;
+ if (This->DeclSet.insert(ND).second)
+ This->Decls[ND->getDeclName()].push_back(ND);
+ }
+ }
+
+ return FoundAnything && !This->VisitAll;
+ }
+ };
+}
+
+void ASTReader::completeVisibleDeclsMap(const DeclContext *DC) {
+ if (!DC->hasExternalVisibleStorage())
+ return;
+ DeclsMap Decls;
+
+ // Compute the declaration contexts we need to look into. Multiple such
+ // declaration contexts occur when two declaration contexts from disjoint
+ // modules get merged, e.g., when two namespaces with the same name are
+ // independently defined in separate modules.
+ SmallVector<const DeclContext *, 2> Contexts;
+ Contexts.push_back(DC);
+
+ if (DC->isNamespace()) {
+ MergedDeclsMap::iterator Merged
+ = MergedDecls.find(const_cast<Decl *>(cast<Decl>(DC)));
+ if (Merged != MergedDecls.end()) {
+ for (unsigned I = 0, N = Merged->second.size(); I != N; ++I)
+ Contexts.push_back(cast<DeclContext>(GetDecl(Merged->second[I])));
+ }
+ }
+
+ DeclContextAllNamesVisitor Visitor(*this, Contexts, Decls,
+ /*VisitAll=*/DC->isFileContext());
+ ModuleMgr.visit(&DeclContextAllNamesVisitor::visit, &Visitor);
+ ++NumVisibleDeclContextsRead;
+
+ for (DeclsMap::iterator I = Decls.begin(), E = Decls.end(); I != E; ++I) {
+ SetExternalVisibleDeclsForName(DC, I->first, I->second);
+ }
+ const_cast<DeclContext *>(DC)->setHasExternalVisibleStorage(false);
+}
+
+/// \brief Under non-PCH compilation the consumer receives the objc methods
+/// before receiving the implementation, and codegen depends on this.
+/// We simulate this by deserializing and passing to consumer the methods of the
+/// implementation before passing the deserialized implementation decl.
+static void PassObjCImplDeclToConsumer(ObjCImplDecl *ImplD,
+ ASTConsumer *Consumer) {
+ assert(ImplD && Consumer);
+
+ for (auto *I : ImplD->methods())
+ Consumer->HandleInterestingDecl(DeclGroupRef(I));
+
+ Consumer->HandleInterestingDecl(DeclGroupRef(ImplD));
+}
+
+void ASTReader::PassInterestingDeclsToConsumer() {
+ assert(Consumer);
+
+ if (PassingDeclsToConsumer)
+ return;
+
+ // Guard variable to avoid recursively redoing the process of passing
+ // decls to consumer.
+ SaveAndRestore<bool> GuardPassingDeclsToConsumer(PassingDeclsToConsumer,
+ true);
+
+ // Ensure that we've loaded all potentially-interesting declarations
+ // that need to be eagerly loaded.
+ for (auto ID : EagerlyDeserializedDecls)
+ GetDecl(ID);
+ EagerlyDeserializedDecls.clear();
+
+ while (!InterestingDecls.empty()) {
+ Decl *D = InterestingDecls.front();
+ InterestingDecls.pop_front();
+
+ PassInterestingDeclToConsumer(D);
+ }
+}
+
+void ASTReader::PassInterestingDeclToConsumer(Decl *D) {
+ if (ObjCImplDecl *ImplD = dyn_cast<ObjCImplDecl>(D))
+ PassObjCImplDeclToConsumer(ImplD, Consumer);
+ else
+ Consumer->HandleInterestingDecl(DeclGroupRef(D));
+}
+
+void ASTReader::StartTranslationUnit(ASTConsumer *Consumer) {
+ this->Consumer = Consumer;
+
+ if (Consumer)
+ PassInterestingDeclsToConsumer();
+
+ if (DeserializationListener)
+ DeserializationListener->ReaderInitialized(this);
+}
+
+void ASTReader::PrintStats() {
+ std::fprintf(stderr, "*** AST File Statistics:\n");
+
+ unsigned NumTypesLoaded
+ = TypesLoaded.size() - std::count(TypesLoaded.begin(), TypesLoaded.end(),
+ QualType());
+ unsigned NumDeclsLoaded
+ = DeclsLoaded.size() - std::count(DeclsLoaded.begin(), DeclsLoaded.end(),
+ (Decl *)nullptr);
+ unsigned NumIdentifiersLoaded
+ = IdentifiersLoaded.size() - std::count(IdentifiersLoaded.begin(),
+ IdentifiersLoaded.end(),
+ (IdentifierInfo *)nullptr);
+ unsigned NumMacrosLoaded
+ = MacrosLoaded.size() - std::count(MacrosLoaded.begin(),
+ MacrosLoaded.end(),
+ (MacroInfo *)nullptr);
+ unsigned NumSelectorsLoaded
+ = SelectorsLoaded.size() - std::count(SelectorsLoaded.begin(),
+ SelectorsLoaded.end(),
+ Selector());
+
+ if (unsigned TotalNumSLocEntries = getTotalNumSLocs())
+ std::fprintf(stderr, " %u/%u source location entries read (%f%%)\n",
+ NumSLocEntriesRead, TotalNumSLocEntries,
+ ((float)NumSLocEntriesRead/TotalNumSLocEntries * 100));
+ if (!TypesLoaded.empty())
+ std::fprintf(stderr, " %u/%u types read (%f%%)\n",
+ NumTypesLoaded, (unsigned)TypesLoaded.size(),
+ ((float)NumTypesLoaded/TypesLoaded.size() * 100));
+ if (!DeclsLoaded.empty())
+ std::fprintf(stderr, " %u/%u declarations read (%f%%)\n",
+ NumDeclsLoaded, (unsigned)DeclsLoaded.size(),
+ ((float)NumDeclsLoaded/DeclsLoaded.size() * 100));
+ if (!IdentifiersLoaded.empty())
+ std::fprintf(stderr, " %u/%u identifiers read (%f%%)\n",
+ NumIdentifiersLoaded, (unsigned)IdentifiersLoaded.size(),
+ ((float)NumIdentifiersLoaded/IdentifiersLoaded.size() * 100));
+ if (!MacrosLoaded.empty())
+ std::fprintf(stderr, " %u/%u macros read (%f%%)\n",
+ NumMacrosLoaded, (unsigned)MacrosLoaded.size(),
+ ((float)NumMacrosLoaded/MacrosLoaded.size() * 100));
+ if (!SelectorsLoaded.empty())
+ std::fprintf(stderr, " %u/%u selectors read (%f%%)\n",
+ NumSelectorsLoaded, (unsigned)SelectorsLoaded.size(),
+ ((float)NumSelectorsLoaded/SelectorsLoaded.size() * 100));
+ if (TotalNumStatements)
+ std::fprintf(stderr, " %u/%u statements read (%f%%)\n",
+ NumStatementsRead, TotalNumStatements,
+ ((float)NumStatementsRead/TotalNumStatements * 100));
+ if (TotalNumMacros)
+ std::fprintf(stderr, " %u/%u macros read (%f%%)\n",
+ NumMacrosRead, TotalNumMacros,
+ ((float)NumMacrosRead/TotalNumMacros * 100));
+ if (TotalLexicalDeclContexts)
+ std::fprintf(stderr, " %u/%u lexical declcontexts read (%f%%)\n",
+ NumLexicalDeclContextsRead, TotalLexicalDeclContexts,
+ ((float)NumLexicalDeclContextsRead/TotalLexicalDeclContexts
+ * 100));
+ if (TotalVisibleDeclContexts)
+ std::fprintf(stderr, " %u/%u visible declcontexts read (%f%%)\n",
+ NumVisibleDeclContextsRead, TotalVisibleDeclContexts,
+ ((float)NumVisibleDeclContextsRead/TotalVisibleDeclContexts
+ * 100));
+ if (TotalNumMethodPoolEntries) {
+ std::fprintf(stderr, " %u/%u method pool entries read (%f%%)\n",
+ NumMethodPoolEntriesRead, TotalNumMethodPoolEntries,
+ ((float)NumMethodPoolEntriesRead/TotalNumMethodPoolEntries
+ * 100));
+ }
+ if (NumMethodPoolLookups) {
+ std::fprintf(stderr, " %u/%u method pool lookups succeeded (%f%%)\n",
+ NumMethodPoolHits, NumMethodPoolLookups,
+ ((float)NumMethodPoolHits/NumMethodPoolLookups * 100.0));
+ }
+ if (NumMethodPoolTableLookups) {
+ std::fprintf(stderr, " %u/%u method pool table lookups succeeded (%f%%)\n",
+ NumMethodPoolTableHits, NumMethodPoolTableLookups,
+ ((float)NumMethodPoolTableHits/NumMethodPoolTableLookups
+ * 100.0));
+ }
+
+ if (NumIdentifierLookupHits) {
+ std::fprintf(stderr,
+ " %u / %u identifier table lookups succeeded (%f%%)\n",
+ NumIdentifierLookupHits, NumIdentifierLookups,
+ (double)NumIdentifierLookupHits*100.0/NumIdentifierLookups);
+ }
+
+ if (GlobalIndex) {
+ std::fprintf(stderr, "\n");
+ GlobalIndex->printStats();
+ }
+
+ std::fprintf(stderr, "\n");
+ dump();
+ std::fprintf(stderr, "\n");
+}
+
+template<typename Key, typename ModuleFile, unsigned InitialCapacity>
+static void
+dumpModuleIDMap(StringRef Name,
+ const ContinuousRangeMap<Key, ModuleFile *,
+ InitialCapacity> &Map) {
+ if (Map.begin() == Map.end())
+ return;
+
+ typedef ContinuousRangeMap<Key, ModuleFile *, InitialCapacity> MapType;
+ llvm::errs() << Name << ":\n";
+ for (typename MapType::const_iterator I = Map.begin(), IEnd = Map.end();
+ I != IEnd; ++I) {
+ llvm::errs() << " " << I->first << " -> " << I->second->FileName
+ << "\n";
+ }
+}
+
+void ASTReader::dump() {
+ llvm::errs() << "*** PCH/ModuleFile Remappings:\n";
+ dumpModuleIDMap("Global bit offset map", GlobalBitOffsetsMap);
+ dumpModuleIDMap("Global source location entry map", GlobalSLocEntryMap);
+ dumpModuleIDMap("Global type map", GlobalTypeMap);
+ dumpModuleIDMap("Global declaration map", GlobalDeclMap);
+ dumpModuleIDMap("Global identifier map", GlobalIdentifierMap);
+ dumpModuleIDMap("Global macro map", GlobalMacroMap);
+ dumpModuleIDMap("Global submodule map", GlobalSubmoduleMap);
+ dumpModuleIDMap("Global selector map", GlobalSelectorMap);
+ dumpModuleIDMap("Global preprocessed entity map",
+ GlobalPreprocessedEntityMap);
+
+ llvm::errs() << "\n*** PCH/Modules Loaded:";
+ for (ModuleManager::ModuleConstIterator M = ModuleMgr.begin(),
+ MEnd = ModuleMgr.end();
+ M != MEnd; ++M)
+ (*M)->dump();
+}
+
+/// Return the amount of memory used by memory buffers, breaking down
+/// by heap-backed versus mmap'ed memory.
+void ASTReader::getMemoryBufferSizes(MemoryBufferSizes &sizes) const {
+ for (ModuleConstIterator I = ModuleMgr.begin(),
+ E = ModuleMgr.end(); I != E; ++I) {
+ if (llvm::MemoryBuffer *buf = (*I)->Buffer.get()) {
+ size_t bytes = buf->getBufferSize();
+ switch (buf->getBufferKind()) {
+ case llvm::MemoryBuffer::MemoryBuffer_Malloc:
+ sizes.malloc_bytes += bytes;
+ break;
+ case llvm::MemoryBuffer::MemoryBuffer_MMap:
+ sizes.mmap_bytes += bytes;
+ break;
+ }
+ }
+ }
+}
+
+void ASTReader::InitializeSema(Sema &S) {
+ SemaObj = &S;
+ S.addExternalSource(this);
+
+ // Makes sure any declarations that were deserialized "too early"
+ // still get added to the identifier's declaration chains.
+ for (uint64_t ID : PreloadedDeclIDs) {
+ NamedDecl *D = cast<NamedDecl>(GetDecl(ID));
+ pushExternalDeclIntoScope(D, D->getDeclName());
+ }
+ PreloadedDeclIDs.clear();
+
+ // FIXME: What happens if these are changed by a module import?
+ if (!FPPragmaOptions.empty()) {
+ assert(FPPragmaOptions.size() == 1 && "Wrong number of FP_PRAGMA_OPTIONS");
+ SemaObj->FPFeatures.fp_contract = FPPragmaOptions[0];
+ }
+
+ // FIXME: What happens if these are changed by a module import?
+ if (!OpenCLExtensions.empty()) {
+ unsigned I = 0;
+#define OPENCLEXT(nm) SemaObj->OpenCLFeatures.nm = OpenCLExtensions[I++];
+#include "clang/Basic/OpenCLExtensions.def"
+
+ assert(OpenCLExtensions.size() == I && "Wrong number of OPENCL_EXTENSIONS");
+ }
+
+ UpdateSema();
+}
+
+void ASTReader::UpdateSema() {
+ assert(SemaObj && "no Sema to update");
+
+ // Load the offsets of the declarations that Sema references.
+ // They will be lazily deserialized when needed.
+ if (!SemaDeclRefs.empty()) {
+ assert(SemaDeclRefs.size() % 2 == 0);
+ for (unsigned I = 0; I != SemaDeclRefs.size(); I += 2) {
+ if (!SemaObj->StdNamespace)
+ SemaObj->StdNamespace = SemaDeclRefs[I];
+ if (!SemaObj->StdBadAlloc)
+ SemaObj->StdBadAlloc = SemaDeclRefs[I+1];
+ }
+ SemaDeclRefs.clear();
+ }
+
+ // Update the state of 'pragma clang optimize'. Use the same API as if we had
+ // encountered the pragma in the source.
+ if(OptimizeOffPragmaLocation.isValid())
+ SemaObj->ActOnPragmaOptimize(/* IsOn = */ false, OptimizeOffPragmaLocation);
+}
+
+IdentifierInfo* ASTReader::get(const char *NameStart, const char *NameEnd) {
+ // Note that we are loading an identifier.
+ Deserializing AnIdentifier(this);
+ StringRef Name(NameStart, NameEnd - NameStart);
+
+ // If there is a global index, look there first to determine which modules
+ // provably do not have any results for this identifier.
+ GlobalModuleIndex::HitSet Hits;
+ GlobalModuleIndex::HitSet *HitsPtr = nullptr;
+ if (!loadGlobalIndex()) {
+ if (GlobalIndex->lookupIdentifier(Name, Hits)) {
+ HitsPtr = &Hits;
+ }
+ }
+ IdentifierLookupVisitor Visitor(Name, /*PriorGeneration=*/0,
+ NumIdentifierLookups,
+ NumIdentifierLookupHits);
+ ModuleMgr.visit(IdentifierLookupVisitor::visit, &Visitor, HitsPtr);
+ IdentifierInfo *II = Visitor.getIdentifierInfo();
+ markIdentifierUpToDate(II);
+ return II;
+}
+
+namespace clang {
+ /// \brief An identifier-lookup iterator that enumerates all of the
+ /// identifiers stored within a set of AST files.
+ class ASTIdentifierIterator : public IdentifierIterator {
+ /// \brief The AST reader whose identifiers are being enumerated.
+ const ASTReader &Reader;
+
+ /// \brief The current index into the chain of AST files stored in
+ /// the AST reader.
+ unsigned Index;
+
+ /// \brief The current position within the identifier lookup table
+ /// of the current AST file.
+ ASTIdentifierLookupTable::key_iterator Current;
+
+ /// \brief The end position within the identifier lookup table of
+ /// the current AST file.
+ ASTIdentifierLookupTable::key_iterator End;
+
+ public:
+ explicit ASTIdentifierIterator(const ASTReader &Reader);
+
+ StringRef Next() override;
+ };
+}
+
+ASTIdentifierIterator::ASTIdentifierIterator(const ASTReader &Reader)
+ : Reader(Reader), Index(Reader.ModuleMgr.size() - 1) {
+ ASTIdentifierLookupTable *IdTable
+ = (ASTIdentifierLookupTable *)Reader.ModuleMgr[Index].IdentifierLookupTable;
+ Current = IdTable->key_begin();
+ End = IdTable->key_end();
+}
+
+StringRef ASTIdentifierIterator::Next() {
+ while (Current == End) {
+ // If we have exhausted all of our AST files, we're done.
+ if (Index == 0)
+ return StringRef();
+
+ --Index;
+ ASTIdentifierLookupTable *IdTable
+ = (ASTIdentifierLookupTable *)Reader.ModuleMgr[Index].
+ IdentifierLookupTable;
+ Current = IdTable->key_begin();
+ End = IdTable->key_end();
+ }
+
+ // We have any identifiers remaining in the current AST file; return
+ // the next one.
+ StringRef Result = *Current;
+ ++Current;
+ return Result;
+}
+
+IdentifierIterator *ASTReader::getIdentifiers() {
+ if (!loadGlobalIndex())
+ return GlobalIndex->createIdentifierIterator();
+
+ return new ASTIdentifierIterator(*this);
+}
+
+namespace clang { namespace serialization {
+ class ReadMethodPoolVisitor {
+ ASTReader &Reader;
+ Selector Sel;
+ unsigned PriorGeneration;
+ unsigned InstanceBits;
+ unsigned FactoryBits;
+ bool InstanceHasMoreThanOneDecl;
+ bool FactoryHasMoreThanOneDecl;
+ SmallVector<ObjCMethodDecl *, 4> InstanceMethods;
+ SmallVector<ObjCMethodDecl *, 4> FactoryMethods;
+
+ public:
+ ReadMethodPoolVisitor(ASTReader &Reader, Selector Sel,
+ unsigned PriorGeneration)
+ : Reader(Reader), Sel(Sel), PriorGeneration(PriorGeneration),
+ InstanceBits(0), FactoryBits(0), InstanceHasMoreThanOneDecl(false),
+ FactoryHasMoreThanOneDecl(false) {}
+
+ static bool visit(ModuleFile &M, void *UserData) {
+ ReadMethodPoolVisitor *This
+ = static_cast<ReadMethodPoolVisitor *>(UserData);
+
+ if (!M.SelectorLookupTable)
+ return false;
+
+ // If we've already searched this module file, skip it now.
+ if (M.Generation <= This->PriorGeneration)
+ return true;
+
+ ++This->Reader.NumMethodPoolTableLookups;
+ ASTSelectorLookupTable *PoolTable
+ = (ASTSelectorLookupTable*)M.SelectorLookupTable;
+ ASTSelectorLookupTable::iterator Pos = PoolTable->find(This->Sel);
+ if (Pos == PoolTable->end())
+ return false;
+
+ ++This->Reader.NumMethodPoolTableHits;
+ ++This->Reader.NumSelectorsRead;
+ // FIXME: Not quite happy with the statistics here. We probably should
+ // disable this tracking when called via LoadSelector.
+ // Also, should entries without methods count as misses?
+ ++This->Reader.NumMethodPoolEntriesRead;
+ ASTSelectorLookupTrait::data_type Data = *Pos;
+ if (This->Reader.DeserializationListener)
+ This->Reader.DeserializationListener->SelectorRead(Data.ID,
+ This->Sel);
+
+ This->InstanceMethods.append(Data.Instance.begin(), Data.Instance.end());
+ This->FactoryMethods.append(Data.Factory.begin(), Data.Factory.end());
+ This->InstanceBits = Data.InstanceBits;
+ This->FactoryBits = Data.FactoryBits;
+ This->InstanceHasMoreThanOneDecl = Data.InstanceHasMoreThanOneDecl;
+ This->FactoryHasMoreThanOneDecl = Data.FactoryHasMoreThanOneDecl;
+ return true;
+ }
+
+ /// \brief Retrieve the instance methods found by this visitor.
+ ArrayRef<ObjCMethodDecl *> getInstanceMethods() const {
+ return InstanceMethods;
+ }
+
+ /// \brief Retrieve the instance methods found by this visitor.
+ ArrayRef<ObjCMethodDecl *> getFactoryMethods() const {
+ return FactoryMethods;
+ }
+
+ unsigned getInstanceBits() const { return InstanceBits; }
+ unsigned getFactoryBits() const { return FactoryBits; }
+ bool instanceHasMoreThanOneDecl() const {
+ return InstanceHasMoreThanOneDecl;
+ }
+ bool factoryHasMoreThanOneDecl() const { return FactoryHasMoreThanOneDecl; }
+ };
+} } // end namespace clang::serialization
+
+/// \brief Add the given set of methods to the method list.
+static void addMethodsToPool(Sema &S, ArrayRef<ObjCMethodDecl *> Methods,
+ ObjCMethodList &List) {
+ for (unsigned I = 0, N = Methods.size(); I != N; ++I) {
+ S.addMethodToGlobalList(&List, Methods[I]);
+ }
+}
+
+void ASTReader::ReadMethodPool(Selector Sel) {
+ // Get the selector generation and update it to the current generation.
+ unsigned &Generation = SelectorGeneration[Sel];
+ unsigned PriorGeneration = Generation;
+ Generation = getGeneration();
+
+ // Search for methods defined with this selector.
+ ++NumMethodPoolLookups;
+ ReadMethodPoolVisitor Visitor(*this, Sel, PriorGeneration);
+ ModuleMgr.visit(&ReadMethodPoolVisitor::visit, &Visitor);
+
+ if (Visitor.getInstanceMethods().empty() &&
+ Visitor.getFactoryMethods().empty())
+ return;
+
+ ++NumMethodPoolHits;
+
+ if (!getSema())
+ return;
+
+ Sema &S = *getSema();
+ Sema::GlobalMethodPool::iterator Pos
+ = S.MethodPool.insert(std::make_pair(Sel, Sema::GlobalMethods())).first;
+
+ Pos->second.first.setBits(Visitor.getInstanceBits());
+ Pos->second.first.setHasMoreThanOneDecl(Visitor.instanceHasMoreThanOneDecl());
+ Pos->second.second.setBits(Visitor.getFactoryBits());
+ Pos->second.second.setHasMoreThanOneDecl(Visitor.factoryHasMoreThanOneDecl());
+
+ // Add methods to the global pool *after* setting hasMoreThanOneDecl, since
+ // when building a module we keep every method individually and may need to
+ // update hasMoreThanOneDecl as we add the methods.
+ addMethodsToPool(S, Visitor.getInstanceMethods(), Pos->second.first);
+ addMethodsToPool(S, Visitor.getFactoryMethods(), Pos->second.second);
+}
+
+void ASTReader::ReadKnownNamespaces(
+ SmallVectorImpl<NamespaceDecl *> &Namespaces) {
+ Namespaces.clear();
+
+ for (unsigned I = 0, N = KnownNamespaces.size(); I != N; ++I) {
+ if (NamespaceDecl *Namespace
+ = dyn_cast_or_null<NamespaceDecl>(GetDecl(KnownNamespaces[I])))
+ Namespaces.push_back(Namespace);
+ }
+}
+
+void ASTReader::ReadUndefinedButUsed(
+ llvm::DenseMap<NamedDecl*, SourceLocation> &Undefined) {
+ for (unsigned Idx = 0, N = UndefinedButUsed.size(); Idx != N;) {
+ NamedDecl *D = cast<NamedDecl>(GetDecl(UndefinedButUsed[Idx++]));
+ SourceLocation Loc =
+ SourceLocation::getFromRawEncoding(UndefinedButUsed[Idx++]);
+ Undefined.insert(std::make_pair(D, Loc));
+ }
+}
+
+void ASTReader::ReadMismatchingDeleteExpressions(llvm::MapVector<
+ FieldDecl *, llvm::SmallVector<std::pair<SourceLocation, bool>, 4>> &
+ Exprs) {
+ for (unsigned Idx = 0, N = DelayedDeleteExprs.size(); Idx != N;) {
+ FieldDecl *FD = cast<FieldDecl>(GetDecl(DelayedDeleteExprs[Idx++]));
+ uint64_t Count = DelayedDeleteExprs[Idx++];
+ for (uint64_t C = 0; C < Count; ++C) {
+ SourceLocation DeleteLoc =
+ SourceLocation::getFromRawEncoding(DelayedDeleteExprs[Idx++]);
+ const bool IsArrayForm = DelayedDeleteExprs[Idx++];
+ Exprs[FD].push_back(std::make_pair(DeleteLoc, IsArrayForm));
+ }
+ }
+}
+
+void ASTReader::ReadTentativeDefinitions(
+ SmallVectorImpl<VarDecl *> &TentativeDefs) {
+ for (unsigned I = 0, N = TentativeDefinitions.size(); I != N; ++I) {
+ VarDecl *Var = dyn_cast_or_null<VarDecl>(GetDecl(TentativeDefinitions[I]));
+ if (Var)
+ TentativeDefs.push_back(Var);
+ }
+ TentativeDefinitions.clear();
+}
+
+void ASTReader::ReadUnusedFileScopedDecls(
+ SmallVectorImpl<const DeclaratorDecl *> &Decls) {
+ for (unsigned I = 0, N = UnusedFileScopedDecls.size(); I != N; ++I) {
+ DeclaratorDecl *D
+ = dyn_cast_or_null<DeclaratorDecl>(GetDecl(UnusedFileScopedDecls[I]));
+ if (D)
+ Decls.push_back(D);
+ }
+ UnusedFileScopedDecls.clear();
+}
+
+void ASTReader::ReadDelegatingConstructors(
+ SmallVectorImpl<CXXConstructorDecl *> &Decls) {
+ for (unsigned I = 0, N = DelegatingCtorDecls.size(); I != N; ++I) {
+ CXXConstructorDecl *D
+ = dyn_cast_or_null<CXXConstructorDecl>(GetDecl(DelegatingCtorDecls[I]));
+ if (D)
+ Decls.push_back(D);
+ }
+ DelegatingCtorDecls.clear();
+}
+
+void ASTReader::ReadExtVectorDecls(SmallVectorImpl<TypedefNameDecl *> &Decls) {
+ for (unsigned I = 0, N = ExtVectorDecls.size(); I != N; ++I) {
+ TypedefNameDecl *D
+ = dyn_cast_or_null<TypedefNameDecl>(GetDecl(ExtVectorDecls[I]));
+ if (D)
+ Decls.push_back(D);
+ }
+ ExtVectorDecls.clear();
+}
+
+void ASTReader::ReadUnusedLocalTypedefNameCandidates(
+ llvm::SmallSetVector<const TypedefNameDecl *, 4> &Decls) {
+ for (unsigned I = 0, N = UnusedLocalTypedefNameCandidates.size(); I != N;
+ ++I) {
+ TypedefNameDecl *D = dyn_cast_or_null<TypedefNameDecl>(
+ GetDecl(UnusedLocalTypedefNameCandidates[I]));
+ if (D)
+ Decls.insert(D);
+ }
+ UnusedLocalTypedefNameCandidates.clear();
+}
+
+void ASTReader::ReadReferencedSelectors(
+ SmallVectorImpl<std::pair<Selector, SourceLocation> > &Sels) {
+ if (ReferencedSelectorsData.empty())
+ return;
+
+ // If there are @selector references added them to its pool. This is for
+ // implementation of -Wselector.
+ unsigned int DataSize = ReferencedSelectorsData.size()-1;
+ unsigned I = 0;
+ while (I < DataSize) {
+ Selector Sel = DecodeSelector(ReferencedSelectorsData[I++]);
+ SourceLocation SelLoc
+ = SourceLocation::getFromRawEncoding(ReferencedSelectorsData[I++]);
+ Sels.push_back(std::make_pair(Sel, SelLoc));
+ }
+ ReferencedSelectorsData.clear();
+}
+
+void ASTReader::ReadWeakUndeclaredIdentifiers(
+ SmallVectorImpl<std::pair<IdentifierInfo *, WeakInfo> > &WeakIDs) {
+ if (WeakUndeclaredIdentifiers.empty())
+ return;
+
+ for (unsigned I = 0, N = WeakUndeclaredIdentifiers.size(); I < N; /*none*/) {
+ IdentifierInfo *WeakId
+ = DecodeIdentifierInfo(WeakUndeclaredIdentifiers[I++]);
+ IdentifierInfo *AliasId
+ = DecodeIdentifierInfo(WeakUndeclaredIdentifiers[I++]);
+ SourceLocation Loc
+ = SourceLocation::getFromRawEncoding(WeakUndeclaredIdentifiers[I++]);
+ bool Used = WeakUndeclaredIdentifiers[I++];
+ WeakInfo WI(AliasId, Loc);
+ WI.setUsed(Used);
+ WeakIDs.push_back(std::make_pair(WeakId, WI));
+ }
+ WeakUndeclaredIdentifiers.clear();
+}
+
+void ASTReader::ReadUsedVTables(SmallVectorImpl<ExternalVTableUse> &VTables) {
+ for (unsigned Idx = 0, N = VTableUses.size(); Idx < N; /* In loop */) {
+ ExternalVTableUse VT;
+ VT.Record = dyn_cast_or_null<CXXRecordDecl>(GetDecl(VTableUses[Idx++]));
+ VT.Location = SourceLocation::getFromRawEncoding(VTableUses[Idx++]);
+ VT.DefinitionRequired = VTableUses[Idx++];
+ VTables.push_back(VT);
+ }
+
+ VTableUses.clear();
+}
+
+void ASTReader::ReadPendingInstantiations(
+ SmallVectorImpl<std::pair<ValueDecl *, SourceLocation> > &Pending) {
+ for (unsigned Idx = 0, N = PendingInstantiations.size(); Idx < N;) {
+ ValueDecl *D = cast<ValueDecl>(GetDecl(PendingInstantiations[Idx++]));
+ SourceLocation Loc
+ = SourceLocation::getFromRawEncoding(PendingInstantiations[Idx++]);
+
+ Pending.push_back(std::make_pair(D, Loc));
+ }
+ PendingInstantiations.clear();
+}
+
+void ASTReader::ReadLateParsedTemplates(
+ llvm::MapVector<const FunctionDecl *, LateParsedTemplate *> &LPTMap) {
+ for (unsigned Idx = 0, N = LateParsedTemplates.size(); Idx < N;
+ /* In loop */) {
+ FunctionDecl *FD = cast<FunctionDecl>(GetDecl(LateParsedTemplates[Idx++]));
+
+ LateParsedTemplate *LT = new LateParsedTemplate;
+ LT->D = GetDecl(LateParsedTemplates[Idx++]);
+
+ ModuleFile *F = getOwningModuleFile(LT->D);
+ assert(F && "No module");
+
+ unsigned TokN = LateParsedTemplates[Idx++];
+ LT->Toks.reserve(TokN);
+ for (unsigned T = 0; T < TokN; ++T)
+ LT->Toks.push_back(ReadToken(*F, LateParsedTemplates, Idx));
+
+ LPTMap.insert(std::make_pair(FD, LT));
+ }
+
+ LateParsedTemplates.clear();
+}
+
+void ASTReader::LoadSelector(Selector Sel) {
+ // It would be complicated to avoid reading the methods anyway. So don't.
+ ReadMethodPool(Sel);
+}
+
+void ASTReader::SetIdentifierInfo(IdentifierID ID, IdentifierInfo *II) {
+ assert(ID && "Non-zero identifier ID required");
+ assert(ID <= IdentifiersLoaded.size() && "identifier ID out of range");
+ IdentifiersLoaded[ID - 1] = II;
+ if (DeserializationListener)
+ DeserializationListener->IdentifierRead(ID, II);
+}
+
+/// \brief Set the globally-visible declarations associated with the given
+/// identifier.
+///
+/// If the AST reader is currently in a state where the given declaration IDs
+/// cannot safely be resolved, they are queued until it is safe to resolve
+/// them.
+///
+/// \param II an IdentifierInfo that refers to one or more globally-visible
+/// declarations.
+///
+/// \param DeclIDs the set of declaration IDs with the name @p II that are
+/// visible at global scope.
+///
+/// \param Decls if non-null, this vector will be populated with the set of
+/// deserialized declarations. These declarations will not be pushed into
+/// scope.
+void
+ASTReader::SetGloballyVisibleDecls(IdentifierInfo *II,
+ const SmallVectorImpl<uint32_t> &DeclIDs,
+ SmallVectorImpl<Decl *> *Decls) {
+ if (NumCurrentElementsDeserializing && !Decls) {
+ PendingIdentifierInfos[II].append(DeclIDs.begin(), DeclIDs.end());
+ return;
+ }
+
+ for (unsigned I = 0, N = DeclIDs.size(); I != N; ++I) {
+ if (!SemaObj) {
+ // Queue this declaration so that it will be added to the
+ // translation unit scope and identifier's declaration chain
+ // once a Sema object is known.
+ PreloadedDeclIDs.push_back(DeclIDs[I]);
+ continue;
+ }
+
+ NamedDecl *D = cast<NamedDecl>(GetDecl(DeclIDs[I]));
+
+ // If we're simply supposed to record the declarations, do so now.
+ if (Decls) {
+ Decls->push_back(D);
+ continue;
+ }
+
+ // Introduce this declaration into the translation-unit scope
+ // and add it to the declaration chain for this identifier, so
+ // that (unqualified) name lookup will find it.
+ pushExternalDeclIntoScope(D, II);
+ }
+}
+
+IdentifierInfo *ASTReader::DecodeIdentifierInfo(IdentifierID ID) {
+ if (ID == 0)
+ return nullptr;
+
+ if (IdentifiersLoaded.empty()) {
+ Error("no identifier table in AST file");
+ return nullptr;
+ }
+
+ ID -= 1;
+ if (!IdentifiersLoaded[ID]) {
+ GlobalIdentifierMapType::iterator I = GlobalIdentifierMap.find(ID + 1);
+ assert(I != GlobalIdentifierMap.end() && "Corrupted global identifier map");
+ ModuleFile *M = I->second;
+ unsigned Index = ID - M->BaseIdentifierID;
+ const char *Str = M->IdentifierTableData + M->IdentifierOffsets[Index];
+
+ // All of the strings in the AST file are preceded by a 16-bit length.
+ // Extract that 16-bit length to avoid having to execute strlen().
+ // NOTE: 'StrLenPtr' is an 'unsigned char*' so that we load bytes as
+ // unsigned integers. This is important to avoid integer overflow when
+ // we cast them to 'unsigned'.
+ const unsigned char *StrLenPtr = (const unsigned char*) Str - 2;
+ unsigned StrLen = (((unsigned) StrLenPtr[0])
+ | (((unsigned) StrLenPtr[1]) << 8)) - 1;
+ IdentifiersLoaded[ID]
+ = &PP.getIdentifierTable().get(StringRef(Str, StrLen));
+ if (DeserializationListener)
+ DeserializationListener->IdentifierRead(ID + 1, IdentifiersLoaded[ID]);
+ }
+
+ return IdentifiersLoaded[ID];
+}
+
+IdentifierInfo *ASTReader::getLocalIdentifier(ModuleFile &M, unsigned LocalID) {
+ return DecodeIdentifierInfo(getGlobalIdentifierID(M, LocalID));
+}
+
+IdentifierID ASTReader::getGlobalIdentifierID(ModuleFile &M, unsigned LocalID) {
+ if (LocalID < NUM_PREDEF_IDENT_IDS)
+ return LocalID;
+
+ ContinuousRangeMap<uint32_t, int, 2>::iterator I
+ = M.IdentifierRemap.find(LocalID - NUM_PREDEF_IDENT_IDS);
+ assert(I != M.IdentifierRemap.end()
+ && "Invalid index into identifier index remap");
+
+ return LocalID + I->second;
+}
+
+MacroInfo *ASTReader::getMacro(MacroID ID) {
+ if (ID == 0)
+ return nullptr;
+
+ if (MacrosLoaded.empty()) {
+ Error("no macro table in AST file");
+ return nullptr;
+ }
+
+ ID -= NUM_PREDEF_MACRO_IDS;
+ if (!MacrosLoaded[ID]) {
+ GlobalMacroMapType::iterator I
+ = GlobalMacroMap.find(ID + NUM_PREDEF_MACRO_IDS);
+ assert(I != GlobalMacroMap.end() && "Corrupted global macro map");
+ ModuleFile *M = I->second;
+ unsigned Index = ID - M->BaseMacroID;
+ MacrosLoaded[ID] = ReadMacroRecord(*M, M->MacroOffsets[Index]);
+
+ if (DeserializationListener)
+ DeserializationListener->MacroRead(ID + NUM_PREDEF_MACRO_IDS,
+ MacrosLoaded[ID]);
+ }
+
+ return MacrosLoaded[ID];
+}
+
+MacroID ASTReader::getGlobalMacroID(ModuleFile &M, unsigned LocalID) {
+ if (LocalID < NUM_PREDEF_MACRO_IDS)
+ return LocalID;
+
+ ContinuousRangeMap<uint32_t, int, 2>::iterator I
+ = M.MacroRemap.find(LocalID - NUM_PREDEF_MACRO_IDS);
+ assert(I != M.MacroRemap.end() && "Invalid index into macro index remap");
+
+ return LocalID + I->second;
+}
+
+serialization::SubmoduleID
+ASTReader::getGlobalSubmoduleID(ModuleFile &M, unsigned LocalID) {
+ if (LocalID < NUM_PREDEF_SUBMODULE_IDS)
+ return LocalID;
+
+ ContinuousRangeMap<uint32_t, int, 2>::iterator I
+ = M.SubmoduleRemap.find(LocalID - NUM_PREDEF_SUBMODULE_IDS);
+ assert(I != M.SubmoduleRemap.end()
+ && "Invalid index into submodule index remap");
+
+ return LocalID + I->second;
+}
+
+Module *ASTReader::getSubmodule(SubmoduleID GlobalID) {
+ if (GlobalID < NUM_PREDEF_SUBMODULE_IDS) {
+ assert(GlobalID == 0 && "Unhandled global submodule ID");
+ return nullptr;
+ }
+
+ if (GlobalID > SubmodulesLoaded.size()) {
+ Error("submodule ID out of range in AST file");
+ return nullptr;
+ }
+
+ return SubmodulesLoaded[GlobalID - NUM_PREDEF_SUBMODULE_IDS];
+}
+
+Module *ASTReader::getModule(unsigned ID) {
+ return getSubmodule(ID);
+}
+
+Selector ASTReader::getLocalSelector(ModuleFile &M, unsigned LocalID) {
+ return DecodeSelector(getGlobalSelectorID(M, LocalID));
+}
+
+Selector ASTReader::DecodeSelector(serialization::SelectorID ID) {
+ if (ID == 0)
+ return Selector();
+
+ if (ID > SelectorsLoaded.size()) {
+ Error("selector ID out of range in AST file");
+ return Selector();
+ }
+
+ if (SelectorsLoaded[ID - 1].getAsOpaquePtr() == nullptr) {
+ // Load this selector from the selector table.
+ GlobalSelectorMapType::iterator I = GlobalSelectorMap.find(ID);
+ assert(I != GlobalSelectorMap.end() && "Corrupted global selector map");
+ ModuleFile &M = *I->second;
+ ASTSelectorLookupTrait Trait(*this, M);
+ unsigned Idx = ID - M.BaseSelectorID - NUM_PREDEF_SELECTOR_IDS;
+ SelectorsLoaded[ID - 1] =
+ Trait.ReadKey(M.SelectorLookupTableData + M.SelectorOffsets[Idx], 0);
+ if (DeserializationListener)
+ DeserializationListener->SelectorRead(ID, SelectorsLoaded[ID - 1]);
+ }
+
+ return SelectorsLoaded[ID - 1];
+}
+
+Selector ASTReader::GetExternalSelector(serialization::SelectorID ID) {
+ return DecodeSelector(ID);
+}
+
+uint32_t ASTReader::GetNumExternalSelectors() {
+ // ID 0 (the null selector) is considered an external selector.
+ return getTotalNumSelectors() + 1;
+}
+
+serialization::SelectorID
+ASTReader::getGlobalSelectorID(ModuleFile &M, unsigned LocalID) const {
+ if (LocalID < NUM_PREDEF_SELECTOR_IDS)
+ return LocalID;
+
+ ContinuousRangeMap<uint32_t, int, 2>::iterator I
+ = M.SelectorRemap.find(LocalID - NUM_PREDEF_SELECTOR_IDS);
+ assert(I != M.SelectorRemap.end()
+ && "Invalid index into selector index remap");
+
+ return LocalID + I->second;
+}
+
+DeclarationName
+ASTReader::ReadDeclarationName(ModuleFile &F,
+ const RecordData &Record, unsigned &Idx) {
+ DeclarationName::NameKind Kind = (DeclarationName::NameKind)Record[Idx++];
+ switch (Kind) {
+ case DeclarationName::Identifier:
+ return DeclarationName(GetIdentifierInfo(F, Record, Idx));
+
+ case DeclarationName::ObjCZeroArgSelector:
+ case DeclarationName::ObjCOneArgSelector:
+ case DeclarationName::ObjCMultiArgSelector:
+ return DeclarationName(ReadSelector(F, Record, Idx));
+
+ case DeclarationName::CXXConstructorName:
+ return Context.DeclarationNames.getCXXConstructorName(
+ Context.getCanonicalType(readType(F, Record, Idx)));
+
+ case DeclarationName::CXXDestructorName:
+ return Context.DeclarationNames.getCXXDestructorName(
+ Context.getCanonicalType(readType(F, Record, Idx)));
+
+ case DeclarationName::CXXConversionFunctionName:
+ return Context.DeclarationNames.getCXXConversionFunctionName(
+ Context.getCanonicalType(readType(F, Record, Idx)));
+
+ case DeclarationName::CXXOperatorName:
+ return Context.DeclarationNames.getCXXOperatorName(
+ (OverloadedOperatorKind)Record[Idx++]);
+
+ case DeclarationName::CXXLiteralOperatorName:
+ return Context.DeclarationNames.getCXXLiteralOperatorName(
+ GetIdentifierInfo(F, Record, Idx));
+
+ case DeclarationName::CXXUsingDirective:
+ return DeclarationName::getUsingDirectiveName();
+ }
+
+ llvm_unreachable("Invalid NameKind!");
+}
+
+void ASTReader::ReadDeclarationNameLoc(ModuleFile &F,
+ DeclarationNameLoc &DNLoc,
+ DeclarationName Name,
+ const RecordData &Record, unsigned &Idx) {
+ switch (Name.getNameKind()) {
+ case DeclarationName::CXXConstructorName:
+ case DeclarationName::CXXDestructorName:
+ case DeclarationName::CXXConversionFunctionName:
+ DNLoc.NamedType.TInfo = GetTypeSourceInfo(F, Record, Idx);
+ break;
+
+ case DeclarationName::CXXOperatorName:
+ DNLoc.CXXOperatorName.BeginOpNameLoc
+ = ReadSourceLocation(F, Record, Idx).getRawEncoding();
+ DNLoc.CXXOperatorName.EndOpNameLoc
+ = ReadSourceLocation(F, Record, Idx).getRawEncoding();
+ break;
+
+ case DeclarationName::CXXLiteralOperatorName:
+ DNLoc.CXXLiteralOperatorName.OpNameLoc
+ = ReadSourceLocation(F, Record, Idx).getRawEncoding();
+ break;
+
+ case DeclarationName::Identifier:
+ case DeclarationName::ObjCZeroArgSelector:
+ case DeclarationName::ObjCOneArgSelector:
+ case DeclarationName::ObjCMultiArgSelector:
+ case DeclarationName::CXXUsingDirective:
+ break;
+ }
+}
+
+void ASTReader::ReadDeclarationNameInfo(ModuleFile &F,
+ DeclarationNameInfo &NameInfo,
+ const RecordData &Record, unsigned &Idx) {
+ NameInfo.setName(ReadDeclarationName(F, Record, Idx));
+ NameInfo.setLoc(ReadSourceLocation(F, Record, Idx));
+ DeclarationNameLoc DNLoc;
+ ReadDeclarationNameLoc(F, DNLoc, NameInfo.getName(), Record, Idx);
+ NameInfo.setInfo(DNLoc);
+}
+
+void ASTReader::ReadQualifierInfo(ModuleFile &F, QualifierInfo &Info,
+ const RecordData &Record, unsigned &Idx) {
+ Info.QualifierLoc = ReadNestedNameSpecifierLoc(F, Record, Idx);
+ unsigned NumTPLists = Record[Idx++];
+ Info.NumTemplParamLists = NumTPLists;
+ if (NumTPLists) {
+ Info.TemplParamLists = new (Context) TemplateParameterList*[NumTPLists];
+ for (unsigned i=0; i != NumTPLists; ++i)
+ Info.TemplParamLists[i] = ReadTemplateParameterList(F, Record, Idx);
+ }
+}
+
+TemplateName
+ASTReader::ReadTemplateName(ModuleFile &F, const RecordData &Record,
+ unsigned &Idx) {
+ TemplateName::NameKind Kind = (TemplateName::NameKind)Record[Idx++];
+ switch (Kind) {
+ case TemplateName::Template:
+ return TemplateName(ReadDeclAs<TemplateDecl>(F, Record, Idx));
+
+ case TemplateName::OverloadedTemplate: {
+ unsigned size = Record[Idx++];
+ UnresolvedSet<8> Decls;
+ while (size--)
+ Decls.addDecl(ReadDeclAs<NamedDecl>(F, Record, Idx));
+
+ return Context.getOverloadedTemplateName(Decls.begin(), Decls.end());
+ }
+
+ case TemplateName::QualifiedTemplate: {
+ NestedNameSpecifier *NNS = ReadNestedNameSpecifier(F, Record, Idx);
+ bool hasTemplKeyword = Record[Idx++];
+ TemplateDecl *Template = ReadDeclAs<TemplateDecl>(F, Record, Idx);
+ return Context.getQualifiedTemplateName(NNS, hasTemplKeyword, Template);
+ }
+
+ case TemplateName::DependentTemplate: {
+ NestedNameSpecifier *NNS = ReadNestedNameSpecifier(F, Record, Idx);
+ if (Record[Idx++]) // isIdentifier
+ return Context.getDependentTemplateName(NNS,
+ GetIdentifierInfo(F, Record,
+ Idx));
+ return Context.getDependentTemplateName(NNS,
+ (OverloadedOperatorKind)Record[Idx++]);
+ }
+
+ case TemplateName::SubstTemplateTemplateParm: {
+ TemplateTemplateParmDecl *param
+ = ReadDeclAs<TemplateTemplateParmDecl>(F, Record, Idx);
+ if (!param) return TemplateName();
+ TemplateName replacement = ReadTemplateName(F, Record, Idx);
+ return Context.getSubstTemplateTemplateParm(param, replacement);
+ }
+
+ case TemplateName::SubstTemplateTemplateParmPack: {
+ TemplateTemplateParmDecl *Param
+ = ReadDeclAs<TemplateTemplateParmDecl>(F, Record, Idx);
+ if (!Param)
+ return TemplateName();
+
+ TemplateArgument ArgPack = ReadTemplateArgument(F, Record, Idx);
+ if (ArgPack.getKind() != TemplateArgument::Pack)
+ return TemplateName();
+
+ return Context.getSubstTemplateTemplateParmPack(Param, ArgPack);
+ }
+ }
+
+ llvm_unreachable("Unhandled template name kind!");
+}
+
+TemplateArgument
+ASTReader::ReadTemplateArgument(ModuleFile &F,
+ const RecordData &Record, unsigned &Idx) {
+ TemplateArgument::ArgKind Kind = (TemplateArgument::ArgKind)Record[Idx++];
+ switch (Kind) {
+ case TemplateArgument::Null:
+ return TemplateArgument();
+ case TemplateArgument::Type:
+ return TemplateArgument(readType(F, Record, Idx));
+ case TemplateArgument::Declaration: {
+ ValueDecl *D = ReadDeclAs<ValueDecl>(F, Record, Idx);
+ return TemplateArgument(D, readType(F, Record, Idx));
+ }
+ case TemplateArgument::NullPtr:
+ return TemplateArgument(readType(F, Record, Idx), /*isNullPtr*/true);
+ case TemplateArgument::Integral: {
+ llvm::APSInt Value = ReadAPSInt(Record, Idx);
+ QualType T = readType(F, Record, Idx);
+ return TemplateArgument(Context, Value, T);
+ }
+ case TemplateArgument::Template:
+ return TemplateArgument(ReadTemplateName(F, Record, Idx));
+ case TemplateArgument::TemplateExpansion: {
+ TemplateName Name = ReadTemplateName(F, Record, Idx);
+ Optional<unsigned> NumTemplateExpansions;
+ if (unsigned NumExpansions = Record[Idx++])
+ NumTemplateExpansions = NumExpansions - 1;
+ return TemplateArgument(Name, NumTemplateExpansions);
+ }
+ case TemplateArgument::Expression:
+ return TemplateArgument(ReadExpr(F));
+ case TemplateArgument::Pack: {
+ unsigned NumArgs = Record[Idx++];
+ TemplateArgument *Args = new (Context) TemplateArgument[NumArgs];
+ for (unsigned I = 0; I != NumArgs; ++I)
+ Args[I] = ReadTemplateArgument(F, Record, Idx);
+ return TemplateArgument(Args, NumArgs);
+ }
+ }
+
+ llvm_unreachable("Unhandled template argument kind!");
+}
+
+TemplateParameterList *
+ASTReader::ReadTemplateParameterList(ModuleFile &F,
+ const RecordData &Record, unsigned &Idx) {
+ SourceLocation TemplateLoc = ReadSourceLocation(F, Record, Idx);
+ SourceLocation LAngleLoc = ReadSourceLocation(F, Record, Idx);
+ SourceLocation RAngleLoc = ReadSourceLocation(F, Record, Idx);
+
+ unsigned NumParams = Record[Idx++];
+ SmallVector<NamedDecl *, 16> Params;
+ Params.reserve(NumParams);
+ while (NumParams--)
+ Params.push_back(ReadDeclAs<NamedDecl>(F, Record, Idx));
+
+ TemplateParameterList* TemplateParams =
+ TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
+ Params.data(), Params.size(), RAngleLoc);
+ return TemplateParams;
+}
+
+void
+ASTReader::
+ReadTemplateArgumentList(SmallVectorImpl<TemplateArgument> &TemplArgs,
+ ModuleFile &F, const RecordData &Record,
+ unsigned &Idx) {
+ unsigned NumTemplateArgs = Record[Idx++];
+ TemplArgs.reserve(NumTemplateArgs);
+ while (NumTemplateArgs--)
+ TemplArgs.push_back(ReadTemplateArgument(F, Record, Idx));
+}
+
+/// \brief Read a UnresolvedSet structure.
+void ASTReader::ReadUnresolvedSet(ModuleFile &F, LazyASTUnresolvedSet &Set,
+ const RecordData &Record, unsigned &Idx) {
+ unsigned NumDecls = Record[Idx++];
+ Set.reserve(Context, NumDecls);
+ while (NumDecls--) {
+ DeclID ID = ReadDeclID(F, Record, Idx);
+ AccessSpecifier AS = (AccessSpecifier)Record[Idx++];
+ Set.addLazyDecl(Context, ID, AS);
+ }
+}
+
+CXXBaseSpecifier
+ASTReader::ReadCXXBaseSpecifier(ModuleFile &F,
+ const RecordData &Record, unsigned &Idx) {
+ bool isVirtual = static_cast<bool>(Record[Idx++]);
+ bool isBaseOfClass = static_cast<bool>(Record[Idx++]);
+ AccessSpecifier AS = static_cast<AccessSpecifier>(Record[Idx++]);
+ bool inheritConstructors = static_cast<bool>(Record[Idx++]);
+ TypeSourceInfo *TInfo = GetTypeSourceInfo(F, Record, Idx);
+ SourceRange Range = ReadSourceRange(F, Record, Idx);
+ SourceLocation EllipsisLoc = ReadSourceLocation(F, Record, Idx);
+ CXXBaseSpecifier Result(Range, isVirtual, isBaseOfClass, AS, TInfo,
+ EllipsisLoc);
+ Result.setInheritConstructors(inheritConstructors);
+ return Result;
+}
+
+CXXCtorInitializer **
+ASTReader::ReadCXXCtorInitializers(ModuleFile &F, const RecordData &Record,
+ unsigned &Idx) {
+ unsigned NumInitializers = Record[Idx++];
+ assert(NumInitializers && "wrote ctor initializers but have no inits");
+ auto **CtorInitializers = new (Context) CXXCtorInitializer*[NumInitializers];
+ for (unsigned i = 0; i != NumInitializers; ++i) {
+ TypeSourceInfo *TInfo = nullptr;
+ bool IsBaseVirtual = false;
+ FieldDecl *Member = nullptr;
+ IndirectFieldDecl *IndirectMember = nullptr;
+
+ CtorInitializerType Type = (CtorInitializerType)Record[Idx++];
+ switch (Type) {
+ case CTOR_INITIALIZER_BASE:
+ TInfo = GetTypeSourceInfo(F, Record, Idx);
+ IsBaseVirtual = Record[Idx++];
+ break;
+
+ case CTOR_INITIALIZER_DELEGATING:
+ TInfo = GetTypeSourceInfo(F, Record, Idx);
+ break;
+
+ case CTOR_INITIALIZER_MEMBER:
+ Member = ReadDeclAs<FieldDecl>(F, Record, Idx);
+ break;
+
+ case CTOR_INITIALIZER_INDIRECT_MEMBER:
+ IndirectMember = ReadDeclAs<IndirectFieldDecl>(F, Record, Idx);
+ break;
+ }
+
+ SourceLocation MemberOrEllipsisLoc = ReadSourceLocation(F, Record, Idx);
+ Expr *Init = ReadExpr(F);
+ SourceLocation LParenLoc = ReadSourceLocation(F, Record, Idx);
+ SourceLocation RParenLoc = ReadSourceLocation(F, Record, Idx);
+ bool IsWritten = Record[Idx++];
+ unsigned SourceOrderOrNumArrayIndices;
+ SmallVector<VarDecl *, 8> Indices;
+ if (IsWritten) {
+ SourceOrderOrNumArrayIndices = Record[Idx++];
+ } else {
+ SourceOrderOrNumArrayIndices = Record[Idx++];
+ Indices.reserve(SourceOrderOrNumArrayIndices);
+ for (unsigned i=0; i != SourceOrderOrNumArrayIndices; ++i)
+ Indices.push_back(ReadDeclAs<VarDecl>(F, Record, Idx));
+ }
+
+ CXXCtorInitializer *BOMInit;
+ if (Type == CTOR_INITIALIZER_BASE) {
+ BOMInit = new (Context)
+ CXXCtorInitializer(Context, TInfo, IsBaseVirtual, LParenLoc, Init,
+ RParenLoc, MemberOrEllipsisLoc);
+ } else if (Type == CTOR_INITIALIZER_DELEGATING) {
+ BOMInit = new (Context)
+ CXXCtorInitializer(Context, TInfo, LParenLoc, Init, RParenLoc);
+ } else if (IsWritten) {
+ if (Member)
+ BOMInit = new (Context) CXXCtorInitializer(
+ Context, Member, MemberOrEllipsisLoc, LParenLoc, Init, RParenLoc);
+ else
+ BOMInit = new (Context)
+ CXXCtorInitializer(Context, IndirectMember, MemberOrEllipsisLoc,
+ LParenLoc, Init, RParenLoc);
+ } else {
+ if (IndirectMember) {
+ assert(Indices.empty() && "Indirect field improperly initialized");
+ BOMInit = new (Context)
+ CXXCtorInitializer(Context, IndirectMember, MemberOrEllipsisLoc,
+ LParenLoc, Init, RParenLoc);
+ } else {
+ BOMInit = CXXCtorInitializer::Create(
+ Context, Member, MemberOrEllipsisLoc, LParenLoc, Init, RParenLoc,
+ Indices.data(), Indices.size());
+ }
+ }
+
+ if (IsWritten)
+ BOMInit->setSourceOrder(SourceOrderOrNumArrayIndices);
+ CtorInitializers[i] = BOMInit;
+ }
+
+ return CtorInitializers;
+}
+
+NestedNameSpecifier *
+ASTReader::ReadNestedNameSpecifier(ModuleFile &F,
+ const RecordData &Record, unsigned &Idx) {
+ unsigned N = Record[Idx++];
+ NestedNameSpecifier *NNS = nullptr, *Prev = nullptr;
+ for (unsigned I = 0; I != N; ++I) {
+ NestedNameSpecifier::SpecifierKind Kind
+ = (NestedNameSpecifier::SpecifierKind)Record[Idx++];
+ switch (Kind) {
+ case NestedNameSpecifier::Identifier: {
+ IdentifierInfo *II = GetIdentifierInfo(F, Record, Idx);
+ NNS = NestedNameSpecifier::Create(Context, Prev, II);
+ break;
+ }
+
+ case NestedNameSpecifier::Namespace: {
+ NamespaceDecl *NS = ReadDeclAs<NamespaceDecl>(F, Record, Idx);
+ NNS = NestedNameSpecifier::Create(Context, Prev, NS);
+ break;
+ }
+
+ case NestedNameSpecifier::NamespaceAlias: {
+ NamespaceAliasDecl *Alias =ReadDeclAs<NamespaceAliasDecl>(F, Record, Idx);
+ NNS = NestedNameSpecifier::Create(Context, Prev, Alias);
+ break;
+ }
+
+ case NestedNameSpecifier::TypeSpec:
+ case NestedNameSpecifier::TypeSpecWithTemplate: {
+ const Type *T = readType(F, Record, Idx).getTypePtrOrNull();
+ if (!T)
+ return nullptr;
+
+ bool Template = Record[Idx++];
+ NNS = NestedNameSpecifier::Create(Context, Prev, Template, T);
+ break;
+ }
+
+ case NestedNameSpecifier::Global: {
+ NNS = NestedNameSpecifier::GlobalSpecifier(Context);
+ // No associated value, and there can't be a prefix.
+ break;
+ }
+
+ case NestedNameSpecifier::Super: {
+ CXXRecordDecl *RD = ReadDeclAs<CXXRecordDecl>(F, Record, Idx);
+ NNS = NestedNameSpecifier::SuperSpecifier(Context, RD);
+ break;
+ }
+ }
+ Prev = NNS;
+ }
+ return NNS;
+}
+
+NestedNameSpecifierLoc
+ASTReader::ReadNestedNameSpecifierLoc(ModuleFile &F, const RecordData &Record,
+ unsigned &Idx) {
+ unsigned N = Record[Idx++];
+ NestedNameSpecifierLocBuilder Builder;
+ for (unsigned I = 0; I != N; ++I) {
+ NestedNameSpecifier::SpecifierKind Kind
+ = (NestedNameSpecifier::SpecifierKind)Record[Idx++];
+ switch (Kind) {
+ case NestedNameSpecifier::Identifier: {
+ IdentifierInfo *II = GetIdentifierInfo(F, Record, Idx);
+ SourceRange Range = ReadSourceRange(F, Record, Idx);
+ Builder.Extend(Context, II, Range.getBegin(), Range.getEnd());
+ break;
+ }
+
+ case NestedNameSpecifier::Namespace: {
+ NamespaceDecl *NS = ReadDeclAs<NamespaceDecl>(F, Record, Idx);
+ SourceRange Range = ReadSourceRange(F, Record, Idx);
+ Builder.Extend(Context, NS, Range.getBegin(), Range.getEnd());
+ break;
+ }
+
+ case NestedNameSpecifier::NamespaceAlias: {
+ NamespaceAliasDecl *Alias =ReadDeclAs<NamespaceAliasDecl>(F, Record, Idx);
+ SourceRange Range = ReadSourceRange(F, Record, Idx);
+ Builder.Extend(Context, Alias, Range.getBegin(), Range.getEnd());
+ break;
+ }
+
+ case NestedNameSpecifier::TypeSpec:
+ case NestedNameSpecifier::TypeSpecWithTemplate: {
+ bool Template = Record[Idx++];
+ TypeSourceInfo *T = GetTypeSourceInfo(F, Record, Idx);
+ if (!T)
+ return NestedNameSpecifierLoc();
+ SourceLocation ColonColonLoc = ReadSourceLocation(F, Record, Idx);
+
+ // FIXME: 'template' keyword location not saved anywhere, so we fake it.
+ Builder.Extend(Context,
+ Template? T->getTypeLoc().getBeginLoc() : SourceLocation(),
+ T->getTypeLoc(), ColonColonLoc);
+ break;
+ }
+
+ case NestedNameSpecifier::Global: {
+ SourceLocation ColonColonLoc = ReadSourceLocation(F, Record, Idx);
+ Builder.MakeGlobal(Context, ColonColonLoc);
+ break;
+ }
+
+ case NestedNameSpecifier::Super: {
+ CXXRecordDecl *RD = ReadDeclAs<CXXRecordDecl>(F, Record, Idx);
+ SourceRange Range = ReadSourceRange(F, Record, Idx);
+ Builder.MakeSuper(Context, RD, Range.getBegin(), Range.getEnd());
+ break;
+ }
+ }
+ }
+
+ return Builder.getWithLocInContext(Context);
+}
+
+SourceRange
+ASTReader::ReadSourceRange(ModuleFile &F, const RecordData &Record,
+ unsigned &Idx) {
+ SourceLocation beg = ReadSourceLocation(F, Record, Idx);
+ SourceLocation end = ReadSourceLocation(F, Record, Idx);
+ return SourceRange(beg, end);
+}
+
+/// \brief Read an integral value
+llvm::APInt ASTReader::ReadAPInt(const RecordData &Record, unsigned &Idx) {
+ unsigned BitWidth = Record[Idx++];
+ unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
+ llvm::APInt Result(BitWidth, NumWords, &Record[Idx]);
+ Idx += NumWords;
+ return Result;
+}
+
+/// \brief Read a signed integral value
+llvm::APSInt ASTReader::ReadAPSInt(const RecordData &Record, unsigned &Idx) {
+ bool isUnsigned = Record[Idx++];
+ return llvm::APSInt(ReadAPInt(Record, Idx), isUnsigned);
+}
+
+/// \brief Read a floating-point value
+llvm::APFloat ASTReader::ReadAPFloat(const RecordData &Record,
+ const llvm::fltSemantics &Sem,
+ unsigned &Idx) {
+ return llvm::APFloat(Sem, ReadAPInt(Record, Idx));
+}
+
+// \brief Read a string
+std::string ASTReader::ReadString(const RecordData &Record, unsigned &Idx) {
+ unsigned Len = Record[Idx++];
+ std::string Result(Record.data() + Idx, Record.data() + Idx + Len);
+ Idx += Len;
+ return Result;
+}
+
+std::string ASTReader::ReadPath(ModuleFile &F, const RecordData &Record,
+ unsigned &Idx) {
+ std::string Filename = ReadString(Record, Idx);
+ ResolveImportedPath(F, Filename);
+ return Filename;
+}
+
+VersionTuple ASTReader::ReadVersionTuple(const RecordData &Record,
+ unsigned &Idx) {
+ unsigned Major = Record[Idx++];
+ unsigned Minor = Record[Idx++];
+ unsigned Subminor = Record[Idx++];
+ if (Minor == 0)
+ return VersionTuple(Major);
+ if (Subminor == 0)
+ return VersionTuple(Major, Minor - 1);
+ return VersionTuple(Major, Minor - 1, Subminor - 1);
+}
+
+CXXTemporary *ASTReader::ReadCXXTemporary(ModuleFile &F,
+ const RecordData &Record,
+ unsigned &Idx) {
+ CXXDestructorDecl *Decl = ReadDeclAs<CXXDestructorDecl>(F, Record, Idx);
+ return CXXTemporary::Create(Context, Decl);
+}
+
+DiagnosticBuilder ASTReader::Diag(unsigned DiagID) {
+ return Diag(CurrentImportLoc, DiagID);
+}
+
+DiagnosticBuilder ASTReader::Diag(SourceLocation Loc, unsigned DiagID) {
+ return Diags.Report(Loc, DiagID);
+}
+
+/// \brief Retrieve the identifier table associated with the
+/// preprocessor.
+IdentifierTable &ASTReader::getIdentifierTable() {
+ return PP.getIdentifierTable();
+}
+
+/// \brief Record that the given ID maps to the given switch-case
+/// statement.
+void ASTReader::RecordSwitchCaseID(SwitchCase *SC, unsigned ID) {
+ assert((*CurrSwitchCaseStmts)[ID] == nullptr &&
+ "Already have a SwitchCase with this ID");
+ (*CurrSwitchCaseStmts)[ID] = SC;
+}
+
+/// \brief Retrieve the switch-case statement with the given ID.
+SwitchCase *ASTReader::getSwitchCaseWithID(unsigned ID) {
+ assert((*CurrSwitchCaseStmts)[ID] != nullptr && "No SwitchCase with this ID");
+ return (*CurrSwitchCaseStmts)[ID];
+}
+
+void ASTReader::ClearSwitchCaseIDs() {
+ CurrSwitchCaseStmts->clear();
+}
+
+void ASTReader::ReadComments() {
+ std::vector<RawComment *> Comments;
+ for (SmallVectorImpl<std::pair<BitstreamCursor,
+ serialization::ModuleFile *> >::iterator
+ I = CommentsCursors.begin(),
+ E = CommentsCursors.end();
+ I != E; ++I) {
+ Comments.clear();
+ BitstreamCursor &Cursor = I->first;
+ serialization::ModuleFile &F = *I->second;
+ SavedStreamPosition SavedPosition(Cursor);
+
+ RecordData Record;
+ while (true) {
+ llvm::BitstreamEntry Entry =
+ Cursor.advanceSkippingSubblocks(BitstreamCursor::AF_DontPopBlockAtEnd);
+
+ switch (Entry.Kind) {
+ case llvm::BitstreamEntry::SubBlock: // Handled for us already.
+ case llvm::BitstreamEntry::Error:
+ Error("malformed block record in AST file");
+ return;
+ case llvm::BitstreamEntry::EndBlock:
+ goto NextCursor;
+ case llvm::BitstreamEntry::Record:
+ // The interesting case.
+ break;
+ }
+
+ // Read a record.
+ Record.clear();
+ switch ((CommentRecordTypes)Cursor.readRecord(Entry.ID, Record)) {
+ case COMMENTS_RAW_COMMENT: {
+ unsigned Idx = 0;
+ SourceRange SR = ReadSourceRange(F, Record, Idx);
+ RawComment::CommentKind Kind =
+ (RawComment::CommentKind) Record[Idx++];
+ bool IsTrailingComment = Record[Idx++];
+ bool IsAlmostTrailingComment = Record[Idx++];
+ Comments.push_back(new (Context) RawComment(
+ SR, Kind, IsTrailingComment, IsAlmostTrailingComment,
+ Context.getLangOpts().CommentOpts.ParseAllComments));
+ break;
+ }
+ }
+ }
+ NextCursor:
+ Context.Comments.addDeserializedComments(Comments);
+ }
+}
+
+void ASTReader::getInputFiles(ModuleFile &F,
+ SmallVectorImpl<serialization::InputFile> &Files) {
+ for (unsigned I = 0, E = F.InputFilesLoaded.size(); I != E; ++I) {
+ unsigned ID = I+1;
+ Files.push_back(getInputFile(F, ID));
+ }
+}
+
+std::string ASTReader::getOwningModuleNameForDiagnostic(const Decl *D) {
+ // If we know the owning module, use it.
+ if (Module *M = D->getImportedOwningModule())
+ return M->getFullModuleName();
+
+ // Otherwise, use the name of the top-level module the decl is within.
+ if (ModuleFile *M = getOwningModuleFile(D))
+ return M->ModuleName;
+
+ // Not from a module.
+ return "";
+}
+
+void ASTReader::finishPendingActions() {
+ while (!PendingIdentifierInfos.empty() ||
+ !PendingIncompleteDeclChains.empty() || !PendingDeclChains.empty() ||
+ !PendingMacroIDs.empty() || !PendingDeclContextInfos.empty() ||
+ !PendingUpdateRecords.empty()) {
+ // If any identifiers with corresponding top-level declarations have
+ // been loaded, load those declarations now.
+ typedef llvm::DenseMap<IdentifierInfo *, SmallVector<Decl *, 2> >
+ TopLevelDeclsMap;
+ TopLevelDeclsMap TopLevelDecls;
+
+ while (!PendingIdentifierInfos.empty()) {
+ IdentifierInfo *II = PendingIdentifierInfos.back().first;
+ SmallVector<uint32_t, 4> DeclIDs =
+ std::move(PendingIdentifierInfos.back().second);
+ PendingIdentifierInfos.pop_back();
+
+ SetGloballyVisibleDecls(II, DeclIDs, &TopLevelDecls[II]);
+ }
+
+ // For each decl chain that we wanted to complete while deserializing, mark
+ // it as "still needs to be completed".
+ for (unsigned I = 0; I != PendingIncompleteDeclChains.size(); ++I) {
+ markIncompleteDeclChain(PendingIncompleteDeclChains[I]);
+ }
+ PendingIncompleteDeclChains.clear();
+
+ // Load pending declaration chains.
+ for (unsigned I = 0; I != PendingDeclChains.size(); ++I) {
+ PendingDeclChainsKnown.erase(PendingDeclChains[I]);
+ loadPendingDeclChain(PendingDeclChains[I]);
+ }
+ assert(PendingDeclChainsKnown.empty());
+ PendingDeclChains.clear();
+
+ // Make the most recent of the top-level declarations visible.
+ for (TopLevelDeclsMap::iterator TLD = TopLevelDecls.begin(),
+ TLDEnd = TopLevelDecls.end(); TLD != TLDEnd; ++TLD) {
+ IdentifierInfo *II = TLD->first;
+ for (unsigned I = 0, N = TLD->second.size(); I != N; ++I) {
+ pushExternalDeclIntoScope(cast<NamedDecl>(TLD->second[I]), II);
+ }
+ }
+
+ // Load any pending macro definitions.
+ for (unsigned I = 0; I != PendingMacroIDs.size(); ++I) {
+ IdentifierInfo *II = PendingMacroIDs.begin()[I].first;
+ SmallVector<PendingMacroInfo, 2> GlobalIDs;
+ GlobalIDs.swap(PendingMacroIDs.begin()[I].second);
+ // Initialize the macro history from chained-PCHs ahead of module imports.
+ for (unsigned IDIdx = 0, NumIDs = GlobalIDs.size(); IDIdx != NumIDs;
+ ++IDIdx) {
+ const PendingMacroInfo &Info = GlobalIDs[IDIdx];
+ if (Info.M->Kind != MK_ImplicitModule &&
+ Info.M->Kind != MK_ExplicitModule)
+ resolvePendingMacro(II, Info);
+ }
+ // Handle module imports.
+ for (unsigned IDIdx = 0, NumIDs = GlobalIDs.size(); IDIdx != NumIDs;
+ ++IDIdx) {
+ const PendingMacroInfo &Info = GlobalIDs[IDIdx];
+ if (Info.M->Kind == MK_ImplicitModule ||
+ Info.M->Kind == MK_ExplicitModule)
+ resolvePendingMacro(II, Info);
+ }
+ }
+ PendingMacroIDs.clear();
+
+ // Wire up the DeclContexts for Decls that we delayed setting until
+ // recursive loading is completed.
+ while (!PendingDeclContextInfos.empty()) {
+ PendingDeclContextInfo Info = PendingDeclContextInfos.front();
+ PendingDeclContextInfos.pop_front();
+ DeclContext *SemaDC = cast<DeclContext>(GetDecl(Info.SemaDC));
+ DeclContext *LexicalDC = cast<DeclContext>(GetDecl(Info.LexicalDC));
+ Info.D->setDeclContextsImpl(SemaDC, LexicalDC, getContext());
+ }
+
+ // Perform any pending declaration updates.
+ while (!PendingUpdateRecords.empty()) {
+ auto Update = PendingUpdateRecords.pop_back_val();
+ ReadingKindTracker ReadingKind(Read_Decl, *this);
+ loadDeclUpdateRecords(Update.first, Update.second);
+ }
+ }
+
+ // At this point, all update records for loaded decls are in place, so any
+ // fake class definitions should have become real.
+ assert(PendingFakeDefinitionData.empty() &&
+ "faked up a class definition but never saw the real one");
+
+ // If we deserialized any C++ or Objective-C class definitions, any
+ // Objective-C protocol definitions, or any redeclarable templates, make sure
+ // that all redeclarations point to the definitions. Note that this can only
+ // happen now, after the redeclaration chains have been fully wired.
+ for (Decl *D : PendingDefinitions) {
+ if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
+ if (const TagType *TagT = dyn_cast<TagType>(TD->getTypeForDecl())) {
+ // Make sure that the TagType points at the definition.
+ const_cast<TagType*>(TagT)->decl = TD;
+ }
+
+ if (auto RD = dyn_cast<CXXRecordDecl>(D)) {
+ for (auto *R = getMostRecentExistingDecl(RD); R;
+ R = R->getPreviousDecl()) {
+ assert((R == D) ==
+ cast<CXXRecordDecl>(R)->isThisDeclarationADefinition() &&
+ "declaration thinks it's the definition but it isn't");
+ cast<CXXRecordDecl>(R)->DefinitionData = RD->DefinitionData;
+ }
+ }
+
+ continue;
+ }
+
+ if (auto ID = dyn_cast<ObjCInterfaceDecl>(D)) {
+ // Make sure that the ObjCInterfaceType points at the definition.
+ const_cast<ObjCInterfaceType *>(cast<ObjCInterfaceType>(ID->TypeForDecl))
+ ->Decl = ID;
+
+ for (auto *R = getMostRecentExistingDecl(ID); R; R = R->getPreviousDecl())
+ cast<ObjCInterfaceDecl>(R)->Data = ID->Data;
+
+ continue;
+ }
+
+ if (auto PD = dyn_cast<ObjCProtocolDecl>(D)) {
+ for (auto *R = getMostRecentExistingDecl(PD); R; R = R->getPreviousDecl())
+ cast<ObjCProtocolDecl>(R)->Data = PD->Data;
+
+ continue;
+ }
+
+ auto RTD = cast<RedeclarableTemplateDecl>(D)->getCanonicalDecl();
+ for (auto *R = getMostRecentExistingDecl(RTD); R; R = R->getPreviousDecl())
+ cast<RedeclarableTemplateDecl>(R)->Common = RTD->Common;
+ }
+ PendingDefinitions.clear();
+
+ // Load the bodies of any functions or methods we've encountered. We do
+ // this now (delayed) so that we can be sure that the declaration chains
+ // have been fully wired up.
+ // FIXME: There seems to be no point in delaying this, it does not depend
+ // on the redecl chains having been wired up.
+ for (PendingBodiesMap::iterator PB = PendingBodies.begin(),
+ PBEnd = PendingBodies.end();
+ PB != PBEnd; ++PB) {
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(PB->first)) {
+ // FIXME: Check for =delete/=default?
+ // FIXME: Complain about ODR violations here?
+ if (!getContext().getLangOpts().Modules || !FD->hasBody())
+ FD->setLazyBody(PB->second);
+ continue;
+ }
+
+ ObjCMethodDecl *MD = cast<ObjCMethodDecl>(PB->first);
+ if (!getContext().getLangOpts().Modules || !MD->hasBody())
+ MD->setLazyBody(PB->second);
+ }
+ PendingBodies.clear();
+
+ // Do some cleanup.
+ for (auto *ND : PendingMergedDefinitionsToDeduplicate)
+ getContext().deduplicateMergedDefinitonsFor(ND);
+ PendingMergedDefinitionsToDeduplicate.clear();
+}
+
+void ASTReader::diagnoseOdrViolations() {
+ if (PendingOdrMergeFailures.empty() && PendingOdrMergeChecks.empty())
+ return;
+
+ // Trigger the import of the full definition of each class that had any
+ // odr-merging problems, so we can produce better diagnostics for them.
+ // These updates may in turn find and diagnose some ODR failures, so take
+ // ownership of the set first.
+ auto OdrMergeFailures = std::move(PendingOdrMergeFailures);
+ PendingOdrMergeFailures.clear();
+ for (auto &Merge : OdrMergeFailures) {
+ Merge.first->buildLookup();
+ Merge.first->decls_begin();
+ Merge.first->bases_begin();
+ Merge.first->vbases_begin();
+ for (auto *RD : Merge.second) {
+ RD->decls_begin();
+ RD->bases_begin();
+ RD->vbases_begin();
+ }
+ }
+
+ // For each declaration from a merged context, check that the canonical
+ // definition of that context also contains a declaration of the same
+ // entity.
+ //
+ // Caution: this loop does things that might invalidate iterators into
+ // PendingOdrMergeChecks. Don't turn this into a range-based for loop!
+ while (!PendingOdrMergeChecks.empty()) {
+ NamedDecl *D = PendingOdrMergeChecks.pop_back_val();
+
+ // FIXME: Skip over implicit declarations for now. This matters for things
+ // like implicitly-declared special member functions. This isn't entirely
+ // correct; we can end up with multiple unmerged declarations of the same
+ // implicit entity.
+ if (D->isImplicit())
+ continue;
+
+ DeclContext *CanonDef = D->getDeclContext();
+
+ bool Found = false;
+ const Decl *DCanon = D->getCanonicalDecl();
+
+ for (auto RI : D->redecls()) {
+ if (RI->getLexicalDeclContext() == CanonDef) {
+ Found = true;
+ break;
+ }
+ }
+ if (Found)
+ continue;
+
+ llvm::SmallVector<const NamedDecl*, 4> Candidates;
+ DeclContext::lookup_result R = CanonDef->lookup(D->getDeclName());
+ for (DeclContext::lookup_iterator I = R.begin(), E = R.end();
+ !Found && I != E; ++I) {
+ for (auto RI : (*I)->redecls()) {
+ if (RI->getLexicalDeclContext() == CanonDef) {
+ // This declaration is present in the canonical definition. If it's
+ // in the same redecl chain, it's the one we're looking for.
+ if (RI->getCanonicalDecl() == DCanon)
+ Found = true;
+ else
+ Candidates.push_back(cast<NamedDecl>(RI));
+ break;
+ }
+ }
+ }
+
+ if (!Found) {
+ // The AST doesn't like TagDecls becoming invalid after they've been
+ // completed. We only really need to mark FieldDecls as invalid here.
+ if (!isa<TagDecl>(D))
+ D->setInvalidDecl();
+
+ // Ensure we don't accidentally recursively enter deserialization while
+ // we're producing our diagnostic.
+ Deserializing RecursionGuard(this);
+
+ std::string CanonDefModule =
+ getOwningModuleNameForDiagnostic(cast<Decl>(CanonDef));
+ Diag(D->getLocation(), diag::err_module_odr_violation_missing_decl)
+ << D << getOwningModuleNameForDiagnostic(D)
+ << CanonDef << CanonDefModule.empty() << CanonDefModule;
+
+ if (Candidates.empty())
+ Diag(cast<Decl>(CanonDef)->getLocation(),
+ diag::note_module_odr_violation_no_possible_decls) << D;
+ else {
+ for (unsigned I = 0, N = Candidates.size(); I != N; ++I)
+ Diag(Candidates[I]->getLocation(),
+ diag::note_module_odr_violation_possible_decl)
+ << Candidates[I];
+ }
+
+ DiagnosedOdrMergeFailures.insert(CanonDef);
+ }
+ }
+
+ if (OdrMergeFailures.empty())
+ return;
+
+ // Ensure we don't accidentally recursively enter deserialization while
+ // we're producing our diagnostics.
+ Deserializing RecursionGuard(this);
+
+ // Issue any pending ODR-failure diagnostics.
+ for (auto &Merge : OdrMergeFailures) {
+ // If we've already pointed out a specific problem with this class, don't
+ // bother issuing a general "something's different" diagnostic.
+ if (!DiagnosedOdrMergeFailures.insert(Merge.first).second)
+ continue;
+
+ bool Diagnosed = false;
+ for (auto *RD : Merge.second) {
+ // Multiple different declarations got merged together; tell the user
+ // where they came from.
+ if (Merge.first != RD) {
+ // FIXME: Walk the definition, figure out what's different,
+ // and diagnose that.
+ if (!Diagnosed) {
+ std::string Module = getOwningModuleNameForDiagnostic(Merge.first);
+ Diag(Merge.first->getLocation(),
+ diag::err_module_odr_violation_different_definitions)
+ << Merge.first << Module.empty() << Module;
+ Diagnosed = true;
+ }
+
+ Diag(RD->getLocation(),
+ diag::note_module_odr_violation_different_definitions)
+ << getOwningModuleNameForDiagnostic(RD);
+ }
+ }
+
+ if (!Diagnosed) {
+ // All definitions are updates to the same declaration. This happens if a
+ // module instantiates the declaration of a class template specialization
+ // and two or more other modules instantiate its definition.
+ //
+ // FIXME: Indicate which modules had instantiations of this definition.
+ // FIXME: How can this even happen?
+ Diag(Merge.first->getLocation(),
+ diag::err_module_odr_violation_different_instantiations)
+ << Merge.first;
+ }
+ }
+}
+
+void ASTReader::FinishedDeserializing() {
+ assert(NumCurrentElementsDeserializing &&
+ "FinishedDeserializing not paired with StartedDeserializing");
+ if (NumCurrentElementsDeserializing == 1) {
+ // We decrease NumCurrentElementsDeserializing only after pending actions
+ // are finished, to avoid recursively re-calling finishPendingActions().
+ finishPendingActions();
+ }
+ --NumCurrentElementsDeserializing;
+
+ if (NumCurrentElementsDeserializing == 0) {
+ // Propagate exception specification updates along redeclaration chains.
+ while (!PendingExceptionSpecUpdates.empty()) {
+ auto Updates = std::move(PendingExceptionSpecUpdates);
+ PendingExceptionSpecUpdates.clear();
+ for (auto Update : Updates) {
+ auto *FPT = Update.second->getType()->castAs<FunctionProtoType>();
+ SemaObj->UpdateExceptionSpec(Update.second,
+ FPT->getExtProtoInfo().ExceptionSpec);
+ }
+ }
+
+ diagnoseOdrViolations();
+
+ // We are not in recursive loading, so it's safe to pass the "interesting"
+ // decls to the consumer.
+ if (Consumer)
+ PassInterestingDeclsToConsumer();
+ }
+}
+
+void ASTReader::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
+ if (IdentifierInfo *II = Name.getAsIdentifierInfo()) {
+ // Remove any fake results before adding any real ones.
+ auto It = PendingFakeLookupResults.find(II);
+ if (It != PendingFakeLookupResults.end()) {
+ for (auto *ND : PendingFakeLookupResults[II])
+ SemaObj->IdResolver.RemoveDecl(ND);
+ // FIXME: this works around module+PCH performance issue.
+ // Rather than erase the result from the map, which is O(n), just clear
+ // the vector of NamedDecls.
+ It->second.clear();
+ }
+ }
+
+ if (SemaObj->IdResolver.tryAddTopLevelDecl(D, Name) && SemaObj->TUScope) {
+ SemaObj->TUScope->AddDecl(D);
+ } else if (SemaObj->TUScope) {
+ // Adding the decl to IdResolver may have failed because it was already in
+ // (even though it was not added in scope). If it is already in, make sure
+ // it gets in the scope as well.
+ if (std::find(SemaObj->IdResolver.begin(Name),
+ SemaObj->IdResolver.end(), D) != SemaObj->IdResolver.end())
+ SemaObj->TUScope->AddDecl(D);
+ }
+}
+
+ASTReader::ASTReader(Preprocessor &PP, ASTContext &Context, StringRef isysroot,
+ bool DisableValidation, bool AllowASTWithCompilerErrors,
+ bool AllowConfigurationMismatch, bool ValidateSystemInputs,
+ bool UseGlobalIndex)
+ : Listener(new PCHValidator(PP, *this)), DeserializationListener(nullptr),
+ OwnsDeserializationListener(false), SourceMgr(PP.getSourceManager()),
+ FileMgr(PP.getFileManager()), Diags(PP.getDiagnostics()),
+ SemaObj(nullptr), PP(PP), Context(Context), Consumer(nullptr),
+ ModuleMgr(PP.getFileManager()), isysroot(isysroot),
+ DisableValidation(DisableValidation),
+ AllowASTWithCompilerErrors(AllowASTWithCompilerErrors),
+ AllowConfigurationMismatch(AllowConfigurationMismatch),
+ ValidateSystemInputs(ValidateSystemInputs),
+ UseGlobalIndex(UseGlobalIndex), TriedLoadingGlobalIndex(false),
+ CurrSwitchCaseStmts(&SwitchCaseStmts),
+ NumSLocEntriesRead(0), TotalNumSLocEntries(0), NumStatementsRead(0),
+ TotalNumStatements(0), NumMacrosRead(0), TotalNumMacros(0),
+ NumIdentifierLookups(0), NumIdentifierLookupHits(0), NumSelectorsRead(0),
+ NumMethodPoolEntriesRead(0), NumMethodPoolLookups(0),
+ NumMethodPoolHits(0), NumMethodPoolTableLookups(0),
+ NumMethodPoolTableHits(0), TotalNumMethodPoolEntries(0),
+ NumLexicalDeclContextsRead(0), TotalLexicalDeclContexts(0),
+ NumVisibleDeclContextsRead(0), TotalVisibleDeclContexts(0),
+ TotalModulesSizeInBits(0), NumCurrentElementsDeserializing(0),
+ PassingDeclsToConsumer(false), ReadingKind(Read_None) {
+ SourceMgr.setExternalSLocEntrySource(this);
+}
+
+ASTReader::~ASTReader() {
+ if (OwnsDeserializationListener)
+ delete DeserializationListener;
+
+ for (DeclContextVisibleUpdatesPending::iterator
+ I = PendingVisibleUpdates.begin(),
+ E = PendingVisibleUpdates.end();
+ I != E; ++I) {
+ for (DeclContextVisibleUpdates::iterator J = I->second.begin(),
+ F = I->second.end();
+ J != F; ++J)
+ delete J->first;
+ }
+}
diff --git a/contrib/llvm/tools/clang/lib/Serialization/ASTReaderDecl.cpp b/contrib/llvm/tools/clang/lib/Serialization/ASTReaderDecl.cpp
new file mode 100644
index 0000000..02273ed
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Serialization/ASTReaderDecl.cpp
@@ -0,0 +1,3875 @@
+//===--- ASTReaderDecl.cpp - Decl Deserialization ---------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the ASTReader::ReadDeclRecord method, which is the
+// entrypoint for loading a decl.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Serialization/ASTReader.h"
+#include "ASTCommon.h"
+#include "ASTReaderInternals.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclGroup.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/DeclVisitor.h"
+#include "clang/AST/Expr.h"
+#include "clang/Sema/IdentifierResolver.h"
+#include "clang/Sema/Sema.h"
+#include "clang/Sema/SemaDiagnostic.h"
+#include "llvm/Support/SaveAndRestore.h"
+using namespace clang;
+using namespace clang::serialization;
+
+//===----------------------------------------------------------------------===//
+// Declaration deserialization
+//===----------------------------------------------------------------------===//
+
+namespace clang {
+ class ASTDeclReader : public DeclVisitor<ASTDeclReader, void> {
+ ASTReader &Reader;
+ ModuleFile &F;
+ const DeclID ThisDeclID;
+ const unsigned RawLocation;
+ typedef ASTReader::RecordData RecordData;
+ const RecordData &Record;
+ unsigned &Idx;
+ TypeID TypeIDForTypeDecl;
+ unsigned AnonymousDeclNumber;
+ GlobalDeclID NamedDeclForTagDecl;
+ IdentifierInfo *TypedefNameForLinkage;
+
+ bool HasPendingBody;
+
+ uint64_t GetCurrentCursorOffset();
+
+ SourceLocation ReadSourceLocation(const RecordData &R, unsigned &I) {
+ return Reader.ReadSourceLocation(F, R, I);
+ }
+
+ SourceRange ReadSourceRange(const RecordData &R, unsigned &I) {
+ return Reader.ReadSourceRange(F, R, I);
+ }
+
+ TypeSourceInfo *GetTypeSourceInfo(const RecordData &R, unsigned &I) {
+ return Reader.GetTypeSourceInfo(F, R, I);
+ }
+
+ serialization::DeclID ReadDeclID(const RecordData &R, unsigned &I) {
+ return Reader.ReadDeclID(F, R, I);
+ }
+
+ void ReadDeclIDList(SmallVectorImpl<DeclID> &IDs) {
+ for (unsigned I = 0, Size = Record[Idx++]; I != Size; ++I)
+ IDs.push_back(ReadDeclID(Record, Idx));
+ }
+
+ Decl *ReadDecl(const RecordData &R, unsigned &I) {
+ return Reader.ReadDecl(F, R, I);
+ }
+
+ template<typename T>
+ T *ReadDeclAs(const RecordData &R, unsigned &I) {
+ return Reader.ReadDeclAs<T>(F, R, I);
+ }
+
+ void ReadQualifierInfo(QualifierInfo &Info,
+ const RecordData &R, unsigned &I) {
+ Reader.ReadQualifierInfo(F, Info, R, I);
+ }
+
+ void ReadDeclarationNameLoc(DeclarationNameLoc &DNLoc, DeclarationName Name,
+ const RecordData &R, unsigned &I) {
+ Reader.ReadDeclarationNameLoc(F, DNLoc, Name, R, I);
+ }
+
+ void ReadDeclarationNameInfo(DeclarationNameInfo &NameInfo,
+ const RecordData &R, unsigned &I) {
+ Reader.ReadDeclarationNameInfo(F, NameInfo, R, I);
+ }
+
+ serialization::SubmoduleID readSubmoduleID(const RecordData &R,
+ unsigned &I) {
+ if (I >= R.size())
+ return 0;
+
+ return Reader.getGlobalSubmoduleID(F, R[I++]);
+ }
+
+ Module *readModule(const RecordData &R, unsigned &I) {
+ return Reader.getSubmodule(readSubmoduleID(R, I));
+ }
+
+ void ReadCXXRecordDefinition(CXXRecordDecl *D, bool Update);
+ void ReadCXXDefinitionData(struct CXXRecordDecl::DefinitionData &Data,
+ const RecordData &R, unsigned &I);
+ void MergeDefinitionData(CXXRecordDecl *D,
+ struct CXXRecordDecl::DefinitionData &&NewDD);
+
+ static NamedDecl *getAnonymousDeclForMerging(ASTReader &Reader,
+ DeclContext *DC,
+ unsigned Index);
+ static void setAnonymousDeclForMerging(ASTReader &Reader, DeclContext *DC,
+ unsigned Index, NamedDecl *D);
+
+ /// \brief RAII class used to capture the first ID within a redeclaration
+ /// chain and to introduce it into the list of pending redeclaration chains
+ /// on destruction.
+ class RedeclarableResult {
+ ASTReader &Reader;
+ GlobalDeclID FirstID;
+ Decl *MergeWith;
+ mutable bool Owning;
+ Decl::Kind DeclKind;
+
+ void operator=(RedeclarableResult &) = delete;
+
+ public:
+ RedeclarableResult(ASTReader &Reader, GlobalDeclID FirstID,
+ Decl *MergeWith, Decl::Kind DeclKind)
+ : Reader(Reader), FirstID(FirstID), MergeWith(MergeWith),
+ Owning(true), DeclKind(DeclKind) {}
+
+ RedeclarableResult(RedeclarableResult &&Other)
+ : Reader(Other.Reader), FirstID(Other.FirstID),
+ MergeWith(Other.MergeWith), Owning(Other.Owning),
+ DeclKind(Other.DeclKind) {
+ Other.Owning = false;
+ }
+
+ ~RedeclarableResult() {
+ if (FirstID && Owning && isRedeclarableDeclKind(DeclKind)) {
+ auto Canon = Reader.GetDecl(FirstID)->getCanonicalDecl();
+ if (Reader.PendingDeclChainsKnown.insert(Canon).second)
+ Reader.PendingDeclChains.push_back(Canon);
+ }
+ }
+
+ /// \brief Retrieve the first ID.
+ GlobalDeclID getFirstID() const { return FirstID; }
+
+ /// \brief Get a known declaration that this should be merged with, if
+ /// any.
+ Decl *getKnownMergeTarget() const { return MergeWith; }
+ };
+
+ /// \brief Class used to capture the result of searching for an existing
+ /// declaration of a specific kind and name, along with the ability
+ /// to update the place where this result was found (the declaration
+ /// chain hanging off an identifier or the DeclContext we searched in)
+ /// if requested.
+ class FindExistingResult {
+ ASTReader &Reader;
+ NamedDecl *New;
+ NamedDecl *Existing;
+ mutable bool AddResult;
+
+ unsigned AnonymousDeclNumber;
+ IdentifierInfo *TypedefNameForLinkage;
+
+ void operator=(FindExistingResult&) = delete;
+
+ public:
+ FindExistingResult(ASTReader &Reader)
+ : Reader(Reader), New(nullptr), Existing(nullptr), AddResult(false),
+ AnonymousDeclNumber(0), TypedefNameForLinkage(0) {}
+
+ FindExistingResult(ASTReader &Reader, NamedDecl *New, NamedDecl *Existing,
+ unsigned AnonymousDeclNumber,
+ IdentifierInfo *TypedefNameForLinkage)
+ : Reader(Reader), New(New), Existing(Existing), AddResult(true),
+ AnonymousDeclNumber(AnonymousDeclNumber),
+ TypedefNameForLinkage(TypedefNameForLinkage) {}
+
+ FindExistingResult(const FindExistingResult &Other)
+ : Reader(Other.Reader), New(Other.New), Existing(Other.Existing),
+ AddResult(Other.AddResult),
+ AnonymousDeclNumber(Other.AnonymousDeclNumber),
+ TypedefNameForLinkage(Other.TypedefNameForLinkage) {
+ Other.AddResult = false;
+ }
+
+ ~FindExistingResult();
+
+ /// \brief Suppress the addition of this result into the known set of
+ /// names.
+ void suppress() { AddResult = false; }
+
+ operator NamedDecl*() const { return Existing; }
+
+ template<typename T>
+ operator T*() const { return dyn_cast_or_null<T>(Existing); }
+ };
+
+ static DeclContext *getPrimaryContextForMerging(ASTReader &Reader,
+ DeclContext *DC);
+ FindExistingResult findExisting(NamedDecl *D);
+
+ public:
+ ASTDeclReader(ASTReader &Reader, ModuleFile &F, DeclID thisDeclID,
+ unsigned RawLocation, const RecordData &Record, unsigned &Idx)
+ : Reader(Reader), F(F), ThisDeclID(thisDeclID),
+ RawLocation(RawLocation), Record(Record), Idx(Idx),
+ TypeIDForTypeDecl(0), NamedDeclForTagDecl(0),
+ TypedefNameForLinkage(nullptr), HasPendingBody(false) {}
+
+ template <typename DeclT>
+ static Decl *getMostRecentDeclImpl(Redeclarable<DeclT> *D);
+ static Decl *getMostRecentDeclImpl(...);
+ static Decl *getMostRecentDecl(Decl *D);
+
+ template <typename DeclT>
+ static void attachPreviousDeclImpl(ASTReader &Reader,
+ Redeclarable<DeclT> *D, Decl *Previous,
+ Decl *Canon);
+ static void attachPreviousDeclImpl(ASTReader &Reader, ...);
+ static void attachPreviousDecl(ASTReader &Reader, Decl *D, Decl *Previous,
+ Decl *Canon);
+
+ template <typename DeclT>
+ static void attachLatestDeclImpl(Redeclarable<DeclT> *D, Decl *Latest);
+ static void attachLatestDeclImpl(...);
+ static void attachLatestDecl(Decl *D, Decl *latest);
+
+ template <typename DeclT>
+ static void markIncompleteDeclChainImpl(Redeclarable<DeclT> *D);
+ static void markIncompleteDeclChainImpl(...);
+
+ /// \brief Determine whether this declaration has a pending body.
+ bool hasPendingBody() const { return HasPendingBody; }
+
+ void Visit(Decl *D);
+
+ void UpdateDecl(Decl *D, ModuleFile &ModuleFile,
+ const RecordData &Record);
+
+ static void setNextObjCCategory(ObjCCategoryDecl *Cat,
+ ObjCCategoryDecl *Next) {
+ Cat->NextClassCategory = Next;
+ }
+
+ void VisitDecl(Decl *D);
+ void VisitTranslationUnitDecl(TranslationUnitDecl *TU);
+ void VisitNamedDecl(NamedDecl *ND);
+ void VisitLabelDecl(LabelDecl *LD);
+ void VisitNamespaceDecl(NamespaceDecl *D);
+ void VisitUsingDirectiveDecl(UsingDirectiveDecl *D);
+ void VisitNamespaceAliasDecl(NamespaceAliasDecl *D);
+ void VisitTypeDecl(TypeDecl *TD);
+ RedeclarableResult VisitTypedefNameDecl(TypedefNameDecl *TD);
+ void VisitTypedefDecl(TypedefDecl *TD);
+ void VisitTypeAliasDecl(TypeAliasDecl *TD);
+ void VisitUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *D);
+ RedeclarableResult VisitTagDecl(TagDecl *TD);
+ void VisitEnumDecl(EnumDecl *ED);
+ RedeclarableResult VisitRecordDeclImpl(RecordDecl *RD);
+ void VisitRecordDecl(RecordDecl *RD) { VisitRecordDeclImpl(RD); }
+ RedeclarableResult VisitCXXRecordDeclImpl(CXXRecordDecl *D);
+ void VisitCXXRecordDecl(CXXRecordDecl *D) { VisitCXXRecordDeclImpl(D); }
+ RedeclarableResult VisitClassTemplateSpecializationDeclImpl(
+ ClassTemplateSpecializationDecl *D);
+ void VisitClassTemplateSpecializationDecl(
+ ClassTemplateSpecializationDecl *D) {
+ VisitClassTemplateSpecializationDeclImpl(D);
+ }
+ void VisitClassTemplatePartialSpecializationDecl(
+ ClassTemplatePartialSpecializationDecl *D);
+ void VisitClassScopeFunctionSpecializationDecl(
+ ClassScopeFunctionSpecializationDecl *D);
+ RedeclarableResult
+ VisitVarTemplateSpecializationDeclImpl(VarTemplateSpecializationDecl *D);
+ void VisitVarTemplateSpecializationDecl(VarTemplateSpecializationDecl *D) {
+ VisitVarTemplateSpecializationDeclImpl(D);
+ }
+ void VisitVarTemplatePartialSpecializationDecl(
+ VarTemplatePartialSpecializationDecl *D);
+ void VisitTemplateTypeParmDecl(TemplateTypeParmDecl *D);
+ void VisitValueDecl(ValueDecl *VD);
+ void VisitEnumConstantDecl(EnumConstantDecl *ECD);
+ void VisitUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *D);
+ void VisitDeclaratorDecl(DeclaratorDecl *DD);
+ void VisitFunctionDecl(FunctionDecl *FD);
+ void VisitCXXMethodDecl(CXXMethodDecl *D);
+ void VisitCXXConstructorDecl(CXXConstructorDecl *D);
+ void VisitCXXDestructorDecl(CXXDestructorDecl *D);
+ void VisitCXXConversionDecl(CXXConversionDecl *D);
+ void VisitFieldDecl(FieldDecl *FD);
+ void VisitMSPropertyDecl(MSPropertyDecl *FD);
+ void VisitIndirectFieldDecl(IndirectFieldDecl *FD);
+ RedeclarableResult VisitVarDeclImpl(VarDecl *D);
+ void VisitVarDecl(VarDecl *VD) { VisitVarDeclImpl(VD); }
+ void VisitImplicitParamDecl(ImplicitParamDecl *PD);
+ void VisitParmVarDecl(ParmVarDecl *PD);
+ void VisitNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D);
+ DeclID VisitTemplateDecl(TemplateDecl *D);
+ RedeclarableResult VisitRedeclarableTemplateDecl(RedeclarableTemplateDecl *D);
+ void VisitClassTemplateDecl(ClassTemplateDecl *D);
+ void VisitVarTemplateDecl(VarTemplateDecl *D);
+ void VisitFunctionTemplateDecl(FunctionTemplateDecl *D);
+ void VisitTemplateTemplateParmDecl(TemplateTemplateParmDecl *D);
+ void VisitTypeAliasTemplateDecl(TypeAliasTemplateDecl *D);
+ void VisitUsingDecl(UsingDecl *D);
+ void VisitUsingShadowDecl(UsingShadowDecl *D);
+ void VisitLinkageSpecDecl(LinkageSpecDecl *D);
+ void VisitFileScopeAsmDecl(FileScopeAsmDecl *AD);
+ void VisitImportDecl(ImportDecl *D);
+ void VisitAccessSpecDecl(AccessSpecDecl *D);
+ void VisitFriendDecl(FriendDecl *D);
+ void VisitFriendTemplateDecl(FriendTemplateDecl *D);
+ void VisitStaticAssertDecl(StaticAssertDecl *D);
+ void VisitBlockDecl(BlockDecl *BD);
+ void VisitCapturedDecl(CapturedDecl *CD);
+ void VisitEmptyDecl(EmptyDecl *D);
+
+ std::pair<uint64_t, uint64_t> VisitDeclContext(DeclContext *DC);
+
+ template<typename T>
+ RedeclarableResult VisitRedeclarable(Redeclarable<T> *D);
+
+ template<typename T>
+ void mergeRedeclarable(Redeclarable<T> *D, RedeclarableResult &Redecl,
+ DeclID TemplatePatternID = 0);
+
+ template<typename T>
+ void mergeRedeclarable(Redeclarable<T> *D, T *Existing,
+ RedeclarableResult &Redecl,
+ DeclID TemplatePatternID = 0);
+
+ template<typename T>
+ void mergeMergeable(Mergeable<T> *D);
+
+ void mergeTemplatePattern(RedeclarableTemplateDecl *D,
+ RedeclarableTemplateDecl *Existing,
+ DeclID DsID);
+
+ // FIXME: Reorder according to DeclNodes.td?
+ void VisitObjCMethodDecl(ObjCMethodDecl *D);
+ void VisitObjCContainerDecl(ObjCContainerDecl *D);
+ void VisitObjCInterfaceDecl(ObjCInterfaceDecl *D);
+ void VisitObjCIvarDecl(ObjCIvarDecl *D);
+ void VisitObjCProtocolDecl(ObjCProtocolDecl *D);
+ void VisitObjCAtDefsFieldDecl(ObjCAtDefsFieldDecl *D);
+ void VisitObjCCategoryDecl(ObjCCategoryDecl *D);
+ void VisitObjCImplDecl(ObjCImplDecl *D);
+ void VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D);
+ void VisitObjCImplementationDecl(ObjCImplementationDecl *D);
+ void VisitObjCCompatibleAliasDecl(ObjCCompatibleAliasDecl *D);
+ void VisitObjCPropertyDecl(ObjCPropertyDecl *D);
+ void VisitObjCPropertyImplDecl(ObjCPropertyImplDecl *D);
+ void VisitOMPThreadPrivateDecl(OMPThreadPrivateDecl *D);
+ };
+}
+
+uint64_t ASTDeclReader::GetCurrentCursorOffset() {
+ return F.DeclsCursor.GetCurrentBitNo() + F.GlobalBitOffset;
+}
+
+void ASTDeclReader::Visit(Decl *D) {
+ DeclVisitor<ASTDeclReader, void>::Visit(D);
+
+ if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) {
+ if (DD->DeclInfo) {
+ DeclaratorDecl::ExtInfo *Info =
+ DD->DeclInfo.get<DeclaratorDecl::ExtInfo *>();
+ Info->TInfo =
+ GetTypeSourceInfo(Record, Idx);
+ }
+ else {
+ DD->DeclInfo = GetTypeSourceInfo(Record, Idx);
+ }
+ }
+
+ if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
+ // We have a fully initialized TypeDecl. Read its type now.
+ TD->setTypeForDecl(Reader.GetType(TypeIDForTypeDecl).getTypePtrOrNull());
+
+ // If this is a tag declaration with a typedef name for linkage, it's safe
+ // to load that typedef now.
+ if (NamedDeclForTagDecl)
+ cast<TagDecl>(D)->NamedDeclOrQualifier =
+ cast<NamedDecl>(Reader.GetDecl(NamedDeclForTagDecl));
+ } else if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D)) {
+ // if we have a fully initialized TypeDecl, we can safely read its type now.
+ ID->TypeForDecl = Reader.GetType(TypeIDForTypeDecl).getTypePtrOrNull();
+ } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ // FunctionDecl's body was written last after all other Stmts/Exprs.
+ // We only read it if FD doesn't already have a body (e.g., from another
+ // module).
+ // FIXME: Can we diagnose ODR violations somehow?
+ if (Record[Idx++]) {
+ if (auto *CD = dyn_cast<CXXConstructorDecl>(FD)) {
+ CD->NumCtorInitializers = Record[Idx++];
+ if (CD->NumCtorInitializers)
+ CD->CtorInitializers =
+ Reader.ReadCXXCtorInitializersRef(F, Record, Idx);
+ }
+ Reader.PendingBodies[FD] = GetCurrentCursorOffset();
+ HasPendingBody = true;
+ }
+ }
+}
+
+void ASTDeclReader::VisitDecl(Decl *D) {
+ if (D->isTemplateParameter() || D->isTemplateParameterPack() ||
+ isa<ParmVarDecl>(D)) {
+ // We don't want to deserialize the DeclContext of a template
+ // parameter or of a parameter of a function template immediately. These
+ // entities might be used in the formulation of its DeclContext (for
+ // example, a function parameter can be used in decltype() in trailing
+ // return type of the function). Use the translation unit DeclContext as a
+ // placeholder.
+ GlobalDeclID SemaDCIDForTemplateParmDecl = ReadDeclID(Record, Idx);
+ GlobalDeclID LexicalDCIDForTemplateParmDecl = ReadDeclID(Record, Idx);
+ Reader.addPendingDeclContextInfo(D,
+ SemaDCIDForTemplateParmDecl,
+ LexicalDCIDForTemplateParmDecl);
+ D->setDeclContext(Reader.getContext().getTranslationUnitDecl());
+ } else {
+ DeclContext *SemaDC = ReadDeclAs<DeclContext>(Record, Idx);
+ DeclContext *LexicalDC = ReadDeclAs<DeclContext>(Record, Idx);
+ DeclContext *MergedSemaDC = Reader.MergedDeclContexts.lookup(SemaDC);
+ // Avoid calling setLexicalDeclContext() directly because it uses
+ // Decl::getASTContext() internally which is unsafe during derialization.
+ D->setDeclContextsImpl(MergedSemaDC ? MergedSemaDC : SemaDC, LexicalDC,
+ Reader.getContext());
+ }
+ D->setLocation(Reader.ReadSourceLocation(F, RawLocation));
+ D->setInvalidDecl(Record[Idx++]);
+ if (Record[Idx++]) { // hasAttrs
+ AttrVec Attrs;
+ Reader.ReadAttributes(F, Attrs, Record, Idx);
+ // Avoid calling setAttrs() directly because it uses Decl::getASTContext()
+ // internally which is unsafe during derialization.
+ D->setAttrsImpl(Attrs, Reader.getContext());
+ }
+ D->setImplicit(Record[Idx++]);
+ D->Used = Record[Idx++];
+ D->setReferenced(Record[Idx++]);
+ D->setTopLevelDeclInObjCContainer(Record[Idx++]);
+ D->setAccess((AccessSpecifier)Record[Idx++]);
+ D->FromASTFile = true;
+ D->setModulePrivate(Record[Idx++]);
+ D->Hidden = D->isModulePrivate();
+
+ // Determine whether this declaration is part of a (sub)module. If so, it
+ // may not yet be visible.
+ if (unsigned SubmoduleID = readSubmoduleID(Record, Idx)) {
+ // Store the owning submodule ID in the declaration.
+ D->setOwningModuleID(SubmoduleID);
+
+ if (D->Hidden) {
+ // Module-private declarations are never visible, so there is no work to do.
+ } else if (Reader.getContext().getLangOpts().ModulesLocalVisibility) {
+ // If local visibility is being tracked, this declaration will become
+ // hidden and visible as the owning module does. Inform Sema that this
+ // declaration might not be visible.
+ D->Hidden = true;
+ } else if (Module *Owner = Reader.getSubmodule(SubmoduleID)) {
+ if (Owner->NameVisibility != Module::AllVisible) {
+ // The owning module is not visible. Mark this declaration as hidden.
+ D->Hidden = true;
+
+ // Note that this declaration was hidden because its owning module is
+ // not yet visible.
+ Reader.HiddenNamesMap[Owner].push_back(D);
+ }
+ }
+ }
+}
+
+void ASTDeclReader::VisitTranslationUnitDecl(TranslationUnitDecl *TU) {
+ llvm_unreachable("Translation units are not serialized");
+}
+
+void ASTDeclReader::VisitNamedDecl(NamedDecl *ND) {
+ VisitDecl(ND);
+ ND->setDeclName(Reader.ReadDeclarationName(F, Record, Idx));
+ AnonymousDeclNumber = Record[Idx++];
+}
+
+void ASTDeclReader::VisitTypeDecl(TypeDecl *TD) {
+ VisitNamedDecl(TD);
+ TD->setLocStart(ReadSourceLocation(Record, Idx));
+ // Delay type reading until after we have fully initialized the decl.
+ TypeIDForTypeDecl = Reader.getGlobalTypeID(F, Record[Idx++]);
+}
+
+ASTDeclReader::RedeclarableResult
+ASTDeclReader::VisitTypedefNameDecl(TypedefNameDecl *TD) {
+ RedeclarableResult Redecl = VisitRedeclarable(TD);
+ VisitTypeDecl(TD);
+ TypeSourceInfo *TInfo = GetTypeSourceInfo(Record, Idx);
+ if (Record[Idx++]) { // isModed
+ QualType modedT = Reader.readType(F, Record, Idx);
+ TD->setModedTypeSourceInfo(TInfo, modedT);
+ } else
+ TD->setTypeSourceInfo(TInfo);
+ return Redecl;
+}
+
+void ASTDeclReader::VisitTypedefDecl(TypedefDecl *TD) {
+ RedeclarableResult Redecl = VisitTypedefNameDecl(TD);
+ mergeRedeclarable(TD, Redecl);
+}
+
+void ASTDeclReader::VisitTypeAliasDecl(TypeAliasDecl *TD) {
+ RedeclarableResult Redecl = VisitTypedefNameDecl(TD);
+ if (auto *Template = ReadDeclAs<TypeAliasTemplateDecl>(Record, Idx))
+ // Merged when we merge the template.
+ TD->setDescribedAliasTemplate(Template);
+ else
+ mergeRedeclarable(TD, Redecl);
+}
+
+ASTDeclReader::RedeclarableResult ASTDeclReader::VisitTagDecl(TagDecl *TD) {
+ RedeclarableResult Redecl = VisitRedeclarable(TD);
+ VisitTypeDecl(TD);
+
+ TD->IdentifierNamespace = Record[Idx++];
+ TD->setTagKind((TagDecl::TagKind)Record[Idx++]);
+ if (!isa<CXXRecordDecl>(TD))
+ TD->setCompleteDefinition(Record[Idx++]);
+ TD->setEmbeddedInDeclarator(Record[Idx++]);
+ TD->setFreeStanding(Record[Idx++]);
+ TD->setCompleteDefinitionRequired(Record[Idx++]);
+ TD->setRBraceLoc(ReadSourceLocation(Record, Idx));
+
+ switch (Record[Idx++]) {
+ case 0:
+ break;
+ case 1: { // ExtInfo
+ TagDecl::ExtInfo *Info = new (Reader.getContext()) TagDecl::ExtInfo();
+ ReadQualifierInfo(*Info, Record, Idx);
+ TD->NamedDeclOrQualifier = Info;
+ break;
+ }
+ case 2: // TypedefNameForAnonDecl
+ NamedDeclForTagDecl = ReadDeclID(Record, Idx);
+ TypedefNameForLinkage = Reader.GetIdentifierInfo(F, Record, Idx);
+ break;
+ case 3: // DeclaratorForAnonDecl
+ NamedDeclForTagDecl = ReadDeclID(Record, Idx);
+ break;
+ default:
+ llvm_unreachable("unexpected tag info kind");
+ }
+
+ if (!isa<CXXRecordDecl>(TD))
+ mergeRedeclarable(TD, Redecl);
+ return Redecl;
+}
+
+void ASTDeclReader::VisitEnumDecl(EnumDecl *ED) {
+ VisitTagDecl(ED);
+ if (TypeSourceInfo *TI = Reader.GetTypeSourceInfo(F, Record, Idx))
+ ED->setIntegerTypeSourceInfo(TI);
+ else
+ ED->setIntegerType(Reader.readType(F, Record, Idx));
+ ED->setPromotionType(Reader.readType(F, Record, Idx));
+ ED->setNumPositiveBits(Record[Idx++]);
+ ED->setNumNegativeBits(Record[Idx++]);
+ ED->IsScoped = Record[Idx++];
+ ED->IsScopedUsingClassTag = Record[Idx++];
+ ED->IsFixed = Record[Idx++];
+
+ // If this is a definition subject to the ODR, and we already have a
+ // definition, merge this one into it.
+ if (ED->IsCompleteDefinition &&
+ Reader.getContext().getLangOpts().Modules &&
+ Reader.getContext().getLangOpts().CPlusPlus) {
+ if (EnumDecl *&OldDef = Reader.EnumDefinitions[ED->getCanonicalDecl()]) {
+ Reader.MergedDeclContexts.insert(std::make_pair(ED, OldDef));
+ ED->IsCompleteDefinition = false;
+ } else {
+ OldDef = ED;
+ }
+ }
+
+ if (EnumDecl *InstED = ReadDeclAs<EnumDecl>(Record, Idx)) {
+ TemplateSpecializationKind TSK = (TemplateSpecializationKind)Record[Idx++];
+ SourceLocation POI = ReadSourceLocation(Record, Idx);
+ ED->setInstantiationOfMemberEnum(Reader.getContext(), InstED, TSK);
+ ED->getMemberSpecializationInfo()->setPointOfInstantiation(POI);
+ }
+}
+
+ASTDeclReader::RedeclarableResult
+ASTDeclReader::VisitRecordDeclImpl(RecordDecl *RD) {
+ RedeclarableResult Redecl = VisitTagDecl(RD);
+ RD->setHasFlexibleArrayMember(Record[Idx++]);
+ RD->setAnonymousStructOrUnion(Record[Idx++]);
+ RD->setHasObjectMember(Record[Idx++]);
+ RD->setHasVolatileMember(Record[Idx++]);
+ return Redecl;
+}
+
+void ASTDeclReader::VisitValueDecl(ValueDecl *VD) {
+ VisitNamedDecl(VD);
+ VD->setType(Reader.readType(F, Record, Idx));
+}
+
+void ASTDeclReader::VisitEnumConstantDecl(EnumConstantDecl *ECD) {
+ VisitValueDecl(ECD);
+ if (Record[Idx++])
+ ECD->setInitExpr(Reader.ReadExpr(F));
+ ECD->setInitVal(Reader.ReadAPSInt(Record, Idx));
+ mergeMergeable(ECD);
+}
+
+void ASTDeclReader::VisitDeclaratorDecl(DeclaratorDecl *DD) {
+ VisitValueDecl(DD);
+ DD->setInnerLocStart(ReadSourceLocation(Record, Idx));
+ if (Record[Idx++]) { // hasExtInfo
+ DeclaratorDecl::ExtInfo *Info
+ = new (Reader.getContext()) DeclaratorDecl::ExtInfo();
+ ReadQualifierInfo(*Info, Record, Idx);
+ DD->DeclInfo = Info;
+ }
+}
+
+void ASTDeclReader::VisitFunctionDecl(FunctionDecl *FD) {
+ RedeclarableResult Redecl = VisitRedeclarable(FD);
+ VisitDeclaratorDecl(FD);
+
+ ReadDeclarationNameLoc(FD->DNLoc, FD->getDeclName(), Record, Idx);
+ FD->IdentifierNamespace = Record[Idx++];
+
+ // FunctionDecl's body is handled last at ASTDeclReader::Visit,
+ // after everything else is read.
+
+ FD->SClass = (StorageClass)Record[Idx++];
+ FD->IsInline = Record[Idx++];
+ FD->IsInlineSpecified = Record[Idx++];
+ FD->IsVirtualAsWritten = Record[Idx++];
+ FD->IsPure = Record[Idx++];
+ FD->HasInheritedPrototype = Record[Idx++];
+ FD->HasWrittenPrototype = Record[Idx++];
+ FD->IsDeleted = Record[Idx++];
+ FD->IsTrivial = Record[Idx++];
+ FD->IsDefaulted = Record[Idx++];
+ FD->IsExplicitlyDefaulted = Record[Idx++];
+ FD->HasImplicitReturnZero = Record[Idx++];
+ FD->IsConstexpr = Record[Idx++];
+ FD->HasSkippedBody = Record[Idx++];
+ FD->IsLateTemplateParsed = Record[Idx++];
+ FD->setCachedLinkage(Linkage(Record[Idx++]));
+ FD->EndRangeLoc = ReadSourceLocation(Record, Idx);
+
+ switch ((FunctionDecl::TemplatedKind)Record[Idx++]) {
+ case FunctionDecl::TK_NonTemplate:
+ mergeRedeclarable(FD, Redecl);
+ break;
+ case FunctionDecl::TK_FunctionTemplate:
+ // Merged when we merge the template.
+ FD->setDescribedFunctionTemplate(ReadDeclAs<FunctionTemplateDecl>(Record,
+ Idx));
+ break;
+ case FunctionDecl::TK_MemberSpecialization: {
+ FunctionDecl *InstFD = ReadDeclAs<FunctionDecl>(Record, Idx);
+ TemplateSpecializationKind TSK = (TemplateSpecializationKind)Record[Idx++];
+ SourceLocation POI = ReadSourceLocation(Record, Idx);
+ FD->setInstantiationOfMemberFunction(Reader.getContext(), InstFD, TSK);
+ FD->getMemberSpecializationInfo()->setPointOfInstantiation(POI);
+ mergeRedeclarable(FD, Redecl);
+ break;
+ }
+ case FunctionDecl::TK_FunctionTemplateSpecialization: {
+ FunctionTemplateDecl *Template = ReadDeclAs<FunctionTemplateDecl>(Record,
+ Idx);
+ TemplateSpecializationKind TSK = (TemplateSpecializationKind)Record[Idx++];
+
+ // Template arguments.
+ SmallVector<TemplateArgument, 8> TemplArgs;
+ Reader.ReadTemplateArgumentList(TemplArgs, F, Record, Idx);
+
+ // Template args as written.
+ SmallVector<TemplateArgumentLoc, 8> TemplArgLocs;
+ SourceLocation LAngleLoc, RAngleLoc;
+ bool HasTemplateArgumentsAsWritten = Record[Idx++];
+ if (HasTemplateArgumentsAsWritten) {
+ unsigned NumTemplateArgLocs = Record[Idx++];
+ TemplArgLocs.reserve(NumTemplateArgLocs);
+ for (unsigned i=0; i != NumTemplateArgLocs; ++i)
+ TemplArgLocs.push_back(
+ Reader.ReadTemplateArgumentLoc(F, Record, Idx));
+
+ LAngleLoc = ReadSourceLocation(Record, Idx);
+ RAngleLoc = ReadSourceLocation(Record, Idx);
+ }
+
+ SourceLocation POI = ReadSourceLocation(Record, Idx);
+
+ ASTContext &C = Reader.getContext();
+ TemplateArgumentList *TemplArgList
+ = TemplateArgumentList::CreateCopy(C, TemplArgs.data(), TemplArgs.size());
+ TemplateArgumentListInfo TemplArgsInfo(LAngleLoc, RAngleLoc);
+ for (unsigned i=0, e = TemplArgLocs.size(); i != e; ++i)
+ TemplArgsInfo.addArgument(TemplArgLocs[i]);
+ FunctionTemplateSpecializationInfo *FTInfo
+ = FunctionTemplateSpecializationInfo::Create(C, FD, Template, TSK,
+ TemplArgList,
+ HasTemplateArgumentsAsWritten ? &TemplArgsInfo
+ : nullptr,
+ POI);
+ FD->TemplateOrSpecialization = FTInfo;
+
+ if (FD->isCanonicalDecl()) { // if canonical add to template's set.
+ // The template that contains the specializations set. It's not safe to
+ // use getCanonicalDecl on Template since it may still be initializing.
+ FunctionTemplateDecl *CanonTemplate
+ = ReadDeclAs<FunctionTemplateDecl>(Record, Idx);
+ // Get the InsertPos by FindNodeOrInsertPos() instead of calling
+ // InsertNode(FTInfo) directly to avoid the getASTContext() call in
+ // FunctionTemplateSpecializationInfo's Profile().
+ // We avoid getASTContext because a decl in the parent hierarchy may
+ // be initializing.
+ llvm::FoldingSetNodeID ID;
+ FunctionTemplateSpecializationInfo::Profile(ID, TemplArgs, C);
+ void *InsertPos = nullptr;
+ FunctionTemplateDecl::Common *CommonPtr = CanonTemplate->getCommonPtr();
+ CommonPtr->Specializations.FindNodeOrInsertPos(ID, InsertPos);
+ if (InsertPos)
+ CommonPtr->Specializations.InsertNode(FTInfo, InsertPos);
+ else {
+ assert(Reader.getContext().getLangOpts().Modules &&
+ "already deserialized this template specialization");
+ // FIXME: This specialization is a redeclaration of one from another
+ // module. Merge it.
+ }
+ }
+ break;
+ }
+ case FunctionDecl::TK_DependentFunctionTemplateSpecialization: {
+ // Templates.
+ UnresolvedSet<8> TemplDecls;
+ unsigned NumTemplates = Record[Idx++];
+ while (NumTemplates--)
+ TemplDecls.addDecl(ReadDeclAs<NamedDecl>(Record, Idx));
+
+ // Templates args.
+ TemplateArgumentListInfo TemplArgs;
+ unsigned NumArgs = Record[Idx++];
+ while (NumArgs--)
+ TemplArgs.addArgument(Reader.ReadTemplateArgumentLoc(F, Record, Idx));
+ TemplArgs.setLAngleLoc(ReadSourceLocation(Record, Idx));
+ TemplArgs.setRAngleLoc(ReadSourceLocation(Record, Idx));
+
+ FD->setDependentTemplateSpecialization(Reader.getContext(),
+ TemplDecls, TemplArgs);
+
+ // FIXME: Merging.
+ break;
+ }
+ }
+
+ // Read in the parameters.
+ unsigned NumParams = Record[Idx++];
+ SmallVector<ParmVarDecl *, 16> Params;
+ Params.reserve(NumParams);
+ for (unsigned I = 0; I != NumParams; ++I)
+ Params.push_back(ReadDeclAs<ParmVarDecl>(Record, Idx));
+ FD->setParams(Reader.getContext(), Params);
+}
+
+void ASTDeclReader::VisitObjCMethodDecl(ObjCMethodDecl *MD) {
+ VisitNamedDecl(MD);
+ if (Record[Idx++]) {
+ // Load the body on-demand. Most clients won't care, because method
+ // definitions rarely show up in headers.
+ Reader.PendingBodies[MD] = GetCurrentCursorOffset();
+ HasPendingBody = true;
+ MD->setSelfDecl(ReadDeclAs<ImplicitParamDecl>(Record, Idx));
+ MD->setCmdDecl(ReadDeclAs<ImplicitParamDecl>(Record, Idx));
+ }
+ MD->setInstanceMethod(Record[Idx++]);
+ MD->setVariadic(Record[Idx++]);
+ MD->setPropertyAccessor(Record[Idx++]);
+ MD->setDefined(Record[Idx++]);
+ MD->IsOverriding = Record[Idx++];
+ MD->HasSkippedBody = Record[Idx++];
+
+ MD->IsRedeclaration = Record[Idx++];
+ MD->HasRedeclaration = Record[Idx++];
+ if (MD->HasRedeclaration)
+ Reader.getContext().setObjCMethodRedeclaration(MD,
+ ReadDeclAs<ObjCMethodDecl>(Record, Idx));
+
+ MD->setDeclImplementation((ObjCMethodDecl::ImplementationControl)Record[Idx++]);
+ MD->setObjCDeclQualifier((Decl::ObjCDeclQualifier)Record[Idx++]);
+ MD->SetRelatedResultType(Record[Idx++]);
+ MD->setReturnType(Reader.readType(F, Record, Idx));
+ MD->setReturnTypeSourceInfo(GetTypeSourceInfo(Record, Idx));
+ MD->DeclEndLoc = ReadSourceLocation(Record, Idx);
+ unsigned NumParams = Record[Idx++];
+ SmallVector<ParmVarDecl *, 16> Params;
+ Params.reserve(NumParams);
+ for (unsigned I = 0; I != NumParams; ++I)
+ Params.push_back(ReadDeclAs<ParmVarDecl>(Record, Idx));
+
+ MD->SelLocsKind = Record[Idx++];
+ unsigned NumStoredSelLocs = Record[Idx++];
+ SmallVector<SourceLocation, 16> SelLocs;
+ SelLocs.reserve(NumStoredSelLocs);
+ for (unsigned i = 0; i != NumStoredSelLocs; ++i)
+ SelLocs.push_back(ReadSourceLocation(Record, Idx));
+
+ MD->setParamsAndSelLocs(Reader.getContext(), Params, SelLocs);
+}
+
+void ASTDeclReader::VisitObjCContainerDecl(ObjCContainerDecl *CD) {
+ VisitNamedDecl(CD);
+ CD->setAtStartLoc(ReadSourceLocation(Record, Idx));
+ CD->setAtEndRange(ReadSourceRange(Record, Idx));
+}
+
+void ASTDeclReader::VisitObjCInterfaceDecl(ObjCInterfaceDecl *ID) {
+ RedeclarableResult Redecl = VisitRedeclarable(ID);
+ VisitObjCContainerDecl(ID);
+ TypeIDForTypeDecl = Reader.getGlobalTypeID(F, Record[Idx++]);
+ mergeRedeclarable(ID, Redecl);
+
+ if (Record[Idx++]) {
+ // Read the definition.
+ ID->allocateDefinitionData();
+
+ // Set the definition data of the canonical declaration, so other
+ // redeclarations will see it.
+ ID->getCanonicalDecl()->Data = ID->Data;
+
+ ObjCInterfaceDecl::DefinitionData &Data = ID->data();
+
+ // Read the superclass.
+ Data.SuperClass = ReadDeclAs<ObjCInterfaceDecl>(Record, Idx);
+ Data.SuperClassLoc = ReadSourceLocation(Record, Idx);
+
+ Data.EndLoc = ReadSourceLocation(Record, Idx);
+ Data.HasDesignatedInitializers = Record[Idx++];
+
+ // Read the directly referenced protocols and their SourceLocations.
+ unsigned NumProtocols = Record[Idx++];
+ SmallVector<ObjCProtocolDecl *, 16> Protocols;
+ Protocols.reserve(NumProtocols);
+ for (unsigned I = 0; I != NumProtocols; ++I)
+ Protocols.push_back(ReadDeclAs<ObjCProtocolDecl>(Record, Idx));
+ SmallVector<SourceLocation, 16> ProtoLocs;
+ ProtoLocs.reserve(NumProtocols);
+ for (unsigned I = 0; I != NumProtocols; ++I)
+ ProtoLocs.push_back(ReadSourceLocation(Record, Idx));
+ ID->setProtocolList(Protocols.data(), NumProtocols, ProtoLocs.data(),
+ Reader.getContext());
+
+ // Read the transitive closure of protocols referenced by this class.
+ NumProtocols = Record[Idx++];
+ Protocols.clear();
+ Protocols.reserve(NumProtocols);
+ for (unsigned I = 0; I != NumProtocols; ++I)
+ Protocols.push_back(ReadDeclAs<ObjCProtocolDecl>(Record, Idx));
+ ID->data().AllReferencedProtocols.set(Protocols.data(), NumProtocols,
+ Reader.getContext());
+
+ // We will rebuild this list lazily.
+ ID->setIvarList(nullptr);
+
+ // Note that we have deserialized a definition.
+ Reader.PendingDefinitions.insert(ID);
+
+ // Note that we've loaded this Objective-C class.
+ Reader.ObjCClassesLoaded.push_back(ID);
+ } else {
+ ID->Data = ID->getCanonicalDecl()->Data;
+ }
+}
+
+void ASTDeclReader::VisitObjCIvarDecl(ObjCIvarDecl *IVD) {
+ VisitFieldDecl(IVD);
+ IVD->setAccessControl((ObjCIvarDecl::AccessControl)Record[Idx++]);
+ // This field will be built lazily.
+ IVD->setNextIvar(nullptr);
+ bool synth = Record[Idx++];
+ IVD->setSynthesize(synth);
+}
+
+void ASTDeclReader::VisitObjCProtocolDecl(ObjCProtocolDecl *PD) {
+ RedeclarableResult Redecl = VisitRedeclarable(PD);
+ VisitObjCContainerDecl(PD);
+ mergeRedeclarable(PD, Redecl);
+
+ if (Record[Idx++]) {
+ // Read the definition.
+ PD->allocateDefinitionData();
+
+ // Set the definition data of the canonical declaration, so other
+ // redeclarations will see it.
+ PD->getCanonicalDecl()->Data = PD->Data;
+
+ unsigned NumProtoRefs = Record[Idx++];
+ SmallVector<ObjCProtocolDecl *, 16> ProtoRefs;
+ ProtoRefs.reserve(NumProtoRefs);
+ for (unsigned I = 0; I != NumProtoRefs; ++I)
+ ProtoRefs.push_back(ReadDeclAs<ObjCProtocolDecl>(Record, Idx));
+ SmallVector<SourceLocation, 16> ProtoLocs;
+ ProtoLocs.reserve(NumProtoRefs);
+ for (unsigned I = 0; I != NumProtoRefs; ++I)
+ ProtoLocs.push_back(ReadSourceLocation(Record, Idx));
+ PD->setProtocolList(ProtoRefs.data(), NumProtoRefs, ProtoLocs.data(),
+ Reader.getContext());
+
+ // Note that we have deserialized a definition.
+ Reader.PendingDefinitions.insert(PD);
+ } else {
+ PD->Data = PD->getCanonicalDecl()->Data;
+ }
+}
+
+void ASTDeclReader::VisitObjCAtDefsFieldDecl(ObjCAtDefsFieldDecl *FD) {
+ VisitFieldDecl(FD);
+}
+
+void ASTDeclReader::VisitObjCCategoryDecl(ObjCCategoryDecl *CD) {
+ VisitObjCContainerDecl(CD);
+ CD->setCategoryNameLoc(ReadSourceLocation(Record, Idx));
+ CD->setIvarLBraceLoc(ReadSourceLocation(Record, Idx));
+ CD->setIvarRBraceLoc(ReadSourceLocation(Record, Idx));
+
+ // Note that this category has been deserialized. We do this before
+ // deserializing the interface declaration, so that it will consider this
+ /// category.
+ Reader.CategoriesDeserialized.insert(CD);
+
+ CD->ClassInterface = ReadDeclAs<ObjCInterfaceDecl>(Record, Idx);
+ unsigned NumProtoRefs = Record[Idx++];
+ SmallVector<ObjCProtocolDecl *, 16> ProtoRefs;
+ ProtoRefs.reserve(NumProtoRefs);
+ for (unsigned I = 0; I != NumProtoRefs; ++I)
+ ProtoRefs.push_back(ReadDeclAs<ObjCProtocolDecl>(Record, Idx));
+ SmallVector<SourceLocation, 16> ProtoLocs;
+ ProtoLocs.reserve(NumProtoRefs);
+ for (unsigned I = 0; I != NumProtoRefs; ++I)
+ ProtoLocs.push_back(ReadSourceLocation(Record, Idx));
+ CD->setProtocolList(ProtoRefs.data(), NumProtoRefs, ProtoLocs.data(),
+ Reader.getContext());
+}
+
+void ASTDeclReader::VisitObjCCompatibleAliasDecl(ObjCCompatibleAliasDecl *CAD) {
+ VisitNamedDecl(CAD);
+ CAD->setClassInterface(ReadDeclAs<ObjCInterfaceDecl>(Record, Idx));
+}
+
+void ASTDeclReader::VisitObjCPropertyDecl(ObjCPropertyDecl *D) {
+ VisitNamedDecl(D);
+ D->setAtLoc(ReadSourceLocation(Record, Idx));
+ D->setLParenLoc(ReadSourceLocation(Record, Idx));
+ D->setType(GetTypeSourceInfo(Record, Idx));
+ // FIXME: stable encoding
+ D->setPropertyAttributes(
+ (ObjCPropertyDecl::PropertyAttributeKind)Record[Idx++]);
+ D->setPropertyAttributesAsWritten(
+ (ObjCPropertyDecl::PropertyAttributeKind)Record[Idx++]);
+ // FIXME: stable encoding
+ D->setPropertyImplementation(
+ (ObjCPropertyDecl::PropertyControl)Record[Idx++]);
+ D->setGetterName(Reader.ReadDeclarationName(F,Record, Idx).getObjCSelector());
+ D->setSetterName(Reader.ReadDeclarationName(F,Record, Idx).getObjCSelector());
+ D->setGetterMethodDecl(ReadDeclAs<ObjCMethodDecl>(Record, Idx));
+ D->setSetterMethodDecl(ReadDeclAs<ObjCMethodDecl>(Record, Idx));
+ D->setPropertyIvarDecl(ReadDeclAs<ObjCIvarDecl>(Record, Idx));
+}
+
+void ASTDeclReader::VisitObjCImplDecl(ObjCImplDecl *D) {
+ VisitObjCContainerDecl(D);
+ D->setClassInterface(ReadDeclAs<ObjCInterfaceDecl>(Record, Idx));
+}
+
+void ASTDeclReader::VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D) {
+ VisitObjCImplDecl(D);
+ D->setIdentifier(Reader.GetIdentifierInfo(F, Record, Idx));
+ D->CategoryNameLoc = ReadSourceLocation(Record, Idx);
+}
+
+void ASTDeclReader::VisitObjCImplementationDecl(ObjCImplementationDecl *D) {
+ VisitObjCImplDecl(D);
+ D->setSuperClass(ReadDeclAs<ObjCInterfaceDecl>(Record, Idx));
+ D->SuperLoc = ReadSourceLocation(Record, Idx);
+ D->setIvarLBraceLoc(ReadSourceLocation(Record, Idx));
+ D->setIvarRBraceLoc(ReadSourceLocation(Record, Idx));
+ D->setHasNonZeroConstructors(Record[Idx++]);
+ D->setHasDestructors(Record[Idx++]);
+ D->NumIvarInitializers = Record[Idx++];
+ if (D->NumIvarInitializers)
+ D->IvarInitializers = Reader.ReadCXXCtorInitializersRef(F, Record, Idx);
+}
+
+
+void ASTDeclReader::VisitObjCPropertyImplDecl(ObjCPropertyImplDecl *D) {
+ VisitDecl(D);
+ D->setAtLoc(ReadSourceLocation(Record, Idx));
+ D->setPropertyDecl(ReadDeclAs<ObjCPropertyDecl>(Record, Idx));
+ D->PropertyIvarDecl = ReadDeclAs<ObjCIvarDecl>(Record, Idx);
+ D->IvarLoc = ReadSourceLocation(Record, Idx);
+ D->setGetterCXXConstructor(Reader.ReadExpr(F));
+ D->setSetterCXXAssignment(Reader.ReadExpr(F));
+}
+
+void ASTDeclReader::VisitFieldDecl(FieldDecl *FD) {
+ VisitDeclaratorDecl(FD);
+ FD->Mutable = Record[Idx++];
+ if (int BitWidthOrInitializer = Record[Idx++]) {
+ FD->InitStorage.setInt(
+ static_cast<FieldDecl::InitStorageKind>(BitWidthOrInitializer - 1));
+ if (FD->InitStorage.getInt() == FieldDecl::ISK_CapturedVLAType) {
+ // Read captured variable length array.
+ FD->InitStorage.setPointer(
+ Reader.readType(F, Record, Idx).getAsOpaquePtr());
+ } else {
+ FD->InitStorage.setPointer(Reader.ReadExpr(F));
+ }
+ }
+ if (!FD->getDeclName()) {
+ if (FieldDecl *Tmpl = ReadDeclAs<FieldDecl>(Record, Idx))
+ Reader.getContext().setInstantiatedFromUnnamedFieldDecl(FD, Tmpl);
+ }
+ mergeMergeable(FD);
+}
+
+void ASTDeclReader::VisitMSPropertyDecl(MSPropertyDecl *PD) {
+ VisitDeclaratorDecl(PD);
+ PD->GetterId = Reader.GetIdentifierInfo(F, Record, Idx);
+ PD->SetterId = Reader.GetIdentifierInfo(F, Record, Idx);
+}
+
+void ASTDeclReader::VisitIndirectFieldDecl(IndirectFieldDecl *FD) {
+ VisitValueDecl(FD);
+
+ FD->ChainingSize = Record[Idx++];
+ assert(FD->ChainingSize >= 2 && "Anonymous chaining must be >= 2");
+ FD->Chaining = new (Reader.getContext())NamedDecl*[FD->ChainingSize];
+
+ for (unsigned I = 0; I != FD->ChainingSize; ++I)
+ FD->Chaining[I] = ReadDeclAs<NamedDecl>(Record, Idx);
+}
+
+ASTDeclReader::RedeclarableResult ASTDeclReader::VisitVarDeclImpl(VarDecl *VD) {
+ RedeclarableResult Redecl = VisitRedeclarable(VD);
+ VisitDeclaratorDecl(VD);
+
+ VD->VarDeclBits.SClass = (StorageClass)Record[Idx++];
+ VD->VarDeclBits.TSCSpec = Record[Idx++];
+ VD->VarDeclBits.InitStyle = Record[Idx++];
+ if (!isa<ParmVarDecl>(VD)) {
+ VD->NonParmVarDeclBits.ExceptionVar = Record[Idx++];
+ VD->NonParmVarDeclBits.NRVOVariable = Record[Idx++];
+ VD->NonParmVarDeclBits.CXXForRangeDecl = Record[Idx++];
+ VD->NonParmVarDeclBits.ARCPseudoStrong = Record[Idx++];
+ VD->NonParmVarDeclBits.IsConstexpr = Record[Idx++];
+ VD->NonParmVarDeclBits.IsInitCapture = Record[Idx++];
+ VD->NonParmVarDeclBits.PreviousDeclInSameBlockScope = Record[Idx++];
+ }
+ Linkage VarLinkage = Linkage(Record[Idx++]);
+ VD->setCachedLinkage(VarLinkage);
+
+ // Reconstruct the one piece of the IdentifierNamespace that we need.
+ if (VD->getStorageClass() == SC_Extern && VarLinkage != NoLinkage &&
+ VD->getLexicalDeclContext()->isFunctionOrMethod())
+ VD->setLocalExternDecl();
+
+ if (uint64_t Val = Record[Idx++]) {
+ VD->setInit(Reader.ReadExpr(F));
+ if (Val > 1) {
+ EvaluatedStmt *Eval = VD->ensureEvaluatedStmt();
+ Eval->CheckedICE = true;
+ Eval->IsICE = Val == 3;
+ }
+ }
+
+ enum VarKind {
+ VarNotTemplate = 0, VarTemplate, StaticDataMemberSpecialization
+ };
+ switch ((VarKind)Record[Idx++]) {
+ case VarNotTemplate:
+ // Only true variables (not parameters or implicit parameters) can be merged
+ if (VD->getKind() != Decl::ParmVar && VD->getKind() != Decl::ImplicitParam &&
+ !isa<VarTemplateSpecializationDecl>(VD))
+ mergeRedeclarable(VD, Redecl);
+ break;
+ case VarTemplate:
+ // Merged when we merge the template.
+ VD->setDescribedVarTemplate(ReadDeclAs<VarTemplateDecl>(Record, Idx));
+ break;
+ case StaticDataMemberSpecialization: { // HasMemberSpecializationInfo.
+ VarDecl *Tmpl = ReadDeclAs<VarDecl>(Record, Idx);
+ TemplateSpecializationKind TSK = (TemplateSpecializationKind)Record[Idx++];
+ SourceLocation POI = ReadSourceLocation(Record, Idx);
+ Reader.getContext().setInstantiatedFromStaticDataMember(VD, Tmpl, TSK,POI);
+ mergeRedeclarable(VD, Redecl);
+ break;
+ }
+ }
+
+ return Redecl;
+}
+
+void ASTDeclReader::VisitImplicitParamDecl(ImplicitParamDecl *PD) {
+ VisitVarDecl(PD);
+}
+
+void ASTDeclReader::VisitParmVarDecl(ParmVarDecl *PD) {
+ VisitVarDecl(PD);
+ unsigned isObjCMethodParam = Record[Idx++];
+ unsigned scopeDepth = Record[Idx++];
+ unsigned scopeIndex = Record[Idx++];
+ unsigned declQualifier = Record[Idx++];
+ if (isObjCMethodParam) {
+ assert(scopeDepth == 0);
+ PD->setObjCMethodScopeInfo(scopeIndex);
+ PD->ParmVarDeclBits.ScopeDepthOrObjCQuals = declQualifier;
+ } else {
+ PD->setScopeInfo(scopeDepth, scopeIndex);
+ }
+ PD->ParmVarDeclBits.IsKNRPromoted = Record[Idx++];
+ PD->ParmVarDeclBits.HasInheritedDefaultArg = Record[Idx++];
+ if (Record[Idx++]) // hasUninstantiatedDefaultArg.
+ PD->setUninstantiatedDefaultArg(Reader.ReadExpr(F));
+
+ // FIXME: If this is a redeclaration of a function from another module, handle
+ // inheritance of default arguments.
+}
+
+void ASTDeclReader::VisitFileScopeAsmDecl(FileScopeAsmDecl *AD) {
+ VisitDecl(AD);
+ AD->setAsmString(cast<StringLiteral>(Reader.ReadExpr(F)));
+ AD->setRParenLoc(ReadSourceLocation(Record, Idx));
+}
+
+void ASTDeclReader::VisitBlockDecl(BlockDecl *BD) {
+ VisitDecl(BD);
+ BD->setBody(cast_or_null<CompoundStmt>(Reader.ReadStmt(F)));
+ BD->setSignatureAsWritten(GetTypeSourceInfo(Record, Idx));
+ unsigned NumParams = Record[Idx++];
+ SmallVector<ParmVarDecl *, 16> Params;
+ Params.reserve(NumParams);
+ for (unsigned I = 0; I != NumParams; ++I)
+ Params.push_back(ReadDeclAs<ParmVarDecl>(Record, Idx));
+ BD->setParams(Params);
+
+ BD->setIsVariadic(Record[Idx++]);
+ BD->setBlockMissingReturnType(Record[Idx++]);
+ BD->setIsConversionFromLambda(Record[Idx++]);
+
+ bool capturesCXXThis = Record[Idx++];
+ unsigned numCaptures = Record[Idx++];
+ SmallVector<BlockDecl::Capture, 16> captures;
+ captures.reserve(numCaptures);
+ for (unsigned i = 0; i != numCaptures; ++i) {
+ VarDecl *decl = ReadDeclAs<VarDecl>(Record, Idx);
+ unsigned flags = Record[Idx++];
+ bool byRef = (flags & 1);
+ bool nested = (flags & 2);
+ Expr *copyExpr = ((flags & 4) ? Reader.ReadExpr(F) : nullptr);
+
+ captures.push_back(BlockDecl::Capture(decl, byRef, nested, copyExpr));
+ }
+ BD->setCaptures(Reader.getContext(), captures.begin(),
+ captures.end(), capturesCXXThis);
+}
+
+void ASTDeclReader::VisitCapturedDecl(CapturedDecl *CD) {
+ VisitDecl(CD);
+ unsigned ContextParamPos = Record[Idx++];
+ CD->setNothrow(Record[Idx++] != 0);
+ // Body is set by VisitCapturedStmt.
+ for (unsigned I = 0; I < CD->NumParams; ++I) {
+ if (I != ContextParamPos)
+ CD->setParam(I, ReadDeclAs<ImplicitParamDecl>(Record, Idx));
+ else
+ CD->setContextParam(I, ReadDeclAs<ImplicitParamDecl>(Record, Idx));
+ }
+}
+
+void ASTDeclReader::VisitLinkageSpecDecl(LinkageSpecDecl *D) {
+ VisitDecl(D);
+ D->setLanguage((LinkageSpecDecl::LanguageIDs)Record[Idx++]);
+ D->setExternLoc(ReadSourceLocation(Record, Idx));
+ D->setRBraceLoc(ReadSourceLocation(Record, Idx));
+}
+
+void ASTDeclReader::VisitLabelDecl(LabelDecl *D) {
+ VisitNamedDecl(D);
+ D->setLocStart(ReadSourceLocation(Record, Idx));
+}
+
+
+void ASTDeclReader::VisitNamespaceDecl(NamespaceDecl *D) {
+ RedeclarableResult Redecl = VisitRedeclarable(D);
+ VisitNamedDecl(D);
+ D->setInline(Record[Idx++]);
+ D->LocStart = ReadSourceLocation(Record, Idx);
+ D->RBraceLoc = ReadSourceLocation(Record, Idx);
+
+ // Defer loading the anonymous namespace until we've finished merging
+ // this namespace; loading it might load a later declaration of the
+ // same namespace, and we have an invariant that older declarations
+ // get merged before newer ones try to merge.
+ GlobalDeclID AnonNamespace = 0;
+ if (Redecl.getFirstID() == ThisDeclID) {
+ AnonNamespace = ReadDeclID(Record, Idx);
+ } else {
+ // Link this namespace back to the first declaration, which has already
+ // been deserialized.
+ D->AnonOrFirstNamespaceAndInline.setPointer(D->getFirstDecl());
+ }
+
+ mergeRedeclarable(D, Redecl);
+
+ if (AnonNamespace) {
+ // Each module has its own anonymous namespace, which is disjoint from
+ // any other module's anonymous namespaces, so don't attach the anonymous
+ // namespace at all.
+ NamespaceDecl *Anon = cast<NamespaceDecl>(Reader.GetDecl(AnonNamespace));
+ if (F.Kind != MK_ImplicitModule && F.Kind != MK_ExplicitModule)
+ D->setAnonymousNamespace(Anon);
+ }
+}
+
+void ASTDeclReader::VisitNamespaceAliasDecl(NamespaceAliasDecl *D) {
+ RedeclarableResult Redecl = VisitRedeclarable(D);
+ VisitNamedDecl(D);
+ D->NamespaceLoc = ReadSourceLocation(Record, Idx);
+ D->IdentLoc = ReadSourceLocation(Record, Idx);
+ D->QualifierLoc = Reader.ReadNestedNameSpecifierLoc(F, Record, Idx);
+ D->Namespace = ReadDeclAs<NamedDecl>(Record, Idx);
+ mergeRedeclarable(D, Redecl);
+}
+
+void ASTDeclReader::VisitUsingDecl(UsingDecl *D) {
+ VisitNamedDecl(D);
+ D->setUsingLoc(ReadSourceLocation(Record, Idx));
+ D->QualifierLoc = Reader.ReadNestedNameSpecifierLoc(F, Record, Idx);
+ ReadDeclarationNameLoc(D->DNLoc, D->getDeclName(), Record, Idx);
+ D->FirstUsingShadow.setPointer(ReadDeclAs<UsingShadowDecl>(Record, Idx));
+ D->setTypename(Record[Idx++]);
+ if (NamedDecl *Pattern = ReadDeclAs<NamedDecl>(Record, Idx))
+ Reader.getContext().setInstantiatedFromUsingDecl(D, Pattern);
+ mergeMergeable(D);
+}
+
+void ASTDeclReader::VisitUsingShadowDecl(UsingShadowDecl *D) {
+ RedeclarableResult Redecl = VisitRedeclarable(D);
+ VisitNamedDecl(D);
+ D->setTargetDecl(ReadDeclAs<NamedDecl>(Record, Idx));
+ D->UsingOrNextShadow = ReadDeclAs<NamedDecl>(Record, Idx);
+ UsingShadowDecl *Pattern = ReadDeclAs<UsingShadowDecl>(Record, Idx);
+ if (Pattern)
+ Reader.getContext().setInstantiatedFromUsingShadowDecl(D, Pattern);
+ mergeRedeclarable(D, Redecl);
+}
+
+void ASTDeclReader::VisitUsingDirectiveDecl(UsingDirectiveDecl *D) {
+ VisitNamedDecl(D);
+ D->UsingLoc = ReadSourceLocation(Record, Idx);
+ D->NamespaceLoc = ReadSourceLocation(Record, Idx);
+ D->QualifierLoc = Reader.ReadNestedNameSpecifierLoc(F, Record, Idx);
+ D->NominatedNamespace = ReadDeclAs<NamedDecl>(Record, Idx);
+ D->CommonAncestor = ReadDeclAs<DeclContext>(Record, Idx);
+}
+
+void ASTDeclReader::VisitUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *D) {
+ VisitValueDecl(D);
+ D->setUsingLoc(ReadSourceLocation(Record, Idx));
+ D->QualifierLoc = Reader.ReadNestedNameSpecifierLoc(F, Record, Idx);
+ ReadDeclarationNameLoc(D->DNLoc, D->getDeclName(), Record, Idx);
+ mergeMergeable(D);
+}
+
+void ASTDeclReader::VisitUnresolvedUsingTypenameDecl(
+ UnresolvedUsingTypenameDecl *D) {
+ VisitTypeDecl(D);
+ D->TypenameLocation = ReadSourceLocation(Record, Idx);
+ D->QualifierLoc = Reader.ReadNestedNameSpecifierLoc(F, Record, Idx);
+ mergeMergeable(D);
+}
+
+void ASTDeclReader::ReadCXXDefinitionData(
+ struct CXXRecordDecl::DefinitionData &Data,
+ const RecordData &Record, unsigned &Idx) {
+ // Note: the caller has deserialized the IsLambda bit already.
+ Data.UserDeclaredConstructor = Record[Idx++];
+ Data.UserDeclaredSpecialMembers = Record[Idx++];
+ Data.Aggregate = Record[Idx++];
+ Data.PlainOldData = Record[Idx++];
+ Data.Empty = Record[Idx++];
+ Data.Polymorphic = Record[Idx++];
+ Data.Abstract = Record[Idx++];
+ Data.IsStandardLayout = Record[Idx++];
+ Data.HasNoNonEmptyBases = Record[Idx++];
+ Data.HasPrivateFields = Record[Idx++];
+ Data.HasProtectedFields = Record[Idx++];
+ Data.HasPublicFields = Record[Idx++];
+ Data.HasMutableFields = Record[Idx++];
+ Data.HasVariantMembers = Record[Idx++];
+ Data.HasOnlyCMembers = Record[Idx++];
+ Data.HasInClassInitializer = Record[Idx++];
+ Data.HasUninitializedReferenceMember = Record[Idx++];
+ Data.NeedOverloadResolutionForMoveConstructor = Record[Idx++];
+ Data.NeedOverloadResolutionForMoveAssignment = Record[Idx++];
+ Data.NeedOverloadResolutionForDestructor = Record[Idx++];
+ Data.DefaultedMoveConstructorIsDeleted = Record[Idx++];
+ Data.DefaultedMoveAssignmentIsDeleted = Record[Idx++];
+ Data.DefaultedDestructorIsDeleted = Record[Idx++];
+ Data.HasTrivialSpecialMembers = Record[Idx++];
+ Data.DeclaredNonTrivialSpecialMembers = Record[Idx++];
+ Data.HasIrrelevantDestructor = Record[Idx++];
+ Data.HasConstexprNonCopyMoveConstructor = Record[Idx++];
+ Data.DefaultedDefaultConstructorIsConstexpr = Record[Idx++];
+ Data.HasConstexprDefaultConstructor = Record[Idx++];
+ Data.HasNonLiteralTypeFieldsOrBases = Record[Idx++];
+ Data.ComputedVisibleConversions = Record[Idx++];
+ Data.UserProvidedDefaultConstructor = Record[Idx++];
+ Data.DeclaredSpecialMembers = Record[Idx++];
+ Data.ImplicitCopyConstructorHasConstParam = Record[Idx++];
+ Data.ImplicitCopyAssignmentHasConstParam = Record[Idx++];
+ Data.HasDeclaredCopyConstructorWithConstParam = Record[Idx++];
+ Data.HasDeclaredCopyAssignmentWithConstParam = Record[Idx++];
+
+ Data.NumBases = Record[Idx++];
+ if (Data.NumBases)
+ Data.Bases = Reader.readCXXBaseSpecifiers(F, Record, Idx);
+ Data.NumVBases = Record[Idx++];
+ if (Data.NumVBases)
+ Data.VBases = Reader.readCXXBaseSpecifiers(F, Record, Idx);
+
+ Reader.ReadUnresolvedSet(F, Data.Conversions, Record, Idx);
+ Reader.ReadUnresolvedSet(F, Data.VisibleConversions, Record, Idx);
+ assert(Data.Definition && "Data.Definition should be already set!");
+ Data.FirstFriend = ReadDeclID(Record, Idx);
+
+ if (Data.IsLambda) {
+ typedef LambdaCapture Capture;
+ CXXRecordDecl::LambdaDefinitionData &Lambda
+ = static_cast<CXXRecordDecl::LambdaDefinitionData &>(Data);
+ Lambda.Dependent = Record[Idx++];
+ Lambda.IsGenericLambda = Record[Idx++];
+ Lambda.CaptureDefault = Record[Idx++];
+ Lambda.NumCaptures = Record[Idx++];
+ Lambda.NumExplicitCaptures = Record[Idx++];
+ Lambda.ManglingNumber = Record[Idx++];
+ Lambda.ContextDecl = ReadDecl(Record, Idx);
+ Lambda.Captures
+ = (Capture*)Reader.Context.Allocate(sizeof(Capture)*Lambda.NumCaptures);
+ Capture *ToCapture = Lambda.Captures;
+ Lambda.MethodTyInfo = GetTypeSourceInfo(Record, Idx);
+ for (unsigned I = 0, N = Lambda.NumCaptures; I != N; ++I) {
+ SourceLocation Loc = ReadSourceLocation(Record, Idx);
+ bool IsImplicit = Record[Idx++];
+ LambdaCaptureKind Kind = static_cast<LambdaCaptureKind>(Record[Idx++]);
+ switch (Kind) {
+ case LCK_This:
+ case LCK_VLAType:
+ *ToCapture++ = Capture(Loc, IsImplicit, Kind, nullptr,SourceLocation());
+ break;
+ case LCK_ByCopy:
+ case LCK_ByRef:
+ VarDecl *Var = ReadDeclAs<VarDecl>(Record, Idx);
+ SourceLocation EllipsisLoc = ReadSourceLocation(Record, Idx);
+ *ToCapture++ = Capture(Loc, IsImplicit, Kind, Var, EllipsisLoc);
+ break;
+ }
+ }
+ }
+}
+
+void ASTDeclReader::MergeDefinitionData(
+ CXXRecordDecl *D, struct CXXRecordDecl::DefinitionData &&MergeDD) {
+ assert(D->DefinitionData.getNotUpdated() &&
+ "merging class definition into non-definition");
+ auto &DD = *D->DefinitionData.getNotUpdated();
+
+ // If the new definition has new special members, let the name lookup
+ // code know that it needs to look in the new definition too.
+ //
+ // FIXME: We only need to do this if the merged definition declares members
+ // that this definition did not declare, or if it defines members that this
+ // definition did not define.
+ if (DD.Definition != MergeDD.Definition) {
+ Reader.MergedLookups[DD.Definition].push_back(MergeDD.Definition);
+ DD.Definition->setHasExternalVisibleStorage();
+
+ if (DD.Definition->isHidden()) {
+ // If MergeDD is visible or becomes visible, make the definition visible.
+ if (!MergeDD.Definition->isHidden())
+ DD.Definition->Hidden = false;
+ else if (Reader.getContext().getLangOpts().ModulesLocalVisibility) {
+ Reader.getContext().mergeDefinitionIntoModule(
+ DD.Definition, MergeDD.Definition->getImportedOwningModule(),
+ /*NotifyListeners*/ false);
+ Reader.PendingMergedDefinitionsToDeduplicate.insert(DD.Definition);
+ } else {
+ auto SubmoduleID = MergeDD.Definition->getOwningModuleID();
+ assert(SubmoduleID && "hidden definition in no module");
+ Reader.HiddenNamesMap[Reader.getSubmodule(SubmoduleID)].push_back(
+ DD.Definition);
+ }
+ }
+ }
+
+ auto PFDI = Reader.PendingFakeDefinitionData.find(&DD);
+ if (PFDI != Reader.PendingFakeDefinitionData.end() &&
+ PFDI->second == ASTReader::PendingFakeDefinitionKind::Fake) {
+ // We faked up this definition data because we found a class for which we'd
+ // not yet loaded the definition. Replace it with the real thing now.
+ assert(!DD.IsLambda && !MergeDD.IsLambda && "faked up lambda definition?");
+ PFDI->second = ASTReader::PendingFakeDefinitionKind::FakeLoaded;
+
+ // Don't change which declaration is the definition; that is required
+ // to be invariant once we select it.
+ auto *Def = DD.Definition;
+ DD = std::move(MergeDD);
+ DD.Definition = Def;
+ return;
+ }
+
+ // FIXME: Move this out into a .def file?
+ bool DetectedOdrViolation = false;
+#define OR_FIELD(Field) DD.Field |= MergeDD.Field;
+#define MATCH_FIELD(Field) \
+ DetectedOdrViolation |= DD.Field != MergeDD.Field; \
+ OR_FIELD(Field)
+ MATCH_FIELD(UserDeclaredConstructor)
+ MATCH_FIELD(UserDeclaredSpecialMembers)
+ MATCH_FIELD(Aggregate)
+ MATCH_FIELD(PlainOldData)
+ MATCH_FIELD(Empty)
+ MATCH_FIELD(Polymorphic)
+ MATCH_FIELD(Abstract)
+ MATCH_FIELD(IsStandardLayout)
+ MATCH_FIELD(HasNoNonEmptyBases)
+ MATCH_FIELD(HasPrivateFields)
+ MATCH_FIELD(HasProtectedFields)
+ MATCH_FIELD(HasPublicFields)
+ MATCH_FIELD(HasMutableFields)
+ MATCH_FIELD(HasVariantMembers)
+ MATCH_FIELD(HasOnlyCMembers)
+ MATCH_FIELD(HasInClassInitializer)
+ MATCH_FIELD(HasUninitializedReferenceMember)
+ MATCH_FIELD(NeedOverloadResolutionForMoveConstructor)
+ MATCH_FIELD(NeedOverloadResolutionForMoveAssignment)
+ MATCH_FIELD(NeedOverloadResolutionForDestructor)
+ MATCH_FIELD(DefaultedMoveConstructorIsDeleted)
+ MATCH_FIELD(DefaultedMoveAssignmentIsDeleted)
+ MATCH_FIELD(DefaultedDestructorIsDeleted)
+ OR_FIELD(HasTrivialSpecialMembers)
+ OR_FIELD(DeclaredNonTrivialSpecialMembers)
+ MATCH_FIELD(HasIrrelevantDestructor)
+ OR_FIELD(HasConstexprNonCopyMoveConstructor)
+ MATCH_FIELD(DefaultedDefaultConstructorIsConstexpr)
+ OR_FIELD(HasConstexprDefaultConstructor)
+ MATCH_FIELD(HasNonLiteralTypeFieldsOrBases)
+ // ComputedVisibleConversions is handled below.
+ MATCH_FIELD(UserProvidedDefaultConstructor)
+ OR_FIELD(DeclaredSpecialMembers)
+ MATCH_FIELD(ImplicitCopyConstructorHasConstParam)
+ MATCH_FIELD(ImplicitCopyAssignmentHasConstParam)
+ OR_FIELD(HasDeclaredCopyConstructorWithConstParam)
+ OR_FIELD(HasDeclaredCopyAssignmentWithConstParam)
+ MATCH_FIELD(IsLambda)
+#undef OR_FIELD
+#undef MATCH_FIELD
+
+ if (DD.NumBases != MergeDD.NumBases || DD.NumVBases != MergeDD.NumVBases)
+ DetectedOdrViolation = true;
+ // FIXME: Issue a diagnostic if the base classes don't match when we come
+ // to lazily load them.
+
+ // FIXME: Issue a diagnostic if the list of conversion functions doesn't
+ // match when we come to lazily load them.
+ if (MergeDD.ComputedVisibleConversions && !DD.ComputedVisibleConversions) {
+ DD.VisibleConversions = std::move(MergeDD.VisibleConversions);
+ DD.ComputedVisibleConversions = true;
+ }
+
+ // FIXME: Issue a diagnostic if FirstFriend doesn't match when we come to
+ // lazily load it.
+
+ if (DD.IsLambda) {
+ // FIXME: ODR-checking for merging lambdas (this happens, for instance,
+ // when they occur within the body of a function template specialization).
+ }
+
+ if (DetectedOdrViolation)
+ Reader.PendingOdrMergeFailures[DD.Definition].push_back(MergeDD.Definition);
+}
+
+void ASTDeclReader::ReadCXXRecordDefinition(CXXRecordDecl *D, bool Update) {
+ struct CXXRecordDecl::DefinitionData *DD;
+ ASTContext &C = Reader.getContext();
+
+ // Determine whether this is a lambda closure type, so that we can
+ // allocate the appropriate DefinitionData structure.
+ bool IsLambda = Record[Idx++];
+ if (IsLambda)
+ DD = new (C) CXXRecordDecl::LambdaDefinitionData(D, nullptr, false, false,
+ LCD_None);
+ else
+ DD = new (C) struct CXXRecordDecl::DefinitionData(D);
+
+ ReadCXXDefinitionData(*DD, Record, Idx);
+
+ // We might already have a definition for this record. This can happen either
+ // because we're reading an update record, or because we've already done some
+ // merging. Either way, just merge into it.
+ CXXRecordDecl *Canon = D->getCanonicalDecl();
+ if (auto *CanonDD = Canon->DefinitionData.getNotUpdated()) {
+ if (CanonDD->Definition != DD->Definition)
+ Reader.MergedDeclContexts.insert(
+ std::make_pair(DD->Definition, CanonDD->Definition));
+ MergeDefinitionData(Canon, std::move(*DD));
+ D->DefinitionData = Canon->DefinitionData;
+ return;
+ }
+
+ // Propagate the DefinitionData pointer to the canonical declaration, so
+ // that all other deserialized declarations will see it.
+ if (Canon == D) {
+ D->DefinitionData = DD;
+ D->IsCompleteDefinition = true;
+
+ // If this is an update record, we can have redeclarations already. Make a
+ // note that we need to propagate the DefinitionData pointer onto them.
+ if (Update)
+ Reader.PendingDefinitions.insert(D);
+ } else if (auto *CanonDD = Canon->DefinitionData.getNotUpdated()) {
+ // We have already deserialized a definition of this record. This
+ // definition is no longer really a definition. Note that the pre-existing
+ // definition is the *real* definition.
+ Reader.MergedDeclContexts.insert(
+ std::make_pair(D, CanonDD->Definition));
+ D->DefinitionData = Canon->DefinitionData;
+ D->IsCompleteDefinition = false;
+ MergeDefinitionData(D, std::move(*DD));
+ } else {
+ Canon->DefinitionData = DD;
+ D->DefinitionData = Canon->DefinitionData;
+ D->IsCompleteDefinition = true;
+
+ // Note that we have deserialized a definition. Any declarations
+ // deserialized before this one will be be given the DefinitionData
+ // pointer at the end.
+ Reader.PendingDefinitions.insert(D);
+ }
+}
+
+ASTDeclReader::RedeclarableResult
+ASTDeclReader::VisitCXXRecordDeclImpl(CXXRecordDecl *D) {
+ RedeclarableResult Redecl = VisitRecordDeclImpl(D);
+
+ ASTContext &C = Reader.getContext();
+
+ enum CXXRecKind {
+ CXXRecNotTemplate = 0, CXXRecTemplate, CXXRecMemberSpecialization
+ };
+ switch ((CXXRecKind)Record[Idx++]) {
+ case CXXRecNotTemplate:
+ // Merged when we merge the folding set entry in the primary template.
+ if (!isa<ClassTemplateSpecializationDecl>(D))
+ mergeRedeclarable(D, Redecl);
+ break;
+ case CXXRecTemplate: {
+ // Merged when we merge the template.
+ ClassTemplateDecl *Template = ReadDeclAs<ClassTemplateDecl>(Record, Idx);
+ D->TemplateOrInstantiation = Template;
+ if (!Template->getTemplatedDecl()) {
+ // We've not actually loaded the ClassTemplateDecl yet, because we're
+ // currently being loaded as its pattern. Rely on it to set up our
+ // TypeForDecl (see VisitClassTemplateDecl).
+ //
+ // Beware: we do not yet know our canonical declaration, and may still
+ // get merged once the surrounding class template has got off the ground.
+ TypeIDForTypeDecl = 0;
+ }
+ break;
+ }
+ case CXXRecMemberSpecialization: {
+ CXXRecordDecl *RD = ReadDeclAs<CXXRecordDecl>(Record, Idx);
+ TemplateSpecializationKind TSK = (TemplateSpecializationKind)Record[Idx++];
+ SourceLocation POI = ReadSourceLocation(Record, Idx);
+ MemberSpecializationInfo *MSI = new (C) MemberSpecializationInfo(RD, TSK);
+ MSI->setPointOfInstantiation(POI);
+ D->TemplateOrInstantiation = MSI;
+ mergeRedeclarable(D, Redecl);
+ break;
+ }
+ }
+
+ bool WasDefinition = Record[Idx++];
+ if (WasDefinition)
+ ReadCXXRecordDefinition(D, /*Update*/false);
+ else
+ // Propagate DefinitionData pointer from the canonical declaration.
+ D->DefinitionData = D->getCanonicalDecl()->DefinitionData;
+
+ // Lazily load the key function to avoid deserializing every method so we can
+ // compute it.
+ if (WasDefinition) {
+ DeclID KeyFn = ReadDeclID(Record, Idx);
+ if (KeyFn && D->IsCompleteDefinition)
+ // FIXME: This is wrong for the ARM ABI, where some other module may have
+ // made this function no longer be a key function. We need an update
+ // record or similar for that case.
+ C.KeyFunctions[D] = KeyFn;
+ }
+
+ return Redecl;
+}
+
+void ASTDeclReader::VisitCXXMethodDecl(CXXMethodDecl *D) {
+ VisitFunctionDecl(D);
+
+ unsigned NumOverridenMethods = Record[Idx++];
+ if (D->isCanonicalDecl()) {
+ while (NumOverridenMethods--) {
+ // Avoid invariant checking of CXXMethodDecl::addOverriddenMethod,
+ // MD may be initializing.
+ if (CXXMethodDecl *MD = ReadDeclAs<CXXMethodDecl>(Record, Idx))
+ Reader.getContext().addOverriddenMethod(D, MD->getCanonicalDecl());
+ }
+ } else {
+ // We don't care about which declarations this used to override; we get
+ // the relevant information from the canonical declaration.
+ Idx += NumOverridenMethods;
+ }
+}
+
+void ASTDeclReader::VisitCXXConstructorDecl(CXXConstructorDecl *D) {
+ VisitCXXMethodDecl(D);
+
+ if (auto *CD = ReadDeclAs<CXXConstructorDecl>(Record, Idx))
+ if (D->isCanonicalDecl())
+ D->setInheritedConstructor(CD->getCanonicalDecl());
+ D->IsExplicitSpecified = Record[Idx++];
+}
+
+void ASTDeclReader::VisitCXXDestructorDecl(CXXDestructorDecl *D) {
+ VisitCXXMethodDecl(D);
+
+ if (auto *OperatorDelete = ReadDeclAs<FunctionDecl>(Record, Idx)) {
+ auto *Canon = cast<CXXDestructorDecl>(D->getCanonicalDecl());
+ // FIXME: Check consistency if we have an old and new operator delete.
+ if (!Canon->OperatorDelete)
+ Canon->OperatorDelete = OperatorDelete;
+ }
+}
+
+void ASTDeclReader::VisitCXXConversionDecl(CXXConversionDecl *D) {
+ VisitCXXMethodDecl(D);
+ D->IsExplicitSpecified = Record[Idx++];
+}
+
+void ASTDeclReader::VisitImportDecl(ImportDecl *D) {
+ VisitDecl(D);
+ D->ImportedAndComplete.setPointer(readModule(Record, Idx));
+ D->ImportedAndComplete.setInt(Record[Idx++]);
+ SourceLocation *StoredLocs = reinterpret_cast<SourceLocation *>(D + 1);
+ for (unsigned I = 0, N = Record.back(); I != N; ++I)
+ StoredLocs[I] = ReadSourceLocation(Record, Idx);
+ ++Idx; // The number of stored source locations.
+}
+
+void ASTDeclReader::VisitAccessSpecDecl(AccessSpecDecl *D) {
+ VisitDecl(D);
+ D->setColonLoc(ReadSourceLocation(Record, Idx));
+}
+
+void ASTDeclReader::VisitFriendDecl(FriendDecl *D) {
+ VisitDecl(D);
+ if (Record[Idx++]) // hasFriendDecl
+ D->Friend = ReadDeclAs<NamedDecl>(Record, Idx);
+ else
+ D->Friend = GetTypeSourceInfo(Record, Idx);
+ for (unsigned i = 0; i != D->NumTPLists; ++i)
+ D->getTPLists()[i] = Reader.ReadTemplateParameterList(F, Record, Idx);
+ D->NextFriend = ReadDeclID(Record, Idx);
+ D->UnsupportedFriend = (Record[Idx++] != 0);
+ D->FriendLoc = ReadSourceLocation(Record, Idx);
+}
+
+void ASTDeclReader::VisitFriendTemplateDecl(FriendTemplateDecl *D) {
+ VisitDecl(D);
+ unsigned NumParams = Record[Idx++];
+ D->NumParams = NumParams;
+ D->Params = new TemplateParameterList*[NumParams];
+ for (unsigned i = 0; i != NumParams; ++i)
+ D->Params[i] = Reader.ReadTemplateParameterList(F, Record, Idx);
+ if (Record[Idx++]) // HasFriendDecl
+ D->Friend = ReadDeclAs<NamedDecl>(Record, Idx);
+ else
+ D->Friend = GetTypeSourceInfo(Record, Idx);
+ D->FriendLoc = ReadSourceLocation(Record, Idx);
+}
+
+DeclID ASTDeclReader::VisitTemplateDecl(TemplateDecl *D) {
+ VisitNamedDecl(D);
+
+ DeclID PatternID = ReadDeclID(Record, Idx);
+ NamedDecl *TemplatedDecl = cast_or_null<NamedDecl>(Reader.GetDecl(PatternID));
+ TemplateParameterList* TemplateParams
+ = Reader.ReadTemplateParameterList(F, Record, Idx);
+ D->init(TemplatedDecl, TemplateParams);
+
+ // FIXME: If this is a redeclaration of a template from another module, handle
+ // inheritance of default template arguments.
+
+ return PatternID;
+}
+
+ASTDeclReader::RedeclarableResult
+ASTDeclReader::VisitRedeclarableTemplateDecl(RedeclarableTemplateDecl *D) {
+ RedeclarableResult Redecl = VisitRedeclarable(D);
+
+ // Make sure we've allocated the Common pointer first. We do this before
+ // VisitTemplateDecl so that getCommonPtr() can be used during initialization.
+ RedeclarableTemplateDecl *CanonD = D->getCanonicalDecl();
+ if (!CanonD->Common) {
+ CanonD->Common = CanonD->newCommon(Reader.getContext());
+ Reader.PendingDefinitions.insert(CanonD);
+ }
+ D->Common = CanonD->Common;
+
+ // If this is the first declaration of the template, fill in the information
+ // for the 'common' pointer.
+ if (ThisDeclID == Redecl.getFirstID()) {
+ if (RedeclarableTemplateDecl *RTD
+ = ReadDeclAs<RedeclarableTemplateDecl>(Record, Idx)) {
+ assert(RTD->getKind() == D->getKind() &&
+ "InstantiatedFromMemberTemplate kind mismatch");
+ D->setInstantiatedFromMemberTemplate(RTD);
+ if (Record[Idx++])
+ D->setMemberSpecialization();
+ }
+ }
+
+ DeclID PatternID = VisitTemplateDecl(D);
+ D->IdentifierNamespace = Record[Idx++];
+
+ mergeRedeclarable(D, Redecl, PatternID);
+
+ // If we merged the template with a prior declaration chain, merge the common
+ // pointer.
+ // FIXME: Actually merge here, don't just overwrite.
+ D->Common = D->getCanonicalDecl()->Common;
+
+ return Redecl;
+}
+
+static DeclID *newDeclIDList(ASTContext &Context, DeclID *Old,
+ SmallVectorImpl<DeclID> &IDs) {
+ assert(!IDs.empty() && "no IDs to add to list");
+ if (Old) {
+ IDs.insert(IDs.end(), Old + 1, Old + 1 + Old[0]);
+ std::sort(IDs.begin(), IDs.end());
+ IDs.erase(std::unique(IDs.begin(), IDs.end()), IDs.end());
+ }
+
+ auto *Result = new (Context) DeclID[1 + IDs.size()];
+ *Result = IDs.size();
+ std::copy(IDs.begin(), IDs.end(), Result + 1);
+ return Result;
+}
+
+void ASTDeclReader::VisitClassTemplateDecl(ClassTemplateDecl *D) {
+ RedeclarableResult Redecl = VisitRedeclarableTemplateDecl(D);
+
+ if (ThisDeclID == Redecl.getFirstID()) {
+ // This ClassTemplateDecl owns a CommonPtr; read it to keep track of all of
+ // the specializations.
+ SmallVector<serialization::DeclID, 32> SpecIDs;
+ ReadDeclIDList(SpecIDs);
+
+ if (!SpecIDs.empty()) {
+ auto *CommonPtr = D->getCommonPtr();
+ CommonPtr->LazySpecializations = newDeclIDList(
+ Reader.getContext(), CommonPtr->LazySpecializations, SpecIDs);
+ }
+ }
+
+ if (D->getTemplatedDecl()->TemplateOrInstantiation) {
+ // We were loaded before our templated declaration was. We've not set up
+ // its corresponding type yet (see VisitCXXRecordDeclImpl), so reconstruct
+ // it now.
+ Reader.Context.getInjectedClassNameType(
+ D->getTemplatedDecl(), D->getInjectedClassNameSpecialization());
+ }
+}
+
+/// TODO: Unify with ClassTemplateDecl version?
+/// May require unifying ClassTemplateDecl and
+/// VarTemplateDecl beyond TemplateDecl...
+void ASTDeclReader::VisitVarTemplateDecl(VarTemplateDecl *D) {
+ RedeclarableResult Redecl = VisitRedeclarableTemplateDecl(D);
+
+ if (ThisDeclID == Redecl.getFirstID()) {
+ // This VarTemplateDecl owns a CommonPtr; read it to keep track of all of
+ // the specializations.
+ SmallVector<serialization::DeclID, 32> SpecIDs;
+ ReadDeclIDList(SpecIDs);
+
+ if (!SpecIDs.empty()) {
+ auto *CommonPtr = D->getCommonPtr();
+ CommonPtr->LazySpecializations = newDeclIDList(
+ Reader.getContext(), CommonPtr->LazySpecializations, SpecIDs);
+ }
+ }
+}
+
+ASTDeclReader::RedeclarableResult
+ASTDeclReader::VisitClassTemplateSpecializationDeclImpl(
+ ClassTemplateSpecializationDecl *D) {
+ RedeclarableResult Redecl = VisitCXXRecordDeclImpl(D);
+
+ ASTContext &C = Reader.getContext();
+ if (Decl *InstD = ReadDecl(Record, Idx)) {
+ if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(InstD)) {
+ D->SpecializedTemplate = CTD;
+ } else {
+ SmallVector<TemplateArgument, 8> TemplArgs;
+ Reader.ReadTemplateArgumentList(TemplArgs, F, Record, Idx);
+ TemplateArgumentList *ArgList
+ = TemplateArgumentList::CreateCopy(C, TemplArgs.data(),
+ TemplArgs.size());
+ ClassTemplateSpecializationDecl::SpecializedPartialSpecialization *PS
+ = new (C) ClassTemplateSpecializationDecl::
+ SpecializedPartialSpecialization();
+ PS->PartialSpecialization
+ = cast<ClassTemplatePartialSpecializationDecl>(InstD);
+ PS->TemplateArgs = ArgList;
+ D->SpecializedTemplate = PS;
+ }
+ }
+
+ SmallVector<TemplateArgument, 8> TemplArgs;
+ Reader.ReadTemplateArgumentList(TemplArgs, F, Record, Idx);
+ D->TemplateArgs = TemplateArgumentList::CreateCopy(C, TemplArgs.data(),
+ TemplArgs.size());
+ D->PointOfInstantiation = ReadSourceLocation(Record, Idx);
+ D->SpecializationKind = (TemplateSpecializationKind)Record[Idx++];
+
+ bool writtenAsCanonicalDecl = Record[Idx++];
+ if (writtenAsCanonicalDecl) {
+ ClassTemplateDecl *CanonPattern = ReadDeclAs<ClassTemplateDecl>(Record,Idx);
+ if (D->isCanonicalDecl()) { // It's kept in the folding set.
+ // Set this as, or find, the canonical declaration for this specialization
+ ClassTemplateSpecializationDecl *CanonSpec;
+ if (ClassTemplatePartialSpecializationDecl *Partial =
+ dyn_cast<ClassTemplatePartialSpecializationDecl>(D)) {
+ CanonSpec = CanonPattern->getCommonPtr()->PartialSpecializations
+ .GetOrInsertNode(Partial);
+ } else {
+ CanonSpec =
+ CanonPattern->getCommonPtr()->Specializations.GetOrInsertNode(D);
+ }
+ // If there was already a canonical specialization, merge into it.
+ if (CanonSpec != D) {
+ mergeRedeclarable<TagDecl>(D, CanonSpec, Redecl);
+
+ // This declaration might be a definition. Merge with any existing
+ // definition.
+ if (auto *DDD = D->DefinitionData.getNotUpdated()) {
+ if (auto *CanonDD = CanonSpec->DefinitionData.getNotUpdated()) {
+ MergeDefinitionData(CanonSpec, std::move(*DDD));
+ Reader.PendingDefinitions.erase(D);
+ Reader.MergedDeclContexts.insert(
+ std::make_pair(D, CanonDD->Definition));
+ D->IsCompleteDefinition = false;
+ } else {
+ CanonSpec->DefinitionData = D->DefinitionData;
+ }
+ }
+ D->DefinitionData = CanonSpec->DefinitionData;
+ }
+ }
+ }
+
+ // Explicit info.
+ if (TypeSourceInfo *TyInfo = GetTypeSourceInfo(Record, Idx)) {
+ ClassTemplateSpecializationDecl::ExplicitSpecializationInfo *ExplicitInfo
+ = new (C) ClassTemplateSpecializationDecl::ExplicitSpecializationInfo;
+ ExplicitInfo->TypeAsWritten = TyInfo;
+ ExplicitInfo->ExternLoc = ReadSourceLocation(Record, Idx);
+ ExplicitInfo->TemplateKeywordLoc = ReadSourceLocation(Record, Idx);
+ D->ExplicitInfo = ExplicitInfo;
+ }
+
+ return Redecl;
+}
+
+void ASTDeclReader::VisitClassTemplatePartialSpecializationDecl(
+ ClassTemplatePartialSpecializationDecl *D) {
+ RedeclarableResult Redecl = VisitClassTemplateSpecializationDeclImpl(D);
+
+ D->TemplateParams = Reader.ReadTemplateParameterList(F, Record, Idx);
+ D->ArgsAsWritten = Reader.ReadASTTemplateArgumentListInfo(F, Record, Idx);
+
+ // These are read/set from/to the first declaration.
+ if (ThisDeclID == Redecl.getFirstID()) {
+ D->InstantiatedFromMember.setPointer(
+ ReadDeclAs<ClassTemplatePartialSpecializationDecl>(Record, Idx));
+ D->InstantiatedFromMember.setInt(Record[Idx++]);
+ }
+}
+
+void ASTDeclReader::VisitClassScopeFunctionSpecializationDecl(
+ ClassScopeFunctionSpecializationDecl *D) {
+ VisitDecl(D);
+ D->Specialization = ReadDeclAs<CXXMethodDecl>(Record, Idx);
+}
+
+void ASTDeclReader::VisitFunctionTemplateDecl(FunctionTemplateDecl *D) {
+ RedeclarableResult Redecl = VisitRedeclarableTemplateDecl(D);
+
+ if (ThisDeclID == Redecl.getFirstID()) {
+ // This FunctionTemplateDecl owns a CommonPtr; read it.
+ SmallVector<serialization::DeclID, 32> SpecIDs;
+ ReadDeclIDList(SpecIDs);
+
+ if (!SpecIDs.empty()) {
+ auto *CommonPtr = D->getCommonPtr();
+ CommonPtr->LazySpecializations = newDeclIDList(
+ Reader.getContext(), CommonPtr->LazySpecializations, SpecIDs);
+ }
+ }
+}
+
+/// TODO: Unify with ClassTemplateSpecializationDecl version?
+/// May require unifying ClassTemplate(Partial)SpecializationDecl and
+/// VarTemplate(Partial)SpecializationDecl with a new data
+/// structure Template(Partial)SpecializationDecl, and
+/// using Template(Partial)SpecializationDecl as input type.
+ASTDeclReader::RedeclarableResult
+ASTDeclReader::VisitVarTemplateSpecializationDeclImpl(
+ VarTemplateSpecializationDecl *D) {
+ RedeclarableResult Redecl = VisitVarDeclImpl(D);
+
+ ASTContext &C = Reader.getContext();
+ if (Decl *InstD = ReadDecl(Record, Idx)) {
+ if (VarTemplateDecl *VTD = dyn_cast<VarTemplateDecl>(InstD)) {
+ D->SpecializedTemplate = VTD;
+ } else {
+ SmallVector<TemplateArgument, 8> TemplArgs;
+ Reader.ReadTemplateArgumentList(TemplArgs, F, Record, Idx);
+ TemplateArgumentList *ArgList = TemplateArgumentList::CreateCopy(
+ C, TemplArgs.data(), TemplArgs.size());
+ VarTemplateSpecializationDecl::SpecializedPartialSpecialization *PS =
+ new (C)
+ VarTemplateSpecializationDecl::SpecializedPartialSpecialization();
+ PS->PartialSpecialization =
+ cast<VarTemplatePartialSpecializationDecl>(InstD);
+ PS->TemplateArgs = ArgList;
+ D->SpecializedTemplate = PS;
+ }
+ }
+
+ // Explicit info.
+ if (TypeSourceInfo *TyInfo = GetTypeSourceInfo(Record, Idx)) {
+ VarTemplateSpecializationDecl::ExplicitSpecializationInfo *ExplicitInfo =
+ new (C) VarTemplateSpecializationDecl::ExplicitSpecializationInfo;
+ ExplicitInfo->TypeAsWritten = TyInfo;
+ ExplicitInfo->ExternLoc = ReadSourceLocation(Record, Idx);
+ ExplicitInfo->TemplateKeywordLoc = ReadSourceLocation(Record, Idx);
+ D->ExplicitInfo = ExplicitInfo;
+ }
+
+ SmallVector<TemplateArgument, 8> TemplArgs;
+ Reader.ReadTemplateArgumentList(TemplArgs, F, Record, Idx);
+ D->TemplateArgs =
+ TemplateArgumentList::CreateCopy(C, TemplArgs.data(), TemplArgs.size());
+ D->PointOfInstantiation = ReadSourceLocation(Record, Idx);
+ D->SpecializationKind = (TemplateSpecializationKind)Record[Idx++];
+
+ bool writtenAsCanonicalDecl = Record[Idx++];
+ if (writtenAsCanonicalDecl) {
+ VarTemplateDecl *CanonPattern = ReadDeclAs<VarTemplateDecl>(Record, Idx);
+ if (D->isCanonicalDecl()) { // It's kept in the folding set.
+ if (VarTemplatePartialSpecializationDecl *Partial =
+ dyn_cast<VarTemplatePartialSpecializationDecl>(D)) {
+ CanonPattern->getCommonPtr()->PartialSpecializations
+ .GetOrInsertNode(Partial);
+ } else {
+ CanonPattern->getCommonPtr()->Specializations.GetOrInsertNode(D);
+ }
+ }
+ }
+
+ return Redecl;
+}
+
+/// TODO: Unify with ClassTemplatePartialSpecializationDecl version?
+/// May require unifying ClassTemplate(Partial)SpecializationDecl and
+/// VarTemplate(Partial)SpecializationDecl with a new data
+/// structure Template(Partial)SpecializationDecl, and
+/// using Template(Partial)SpecializationDecl as input type.
+void ASTDeclReader::VisitVarTemplatePartialSpecializationDecl(
+ VarTemplatePartialSpecializationDecl *D) {
+ RedeclarableResult Redecl = VisitVarTemplateSpecializationDeclImpl(D);
+
+ D->TemplateParams = Reader.ReadTemplateParameterList(F, Record, Idx);
+ D->ArgsAsWritten = Reader.ReadASTTemplateArgumentListInfo(F, Record, Idx);
+
+ // These are read/set from/to the first declaration.
+ if (ThisDeclID == Redecl.getFirstID()) {
+ D->InstantiatedFromMember.setPointer(
+ ReadDeclAs<VarTemplatePartialSpecializationDecl>(Record, Idx));
+ D->InstantiatedFromMember.setInt(Record[Idx++]);
+ }
+}
+
+void ASTDeclReader::VisitTemplateTypeParmDecl(TemplateTypeParmDecl *D) {
+ VisitTypeDecl(D);
+
+ D->setDeclaredWithTypename(Record[Idx++]);
+
+ bool Inherited = Record[Idx++];
+ TypeSourceInfo *DefArg = GetTypeSourceInfo(Record, Idx);
+ D->setDefaultArgument(DefArg, Inherited);
+}
+
+void ASTDeclReader::VisitNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D) {
+ VisitDeclaratorDecl(D);
+ // TemplateParmPosition.
+ D->setDepth(Record[Idx++]);
+ D->setPosition(Record[Idx++]);
+ if (D->isExpandedParameterPack()) {
+ void **Data = reinterpret_cast<void **>(D + 1);
+ for (unsigned I = 0, N = D->getNumExpansionTypes(); I != N; ++I) {
+ Data[2*I] = Reader.readType(F, Record, Idx).getAsOpaquePtr();
+ Data[2*I + 1] = GetTypeSourceInfo(Record, Idx);
+ }
+ } else {
+ // Rest of NonTypeTemplateParmDecl.
+ D->ParameterPack = Record[Idx++];
+ if (Record[Idx++]) {
+ Expr *DefArg = Reader.ReadExpr(F);
+ bool Inherited = Record[Idx++];
+ D->setDefaultArgument(DefArg, Inherited);
+ }
+ }
+}
+
+void ASTDeclReader::VisitTemplateTemplateParmDecl(TemplateTemplateParmDecl *D) {
+ VisitTemplateDecl(D);
+ // TemplateParmPosition.
+ D->setDepth(Record[Idx++]);
+ D->setPosition(Record[Idx++]);
+ if (D->isExpandedParameterPack()) {
+ void **Data = reinterpret_cast<void **>(D + 1);
+ for (unsigned I = 0, N = D->getNumExpansionTemplateParameters();
+ I != N; ++I)
+ Data[I] = Reader.ReadTemplateParameterList(F, Record, Idx);
+ } else {
+ // Rest of TemplateTemplateParmDecl.
+ TemplateArgumentLoc Arg = Reader.ReadTemplateArgumentLoc(F, Record, Idx);
+ bool IsInherited = Record[Idx++];
+ D->setDefaultArgument(Arg, IsInherited);
+ D->ParameterPack = Record[Idx++];
+ }
+}
+
+void ASTDeclReader::VisitTypeAliasTemplateDecl(TypeAliasTemplateDecl *D) {
+ VisitRedeclarableTemplateDecl(D);
+}
+
+void ASTDeclReader::VisitStaticAssertDecl(StaticAssertDecl *D) {
+ VisitDecl(D);
+ D->AssertExprAndFailed.setPointer(Reader.ReadExpr(F));
+ D->AssertExprAndFailed.setInt(Record[Idx++]);
+ D->Message = cast<StringLiteral>(Reader.ReadExpr(F));
+ D->RParenLoc = ReadSourceLocation(Record, Idx);
+}
+
+void ASTDeclReader::VisitEmptyDecl(EmptyDecl *D) {
+ VisitDecl(D);
+}
+
+std::pair<uint64_t, uint64_t>
+ASTDeclReader::VisitDeclContext(DeclContext *DC) {
+ uint64_t LexicalOffset = Record[Idx++];
+ uint64_t VisibleOffset = Record[Idx++];
+ return std::make_pair(LexicalOffset, VisibleOffset);
+}
+
+template <typename T>
+ASTDeclReader::RedeclarableResult
+ASTDeclReader::VisitRedeclarable(Redeclarable<T> *D) {
+ DeclID FirstDeclID = ReadDeclID(Record, Idx);
+ Decl *MergeWith = nullptr;
+
+ // 0 indicates that this declaration was the only declaration of its entity,
+ // and is used for space optimization.
+ if (FirstDeclID == 0)
+ FirstDeclID = ThisDeclID;
+ else if (unsigned N = Record[Idx++]) {
+ // We have some declarations that must be before us in our redeclaration
+ // chain. Read them now, and remember that we ought to merge with one of
+ // them.
+ // FIXME: Provide a known merge target to the second and subsequent such
+ // declaration.
+ for (unsigned I = 0; I != N; ++I)
+ MergeWith = ReadDecl(Record, Idx/*, MergeWith*/);
+ }
+
+ T *FirstDecl = cast_or_null<T>(Reader.GetDecl(FirstDeclID));
+ if (FirstDecl != D) {
+ // We delay loading of the redeclaration chain to avoid deeply nested calls.
+ // We temporarily set the first (canonical) declaration as the previous one
+ // which is the one that matters and mark the real previous DeclID to be
+ // loaded & attached later on.
+ D->RedeclLink = Redeclarable<T>::PreviousDeclLink(FirstDecl);
+ D->First = FirstDecl->getCanonicalDecl();
+ }
+
+ // Note that this declaration has been deserialized.
+ Reader.RedeclsDeserialized.insert(static_cast<T *>(D));
+
+ // The result structure takes care to note that we need to load the
+ // other declaration chains for this ID.
+ return RedeclarableResult(Reader, FirstDeclID, MergeWith,
+ static_cast<T *>(D)->getKind());
+}
+
+/// \brief Attempts to merge the given declaration (D) with another declaration
+/// of the same entity.
+template<typename T>
+void ASTDeclReader::mergeRedeclarable(Redeclarable<T> *DBase,
+ RedeclarableResult &Redecl,
+ DeclID TemplatePatternID) {
+ T *D = static_cast<T*>(DBase);
+
+ // If modules are not available, there is no reason to perform this merge.
+ if (!Reader.getContext().getLangOpts().Modules)
+ return;
+
+ // If we're not the canonical declaration, we don't need to merge.
+ if (!DBase->isFirstDecl())
+ return;
+
+ if (auto *Existing = Redecl.getKnownMergeTarget())
+ // We already know of an existing declaration we should merge with.
+ mergeRedeclarable(D, cast<T>(Existing), Redecl, TemplatePatternID);
+ else if (FindExistingResult ExistingRes = findExisting(D))
+ if (T *Existing = ExistingRes)
+ mergeRedeclarable(D, Existing, Redecl, TemplatePatternID);
+}
+
+/// \brief "Cast" to type T, asserting if we don't have an implicit conversion.
+/// We use this to put code in a template that will only be valid for certain
+/// instantiations.
+template<typename T> static T assert_cast(T t) { return t; }
+template<typename T> static T assert_cast(...) {
+ llvm_unreachable("bad assert_cast");
+}
+
+/// \brief Merge together the pattern declarations from two template
+/// declarations.
+void ASTDeclReader::mergeTemplatePattern(RedeclarableTemplateDecl *D,
+ RedeclarableTemplateDecl *Existing,
+ DeclID DsID) {
+ auto *DPattern = D->getTemplatedDecl();
+ auto *ExistingPattern = Existing->getTemplatedDecl();
+ RedeclarableResult Result(Reader, DPattern->getCanonicalDecl()->getGlobalID(),
+ /*MergeWith*/ExistingPattern, DPattern->getKind());
+
+ if (auto *DClass = dyn_cast<CXXRecordDecl>(DPattern)) {
+ // Merge with any existing definition.
+ // FIXME: This is duplicated in several places. Refactor.
+ auto *ExistingClass =
+ cast<CXXRecordDecl>(ExistingPattern)->getCanonicalDecl();
+ if (auto *DDD = DClass->DefinitionData.getNotUpdated()) {
+ if (auto *ExistingDD = ExistingClass->DefinitionData.getNotUpdated()) {
+ MergeDefinitionData(ExistingClass, std::move(*DDD));
+ Reader.PendingDefinitions.erase(DClass);
+ Reader.MergedDeclContexts.insert(
+ std::make_pair(DClass, ExistingDD->Definition));
+ DClass->IsCompleteDefinition = false;
+ } else {
+ ExistingClass->DefinitionData = DClass->DefinitionData;
+ Reader.PendingDefinitions.insert(DClass);
+ }
+ }
+ DClass->DefinitionData = ExistingClass->DefinitionData;
+
+ return mergeRedeclarable(DClass, cast<TagDecl>(ExistingPattern),
+ Result);
+ }
+ if (auto *DFunction = dyn_cast<FunctionDecl>(DPattern))
+ return mergeRedeclarable(DFunction, cast<FunctionDecl>(ExistingPattern),
+ Result);
+ if (auto *DVar = dyn_cast<VarDecl>(DPattern))
+ return mergeRedeclarable(DVar, cast<VarDecl>(ExistingPattern), Result);
+ if (auto *DAlias = dyn_cast<TypeAliasDecl>(DPattern))
+ return mergeRedeclarable(DAlias, cast<TypedefNameDecl>(ExistingPattern),
+ Result);
+ llvm_unreachable("merged an unknown kind of redeclarable template");
+}
+
+/// \brief Attempts to merge the given declaration (D) with another declaration
+/// of the same entity.
+template<typename T>
+void ASTDeclReader::mergeRedeclarable(Redeclarable<T> *DBase, T *Existing,
+ RedeclarableResult &Redecl,
+ DeclID TemplatePatternID) {
+ T *D = static_cast<T*>(DBase);
+ T *ExistingCanon = Existing->getCanonicalDecl();
+ T *DCanon = D->getCanonicalDecl();
+ if (ExistingCanon != DCanon) {
+ assert(DCanon->getGlobalID() == Redecl.getFirstID() &&
+ "already merged this declaration");
+
+ // Have our redeclaration link point back at the canonical declaration
+ // of the existing declaration, so that this declaration has the
+ // appropriate canonical declaration.
+ D->RedeclLink = Redeclarable<T>::PreviousDeclLink(ExistingCanon);
+ D->First = ExistingCanon;
+
+ // When we merge a namespace, update its pointer to the first namespace.
+ // We cannot have loaded any redeclarations of this declaration yet, so
+ // there's nothing else that needs to be updated.
+ if (auto *Namespace = dyn_cast<NamespaceDecl>(D))
+ Namespace->AnonOrFirstNamespaceAndInline.setPointer(
+ assert_cast<NamespaceDecl*>(ExistingCanon));
+
+ // When we merge a template, merge its pattern.
+ if (auto *DTemplate = dyn_cast<RedeclarableTemplateDecl>(D))
+ mergeTemplatePattern(
+ DTemplate, assert_cast<RedeclarableTemplateDecl*>(ExistingCanon),
+ TemplatePatternID);
+
+ // If this declaration was the canonical declaration, make a note of that.
+ if (DCanon == D) {
+ Reader.MergedDecls[ExistingCanon].push_back(Redecl.getFirstID());
+ if (Reader.PendingDeclChainsKnown.insert(ExistingCanon).second)
+ Reader.PendingDeclChains.push_back(ExistingCanon);
+ }
+ }
+}
+
+/// \brief Attempts to merge the given declaration (D) with another declaration
+/// of the same entity, for the case where the entity is not actually
+/// redeclarable. This happens, for instance, when merging the fields of
+/// identical class definitions from two different modules.
+template<typename T>
+void ASTDeclReader::mergeMergeable(Mergeable<T> *D) {
+ // If modules are not available, there is no reason to perform this merge.
+ if (!Reader.getContext().getLangOpts().Modules)
+ return;
+
+ // ODR-based merging is only performed in C++. In C, identically-named things
+ // in different translation units are not redeclarations (but may still have
+ // compatible types).
+ if (!Reader.getContext().getLangOpts().CPlusPlus)
+ return;
+
+ if (FindExistingResult ExistingRes = findExisting(static_cast<T*>(D)))
+ if (T *Existing = ExistingRes)
+ Reader.Context.setPrimaryMergedDecl(static_cast<T*>(D),
+ Existing->getCanonicalDecl());
+}
+
+void ASTDeclReader::VisitOMPThreadPrivateDecl(OMPThreadPrivateDecl *D) {
+ VisitDecl(D);
+ unsigned NumVars = D->varlist_size();
+ SmallVector<Expr *, 16> Vars;
+ Vars.reserve(NumVars);
+ for (unsigned i = 0; i != NumVars; ++i) {
+ Vars.push_back(Reader.ReadExpr(F));
+ }
+ D->setVars(Vars);
+}
+
+//===----------------------------------------------------------------------===//
+// Attribute Reading
+//===----------------------------------------------------------------------===//
+
+/// \brief Reads attributes from the current stream position.
+void ASTReader::ReadAttributes(ModuleFile &F, AttrVec &Attrs,
+ const RecordData &Record, unsigned &Idx) {
+ for (unsigned i = 0, e = Record[Idx++]; i != e; ++i) {
+ Attr *New = nullptr;
+ attr::Kind Kind = (attr::Kind)Record[Idx++];
+ SourceRange Range = ReadSourceRange(F, Record, Idx);
+
+#include "clang/Serialization/AttrPCHRead.inc"
+
+ assert(New && "Unable to decode attribute?");
+ Attrs.push_back(New);
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// ASTReader Implementation
+//===----------------------------------------------------------------------===//
+
+/// \brief Note that we have loaded the declaration with the given
+/// Index.
+///
+/// This routine notes that this declaration has already been loaded,
+/// so that future GetDecl calls will return this declaration rather
+/// than trying to load a new declaration.
+inline void ASTReader::LoadedDecl(unsigned Index, Decl *D) {
+ assert(!DeclsLoaded[Index] && "Decl loaded twice?");
+ DeclsLoaded[Index] = D;
+}
+
+
+/// \brief Determine whether the consumer will be interested in seeing
+/// this declaration (via HandleTopLevelDecl).
+///
+/// This routine should return true for anything that might affect
+/// code generation, e.g., inline function definitions, Objective-C
+/// declarations with metadata, etc.
+static bool isConsumerInterestedIn(Decl *D, bool HasBody) {
+ // An ObjCMethodDecl is never considered as "interesting" because its
+ // implementation container always is.
+
+ if (isa<FileScopeAsmDecl>(D) ||
+ isa<ObjCProtocolDecl>(D) ||
+ isa<ObjCImplDecl>(D) ||
+ isa<ImportDecl>(D) ||
+ isa<OMPThreadPrivateDecl>(D))
+ return true;
+ if (VarDecl *Var = dyn_cast<VarDecl>(D))
+ return Var->isFileVarDecl() &&
+ Var->isThisDeclarationADefinition() == VarDecl::Definition;
+ if (FunctionDecl *Func = dyn_cast<FunctionDecl>(D))
+ return Func->doesThisDeclarationHaveABody() || HasBody;
+
+ return false;
+}
+
+/// \brief Get the correct cursor and offset for loading a declaration.
+ASTReader::RecordLocation
+ASTReader::DeclCursorForID(DeclID ID, unsigned &RawLocation) {
+ // See if there's an override.
+ DeclReplacementMap::iterator It = ReplacedDecls.find(ID);
+ if (It != ReplacedDecls.end()) {
+ RawLocation = It->second.RawLoc;
+ return RecordLocation(It->second.Mod, It->second.Offset);
+ }
+
+ GlobalDeclMapType::iterator I = GlobalDeclMap.find(ID);
+ assert(I != GlobalDeclMap.end() && "Corrupted global declaration map");
+ ModuleFile *M = I->second;
+ const DeclOffset &
+ DOffs = M->DeclOffsets[ID - M->BaseDeclID - NUM_PREDEF_DECL_IDS];
+ RawLocation = DOffs.Loc;
+ return RecordLocation(M, DOffs.BitOffset);
+}
+
+ASTReader::RecordLocation ASTReader::getLocalBitOffset(uint64_t GlobalOffset) {
+ ContinuousRangeMap<uint64_t, ModuleFile*, 4>::iterator I
+ = GlobalBitOffsetsMap.find(GlobalOffset);
+
+ assert(I != GlobalBitOffsetsMap.end() && "Corrupted global bit offsets map");
+ return RecordLocation(I->second, GlobalOffset - I->second->GlobalBitOffset);
+}
+
+uint64_t ASTReader::getGlobalBitOffset(ModuleFile &M, uint32_t LocalOffset) {
+ return LocalOffset + M.GlobalBitOffset;
+}
+
+static bool isSameTemplateParameterList(const TemplateParameterList *X,
+ const TemplateParameterList *Y);
+
+/// \brief Determine whether two template parameters are similar enough
+/// that they may be used in declarations of the same template.
+static bool isSameTemplateParameter(const NamedDecl *X,
+ const NamedDecl *Y) {
+ if (X->getKind() != Y->getKind())
+ return false;
+
+ if (const TemplateTypeParmDecl *TX = dyn_cast<TemplateTypeParmDecl>(X)) {
+ const TemplateTypeParmDecl *TY = cast<TemplateTypeParmDecl>(Y);
+ return TX->isParameterPack() == TY->isParameterPack();
+ }
+
+ if (const NonTypeTemplateParmDecl *TX = dyn_cast<NonTypeTemplateParmDecl>(X)) {
+ const NonTypeTemplateParmDecl *TY = cast<NonTypeTemplateParmDecl>(Y);
+ return TX->isParameterPack() == TY->isParameterPack() &&
+ TX->getASTContext().hasSameType(TX->getType(), TY->getType());
+ }
+
+ const TemplateTemplateParmDecl *TX = cast<TemplateTemplateParmDecl>(X);
+ const TemplateTemplateParmDecl *TY = cast<TemplateTemplateParmDecl>(Y);
+ return TX->isParameterPack() == TY->isParameterPack() &&
+ isSameTemplateParameterList(TX->getTemplateParameters(),
+ TY->getTemplateParameters());
+}
+
+static NamespaceDecl *getNamespace(const NestedNameSpecifier *X) {
+ if (auto *NS = X->getAsNamespace())
+ return NS;
+ if (auto *NAS = X->getAsNamespaceAlias())
+ return NAS->getNamespace();
+ return nullptr;
+}
+
+static bool isSameQualifier(const NestedNameSpecifier *X,
+ const NestedNameSpecifier *Y) {
+ if (auto *NSX = getNamespace(X)) {
+ auto *NSY = getNamespace(Y);
+ if (!NSY || NSX->getCanonicalDecl() != NSY->getCanonicalDecl())
+ return false;
+ } else if (X->getKind() != Y->getKind())
+ return false;
+
+ // FIXME: For namespaces and types, we're permitted to check that the entity
+ // is named via the same tokens. We should probably do so.
+ switch (X->getKind()) {
+ case NestedNameSpecifier::Identifier:
+ if (X->getAsIdentifier() != Y->getAsIdentifier())
+ return false;
+ break;
+ case NestedNameSpecifier::Namespace:
+ case NestedNameSpecifier::NamespaceAlias:
+ // We've already checked that we named the same namespace.
+ break;
+ case NestedNameSpecifier::TypeSpec:
+ case NestedNameSpecifier::TypeSpecWithTemplate:
+ if (X->getAsType()->getCanonicalTypeInternal() !=
+ Y->getAsType()->getCanonicalTypeInternal())
+ return false;
+ break;
+ case NestedNameSpecifier::Global:
+ case NestedNameSpecifier::Super:
+ return true;
+ }
+
+ // Recurse into earlier portion of NNS, if any.
+ auto *PX = X->getPrefix();
+ auto *PY = Y->getPrefix();
+ if (PX && PY)
+ return isSameQualifier(PX, PY);
+ return !PX && !PY;
+}
+
+/// \brief Determine whether two template parameter lists are similar enough
+/// that they may be used in declarations of the same template.
+static bool isSameTemplateParameterList(const TemplateParameterList *X,
+ const TemplateParameterList *Y) {
+ if (X->size() != Y->size())
+ return false;
+
+ for (unsigned I = 0, N = X->size(); I != N; ++I)
+ if (!isSameTemplateParameter(X->getParam(I), Y->getParam(I)))
+ return false;
+
+ return true;
+}
+
+/// \brief Determine whether the two declarations refer to the same entity.
+static bool isSameEntity(NamedDecl *X, NamedDecl *Y) {
+ assert(X->getDeclName() == Y->getDeclName() && "Declaration name mismatch!");
+
+ if (X == Y)
+ return true;
+
+ // Must be in the same context.
+ if (!X->getDeclContext()->getRedeclContext()->Equals(
+ Y->getDeclContext()->getRedeclContext()))
+ return false;
+
+ // Two typedefs refer to the same entity if they have the same underlying
+ // type.
+ if (TypedefNameDecl *TypedefX = dyn_cast<TypedefNameDecl>(X))
+ if (TypedefNameDecl *TypedefY = dyn_cast<TypedefNameDecl>(Y))
+ return X->getASTContext().hasSameType(TypedefX->getUnderlyingType(),
+ TypedefY->getUnderlyingType());
+
+ // Must have the same kind.
+ if (X->getKind() != Y->getKind())
+ return false;
+
+ // Objective-C classes and protocols with the same name always match.
+ if (isa<ObjCInterfaceDecl>(X) || isa<ObjCProtocolDecl>(X))
+ return true;
+
+ if (isa<ClassTemplateSpecializationDecl>(X)) {
+ // No need to handle these here: we merge them when adding them to the
+ // template.
+ return false;
+ }
+
+ // Compatible tags match.
+ if (TagDecl *TagX = dyn_cast<TagDecl>(X)) {
+ TagDecl *TagY = cast<TagDecl>(Y);
+ return (TagX->getTagKind() == TagY->getTagKind()) ||
+ ((TagX->getTagKind() == TTK_Struct || TagX->getTagKind() == TTK_Class ||
+ TagX->getTagKind() == TTK_Interface) &&
+ (TagY->getTagKind() == TTK_Struct || TagY->getTagKind() == TTK_Class ||
+ TagY->getTagKind() == TTK_Interface));
+ }
+
+ // Functions with the same type and linkage match.
+ // FIXME: This needs to cope with merging of prototyped/non-prototyped
+ // functions, etc.
+ if (FunctionDecl *FuncX = dyn_cast<FunctionDecl>(X)) {
+ FunctionDecl *FuncY = cast<FunctionDecl>(Y);
+ return (FuncX->getLinkageInternal() == FuncY->getLinkageInternal()) &&
+ FuncX->getASTContext().hasSameType(FuncX->getType(), FuncY->getType());
+ }
+
+ // Variables with the same type and linkage match.
+ if (VarDecl *VarX = dyn_cast<VarDecl>(X)) {
+ VarDecl *VarY = cast<VarDecl>(Y);
+ return (VarX->getLinkageInternal() == VarY->getLinkageInternal()) &&
+ VarX->getASTContext().hasSameType(VarX->getType(), VarY->getType());
+ }
+
+ // Namespaces with the same name and inlinedness match.
+ if (NamespaceDecl *NamespaceX = dyn_cast<NamespaceDecl>(X)) {
+ NamespaceDecl *NamespaceY = cast<NamespaceDecl>(Y);
+ return NamespaceX->isInline() == NamespaceY->isInline();
+ }
+
+ // Identical template names and kinds match if their template parameter lists
+ // and patterns match.
+ if (TemplateDecl *TemplateX = dyn_cast<TemplateDecl>(X)) {
+ TemplateDecl *TemplateY = cast<TemplateDecl>(Y);
+ return isSameEntity(TemplateX->getTemplatedDecl(),
+ TemplateY->getTemplatedDecl()) &&
+ isSameTemplateParameterList(TemplateX->getTemplateParameters(),
+ TemplateY->getTemplateParameters());
+ }
+
+ // Fields with the same name and the same type match.
+ if (FieldDecl *FDX = dyn_cast<FieldDecl>(X)) {
+ FieldDecl *FDY = cast<FieldDecl>(Y);
+ // FIXME: Also check the bitwidth is odr-equivalent, if any.
+ return X->getASTContext().hasSameType(FDX->getType(), FDY->getType());
+ }
+
+ // Enumerators with the same name match.
+ if (isa<EnumConstantDecl>(X))
+ // FIXME: Also check the value is odr-equivalent.
+ return true;
+
+ // Using shadow declarations with the same target match.
+ if (UsingShadowDecl *USX = dyn_cast<UsingShadowDecl>(X)) {
+ UsingShadowDecl *USY = cast<UsingShadowDecl>(Y);
+ return USX->getTargetDecl() == USY->getTargetDecl();
+ }
+
+ // Using declarations with the same qualifier match. (We already know that
+ // the name matches.)
+ if (auto *UX = dyn_cast<UsingDecl>(X)) {
+ auto *UY = cast<UsingDecl>(Y);
+ return isSameQualifier(UX->getQualifier(), UY->getQualifier()) &&
+ UX->hasTypename() == UY->hasTypename() &&
+ UX->isAccessDeclaration() == UY->isAccessDeclaration();
+ }
+ if (auto *UX = dyn_cast<UnresolvedUsingValueDecl>(X)) {
+ auto *UY = cast<UnresolvedUsingValueDecl>(Y);
+ return isSameQualifier(UX->getQualifier(), UY->getQualifier()) &&
+ UX->isAccessDeclaration() == UY->isAccessDeclaration();
+ }
+ if (auto *UX = dyn_cast<UnresolvedUsingTypenameDecl>(X))
+ return isSameQualifier(
+ UX->getQualifier(),
+ cast<UnresolvedUsingTypenameDecl>(Y)->getQualifier());
+
+ // Namespace alias definitions with the same target match.
+ if (auto *NAX = dyn_cast<NamespaceAliasDecl>(X)) {
+ auto *NAY = cast<NamespaceAliasDecl>(Y);
+ return NAX->getNamespace()->Equals(NAY->getNamespace());
+ }
+
+ // FIXME: Many other cases to implement.
+ return false;
+}
+
+/// Find the context in which we should search for previous declarations when
+/// looking for declarations to merge.
+DeclContext *ASTDeclReader::getPrimaryContextForMerging(ASTReader &Reader,
+ DeclContext *DC) {
+ if (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC))
+ return ND->getOriginalNamespace();
+
+ if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
+ // Try to dig out the definition.
+ auto *DD = RD->DefinitionData.getNotUpdated();
+ if (!DD)
+ DD = RD->getCanonicalDecl()->DefinitionData.getNotUpdated();
+
+ // If there's no definition yet, then DC's definition is added by an update
+ // record, but we've not yet loaded that update record. In this case, we
+ // commit to DC being the canonical definition now, and will fix this when
+ // we load the update record.
+ if (!DD) {
+ DD = new (Reader.Context) struct CXXRecordDecl::DefinitionData(RD);
+ RD->IsCompleteDefinition = true;
+ RD->DefinitionData = DD;
+ RD->getCanonicalDecl()->DefinitionData = DD;
+
+ // Track that we did this horrible thing so that we can fix it later.
+ Reader.PendingFakeDefinitionData.insert(
+ std::make_pair(DD, ASTReader::PendingFakeDefinitionKind::Fake));
+ }
+
+ return DD->Definition;
+ }
+
+ if (EnumDecl *ED = dyn_cast<EnumDecl>(DC))
+ return ED->getASTContext().getLangOpts().CPlusPlus? ED->getDefinition()
+ : nullptr;
+
+ // We can see the TU here only if we have no Sema object. In that case,
+ // there's no TU scope to look in, so using the DC alone is sufficient.
+ if (auto *TU = dyn_cast<TranslationUnitDecl>(DC))
+ return TU;
+
+ return nullptr;
+}
+
+ASTDeclReader::FindExistingResult::~FindExistingResult() {
+ // Record that we had a typedef name for linkage whether or not we merge
+ // with that declaration.
+ if (TypedefNameForLinkage) {
+ DeclContext *DC = New->getDeclContext()->getRedeclContext();
+ Reader.ImportedTypedefNamesForLinkage.insert(
+ std::make_pair(std::make_pair(DC, TypedefNameForLinkage), New));
+ return;
+ }
+
+ if (!AddResult || Existing)
+ return;
+
+ DeclarationName Name = New->getDeclName();
+ DeclContext *DC = New->getDeclContext()->getRedeclContext();
+ if (needsAnonymousDeclarationNumber(New)) {
+ setAnonymousDeclForMerging(Reader, New->getLexicalDeclContext(),
+ AnonymousDeclNumber, New);
+ } else if (DC->isTranslationUnit() && Reader.SemaObj &&
+ !Reader.getContext().getLangOpts().CPlusPlus) {
+ if (Reader.SemaObj->IdResolver.tryAddTopLevelDecl(New, Name))
+ Reader.PendingFakeLookupResults[Name.getAsIdentifierInfo()]
+ .push_back(New);
+ } else if (DeclContext *MergeDC = getPrimaryContextForMerging(Reader, DC)) {
+ // Add the declaration to its redeclaration context so later merging
+ // lookups will find it.
+ MergeDC->makeDeclVisibleInContextImpl(New, /*Internal*/true);
+ }
+}
+
+/// Find the declaration that should be merged into, given the declaration found
+/// by name lookup. If we're merging an anonymous declaration within a typedef,
+/// we need a matching typedef, and we merge with the type inside it.
+static NamedDecl *getDeclForMerging(NamedDecl *Found,
+ bool IsTypedefNameForLinkage) {
+ if (!IsTypedefNameForLinkage)
+ return Found;
+
+ // If we found a typedef declaration that gives a name to some other
+ // declaration, then we want that inner declaration. Declarations from
+ // AST files are handled via ImportedTypedefNamesForLinkage.
+ if (Found->isFromASTFile())
+ return 0;
+
+ if (auto *TND = dyn_cast<TypedefNameDecl>(Found))
+ return TND->getAnonDeclWithTypedefName();
+
+ return 0;
+}
+
+NamedDecl *ASTDeclReader::getAnonymousDeclForMerging(ASTReader &Reader,
+ DeclContext *DC,
+ unsigned Index) {
+ // If the lexical context has been merged, look into the now-canonical
+ // definition.
+ if (auto *Merged = Reader.MergedDeclContexts.lookup(DC))
+ DC = Merged;
+
+ // If we've seen this before, return the canonical declaration.
+ auto &Previous = Reader.AnonymousDeclarationsForMerging[DC];
+ if (Index < Previous.size() && Previous[Index])
+ return Previous[Index];
+
+ // If this is the first time, but we have parsed a declaration of the context,
+ // build the anonymous declaration list from the parsed declaration.
+ if (!cast<Decl>(DC)->isFromASTFile()) {
+ numberAnonymousDeclsWithin(DC, [&](NamedDecl *ND, unsigned Number) {
+ if (Previous.size() == Number)
+ Previous.push_back(cast<NamedDecl>(ND->getCanonicalDecl()));
+ else
+ Previous[Number] = cast<NamedDecl>(ND->getCanonicalDecl());
+ });
+ }
+
+ return Index < Previous.size() ? Previous[Index] : nullptr;
+}
+
+void ASTDeclReader::setAnonymousDeclForMerging(ASTReader &Reader,
+ DeclContext *DC, unsigned Index,
+ NamedDecl *D) {
+ if (auto *Merged = Reader.MergedDeclContexts.lookup(DC))
+ DC = Merged;
+
+ auto &Previous = Reader.AnonymousDeclarationsForMerging[DC];
+ if (Index >= Previous.size())
+ Previous.resize(Index + 1);
+ if (!Previous[Index])
+ Previous[Index] = D;
+}
+
+ASTDeclReader::FindExistingResult ASTDeclReader::findExisting(NamedDecl *D) {
+ DeclarationName Name = TypedefNameForLinkage ? TypedefNameForLinkage
+ : D->getDeclName();
+
+ if (!Name && !needsAnonymousDeclarationNumber(D)) {
+ // Don't bother trying to find unnamed declarations that are in
+ // unmergeable contexts.
+ FindExistingResult Result(Reader, D, /*Existing=*/nullptr,
+ AnonymousDeclNumber, TypedefNameForLinkage);
+ Result.suppress();
+ return Result;
+ }
+
+ // FIXME: Bail out for non-canonical declarations. We will have performed any
+ // necessary merging already.
+
+ DeclContext *DC = D->getDeclContext()->getRedeclContext();
+ if (TypedefNameForLinkage) {
+ auto It = Reader.ImportedTypedefNamesForLinkage.find(
+ std::make_pair(DC, TypedefNameForLinkage));
+ if (It != Reader.ImportedTypedefNamesForLinkage.end())
+ if (isSameEntity(It->second, D))
+ return FindExistingResult(Reader, D, It->second, AnonymousDeclNumber,
+ TypedefNameForLinkage);
+ // Go on to check in other places in case an existing typedef name
+ // was not imported.
+ }
+
+ if (needsAnonymousDeclarationNumber(D)) {
+ // This is an anonymous declaration that we may need to merge. Look it up
+ // in its context by number.
+ if (auto *Existing = getAnonymousDeclForMerging(
+ Reader, D->getLexicalDeclContext(), AnonymousDeclNumber))
+ if (isSameEntity(Existing, D))
+ return FindExistingResult(Reader, D, Existing, AnonymousDeclNumber,
+ TypedefNameForLinkage);
+ } else if (DC->isTranslationUnit() && Reader.SemaObj &&
+ !Reader.getContext().getLangOpts().CPlusPlus) {
+ IdentifierResolver &IdResolver = Reader.SemaObj->IdResolver;
+
+ // Temporarily consider the identifier to be up-to-date. We don't want to
+ // cause additional lookups here.
+ class UpToDateIdentifierRAII {
+ IdentifierInfo *II;
+ bool WasOutToDate;
+
+ public:
+ explicit UpToDateIdentifierRAII(IdentifierInfo *II)
+ : II(II), WasOutToDate(false)
+ {
+ if (II) {
+ WasOutToDate = II->isOutOfDate();
+ if (WasOutToDate)
+ II->setOutOfDate(false);
+ }
+ }
+
+ ~UpToDateIdentifierRAII() {
+ if (WasOutToDate)
+ II->setOutOfDate(true);
+ }
+ } UpToDate(Name.getAsIdentifierInfo());
+
+ for (IdentifierResolver::iterator I = IdResolver.begin(Name),
+ IEnd = IdResolver.end();
+ I != IEnd; ++I) {
+ if (NamedDecl *Existing = getDeclForMerging(*I, TypedefNameForLinkage))
+ if (isSameEntity(Existing, D))
+ return FindExistingResult(Reader, D, Existing, AnonymousDeclNumber,
+ TypedefNameForLinkage);
+ }
+ } else if (DeclContext *MergeDC = getPrimaryContextForMerging(Reader, DC)) {
+ DeclContext::lookup_result R = MergeDC->noload_lookup(Name);
+ for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
+ if (NamedDecl *Existing = getDeclForMerging(*I, TypedefNameForLinkage))
+ if (isSameEntity(Existing, D))
+ return FindExistingResult(Reader, D, Existing, AnonymousDeclNumber,
+ TypedefNameForLinkage);
+ }
+ } else {
+ // Not in a mergeable context.
+ return FindExistingResult(Reader);
+ }
+
+ // If this declaration is from a merged context, make a note that we need to
+ // check that the canonical definition of that context contains the decl.
+ //
+ // FIXME: We should do something similar if we merge two definitions of the
+ // same template specialization into the same CXXRecordDecl.
+ auto MergedDCIt = Reader.MergedDeclContexts.find(D->getLexicalDeclContext());
+ if (MergedDCIt != Reader.MergedDeclContexts.end() &&
+ MergedDCIt->second == D->getDeclContext())
+ Reader.PendingOdrMergeChecks.push_back(D);
+
+ return FindExistingResult(Reader, D, /*Existing=*/nullptr,
+ AnonymousDeclNumber, TypedefNameForLinkage);
+}
+
+template<typename DeclT>
+Decl *ASTDeclReader::getMostRecentDeclImpl(Redeclarable<DeclT> *D) {
+ return D->RedeclLink.getLatestNotUpdated();
+}
+Decl *ASTDeclReader::getMostRecentDeclImpl(...) {
+ llvm_unreachable("getMostRecentDecl on non-redeclarable declaration");
+}
+
+Decl *ASTDeclReader::getMostRecentDecl(Decl *D) {
+ assert(D);
+
+ switch (D->getKind()) {
+#define ABSTRACT_DECL(TYPE)
+#define DECL(TYPE, BASE) \
+ case Decl::TYPE: \
+ return getMostRecentDeclImpl(cast<TYPE##Decl>(D));
+#include "clang/AST/DeclNodes.inc"
+ }
+ llvm_unreachable("unknown decl kind");
+}
+
+Decl *ASTReader::getMostRecentExistingDecl(Decl *D) {
+ return ASTDeclReader::getMostRecentDecl(D->getCanonicalDecl());
+}
+
+template<typename DeclT>
+void ASTDeclReader::attachPreviousDeclImpl(ASTReader &Reader,
+ Redeclarable<DeclT> *D,
+ Decl *Previous, Decl *Canon) {
+ D->RedeclLink.setPrevious(cast<DeclT>(Previous));
+ D->First = cast<DeclT>(Previous)->First;
+}
+namespace clang {
+template<>
+void ASTDeclReader::attachPreviousDeclImpl(ASTReader &Reader,
+ Redeclarable<FunctionDecl> *D,
+ Decl *Previous, Decl *Canon) {
+ FunctionDecl *FD = static_cast<FunctionDecl*>(D);
+ FunctionDecl *PrevFD = cast<FunctionDecl>(Previous);
+
+ FD->RedeclLink.setPrevious(PrevFD);
+ FD->First = PrevFD->First;
+
+ // If the previous declaration is an inline function declaration, then this
+ // declaration is too.
+ if (PrevFD->IsInline != FD->IsInline) {
+ // FIXME: [dcl.fct.spec]p4:
+ // If a function with external linkage is declared inline in one
+ // translation unit, it shall be declared inline in all translation
+ // units in which it appears.
+ //
+ // Be careful of this case:
+ //
+ // module A:
+ // template<typename T> struct X { void f(); };
+ // template<typename T> inline void X<T>::f() {}
+ //
+ // module B instantiates the declaration of X<int>::f
+ // module C instantiates the definition of X<int>::f
+ //
+ // If module B and C are merged, we do not have a violation of this rule.
+ FD->IsInline = true;
+ }
+
+ // If we need to propagate an exception specification along the redecl
+ // chain, make a note of that so that we can do so later.
+ auto *FPT = FD->getType()->getAs<FunctionProtoType>();
+ auto *PrevFPT = PrevFD->getType()->getAs<FunctionProtoType>();
+ if (FPT && PrevFPT) {
+ bool IsUnresolved = isUnresolvedExceptionSpec(FPT->getExceptionSpecType());
+ bool WasUnresolved =
+ isUnresolvedExceptionSpec(PrevFPT->getExceptionSpecType());
+ if (IsUnresolved != WasUnresolved)
+ Reader.PendingExceptionSpecUpdates.insert(
+ std::make_pair(Canon, IsUnresolved ? PrevFD : FD));
+ }
+}
+}
+void ASTDeclReader::attachPreviousDeclImpl(ASTReader &Reader, ...) {
+ llvm_unreachable("attachPreviousDecl on non-redeclarable declaration");
+}
+
+void ASTDeclReader::attachPreviousDecl(ASTReader &Reader, Decl *D,
+ Decl *Previous, Decl *Canon) {
+ assert(D && Previous);
+
+ switch (D->getKind()) {
+#define ABSTRACT_DECL(TYPE)
+#define DECL(TYPE, BASE) \
+ case Decl::TYPE: \
+ attachPreviousDeclImpl(Reader, cast<TYPE##Decl>(D), Previous, Canon); \
+ break;
+#include "clang/AST/DeclNodes.inc"
+ }
+
+ // If the declaration was visible in one module, a redeclaration of it in
+ // another module remains visible even if it wouldn't be visible by itself.
+ //
+ // FIXME: In this case, the declaration should only be visible if a module
+ // that makes it visible has been imported.
+ D->IdentifierNamespace |=
+ Previous->IdentifierNamespace &
+ (Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Type);
+
+ // If the previous declaration is marked as used, then this declaration should
+ // be too.
+ if (Previous->Used)
+ D->Used = true;
+}
+
+template<typename DeclT>
+void ASTDeclReader::attachLatestDeclImpl(Redeclarable<DeclT> *D, Decl *Latest) {
+ D->RedeclLink.setLatest(cast<DeclT>(Latest));
+}
+void ASTDeclReader::attachLatestDeclImpl(...) {
+ llvm_unreachable("attachLatestDecl on non-redeclarable declaration");
+}
+
+void ASTDeclReader::attachLatestDecl(Decl *D, Decl *Latest) {
+ assert(D && Latest);
+
+ switch (D->getKind()) {
+#define ABSTRACT_DECL(TYPE)
+#define DECL(TYPE, BASE) \
+ case Decl::TYPE: \
+ attachLatestDeclImpl(cast<TYPE##Decl>(D), Latest); \
+ break;
+#include "clang/AST/DeclNodes.inc"
+ }
+}
+
+template<typename DeclT>
+void ASTDeclReader::markIncompleteDeclChainImpl(Redeclarable<DeclT> *D) {
+ D->RedeclLink.markIncomplete();
+}
+void ASTDeclReader::markIncompleteDeclChainImpl(...) {
+ llvm_unreachable("markIncompleteDeclChain on non-redeclarable declaration");
+}
+
+void ASTReader::markIncompleteDeclChain(Decl *D) {
+ switch (D->getKind()) {
+#define ABSTRACT_DECL(TYPE)
+#define DECL(TYPE, BASE) \
+ case Decl::TYPE: \
+ ASTDeclReader::markIncompleteDeclChainImpl(cast<TYPE##Decl>(D)); \
+ break;
+#include "clang/AST/DeclNodes.inc"
+ }
+}
+
+/// \brief Read the declaration at the given offset from the AST file.
+Decl *ASTReader::ReadDeclRecord(DeclID ID) {
+ unsigned Index = ID - NUM_PREDEF_DECL_IDS;
+ unsigned RawLocation = 0;
+ RecordLocation Loc = DeclCursorForID(ID, RawLocation);
+ llvm::BitstreamCursor &DeclsCursor = Loc.F->DeclsCursor;
+ // Keep track of where we are in the stream, then jump back there
+ // after reading this declaration.
+ SavedStreamPosition SavedPosition(DeclsCursor);
+
+ ReadingKindTracker ReadingKind(Read_Decl, *this);
+
+ // Note that we are loading a declaration record.
+ Deserializing ADecl(this);
+
+ DeclsCursor.JumpToBit(Loc.Offset);
+ RecordData Record;
+ unsigned Code = DeclsCursor.ReadCode();
+ unsigned Idx = 0;
+ ASTDeclReader Reader(*this, *Loc.F, ID, RawLocation, Record,Idx);
+
+ Decl *D = nullptr;
+ switch ((DeclCode)DeclsCursor.readRecord(Code, Record)) {
+ case DECL_CONTEXT_LEXICAL:
+ case DECL_CONTEXT_VISIBLE:
+ llvm_unreachable("Record cannot be de-serialized with ReadDeclRecord");
+ case DECL_TYPEDEF:
+ D = TypedefDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_TYPEALIAS:
+ D = TypeAliasDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_ENUM:
+ D = EnumDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_RECORD:
+ D = RecordDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_ENUM_CONSTANT:
+ D = EnumConstantDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_FUNCTION:
+ D = FunctionDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_LINKAGE_SPEC:
+ D = LinkageSpecDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_LABEL:
+ D = LabelDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_NAMESPACE:
+ D = NamespaceDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_NAMESPACE_ALIAS:
+ D = NamespaceAliasDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_USING:
+ D = UsingDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_USING_SHADOW:
+ D = UsingShadowDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_USING_DIRECTIVE:
+ D = UsingDirectiveDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_UNRESOLVED_USING_VALUE:
+ D = UnresolvedUsingValueDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_UNRESOLVED_USING_TYPENAME:
+ D = UnresolvedUsingTypenameDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_CXX_RECORD:
+ D = CXXRecordDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_CXX_METHOD:
+ D = CXXMethodDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_CXX_CONSTRUCTOR:
+ D = CXXConstructorDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_CXX_DESTRUCTOR:
+ D = CXXDestructorDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_CXX_CONVERSION:
+ D = CXXConversionDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_ACCESS_SPEC:
+ D = AccessSpecDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_FRIEND:
+ D = FriendDecl::CreateDeserialized(Context, ID, Record[Idx++]);
+ break;
+ case DECL_FRIEND_TEMPLATE:
+ D = FriendTemplateDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_CLASS_TEMPLATE:
+ D = ClassTemplateDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_CLASS_TEMPLATE_SPECIALIZATION:
+ D = ClassTemplateSpecializationDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_CLASS_TEMPLATE_PARTIAL_SPECIALIZATION:
+ D = ClassTemplatePartialSpecializationDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_VAR_TEMPLATE:
+ D = VarTemplateDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_VAR_TEMPLATE_SPECIALIZATION:
+ D = VarTemplateSpecializationDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_VAR_TEMPLATE_PARTIAL_SPECIALIZATION:
+ D = VarTemplatePartialSpecializationDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_CLASS_SCOPE_FUNCTION_SPECIALIZATION:
+ D = ClassScopeFunctionSpecializationDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_FUNCTION_TEMPLATE:
+ D = FunctionTemplateDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_TEMPLATE_TYPE_PARM:
+ D = TemplateTypeParmDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_NON_TYPE_TEMPLATE_PARM:
+ D = NonTypeTemplateParmDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_EXPANDED_NON_TYPE_TEMPLATE_PARM_PACK:
+ D = NonTypeTemplateParmDecl::CreateDeserialized(Context, ID, Record[Idx++]);
+ break;
+ case DECL_TEMPLATE_TEMPLATE_PARM:
+ D = TemplateTemplateParmDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_EXPANDED_TEMPLATE_TEMPLATE_PARM_PACK:
+ D = TemplateTemplateParmDecl::CreateDeserialized(Context, ID,
+ Record[Idx++]);
+ break;
+ case DECL_TYPE_ALIAS_TEMPLATE:
+ D = TypeAliasTemplateDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_STATIC_ASSERT:
+ D = StaticAssertDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_OBJC_METHOD:
+ D = ObjCMethodDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_OBJC_INTERFACE:
+ D = ObjCInterfaceDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_OBJC_IVAR:
+ D = ObjCIvarDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_OBJC_PROTOCOL:
+ D = ObjCProtocolDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_OBJC_AT_DEFS_FIELD:
+ D = ObjCAtDefsFieldDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_OBJC_CATEGORY:
+ D = ObjCCategoryDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_OBJC_CATEGORY_IMPL:
+ D = ObjCCategoryImplDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_OBJC_IMPLEMENTATION:
+ D = ObjCImplementationDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_OBJC_COMPATIBLE_ALIAS:
+ D = ObjCCompatibleAliasDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_OBJC_PROPERTY:
+ D = ObjCPropertyDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_OBJC_PROPERTY_IMPL:
+ D = ObjCPropertyImplDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_FIELD:
+ D = FieldDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_INDIRECTFIELD:
+ D = IndirectFieldDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_VAR:
+ D = VarDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_IMPLICIT_PARAM:
+ D = ImplicitParamDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_PARM_VAR:
+ D = ParmVarDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_FILE_SCOPE_ASM:
+ D = FileScopeAsmDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_BLOCK:
+ D = BlockDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_MS_PROPERTY:
+ D = MSPropertyDecl::CreateDeserialized(Context, ID);
+ break;
+ case DECL_CAPTURED:
+ D = CapturedDecl::CreateDeserialized(Context, ID, Record[Idx++]);
+ break;
+ case DECL_CXX_BASE_SPECIFIERS:
+ Error("attempt to read a C++ base-specifier record as a declaration");
+ return nullptr;
+ case DECL_CXX_CTOR_INITIALIZERS:
+ Error("attempt to read a C++ ctor initializer record as a declaration");
+ return nullptr;
+ case DECL_IMPORT:
+ // Note: last entry of the ImportDecl record is the number of stored source
+ // locations.
+ D = ImportDecl::CreateDeserialized(Context, ID, Record.back());
+ break;
+ case DECL_OMP_THREADPRIVATE:
+ D = OMPThreadPrivateDecl::CreateDeserialized(Context, ID, Record[Idx++]);
+ break;
+ case DECL_EMPTY:
+ D = EmptyDecl::CreateDeserialized(Context, ID);
+ break;
+ }
+
+ assert(D && "Unknown declaration reading AST file");
+ LoadedDecl(Index, D);
+ // Set the DeclContext before doing any deserialization, to make sure internal
+ // calls to Decl::getASTContext() by Decl's methods will find the
+ // TranslationUnitDecl without crashing.
+ D->setDeclContext(Context.getTranslationUnitDecl());
+ Reader.Visit(D);
+
+ // If this declaration is also a declaration context, get the
+ // offsets for its tables of lexical and visible declarations.
+ if (DeclContext *DC = dyn_cast<DeclContext>(D)) {
+ // FIXME: This should really be
+ // DeclContext *LookupDC = DC->getPrimaryContext();
+ // but that can walk the redeclaration chain, which might not work yet.
+ DeclContext *LookupDC = DC;
+ if (isa<NamespaceDecl>(DC))
+ LookupDC = DC->getPrimaryContext();
+ std::pair<uint64_t, uint64_t> Offsets = Reader.VisitDeclContext(DC);
+ if (Offsets.first || Offsets.second) {
+ if (Offsets.first != 0)
+ DC->setHasExternalLexicalStorage(true);
+ if (Offsets.second != 0)
+ LookupDC->setHasExternalVisibleStorage(true);
+ if (ReadDeclContextStorage(*Loc.F, DeclsCursor, Offsets,
+ Loc.F->DeclContextInfos[DC]))
+ return nullptr;
+ }
+
+ // Now add the pending visible updates for this decl context, if it has any.
+ DeclContextVisibleUpdatesPending::iterator I =
+ PendingVisibleUpdates.find(ID);
+ if (I != PendingVisibleUpdates.end()) {
+ // There are updates. This means the context has external visible
+ // storage, even if the original stored version didn't.
+ LookupDC->setHasExternalVisibleStorage(true);
+ for (const auto &Update : I->second) {
+ DeclContextInfo &Info = Update.second->DeclContextInfos[DC];
+ delete Info.NameLookupTableData;
+ Info.NameLookupTableData = Update.first;
+ }
+ PendingVisibleUpdates.erase(I);
+ }
+ }
+ assert(Idx == Record.size());
+
+ // Load any relevant update records.
+ PendingUpdateRecords.push_back(std::make_pair(ID, D));
+
+ // Load the categories after recursive loading is finished.
+ if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(D))
+ if (Class->isThisDeclarationADefinition())
+ loadObjCCategories(ID, Class);
+
+ // If we have deserialized a declaration that has a definition the
+ // AST consumer might need to know about, queue it.
+ // We don't pass it to the consumer immediately because we may be in recursive
+ // loading, and some declarations may still be initializing.
+ if (isConsumerInterestedIn(D, Reader.hasPendingBody()))
+ InterestingDecls.push_back(D);
+
+ return D;
+}
+
+void ASTReader::loadDeclUpdateRecords(serialization::DeclID ID, Decl *D) {
+ // The declaration may have been modified by files later in the chain.
+ // If this is the case, read the record containing the updates from each file
+ // and pass it to ASTDeclReader to make the modifications.
+ DeclUpdateOffsetsMap::iterator UpdI = DeclUpdateOffsets.find(ID);
+ if (UpdI != DeclUpdateOffsets.end()) {
+ FileOffsetsTy &UpdateOffsets = UpdI->second;
+ bool WasInteresting = isConsumerInterestedIn(D, false);
+ for (FileOffsetsTy::iterator
+ I = UpdateOffsets.begin(), E = UpdateOffsets.end(); I != E; ++I) {
+ ModuleFile *F = I->first;
+ uint64_t Offset = I->second;
+ llvm::BitstreamCursor &Cursor = F->DeclsCursor;
+ SavedStreamPosition SavedPosition(Cursor);
+ Cursor.JumpToBit(Offset);
+ RecordData Record;
+ unsigned Code = Cursor.ReadCode();
+ unsigned RecCode = Cursor.readRecord(Code, Record);
+ (void)RecCode;
+ assert(RecCode == DECL_UPDATES && "Expected DECL_UPDATES record!");
+
+ unsigned Idx = 0;
+ ASTDeclReader Reader(*this, *F, ID, 0, Record, Idx);
+ Reader.UpdateDecl(D, *F, Record);
+
+ // We might have made this declaration interesting. If so, remember that
+ // we need to hand it off to the consumer.
+ if (!WasInteresting &&
+ isConsumerInterestedIn(D, Reader.hasPendingBody())) {
+ InterestingDecls.push_back(D);
+ WasInteresting = true;
+ }
+ }
+ }
+}
+
+namespace {
+ /// \brief Module visitor class that finds all of the redeclarations of a
+ /// redeclarable declaration.
+ class RedeclChainVisitor {
+ ASTReader &Reader;
+ SmallVectorImpl<DeclID> &SearchDecls;
+ llvm::SmallPtrSetImpl<Decl *> &Deserialized;
+ GlobalDeclID CanonID;
+ SmallVector<Decl *, 4> Chain;
+
+ public:
+ RedeclChainVisitor(ASTReader &Reader, SmallVectorImpl<DeclID> &SearchDecls,
+ llvm::SmallPtrSetImpl<Decl *> &Deserialized,
+ GlobalDeclID CanonID)
+ : Reader(Reader), SearchDecls(SearchDecls), Deserialized(Deserialized),
+ CanonID(CanonID) {
+ // Ensure that the canonical ID goes at the start of the chain.
+ addToChain(Reader.GetDecl(CanonID));
+ }
+
+ static ModuleManager::DFSPreorderControl
+ visitPreorder(ModuleFile &M, void *UserData) {
+ return static_cast<RedeclChainVisitor *>(UserData)->visitPreorder(M);
+ }
+
+ static bool visitPostorder(ModuleFile &M, void *UserData) {
+ return static_cast<RedeclChainVisitor *>(UserData)->visitPostorder(M);
+ }
+
+ void addToChain(Decl *D) {
+ if (!D)
+ return;
+
+ if (Deserialized.erase(D))
+ Chain.push_back(D);
+ }
+
+ void searchForID(ModuleFile &M, GlobalDeclID GlobalID) {
+ // Map global ID of the first declaration down to the local ID
+ // used in this module file.
+ DeclID ID = Reader.mapGlobalIDToModuleFileGlobalID(M, GlobalID);
+ if (!ID)
+ return;
+
+ // If the search decl was from this module, add it to the chain before any
+ // of its redeclarations in this module or users of it, and after any from
+ // imported modules.
+ if (CanonID != GlobalID && Reader.isDeclIDFromModule(GlobalID, M))
+ addToChain(Reader.GetDecl(GlobalID));
+
+ // Perform a binary search to find the local redeclarations for this
+ // declaration (if any).
+ const LocalRedeclarationsInfo Compare = { ID, 0 };
+ const LocalRedeclarationsInfo *Result
+ = std::lower_bound(M.RedeclarationsMap,
+ M.RedeclarationsMap + M.LocalNumRedeclarationsInMap,
+ Compare);
+ if (Result == M.RedeclarationsMap + M.LocalNumRedeclarationsInMap ||
+ Result->FirstID != ID) {
+ // If we have a previously-canonical singleton declaration that was
+ // merged into another redeclaration chain, create a trivial chain
+ // for this single declaration so that it will get wired into the
+ // complete redeclaration chain.
+ if (GlobalID != CanonID &&
+ GlobalID - NUM_PREDEF_DECL_IDS >= M.BaseDeclID &&
+ GlobalID - NUM_PREDEF_DECL_IDS < M.BaseDeclID + M.LocalNumDecls) {
+ addToChain(Reader.GetDecl(GlobalID));
+ }
+
+ return;
+ }
+
+ // Dig out all of the redeclarations.
+ unsigned Offset = Result->Offset;
+ unsigned N = M.RedeclarationChains[Offset];
+ M.RedeclarationChains[Offset++] = 0; // Don't try to deserialize again
+ for (unsigned I = 0; I != N; ++I)
+ addToChain(Reader.GetLocalDecl(M, M.RedeclarationChains[Offset++]));
+ }
+
+ bool needsToVisitImports(ModuleFile &M, GlobalDeclID GlobalID) {
+ DeclID ID = Reader.mapGlobalIDToModuleFileGlobalID(M, GlobalID);
+ if (!ID)
+ return false;
+
+ const LocalRedeclarationsInfo Compare = {ID, 0};
+ const LocalRedeclarationsInfo *Result = std::lower_bound(
+ M.RedeclarationsMap,
+ M.RedeclarationsMap + M.LocalNumRedeclarationsInMap, Compare);
+ if (Result == M.RedeclarationsMap + M.LocalNumRedeclarationsInMap ||
+ Result->FirstID != ID) {
+ return true;
+ }
+ unsigned Offset = Result->Offset;
+ unsigned N = M.RedeclarationChains[Offset];
+ // We don't need to visit a module or any of its imports if we've already
+ // deserialized the redecls from this module.
+ return N != 0;
+ }
+
+ ModuleManager::DFSPreorderControl visitPreorder(ModuleFile &M) {
+ for (unsigned I = 0, N = SearchDecls.size(); I != N; ++I) {
+ if (needsToVisitImports(M, SearchDecls[I]))
+ return ModuleManager::Continue;
+ }
+ return ModuleManager::SkipImports;
+ }
+
+ bool visitPostorder(ModuleFile &M) {
+ // Visit each of the declarations.
+ for (unsigned I = 0, N = SearchDecls.size(); I != N; ++I)
+ searchForID(M, SearchDecls[I]);
+ // FIXME: If none of the SearchDecls had local IDs in this module, can
+ // we avoid searching any ancestor module files?
+ return false;
+ }
+
+ ArrayRef<Decl *> getChain() const {
+ return Chain;
+ }
+ };
+}
+
+void ASTReader::loadPendingDeclChain(Decl *CanonDecl) {
+ // The decl might have been merged into something else after being added to
+ // our list. If it was, just skip it.
+ if (!CanonDecl->isCanonicalDecl())
+ return;
+
+ // Determine the set of declaration IDs we'll be searching for.
+ SmallVector<DeclID, 16> SearchDecls;
+ GlobalDeclID CanonID = CanonDecl->getGlobalID();
+ if (CanonID)
+ SearchDecls.push_back(CanonDecl->getGlobalID()); // Always first.
+ MergedDeclsMap::iterator MergedPos = MergedDecls.find(CanonDecl);
+ if (MergedPos != MergedDecls.end())
+ SearchDecls.append(MergedPos->second.begin(), MergedPos->second.end());
+
+ // Build up the list of redeclarations.
+ RedeclChainVisitor Visitor(*this, SearchDecls, RedeclsDeserialized, CanonID);
+ ModuleMgr.visitDepthFirst(&RedeclChainVisitor::visitPreorder,
+ &RedeclChainVisitor::visitPostorder, &Visitor);
+
+ // Retrieve the chains.
+ ArrayRef<Decl *> Chain = Visitor.getChain();
+ if (Chain.empty() || (Chain.size() == 1 && Chain[0] == CanonDecl))
+ return;
+
+ // Hook up the chains.
+ //
+ // FIXME: We have three different dispatches on decl kind here; maybe
+ // we should instead generate one loop per kind and dispatch up-front?
+ Decl *MostRecent = ASTDeclReader::getMostRecentDecl(CanonDecl);
+ if (!MostRecent)
+ MostRecent = CanonDecl;
+ for (unsigned I = 0, N = Chain.size(); I != N; ++I) {
+ if (Chain[I] == CanonDecl)
+ continue;
+
+ ASTDeclReader::attachPreviousDecl(*this, Chain[I], MostRecent, CanonDecl);
+ MostRecent = Chain[I];
+ }
+ ASTDeclReader::attachLatestDecl(CanonDecl, MostRecent);
+}
+
+namespace {
+ /// \brief Given an ObjC interface, goes through the modules and links to the
+ /// interface all the categories for it.
+ class ObjCCategoriesVisitor {
+ ASTReader &Reader;
+ serialization::GlobalDeclID InterfaceID;
+ ObjCInterfaceDecl *Interface;
+ llvm::SmallPtrSetImpl<ObjCCategoryDecl *> &Deserialized;
+ unsigned PreviousGeneration;
+ ObjCCategoryDecl *Tail;
+ llvm::DenseMap<DeclarationName, ObjCCategoryDecl *> NameCategoryMap;
+
+ void add(ObjCCategoryDecl *Cat) {
+ // Only process each category once.
+ if (!Deserialized.erase(Cat))
+ return;
+
+ // Check for duplicate categories.
+ if (Cat->getDeclName()) {
+ ObjCCategoryDecl *&Existing = NameCategoryMap[Cat->getDeclName()];
+ if (Existing &&
+ Reader.getOwningModuleFile(Existing)
+ != Reader.getOwningModuleFile(Cat)) {
+ // FIXME: We should not warn for duplicates in diamond:
+ //
+ // MT //
+ // / \ //
+ // ML MR //
+ // \ / //
+ // MB //
+ //
+ // If there are duplicates in ML/MR, there will be warning when
+ // creating MB *and* when importing MB. We should not warn when
+ // importing.
+ Reader.Diag(Cat->getLocation(), diag::warn_dup_category_def)
+ << Interface->getDeclName() << Cat->getDeclName();
+ Reader.Diag(Existing->getLocation(), diag::note_previous_definition);
+ } else if (!Existing) {
+ // Record this category.
+ Existing = Cat;
+ }
+ }
+
+ // Add this category to the end of the chain.
+ if (Tail)
+ ASTDeclReader::setNextObjCCategory(Tail, Cat);
+ else
+ Interface->setCategoryListRaw(Cat);
+ Tail = Cat;
+ }
+
+ public:
+ ObjCCategoriesVisitor(ASTReader &Reader,
+ serialization::GlobalDeclID InterfaceID,
+ ObjCInterfaceDecl *Interface,
+ llvm::SmallPtrSetImpl<ObjCCategoryDecl *> &Deserialized,
+ unsigned PreviousGeneration)
+ : Reader(Reader), InterfaceID(InterfaceID), Interface(Interface),
+ Deserialized(Deserialized), PreviousGeneration(PreviousGeneration),
+ Tail(nullptr)
+ {
+ // Populate the name -> category map with the set of known categories.
+ for (auto *Cat : Interface->known_categories()) {
+ if (Cat->getDeclName())
+ NameCategoryMap[Cat->getDeclName()] = Cat;
+
+ // Keep track of the tail of the category list.
+ Tail = Cat;
+ }
+ }
+
+ static bool visit(ModuleFile &M, void *UserData) {
+ return static_cast<ObjCCategoriesVisitor *>(UserData)->visit(M);
+ }
+
+ bool visit(ModuleFile &M) {
+ // If we've loaded all of the category information we care about from
+ // this module file, we're done.
+ if (M.Generation <= PreviousGeneration)
+ return true;
+
+ // Map global ID of the definition down to the local ID used in this
+ // module file. If there is no such mapping, we'll find nothing here
+ // (or in any module it imports).
+ DeclID LocalID = Reader.mapGlobalIDToModuleFileGlobalID(M, InterfaceID);
+ if (!LocalID)
+ return true;
+
+ // Perform a binary search to find the local redeclarations for this
+ // declaration (if any).
+ const ObjCCategoriesInfo Compare = { LocalID, 0 };
+ const ObjCCategoriesInfo *Result
+ = std::lower_bound(M.ObjCCategoriesMap,
+ M.ObjCCategoriesMap + M.LocalNumObjCCategoriesInMap,
+ Compare);
+ if (Result == M.ObjCCategoriesMap + M.LocalNumObjCCategoriesInMap ||
+ Result->DefinitionID != LocalID) {
+ // We didn't find anything. If the class definition is in this module
+ // file, then the module files it depends on cannot have any categories,
+ // so suppress further lookup.
+ return Reader.isDeclIDFromModule(InterfaceID, M);
+ }
+
+ // We found something. Dig out all of the categories.
+ unsigned Offset = Result->Offset;
+ unsigned N = M.ObjCCategories[Offset];
+ M.ObjCCategories[Offset++] = 0; // Don't try to deserialize again
+ for (unsigned I = 0; I != N; ++I)
+ add(cast_or_null<ObjCCategoryDecl>(
+ Reader.GetLocalDecl(M, M.ObjCCategories[Offset++])));
+ return true;
+ }
+ };
+}
+
+void ASTReader::loadObjCCategories(serialization::GlobalDeclID ID,
+ ObjCInterfaceDecl *D,
+ unsigned PreviousGeneration) {
+ ObjCCategoriesVisitor Visitor(*this, ID, D, CategoriesDeserialized,
+ PreviousGeneration);
+ ModuleMgr.visit(ObjCCategoriesVisitor::visit, &Visitor);
+}
+
+namespace {
+/// Iterator over the redeclarations of a declaration that have already
+/// been merged into the same redeclaration chain.
+template<typename DeclT>
+class MergedRedeclIterator {
+ DeclT *Start, *Canonical, *Current;
+public:
+ MergedRedeclIterator() : Current(nullptr) {}
+ MergedRedeclIterator(DeclT *Start)
+ : Start(Start), Canonical(nullptr), Current(Start) {}
+
+ DeclT *operator*() { return Current; }
+
+ MergedRedeclIterator &operator++() {
+ if (Current->isFirstDecl()) {
+ Canonical = Current;
+ Current = Current->getMostRecentDecl();
+ } else
+ Current = Current->getPreviousDecl();
+
+ // If we started in the merged portion, we'll reach our start position
+ // eventually. Otherwise, we'll never reach it, but the second declaration
+ // we reached was the canonical declaration, so stop when we see that one
+ // again.
+ if (Current == Start || Current == Canonical)
+ Current = nullptr;
+ return *this;
+ }
+
+ friend bool operator!=(const MergedRedeclIterator &A,
+ const MergedRedeclIterator &B) {
+ return A.Current != B.Current;
+ }
+};
+}
+template<typename DeclT>
+llvm::iterator_range<MergedRedeclIterator<DeclT>> merged_redecls(DeclT *D) {
+ return llvm::iterator_range<MergedRedeclIterator<DeclT>>(
+ MergedRedeclIterator<DeclT>(D),
+ MergedRedeclIterator<DeclT>());
+}
+
+template<typename DeclT, typename Fn>
+static void forAllLaterRedecls(DeclT *D, Fn F) {
+ F(D);
+
+ // Check whether we've already merged D into its redeclaration chain.
+ // MostRecent may or may not be nullptr if D has not been merged. If
+ // not, walk the merged redecl chain and see if it's there.
+ auto *MostRecent = D->getMostRecentDecl();
+ bool Found = false;
+ for (auto *Redecl = MostRecent; Redecl && !Found;
+ Redecl = Redecl->getPreviousDecl())
+ Found = (Redecl == D);
+
+ // If this declaration is merged, apply the functor to all later decls.
+ if (Found) {
+ for (auto *Redecl = MostRecent; Redecl != D;
+ Redecl = Redecl->getPreviousDecl())
+ F(Redecl);
+ }
+}
+
+void ASTDeclReader::UpdateDecl(Decl *D, ModuleFile &ModuleFile,
+ const RecordData &Record) {
+ while (Idx < Record.size()) {
+ switch ((DeclUpdateKind)Record[Idx++]) {
+ case UPD_CXX_ADDED_IMPLICIT_MEMBER: {
+ auto *RD = cast<CXXRecordDecl>(D);
+ // FIXME: If we also have an update record for instantiating the
+ // definition of D, we need that to happen before we get here.
+ Decl *MD = Reader.ReadDecl(ModuleFile, Record, Idx);
+ assert(MD && "couldn't read decl from update record");
+ // FIXME: We should call addHiddenDecl instead, to add the member
+ // to its DeclContext.
+ RD->addedMember(MD);
+
+ // If we've added a new special member to a class definition that is not
+ // the canonical definition, then we need special member lookups in the
+ // canonical definition to also look into our class.
+ auto *DD = RD->DefinitionData.getNotUpdated();
+ if (DD && DD->Definition != RD) {
+ auto &Merged = Reader.MergedLookups[DD->Definition];
+ // FIXME: Avoid the linear-time scan here.
+ if (std::find(Merged.begin(), Merged.end(), RD) == Merged.end())
+ Merged.push_back(RD);
+ }
+ break;
+ }
+
+ case UPD_CXX_ADDED_TEMPLATE_SPECIALIZATION:
+ // It will be added to the template's specializations set when loaded.
+ (void)Reader.ReadDecl(ModuleFile, Record, Idx);
+ break;
+
+ case UPD_CXX_ADDED_ANONYMOUS_NAMESPACE: {
+ NamespaceDecl *Anon
+ = Reader.ReadDeclAs<NamespaceDecl>(ModuleFile, Record, Idx);
+
+ // Each module has its own anonymous namespace, which is disjoint from
+ // any other module's anonymous namespaces, so don't attach the anonymous
+ // namespace at all.
+ if (ModuleFile.Kind != MK_ImplicitModule &&
+ ModuleFile.Kind != MK_ExplicitModule) {
+ if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(D))
+ TU->setAnonymousNamespace(Anon);
+ else
+ cast<NamespaceDecl>(D)->setAnonymousNamespace(Anon);
+ }
+ break;
+ }
+
+ case UPD_CXX_INSTANTIATED_STATIC_DATA_MEMBER:
+ cast<VarDecl>(D)->getMemberSpecializationInfo()->setPointOfInstantiation(
+ Reader.ReadSourceLocation(ModuleFile, Record, Idx));
+ break;
+
+ case UPD_CXX_ADDED_FUNCTION_DEFINITION: {
+ FunctionDecl *FD = cast<FunctionDecl>(D);
+ if (Reader.PendingBodies[FD]) {
+ // FIXME: Maybe check for ODR violations.
+ // It's safe to stop now because this update record is always last.
+ return;
+ }
+
+ if (Record[Idx++]) {
+ // Maintain AST consistency: any later redeclarations of this function
+ // are inline if this one is. (We might have merged another declaration
+ // into this one.)
+ forAllLaterRedecls(FD, [](FunctionDecl *FD) {
+ FD->setImplicitlyInline();
+ });
+ }
+ FD->setInnerLocStart(Reader.ReadSourceLocation(ModuleFile, Record, Idx));
+ if (auto *CD = dyn_cast<CXXConstructorDecl>(FD)) {
+ CD->NumCtorInitializers = Record[Idx++];
+ if (CD->NumCtorInitializers)
+ CD->CtorInitializers =
+ Reader.ReadCXXCtorInitializersRef(F, Record, Idx);
+ }
+ // Store the offset of the body so we can lazily load it later.
+ Reader.PendingBodies[FD] = GetCurrentCursorOffset();
+ HasPendingBody = true;
+ assert(Idx == Record.size() && "lazy body must be last");
+ break;
+ }
+
+ case UPD_CXX_INSTANTIATED_CLASS_DEFINITION: {
+ auto *RD = cast<CXXRecordDecl>(D);
+ auto *OldDD = RD->DefinitionData.getNotUpdated();
+ bool HadRealDefinition =
+ OldDD && (OldDD->Definition != RD ||
+ !Reader.PendingFakeDefinitionData.count(OldDD));
+ ReadCXXRecordDefinition(RD, /*Update*/true);
+
+ // Visible update is handled separately.
+ uint64_t LexicalOffset = Record[Idx++];
+ if (!HadRealDefinition && LexicalOffset) {
+ RD->setHasExternalLexicalStorage(true);
+ Reader.ReadDeclContextStorage(ModuleFile, ModuleFile.DeclsCursor,
+ std::make_pair(LexicalOffset, 0),
+ ModuleFile.DeclContextInfos[RD]);
+ Reader.PendingFakeDefinitionData.erase(OldDD);
+ }
+
+ auto TSK = (TemplateSpecializationKind)Record[Idx++];
+ SourceLocation POI = Reader.ReadSourceLocation(ModuleFile, Record, Idx);
+ if (MemberSpecializationInfo *MSInfo =
+ RD->getMemberSpecializationInfo()) {
+ MSInfo->setTemplateSpecializationKind(TSK);
+ MSInfo->setPointOfInstantiation(POI);
+ } else {
+ ClassTemplateSpecializationDecl *Spec =
+ cast<ClassTemplateSpecializationDecl>(RD);
+ Spec->setTemplateSpecializationKind(TSK);
+ Spec->setPointOfInstantiation(POI);
+
+ if (Record[Idx++]) {
+ auto PartialSpec =
+ ReadDeclAs<ClassTemplatePartialSpecializationDecl>(Record, Idx);
+ SmallVector<TemplateArgument, 8> TemplArgs;
+ Reader.ReadTemplateArgumentList(TemplArgs, F, Record, Idx);
+ auto *TemplArgList = TemplateArgumentList::CreateCopy(
+ Reader.getContext(), TemplArgs.data(), TemplArgs.size());
+
+ // FIXME: If we already have a partial specialization set,
+ // check that it matches.
+ if (!Spec->getSpecializedTemplateOrPartial()
+ .is<ClassTemplatePartialSpecializationDecl *>())
+ Spec->setInstantiationOf(PartialSpec, TemplArgList);
+ }
+ }
+
+ RD->setTagKind((TagTypeKind)Record[Idx++]);
+ RD->setLocation(Reader.ReadSourceLocation(ModuleFile, Record, Idx));
+ RD->setLocStart(Reader.ReadSourceLocation(ModuleFile, Record, Idx));
+ RD->setRBraceLoc(Reader.ReadSourceLocation(ModuleFile, Record, Idx));
+
+ if (Record[Idx++]) {
+ AttrVec Attrs;
+ Reader.ReadAttributes(F, Attrs, Record, Idx);
+ D->setAttrsImpl(Attrs, Reader.getContext());
+ }
+ break;
+ }
+
+ case UPD_CXX_RESOLVED_DTOR_DELETE: {
+ // Set the 'operator delete' directly to avoid emitting another update
+ // record.
+ auto *Del = Reader.ReadDeclAs<FunctionDecl>(ModuleFile, Record, Idx);
+ auto *First = cast<CXXDestructorDecl>(D->getCanonicalDecl());
+ // FIXME: Check consistency if we have an old and new operator delete.
+ if (!First->OperatorDelete)
+ First->OperatorDelete = Del;
+ break;
+ }
+
+ case UPD_CXX_RESOLVED_EXCEPTION_SPEC: {
+ FunctionProtoType::ExceptionSpecInfo ESI;
+ SmallVector<QualType, 8> ExceptionStorage;
+ Reader.readExceptionSpec(ModuleFile, ExceptionStorage, ESI, Record, Idx);
+
+ // Update this declaration's exception specification, if needed.
+ auto *FD = cast<FunctionDecl>(D);
+ auto *FPT = FD->getType()->castAs<FunctionProtoType>();
+ // FIXME: If the exception specification is already present, check that it
+ // matches.
+ if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
+ FD->setType(Reader.Context.getFunctionType(
+ FPT->getReturnType(), FPT->getParamTypes(),
+ FPT->getExtProtoInfo().withExceptionSpec(ESI)));
+
+ // When we get to the end of deserializing, see if there are other decls
+ // that we need to propagate this exception specification onto.
+ Reader.PendingExceptionSpecUpdates.insert(
+ std::make_pair(FD->getCanonicalDecl(), FD));
+ }
+ break;
+ }
+
+ case UPD_CXX_DEDUCED_RETURN_TYPE: {
+ // FIXME: Also do this when merging redecls.
+ QualType DeducedResultType = Reader.readType(ModuleFile, Record, Idx);
+ for (auto *Redecl : merged_redecls(D)) {
+ // FIXME: If the return type is already deduced, check that it matches.
+ FunctionDecl *FD = cast<FunctionDecl>(Redecl);
+ Reader.Context.adjustDeducedFunctionResultType(FD, DeducedResultType);
+ }
+ break;
+ }
+
+ case UPD_DECL_MARKED_USED: {
+ // FIXME: This doesn't send the right notifications if there are
+ // ASTMutationListeners other than an ASTWriter.
+
+ // Maintain AST consistency: any later redeclarations are used too.
+ forAllLaterRedecls(D, [](Decl *D) { D->Used = true; });
+ break;
+ }
+
+ case UPD_MANGLING_NUMBER:
+ Reader.Context.setManglingNumber(cast<NamedDecl>(D), Record[Idx++]);
+ break;
+
+ case UPD_STATIC_LOCAL_NUMBER:
+ Reader.Context.setStaticLocalNumber(cast<VarDecl>(D), Record[Idx++]);
+ break;
+
+ case UPD_DECL_MARKED_OPENMP_THREADPRIVATE:
+ D->addAttr(OMPThreadPrivateDeclAttr::CreateImplicit(
+ Reader.Context, ReadSourceRange(Record, Idx)));
+ break;
+
+ case UPD_DECL_EXPORTED:
+ unsigned SubmoduleID = readSubmoduleID(Record, Idx);
+ Module *Owner = SubmoduleID ? Reader.getSubmodule(SubmoduleID) : nullptr;
+ if (Reader.getContext().getLangOpts().ModulesLocalVisibility) {
+ // FIXME: This doesn't send the right notifications if there are
+ // ASTMutationListeners other than an ASTWriter.
+ Reader.getContext().mergeDefinitionIntoModule(cast<NamedDecl>(D), Owner,
+ /*NotifyListeners*/false);
+ Reader.PendingMergedDefinitionsToDeduplicate.insert(cast<NamedDecl>(D));
+ } else if (Owner && Owner->NameVisibility != Module::AllVisible) {
+ // If Owner is made visible at some later point, make this declaration
+ // visible too.
+ Reader.HiddenNamesMap[Owner].push_back(D);
+ } else {
+ // The declaration is now visible.
+ D->Hidden = false;
+ }
+ break;
+ }
+ }
+}
diff --git a/contrib/llvm/tools/clang/lib/Serialization/ASTReaderInternals.h b/contrib/llvm/tools/clang/lib/Serialization/ASTReaderInternals.h
new file mode 100644
index 0000000..d1b032b
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Serialization/ASTReaderInternals.h
@@ -0,0 +1,249 @@
+//===--- ASTReaderInternals.h - AST Reader Internals ------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides internal definitions used in the AST reader.
+//
+//===----------------------------------------------------------------------===//
+#ifndef LLVM_CLANG_LIB_SERIALIZATION_ASTREADERINTERNALS_H
+#define LLVM_CLANG_LIB_SERIALIZATION_ASTREADERINTERNALS_H
+
+#include "clang/AST/DeclarationName.h"
+#include "clang/Serialization/ASTBitCodes.h"
+#include "llvm/Support/Endian.h"
+#include "llvm/Support/OnDiskHashTable.h"
+#include <utility>
+
+namespace clang {
+
+class ASTReader;
+class HeaderSearch;
+struct HeaderFileInfo;
+class FileEntry;
+
+namespace serialization {
+
+class ModuleFile;
+
+namespace reader {
+
+/// \brief Class that performs name lookup into a DeclContext stored
+/// in an AST file.
+class ASTDeclContextNameLookupTrait {
+ ASTReader &Reader;
+ ModuleFile &F;
+
+public:
+ /// \brief Pair of begin/end iterators for DeclIDs.
+ ///
+ /// Note that these declaration IDs are local to the module that contains this
+ /// particular lookup t
+ typedef llvm::support::ulittle32_t LE32DeclID;
+ typedef std::pair<LE32DeclID *, LE32DeclID *> data_type;
+ typedef unsigned hash_value_type;
+ typedef unsigned offset_type;
+
+ /// \brief Special internal key for declaration names.
+ /// The hash table creates keys for comparison; we do not create
+ /// a DeclarationName for the internal key to avoid deserializing types.
+ struct DeclNameKey {
+ DeclarationName::NameKind Kind;
+ uint64_t Data;
+ DeclNameKey() : Kind((DeclarationName::NameKind)0), Data(0) { }
+ };
+
+ typedef DeclarationName external_key_type;
+ typedef DeclNameKey internal_key_type;
+
+ explicit ASTDeclContextNameLookupTrait(ASTReader &Reader, ModuleFile &F)
+ : Reader(Reader), F(F) { }
+
+ static bool EqualKey(const internal_key_type& a,
+ const internal_key_type& b) {
+ return a.Kind == b.Kind && a.Data == b.Data;
+ }
+
+ hash_value_type ComputeHash(const DeclNameKey &Key) const;
+ internal_key_type GetInternalKey(const external_key_type& Name) const;
+
+ static std::pair<unsigned, unsigned>
+ ReadKeyDataLength(const unsigned char*& d);
+
+ internal_key_type ReadKey(const unsigned char* d, unsigned);
+
+ data_type ReadData(internal_key_type, const unsigned char* d,
+ unsigned DataLen);
+};
+
+/// \brief Base class for the trait describing the on-disk hash table for the
+/// identifiers in an AST file.
+///
+/// This class is not useful by itself; rather, it provides common
+/// functionality for accessing the on-disk hash table of identifiers
+/// in an AST file. Different subclasses customize that functionality
+/// based on what information they are interested in. Those subclasses
+/// must provide the \c data_type typedef and the ReadData operation,
+/// only.
+class ASTIdentifierLookupTraitBase {
+public:
+ typedef StringRef external_key_type;
+ typedef StringRef internal_key_type;
+ typedef unsigned hash_value_type;
+ typedef unsigned offset_type;
+
+ static bool EqualKey(const internal_key_type& a, const internal_key_type& b) {
+ return a == b;
+ }
+
+ static hash_value_type ComputeHash(const internal_key_type& a);
+
+ static std::pair<unsigned, unsigned>
+ ReadKeyDataLength(const unsigned char*& d);
+
+ // This hopefully will just get inlined and removed by the optimizer.
+ static const internal_key_type&
+ GetInternalKey(const external_key_type& x) { return x; }
+
+ // This hopefully will just get inlined and removed by the optimizer.
+ static const external_key_type&
+ GetExternalKey(const internal_key_type& x) { return x; }
+
+ static internal_key_type ReadKey(const unsigned char* d, unsigned n);
+};
+
+/// \brief Class that performs lookup for an identifier stored in an AST file.
+class ASTIdentifierLookupTrait : public ASTIdentifierLookupTraitBase {
+ ASTReader &Reader;
+ ModuleFile &F;
+
+ // If we know the IdentifierInfo in advance, it is here and we will
+ // not build a new one. Used when deserializing information about an
+ // identifier that was constructed before the AST file was read.
+ IdentifierInfo *KnownII;
+
+public:
+ typedef IdentifierInfo * data_type;
+
+ ASTIdentifierLookupTrait(ASTReader &Reader, ModuleFile &F,
+ IdentifierInfo *II = nullptr)
+ : Reader(Reader), F(F), KnownII(II) { }
+
+ data_type ReadData(const internal_key_type& k,
+ const unsigned char* d,
+ unsigned DataLen);
+
+ ASTReader &getReader() const { return Reader; }
+};
+
+/// \brief The on-disk hash table used to contain information about
+/// all of the identifiers in the program.
+typedef llvm::OnDiskIterableChainedHashTable<ASTIdentifierLookupTrait>
+ ASTIdentifierLookupTable;
+
+/// \brief Class that performs lookup for a selector's entries in the global
+/// method pool stored in an AST file.
+class ASTSelectorLookupTrait {
+ ASTReader &Reader;
+ ModuleFile &F;
+
+public:
+ struct data_type {
+ SelectorID ID;
+ unsigned InstanceBits;
+ unsigned FactoryBits;
+ bool InstanceHasMoreThanOneDecl;
+ bool FactoryHasMoreThanOneDecl;
+ SmallVector<ObjCMethodDecl *, 2> Instance;
+ SmallVector<ObjCMethodDecl *, 2> Factory;
+ };
+
+ typedef Selector external_key_type;
+ typedef external_key_type internal_key_type;
+ typedef unsigned hash_value_type;
+ typedef unsigned offset_type;
+
+ ASTSelectorLookupTrait(ASTReader &Reader, ModuleFile &F)
+ : Reader(Reader), F(F) { }
+
+ static bool EqualKey(const internal_key_type& a,
+ const internal_key_type& b) {
+ return a == b;
+ }
+
+ static hash_value_type ComputeHash(Selector Sel);
+
+ static const internal_key_type&
+ GetInternalKey(const external_key_type& x) { return x; }
+
+ static std::pair<unsigned, unsigned>
+ ReadKeyDataLength(const unsigned char*& d);
+
+ internal_key_type ReadKey(const unsigned char* d, unsigned);
+ data_type ReadData(Selector, const unsigned char* d, unsigned DataLen);
+};
+
+/// \brief The on-disk hash table used for the global method pool.
+typedef llvm::OnDiskChainedHashTable<ASTSelectorLookupTrait>
+ ASTSelectorLookupTable;
+
+/// \brief Trait class used to search the on-disk hash table containing all of
+/// the header search information.
+///
+/// The on-disk hash table contains a mapping from each header path to
+/// information about that header (how many times it has been included, its
+/// controlling macro, etc.). Note that we actually hash based on the size
+/// and mtime, and support "deep" comparisons of file names based on current
+/// inode numbers, so that the search can cope with non-normalized path names
+/// and symlinks.
+class HeaderFileInfoTrait {
+ ASTReader &Reader;
+ ModuleFile &M;
+ HeaderSearch *HS;
+ const char *FrameworkStrings;
+
+public:
+ typedef const FileEntry *external_key_type;
+
+ struct internal_key_type {
+ off_t Size;
+ time_t ModTime;
+ const char *Filename;
+ bool Imported;
+ };
+ typedef const internal_key_type &internal_key_ref;
+
+ typedef HeaderFileInfo data_type;
+ typedef unsigned hash_value_type;
+ typedef unsigned offset_type;
+
+ HeaderFileInfoTrait(ASTReader &Reader, ModuleFile &M, HeaderSearch *HS,
+ const char *FrameworkStrings)
+ : Reader(Reader), M(M), HS(HS), FrameworkStrings(FrameworkStrings) { }
+
+ static hash_value_type ComputeHash(internal_key_ref ikey);
+ static internal_key_type GetInternalKey(const FileEntry *FE);
+ bool EqualKey(internal_key_ref a, internal_key_ref b);
+
+ static std::pair<unsigned, unsigned>
+ ReadKeyDataLength(const unsigned char*& d);
+
+ static internal_key_type ReadKey(const unsigned char *d, unsigned);
+
+ data_type ReadData(internal_key_ref,const unsigned char *d, unsigned DataLen);
+};
+
+/// \brief The on-disk hash table used for known header files.
+typedef llvm::OnDiskChainedHashTable<HeaderFileInfoTrait>
+ HeaderFileInfoLookupTable;
+
+} // end namespace clang::serialization::reader
+} // end namespace clang::serialization
+} // end namespace clang
+
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/Serialization/ASTReaderStmt.cpp b/contrib/llvm/tools/clang/lib/Serialization/ASTReaderStmt.cpp
new file mode 100644
index 0000000..d1ecd46
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Serialization/ASTReaderStmt.cpp
@@ -0,0 +1,3058 @@
+//===--- ASTReaderStmt.cpp - Stmt/Expr Deserialization ----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Statement/expression deserialization. This implements the
+// ASTReader::ReadStmt method.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Serialization/ASTReader.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Lex/Token.h"
+#include "llvm/ADT/SmallString.h"
+using namespace clang;
+using namespace clang::serialization;
+
+namespace clang {
+
+ class ASTStmtReader : public StmtVisitor<ASTStmtReader> {
+ friend class OMPClauseReader;
+ typedef ASTReader::RecordData RecordData;
+
+ ASTReader &Reader;
+ ModuleFile &F;
+ llvm::BitstreamCursor &DeclsCursor;
+ const ASTReader::RecordData &Record;
+ unsigned &Idx;
+
+ Token ReadToken(const RecordData &R, unsigned &I) {
+ return Reader.ReadToken(F, R, I);
+ }
+
+ SourceLocation ReadSourceLocation(const RecordData &R, unsigned &I) {
+ return Reader.ReadSourceLocation(F, R, I);
+ }
+
+ SourceRange ReadSourceRange(const RecordData &R, unsigned &I) {
+ return Reader.ReadSourceRange(F, R, I);
+ }
+
+ std::string ReadString(const RecordData &R, unsigned &I) {
+ return Reader.ReadString(R, I);
+ }
+
+ TypeSourceInfo *GetTypeSourceInfo(const RecordData &R, unsigned &I) {
+ return Reader.GetTypeSourceInfo(F, R, I);
+ }
+
+ serialization::DeclID ReadDeclID(const RecordData &R, unsigned &I) {
+ return Reader.ReadDeclID(F, R, I);
+ }
+
+ Decl *ReadDecl(const RecordData &R, unsigned &I) {
+ return Reader.ReadDecl(F, R, I);
+ }
+
+ template<typename T>
+ T *ReadDeclAs(const RecordData &R, unsigned &I) {
+ return Reader.ReadDeclAs<T>(F, R, I);
+ }
+
+ void ReadDeclarationNameLoc(DeclarationNameLoc &DNLoc, DeclarationName Name,
+ const ASTReader::RecordData &R, unsigned &I) {
+ Reader.ReadDeclarationNameLoc(F, DNLoc, Name, R, I);
+ }
+
+ void ReadDeclarationNameInfo(DeclarationNameInfo &NameInfo,
+ const ASTReader::RecordData &R, unsigned &I) {
+ Reader.ReadDeclarationNameInfo(F, NameInfo, R, I);
+ }
+
+ public:
+ ASTStmtReader(ASTReader &Reader, ModuleFile &F,
+ llvm::BitstreamCursor &Cursor,
+ const ASTReader::RecordData &Record, unsigned &Idx)
+ : Reader(Reader), F(F), DeclsCursor(Cursor), Record(Record), Idx(Idx) { }
+
+ /// \brief The number of record fields required for the Stmt class
+ /// itself.
+ static const unsigned NumStmtFields = 0;
+
+ /// \brief The number of record fields required for the Expr class
+ /// itself.
+ static const unsigned NumExprFields = NumStmtFields + 7;
+
+ /// \brief Read and initialize a ExplicitTemplateArgumentList structure.
+ void ReadTemplateKWAndArgsInfo(ASTTemplateKWAndArgsInfo &Args,
+ unsigned NumTemplateArgs);
+ /// \brief Read and initialize a ExplicitTemplateArgumentList structure.
+ void ReadExplicitTemplateArgumentList(ASTTemplateArgumentListInfo &ArgList,
+ unsigned NumTemplateArgs);
+
+ void VisitStmt(Stmt *S);
+#define STMT(Type, Base) \
+ void Visit##Type(Type *);
+#include "clang/AST/StmtNodes.inc"
+ };
+}
+
+void ASTStmtReader::
+ReadTemplateKWAndArgsInfo(ASTTemplateKWAndArgsInfo &Args,
+ unsigned NumTemplateArgs) {
+ SourceLocation TemplateKWLoc = ReadSourceLocation(Record, Idx);
+ TemplateArgumentListInfo ArgInfo;
+ ArgInfo.setLAngleLoc(ReadSourceLocation(Record, Idx));
+ ArgInfo.setRAngleLoc(ReadSourceLocation(Record, Idx));
+ for (unsigned i = 0; i != NumTemplateArgs; ++i)
+ ArgInfo.addArgument(
+ Reader.ReadTemplateArgumentLoc(F, Record, Idx));
+ Args.initializeFrom(TemplateKWLoc, ArgInfo);
+}
+
+void ASTStmtReader::VisitStmt(Stmt *S) {
+ assert(Idx == NumStmtFields && "Incorrect statement field count");
+}
+
+void ASTStmtReader::VisitNullStmt(NullStmt *S) {
+ VisitStmt(S);
+ S->setSemiLoc(ReadSourceLocation(Record, Idx));
+ S->HasLeadingEmptyMacro = Record[Idx++];
+}
+
+void ASTStmtReader::VisitCompoundStmt(CompoundStmt *S) {
+ VisitStmt(S);
+ SmallVector<Stmt *, 16> Stmts;
+ unsigned NumStmts = Record[Idx++];
+ while (NumStmts--)
+ Stmts.push_back(Reader.ReadSubStmt());
+ S->setStmts(Reader.getContext(), Stmts.data(), Stmts.size());
+ S->LBraceLoc = ReadSourceLocation(Record, Idx);
+ S->RBraceLoc = ReadSourceLocation(Record, Idx);
+}
+
+void ASTStmtReader::VisitSwitchCase(SwitchCase *S) {
+ VisitStmt(S);
+ Reader.RecordSwitchCaseID(S, Record[Idx++]);
+ S->setKeywordLoc(ReadSourceLocation(Record, Idx));
+ S->setColonLoc(ReadSourceLocation(Record, Idx));
+}
+
+void ASTStmtReader::VisitCaseStmt(CaseStmt *S) {
+ VisitSwitchCase(S);
+ S->setLHS(Reader.ReadSubExpr());
+ S->setRHS(Reader.ReadSubExpr());
+ S->setSubStmt(Reader.ReadSubStmt());
+ S->setEllipsisLoc(ReadSourceLocation(Record, Idx));
+}
+
+void ASTStmtReader::VisitDefaultStmt(DefaultStmt *S) {
+ VisitSwitchCase(S);
+ S->setSubStmt(Reader.ReadSubStmt());
+}
+
+void ASTStmtReader::VisitLabelStmt(LabelStmt *S) {
+ VisitStmt(S);
+ LabelDecl *LD = ReadDeclAs<LabelDecl>(Record, Idx);
+ LD->setStmt(S);
+ S->setDecl(LD);
+ S->setSubStmt(Reader.ReadSubStmt());
+ S->setIdentLoc(ReadSourceLocation(Record, Idx));
+}
+
+void ASTStmtReader::VisitAttributedStmt(AttributedStmt *S) {
+ VisitStmt(S);
+ uint64_t NumAttrs = Record[Idx++];
+ AttrVec Attrs;
+ Reader.ReadAttributes(F, Attrs, Record, Idx);
+ (void)NumAttrs;
+ assert(NumAttrs == S->NumAttrs);
+ assert(NumAttrs == Attrs.size());
+ std::copy(Attrs.begin(), Attrs.end(), S->getAttrArrayPtr());
+ S->SubStmt = Reader.ReadSubStmt();
+ S->AttrLoc = ReadSourceLocation(Record, Idx);
+}
+
+void ASTStmtReader::VisitIfStmt(IfStmt *S) {
+ VisitStmt(S);
+ S->setConditionVariable(Reader.getContext(),
+ ReadDeclAs<VarDecl>(Record, Idx));
+ S->setCond(Reader.ReadSubExpr());
+ S->setThen(Reader.ReadSubStmt());
+ S->setElse(Reader.ReadSubStmt());
+ S->setIfLoc(ReadSourceLocation(Record, Idx));
+ S->setElseLoc(ReadSourceLocation(Record, Idx));
+}
+
+void ASTStmtReader::VisitSwitchStmt(SwitchStmt *S) {
+ VisitStmt(S);
+ S->setConditionVariable(Reader.getContext(),
+ ReadDeclAs<VarDecl>(Record, Idx));
+ S->setCond(Reader.ReadSubExpr());
+ S->setBody(Reader.ReadSubStmt());
+ S->setSwitchLoc(ReadSourceLocation(Record, Idx));
+ if (Record[Idx++])
+ S->setAllEnumCasesCovered();
+
+ SwitchCase *PrevSC = nullptr;
+ for (unsigned N = Record.size(); Idx != N; ++Idx) {
+ SwitchCase *SC = Reader.getSwitchCaseWithID(Record[Idx]);
+ if (PrevSC)
+ PrevSC->setNextSwitchCase(SC);
+ else
+ S->setSwitchCaseList(SC);
+
+ PrevSC = SC;
+ }
+}
+
+void ASTStmtReader::VisitWhileStmt(WhileStmt *S) {
+ VisitStmt(S);
+ S->setConditionVariable(Reader.getContext(),
+ ReadDeclAs<VarDecl>(Record, Idx));
+
+ S->setCond(Reader.ReadSubExpr());
+ S->setBody(Reader.ReadSubStmt());
+ S->setWhileLoc(ReadSourceLocation(Record, Idx));
+}
+
+void ASTStmtReader::VisitDoStmt(DoStmt *S) {
+ VisitStmt(S);
+ S->setCond(Reader.ReadSubExpr());
+ S->setBody(Reader.ReadSubStmt());
+ S->setDoLoc(ReadSourceLocation(Record, Idx));
+ S->setWhileLoc(ReadSourceLocation(Record, Idx));
+ S->setRParenLoc(ReadSourceLocation(Record, Idx));
+}
+
+void ASTStmtReader::VisitForStmt(ForStmt *S) {
+ VisitStmt(S);
+ S->setInit(Reader.ReadSubStmt());
+ S->setCond(Reader.ReadSubExpr());
+ S->setConditionVariable(Reader.getContext(),
+ ReadDeclAs<VarDecl>(Record, Idx));
+ S->setInc(Reader.ReadSubExpr());
+ S->setBody(Reader.ReadSubStmt());
+ S->setForLoc(ReadSourceLocation(Record, Idx));
+ S->setLParenLoc(ReadSourceLocation(Record, Idx));
+ S->setRParenLoc(ReadSourceLocation(Record, Idx));
+}
+
+void ASTStmtReader::VisitGotoStmt(GotoStmt *S) {
+ VisitStmt(S);
+ S->setLabel(ReadDeclAs<LabelDecl>(Record, Idx));
+ S->setGotoLoc(ReadSourceLocation(Record, Idx));
+ S->setLabelLoc(ReadSourceLocation(Record, Idx));
+}
+
+void ASTStmtReader::VisitIndirectGotoStmt(IndirectGotoStmt *S) {
+ VisitStmt(S);
+ S->setGotoLoc(ReadSourceLocation(Record, Idx));
+ S->setStarLoc(ReadSourceLocation(Record, Idx));
+ S->setTarget(Reader.ReadSubExpr());
+}
+
+void ASTStmtReader::VisitContinueStmt(ContinueStmt *S) {
+ VisitStmt(S);
+ S->setContinueLoc(ReadSourceLocation(Record, Idx));
+}
+
+void ASTStmtReader::VisitBreakStmt(BreakStmt *S) {
+ VisitStmt(S);
+ S->setBreakLoc(ReadSourceLocation(Record, Idx));
+}
+
+void ASTStmtReader::VisitReturnStmt(ReturnStmt *S) {
+ VisitStmt(S);
+ S->setRetValue(Reader.ReadSubExpr());
+ S->setReturnLoc(ReadSourceLocation(Record, Idx));
+ S->setNRVOCandidate(ReadDeclAs<VarDecl>(Record, Idx));
+}
+
+void ASTStmtReader::VisitDeclStmt(DeclStmt *S) {
+ VisitStmt(S);
+ S->setStartLoc(ReadSourceLocation(Record, Idx));
+ S->setEndLoc(ReadSourceLocation(Record, Idx));
+
+ if (Idx + 1 == Record.size()) {
+ // Single declaration
+ S->setDeclGroup(DeclGroupRef(ReadDecl(Record, Idx)));
+ } else {
+ SmallVector<Decl *, 16> Decls;
+ Decls.reserve(Record.size() - Idx);
+ for (unsigned N = Record.size(); Idx != N; )
+ Decls.push_back(ReadDecl(Record, Idx));
+ S->setDeclGroup(DeclGroupRef(DeclGroup::Create(Reader.getContext(),
+ Decls.data(),
+ Decls.size())));
+ }
+}
+
+void ASTStmtReader::VisitAsmStmt(AsmStmt *S) {
+ VisitStmt(S);
+ S->NumOutputs = Record[Idx++];
+ S->NumInputs = Record[Idx++];
+ S->NumClobbers = Record[Idx++];
+ S->setAsmLoc(ReadSourceLocation(Record, Idx));
+ S->setVolatile(Record[Idx++]);
+ S->setSimple(Record[Idx++]);
+}
+
+void ASTStmtReader::VisitGCCAsmStmt(GCCAsmStmt *S) {
+ VisitAsmStmt(S);
+ S->setRParenLoc(ReadSourceLocation(Record, Idx));
+ S->setAsmString(cast_or_null<StringLiteral>(Reader.ReadSubStmt()));
+
+ unsigned NumOutputs = S->getNumOutputs();
+ unsigned NumInputs = S->getNumInputs();
+ unsigned NumClobbers = S->getNumClobbers();
+
+ // Outputs and inputs
+ SmallVector<IdentifierInfo *, 16> Names;
+ SmallVector<StringLiteral*, 16> Constraints;
+ SmallVector<Stmt*, 16> Exprs;
+ for (unsigned I = 0, N = NumOutputs + NumInputs; I != N; ++I) {
+ Names.push_back(Reader.GetIdentifierInfo(F, Record, Idx));
+ Constraints.push_back(cast_or_null<StringLiteral>(Reader.ReadSubStmt()));
+ Exprs.push_back(Reader.ReadSubStmt());
+ }
+
+ // Constraints
+ SmallVector<StringLiteral*, 16> Clobbers;
+ for (unsigned I = 0; I != NumClobbers; ++I)
+ Clobbers.push_back(cast_or_null<StringLiteral>(Reader.ReadSubStmt()));
+
+ S->setOutputsAndInputsAndClobbers(Reader.getContext(),
+ Names.data(), Constraints.data(),
+ Exprs.data(), NumOutputs, NumInputs,
+ Clobbers.data(), NumClobbers);
+}
+
+void ASTStmtReader::VisitMSAsmStmt(MSAsmStmt *S) {
+ VisitAsmStmt(S);
+ S->LBraceLoc = ReadSourceLocation(Record, Idx);
+ S->EndLoc = ReadSourceLocation(Record, Idx);
+ S->NumAsmToks = Record[Idx++];
+ std::string AsmStr = ReadString(Record, Idx);
+
+ // Read the tokens.
+ SmallVector<Token, 16> AsmToks;
+ AsmToks.reserve(S->NumAsmToks);
+ for (unsigned i = 0, e = S->NumAsmToks; i != e; ++i) {
+ AsmToks.push_back(ReadToken(Record, Idx));
+ }
+
+ // The calls to reserve() for the FooData vectors are mandatory to
+ // prevent dead StringRefs in the Foo vectors.
+
+ // Read the clobbers.
+ SmallVector<std::string, 16> ClobbersData;
+ SmallVector<StringRef, 16> Clobbers;
+ ClobbersData.reserve(S->NumClobbers);
+ Clobbers.reserve(S->NumClobbers);
+ for (unsigned i = 0, e = S->NumClobbers; i != e; ++i) {
+ ClobbersData.push_back(ReadString(Record, Idx));
+ Clobbers.push_back(ClobbersData.back());
+ }
+
+ // Read the operands.
+ unsigned NumOperands = S->NumOutputs + S->NumInputs;
+ SmallVector<Expr*, 16> Exprs;
+ SmallVector<std::string, 16> ConstraintsData;
+ SmallVector<StringRef, 16> Constraints;
+ Exprs.reserve(NumOperands);
+ ConstraintsData.reserve(NumOperands);
+ Constraints.reserve(NumOperands);
+ for (unsigned i = 0; i != NumOperands; ++i) {
+ Exprs.push_back(cast<Expr>(Reader.ReadSubStmt()));
+ ConstraintsData.push_back(ReadString(Record, Idx));
+ Constraints.push_back(ConstraintsData.back());
+ }
+
+ S->initialize(Reader.getContext(), AsmStr, AsmToks,
+ Constraints, Exprs, Clobbers);
+}
+
+void ASTStmtReader::VisitCapturedStmt(CapturedStmt *S) {
+ VisitStmt(S);
+ ++Idx;
+ S->setCapturedDecl(ReadDeclAs<CapturedDecl>(Record, Idx));
+ S->setCapturedRegionKind(static_cast<CapturedRegionKind>(Record[Idx++]));
+ S->setCapturedRecordDecl(ReadDeclAs<RecordDecl>(Record, Idx));
+
+ // Capture inits
+ for (CapturedStmt::capture_init_iterator I = S->capture_init_begin(),
+ E = S->capture_init_end();
+ I != E; ++I)
+ *I = Reader.ReadSubExpr();
+
+ // Body
+ S->setCapturedStmt(Reader.ReadSubStmt());
+ S->getCapturedDecl()->setBody(S->getCapturedStmt());
+
+ // Captures
+ for (auto &I : S->captures()) {
+ I.VarAndKind.setPointer(ReadDeclAs<VarDecl>(Record, Idx));
+ I.VarAndKind
+ .setInt(static_cast<CapturedStmt::VariableCaptureKind>(Record[Idx++]));
+ I.Loc = ReadSourceLocation(Record, Idx);
+ }
+}
+
+void ASTStmtReader::VisitExpr(Expr *E) {
+ VisitStmt(E);
+ E->setType(Reader.readType(F, Record, Idx));
+ E->setTypeDependent(Record[Idx++]);
+ E->setValueDependent(Record[Idx++]);
+ E->setInstantiationDependent(Record[Idx++]);
+ E->ExprBits.ContainsUnexpandedParameterPack = Record[Idx++];
+ E->setValueKind(static_cast<ExprValueKind>(Record[Idx++]));
+ E->setObjectKind(static_cast<ExprObjectKind>(Record[Idx++]));
+ assert(Idx == NumExprFields && "Incorrect expression field count");
+}
+
+void ASTStmtReader::VisitPredefinedExpr(PredefinedExpr *E) {
+ VisitExpr(E);
+ E->setLocation(ReadSourceLocation(Record, Idx));
+ E->Type = (PredefinedExpr::IdentType)Record[Idx++];
+ E->FnName = cast_or_null<StringLiteral>(Reader.ReadSubExpr());
+}
+
+void ASTStmtReader::VisitDeclRefExpr(DeclRefExpr *E) {
+ VisitExpr(E);
+
+ E->DeclRefExprBits.HasQualifier = Record[Idx++];
+ E->DeclRefExprBits.HasFoundDecl = Record[Idx++];
+ E->DeclRefExprBits.HasTemplateKWAndArgsInfo = Record[Idx++];
+ E->DeclRefExprBits.HadMultipleCandidates = Record[Idx++];
+ E->DeclRefExprBits.RefersToEnclosingVariableOrCapture = Record[Idx++];
+ unsigned NumTemplateArgs = 0;
+ if (E->hasTemplateKWAndArgsInfo())
+ NumTemplateArgs = Record[Idx++];
+
+ if (E->hasQualifier())
+ E->getInternalQualifierLoc()
+ = Reader.ReadNestedNameSpecifierLoc(F, Record, Idx);
+
+ if (E->hasFoundDecl())
+ E->getInternalFoundDecl() = ReadDeclAs<NamedDecl>(Record, Idx);
+
+ if (E->hasTemplateKWAndArgsInfo())
+ ReadTemplateKWAndArgsInfo(*E->getTemplateKWAndArgsInfo(),
+ NumTemplateArgs);
+
+ E->setDecl(ReadDeclAs<ValueDecl>(Record, Idx));
+ E->setLocation(ReadSourceLocation(Record, Idx));
+ ReadDeclarationNameLoc(E->DNLoc, E->getDecl()->getDeclName(), Record, Idx);
+}
+
+void ASTStmtReader::VisitIntegerLiteral(IntegerLiteral *E) {
+ VisitExpr(E);
+ E->setLocation(ReadSourceLocation(Record, Idx));
+ E->setValue(Reader.getContext(), Reader.ReadAPInt(Record, Idx));
+}
+
+void ASTStmtReader::VisitFloatingLiteral(FloatingLiteral *E) {
+ VisitExpr(E);
+ E->setRawSemantics(static_cast<Stmt::APFloatSemantics>(Record[Idx++]));
+ E->setExact(Record[Idx++]);
+ E->setValue(Reader.getContext(),
+ Reader.ReadAPFloat(Record, E->getSemantics(), Idx));
+ E->setLocation(ReadSourceLocation(Record, Idx));
+}
+
+void ASTStmtReader::VisitImaginaryLiteral(ImaginaryLiteral *E) {
+ VisitExpr(E);
+ E->setSubExpr(Reader.ReadSubExpr());
+}
+
+void ASTStmtReader::VisitStringLiteral(StringLiteral *E) {
+ VisitExpr(E);
+ unsigned Len = Record[Idx++];
+ assert(Record[Idx] == E->getNumConcatenated() &&
+ "Wrong number of concatenated tokens!");
+ ++Idx;
+ StringLiteral::StringKind kind =
+ static_cast<StringLiteral::StringKind>(Record[Idx++]);
+ bool isPascal = Record[Idx++];
+
+ // Read string data
+ SmallString<16> Str(&Record[Idx], &Record[Idx] + Len);
+ E->setString(Reader.getContext(), Str, kind, isPascal);
+ Idx += Len;
+
+ // Read source locations
+ for (unsigned I = 0, N = E->getNumConcatenated(); I != N; ++I)
+ E->setStrTokenLoc(I, ReadSourceLocation(Record, Idx));
+}
+
+void ASTStmtReader::VisitCharacterLiteral(CharacterLiteral *E) {
+ VisitExpr(E);
+ E->setValue(Record[Idx++]);
+ E->setLocation(ReadSourceLocation(Record, Idx));
+ E->setKind(static_cast<CharacterLiteral::CharacterKind>(Record[Idx++]));
+}
+
+void ASTStmtReader::VisitParenExpr(ParenExpr *E) {
+ VisitExpr(E);
+ E->setLParen(ReadSourceLocation(Record, Idx));
+ E->setRParen(ReadSourceLocation(Record, Idx));
+ E->setSubExpr(Reader.ReadSubExpr());
+}
+
+void ASTStmtReader::VisitParenListExpr(ParenListExpr *E) {
+ VisitExpr(E);
+ unsigned NumExprs = Record[Idx++];
+ E->Exprs = new (Reader.getContext()) Stmt*[NumExprs];
+ for (unsigned i = 0; i != NumExprs; ++i)
+ E->Exprs[i] = Reader.ReadSubStmt();
+ E->NumExprs = NumExprs;
+ E->LParenLoc = ReadSourceLocation(Record, Idx);
+ E->RParenLoc = ReadSourceLocation(Record, Idx);
+}
+
+void ASTStmtReader::VisitUnaryOperator(UnaryOperator *E) {
+ VisitExpr(E);
+ E->setSubExpr(Reader.ReadSubExpr());
+ E->setOpcode((UnaryOperator::Opcode)Record[Idx++]);
+ E->setOperatorLoc(ReadSourceLocation(Record, Idx));
+}
+
+void ASTStmtReader::VisitOffsetOfExpr(OffsetOfExpr *E) {
+ typedef OffsetOfExpr::OffsetOfNode Node;
+ VisitExpr(E);
+ assert(E->getNumComponents() == Record[Idx]);
+ ++Idx;
+ assert(E->getNumExpressions() == Record[Idx]);
+ ++Idx;
+ E->setOperatorLoc(ReadSourceLocation(Record, Idx));
+ E->setRParenLoc(ReadSourceLocation(Record, Idx));
+ E->setTypeSourceInfo(GetTypeSourceInfo(Record, Idx));
+ for (unsigned I = 0, N = E->getNumComponents(); I != N; ++I) {
+ Node::Kind Kind = static_cast<Node::Kind>(Record[Idx++]);
+ SourceLocation Start = ReadSourceLocation(Record, Idx);
+ SourceLocation End = ReadSourceLocation(Record, Idx);
+ switch (Kind) {
+ case Node::Array:
+ E->setComponent(I, Node(Start, Record[Idx++], End));
+ break;
+
+ case Node::Field:
+ E->setComponent(I, Node(Start, ReadDeclAs<FieldDecl>(Record, Idx), End));
+ break;
+
+ case Node::Identifier:
+ E->setComponent(I,
+ Node(Start,
+ Reader.GetIdentifierInfo(F, Record, Idx),
+ End));
+ break;
+
+ case Node::Base: {
+ CXXBaseSpecifier *Base = new (Reader.getContext()) CXXBaseSpecifier();
+ *Base = Reader.ReadCXXBaseSpecifier(F, Record, Idx);
+ E->setComponent(I, Node(Base));
+ break;
+ }
+ }
+ }
+
+ for (unsigned I = 0, N = E->getNumExpressions(); I != N; ++I)
+ E->setIndexExpr(I, Reader.ReadSubExpr());
+}
+
+void ASTStmtReader::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E) {
+ VisitExpr(E);
+ E->setKind(static_cast<UnaryExprOrTypeTrait>(Record[Idx++]));
+ if (Record[Idx] == 0) {
+ E->setArgument(Reader.ReadSubExpr());
+ ++Idx;
+ } else {
+ E->setArgument(GetTypeSourceInfo(Record, Idx));
+ }
+ E->setOperatorLoc(ReadSourceLocation(Record, Idx));
+ E->setRParenLoc(ReadSourceLocation(Record, Idx));
+}
+
+void ASTStmtReader::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
+ VisitExpr(E);
+ E->setLHS(Reader.ReadSubExpr());
+ E->setRHS(Reader.ReadSubExpr());
+ E->setRBracketLoc(ReadSourceLocation(Record, Idx));
+}
+
+void ASTStmtReader::VisitCallExpr(CallExpr *E) {
+ VisitExpr(E);
+ E->setNumArgs(Reader.getContext(), Record[Idx++]);
+ E->setRParenLoc(ReadSourceLocation(Record, Idx));
+ E->setCallee(Reader.ReadSubExpr());
+ for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I)
+ E->setArg(I, Reader.ReadSubExpr());
+}
+
+void ASTStmtReader::VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
+ VisitCallExpr(E);
+}
+
+void ASTStmtReader::VisitMemberExpr(MemberExpr *E) {
+ // Don't call VisitExpr, this is fully initialized at creation.
+ assert(E->getStmtClass() == Stmt::MemberExprClass &&
+ "It's a subclass, we must advance Idx!");
+}
+
+void ASTStmtReader::VisitObjCIsaExpr(ObjCIsaExpr *E) {
+ VisitExpr(E);
+ E->setBase(Reader.ReadSubExpr());
+ E->setIsaMemberLoc(ReadSourceLocation(Record, Idx));
+ E->setOpLoc(ReadSourceLocation(Record, Idx));
+ E->setArrow(Record[Idx++]);
+}
+
+void ASTStmtReader::
+VisitObjCIndirectCopyRestoreExpr(ObjCIndirectCopyRestoreExpr *E) {
+ VisitExpr(E);
+ E->Operand = Reader.ReadSubExpr();
+ E->setShouldCopy(Record[Idx++]);
+}
+
+void ASTStmtReader::VisitObjCBridgedCastExpr(ObjCBridgedCastExpr *E) {
+ VisitExplicitCastExpr(E);
+ E->LParenLoc = ReadSourceLocation(Record, Idx);
+ E->BridgeKeywordLoc = ReadSourceLocation(Record, Idx);
+ E->Kind = Record[Idx++];
+}
+
+void ASTStmtReader::VisitCastExpr(CastExpr *E) {
+ VisitExpr(E);
+ unsigned NumBaseSpecs = Record[Idx++];
+ assert(NumBaseSpecs == E->path_size());
+ E->setSubExpr(Reader.ReadSubExpr());
+ E->setCastKind((CastKind)Record[Idx++]);
+ CastExpr::path_iterator BaseI = E->path_begin();
+ while (NumBaseSpecs--) {
+ CXXBaseSpecifier *BaseSpec = new (Reader.getContext()) CXXBaseSpecifier;
+ *BaseSpec = Reader.ReadCXXBaseSpecifier(F, Record, Idx);
+ *BaseI++ = BaseSpec;
+ }
+}
+
+void ASTStmtReader::VisitBinaryOperator(BinaryOperator *E) {
+ VisitExpr(E);
+ E->setLHS(Reader.ReadSubExpr());
+ E->setRHS(Reader.ReadSubExpr());
+ E->setOpcode((BinaryOperator::Opcode)Record[Idx++]);
+ E->setOperatorLoc(ReadSourceLocation(Record, Idx));
+ E->setFPContractable((bool)Record[Idx++]);
+}
+
+void ASTStmtReader::VisitCompoundAssignOperator(CompoundAssignOperator *E) {
+ VisitBinaryOperator(E);
+ E->setComputationLHSType(Reader.readType(F, Record, Idx));
+ E->setComputationResultType(Reader.readType(F, Record, Idx));
+}
+
+void ASTStmtReader::VisitConditionalOperator(ConditionalOperator *E) {
+ VisitExpr(E);
+ E->SubExprs[ConditionalOperator::COND] = Reader.ReadSubExpr();
+ E->SubExprs[ConditionalOperator::LHS] = Reader.ReadSubExpr();
+ E->SubExprs[ConditionalOperator::RHS] = Reader.ReadSubExpr();
+ E->QuestionLoc = ReadSourceLocation(Record, Idx);
+ E->ColonLoc = ReadSourceLocation(Record, Idx);
+}
+
+void
+ASTStmtReader::VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
+ VisitExpr(E);
+ E->OpaqueValue = cast<OpaqueValueExpr>(Reader.ReadSubExpr());
+ E->SubExprs[BinaryConditionalOperator::COMMON] = Reader.ReadSubExpr();
+ E->SubExprs[BinaryConditionalOperator::COND] = Reader.ReadSubExpr();
+ E->SubExprs[BinaryConditionalOperator::LHS] = Reader.ReadSubExpr();
+ E->SubExprs[BinaryConditionalOperator::RHS] = Reader.ReadSubExpr();
+ E->QuestionLoc = ReadSourceLocation(Record, Idx);
+ E->ColonLoc = ReadSourceLocation(Record, Idx);
+}
+
+void ASTStmtReader::VisitImplicitCastExpr(ImplicitCastExpr *E) {
+ VisitCastExpr(E);
+}
+
+void ASTStmtReader::VisitExplicitCastExpr(ExplicitCastExpr *E) {
+ VisitCastExpr(E);
+ E->setTypeInfoAsWritten(GetTypeSourceInfo(Record, Idx));
+}
+
+void ASTStmtReader::VisitCStyleCastExpr(CStyleCastExpr *E) {
+ VisitExplicitCastExpr(E);
+ E->setLParenLoc(ReadSourceLocation(Record, Idx));
+ E->setRParenLoc(ReadSourceLocation(Record, Idx));
+}
+
+void ASTStmtReader::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
+ VisitExpr(E);
+ E->setLParenLoc(ReadSourceLocation(Record, Idx));
+ E->setTypeSourceInfo(GetTypeSourceInfo(Record, Idx));
+ E->setInitializer(Reader.ReadSubExpr());
+ E->setFileScope(Record[Idx++]);
+}
+
+void ASTStmtReader::VisitExtVectorElementExpr(ExtVectorElementExpr *E) {
+ VisitExpr(E);
+ E->setBase(Reader.ReadSubExpr());
+ E->setAccessor(Reader.GetIdentifierInfo(F, Record, Idx));
+ E->setAccessorLoc(ReadSourceLocation(Record, Idx));
+}
+
+void ASTStmtReader::VisitInitListExpr(InitListExpr *E) {
+ VisitExpr(E);
+ if (InitListExpr *SyntForm = cast_or_null<InitListExpr>(Reader.ReadSubStmt()))
+ E->setSyntacticForm(SyntForm);
+ E->setLBraceLoc(ReadSourceLocation(Record, Idx));
+ E->setRBraceLoc(ReadSourceLocation(Record, Idx));
+ bool isArrayFiller = Record[Idx++];
+ Expr *filler = nullptr;
+ if (isArrayFiller) {
+ filler = Reader.ReadSubExpr();
+ E->ArrayFillerOrUnionFieldInit = filler;
+ } else
+ E->ArrayFillerOrUnionFieldInit = ReadDeclAs<FieldDecl>(Record, Idx);
+ E->sawArrayRangeDesignator(Record[Idx++]);
+ unsigned NumInits = Record[Idx++];
+ E->reserveInits(Reader.getContext(), NumInits);
+ if (isArrayFiller) {
+ for (unsigned I = 0; I != NumInits; ++I) {
+ Expr *init = Reader.ReadSubExpr();
+ E->updateInit(Reader.getContext(), I, init ? init : filler);
+ }
+ } else {
+ for (unsigned I = 0; I != NumInits; ++I)
+ E->updateInit(Reader.getContext(), I, Reader.ReadSubExpr());
+ }
+}
+
+void ASTStmtReader::VisitDesignatedInitExpr(DesignatedInitExpr *E) {
+ typedef DesignatedInitExpr::Designator Designator;
+
+ VisitExpr(E);
+ unsigned NumSubExprs = Record[Idx++];
+ assert(NumSubExprs == E->getNumSubExprs() && "Wrong number of subexprs");
+ for (unsigned I = 0; I != NumSubExprs; ++I)
+ E->setSubExpr(I, Reader.ReadSubExpr());
+ E->setEqualOrColonLoc(ReadSourceLocation(Record, Idx));
+ E->setGNUSyntax(Record[Idx++]);
+
+ SmallVector<Designator, 4> Designators;
+ while (Idx < Record.size()) {
+ switch ((DesignatorTypes)Record[Idx++]) {
+ case DESIG_FIELD_DECL: {
+ FieldDecl *Field = ReadDeclAs<FieldDecl>(Record, Idx);
+ SourceLocation DotLoc
+ = ReadSourceLocation(Record, Idx);
+ SourceLocation FieldLoc
+ = ReadSourceLocation(Record, Idx);
+ Designators.push_back(Designator(Field->getIdentifier(), DotLoc,
+ FieldLoc));
+ Designators.back().setField(Field);
+ break;
+ }
+
+ case DESIG_FIELD_NAME: {
+ const IdentifierInfo *Name = Reader.GetIdentifierInfo(F, Record, Idx);
+ SourceLocation DotLoc
+ = ReadSourceLocation(Record, Idx);
+ SourceLocation FieldLoc
+ = ReadSourceLocation(Record, Idx);
+ Designators.push_back(Designator(Name, DotLoc, FieldLoc));
+ break;
+ }
+
+ case DESIG_ARRAY: {
+ unsigned Index = Record[Idx++];
+ SourceLocation LBracketLoc
+ = ReadSourceLocation(Record, Idx);
+ SourceLocation RBracketLoc
+ = ReadSourceLocation(Record, Idx);
+ Designators.push_back(Designator(Index, LBracketLoc, RBracketLoc));
+ break;
+ }
+
+ case DESIG_ARRAY_RANGE: {
+ unsigned Index = Record[Idx++];
+ SourceLocation LBracketLoc
+ = ReadSourceLocation(Record, Idx);
+ SourceLocation EllipsisLoc
+ = ReadSourceLocation(Record, Idx);
+ SourceLocation RBracketLoc
+ = ReadSourceLocation(Record, Idx);
+ Designators.push_back(Designator(Index, LBracketLoc, EllipsisLoc,
+ RBracketLoc));
+ break;
+ }
+ }
+ }
+ E->setDesignators(Reader.getContext(),
+ Designators.data(), Designators.size());
+}
+
+void ASTStmtReader::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
+ VisitExpr(E);
+}
+
+void ASTStmtReader::VisitVAArgExpr(VAArgExpr *E) {
+ VisitExpr(E);
+ E->setSubExpr(Reader.ReadSubExpr());
+ E->setWrittenTypeInfo(GetTypeSourceInfo(Record, Idx));
+ E->setBuiltinLoc(ReadSourceLocation(Record, Idx));
+ E->setRParenLoc(ReadSourceLocation(Record, Idx));
+}
+
+void ASTStmtReader::VisitAddrLabelExpr(AddrLabelExpr *E) {
+ VisitExpr(E);
+ E->setAmpAmpLoc(ReadSourceLocation(Record, Idx));
+ E->setLabelLoc(ReadSourceLocation(Record, Idx));
+ E->setLabel(ReadDeclAs<LabelDecl>(Record, Idx));
+}
+
+void ASTStmtReader::VisitStmtExpr(StmtExpr *E) {
+ VisitExpr(E);
+ E->setLParenLoc(ReadSourceLocation(Record, Idx));
+ E->setRParenLoc(ReadSourceLocation(Record, Idx));
+ E->setSubStmt(cast_or_null<CompoundStmt>(Reader.ReadSubStmt()));
+}
+
+void ASTStmtReader::VisitChooseExpr(ChooseExpr *E) {
+ VisitExpr(E);
+ E->setCond(Reader.ReadSubExpr());
+ E->setLHS(Reader.ReadSubExpr());
+ E->setRHS(Reader.ReadSubExpr());
+ E->setBuiltinLoc(ReadSourceLocation(Record, Idx));
+ E->setRParenLoc(ReadSourceLocation(Record, Idx));
+ E->setIsConditionTrue(Record[Idx++]);
+}
+
+void ASTStmtReader::VisitGNUNullExpr(GNUNullExpr *E) {
+ VisitExpr(E);
+ E->setTokenLocation(ReadSourceLocation(Record, Idx));
+}
+
+void ASTStmtReader::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
+ VisitExpr(E);
+ SmallVector<Expr *, 16> Exprs;
+ unsigned NumExprs = Record[Idx++];
+ while (NumExprs--)
+ Exprs.push_back(Reader.ReadSubExpr());
+ E->setExprs(Reader.getContext(), Exprs);
+ E->setBuiltinLoc(ReadSourceLocation(Record, Idx));
+ E->setRParenLoc(ReadSourceLocation(Record, Idx));
+}
+
+void ASTStmtReader::VisitConvertVectorExpr(ConvertVectorExpr *E) {
+ VisitExpr(E);
+ E->BuiltinLoc = ReadSourceLocation(Record, Idx);
+ E->RParenLoc = ReadSourceLocation(Record, Idx);
+ E->TInfo = GetTypeSourceInfo(Record, Idx);
+ E->SrcExpr = Reader.ReadSubExpr();
+}
+
+void ASTStmtReader::VisitBlockExpr(BlockExpr *E) {
+ VisitExpr(E);
+ E->setBlockDecl(ReadDeclAs<BlockDecl>(Record, Idx));
+}
+
+void ASTStmtReader::VisitGenericSelectionExpr(GenericSelectionExpr *E) {
+ VisitExpr(E);
+ E->NumAssocs = Record[Idx++];
+ E->AssocTypes = new (Reader.getContext()) TypeSourceInfo*[E->NumAssocs];
+ E->SubExprs =
+ new(Reader.getContext()) Stmt*[GenericSelectionExpr::END_EXPR+E->NumAssocs];
+
+ E->SubExprs[GenericSelectionExpr::CONTROLLING] = Reader.ReadSubExpr();
+ for (unsigned I = 0, N = E->getNumAssocs(); I != N; ++I) {
+ E->AssocTypes[I] = GetTypeSourceInfo(Record, Idx);
+ E->SubExprs[GenericSelectionExpr::END_EXPR+I] = Reader.ReadSubExpr();
+ }
+ E->ResultIndex = Record[Idx++];
+
+ E->GenericLoc = ReadSourceLocation(Record, Idx);
+ E->DefaultLoc = ReadSourceLocation(Record, Idx);
+ E->RParenLoc = ReadSourceLocation(Record, Idx);
+}
+
+void ASTStmtReader::VisitPseudoObjectExpr(PseudoObjectExpr *E) {
+ VisitExpr(E);
+ unsigned numSemanticExprs = Record[Idx++];
+ assert(numSemanticExprs + 1 == E->PseudoObjectExprBits.NumSubExprs);
+ E->PseudoObjectExprBits.ResultIndex = Record[Idx++];
+
+ // Read the syntactic expression.
+ E->getSubExprsBuffer()[0] = Reader.ReadSubExpr();
+
+ // Read all the semantic expressions.
+ for (unsigned i = 0; i != numSemanticExprs; ++i) {
+ Expr *subExpr = Reader.ReadSubExpr();
+ E->getSubExprsBuffer()[i+1] = subExpr;
+ }
+}
+
+void ASTStmtReader::VisitAtomicExpr(AtomicExpr *E) {
+ VisitExpr(E);
+ E->Op = AtomicExpr::AtomicOp(Record[Idx++]);
+ E->NumSubExprs = AtomicExpr::getNumSubExprs(E->Op);
+ for (unsigned I = 0; I != E->NumSubExprs; ++I)
+ E->SubExprs[I] = Reader.ReadSubExpr();
+ E->BuiltinLoc = ReadSourceLocation(Record, Idx);
+ E->RParenLoc = ReadSourceLocation(Record, Idx);
+}
+
+//===----------------------------------------------------------------------===//
+// Objective-C Expressions and Statements
+
+void ASTStmtReader::VisitObjCStringLiteral(ObjCStringLiteral *E) {
+ VisitExpr(E);
+ E->setString(cast<StringLiteral>(Reader.ReadSubStmt()));
+ E->setAtLoc(ReadSourceLocation(Record, Idx));
+}
+
+void ASTStmtReader::VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
+ VisitExpr(E);
+ // could be one of several IntegerLiteral, FloatLiteral, etc.
+ E->SubExpr = Reader.ReadSubStmt();
+ E->BoxingMethod = ReadDeclAs<ObjCMethodDecl>(Record, Idx);
+ E->Range = ReadSourceRange(Record, Idx);
+}
+
+void ASTStmtReader::VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
+ VisitExpr(E);
+ unsigned NumElements = Record[Idx++];
+ assert(NumElements == E->getNumElements() && "Wrong number of elements");
+ Expr **Elements = E->getElements();
+ for (unsigned I = 0, N = NumElements; I != N; ++I)
+ Elements[I] = Reader.ReadSubExpr();
+ E->ArrayWithObjectsMethod = ReadDeclAs<ObjCMethodDecl>(Record, Idx);
+ E->Range = ReadSourceRange(Record, Idx);
+}
+
+void ASTStmtReader::VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
+ VisitExpr(E);
+ unsigned NumElements = Record[Idx++];
+ assert(NumElements == E->getNumElements() && "Wrong number of elements");
+ bool HasPackExpansions = Record[Idx++];
+ assert(HasPackExpansions == E->HasPackExpansions &&"Pack expansion mismatch");
+ ObjCDictionaryLiteral::KeyValuePair *KeyValues = E->getKeyValues();
+ ObjCDictionaryLiteral::ExpansionData *Expansions = E->getExpansionData();
+ for (unsigned I = 0; I != NumElements; ++I) {
+ KeyValues[I].Key = Reader.ReadSubExpr();
+ KeyValues[I].Value = Reader.ReadSubExpr();
+ if (HasPackExpansions) {
+ Expansions[I].EllipsisLoc = ReadSourceLocation(Record, Idx);
+ Expansions[I].NumExpansionsPlusOne = Record[Idx++];
+ }
+ }
+ E->DictWithObjectsMethod = ReadDeclAs<ObjCMethodDecl>(Record, Idx);
+ E->Range = ReadSourceRange(Record, Idx);
+}
+
+void ASTStmtReader::VisitObjCEncodeExpr(ObjCEncodeExpr *E) {
+ VisitExpr(E);
+ E->setEncodedTypeSourceInfo(GetTypeSourceInfo(Record, Idx));
+ E->setAtLoc(ReadSourceLocation(Record, Idx));
+ E->setRParenLoc(ReadSourceLocation(Record, Idx));
+}
+
+void ASTStmtReader::VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
+ VisitExpr(E);
+ E->setSelector(Reader.ReadSelector(F, Record, Idx));
+ E->setAtLoc(ReadSourceLocation(Record, Idx));
+ E->setRParenLoc(ReadSourceLocation(Record, Idx));
+}
+
+void ASTStmtReader::VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
+ VisitExpr(E);
+ E->setProtocol(ReadDeclAs<ObjCProtocolDecl>(Record, Idx));
+ E->setAtLoc(ReadSourceLocation(Record, Idx));
+ E->ProtoLoc = ReadSourceLocation(Record, Idx);
+ E->setRParenLoc(ReadSourceLocation(Record, Idx));
+}
+
+void ASTStmtReader::VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
+ VisitExpr(E);
+ E->setDecl(ReadDeclAs<ObjCIvarDecl>(Record, Idx));
+ E->setLocation(ReadSourceLocation(Record, Idx));
+ E->setOpLoc(ReadSourceLocation(Record, Idx));
+ E->setBase(Reader.ReadSubExpr());
+ E->setIsArrow(Record[Idx++]);
+ E->setIsFreeIvar(Record[Idx++]);
+}
+
+void ASTStmtReader::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
+ VisitExpr(E);
+ unsigned MethodRefFlags = Record[Idx++];
+ bool Implicit = Record[Idx++] != 0;
+ if (Implicit) {
+ ObjCMethodDecl *Getter = ReadDeclAs<ObjCMethodDecl>(Record, Idx);
+ ObjCMethodDecl *Setter = ReadDeclAs<ObjCMethodDecl>(Record, Idx);
+ E->setImplicitProperty(Getter, Setter, MethodRefFlags);
+ } else {
+ E->setExplicitProperty(ReadDeclAs<ObjCPropertyDecl>(Record, Idx),
+ MethodRefFlags);
+ }
+ E->setLocation(ReadSourceLocation(Record, Idx));
+ E->setReceiverLocation(ReadSourceLocation(Record, Idx));
+ switch (Record[Idx++]) {
+ case 0:
+ E->setBase(Reader.ReadSubExpr());
+ break;
+ case 1:
+ E->setSuperReceiver(Reader.readType(F, Record, Idx));
+ break;
+ case 2:
+ E->setClassReceiver(ReadDeclAs<ObjCInterfaceDecl>(Record, Idx));
+ break;
+ }
+}
+
+void ASTStmtReader::VisitObjCSubscriptRefExpr(ObjCSubscriptRefExpr *E) {
+ VisitExpr(E);
+ E->setRBracket(ReadSourceLocation(Record, Idx));
+ E->setBaseExpr(Reader.ReadSubExpr());
+ E->setKeyExpr(Reader.ReadSubExpr());
+ E->GetAtIndexMethodDecl = ReadDeclAs<ObjCMethodDecl>(Record, Idx);
+ E->SetAtIndexMethodDecl = ReadDeclAs<ObjCMethodDecl>(Record, Idx);
+}
+
+void ASTStmtReader::VisitObjCMessageExpr(ObjCMessageExpr *E) {
+ VisitExpr(E);
+ assert(Record[Idx] == E->getNumArgs());
+ ++Idx;
+ unsigned NumStoredSelLocs = Record[Idx++];
+ E->SelLocsKind = Record[Idx++];
+ E->setDelegateInitCall(Record[Idx++]);
+ E->IsImplicit = Record[Idx++];
+ ObjCMessageExpr::ReceiverKind Kind
+ = static_cast<ObjCMessageExpr::ReceiverKind>(Record[Idx++]);
+ switch (Kind) {
+ case ObjCMessageExpr::Instance:
+ E->setInstanceReceiver(Reader.ReadSubExpr());
+ break;
+
+ case ObjCMessageExpr::Class:
+ E->setClassReceiver(GetTypeSourceInfo(Record, Idx));
+ break;
+
+ case ObjCMessageExpr::SuperClass:
+ case ObjCMessageExpr::SuperInstance: {
+ QualType T = Reader.readType(F, Record, Idx);
+ SourceLocation SuperLoc = ReadSourceLocation(Record, Idx);
+ E->setSuper(SuperLoc, T, Kind == ObjCMessageExpr::SuperInstance);
+ break;
+ }
+ }
+
+ assert(Kind == E->getReceiverKind());
+
+ if (Record[Idx++])
+ E->setMethodDecl(ReadDeclAs<ObjCMethodDecl>(Record, Idx));
+ else
+ E->setSelector(Reader.ReadSelector(F, Record, Idx));
+
+ E->LBracLoc = ReadSourceLocation(Record, Idx);
+ E->RBracLoc = ReadSourceLocation(Record, Idx);
+
+ for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I)
+ E->setArg(I, Reader.ReadSubExpr());
+
+ SourceLocation *Locs = E->getStoredSelLocs();
+ for (unsigned I = 0; I != NumStoredSelLocs; ++I)
+ Locs[I] = ReadSourceLocation(Record, Idx);
+}
+
+void ASTStmtReader::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
+ VisitStmt(S);
+ S->setElement(Reader.ReadSubStmt());
+ S->setCollection(Reader.ReadSubExpr());
+ S->setBody(Reader.ReadSubStmt());
+ S->setForLoc(ReadSourceLocation(Record, Idx));
+ S->setRParenLoc(ReadSourceLocation(Record, Idx));
+}
+
+void ASTStmtReader::VisitObjCAtCatchStmt(ObjCAtCatchStmt *S) {
+ VisitStmt(S);
+ S->setCatchBody(Reader.ReadSubStmt());
+ S->setCatchParamDecl(ReadDeclAs<VarDecl>(Record, Idx));
+ S->setAtCatchLoc(ReadSourceLocation(Record, Idx));
+ S->setRParenLoc(ReadSourceLocation(Record, Idx));
+}
+
+void ASTStmtReader::VisitObjCAtFinallyStmt(ObjCAtFinallyStmt *S) {
+ VisitStmt(S);
+ S->setFinallyBody(Reader.ReadSubStmt());
+ S->setAtFinallyLoc(ReadSourceLocation(Record, Idx));
+}
+
+void ASTStmtReader::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) {
+ VisitStmt(S);
+ S->setSubStmt(Reader.ReadSubStmt());
+ S->setAtLoc(ReadSourceLocation(Record, Idx));
+}
+
+void ASTStmtReader::VisitObjCAtTryStmt(ObjCAtTryStmt *S) {
+ VisitStmt(S);
+ assert(Record[Idx] == S->getNumCatchStmts());
+ ++Idx;
+ bool HasFinally = Record[Idx++];
+ S->setTryBody(Reader.ReadSubStmt());
+ for (unsigned I = 0, N = S->getNumCatchStmts(); I != N; ++I)
+ S->setCatchStmt(I, cast_or_null<ObjCAtCatchStmt>(Reader.ReadSubStmt()));
+
+ if (HasFinally)
+ S->setFinallyStmt(Reader.ReadSubStmt());
+ S->setAtTryLoc(ReadSourceLocation(Record, Idx));
+}
+
+void ASTStmtReader::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) {
+ VisitStmt(S);
+ S->setSynchExpr(Reader.ReadSubStmt());
+ S->setSynchBody(Reader.ReadSubStmt());
+ S->setAtSynchronizedLoc(ReadSourceLocation(Record, Idx));
+}
+
+void ASTStmtReader::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) {
+ VisitStmt(S);
+ S->setThrowExpr(Reader.ReadSubStmt());
+ S->setThrowLoc(ReadSourceLocation(Record, Idx));
+}
+
+void ASTStmtReader::VisitObjCBoolLiteralExpr(ObjCBoolLiteralExpr *E) {
+ VisitExpr(E);
+ E->setValue(Record[Idx++]);
+ E->setLocation(ReadSourceLocation(Record, Idx));
+}
+
+//===----------------------------------------------------------------------===//
+// C++ Expressions and Statements
+//===----------------------------------------------------------------------===//
+
+void ASTStmtReader::VisitCXXCatchStmt(CXXCatchStmt *S) {
+ VisitStmt(S);
+ S->CatchLoc = ReadSourceLocation(Record, Idx);
+ S->ExceptionDecl = ReadDeclAs<VarDecl>(Record, Idx);
+ S->HandlerBlock = Reader.ReadSubStmt();
+}
+
+void ASTStmtReader::VisitCXXTryStmt(CXXTryStmt *S) {
+ VisitStmt(S);
+ assert(Record[Idx] == S->getNumHandlers() && "NumStmtFields is wrong ?");
+ ++Idx;
+ S->TryLoc = ReadSourceLocation(Record, Idx);
+ S->getStmts()[0] = Reader.ReadSubStmt();
+ for (unsigned i = 0, e = S->getNumHandlers(); i != e; ++i)
+ S->getStmts()[i + 1] = Reader.ReadSubStmt();
+}
+
+void ASTStmtReader::VisitCXXForRangeStmt(CXXForRangeStmt *S) {
+ VisitStmt(S);
+ S->setForLoc(ReadSourceLocation(Record, Idx));
+ S->setColonLoc(ReadSourceLocation(Record, Idx));
+ S->setRParenLoc(ReadSourceLocation(Record, Idx));
+ S->setRangeStmt(Reader.ReadSubStmt());
+ S->setBeginEndStmt(Reader.ReadSubStmt());
+ S->setCond(Reader.ReadSubExpr());
+ S->setInc(Reader.ReadSubExpr());
+ S->setLoopVarStmt(Reader.ReadSubStmt());
+ S->setBody(Reader.ReadSubStmt());
+}
+
+void ASTStmtReader::VisitMSDependentExistsStmt(MSDependentExistsStmt *S) {
+ VisitStmt(S);
+ S->KeywordLoc = ReadSourceLocation(Record, Idx);
+ S->IsIfExists = Record[Idx++];
+ S->QualifierLoc = Reader.ReadNestedNameSpecifierLoc(F, Record, Idx);
+ ReadDeclarationNameInfo(S->NameInfo, Record, Idx);
+ S->SubStmt = Reader.ReadSubStmt();
+}
+
+void ASTStmtReader::VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
+ VisitCallExpr(E);
+ E->Operator = (OverloadedOperatorKind)Record[Idx++];
+ E->Range = Reader.ReadSourceRange(F, Record, Idx);
+ E->setFPContractable((bool)Record[Idx++]);
+}
+
+void ASTStmtReader::VisitCXXConstructExpr(CXXConstructExpr *E) {
+ VisitExpr(E);
+ E->NumArgs = Record[Idx++];
+ if (E->NumArgs)
+ E->Args = new (Reader.getContext()) Stmt*[E->NumArgs];
+ for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I)
+ E->setArg(I, Reader.ReadSubExpr());
+ E->setConstructor(ReadDeclAs<CXXConstructorDecl>(Record, Idx));
+ E->setLocation(ReadSourceLocation(Record, Idx));
+ E->setElidable(Record[Idx++]);
+ E->setHadMultipleCandidates(Record[Idx++]);
+ E->setListInitialization(Record[Idx++]);
+ E->setStdInitListInitialization(Record[Idx++]);
+ E->setRequiresZeroInitialization(Record[Idx++]);
+ E->setConstructionKind((CXXConstructExpr::ConstructionKind)Record[Idx++]);
+ E->ParenOrBraceRange = ReadSourceRange(Record, Idx);
+}
+
+void ASTStmtReader::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *E) {
+ VisitCXXConstructExpr(E);
+ E->Type = GetTypeSourceInfo(Record, Idx);
+}
+
+void ASTStmtReader::VisitLambdaExpr(LambdaExpr *E) {
+ VisitExpr(E);
+ unsigned NumCaptures = Record[Idx++];
+ assert(NumCaptures == E->NumCaptures);(void)NumCaptures;
+ unsigned NumArrayIndexVars = Record[Idx++];
+ E->IntroducerRange = ReadSourceRange(Record, Idx);
+ E->CaptureDefault = static_cast<LambdaCaptureDefault>(Record[Idx++]);
+ E->CaptureDefaultLoc = ReadSourceLocation(Record, Idx);
+ E->ExplicitParams = Record[Idx++];
+ E->ExplicitResultType = Record[Idx++];
+ E->ClosingBrace = ReadSourceLocation(Record, Idx);
+
+ // Read capture initializers.
+ for (LambdaExpr::capture_init_iterator C = E->capture_init_begin(),
+ CEnd = E->capture_init_end();
+ C != CEnd; ++C)
+ *C = Reader.ReadSubExpr();
+
+ // Read array capture index variables.
+ if (NumArrayIndexVars > 0) {
+ unsigned *ArrayIndexStarts = E->getArrayIndexStarts();
+ for (unsigned I = 0; I != NumCaptures + 1; ++I)
+ ArrayIndexStarts[I] = Record[Idx++];
+
+ VarDecl **ArrayIndexVars = E->getArrayIndexVars();
+ for (unsigned I = 0; I != NumArrayIndexVars; ++I)
+ ArrayIndexVars[I] = ReadDeclAs<VarDecl>(Record, Idx);
+ }
+}
+
+void
+ASTStmtReader::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
+ VisitExpr(E);
+ E->SubExpr = Reader.ReadSubExpr();
+}
+
+void ASTStmtReader::VisitCXXNamedCastExpr(CXXNamedCastExpr *E) {
+ VisitExplicitCastExpr(E);
+ SourceRange R = ReadSourceRange(Record, Idx);
+ E->Loc = R.getBegin();
+ E->RParenLoc = R.getEnd();
+ R = ReadSourceRange(Record, Idx);
+ E->AngleBrackets = R;
+}
+
+void ASTStmtReader::VisitCXXStaticCastExpr(CXXStaticCastExpr *E) {
+ return VisitCXXNamedCastExpr(E);
+}
+
+void ASTStmtReader::VisitCXXDynamicCastExpr(CXXDynamicCastExpr *E) {
+ return VisitCXXNamedCastExpr(E);
+}
+
+void ASTStmtReader::VisitCXXReinterpretCastExpr(CXXReinterpretCastExpr *E) {
+ return VisitCXXNamedCastExpr(E);
+}
+
+void ASTStmtReader::VisitCXXConstCastExpr(CXXConstCastExpr *E) {
+ return VisitCXXNamedCastExpr(E);
+}
+
+void ASTStmtReader::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E) {
+ VisitExplicitCastExpr(E);
+ E->setLParenLoc(ReadSourceLocation(Record, Idx));
+ E->setRParenLoc(ReadSourceLocation(Record, Idx));
+}
+
+void ASTStmtReader::VisitUserDefinedLiteral(UserDefinedLiteral *E) {
+ VisitCallExpr(E);
+ E->UDSuffixLoc = ReadSourceLocation(Record, Idx);
+}
+
+void ASTStmtReader::VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) {
+ VisitExpr(E);
+ E->setValue(Record[Idx++]);
+ E->setLocation(ReadSourceLocation(Record, Idx));
+}
+
+void ASTStmtReader::VisitCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr *E) {
+ VisitExpr(E);
+ E->setLocation(ReadSourceLocation(Record, Idx));
+}
+
+void ASTStmtReader::VisitCXXTypeidExpr(CXXTypeidExpr *E) {
+ VisitExpr(E);
+ E->setSourceRange(ReadSourceRange(Record, Idx));
+ if (E->isTypeOperand()) { // typeid(int)
+ E->setTypeOperandSourceInfo(
+ GetTypeSourceInfo(Record, Idx));
+ return;
+ }
+
+ // typeid(42+2)
+ E->setExprOperand(Reader.ReadSubExpr());
+}
+
+void ASTStmtReader::VisitCXXThisExpr(CXXThisExpr *E) {
+ VisitExpr(E);
+ E->setLocation(ReadSourceLocation(Record, Idx));
+ E->setImplicit(Record[Idx++]);
+}
+
+void ASTStmtReader::VisitCXXThrowExpr(CXXThrowExpr *E) {
+ VisitExpr(E);
+ E->ThrowLoc = ReadSourceLocation(Record, Idx);
+ E->Op = Reader.ReadSubExpr();
+ E->IsThrownVariableInScope = Record[Idx++];
+}
+
+void ASTStmtReader::VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
+ VisitExpr(E);
+
+ assert((bool)Record[Idx] == E->Param.getInt() && "We messed up at creation ?");
+ ++Idx; // HasOtherExprStored and SubExpr was handled during creation.
+ E->Param.setPointer(ReadDeclAs<ParmVarDecl>(Record, Idx));
+ E->Loc = ReadSourceLocation(Record, Idx);
+}
+
+void ASTStmtReader::VisitCXXDefaultInitExpr(CXXDefaultInitExpr *E) {
+ VisitExpr(E);
+ E->Field = ReadDeclAs<FieldDecl>(Record, Idx);
+ E->Loc = ReadSourceLocation(Record, Idx);
+}
+
+void ASTStmtReader::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
+ VisitExpr(E);
+ E->setTemporary(Reader.ReadCXXTemporary(F, Record, Idx));
+ E->setSubExpr(Reader.ReadSubExpr());
+}
+
+void ASTStmtReader::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
+ VisitExpr(E);
+ E->TypeInfo = GetTypeSourceInfo(Record, Idx);
+ E->RParenLoc = ReadSourceLocation(Record, Idx);
+}
+
+void ASTStmtReader::VisitCXXNewExpr(CXXNewExpr *E) {
+ VisitExpr(E);
+ E->GlobalNew = Record[Idx++];
+ bool isArray = Record[Idx++];
+ E->UsualArrayDeleteWantsSize = Record[Idx++];
+ unsigned NumPlacementArgs = Record[Idx++];
+ E->StoredInitializationStyle = Record[Idx++];
+ E->setOperatorNew(ReadDeclAs<FunctionDecl>(Record, Idx));
+ E->setOperatorDelete(ReadDeclAs<FunctionDecl>(Record, Idx));
+ E->AllocatedTypeInfo = GetTypeSourceInfo(Record, Idx);
+ E->TypeIdParens = ReadSourceRange(Record, Idx);
+ E->Range = ReadSourceRange(Record, Idx);
+ E->DirectInitRange = ReadSourceRange(Record, Idx);
+
+ E->AllocateArgsArray(Reader.getContext(), isArray, NumPlacementArgs,
+ E->StoredInitializationStyle != 0);
+
+ // Install all the subexpressions.
+ for (CXXNewExpr::raw_arg_iterator I = E->raw_arg_begin(),e = E->raw_arg_end();
+ I != e; ++I)
+ *I = Reader.ReadSubStmt();
+}
+
+void ASTStmtReader::VisitCXXDeleteExpr(CXXDeleteExpr *E) {
+ VisitExpr(E);
+ E->GlobalDelete = Record[Idx++];
+ E->ArrayForm = Record[Idx++];
+ E->ArrayFormAsWritten = Record[Idx++];
+ E->UsualArrayDeleteWantsSize = Record[Idx++];
+ E->OperatorDelete = ReadDeclAs<FunctionDecl>(Record, Idx);
+ E->Argument = Reader.ReadSubExpr();
+ E->Loc = ReadSourceLocation(Record, Idx);
+}
+
+void ASTStmtReader::VisitCXXPseudoDestructorExpr(CXXPseudoDestructorExpr *E) {
+ VisitExpr(E);
+
+ E->Base = Reader.ReadSubExpr();
+ E->IsArrow = Record[Idx++];
+ E->OperatorLoc = ReadSourceLocation(Record, Idx);
+ E->QualifierLoc = Reader.ReadNestedNameSpecifierLoc(F, Record, Idx);
+ E->ScopeType = GetTypeSourceInfo(Record, Idx);
+ E->ColonColonLoc = ReadSourceLocation(Record, Idx);
+ E->TildeLoc = ReadSourceLocation(Record, Idx);
+
+ IdentifierInfo *II = Reader.GetIdentifierInfo(F, Record, Idx);
+ if (II)
+ E->setDestroyedType(II, ReadSourceLocation(Record, Idx));
+ else
+ E->setDestroyedType(GetTypeSourceInfo(Record, Idx));
+}
+
+void ASTStmtReader::VisitExprWithCleanups(ExprWithCleanups *E) {
+ VisitExpr(E);
+
+ unsigned NumObjects = Record[Idx++];
+ assert(NumObjects == E->getNumObjects());
+ for (unsigned i = 0; i != NumObjects; ++i)
+ E->getObjectsBuffer()[i] = ReadDeclAs<BlockDecl>(Record, Idx);
+
+ E->SubExpr = Reader.ReadSubExpr();
+}
+
+void
+ASTStmtReader::VisitCXXDependentScopeMemberExpr(CXXDependentScopeMemberExpr *E){
+ VisitExpr(E);
+
+ if (Record[Idx++]) // HasTemplateKWAndArgsInfo
+ ReadTemplateKWAndArgsInfo(*E->getTemplateKWAndArgsInfo(),
+ /*NumTemplateArgs=*/Record[Idx++]);
+
+ E->Base = Reader.ReadSubExpr();
+ E->BaseType = Reader.readType(F, Record, Idx);
+ E->IsArrow = Record[Idx++];
+ E->OperatorLoc = ReadSourceLocation(Record, Idx);
+ E->QualifierLoc = Reader.ReadNestedNameSpecifierLoc(F, Record, Idx);
+ E->FirstQualifierFoundInScope = ReadDeclAs<NamedDecl>(Record, Idx);
+ ReadDeclarationNameInfo(E->MemberNameInfo, Record, Idx);
+}
+
+void
+ASTStmtReader::VisitDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *E) {
+ VisitExpr(E);
+
+ if (Record[Idx++]) // HasTemplateKWAndArgsInfo
+ ReadTemplateKWAndArgsInfo(*E->getTemplateKWAndArgsInfo(),
+ /*NumTemplateArgs=*/Record[Idx++]);
+
+ E->QualifierLoc = Reader.ReadNestedNameSpecifierLoc(F, Record, Idx);
+ ReadDeclarationNameInfo(E->NameInfo, Record, Idx);
+}
+
+void
+ASTStmtReader::VisitCXXUnresolvedConstructExpr(CXXUnresolvedConstructExpr *E) {
+ VisitExpr(E);
+ assert(Record[Idx] == E->arg_size() && "Read wrong record during creation ?");
+ ++Idx; // NumArgs;
+ for (unsigned I = 0, N = E->arg_size(); I != N; ++I)
+ E->setArg(I, Reader.ReadSubExpr());
+ E->Type = GetTypeSourceInfo(Record, Idx);
+ E->setLParenLoc(ReadSourceLocation(Record, Idx));
+ E->setRParenLoc(ReadSourceLocation(Record, Idx));
+}
+
+void ASTStmtReader::VisitOverloadExpr(OverloadExpr *E) {
+ VisitExpr(E);
+
+ if (Record[Idx++]) // HasTemplateKWAndArgsInfo
+ ReadTemplateKWAndArgsInfo(*E->getTemplateKWAndArgsInfo(),
+ /*NumTemplateArgs=*/Record[Idx++]);
+
+ unsigned NumDecls = Record[Idx++];
+ UnresolvedSet<8> Decls;
+ for (unsigned i = 0; i != NumDecls; ++i) {
+ NamedDecl *D = ReadDeclAs<NamedDecl>(Record, Idx);
+ AccessSpecifier AS = (AccessSpecifier)Record[Idx++];
+ Decls.addDecl(D, AS);
+ }
+ E->initializeResults(Reader.getContext(), Decls.begin(), Decls.end());
+
+ ReadDeclarationNameInfo(E->NameInfo, Record, Idx);
+ E->QualifierLoc = Reader.ReadNestedNameSpecifierLoc(F, Record, Idx);
+}
+
+void ASTStmtReader::VisitUnresolvedMemberExpr(UnresolvedMemberExpr *E) {
+ VisitOverloadExpr(E);
+ E->IsArrow = Record[Idx++];
+ E->HasUnresolvedUsing = Record[Idx++];
+ E->Base = Reader.ReadSubExpr();
+ E->BaseType = Reader.readType(F, Record, Idx);
+ E->OperatorLoc = ReadSourceLocation(Record, Idx);
+}
+
+void ASTStmtReader::VisitUnresolvedLookupExpr(UnresolvedLookupExpr *E) {
+ VisitOverloadExpr(E);
+ E->RequiresADL = Record[Idx++];
+ E->Overloaded = Record[Idx++];
+ E->NamingClass = ReadDeclAs<CXXRecordDecl>(Record, Idx);
+}
+
+void ASTStmtReader::VisitTypeTraitExpr(TypeTraitExpr *E) {
+ VisitExpr(E);
+ E->TypeTraitExprBits.NumArgs = Record[Idx++];
+ E->TypeTraitExprBits.Kind = Record[Idx++];
+ E->TypeTraitExprBits.Value = Record[Idx++];
+ SourceRange Range = ReadSourceRange(Record, Idx);
+ E->Loc = Range.getBegin();
+ E->RParenLoc = Range.getEnd();
+
+ TypeSourceInfo **Args = E->getTypeSourceInfos();
+ for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I)
+ Args[I] = GetTypeSourceInfo(Record, Idx);
+}
+
+void ASTStmtReader::VisitArrayTypeTraitExpr(ArrayTypeTraitExpr *E) {
+ VisitExpr(E);
+ E->ATT = (ArrayTypeTrait)Record[Idx++];
+ E->Value = (unsigned int)Record[Idx++];
+ SourceRange Range = ReadSourceRange(Record, Idx);
+ E->Loc = Range.getBegin();
+ E->RParen = Range.getEnd();
+ E->QueriedType = GetTypeSourceInfo(Record, Idx);
+}
+
+void ASTStmtReader::VisitExpressionTraitExpr(ExpressionTraitExpr *E) {
+ VisitExpr(E);
+ E->ET = (ExpressionTrait)Record[Idx++];
+ E->Value = (bool)Record[Idx++];
+ SourceRange Range = ReadSourceRange(Record, Idx);
+ E->QueriedExpression = Reader.ReadSubExpr();
+ E->Loc = Range.getBegin();
+ E->RParen = Range.getEnd();
+}
+
+void ASTStmtReader::VisitCXXNoexceptExpr(CXXNoexceptExpr *E) {
+ VisitExpr(E);
+ E->Value = (bool)Record[Idx++];
+ E->Range = ReadSourceRange(Record, Idx);
+ E->Operand = Reader.ReadSubExpr();
+}
+
+void ASTStmtReader::VisitPackExpansionExpr(PackExpansionExpr *E) {
+ VisitExpr(E);
+ E->EllipsisLoc = ReadSourceLocation(Record, Idx);
+ E->NumExpansions = Record[Idx++];
+ E->Pattern = Reader.ReadSubExpr();
+}
+
+void ASTStmtReader::VisitSizeOfPackExpr(SizeOfPackExpr *E) {
+ VisitExpr(E);
+ E->OperatorLoc = ReadSourceLocation(Record, Idx);
+ E->PackLoc = ReadSourceLocation(Record, Idx);
+ E->RParenLoc = ReadSourceLocation(Record, Idx);
+ E->Length = Record[Idx++];
+ E->Pack = ReadDeclAs<NamedDecl>(Record, Idx);
+}
+
+void ASTStmtReader::VisitSubstNonTypeTemplateParmExpr(
+ SubstNonTypeTemplateParmExpr *E) {
+ VisitExpr(E);
+ E->Param = ReadDeclAs<NonTypeTemplateParmDecl>(Record, Idx);
+ E->NameLoc = ReadSourceLocation(Record, Idx);
+ E->Replacement = Reader.ReadSubExpr();
+}
+
+void ASTStmtReader::VisitSubstNonTypeTemplateParmPackExpr(
+ SubstNonTypeTemplateParmPackExpr *E) {
+ VisitExpr(E);
+ E->Param = ReadDeclAs<NonTypeTemplateParmDecl>(Record, Idx);
+ TemplateArgument ArgPack = Reader.ReadTemplateArgument(F, Record, Idx);
+ if (ArgPack.getKind() != TemplateArgument::Pack)
+ return;
+
+ E->Arguments = ArgPack.pack_begin();
+ E->NumArguments = ArgPack.pack_size();
+ E->NameLoc = ReadSourceLocation(Record, Idx);
+}
+
+void ASTStmtReader::VisitFunctionParmPackExpr(FunctionParmPackExpr *E) {
+ VisitExpr(E);
+ E->NumParameters = Record[Idx++];
+ E->ParamPack = ReadDeclAs<ParmVarDecl>(Record, Idx);
+ E->NameLoc = ReadSourceLocation(Record, Idx);
+ ParmVarDecl **Parms = reinterpret_cast<ParmVarDecl**>(E+1);
+ for (unsigned i = 0, n = E->NumParameters; i != n; ++i)
+ Parms[i] = ReadDeclAs<ParmVarDecl>(Record, Idx);
+}
+
+void ASTStmtReader::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E) {
+ VisitExpr(E);
+ E->State = Reader.ReadSubExpr();
+ auto VD = ReadDeclAs<ValueDecl>(Record, Idx);
+ unsigned ManglingNumber = Record[Idx++];
+ E->setExtendingDecl(VD, ManglingNumber);
+}
+
+void ASTStmtReader::VisitCXXFoldExpr(CXXFoldExpr *E) {
+ VisitExpr(E);
+ E->LParenLoc = ReadSourceLocation(Record, Idx);
+ E->EllipsisLoc = ReadSourceLocation(Record, Idx);
+ E->RParenLoc = ReadSourceLocation(Record, Idx);
+ E->SubExprs[0] = Reader.ReadSubExpr();
+ E->SubExprs[1] = Reader.ReadSubExpr();
+ E->Opcode = (BinaryOperatorKind)Record[Idx++];
+}
+
+void ASTStmtReader::VisitOpaqueValueExpr(OpaqueValueExpr *E) {
+ VisitExpr(E);
+ E->SourceExpr = Reader.ReadSubExpr();
+ E->Loc = ReadSourceLocation(Record, Idx);
+}
+
+void ASTStmtReader::VisitTypoExpr(TypoExpr *E) {
+ llvm_unreachable("Cannot read TypoExpr nodes");
+}
+
+//===----------------------------------------------------------------------===//
+// Microsoft Expressions and Statements
+//===----------------------------------------------------------------------===//
+void ASTStmtReader::VisitMSPropertyRefExpr(MSPropertyRefExpr *E) {
+ VisitExpr(E);
+ E->IsArrow = (Record[Idx++] != 0);
+ E->BaseExpr = Reader.ReadSubExpr();
+ E->QualifierLoc = Reader.ReadNestedNameSpecifierLoc(F, Record, Idx);
+ E->MemberLoc = ReadSourceLocation(Record, Idx);
+ E->TheDecl = ReadDeclAs<MSPropertyDecl>(Record, Idx);
+}
+
+void ASTStmtReader::VisitCXXUuidofExpr(CXXUuidofExpr *E) {
+ VisitExpr(E);
+ E->setSourceRange(ReadSourceRange(Record, Idx));
+ if (E->isTypeOperand()) { // __uuidof(ComType)
+ E->setTypeOperandSourceInfo(
+ GetTypeSourceInfo(Record, Idx));
+ return;
+ }
+
+ // __uuidof(expr)
+ E->setExprOperand(Reader.ReadSubExpr());
+}
+
+void ASTStmtReader::VisitSEHLeaveStmt(SEHLeaveStmt *S) {
+ VisitStmt(S);
+ S->setLeaveLoc(ReadSourceLocation(Record, Idx));
+}
+
+void ASTStmtReader::VisitSEHExceptStmt(SEHExceptStmt *S) {
+ VisitStmt(S);
+ S->Loc = ReadSourceLocation(Record, Idx);
+ S->Children[SEHExceptStmt::FILTER_EXPR] = Reader.ReadSubStmt();
+ S->Children[SEHExceptStmt::BLOCK] = Reader.ReadSubStmt();
+}
+
+void ASTStmtReader::VisitSEHFinallyStmt(SEHFinallyStmt *S) {
+ VisitStmt(S);
+ S->Loc = ReadSourceLocation(Record, Idx);
+ S->Block = Reader.ReadSubStmt();
+}
+
+void ASTStmtReader::VisitSEHTryStmt(SEHTryStmt *S) {
+ VisitStmt(S);
+ S->IsCXXTry = Record[Idx++];
+ S->TryLoc = ReadSourceLocation(Record, Idx);
+ S->Children[SEHTryStmt::TRY] = Reader.ReadSubStmt();
+ S->Children[SEHTryStmt::HANDLER] = Reader.ReadSubStmt();
+}
+
+//===----------------------------------------------------------------------===//
+// CUDA Expressions and Statements
+//===----------------------------------------------------------------------===//
+
+void ASTStmtReader::VisitCUDAKernelCallExpr(CUDAKernelCallExpr *E) {
+ VisitCallExpr(E);
+ E->setConfig(cast<CallExpr>(Reader.ReadSubExpr()));
+}
+
+//===----------------------------------------------------------------------===//
+// OpenCL Expressions and Statements.
+//===----------------------------------------------------------------------===//
+void ASTStmtReader::VisitAsTypeExpr(AsTypeExpr *E) {
+ VisitExpr(E);
+ E->BuiltinLoc = ReadSourceLocation(Record, Idx);
+ E->RParenLoc = ReadSourceLocation(Record, Idx);
+ E->SrcExpr = Reader.ReadSubExpr();
+}
+
+//===----------------------------------------------------------------------===//
+// OpenMP Clauses.
+//===----------------------------------------------------------------------===//
+
+namespace clang {
+class OMPClauseReader : public OMPClauseVisitor<OMPClauseReader> {
+ ASTStmtReader *Reader;
+ ASTContext &Context;
+ const ASTReader::RecordData &Record;
+ unsigned &Idx;
+public:
+ OMPClauseReader(ASTStmtReader *R, ASTContext &C,
+ const ASTReader::RecordData &Record, unsigned &Idx)
+ : Reader(R), Context(C), Record(Record), Idx(Idx) { }
+#define OPENMP_CLAUSE(Name, Class) \
+ void Visit##Class(Class *S);
+#include "clang/Basic/OpenMPKinds.def"
+ OMPClause *readClause();
+};
+}
+
+OMPClause *OMPClauseReader::readClause() {
+ OMPClause *C;
+ switch (Record[Idx++]) {
+ case OMPC_if:
+ C = new (Context) OMPIfClause();
+ break;
+ case OMPC_final:
+ C = new (Context) OMPFinalClause();
+ break;
+ case OMPC_num_threads:
+ C = new (Context) OMPNumThreadsClause();
+ break;
+ case OMPC_safelen:
+ C = new (Context) OMPSafelenClause();
+ break;
+ case OMPC_collapse:
+ C = new (Context) OMPCollapseClause();
+ break;
+ case OMPC_default:
+ C = new (Context) OMPDefaultClause();
+ break;
+ case OMPC_proc_bind:
+ C = new (Context) OMPProcBindClause();
+ break;
+ case OMPC_schedule:
+ C = new (Context) OMPScheduleClause();
+ break;
+ case OMPC_ordered:
+ C = new (Context) OMPOrderedClause();
+ break;
+ case OMPC_nowait:
+ C = new (Context) OMPNowaitClause();
+ break;
+ case OMPC_untied:
+ C = new (Context) OMPUntiedClause();
+ break;
+ case OMPC_mergeable:
+ C = new (Context) OMPMergeableClause();
+ break;
+ case OMPC_read:
+ C = new (Context) OMPReadClause();
+ break;
+ case OMPC_write:
+ C = new (Context) OMPWriteClause();
+ break;
+ case OMPC_update:
+ C = new (Context) OMPUpdateClause();
+ break;
+ case OMPC_capture:
+ C = new (Context) OMPCaptureClause();
+ break;
+ case OMPC_seq_cst:
+ C = new (Context) OMPSeqCstClause();
+ break;
+ case OMPC_private:
+ C = OMPPrivateClause::CreateEmpty(Context, Record[Idx++]);
+ break;
+ case OMPC_firstprivate:
+ C = OMPFirstprivateClause::CreateEmpty(Context, Record[Idx++]);
+ break;
+ case OMPC_lastprivate:
+ C = OMPLastprivateClause::CreateEmpty(Context, Record[Idx++]);
+ break;
+ case OMPC_shared:
+ C = OMPSharedClause::CreateEmpty(Context, Record[Idx++]);
+ break;
+ case OMPC_reduction:
+ C = OMPReductionClause::CreateEmpty(Context, Record[Idx++]);
+ break;
+ case OMPC_linear:
+ C = OMPLinearClause::CreateEmpty(Context, Record[Idx++]);
+ break;
+ case OMPC_aligned:
+ C = OMPAlignedClause::CreateEmpty(Context, Record[Idx++]);
+ break;
+ case OMPC_copyin:
+ C = OMPCopyinClause::CreateEmpty(Context, Record[Idx++]);
+ break;
+ case OMPC_copyprivate:
+ C = OMPCopyprivateClause::CreateEmpty(Context, Record[Idx++]);
+ break;
+ case OMPC_flush:
+ C = OMPFlushClause::CreateEmpty(Context, Record[Idx++]);
+ break;
+ }
+ Visit(C);
+ C->setLocStart(Reader->ReadSourceLocation(Record, Idx));
+ C->setLocEnd(Reader->ReadSourceLocation(Record, Idx));
+
+ return C;
+}
+
+void OMPClauseReader::VisitOMPIfClause(OMPIfClause *C) {
+ C->setCondition(Reader->Reader.ReadSubExpr());
+ C->setLParenLoc(Reader->ReadSourceLocation(Record, Idx));
+}
+
+void OMPClauseReader::VisitOMPFinalClause(OMPFinalClause *C) {
+ C->setCondition(Reader->Reader.ReadSubExpr());
+ C->setLParenLoc(Reader->ReadSourceLocation(Record, Idx));
+}
+
+void OMPClauseReader::VisitOMPNumThreadsClause(OMPNumThreadsClause *C) {
+ C->setNumThreads(Reader->Reader.ReadSubExpr());
+ C->setLParenLoc(Reader->ReadSourceLocation(Record, Idx));
+}
+
+void OMPClauseReader::VisitOMPSafelenClause(OMPSafelenClause *C) {
+ C->setSafelen(Reader->Reader.ReadSubExpr());
+ C->setLParenLoc(Reader->ReadSourceLocation(Record, Idx));
+}
+
+void OMPClauseReader::VisitOMPCollapseClause(OMPCollapseClause *C) {
+ C->setNumForLoops(Reader->Reader.ReadSubExpr());
+ C->setLParenLoc(Reader->ReadSourceLocation(Record, Idx));
+}
+
+void OMPClauseReader::VisitOMPDefaultClause(OMPDefaultClause *C) {
+ C->setDefaultKind(
+ static_cast<OpenMPDefaultClauseKind>(Record[Idx++]));
+ C->setLParenLoc(Reader->ReadSourceLocation(Record, Idx));
+ C->setDefaultKindKwLoc(Reader->ReadSourceLocation(Record, Idx));
+}
+
+void OMPClauseReader::VisitOMPProcBindClause(OMPProcBindClause *C) {
+ C->setProcBindKind(
+ static_cast<OpenMPProcBindClauseKind>(Record[Idx++]));
+ C->setLParenLoc(Reader->ReadSourceLocation(Record, Idx));
+ C->setProcBindKindKwLoc(Reader->ReadSourceLocation(Record, Idx));
+}
+
+void OMPClauseReader::VisitOMPScheduleClause(OMPScheduleClause *C) {
+ C->setScheduleKind(
+ static_cast<OpenMPScheduleClauseKind>(Record[Idx++]));
+ C->setChunkSize(Reader->Reader.ReadSubExpr());
+ C->setHelperChunkSize(Reader->Reader.ReadSubExpr());
+ C->setLParenLoc(Reader->ReadSourceLocation(Record, Idx));
+ C->setScheduleKindLoc(Reader->ReadSourceLocation(Record, Idx));
+ C->setCommaLoc(Reader->ReadSourceLocation(Record, Idx));
+}
+
+void OMPClauseReader::VisitOMPOrderedClause(OMPOrderedClause *) {}
+
+void OMPClauseReader::VisitOMPNowaitClause(OMPNowaitClause *) {}
+
+void OMPClauseReader::VisitOMPUntiedClause(OMPUntiedClause *) {}
+
+void OMPClauseReader::VisitOMPMergeableClause(OMPMergeableClause *) {}
+
+void OMPClauseReader::VisitOMPReadClause(OMPReadClause *) {}
+
+void OMPClauseReader::VisitOMPWriteClause(OMPWriteClause *) {}
+
+void OMPClauseReader::VisitOMPUpdateClause(OMPUpdateClause *) {}
+
+void OMPClauseReader::VisitOMPCaptureClause(OMPCaptureClause *) {}
+
+void OMPClauseReader::VisitOMPSeqCstClause(OMPSeqCstClause *) {}
+
+void OMPClauseReader::VisitOMPPrivateClause(OMPPrivateClause *C) {
+ C->setLParenLoc(Reader->ReadSourceLocation(Record, Idx));
+ unsigned NumVars = C->varlist_size();
+ SmallVector<Expr *, 16> Vars;
+ Vars.reserve(NumVars);
+ for (unsigned i = 0; i != NumVars; ++i)
+ Vars.push_back(Reader->Reader.ReadSubExpr());
+ C->setVarRefs(Vars);
+ Vars.clear();
+ for (unsigned i = 0; i != NumVars; ++i)
+ Vars.push_back(Reader->Reader.ReadSubExpr());
+ C->setPrivateCopies(Vars);
+}
+
+void OMPClauseReader::VisitOMPFirstprivateClause(OMPFirstprivateClause *C) {
+ C->setLParenLoc(Reader->ReadSourceLocation(Record, Idx));
+ unsigned NumVars = C->varlist_size();
+ SmallVector<Expr *, 16> Vars;
+ Vars.reserve(NumVars);
+ for (unsigned i = 0; i != NumVars; ++i)
+ Vars.push_back(Reader->Reader.ReadSubExpr());
+ C->setVarRefs(Vars);
+ Vars.clear();
+ for (unsigned i = 0; i != NumVars; ++i)
+ Vars.push_back(Reader->Reader.ReadSubExpr());
+ C->setPrivateCopies(Vars);
+ Vars.clear();
+ for (unsigned i = 0; i != NumVars; ++i)
+ Vars.push_back(Reader->Reader.ReadSubExpr());
+ C->setInits(Vars);
+}
+
+void OMPClauseReader::VisitOMPLastprivateClause(OMPLastprivateClause *C) {
+ C->setLParenLoc(Reader->ReadSourceLocation(Record, Idx));
+ unsigned NumVars = C->varlist_size();
+ SmallVector<Expr *, 16> Vars;
+ Vars.reserve(NumVars);
+ for (unsigned i = 0; i != NumVars; ++i)
+ Vars.push_back(Reader->Reader.ReadSubExpr());
+ C->setVarRefs(Vars);
+ Vars.clear();
+ for (unsigned i = 0; i != NumVars; ++i)
+ Vars.push_back(Reader->Reader.ReadSubExpr());
+ C->setPrivateCopies(Vars);
+ Vars.clear();
+ for (unsigned i = 0; i != NumVars; ++i)
+ Vars.push_back(Reader->Reader.ReadSubExpr());
+ C->setSourceExprs(Vars);
+ Vars.clear();
+ for (unsigned i = 0; i != NumVars; ++i)
+ Vars.push_back(Reader->Reader.ReadSubExpr());
+ C->setDestinationExprs(Vars);
+ Vars.clear();
+ for (unsigned i = 0; i != NumVars; ++i)
+ Vars.push_back(Reader->Reader.ReadSubExpr());
+ C->setAssignmentOps(Vars);
+}
+
+void OMPClauseReader::VisitOMPSharedClause(OMPSharedClause *C) {
+ C->setLParenLoc(Reader->ReadSourceLocation(Record, Idx));
+ unsigned NumVars = C->varlist_size();
+ SmallVector<Expr *, 16> Vars;
+ Vars.reserve(NumVars);
+ for (unsigned i = 0; i != NumVars; ++i)
+ Vars.push_back(Reader->Reader.ReadSubExpr());
+ C->setVarRefs(Vars);
+}
+
+void OMPClauseReader::VisitOMPReductionClause(OMPReductionClause *C) {
+ C->setLParenLoc(Reader->ReadSourceLocation(Record, Idx));
+ C->setColonLoc(Reader->ReadSourceLocation(Record, Idx));
+ NestedNameSpecifierLoc NNSL =
+ Reader->Reader.ReadNestedNameSpecifierLoc(Reader->F, Record, Idx);
+ DeclarationNameInfo DNI;
+ Reader->ReadDeclarationNameInfo(DNI, Record, Idx);
+ C->setQualifierLoc(NNSL);
+ C->setNameInfo(DNI);
+
+ unsigned NumVars = C->varlist_size();
+ SmallVector<Expr *, 16> Vars;
+ Vars.reserve(NumVars);
+ for (unsigned i = 0; i != NumVars; ++i)
+ Vars.push_back(Reader->Reader.ReadSubExpr());
+ C->setVarRefs(Vars);
+ Vars.clear();
+ for (unsigned i = 0; i != NumVars; ++i)
+ Vars.push_back(Reader->Reader.ReadSubExpr());
+ C->setLHSExprs(Vars);
+ Vars.clear();
+ for (unsigned i = 0; i != NumVars; ++i)
+ Vars.push_back(Reader->Reader.ReadSubExpr());
+ C->setRHSExprs(Vars);
+ Vars.clear();
+ for (unsigned i = 0; i != NumVars; ++i)
+ Vars.push_back(Reader->Reader.ReadSubExpr());
+ C->setReductionOps(Vars);
+}
+
+void OMPClauseReader::VisitOMPLinearClause(OMPLinearClause *C) {
+ C->setLParenLoc(Reader->ReadSourceLocation(Record, Idx));
+ C->setColonLoc(Reader->ReadSourceLocation(Record, Idx));
+ unsigned NumVars = C->varlist_size();
+ SmallVector<Expr *, 16> Vars;
+ Vars.reserve(NumVars);
+ for (unsigned i = 0; i != NumVars; ++i)
+ Vars.push_back(Reader->Reader.ReadSubExpr());
+ C->setVarRefs(Vars);
+ Vars.clear();
+ for (unsigned i = 0; i != NumVars; ++i)
+ Vars.push_back(Reader->Reader.ReadSubExpr());
+ C->setInits(Vars);
+ Vars.clear();
+ for (unsigned i = 0; i != NumVars; ++i)
+ Vars.push_back(Reader->Reader.ReadSubExpr());
+ C->setUpdates(Vars);
+ Vars.clear();
+ for (unsigned i = 0; i != NumVars; ++i)
+ Vars.push_back(Reader->Reader.ReadSubExpr());
+ C->setFinals(Vars);
+ C->setStep(Reader->Reader.ReadSubExpr());
+ C->setCalcStep(Reader->Reader.ReadSubExpr());
+}
+
+void OMPClauseReader::VisitOMPAlignedClause(OMPAlignedClause *C) {
+ C->setLParenLoc(Reader->ReadSourceLocation(Record, Idx));
+ C->setColonLoc(Reader->ReadSourceLocation(Record, Idx));
+ unsigned NumVars = C->varlist_size();
+ SmallVector<Expr *, 16> Vars;
+ Vars.reserve(NumVars);
+ for (unsigned i = 0; i != NumVars; ++i)
+ Vars.push_back(Reader->Reader.ReadSubExpr());
+ C->setVarRefs(Vars);
+ C->setAlignment(Reader->Reader.ReadSubExpr());
+}
+
+void OMPClauseReader::VisitOMPCopyinClause(OMPCopyinClause *C) {
+ C->setLParenLoc(Reader->ReadSourceLocation(Record, Idx));
+ unsigned NumVars = C->varlist_size();
+ SmallVector<Expr *, 16> Exprs;
+ Exprs.reserve(NumVars);
+ for (unsigned i = 0; i != NumVars; ++i)
+ Exprs.push_back(Reader->Reader.ReadSubExpr());
+ C->setVarRefs(Exprs);
+ Exprs.clear();
+ for (unsigned i = 0; i != NumVars; ++i)
+ Exprs.push_back(Reader->Reader.ReadSubExpr());
+ C->setSourceExprs(Exprs);
+ Exprs.clear();
+ for (unsigned i = 0; i != NumVars; ++i)
+ Exprs.push_back(Reader->Reader.ReadSubExpr());
+ C->setDestinationExprs(Exprs);
+ Exprs.clear();
+ for (unsigned i = 0; i != NumVars; ++i)
+ Exprs.push_back(Reader->Reader.ReadSubExpr());
+ C->setAssignmentOps(Exprs);
+}
+
+void OMPClauseReader::VisitOMPCopyprivateClause(OMPCopyprivateClause *C) {
+ C->setLParenLoc(Reader->ReadSourceLocation(Record, Idx));
+ unsigned NumVars = C->varlist_size();
+ SmallVector<Expr *, 16> Exprs;
+ Exprs.reserve(NumVars);
+ for (unsigned i = 0; i != NumVars; ++i)
+ Exprs.push_back(Reader->Reader.ReadSubExpr());
+ C->setVarRefs(Exprs);
+ Exprs.clear();
+ for (unsigned i = 0; i != NumVars; ++i)
+ Exprs.push_back(Reader->Reader.ReadSubExpr());
+ C->setSourceExprs(Exprs);
+ Exprs.clear();
+ for (unsigned i = 0; i != NumVars; ++i)
+ Exprs.push_back(Reader->Reader.ReadSubExpr());
+ C->setDestinationExprs(Exprs);
+ Exprs.clear();
+ for (unsigned i = 0; i != NumVars; ++i)
+ Exprs.push_back(Reader->Reader.ReadSubExpr());
+ C->setAssignmentOps(Exprs);
+}
+
+void OMPClauseReader::VisitOMPFlushClause(OMPFlushClause *C) {
+ C->setLParenLoc(Reader->ReadSourceLocation(Record, Idx));
+ unsigned NumVars = C->varlist_size();
+ SmallVector<Expr *, 16> Vars;
+ Vars.reserve(NumVars);
+ for (unsigned i = 0; i != NumVars; ++i)
+ Vars.push_back(Reader->Reader.ReadSubExpr());
+ C->setVarRefs(Vars);
+}
+
+//===----------------------------------------------------------------------===//
+// OpenMP Directives.
+//===----------------------------------------------------------------------===//
+void ASTStmtReader::VisitOMPExecutableDirective(OMPExecutableDirective *E) {
+ E->setLocStart(ReadSourceLocation(Record, Idx));
+ E->setLocEnd(ReadSourceLocation(Record, Idx));
+ OMPClauseReader ClauseReader(this, Reader.getContext(), Record, Idx);
+ SmallVector<OMPClause *, 5> Clauses;
+ for (unsigned i = 0; i < E->getNumClauses(); ++i)
+ Clauses.push_back(ClauseReader.readClause());
+ E->setClauses(Clauses);
+ if (E->hasAssociatedStmt())
+ E->setAssociatedStmt(Reader.ReadSubStmt());
+}
+
+void ASTStmtReader::VisitOMPLoopDirective(OMPLoopDirective *D) {
+ VisitStmt(D);
+ // Two fields (NumClauses and CollapsedNum) were read in ReadStmtFromStream.
+ Idx += 2;
+ VisitOMPExecutableDirective(D);
+ D->setIterationVariable(Reader.ReadSubExpr());
+ D->setLastIteration(Reader.ReadSubExpr());
+ D->setCalcLastIteration(Reader.ReadSubExpr());
+ D->setPreCond(Reader.ReadSubExpr());
+ auto Fst = Reader.ReadSubExpr();
+ auto Snd = Reader.ReadSubExpr();
+ D->setCond(Fst, Snd);
+ D->setInit(Reader.ReadSubExpr());
+ D->setInc(Reader.ReadSubExpr());
+ if (isOpenMPWorksharingDirective(D->getDirectiveKind())) {
+ D->setIsLastIterVariable(Reader.ReadSubExpr());
+ D->setLowerBoundVariable(Reader.ReadSubExpr());
+ D->setUpperBoundVariable(Reader.ReadSubExpr());
+ D->setStrideVariable(Reader.ReadSubExpr());
+ D->setEnsureUpperBound(Reader.ReadSubExpr());
+ D->setNextLowerBound(Reader.ReadSubExpr());
+ D->setNextUpperBound(Reader.ReadSubExpr());
+ }
+ SmallVector<Expr *, 4> Sub;
+ unsigned CollapsedNum = D->getCollapsedNumber();
+ Sub.reserve(CollapsedNum);
+ for (unsigned i = 0; i < CollapsedNum; ++i)
+ Sub.push_back(Reader.ReadSubExpr());
+ D->setCounters(Sub);
+ Sub.clear();
+ for (unsigned i = 0; i < CollapsedNum; ++i)
+ Sub.push_back(Reader.ReadSubExpr());
+ D->setUpdates(Sub);
+ Sub.clear();
+ for (unsigned i = 0; i < CollapsedNum; ++i)
+ Sub.push_back(Reader.ReadSubExpr());
+ D->setFinals(Sub);
+}
+
+void ASTStmtReader::VisitOMPParallelDirective(OMPParallelDirective *D) {
+ VisitStmt(D);
+ // The NumClauses field was read in ReadStmtFromStream.
+ ++Idx;
+ VisitOMPExecutableDirective(D);
+}
+
+void ASTStmtReader::VisitOMPSimdDirective(OMPSimdDirective *D) {
+ VisitOMPLoopDirective(D);
+}
+
+void ASTStmtReader::VisitOMPForDirective(OMPForDirective *D) {
+ VisitOMPLoopDirective(D);
+}
+
+void ASTStmtReader::VisitOMPForSimdDirective(OMPForSimdDirective *D) {
+ VisitOMPLoopDirective(D);
+}
+
+void ASTStmtReader::VisitOMPSectionsDirective(OMPSectionsDirective *D) {
+ VisitStmt(D);
+ // The NumClauses field was read in ReadStmtFromStream.
+ ++Idx;
+ VisitOMPExecutableDirective(D);
+}
+
+void ASTStmtReader::VisitOMPSectionDirective(OMPSectionDirective *D) {
+ VisitStmt(D);
+ VisitOMPExecutableDirective(D);
+}
+
+void ASTStmtReader::VisitOMPSingleDirective(OMPSingleDirective *D) {
+ VisitStmt(D);
+ // The NumClauses field was read in ReadStmtFromStream.
+ ++Idx;
+ VisitOMPExecutableDirective(D);
+}
+
+void ASTStmtReader::VisitOMPMasterDirective(OMPMasterDirective *D) {
+ VisitStmt(D);
+ VisitOMPExecutableDirective(D);
+}
+
+void ASTStmtReader::VisitOMPCriticalDirective(OMPCriticalDirective *D) {
+ VisitStmt(D);
+ VisitOMPExecutableDirective(D);
+ ReadDeclarationNameInfo(D->DirName, Record, Idx);
+}
+
+void ASTStmtReader::VisitOMPParallelForDirective(OMPParallelForDirective *D) {
+ VisitOMPLoopDirective(D);
+}
+
+void ASTStmtReader::VisitOMPParallelForSimdDirective(
+ OMPParallelForSimdDirective *D) {
+ VisitOMPLoopDirective(D);
+}
+
+void ASTStmtReader::VisitOMPParallelSectionsDirective(
+ OMPParallelSectionsDirective *D) {
+ VisitStmt(D);
+ // The NumClauses field was read in ReadStmtFromStream.
+ ++Idx;
+ VisitOMPExecutableDirective(D);
+}
+
+void ASTStmtReader::VisitOMPTaskDirective(OMPTaskDirective *D) {
+ VisitStmt(D);
+ // The NumClauses field was read in ReadStmtFromStream.
+ ++Idx;
+ VisitOMPExecutableDirective(D);
+}
+
+void ASTStmtReader::VisitOMPTaskyieldDirective(OMPTaskyieldDirective *D) {
+ VisitStmt(D);
+ VisitOMPExecutableDirective(D);
+}
+
+void ASTStmtReader::VisitOMPBarrierDirective(OMPBarrierDirective *D) {
+ VisitStmt(D);
+ VisitOMPExecutableDirective(D);
+}
+
+void ASTStmtReader::VisitOMPTaskwaitDirective(OMPTaskwaitDirective *D) {
+ VisitStmt(D);
+ VisitOMPExecutableDirective(D);
+}
+
+void ASTStmtReader::VisitOMPFlushDirective(OMPFlushDirective *D) {
+ VisitStmt(D);
+ // The NumClauses field was read in ReadStmtFromStream.
+ ++Idx;
+ VisitOMPExecutableDirective(D);
+}
+
+void ASTStmtReader::VisitOMPOrderedDirective(OMPOrderedDirective *D) {
+ VisitStmt(D);
+ VisitOMPExecutableDirective(D);
+}
+
+void ASTStmtReader::VisitOMPAtomicDirective(OMPAtomicDirective *D) {
+ VisitStmt(D);
+ // The NumClauses field was read in ReadStmtFromStream.
+ ++Idx;
+ VisitOMPExecutableDirective(D);
+ D->setX(Reader.ReadSubExpr());
+ D->setV(Reader.ReadSubExpr());
+ D->setExpr(Reader.ReadSubExpr());
+ D->setUpdateExpr(Reader.ReadSubExpr());
+ D->IsXLHSInRHSPart = Record[Idx++] != 0;
+ D->IsPostfixUpdate = Record[Idx++] != 0;
+}
+
+void ASTStmtReader::VisitOMPTargetDirective(OMPTargetDirective *D) {
+ VisitStmt(D);
+ // The NumClauses field was read in ReadStmtFromStream.
+ ++Idx;
+ VisitOMPExecutableDirective(D);
+}
+
+void ASTStmtReader::VisitOMPTeamsDirective(OMPTeamsDirective *D) {
+ VisitStmt(D);
+ // The NumClauses field was read in ReadStmtFromStream.
+ ++Idx;
+ VisitOMPExecutableDirective(D);
+}
+
+//===----------------------------------------------------------------------===//
+// ASTReader Implementation
+//===----------------------------------------------------------------------===//
+
+Stmt *ASTReader::ReadStmt(ModuleFile &F) {
+ switch (ReadingKind) {
+ case Read_None:
+ llvm_unreachable("should not call this when not reading anything");
+ case Read_Decl:
+ case Read_Type:
+ return ReadStmtFromStream(F);
+ case Read_Stmt:
+ return ReadSubStmt();
+ }
+
+ llvm_unreachable("ReadingKind not set ?");
+}
+
+Expr *ASTReader::ReadExpr(ModuleFile &F) {
+ return cast_or_null<Expr>(ReadStmt(F));
+}
+
+Expr *ASTReader::ReadSubExpr() {
+ return cast_or_null<Expr>(ReadSubStmt());
+}
+
+// Within the bitstream, expressions are stored in Reverse Polish
+// Notation, with each of the subexpressions preceding the
+// expression they are stored in. Subexpressions are stored from last to first.
+// To evaluate expressions, we continue reading expressions and placing them on
+// the stack, with expressions having operands removing those operands from the
+// stack. Evaluation terminates when we see a STMT_STOP record, and
+// the single remaining expression on the stack is our result.
+Stmt *ASTReader::ReadStmtFromStream(ModuleFile &F) {
+
+ ReadingKindTracker ReadingKind(Read_Stmt, *this);
+ llvm::BitstreamCursor &Cursor = F.DeclsCursor;
+
+ // Map of offset to previously deserialized stmt. The offset points
+ /// just after the stmt record.
+ llvm::DenseMap<uint64_t, Stmt *> StmtEntries;
+
+#ifndef NDEBUG
+ unsigned PrevNumStmts = StmtStack.size();
+#endif
+
+ RecordData Record;
+ unsigned Idx;
+ ASTStmtReader Reader(*this, F, Cursor, Record, Idx);
+ Stmt::EmptyShell Empty;
+
+ while (true) {
+ llvm::BitstreamEntry Entry = Cursor.advanceSkippingSubblocks();
+
+ switch (Entry.Kind) {
+ case llvm::BitstreamEntry::SubBlock: // Handled for us already.
+ case llvm::BitstreamEntry::Error:
+ Error("malformed block record in AST file");
+ return nullptr;
+ case llvm::BitstreamEntry::EndBlock:
+ goto Done;
+ case llvm::BitstreamEntry::Record:
+ // The interesting case.
+ break;
+ }
+
+ Stmt *S = nullptr;
+ Idx = 0;
+ Record.clear();
+ bool Finished = false;
+ bool IsStmtReference = false;
+ switch ((StmtCode)Cursor.readRecord(Entry.ID, Record)) {
+ case STMT_STOP:
+ Finished = true;
+ break;
+
+ case STMT_REF_PTR:
+ IsStmtReference = true;
+ assert(StmtEntries.find(Record[0]) != StmtEntries.end() &&
+ "No stmt was recorded for this offset reference!");
+ S = StmtEntries[Record[Idx++]];
+ break;
+
+ case STMT_NULL_PTR:
+ S = nullptr;
+ break;
+
+ case STMT_NULL:
+ S = new (Context) NullStmt(Empty);
+ break;
+
+ case STMT_COMPOUND:
+ S = new (Context) CompoundStmt(Empty);
+ break;
+
+ case STMT_CASE:
+ S = new (Context) CaseStmt(Empty);
+ break;
+
+ case STMT_DEFAULT:
+ S = new (Context) DefaultStmt(Empty);
+ break;
+
+ case STMT_LABEL:
+ S = new (Context) LabelStmt(Empty);
+ break;
+
+ case STMT_ATTRIBUTED:
+ S = AttributedStmt::CreateEmpty(
+ Context,
+ /*NumAttrs*/Record[ASTStmtReader::NumStmtFields]);
+ break;
+
+ case STMT_IF:
+ S = new (Context) IfStmt(Empty);
+ break;
+
+ case STMT_SWITCH:
+ S = new (Context) SwitchStmt(Empty);
+ break;
+
+ case STMT_WHILE:
+ S = new (Context) WhileStmt(Empty);
+ break;
+
+ case STMT_DO:
+ S = new (Context) DoStmt(Empty);
+ break;
+
+ case STMT_FOR:
+ S = new (Context) ForStmt(Empty);
+ break;
+
+ case STMT_GOTO:
+ S = new (Context) GotoStmt(Empty);
+ break;
+
+ case STMT_INDIRECT_GOTO:
+ S = new (Context) IndirectGotoStmt(Empty);
+ break;
+
+ case STMT_CONTINUE:
+ S = new (Context) ContinueStmt(Empty);
+ break;
+
+ case STMT_BREAK:
+ S = new (Context) BreakStmt(Empty);
+ break;
+
+ case STMT_RETURN:
+ S = new (Context) ReturnStmt(Empty);
+ break;
+
+ case STMT_DECL:
+ S = new (Context) DeclStmt(Empty);
+ break;
+
+ case STMT_GCCASM:
+ S = new (Context) GCCAsmStmt(Empty);
+ break;
+
+ case STMT_MSASM:
+ S = new (Context) MSAsmStmt(Empty);
+ break;
+
+ case STMT_CAPTURED:
+ S = CapturedStmt::CreateDeserialized(Context,
+ Record[ASTStmtReader::NumStmtFields]);
+ break;
+
+ case EXPR_PREDEFINED:
+ S = new (Context) PredefinedExpr(Empty);
+ break;
+
+ case EXPR_DECL_REF:
+ S = DeclRefExpr::CreateEmpty(
+ Context,
+ /*HasQualifier=*/Record[ASTStmtReader::NumExprFields],
+ /*HasFoundDecl=*/Record[ASTStmtReader::NumExprFields + 1],
+ /*HasTemplateKWAndArgsInfo=*/Record[ASTStmtReader::NumExprFields + 2],
+ /*NumTemplateArgs=*/Record[ASTStmtReader::NumExprFields + 2] ?
+ Record[ASTStmtReader::NumExprFields + 5] : 0);
+ break;
+
+ case EXPR_INTEGER_LITERAL:
+ S = IntegerLiteral::Create(Context, Empty);
+ break;
+
+ case EXPR_FLOATING_LITERAL:
+ S = FloatingLiteral::Create(Context, Empty);
+ break;
+
+ case EXPR_IMAGINARY_LITERAL:
+ S = new (Context) ImaginaryLiteral(Empty);
+ break;
+
+ case EXPR_STRING_LITERAL:
+ S = StringLiteral::CreateEmpty(Context,
+ Record[ASTStmtReader::NumExprFields + 1]);
+ break;
+
+ case EXPR_CHARACTER_LITERAL:
+ S = new (Context) CharacterLiteral(Empty);
+ break;
+
+ case EXPR_PAREN:
+ S = new (Context) ParenExpr(Empty);
+ break;
+
+ case EXPR_PAREN_LIST:
+ S = new (Context) ParenListExpr(Empty);
+ break;
+
+ case EXPR_UNARY_OPERATOR:
+ S = new (Context) UnaryOperator(Empty);
+ break;
+
+ case EXPR_OFFSETOF:
+ S = OffsetOfExpr::CreateEmpty(Context,
+ Record[ASTStmtReader::NumExprFields],
+ Record[ASTStmtReader::NumExprFields + 1]);
+ break;
+
+ case EXPR_SIZEOF_ALIGN_OF:
+ S = new (Context) UnaryExprOrTypeTraitExpr(Empty);
+ break;
+
+ case EXPR_ARRAY_SUBSCRIPT:
+ S = new (Context) ArraySubscriptExpr(Empty);
+ break;
+
+ case EXPR_CALL:
+ S = new (Context) CallExpr(Context, Stmt::CallExprClass, Empty);
+ break;
+
+ case EXPR_MEMBER: {
+ // We load everything here and fully initialize it at creation.
+ // That way we can use MemberExpr::Create and don't have to duplicate its
+ // logic with a MemberExpr::CreateEmpty.
+
+ assert(Idx == 0);
+ NestedNameSpecifierLoc QualifierLoc;
+ if (Record[Idx++]) { // HasQualifier.
+ QualifierLoc = ReadNestedNameSpecifierLoc(F, Record, Idx);
+ }
+
+ SourceLocation TemplateKWLoc;
+ TemplateArgumentListInfo ArgInfo;
+ bool HasTemplateKWAndArgsInfo = Record[Idx++];
+ if (HasTemplateKWAndArgsInfo) {
+ TemplateKWLoc = ReadSourceLocation(F, Record, Idx);
+ unsigned NumTemplateArgs = Record[Idx++];
+ ArgInfo.setLAngleLoc(ReadSourceLocation(F, Record, Idx));
+ ArgInfo.setRAngleLoc(ReadSourceLocation(F, Record, Idx));
+ for (unsigned i = 0; i != NumTemplateArgs; ++i)
+ ArgInfo.addArgument(ReadTemplateArgumentLoc(F, Record, Idx));
+ }
+
+ bool HadMultipleCandidates = Record[Idx++];
+
+ NamedDecl *FoundD = ReadDeclAs<NamedDecl>(F, Record, Idx);
+ AccessSpecifier AS = (AccessSpecifier)Record[Idx++];
+ DeclAccessPair FoundDecl = DeclAccessPair::make(FoundD, AS);
+
+ QualType T = readType(F, Record, Idx);
+ ExprValueKind VK = static_cast<ExprValueKind>(Record[Idx++]);
+ ExprObjectKind OK = static_cast<ExprObjectKind>(Record[Idx++]);
+ Expr *Base = ReadSubExpr();
+ ValueDecl *MemberD = ReadDeclAs<ValueDecl>(F, Record, Idx);
+ SourceLocation MemberLoc = ReadSourceLocation(F, Record, Idx);
+ DeclarationNameInfo MemberNameInfo(MemberD->getDeclName(), MemberLoc);
+ bool IsArrow = Record[Idx++];
+ SourceLocation OperatorLoc = ReadSourceLocation(F, Record, Idx);
+
+ S = MemberExpr::Create(Context, Base, IsArrow, OperatorLoc, QualifierLoc,
+ TemplateKWLoc, MemberD, FoundDecl, MemberNameInfo,
+ HasTemplateKWAndArgsInfo ? &ArgInfo : nullptr, T,
+ VK, OK);
+ ReadDeclarationNameLoc(F, cast<MemberExpr>(S)->MemberDNLoc,
+ MemberD->getDeclName(), Record, Idx);
+ if (HadMultipleCandidates)
+ cast<MemberExpr>(S)->setHadMultipleCandidates(true);
+ break;
+ }
+
+ case EXPR_BINARY_OPERATOR:
+ S = new (Context) BinaryOperator(Empty);
+ break;
+
+ case EXPR_COMPOUND_ASSIGN_OPERATOR:
+ S = new (Context) CompoundAssignOperator(Empty);
+ break;
+
+ case EXPR_CONDITIONAL_OPERATOR:
+ S = new (Context) ConditionalOperator(Empty);
+ break;
+
+ case EXPR_BINARY_CONDITIONAL_OPERATOR:
+ S = new (Context) BinaryConditionalOperator(Empty);
+ break;
+
+ case EXPR_IMPLICIT_CAST:
+ S = ImplicitCastExpr::CreateEmpty(Context,
+ /*PathSize*/ Record[ASTStmtReader::NumExprFields]);
+ break;
+
+ case EXPR_CSTYLE_CAST:
+ S = CStyleCastExpr::CreateEmpty(Context,
+ /*PathSize*/ Record[ASTStmtReader::NumExprFields]);
+ break;
+
+ case EXPR_COMPOUND_LITERAL:
+ S = new (Context) CompoundLiteralExpr(Empty);
+ break;
+
+ case EXPR_EXT_VECTOR_ELEMENT:
+ S = new (Context) ExtVectorElementExpr(Empty);
+ break;
+
+ case EXPR_INIT_LIST:
+ S = new (Context) InitListExpr(Empty);
+ break;
+
+ case EXPR_DESIGNATED_INIT:
+ S = DesignatedInitExpr::CreateEmpty(Context,
+ Record[ASTStmtReader::NumExprFields] - 1);
+
+ break;
+
+ case EXPR_IMPLICIT_VALUE_INIT:
+ S = new (Context) ImplicitValueInitExpr(Empty);
+ break;
+
+ case EXPR_VA_ARG:
+ S = new (Context) VAArgExpr(Empty);
+ break;
+
+ case EXPR_ADDR_LABEL:
+ S = new (Context) AddrLabelExpr(Empty);
+ break;
+
+ case EXPR_STMT:
+ S = new (Context) StmtExpr(Empty);
+ break;
+
+ case EXPR_CHOOSE:
+ S = new (Context) ChooseExpr(Empty);
+ break;
+
+ case EXPR_GNU_NULL:
+ S = new (Context) GNUNullExpr(Empty);
+ break;
+
+ case EXPR_SHUFFLE_VECTOR:
+ S = new (Context) ShuffleVectorExpr(Empty);
+ break;
+
+ case EXPR_CONVERT_VECTOR:
+ S = new (Context) ConvertVectorExpr(Empty);
+ break;
+
+ case EXPR_BLOCK:
+ S = new (Context) BlockExpr(Empty);
+ break;
+
+ case EXPR_GENERIC_SELECTION:
+ S = new (Context) GenericSelectionExpr(Empty);
+ break;
+
+ case EXPR_OBJC_STRING_LITERAL:
+ S = new (Context) ObjCStringLiteral(Empty);
+ break;
+ case EXPR_OBJC_BOXED_EXPRESSION:
+ S = new (Context) ObjCBoxedExpr(Empty);
+ break;
+ case EXPR_OBJC_ARRAY_LITERAL:
+ S = ObjCArrayLiteral::CreateEmpty(Context,
+ Record[ASTStmtReader::NumExprFields]);
+ break;
+ case EXPR_OBJC_DICTIONARY_LITERAL:
+ S = ObjCDictionaryLiteral::CreateEmpty(Context,
+ Record[ASTStmtReader::NumExprFields],
+ Record[ASTStmtReader::NumExprFields + 1]);
+ break;
+ case EXPR_OBJC_ENCODE:
+ S = new (Context) ObjCEncodeExpr(Empty);
+ break;
+ case EXPR_OBJC_SELECTOR_EXPR:
+ S = new (Context) ObjCSelectorExpr(Empty);
+ break;
+ case EXPR_OBJC_PROTOCOL_EXPR:
+ S = new (Context) ObjCProtocolExpr(Empty);
+ break;
+ case EXPR_OBJC_IVAR_REF_EXPR:
+ S = new (Context) ObjCIvarRefExpr(Empty);
+ break;
+ case EXPR_OBJC_PROPERTY_REF_EXPR:
+ S = new (Context) ObjCPropertyRefExpr(Empty);
+ break;
+ case EXPR_OBJC_SUBSCRIPT_REF_EXPR:
+ S = new (Context) ObjCSubscriptRefExpr(Empty);
+ break;
+ case EXPR_OBJC_KVC_REF_EXPR:
+ llvm_unreachable("mismatching AST file");
+ case EXPR_OBJC_MESSAGE_EXPR:
+ S = ObjCMessageExpr::CreateEmpty(Context,
+ Record[ASTStmtReader::NumExprFields],
+ Record[ASTStmtReader::NumExprFields + 1]);
+ break;
+ case EXPR_OBJC_ISA:
+ S = new (Context) ObjCIsaExpr(Empty);
+ break;
+ case EXPR_OBJC_INDIRECT_COPY_RESTORE:
+ S = new (Context) ObjCIndirectCopyRestoreExpr(Empty);
+ break;
+ case EXPR_OBJC_BRIDGED_CAST:
+ S = new (Context) ObjCBridgedCastExpr(Empty);
+ break;
+ case STMT_OBJC_FOR_COLLECTION:
+ S = new (Context) ObjCForCollectionStmt(Empty);
+ break;
+ case STMT_OBJC_CATCH:
+ S = new (Context) ObjCAtCatchStmt(Empty);
+ break;
+ case STMT_OBJC_FINALLY:
+ S = new (Context) ObjCAtFinallyStmt(Empty);
+ break;
+ case STMT_OBJC_AT_TRY:
+ S = ObjCAtTryStmt::CreateEmpty(Context,
+ Record[ASTStmtReader::NumStmtFields],
+ Record[ASTStmtReader::NumStmtFields + 1]);
+ break;
+ case STMT_OBJC_AT_SYNCHRONIZED:
+ S = new (Context) ObjCAtSynchronizedStmt(Empty);
+ break;
+ case STMT_OBJC_AT_THROW:
+ S = new (Context) ObjCAtThrowStmt(Empty);
+ break;
+ case STMT_OBJC_AUTORELEASE_POOL:
+ S = new (Context) ObjCAutoreleasePoolStmt(Empty);
+ break;
+ case EXPR_OBJC_BOOL_LITERAL:
+ S = new (Context) ObjCBoolLiteralExpr(Empty);
+ break;
+ case STMT_SEH_LEAVE:
+ S = new (Context) SEHLeaveStmt(Empty);
+ break;
+ case STMT_SEH_EXCEPT:
+ S = new (Context) SEHExceptStmt(Empty);
+ break;
+ case STMT_SEH_FINALLY:
+ S = new (Context) SEHFinallyStmt(Empty);
+ break;
+ case STMT_SEH_TRY:
+ S = new (Context) SEHTryStmt(Empty);
+ break;
+ case STMT_CXX_CATCH:
+ S = new (Context) CXXCatchStmt(Empty);
+ break;
+
+ case STMT_CXX_TRY:
+ S = CXXTryStmt::Create(Context, Empty,
+ /*NumHandlers=*/Record[ASTStmtReader::NumStmtFields]);
+ break;
+
+ case STMT_CXX_FOR_RANGE:
+ S = new (Context) CXXForRangeStmt(Empty);
+ break;
+
+ case STMT_MS_DEPENDENT_EXISTS:
+ S = new (Context) MSDependentExistsStmt(SourceLocation(), true,
+ NestedNameSpecifierLoc(),
+ DeclarationNameInfo(),
+ nullptr);
+ break;
+
+ case STMT_OMP_PARALLEL_DIRECTIVE:
+ S =
+ OMPParallelDirective::CreateEmpty(Context,
+ Record[ASTStmtReader::NumStmtFields],
+ Empty);
+ break;
+
+ case STMT_OMP_SIMD_DIRECTIVE: {
+ unsigned NumClauses = Record[ASTStmtReader::NumStmtFields];
+ unsigned CollapsedNum = Record[ASTStmtReader::NumStmtFields + 1];
+ S = OMPSimdDirective::CreateEmpty(Context, NumClauses,
+ CollapsedNum, Empty);
+ break;
+ }
+
+ case STMT_OMP_FOR_DIRECTIVE: {
+ unsigned NumClauses = Record[ASTStmtReader::NumStmtFields];
+ unsigned CollapsedNum = Record[ASTStmtReader::NumStmtFields + 1];
+ S = OMPForDirective::CreateEmpty(Context, NumClauses, CollapsedNum,
+ Empty);
+ break;
+ }
+
+ case STMT_OMP_FOR_SIMD_DIRECTIVE: {
+ unsigned NumClauses = Record[ASTStmtReader::NumStmtFields];
+ unsigned CollapsedNum = Record[ASTStmtReader::NumStmtFields + 1];
+ S = OMPForSimdDirective::CreateEmpty(Context, NumClauses, CollapsedNum,
+ Empty);
+ break;
+ }
+
+ case STMT_OMP_SECTIONS_DIRECTIVE:
+ S = OMPSectionsDirective::CreateEmpty(
+ Context, Record[ASTStmtReader::NumStmtFields], Empty);
+ break;
+
+ case STMT_OMP_SECTION_DIRECTIVE:
+ S = OMPSectionDirective::CreateEmpty(Context, Empty);
+ break;
+
+ case STMT_OMP_SINGLE_DIRECTIVE:
+ S = OMPSingleDirective::CreateEmpty(
+ Context, Record[ASTStmtReader::NumStmtFields], Empty);
+ break;
+
+ case STMT_OMP_MASTER_DIRECTIVE:
+ S = OMPMasterDirective::CreateEmpty(Context, Empty);
+ break;
+
+ case STMT_OMP_CRITICAL_DIRECTIVE:
+ S = OMPCriticalDirective::CreateEmpty(Context, Empty);
+ break;
+
+ case STMT_OMP_PARALLEL_FOR_DIRECTIVE: {
+ unsigned NumClauses = Record[ASTStmtReader::NumStmtFields];
+ unsigned CollapsedNum = Record[ASTStmtReader::NumStmtFields + 1];
+ S = OMPParallelForDirective::CreateEmpty(Context, NumClauses,
+ CollapsedNum, Empty);
+ break;
+ }
+
+ case STMT_OMP_PARALLEL_FOR_SIMD_DIRECTIVE: {
+ unsigned NumClauses = Record[ASTStmtReader::NumStmtFields];
+ unsigned CollapsedNum = Record[ASTStmtReader::NumStmtFields + 1];
+ S = OMPParallelForSimdDirective::CreateEmpty(Context, NumClauses,
+ CollapsedNum, Empty);
+ break;
+ }
+
+ case STMT_OMP_PARALLEL_SECTIONS_DIRECTIVE:
+ S = OMPParallelSectionsDirective::CreateEmpty(
+ Context, Record[ASTStmtReader::NumStmtFields], Empty);
+ break;
+
+ case STMT_OMP_TASK_DIRECTIVE:
+ S = OMPTaskDirective::CreateEmpty(
+ Context, Record[ASTStmtReader::NumStmtFields], Empty);
+ break;
+
+ case STMT_OMP_TASKYIELD_DIRECTIVE:
+ S = OMPTaskyieldDirective::CreateEmpty(Context, Empty);
+ break;
+
+ case STMT_OMP_BARRIER_DIRECTIVE:
+ S = OMPBarrierDirective::CreateEmpty(Context, Empty);
+ break;
+
+ case STMT_OMP_TASKWAIT_DIRECTIVE:
+ S = OMPTaskwaitDirective::CreateEmpty(Context, Empty);
+ break;
+
+ case STMT_OMP_FLUSH_DIRECTIVE:
+ S = OMPFlushDirective::CreateEmpty(
+ Context, Record[ASTStmtReader::NumStmtFields], Empty);
+ break;
+
+ case STMT_OMP_ORDERED_DIRECTIVE:
+ S = OMPOrderedDirective::CreateEmpty(Context, Empty);
+ break;
+
+ case STMT_OMP_ATOMIC_DIRECTIVE:
+ S = OMPAtomicDirective::CreateEmpty(
+ Context, Record[ASTStmtReader::NumStmtFields], Empty);
+ break;
+
+ case STMT_OMP_TARGET_DIRECTIVE:
+ S = OMPTargetDirective::CreateEmpty(
+ Context, Record[ASTStmtReader::NumStmtFields], Empty);
+ break;
+
+ case STMT_OMP_TEAMS_DIRECTIVE:
+ S = OMPTeamsDirective::CreateEmpty(
+ Context, Record[ASTStmtReader::NumStmtFields], Empty);
+ break;
+
+ case EXPR_CXX_OPERATOR_CALL:
+ S = new (Context) CXXOperatorCallExpr(Context, Empty);
+ break;
+
+ case EXPR_CXX_MEMBER_CALL:
+ S = new (Context) CXXMemberCallExpr(Context, Empty);
+ break;
+
+ case EXPR_CXX_CONSTRUCT:
+ S = new (Context) CXXConstructExpr(Empty);
+ break;
+
+ case EXPR_CXX_TEMPORARY_OBJECT:
+ S = new (Context) CXXTemporaryObjectExpr(Empty);
+ break;
+
+ case EXPR_CXX_STATIC_CAST:
+ S = CXXStaticCastExpr::CreateEmpty(Context,
+ /*PathSize*/ Record[ASTStmtReader::NumExprFields]);
+ break;
+
+ case EXPR_CXX_DYNAMIC_CAST:
+ S = CXXDynamicCastExpr::CreateEmpty(Context,
+ /*PathSize*/ Record[ASTStmtReader::NumExprFields]);
+ break;
+
+ case EXPR_CXX_REINTERPRET_CAST:
+ S = CXXReinterpretCastExpr::CreateEmpty(Context,
+ /*PathSize*/ Record[ASTStmtReader::NumExprFields]);
+ break;
+
+ case EXPR_CXX_CONST_CAST:
+ S = CXXConstCastExpr::CreateEmpty(Context);
+ break;
+
+ case EXPR_CXX_FUNCTIONAL_CAST:
+ S = CXXFunctionalCastExpr::CreateEmpty(Context,
+ /*PathSize*/ Record[ASTStmtReader::NumExprFields]);
+ break;
+
+ case EXPR_USER_DEFINED_LITERAL:
+ S = new (Context) UserDefinedLiteral(Context, Empty);
+ break;
+
+ case EXPR_CXX_STD_INITIALIZER_LIST:
+ S = new (Context) CXXStdInitializerListExpr(Empty);
+ break;
+
+ case EXPR_CXX_BOOL_LITERAL:
+ S = new (Context) CXXBoolLiteralExpr(Empty);
+ break;
+
+ case EXPR_CXX_NULL_PTR_LITERAL:
+ S = new (Context) CXXNullPtrLiteralExpr(Empty);
+ break;
+ case EXPR_CXX_TYPEID_EXPR:
+ S = new (Context) CXXTypeidExpr(Empty, true);
+ break;
+ case EXPR_CXX_TYPEID_TYPE:
+ S = new (Context) CXXTypeidExpr(Empty, false);
+ break;
+ case EXPR_CXX_UUIDOF_EXPR:
+ S = new (Context) CXXUuidofExpr(Empty, true);
+ break;
+ case EXPR_CXX_PROPERTY_REF_EXPR:
+ S = new (Context) MSPropertyRefExpr(Empty);
+ break;
+ case EXPR_CXX_UUIDOF_TYPE:
+ S = new (Context) CXXUuidofExpr(Empty, false);
+ break;
+ case EXPR_CXX_THIS:
+ S = new (Context) CXXThisExpr(Empty);
+ break;
+ case EXPR_CXX_THROW:
+ S = new (Context) CXXThrowExpr(Empty);
+ break;
+ case EXPR_CXX_DEFAULT_ARG: {
+ bool HasOtherExprStored = Record[ASTStmtReader::NumExprFields];
+ if (HasOtherExprStored) {
+ Expr *SubExpr = ReadSubExpr();
+ S = CXXDefaultArgExpr::Create(Context, SourceLocation(), nullptr,
+ SubExpr);
+ } else
+ S = new (Context) CXXDefaultArgExpr(Empty);
+ break;
+ }
+ case EXPR_CXX_DEFAULT_INIT:
+ S = new (Context) CXXDefaultInitExpr(Empty);
+ break;
+ case EXPR_CXX_BIND_TEMPORARY:
+ S = new (Context) CXXBindTemporaryExpr(Empty);
+ break;
+
+ case EXPR_CXX_SCALAR_VALUE_INIT:
+ S = new (Context) CXXScalarValueInitExpr(Empty);
+ break;
+ case EXPR_CXX_NEW:
+ S = new (Context) CXXNewExpr(Empty);
+ break;
+ case EXPR_CXX_DELETE:
+ S = new (Context) CXXDeleteExpr(Empty);
+ break;
+ case EXPR_CXX_PSEUDO_DESTRUCTOR:
+ S = new (Context) CXXPseudoDestructorExpr(Empty);
+ break;
+
+ case EXPR_EXPR_WITH_CLEANUPS:
+ S = ExprWithCleanups::Create(Context, Empty,
+ Record[ASTStmtReader::NumExprFields]);
+ break;
+
+ case EXPR_CXX_DEPENDENT_SCOPE_MEMBER:
+ S = CXXDependentScopeMemberExpr::CreateEmpty(Context,
+ /*HasTemplateKWAndArgsInfo=*/Record[ASTStmtReader::NumExprFields],
+ /*NumTemplateArgs=*/Record[ASTStmtReader::NumExprFields]
+ ? Record[ASTStmtReader::NumExprFields + 1]
+ : 0);
+ break;
+
+ case EXPR_CXX_DEPENDENT_SCOPE_DECL_REF:
+ S = DependentScopeDeclRefExpr::CreateEmpty(Context,
+ /*HasTemplateKWAndArgsInfo=*/Record[ASTStmtReader::NumExprFields],
+ /*NumTemplateArgs=*/Record[ASTStmtReader::NumExprFields]
+ ? Record[ASTStmtReader::NumExprFields + 1]
+ : 0);
+ break;
+
+ case EXPR_CXX_UNRESOLVED_CONSTRUCT:
+ S = CXXUnresolvedConstructExpr::CreateEmpty(Context,
+ /*NumArgs=*/Record[ASTStmtReader::NumExprFields]);
+ break;
+
+ case EXPR_CXX_UNRESOLVED_MEMBER:
+ S = UnresolvedMemberExpr::CreateEmpty(Context,
+ /*HasTemplateKWAndArgsInfo=*/Record[ASTStmtReader::NumExprFields],
+ /*NumTemplateArgs=*/Record[ASTStmtReader::NumExprFields]
+ ? Record[ASTStmtReader::NumExprFields + 1]
+ : 0);
+ break;
+
+ case EXPR_CXX_UNRESOLVED_LOOKUP:
+ S = UnresolvedLookupExpr::CreateEmpty(Context,
+ /*HasTemplateKWAndArgsInfo=*/Record[ASTStmtReader::NumExprFields],
+ /*NumTemplateArgs=*/Record[ASTStmtReader::NumExprFields]
+ ? Record[ASTStmtReader::NumExprFields + 1]
+ : 0);
+ break;
+
+ case EXPR_TYPE_TRAIT:
+ S = TypeTraitExpr::CreateDeserialized(Context,
+ Record[ASTStmtReader::NumExprFields]);
+ break;
+
+ case EXPR_ARRAY_TYPE_TRAIT:
+ S = new (Context) ArrayTypeTraitExpr(Empty);
+ break;
+
+ case EXPR_CXX_EXPRESSION_TRAIT:
+ S = new (Context) ExpressionTraitExpr(Empty);
+ break;
+
+ case EXPR_CXX_NOEXCEPT:
+ S = new (Context) CXXNoexceptExpr(Empty);
+ break;
+
+ case EXPR_PACK_EXPANSION:
+ S = new (Context) PackExpansionExpr(Empty);
+ break;
+
+ case EXPR_SIZEOF_PACK:
+ S = new (Context) SizeOfPackExpr(Empty);
+ break;
+
+ case EXPR_SUBST_NON_TYPE_TEMPLATE_PARM:
+ S = new (Context) SubstNonTypeTemplateParmExpr(Empty);
+ break;
+
+ case EXPR_SUBST_NON_TYPE_TEMPLATE_PARM_PACK:
+ S = new (Context) SubstNonTypeTemplateParmPackExpr(Empty);
+ break;
+
+ case EXPR_FUNCTION_PARM_PACK:
+ S = FunctionParmPackExpr::CreateEmpty(Context,
+ Record[ASTStmtReader::NumExprFields]);
+ break;
+
+ case EXPR_MATERIALIZE_TEMPORARY:
+ S = new (Context) MaterializeTemporaryExpr(Empty);
+ break;
+
+ case EXPR_CXX_FOLD:
+ S = new (Context) CXXFoldExpr(Empty);
+ break;
+
+ case EXPR_OPAQUE_VALUE:
+ S = new (Context) OpaqueValueExpr(Empty);
+ break;
+
+ case EXPR_CUDA_KERNEL_CALL:
+ S = new (Context) CUDAKernelCallExpr(Context, Empty);
+ break;
+
+ case EXPR_ASTYPE:
+ S = new (Context) AsTypeExpr(Empty);
+ break;
+
+ case EXPR_PSEUDO_OBJECT: {
+ unsigned numSemanticExprs = Record[ASTStmtReader::NumExprFields];
+ S = PseudoObjectExpr::Create(Context, Empty, numSemanticExprs);
+ break;
+ }
+
+ case EXPR_ATOMIC:
+ S = new (Context) AtomicExpr(Empty);
+ break;
+
+ case EXPR_LAMBDA: {
+ unsigned NumCaptures = Record[ASTStmtReader::NumExprFields];
+ unsigned NumArrayIndexVars = Record[ASTStmtReader::NumExprFields + 1];
+ S = LambdaExpr::CreateDeserialized(Context, NumCaptures,
+ NumArrayIndexVars);
+ break;
+ }
+ }
+
+ // We hit a STMT_STOP, so we're done with this expression.
+ if (Finished)
+ break;
+
+ ++NumStatementsRead;
+
+ if (S && !IsStmtReference) {
+ Reader.Visit(S);
+ StmtEntries[Cursor.GetCurrentBitNo()] = S;
+ }
+
+
+ assert(Idx == Record.size() && "Invalid deserialization of statement");
+ StmtStack.push_back(S);
+ }
+Done:
+ assert(StmtStack.size() > PrevNumStmts && "Read too many sub-stmts!");
+ assert(StmtStack.size() == PrevNumStmts + 1 && "Extra expressions on stack!");
+ return StmtStack.pop_back_val();
+}
diff --git a/contrib/llvm/tools/clang/lib/Serialization/ASTWriter.cpp b/contrib/llvm/tools/clang/lib/Serialization/ASTWriter.cpp
new file mode 100644
index 0000000..bf74c84
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Serialization/ASTWriter.cpp
@@ -0,0 +1,5770 @@
+//===--- ASTWriter.cpp - AST File Writer ----------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the ASTWriter class, which writes AST files.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Serialization/ASTWriter.h"
+#include "ASTCommon.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclContextInternals.h"
+#include "clang/AST/DeclFriend.h"
+#include "clang/AST/DeclLookups.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/Type.h"
+#include "clang/AST/TypeLocVisitor.h"
+#include "clang/Basic/DiagnosticOptions.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/FileSystemStatCache.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/SourceManagerInternals.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Basic/TargetOptions.h"
+#include "clang/Basic/Version.h"
+#include "clang/Basic/VersionTuple.h"
+#include "clang/Lex/HeaderSearch.h"
+#include "clang/Lex/HeaderSearchOptions.h"
+#include "clang/Lex/MacroInfo.h"
+#include "clang/Lex/PreprocessingRecord.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Lex/PreprocessorOptions.h"
+#include "clang/Sema/IdentifierResolver.h"
+#include "clang/Sema/Sema.h"
+#include "clang/Serialization/ASTReader.h"
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/Hashing.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Bitcode/BitstreamWriter.h"
+#include "llvm/Support/EndianStream.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/OnDiskHashTable.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/Process.h"
+#include <algorithm>
+#include <cstdio>
+#include <string.h>
+#include <utility>
+using namespace clang;
+using namespace clang::serialization;
+
+template <typename T, typename Allocator>
+static StringRef bytes(const std::vector<T, Allocator> &v) {
+ if (v.empty()) return StringRef();
+ return StringRef(reinterpret_cast<const char*>(&v[0]),
+ sizeof(T) * v.size());
+}
+
+template <typename T>
+static StringRef bytes(const SmallVectorImpl<T> &v) {
+ return StringRef(reinterpret_cast<const char*>(v.data()),
+ sizeof(T) * v.size());
+}
+
+//===----------------------------------------------------------------------===//
+// Type serialization
+//===----------------------------------------------------------------------===//
+
+namespace {
+ class ASTTypeWriter {
+ ASTWriter &Writer;
+ ASTWriter::RecordDataImpl &Record;
+
+ public:
+ /// \brief Type code that corresponds to the record generated.
+ TypeCode Code;
+ /// \brief Abbreviation to use for the record, if any.
+ unsigned AbbrevToUse;
+
+ ASTTypeWriter(ASTWriter &Writer, ASTWriter::RecordDataImpl &Record)
+ : Writer(Writer), Record(Record), Code(TYPE_EXT_QUAL) { }
+
+ void VisitArrayType(const ArrayType *T);
+ void VisitFunctionType(const FunctionType *T);
+ void VisitTagType(const TagType *T);
+
+#define TYPE(Class, Base) void Visit##Class##Type(const Class##Type *T);
+#define ABSTRACT_TYPE(Class, Base)
+#include "clang/AST/TypeNodes.def"
+ };
+}
+
+void ASTTypeWriter::VisitBuiltinType(const BuiltinType *T) {
+ llvm_unreachable("Built-in types are never serialized");
+}
+
+void ASTTypeWriter::VisitComplexType(const ComplexType *T) {
+ Writer.AddTypeRef(T->getElementType(), Record);
+ Code = TYPE_COMPLEX;
+}
+
+void ASTTypeWriter::VisitPointerType(const PointerType *T) {
+ Writer.AddTypeRef(T->getPointeeType(), Record);
+ Code = TYPE_POINTER;
+}
+
+void ASTTypeWriter::VisitDecayedType(const DecayedType *T) {
+ Writer.AddTypeRef(T->getOriginalType(), Record);
+ Code = TYPE_DECAYED;
+}
+
+void ASTTypeWriter::VisitAdjustedType(const AdjustedType *T) {
+ Writer.AddTypeRef(T->getOriginalType(), Record);
+ Writer.AddTypeRef(T->getAdjustedType(), Record);
+ Code = TYPE_ADJUSTED;
+}
+
+void ASTTypeWriter::VisitBlockPointerType(const BlockPointerType *T) {
+ Writer.AddTypeRef(T->getPointeeType(), Record);
+ Code = TYPE_BLOCK_POINTER;
+}
+
+void ASTTypeWriter::VisitLValueReferenceType(const LValueReferenceType *T) {
+ Writer.AddTypeRef(T->getPointeeTypeAsWritten(), Record);
+ Record.push_back(T->isSpelledAsLValue());
+ Code = TYPE_LVALUE_REFERENCE;
+}
+
+void ASTTypeWriter::VisitRValueReferenceType(const RValueReferenceType *T) {
+ Writer.AddTypeRef(T->getPointeeTypeAsWritten(), Record);
+ Code = TYPE_RVALUE_REFERENCE;
+}
+
+void ASTTypeWriter::VisitMemberPointerType(const MemberPointerType *T) {
+ Writer.AddTypeRef(T->getPointeeType(), Record);
+ Writer.AddTypeRef(QualType(T->getClass(), 0), Record);
+ Code = TYPE_MEMBER_POINTER;
+}
+
+void ASTTypeWriter::VisitArrayType(const ArrayType *T) {
+ Writer.AddTypeRef(T->getElementType(), Record);
+ Record.push_back(T->getSizeModifier()); // FIXME: stable values
+ Record.push_back(T->getIndexTypeCVRQualifiers()); // FIXME: stable values
+}
+
+void ASTTypeWriter::VisitConstantArrayType(const ConstantArrayType *T) {
+ VisitArrayType(T);
+ Writer.AddAPInt(T->getSize(), Record);
+ Code = TYPE_CONSTANT_ARRAY;
+}
+
+void ASTTypeWriter::VisitIncompleteArrayType(const IncompleteArrayType *T) {
+ VisitArrayType(T);
+ Code = TYPE_INCOMPLETE_ARRAY;
+}
+
+void ASTTypeWriter::VisitVariableArrayType(const VariableArrayType *T) {
+ VisitArrayType(T);
+ Writer.AddSourceLocation(T->getLBracketLoc(), Record);
+ Writer.AddSourceLocation(T->getRBracketLoc(), Record);
+ Writer.AddStmt(T->getSizeExpr());
+ Code = TYPE_VARIABLE_ARRAY;
+}
+
+void ASTTypeWriter::VisitVectorType(const VectorType *T) {
+ Writer.AddTypeRef(T->getElementType(), Record);
+ Record.push_back(T->getNumElements());
+ Record.push_back(T->getVectorKind());
+ Code = TYPE_VECTOR;
+}
+
+void ASTTypeWriter::VisitExtVectorType(const ExtVectorType *T) {
+ VisitVectorType(T);
+ Code = TYPE_EXT_VECTOR;
+}
+
+void ASTTypeWriter::VisitFunctionType(const FunctionType *T) {
+ Writer.AddTypeRef(T->getReturnType(), Record);
+ FunctionType::ExtInfo C = T->getExtInfo();
+ Record.push_back(C.getNoReturn());
+ Record.push_back(C.getHasRegParm());
+ Record.push_back(C.getRegParm());
+ // FIXME: need to stabilize encoding of calling convention...
+ Record.push_back(C.getCC());
+ Record.push_back(C.getProducesResult());
+
+ if (C.getHasRegParm() || C.getRegParm() || C.getProducesResult())
+ AbbrevToUse = 0;
+}
+
+void ASTTypeWriter::VisitFunctionNoProtoType(const FunctionNoProtoType *T) {
+ VisitFunctionType(T);
+ Code = TYPE_FUNCTION_NO_PROTO;
+}
+
+static void addExceptionSpec(ASTWriter &Writer, const FunctionProtoType *T,
+ ASTWriter::RecordDataImpl &Record) {
+ Record.push_back(T->getExceptionSpecType());
+ if (T->getExceptionSpecType() == EST_Dynamic) {
+ Record.push_back(T->getNumExceptions());
+ for (unsigned I = 0, N = T->getNumExceptions(); I != N; ++I)
+ Writer.AddTypeRef(T->getExceptionType(I), Record);
+ } else if (T->getExceptionSpecType() == EST_ComputedNoexcept) {
+ Writer.AddStmt(T->getNoexceptExpr());
+ } else if (T->getExceptionSpecType() == EST_Uninstantiated) {
+ Writer.AddDeclRef(T->getExceptionSpecDecl(), Record);
+ Writer.AddDeclRef(T->getExceptionSpecTemplate(), Record);
+ } else if (T->getExceptionSpecType() == EST_Unevaluated) {
+ Writer.AddDeclRef(T->getExceptionSpecDecl(), Record);
+ }
+}
+
+void ASTTypeWriter::VisitFunctionProtoType(const FunctionProtoType *T) {
+ VisitFunctionType(T);
+
+ Record.push_back(T->isVariadic());
+ Record.push_back(T->hasTrailingReturn());
+ Record.push_back(T->getTypeQuals());
+ Record.push_back(static_cast<unsigned>(T->getRefQualifier()));
+ addExceptionSpec(Writer, T, Record);
+
+ Record.push_back(T->getNumParams());
+ for (unsigned I = 0, N = T->getNumParams(); I != N; ++I)
+ Writer.AddTypeRef(T->getParamType(I), Record);
+
+ if (T->isVariadic() || T->hasTrailingReturn() || T->getTypeQuals() ||
+ T->getRefQualifier() || T->getExceptionSpecType() != EST_None)
+ AbbrevToUse = 0;
+
+ Code = TYPE_FUNCTION_PROTO;
+}
+
+void ASTTypeWriter::VisitUnresolvedUsingType(const UnresolvedUsingType *T) {
+ Writer.AddDeclRef(T->getDecl(), Record);
+ Code = TYPE_UNRESOLVED_USING;
+}
+
+void ASTTypeWriter::VisitTypedefType(const TypedefType *T) {
+ Writer.AddDeclRef(T->getDecl(), Record);
+ assert(!T->isCanonicalUnqualified() && "Invalid typedef ?");
+ Writer.AddTypeRef(T->getCanonicalTypeInternal(), Record);
+ Code = TYPE_TYPEDEF;
+}
+
+void ASTTypeWriter::VisitTypeOfExprType(const TypeOfExprType *T) {
+ Writer.AddStmt(T->getUnderlyingExpr());
+ Code = TYPE_TYPEOF_EXPR;
+}
+
+void ASTTypeWriter::VisitTypeOfType(const TypeOfType *T) {
+ Writer.AddTypeRef(T->getUnderlyingType(), Record);
+ Code = TYPE_TYPEOF;
+}
+
+void ASTTypeWriter::VisitDecltypeType(const DecltypeType *T) {
+ Writer.AddTypeRef(T->getUnderlyingType(), Record);
+ Writer.AddStmt(T->getUnderlyingExpr());
+ Code = TYPE_DECLTYPE;
+}
+
+void ASTTypeWriter::VisitUnaryTransformType(const UnaryTransformType *T) {
+ Writer.AddTypeRef(T->getBaseType(), Record);
+ Writer.AddTypeRef(T->getUnderlyingType(), Record);
+ Record.push_back(T->getUTTKind());
+ Code = TYPE_UNARY_TRANSFORM;
+}
+
+void ASTTypeWriter::VisitAutoType(const AutoType *T) {
+ Writer.AddTypeRef(T->getDeducedType(), Record);
+ Record.push_back(T->isDecltypeAuto());
+ if (T->getDeducedType().isNull())
+ Record.push_back(T->isDependentType());
+ Code = TYPE_AUTO;
+}
+
+void ASTTypeWriter::VisitTagType(const TagType *T) {
+ Record.push_back(T->isDependentType());
+ Writer.AddDeclRef(T->getDecl()->getCanonicalDecl(), Record);
+ assert(!T->isBeingDefined() &&
+ "Cannot serialize in the middle of a type definition");
+}
+
+void ASTTypeWriter::VisitRecordType(const RecordType *T) {
+ VisitTagType(T);
+ Code = TYPE_RECORD;
+}
+
+void ASTTypeWriter::VisitEnumType(const EnumType *T) {
+ VisitTagType(T);
+ Code = TYPE_ENUM;
+}
+
+void ASTTypeWriter::VisitAttributedType(const AttributedType *T) {
+ Writer.AddTypeRef(T->getModifiedType(), Record);
+ Writer.AddTypeRef(T->getEquivalentType(), Record);
+ Record.push_back(T->getAttrKind());
+ Code = TYPE_ATTRIBUTED;
+}
+
+void
+ASTTypeWriter::VisitSubstTemplateTypeParmType(
+ const SubstTemplateTypeParmType *T) {
+ Writer.AddTypeRef(QualType(T->getReplacedParameter(), 0), Record);
+ Writer.AddTypeRef(T->getReplacementType(), Record);
+ Code = TYPE_SUBST_TEMPLATE_TYPE_PARM;
+}
+
+void
+ASTTypeWriter::VisitSubstTemplateTypeParmPackType(
+ const SubstTemplateTypeParmPackType *T) {
+ Writer.AddTypeRef(QualType(T->getReplacedParameter(), 0), Record);
+ Writer.AddTemplateArgument(T->getArgumentPack(), Record);
+ Code = TYPE_SUBST_TEMPLATE_TYPE_PARM_PACK;
+}
+
+void
+ASTTypeWriter::VisitTemplateSpecializationType(
+ const TemplateSpecializationType *T) {
+ Record.push_back(T->isDependentType());
+ Writer.AddTemplateName(T->getTemplateName(), Record);
+ Record.push_back(T->getNumArgs());
+ for (TemplateSpecializationType::iterator ArgI = T->begin(), ArgE = T->end();
+ ArgI != ArgE; ++ArgI)
+ Writer.AddTemplateArgument(*ArgI, Record);
+ Writer.AddTypeRef(T->isTypeAlias() ? T->getAliasedType() :
+ T->isCanonicalUnqualified() ? QualType()
+ : T->getCanonicalTypeInternal(),
+ Record);
+ Code = TYPE_TEMPLATE_SPECIALIZATION;
+}
+
+void
+ASTTypeWriter::VisitDependentSizedArrayType(const DependentSizedArrayType *T) {
+ VisitArrayType(T);
+ Writer.AddStmt(T->getSizeExpr());
+ Writer.AddSourceRange(T->getBracketsRange(), Record);
+ Code = TYPE_DEPENDENT_SIZED_ARRAY;
+}
+
+void
+ASTTypeWriter::VisitDependentSizedExtVectorType(
+ const DependentSizedExtVectorType *T) {
+ // FIXME: Serialize this type (C++ only)
+ llvm_unreachable("Cannot serialize dependent sized extended vector types");
+}
+
+void
+ASTTypeWriter::VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
+ Record.push_back(T->getDepth());
+ Record.push_back(T->getIndex());
+ Record.push_back(T->isParameterPack());
+ Writer.AddDeclRef(T->getDecl(), Record);
+ Code = TYPE_TEMPLATE_TYPE_PARM;
+}
+
+void
+ASTTypeWriter::VisitDependentNameType(const DependentNameType *T) {
+ Record.push_back(T->getKeyword());
+ Writer.AddNestedNameSpecifier(T->getQualifier(), Record);
+ Writer.AddIdentifierRef(T->getIdentifier(), Record);
+ Writer.AddTypeRef(T->isCanonicalUnqualified() ? QualType()
+ : T->getCanonicalTypeInternal(),
+ Record);
+ Code = TYPE_DEPENDENT_NAME;
+}
+
+void
+ASTTypeWriter::VisitDependentTemplateSpecializationType(
+ const DependentTemplateSpecializationType *T) {
+ Record.push_back(T->getKeyword());
+ Writer.AddNestedNameSpecifier(T->getQualifier(), Record);
+ Writer.AddIdentifierRef(T->getIdentifier(), Record);
+ Record.push_back(T->getNumArgs());
+ for (DependentTemplateSpecializationType::iterator
+ I = T->begin(), E = T->end(); I != E; ++I)
+ Writer.AddTemplateArgument(*I, Record);
+ Code = TYPE_DEPENDENT_TEMPLATE_SPECIALIZATION;
+}
+
+void ASTTypeWriter::VisitPackExpansionType(const PackExpansionType *T) {
+ Writer.AddTypeRef(T->getPattern(), Record);
+ if (Optional<unsigned> NumExpansions = T->getNumExpansions())
+ Record.push_back(*NumExpansions + 1);
+ else
+ Record.push_back(0);
+ Code = TYPE_PACK_EXPANSION;
+}
+
+void ASTTypeWriter::VisitParenType(const ParenType *T) {
+ Writer.AddTypeRef(T->getInnerType(), Record);
+ Code = TYPE_PAREN;
+}
+
+void ASTTypeWriter::VisitElaboratedType(const ElaboratedType *T) {
+ Record.push_back(T->getKeyword());
+ Writer.AddNestedNameSpecifier(T->getQualifier(), Record);
+ Writer.AddTypeRef(T->getNamedType(), Record);
+ Code = TYPE_ELABORATED;
+}
+
+void ASTTypeWriter::VisitInjectedClassNameType(const InjectedClassNameType *T) {
+ Writer.AddDeclRef(T->getDecl()->getCanonicalDecl(), Record);
+ Writer.AddTypeRef(T->getInjectedSpecializationType(), Record);
+ Code = TYPE_INJECTED_CLASS_NAME;
+}
+
+void ASTTypeWriter::VisitObjCInterfaceType(const ObjCInterfaceType *T) {
+ Writer.AddDeclRef(T->getDecl()->getCanonicalDecl(), Record);
+ Code = TYPE_OBJC_INTERFACE;
+}
+
+void ASTTypeWriter::VisitObjCObjectType(const ObjCObjectType *T) {
+ Writer.AddTypeRef(T->getBaseType(), Record);
+ Record.push_back(T->getNumProtocols());
+ for (const auto *I : T->quals())
+ Writer.AddDeclRef(I, Record);
+ Code = TYPE_OBJC_OBJECT;
+}
+
+void
+ASTTypeWriter::VisitObjCObjectPointerType(const ObjCObjectPointerType *T) {
+ Writer.AddTypeRef(T->getPointeeType(), Record);
+ Code = TYPE_OBJC_OBJECT_POINTER;
+}
+
+void
+ASTTypeWriter::VisitAtomicType(const AtomicType *T) {
+ Writer.AddTypeRef(T->getValueType(), Record);
+ Code = TYPE_ATOMIC;
+}
+
+namespace {
+
+class TypeLocWriter : public TypeLocVisitor<TypeLocWriter> {
+ ASTWriter &Writer;
+ ASTWriter::RecordDataImpl &Record;
+
+public:
+ TypeLocWriter(ASTWriter &Writer, ASTWriter::RecordDataImpl &Record)
+ : Writer(Writer), Record(Record) { }
+
+#define ABSTRACT_TYPELOC(CLASS, PARENT)
+#define TYPELOC(CLASS, PARENT) \
+ void Visit##CLASS##TypeLoc(CLASS##TypeLoc TyLoc);
+#include "clang/AST/TypeLocNodes.def"
+
+ void VisitArrayTypeLoc(ArrayTypeLoc TyLoc);
+ void VisitFunctionTypeLoc(FunctionTypeLoc TyLoc);
+};
+
+}
+
+void TypeLocWriter::VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
+ // nothing to do
+}
+void TypeLocWriter::VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
+ Writer.AddSourceLocation(TL.getBuiltinLoc(), Record);
+ if (TL.needsExtraLocalData()) {
+ Record.push_back(TL.getWrittenTypeSpec());
+ Record.push_back(TL.getWrittenSignSpec());
+ Record.push_back(TL.getWrittenWidthSpec());
+ Record.push_back(TL.hasModeAttr());
+ }
+}
+void TypeLocWriter::VisitComplexTypeLoc(ComplexTypeLoc TL) {
+ Writer.AddSourceLocation(TL.getNameLoc(), Record);
+}
+void TypeLocWriter::VisitPointerTypeLoc(PointerTypeLoc TL) {
+ Writer.AddSourceLocation(TL.getStarLoc(), Record);
+}
+void TypeLocWriter::VisitDecayedTypeLoc(DecayedTypeLoc TL) {
+ // nothing to do
+}
+void TypeLocWriter::VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
+ // nothing to do
+}
+void TypeLocWriter::VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
+ Writer.AddSourceLocation(TL.getCaretLoc(), Record);
+}
+void TypeLocWriter::VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
+ Writer.AddSourceLocation(TL.getAmpLoc(), Record);
+}
+void TypeLocWriter::VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
+ Writer.AddSourceLocation(TL.getAmpAmpLoc(), Record);
+}
+void TypeLocWriter::VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
+ Writer.AddSourceLocation(TL.getStarLoc(), Record);
+ Writer.AddTypeSourceInfo(TL.getClassTInfo(), Record);
+}
+void TypeLocWriter::VisitArrayTypeLoc(ArrayTypeLoc TL) {
+ Writer.AddSourceLocation(TL.getLBracketLoc(), Record);
+ Writer.AddSourceLocation(TL.getRBracketLoc(), Record);
+ Record.push_back(TL.getSizeExpr() ? 1 : 0);
+ if (TL.getSizeExpr())
+ Writer.AddStmt(TL.getSizeExpr());
+}
+void TypeLocWriter::VisitConstantArrayTypeLoc(ConstantArrayTypeLoc TL) {
+ VisitArrayTypeLoc(TL);
+}
+void TypeLocWriter::VisitIncompleteArrayTypeLoc(IncompleteArrayTypeLoc TL) {
+ VisitArrayTypeLoc(TL);
+}
+void TypeLocWriter::VisitVariableArrayTypeLoc(VariableArrayTypeLoc TL) {
+ VisitArrayTypeLoc(TL);
+}
+void TypeLocWriter::VisitDependentSizedArrayTypeLoc(
+ DependentSizedArrayTypeLoc TL) {
+ VisitArrayTypeLoc(TL);
+}
+void TypeLocWriter::VisitDependentSizedExtVectorTypeLoc(
+ DependentSizedExtVectorTypeLoc TL) {
+ Writer.AddSourceLocation(TL.getNameLoc(), Record);
+}
+void TypeLocWriter::VisitVectorTypeLoc(VectorTypeLoc TL) {
+ Writer.AddSourceLocation(TL.getNameLoc(), Record);
+}
+void TypeLocWriter::VisitExtVectorTypeLoc(ExtVectorTypeLoc TL) {
+ Writer.AddSourceLocation(TL.getNameLoc(), Record);
+}
+void TypeLocWriter::VisitFunctionTypeLoc(FunctionTypeLoc TL) {
+ Writer.AddSourceLocation(TL.getLocalRangeBegin(), Record);
+ Writer.AddSourceLocation(TL.getLParenLoc(), Record);
+ Writer.AddSourceLocation(TL.getRParenLoc(), Record);
+ Writer.AddSourceLocation(TL.getLocalRangeEnd(), Record);
+ for (unsigned i = 0, e = TL.getNumParams(); i != e; ++i)
+ Writer.AddDeclRef(TL.getParam(i), Record);
+}
+void TypeLocWriter::VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc TL) {
+ VisitFunctionTypeLoc(TL);
+}
+void TypeLocWriter::VisitFunctionNoProtoTypeLoc(FunctionNoProtoTypeLoc TL) {
+ VisitFunctionTypeLoc(TL);
+}
+void TypeLocWriter::VisitUnresolvedUsingTypeLoc(UnresolvedUsingTypeLoc TL) {
+ Writer.AddSourceLocation(TL.getNameLoc(), Record);
+}
+void TypeLocWriter::VisitTypedefTypeLoc(TypedefTypeLoc TL) {
+ Writer.AddSourceLocation(TL.getNameLoc(), Record);
+}
+void TypeLocWriter::VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
+ Writer.AddSourceLocation(TL.getTypeofLoc(), Record);
+ Writer.AddSourceLocation(TL.getLParenLoc(), Record);
+ Writer.AddSourceLocation(TL.getRParenLoc(), Record);
+}
+void TypeLocWriter::VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
+ Writer.AddSourceLocation(TL.getTypeofLoc(), Record);
+ Writer.AddSourceLocation(TL.getLParenLoc(), Record);
+ Writer.AddSourceLocation(TL.getRParenLoc(), Record);
+ Writer.AddTypeSourceInfo(TL.getUnderlyingTInfo(), Record);
+}
+void TypeLocWriter::VisitDecltypeTypeLoc(DecltypeTypeLoc TL) {
+ Writer.AddSourceLocation(TL.getNameLoc(), Record);
+}
+void TypeLocWriter::VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
+ Writer.AddSourceLocation(TL.getKWLoc(), Record);
+ Writer.AddSourceLocation(TL.getLParenLoc(), Record);
+ Writer.AddSourceLocation(TL.getRParenLoc(), Record);
+ Writer.AddTypeSourceInfo(TL.getUnderlyingTInfo(), Record);
+}
+void TypeLocWriter::VisitAutoTypeLoc(AutoTypeLoc TL) {
+ Writer.AddSourceLocation(TL.getNameLoc(), Record);
+}
+void TypeLocWriter::VisitRecordTypeLoc(RecordTypeLoc TL) {
+ Writer.AddSourceLocation(TL.getNameLoc(), Record);
+}
+void TypeLocWriter::VisitEnumTypeLoc(EnumTypeLoc TL) {
+ Writer.AddSourceLocation(TL.getNameLoc(), Record);
+}
+void TypeLocWriter::VisitAttributedTypeLoc(AttributedTypeLoc TL) {
+ Writer.AddSourceLocation(TL.getAttrNameLoc(), Record);
+ if (TL.hasAttrOperand()) {
+ SourceRange range = TL.getAttrOperandParensRange();
+ Writer.AddSourceLocation(range.getBegin(), Record);
+ Writer.AddSourceLocation(range.getEnd(), Record);
+ }
+ if (TL.hasAttrExprOperand()) {
+ Expr *operand = TL.getAttrExprOperand();
+ Record.push_back(operand ? 1 : 0);
+ if (operand) Writer.AddStmt(operand);
+ } else if (TL.hasAttrEnumOperand()) {
+ Writer.AddSourceLocation(TL.getAttrEnumOperandLoc(), Record);
+ }
+}
+void TypeLocWriter::VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
+ Writer.AddSourceLocation(TL.getNameLoc(), Record);
+}
+void TypeLocWriter::VisitSubstTemplateTypeParmTypeLoc(
+ SubstTemplateTypeParmTypeLoc TL) {
+ Writer.AddSourceLocation(TL.getNameLoc(), Record);
+}
+void TypeLocWriter::VisitSubstTemplateTypeParmPackTypeLoc(
+ SubstTemplateTypeParmPackTypeLoc TL) {
+ Writer.AddSourceLocation(TL.getNameLoc(), Record);
+}
+void TypeLocWriter::VisitTemplateSpecializationTypeLoc(
+ TemplateSpecializationTypeLoc TL) {
+ Writer.AddSourceLocation(TL.getTemplateKeywordLoc(), Record);
+ Writer.AddSourceLocation(TL.getTemplateNameLoc(), Record);
+ Writer.AddSourceLocation(TL.getLAngleLoc(), Record);
+ Writer.AddSourceLocation(TL.getRAngleLoc(), Record);
+ for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
+ Writer.AddTemplateArgumentLocInfo(TL.getArgLoc(i).getArgument().getKind(),
+ TL.getArgLoc(i).getLocInfo(), Record);
+}
+void TypeLocWriter::VisitParenTypeLoc(ParenTypeLoc TL) {
+ Writer.AddSourceLocation(TL.getLParenLoc(), Record);
+ Writer.AddSourceLocation(TL.getRParenLoc(), Record);
+}
+void TypeLocWriter::VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
+ Writer.AddSourceLocation(TL.getElaboratedKeywordLoc(), Record);
+ Writer.AddNestedNameSpecifierLoc(TL.getQualifierLoc(), Record);
+}
+void TypeLocWriter::VisitInjectedClassNameTypeLoc(InjectedClassNameTypeLoc TL) {
+ Writer.AddSourceLocation(TL.getNameLoc(), Record);
+}
+void TypeLocWriter::VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
+ Writer.AddSourceLocation(TL.getElaboratedKeywordLoc(), Record);
+ Writer.AddNestedNameSpecifierLoc(TL.getQualifierLoc(), Record);
+ Writer.AddSourceLocation(TL.getNameLoc(), Record);
+}
+void TypeLocWriter::VisitDependentTemplateSpecializationTypeLoc(
+ DependentTemplateSpecializationTypeLoc TL) {
+ Writer.AddSourceLocation(TL.getElaboratedKeywordLoc(), Record);
+ Writer.AddNestedNameSpecifierLoc(TL.getQualifierLoc(), Record);
+ Writer.AddSourceLocation(TL.getTemplateKeywordLoc(), Record);
+ Writer.AddSourceLocation(TL.getTemplateNameLoc(), Record);
+ Writer.AddSourceLocation(TL.getLAngleLoc(), Record);
+ Writer.AddSourceLocation(TL.getRAngleLoc(), Record);
+ for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I)
+ Writer.AddTemplateArgumentLocInfo(TL.getArgLoc(I).getArgument().getKind(),
+ TL.getArgLoc(I).getLocInfo(), Record);
+}
+void TypeLocWriter::VisitPackExpansionTypeLoc(PackExpansionTypeLoc TL) {
+ Writer.AddSourceLocation(TL.getEllipsisLoc(), Record);
+}
+void TypeLocWriter::VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
+ Writer.AddSourceLocation(TL.getNameLoc(), Record);
+}
+void TypeLocWriter::VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
+ Record.push_back(TL.hasBaseTypeAsWritten());
+ Writer.AddSourceLocation(TL.getLAngleLoc(), Record);
+ Writer.AddSourceLocation(TL.getRAngleLoc(), Record);
+ for (unsigned i = 0, e = TL.getNumProtocols(); i != e; ++i)
+ Writer.AddSourceLocation(TL.getProtocolLoc(i), Record);
+}
+void TypeLocWriter::VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
+ Writer.AddSourceLocation(TL.getStarLoc(), Record);
+}
+void TypeLocWriter::VisitAtomicTypeLoc(AtomicTypeLoc TL) {
+ Writer.AddSourceLocation(TL.getKWLoc(), Record);
+ Writer.AddSourceLocation(TL.getLParenLoc(), Record);
+ Writer.AddSourceLocation(TL.getRParenLoc(), Record);
+}
+
+void ASTWriter::WriteTypeAbbrevs() {
+ using namespace llvm;
+
+ BitCodeAbbrev *Abv;
+
+ // Abbreviation for TYPE_EXT_QUAL
+ Abv = new BitCodeAbbrev();
+ Abv->Add(BitCodeAbbrevOp(serialization::TYPE_EXT_QUAL));
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Type
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 3)); // Quals
+ TypeExtQualAbbrev = Stream.EmitAbbrev(Abv);
+
+ // Abbreviation for TYPE_FUNCTION_PROTO
+ Abv = new BitCodeAbbrev();
+ Abv->Add(BitCodeAbbrevOp(serialization::TYPE_FUNCTION_PROTO));
+ // FunctionType
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ReturnType
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // NoReturn
+ Abv->Add(BitCodeAbbrevOp(0)); // HasRegParm
+ Abv->Add(BitCodeAbbrevOp(0)); // RegParm
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // CC
+ Abv->Add(BitCodeAbbrevOp(0)); // ProducesResult
+ // FunctionProtoType
+ Abv->Add(BitCodeAbbrevOp(0)); // IsVariadic
+ Abv->Add(BitCodeAbbrevOp(0)); // HasTrailingReturn
+ Abv->Add(BitCodeAbbrevOp(0)); // TypeQuals
+ Abv->Add(BitCodeAbbrevOp(0)); // RefQualifier
+ Abv->Add(BitCodeAbbrevOp(EST_None)); // ExceptionSpec
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // NumParams
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Params
+ TypeFunctionProtoAbbrev = Stream.EmitAbbrev(Abv);
+}
+
+//===----------------------------------------------------------------------===//
+// ASTWriter Implementation
+//===----------------------------------------------------------------------===//
+
+static void EmitBlockID(unsigned ID, const char *Name,
+ llvm::BitstreamWriter &Stream,
+ ASTWriter::RecordDataImpl &Record) {
+ Record.clear();
+ Record.push_back(ID);
+ Stream.EmitRecord(llvm::bitc::BLOCKINFO_CODE_SETBID, Record);
+
+ // Emit the block name if present.
+ if (!Name || Name[0] == 0)
+ return;
+ Record.clear();
+ while (*Name)
+ Record.push_back(*Name++);
+ Stream.EmitRecord(llvm::bitc::BLOCKINFO_CODE_BLOCKNAME, Record);
+}
+
+static void EmitRecordID(unsigned ID, const char *Name,
+ llvm::BitstreamWriter &Stream,
+ ASTWriter::RecordDataImpl &Record) {
+ Record.clear();
+ Record.push_back(ID);
+ while (*Name)
+ Record.push_back(*Name++);
+ Stream.EmitRecord(llvm::bitc::BLOCKINFO_CODE_SETRECORDNAME, Record);
+}
+
+static void AddStmtsExprs(llvm::BitstreamWriter &Stream,
+ ASTWriter::RecordDataImpl &Record) {
+#define RECORD(X) EmitRecordID(X, #X, Stream, Record)
+ RECORD(STMT_STOP);
+ RECORD(STMT_NULL_PTR);
+ RECORD(STMT_REF_PTR);
+ RECORD(STMT_NULL);
+ RECORD(STMT_COMPOUND);
+ RECORD(STMT_CASE);
+ RECORD(STMT_DEFAULT);
+ RECORD(STMT_LABEL);
+ RECORD(STMT_ATTRIBUTED);
+ RECORD(STMT_IF);
+ RECORD(STMT_SWITCH);
+ RECORD(STMT_WHILE);
+ RECORD(STMT_DO);
+ RECORD(STMT_FOR);
+ RECORD(STMT_GOTO);
+ RECORD(STMT_INDIRECT_GOTO);
+ RECORD(STMT_CONTINUE);
+ RECORD(STMT_BREAK);
+ RECORD(STMT_RETURN);
+ RECORD(STMT_DECL);
+ RECORD(STMT_GCCASM);
+ RECORD(STMT_MSASM);
+ RECORD(EXPR_PREDEFINED);
+ RECORD(EXPR_DECL_REF);
+ RECORD(EXPR_INTEGER_LITERAL);
+ RECORD(EXPR_FLOATING_LITERAL);
+ RECORD(EXPR_IMAGINARY_LITERAL);
+ RECORD(EXPR_STRING_LITERAL);
+ RECORD(EXPR_CHARACTER_LITERAL);
+ RECORD(EXPR_PAREN);
+ RECORD(EXPR_PAREN_LIST);
+ RECORD(EXPR_UNARY_OPERATOR);
+ RECORD(EXPR_SIZEOF_ALIGN_OF);
+ RECORD(EXPR_ARRAY_SUBSCRIPT);
+ RECORD(EXPR_CALL);
+ RECORD(EXPR_MEMBER);
+ RECORD(EXPR_BINARY_OPERATOR);
+ RECORD(EXPR_COMPOUND_ASSIGN_OPERATOR);
+ RECORD(EXPR_CONDITIONAL_OPERATOR);
+ RECORD(EXPR_IMPLICIT_CAST);
+ RECORD(EXPR_CSTYLE_CAST);
+ RECORD(EXPR_COMPOUND_LITERAL);
+ RECORD(EXPR_EXT_VECTOR_ELEMENT);
+ RECORD(EXPR_INIT_LIST);
+ RECORD(EXPR_DESIGNATED_INIT);
+ RECORD(EXPR_IMPLICIT_VALUE_INIT);
+ RECORD(EXPR_VA_ARG);
+ RECORD(EXPR_ADDR_LABEL);
+ RECORD(EXPR_STMT);
+ RECORD(EXPR_CHOOSE);
+ RECORD(EXPR_GNU_NULL);
+ RECORD(EXPR_SHUFFLE_VECTOR);
+ RECORD(EXPR_BLOCK);
+ RECORD(EXPR_GENERIC_SELECTION);
+ RECORD(EXPR_OBJC_STRING_LITERAL);
+ RECORD(EXPR_OBJC_BOXED_EXPRESSION);
+ RECORD(EXPR_OBJC_ARRAY_LITERAL);
+ RECORD(EXPR_OBJC_DICTIONARY_LITERAL);
+ RECORD(EXPR_OBJC_ENCODE);
+ RECORD(EXPR_OBJC_SELECTOR_EXPR);
+ RECORD(EXPR_OBJC_PROTOCOL_EXPR);
+ RECORD(EXPR_OBJC_IVAR_REF_EXPR);
+ RECORD(EXPR_OBJC_PROPERTY_REF_EXPR);
+ RECORD(EXPR_OBJC_KVC_REF_EXPR);
+ RECORD(EXPR_OBJC_MESSAGE_EXPR);
+ RECORD(STMT_OBJC_FOR_COLLECTION);
+ RECORD(STMT_OBJC_CATCH);
+ RECORD(STMT_OBJC_FINALLY);
+ RECORD(STMT_OBJC_AT_TRY);
+ RECORD(STMT_OBJC_AT_SYNCHRONIZED);
+ RECORD(STMT_OBJC_AT_THROW);
+ RECORD(EXPR_OBJC_BOOL_LITERAL);
+ RECORD(STMT_CXX_CATCH);
+ RECORD(STMT_CXX_TRY);
+ RECORD(STMT_CXX_FOR_RANGE);
+ RECORD(EXPR_CXX_OPERATOR_CALL);
+ RECORD(EXPR_CXX_MEMBER_CALL);
+ RECORD(EXPR_CXX_CONSTRUCT);
+ RECORD(EXPR_CXX_TEMPORARY_OBJECT);
+ RECORD(EXPR_CXX_STATIC_CAST);
+ RECORD(EXPR_CXX_DYNAMIC_CAST);
+ RECORD(EXPR_CXX_REINTERPRET_CAST);
+ RECORD(EXPR_CXX_CONST_CAST);
+ RECORD(EXPR_CXX_FUNCTIONAL_CAST);
+ RECORD(EXPR_USER_DEFINED_LITERAL);
+ RECORD(EXPR_CXX_STD_INITIALIZER_LIST);
+ RECORD(EXPR_CXX_BOOL_LITERAL);
+ RECORD(EXPR_CXX_NULL_PTR_LITERAL);
+ RECORD(EXPR_CXX_TYPEID_EXPR);
+ RECORD(EXPR_CXX_TYPEID_TYPE);
+ RECORD(EXPR_CXX_THIS);
+ RECORD(EXPR_CXX_THROW);
+ RECORD(EXPR_CXX_DEFAULT_ARG);
+ RECORD(EXPR_CXX_DEFAULT_INIT);
+ RECORD(EXPR_CXX_BIND_TEMPORARY);
+ RECORD(EXPR_CXX_SCALAR_VALUE_INIT);
+ RECORD(EXPR_CXX_NEW);
+ RECORD(EXPR_CXX_DELETE);
+ RECORD(EXPR_CXX_PSEUDO_DESTRUCTOR);
+ RECORD(EXPR_EXPR_WITH_CLEANUPS);
+ RECORD(EXPR_CXX_DEPENDENT_SCOPE_MEMBER);
+ RECORD(EXPR_CXX_DEPENDENT_SCOPE_DECL_REF);
+ RECORD(EXPR_CXX_UNRESOLVED_CONSTRUCT);
+ RECORD(EXPR_CXX_UNRESOLVED_MEMBER);
+ RECORD(EXPR_CXX_UNRESOLVED_LOOKUP);
+ RECORD(EXPR_CXX_EXPRESSION_TRAIT);
+ RECORD(EXPR_CXX_NOEXCEPT);
+ RECORD(EXPR_OPAQUE_VALUE);
+ RECORD(EXPR_BINARY_CONDITIONAL_OPERATOR);
+ RECORD(EXPR_TYPE_TRAIT);
+ RECORD(EXPR_ARRAY_TYPE_TRAIT);
+ RECORD(EXPR_PACK_EXPANSION);
+ RECORD(EXPR_SIZEOF_PACK);
+ RECORD(EXPR_SUBST_NON_TYPE_TEMPLATE_PARM);
+ RECORD(EXPR_SUBST_NON_TYPE_TEMPLATE_PARM_PACK);
+ RECORD(EXPR_FUNCTION_PARM_PACK);
+ RECORD(EXPR_MATERIALIZE_TEMPORARY);
+ RECORD(EXPR_CUDA_KERNEL_CALL);
+ RECORD(EXPR_CXX_UUIDOF_EXPR);
+ RECORD(EXPR_CXX_UUIDOF_TYPE);
+ RECORD(EXPR_LAMBDA);
+#undef RECORD
+}
+
+void ASTWriter::WriteBlockInfoBlock() {
+ RecordData Record;
+ Stream.EnterSubblock(llvm::bitc::BLOCKINFO_BLOCK_ID, 3);
+
+#define BLOCK(X) EmitBlockID(X ## _ID, #X, Stream, Record)
+#define RECORD(X) EmitRecordID(X, #X, Stream, Record)
+
+ // Control Block.
+ BLOCK(CONTROL_BLOCK);
+ RECORD(METADATA);
+ RECORD(SIGNATURE);
+ RECORD(MODULE_NAME);
+ RECORD(MODULE_MAP_FILE);
+ RECORD(IMPORTS);
+ RECORD(KNOWN_MODULE_FILES);
+ RECORD(LANGUAGE_OPTIONS);
+ RECORD(TARGET_OPTIONS);
+ RECORD(ORIGINAL_FILE);
+ RECORD(ORIGINAL_PCH_DIR);
+ RECORD(ORIGINAL_FILE_ID);
+ RECORD(INPUT_FILE_OFFSETS);
+ RECORD(DIAGNOSTIC_OPTIONS);
+ RECORD(FILE_SYSTEM_OPTIONS);
+ RECORD(HEADER_SEARCH_OPTIONS);
+ RECORD(PREPROCESSOR_OPTIONS);
+
+ BLOCK(INPUT_FILES_BLOCK);
+ RECORD(INPUT_FILE);
+
+ // AST Top-Level Block.
+ BLOCK(AST_BLOCK);
+ RECORD(TYPE_OFFSET);
+ RECORD(DECL_OFFSET);
+ RECORD(IDENTIFIER_OFFSET);
+ RECORD(IDENTIFIER_TABLE);
+ RECORD(EAGERLY_DESERIALIZED_DECLS);
+ RECORD(SPECIAL_TYPES);
+ RECORD(STATISTICS);
+ RECORD(TENTATIVE_DEFINITIONS);
+ RECORD(UNUSED_FILESCOPED_DECLS);
+ RECORD(SELECTOR_OFFSETS);
+ RECORD(METHOD_POOL);
+ RECORD(PP_COUNTER_VALUE);
+ RECORD(SOURCE_LOCATION_OFFSETS);
+ RECORD(SOURCE_LOCATION_PRELOADS);
+ RECORD(EXT_VECTOR_DECLS);
+ RECORD(PPD_ENTITIES_OFFSETS);
+ RECORD(REFERENCED_SELECTOR_POOL);
+ RECORD(TU_UPDATE_LEXICAL);
+ RECORD(LOCAL_REDECLARATIONS_MAP);
+ RECORD(SEMA_DECL_REFS);
+ RECORD(WEAK_UNDECLARED_IDENTIFIERS);
+ RECORD(PENDING_IMPLICIT_INSTANTIATIONS);
+ RECORD(DECL_REPLACEMENTS);
+ RECORD(UPDATE_VISIBLE);
+ RECORD(DECL_UPDATE_OFFSETS);
+ RECORD(DECL_UPDATES);
+ RECORD(CXX_BASE_SPECIFIER_OFFSETS);
+ RECORD(DIAG_PRAGMA_MAPPINGS);
+ RECORD(CUDA_SPECIAL_DECL_REFS);
+ RECORD(HEADER_SEARCH_TABLE);
+ RECORD(FP_PRAGMA_OPTIONS);
+ RECORD(OPENCL_EXTENSIONS);
+ RECORD(DELEGATING_CTORS);
+ RECORD(KNOWN_NAMESPACES);
+ RECORD(UNDEFINED_BUT_USED);
+ RECORD(MODULE_OFFSET_MAP);
+ RECORD(SOURCE_MANAGER_LINE_TABLE);
+ RECORD(OBJC_CATEGORIES_MAP);
+ RECORD(FILE_SORTED_DECLS);
+ RECORD(IMPORTED_MODULES);
+ RECORD(LOCAL_REDECLARATIONS);
+ RECORD(OBJC_CATEGORIES);
+ RECORD(MACRO_OFFSET);
+ RECORD(LATE_PARSED_TEMPLATE);
+ RECORD(OPTIMIZE_PRAGMA_OPTIONS);
+
+ // SourceManager Block.
+ BLOCK(SOURCE_MANAGER_BLOCK);
+ RECORD(SM_SLOC_FILE_ENTRY);
+ RECORD(SM_SLOC_BUFFER_ENTRY);
+ RECORD(SM_SLOC_BUFFER_BLOB);
+ RECORD(SM_SLOC_EXPANSION_ENTRY);
+
+ // Preprocessor Block.
+ BLOCK(PREPROCESSOR_BLOCK);
+ RECORD(PP_MACRO_DIRECTIVE_HISTORY);
+ RECORD(PP_MACRO_FUNCTION_LIKE);
+ RECORD(PP_MACRO_OBJECT_LIKE);
+ RECORD(PP_MODULE_MACRO);
+ RECORD(PP_TOKEN);
+
+ // Decls and Types block.
+ BLOCK(DECLTYPES_BLOCK);
+ RECORD(TYPE_EXT_QUAL);
+ RECORD(TYPE_COMPLEX);
+ RECORD(TYPE_POINTER);
+ RECORD(TYPE_BLOCK_POINTER);
+ RECORD(TYPE_LVALUE_REFERENCE);
+ RECORD(TYPE_RVALUE_REFERENCE);
+ RECORD(TYPE_MEMBER_POINTER);
+ RECORD(TYPE_CONSTANT_ARRAY);
+ RECORD(TYPE_INCOMPLETE_ARRAY);
+ RECORD(TYPE_VARIABLE_ARRAY);
+ RECORD(TYPE_VECTOR);
+ RECORD(TYPE_EXT_VECTOR);
+ RECORD(TYPE_FUNCTION_NO_PROTO);
+ RECORD(TYPE_FUNCTION_PROTO);
+ RECORD(TYPE_TYPEDEF);
+ RECORD(TYPE_TYPEOF_EXPR);
+ RECORD(TYPE_TYPEOF);
+ RECORD(TYPE_RECORD);
+ RECORD(TYPE_ENUM);
+ RECORD(TYPE_OBJC_INTERFACE);
+ RECORD(TYPE_OBJC_OBJECT_POINTER);
+ RECORD(TYPE_DECLTYPE);
+ RECORD(TYPE_ELABORATED);
+ RECORD(TYPE_SUBST_TEMPLATE_TYPE_PARM);
+ RECORD(TYPE_UNRESOLVED_USING);
+ RECORD(TYPE_INJECTED_CLASS_NAME);
+ RECORD(TYPE_OBJC_OBJECT);
+ RECORD(TYPE_TEMPLATE_TYPE_PARM);
+ RECORD(TYPE_TEMPLATE_SPECIALIZATION);
+ RECORD(TYPE_DEPENDENT_NAME);
+ RECORD(TYPE_DEPENDENT_TEMPLATE_SPECIALIZATION);
+ RECORD(TYPE_DEPENDENT_SIZED_ARRAY);
+ RECORD(TYPE_PAREN);
+ RECORD(TYPE_PACK_EXPANSION);
+ RECORD(TYPE_ATTRIBUTED);
+ RECORD(TYPE_SUBST_TEMPLATE_TYPE_PARM_PACK);
+ RECORD(TYPE_AUTO);
+ RECORD(TYPE_UNARY_TRANSFORM);
+ RECORD(TYPE_ATOMIC);
+ RECORD(TYPE_DECAYED);
+ RECORD(TYPE_ADJUSTED);
+ RECORD(DECL_TYPEDEF);
+ RECORD(DECL_TYPEALIAS);
+ RECORD(DECL_ENUM);
+ RECORD(DECL_RECORD);
+ RECORD(DECL_ENUM_CONSTANT);
+ RECORD(DECL_FUNCTION);
+ RECORD(DECL_OBJC_METHOD);
+ RECORD(DECL_OBJC_INTERFACE);
+ RECORD(DECL_OBJC_PROTOCOL);
+ RECORD(DECL_OBJC_IVAR);
+ RECORD(DECL_OBJC_AT_DEFS_FIELD);
+ RECORD(DECL_OBJC_CATEGORY);
+ RECORD(DECL_OBJC_CATEGORY_IMPL);
+ RECORD(DECL_OBJC_IMPLEMENTATION);
+ RECORD(DECL_OBJC_COMPATIBLE_ALIAS);
+ RECORD(DECL_OBJC_PROPERTY);
+ RECORD(DECL_OBJC_PROPERTY_IMPL);
+ RECORD(DECL_FIELD);
+ RECORD(DECL_MS_PROPERTY);
+ RECORD(DECL_VAR);
+ RECORD(DECL_IMPLICIT_PARAM);
+ RECORD(DECL_PARM_VAR);
+ RECORD(DECL_FILE_SCOPE_ASM);
+ RECORD(DECL_BLOCK);
+ RECORD(DECL_CONTEXT_LEXICAL);
+ RECORD(DECL_CONTEXT_VISIBLE);
+ RECORD(DECL_NAMESPACE);
+ RECORD(DECL_NAMESPACE_ALIAS);
+ RECORD(DECL_USING);
+ RECORD(DECL_USING_SHADOW);
+ RECORD(DECL_USING_DIRECTIVE);
+ RECORD(DECL_UNRESOLVED_USING_VALUE);
+ RECORD(DECL_UNRESOLVED_USING_TYPENAME);
+ RECORD(DECL_LINKAGE_SPEC);
+ RECORD(DECL_CXX_RECORD);
+ RECORD(DECL_CXX_METHOD);
+ RECORD(DECL_CXX_CONSTRUCTOR);
+ RECORD(DECL_CXX_DESTRUCTOR);
+ RECORD(DECL_CXX_CONVERSION);
+ RECORD(DECL_ACCESS_SPEC);
+ RECORD(DECL_FRIEND);
+ RECORD(DECL_FRIEND_TEMPLATE);
+ RECORD(DECL_CLASS_TEMPLATE);
+ RECORD(DECL_CLASS_TEMPLATE_SPECIALIZATION);
+ RECORD(DECL_CLASS_TEMPLATE_PARTIAL_SPECIALIZATION);
+ RECORD(DECL_VAR_TEMPLATE);
+ RECORD(DECL_VAR_TEMPLATE_SPECIALIZATION);
+ RECORD(DECL_VAR_TEMPLATE_PARTIAL_SPECIALIZATION);
+ RECORD(DECL_FUNCTION_TEMPLATE);
+ RECORD(DECL_TEMPLATE_TYPE_PARM);
+ RECORD(DECL_NON_TYPE_TEMPLATE_PARM);
+ RECORD(DECL_TEMPLATE_TEMPLATE_PARM);
+ RECORD(DECL_STATIC_ASSERT);
+ RECORD(DECL_CXX_BASE_SPECIFIERS);
+ RECORD(DECL_INDIRECTFIELD);
+ RECORD(DECL_EXPANDED_NON_TYPE_TEMPLATE_PARM_PACK);
+
+ // Statements and Exprs can occur in the Decls and Types block.
+ AddStmtsExprs(Stream, Record);
+
+ BLOCK(PREPROCESSOR_DETAIL_BLOCK);
+ RECORD(PPD_MACRO_EXPANSION);
+ RECORD(PPD_MACRO_DEFINITION);
+ RECORD(PPD_INCLUSION_DIRECTIVE);
+
+#undef RECORD
+#undef BLOCK
+ Stream.ExitBlock();
+}
+
+/// \brief Prepares a path for being written to an AST file by converting it
+/// to an absolute path and removing nested './'s.
+///
+/// \return \c true if the path was changed.
+static bool cleanPathForOutput(FileManager &FileMgr,
+ SmallVectorImpl<char> &Path) {
+ bool Changed = false;
+
+ if (!llvm::sys::path::is_absolute(StringRef(Path.data(), Path.size()))) {
+ llvm::sys::fs::make_absolute(Path);
+ Changed = true;
+ }
+
+ return Changed | FileMgr.removeDotPaths(Path);
+}
+
+/// \brief Adjusts the given filename to only write out the portion of the
+/// filename that is not part of the system root directory.
+///
+/// \param Filename the file name to adjust.
+///
+/// \param BaseDir When non-NULL, the PCH file is a relocatable AST file and
+/// the returned filename will be adjusted by this root directory.
+///
+/// \returns either the original filename (if it needs no adjustment) or the
+/// adjusted filename (which points into the @p Filename parameter).
+static const char *
+adjustFilenameForRelocatableAST(const char *Filename, StringRef BaseDir) {
+ assert(Filename && "No file name to adjust?");
+
+ if (BaseDir.empty())
+ return Filename;
+
+ // Verify that the filename and the system root have the same prefix.
+ unsigned Pos = 0;
+ for (; Filename[Pos] && Pos < BaseDir.size(); ++Pos)
+ if (Filename[Pos] != BaseDir[Pos])
+ return Filename; // Prefixes don't match.
+
+ // We hit the end of the filename before we hit the end of the system root.
+ if (!Filename[Pos])
+ return Filename;
+
+ // If there's not a path separator at the end of the base directory nor
+ // immediately after it, then this isn't within the base directory.
+ if (!llvm::sys::path::is_separator(Filename[Pos])) {
+ if (!llvm::sys::path::is_separator(BaseDir.back()))
+ return Filename;
+ } else {
+ // If the file name has a '/' at the current position, skip over the '/'.
+ // We distinguish relative paths from absolute paths by the
+ // absence of '/' at the beginning of relative paths.
+ //
+ // FIXME: This is wrong. We distinguish them by asking if the path is
+ // absolute, which isn't the same thing. And there might be multiple '/'s
+ // in a row. Use a better mechanism to indicate whether we have emitted an
+ // absolute or relative path.
+ ++Pos;
+ }
+
+ return Filename + Pos;
+}
+
+static ASTFileSignature getSignature() {
+ while (1) {
+ if (ASTFileSignature S = llvm::sys::Process::GetRandomNumber())
+ return S;
+ // Rely on GetRandomNumber to eventually return non-zero...
+ }
+}
+
+/// \brief Write the control block.
+void ASTWriter::WriteControlBlock(Preprocessor &PP, ASTContext &Context,
+ StringRef isysroot,
+ const std::string &OutputFile) {
+ using namespace llvm;
+ Stream.EnterSubblock(CONTROL_BLOCK_ID, 5);
+ RecordData Record;
+
+ // Metadata
+ BitCodeAbbrev *MetadataAbbrev = new BitCodeAbbrev();
+ MetadataAbbrev->Add(BitCodeAbbrevOp(METADATA));
+ MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // Major
+ MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // Minor
+ MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // Clang maj.
+ MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // Clang min.
+ MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Relocatable
+ MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Errors
+ MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // SVN branch/tag
+ unsigned MetadataAbbrevCode = Stream.EmitAbbrev(MetadataAbbrev);
+ Record.push_back(METADATA);
+ Record.push_back(VERSION_MAJOR);
+ Record.push_back(VERSION_MINOR);
+ Record.push_back(CLANG_VERSION_MAJOR);
+ Record.push_back(CLANG_VERSION_MINOR);
+ assert((!WritingModule || isysroot.empty()) &&
+ "writing module as a relocatable PCH?");
+ Record.push_back(!isysroot.empty());
+ Record.push_back(ASTHasCompilerErrors);
+ Stream.EmitRecordWithBlob(MetadataAbbrevCode, Record,
+ getClangFullRepositoryVersion());
+
+ if (WritingModule) {
+ // For implicit modules we output a signature that we can use to ensure
+ // duplicate module builds don't collide in the cache as their output order
+ // is non-deterministic.
+ // FIXME: Remove this when output is deterministic.
+ if (Context.getLangOpts().ImplicitModules) {
+ Record.clear();
+ Record.push_back(getSignature());
+ Stream.EmitRecord(SIGNATURE, Record);
+ }
+
+ // Module name
+ BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(MODULE_NAME));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
+ unsigned AbbrevCode = Stream.EmitAbbrev(Abbrev);
+ RecordData Record;
+ Record.push_back(MODULE_NAME);
+ Stream.EmitRecordWithBlob(AbbrevCode, Record, WritingModule->Name);
+ }
+
+ if (WritingModule && WritingModule->Directory) {
+ // Module directory.
+ BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(MODULE_DIRECTORY));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Directory
+ unsigned AbbrevCode = Stream.EmitAbbrev(Abbrev);
+ RecordData Record;
+ Record.push_back(MODULE_DIRECTORY);
+
+ SmallString<128> BaseDir(WritingModule->Directory->getName());
+ cleanPathForOutput(Context.getSourceManager().getFileManager(), BaseDir);
+ Stream.EmitRecordWithBlob(AbbrevCode, Record, BaseDir);
+
+ // Write out all other paths relative to the base directory if possible.
+ BaseDirectory.assign(BaseDir.begin(), BaseDir.end());
+ } else if (!isysroot.empty()) {
+ // Write out paths relative to the sysroot if possible.
+ BaseDirectory = isysroot;
+ }
+
+ // Module map file
+ if (WritingModule) {
+ Record.clear();
+
+ auto &Map = PP.getHeaderSearchInfo().getModuleMap();
+
+ // Primary module map file.
+ AddPath(Map.getModuleMapFileForUniquing(WritingModule)->getName(), Record);
+
+ // Additional module map files.
+ if (auto *AdditionalModMaps =
+ Map.getAdditionalModuleMapFiles(WritingModule)) {
+ Record.push_back(AdditionalModMaps->size());
+ for (const FileEntry *F : *AdditionalModMaps)
+ AddPath(F->getName(), Record);
+ } else {
+ Record.push_back(0);
+ }
+
+ Stream.EmitRecord(MODULE_MAP_FILE, Record);
+ }
+
+ // Imports
+ if (Chain) {
+ serialization::ModuleManager &Mgr = Chain->getModuleManager();
+ Record.clear();
+
+ for (auto *M : Mgr) {
+ // Skip modules that weren't directly imported.
+ if (!M->isDirectlyImported())
+ continue;
+
+ Record.push_back((unsigned)M->Kind); // FIXME: Stable encoding
+ AddSourceLocation(M->ImportLoc, Record);
+ Record.push_back(M->File->getSize());
+ Record.push_back(M->File->getModificationTime());
+ Record.push_back(M->Signature);
+ AddPath(M->FileName, Record);
+ }
+ Stream.EmitRecord(IMPORTS, Record);
+
+ // Also emit a list of known module files that were not imported,
+ // but are made available by this module.
+ // FIXME: Should we also include a signature here?
+ Record.clear();
+ for (auto *E : Mgr.getAdditionalKnownModuleFiles())
+ AddPath(E->getName(), Record);
+ if (!Record.empty())
+ Stream.EmitRecord(KNOWN_MODULE_FILES, Record);
+ }
+
+ // Language options.
+ Record.clear();
+ const LangOptions &LangOpts = Context.getLangOpts();
+#define LANGOPT(Name, Bits, Default, Description) \
+ Record.push_back(LangOpts.Name);
+#define ENUM_LANGOPT(Name, Type, Bits, Default, Description) \
+ Record.push_back(static_cast<unsigned>(LangOpts.get##Name()));
+#include "clang/Basic/LangOptions.def"
+#define SANITIZER(NAME, ID) \
+ Record.push_back(LangOpts.Sanitize.has(SanitizerKind::ID));
+#include "clang/Basic/Sanitizers.def"
+
+ Record.push_back((unsigned) LangOpts.ObjCRuntime.getKind());
+ AddVersionTuple(LangOpts.ObjCRuntime.getVersion(), Record);
+
+ Record.push_back(LangOpts.CurrentModule.size());
+ Record.append(LangOpts.CurrentModule.begin(), LangOpts.CurrentModule.end());
+
+ // Comment options.
+ Record.push_back(LangOpts.CommentOpts.BlockCommandNames.size());
+ for (CommentOptions::BlockCommandNamesTy::const_iterator
+ I = LangOpts.CommentOpts.BlockCommandNames.begin(),
+ IEnd = LangOpts.CommentOpts.BlockCommandNames.end();
+ I != IEnd; ++I) {
+ AddString(*I, Record);
+ }
+ Record.push_back(LangOpts.CommentOpts.ParseAllComments);
+
+ Stream.EmitRecord(LANGUAGE_OPTIONS, Record);
+
+ // Target options.
+ Record.clear();
+ const TargetInfo &Target = Context.getTargetInfo();
+ const TargetOptions &TargetOpts = Target.getTargetOpts();
+ AddString(TargetOpts.Triple, Record);
+ AddString(TargetOpts.CPU, Record);
+ AddString(TargetOpts.ABI, Record);
+ Record.push_back(TargetOpts.FeaturesAsWritten.size());
+ for (unsigned I = 0, N = TargetOpts.FeaturesAsWritten.size(); I != N; ++I) {
+ AddString(TargetOpts.FeaturesAsWritten[I], Record);
+ }
+ Record.push_back(TargetOpts.Features.size());
+ for (unsigned I = 0, N = TargetOpts.Features.size(); I != N; ++I) {
+ AddString(TargetOpts.Features[I], Record);
+ }
+ Stream.EmitRecord(TARGET_OPTIONS, Record);
+
+ // Diagnostic options.
+ Record.clear();
+ const DiagnosticOptions &DiagOpts
+ = Context.getDiagnostics().getDiagnosticOptions();
+#define DIAGOPT(Name, Bits, Default) Record.push_back(DiagOpts.Name);
+#define ENUM_DIAGOPT(Name, Type, Bits, Default) \
+ Record.push_back(static_cast<unsigned>(DiagOpts.get##Name()));
+#include "clang/Basic/DiagnosticOptions.def"
+ Record.push_back(DiagOpts.Warnings.size());
+ for (unsigned I = 0, N = DiagOpts.Warnings.size(); I != N; ++I)
+ AddString(DiagOpts.Warnings[I], Record);
+ Record.push_back(DiagOpts.Remarks.size());
+ for (unsigned I = 0, N = DiagOpts.Remarks.size(); I != N; ++I)
+ AddString(DiagOpts.Remarks[I], Record);
+ // Note: we don't serialize the log or serialization file names, because they
+ // are generally transient files and will almost always be overridden.
+ Stream.EmitRecord(DIAGNOSTIC_OPTIONS, Record);
+
+ // File system options.
+ Record.clear();
+ const FileSystemOptions &FSOpts
+ = Context.getSourceManager().getFileManager().getFileSystemOptions();
+ AddString(FSOpts.WorkingDir, Record);
+ Stream.EmitRecord(FILE_SYSTEM_OPTIONS, Record);
+
+ // Header search options.
+ Record.clear();
+ const HeaderSearchOptions &HSOpts
+ = PP.getHeaderSearchInfo().getHeaderSearchOpts();
+ AddString(HSOpts.Sysroot, Record);
+
+ // Include entries.
+ Record.push_back(HSOpts.UserEntries.size());
+ for (unsigned I = 0, N = HSOpts.UserEntries.size(); I != N; ++I) {
+ const HeaderSearchOptions::Entry &Entry = HSOpts.UserEntries[I];
+ AddString(Entry.Path, Record);
+ Record.push_back(static_cast<unsigned>(Entry.Group));
+ Record.push_back(Entry.IsFramework);
+ Record.push_back(Entry.IgnoreSysRoot);
+ }
+
+ // System header prefixes.
+ Record.push_back(HSOpts.SystemHeaderPrefixes.size());
+ for (unsigned I = 0, N = HSOpts.SystemHeaderPrefixes.size(); I != N; ++I) {
+ AddString(HSOpts.SystemHeaderPrefixes[I].Prefix, Record);
+ Record.push_back(HSOpts.SystemHeaderPrefixes[I].IsSystemHeader);
+ }
+
+ AddString(HSOpts.ResourceDir, Record);
+ AddString(HSOpts.ModuleCachePath, Record);
+ AddString(HSOpts.ModuleUserBuildPath, Record);
+ Record.push_back(HSOpts.DisableModuleHash);
+ Record.push_back(HSOpts.UseBuiltinIncludes);
+ Record.push_back(HSOpts.UseStandardSystemIncludes);
+ Record.push_back(HSOpts.UseStandardCXXIncludes);
+ Record.push_back(HSOpts.UseLibcxx);
+ // Write out the specific module cache path that contains the module files.
+ AddString(PP.getHeaderSearchInfo().getModuleCachePath(), Record);
+ Stream.EmitRecord(HEADER_SEARCH_OPTIONS, Record);
+
+ // Preprocessor options.
+ Record.clear();
+ const PreprocessorOptions &PPOpts = PP.getPreprocessorOpts();
+
+ // Macro definitions.
+ Record.push_back(PPOpts.Macros.size());
+ for (unsigned I = 0, N = PPOpts.Macros.size(); I != N; ++I) {
+ AddString(PPOpts.Macros[I].first, Record);
+ Record.push_back(PPOpts.Macros[I].second);
+ }
+
+ // Includes
+ Record.push_back(PPOpts.Includes.size());
+ for (unsigned I = 0, N = PPOpts.Includes.size(); I != N; ++I)
+ AddString(PPOpts.Includes[I], Record);
+
+ // Macro includes
+ Record.push_back(PPOpts.MacroIncludes.size());
+ for (unsigned I = 0, N = PPOpts.MacroIncludes.size(); I != N; ++I)
+ AddString(PPOpts.MacroIncludes[I], Record);
+
+ Record.push_back(PPOpts.UsePredefines);
+ // Detailed record is important since it is used for the module cache hash.
+ Record.push_back(PPOpts.DetailedRecord);
+ AddString(PPOpts.ImplicitPCHInclude, Record);
+ AddString(PPOpts.ImplicitPTHInclude, Record);
+ Record.push_back(static_cast<unsigned>(PPOpts.ObjCXXARCStandardLibrary));
+ Stream.EmitRecord(PREPROCESSOR_OPTIONS, Record);
+
+ // Original file name and file ID
+ SourceManager &SM = Context.getSourceManager();
+ if (const FileEntry *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
+ BitCodeAbbrev *FileAbbrev = new BitCodeAbbrev();
+ FileAbbrev->Add(BitCodeAbbrevOp(ORIGINAL_FILE));
+ FileAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // File ID
+ FileAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // File name
+ unsigned FileAbbrevCode = Stream.EmitAbbrev(FileAbbrev);
+
+ Record.clear();
+ Record.push_back(ORIGINAL_FILE);
+ Record.push_back(SM.getMainFileID().getOpaqueValue());
+ EmitRecordWithPath(FileAbbrevCode, Record, MainFile->getName());
+ }
+
+ Record.clear();
+ Record.push_back(SM.getMainFileID().getOpaqueValue());
+ Stream.EmitRecord(ORIGINAL_FILE_ID, Record);
+
+ // Original PCH directory
+ if (!OutputFile.empty() && OutputFile != "-") {
+ BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(ORIGINAL_PCH_DIR));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // File name
+ unsigned AbbrevCode = Stream.EmitAbbrev(Abbrev);
+
+ SmallString<128> OutputPath(OutputFile);
+
+ llvm::sys::fs::make_absolute(OutputPath);
+ StringRef origDir = llvm::sys::path::parent_path(OutputPath);
+
+ RecordData Record;
+ Record.push_back(ORIGINAL_PCH_DIR);
+ Stream.EmitRecordWithBlob(AbbrevCode, Record, origDir);
+ }
+
+ WriteInputFiles(Context.SourceMgr,
+ PP.getHeaderSearchInfo().getHeaderSearchOpts(),
+ PP.getLangOpts().Modules);
+ Stream.ExitBlock();
+}
+
+namespace {
+ /// \brief An input file.
+ struct InputFileEntry {
+ const FileEntry *File;
+ bool IsSystemFile;
+ bool BufferOverridden;
+ };
+}
+
+void ASTWriter::WriteInputFiles(SourceManager &SourceMgr,
+ HeaderSearchOptions &HSOpts,
+ bool Modules) {
+ using namespace llvm;
+ Stream.EnterSubblock(INPUT_FILES_BLOCK_ID, 4);
+ RecordData Record;
+
+ // Create input-file abbreviation.
+ BitCodeAbbrev *IFAbbrev = new BitCodeAbbrev();
+ IFAbbrev->Add(BitCodeAbbrevOp(INPUT_FILE));
+ IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ID
+ IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 12)); // Size
+ IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 32)); // Modification time
+ IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Overridden
+ IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // File name
+ unsigned IFAbbrevCode = Stream.EmitAbbrev(IFAbbrev);
+
+ // Get all ContentCache objects for files, sorted by whether the file is a
+ // system one or not. System files go at the back, users files at the front.
+ std::deque<InputFileEntry> SortedFiles;
+ for (unsigned I = 1, N = SourceMgr.local_sloc_entry_size(); I != N; ++I) {
+ // Get this source location entry.
+ const SrcMgr::SLocEntry *SLoc = &SourceMgr.getLocalSLocEntry(I);
+ assert(&SourceMgr.getSLocEntry(FileID::get(I)) == SLoc);
+
+ // We only care about file entries that were not overridden.
+ if (!SLoc->isFile())
+ continue;
+ const SrcMgr::ContentCache *Cache = SLoc->getFile().getContentCache();
+ if (!Cache->OrigEntry)
+ continue;
+
+ InputFileEntry Entry;
+ Entry.File = Cache->OrigEntry;
+ Entry.IsSystemFile = Cache->IsSystemFile;
+ Entry.BufferOverridden = Cache->BufferOverridden;
+ if (Cache->IsSystemFile)
+ SortedFiles.push_back(Entry);
+ else
+ SortedFiles.push_front(Entry);
+ }
+
+ unsigned UserFilesNum = 0;
+ // Write out all of the input files.
+ std::vector<uint64_t> InputFileOffsets;
+ for (std::deque<InputFileEntry>::iterator
+ I = SortedFiles.begin(), E = SortedFiles.end(); I != E; ++I) {
+ const InputFileEntry &Entry = *I;
+
+ uint32_t &InputFileID = InputFileIDs[Entry.File];
+ if (InputFileID != 0)
+ continue; // already recorded this file.
+
+ // Record this entry's offset.
+ InputFileOffsets.push_back(Stream.GetCurrentBitNo());
+
+ InputFileID = InputFileOffsets.size();
+
+ if (!Entry.IsSystemFile)
+ ++UserFilesNum;
+
+ Record.clear();
+ Record.push_back(INPUT_FILE);
+ Record.push_back(InputFileOffsets.size());
+
+ // Emit size/modification time for this file.
+ Record.push_back(Entry.File->getSize());
+ Record.push_back(Entry.File->getModificationTime());
+
+ // Whether this file was overridden.
+ Record.push_back(Entry.BufferOverridden);
+
+ EmitRecordWithPath(IFAbbrevCode, Record, Entry.File->getName());
+ }
+
+ Stream.ExitBlock();
+
+ // Create input file offsets abbreviation.
+ BitCodeAbbrev *OffsetsAbbrev = new BitCodeAbbrev();
+ OffsetsAbbrev->Add(BitCodeAbbrevOp(INPUT_FILE_OFFSETS));
+ OffsetsAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # input files
+ OffsetsAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # non-system
+ // input files
+ OffsetsAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Array
+ unsigned OffsetsAbbrevCode = Stream.EmitAbbrev(OffsetsAbbrev);
+
+ // Write input file offsets.
+ Record.clear();
+ Record.push_back(INPUT_FILE_OFFSETS);
+ Record.push_back(InputFileOffsets.size());
+ Record.push_back(UserFilesNum);
+ Stream.EmitRecordWithBlob(OffsetsAbbrevCode, Record, bytes(InputFileOffsets));
+}
+
+//===----------------------------------------------------------------------===//
+// Source Manager Serialization
+//===----------------------------------------------------------------------===//
+
+/// \brief Create an abbreviation for the SLocEntry that refers to a
+/// file.
+static unsigned CreateSLocFileAbbrev(llvm::BitstreamWriter &Stream) {
+ using namespace llvm;
+ BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(SM_SLOC_FILE_ENTRY));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Offset
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Include location
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2)); // Characteristic
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Line directives
+ // FileEntry fields.
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Input File ID
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // NumCreatedFIDs
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 24)); // FirstDeclIndex
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // NumDecls
+ return Stream.EmitAbbrev(Abbrev);
+}
+
+/// \brief Create an abbreviation for the SLocEntry that refers to a
+/// buffer.
+static unsigned CreateSLocBufferAbbrev(llvm::BitstreamWriter &Stream) {
+ using namespace llvm;
+ BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(SM_SLOC_BUFFER_ENTRY));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Offset
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Include location
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2)); // Characteristic
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Line directives
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Buffer name blob
+ return Stream.EmitAbbrev(Abbrev);
+}
+
+/// \brief Create an abbreviation for the SLocEntry that refers to a
+/// buffer's blob.
+static unsigned CreateSLocBufferBlobAbbrev(llvm::BitstreamWriter &Stream) {
+ using namespace llvm;
+ BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(SM_SLOC_BUFFER_BLOB));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Blob
+ return Stream.EmitAbbrev(Abbrev);
+}
+
+/// \brief Create an abbreviation for the SLocEntry that refers to a macro
+/// expansion.
+static unsigned CreateSLocExpansionAbbrev(llvm::BitstreamWriter &Stream) {
+ using namespace llvm;
+ BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(SM_SLOC_EXPANSION_ENTRY));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Offset
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Spelling location
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Start location
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // End location
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Token length
+ return Stream.EmitAbbrev(Abbrev);
+}
+
+namespace {
+ // Trait used for the on-disk hash table of header search information.
+ class HeaderFileInfoTrait {
+ ASTWriter &Writer;
+ const HeaderSearch &HS;
+
+ // Keep track of the framework names we've used during serialization.
+ SmallVector<char, 128> FrameworkStringData;
+ llvm::StringMap<unsigned> FrameworkNameOffset;
+
+ public:
+ HeaderFileInfoTrait(ASTWriter &Writer, const HeaderSearch &HS)
+ : Writer(Writer), HS(HS) { }
+
+ struct key_type {
+ const FileEntry *FE;
+ const char *Filename;
+ };
+ typedef const key_type &key_type_ref;
+
+ typedef HeaderFileInfo data_type;
+ typedef const data_type &data_type_ref;
+ typedef unsigned hash_value_type;
+ typedef unsigned offset_type;
+
+ static hash_value_type ComputeHash(key_type_ref key) {
+ // The hash is based only on size/time of the file, so that the reader can
+ // match even when symlinking or excess path elements ("foo/../", "../")
+ // change the form of the name. However, complete path is still the key.
+ //
+ // FIXME: Using the mtime here will cause problems for explicit module
+ // imports.
+ return llvm::hash_combine(key.FE->getSize(),
+ key.FE->getModificationTime());
+ }
+
+ std::pair<unsigned,unsigned>
+ EmitKeyDataLength(raw_ostream& Out, key_type_ref key, data_type_ref Data) {
+ using namespace llvm::support;
+ endian::Writer<little> Writer(Out);
+ unsigned KeyLen = strlen(key.Filename) + 1 + 8 + 8;
+ Writer.write<uint16_t>(KeyLen);
+ unsigned DataLen = 1 + 2 + 4 + 4;
+ if (Data.isModuleHeader)
+ DataLen += 4;
+ Writer.write<uint8_t>(DataLen);
+ return std::make_pair(KeyLen, DataLen);
+ }
+
+ void EmitKey(raw_ostream& Out, key_type_ref key, unsigned KeyLen) {
+ using namespace llvm::support;
+ endian::Writer<little> LE(Out);
+ LE.write<uint64_t>(key.FE->getSize());
+ KeyLen -= 8;
+ LE.write<uint64_t>(key.FE->getModificationTime());
+ KeyLen -= 8;
+ Out.write(key.Filename, KeyLen);
+ }
+
+ void EmitData(raw_ostream &Out, key_type_ref key,
+ data_type_ref Data, unsigned DataLen) {
+ using namespace llvm::support;
+ endian::Writer<little> LE(Out);
+ uint64_t Start = Out.tell(); (void)Start;
+
+ unsigned char Flags = (Data.HeaderRole << 6)
+ | (Data.isImport << 5)
+ | (Data.isPragmaOnce << 4)
+ | (Data.DirInfo << 2)
+ | (Data.Resolved << 1)
+ | Data.IndexHeaderMapHeader;
+ LE.write<uint8_t>(Flags);
+ LE.write<uint16_t>(Data.NumIncludes);
+
+ if (!Data.ControllingMacro)
+ LE.write<uint32_t>(Data.ControllingMacroID);
+ else
+ LE.write<uint32_t>(Writer.getIdentifierRef(Data.ControllingMacro));
+
+ unsigned Offset = 0;
+ if (!Data.Framework.empty()) {
+ // If this header refers into a framework, save the framework name.
+ llvm::StringMap<unsigned>::iterator Pos
+ = FrameworkNameOffset.find(Data.Framework);
+ if (Pos == FrameworkNameOffset.end()) {
+ Offset = FrameworkStringData.size() + 1;
+ FrameworkStringData.append(Data.Framework.begin(),
+ Data.Framework.end());
+ FrameworkStringData.push_back(0);
+
+ FrameworkNameOffset[Data.Framework] = Offset;
+ } else
+ Offset = Pos->second;
+ }
+ LE.write<uint32_t>(Offset);
+
+ if (Data.isModuleHeader) {
+ Module *Mod = HS.findModuleForHeader(key.FE).getModule();
+ LE.write<uint32_t>(Writer.getExistingSubmoduleID(Mod));
+ }
+
+ assert(Out.tell() - Start == DataLen && "Wrong data length");
+ }
+
+ const char *strings_begin() const { return FrameworkStringData.begin(); }
+ const char *strings_end() const { return FrameworkStringData.end(); }
+ };
+} // end anonymous namespace
+
+/// \brief Write the header search block for the list of files that
+///
+/// \param HS The header search structure to save.
+void ASTWriter::WriteHeaderSearch(const HeaderSearch &HS) {
+ SmallVector<const FileEntry *, 16> FilesByUID;
+ HS.getFileMgr().GetUniqueIDMapping(FilesByUID);
+
+ if (FilesByUID.size() > HS.header_file_size())
+ FilesByUID.resize(HS.header_file_size());
+
+ HeaderFileInfoTrait GeneratorTrait(*this, HS);
+ llvm::OnDiskChainedHashTableGenerator<HeaderFileInfoTrait> Generator;
+ SmallVector<const char *, 4> SavedStrings;
+ unsigned NumHeaderSearchEntries = 0;
+ for (unsigned UID = 0, LastUID = FilesByUID.size(); UID != LastUID; ++UID) {
+ const FileEntry *File = FilesByUID[UID];
+ if (!File)
+ continue;
+
+ // Use HeaderSearch's getFileInfo to make sure we get the HeaderFileInfo
+ // from the external source if it was not provided already.
+ HeaderFileInfo HFI;
+ if (!HS.tryGetFileInfo(File, HFI) ||
+ (HFI.External && Chain) ||
+ (HFI.isModuleHeader && !HFI.isCompilingModuleHeader))
+ continue;
+
+ // Massage the file path into an appropriate form.
+ const char *Filename = File->getName();
+ SmallString<128> FilenameTmp(Filename);
+ if (PreparePathForOutput(FilenameTmp)) {
+ // If we performed any translation on the file name at all, we need to
+ // save this string, since the generator will refer to it later.
+ Filename = strdup(FilenameTmp.c_str());
+ SavedStrings.push_back(Filename);
+ }
+
+ HeaderFileInfoTrait::key_type key = { File, Filename };
+ Generator.insert(key, HFI, GeneratorTrait);
+ ++NumHeaderSearchEntries;
+ }
+
+ // Create the on-disk hash table in a buffer.
+ SmallString<4096> TableData;
+ uint32_t BucketOffset;
+ {
+ using namespace llvm::support;
+ llvm::raw_svector_ostream Out(TableData);
+ // Make sure that no bucket is at offset 0
+ endian::Writer<little>(Out).write<uint32_t>(0);
+ BucketOffset = Generator.Emit(Out, GeneratorTrait);
+ }
+
+ // Create a blob abbreviation
+ using namespace llvm;
+ BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(HEADER_SEARCH_TABLE));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
+ unsigned TableAbbrev = Stream.EmitAbbrev(Abbrev);
+
+ // Write the header search table
+ RecordData Record;
+ Record.push_back(HEADER_SEARCH_TABLE);
+ Record.push_back(BucketOffset);
+ Record.push_back(NumHeaderSearchEntries);
+ Record.push_back(TableData.size());
+ TableData.append(GeneratorTrait.strings_begin(),GeneratorTrait.strings_end());
+ Stream.EmitRecordWithBlob(TableAbbrev, Record, TableData);
+
+ // Free all of the strings we had to duplicate.
+ for (unsigned I = 0, N = SavedStrings.size(); I != N; ++I)
+ free(const_cast<char *>(SavedStrings[I]));
+}
+
+/// \brief Writes the block containing the serialized form of the
+/// source manager.
+///
+/// TODO: We should probably use an on-disk hash table (stored in a
+/// blob), indexed based on the file name, so that we only create
+/// entries for files that we actually need. In the common case (no
+/// errors), we probably won't have to create file entries for any of
+/// the files in the AST.
+void ASTWriter::WriteSourceManagerBlock(SourceManager &SourceMgr,
+ const Preprocessor &PP) {
+ RecordData Record;
+
+ // Enter the source manager block.
+ Stream.EnterSubblock(SOURCE_MANAGER_BLOCK_ID, 3);
+
+ // Abbreviations for the various kinds of source-location entries.
+ unsigned SLocFileAbbrv = CreateSLocFileAbbrev(Stream);
+ unsigned SLocBufferAbbrv = CreateSLocBufferAbbrev(Stream);
+ unsigned SLocBufferBlobAbbrv = CreateSLocBufferBlobAbbrev(Stream);
+ unsigned SLocExpansionAbbrv = CreateSLocExpansionAbbrev(Stream);
+
+ // Write out the source location entry table. We skip the first
+ // entry, which is always the same dummy entry.
+ std::vector<uint32_t> SLocEntryOffsets;
+ RecordData PreloadSLocs;
+ SLocEntryOffsets.reserve(SourceMgr.local_sloc_entry_size() - 1);
+ for (unsigned I = 1, N = SourceMgr.local_sloc_entry_size();
+ I != N; ++I) {
+ // Get this source location entry.
+ const SrcMgr::SLocEntry *SLoc = &SourceMgr.getLocalSLocEntry(I);
+ FileID FID = FileID::get(I);
+ assert(&SourceMgr.getSLocEntry(FID) == SLoc);
+
+ // Record the offset of this source-location entry.
+ SLocEntryOffsets.push_back(Stream.GetCurrentBitNo());
+
+ // Figure out which record code to use.
+ unsigned Code;
+ if (SLoc->isFile()) {
+ const SrcMgr::ContentCache *Cache = SLoc->getFile().getContentCache();
+ if (Cache->OrigEntry) {
+ Code = SM_SLOC_FILE_ENTRY;
+ } else
+ Code = SM_SLOC_BUFFER_ENTRY;
+ } else
+ Code = SM_SLOC_EXPANSION_ENTRY;
+ Record.clear();
+ Record.push_back(Code);
+
+ // Starting offset of this entry within this module, so skip the dummy.
+ Record.push_back(SLoc->getOffset() - 2);
+ if (SLoc->isFile()) {
+ const SrcMgr::FileInfo &File = SLoc->getFile();
+ Record.push_back(File.getIncludeLoc().getRawEncoding());
+ Record.push_back(File.getFileCharacteristic()); // FIXME: stable encoding
+ Record.push_back(File.hasLineDirectives());
+
+ const SrcMgr::ContentCache *Content = File.getContentCache();
+ if (Content->OrigEntry) {
+ assert(Content->OrigEntry == Content->ContentsEntry &&
+ "Writing to AST an overridden file is not supported");
+
+ // The source location entry is a file. Emit input file ID.
+ assert(InputFileIDs[Content->OrigEntry] != 0 && "Missed file entry");
+ Record.push_back(InputFileIDs[Content->OrigEntry]);
+
+ Record.push_back(File.NumCreatedFIDs);
+
+ FileDeclIDsTy::iterator FDI = FileDeclIDs.find(FID);
+ if (FDI != FileDeclIDs.end()) {
+ Record.push_back(FDI->second->FirstDeclIndex);
+ Record.push_back(FDI->second->DeclIDs.size());
+ } else {
+ Record.push_back(0);
+ Record.push_back(0);
+ }
+
+ Stream.EmitRecordWithAbbrev(SLocFileAbbrv, Record);
+
+ if (Content->BufferOverridden) {
+ Record.clear();
+ Record.push_back(SM_SLOC_BUFFER_BLOB);
+ const llvm::MemoryBuffer *Buffer
+ = Content->getBuffer(PP.getDiagnostics(), PP.getSourceManager());
+ Stream.EmitRecordWithBlob(SLocBufferBlobAbbrv, Record,
+ StringRef(Buffer->getBufferStart(),
+ Buffer->getBufferSize() + 1));
+ }
+ } else {
+ // The source location entry is a buffer. The blob associated
+ // with this entry contains the contents of the buffer.
+
+ // We add one to the size so that we capture the trailing NULL
+ // that is required by llvm::MemoryBuffer::getMemBuffer (on
+ // the reader side).
+ const llvm::MemoryBuffer *Buffer
+ = Content->getBuffer(PP.getDiagnostics(), PP.getSourceManager());
+ const char *Name = Buffer->getBufferIdentifier();
+ Stream.EmitRecordWithBlob(SLocBufferAbbrv, Record,
+ StringRef(Name, strlen(Name) + 1));
+ Record.clear();
+ Record.push_back(SM_SLOC_BUFFER_BLOB);
+ Stream.EmitRecordWithBlob(SLocBufferBlobAbbrv, Record,
+ StringRef(Buffer->getBufferStart(),
+ Buffer->getBufferSize() + 1));
+
+ if (strcmp(Name, "<built-in>") == 0) {
+ PreloadSLocs.push_back(SLocEntryOffsets.size());
+ }
+ }
+ } else {
+ // The source location entry is a macro expansion.
+ const SrcMgr::ExpansionInfo &Expansion = SLoc->getExpansion();
+ Record.push_back(Expansion.getSpellingLoc().getRawEncoding());
+ Record.push_back(Expansion.getExpansionLocStart().getRawEncoding());
+ Record.push_back(Expansion.isMacroArgExpansion() ? 0
+ : Expansion.getExpansionLocEnd().getRawEncoding());
+
+ // Compute the token length for this macro expansion.
+ unsigned NextOffset = SourceMgr.getNextLocalOffset();
+ if (I + 1 != N)
+ NextOffset = SourceMgr.getLocalSLocEntry(I + 1).getOffset();
+ Record.push_back(NextOffset - SLoc->getOffset() - 1);
+ Stream.EmitRecordWithAbbrev(SLocExpansionAbbrv, Record);
+ }
+ }
+
+ Stream.ExitBlock();
+
+ if (SLocEntryOffsets.empty())
+ return;
+
+ // Write the source-location offsets table into the AST block. This
+ // table is used for lazily loading source-location information.
+ using namespace llvm;
+ BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(SOURCE_LOCATION_OFFSETS));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 16)); // # of slocs
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 16)); // total size
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // offsets
+ unsigned SLocOffsetsAbbrev = Stream.EmitAbbrev(Abbrev);
+
+ Record.clear();
+ Record.push_back(SOURCE_LOCATION_OFFSETS);
+ Record.push_back(SLocEntryOffsets.size());
+ Record.push_back(SourceMgr.getNextLocalOffset() - 1); // skip dummy
+ Stream.EmitRecordWithBlob(SLocOffsetsAbbrev, Record, bytes(SLocEntryOffsets));
+
+ // Write the source location entry preloads array, telling the AST
+ // reader which source locations entries it should load eagerly.
+ Stream.EmitRecord(SOURCE_LOCATION_PRELOADS, PreloadSLocs);
+
+ // Write the line table. It depends on remapping working, so it must come
+ // after the source location offsets.
+ if (SourceMgr.hasLineTable()) {
+ LineTableInfo &LineTable = SourceMgr.getLineTable();
+
+ Record.clear();
+ // Emit the file names.
+ Record.push_back(LineTable.getNumFilenames());
+ for (unsigned I = 0, N = LineTable.getNumFilenames(); I != N; ++I)
+ AddPath(LineTable.getFilename(I), Record);
+
+ // Emit the line entries
+ for (LineTableInfo::iterator L = LineTable.begin(), LEnd = LineTable.end();
+ L != LEnd; ++L) {
+ // Only emit entries for local files.
+ if (L->first.ID < 0)
+ continue;
+
+ // Emit the file ID
+ Record.push_back(L->first.ID);
+
+ // Emit the line entries
+ Record.push_back(L->second.size());
+ for (std::vector<LineEntry>::iterator LE = L->second.begin(),
+ LEEnd = L->second.end();
+ LE != LEEnd; ++LE) {
+ Record.push_back(LE->FileOffset);
+ Record.push_back(LE->LineNo);
+ Record.push_back(LE->FilenameID);
+ Record.push_back((unsigned)LE->FileKind);
+ Record.push_back(LE->IncludeOffset);
+ }
+ }
+ Stream.EmitRecord(SOURCE_MANAGER_LINE_TABLE, Record);
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Preprocessor Serialization
+//===----------------------------------------------------------------------===//
+
+static bool shouldIgnoreMacro(MacroDirective *MD, bool IsModule,
+ const Preprocessor &PP) {
+ if (MacroInfo *MI = MD->getMacroInfo())
+ if (MI->isBuiltinMacro())
+ return true;
+
+ if (IsModule) {
+ SourceLocation Loc = MD->getLocation();
+ if (Loc.isInvalid())
+ return true;
+ if (PP.getSourceManager().getFileID(Loc) == PP.getPredefinesFileID())
+ return true;
+ }
+
+ return false;
+}
+
+/// \brief Writes the block containing the serialized form of the
+/// preprocessor.
+///
+void ASTWriter::WritePreprocessor(const Preprocessor &PP, bool IsModule) {
+ PreprocessingRecord *PPRec = PP.getPreprocessingRecord();
+ if (PPRec)
+ WritePreprocessorDetail(*PPRec);
+
+ RecordData Record;
+ RecordData ModuleMacroRecord;
+
+ // If the preprocessor __COUNTER__ value has been bumped, remember it.
+ if (PP.getCounterValue() != 0) {
+ Record.push_back(PP.getCounterValue());
+ Stream.EmitRecord(PP_COUNTER_VALUE, Record);
+ Record.clear();
+ }
+
+ // Enter the preprocessor block.
+ Stream.EnterSubblock(PREPROCESSOR_BLOCK_ID, 3);
+
+ // If the AST file contains __DATE__ or __TIME__ emit a warning about this.
+ // FIXME: use diagnostics subsystem for localization etc.
+ if (PP.SawDateOrTime())
+ fprintf(stderr, "warning: precompiled header used __DATE__ or __TIME__.\n");
+
+
+ // Loop over all the macro directives that are live at the end of the file,
+ // emitting each to the PP section.
+
+ // Construct the list of identifiers with macro directives that need to be
+ // serialized.
+ SmallVector<const IdentifierInfo *, 128> MacroIdentifiers;
+ for (auto &Id : PP.getIdentifierTable())
+ if (Id.second->hadMacroDefinition() &&
+ (!Id.second->isFromAST() ||
+ Id.second->hasChangedSinceDeserialization()))
+ MacroIdentifiers.push_back(Id.second);
+ // Sort the set of macro definitions that need to be serialized by the
+ // name of the macro, to provide a stable ordering.
+ std::sort(MacroIdentifiers.begin(), MacroIdentifiers.end(),
+ llvm::less_ptr<IdentifierInfo>());
+
+ // Emit the macro directives as a list and associate the offset with the
+ // identifier they belong to.
+ for (const IdentifierInfo *Name : MacroIdentifiers) {
+ MacroDirective *MD = PP.getLocalMacroDirectiveHistory(Name);
+ auto StartOffset = Stream.GetCurrentBitNo();
+
+ // Emit the macro directives in reverse source order.
+ for (; MD; MD = MD->getPrevious()) {
+ // Once we hit an ignored macro, we're done: the rest of the chain
+ // will all be ignored macros.
+ if (shouldIgnoreMacro(MD, IsModule, PP))
+ break;
+
+ AddSourceLocation(MD->getLocation(), Record);
+ Record.push_back(MD->getKind());
+ if (auto *DefMD = dyn_cast<DefMacroDirective>(MD)) {
+ Record.push_back(getMacroRef(DefMD->getInfo(), Name));
+ } else if (auto *VisMD = dyn_cast<VisibilityMacroDirective>(MD)) {
+ Record.push_back(VisMD->isPublic());
+ }
+ }
+
+ // Write out any exported module macros.
+ bool EmittedModuleMacros = false;
+ if (IsModule) {
+ auto Leafs = PP.getLeafModuleMacros(Name);
+ SmallVector<ModuleMacro*, 8> Worklist(Leafs.begin(), Leafs.end());
+ llvm::DenseMap<ModuleMacro*, unsigned> Visits;
+ while (!Worklist.empty()) {
+ auto *Macro = Worklist.pop_back_val();
+
+ // Emit a record indicating this submodule exports this macro.
+ ModuleMacroRecord.push_back(
+ getSubmoduleID(Macro->getOwningModule()));
+ ModuleMacroRecord.push_back(getMacroRef(Macro->getMacroInfo(), Name));
+ for (auto *M : Macro->overrides())
+ ModuleMacroRecord.push_back(getSubmoduleID(M->getOwningModule()));
+
+ Stream.EmitRecord(PP_MODULE_MACRO, ModuleMacroRecord);
+ ModuleMacroRecord.clear();
+
+ // Enqueue overridden macros once we've visited all their ancestors.
+ for (auto *M : Macro->overrides())
+ if (++Visits[M] == M->getNumOverridingMacros())
+ Worklist.push_back(M);
+
+ EmittedModuleMacros = true;
+ }
+ }
+
+ if (Record.empty() && !EmittedModuleMacros)
+ continue;
+
+ IdentMacroDirectivesOffsetMap[Name] = StartOffset;
+ Stream.EmitRecord(PP_MACRO_DIRECTIVE_HISTORY, Record);
+ Record.clear();
+ }
+
+ /// \brief Offsets of each of the macros into the bitstream, indexed by
+ /// the local macro ID
+ ///
+ /// For each identifier that is associated with a macro, this map
+ /// provides the offset into the bitstream where that macro is
+ /// defined.
+ std::vector<uint32_t> MacroOffsets;
+
+ for (unsigned I = 0, N = MacroInfosToEmit.size(); I != N; ++I) {
+ const IdentifierInfo *Name = MacroInfosToEmit[I].Name;
+ MacroInfo *MI = MacroInfosToEmit[I].MI;
+ MacroID ID = MacroInfosToEmit[I].ID;
+
+ if (ID < FirstMacroID) {
+ assert(0 && "Loaded MacroInfo entered MacroInfosToEmit ?");
+ continue;
+ }
+
+ // Record the local offset of this macro.
+ unsigned Index = ID - FirstMacroID;
+ if (Index == MacroOffsets.size())
+ MacroOffsets.push_back(Stream.GetCurrentBitNo());
+ else {
+ if (Index > MacroOffsets.size())
+ MacroOffsets.resize(Index + 1);
+
+ MacroOffsets[Index] = Stream.GetCurrentBitNo();
+ }
+
+ AddIdentifierRef(Name, Record);
+ Record.push_back(inferSubmoduleIDFromLocation(MI->getDefinitionLoc()));
+ AddSourceLocation(MI->getDefinitionLoc(), Record);
+ AddSourceLocation(MI->getDefinitionEndLoc(), Record);
+ Record.push_back(MI->isUsed());
+ Record.push_back(MI->isUsedForHeaderGuard());
+ unsigned Code;
+ if (MI->isObjectLike()) {
+ Code = PP_MACRO_OBJECT_LIKE;
+ } else {
+ Code = PP_MACRO_FUNCTION_LIKE;
+
+ Record.push_back(MI->isC99Varargs());
+ Record.push_back(MI->isGNUVarargs());
+ Record.push_back(MI->hasCommaPasting());
+ Record.push_back(MI->getNumArgs());
+ for (MacroInfo::arg_iterator I = MI->arg_begin(), E = MI->arg_end();
+ I != E; ++I)
+ AddIdentifierRef(*I, Record);
+ }
+
+ // If we have a detailed preprocessing record, record the macro definition
+ // ID that corresponds to this macro.
+ if (PPRec)
+ Record.push_back(MacroDefinitions[PPRec->findMacroDefinition(MI)]);
+
+ Stream.EmitRecord(Code, Record);
+ Record.clear();
+
+ // Emit the tokens array.
+ for (unsigned TokNo = 0, e = MI->getNumTokens(); TokNo != e; ++TokNo) {
+ // Note that we know that the preprocessor does not have any annotation
+ // tokens in it because they are created by the parser, and thus can't
+ // be in a macro definition.
+ const Token &Tok = MI->getReplacementToken(TokNo);
+ AddToken(Tok, Record);
+ Stream.EmitRecord(PP_TOKEN, Record);
+ Record.clear();
+ }
+ ++NumMacros;
+ }
+
+ Stream.ExitBlock();
+
+ // Write the offsets table for macro IDs.
+ using namespace llvm;
+ auto *Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(MACRO_OFFSET));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // # of macros
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // first ID
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
+
+ unsigned MacroOffsetAbbrev = Stream.EmitAbbrev(Abbrev);
+ Record.clear();
+ Record.push_back(MACRO_OFFSET);
+ Record.push_back(MacroOffsets.size());
+ Record.push_back(FirstMacroID - NUM_PREDEF_MACRO_IDS);
+ Stream.EmitRecordWithBlob(MacroOffsetAbbrev, Record,
+ bytes(MacroOffsets));
+}
+
+void ASTWriter::WritePreprocessorDetail(PreprocessingRecord &PPRec) {
+ if (PPRec.local_begin() == PPRec.local_end())
+ return;
+
+ SmallVector<PPEntityOffset, 64> PreprocessedEntityOffsets;
+
+ // Enter the preprocessor block.
+ Stream.EnterSubblock(PREPROCESSOR_DETAIL_BLOCK_ID, 3);
+
+ // If the preprocessor has a preprocessing record, emit it.
+ unsigned NumPreprocessingRecords = 0;
+ using namespace llvm;
+
+ // Set up the abbreviation for
+ unsigned InclusionAbbrev = 0;
+ {
+ BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(PPD_INCLUSION_DIRECTIVE));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // filename length
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // in quotes
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2)); // kind
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // imported module
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
+ InclusionAbbrev = Stream.EmitAbbrev(Abbrev);
+ }
+
+ unsigned FirstPreprocessorEntityID
+ = (Chain ? PPRec.getNumLoadedPreprocessedEntities() : 0)
+ + NUM_PREDEF_PP_ENTITY_IDS;
+ unsigned NextPreprocessorEntityID = FirstPreprocessorEntityID;
+ RecordData Record;
+ for (PreprocessingRecord::iterator E = PPRec.local_begin(),
+ EEnd = PPRec.local_end();
+ E != EEnd;
+ (void)++E, ++NumPreprocessingRecords, ++NextPreprocessorEntityID) {
+ Record.clear();
+
+ PreprocessedEntityOffsets.push_back(
+ PPEntityOffset((*E)->getSourceRange(), Stream.GetCurrentBitNo()));
+
+ if (MacroDefinitionRecord *MD = dyn_cast<MacroDefinitionRecord>(*E)) {
+ // Record this macro definition's ID.
+ MacroDefinitions[MD] = NextPreprocessorEntityID;
+
+ AddIdentifierRef(MD->getName(), Record);
+ Stream.EmitRecord(PPD_MACRO_DEFINITION, Record);
+ continue;
+ }
+
+ if (MacroExpansion *ME = dyn_cast<MacroExpansion>(*E)) {
+ Record.push_back(ME->isBuiltinMacro());
+ if (ME->isBuiltinMacro())
+ AddIdentifierRef(ME->getName(), Record);
+ else
+ Record.push_back(MacroDefinitions[ME->getDefinition()]);
+ Stream.EmitRecord(PPD_MACRO_EXPANSION, Record);
+ continue;
+ }
+
+ if (InclusionDirective *ID = dyn_cast<InclusionDirective>(*E)) {
+ Record.push_back(PPD_INCLUSION_DIRECTIVE);
+ Record.push_back(ID->getFileName().size());
+ Record.push_back(ID->wasInQuotes());
+ Record.push_back(static_cast<unsigned>(ID->getKind()));
+ Record.push_back(ID->importedModule());
+ SmallString<64> Buffer;
+ Buffer += ID->getFileName();
+ // Check that the FileEntry is not null because it was not resolved and
+ // we create a PCH even with compiler errors.
+ if (ID->getFile())
+ Buffer += ID->getFile()->getName();
+ Stream.EmitRecordWithBlob(InclusionAbbrev, Record, Buffer);
+ continue;
+ }
+
+ llvm_unreachable("Unhandled PreprocessedEntity in ASTWriter");
+ }
+ Stream.ExitBlock();
+
+ // Write the offsets table for the preprocessing record.
+ if (NumPreprocessingRecords > 0) {
+ assert(PreprocessedEntityOffsets.size() == NumPreprocessingRecords);
+
+ // Write the offsets table for identifier IDs.
+ using namespace llvm;
+ BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(PPD_ENTITIES_OFFSETS));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // first pp entity
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
+ unsigned PPEOffsetAbbrev = Stream.EmitAbbrev(Abbrev);
+
+ Record.clear();
+ Record.push_back(PPD_ENTITIES_OFFSETS);
+ Record.push_back(FirstPreprocessorEntityID - NUM_PREDEF_PP_ENTITY_IDS);
+ Stream.EmitRecordWithBlob(PPEOffsetAbbrev, Record,
+ bytes(PreprocessedEntityOffsets));
+ }
+}
+
+unsigned ASTWriter::getSubmoduleID(Module *Mod) {
+ llvm::DenseMap<Module *, unsigned>::iterator Known = SubmoduleIDs.find(Mod);
+ if (Known != SubmoduleIDs.end())
+ return Known->second;
+
+ return SubmoduleIDs[Mod] = NextSubmoduleID++;
+}
+
+unsigned ASTWriter::getExistingSubmoduleID(Module *Mod) const {
+ if (!Mod)
+ return 0;
+
+ llvm::DenseMap<Module *, unsigned>::const_iterator
+ Known = SubmoduleIDs.find(Mod);
+ if (Known != SubmoduleIDs.end())
+ return Known->second;
+
+ return 0;
+}
+
+/// \brief Compute the number of modules within the given tree (including the
+/// given module).
+static unsigned getNumberOfModules(Module *Mod) {
+ unsigned ChildModules = 0;
+ for (Module::submodule_iterator Sub = Mod->submodule_begin(),
+ SubEnd = Mod->submodule_end();
+ Sub != SubEnd; ++Sub)
+ ChildModules += getNumberOfModules(*Sub);
+
+ return ChildModules + 1;
+}
+
+void ASTWriter::WriteSubmodules(Module *WritingModule) {
+ // Enter the submodule description block.
+ Stream.EnterSubblock(SUBMODULE_BLOCK_ID, /*bits for abbreviations*/5);
+
+ // Write the abbreviations needed for the submodules block.
+ using namespace llvm;
+ BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_DEFINITION));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ID
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Parent
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsFramework
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsExplicit
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsSystem
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsExternC
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // InferSubmodules...
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // InferExplicit...
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // InferExportWild...
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ConfigMacrosExh...
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
+ unsigned DefinitionAbbrev = Stream.EmitAbbrev(Abbrev);
+
+ Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_UMBRELLA_HEADER));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
+ unsigned UmbrellaAbbrev = Stream.EmitAbbrev(Abbrev);
+
+ Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_HEADER));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
+ unsigned HeaderAbbrev = Stream.EmitAbbrev(Abbrev);
+
+ Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_TOPHEADER));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
+ unsigned TopHeaderAbbrev = Stream.EmitAbbrev(Abbrev);
+
+ Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_UMBRELLA_DIR));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
+ unsigned UmbrellaDirAbbrev = Stream.EmitAbbrev(Abbrev);
+
+ Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_REQUIRES));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // State
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Feature
+ unsigned RequiresAbbrev = Stream.EmitAbbrev(Abbrev);
+
+ Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_EXCLUDED_HEADER));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
+ unsigned ExcludedHeaderAbbrev = Stream.EmitAbbrev(Abbrev);
+
+ Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_TEXTUAL_HEADER));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
+ unsigned TextualHeaderAbbrev = Stream.EmitAbbrev(Abbrev);
+
+ Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_PRIVATE_HEADER));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
+ unsigned PrivateHeaderAbbrev = Stream.EmitAbbrev(Abbrev);
+
+ Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_PRIVATE_TEXTUAL_HEADER));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
+ unsigned PrivateTextualHeaderAbbrev = Stream.EmitAbbrev(Abbrev);
+
+ Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_LINK_LIBRARY));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsFramework
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
+ unsigned LinkLibraryAbbrev = Stream.EmitAbbrev(Abbrev);
+
+ Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_CONFIG_MACRO));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Macro name
+ unsigned ConfigMacroAbbrev = Stream.EmitAbbrev(Abbrev);
+
+ Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_CONFLICT));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Other module
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Message
+ unsigned ConflictAbbrev = Stream.EmitAbbrev(Abbrev);
+
+ // Write the submodule metadata block.
+ RecordData Record;
+ Record.push_back(getNumberOfModules(WritingModule));
+ Record.push_back(FirstSubmoduleID - NUM_PREDEF_SUBMODULE_IDS);
+ Stream.EmitRecord(SUBMODULE_METADATA, Record);
+
+ // Write all of the submodules.
+ std::queue<Module *> Q;
+ Q.push(WritingModule);
+ while (!Q.empty()) {
+ Module *Mod = Q.front();
+ Q.pop();
+ unsigned ID = getSubmoduleID(Mod);
+
+ // Emit the definition of the block.
+ Record.clear();
+ Record.push_back(SUBMODULE_DEFINITION);
+ Record.push_back(ID);
+ if (Mod->Parent) {
+ assert(SubmoduleIDs[Mod->Parent] && "Submodule parent not written?");
+ Record.push_back(SubmoduleIDs[Mod->Parent]);
+ } else {
+ Record.push_back(0);
+ }
+ Record.push_back(Mod->IsFramework);
+ Record.push_back(Mod->IsExplicit);
+ Record.push_back(Mod->IsSystem);
+ Record.push_back(Mod->IsExternC);
+ Record.push_back(Mod->InferSubmodules);
+ Record.push_back(Mod->InferExplicitSubmodules);
+ Record.push_back(Mod->InferExportWildcard);
+ Record.push_back(Mod->ConfigMacrosExhaustive);
+ Stream.EmitRecordWithBlob(DefinitionAbbrev, Record, Mod->Name);
+
+ // Emit the requirements.
+ for (unsigned I = 0, N = Mod->Requirements.size(); I != N; ++I) {
+ Record.clear();
+ Record.push_back(SUBMODULE_REQUIRES);
+ Record.push_back(Mod->Requirements[I].second);
+ Stream.EmitRecordWithBlob(RequiresAbbrev, Record,
+ Mod->Requirements[I].first);
+ }
+
+ // Emit the umbrella header, if there is one.
+ if (auto UmbrellaHeader = Mod->getUmbrellaHeader()) {
+ Record.clear();
+ Record.push_back(SUBMODULE_UMBRELLA_HEADER);
+ Stream.EmitRecordWithBlob(UmbrellaAbbrev, Record,
+ UmbrellaHeader.NameAsWritten);
+ } else if (auto UmbrellaDir = Mod->getUmbrellaDir()) {
+ Record.clear();
+ Record.push_back(SUBMODULE_UMBRELLA_DIR);
+ Stream.EmitRecordWithBlob(UmbrellaDirAbbrev, Record,
+ UmbrellaDir.NameAsWritten);
+ }
+
+ // Emit the headers.
+ struct {
+ unsigned RecordKind;
+ unsigned Abbrev;
+ Module::HeaderKind HeaderKind;
+ } HeaderLists[] = {
+ {SUBMODULE_HEADER, HeaderAbbrev, Module::HK_Normal},
+ {SUBMODULE_TEXTUAL_HEADER, TextualHeaderAbbrev, Module::HK_Textual},
+ {SUBMODULE_PRIVATE_HEADER, PrivateHeaderAbbrev, Module::HK_Private},
+ {SUBMODULE_PRIVATE_TEXTUAL_HEADER, PrivateTextualHeaderAbbrev,
+ Module::HK_PrivateTextual},
+ {SUBMODULE_EXCLUDED_HEADER, ExcludedHeaderAbbrev, Module::HK_Excluded}
+ };
+ for (auto &HL : HeaderLists) {
+ Record.clear();
+ Record.push_back(HL.RecordKind);
+ for (auto &H : Mod->Headers[HL.HeaderKind])
+ Stream.EmitRecordWithBlob(HL.Abbrev, Record, H.NameAsWritten);
+ }
+
+ // Emit the top headers.
+ {
+ auto TopHeaders = Mod->getTopHeaders(PP->getFileManager());
+ Record.clear();
+ Record.push_back(SUBMODULE_TOPHEADER);
+ for (auto *H : TopHeaders)
+ Stream.EmitRecordWithBlob(TopHeaderAbbrev, Record, H->getName());
+ }
+
+ // Emit the imports.
+ if (!Mod->Imports.empty()) {
+ Record.clear();
+ for (unsigned I = 0, N = Mod->Imports.size(); I != N; ++I) {
+ unsigned ImportedID = getSubmoduleID(Mod->Imports[I]);
+ assert(ImportedID && "Unknown submodule!");
+ Record.push_back(ImportedID);
+ }
+ Stream.EmitRecord(SUBMODULE_IMPORTS, Record);
+ }
+
+ // Emit the exports.
+ if (!Mod->Exports.empty()) {
+ Record.clear();
+ for (unsigned I = 0, N = Mod->Exports.size(); I != N; ++I) {
+ if (Module *Exported = Mod->Exports[I].getPointer()) {
+ unsigned ExportedID = getSubmoduleID(Exported);
+ Record.push_back(ExportedID);
+ } else {
+ Record.push_back(0);
+ }
+
+ Record.push_back(Mod->Exports[I].getInt());
+ }
+ Stream.EmitRecord(SUBMODULE_EXPORTS, Record);
+ }
+
+ //FIXME: How do we emit the 'use'd modules? They may not be submodules.
+ // Might be unnecessary as use declarations are only used to build the
+ // module itself.
+
+ // Emit the link libraries.
+ for (unsigned I = 0, N = Mod->LinkLibraries.size(); I != N; ++I) {
+ Record.clear();
+ Record.push_back(SUBMODULE_LINK_LIBRARY);
+ Record.push_back(Mod->LinkLibraries[I].IsFramework);
+ Stream.EmitRecordWithBlob(LinkLibraryAbbrev, Record,
+ Mod->LinkLibraries[I].Library);
+ }
+
+ // Emit the conflicts.
+ for (unsigned I = 0, N = Mod->Conflicts.size(); I != N; ++I) {
+ Record.clear();
+ Record.push_back(SUBMODULE_CONFLICT);
+ unsigned OtherID = getSubmoduleID(Mod->Conflicts[I].Other);
+ assert(OtherID && "Unknown submodule!");
+ Record.push_back(OtherID);
+ Stream.EmitRecordWithBlob(ConflictAbbrev, Record,
+ Mod->Conflicts[I].Message);
+ }
+
+ // Emit the configuration macros.
+ for (unsigned I = 0, N = Mod->ConfigMacros.size(); I != N; ++I) {
+ Record.clear();
+ Record.push_back(SUBMODULE_CONFIG_MACRO);
+ Stream.EmitRecordWithBlob(ConfigMacroAbbrev, Record,
+ Mod->ConfigMacros[I]);
+ }
+
+ // Queue up the submodules of this module.
+ for (Module::submodule_iterator Sub = Mod->submodule_begin(),
+ SubEnd = Mod->submodule_end();
+ Sub != SubEnd; ++Sub)
+ Q.push(*Sub);
+ }
+
+ Stream.ExitBlock();
+
+ // FIXME: This can easily happen, if we have a reference to a submodule that
+ // did not result in us loading a module file for that submodule. For
+ // instance, a cross-top-level-module 'conflict' declaration will hit this.
+ assert((NextSubmoduleID - FirstSubmoduleID ==
+ getNumberOfModules(WritingModule)) &&
+ "Wrong # of submodules; found a reference to a non-local, "
+ "non-imported submodule?");
+}
+
+serialization::SubmoduleID
+ASTWriter::inferSubmoduleIDFromLocation(SourceLocation Loc) {
+ if (Loc.isInvalid() || !WritingModule)
+ return 0; // No submodule
+
+ // Find the module that owns this location.
+ ModuleMap &ModMap = PP->getHeaderSearchInfo().getModuleMap();
+ Module *OwningMod
+ = ModMap.inferModuleFromLocation(FullSourceLoc(Loc,PP->getSourceManager()));
+ if (!OwningMod)
+ return 0;
+
+ // Check whether this submodule is part of our own module.
+ if (WritingModule != OwningMod && !OwningMod->isSubModuleOf(WritingModule))
+ return 0;
+
+ return getSubmoduleID(OwningMod);
+}
+
+void ASTWriter::WritePragmaDiagnosticMappings(const DiagnosticsEngine &Diag,
+ bool isModule) {
+ // Make sure set diagnostic pragmas don't affect the translation unit that
+ // imports the module.
+ // FIXME: Make diagnostic pragma sections work properly with modules.
+ if (isModule)
+ return;
+
+ llvm::SmallDenseMap<const DiagnosticsEngine::DiagState *, unsigned, 64>
+ DiagStateIDMap;
+ unsigned CurrID = 0;
+ DiagStateIDMap[&Diag.DiagStates.front()] = ++CurrID; // the command-line one.
+ RecordData Record;
+ for (DiagnosticsEngine::DiagStatePointsTy::const_iterator
+ I = Diag.DiagStatePoints.begin(), E = Diag.DiagStatePoints.end();
+ I != E; ++I) {
+ const DiagnosticsEngine::DiagStatePoint &point = *I;
+ if (point.Loc.isInvalid())
+ continue;
+
+ Record.push_back(point.Loc.getRawEncoding());
+ unsigned &DiagStateID = DiagStateIDMap[point.State];
+ Record.push_back(DiagStateID);
+
+ if (DiagStateID == 0) {
+ DiagStateID = ++CurrID;
+ for (DiagnosticsEngine::DiagState::const_iterator
+ I = point.State->begin(), E = point.State->end(); I != E; ++I) {
+ if (I->second.isPragma()) {
+ Record.push_back(I->first);
+ Record.push_back((unsigned)I->second.getSeverity());
+ }
+ }
+ Record.push_back(-1); // mark the end of the diag/map pairs for this
+ // location.
+ }
+ }
+
+ if (!Record.empty())
+ Stream.EmitRecord(DIAG_PRAGMA_MAPPINGS, Record);
+}
+
+void ASTWriter::WriteCXXCtorInitializersOffsets() {
+ if (CXXCtorInitializersOffsets.empty())
+ return;
+
+ RecordData Record;
+
+ // Create a blob abbreviation for the C++ ctor initializer offsets.
+ using namespace llvm;
+
+ BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(CXX_CTOR_INITIALIZERS_OFFSETS));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // size
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
+ unsigned CtorInitializersOffsetAbbrev = Stream.EmitAbbrev(Abbrev);
+
+ // Write the base specifier offsets table.
+ Record.clear();
+ Record.push_back(CXX_CTOR_INITIALIZERS_OFFSETS);
+ Record.push_back(CXXCtorInitializersOffsets.size());
+ Stream.EmitRecordWithBlob(CtorInitializersOffsetAbbrev, Record,
+ bytes(CXXCtorInitializersOffsets));
+}
+
+void ASTWriter::WriteCXXBaseSpecifiersOffsets() {
+ if (CXXBaseSpecifiersOffsets.empty())
+ return;
+
+ RecordData Record;
+
+ // Create a blob abbreviation for the C++ base specifiers offsets.
+ using namespace llvm;
+
+ BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(CXX_BASE_SPECIFIER_OFFSETS));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // size
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
+ unsigned BaseSpecifierOffsetAbbrev = Stream.EmitAbbrev(Abbrev);
+
+ // Write the base specifier offsets table.
+ Record.clear();
+ Record.push_back(CXX_BASE_SPECIFIER_OFFSETS);
+ Record.push_back(CXXBaseSpecifiersOffsets.size());
+ Stream.EmitRecordWithBlob(BaseSpecifierOffsetAbbrev, Record,
+ bytes(CXXBaseSpecifiersOffsets));
+}
+
+//===----------------------------------------------------------------------===//
+// Type Serialization
+//===----------------------------------------------------------------------===//
+
+/// \brief Write the representation of a type to the AST stream.
+void ASTWriter::WriteType(QualType T) {
+ TypeIdx &Idx = TypeIdxs[T];
+ if (Idx.getIndex() == 0) // we haven't seen this type before.
+ Idx = TypeIdx(NextTypeID++);
+
+ assert(Idx.getIndex() >= FirstTypeID && "Re-writing a type from a prior AST");
+
+ // Record the offset for this type.
+ unsigned Index = Idx.getIndex() - FirstTypeID;
+ if (TypeOffsets.size() == Index)
+ TypeOffsets.push_back(Stream.GetCurrentBitNo());
+ else if (TypeOffsets.size() < Index) {
+ TypeOffsets.resize(Index + 1);
+ TypeOffsets[Index] = Stream.GetCurrentBitNo();
+ }
+
+ RecordData Record;
+
+ // Emit the type's representation.
+ ASTTypeWriter W(*this, Record);
+ W.AbbrevToUse = 0;
+
+ if (T.hasLocalNonFastQualifiers()) {
+ Qualifiers Qs = T.getLocalQualifiers();
+ AddTypeRef(T.getLocalUnqualifiedType(), Record);
+ Record.push_back(Qs.getAsOpaqueValue());
+ W.Code = TYPE_EXT_QUAL;
+ W.AbbrevToUse = TypeExtQualAbbrev;
+ } else {
+ switch (T->getTypeClass()) {
+ // For all of the concrete, non-dependent types, call the
+ // appropriate visitor function.
+#define TYPE(Class, Base) \
+ case Type::Class: W.Visit##Class##Type(cast<Class##Type>(T)); break;
+#define ABSTRACT_TYPE(Class, Base)
+#include "clang/AST/TypeNodes.def"
+ }
+ }
+
+ // Emit the serialized record.
+ Stream.EmitRecord(W.Code, Record, W.AbbrevToUse);
+
+ // Flush any expressions that were written as part of this type.
+ FlushStmts();
+}
+
+//===----------------------------------------------------------------------===//
+// Declaration Serialization
+//===----------------------------------------------------------------------===//
+
+/// \brief Write the block containing all of the declaration IDs
+/// lexically declared within the given DeclContext.
+///
+/// \returns the offset of the DECL_CONTEXT_LEXICAL block within the
+/// bistream, or 0 if no block was written.
+uint64_t ASTWriter::WriteDeclContextLexicalBlock(ASTContext &Context,
+ DeclContext *DC) {
+ if (DC->decls_empty())
+ return 0;
+
+ uint64_t Offset = Stream.GetCurrentBitNo();
+ RecordData Record;
+ Record.push_back(DECL_CONTEXT_LEXICAL);
+ SmallVector<KindDeclIDPair, 64> Decls;
+ for (const auto *D : DC->decls())
+ Decls.push_back(std::make_pair(D->getKind(), GetDeclRef(D)));
+
+ ++NumLexicalDeclContexts;
+ Stream.EmitRecordWithBlob(DeclContextLexicalAbbrev, Record, bytes(Decls));
+ return Offset;
+}
+
+void ASTWriter::WriteTypeDeclOffsets() {
+ using namespace llvm;
+ RecordData Record;
+
+ // Write the type offsets array
+ BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(TYPE_OFFSET));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // # of types
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // base type index
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // types block
+ unsigned TypeOffsetAbbrev = Stream.EmitAbbrev(Abbrev);
+ Record.clear();
+ Record.push_back(TYPE_OFFSET);
+ Record.push_back(TypeOffsets.size());
+ Record.push_back(FirstTypeID - NUM_PREDEF_TYPE_IDS);
+ Stream.EmitRecordWithBlob(TypeOffsetAbbrev, Record, bytes(TypeOffsets));
+
+ // Write the declaration offsets array
+ Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(DECL_OFFSET));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // # of declarations
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // base decl ID
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // declarations block
+ unsigned DeclOffsetAbbrev = Stream.EmitAbbrev(Abbrev);
+ Record.clear();
+ Record.push_back(DECL_OFFSET);
+ Record.push_back(DeclOffsets.size());
+ Record.push_back(FirstDeclID - NUM_PREDEF_DECL_IDS);
+ Stream.EmitRecordWithBlob(DeclOffsetAbbrev, Record, bytes(DeclOffsets));
+}
+
+void ASTWriter::WriteFileDeclIDsMap() {
+ using namespace llvm;
+ RecordData Record;
+
+ SmallVector<std::pair<FileID, DeclIDInFileInfo *>, 64> SortedFileDeclIDs(
+ FileDeclIDs.begin(), FileDeclIDs.end());
+ std::sort(SortedFileDeclIDs.begin(), SortedFileDeclIDs.end(),
+ llvm::less_first());
+
+ // Join the vectors of DeclIDs from all files.
+ SmallVector<DeclID, 256> FileGroupedDeclIDs;
+ for (auto &FileDeclEntry : SortedFileDeclIDs) {
+ DeclIDInFileInfo &Info = *FileDeclEntry.second;
+ Info.FirstDeclIndex = FileGroupedDeclIDs.size();
+ for (auto &LocDeclEntry : Info.DeclIDs)
+ FileGroupedDeclIDs.push_back(LocDeclEntry.second);
+ }
+
+ BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(FILE_SORTED_DECLS));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
+ unsigned AbbrevCode = Stream.EmitAbbrev(Abbrev);
+ Record.push_back(FILE_SORTED_DECLS);
+ Record.push_back(FileGroupedDeclIDs.size());
+ Stream.EmitRecordWithBlob(AbbrevCode, Record, bytes(FileGroupedDeclIDs));
+}
+
+void ASTWriter::WriteComments() {
+ Stream.EnterSubblock(COMMENTS_BLOCK_ID, 3);
+ ArrayRef<RawComment *> RawComments = Context->Comments.getComments();
+ RecordData Record;
+ for (ArrayRef<RawComment *>::iterator I = RawComments.begin(),
+ E = RawComments.end();
+ I != E; ++I) {
+ Record.clear();
+ AddSourceRange((*I)->getSourceRange(), Record);
+ Record.push_back((*I)->getKind());
+ Record.push_back((*I)->isTrailingComment());
+ Record.push_back((*I)->isAlmostTrailingComment());
+ Stream.EmitRecord(COMMENTS_RAW_COMMENT, Record);
+ }
+ Stream.ExitBlock();
+}
+
+//===----------------------------------------------------------------------===//
+// Global Method Pool and Selector Serialization
+//===----------------------------------------------------------------------===//
+
+namespace {
+// Trait used for the on-disk hash table used in the method pool.
+class ASTMethodPoolTrait {
+ ASTWriter &Writer;
+
+public:
+ typedef Selector key_type;
+ typedef key_type key_type_ref;
+
+ struct data_type {
+ SelectorID ID;
+ ObjCMethodList Instance, Factory;
+ };
+ typedef const data_type& data_type_ref;
+
+ typedef unsigned hash_value_type;
+ typedef unsigned offset_type;
+
+ explicit ASTMethodPoolTrait(ASTWriter &Writer) : Writer(Writer) { }
+
+ static hash_value_type ComputeHash(Selector Sel) {
+ return serialization::ComputeHash(Sel);
+ }
+
+ std::pair<unsigned,unsigned>
+ EmitKeyDataLength(raw_ostream& Out, Selector Sel,
+ data_type_ref Methods) {
+ using namespace llvm::support;
+ endian::Writer<little> LE(Out);
+ unsigned KeyLen = 2 + (Sel.getNumArgs()? Sel.getNumArgs() * 4 : 4);
+ LE.write<uint16_t>(KeyLen);
+ unsigned DataLen = 4 + 2 + 2; // 2 bytes for each of the method counts
+ for (const ObjCMethodList *Method = &Methods.Instance; Method;
+ Method = Method->getNext())
+ if (Method->getMethod())
+ DataLen += 4;
+ for (const ObjCMethodList *Method = &Methods.Factory; Method;
+ Method = Method->getNext())
+ if (Method->getMethod())
+ DataLen += 4;
+ LE.write<uint16_t>(DataLen);
+ return std::make_pair(KeyLen, DataLen);
+ }
+
+ void EmitKey(raw_ostream& Out, Selector Sel, unsigned) {
+ using namespace llvm::support;
+ endian::Writer<little> LE(Out);
+ uint64_t Start = Out.tell();
+ assert((Start >> 32) == 0 && "Selector key offset too large");
+ Writer.SetSelectorOffset(Sel, Start);
+ unsigned N = Sel.getNumArgs();
+ LE.write<uint16_t>(N);
+ if (N == 0)
+ N = 1;
+ for (unsigned I = 0; I != N; ++I)
+ LE.write<uint32_t>(
+ Writer.getIdentifierRef(Sel.getIdentifierInfoForSlot(I)));
+ }
+
+ void EmitData(raw_ostream& Out, key_type_ref,
+ data_type_ref Methods, unsigned DataLen) {
+ using namespace llvm::support;
+ endian::Writer<little> LE(Out);
+ uint64_t Start = Out.tell(); (void)Start;
+ LE.write<uint32_t>(Methods.ID);
+ unsigned NumInstanceMethods = 0;
+ for (const ObjCMethodList *Method = &Methods.Instance; Method;
+ Method = Method->getNext())
+ if (Method->getMethod())
+ ++NumInstanceMethods;
+
+ unsigned NumFactoryMethods = 0;
+ for (const ObjCMethodList *Method = &Methods.Factory; Method;
+ Method = Method->getNext())
+ if (Method->getMethod())
+ ++NumFactoryMethods;
+
+ unsigned InstanceBits = Methods.Instance.getBits();
+ assert(InstanceBits < 4);
+ unsigned InstanceHasMoreThanOneDeclBit =
+ Methods.Instance.hasMoreThanOneDecl();
+ unsigned FullInstanceBits = (NumInstanceMethods << 3) |
+ (InstanceHasMoreThanOneDeclBit << 2) |
+ InstanceBits;
+ unsigned FactoryBits = Methods.Factory.getBits();
+ assert(FactoryBits < 4);
+ unsigned FactoryHasMoreThanOneDeclBit =
+ Methods.Factory.hasMoreThanOneDecl();
+ unsigned FullFactoryBits = (NumFactoryMethods << 3) |
+ (FactoryHasMoreThanOneDeclBit << 2) |
+ FactoryBits;
+ LE.write<uint16_t>(FullInstanceBits);
+ LE.write<uint16_t>(FullFactoryBits);
+ for (const ObjCMethodList *Method = &Methods.Instance; Method;
+ Method = Method->getNext())
+ if (Method->getMethod())
+ LE.write<uint32_t>(Writer.getDeclID(Method->getMethod()));
+ for (const ObjCMethodList *Method = &Methods.Factory; Method;
+ Method = Method->getNext())
+ if (Method->getMethod())
+ LE.write<uint32_t>(Writer.getDeclID(Method->getMethod()));
+
+ assert(Out.tell() - Start == DataLen && "Data length is wrong");
+ }
+};
+} // end anonymous namespace
+
+/// \brief Write ObjC data: selectors and the method pool.
+///
+/// The method pool contains both instance and factory methods, stored
+/// in an on-disk hash table indexed by the selector. The hash table also
+/// contains an empty entry for every other selector known to Sema.
+void ASTWriter::WriteSelectors(Sema &SemaRef) {
+ using namespace llvm;
+
+ // Do we have to do anything at all?
+ if (SemaRef.MethodPool.empty() && SelectorIDs.empty())
+ return;
+ unsigned NumTableEntries = 0;
+ // Create and write out the blob that contains selectors and the method pool.
+ {
+ llvm::OnDiskChainedHashTableGenerator<ASTMethodPoolTrait> Generator;
+ ASTMethodPoolTrait Trait(*this);
+
+ // Create the on-disk hash table representation. We walk through every
+ // selector we've seen and look it up in the method pool.
+ SelectorOffsets.resize(NextSelectorID - FirstSelectorID);
+ for (auto &SelectorAndID : SelectorIDs) {
+ Selector S = SelectorAndID.first;
+ SelectorID ID = SelectorAndID.second;
+ Sema::GlobalMethodPool::iterator F = SemaRef.MethodPool.find(S);
+ ASTMethodPoolTrait::data_type Data = {
+ ID,
+ ObjCMethodList(),
+ ObjCMethodList()
+ };
+ if (F != SemaRef.MethodPool.end()) {
+ Data.Instance = F->second.first;
+ Data.Factory = F->second.second;
+ }
+ // Only write this selector if it's not in an existing AST or something
+ // changed.
+ if (Chain && ID < FirstSelectorID) {
+ // Selector already exists. Did it change?
+ bool changed = false;
+ for (ObjCMethodList *M = &Data.Instance;
+ !changed && M && M->getMethod(); M = M->getNext()) {
+ if (!M->getMethod()->isFromASTFile())
+ changed = true;
+ }
+ for (ObjCMethodList *M = &Data.Factory; !changed && M && M->getMethod();
+ M = M->getNext()) {
+ if (!M->getMethod()->isFromASTFile())
+ changed = true;
+ }
+ if (!changed)
+ continue;
+ } else if (Data.Instance.getMethod() || Data.Factory.getMethod()) {
+ // A new method pool entry.
+ ++NumTableEntries;
+ }
+ Generator.insert(S, Data, Trait);
+ }
+
+ // Create the on-disk hash table in a buffer.
+ SmallString<4096> MethodPool;
+ uint32_t BucketOffset;
+ {
+ using namespace llvm::support;
+ ASTMethodPoolTrait Trait(*this);
+ llvm::raw_svector_ostream Out(MethodPool);
+ // Make sure that no bucket is at offset 0
+ endian::Writer<little>(Out).write<uint32_t>(0);
+ BucketOffset = Generator.Emit(Out, Trait);
+ }
+
+ // Create a blob abbreviation
+ BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(METHOD_POOL));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
+ unsigned MethodPoolAbbrev = Stream.EmitAbbrev(Abbrev);
+
+ // Write the method pool
+ RecordData Record;
+ Record.push_back(METHOD_POOL);
+ Record.push_back(BucketOffset);
+ Record.push_back(NumTableEntries);
+ Stream.EmitRecordWithBlob(MethodPoolAbbrev, Record, MethodPool);
+
+ // Create a blob abbreviation for the selector table offsets.
+ Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(SELECTOR_OFFSETS));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // size
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // first ID
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
+ unsigned SelectorOffsetAbbrev = Stream.EmitAbbrev(Abbrev);
+
+ // Write the selector offsets table.
+ Record.clear();
+ Record.push_back(SELECTOR_OFFSETS);
+ Record.push_back(SelectorOffsets.size());
+ Record.push_back(FirstSelectorID - NUM_PREDEF_SELECTOR_IDS);
+ Stream.EmitRecordWithBlob(SelectorOffsetAbbrev, Record,
+ bytes(SelectorOffsets));
+ }
+}
+
+/// \brief Write the selectors referenced in @selector expression into AST file.
+void ASTWriter::WriteReferencedSelectorsPool(Sema &SemaRef) {
+ using namespace llvm;
+ if (SemaRef.ReferencedSelectors.empty())
+ return;
+
+ RecordData Record;
+
+ // Note: this writes out all references even for a dependent AST. But it is
+ // very tricky to fix, and given that @selector shouldn't really appear in
+ // headers, probably not worth it. It's not a correctness issue.
+ for (auto &SelectorAndLocation : SemaRef.ReferencedSelectors) {
+ Selector Sel = SelectorAndLocation.first;
+ SourceLocation Loc = SelectorAndLocation.second;
+ AddSelectorRef(Sel, Record);
+ AddSourceLocation(Loc, Record);
+ }
+ Stream.EmitRecord(REFERENCED_SELECTOR_POOL, Record);
+}
+
+//===----------------------------------------------------------------------===//
+// Identifier Table Serialization
+//===----------------------------------------------------------------------===//
+
+/// Determine the declaration that should be put into the name lookup table to
+/// represent the given declaration in this module. This is usually D itself,
+/// but if D was imported and merged into a local declaration, we want the most
+/// recent local declaration instead. The chosen declaration will be the most
+/// recent declaration in any module that imports this one.
+static NamedDecl *getDeclForLocalLookup(const LangOptions &LangOpts,
+ NamedDecl *D) {
+ if (!LangOpts.Modules || !D->isFromASTFile())
+ return D;
+
+ if (Decl *Redecl = D->getPreviousDecl()) {
+ // For Redeclarable decls, a prior declaration might be local.
+ for (; Redecl; Redecl = Redecl->getPreviousDecl()) {
+ if (!Redecl->isFromASTFile())
+ return cast<NamedDecl>(Redecl);
+ // If we find a decl from a (chained-)PCH stop since we won't find a
+ // local one.
+ if (D->getOwningModuleID() == 0)
+ break;
+ }
+ } else if (Decl *First = D->getCanonicalDecl()) {
+ // For Mergeable decls, the first decl might be local.
+ if (!First->isFromASTFile())
+ return cast<NamedDecl>(First);
+ }
+
+ // All declarations are imported. Our most recent declaration will also be
+ // the most recent one in anyone who imports us.
+ return D;
+}
+
+namespace {
+class ASTIdentifierTableTrait {
+ ASTWriter &Writer;
+ Preprocessor &PP;
+ IdentifierResolver &IdResolver;
+
+ /// \brief Determines whether this is an "interesting" identifier that needs a
+ /// full IdentifierInfo structure written into the hash table. Notably, this
+ /// doesn't check whether the name has macros defined; use PublicMacroIterator
+ /// to check that.
+ bool isInterestingIdentifier(IdentifierInfo *II, uint64_t MacroOffset) {
+ if (MacroOffset ||
+ II->isPoisoned() ||
+ II->isExtensionToken() ||
+ II->getObjCOrBuiltinID() ||
+ II->hasRevertedTokenIDToIdentifier() ||
+ II->getFETokenInfo<void>())
+ return true;
+
+ return false;
+ }
+
+public:
+ typedef IdentifierInfo* key_type;
+ typedef key_type key_type_ref;
+
+ typedef IdentID data_type;
+ typedef data_type data_type_ref;
+
+ typedef unsigned hash_value_type;
+ typedef unsigned offset_type;
+
+ ASTIdentifierTableTrait(ASTWriter &Writer, Preprocessor &PP,
+ IdentifierResolver &IdResolver)
+ : Writer(Writer), PP(PP), IdResolver(IdResolver) {}
+
+ static hash_value_type ComputeHash(const IdentifierInfo* II) {
+ return llvm::HashString(II->getName());
+ }
+
+ std::pair<unsigned,unsigned>
+ EmitKeyDataLength(raw_ostream& Out, IdentifierInfo* II, IdentID ID) {
+ unsigned KeyLen = II->getLength() + 1;
+ unsigned DataLen = 4; // 4 bytes for the persistent ID << 1
+ auto MacroOffset = Writer.getMacroDirectivesOffset(II);
+ if (isInterestingIdentifier(II, MacroOffset)) {
+ DataLen += 2; // 2 bytes for builtin ID
+ DataLen += 2; // 2 bytes for flags
+ if (MacroOffset)
+ DataLen += 4; // MacroDirectives offset.
+
+ for (IdentifierResolver::iterator D = IdResolver.begin(II),
+ DEnd = IdResolver.end();
+ D != DEnd; ++D)
+ DataLen += 4;
+ }
+ using namespace llvm::support;
+ endian::Writer<little> LE(Out);
+
+ assert((uint16_t)DataLen == DataLen && (uint16_t)KeyLen == KeyLen);
+ LE.write<uint16_t>(DataLen);
+ // We emit the key length after the data length so that every
+ // string is preceded by a 16-bit length. This matches the PTH
+ // format for storing identifiers.
+ LE.write<uint16_t>(KeyLen);
+ return std::make_pair(KeyLen, DataLen);
+ }
+
+ void EmitKey(raw_ostream& Out, const IdentifierInfo* II,
+ unsigned KeyLen) {
+ // Record the location of the key data. This is used when generating
+ // the mapping from persistent IDs to strings.
+ Writer.SetIdentifierOffset(II, Out.tell());
+ Out.write(II->getNameStart(), KeyLen);
+ }
+
+ void EmitData(raw_ostream& Out, IdentifierInfo* II,
+ IdentID ID, unsigned) {
+ using namespace llvm::support;
+ endian::Writer<little> LE(Out);
+
+ auto MacroOffset = Writer.getMacroDirectivesOffset(II);
+ if (!isInterestingIdentifier(II, MacroOffset)) {
+ LE.write<uint32_t>(ID << 1);
+ return;
+ }
+
+ LE.write<uint32_t>((ID << 1) | 0x01);
+ uint32_t Bits = (uint32_t)II->getObjCOrBuiltinID();
+ assert((Bits & 0xffff) == Bits && "ObjCOrBuiltinID too big for ASTReader.");
+ LE.write<uint16_t>(Bits);
+ Bits = 0;
+ bool HadMacroDefinition = MacroOffset != 0;
+ Bits = (Bits << 1) | unsigned(HadMacroDefinition);
+ Bits = (Bits << 1) | unsigned(II->isExtensionToken());
+ Bits = (Bits << 1) | unsigned(II->isPoisoned());
+ Bits = (Bits << 1) | unsigned(II->hasRevertedTokenIDToIdentifier());
+ Bits = (Bits << 1) | unsigned(II->isCPlusPlusOperatorKeyword());
+ LE.write<uint16_t>(Bits);
+
+ if (HadMacroDefinition)
+ LE.write<uint32_t>(MacroOffset);
+
+ // Emit the declaration IDs in reverse order, because the
+ // IdentifierResolver provides the declarations as they would be
+ // visible (e.g., the function "stat" would come before the struct
+ // "stat"), but the ASTReader adds declarations to the end of the list
+ // (so we need to see the struct "stat" before the function "stat").
+ // Only emit declarations that aren't from a chained PCH, though.
+ SmallVector<NamedDecl *, 16> Decls(IdResolver.begin(II), IdResolver.end());
+ for (SmallVectorImpl<NamedDecl *>::reverse_iterator D = Decls.rbegin(),
+ DEnd = Decls.rend();
+ D != DEnd; ++D)
+ LE.write<uint32_t>(
+ Writer.getDeclID(getDeclForLocalLookup(PP.getLangOpts(), *D)));
+ }
+};
+} // end anonymous namespace
+
+/// \brief Write the identifier table into the AST file.
+///
+/// The identifier table consists of a blob containing string data
+/// (the actual identifiers themselves) and a separate "offsets" index
+/// that maps identifier IDs to locations within the blob.
+void ASTWriter::WriteIdentifierTable(Preprocessor &PP,
+ IdentifierResolver &IdResolver,
+ bool IsModule) {
+ using namespace llvm;
+
+ // Create and write out the blob that contains the identifier
+ // strings.
+ {
+ llvm::OnDiskChainedHashTableGenerator<ASTIdentifierTableTrait> Generator;
+ ASTIdentifierTableTrait Trait(*this, PP, IdResolver);
+
+ // Look for any identifiers that were named while processing the
+ // headers, but are otherwise not needed. We add these to the hash
+ // table to enable checking of the predefines buffer in the case
+ // where the user adds new macro definitions when building the AST
+ // file.
+ SmallVector<const IdentifierInfo *, 128> IIs;
+ for (IdentifierTable::iterator ID = PP.getIdentifierTable().begin(),
+ IDEnd = PP.getIdentifierTable().end();
+ ID != IDEnd; ++ID)
+ IIs.push_back(ID->second);
+ // Sort the identifiers lexicographically before getting them references so
+ // that their order is stable.
+ std::sort(IIs.begin(), IIs.end(), llvm::less_ptr<IdentifierInfo>());
+ for (const IdentifierInfo *II : IIs)
+ getIdentifierRef(II);
+
+ // Create the on-disk hash table representation. We only store offsets
+ // for identifiers that appear here for the first time.
+ IdentifierOffsets.resize(NextIdentID - FirstIdentID);
+ for (auto IdentIDPair : IdentifierIDs) {
+ IdentifierInfo *II = const_cast<IdentifierInfo *>(IdentIDPair.first);
+ IdentID ID = IdentIDPair.second;
+ assert(II && "NULL identifier in identifier table");
+ if (!Chain || !II->isFromAST() || II->hasChangedSinceDeserialization())
+ Generator.insert(II, ID, Trait);
+ }
+
+ // Create the on-disk hash table in a buffer.
+ SmallString<4096> IdentifierTable;
+ uint32_t BucketOffset;
+ {
+ using namespace llvm::support;
+ llvm::raw_svector_ostream Out(IdentifierTable);
+ // Make sure that no bucket is at offset 0
+ endian::Writer<little>(Out).write<uint32_t>(0);
+ BucketOffset = Generator.Emit(Out, Trait);
+ }
+
+ // Create a blob abbreviation
+ BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(IDENTIFIER_TABLE));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
+ unsigned IDTableAbbrev = Stream.EmitAbbrev(Abbrev);
+
+ // Write the identifier table
+ RecordData Record;
+ Record.push_back(IDENTIFIER_TABLE);
+ Record.push_back(BucketOffset);
+ Stream.EmitRecordWithBlob(IDTableAbbrev, Record, IdentifierTable);
+ }
+
+ // Write the offsets table for identifier IDs.
+ BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(IDENTIFIER_OFFSET));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // # of identifiers
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // first ID
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
+ unsigned IdentifierOffsetAbbrev = Stream.EmitAbbrev(Abbrev);
+
+#ifndef NDEBUG
+ for (unsigned I = 0, N = IdentifierOffsets.size(); I != N; ++I)
+ assert(IdentifierOffsets[I] && "Missing identifier offset?");
+#endif
+
+ RecordData Record;
+ Record.push_back(IDENTIFIER_OFFSET);
+ Record.push_back(IdentifierOffsets.size());
+ Record.push_back(FirstIdentID - NUM_PREDEF_IDENT_IDS);
+ Stream.EmitRecordWithBlob(IdentifierOffsetAbbrev, Record,
+ bytes(IdentifierOffsets));
+}
+
+//===----------------------------------------------------------------------===//
+// DeclContext's Name Lookup Table Serialization
+//===----------------------------------------------------------------------===//
+
+namespace {
+// Trait used for the on-disk hash table used in the method pool.
+class ASTDeclContextNameLookupTrait {
+ ASTWriter &Writer;
+
+public:
+ typedef DeclarationName key_type;
+ typedef key_type key_type_ref;
+
+ typedef DeclContext::lookup_result data_type;
+ typedef const data_type& data_type_ref;
+
+ typedef unsigned hash_value_type;
+ typedef unsigned offset_type;
+
+ explicit ASTDeclContextNameLookupTrait(ASTWriter &Writer) : Writer(Writer) { }
+
+ hash_value_type ComputeHash(DeclarationName Name) {
+ llvm::FoldingSetNodeID ID;
+ ID.AddInteger(Name.getNameKind());
+
+ switch (Name.getNameKind()) {
+ case DeclarationName::Identifier:
+ ID.AddString(Name.getAsIdentifierInfo()->getName());
+ break;
+ case DeclarationName::ObjCZeroArgSelector:
+ case DeclarationName::ObjCOneArgSelector:
+ case DeclarationName::ObjCMultiArgSelector:
+ ID.AddInteger(serialization::ComputeHash(Name.getObjCSelector()));
+ break;
+ case DeclarationName::CXXConstructorName:
+ case DeclarationName::CXXDestructorName:
+ case DeclarationName::CXXConversionFunctionName:
+ break;
+ case DeclarationName::CXXOperatorName:
+ ID.AddInteger(Name.getCXXOverloadedOperator());
+ break;
+ case DeclarationName::CXXLiteralOperatorName:
+ ID.AddString(Name.getCXXLiteralIdentifier()->getName());
+ case DeclarationName::CXXUsingDirective:
+ break;
+ }
+
+ return ID.ComputeHash();
+ }
+
+ std::pair<unsigned,unsigned>
+ EmitKeyDataLength(raw_ostream& Out, DeclarationName Name,
+ data_type_ref Lookup) {
+ using namespace llvm::support;
+ endian::Writer<little> LE(Out);
+ unsigned KeyLen = 1;
+ switch (Name.getNameKind()) {
+ case DeclarationName::Identifier:
+ case DeclarationName::ObjCZeroArgSelector:
+ case DeclarationName::ObjCOneArgSelector:
+ case DeclarationName::ObjCMultiArgSelector:
+ case DeclarationName::CXXLiteralOperatorName:
+ KeyLen += 4;
+ break;
+ case DeclarationName::CXXOperatorName:
+ KeyLen += 1;
+ break;
+ case DeclarationName::CXXConstructorName:
+ case DeclarationName::CXXDestructorName:
+ case DeclarationName::CXXConversionFunctionName:
+ case DeclarationName::CXXUsingDirective:
+ break;
+ }
+ LE.write<uint16_t>(KeyLen);
+
+ // 2 bytes for num of decls and 4 for each DeclID.
+ unsigned DataLen = 2 + 4 * Lookup.size();
+ LE.write<uint16_t>(DataLen);
+
+ return std::make_pair(KeyLen, DataLen);
+ }
+
+ void EmitKey(raw_ostream& Out, DeclarationName Name, unsigned) {
+ using namespace llvm::support;
+ endian::Writer<little> LE(Out);
+ LE.write<uint8_t>(Name.getNameKind());
+ switch (Name.getNameKind()) {
+ case DeclarationName::Identifier:
+ LE.write<uint32_t>(Writer.getIdentifierRef(Name.getAsIdentifierInfo()));
+ return;
+ case DeclarationName::ObjCZeroArgSelector:
+ case DeclarationName::ObjCOneArgSelector:
+ case DeclarationName::ObjCMultiArgSelector:
+ LE.write<uint32_t>(Writer.getSelectorRef(Name.getObjCSelector()));
+ return;
+ case DeclarationName::CXXOperatorName:
+ assert(Name.getCXXOverloadedOperator() < NUM_OVERLOADED_OPERATORS &&
+ "Invalid operator?");
+ LE.write<uint8_t>(Name.getCXXOverloadedOperator());
+ return;
+ case DeclarationName::CXXLiteralOperatorName:
+ LE.write<uint32_t>(Writer.getIdentifierRef(Name.getCXXLiteralIdentifier()));
+ return;
+ case DeclarationName::CXXConstructorName:
+ case DeclarationName::CXXDestructorName:
+ case DeclarationName::CXXConversionFunctionName:
+ case DeclarationName::CXXUsingDirective:
+ return;
+ }
+
+ llvm_unreachable("Invalid name kind?");
+ }
+
+ void EmitData(raw_ostream& Out, key_type_ref,
+ data_type Lookup, unsigned DataLen) {
+ using namespace llvm::support;
+ endian::Writer<little> LE(Out);
+ uint64_t Start = Out.tell(); (void)Start;
+ LE.write<uint16_t>(Lookup.size());
+ for (DeclContext::lookup_iterator I = Lookup.begin(), E = Lookup.end();
+ I != E; ++I)
+ LE.write<uint32_t>(
+ Writer.GetDeclRef(getDeclForLocalLookup(Writer.getLangOpts(), *I)));
+
+ assert(Out.tell() - Start == DataLen && "Data length is wrong");
+ }
+};
+} // end anonymous namespace
+
+bool ASTWriter::isLookupResultExternal(StoredDeclsList &Result,
+ DeclContext *DC) {
+ return Result.hasExternalDecls() && DC->NeedToReconcileExternalVisibleStorage;
+}
+
+bool ASTWriter::isLookupResultEntirelyExternal(StoredDeclsList &Result,
+ DeclContext *DC) {
+ for (auto *D : Result.getLookupResult())
+ if (!getDeclForLocalLookup(getLangOpts(), D)->isFromASTFile())
+ return false;
+
+ return true;
+}
+
+uint32_t
+ASTWriter::GenerateNameLookupTable(const DeclContext *ConstDC,
+ llvm::SmallVectorImpl<char> &LookupTable) {
+ assert(!ConstDC->HasLazyLocalLexicalLookups &&
+ !ConstDC->HasLazyExternalLexicalLookups &&
+ "must call buildLookups first");
+
+ // FIXME: We need to build the lookups table, which is logically const.
+ DeclContext *DC = const_cast<DeclContext*>(ConstDC);
+ assert(DC == DC->getPrimaryContext() && "only primary DC has lookup table");
+
+ // Create the on-disk hash table representation.
+ llvm::OnDiskChainedHashTableGenerator<ASTDeclContextNameLookupTrait>
+ Generator;
+ ASTDeclContextNameLookupTrait Trait(*this);
+
+ // The first step is to collect the declaration names which we need to
+ // serialize into the name lookup table, and to collect them in a stable
+ // order.
+ SmallVector<DeclarationName, 16> Names;
+
+ // We also build up small sets of the constructor and conversion function
+ // names which are visible.
+ llvm::SmallSet<DeclarationName, 8> ConstructorNameSet, ConversionNameSet;
+
+ for (auto &Lookup : *DC->buildLookup()) {
+ auto &Name = Lookup.first;
+ auto &Result = Lookup.second;
+
+ // If there are no local declarations in our lookup result, we don't
+ // need to write an entry for the name at all unless we're rewriting
+ // the decl context. If we can't write out a lookup set without
+ // performing more deserialization, just skip this entry.
+ if (isLookupResultExternal(Result, DC) && !isRewritten(cast<Decl>(DC)) &&
+ isLookupResultEntirelyExternal(Result, DC))
+ continue;
+
+ // We also skip empty results. If any of the results could be external and
+ // the currently available results are empty, then all of the results are
+ // external and we skip it above. So the only way we get here with an empty
+ // results is when no results could have been external *and* we have
+ // external results.
+ //
+ // FIXME: While we might want to start emitting on-disk entries for negative
+ // lookups into a decl context as an optimization, today we *have* to skip
+ // them because there are names with empty lookup results in decl contexts
+ // which we can't emit in any stable ordering: we lookup constructors and
+ // conversion functions in the enclosing namespace scope creating empty
+ // results for them. This in almost certainly a bug in Clang's name lookup,
+ // but that is likely to be hard or impossible to fix and so we tolerate it
+ // here by omitting lookups with empty results.
+ if (Lookup.second.getLookupResult().empty())
+ continue;
+
+ switch (Lookup.first.getNameKind()) {
+ default:
+ Names.push_back(Lookup.first);
+ break;
+
+ case DeclarationName::CXXConstructorName:
+ assert(isa<CXXRecordDecl>(DC) &&
+ "Cannot have a constructor name outside of a class!");
+ ConstructorNameSet.insert(Name);
+ break;
+
+ case DeclarationName::CXXConversionFunctionName:
+ assert(isa<CXXRecordDecl>(DC) &&
+ "Cannot have a conversion function name outside of a class!");
+ ConversionNameSet.insert(Name);
+ break;
+ }
+ }
+
+ // Sort the names into a stable order.
+ std::sort(Names.begin(), Names.end());
+
+ if (auto *D = dyn_cast<CXXRecordDecl>(DC)) {
+ // We need to establish an ordering of constructor and conversion function
+ // names, and they don't have an intrinsic ordering.
+
+ // First we try the easy case by forming the current context's constructor
+ // name and adding that name first. This is a very useful optimization to
+ // avoid walking the lexical declarations in many cases, and it also
+ // handles the only case where a constructor name can come from some other
+ // lexical context -- when that name is an implicit constructor merged from
+ // another declaration in the redecl chain. Any non-implicit constructor or
+ // conversion function which doesn't occur in all the lexical contexts
+ // would be an ODR violation.
+ auto ImplicitCtorName = Context->DeclarationNames.getCXXConstructorName(
+ Context->getCanonicalType(Context->getRecordType(D)));
+ if (ConstructorNameSet.erase(ImplicitCtorName))
+ Names.push_back(ImplicitCtorName);
+
+ // If we still have constructors or conversion functions, we walk all the
+ // names in the decl and add the constructors and conversion functions
+ // which are visible in the order they lexically occur within the context.
+ if (!ConstructorNameSet.empty() || !ConversionNameSet.empty())
+ for (Decl *ChildD : cast<CXXRecordDecl>(DC)->decls())
+ if (auto *ChildND = dyn_cast<NamedDecl>(ChildD)) {
+ auto Name = ChildND->getDeclName();
+ switch (Name.getNameKind()) {
+ default:
+ continue;
+
+ case DeclarationName::CXXConstructorName:
+ if (ConstructorNameSet.erase(Name))
+ Names.push_back(Name);
+ break;
+
+ case DeclarationName::CXXConversionFunctionName:
+ if (ConversionNameSet.erase(Name))
+ Names.push_back(Name);
+ break;
+ }
+
+ if (ConstructorNameSet.empty() && ConversionNameSet.empty())
+ break;
+ }
+
+ assert(ConstructorNameSet.empty() && "Failed to find all of the visible "
+ "constructors by walking all the "
+ "lexical members of the context.");
+ assert(ConversionNameSet.empty() && "Failed to find all of the visible "
+ "conversion functions by walking all "
+ "the lexical members of the context.");
+ }
+
+ // Next we need to do a lookup with each name into this decl context to fully
+ // populate any results from external sources. We don't actually use the
+ // results of these lookups because we only want to use the results after all
+ // results have been loaded and the pointers into them will be stable.
+ for (auto &Name : Names)
+ DC->lookup(Name);
+
+ // Now we need to insert the results for each name into the hash table. For
+ // constructor names and conversion function names, we actually need to merge
+ // all of the results for them into one list of results each and insert
+ // those.
+ SmallVector<NamedDecl *, 8> ConstructorDecls;
+ SmallVector<NamedDecl *, 8> ConversionDecls;
+
+ // Now loop over the names, either inserting them or appending for the two
+ // special cases.
+ for (auto &Name : Names) {
+ DeclContext::lookup_result Result = DC->noload_lookup(Name);
+
+ switch (Name.getNameKind()) {
+ default:
+ Generator.insert(Name, Result, Trait);
+ break;
+
+ case DeclarationName::CXXConstructorName:
+ ConstructorDecls.append(Result.begin(), Result.end());
+ break;
+
+ case DeclarationName::CXXConversionFunctionName:
+ ConversionDecls.append(Result.begin(), Result.end());
+ break;
+ }
+ }
+
+ // Handle our two special cases if we ended up having any. We arbitrarily use
+ // the first declaration's name here because the name itself isn't part of
+ // the key, only the kind of name is used.
+ if (!ConstructorDecls.empty())
+ Generator.insert(ConstructorDecls.front()->getDeclName(),
+ DeclContext::lookup_result(ConstructorDecls), Trait);
+ if (!ConversionDecls.empty())
+ Generator.insert(ConversionDecls.front()->getDeclName(),
+ DeclContext::lookup_result(ConversionDecls), Trait);
+
+ // Create the on-disk hash table in a buffer.
+ llvm::raw_svector_ostream Out(LookupTable);
+ // Make sure that no bucket is at offset 0
+ using namespace llvm::support;
+ endian::Writer<little>(Out).write<uint32_t>(0);
+ return Generator.Emit(Out, Trait);
+}
+
+/// \brief Write the block containing all of the declaration IDs
+/// visible from the given DeclContext.
+///
+/// \returns the offset of the DECL_CONTEXT_VISIBLE block within the
+/// bitstream, or 0 if no block was written.
+uint64_t ASTWriter::WriteDeclContextVisibleBlock(ASTContext &Context,
+ DeclContext *DC) {
+ if (DC->getPrimaryContext() != DC)
+ return 0;
+
+ // Skip contexts which don't support name lookup.
+ if (!DC->isLookupContext())
+ return 0;
+
+ // If not in C++, we perform name lookup for the translation unit via the
+ // IdentifierInfo chains, don't bother to build a visible-declarations table.
+ if (DC->isTranslationUnit() && !Context.getLangOpts().CPlusPlus)
+ return 0;
+
+ // Serialize the contents of the mapping used for lookup. Note that,
+ // although we have two very different code paths, the serialized
+ // representation is the same for both cases: a declaration name,
+ // followed by a size, followed by references to the visible
+ // declarations that have that name.
+ uint64_t Offset = Stream.GetCurrentBitNo();
+ StoredDeclsMap *Map = DC->buildLookup();
+ if (!Map || Map->empty())
+ return 0;
+
+ // Create the on-disk hash table in a buffer.
+ SmallString<4096> LookupTable;
+ uint32_t BucketOffset = GenerateNameLookupTable(DC, LookupTable);
+
+ // Write the lookup table
+ RecordData Record;
+ Record.push_back(DECL_CONTEXT_VISIBLE);
+ Record.push_back(BucketOffset);
+ Stream.EmitRecordWithBlob(DeclContextVisibleLookupAbbrev, Record,
+ LookupTable);
+ ++NumVisibleDeclContexts;
+ return Offset;
+}
+
+/// \brief Write an UPDATE_VISIBLE block for the given context.
+///
+/// UPDATE_VISIBLE blocks contain the declarations that are added to an existing
+/// DeclContext in a dependent AST file. As such, they only exist for the TU
+/// (in C++), for namespaces, and for classes with forward-declared unscoped
+/// enumeration members (in C++11).
+void ASTWriter::WriteDeclContextVisibleUpdate(const DeclContext *DC) {
+ StoredDeclsMap *Map = DC->getLookupPtr();
+ if (!Map || Map->empty())
+ return;
+
+ // Create the on-disk hash table in a buffer.
+ SmallString<4096> LookupTable;
+ uint32_t BucketOffset = GenerateNameLookupTable(DC, LookupTable);
+
+ // Write the lookup table
+ RecordData Record;
+ Record.push_back(UPDATE_VISIBLE);
+ Record.push_back(getDeclID(cast<Decl>(DC)));
+ Record.push_back(BucketOffset);
+ Stream.EmitRecordWithBlob(UpdateVisibleAbbrev, Record, LookupTable);
+}
+
+/// \brief Write an FP_PRAGMA_OPTIONS block for the given FPOptions.
+void ASTWriter::WriteFPPragmaOptions(const FPOptions &Opts) {
+ RecordData Record;
+ Record.push_back(Opts.fp_contract);
+ Stream.EmitRecord(FP_PRAGMA_OPTIONS, Record);
+}
+
+/// \brief Write an OPENCL_EXTENSIONS block for the given OpenCLOptions.
+void ASTWriter::WriteOpenCLExtensions(Sema &SemaRef) {
+ if (!SemaRef.Context.getLangOpts().OpenCL)
+ return;
+
+ const OpenCLOptions &Opts = SemaRef.getOpenCLOptions();
+ RecordData Record;
+#define OPENCLEXT(nm) Record.push_back(Opts.nm);
+#include "clang/Basic/OpenCLExtensions.def"
+ Stream.EmitRecord(OPENCL_EXTENSIONS, Record);
+}
+
+void ASTWriter::WriteRedeclarations() {
+ RecordData LocalRedeclChains;
+ SmallVector<serialization::LocalRedeclarationsInfo, 2> LocalRedeclsMap;
+
+ for (unsigned I = 0, N = Redeclarations.size(); I != N; ++I) {
+ Decl *First = Redeclarations[I];
+ assert(First->isFirstDecl() && "Not the first declaration?");
+
+ Decl *MostRecent = First->getMostRecentDecl();
+
+ // If we only have a single declaration, there is no point in storing
+ // a redeclaration chain.
+ if (First == MostRecent)
+ continue;
+
+ unsigned Offset = LocalRedeclChains.size();
+ unsigned Size = 0;
+ LocalRedeclChains.push_back(0); // Placeholder for the size.
+
+ // Collect the set of local redeclarations of this declaration.
+ for (Decl *Prev = MostRecent; Prev != First;
+ Prev = Prev->getPreviousDecl()) {
+ if (!Prev->isFromASTFile()) {
+ AddDeclRef(Prev, LocalRedeclChains);
+ ++Size;
+ }
+ }
+
+ LocalRedeclChains[Offset] = Size;
+
+ // Reverse the set of local redeclarations, so that we store them in
+ // order (since we found them in reverse order).
+ std::reverse(LocalRedeclChains.end() - Size, LocalRedeclChains.end());
+
+ // Add the mapping from the first ID from the AST to the set of local
+ // declarations.
+ LocalRedeclarationsInfo Info = { getDeclID(First), Offset };
+ LocalRedeclsMap.push_back(Info);
+
+ assert(N == Redeclarations.size() &&
+ "Deserialized a declaration we shouldn't have");
+ }
+
+ if (LocalRedeclChains.empty())
+ return;
+
+ // Sort the local redeclarations map by the first declaration ID,
+ // since the reader will be performing binary searches on this information.
+ llvm::array_pod_sort(LocalRedeclsMap.begin(), LocalRedeclsMap.end());
+
+ // Emit the local redeclarations map.
+ using namespace llvm;
+ llvm::BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(LOCAL_REDECLARATIONS_MAP));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of entries
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
+ unsigned AbbrevID = Stream.EmitAbbrev(Abbrev);
+
+ RecordData Record;
+ Record.push_back(LOCAL_REDECLARATIONS_MAP);
+ Record.push_back(LocalRedeclsMap.size());
+ Stream.EmitRecordWithBlob(AbbrevID, Record,
+ reinterpret_cast<char*>(LocalRedeclsMap.data()),
+ LocalRedeclsMap.size() * sizeof(LocalRedeclarationsInfo));
+
+ // Emit the redeclaration chains.
+ Stream.EmitRecord(LOCAL_REDECLARATIONS, LocalRedeclChains);
+}
+
+void ASTWriter::WriteObjCCategories() {
+ SmallVector<ObjCCategoriesInfo, 2> CategoriesMap;
+ RecordData Categories;
+
+ for (unsigned I = 0, N = ObjCClassesWithCategories.size(); I != N; ++I) {
+ unsigned Size = 0;
+ unsigned StartIndex = Categories.size();
+
+ ObjCInterfaceDecl *Class = ObjCClassesWithCategories[I];
+
+ // Allocate space for the size.
+ Categories.push_back(0);
+
+ // Add the categories.
+ for (ObjCInterfaceDecl::known_categories_iterator
+ Cat = Class->known_categories_begin(),
+ CatEnd = Class->known_categories_end();
+ Cat != CatEnd; ++Cat, ++Size) {
+ assert(getDeclID(*Cat) != 0 && "Bogus category");
+ AddDeclRef(*Cat, Categories);
+ }
+
+ // Update the size.
+ Categories[StartIndex] = Size;
+
+ // Record this interface -> category map.
+ ObjCCategoriesInfo CatInfo = { getDeclID(Class), StartIndex };
+ CategoriesMap.push_back(CatInfo);
+ }
+
+ // Sort the categories map by the definition ID, since the reader will be
+ // performing binary searches on this information.
+ llvm::array_pod_sort(CategoriesMap.begin(), CategoriesMap.end());
+
+ // Emit the categories map.
+ using namespace llvm;
+ llvm::BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(OBJC_CATEGORIES_MAP));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of entries
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
+ unsigned AbbrevID = Stream.EmitAbbrev(Abbrev);
+
+ RecordData Record;
+ Record.push_back(OBJC_CATEGORIES_MAP);
+ Record.push_back(CategoriesMap.size());
+ Stream.EmitRecordWithBlob(AbbrevID, Record,
+ reinterpret_cast<char*>(CategoriesMap.data()),
+ CategoriesMap.size() * sizeof(ObjCCategoriesInfo));
+
+ // Emit the category lists.
+ Stream.EmitRecord(OBJC_CATEGORIES, Categories);
+}
+
+void ASTWriter::WriteLateParsedTemplates(Sema &SemaRef) {
+ Sema::LateParsedTemplateMapT &LPTMap = SemaRef.LateParsedTemplateMap;
+
+ if (LPTMap.empty())
+ return;
+
+ RecordData Record;
+ for (auto LPTMapEntry : LPTMap) {
+ const FunctionDecl *FD = LPTMapEntry.first;
+ LateParsedTemplate *LPT = LPTMapEntry.second;
+ AddDeclRef(FD, Record);
+ AddDeclRef(LPT->D, Record);
+ Record.push_back(LPT->Toks.size());
+
+ for (CachedTokens::iterator TokIt = LPT->Toks.begin(),
+ TokEnd = LPT->Toks.end();
+ TokIt != TokEnd; ++TokIt) {
+ AddToken(*TokIt, Record);
+ }
+ }
+ Stream.EmitRecord(LATE_PARSED_TEMPLATE, Record);
+}
+
+/// \brief Write the state of 'pragma clang optimize' at the end of the module.
+void ASTWriter::WriteOptimizePragmaOptions(Sema &SemaRef) {
+ RecordData Record;
+ SourceLocation PragmaLoc = SemaRef.getOptimizeOffPragmaLocation();
+ AddSourceLocation(PragmaLoc, Record);
+ Stream.EmitRecord(OPTIMIZE_PRAGMA_OPTIONS, Record);
+}
+
+//===----------------------------------------------------------------------===//
+// General Serialization Routines
+//===----------------------------------------------------------------------===//
+
+/// \brief Write a record containing the given attributes.
+void ASTWriter::WriteAttributes(ArrayRef<const Attr*> Attrs,
+ RecordDataImpl &Record) {
+ Record.push_back(Attrs.size());
+ for (ArrayRef<const Attr *>::iterator i = Attrs.begin(),
+ e = Attrs.end(); i != e; ++i){
+ const Attr *A = *i;
+ Record.push_back(A->getKind()); // FIXME: stable encoding, target attrs
+ AddSourceRange(A->getRange(), Record);
+
+#include "clang/Serialization/AttrPCHWrite.inc"
+
+ }
+}
+
+void ASTWriter::AddToken(const Token &Tok, RecordDataImpl &Record) {
+ AddSourceLocation(Tok.getLocation(), Record);
+ Record.push_back(Tok.getLength());
+
+ // FIXME: When reading literal tokens, reconstruct the literal pointer
+ // if it is needed.
+ AddIdentifierRef(Tok.getIdentifierInfo(), Record);
+ // FIXME: Should translate token kind to a stable encoding.
+ Record.push_back(Tok.getKind());
+ // FIXME: Should translate token flags to a stable encoding.
+ Record.push_back(Tok.getFlags());
+}
+
+void ASTWriter::AddString(StringRef Str, RecordDataImpl &Record) {
+ Record.push_back(Str.size());
+ Record.insert(Record.end(), Str.begin(), Str.end());
+}
+
+bool ASTWriter::PreparePathForOutput(SmallVectorImpl<char> &Path) {
+ assert(Context && "should have context when outputting path");
+
+ bool Changed =
+ cleanPathForOutput(Context->getSourceManager().getFileManager(), Path);
+
+ // Remove a prefix to make the path relative, if relevant.
+ const char *PathBegin = Path.data();
+ const char *PathPtr =
+ adjustFilenameForRelocatableAST(PathBegin, BaseDirectory);
+ if (PathPtr != PathBegin) {
+ Path.erase(Path.begin(), Path.begin() + (PathPtr - PathBegin));
+ Changed = true;
+ }
+
+ return Changed;
+}
+
+void ASTWriter::AddPath(StringRef Path, RecordDataImpl &Record) {
+ SmallString<128> FilePath(Path);
+ PreparePathForOutput(FilePath);
+ AddString(FilePath, Record);
+}
+
+void ASTWriter::EmitRecordWithPath(unsigned Abbrev, RecordDataImpl &Record,
+ StringRef Path) {
+ SmallString<128> FilePath(Path);
+ PreparePathForOutput(FilePath);
+ Stream.EmitRecordWithBlob(Abbrev, Record, FilePath);
+}
+
+void ASTWriter::AddVersionTuple(const VersionTuple &Version,
+ RecordDataImpl &Record) {
+ Record.push_back(Version.getMajor());
+ if (Optional<unsigned> Minor = Version.getMinor())
+ Record.push_back(*Minor + 1);
+ else
+ Record.push_back(0);
+ if (Optional<unsigned> Subminor = Version.getSubminor())
+ Record.push_back(*Subminor + 1);
+ else
+ Record.push_back(0);
+}
+
+/// \brief Note that the identifier II occurs at the given offset
+/// within the identifier table.
+void ASTWriter::SetIdentifierOffset(const IdentifierInfo *II, uint32_t Offset) {
+ IdentID ID = IdentifierIDs[II];
+ // Only store offsets new to this AST file. Other identifier names are looked
+ // up earlier in the chain and thus don't need an offset.
+ if (ID >= FirstIdentID)
+ IdentifierOffsets[ID - FirstIdentID] = Offset;
+}
+
+/// \brief Note that the selector Sel occurs at the given offset
+/// within the method pool/selector table.
+void ASTWriter::SetSelectorOffset(Selector Sel, uint32_t Offset) {
+ unsigned ID = SelectorIDs[Sel];
+ assert(ID && "Unknown selector");
+ // Don't record offsets for selectors that are also available in a different
+ // file.
+ if (ID < FirstSelectorID)
+ return;
+ SelectorOffsets[ID - FirstSelectorID] = Offset;
+}
+
+ASTWriter::ASTWriter(llvm::BitstreamWriter &Stream)
+ : Stream(Stream), Context(nullptr), PP(nullptr), Chain(nullptr),
+ WritingModule(nullptr), WritingAST(false),
+ DoneWritingDeclsAndTypes(false), ASTHasCompilerErrors(false),
+ FirstDeclID(NUM_PREDEF_DECL_IDS), NextDeclID(FirstDeclID),
+ FirstTypeID(NUM_PREDEF_TYPE_IDS), NextTypeID(FirstTypeID),
+ FirstIdentID(NUM_PREDEF_IDENT_IDS), NextIdentID(FirstIdentID),
+ FirstMacroID(NUM_PREDEF_MACRO_IDS), NextMacroID(FirstMacroID),
+ FirstSubmoduleID(NUM_PREDEF_SUBMODULE_IDS),
+ NextSubmoduleID(FirstSubmoduleID),
+ FirstSelectorID(NUM_PREDEF_SELECTOR_IDS), NextSelectorID(FirstSelectorID),
+ CollectedStmts(&StmtsToEmit), NumStatements(0), NumMacros(0),
+ NumLexicalDeclContexts(0), NumVisibleDeclContexts(0),
+ NextCXXBaseSpecifiersID(1), NextCXXCtorInitializersID(1),
+ TypeExtQualAbbrev(0),
+ TypeFunctionProtoAbbrev(0), DeclParmVarAbbrev(0),
+ DeclContextLexicalAbbrev(0), DeclContextVisibleLookupAbbrev(0),
+ UpdateVisibleAbbrev(0), DeclRecordAbbrev(0), DeclTypedefAbbrev(0),
+ DeclVarAbbrev(0), DeclFieldAbbrev(0), DeclEnumAbbrev(0),
+ DeclObjCIvarAbbrev(0), DeclCXXMethodAbbrev(0), DeclRefExprAbbrev(0),
+ CharacterLiteralAbbrev(0), IntegerLiteralAbbrev(0),
+ ExprImplicitCastAbbrev(0) {}
+
+ASTWriter::~ASTWriter() {
+ llvm::DeleteContainerSeconds(FileDeclIDs);
+}
+
+const LangOptions &ASTWriter::getLangOpts() const {
+ assert(WritingAST && "can't determine lang opts when not writing AST");
+ return Context->getLangOpts();
+}
+
+void ASTWriter::WriteAST(Sema &SemaRef,
+ const std::string &OutputFile,
+ Module *WritingModule, StringRef isysroot,
+ bool hasErrors) {
+ WritingAST = true;
+
+ ASTHasCompilerErrors = hasErrors;
+
+ // Emit the file header.
+ Stream.Emit((unsigned)'C', 8);
+ Stream.Emit((unsigned)'P', 8);
+ Stream.Emit((unsigned)'C', 8);
+ Stream.Emit((unsigned)'H', 8);
+
+ WriteBlockInfoBlock();
+
+ Context = &SemaRef.Context;
+ PP = &SemaRef.PP;
+ this->WritingModule = WritingModule;
+ WriteASTCore(SemaRef, isysroot, OutputFile, WritingModule);
+ Context = nullptr;
+ PP = nullptr;
+ this->WritingModule = nullptr;
+ this->BaseDirectory.clear();
+
+ WritingAST = false;
+}
+
+template<typename Vector>
+static void AddLazyVectorDecls(ASTWriter &Writer, Vector &Vec,
+ ASTWriter::RecordData &Record) {
+ for (typename Vector::iterator I = Vec.begin(nullptr, true), E = Vec.end();
+ I != E; ++I) {
+ Writer.AddDeclRef(*I, Record);
+ }
+}
+
+void ASTWriter::WriteASTCore(Sema &SemaRef,
+ StringRef isysroot,
+ const std::string &OutputFile,
+ Module *WritingModule) {
+ using namespace llvm;
+
+ bool isModule = WritingModule != nullptr;
+
+ // Make sure that the AST reader knows to finalize itself.
+ if (Chain)
+ Chain->finalizeForWriting();
+
+ ASTContext &Context = SemaRef.Context;
+ Preprocessor &PP = SemaRef.PP;
+
+ // Set up predefined declaration IDs.
+ DeclIDs[Context.getTranslationUnitDecl()] = PREDEF_DECL_TRANSLATION_UNIT_ID;
+ if (Context.ObjCIdDecl)
+ DeclIDs[Context.ObjCIdDecl] = PREDEF_DECL_OBJC_ID_ID;
+ if (Context.ObjCSelDecl)
+ DeclIDs[Context.ObjCSelDecl] = PREDEF_DECL_OBJC_SEL_ID;
+ if (Context.ObjCClassDecl)
+ DeclIDs[Context.ObjCClassDecl] = PREDEF_DECL_OBJC_CLASS_ID;
+ if (Context.ObjCProtocolClassDecl)
+ DeclIDs[Context.ObjCProtocolClassDecl] = PREDEF_DECL_OBJC_PROTOCOL_ID;
+ if (Context.Int128Decl)
+ DeclIDs[Context.Int128Decl] = PREDEF_DECL_INT_128_ID;
+ if (Context.UInt128Decl)
+ DeclIDs[Context.UInt128Decl] = PREDEF_DECL_UNSIGNED_INT_128_ID;
+ if (Context.ObjCInstanceTypeDecl)
+ DeclIDs[Context.ObjCInstanceTypeDecl] = PREDEF_DECL_OBJC_INSTANCETYPE_ID;
+ if (Context.BuiltinVaListDecl)
+ DeclIDs[Context.getBuiltinVaListDecl()] = PREDEF_DECL_BUILTIN_VA_LIST_ID;
+ if (Context.ExternCContext)
+ DeclIDs[Context.ExternCContext] = PREDEF_DECL_EXTERN_C_CONTEXT_ID;
+
+ // Build a record containing all of the tentative definitions in this file, in
+ // TentativeDefinitions order. Generally, this record will be empty for
+ // headers.
+ RecordData TentativeDefinitions;
+ AddLazyVectorDecls(*this, SemaRef.TentativeDefinitions, TentativeDefinitions);
+
+ // Build a record containing all of the file scoped decls in this file.
+ RecordData UnusedFileScopedDecls;
+ if (!isModule)
+ AddLazyVectorDecls(*this, SemaRef.UnusedFileScopedDecls,
+ UnusedFileScopedDecls);
+
+ // Build a record containing all of the delegating constructors we still need
+ // to resolve.
+ RecordData DelegatingCtorDecls;
+ if (!isModule)
+ AddLazyVectorDecls(*this, SemaRef.DelegatingCtorDecls, DelegatingCtorDecls);
+
+ // Write the set of weak, undeclared identifiers. We always write the
+ // entire table, since later PCH files in a PCH chain are only interested in
+ // the results at the end of the chain.
+ RecordData WeakUndeclaredIdentifiers;
+ for (auto &WeakUndeclaredIdentifier : SemaRef.WeakUndeclaredIdentifiers) {
+ IdentifierInfo *II = WeakUndeclaredIdentifier.first;
+ WeakInfo &WI = WeakUndeclaredIdentifier.second;
+ AddIdentifierRef(II, WeakUndeclaredIdentifiers);
+ AddIdentifierRef(WI.getAlias(), WeakUndeclaredIdentifiers);
+ AddSourceLocation(WI.getLocation(), WeakUndeclaredIdentifiers);
+ WeakUndeclaredIdentifiers.push_back(WI.getUsed());
+ }
+
+ // Build a record containing all of the ext_vector declarations.
+ RecordData ExtVectorDecls;
+ AddLazyVectorDecls(*this, SemaRef.ExtVectorDecls, ExtVectorDecls);
+
+ // Build a record containing all of the VTable uses information.
+ RecordData VTableUses;
+ if (!SemaRef.VTableUses.empty()) {
+ for (unsigned I = 0, N = SemaRef.VTableUses.size(); I != N; ++I) {
+ AddDeclRef(SemaRef.VTableUses[I].first, VTableUses);
+ AddSourceLocation(SemaRef.VTableUses[I].second, VTableUses);
+ VTableUses.push_back(SemaRef.VTablesUsed[SemaRef.VTableUses[I].first]);
+ }
+ }
+
+ // Build a record containing all of the UnusedLocalTypedefNameCandidates.
+ RecordData UnusedLocalTypedefNameCandidates;
+ for (const TypedefNameDecl *TD : SemaRef.UnusedLocalTypedefNameCandidates)
+ AddDeclRef(TD, UnusedLocalTypedefNameCandidates);
+
+ // Build a record containing all of pending implicit instantiations.
+ RecordData PendingInstantiations;
+ for (std::deque<Sema::PendingImplicitInstantiation>::iterator
+ I = SemaRef.PendingInstantiations.begin(),
+ N = SemaRef.PendingInstantiations.end(); I != N; ++I) {
+ AddDeclRef(I->first, PendingInstantiations);
+ AddSourceLocation(I->second, PendingInstantiations);
+ }
+ assert(SemaRef.PendingLocalImplicitInstantiations.empty() &&
+ "There are local ones at end of translation unit!");
+
+ // Build a record containing some declaration references.
+ RecordData SemaDeclRefs;
+ if (SemaRef.StdNamespace || SemaRef.StdBadAlloc) {
+ AddDeclRef(SemaRef.getStdNamespace(), SemaDeclRefs);
+ AddDeclRef(SemaRef.getStdBadAlloc(), SemaDeclRefs);
+ }
+
+ RecordData CUDASpecialDeclRefs;
+ if (Context.getcudaConfigureCallDecl()) {
+ AddDeclRef(Context.getcudaConfigureCallDecl(), CUDASpecialDeclRefs);
+ }
+
+ // Build a record containing all of the known namespaces.
+ RecordData KnownNamespaces;
+ for (llvm::MapVector<NamespaceDecl*, bool>::iterator
+ I = SemaRef.KnownNamespaces.begin(),
+ IEnd = SemaRef.KnownNamespaces.end();
+ I != IEnd; ++I) {
+ if (!I->second)
+ AddDeclRef(I->first, KnownNamespaces);
+ }
+
+ // Build a record of all used, undefined objects that require definitions.
+ RecordData UndefinedButUsed;
+
+ SmallVector<std::pair<NamedDecl *, SourceLocation>, 16> Undefined;
+ SemaRef.getUndefinedButUsed(Undefined);
+ for (SmallVectorImpl<std::pair<NamedDecl *, SourceLocation> >::iterator
+ I = Undefined.begin(), E = Undefined.end(); I != E; ++I) {
+ AddDeclRef(I->first, UndefinedButUsed);
+ AddSourceLocation(I->second, UndefinedButUsed);
+ }
+
+ // Build a record containing all delete-expressions that we would like to
+ // analyze later in AST.
+ RecordData DeleteExprsToAnalyze;
+
+ for (const auto &DeleteExprsInfo :
+ SemaRef.getMismatchingDeleteExpressions()) {
+ AddDeclRef(DeleteExprsInfo.first, DeleteExprsToAnalyze);
+ DeleteExprsToAnalyze.push_back(DeleteExprsInfo.second.size());
+ for (const auto &DeleteLoc : DeleteExprsInfo.second) {
+ AddSourceLocation(DeleteLoc.first, DeleteExprsToAnalyze);
+ DeleteExprsToAnalyze.push_back(DeleteLoc.second);
+ }
+ }
+
+ // Write the control block
+ WriteControlBlock(PP, Context, isysroot, OutputFile);
+
+ // Write the remaining AST contents.
+ RecordData Record;
+ Stream.EnterSubblock(AST_BLOCK_ID, 5);
+
+ // This is so that older clang versions, before the introduction
+ // of the control block, can read and reject the newer PCH format.
+ Record.clear();
+ Record.push_back(VERSION_MAJOR);
+ Stream.EmitRecord(METADATA_OLD_FORMAT, Record);
+
+ // Create a lexical update block containing all of the declarations in the
+ // translation unit that do not come from other AST files.
+ const TranslationUnitDecl *TU = Context.getTranslationUnitDecl();
+ SmallVector<KindDeclIDPair, 64> NewGlobalDecls;
+ for (const auto *I : TU->noload_decls()) {
+ if (!I->isFromASTFile())
+ NewGlobalDecls.push_back(std::make_pair(I->getKind(), GetDeclRef(I)));
+ }
+
+ llvm::BitCodeAbbrev *Abv = new llvm::BitCodeAbbrev();
+ Abv->Add(llvm::BitCodeAbbrevOp(TU_UPDATE_LEXICAL));
+ Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::Blob));
+ unsigned TuUpdateLexicalAbbrev = Stream.EmitAbbrev(Abv);
+ Record.clear();
+ Record.push_back(TU_UPDATE_LEXICAL);
+ Stream.EmitRecordWithBlob(TuUpdateLexicalAbbrev, Record,
+ bytes(NewGlobalDecls));
+
+ // And a visible updates block for the translation unit.
+ Abv = new llvm::BitCodeAbbrev();
+ Abv->Add(llvm::BitCodeAbbrevOp(UPDATE_VISIBLE));
+ Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::VBR, 6));
+ Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::Fixed, 32));
+ Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::Blob));
+ UpdateVisibleAbbrev = Stream.EmitAbbrev(Abv);
+ WriteDeclContextVisibleUpdate(TU);
+
+ // If we have any extern "C" names, write out a visible update for them.
+ if (Context.ExternCContext)
+ WriteDeclContextVisibleUpdate(Context.ExternCContext);
+
+ // If the translation unit has an anonymous namespace, and we don't already
+ // have an update block for it, write it as an update block.
+ // FIXME: Why do we not do this if there's already an update block?
+ if (NamespaceDecl *NS = TU->getAnonymousNamespace()) {
+ ASTWriter::UpdateRecord &Record = DeclUpdates[TU];
+ if (Record.empty())
+ Record.push_back(DeclUpdate(UPD_CXX_ADDED_ANONYMOUS_NAMESPACE, NS));
+ }
+
+ // Add update records for all mangling numbers and static local numbers.
+ // These aren't really update records, but this is a convenient way of
+ // tagging this rare extra data onto the declarations.
+ for (const auto &Number : Context.MangleNumbers)
+ if (!Number.first->isFromASTFile())
+ DeclUpdates[Number.first].push_back(DeclUpdate(UPD_MANGLING_NUMBER,
+ Number.second));
+ for (const auto &Number : Context.StaticLocalNumbers)
+ if (!Number.first->isFromASTFile())
+ DeclUpdates[Number.first].push_back(DeclUpdate(UPD_STATIC_LOCAL_NUMBER,
+ Number.second));
+
+ // Make sure visible decls, added to DeclContexts previously loaded from
+ // an AST file, are registered for serialization.
+ for (SmallVectorImpl<const Decl *>::iterator
+ I = UpdatingVisibleDecls.begin(),
+ E = UpdatingVisibleDecls.end(); I != E; ++I) {
+ GetDeclRef(*I);
+ }
+
+ // Make sure all decls associated with an identifier are registered for
+ // serialization.
+ llvm::SmallVector<const IdentifierInfo*, 256> IIs;
+ for (IdentifierTable::iterator ID = PP.getIdentifierTable().begin(),
+ IDEnd = PP.getIdentifierTable().end();
+ ID != IDEnd; ++ID) {
+ const IdentifierInfo *II = ID->second;
+ if (!Chain || !II->isFromAST() || II->hasChangedSinceDeserialization())
+ IIs.push_back(II);
+ }
+ // Sort the identifiers to visit based on their name.
+ std::sort(IIs.begin(), IIs.end(), llvm::less_ptr<IdentifierInfo>());
+ for (const IdentifierInfo *II : IIs) {
+ for (IdentifierResolver::iterator D = SemaRef.IdResolver.begin(II),
+ DEnd = SemaRef.IdResolver.end();
+ D != DEnd; ++D) {
+ GetDeclRef(*D);
+ }
+ }
+
+ // Form the record of special types.
+ RecordData SpecialTypes;
+ AddTypeRef(Context.getRawCFConstantStringType(), SpecialTypes);
+ AddTypeRef(Context.getFILEType(), SpecialTypes);
+ AddTypeRef(Context.getjmp_bufType(), SpecialTypes);
+ AddTypeRef(Context.getsigjmp_bufType(), SpecialTypes);
+ AddTypeRef(Context.ObjCIdRedefinitionType, SpecialTypes);
+ AddTypeRef(Context.ObjCClassRedefinitionType, SpecialTypes);
+ AddTypeRef(Context.ObjCSelRedefinitionType, SpecialTypes);
+ AddTypeRef(Context.getucontext_tType(), SpecialTypes);
+
+ if (Chain) {
+ // Write the mapping information describing our module dependencies and how
+ // each of those modules were mapped into our own offset/ID space, so that
+ // the reader can build the appropriate mapping to its own offset/ID space.
+ // The map consists solely of a blob with the following format:
+ // *(module-name-len:i16 module-name:len*i8
+ // source-location-offset:i32
+ // identifier-id:i32
+ // preprocessed-entity-id:i32
+ // macro-definition-id:i32
+ // submodule-id:i32
+ // selector-id:i32
+ // declaration-id:i32
+ // c++-base-specifiers-id:i32
+ // type-id:i32)
+ //
+ llvm::BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(MODULE_OFFSET_MAP));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
+ unsigned ModuleOffsetMapAbbrev = Stream.EmitAbbrev(Abbrev);
+ SmallString<2048> Buffer;
+ {
+ llvm::raw_svector_ostream Out(Buffer);
+ for (ModuleFile *M : Chain->ModuleMgr) {
+ using namespace llvm::support;
+ endian::Writer<little> LE(Out);
+ StringRef FileName = M->FileName;
+ LE.write<uint16_t>(FileName.size());
+ Out.write(FileName.data(), FileName.size());
+
+ // Note: if a base ID was uint max, it would not be possible to load
+ // another module after it or have more than one entity inside it.
+ uint32_t None = std::numeric_limits<uint32_t>::max();
+
+ auto writeBaseIDOrNone = [&](uint32_t BaseID, bool ShouldWrite) {
+ assert(BaseID < std::numeric_limits<uint32_t>::max() && "base id too high");
+ if (ShouldWrite)
+ LE.write<uint32_t>(BaseID);
+ else
+ LE.write<uint32_t>(None);
+ };
+
+ // These values should be unique within a chain, since they will be read
+ // as keys into ContinuousRangeMaps.
+ writeBaseIDOrNone(M->SLocEntryBaseOffset, M->LocalNumSLocEntries);
+ writeBaseIDOrNone(M->BaseIdentifierID, M->LocalNumIdentifiers);
+ writeBaseIDOrNone(M->BaseMacroID, M->LocalNumMacros);
+ writeBaseIDOrNone(M->BasePreprocessedEntityID,
+ M->NumPreprocessedEntities);
+ writeBaseIDOrNone(M->BaseSubmoduleID, M->LocalNumSubmodules);
+ writeBaseIDOrNone(M->BaseSelectorID, M->LocalNumSelectors);
+ writeBaseIDOrNone(M->BaseDeclID, M->LocalNumDecls);
+ writeBaseIDOrNone(M->BaseTypeIndex, M->LocalNumTypes);
+ }
+ }
+ Record.clear();
+ Record.push_back(MODULE_OFFSET_MAP);
+ Stream.EmitRecordWithBlob(ModuleOffsetMapAbbrev, Record,
+ Buffer.data(), Buffer.size());
+ }
+
+ RecordData DeclUpdatesOffsetsRecord;
+
+ // Keep writing types, declarations, and declaration update records
+ // until we've emitted all of them.
+ Stream.EnterSubblock(DECLTYPES_BLOCK_ID, /*bits for abbreviations*/5);
+ WriteTypeAbbrevs();
+ WriteDeclAbbrevs();
+ for (DeclsToRewriteTy::iterator I = DeclsToRewrite.begin(),
+ E = DeclsToRewrite.end();
+ I != E; ++I)
+ DeclTypesToEmit.push(const_cast<Decl*>(*I));
+ do {
+ WriteDeclUpdatesBlocks(DeclUpdatesOffsetsRecord);
+ while (!DeclTypesToEmit.empty()) {
+ DeclOrType DOT = DeclTypesToEmit.front();
+ DeclTypesToEmit.pop();
+ if (DOT.isType())
+ WriteType(DOT.getType());
+ else
+ WriteDecl(Context, DOT.getDecl());
+ }
+ } while (!DeclUpdates.empty());
+ Stream.ExitBlock();
+
+ DoneWritingDeclsAndTypes = true;
+
+ // These things can only be done once we've written out decls and types.
+ WriteTypeDeclOffsets();
+ if (!DeclUpdatesOffsetsRecord.empty())
+ Stream.EmitRecord(DECL_UPDATE_OFFSETS, DeclUpdatesOffsetsRecord);
+ WriteCXXBaseSpecifiersOffsets();
+ WriteCXXCtorInitializersOffsets();
+ WriteFileDeclIDsMap();
+ WriteSourceManagerBlock(Context.getSourceManager(), PP);
+
+ WriteComments();
+ WritePreprocessor(PP, isModule);
+ WriteHeaderSearch(PP.getHeaderSearchInfo());
+ WriteSelectors(SemaRef);
+ WriteReferencedSelectorsPool(SemaRef);
+ WriteIdentifierTable(PP, SemaRef.IdResolver, isModule);
+ WriteFPPragmaOptions(SemaRef.getFPOptions());
+ WriteOpenCLExtensions(SemaRef);
+ WritePragmaDiagnosticMappings(Context.getDiagnostics(), isModule);
+
+ // If we're emitting a module, write out the submodule information.
+ if (WritingModule)
+ WriteSubmodules(WritingModule);
+
+ Stream.EmitRecord(SPECIAL_TYPES, SpecialTypes);
+
+ // Write the record containing external, unnamed definitions.
+ if (!EagerlyDeserializedDecls.empty())
+ Stream.EmitRecord(EAGERLY_DESERIALIZED_DECLS, EagerlyDeserializedDecls);
+
+ // Write the record containing tentative definitions.
+ if (!TentativeDefinitions.empty())
+ Stream.EmitRecord(TENTATIVE_DEFINITIONS, TentativeDefinitions);
+
+ // Write the record containing unused file scoped decls.
+ if (!UnusedFileScopedDecls.empty())
+ Stream.EmitRecord(UNUSED_FILESCOPED_DECLS, UnusedFileScopedDecls);
+
+ // Write the record containing weak undeclared identifiers.
+ if (!WeakUndeclaredIdentifiers.empty())
+ Stream.EmitRecord(WEAK_UNDECLARED_IDENTIFIERS,
+ WeakUndeclaredIdentifiers);
+
+ // Write the record containing ext_vector type names.
+ if (!ExtVectorDecls.empty())
+ Stream.EmitRecord(EXT_VECTOR_DECLS, ExtVectorDecls);
+
+ // Write the record containing VTable uses information.
+ if (!VTableUses.empty())
+ Stream.EmitRecord(VTABLE_USES, VTableUses);
+
+ // Write the record containing potentially unused local typedefs.
+ if (!UnusedLocalTypedefNameCandidates.empty())
+ Stream.EmitRecord(UNUSED_LOCAL_TYPEDEF_NAME_CANDIDATES,
+ UnusedLocalTypedefNameCandidates);
+
+ // Write the record containing pending implicit instantiations.
+ if (!PendingInstantiations.empty())
+ Stream.EmitRecord(PENDING_IMPLICIT_INSTANTIATIONS, PendingInstantiations);
+
+ // Write the record containing declaration references of Sema.
+ if (!SemaDeclRefs.empty())
+ Stream.EmitRecord(SEMA_DECL_REFS, SemaDeclRefs);
+
+ // Write the record containing CUDA-specific declaration references.
+ if (!CUDASpecialDeclRefs.empty())
+ Stream.EmitRecord(CUDA_SPECIAL_DECL_REFS, CUDASpecialDeclRefs);
+
+ // Write the delegating constructors.
+ if (!DelegatingCtorDecls.empty())
+ Stream.EmitRecord(DELEGATING_CTORS, DelegatingCtorDecls);
+
+ // Write the known namespaces.
+ if (!KnownNamespaces.empty())
+ Stream.EmitRecord(KNOWN_NAMESPACES, KnownNamespaces);
+
+ // Write the undefined internal functions and variables, and inline functions.
+ if (!UndefinedButUsed.empty())
+ Stream.EmitRecord(UNDEFINED_BUT_USED, UndefinedButUsed);
+
+ if (!DeleteExprsToAnalyze.empty())
+ Stream.EmitRecord(DELETE_EXPRS_TO_ANALYZE, DeleteExprsToAnalyze);
+
+ // Write the visible updates to DeclContexts.
+ for (auto *DC : UpdatedDeclContexts)
+ WriteDeclContextVisibleUpdate(DC);
+
+ if (!WritingModule) {
+ // Write the submodules that were imported, if any.
+ struct ModuleInfo {
+ uint64_t ID;
+ Module *M;
+ ModuleInfo(uint64_t ID, Module *M) : ID(ID), M(M) {}
+ };
+ llvm::SmallVector<ModuleInfo, 64> Imports;
+ for (const auto *I : Context.local_imports()) {
+ assert(SubmoduleIDs.find(I->getImportedModule()) != SubmoduleIDs.end());
+ Imports.push_back(ModuleInfo(SubmoduleIDs[I->getImportedModule()],
+ I->getImportedModule()));
+ }
+
+ if (!Imports.empty()) {
+ auto Cmp = [](const ModuleInfo &A, const ModuleInfo &B) {
+ return A.ID < B.ID;
+ };
+ auto Eq = [](const ModuleInfo &A, const ModuleInfo &B) {
+ return A.ID == B.ID;
+ };
+
+ // Sort and deduplicate module IDs.
+ std::sort(Imports.begin(), Imports.end(), Cmp);
+ Imports.erase(std::unique(Imports.begin(), Imports.end(), Eq),
+ Imports.end());
+
+ RecordData ImportedModules;
+ for (const auto &Import : Imports) {
+ ImportedModules.push_back(Import.ID);
+ // FIXME: If the module has macros imported then later has declarations
+ // imported, this location won't be the right one as a location for the
+ // declaration imports.
+ AddSourceLocation(PP.getModuleImportLoc(Import.M), ImportedModules);
+ }
+
+ Stream.EmitRecord(IMPORTED_MODULES, ImportedModules);
+ }
+ }
+
+ WriteDeclReplacementsBlock();
+ WriteRedeclarations();
+ WriteObjCCategories();
+ WriteLateParsedTemplates(SemaRef);
+ if(!WritingModule)
+ WriteOptimizePragmaOptions(SemaRef);
+
+ // Some simple statistics
+ Record.clear();
+ Record.push_back(NumStatements);
+ Record.push_back(NumMacros);
+ Record.push_back(NumLexicalDeclContexts);
+ Record.push_back(NumVisibleDeclContexts);
+ Stream.EmitRecord(STATISTICS, Record);
+ Stream.ExitBlock();
+}
+
+void ASTWriter::WriteDeclUpdatesBlocks(RecordDataImpl &OffsetsRecord) {
+ if (DeclUpdates.empty())
+ return;
+
+ DeclUpdateMap LocalUpdates;
+ LocalUpdates.swap(DeclUpdates);
+
+ for (auto &DeclUpdate : LocalUpdates) {
+ const Decl *D = DeclUpdate.first;
+ if (isRewritten(D))
+ continue; // The decl will be written completely,no need to store updates.
+
+ bool HasUpdatedBody = false;
+ RecordData Record;
+ for (auto &Update : DeclUpdate.second) {
+ DeclUpdateKind Kind = (DeclUpdateKind)Update.getKind();
+
+ Record.push_back(Kind);
+ switch (Kind) {
+ case UPD_CXX_ADDED_IMPLICIT_MEMBER:
+ case UPD_CXX_ADDED_TEMPLATE_SPECIALIZATION:
+ case UPD_CXX_ADDED_ANONYMOUS_NAMESPACE:
+ assert(Update.getDecl() && "no decl to add?");
+ Record.push_back(GetDeclRef(Update.getDecl()));
+ break;
+
+ case UPD_CXX_ADDED_FUNCTION_DEFINITION:
+ // An updated body is emitted last, so that the reader doesn't need
+ // to skip over the lazy body to reach statements for other records.
+ Record.pop_back();
+ HasUpdatedBody = true;
+ break;
+
+ case UPD_CXX_INSTANTIATED_STATIC_DATA_MEMBER:
+ AddSourceLocation(Update.getLoc(), Record);
+ break;
+
+ case UPD_CXX_INSTANTIATED_CLASS_DEFINITION: {
+ auto *RD = cast<CXXRecordDecl>(D);
+ UpdatedDeclContexts.insert(RD->getPrimaryContext());
+ AddCXXDefinitionData(RD, Record);
+ Record.push_back(WriteDeclContextLexicalBlock(
+ *Context, const_cast<CXXRecordDecl *>(RD)));
+
+ // This state is sometimes updated by template instantiation, when we
+ // switch from the specialization referring to the template declaration
+ // to it referring to the template definition.
+ if (auto *MSInfo = RD->getMemberSpecializationInfo()) {
+ Record.push_back(MSInfo->getTemplateSpecializationKind());
+ AddSourceLocation(MSInfo->getPointOfInstantiation(), Record);
+ } else {
+ auto *Spec = cast<ClassTemplateSpecializationDecl>(RD);
+ Record.push_back(Spec->getTemplateSpecializationKind());
+ AddSourceLocation(Spec->getPointOfInstantiation(), Record);
+
+ // The instantiation might have been resolved to a partial
+ // specialization. If so, record which one.
+ auto From = Spec->getInstantiatedFrom();
+ if (auto PartialSpec =
+ From.dyn_cast<ClassTemplatePartialSpecializationDecl*>()) {
+ Record.push_back(true);
+ AddDeclRef(PartialSpec, Record);
+ AddTemplateArgumentList(&Spec->getTemplateInstantiationArgs(),
+ Record);
+ } else {
+ Record.push_back(false);
+ }
+ }
+ Record.push_back(RD->getTagKind());
+ AddSourceLocation(RD->getLocation(), Record);
+ AddSourceLocation(RD->getLocStart(), Record);
+ AddSourceLocation(RD->getRBraceLoc(), Record);
+
+ // Instantiation may change attributes; write them all out afresh.
+ Record.push_back(D->hasAttrs());
+ if (Record.back())
+ WriteAttributes(llvm::makeArrayRef(D->getAttrs().begin(),
+ D->getAttrs().size()), Record);
+
+ // FIXME: Ensure we don't get here for explicit instantiations.
+ break;
+ }
+
+ case UPD_CXX_RESOLVED_DTOR_DELETE:
+ AddDeclRef(Update.getDecl(), Record);
+ break;
+
+ case UPD_CXX_RESOLVED_EXCEPTION_SPEC:
+ addExceptionSpec(
+ *this,
+ cast<FunctionDecl>(D)->getType()->castAs<FunctionProtoType>(),
+ Record);
+ break;
+
+ case UPD_CXX_DEDUCED_RETURN_TYPE:
+ Record.push_back(GetOrCreateTypeID(Update.getType()));
+ break;
+
+ case UPD_DECL_MARKED_USED:
+ break;
+
+ case UPD_MANGLING_NUMBER:
+ case UPD_STATIC_LOCAL_NUMBER:
+ Record.push_back(Update.getNumber());
+ break;
+
+ case UPD_DECL_MARKED_OPENMP_THREADPRIVATE:
+ AddSourceRange(D->getAttr<OMPThreadPrivateDeclAttr>()->getRange(),
+ Record);
+ break;
+
+ case UPD_DECL_EXPORTED:
+ Record.push_back(getSubmoduleID(Update.getModule()));
+ break;
+ }
+ }
+
+ if (HasUpdatedBody) {
+ const FunctionDecl *Def = cast<FunctionDecl>(D);
+ Record.push_back(UPD_CXX_ADDED_FUNCTION_DEFINITION);
+ Record.push_back(Def->isInlined());
+ AddSourceLocation(Def->getInnerLocStart(), Record);
+ AddFunctionDefinition(Def, Record);
+ }
+
+ OffsetsRecord.push_back(GetDeclRef(D));
+ OffsetsRecord.push_back(Stream.GetCurrentBitNo());
+
+ Stream.EmitRecord(DECL_UPDATES, Record);
+
+ FlushPendingAfterDecl();
+ }
+}
+
+void ASTWriter::WriteDeclReplacementsBlock() {
+ if (ReplacedDecls.empty())
+ return;
+
+ RecordData Record;
+ for (SmallVectorImpl<ReplacedDeclInfo>::iterator
+ I = ReplacedDecls.begin(), E = ReplacedDecls.end(); I != E; ++I) {
+ Record.push_back(I->ID);
+ Record.push_back(I->Offset);
+ Record.push_back(I->Loc);
+ }
+ Stream.EmitRecord(DECL_REPLACEMENTS, Record);
+}
+
+void ASTWriter::AddSourceLocation(SourceLocation Loc, RecordDataImpl &Record) {
+ Record.push_back(Loc.getRawEncoding());
+}
+
+void ASTWriter::AddSourceRange(SourceRange Range, RecordDataImpl &Record) {
+ AddSourceLocation(Range.getBegin(), Record);
+ AddSourceLocation(Range.getEnd(), Record);
+}
+
+void ASTWriter::AddAPInt(const llvm::APInt &Value, RecordDataImpl &Record) {
+ Record.push_back(Value.getBitWidth());
+ const uint64_t *Words = Value.getRawData();
+ Record.append(Words, Words + Value.getNumWords());
+}
+
+void ASTWriter::AddAPSInt(const llvm::APSInt &Value, RecordDataImpl &Record) {
+ Record.push_back(Value.isUnsigned());
+ AddAPInt(Value, Record);
+}
+
+void ASTWriter::AddAPFloat(const llvm::APFloat &Value, RecordDataImpl &Record) {
+ AddAPInt(Value.bitcastToAPInt(), Record);
+}
+
+void ASTWriter::AddIdentifierRef(const IdentifierInfo *II, RecordDataImpl &Record) {
+ Record.push_back(getIdentifierRef(II));
+}
+
+IdentID ASTWriter::getIdentifierRef(const IdentifierInfo *II) {
+ if (!II)
+ return 0;
+
+ IdentID &ID = IdentifierIDs[II];
+ if (ID == 0)
+ ID = NextIdentID++;
+ return ID;
+}
+
+MacroID ASTWriter::getMacroRef(MacroInfo *MI, const IdentifierInfo *Name) {
+ // Don't emit builtin macros like __LINE__ to the AST file unless they
+ // have been redefined by the header (in which case they are not
+ // isBuiltinMacro).
+ if (!MI || MI->isBuiltinMacro())
+ return 0;
+
+ MacroID &ID = MacroIDs[MI];
+ if (ID == 0) {
+ ID = NextMacroID++;
+ MacroInfoToEmitData Info = { Name, MI, ID };
+ MacroInfosToEmit.push_back(Info);
+ }
+ return ID;
+}
+
+MacroID ASTWriter::getMacroID(MacroInfo *MI) {
+ if (!MI || MI->isBuiltinMacro())
+ return 0;
+
+ assert(MacroIDs.find(MI) != MacroIDs.end() && "Macro not emitted!");
+ return MacroIDs[MI];
+}
+
+uint64_t ASTWriter::getMacroDirectivesOffset(const IdentifierInfo *Name) {
+ return IdentMacroDirectivesOffsetMap.lookup(Name);
+}
+
+void ASTWriter::AddSelectorRef(const Selector SelRef, RecordDataImpl &Record) {
+ Record.push_back(getSelectorRef(SelRef));
+}
+
+SelectorID ASTWriter::getSelectorRef(Selector Sel) {
+ if (Sel.getAsOpaquePtr() == nullptr) {
+ return 0;
+ }
+
+ SelectorID SID = SelectorIDs[Sel];
+ if (SID == 0 && Chain) {
+ // This might trigger a ReadSelector callback, which will set the ID for
+ // this selector.
+ Chain->LoadSelector(Sel);
+ SID = SelectorIDs[Sel];
+ }
+ if (SID == 0) {
+ SID = NextSelectorID++;
+ SelectorIDs[Sel] = SID;
+ }
+ return SID;
+}
+
+void ASTWriter::AddCXXTemporary(const CXXTemporary *Temp, RecordDataImpl &Record) {
+ AddDeclRef(Temp->getDestructor(), Record);
+}
+
+void ASTWriter::AddCXXCtorInitializersRef(ArrayRef<CXXCtorInitializer *> Inits,
+ RecordDataImpl &Record) {
+ assert(!Inits.empty() && "Empty ctor initializer sets are not recorded");
+ CXXCtorInitializersToWrite.push_back(
+ QueuedCXXCtorInitializers(NextCXXCtorInitializersID, Inits));
+ Record.push_back(NextCXXCtorInitializersID++);
+}
+
+void ASTWriter::AddCXXBaseSpecifiersRef(CXXBaseSpecifier const *Bases,
+ CXXBaseSpecifier const *BasesEnd,
+ RecordDataImpl &Record) {
+ assert(Bases != BasesEnd && "Empty base-specifier sets are not recorded");
+ CXXBaseSpecifiersToWrite.push_back(
+ QueuedCXXBaseSpecifiers(NextCXXBaseSpecifiersID,
+ Bases, BasesEnd));
+ Record.push_back(NextCXXBaseSpecifiersID++);
+}
+
+void ASTWriter::AddTemplateArgumentLocInfo(TemplateArgument::ArgKind Kind,
+ const TemplateArgumentLocInfo &Arg,
+ RecordDataImpl &Record) {
+ switch (Kind) {
+ case TemplateArgument::Expression:
+ AddStmt(Arg.getAsExpr());
+ break;
+ case TemplateArgument::Type:
+ AddTypeSourceInfo(Arg.getAsTypeSourceInfo(), Record);
+ break;
+ case TemplateArgument::Template:
+ AddNestedNameSpecifierLoc(Arg.getTemplateQualifierLoc(), Record);
+ AddSourceLocation(Arg.getTemplateNameLoc(), Record);
+ break;
+ case TemplateArgument::TemplateExpansion:
+ AddNestedNameSpecifierLoc(Arg.getTemplateQualifierLoc(), Record);
+ AddSourceLocation(Arg.getTemplateNameLoc(), Record);
+ AddSourceLocation(Arg.getTemplateEllipsisLoc(), Record);
+ break;
+ case TemplateArgument::Null:
+ case TemplateArgument::Integral:
+ case TemplateArgument::Declaration:
+ case TemplateArgument::NullPtr:
+ case TemplateArgument::Pack:
+ // FIXME: Is this right?
+ break;
+ }
+}
+
+void ASTWriter::AddTemplateArgumentLoc(const TemplateArgumentLoc &Arg,
+ RecordDataImpl &Record) {
+ AddTemplateArgument(Arg.getArgument(), Record);
+
+ if (Arg.getArgument().getKind() == TemplateArgument::Expression) {
+ bool InfoHasSameExpr
+ = Arg.getArgument().getAsExpr() == Arg.getLocInfo().getAsExpr();
+ Record.push_back(InfoHasSameExpr);
+ if (InfoHasSameExpr)
+ return; // Avoid storing the same expr twice.
+ }
+ AddTemplateArgumentLocInfo(Arg.getArgument().getKind(), Arg.getLocInfo(),
+ Record);
+}
+
+void ASTWriter::AddTypeSourceInfo(TypeSourceInfo *TInfo,
+ RecordDataImpl &Record) {
+ if (!TInfo) {
+ AddTypeRef(QualType(), Record);
+ return;
+ }
+
+ AddTypeLoc(TInfo->getTypeLoc(), Record);
+}
+
+void ASTWriter::AddTypeLoc(TypeLoc TL, RecordDataImpl &Record) {
+ AddTypeRef(TL.getType(), Record);
+
+ TypeLocWriter TLW(*this, Record);
+ for (; !TL.isNull(); TL = TL.getNextTypeLoc())
+ TLW.Visit(TL);
+}
+
+void ASTWriter::AddTypeRef(QualType T, RecordDataImpl &Record) {
+ Record.push_back(GetOrCreateTypeID(T));
+}
+
+TypeID ASTWriter::GetOrCreateTypeID(QualType T) {
+ assert(Context);
+ return MakeTypeID(*Context, T, [&](QualType T) -> TypeIdx {
+ if (T.isNull())
+ return TypeIdx();
+ assert(!T.getLocalFastQualifiers());
+
+ TypeIdx &Idx = TypeIdxs[T];
+ if (Idx.getIndex() == 0) {
+ if (DoneWritingDeclsAndTypes) {
+ assert(0 && "New type seen after serializing all the types to emit!");
+ return TypeIdx();
+ }
+
+ // We haven't seen this type before. Assign it a new ID and put it
+ // into the queue of types to emit.
+ Idx = TypeIdx(NextTypeID++);
+ DeclTypesToEmit.push(T);
+ }
+ return Idx;
+ });
+}
+
+TypeID ASTWriter::getTypeID(QualType T) const {
+ assert(Context);
+ return MakeTypeID(*Context, T, [&](QualType T) -> TypeIdx {
+ if (T.isNull())
+ return TypeIdx();
+ assert(!T.getLocalFastQualifiers());
+
+ TypeIdxMap::const_iterator I = TypeIdxs.find(T);
+ assert(I != TypeIdxs.end() && "Type not emitted!");
+ return I->second;
+ });
+}
+
+void ASTWriter::AddDeclRef(const Decl *D, RecordDataImpl &Record) {
+ Record.push_back(GetDeclRef(D));
+}
+
+DeclID ASTWriter::GetDeclRef(const Decl *D) {
+ assert(WritingAST && "Cannot request a declaration ID before AST writing");
+
+ if (!D) {
+ return 0;
+ }
+
+ // If D comes from an AST file, its declaration ID is already known and
+ // fixed.
+ if (D->isFromASTFile())
+ return D->getGlobalID();
+
+ assert(!(reinterpret_cast<uintptr_t>(D) & 0x01) && "Invalid decl pointer");
+ DeclID &ID = DeclIDs[D];
+ if (ID == 0) {
+ if (DoneWritingDeclsAndTypes) {
+ assert(0 && "New decl seen after serializing all the decls to emit!");
+ return 0;
+ }
+
+ // We haven't seen this declaration before. Give it a new ID and
+ // enqueue it in the list of declarations to emit.
+ ID = NextDeclID++;
+ DeclTypesToEmit.push(const_cast<Decl *>(D));
+ }
+
+ return ID;
+}
+
+DeclID ASTWriter::getDeclID(const Decl *D) {
+ if (!D)
+ return 0;
+
+ // If D comes from an AST file, its declaration ID is already known and
+ // fixed.
+ if (D->isFromASTFile())
+ return D->getGlobalID();
+
+ assert(DeclIDs.find(D) != DeclIDs.end() && "Declaration not emitted!");
+ return DeclIDs[D];
+}
+
+void ASTWriter::associateDeclWithFile(const Decl *D, DeclID ID) {
+ assert(ID);
+ assert(D);
+
+ SourceLocation Loc = D->getLocation();
+ if (Loc.isInvalid())
+ return;
+
+ // We only keep track of the file-level declarations of each file.
+ if (!D->getLexicalDeclContext()->isFileContext())
+ return;
+ // FIXME: ParmVarDecls that are part of a function type of a parameter of
+ // a function/objc method, should not have TU as lexical context.
+ if (isa<ParmVarDecl>(D))
+ return;
+
+ SourceManager &SM = Context->getSourceManager();
+ SourceLocation FileLoc = SM.getFileLoc(Loc);
+ assert(SM.isLocalSourceLocation(FileLoc));
+ FileID FID;
+ unsigned Offset;
+ std::tie(FID, Offset) = SM.getDecomposedLoc(FileLoc);
+ if (FID.isInvalid())
+ return;
+ assert(SM.getSLocEntry(FID).isFile());
+
+ DeclIDInFileInfo *&Info = FileDeclIDs[FID];
+ if (!Info)
+ Info = new DeclIDInFileInfo();
+
+ std::pair<unsigned, serialization::DeclID> LocDecl(Offset, ID);
+ LocDeclIDsTy &Decls = Info->DeclIDs;
+
+ if (Decls.empty() || Decls.back().first <= Offset) {
+ Decls.push_back(LocDecl);
+ return;
+ }
+
+ LocDeclIDsTy::iterator I =
+ std::upper_bound(Decls.begin(), Decls.end(), LocDecl, llvm::less_first());
+
+ Decls.insert(I, LocDecl);
+}
+
+void ASTWriter::AddDeclarationName(DeclarationName Name, RecordDataImpl &Record) {
+ // FIXME: Emit a stable enum for NameKind. 0 = Identifier etc.
+ Record.push_back(Name.getNameKind());
+ switch (Name.getNameKind()) {
+ case DeclarationName::Identifier:
+ AddIdentifierRef(Name.getAsIdentifierInfo(), Record);
+ break;
+
+ case DeclarationName::ObjCZeroArgSelector:
+ case DeclarationName::ObjCOneArgSelector:
+ case DeclarationName::ObjCMultiArgSelector:
+ AddSelectorRef(Name.getObjCSelector(), Record);
+ break;
+
+ case DeclarationName::CXXConstructorName:
+ case DeclarationName::CXXDestructorName:
+ case DeclarationName::CXXConversionFunctionName:
+ AddTypeRef(Name.getCXXNameType(), Record);
+ break;
+
+ case DeclarationName::CXXOperatorName:
+ Record.push_back(Name.getCXXOverloadedOperator());
+ break;
+
+ case DeclarationName::CXXLiteralOperatorName:
+ AddIdentifierRef(Name.getCXXLiteralIdentifier(), Record);
+ break;
+
+ case DeclarationName::CXXUsingDirective:
+ // No extra data to emit
+ break;
+ }
+}
+
+unsigned ASTWriter::getAnonymousDeclarationNumber(const NamedDecl *D) {
+ assert(needsAnonymousDeclarationNumber(D) &&
+ "expected an anonymous declaration");
+
+ // Number the anonymous declarations within this context, if we've not
+ // already done so.
+ auto It = AnonymousDeclarationNumbers.find(D);
+ if (It == AnonymousDeclarationNumbers.end()) {
+ auto *DC = D->getLexicalDeclContext();
+ numberAnonymousDeclsWithin(DC, [&](const NamedDecl *ND, unsigned Number) {
+ AnonymousDeclarationNumbers[ND] = Number;
+ });
+
+ It = AnonymousDeclarationNumbers.find(D);
+ assert(It != AnonymousDeclarationNumbers.end() &&
+ "declaration not found within its lexical context");
+ }
+
+ return It->second;
+}
+
+void ASTWriter::AddDeclarationNameLoc(const DeclarationNameLoc &DNLoc,
+ DeclarationName Name, RecordDataImpl &Record) {
+ switch (Name.getNameKind()) {
+ case DeclarationName::CXXConstructorName:
+ case DeclarationName::CXXDestructorName:
+ case DeclarationName::CXXConversionFunctionName:
+ AddTypeSourceInfo(DNLoc.NamedType.TInfo, Record);
+ break;
+
+ case DeclarationName::CXXOperatorName:
+ AddSourceLocation(
+ SourceLocation::getFromRawEncoding(DNLoc.CXXOperatorName.BeginOpNameLoc),
+ Record);
+ AddSourceLocation(
+ SourceLocation::getFromRawEncoding(DNLoc.CXXOperatorName.EndOpNameLoc),
+ Record);
+ break;
+
+ case DeclarationName::CXXLiteralOperatorName:
+ AddSourceLocation(
+ SourceLocation::getFromRawEncoding(DNLoc.CXXLiteralOperatorName.OpNameLoc),
+ Record);
+ break;
+
+ case DeclarationName::Identifier:
+ case DeclarationName::ObjCZeroArgSelector:
+ case DeclarationName::ObjCOneArgSelector:
+ case DeclarationName::ObjCMultiArgSelector:
+ case DeclarationName::CXXUsingDirective:
+ break;
+ }
+}
+
+void ASTWriter::AddDeclarationNameInfo(const DeclarationNameInfo &NameInfo,
+ RecordDataImpl &Record) {
+ AddDeclarationName(NameInfo.getName(), Record);
+ AddSourceLocation(NameInfo.getLoc(), Record);
+ AddDeclarationNameLoc(NameInfo.getInfo(), NameInfo.getName(), Record);
+}
+
+void ASTWriter::AddQualifierInfo(const QualifierInfo &Info,
+ RecordDataImpl &Record) {
+ AddNestedNameSpecifierLoc(Info.QualifierLoc, Record);
+ Record.push_back(Info.NumTemplParamLists);
+ for (unsigned i=0, e=Info.NumTemplParamLists; i != e; ++i)
+ AddTemplateParameterList(Info.TemplParamLists[i], Record);
+}
+
+void ASTWriter::AddNestedNameSpecifier(NestedNameSpecifier *NNS,
+ RecordDataImpl &Record) {
+ // Nested name specifiers usually aren't too long. I think that 8 would
+ // typically accommodate the vast majority.
+ SmallVector<NestedNameSpecifier *, 8> NestedNames;
+
+ // Push each of the NNS's onto a stack for serialization in reverse order.
+ while (NNS) {
+ NestedNames.push_back(NNS);
+ NNS = NNS->getPrefix();
+ }
+
+ Record.push_back(NestedNames.size());
+ while(!NestedNames.empty()) {
+ NNS = NestedNames.pop_back_val();
+ NestedNameSpecifier::SpecifierKind Kind = NNS->getKind();
+ Record.push_back(Kind);
+ switch (Kind) {
+ case NestedNameSpecifier::Identifier:
+ AddIdentifierRef(NNS->getAsIdentifier(), Record);
+ break;
+
+ case NestedNameSpecifier::Namespace:
+ AddDeclRef(NNS->getAsNamespace(), Record);
+ break;
+
+ case NestedNameSpecifier::NamespaceAlias:
+ AddDeclRef(NNS->getAsNamespaceAlias(), Record);
+ break;
+
+ case NestedNameSpecifier::TypeSpec:
+ case NestedNameSpecifier::TypeSpecWithTemplate:
+ AddTypeRef(QualType(NNS->getAsType(), 0), Record);
+ Record.push_back(Kind == NestedNameSpecifier::TypeSpecWithTemplate);
+ break;
+
+ case NestedNameSpecifier::Global:
+ // Don't need to write an associated value.
+ break;
+
+ case NestedNameSpecifier::Super:
+ AddDeclRef(NNS->getAsRecordDecl(), Record);
+ break;
+ }
+ }
+}
+
+void ASTWriter::AddNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS,
+ RecordDataImpl &Record) {
+ // Nested name specifiers usually aren't too long. I think that 8 would
+ // typically accommodate the vast majority.
+ SmallVector<NestedNameSpecifierLoc , 8> NestedNames;
+
+ // Push each of the nested-name-specifiers's onto a stack for
+ // serialization in reverse order.
+ while (NNS) {
+ NestedNames.push_back(NNS);
+ NNS = NNS.getPrefix();
+ }
+
+ Record.push_back(NestedNames.size());
+ while(!NestedNames.empty()) {
+ NNS = NestedNames.pop_back_val();
+ NestedNameSpecifier::SpecifierKind Kind
+ = NNS.getNestedNameSpecifier()->getKind();
+ Record.push_back(Kind);
+ switch (Kind) {
+ case NestedNameSpecifier::Identifier:
+ AddIdentifierRef(NNS.getNestedNameSpecifier()->getAsIdentifier(), Record);
+ AddSourceRange(NNS.getLocalSourceRange(), Record);
+ break;
+
+ case NestedNameSpecifier::Namespace:
+ AddDeclRef(NNS.getNestedNameSpecifier()->getAsNamespace(), Record);
+ AddSourceRange(NNS.getLocalSourceRange(), Record);
+ break;
+
+ case NestedNameSpecifier::NamespaceAlias:
+ AddDeclRef(NNS.getNestedNameSpecifier()->getAsNamespaceAlias(), Record);
+ AddSourceRange(NNS.getLocalSourceRange(), Record);
+ break;
+
+ case NestedNameSpecifier::TypeSpec:
+ case NestedNameSpecifier::TypeSpecWithTemplate:
+ Record.push_back(Kind == NestedNameSpecifier::TypeSpecWithTemplate);
+ AddTypeLoc(NNS.getTypeLoc(), Record);
+ AddSourceLocation(NNS.getLocalSourceRange().getEnd(), Record);
+ break;
+
+ case NestedNameSpecifier::Global:
+ AddSourceLocation(NNS.getLocalSourceRange().getEnd(), Record);
+ break;
+
+ case NestedNameSpecifier::Super:
+ AddDeclRef(NNS.getNestedNameSpecifier()->getAsRecordDecl(), Record);
+ AddSourceRange(NNS.getLocalSourceRange(), Record);
+ break;
+ }
+ }
+}
+
+void ASTWriter::AddTemplateName(TemplateName Name, RecordDataImpl &Record) {
+ TemplateName::NameKind Kind = Name.getKind();
+ Record.push_back(Kind);
+ switch (Kind) {
+ case TemplateName::Template:
+ AddDeclRef(Name.getAsTemplateDecl(), Record);
+ break;
+
+ case TemplateName::OverloadedTemplate: {
+ OverloadedTemplateStorage *OvT = Name.getAsOverloadedTemplate();
+ Record.push_back(OvT->size());
+ for (OverloadedTemplateStorage::iterator I = OvT->begin(), E = OvT->end();
+ I != E; ++I)
+ AddDeclRef(*I, Record);
+ break;
+ }
+
+ case TemplateName::QualifiedTemplate: {
+ QualifiedTemplateName *QualT = Name.getAsQualifiedTemplateName();
+ AddNestedNameSpecifier(QualT->getQualifier(), Record);
+ Record.push_back(QualT->hasTemplateKeyword());
+ AddDeclRef(QualT->getTemplateDecl(), Record);
+ break;
+ }
+
+ case TemplateName::DependentTemplate: {
+ DependentTemplateName *DepT = Name.getAsDependentTemplateName();
+ AddNestedNameSpecifier(DepT->getQualifier(), Record);
+ Record.push_back(DepT->isIdentifier());
+ if (DepT->isIdentifier())
+ AddIdentifierRef(DepT->getIdentifier(), Record);
+ else
+ Record.push_back(DepT->getOperator());
+ break;
+ }
+
+ case TemplateName::SubstTemplateTemplateParm: {
+ SubstTemplateTemplateParmStorage *subst
+ = Name.getAsSubstTemplateTemplateParm();
+ AddDeclRef(subst->getParameter(), Record);
+ AddTemplateName(subst->getReplacement(), Record);
+ break;
+ }
+
+ case TemplateName::SubstTemplateTemplateParmPack: {
+ SubstTemplateTemplateParmPackStorage *SubstPack
+ = Name.getAsSubstTemplateTemplateParmPack();
+ AddDeclRef(SubstPack->getParameterPack(), Record);
+ AddTemplateArgument(SubstPack->getArgumentPack(), Record);
+ break;
+ }
+ }
+}
+
+void ASTWriter::AddTemplateArgument(const TemplateArgument &Arg,
+ RecordDataImpl &Record) {
+ Record.push_back(Arg.getKind());
+ switch (Arg.getKind()) {
+ case TemplateArgument::Null:
+ break;
+ case TemplateArgument::Type:
+ AddTypeRef(Arg.getAsType(), Record);
+ break;
+ case TemplateArgument::Declaration:
+ AddDeclRef(Arg.getAsDecl(), Record);
+ AddTypeRef(Arg.getParamTypeForDecl(), Record);
+ break;
+ case TemplateArgument::NullPtr:
+ AddTypeRef(Arg.getNullPtrType(), Record);
+ break;
+ case TemplateArgument::Integral:
+ AddAPSInt(Arg.getAsIntegral(), Record);
+ AddTypeRef(Arg.getIntegralType(), Record);
+ break;
+ case TemplateArgument::Template:
+ AddTemplateName(Arg.getAsTemplateOrTemplatePattern(), Record);
+ break;
+ case TemplateArgument::TemplateExpansion:
+ AddTemplateName(Arg.getAsTemplateOrTemplatePattern(), Record);
+ if (Optional<unsigned> NumExpansions = Arg.getNumTemplateExpansions())
+ Record.push_back(*NumExpansions + 1);
+ else
+ Record.push_back(0);
+ break;
+ case TemplateArgument::Expression:
+ AddStmt(Arg.getAsExpr());
+ break;
+ case TemplateArgument::Pack:
+ Record.push_back(Arg.pack_size());
+ for (const auto &P : Arg.pack_elements())
+ AddTemplateArgument(P, Record);
+ break;
+ }
+}
+
+void
+ASTWriter::AddTemplateParameterList(const TemplateParameterList *TemplateParams,
+ RecordDataImpl &Record) {
+ assert(TemplateParams && "No TemplateParams!");
+ AddSourceLocation(TemplateParams->getTemplateLoc(), Record);
+ AddSourceLocation(TemplateParams->getLAngleLoc(), Record);
+ AddSourceLocation(TemplateParams->getRAngleLoc(), Record);
+ Record.push_back(TemplateParams->size());
+ for (TemplateParameterList::const_iterator
+ P = TemplateParams->begin(), PEnd = TemplateParams->end();
+ P != PEnd; ++P)
+ AddDeclRef(*P, Record);
+}
+
+/// \brief Emit a template argument list.
+void
+ASTWriter::AddTemplateArgumentList(const TemplateArgumentList *TemplateArgs,
+ RecordDataImpl &Record) {
+ assert(TemplateArgs && "No TemplateArgs!");
+ Record.push_back(TemplateArgs->size());
+ for (int i=0, e = TemplateArgs->size(); i != e; ++i)
+ AddTemplateArgument(TemplateArgs->get(i), Record);
+}
+
+void
+ASTWriter::AddASTTemplateArgumentListInfo
+(const ASTTemplateArgumentListInfo *ASTTemplArgList, RecordDataImpl &Record) {
+ assert(ASTTemplArgList && "No ASTTemplArgList!");
+ AddSourceLocation(ASTTemplArgList->LAngleLoc, Record);
+ AddSourceLocation(ASTTemplArgList->RAngleLoc, Record);
+ Record.push_back(ASTTemplArgList->NumTemplateArgs);
+ const TemplateArgumentLoc *TemplArgs = ASTTemplArgList->getTemplateArgs();
+ for (int i=0, e = ASTTemplArgList->NumTemplateArgs; i != e; ++i)
+ AddTemplateArgumentLoc(TemplArgs[i], Record);
+}
+
+void
+ASTWriter::AddUnresolvedSet(const ASTUnresolvedSet &Set, RecordDataImpl &Record) {
+ Record.push_back(Set.size());
+ for (ASTUnresolvedSet::const_iterator
+ I = Set.begin(), E = Set.end(); I != E; ++I) {
+ AddDeclRef(I.getDecl(), Record);
+ Record.push_back(I.getAccess());
+ }
+}
+
+void ASTWriter::AddCXXBaseSpecifier(const CXXBaseSpecifier &Base,
+ RecordDataImpl &Record) {
+ Record.push_back(Base.isVirtual());
+ Record.push_back(Base.isBaseOfClass());
+ Record.push_back(Base.getAccessSpecifierAsWritten());
+ Record.push_back(Base.getInheritConstructors());
+ AddTypeSourceInfo(Base.getTypeSourceInfo(), Record);
+ AddSourceRange(Base.getSourceRange(), Record);
+ AddSourceLocation(Base.isPackExpansion()? Base.getEllipsisLoc()
+ : SourceLocation(),
+ Record);
+}
+
+void ASTWriter::FlushCXXBaseSpecifiers() {
+ RecordData Record;
+ unsigned N = CXXBaseSpecifiersToWrite.size();
+ for (unsigned I = 0; I != N; ++I) {
+ Record.clear();
+
+ // Record the offset of this base-specifier set.
+ unsigned Index = CXXBaseSpecifiersToWrite[I].ID - 1;
+ if (Index == CXXBaseSpecifiersOffsets.size())
+ CXXBaseSpecifiersOffsets.push_back(Stream.GetCurrentBitNo());
+ else {
+ if (Index > CXXBaseSpecifiersOffsets.size())
+ CXXBaseSpecifiersOffsets.resize(Index + 1);
+ CXXBaseSpecifiersOffsets[Index] = Stream.GetCurrentBitNo();
+ }
+
+ const CXXBaseSpecifier *B = CXXBaseSpecifiersToWrite[I].Bases,
+ *BEnd = CXXBaseSpecifiersToWrite[I].BasesEnd;
+ Record.push_back(BEnd - B);
+ for (; B != BEnd; ++B)
+ AddCXXBaseSpecifier(*B, Record);
+ Stream.EmitRecord(serialization::DECL_CXX_BASE_SPECIFIERS, Record);
+
+ // Flush any expressions that were written as part of the base specifiers.
+ FlushStmts();
+ }
+
+ assert(N == CXXBaseSpecifiersToWrite.size() &&
+ "added more base specifiers while writing base specifiers");
+ CXXBaseSpecifiersToWrite.clear();
+}
+
+void ASTWriter::AddCXXCtorInitializers(
+ const CXXCtorInitializer * const *CtorInitializers,
+ unsigned NumCtorInitializers,
+ RecordDataImpl &Record) {
+ Record.push_back(NumCtorInitializers);
+ for (unsigned i=0; i != NumCtorInitializers; ++i) {
+ const CXXCtorInitializer *Init = CtorInitializers[i];
+
+ if (Init->isBaseInitializer()) {
+ Record.push_back(CTOR_INITIALIZER_BASE);
+ AddTypeSourceInfo(Init->getTypeSourceInfo(), Record);
+ Record.push_back(Init->isBaseVirtual());
+ } else if (Init->isDelegatingInitializer()) {
+ Record.push_back(CTOR_INITIALIZER_DELEGATING);
+ AddTypeSourceInfo(Init->getTypeSourceInfo(), Record);
+ } else if (Init->isMemberInitializer()){
+ Record.push_back(CTOR_INITIALIZER_MEMBER);
+ AddDeclRef(Init->getMember(), Record);
+ } else {
+ Record.push_back(CTOR_INITIALIZER_INDIRECT_MEMBER);
+ AddDeclRef(Init->getIndirectMember(), Record);
+ }
+
+ AddSourceLocation(Init->getMemberLocation(), Record);
+ AddStmt(Init->getInit());
+ AddSourceLocation(Init->getLParenLoc(), Record);
+ AddSourceLocation(Init->getRParenLoc(), Record);
+ Record.push_back(Init->isWritten());
+ if (Init->isWritten()) {
+ Record.push_back(Init->getSourceOrder());
+ } else {
+ Record.push_back(Init->getNumArrayIndices());
+ for (unsigned i=0, e=Init->getNumArrayIndices(); i != e; ++i)
+ AddDeclRef(Init->getArrayIndex(i), Record);
+ }
+ }
+}
+
+void ASTWriter::FlushCXXCtorInitializers() {
+ RecordData Record;
+
+ unsigned N = CXXCtorInitializersToWrite.size();
+ (void)N; // Silence unused warning in non-assert builds.
+ for (auto &Init : CXXCtorInitializersToWrite) {
+ Record.clear();
+
+ // Record the offset of this mem-initializer list.
+ unsigned Index = Init.ID - 1;
+ if (Index == CXXCtorInitializersOffsets.size())
+ CXXCtorInitializersOffsets.push_back(Stream.GetCurrentBitNo());
+ else {
+ if (Index > CXXCtorInitializersOffsets.size())
+ CXXCtorInitializersOffsets.resize(Index + 1);
+ CXXCtorInitializersOffsets[Index] = Stream.GetCurrentBitNo();
+ }
+
+ AddCXXCtorInitializers(Init.Inits.data(), Init.Inits.size(), Record);
+ Stream.EmitRecord(serialization::DECL_CXX_CTOR_INITIALIZERS, Record);
+
+ // Flush any expressions that were written as part of the initializers.
+ FlushStmts();
+ }
+
+ assert(N == CXXCtorInitializersToWrite.size() &&
+ "added more ctor initializers while writing ctor initializers");
+ CXXCtorInitializersToWrite.clear();
+}
+
+void ASTWriter::AddCXXDefinitionData(const CXXRecordDecl *D, RecordDataImpl &Record) {
+ auto &Data = D->data();
+ Record.push_back(Data.IsLambda);
+ Record.push_back(Data.UserDeclaredConstructor);
+ Record.push_back(Data.UserDeclaredSpecialMembers);
+ Record.push_back(Data.Aggregate);
+ Record.push_back(Data.PlainOldData);
+ Record.push_back(Data.Empty);
+ Record.push_back(Data.Polymorphic);
+ Record.push_back(Data.Abstract);
+ Record.push_back(Data.IsStandardLayout);
+ Record.push_back(Data.HasNoNonEmptyBases);
+ Record.push_back(Data.HasPrivateFields);
+ Record.push_back(Data.HasProtectedFields);
+ Record.push_back(Data.HasPublicFields);
+ Record.push_back(Data.HasMutableFields);
+ Record.push_back(Data.HasVariantMembers);
+ Record.push_back(Data.HasOnlyCMembers);
+ Record.push_back(Data.HasInClassInitializer);
+ Record.push_back(Data.HasUninitializedReferenceMember);
+ Record.push_back(Data.NeedOverloadResolutionForMoveConstructor);
+ Record.push_back(Data.NeedOverloadResolutionForMoveAssignment);
+ Record.push_back(Data.NeedOverloadResolutionForDestructor);
+ Record.push_back(Data.DefaultedMoveConstructorIsDeleted);
+ Record.push_back(Data.DefaultedMoveAssignmentIsDeleted);
+ Record.push_back(Data.DefaultedDestructorIsDeleted);
+ Record.push_back(Data.HasTrivialSpecialMembers);
+ Record.push_back(Data.DeclaredNonTrivialSpecialMembers);
+ Record.push_back(Data.HasIrrelevantDestructor);
+ Record.push_back(Data.HasConstexprNonCopyMoveConstructor);
+ Record.push_back(Data.DefaultedDefaultConstructorIsConstexpr);
+ Record.push_back(Data.HasConstexprDefaultConstructor);
+ Record.push_back(Data.HasNonLiteralTypeFieldsOrBases);
+ Record.push_back(Data.ComputedVisibleConversions);
+ Record.push_back(Data.UserProvidedDefaultConstructor);
+ Record.push_back(Data.DeclaredSpecialMembers);
+ Record.push_back(Data.ImplicitCopyConstructorHasConstParam);
+ Record.push_back(Data.ImplicitCopyAssignmentHasConstParam);
+ Record.push_back(Data.HasDeclaredCopyConstructorWithConstParam);
+ Record.push_back(Data.HasDeclaredCopyAssignmentWithConstParam);
+ // IsLambda bit is already saved.
+
+ Record.push_back(Data.NumBases);
+ if (Data.NumBases > 0)
+ AddCXXBaseSpecifiersRef(Data.getBases(), Data.getBases() + Data.NumBases,
+ Record);
+
+ // FIXME: Make VBases lazily computed when needed to avoid storing them.
+ Record.push_back(Data.NumVBases);
+ if (Data.NumVBases > 0)
+ AddCXXBaseSpecifiersRef(Data.getVBases(), Data.getVBases() + Data.NumVBases,
+ Record);
+
+ AddUnresolvedSet(Data.Conversions.get(*Context), Record);
+ AddUnresolvedSet(Data.VisibleConversions.get(*Context), Record);
+ // Data.Definition is the owning decl, no need to write it.
+ AddDeclRef(D->getFirstFriend(), Record);
+
+ // Add lambda-specific data.
+ if (Data.IsLambda) {
+ auto &Lambda = D->getLambdaData();
+ Record.push_back(Lambda.Dependent);
+ Record.push_back(Lambda.IsGenericLambda);
+ Record.push_back(Lambda.CaptureDefault);
+ Record.push_back(Lambda.NumCaptures);
+ Record.push_back(Lambda.NumExplicitCaptures);
+ Record.push_back(Lambda.ManglingNumber);
+ AddDeclRef(Lambda.ContextDecl, Record);
+ AddTypeSourceInfo(Lambda.MethodTyInfo, Record);
+ for (unsigned I = 0, N = Lambda.NumCaptures; I != N; ++I) {
+ const LambdaCapture &Capture = Lambda.Captures[I];
+ AddSourceLocation(Capture.getLocation(), Record);
+ Record.push_back(Capture.isImplicit());
+ Record.push_back(Capture.getCaptureKind());
+ switch (Capture.getCaptureKind()) {
+ case LCK_This:
+ case LCK_VLAType:
+ break;
+ case LCK_ByCopy:
+ case LCK_ByRef:
+ VarDecl *Var =
+ Capture.capturesVariable() ? Capture.getCapturedVar() : nullptr;
+ AddDeclRef(Var, Record);
+ AddSourceLocation(Capture.isPackExpansion() ? Capture.getEllipsisLoc()
+ : SourceLocation(),
+ Record);
+ break;
+ }
+ }
+ }
+}
+
+void ASTWriter::ReaderInitialized(ASTReader *Reader) {
+ assert(Reader && "Cannot remove chain");
+ assert((!Chain || Chain == Reader) && "Cannot replace chain");
+ assert(FirstDeclID == NextDeclID &&
+ FirstTypeID == NextTypeID &&
+ FirstIdentID == NextIdentID &&
+ FirstMacroID == NextMacroID &&
+ FirstSubmoduleID == NextSubmoduleID &&
+ FirstSelectorID == NextSelectorID &&
+ "Setting chain after writing has started.");
+
+ Chain = Reader;
+
+ // Note, this will get called multiple times, once one the reader starts up
+ // and again each time it's done reading a PCH or module.
+ FirstDeclID = NUM_PREDEF_DECL_IDS + Chain->getTotalNumDecls();
+ FirstTypeID = NUM_PREDEF_TYPE_IDS + Chain->getTotalNumTypes();
+ FirstIdentID = NUM_PREDEF_IDENT_IDS + Chain->getTotalNumIdentifiers();
+ FirstMacroID = NUM_PREDEF_MACRO_IDS + Chain->getTotalNumMacros();
+ FirstSubmoduleID = NUM_PREDEF_SUBMODULE_IDS + Chain->getTotalNumSubmodules();
+ FirstSelectorID = NUM_PREDEF_SELECTOR_IDS + Chain->getTotalNumSelectors();
+ NextDeclID = FirstDeclID;
+ NextTypeID = FirstTypeID;
+ NextIdentID = FirstIdentID;
+ NextMacroID = FirstMacroID;
+ NextSelectorID = FirstSelectorID;
+ NextSubmoduleID = FirstSubmoduleID;
+}
+
+void ASTWriter::IdentifierRead(IdentID ID, IdentifierInfo *II) {
+ // Always keep the highest ID. See \p TypeRead() for more information.
+ IdentID &StoredID = IdentifierIDs[II];
+ if (ID > StoredID)
+ StoredID = ID;
+}
+
+void ASTWriter::MacroRead(serialization::MacroID ID, MacroInfo *MI) {
+ // Always keep the highest ID. See \p TypeRead() for more information.
+ MacroID &StoredID = MacroIDs[MI];
+ if (ID > StoredID)
+ StoredID = ID;
+}
+
+void ASTWriter::TypeRead(TypeIdx Idx, QualType T) {
+ // Always take the highest-numbered type index. This copes with an interesting
+ // case for chained AST writing where we schedule writing the type and then,
+ // later, deserialize the type from another AST. In this case, we want to
+ // keep the higher-numbered entry so that we can properly write it out to
+ // the AST file.
+ TypeIdx &StoredIdx = TypeIdxs[T];
+ if (Idx.getIndex() >= StoredIdx.getIndex())
+ StoredIdx = Idx;
+}
+
+void ASTWriter::SelectorRead(SelectorID ID, Selector S) {
+ // Always keep the highest ID. See \p TypeRead() for more information.
+ SelectorID &StoredID = SelectorIDs[S];
+ if (ID > StoredID)
+ StoredID = ID;
+}
+
+void ASTWriter::MacroDefinitionRead(serialization::PreprocessedEntityID ID,
+ MacroDefinitionRecord *MD) {
+ assert(MacroDefinitions.find(MD) == MacroDefinitions.end());
+ MacroDefinitions[MD] = ID;
+}
+
+void ASTWriter::ModuleRead(serialization::SubmoduleID ID, Module *Mod) {
+ assert(SubmoduleIDs.find(Mod) == SubmoduleIDs.end());
+ SubmoduleIDs[Mod] = ID;
+}
+
+void ASTWriter::CompletedTagDefinition(const TagDecl *D) {
+ assert(D->isCompleteDefinition());
+ assert(!WritingAST && "Already writing the AST!");
+ if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
+ // We are interested when a PCH decl is modified.
+ if (RD->isFromASTFile()) {
+ // A forward reference was mutated into a definition. Rewrite it.
+ // FIXME: This happens during template instantiation, should we
+ // have created a new definition decl instead ?
+ assert(isTemplateInstantiation(RD->getTemplateSpecializationKind()) &&
+ "completed a tag from another module but not by instantiation?");
+ DeclUpdates[RD].push_back(
+ DeclUpdate(UPD_CXX_INSTANTIATED_CLASS_DEFINITION));
+ }
+ }
+}
+
+void ASTWriter::AddedVisibleDecl(const DeclContext *DC, const Decl *D) {
+ // TU and namespaces are handled elsewhere.
+ if (isa<TranslationUnitDecl>(DC) || isa<NamespaceDecl>(DC))
+ return;
+
+ if (!(!D->isFromASTFile() && cast<Decl>(DC)->isFromASTFile()))
+ return; // Not a source decl added to a DeclContext from PCH.
+
+ assert(!getDefinitiveDeclContext(DC) && "DeclContext not definitive!");
+ assert(!WritingAST && "Already writing the AST!");
+ UpdatedDeclContexts.insert(DC);
+ UpdatingVisibleDecls.push_back(D);
+}
+
+void ASTWriter::AddedCXXImplicitMember(const CXXRecordDecl *RD, const Decl *D) {
+ assert(D->isImplicit());
+ if (!(!D->isFromASTFile() && RD->isFromASTFile()))
+ return; // Not a source member added to a class from PCH.
+ if (!isa<CXXMethodDecl>(D))
+ return; // We are interested in lazily declared implicit methods.
+
+ // A decl coming from PCH was modified.
+ assert(RD->isCompleteDefinition());
+ assert(!WritingAST && "Already writing the AST!");
+ DeclUpdates[RD].push_back(DeclUpdate(UPD_CXX_ADDED_IMPLICIT_MEMBER, D));
+}
+
+void ASTWriter::AddedCXXTemplateSpecialization(const ClassTemplateDecl *TD,
+ const ClassTemplateSpecializationDecl *D) {
+ // The specializations set is kept in the canonical template.
+ TD = TD->getCanonicalDecl();
+ if (!(!D->isFromASTFile() && TD->isFromASTFile()))
+ return; // Not a source specialization added to a template from PCH.
+
+ assert(!WritingAST && "Already writing the AST!");
+ DeclUpdates[TD].push_back(DeclUpdate(UPD_CXX_ADDED_TEMPLATE_SPECIALIZATION,
+ D));
+}
+
+void ASTWriter::AddedCXXTemplateSpecialization(
+ const VarTemplateDecl *TD, const VarTemplateSpecializationDecl *D) {
+ // The specializations set is kept in the canonical template.
+ TD = TD->getCanonicalDecl();
+ if (!(!D->isFromASTFile() && TD->isFromASTFile()))
+ return; // Not a source specialization added to a template from PCH.
+
+ assert(!WritingAST && "Already writing the AST!");
+ DeclUpdates[TD].push_back(DeclUpdate(UPD_CXX_ADDED_TEMPLATE_SPECIALIZATION,
+ D));
+}
+
+void ASTWriter::AddedCXXTemplateSpecialization(const FunctionTemplateDecl *TD,
+ const FunctionDecl *D) {
+ // The specializations set is kept in the canonical template.
+ TD = TD->getCanonicalDecl();
+ if (!(!D->isFromASTFile() && TD->isFromASTFile()))
+ return; // Not a source specialization added to a template from PCH.
+
+ assert(!WritingAST && "Already writing the AST!");
+ DeclUpdates[TD].push_back(DeclUpdate(UPD_CXX_ADDED_TEMPLATE_SPECIALIZATION,
+ D));
+}
+
+void ASTWriter::ResolvedExceptionSpec(const FunctionDecl *FD) {
+ assert(!DoneWritingDeclsAndTypes && "Already done writing updates!");
+ if (!Chain) return;
+ Chain->forEachFormerlyCanonicalImportedDecl(FD, [&](const Decl *D) {
+ // If we don't already know the exception specification for this redecl
+ // chain, add an update record for it.
+ if (isUnresolvedExceptionSpec(cast<FunctionDecl>(D)
+ ->getType()
+ ->castAs<FunctionProtoType>()
+ ->getExceptionSpecType()))
+ DeclUpdates[D].push_back(UPD_CXX_RESOLVED_EXCEPTION_SPEC);
+ });
+}
+
+void ASTWriter::DeducedReturnType(const FunctionDecl *FD, QualType ReturnType) {
+ assert(!WritingAST && "Already writing the AST!");
+ if (!Chain) return;
+ Chain->forEachFormerlyCanonicalImportedDecl(FD, [&](const Decl *D) {
+ DeclUpdates[D].push_back(
+ DeclUpdate(UPD_CXX_DEDUCED_RETURN_TYPE, ReturnType));
+ });
+}
+
+void ASTWriter::ResolvedOperatorDelete(const CXXDestructorDecl *DD,
+ const FunctionDecl *Delete) {
+ assert(!WritingAST && "Already writing the AST!");
+ assert(Delete && "Not given an operator delete");
+ if (!Chain) return;
+ Chain->forEachFormerlyCanonicalImportedDecl(DD, [&](const Decl *D) {
+ DeclUpdates[D].push_back(DeclUpdate(UPD_CXX_RESOLVED_DTOR_DELETE, Delete));
+ });
+}
+
+void ASTWriter::CompletedImplicitDefinition(const FunctionDecl *D) {
+ assert(!WritingAST && "Already writing the AST!");
+ if (!D->isFromASTFile())
+ return; // Declaration not imported from PCH.
+
+ // Implicit function decl from a PCH was defined.
+ DeclUpdates[D].push_back(DeclUpdate(UPD_CXX_ADDED_FUNCTION_DEFINITION));
+}
+
+void ASTWriter::FunctionDefinitionInstantiated(const FunctionDecl *D) {
+ assert(!WritingAST && "Already writing the AST!");
+ if (!D->isFromASTFile())
+ return;
+
+ DeclUpdates[D].push_back(DeclUpdate(UPD_CXX_ADDED_FUNCTION_DEFINITION));
+}
+
+void ASTWriter::StaticDataMemberInstantiated(const VarDecl *D) {
+ assert(!WritingAST && "Already writing the AST!");
+ if (!D->isFromASTFile())
+ return;
+
+ // Since the actual instantiation is delayed, this really means that we need
+ // to update the instantiation location.
+ DeclUpdates[D].push_back(
+ DeclUpdate(UPD_CXX_INSTANTIATED_STATIC_DATA_MEMBER,
+ D->getMemberSpecializationInfo()->getPointOfInstantiation()));
+}
+
+void ASTWriter::AddedObjCCategoryToInterface(const ObjCCategoryDecl *CatD,
+ const ObjCInterfaceDecl *IFD) {
+ assert(!WritingAST && "Already writing the AST!");
+ if (!IFD->isFromASTFile())
+ return; // Declaration not imported from PCH.
+
+ assert(IFD->getDefinition() && "Category on a class without a definition?");
+ ObjCClassesWithCategories.insert(
+ const_cast<ObjCInterfaceDecl *>(IFD->getDefinition()));
+}
+
+
+void ASTWriter::AddedObjCPropertyInClassExtension(const ObjCPropertyDecl *Prop,
+ const ObjCPropertyDecl *OrigProp,
+ const ObjCCategoryDecl *ClassExt) {
+ const ObjCInterfaceDecl *D = ClassExt->getClassInterface();
+ if (!D)
+ return;
+
+ assert(!WritingAST && "Already writing the AST!");
+ if (!D->isFromASTFile())
+ return; // Declaration not imported from PCH.
+
+ RewriteDecl(D);
+}
+
+void ASTWriter::DeclarationMarkedUsed(const Decl *D) {
+ assert(!WritingAST && "Already writing the AST!");
+ if (!D->isFromASTFile())
+ return;
+
+ DeclUpdates[D].push_back(DeclUpdate(UPD_DECL_MARKED_USED));
+}
+
+void ASTWriter::DeclarationMarkedOpenMPThreadPrivate(const Decl *D) {
+ assert(!WritingAST && "Already writing the AST!");
+ if (!D->isFromASTFile())
+ return;
+
+ DeclUpdates[D].push_back(DeclUpdate(UPD_DECL_MARKED_OPENMP_THREADPRIVATE));
+}
+
+void ASTWriter::RedefinedHiddenDefinition(const NamedDecl *D, Module *M) {
+ assert(!WritingAST && "Already writing the AST!");
+ assert(D->isHidden() && "expected a hidden declaration");
+ if (!D->isFromASTFile())
+ return;
+
+ DeclUpdates[D].push_back(DeclUpdate(UPD_DECL_EXPORTED, M));
+}
diff --git a/contrib/llvm/tools/clang/lib/Serialization/ASTWriterDecl.cpp b/contrib/llvm/tools/clang/lib/Serialization/ASTWriterDecl.cpp
new file mode 100644
index 0000000..0fa4f93
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Serialization/ASTWriterDecl.cpp
@@ -0,0 +1,2100 @@
+//===--- ASTWriterDecl.cpp - Declaration Serialization --------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements serialization for Declarations.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Serialization/ASTWriter.h"
+#include "ASTCommon.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclContextInternals.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/DeclVisitor.h"
+#include "clang/AST/Expr.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Serialization/ASTReader.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/Bitcode/BitstreamWriter.h"
+#include "llvm/Support/ErrorHandling.h"
+using namespace clang;
+using namespace serialization;
+
+//===----------------------------------------------------------------------===//
+// Declaration serialization
+//===----------------------------------------------------------------------===//
+
+namespace clang {
+ class ASTDeclWriter : public DeclVisitor<ASTDeclWriter, void> {
+
+ ASTWriter &Writer;
+ ASTContext &Context;
+ typedef ASTWriter::RecordData RecordData;
+ RecordData &Record;
+
+ public:
+ serialization::DeclCode Code;
+ unsigned AbbrevToUse;
+
+ ASTDeclWriter(ASTWriter &Writer, ASTContext &Context, RecordData &Record)
+ : Writer(Writer), Context(Context), Record(Record) {
+ }
+
+ void Visit(Decl *D);
+
+ void VisitDecl(Decl *D);
+ void VisitTranslationUnitDecl(TranslationUnitDecl *D);
+ void VisitNamedDecl(NamedDecl *D);
+ void VisitLabelDecl(LabelDecl *LD);
+ void VisitNamespaceDecl(NamespaceDecl *D);
+ void VisitUsingDirectiveDecl(UsingDirectiveDecl *D);
+ void VisitNamespaceAliasDecl(NamespaceAliasDecl *D);
+ void VisitTypeDecl(TypeDecl *D);
+ void VisitTypedefNameDecl(TypedefNameDecl *D);
+ void VisitTypedefDecl(TypedefDecl *D);
+ void VisitTypeAliasDecl(TypeAliasDecl *D);
+ void VisitUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *D);
+ void VisitTagDecl(TagDecl *D);
+ void VisitEnumDecl(EnumDecl *D);
+ void VisitRecordDecl(RecordDecl *D);
+ void VisitCXXRecordDecl(CXXRecordDecl *D);
+ void VisitClassTemplateSpecializationDecl(
+ ClassTemplateSpecializationDecl *D);
+ void VisitClassTemplatePartialSpecializationDecl(
+ ClassTemplatePartialSpecializationDecl *D);
+ void VisitVarTemplateSpecializationDecl(VarTemplateSpecializationDecl *D);
+ void VisitVarTemplatePartialSpecializationDecl(
+ VarTemplatePartialSpecializationDecl *D);
+ void VisitClassScopeFunctionSpecializationDecl(
+ ClassScopeFunctionSpecializationDecl *D);
+ void VisitTemplateTypeParmDecl(TemplateTypeParmDecl *D);
+ void VisitValueDecl(ValueDecl *D);
+ void VisitEnumConstantDecl(EnumConstantDecl *D);
+ void VisitUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *D);
+ void VisitDeclaratorDecl(DeclaratorDecl *D);
+ void VisitFunctionDecl(FunctionDecl *D);
+ void VisitCXXMethodDecl(CXXMethodDecl *D);
+ void VisitCXXConstructorDecl(CXXConstructorDecl *D);
+ void VisitCXXDestructorDecl(CXXDestructorDecl *D);
+ void VisitCXXConversionDecl(CXXConversionDecl *D);
+ void VisitFieldDecl(FieldDecl *D);
+ void VisitMSPropertyDecl(MSPropertyDecl *D);
+ void VisitIndirectFieldDecl(IndirectFieldDecl *D);
+ void VisitVarDecl(VarDecl *D);
+ void VisitImplicitParamDecl(ImplicitParamDecl *D);
+ void VisitParmVarDecl(ParmVarDecl *D);
+ void VisitNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D);
+ void VisitTemplateDecl(TemplateDecl *D);
+ void VisitRedeclarableTemplateDecl(RedeclarableTemplateDecl *D);
+ void VisitClassTemplateDecl(ClassTemplateDecl *D);
+ void VisitVarTemplateDecl(VarTemplateDecl *D);
+ void VisitFunctionTemplateDecl(FunctionTemplateDecl *D);
+ void VisitTemplateTemplateParmDecl(TemplateTemplateParmDecl *D);
+ void VisitTypeAliasTemplateDecl(TypeAliasTemplateDecl *D);
+ void VisitUsingDecl(UsingDecl *D);
+ void VisitUsingShadowDecl(UsingShadowDecl *D);
+ void VisitLinkageSpecDecl(LinkageSpecDecl *D);
+ void VisitFileScopeAsmDecl(FileScopeAsmDecl *D);
+ void VisitImportDecl(ImportDecl *D);
+ void VisitAccessSpecDecl(AccessSpecDecl *D);
+ void VisitFriendDecl(FriendDecl *D);
+ void VisitFriendTemplateDecl(FriendTemplateDecl *D);
+ void VisitStaticAssertDecl(StaticAssertDecl *D);
+ void VisitBlockDecl(BlockDecl *D);
+ void VisitCapturedDecl(CapturedDecl *D);
+ void VisitEmptyDecl(EmptyDecl *D);
+
+ void VisitDeclContext(DeclContext *DC, uint64_t LexicalOffset,
+ uint64_t VisibleOffset);
+ template <typename T> void VisitRedeclarable(Redeclarable<T> *D);
+
+
+ // FIXME: Put in the same order is DeclNodes.td?
+ void VisitObjCMethodDecl(ObjCMethodDecl *D);
+ void VisitObjCContainerDecl(ObjCContainerDecl *D);
+ void VisitObjCInterfaceDecl(ObjCInterfaceDecl *D);
+ void VisitObjCIvarDecl(ObjCIvarDecl *D);
+ void VisitObjCProtocolDecl(ObjCProtocolDecl *D);
+ void VisitObjCAtDefsFieldDecl(ObjCAtDefsFieldDecl *D);
+ void VisitObjCCategoryDecl(ObjCCategoryDecl *D);
+ void VisitObjCImplDecl(ObjCImplDecl *D);
+ void VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D);
+ void VisitObjCImplementationDecl(ObjCImplementationDecl *D);
+ void VisitObjCCompatibleAliasDecl(ObjCCompatibleAliasDecl *D);
+ void VisitObjCPropertyDecl(ObjCPropertyDecl *D);
+ void VisitObjCPropertyImplDecl(ObjCPropertyImplDecl *D);
+ void VisitOMPThreadPrivateDecl(OMPThreadPrivateDecl *D);
+
+ void AddFunctionDefinition(const FunctionDecl *FD) {
+ assert(FD->doesThisDeclarationHaveABody());
+ if (auto *CD = dyn_cast<CXXConstructorDecl>(FD)) {
+ Record.push_back(CD->NumCtorInitializers);
+ if (CD->NumCtorInitializers)
+ Writer.AddCXXCtorInitializersRef(
+ llvm::makeArrayRef(CD->init_begin(), CD->init_end()), Record);
+ }
+ Writer.AddStmt(FD->getBody());
+ }
+
+ /// Get the specialization decl from an entry in the specialization list.
+ template <typename EntryType>
+ typename RedeclarableTemplateDecl::SpecEntryTraits<EntryType>::DeclType *
+ getSpecializationDecl(EntryType &T) {
+ return RedeclarableTemplateDecl::SpecEntryTraits<EntryType>::getDecl(&T);
+ }
+
+ /// Get the list of partial specializations from a template's common ptr.
+ template<typename T>
+ decltype(T::PartialSpecializations) &getPartialSpecializations(T *Common) {
+ return Common->PartialSpecializations;
+ }
+ ArrayRef<Decl> getPartialSpecializations(FunctionTemplateDecl::Common *) {
+ return None;
+ }
+
+ template<typename Decl>
+ void AddTemplateSpecializations(Decl *D) {
+ auto *Common = D->getCommonPtr();
+
+ // If we have any lazy specializations, and the external AST source is
+ // our chained AST reader, we can just write out the DeclIDs. Otherwise,
+ // we need to resolve them to actual declarations.
+ if (Writer.Chain != Writer.Context->getExternalSource() &&
+ Common->LazySpecializations) {
+ D->LoadLazySpecializations();
+ assert(!Common->LazySpecializations);
+ }
+
+ auto &Specializations = Common->Specializations;
+ auto &&PartialSpecializations = getPartialSpecializations(Common);
+ ArrayRef<DeclID> LazySpecializations;
+ if (auto *LS = Common->LazySpecializations)
+ LazySpecializations = ArrayRef<DeclID>(LS + 1, LS + 1 + LS[0]);
+
+ Record.push_back(Specializations.size() +
+ PartialSpecializations.size() +
+ LazySpecializations.size());
+ for (auto &Entry : Specializations) {
+ auto *D = getSpecializationDecl(Entry);
+ assert(D->isCanonicalDecl() && "non-canonical decl in set");
+ Writer.AddDeclRef(D, Record);
+ }
+ for (auto &Entry : PartialSpecializations) {
+ auto *D = getSpecializationDecl(Entry);
+ assert(D->isCanonicalDecl() && "non-canonical decl in set");
+ Writer.AddDeclRef(D, Record);
+ }
+ for (DeclID ID : LazySpecializations)
+ Record.push_back(ID);
+ }
+ };
+}
+
+void ASTDeclWriter::Visit(Decl *D) {
+ DeclVisitor<ASTDeclWriter>::Visit(D);
+
+ // Source locations require array (variable-length) abbreviations. The
+ // abbreviation infrastructure requires that arrays are encoded last, so
+ // we handle it here in the case of those classes derived from DeclaratorDecl
+ if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)){
+ Writer.AddTypeSourceInfo(DD->getTypeSourceInfo(), Record);
+ }
+
+ // Handle FunctionDecl's body here and write it after all other Stmts/Exprs
+ // have been written. We want it last because we will not read it back when
+ // retrieving it from the AST, we'll just lazily set the offset.
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ Record.push_back(FD->doesThisDeclarationHaveABody());
+ if (FD->doesThisDeclarationHaveABody())
+ AddFunctionDefinition(FD);
+ }
+}
+
+void ASTDeclWriter::VisitDecl(Decl *D) {
+ Writer.AddDeclRef(cast_or_null<Decl>(D->getDeclContext()), Record);
+ Writer.AddDeclRef(cast_or_null<Decl>(D->getLexicalDeclContext()), Record);
+ Record.push_back(D->isInvalidDecl());
+ Record.push_back(D->hasAttrs());
+ if (D->hasAttrs())
+ Writer.WriteAttributes(llvm::makeArrayRef(D->getAttrs().begin(),
+ D->getAttrs().size()), Record);
+ Record.push_back(D->isImplicit());
+ Record.push_back(D->isUsed(false));
+ Record.push_back(D->isReferenced());
+ Record.push_back(D->isTopLevelDeclInObjCContainer());
+ Record.push_back(D->getAccess());
+ Record.push_back(D->isModulePrivate());
+ Record.push_back(Writer.inferSubmoduleIDFromLocation(D->getLocation()));
+
+ // If this declaration injected a name into a context different from its
+ // lexical context, and that context is an imported namespace, we need to
+ // update its visible declarations to include this name.
+ //
+ // This happens when we instantiate a class with a friend declaration or a
+ // function with a local extern declaration, for instance.
+ if (D->isOutOfLine()) {
+ auto *DC = D->getDeclContext();
+ while (auto *NS = dyn_cast<NamespaceDecl>(DC->getRedeclContext())) {
+ if (!NS->isFromASTFile())
+ break;
+ Writer.UpdatedDeclContexts.insert(NS->getPrimaryContext());
+ if (!NS->isInlineNamespace())
+ break;
+ DC = NS->getParent();
+ }
+ }
+}
+
+void ASTDeclWriter::VisitTranslationUnitDecl(TranslationUnitDecl *D) {
+ llvm_unreachable("Translation units aren't directly serialized");
+}
+
+void ASTDeclWriter::VisitNamedDecl(NamedDecl *D) {
+ VisitDecl(D);
+ Writer.AddDeclarationName(D->getDeclName(), Record);
+ Record.push_back(needsAnonymousDeclarationNumber(D)
+ ? Writer.getAnonymousDeclarationNumber(D)
+ : 0);
+}
+
+void ASTDeclWriter::VisitTypeDecl(TypeDecl *D) {
+ VisitNamedDecl(D);
+ Writer.AddSourceLocation(D->getLocStart(), Record);
+ Writer.AddTypeRef(QualType(D->getTypeForDecl(), 0), Record);
+}
+
+void ASTDeclWriter::VisitTypedefNameDecl(TypedefNameDecl *D) {
+ VisitRedeclarable(D);
+ VisitTypeDecl(D);
+ Writer.AddTypeSourceInfo(D->getTypeSourceInfo(), Record);
+ Record.push_back(D->isModed());
+ if (D->isModed())
+ Writer.AddTypeRef(D->getUnderlyingType(), Record);
+}
+
+void ASTDeclWriter::VisitTypedefDecl(TypedefDecl *D) {
+ VisitTypedefNameDecl(D);
+ if (!D->hasAttrs() &&
+ !D->isImplicit() &&
+ D->getFirstDecl() == D->getMostRecentDecl() &&
+ !D->isInvalidDecl() &&
+ !D->isTopLevelDeclInObjCContainer() &&
+ !D->isModulePrivate() &&
+ !needsAnonymousDeclarationNumber(D) &&
+ D->getDeclName().getNameKind() == DeclarationName::Identifier)
+ AbbrevToUse = Writer.getDeclTypedefAbbrev();
+
+ Code = serialization::DECL_TYPEDEF;
+}
+
+void ASTDeclWriter::VisitTypeAliasDecl(TypeAliasDecl *D) {
+ VisitTypedefNameDecl(D);
+ Writer.AddDeclRef(D->getDescribedAliasTemplate(), Record);
+ Code = serialization::DECL_TYPEALIAS;
+}
+
+void ASTDeclWriter::VisitTagDecl(TagDecl *D) {
+ VisitRedeclarable(D);
+ VisitTypeDecl(D);
+ Record.push_back(D->getIdentifierNamespace());
+ Record.push_back((unsigned)D->getTagKind()); // FIXME: stable encoding
+ if (!isa<CXXRecordDecl>(D))
+ Record.push_back(D->isCompleteDefinition());
+ Record.push_back(D->isEmbeddedInDeclarator());
+ Record.push_back(D->isFreeStanding());
+ Record.push_back(D->isCompleteDefinitionRequired());
+ Writer.AddSourceLocation(D->getRBraceLoc(), Record);
+
+ if (D->hasExtInfo()) {
+ Record.push_back(1);
+ Writer.AddQualifierInfo(*D->getExtInfo(), Record);
+ } else if (auto *TD = D->getTypedefNameForAnonDecl()) {
+ Record.push_back(2);
+ Writer.AddDeclRef(TD, Record);
+ Writer.AddIdentifierRef(TD->getDeclName().getAsIdentifierInfo(), Record);
+ } else if (auto *DD = D->getDeclaratorForAnonDecl()) {
+ Record.push_back(3);
+ Writer.AddDeclRef(DD, Record);
+ } else {
+ Record.push_back(0);
+ }
+}
+
+void ASTDeclWriter::VisitEnumDecl(EnumDecl *D) {
+ VisitTagDecl(D);
+ Writer.AddTypeSourceInfo(D->getIntegerTypeSourceInfo(), Record);
+ if (!D->getIntegerTypeSourceInfo())
+ Writer.AddTypeRef(D->getIntegerType(), Record);
+ Writer.AddTypeRef(D->getPromotionType(), Record);
+ Record.push_back(D->getNumPositiveBits());
+ Record.push_back(D->getNumNegativeBits());
+ Record.push_back(D->isScoped());
+ Record.push_back(D->isScopedUsingClassTag());
+ Record.push_back(D->isFixed());
+ if (MemberSpecializationInfo *MemberInfo = D->getMemberSpecializationInfo()) {
+ Writer.AddDeclRef(MemberInfo->getInstantiatedFrom(), Record);
+ Record.push_back(MemberInfo->getTemplateSpecializationKind());
+ Writer.AddSourceLocation(MemberInfo->getPointOfInstantiation(), Record);
+ } else {
+ Writer.AddDeclRef(nullptr, Record);
+ }
+
+ if (!D->hasAttrs() &&
+ !D->isImplicit() &&
+ !D->isUsed(false) &&
+ !D->hasExtInfo() &&
+ !D->getTypedefNameForAnonDecl() &&
+ !D->getDeclaratorForAnonDecl() &&
+ D->getFirstDecl() == D->getMostRecentDecl() &&
+ !D->isInvalidDecl() &&
+ !D->isReferenced() &&
+ !D->isTopLevelDeclInObjCContainer() &&
+ D->getAccess() == AS_none &&
+ !D->isModulePrivate() &&
+ !CXXRecordDecl::classofKind(D->getKind()) &&
+ !D->getIntegerTypeSourceInfo() &&
+ !D->getMemberSpecializationInfo() &&
+ !needsAnonymousDeclarationNumber(D) &&
+ D->getDeclName().getNameKind() == DeclarationName::Identifier)
+ AbbrevToUse = Writer.getDeclEnumAbbrev();
+
+ Code = serialization::DECL_ENUM;
+}
+
+void ASTDeclWriter::VisitRecordDecl(RecordDecl *D) {
+ VisitTagDecl(D);
+ Record.push_back(D->hasFlexibleArrayMember());
+ Record.push_back(D->isAnonymousStructOrUnion());
+ Record.push_back(D->hasObjectMember());
+ Record.push_back(D->hasVolatileMember());
+
+ if (!D->hasAttrs() &&
+ !D->isImplicit() &&
+ !D->isUsed(false) &&
+ !D->hasExtInfo() &&
+ !D->getTypedefNameForAnonDecl() &&
+ !D->getDeclaratorForAnonDecl() &&
+ D->getFirstDecl() == D->getMostRecentDecl() &&
+ !D->isInvalidDecl() &&
+ !D->isReferenced() &&
+ !D->isTopLevelDeclInObjCContainer() &&
+ D->getAccess() == AS_none &&
+ !D->isModulePrivate() &&
+ !CXXRecordDecl::classofKind(D->getKind()) &&
+ !needsAnonymousDeclarationNumber(D) &&
+ D->getDeclName().getNameKind() == DeclarationName::Identifier)
+ AbbrevToUse = Writer.getDeclRecordAbbrev();
+
+ Code = serialization::DECL_RECORD;
+}
+
+void ASTDeclWriter::VisitValueDecl(ValueDecl *D) {
+ VisitNamedDecl(D);
+ Writer.AddTypeRef(D->getType(), Record);
+}
+
+void ASTDeclWriter::VisitEnumConstantDecl(EnumConstantDecl *D) {
+ VisitValueDecl(D);
+ Record.push_back(D->getInitExpr()? 1 : 0);
+ if (D->getInitExpr())
+ Writer.AddStmt(D->getInitExpr());
+ Writer.AddAPSInt(D->getInitVal(), Record);
+
+ Code = serialization::DECL_ENUM_CONSTANT;
+}
+
+void ASTDeclWriter::VisitDeclaratorDecl(DeclaratorDecl *D) {
+ VisitValueDecl(D);
+ Writer.AddSourceLocation(D->getInnerLocStart(), Record);
+ Record.push_back(D->hasExtInfo());
+ if (D->hasExtInfo())
+ Writer.AddQualifierInfo(*D->getExtInfo(), Record);
+}
+
+void ASTDeclWriter::VisitFunctionDecl(FunctionDecl *D) {
+ VisitRedeclarable(D);
+ VisitDeclaratorDecl(D);
+ Writer.AddDeclarationNameLoc(D->DNLoc, D->getDeclName(), Record);
+ Record.push_back(D->getIdentifierNamespace());
+
+ // FunctionDecl's body is handled last at ASTWriterDecl::Visit,
+ // after everything else is written.
+
+ Record.push_back((int)D->SClass); // FIXME: stable encoding
+ Record.push_back(D->IsInline);
+ Record.push_back(D->IsInlineSpecified);
+ Record.push_back(D->IsVirtualAsWritten);
+ Record.push_back(D->IsPure);
+ Record.push_back(D->HasInheritedPrototype);
+ Record.push_back(D->HasWrittenPrototype);
+ Record.push_back(D->IsDeleted);
+ Record.push_back(D->IsTrivial);
+ Record.push_back(D->IsDefaulted);
+ Record.push_back(D->IsExplicitlyDefaulted);
+ Record.push_back(D->HasImplicitReturnZero);
+ Record.push_back(D->IsConstexpr);
+ Record.push_back(D->HasSkippedBody);
+ Record.push_back(D->IsLateTemplateParsed);
+ Record.push_back(D->getLinkageInternal());
+ Writer.AddSourceLocation(D->getLocEnd(), Record);
+
+ Record.push_back(D->getTemplatedKind());
+ switch (D->getTemplatedKind()) {
+ case FunctionDecl::TK_NonTemplate:
+ break;
+ case FunctionDecl::TK_FunctionTemplate:
+ Writer.AddDeclRef(D->getDescribedFunctionTemplate(), Record);
+ break;
+ case FunctionDecl::TK_MemberSpecialization: {
+ MemberSpecializationInfo *MemberInfo = D->getMemberSpecializationInfo();
+ Writer.AddDeclRef(MemberInfo->getInstantiatedFrom(), Record);
+ Record.push_back(MemberInfo->getTemplateSpecializationKind());
+ Writer.AddSourceLocation(MemberInfo->getPointOfInstantiation(), Record);
+ break;
+ }
+ case FunctionDecl::TK_FunctionTemplateSpecialization: {
+ FunctionTemplateSpecializationInfo *
+ FTSInfo = D->getTemplateSpecializationInfo();
+ Writer.AddDeclRef(FTSInfo->getTemplate(), Record);
+ Record.push_back(FTSInfo->getTemplateSpecializationKind());
+
+ // Template arguments.
+ Writer.AddTemplateArgumentList(FTSInfo->TemplateArguments, Record);
+
+ // Template args as written.
+ Record.push_back(FTSInfo->TemplateArgumentsAsWritten != nullptr);
+ if (FTSInfo->TemplateArgumentsAsWritten) {
+ Record.push_back(FTSInfo->TemplateArgumentsAsWritten->NumTemplateArgs);
+ for (int i=0, e = FTSInfo->TemplateArgumentsAsWritten->NumTemplateArgs;
+ i!=e; ++i)
+ Writer.AddTemplateArgumentLoc((*FTSInfo->TemplateArgumentsAsWritten)[i],
+ Record);
+ Writer.AddSourceLocation(FTSInfo->TemplateArgumentsAsWritten->LAngleLoc,
+ Record);
+ Writer.AddSourceLocation(FTSInfo->TemplateArgumentsAsWritten->RAngleLoc,
+ Record);
+ }
+
+ Writer.AddSourceLocation(FTSInfo->getPointOfInstantiation(), Record);
+
+ if (D->isCanonicalDecl()) {
+ // Write the template that contains the specializations set. We will
+ // add a FunctionTemplateSpecializationInfo to it when reading.
+ Writer.AddDeclRef(FTSInfo->getTemplate()->getCanonicalDecl(), Record);
+ }
+ break;
+ }
+ case FunctionDecl::TK_DependentFunctionTemplateSpecialization: {
+ DependentFunctionTemplateSpecializationInfo *
+ DFTSInfo = D->getDependentSpecializationInfo();
+
+ // Templates.
+ Record.push_back(DFTSInfo->getNumTemplates());
+ for (int i=0, e = DFTSInfo->getNumTemplates(); i != e; ++i)
+ Writer.AddDeclRef(DFTSInfo->getTemplate(i), Record);
+
+ // Templates args.
+ Record.push_back(DFTSInfo->getNumTemplateArgs());
+ for (int i=0, e = DFTSInfo->getNumTemplateArgs(); i != e; ++i)
+ Writer.AddTemplateArgumentLoc(DFTSInfo->getTemplateArg(i), Record);
+ Writer.AddSourceLocation(DFTSInfo->getLAngleLoc(), Record);
+ Writer.AddSourceLocation(DFTSInfo->getRAngleLoc(), Record);
+ break;
+ }
+ }
+
+ Record.push_back(D->param_size());
+ for (auto P : D->params())
+ Writer.AddDeclRef(P, Record);
+ Code = serialization::DECL_FUNCTION;
+}
+
+void ASTDeclWriter::VisitObjCMethodDecl(ObjCMethodDecl *D) {
+ VisitNamedDecl(D);
+ // FIXME: convert to LazyStmtPtr?
+ // Unlike C/C++, method bodies will never be in header files.
+ bool HasBodyStuff = D->getBody() != nullptr ||
+ D->getSelfDecl() != nullptr || D->getCmdDecl() != nullptr;
+ Record.push_back(HasBodyStuff);
+ if (HasBodyStuff) {
+ Writer.AddStmt(D->getBody());
+ Writer.AddDeclRef(D->getSelfDecl(), Record);
+ Writer.AddDeclRef(D->getCmdDecl(), Record);
+ }
+ Record.push_back(D->isInstanceMethod());
+ Record.push_back(D->isVariadic());
+ Record.push_back(D->isPropertyAccessor());
+ Record.push_back(D->isDefined());
+ Record.push_back(D->IsOverriding);
+ Record.push_back(D->HasSkippedBody);
+
+ Record.push_back(D->IsRedeclaration);
+ Record.push_back(D->HasRedeclaration);
+ if (D->HasRedeclaration) {
+ assert(Context.getObjCMethodRedeclaration(D));
+ Writer.AddDeclRef(Context.getObjCMethodRedeclaration(D), Record);
+ }
+
+ // FIXME: stable encoding for @required/@optional
+ Record.push_back(D->getImplementationControl());
+ // FIXME: stable encoding for in/out/inout/bycopy/byref/oneway
+ Record.push_back(D->getObjCDeclQualifier());
+ Record.push_back(D->hasRelatedResultType());
+ Writer.AddTypeRef(D->getReturnType(), Record);
+ Writer.AddTypeSourceInfo(D->getReturnTypeSourceInfo(), Record);
+ Writer.AddSourceLocation(D->getLocEnd(), Record);
+ Record.push_back(D->param_size());
+ for (const auto *P : D->params())
+ Writer.AddDeclRef(P, Record);
+
+ Record.push_back(D->SelLocsKind);
+ unsigned NumStoredSelLocs = D->getNumStoredSelLocs();
+ SourceLocation *SelLocs = D->getStoredSelLocs();
+ Record.push_back(NumStoredSelLocs);
+ for (unsigned i = 0; i != NumStoredSelLocs; ++i)
+ Writer.AddSourceLocation(SelLocs[i], Record);
+
+ Code = serialization::DECL_OBJC_METHOD;
+}
+
+void ASTDeclWriter::VisitObjCContainerDecl(ObjCContainerDecl *D) {
+ VisitNamedDecl(D);
+ Writer.AddSourceLocation(D->getAtStartLoc(), Record);
+ Writer.AddSourceRange(D->getAtEndRange(), Record);
+ // Abstract class (no need to define a stable serialization::DECL code).
+}
+
+void ASTDeclWriter::VisitObjCInterfaceDecl(ObjCInterfaceDecl *D) {
+ VisitRedeclarable(D);
+ VisitObjCContainerDecl(D);
+ Writer.AddTypeRef(QualType(D->getTypeForDecl(), 0), Record);
+
+ Record.push_back(D->isThisDeclarationADefinition());
+ if (D->isThisDeclarationADefinition()) {
+ // Write the DefinitionData
+ ObjCInterfaceDecl::DefinitionData &Data = D->data();
+
+ Writer.AddDeclRef(D->getSuperClass(), Record);
+ Writer.AddSourceLocation(D->getSuperClassLoc(), Record);
+ Writer.AddSourceLocation(D->getEndOfDefinitionLoc(), Record);
+ Record.push_back(Data.HasDesignatedInitializers);
+
+ // Write out the protocols that are directly referenced by the @interface.
+ Record.push_back(Data.ReferencedProtocols.size());
+ for (const auto *P : D->protocols())
+ Writer.AddDeclRef(P, Record);
+ for (const auto &PL : D->protocol_locs())
+ Writer.AddSourceLocation(PL, Record);
+
+ // Write out the protocols that are transitively referenced.
+ Record.push_back(Data.AllReferencedProtocols.size());
+ for (ObjCList<ObjCProtocolDecl>::iterator
+ P = Data.AllReferencedProtocols.begin(),
+ PEnd = Data.AllReferencedProtocols.end();
+ P != PEnd; ++P)
+ Writer.AddDeclRef(*P, Record);
+
+
+ if (ObjCCategoryDecl *Cat = D->getCategoryListRaw()) {
+ // Ensure that we write out the set of categories for this class.
+ Writer.ObjCClassesWithCategories.insert(D);
+
+ // Make sure that the categories get serialized.
+ for (; Cat; Cat = Cat->getNextClassCategoryRaw())
+ (void)Writer.GetDeclRef(Cat);
+ }
+ }
+
+ Code = serialization::DECL_OBJC_INTERFACE;
+}
+
+void ASTDeclWriter::VisitObjCIvarDecl(ObjCIvarDecl *D) {
+ VisitFieldDecl(D);
+ // FIXME: stable encoding for @public/@private/@protected/@package
+ Record.push_back(D->getAccessControl());
+ Record.push_back(D->getSynthesize());
+
+ if (!D->hasAttrs() &&
+ !D->isImplicit() &&
+ !D->isUsed(false) &&
+ !D->isInvalidDecl() &&
+ !D->isReferenced() &&
+ !D->isModulePrivate() &&
+ !D->getBitWidth() &&
+ !D->hasExtInfo() &&
+ D->getDeclName())
+ AbbrevToUse = Writer.getDeclObjCIvarAbbrev();
+
+ Code = serialization::DECL_OBJC_IVAR;
+}
+
+void ASTDeclWriter::VisitObjCProtocolDecl(ObjCProtocolDecl *D) {
+ VisitRedeclarable(D);
+ VisitObjCContainerDecl(D);
+
+ Record.push_back(D->isThisDeclarationADefinition());
+ if (D->isThisDeclarationADefinition()) {
+ Record.push_back(D->protocol_size());
+ for (const auto *I : D->protocols())
+ Writer.AddDeclRef(I, Record);
+ for (const auto &PL : D->protocol_locs())
+ Writer.AddSourceLocation(PL, Record);
+ }
+
+ Code = serialization::DECL_OBJC_PROTOCOL;
+}
+
+void ASTDeclWriter::VisitObjCAtDefsFieldDecl(ObjCAtDefsFieldDecl *D) {
+ VisitFieldDecl(D);
+ Code = serialization::DECL_OBJC_AT_DEFS_FIELD;
+}
+
+void ASTDeclWriter::VisitObjCCategoryDecl(ObjCCategoryDecl *D) {
+ VisitObjCContainerDecl(D);
+ Writer.AddSourceLocation(D->getCategoryNameLoc(), Record);
+ Writer.AddSourceLocation(D->getIvarLBraceLoc(), Record);
+ Writer.AddSourceLocation(D->getIvarRBraceLoc(), Record);
+ Writer.AddDeclRef(D->getClassInterface(), Record);
+ Record.push_back(D->protocol_size());
+ for (const auto *I : D->protocols())
+ Writer.AddDeclRef(I, Record);
+ for (const auto &PL : D->protocol_locs())
+ Writer.AddSourceLocation(PL, Record);
+ Code = serialization::DECL_OBJC_CATEGORY;
+}
+
+void ASTDeclWriter::VisitObjCCompatibleAliasDecl(ObjCCompatibleAliasDecl *D) {
+ VisitNamedDecl(D);
+ Writer.AddDeclRef(D->getClassInterface(), Record);
+ Code = serialization::DECL_OBJC_COMPATIBLE_ALIAS;
+}
+
+void ASTDeclWriter::VisitObjCPropertyDecl(ObjCPropertyDecl *D) {
+ VisitNamedDecl(D);
+ Writer.AddSourceLocation(D->getAtLoc(), Record);
+ Writer.AddSourceLocation(D->getLParenLoc(), Record);
+ Writer.AddTypeSourceInfo(D->getTypeSourceInfo(), Record);
+ // FIXME: stable encoding
+ Record.push_back((unsigned)D->getPropertyAttributes());
+ Record.push_back((unsigned)D->getPropertyAttributesAsWritten());
+ // FIXME: stable encoding
+ Record.push_back((unsigned)D->getPropertyImplementation());
+ Writer.AddDeclarationName(D->getGetterName(), Record);
+ Writer.AddDeclarationName(D->getSetterName(), Record);
+ Writer.AddDeclRef(D->getGetterMethodDecl(), Record);
+ Writer.AddDeclRef(D->getSetterMethodDecl(), Record);
+ Writer.AddDeclRef(D->getPropertyIvarDecl(), Record);
+ Code = serialization::DECL_OBJC_PROPERTY;
+}
+
+void ASTDeclWriter::VisitObjCImplDecl(ObjCImplDecl *D) {
+ VisitObjCContainerDecl(D);
+ Writer.AddDeclRef(D->getClassInterface(), Record);
+ // Abstract class (no need to define a stable serialization::DECL code).
+}
+
+void ASTDeclWriter::VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D) {
+ VisitObjCImplDecl(D);
+ Writer.AddIdentifierRef(D->getIdentifier(), Record);
+ Writer.AddSourceLocation(D->getCategoryNameLoc(), Record);
+ Code = serialization::DECL_OBJC_CATEGORY_IMPL;
+}
+
+void ASTDeclWriter::VisitObjCImplementationDecl(ObjCImplementationDecl *D) {
+ VisitObjCImplDecl(D);
+ Writer.AddDeclRef(D->getSuperClass(), Record);
+ Writer.AddSourceLocation(D->getSuperClassLoc(), Record);
+ Writer.AddSourceLocation(D->getIvarLBraceLoc(), Record);
+ Writer.AddSourceLocation(D->getIvarRBraceLoc(), Record);
+ Record.push_back(D->hasNonZeroConstructors());
+ Record.push_back(D->hasDestructors());
+ Record.push_back(D->NumIvarInitializers);
+ if (D->NumIvarInitializers)
+ Writer.AddCXXCtorInitializersRef(
+ llvm::makeArrayRef(D->init_begin(), D->init_end()), Record);
+ Code = serialization::DECL_OBJC_IMPLEMENTATION;
+}
+
+void ASTDeclWriter::VisitObjCPropertyImplDecl(ObjCPropertyImplDecl *D) {
+ VisitDecl(D);
+ Writer.AddSourceLocation(D->getLocStart(), Record);
+ Writer.AddDeclRef(D->getPropertyDecl(), Record);
+ Writer.AddDeclRef(D->getPropertyIvarDecl(), Record);
+ Writer.AddSourceLocation(D->getPropertyIvarDeclLoc(), Record);
+ Writer.AddStmt(D->getGetterCXXConstructor());
+ Writer.AddStmt(D->getSetterCXXAssignment());
+ Code = serialization::DECL_OBJC_PROPERTY_IMPL;
+}
+
+void ASTDeclWriter::VisitFieldDecl(FieldDecl *D) {
+ VisitDeclaratorDecl(D);
+ Record.push_back(D->isMutable());
+ if (D->InitStorage.getInt() == FieldDecl::ISK_BitWidthOrNothing &&
+ D->InitStorage.getPointer() == nullptr) {
+ Record.push_back(0);
+ } else if (D->InitStorage.getInt() == FieldDecl::ISK_CapturedVLAType) {
+ Record.push_back(D->InitStorage.getInt() + 1);
+ Writer.AddTypeRef(
+ QualType(static_cast<Type *>(D->InitStorage.getPointer()), 0),
+ Record);
+ } else {
+ Record.push_back(D->InitStorage.getInt() + 1);
+ Writer.AddStmt(static_cast<Expr *>(D->InitStorage.getPointer()));
+ }
+ if (!D->getDeclName())
+ Writer.AddDeclRef(Context.getInstantiatedFromUnnamedFieldDecl(D), Record);
+
+ if (!D->hasAttrs() &&
+ !D->isImplicit() &&
+ !D->isUsed(false) &&
+ !D->isInvalidDecl() &&
+ !D->isReferenced() &&
+ !D->isTopLevelDeclInObjCContainer() &&
+ !D->isModulePrivate() &&
+ !D->getBitWidth() &&
+ !D->hasInClassInitializer() &&
+ !D->hasExtInfo() &&
+ !ObjCIvarDecl::classofKind(D->getKind()) &&
+ !ObjCAtDefsFieldDecl::classofKind(D->getKind()) &&
+ D->getDeclName())
+ AbbrevToUse = Writer.getDeclFieldAbbrev();
+
+ Code = serialization::DECL_FIELD;
+}
+
+void ASTDeclWriter::VisitMSPropertyDecl(MSPropertyDecl *D) {
+ VisitDeclaratorDecl(D);
+ Writer.AddIdentifierRef(D->getGetterId(), Record);
+ Writer.AddIdentifierRef(D->getSetterId(), Record);
+ Code = serialization::DECL_MS_PROPERTY;
+}
+
+void ASTDeclWriter::VisitIndirectFieldDecl(IndirectFieldDecl *D) {
+ VisitValueDecl(D);
+ Record.push_back(D->getChainingSize());
+
+ for (const auto *P : D->chain())
+ Writer.AddDeclRef(P, Record);
+ Code = serialization::DECL_INDIRECTFIELD;
+}
+
+void ASTDeclWriter::VisitVarDecl(VarDecl *D) {
+ VisitRedeclarable(D);
+ VisitDeclaratorDecl(D);
+ Record.push_back(D->getStorageClass());
+ Record.push_back(D->getTSCSpec());
+ Record.push_back(D->getInitStyle());
+ if (!isa<ParmVarDecl>(D)) {
+ Record.push_back(D->isExceptionVariable());
+ Record.push_back(D->isNRVOVariable());
+ Record.push_back(D->isCXXForRangeDecl());
+ Record.push_back(D->isARCPseudoStrong());
+ Record.push_back(D->isConstexpr());
+ Record.push_back(D->isInitCapture());
+ Record.push_back(D->isPreviousDeclInSameBlockScope());
+ }
+ Record.push_back(D->getLinkageInternal());
+
+ if (D->getInit()) {
+ Record.push_back(!D->isInitKnownICE() ? 1 : (D->isInitICE() ? 3 : 2));
+ Writer.AddStmt(D->getInit());
+ } else {
+ Record.push_back(0);
+ }
+
+ enum {
+ VarNotTemplate = 0, VarTemplate, StaticDataMemberSpecialization
+ };
+ if (VarTemplateDecl *TemplD = D->getDescribedVarTemplate()) {
+ Record.push_back(VarTemplate);
+ Writer.AddDeclRef(TemplD, Record);
+ } else if (MemberSpecializationInfo *SpecInfo
+ = D->getMemberSpecializationInfo()) {
+ Record.push_back(StaticDataMemberSpecialization);
+ Writer.AddDeclRef(SpecInfo->getInstantiatedFrom(), Record);
+ Record.push_back(SpecInfo->getTemplateSpecializationKind());
+ Writer.AddSourceLocation(SpecInfo->getPointOfInstantiation(), Record);
+ } else {
+ Record.push_back(VarNotTemplate);
+ }
+
+ if (!D->hasAttrs() &&
+ !D->isImplicit() &&
+ !D->isUsed(false) &&
+ !D->isInvalidDecl() &&
+ !D->isReferenced() &&
+ !D->isTopLevelDeclInObjCContainer() &&
+ D->getAccess() == AS_none &&
+ !D->isModulePrivate() &&
+ !needsAnonymousDeclarationNumber(D) &&
+ D->getDeclName().getNameKind() == DeclarationName::Identifier &&
+ !D->hasExtInfo() &&
+ D->getFirstDecl() == D->getMostRecentDecl() &&
+ D->getInitStyle() == VarDecl::CInit &&
+ D->getInit() == nullptr &&
+ !isa<ParmVarDecl>(D) &&
+ !isa<VarTemplateSpecializationDecl>(D) &&
+ !D->isConstexpr() &&
+ !D->isInitCapture() &&
+ !D->isPreviousDeclInSameBlockScope() &&
+ !D->getMemberSpecializationInfo())
+ AbbrevToUse = Writer.getDeclVarAbbrev();
+
+ Code = serialization::DECL_VAR;
+}
+
+void ASTDeclWriter::VisitImplicitParamDecl(ImplicitParamDecl *D) {
+ VisitVarDecl(D);
+ Code = serialization::DECL_IMPLICIT_PARAM;
+}
+
+void ASTDeclWriter::VisitParmVarDecl(ParmVarDecl *D) {
+ VisitVarDecl(D);
+ Record.push_back(D->isObjCMethodParameter());
+ Record.push_back(D->getFunctionScopeDepth());
+ Record.push_back(D->getFunctionScopeIndex());
+ Record.push_back(D->getObjCDeclQualifier()); // FIXME: stable encoding
+ Record.push_back(D->isKNRPromoted());
+ Record.push_back(D->hasInheritedDefaultArg());
+ Record.push_back(D->hasUninstantiatedDefaultArg());
+ if (D->hasUninstantiatedDefaultArg())
+ Writer.AddStmt(D->getUninstantiatedDefaultArg());
+ Code = serialization::DECL_PARM_VAR;
+
+ assert(!D->isARCPseudoStrong()); // can be true of ImplicitParamDecl
+
+ // If the assumptions about the DECL_PARM_VAR abbrev are true, use it. Here
+ // we dynamically check for the properties that we optimize for, but don't
+ // know are true of all PARM_VAR_DECLs.
+ if (!D->hasAttrs() &&
+ !D->hasExtInfo() &&
+ !D->isImplicit() &&
+ !D->isUsed(false) &&
+ !D->isInvalidDecl() &&
+ !D->isReferenced() &&
+ D->getAccess() == AS_none &&
+ !D->isModulePrivate() &&
+ D->getStorageClass() == 0 &&
+ D->getInitStyle() == VarDecl::CInit && // Can params have anything else?
+ D->getFunctionScopeDepth() == 0 &&
+ D->getObjCDeclQualifier() == 0 &&
+ !D->isKNRPromoted() &&
+ !D->hasInheritedDefaultArg() &&
+ D->getInit() == nullptr &&
+ !D->hasUninstantiatedDefaultArg()) // No default expr.
+ AbbrevToUse = Writer.getDeclParmVarAbbrev();
+
+ // Check things we know are true of *every* PARM_VAR_DECL, which is more than
+ // just us assuming it.
+ assert(!D->getTSCSpec() && "PARM_VAR_DECL can't use TLS");
+ assert(D->getAccess() == AS_none && "PARM_VAR_DECL can't be public/private");
+ assert(!D->isExceptionVariable() && "PARM_VAR_DECL can't be exception var");
+ assert(D->getPreviousDecl() == nullptr && "PARM_VAR_DECL can't be redecl");
+ assert(!D->isStaticDataMember() &&
+ "PARM_VAR_DECL can't be static data member");
+}
+
+void ASTDeclWriter::VisitFileScopeAsmDecl(FileScopeAsmDecl *D) {
+ VisitDecl(D);
+ Writer.AddStmt(D->getAsmString());
+ Writer.AddSourceLocation(D->getRParenLoc(), Record);
+ Code = serialization::DECL_FILE_SCOPE_ASM;
+}
+
+void ASTDeclWriter::VisitEmptyDecl(EmptyDecl *D) {
+ VisitDecl(D);
+ Code = serialization::DECL_EMPTY;
+}
+
+void ASTDeclWriter::VisitBlockDecl(BlockDecl *D) {
+ VisitDecl(D);
+ Writer.AddStmt(D->getBody());
+ Writer.AddTypeSourceInfo(D->getSignatureAsWritten(), Record);
+ Record.push_back(D->param_size());
+ for (FunctionDecl::param_iterator P = D->param_begin(), PEnd = D->param_end();
+ P != PEnd; ++P)
+ Writer.AddDeclRef(*P, Record);
+ Record.push_back(D->isVariadic());
+ Record.push_back(D->blockMissingReturnType());
+ Record.push_back(D->isConversionFromLambda());
+ Record.push_back(D->capturesCXXThis());
+ Record.push_back(D->getNumCaptures());
+ for (const auto &capture : D->captures()) {
+ Writer.AddDeclRef(capture.getVariable(), Record);
+
+ unsigned flags = 0;
+ if (capture.isByRef()) flags |= 1;
+ if (capture.isNested()) flags |= 2;
+ if (capture.hasCopyExpr()) flags |= 4;
+ Record.push_back(flags);
+
+ if (capture.hasCopyExpr()) Writer.AddStmt(capture.getCopyExpr());
+ }
+
+ Code = serialization::DECL_BLOCK;
+}
+
+void ASTDeclWriter::VisitCapturedDecl(CapturedDecl *CD) {
+ Record.push_back(CD->getNumParams());
+ VisitDecl(CD);
+ Record.push_back(CD->getContextParamPosition());
+ Record.push_back(CD->isNothrow() ? 1 : 0);
+ // Body is stored by VisitCapturedStmt.
+ for (unsigned I = 0; I < CD->getNumParams(); ++I)
+ Writer.AddDeclRef(CD->getParam(I), Record);
+ Code = serialization::DECL_CAPTURED;
+}
+
+void ASTDeclWriter::VisitLinkageSpecDecl(LinkageSpecDecl *D) {
+ VisitDecl(D);
+ Record.push_back(D->getLanguage());
+ Writer.AddSourceLocation(D->getExternLoc(), Record);
+ Writer.AddSourceLocation(D->getRBraceLoc(), Record);
+ Code = serialization::DECL_LINKAGE_SPEC;
+}
+
+void ASTDeclWriter::VisitLabelDecl(LabelDecl *D) {
+ VisitNamedDecl(D);
+ Writer.AddSourceLocation(D->getLocStart(), Record);
+ Code = serialization::DECL_LABEL;
+}
+
+
+void ASTDeclWriter::VisitNamespaceDecl(NamespaceDecl *D) {
+ VisitRedeclarable(D);
+ VisitNamedDecl(D);
+ Record.push_back(D->isInline());
+ Writer.AddSourceLocation(D->getLocStart(), Record);
+ Writer.AddSourceLocation(D->getRBraceLoc(), Record);
+
+ if (D->isOriginalNamespace())
+ Writer.AddDeclRef(D->getAnonymousNamespace(), Record);
+ Code = serialization::DECL_NAMESPACE;
+
+ if (Writer.hasChain() && !D->isOriginalNamespace() &&
+ D->getOriginalNamespace()->isFromASTFile()) {
+ NamespaceDecl *NS = D->getOriginalNamespace();
+ Writer.UpdatedDeclContexts.insert(NS);
+
+ // Make sure all visible decls are written. They will be recorded later. We
+ // do this using a side data structure so we can sort the names into
+ // a deterministic order.
+ StoredDeclsMap *Map = NS->buildLookup();
+ SmallVector<std::pair<DeclarationName, DeclContext::lookup_result>, 16>
+ LookupResults;
+ LookupResults.reserve(Map->size());
+ for (auto &Entry : *Map)
+ LookupResults.push_back(
+ std::make_pair(Entry.first, Entry.second.getLookupResult()));
+
+ std::sort(LookupResults.begin(), LookupResults.end(), llvm::less_first());
+ for (auto &NameAndResult : LookupResults) {
+ DeclarationName Name = NameAndResult.first;
+ DeclContext::lookup_result Result = NameAndResult.second;
+ if (Name.getNameKind() == DeclarationName::CXXConstructorName ||
+ Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
+ // We have to work around a name lookup bug here where negative lookup
+ // results for these names get cached in namespace lookup tables.
+ assert(Result.empty() && "Cannot have a constructor or conversion "
+ "function name in a namespace!");
+ continue;
+ }
+
+ for (NamedDecl *ND : Result)
+ Writer.GetDeclRef(ND);
+ }
+ }
+
+ if (Writer.hasChain() && D->isAnonymousNamespace() &&
+ D == D->getMostRecentDecl()) {
+ // This is a most recent reopening of the anonymous namespace. If its parent
+ // is in a previous PCH (or is the TU), mark that parent for update, because
+ // the original namespace always points to the latest re-opening of its
+ // anonymous namespace.
+ Decl *Parent = cast<Decl>(
+ D->getParent()->getRedeclContext()->getPrimaryContext());
+ if (Parent->isFromASTFile() || isa<TranslationUnitDecl>(Parent)) {
+ Writer.DeclUpdates[Parent].push_back(
+ ASTWriter::DeclUpdate(UPD_CXX_ADDED_ANONYMOUS_NAMESPACE, D));
+ }
+ }
+}
+
+void ASTDeclWriter::VisitNamespaceAliasDecl(NamespaceAliasDecl *D) {
+ VisitRedeclarable(D);
+ VisitNamedDecl(D);
+ Writer.AddSourceLocation(D->getNamespaceLoc(), Record);
+ Writer.AddSourceLocation(D->getTargetNameLoc(), Record);
+ Writer.AddNestedNameSpecifierLoc(D->getQualifierLoc(), Record);
+ Writer.AddDeclRef(D->getNamespace(), Record);
+ Code = serialization::DECL_NAMESPACE_ALIAS;
+}
+
+void ASTDeclWriter::VisitUsingDecl(UsingDecl *D) {
+ VisitNamedDecl(D);
+ Writer.AddSourceLocation(D->getUsingLoc(), Record);
+ Writer.AddNestedNameSpecifierLoc(D->getQualifierLoc(), Record);
+ Writer.AddDeclarationNameLoc(D->DNLoc, D->getDeclName(), Record);
+ Writer.AddDeclRef(D->FirstUsingShadow.getPointer(), Record);
+ Record.push_back(D->hasTypename());
+ Writer.AddDeclRef(Context.getInstantiatedFromUsingDecl(D), Record);
+ Code = serialization::DECL_USING;
+}
+
+void ASTDeclWriter::VisitUsingShadowDecl(UsingShadowDecl *D) {
+ VisitRedeclarable(D);
+ VisitNamedDecl(D);
+ Writer.AddDeclRef(D->getTargetDecl(), Record);
+ Writer.AddDeclRef(D->UsingOrNextShadow, Record);
+ Writer.AddDeclRef(Context.getInstantiatedFromUsingShadowDecl(D), Record);
+ Code = serialization::DECL_USING_SHADOW;
+}
+
+void ASTDeclWriter::VisitUsingDirectiveDecl(UsingDirectiveDecl *D) {
+ VisitNamedDecl(D);
+ Writer.AddSourceLocation(D->getUsingLoc(), Record);
+ Writer.AddSourceLocation(D->getNamespaceKeyLocation(), Record);
+ Writer.AddNestedNameSpecifierLoc(D->getQualifierLoc(), Record);
+ Writer.AddDeclRef(D->getNominatedNamespace(), Record);
+ Writer.AddDeclRef(dyn_cast<Decl>(D->getCommonAncestor()), Record);
+ Code = serialization::DECL_USING_DIRECTIVE;
+}
+
+void ASTDeclWriter::VisitUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *D) {
+ VisitValueDecl(D);
+ Writer.AddSourceLocation(D->getUsingLoc(), Record);
+ Writer.AddNestedNameSpecifierLoc(D->getQualifierLoc(), Record);
+ Writer.AddDeclarationNameLoc(D->DNLoc, D->getDeclName(), Record);
+ Code = serialization::DECL_UNRESOLVED_USING_VALUE;
+}
+
+void ASTDeclWriter::VisitUnresolvedUsingTypenameDecl(
+ UnresolvedUsingTypenameDecl *D) {
+ VisitTypeDecl(D);
+ Writer.AddSourceLocation(D->getTypenameLoc(), Record);
+ Writer.AddNestedNameSpecifierLoc(D->getQualifierLoc(), Record);
+ Code = serialization::DECL_UNRESOLVED_USING_TYPENAME;
+}
+
+void ASTDeclWriter::VisitCXXRecordDecl(CXXRecordDecl *D) {
+ VisitRecordDecl(D);
+
+ enum {
+ CXXRecNotTemplate = 0, CXXRecTemplate, CXXRecMemberSpecialization
+ };
+ if (ClassTemplateDecl *TemplD = D->getDescribedClassTemplate()) {
+ Record.push_back(CXXRecTemplate);
+ Writer.AddDeclRef(TemplD, Record);
+ } else if (MemberSpecializationInfo *MSInfo
+ = D->getMemberSpecializationInfo()) {
+ Record.push_back(CXXRecMemberSpecialization);
+ Writer.AddDeclRef(MSInfo->getInstantiatedFrom(), Record);
+ Record.push_back(MSInfo->getTemplateSpecializationKind());
+ Writer.AddSourceLocation(MSInfo->getPointOfInstantiation(), Record);
+ } else {
+ Record.push_back(CXXRecNotTemplate);
+ }
+
+ Record.push_back(D->isThisDeclarationADefinition());
+ if (D->isThisDeclarationADefinition())
+ Writer.AddCXXDefinitionData(D, Record);
+
+ // Store (what we currently believe to be) the key function to avoid
+ // deserializing every method so we can compute it.
+ if (D->IsCompleteDefinition)
+ Writer.AddDeclRef(Context.getCurrentKeyFunction(D), Record);
+
+ Code = serialization::DECL_CXX_RECORD;
+}
+
+void ASTDeclWriter::VisitCXXMethodDecl(CXXMethodDecl *D) {
+ VisitFunctionDecl(D);
+ if (D->isCanonicalDecl()) {
+ Record.push_back(D->size_overridden_methods());
+ for (CXXMethodDecl::method_iterator
+ I = D->begin_overridden_methods(), E = D->end_overridden_methods();
+ I != E; ++I)
+ Writer.AddDeclRef(*I, Record);
+ } else {
+ // We only need to record overridden methods once for the canonical decl.
+ Record.push_back(0);
+ }
+
+ if (D->getFirstDecl() == D->getMostRecentDecl() &&
+ !D->isInvalidDecl() &&
+ !D->hasAttrs() &&
+ !D->isTopLevelDeclInObjCContainer() &&
+ D->getDeclName().getNameKind() == DeclarationName::Identifier &&
+ !D->hasExtInfo() &&
+ !D->hasInheritedPrototype() &&
+ D->hasWrittenPrototype())
+ AbbrevToUse = Writer.getDeclCXXMethodAbbrev();
+
+ Code = serialization::DECL_CXX_METHOD;
+}
+
+void ASTDeclWriter::VisitCXXConstructorDecl(CXXConstructorDecl *D) {
+ VisitCXXMethodDecl(D);
+
+ Writer.AddDeclRef(D->getInheritedConstructor(), Record);
+ Record.push_back(D->IsExplicitSpecified);
+
+ Code = serialization::DECL_CXX_CONSTRUCTOR;
+}
+
+void ASTDeclWriter::VisitCXXDestructorDecl(CXXDestructorDecl *D) {
+ VisitCXXMethodDecl(D);
+
+ Writer.AddDeclRef(D->getOperatorDelete(), Record);
+
+ Code = serialization::DECL_CXX_DESTRUCTOR;
+}
+
+void ASTDeclWriter::VisitCXXConversionDecl(CXXConversionDecl *D) {
+ VisitCXXMethodDecl(D);
+ Record.push_back(D->IsExplicitSpecified);
+ Code = serialization::DECL_CXX_CONVERSION;
+}
+
+void ASTDeclWriter::VisitImportDecl(ImportDecl *D) {
+ VisitDecl(D);
+ Record.push_back(Writer.getSubmoduleID(D->getImportedModule()));
+ ArrayRef<SourceLocation> IdentifierLocs = D->getIdentifierLocs();
+ Record.push_back(!IdentifierLocs.empty());
+ if (IdentifierLocs.empty()) {
+ Writer.AddSourceLocation(D->getLocEnd(), Record);
+ Record.push_back(1);
+ } else {
+ for (unsigned I = 0, N = IdentifierLocs.size(); I != N; ++I)
+ Writer.AddSourceLocation(IdentifierLocs[I], Record);
+ Record.push_back(IdentifierLocs.size());
+ }
+ // Note: the number of source locations must always be the last element in
+ // the record.
+ Code = serialization::DECL_IMPORT;
+}
+
+void ASTDeclWriter::VisitAccessSpecDecl(AccessSpecDecl *D) {
+ VisitDecl(D);
+ Writer.AddSourceLocation(D->getColonLoc(), Record);
+ Code = serialization::DECL_ACCESS_SPEC;
+}
+
+void ASTDeclWriter::VisitFriendDecl(FriendDecl *D) {
+ // Record the number of friend type template parameter lists here
+ // so as to simplify memory allocation during deserialization.
+ Record.push_back(D->NumTPLists);
+ VisitDecl(D);
+ bool hasFriendDecl = D->Friend.is<NamedDecl*>();
+ Record.push_back(hasFriendDecl);
+ if (hasFriendDecl)
+ Writer.AddDeclRef(D->getFriendDecl(), Record);
+ else
+ Writer.AddTypeSourceInfo(D->getFriendType(), Record);
+ for (unsigned i = 0; i < D->NumTPLists; ++i)
+ Writer.AddTemplateParameterList(D->getFriendTypeTemplateParameterList(i),
+ Record);
+ Writer.AddDeclRef(D->getNextFriend(), Record);
+ Record.push_back(D->UnsupportedFriend);
+ Writer.AddSourceLocation(D->FriendLoc, Record);
+ Code = serialization::DECL_FRIEND;
+}
+
+void ASTDeclWriter::VisitFriendTemplateDecl(FriendTemplateDecl *D) {
+ VisitDecl(D);
+ Record.push_back(D->getNumTemplateParameters());
+ for (unsigned i = 0, e = D->getNumTemplateParameters(); i != e; ++i)
+ Writer.AddTemplateParameterList(D->getTemplateParameterList(i), Record);
+ Record.push_back(D->getFriendDecl() != nullptr);
+ if (D->getFriendDecl())
+ Writer.AddDeclRef(D->getFriendDecl(), Record);
+ else
+ Writer.AddTypeSourceInfo(D->getFriendType(), Record);
+ Writer.AddSourceLocation(D->getFriendLoc(), Record);
+ Code = serialization::DECL_FRIEND_TEMPLATE;
+}
+
+void ASTDeclWriter::VisitTemplateDecl(TemplateDecl *D) {
+ VisitNamedDecl(D);
+
+ Writer.AddDeclRef(D->getTemplatedDecl(), Record);
+ Writer.AddTemplateParameterList(D->getTemplateParameters(), Record);
+}
+
+void ASTDeclWriter::VisitRedeclarableTemplateDecl(RedeclarableTemplateDecl *D) {
+ VisitRedeclarable(D);
+
+ // Emit data to initialize CommonOrPrev before VisitTemplateDecl so that
+ // getCommonPtr() can be used while this is still initializing.
+ if (D->isFirstDecl()) {
+ // This declaration owns the 'common' pointer, so serialize that data now.
+ Writer.AddDeclRef(D->getInstantiatedFromMemberTemplate(), Record);
+ if (D->getInstantiatedFromMemberTemplate())
+ Record.push_back(D->isMemberSpecialization());
+ }
+
+ VisitTemplateDecl(D);
+ Record.push_back(D->getIdentifierNamespace());
+}
+
+void ASTDeclWriter::VisitClassTemplateDecl(ClassTemplateDecl *D) {
+ VisitRedeclarableTemplateDecl(D);
+
+ if (D->isFirstDecl())
+ AddTemplateSpecializations(D);
+ Code = serialization::DECL_CLASS_TEMPLATE;
+}
+
+void ASTDeclWriter::VisitClassTemplateSpecializationDecl(
+ ClassTemplateSpecializationDecl *D) {
+ VisitCXXRecordDecl(D);
+
+ llvm::PointerUnion<ClassTemplateDecl *,
+ ClassTemplatePartialSpecializationDecl *> InstFrom
+ = D->getSpecializedTemplateOrPartial();
+ if (Decl *InstFromD = InstFrom.dyn_cast<ClassTemplateDecl *>()) {
+ Writer.AddDeclRef(InstFromD, Record);
+ } else {
+ Writer.AddDeclRef(InstFrom.get<ClassTemplatePartialSpecializationDecl *>(),
+ Record);
+ Writer.AddTemplateArgumentList(&D->getTemplateInstantiationArgs(), Record);
+ }
+
+ Writer.AddTemplateArgumentList(&D->getTemplateArgs(), Record);
+ Writer.AddSourceLocation(D->getPointOfInstantiation(), Record);
+ Record.push_back(D->getSpecializationKind());
+ Record.push_back(D->isCanonicalDecl());
+
+ if (D->isCanonicalDecl()) {
+ // When reading, we'll add it to the folding set of the following template.
+ Writer.AddDeclRef(D->getSpecializedTemplate()->getCanonicalDecl(), Record);
+ }
+
+ // Explicit info.
+ Writer.AddTypeSourceInfo(D->getTypeAsWritten(), Record);
+ if (D->getTypeAsWritten()) {
+ Writer.AddSourceLocation(D->getExternLoc(), Record);
+ Writer.AddSourceLocation(D->getTemplateKeywordLoc(), Record);
+ }
+
+ Code = serialization::DECL_CLASS_TEMPLATE_SPECIALIZATION;
+}
+
+void ASTDeclWriter::VisitClassTemplatePartialSpecializationDecl(
+ ClassTemplatePartialSpecializationDecl *D) {
+ VisitClassTemplateSpecializationDecl(D);
+
+ Writer.AddTemplateParameterList(D->getTemplateParameters(), Record);
+ Writer.AddASTTemplateArgumentListInfo(D->getTemplateArgsAsWritten(), Record);
+
+ // These are read/set from/to the first declaration.
+ if (D->getPreviousDecl() == nullptr) {
+ Writer.AddDeclRef(D->getInstantiatedFromMember(), Record);
+ Record.push_back(D->isMemberSpecialization());
+ }
+
+ Code = serialization::DECL_CLASS_TEMPLATE_PARTIAL_SPECIALIZATION;
+}
+
+void ASTDeclWriter::VisitVarTemplateDecl(VarTemplateDecl *D) {
+ VisitRedeclarableTemplateDecl(D);
+
+ if (D->isFirstDecl())
+ AddTemplateSpecializations(D);
+ Code = serialization::DECL_VAR_TEMPLATE;
+}
+
+void ASTDeclWriter::VisitVarTemplateSpecializationDecl(
+ VarTemplateSpecializationDecl *D) {
+ VisitVarDecl(D);
+
+ llvm::PointerUnion<VarTemplateDecl *, VarTemplatePartialSpecializationDecl *>
+ InstFrom = D->getSpecializedTemplateOrPartial();
+ if (Decl *InstFromD = InstFrom.dyn_cast<VarTemplateDecl *>()) {
+ Writer.AddDeclRef(InstFromD, Record);
+ } else {
+ Writer.AddDeclRef(InstFrom.get<VarTemplatePartialSpecializationDecl *>(),
+ Record);
+ Writer.AddTemplateArgumentList(&D->getTemplateInstantiationArgs(), Record);
+ }
+
+ // Explicit info.
+ Writer.AddTypeSourceInfo(D->getTypeAsWritten(), Record);
+ if (D->getTypeAsWritten()) {
+ Writer.AddSourceLocation(D->getExternLoc(), Record);
+ Writer.AddSourceLocation(D->getTemplateKeywordLoc(), Record);
+ }
+
+ Writer.AddTemplateArgumentList(&D->getTemplateArgs(), Record);
+ Writer.AddSourceLocation(D->getPointOfInstantiation(), Record);
+ Record.push_back(D->getSpecializationKind());
+ Record.push_back(D->isCanonicalDecl());
+
+ if (D->isCanonicalDecl()) {
+ // When reading, we'll add it to the folding set of the following template.
+ Writer.AddDeclRef(D->getSpecializedTemplate()->getCanonicalDecl(), Record);
+ }
+
+ Code = serialization::DECL_VAR_TEMPLATE_SPECIALIZATION;
+}
+
+void ASTDeclWriter::VisitVarTemplatePartialSpecializationDecl(
+ VarTemplatePartialSpecializationDecl *D) {
+ VisitVarTemplateSpecializationDecl(D);
+
+ Writer.AddTemplateParameterList(D->getTemplateParameters(), Record);
+ Writer.AddASTTemplateArgumentListInfo(D->getTemplateArgsAsWritten(), Record);
+
+ // These are read/set from/to the first declaration.
+ if (D->getPreviousDecl() == nullptr) {
+ Writer.AddDeclRef(D->getInstantiatedFromMember(), Record);
+ Record.push_back(D->isMemberSpecialization());
+ }
+
+ Code = serialization::DECL_VAR_TEMPLATE_PARTIAL_SPECIALIZATION;
+}
+
+void ASTDeclWriter::VisitClassScopeFunctionSpecializationDecl(
+ ClassScopeFunctionSpecializationDecl *D) {
+ VisitDecl(D);
+ Writer.AddDeclRef(D->getSpecialization(), Record);
+ Code = serialization::DECL_CLASS_SCOPE_FUNCTION_SPECIALIZATION;
+}
+
+
+void ASTDeclWriter::VisitFunctionTemplateDecl(FunctionTemplateDecl *D) {
+ VisitRedeclarableTemplateDecl(D);
+
+ if (D->isFirstDecl())
+ AddTemplateSpecializations(D);
+ Code = serialization::DECL_FUNCTION_TEMPLATE;
+}
+
+void ASTDeclWriter::VisitTemplateTypeParmDecl(TemplateTypeParmDecl *D) {
+ VisitTypeDecl(D);
+
+ Record.push_back(D->wasDeclaredWithTypename());
+ Record.push_back(D->defaultArgumentWasInherited());
+ Writer.AddTypeSourceInfo(D->getDefaultArgumentInfo(), Record);
+
+ Code = serialization::DECL_TEMPLATE_TYPE_PARM;
+}
+
+void ASTDeclWriter::VisitNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D) {
+ // For an expanded parameter pack, record the number of expansion types here
+ // so that it's easier for deserialization to allocate the right amount of
+ // memory.
+ if (D->isExpandedParameterPack())
+ Record.push_back(D->getNumExpansionTypes());
+
+ VisitDeclaratorDecl(D);
+ // TemplateParmPosition.
+ Record.push_back(D->getDepth());
+ Record.push_back(D->getPosition());
+
+ if (D->isExpandedParameterPack()) {
+ for (unsigned I = 0, N = D->getNumExpansionTypes(); I != N; ++I) {
+ Writer.AddTypeRef(D->getExpansionType(I), Record);
+ Writer.AddTypeSourceInfo(D->getExpansionTypeSourceInfo(I), Record);
+ }
+
+ Code = serialization::DECL_EXPANDED_NON_TYPE_TEMPLATE_PARM_PACK;
+ } else {
+ // Rest of NonTypeTemplateParmDecl.
+ Record.push_back(D->isParameterPack());
+ Record.push_back(D->getDefaultArgument() != nullptr);
+ if (D->getDefaultArgument()) {
+ Writer.AddStmt(D->getDefaultArgument());
+ Record.push_back(D->defaultArgumentWasInherited());
+ }
+ Code = serialization::DECL_NON_TYPE_TEMPLATE_PARM;
+ }
+}
+
+void ASTDeclWriter::VisitTemplateTemplateParmDecl(TemplateTemplateParmDecl *D) {
+ // For an expanded parameter pack, record the number of expansion types here
+ // so that it's easier for deserialization to allocate the right amount of
+ // memory.
+ if (D->isExpandedParameterPack())
+ Record.push_back(D->getNumExpansionTemplateParameters());
+
+ VisitTemplateDecl(D);
+ // TemplateParmPosition.
+ Record.push_back(D->getDepth());
+ Record.push_back(D->getPosition());
+
+ if (D->isExpandedParameterPack()) {
+ for (unsigned I = 0, N = D->getNumExpansionTemplateParameters();
+ I != N; ++I)
+ Writer.AddTemplateParameterList(D->getExpansionTemplateParameters(I),
+ Record);
+ Code = serialization::DECL_EXPANDED_TEMPLATE_TEMPLATE_PARM_PACK;
+ } else {
+ // Rest of TemplateTemplateParmDecl.
+ Writer.AddTemplateArgumentLoc(D->getDefaultArgument(), Record);
+ Record.push_back(D->defaultArgumentWasInherited());
+ Record.push_back(D->isParameterPack());
+ Code = serialization::DECL_TEMPLATE_TEMPLATE_PARM;
+ }
+}
+
+void ASTDeclWriter::VisitTypeAliasTemplateDecl(TypeAliasTemplateDecl *D) {
+ VisitRedeclarableTemplateDecl(D);
+ Code = serialization::DECL_TYPE_ALIAS_TEMPLATE;
+}
+
+void ASTDeclWriter::VisitStaticAssertDecl(StaticAssertDecl *D) {
+ VisitDecl(D);
+ Writer.AddStmt(D->getAssertExpr());
+ Record.push_back(D->isFailed());
+ Writer.AddStmt(D->getMessage());
+ Writer.AddSourceLocation(D->getRParenLoc(), Record);
+ Code = serialization::DECL_STATIC_ASSERT;
+}
+
+/// \brief Emit the DeclContext part of a declaration context decl.
+///
+/// \param LexicalOffset the offset at which the DECL_CONTEXT_LEXICAL
+/// block for this declaration context is stored. May be 0 to indicate
+/// that there are no declarations stored within this context.
+///
+/// \param VisibleOffset the offset at which the DECL_CONTEXT_VISIBLE
+/// block for this declaration context is stored. May be 0 to indicate
+/// that there are no declarations visible from this context. Note
+/// that this value will not be emitted for non-primary declaration
+/// contexts.
+void ASTDeclWriter::VisitDeclContext(DeclContext *DC, uint64_t LexicalOffset,
+ uint64_t VisibleOffset) {
+ Record.push_back(LexicalOffset);
+ Record.push_back(VisibleOffset);
+}
+
+template <typename T>
+void ASTDeclWriter::VisitRedeclarable(Redeclarable<T> *D) {
+ T *First = D->getFirstDecl();
+ T *MostRecent = First->getMostRecentDecl();
+ if (MostRecent != First) {
+ assert(isRedeclarableDeclKind(static_cast<T *>(D)->getKind()) &&
+ "Not considered redeclarable?");
+
+ // There is more than one declaration of this entity, so we will need to
+ // write a redeclaration chain.
+ Writer.AddDeclRef(First, Record);
+ Writer.Redeclarations.insert(First);
+
+ auto *Previous = D->getPreviousDecl();
+
+ // In a modules build, we can have imported declarations after a local
+ // canonical declaration. If this is the first local declaration, emit
+ // a list of all such imported declarations so that we can ensure they
+ // are loaded before we are. This allows us to rebuild the redecl chain
+ // in the right order on reload (all declarations imported by a module
+ // should be before all declarations provided by that module).
+ bool EmitImportedMergedCanonicalDecls = false;
+ if (Context.getLangOpts().Modules && Writer.Chain) {
+ auto *PreviousLocal = Previous;
+ while (PreviousLocal && PreviousLocal->isFromASTFile())
+ PreviousLocal = PreviousLocal->getPreviousDecl();
+ if (!PreviousLocal)
+ EmitImportedMergedCanonicalDecls = true;
+ }
+ if (EmitImportedMergedCanonicalDecls) {
+ llvm::SmallMapVector<ModuleFile*, Decl*, 16> FirstInModule;
+ for (auto *Redecl = MostRecent; Redecl;
+ Redecl = Redecl->getPreviousDecl())
+ if (Redecl->isFromASTFile())
+ FirstInModule[Writer.Chain->getOwningModuleFile(Redecl)] = Redecl;
+ // FIXME: If FirstInModule has entries for modules A and B, and B imports
+ // A (directly or indirectly), we don't need to write the entry for A.
+ Record.push_back(FirstInModule.size());
+ for (auto I = FirstInModule.rbegin(), E = FirstInModule.rend();
+ I != E; ++I)
+ Writer.AddDeclRef(I->second, Record);
+ } else
+ Record.push_back(0);
+
+ // Make sure that we serialize both the previous and the most-recent
+ // declarations, which (transitively) ensures that all declarations in the
+ // chain get serialized.
+ //
+ // FIXME: This is not correct; when we reach an imported declaration we
+ // won't emit its previous declaration.
+ (void)Writer.GetDeclRef(Previous);
+ (void)Writer.GetDeclRef(MostRecent);
+ } else {
+ // We use the sentinel value 0 to indicate an only declaration.
+ Record.push_back(0);
+ }
+}
+
+void ASTDeclWriter::VisitOMPThreadPrivateDecl(OMPThreadPrivateDecl *D) {
+ Record.push_back(D->varlist_size());
+ VisitDecl(D);
+ for (auto *I : D->varlists())
+ Writer.AddStmt(I);
+ Code = serialization::DECL_OMP_THREADPRIVATE;
+}
+
+//===----------------------------------------------------------------------===//
+// ASTWriter Implementation
+//===----------------------------------------------------------------------===//
+
+void ASTWriter::WriteDeclAbbrevs() {
+ using namespace llvm;
+
+ BitCodeAbbrev *Abv;
+
+ // Abbreviation for DECL_FIELD
+ Abv = new BitCodeAbbrev();
+ Abv->Add(BitCodeAbbrevOp(serialization::DECL_FIELD));
+ // Decl
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // DeclContext
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LexicalDeclContext
+ Abv->Add(BitCodeAbbrevOp(0)); // isInvalidDecl
+ Abv->Add(BitCodeAbbrevOp(0)); // HasAttrs
+ Abv->Add(BitCodeAbbrevOp(0)); // isImplicit
+ Abv->Add(BitCodeAbbrevOp(0)); // isUsed
+ Abv->Add(BitCodeAbbrevOp(0)); // isReferenced
+ Abv->Add(BitCodeAbbrevOp(0)); // TopLevelDeclInObjCContainer
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2)); // AccessSpecifier
+ Abv->Add(BitCodeAbbrevOp(0)); // ModulePrivate
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // SubmoduleID
+ // NamedDecl
+ Abv->Add(BitCodeAbbrevOp(0)); // NameKind = Identifier
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Name
+ Abv->Add(BitCodeAbbrevOp(0)); // AnonDeclNumber
+ // ValueDecl
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Type
+ // DeclaratorDecl
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // InnerStartLoc
+ Abv->Add(BitCodeAbbrevOp(0)); // hasExtInfo
+ // FieldDecl
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isMutable
+ Abv->Add(BitCodeAbbrevOp(0)); //getBitWidth
+ // Type Source Info
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // TypeLoc
+ DeclFieldAbbrev = Stream.EmitAbbrev(Abv);
+
+ // Abbreviation for DECL_OBJC_IVAR
+ Abv = new BitCodeAbbrev();
+ Abv->Add(BitCodeAbbrevOp(serialization::DECL_OBJC_IVAR));
+ // Decl
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // DeclContext
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LexicalDeclContext
+ Abv->Add(BitCodeAbbrevOp(0)); // isInvalidDecl
+ Abv->Add(BitCodeAbbrevOp(0)); // HasAttrs
+ Abv->Add(BitCodeAbbrevOp(0)); // isImplicit
+ Abv->Add(BitCodeAbbrevOp(0)); // isUsed
+ Abv->Add(BitCodeAbbrevOp(0)); // isReferenced
+ Abv->Add(BitCodeAbbrevOp(0)); // TopLevelDeclInObjCContainer
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2)); // AccessSpecifier
+ Abv->Add(BitCodeAbbrevOp(0)); // ModulePrivate
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // SubmoduleID
+ // NamedDecl
+ Abv->Add(BitCodeAbbrevOp(0)); // NameKind = Identifier
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Name
+ Abv->Add(BitCodeAbbrevOp(0)); // AnonDeclNumber
+ // ValueDecl
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Type
+ // DeclaratorDecl
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // InnerStartLoc
+ Abv->Add(BitCodeAbbrevOp(0)); // hasExtInfo
+ // FieldDecl
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isMutable
+ Abv->Add(BitCodeAbbrevOp(0)); //getBitWidth
+ // ObjC Ivar
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // getAccessControl
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // getSynthesize
+ // Type Source Info
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // TypeLoc
+ DeclObjCIvarAbbrev = Stream.EmitAbbrev(Abv);
+
+ // Abbreviation for DECL_ENUM
+ Abv = new BitCodeAbbrev();
+ Abv->Add(BitCodeAbbrevOp(serialization::DECL_ENUM));
+ // Redeclarable
+ Abv->Add(BitCodeAbbrevOp(0)); // No redeclaration
+ // Decl
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // DeclContext
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LexicalDeclContext
+ Abv->Add(BitCodeAbbrevOp(0)); // isInvalidDecl
+ Abv->Add(BitCodeAbbrevOp(0)); // HasAttrs
+ Abv->Add(BitCodeAbbrevOp(0)); // isImplicit
+ Abv->Add(BitCodeAbbrevOp(0)); // isUsed
+ Abv->Add(BitCodeAbbrevOp(0)); // isReferenced
+ Abv->Add(BitCodeAbbrevOp(0)); // TopLevelDeclInObjCContainer
+ Abv->Add(BitCodeAbbrevOp(AS_none)); // C++ AccessSpecifier
+ Abv->Add(BitCodeAbbrevOp(0)); // ModulePrivate
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // SubmoduleID
+ // NamedDecl
+ Abv->Add(BitCodeAbbrevOp(0)); // NameKind = Identifier
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Name
+ Abv->Add(BitCodeAbbrevOp(0)); // AnonDeclNumber
+ // TypeDecl
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Source Location
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Type Ref
+ // TagDecl
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // IdentifierNamespace
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // getTagKind
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isCompleteDefinition
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // EmbeddedInDeclarator
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsFreeStanding
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsCompleteDefinitionRequired
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // SourceLocation
+ Abv->Add(BitCodeAbbrevOp(0)); // ExtInfoKind
+ // EnumDecl
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddTypeRef
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // IntegerType
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // getPromotionType
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // getNumPositiveBits
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // getNumNegativeBits
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isScoped
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isScopedUsingClassTag
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isFixed
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // InstantiatedMembEnum
+ // DC
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LexicalOffset
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // VisibleOffset
+ DeclEnumAbbrev = Stream.EmitAbbrev(Abv);
+
+ // Abbreviation for DECL_RECORD
+ Abv = new BitCodeAbbrev();
+ Abv->Add(BitCodeAbbrevOp(serialization::DECL_RECORD));
+ // Redeclarable
+ Abv->Add(BitCodeAbbrevOp(0)); // No redeclaration
+ // Decl
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // DeclContext
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LexicalDeclContext
+ Abv->Add(BitCodeAbbrevOp(0)); // isInvalidDecl
+ Abv->Add(BitCodeAbbrevOp(0)); // HasAttrs
+ Abv->Add(BitCodeAbbrevOp(0)); // isImplicit
+ Abv->Add(BitCodeAbbrevOp(0)); // isUsed
+ Abv->Add(BitCodeAbbrevOp(0)); // isReferenced
+ Abv->Add(BitCodeAbbrevOp(0)); // TopLevelDeclInObjCContainer
+ Abv->Add(BitCodeAbbrevOp(AS_none)); // C++ AccessSpecifier
+ Abv->Add(BitCodeAbbrevOp(0)); // ModulePrivate
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // SubmoduleID
+ // NamedDecl
+ Abv->Add(BitCodeAbbrevOp(0)); // NameKind = Identifier
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Name
+ Abv->Add(BitCodeAbbrevOp(0)); // AnonDeclNumber
+ // TypeDecl
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Source Location
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Type Ref
+ // TagDecl
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // IdentifierNamespace
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // getTagKind
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isCompleteDefinition
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // EmbeddedInDeclarator
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsFreeStanding
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsCompleteDefinitionRequired
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // SourceLocation
+ Abv->Add(BitCodeAbbrevOp(0)); // ExtInfoKind
+ // RecordDecl
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // FlexibleArrayMember
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // AnonymousStructUnion
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // hasObjectMember
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // hasVolatileMember
+ // DC
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LexicalOffset
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // VisibleOffset
+ DeclRecordAbbrev = Stream.EmitAbbrev(Abv);
+
+ // Abbreviation for DECL_PARM_VAR
+ Abv = new BitCodeAbbrev();
+ Abv->Add(BitCodeAbbrevOp(serialization::DECL_PARM_VAR));
+ // Redeclarable
+ Abv->Add(BitCodeAbbrevOp(0)); // No redeclaration
+ // Decl
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // DeclContext
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LexicalDeclContext
+ Abv->Add(BitCodeAbbrevOp(0)); // isInvalidDecl
+ Abv->Add(BitCodeAbbrevOp(0)); // HasAttrs
+ Abv->Add(BitCodeAbbrevOp(0)); // isImplicit
+ Abv->Add(BitCodeAbbrevOp(0)); // isUsed
+ Abv->Add(BitCodeAbbrevOp(0)); // isReferenced
+ Abv->Add(BitCodeAbbrevOp(0)); // TopLevelDeclInObjCContainer
+ Abv->Add(BitCodeAbbrevOp(AS_none)); // C++ AccessSpecifier
+ Abv->Add(BitCodeAbbrevOp(0)); // ModulePrivate
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // SubmoduleID
+ // NamedDecl
+ Abv->Add(BitCodeAbbrevOp(0)); // NameKind = Identifier
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Name
+ Abv->Add(BitCodeAbbrevOp(0)); // AnonDeclNumber
+ // ValueDecl
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Type
+ // DeclaratorDecl
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // InnerStartLoc
+ Abv->Add(BitCodeAbbrevOp(0)); // hasExtInfo
+ // VarDecl
+ Abv->Add(BitCodeAbbrevOp(0)); // StorageClass
+ Abv->Add(BitCodeAbbrevOp(0)); // getTSCSpec
+ Abv->Add(BitCodeAbbrevOp(0)); // hasCXXDirectInitializer
+ Abv->Add(BitCodeAbbrevOp(0)); // Linkage
+ Abv->Add(BitCodeAbbrevOp(0)); // HasInit
+ Abv->Add(BitCodeAbbrevOp(0)); // HasMemberSpecializationInfo
+ // ParmVarDecl
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsObjCMethodParameter
+ Abv->Add(BitCodeAbbrevOp(0)); // ScopeDepth
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ScopeIndex
+ Abv->Add(BitCodeAbbrevOp(0)); // ObjCDeclQualifier
+ Abv->Add(BitCodeAbbrevOp(0)); // KNRPromoted
+ Abv->Add(BitCodeAbbrevOp(0)); // HasInheritedDefaultArg
+ Abv->Add(BitCodeAbbrevOp(0)); // HasUninstantiatedDefaultArg
+ // Type Source Info
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // TypeLoc
+ DeclParmVarAbbrev = Stream.EmitAbbrev(Abv);
+
+ // Abbreviation for DECL_TYPEDEF
+ Abv = new BitCodeAbbrev();
+ Abv->Add(BitCodeAbbrevOp(serialization::DECL_TYPEDEF));
+ // Redeclarable
+ Abv->Add(BitCodeAbbrevOp(0)); // No redeclaration
+ // Decl
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // DeclContext
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LexicalDeclContext
+ Abv->Add(BitCodeAbbrevOp(0)); // isInvalidDecl
+ Abv->Add(BitCodeAbbrevOp(0)); // HasAttrs
+ Abv->Add(BitCodeAbbrevOp(0)); // isImplicit
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isUsed
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isReferenced
+ Abv->Add(BitCodeAbbrevOp(0)); // TopLevelDeclInObjCContainer
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2)); // C++ AccessSpecifier
+ Abv->Add(BitCodeAbbrevOp(0)); // ModulePrivate
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // SubmoduleID
+ // NamedDecl
+ Abv->Add(BitCodeAbbrevOp(0)); // NameKind = Identifier
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Name
+ Abv->Add(BitCodeAbbrevOp(0)); // AnonDeclNumber
+ // TypeDecl
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Source Location
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Type Ref
+ // TypedefDecl
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // TypeLoc
+ DeclTypedefAbbrev = Stream.EmitAbbrev(Abv);
+
+ // Abbreviation for DECL_VAR
+ Abv = new BitCodeAbbrev();
+ Abv->Add(BitCodeAbbrevOp(serialization::DECL_VAR));
+ // Redeclarable
+ Abv->Add(BitCodeAbbrevOp(0)); // No redeclaration
+ // Decl
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // DeclContext
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LexicalDeclContext
+ Abv->Add(BitCodeAbbrevOp(0)); // isInvalidDecl
+ Abv->Add(BitCodeAbbrevOp(0)); // HasAttrs
+ Abv->Add(BitCodeAbbrevOp(0)); // isImplicit
+ Abv->Add(BitCodeAbbrevOp(0)); // isUsed
+ Abv->Add(BitCodeAbbrevOp(0)); // isReferenced
+ Abv->Add(BitCodeAbbrevOp(0)); // TopLevelDeclInObjCContainer
+ Abv->Add(BitCodeAbbrevOp(AS_none)); // C++ AccessSpecifier
+ Abv->Add(BitCodeAbbrevOp(0)); // ModulePrivate
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // SubmoduleID
+ // NamedDecl
+ Abv->Add(BitCodeAbbrevOp(0)); // NameKind = Identifier
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Name
+ Abv->Add(BitCodeAbbrevOp(0)); // AnonDeclNumber
+ // ValueDecl
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Type
+ // DeclaratorDecl
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // InnerStartLoc
+ Abv->Add(BitCodeAbbrevOp(0)); // hasExtInfo
+ // VarDecl
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // StorageClass
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2)); // getTSCSpec
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // CXXDirectInitializer
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isExceptionVariable
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isNRVOVariable
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isCXXForRangeDecl
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isARCPseudoStrong
+ Abv->Add(BitCodeAbbrevOp(0)); // isConstexpr
+ Abv->Add(BitCodeAbbrevOp(0)); // isInitCapture
+ Abv->Add(BitCodeAbbrevOp(0)); // isPrevDeclInSameScope
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); // Linkage
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // HasInit
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // HasMemberSpecInfo
+ // Type Source Info
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // TypeLoc
+ DeclVarAbbrev = Stream.EmitAbbrev(Abv);
+
+ // Abbreviation for DECL_CXX_METHOD
+ Abv = new BitCodeAbbrev();
+ Abv->Add(BitCodeAbbrevOp(serialization::DECL_CXX_METHOD));
+ // RedeclarableDecl
+ Abv->Add(BitCodeAbbrevOp(0)); // CanonicalDecl
+ // Decl
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // DeclContext
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LexicalDeclContext
+ Abv->Add(BitCodeAbbrevOp(0)); // Invalid
+ Abv->Add(BitCodeAbbrevOp(0)); // HasAttrs
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Implicit
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Used
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Referenced
+ Abv->Add(BitCodeAbbrevOp(0)); // InObjCContainer
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2)); // Access
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ModulePrivate
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // SubmoduleID
+ // NamedDecl
+ Abv->Add(BitCodeAbbrevOp(DeclarationName::Identifier)); // NameKind
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Identifier
+ Abv->Add(BitCodeAbbrevOp(0)); // AnonDeclNumber
+ // ValueDecl
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Type
+ // DeclaratorDecl
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // InnerLocStart
+ Abv->Add(BitCodeAbbrevOp(0)); // HasExtInfo
+ // FunctionDecl
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 11)); // IDNS
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); // StorageClass
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Inline
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // InlineSpecified
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // VirtualAsWritten
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Pure
+ Abv->Add(BitCodeAbbrevOp(0)); // HasInheritedProto
+ Abv->Add(BitCodeAbbrevOp(1)); // HasWrittenProto
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Deleted
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Trivial
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Defaulted
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ExplicitlyDefaulted
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ImplicitReturnZero
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constexpr
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // SkippedBody
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // LateParsed
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); // Linkage
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LocEnd
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); // TemplateKind
+ // This Array slurps the rest of the record. Fortunately we want to encode
+ // (nearly) all the remaining (variable number of) fields in the same way.
+ //
+ // This is the function template information if any, then
+ // NumParams and Params[] from FunctionDecl, and
+ // NumOverriddenMethods, OverriddenMethods[] from CXXMethodDecl.
+ //
+ // Add an AbbrevOp for 'size then elements' and use it here.
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
+ DeclCXXMethodAbbrev = Stream.EmitAbbrev(Abv);
+
+ // Abbreviation for EXPR_DECL_REF
+ Abv = new BitCodeAbbrev();
+ Abv->Add(BitCodeAbbrevOp(serialization::EXPR_DECL_REF));
+ //Stmt
+ //Expr
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Type
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); //TypeDependent
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); //ValueDependent
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); //InstantiationDependent
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); //UnexpandedParamPack
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); //GetValueKind
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); //GetObjectKind
+ //DeclRefExpr
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); //HasQualifier
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); //GetDeclFound
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); //ExplicitTemplateArgs
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); //HadMultipleCandidates
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+ 1)); // RefersToEnclosingVariableOrCapture
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // DeclRef
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Location
+ DeclRefExprAbbrev = Stream.EmitAbbrev(Abv);
+
+ // Abbreviation for EXPR_INTEGER_LITERAL
+ Abv = new BitCodeAbbrev();
+ Abv->Add(BitCodeAbbrevOp(serialization::EXPR_INTEGER_LITERAL));
+ //Stmt
+ //Expr
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Type
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); //TypeDependent
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); //ValueDependent
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); //InstantiationDependent
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); //UnexpandedParamPack
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); //GetValueKind
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); //GetObjectKind
+ //Integer Literal
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Location
+ Abv->Add(BitCodeAbbrevOp(32)); // Bit Width
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Value
+ IntegerLiteralAbbrev = Stream.EmitAbbrev(Abv);
+
+ // Abbreviation for EXPR_CHARACTER_LITERAL
+ Abv = new BitCodeAbbrev();
+ Abv->Add(BitCodeAbbrevOp(serialization::EXPR_CHARACTER_LITERAL));
+ //Stmt
+ //Expr
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Type
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); //TypeDependent
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); //ValueDependent
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); //InstantiationDependent
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); //UnexpandedParamPack
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); //GetValueKind
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); //GetObjectKind
+ //Character Literal
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // getValue
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Location
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2)); // getKind
+ CharacterLiteralAbbrev = Stream.EmitAbbrev(Abv);
+
+ // Abbreviation for EXPR_IMPLICIT_CAST
+ Abv = new BitCodeAbbrev();
+ Abv->Add(BitCodeAbbrevOp(serialization::EXPR_IMPLICIT_CAST));
+ // Stmt
+ // Expr
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Type
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); //TypeDependent
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); //ValueDependent
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); //InstantiationDependent
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); //UnexpandedParamPack
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); //GetValueKind
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); //GetObjectKind
+ // CastExpr
+ Abv->Add(BitCodeAbbrevOp(0)); // PathSize
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 6)); // CastKind
+ // ImplicitCastExpr
+ ExprImplicitCastAbbrev = Stream.EmitAbbrev(Abv);
+
+ Abv = new BitCodeAbbrev();
+ Abv->Add(BitCodeAbbrevOp(serialization::DECL_CONTEXT_LEXICAL));
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
+ DeclContextLexicalAbbrev = Stream.EmitAbbrev(Abv);
+
+ Abv = new BitCodeAbbrev();
+ Abv->Add(BitCodeAbbrevOp(serialization::DECL_CONTEXT_VISIBLE));
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
+ Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
+ DeclContextVisibleLookupAbbrev = Stream.EmitAbbrev(Abv);
+}
+
+/// isRequiredDecl - Check if this is a "required" Decl, which must be seen by
+/// consumers of the AST.
+///
+/// Such decls will always be deserialized from the AST file, so we would like
+/// this to be as restrictive as possible. Currently the predicate is driven by
+/// code generation requirements, if other clients have a different notion of
+/// what is "required" then we may have to consider an alternate scheme where
+/// clients can iterate over the top-level decls and get information on them,
+/// without necessary deserializing them. We could explicitly require such
+/// clients to use a separate API call to "realize" the decl. This should be
+/// relatively painless since they would presumably only do it for top-level
+/// decls.
+static bool isRequiredDecl(const Decl *D, ASTContext &Context) {
+ // An ObjCMethodDecl is never considered as "required" because its
+ // implementation container always is.
+
+ // File scoped assembly or obj-c implementation must be seen. ImportDecl is
+ // used by codegen to determine the set of imported modules to search for
+ // inputs for automatic linking.
+ if (isa<FileScopeAsmDecl>(D) || isa<ObjCImplDecl>(D) || isa<ImportDecl>(D))
+ return true;
+
+ return Context.DeclMustBeEmitted(D);
+}
+
+void ASTWriter::WriteDecl(ASTContext &Context, Decl *D) {
+ // Switch case IDs are per Decl.
+ ClearSwitchCaseIDs();
+
+ RecordData Record;
+ ASTDeclWriter W(*this, Context, Record);
+
+ // Determine the ID for this declaration.
+ serialization::DeclID ID;
+ if (D->isFromASTFile()) {
+ assert(isRewritten(D) && "should not be emitting imported decl");
+ ID = getDeclID(D);
+ } else {
+ serialization::DeclID &IDR = DeclIDs[D];
+ if (IDR == 0)
+ IDR = NextDeclID++;
+
+ ID= IDR;
+ }
+
+ bool isReplacingADecl = ID < FirstDeclID;
+
+ // If this declaration is also a DeclContext, write blocks for the
+ // declarations that lexically stored inside its context and those
+ // declarations that are visible from its context. These blocks
+ // are written before the declaration itself so that we can put
+ // their offsets into the record for the declaration.
+ uint64_t LexicalOffset = 0;
+ uint64_t VisibleOffset = 0;
+ DeclContext *DC = dyn_cast<DeclContext>(D);
+ if (DC) {
+ if (isReplacingADecl) {
+ // It is replacing a decl from a chained PCH; make sure that the
+ // DeclContext is fully loaded.
+ if (DC->hasExternalLexicalStorage())
+ DC->LoadLexicalDeclsFromExternalStorage();
+ if (DC->hasExternalVisibleStorage())
+ Chain->completeVisibleDeclsMap(DC);
+ }
+ LexicalOffset = WriteDeclContextLexicalBlock(Context, DC);
+ VisibleOffset = WriteDeclContextVisibleBlock(Context, DC);
+ }
+
+ if (isReplacingADecl) {
+ // We're replacing a decl in a previous file.
+ ReplacedDecls.push_back(ReplacedDeclInfo(ID, Stream.GetCurrentBitNo(),
+ D->getLocation()));
+ } else {
+ unsigned Index = ID - FirstDeclID;
+
+ // Record the offset for this declaration
+ SourceLocation Loc = D->getLocation();
+ if (DeclOffsets.size() == Index)
+ DeclOffsets.push_back(DeclOffset(Loc, Stream.GetCurrentBitNo()));
+ else if (DeclOffsets.size() < Index) {
+ DeclOffsets.resize(Index+1);
+ DeclOffsets[Index].setLocation(Loc);
+ DeclOffsets[Index].BitOffset = Stream.GetCurrentBitNo();
+ }
+
+ SourceManager &SM = Context.getSourceManager();
+ if (Loc.isValid() && SM.isLocalSourceLocation(Loc))
+ associateDeclWithFile(D, ID);
+ }
+
+ // Build and emit a record for this declaration
+ Record.clear();
+ W.Code = (serialization::DeclCode)0;
+ W.AbbrevToUse = 0;
+ W.Visit(D);
+ if (DC) W.VisitDeclContext(DC, LexicalOffset, VisibleOffset);
+
+ if (!W.Code)
+ llvm::report_fatal_error(StringRef("unexpected declaration kind '") +
+ D->getDeclKindName() + "'");
+ Stream.EmitRecord(W.Code, Record, W.AbbrevToUse);
+
+ // Flush any expressions, base specifiers, and ctor initializers that
+ // were written as part of this declaration.
+ FlushPendingAfterDecl();
+
+ // Note declarations that should be deserialized eagerly so that we can add
+ // them to a record in the AST file later.
+ if (isRequiredDecl(D, Context))
+ EagerlyDeserializedDecls.push_back(ID);
+}
+
+void ASTWriter::AddFunctionDefinition(const FunctionDecl *FD,
+ RecordData &Record) {
+ ClearSwitchCaseIDs();
+
+ ASTDeclWriter W(*this, FD->getASTContext(), Record);
+ W.AddFunctionDefinition(FD);
+}
diff --git a/contrib/llvm/tools/clang/lib/Serialization/ASTWriterStmt.cpp b/contrib/llvm/tools/clang/lib/Serialization/ASTWriterStmt.cpp
new file mode 100644
index 0000000..ec822f0
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Serialization/ASTWriterStmt.cpp
@@ -0,0 +1,2203 @@
+//===--- ASTWriterStmt.cpp - Statement and Expression Serialization -------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// \brief Implements serialization for Statements and Expressions.
+///
+//===----------------------------------------------------------------------===//
+
+#include "clang/Serialization/ASTWriter.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Lex/Token.h"
+#include "llvm/Bitcode/BitstreamWriter.h"
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// Statement/expression serialization
+//===----------------------------------------------------------------------===//
+
+namespace clang {
+
+ class ASTStmtWriter : public StmtVisitor<ASTStmtWriter, void> {
+ friend class OMPClauseWriter;
+ ASTWriter &Writer;
+ ASTWriter::RecordData &Record;
+
+ public:
+ serialization::StmtCode Code;
+ unsigned AbbrevToUse;
+
+ ASTStmtWriter(ASTWriter &Writer, ASTWriter::RecordData &Record)
+ : Writer(Writer), Record(Record) { }
+
+ void AddTemplateKWAndArgsInfo(const ASTTemplateKWAndArgsInfo &Args);
+
+ void VisitStmt(Stmt *S);
+#define STMT(Type, Base) \
+ void Visit##Type(Type *);
+#include "clang/AST/StmtNodes.inc"
+ };
+}
+
+void ASTStmtWriter::
+AddTemplateKWAndArgsInfo(const ASTTemplateKWAndArgsInfo &Args) {
+ Writer.AddSourceLocation(Args.getTemplateKeywordLoc(), Record);
+ Writer.AddSourceLocation(Args.LAngleLoc, Record);
+ Writer.AddSourceLocation(Args.RAngleLoc, Record);
+ for (unsigned i=0; i != Args.NumTemplateArgs; ++i)
+ Writer.AddTemplateArgumentLoc(Args.getTemplateArgs()[i], Record);
+}
+
+void ASTStmtWriter::VisitStmt(Stmt *S) {
+}
+
+void ASTStmtWriter::VisitNullStmt(NullStmt *S) {
+ VisitStmt(S);
+ Writer.AddSourceLocation(S->getSemiLoc(), Record);
+ Record.push_back(S->HasLeadingEmptyMacro);
+ Code = serialization::STMT_NULL;
+}
+
+void ASTStmtWriter::VisitCompoundStmt(CompoundStmt *S) {
+ VisitStmt(S);
+ Record.push_back(S->size());
+ for (auto *CS : S->body())
+ Writer.AddStmt(CS);
+ Writer.AddSourceLocation(S->getLBracLoc(), Record);
+ Writer.AddSourceLocation(S->getRBracLoc(), Record);
+ Code = serialization::STMT_COMPOUND;
+}
+
+void ASTStmtWriter::VisitSwitchCase(SwitchCase *S) {
+ VisitStmt(S);
+ Record.push_back(Writer.getSwitchCaseID(S));
+ Writer.AddSourceLocation(S->getKeywordLoc(), Record);
+ Writer.AddSourceLocation(S->getColonLoc(), Record);
+}
+
+void ASTStmtWriter::VisitCaseStmt(CaseStmt *S) {
+ VisitSwitchCase(S);
+ Writer.AddStmt(S->getLHS());
+ Writer.AddStmt(S->getRHS());
+ Writer.AddStmt(S->getSubStmt());
+ Writer.AddSourceLocation(S->getEllipsisLoc(), Record);
+ Code = serialization::STMT_CASE;
+}
+
+void ASTStmtWriter::VisitDefaultStmt(DefaultStmt *S) {
+ VisitSwitchCase(S);
+ Writer.AddStmt(S->getSubStmt());
+ Code = serialization::STMT_DEFAULT;
+}
+
+void ASTStmtWriter::VisitLabelStmt(LabelStmt *S) {
+ VisitStmt(S);
+ Writer.AddDeclRef(S->getDecl(), Record);
+ Writer.AddStmt(S->getSubStmt());
+ Writer.AddSourceLocation(S->getIdentLoc(), Record);
+ Code = serialization::STMT_LABEL;
+}
+
+void ASTStmtWriter::VisitAttributedStmt(AttributedStmt *S) {
+ VisitStmt(S);
+ Record.push_back(S->getAttrs().size());
+ Writer.WriteAttributes(S->getAttrs(), Record);
+ Writer.AddStmt(S->getSubStmt());
+ Writer.AddSourceLocation(S->getAttrLoc(), Record);
+ Code = serialization::STMT_ATTRIBUTED;
+}
+
+void ASTStmtWriter::VisitIfStmt(IfStmt *S) {
+ VisitStmt(S);
+ Writer.AddDeclRef(S->getConditionVariable(), Record);
+ Writer.AddStmt(S->getCond());
+ Writer.AddStmt(S->getThen());
+ Writer.AddStmt(S->getElse());
+ Writer.AddSourceLocation(S->getIfLoc(), Record);
+ Writer.AddSourceLocation(S->getElseLoc(), Record);
+ Code = serialization::STMT_IF;
+}
+
+void ASTStmtWriter::VisitSwitchStmt(SwitchStmt *S) {
+ VisitStmt(S);
+ Writer.AddDeclRef(S->getConditionVariable(), Record);
+ Writer.AddStmt(S->getCond());
+ Writer.AddStmt(S->getBody());
+ Writer.AddSourceLocation(S->getSwitchLoc(), Record);
+ Record.push_back(S->isAllEnumCasesCovered());
+ for (SwitchCase *SC = S->getSwitchCaseList(); SC;
+ SC = SC->getNextSwitchCase())
+ Record.push_back(Writer.RecordSwitchCaseID(SC));
+ Code = serialization::STMT_SWITCH;
+}
+
+void ASTStmtWriter::VisitWhileStmt(WhileStmt *S) {
+ VisitStmt(S);
+ Writer.AddDeclRef(S->getConditionVariable(), Record);
+ Writer.AddStmt(S->getCond());
+ Writer.AddStmt(S->getBody());
+ Writer.AddSourceLocation(S->getWhileLoc(), Record);
+ Code = serialization::STMT_WHILE;
+}
+
+void ASTStmtWriter::VisitDoStmt(DoStmt *S) {
+ VisitStmt(S);
+ Writer.AddStmt(S->getCond());
+ Writer.AddStmt(S->getBody());
+ Writer.AddSourceLocation(S->getDoLoc(), Record);
+ Writer.AddSourceLocation(S->getWhileLoc(), Record);
+ Writer.AddSourceLocation(S->getRParenLoc(), Record);
+ Code = serialization::STMT_DO;
+}
+
+void ASTStmtWriter::VisitForStmt(ForStmt *S) {
+ VisitStmt(S);
+ Writer.AddStmt(S->getInit());
+ Writer.AddStmt(S->getCond());
+ Writer.AddDeclRef(S->getConditionVariable(), Record);
+ Writer.AddStmt(S->getInc());
+ Writer.AddStmt(S->getBody());
+ Writer.AddSourceLocation(S->getForLoc(), Record);
+ Writer.AddSourceLocation(S->getLParenLoc(), Record);
+ Writer.AddSourceLocation(S->getRParenLoc(), Record);
+ Code = serialization::STMT_FOR;
+}
+
+void ASTStmtWriter::VisitGotoStmt(GotoStmt *S) {
+ VisitStmt(S);
+ Writer.AddDeclRef(S->getLabel(), Record);
+ Writer.AddSourceLocation(S->getGotoLoc(), Record);
+ Writer.AddSourceLocation(S->getLabelLoc(), Record);
+ Code = serialization::STMT_GOTO;
+}
+
+void ASTStmtWriter::VisitIndirectGotoStmt(IndirectGotoStmt *S) {
+ VisitStmt(S);
+ Writer.AddSourceLocation(S->getGotoLoc(), Record);
+ Writer.AddSourceLocation(S->getStarLoc(), Record);
+ Writer.AddStmt(S->getTarget());
+ Code = serialization::STMT_INDIRECT_GOTO;
+}
+
+void ASTStmtWriter::VisitContinueStmt(ContinueStmt *S) {
+ VisitStmt(S);
+ Writer.AddSourceLocation(S->getContinueLoc(), Record);
+ Code = serialization::STMT_CONTINUE;
+}
+
+void ASTStmtWriter::VisitBreakStmt(BreakStmt *S) {
+ VisitStmt(S);
+ Writer.AddSourceLocation(S->getBreakLoc(), Record);
+ Code = serialization::STMT_BREAK;
+}
+
+void ASTStmtWriter::VisitReturnStmt(ReturnStmt *S) {
+ VisitStmt(S);
+ Writer.AddStmt(S->getRetValue());
+ Writer.AddSourceLocation(S->getReturnLoc(), Record);
+ Writer.AddDeclRef(S->getNRVOCandidate(), Record);
+ Code = serialization::STMT_RETURN;
+}
+
+void ASTStmtWriter::VisitDeclStmt(DeclStmt *S) {
+ VisitStmt(S);
+ Writer.AddSourceLocation(S->getStartLoc(), Record);
+ Writer.AddSourceLocation(S->getEndLoc(), Record);
+ DeclGroupRef DG = S->getDeclGroup();
+ for (DeclGroupRef::iterator D = DG.begin(), DEnd = DG.end(); D != DEnd; ++D)
+ Writer.AddDeclRef(*D, Record);
+ Code = serialization::STMT_DECL;
+}
+
+void ASTStmtWriter::VisitAsmStmt(AsmStmt *S) {
+ VisitStmt(S);
+ Record.push_back(S->getNumOutputs());
+ Record.push_back(S->getNumInputs());
+ Record.push_back(S->getNumClobbers());
+ Writer.AddSourceLocation(S->getAsmLoc(), Record);
+ Record.push_back(S->isVolatile());
+ Record.push_back(S->isSimple());
+}
+
+void ASTStmtWriter::VisitGCCAsmStmt(GCCAsmStmt *S) {
+ VisitAsmStmt(S);
+ Writer.AddSourceLocation(S->getRParenLoc(), Record);
+ Writer.AddStmt(S->getAsmString());
+
+ // Outputs
+ for (unsigned I = 0, N = S->getNumOutputs(); I != N; ++I) {
+ Writer.AddIdentifierRef(S->getOutputIdentifier(I), Record);
+ Writer.AddStmt(S->getOutputConstraintLiteral(I));
+ Writer.AddStmt(S->getOutputExpr(I));
+ }
+
+ // Inputs
+ for (unsigned I = 0, N = S->getNumInputs(); I != N; ++I) {
+ Writer.AddIdentifierRef(S->getInputIdentifier(I), Record);
+ Writer.AddStmt(S->getInputConstraintLiteral(I));
+ Writer.AddStmt(S->getInputExpr(I));
+ }
+
+ // Clobbers
+ for (unsigned I = 0, N = S->getNumClobbers(); I != N; ++I)
+ Writer.AddStmt(S->getClobberStringLiteral(I));
+
+ Code = serialization::STMT_GCCASM;
+}
+
+void ASTStmtWriter::VisitMSAsmStmt(MSAsmStmt *S) {
+ VisitAsmStmt(S);
+ Writer.AddSourceLocation(S->getLBraceLoc(), Record);
+ Writer.AddSourceLocation(S->getEndLoc(), Record);
+ Record.push_back(S->getNumAsmToks());
+ Writer.AddString(S->getAsmString(), Record);
+
+ // Tokens
+ for (unsigned I = 0, N = S->getNumAsmToks(); I != N; ++I) {
+ Writer.AddToken(S->getAsmToks()[I], Record);
+ }
+
+ // Clobbers
+ for (unsigned I = 0, N = S->getNumClobbers(); I != N; ++I) {
+ Writer.AddString(S->getClobber(I), Record);
+ }
+
+ // Outputs
+ for (unsigned I = 0, N = S->getNumOutputs(); I != N; ++I) {
+ Writer.AddStmt(S->getOutputExpr(I));
+ Writer.AddString(S->getOutputConstraint(I), Record);
+ }
+
+ // Inputs
+ for (unsigned I = 0, N = S->getNumInputs(); I != N; ++I) {
+ Writer.AddStmt(S->getInputExpr(I));
+ Writer.AddString(S->getInputConstraint(I), Record);
+ }
+
+ Code = serialization::STMT_MSASM;
+}
+
+void ASTStmtWriter::VisitCapturedStmt(CapturedStmt *S) {
+ VisitStmt(S);
+ // NumCaptures
+ Record.push_back(std::distance(S->capture_begin(), S->capture_end()));
+
+ // CapturedDecl and captured region kind
+ Writer.AddDeclRef(S->getCapturedDecl(), Record);
+ Record.push_back(S->getCapturedRegionKind());
+
+ Writer.AddDeclRef(S->getCapturedRecordDecl(), Record);
+
+ // Capture inits
+ for (auto *I : S->capture_inits())
+ Writer.AddStmt(I);
+
+ // Body
+ Writer.AddStmt(S->getCapturedStmt());
+
+ // Captures
+ for (const auto &I : S->captures()) {
+ if (I.capturesThis() || I.capturesVariableArrayType())
+ Writer.AddDeclRef(nullptr, Record);
+ else
+ Writer.AddDeclRef(I.getCapturedVar(), Record);
+ Record.push_back(I.getCaptureKind());
+ Writer.AddSourceLocation(I.getLocation(), Record);
+ }
+
+ Code = serialization::STMT_CAPTURED;
+}
+
+void ASTStmtWriter::VisitExpr(Expr *E) {
+ VisitStmt(E);
+ Writer.AddTypeRef(E->getType(), Record);
+ Record.push_back(E->isTypeDependent());
+ Record.push_back(E->isValueDependent());
+ Record.push_back(E->isInstantiationDependent());
+ Record.push_back(E->containsUnexpandedParameterPack());
+ Record.push_back(E->getValueKind());
+ Record.push_back(E->getObjectKind());
+}
+
+void ASTStmtWriter::VisitPredefinedExpr(PredefinedExpr *E) {
+ VisitExpr(E);
+ Writer.AddSourceLocation(E->getLocation(), Record);
+ Record.push_back(E->getIdentType()); // FIXME: stable encoding
+ Writer.AddStmt(E->getFunctionName());
+ Code = serialization::EXPR_PREDEFINED;
+}
+
+void ASTStmtWriter::VisitDeclRefExpr(DeclRefExpr *E) {
+ VisitExpr(E);
+
+ Record.push_back(E->hasQualifier());
+ Record.push_back(E->getDecl() != E->getFoundDecl());
+ Record.push_back(E->hasTemplateKWAndArgsInfo());
+ Record.push_back(E->hadMultipleCandidates());
+ Record.push_back(E->refersToEnclosingVariableOrCapture());
+
+ if (E->hasTemplateKWAndArgsInfo()) {
+ unsigned NumTemplateArgs = E->getNumTemplateArgs();
+ Record.push_back(NumTemplateArgs);
+ }
+
+ DeclarationName::NameKind nk = (E->getDecl()->getDeclName().getNameKind());
+
+ if ((!E->hasTemplateKWAndArgsInfo()) && (!E->hasQualifier()) &&
+ (E->getDecl() == E->getFoundDecl()) &&
+ nk == DeclarationName::Identifier) {
+ AbbrevToUse = Writer.getDeclRefExprAbbrev();
+ }
+
+ if (E->hasQualifier())
+ Writer.AddNestedNameSpecifierLoc(E->getQualifierLoc(), Record);
+
+ if (E->getDecl() != E->getFoundDecl())
+ Writer.AddDeclRef(E->getFoundDecl(), Record);
+
+ if (E->hasTemplateKWAndArgsInfo())
+ AddTemplateKWAndArgsInfo(*E->getTemplateKWAndArgsInfo());
+
+ Writer.AddDeclRef(E->getDecl(), Record);
+ Writer.AddSourceLocation(E->getLocation(), Record);
+ Writer.AddDeclarationNameLoc(E->DNLoc, E->getDecl()->getDeclName(), Record);
+ Code = serialization::EXPR_DECL_REF;
+}
+
+void ASTStmtWriter::VisitIntegerLiteral(IntegerLiteral *E) {
+ VisitExpr(E);
+ Writer.AddSourceLocation(E->getLocation(), Record);
+ Writer.AddAPInt(E->getValue(), Record);
+
+ if (E->getValue().getBitWidth() == 32) {
+ AbbrevToUse = Writer.getIntegerLiteralAbbrev();
+ }
+
+ Code = serialization::EXPR_INTEGER_LITERAL;
+}
+
+void ASTStmtWriter::VisitFloatingLiteral(FloatingLiteral *E) {
+ VisitExpr(E);
+ Record.push_back(E->getRawSemantics());
+ Record.push_back(E->isExact());
+ Writer.AddAPFloat(E->getValue(), Record);
+ Writer.AddSourceLocation(E->getLocation(), Record);
+ Code = serialization::EXPR_FLOATING_LITERAL;
+}
+
+void ASTStmtWriter::VisitImaginaryLiteral(ImaginaryLiteral *E) {
+ VisitExpr(E);
+ Writer.AddStmt(E->getSubExpr());
+ Code = serialization::EXPR_IMAGINARY_LITERAL;
+}
+
+void ASTStmtWriter::VisitStringLiteral(StringLiteral *E) {
+ VisitExpr(E);
+ Record.push_back(E->getByteLength());
+ Record.push_back(E->getNumConcatenated());
+ Record.push_back(E->getKind());
+ Record.push_back(E->isPascal());
+ // FIXME: String data should be stored as a blob at the end of the
+ // StringLiteral. However, we can't do so now because we have no
+ // provision for coping with abbreviations when we're jumping around
+ // the AST file during deserialization.
+ Record.append(E->getBytes().begin(), E->getBytes().end());
+ for (unsigned I = 0, N = E->getNumConcatenated(); I != N; ++I)
+ Writer.AddSourceLocation(E->getStrTokenLoc(I), Record);
+ Code = serialization::EXPR_STRING_LITERAL;
+}
+
+void ASTStmtWriter::VisitCharacterLiteral(CharacterLiteral *E) {
+ VisitExpr(E);
+ Record.push_back(E->getValue());
+ Writer.AddSourceLocation(E->getLocation(), Record);
+ Record.push_back(E->getKind());
+
+ AbbrevToUse = Writer.getCharacterLiteralAbbrev();
+
+ Code = serialization::EXPR_CHARACTER_LITERAL;
+}
+
+void ASTStmtWriter::VisitParenExpr(ParenExpr *E) {
+ VisitExpr(E);
+ Writer.AddSourceLocation(E->getLParen(), Record);
+ Writer.AddSourceLocation(E->getRParen(), Record);
+ Writer.AddStmt(E->getSubExpr());
+ Code = serialization::EXPR_PAREN;
+}
+
+void ASTStmtWriter::VisitParenListExpr(ParenListExpr *E) {
+ VisitExpr(E);
+ Record.push_back(E->NumExprs);
+ for (unsigned i=0; i != E->NumExprs; ++i)
+ Writer.AddStmt(E->Exprs[i]);
+ Writer.AddSourceLocation(E->LParenLoc, Record);
+ Writer.AddSourceLocation(E->RParenLoc, Record);
+ Code = serialization::EXPR_PAREN_LIST;
+}
+
+void ASTStmtWriter::VisitUnaryOperator(UnaryOperator *E) {
+ VisitExpr(E);
+ Writer.AddStmt(E->getSubExpr());
+ Record.push_back(E->getOpcode()); // FIXME: stable encoding
+ Writer.AddSourceLocation(E->getOperatorLoc(), Record);
+ Code = serialization::EXPR_UNARY_OPERATOR;
+}
+
+void ASTStmtWriter::VisitOffsetOfExpr(OffsetOfExpr *E) {
+ VisitExpr(E);
+ Record.push_back(E->getNumComponents());
+ Record.push_back(E->getNumExpressions());
+ Writer.AddSourceLocation(E->getOperatorLoc(), Record);
+ Writer.AddSourceLocation(E->getRParenLoc(), Record);
+ Writer.AddTypeSourceInfo(E->getTypeSourceInfo(), Record);
+ for (unsigned I = 0, N = E->getNumComponents(); I != N; ++I) {
+ const OffsetOfExpr::OffsetOfNode &ON = E->getComponent(I);
+ Record.push_back(ON.getKind()); // FIXME: Stable encoding
+ Writer.AddSourceLocation(ON.getSourceRange().getBegin(), Record);
+ Writer.AddSourceLocation(ON.getSourceRange().getEnd(), Record);
+ switch (ON.getKind()) {
+ case OffsetOfExpr::OffsetOfNode::Array:
+ Record.push_back(ON.getArrayExprIndex());
+ break;
+
+ case OffsetOfExpr::OffsetOfNode::Field:
+ Writer.AddDeclRef(ON.getField(), Record);
+ break;
+
+ case OffsetOfExpr::OffsetOfNode::Identifier:
+ Writer.AddIdentifierRef(ON.getFieldName(), Record);
+ break;
+
+ case OffsetOfExpr::OffsetOfNode::Base:
+ Writer.AddCXXBaseSpecifier(*ON.getBase(), Record);
+ break;
+ }
+ }
+ for (unsigned I = 0, N = E->getNumExpressions(); I != N; ++I)
+ Writer.AddStmt(E->getIndexExpr(I));
+ Code = serialization::EXPR_OFFSETOF;
+}
+
+void ASTStmtWriter::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E) {
+ VisitExpr(E);
+ Record.push_back(E->getKind());
+ if (E->isArgumentType())
+ Writer.AddTypeSourceInfo(E->getArgumentTypeInfo(), Record);
+ else {
+ Record.push_back(0);
+ Writer.AddStmt(E->getArgumentExpr());
+ }
+ Writer.AddSourceLocation(E->getOperatorLoc(), Record);
+ Writer.AddSourceLocation(E->getRParenLoc(), Record);
+ Code = serialization::EXPR_SIZEOF_ALIGN_OF;
+}
+
+void ASTStmtWriter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
+ VisitExpr(E);
+ Writer.AddStmt(E->getLHS());
+ Writer.AddStmt(E->getRHS());
+ Writer.AddSourceLocation(E->getRBracketLoc(), Record);
+ Code = serialization::EXPR_ARRAY_SUBSCRIPT;
+}
+
+void ASTStmtWriter::VisitCallExpr(CallExpr *E) {
+ VisitExpr(E);
+ Record.push_back(E->getNumArgs());
+ Writer.AddSourceLocation(E->getRParenLoc(), Record);
+ Writer.AddStmt(E->getCallee());
+ for (CallExpr::arg_iterator Arg = E->arg_begin(), ArgEnd = E->arg_end();
+ Arg != ArgEnd; ++Arg)
+ Writer.AddStmt(*Arg);
+ Code = serialization::EXPR_CALL;
+}
+
+void ASTStmtWriter::VisitMemberExpr(MemberExpr *E) {
+ // Don't call VisitExpr, we'll write everything here.
+
+ Record.push_back(E->hasQualifier());
+ if (E->hasQualifier())
+ Writer.AddNestedNameSpecifierLoc(E->getQualifierLoc(), Record);
+
+ Record.push_back(E->HasTemplateKWAndArgsInfo);
+ if (E->HasTemplateKWAndArgsInfo) {
+ Writer.AddSourceLocation(E->getTemplateKeywordLoc(), Record);
+ unsigned NumTemplateArgs = E->getNumTemplateArgs();
+ Record.push_back(NumTemplateArgs);
+ Writer.AddSourceLocation(E->getLAngleLoc(), Record);
+ Writer.AddSourceLocation(E->getRAngleLoc(), Record);
+ for (unsigned i=0; i != NumTemplateArgs; ++i)
+ Writer.AddTemplateArgumentLoc(E->getTemplateArgs()[i], Record);
+ }
+
+ Record.push_back(E->hadMultipleCandidates());
+
+ DeclAccessPair FoundDecl = E->getFoundDecl();
+ Writer.AddDeclRef(FoundDecl.getDecl(), Record);
+ Record.push_back(FoundDecl.getAccess());
+
+ Writer.AddTypeRef(E->getType(), Record);
+ Record.push_back(E->getValueKind());
+ Record.push_back(E->getObjectKind());
+ Writer.AddStmt(E->getBase());
+ Writer.AddDeclRef(E->getMemberDecl(), Record);
+ Writer.AddSourceLocation(E->getMemberLoc(), Record);
+ Record.push_back(E->isArrow());
+ Writer.AddSourceLocation(E->getOperatorLoc(), Record);
+ Writer.AddDeclarationNameLoc(E->MemberDNLoc,
+ E->getMemberDecl()->getDeclName(), Record);
+ Code = serialization::EXPR_MEMBER;
+}
+
+void ASTStmtWriter::VisitObjCIsaExpr(ObjCIsaExpr *E) {
+ VisitExpr(E);
+ Writer.AddStmt(E->getBase());
+ Writer.AddSourceLocation(E->getIsaMemberLoc(), Record);
+ Writer.AddSourceLocation(E->getOpLoc(), Record);
+ Record.push_back(E->isArrow());
+ Code = serialization::EXPR_OBJC_ISA;
+}
+
+void ASTStmtWriter::
+VisitObjCIndirectCopyRestoreExpr(ObjCIndirectCopyRestoreExpr *E) {
+ VisitExpr(E);
+ Writer.AddStmt(E->getSubExpr());
+ Record.push_back(E->shouldCopy());
+ Code = serialization::EXPR_OBJC_INDIRECT_COPY_RESTORE;
+}
+
+void ASTStmtWriter::VisitObjCBridgedCastExpr(ObjCBridgedCastExpr *E) {
+ VisitExplicitCastExpr(E);
+ Writer.AddSourceLocation(E->getLParenLoc(), Record);
+ Writer.AddSourceLocation(E->getBridgeKeywordLoc(), Record);
+ Record.push_back(E->getBridgeKind()); // FIXME: Stable encoding
+ Code = serialization::EXPR_OBJC_BRIDGED_CAST;
+}
+
+void ASTStmtWriter::VisitCastExpr(CastExpr *E) {
+ VisitExpr(E);
+ Record.push_back(E->path_size());
+ Writer.AddStmt(E->getSubExpr());
+ Record.push_back(E->getCastKind()); // FIXME: stable encoding
+
+ for (CastExpr::path_iterator
+ PI = E->path_begin(), PE = E->path_end(); PI != PE; ++PI)
+ Writer.AddCXXBaseSpecifier(**PI, Record);
+}
+
+void ASTStmtWriter::VisitBinaryOperator(BinaryOperator *E) {
+ VisitExpr(E);
+ Writer.AddStmt(E->getLHS());
+ Writer.AddStmt(E->getRHS());
+ Record.push_back(E->getOpcode()); // FIXME: stable encoding
+ Writer.AddSourceLocation(E->getOperatorLoc(), Record);
+ Record.push_back(E->isFPContractable());
+ Code = serialization::EXPR_BINARY_OPERATOR;
+}
+
+void ASTStmtWriter::VisitCompoundAssignOperator(CompoundAssignOperator *E) {
+ VisitBinaryOperator(E);
+ Writer.AddTypeRef(E->getComputationLHSType(), Record);
+ Writer.AddTypeRef(E->getComputationResultType(), Record);
+ Code = serialization::EXPR_COMPOUND_ASSIGN_OPERATOR;
+}
+
+void ASTStmtWriter::VisitConditionalOperator(ConditionalOperator *E) {
+ VisitExpr(E);
+ Writer.AddStmt(E->getCond());
+ Writer.AddStmt(E->getLHS());
+ Writer.AddStmt(E->getRHS());
+ Writer.AddSourceLocation(E->getQuestionLoc(), Record);
+ Writer.AddSourceLocation(E->getColonLoc(), Record);
+ Code = serialization::EXPR_CONDITIONAL_OPERATOR;
+}
+
+void
+ASTStmtWriter::VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
+ VisitExpr(E);
+ Writer.AddStmt(E->getOpaqueValue());
+ Writer.AddStmt(E->getCommon());
+ Writer.AddStmt(E->getCond());
+ Writer.AddStmt(E->getTrueExpr());
+ Writer.AddStmt(E->getFalseExpr());
+ Writer.AddSourceLocation(E->getQuestionLoc(), Record);
+ Writer.AddSourceLocation(E->getColonLoc(), Record);
+ Code = serialization::EXPR_BINARY_CONDITIONAL_OPERATOR;
+}
+
+void ASTStmtWriter::VisitImplicitCastExpr(ImplicitCastExpr *E) {
+ VisitCastExpr(E);
+
+ if (E->path_size() == 0)
+ AbbrevToUse = Writer.getExprImplicitCastAbbrev();
+
+ Code = serialization::EXPR_IMPLICIT_CAST;
+}
+
+void ASTStmtWriter::VisitExplicitCastExpr(ExplicitCastExpr *E) {
+ VisitCastExpr(E);
+ Writer.AddTypeSourceInfo(E->getTypeInfoAsWritten(), Record);
+}
+
+void ASTStmtWriter::VisitCStyleCastExpr(CStyleCastExpr *E) {
+ VisitExplicitCastExpr(E);
+ Writer.AddSourceLocation(E->getLParenLoc(), Record);
+ Writer.AddSourceLocation(E->getRParenLoc(), Record);
+ Code = serialization::EXPR_CSTYLE_CAST;
+}
+
+void ASTStmtWriter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
+ VisitExpr(E);
+ Writer.AddSourceLocation(E->getLParenLoc(), Record);
+ Writer.AddTypeSourceInfo(E->getTypeSourceInfo(), Record);
+ Writer.AddStmt(E->getInitializer());
+ Record.push_back(E->isFileScope());
+ Code = serialization::EXPR_COMPOUND_LITERAL;
+}
+
+void ASTStmtWriter::VisitExtVectorElementExpr(ExtVectorElementExpr *E) {
+ VisitExpr(E);
+ Writer.AddStmt(E->getBase());
+ Writer.AddIdentifierRef(&E->getAccessor(), Record);
+ Writer.AddSourceLocation(E->getAccessorLoc(), Record);
+ Code = serialization::EXPR_EXT_VECTOR_ELEMENT;
+}
+
+void ASTStmtWriter::VisitInitListExpr(InitListExpr *E) {
+ VisitExpr(E);
+ // NOTE: only add the (possibly null) syntactic form.
+ // No need to serialize the isSemanticForm flag and the semantic form.
+ Writer.AddStmt(E->getSyntacticForm());
+ Writer.AddSourceLocation(E->getLBraceLoc(), Record);
+ Writer.AddSourceLocation(E->getRBraceLoc(), Record);
+ bool isArrayFiller = E->ArrayFillerOrUnionFieldInit.is<Expr*>();
+ Record.push_back(isArrayFiller);
+ if (isArrayFiller)
+ Writer.AddStmt(E->getArrayFiller());
+ else
+ Writer.AddDeclRef(E->getInitializedFieldInUnion(), Record);
+ Record.push_back(E->hadArrayRangeDesignator());
+ Record.push_back(E->getNumInits());
+ if (isArrayFiller) {
+ // ArrayFiller may have filled "holes" due to designated initializer.
+ // Replace them by 0 to indicate that the filler goes in that place.
+ Expr *filler = E->getArrayFiller();
+ for (unsigned I = 0, N = E->getNumInits(); I != N; ++I)
+ Writer.AddStmt(E->getInit(I) != filler ? E->getInit(I) : nullptr);
+ } else {
+ for (unsigned I = 0, N = E->getNumInits(); I != N; ++I)
+ Writer.AddStmt(E->getInit(I));
+ }
+ Code = serialization::EXPR_INIT_LIST;
+}
+
+void ASTStmtWriter::VisitDesignatedInitExpr(DesignatedInitExpr *E) {
+ VisitExpr(E);
+ Record.push_back(E->getNumSubExprs());
+ for (unsigned I = 0, N = E->getNumSubExprs(); I != N; ++I)
+ Writer.AddStmt(E->getSubExpr(I));
+ Writer.AddSourceLocation(E->getEqualOrColonLoc(), Record);
+ Record.push_back(E->usesGNUSyntax());
+ for (DesignatedInitExpr::designators_iterator D = E->designators_begin(),
+ DEnd = E->designators_end();
+ D != DEnd; ++D) {
+ if (D->isFieldDesignator()) {
+ if (FieldDecl *Field = D->getField()) {
+ Record.push_back(serialization::DESIG_FIELD_DECL);
+ Writer.AddDeclRef(Field, Record);
+ } else {
+ Record.push_back(serialization::DESIG_FIELD_NAME);
+ Writer.AddIdentifierRef(D->getFieldName(), Record);
+ }
+ Writer.AddSourceLocation(D->getDotLoc(), Record);
+ Writer.AddSourceLocation(D->getFieldLoc(), Record);
+ } else if (D->isArrayDesignator()) {
+ Record.push_back(serialization::DESIG_ARRAY);
+ Record.push_back(D->getFirstExprIndex());
+ Writer.AddSourceLocation(D->getLBracketLoc(), Record);
+ Writer.AddSourceLocation(D->getRBracketLoc(), Record);
+ } else {
+ assert(D->isArrayRangeDesignator() && "Unknown designator");
+ Record.push_back(serialization::DESIG_ARRAY_RANGE);
+ Record.push_back(D->getFirstExprIndex());
+ Writer.AddSourceLocation(D->getLBracketLoc(), Record);
+ Writer.AddSourceLocation(D->getEllipsisLoc(), Record);
+ Writer.AddSourceLocation(D->getRBracketLoc(), Record);
+ }
+ }
+ Code = serialization::EXPR_DESIGNATED_INIT;
+}
+
+void ASTStmtWriter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
+ VisitExpr(E);
+ Code = serialization::EXPR_IMPLICIT_VALUE_INIT;
+}
+
+void ASTStmtWriter::VisitVAArgExpr(VAArgExpr *E) {
+ VisitExpr(E);
+ Writer.AddStmt(E->getSubExpr());
+ Writer.AddTypeSourceInfo(E->getWrittenTypeInfo(), Record);
+ Writer.AddSourceLocation(E->getBuiltinLoc(), Record);
+ Writer.AddSourceLocation(E->getRParenLoc(), Record);
+ Code = serialization::EXPR_VA_ARG;
+}
+
+void ASTStmtWriter::VisitAddrLabelExpr(AddrLabelExpr *E) {
+ VisitExpr(E);
+ Writer.AddSourceLocation(E->getAmpAmpLoc(), Record);
+ Writer.AddSourceLocation(E->getLabelLoc(), Record);
+ Writer.AddDeclRef(E->getLabel(), Record);
+ Code = serialization::EXPR_ADDR_LABEL;
+}
+
+void ASTStmtWriter::VisitStmtExpr(StmtExpr *E) {
+ VisitExpr(E);
+ Writer.AddStmt(E->getSubStmt());
+ Writer.AddSourceLocation(E->getLParenLoc(), Record);
+ Writer.AddSourceLocation(E->getRParenLoc(), Record);
+ Code = serialization::EXPR_STMT;
+}
+
+void ASTStmtWriter::VisitChooseExpr(ChooseExpr *E) {
+ VisitExpr(E);
+ Writer.AddStmt(E->getCond());
+ Writer.AddStmt(E->getLHS());
+ Writer.AddStmt(E->getRHS());
+ Writer.AddSourceLocation(E->getBuiltinLoc(), Record);
+ Writer.AddSourceLocation(E->getRParenLoc(), Record);
+ Record.push_back(E->isConditionDependent() ? false : E->isConditionTrue());
+ Code = serialization::EXPR_CHOOSE;
+}
+
+void ASTStmtWriter::VisitGNUNullExpr(GNUNullExpr *E) {
+ VisitExpr(E);
+ Writer.AddSourceLocation(E->getTokenLocation(), Record);
+ Code = serialization::EXPR_GNU_NULL;
+}
+
+void ASTStmtWriter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
+ VisitExpr(E);
+ Record.push_back(E->getNumSubExprs());
+ for (unsigned I = 0, N = E->getNumSubExprs(); I != N; ++I)
+ Writer.AddStmt(E->getExpr(I));
+ Writer.AddSourceLocation(E->getBuiltinLoc(), Record);
+ Writer.AddSourceLocation(E->getRParenLoc(), Record);
+ Code = serialization::EXPR_SHUFFLE_VECTOR;
+}
+
+void ASTStmtWriter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
+ VisitExpr(E);
+ Writer.AddSourceLocation(E->getBuiltinLoc(), Record);
+ Writer.AddSourceLocation(E->getRParenLoc(), Record);
+ Writer.AddTypeSourceInfo(E->getTypeSourceInfo(), Record);
+ Writer.AddStmt(E->getSrcExpr());
+ Code = serialization::EXPR_CONVERT_VECTOR;
+}
+
+void ASTStmtWriter::VisitBlockExpr(BlockExpr *E) {
+ VisitExpr(E);
+ Writer.AddDeclRef(E->getBlockDecl(), Record);
+ Code = serialization::EXPR_BLOCK;
+}
+
+void ASTStmtWriter::VisitGenericSelectionExpr(GenericSelectionExpr *E) {
+ VisitExpr(E);
+ Record.push_back(E->getNumAssocs());
+
+ Writer.AddStmt(E->getControllingExpr());
+ for (unsigned I = 0, N = E->getNumAssocs(); I != N; ++I) {
+ Writer.AddTypeSourceInfo(E->getAssocTypeSourceInfo(I), Record);
+ Writer.AddStmt(E->getAssocExpr(I));
+ }
+ Record.push_back(E->isResultDependent() ? -1U : E->getResultIndex());
+
+ Writer.AddSourceLocation(E->getGenericLoc(), Record);
+ Writer.AddSourceLocation(E->getDefaultLoc(), Record);
+ Writer.AddSourceLocation(E->getRParenLoc(), Record);
+ Code = serialization::EXPR_GENERIC_SELECTION;
+}
+
+void ASTStmtWriter::VisitPseudoObjectExpr(PseudoObjectExpr *E) {
+ VisitExpr(E);
+ Record.push_back(E->getNumSemanticExprs());
+
+ // Push the result index. Currently, this needs to exactly match
+ // the encoding used internally for ResultIndex.
+ unsigned result = E->getResultExprIndex();
+ result = (result == PseudoObjectExpr::NoResult ? 0 : result + 1);
+ Record.push_back(result);
+
+ Writer.AddStmt(E->getSyntacticForm());
+ for (PseudoObjectExpr::semantics_iterator
+ i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
+ Writer.AddStmt(*i);
+ }
+ Code = serialization::EXPR_PSEUDO_OBJECT;
+}
+
+void ASTStmtWriter::VisitAtomicExpr(AtomicExpr *E) {
+ VisitExpr(E);
+ Record.push_back(E->getOp());
+ for (unsigned I = 0, N = E->getNumSubExprs(); I != N; ++I)
+ Writer.AddStmt(E->getSubExprs()[I]);
+ Writer.AddSourceLocation(E->getBuiltinLoc(), Record);
+ Writer.AddSourceLocation(E->getRParenLoc(), Record);
+ Code = serialization::EXPR_ATOMIC;
+}
+
+//===----------------------------------------------------------------------===//
+// Objective-C Expressions and Statements.
+//===----------------------------------------------------------------------===//
+
+void ASTStmtWriter::VisitObjCStringLiteral(ObjCStringLiteral *E) {
+ VisitExpr(E);
+ Writer.AddStmt(E->getString());
+ Writer.AddSourceLocation(E->getAtLoc(), Record);
+ Code = serialization::EXPR_OBJC_STRING_LITERAL;
+}
+
+void ASTStmtWriter::VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
+ VisitExpr(E);
+ Writer.AddStmt(E->getSubExpr());
+ Writer.AddDeclRef(E->getBoxingMethod(), Record);
+ Writer.AddSourceRange(E->getSourceRange(), Record);
+ Code = serialization::EXPR_OBJC_BOXED_EXPRESSION;
+}
+
+void ASTStmtWriter::VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
+ VisitExpr(E);
+ Record.push_back(E->getNumElements());
+ for (unsigned i = 0; i < E->getNumElements(); i++)
+ Writer.AddStmt(E->getElement(i));
+ Writer.AddDeclRef(E->getArrayWithObjectsMethod(), Record);
+ Writer.AddSourceRange(E->getSourceRange(), Record);
+ Code = serialization::EXPR_OBJC_ARRAY_LITERAL;
+}
+
+void ASTStmtWriter::VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
+ VisitExpr(E);
+ Record.push_back(E->getNumElements());
+ Record.push_back(E->HasPackExpansions);
+ for (unsigned i = 0; i < E->getNumElements(); i++) {
+ ObjCDictionaryElement Element = E->getKeyValueElement(i);
+ Writer.AddStmt(Element.Key);
+ Writer.AddStmt(Element.Value);
+ if (E->HasPackExpansions) {
+ Writer.AddSourceLocation(Element.EllipsisLoc, Record);
+ unsigned NumExpansions = 0;
+ if (Element.NumExpansions)
+ NumExpansions = *Element.NumExpansions + 1;
+ Record.push_back(NumExpansions);
+ }
+ }
+
+ Writer.AddDeclRef(E->getDictWithObjectsMethod(), Record);
+ Writer.AddSourceRange(E->getSourceRange(), Record);
+ Code = serialization::EXPR_OBJC_DICTIONARY_LITERAL;
+}
+
+void ASTStmtWriter::VisitObjCEncodeExpr(ObjCEncodeExpr *E) {
+ VisitExpr(E);
+ Writer.AddTypeSourceInfo(E->getEncodedTypeSourceInfo(), Record);
+ Writer.AddSourceLocation(E->getAtLoc(), Record);
+ Writer.AddSourceLocation(E->getRParenLoc(), Record);
+ Code = serialization::EXPR_OBJC_ENCODE;
+}
+
+void ASTStmtWriter::VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
+ VisitExpr(E);
+ Writer.AddSelectorRef(E->getSelector(), Record);
+ Writer.AddSourceLocation(E->getAtLoc(), Record);
+ Writer.AddSourceLocation(E->getRParenLoc(), Record);
+ Code = serialization::EXPR_OBJC_SELECTOR_EXPR;
+}
+
+void ASTStmtWriter::VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
+ VisitExpr(E);
+ Writer.AddDeclRef(E->getProtocol(), Record);
+ Writer.AddSourceLocation(E->getAtLoc(), Record);
+ Writer.AddSourceLocation(E->ProtoLoc, Record);
+ Writer.AddSourceLocation(E->getRParenLoc(), Record);
+ Code = serialization::EXPR_OBJC_PROTOCOL_EXPR;
+}
+
+void ASTStmtWriter::VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
+ VisitExpr(E);
+ Writer.AddDeclRef(E->getDecl(), Record);
+ Writer.AddSourceLocation(E->getLocation(), Record);
+ Writer.AddSourceLocation(E->getOpLoc(), Record);
+ Writer.AddStmt(E->getBase());
+ Record.push_back(E->isArrow());
+ Record.push_back(E->isFreeIvar());
+ Code = serialization::EXPR_OBJC_IVAR_REF_EXPR;
+}
+
+void ASTStmtWriter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
+ VisitExpr(E);
+ Record.push_back(E->SetterAndMethodRefFlags.getInt());
+ Record.push_back(E->isImplicitProperty());
+ if (E->isImplicitProperty()) {
+ Writer.AddDeclRef(E->getImplicitPropertyGetter(), Record);
+ Writer.AddDeclRef(E->getImplicitPropertySetter(), Record);
+ } else {
+ Writer.AddDeclRef(E->getExplicitProperty(), Record);
+ }
+ Writer.AddSourceLocation(E->getLocation(), Record);
+ Writer.AddSourceLocation(E->getReceiverLocation(), Record);
+ if (E->isObjectReceiver()) {
+ Record.push_back(0);
+ Writer.AddStmt(E->getBase());
+ } else if (E->isSuperReceiver()) {
+ Record.push_back(1);
+ Writer.AddTypeRef(E->getSuperReceiverType(), Record);
+ } else {
+ Record.push_back(2);
+ Writer.AddDeclRef(E->getClassReceiver(), Record);
+ }
+
+ Code = serialization::EXPR_OBJC_PROPERTY_REF_EXPR;
+}
+
+void ASTStmtWriter::VisitObjCSubscriptRefExpr(ObjCSubscriptRefExpr *E) {
+ VisitExpr(E);
+ Writer.AddSourceLocation(E->getRBracket(), Record);
+ Writer.AddStmt(E->getBaseExpr());
+ Writer.AddStmt(E->getKeyExpr());
+ Writer.AddDeclRef(E->getAtIndexMethodDecl(), Record);
+ Writer.AddDeclRef(E->setAtIndexMethodDecl(), Record);
+
+ Code = serialization::EXPR_OBJC_SUBSCRIPT_REF_EXPR;
+}
+
+void ASTStmtWriter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
+ VisitExpr(E);
+ Record.push_back(E->getNumArgs());
+ Record.push_back(E->getNumStoredSelLocs());
+ Record.push_back(E->SelLocsKind);
+ Record.push_back(E->isDelegateInitCall());
+ Record.push_back(E->IsImplicit);
+ Record.push_back((unsigned)E->getReceiverKind()); // FIXME: stable encoding
+ switch (E->getReceiverKind()) {
+ case ObjCMessageExpr::Instance:
+ Writer.AddStmt(E->getInstanceReceiver());
+ break;
+
+ case ObjCMessageExpr::Class:
+ Writer.AddTypeSourceInfo(E->getClassReceiverTypeInfo(), Record);
+ break;
+
+ case ObjCMessageExpr::SuperClass:
+ case ObjCMessageExpr::SuperInstance:
+ Writer.AddTypeRef(E->getSuperType(), Record);
+ Writer.AddSourceLocation(E->getSuperLoc(), Record);
+ break;
+ }
+
+ if (E->getMethodDecl()) {
+ Record.push_back(1);
+ Writer.AddDeclRef(E->getMethodDecl(), Record);
+ } else {
+ Record.push_back(0);
+ Writer.AddSelectorRef(E->getSelector(), Record);
+ }
+
+ Writer.AddSourceLocation(E->getLeftLoc(), Record);
+ Writer.AddSourceLocation(E->getRightLoc(), Record);
+
+ for (CallExpr::arg_iterator Arg = E->arg_begin(), ArgEnd = E->arg_end();
+ Arg != ArgEnd; ++Arg)
+ Writer.AddStmt(*Arg);
+
+ SourceLocation *Locs = E->getStoredSelLocs();
+ for (unsigned i = 0, e = E->getNumStoredSelLocs(); i != e; ++i)
+ Writer.AddSourceLocation(Locs[i], Record);
+
+ Code = serialization::EXPR_OBJC_MESSAGE_EXPR;
+}
+
+void ASTStmtWriter::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
+ VisitStmt(S);
+ Writer.AddStmt(S->getElement());
+ Writer.AddStmt(S->getCollection());
+ Writer.AddStmt(S->getBody());
+ Writer.AddSourceLocation(S->getForLoc(), Record);
+ Writer.AddSourceLocation(S->getRParenLoc(), Record);
+ Code = serialization::STMT_OBJC_FOR_COLLECTION;
+}
+
+void ASTStmtWriter::VisitObjCAtCatchStmt(ObjCAtCatchStmt *S) {
+ Writer.AddStmt(S->getCatchBody());
+ Writer.AddDeclRef(S->getCatchParamDecl(), Record);
+ Writer.AddSourceLocation(S->getAtCatchLoc(), Record);
+ Writer.AddSourceLocation(S->getRParenLoc(), Record);
+ Code = serialization::STMT_OBJC_CATCH;
+}
+
+void ASTStmtWriter::VisitObjCAtFinallyStmt(ObjCAtFinallyStmt *S) {
+ Writer.AddStmt(S->getFinallyBody());
+ Writer.AddSourceLocation(S->getAtFinallyLoc(), Record);
+ Code = serialization::STMT_OBJC_FINALLY;
+}
+
+void ASTStmtWriter::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) {
+ Writer.AddStmt(S->getSubStmt());
+ Writer.AddSourceLocation(S->getAtLoc(), Record);
+ Code = serialization::STMT_OBJC_AUTORELEASE_POOL;
+}
+
+void ASTStmtWriter::VisitObjCAtTryStmt(ObjCAtTryStmt *S) {
+ Record.push_back(S->getNumCatchStmts());
+ Record.push_back(S->getFinallyStmt() != nullptr);
+ Writer.AddStmt(S->getTryBody());
+ for (unsigned I = 0, N = S->getNumCatchStmts(); I != N; ++I)
+ Writer.AddStmt(S->getCatchStmt(I));
+ if (S->getFinallyStmt())
+ Writer.AddStmt(S->getFinallyStmt());
+ Writer.AddSourceLocation(S->getAtTryLoc(), Record);
+ Code = serialization::STMT_OBJC_AT_TRY;
+}
+
+void ASTStmtWriter::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) {
+ Writer.AddStmt(S->getSynchExpr());
+ Writer.AddStmt(S->getSynchBody());
+ Writer.AddSourceLocation(S->getAtSynchronizedLoc(), Record);
+ Code = serialization::STMT_OBJC_AT_SYNCHRONIZED;
+}
+
+void ASTStmtWriter::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) {
+ Writer.AddStmt(S->getThrowExpr());
+ Writer.AddSourceLocation(S->getThrowLoc(), Record);
+ Code = serialization::STMT_OBJC_AT_THROW;
+}
+
+void ASTStmtWriter::VisitObjCBoolLiteralExpr(ObjCBoolLiteralExpr *E) {
+ VisitExpr(E);
+ Record.push_back(E->getValue());
+ Writer.AddSourceLocation(E->getLocation(), Record);
+ Code = serialization::EXPR_OBJC_BOOL_LITERAL;
+}
+
+//===----------------------------------------------------------------------===//
+// C++ Expressions and Statements.
+//===----------------------------------------------------------------------===//
+
+void ASTStmtWriter::VisitCXXCatchStmt(CXXCatchStmt *S) {
+ VisitStmt(S);
+ Writer.AddSourceLocation(S->getCatchLoc(), Record);
+ Writer.AddDeclRef(S->getExceptionDecl(), Record);
+ Writer.AddStmt(S->getHandlerBlock());
+ Code = serialization::STMT_CXX_CATCH;
+}
+
+void ASTStmtWriter::VisitCXXTryStmt(CXXTryStmt *S) {
+ VisitStmt(S);
+ Record.push_back(S->getNumHandlers());
+ Writer.AddSourceLocation(S->getTryLoc(), Record);
+ Writer.AddStmt(S->getTryBlock());
+ for (unsigned i = 0, e = S->getNumHandlers(); i != e; ++i)
+ Writer.AddStmt(S->getHandler(i));
+ Code = serialization::STMT_CXX_TRY;
+}
+
+void ASTStmtWriter::VisitCXXForRangeStmt(CXXForRangeStmt *S) {
+ VisitStmt(S);
+ Writer.AddSourceLocation(S->getForLoc(), Record);
+ Writer.AddSourceLocation(S->getColonLoc(), Record);
+ Writer.AddSourceLocation(S->getRParenLoc(), Record);
+ Writer.AddStmt(S->getRangeStmt());
+ Writer.AddStmt(S->getBeginEndStmt());
+ Writer.AddStmt(S->getCond());
+ Writer.AddStmt(S->getInc());
+ Writer.AddStmt(S->getLoopVarStmt());
+ Writer.AddStmt(S->getBody());
+ Code = serialization::STMT_CXX_FOR_RANGE;
+}
+
+void ASTStmtWriter::VisitMSDependentExistsStmt(MSDependentExistsStmt *S) {
+ VisitStmt(S);
+ Writer.AddSourceLocation(S->getKeywordLoc(), Record);
+ Record.push_back(S->isIfExists());
+ Writer.AddNestedNameSpecifierLoc(S->getQualifierLoc(), Record);
+ Writer.AddDeclarationNameInfo(S->getNameInfo(), Record);
+ Writer.AddStmt(S->getSubStmt());
+ Code = serialization::STMT_MS_DEPENDENT_EXISTS;
+}
+
+void ASTStmtWriter::VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
+ VisitCallExpr(E);
+ Record.push_back(E->getOperator());
+ Writer.AddSourceRange(E->Range, Record);
+ Record.push_back(E->isFPContractable());
+ Code = serialization::EXPR_CXX_OPERATOR_CALL;
+}
+
+void ASTStmtWriter::VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
+ VisitCallExpr(E);
+ Code = serialization::EXPR_CXX_MEMBER_CALL;
+}
+
+void ASTStmtWriter::VisitCXXConstructExpr(CXXConstructExpr *E) {
+ VisitExpr(E);
+ Record.push_back(E->getNumArgs());
+ for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I)
+ Writer.AddStmt(E->getArg(I));
+ Writer.AddDeclRef(E->getConstructor(), Record);
+ Writer.AddSourceLocation(E->getLocation(), Record);
+ Record.push_back(E->isElidable());
+ Record.push_back(E->hadMultipleCandidates());
+ Record.push_back(E->isListInitialization());
+ Record.push_back(E->isStdInitListInitialization());
+ Record.push_back(E->requiresZeroInitialization());
+ Record.push_back(E->getConstructionKind()); // FIXME: stable encoding
+ Writer.AddSourceRange(E->getParenOrBraceRange(), Record);
+ Code = serialization::EXPR_CXX_CONSTRUCT;
+}
+
+void ASTStmtWriter::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *E) {
+ VisitCXXConstructExpr(E);
+ Writer.AddTypeSourceInfo(E->getTypeSourceInfo(), Record);
+ Code = serialization::EXPR_CXX_TEMPORARY_OBJECT;
+}
+
+void ASTStmtWriter::VisitLambdaExpr(LambdaExpr *E) {
+ VisitExpr(E);
+ Record.push_back(E->NumCaptures);
+ unsigned NumArrayIndexVars = 0;
+ if (E->HasArrayIndexVars)
+ NumArrayIndexVars = E->getArrayIndexStarts()[E->NumCaptures];
+ Record.push_back(NumArrayIndexVars);
+ Writer.AddSourceRange(E->IntroducerRange, Record);
+ Record.push_back(E->CaptureDefault); // FIXME: stable encoding
+ Writer.AddSourceLocation(E->CaptureDefaultLoc, Record);
+ Record.push_back(E->ExplicitParams);
+ Record.push_back(E->ExplicitResultType);
+ Writer.AddSourceLocation(E->ClosingBrace, Record);
+
+ // Add capture initializers.
+ for (LambdaExpr::capture_init_iterator C = E->capture_init_begin(),
+ CEnd = E->capture_init_end();
+ C != CEnd; ++C) {
+ Writer.AddStmt(*C);
+ }
+
+ // Add array index variables, if any.
+ if (NumArrayIndexVars) {
+ Record.append(E->getArrayIndexStarts(),
+ E->getArrayIndexStarts() + E->NumCaptures + 1);
+ VarDecl **ArrayIndexVars = E->getArrayIndexVars();
+ for (unsigned I = 0; I != NumArrayIndexVars; ++I)
+ Writer.AddDeclRef(ArrayIndexVars[I], Record);
+ }
+
+ Code = serialization::EXPR_LAMBDA;
+}
+
+void ASTStmtWriter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
+ VisitExpr(E);
+ Writer.AddStmt(E->getSubExpr());
+ Code = serialization::EXPR_CXX_STD_INITIALIZER_LIST;
+}
+
+void ASTStmtWriter::VisitCXXNamedCastExpr(CXXNamedCastExpr *E) {
+ VisitExplicitCastExpr(E);
+ Writer.AddSourceRange(SourceRange(E->getOperatorLoc(), E->getRParenLoc()),
+ Record);
+ Writer.AddSourceRange(E->getAngleBrackets(), Record);
+}
+
+void ASTStmtWriter::VisitCXXStaticCastExpr(CXXStaticCastExpr *E) {
+ VisitCXXNamedCastExpr(E);
+ Code = serialization::EXPR_CXX_STATIC_CAST;
+}
+
+void ASTStmtWriter::VisitCXXDynamicCastExpr(CXXDynamicCastExpr *E) {
+ VisitCXXNamedCastExpr(E);
+ Code = serialization::EXPR_CXX_DYNAMIC_CAST;
+}
+
+void ASTStmtWriter::VisitCXXReinterpretCastExpr(CXXReinterpretCastExpr *E) {
+ VisitCXXNamedCastExpr(E);
+ Code = serialization::EXPR_CXX_REINTERPRET_CAST;
+}
+
+void ASTStmtWriter::VisitCXXConstCastExpr(CXXConstCastExpr *E) {
+ VisitCXXNamedCastExpr(E);
+ Code = serialization::EXPR_CXX_CONST_CAST;
+}
+
+void ASTStmtWriter::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E) {
+ VisitExplicitCastExpr(E);
+ Writer.AddSourceLocation(E->getLParenLoc(), Record);
+ Writer.AddSourceLocation(E->getRParenLoc(), Record);
+ Code = serialization::EXPR_CXX_FUNCTIONAL_CAST;
+}
+
+void ASTStmtWriter::VisitUserDefinedLiteral(UserDefinedLiteral *E) {
+ VisitCallExpr(E);
+ Writer.AddSourceLocation(E->UDSuffixLoc, Record);
+ Code = serialization::EXPR_USER_DEFINED_LITERAL;
+}
+
+void ASTStmtWriter::VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) {
+ VisitExpr(E);
+ Record.push_back(E->getValue());
+ Writer.AddSourceLocation(E->getLocation(), Record);
+ Code = serialization::EXPR_CXX_BOOL_LITERAL;
+}
+
+void ASTStmtWriter::VisitCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr *E) {
+ VisitExpr(E);
+ Writer.AddSourceLocation(E->getLocation(), Record);
+ Code = serialization::EXPR_CXX_NULL_PTR_LITERAL;
+}
+
+void ASTStmtWriter::VisitCXXTypeidExpr(CXXTypeidExpr *E) {
+ VisitExpr(E);
+ Writer.AddSourceRange(E->getSourceRange(), Record);
+ if (E->isTypeOperand()) {
+ Writer.AddTypeSourceInfo(E->getTypeOperandSourceInfo(), Record);
+ Code = serialization::EXPR_CXX_TYPEID_TYPE;
+ } else {
+ Writer.AddStmt(E->getExprOperand());
+ Code = serialization::EXPR_CXX_TYPEID_EXPR;
+ }
+}
+
+void ASTStmtWriter::VisitCXXThisExpr(CXXThisExpr *E) {
+ VisitExpr(E);
+ Writer.AddSourceLocation(E->getLocation(), Record);
+ Record.push_back(E->isImplicit());
+ Code = serialization::EXPR_CXX_THIS;
+}
+
+void ASTStmtWriter::VisitCXXThrowExpr(CXXThrowExpr *E) {
+ VisitExpr(E);
+ Writer.AddSourceLocation(E->getThrowLoc(), Record);
+ Writer.AddStmt(E->getSubExpr());
+ Record.push_back(E->isThrownVariableInScope());
+ Code = serialization::EXPR_CXX_THROW;
+}
+
+void ASTStmtWriter::VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
+ VisitExpr(E);
+
+ bool HasOtherExprStored = E->Param.getInt();
+ // Store these first, the reader reads them before creation.
+ Record.push_back(HasOtherExprStored);
+ if (HasOtherExprStored)
+ Writer.AddStmt(E->getExpr());
+ Writer.AddDeclRef(E->getParam(), Record);
+ Writer.AddSourceLocation(E->getUsedLocation(), Record);
+
+ Code = serialization::EXPR_CXX_DEFAULT_ARG;
+}
+
+void ASTStmtWriter::VisitCXXDefaultInitExpr(CXXDefaultInitExpr *E) {
+ VisitExpr(E);
+ Writer.AddDeclRef(E->getField(), Record);
+ Writer.AddSourceLocation(E->getExprLoc(), Record);
+ Code = serialization::EXPR_CXX_DEFAULT_INIT;
+}
+
+void ASTStmtWriter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
+ VisitExpr(E);
+ Writer.AddCXXTemporary(E->getTemporary(), Record);
+ Writer.AddStmt(E->getSubExpr());
+ Code = serialization::EXPR_CXX_BIND_TEMPORARY;
+}
+
+void ASTStmtWriter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
+ VisitExpr(E);
+ Writer.AddTypeSourceInfo(E->getTypeSourceInfo(), Record);
+ Writer.AddSourceLocation(E->getRParenLoc(), Record);
+ Code = serialization::EXPR_CXX_SCALAR_VALUE_INIT;
+}
+
+void ASTStmtWriter::VisitCXXNewExpr(CXXNewExpr *E) {
+ VisitExpr(E);
+ Record.push_back(E->isGlobalNew());
+ Record.push_back(E->isArray());
+ Record.push_back(E->doesUsualArrayDeleteWantSize());
+ Record.push_back(E->getNumPlacementArgs());
+ Record.push_back(E->StoredInitializationStyle);
+ Writer.AddDeclRef(E->getOperatorNew(), Record);
+ Writer.AddDeclRef(E->getOperatorDelete(), Record);
+ Writer.AddTypeSourceInfo(E->getAllocatedTypeSourceInfo(), Record);
+ Writer.AddSourceRange(E->getTypeIdParens(), Record);
+ Writer.AddSourceRange(E->getSourceRange(), Record);
+ Writer.AddSourceRange(E->getDirectInitRange(), Record);
+ for (CXXNewExpr::arg_iterator I = E->raw_arg_begin(), e = E->raw_arg_end();
+ I != e; ++I)
+ Writer.AddStmt(*I);
+
+ Code = serialization::EXPR_CXX_NEW;
+}
+
+void ASTStmtWriter::VisitCXXDeleteExpr(CXXDeleteExpr *E) {
+ VisitExpr(E);
+ Record.push_back(E->isGlobalDelete());
+ Record.push_back(E->isArrayForm());
+ Record.push_back(E->isArrayFormAsWritten());
+ Record.push_back(E->doesUsualArrayDeleteWantSize());
+ Writer.AddDeclRef(E->getOperatorDelete(), Record);
+ Writer.AddStmt(E->getArgument());
+ Writer.AddSourceLocation(E->getSourceRange().getBegin(), Record);
+
+ Code = serialization::EXPR_CXX_DELETE;
+}
+
+void ASTStmtWriter::VisitCXXPseudoDestructorExpr(CXXPseudoDestructorExpr *E) {
+ VisitExpr(E);
+
+ Writer.AddStmt(E->getBase());
+ Record.push_back(E->isArrow());
+ Writer.AddSourceLocation(E->getOperatorLoc(), Record);
+ Writer.AddNestedNameSpecifierLoc(E->getQualifierLoc(), Record);
+ Writer.AddTypeSourceInfo(E->getScopeTypeInfo(), Record);
+ Writer.AddSourceLocation(E->getColonColonLoc(), Record);
+ Writer.AddSourceLocation(E->getTildeLoc(), Record);
+
+ // PseudoDestructorTypeStorage.
+ Writer.AddIdentifierRef(E->getDestroyedTypeIdentifier(), Record);
+ if (E->getDestroyedTypeIdentifier())
+ Writer.AddSourceLocation(E->getDestroyedTypeLoc(), Record);
+ else
+ Writer.AddTypeSourceInfo(E->getDestroyedTypeInfo(), Record);
+
+ Code = serialization::EXPR_CXX_PSEUDO_DESTRUCTOR;
+}
+
+void ASTStmtWriter::VisitExprWithCleanups(ExprWithCleanups *E) {
+ VisitExpr(E);
+ Record.push_back(E->getNumObjects());
+ for (unsigned i = 0, e = E->getNumObjects(); i != e; ++i)
+ Writer.AddDeclRef(E->getObject(i), Record);
+
+ Writer.AddStmt(E->getSubExpr());
+ Code = serialization::EXPR_EXPR_WITH_CLEANUPS;
+}
+
+void
+ASTStmtWriter::VisitCXXDependentScopeMemberExpr(CXXDependentScopeMemberExpr *E){
+ VisitExpr(E);
+
+ // Don't emit anything here, HasTemplateKWAndArgsInfo must be
+ // emitted first.
+
+ Record.push_back(E->HasTemplateKWAndArgsInfo);
+ if (E->HasTemplateKWAndArgsInfo) {
+ const ASTTemplateKWAndArgsInfo &Args = *E->getTemplateKWAndArgsInfo();
+ Record.push_back(Args.NumTemplateArgs);
+ AddTemplateKWAndArgsInfo(Args);
+ }
+
+ if (!E->isImplicitAccess())
+ Writer.AddStmt(E->getBase());
+ else
+ Writer.AddStmt(nullptr);
+ Writer.AddTypeRef(E->getBaseType(), Record);
+ Record.push_back(E->isArrow());
+ Writer.AddSourceLocation(E->getOperatorLoc(), Record);
+ Writer.AddNestedNameSpecifierLoc(E->getQualifierLoc(), Record);
+ Writer.AddDeclRef(E->getFirstQualifierFoundInScope(), Record);
+ Writer.AddDeclarationNameInfo(E->MemberNameInfo, Record);
+ Code = serialization::EXPR_CXX_DEPENDENT_SCOPE_MEMBER;
+}
+
+void
+ASTStmtWriter::VisitDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *E) {
+ VisitExpr(E);
+
+ // Don't emit anything here, HasTemplateKWAndArgsInfo must be
+ // emitted first.
+
+ Record.push_back(E->HasTemplateKWAndArgsInfo);
+ if (E->HasTemplateKWAndArgsInfo) {
+ const ASTTemplateKWAndArgsInfo &Args = *E->getTemplateKWAndArgsInfo();
+ Record.push_back(Args.NumTemplateArgs);
+ AddTemplateKWAndArgsInfo(Args);
+ }
+
+ Writer.AddNestedNameSpecifierLoc(E->getQualifierLoc(), Record);
+ Writer.AddDeclarationNameInfo(E->NameInfo, Record);
+ Code = serialization::EXPR_CXX_DEPENDENT_SCOPE_DECL_REF;
+}
+
+void
+ASTStmtWriter::VisitCXXUnresolvedConstructExpr(CXXUnresolvedConstructExpr *E) {
+ VisitExpr(E);
+ Record.push_back(E->arg_size());
+ for (CXXUnresolvedConstructExpr::arg_iterator
+ ArgI = E->arg_begin(), ArgE = E->arg_end(); ArgI != ArgE; ++ArgI)
+ Writer.AddStmt(*ArgI);
+ Writer.AddTypeSourceInfo(E->getTypeSourceInfo(), Record);
+ Writer.AddSourceLocation(E->getLParenLoc(), Record);
+ Writer.AddSourceLocation(E->getRParenLoc(), Record);
+ Code = serialization::EXPR_CXX_UNRESOLVED_CONSTRUCT;
+}
+
+void ASTStmtWriter::VisitOverloadExpr(OverloadExpr *E) {
+ VisitExpr(E);
+
+ // Don't emit anything here, HasTemplateKWAndArgsInfo must be
+ // emitted first.
+
+ Record.push_back(E->HasTemplateKWAndArgsInfo);
+ if (E->HasTemplateKWAndArgsInfo) {
+ const ASTTemplateKWAndArgsInfo &Args = *E->getTemplateKWAndArgsInfo();
+ Record.push_back(Args.NumTemplateArgs);
+ AddTemplateKWAndArgsInfo(Args);
+ }
+
+ Record.push_back(E->getNumDecls());
+ for (OverloadExpr::decls_iterator
+ OvI = E->decls_begin(), OvE = E->decls_end(); OvI != OvE; ++OvI) {
+ Writer.AddDeclRef(OvI.getDecl(), Record);
+ Record.push_back(OvI.getAccess());
+ }
+
+ Writer.AddDeclarationNameInfo(E->NameInfo, Record);
+ Writer.AddNestedNameSpecifierLoc(E->getQualifierLoc(), Record);
+}
+
+void ASTStmtWriter::VisitUnresolvedMemberExpr(UnresolvedMemberExpr *E) {
+ VisitOverloadExpr(E);
+ Record.push_back(E->isArrow());
+ Record.push_back(E->hasUnresolvedUsing());
+ Writer.AddStmt(!E->isImplicitAccess() ? E->getBase() : nullptr);
+ Writer.AddTypeRef(E->getBaseType(), Record);
+ Writer.AddSourceLocation(E->getOperatorLoc(), Record);
+ Code = serialization::EXPR_CXX_UNRESOLVED_MEMBER;
+}
+
+void ASTStmtWriter::VisitUnresolvedLookupExpr(UnresolvedLookupExpr *E) {
+ VisitOverloadExpr(E);
+ Record.push_back(E->requiresADL());
+ Record.push_back(E->isOverloaded());
+ Writer.AddDeclRef(E->getNamingClass(), Record);
+ Code = serialization::EXPR_CXX_UNRESOLVED_LOOKUP;
+}
+
+void ASTStmtWriter::VisitTypeTraitExpr(TypeTraitExpr *E) {
+ VisitExpr(E);
+ Record.push_back(E->TypeTraitExprBits.NumArgs);
+ Record.push_back(E->TypeTraitExprBits.Kind); // FIXME: Stable encoding
+ Record.push_back(E->TypeTraitExprBits.Value);
+ Writer.AddSourceRange(E->getSourceRange(), Record);
+ for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I)
+ Writer.AddTypeSourceInfo(E->getArg(I), Record);
+ Code = serialization::EXPR_TYPE_TRAIT;
+}
+
+void ASTStmtWriter::VisitArrayTypeTraitExpr(ArrayTypeTraitExpr *E) {
+ VisitExpr(E);
+ Record.push_back(E->getTrait());
+ Record.push_back(E->getValue());
+ Writer.AddSourceRange(E->getSourceRange(), Record);
+ Writer.AddTypeSourceInfo(E->getQueriedTypeSourceInfo(), Record);
+ Code = serialization::EXPR_ARRAY_TYPE_TRAIT;
+}
+
+void ASTStmtWriter::VisitExpressionTraitExpr(ExpressionTraitExpr *E) {
+ VisitExpr(E);
+ Record.push_back(E->getTrait());
+ Record.push_back(E->getValue());
+ Writer.AddSourceRange(E->getSourceRange(), Record);
+ Writer.AddStmt(E->getQueriedExpression());
+ Code = serialization::EXPR_CXX_EXPRESSION_TRAIT;
+}
+
+void ASTStmtWriter::VisitCXXNoexceptExpr(CXXNoexceptExpr *E) {
+ VisitExpr(E);
+ Record.push_back(E->getValue());
+ Writer.AddSourceRange(E->getSourceRange(), Record);
+ Writer.AddStmt(E->getOperand());
+ Code = serialization::EXPR_CXX_NOEXCEPT;
+}
+
+void ASTStmtWriter::VisitPackExpansionExpr(PackExpansionExpr *E) {
+ VisitExpr(E);
+ Writer.AddSourceLocation(E->getEllipsisLoc(), Record);
+ Record.push_back(E->NumExpansions);
+ Writer.AddStmt(E->getPattern());
+ Code = serialization::EXPR_PACK_EXPANSION;
+}
+
+void ASTStmtWriter::VisitSizeOfPackExpr(SizeOfPackExpr *E) {
+ VisitExpr(E);
+ Writer.AddSourceLocation(E->OperatorLoc, Record);
+ Writer.AddSourceLocation(E->PackLoc, Record);
+ Writer.AddSourceLocation(E->RParenLoc, Record);
+ Record.push_back(E->Length);
+ Writer.AddDeclRef(E->Pack, Record);
+ Code = serialization::EXPR_SIZEOF_PACK;
+}
+
+void ASTStmtWriter::VisitSubstNonTypeTemplateParmExpr(
+ SubstNonTypeTemplateParmExpr *E) {
+ VisitExpr(E);
+ Writer.AddDeclRef(E->getParameter(), Record);
+ Writer.AddSourceLocation(E->getNameLoc(), Record);
+ Writer.AddStmt(E->getReplacement());
+ Code = serialization::EXPR_SUBST_NON_TYPE_TEMPLATE_PARM;
+}
+
+void ASTStmtWriter::VisitSubstNonTypeTemplateParmPackExpr(
+ SubstNonTypeTemplateParmPackExpr *E) {
+ VisitExpr(E);
+ Writer.AddDeclRef(E->getParameterPack(), Record);
+ Writer.AddTemplateArgument(E->getArgumentPack(), Record);
+ Writer.AddSourceLocation(E->getParameterPackLocation(), Record);
+ Code = serialization::EXPR_SUBST_NON_TYPE_TEMPLATE_PARM_PACK;
+}
+
+void ASTStmtWriter::VisitFunctionParmPackExpr(FunctionParmPackExpr *E) {
+ VisitExpr(E);
+ Record.push_back(E->getNumExpansions());
+ Writer.AddDeclRef(E->getParameterPack(), Record);
+ Writer.AddSourceLocation(E->getParameterPackLocation(), Record);
+ for (FunctionParmPackExpr::iterator I = E->begin(), End = E->end();
+ I != End; ++I)
+ Writer.AddDeclRef(*I, Record);
+ Code = serialization::EXPR_FUNCTION_PARM_PACK;
+}
+
+void ASTStmtWriter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E) {
+ VisitExpr(E);
+ Writer.AddStmt(E->getTemporary());
+ Writer.AddDeclRef(E->getExtendingDecl(), Record);
+ Record.push_back(E->getManglingNumber());
+ Code = serialization::EXPR_MATERIALIZE_TEMPORARY;
+}
+
+void ASTStmtWriter::VisitCXXFoldExpr(CXXFoldExpr *E) {
+ VisitExpr(E);
+ Writer.AddSourceLocation(E->LParenLoc, Record);
+ Writer.AddSourceLocation(E->EllipsisLoc, Record);
+ Writer.AddSourceLocation(E->RParenLoc, Record);
+ Writer.AddStmt(E->SubExprs[0]);
+ Writer.AddStmt(E->SubExprs[1]);
+ Record.push_back(E->Opcode);
+ Code = serialization::EXPR_CXX_FOLD;
+}
+
+void ASTStmtWriter::VisitOpaqueValueExpr(OpaqueValueExpr *E) {
+ VisitExpr(E);
+ Writer.AddStmt(E->getSourceExpr());
+ Writer.AddSourceLocation(E->getLocation(), Record);
+ Code = serialization::EXPR_OPAQUE_VALUE;
+}
+
+void ASTStmtWriter::VisitTypoExpr(TypoExpr *E) {
+ VisitExpr(E);
+ // TODO: Figure out sane writer behavior for a TypoExpr, if necessary
+ assert(false && "Cannot write TypoExpr nodes");
+}
+
+//===----------------------------------------------------------------------===//
+// CUDA Expressions and Statements.
+//===----------------------------------------------------------------------===//
+
+void ASTStmtWriter::VisitCUDAKernelCallExpr(CUDAKernelCallExpr *E) {
+ VisitCallExpr(E);
+ Writer.AddStmt(E->getConfig());
+ Code = serialization::EXPR_CUDA_KERNEL_CALL;
+}
+
+//===----------------------------------------------------------------------===//
+// OpenCL Expressions and Statements.
+//===----------------------------------------------------------------------===//
+void ASTStmtWriter::VisitAsTypeExpr(AsTypeExpr *E) {
+ VisitExpr(E);
+ Writer.AddSourceLocation(E->getBuiltinLoc(), Record);
+ Writer.AddSourceLocation(E->getRParenLoc(), Record);
+ Writer.AddStmt(E->getSrcExpr());
+ Code = serialization::EXPR_ASTYPE;
+}
+
+//===----------------------------------------------------------------------===//
+// Microsoft Expressions and Statements.
+//===----------------------------------------------------------------------===//
+void ASTStmtWriter::VisitMSPropertyRefExpr(MSPropertyRefExpr *E) {
+ VisitExpr(E);
+ Record.push_back(E->isArrow());
+ Writer.AddStmt(E->getBaseExpr());
+ Writer.AddNestedNameSpecifierLoc(E->getQualifierLoc(), Record);
+ Writer.AddSourceLocation(E->getMemberLoc(), Record);
+ Writer.AddDeclRef(E->getPropertyDecl(), Record);
+ Code = serialization::EXPR_CXX_PROPERTY_REF_EXPR;
+}
+
+void ASTStmtWriter::VisitCXXUuidofExpr(CXXUuidofExpr *E) {
+ VisitExpr(E);
+ Writer.AddSourceRange(E->getSourceRange(), Record);
+ if (E->isTypeOperand()) {
+ Writer.AddTypeSourceInfo(E->getTypeOperandSourceInfo(), Record);
+ Code = serialization::EXPR_CXX_UUIDOF_TYPE;
+ } else {
+ Writer.AddStmt(E->getExprOperand());
+ Code = serialization::EXPR_CXX_UUIDOF_EXPR;
+ }
+}
+
+void ASTStmtWriter::VisitSEHExceptStmt(SEHExceptStmt *S) {
+ VisitStmt(S);
+ Writer.AddSourceLocation(S->getExceptLoc(), Record);
+ Writer.AddStmt(S->getFilterExpr());
+ Writer.AddStmt(S->getBlock());
+ Code = serialization::STMT_SEH_EXCEPT;
+}
+
+void ASTStmtWriter::VisitSEHFinallyStmt(SEHFinallyStmt *S) {
+ VisitStmt(S);
+ Writer.AddSourceLocation(S->getFinallyLoc(), Record);
+ Writer.AddStmt(S->getBlock());
+ Code = serialization::STMT_SEH_FINALLY;
+}
+
+void ASTStmtWriter::VisitSEHTryStmt(SEHTryStmt *S) {
+ VisitStmt(S);
+ Record.push_back(S->getIsCXXTry());
+ Writer.AddSourceLocation(S->getTryLoc(), Record);
+ Writer.AddStmt(S->getTryBlock());
+ Writer.AddStmt(S->getHandler());
+ Code = serialization::STMT_SEH_TRY;
+}
+
+void ASTStmtWriter::VisitSEHLeaveStmt(SEHLeaveStmt *S) {
+ VisitStmt(S);
+ Writer.AddSourceLocation(S->getLeaveLoc(), Record);
+ Code = serialization::STMT_SEH_LEAVE;
+}
+
+//===----------------------------------------------------------------------===//
+// OpenMP Clauses.
+//===----------------------------------------------------------------------===//
+
+namespace clang {
+class OMPClauseWriter : public OMPClauseVisitor<OMPClauseWriter> {
+ ASTStmtWriter *Writer;
+ ASTWriter::RecordData &Record;
+public:
+ OMPClauseWriter(ASTStmtWriter *W, ASTWriter::RecordData &Record)
+ : Writer(W), Record(Record) { }
+#define OPENMP_CLAUSE(Name, Class) \
+ void Visit##Class(Class *S);
+#include "clang/Basic/OpenMPKinds.def"
+ void writeClause(OMPClause *C);
+};
+}
+
+void OMPClauseWriter::writeClause(OMPClause *C) {
+ Record.push_back(C->getClauseKind());
+ Visit(C);
+ Writer->Writer.AddSourceLocation(C->getLocStart(), Record);
+ Writer->Writer.AddSourceLocation(C->getLocEnd(), Record);
+}
+
+void OMPClauseWriter::VisitOMPIfClause(OMPIfClause *C) {
+ Writer->Writer.AddStmt(C->getCondition());
+ Writer->Writer.AddSourceLocation(C->getLParenLoc(), Record);
+}
+
+void OMPClauseWriter::VisitOMPFinalClause(OMPFinalClause *C) {
+ Writer->Writer.AddStmt(C->getCondition());
+ Writer->Writer.AddSourceLocation(C->getLParenLoc(), Record);
+}
+
+void OMPClauseWriter::VisitOMPNumThreadsClause(OMPNumThreadsClause *C) {
+ Writer->Writer.AddStmt(C->getNumThreads());
+ Writer->Writer.AddSourceLocation(C->getLParenLoc(), Record);
+}
+
+void OMPClauseWriter::VisitOMPSafelenClause(OMPSafelenClause *C) {
+ Writer->Writer.AddStmt(C->getSafelen());
+ Writer->Writer.AddSourceLocation(C->getLParenLoc(), Record);
+}
+
+void OMPClauseWriter::VisitOMPCollapseClause(OMPCollapseClause *C) {
+ Writer->Writer.AddStmt(C->getNumForLoops());
+ Writer->Writer.AddSourceLocation(C->getLParenLoc(), Record);
+}
+
+void OMPClauseWriter::VisitOMPDefaultClause(OMPDefaultClause *C) {
+ Record.push_back(C->getDefaultKind());
+ Writer->Writer.AddSourceLocation(C->getLParenLoc(), Record);
+ Writer->Writer.AddSourceLocation(C->getDefaultKindKwLoc(), Record);
+}
+
+void OMPClauseWriter::VisitOMPProcBindClause(OMPProcBindClause *C) {
+ Record.push_back(C->getProcBindKind());
+ Writer->Writer.AddSourceLocation(C->getLParenLoc(), Record);
+ Writer->Writer.AddSourceLocation(C->getProcBindKindKwLoc(), Record);
+}
+
+void OMPClauseWriter::VisitOMPScheduleClause(OMPScheduleClause *C) {
+ Record.push_back(C->getScheduleKind());
+ Writer->Writer.AddStmt(C->getChunkSize());
+ Writer->Writer.AddStmt(C->getHelperChunkSize());
+ Writer->Writer.AddSourceLocation(C->getLParenLoc(), Record);
+ Writer->Writer.AddSourceLocation(C->getScheduleKindLoc(), Record);
+ Writer->Writer.AddSourceLocation(C->getCommaLoc(), Record);
+}
+
+void OMPClauseWriter::VisitOMPOrderedClause(OMPOrderedClause *) {}
+
+void OMPClauseWriter::VisitOMPNowaitClause(OMPNowaitClause *) {}
+
+void OMPClauseWriter::VisitOMPUntiedClause(OMPUntiedClause *) {}
+
+void OMPClauseWriter::VisitOMPMergeableClause(OMPMergeableClause *) {}
+
+void OMPClauseWriter::VisitOMPReadClause(OMPReadClause *) {}
+
+void OMPClauseWriter::VisitOMPWriteClause(OMPWriteClause *) {}
+
+void OMPClauseWriter::VisitOMPUpdateClause(OMPUpdateClause *) {}
+
+void OMPClauseWriter::VisitOMPCaptureClause(OMPCaptureClause *) {}
+
+void OMPClauseWriter::VisitOMPSeqCstClause(OMPSeqCstClause *) {}
+
+void OMPClauseWriter::VisitOMPPrivateClause(OMPPrivateClause *C) {
+ Record.push_back(C->varlist_size());
+ Writer->Writer.AddSourceLocation(C->getLParenLoc(), Record);
+ for (auto *VE : C->varlists()) {
+ Writer->Writer.AddStmt(VE);
+ }
+ for (auto *VE : C->private_copies()) {
+ Writer->Writer.AddStmt(VE);
+ }
+}
+
+void OMPClauseWriter::VisitOMPFirstprivateClause(OMPFirstprivateClause *C) {
+ Record.push_back(C->varlist_size());
+ Writer->Writer.AddSourceLocation(C->getLParenLoc(), Record);
+ for (auto *VE : C->varlists()) {
+ Writer->Writer.AddStmt(VE);
+ }
+ for (auto *VE : C->private_copies()) {
+ Writer->Writer.AddStmt(VE);
+ }
+ for (auto *VE : C->inits()) {
+ Writer->Writer.AddStmt(VE);
+ }
+}
+
+void OMPClauseWriter::VisitOMPLastprivateClause(OMPLastprivateClause *C) {
+ Record.push_back(C->varlist_size());
+ Writer->Writer.AddSourceLocation(C->getLParenLoc(), Record);
+ for (auto *VE : C->varlists())
+ Writer->Writer.AddStmt(VE);
+ for (auto *E : C->private_copies())
+ Writer->Writer.AddStmt(E);
+ for (auto *E : C->source_exprs())
+ Writer->Writer.AddStmt(E);
+ for (auto *E : C->destination_exprs())
+ Writer->Writer.AddStmt(E);
+ for (auto *E : C->assignment_ops())
+ Writer->Writer.AddStmt(E);
+}
+
+void OMPClauseWriter::VisitOMPSharedClause(OMPSharedClause *C) {
+ Record.push_back(C->varlist_size());
+ Writer->Writer.AddSourceLocation(C->getLParenLoc(), Record);
+ for (auto *VE : C->varlists())
+ Writer->Writer.AddStmt(VE);
+}
+
+void OMPClauseWriter::VisitOMPReductionClause(OMPReductionClause *C) {
+ Record.push_back(C->varlist_size());
+ Writer->Writer.AddSourceLocation(C->getLParenLoc(), Record);
+ Writer->Writer.AddSourceLocation(C->getColonLoc(), Record);
+ Writer->Writer.AddNestedNameSpecifierLoc(C->getQualifierLoc(), Record);
+ Writer->Writer.AddDeclarationNameInfo(C->getNameInfo(), Record);
+ for (auto *VE : C->varlists())
+ Writer->Writer.AddStmt(VE);
+ for (auto *E : C->lhs_exprs())
+ Writer->Writer.AddStmt(E);
+ for (auto *E : C->rhs_exprs())
+ Writer->Writer.AddStmt(E);
+ for (auto *E : C->reduction_ops())
+ Writer->Writer.AddStmt(E);
+}
+
+void OMPClauseWriter::VisitOMPLinearClause(OMPLinearClause *C) {
+ Record.push_back(C->varlist_size());
+ Writer->Writer.AddSourceLocation(C->getLParenLoc(), Record);
+ Writer->Writer.AddSourceLocation(C->getColonLoc(), Record);
+ for (auto *VE : C->varlists()) {
+ Writer->Writer.AddStmt(VE);
+ }
+ for (auto *VE : C->inits()) {
+ Writer->Writer.AddStmt(VE);
+ }
+ for (auto *VE : C->updates()) {
+ Writer->Writer.AddStmt(VE);
+ }
+ for (auto *VE : C->finals()) {
+ Writer->Writer.AddStmt(VE);
+ }
+ Writer->Writer.AddStmt(C->getStep());
+ Writer->Writer.AddStmt(C->getCalcStep());
+}
+
+void OMPClauseWriter::VisitOMPAlignedClause(OMPAlignedClause *C) {
+ Record.push_back(C->varlist_size());
+ Writer->Writer.AddSourceLocation(C->getLParenLoc(), Record);
+ Writer->Writer.AddSourceLocation(C->getColonLoc(), Record);
+ for (auto *VE : C->varlists())
+ Writer->Writer.AddStmt(VE);
+ Writer->Writer.AddStmt(C->getAlignment());
+}
+
+void OMPClauseWriter::VisitOMPCopyinClause(OMPCopyinClause *C) {
+ Record.push_back(C->varlist_size());
+ Writer->Writer.AddSourceLocation(C->getLParenLoc(), Record);
+ for (auto *VE : C->varlists())
+ Writer->Writer.AddStmt(VE);
+ for (auto *E : C->source_exprs())
+ Writer->Writer.AddStmt(E);
+ for (auto *E : C->destination_exprs())
+ Writer->Writer.AddStmt(E);
+ for (auto *E : C->assignment_ops())
+ Writer->Writer.AddStmt(E);
+}
+
+void OMPClauseWriter::VisitOMPCopyprivateClause(OMPCopyprivateClause *C) {
+ Record.push_back(C->varlist_size());
+ Writer->Writer.AddSourceLocation(C->getLParenLoc(), Record);
+ for (auto *VE : C->varlists())
+ Writer->Writer.AddStmt(VE);
+ for (auto *E : C->source_exprs())
+ Writer->Writer.AddStmt(E);
+ for (auto *E : C->destination_exprs())
+ Writer->Writer.AddStmt(E);
+ for (auto *E : C->assignment_ops())
+ Writer->Writer.AddStmt(E);
+}
+
+void OMPClauseWriter::VisitOMPFlushClause(OMPFlushClause *C) {
+ Record.push_back(C->varlist_size());
+ Writer->Writer.AddSourceLocation(C->getLParenLoc(), Record);
+ for (auto *VE : C->varlists())
+ Writer->Writer.AddStmt(VE);
+}
+
+//===----------------------------------------------------------------------===//
+// OpenMP Directives.
+//===----------------------------------------------------------------------===//
+void ASTStmtWriter::VisitOMPExecutableDirective(OMPExecutableDirective *E) {
+ Writer.AddSourceLocation(E->getLocStart(), Record);
+ Writer.AddSourceLocation(E->getLocEnd(), Record);
+ OMPClauseWriter ClauseWriter(this, Record);
+ for (unsigned i = 0; i < E->getNumClauses(); ++i) {
+ ClauseWriter.writeClause(E->getClause(i));
+ }
+ if (E->hasAssociatedStmt())
+ Writer.AddStmt(E->getAssociatedStmt());
+}
+
+void ASTStmtWriter::VisitOMPLoopDirective(OMPLoopDirective *D) {
+ VisitStmt(D);
+ Record.push_back(D->getNumClauses());
+ Record.push_back(D->getCollapsedNumber());
+ VisitOMPExecutableDirective(D);
+ Writer.AddStmt(D->getIterationVariable());
+ Writer.AddStmt(D->getLastIteration());
+ Writer.AddStmt(D->getCalcLastIteration());
+ Writer.AddStmt(D->getPreCond());
+ Writer.AddStmt(D->getCond(/* SeparateIter */ false));
+ Writer.AddStmt(D->getCond(/* SeparateIter */ true));
+ Writer.AddStmt(D->getInit());
+ Writer.AddStmt(D->getInc());
+ if (isOpenMPWorksharingDirective(D->getDirectiveKind())) {
+ Writer.AddStmt(D->getIsLastIterVariable());
+ Writer.AddStmt(D->getLowerBoundVariable());
+ Writer.AddStmt(D->getUpperBoundVariable());
+ Writer.AddStmt(D->getStrideVariable());
+ Writer.AddStmt(D->getEnsureUpperBound());
+ Writer.AddStmt(D->getNextLowerBound());
+ Writer.AddStmt(D->getNextUpperBound());
+ }
+ for (auto I : D->counters()) {
+ Writer.AddStmt(I);
+ }
+ for (auto I : D->updates()) {
+ Writer.AddStmt(I);
+ }
+ for (auto I : D->finals()) {
+ Writer.AddStmt(I);
+ }
+}
+
+void ASTStmtWriter::VisitOMPParallelDirective(OMPParallelDirective *D) {
+ VisitStmt(D);
+ Record.push_back(D->getNumClauses());
+ VisitOMPExecutableDirective(D);
+ Code = serialization::STMT_OMP_PARALLEL_DIRECTIVE;
+}
+
+void ASTStmtWriter::VisitOMPSimdDirective(OMPSimdDirective *D) {
+ VisitOMPLoopDirective(D);
+ Code = serialization::STMT_OMP_SIMD_DIRECTIVE;
+}
+
+void ASTStmtWriter::VisitOMPForDirective(OMPForDirective *D) {
+ VisitOMPLoopDirective(D);
+ Code = serialization::STMT_OMP_FOR_DIRECTIVE;
+}
+
+void ASTStmtWriter::VisitOMPForSimdDirective(OMPForSimdDirective *D) {
+ VisitOMPLoopDirective(D);
+ Code = serialization::STMT_OMP_FOR_SIMD_DIRECTIVE;
+}
+
+void ASTStmtWriter::VisitOMPSectionsDirective(OMPSectionsDirective *D) {
+ VisitStmt(D);
+ Record.push_back(D->getNumClauses());
+ VisitOMPExecutableDirective(D);
+ Code = serialization::STMT_OMP_SECTIONS_DIRECTIVE;
+}
+
+void ASTStmtWriter::VisitOMPSectionDirective(OMPSectionDirective *D) {
+ VisitStmt(D);
+ VisitOMPExecutableDirective(D);
+ Code = serialization::STMT_OMP_SECTION_DIRECTIVE;
+}
+
+void ASTStmtWriter::VisitOMPSingleDirective(OMPSingleDirective *D) {
+ VisitStmt(D);
+ Record.push_back(D->getNumClauses());
+ VisitOMPExecutableDirective(D);
+ Code = serialization::STMT_OMP_SINGLE_DIRECTIVE;
+}
+
+void ASTStmtWriter::VisitOMPMasterDirective(OMPMasterDirective *D) {
+ VisitStmt(D);
+ VisitOMPExecutableDirective(D);
+ Code = serialization::STMT_OMP_MASTER_DIRECTIVE;
+}
+
+void ASTStmtWriter::VisitOMPCriticalDirective(OMPCriticalDirective *D) {
+ VisitStmt(D);
+ VisitOMPExecutableDirective(D);
+ Writer.AddDeclarationNameInfo(D->getDirectiveName(), Record);
+ Code = serialization::STMT_OMP_CRITICAL_DIRECTIVE;
+}
+
+void ASTStmtWriter::VisitOMPParallelForDirective(OMPParallelForDirective *D) {
+ VisitOMPLoopDirective(D);
+ Code = serialization::STMT_OMP_PARALLEL_FOR_DIRECTIVE;
+}
+
+void ASTStmtWriter::VisitOMPParallelForSimdDirective(
+ OMPParallelForSimdDirective *D) {
+ VisitOMPLoopDirective(D);
+ Code = serialization::STMT_OMP_PARALLEL_FOR_SIMD_DIRECTIVE;
+}
+
+void ASTStmtWriter::VisitOMPParallelSectionsDirective(
+ OMPParallelSectionsDirective *D) {
+ VisitStmt(D);
+ Record.push_back(D->getNumClauses());
+ VisitOMPExecutableDirective(D);
+ Code = serialization::STMT_OMP_PARALLEL_SECTIONS_DIRECTIVE;
+}
+
+void ASTStmtWriter::VisitOMPTaskDirective(OMPTaskDirective *D) {
+ VisitStmt(D);
+ Record.push_back(D->getNumClauses());
+ VisitOMPExecutableDirective(D);
+ Code = serialization::STMT_OMP_TASK_DIRECTIVE;
+}
+
+void ASTStmtWriter::VisitOMPAtomicDirective(OMPAtomicDirective *D) {
+ VisitStmt(D);
+ Record.push_back(D->getNumClauses());
+ VisitOMPExecutableDirective(D);
+ Writer.AddStmt(D->getX());
+ Writer.AddStmt(D->getV());
+ Writer.AddStmt(D->getExpr());
+ Writer.AddStmt(D->getUpdateExpr());
+ Record.push_back(D->isXLHSInRHSPart() ? 1 : 0);
+ Record.push_back(D->isPostfixUpdate() ? 1 : 0);
+ Code = serialization::STMT_OMP_ATOMIC_DIRECTIVE;
+}
+
+void ASTStmtWriter::VisitOMPTargetDirective(OMPTargetDirective *D) {
+ VisitStmt(D);
+ Record.push_back(D->getNumClauses());
+ VisitOMPExecutableDirective(D);
+ Code = serialization::STMT_OMP_TARGET_DIRECTIVE;
+}
+
+void ASTStmtWriter::VisitOMPTaskyieldDirective(OMPTaskyieldDirective *D) {
+ VisitStmt(D);
+ VisitOMPExecutableDirective(D);
+ Code = serialization::STMT_OMP_TASKYIELD_DIRECTIVE;
+}
+
+void ASTStmtWriter::VisitOMPBarrierDirective(OMPBarrierDirective *D) {
+ VisitStmt(D);
+ VisitOMPExecutableDirective(D);
+ Code = serialization::STMT_OMP_BARRIER_DIRECTIVE;
+}
+
+void ASTStmtWriter::VisitOMPTaskwaitDirective(OMPTaskwaitDirective *D) {
+ VisitStmt(D);
+ VisitOMPExecutableDirective(D);
+ Code = serialization::STMT_OMP_TASKWAIT_DIRECTIVE;
+}
+
+void ASTStmtWriter::VisitOMPFlushDirective(OMPFlushDirective *D) {
+ VisitStmt(D);
+ Record.push_back(D->getNumClauses());
+ VisitOMPExecutableDirective(D);
+ Code = serialization::STMT_OMP_FLUSH_DIRECTIVE;
+}
+
+void ASTStmtWriter::VisitOMPOrderedDirective(OMPOrderedDirective *D) {
+ VisitStmt(D);
+ VisitOMPExecutableDirective(D);
+ Code = serialization::STMT_OMP_ORDERED_DIRECTIVE;
+}
+
+void ASTStmtWriter::VisitOMPTeamsDirective(OMPTeamsDirective *D) {
+ VisitStmt(D);
+ Record.push_back(D->getNumClauses());
+ VisitOMPExecutableDirective(D);
+ Code = serialization::STMT_OMP_TEAMS_DIRECTIVE;
+}
+
+//===----------------------------------------------------------------------===//
+// ASTWriter Implementation
+//===----------------------------------------------------------------------===//
+
+unsigned ASTWriter::RecordSwitchCaseID(SwitchCase *S) {
+ assert(SwitchCaseIDs.find(S) == SwitchCaseIDs.end() &&
+ "SwitchCase recorded twice");
+ unsigned NextID = SwitchCaseIDs.size();
+ SwitchCaseIDs[S] = NextID;
+ return NextID;
+}
+
+unsigned ASTWriter::getSwitchCaseID(SwitchCase *S) {
+ assert(SwitchCaseIDs.find(S) != SwitchCaseIDs.end() &&
+ "SwitchCase hasn't been seen yet");
+ return SwitchCaseIDs[S];
+}
+
+void ASTWriter::ClearSwitchCaseIDs() {
+ SwitchCaseIDs.clear();
+}
+
+/// \brief Write the given substatement or subexpression to the
+/// bitstream.
+void ASTWriter::WriteSubStmt(Stmt *S,
+ llvm::DenseMap<Stmt *, uint64_t> &SubStmtEntries,
+ llvm::DenseSet<Stmt *> &ParentStmts) {
+ RecordData Record;
+ ASTStmtWriter Writer(*this, Record);
+ ++NumStatements;
+
+ if (!S) {
+ Stream.EmitRecord(serialization::STMT_NULL_PTR, Record);
+ return;
+ }
+
+ llvm::DenseMap<Stmt *, uint64_t>::iterator I = SubStmtEntries.find(S);
+ if (I != SubStmtEntries.end()) {
+ Record.push_back(I->second);
+ Stream.EmitRecord(serialization::STMT_REF_PTR, Record);
+ return;
+ }
+
+#ifndef NDEBUG
+ assert(!ParentStmts.count(S) && "There is a Stmt cycle!");
+
+ struct ParentStmtInserterRAII {
+ Stmt *S;
+ llvm::DenseSet<Stmt *> &ParentStmts;
+
+ ParentStmtInserterRAII(Stmt *S, llvm::DenseSet<Stmt *> &ParentStmts)
+ : S(S), ParentStmts(ParentStmts) {
+ ParentStmts.insert(S);
+ }
+ ~ParentStmtInserterRAII() {
+ ParentStmts.erase(S);
+ }
+ };
+
+ ParentStmtInserterRAII ParentStmtInserter(S, ParentStmts);
+#endif
+
+ // Redirect ASTWriter::AddStmt to collect sub-stmts.
+ SmallVector<Stmt *, 16> SubStmts;
+ CollectedStmts = &SubStmts;
+
+ Writer.Code = serialization::STMT_NULL_PTR;
+ Writer.AbbrevToUse = 0;
+ Writer.Visit(S);
+
+#ifndef NDEBUG
+ if (Writer.Code == serialization::STMT_NULL_PTR) {
+ SourceManager &SrcMgr
+ = DeclIDs.begin()->first->getASTContext().getSourceManager();
+ S->dump(SrcMgr);
+ llvm_unreachable("Unhandled sub-statement writing AST file");
+ }
+#endif
+
+ // Revert ASTWriter::AddStmt.
+ CollectedStmts = &StmtsToEmit;
+
+ // Write the sub-stmts in reverse order, last to first. When reading them back
+ // we will read them in correct order by "pop"ing them from the Stmts stack.
+ // This simplifies reading and allows to store a variable number of sub-stmts
+ // without knowing it in advance.
+ while (!SubStmts.empty())
+ WriteSubStmt(SubStmts.pop_back_val(), SubStmtEntries, ParentStmts);
+
+ Stream.EmitRecord(Writer.Code, Record, Writer.AbbrevToUse);
+
+ SubStmtEntries[S] = Stream.GetCurrentBitNo();
+}
+
+/// \brief Flush all of the statements that have been added to the
+/// queue via AddStmt().
+void ASTWriter::FlushStmts() {
+ RecordData Record;
+
+ // We expect to be the only consumer of the two temporary statement maps,
+ // assert that they are empty.
+ assert(SubStmtEntries.empty() && "unexpected entries in sub-stmt map");
+ assert(ParentStmts.empty() && "unexpected entries in parent stmt map");
+
+ for (unsigned I = 0, N = StmtsToEmit.size(); I != N; ++I) {
+ WriteSubStmt(StmtsToEmit[I], SubStmtEntries, ParentStmts);
+
+ assert(N == StmtsToEmit.size() &&
+ "Substatement written via AddStmt rather than WriteSubStmt!");
+
+ // Note that we are at the end of a full expression. Any
+ // expression records that follow this one are part of a different
+ // expression.
+ Stream.EmitRecord(serialization::STMT_STOP, Record);
+
+ SubStmtEntries.clear();
+ ParentStmts.clear();
+ }
+
+ StmtsToEmit.clear();
+}
diff --git a/contrib/llvm/tools/clang/lib/Serialization/GeneratePCH.cpp b/contrib/llvm/tools/clang/lib/Serialization/GeneratePCH.cpp
new file mode 100644
index 0000000..b5031fd
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Serialization/GeneratePCH.cpp
@@ -0,0 +1,73 @@
+//===--- GeneratePCH.cpp - Sema Consumer for PCH Generation -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the PCHGenerator, which as a SemaConsumer that generates
+// a PCH file.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Serialization/ASTWriter.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Sema/SemaConsumer.h"
+#include "llvm/Bitcode/BitstreamWriter.h"
+#include "llvm/Support/raw_ostream.h"
+#include <string>
+
+using namespace clang;
+
+PCHGenerator::PCHGenerator(const Preprocessor &PP,
+ StringRef OutputFile,
+ clang::Module *Module,
+ StringRef isysroot,
+ raw_ostream *OS, bool AllowASTWithErrors)
+ : PP(PP), OutputFile(OutputFile), Module(Module),
+ isysroot(isysroot.str()), Out(OS),
+ SemaPtr(nullptr), Stream(Buffer), Writer(Stream),
+ AllowASTWithErrors(AllowASTWithErrors),
+ HasEmittedPCH(false) {
+}
+
+PCHGenerator::~PCHGenerator() {
+}
+
+void PCHGenerator::HandleTranslationUnit(ASTContext &Ctx) {
+ // Don't create a PCH if there were fatal failures during module loading.
+ if (PP.getModuleLoader().HadFatalFailure)
+ return;
+
+ bool hasErrors = PP.getDiagnostics().hasErrorOccurred();
+ if (hasErrors && !AllowASTWithErrors)
+ return;
+
+ // Emit the PCH file
+ assert(SemaPtr && "No Sema?");
+ Writer.WriteAST(*SemaPtr, OutputFile, Module, isysroot, hasErrors);
+
+ // Write the generated bitstream to "Out".
+ Out->write((char *)&Buffer.front(), Buffer.size());
+
+ // Make sure it hits disk now.
+ Out->flush();
+
+ // Free up some memory, in case the process is kept alive.
+ Buffer.clear();
+
+ HasEmittedPCH = true;
+}
+
+ASTMutationListener *PCHGenerator::GetASTMutationListener() {
+ return &Writer;
+}
+
+ASTDeserializationListener *PCHGenerator::GetASTDeserializationListener() {
+ return &Writer;
+}
diff --git a/contrib/llvm/tools/clang/lib/Serialization/GlobalModuleIndex.cpp b/contrib/llvm/tools/clang/lib/Serialization/GlobalModuleIndex.cpp
new file mode 100644
index 0000000..1b52b44
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Serialization/GlobalModuleIndex.cpp
@@ -0,0 +1,886 @@
+//===--- GlobalModuleIndex.cpp - Global Module Index ------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the GlobalModuleIndex class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ASTReaderInternals.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Lex/HeaderSearch.h"
+#include "clang/Serialization/ASTBitCodes.h"
+#include "clang/Serialization/GlobalModuleIndex.h"
+#include "clang/Serialization/Module.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/MapVector.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Bitcode/BitstreamReader.h"
+#include "llvm/Bitcode/BitstreamWriter.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/LockFileManager.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/OnDiskHashTable.h"
+#include "llvm/Support/Path.h"
+#include <cstdio>
+using namespace clang;
+using namespace serialization;
+
+//----------------------------------------------------------------------------//
+// Shared constants
+//----------------------------------------------------------------------------//
+namespace {
+ enum {
+ /// \brief The block containing the index.
+ GLOBAL_INDEX_BLOCK_ID = llvm::bitc::FIRST_APPLICATION_BLOCKID
+ };
+
+ /// \brief Describes the record types in the index.
+ enum IndexRecordTypes {
+ /// \brief Contains version information and potentially other metadata,
+ /// used to determine if we can read this global index file.
+ INDEX_METADATA,
+ /// \brief Describes a module, including its file name and dependencies.
+ MODULE,
+ /// \brief The index for identifiers.
+ IDENTIFIER_INDEX
+ };
+}
+
+/// \brief The name of the global index file.
+static const char * const IndexFileName = "modules.idx";
+
+/// \brief The global index file version.
+static const unsigned CurrentVersion = 1;
+
+//----------------------------------------------------------------------------//
+// Global module index reader.
+//----------------------------------------------------------------------------//
+
+namespace {
+
+/// \brief Trait used to read the identifier index from the on-disk hash
+/// table.
+class IdentifierIndexReaderTrait {
+public:
+ typedef StringRef external_key_type;
+ typedef StringRef internal_key_type;
+ typedef SmallVector<unsigned, 2> data_type;
+ typedef unsigned hash_value_type;
+ typedef unsigned offset_type;
+
+ static bool EqualKey(const internal_key_type& a, const internal_key_type& b) {
+ return a == b;
+ }
+
+ static hash_value_type ComputeHash(const internal_key_type& a) {
+ return llvm::HashString(a);
+ }
+
+ static std::pair<unsigned, unsigned>
+ ReadKeyDataLength(const unsigned char*& d) {
+ using namespace llvm::support;
+ unsigned KeyLen = endian::readNext<uint16_t, little, unaligned>(d);
+ unsigned DataLen = endian::readNext<uint16_t, little, unaligned>(d);
+ return std::make_pair(KeyLen, DataLen);
+ }
+
+ static const internal_key_type&
+ GetInternalKey(const external_key_type& x) { return x; }
+
+ static const external_key_type&
+ GetExternalKey(const internal_key_type& x) { return x; }
+
+ static internal_key_type ReadKey(const unsigned char* d, unsigned n) {
+ return StringRef((const char *)d, n);
+ }
+
+ static data_type ReadData(const internal_key_type& k,
+ const unsigned char* d,
+ unsigned DataLen) {
+ using namespace llvm::support;
+
+ data_type Result;
+ while (DataLen > 0) {
+ unsigned ID = endian::readNext<uint32_t, little, unaligned>(d);
+ Result.push_back(ID);
+ DataLen -= 4;
+ }
+
+ return Result;
+ }
+};
+
+typedef llvm::OnDiskIterableChainedHashTable<IdentifierIndexReaderTrait>
+ IdentifierIndexTable;
+
+}
+
+GlobalModuleIndex::GlobalModuleIndex(std::unique_ptr<llvm::MemoryBuffer> Buffer,
+ llvm::BitstreamCursor Cursor)
+ : Buffer(std::move(Buffer)), IdentifierIndex(), NumIdentifierLookups(),
+ NumIdentifierLookupHits() {
+ // Read the global index.
+ bool InGlobalIndexBlock = false;
+ bool Done = false;
+ while (!Done) {
+ llvm::BitstreamEntry Entry = Cursor.advance();
+
+ switch (Entry.Kind) {
+ case llvm::BitstreamEntry::Error:
+ return;
+
+ case llvm::BitstreamEntry::EndBlock:
+ if (InGlobalIndexBlock) {
+ InGlobalIndexBlock = false;
+ Done = true;
+ continue;
+ }
+ return;
+
+
+ case llvm::BitstreamEntry::Record:
+ // Entries in the global index block are handled below.
+ if (InGlobalIndexBlock)
+ break;
+
+ return;
+
+ case llvm::BitstreamEntry::SubBlock:
+ if (!InGlobalIndexBlock && Entry.ID == GLOBAL_INDEX_BLOCK_ID) {
+ if (Cursor.EnterSubBlock(GLOBAL_INDEX_BLOCK_ID))
+ return;
+
+ InGlobalIndexBlock = true;
+ } else if (Cursor.SkipBlock()) {
+ return;
+ }
+ continue;
+ }
+
+ SmallVector<uint64_t, 64> Record;
+ StringRef Blob;
+ switch ((IndexRecordTypes)Cursor.readRecord(Entry.ID, Record, &Blob)) {
+ case INDEX_METADATA:
+ // Make sure that the version matches.
+ if (Record.size() < 1 || Record[0] != CurrentVersion)
+ return;
+ break;
+
+ case MODULE: {
+ unsigned Idx = 0;
+ unsigned ID = Record[Idx++];
+
+ // Make room for this module's information.
+ if (ID == Modules.size())
+ Modules.push_back(ModuleInfo());
+ else
+ Modules.resize(ID + 1);
+
+ // Size/modification time for this module file at the time the
+ // global index was built.
+ Modules[ID].Size = Record[Idx++];
+ Modules[ID].ModTime = Record[Idx++];
+
+ // File name.
+ unsigned NameLen = Record[Idx++];
+ Modules[ID].FileName.assign(Record.begin() + Idx,
+ Record.begin() + Idx + NameLen);
+ Idx += NameLen;
+
+ // Dependencies
+ unsigned NumDeps = Record[Idx++];
+ Modules[ID].Dependencies.insert(Modules[ID].Dependencies.end(),
+ Record.begin() + Idx,
+ Record.begin() + Idx + NumDeps);
+ Idx += NumDeps;
+
+ // Make sure we're at the end of the record.
+ assert(Idx == Record.size() && "More module info?");
+
+ // Record this module as an unresolved module.
+ // FIXME: this doesn't work correctly for module names containing path
+ // separators.
+ StringRef ModuleName = llvm::sys::path::stem(Modules[ID].FileName);
+ // Remove the -<hash of ModuleMapPath>
+ ModuleName = ModuleName.rsplit('-').first;
+ UnresolvedModules[ModuleName] = ID;
+ break;
+ }
+
+ case IDENTIFIER_INDEX:
+ // Wire up the identifier index.
+ if (Record[0]) {
+ IdentifierIndex = IdentifierIndexTable::Create(
+ (const unsigned char *)Blob.data() + Record[0],
+ (const unsigned char *)Blob.data() + sizeof(uint32_t),
+ (const unsigned char *)Blob.data(), IdentifierIndexReaderTrait());
+ }
+ break;
+ }
+ }
+}
+
+GlobalModuleIndex::~GlobalModuleIndex() {
+ delete static_cast<IdentifierIndexTable *>(IdentifierIndex);
+}
+
+std::pair<GlobalModuleIndex *, GlobalModuleIndex::ErrorCode>
+GlobalModuleIndex::readIndex(StringRef Path) {
+ // Load the index file, if it's there.
+ llvm::SmallString<128> IndexPath;
+ IndexPath += Path;
+ llvm::sys::path::append(IndexPath, IndexFileName);
+
+ llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> BufferOrErr =
+ llvm::MemoryBuffer::getFile(IndexPath.c_str());
+ if (!BufferOrErr)
+ return std::make_pair(nullptr, EC_NotFound);
+ std::unique_ptr<llvm::MemoryBuffer> Buffer = std::move(BufferOrErr.get());
+
+ /// \brief The bitstream reader from which we'll read the AST file.
+ llvm::BitstreamReader Reader((const unsigned char *)Buffer->getBufferStart(),
+ (const unsigned char *)Buffer->getBufferEnd());
+
+ /// \brief The main bitstream cursor for the main block.
+ llvm::BitstreamCursor Cursor(Reader);
+
+ // Sniff for the signature.
+ if (Cursor.Read(8) != 'B' ||
+ Cursor.Read(8) != 'C' ||
+ Cursor.Read(8) != 'G' ||
+ Cursor.Read(8) != 'I') {
+ return std::make_pair(nullptr, EC_IOError);
+ }
+
+ return std::make_pair(new GlobalModuleIndex(std::move(Buffer), Cursor),
+ EC_None);
+}
+
+void
+GlobalModuleIndex::getKnownModules(SmallVectorImpl<ModuleFile *> &ModuleFiles) {
+ ModuleFiles.clear();
+ for (unsigned I = 0, N = Modules.size(); I != N; ++I) {
+ if (ModuleFile *MF = Modules[I].File)
+ ModuleFiles.push_back(MF);
+ }
+}
+
+void GlobalModuleIndex::getModuleDependencies(
+ ModuleFile *File,
+ SmallVectorImpl<ModuleFile *> &Dependencies) {
+ // Look for information about this module file.
+ llvm::DenseMap<ModuleFile *, unsigned>::iterator Known
+ = ModulesByFile.find(File);
+ if (Known == ModulesByFile.end())
+ return;
+
+ // Record dependencies.
+ Dependencies.clear();
+ ArrayRef<unsigned> StoredDependencies = Modules[Known->second].Dependencies;
+ for (unsigned I = 0, N = StoredDependencies.size(); I != N; ++I) {
+ if (ModuleFile *MF = Modules[I].File)
+ Dependencies.push_back(MF);
+ }
+}
+
+bool GlobalModuleIndex::lookupIdentifier(StringRef Name, HitSet &Hits) {
+ Hits.clear();
+
+ // If there's no identifier index, there is nothing we can do.
+ if (!IdentifierIndex)
+ return false;
+
+ // Look into the identifier index.
+ ++NumIdentifierLookups;
+ IdentifierIndexTable &Table
+ = *static_cast<IdentifierIndexTable *>(IdentifierIndex);
+ IdentifierIndexTable::iterator Known = Table.find(Name);
+ if (Known == Table.end()) {
+ return true;
+ }
+
+ SmallVector<unsigned, 2> ModuleIDs = *Known;
+ for (unsigned I = 0, N = ModuleIDs.size(); I != N; ++I) {
+ if (ModuleFile *MF = Modules[ModuleIDs[I]].File)
+ Hits.insert(MF);
+ }
+
+ ++NumIdentifierLookupHits;
+ return true;
+}
+
+bool GlobalModuleIndex::loadedModuleFile(ModuleFile *File) {
+ // Look for the module in the global module index based on the module name.
+ StringRef Name = File->ModuleName;
+ llvm::StringMap<unsigned>::iterator Known = UnresolvedModules.find(Name);
+ if (Known == UnresolvedModules.end()) {
+ return true;
+ }
+
+ // Rectify this module with the global module index.
+ ModuleInfo &Info = Modules[Known->second];
+
+ // If the size and modification time match what we expected, record this
+ // module file.
+ bool Failed = true;
+ if (File->File->getSize() == Info.Size &&
+ File->File->getModificationTime() == Info.ModTime) {
+ Info.File = File;
+ ModulesByFile[File] = Known->second;
+
+ Failed = false;
+ }
+
+ // One way or another, we have resolved this module file.
+ UnresolvedModules.erase(Known);
+ return Failed;
+}
+
+void GlobalModuleIndex::printStats() {
+ std::fprintf(stderr, "*** Global Module Index Statistics:\n");
+ if (NumIdentifierLookups) {
+ fprintf(stderr, " %u / %u identifier lookups succeeded (%f%%)\n",
+ NumIdentifierLookupHits, NumIdentifierLookups,
+ (double)NumIdentifierLookupHits*100.0/NumIdentifierLookups);
+ }
+ std::fprintf(stderr, "\n");
+}
+
+void GlobalModuleIndex::dump() {
+ llvm::errs() << "*** Global Module Index Dump:\n";
+ llvm::errs() << "Module files:\n";
+ for (auto &MI : Modules) {
+ llvm::errs() << "** " << MI.FileName << "\n";
+ if (MI.File)
+ MI.File->dump();
+ else
+ llvm::errs() << "\n";
+ }
+ llvm::errs() << "\n";
+}
+
+//----------------------------------------------------------------------------//
+// Global module index writer.
+//----------------------------------------------------------------------------//
+
+namespace {
+ /// \brief Provides information about a specific module file.
+ struct ModuleFileInfo {
+ /// \brief The numberic ID for this module file.
+ unsigned ID;
+
+ /// \brief The set of modules on which this module depends. Each entry is
+ /// a module ID.
+ SmallVector<unsigned, 4> Dependencies;
+ };
+
+ /// \brief Builder that generates the global module index file.
+ class GlobalModuleIndexBuilder {
+ FileManager &FileMgr;
+
+ /// \brief Mapping from files to module file information.
+ typedef llvm::MapVector<const FileEntry *, ModuleFileInfo> ModuleFilesMap;
+
+ /// \brief Information about each of the known module files.
+ ModuleFilesMap ModuleFiles;
+
+ /// \brief Mapping from identifiers to the list of module file IDs that
+ /// consider this identifier to be interesting.
+ typedef llvm::StringMap<SmallVector<unsigned, 2> > InterestingIdentifierMap;
+
+ /// \brief A mapping from all interesting identifiers to the set of module
+ /// files in which those identifiers are considered interesting.
+ InterestingIdentifierMap InterestingIdentifiers;
+
+ /// \brief Write the block-info block for the global module index file.
+ void emitBlockInfoBlock(llvm::BitstreamWriter &Stream);
+
+ /// \brief Retrieve the module file information for the given file.
+ ModuleFileInfo &getModuleFileInfo(const FileEntry *File) {
+ llvm::MapVector<const FileEntry *, ModuleFileInfo>::iterator Known
+ = ModuleFiles.find(File);
+ if (Known != ModuleFiles.end())
+ return Known->second;
+
+ unsigned NewID = ModuleFiles.size();
+ ModuleFileInfo &Info = ModuleFiles[File];
+ Info.ID = NewID;
+ return Info;
+ }
+
+ public:
+ explicit GlobalModuleIndexBuilder(FileManager &FileMgr) : FileMgr(FileMgr){}
+
+ /// \brief Load the contents of the given module file into the builder.
+ ///
+ /// \returns true if an error occurred, false otherwise.
+ bool loadModuleFile(const FileEntry *File);
+
+ /// \brief Write the index to the given bitstream.
+ void writeIndex(llvm::BitstreamWriter &Stream);
+ };
+}
+
+static void emitBlockID(unsigned ID, const char *Name,
+ llvm::BitstreamWriter &Stream,
+ SmallVectorImpl<uint64_t> &Record) {
+ Record.clear();
+ Record.push_back(ID);
+ Stream.EmitRecord(llvm::bitc::BLOCKINFO_CODE_SETBID, Record);
+
+ // Emit the block name if present.
+ if (!Name || Name[0] == 0) return;
+ Record.clear();
+ while (*Name)
+ Record.push_back(*Name++);
+ Stream.EmitRecord(llvm::bitc::BLOCKINFO_CODE_BLOCKNAME, Record);
+}
+
+static void emitRecordID(unsigned ID, const char *Name,
+ llvm::BitstreamWriter &Stream,
+ SmallVectorImpl<uint64_t> &Record) {
+ Record.clear();
+ Record.push_back(ID);
+ while (*Name)
+ Record.push_back(*Name++);
+ Stream.EmitRecord(llvm::bitc::BLOCKINFO_CODE_SETRECORDNAME, Record);
+}
+
+void
+GlobalModuleIndexBuilder::emitBlockInfoBlock(llvm::BitstreamWriter &Stream) {
+ SmallVector<uint64_t, 64> Record;
+ Stream.EnterSubblock(llvm::bitc::BLOCKINFO_BLOCK_ID, 3);
+
+#define BLOCK(X) emitBlockID(X ## _ID, #X, Stream, Record)
+#define RECORD(X) emitRecordID(X, #X, Stream, Record)
+ BLOCK(GLOBAL_INDEX_BLOCK);
+ RECORD(INDEX_METADATA);
+ RECORD(MODULE);
+ RECORD(IDENTIFIER_INDEX);
+#undef RECORD
+#undef BLOCK
+
+ Stream.ExitBlock();
+}
+
+namespace {
+ class InterestingASTIdentifierLookupTrait
+ : public serialization::reader::ASTIdentifierLookupTraitBase {
+
+ public:
+ /// \brief The identifier and whether it is "interesting".
+ typedef std::pair<StringRef, bool> data_type;
+
+ data_type ReadData(const internal_key_type& k,
+ const unsigned char* d,
+ unsigned DataLen) {
+ // The first bit indicates whether this identifier is interesting.
+ // That's all we care about.
+ using namespace llvm::support;
+ unsigned RawID = endian::readNext<uint32_t, little, unaligned>(d);
+ bool IsInteresting = RawID & 0x01;
+ return std::make_pair(k, IsInteresting);
+ }
+ };
+}
+
+bool GlobalModuleIndexBuilder::loadModuleFile(const FileEntry *File) {
+ // Open the module file.
+
+ auto Buffer = FileMgr.getBufferForFile(File, /*isVolatile=*/true);
+ if (!Buffer) {
+ return true;
+ }
+
+ // Initialize the input stream
+ llvm::BitstreamReader InStreamFile;
+ InStreamFile.init((const unsigned char *)(*Buffer)->getBufferStart(),
+ (const unsigned char *)(*Buffer)->getBufferEnd());
+ llvm::BitstreamCursor InStream(InStreamFile);
+
+ // Sniff for the signature.
+ if (InStream.Read(8) != 'C' ||
+ InStream.Read(8) != 'P' ||
+ InStream.Read(8) != 'C' ||
+ InStream.Read(8) != 'H') {
+ return true;
+ }
+
+ // Record this module file and assign it a unique ID (if it doesn't have
+ // one already).
+ unsigned ID = getModuleFileInfo(File).ID;
+
+ // Search for the blocks and records we care about.
+ enum { Other, ControlBlock, ASTBlock } State = Other;
+ bool Done = false;
+ while (!Done) {
+ llvm::BitstreamEntry Entry = InStream.advance();
+ switch (Entry.Kind) {
+ case llvm::BitstreamEntry::Error:
+ Done = true;
+ continue;
+
+ case llvm::BitstreamEntry::Record:
+ // In the 'other' state, just skip the record. We don't care.
+ if (State == Other) {
+ InStream.skipRecord(Entry.ID);
+ continue;
+ }
+
+ // Handle potentially-interesting records below.
+ break;
+
+ case llvm::BitstreamEntry::SubBlock:
+ if (Entry.ID == CONTROL_BLOCK_ID) {
+ if (InStream.EnterSubBlock(CONTROL_BLOCK_ID))
+ return true;
+
+ // Found the control block.
+ State = ControlBlock;
+ continue;
+ }
+
+ if (Entry.ID == AST_BLOCK_ID) {
+ if (InStream.EnterSubBlock(AST_BLOCK_ID))
+ return true;
+
+ // Found the AST block.
+ State = ASTBlock;
+ continue;
+ }
+
+ if (InStream.SkipBlock())
+ return true;
+
+ continue;
+
+ case llvm::BitstreamEntry::EndBlock:
+ State = Other;
+ continue;
+ }
+
+ // Read the given record.
+ SmallVector<uint64_t, 64> Record;
+ StringRef Blob;
+ unsigned Code = InStream.readRecord(Entry.ID, Record, &Blob);
+
+ // Handle module dependencies.
+ if (State == ControlBlock && Code == IMPORTS) {
+ // Load each of the imported PCH files.
+ unsigned Idx = 0, N = Record.size();
+ while (Idx < N) {
+ // Read information about the AST file.
+
+ // Skip the imported kind
+ ++Idx;
+
+ // Skip the import location
+ ++Idx;
+
+ // Load stored size/modification time.
+ off_t StoredSize = (off_t)Record[Idx++];
+ time_t StoredModTime = (time_t)Record[Idx++];
+
+ // Skip the stored signature.
+ // FIXME: we could read the signature out of the import and validate it.
+ Idx++;
+
+ // Retrieve the imported file name.
+ unsigned Length = Record[Idx++];
+ SmallString<128> ImportedFile(Record.begin() + Idx,
+ Record.begin() + Idx + Length);
+ Idx += Length;
+
+ // Find the imported module file.
+ const FileEntry *DependsOnFile
+ = FileMgr.getFile(ImportedFile, /*openFile=*/false,
+ /*cacheFailure=*/false);
+ if (!DependsOnFile ||
+ (StoredSize != DependsOnFile->getSize()) ||
+ (StoredModTime != DependsOnFile->getModificationTime()))
+ return true;
+
+ // Record the dependency.
+ unsigned DependsOnID = getModuleFileInfo(DependsOnFile).ID;
+ getModuleFileInfo(File).Dependencies.push_back(DependsOnID);
+ }
+
+ continue;
+ }
+
+ // Handle the identifier table
+ if (State == ASTBlock && Code == IDENTIFIER_TABLE && Record[0] > 0) {
+ typedef llvm::OnDiskIterableChainedHashTable<
+ InterestingASTIdentifierLookupTrait> InterestingIdentifierTable;
+ std::unique_ptr<InterestingIdentifierTable> Table(
+ InterestingIdentifierTable::Create(
+ (const unsigned char *)Blob.data() + Record[0],
+ (const unsigned char *)Blob.data() + sizeof(uint32_t),
+ (const unsigned char *)Blob.data()));
+ for (InterestingIdentifierTable::data_iterator D = Table->data_begin(),
+ DEnd = Table->data_end();
+ D != DEnd; ++D) {
+ std::pair<StringRef, bool> Ident = *D;
+ if (Ident.second)
+ InterestingIdentifiers[Ident.first].push_back(ID);
+ else
+ (void)InterestingIdentifiers[Ident.first];
+ }
+ }
+
+ // We don't care about this record.
+ }
+
+ return false;
+}
+
+namespace {
+
+/// \brief Trait used to generate the identifier index as an on-disk hash
+/// table.
+class IdentifierIndexWriterTrait {
+public:
+ typedef StringRef key_type;
+ typedef StringRef key_type_ref;
+ typedef SmallVector<unsigned, 2> data_type;
+ typedef const SmallVector<unsigned, 2> &data_type_ref;
+ typedef unsigned hash_value_type;
+ typedef unsigned offset_type;
+
+ static hash_value_type ComputeHash(key_type_ref Key) {
+ return llvm::HashString(Key);
+ }
+
+ std::pair<unsigned,unsigned>
+ EmitKeyDataLength(raw_ostream& Out, key_type_ref Key, data_type_ref Data) {
+ using namespace llvm::support;
+ endian::Writer<little> LE(Out);
+ unsigned KeyLen = Key.size();
+ unsigned DataLen = Data.size() * 4;
+ LE.write<uint16_t>(KeyLen);
+ LE.write<uint16_t>(DataLen);
+ return std::make_pair(KeyLen, DataLen);
+ }
+
+ void EmitKey(raw_ostream& Out, key_type_ref Key, unsigned KeyLen) {
+ Out.write(Key.data(), KeyLen);
+ }
+
+ void EmitData(raw_ostream& Out, key_type_ref Key, data_type_ref Data,
+ unsigned DataLen) {
+ using namespace llvm::support;
+ for (unsigned I = 0, N = Data.size(); I != N; ++I)
+ endian::Writer<little>(Out).write<uint32_t>(Data[I]);
+ }
+};
+
+}
+
+void GlobalModuleIndexBuilder::writeIndex(llvm::BitstreamWriter &Stream) {
+ using namespace llvm;
+
+ // Emit the file header.
+ Stream.Emit((unsigned)'B', 8);
+ Stream.Emit((unsigned)'C', 8);
+ Stream.Emit((unsigned)'G', 8);
+ Stream.Emit((unsigned)'I', 8);
+
+ // Write the block-info block, which describes the records in this bitcode
+ // file.
+ emitBlockInfoBlock(Stream);
+
+ Stream.EnterSubblock(GLOBAL_INDEX_BLOCK_ID, 3);
+
+ // Write the metadata.
+ SmallVector<uint64_t, 2> Record;
+ Record.push_back(CurrentVersion);
+ Stream.EmitRecord(INDEX_METADATA, Record);
+
+ // Write the set of known module files.
+ for (ModuleFilesMap::iterator M = ModuleFiles.begin(),
+ MEnd = ModuleFiles.end();
+ M != MEnd; ++M) {
+ Record.clear();
+ Record.push_back(M->second.ID);
+ Record.push_back(M->first->getSize());
+ Record.push_back(M->first->getModificationTime());
+
+ // File name
+ StringRef Name(M->first->getName());
+ Record.push_back(Name.size());
+ Record.append(Name.begin(), Name.end());
+
+ // Dependencies
+ Record.push_back(M->second.Dependencies.size());
+ Record.append(M->second.Dependencies.begin(), M->second.Dependencies.end());
+ Stream.EmitRecord(MODULE, Record);
+ }
+
+ // Write the identifier -> module file mapping.
+ {
+ llvm::OnDiskChainedHashTableGenerator<IdentifierIndexWriterTrait> Generator;
+ IdentifierIndexWriterTrait Trait;
+
+ // Populate the hash table.
+ for (InterestingIdentifierMap::iterator I = InterestingIdentifiers.begin(),
+ IEnd = InterestingIdentifiers.end();
+ I != IEnd; ++I) {
+ Generator.insert(I->first(), I->second, Trait);
+ }
+
+ // Create the on-disk hash table in a buffer.
+ SmallString<4096> IdentifierTable;
+ uint32_t BucketOffset;
+ {
+ using namespace llvm::support;
+ llvm::raw_svector_ostream Out(IdentifierTable);
+ // Make sure that no bucket is at offset 0
+ endian::Writer<little>(Out).write<uint32_t>(0);
+ BucketOffset = Generator.Emit(Out, Trait);
+ }
+
+ // Create a blob abbreviation
+ BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
+ Abbrev->Add(BitCodeAbbrevOp(IDENTIFIER_INDEX));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
+ Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
+ unsigned IDTableAbbrev = Stream.EmitAbbrev(Abbrev);
+
+ // Write the identifier table
+ Record.clear();
+ Record.push_back(IDENTIFIER_INDEX);
+ Record.push_back(BucketOffset);
+ Stream.EmitRecordWithBlob(IDTableAbbrev, Record, IdentifierTable);
+ }
+
+ Stream.ExitBlock();
+}
+
+GlobalModuleIndex::ErrorCode
+GlobalModuleIndex::writeIndex(FileManager &FileMgr, StringRef Path) {
+ llvm::SmallString<128> IndexPath;
+ IndexPath += Path;
+ llvm::sys::path::append(IndexPath, IndexFileName);
+
+ // Coordinate building the global index file with other processes that might
+ // try to do the same.
+ llvm::LockFileManager Locked(IndexPath);
+ switch (Locked) {
+ case llvm::LockFileManager::LFS_Error:
+ return EC_IOError;
+
+ case llvm::LockFileManager::LFS_Owned:
+ // We're responsible for building the index ourselves. Do so below.
+ break;
+
+ case llvm::LockFileManager::LFS_Shared:
+ // Someone else is responsible for building the index. We don't care
+ // when they finish, so we're done.
+ return EC_Building;
+ }
+
+ // The module index builder.
+ GlobalModuleIndexBuilder Builder(FileMgr);
+
+ // Load each of the module files.
+ std::error_code EC;
+ for (llvm::sys::fs::directory_iterator D(Path, EC), DEnd;
+ D != DEnd && !EC;
+ D.increment(EC)) {
+ // If this isn't a module file, we don't care.
+ if (llvm::sys::path::extension(D->path()) != ".pcm") {
+ // ... unless it's a .pcm.lock file, which indicates that someone is
+ // in the process of rebuilding a module. They'll rebuild the index
+ // at the end of that translation unit, so we don't have to.
+ if (llvm::sys::path::extension(D->path()) == ".pcm.lock")
+ return EC_Building;
+
+ continue;
+ }
+
+ // If we can't find the module file, skip it.
+ const FileEntry *ModuleFile = FileMgr.getFile(D->path());
+ if (!ModuleFile)
+ continue;
+
+ // Load this module file.
+ if (Builder.loadModuleFile(ModuleFile))
+ return EC_IOError;
+ }
+
+ // The output buffer, into which the global index will be written.
+ SmallVector<char, 16> OutputBuffer;
+ {
+ llvm::BitstreamWriter OutputStream(OutputBuffer);
+ Builder.writeIndex(OutputStream);
+ }
+
+ // Write the global index file to a temporary file.
+ llvm::SmallString<128> IndexTmpPath;
+ int TmpFD;
+ if (llvm::sys::fs::createUniqueFile(IndexPath + "-%%%%%%%%", TmpFD,
+ IndexTmpPath))
+ return EC_IOError;
+
+ // Open the temporary global index file for output.
+ llvm::raw_fd_ostream Out(TmpFD, true);
+ if (Out.has_error())
+ return EC_IOError;
+
+ // Write the index.
+ Out.write(OutputBuffer.data(), OutputBuffer.size());
+ Out.close();
+ if (Out.has_error())
+ return EC_IOError;
+
+ // Remove the old index file. It isn't relevant any more.
+ llvm::sys::fs::remove(IndexPath);
+
+ // Rename the newly-written index file to the proper name.
+ if (llvm::sys::fs::rename(IndexTmpPath, IndexPath)) {
+ // Rename failed; just remove the
+ llvm::sys::fs::remove(IndexTmpPath);
+ return EC_IOError;
+ }
+
+ // We're done.
+ return EC_None;
+}
+
+namespace {
+ class GlobalIndexIdentifierIterator : public IdentifierIterator {
+ /// \brief The current position within the identifier lookup table.
+ IdentifierIndexTable::key_iterator Current;
+
+ /// \brief The end position within the identifier lookup table.
+ IdentifierIndexTable::key_iterator End;
+
+ public:
+ explicit GlobalIndexIdentifierIterator(IdentifierIndexTable &Idx) {
+ Current = Idx.key_begin();
+ End = Idx.key_end();
+ }
+
+ StringRef Next() override {
+ if (Current == End)
+ return StringRef();
+
+ StringRef Result = *Current;
+ ++Current;
+ return Result;
+ }
+ };
+}
+
+IdentifierIterator *GlobalModuleIndex::createIdentifierIterator() const {
+ IdentifierIndexTable &Table =
+ *static_cast<IdentifierIndexTable *>(IdentifierIndex);
+ return new GlobalIndexIdentifierIterator(Table);
+}
diff --git a/contrib/llvm/tools/clang/lib/Serialization/Module.cpp b/contrib/llvm/tools/clang/lib/Serialization/Module.cpp
new file mode 100644
index 0000000..3b237d5
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Serialization/Module.cpp
@@ -0,0 +1,123 @@
+//===--- Module.cpp - Module description ------------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Module class, which describes a module that has
+// been loaded from an AST file.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/Serialization/Module.h"
+#include "ASTReaderInternals.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace serialization;
+using namespace reader;
+
+ModuleFile::ModuleFile(ModuleKind Kind, unsigned Generation)
+ : Kind(Kind), File(nullptr), Signature(0), DirectlyImported(false),
+ Generation(Generation), SizeInBits(0),
+ LocalNumSLocEntries(0), SLocEntryBaseID(0),
+ SLocEntryBaseOffset(0), SLocEntryOffsets(nullptr),
+ LocalNumIdentifiers(0),
+ IdentifierOffsets(nullptr), BaseIdentifierID(0),
+ IdentifierTableData(nullptr), IdentifierLookupTable(nullptr),
+ LocalNumMacros(0), MacroOffsets(nullptr),
+ BasePreprocessedEntityID(0),
+ PreprocessedEntityOffsets(nullptr), NumPreprocessedEntities(0),
+ LocalNumHeaderFileInfos(0),
+ HeaderFileInfoTableData(nullptr), HeaderFileInfoTable(nullptr),
+ LocalNumSubmodules(0), BaseSubmoduleID(0),
+ LocalNumSelectors(0), SelectorOffsets(nullptr), BaseSelectorID(0),
+ SelectorLookupTableData(nullptr), SelectorLookupTable(nullptr),
+ LocalNumDecls(0), DeclOffsets(nullptr), BaseDeclID(0),
+ LocalNumCXXBaseSpecifiers(0), CXXBaseSpecifiersOffsets(nullptr),
+ LocalNumCXXCtorInitializers(0), CXXCtorInitializersOffsets(nullptr),
+ FileSortedDecls(nullptr), NumFileSortedDecls(0),
+ RedeclarationsMap(nullptr), LocalNumRedeclarationsInMap(0),
+ ObjCCategoriesMap(nullptr), LocalNumObjCCategoriesInMap(0),
+ LocalNumTypes(0), TypeOffsets(nullptr), BaseTypeIndex(0)
+{}
+
+ModuleFile::~ModuleFile() {
+ for (DeclContextInfosMap::iterator I = DeclContextInfos.begin(),
+ E = DeclContextInfos.end();
+ I != E; ++I) {
+ if (I->second.NameLookupTableData)
+ delete I->second.NameLookupTableData;
+ }
+
+ delete static_cast<ASTIdentifierLookupTable *>(IdentifierLookupTable);
+ delete static_cast<HeaderFileInfoLookupTable *>(HeaderFileInfoTable);
+ delete static_cast<ASTSelectorLookupTable *>(SelectorLookupTable);
+}
+
+template<typename Key, typename Offset, unsigned InitialCapacity>
+static void
+dumpLocalRemap(StringRef Name,
+ const ContinuousRangeMap<Key, Offset, InitialCapacity> &Map) {
+ if (Map.begin() == Map.end())
+ return;
+
+ typedef ContinuousRangeMap<Key, Offset, InitialCapacity> MapType;
+ llvm::errs() << " " << Name << ":\n";
+ for (typename MapType::const_iterator I = Map.begin(), IEnd = Map.end();
+ I != IEnd; ++I) {
+ llvm::errs() << " " << I->first << " -> " << I->second << "\n";
+ }
+}
+
+void ModuleFile::dump() {
+ llvm::errs() << "\nModule: " << FileName << "\n";
+ if (!Imports.empty()) {
+ llvm::errs() << " Imports: ";
+ for (unsigned I = 0, N = Imports.size(); I != N; ++I) {
+ if (I)
+ llvm::errs() << ", ";
+ llvm::errs() << Imports[I]->FileName;
+ }
+ llvm::errs() << "\n";
+ }
+
+ // Remapping tables.
+ llvm::errs() << " Base source location offset: " << SLocEntryBaseOffset
+ << '\n';
+ dumpLocalRemap("Source location offset local -> global map", SLocRemap);
+
+ llvm::errs() << " Base identifier ID: " << BaseIdentifierID << '\n'
+ << " Number of identifiers: " << LocalNumIdentifiers << '\n';
+ dumpLocalRemap("Identifier ID local -> global map", IdentifierRemap);
+
+ llvm::errs() << " Base macro ID: " << BaseMacroID << '\n'
+ << " Number of macros: " << LocalNumMacros << '\n';
+ dumpLocalRemap("Macro ID local -> global map", MacroRemap);
+
+ llvm::errs() << " Base submodule ID: " << BaseSubmoduleID << '\n'
+ << " Number of submodules: " << LocalNumSubmodules << '\n';
+ dumpLocalRemap("Submodule ID local -> global map", SubmoduleRemap);
+
+ llvm::errs() << " Base selector ID: " << BaseSelectorID << '\n'
+ << " Number of selectors: " << LocalNumSelectors << '\n';
+ dumpLocalRemap("Selector ID local -> global map", SelectorRemap);
+
+ llvm::errs() << " Base preprocessed entity ID: " << BasePreprocessedEntityID
+ << '\n'
+ << " Number of preprocessed entities: "
+ << NumPreprocessedEntities << '\n';
+ dumpLocalRemap("Preprocessed entity ID local -> global map",
+ PreprocessedEntityRemap);
+
+ llvm::errs() << " Base type index: " << BaseTypeIndex << '\n'
+ << " Number of types: " << LocalNumTypes << '\n';
+ dumpLocalRemap("Type index local -> global map", TypeRemap);
+
+ llvm::errs() << " Base decl ID: " << BaseDeclID << '\n'
+ << " Number of decls: " << LocalNumDecls << '\n';
+ dumpLocalRemap("Decl ID local -> global map", DeclRemap);
+}
diff --git a/contrib/llvm/tools/clang/lib/Serialization/ModuleManager.cpp b/contrib/llvm/tools/clang/lib/Serialization/ModuleManager.cpp
new file mode 100644
index 0000000..30d9c89
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Serialization/ModuleManager.cpp
@@ -0,0 +1,540 @@
+//===--- ModuleManager.cpp - Module Manager ---------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the ModuleManager class, which manages a set of loaded
+// modules for the ASTReader.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/Lex/HeaderSearch.h"
+#include "clang/Lex/ModuleMap.h"
+#include "clang/Serialization/GlobalModuleIndex.h"
+#include "clang/Serialization/ModuleManager.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/raw_ostream.h"
+#include <system_error>
+
+#ifndef NDEBUG
+#include "llvm/Support/GraphWriter.h"
+#endif
+
+using namespace clang;
+using namespace serialization;
+
+ModuleFile *ModuleManager::lookup(StringRef Name) {
+ const FileEntry *Entry = FileMgr.getFile(Name, /*openFile=*/false,
+ /*cacheFailure=*/false);
+ if (Entry)
+ return lookup(Entry);
+
+ return nullptr;
+}
+
+ModuleFile *ModuleManager::lookup(const FileEntry *File) {
+ llvm::DenseMap<const FileEntry *, ModuleFile *>::iterator Known
+ = Modules.find(File);
+ if (Known == Modules.end())
+ return nullptr;
+
+ return Known->second;
+}
+
+std::unique_ptr<llvm::MemoryBuffer>
+ModuleManager::lookupBuffer(StringRef Name) {
+ const FileEntry *Entry = FileMgr.getFile(Name, /*openFile=*/false,
+ /*cacheFailure=*/false);
+ return std::move(InMemoryBuffers[Entry]);
+}
+
+ModuleManager::AddModuleResult
+ModuleManager::addModule(StringRef FileName, ModuleKind Type,
+ SourceLocation ImportLoc, ModuleFile *ImportedBy,
+ unsigned Generation,
+ off_t ExpectedSize, time_t ExpectedModTime,
+ ASTFileSignature ExpectedSignature,
+ ASTFileSignatureReader ReadSignature,
+ ModuleFile *&Module,
+ std::string &ErrorStr) {
+ Module = nullptr;
+
+ // Look for the file entry. This only fails if the expected size or
+ // modification time differ.
+ const FileEntry *Entry;
+ if (Type == MK_ExplicitModule) {
+ // If we're not expecting to pull this file out of the module cache, it
+ // might have a different mtime due to being moved across filesystems in
+ // a distributed build. The size must still match, though. (As must the
+ // contents, but we can't check that.)
+ ExpectedModTime = 0;
+ }
+ if (lookupModuleFile(FileName, ExpectedSize, ExpectedModTime, Entry)) {
+ ErrorStr = "module file out of date";
+ return OutOfDate;
+ }
+
+ if (!Entry && FileName != "-") {
+ ErrorStr = "module file not found";
+ return Missing;
+ }
+
+ // Check whether we already loaded this module, before
+ ModuleFile *&ModuleEntry = Modules[Entry];
+ bool NewModule = false;
+ if (!ModuleEntry) {
+ // Allocate a new module.
+ ModuleFile *New = new ModuleFile(Type, Generation);
+ New->Index = Chain.size();
+ New->FileName = FileName.str();
+ New->File = Entry;
+ New->ImportLoc = ImportLoc;
+ Chain.push_back(New);
+ if (!ImportedBy)
+ Roots.push_back(New);
+ NewModule = true;
+ ModuleEntry = New;
+
+ New->InputFilesValidationTimestamp = 0;
+ if (New->Kind == MK_ImplicitModule) {
+ std::string TimestampFilename = New->getTimestampFilename();
+ vfs::Status Status;
+ // A cached stat value would be fine as well.
+ if (!FileMgr.getNoncachedStatValue(TimestampFilename, Status))
+ New->InputFilesValidationTimestamp =
+ Status.getLastModificationTime().toEpochTime();
+ }
+
+ // Load the contents of the module
+ if (std::unique_ptr<llvm::MemoryBuffer> Buffer = lookupBuffer(FileName)) {
+ // The buffer was already provided for us.
+ New->Buffer = std::move(Buffer);
+ } else {
+ // Open the AST file.
+ llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Buf(
+ (std::error_code()));
+ if (FileName == "-") {
+ Buf = llvm::MemoryBuffer::getSTDIN();
+ } else {
+ // Leave the FileEntry open so if it gets read again by another
+ // ModuleManager it must be the same underlying file.
+ // FIXME: Because FileManager::getFile() doesn't guarantee that it will
+ // give us an open file, this may not be 100% reliable.
+ Buf = FileMgr.getBufferForFile(New->File,
+ /*IsVolatile=*/false,
+ /*ShouldClose=*/false);
+ }
+
+ if (!Buf) {
+ ErrorStr = Buf.getError().message();
+ return Missing;
+ }
+
+ New->Buffer = std::move(*Buf);
+ }
+
+ // Initialize the stream
+ New->StreamFile.init((const unsigned char *)New->Buffer->getBufferStart(),
+ (const unsigned char *)New->Buffer->getBufferEnd());
+ }
+
+ if (ExpectedSignature) {
+ if (NewModule)
+ ModuleEntry->Signature = ReadSignature(ModuleEntry->StreamFile);
+ else
+ assert(ModuleEntry->Signature == ReadSignature(ModuleEntry->StreamFile));
+
+ if (ModuleEntry->Signature != ExpectedSignature) {
+ ErrorStr = ModuleEntry->Signature ? "signature mismatch"
+ : "could not read module signature";
+
+ if (NewModule) {
+ // Remove the module file immediately, since removeModules might try to
+ // invalidate the file cache for Entry, and that is not safe if this
+ // module is *itself* up to date, but has an out-of-date importer.
+ Modules.erase(Entry);
+ assert(Chain.back() == ModuleEntry);
+ Chain.pop_back();
+ if (Roots.back() == ModuleEntry)
+ Roots.pop_back();
+ else
+ assert(ImportedBy);
+ delete ModuleEntry;
+ }
+ return OutOfDate;
+ }
+ }
+
+ if (ImportedBy) {
+ ModuleEntry->ImportedBy.insert(ImportedBy);
+ ImportedBy->Imports.insert(ModuleEntry);
+ } else {
+ if (!ModuleEntry->DirectlyImported)
+ ModuleEntry->ImportLoc = ImportLoc;
+
+ ModuleEntry->DirectlyImported = true;
+ }
+
+ Module = ModuleEntry;
+ return NewModule? NewlyLoaded : AlreadyLoaded;
+}
+
+void ModuleManager::removeModules(
+ ModuleIterator first, ModuleIterator last,
+ llvm::SmallPtrSetImpl<ModuleFile *> &LoadedSuccessfully,
+ ModuleMap *modMap) {
+ if (first == last)
+ return;
+
+ // Collect the set of module file pointers that we'll be removing.
+ llvm::SmallPtrSet<ModuleFile *, 4> victimSet(first, last);
+
+ auto IsVictim = [&](ModuleFile *MF) {
+ return victimSet.count(MF);
+ };
+ // Remove any references to the now-destroyed modules.
+ for (unsigned i = 0, n = Chain.size(); i != n; ++i) {
+ Chain[i]->ImportedBy.remove_if(IsVictim);
+ }
+ Roots.erase(std::remove_if(Roots.begin(), Roots.end(), IsVictim),
+ Roots.end());
+
+ // Delete the modules and erase them from the various structures.
+ for (ModuleIterator victim = first; victim != last; ++victim) {
+ Modules.erase((*victim)->File);
+
+ if (modMap) {
+ StringRef ModuleName = (*victim)->ModuleName;
+ if (Module *mod = modMap->findModule(ModuleName)) {
+ mod->setASTFile(nullptr);
+ }
+ }
+
+ // Files that didn't make it through ReadASTCore successfully will be
+ // rebuilt (or there was an error). Invalidate them so that we can load the
+ // new files that will be renamed over the old ones.
+ if (LoadedSuccessfully.count(*victim) == 0)
+ FileMgr.invalidateCache((*victim)->File);
+
+ delete *victim;
+ }
+
+ // Remove the modules from the chain.
+ Chain.erase(first, last);
+}
+
+void
+ModuleManager::addInMemoryBuffer(StringRef FileName,
+ std::unique_ptr<llvm::MemoryBuffer> Buffer) {
+
+ const FileEntry *Entry =
+ FileMgr.getVirtualFile(FileName, Buffer->getBufferSize(), 0);
+ InMemoryBuffers[Entry] = std::move(Buffer);
+}
+
+bool ModuleManager::addKnownModuleFile(StringRef FileName) {
+ const FileEntry *File;
+ if (lookupModuleFile(FileName, 0, 0, File))
+ return true;
+ if (!Modules.count(File))
+ AdditionalKnownModuleFiles.insert(File);
+ return false;
+}
+
+ModuleManager::VisitState *ModuleManager::allocateVisitState() {
+ // Fast path: if we have a cached state, use it.
+ if (FirstVisitState) {
+ VisitState *Result = FirstVisitState;
+ FirstVisitState = FirstVisitState->NextState;
+ Result->NextState = nullptr;
+ return Result;
+ }
+
+ // Allocate and return a new state.
+ return new VisitState(size());
+}
+
+void ModuleManager::returnVisitState(VisitState *State) {
+ assert(State->NextState == nullptr && "Visited state is in list?");
+ State->NextState = FirstVisitState;
+ FirstVisitState = State;
+}
+
+void ModuleManager::setGlobalIndex(GlobalModuleIndex *Index) {
+ GlobalIndex = Index;
+ if (!GlobalIndex) {
+ ModulesInCommonWithGlobalIndex.clear();
+ return;
+ }
+
+ // Notify the global module index about all of the modules we've already
+ // loaded.
+ for (unsigned I = 0, N = Chain.size(); I != N; ++I) {
+ if (!GlobalIndex->loadedModuleFile(Chain[I])) {
+ ModulesInCommonWithGlobalIndex.push_back(Chain[I]);
+ }
+ }
+}
+
+void ModuleManager::moduleFileAccepted(ModuleFile *MF) {
+ AdditionalKnownModuleFiles.remove(MF->File);
+
+ if (!GlobalIndex || GlobalIndex->loadedModuleFile(MF))
+ return;
+
+ ModulesInCommonWithGlobalIndex.push_back(MF);
+}
+
+ModuleManager::ModuleManager(FileManager &FileMgr)
+ : FileMgr(FileMgr), GlobalIndex(), FirstVisitState(nullptr) {}
+
+ModuleManager::~ModuleManager() {
+ for (unsigned i = 0, e = Chain.size(); i != e; ++i)
+ delete Chain[e - i - 1];
+ delete FirstVisitState;
+}
+
+void
+ModuleManager::visit(bool (*Visitor)(ModuleFile &M, void *UserData),
+ void *UserData,
+ llvm::SmallPtrSetImpl<ModuleFile *> *ModuleFilesHit) {
+ // If the visitation order vector is the wrong size, recompute the order.
+ if (VisitOrder.size() != Chain.size()) {
+ unsigned N = size();
+ VisitOrder.clear();
+ VisitOrder.reserve(N);
+
+ // Record the number of incoming edges for each module. When we
+ // encounter a module with no incoming edges, push it into the queue
+ // to seed the queue.
+ SmallVector<ModuleFile *, 4> Queue;
+ Queue.reserve(N);
+ llvm::SmallVector<unsigned, 4> UnusedIncomingEdges;
+ UnusedIncomingEdges.reserve(size());
+ for (ModuleIterator M = begin(), MEnd = end(); M != MEnd; ++M) {
+ if (unsigned Size = (*M)->ImportedBy.size())
+ UnusedIncomingEdges.push_back(Size);
+ else {
+ UnusedIncomingEdges.push_back(0);
+ Queue.push_back(*M);
+ }
+ }
+
+ // Traverse the graph, making sure to visit a module before visiting any
+ // of its dependencies.
+ unsigned QueueStart = 0;
+ while (QueueStart < Queue.size()) {
+ ModuleFile *CurrentModule = Queue[QueueStart++];
+ VisitOrder.push_back(CurrentModule);
+
+ // For any module that this module depends on, push it on the
+ // stack (if it hasn't already been marked as visited).
+ for (llvm::SetVector<ModuleFile *>::iterator
+ M = CurrentModule->Imports.begin(),
+ MEnd = CurrentModule->Imports.end();
+ M != MEnd; ++M) {
+ // Remove our current module as an impediment to visiting the
+ // module we depend on. If we were the last unvisited module
+ // that depends on this particular module, push it into the
+ // queue to be visited.
+ unsigned &NumUnusedEdges = UnusedIncomingEdges[(*M)->Index];
+ if (NumUnusedEdges && (--NumUnusedEdges == 0))
+ Queue.push_back(*M);
+ }
+ }
+
+ assert(VisitOrder.size() == N && "Visitation order is wrong?");
+
+ delete FirstVisitState;
+ FirstVisitState = nullptr;
+ }
+
+ VisitState *State = allocateVisitState();
+ unsigned VisitNumber = State->NextVisitNumber++;
+
+ // If the caller has provided us with a hit-set that came from the global
+ // module index, mark every module file in common with the global module
+ // index that is *not* in that set as 'visited'.
+ if (ModuleFilesHit && !ModulesInCommonWithGlobalIndex.empty()) {
+ for (unsigned I = 0, N = ModulesInCommonWithGlobalIndex.size(); I != N; ++I)
+ {
+ ModuleFile *M = ModulesInCommonWithGlobalIndex[I];
+ if (!ModuleFilesHit->count(M))
+ State->VisitNumber[M->Index] = VisitNumber;
+ }
+ }
+
+ for (unsigned I = 0, N = VisitOrder.size(); I != N; ++I) {
+ ModuleFile *CurrentModule = VisitOrder[I];
+ // Should we skip this module file?
+ if (State->VisitNumber[CurrentModule->Index] == VisitNumber)
+ continue;
+
+ // Visit the module.
+ assert(State->VisitNumber[CurrentModule->Index] == VisitNumber - 1);
+ State->VisitNumber[CurrentModule->Index] = VisitNumber;
+ if (!Visitor(*CurrentModule, UserData))
+ continue;
+
+ // The visitor has requested that cut off visitation of any
+ // module that the current module depends on. To indicate this
+ // behavior, we mark all of the reachable modules as having been visited.
+ ModuleFile *NextModule = CurrentModule;
+ do {
+ // For any module that this module depends on, push it on the
+ // stack (if it hasn't already been marked as visited).
+ for (llvm::SetVector<ModuleFile *>::iterator
+ M = NextModule->Imports.begin(),
+ MEnd = NextModule->Imports.end();
+ M != MEnd; ++M) {
+ if (State->VisitNumber[(*M)->Index] != VisitNumber) {
+ State->Stack.push_back(*M);
+ State->VisitNumber[(*M)->Index] = VisitNumber;
+ }
+ }
+
+ if (State->Stack.empty())
+ break;
+
+ // Pop the next module off the stack.
+ NextModule = State->Stack.pop_back_val();
+ } while (true);
+ }
+
+ returnVisitState(State);
+}
+
+static void markVisitedDepthFirst(ModuleFile &M,
+ SmallVectorImpl<bool> &Visited) {
+ for (llvm::SetVector<ModuleFile *>::iterator IM = M.Imports.begin(),
+ IMEnd = M.Imports.end();
+ IM != IMEnd; ++IM) {
+ if (Visited[(*IM)->Index])
+ continue;
+ Visited[(*IM)->Index] = true;
+ if (!M.DirectlyImported)
+ markVisitedDepthFirst(**IM, Visited);
+ }
+}
+
+/// \brief Perform a depth-first visit of the current module.
+static bool visitDepthFirst(
+ ModuleFile &M,
+ ModuleManager::DFSPreorderControl (*PreorderVisitor)(ModuleFile &M,
+ void *UserData),
+ bool (*PostorderVisitor)(ModuleFile &M, void *UserData), void *UserData,
+ SmallVectorImpl<bool> &Visited) {
+ if (PreorderVisitor) {
+ switch (PreorderVisitor(M, UserData)) {
+ case ModuleManager::Abort:
+ return true;
+ case ModuleManager::SkipImports:
+ markVisitedDepthFirst(M, Visited);
+ return false;
+ case ModuleManager::Continue:
+ break;
+ }
+ }
+
+ // Visit children
+ for (llvm::SetVector<ModuleFile *>::iterator IM = M.Imports.begin(),
+ IMEnd = M.Imports.end();
+ IM != IMEnd; ++IM) {
+ if (Visited[(*IM)->Index])
+ continue;
+ Visited[(*IM)->Index] = true;
+
+ if (visitDepthFirst(**IM, PreorderVisitor, PostorderVisitor, UserData, Visited))
+ return true;
+ }
+
+ if (PostorderVisitor)
+ return PostorderVisitor(M, UserData);
+
+ return false;
+}
+
+void ModuleManager::visitDepthFirst(
+ ModuleManager::DFSPreorderControl (*PreorderVisitor)(ModuleFile &M,
+ void *UserData),
+ bool (*PostorderVisitor)(ModuleFile &M, void *UserData), void *UserData) {
+ SmallVector<bool, 16> Visited(size(), false);
+ for (unsigned I = 0, N = Roots.size(); I != N; ++I) {
+ if (Visited[Roots[I]->Index])
+ continue;
+ Visited[Roots[I]->Index] = true;
+
+ if (::visitDepthFirst(*Roots[I], PreorderVisitor, PostorderVisitor, UserData, Visited))
+ return;
+ }
+}
+
+bool ModuleManager::lookupModuleFile(StringRef FileName,
+ off_t ExpectedSize,
+ time_t ExpectedModTime,
+ const FileEntry *&File) {
+ // Open the file immediately to ensure there is no race between stat'ing and
+ // opening the file.
+ File = FileMgr.getFile(FileName, /*openFile=*/true, /*cacheFailure=*/false);
+
+ if (!File && FileName != "-") {
+ return false;
+ }
+
+ if ((ExpectedSize && ExpectedSize != File->getSize()) ||
+ (ExpectedModTime && ExpectedModTime != File->getModificationTime()))
+ // Do not destroy File, as it may be referenced. If we need to rebuild it,
+ // it will be destroyed by removeModules.
+ return true;
+
+ return false;
+}
+
+#ifndef NDEBUG
+namespace llvm {
+ template<>
+ struct GraphTraits<ModuleManager> {
+ typedef ModuleFile NodeType;
+ typedef llvm::SetVector<ModuleFile *>::const_iterator ChildIteratorType;
+ typedef ModuleManager::ModuleConstIterator nodes_iterator;
+
+ static ChildIteratorType child_begin(NodeType *Node) {
+ return Node->Imports.begin();
+ }
+
+ static ChildIteratorType child_end(NodeType *Node) {
+ return Node->Imports.end();
+ }
+
+ static nodes_iterator nodes_begin(const ModuleManager &Manager) {
+ return Manager.begin();
+ }
+
+ static nodes_iterator nodes_end(const ModuleManager &Manager) {
+ return Manager.end();
+ }
+ };
+
+ template<>
+ struct DOTGraphTraits<ModuleManager> : public DefaultDOTGraphTraits {
+ explicit DOTGraphTraits(bool IsSimple = false)
+ : DefaultDOTGraphTraits(IsSimple) { }
+
+ static bool renderGraphFromBottomUp() {
+ return true;
+ }
+
+ std::string getNodeLabel(ModuleFile *M, const ModuleManager&) {
+ return M->ModuleName;
+ }
+ };
+}
+
+void ModuleManager::viewGraph() {
+ llvm::ViewGraph(*this, "Modules");
+}
+#endif
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/AllocationDiagnostics.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/AllocationDiagnostics.cpp
new file mode 100644
index 0000000..3dec8a5
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/AllocationDiagnostics.cpp
@@ -0,0 +1,24 @@
+//=- AllocationDiagnostics.cpp - Config options for allocation diags *- C++ -*-//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Declares the configuration functions for leaks/allocation diagnostics.
+//
+//===--------------------------
+
+#include "AllocationDiagnostics.h"
+
+namespace clang {
+namespace ento {
+
+bool shouldIncludeAllocationSiteInLeakDiagnostics(AnalyzerOptions &AOpts) {
+ return AOpts.getBooleanOption("leak-diagnostics-reference-allocation",
+ false);
+}
+
+}}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/AllocationDiagnostics.h b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/AllocationDiagnostics.h
new file mode 100644
index 0000000..048418e
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/AllocationDiagnostics.h
@@ -0,0 +1,31 @@
+//=--- AllocationDiagnostics.h - Config options for allocation diags *- C++ -*-//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Declares the configuration functions for leaks/allocation diagnostics.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_STATICANALYZER_CHECKERS_ALLOCATIONDIAGNOSTICS_H
+#define LLVM_CLANG_LIB_STATICANALYZER_CHECKERS_ALLOCATIONDIAGNOSTICS_H
+
+#include "clang/StaticAnalyzer/Core/AnalyzerOptions.h"
+
+namespace clang { namespace ento {
+
+/// \brief Returns true if leak diagnostics should directly reference
+/// the allocatin site (where possible).
+///
+/// The default is false.
+///
+bool shouldIncludeAllocationSiteInLeakDiagnostics(AnalyzerOptions &AOpts);
+
+}}
+
+#endif
+
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/AnalyzerStatsChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/AnalyzerStatsChecker.cpp
new file mode 100644
index 0000000..166471a
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/AnalyzerStatsChecker.cpp
@@ -0,0 +1,140 @@
+//==--AnalyzerStatsChecker.cpp - Analyzer visitation statistics --*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+// This file reports various statistics about analyzer visitation.
+//===----------------------------------------------------------------------===//
+#include "ClangSACheckers.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+
+#define DEBUG_TYPE "StatsChecker"
+
+STATISTIC(NumBlocks,
+ "The # of blocks in top level functions");
+STATISTIC(NumBlocksUnreachable,
+ "The # of unreachable blocks in analyzing top level functions");
+
+namespace {
+class AnalyzerStatsChecker : public Checker<check::EndAnalysis> {
+public:
+ void checkEndAnalysis(ExplodedGraph &G, BugReporter &B,ExprEngine &Eng) const;
+};
+}
+
+void AnalyzerStatsChecker::checkEndAnalysis(ExplodedGraph &G,
+ BugReporter &B,
+ ExprEngine &Eng) const {
+ const CFG *C = nullptr;
+ const SourceManager &SM = B.getSourceManager();
+ llvm::SmallPtrSet<const CFGBlock*, 256> reachable;
+
+ // Root node should have the location context of the top most function.
+ const ExplodedNode *GraphRoot = *G.roots_begin();
+ const LocationContext *LC = GraphRoot->getLocation().getLocationContext();
+
+ const Decl *D = LC->getDecl();
+
+ // Iterate over the exploded graph.
+ for (ExplodedGraph::node_iterator I = G.nodes_begin();
+ I != G.nodes_end(); ++I) {
+ const ProgramPoint &P = I->getLocation();
+
+ // Only check the coverage in the top level function (optimization).
+ if (D != P.getLocationContext()->getDecl())
+ continue;
+
+ if (Optional<BlockEntrance> BE = P.getAs<BlockEntrance>()) {
+ const CFGBlock *CB = BE->getBlock();
+ reachable.insert(CB);
+ }
+ }
+
+ // Get the CFG and the Decl of this block.
+ C = LC->getCFG();
+
+ unsigned total = 0, unreachable = 0;
+
+ // Find CFGBlocks that were not covered by any node
+ for (CFG::const_iterator I = C->begin(); I != C->end(); ++I) {
+ const CFGBlock *CB = *I;
+ ++total;
+ // Check if the block is unreachable
+ if (!reachable.count(CB)) {
+ ++unreachable;
+ }
+ }
+
+ // We never 'reach' the entry block, so correct the unreachable count
+ unreachable--;
+ // There is no BlockEntrance corresponding to the exit block as well, so
+ // assume it is reached as well.
+ unreachable--;
+
+ // Generate the warning string
+ SmallString<128> buf;
+ llvm::raw_svector_ostream output(buf);
+ PresumedLoc Loc = SM.getPresumedLoc(D->getLocation());
+ if (!Loc.isValid())
+ return;
+
+ if (isa<FunctionDecl>(D) || isa<ObjCMethodDecl>(D)) {
+ const NamedDecl *ND = cast<NamedDecl>(D);
+ output << *ND;
+ }
+ else if (isa<BlockDecl>(D)) {
+ output << "block(line:" << Loc.getLine() << ":col:" << Loc.getColumn();
+ }
+
+ NumBlocksUnreachable += unreachable;
+ NumBlocks += total;
+ std::string NameOfRootFunction = output.str();
+
+ output << " -> Total CFGBlocks: " << total << " | Unreachable CFGBlocks: "
+ << unreachable << " | Exhausted Block: "
+ << (Eng.wasBlocksExhausted() ? "yes" : "no")
+ << " | Empty WorkList: "
+ << (Eng.hasEmptyWorkList() ? "yes" : "no");
+
+ B.EmitBasicReport(D, this, "Analyzer Statistics", "Internal Statistics",
+ output.str(), PathDiagnosticLocation(D, SM));
+
+ // Emit warning for each block we bailed out on.
+ typedef CoreEngine::BlocksExhausted::const_iterator ExhaustedIterator;
+ const CoreEngine &CE = Eng.getCoreEngine();
+ for (ExhaustedIterator I = CE.blocks_exhausted_begin(),
+ E = CE.blocks_exhausted_end(); I != E; ++I) {
+ const BlockEdge &BE = I->first;
+ const CFGBlock *Exit = BE.getDst();
+ const CFGElement &CE = Exit->front();
+ if (Optional<CFGStmt> CS = CE.getAs<CFGStmt>()) {
+ SmallString<128> bufI;
+ llvm::raw_svector_ostream outputI(bufI);
+ outputI << "(" << NameOfRootFunction << ")" <<
+ ": The analyzer generated a sink at this point";
+ B.EmitBasicReport(
+ D, this, "Sink Point", "Internal Statistics", outputI.str(),
+ PathDiagnosticLocation::createBegin(CS->getStmt(), SM, LC));
+ }
+ }
+}
+
+void ento::registerAnalyzerStatsChecker(CheckerManager &mgr) {
+ mgr.registerChecker<AnalyzerStatsChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ArrayBoundChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ArrayBoundChecker.cpp
new file mode 100644
index 0000000..cb5b010
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ArrayBoundChecker.cpp
@@ -0,0 +1,94 @@
+//== ArrayBoundChecker.cpp ------------------------------*- C++ -*--==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines ArrayBoundChecker, which is a path-sensitive check
+// which looks for an out-of-bound array element access.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+class ArrayBoundChecker :
+ public Checker<check::Location> {
+ mutable std::unique_ptr<BuiltinBug> BT;
+
+public:
+ void checkLocation(SVal l, bool isLoad, const Stmt* S,
+ CheckerContext &C) const;
+};
+}
+
+void ArrayBoundChecker::checkLocation(SVal l, bool isLoad, const Stmt* LoadS,
+ CheckerContext &C) const {
+ // Check for out of bound array element access.
+ const MemRegion *R = l.getAsRegion();
+ if (!R)
+ return;
+
+ const ElementRegion *ER = dyn_cast<ElementRegion>(R);
+ if (!ER)
+ return;
+
+ // Get the index of the accessed element.
+ DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>();
+
+ // Zero index is always in bound, this also passes ElementRegions created for
+ // pointer casts.
+ if (Idx.isZeroConstant())
+ return;
+
+ ProgramStateRef state = C.getState();
+
+ // Get the size of the array.
+ DefinedOrUnknownSVal NumElements
+ = C.getStoreManager().getSizeInElements(state, ER->getSuperRegion(),
+ ER->getValueType());
+
+ ProgramStateRef StInBound = state->assumeInBound(Idx, NumElements, true);
+ ProgramStateRef StOutBound = state->assumeInBound(Idx, NumElements, false);
+ if (StOutBound && !StInBound) {
+ ExplodedNode *N = C.generateSink(StOutBound);
+ if (!N)
+ return;
+
+ if (!BT)
+ BT.reset(new BuiltinBug(
+ this, "Out-of-bound array access",
+ "Access out-of-bound array element (buffer overflow)"));
+
+ // FIXME: It would be nice to eventually make this diagnostic more clear,
+ // e.g., by referencing the original declaration or by saying *why* this
+ // reference is outside the range.
+
+ // Generate a report for this bug.
+ BugReport *report =
+ new BugReport(*BT, BT->getDescription(), N);
+
+ report->addRange(LoadS->getSourceRange());
+ C.emitReport(report);
+ return;
+ }
+
+ // Array bound check succeeded. From this point forward the array bound
+ // should always succeed.
+ C.addTransition(StInBound);
+}
+
+void ento::registerArrayBoundChecker(CheckerManager &mgr) {
+ mgr.registerChecker<ArrayBoundChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ArrayBoundCheckerV2.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ArrayBoundCheckerV2.cpp
new file mode 100644
index 0000000..e462e2b
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ArrayBoundCheckerV2.cpp
@@ -0,0 +1,305 @@
+//== ArrayBoundCheckerV2.cpp ------------------------------------*- C++ -*--==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines ArrayBoundCheckerV2, which is a path-sensitive check
+// which looks for an out-of-bound array element access.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/AST/CharUnits.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+class ArrayBoundCheckerV2 :
+ public Checker<check::Location> {
+ mutable std::unique_ptr<BuiltinBug> BT;
+
+ enum OOB_Kind { OOB_Precedes, OOB_Excedes, OOB_Tainted };
+
+ void reportOOB(CheckerContext &C, ProgramStateRef errorState,
+ OOB_Kind kind) const;
+
+public:
+ void checkLocation(SVal l, bool isLoad, const Stmt*S,
+ CheckerContext &C) const;
+};
+
+// FIXME: Eventually replace RegionRawOffset with this class.
+class RegionRawOffsetV2 {
+private:
+ const SubRegion *baseRegion;
+ SVal byteOffset;
+
+ RegionRawOffsetV2()
+ : baseRegion(nullptr), byteOffset(UnknownVal()) {}
+
+public:
+ RegionRawOffsetV2(const SubRegion* base, SVal offset)
+ : baseRegion(base), byteOffset(offset) {}
+
+ NonLoc getByteOffset() const { return byteOffset.castAs<NonLoc>(); }
+ const SubRegion *getRegion() const { return baseRegion; }
+
+ static RegionRawOffsetV2 computeOffset(ProgramStateRef state,
+ SValBuilder &svalBuilder,
+ SVal location);
+
+ void dump() const;
+ void dumpToStream(raw_ostream &os) const;
+};
+}
+
+static SVal computeExtentBegin(SValBuilder &svalBuilder,
+ const MemRegion *region) {
+ while (true)
+ switch (region->getKind()) {
+ default:
+ return svalBuilder.makeZeroArrayIndex();
+ case MemRegion::SymbolicRegionKind:
+ // FIXME: improve this later by tracking symbolic lower bounds
+ // for symbolic regions.
+ return UnknownVal();
+ case MemRegion::ElementRegionKind:
+ region = cast<SubRegion>(region)->getSuperRegion();
+ continue;
+ }
+}
+
+void ArrayBoundCheckerV2::checkLocation(SVal location, bool isLoad,
+ const Stmt* LoadS,
+ CheckerContext &checkerContext) const {
+
+ // NOTE: Instead of using ProgramState::assumeInBound(), we are prototyping
+ // some new logic here that reasons directly about memory region extents.
+ // Once that logic is more mature, we can bring it back to assumeInBound()
+ // for all clients to use.
+ //
+ // The algorithm we are using here for bounds checking is to see if the
+ // memory access is within the extent of the base region. Since we
+ // have some flexibility in defining the base region, we can achieve
+ // various levels of conservatism in our buffer overflow checking.
+ ProgramStateRef state = checkerContext.getState();
+ ProgramStateRef originalState = state;
+
+ SValBuilder &svalBuilder = checkerContext.getSValBuilder();
+ const RegionRawOffsetV2 &rawOffset =
+ RegionRawOffsetV2::computeOffset(state, svalBuilder, location);
+
+ if (!rawOffset.getRegion())
+ return;
+
+ // CHECK LOWER BOUND: Is byteOffset < extent begin?
+ // If so, we are doing a load/store
+ // before the first valid offset in the memory region.
+
+ SVal extentBegin = computeExtentBegin(svalBuilder, rawOffset.getRegion());
+
+ if (Optional<NonLoc> NV = extentBegin.getAs<NonLoc>()) {
+ SVal lowerBound =
+ svalBuilder.evalBinOpNN(state, BO_LT, rawOffset.getByteOffset(), *NV,
+ svalBuilder.getConditionType());
+
+ Optional<NonLoc> lowerBoundToCheck = lowerBound.getAs<NonLoc>();
+ if (!lowerBoundToCheck)
+ return;
+
+ ProgramStateRef state_precedesLowerBound, state_withinLowerBound;
+ std::tie(state_precedesLowerBound, state_withinLowerBound) =
+ state->assume(*lowerBoundToCheck);
+
+ // Are we constrained enough to definitely precede the lower bound?
+ if (state_precedesLowerBound && !state_withinLowerBound) {
+ reportOOB(checkerContext, state_precedesLowerBound, OOB_Precedes);
+ return;
+ }
+
+ // Otherwise, assume the constraint of the lower bound.
+ assert(state_withinLowerBound);
+ state = state_withinLowerBound;
+ }
+
+ do {
+ // CHECK UPPER BOUND: Is byteOffset >= extent(baseRegion)? If so,
+ // we are doing a load/store after the last valid offset.
+ DefinedOrUnknownSVal extentVal =
+ rawOffset.getRegion()->getExtent(svalBuilder);
+ if (!extentVal.getAs<NonLoc>())
+ break;
+
+ SVal upperbound
+ = svalBuilder.evalBinOpNN(state, BO_GE, rawOffset.getByteOffset(),
+ extentVal.castAs<NonLoc>(),
+ svalBuilder.getConditionType());
+
+ Optional<NonLoc> upperboundToCheck = upperbound.getAs<NonLoc>();
+ if (!upperboundToCheck)
+ break;
+
+ ProgramStateRef state_exceedsUpperBound, state_withinUpperBound;
+ std::tie(state_exceedsUpperBound, state_withinUpperBound) =
+ state->assume(*upperboundToCheck);
+
+ // If we are under constrained and the index variables are tainted, report.
+ if (state_exceedsUpperBound && state_withinUpperBound) {
+ if (state->isTainted(rawOffset.getByteOffset()))
+ reportOOB(checkerContext, state_exceedsUpperBound, OOB_Tainted);
+ return;
+ }
+
+ // If we are constrained enough to definitely exceed the upper bound, report.
+ if (state_exceedsUpperBound) {
+ assert(!state_withinUpperBound);
+ reportOOB(checkerContext, state_exceedsUpperBound, OOB_Excedes);
+ return;
+ }
+
+ assert(state_withinUpperBound);
+ state = state_withinUpperBound;
+ }
+ while (false);
+
+ if (state != originalState)
+ checkerContext.addTransition(state);
+}
+
+void ArrayBoundCheckerV2::reportOOB(CheckerContext &checkerContext,
+ ProgramStateRef errorState,
+ OOB_Kind kind) const {
+
+ ExplodedNode *errorNode = checkerContext.generateSink(errorState);
+ if (!errorNode)
+ return;
+
+ if (!BT)
+ BT.reset(new BuiltinBug(this, "Out-of-bound access"));
+
+ // FIXME: This diagnostics are preliminary. We should get far better
+ // diagnostics for explaining buffer overruns.
+
+ SmallString<256> buf;
+ llvm::raw_svector_ostream os(buf);
+ os << "Out of bound memory access ";
+ switch (kind) {
+ case OOB_Precedes:
+ os << "(accessed memory precedes memory block)";
+ break;
+ case OOB_Excedes:
+ os << "(access exceeds upper limit of memory block)";
+ break;
+ case OOB_Tainted:
+ os << "(index is tainted)";
+ break;
+ }
+
+ checkerContext.emitReport(new BugReport(*BT, os.str(), errorNode));
+}
+
+void RegionRawOffsetV2::dump() const {
+ dumpToStream(llvm::errs());
+}
+
+void RegionRawOffsetV2::dumpToStream(raw_ostream &os) const {
+ os << "raw_offset_v2{" << getRegion() << ',' << getByteOffset() << '}';
+}
+
+
+// Lazily computes a value to be used by 'computeOffset'. If 'val'
+// is unknown or undefined, we lazily substitute '0'. Otherwise,
+// return 'val'.
+static inline SVal getValue(SVal val, SValBuilder &svalBuilder) {
+ return val.getAs<UndefinedVal>() ? svalBuilder.makeArrayIndex(0) : val;
+}
+
+// Scale a base value by a scaling factor, and return the scaled
+// value as an SVal. Used by 'computeOffset'.
+static inline SVal scaleValue(ProgramStateRef state,
+ NonLoc baseVal, CharUnits scaling,
+ SValBuilder &sb) {
+ return sb.evalBinOpNN(state, BO_Mul, baseVal,
+ sb.makeArrayIndex(scaling.getQuantity()),
+ sb.getArrayIndexType());
+}
+
+// Add an SVal to another, treating unknown and undefined values as
+// summing to UnknownVal. Used by 'computeOffset'.
+static SVal addValue(ProgramStateRef state, SVal x, SVal y,
+ SValBuilder &svalBuilder) {
+ // We treat UnknownVals and UndefinedVals the same here because we
+ // only care about computing offsets.
+ if (x.isUnknownOrUndef() || y.isUnknownOrUndef())
+ return UnknownVal();
+
+ return svalBuilder.evalBinOpNN(state, BO_Add, x.castAs<NonLoc>(),
+ y.castAs<NonLoc>(),
+ svalBuilder.getArrayIndexType());
+}
+
+/// Compute a raw byte offset from a base region. Used for array bounds
+/// checking.
+RegionRawOffsetV2 RegionRawOffsetV2::computeOffset(ProgramStateRef state,
+ SValBuilder &svalBuilder,
+ SVal location)
+{
+ const MemRegion *region = location.getAsRegion();
+ SVal offset = UndefinedVal();
+
+ while (region) {
+ switch (region->getKind()) {
+ default: {
+ if (const SubRegion *subReg = dyn_cast<SubRegion>(region)) {
+ offset = getValue(offset, svalBuilder);
+ if (!offset.isUnknownOrUndef())
+ return RegionRawOffsetV2(subReg, offset);
+ }
+ return RegionRawOffsetV2();
+ }
+ case MemRegion::ElementRegionKind: {
+ const ElementRegion *elemReg = cast<ElementRegion>(region);
+ SVal index = elemReg->getIndex();
+ if (!index.getAs<NonLoc>())
+ return RegionRawOffsetV2();
+ QualType elemType = elemReg->getElementType();
+ // If the element is an incomplete type, go no further.
+ ASTContext &astContext = svalBuilder.getContext();
+ if (elemType->isIncompleteType())
+ return RegionRawOffsetV2();
+
+ // Update the offset.
+ offset = addValue(state,
+ getValue(offset, svalBuilder),
+ scaleValue(state,
+ index.castAs<NonLoc>(),
+ astContext.getTypeSizeInChars(elemType),
+ svalBuilder),
+ svalBuilder);
+
+ if (offset.isUnknownOrUndef())
+ return RegionRawOffsetV2();
+
+ region = elemReg->getSuperRegion();
+ continue;
+ }
+ }
+ }
+ return RegionRawOffsetV2();
+}
+
+void ento::registerArrayBoundCheckerV2(CheckerManager &mgr) {
+ mgr.registerChecker<ArrayBoundCheckerV2>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/BasicObjCFoundationChecks.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/BasicObjCFoundationChecks.cpp
new file mode 100644
index 0000000..3fd5576
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/BasicObjCFoundationChecks.cpp
@@ -0,0 +1,1307 @@
+//== BasicObjCFoundationChecks.cpp - Simple Apple-Foundation checks -*- C++ -*--
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines BasicObjCFoundationChecks, a class that encapsulates
+// a set of simple checks to run on Objective-C code using Apple's Foundation
+// classes.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "SelectorExtras.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/AST/StmtObjC.h"
+#include "clang/Analysis/DomainSpecific/CocoaConventions.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringMap.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+class APIMisuse : public BugType {
+public:
+ APIMisuse(const CheckerBase *checker, const char *name)
+ : BugType(checker, name, "API Misuse (Apple)") {}
+};
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// Utility functions.
+//===----------------------------------------------------------------------===//
+
+static StringRef GetReceiverInterfaceName(const ObjCMethodCall &msg) {
+ if (const ObjCInterfaceDecl *ID = msg.getReceiverInterface())
+ return ID->getIdentifier()->getName();
+ return StringRef();
+}
+
+enum FoundationClass {
+ FC_None,
+ FC_NSArray,
+ FC_NSDictionary,
+ FC_NSEnumerator,
+ FC_NSNull,
+ FC_NSOrderedSet,
+ FC_NSSet,
+ FC_NSString
+};
+
+static FoundationClass findKnownClass(const ObjCInterfaceDecl *ID,
+ bool IncludeSuperclasses = true) {
+ static llvm::StringMap<FoundationClass> Classes;
+ if (Classes.empty()) {
+ Classes["NSArray"] = FC_NSArray;
+ Classes["NSDictionary"] = FC_NSDictionary;
+ Classes["NSEnumerator"] = FC_NSEnumerator;
+ Classes["NSNull"] = FC_NSNull;
+ Classes["NSOrderedSet"] = FC_NSOrderedSet;
+ Classes["NSSet"] = FC_NSSet;
+ Classes["NSString"] = FC_NSString;
+ }
+
+ // FIXME: Should we cache this at all?
+ FoundationClass result = Classes.lookup(ID->getIdentifier()->getName());
+ if (result == FC_None && IncludeSuperclasses)
+ if (const ObjCInterfaceDecl *Super = ID->getSuperClass())
+ return findKnownClass(Super);
+
+ return result;
+}
+
+//===----------------------------------------------------------------------===//
+// NilArgChecker - Check for prohibited nil arguments to ObjC method calls.
+//===----------------------------------------------------------------------===//
+
+namespace {
+ class NilArgChecker : public Checker<check::PreObjCMessage,
+ check::PostStmt<ObjCDictionaryLiteral>,
+ check::PostStmt<ObjCArrayLiteral> > {
+ mutable std::unique_ptr<APIMisuse> BT;
+
+ mutable llvm::SmallDenseMap<Selector, unsigned, 16> StringSelectors;
+ mutable Selector ArrayWithObjectSel;
+ mutable Selector AddObjectSel;
+ mutable Selector InsertObjectAtIndexSel;
+ mutable Selector ReplaceObjectAtIndexWithObjectSel;
+ mutable Selector SetObjectAtIndexedSubscriptSel;
+ mutable Selector ArrayByAddingObjectSel;
+ mutable Selector DictionaryWithObjectForKeySel;
+ mutable Selector SetObjectForKeySel;
+ mutable Selector SetObjectForKeyedSubscriptSel;
+ mutable Selector RemoveObjectForKeySel;
+
+ void warnIfNilExpr(const Expr *E,
+ const char *Msg,
+ CheckerContext &C) const;
+
+ void warnIfNilArg(CheckerContext &C,
+ const ObjCMethodCall &msg, unsigned Arg,
+ FoundationClass Class,
+ bool CanBeSubscript = false) const;
+
+ void generateBugReport(ExplodedNode *N,
+ StringRef Msg,
+ SourceRange Range,
+ const Expr *Expr,
+ CheckerContext &C) const;
+
+ public:
+ void checkPreObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const;
+ void checkPostStmt(const ObjCDictionaryLiteral *DL,
+ CheckerContext &C) const;
+ void checkPostStmt(const ObjCArrayLiteral *AL,
+ CheckerContext &C) const;
+ };
+}
+
+void NilArgChecker::warnIfNilExpr(const Expr *E,
+ const char *Msg,
+ CheckerContext &C) const {
+ ProgramStateRef State = C.getState();
+ if (State->isNull(C.getSVal(E)).isConstrainedTrue()) {
+
+ if (ExplodedNode *N = C.generateSink()) {
+ generateBugReport(N, Msg, E->getSourceRange(), E, C);
+ }
+
+ }
+}
+
+void NilArgChecker::warnIfNilArg(CheckerContext &C,
+ const ObjCMethodCall &msg,
+ unsigned int Arg,
+ FoundationClass Class,
+ bool CanBeSubscript) const {
+ // Check if the argument is nil.
+ ProgramStateRef State = C.getState();
+ if (!State->isNull(msg.getArgSVal(Arg)).isConstrainedTrue())
+ return;
+
+ if (ExplodedNode *N = C.generateSink()) {
+ SmallString<128> sbuf;
+ llvm::raw_svector_ostream os(sbuf);
+
+ if (CanBeSubscript && msg.getMessageKind() == OCM_Subscript) {
+
+ if (Class == FC_NSArray) {
+ os << "Array element cannot be nil";
+ } else if (Class == FC_NSDictionary) {
+ if (Arg == 0) {
+ os << "Value stored into '";
+ os << GetReceiverInterfaceName(msg) << "' cannot be nil";
+ } else {
+ assert(Arg == 1);
+ os << "'"<< GetReceiverInterfaceName(msg) << "' key cannot be nil";
+ }
+ } else
+ llvm_unreachable("Missing foundation class for the subscript expr");
+
+ } else {
+ if (Class == FC_NSDictionary) {
+ if (Arg == 0)
+ os << "Value argument ";
+ else {
+ assert(Arg == 1);
+ os << "Key argument ";
+ }
+ os << "to '";
+ msg.getSelector().print(os);
+ os << "' cannot be nil";
+ } else {
+ os << "Argument to '" << GetReceiverInterfaceName(msg) << "' method '";
+ msg.getSelector().print(os);
+ os << "' cannot be nil";
+ }
+ }
+
+ generateBugReport(N, os.str(), msg.getArgSourceRange(Arg),
+ msg.getArgExpr(Arg), C);
+ }
+}
+
+void NilArgChecker::generateBugReport(ExplodedNode *N,
+ StringRef Msg,
+ SourceRange Range,
+ const Expr *E,
+ CheckerContext &C) const {
+ if (!BT)
+ BT.reset(new APIMisuse(this, "nil argument"));
+
+ BugReport *R = new BugReport(*BT, Msg, N);
+ R->addRange(Range);
+ bugreporter::trackNullOrUndefValue(N, E, *R);
+ C.emitReport(R);
+}
+
+void NilArgChecker::checkPreObjCMessage(const ObjCMethodCall &msg,
+ CheckerContext &C) const {
+ const ObjCInterfaceDecl *ID = msg.getReceiverInterface();
+ if (!ID)
+ return;
+
+ FoundationClass Class = findKnownClass(ID);
+
+ static const unsigned InvalidArgIndex = UINT_MAX;
+ unsigned Arg = InvalidArgIndex;
+ bool CanBeSubscript = false;
+
+ if (Class == FC_NSString) {
+ Selector S = msg.getSelector();
+
+ if (S.isUnarySelector())
+ return;
+
+ if (StringSelectors.empty()) {
+ ASTContext &Ctx = C.getASTContext();
+ Selector Sels[] = {
+ getKeywordSelector(Ctx, "caseInsensitiveCompare", nullptr),
+ getKeywordSelector(Ctx, "compare", nullptr),
+ getKeywordSelector(Ctx, "compare", "options", nullptr),
+ getKeywordSelector(Ctx, "compare", "options", "range", nullptr),
+ getKeywordSelector(Ctx, "compare", "options", "range", "locale",
+ nullptr),
+ getKeywordSelector(Ctx, "componentsSeparatedByCharactersInSet",
+ nullptr),
+ getKeywordSelector(Ctx, "initWithFormat",
+ nullptr),
+ getKeywordSelector(Ctx, "localizedCaseInsensitiveCompare", nullptr),
+ getKeywordSelector(Ctx, "localizedCompare", nullptr),
+ getKeywordSelector(Ctx, "localizedStandardCompare", nullptr),
+ };
+ for (Selector KnownSel : Sels)
+ StringSelectors[KnownSel] = 0;
+ }
+ auto I = StringSelectors.find(S);
+ if (I == StringSelectors.end())
+ return;
+ Arg = I->second;
+ } else if (Class == FC_NSArray) {
+ Selector S = msg.getSelector();
+
+ if (S.isUnarySelector())
+ return;
+
+ if (ArrayWithObjectSel.isNull()) {
+ ASTContext &Ctx = C.getASTContext();
+ ArrayWithObjectSel = getKeywordSelector(Ctx, "arrayWithObject", nullptr);
+ AddObjectSel = getKeywordSelector(Ctx, "addObject", nullptr);
+ InsertObjectAtIndexSel =
+ getKeywordSelector(Ctx, "insertObject", "atIndex", nullptr);
+ ReplaceObjectAtIndexWithObjectSel =
+ getKeywordSelector(Ctx, "replaceObjectAtIndex", "withObject", nullptr);
+ SetObjectAtIndexedSubscriptSel =
+ getKeywordSelector(Ctx, "setObject", "atIndexedSubscript", nullptr);
+ ArrayByAddingObjectSel =
+ getKeywordSelector(Ctx, "arrayByAddingObject", nullptr);
+ }
+
+ if (S == ArrayWithObjectSel || S == AddObjectSel ||
+ S == InsertObjectAtIndexSel || S == ArrayByAddingObjectSel) {
+ Arg = 0;
+ } else if (S == SetObjectAtIndexedSubscriptSel) {
+ Arg = 0;
+ CanBeSubscript = true;
+ } else if (S == ReplaceObjectAtIndexWithObjectSel) {
+ Arg = 1;
+ }
+ } else if (Class == FC_NSDictionary) {
+ Selector S = msg.getSelector();
+
+ if (S.isUnarySelector())
+ return;
+
+ if (DictionaryWithObjectForKeySel.isNull()) {
+ ASTContext &Ctx = C.getASTContext();
+ DictionaryWithObjectForKeySel =
+ getKeywordSelector(Ctx, "dictionaryWithObject", "forKey", nullptr);
+ SetObjectForKeySel =
+ getKeywordSelector(Ctx, "setObject", "forKey", nullptr);
+ SetObjectForKeyedSubscriptSel =
+ getKeywordSelector(Ctx, "setObject", "forKeyedSubscript", nullptr);
+ RemoveObjectForKeySel =
+ getKeywordSelector(Ctx, "removeObjectForKey", nullptr);
+ }
+
+ if (S == DictionaryWithObjectForKeySel || S == SetObjectForKeySel) {
+ Arg = 0;
+ warnIfNilArg(C, msg, /* Arg */1, Class);
+ } else if (S == SetObjectForKeyedSubscriptSel) {
+ CanBeSubscript = true;
+ Arg = 0;
+ warnIfNilArg(C, msg, /* Arg */1, Class, CanBeSubscript);
+ } else if (S == RemoveObjectForKeySel) {
+ Arg = 0;
+ }
+ }
+
+ // If argument is '0', report a warning.
+ if ((Arg != InvalidArgIndex))
+ warnIfNilArg(C, msg, Arg, Class, CanBeSubscript);
+}
+
+void NilArgChecker::checkPostStmt(const ObjCArrayLiteral *AL,
+ CheckerContext &C) const {
+ unsigned NumOfElements = AL->getNumElements();
+ for (unsigned i = 0; i < NumOfElements; ++i) {
+ warnIfNilExpr(AL->getElement(i), "Array element cannot be nil", C);
+ }
+}
+
+void NilArgChecker::checkPostStmt(const ObjCDictionaryLiteral *DL,
+ CheckerContext &C) const {
+ unsigned NumOfElements = DL->getNumElements();
+ for (unsigned i = 0; i < NumOfElements; ++i) {
+ ObjCDictionaryElement Element = DL->getKeyValueElement(i);
+ warnIfNilExpr(Element.Key, "Dictionary key cannot be nil", C);
+ warnIfNilExpr(Element.Value, "Dictionary value cannot be nil", C);
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Error reporting.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class CFNumberCreateChecker : public Checker< check::PreStmt<CallExpr> > {
+ mutable std::unique_ptr<APIMisuse> BT;
+ mutable IdentifierInfo* II;
+public:
+ CFNumberCreateChecker() : II(nullptr) {}
+
+ void checkPreStmt(const CallExpr *CE, CheckerContext &C) const;
+
+private:
+ void EmitError(const TypedRegion* R, const Expr *Ex,
+ uint64_t SourceSize, uint64_t TargetSize, uint64_t NumberKind);
+};
+} // end anonymous namespace
+
+enum CFNumberType {
+ kCFNumberSInt8Type = 1,
+ kCFNumberSInt16Type = 2,
+ kCFNumberSInt32Type = 3,
+ kCFNumberSInt64Type = 4,
+ kCFNumberFloat32Type = 5,
+ kCFNumberFloat64Type = 6,
+ kCFNumberCharType = 7,
+ kCFNumberShortType = 8,
+ kCFNumberIntType = 9,
+ kCFNumberLongType = 10,
+ kCFNumberLongLongType = 11,
+ kCFNumberFloatType = 12,
+ kCFNumberDoubleType = 13,
+ kCFNumberCFIndexType = 14,
+ kCFNumberNSIntegerType = 15,
+ kCFNumberCGFloatType = 16
+};
+
+static Optional<uint64_t> GetCFNumberSize(ASTContext &Ctx, uint64_t i) {
+ static const unsigned char FixedSize[] = { 8, 16, 32, 64, 32, 64 };
+
+ if (i < kCFNumberCharType)
+ return FixedSize[i-1];
+
+ QualType T;
+
+ switch (i) {
+ case kCFNumberCharType: T = Ctx.CharTy; break;
+ case kCFNumberShortType: T = Ctx.ShortTy; break;
+ case kCFNumberIntType: T = Ctx.IntTy; break;
+ case kCFNumberLongType: T = Ctx.LongTy; break;
+ case kCFNumberLongLongType: T = Ctx.LongLongTy; break;
+ case kCFNumberFloatType: T = Ctx.FloatTy; break;
+ case kCFNumberDoubleType: T = Ctx.DoubleTy; break;
+ case kCFNumberCFIndexType:
+ case kCFNumberNSIntegerType:
+ case kCFNumberCGFloatType:
+ // FIXME: We need a way to map from names to Type*.
+ default:
+ return None;
+ }
+
+ return Ctx.getTypeSize(T);
+}
+
+#if 0
+static const char* GetCFNumberTypeStr(uint64_t i) {
+ static const char* Names[] = {
+ "kCFNumberSInt8Type",
+ "kCFNumberSInt16Type",
+ "kCFNumberSInt32Type",
+ "kCFNumberSInt64Type",
+ "kCFNumberFloat32Type",
+ "kCFNumberFloat64Type",
+ "kCFNumberCharType",
+ "kCFNumberShortType",
+ "kCFNumberIntType",
+ "kCFNumberLongType",
+ "kCFNumberLongLongType",
+ "kCFNumberFloatType",
+ "kCFNumberDoubleType",
+ "kCFNumberCFIndexType",
+ "kCFNumberNSIntegerType",
+ "kCFNumberCGFloatType"
+ };
+
+ return i <= kCFNumberCGFloatType ? Names[i-1] : "Invalid CFNumberType";
+}
+#endif
+
+void CFNumberCreateChecker::checkPreStmt(const CallExpr *CE,
+ CheckerContext &C) const {
+ ProgramStateRef state = C.getState();
+ const FunctionDecl *FD = C.getCalleeDecl(CE);
+ if (!FD)
+ return;
+
+ ASTContext &Ctx = C.getASTContext();
+ if (!II)
+ II = &Ctx.Idents.get("CFNumberCreate");
+
+ if (FD->getIdentifier() != II || CE->getNumArgs() != 3)
+ return;
+
+ // Get the value of the "theType" argument.
+ const LocationContext *LCtx = C.getLocationContext();
+ SVal TheTypeVal = state->getSVal(CE->getArg(1), LCtx);
+
+ // FIXME: We really should allow ranges of valid theType values, and
+ // bifurcate the state appropriately.
+ Optional<nonloc::ConcreteInt> V = TheTypeVal.getAs<nonloc::ConcreteInt>();
+ if (!V)
+ return;
+
+ uint64_t NumberKind = V->getValue().getLimitedValue();
+ Optional<uint64_t> OptTargetSize = GetCFNumberSize(Ctx, NumberKind);
+
+ // FIXME: In some cases we can emit an error.
+ if (!OptTargetSize)
+ return;
+
+ uint64_t TargetSize = *OptTargetSize;
+
+ // Look at the value of the integer being passed by reference. Essentially
+ // we want to catch cases where the value passed in is not equal to the
+ // size of the type being created.
+ SVal TheValueExpr = state->getSVal(CE->getArg(2), LCtx);
+
+ // FIXME: Eventually we should handle arbitrary locations. We can do this
+ // by having an enhanced memory model that does low-level typing.
+ Optional<loc::MemRegionVal> LV = TheValueExpr.getAs<loc::MemRegionVal>();
+ if (!LV)
+ return;
+
+ const TypedValueRegion* R = dyn_cast<TypedValueRegion>(LV->stripCasts());
+ if (!R)
+ return;
+
+ QualType T = Ctx.getCanonicalType(R->getValueType());
+
+ // FIXME: If the pointee isn't an integer type, should we flag a warning?
+ // People can do weird stuff with pointers.
+
+ if (!T->isIntegralOrEnumerationType())
+ return;
+
+ uint64_t SourceSize = Ctx.getTypeSize(T);
+
+ // CHECK: is SourceSize == TargetSize
+ if (SourceSize == TargetSize)
+ return;
+
+ // Generate an error. Only generate a sink if 'SourceSize < TargetSize';
+ // otherwise generate a regular node.
+ //
+ // FIXME: We can actually create an abstract "CFNumber" object that has
+ // the bits initialized to the provided values.
+ //
+ if (ExplodedNode *N = SourceSize < TargetSize ? C.generateSink()
+ : C.addTransition()) {
+ SmallString<128> sbuf;
+ llvm::raw_svector_ostream os(sbuf);
+
+ os << (SourceSize == 8 ? "An " : "A ")
+ << SourceSize << " bit integer is used to initialize a CFNumber "
+ "object that represents "
+ << (TargetSize == 8 ? "an " : "a ")
+ << TargetSize << " bit integer. ";
+
+ if (SourceSize < TargetSize)
+ os << (TargetSize - SourceSize)
+ << " bits of the CFNumber value will be garbage." ;
+ else
+ os << (SourceSize - TargetSize)
+ << " bits of the input integer will be lost.";
+
+ if (!BT)
+ BT.reset(new APIMisuse(this, "Bad use of CFNumberCreate"));
+
+ BugReport *report = new BugReport(*BT, os.str(), N);
+ report->addRange(CE->getArg(2)->getSourceRange());
+ C.emitReport(report);
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// CFRetain/CFRelease/CFMakeCollectable/CFAutorelease checking for null arguments.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class CFRetainReleaseChecker : public Checker< check::PreStmt<CallExpr> > {
+ mutable std::unique_ptr<APIMisuse> BT;
+ mutable IdentifierInfo *Retain, *Release, *MakeCollectable, *Autorelease;
+public:
+ CFRetainReleaseChecker()
+ : Retain(nullptr), Release(nullptr), MakeCollectable(nullptr),
+ Autorelease(nullptr) {}
+ void checkPreStmt(const CallExpr *CE, CheckerContext &C) const;
+};
+} // end anonymous namespace
+
+
+void CFRetainReleaseChecker::checkPreStmt(const CallExpr *CE,
+ CheckerContext &C) const {
+ // If the CallExpr doesn't have exactly 1 argument just give up checking.
+ if (CE->getNumArgs() != 1)
+ return;
+
+ ProgramStateRef state = C.getState();
+ const FunctionDecl *FD = C.getCalleeDecl(CE);
+ if (!FD)
+ return;
+
+ if (!BT) {
+ ASTContext &Ctx = C.getASTContext();
+ Retain = &Ctx.Idents.get("CFRetain");
+ Release = &Ctx.Idents.get("CFRelease");
+ MakeCollectable = &Ctx.Idents.get("CFMakeCollectable");
+ Autorelease = &Ctx.Idents.get("CFAutorelease");
+ BT.reset(new APIMisuse(
+ this, "null passed to CF memory management function"));
+ }
+
+ // Check if we called CFRetain/CFRelease/CFMakeCollectable/CFAutorelease.
+ const IdentifierInfo *FuncII = FD->getIdentifier();
+ if (!(FuncII == Retain || FuncII == Release || FuncII == MakeCollectable ||
+ FuncII == Autorelease))
+ return;
+
+ // FIXME: The rest of this just checks that the argument is non-null.
+ // It should probably be refactored and combined with NonNullParamChecker.
+
+ // Get the argument's value.
+ const Expr *Arg = CE->getArg(0);
+ SVal ArgVal = state->getSVal(Arg, C.getLocationContext());
+ Optional<DefinedSVal> DefArgVal = ArgVal.getAs<DefinedSVal>();
+ if (!DefArgVal)
+ return;
+
+ // Get a NULL value.
+ SValBuilder &svalBuilder = C.getSValBuilder();
+ DefinedSVal zero =
+ svalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>();
+
+ // Make an expression asserting that they're equal.
+ DefinedOrUnknownSVal ArgIsNull = svalBuilder.evalEQ(state, zero, *DefArgVal);
+
+ // Are they equal?
+ ProgramStateRef stateTrue, stateFalse;
+ std::tie(stateTrue, stateFalse) = state->assume(ArgIsNull);
+
+ if (stateTrue && !stateFalse) {
+ ExplodedNode *N = C.generateSink(stateTrue);
+ if (!N)
+ return;
+
+ const char *description;
+ if (FuncII == Retain)
+ description = "Null pointer argument in call to CFRetain";
+ else if (FuncII == Release)
+ description = "Null pointer argument in call to CFRelease";
+ else if (FuncII == MakeCollectable)
+ description = "Null pointer argument in call to CFMakeCollectable";
+ else if (FuncII == Autorelease)
+ description = "Null pointer argument in call to CFAutorelease";
+ else
+ llvm_unreachable("impossible case");
+
+ BugReport *report = new BugReport(*BT, description, N);
+ report->addRange(Arg->getSourceRange());
+ bugreporter::trackNullOrUndefValue(N, Arg, *report);
+ C.emitReport(report);
+ return;
+ }
+
+ // From here on, we know the argument is non-null.
+ C.addTransition(stateFalse);
+}
+
+//===----------------------------------------------------------------------===//
+// Check for sending 'retain', 'release', or 'autorelease' directly to a Class.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class ClassReleaseChecker : public Checker<check::PreObjCMessage> {
+ mutable Selector releaseS;
+ mutable Selector retainS;
+ mutable Selector autoreleaseS;
+ mutable Selector drainS;
+ mutable std::unique_ptr<BugType> BT;
+
+public:
+ void checkPreObjCMessage(const ObjCMethodCall &msg, CheckerContext &C) const;
+};
+}
+
+void ClassReleaseChecker::checkPreObjCMessage(const ObjCMethodCall &msg,
+ CheckerContext &C) const {
+
+ if (!BT) {
+ BT.reset(new APIMisuse(
+ this, "message incorrectly sent to class instead of class instance"));
+
+ ASTContext &Ctx = C.getASTContext();
+ releaseS = GetNullarySelector("release", Ctx);
+ retainS = GetNullarySelector("retain", Ctx);
+ autoreleaseS = GetNullarySelector("autorelease", Ctx);
+ drainS = GetNullarySelector("drain", Ctx);
+ }
+
+ if (msg.isInstanceMessage())
+ return;
+ const ObjCInterfaceDecl *Class = msg.getReceiverInterface();
+ assert(Class);
+
+ Selector S = msg.getSelector();
+ if (!(S == releaseS || S == retainS || S == autoreleaseS || S == drainS))
+ return;
+
+ if (ExplodedNode *N = C.addTransition()) {
+ SmallString<200> buf;
+ llvm::raw_svector_ostream os(buf);
+
+ os << "The '";
+ S.print(os);
+ os << "' message should be sent to instances "
+ "of class '" << Class->getName()
+ << "' and not the class directly";
+
+ BugReport *report = new BugReport(*BT, os.str(), N);
+ report->addRange(msg.getSourceRange());
+ C.emitReport(report);
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Check for passing non-Objective-C types to variadic methods that expect
+// only Objective-C types.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class VariadicMethodTypeChecker : public Checker<check::PreObjCMessage> {
+ mutable Selector arrayWithObjectsS;
+ mutable Selector dictionaryWithObjectsAndKeysS;
+ mutable Selector setWithObjectsS;
+ mutable Selector orderedSetWithObjectsS;
+ mutable Selector initWithObjectsS;
+ mutable Selector initWithObjectsAndKeysS;
+ mutable std::unique_ptr<BugType> BT;
+
+ bool isVariadicMessage(const ObjCMethodCall &msg) const;
+
+public:
+ void checkPreObjCMessage(const ObjCMethodCall &msg, CheckerContext &C) const;
+};
+}
+
+/// isVariadicMessage - Returns whether the given message is a variadic message,
+/// where all arguments must be Objective-C types.
+bool
+VariadicMethodTypeChecker::isVariadicMessage(const ObjCMethodCall &msg) const {
+ const ObjCMethodDecl *MD = msg.getDecl();
+
+ if (!MD || !MD->isVariadic() || isa<ObjCProtocolDecl>(MD->getDeclContext()))
+ return false;
+
+ Selector S = msg.getSelector();
+
+ if (msg.isInstanceMessage()) {
+ // FIXME: Ideally we'd look at the receiver interface here, but that's not
+ // useful for init, because alloc returns 'id'. In theory, this could lead
+ // to false positives, for example if there existed a class that had an
+ // initWithObjects: implementation that does accept non-Objective-C pointer
+ // types, but the chance of that happening is pretty small compared to the
+ // gains that this analysis gives.
+ const ObjCInterfaceDecl *Class = MD->getClassInterface();
+
+ switch (findKnownClass(Class)) {
+ case FC_NSArray:
+ case FC_NSOrderedSet:
+ case FC_NSSet:
+ return S == initWithObjectsS;
+ case FC_NSDictionary:
+ return S == initWithObjectsAndKeysS;
+ default:
+ return false;
+ }
+ } else {
+ const ObjCInterfaceDecl *Class = msg.getReceiverInterface();
+
+ switch (findKnownClass(Class)) {
+ case FC_NSArray:
+ return S == arrayWithObjectsS;
+ case FC_NSOrderedSet:
+ return S == orderedSetWithObjectsS;
+ case FC_NSSet:
+ return S == setWithObjectsS;
+ case FC_NSDictionary:
+ return S == dictionaryWithObjectsAndKeysS;
+ default:
+ return false;
+ }
+ }
+}
+
+void VariadicMethodTypeChecker::checkPreObjCMessage(const ObjCMethodCall &msg,
+ CheckerContext &C) const {
+ if (!BT) {
+ BT.reset(new APIMisuse(this,
+ "Arguments passed to variadic method aren't all "
+ "Objective-C pointer types"));
+
+ ASTContext &Ctx = C.getASTContext();
+ arrayWithObjectsS = GetUnarySelector("arrayWithObjects", Ctx);
+ dictionaryWithObjectsAndKeysS =
+ GetUnarySelector("dictionaryWithObjectsAndKeys", Ctx);
+ setWithObjectsS = GetUnarySelector("setWithObjects", Ctx);
+ orderedSetWithObjectsS = GetUnarySelector("orderedSetWithObjects", Ctx);
+
+ initWithObjectsS = GetUnarySelector("initWithObjects", Ctx);
+ initWithObjectsAndKeysS = GetUnarySelector("initWithObjectsAndKeys", Ctx);
+ }
+
+ if (!isVariadicMessage(msg))
+ return;
+
+ // We are not interested in the selector arguments since they have
+ // well-defined types, so the compiler will issue a warning for them.
+ unsigned variadicArgsBegin = msg.getSelector().getNumArgs();
+
+ // We're not interested in the last argument since it has to be nil or the
+ // compiler would have issued a warning for it elsewhere.
+ unsigned variadicArgsEnd = msg.getNumArgs() - 1;
+
+ if (variadicArgsEnd <= variadicArgsBegin)
+ return;
+
+ // Verify that all arguments have Objective-C types.
+ Optional<ExplodedNode*> errorNode;
+
+ for (unsigned I = variadicArgsBegin; I != variadicArgsEnd; ++I) {
+ QualType ArgTy = msg.getArgExpr(I)->getType();
+ if (ArgTy->isObjCObjectPointerType())
+ continue;
+
+ // Block pointers are treaded as Objective-C pointers.
+ if (ArgTy->isBlockPointerType())
+ continue;
+
+ // Ignore pointer constants.
+ if (msg.getArgSVal(I).getAs<loc::ConcreteInt>())
+ continue;
+
+ // Ignore pointer types annotated with 'NSObject' attribute.
+ if (C.getASTContext().isObjCNSObjectType(ArgTy))
+ continue;
+
+ // Ignore CF references, which can be toll-free bridged.
+ if (coreFoundation::isCFObjectRef(ArgTy))
+ continue;
+
+ // Generate only one error node to use for all bug reports.
+ if (!errorNode.hasValue())
+ errorNode = C.addTransition();
+
+ if (!errorNode.getValue())
+ continue;
+
+ SmallString<128> sbuf;
+ llvm::raw_svector_ostream os(sbuf);
+
+ StringRef TypeName = GetReceiverInterfaceName(msg);
+ if (!TypeName.empty())
+ os << "Argument to '" << TypeName << "' method '";
+ else
+ os << "Argument to method '";
+
+ msg.getSelector().print(os);
+ os << "' should be an Objective-C pointer type, not '";
+ ArgTy.print(os, C.getLangOpts());
+ os << "'";
+
+ BugReport *R = new BugReport(*BT, os.str(), errorNode.getValue());
+ R->addRange(msg.getArgSourceRange(I));
+ C.emitReport(R);
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Improves the modeling of loops over Cocoa collections.
+//===----------------------------------------------------------------------===//
+
+// The map from container symbol to the container count symbol.
+// We currently will remember the last countainer count symbol encountered.
+REGISTER_MAP_WITH_PROGRAMSTATE(ContainerCountMap, SymbolRef, SymbolRef)
+REGISTER_MAP_WITH_PROGRAMSTATE(ContainerNonEmptyMap, SymbolRef, bool)
+
+namespace {
+class ObjCLoopChecker
+ : public Checker<check::PostStmt<ObjCForCollectionStmt>,
+ check::PostObjCMessage,
+ check::DeadSymbols,
+ check::PointerEscape > {
+ mutable IdentifierInfo *CountSelectorII;
+
+ bool isCollectionCountMethod(const ObjCMethodCall &M,
+ CheckerContext &C) const;
+
+public:
+ ObjCLoopChecker() : CountSelectorII(nullptr) {}
+ void checkPostStmt(const ObjCForCollectionStmt *FCS, CheckerContext &C) const;
+ void checkPostObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const;
+ void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const;
+ ProgramStateRef checkPointerEscape(ProgramStateRef State,
+ const InvalidatedSymbols &Escaped,
+ const CallEvent *Call,
+ PointerEscapeKind Kind) const;
+};
+}
+
+static bool isKnownNonNilCollectionType(QualType T) {
+ const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>();
+ if (!PT)
+ return false;
+
+ const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
+ if (!ID)
+ return false;
+
+ switch (findKnownClass(ID)) {
+ case FC_NSArray:
+ case FC_NSDictionary:
+ case FC_NSEnumerator:
+ case FC_NSOrderedSet:
+ case FC_NSSet:
+ return true;
+ default:
+ return false;
+ }
+}
+
+/// Assumes that the collection is non-nil.
+///
+/// If the collection is known to be nil, returns NULL to indicate an infeasible
+/// path.
+static ProgramStateRef checkCollectionNonNil(CheckerContext &C,
+ ProgramStateRef State,
+ const ObjCForCollectionStmt *FCS) {
+ if (!State)
+ return nullptr;
+
+ SVal CollectionVal = C.getSVal(FCS->getCollection());
+ Optional<DefinedSVal> KnownCollection = CollectionVal.getAs<DefinedSVal>();
+ if (!KnownCollection)
+ return State;
+
+ ProgramStateRef StNonNil, StNil;
+ std::tie(StNonNil, StNil) = State->assume(*KnownCollection);
+ if (StNil && !StNonNil) {
+ // The collection is nil. This path is infeasible.
+ return nullptr;
+ }
+
+ return StNonNil;
+}
+
+/// Assumes that the collection elements are non-nil.
+///
+/// This only applies if the collection is one of those known not to contain
+/// nil values.
+static ProgramStateRef checkElementNonNil(CheckerContext &C,
+ ProgramStateRef State,
+ const ObjCForCollectionStmt *FCS) {
+ if (!State)
+ return nullptr;
+
+ // See if the collection is one where we /know/ the elements are non-nil.
+ if (!isKnownNonNilCollectionType(FCS->getCollection()->getType()))
+ return State;
+
+ const LocationContext *LCtx = C.getLocationContext();
+ const Stmt *Element = FCS->getElement();
+
+ // FIXME: Copied from ExprEngineObjC.
+ Optional<Loc> ElementLoc;
+ if (const DeclStmt *DS = dyn_cast<DeclStmt>(Element)) {
+ const VarDecl *ElemDecl = cast<VarDecl>(DS->getSingleDecl());
+ assert(ElemDecl->getInit() == nullptr);
+ ElementLoc = State->getLValue(ElemDecl, LCtx);
+ } else {
+ ElementLoc = State->getSVal(Element, LCtx).getAs<Loc>();
+ }
+
+ if (!ElementLoc)
+ return State;
+
+ // Go ahead and assume the value is non-nil.
+ SVal Val = State->getSVal(*ElementLoc);
+ return State->assume(Val.castAs<DefinedOrUnknownSVal>(), true);
+}
+
+/// Returns NULL state if the collection is known to contain elements
+/// (or is known not to contain elements if the Assumption parameter is false.)
+static ProgramStateRef
+assumeCollectionNonEmpty(CheckerContext &C, ProgramStateRef State,
+ SymbolRef CollectionS, bool Assumption) {
+ if (!State || !CollectionS)
+ return State;
+
+ const SymbolRef *CountS = State->get<ContainerCountMap>(CollectionS);
+ if (!CountS) {
+ const bool *KnownNonEmpty = State->get<ContainerNonEmptyMap>(CollectionS);
+ if (!KnownNonEmpty)
+ return State->set<ContainerNonEmptyMap>(CollectionS, Assumption);
+ return (Assumption == *KnownNonEmpty) ? State : nullptr;
+ }
+
+ SValBuilder &SvalBuilder = C.getSValBuilder();
+ SVal CountGreaterThanZeroVal =
+ SvalBuilder.evalBinOp(State, BO_GT,
+ nonloc::SymbolVal(*CountS),
+ SvalBuilder.makeIntVal(0, (*CountS)->getType()),
+ SvalBuilder.getConditionType());
+ Optional<DefinedSVal> CountGreaterThanZero =
+ CountGreaterThanZeroVal.getAs<DefinedSVal>();
+ if (!CountGreaterThanZero) {
+ // The SValBuilder cannot construct a valid SVal for this condition.
+ // This means we cannot properly reason about it.
+ return State;
+ }
+
+ return State->assume(*CountGreaterThanZero, Assumption);
+}
+
+static ProgramStateRef
+assumeCollectionNonEmpty(CheckerContext &C, ProgramStateRef State,
+ const ObjCForCollectionStmt *FCS,
+ bool Assumption) {
+ if (!State)
+ return nullptr;
+
+ SymbolRef CollectionS =
+ State->getSVal(FCS->getCollection(), C.getLocationContext()).getAsSymbol();
+ return assumeCollectionNonEmpty(C, State, CollectionS, Assumption);
+}
+
+
+/// If the fist block edge is a back edge, we are reentering the loop.
+static bool alreadyExecutedAtLeastOneLoopIteration(const ExplodedNode *N,
+ const ObjCForCollectionStmt *FCS) {
+ if (!N)
+ return false;
+
+ ProgramPoint P = N->getLocation();
+ if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
+ if (BE->getSrc()->getLoopTarget() == FCS)
+ return true;
+ return false;
+ }
+
+ // Keep looking for a block edge.
+ for (ExplodedNode::const_pred_iterator I = N->pred_begin(),
+ E = N->pred_end(); I != E; ++I) {
+ if (alreadyExecutedAtLeastOneLoopIteration(*I, FCS))
+ return true;
+ }
+
+ return false;
+}
+
+void ObjCLoopChecker::checkPostStmt(const ObjCForCollectionStmt *FCS,
+ CheckerContext &C) const {
+ ProgramStateRef State = C.getState();
+
+ // Check if this is the branch for the end of the loop.
+ SVal CollectionSentinel = C.getSVal(FCS);
+ if (CollectionSentinel.isZeroConstant()) {
+ if (!alreadyExecutedAtLeastOneLoopIteration(C.getPredecessor(), FCS))
+ State = assumeCollectionNonEmpty(C, State, FCS, /*Assumption*/false);
+
+ // Otherwise, this is a branch that goes through the loop body.
+ } else {
+ State = checkCollectionNonNil(C, State, FCS);
+ State = checkElementNonNil(C, State, FCS);
+ State = assumeCollectionNonEmpty(C, State, FCS, /*Assumption*/true);
+ }
+
+ if (!State)
+ C.generateSink();
+ else if (State != C.getState())
+ C.addTransition(State);
+}
+
+bool ObjCLoopChecker::isCollectionCountMethod(const ObjCMethodCall &M,
+ CheckerContext &C) const {
+ Selector S = M.getSelector();
+ // Initialize the identifiers on first use.
+ if (!CountSelectorII)
+ CountSelectorII = &C.getASTContext().Idents.get("count");
+
+ // If the method returns collection count, record the value.
+ if (S.isUnarySelector() &&
+ (S.getIdentifierInfoForSlot(0) == CountSelectorII))
+ return true;
+
+ return false;
+}
+
+void ObjCLoopChecker::checkPostObjCMessage(const ObjCMethodCall &M,
+ CheckerContext &C) const {
+ if (!M.isInstanceMessage())
+ return;
+
+ const ObjCInterfaceDecl *ClassID = M.getReceiverInterface();
+ if (!ClassID)
+ return;
+
+ FoundationClass Class = findKnownClass(ClassID);
+ if (Class != FC_NSDictionary &&
+ Class != FC_NSArray &&
+ Class != FC_NSSet &&
+ Class != FC_NSOrderedSet)
+ return;
+
+ SymbolRef ContainerS = M.getReceiverSVal().getAsSymbol();
+ if (!ContainerS)
+ return;
+
+ // If we are processing a call to "count", get the symbolic value returned by
+ // a call to "count" and add it to the map.
+ if (!isCollectionCountMethod(M, C))
+ return;
+
+ const Expr *MsgExpr = M.getOriginExpr();
+ SymbolRef CountS = C.getSVal(MsgExpr).getAsSymbol();
+ if (CountS) {
+ ProgramStateRef State = C.getState();
+
+ C.getSymbolManager().addSymbolDependency(ContainerS, CountS);
+ State = State->set<ContainerCountMap>(ContainerS, CountS);
+
+ if (const bool *NonEmpty = State->get<ContainerNonEmptyMap>(ContainerS)) {
+ State = State->remove<ContainerNonEmptyMap>(ContainerS);
+ State = assumeCollectionNonEmpty(C, State, ContainerS, *NonEmpty);
+ }
+
+ C.addTransition(State);
+ }
+ return;
+}
+
+static SymbolRef getMethodReceiverIfKnownImmutable(const CallEvent *Call) {
+ const ObjCMethodCall *Message = dyn_cast_or_null<ObjCMethodCall>(Call);
+ if (!Message)
+ return nullptr;
+
+ const ObjCMethodDecl *MD = Message->getDecl();
+ if (!MD)
+ return nullptr;
+
+ const ObjCInterfaceDecl *StaticClass;
+ if (isa<ObjCProtocolDecl>(MD->getDeclContext())) {
+ // We can't find out where the method was declared without doing more work.
+ // Instead, see if the receiver is statically typed as a known immutable
+ // collection.
+ StaticClass = Message->getOriginExpr()->getReceiverInterface();
+ } else {
+ StaticClass = MD->getClassInterface();
+ }
+
+ if (!StaticClass)
+ return nullptr;
+
+ switch (findKnownClass(StaticClass, /*IncludeSuper=*/false)) {
+ case FC_None:
+ return nullptr;
+ case FC_NSArray:
+ case FC_NSDictionary:
+ case FC_NSEnumerator:
+ case FC_NSNull:
+ case FC_NSOrderedSet:
+ case FC_NSSet:
+ case FC_NSString:
+ break;
+ }
+
+ return Message->getReceiverSVal().getAsSymbol();
+}
+
+ProgramStateRef
+ObjCLoopChecker::checkPointerEscape(ProgramStateRef State,
+ const InvalidatedSymbols &Escaped,
+ const CallEvent *Call,
+ PointerEscapeKind Kind) const {
+ SymbolRef ImmutableReceiver = getMethodReceiverIfKnownImmutable(Call);
+
+ // Remove the invalidated symbols form the collection count map.
+ for (InvalidatedSymbols::const_iterator I = Escaped.begin(),
+ E = Escaped.end();
+ I != E; ++I) {
+ SymbolRef Sym = *I;
+
+ // Don't invalidate this symbol's count if we know the method being called
+ // is declared on an immutable class. This isn't completely correct if the
+ // receiver is also passed as an argument, but in most uses of NSArray,
+ // NSDictionary, etc. this isn't likely to happen in a dangerous way.
+ if (Sym == ImmutableReceiver)
+ continue;
+
+ // The symbol escaped. Pessimistically, assume that the count could have
+ // changed.
+ State = State->remove<ContainerCountMap>(Sym);
+ State = State->remove<ContainerNonEmptyMap>(Sym);
+ }
+ return State;
+}
+
+void ObjCLoopChecker::checkDeadSymbols(SymbolReaper &SymReaper,
+ CheckerContext &C) const {
+ ProgramStateRef State = C.getState();
+
+ // Remove the dead symbols from the collection count map.
+ ContainerCountMapTy Tracked = State->get<ContainerCountMap>();
+ for (ContainerCountMapTy::iterator I = Tracked.begin(),
+ E = Tracked.end(); I != E; ++I) {
+ SymbolRef Sym = I->first;
+ if (SymReaper.isDead(Sym)) {
+ State = State->remove<ContainerCountMap>(Sym);
+ State = State->remove<ContainerNonEmptyMap>(Sym);
+ }
+ }
+
+ C.addTransition(State);
+}
+
+namespace {
+/// \class ObjCNonNilReturnValueChecker
+/// \brief The checker restricts the return values of APIs known to
+/// never (or almost never) return 'nil'.
+class ObjCNonNilReturnValueChecker
+ : public Checker<check::PostObjCMessage,
+ check::PostStmt<ObjCArrayLiteral>,
+ check::PostStmt<ObjCDictionaryLiteral>,
+ check::PostStmt<ObjCBoxedExpr> > {
+ mutable bool Initialized;
+ mutable Selector ObjectAtIndex;
+ mutable Selector ObjectAtIndexedSubscript;
+ mutable Selector NullSelector;
+
+public:
+ ObjCNonNilReturnValueChecker() : Initialized(false) {}
+
+ ProgramStateRef assumeExprIsNonNull(const Expr *NonNullExpr,
+ ProgramStateRef State,
+ CheckerContext &C) const;
+ void assumeExprIsNonNull(const Expr *E, CheckerContext &C) const {
+ C.addTransition(assumeExprIsNonNull(E, C.getState(), C));
+ }
+
+ void checkPostStmt(const ObjCArrayLiteral *E, CheckerContext &C) const {
+ assumeExprIsNonNull(E, C);
+ }
+ void checkPostStmt(const ObjCDictionaryLiteral *E, CheckerContext &C) const {
+ assumeExprIsNonNull(E, C);
+ }
+ void checkPostStmt(const ObjCBoxedExpr *E, CheckerContext &C) const {
+ assumeExprIsNonNull(E, C);
+ }
+
+ void checkPostObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const;
+};
+}
+
+ProgramStateRef
+ObjCNonNilReturnValueChecker::assumeExprIsNonNull(const Expr *NonNullExpr,
+ ProgramStateRef State,
+ CheckerContext &C) const {
+ SVal Val = State->getSVal(NonNullExpr, C.getLocationContext());
+ if (Optional<DefinedOrUnknownSVal> DV = Val.getAs<DefinedOrUnknownSVal>())
+ return State->assume(*DV, true);
+ return State;
+}
+
+void ObjCNonNilReturnValueChecker::checkPostObjCMessage(const ObjCMethodCall &M,
+ CheckerContext &C)
+ const {
+ ProgramStateRef State = C.getState();
+
+ if (!Initialized) {
+ ASTContext &Ctx = C.getASTContext();
+ ObjectAtIndex = GetUnarySelector("objectAtIndex", Ctx);
+ ObjectAtIndexedSubscript = GetUnarySelector("objectAtIndexedSubscript", Ctx);
+ NullSelector = GetNullarySelector("null", Ctx);
+ }
+
+ // Check the receiver type.
+ if (const ObjCInterfaceDecl *Interface = M.getReceiverInterface()) {
+
+ // Assume that object returned from '[self init]' or '[super init]' is not
+ // 'nil' if we are processing an inlined function/method.
+ //
+ // A defensive callee will (and should) check if the object returned by
+ // '[super init]' is 'nil' before doing it's own initialization. However,
+ // since 'nil' is rarely returned in practice, we should not warn when the
+ // caller to the defensive constructor uses the object in contexts where
+ // 'nil' is not accepted.
+ if (!C.inTopFrame() && M.getDecl() &&
+ M.getDecl()->getMethodFamily() == OMF_init &&
+ M.isReceiverSelfOrSuper()) {
+ State = assumeExprIsNonNull(M.getOriginExpr(), State, C);
+ }
+
+ FoundationClass Cl = findKnownClass(Interface);
+
+ // Objects returned from
+ // [NSArray|NSOrderedSet]::[ObjectAtIndex|ObjectAtIndexedSubscript]
+ // are never 'nil'.
+ if (Cl == FC_NSArray || Cl == FC_NSOrderedSet) {
+ Selector Sel = M.getSelector();
+ if (Sel == ObjectAtIndex || Sel == ObjectAtIndexedSubscript) {
+ // Go ahead and assume the value is non-nil.
+ State = assumeExprIsNonNull(M.getOriginExpr(), State, C);
+ }
+ }
+
+ // Objects returned from [NSNull null] are not nil.
+ if (Cl == FC_NSNull) {
+ if (M.getSelector() == NullSelector) {
+ // Go ahead and assume the value is non-nil.
+ State = assumeExprIsNonNull(M.getOriginExpr(), State, C);
+ }
+ }
+ }
+ C.addTransition(State);
+}
+
+//===----------------------------------------------------------------------===//
+// Check registration.
+//===----------------------------------------------------------------------===//
+
+void ento::registerNilArgChecker(CheckerManager &mgr) {
+ mgr.registerChecker<NilArgChecker>();
+}
+
+void ento::registerCFNumberCreateChecker(CheckerManager &mgr) {
+ mgr.registerChecker<CFNumberCreateChecker>();
+}
+
+void ento::registerCFRetainReleaseChecker(CheckerManager &mgr) {
+ mgr.registerChecker<CFRetainReleaseChecker>();
+}
+
+void ento::registerClassReleaseChecker(CheckerManager &mgr) {
+ mgr.registerChecker<ClassReleaseChecker>();
+}
+
+void ento::registerVariadicMethodTypeChecker(CheckerManager &mgr) {
+ mgr.registerChecker<VariadicMethodTypeChecker>();
+}
+
+void ento::registerObjCLoopChecker(CheckerManager &mgr) {
+ mgr.registerChecker<ObjCLoopChecker>();
+}
+
+void
+ento::registerObjCNonNilReturnValueChecker(CheckerManager &mgr) {
+ mgr.registerChecker<ObjCNonNilReturnValueChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/BoolAssignmentChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/BoolAssignmentChecker.cpp
new file mode 100644
index 0000000..83a37c9
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/BoolAssignmentChecker.cpp
@@ -0,0 +1,157 @@
+//== BoolAssignmentChecker.cpp - Boolean assignment checker -----*- C++ -*--==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This defines BoolAssignmentChecker, a builtin check in ExprEngine that
+// performs checks for assignment of non-Boolean values to Boolean variables.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+ class BoolAssignmentChecker : public Checker< check::Bind > {
+ mutable std::unique_ptr<BuiltinBug> BT;
+ void emitReport(ProgramStateRef state, CheckerContext &C) const;
+ public:
+ void checkBind(SVal loc, SVal val, const Stmt *S, CheckerContext &C) const;
+ };
+} // end anonymous namespace
+
+void BoolAssignmentChecker::emitReport(ProgramStateRef state,
+ CheckerContext &C) const {
+ if (ExplodedNode *N = C.addTransition(state)) {
+ if (!BT)
+ BT.reset(new BuiltinBug(this, "Assignment of a non-Boolean value"));
+ C.emitReport(new BugReport(*BT, BT->getDescription(), N));
+ }
+}
+
+static bool isBooleanType(QualType Ty) {
+ if (Ty->isBooleanType()) // C++ or C99
+ return true;
+
+ if (const TypedefType *TT = Ty->getAs<TypedefType>())
+ return TT->getDecl()->getName() == "BOOL" || // Objective-C
+ TT->getDecl()->getName() == "_Bool" || // stdbool.h < C99
+ TT->getDecl()->getName() == "Boolean"; // MacTypes.h
+
+ return false;
+}
+
+void BoolAssignmentChecker::checkBind(SVal loc, SVal val, const Stmt *S,
+ CheckerContext &C) const {
+
+ // We are only interested in stores into Booleans.
+ const TypedValueRegion *TR =
+ dyn_cast_or_null<TypedValueRegion>(loc.getAsRegion());
+
+ if (!TR)
+ return;
+
+ QualType valTy = TR->getValueType();
+
+ if (!isBooleanType(valTy))
+ return;
+
+ // Get the value of the right-hand side. We only care about values
+ // that are defined (UnknownVals and UndefinedVals are handled by other
+ // checkers).
+ Optional<DefinedSVal> DV = val.getAs<DefinedSVal>();
+ if (!DV)
+ return;
+
+ // Check if the assigned value meets our criteria for correctness. It must
+ // be a value that is either 0 or 1. One way to check this is to see if
+ // the value is possibly < 0 (for a negative value) or greater than 1.
+ ProgramStateRef state = C.getState();
+ SValBuilder &svalBuilder = C.getSValBuilder();
+ ConstraintManager &CM = C.getConstraintManager();
+
+ // First, ensure that the value is >= 0.
+ DefinedSVal zeroVal = svalBuilder.makeIntVal(0, valTy);
+ SVal greaterThanOrEqualToZeroVal =
+ svalBuilder.evalBinOp(state, BO_GE, *DV, zeroVal,
+ svalBuilder.getConditionType());
+
+ Optional<DefinedSVal> greaterThanEqualToZero =
+ greaterThanOrEqualToZeroVal.getAs<DefinedSVal>();
+
+ if (!greaterThanEqualToZero) {
+ // The SValBuilder cannot construct a valid SVal for this condition.
+ // This means we cannot properly reason about it.
+ return;
+ }
+
+ ProgramStateRef stateLT, stateGE;
+ std::tie(stateGE, stateLT) = CM.assumeDual(state, *greaterThanEqualToZero);
+
+ // Is it possible for the value to be less than zero?
+ if (stateLT) {
+ // It is possible for the value to be less than zero. We only
+ // want to emit a warning, however, if that value is fully constrained.
+ // If it it possible for the value to be >= 0, then essentially the
+ // value is underconstrained and there is nothing left to be done.
+ if (!stateGE)
+ emitReport(stateLT, C);
+
+ // In either case, we are done.
+ return;
+ }
+
+ // If we reach here, it must be the case that the value is constrained
+ // to only be >= 0.
+ assert(stateGE == state);
+
+ // At this point we know that the value is >= 0.
+ // Now check to ensure that the value is <= 1.
+ DefinedSVal OneVal = svalBuilder.makeIntVal(1, valTy);
+ SVal lessThanEqToOneVal =
+ svalBuilder.evalBinOp(state, BO_LE, *DV, OneVal,
+ svalBuilder.getConditionType());
+
+ Optional<DefinedSVal> lessThanEqToOne =
+ lessThanEqToOneVal.getAs<DefinedSVal>();
+
+ if (!lessThanEqToOne) {
+ // The SValBuilder cannot construct a valid SVal for this condition.
+ // This means we cannot properly reason about it.
+ return;
+ }
+
+ ProgramStateRef stateGT, stateLE;
+ std::tie(stateLE, stateGT) = CM.assumeDual(state, *lessThanEqToOne);
+
+ // Is it possible for the value to be greater than one?
+ if (stateGT) {
+ // It is possible for the value to be greater than one. We only
+ // want to emit a warning, however, if that value is fully constrained.
+ // If it is possible for the value to be <= 1, then essentially the
+ // value is underconstrained and there is nothing left to be done.
+ if (!stateLE)
+ emitReport(stateGT, C);
+
+ // In either case, we are done.
+ return;
+ }
+
+ // If we reach here, it must be the case that the value is constrained
+ // to only be <= 1.
+ assert(stateLE == state);
+}
+
+void ento::registerBoolAssignmentChecker(CheckerManager &mgr) {
+ mgr.registerChecker<BoolAssignmentChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/BuiltinFunctionChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/BuiltinFunctionChecker.cpp
new file mode 100644
index 0000000..104a81e
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/BuiltinFunctionChecker.cpp
@@ -0,0 +1,101 @@
+//=== BuiltinFunctionChecker.cpp --------------------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This checker evaluates clang builtin functions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/Basic/Builtins.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+
+class BuiltinFunctionChecker : public Checker<eval::Call> {
+public:
+ bool evalCall(const CallExpr *CE, CheckerContext &C) const;
+};
+
+}
+
+bool BuiltinFunctionChecker::evalCall(const CallExpr *CE,
+ CheckerContext &C) const {
+ ProgramStateRef state = C.getState();
+ const FunctionDecl *FD = C.getCalleeDecl(CE);
+ const LocationContext *LCtx = C.getLocationContext();
+ if (!FD)
+ return false;
+
+ switch (FD->getBuiltinID()) {
+ default:
+ return false;
+
+ case Builtin::BI__builtin_expect:
+ case Builtin::BI__builtin_assume_aligned:
+ case Builtin::BI__builtin_addressof: {
+ // For __builtin_expect and __builtin_assume_aligned, just return the value
+ // of the subexpression.
+ // __builtin_addressof is going from a reference to a pointer, but those
+ // are represented the same way in the analyzer.
+ assert (CE->arg_begin() != CE->arg_end());
+ SVal X = state->getSVal(*(CE->arg_begin()), LCtx);
+ C.addTransition(state->BindExpr(CE, LCtx, X));
+ return true;
+ }
+
+ case Builtin::BI__builtin_alloca: {
+ // FIXME: Refactor into StoreManager itself?
+ MemRegionManager& RM = C.getStoreManager().getRegionManager();
+ const AllocaRegion* R =
+ RM.getAllocaRegion(CE, C.blockCount(), C.getLocationContext());
+
+ // Set the extent of the region in bytes. This enables us to use the
+ // SVal of the argument directly. If we save the extent in bits, we
+ // cannot represent values like symbol*8.
+ DefinedOrUnknownSVal Size =
+ state->getSVal(*(CE->arg_begin()), LCtx).castAs<DefinedOrUnknownSVal>();
+
+ SValBuilder& svalBuilder = C.getSValBuilder();
+ DefinedOrUnknownSVal Extent = R->getExtent(svalBuilder);
+ DefinedOrUnknownSVal extentMatchesSizeArg =
+ svalBuilder.evalEQ(state, Extent, Size);
+ state = state->assume(extentMatchesSizeArg, true);
+ assert(state && "The region should not have any previous constraints");
+
+ C.addTransition(state->BindExpr(CE, LCtx, loc::MemRegionVal(R)));
+ return true;
+ }
+
+ case Builtin::BI__builtin_object_size: {
+ // This must be resolvable at compile time, so we defer to the constant
+ // evaluator for a value.
+ SVal V = UnknownVal();
+ llvm::APSInt Result;
+ if (CE->EvaluateAsInt(Result, C.getASTContext(), Expr::SE_NoSideEffects)) {
+ // Make sure the result has the correct type.
+ SValBuilder &SVB = C.getSValBuilder();
+ BasicValueFactory &BVF = SVB.getBasicValueFactory();
+ BVF.getAPSIntType(CE->getType()).apply(Result);
+ V = SVB.makeIntVal(Result);
+ }
+
+ C.addTransition(state->BindExpr(CE, LCtx, V));
+ return true;
+ }
+ }
+}
+
+void ento::registerBuiltinFunctionChecker(CheckerManager &mgr) {
+ mgr.registerChecker<BuiltinFunctionChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp
new file mode 100644
index 0000000..0f5741b
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp
@@ -0,0 +1,2086 @@
+//= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This defines CStringChecker, which is an assortment of checks on calls
+// to functions in <string.h>.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "InterCheckerAPI.h"
+#include "clang/Basic/CharInfo.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+class CStringChecker : public Checker< eval::Call,
+ check::PreStmt<DeclStmt>,
+ check::LiveSymbols,
+ check::DeadSymbols,
+ check::RegionChanges
+ > {
+ mutable std::unique_ptr<BugType> BT_Null, BT_Bounds, BT_Overlap,
+ BT_NotCString, BT_AdditionOverflow;
+
+ mutable const char *CurrentFunctionDescription;
+
+public:
+ /// The filter is used to filter out the diagnostics which are not enabled by
+ /// the user.
+ struct CStringChecksFilter {
+ DefaultBool CheckCStringNullArg;
+ DefaultBool CheckCStringOutOfBounds;
+ DefaultBool CheckCStringBufferOverlap;
+ DefaultBool CheckCStringNotNullTerm;
+
+ CheckName CheckNameCStringNullArg;
+ CheckName CheckNameCStringOutOfBounds;
+ CheckName CheckNameCStringBufferOverlap;
+ CheckName CheckNameCStringNotNullTerm;
+ };
+
+ CStringChecksFilter Filter;
+
+ static void *getTag() { static int tag; return &tag; }
+
+ bool evalCall(const CallExpr *CE, CheckerContext &C) const;
+ void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const;
+ void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const;
+ void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
+ bool wantsRegionChangeUpdate(ProgramStateRef state) const;
+
+ ProgramStateRef
+ checkRegionChanges(ProgramStateRef state,
+ const InvalidatedSymbols *,
+ ArrayRef<const MemRegion *> ExplicitRegions,
+ ArrayRef<const MemRegion *> Regions,
+ const CallEvent *Call) const;
+
+ typedef void (CStringChecker::*FnCheck)(CheckerContext &,
+ const CallExpr *) const;
+
+ void evalMemcpy(CheckerContext &C, const CallExpr *CE) const;
+ void evalMempcpy(CheckerContext &C, const CallExpr *CE) const;
+ void evalMemmove(CheckerContext &C, const CallExpr *CE) const;
+ void evalBcopy(CheckerContext &C, const CallExpr *CE) const;
+ void evalCopyCommon(CheckerContext &C, const CallExpr *CE,
+ ProgramStateRef state,
+ const Expr *Size,
+ const Expr *Source,
+ const Expr *Dest,
+ bool Restricted = false,
+ bool IsMempcpy = false) const;
+
+ void evalMemcmp(CheckerContext &C, const CallExpr *CE) const;
+
+ void evalstrLength(CheckerContext &C, const CallExpr *CE) const;
+ void evalstrnLength(CheckerContext &C, const CallExpr *CE) const;
+ void evalstrLengthCommon(CheckerContext &C,
+ const CallExpr *CE,
+ bool IsStrnlen = false) const;
+
+ void evalStrcpy(CheckerContext &C, const CallExpr *CE) const;
+ void evalStrncpy(CheckerContext &C, const CallExpr *CE) const;
+ void evalStpcpy(CheckerContext &C, const CallExpr *CE) const;
+ void evalStrcpyCommon(CheckerContext &C,
+ const CallExpr *CE,
+ bool returnEnd,
+ bool isBounded,
+ bool isAppending) const;
+
+ void evalStrcat(CheckerContext &C, const CallExpr *CE) const;
+ void evalStrncat(CheckerContext &C, const CallExpr *CE) const;
+
+ void evalStrcmp(CheckerContext &C, const CallExpr *CE) const;
+ void evalStrncmp(CheckerContext &C, const CallExpr *CE) const;
+ void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const;
+ void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const;
+ void evalStrcmpCommon(CheckerContext &C,
+ const CallExpr *CE,
+ bool isBounded = false,
+ bool ignoreCase = false) const;
+
+ void evalStrsep(CheckerContext &C, const CallExpr *CE) const;
+
+ // Utility methods
+ std::pair<ProgramStateRef , ProgramStateRef >
+ static assumeZero(CheckerContext &C,
+ ProgramStateRef state, SVal V, QualType Ty);
+
+ static ProgramStateRef setCStringLength(ProgramStateRef state,
+ const MemRegion *MR,
+ SVal strLength);
+ static SVal getCStringLengthForRegion(CheckerContext &C,
+ ProgramStateRef &state,
+ const Expr *Ex,
+ const MemRegion *MR,
+ bool hypothetical);
+ SVal getCStringLength(CheckerContext &C,
+ ProgramStateRef &state,
+ const Expr *Ex,
+ SVal Buf,
+ bool hypothetical = false) const;
+
+ const StringLiteral *getCStringLiteral(CheckerContext &C,
+ ProgramStateRef &state,
+ const Expr *expr,
+ SVal val) const;
+
+ static ProgramStateRef InvalidateBuffer(CheckerContext &C,
+ ProgramStateRef state,
+ const Expr *Ex, SVal V,
+ bool IsSourceBuffer);
+
+ static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
+ const MemRegion *MR);
+
+ // Re-usable checks
+ ProgramStateRef checkNonNull(CheckerContext &C,
+ ProgramStateRef state,
+ const Expr *S,
+ SVal l) const;
+ ProgramStateRef CheckLocation(CheckerContext &C,
+ ProgramStateRef state,
+ const Expr *S,
+ SVal l,
+ const char *message = nullptr) const;
+ ProgramStateRef CheckBufferAccess(CheckerContext &C,
+ ProgramStateRef state,
+ const Expr *Size,
+ const Expr *FirstBuf,
+ const Expr *SecondBuf,
+ const char *firstMessage = nullptr,
+ const char *secondMessage = nullptr,
+ bool WarnAboutSize = false) const;
+
+ ProgramStateRef CheckBufferAccess(CheckerContext &C,
+ ProgramStateRef state,
+ const Expr *Size,
+ const Expr *Buf,
+ const char *message = nullptr,
+ bool WarnAboutSize = false) const {
+ // This is a convenience override.
+ return CheckBufferAccess(C, state, Size, Buf, nullptr, message, nullptr,
+ WarnAboutSize);
+ }
+ ProgramStateRef CheckOverlap(CheckerContext &C,
+ ProgramStateRef state,
+ const Expr *Size,
+ const Expr *First,
+ const Expr *Second) const;
+ void emitOverlapBug(CheckerContext &C,
+ ProgramStateRef state,
+ const Stmt *First,
+ const Stmt *Second) const;
+
+ ProgramStateRef checkAdditionOverflow(CheckerContext &C,
+ ProgramStateRef state,
+ NonLoc left,
+ NonLoc right) const;
+};
+
+} //end anonymous namespace
+
+REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal)
+
+//===----------------------------------------------------------------------===//
+// Individual checks and utility methods.
+//===----------------------------------------------------------------------===//
+
+std::pair<ProgramStateRef , ProgramStateRef >
+CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V,
+ QualType Ty) {
+ Optional<DefinedSVal> val = V.getAs<DefinedSVal>();
+ if (!val)
+ return std::pair<ProgramStateRef , ProgramStateRef >(state, state);
+
+ SValBuilder &svalBuilder = C.getSValBuilder();
+ DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty);
+ return state->assume(svalBuilder.evalEQ(state, *val, zero));
+}
+
+ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C,
+ ProgramStateRef state,
+ const Expr *S, SVal l) const {
+ // If a previous check has failed, propagate the failure.
+ if (!state)
+ return nullptr;
+
+ ProgramStateRef stateNull, stateNonNull;
+ std::tie(stateNull, stateNonNull) = assumeZero(C, state, l, S->getType());
+
+ if (stateNull && !stateNonNull) {
+ if (!Filter.CheckCStringNullArg)
+ return nullptr;
+
+ ExplodedNode *N = C.generateSink(stateNull);
+ if (!N)
+ return nullptr;
+
+ if (!BT_Null)
+ BT_Null.reset(new BuiltinBug(
+ Filter.CheckNameCStringNullArg, categories::UnixAPI,
+ "Null pointer argument in call to byte string function"));
+
+ SmallString<80> buf;
+ llvm::raw_svector_ostream os(buf);
+ assert(CurrentFunctionDescription);
+ os << "Null pointer argument in call to " << CurrentFunctionDescription;
+
+ // Generate a report for this bug.
+ BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Null.get());
+ BugReport *report = new BugReport(*BT, os.str(), N);
+
+ report->addRange(S->getSourceRange());
+ bugreporter::trackNullOrUndefValue(N, S, *report);
+ C.emitReport(report);
+ return nullptr;
+ }
+
+ // From here on, assume that the value is non-null.
+ assert(stateNonNull);
+ return stateNonNull;
+}
+
+// FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor?
+ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C,
+ ProgramStateRef state,
+ const Expr *S, SVal l,
+ const char *warningMsg) const {
+ // If a previous check has failed, propagate the failure.
+ if (!state)
+ return nullptr;
+
+ // Check for out of bound array element access.
+ const MemRegion *R = l.getAsRegion();
+ if (!R)
+ return state;
+
+ const ElementRegion *ER = dyn_cast<ElementRegion>(R);
+ if (!ER)
+ return state;
+
+ assert(ER->getValueType() == C.getASTContext().CharTy &&
+ "CheckLocation should only be called with char* ElementRegions");
+
+ // Get the size of the array.
+ const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion());
+ SValBuilder &svalBuilder = C.getSValBuilder();
+ SVal Extent =
+ svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder));
+ DefinedOrUnknownSVal Size = Extent.castAs<DefinedOrUnknownSVal>();
+
+ // Get the index of the accessed element.
+ DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>();
+
+ ProgramStateRef StInBound = state->assumeInBound(Idx, Size, true);
+ ProgramStateRef StOutBound = state->assumeInBound(Idx, Size, false);
+ if (StOutBound && !StInBound) {
+ ExplodedNode *N = C.generateSink(StOutBound);
+ if (!N)
+ return nullptr;
+
+ if (!BT_Bounds) {
+ BT_Bounds.reset(new BuiltinBug(
+ Filter.CheckNameCStringOutOfBounds, "Out-of-bound array access",
+ "Byte string function accesses out-of-bound array element"));
+ }
+ BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Bounds.get());
+
+ // Generate a report for this bug.
+ BugReport *report;
+ if (warningMsg) {
+ report = new BugReport(*BT, warningMsg, N);
+ } else {
+ assert(CurrentFunctionDescription);
+ assert(CurrentFunctionDescription[0] != '\0');
+
+ SmallString<80> buf;
+ llvm::raw_svector_ostream os(buf);
+ os << toUppercase(CurrentFunctionDescription[0])
+ << &CurrentFunctionDescription[1]
+ << " accesses out-of-bound array element";
+ report = new BugReport(*BT, os.str(), N);
+ }
+
+ // FIXME: It would be nice to eventually make this diagnostic more clear,
+ // e.g., by referencing the original declaration or by saying *why* this
+ // reference is outside the range.
+
+ report->addRange(S->getSourceRange());
+ C.emitReport(report);
+ return nullptr;
+ }
+
+ // Array bound check succeeded. From this point forward the array bound
+ // should always succeed.
+ return StInBound;
+}
+
+ProgramStateRef CStringChecker::CheckBufferAccess(CheckerContext &C,
+ ProgramStateRef state,
+ const Expr *Size,
+ const Expr *FirstBuf,
+ const Expr *SecondBuf,
+ const char *firstMessage,
+ const char *secondMessage,
+ bool WarnAboutSize) const {
+ // If a previous check has failed, propagate the failure.
+ if (!state)
+ return nullptr;
+
+ SValBuilder &svalBuilder = C.getSValBuilder();
+ ASTContext &Ctx = svalBuilder.getContext();
+ const LocationContext *LCtx = C.getLocationContext();
+
+ QualType sizeTy = Size->getType();
+ QualType PtrTy = Ctx.getPointerType(Ctx.CharTy);
+
+ // Check that the first buffer is non-null.
+ SVal BufVal = state->getSVal(FirstBuf, LCtx);
+ state = checkNonNull(C, state, FirstBuf, BufVal);
+ if (!state)
+ return nullptr;
+
+ // If out-of-bounds checking is turned off, skip the rest.
+ if (!Filter.CheckCStringOutOfBounds)
+ return state;
+
+ // Get the access length and make sure it is known.
+ // FIXME: This assumes the caller has already checked that the access length
+ // is positive. And that it's unsigned.
+ SVal LengthVal = state->getSVal(Size, LCtx);
+ Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
+ if (!Length)
+ return state;
+
+ // Compute the offset of the last element to be accessed: size-1.
+ NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
+ NonLoc LastOffset = svalBuilder
+ .evalBinOpNN(state, BO_Sub, *Length, One, sizeTy).castAs<NonLoc>();
+
+ // Check that the first buffer is sufficiently long.
+ SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType());
+ if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) {
+ const Expr *warningExpr = (WarnAboutSize ? Size : FirstBuf);
+
+ SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc,
+ LastOffset, PtrTy);
+ state = CheckLocation(C, state, warningExpr, BufEnd, firstMessage);
+
+ // If the buffer isn't large enough, abort.
+ if (!state)
+ return nullptr;
+ }
+
+ // If there's a second buffer, check it as well.
+ if (SecondBuf) {
+ BufVal = state->getSVal(SecondBuf, LCtx);
+ state = checkNonNull(C, state, SecondBuf, BufVal);
+ if (!state)
+ return nullptr;
+
+ BufStart = svalBuilder.evalCast(BufVal, PtrTy, SecondBuf->getType());
+ if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) {
+ const Expr *warningExpr = (WarnAboutSize ? Size : SecondBuf);
+
+ SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc,
+ LastOffset, PtrTy);
+ state = CheckLocation(C, state, warningExpr, BufEnd, secondMessage);
+ }
+ }
+
+ // Large enough or not, return this state!
+ return state;
+}
+
+ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C,
+ ProgramStateRef state,
+ const Expr *Size,
+ const Expr *First,
+ const Expr *Second) const {
+ if (!Filter.CheckCStringBufferOverlap)
+ return state;
+
+ // Do a simple check for overlap: if the two arguments are from the same
+ // buffer, see if the end of the first is greater than the start of the second
+ // or vice versa.
+
+ // If a previous check has failed, propagate the failure.
+ if (!state)
+ return nullptr;
+
+ ProgramStateRef stateTrue, stateFalse;
+
+ // Get the buffer values and make sure they're known locations.
+ const LocationContext *LCtx = C.getLocationContext();
+ SVal firstVal = state->getSVal(First, LCtx);
+ SVal secondVal = state->getSVal(Second, LCtx);
+
+ Optional<Loc> firstLoc = firstVal.getAs<Loc>();
+ if (!firstLoc)
+ return state;
+
+ Optional<Loc> secondLoc = secondVal.getAs<Loc>();
+ if (!secondLoc)
+ return state;
+
+ // Are the two values the same?
+ SValBuilder &svalBuilder = C.getSValBuilder();
+ std::tie(stateTrue, stateFalse) =
+ state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc));
+
+ if (stateTrue && !stateFalse) {
+ // If the values are known to be equal, that's automatically an overlap.
+ emitOverlapBug(C, stateTrue, First, Second);
+ return nullptr;
+ }
+
+ // assume the two expressions are not equal.
+ assert(stateFalse);
+ state = stateFalse;
+
+ // Which value comes first?
+ QualType cmpTy = svalBuilder.getConditionType();
+ SVal reverse = svalBuilder.evalBinOpLL(state, BO_GT,
+ *firstLoc, *secondLoc, cmpTy);
+ Optional<DefinedOrUnknownSVal> reverseTest =
+ reverse.getAs<DefinedOrUnknownSVal>();
+ if (!reverseTest)
+ return state;
+
+ std::tie(stateTrue, stateFalse) = state->assume(*reverseTest);
+ if (stateTrue) {
+ if (stateFalse) {
+ // If we don't know which one comes first, we can't perform this test.
+ return state;
+ } else {
+ // Switch the values so that firstVal is before secondVal.
+ std::swap(firstLoc, secondLoc);
+
+ // Switch the Exprs as well, so that they still correspond.
+ std::swap(First, Second);
+ }
+ }
+
+ // Get the length, and make sure it too is known.
+ SVal LengthVal = state->getSVal(Size, LCtx);
+ Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
+ if (!Length)
+ return state;
+
+ // Convert the first buffer's start address to char*.
+ // Bail out if the cast fails.
+ ASTContext &Ctx = svalBuilder.getContext();
+ QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy);
+ SVal FirstStart = svalBuilder.evalCast(*firstLoc, CharPtrTy,
+ First->getType());
+ Optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>();
+ if (!FirstStartLoc)
+ return state;
+
+ // Compute the end of the first buffer. Bail out if THAT fails.
+ SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add,
+ *FirstStartLoc, *Length, CharPtrTy);
+ Optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>();
+ if (!FirstEndLoc)
+ return state;
+
+ // Is the end of the first buffer past the start of the second buffer?
+ SVal Overlap = svalBuilder.evalBinOpLL(state, BO_GT,
+ *FirstEndLoc, *secondLoc, cmpTy);
+ Optional<DefinedOrUnknownSVal> OverlapTest =
+ Overlap.getAs<DefinedOrUnknownSVal>();
+ if (!OverlapTest)
+ return state;
+
+ std::tie(stateTrue, stateFalse) = state->assume(*OverlapTest);
+
+ if (stateTrue && !stateFalse) {
+ // Overlap!
+ emitOverlapBug(C, stateTrue, First, Second);
+ return nullptr;
+ }
+
+ // assume the two expressions don't overlap.
+ assert(stateFalse);
+ return stateFalse;
+}
+
+void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state,
+ const Stmt *First, const Stmt *Second) const {
+ ExplodedNode *N = C.generateSink(state);
+ if (!N)
+ return;
+
+ if (!BT_Overlap)
+ BT_Overlap.reset(new BugType(Filter.CheckNameCStringBufferOverlap,
+ categories::UnixAPI, "Improper arguments"));
+
+ // Generate a report for this bug.
+ BugReport *report =
+ new BugReport(*BT_Overlap,
+ "Arguments must not be overlapping buffers", N);
+ report->addRange(First->getSourceRange());
+ report->addRange(Second->getSourceRange());
+
+ C.emitReport(report);
+}
+
+ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C,
+ ProgramStateRef state,
+ NonLoc left,
+ NonLoc right) const {
+ // If out-of-bounds checking is turned off, skip the rest.
+ if (!Filter.CheckCStringOutOfBounds)
+ return state;
+
+ // If a previous check has failed, propagate the failure.
+ if (!state)
+ return nullptr;
+
+ SValBuilder &svalBuilder = C.getSValBuilder();
+ BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
+
+ QualType sizeTy = svalBuilder.getContext().getSizeType();
+ const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
+ NonLoc maxVal = svalBuilder.makeIntVal(maxValInt);
+
+ SVal maxMinusRight;
+ if (right.getAs<nonloc::ConcreteInt>()) {
+ maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right,
+ sizeTy);
+ } else {
+ // Try switching the operands. (The order of these two assignments is
+ // important!)
+ maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left,
+ sizeTy);
+ left = right;
+ }
+
+ if (Optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) {
+ QualType cmpTy = svalBuilder.getConditionType();
+ // If left > max - right, we have an overflow.
+ SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left,
+ *maxMinusRightNL, cmpTy);
+
+ ProgramStateRef stateOverflow, stateOkay;
+ std::tie(stateOverflow, stateOkay) =
+ state->assume(willOverflow.castAs<DefinedOrUnknownSVal>());
+
+ if (stateOverflow && !stateOkay) {
+ // We have an overflow. Emit a bug report.
+ ExplodedNode *N = C.generateSink(stateOverflow);
+ if (!N)
+ return nullptr;
+
+ if (!BT_AdditionOverflow)
+ BT_AdditionOverflow.reset(
+ new BuiltinBug(Filter.CheckNameCStringOutOfBounds, "API",
+ "Sum of expressions causes overflow"));
+
+ // This isn't a great error message, but this should never occur in real
+ // code anyway -- you'd have to create a buffer longer than a size_t can
+ // represent, which is sort of a contradiction.
+ const char *warning =
+ "This expression will create a string whose length is too big to "
+ "be represented as a size_t";
+
+ // Generate a report for this bug.
+ BugReport *report = new BugReport(*BT_AdditionOverflow, warning, N);
+ C.emitReport(report);
+
+ return nullptr;
+ }
+
+ // From now on, assume an overflow didn't occur.
+ assert(stateOkay);
+ state = stateOkay;
+ }
+
+ return state;
+}
+
+ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state,
+ const MemRegion *MR,
+ SVal strLength) {
+ assert(!strLength.isUndef() && "Attempt to set an undefined string length");
+
+ MR = MR->StripCasts();
+
+ switch (MR->getKind()) {
+ case MemRegion::StringRegionKind:
+ // FIXME: This can happen if we strcpy() into a string region. This is
+ // undefined [C99 6.4.5p6], but we should still warn about it.
+ return state;
+
+ case MemRegion::SymbolicRegionKind:
+ case MemRegion::AllocaRegionKind:
+ case MemRegion::VarRegionKind:
+ case MemRegion::FieldRegionKind:
+ case MemRegion::ObjCIvarRegionKind:
+ // These are the types we can currently track string lengths for.
+ break;
+
+ case MemRegion::ElementRegionKind:
+ // FIXME: Handle element regions by upper-bounding the parent region's
+ // string length.
+ return state;
+
+ default:
+ // Other regions (mostly non-data) can't have a reliable C string length.
+ // For now, just ignore the change.
+ // FIXME: These are rare but not impossible. We should output some kind of
+ // warning for things like strcpy((char[]){'a', 0}, "b");
+ return state;
+ }
+
+ if (strLength.isUnknown())
+ return state->remove<CStringLength>(MR);
+
+ return state->set<CStringLength>(MR, strLength);
+}
+
+SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C,
+ ProgramStateRef &state,
+ const Expr *Ex,
+ const MemRegion *MR,
+ bool hypothetical) {
+ if (!hypothetical) {
+ // If there's a recorded length, go ahead and return it.
+ const SVal *Recorded = state->get<CStringLength>(MR);
+ if (Recorded)
+ return *Recorded;
+ }
+
+ // Otherwise, get a new symbol and update the state.
+ SValBuilder &svalBuilder = C.getSValBuilder();
+ QualType sizeTy = svalBuilder.getContext().getSizeType();
+ SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(),
+ MR, Ex, sizeTy,
+ C.blockCount());
+
+ if (!hypothetical) {
+ if (Optional<NonLoc> strLn = strLength.getAs<NonLoc>()) {
+ // In case of unbounded calls strlen etc bound the range to SIZE_MAX/4
+ BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
+ const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
+ llvm::APSInt fourInt = APSIntType(maxValInt).getValue(4);
+ const llvm::APSInt *maxLengthInt = BVF.evalAPSInt(BO_Div, maxValInt,
+ fourInt);
+ NonLoc maxLength = svalBuilder.makeIntVal(*maxLengthInt);
+ SVal evalLength = svalBuilder.evalBinOpNN(state, BO_LE, *strLn,
+ maxLength, sizeTy);
+ state = state->assume(evalLength.castAs<DefinedOrUnknownSVal>(), true);
+ }
+ state = state->set<CStringLength>(MR, strLength);
+ }
+
+ return strLength;
+}
+
+SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state,
+ const Expr *Ex, SVal Buf,
+ bool hypothetical) const {
+ const MemRegion *MR = Buf.getAsRegion();
+ if (!MR) {
+ // If we can't get a region, see if it's something we /know/ isn't a
+ // C string. In the context of locations, the only time we can issue such
+ // a warning is for labels.
+ if (Optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) {
+ if (!Filter.CheckCStringNotNullTerm)
+ return UndefinedVal();
+
+ if (ExplodedNode *N = C.addTransition(state)) {
+ if (!BT_NotCString)
+ BT_NotCString.reset(new BuiltinBug(
+ Filter.CheckNameCStringNotNullTerm, categories::UnixAPI,
+ "Argument is not a null-terminated string."));
+
+ SmallString<120> buf;
+ llvm::raw_svector_ostream os(buf);
+ assert(CurrentFunctionDescription);
+ os << "Argument to " << CurrentFunctionDescription
+ << " is the address of the label '" << Label->getLabel()->getName()
+ << "', which is not a null-terminated string";
+
+ // Generate a report for this bug.
+ BugReport *report = new BugReport(*BT_NotCString, os.str(), N);
+
+ report->addRange(Ex->getSourceRange());
+ C.emitReport(report);
+ }
+ return UndefinedVal();
+
+ }
+
+ // If it's not a region and not a label, give up.
+ return UnknownVal();
+ }
+
+ // If we have a region, strip casts from it and see if we can figure out
+ // its length. For anything we can't figure out, just return UnknownVal.
+ MR = MR->StripCasts();
+
+ switch (MR->getKind()) {
+ case MemRegion::StringRegionKind: {
+ // Modifying the contents of string regions is undefined [C99 6.4.5p6],
+ // so we can assume that the byte length is the correct C string length.
+ SValBuilder &svalBuilder = C.getSValBuilder();
+ QualType sizeTy = svalBuilder.getContext().getSizeType();
+ const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral();
+ return svalBuilder.makeIntVal(strLit->getByteLength(), sizeTy);
+ }
+ case MemRegion::SymbolicRegionKind:
+ case MemRegion::AllocaRegionKind:
+ case MemRegion::VarRegionKind:
+ case MemRegion::FieldRegionKind:
+ case MemRegion::ObjCIvarRegionKind:
+ return getCStringLengthForRegion(C, state, Ex, MR, hypothetical);
+ case MemRegion::CompoundLiteralRegionKind:
+ // FIXME: Can we track this? Is it necessary?
+ return UnknownVal();
+ case MemRegion::ElementRegionKind:
+ // FIXME: How can we handle this? It's not good enough to subtract the
+ // offset from the base string length; consider "123\x00567" and &a[5].
+ return UnknownVal();
+ default:
+ // Other regions (mostly non-data) can't have a reliable C string length.
+ // In this case, an error is emitted and UndefinedVal is returned.
+ // The caller should always be prepared to handle this case.
+ if (!Filter.CheckCStringNotNullTerm)
+ return UndefinedVal();
+
+ if (ExplodedNode *N = C.addTransition(state)) {
+ if (!BT_NotCString)
+ BT_NotCString.reset(new BuiltinBug(
+ Filter.CheckNameCStringNotNullTerm, categories::UnixAPI,
+ "Argument is not a null-terminated string."));
+
+ SmallString<120> buf;
+ llvm::raw_svector_ostream os(buf);
+
+ assert(CurrentFunctionDescription);
+ os << "Argument to " << CurrentFunctionDescription << " is ";
+
+ if (SummarizeRegion(os, C.getASTContext(), MR))
+ os << ", which is not a null-terminated string";
+ else
+ os << "not a null-terminated string";
+
+ // Generate a report for this bug.
+ BugReport *report = new BugReport(*BT_NotCString,
+ os.str(), N);
+
+ report->addRange(Ex->getSourceRange());
+ C.emitReport(report);
+ }
+
+ return UndefinedVal();
+ }
+}
+
+const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C,
+ ProgramStateRef &state, const Expr *expr, SVal val) const {
+
+ // Get the memory region pointed to by the val.
+ const MemRegion *bufRegion = val.getAsRegion();
+ if (!bufRegion)
+ return nullptr;
+
+ // Strip casts off the memory region.
+ bufRegion = bufRegion->StripCasts();
+
+ // Cast the memory region to a string region.
+ const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion);
+ if (!strRegion)
+ return nullptr;
+
+ // Return the actual string in the string region.
+ return strRegion->getStringLiteral();
+}
+
+ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C,
+ ProgramStateRef state,
+ const Expr *E, SVal V,
+ bool IsSourceBuffer) {
+ Optional<Loc> L = V.getAs<Loc>();
+ if (!L)
+ return state;
+
+ // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes
+ // some assumptions about the value that CFRefCount can't. Even so, it should
+ // probably be refactored.
+ if (Optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) {
+ const MemRegion *R = MR->getRegion()->StripCasts();
+
+ // Are we dealing with an ElementRegion? If so, we should be invalidating
+ // the super-region.
+ if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
+ R = ER->getSuperRegion();
+ // FIXME: What about layers of ElementRegions?
+ }
+
+ // Invalidate this region.
+ const LocationContext *LCtx = C.getPredecessor()->getLocationContext();
+
+ bool CausesPointerEscape = false;
+ RegionAndSymbolInvalidationTraits ITraits;
+ // Invalidate and escape only indirect regions accessible through the source
+ // buffer.
+ if (IsSourceBuffer) {
+ ITraits.setTrait(R,
+ RegionAndSymbolInvalidationTraits::TK_PreserveContents);
+ ITraits.setTrait(R, RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
+ CausesPointerEscape = true;
+ }
+
+ return state->invalidateRegions(R, E, C.blockCount(), LCtx,
+ CausesPointerEscape, nullptr, nullptr,
+ &ITraits);
+ }
+
+ // If we have a non-region value by chance, just remove the binding.
+ // FIXME: is this necessary or correct? This handles the non-Region
+ // cases. Is it ever valid to store to these?
+ return state->killBinding(*L);
+}
+
+bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
+ const MemRegion *MR) {
+ const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR);
+
+ switch (MR->getKind()) {
+ case MemRegion::FunctionTextRegionKind: {
+ const NamedDecl *FD = cast<FunctionTextRegion>(MR)->getDecl();
+ if (FD)
+ os << "the address of the function '" << *FD << '\'';
+ else
+ os << "the address of a function";
+ return true;
+ }
+ case MemRegion::BlockTextRegionKind:
+ os << "block text";
+ return true;
+ case MemRegion::BlockDataRegionKind:
+ os << "a block";
+ return true;
+ case MemRegion::CXXThisRegionKind:
+ case MemRegion::CXXTempObjectRegionKind:
+ os << "a C++ temp object of type " << TVR->getValueType().getAsString();
+ return true;
+ case MemRegion::VarRegionKind:
+ os << "a variable of type" << TVR->getValueType().getAsString();
+ return true;
+ case MemRegion::FieldRegionKind:
+ os << "a field of type " << TVR->getValueType().getAsString();
+ return true;
+ case MemRegion::ObjCIvarRegionKind:
+ os << "an instance variable of type " << TVR->getValueType().getAsString();
+ return true;
+ default:
+ return false;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// evaluation of individual function calls.
+//===----------------------------------------------------------------------===//
+
+void CStringChecker::evalCopyCommon(CheckerContext &C,
+ const CallExpr *CE,
+ ProgramStateRef state,
+ const Expr *Size, const Expr *Dest,
+ const Expr *Source, bool Restricted,
+ bool IsMempcpy) const {
+ CurrentFunctionDescription = "memory copy function";
+
+ // See if the size argument is zero.
+ const LocationContext *LCtx = C.getLocationContext();
+ SVal sizeVal = state->getSVal(Size, LCtx);
+ QualType sizeTy = Size->getType();
+
+ ProgramStateRef stateZeroSize, stateNonZeroSize;
+ std::tie(stateZeroSize, stateNonZeroSize) =
+ assumeZero(C, state, sizeVal, sizeTy);
+
+ // Get the value of the Dest.
+ SVal destVal = state->getSVal(Dest, LCtx);
+
+ // If the size is zero, there won't be any actual memory access, so
+ // just bind the return value to the destination buffer and return.
+ if (stateZeroSize && !stateNonZeroSize) {
+ stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal);
+ C.addTransition(stateZeroSize);
+ return;
+ }
+
+ // If the size can be nonzero, we have to check the other arguments.
+ if (stateNonZeroSize) {
+ state = stateNonZeroSize;
+
+ // Ensure the destination is not null. If it is NULL there will be a
+ // NULL pointer dereference.
+ state = checkNonNull(C, state, Dest, destVal);
+ if (!state)
+ return;
+
+ // Get the value of the Src.
+ SVal srcVal = state->getSVal(Source, LCtx);
+
+ // Ensure the source is not null. If it is NULL there will be a
+ // NULL pointer dereference.
+ state = checkNonNull(C, state, Source, srcVal);
+ if (!state)
+ return;
+
+ // Ensure the accesses are valid and that the buffers do not overlap.
+ const char * const writeWarning =
+ "Memory copy function overflows destination buffer";
+ state = CheckBufferAccess(C, state, Size, Dest, Source,
+ writeWarning, /* sourceWarning = */ nullptr);
+ if (Restricted)
+ state = CheckOverlap(C, state, Size, Dest, Source);
+
+ if (!state)
+ return;
+
+ // If this is mempcpy, get the byte after the last byte copied and
+ // bind the expr.
+ if (IsMempcpy) {
+ loc::MemRegionVal destRegVal = destVal.castAs<loc::MemRegionVal>();
+
+ // Get the length to copy.
+ if (Optional<NonLoc> lenValNonLoc = sizeVal.getAs<NonLoc>()) {
+ // Get the byte after the last byte copied.
+ SValBuilder &SvalBuilder = C.getSValBuilder();
+ ASTContext &Ctx = SvalBuilder.getContext();
+ QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy);
+ loc::MemRegionVal DestRegCharVal = SvalBuilder.evalCast(destRegVal,
+ CharPtrTy, Dest->getType()).castAs<loc::MemRegionVal>();
+ SVal lastElement = C.getSValBuilder().evalBinOpLN(state, BO_Add,
+ DestRegCharVal,
+ *lenValNonLoc,
+ Dest->getType());
+
+ // The byte after the last byte copied is the return value.
+ state = state->BindExpr(CE, LCtx, lastElement);
+ } else {
+ // If we don't know how much we copied, we can at least
+ // conjure a return value for later.
+ SVal result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
+ C.blockCount());
+ state = state->BindExpr(CE, LCtx, result);
+ }
+
+ } else {
+ // All other copies return the destination buffer.
+ // (Well, bcopy() has a void return type, but this won't hurt.)
+ state = state->BindExpr(CE, LCtx, destVal);
+ }
+
+ // Invalidate the destination (regular invalidation without pointer-escaping
+ // the address of the top-level region).
+ // FIXME: Even if we can't perfectly model the copy, we should see if we
+ // can use LazyCompoundVals to copy the source values into the destination.
+ // This would probably remove any existing bindings past the end of the
+ // copied region, but that's still an improvement over blank invalidation.
+ state = InvalidateBuffer(C, state, Dest, C.getSVal(Dest),
+ /*IsSourceBuffer*/false);
+
+ // Invalidate the source (const-invalidation without const-pointer-escaping
+ // the address of the top-level region).
+ state = InvalidateBuffer(C, state, Source, C.getSVal(Source),
+ /*IsSourceBuffer*/true);
+
+ C.addTransition(state);
+ }
+}
+
+
+void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE) const {
+ if (CE->getNumArgs() < 3)
+ return;
+
+ // void *memcpy(void *restrict dst, const void *restrict src, size_t n);
+ // The return value is the address of the destination buffer.
+ const Expr *Dest = CE->getArg(0);
+ ProgramStateRef state = C.getState();
+
+ evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true);
+}
+
+void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const {
+ if (CE->getNumArgs() < 3)
+ return;
+
+ // void *mempcpy(void *restrict dst, const void *restrict src, size_t n);
+ // The return value is a pointer to the byte following the last written byte.
+ const Expr *Dest = CE->getArg(0);
+ ProgramStateRef state = C.getState();
+
+ evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true, true);
+}
+
+void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const {
+ if (CE->getNumArgs() < 3)
+ return;
+
+ // void *memmove(void *dst, const void *src, size_t n);
+ // The return value is the address of the destination buffer.
+ const Expr *Dest = CE->getArg(0);
+ ProgramStateRef state = C.getState();
+
+ evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1));
+}
+
+void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const {
+ if (CE->getNumArgs() < 3)
+ return;
+
+ // void bcopy(const void *src, void *dst, size_t n);
+ evalCopyCommon(C, CE, C.getState(),
+ CE->getArg(2), CE->getArg(1), CE->getArg(0));
+}
+
+void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const {
+ if (CE->getNumArgs() < 3)
+ return;
+
+ // int memcmp(const void *s1, const void *s2, size_t n);
+ CurrentFunctionDescription = "memory comparison function";
+
+ const Expr *Left = CE->getArg(0);
+ const Expr *Right = CE->getArg(1);
+ const Expr *Size = CE->getArg(2);
+
+ ProgramStateRef state = C.getState();
+ SValBuilder &svalBuilder = C.getSValBuilder();
+
+ // See if the size argument is zero.
+ const LocationContext *LCtx = C.getLocationContext();
+ SVal sizeVal = state->getSVal(Size, LCtx);
+ QualType sizeTy = Size->getType();
+
+ ProgramStateRef stateZeroSize, stateNonZeroSize;
+ std::tie(stateZeroSize, stateNonZeroSize) =
+ assumeZero(C, state, sizeVal, sizeTy);
+
+ // If the size can be zero, the result will be 0 in that case, and we don't
+ // have to check either of the buffers.
+ if (stateZeroSize) {
+ state = stateZeroSize;
+ state = state->BindExpr(CE, LCtx,
+ svalBuilder.makeZeroVal(CE->getType()));
+ C.addTransition(state);
+ }
+
+ // If the size can be nonzero, we have to check the other arguments.
+ if (stateNonZeroSize) {
+ state = stateNonZeroSize;
+ // If we know the two buffers are the same, we know the result is 0.
+ // First, get the two buffers' addresses. Another checker will have already
+ // made sure they're not undefined.
+ DefinedOrUnknownSVal LV =
+ state->getSVal(Left, LCtx).castAs<DefinedOrUnknownSVal>();
+ DefinedOrUnknownSVal RV =
+ state->getSVal(Right, LCtx).castAs<DefinedOrUnknownSVal>();
+
+ // See if they are the same.
+ DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
+ ProgramStateRef StSameBuf, StNotSameBuf;
+ std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
+
+ // If the two arguments might be the same buffer, we know the result is 0,
+ // and we only need to check one size.
+ if (StSameBuf) {
+ state = StSameBuf;
+ state = CheckBufferAccess(C, state, Size, Left);
+ if (state) {
+ state = StSameBuf->BindExpr(CE, LCtx,
+ svalBuilder.makeZeroVal(CE->getType()));
+ C.addTransition(state);
+ }
+ }
+
+ // If the two arguments might be different buffers, we have to check the
+ // size of both of them.
+ if (StNotSameBuf) {
+ state = StNotSameBuf;
+ state = CheckBufferAccess(C, state, Size, Left, Right);
+ if (state) {
+ // The return value is the comparison result, which we don't know.
+ SVal CmpV = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx,
+ C.blockCount());
+ state = state->BindExpr(CE, LCtx, CmpV);
+ C.addTransition(state);
+ }
+ }
+ }
+}
+
+void CStringChecker::evalstrLength(CheckerContext &C,
+ const CallExpr *CE) const {
+ if (CE->getNumArgs() < 1)
+ return;
+
+ // size_t strlen(const char *s);
+ evalstrLengthCommon(C, CE, /* IsStrnlen = */ false);
+}
+
+void CStringChecker::evalstrnLength(CheckerContext &C,
+ const CallExpr *CE) const {
+ if (CE->getNumArgs() < 2)
+ return;
+
+ // size_t strnlen(const char *s, size_t maxlen);
+ evalstrLengthCommon(C, CE, /* IsStrnlen = */ true);
+}
+
+void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE,
+ bool IsStrnlen) const {
+ CurrentFunctionDescription = "string length function";
+ ProgramStateRef state = C.getState();
+ const LocationContext *LCtx = C.getLocationContext();
+
+ if (IsStrnlen) {
+ const Expr *maxlenExpr = CE->getArg(1);
+ SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
+
+ ProgramStateRef stateZeroSize, stateNonZeroSize;
+ std::tie(stateZeroSize, stateNonZeroSize) =
+ assumeZero(C, state, maxlenVal, maxlenExpr->getType());
+
+ // If the size can be zero, the result will be 0 in that case, and we don't
+ // have to check the string itself.
+ if (stateZeroSize) {
+ SVal zero = C.getSValBuilder().makeZeroVal(CE->getType());
+ stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero);
+ C.addTransition(stateZeroSize);
+ }
+
+ // If the size is GUARANTEED to be zero, we're done!
+ if (!stateNonZeroSize)
+ return;
+
+ // Otherwise, record the assumption that the size is nonzero.
+ state = stateNonZeroSize;
+ }
+
+ // Check that the string argument is non-null.
+ const Expr *Arg = CE->getArg(0);
+ SVal ArgVal = state->getSVal(Arg, LCtx);
+
+ state = checkNonNull(C, state, Arg, ArgVal);
+
+ if (!state)
+ return;
+
+ SVal strLength = getCStringLength(C, state, Arg, ArgVal);
+
+ // If the argument isn't a valid C string, there's no valid state to
+ // transition to.
+ if (strLength.isUndef())
+ return;
+
+ DefinedOrUnknownSVal result = UnknownVal();
+
+ // If the check is for strnlen() then bind the return value to no more than
+ // the maxlen value.
+ if (IsStrnlen) {
+ QualType cmpTy = C.getSValBuilder().getConditionType();
+
+ // It's a little unfortunate to be getting this again,
+ // but it's not that expensive...
+ const Expr *maxlenExpr = CE->getArg(1);
+ SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
+
+ Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>();
+ Optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>();
+
+ if (strLengthNL && maxlenValNL) {
+ ProgramStateRef stateStringTooLong, stateStringNotTooLong;
+
+ // Check if the strLength is greater than the maxlen.
+ std::tie(stateStringTooLong, stateStringNotTooLong) = state->assume(
+ C.getSValBuilder()
+ .evalBinOpNN(state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy)
+ .castAs<DefinedOrUnknownSVal>());
+
+ if (stateStringTooLong && !stateStringNotTooLong) {
+ // If the string is longer than maxlen, return maxlen.
+ result = *maxlenValNL;
+ } else if (stateStringNotTooLong && !stateStringTooLong) {
+ // If the string is shorter than maxlen, return its length.
+ result = *strLengthNL;
+ }
+ }
+
+ if (result.isUnknown()) {
+ // If we don't have enough information for a comparison, there's
+ // no guarantee the full string length will actually be returned.
+ // All we know is the return value is the min of the string length
+ // and the limit. This is better than nothing.
+ result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
+ C.blockCount());
+ NonLoc resultNL = result.castAs<NonLoc>();
+
+ if (strLengthNL) {
+ state = state->assume(C.getSValBuilder().evalBinOpNN(
+ state, BO_LE, resultNL, *strLengthNL, cmpTy)
+ .castAs<DefinedOrUnknownSVal>(), true);
+ }
+
+ if (maxlenValNL) {
+ state = state->assume(C.getSValBuilder().evalBinOpNN(
+ state, BO_LE, resultNL, *maxlenValNL, cmpTy)
+ .castAs<DefinedOrUnknownSVal>(), true);
+ }
+ }
+
+ } else {
+ // This is a plain strlen(), not strnlen().
+ result = strLength.castAs<DefinedOrUnknownSVal>();
+
+ // If we don't know the length of the string, conjure a return
+ // value, so it can be used in constraints, at least.
+ if (result.isUnknown()) {
+ result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
+ C.blockCount());
+ }
+ }
+
+ // Bind the return value.
+ assert(!result.isUnknown() && "Should have conjured a value by now");
+ state = state->BindExpr(CE, LCtx, result);
+ C.addTransition(state);
+}
+
+void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const {
+ if (CE->getNumArgs() < 2)
+ return;
+
+ // char *strcpy(char *restrict dst, const char *restrict src);
+ evalStrcpyCommon(C, CE,
+ /* returnEnd = */ false,
+ /* isBounded = */ false,
+ /* isAppending = */ false);
+}
+
+void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const {
+ if (CE->getNumArgs() < 3)
+ return;
+
+ // char *strncpy(char *restrict dst, const char *restrict src, size_t n);
+ evalStrcpyCommon(C, CE,
+ /* returnEnd = */ false,
+ /* isBounded = */ true,
+ /* isAppending = */ false);
+}
+
+void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const {
+ if (CE->getNumArgs() < 2)
+ return;
+
+ // char *stpcpy(char *restrict dst, const char *restrict src);
+ evalStrcpyCommon(C, CE,
+ /* returnEnd = */ true,
+ /* isBounded = */ false,
+ /* isAppending = */ false);
+}
+
+void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const {
+ if (CE->getNumArgs() < 2)
+ return;
+
+ //char *strcat(char *restrict s1, const char *restrict s2);
+ evalStrcpyCommon(C, CE,
+ /* returnEnd = */ false,
+ /* isBounded = */ false,
+ /* isAppending = */ true);
+}
+
+void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const {
+ if (CE->getNumArgs() < 3)
+ return;
+
+ //char *strncat(char *restrict s1, const char *restrict s2, size_t n);
+ evalStrcpyCommon(C, CE,
+ /* returnEnd = */ false,
+ /* isBounded = */ true,
+ /* isAppending = */ true);
+}
+
+void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE,
+ bool returnEnd, bool isBounded,
+ bool isAppending) const {
+ CurrentFunctionDescription = "string copy function";
+ ProgramStateRef state = C.getState();
+ const LocationContext *LCtx = C.getLocationContext();
+
+ // Check that the destination is non-null.
+ const Expr *Dst = CE->getArg(0);
+ SVal DstVal = state->getSVal(Dst, LCtx);
+
+ state = checkNonNull(C, state, Dst, DstVal);
+ if (!state)
+ return;
+
+ // Check that the source is non-null.
+ const Expr *srcExpr = CE->getArg(1);
+ SVal srcVal = state->getSVal(srcExpr, LCtx);
+ state = checkNonNull(C, state, srcExpr, srcVal);
+ if (!state)
+ return;
+
+ // Get the string length of the source.
+ SVal strLength = getCStringLength(C, state, srcExpr, srcVal);
+
+ // If the source isn't a valid C string, give up.
+ if (strLength.isUndef())
+ return;
+
+ SValBuilder &svalBuilder = C.getSValBuilder();
+ QualType cmpTy = svalBuilder.getConditionType();
+ QualType sizeTy = svalBuilder.getContext().getSizeType();
+
+ // These two values allow checking two kinds of errors:
+ // - actual overflows caused by a source that doesn't fit in the destination
+ // - potential overflows caused by a bound that could exceed the destination
+ SVal amountCopied = UnknownVal();
+ SVal maxLastElementIndex = UnknownVal();
+ const char *boundWarning = nullptr;
+
+ // If the function is strncpy, strncat, etc... it is bounded.
+ if (isBounded) {
+ // Get the max number of characters to copy.
+ const Expr *lenExpr = CE->getArg(2);
+ SVal lenVal = state->getSVal(lenExpr, LCtx);
+
+ // Protect against misdeclared strncpy().
+ lenVal = svalBuilder.evalCast(lenVal, sizeTy, lenExpr->getType());
+
+ Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>();
+ Optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>();
+
+ // If we know both values, we might be able to figure out how much
+ // we're copying.
+ if (strLengthNL && lenValNL) {
+ ProgramStateRef stateSourceTooLong, stateSourceNotTooLong;
+
+ // Check if the max number to copy is less than the length of the src.
+ // If the bound is equal to the source length, strncpy won't null-
+ // terminate the result!
+ std::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume(
+ svalBuilder.evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy)
+ .castAs<DefinedOrUnknownSVal>());
+
+ if (stateSourceTooLong && !stateSourceNotTooLong) {
+ // Max number to copy is less than the length of the src, so the actual
+ // strLength copied is the max number arg.
+ state = stateSourceTooLong;
+ amountCopied = lenVal;
+
+ } else if (!stateSourceTooLong && stateSourceNotTooLong) {
+ // The source buffer entirely fits in the bound.
+ state = stateSourceNotTooLong;
+ amountCopied = strLength;
+ }
+ }
+
+ // We still want to know if the bound is known to be too large.
+ if (lenValNL) {
+ if (isAppending) {
+ // For strncat, the check is strlen(dst) + lenVal < sizeof(dst)
+
+ // Get the string length of the destination. If the destination is
+ // memory that can't have a string length, we shouldn't be copying
+ // into it anyway.
+ SVal dstStrLength = getCStringLength(C, state, Dst, DstVal);
+ if (dstStrLength.isUndef())
+ return;
+
+ if (Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>()) {
+ maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Add,
+ *lenValNL,
+ *dstStrLengthNL,
+ sizeTy);
+ boundWarning = "Size argument is greater than the free space in the "
+ "destination buffer";
+ }
+
+ } else {
+ // For strncpy, this is just checking that lenVal <= sizeof(dst)
+ // (Yes, strncpy and strncat differ in how they treat termination.
+ // strncat ALWAYS terminates, but strncpy doesn't.)
+
+ // We need a special case for when the copy size is zero, in which
+ // case strncpy will do no work at all. Our bounds check uses n-1
+ // as the last element accessed, so n == 0 is problematic.
+ ProgramStateRef StateZeroSize, StateNonZeroSize;
+ std::tie(StateZeroSize, StateNonZeroSize) =
+ assumeZero(C, state, *lenValNL, sizeTy);
+
+ // If the size is known to be zero, we're done.
+ if (StateZeroSize && !StateNonZeroSize) {
+ StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, DstVal);
+ C.addTransition(StateZeroSize);
+ return;
+ }
+
+ // Otherwise, go ahead and figure out the last element we'll touch.
+ // We don't record the non-zero assumption here because we can't
+ // be sure. We won't warn on a possible zero.
+ NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
+ maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL,
+ one, sizeTy);
+ boundWarning = "Size argument is greater than the length of the "
+ "destination buffer";
+ }
+ }
+
+ // If we couldn't pin down the copy length, at least bound it.
+ // FIXME: We should actually run this code path for append as well, but
+ // right now it creates problems with constraints (since we can end up
+ // trying to pass constraints from symbol to symbol).
+ if (amountCopied.isUnknown() && !isAppending) {
+ // Try to get a "hypothetical" string length symbol, which we can later
+ // set as a real value if that turns out to be the case.
+ amountCopied = getCStringLength(C, state, lenExpr, srcVal, true);
+ assert(!amountCopied.isUndef());
+
+ if (Optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>()) {
+ if (lenValNL) {
+ // amountCopied <= lenVal
+ SVal copiedLessThanBound = svalBuilder.evalBinOpNN(state, BO_LE,
+ *amountCopiedNL,
+ *lenValNL,
+ cmpTy);
+ state = state->assume(
+ copiedLessThanBound.castAs<DefinedOrUnknownSVal>(), true);
+ if (!state)
+ return;
+ }
+
+ if (strLengthNL) {
+ // amountCopied <= strlen(source)
+ SVal copiedLessThanSrc = svalBuilder.evalBinOpNN(state, BO_LE,
+ *amountCopiedNL,
+ *strLengthNL,
+ cmpTy);
+ state = state->assume(
+ copiedLessThanSrc.castAs<DefinedOrUnknownSVal>(), true);
+ if (!state)
+ return;
+ }
+ }
+ }
+
+ } else {
+ // The function isn't bounded. The amount copied should match the length
+ // of the source buffer.
+ amountCopied = strLength;
+ }
+
+ assert(state);
+
+ // This represents the number of characters copied into the destination
+ // buffer. (It may not actually be the strlen if the destination buffer
+ // is not terminated.)
+ SVal finalStrLength = UnknownVal();
+
+ // If this is an appending function (strcat, strncat...) then set the
+ // string length to strlen(src) + strlen(dst) since the buffer will
+ // ultimately contain both.
+ if (isAppending) {
+ // Get the string length of the destination. If the destination is memory
+ // that can't have a string length, we shouldn't be copying into it anyway.
+ SVal dstStrLength = getCStringLength(C, state, Dst, DstVal);
+ if (dstStrLength.isUndef())
+ return;
+
+ Optional<NonLoc> srcStrLengthNL = amountCopied.getAs<NonLoc>();
+ Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>();
+
+ // If we know both string lengths, we might know the final string length.
+ if (srcStrLengthNL && dstStrLengthNL) {
+ // Make sure the two lengths together don't overflow a size_t.
+ state = checkAdditionOverflow(C, state, *srcStrLengthNL, *dstStrLengthNL);
+ if (!state)
+ return;
+
+ finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *srcStrLengthNL,
+ *dstStrLengthNL, sizeTy);
+ }
+
+ // If we couldn't get a single value for the final string length,
+ // we can at least bound it by the individual lengths.
+ if (finalStrLength.isUnknown()) {
+ // Try to get a "hypothetical" string length symbol, which we can later
+ // set as a real value if that turns out to be the case.
+ finalStrLength = getCStringLength(C, state, CE, DstVal, true);
+ assert(!finalStrLength.isUndef());
+
+ if (Optional<NonLoc> finalStrLengthNL = finalStrLength.getAs<NonLoc>()) {
+ if (srcStrLengthNL) {
+ // finalStrLength >= srcStrLength
+ SVal sourceInResult = svalBuilder.evalBinOpNN(state, BO_GE,
+ *finalStrLengthNL,
+ *srcStrLengthNL,
+ cmpTy);
+ state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(),
+ true);
+ if (!state)
+ return;
+ }
+
+ if (dstStrLengthNL) {
+ // finalStrLength >= dstStrLength
+ SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE,
+ *finalStrLengthNL,
+ *dstStrLengthNL,
+ cmpTy);
+ state =
+ state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true);
+ if (!state)
+ return;
+ }
+ }
+ }
+
+ } else {
+ // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and
+ // the final string length will match the input string length.
+ finalStrLength = amountCopied;
+ }
+
+ // The final result of the function will either be a pointer past the last
+ // copied element, or a pointer to the start of the destination buffer.
+ SVal Result = (returnEnd ? UnknownVal() : DstVal);
+
+ assert(state);
+
+ // If the destination is a MemRegion, try to check for a buffer overflow and
+ // record the new string length.
+ if (Optional<loc::MemRegionVal> dstRegVal =
+ DstVal.getAs<loc::MemRegionVal>()) {
+ QualType ptrTy = Dst->getType();
+
+ // If we have an exact value on a bounded copy, use that to check for
+ // overflows, rather than our estimate about how much is actually copied.
+ if (boundWarning) {
+ if (Optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) {
+ SVal maxLastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
+ *maxLastNL, ptrTy);
+ state = CheckLocation(C, state, CE->getArg(2), maxLastElement,
+ boundWarning);
+ if (!state)
+ return;
+ }
+ }
+
+ // Then, if the final length is known...
+ if (Optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) {
+ SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
+ *knownStrLength, ptrTy);
+
+ // ...and we haven't checked the bound, we'll check the actual copy.
+ if (!boundWarning) {
+ const char * const warningMsg =
+ "String copy function overflows destination buffer";
+ state = CheckLocation(C, state, Dst, lastElement, warningMsg);
+ if (!state)
+ return;
+ }
+
+ // If this is a stpcpy-style copy, the last element is the return value.
+ if (returnEnd)
+ Result = lastElement;
+ }
+
+ // Invalidate the destination (regular invalidation without pointer-escaping
+ // the address of the top-level region). This must happen before we set the
+ // C string length because invalidation will clear the length.
+ // FIXME: Even if we can't perfectly model the copy, we should see if we
+ // can use LazyCompoundVals to copy the source values into the destination.
+ // This would probably remove any existing bindings past the end of the
+ // string, but that's still an improvement over blank invalidation.
+ state = InvalidateBuffer(C, state, Dst, *dstRegVal,
+ /*IsSourceBuffer*/false);
+
+ // Invalidate the source (const-invalidation without const-pointer-escaping
+ // the address of the top-level region).
+ state = InvalidateBuffer(C, state, srcExpr, srcVal, /*IsSourceBuffer*/true);
+
+ // Set the C string length of the destination, if we know it.
+ if (isBounded && !isAppending) {
+ // strncpy is annoying in that it doesn't guarantee to null-terminate
+ // the result string. If the original string didn't fit entirely inside
+ // the bound (including the null-terminator), we don't know how long the
+ // result is.
+ if (amountCopied != strLength)
+ finalStrLength = UnknownVal();
+ }
+ state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength);
+ }
+
+ assert(state);
+
+ // If this is a stpcpy-style copy, but we were unable to check for a buffer
+ // overflow, we still need a result. Conjure a return value.
+ if (returnEnd && Result.isUnknown()) {
+ Result = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
+ }
+
+ // Set the return value.
+ state = state->BindExpr(CE, LCtx, Result);
+ C.addTransition(state);
+}
+
+void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const {
+ if (CE->getNumArgs() < 2)
+ return;
+
+ //int strcmp(const char *s1, const char *s2);
+ evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ false);
+}
+
+void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const {
+ if (CE->getNumArgs() < 3)
+ return;
+
+ //int strncmp(const char *s1, const char *s2, size_t n);
+ evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ false);
+}
+
+void CStringChecker::evalStrcasecmp(CheckerContext &C,
+ const CallExpr *CE) const {
+ if (CE->getNumArgs() < 2)
+ return;
+
+ //int strcasecmp(const char *s1, const char *s2);
+ evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ true);
+}
+
+void CStringChecker::evalStrncasecmp(CheckerContext &C,
+ const CallExpr *CE) const {
+ if (CE->getNumArgs() < 3)
+ return;
+
+ //int strncasecmp(const char *s1, const char *s2, size_t n);
+ evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ true);
+}
+
+void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE,
+ bool isBounded, bool ignoreCase) const {
+ CurrentFunctionDescription = "string comparison function";
+ ProgramStateRef state = C.getState();
+ const LocationContext *LCtx = C.getLocationContext();
+
+ // Check that the first string is non-null
+ const Expr *s1 = CE->getArg(0);
+ SVal s1Val = state->getSVal(s1, LCtx);
+ state = checkNonNull(C, state, s1, s1Val);
+ if (!state)
+ return;
+
+ // Check that the second string is non-null.
+ const Expr *s2 = CE->getArg(1);
+ SVal s2Val = state->getSVal(s2, LCtx);
+ state = checkNonNull(C, state, s2, s2Val);
+ if (!state)
+ return;
+
+ // Get the string length of the first string or give up.
+ SVal s1Length = getCStringLength(C, state, s1, s1Val);
+ if (s1Length.isUndef())
+ return;
+
+ // Get the string length of the second string or give up.
+ SVal s2Length = getCStringLength(C, state, s2, s2Val);
+ if (s2Length.isUndef())
+ return;
+
+ // If we know the two buffers are the same, we know the result is 0.
+ // First, get the two buffers' addresses. Another checker will have already
+ // made sure they're not undefined.
+ DefinedOrUnknownSVal LV = s1Val.castAs<DefinedOrUnknownSVal>();
+ DefinedOrUnknownSVal RV = s2Val.castAs<DefinedOrUnknownSVal>();
+
+ // See if they are the same.
+ SValBuilder &svalBuilder = C.getSValBuilder();
+ DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
+ ProgramStateRef StSameBuf, StNotSameBuf;
+ std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
+
+ // If the two arguments might be the same buffer, we know the result is 0,
+ // and we only need to check one size.
+ if (StSameBuf) {
+ StSameBuf = StSameBuf->BindExpr(CE, LCtx,
+ svalBuilder.makeZeroVal(CE->getType()));
+ C.addTransition(StSameBuf);
+
+ // If the two arguments are GUARANTEED to be the same, we're done!
+ if (!StNotSameBuf)
+ return;
+ }
+
+ assert(StNotSameBuf);
+ state = StNotSameBuf;
+
+ // At this point we can go about comparing the two buffers.
+ // For now, we only do this if they're both known string literals.
+
+ // Attempt to extract string literals from both expressions.
+ const StringLiteral *s1StrLiteral = getCStringLiteral(C, state, s1, s1Val);
+ const StringLiteral *s2StrLiteral = getCStringLiteral(C, state, s2, s2Val);
+ bool canComputeResult = false;
+
+ if (s1StrLiteral && s2StrLiteral) {
+ StringRef s1StrRef = s1StrLiteral->getString();
+ StringRef s2StrRef = s2StrLiteral->getString();
+
+ if (isBounded) {
+ // Get the max number of characters to compare.
+ const Expr *lenExpr = CE->getArg(2);
+ SVal lenVal = state->getSVal(lenExpr, LCtx);
+
+ // If the length is known, we can get the right substrings.
+ if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) {
+ // Create substrings of each to compare the prefix.
+ s1StrRef = s1StrRef.substr(0, (size_t)len->getZExtValue());
+ s2StrRef = s2StrRef.substr(0, (size_t)len->getZExtValue());
+ canComputeResult = true;
+ }
+ } else {
+ // This is a normal, unbounded strcmp.
+ canComputeResult = true;
+ }
+
+ if (canComputeResult) {
+ // Real strcmp stops at null characters.
+ size_t s1Term = s1StrRef.find('\0');
+ if (s1Term != StringRef::npos)
+ s1StrRef = s1StrRef.substr(0, s1Term);
+
+ size_t s2Term = s2StrRef.find('\0');
+ if (s2Term != StringRef::npos)
+ s2StrRef = s2StrRef.substr(0, s2Term);
+
+ // Use StringRef's comparison methods to compute the actual result.
+ int result;
+
+ if (ignoreCase) {
+ // Compare string 1 to string 2 the same way strcasecmp() does.
+ result = s1StrRef.compare_lower(s2StrRef);
+ } else {
+ // Compare string 1 to string 2 the same way strcmp() does.
+ result = s1StrRef.compare(s2StrRef);
+ }
+
+ // Build the SVal of the comparison and bind the return value.
+ SVal resultVal = svalBuilder.makeIntVal(result, CE->getType());
+ state = state->BindExpr(CE, LCtx, resultVal);
+ }
+ }
+
+ if (!canComputeResult) {
+ // Conjure a symbolic value. It's the best we can do.
+ SVal resultVal = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx,
+ C.blockCount());
+ state = state->BindExpr(CE, LCtx, resultVal);
+ }
+
+ // Record this as a possible path.
+ C.addTransition(state);
+}
+
+void CStringChecker::evalStrsep(CheckerContext &C, const CallExpr *CE) const {
+ //char *strsep(char **stringp, const char *delim);
+ if (CE->getNumArgs() < 2)
+ return;
+
+ // Sanity: does the search string parameter match the return type?
+ const Expr *SearchStrPtr = CE->getArg(0);
+ QualType CharPtrTy = SearchStrPtr->getType()->getPointeeType();
+ if (CharPtrTy.isNull() ||
+ CE->getType().getUnqualifiedType() != CharPtrTy.getUnqualifiedType())
+ return;
+
+ CurrentFunctionDescription = "strsep()";
+ ProgramStateRef State = C.getState();
+ const LocationContext *LCtx = C.getLocationContext();
+
+ // Check that the search string pointer is non-null (though it may point to
+ // a null string).
+ SVal SearchStrVal = State->getSVal(SearchStrPtr, LCtx);
+ State = checkNonNull(C, State, SearchStrPtr, SearchStrVal);
+ if (!State)
+ return;
+
+ // Check that the delimiter string is non-null.
+ const Expr *DelimStr = CE->getArg(1);
+ SVal DelimStrVal = State->getSVal(DelimStr, LCtx);
+ State = checkNonNull(C, State, DelimStr, DelimStrVal);
+ if (!State)
+ return;
+
+ SValBuilder &SVB = C.getSValBuilder();
+ SVal Result;
+ if (Optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) {
+ // Get the current value of the search string pointer, as a char*.
+ Result = State->getSVal(*SearchStrLoc, CharPtrTy);
+
+ // Invalidate the search string, representing the change of one delimiter
+ // character to NUL.
+ State = InvalidateBuffer(C, State, SearchStrPtr, Result,
+ /*IsSourceBuffer*/false);
+
+ // Overwrite the search string pointer. The new value is either an address
+ // further along in the same string, or NULL if there are no more tokens.
+ State = State->bindLoc(*SearchStrLoc,
+ SVB.conjureSymbolVal(getTag(), CE, LCtx, CharPtrTy,
+ C.blockCount()));
+ } else {
+ assert(SearchStrVal.isUnknown());
+ // Conjure a symbolic value. It's the best we can do.
+ Result = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
+ }
+
+ // Set the return value, and finish.
+ State = State->BindExpr(CE, LCtx, Result);
+ C.addTransition(State);
+}
+
+
+//===----------------------------------------------------------------------===//
+// The driver method, and other Checker callbacks.
+//===----------------------------------------------------------------------===//
+
+bool CStringChecker::evalCall(const CallExpr *CE, CheckerContext &C) const {
+ const FunctionDecl *FDecl = C.getCalleeDecl(CE);
+
+ if (!FDecl)
+ return false;
+
+ // FIXME: Poorly-factored string switches are slow.
+ FnCheck evalFunction = nullptr;
+ if (C.isCLibraryFunction(FDecl, "memcpy"))
+ evalFunction = &CStringChecker::evalMemcpy;
+ else if (C.isCLibraryFunction(FDecl, "mempcpy"))
+ evalFunction = &CStringChecker::evalMempcpy;
+ else if (C.isCLibraryFunction(FDecl, "memcmp"))
+ evalFunction = &CStringChecker::evalMemcmp;
+ else if (C.isCLibraryFunction(FDecl, "memmove"))
+ evalFunction = &CStringChecker::evalMemmove;
+ else if (C.isCLibraryFunction(FDecl, "strcpy"))
+ evalFunction = &CStringChecker::evalStrcpy;
+ else if (C.isCLibraryFunction(FDecl, "strncpy"))
+ evalFunction = &CStringChecker::evalStrncpy;
+ else if (C.isCLibraryFunction(FDecl, "stpcpy"))
+ evalFunction = &CStringChecker::evalStpcpy;
+ else if (C.isCLibraryFunction(FDecl, "strcat"))
+ evalFunction = &CStringChecker::evalStrcat;
+ else if (C.isCLibraryFunction(FDecl, "strncat"))
+ evalFunction = &CStringChecker::evalStrncat;
+ else if (C.isCLibraryFunction(FDecl, "strlen"))
+ evalFunction = &CStringChecker::evalstrLength;
+ else if (C.isCLibraryFunction(FDecl, "strnlen"))
+ evalFunction = &CStringChecker::evalstrnLength;
+ else if (C.isCLibraryFunction(FDecl, "strcmp"))
+ evalFunction = &CStringChecker::evalStrcmp;
+ else if (C.isCLibraryFunction(FDecl, "strncmp"))
+ evalFunction = &CStringChecker::evalStrncmp;
+ else if (C.isCLibraryFunction(FDecl, "strcasecmp"))
+ evalFunction = &CStringChecker::evalStrcasecmp;
+ else if (C.isCLibraryFunction(FDecl, "strncasecmp"))
+ evalFunction = &CStringChecker::evalStrncasecmp;
+ else if (C.isCLibraryFunction(FDecl, "strsep"))
+ evalFunction = &CStringChecker::evalStrsep;
+ else if (C.isCLibraryFunction(FDecl, "bcopy"))
+ evalFunction = &CStringChecker::evalBcopy;
+ else if (C.isCLibraryFunction(FDecl, "bcmp"))
+ evalFunction = &CStringChecker::evalMemcmp;
+
+ // If the callee isn't a string function, let another checker handle it.
+ if (!evalFunction)
+ return false;
+
+ // Check and evaluate the call.
+ (this->*evalFunction)(C, CE);
+
+ // If the evaluate call resulted in no change, chain to the next eval call
+ // handler.
+ // Note, the custom CString evaluation calls assume that basic safety
+ // properties are held. However, if the user chooses to turn off some of these
+ // checks, we ignore the issues and leave the call evaluation to a generic
+ // handler.
+ if (!C.isDifferent())
+ return false;
+
+ return true;
+}
+
+void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const {
+ // Record string length for char a[] = "abc";
+ ProgramStateRef state = C.getState();
+
+ for (const auto *I : DS->decls()) {
+ const VarDecl *D = dyn_cast<VarDecl>(I);
+ if (!D)
+ continue;
+
+ // FIXME: Handle array fields of structs.
+ if (!D->getType()->isArrayType())
+ continue;
+
+ const Expr *Init = D->getInit();
+ if (!Init)
+ continue;
+ if (!isa<StringLiteral>(Init))
+ continue;
+
+ Loc VarLoc = state->getLValue(D, C.getLocationContext());
+ const MemRegion *MR = VarLoc.getAsRegion();
+ if (!MR)
+ continue;
+
+ SVal StrVal = state->getSVal(Init, C.getLocationContext());
+ assert(StrVal.isValid() && "Initializer string is unknown or undefined");
+ DefinedOrUnknownSVal strLength =
+ getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>();
+
+ state = state->set<CStringLength>(MR, strLength);
+ }
+
+ C.addTransition(state);
+}
+
+bool CStringChecker::wantsRegionChangeUpdate(ProgramStateRef state) const {
+ CStringLengthTy Entries = state->get<CStringLength>();
+ return !Entries.isEmpty();
+}
+
+ProgramStateRef
+CStringChecker::checkRegionChanges(ProgramStateRef state,
+ const InvalidatedSymbols *,
+ ArrayRef<const MemRegion *> ExplicitRegions,
+ ArrayRef<const MemRegion *> Regions,
+ const CallEvent *Call) const {
+ CStringLengthTy Entries = state->get<CStringLength>();
+ if (Entries.isEmpty())
+ return state;
+
+ llvm::SmallPtrSet<const MemRegion *, 8> Invalidated;
+ llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions;
+
+ // First build sets for the changed regions and their super-regions.
+ for (ArrayRef<const MemRegion *>::iterator
+ I = Regions.begin(), E = Regions.end(); I != E; ++I) {
+ const MemRegion *MR = *I;
+ Invalidated.insert(MR);
+
+ SuperRegions.insert(MR);
+ while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) {
+ MR = SR->getSuperRegion();
+ SuperRegions.insert(MR);
+ }
+ }
+
+ CStringLengthTy::Factory &F = state->get_context<CStringLength>();
+
+ // Then loop over the entries in the current state.
+ for (CStringLengthTy::iterator I = Entries.begin(),
+ E = Entries.end(); I != E; ++I) {
+ const MemRegion *MR = I.getKey();
+
+ // Is this entry for a super-region of a changed region?
+ if (SuperRegions.count(MR)) {
+ Entries = F.remove(Entries, MR);
+ continue;
+ }
+
+ // Is this entry for a sub-region of a changed region?
+ const MemRegion *Super = MR;
+ while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) {
+ Super = SR->getSuperRegion();
+ if (Invalidated.count(Super)) {
+ Entries = F.remove(Entries, MR);
+ break;
+ }
+ }
+ }
+
+ return state->set<CStringLength>(Entries);
+}
+
+void CStringChecker::checkLiveSymbols(ProgramStateRef state,
+ SymbolReaper &SR) const {
+ // Mark all symbols in our string length map as valid.
+ CStringLengthTy Entries = state->get<CStringLength>();
+
+ for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end();
+ I != E; ++I) {
+ SVal Len = I.getData();
+
+ for (SymExpr::symbol_iterator si = Len.symbol_begin(),
+ se = Len.symbol_end(); si != se; ++si)
+ SR.markInUse(*si);
+ }
+}
+
+void CStringChecker::checkDeadSymbols(SymbolReaper &SR,
+ CheckerContext &C) const {
+ if (!SR.hasDeadSymbols())
+ return;
+
+ ProgramStateRef state = C.getState();
+ CStringLengthTy Entries = state->get<CStringLength>();
+ if (Entries.isEmpty())
+ return;
+
+ CStringLengthTy::Factory &F = state->get_context<CStringLength>();
+ for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end();
+ I != E; ++I) {
+ SVal Len = I.getData();
+ if (SymbolRef Sym = Len.getAsSymbol()) {
+ if (SR.isDead(Sym))
+ Entries = F.remove(Entries, I.getKey());
+ }
+ }
+
+ state = state->set<CStringLength>(Entries);
+ C.addTransition(state);
+}
+
+#define REGISTER_CHECKER(name) \
+ void ento::register##name(CheckerManager &mgr) { \
+ CStringChecker *checker = mgr.registerChecker<CStringChecker>(); \
+ checker->Filter.Check##name = true; \
+ checker->Filter.CheckName##name = mgr.getCurrentCheckName(); \
+ }
+
+REGISTER_CHECKER(CStringNullArg)
+REGISTER_CHECKER(CStringOutOfBounds)
+REGISTER_CHECKER(CStringBufferOverlap)
+REGISTER_CHECKER(CStringNotNullTerm)
+
+void ento::registerCStringCheckerBasic(CheckerManager &Mgr) {
+ registerCStringNullArg(Mgr);
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CStringSyntaxChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CStringSyntaxChecker.cpp
new file mode 100644
index 0000000..abfb971d
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CStringSyntaxChecker.cpp
@@ -0,0 +1,192 @@
+//== CStringSyntaxChecker.cpp - CoreFoundation containers API *- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// An AST checker that looks for common pitfalls when using C string APIs.
+// - Identifies erroneous patterns in the last argument to strncat - the number
+// of bytes to copy.
+//
+//===----------------------------------------------------------------------===//
+#include "ClangSACheckers.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/OperationKinds.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Analysis/AnalysisContext.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Basic/TypeTraits.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+class WalkAST: public StmtVisitor<WalkAST> {
+ const CheckerBase *Checker;
+ BugReporter &BR;
+ AnalysisDeclContext* AC;
+
+ /// Check if two expressions refer to the same declaration.
+ inline bool sameDecl(const Expr *A1, const Expr *A2) {
+ if (const DeclRefExpr *D1 = dyn_cast<DeclRefExpr>(A1->IgnoreParenCasts()))
+ if (const DeclRefExpr *D2 = dyn_cast<DeclRefExpr>(A2->IgnoreParenCasts()))
+ return D1->getDecl() == D2->getDecl();
+ return false;
+ }
+
+ /// Check if the expression E is a sizeof(WithArg).
+ inline bool isSizeof(const Expr *E, const Expr *WithArg) {
+ if (const UnaryExprOrTypeTraitExpr *UE =
+ dyn_cast<UnaryExprOrTypeTraitExpr>(E))
+ if (UE->getKind() == UETT_SizeOf)
+ return sameDecl(UE->getArgumentExpr(), WithArg);
+ return false;
+ }
+
+ /// Check if the expression E is a strlen(WithArg).
+ inline bool isStrlen(const Expr *E, const Expr *WithArg) {
+ if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
+ const FunctionDecl *FD = CE->getDirectCallee();
+ if (!FD)
+ return false;
+ return (CheckerContext::isCLibraryFunction(FD, "strlen") &&
+ sameDecl(CE->getArg(0), WithArg));
+ }
+ return false;
+ }
+
+ /// Check if the expression is an integer literal with value 1.
+ inline bool isOne(const Expr *E) {
+ if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
+ return (IL->getValue().isIntN(1));
+ return false;
+ }
+
+ inline StringRef getPrintableName(const Expr *E) {
+ if (const DeclRefExpr *D = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
+ return D->getDecl()->getName();
+ return StringRef();
+ }
+
+ /// Identify erroneous patterns in the last argument to strncat - the number
+ /// of bytes to copy.
+ bool containsBadStrncatPattern(const CallExpr *CE);
+
+public:
+ WalkAST(const CheckerBase *checker, BugReporter &br, AnalysisDeclContext *ac)
+ : Checker(checker), BR(br), AC(ac) {}
+
+ // Statement visitor methods.
+ void VisitChildren(Stmt *S);
+ void VisitStmt(Stmt *S) {
+ VisitChildren(S);
+ }
+ void VisitCallExpr(CallExpr *CE);
+};
+} // end anonymous namespace
+
+// The correct size argument should look like following:
+// strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
+// We look for the following anti-patterns:
+// - strncat(dst, src, sizeof(dst) - strlen(dst));
+// - strncat(dst, src, sizeof(dst) - 1);
+// - strncat(dst, src, sizeof(dst));
+bool WalkAST::containsBadStrncatPattern(const CallExpr *CE) {
+ if (CE->getNumArgs() != 3)
+ return false;
+ const Expr *DstArg = CE->getArg(0);
+ const Expr *SrcArg = CE->getArg(1);
+ const Expr *LenArg = CE->getArg(2);
+
+ // Identify wrong size expressions, which are commonly used instead.
+ if (const BinaryOperator *BE =
+ dyn_cast<BinaryOperator>(LenArg->IgnoreParenCasts())) {
+ // - sizeof(dst) - strlen(dst)
+ if (BE->getOpcode() == BO_Sub) {
+ const Expr *L = BE->getLHS();
+ const Expr *R = BE->getRHS();
+ if (isSizeof(L, DstArg) && isStrlen(R, DstArg))
+ return true;
+
+ // - sizeof(dst) - 1
+ if (isSizeof(L, DstArg) && isOne(R->IgnoreParenCasts()))
+ return true;
+ }
+ }
+ // - sizeof(dst)
+ if (isSizeof(LenArg, DstArg))
+ return true;
+
+ // - sizeof(src)
+ if (isSizeof(LenArg, SrcArg))
+ return true;
+ return false;
+}
+
+void WalkAST::VisitCallExpr(CallExpr *CE) {
+ const FunctionDecl *FD = CE->getDirectCallee();
+ if (!FD)
+ return;
+
+ if (CheckerContext::isCLibraryFunction(FD, "strncat")) {
+ if (containsBadStrncatPattern(CE)) {
+ const Expr *DstArg = CE->getArg(0);
+ const Expr *LenArg = CE->getArg(2);
+ PathDiagnosticLocation Loc =
+ PathDiagnosticLocation::createBegin(LenArg, BR.getSourceManager(), AC);
+
+ StringRef DstName = getPrintableName(DstArg);
+
+ SmallString<256> S;
+ llvm::raw_svector_ostream os(S);
+ os << "Potential buffer overflow. ";
+ if (!DstName.empty()) {
+ os << "Replace with 'sizeof(" << DstName << ") "
+ "- strlen(" << DstName <<") - 1'";
+ os << " or u";
+ } else
+ os << "U";
+ os << "se a safer 'strlcat' API";
+
+ BR.EmitBasicReport(FD, Checker, "Anti-pattern in the argument",
+ "C String API", os.str(), Loc,
+ LenArg->getSourceRange());
+ }
+ }
+
+ // Recurse and check children.
+ VisitChildren(CE);
+}
+
+void WalkAST::VisitChildren(Stmt *S) {
+ for (Stmt::child_iterator I = S->child_begin(), E = S->child_end(); I != E;
+ ++I)
+ if (Stmt *child = *I)
+ Visit(child);
+}
+
+namespace {
+class CStringSyntaxChecker: public Checker<check::ASTCodeBody> {
+public:
+
+ void checkASTCodeBody(const Decl *D, AnalysisManager& Mgr,
+ BugReporter &BR) const {
+ WalkAST walker(this, BR, Mgr.getAnalysisDeclContext(D));
+ walker.Visit(D->getBody());
+ }
+};
+}
+
+void ento::registerCStringSyntaxChecker(CheckerManager &mgr) {
+ mgr.registerChecker<CStringSyntaxChecker>();
+}
+
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CallAndMessageChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CallAndMessageChecker.cpp
new file mode 100644
index 0000000..adb7a54
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CallAndMessageChecker.cpp
@@ -0,0 +1,598 @@
+//===--- CallAndMessageChecker.cpp ------------------------------*- C++ -*--==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This defines CallAndMessageChecker, a builtin checker that checks for various
+// errors of call and objc message expressions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/AST/ParentMap.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+
+struct ChecksFilter {
+ DefaultBool Check_CallAndMessageUnInitRefArg;
+ DefaultBool Check_CallAndMessageChecker;
+
+ CheckName CheckName_CallAndMessageUnInitRefArg;
+ CheckName CheckName_CallAndMessageChecker;
+};
+
+class CallAndMessageChecker
+ : public Checker< check::PreStmt<CallExpr>,
+ check::PreStmt<CXXDeleteExpr>,
+ check::PreObjCMessage,
+ check::PreCall > {
+ mutable std::unique_ptr<BugType> BT_call_null;
+ mutable std::unique_ptr<BugType> BT_call_undef;
+ mutable std::unique_ptr<BugType> BT_cxx_call_null;
+ mutable std::unique_ptr<BugType> BT_cxx_call_undef;
+ mutable std::unique_ptr<BugType> BT_call_arg;
+ mutable std::unique_ptr<BugType> BT_cxx_delete_undef;
+ mutable std::unique_ptr<BugType> BT_msg_undef;
+ mutable std::unique_ptr<BugType> BT_objc_prop_undef;
+ mutable std::unique_ptr<BugType> BT_objc_subscript_undef;
+ mutable std::unique_ptr<BugType> BT_msg_arg;
+ mutable std::unique_ptr<BugType> BT_msg_ret;
+ mutable std::unique_ptr<BugType> BT_call_few_args;
+
+public:
+ ChecksFilter Filter;
+
+ void checkPreStmt(const CallExpr *CE, CheckerContext &C) const;
+ void checkPreStmt(const CXXDeleteExpr *DE, CheckerContext &C) const;
+ void checkPreObjCMessage(const ObjCMethodCall &msg, CheckerContext &C) const;
+ void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
+
+private:
+ bool PreVisitProcessArg(CheckerContext &C, SVal V, SourceRange ArgRange,
+ const Expr *ArgEx, bool IsFirstArgument,
+ bool CheckUninitFields, const CallEvent &Call,
+ std::unique_ptr<BugType> &BT,
+ const ParmVarDecl *ParamDecl) const;
+
+ static void emitBadCall(BugType *BT, CheckerContext &C, const Expr *BadE);
+ void emitNilReceiverBug(CheckerContext &C, const ObjCMethodCall &msg,
+ ExplodedNode *N) const;
+
+ void HandleNilReceiver(CheckerContext &C,
+ ProgramStateRef state,
+ const ObjCMethodCall &msg) const;
+
+ void LazyInit_BT(const char *desc, std::unique_ptr<BugType> &BT) const {
+ if (!BT)
+ BT.reset(new BuiltinBug(this, desc));
+ }
+ bool uninitRefOrPointer(CheckerContext &C, const SVal &V,
+ const SourceRange &ArgRange,
+ const Expr *ArgEx, std::unique_ptr<BugType> &BT,
+ const ParmVarDecl *ParamDecl, const char *BD) const;
+};
+} // end anonymous namespace
+
+void CallAndMessageChecker::emitBadCall(BugType *BT, CheckerContext &C,
+ const Expr *BadE) {
+ ExplodedNode *N = C.generateSink();
+ if (!N)
+ return;
+
+ BugReport *R = new BugReport(*BT, BT->getName(), N);
+ if (BadE) {
+ R->addRange(BadE->getSourceRange());
+ if (BadE->isGLValue())
+ BadE = bugreporter::getDerefExpr(BadE);
+ bugreporter::trackNullOrUndefValue(N, BadE, *R);
+ }
+ C.emitReport(R);
+}
+
+static StringRef describeUninitializedArgumentInCall(const CallEvent &Call,
+ bool IsFirstArgument) {
+ switch (Call.getKind()) {
+ case CE_ObjCMessage: {
+ const ObjCMethodCall &Msg = cast<ObjCMethodCall>(Call);
+ switch (Msg.getMessageKind()) {
+ case OCM_Message:
+ return "Argument in message expression is an uninitialized value";
+ case OCM_PropertyAccess:
+ assert(Msg.isSetter() && "Getters have no args");
+ return "Argument for property setter is an uninitialized value";
+ case OCM_Subscript:
+ if (Msg.isSetter() && IsFirstArgument)
+ return "Argument for subscript setter is an uninitialized value";
+ return "Subscript index is an uninitialized value";
+ }
+ llvm_unreachable("Unknown message kind.");
+ }
+ case CE_Block:
+ return "Block call argument is an uninitialized value";
+ default:
+ return "Function call argument is an uninitialized value";
+ }
+}
+
+bool CallAndMessageChecker::uninitRefOrPointer(CheckerContext &C,
+ const SVal &V,
+ const SourceRange &ArgRange,
+ const Expr *ArgEx,
+ std::unique_ptr<BugType> &BT,
+ const ParmVarDecl *ParamDecl,
+ const char *BD) const {
+ if (!Filter.Check_CallAndMessageUnInitRefArg)
+ return false;
+
+ // No parameter declaration available, i.e. variadic function argument.
+ if(!ParamDecl)
+ return false;
+
+ // If parameter is declared as pointer to const in function declaration,
+ // then check if corresponding argument in function call is
+ // pointing to undefined symbol value (uninitialized memory).
+ StringRef Message;
+
+ if (ParamDecl->getType()->isPointerType()) {
+ Message = "Function call argument is a pointer to uninitialized value";
+ } else if (ParamDecl->getType()->isReferenceType()) {
+ Message = "Function call argument is an uninitialized value";
+ } else
+ return false;
+
+ if(!ParamDecl->getType()->getPointeeType().isConstQualified())
+ return false;
+
+ if (const MemRegion *SValMemRegion = V.getAsRegion()) {
+ const ProgramStateRef State = C.getState();
+ const SVal PSV = State->getSVal(SValMemRegion);
+ if (PSV.isUndef()) {
+ if (ExplodedNode *N = C.generateSink()) {
+ LazyInit_BT(BD, BT);
+ BugReport *R = new BugReport(*BT, Message, N);
+ R->addRange(ArgRange);
+ if (ArgEx) {
+ bugreporter::trackNullOrUndefValue(N, ArgEx, *R);
+ }
+ C.emitReport(R);
+ }
+ return true;
+ }
+ }
+ return false;
+}
+
+bool CallAndMessageChecker::PreVisitProcessArg(CheckerContext &C,
+ SVal V,
+ SourceRange ArgRange,
+ const Expr *ArgEx,
+ bool IsFirstArgument,
+ bool CheckUninitFields,
+ const CallEvent &Call,
+ std::unique_ptr<BugType> &BT,
+ const ParmVarDecl *ParamDecl
+ ) const {
+ const char *BD = "Uninitialized argument value";
+
+ if (uninitRefOrPointer(C, V, ArgRange, ArgEx, BT, ParamDecl, BD))
+ return true;
+
+ if (V.isUndef()) {
+ if (ExplodedNode *N = C.generateSink()) {
+ LazyInit_BT(BD, BT);
+
+ // Generate a report for this bug.
+ StringRef Desc =
+ describeUninitializedArgumentInCall(Call, IsFirstArgument);
+ BugReport *R = new BugReport(*BT, Desc, N);
+ R->addRange(ArgRange);
+ if (ArgEx)
+ bugreporter::trackNullOrUndefValue(N, ArgEx, *R);
+ C.emitReport(R);
+ }
+ return true;
+ }
+
+ if (!CheckUninitFields)
+ return false;
+
+ if (Optional<nonloc::LazyCompoundVal> LV =
+ V.getAs<nonloc::LazyCompoundVal>()) {
+
+ class FindUninitializedField {
+ public:
+ SmallVector<const FieldDecl *, 10> FieldChain;
+ private:
+ StoreManager &StoreMgr;
+ MemRegionManager &MrMgr;
+ Store store;
+ public:
+ FindUninitializedField(StoreManager &storeMgr,
+ MemRegionManager &mrMgr, Store s)
+ : StoreMgr(storeMgr), MrMgr(mrMgr), store(s) {}
+
+ bool Find(const TypedValueRegion *R) {
+ QualType T = R->getValueType();
+ if (const RecordType *RT = T->getAsStructureType()) {
+ const RecordDecl *RD = RT->getDecl()->getDefinition();
+ assert(RD && "Referred record has no definition");
+ for (const auto *I : RD->fields()) {
+ const FieldRegion *FR = MrMgr.getFieldRegion(I, R);
+ FieldChain.push_back(I);
+ T = I->getType();
+ if (T->getAsStructureType()) {
+ if (Find(FR))
+ return true;
+ }
+ else {
+ const SVal &V = StoreMgr.getBinding(store, loc::MemRegionVal(FR));
+ if (V.isUndef())
+ return true;
+ }
+ FieldChain.pop_back();
+ }
+ }
+
+ return false;
+ }
+ };
+
+ const LazyCompoundValData *D = LV->getCVData();
+ FindUninitializedField F(C.getState()->getStateManager().getStoreManager(),
+ C.getSValBuilder().getRegionManager(),
+ D->getStore());
+
+ if (F.Find(D->getRegion())) {
+ if (ExplodedNode *N = C.generateSink()) {
+ LazyInit_BT(BD, BT);
+ SmallString<512> Str;
+ llvm::raw_svector_ostream os(Str);
+ os << "Passed-by-value struct argument contains uninitialized data";
+
+ if (F.FieldChain.size() == 1)
+ os << " (e.g., field: '" << *F.FieldChain[0] << "')";
+ else {
+ os << " (e.g., via the field chain: '";
+ bool first = true;
+ for (SmallVectorImpl<const FieldDecl *>::iterator
+ DI = F.FieldChain.begin(), DE = F.FieldChain.end(); DI!=DE;++DI){
+ if (first)
+ first = false;
+ else
+ os << '.';
+ os << **DI;
+ }
+ os << "')";
+ }
+
+ // Generate a report for this bug.
+ BugReport *R = new BugReport(*BT, os.str(), N);
+ R->addRange(ArgRange);
+
+ // FIXME: enhance track back for uninitialized value for arbitrary
+ // memregions
+ C.emitReport(R);
+ }
+ return true;
+ }
+ }
+
+ return false;
+}
+
+void CallAndMessageChecker::checkPreStmt(const CallExpr *CE,
+ CheckerContext &C) const{
+
+ const Expr *Callee = CE->getCallee()->IgnoreParens();
+ ProgramStateRef State = C.getState();
+ const LocationContext *LCtx = C.getLocationContext();
+ SVal L = State->getSVal(Callee, LCtx);
+
+ if (L.isUndef()) {
+ if (!BT_call_undef)
+ BT_call_undef.reset(new BuiltinBug(
+ this, "Called function pointer is an uninitalized pointer value"));
+ emitBadCall(BT_call_undef.get(), C, Callee);
+ return;
+ }
+
+ ProgramStateRef StNonNull, StNull;
+ std::tie(StNonNull, StNull) = State->assume(L.castAs<DefinedOrUnknownSVal>());
+
+ if (StNull && !StNonNull) {
+ if (!BT_call_null)
+ BT_call_null.reset(new BuiltinBug(
+ this, "Called function pointer is null (null dereference)"));
+ emitBadCall(BT_call_null.get(), C, Callee);
+ return;
+ }
+
+ C.addTransition(StNonNull);
+}
+
+void CallAndMessageChecker::checkPreStmt(const CXXDeleteExpr *DE,
+ CheckerContext &C) const {
+
+ SVal Arg = C.getSVal(DE->getArgument());
+ if (Arg.isUndef()) {
+ StringRef Desc;
+ ExplodedNode *N = C.generateSink();
+ if (!N)
+ return;
+ if (!BT_cxx_delete_undef)
+ BT_cxx_delete_undef.reset(
+ new BuiltinBug(this, "Uninitialized argument value"));
+ if (DE->isArrayFormAsWritten())
+ Desc = "Argument to 'delete[]' is uninitialized";
+ else
+ Desc = "Argument to 'delete' is uninitialized";
+ BugType *BT = BT_cxx_delete_undef.get();
+ BugReport *R = new BugReport(*BT, Desc, N);
+ bugreporter::trackNullOrUndefValue(N, DE, *R);
+ C.emitReport(R);
+ return;
+ }
+}
+
+
+void CallAndMessageChecker::checkPreCall(const CallEvent &Call,
+ CheckerContext &C) const {
+ ProgramStateRef State = C.getState();
+
+ // If this is a call to a C++ method, check if the callee is null or
+ // undefined.
+ if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) {
+ SVal V = CC->getCXXThisVal();
+ if (V.isUndef()) {
+ if (!BT_cxx_call_undef)
+ BT_cxx_call_undef.reset(
+ new BuiltinBug(this, "Called C++ object pointer is uninitialized"));
+ emitBadCall(BT_cxx_call_undef.get(), C, CC->getCXXThisExpr());
+ return;
+ }
+
+ ProgramStateRef StNonNull, StNull;
+ std::tie(StNonNull, StNull) =
+ State->assume(V.castAs<DefinedOrUnknownSVal>());
+
+ if (StNull && !StNonNull) {
+ if (!BT_cxx_call_null)
+ BT_cxx_call_null.reset(
+ new BuiltinBug(this, "Called C++ object pointer is null"));
+ emitBadCall(BT_cxx_call_null.get(), C, CC->getCXXThisExpr());
+ return;
+ }
+
+ State = StNonNull;
+ }
+
+ const Decl *D = Call.getDecl();
+ const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
+ if (FD) {
+ // If we have a declaration, we can make sure we pass enough parameters to
+ // the function.
+ unsigned Params = FD->getNumParams();
+ if (Call.getNumArgs() < Params) {
+ ExplodedNode *N = C.generateSink();
+ if (!N)
+ return;
+
+ LazyInit_BT("Function call with too few arguments", BT_call_few_args);
+
+ SmallString<512> Str;
+ llvm::raw_svector_ostream os(Str);
+ os << "Function taking " << Params << " argument"
+ << (Params == 1 ? "" : "s") << " is called with less ("
+ << Call.getNumArgs() << ")";
+
+ BugReport *R = new BugReport(*BT_call_few_args, os.str(), N);
+ C.emitReport(R);
+ }
+ }
+
+ // Don't check for uninitialized field values in arguments if the
+ // caller has a body that is available and we have the chance to inline it.
+ // This is a hack, but is a reasonable compromise betweens sometimes warning
+ // and sometimes not depending on if we decide to inline a function.
+ const bool checkUninitFields =
+ !(C.getAnalysisManager().shouldInlineCall() && (D && D->getBody()));
+
+ std::unique_ptr<BugType> *BT;
+ if (isa<ObjCMethodCall>(Call))
+ BT = &BT_msg_arg;
+ else
+ BT = &BT_call_arg;
+
+ for (unsigned i = 0, e = Call.getNumArgs(); i != e; ++i) {
+ const ParmVarDecl *ParamDecl = nullptr;
+ if(FD && i < FD->getNumParams())
+ ParamDecl = FD->getParamDecl(i);
+ if (PreVisitProcessArg(C, Call.getArgSVal(i), Call.getArgSourceRange(i),
+ Call.getArgExpr(i), /*IsFirstArgument=*/i == 0,
+ checkUninitFields, Call, *BT, ParamDecl))
+ return;
+ }
+
+ // If we make it here, record our assumptions about the callee.
+ C.addTransition(State);
+}
+
+void CallAndMessageChecker::checkPreObjCMessage(const ObjCMethodCall &msg,
+ CheckerContext &C) const {
+ SVal recVal = msg.getReceiverSVal();
+ if (recVal.isUndef()) {
+ if (ExplodedNode *N = C.generateSink()) {
+ BugType *BT = nullptr;
+ switch (msg.getMessageKind()) {
+ case OCM_Message:
+ if (!BT_msg_undef)
+ BT_msg_undef.reset(new BuiltinBug(this,
+ "Receiver in message expression "
+ "is an uninitialized value"));
+ BT = BT_msg_undef.get();
+ break;
+ case OCM_PropertyAccess:
+ if (!BT_objc_prop_undef)
+ BT_objc_prop_undef.reset(new BuiltinBug(
+ this, "Property access on an uninitialized object pointer"));
+ BT = BT_objc_prop_undef.get();
+ break;
+ case OCM_Subscript:
+ if (!BT_objc_subscript_undef)
+ BT_objc_subscript_undef.reset(new BuiltinBug(
+ this, "Subscript access on an uninitialized object pointer"));
+ BT = BT_objc_subscript_undef.get();
+ break;
+ }
+ assert(BT && "Unknown message kind.");
+
+ BugReport *R = new BugReport(*BT, BT->getName(), N);
+ const ObjCMessageExpr *ME = msg.getOriginExpr();
+ R->addRange(ME->getReceiverRange());
+
+ // FIXME: getTrackNullOrUndefValueVisitor can't handle "super" yet.
+ if (const Expr *ReceiverE = ME->getInstanceReceiver())
+ bugreporter::trackNullOrUndefValue(N, ReceiverE, *R);
+ C.emitReport(R);
+ }
+ return;
+ } else {
+ // Bifurcate the state into nil and non-nil ones.
+ DefinedOrUnknownSVal receiverVal = recVal.castAs<DefinedOrUnknownSVal>();
+
+ ProgramStateRef state = C.getState();
+ ProgramStateRef notNilState, nilState;
+ std::tie(notNilState, nilState) = state->assume(receiverVal);
+
+ // Handle receiver must be nil.
+ if (nilState && !notNilState) {
+ HandleNilReceiver(C, state, msg);
+ return;
+ }
+ }
+}
+
+void CallAndMessageChecker::emitNilReceiverBug(CheckerContext &C,
+ const ObjCMethodCall &msg,
+ ExplodedNode *N) const {
+
+ if (!BT_msg_ret)
+ BT_msg_ret.reset(
+ new BuiltinBug(this, "Receiver in message expression is 'nil'"));
+
+ const ObjCMessageExpr *ME = msg.getOriginExpr();
+
+ QualType ResTy = msg.getResultType();
+
+ SmallString<200> buf;
+ llvm::raw_svector_ostream os(buf);
+ os << "The receiver of message '";
+ ME->getSelector().print(os);
+ os << "' is nil";
+ if (ResTy->isReferenceType()) {
+ os << ", which results in forming a null reference";
+ } else {
+ os << " and returns a value of type '";
+ msg.getResultType().print(os, C.getLangOpts());
+ os << "' that will be garbage";
+ }
+
+ BugReport *report = new BugReport(*BT_msg_ret, os.str(), N);
+ report->addRange(ME->getReceiverRange());
+ // FIXME: This won't track "self" in messages to super.
+ if (const Expr *receiver = ME->getInstanceReceiver()) {
+ bugreporter::trackNullOrUndefValue(N, receiver, *report);
+ }
+ C.emitReport(report);
+}
+
+static bool supportsNilWithFloatRet(const llvm::Triple &triple) {
+ return (triple.getVendor() == llvm::Triple::Apple &&
+ (triple.isiOS() || !triple.isMacOSXVersionLT(10,5)));
+}
+
+void CallAndMessageChecker::HandleNilReceiver(CheckerContext &C,
+ ProgramStateRef state,
+ const ObjCMethodCall &Msg) const {
+ ASTContext &Ctx = C.getASTContext();
+ static CheckerProgramPointTag Tag(this, "NilReceiver");
+
+ // Check the return type of the message expression. A message to nil will
+ // return different values depending on the return type and the architecture.
+ QualType RetTy = Msg.getResultType();
+ CanQualType CanRetTy = Ctx.getCanonicalType(RetTy);
+ const LocationContext *LCtx = C.getLocationContext();
+
+ if (CanRetTy->isStructureOrClassType()) {
+ // Structure returns are safe since the compiler zeroes them out.
+ SVal V = C.getSValBuilder().makeZeroVal(RetTy);
+ C.addTransition(state->BindExpr(Msg.getOriginExpr(), LCtx, V), &Tag);
+ return;
+ }
+
+ // Other cases: check if sizeof(return type) > sizeof(void*)
+ if (CanRetTy != Ctx.VoidTy && C.getLocationContext()->getParentMap()
+ .isConsumedExpr(Msg.getOriginExpr())) {
+ // Compute: sizeof(void *) and sizeof(return type)
+ const uint64_t voidPtrSize = Ctx.getTypeSize(Ctx.VoidPtrTy);
+ const uint64_t returnTypeSize = Ctx.getTypeSize(CanRetTy);
+
+ if (CanRetTy.getTypePtr()->isReferenceType()||
+ (voidPtrSize < returnTypeSize &&
+ !(supportsNilWithFloatRet(Ctx.getTargetInfo().getTriple()) &&
+ (Ctx.FloatTy == CanRetTy ||
+ Ctx.DoubleTy == CanRetTy ||
+ Ctx.LongDoubleTy == CanRetTy ||
+ Ctx.LongLongTy == CanRetTy ||
+ Ctx.UnsignedLongLongTy == CanRetTy)))) {
+ if (ExplodedNode *N = C.generateSink(state, nullptr, &Tag))
+ emitNilReceiverBug(C, Msg, N);
+ return;
+ }
+
+ // Handle the safe cases where the return value is 0 if the
+ // receiver is nil.
+ //
+ // FIXME: For now take the conservative approach that we only
+ // return null values if we *know* that the receiver is nil.
+ // This is because we can have surprises like:
+ //
+ // ... = [[NSScreens screens] objectAtIndex:0];
+ //
+ // What can happen is that [... screens] could return nil, but
+ // it most likely isn't nil. We should assume the semantics
+ // of this case unless we have *a lot* more knowledge.
+ //
+ SVal V = C.getSValBuilder().makeZeroVal(RetTy);
+ C.addTransition(state->BindExpr(Msg.getOriginExpr(), LCtx, V), &Tag);
+ return;
+ }
+
+ C.addTransition(state);
+}
+
+#define REGISTER_CHECKER(name) \
+ void ento::register##name(CheckerManager &mgr) { \
+ CallAndMessageChecker *Checker = \
+ mgr.registerChecker<CallAndMessageChecker>(); \
+ Checker->Filter.Check_##name = true; \
+ Checker->Filter.CheckName_##name = mgr.getCurrentCheckName(); \
+ }
+
+REGISTER_CHECKER(CallAndMessageUnInitRefArg)
+REGISTER_CHECKER(CallAndMessageChecker)
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CastSizeChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CastSizeChecker.cpp
new file mode 100644
index 0000000..3ba063d
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CastSizeChecker.cpp
@@ -0,0 +1,147 @@
+//=== CastSizeChecker.cpp ---------------------------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// CastSizeChecker checks when casting a malloc'ed symbolic region to type T,
+// whether the size of the symbolic region is a multiple of the size of T.
+//
+//===----------------------------------------------------------------------===//
+#include "ClangSACheckers.h"
+#include "clang/AST/CharUnits.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+class CastSizeChecker : public Checker< check::PreStmt<CastExpr> > {
+ mutable std::unique_ptr<BuiltinBug> BT;
+
+public:
+ void checkPreStmt(const CastExpr *CE, CheckerContext &C) const;
+};
+}
+
+/// Check if we are casting to a struct with a flexible array at the end.
+/// \code
+/// struct foo {
+/// size_t len;
+/// struct bar data[];
+/// };
+/// \endcode
+/// or
+/// \code
+/// struct foo {
+/// size_t len;
+/// struct bar data[0];
+/// }
+/// \endcode
+/// In these cases it is also valid to allocate size of struct foo + a multiple
+/// of struct bar.
+static bool evenFlexibleArraySize(ASTContext &Ctx, CharUnits RegionSize,
+ CharUnits TypeSize, QualType ToPointeeTy) {
+ const RecordType *RT = ToPointeeTy->getAs<RecordType>();
+ if (!RT)
+ return false;
+
+ const RecordDecl *RD = RT->getDecl();
+ RecordDecl::field_iterator Iter(RD->field_begin());
+ RecordDecl::field_iterator End(RD->field_end());
+ const FieldDecl *Last = nullptr;
+ for (; Iter != End; ++Iter)
+ Last = *Iter;
+ assert(Last && "empty structs should already be handled");
+
+ const Type *ElemType = Last->getType()->getArrayElementTypeNoTypeQual();
+ CharUnits FlexSize;
+ if (const ConstantArrayType *ArrayTy =
+ Ctx.getAsConstantArrayType(Last->getType())) {
+ FlexSize = Ctx.getTypeSizeInChars(ElemType);
+ if (ArrayTy->getSize() == 1 && TypeSize > FlexSize)
+ TypeSize -= FlexSize;
+ else if (ArrayTy->getSize() != 0)
+ return false;
+ } else if (RD->hasFlexibleArrayMember()) {
+ FlexSize = Ctx.getTypeSizeInChars(ElemType);
+ } else {
+ return false;
+ }
+
+ if (FlexSize.isZero())
+ return false;
+
+ CharUnits Left = RegionSize - TypeSize;
+ if (Left.isNegative())
+ return false;
+
+ if (Left % FlexSize == 0)
+ return true;
+
+ return false;
+}
+
+void CastSizeChecker::checkPreStmt(const CastExpr *CE,CheckerContext &C) const {
+ const Expr *E = CE->getSubExpr();
+ ASTContext &Ctx = C.getASTContext();
+ QualType ToTy = Ctx.getCanonicalType(CE->getType());
+ const PointerType *ToPTy = dyn_cast<PointerType>(ToTy.getTypePtr());
+
+ if (!ToPTy)
+ return;
+
+ QualType ToPointeeTy = ToPTy->getPointeeType();
+
+ // Only perform the check if 'ToPointeeTy' is a complete type.
+ if (ToPointeeTy->isIncompleteType())
+ return;
+
+ ProgramStateRef state = C.getState();
+ const MemRegion *R = state->getSVal(E, C.getLocationContext()).getAsRegion();
+ if (!R)
+ return;
+
+ const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R);
+ if (!SR)
+ return;
+
+ SValBuilder &svalBuilder = C.getSValBuilder();
+ SVal extent = SR->getExtent(svalBuilder);
+ const llvm::APSInt *extentInt = svalBuilder.getKnownValue(state, extent);
+ if (!extentInt)
+ return;
+
+ CharUnits regionSize = CharUnits::fromQuantity(extentInt->getSExtValue());
+ CharUnits typeSize = C.getASTContext().getTypeSizeInChars(ToPointeeTy);
+
+ // Ignore void, and a few other un-sizeable types.
+ if (typeSize.isZero())
+ return;
+
+ if (regionSize % typeSize == 0)
+ return;
+
+ if (evenFlexibleArraySize(Ctx, regionSize, typeSize, ToPointeeTy))
+ return;
+
+ if (ExplodedNode *errorNode = C.generateSink()) {
+ if (!BT)
+ BT.reset(new BuiltinBug(this, "Cast region with wrong size.",
+ "Cast a region whose size is not a multiple"
+ " of the destination type size."));
+ BugReport *R = new BugReport(*BT, BT->getDescription(), errorNode);
+ R->addRange(CE->getSourceRange());
+ C.emitReport(R);
+ }
+}
+
+void ento::registerCastSizeChecker(CheckerManager &mgr) {
+ mgr.registerChecker<CastSizeChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CastToStructChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CastToStructChecker.cpp
new file mode 100644
index 0000000..d765315
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CastToStructChecker.cpp
@@ -0,0 +1,75 @@
+//=== CastToStructChecker.cpp - Fixed address usage checker ----*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This files defines CastToStructChecker, a builtin checker that checks for
+// cast from non-struct pointer to struct pointer.
+// This check corresponds to CWE-588.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+class CastToStructChecker : public Checker< check::PreStmt<CastExpr> > {
+ mutable std::unique_ptr<BuiltinBug> BT;
+
+public:
+ void checkPreStmt(const CastExpr *CE, CheckerContext &C) const;
+};
+}
+
+void CastToStructChecker::checkPreStmt(const CastExpr *CE,
+ CheckerContext &C) const {
+ const Expr *E = CE->getSubExpr();
+ ASTContext &Ctx = C.getASTContext();
+ QualType OrigTy = Ctx.getCanonicalType(E->getType());
+ QualType ToTy = Ctx.getCanonicalType(CE->getType());
+
+ const PointerType *OrigPTy = dyn_cast<PointerType>(OrigTy.getTypePtr());
+ const PointerType *ToPTy = dyn_cast<PointerType>(ToTy.getTypePtr());
+
+ if (!ToPTy || !OrigPTy)
+ return;
+
+ QualType OrigPointeeTy = OrigPTy->getPointeeType();
+ QualType ToPointeeTy = ToPTy->getPointeeType();
+
+ if (!ToPointeeTy->isStructureOrClassType())
+ return;
+
+ // We allow cast from void*.
+ if (OrigPointeeTy->isVoidType())
+ return;
+
+ // Now the cast-to-type is struct pointer, the original type is not void*.
+ if (!OrigPointeeTy->isRecordType()) {
+ if (ExplodedNode *N = C.addTransition()) {
+ if (!BT)
+ BT.reset(
+ new BuiltinBug(this, "Cast from non-struct type to struct type",
+ "Casting a non-structure type to a structure type "
+ "and accessing a field can lead to memory access "
+ "errors or data corruption."));
+ BugReport *R = new BugReport(*BT,BT->getDescription(), N);
+ R->addRange(CE->getSourceRange());
+ C.emitReport(R);
+ }
+ }
+}
+
+void ento::registerCastToStructChecker(CheckerManager &mgr) {
+ mgr.registerChecker<CastToStructChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CheckObjCDealloc.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CheckObjCDealloc.cpp
new file mode 100644
index 0000000..339af8f
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CheckObjCDealloc.cpp
@@ -0,0 +1,248 @@
+//==- CheckObjCDealloc.cpp - Check ObjC -dealloc implementation --*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a CheckObjCDealloc, a checker that
+// analyzes an Objective-C class's implementation to determine if it
+// correctly implements -dealloc.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/Basic/LangOptions.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+
+static bool scan_ivar_release(Stmt *S, ObjCIvarDecl *ID,
+ const ObjCPropertyDecl *PD,
+ Selector Release,
+ IdentifierInfo* SelfII,
+ ASTContext &Ctx) {
+
+ // [mMyIvar release]
+ if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(S))
+ if (ME->getSelector() == Release)
+ if (ME->getInstanceReceiver())
+ if (Expr *Receiver = ME->getInstanceReceiver()->IgnoreParenCasts())
+ if (ObjCIvarRefExpr *E = dyn_cast<ObjCIvarRefExpr>(Receiver))
+ if (E->getDecl() == ID)
+ return true;
+
+ // [self setMyIvar:nil];
+ if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(S))
+ if (ME->getInstanceReceiver())
+ if (Expr *Receiver = ME->getInstanceReceiver()->IgnoreParenCasts())
+ if (DeclRefExpr *E = dyn_cast<DeclRefExpr>(Receiver))
+ if (E->getDecl()->getIdentifier() == SelfII)
+ if (ME->getMethodDecl() == PD->getSetterMethodDecl() &&
+ ME->getNumArgs() == 1 &&
+ ME->getArg(0)->isNullPointerConstant(Ctx,
+ Expr::NPC_ValueDependentIsNull))
+ return true;
+
+ // self.myIvar = nil;
+ if (BinaryOperator* BO = dyn_cast<BinaryOperator>(S))
+ if (BO->isAssignmentOp())
+ if (ObjCPropertyRefExpr *PRE =
+ dyn_cast<ObjCPropertyRefExpr>(BO->getLHS()->IgnoreParenCasts()))
+ if (PRE->isExplicitProperty() && PRE->getExplicitProperty() == PD)
+ if (BO->getRHS()->isNullPointerConstant(Ctx,
+ Expr::NPC_ValueDependentIsNull)) {
+ // This is only a 'release' if the property kind is not
+ // 'assign'.
+ return PD->getSetterKind() != ObjCPropertyDecl::Assign;
+ }
+
+ // Recurse to children.
+ for (Stmt::child_iterator I = S->child_begin(), E= S->child_end(); I!=E; ++I)
+ if (*I && scan_ivar_release(*I, ID, PD, Release, SelfII, Ctx))
+ return true;
+
+ return false;
+}
+
+static void checkObjCDealloc(const CheckerBase *Checker,
+ const ObjCImplementationDecl *D,
+ const LangOptions &LOpts, BugReporter &BR) {
+
+ assert (LOpts.getGC() != LangOptions::GCOnly);
+
+ ASTContext &Ctx = BR.getContext();
+ const ObjCInterfaceDecl *ID = D->getClassInterface();
+
+ // Does the class contain any ivars that are pointers (or id<...>)?
+ // If not, skip the check entirely.
+ // NOTE: This is motivated by PR 2517:
+ // http://llvm.org/bugs/show_bug.cgi?id=2517
+
+ bool containsPointerIvar = false;
+
+ for (const auto *Ivar : ID->ivars()) {
+ QualType T = Ivar->getType();
+
+ if (!T->isObjCObjectPointerType() ||
+ Ivar->hasAttr<IBOutletAttr>() || // Skip IBOutlets.
+ Ivar->hasAttr<IBOutletCollectionAttr>()) // Skip IBOutletCollections.
+ continue;
+
+ containsPointerIvar = true;
+ break;
+ }
+
+ if (!containsPointerIvar)
+ return;
+
+ // Determine if the class subclasses NSObject.
+ IdentifierInfo* NSObjectII = &Ctx.Idents.get("NSObject");
+ IdentifierInfo* SenTestCaseII = &Ctx.Idents.get("SenTestCase");
+
+
+ for ( ; ID ; ID = ID->getSuperClass()) {
+ IdentifierInfo *II = ID->getIdentifier();
+
+ if (II == NSObjectII)
+ break;
+
+ // FIXME: For now, ignore classes that subclass SenTestCase, as these don't
+ // need to implement -dealloc. They implement tear down in another way,
+ // which we should try and catch later.
+ // http://llvm.org/bugs/show_bug.cgi?id=3187
+ if (II == SenTestCaseII)
+ return;
+ }
+
+ if (!ID)
+ return;
+
+ // Get the "dealloc" selector.
+ IdentifierInfo* II = &Ctx.Idents.get("dealloc");
+ Selector S = Ctx.Selectors.getSelector(0, &II);
+ const ObjCMethodDecl *MD = nullptr;
+
+ // Scan the instance methods for "dealloc".
+ for (const auto *I : D->instance_methods()) {
+ if (I->getSelector() == S) {
+ MD = I;
+ break;
+ }
+ }
+
+ PathDiagnosticLocation DLoc =
+ PathDiagnosticLocation::createBegin(D, BR.getSourceManager());
+
+ if (!MD) { // No dealloc found.
+
+ const char* name = LOpts.getGC() == LangOptions::NonGC
+ ? "missing -dealloc"
+ : "missing -dealloc (Hybrid MM, non-GC)";
+
+ std::string buf;
+ llvm::raw_string_ostream os(buf);
+ os << "Objective-C class '" << *D << "' lacks a 'dealloc' instance method";
+
+ BR.EmitBasicReport(D, Checker, name, categories::CoreFoundationObjectiveC,
+ os.str(), DLoc);
+ return;
+ }
+
+ // Get the "release" selector.
+ IdentifierInfo* RII = &Ctx.Idents.get("release");
+ Selector RS = Ctx.Selectors.getSelector(0, &RII);
+
+ // Get the "self" identifier
+ IdentifierInfo* SelfII = &Ctx.Idents.get("self");
+
+ // Scan for missing and extra releases of ivars used by implementations
+ // of synthesized properties
+ for (const auto *I : D->property_impls()) {
+ // We can only check the synthesized properties
+ if (I->getPropertyImplementation() != ObjCPropertyImplDecl::Synthesize)
+ continue;
+
+ ObjCIvarDecl *ID = I->getPropertyIvarDecl();
+ if (!ID)
+ continue;
+
+ QualType T = ID->getType();
+ if (!T->isObjCObjectPointerType()) // Skip non-pointer ivars
+ continue;
+
+ const ObjCPropertyDecl *PD = I->getPropertyDecl();
+ if (!PD)
+ continue;
+
+ // ivars cannot be set via read-only properties, so we'll skip them
+ if (PD->isReadOnly())
+ continue;
+
+ // ivar must be released if and only if the kind of setter was not 'assign'
+ bool requiresRelease = PD->getSetterKind() != ObjCPropertyDecl::Assign;
+ if (scan_ivar_release(MD->getBody(), ID, PD, RS, SelfII, Ctx)
+ != requiresRelease) {
+ const char *name = nullptr;
+ std::string buf;
+ llvm::raw_string_ostream os(buf);
+
+ if (requiresRelease) {
+ name = LOpts.getGC() == LangOptions::NonGC
+ ? "missing ivar release (leak)"
+ : "missing ivar release (Hybrid MM, non-GC)";
+
+ os << "The '" << *ID
+ << "' instance variable was retained by a synthesized property but "
+ "wasn't released in 'dealloc'";
+ } else {
+ name = LOpts.getGC() == LangOptions::NonGC
+ ? "extra ivar release (use-after-release)"
+ : "extra ivar release (Hybrid MM, non-GC)";
+
+ os << "The '" << *ID
+ << "' instance variable was not retained by a synthesized property "
+ "but was released in 'dealloc'";
+ }
+
+ PathDiagnosticLocation SDLoc =
+ PathDiagnosticLocation::createBegin(I, BR.getSourceManager());
+
+ BR.EmitBasicReport(MD, Checker, name,
+ categories::CoreFoundationObjectiveC, os.str(), SDLoc);
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// ObjCDeallocChecker
+//===----------------------------------------------------------------------===//
+
+namespace {
+class ObjCDeallocChecker : public Checker<
+ check::ASTDecl<ObjCImplementationDecl> > {
+public:
+ void checkASTDecl(const ObjCImplementationDecl *D, AnalysisManager& mgr,
+ BugReporter &BR) const {
+ if (mgr.getLangOpts().getGC() == LangOptions::GCOnly)
+ return;
+ checkObjCDealloc(this, cast<ObjCImplementationDecl>(D), mgr.getLangOpts(),
+ BR);
+ }
+};
+}
+
+void ento::registerObjCDeallocChecker(CheckerManager &mgr) {
+ mgr.registerChecker<ObjCDeallocChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CheckObjCInstMethSignature.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CheckObjCInstMethSignature.cpp
new file mode 100644
index 0000000..cc4c0c3
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CheckObjCInstMethSignature.cpp
@@ -0,0 +1,140 @@
+//=- CheckObjCInstMethodRetTy.cpp - Check ObjC method signatures -*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a CheckObjCInstMethSignature, a flow-insenstive check
+// that determines if an Objective-C class interface incorrectly redefines
+// the method signature in a subclass.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/Type.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+
+static bool AreTypesCompatible(QualType Derived, QualType Ancestor,
+ ASTContext &C) {
+
+ // Right now don't compare the compatibility of pointers. That involves
+ // looking at subtyping relationships. FIXME: Future patch.
+ if (Derived->isAnyPointerType() && Ancestor->isAnyPointerType())
+ return true;
+
+ return C.typesAreCompatible(Derived, Ancestor);
+}
+
+static void CompareReturnTypes(const ObjCMethodDecl *MethDerived,
+ const ObjCMethodDecl *MethAncestor,
+ BugReporter &BR, ASTContext &Ctx,
+ const ObjCImplementationDecl *ID,
+ const CheckerBase *Checker) {
+
+ QualType ResDerived = MethDerived->getReturnType();
+ QualType ResAncestor = MethAncestor->getReturnType();
+
+ if (!AreTypesCompatible(ResDerived, ResAncestor, Ctx)) {
+ std::string sbuf;
+ llvm::raw_string_ostream os(sbuf);
+
+ os << "The Objective-C class '"
+ << *MethDerived->getClassInterface()
+ << "', which is derived from class '"
+ << *MethAncestor->getClassInterface()
+ << "', defines the instance method '";
+ MethDerived->getSelector().print(os);
+ os << "' whose return type is '"
+ << ResDerived.getAsString()
+ << "'. A method with the same name (same selector) is also defined in "
+ "class '"
+ << *MethAncestor->getClassInterface()
+ << "' and has a return type of '"
+ << ResAncestor.getAsString()
+ << "'. These two types are incompatible, and may result in undefined "
+ "behavior for clients of these classes.";
+
+ PathDiagnosticLocation MethDLoc =
+ PathDiagnosticLocation::createBegin(MethDerived,
+ BR.getSourceManager());
+
+ BR.EmitBasicReport(
+ MethDerived, Checker, "Incompatible instance method return type",
+ categories::CoreFoundationObjectiveC, os.str(), MethDLoc);
+ }
+}
+
+static void CheckObjCInstMethSignature(const ObjCImplementationDecl *ID,
+ BugReporter &BR,
+ const CheckerBase *Checker) {
+
+ const ObjCInterfaceDecl *D = ID->getClassInterface();
+ const ObjCInterfaceDecl *C = D->getSuperClass();
+
+ if (!C)
+ return;
+
+ ASTContext &Ctx = BR.getContext();
+
+ // Build a DenseMap of the methods for quick querying.
+ typedef llvm::DenseMap<Selector,ObjCMethodDecl*> MapTy;
+ MapTy IMeths;
+ unsigned NumMethods = 0;
+
+ for (auto *M : ID->instance_methods()) {
+ IMeths[M->getSelector()] = M;
+ ++NumMethods;
+ }
+
+ // Now recurse the class hierarchy chain looking for methods with the
+ // same signatures.
+ while (C && NumMethods) {
+ for (const auto *M : C->instance_methods()) {
+ Selector S = M->getSelector();
+
+ MapTy::iterator MI = IMeths.find(S);
+
+ if (MI == IMeths.end() || MI->second == nullptr)
+ continue;
+
+ --NumMethods;
+ ObjCMethodDecl *MethDerived = MI->second;
+ MI->second = nullptr;
+
+ CompareReturnTypes(MethDerived, M, BR, Ctx, ID, Checker);
+ }
+
+ C = C->getSuperClass();
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// ObjCMethSigsChecker
+//===----------------------------------------------------------------------===//
+
+namespace {
+class ObjCMethSigsChecker : public Checker<
+ check::ASTDecl<ObjCImplementationDecl> > {
+public:
+ void checkASTDecl(const ObjCImplementationDecl *D, AnalysisManager& mgr,
+ BugReporter &BR) const {
+ CheckObjCInstMethSignature(D, BR, this);
+ }
+};
+}
+
+void ento::registerObjCMethSigsChecker(CheckerManager &mgr) {
+ mgr.registerChecker<ObjCMethSigsChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CheckSecuritySyntaxOnly.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CheckSecuritySyntaxOnly.cpp
new file mode 100644
index 0000000..0beb917
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CheckSecuritySyntaxOnly.cpp
@@ -0,0 +1,779 @@
+//==- CheckSecuritySyntaxOnly.cpp - Basic security checks --------*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a set of flow-insensitive security checks.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Analysis/AnalysisContext.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+
+static bool isArc4RandomAvailable(const ASTContext &Ctx) {
+ const llvm::Triple &T = Ctx.getTargetInfo().getTriple();
+ return T.getVendor() == llvm::Triple::Apple ||
+ T.getOS() == llvm::Triple::CloudABI ||
+ T.getOS() == llvm::Triple::FreeBSD ||
+ T.getOS() == llvm::Triple::NetBSD ||
+ T.getOS() == llvm::Triple::OpenBSD ||
+ T.getOS() == llvm::Triple::Bitrig ||
+ T.getOS() == llvm::Triple::DragonFly;
+}
+
+namespace {
+struct ChecksFilter {
+ DefaultBool check_gets;
+ DefaultBool check_getpw;
+ DefaultBool check_mktemp;
+ DefaultBool check_mkstemp;
+ DefaultBool check_strcpy;
+ DefaultBool check_rand;
+ DefaultBool check_vfork;
+ DefaultBool check_FloatLoopCounter;
+ DefaultBool check_UncheckedReturn;
+
+ CheckName checkName_gets;
+ CheckName checkName_getpw;
+ CheckName checkName_mktemp;
+ CheckName checkName_mkstemp;
+ CheckName checkName_strcpy;
+ CheckName checkName_rand;
+ CheckName checkName_vfork;
+ CheckName checkName_FloatLoopCounter;
+ CheckName checkName_UncheckedReturn;
+};
+
+class WalkAST : public StmtVisitor<WalkAST> {
+ BugReporter &BR;
+ AnalysisDeclContext* AC;
+ enum { num_setids = 6 };
+ IdentifierInfo *II_setid[num_setids];
+
+ const bool CheckRand;
+ const ChecksFilter &filter;
+
+public:
+ WalkAST(BugReporter &br, AnalysisDeclContext* ac,
+ const ChecksFilter &f)
+ : BR(br), AC(ac), II_setid(),
+ CheckRand(isArc4RandomAvailable(BR.getContext())),
+ filter(f) {}
+
+ // Statement visitor methods.
+ void VisitCallExpr(CallExpr *CE);
+ void VisitForStmt(ForStmt *S);
+ void VisitCompoundStmt (CompoundStmt *S);
+ void VisitStmt(Stmt *S) { VisitChildren(S); }
+
+ void VisitChildren(Stmt *S);
+
+ // Helpers.
+ bool checkCall_strCommon(const CallExpr *CE, const FunctionDecl *FD);
+
+ typedef void (WalkAST::*FnCheck)(const CallExpr *,
+ const FunctionDecl *);
+
+ // Checker-specific methods.
+ void checkLoopConditionForFloat(const ForStmt *FS);
+ void checkCall_gets(const CallExpr *CE, const FunctionDecl *FD);
+ void checkCall_getpw(const CallExpr *CE, const FunctionDecl *FD);
+ void checkCall_mktemp(const CallExpr *CE, const FunctionDecl *FD);
+ void checkCall_mkstemp(const CallExpr *CE, const FunctionDecl *FD);
+ void checkCall_strcpy(const CallExpr *CE, const FunctionDecl *FD);
+ void checkCall_strcat(const CallExpr *CE, const FunctionDecl *FD);
+ void checkCall_rand(const CallExpr *CE, const FunctionDecl *FD);
+ void checkCall_random(const CallExpr *CE, const FunctionDecl *FD);
+ void checkCall_vfork(const CallExpr *CE, const FunctionDecl *FD);
+ void checkUncheckedReturnValue(CallExpr *CE);
+};
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// AST walking.
+//===----------------------------------------------------------------------===//
+
+void WalkAST::VisitChildren(Stmt *S) {
+ for (Stmt::child_iterator I = S->child_begin(), E = S->child_end(); I!=E; ++I)
+ if (Stmt *child = *I)
+ Visit(child);
+}
+
+void WalkAST::VisitCallExpr(CallExpr *CE) {
+ // Get the callee.
+ const FunctionDecl *FD = CE->getDirectCallee();
+
+ if (!FD)
+ return;
+
+ // Get the name of the callee. If it's a builtin, strip off the prefix.
+ IdentifierInfo *II = FD->getIdentifier();
+ if (!II) // if no identifier, not a simple C function
+ return;
+ StringRef Name = II->getName();
+ if (Name.startswith("__builtin_"))
+ Name = Name.substr(10);
+
+ // Set the evaluation function by switching on the callee name.
+ FnCheck evalFunction = llvm::StringSwitch<FnCheck>(Name)
+ .Case("gets", &WalkAST::checkCall_gets)
+ .Case("getpw", &WalkAST::checkCall_getpw)
+ .Case("mktemp", &WalkAST::checkCall_mktemp)
+ .Case("mkstemp", &WalkAST::checkCall_mkstemp)
+ .Case("mkdtemp", &WalkAST::checkCall_mkstemp)
+ .Case("mkstemps", &WalkAST::checkCall_mkstemp)
+ .Cases("strcpy", "__strcpy_chk", &WalkAST::checkCall_strcpy)
+ .Cases("strcat", "__strcat_chk", &WalkAST::checkCall_strcat)
+ .Case("drand48", &WalkAST::checkCall_rand)
+ .Case("erand48", &WalkAST::checkCall_rand)
+ .Case("jrand48", &WalkAST::checkCall_rand)
+ .Case("lrand48", &WalkAST::checkCall_rand)
+ .Case("mrand48", &WalkAST::checkCall_rand)
+ .Case("nrand48", &WalkAST::checkCall_rand)
+ .Case("lcong48", &WalkAST::checkCall_rand)
+ .Case("rand", &WalkAST::checkCall_rand)
+ .Case("rand_r", &WalkAST::checkCall_rand)
+ .Case("random", &WalkAST::checkCall_random)
+ .Case("vfork", &WalkAST::checkCall_vfork)
+ .Default(nullptr);
+
+ // If the callee isn't defined, it is not of security concern.
+ // Check and evaluate the call.
+ if (evalFunction)
+ (this->*evalFunction)(CE, FD);
+
+ // Recurse and check children.
+ VisitChildren(CE);
+}
+
+void WalkAST::VisitCompoundStmt(CompoundStmt *S) {
+ for (Stmt::child_iterator I = S->child_begin(), E = S->child_end(); I!=E; ++I)
+ if (Stmt *child = *I) {
+ if (CallExpr *CE = dyn_cast<CallExpr>(child))
+ checkUncheckedReturnValue(CE);
+ Visit(child);
+ }
+}
+
+void WalkAST::VisitForStmt(ForStmt *FS) {
+ checkLoopConditionForFloat(FS);
+
+ // Recurse and check children.
+ VisitChildren(FS);
+}
+
+//===----------------------------------------------------------------------===//
+// Check: floating poing variable used as loop counter.
+// Originally: <rdar://problem/6336718>
+// Implements: CERT security coding advisory FLP-30.
+//===----------------------------------------------------------------------===//
+
+static const DeclRefExpr*
+getIncrementedVar(const Expr *expr, const VarDecl *x, const VarDecl *y) {
+ expr = expr->IgnoreParenCasts();
+
+ if (const BinaryOperator *B = dyn_cast<BinaryOperator>(expr)) {
+ if (!(B->isAssignmentOp() || B->isCompoundAssignmentOp() ||
+ B->getOpcode() == BO_Comma))
+ return nullptr;
+
+ if (const DeclRefExpr *lhs = getIncrementedVar(B->getLHS(), x, y))
+ return lhs;
+
+ if (const DeclRefExpr *rhs = getIncrementedVar(B->getRHS(), x, y))
+ return rhs;
+
+ return nullptr;
+ }
+
+ if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(expr)) {
+ const NamedDecl *ND = DR->getDecl();
+ return ND == x || ND == y ? DR : nullptr;
+ }
+
+ if (const UnaryOperator *U = dyn_cast<UnaryOperator>(expr))
+ return U->isIncrementDecrementOp()
+ ? getIncrementedVar(U->getSubExpr(), x, y) : nullptr;
+
+ return nullptr;
+}
+
+/// CheckLoopConditionForFloat - This check looks for 'for' statements that
+/// use a floating point variable as a loop counter.
+/// CERT: FLP30-C, FLP30-CPP.
+///
+void WalkAST::checkLoopConditionForFloat(const ForStmt *FS) {
+ if (!filter.check_FloatLoopCounter)
+ return;
+
+ // Does the loop have a condition?
+ const Expr *condition = FS->getCond();
+
+ if (!condition)
+ return;
+
+ // Does the loop have an increment?
+ const Expr *increment = FS->getInc();
+
+ if (!increment)
+ return;
+
+ // Strip away '()' and casts.
+ condition = condition->IgnoreParenCasts();
+ increment = increment->IgnoreParenCasts();
+
+ // Is the loop condition a comparison?
+ const BinaryOperator *B = dyn_cast<BinaryOperator>(condition);
+
+ if (!B)
+ return;
+
+ // Is this a comparison?
+ if (!(B->isRelationalOp() || B->isEqualityOp()))
+ return;
+
+ // Are we comparing variables?
+ const DeclRefExpr *drLHS =
+ dyn_cast<DeclRefExpr>(B->getLHS()->IgnoreParenLValueCasts());
+ const DeclRefExpr *drRHS =
+ dyn_cast<DeclRefExpr>(B->getRHS()->IgnoreParenLValueCasts());
+
+ // Does at least one of the variables have a floating point type?
+ drLHS = drLHS && drLHS->getType()->isRealFloatingType() ? drLHS : nullptr;
+ drRHS = drRHS && drRHS->getType()->isRealFloatingType() ? drRHS : nullptr;
+
+ if (!drLHS && !drRHS)
+ return;
+
+ const VarDecl *vdLHS = drLHS ? dyn_cast<VarDecl>(drLHS->getDecl()) : nullptr;
+ const VarDecl *vdRHS = drRHS ? dyn_cast<VarDecl>(drRHS->getDecl()) : nullptr;
+
+ if (!vdLHS && !vdRHS)
+ return;
+
+ // Does either variable appear in increment?
+ const DeclRefExpr *drInc = getIncrementedVar(increment, vdLHS, vdRHS);
+
+ if (!drInc)
+ return;
+
+ // Emit the error. First figure out which DeclRefExpr in the condition
+ // referenced the compared variable.
+ assert(drInc->getDecl());
+ const DeclRefExpr *drCond = vdLHS == drInc->getDecl() ? drLHS : drRHS;
+
+ SmallVector<SourceRange, 2> ranges;
+ SmallString<256> sbuf;
+ llvm::raw_svector_ostream os(sbuf);
+
+ os << "Variable '" << drCond->getDecl()->getName()
+ << "' with floating point type '" << drCond->getType().getAsString()
+ << "' should not be used as a loop counter";
+
+ ranges.push_back(drCond->getSourceRange());
+ ranges.push_back(drInc->getSourceRange());
+
+ const char *bugType = "Floating point variable used as loop counter";
+
+ PathDiagnosticLocation FSLoc =
+ PathDiagnosticLocation::createBegin(FS, BR.getSourceManager(), AC);
+ BR.EmitBasicReport(AC->getDecl(), filter.checkName_FloatLoopCounter,
+ bugType, "Security", os.str(),
+ FSLoc, ranges);
+}
+
+//===----------------------------------------------------------------------===//
+// Check: Any use of 'gets' is insecure.
+// Originally: <rdar://problem/6335715>
+// Implements (part of): 300-BSI (buildsecurityin.us-cert.gov)
+// CWE-242: Use of Inherently Dangerous Function
+//===----------------------------------------------------------------------===//
+
+void WalkAST::checkCall_gets(const CallExpr *CE, const FunctionDecl *FD) {
+ if (!filter.check_gets)
+ return;
+
+ const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>();
+ if (!FPT)
+ return;
+
+ // Verify that the function takes a single argument.
+ if (FPT->getNumParams() != 1)
+ return;
+
+ // Is the argument a 'char*'?
+ const PointerType *PT = FPT->getParamType(0)->getAs<PointerType>();
+ if (!PT)
+ return;
+
+ if (PT->getPointeeType().getUnqualifiedType() != BR.getContext().CharTy)
+ return;
+
+ // Issue a warning.
+ PathDiagnosticLocation CELoc =
+ PathDiagnosticLocation::createBegin(CE, BR.getSourceManager(), AC);
+ BR.EmitBasicReport(AC->getDecl(), filter.checkName_gets,
+ "Potential buffer overflow in call to 'gets'",
+ "Security",
+ "Call to function 'gets' is extremely insecure as it can "
+ "always result in a buffer overflow",
+ CELoc, CE->getCallee()->getSourceRange());
+}
+
+//===----------------------------------------------------------------------===//
+// Check: Any use of 'getpwd' is insecure.
+// CWE-477: Use of Obsolete Functions
+//===----------------------------------------------------------------------===//
+
+void WalkAST::checkCall_getpw(const CallExpr *CE, const FunctionDecl *FD) {
+ if (!filter.check_getpw)
+ return;
+
+ const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>();
+ if (!FPT)
+ return;
+
+ // Verify that the function takes two arguments.
+ if (FPT->getNumParams() != 2)
+ return;
+
+ // Verify the first argument type is integer.
+ if (!FPT->getParamType(0)->isIntegralOrUnscopedEnumerationType())
+ return;
+
+ // Verify the second argument type is char*.
+ const PointerType *PT = FPT->getParamType(1)->getAs<PointerType>();
+ if (!PT)
+ return;
+
+ if (PT->getPointeeType().getUnqualifiedType() != BR.getContext().CharTy)
+ return;
+
+ // Issue a warning.
+ PathDiagnosticLocation CELoc =
+ PathDiagnosticLocation::createBegin(CE, BR.getSourceManager(), AC);
+ BR.EmitBasicReport(AC->getDecl(), filter.checkName_getpw,
+ "Potential buffer overflow in call to 'getpw'",
+ "Security",
+ "The getpw() function is dangerous as it may overflow the "
+ "provided buffer. It is obsoleted by getpwuid().",
+ CELoc, CE->getCallee()->getSourceRange());
+}
+
+//===----------------------------------------------------------------------===//
+// Check: Any use of 'mktemp' is insecure. It is obsoleted by mkstemp().
+// CWE-377: Insecure Temporary File
+//===----------------------------------------------------------------------===//
+
+void WalkAST::checkCall_mktemp(const CallExpr *CE, const FunctionDecl *FD) {
+ if (!filter.check_mktemp) {
+ // Fall back to the security check of looking for enough 'X's in the
+ // format string, since that is a less severe warning.
+ checkCall_mkstemp(CE, FD);
+ return;
+ }
+
+ const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>();
+ if(!FPT)
+ return;
+
+ // Verify that the function takes a single argument.
+ if (FPT->getNumParams() != 1)
+ return;
+
+ // Verify that the argument is Pointer Type.
+ const PointerType *PT = FPT->getParamType(0)->getAs<PointerType>();
+ if (!PT)
+ return;
+
+ // Verify that the argument is a 'char*'.
+ if (PT->getPointeeType().getUnqualifiedType() != BR.getContext().CharTy)
+ return;
+
+ // Issue a warning.
+ PathDiagnosticLocation CELoc =
+ PathDiagnosticLocation::createBegin(CE, BR.getSourceManager(), AC);
+ BR.EmitBasicReport(AC->getDecl(), filter.checkName_mktemp,
+ "Potential insecure temporary file in call 'mktemp'",
+ "Security",
+ "Call to function 'mktemp' is insecure as it always "
+ "creates or uses insecure temporary file. Use 'mkstemp' "
+ "instead",
+ CELoc, CE->getCallee()->getSourceRange());
+}
+
+
+//===----------------------------------------------------------------------===//
+// Check: Use of 'mkstemp', 'mktemp', 'mkdtemp' should contain at least 6 X's.
+//===----------------------------------------------------------------------===//
+
+void WalkAST::checkCall_mkstemp(const CallExpr *CE, const FunctionDecl *FD) {
+ if (!filter.check_mkstemp)
+ return;
+
+ StringRef Name = FD->getIdentifier()->getName();
+ std::pair<signed, signed> ArgSuffix =
+ llvm::StringSwitch<std::pair<signed, signed> >(Name)
+ .Case("mktemp", std::make_pair(0,-1))
+ .Case("mkstemp", std::make_pair(0,-1))
+ .Case("mkdtemp", std::make_pair(0,-1))
+ .Case("mkstemps", std::make_pair(0,1))
+ .Default(std::make_pair(-1, -1));
+
+ assert(ArgSuffix.first >= 0 && "Unsupported function");
+
+ // Check if the number of arguments is consistent with out expectations.
+ unsigned numArgs = CE->getNumArgs();
+ if ((signed) numArgs <= ArgSuffix.first)
+ return;
+
+ const StringLiteral *strArg =
+ dyn_cast<StringLiteral>(CE->getArg((unsigned)ArgSuffix.first)
+ ->IgnoreParenImpCasts());
+
+ // Currently we only handle string literals. It is possible to do better,
+ // either by looking at references to const variables, or by doing real
+ // flow analysis.
+ if (!strArg || strArg->getCharByteWidth() != 1)
+ return;
+
+ // Count the number of X's, taking into account a possible cutoff suffix.
+ StringRef str = strArg->getString();
+ unsigned numX = 0;
+ unsigned n = str.size();
+
+ // Take into account the suffix.
+ unsigned suffix = 0;
+ if (ArgSuffix.second >= 0) {
+ const Expr *suffixEx = CE->getArg((unsigned)ArgSuffix.second);
+ llvm::APSInt Result;
+ if (!suffixEx->EvaluateAsInt(Result, BR.getContext()))
+ return;
+ // FIXME: Issue a warning.
+ if (Result.isNegative())
+ return;
+ suffix = (unsigned) Result.getZExtValue();
+ n = (n > suffix) ? n - suffix : 0;
+ }
+
+ for (unsigned i = 0; i < n; ++i)
+ if (str[i] == 'X') ++numX;
+
+ if (numX >= 6)
+ return;
+
+ // Issue a warning.
+ PathDiagnosticLocation CELoc =
+ PathDiagnosticLocation::createBegin(CE, BR.getSourceManager(), AC);
+ SmallString<512> buf;
+ llvm::raw_svector_ostream out(buf);
+ out << "Call to '" << Name << "' should have at least 6 'X's in the"
+ " format string to be secure (" << numX << " 'X'";
+ if (numX != 1)
+ out << 's';
+ out << " seen";
+ if (suffix) {
+ out << ", " << suffix << " character";
+ if (suffix > 1)
+ out << 's';
+ out << " used as a suffix";
+ }
+ out << ')';
+ BR.EmitBasicReport(AC->getDecl(), filter.checkName_mkstemp,
+ "Insecure temporary file creation", "Security",
+ out.str(), CELoc, strArg->getSourceRange());
+}
+
+//===----------------------------------------------------------------------===//
+// Check: Any use of 'strcpy' is insecure.
+//
+// CWE-119: Improper Restriction of Operations within
+// the Bounds of a Memory Buffer
+//===----------------------------------------------------------------------===//
+void WalkAST::checkCall_strcpy(const CallExpr *CE, const FunctionDecl *FD) {
+ if (!filter.check_strcpy)
+ return;
+
+ if (!checkCall_strCommon(CE, FD))
+ return;
+
+ // Issue a warning.
+ PathDiagnosticLocation CELoc =
+ PathDiagnosticLocation::createBegin(CE, BR.getSourceManager(), AC);
+ BR.EmitBasicReport(AC->getDecl(), filter.checkName_strcpy,
+ "Potential insecure memory buffer bounds restriction in "
+ "call 'strcpy'",
+ "Security",
+ "Call to function 'strcpy' is insecure as it does not "
+ "provide bounding of the memory buffer. Replace "
+ "unbounded copy functions with analogous functions that "
+ "support length arguments such as 'strlcpy'. CWE-119.",
+ CELoc, CE->getCallee()->getSourceRange());
+}
+
+//===----------------------------------------------------------------------===//
+// Check: Any use of 'strcat' is insecure.
+//
+// CWE-119: Improper Restriction of Operations within
+// the Bounds of a Memory Buffer
+//===----------------------------------------------------------------------===//
+void WalkAST::checkCall_strcat(const CallExpr *CE, const FunctionDecl *FD) {
+ if (!filter.check_strcpy)
+ return;
+
+ if (!checkCall_strCommon(CE, FD))
+ return;
+
+ // Issue a warning.
+ PathDiagnosticLocation CELoc =
+ PathDiagnosticLocation::createBegin(CE, BR.getSourceManager(), AC);
+ BR.EmitBasicReport(AC->getDecl(), filter.checkName_strcpy,
+ "Potential insecure memory buffer bounds restriction in "
+ "call 'strcat'",
+ "Security",
+ "Call to function 'strcat' is insecure as it does not "
+ "provide bounding of the memory buffer. Replace "
+ "unbounded copy functions with analogous functions that "
+ "support length arguments such as 'strlcat'. CWE-119.",
+ CELoc, CE->getCallee()->getSourceRange());
+}
+
+//===----------------------------------------------------------------------===//
+// Common check for str* functions with no bounds parameters.
+//===----------------------------------------------------------------------===//
+bool WalkAST::checkCall_strCommon(const CallExpr *CE, const FunctionDecl *FD) {
+ const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>();
+ if (!FPT)
+ return false;
+
+ // Verify the function takes two arguments, three in the _chk version.
+ int numArgs = FPT->getNumParams();
+ if (numArgs != 2 && numArgs != 3)
+ return false;
+
+ // Verify the type for both arguments.
+ for (int i = 0; i < 2; i++) {
+ // Verify that the arguments are pointers.
+ const PointerType *PT = FPT->getParamType(i)->getAs<PointerType>();
+ if (!PT)
+ return false;
+
+ // Verify that the argument is a 'char*'.
+ if (PT->getPointeeType().getUnqualifiedType() != BR.getContext().CharTy)
+ return false;
+ }
+
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// Check: Linear congruent random number generators should not be used
+// Originally: <rdar://problem/63371000>
+// CWE-338: Use of cryptographically weak prng
+//===----------------------------------------------------------------------===//
+
+void WalkAST::checkCall_rand(const CallExpr *CE, const FunctionDecl *FD) {
+ if (!filter.check_rand || !CheckRand)
+ return;
+
+ const FunctionProtoType *FTP = FD->getType()->getAs<FunctionProtoType>();
+ if (!FTP)
+ return;
+
+ if (FTP->getNumParams() == 1) {
+ // Is the argument an 'unsigned short *'?
+ // (Actually any integer type is allowed.)
+ const PointerType *PT = FTP->getParamType(0)->getAs<PointerType>();
+ if (!PT)
+ return;
+
+ if (! PT->getPointeeType()->isIntegralOrUnscopedEnumerationType())
+ return;
+ } else if (FTP->getNumParams() != 0)
+ return;
+
+ // Issue a warning.
+ SmallString<256> buf1;
+ llvm::raw_svector_ostream os1(buf1);
+ os1 << '\'' << *FD << "' is a poor random number generator";
+
+ SmallString<256> buf2;
+ llvm::raw_svector_ostream os2(buf2);
+ os2 << "Function '" << *FD
+ << "' is obsolete because it implements a poor random number generator."
+ << " Use 'arc4random' instead";
+
+ PathDiagnosticLocation CELoc =
+ PathDiagnosticLocation::createBegin(CE, BR.getSourceManager(), AC);
+ BR.EmitBasicReport(AC->getDecl(), filter.checkName_rand, os1.str(),
+ "Security", os2.str(), CELoc,
+ CE->getCallee()->getSourceRange());
+}
+
+//===----------------------------------------------------------------------===//
+// Check: 'random' should not be used
+// Originally: <rdar://problem/63371000>
+//===----------------------------------------------------------------------===//
+
+void WalkAST::checkCall_random(const CallExpr *CE, const FunctionDecl *FD) {
+ if (!CheckRand || !filter.check_rand)
+ return;
+
+ const FunctionProtoType *FTP = FD->getType()->getAs<FunctionProtoType>();
+ if (!FTP)
+ return;
+
+ // Verify that the function takes no argument.
+ if (FTP->getNumParams() != 0)
+ return;
+
+ // Issue a warning.
+ PathDiagnosticLocation CELoc =
+ PathDiagnosticLocation::createBegin(CE, BR.getSourceManager(), AC);
+ BR.EmitBasicReport(AC->getDecl(), filter.checkName_rand,
+ "'random' is not a secure random number generator",
+ "Security",
+ "The 'random' function produces a sequence of values that "
+ "an adversary may be able to predict. Use 'arc4random' "
+ "instead", CELoc, CE->getCallee()->getSourceRange());
+}
+
+//===----------------------------------------------------------------------===//
+// Check: 'vfork' should not be used.
+// POS33-C: Do not use vfork().
+//===----------------------------------------------------------------------===//
+
+void WalkAST::checkCall_vfork(const CallExpr *CE, const FunctionDecl *FD) {
+ if (!filter.check_vfork)
+ return;
+
+ // All calls to vfork() are insecure, issue a warning.
+ PathDiagnosticLocation CELoc =
+ PathDiagnosticLocation::createBegin(CE, BR.getSourceManager(), AC);
+ BR.EmitBasicReport(AC->getDecl(), filter.checkName_vfork,
+ "Potential insecure implementation-specific behavior in "
+ "call 'vfork'",
+ "Security",
+ "Call to function 'vfork' is insecure as it can lead to "
+ "denial of service situations in the parent process. "
+ "Replace calls to vfork with calls to the safer "
+ "'posix_spawn' function",
+ CELoc, CE->getCallee()->getSourceRange());
+}
+
+//===----------------------------------------------------------------------===//
+// Check: Should check whether privileges are dropped successfully.
+// Originally: <rdar://problem/6337132>
+//===----------------------------------------------------------------------===//
+
+void WalkAST::checkUncheckedReturnValue(CallExpr *CE) {
+ if (!filter.check_UncheckedReturn)
+ return;
+
+ const FunctionDecl *FD = CE->getDirectCallee();
+ if (!FD)
+ return;
+
+ if (II_setid[0] == nullptr) {
+ static const char * const identifiers[num_setids] = {
+ "setuid", "setgid", "seteuid", "setegid",
+ "setreuid", "setregid"
+ };
+
+ for (size_t i = 0; i < num_setids; i++)
+ II_setid[i] = &BR.getContext().Idents.get(identifiers[i]);
+ }
+
+ const IdentifierInfo *id = FD->getIdentifier();
+ size_t identifierid;
+
+ for (identifierid = 0; identifierid < num_setids; identifierid++)
+ if (id == II_setid[identifierid])
+ break;
+
+ if (identifierid >= num_setids)
+ return;
+
+ const FunctionProtoType *FTP = FD->getType()->getAs<FunctionProtoType>();
+ if (!FTP)
+ return;
+
+ // Verify that the function takes one or two arguments (depending on
+ // the function).
+ if (FTP->getNumParams() != (identifierid < 4 ? 1 : 2))
+ return;
+
+ // The arguments must be integers.
+ for (unsigned i = 0; i < FTP->getNumParams(); i++)
+ if (!FTP->getParamType(i)->isIntegralOrUnscopedEnumerationType())
+ return;
+
+ // Issue a warning.
+ SmallString<256> buf1;
+ llvm::raw_svector_ostream os1(buf1);
+ os1 << "Return value is not checked in call to '" << *FD << '\'';
+
+ SmallString<256> buf2;
+ llvm::raw_svector_ostream os2(buf2);
+ os2 << "The return value from the call to '" << *FD
+ << "' is not checked. If an error occurs in '" << *FD
+ << "', the following code may execute with unexpected privileges";
+
+ PathDiagnosticLocation CELoc =
+ PathDiagnosticLocation::createBegin(CE, BR.getSourceManager(), AC);
+ BR.EmitBasicReport(AC->getDecl(), filter.checkName_UncheckedReturn, os1.str(),
+ "Security", os2.str(), CELoc,
+ CE->getCallee()->getSourceRange());
+}
+
+//===----------------------------------------------------------------------===//
+// SecuritySyntaxChecker
+//===----------------------------------------------------------------------===//
+
+namespace {
+class SecuritySyntaxChecker : public Checker<check::ASTCodeBody> {
+public:
+ ChecksFilter filter;
+
+ void checkASTCodeBody(const Decl *D, AnalysisManager& mgr,
+ BugReporter &BR) const {
+ WalkAST walker(BR, mgr.getAnalysisDeclContext(D), filter);
+ walker.Visit(D->getBody());
+ }
+};
+}
+
+#define REGISTER_CHECKER(name) \
+ void ento::register##name(CheckerManager &mgr) { \
+ SecuritySyntaxChecker *checker = \
+ mgr.registerChecker<SecuritySyntaxChecker>(); \
+ checker->filter.check_##name = true; \
+ checker->filter.checkName_##name = mgr.getCurrentCheckName(); \
+ }
+
+REGISTER_CHECKER(gets)
+REGISTER_CHECKER(getpw)
+REGISTER_CHECKER(mkstemp)
+REGISTER_CHECKER(mktemp)
+REGISTER_CHECKER(strcpy)
+REGISTER_CHECKER(rand)
+REGISTER_CHECKER(vfork)
+REGISTER_CHECKER(FloatLoopCounter)
+REGISTER_CHECKER(UncheckedReturn)
+
+
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CheckSizeofPointer.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CheckSizeofPointer.cpp
new file mode 100644
index 0000000..a61e658
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CheckSizeofPointer.cpp
@@ -0,0 +1,93 @@
+//==- CheckSizeofPointer.cpp - Check for sizeof on pointers ------*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a check for unintended use of sizeof() on pointer
+// expressions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+class WalkAST : public StmtVisitor<WalkAST> {
+ BugReporter &BR;
+ const CheckerBase *Checker;
+ AnalysisDeclContext* AC;
+
+public:
+ WalkAST(BugReporter &br, const CheckerBase *checker, AnalysisDeclContext *ac)
+ : BR(br), Checker(checker), AC(ac) {}
+ void VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E);
+ void VisitStmt(Stmt *S) { VisitChildren(S); }
+ void VisitChildren(Stmt *S);
+};
+}
+
+void WalkAST::VisitChildren(Stmt *S) {
+ for (Stmt::child_iterator I = S->child_begin(), E = S->child_end(); I!=E; ++I)
+ if (Stmt *child = *I)
+ Visit(child);
+}
+
+// CWE-467: Use of sizeof() on a Pointer Type
+void WalkAST::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E) {
+ if (E->getKind() != UETT_SizeOf)
+ return;
+
+ // If an explicit type is used in the code, usually the coder knows what they are
+ // doing.
+ if (E->isArgumentType())
+ return;
+
+ QualType T = E->getTypeOfArgument();
+ if (T->isPointerType()) {
+
+ // Many false positives have the form 'sizeof *p'. This is reasonable
+ // because people know what they are doing when they intentionally
+ // dereference the pointer.
+ Expr *ArgEx = E->getArgumentExpr();
+ if (!isa<DeclRefExpr>(ArgEx->IgnoreParens()))
+ return;
+
+ PathDiagnosticLocation ELoc =
+ PathDiagnosticLocation::createBegin(E, BR.getSourceManager(), AC);
+ BR.EmitBasicReport(AC->getDecl(), Checker,
+ "Potential unintended use of sizeof() on pointer type",
+ categories::LogicError,
+ "The code calls sizeof() on a pointer type. "
+ "This can produce an unexpected result.",
+ ELoc, ArgEx->getSourceRange());
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// SizeofPointerChecker
+//===----------------------------------------------------------------------===//
+
+namespace {
+class SizeofPointerChecker : public Checker<check::ASTCodeBody> {
+public:
+ void checkASTCodeBody(const Decl *D, AnalysisManager& mgr,
+ BugReporter &BR) const {
+ WalkAST walker(BR, this, mgr.getAnalysisDeclContext(D));
+ walker.Visit(D->getBody());
+ }
+};
+}
+
+void ento::registerSizeofPointerChecker(CheckerManager &mgr) {
+ mgr.registerChecker<SizeofPointerChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CheckerDocumentation.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CheckerDocumentation.cpp
new file mode 100644
index 0000000..956dca7
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/CheckerDocumentation.cpp
@@ -0,0 +1,312 @@
+//= CheckerDocumentation.cpp - Documentation checker ---------------*- C++ -*-//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This checker lists all the checker callbacks and provides documentation for
+// checker writers.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
+
+using namespace clang;
+using namespace ento;
+
+// All checkers should be placed into anonymous namespace.
+// We place the CheckerDocumentation inside ento namespace to make the
+// it visible in doxygen.
+namespace clang {
+namespace ento {
+
+/// This checker documents the callback functions checkers can use to implement
+/// the custom handling of the specific events during path exploration as well
+/// as reporting bugs. Most of the callbacks are targeted at path-sensitive
+/// checking.
+///
+/// \sa CheckerContext
+class CheckerDocumentation : public Checker< check::PreStmt<ReturnStmt>,
+ check::PostStmt<DeclStmt>,
+ check::PreObjCMessage,
+ check::PostObjCMessage,
+ check::PreCall,
+ check::PostCall,
+ check::BranchCondition,
+ check::Location,
+ check::Bind,
+ check::DeadSymbols,
+ check::EndFunction,
+ check::EndAnalysis,
+ check::EndOfTranslationUnit,
+ eval::Call,
+ eval::Assume,
+ check::LiveSymbols,
+ check::RegionChanges,
+ check::PointerEscape,
+ check::ConstPointerEscape,
+ check::Event<ImplicitNullDerefEvent>,
+ check::ASTDecl<FunctionDecl> > {
+public:
+
+ /// \brief Pre-visit the Statement.
+ ///
+ /// The method will be called before the analyzer core processes the
+ /// statement. The notification is performed for every explored CFGElement,
+ /// which does not include the control flow statements such as IfStmt. The
+ /// callback can be specialized to be called with any subclass of Stmt.
+ ///
+ /// See checkBranchCondition() callback for performing custom processing of
+ /// the branching statements.
+ ///
+ /// check::PreStmt<ReturnStmt>
+ void checkPreStmt(const ReturnStmt *DS, CheckerContext &C) const {}
+
+ /// \brief Post-visit the Statement.
+ ///
+ /// The method will be called after the analyzer core processes the
+ /// statement. The notification is performed for every explored CFGElement,
+ /// which does not include the control flow statements such as IfStmt. The
+ /// callback can be specialized to be called with any subclass of Stmt.
+ ///
+ /// check::PostStmt<DeclStmt>
+ void checkPostStmt(const DeclStmt *DS, CheckerContext &C) const;
+
+ /// \brief Pre-visit the Objective C message.
+ ///
+ /// This will be called before the analyzer core processes the method call.
+ /// This is called for any action which produces an Objective-C message send,
+ /// including explicit message syntax and property access.
+ ///
+ /// check::PreObjCMessage
+ void checkPreObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const {}
+
+ /// \brief Post-visit the Objective C message.
+ /// \sa checkPreObjCMessage()
+ ///
+ /// check::PostObjCMessage
+ void checkPostObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const {}
+
+ /// \brief Pre-visit an abstract "call" event.
+ ///
+ /// This is used for checkers that want to check arguments or attributed
+ /// behavior for functions and methods no matter how they are being invoked.
+ ///
+ /// Note that this includes ALL cross-body invocations, so if you want to
+ /// limit your checks to, say, function calls, you should test for that at the
+ /// beginning of your callback function.
+ ///
+ /// check::PreCall
+ void checkPreCall(const CallEvent &Call, CheckerContext &C) const {}
+
+ /// \brief Post-visit an abstract "call" event.
+ /// \sa checkPreObjCMessage()
+ ///
+ /// check::PostCall
+ void checkPostCall(const CallEvent &Call, CheckerContext &C) const {}
+
+ /// \brief Pre-visit of the condition statement of a branch (such as IfStmt).
+ void checkBranchCondition(const Stmt *Condition, CheckerContext &Ctx) const {}
+
+ /// \brief Called on a load from and a store to a location.
+ ///
+ /// The method will be called each time a location (pointer) value is
+ /// accessed.
+ /// \param Loc The value of the location (pointer).
+ /// \param IsLoad The flag specifying if the location is a store or a load.
+ /// \param S The load is performed while processing the statement.
+ ///
+ /// check::Location
+ void checkLocation(SVal Loc, bool IsLoad, const Stmt *S,
+ CheckerContext &) const {}
+
+ /// \brief Called on binding of a value to a location.
+ ///
+ /// \param Loc The value of the location (pointer).
+ /// \param Val The value which will be stored at the location Loc.
+ /// \param S The bind is performed while processing the statement S.
+ ///
+ /// check::Bind
+ void checkBind(SVal Loc, SVal Val, const Stmt *S, CheckerContext &) const {}
+
+
+ /// \brief Called whenever a symbol becomes dead.
+ ///
+ /// This callback should be used by the checkers to aggressively clean
+ /// up/reduce the checker state, which is important for reducing the overall
+ /// memory usage. Specifically, if a checker keeps symbol specific information
+ /// in the sate, it can and should be dropped after the symbol becomes dead.
+ /// In addition, reporting a bug as soon as the checker becomes dead leads to
+ /// more precise diagnostics. (For example, one should report that a malloced
+ /// variable is not freed right after it goes out of scope.)
+ ///
+ /// \param SR The SymbolReaper object can be queried to determine which
+ /// symbols are dead.
+ ///
+ /// check::DeadSymbols
+ void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const {}
+
+ /// \brief Called when the analyzer core reaches the end of a
+ /// function being analyzed.
+ ///
+ /// check::EndFunction
+ void checkEndFunction(CheckerContext &Ctx) const {}
+
+ /// \brief Called after all the paths in the ExplodedGraph reach end of path
+ /// - the symbolic execution graph is fully explored.
+ ///
+ /// This callback should be used in cases when a checker needs to have a
+ /// global view of the information generated on all paths. For example, to
+ /// compare execution summary/result several paths.
+ /// See IdempotentOperationChecker for a usage example.
+ ///
+ /// check::EndAnalysis
+ void checkEndAnalysis(ExplodedGraph &G,
+ BugReporter &BR,
+ ExprEngine &Eng) const {}
+
+ /// \brief Called after analysis of a TranslationUnit is complete.
+ ///
+ /// check::EndOfTranslationUnit
+ void checkEndOfTranslationUnit(const TranslationUnitDecl *TU,
+ AnalysisManager &Mgr,
+ BugReporter &BR) const {}
+
+
+ /// \brief Evaluates function call.
+ ///
+ /// The analysis core threats all function calls in the same way. However, some
+ /// functions have special meaning, which should be reflected in the program
+ /// state. This callback allows a checker to provide domain specific knowledge
+ /// about the particular functions it knows about.
+ ///
+ /// \returns true if the call has been successfully evaluated
+ /// and false otherwise. Note, that only one checker can evaluate a call. If
+ /// more than one checker claims that they can evaluate the same call the
+ /// first one wins.
+ ///
+ /// eval::Call
+ bool evalCall(const CallExpr *CE, CheckerContext &C) const { return true; }
+
+ /// \brief Handles assumptions on symbolic values.
+ ///
+ /// This method is called when a symbolic expression is assumed to be true or
+ /// false. For example, the assumptions are performed when evaluating a
+ /// condition at a branch. The callback allows checkers track the assumptions
+ /// performed on the symbols of interest and change the state accordingly.
+ ///
+ /// eval::Assume
+ ProgramStateRef evalAssume(ProgramStateRef State,
+ SVal Cond,
+ bool Assumption) const { return State; }
+
+ /// Allows modifying SymbolReaper object. For example, checkers can explicitly
+ /// register symbols of interest as live. These symbols will not be marked
+ /// dead and removed.
+ ///
+ /// check::LiveSymbols
+ void checkLiveSymbols(ProgramStateRef State, SymbolReaper &SR) const {}
+
+ /// \brief Called to determine if the checker currently needs to know if when
+ /// contents of any regions change.
+ ///
+ /// Since it is not necessarily cheap to compute which regions are being
+ /// changed, this allows the analyzer core to skip the more expensive
+ /// #checkRegionChanges when no checkers are tracking any state.
+ bool wantsRegionChangeUpdate(ProgramStateRef St) const { return true; }
+
+ /// \brief Called when the contents of one or more regions change.
+ ///
+ /// This can occur in many different ways: an explicit bind, a blanket
+ /// invalidation of the region contents, or by passing a region to a function
+ /// call whose behavior the analyzer cannot model perfectly.
+ ///
+ /// \param State The current program state.
+ /// \param Invalidated A set of all symbols potentially touched by the change.
+ /// \param ExplicitRegions The regions explicitly requested for invalidation.
+ /// For a function call, this would be the arguments. For a bind, this
+ /// would be the region being bound to.
+ /// \param Regions The transitive closure of regions accessible from,
+ /// \p ExplicitRegions, i.e. all regions that may have been touched
+ /// by this change. For a simple bind, this list will be the same as
+ /// \p ExplicitRegions, since a bind does not affect the contents of
+ /// anything accessible through the base region.
+ /// \param Call The opaque call triggering this invalidation. Will be 0 if the
+ /// change was not triggered by a call.
+ ///
+ /// Note that this callback will not be invoked unless
+ /// #wantsRegionChangeUpdate returns \c true.
+ ///
+ /// check::RegionChanges
+ ProgramStateRef
+ checkRegionChanges(ProgramStateRef State,
+ const InvalidatedSymbols *Invalidated,
+ ArrayRef<const MemRegion *> ExplicitRegions,
+ ArrayRef<const MemRegion *> Regions,
+ const CallEvent *Call) const {
+ return State;
+ }
+
+ /// \brief Called when pointers escape.
+ ///
+ /// This notifies the checkers about pointer escape, which occurs whenever
+ /// the analyzer cannot track the symbol any more. For example, as a
+ /// result of assigning a pointer into a global or when it's passed to a
+ /// function call the analyzer cannot model.
+ ///
+ /// \param State The state at the point of escape.
+ /// \param Escaped The list of escaped symbols.
+ /// \param Call The corresponding CallEvent, if the symbols escape as
+ /// parameters to the given call.
+ /// \param Kind How the symbols have escaped.
+ /// \returns Checkers can modify the state by returning a new state.
+ ProgramStateRef checkPointerEscape(ProgramStateRef State,
+ const InvalidatedSymbols &Escaped,
+ const CallEvent *Call,
+ PointerEscapeKind Kind) const {
+ return State;
+ }
+
+ /// \brief Called when const pointers escape.
+ ///
+ /// Note: in most cases checkPointerEscape callback is sufficient.
+ /// \sa checkPointerEscape
+ ProgramStateRef checkConstPointerEscape(ProgramStateRef State,
+ const InvalidatedSymbols &Escaped,
+ const CallEvent *Call,
+ PointerEscapeKind Kind) const {
+ return State;
+ }
+
+ /// check::Event<ImplicitNullDerefEvent>
+ void checkEvent(ImplicitNullDerefEvent Event) const {}
+
+ /// \brief Check every declaration in the AST.
+ ///
+ /// An AST traversal callback, which should only be used when the checker is
+ /// not path sensitive. It will be called for every Declaration in the AST and
+ /// can be specialized to only be called on subclasses of Decl, for example,
+ /// FunctionDecl.
+ ///
+ /// check::ASTDecl<FunctionDecl>
+ void checkASTDecl(const FunctionDecl *D,
+ AnalysisManager &Mgr,
+ BugReporter &BR) const {}
+
+};
+
+void CheckerDocumentation::checkPostStmt(const DeclStmt *DS,
+ CheckerContext &C) const {
+ return;
+}
+
+} // end namespace ento
+} // end namespace clang
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/Checkers.td b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/Checkers.td
new file mode 100644
index 0000000..d1d6ac2
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/Checkers.td
@@ -0,0 +1,549 @@
+//===--- Checkers.td - Static Analyzer Checkers -===-----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+include "clang/StaticAnalyzer/Checkers/CheckerBase.td"
+
+//===----------------------------------------------------------------------===//
+// Packages.
+//===----------------------------------------------------------------------===//
+
+def Alpha : Package<"alpha">;
+
+def Core : Package<"core">;
+def CoreBuiltin : Package<"builtin">, InPackage<Core>;
+def CoreUninitialized : Package<"uninitialized">, InPackage<Core>;
+def CoreAlpha : Package<"core">, InPackage<Alpha>, Hidden;
+
+def Cplusplus : Package<"cplusplus">;
+def CplusplusAlpha : Package<"cplusplus">, InPackage<Alpha>, Hidden;
+
+def DeadCode : Package<"deadcode">;
+def DeadCodeAlpha : Package<"deadcode">, InPackage<Alpha>, Hidden;
+
+def Security : Package <"security">;
+def InsecureAPI : Package<"insecureAPI">, InPackage<Security>;
+def SecurityAlpha : Package<"security">, InPackage<Alpha>, Hidden;
+def Taint : Package<"taint">, InPackage<SecurityAlpha>, Hidden;
+
+def Unix : Package<"unix">;
+def UnixAlpha : Package<"unix">, InPackage<Alpha>, Hidden;
+def CString : Package<"cstring">, InPackage<Unix>, Hidden;
+def CStringAlpha : Package<"cstring">, InPackage<UnixAlpha>, Hidden;
+
+def OSX : Package<"osx">;
+def OSXAlpha : Package<"osx">, InPackage<Alpha>, Hidden;
+def Cocoa : Package<"cocoa">, InPackage<OSX>;
+def CocoaAlpha : Package<"cocoa">, InPackage<OSXAlpha>, Hidden;
+def CoreFoundation : Package<"coreFoundation">, InPackage<OSX>;
+def Containers : Package<"containers">, InPackage<CoreFoundation>;
+
+def LLVM : Package<"llvm">;
+def Debug : Package<"debug">;
+
+//===----------------------------------------------------------------------===//
+// Core Checkers.
+//===----------------------------------------------------------------------===//
+
+let ParentPackage = Core in {
+
+def DereferenceChecker : Checker<"NullDereference">,
+ HelpText<"Check for dereferences of null pointers">,
+ DescFile<"DereferenceChecker.cpp">;
+
+def CallAndMessageChecker : Checker<"CallAndMessage">,
+ HelpText<"Check for logical errors for function calls and Objective-C message expressions (e.g., uninitialized arguments, null function pointers)">,
+ DescFile<"CallAndMessageChecker.cpp">;
+
+def NonNullParamChecker : Checker<"NonNullParamChecker">,
+ HelpText<"Check for null pointers passed as arguments to a function whose arguments are references or marked with the 'nonnull' attribute">,
+ DescFile<"NonNullParamChecker.cpp">;
+
+def VLASizeChecker : Checker<"VLASize">,
+ HelpText<"Check for declarations of VLA of undefined or zero size">,
+ DescFile<"VLASizeChecker.cpp">;
+
+def DivZeroChecker : Checker<"DivideZero">,
+ HelpText<"Check for division by zero">,
+ DescFile<"DivZeroChecker.cpp">;
+
+def UndefResultChecker : Checker<"UndefinedBinaryOperatorResult">,
+ HelpText<"Check for undefined results of binary operators">,
+ DescFile<"UndefResultChecker.cpp">;
+
+def StackAddrEscapeChecker : Checker<"StackAddressEscape">,
+ HelpText<"Check that addresses to stack memory do not escape the function">,
+ DescFile<"StackAddrEscapeChecker.cpp">;
+
+def DynamicTypePropagation : Checker<"DynamicTypePropagation">,
+ HelpText<"Generate dynamic type information">,
+ DescFile<"DynamicTypePropagation.cpp">;
+
+} // end "core"
+
+let ParentPackage = CoreAlpha in {
+
+def BoolAssignmentChecker : Checker<"BoolAssignment">,
+ HelpText<"Warn about assigning non-{0,1} values to Boolean variables">,
+ DescFile<"BoolAssignmentChecker.cpp">;
+
+def CastSizeChecker : Checker<"CastSize">,
+ HelpText<"Check when casting a malloc'ed type T, whether the size is a multiple of the size of T">,
+ DescFile<"CastSizeChecker.cpp">;
+
+def CastToStructChecker : Checker<"CastToStruct">,
+ HelpText<"Check for cast from non-struct pointer to struct pointer">,
+ DescFile<"CastToStructChecker.cpp">;
+
+def IdenticalExprChecker : Checker<"IdenticalExpr">,
+ HelpText<"Warn about unintended use of identical expressions in operators">,
+ DescFile<"IdenticalExprChecker.cpp">;
+
+def FixedAddressChecker : Checker<"FixedAddr">,
+ HelpText<"Check for assignment of a fixed address to a pointer">,
+ DescFile<"FixedAddressChecker.cpp">;
+
+def PointerArithChecker : Checker<"PointerArithm">,
+ HelpText<"Check for pointer arithmetic on locations other than array elements">,
+ DescFile<"PointerArithChecker">;
+
+def PointerSubChecker : Checker<"PointerSub">,
+ HelpText<"Check for pointer subtractions on two pointers pointing to different memory chunks">,
+ DescFile<"PointerSubChecker">;
+
+def SizeofPointerChecker : Checker<"SizeofPtr">,
+ HelpText<"Warn about unintended use of sizeof() on pointer expressions">,
+ DescFile<"CheckSizeofPointer.cpp">;
+
+def CallAndMessageUnInitRefArg : Checker<"CallAndMessageUnInitRefArg">,
+ HelpText<"Check for logical errors for function calls and Objective-C message expressions (e.g., uninitialized arguments, null function pointers, and pointer to undefined variables)">,
+ DescFile<"CallAndMessageChecker.cpp">;
+
+def TestAfterDivZeroChecker : Checker<"TestAfterDivZero">,
+ HelpText<"Check for division by variable that is later compared against 0. Either the comparison is useless or there is division by zero.">,
+ DescFile<"TestAfterDivZeroChecker.cpp">;
+
+} // end "alpha.core"
+
+//===----------------------------------------------------------------------===//
+// Evaluate "builtin" functions.
+//===----------------------------------------------------------------------===//
+
+let ParentPackage = CoreBuiltin in {
+
+def NoReturnFunctionChecker : Checker<"NoReturnFunctions">,
+ HelpText<"Evaluate \"panic\" functions that are known to not return to the caller">,
+ DescFile<"NoReturnFunctionChecker.cpp">;
+
+def BuiltinFunctionChecker : Checker<"BuiltinFunctions">,
+ HelpText<"Evaluate compiler builtin functions (e.g., alloca())">,
+ DescFile<"BuiltinFunctionChecker.cpp">;
+
+} // end "core.builtin"
+
+//===----------------------------------------------------------------------===//
+// Uninitialized values checkers.
+//===----------------------------------------------------------------------===//
+
+let ParentPackage = CoreUninitialized in {
+
+def UndefinedArraySubscriptChecker : Checker<"ArraySubscript">,
+ HelpText<"Check for uninitialized values used as array subscripts">,
+ DescFile<"UndefinedArraySubscriptChecker.cpp">;
+
+def UndefinedAssignmentChecker : Checker<"Assign">,
+ HelpText<"Check for assigning uninitialized values">,
+ DescFile<"UndefinedAssignmentChecker.cpp">;
+
+def UndefBranchChecker : Checker<"Branch">,
+ HelpText<"Check for uninitialized values used as branch conditions">,
+ DescFile<"UndefBranchChecker.cpp">;
+
+def UndefCapturedBlockVarChecker : Checker<"CapturedBlockVariable">,
+ HelpText<"Check for blocks that capture uninitialized values">,
+ DescFile<"UndefCapturedBlockVarChecker.cpp">;
+
+def ReturnUndefChecker : Checker<"UndefReturn">,
+ HelpText<"Check for uninitialized values being returned to the caller">,
+ DescFile<"ReturnUndefChecker.cpp">;
+
+} // end "core.uninitialized"
+
+//===----------------------------------------------------------------------===//
+// C++ checkers.
+//===----------------------------------------------------------------------===//
+
+let ParentPackage = Cplusplus in {
+
+def NewDeleteChecker : Checker<"NewDelete">,
+ HelpText<"Check for double-free and use-after-free problems. Traces memory managed by new/delete.">,
+ DescFile<"MallocChecker.cpp">;
+
+def NewDeleteLeaksChecker : Checker<"NewDeleteLeaks">,
+ HelpText<"Check for memory leaks. Traces memory managed by new/delete.">,
+ DescFile<"MallocChecker.cpp">;
+
+} // end: "cplusplus"
+
+let ParentPackage = CplusplusAlpha in {
+
+def VirtualCallChecker : Checker<"VirtualCall">,
+ HelpText<"Check virtual function calls during construction or destruction">,
+ DescFile<"VirtualCallChecker.cpp">;
+
+} // end: "alpha.cplusplus"
+
+//===----------------------------------------------------------------------===//
+// Deadcode checkers.
+//===----------------------------------------------------------------------===//
+
+let ParentPackage = DeadCode in {
+
+def DeadStoresChecker : Checker<"DeadStores">,
+ HelpText<"Check for values stored to variables that are never read afterwards">,
+ DescFile<"DeadStoresChecker.cpp">;
+} // end DeadCode
+
+let ParentPackage = DeadCodeAlpha in {
+
+def UnreachableCodeChecker : Checker<"UnreachableCode">,
+ HelpText<"Check unreachable code">,
+ DescFile<"UnreachableCodeChecker.cpp">;
+
+} // end "alpha.deadcode"
+
+//===----------------------------------------------------------------------===//
+// Security checkers.
+//===----------------------------------------------------------------------===//
+
+let ParentPackage = InsecureAPI in {
+ def gets : Checker<"gets">,
+ HelpText<"Warn on uses of the 'gets' function">,
+ DescFile<"CheckSecuritySyntaxOnly.cpp">;
+ def getpw : Checker<"getpw">,
+ HelpText<"Warn on uses of the 'getpw' function">,
+ DescFile<"CheckSecuritySyntaxOnly.cpp">;
+ def mktemp : Checker<"mktemp">,
+ HelpText<"Warn on uses of the 'mktemp' function">,
+ DescFile<"CheckSecuritySyntaxOnly.cpp">;
+ def mkstemp : Checker<"mkstemp">,
+ HelpText<"Warn when 'mkstemp' is passed fewer than 6 X's in the format string">,
+ DescFile<"CheckSecuritySyntaxOnly.cpp">;
+ def rand : Checker<"rand">,
+ HelpText<"Warn on uses of the 'rand', 'random', and related functions">,
+ DescFile<"CheckSecuritySyntaxOnly.cpp">;
+ def strcpy : Checker<"strcpy">,
+ HelpText<"Warn on uses of the 'strcpy' and 'strcat' functions">,
+ DescFile<"CheckSecuritySyntaxOnly.cpp">;
+ def vfork : Checker<"vfork">,
+ HelpText<"Warn on uses of the 'vfork' function">,
+ DescFile<"CheckSecuritySyntaxOnly.cpp">;
+ def UncheckedReturn : Checker<"UncheckedReturn">,
+ HelpText<"Warn on uses of functions whose return values must be always checked">,
+ DescFile<"CheckSecuritySyntaxOnly.cpp">;
+}
+let ParentPackage = Security in {
+ def FloatLoopCounter : Checker<"FloatLoopCounter">,
+ HelpText<"Warn on using a floating point value as a loop counter (CERT: FLP30-C, FLP30-CPP)">,
+ DescFile<"CheckSecuritySyntaxOnly.cpp">;
+}
+
+let ParentPackage = SecurityAlpha in {
+
+def ArrayBoundChecker : Checker<"ArrayBound">,
+ HelpText<"Warn about buffer overflows (older checker)">,
+ DescFile<"ArrayBoundChecker.cpp">;
+
+def ArrayBoundCheckerV2 : Checker<"ArrayBoundV2">,
+ HelpText<"Warn about buffer overflows (newer checker)">,
+ DescFile<"ArrayBoundCheckerV2.cpp">;
+
+def ReturnPointerRangeChecker : Checker<"ReturnPtrRange">,
+ HelpText<"Check for an out-of-bound pointer being returned to callers">,
+ DescFile<"ReturnPointerRangeChecker.cpp">;
+
+def MallocOverflowSecurityChecker : Checker<"MallocOverflow">,
+ HelpText<"Check for overflows in the arguments to malloc()">,
+ DescFile<"MallocOverflowSecurityChecker.cpp">;
+
+} // end "alpha.security"
+
+//===----------------------------------------------------------------------===//
+// Taint checkers.
+//===----------------------------------------------------------------------===//
+
+let ParentPackage = Taint in {
+
+def GenericTaintChecker : Checker<"TaintPropagation">,
+ HelpText<"Generate taint information used by other checkers">,
+ DescFile<"GenericTaintChecker.cpp">;
+
+} // end "alpha.security.taint"
+
+//===----------------------------------------------------------------------===//
+// Unix API checkers.
+//===----------------------------------------------------------------------===//
+
+let ParentPackage = Unix in {
+
+def UnixAPIChecker : Checker<"API">,
+ HelpText<"Check calls to various UNIX/Posix functions">,
+ DescFile<"UnixAPIChecker.cpp">;
+
+def MallocChecker: Checker<"Malloc">,
+ HelpText<"Check for memory leaks, double free, and use-after-free problems. Traces memory managed by malloc()/free().">,
+ DescFile<"MallocChecker.cpp">;
+
+def MallocSizeofChecker : Checker<"MallocSizeof">,
+ HelpText<"Check for dubious malloc arguments involving sizeof">,
+ DescFile<"MallocSizeofChecker.cpp">;
+
+def MismatchedDeallocatorChecker : Checker<"MismatchedDeallocator">,
+ HelpText<"Check for mismatched deallocators.">,
+ DescFile<"MallocChecker.cpp">;
+
+} // end "unix"
+
+let ParentPackage = UnixAlpha in {
+
+def ChrootChecker : Checker<"Chroot">,
+ HelpText<"Check improper use of chroot">,
+ DescFile<"ChrootChecker.cpp">;
+
+def PthreadLockChecker : Checker<"PthreadLock">,
+ HelpText<"Simple lock -> unlock checker">,
+ DescFile<"PthreadLockChecker.cpp">;
+
+def StreamChecker : Checker<"Stream">,
+ HelpText<"Check stream handling functions">,
+ DescFile<"StreamChecker.cpp">;
+
+def SimpleStreamChecker : Checker<"SimpleStream">,
+ HelpText<"Check for misuses of stream APIs">,
+ DescFile<"SimpleStreamChecker.cpp">;
+
+} // end "alpha.unix"
+
+let ParentPackage = CString in {
+
+def CStringNullArg : Checker<"NullArg">,
+ HelpText<"Check for null pointers being passed as arguments to C string functions">,
+ DescFile<"CStringChecker.cpp">;
+
+def CStringSyntaxChecker : Checker<"BadSizeArg">,
+ HelpText<"Check the size argument passed into C string functions for common erroneous patterns">,
+ DescFile<"CStringSyntaxChecker.cpp">;
+}
+
+let ParentPackage = CStringAlpha in {
+
+def CStringOutOfBounds : Checker<"OutOfBounds">,
+ HelpText<"Check for out-of-bounds access in string functions">,
+ DescFile<"CStringChecker.cpp">;
+
+def CStringBufferOverlap : Checker<"BufferOverlap">,
+ HelpText<"Checks for overlap in two buffer arguments">,
+ DescFile<"CStringChecker.cpp">;
+
+def CStringNotNullTerm : Checker<"NotNullTerminated">,
+ HelpText<"Check for arguments which are not null-terminating strings">,
+ DescFile<"CStringChecker.cpp">;
+}
+
+//===----------------------------------------------------------------------===//
+// Mac OS X, Cocoa, and Core Foundation checkers.
+//===----------------------------------------------------------------------===//
+
+let ParentPackage = OSX in {
+
+def MacOSXAPIChecker : Checker<"API">,
+ InPackage<OSX>,
+ HelpText<"Check for proper uses of various Apple APIs">,
+ DescFile<"MacOSXAPIChecker.cpp">;
+
+def MacOSKeychainAPIChecker : Checker<"SecKeychainAPI">,
+ InPackage<OSX>,
+ HelpText<"Check for proper uses of Secure Keychain APIs">,
+ DescFile<"MacOSKeychainAPIChecker.cpp">;
+
+} // end "osx"
+
+let ParentPackage = Cocoa in {
+
+def ObjCAtSyncChecker : Checker<"AtSync">,
+ HelpText<"Check for nil pointers used as mutexes for @synchronized">,
+ DescFile<"ObjCAtSyncChecker.cpp">;
+
+def NilArgChecker : Checker<"NilArg">,
+ HelpText<"Check for prohibited nil arguments to ObjC method calls">,
+ DescFile<"BasicObjCFoundationChecks.cpp">;
+
+def ClassReleaseChecker : Checker<"ClassRelease">,
+ HelpText<"Check for sending 'retain', 'release', or 'autorelease' directly to a Class">,
+ DescFile<"BasicObjCFoundationChecks.cpp">;
+
+def VariadicMethodTypeChecker : Checker<"VariadicMethodTypes">,
+ HelpText<"Check for passing non-Objective-C types to variadic collection "
+ "initialization methods that expect only Objective-C types">,
+ DescFile<"BasicObjCFoundationChecks.cpp">;
+
+def NSAutoreleasePoolChecker : Checker<"NSAutoreleasePool">,
+ HelpText<"Warn for suboptimal uses of NSAutoreleasePool in Objective-C GC mode">,
+ DescFile<"NSAutoreleasePoolChecker.cpp">;
+
+def ObjCMethSigsChecker : Checker<"IncompatibleMethodTypes">,
+ HelpText<"Warn about Objective-C method signatures with type incompatibilities">,
+ DescFile<"CheckObjCInstMethSignature.cpp">;
+
+def ObjCUnusedIvarsChecker : Checker<"UnusedIvars">,
+ HelpText<"Warn about private ivars that are never used">,
+ DescFile<"ObjCUnusedIVarsChecker.cpp">;
+
+def ObjCSelfInitChecker : Checker<"SelfInit">,
+ HelpText<"Check that 'self' is properly initialized inside an initializer method">,
+ DescFile<"ObjCSelfInitChecker.cpp">;
+
+def ObjCLoopChecker : Checker<"Loops">,
+ HelpText<"Improved modeling of loops using Cocoa collection types">,
+ DescFile<"BasicObjCFoundationChecks.cpp">;
+
+def ObjCNonNilReturnValueChecker : Checker<"NonNilReturnValue">,
+ HelpText<"Model the APIs that are guaranteed to return a non-nil value">,
+ DescFile<"BasicObjCFoundationChecks.cpp">;
+
+def ObjCSuperCallChecker : Checker<"MissingSuperCall">,
+ HelpText<"Warn about Objective-C methods that lack a necessary call to super">,
+ DescFile<"ObjCMissingSuperCallChecker.cpp">;
+
+def NSErrorChecker : Checker<"NSError">,
+ HelpText<"Check usage of NSError** parameters">,
+ DescFile<"NSErrorChecker.cpp">;
+
+def RetainCountChecker : Checker<"RetainCount">,
+ HelpText<"Check for leaks and improper reference count management">,
+ DescFile<"RetainCountChecker.cpp">;
+
+} // end "osx.cocoa"
+
+let ParentPackage = CocoaAlpha in {
+
+def ObjCDeallocChecker : Checker<"Dealloc">,
+ HelpText<"Warn about Objective-C classes that lack a correct implementation of -dealloc">,
+ DescFile<"CheckObjCDealloc.cpp">;
+
+def InstanceVariableInvalidation : Checker<"InstanceVariableInvalidation">,
+ HelpText<"Check that the invalidatable instance variables are invalidated in the methods annotated with objc_instance_variable_invalidator">,
+ DescFile<"IvarInvalidationChecker.cpp">;
+
+def MissingInvalidationMethod : Checker<"MissingInvalidationMethod">,
+ HelpText<"Check that the invalidation methods are present in classes that contain invalidatable instance variables">,
+ DescFile<"IvarInvalidationChecker.cpp">;
+
+def DirectIvarAssignment : Checker<"DirectIvarAssignment">,
+ HelpText<"Check for direct assignments to instance variables">,
+ DescFile<"DirectIvarAssignment.cpp">;
+
+def DirectIvarAssignmentForAnnotatedFunctions : Checker<"DirectIvarAssignmentForAnnotatedFunctions">,
+ HelpText<"Check for direct assignments to instance variables in the methods annotated with objc_no_direct_instance_variable_assignment">,
+ DescFile<"DirectIvarAssignment.cpp">;
+
+} // end "alpha.osx.cocoa"
+
+let ParentPackage = CoreFoundation in {
+
+def CFNumberCreateChecker : Checker<"CFNumber">,
+ HelpText<"Check for proper uses of CFNumberCreate">,
+ DescFile<"BasicObjCFoundationChecks.cpp">;
+
+def CFRetainReleaseChecker : Checker<"CFRetainRelease">,
+ HelpText<"Check for null arguments to CFRetain/CFRelease/CFMakeCollectable">,
+ DescFile<"BasicObjCFoundationChecks.cpp">;
+
+def CFErrorChecker : Checker<"CFError">,
+ HelpText<"Check usage of CFErrorRef* parameters">,
+ DescFile<"NSErrorChecker.cpp">;
+}
+
+let ParentPackage = Containers in {
+def ObjCContainersASTChecker : Checker<"PointerSizedValues">,
+ HelpText<"Warns if 'CFArray', 'CFDictionary', 'CFSet' are created with non-pointer-size values">,
+ DescFile<"ObjCContainersASTChecker.cpp">;
+
+def ObjCContainersChecker : Checker<"OutOfBounds">,
+ HelpText<"Checks for index out-of-bounds when using 'CFArray' API">,
+ DescFile<"ObjCContainersChecker.cpp">;
+
+}
+//===----------------------------------------------------------------------===//
+// Checkers for LLVM development.
+//===----------------------------------------------------------------------===//
+
+def LLVMConventionsChecker : Checker<"Conventions">,
+ InPackage<LLVM>,
+ HelpText<"Check code for LLVM codebase conventions">,
+ DescFile<"LLVMConventionsChecker.cpp">;
+
+//===----------------------------------------------------------------------===//
+// Debugging checkers (for analyzer development).
+//===----------------------------------------------------------------------===//
+
+let ParentPackage = Debug in {
+
+def DominatorsTreeDumper : Checker<"DumpDominators">,
+ HelpText<"Print the dominance tree for a given CFG">,
+ DescFile<"DebugCheckers.cpp">;
+
+def LiveVariablesDumper : Checker<"DumpLiveVars">,
+ HelpText<"Print results of live variable analysis">,
+ DescFile<"DebugCheckers.cpp">;
+
+def CFGViewer : Checker<"ViewCFG">,
+ HelpText<"View Control-Flow Graphs using GraphViz">,
+ DescFile<"DebugCheckers.cpp">;
+
+def CFGDumper : Checker<"DumpCFG">,
+ HelpText<"Display Control-Flow Graphs">,
+ DescFile<"DebugCheckers.cpp">;
+
+def CallGraphViewer : Checker<"ViewCallGraph">,
+ HelpText<"View Call Graph using GraphViz">,
+ DescFile<"DebugCheckers.cpp">;
+
+def CallGraphDumper : Checker<"DumpCallGraph">,
+ HelpText<"Display Call Graph">,
+ DescFile<"DebugCheckers.cpp">;
+
+def ConfigDumper : Checker<"ConfigDumper">,
+ HelpText<"Dump config table">,
+ DescFile<"DebugCheckers.cpp">;
+
+def TraversalDumper : Checker<"DumpTraversal">,
+ HelpText<"Print branch conditions as they are traversed by the engine">,
+ DescFile<"TraversalChecker.cpp">;
+
+def CallDumper : Checker<"DumpCalls">,
+ HelpText<"Print calls as they are traversed by the engine">,
+ DescFile<"TraversalChecker.cpp">;
+
+def AnalyzerStatsChecker : Checker<"Stats">,
+ HelpText<"Emit warnings with analyzer statistics">,
+ DescFile<"AnalyzerStatsChecker.cpp">;
+
+def TaintTesterChecker : Checker<"TaintTest">,
+ HelpText<"Mark tainted symbols as such.">,
+ DescFile<"TaintTesterChecker.cpp">;
+
+def ExprInspectionChecker : Checker<"ExprInspection">,
+ HelpText<"Check the analyzer's understanding of expressions">,
+ DescFile<"ExprInspectionChecker.cpp">;
+
+def ExplodedGraphViewer : Checker<"ViewExplodedGraph">,
+ HelpText<"View Exploded Graphs using GraphViz">,
+ DescFile<"DebugCheckers.cpp">;
+
+} // end "debug"
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ChrootChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ChrootChecker.cpp
new file mode 100644
index 0000000..ad41577
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ChrootChecker.cpp
@@ -0,0 +1,158 @@
+//===- Chrootchecker.cpp -------- Basic security checks ----------*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines chroot checker, which checks improper use of chroot.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
+#include "llvm/ADT/ImmutableMap.h"
+using namespace clang;
+using namespace ento;
+
+namespace {
+
+// enum value that represent the jail state
+enum Kind { NO_CHROOT, ROOT_CHANGED, JAIL_ENTERED };
+
+bool isRootChanged(intptr_t k) { return k == ROOT_CHANGED; }
+//bool isJailEntered(intptr_t k) { return k == JAIL_ENTERED; }
+
+// This checker checks improper use of chroot.
+// The state transition:
+// NO_CHROOT ---chroot(path)--> ROOT_CHANGED ---chdir(/) --> JAIL_ENTERED
+// | |
+// ROOT_CHANGED<--chdir(..)-- JAIL_ENTERED<--chdir(..)--
+// | |
+// bug<--foo()-- JAIL_ENTERED<--foo()--
+class ChrootChecker : public Checker<eval::Call, check::PreStmt<CallExpr> > {
+ mutable IdentifierInfo *II_chroot, *II_chdir;
+ // This bug refers to possibly break out of a chroot() jail.
+ mutable std::unique_ptr<BuiltinBug> BT_BreakJail;
+
+public:
+ ChrootChecker() : II_chroot(nullptr), II_chdir(nullptr) {}
+
+ static void *getTag() {
+ static int x;
+ return &x;
+ }
+
+ bool evalCall(const CallExpr *CE, CheckerContext &C) const;
+ void checkPreStmt(const CallExpr *CE, CheckerContext &C) const;
+
+private:
+ void Chroot(CheckerContext &C, const CallExpr *CE) const;
+ void Chdir(CheckerContext &C, const CallExpr *CE) const;
+};
+
+} // end anonymous namespace
+
+bool ChrootChecker::evalCall(const CallExpr *CE, CheckerContext &C) const {
+ const FunctionDecl *FD = C.getCalleeDecl(CE);
+ if (!FD)
+ return false;
+
+ ASTContext &Ctx = C.getASTContext();
+ if (!II_chroot)
+ II_chroot = &Ctx.Idents.get("chroot");
+ if (!II_chdir)
+ II_chdir = &Ctx.Idents.get("chdir");
+
+ if (FD->getIdentifier() == II_chroot) {
+ Chroot(C, CE);
+ return true;
+ }
+ if (FD->getIdentifier() == II_chdir) {
+ Chdir(C, CE);
+ return true;
+ }
+
+ return false;
+}
+
+void ChrootChecker::Chroot(CheckerContext &C, const CallExpr *CE) const {
+ ProgramStateRef state = C.getState();
+ ProgramStateManager &Mgr = state->getStateManager();
+
+ // Once encouter a chroot(), set the enum value ROOT_CHANGED directly in
+ // the GDM.
+ state = Mgr.addGDM(state, ChrootChecker::getTag(), (void*) ROOT_CHANGED);
+ C.addTransition(state);
+}
+
+void ChrootChecker::Chdir(CheckerContext &C, const CallExpr *CE) const {
+ ProgramStateRef state = C.getState();
+ ProgramStateManager &Mgr = state->getStateManager();
+
+ // If there are no jail state in the GDM, just return.
+ const void *k = state->FindGDM(ChrootChecker::getTag());
+ if (!k)
+ return;
+
+ // After chdir("/"), enter the jail, set the enum value JAIL_ENTERED.
+ const Expr *ArgExpr = CE->getArg(0);
+ SVal ArgVal = state->getSVal(ArgExpr, C.getLocationContext());
+
+ if (const MemRegion *R = ArgVal.getAsRegion()) {
+ R = R->StripCasts();
+ if (const StringRegion* StrRegion= dyn_cast<StringRegion>(R)) {
+ const StringLiteral* Str = StrRegion->getStringLiteral();
+ if (Str->getString() == "/")
+ state = Mgr.addGDM(state, ChrootChecker::getTag(),
+ (void*) JAIL_ENTERED);
+ }
+ }
+
+ C.addTransition(state);
+}
+
+// Check the jail state before any function call except chroot and chdir().
+void ChrootChecker::checkPreStmt(const CallExpr *CE, CheckerContext &C) const {
+ const FunctionDecl *FD = C.getCalleeDecl(CE);
+ if (!FD)
+ return;
+
+ ASTContext &Ctx = C.getASTContext();
+ if (!II_chroot)
+ II_chroot = &Ctx.Idents.get("chroot");
+ if (!II_chdir)
+ II_chdir = &Ctx.Idents.get("chdir");
+
+ // Ingnore chroot and chdir.
+ if (FD->getIdentifier() == II_chroot || FD->getIdentifier() == II_chdir)
+ return;
+
+ // If jail state is ROOT_CHANGED, generate BugReport.
+ void *const* k = C.getState()->FindGDM(ChrootChecker::getTag());
+ if (k)
+ if (isRootChanged((intptr_t) *k))
+ if (ExplodedNode *N = C.addTransition()) {
+ if (!BT_BreakJail)
+ BT_BreakJail.reset(new BuiltinBug(
+ this, "Break out of jail", "No call of chdir(\"/\") immediately "
+ "after chroot"));
+ BugReport *R = new BugReport(*BT_BreakJail,
+ BT_BreakJail->getDescription(), N);
+ C.emitReport(R);
+ }
+
+ return;
+}
+
+void ento::registerChrootChecker(CheckerManager &mgr) {
+ mgr.registerChecker<ChrootChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ClangCheckers.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ClangCheckers.cpp
new file mode 100644
index 0000000..77a5a72
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ClangCheckers.cpp
@@ -0,0 +1,32 @@
+//===--- ClangCheckers.h - Provides builtin checkers ------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Checkers/ClangCheckers.h"
+#include "clang/StaticAnalyzer/Core/CheckerRegistry.h"
+
+// FIXME: This is only necessary as long as there are checker registration
+// functions that do additional work besides mgr.registerChecker<CLASS>().
+// The only checkers that currently do this are:
+// - NSAutoreleasePoolChecker
+// - NSErrorChecker
+// - ObjCAtSyncChecker
+// It's probably worth including this information in Checkers.td to minimize
+// boilerplate code.
+#include "ClangSACheckers.h"
+
+using namespace clang;
+using namespace ento;
+
+void ento::registerBuiltinCheckers(CheckerRegistry &registry) {
+#define GET_CHECKERS
+#define CHECKER(FULLNAME,CLASS,DESCFILE,HELPTEXT,GROUPINDEX,HIDDEN) \
+ registry.addChecker(register##CLASS, FULLNAME, HELPTEXT);
+#include "Checkers.inc"
+#undef GET_CHECKERS
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ClangSACheckers.h b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ClangSACheckers.h
new file mode 100644
index 0000000..05b4a61
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ClangSACheckers.h
@@ -0,0 +1,37 @@
+//===--- ClangSACheckers.h - Registration functions for Checkers *- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Declares the registation functions for the checkers defined in
+// libclangStaticAnalyzerCheckers.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_STATICANALYZER_CHECKERS_CLANGSACHECKERS_H
+#define LLVM_CLANG_LIB_STATICANALYZER_CHECKERS_CLANGSACHECKERS_H
+
+#include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h"
+
+namespace clang {
+
+namespace ento {
+class CheckerManager;
+class CheckerRegistry;
+
+#define GET_CHECKERS
+#define CHECKER(FULLNAME,CLASS,CXXFILE,HELPTEXT,GROUPINDEX,HIDDEN) \
+ void register##CLASS(CheckerManager &mgr);
+#include "Checkers.inc"
+#undef CHECKER
+#undef GET_CHECKERS
+
+} // end ento namespace
+
+} // end clang namespace
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/DeadStoresChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/DeadStoresChecker.cpp
new file mode 100644
index 0000000..f4be5b3
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/DeadStoresChecker.cpp
@@ -0,0 +1,452 @@
+//==- DeadStoresChecker.cpp - Check for stores to dead variables -*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a DeadStores, a flow-sensitive checker that looks for
+// stores to variables that are no longer live.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/ParentMap.h"
+#include "clang/AST/RecursiveASTVisitor.h"
+#include "clang/Analysis/Analyses/LiveVariables.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/SaveAndRestore.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+
+/// A simple visitor to record what VarDecls occur in EH-handling code.
+class EHCodeVisitor : public RecursiveASTVisitor<EHCodeVisitor> {
+public:
+ bool inEH;
+ llvm::DenseSet<const VarDecl *> &S;
+
+ bool TraverseObjCAtFinallyStmt(ObjCAtFinallyStmt *S) {
+ SaveAndRestore<bool> inFinally(inEH, true);
+ return ::RecursiveASTVisitor<EHCodeVisitor>::TraverseObjCAtFinallyStmt(S);
+ }
+
+ bool TraverseObjCAtCatchStmt(ObjCAtCatchStmt *S) {
+ SaveAndRestore<bool> inCatch(inEH, true);
+ return ::RecursiveASTVisitor<EHCodeVisitor>::TraverseObjCAtCatchStmt(S);
+ }
+
+ bool TraverseCXXCatchStmt(CXXCatchStmt *S) {
+ SaveAndRestore<bool> inCatch(inEH, true);
+ return TraverseStmt(S->getHandlerBlock());
+ }
+
+ bool VisitDeclRefExpr(DeclRefExpr *DR) {
+ if (inEH)
+ if (const VarDecl *D = dyn_cast<VarDecl>(DR->getDecl()))
+ S.insert(D);
+ return true;
+ }
+
+ EHCodeVisitor(llvm::DenseSet<const VarDecl *> &S) :
+ inEH(false), S(S) {}
+};
+
+// FIXME: Eventually migrate into its own file, and have it managed by
+// AnalysisManager.
+class ReachableCode {
+ const CFG &cfg;
+ llvm::BitVector reachable;
+public:
+ ReachableCode(const CFG &cfg)
+ : cfg(cfg), reachable(cfg.getNumBlockIDs(), false) {}
+
+ void computeReachableBlocks();
+
+ bool isReachable(const CFGBlock *block) const {
+ return reachable[block->getBlockID()];
+ }
+};
+}
+
+void ReachableCode::computeReachableBlocks() {
+ if (!cfg.getNumBlockIDs())
+ return;
+
+ SmallVector<const CFGBlock*, 10> worklist;
+ worklist.push_back(&cfg.getEntry());
+
+ while (!worklist.empty()) {
+ const CFGBlock *block = worklist.pop_back_val();
+ llvm::BitVector::reference isReachable = reachable[block->getBlockID()];
+ if (isReachable)
+ continue;
+ isReachable = true;
+ for (CFGBlock::const_succ_iterator i = block->succ_begin(),
+ e = block->succ_end(); i != e; ++i)
+ if (const CFGBlock *succ = *i)
+ worklist.push_back(succ);
+ }
+}
+
+static const Expr *
+LookThroughTransitiveAssignmentsAndCommaOperators(const Expr *Ex) {
+ while (Ex) {
+ const BinaryOperator *BO =
+ dyn_cast<BinaryOperator>(Ex->IgnoreParenCasts());
+ if (!BO)
+ break;
+ if (BO->getOpcode() == BO_Assign) {
+ Ex = BO->getRHS();
+ continue;
+ }
+ if (BO->getOpcode() == BO_Comma) {
+ Ex = BO->getRHS();
+ continue;
+ }
+ break;
+ }
+ return Ex;
+}
+
+namespace {
+class DeadStoreObs : public LiveVariables::Observer {
+ const CFG &cfg;
+ ASTContext &Ctx;
+ BugReporter& BR;
+ const CheckerBase *Checker;
+ AnalysisDeclContext* AC;
+ ParentMap& Parents;
+ llvm::SmallPtrSet<const VarDecl*, 20> Escaped;
+ std::unique_ptr<ReachableCode> reachableCode;
+ const CFGBlock *currentBlock;
+ std::unique_ptr<llvm::DenseSet<const VarDecl *>> InEH;
+
+ enum DeadStoreKind { Standard, Enclosing, DeadIncrement, DeadInit };
+
+public:
+ DeadStoreObs(const CFG &cfg, ASTContext &ctx, BugReporter &br,
+ const CheckerBase *checker, AnalysisDeclContext *ac,
+ ParentMap &parents,
+ llvm::SmallPtrSet<const VarDecl *, 20> &escaped)
+ : cfg(cfg), Ctx(ctx), BR(br), Checker(checker), AC(ac), Parents(parents),
+ Escaped(escaped), currentBlock(nullptr) {}
+
+ ~DeadStoreObs() override {}
+
+ bool isLive(const LiveVariables::LivenessValues &Live, const VarDecl *D) {
+ if (Live.isLive(D))
+ return true;
+ // Lazily construct the set that records which VarDecls are in
+ // EH code.
+ if (!InEH.get()) {
+ InEH.reset(new llvm::DenseSet<const VarDecl *>());
+ EHCodeVisitor V(*InEH.get());
+ V.TraverseStmt(AC->getBody());
+ }
+ // Treat all VarDecls that occur in EH code as being "always live"
+ // when considering to suppress dead stores. Frequently stores
+ // are followed by reads in EH code, but we don't have the ability
+ // to analyze that yet.
+ return InEH->count(D);
+ }
+
+ void Report(const VarDecl *V, DeadStoreKind dsk,
+ PathDiagnosticLocation L, SourceRange R) {
+ if (Escaped.count(V))
+ return;
+
+ // Compute reachable blocks within the CFG for trivial cases
+ // where a bogus dead store can be reported because itself is unreachable.
+ if (!reachableCode.get()) {
+ reachableCode.reset(new ReachableCode(cfg));
+ reachableCode->computeReachableBlocks();
+ }
+
+ if (!reachableCode->isReachable(currentBlock))
+ return;
+
+ SmallString<64> buf;
+ llvm::raw_svector_ostream os(buf);
+ const char *BugType = nullptr;
+
+ switch (dsk) {
+ case DeadInit:
+ BugType = "Dead initialization";
+ os << "Value stored to '" << *V
+ << "' during its initialization is never read";
+ break;
+
+ case DeadIncrement:
+ BugType = "Dead increment";
+ case Standard:
+ if (!BugType) BugType = "Dead assignment";
+ os << "Value stored to '" << *V << "' is never read";
+ break;
+
+ case Enclosing:
+ // Don't report issues in this case, e.g.: "if (x = foo())",
+ // where 'x' is unused later. We have yet to see a case where
+ // this is a real bug.
+ return;
+ }
+
+ BR.EmitBasicReport(AC->getDecl(), Checker, BugType, "Dead store", os.str(),
+ L, R);
+ }
+
+ void CheckVarDecl(const VarDecl *VD, const Expr *Ex, const Expr *Val,
+ DeadStoreKind dsk,
+ const LiveVariables::LivenessValues &Live) {
+
+ if (!VD->hasLocalStorage())
+ return;
+ // Reference types confuse the dead stores checker. Skip them
+ // for now.
+ if (VD->getType()->getAs<ReferenceType>())
+ return;
+
+ if (!isLive(Live, VD) &&
+ !(VD->hasAttr<UnusedAttr>() || VD->hasAttr<BlocksAttr>() ||
+ VD->hasAttr<ObjCPreciseLifetimeAttr>())) {
+
+ PathDiagnosticLocation ExLoc =
+ PathDiagnosticLocation::createBegin(Ex, BR.getSourceManager(), AC);
+ Report(VD, dsk, ExLoc, Val->getSourceRange());
+ }
+ }
+
+ void CheckDeclRef(const DeclRefExpr *DR, const Expr *Val, DeadStoreKind dsk,
+ const LiveVariables::LivenessValues& Live) {
+ if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl()))
+ CheckVarDecl(VD, DR, Val, dsk, Live);
+ }
+
+ bool isIncrement(VarDecl *VD, const BinaryOperator* B) {
+ if (B->isCompoundAssignmentOp())
+ return true;
+
+ const Expr *RHS = B->getRHS()->IgnoreParenCasts();
+ const BinaryOperator* BRHS = dyn_cast<BinaryOperator>(RHS);
+
+ if (!BRHS)
+ return false;
+
+ const DeclRefExpr *DR;
+
+ if ((DR = dyn_cast<DeclRefExpr>(BRHS->getLHS()->IgnoreParenCasts())))
+ if (DR->getDecl() == VD)
+ return true;
+
+ if ((DR = dyn_cast<DeclRefExpr>(BRHS->getRHS()->IgnoreParenCasts())))
+ if (DR->getDecl() == VD)
+ return true;
+
+ return false;
+ }
+
+ void observeStmt(const Stmt *S, const CFGBlock *block,
+ const LiveVariables::LivenessValues &Live) override {
+
+ currentBlock = block;
+
+ // Skip statements in macros.
+ if (S->getLocStart().isMacroID())
+ return;
+
+ // Only cover dead stores from regular assignments. ++/-- dead stores
+ // have never flagged a real bug.
+ if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
+ if (!B->isAssignmentOp()) return; // Skip non-assignments.
+
+ if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(B->getLHS()))
+ if (VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
+ // Special case: check for assigning null to a pointer.
+ // This is a common form of defensive programming.
+ const Expr *RHS =
+ LookThroughTransitiveAssignmentsAndCommaOperators(B->getRHS());
+ RHS = RHS->IgnoreParenCasts();
+
+ QualType T = VD->getType();
+ if (T->isPointerType() || T->isObjCObjectPointerType()) {
+ if (RHS->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNull))
+ return;
+ }
+
+ // Special case: self-assignments. These are often used to shut up
+ // "unused variable" compiler warnings.
+ if (const DeclRefExpr *RhsDR = dyn_cast<DeclRefExpr>(RHS))
+ if (VD == dyn_cast<VarDecl>(RhsDR->getDecl()))
+ return;
+
+ // Otherwise, issue a warning.
+ DeadStoreKind dsk = Parents.isConsumedExpr(B)
+ ? Enclosing
+ : (isIncrement(VD,B) ? DeadIncrement : Standard);
+
+ CheckVarDecl(VD, DR, B->getRHS(), dsk, Live);
+ }
+ }
+ else if (const UnaryOperator* U = dyn_cast<UnaryOperator>(S)) {
+ if (!U->isIncrementOp() || U->isPrefix())
+ return;
+
+ const Stmt *parent = Parents.getParentIgnoreParenCasts(U);
+ if (!parent || !isa<ReturnStmt>(parent))
+ return;
+
+ const Expr *Ex = U->getSubExpr()->IgnoreParenCasts();
+
+ if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Ex))
+ CheckDeclRef(DR, U, DeadIncrement, Live);
+ }
+ else if (const DeclStmt *DS = dyn_cast<DeclStmt>(S))
+ // Iterate through the decls. Warn if any initializers are complex
+ // expressions that are not live (never used).
+ for (const auto *DI : DS->decls()) {
+ const auto *V = dyn_cast<VarDecl>(DI);
+
+ if (!V)
+ continue;
+
+ if (V->hasLocalStorage()) {
+ // Reference types confuse the dead stores checker. Skip them
+ // for now.
+ if (V->getType()->getAs<ReferenceType>())
+ return;
+
+ if (const Expr *E = V->getInit()) {
+ while (const ExprWithCleanups *exprClean =
+ dyn_cast<ExprWithCleanups>(E))
+ E = exprClean->getSubExpr();
+
+ // Look through transitive assignments, e.g.:
+ // int x = y = 0;
+ E = LookThroughTransitiveAssignmentsAndCommaOperators(E);
+
+ // Don't warn on C++ objects (yet) until we can show that their
+ // constructors/destructors don't have side effects.
+ if (isa<CXXConstructExpr>(E))
+ return;
+
+ // A dead initialization is a variable that is dead after it
+ // is initialized. We don't flag warnings for those variables
+ // marked 'unused' or 'objc_precise_lifetime'.
+ if (!isLive(Live, V) &&
+ !V->hasAttr<UnusedAttr>() &&
+ !V->hasAttr<ObjCPreciseLifetimeAttr>()) {
+ // Special case: check for initializations with constants.
+ //
+ // e.g. : int x = 0;
+ //
+ // If x is EVER assigned a new value later, don't issue
+ // a warning. This is because such initialization can be
+ // due to defensive programming.
+ if (E->isEvaluatable(Ctx))
+ return;
+
+ if (const DeclRefExpr *DRE =
+ dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
+ if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
+ // Special case: check for initialization from constant
+ // variables.
+ //
+ // e.g. extern const int MyConstant;
+ // int x = MyConstant;
+ //
+ if (VD->hasGlobalStorage() &&
+ VD->getType().isConstQualified())
+ return;
+ // Special case: check for initialization from scalar
+ // parameters. This is often a form of defensive
+ // programming. Non-scalars are still an error since
+ // because it more likely represents an actual algorithmic
+ // bug.
+ if (isa<ParmVarDecl>(VD) && VD->getType()->isScalarType())
+ return;
+ }
+
+ PathDiagnosticLocation Loc =
+ PathDiagnosticLocation::create(V, BR.getSourceManager());
+ Report(V, DeadInit, Loc, E->getSourceRange());
+ }
+ }
+ }
+ }
+ }
+};
+
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// Driver function to invoke the Dead-Stores checker on a CFG.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class FindEscaped {
+public:
+ llvm::SmallPtrSet<const VarDecl*, 20> Escaped;
+
+ void operator()(const Stmt *S) {
+ // Check for '&'. Any VarDecl whose address has been taken we treat as
+ // escaped.
+ // FIXME: What about references?
+ const UnaryOperator *U = dyn_cast<UnaryOperator>(S);
+ if (!U)
+ return;
+ if (U->getOpcode() != UO_AddrOf)
+ return;
+
+ const Expr *E = U->getSubExpr()->IgnoreParenCasts();
+ if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E))
+ if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl()))
+ Escaped.insert(VD);
+ }
+};
+} // end anonymous namespace
+
+
+//===----------------------------------------------------------------------===//
+// DeadStoresChecker
+//===----------------------------------------------------------------------===//
+
+namespace {
+class DeadStoresChecker : public Checker<check::ASTCodeBody> {
+public:
+ void checkASTCodeBody(const Decl *D, AnalysisManager& mgr,
+ BugReporter &BR) const {
+
+ // Don't do anything for template instantiations.
+ // Proving that code in a template instantiation is "dead"
+ // means proving that it is dead in all instantiations.
+ // This same problem exists with -Wunreachable-code.
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
+ if (FD->isTemplateInstantiation())
+ return;
+
+ if (LiveVariables *L = mgr.getAnalysis<LiveVariables>(D)) {
+ CFG &cfg = *mgr.getCFG(D);
+ AnalysisDeclContext *AC = mgr.getAnalysisDeclContext(D);
+ ParentMap &pmap = mgr.getParentMap(D);
+ FindEscaped FS;
+ cfg.VisitBlockStmts(FS);
+ DeadStoreObs A(cfg, BR.getContext(), BR, this, AC, pmap, FS.Escaped);
+ L->runOnAllBlocks(A);
+ }
+ }
+};
+}
+
+void ento::registerDeadStoresChecker(CheckerManager &mgr) {
+ mgr.registerChecker<DeadStoresChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/DebugCheckers.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/DebugCheckers.cpp
new file mode 100644
index 0000000..51e7a3d
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/DebugCheckers.cpp
@@ -0,0 +1,211 @@
+//==- DebugCheckers.cpp - Debugging Checkers ---------------------*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines checkers that display debugging information.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/Analysis/Analyses/Dominators.h"
+#include "clang/Analysis/Analyses/LiveVariables.h"
+#include "clang/Analysis/CallGraph.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
+#include "llvm/Support/Process.h"
+
+using namespace clang;
+using namespace ento;
+
+//===----------------------------------------------------------------------===//
+// DominatorsTreeDumper
+//===----------------------------------------------------------------------===//
+
+namespace {
+class DominatorsTreeDumper : public Checker<check::ASTCodeBody> {
+public:
+ void checkASTCodeBody(const Decl *D, AnalysisManager& mgr,
+ BugReporter &BR) const {
+ if (AnalysisDeclContext *AC = mgr.getAnalysisDeclContext(D)) {
+ DominatorTree dom;
+ dom.buildDominatorTree(*AC);
+ dom.dump();
+ }
+ }
+};
+}
+
+void ento::registerDominatorsTreeDumper(CheckerManager &mgr) {
+ mgr.registerChecker<DominatorsTreeDumper>();
+}
+
+//===----------------------------------------------------------------------===//
+// LiveVariablesDumper
+//===----------------------------------------------------------------------===//
+
+namespace {
+class LiveVariablesDumper : public Checker<check::ASTCodeBody> {
+public:
+ void checkASTCodeBody(const Decl *D, AnalysisManager& mgr,
+ BugReporter &BR) const {
+ if (LiveVariables* L = mgr.getAnalysis<LiveVariables>(D)) {
+ L->dumpBlockLiveness(mgr.getSourceManager());
+ }
+ }
+};
+}
+
+void ento::registerLiveVariablesDumper(CheckerManager &mgr) {
+ mgr.registerChecker<LiveVariablesDumper>();
+}
+
+//===----------------------------------------------------------------------===//
+// CFGViewer
+//===----------------------------------------------------------------------===//
+
+namespace {
+class CFGViewer : public Checker<check::ASTCodeBody> {
+public:
+ void checkASTCodeBody(const Decl *D, AnalysisManager& mgr,
+ BugReporter &BR) const {
+ if (CFG *cfg = mgr.getCFG(D)) {
+ cfg->viewCFG(mgr.getLangOpts());
+ }
+ }
+};
+}
+
+void ento::registerCFGViewer(CheckerManager &mgr) {
+ mgr.registerChecker<CFGViewer>();
+}
+
+//===----------------------------------------------------------------------===//
+// CFGDumper
+//===----------------------------------------------------------------------===//
+
+namespace {
+class CFGDumper : public Checker<check::ASTCodeBody> {
+public:
+ void checkASTCodeBody(const Decl *D, AnalysisManager& mgr,
+ BugReporter &BR) const {
+ PrintingPolicy Policy(mgr.getLangOpts());
+ Policy.TerseOutput = true;
+ Policy.PolishForDeclaration = true;
+ D->print(llvm::errs(), Policy);
+
+ if (CFG *cfg = mgr.getCFG(D)) {
+ cfg->dump(mgr.getLangOpts(),
+ llvm::sys::Process::StandardErrHasColors());
+ }
+ }
+};
+}
+
+void ento::registerCFGDumper(CheckerManager &mgr) {
+ mgr.registerChecker<CFGDumper>();
+}
+
+//===----------------------------------------------------------------------===//
+// CallGraphViewer
+//===----------------------------------------------------------------------===//
+
+namespace {
+class CallGraphViewer : public Checker< check::ASTDecl<TranslationUnitDecl> > {
+public:
+ void checkASTDecl(const TranslationUnitDecl *TU, AnalysisManager& mgr,
+ BugReporter &BR) const {
+ CallGraph CG;
+ CG.addToCallGraph(const_cast<TranslationUnitDecl*>(TU));
+ CG.viewGraph();
+ }
+};
+}
+
+void ento::registerCallGraphViewer(CheckerManager &mgr) {
+ mgr.registerChecker<CallGraphViewer>();
+}
+
+//===----------------------------------------------------------------------===//
+// CallGraphDumper
+//===----------------------------------------------------------------------===//
+
+namespace {
+class CallGraphDumper : public Checker< check::ASTDecl<TranslationUnitDecl> > {
+public:
+ void checkASTDecl(const TranslationUnitDecl *TU, AnalysisManager& mgr,
+ BugReporter &BR) const {
+ CallGraph CG;
+ CG.addToCallGraph(const_cast<TranslationUnitDecl*>(TU));
+ CG.dump();
+ }
+};
+}
+
+void ento::registerCallGraphDumper(CheckerManager &mgr) {
+ mgr.registerChecker<CallGraphDumper>();
+}
+
+
+//===----------------------------------------------------------------------===//
+// ConfigDumper
+//===----------------------------------------------------------------------===//
+
+namespace {
+class ConfigDumper : public Checker< check::EndOfTranslationUnit > {
+ typedef AnalyzerOptions::ConfigTable Table;
+
+ static int compareEntry(const Table::MapEntryTy *const *LHS,
+ const Table::MapEntryTy *const *RHS) {
+ return (*LHS)->getKey().compare((*RHS)->getKey());
+ }
+
+public:
+ void checkEndOfTranslationUnit(const TranslationUnitDecl *TU,
+ AnalysisManager& mgr,
+ BugReporter &BR) const {
+ const Table &Config = mgr.options.Config;
+
+ SmallVector<const Table::MapEntryTy *, 32> Keys;
+ for (Table::const_iterator I = Config.begin(), E = Config.end(); I != E;
+ ++I)
+ Keys.push_back(&*I);
+ llvm::array_pod_sort(Keys.begin(), Keys.end(), compareEntry);
+
+ llvm::errs() << "[config]\n";
+ for (unsigned I = 0, E = Keys.size(); I != E; ++I)
+ llvm::errs() << Keys[I]->getKey() << " = " << Keys[I]->second << '\n';
+
+ llvm::errs() << "[stats]\n" << "num-entries = " << Keys.size() << '\n';
+ }
+};
+}
+
+void ento::registerConfigDumper(CheckerManager &mgr) {
+ mgr.registerChecker<ConfigDumper>();
+}
+
+//===----------------------------------------------------------------------===//
+// ExplodedGraph Viewer
+//===----------------------------------------------------------------------===//
+
+namespace {
+class ExplodedGraphViewer : public Checker< check::EndAnalysis > {
+public:
+ ExplodedGraphViewer() {}
+ void checkEndAnalysis(ExplodedGraph &G, BugReporter &B,ExprEngine &Eng) const {
+ Eng.ViewGraph(0);
+ }
+};
+
+}
+
+void ento::registerExplodedGraphViewer(CheckerManager &mgr) {
+ mgr.registerChecker<ExplodedGraphViewer>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/DereferenceChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/DereferenceChecker.cpp
new file mode 100644
index 0000000..2e442c7
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/DereferenceChecker.cpp
@@ -0,0 +1,281 @@
+//== NullDerefChecker.cpp - Null dereference checker ------------*- C++ -*--==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This defines NullDerefChecker, a builtin check in ExprEngine that performs
+// checks for null pointers at loads and stores.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+class DereferenceChecker
+ : public Checker< check::Location,
+ check::Bind,
+ EventDispatcher<ImplicitNullDerefEvent> > {
+ mutable std::unique_ptr<BuiltinBug> BT_null;
+ mutable std::unique_ptr<BuiltinBug> BT_undef;
+
+ void reportBug(ProgramStateRef State, const Stmt *S, CheckerContext &C,
+ bool IsBind = false) const;
+
+public:
+ void checkLocation(SVal location, bool isLoad, const Stmt* S,
+ CheckerContext &C) const;
+ void checkBind(SVal L, SVal V, const Stmt *S, CheckerContext &C) const;
+
+ static void AddDerefSource(raw_ostream &os,
+ SmallVectorImpl<SourceRange> &Ranges,
+ const Expr *Ex, const ProgramState *state,
+ const LocationContext *LCtx,
+ bool loadedFrom = false);
+};
+} // end anonymous namespace
+
+void
+DereferenceChecker::AddDerefSource(raw_ostream &os,
+ SmallVectorImpl<SourceRange> &Ranges,
+ const Expr *Ex,
+ const ProgramState *state,
+ const LocationContext *LCtx,
+ bool loadedFrom) {
+ Ex = Ex->IgnoreParenLValueCasts();
+ switch (Ex->getStmtClass()) {
+ default:
+ break;
+ case Stmt::DeclRefExprClass: {
+ const DeclRefExpr *DR = cast<DeclRefExpr>(Ex);
+ if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
+ os << " (" << (loadedFrom ? "loaded from" : "from")
+ << " variable '" << VD->getName() << "')";
+ Ranges.push_back(DR->getSourceRange());
+ }
+ break;
+ }
+ case Stmt::MemberExprClass: {
+ const MemberExpr *ME = cast<MemberExpr>(Ex);
+ os << " (" << (loadedFrom ? "loaded from" : "via")
+ << " field '" << ME->getMemberNameInfo() << "')";
+ SourceLocation L = ME->getMemberLoc();
+ Ranges.push_back(SourceRange(L, L));
+ break;
+ }
+ case Stmt::ObjCIvarRefExprClass: {
+ const ObjCIvarRefExpr *IV = cast<ObjCIvarRefExpr>(Ex);
+ os << " (" << (loadedFrom ? "loaded from" : "via")
+ << " ivar '" << IV->getDecl()->getName() << "')";
+ SourceLocation L = IV->getLocation();
+ Ranges.push_back(SourceRange(L, L));
+ break;
+ }
+ }
+}
+
+void DereferenceChecker::reportBug(ProgramStateRef State, const Stmt *S,
+ CheckerContext &C, bool IsBind) const {
+ // Generate an error node.
+ ExplodedNode *N = C.generateSink(State);
+ if (!N)
+ return;
+
+ // We know that 'location' cannot be non-null. This is what
+ // we call an "explicit" null dereference.
+ if (!BT_null)
+ BT_null.reset(new BuiltinBug(this, "Dereference of null pointer"));
+
+ SmallString<100> buf;
+ llvm::raw_svector_ostream os(buf);
+
+ SmallVector<SourceRange, 2> Ranges;
+
+ // Walk through lvalue casts to get the original expression
+ // that syntactically caused the load.
+ if (const Expr *expr = dyn_cast<Expr>(S))
+ S = expr->IgnoreParenLValueCasts();
+
+ if (IsBind) {
+ if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
+ if (BO->isAssignmentOp())
+ S = BO->getRHS();
+ } else if (const DeclStmt *DS = dyn_cast<DeclStmt>(S)) {
+ assert(DS->isSingleDecl() && "We process decls one by one");
+ if (const VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl()))
+ if (const Expr *Init = VD->getAnyInitializer())
+ S = Init;
+ }
+ }
+
+ switch (S->getStmtClass()) {
+ case Stmt::ArraySubscriptExprClass: {
+ os << "Array access";
+ const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(S);
+ AddDerefSource(os, Ranges, AE->getBase()->IgnoreParenCasts(),
+ State.get(), N->getLocationContext());
+ os << " results in a null pointer dereference";
+ break;
+ }
+ case Stmt::UnaryOperatorClass: {
+ os << "Dereference of null pointer";
+ const UnaryOperator *U = cast<UnaryOperator>(S);
+ AddDerefSource(os, Ranges, U->getSubExpr()->IgnoreParens(),
+ State.get(), N->getLocationContext(), true);
+ break;
+ }
+ case Stmt::MemberExprClass: {
+ const MemberExpr *M = cast<MemberExpr>(S);
+ if (M->isArrow() || bugreporter::isDeclRefExprToReference(M->getBase())) {
+ os << "Access to field '" << M->getMemberNameInfo()
+ << "' results in a dereference of a null pointer";
+ AddDerefSource(os, Ranges, M->getBase()->IgnoreParenCasts(),
+ State.get(), N->getLocationContext(), true);
+ }
+ break;
+ }
+ case Stmt::ObjCIvarRefExprClass: {
+ const ObjCIvarRefExpr *IV = cast<ObjCIvarRefExpr>(S);
+ os << "Access to instance variable '" << *IV->getDecl()
+ << "' results in a dereference of a null pointer";
+ AddDerefSource(os, Ranges, IV->getBase()->IgnoreParenCasts(),
+ State.get(), N->getLocationContext(), true);
+ break;
+ }
+ default:
+ break;
+ }
+
+ os.flush();
+ BugReport *report =
+ new BugReport(*BT_null,
+ buf.empty() ? BT_null->getDescription() : StringRef(buf),
+ N);
+
+ bugreporter::trackNullOrUndefValue(N, bugreporter::getDerefExpr(S), *report);
+
+ for (SmallVectorImpl<SourceRange>::iterator
+ I = Ranges.begin(), E = Ranges.end(); I!=E; ++I)
+ report->addRange(*I);
+
+ C.emitReport(report);
+}
+
+void DereferenceChecker::checkLocation(SVal l, bool isLoad, const Stmt* S,
+ CheckerContext &C) const {
+ // Check for dereference of an undefined value.
+ if (l.isUndef()) {
+ if (ExplodedNode *N = C.generateSink()) {
+ if (!BT_undef)
+ BT_undef.reset(
+ new BuiltinBug(this, "Dereference of undefined pointer value"));
+
+ BugReport *report =
+ new BugReport(*BT_undef, BT_undef->getDescription(), N);
+ bugreporter::trackNullOrUndefValue(N, bugreporter::getDerefExpr(S),
+ *report);
+ C.emitReport(report);
+ }
+ return;
+ }
+
+ DefinedOrUnknownSVal location = l.castAs<DefinedOrUnknownSVal>();
+
+ // Check for null dereferences.
+ if (!location.getAs<Loc>())
+ return;
+
+ ProgramStateRef state = C.getState();
+
+ ProgramStateRef notNullState, nullState;
+ std::tie(notNullState, nullState) = state->assume(location);
+
+ // The explicit NULL case.
+ if (nullState) {
+ if (!notNullState) {
+ reportBug(nullState, S, C);
+ return;
+ }
+
+ // Otherwise, we have the case where the location could either be
+ // null or not-null. Record the error node as an "implicit" null
+ // dereference.
+ if (ExplodedNode *N = C.generateSink(nullState)) {
+ ImplicitNullDerefEvent event = { l, isLoad, N, &C.getBugReporter() };
+ dispatchEvent(event);
+ }
+ }
+
+ // From this point forward, we know that the location is not null.
+ C.addTransition(notNullState);
+}
+
+void DereferenceChecker::checkBind(SVal L, SVal V, const Stmt *S,
+ CheckerContext &C) const {
+ // If we're binding to a reference, check if the value is known to be null.
+ if (V.isUndef())
+ return;
+
+ const MemRegion *MR = L.getAsRegion();
+ const TypedValueRegion *TVR = dyn_cast_or_null<TypedValueRegion>(MR);
+ if (!TVR)
+ return;
+
+ if (!TVR->getValueType()->isReferenceType())
+ return;
+
+ ProgramStateRef State = C.getState();
+
+ ProgramStateRef StNonNull, StNull;
+ std::tie(StNonNull, StNull) = State->assume(V.castAs<DefinedOrUnknownSVal>());
+
+ if (StNull) {
+ if (!StNonNull) {
+ reportBug(StNull, S, C, /*isBind=*/true);
+ return;
+ }
+
+ // At this point the value could be either null or non-null.
+ // Record this as an "implicit" null dereference.
+ if (ExplodedNode *N = C.generateSink(StNull)) {
+ ImplicitNullDerefEvent event = { V, /*isLoad=*/true, N,
+ &C.getBugReporter() };
+ dispatchEvent(event);
+ }
+ }
+
+ // Unlike a regular null dereference, initializing a reference with a
+ // dereferenced null pointer does not actually cause a runtime exception in
+ // Clang's implementation of references.
+ //
+ // int &r = *p; // safe??
+ // if (p != NULL) return; // uh-oh
+ // r = 5; // trap here
+ //
+ // The standard says this is invalid as soon as we try to create a "null
+ // reference" (there is no such thing), but turning this into an assumption
+ // that 'p' is never null will not match our actual runtime behavior.
+ // So we do not record this assumption, allowing us to warn on the last line
+ // of this example.
+ //
+ // We do need to add a transition because we may have generated a sink for
+ // the "implicit" null dereference.
+ C.addTransition(State, this);
+}
+
+void ento::registerDereferenceChecker(CheckerManager &mgr) {
+ mgr.registerChecker<DereferenceChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/DirectIvarAssignment.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/DirectIvarAssignment.cpp
new file mode 100644
index 0000000..0bcebf6
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/DirectIvarAssignment.cpp
@@ -0,0 +1,228 @@
+//=- DirectIvarAssignment.cpp - Check rules on ObjC properties -*- C++ ----*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Check that Objective C properties are set with the setter, not though a
+// direct assignment.
+//
+// Two versions of a checker exist: one that checks all methods and the other
+// that only checks the methods annotated with
+// __attribute__((annotate("objc_no_direct_instance_variable_assignment")))
+//
+// The checker does not warn about assignments to Ivars, annotated with
+// __attribute__((objc_allow_direct_instance_variable_assignment"))). This
+// annotation serves as a false positive suppression mechanism for the
+// checker. The annotation is allowed on properties and Ivars.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
+#include "llvm/ADT/DenseMap.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+
+/// The default method filter, which is used to filter out the methods on which
+/// the check should not be performed.
+///
+/// Checks for the init, dealloc, and any other functions that might be allowed
+/// to perform direct instance variable assignment based on their name.
+static bool DefaultMethodFilter(const ObjCMethodDecl *M) {
+ if (M->getMethodFamily() == OMF_init || M->getMethodFamily() == OMF_dealloc ||
+ M->getMethodFamily() == OMF_copy ||
+ M->getMethodFamily() == OMF_mutableCopy ||
+ M->getSelector().getNameForSlot(0).find("init") != StringRef::npos ||
+ M->getSelector().getNameForSlot(0).find("Init") != StringRef::npos)
+ return true;
+ return false;
+}
+
+class DirectIvarAssignment :
+ public Checker<check::ASTDecl<ObjCImplementationDecl> > {
+
+ typedef llvm::DenseMap<const ObjCIvarDecl*,
+ const ObjCPropertyDecl*> IvarToPropertyMapTy;
+
+ /// A helper class, which walks the AST and locates all assignments to ivars
+ /// in the given function.
+ class MethodCrawler : public ConstStmtVisitor<MethodCrawler> {
+ const IvarToPropertyMapTy &IvarToPropMap;
+ const ObjCMethodDecl *MD;
+ const ObjCInterfaceDecl *InterfD;
+ BugReporter &BR;
+ const CheckerBase *Checker;
+ LocationOrAnalysisDeclContext DCtx;
+
+ public:
+ MethodCrawler(const IvarToPropertyMapTy &InMap, const ObjCMethodDecl *InMD,
+ const ObjCInterfaceDecl *InID, BugReporter &InBR,
+ const CheckerBase *Checker, AnalysisDeclContext *InDCtx)
+ : IvarToPropMap(InMap), MD(InMD), InterfD(InID), BR(InBR),
+ Checker(Checker), DCtx(InDCtx) {}
+
+ void VisitStmt(const Stmt *S) { VisitChildren(S); }
+
+ void VisitBinaryOperator(const BinaryOperator *BO);
+
+ void VisitChildren(const Stmt *S) {
+ for (Stmt::const_child_range I = S->children(); I; ++I)
+ if (*I)
+ this->Visit(*I);
+ }
+ };
+
+public:
+ bool (*ShouldSkipMethod)(const ObjCMethodDecl *);
+
+ DirectIvarAssignment() : ShouldSkipMethod(&DefaultMethodFilter) {}
+
+ void checkASTDecl(const ObjCImplementationDecl *D, AnalysisManager& Mgr,
+ BugReporter &BR) const;
+};
+
+static const ObjCIvarDecl *findPropertyBackingIvar(const ObjCPropertyDecl *PD,
+ const ObjCInterfaceDecl *InterD,
+ ASTContext &Ctx) {
+ // Check for synthesized ivars.
+ ObjCIvarDecl *ID = PD->getPropertyIvarDecl();
+ if (ID)
+ return ID;
+
+ ObjCInterfaceDecl *NonConstInterD = const_cast<ObjCInterfaceDecl*>(InterD);
+
+ // Check for existing "_PropName".
+ ID = NonConstInterD->lookupInstanceVariable(PD->getDefaultSynthIvarName(Ctx));
+ if (ID)
+ return ID;
+
+ // Check for existing "PropName".
+ IdentifierInfo *PropIdent = PD->getIdentifier();
+ ID = NonConstInterD->lookupInstanceVariable(PropIdent);
+
+ return ID;
+}
+
+void DirectIvarAssignment::checkASTDecl(const ObjCImplementationDecl *D,
+ AnalysisManager& Mgr,
+ BugReporter &BR) const {
+ const ObjCInterfaceDecl *InterD = D->getClassInterface();
+
+
+ IvarToPropertyMapTy IvarToPropMap;
+
+ // Find all properties for this class.
+ for (const auto *PD : InterD->properties()) {
+ // Find the corresponding IVar.
+ const ObjCIvarDecl *ID = findPropertyBackingIvar(PD, InterD,
+ Mgr.getASTContext());
+
+ if (!ID)
+ continue;
+
+ // Store the IVar to property mapping.
+ IvarToPropMap[ID] = PD;
+ }
+
+ if (IvarToPropMap.empty())
+ return;
+
+ for (const auto *M : D->instance_methods()) {
+ AnalysisDeclContext *DCtx = Mgr.getAnalysisDeclContext(M);
+
+ if ((*ShouldSkipMethod)(M))
+ continue;
+
+ const Stmt *Body = M->getBody();
+ assert(Body);
+
+ MethodCrawler MC(IvarToPropMap, M->getCanonicalDecl(), InterD, BR, this,
+ DCtx);
+ MC.VisitStmt(Body);
+ }
+}
+
+static bool isAnnotatedToAllowDirectAssignment(const Decl *D) {
+ for (const auto *Ann : D->specific_attrs<AnnotateAttr>())
+ if (Ann->getAnnotation() ==
+ "objc_allow_direct_instance_variable_assignment")
+ return true;
+ return false;
+}
+
+void DirectIvarAssignment::MethodCrawler::VisitBinaryOperator(
+ const BinaryOperator *BO) {
+ if (!BO->isAssignmentOp())
+ return;
+
+ const ObjCIvarRefExpr *IvarRef =
+ dyn_cast<ObjCIvarRefExpr>(BO->getLHS()->IgnoreParenCasts());
+
+ if (!IvarRef)
+ return;
+
+ if (const ObjCIvarDecl *D = IvarRef->getDecl()) {
+ IvarToPropertyMapTy::const_iterator I = IvarToPropMap.find(D);
+
+ if (I != IvarToPropMap.end()) {
+ const ObjCPropertyDecl *PD = I->second;
+ // Skip warnings on Ivars, annotated with
+ // objc_allow_direct_instance_variable_assignment. This annotation serves
+ // as a false positive suppression mechanism for the checker. The
+ // annotation is allowed on properties and ivars.
+ if (isAnnotatedToAllowDirectAssignment(PD) ||
+ isAnnotatedToAllowDirectAssignment(D))
+ return;
+
+ ObjCMethodDecl *GetterMethod =
+ InterfD->getInstanceMethod(PD->getGetterName());
+ ObjCMethodDecl *SetterMethod =
+ InterfD->getInstanceMethod(PD->getSetterName());
+
+ if (SetterMethod && SetterMethod->getCanonicalDecl() == MD)
+ return;
+
+ if (GetterMethod && GetterMethod->getCanonicalDecl() == MD)
+ return;
+
+ BR.EmitBasicReport(
+ MD, Checker, "Property access", categories::CoreFoundationObjectiveC,
+ "Direct assignment to an instance variable backing a property; "
+ "use the setter instead",
+ PathDiagnosticLocation(IvarRef, BR.getSourceManager(), DCtx));
+ }
+ }
+}
+}
+
+// Register the checker that checks for direct accesses in all functions,
+// except for the initialization and copy routines.
+void ento::registerDirectIvarAssignment(CheckerManager &mgr) {
+ mgr.registerChecker<DirectIvarAssignment>();
+}
+
+// Register the checker that checks for direct accesses in functions annotated
+// with __attribute__((annotate("objc_no_direct_instance_variable_assignment"))).
+static bool AttrFilter(const ObjCMethodDecl *M) {
+ for (const auto *Ann : M->specific_attrs<AnnotateAttr>())
+ if (Ann->getAnnotation() == "objc_no_direct_instance_variable_assignment")
+ return false;
+ return true;
+}
+
+void ento::registerDirectIvarAssignmentForAnnotatedFunctions(
+ CheckerManager &mgr) {
+ mgr.registerChecker<DirectIvarAssignment>()->ShouldSkipMethod = &AttrFilter;
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/DivZeroChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/DivZeroChecker.cpp
new file mode 100644
index 0000000..e060c36
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/DivZeroChecker.cpp
@@ -0,0 +1,92 @@
+//== DivZeroChecker.cpp - Division by zero checker --------------*- C++ -*--==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This defines DivZeroChecker, a builtin check in ExprEngine that performs
+// checks for division by zeros.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+class DivZeroChecker : public Checker< check::PreStmt<BinaryOperator> > {
+ mutable std::unique_ptr<BuiltinBug> BT;
+ void reportBug(const char *Msg,
+ ProgramStateRef StateZero,
+ CheckerContext &C) const ;
+public:
+ void checkPreStmt(const BinaryOperator *B, CheckerContext &C) const;
+};
+} // end anonymous namespace
+
+void DivZeroChecker::reportBug(const char *Msg,
+ ProgramStateRef StateZero,
+ CheckerContext &C) const {
+ if (ExplodedNode *N = C.generateSink(StateZero)) {
+ if (!BT)
+ BT.reset(new BuiltinBug(this, "Division by zero"));
+
+ BugReport *R = new BugReport(*BT, Msg, N);
+ bugreporter::trackNullOrUndefValue(N, bugreporter::GetDenomExpr(N), *R);
+ C.emitReport(R);
+ }
+}
+
+void DivZeroChecker::checkPreStmt(const BinaryOperator *B,
+ CheckerContext &C) const {
+ BinaryOperator::Opcode Op = B->getOpcode();
+ if (Op != BO_Div &&
+ Op != BO_Rem &&
+ Op != BO_DivAssign &&
+ Op != BO_RemAssign)
+ return;
+
+ if (!B->getRHS()->getType()->isScalarType())
+ return;
+
+ SVal Denom = C.getState()->getSVal(B->getRHS(), C.getLocationContext());
+ Optional<DefinedSVal> DV = Denom.getAs<DefinedSVal>();
+
+ // Divide-by-undefined handled in the generic checking for uses of
+ // undefined values.
+ if (!DV)
+ return;
+
+ // Check for divide by zero.
+ ConstraintManager &CM = C.getConstraintManager();
+ ProgramStateRef stateNotZero, stateZero;
+ std::tie(stateNotZero, stateZero) = CM.assumeDual(C.getState(), *DV);
+
+ if (!stateNotZero) {
+ assert(stateZero);
+ reportBug("Division by zero", stateZero, C);
+ return;
+ }
+
+ bool TaintedD = C.getState()->isTainted(*DV);
+ if ((stateNotZero && stateZero && TaintedD)) {
+ reportBug("Division by a tainted value, possibly zero", stateZero, C);
+ return;
+ }
+
+ // If we get here, then the denom should not be zero. We abandon the implicit
+ // zero denom case for now.
+ C.addTransition(stateNotZero);
+}
+
+void ento::registerDivZeroChecker(CheckerManager &mgr) {
+ mgr.registerChecker<DivZeroChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/DynamicTypePropagation.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/DynamicTypePropagation.cpp
new file mode 100644
index 0000000..43a2812
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/DynamicTypePropagation.cpp
@@ -0,0 +1,281 @@
+//== DynamicTypePropagation.cpp -------------------------------- -*- C++ -*--=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This checker defines the rules for dynamic type gathering and propagation.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/Basic/Builtins.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+class DynamicTypePropagation:
+ public Checker< check::PreCall,
+ check::PostCall,
+ check::PostStmt<ImplicitCastExpr>,
+ check::PostStmt<CXXNewExpr> > {
+ const ObjCObjectType *getObjectTypeForAllocAndNew(const ObjCMessageExpr *MsgE,
+ CheckerContext &C) const;
+
+ /// \brief Return a better dynamic type if one can be derived from the cast.
+ const ObjCObjectPointerType *getBetterObjCType(const Expr *CastE,
+ CheckerContext &C) const;
+public:
+ void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
+ void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
+ void checkPostStmt(const ImplicitCastExpr *CastE, CheckerContext &C) const;
+ void checkPostStmt(const CXXNewExpr *NewE, CheckerContext &C) const;
+};
+}
+
+static void recordFixedType(const MemRegion *Region, const CXXMethodDecl *MD,
+ CheckerContext &C) {
+ assert(Region);
+ assert(MD);
+
+ ASTContext &Ctx = C.getASTContext();
+ QualType Ty = Ctx.getPointerType(Ctx.getRecordType(MD->getParent()));
+
+ ProgramStateRef State = C.getState();
+ State = State->setDynamicTypeInfo(Region, Ty, /*CanBeSubclass=*/false);
+ C.addTransition(State);
+ return;
+}
+
+void DynamicTypePropagation::checkPreCall(const CallEvent &Call,
+ CheckerContext &C) const {
+ if (const CXXConstructorCall *Ctor = dyn_cast<CXXConstructorCall>(&Call)) {
+ // C++11 [class.cdtor]p4: When a virtual function is called directly or
+ // indirectly from a constructor or from a destructor, including during
+ // the construction or destruction of the class's non-static data members,
+ // and the object to which the call applies is the object under
+ // construction or destruction, the function called is the final overrider
+ // in the constructor's or destructor's class and not one overriding it in
+ // a more-derived class.
+
+ switch (Ctor->getOriginExpr()->getConstructionKind()) {
+ case CXXConstructExpr::CK_Complete:
+ case CXXConstructExpr::CK_Delegating:
+ // No additional type info necessary.
+ return;
+ case CXXConstructExpr::CK_NonVirtualBase:
+ case CXXConstructExpr::CK_VirtualBase:
+ if (const MemRegion *Target = Ctor->getCXXThisVal().getAsRegion())
+ recordFixedType(Target, Ctor->getDecl(), C);
+ return;
+ }
+
+ return;
+ }
+
+ if (const CXXDestructorCall *Dtor = dyn_cast<CXXDestructorCall>(&Call)) {
+ // C++11 [class.cdtor]p4 (see above)
+ if (!Dtor->isBaseDestructor())
+ return;
+
+ const MemRegion *Target = Dtor->getCXXThisVal().getAsRegion();
+ if (!Target)
+ return;
+
+ const Decl *D = Dtor->getDecl();
+ if (!D)
+ return;
+
+ recordFixedType(Target, cast<CXXDestructorDecl>(D), C);
+ return;
+ }
+}
+
+void DynamicTypePropagation::checkPostCall(const CallEvent &Call,
+ CheckerContext &C) const {
+ // We can obtain perfect type info for return values from some calls.
+ if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(&Call)) {
+
+ // Get the returned value if it's a region.
+ const MemRegion *RetReg = Call.getReturnValue().getAsRegion();
+ if (!RetReg)
+ return;
+
+ ProgramStateRef State = C.getState();
+ const ObjCMethodDecl *D = Msg->getDecl();
+
+ if (D && D->hasRelatedResultType()) {
+ switch (Msg->getMethodFamily()) {
+ default:
+ break;
+
+ // We assume that the type of the object returned by alloc and new are the
+ // pointer to the object of the class specified in the receiver of the
+ // message.
+ case OMF_alloc:
+ case OMF_new: {
+ // Get the type of object that will get created.
+ const ObjCMessageExpr *MsgE = Msg->getOriginExpr();
+ const ObjCObjectType *ObjTy = getObjectTypeForAllocAndNew(MsgE, C);
+ if (!ObjTy)
+ return;
+ QualType DynResTy =
+ C.getASTContext().getObjCObjectPointerType(QualType(ObjTy, 0));
+ C.addTransition(State->setDynamicTypeInfo(RetReg, DynResTy, false));
+ break;
+ }
+ case OMF_init: {
+ // Assume, the result of the init method has the same dynamic type as
+ // the receiver and propagate the dynamic type info.
+ const MemRegion *RecReg = Msg->getReceiverSVal().getAsRegion();
+ if (!RecReg)
+ return;
+ DynamicTypeInfo RecDynType = State->getDynamicTypeInfo(RecReg);
+ C.addTransition(State->setDynamicTypeInfo(RetReg, RecDynType));
+ break;
+ }
+ }
+ }
+ return;
+ }
+
+ if (const CXXConstructorCall *Ctor = dyn_cast<CXXConstructorCall>(&Call)) {
+ // We may need to undo the effects of our pre-call check.
+ switch (Ctor->getOriginExpr()->getConstructionKind()) {
+ case CXXConstructExpr::CK_Complete:
+ case CXXConstructExpr::CK_Delegating:
+ // No additional work necessary.
+ // Note: This will leave behind the actual type of the object for
+ // complete constructors, but arguably that's a good thing, since it
+ // means the dynamic type info will be correct even for objects
+ // constructed with operator new.
+ return;
+ case CXXConstructExpr::CK_NonVirtualBase:
+ case CXXConstructExpr::CK_VirtualBase:
+ if (const MemRegion *Target = Ctor->getCXXThisVal().getAsRegion()) {
+ // We just finished a base constructor. Now we can use the subclass's
+ // type when resolving virtual calls.
+ const Decl *D = C.getLocationContext()->getDecl();
+ recordFixedType(Target, cast<CXXConstructorDecl>(D), C);
+ }
+ return;
+ }
+ }
+}
+
+void DynamicTypePropagation::checkPostStmt(const ImplicitCastExpr *CastE,
+ CheckerContext &C) const {
+ // We only track dynamic type info for regions.
+ const MemRegion *ToR = C.getSVal(CastE).getAsRegion();
+ if (!ToR)
+ return;
+
+ switch (CastE->getCastKind()) {
+ default:
+ break;
+ case CK_BitCast:
+ // Only handle ObjCObjects for now.
+ if (const Type *NewTy = getBetterObjCType(CastE, C))
+ C.addTransition(C.getState()->setDynamicTypeInfo(ToR, QualType(NewTy,0)));
+ break;
+ }
+ return;
+}
+
+void DynamicTypePropagation::checkPostStmt(const CXXNewExpr *NewE,
+ CheckerContext &C) const {
+ if (NewE->isArray())
+ return;
+
+ // We only track dynamic type info for regions.
+ const MemRegion *MR = C.getSVal(NewE).getAsRegion();
+ if (!MR)
+ return;
+
+ C.addTransition(C.getState()->setDynamicTypeInfo(MR, NewE->getType(),
+ /*CanBeSubclass=*/false));
+}
+
+const ObjCObjectType *
+DynamicTypePropagation::getObjectTypeForAllocAndNew(const ObjCMessageExpr *MsgE,
+ CheckerContext &C) const {
+ if (MsgE->getReceiverKind() == ObjCMessageExpr::Class) {
+ if (const ObjCObjectType *ObjTy
+ = MsgE->getClassReceiver()->getAs<ObjCObjectType>())
+ return ObjTy;
+ }
+
+ if (MsgE->getReceiverKind() == ObjCMessageExpr::SuperClass) {
+ if (const ObjCObjectType *ObjTy
+ = MsgE->getSuperType()->getAs<ObjCObjectType>())
+ return ObjTy;
+ }
+
+ const Expr *RecE = MsgE->getInstanceReceiver();
+ if (!RecE)
+ return nullptr;
+
+ RecE= RecE->IgnoreParenImpCasts();
+ if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(RecE)) {
+ const StackFrameContext *SFCtx = C.getStackFrame();
+ // Are we calling [self alloc]? If this is self, get the type of the
+ // enclosing ObjC class.
+ if (DRE->getDecl() == SFCtx->getSelfDecl()) {
+ if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(SFCtx->getDecl()))
+ if (const ObjCObjectType *ObjTy =
+ dyn_cast<ObjCObjectType>(MD->getClassInterface()->getTypeForDecl()))
+ return ObjTy;
+ }
+ }
+ return nullptr;
+}
+
+// Return a better dynamic type if one can be derived from the cast.
+// Compare the current dynamic type of the region and the new type to which we
+// are casting. If the new type is lower in the inheritance hierarchy, pick it.
+const ObjCObjectPointerType *
+DynamicTypePropagation::getBetterObjCType(const Expr *CastE,
+ CheckerContext &C) const {
+ const MemRegion *ToR = C.getSVal(CastE).getAsRegion();
+ assert(ToR);
+
+ // Get the old and new types.
+ const ObjCObjectPointerType *NewTy =
+ CastE->getType()->getAs<ObjCObjectPointerType>();
+ if (!NewTy)
+ return nullptr;
+ QualType OldDTy = C.getState()->getDynamicTypeInfo(ToR).getType();
+ if (OldDTy.isNull()) {
+ return NewTy;
+ }
+ const ObjCObjectPointerType *OldTy =
+ OldDTy->getAs<ObjCObjectPointerType>();
+ if (!OldTy)
+ return nullptr;
+
+ // Id the old type is 'id', the new one is more precise.
+ if (OldTy->isObjCIdType() && !NewTy->isObjCIdType())
+ return NewTy;
+
+ // Return new if it's a subclass of old.
+ const ObjCInterfaceDecl *ToI = NewTy->getInterfaceDecl();
+ const ObjCInterfaceDecl *FromI = OldTy->getInterfaceDecl();
+ if (ToI && FromI && FromI->isSuperClassOf(ToI))
+ return NewTy;
+
+ return nullptr;
+}
+
+void ento::registerDynamicTypePropagation(CheckerManager &mgr) {
+ mgr.registerChecker<DynamicTypePropagation>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ExprInspectionChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ExprInspectionChecker.cpp
new file mode 100644
index 0000000..f36ec2c
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ExprInspectionChecker.cpp
@@ -0,0 +1,143 @@
+//==- ExprInspectionChecker.cpp - Used for regression tests ------*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "llvm/ADT/StringSwitch.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+class ExprInspectionChecker : public Checker< eval::Call > {
+ mutable std::unique_ptr<BugType> BT;
+
+ void analyzerEval(const CallExpr *CE, CheckerContext &C) const;
+ void analyzerCheckInlined(const CallExpr *CE, CheckerContext &C) const;
+ void analyzerWarnIfReached(const CallExpr *CE, CheckerContext &C) const;
+ void analyzerCrash(const CallExpr *CE, CheckerContext &C) const;
+
+ typedef void (ExprInspectionChecker::*FnCheck)(const CallExpr *,
+ CheckerContext &C) const;
+
+public:
+ bool evalCall(const CallExpr *CE, CheckerContext &C) const;
+};
+}
+
+bool ExprInspectionChecker::evalCall(const CallExpr *CE,
+ CheckerContext &C) const {
+ // These checks should have no effect on the surrounding environment
+ // (globals should not be invalidated, etc), hence the use of evalCall.
+ FnCheck Handler = llvm::StringSwitch<FnCheck>(C.getCalleeName(CE))
+ .Case("clang_analyzer_eval", &ExprInspectionChecker::analyzerEval)
+ .Case("clang_analyzer_checkInlined",
+ &ExprInspectionChecker::analyzerCheckInlined)
+ .Case("clang_analyzer_crash", &ExprInspectionChecker::analyzerCrash)
+ .Case("clang_analyzer_warnIfReached", &ExprInspectionChecker::analyzerWarnIfReached)
+ .Default(nullptr);
+
+ if (!Handler)
+ return false;
+
+ (this->*Handler)(CE, C);
+ return true;
+}
+
+static const char *getArgumentValueString(const CallExpr *CE,
+ CheckerContext &C) {
+ if (CE->getNumArgs() == 0)
+ return "Missing assertion argument";
+
+ ExplodedNode *N = C.getPredecessor();
+ const LocationContext *LC = N->getLocationContext();
+ ProgramStateRef State = N->getState();
+
+ const Expr *Assertion = CE->getArg(0);
+ SVal AssertionVal = State->getSVal(Assertion, LC);
+
+ if (AssertionVal.isUndef())
+ return "UNDEFINED";
+
+ ProgramStateRef StTrue, StFalse;
+ std::tie(StTrue, StFalse) =
+ State->assume(AssertionVal.castAs<DefinedOrUnknownSVal>());
+
+ if (StTrue) {
+ if (StFalse)
+ return "UNKNOWN";
+ else
+ return "TRUE";
+ } else {
+ if (StFalse)
+ return "FALSE";
+ else
+ llvm_unreachable("Invalid constraint; neither true or false.");
+ }
+}
+
+void ExprInspectionChecker::analyzerEval(const CallExpr *CE,
+ CheckerContext &C) const {
+ ExplodedNode *N = C.getPredecessor();
+ const LocationContext *LC = N->getLocationContext();
+
+ // A specific instantiation of an inlined function may have more constrained
+ // values than can generally be assumed. Skip the check.
+ if (LC->getCurrentStackFrame()->getParent() != nullptr)
+ return;
+
+ if (!BT)
+ BT.reset(new BugType(this, "Checking analyzer assumptions", "debug"));
+
+ BugReport *R = new BugReport(*BT, getArgumentValueString(CE, C), N);
+ C.emitReport(R);
+}
+
+void ExprInspectionChecker::analyzerWarnIfReached(const CallExpr *CE,
+ CheckerContext &C) const {
+ ExplodedNode *N = C.getPredecessor();
+
+ if (!BT)
+ BT.reset(new BugType(this, "Checking analyzer assumptions", "debug"));
+
+ BugReport *R = new BugReport(*BT, "REACHABLE", N);
+ C.emitReport(R);
+}
+
+void ExprInspectionChecker::analyzerCheckInlined(const CallExpr *CE,
+ CheckerContext &C) const {
+ ExplodedNode *N = C.getPredecessor();
+ const LocationContext *LC = N->getLocationContext();
+
+ // An inlined function could conceivably also be analyzed as a top-level
+ // function. We ignore this case and only emit a message (TRUE or FALSE)
+ // when we are analyzing it as an inlined function. This means that
+ // clang_analyzer_checkInlined(true) should always print TRUE, but
+ // clang_analyzer_checkInlined(false) should never actually print anything.
+ if (LC->getCurrentStackFrame()->getParent() == nullptr)
+ return;
+
+ if (!BT)
+ BT.reset(new BugType(this, "Checking analyzer assumptions", "debug"));
+
+ BugReport *R = new BugReport(*BT, getArgumentValueString(CE, C), N);
+ C.emitReport(R);
+}
+
+void ExprInspectionChecker::analyzerCrash(const CallExpr *CE,
+ CheckerContext &C) const {
+ LLVM_BUILTIN_TRAP;
+}
+
+void ento::registerExprInspectionChecker(CheckerManager &Mgr) {
+ Mgr.registerChecker<ExprInspectionChecker>();
+}
+
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/FixedAddressChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/FixedAddressChecker.cpp
new file mode 100644
index 0000000..60bb036
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/FixedAddressChecker.cpp
@@ -0,0 +1,68 @@
+//=== FixedAddressChecker.cpp - Fixed address usage checker ----*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This files defines FixedAddressChecker, a builtin checker that checks for
+// assignment of a fixed address to a pointer.
+// This check corresponds to CWE-587.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+class FixedAddressChecker
+ : public Checker< check::PreStmt<BinaryOperator> > {
+ mutable std::unique_ptr<BuiltinBug> BT;
+
+public:
+ void checkPreStmt(const BinaryOperator *B, CheckerContext &C) const;
+};
+}
+
+void FixedAddressChecker::checkPreStmt(const BinaryOperator *B,
+ CheckerContext &C) const {
+ // Using a fixed address is not portable because that address will probably
+ // not be valid in all environments or platforms.
+
+ if (B->getOpcode() != BO_Assign)
+ return;
+
+ QualType T = B->getType();
+ if (!T->isPointerType())
+ return;
+
+ ProgramStateRef state = C.getState();
+ SVal RV = state->getSVal(B->getRHS(), C.getLocationContext());
+
+ if (!RV.isConstant() || RV.isZeroConstant())
+ return;
+
+ if (ExplodedNode *N = C.addTransition()) {
+ if (!BT)
+ BT.reset(
+ new BuiltinBug(this, "Use fixed address",
+ "Using a fixed address is not portable because that "
+ "address will probably not be valid in all "
+ "environments or platforms."));
+ BugReport *R = new BugReport(*BT, BT->getDescription(), N);
+ R->addRange(B->getRHS()->getSourceRange());
+ C.emitReport(R);
+ }
+}
+
+void ento::registerFixedAddressChecker(CheckerManager &mgr) {
+ mgr.registerChecker<FixedAddressChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/GenericTaintChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/GenericTaintChecker.cpp
new file mode 100644
index 0000000..08ba26a
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/GenericTaintChecker.cpp
@@ -0,0 +1,740 @@
+//== GenericTaintChecker.cpp ----------------------------------- -*- C++ -*--=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This checker defines the attack surface for generic taint propagation.
+//
+// The taint information produced by it might be useful to other checkers. For
+// example, checkers should report errors which involve tainted data more
+// aggressively, even if the involved symbols are under constrained.
+//
+//===----------------------------------------------------------------------===//
+#include "ClangSACheckers.h"
+#include "clang/AST/Attr.h"
+#include "clang/Basic/Builtins.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
+#include <climits>
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+class GenericTaintChecker : public Checker< check::PostStmt<CallExpr>,
+ check::PreStmt<CallExpr> > {
+public:
+ static void *getTag() { static int Tag; return &Tag; }
+
+ void checkPostStmt(const CallExpr *CE, CheckerContext &C) const;
+
+ void checkPreStmt(const CallExpr *CE, CheckerContext &C) const;
+
+private:
+ static const unsigned InvalidArgIndex = UINT_MAX;
+ /// Denotes the return vale.
+ static const unsigned ReturnValueIndex = UINT_MAX - 1;
+
+ mutable std::unique_ptr<BugType> BT;
+ inline void initBugType() const {
+ if (!BT)
+ BT.reset(new BugType(this, "Use of Untrusted Data", "Untrusted Data"));
+ }
+
+ /// \brief Catch taint related bugs. Check if tainted data is passed to a
+ /// system call etc.
+ bool checkPre(const CallExpr *CE, CheckerContext &C) const;
+
+ /// \brief Add taint sources on a pre-visit.
+ void addSourcesPre(const CallExpr *CE, CheckerContext &C) const;
+
+ /// \brief Propagate taint generated at pre-visit.
+ bool propagateFromPre(const CallExpr *CE, CheckerContext &C) const;
+
+ /// \brief Add taint sources on a post visit.
+ void addSourcesPost(const CallExpr *CE, CheckerContext &C) const;
+
+ /// Check if the region the expression evaluates to is the standard input,
+ /// and thus, is tainted.
+ static bool isStdin(const Expr *E, CheckerContext &C);
+
+ /// \brief Given a pointer argument, get the symbol of the value it contains
+ /// (points to).
+ static SymbolRef getPointedToSymbol(CheckerContext &C, const Expr *Arg);
+
+ /// Functions defining the attack surface.
+ typedef ProgramStateRef (GenericTaintChecker::*FnCheck)(const CallExpr *,
+ CheckerContext &C) const;
+ ProgramStateRef postScanf(const CallExpr *CE, CheckerContext &C) const;
+ ProgramStateRef postSocket(const CallExpr *CE, CheckerContext &C) const;
+ ProgramStateRef postRetTaint(const CallExpr *CE, CheckerContext &C) const;
+
+ /// Taint the scanned input if the file is tainted.
+ ProgramStateRef preFscanf(const CallExpr *CE, CheckerContext &C) const;
+
+ /// Check for CWE-134: Uncontrolled Format String.
+ static const char MsgUncontrolledFormatString[];
+ bool checkUncontrolledFormatString(const CallExpr *CE,
+ CheckerContext &C) const;
+
+ /// Check for:
+ /// CERT/STR02-C. "Sanitize data passed to complex subsystems"
+ /// CWE-78, "Failure to Sanitize Data into an OS Command"
+ static const char MsgSanitizeSystemArgs[];
+ bool checkSystemCall(const CallExpr *CE, StringRef Name,
+ CheckerContext &C) const;
+
+ /// Check if tainted data is used as a buffer size ins strn.. functions,
+ /// and allocators.
+ static const char MsgTaintedBufferSize[];
+ bool checkTaintedBufferSize(const CallExpr *CE, const FunctionDecl *FDecl,
+ CheckerContext &C) const;
+
+ /// Generate a report if the expression is tainted or points to tainted data.
+ bool generateReportIfTainted(const Expr *E, const char Msg[],
+ CheckerContext &C) const;
+
+
+ typedef SmallVector<unsigned, 2> ArgVector;
+
+ /// \brief A struct used to specify taint propagation rules for a function.
+ ///
+ /// If any of the possible taint source arguments is tainted, all of the
+ /// destination arguments should also be tainted. Use InvalidArgIndex in the
+ /// src list to specify that all of the arguments can introduce taint. Use
+ /// InvalidArgIndex in the dst arguments to signify that all the non-const
+ /// pointer and reference arguments might be tainted on return. If
+ /// ReturnValueIndex is added to the dst list, the return value will be
+ /// tainted.
+ struct TaintPropagationRule {
+ /// List of arguments which can be taint sources and should be checked.
+ ArgVector SrcArgs;
+ /// List of arguments which should be tainted on function return.
+ ArgVector DstArgs;
+ // TODO: Check if using other data structures would be more optimal.
+
+ TaintPropagationRule() {}
+
+ TaintPropagationRule(unsigned SArg,
+ unsigned DArg, bool TaintRet = false) {
+ SrcArgs.push_back(SArg);
+ DstArgs.push_back(DArg);
+ if (TaintRet)
+ DstArgs.push_back(ReturnValueIndex);
+ }
+
+ TaintPropagationRule(unsigned SArg1, unsigned SArg2,
+ unsigned DArg, bool TaintRet = false) {
+ SrcArgs.push_back(SArg1);
+ SrcArgs.push_back(SArg2);
+ DstArgs.push_back(DArg);
+ if (TaintRet)
+ DstArgs.push_back(ReturnValueIndex);
+ }
+
+ /// Get the propagation rule for a given function.
+ static TaintPropagationRule
+ getTaintPropagationRule(const FunctionDecl *FDecl,
+ StringRef Name,
+ CheckerContext &C);
+
+ inline void addSrcArg(unsigned A) { SrcArgs.push_back(A); }
+ inline void addDstArg(unsigned A) { DstArgs.push_back(A); }
+
+ inline bool isNull() const { return SrcArgs.empty(); }
+
+ inline bool isDestinationArgument(unsigned ArgNum) const {
+ return (std::find(DstArgs.begin(),
+ DstArgs.end(), ArgNum) != DstArgs.end());
+ }
+
+ static inline bool isTaintedOrPointsToTainted(const Expr *E,
+ ProgramStateRef State,
+ CheckerContext &C) {
+ return (State->isTainted(E, C.getLocationContext()) || isStdin(E, C) ||
+ (E->getType().getTypePtr()->isPointerType() &&
+ State->isTainted(getPointedToSymbol(C, E))));
+ }
+
+ /// \brief Pre-process a function which propagates taint according to the
+ /// taint rule.
+ ProgramStateRef process(const CallExpr *CE, CheckerContext &C) const;
+
+ };
+};
+
+const unsigned GenericTaintChecker::ReturnValueIndex;
+const unsigned GenericTaintChecker::InvalidArgIndex;
+
+const char GenericTaintChecker::MsgUncontrolledFormatString[] =
+ "Untrusted data is used as a format string "
+ "(CWE-134: Uncontrolled Format String)";
+
+const char GenericTaintChecker::MsgSanitizeSystemArgs[] =
+ "Untrusted data is passed to a system call "
+ "(CERT/STR02-C. Sanitize data passed to complex subsystems)";
+
+const char GenericTaintChecker::MsgTaintedBufferSize[] =
+ "Untrusted data is used to specify the buffer size "
+ "(CERT/STR31-C. Guarantee that storage for strings has sufficient space for "
+ "character data and the null terminator)";
+
+} // end of anonymous namespace
+
+/// A set which is used to pass information from call pre-visit instruction
+/// to the call post-visit. The values are unsigned integers, which are either
+/// ReturnValueIndex, or indexes of the pointer/reference argument, which
+/// points to data, which should be tainted on return.
+REGISTER_SET_WITH_PROGRAMSTATE(TaintArgsOnPostVisit, unsigned)
+
+GenericTaintChecker::TaintPropagationRule
+GenericTaintChecker::TaintPropagationRule::getTaintPropagationRule(
+ const FunctionDecl *FDecl,
+ StringRef Name,
+ CheckerContext &C) {
+ // TODO: Currently, we might loose precision here: we always mark a return
+ // value as tainted even if it's just a pointer, pointing to tainted data.
+
+ // Check for exact name match for functions without builtin substitutes.
+ TaintPropagationRule Rule = llvm::StringSwitch<TaintPropagationRule>(Name)
+ .Case("atoi", TaintPropagationRule(0, ReturnValueIndex))
+ .Case("atol", TaintPropagationRule(0, ReturnValueIndex))
+ .Case("atoll", TaintPropagationRule(0, ReturnValueIndex))
+ .Case("getc", TaintPropagationRule(0, ReturnValueIndex))
+ .Case("fgetc", TaintPropagationRule(0, ReturnValueIndex))
+ .Case("getc_unlocked", TaintPropagationRule(0, ReturnValueIndex))
+ .Case("getw", TaintPropagationRule(0, ReturnValueIndex))
+ .Case("toupper", TaintPropagationRule(0, ReturnValueIndex))
+ .Case("tolower", TaintPropagationRule(0, ReturnValueIndex))
+ .Case("strchr", TaintPropagationRule(0, ReturnValueIndex))
+ .Case("strrchr", TaintPropagationRule(0, ReturnValueIndex))
+ .Case("read", TaintPropagationRule(0, 2, 1, true))
+ .Case("pread", TaintPropagationRule(InvalidArgIndex, 1, true))
+ .Case("gets", TaintPropagationRule(InvalidArgIndex, 0, true))
+ .Case("fgets", TaintPropagationRule(2, 0, true))
+ .Case("getline", TaintPropagationRule(2, 0))
+ .Case("getdelim", TaintPropagationRule(3, 0))
+ .Case("fgetln", TaintPropagationRule(0, ReturnValueIndex))
+ .Default(TaintPropagationRule());
+
+ if (!Rule.isNull())
+ return Rule;
+
+ // Check if it's one of the memory setting/copying functions.
+ // This check is specialized but faster then calling isCLibraryFunction.
+ unsigned BId = 0;
+ if ( (BId = FDecl->getMemoryFunctionKind()) )
+ switch(BId) {
+ case Builtin::BImemcpy:
+ case Builtin::BImemmove:
+ case Builtin::BIstrncpy:
+ case Builtin::BIstrncat:
+ return TaintPropagationRule(1, 2, 0, true);
+ case Builtin::BIstrlcpy:
+ case Builtin::BIstrlcat:
+ return TaintPropagationRule(1, 2, 0, false);
+ case Builtin::BIstrndup:
+ return TaintPropagationRule(0, 1, ReturnValueIndex);
+
+ default:
+ break;
+ };
+
+ // Process all other functions which could be defined as builtins.
+ if (Rule.isNull()) {
+ if (C.isCLibraryFunction(FDecl, "snprintf") ||
+ C.isCLibraryFunction(FDecl, "sprintf"))
+ return TaintPropagationRule(InvalidArgIndex, 0, true);
+ else if (C.isCLibraryFunction(FDecl, "strcpy") ||
+ C.isCLibraryFunction(FDecl, "stpcpy") ||
+ C.isCLibraryFunction(FDecl, "strcat"))
+ return TaintPropagationRule(1, 0, true);
+ else if (C.isCLibraryFunction(FDecl, "bcopy"))
+ return TaintPropagationRule(0, 2, 1, false);
+ else if (C.isCLibraryFunction(FDecl, "strdup") ||
+ C.isCLibraryFunction(FDecl, "strdupa"))
+ return TaintPropagationRule(0, ReturnValueIndex);
+ else if (C.isCLibraryFunction(FDecl, "wcsdup"))
+ return TaintPropagationRule(0, ReturnValueIndex);
+ }
+
+ // Skipping the following functions, since they might be used for cleansing
+ // or smart memory copy:
+ // - memccpy - copying until hitting a special character.
+
+ return TaintPropagationRule();
+}
+
+void GenericTaintChecker::checkPreStmt(const CallExpr *CE,
+ CheckerContext &C) const {
+ // Check for errors first.
+ if (checkPre(CE, C))
+ return;
+
+ // Add taint second.
+ addSourcesPre(CE, C);
+}
+
+void GenericTaintChecker::checkPostStmt(const CallExpr *CE,
+ CheckerContext &C) const {
+ if (propagateFromPre(CE, C))
+ return;
+ addSourcesPost(CE, C);
+}
+
+void GenericTaintChecker::addSourcesPre(const CallExpr *CE,
+ CheckerContext &C) const {
+ ProgramStateRef State = nullptr;
+ const FunctionDecl *FDecl = C.getCalleeDecl(CE);
+ if (!FDecl || FDecl->getKind() != Decl::Function)
+ return;
+
+ StringRef Name = C.getCalleeName(FDecl);
+ if (Name.empty())
+ return;
+
+ // First, try generating a propagation rule for this function.
+ TaintPropagationRule Rule =
+ TaintPropagationRule::getTaintPropagationRule(FDecl, Name, C);
+ if (!Rule.isNull()) {
+ State = Rule.process(CE, C);
+ if (!State)
+ return;
+ C.addTransition(State);
+ return;
+ }
+
+ // Otherwise, check if we have custom pre-processing implemented.
+ FnCheck evalFunction = llvm::StringSwitch<FnCheck>(Name)
+ .Case("fscanf", &GenericTaintChecker::preFscanf)
+ .Default(nullptr);
+ // Check and evaluate the call.
+ if (evalFunction)
+ State = (this->*evalFunction)(CE, C);
+ if (!State)
+ return;
+ C.addTransition(State);
+
+}
+
+bool GenericTaintChecker::propagateFromPre(const CallExpr *CE,
+ CheckerContext &C) const {
+ ProgramStateRef State = C.getState();
+
+ // Depending on what was tainted at pre-visit, we determined a set of
+ // arguments which should be tainted after the function returns. These are
+ // stored in the state as TaintArgsOnPostVisit set.
+ TaintArgsOnPostVisitTy TaintArgs = State->get<TaintArgsOnPostVisit>();
+ if (TaintArgs.isEmpty())
+ return false;
+
+ for (llvm::ImmutableSet<unsigned>::iterator
+ I = TaintArgs.begin(), E = TaintArgs.end(); I != E; ++I) {
+ unsigned ArgNum = *I;
+
+ // Special handling for the tainted return value.
+ if (ArgNum == ReturnValueIndex) {
+ State = State->addTaint(CE, C.getLocationContext());
+ continue;
+ }
+
+ // The arguments are pointer arguments. The data they are pointing at is
+ // tainted after the call.
+ if (CE->getNumArgs() < (ArgNum + 1))
+ return false;
+ const Expr* Arg = CE->getArg(ArgNum);
+ SymbolRef Sym = getPointedToSymbol(C, Arg);
+ if (Sym)
+ State = State->addTaint(Sym);
+ }
+
+ // Clear up the taint info from the state.
+ State = State->remove<TaintArgsOnPostVisit>();
+
+ if (State != C.getState()) {
+ C.addTransition(State);
+ return true;
+ }
+ return false;
+}
+
+void GenericTaintChecker::addSourcesPost(const CallExpr *CE,
+ CheckerContext &C) const {
+ // Define the attack surface.
+ // Set the evaluation function by switching on the callee name.
+ const FunctionDecl *FDecl = C.getCalleeDecl(CE);
+ if (!FDecl || FDecl->getKind() != Decl::Function)
+ return;
+
+ StringRef Name = C.getCalleeName(FDecl);
+ if (Name.empty())
+ return;
+ FnCheck evalFunction = llvm::StringSwitch<FnCheck>(Name)
+ .Case("scanf", &GenericTaintChecker::postScanf)
+ // TODO: Add support for vfscanf & family.
+ .Case("getchar", &GenericTaintChecker::postRetTaint)
+ .Case("getchar_unlocked", &GenericTaintChecker::postRetTaint)
+ .Case("getenv", &GenericTaintChecker::postRetTaint)
+ .Case("fopen", &GenericTaintChecker::postRetTaint)
+ .Case("fdopen", &GenericTaintChecker::postRetTaint)
+ .Case("freopen", &GenericTaintChecker::postRetTaint)
+ .Case("getch", &GenericTaintChecker::postRetTaint)
+ .Case("wgetch", &GenericTaintChecker::postRetTaint)
+ .Case("socket", &GenericTaintChecker::postSocket)
+ .Default(nullptr);
+
+ // If the callee isn't defined, it is not of security concern.
+ // Check and evaluate the call.
+ ProgramStateRef State = nullptr;
+ if (evalFunction)
+ State = (this->*evalFunction)(CE, C);
+ if (!State)
+ return;
+
+ C.addTransition(State);
+}
+
+bool GenericTaintChecker::checkPre(const CallExpr *CE, CheckerContext &C) const{
+
+ if (checkUncontrolledFormatString(CE, C))
+ return true;
+
+ const FunctionDecl *FDecl = C.getCalleeDecl(CE);
+ if (!FDecl || FDecl->getKind() != Decl::Function)
+ return false;
+
+ StringRef Name = C.getCalleeName(FDecl);
+ if (Name.empty())
+ return false;
+
+ if (checkSystemCall(CE, Name, C))
+ return true;
+
+ if (checkTaintedBufferSize(CE, FDecl, C))
+ return true;
+
+ return false;
+}
+
+SymbolRef GenericTaintChecker::getPointedToSymbol(CheckerContext &C,
+ const Expr* Arg) {
+ ProgramStateRef State = C.getState();
+ SVal AddrVal = State->getSVal(Arg->IgnoreParens(), C.getLocationContext());
+ if (AddrVal.isUnknownOrUndef())
+ return nullptr;
+
+ Optional<Loc> AddrLoc = AddrVal.getAs<Loc>();
+ if (!AddrLoc)
+ return nullptr;
+
+ const PointerType *ArgTy =
+ dyn_cast<PointerType>(Arg->getType().getCanonicalType().getTypePtr());
+ SVal Val = State->getSVal(*AddrLoc,
+ ArgTy ? ArgTy->getPointeeType(): QualType());
+ return Val.getAsSymbol();
+}
+
+ProgramStateRef
+GenericTaintChecker::TaintPropagationRule::process(const CallExpr *CE,
+ CheckerContext &C) const {
+ ProgramStateRef State = C.getState();
+
+ // Check for taint in arguments.
+ bool IsTainted = false;
+ for (ArgVector::const_iterator I = SrcArgs.begin(),
+ E = SrcArgs.end(); I != E; ++I) {
+ unsigned ArgNum = *I;
+
+ if (ArgNum == InvalidArgIndex) {
+ // Check if any of the arguments is tainted, but skip the
+ // destination arguments.
+ for (unsigned int i = 0; i < CE->getNumArgs(); ++i) {
+ if (isDestinationArgument(i))
+ continue;
+ if ((IsTainted = isTaintedOrPointsToTainted(CE->getArg(i), State, C)))
+ break;
+ }
+ break;
+ }
+
+ if (CE->getNumArgs() < (ArgNum + 1))
+ return State;
+ if ((IsTainted = isTaintedOrPointsToTainted(CE->getArg(ArgNum), State, C)))
+ break;
+ }
+ if (!IsTainted)
+ return State;
+
+ // Mark the arguments which should be tainted after the function returns.
+ for (ArgVector::const_iterator I = DstArgs.begin(),
+ E = DstArgs.end(); I != E; ++I) {
+ unsigned ArgNum = *I;
+
+ // Should we mark all arguments as tainted?
+ if (ArgNum == InvalidArgIndex) {
+ // For all pointer and references that were passed in:
+ // If they are not pointing to const data, mark data as tainted.
+ // TODO: So far we are just going one level down; ideally we'd need to
+ // recurse here.
+ for (unsigned int i = 0; i < CE->getNumArgs(); ++i) {
+ const Expr *Arg = CE->getArg(i);
+ // Process pointer argument.
+ const Type *ArgTy = Arg->getType().getTypePtr();
+ QualType PType = ArgTy->getPointeeType();
+ if ((!PType.isNull() && !PType.isConstQualified())
+ || (ArgTy->isReferenceType() && !Arg->getType().isConstQualified()))
+ State = State->add<TaintArgsOnPostVisit>(i);
+ }
+ continue;
+ }
+
+ // Should mark the return value?
+ if (ArgNum == ReturnValueIndex) {
+ State = State->add<TaintArgsOnPostVisit>(ReturnValueIndex);
+ continue;
+ }
+
+ // Mark the given argument.
+ assert(ArgNum < CE->getNumArgs());
+ State = State->add<TaintArgsOnPostVisit>(ArgNum);
+ }
+
+ return State;
+}
+
+
+// If argument 0 (file descriptor) is tainted, all arguments except for arg 0
+// and arg 1 should get taint.
+ProgramStateRef GenericTaintChecker::preFscanf(const CallExpr *CE,
+ CheckerContext &C) const {
+ assert(CE->getNumArgs() >= 2);
+ ProgramStateRef State = C.getState();
+
+ // Check is the file descriptor is tainted.
+ if (State->isTainted(CE->getArg(0), C.getLocationContext()) ||
+ isStdin(CE->getArg(0), C)) {
+ // All arguments except for the first two should get taint.
+ for (unsigned int i = 2; i < CE->getNumArgs(); ++i)
+ State = State->add<TaintArgsOnPostVisit>(i);
+ return State;
+ }
+
+ return nullptr;
+}
+
+
+// If argument 0(protocol domain) is network, the return value should get taint.
+ProgramStateRef GenericTaintChecker::postSocket(const CallExpr *CE,
+ CheckerContext &C) const {
+ ProgramStateRef State = C.getState();
+ if (CE->getNumArgs() < 3)
+ return State;
+
+ SourceLocation DomLoc = CE->getArg(0)->getExprLoc();
+ StringRef DomName = C.getMacroNameOrSpelling(DomLoc);
+ // White list the internal communication protocols.
+ if (DomName.equals("AF_SYSTEM") || DomName.equals("AF_LOCAL") ||
+ DomName.equals("AF_UNIX") || DomName.equals("AF_RESERVED_36"))
+ return State;
+ State = State->addTaint(CE, C.getLocationContext());
+ return State;
+}
+
+ProgramStateRef GenericTaintChecker::postScanf(const CallExpr *CE,
+ CheckerContext &C) const {
+ ProgramStateRef State = C.getState();
+ if (CE->getNumArgs() < 2)
+ return State;
+
+ // All arguments except for the very first one should get taint.
+ for (unsigned int i = 1; i < CE->getNumArgs(); ++i) {
+ // The arguments are pointer arguments. The data they are pointing at is
+ // tainted after the call.
+ const Expr* Arg = CE->getArg(i);
+ SymbolRef Sym = getPointedToSymbol(C, Arg);
+ if (Sym)
+ State = State->addTaint(Sym);
+ }
+ return State;
+}
+
+ProgramStateRef GenericTaintChecker::postRetTaint(const CallExpr *CE,
+ CheckerContext &C) const {
+ return C.getState()->addTaint(CE, C.getLocationContext());
+}
+
+bool GenericTaintChecker::isStdin(const Expr *E, CheckerContext &C) {
+ ProgramStateRef State = C.getState();
+ SVal Val = State->getSVal(E, C.getLocationContext());
+
+ // stdin is a pointer, so it would be a region.
+ const MemRegion *MemReg = Val.getAsRegion();
+
+ // The region should be symbolic, we do not know it's value.
+ const SymbolicRegion *SymReg = dyn_cast_or_null<SymbolicRegion>(MemReg);
+ if (!SymReg)
+ return false;
+
+ // Get it's symbol and find the declaration region it's pointing to.
+ const SymbolRegionValue *Sm =dyn_cast<SymbolRegionValue>(SymReg->getSymbol());
+ if (!Sm)
+ return false;
+ const DeclRegion *DeclReg = dyn_cast_or_null<DeclRegion>(Sm->getRegion());
+ if (!DeclReg)
+ return false;
+
+ // This region corresponds to a declaration, find out if it's a global/extern
+ // variable named stdin with the proper type.
+ if (const VarDecl *D = dyn_cast_or_null<VarDecl>(DeclReg->getDecl())) {
+ D = D->getCanonicalDecl();
+ if ((D->getName().find("stdin") != StringRef::npos) && D->isExternC())
+ if (const PointerType * PtrTy =
+ dyn_cast<PointerType>(D->getType().getTypePtr()))
+ if (PtrTy->getPointeeType() == C.getASTContext().getFILEType())
+ return true;
+ }
+ return false;
+}
+
+static bool getPrintfFormatArgumentNum(const CallExpr *CE,
+ const CheckerContext &C,
+ unsigned int &ArgNum) {
+ // Find if the function contains a format string argument.
+ // Handles: fprintf, printf, sprintf, snprintf, vfprintf, vprintf, vsprintf,
+ // vsnprintf, syslog, custom annotated functions.
+ const FunctionDecl *FDecl = C.getCalleeDecl(CE);
+ if (!FDecl)
+ return false;
+ for (const auto *Format : FDecl->specific_attrs<FormatAttr>()) {
+ ArgNum = Format->getFormatIdx() - 1;
+ if ((Format->getType()->getName() == "printf") &&
+ CE->getNumArgs() > ArgNum)
+ return true;
+ }
+
+ // Or if a function is named setproctitle (this is a heuristic).
+ if (C.getCalleeName(CE).find("setproctitle") != StringRef::npos) {
+ ArgNum = 0;
+ return true;
+ }
+
+ return false;
+}
+
+bool GenericTaintChecker::generateReportIfTainted(const Expr *E,
+ const char Msg[],
+ CheckerContext &C) const {
+ assert(E);
+
+ // Check for taint.
+ ProgramStateRef State = C.getState();
+ if (!State->isTainted(getPointedToSymbol(C, E)) &&
+ !State->isTainted(E, C.getLocationContext()))
+ return false;
+
+ // Generate diagnostic.
+ if (ExplodedNode *N = C.addTransition()) {
+ initBugType();
+ BugReport *report = new BugReport(*BT, Msg, N);
+ report->addRange(E->getSourceRange());
+ C.emitReport(report);
+ return true;
+ }
+ return false;
+}
+
+bool GenericTaintChecker::checkUncontrolledFormatString(const CallExpr *CE,
+ CheckerContext &C) const{
+ // Check if the function contains a format string argument.
+ unsigned int ArgNum = 0;
+ if (!getPrintfFormatArgumentNum(CE, C, ArgNum))
+ return false;
+
+ // If either the format string content or the pointer itself are tainted, warn.
+ if (generateReportIfTainted(CE->getArg(ArgNum),
+ MsgUncontrolledFormatString, C))
+ return true;
+ return false;
+}
+
+bool GenericTaintChecker::checkSystemCall(const CallExpr *CE,
+ StringRef Name,
+ CheckerContext &C) const {
+ // TODO: It might make sense to run this check on demand. In some cases,
+ // we should check if the environment has been cleansed here. We also might
+ // need to know if the user was reset before these calls(seteuid).
+ unsigned ArgNum = llvm::StringSwitch<unsigned>(Name)
+ .Case("system", 0)
+ .Case("popen", 0)
+ .Case("execl", 0)
+ .Case("execle", 0)
+ .Case("execlp", 0)
+ .Case("execv", 0)
+ .Case("execvp", 0)
+ .Case("execvP", 0)
+ .Case("execve", 0)
+ .Case("dlopen", 0)
+ .Default(UINT_MAX);
+
+ if (ArgNum == UINT_MAX || CE->getNumArgs() < (ArgNum + 1))
+ return false;
+
+ if (generateReportIfTainted(CE->getArg(ArgNum),
+ MsgSanitizeSystemArgs, C))
+ return true;
+
+ return false;
+}
+
+// TODO: Should this check be a part of the CString checker?
+// If yes, should taint be a global setting?
+bool GenericTaintChecker::checkTaintedBufferSize(const CallExpr *CE,
+ const FunctionDecl *FDecl,
+ CheckerContext &C) const {
+ // If the function has a buffer size argument, set ArgNum.
+ unsigned ArgNum = InvalidArgIndex;
+ unsigned BId = 0;
+ if ( (BId = FDecl->getMemoryFunctionKind()) )
+ switch(BId) {
+ case Builtin::BImemcpy:
+ case Builtin::BImemmove:
+ case Builtin::BIstrncpy:
+ ArgNum = 2;
+ break;
+ case Builtin::BIstrndup:
+ ArgNum = 1;
+ break;
+ default:
+ break;
+ };
+
+ if (ArgNum == InvalidArgIndex) {
+ if (C.isCLibraryFunction(FDecl, "malloc") ||
+ C.isCLibraryFunction(FDecl, "calloc") ||
+ C.isCLibraryFunction(FDecl, "alloca"))
+ ArgNum = 0;
+ else if (C.isCLibraryFunction(FDecl, "memccpy"))
+ ArgNum = 3;
+ else if (C.isCLibraryFunction(FDecl, "realloc"))
+ ArgNum = 1;
+ else if (C.isCLibraryFunction(FDecl, "bcopy"))
+ ArgNum = 2;
+ }
+
+ if (ArgNum != InvalidArgIndex && CE->getNumArgs() > ArgNum &&
+ generateReportIfTainted(CE->getArg(ArgNum), MsgTaintedBufferSize, C))
+ return true;
+
+ return false;
+}
+
+void ento::registerGenericTaintChecker(CheckerManager &mgr) {
+ mgr.registerChecker<GenericTaintChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/IdenticalExprChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/IdenticalExprChecker.cpp
new file mode 100644
index 0000000..58d0783
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/IdenticalExprChecker.cpp
@@ -0,0 +1,495 @@
+//== IdenticalExprChecker.cpp - Identical expression checker----------------==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// \brief This defines IdenticalExprChecker, a check that warns about
+/// unintended use of identical expressions.
+///
+/// It checks for use of identical expressions with comparison operators and
+/// inside conditional expressions.
+///
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/AST/RecursiveASTVisitor.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+
+using namespace clang;
+using namespace ento;
+
+static bool isIdenticalStmt(const ASTContext &Ctx, const Stmt *Stmt1,
+ const Stmt *Stmt2, bool IgnoreSideEffects = false);
+//===----------------------------------------------------------------------===//
+// FindIdenticalExprVisitor - Identify nodes using identical expressions.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class FindIdenticalExprVisitor
+ : public RecursiveASTVisitor<FindIdenticalExprVisitor> {
+ BugReporter &BR;
+ const CheckerBase *Checker;
+ AnalysisDeclContext *AC;
+public:
+ explicit FindIdenticalExprVisitor(BugReporter &B,
+ const CheckerBase *Checker,
+ AnalysisDeclContext *A)
+ : BR(B), Checker(Checker), AC(A) {}
+ // FindIdenticalExprVisitor only visits nodes
+ // that are binary operators, if statements or
+ // conditional operators.
+ bool VisitBinaryOperator(const BinaryOperator *B);
+ bool VisitIfStmt(const IfStmt *I);
+ bool VisitConditionalOperator(const ConditionalOperator *C);
+
+private:
+ void reportIdenticalExpr(const BinaryOperator *B, bool CheckBitwise,
+ ArrayRef<SourceRange> Sr);
+ void checkBitwiseOrLogicalOp(const BinaryOperator *B, bool CheckBitwise);
+ void checkComparisonOp(const BinaryOperator *B);
+};
+} // end anonymous namespace
+
+void FindIdenticalExprVisitor::reportIdenticalExpr(const BinaryOperator *B,
+ bool CheckBitwise,
+ ArrayRef<SourceRange> Sr) {
+ StringRef Message;
+ if (CheckBitwise)
+ Message = "identical expressions on both sides of bitwise operator";
+ else
+ Message = "identical expressions on both sides of logical operator";
+
+ PathDiagnosticLocation ELoc =
+ PathDiagnosticLocation::createOperatorLoc(B, BR.getSourceManager());
+ BR.EmitBasicReport(AC->getDecl(), Checker,
+ "Use of identical expressions",
+ categories::LogicError,
+ Message, ELoc, Sr);
+}
+
+void FindIdenticalExprVisitor::checkBitwiseOrLogicalOp(const BinaryOperator *B,
+ bool CheckBitwise) {
+ SourceRange Sr[2];
+
+ const Expr *LHS = B->getLHS();
+ const Expr *RHS = B->getRHS();
+
+ // Split operators as long as we still have operators to split on. We will
+ // get called for every binary operator in an expression so there is no need
+ // to check every one against each other here, just the right most one with
+ // the others.
+ while (const BinaryOperator *B2 = dyn_cast<BinaryOperator>(LHS)) {
+ if (B->getOpcode() != B2->getOpcode())
+ break;
+ if (isIdenticalStmt(AC->getASTContext(), RHS, B2->getRHS())) {
+ Sr[0] = RHS->getSourceRange();
+ Sr[1] = B2->getRHS()->getSourceRange();
+ reportIdenticalExpr(B, CheckBitwise, Sr);
+ }
+ LHS = B2->getLHS();
+ }
+
+ if (isIdenticalStmt(AC->getASTContext(), RHS, LHS)) {
+ Sr[0] = RHS->getSourceRange();
+ Sr[1] = LHS->getSourceRange();
+ reportIdenticalExpr(B, CheckBitwise, Sr);
+ }
+}
+
+bool FindIdenticalExprVisitor::VisitIfStmt(const IfStmt *I) {
+ const Stmt *Stmt1 = I->getThen();
+ const Stmt *Stmt2 = I->getElse();
+
+ // Check for identical conditions:
+ //
+ // if (b) {
+ // foo1();
+ // } else if (b) {
+ // foo2();
+ // }
+ if (Stmt1 && Stmt2) {
+ const Expr *Cond1 = I->getCond();
+ const Stmt *Else = Stmt2;
+ while (const IfStmt *I2 = dyn_cast_or_null<IfStmt>(Else)) {
+ const Expr *Cond2 = I2->getCond();
+ if (isIdenticalStmt(AC->getASTContext(), Cond1, Cond2, false)) {
+ SourceRange Sr = Cond1->getSourceRange();
+ PathDiagnosticLocation ELoc(Cond2, BR.getSourceManager(), AC);
+ BR.EmitBasicReport(AC->getDecl(), Checker, "Identical conditions",
+ categories::LogicError,
+ "expression is identical to previous condition",
+ ELoc, Sr);
+ }
+ Else = I2->getElse();
+ }
+ }
+
+ if (!Stmt1 || !Stmt2)
+ return true;
+
+ // Special handling for code like:
+ //
+ // if (b) {
+ // i = 1;
+ // } else
+ // i = 1;
+ if (const CompoundStmt *CompStmt = dyn_cast<CompoundStmt>(Stmt1)) {
+ if (CompStmt->size() == 1)
+ Stmt1 = CompStmt->body_back();
+ }
+ if (const CompoundStmt *CompStmt = dyn_cast<CompoundStmt>(Stmt2)) {
+ if (CompStmt->size() == 1)
+ Stmt2 = CompStmt->body_back();
+ }
+
+ if (isIdenticalStmt(AC->getASTContext(), Stmt1, Stmt2, true)) {
+ PathDiagnosticLocation ELoc =
+ PathDiagnosticLocation::createBegin(I, BR.getSourceManager(), AC);
+ BR.EmitBasicReport(AC->getDecl(), Checker,
+ "Identical branches",
+ categories::LogicError,
+ "true and false branches are identical", ELoc);
+ }
+ return true;
+}
+
+bool FindIdenticalExprVisitor::VisitBinaryOperator(const BinaryOperator *B) {
+ BinaryOperator::Opcode Op = B->getOpcode();
+
+ if (BinaryOperator::isBitwiseOp(Op))
+ checkBitwiseOrLogicalOp(B, true);
+
+ if (BinaryOperator::isLogicalOp(Op))
+ checkBitwiseOrLogicalOp(B, false);
+
+ if (BinaryOperator::isComparisonOp(Op))
+ checkComparisonOp(B);
+
+ // We want to visit ALL nodes (subexpressions of binary comparison
+ // expressions too) that contains comparison operators.
+ // True is always returned to traverse ALL nodes.
+ return true;
+}
+
+void FindIdenticalExprVisitor::checkComparisonOp(const BinaryOperator *B) {
+ BinaryOperator::Opcode Op = B->getOpcode();
+
+ //
+ // Special case for floating-point representation.
+ //
+ // If expressions on both sides of comparison operator are of type float,
+ // then for some comparison operators no warning shall be
+ // reported even if the expressions are identical from a symbolic point of
+ // view. Comparison between expressions, declared variables and literals
+ // are treated differently.
+ //
+ // != and == between float literals that have the same value should NOT warn.
+ // < > between float literals that have the same value SHOULD warn.
+ //
+ // != and == between the same float declaration should NOT warn.
+ // < > between the same float declaration SHOULD warn.
+ //
+ // != and == between eq. expressions that evaluates into float
+ // should NOT warn.
+ // < > between eq. expressions that evaluates into float
+ // should NOT warn.
+ //
+ const Expr *LHS = B->getLHS()->IgnoreParenImpCasts();
+ const Expr *RHS = B->getRHS()->IgnoreParenImpCasts();
+
+ const DeclRefExpr *DeclRef1 = dyn_cast<DeclRefExpr>(LHS);
+ const DeclRefExpr *DeclRef2 = dyn_cast<DeclRefExpr>(RHS);
+ const FloatingLiteral *FloatLit1 = dyn_cast<FloatingLiteral>(LHS);
+ const FloatingLiteral *FloatLit2 = dyn_cast<FloatingLiteral>(RHS);
+ if ((DeclRef1) && (DeclRef2)) {
+ if ((DeclRef1->getType()->hasFloatingRepresentation()) &&
+ (DeclRef2->getType()->hasFloatingRepresentation())) {
+ if (DeclRef1->getDecl() == DeclRef2->getDecl()) {
+ if ((Op == BO_EQ) || (Op == BO_NE)) {
+ return;
+ }
+ }
+ }
+ } else if ((FloatLit1) && (FloatLit2)) {
+ if (FloatLit1->getValue().bitwiseIsEqual(FloatLit2->getValue())) {
+ if ((Op == BO_EQ) || (Op == BO_NE)) {
+ return;
+ }
+ }
+ } else if (LHS->getType()->hasFloatingRepresentation()) {
+ // If any side of comparison operator still has floating-point
+ // representation, then it's an expression. Don't warn.
+ // Here only LHS is checked since RHS will be implicit casted to float.
+ return;
+ } else {
+ // No special case with floating-point representation, report as usual.
+ }
+
+ if (isIdenticalStmt(AC->getASTContext(), B->getLHS(), B->getRHS())) {
+ PathDiagnosticLocation ELoc =
+ PathDiagnosticLocation::createOperatorLoc(B, BR.getSourceManager());
+ StringRef Message;
+ if (((Op == BO_EQ) || (Op == BO_LE) || (Op == BO_GE)))
+ Message = "comparison of identical expressions always evaluates to true";
+ else
+ Message = "comparison of identical expressions always evaluates to false";
+ BR.EmitBasicReport(AC->getDecl(), Checker,
+ "Compare of identical expressions",
+ categories::LogicError, Message, ELoc);
+ }
+}
+
+bool FindIdenticalExprVisitor::VisitConditionalOperator(
+ const ConditionalOperator *C) {
+
+ // Check if expressions in conditional expression are identical
+ // from a symbolic point of view.
+
+ if (isIdenticalStmt(AC->getASTContext(), C->getTrueExpr(),
+ C->getFalseExpr(), true)) {
+ PathDiagnosticLocation ELoc =
+ PathDiagnosticLocation::createConditionalColonLoc(
+ C, BR.getSourceManager());
+
+ SourceRange Sr[2];
+ Sr[0] = C->getTrueExpr()->getSourceRange();
+ Sr[1] = C->getFalseExpr()->getSourceRange();
+ BR.EmitBasicReport(
+ AC->getDecl(), Checker,
+ "Identical expressions in conditional expression",
+ categories::LogicError,
+ "identical expressions on both sides of ':' in conditional expression",
+ ELoc, Sr);
+ }
+ // We want to visit ALL nodes (expressions in conditional
+ // expressions too) that contains conditional operators,
+ // thus always return true to traverse ALL nodes.
+ return true;
+}
+
+/// \brief Determines whether two statement trees are identical regarding
+/// operators and symbols.
+///
+/// Exceptions: expressions containing macros or functions with possible side
+/// effects are never considered identical.
+/// Limitations: (t + u) and (u + t) are not considered identical.
+/// t*(u + t) and t*u + t*t are not considered identical.
+///
+static bool isIdenticalStmt(const ASTContext &Ctx, const Stmt *Stmt1,
+ const Stmt *Stmt2, bool IgnoreSideEffects) {
+
+ if (!Stmt1 || !Stmt2) {
+ if (!Stmt1 && !Stmt2)
+ return true;
+ return false;
+ }
+
+ // If Stmt1 & Stmt2 are of different class then they are not
+ // identical statements.
+ if (Stmt1->getStmtClass() != Stmt2->getStmtClass())
+ return false;
+
+ const Expr *Expr1 = dyn_cast<Expr>(Stmt1);
+ const Expr *Expr2 = dyn_cast<Expr>(Stmt2);
+
+ if (Expr1 && Expr2) {
+ // If Stmt1 has side effects then don't warn even if expressions
+ // are identical.
+ if (!IgnoreSideEffects && Expr1->HasSideEffects(Ctx))
+ return false;
+ // If either expression comes from a macro then don't warn even if
+ // the expressions are identical.
+ if ((Expr1->getExprLoc().isMacroID()) || (Expr2->getExprLoc().isMacroID()))
+ return false;
+
+ // If all children of two expressions are identical, return true.
+ Expr::const_child_iterator I1 = Expr1->child_begin();
+ Expr::const_child_iterator I2 = Expr2->child_begin();
+ while (I1 != Expr1->child_end() && I2 != Expr2->child_end()) {
+ if (!*I1 || !*I2 || !isIdenticalStmt(Ctx, *I1, *I2, IgnoreSideEffects))
+ return false;
+ ++I1;
+ ++I2;
+ }
+ // If there are different number of children in the statements, return
+ // false.
+ if (I1 != Expr1->child_end())
+ return false;
+ if (I2 != Expr2->child_end())
+ return false;
+ }
+
+ switch (Stmt1->getStmtClass()) {
+ default:
+ return false;
+ case Stmt::CallExprClass:
+ case Stmt::ArraySubscriptExprClass:
+ case Stmt::ImplicitCastExprClass:
+ case Stmt::ParenExprClass:
+ case Stmt::BreakStmtClass:
+ case Stmt::ContinueStmtClass:
+ case Stmt::NullStmtClass:
+ return true;
+ case Stmt::CStyleCastExprClass: {
+ const CStyleCastExpr* CastExpr1 = cast<CStyleCastExpr>(Stmt1);
+ const CStyleCastExpr* CastExpr2 = cast<CStyleCastExpr>(Stmt2);
+
+ return CastExpr1->getTypeAsWritten() == CastExpr2->getTypeAsWritten();
+ }
+ case Stmt::ReturnStmtClass: {
+ const ReturnStmt *ReturnStmt1 = cast<ReturnStmt>(Stmt1);
+ const ReturnStmt *ReturnStmt2 = cast<ReturnStmt>(Stmt2);
+
+ return isIdenticalStmt(Ctx, ReturnStmt1->getRetValue(),
+ ReturnStmt2->getRetValue(), IgnoreSideEffects);
+ }
+ case Stmt::ForStmtClass: {
+ const ForStmt *ForStmt1 = cast<ForStmt>(Stmt1);
+ const ForStmt *ForStmt2 = cast<ForStmt>(Stmt2);
+
+ if (!isIdenticalStmt(Ctx, ForStmt1->getInit(), ForStmt2->getInit(),
+ IgnoreSideEffects))
+ return false;
+ if (!isIdenticalStmt(Ctx, ForStmt1->getCond(), ForStmt2->getCond(),
+ IgnoreSideEffects))
+ return false;
+ if (!isIdenticalStmt(Ctx, ForStmt1->getInc(), ForStmt2->getInc(),
+ IgnoreSideEffects))
+ return false;
+ if (!isIdenticalStmt(Ctx, ForStmt1->getBody(), ForStmt2->getBody(),
+ IgnoreSideEffects))
+ return false;
+ return true;
+ }
+ case Stmt::DoStmtClass: {
+ const DoStmt *DStmt1 = cast<DoStmt>(Stmt1);
+ const DoStmt *DStmt2 = cast<DoStmt>(Stmt2);
+
+ if (!isIdenticalStmt(Ctx, DStmt1->getCond(), DStmt2->getCond(),
+ IgnoreSideEffects))
+ return false;
+ if (!isIdenticalStmt(Ctx, DStmt1->getBody(), DStmt2->getBody(),
+ IgnoreSideEffects))
+ return false;
+ return true;
+ }
+ case Stmt::WhileStmtClass: {
+ const WhileStmt *WStmt1 = cast<WhileStmt>(Stmt1);
+ const WhileStmt *WStmt2 = cast<WhileStmt>(Stmt2);
+
+ if (!isIdenticalStmt(Ctx, WStmt1->getCond(), WStmt2->getCond(),
+ IgnoreSideEffects))
+ return false;
+ if (!isIdenticalStmt(Ctx, WStmt1->getBody(), WStmt2->getBody(),
+ IgnoreSideEffects))
+ return false;
+ return true;
+ }
+ case Stmt::IfStmtClass: {
+ const IfStmt *IStmt1 = cast<IfStmt>(Stmt1);
+ const IfStmt *IStmt2 = cast<IfStmt>(Stmt2);
+
+ if (!isIdenticalStmt(Ctx, IStmt1->getCond(), IStmt2->getCond(),
+ IgnoreSideEffects))
+ return false;
+ if (!isIdenticalStmt(Ctx, IStmt1->getThen(), IStmt2->getThen(),
+ IgnoreSideEffects))
+ return false;
+ if (!isIdenticalStmt(Ctx, IStmt1->getElse(), IStmt2->getElse(),
+ IgnoreSideEffects))
+ return false;
+ return true;
+ }
+ case Stmt::CompoundStmtClass: {
+ const CompoundStmt *CompStmt1 = cast<CompoundStmt>(Stmt1);
+ const CompoundStmt *CompStmt2 = cast<CompoundStmt>(Stmt2);
+
+ if (CompStmt1->size() != CompStmt2->size())
+ return false;
+
+ CompoundStmt::const_body_iterator I1 = CompStmt1->body_begin();
+ CompoundStmt::const_body_iterator I2 = CompStmt2->body_begin();
+ while (I1 != CompStmt1->body_end() && I2 != CompStmt2->body_end()) {
+ if (!isIdenticalStmt(Ctx, *I1, *I2, IgnoreSideEffects))
+ return false;
+ ++I1;
+ ++I2;
+ }
+
+ return true;
+ }
+ case Stmt::CompoundAssignOperatorClass:
+ case Stmt::BinaryOperatorClass: {
+ const BinaryOperator *BinOp1 = cast<BinaryOperator>(Stmt1);
+ const BinaryOperator *BinOp2 = cast<BinaryOperator>(Stmt2);
+ return BinOp1->getOpcode() == BinOp2->getOpcode();
+ }
+ case Stmt::CharacterLiteralClass: {
+ const CharacterLiteral *CharLit1 = cast<CharacterLiteral>(Stmt1);
+ const CharacterLiteral *CharLit2 = cast<CharacterLiteral>(Stmt2);
+ return CharLit1->getValue() == CharLit2->getValue();
+ }
+ case Stmt::DeclRefExprClass: {
+ const DeclRefExpr *DeclRef1 = cast<DeclRefExpr>(Stmt1);
+ const DeclRefExpr *DeclRef2 = cast<DeclRefExpr>(Stmt2);
+ return DeclRef1->getDecl() == DeclRef2->getDecl();
+ }
+ case Stmt::IntegerLiteralClass: {
+ const IntegerLiteral *IntLit1 = cast<IntegerLiteral>(Stmt1);
+ const IntegerLiteral *IntLit2 = cast<IntegerLiteral>(Stmt2);
+
+ llvm::APInt I1 = IntLit1->getValue();
+ llvm::APInt I2 = IntLit2->getValue();
+ if (I1.getBitWidth() != I2.getBitWidth())
+ return false;
+ return I1 == I2;
+ }
+ case Stmt::FloatingLiteralClass: {
+ const FloatingLiteral *FloatLit1 = cast<FloatingLiteral>(Stmt1);
+ const FloatingLiteral *FloatLit2 = cast<FloatingLiteral>(Stmt2);
+ return FloatLit1->getValue().bitwiseIsEqual(FloatLit2->getValue());
+ }
+ case Stmt::StringLiteralClass: {
+ const StringLiteral *StringLit1 = cast<StringLiteral>(Stmt1);
+ const StringLiteral *StringLit2 = cast<StringLiteral>(Stmt2);
+ return StringLit1->getBytes() == StringLit2->getBytes();
+ }
+ case Stmt::MemberExprClass: {
+ const MemberExpr *MemberStmt1 = cast<MemberExpr>(Stmt1);
+ const MemberExpr *MemberStmt2 = cast<MemberExpr>(Stmt2);
+ return MemberStmt1->getMemberDecl() == MemberStmt2->getMemberDecl();
+ }
+ case Stmt::UnaryOperatorClass: {
+ const UnaryOperator *UnaryOp1 = cast<UnaryOperator>(Stmt1);
+ const UnaryOperator *UnaryOp2 = cast<UnaryOperator>(Stmt2);
+ return UnaryOp1->getOpcode() == UnaryOp2->getOpcode();
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// FindIdenticalExprChecker
+//===----------------------------------------------------------------------===//
+
+namespace {
+class FindIdenticalExprChecker : public Checker<check::ASTCodeBody> {
+public:
+ void checkASTCodeBody(const Decl *D, AnalysisManager &Mgr,
+ BugReporter &BR) const {
+ FindIdenticalExprVisitor Visitor(BR, this, Mgr.getAnalysisDeclContext(D));
+ Visitor.TraverseDecl(const_cast<Decl *>(D));
+ }
+};
+} // end anonymous namespace
+
+void ento::registerIdenticalExprChecker(CheckerManager &Mgr) {
+ Mgr.registerChecker<FindIdenticalExprChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/InterCheckerAPI.h b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/InterCheckerAPI.h
new file mode 100644
index 0000000..d38d63c
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/InterCheckerAPI.h
@@ -0,0 +1,24 @@
+//==--- InterCheckerAPI.h ---------------------------------------*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+// This file allows introduction of checker dependencies. It contains APIs for
+// inter-checker communications.
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_STATICANALYZER_CHECKERS_INTERCHECKERAPI_H
+#define LLVM_CLANG_LIB_STATICANALYZER_CHECKERS_INTERCHECKERAPI_H
+namespace clang {
+class CheckerManager;
+
+namespace ento {
+
+/// Register the checker which evaluates CString API calls.
+void registerCStringCheckerBasic(CheckerManager &Mgr);
+
+}}
+#endif /* INTERCHECKERAPI_H_ */
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/IvarInvalidationChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/IvarInvalidationChecker.cpp
new file mode 100644
index 0000000..02c1209
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/IvarInvalidationChecker.cpp
@@ -0,0 +1,753 @@
+//=- IvarInvalidationChecker.cpp - -*- C++ -------------------------------*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This checker implements annotation driven invalidation checking. If a class
+// contains a method annotated with 'objc_instance_variable_invalidator',
+// - (void) foo
+// __attribute__((annotate("objc_instance_variable_invalidator")));
+// all the "ivalidatable" instance variables of this class should be
+// invalidated. We call an instance variable ivalidatable if it is an object of
+// a class which contains an invalidation method. There could be multiple
+// methods annotated with such annotations per class, either one can be used
+// to invalidate the ivar. An ivar or property are considered to be
+// invalidated if they are being assigned 'nil' or an invalidation method has
+// been called on them. An invalidation method should either invalidate all
+// the ivars or call another invalidation method (on self).
+//
+// Partial invalidor annotation allows to addess cases when ivars are
+// invalidated by other methods, which might or might not be called from
+// the invalidation method. The checker checks that each invalidation
+// method and all the partial methods cumulatively invalidate all ivars.
+// __attribute__((annotate("objc_instance_variable_invalidator_partial")));
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallString.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+
+struct ChecksFilter {
+ /// Check for missing invalidation method declarations.
+ DefaultBool check_MissingInvalidationMethod;
+ /// Check that all ivars are invalidated.
+ DefaultBool check_InstanceVariableInvalidation;
+
+ CheckName checkName_MissingInvalidationMethod;
+ CheckName checkName_InstanceVariableInvalidation;
+};
+
+class IvarInvalidationCheckerImpl {
+
+ typedef llvm::SmallSetVector<const ObjCMethodDecl*, 2> MethodSet;
+ typedef llvm::DenseMap<const ObjCMethodDecl*,
+ const ObjCIvarDecl*> MethToIvarMapTy;
+ typedef llvm::DenseMap<const ObjCPropertyDecl*,
+ const ObjCIvarDecl*> PropToIvarMapTy;
+ typedef llvm::DenseMap<const ObjCIvarDecl*,
+ const ObjCPropertyDecl*> IvarToPropMapTy;
+
+
+ struct InvalidationInfo {
+ /// Has the ivar been invalidated?
+ bool IsInvalidated;
+
+ /// The methods which can be used to invalidate the ivar.
+ MethodSet InvalidationMethods;
+
+ InvalidationInfo() : IsInvalidated(false) {}
+ void addInvalidationMethod(const ObjCMethodDecl *MD) {
+ InvalidationMethods.insert(MD);
+ }
+
+ bool needsInvalidation() const {
+ return !InvalidationMethods.empty();
+ }
+
+ bool hasMethod(const ObjCMethodDecl *MD) {
+ if (IsInvalidated)
+ return true;
+ for (MethodSet::iterator I = InvalidationMethods.begin(),
+ E = InvalidationMethods.end(); I != E; ++I) {
+ if (*I == MD) {
+ IsInvalidated = true;
+ return true;
+ }
+ }
+ return false;
+ }
+ };
+
+ typedef llvm::DenseMap<const ObjCIvarDecl*, InvalidationInfo> IvarSet;
+
+ /// Statement visitor, which walks the method body and flags the ivars
+ /// referenced in it (either directly or via property).
+ class MethodCrawler : public ConstStmtVisitor<MethodCrawler> {
+ /// The set of Ivars which need to be invalidated.
+ IvarSet &IVars;
+
+ /// Flag is set as the result of a message send to another
+ /// invalidation method.
+ bool &CalledAnotherInvalidationMethod;
+
+ /// Property setter to ivar mapping.
+ const MethToIvarMapTy &PropertySetterToIvarMap;
+
+ /// Property getter to ivar mapping.
+ const MethToIvarMapTy &PropertyGetterToIvarMap;
+
+ /// Property to ivar mapping.
+ const PropToIvarMapTy &PropertyToIvarMap;
+
+ /// The invalidation method being currently processed.
+ const ObjCMethodDecl *InvalidationMethod;
+
+ ASTContext &Ctx;
+
+ /// Peel off parens, casts, OpaqueValueExpr, and PseudoObjectExpr.
+ const Expr *peel(const Expr *E) const;
+
+ /// Does this expression represent zero: '0'?
+ bool isZero(const Expr *E) const;
+
+ /// Mark the given ivar as invalidated.
+ void markInvalidated(const ObjCIvarDecl *Iv);
+
+ /// Checks if IvarRef refers to the tracked IVar, if yes, marks it as
+ /// invalidated.
+ void checkObjCIvarRefExpr(const ObjCIvarRefExpr *IvarRef);
+
+ /// Checks if ObjCPropertyRefExpr refers to the tracked IVar, if yes, marks
+ /// it as invalidated.
+ void checkObjCPropertyRefExpr(const ObjCPropertyRefExpr *PA);
+
+ /// Checks if ObjCMessageExpr refers to (is a getter for) the tracked IVar,
+ /// if yes, marks it as invalidated.
+ void checkObjCMessageExpr(const ObjCMessageExpr *ME);
+
+ /// Checks if the Expr refers to an ivar, if yes, marks it as invalidated.
+ void check(const Expr *E);
+
+ public:
+ MethodCrawler(IvarSet &InIVars,
+ bool &InCalledAnotherInvalidationMethod,
+ const MethToIvarMapTy &InPropertySetterToIvarMap,
+ const MethToIvarMapTy &InPropertyGetterToIvarMap,
+ const PropToIvarMapTy &InPropertyToIvarMap,
+ ASTContext &InCtx)
+ : IVars(InIVars),
+ CalledAnotherInvalidationMethod(InCalledAnotherInvalidationMethod),
+ PropertySetterToIvarMap(InPropertySetterToIvarMap),
+ PropertyGetterToIvarMap(InPropertyGetterToIvarMap),
+ PropertyToIvarMap(InPropertyToIvarMap),
+ InvalidationMethod(nullptr),
+ Ctx(InCtx) {}
+
+ void VisitStmt(const Stmt *S) { VisitChildren(S); }
+
+ void VisitBinaryOperator(const BinaryOperator *BO);
+
+ void VisitObjCMessageExpr(const ObjCMessageExpr *ME);
+
+ void VisitChildren(const Stmt *S) {
+ for (Stmt::const_child_range I = S->children(); I; ++I) {
+ if (*I)
+ this->Visit(*I);
+ if (CalledAnotherInvalidationMethod)
+ return;
+ }
+ }
+ };
+
+ /// Check if the any of the methods inside the interface are annotated with
+ /// the invalidation annotation, update the IvarInfo accordingly.
+ /// \param LookForPartial is set when we are searching for partial
+ /// invalidators.
+ static void containsInvalidationMethod(const ObjCContainerDecl *D,
+ InvalidationInfo &Out,
+ bool LookForPartial);
+
+ /// Check if ivar should be tracked and add to TrackedIvars if positive.
+ /// Returns true if ivar should be tracked.
+ static bool trackIvar(const ObjCIvarDecl *Iv, IvarSet &TrackedIvars,
+ const ObjCIvarDecl **FirstIvarDecl);
+
+ /// Given the property declaration, and the list of tracked ivars, finds
+ /// the ivar backing the property when possible. Returns '0' when no such
+ /// ivar could be found.
+ static const ObjCIvarDecl *findPropertyBackingIvar(
+ const ObjCPropertyDecl *Prop,
+ const ObjCInterfaceDecl *InterfaceD,
+ IvarSet &TrackedIvars,
+ const ObjCIvarDecl **FirstIvarDecl);
+
+ /// Print ivar name or the property if the given ivar backs a property.
+ static void printIvar(llvm::raw_svector_ostream &os,
+ const ObjCIvarDecl *IvarDecl,
+ const IvarToPropMapTy &IvarToPopertyMap);
+
+ void reportNoInvalidationMethod(CheckName CheckName,
+ const ObjCIvarDecl *FirstIvarDecl,
+ const IvarToPropMapTy &IvarToPopertyMap,
+ const ObjCInterfaceDecl *InterfaceD,
+ bool MissingDeclaration) const;
+ void reportIvarNeedsInvalidation(const ObjCIvarDecl *IvarD,
+ const IvarToPropMapTy &IvarToPopertyMap,
+ const ObjCMethodDecl *MethodD) const;
+
+ AnalysisManager& Mgr;
+ BugReporter &BR;
+ /// Filter on the checks performed.
+ const ChecksFilter &Filter;
+
+public:
+ IvarInvalidationCheckerImpl(AnalysisManager& InMgr,
+ BugReporter &InBR,
+ const ChecksFilter &InFilter) :
+ Mgr (InMgr), BR(InBR), Filter(InFilter) {}
+
+ void visit(const ObjCImplementationDecl *D) const;
+};
+
+static bool isInvalidationMethod(const ObjCMethodDecl *M, bool LookForPartial) {
+ for (const auto *Ann : M->specific_attrs<AnnotateAttr>()) {
+ if (!LookForPartial &&
+ Ann->getAnnotation() == "objc_instance_variable_invalidator")
+ return true;
+ if (LookForPartial &&
+ Ann->getAnnotation() == "objc_instance_variable_invalidator_partial")
+ return true;
+ }
+ return false;
+}
+
+void IvarInvalidationCheckerImpl::containsInvalidationMethod(
+ const ObjCContainerDecl *D, InvalidationInfo &OutInfo, bool Partial) {
+
+ if (!D)
+ return;
+
+ assert(!isa<ObjCImplementationDecl>(D));
+ // TODO: Cache the results.
+
+ // Check all methods.
+ for (const auto *MDI : D->methods())
+ if (isInvalidationMethod(MDI, Partial))
+ OutInfo.addInvalidationMethod(
+ cast<ObjCMethodDecl>(MDI->getCanonicalDecl()));
+
+ // If interface, check all parent protocols and super.
+ if (const ObjCInterfaceDecl *InterfD = dyn_cast<ObjCInterfaceDecl>(D)) {
+
+ // Visit all protocols.
+ for (const auto *I : InterfD->protocols())
+ containsInvalidationMethod(I->getDefinition(), OutInfo, Partial);
+
+ // Visit all categories in case the invalidation method is declared in
+ // a category.
+ for (const auto *Ext : InterfD->visible_extensions())
+ containsInvalidationMethod(Ext, OutInfo, Partial);
+
+ containsInvalidationMethod(InterfD->getSuperClass(), OutInfo, Partial);
+ return;
+ }
+
+ // If protocol, check all parent protocols.
+ if (const ObjCProtocolDecl *ProtD = dyn_cast<ObjCProtocolDecl>(D)) {
+ for (const auto *I : ProtD->protocols()) {
+ containsInvalidationMethod(I->getDefinition(), OutInfo, Partial);
+ }
+ return;
+ }
+
+ return;
+}
+
+bool IvarInvalidationCheckerImpl::trackIvar(const ObjCIvarDecl *Iv,
+ IvarSet &TrackedIvars,
+ const ObjCIvarDecl **FirstIvarDecl) {
+ QualType IvQTy = Iv->getType();
+ const ObjCObjectPointerType *IvTy = IvQTy->getAs<ObjCObjectPointerType>();
+ if (!IvTy)
+ return false;
+ const ObjCInterfaceDecl *IvInterf = IvTy->getInterfaceDecl();
+
+ InvalidationInfo Info;
+ containsInvalidationMethod(IvInterf, Info, /*LookForPartial*/ false);
+ if (Info.needsInvalidation()) {
+ const ObjCIvarDecl *I = cast<ObjCIvarDecl>(Iv->getCanonicalDecl());
+ TrackedIvars[I] = Info;
+ if (!*FirstIvarDecl)
+ *FirstIvarDecl = I;
+ return true;
+ }
+ return false;
+}
+
+const ObjCIvarDecl *IvarInvalidationCheckerImpl::findPropertyBackingIvar(
+ const ObjCPropertyDecl *Prop,
+ const ObjCInterfaceDecl *InterfaceD,
+ IvarSet &TrackedIvars,
+ const ObjCIvarDecl **FirstIvarDecl) {
+ const ObjCIvarDecl *IvarD = nullptr;
+
+ // Lookup for the synthesized case.
+ IvarD = Prop->getPropertyIvarDecl();
+ // We only track the ivars/properties that are defined in the current
+ // class (not the parent).
+ if (IvarD && IvarD->getContainingInterface() == InterfaceD) {
+ if (TrackedIvars.count(IvarD)) {
+ return IvarD;
+ }
+ // If the ivar is synthesized we still want to track it.
+ if (trackIvar(IvarD, TrackedIvars, FirstIvarDecl))
+ return IvarD;
+ }
+
+ // Lookup IVars named "_PropName"or "PropName" among the tracked Ivars.
+ StringRef PropName = Prop->getIdentifier()->getName();
+ for (IvarSet::const_iterator I = TrackedIvars.begin(),
+ E = TrackedIvars.end(); I != E; ++I) {
+ const ObjCIvarDecl *Iv = I->first;
+ StringRef IvarName = Iv->getName();
+
+ if (IvarName == PropName)
+ return Iv;
+
+ SmallString<128> PropNameWithUnderscore;
+ {
+ llvm::raw_svector_ostream os(PropNameWithUnderscore);
+ os << '_' << PropName;
+ }
+ if (IvarName == PropNameWithUnderscore)
+ return Iv;
+ }
+
+ // Note, this is a possible source of false positives. We could look at the
+ // getter implementation to find the ivar when its name is not derived from
+ // the property name.
+ return nullptr;
+}
+
+void IvarInvalidationCheckerImpl::printIvar(llvm::raw_svector_ostream &os,
+ const ObjCIvarDecl *IvarDecl,
+ const IvarToPropMapTy &IvarToPopertyMap) {
+ if (IvarDecl->getSynthesize()) {
+ const ObjCPropertyDecl *PD = IvarToPopertyMap.lookup(IvarDecl);
+ assert(PD &&"Do we synthesize ivars for something other than properties?");
+ os << "Property "<< PD->getName() << " ";
+ } else {
+ os << "Instance variable "<< IvarDecl->getName() << " ";
+ }
+}
+
+// Check that the invalidatable interfaces with ivars/properties implement the
+// invalidation methods.
+void IvarInvalidationCheckerImpl::
+visit(const ObjCImplementationDecl *ImplD) const {
+ // Collect all ivars that need cleanup.
+ IvarSet Ivars;
+ // Record the first Ivar needing invalidation; used in reporting when only
+ // one ivar is sufficient. Cannot grab the first on the Ivars set to ensure
+ // deterministic output.
+ const ObjCIvarDecl *FirstIvarDecl = nullptr;
+ const ObjCInterfaceDecl *InterfaceD = ImplD->getClassInterface();
+
+ // Collect ivars declared in this class, its extensions and its implementation
+ ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(InterfaceD);
+ for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
+ Iv= Iv->getNextIvar())
+ trackIvar(Iv, Ivars, &FirstIvarDecl);
+
+ // Construct Property/Property Accessor to Ivar maps to assist checking if an
+ // ivar which is backing a property has been reset.
+ MethToIvarMapTy PropSetterToIvarMap;
+ MethToIvarMapTy PropGetterToIvarMap;
+ PropToIvarMapTy PropertyToIvarMap;
+ IvarToPropMapTy IvarToPopertyMap;
+
+ ObjCInterfaceDecl::PropertyMap PropMap;
+ ObjCInterfaceDecl::PropertyDeclOrder PropOrder;
+ InterfaceD->collectPropertiesToImplement(PropMap, PropOrder);
+
+ for (ObjCInterfaceDecl::PropertyMap::iterator
+ I = PropMap.begin(), E = PropMap.end(); I != E; ++I) {
+ const ObjCPropertyDecl *PD = I->second;
+
+ const ObjCIvarDecl *ID = findPropertyBackingIvar(PD, InterfaceD, Ivars,
+ &FirstIvarDecl);
+ if (!ID)
+ continue;
+
+ // Store the mappings.
+ PD = cast<ObjCPropertyDecl>(PD->getCanonicalDecl());
+ PropertyToIvarMap[PD] = ID;
+ IvarToPopertyMap[ID] = PD;
+
+ // Find the setter and the getter.
+ const ObjCMethodDecl *SetterD = PD->getSetterMethodDecl();
+ if (SetterD) {
+ SetterD = cast<ObjCMethodDecl>(SetterD->getCanonicalDecl());
+ PropSetterToIvarMap[SetterD] = ID;
+ }
+
+ const ObjCMethodDecl *GetterD = PD->getGetterMethodDecl();
+ if (GetterD) {
+ GetterD = cast<ObjCMethodDecl>(GetterD->getCanonicalDecl());
+ PropGetterToIvarMap[GetterD] = ID;
+ }
+ }
+
+ // If no ivars need invalidation, there is nothing to check here.
+ if (Ivars.empty())
+ return;
+
+ // Find all partial invalidation methods.
+ InvalidationInfo PartialInfo;
+ containsInvalidationMethod(InterfaceD, PartialInfo, /*LookForPartial*/ true);
+
+ // Remove ivars invalidated by the partial invalidation methods. They do not
+ // need to be invalidated in the regular invalidation methods.
+ bool AtImplementationContainsAtLeastOnePartialInvalidationMethod = false;
+ for (MethodSet::iterator
+ I = PartialInfo.InvalidationMethods.begin(),
+ E = PartialInfo.InvalidationMethods.end(); I != E; ++I) {
+ const ObjCMethodDecl *InterfD = *I;
+
+ // Get the corresponding method in the @implementation.
+ const ObjCMethodDecl *D = ImplD->getMethod(InterfD->getSelector(),
+ InterfD->isInstanceMethod());
+ if (D && D->hasBody()) {
+ AtImplementationContainsAtLeastOnePartialInvalidationMethod = true;
+
+ bool CalledAnotherInvalidationMethod = false;
+ // The MethodCrowler is going to remove the invalidated ivars.
+ MethodCrawler(Ivars,
+ CalledAnotherInvalidationMethod,
+ PropSetterToIvarMap,
+ PropGetterToIvarMap,
+ PropertyToIvarMap,
+ BR.getContext()).VisitStmt(D->getBody());
+ // If another invalidation method was called, trust that full invalidation
+ // has occurred.
+ if (CalledAnotherInvalidationMethod)
+ Ivars.clear();
+ }
+ }
+
+ // If all ivars have been invalidated by partial invalidators, there is
+ // nothing to check here.
+ if (Ivars.empty())
+ return;
+
+ // Find all invalidation methods in this @interface declaration and parents.
+ InvalidationInfo Info;
+ containsInvalidationMethod(InterfaceD, Info, /*LookForPartial*/ false);
+
+ // Report an error in case none of the invalidation methods are declared.
+ if (!Info.needsInvalidation() && !PartialInfo.needsInvalidation()) {
+ if (Filter.check_MissingInvalidationMethod)
+ reportNoInvalidationMethod(Filter.checkName_MissingInvalidationMethod,
+ FirstIvarDecl, IvarToPopertyMap, InterfaceD,
+ /*MissingDeclaration*/ true);
+ // If there are no invalidation methods, there is no ivar validation work
+ // to be done.
+ return;
+ }
+
+ // Only check if Ivars are invalidated when InstanceVariableInvalidation
+ // has been requested.
+ if (!Filter.check_InstanceVariableInvalidation)
+ return;
+
+ // Check that all ivars are invalidated by the invalidation methods.
+ bool AtImplementationContainsAtLeastOneInvalidationMethod = false;
+ for (MethodSet::iterator I = Info.InvalidationMethods.begin(),
+ E = Info.InvalidationMethods.end(); I != E; ++I) {
+ const ObjCMethodDecl *InterfD = *I;
+
+ // Get the corresponding method in the @implementation.
+ const ObjCMethodDecl *D = ImplD->getMethod(InterfD->getSelector(),
+ InterfD->isInstanceMethod());
+ if (D && D->hasBody()) {
+ AtImplementationContainsAtLeastOneInvalidationMethod = true;
+
+ // Get a copy of ivars needing invalidation.
+ IvarSet IvarsI = Ivars;
+
+ bool CalledAnotherInvalidationMethod = false;
+ MethodCrawler(IvarsI,
+ CalledAnotherInvalidationMethod,
+ PropSetterToIvarMap,
+ PropGetterToIvarMap,
+ PropertyToIvarMap,
+ BR.getContext()).VisitStmt(D->getBody());
+ // If another invalidation method was called, trust that full invalidation
+ // has occurred.
+ if (CalledAnotherInvalidationMethod)
+ continue;
+
+ // Warn on the ivars that were not invalidated by the method.
+ for (IvarSet::const_iterator
+ I = IvarsI.begin(), E = IvarsI.end(); I != E; ++I)
+ reportIvarNeedsInvalidation(I->first, IvarToPopertyMap, D);
+ }
+ }
+
+ // Report an error in case none of the invalidation methods are implemented.
+ if (!AtImplementationContainsAtLeastOneInvalidationMethod) {
+ if (AtImplementationContainsAtLeastOnePartialInvalidationMethod) {
+ // Warn on the ivars that were not invalidated by the prrtial
+ // invalidation methods.
+ for (IvarSet::const_iterator
+ I = Ivars.begin(), E = Ivars.end(); I != E; ++I)
+ reportIvarNeedsInvalidation(I->first, IvarToPopertyMap, nullptr);
+ } else {
+ // Otherwise, no invalidation methods were implemented.
+ reportNoInvalidationMethod(Filter.checkName_InstanceVariableInvalidation,
+ FirstIvarDecl, IvarToPopertyMap, InterfaceD,
+ /*MissingDeclaration*/ false);
+ }
+ }
+}
+
+void IvarInvalidationCheckerImpl::reportNoInvalidationMethod(
+ CheckName CheckName, const ObjCIvarDecl *FirstIvarDecl,
+ const IvarToPropMapTy &IvarToPopertyMap,
+ const ObjCInterfaceDecl *InterfaceD, bool MissingDeclaration) const {
+ SmallString<128> sbuf;
+ llvm::raw_svector_ostream os(sbuf);
+ assert(FirstIvarDecl);
+ printIvar(os, FirstIvarDecl, IvarToPopertyMap);
+ os << "needs to be invalidated; ";
+ if (MissingDeclaration)
+ os << "no invalidation method is declared for ";
+ else
+ os << "no invalidation method is defined in the @implementation for ";
+ os << InterfaceD->getName();
+
+ PathDiagnosticLocation IvarDecLocation =
+ PathDiagnosticLocation::createBegin(FirstIvarDecl, BR.getSourceManager());
+
+ BR.EmitBasicReport(FirstIvarDecl, CheckName, "Incomplete invalidation",
+ categories::CoreFoundationObjectiveC, os.str(),
+ IvarDecLocation);
+}
+
+void IvarInvalidationCheckerImpl::
+reportIvarNeedsInvalidation(const ObjCIvarDecl *IvarD,
+ const IvarToPropMapTy &IvarToPopertyMap,
+ const ObjCMethodDecl *MethodD) const {
+ SmallString<128> sbuf;
+ llvm::raw_svector_ostream os(sbuf);
+ printIvar(os, IvarD, IvarToPopertyMap);
+ os << "needs to be invalidated or set to nil";
+ if (MethodD) {
+ PathDiagnosticLocation MethodDecLocation =
+ PathDiagnosticLocation::createEnd(MethodD->getBody(),
+ BR.getSourceManager(),
+ Mgr.getAnalysisDeclContext(MethodD));
+ BR.EmitBasicReport(MethodD, Filter.checkName_InstanceVariableInvalidation,
+ "Incomplete invalidation",
+ categories::CoreFoundationObjectiveC, os.str(),
+ MethodDecLocation);
+ } else {
+ BR.EmitBasicReport(
+ IvarD, Filter.checkName_InstanceVariableInvalidation,
+ "Incomplete invalidation", categories::CoreFoundationObjectiveC,
+ os.str(),
+ PathDiagnosticLocation::createBegin(IvarD, BR.getSourceManager()));
+ }
+}
+
+void IvarInvalidationCheckerImpl::MethodCrawler::markInvalidated(
+ const ObjCIvarDecl *Iv) {
+ IvarSet::iterator I = IVars.find(Iv);
+ if (I != IVars.end()) {
+ // If InvalidationMethod is present, we are processing the message send and
+ // should ensure we are invalidating with the appropriate method,
+ // otherwise, we are processing setting to 'nil'.
+ if (!InvalidationMethod ||
+ (InvalidationMethod && I->second.hasMethod(InvalidationMethod)))
+ IVars.erase(I);
+ }
+}
+
+const Expr *IvarInvalidationCheckerImpl::MethodCrawler::peel(const Expr *E) const {
+ E = E->IgnoreParenCasts();
+ if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
+ E = POE->getSyntacticForm()->IgnoreParenCasts();
+ if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E))
+ E = OVE->getSourceExpr()->IgnoreParenCasts();
+ return E;
+}
+
+void IvarInvalidationCheckerImpl::MethodCrawler::checkObjCIvarRefExpr(
+ const ObjCIvarRefExpr *IvarRef) {
+ if (const Decl *D = IvarRef->getDecl())
+ markInvalidated(cast<ObjCIvarDecl>(D->getCanonicalDecl()));
+}
+
+void IvarInvalidationCheckerImpl::MethodCrawler::checkObjCMessageExpr(
+ const ObjCMessageExpr *ME) {
+ const ObjCMethodDecl *MD = ME->getMethodDecl();
+ if (MD) {
+ MD = cast<ObjCMethodDecl>(MD->getCanonicalDecl());
+ MethToIvarMapTy::const_iterator IvI = PropertyGetterToIvarMap.find(MD);
+ if (IvI != PropertyGetterToIvarMap.end())
+ markInvalidated(IvI->second);
+ }
+}
+
+void IvarInvalidationCheckerImpl::MethodCrawler::checkObjCPropertyRefExpr(
+ const ObjCPropertyRefExpr *PA) {
+
+ if (PA->isExplicitProperty()) {
+ const ObjCPropertyDecl *PD = PA->getExplicitProperty();
+ if (PD) {
+ PD = cast<ObjCPropertyDecl>(PD->getCanonicalDecl());
+ PropToIvarMapTy::const_iterator IvI = PropertyToIvarMap.find(PD);
+ if (IvI != PropertyToIvarMap.end())
+ markInvalidated(IvI->second);
+ return;
+ }
+ }
+
+ if (PA->isImplicitProperty()) {
+ const ObjCMethodDecl *MD = PA->getImplicitPropertySetter();
+ if (MD) {
+ MD = cast<ObjCMethodDecl>(MD->getCanonicalDecl());
+ MethToIvarMapTy::const_iterator IvI =PropertyGetterToIvarMap.find(MD);
+ if (IvI != PropertyGetterToIvarMap.end())
+ markInvalidated(IvI->second);
+ return;
+ }
+ }
+}
+
+bool IvarInvalidationCheckerImpl::MethodCrawler::isZero(const Expr *E) const {
+ E = peel(E);
+
+ return (E->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull)
+ != Expr::NPCK_NotNull);
+}
+
+void IvarInvalidationCheckerImpl::MethodCrawler::check(const Expr *E) {
+ E = peel(E);
+
+ if (const ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
+ checkObjCIvarRefExpr(IvarRef);
+ return;
+ }
+
+ if (const ObjCPropertyRefExpr *PropRef = dyn_cast<ObjCPropertyRefExpr>(E)) {
+ checkObjCPropertyRefExpr(PropRef);
+ return;
+ }
+
+ if (const ObjCMessageExpr *MsgExpr = dyn_cast<ObjCMessageExpr>(E)) {
+ checkObjCMessageExpr(MsgExpr);
+ return;
+ }
+}
+
+void IvarInvalidationCheckerImpl::MethodCrawler::VisitBinaryOperator(
+ const BinaryOperator *BO) {
+ VisitStmt(BO);
+
+ // Do we assign/compare against zero? If yes, check the variable we are
+ // assigning to.
+ BinaryOperatorKind Opcode = BO->getOpcode();
+ if (Opcode != BO_Assign &&
+ Opcode != BO_EQ &&
+ Opcode != BO_NE)
+ return;
+
+ if (isZero(BO->getRHS())) {
+ check(BO->getLHS());
+ return;
+ }
+
+ if (Opcode != BO_Assign && isZero(BO->getLHS())) {
+ check(BO->getRHS());
+ return;
+ }
+}
+
+void IvarInvalidationCheckerImpl::MethodCrawler::VisitObjCMessageExpr(
+ const ObjCMessageExpr *ME) {
+ const ObjCMethodDecl *MD = ME->getMethodDecl();
+ const Expr *Receiver = ME->getInstanceReceiver();
+
+ // Stop if we are calling '[self invalidate]'.
+ if (Receiver && isInvalidationMethod(MD, /*LookForPartial*/ false))
+ if (Receiver->isObjCSelfExpr()) {
+ CalledAnotherInvalidationMethod = true;
+ return;
+ }
+
+ // Check if we call a setter and set the property to 'nil'.
+ if (MD && (ME->getNumArgs() == 1) && isZero(ME->getArg(0))) {
+ MD = cast<ObjCMethodDecl>(MD->getCanonicalDecl());
+ MethToIvarMapTy::const_iterator IvI = PropertySetterToIvarMap.find(MD);
+ if (IvI != PropertySetterToIvarMap.end()) {
+ markInvalidated(IvI->second);
+ return;
+ }
+ }
+
+ // Check if we call the 'invalidation' routine on the ivar.
+ if (Receiver) {
+ InvalidationMethod = MD;
+ check(Receiver->IgnoreParenCasts());
+ InvalidationMethod = nullptr;
+ }
+
+ VisitStmt(ME);
+}
+}
+
+// Register the checkers.
+namespace {
+
+class IvarInvalidationChecker :
+ public Checker<check::ASTDecl<ObjCImplementationDecl> > {
+public:
+ ChecksFilter Filter;
+public:
+ void checkASTDecl(const ObjCImplementationDecl *D, AnalysisManager& Mgr,
+ BugReporter &BR) const {
+ IvarInvalidationCheckerImpl Walker(Mgr, BR, Filter);
+ Walker.visit(D);
+ }
+};
+}
+
+#define REGISTER_CHECKER(name) \
+ void ento::register##name(CheckerManager &mgr) { \
+ IvarInvalidationChecker *checker = \
+ mgr.registerChecker<IvarInvalidationChecker>(); \
+ checker->Filter.check_##name = true; \
+ checker->Filter.checkName_##name = mgr.getCurrentCheckName(); \
+ }
+
+REGISTER_CHECKER(InstanceVariableInvalidation)
+REGISTER_CHECKER(MissingInvalidationMethod)
+
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/LLVMConventionsChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/LLVMConventionsChecker.cpp
new file mode 100644
index 0000000..0b7375a
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/LLVMConventionsChecker.cpp
@@ -0,0 +1,319 @@
+//=== LLVMConventionsChecker.cpp - Check LLVM codebase conventions ---*- C++ -*-
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This defines LLVMConventionsChecker, a bunch of small little checks
+// for checking specific coding conventions in the LLVM/Clang codebase.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+
+//===----------------------------------------------------------------------===//
+// Generic type checking routines.
+//===----------------------------------------------------------------------===//
+
+static bool IsLLVMStringRef(QualType T) {
+ const RecordType *RT = T->getAs<RecordType>();
+ if (!RT)
+ return false;
+
+ return StringRef(QualType(RT, 0).getAsString()) ==
+ "class StringRef";
+}
+
+/// Check whether the declaration is semantically inside the top-level
+/// namespace named by ns.
+static bool InNamespace(const Decl *D, StringRef NS) {
+ const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(D->getDeclContext());
+ if (!ND)
+ return false;
+ const IdentifierInfo *II = ND->getIdentifier();
+ if (!II || !II->getName().equals(NS))
+ return false;
+ return isa<TranslationUnitDecl>(ND->getDeclContext());
+}
+
+static bool IsStdString(QualType T) {
+ if (const ElaboratedType *QT = T->getAs<ElaboratedType>())
+ T = QT->getNamedType();
+
+ const TypedefType *TT = T->getAs<TypedefType>();
+ if (!TT)
+ return false;
+
+ const TypedefNameDecl *TD = TT->getDecl();
+
+ if (!TD->isInStdNamespace())
+ return false;
+
+ return TD->getName() == "string";
+}
+
+static bool IsClangType(const RecordDecl *RD) {
+ return RD->getName() == "Type" && InNamespace(RD, "clang");
+}
+
+static bool IsClangDecl(const RecordDecl *RD) {
+ return RD->getName() == "Decl" && InNamespace(RD, "clang");
+}
+
+static bool IsClangStmt(const RecordDecl *RD) {
+ return RD->getName() == "Stmt" && InNamespace(RD, "clang");
+}
+
+static bool IsClangAttr(const RecordDecl *RD) {
+ return RD->getName() == "Attr" && InNamespace(RD, "clang");
+}
+
+static bool IsStdVector(QualType T) {
+ const TemplateSpecializationType *TS = T->getAs<TemplateSpecializationType>();
+ if (!TS)
+ return false;
+
+ TemplateName TM = TS->getTemplateName();
+ TemplateDecl *TD = TM.getAsTemplateDecl();
+
+ if (!TD || !InNamespace(TD, "std"))
+ return false;
+
+ return TD->getName() == "vector";
+}
+
+static bool IsSmallVector(QualType T) {
+ const TemplateSpecializationType *TS = T->getAs<TemplateSpecializationType>();
+ if (!TS)
+ return false;
+
+ TemplateName TM = TS->getTemplateName();
+ TemplateDecl *TD = TM.getAsTemplateDecl();
+
+ if (!TD || !InNamespace(TD, "llvm"))
+ return false;
+
+ return TD->getName() == "SmallVector";
+}
+
+//===----------------------------------------------------------------------===//
+// CHECK: a StringRef should not be bound to a temporary std::string whose
+// lifetime is shorter than the StringRef's.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class StringRefCheckerVisitor : public StmtVisitor<StringRefCheckerVisitor> {
+ const Decl *DeclWithIssue;
+ BugReporter &BR;
+ const CheckerBase *Checker;
+
+public:
+ StringRefCheckerVisitor(const Decl *declWithIssue, BugReporter &br,
+ const CheckerBase *checker)
+ : DeclWithIssue(declWithIssue), BR(br), Checker(checker) {}
+ void VisitChildren(Stmt *S) {
+ for (Stmt::child_iterator I = S->child_begin(), E = S->child_end() ;
+ I != E; ++I)
+ if (Stmt *child = *I)
+ Visit(child);
+ }
+ void VisitStmt(Stmt *S) { VisitChildren(S); }
+ void VisitDeclStmt(DeclStmt *DS);
+private:
+ void VisitVarDecl(VarDecl *VD);
+};
+} // end anonymous namespace
+
+static void CheckStringRefAssignedTemporary(const Decl *D, BugReporter &BR,
+ const CheckerBase *Checker) {
+ StringRefCheckerVisitor walker(D, BR, Checker);
+ walker.Visit(D->getBody());
+}
+
+void StringRefCheckerVisitor::VisitDeclStmt(DeclStmt *S) {
+ VisitChildren(S);
+
+ for (auto *I : S->decls())
+ if (VarDecl *VD = dyn_cast<VarDecl>(I))
+ VisitVarDecl(VD);
+}
+
+void StringRefCheckerVisitor::VisitVarDecl(VarDecl *VD) {
+ Expr *Init = VD->getInit();
+ if (!Init)
+ return;
+
+ // Pattern match for:
+ // StringRef x = call() (where call returns std::string)
+ if (!IsLLVMStringRef(VD->getType()))
+ return;
+ ExprWithCleanups *Ex1 = dyn_cast<ExprWithCleanups>(Init);
+ if (!Ex1)
+ return;
+ CXXConstructExpr *Ex2 = dyn_cast<CXXConstructExpr>(Ex1->getSubExpr());
+ if (!Ex2 || Ex2->getNumArgs() != 1)
+ return;
+ ImplicitCastExpr *Ex3 = dyn_cast<ImplicitCastExpr>(Ex2->getArg(0));
+ if (!Ex3)
+ return;
+ CXXConstructExpr *Ex4 = dyn_cast<CXXConstructExpr>(Ex3->getSubExpr());
+ if (!Ex4 || Ex4->getNumArgs() != 1)
+ return;
+ ImplicitCastExpr *Ex5 = dyn_cast<ImplicitCastExpr>(Ex4->getArg(0));
+ if (!Ex5)
+ return;
+ CXXBindTemporaryExpr *Ex6 = dyn_cast<CXXBindTemporaryExpr>(Ex5->getSubExpr());
+ if (!Ex6 || !IsStdString(Ex6->getType()))
+ return;
+
+ // Okay, badness! Report an error.
+ const char *desc = "StringRef should not be bound to temporary "
+ "std::string that it outlives";
+ PathDiagnosticLocation VDLoc =
+ PathDiagnosticLocation::createBegin(VD, BR.getSourceManager());
+ BR.EmitBasicReport(DeclWithIssue, Checker, desc, "LLVM Conventions", desc,
+ VDLoc, Init->getSourceRange());
+}
+
+//===----------------------------------------------------------------------===//
+// CHECK: Clang AST nodes should not have fields that can allocate
+// memory.
+//===----------------------------------------------------------------------===//
+
+static bool AllocatesMemory(QualType T) {
+ return IsStdVector(T) || IsStdString(T) || IsSmallVector(T);
+}
+
+// This type checking could be sped up via dynamic programming.
+static bool IsPartOfAST(const CXXRecordDecl *R) {
+ if (IsClangStmt(R) || IsClangType(R) || IsClangDecl(R) || IsClangAttr(R))
+ return true;
+
+ for (const auto &BS : R->bases()) {
+ QualType T = BS.getType();
+ if (const RecordType *baseT = T->getAs<RecordType>()) {
+ CXXRecordDecl *baseD = cast<CXXRecordDecl>(baseT->getDecl());
+ if (IsPartOfAST(baseD))
+ return true;
+ }
+ }
+
+ return false;
+}
+
+namespace {
+class ASTFieldVisitor {
+ SmallVector<FieldDecl*, 10> FieldChain;
+ const CXXRecordDecl *Root;
+ BugReporter &BR;
+ const CheckerBase *Checker;
+
+public:
+ ASTFieldVisitor(const CXXRecordDecl *root, BugReporter &br,
+ const CheckerBase *checker)
+ : Root(root), BR(br), Checker(checker) {}
+
+ void Visit(FieldDecl *D);
+ void ReportError(QualType T);
+};
+} // end anonymous namespace
+
+static void CheckASTMemory(const CXXRecordDecl *R, BugReporter &BR,
+ const CheckerBase *Checker) {
+ if (!IsPartOfAST(R))
+ return;
+
+ for (auto *I : R->fields()) {
+ ASTFieldVisitor walker(R, BR, Checker);
+ walker.Visit(I);
+ }
+}
+
+void ASTFieldVisitor::Visit(FieldDecl *D) {
+ FieldChain.push_back(D);
+
+ QualType T = D->getType();
+
+ if (AllocatesMemory(T))
+ ReportError(T);
+
+ if (const RecordType *RT = T->getAs<RecordType>()) {
+ const RecordDecl *RD = RT->getDecl()->getDefinition();
+ for (auto *I : RD->fields())
+ Visit(I);
+ }
+
+ FieldChain.pop_back();
+}
+
+void ASTFieldVisitor::ReportError(QualType T) {
+ SmallString<1024> buf;
+ llvm::raw_svector_ostream os(buf);
+
+ os << "AST class '" << Root->getName() << "' has a field '"
+ << FieldChain.front()->getName() << "' that allocates heap memory";
+ if (FieldChain.size() > 1) {
+ os << " via the following chain: ";
+ bool isFirst = true;
+ for (SmallVectorImpl<FieldDecl*>::iterator I=FieldChain.begin(),
+ E=FieldChain.end(); I!=E; ++I) {
+ if (!isFirst)
+ os << '.';
+ else
+ isFirst = false;
+ os << (*I)->getName();
+ }
+ }
+ os << " (type " << FieldChain.back()->getType().getAsString() << ")";
+ os.flush();
+
+ // Note that this will fire for every translation unit that uses this
+ // class. This is suboptimal, but at least scan-build will merge
+ // duplicate HTML reports. In the future we need a unified way of merging
+ // duplicate reports across translation units. For C++ classes we cannot
+ // just report warnings when we see an out-of-line method definition for a
+ // class, as that heuristic doesn't always work (the complete definition of
+ // the class may be in the header file, for example).
+ PathDiagnosticLocation L = PathDiagnosticLocation::createBegin(
+ FieldChain.front(), BR.getSourceManager());
+ BR.EmitBasicReport(Root, Checker, "AST node allocates heap memory",
+ "LLVM Conventions", os.str(), L);
+}
+
+//===----------------------------------------------------------------------===//
+// LLVMConventionsChecker
+//===----------------------------------------------------------------------===//
+
+namespace {
+class LLVMConventionsChecker : public Checker<
+ check::ASTDecl<CXXRecordDecl>,
+ check::ASTCodeBody > {
+public:
+ void checkASTDecl(const CXXRecordDecl *R, AnalysisManager& mgr,
+ BugReporter &BR) const {
+ if (R->isCompleteDefinition())
+ CheckASTMemory(R, BR, this);
+ }
+
+ void checkASTCodeBody(const Decl *D, AnalysisManager& mgr,
+ BugReporter &BR) const {
+ CheckStringRefAssignedTemporary(D, BR, this);
+ }
+};
+}
+
+void ento::registerLLVMConventionsChecker(CheckerManager &mgr) {
+ mgr.registerChecker<LLVMConventionsChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/MacOSKeychainAPIChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/MacOSKeychainAPIChecker.cpp
new file mode 100644
index 0000000..52e2936
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/MacOSKeychainAPIChecker.cpp
@@ -0,0 +1,633 @@
+//==--- MacOSKeychainAPIChecker.cpp ------------------------------*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+// This checker flags misuses of KeyChainAPI. In particular, the password data
+// allocated/returned by SecKeychainItemCopyContent,
+// SecKeychainFindGenericPassword, SecKeychainFindInternetPassword functions has
+// to be freed using a call to SecKeychainItemFreeContent.
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+class MacOSKeychainAPIChecker : public Checker<check::PreStmt<CallExpr>,
+ check::PostStmt<CallExpr>,
+ check::DeadSymbols> {
+ mutable std::unique_ptr<BugType> BT;
+
+public:
+ /// AllocationState is a part of the checker specific state together with the
+ /// MemRegion corresponding to the allocated data.
+ struct AllocationState {
+ /// The index of the allocator function.
+ unsigned int AllocatorIdx;
+ SymbolRef Region;
+
+ AllocationState(const Expr *E, unsigned int Idx, SymbolRef R) :
+ AllocatorIdx(Idx),
+ Region(R) {}
+
+ bool operator==(const AllocationState &X) const {
+ return (AllocatorIdx == X.AllocatorIdx &&
+ Region == X.Region);
+ }
+
+ void Profile(llvm::FoldingSetNodeID &ID) const {
+ ID.AddInteger(AllocatorIdx);
+ ID.AddPointer(Region);
+ }
+ };
+
+ void checkPreStmt(const CallExpr *S, CheckerContext &C) const;
+ void checkPostStmt(const CallExpr *S, CheckerContext &C) const;
+ void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
+
+private:
+ typedef std::pair<SymbolRef, const AllocationState*> AllocationPair;
+ typedef SmallVector<AllocationPair, 2> AllocationPairVec;
+
+ enum APIKind {
+ /// Denotes functions tracked by this checker.
+ ValidAPI = 0,
+ /// The functions commonly/mistakenly used in place of the given API.
+ ErrorAPI = 1,
+ /// The functions which may allocate the data. These are tracked to reduce
+ /// the false alarm rate.
+ PossibleAPI = 2
+ };
+ /// Stores the information about the allocator and deallocator functions -
+ /// these are the functions the checker is tracking.
+ struct ADFunctionInfo {
+ const char* Name;
+ unsigned int Param;
+ unsigned int DeallocatorIdx;
+ APIKind Kind;
+ };
+ static const unsigned InvalidIdx = 100000;
+ static const unsigned FunctionsToTrackSize = 8;
+ static const ADFunctionInfo FunctionsToTrack[FunctionsToTrackSize];
+ /// The value, which represents no error return value for allocator functions.
+ static const unsigned NoErr = 0;
+
+ /// Given the function name, returns the index of the allocator/deallocator
+ /// function.
+ static unsigned getTrackedFunctionIndex(StringRef Name, bool IsAllocator);
+
+ inline void initBugType() const {
+ if (!BT)
+ BT.reset(new BugType(this, "Improper use of SecKeychain API",
+ "API Misuse (Apple)"));
+ }
+
+ void generateDeallocatorMismatchReport(const AllocationPair &AP,
+ const Expr *ArgExpr,
+ CheckerContext &C) const;
+
+ /// Find the allocation site for Sym on the path leading to the node N.
+ const ExplodedNode *getAllocationNode(const ExplodedNode *N, SymbolRef Sym,
+ CheckerContext &C) const;
+
+ BugReport *generateAllocatedDataNotReleasedReport(const AllocationPair &AP,
+ ExplodedNode *N,
+ CheckerContext &C) const;
+
+ /// Check if RetSym evaluates to an error value in the current state.
+ bool definitelyReturnedError(SymbolRef RetSym,
+ ProgramStateRef State,
+ SValBuilder &Builder,
+ bool noError = false) const;
+
+ /// Check if RetSym evaluates to a NoErr value in the current state.
+ bool definitelyDidnotReturnError(SymbolRef RetSym,
+ ProgramStateRef State,
+ SValBuilder &Builder) const {
+ return definitelyReturnedError(RetSym, State, Builder, true);
+ }
+
+ /// Mark an AllocationPair interesting for diagnostic reporting.
+ void markInteresting(BugReport *R, const AllocationPair &AP) const {
+ R->markInteresting(AP.first);
+ R->markInteresting(AP.second->Region);
+ }
+
+ /// The bug visitor which allows us to print extra diagnostics along the
+ /// BugReport path. For example, showing the allocation site of the leaked
+ /// region.
+ class SecKeychainBugVisitor
+ : public BugReporterVisitorImpl<SecKeychainBugVisitor> {
+ protected:
+ // The allocated region symbol tracked by the main analysis.
+ SymbolRef Sym;
+
+ public:
+ SecKeychainBugVisitor(SymbolRef S) : Sym(S) {}
+ ~SecKeychainBugVisitor() override {}
+
+ void Profile(llvm::FoldingSetNodeID &ID) const override {
+ static int X = 0;
+ ID.AddPointer(&X);
+ ID.AddPointer(Sym);
+ }
+
+ PathDiagnosticPiece *VisitNode(const ExplodedNode *N,
+ const ExplodedNode *PrevN,
+ BugReporterContext &BRC,
+ BugReport &BR) override;
+ };
+};
+}
+
+/// ProgramState traits to store the currently allocated (and not yet freed)
+/// symbols. This is a map from the allocated content symbol to the
+/// corresponding AllocationState.
+REGISTER_MAP_WITH_PROGRAMSTATE(AllocatedData,
+ SymbolRef,
+ MacOSKeychainAPIChecker::AllocationState)
+
+static bool isEnclosingFunctionParam(const Expr *E) {
+ E = E->IgnoreParenCasts();
+ if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
+ const ValueDecl *VD = DRE->getDecl();
+ if (isa<ImplicitParamDecl>(VD) || isa<ParmVarDecl>(VD))
+ return true;
+ }
+ return false;
+}
+
+const MacOSKeychainAPIChecker::ADFunctionInfo
+ MacOSKeychainAPIChecker::FunctionsToTrack[FunctionsToTrackSize] = {
+ {"SecKeychainItemCopyContent", 4, 3, ValidAPI}, // 0
+ {"SecKeychainFindGenericPassword", 6, 3, ValidAPI}, // 1
+ {"SecKeychainFindInternetPassword", 13, 3, ValidAPI}, // 2
+ {"SecKeychainItemFreeContent", 1, InvalidIdx, ValidAPI}, // 3
+ {"SecKeychainItemCopyAttributesAndData", 5, 5, ValidAPI}, // 4
+ {"SecKeychainItemFreeAttributesAndData", 1, InvalidIdx, ValidAPI}, // 5
+ {"free", 0, InvalidIdx, ErrorAPI}, // 6
+ {"CFStringCreateWithBytesNoCopy", 1, InvalidIdx, PossibleAPI}, // 7
+};
+
+unsigned MacOSKeychainAPIChecker::getTrackedFunctionIndex(StringRef Name,
+ bool IsAllocator) {
+ for (unsigned I = 0; I < FunctionsToTrackSize; ++I) {
+ ADFunctionInfo FI = FunctionsToTrack[I];
+ if (FI.Name != Name)
+ continue;
+ // Make sure the function is of the right type (allocator vs deallocator).
+ if (IsAllocator && (FI.DeallocatorIdx == InvalidIdx))
+ return InvalidIdx;
+ if (!IsAllocator && (FI.DeallocatorIdx != InvalidIdx))
+ return InvalidIdx;
+
+ return I;
+ }
+ // The function is not tracked.
+ return InvalidIdx;
+}
+
+static bool isBadDeallocationArgument(const MemRegion *Arg) {
+ if (!Arg)
+ return false;
+ if (isa<AllocaRegion>(Arg) ||
+ isa<BlockDataRegion>(Arg) ||
+ isa<TypedRegion>(Arg)) {
+ return true;
+ }
+ return false;
+}
+
+/// Given the address expression, retrieve the value it's pointing to. Assume
+/// that value is itself an address, and return the corresponding symbol.
+static SymbolRef getAsPointeeSymbol(const Expr *Expr,
+ CheckerContext &C) {
+ ProgramStateRef State = C.getState();
+ SVal ArgV = State->getSVal(Expr, C.getLocationContext());
+
+ if (Optional<loc::MemRegionVal> X = ArgV.getAs<loc::MemRegionVal>()) {
+ StoreManager& SM = C.getStoreManager();
+ SymbolRef sym = SM.getBinding(State->getStore(), *X).getAsLocSymbol();
+ if (sym)
+ return sym;
+ }
+ return nullptr;
+}
+
+// When checking for error code, we need to consider the following cases:
+// 1) noErr / [0]
+// 2) someErr / [1, inf]
+// 3) unknown
+// If noError, returns true iff (1).
+// If !noError, returns true iff (2).
+bool MacOSKeychainAPIChecker::definitelyReturnedError(SymbolRef RetSym,
+ ProgramStateRef State,
+ SValBuilder &Builder,
+ bool noError) const {
+ DefinedOrUnknownSVal NoErrVal = Builder.makeIntVal(NoErr,
+ Builder.getSymbolManager().getType(RetSym));
+ DefinedOrUnknownSVal NoErr = Builder.evalEQ(State, NoErrVal,
+ nonloc::SymbolVal(RetSym));
+ ProgramStateRef ErrState = State->assume(NoErr, noError);
+ if (ErrState == State) {
+ return true;
+ }
+
+ return false;
+}
+
+// Report deallocator mismatch. Remove the region from tracking - reporting a
+// missing free error after this one is redundant.
+void MacOSKeychainAPIChecker::
+ generateDeallocatorMismatchReport(const AllocationPair &AP,
+ const Expr *ArgExpr,
+ CheckerContext &C) const {
+ ProgramStateRef State = C.getState();
+ State = State->remove<AllocatedData>(AP.first);
+ ExplodedNode *N = C.addTransition(State);
+
+ if (!N)
+ return;
+ initBugType();
+ SmallString<80> sbuf;
+ llvm::raw_svector_ostream os(sbuf);
+ unsigned int PDeallocIdx =
+ FunctionsToTrack[AP.second->AllocatorIdx].DeallocatorIdx;
+
+ os << "Deallocator doesn't match the allocator: '"
+ << FunctionsToTrack[PDeallocIdx].Name << "' should be used.";
+ BugReport *Report = new BugReport(*BT, os.str(), N);
+ Report->addVisitor(llvm::make_unique<SecKeychainBugVisitor>(AP.first));
+ Report->addRange(ArgExpr->getSourceRange());
+ markInteresting(Report, AP);
+ C.emitReport(Report);
+}
+
+void MacOSKeychainAPIChecker::checkPreStmt(const CallExpr *CE,
+ CheckerContext &C) const {
+ unsigned idx = InvalidIdx;
+ ProgramStateRef State = C.getState();
+
+ const FunctionDecl *FD = C.getCalleeDecl(CE);
+ if (!FD || FD->getKind() != Decl::Function)
+ return;
+
+ StringRef funName = C.getCalleeName(FD);
+ if (funName.empty())
+ return;
+
+ // If it is a call to an allocator function, it could be a double allocation.
+ idx = getTrackedFunctionIndex(funName, true);
+ if (idx != InvalidIdx) {
+ unsigned paramIdx = FunctionsToTrack[idx].Param;
+ if (CE->getNumArgs() <= paramIdx)
+ return;
+
+ const Expr *ArgExpr = CE->getArg(paramIdx);
+ if (SymbolRef V = getAsPointeeSymbol(ArgExpr, C))
+ if (const AllocationState *AS = State->get<AllocatedData>(V)) {
+ if (!definitelyReturnedError(AS->Region, State, C.getSValBuilder())) {
+ // Remove the value from the state. The new symbol will be added for
+ // tracking when the second allocator is processed in checkPostStmt().
+ State = State->remove<AllocatedData>(V);
+ ExplodedNode *N = C.addTransition(State);
+ if (!N)
+ return;
+ initBugType();
+ SmallString<128> sbuf;
+ llvm::raw_svector_ostream os(sbuf);
+ unsigned int DIdx = FunctionsToTrack[AS->AllocatorIdx].DeallocatorIdx;
+ os << "Allocated data should be released before another call to "
+ << "the allocator: missing a call to '"
+ << FunctionsToTrack[DIdx].Name
+ << "'.";
+ BugReport *Report = new BugReport(*BT, os.str(), N);
+ Report->addVisitor(llvm::make_unique<SecKeychainBugVisitor>(V));
+ Report->addRange(ArgExpr->getSourceRange());
+ Report->markInteresting(AS->Region);
+ C.emitReport(Report);
+ }
+ }
+ return;
+ }
+
+ // Is it a call to one of deallocator functions?
+ idx = getTrackedFunctionIndex(funName, false);
+ if (idx == InvalidIdx)
+ return;
+
+ unsigned paramIdx = FunctionsToTrack[idx].Param;
+ if (CE->getNumArgs() <= paramIdx)
+ return;
+
+ // Check the argument to the deallocator.
+ const Expr *ArgExpr = CE->getArg(paramIdx);
+ SVal ArgSVal = State->getSVal(ArgExpr, C.getLocationContext());
+
+ // Undef is reported by another checker.
+ if (ArgSVal.isUndef())
+ return;
+
+ SymbolRef ArgSM = ArgSVal.getAsLocSymbol();
+
+ // If the argument is coming from the heap, globals, or unknown, do not
+ // report it.
+ bool RegionArgIsBad = false;
+ if (!ArgSM) {
+ if (!isBadDeallocationArgument(ArgSVal.getAsRegion()))
+ return;
+ RegionArgIsBad = true;
+ }
+
+ // Is the argument to the call being tracked?
+ const AllocationState *AS = State->get<AllocatedData>(ArgSM);
+ if (!AS && FunctionsToTrack[idx].Kind != ValidAPI) {
+ return;
+ }
+ // If trying to free data which has not been allocated yet, report as a bug.
+ // TODO: We might want a more precise diagnostic for double free
+ // (that would involve tracking all the freed symbols in the checker state).
+ if (!AS || RegionArgIsBad) {
+ // It is possible that this is a false positive - the argument might
+ // have entered as an enclosing function parameter.
+ if (isEnclosingFunctionParam(ArgExpr))
+ return;
+
+ ExplodedNode *N = C.addTransition(State);
+ if (!N)
+ return;
+ initBugType();
+ BugReport *Report = new BugReport(*BT,
+ "Trying to free data which has not been allocated.", N);
+ Report->addRange(ArgExpr->getSourceRange());
+ if (AS)
+ Report->markInteresting(AS->Region);
+ C.emitReport(Report);
+ return;
+ }
+
+ // Process functions which might deallocate.
+ if (FunctionsToTrack[idx].Kind == PossibleAPI) {
+
+ if (funName == "CFStringCreateWithBytesNoCopy") {
+ const Expr *DeallocatorExpr = CE->getArg(5)->IgnoreParenCasts();
+ // NULL ~ default deallocator, so warn.
+ if (DeallocatorExpr->isNullPointerConstant(C.getASTContext(),
+ Expr::NPC_ValueDependentIsNotNull)) {
+ const AllocationPair AP = std::make_pair(ArgSM, AS);
+ generateDeallocatorMismatchReport(AP, ArgExpr, C);
+ return;
+ }
+ // One of the default allocators, so warn.
+ if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(DeallocatorExpr)) {
+ StringRef DeallocatorName = DE->getFoundDecl()->getName();
+ if (DeallocatorName == "kCFAllocatorDefault" ||
+ DeallocatorName == "kCFAllocatorSystemDefault" ||
+ DeallocatorName == "kCFAllocatorMalloc") {
+ const AllocationPair AP = std::make_pair(ArgSM, AS);
+ generateDeallocatorMismatchReport(AP, ArgExpr, C);
+ return;
+ }
+ // If kCFAllocatorNull, which does not deallocate, we still have to
+ // find the deallocator.
+ if (DE->getFoundDecl()->getName() == "kCFAllocatorNull")
+ return;
+ }
+ // In all other cases, assume the user supplied a correct deallocator
+ // that will free memory so stop tracking.
+ State = State->remove<AllocatedData>(ArgSM);
+ C.addTransition(State);
+ return;
+ }
+
+ llvm_unreachable("We know of no other possible APIs.");
+ }
+
+ // The call is deallocating a value we previously allocated, so remove it
+ // from the next state.
+ State = State->remove<AllocatedData>(ArgSM);
+
+ // Check if the proper deallocator is used.
+ unsigned int PDeallocIdx = FunctionsToTrack[AS->AllocatorIdx].DeallocatorIdx;
+ if (PDeallocIdx != idx || (FunctionsToTrack[idx].Kind == ErrorAPI)) {
+ const AllocationPair AP = std::make_pair(ArgSM, AS);
+ generateDeallocatorMismatchReport(AP, ArgExpr, C);
+ return;
+ }
+
+ // If the buffer can be null and the return status can be an error,
+ // report a bad call to free.
+ if (State->assume(ArgSVal.castAs<DefinedSVal>(), false) &&
+ !definitelyDidnotReturnError(AS->Region, State, C.getSValBuilder())) {
+ ExplodedNode *N = C.addTransition(State);
+ if (!N)
+ return;
+ initBugType();
+ BugReport *Report = new BugReport(*BT,
+ "Only call free if a valid (non-NULL) buffer was returned.", N);
+ Report->addVisitor(llvm::make_unique<SecKeychainBugVisitor>(ArgSM));
+ Report->addRange(ArgExpr->getSourceRange());
+ Report->markInteresting(AS->Region);
+ C.emitReport(Report);
+ return;
+ }
+
+ C.addTransition(State);
+}
+
+void MacOSKeychainAPIChecker::checkPostStmt(const CallExpr *CE,
+ CheckerContext &C) const {
+ ProgramStateRef State = C.getState();
+ const FunctionDecl *FD = C.getCalleeDecl(CE);
+ if (!FD || FD->getKind() != Decl::Function)
+ return;
+
+ StringRef funName = C.getCalleeName(FD);
+
+ // If a value has been allocated, add it to the set for tracking.
+ unsigned idx = getTrackedFunctionIndex(funName, true);
+ if (idx == InvalidIdx)
+ return;
+
+ const Expr *ArgExpr = CE->getArg(FunctionsToTrack[idx].Param);
+ // If the argument entered as an enclosing function parameter, skip it to
+ // avoid false positives.
+ if (isEnclosingFunctionParam(ArgExpr) &&
+ C.getLocationContext()->getParent() == nullptr)
+ return;
+
+ if (SymbolRef V = getAsPointeeSymbol(ArgExpr, C)) {
+ // If the argument points to something that's not a symbolic region, it
+ // can be:
+ // - unknown (cannot reason about it)
+ // - undefined (already reported by other checker)
+ // - constant (null - should not be tracked,
+ // other constant will generate a compiler warning)
+ // - goto (should be reported by other checker)
+
+ // The call return value symbol should stay alive for as long as the
+ // allocated value symbol, since our diagnostics depend on the value
+ // returned by the call. Ex: Data should only be freed if noErr was
+ // returned during allocation.)
+ SymbolRef RetStatusSymbol =
+ State->getSVal(CE, C.getLocationContext()).getAsSymbol();
+ C.getSymbolManager().addSymbolDependency(V, RetStatusSymbol);
+
+ // Track the allocated value in the checker state.
+ State = State->set<AllocatedData>(V, AllocationState(ArgExpr, idx,
+ RetStatusSymbol));
+ assert(State);
+ C.addTransition(State);
+ }
+}
+
+// TODO: This logic is the same as in Malloc checker.
+const ExplodedNode *
+MacOSKeychainAPIChecker::getAllocationNode(const ExplodedNode *N,
+ SymbolRef Sym,
+ CheckerContext &C) const {
+ const LocationContext *LeakContext = N->getLocationContext();
+ // Walk the ExplodedGraph backwards and find the first node that referred to
+ // the tracked symbol.
+ const ExplodedNode *AllocNode = N;
+
+ while (N) {
+ if (!N->getState()->get<AllocatedData>(Sym))
+ break;
+ // Allocation node, is the last node in the current or parent context in
+ // which the symbol was tracked.
+ const LocationContext *NContext = N->getLocationContext();
+ if (NContext == LeakContext ||
+ NContext->isParentOf(LeakContext))
+ AllocNode = N;
+ N = N->pred_empty() ? nullptr : *(N->pred_begin());
+ }
+
+ return AllocNode;
+}
+
+BugReport *MacOSKeychainAPIChecker::
+ generateAllocatedDataNotReleasedReport(const AllocationPair &AP,
+ ExplodedNode *N,
+ CheckerContext &C) const {
+ const ADFunctionInfo &FI = FunctionsToTrack[AP.second->AllocatorIdx];
+ initBugType();
+ SmallString<70> sbuf;
+ llvm::raw_svector_ostream os(sbuf);
+ os << "Allocated data is not released: missing a call to '"
+ << FunctionsToTrack[FI.DeallocatorIdx].Name << "'.";
+
+ // Most bug reports are cached at the location where they occurred.
+ // With leaks, we want to unique them by the location where they were
+ // allocated, and only report a single path.
+ PathDiagnosticLocation LocUsedForUniqueing;
+ const ExplodedNode *AllocNode = getAllocationNode(N, AP.first, C);
+ const Stmt *AllocStmt = nullptr;
+ ProgramPoint P = AllocNode->getLocation();
+ if (Optional<CallExitEnd> Exit = P.getAs<CallExitEnd>())
+ AllocStmt = Exit->getCalleeContext()->getCallSite();
+ else if (Optional<clang::PostStmt> PS = P.getAs<clang::PostStmt>())
+ AllocStmt = PS->getStmt();
+
+ if (AllocStmt)
+ LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocStmt,
+ C.getSourceManager(),
+ AllocNode->getLocationContext());
+
+ BugReport *Report = new BugReport(*BT, os.str(), N, LocUsedForUniqueing,
+ AllocNode->getLocationContext()->getDecl());
+
+ Report->addVisitor(llvm::make_unique<SecKeychainBugVisitor>(AP.first));
+ markInteresting(Report, AP);
+ return Report;
+}
+
+void MacOSKeychainAPIChecker::checkDeadSymbols(SymbolReaper &SR,
+ CheckerContext &C) const {
+ ProgramStateRef State = C.getState();
+ AllocatedDataTy ASet = State->get<AllocatedData>();
+ if (ASet.isEmpty())
+ return;
+
+ bool Changed = false;
+ AllocationPairVec Errors;
+ for (AllocatedDataTy::iterator I = ASet.begin(), E = ASet.end(); I != E; ++I) {
+ if (SR.isLive(I->first))
+ continue;
+
+ Changed = true;
+ State = State->remove<AllocatedData>(I->first);
+ // If the allocated symbol is null or if the allocation call might have
+ // returned an error, do not report.
+ ConstraintManager &CMgr = State->getConstraintManager();
+ ConditionTruthVal AllocFailed = CMgr.isNull(State, I.getKey());
+ if (AllocFailed.isConstrainedTrue() ||
+ definitelyReturnedError(I->second.Region, State, C.getSValBuilder()))
+ continue;
+ Errors.push_back(std::make_pair(I->first, &I->second));
+ }
+ if (!Changed) {
+ // Generate the new, cleaned up state.
+ C.addTransition(State);
+ return;
+ }
+
+ static CheckerProgramPointTag Tag(this, "DeadSymbolsLeak");
+ ExplodedNode *N = C.addTransition(C.getState(), C.getPredecessor(), &Tag);
+
+ // Generate the error reports.
+ for (AllocationPairVec::iterator I = Errors.begin(), E = Errors.end();
+ I != E; ++I) {
+ C.emitReport(generateAllocatedDataNotReleasedReport(*I, N, C));
+ }
+
+ // Generate the new, cleaned up state.
+ C.addTransition(State, N);
+}
+
+
+PathDiagnosticPiece *MacOSKeychainAPIChecker::SecKeychainBugVisitor::VisitNode(
+ const ExplodedNode *N,
+ const ExplodedNode *PrevN,
+ BugReporterContext &BRC,
+ BugReport &BR) {
+ const AllocationState *AS = N->getState()->get<AllocatedData>(Sym);
+ if (!AS)
+ return nullptr;
+ const AllocationState *ASPrev = PrevN->getState()->get<AllocatedData>(Sym);
+ if (ASPrev)
+ return nullptr;
+
+ // (!ASPrev && AS) ~ We started tracking symbol in node N, it must be the
+ // allocation site.
+ const CallExpr *CE =
+ cast<CallExpr>(N->getLocation().castAs<StmtPoint>().getStmt());
+ const FunctionDecl *funDecl = CE->getDirectCallee();
+ assert(funDecl && "We do not support indirect function calls as of now.");
+ StringRef funName = funDecl->getName();
+
+ // Get the expression of the corresponding argument.
+ unsigned Idx = getTrackedFunctionIndex(funName, true);
+ assert(Idx != InvalidIdx && "This should be a call to an allocator.");
+ const Expr *ArgExpr = CE->getArg(FunctionsToTrack[Idx].Param);
+ PathDiagnosticLocation Pos(ArgExpr, BRC.getSourceManager(),
+ N->getLocationContext());
+ return new PathDiagnosticEventPiece(Pos, "Data is allocated here.");
+}
+
+void ento::registerMacOSKeychainAPIChecker(CheckerManager &mgr) {
+ mgr.registerChecker<MacOSKeychainAPIChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/MacOSXAPIChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/MacOSXAPIChecker.cpp
new file mode 100644
index 0000000..13a401d
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/MacOSXAPIChecker.cpp
@@ -0,0 +1,128 @@
+// MacOSXAPIChecker.h - Checks proper use of various MacOS X APIs --*- C++ -*-//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This defines MacOSXAPIChecker, which is an assortment of checks on calls
+// to various, widely used Apple APIs.
+//
+// FIXME: What's currently in BasicObjCFoundationChecks.cpp should be migrated
+// to here, using the new Checker interface.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+class MacOSXAPIChecker : public Checker< check::PreStmt<CallExpr> > {
+ mutable std::unique_ptr<BugType> BT_dispatchOnce;
+
+public:
+ void checkPreStmt(const CallExpr *CE, CheckerContext &C) const;
+
+ void CheckDispatchOnce(CheckerContext &C, const CallExpr *CE,
+ StringRef FName) const;
+
+ typedef void (MacOSXAPIChecker::*SubChecker)(CheckerContext &,
+ const CallExpr *,
+ StringRef FName) const;
+};
+} //end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// dispatch_once and dispatch_once_f
+//===----------------------------------------------------------------------===//
+
+void MacOSXAPIChecker::CheckDispatchOnce(CheckerContext &C, const CallExpr *CE,
+ StringRef FName) const {
+ if (CE->getNumArgs() < 1)
+ return;
+
+ // Check if the first argument is stack allocated. If so, issue a warning
+ // because that's likely to be bad news.
+ ProgramStateRef state = C.getState();
+ const MemRegion *R =
+ state->getSVal(CE->getArg(0), C.getLocationContext()).getAsRegion();
+ if (!R || !isa<StackSpaceRegion>(R->getMemorySpace()))
+ return;
+
+ ExplodedNode *N = C.generateSink(state);
+ if (!N)
+ return;
+
+ if (!BT_dispatchOnce)
+ BT_dispatchOnce.reset(new BugType(this, "Improper use of 'dispatch_once'",
+ "API Misuse (Apple)"));
+
+ // Handle _dispatch_once. In some versions of the OS X SDK we have the case
+ // that dispatch_once is a macro that wraps a call to _dispatch_once.
+ // _dispatch_once is then a function which then calls the real dispatch_once.
+ // Users do not care; they just want the warning at the top-level call.
+ if (CE->getLocStart().isMacroID()) {
+ StringRef TrimmedFName = FName.ltrim("_");
+ if (TrimmedFName != FName)
+ FName = TrimmedFName;
+ }
+
+ SmallString<256> S;
+ llvm::raw_svector_ostream os(S);
+ os << "Call to '" << FName << "' uses";
+ if (const VarRegion *VR = dyn_cast<VarRegion>(R))
+ os << " the local variable '" << VR->getDecl()->getName() << '\'';
+ else
+ os << " stack allocated memory";
+ os << " for the predicate value. Using such transient memory for "
+ "the predicate is potentially dangerous.";
+ if (isa<VarRegion>(R) && isa<StackLocalsSpaceRegion>(R->getMemorySpace()))
+ os << " Perhaps you intended to declare the variable as 'static'?";
+
+ BugReport *report = new BugReport(*BT_dispatchOnce, os.str(), N);
+ report->addRange(CE->getArg(0)->getSourceRange());
+ C.emitReport(report);
+}
+
+//===----------------------------------------------------------------------===//
+// Central dispatch function.
+//===----------------------------------------------------------------------===//
+
+void MacOSXAPIChecker::checkPreStmt(const CallExpr *CE,
+ CheckerContext &C) const {
+ StringRef Name = C.getCalleeName(CE);
+ if (Name.empty())
+ return;
+
+ SubChecker SC =
+ llvm::StringSwitch<SubChecker>(Name)
+ .Cases("dispatch_once",
+ "_dispatch_once",
+ "dispatch_once_f",
+ &MacOSXAPIChecker::CheckDispatchOnce)
+ .Default(nullptr);
+
+ if (SC)
+ (this->*SC)(C, CE, Name);
+}
+
+//===----------------------------------------------------------------------===//
+// Registration.
+//===----------------------------------------------------------------------===//
+
+void ento::registerMacOSXAPIChecker(CheckerManager &mgr) {
+ mgr.registerChecker<MacOSXAPIChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/MallocChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/MallocChecker.cpp
new file mode 100644
index 0000000..0cf0094
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/MallocChecker.cpp
@@ -0,0 +1,2723 @@
+//=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines malloc/free checker, which checks for potential memory
+// leaks, double free, and use-after-free problems.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "InterCheckerAPI.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/ParentMap.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
+#include "llvm/ADT/ImmutableMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringExtras.h"
+#include <climits>
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+
+// Used to check correspondence between allocators and deallocators.
+enum AllocationFamily {
+ AF_None,
+ AF_Malloc,
+ AF_CXXNew,
+ AF_CXXNewArray,
+ AF_IfNameIndex,
+ AF_Alloca
+};
+
+class RefState {
+ enum Kind { // Reference to allocated memory.
+ Allocated,
+ // Reference to zero-allocated memory.
+ AllocatedOfSizeZero,
+ // Reference to released/freed memory.
+ Released,
+ // The responsibility for freeing resources has transferred from
+ // this reference. A relinquished symbol should not be freed.
+ Relinquished,
+ // We are no longer guaranteed to have observed all manipulations
+ // of this pointer/memory. For example, it could have been
+ // passed as a parameter to an opaque function.
+ Escaped
+ };
+
+ const Stmt *S;
+ unsigned K : 3; // Kind enum, but stored as a bitfield.
+ unsigned Family : 29; // Rest of 32-bit word, currently just an allocation
+ // family.
+
+ RefState(Kind k, const Stmt *s, unsigned family)
+ : S(s), K(k), Family(family) {
+ assert(family != AF_None);
+ }
+public:
+ bool isAllocated() const { return K == Allocated; }
+ bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; }
+ bool isReleased() const { return K == Released; }
+ bool isRelinquished() const { return K == Relinquished; }
+ bool isEscaped() const { return K == Escaped; }
+ AllocationFamily getAllocationFamily() const {
+ return (AllocationFamily)Family;
+ }
+ const Stmt *getStmt() const { return S; }
+
+ bool operator==(const RefState &X) const {
+ return K == X.K && S == X.S && Family == X.Family;
+ }
+
+ static RefState getAllocated(unsigned family, const Stmt *s) {
+ return RefState(Allocated, s, family);
+ }
+ static RefState getAllocatedOfSizeZero(const RefState *RS) {
+ return RefState(AllocatedOfSizeZero, RS->getStmt(),
+ RS->getAllocationFamily());
+ }
+ static RefState getReleased(unsigned family, const Stmt *s) {
+ return RefState(Released, s, family);
+ }
+ static RefState getRelinquished(unsigned family, const Stmt *s) {
+ return RefState(Relinquished, s, family);
+ }
+ static RefState getEscaped(const RefState *RS) {
+ return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily());
+ }
+
+ void Profile(llvm::FoldingSetNodeID &ID) const {
+ ID.AddInteger(K);
+ ID.AddPointer(S);
+ ID.AddInteger(Family);
+ }
+
+ void dump(raw_ostream &OS) const {
+ switch (static_cast<Kind>(K)) {
+#define CASE(ID) case ID: OS << #ID; break;
+ CASE(Allocated)
+ CASE(AllocatedOfSizeZero)
+ CASE(Released)
+ CASE(Relinquished)
+ CASE(Escaped)
+ }
+ }
+
+ LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); }
+};
+
+enum ReallocPairKind {
+ RPToBeFreedAfterFailure,
+ // The symbol has been freed when reallocation failed.
+ RPIsFreeOnFailure,
+ // The symbol does not need to be freed after reallocation fails.
+ RPDoNotTrackAfterFailure
+};
+
+/// \class ReallocPair
+/// \brief Stores information about the symbol being reallocated by a call to
+/// 'realloc' to allow modeling failed reallocation later in the path.
+struct ReallocPair {
+ // \brief The symbol which realloc reallocated.
+ SymbolRef ReallocatedSym;
+ ReallocPairKind Kind;
+
+ ReallocPair(SymbolRef S, ReallocPairKind K) :
+ ReallocatedSym(S), Kind(K) {}
+ void Profile(llvm::FoldingSetNodeID &ID) const {
+ ID.AddInteger(Kind);
+ ID.AddPointer(ReallocatedSym);
+ }
+ bool operator==(const ReallocPair &X) const {
+ return ReallocatedSym == X.ReallocatedSym &&
+ Kind == X.Kind;
+ }
+};
+
+typedef std::pair<const ExplodedNode*, const MemRegion*> LeakInfo;
+
+class MallocChecker : public Checker<check::DeadSymbols,
+ check::PointerEscape,
+ check::ConstPointerEscape,
+ check::PreStmt<ReturnStmt>,
+ check::PreCall,
+ check::PostStmt<CallExpr>,
+ check::PostStmt<CXXNewExpr>,
+ check::PreStmt<CXXDeleteExpr>,
+ check::PostStmt<BlockExpr>,
+ check::PostObjCMessage,
+ check::Location,
+ eval::Assume>
+{
+public:
+ MallocChecker()
+ : II_alloca(nullptr), II_malloc(nullptr), II_free(nullptr),
+ II_realloc(nullptr), II_calloc(nullptr), II_valloc(nullptr),
+ II_reallocf(nullptr), II_strndup(nullptr), II_strdup(nullptr),
+ II_kmalloc(nullptr), II_if_nameindex(nullptr),
+ II_if_freenameindex(nullptr) {}
+
+ /// In pessimistic mode, the checker assumes that it does not know which
+ /// functions might free the memory.
+ enum CheckKind {
+ CK_MallocChecker,
+ CK_NewDeleteChecker,
+ CK_NewDeleteLeaksChecker,
+ CK_MismatchedDeallocatorChecker,
+ CK_NumCheckKinds
+ };
+
+ enum class MemoryOperationKind {
+ MOK_Allocate,
+ MOK_Free,
+ MOK_Any
+ };
+
+ DefaultBool IsOptimistic;
+
+ DefaultBool ChecksEnabled[CK_NumCheckKinds];
+ CheckName CheckNames[CK_NumCheckKinds];
+
+ void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
+ void checkPostStmt(const CallExpr *CE, CheckerContext &C) const;
+ void checkPostStmt(const CXXNewExpr *NE, CheckerContext &C) const;
+ void checkPreStmt(const CXXDeleteExpr *DE, CheckerContext &C) const;
+ void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const;
+ void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const;
+ void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const;
+ void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const;
+ ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond,
+ bool Assumption) const;
+ void checkLocation(SVal l, bool isLoad, const Stmt *S,
+ CheckerContext &C) const;
+
+ ProgramStateRef checkPointerEscape(ProgramStateRef State,
+ const InvalidatedSymbols &Escaped,
+ const CallEvent *Call,
+ PointerEscapeKind Kind) const;
+ ProgramStateRef checkConstPointerEscape(ProgramStateRef State,
+ const InvalidatedSymbols &Escaped,
+ const CallEvent *Call,
+ PointerEscapeKind Kind) const;
+
+ void printState(raw_ostream &Out, ProgramStateRef State,
+ const char *NL, const char *Sep) const override;
+
+private:
+ mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds];
+ mutable std::unique_ptr<BugType> BT_DoubleDelete;
+ mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds];
+ mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds];
+ mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds];
+ mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds];
+ mutable std::unique_ptr<BugType> BT_MismatchedDealloc;
+ mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds];
+ mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds];
+ mutable IdentifierInfo *II_alloca, *II_malloc, *II_free, *II_realloc,
+ *II_calloc, *II_valloc, *II_reallocf, *II_strndup,
+ *II_strdup, *II_kmalloc, *II_if_nameindex,
+ *II_if_freenameindex;
+ mutable Optional<uint64_t> KernelZeroFlagVal;
+
+ void initIdentifierInfo(ASTContext &C) const;
+
+ /// \brief Determine family of a deallocation expression.
+ AllocationFamily getAllocationFamily(CheckerContext &C, const Stmt *S) const;
+
+ /// \brief Print names of allocators and deallocators.
+ ///
+ /// \returns true on success.
+ bool printAllocDeallocName(raw_ostream &os, CheckerContext &C,
+ const Expr *E) const;
+
+ /// \brief Print expected name of an allocator based on the deallocator's
+ /// family derived from the DeallocExpr.
+ void printExpectedAllocName(raw_ostream &os, CheckerContext &C,
+ const Expr *DeallocExpr) const;
+ /// \brief Print expected name of a deallocator based on the allocator's
+ /// family.
+ void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) const;
+
+ ///@{
+ /// Check if this is one of the functions which can allocate/reallocate memory
+ /// pointed to by one of its arguments.
+ bool isMemFunction(const FunctionDecl *FD, ASTContext &C) const;
+ bool isCMemFunction(const FunctionDecl *FD,
+ ASTContext &C,
+ AllocationFamily Family,
+ MemoryOperationKind MemKind) const;
+ bool isStandardNewDelete(const FunctionDecl *FD, ASTContext &C) const;
+ ///@}
+
+ /// \brief Perform a zero-allocation check.
+ ProgramStateRef ProcessZeroAllocation(CheckerContext &C, const Expr *E,
+ const unsigned AllocationSizeArg,
+ ProgramStateRef State) const;
+
+ ProgramStateRef MallocMemReturnsAttr(CheckerContext &C,
+ const CallExpr *CE,
+ const OwnershipAttr* Att,
+ ProgramStateRef State) const;
+ static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE,
+ const Expr *SizeEx, SVal Init,
+ ProgramStateRef State,
+ AllocationFamily Family = AF_Malloc);
+ static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE,
+ SVal SizeEx, SVal Init,
+ ProgramStateRef State,
+ AllocationFamily Family = AF_Malloc);
+
+ // Check if this malloc() for special flags. At present that means M_ZERO or
+ // __GFP_ZERO (in which case, treat it like calloc).
+ llvm::Optional<ProgramStateRef>
+ performKernelMalloc(const CallExpr *CE, CheckerContext &C,
+ const ProgramStateRef &State) const;
+
+ /// Update the RefState to reflect the new memory allocation.
+ static ProgramStateRef
+ MallocUpdateRefState(CheckerContext &C, const Expr *E, ProgramStateRef State,
+ AllocationFamily Family = AF_Malloc);
+
+ ProgramStateRef FreeMemAttr(CheckerContext &C, const CallExpr *CE,
+ const OwnershipAttr* Att,
+ ProgramStateRef State) const;
+ ProgramStateRef FreeMemAux(CheckerContext &C, const CallExpr *CE,
+ ProgramStateRef state, unsigned Num,
+ bool Hold,
+ bool &ReleasedAllocated,
+ bool ReturnsNullOnFailure = false) const;
+ ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *Arg,
+ const Expr *ParentExpr,
+ ProgramStateRef State,
+ bool Hold,
+ bool &ReleasedAllocated,
+ bool ReturnsNullOnFailure = false) const;
+
+ ProgramStateRef ReallocMem(CheckerContext &C, const CallExpr *CE,
+ bool FreesMemOnFailure,
+ ProgramStateRef State) const;
+ static ProgramStateRef CallocMem(CheckerContext &C, const CallExpr *CE,
+ ProgramStateRef State);
+
+ ///\brief Check if the memory associated with this symbol was released.
+ bool isReleased(SymbolRef Sym, CheckerContext &C) const;
+
+ bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const;
+
+ void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C,
+ const Stmt *S) const;
+
+ bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const;
+
+ /// Check if the function is known free memory, or if it is
+ /// "interesting" and should be modeled explicitly.
+ ///
+ /// \param [out] EscapingSymbol A function might not free memory in general,
+ /// but could be known to free a particular symbol. In this case, false is
+ /// returned and the single escaping symbol is returned through the out
+ /// parameter.
+ ///
+ /// We assume that pointers do not escape through calls to system functions
+ /// not handled by this checker.
+ bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call,
+ ProgramStateRef State,
+ SymbolRef &EscapingSymbol) const;
+
+ // Implementation of the checkPointerEscape callabcks.
+ ProgramStateRef checkPointerEscapeAux(ProgramStateRef State,
+ const InvalidatedSymbols &Escaped,
+ const CallEvent *Call,
+ PointerEscapeKind Kind,
+ bool(*CheckRefState)(const RefState*)) const;
+
+ ///@{
+ /// Tells if a given family/call/symbol is tracked by the current checker.
+ /// Sets CheckKind to the kind of the checker responsible for this
+ /// family/call/symbol.
+ Optional<CheckKind> getCheckIfTracked(AllocationFamily Family,
+ bool IsALeakCheck = false) const;
+ Optional<CheckKind> getCheckIfTracked(CheckerContext &C,
+ const Stmt *AllocDeallocStmt,
+ bool IsALeakCheck = false) const;
+ Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym,
+ bool IsALeakCheck = false) const;
+ ///@}
+ static bool SummarizeValue(raw_ostream &os, SVal V);
+ static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR);
+ void ReportBadFree(CheckerContext &C, SVal ArgVal, SourceRange Range,
+ const Expr *DeallocExpr) const;
+ void ReportFreeAlloca(CheckerContext &C, SVal ArgVal,
+ SourceRange Range) const;
+ void ReportMismatchedDealloc(CheckerContext &C, SourceRange Range,
+ const Expr *DeallocExpr, const RefState *RS,
+ SymbolRef Sym, bool OwnershipTransferred) const;
+ void ReportOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range,
+ const Expr *DeallocExpr,
+ const Expr *AllocExpr = nullptr) const;
+ void ReportUseAfterFree(CheckerContext &C, SourceRange Range,
+ SymbolRef Sym) const;
+ void ReportDoubleFree(CheckerContext &C, SourceRange Range, bool Released,
+ SymbolRef Sym, SymbolRef PrevSym) const;
+
+ void ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const;
+
+ void ReportUseZeroAllocated(CheckerContext &C, SourceRange Range,
+ SymbolRef Sym) const;
+
+ /// Find the location of the allocation for Sym on the path leading to the
+ /// exploded node N.
+ LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym,
+ CheckerContext &C) const;
+
+ void reportLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const;
+
+ /// The bug visitor which allows us to print extra diagnostics along the
+ /// BugReport path. For example, showing the allocation site of the leaked
+ /// region.
+ class MallocBugVisitor : public BugReporterVisitorImpl<MallocBugVisitor> {
+ protected:
+ enum NotificationMode {
+ Normal,
+ ReallocationFailed
+ };
+
+ // The allocated region symbol tracked by the main analysis.
+ SymbolRef Sym;
+
+ // The mode we are in, i.e. what kind of diagnostics will be emitted.
+ NotificationMode Mode;
+
+ // A symbol from when the primary region should have been reallocated.
+ SymbolRef FailedReallocSymbol;
+
+ bool IsLeak;
+
+ public:
+ MallocBugVisitor(SymbolRef S, bool isLeak = false)
+ : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), IsLeak(isLeak) {}
+
+ ~MallocBugVisitor() override {}
+
+ void Profile(llvm::FoldingSetNodeID &ID) const override {
+ static int X = 0;
+ ID.AddPointer(&X);
+ ID.AddPointer(Sym);
+ }
+
+ inline bool isAllocated(const RefState *S, const RefState *SPrev,
+ const Stmt *Stmt) {
+ // Did not track -> allocated. Other state (released) -> allocated.
+ return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXNewExpr>(Stmt)) &&
+ (S && (S->isAllocated() || S->isAllocatedOfSizeZero())) &&
+ (!SPrev || !(SPrev->isAllocated() ||
+ SPrev->isAllocatedOfSizeZero())));
+ }
+
+ inline bool isReleased(const RefState *S, const RefState *SPrev,
+ const Stmt *Stmt) {
+ // Did not track -> released. Other state (allocated) -> released.
+ return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXDeleteExpr>(Stmt)) &&
+ (S && S->isReleased()) && (!SPrev || !SPrev->isReleased()));
+ }
+
+ inline bool isRelinquished(const RefState *S, const RefState *SPrev,
+ const Stmt *Stmt) {
+ // Did not track -> relinquished. Other state (allocated) -> relinquished.
+ return (Stmt && (isa<CallExpr>(Stmt) || isa<ObjCMessageExpr>(Stmt) ||
+ isa<ObjCPropertyRefExpr>(Stmt)) &&
+ (S && S->isRelinquished()) &&
+ (!SPrev || !SPrev->isRelinquished()));
+ }
+
+ inline bool isReallocFailedCheck(const RefState *S, const RefState *SPrev,
+ const Stmt *Stmt) {
+ // If the expression is not a call, and the state change is
+ // released -> allocated, it must be the realloc return value
+ // check. If we have to handle more cases here, it might be cleaner just
+ // to track this extra bit in the state itself.
+ return ((!Stmt || !isa<CallExpr>(Stmt)) &&
+ (S && (S->isAllocated() || S->isAllocatedOfSizeZero())) &&
+ (SPrev && !(SPrev->isAllocated() ||
+ SPrev->isAllocatedOfSizeZero())));
+ }
+
+ PathDiagnosticPiece *VisitNode(const ExplodedNode *N,
+ const ExplodedNode *PrevN,
+ BugReporterContext &BRC,
+ BugReport &BR) override;
+
+ std::unique_ptr<PathDiagnosticPiece>
+ getEndPath(BugReporterContext &BRC, const ExplodedNode *EndPathNode,
+ BugReport &BR) override {
+ if (!IsLeak)
+ return nullptr;
+
+ PathDiagnosticLocation L =
+ PathDiagnosticLocation::createEndOfPath(EndPathNode,
+ BRC.getSourceManager());
+ // Do not add the statement itself as a range in case of leak.
+ return llvm::make_unique<PathDiagnosticEventPiece>(L, BR.getDescription(),
+ false);
+ }
+
+ private:
+ class StackHintGeneratorForReallocationFailed
+ : public StackHintGeneratorForSymbol {
+ public:
+ StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M)
+ : StackHintGeneratorForSymbol(S, M) {}
+
+ std::string getMessageForArg(const Expr *ArgE,
+ unsigned ArgIndex) override {
+ // Printed parameters start at 1, not 0.
+ ++ArgIndex;
+
+ SmallString<200> buf;
+ llvm::raw_svector_ostream os(buf);
+
+ os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex)
+ << " parameter failed";
+
+ return os.str();
+ }
+
+ std::string getMessageForReturn(const CallExpr *CallExpr) override {
+ return "Reallocation of returned value failed";
+ }
+ };
+ };
+};
+} // end anonymous namespace
+
+REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState)
+REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair)
+
+// A map from the freed symbol to the symbol representing the return value of
+// the free function.
+REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef)
+
+namespace {
+class StopTrackingCallback : public SymbolVisitor {
+ ProgramStateRef state;
+public:
+ StopTrackingCallback(ProgramStateRef st) : state(st) {}
+ ProgramStateRef getState() const { return state; }
+
+ bool VisitSymbol(SymbolRef sym) override {
+ state = state->remove<RegionState>(sym);
+ return true;
+ }
+};
+} // end anonymous namespace
+
+void MallocChecker::initIdentifierInfo(ASTContext &Ctx) const {
+ if (II_malloc)
+ return;
+ II_alloca = &Ctx.Idents.get("alloca");
+ II_malloc = &Ctx.Idents.get("malloc");
+ II_free = &Ctx.Idents.get("free");
+ II_realloc = &Ctx.Idents.get("realloc");
+ II_reallocf = &Ctx.Idents.get("reallocf");
+ II_calloc = &Ctx.Idents.get("calloc");
+ II_valloc = &Ctx.Idents.get("valloc");
+ II_strdup = &Ctx.Idents.get("strdup");
+ II_strndup = &Ctx.Idents.get("strndup");
+ II_kmalloc = &Ctx.Idents.get("kmalloc");
+ II_if_nameindex = &Ctx.Idents.get("if_nameindex");
+ II_if_freenameindex = &Ctx.Idents.get("if_freenameindex");
+}
+
+bool MallocChecker::isMemFunction(const FunctionDecl *FD, ASTContext &C) const {
+ if (isCMemFunction(FD, C, AF_Malloc, MemoryOperationKind::MOK_Any))
+ return true;
+
+ if (isCMemFunction(FD, C, AF_IfNameIndex, MemoryOperationKind::MOK_Any))
+ return true;
+
+ if (isCMemFunction(FD, C, AF_Alloca, MemoryOperationKind::MOK_Any))
+ return true;
+
+ if (isStandardNewDelete(FD, C))
+ return true;
+
+ return false;
+}
+
+bool MallocChecker::isCMemFunction(const FunctionDecl *FD,
+ ASTContext &C,
+ AllocationFamily Family,
+ MemoryOperationKind MemKind) const {
+ if (!FD)
+ return false;
+
+ bool CheckFree = (MemKind == MemoryOperationKind::MOK_Any ||
+ MemKind == MemoryOperationKind::MOK_Free);
+ bool CheckAlloc = (MemKind == MemoryOperationKind::MOK_Any ||
+ MemKind == MemoryOperationKind::MOK_Allocate);
+
+ if (FD->getKind() == Decl::Function) {
+ const IdentifierInfo *FunI = FD->getIdentifier();
+ initIdentifierInfo(C);
+
+ if (Family == AF_Malloc && CheckFree) {
+ if (FunI == II_free || FunI == II_realloc || FunI == II_reallocf)
+ return true;
+ }
+
+ if (Family == AF_Malloc && CheckAlloc) {
+ if (FunI == II_malloc || FunI == II_realloc || FunI == II_reallocf ||
+ FunI == II_calloc || FunI == II_valloc || FunI == II_strdup ||
+ FunI == II_strndup || FunI == II_kmalloc)
+ return true;
+ }
+
+ if (Family == AF_IfNameIndex && CheckFree) {
+ if (FunI == II_if_freenameindex)
+ return true;
+ }
+
+ if (Family == AF_IfNameIndex && CheckAlloc) {
+ if (FunI == II_if_nameindex)
+ return true;
+ }
+
+ if (Family == AF_Alloca && CheckAlloc) {
+ if (FunI == II_alloca)
+ return true;
+ }
+ }
+
+ if (Family != AF_Malloc)
+ return false;
+
+ if (IsOptimistic && FD->hasAttrs()) {
+ for (const auto *I : FD->specific_attrs<OwnershipAttr>()) {
+ OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind();
+ if(OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) {
+ if (CheckFree)
+ return true;
+ } else if (OwnKind == OwnershipAttr::Returns) {
+ if (CheckAlloc)
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+// Tells if the callee is one of the following:
+// 1) A global non-placement new/delete operator function.
+// 2) A global placement operator function with the single placement argument
+// of type std::nothrow_t.
+bool MallocChecker::isStandardNewDelete(const FunctionDecl *FD,
+ ASTContext &C) const {
+ if (!FD)
+ return false;
+
+ OverloadedOperatorKind Kind = FD->getOverloadedOperator();
+ if (Kind != OO_New && Kind != OO_Array_New &&
+ Kind != OO_Delete && Kind != OO_Array_Delete)
+ return false;
+
+ // Skip all operator new/delete methods.
+ if (isa<CXXMethodDecl>(FD))
+ return false;
+
+ // Return true if tested operator is a standard placement nothrow operator.
+ if (FD->getNumParams() == 2) {
+ QualType T = FD->getParamDecl(1)->getType();
+ if (const IdentifierInfo *II = T.getBaseTypeIdentifier())
+ return II->getName().equals("nothrow_t");
+ }
+
+ // Skip placement operators.
+ if (FD->getNumParams() != 1 || FD->isVariadic())
+ return false;
+
+ // One of the standard new/new[]/delete/delete[] non-placement operators.
+ return true;
+}
+
+llvm::Optional<ProgramStateRef> MallocChecker::performKernelMalloc(
+ const CallExpr *CE, CheckerContext &C, const ProgramStateRef &State) const {
+ // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels:
+ //
+ // void *malloc(unsigned long size, struct malloc_type *mtp, int flags);
+ //
+ // One of the possible flags is M_ZERO, which means 'give me back an
+ // allocation which is already zeroed', like calloc.
+
+ // 2-argument kmalloc(), as used in the Linux kernel:
+ //
+ // void *kmalloc(size_t size, gfp_t flags);
+ //
+ // Has the similar flag value __GFP_ZERO.
+
+ // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some
+ // code could be shared.
+
+ ASTContext &Ctx = C.getASTContext();
+ llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS();
+
+ if (!KernelZeroFlagVal.hasValue()) {
+ if (OS == llvm::Triple::FreeBSD)
+ KernelZeroFlagVal = 0x0100;
+ else if (OS == llvm::Triple::NetBSD)
+ KernelZeroFlagVal = 0x0002;
+ else if (OS == llvm::Triple::OpenBSD)
+ KernelZeroFlagVal = 0x0008;
+ else if (OS == llvm::Triple::Linux)
+ // __GFP_ZERO
+ KernelZeroFlagVal = 0x8000;
+ else
+ // FIXME: We need a more general way of getting the M_ZERO value.
+ // See also: O_CREAT in UnixAPIChecker.cpp.
+
+ // Fall back to normal malloc behavior on platforms where we don't
+ // know M_ZERO.
+ return None;
+ }
+
+ // We treat the last argument as the flags argument, and callers fall-back to
+ // normal malloc on a None return. This works for the FreeBSD kernel malloc
+ // as well as Linux kmalloc.
+ if (CE->getNumArgs() < 2)
+ return None;
+
+ const Expr *FlagsEx = CE->getArg(CE->getNumArgs() - 1);
+ const SVal V = State->getSVal(FlagsEx, C.getLocationContext());
+ if (!V.getAs<NonLoc>()) {
+ // The case where 'V' can be a location can only be due to a bad header,
+ // so in this case bail out.
+ return None;
+ }
+
+ NonLoc Flags = V.castAs<NonLoc>();
+ NonLoc ZeroFlag = C.getSValBuilder()
+ .makeIntVal(KernelZeroFlagVal.getValue(), FlagsEx->getType())
+ .castAs<NonLoc>();
+ SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And,
+ Flags, ZeroFlag,
+ FlagsEx->getType());
+ if (MaskedFlagsUC.isUnknownOrUndef())
+ return None;
+ DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>();
+
+ // Check if maskedFlags is non-zero.
+ ProgramStateRef TrueState, FalseState;
+ std::tie(TrueState, FalseState) = State->assume(MaskedFlags);
+
+ // If M_ZERO is set, treat this like calloc (initialized).
+ if (TrueState && !FalseState) {
+ SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy);
+ return MallocMemAux(C, CE, CE->getArg(0), ZeroVal, TrueState);
+ }
+
+ return None;
+}
+
+void MallocChecker::checkPostStmt(const CallExpr *CE, CheckerContext &C) const {
+ if (C.wasInlined)
+ return;
+
+ const FunctionDecl *FD = C.getCalleeDecl(CE);
+ if (!FD)
+ return;
+
+ ProgramStateRef State = C.getState();
+ bool ReleasedAllocatedMemory = false;
+
+ if (FD->getKind() == Decl::Function) {
+ initIdentifierInfo(C.getASTContext());
+ IdentifierInfo *FunI = FD->getIdentifier();
+
+ if (FunI == II_malloc) {
+ if (CE->getNumArgs() < 1)
+ return;
+ if (CE->getNumArgs() < 3) {
+ State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State);
+ if (CE->getNumArgs() == 1)
+ State = ProcessZeroAllocation(C, CE, 0, State);
+ } else if (CE->getNumArgs() == 3) {
+ llvm::Optional<ProgramStateRef> MaybeState =
+ performKernelMalloc(CE, C, State);
+ if (MaybeState.hasValue())
+ State = MaybeState.getValue();
+ else
+ State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State);
+ }
+ } else if (FunI == II_kmalloc) {
+ llvm::Optional<ProgramStateRef> MaybeState =
+ performKernelMalloc(CE, C, State);
+ if (MaybeState.hasValue())
+ State = MaybeState.getValue();
+ else
+ State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State);
+ } else if (FunI == II_valloc) {
+ if (CE->getNumArgs() < 1)
+ return;
+ State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State);
+ State = ProcessZeroAllocation(C, CE, 0, State);
+ } else if (FunI == II_realloc) {
+ State = ReallocMem(C, CE, false, State);
+ State = ProcessZeroAllocation(C, CE, 1, State);
+ } else if (FunI == II_reallocf) {
+ State = ReallocMem(C, CE, true, State);
+ State = ProcessZeroAllocation(C, CE, 1, State);
+ } else if (FunI == II_calloc) {
+ State = CallocMem(C, CE, State);
+ State = ProcessZeroAllocation(C, CE, 0, State);
+ State = ProcessZeroAllocation(C, CE, 1, State);
+ } else if (FunI == II_free) {
+ State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory);
+ } else if (FunI == II_strdup) {
+ State = MallocUpdateRefState(C, CE, State);
+ } else if (FunI == II_strndup) {
+ State = MallocUpdateRefState(C, CE, State);
+ } else if (FunI == II_alloca) {
+ State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State,
+ AF_Alloca);
+ State = ProcessZeroAllocation(C, CE, 0, State);
+ } else if (isStandardNewDelete(FD, C.getASTContext())) {
+ // Process direct calls to operator new/new[]/delete/delete[] functions
+ // as distinct from new/new[]/delete/delete[] expressions that are
+ // processed by the checkPostStmt callbacks for CXXNewExpr and
+ // CXXDeleteExpr.
+ OverloadedOperatorKind K = FD->getOverloadedOperator();
+ if (K == OO_New) {
+ State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State,
+ AF_CXXNew);
+ State = ProcessZeroAllocation(C, CE, 0, State);
+ }
+ else if (K == OO_Array_New) {
+ State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State,
+ AF_CXXNewArray);
+ State = ProcessZeroAllocation(C, CE, 0, State);
+ }
+ else if (K == OO_Delete || K == OO_Array_Delete)
+ State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory);
+ else
+ llvm_unreachable("not a new/delete operator");
+ } else if (FunI == II_if_nameindex) {
+ // Should we model this differently? We can allocate a fixed number of
+ // elements with zeros in the last one.
+ State = MallocMemAux(C, CE, UnknownVal(), UnknownVal(), State,
+ AF_IfNameIndex);
+ } else if (FunI == II_if_freenameindex) {
+ State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory);
+ }
+ }
+
+ if (IsOptimistic || ChecksEnabled[CK_MismatchedDeallocatorChecker]) {
+ // Check all the attributes, if there are any.
+ // There can be multiple of these attributes.
+ if (FD->hasAttrs())
+ for (const auto *I : FD->specific_attrs<OwnershipAttr>()) {
+ switch (I->getOwnKind()) {
+ case OwnershipAttr::Returns:
+ State = MallocMemReturnsAttr(C, CE, I, State);
+ break;
+ case OwnershipAttr::Takes:
+ case OwnershipAttr::Holds:
+ State = FreeMemAttr(C, CE, I, State);
+ break;
+ }
+ }
+ }
+ C.addTransition(State);
+}
+
+// Performs a 0-sized allocations check.
+ProgramStateRef MallocChecker::ProcessZeroAllocation(CheckerContext &C,
+ const Expr *E,
+ const unsigned AllocationSizeArg,
+ ProgramStateRef State) const {
+ if (!State)
+ return nullptr;
+
+ const Expr *Arg = nullptr;
+
+ if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
+ Arg = CE->getArg(AllocationSizeArg);
+ }
+ else if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) {
+ if (NE->isArray())
+ Arg = NE->getArraySize();
+ else
+ return State;
+ }
+ else
+ llvm_unreachable("not a CallExpr or CXXNewExpr");
+
+ assert(Arg);
+
+ Optional<DefinedSVal> DefArgVal =
+ State->getSVal(Arg, C.getLocationContext()).getAs<DefinedSVal>();
+
+ if (!DefArgVal)
+ return State;
+
+ // Check if the allocation size is 0.
+ ProgramStateRef TrueState, FalseState;
+ SValBuilder &SvalBuilder = C.getSValBuilder();
+ DefinedSVal Zero =
+ SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>();
+
+ std::tie(TrueState, FalseState) =
+ State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero));
+
+ if (TrueState && !FalseState) {
+ SVal retVal = State->getSVal(E, C.getLocationContext());
+ SymbolRef Sym = retVal.getAsLocSymbol();
+ if (!Sym)
+ return State;
+
+ const RefState *RS = State->get<RegionState>(Sym);
+ if (!RS)
+ return State; // TODO: change to assert(RS); after realloc() will
+ // guarantee have a RegionState attached.
+
+ if (!RS->isAllocated())
+ return State;
+
+ return TrueState->set<RegionState>(Sym,
+ RefState::getAllocatedOfSizeZero(RS));
+ }
+
+ // Assume the value is non-zero going forward.
+ assert(FalseState);
+ return FalseState;
+}
+
+static QualType getDeepPointeeType(QualType T) {
+ QualType Result = T, PointeeType = T->getPointeeType();
+ while (!PointeeType.isNull()) {
+ Result = PointeeType;
+ PointeeType = PointeeType->getPointeeType();
+ }
+ return Result;
+}
+
+static bool treatUnusedNewEscaped(const CXXNewExpr *NE) {
+
+ const CXXConstructExpr *ConstructE = NE->getConstructExpr();
+ if (!ConstructE)
+ return false;
+
+ if (!NE->getAllocatedType()->getAsCXXRecordDecl())
+ return false;
+
+ const CXXConstructorDecl *CtorD = ConstructE->getConstructor();
+
+ // Iterate over the constructor parameters.
+ for (const auto *CtorParam : CtorD->params()) {
+
+ QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType();
+ if (CtorParamPointeeT.isNull())
+ continue;
+
+ CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT);
+
+ if (CtorParamPointeeT->getAsCXXRecordDecl())
+ return true;
+ }
+
+ return false;
+}
+
+void MallocChecker::checkPostStmt(const CXXNewExpr *NE,
+ CheckerContext &C) const {
+
+ if (NE->getNumPlacementArgs())
+ for (CXXNewExpr::const_arg_iterator I = NE->placement_arg_begin(),
+ E = NE->placement_arg_end(); I != E; ++I)
+ if (SymbolRef Sym = C.getSVal(*I).getAsSymbol())
+ checkUseAfterFree(Sym, C, *I);
+
+ if (!isStandardNewDelete(NE->getOperatorNew(), C.getASTContext()))
+ return;
+
+ ParentMap &PM = C.getLocationContext()->getParentMap();
+ if (!PM.isConsumedExpr(NE) && treatUnusedNewEscaped(NE))
+ return;
+
+ ProgramStateRef State = C.getState();
+ // The return value from operator new is bound to a specified initialization
+ // value (if any) and we don't want to loose this value. So we call
+ // MallocUpdateRefState() instead of MallocMemAux() which breakes the
+ // existing binding.
+ State = MallocUpdateRefState(C, NE, State, NE->isArray() ? AF_CXXNewArray
+ : AF_CXXNew);
+ State = ProcessZeroAllocation(C, NE, 0, State);
+ C.addTransition(State);
+}
+
+void MallocChecker::checkPreStmt(const CXXDeleteExpr *DE,
+ CheckerContext &C) const {
+
+ if (!ChecksEnabled[CK_NewDeleteChecker])
+ if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol())
+ checkUseAfterFree(Sym, C, DE->getArgument());
+
+ if (!isStandardNewDelete(DE->getOperatorDelete(), C.getASTContext()))
+ return;
+
+ ProgramStateRef State = C.getState();
+ bool ReleasedAllocated;
+ State = FreeMemAux(C, DE->getArgument(), DE, State,
+ /*Hold*/false, ReleasedAllocated);
+
+ C.addTransition(State);
+}
+
+static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) {
+ // If the first selector piece is one of the names below, assume that the
+ // object takes ownership of the memory, promising to eventually deallocate it
+ // with free().
+ // Ex: [NSData dataWithBytesNoCopy:bytes length:10];
+ // (...unless a 'freeWhenDone' parameter is false, but that's checked later.)
+ StringRef FirstSlot = Call.getSelector().getNameForSlot(0);
+ if (FirstSlot == "dataWithBytesNoCopy" ||
+ FirstSlot == "initWithBytesNoCopy" ||
+ FirstSlot == "initWithCharactersNoCopy")
+ return true;
+
+ return false;
+}
+
+static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) {
+ Selector S = Call.getSelector();
+
+ // FIXME: We should not rely on fully-constrained symbols being folded.
+ for (unsigned i = 1; i < S.getNumArgs(); ++i)
+ if (S.getNameForSlot(i).equals("freeWhenDone"))
+ return !Call.getArgSVal(i).isZeroConstant();
+
+ return None;
+}
+
+void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call,
+ CheckerContext &C) const {
+ if (C.wasInlined)
+ return;
+
+ if (!isKnownDeallocObjCMethodName(Call))
+ return;
+
+ if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call))
+ if (!*FreeWhenDone)
+ return;
+
+ bool ReleasedAllocatedMemory;
+ ProgramStateRef State = FreeMemAux(C, Call.getArgExpr(0),
+ Call.getOriginExpr(), C.getState(),
+ /*Hold=*/true, ReleasedAllocatedMemory,
+ /*RetNullOnFailure=*/true);
+
+ C.addTransition(State);
+}
+
+ProgramStateRef
+MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallExpr *CE,
+ const OwnershipAttr *Att,
+ ProgramStateRef State) const {
+ if (!State)
+ return nullptr;
+
+ if (Att->getModule() != II_malloc)
+ return nullptr;
+
+ OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end();
+ if (I != E) {
+ return MallocMemAux(C, CE, CE->getArg(*I), UndefinedVal(), State);
+ }
+ return MallocMemAux(C, CE, UnknownVal(), UndefinedVal(), State);
+}
+
+ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C,
+ const CallExpr *CE,
+ const Expr *SizeEx, SVal Init,
+ ProgramStateRef State,
+ AllocationFamily Family) {
+ if (!State)
+ return nullptr;
+
+ return MallocMemAux(C, CE, State->getSVal(SizeEx, C.getLocationContext()),
+ Init, State, Family);
+}
+
+ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C,
+ const CallExpr *CE,
+ SVal Size, SVal Init,
+ ProgramStateRef State,
+ AllocationFamily Family) {
+ if (!State)
+ return nullptr;
+
+ // We expect the malloc functions to return a pointer.
+ if (!Loc::isLocType(CE->getType()))
+ return nullptr;
+
+ // Bind the return value to the symbolic value from the heap region.
+ // TODO: We could rewrite post visit to eval call; 'malloc' does not have
+ // side effects other than what we model here.
+ unsigned Count = C.blockCount();
+ SValBuilder &svalBuilder = C.getSValBuilder();
+ const LocationContext *LCtx = C.getPredecessor()->getLocationContext();
+ DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count)
+ .castAs<DefinedSVal>();
+ State = State->BindExpr(CE, C.getLocationContext(), RetVal);
+
+ // Fill the region with the initialization value.
+ State = State->bindDefault(RetVal, Init);
+
+ // Set the region's extent equal to the Size parameter.
+ const SymbolicRegion *R =
+ dyn_cast_or_null<SymbolicRegion>(RetVal.getAsRegion());
+ if (!R)
+ return nullptr;
+ if (Optional<DefinedOrUnknownSVal> DefinedSize =
+ Size.getAs<DefinedOrUnknownSVal>()) {
+ SValBuilder &svalBuilder = C.getSValBuilder();
+ DefinedOrUnknownSVal Extent = R->getExtent(svalBuilder);
+ DefinedOrUnknownSVal extentMatchesSize =
+ svalBuilder.evalEQ(State, Extent, *DefinedSize);
+
+ State = State->assume(extentMatchesSize, true);
+ assert(State);
+ }
+
+ return MallocUpdateRefState(C, CE, State, Family);
+}
+
+ProgramStateRef MallocChecker::MallocUpdateRefState(CheckerContext &C,
+ const Expr *E,
+ ProgramStateRef State,
+ AllocationFamily Family) {
+ if (!State)
+ return nullptr;
+
+ // Get the return value.
+ SVal retVal = State->getSVal(E, C.getLocationContext());
+
+ // We expect the malloc functions to return a pointer.
+ if (!retVal.getAs<Loc>())
+ return nullptr;
+
+ SymbolRef Sym = retVal.getAsLocSymbol();
+ assert(Sym);
+
+ // Set the symbol's state to Allocated.
+ return State->set<RegionState>(Sym, RefState::getAllocated(Family, E));
+}
+
+ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C,
+ const CallExpr *CE,
+ const OwnershipAttr *Att,
+ ProgramStateRef State) const {
+ if (!State)
+ return nullptr;
+
+ if (Att->getModule() != II_malloc)
+ return nullptr;
+
+ bool ReleasedAllocated = false;
+
+ for (const auto &Arg : Att->args()) {
+ ProgramStateRef StateI = FreeMemAux(C, CE, State, Arg,
+ Att->getOwnKind() == OwnershipAttr::Holds,
+ ReleasedAllocated);
+ if (StateI)
+ State = StateI;
+ }
+ return State;
+}
+
+ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C,
+ const CallExpr *CE,
+ ProgramStateRef State,
+ unsigned Num,
+ bool Hold,
+ bool &ReleasedAllocated,
+ bool ReturnsNullOnFailure) const {
+ if (!State)
+ return nullptr;
+
+ if (CE->getNumArgs() < (Num + 1))
+ return nullptr;
+
+ return FreeMemAux(C, CE->getArg(Num), CE, State, Hold,
+ ReleasedAllocated, ReturnsNullOnFailure);
+}
+
+/// Checks if the previous call to free on the given symbol failed - if free
+/// failed, returns true. Also, returns the corresponding return value symbol.
+static bool didPreviousFreeFail(ProgramStateRef State,
+ SymbolRef Sym, SymbolRef &RetStatusSymbol) {
+ const SymbolRef *Ret = State->get<FreeReturnValue>(Sym);
+ if (Ret) {
+ assert(*Ret && "We should not store the null return symbol");
+ ConstraintManager &CMgr = State->getConstraintManager();
+ ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret);
+ RetStatusSymbol = *Ret;
+ return FreeFailed.isConstrainedTrue();
+ }
+ return false;
+}
+
+AllocationFamily MallocChecker::getAllocationFamily(CheckerContext &C,
+ const Stmt *S) const {
+ if (!S)
+ return AF_None;
+
+ if (const CallExpr *CE = dyn_cast<CallExpr>(S)) {
+ const FunctionDecl *FD = C.getCalleeDecl(CE);
+
+ if (!FD)
+ FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
+
+ ASTContext &Ctx = C.getASTContext();
+
+ if (isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Any))
+ return AF_Malloc;
+
+ if (isStandardNewDelete(FD, Ctx)) {
+ OverloadedOperatorKind Kind = FD->getOverloadedOperator();
+ if (Kind == OO_New || Kind == OO_Delete)
+ return AF_CXXNew;
+ else if (Kind == OO_Array_New || Kind == OO_Array_Delete)
+ return AF_CXXNewArray;
+ }
+
+ if (isCMemFunction(FD, Ctx, AF_IfNameIndex, MemoryOperationKind::MOK_Any))
+ return AF_IfNameIndex;
+
+ if (isCMemFunction(FD, Ctx, AF_Alloca, MemoryOperationKind::MOK_Any))
+ return AF_Alloca;
+
+ return AF_None;
+ }
+
+ if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(S))
+ return NE->isArray() ? AF_CXXNewArray : AF_CXXNew;
+
+ if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(S))
+ return DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew;
+
+ if (isa<ObjCMessageExpr>(S))
+ return AF_Malloc;
+
+ return AF_None;
+}
+
+bool MallocChecker::printAllocDeallocName(raw_ostream &os, CheckerContext &C,
+ const Expr *E) const {
+ if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
+ // FIXME: This doesn't handle indirect calls.
+ const FunctionDecl *FD = CE->getDirectCallee();
+ if (!FD)
+ return false;
+
+ os << *FD;
+ if (!FD->isOverloadedOperator())
+ os << "()";
+ return true;
+ }
+
+ if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) {
+ if (Msg->isInstanceMessage())
+ os << "-";
+ else
+ os << "+";
+ Msg->getSelector().print(os);
+ return true;
+ }
+
+ if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) {
+ os << "'"
+ << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator())
+ << "'";
+ return true;
+ }
+
+ if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) {
+ os << "'"
+ << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator())
+ << "'";
+ return true;
+ }
+
+ return false;
+}
+
+void MallocChecker::printExpectedAllocName(raw_ostream &os, CheckerContext &C,
+ const Expr *E) const {
+ AllocationFamily Family = getAllocationFamily(C, E);
+
+ switch(Family) {
+ case AF_Malloc: os << "malloc()"; return;
+ case AF_CXXNew: os << "'new'"; return;
+ case AF_CXXNewArray: os << "'new[]'"; return;
+ case AF_IfNameIndex: os << "'if_nameindex()'"; return;
+ case AF_Alloca:
+ case AF_None: llvm_unreachable("not a deallocation expression");
+ }
+}
+
+void MallocChecker::printExpectedDeallocName(raw_ostream &os,
+ AllocationFamily Family) const {
+ switch(Family) {
+ case AF_Malloc: os << "free()"; return;
+ case AF_CXXNew: os << "'delete'"; return;
+ case AF_CXXNewArray: os << "'delete[]'"; return;
+ case AF_IfNameIndex: os << "'if_freenameindex()'"; return;
+ case AF_Alloca:
+ case AF_None: llvm_unreachable("suspicious argument");
+ }
+}
+
+ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C,
+ const Expr *ArgExpr,
+ const Expr *ParentExpr,
+ ProgramStateRef State,
+ bool Hold,
+ bool &ReleasedAllocated,
+ bool ReturnsNullOnFailure) const {
+
+ if (!State)
+ return nullptr;
+
+ SVal ArgVal = State->getSVal(ArgExpr, C.getLocationContext());
+ if (!ArgVal.getAs<DefinedOrUnknownSVal>())
+ return nullptr;
+ DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>();
+
+ // Check for null dereferences.
+ if (!location.getAs<Loc>())
+ return nullptr;
+
+ // The explicit NULL case, no operation is performed.
+ ProgramStateRef notNullState, nullState;
+ std::tie(notNullState, nullState) = State->assume(location);
+ if (nullState && !notNullState)
+ return nullptr;
+
+ // Unknown values could easily be okay
+ // Undefined values are handled elsewhere
+ if (ArgVal.isUnknownOrUndef())
+ return nullptr;
+
+ const MemRegion *R = ArgVal.getAsRegion();
+
+ // Nonlocs can't be freed, of course.
+ // Non-region locations (labels and fixed addresses) also shouldn't be freed.
+ if (!R) {
+ ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr);
+ return nullptr;
+ }
+
+ R = R->StripCasts();
+
+ // Blocks might show up as heap data, but should not be free()d
+ if (isa<BlockDataRegion>(R)) {
+ ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr);
+ return nullptr;
+ }
+
+ const MemSpaceRegion *MS = R->getMemorySpace();
+
+ // Parameters, locals, statics, globals, and memory returned by
+ // __builtin_alloca() shouldn't be freed.
+ if (!(isa<UnknownSpaceRegion>(MS) || isa<HeapSpaceRegion>(MS))) {
+ // FIXME: at the time this code was written, malloc() regions were
+ // represented by conjured symbols, which are all in UnknownSpaceRegion.
+ // This means that there isn't actually anything from HeapSpaceRegion
+ // that should be freed, even though we allow it here.
+ // Of course, free() can work on memory allocated outside the current
+ // function, so UnknownSpaceRegion is always a possibility.
+ // False negatives are better than false positives.
+
+ if (isa<AllocaRegion>(R))
+ ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange());
+ else
+ ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr);
+
+ return nullptr;
+ }
+
+ const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion());
+ // Various cases could lead to non-symbol values here.
+ // For now, ignore them.
+ if (!SrBase)
+ return nullptr;
+
+ SymbolRef SymBase = SrBase->getSymbol();
+ const RefState *RsBase = State->get<RegionState>(SymBase);
+ SymbolRef PreviousRetStatusSymbol = nullptr;
+
+ if (RsBase) {
+
+ // Memory returned by alloca() shouldn't be freed.
+ if (RsBase->getAllocationFamily() == AF_Alloca) {
+ ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange());
+ return nullptr;
+ }
+
+ // Check for double free first.
+ if ((RsBase->isReleased() || RsBase->isRelinquished()) &&
+ !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) {
+ ReportDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(),
+ SymBase, PreviousRetStatusSymbol);
+ return nullptr;
+
+ // If the pointer is allocated or escaped, but we are now trying to free it,
+ // check that the call to free is proper.
+ } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() ||
+ RsBase->isEscaped()) {
+
+ // Check if an expected deallocation function matches the real one.
+ bool DeallocMatchesAlloc =
+ RsBase->getAllocationFamily() == getAllocationFamily(C, ParentExpr);
+ if (!DeallocMatchesAlloc) {
+ ReportMismatchedDealloc(C, ArgExpr->getSourceRange(),
+ ParentExpr, RsBase, SymBase, Hold);
+ return nullptr;
+ }
+
+ // Check if the memory location being freed is the actual location
+ // allocated, or an offset.
+ RegionOffset Offset = R->getAsOffset();
+ if (Offset.isValid() &&
+ !Offset.hasSymbolicOffset() &&
+ Offset.getOffset() != 0) {
+ const Expr *AllocExpr = cast<Expr>(RsBase->getStmt());
+ ReportOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr,
+ AllocExpr);
+ return nullptr;
+ }
+ }
+ }
+
+ ReleasedAllocated = (RsBase != nullptr) && (RsBase->isAllocated() ||
+ RsBase->isAllocatedOfSizeZero());
+
+ // Clean out the info on previous call to free return info.
+ State = State->remove<FreeReturnValue>(SymBase);
+
+ // Keep track of the return value. If it is NULL, we will know that free
+ // failed.
+ if (ReturnsNullOnFailure) {
+ SVal RetVal = C.getSVal(ParentExpr);
+ SymbolRef RetStatusSymbol = RetVal.getAsSymbol();
+ if (RetStatusSymbol) {
+ C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol);
+ State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol);
+ }
+ }
+
+ AllocationFamily Family = RsBase ? RsBase->getAllocationFamily()
+ : getAllocationFamily(C, ParentExpr);
+ // Normal free.
+ if (Hold)
+ return State->set<RegionState>(SymBase,
+ RefState::getRelinquished(Family,
+ ParentExpr));
+
+ return State->set<RegionState>(SymBase,
+ RefState::getReleased(Family, ParentExpr));
+}
+
+Optional<MallocChecker::CheckKind>
+MallocChecker::getCheckIfTracked(AllocationFamily Family,
+ bool IsALeakCheck) const {
+ switch (Family) {
+ case AF_Malloc:
+ case AF_Alloca:
+ case AF_IfNameIndex: {
+ if (ChecksEnabled[CK_MallocChecker])
+ return CK_MallocChecker;
+
+ return Optional<MallocChecker::CheckKind>();
+ }
+ case AF_CXXNew:
+ case AF_CXXNewArray: {
+ if (IsALeakCheck) {
+ if (ChecksEnabled[CK_NewDeleteLeaksChecker])
+ return CK_NewDeleteLeaksChecker;
+ }
+ else {
+ if (ChecksEnabled[CK_NewDeleteChecker])
+ return CK_NewDeleteChecker;
+ }
+ return Optional<MallocChecker::CheckKind>();
+ }
+ case AF_None: {
+ llvm_unreachable("no family");
+ }
+ }
+ llvm_unreachable("unhandled family");
+}
+
+Optional<MallocChecker::CheckKind>
+MallocChecker::getCheckIfTracked(CheckerContext &C,
+ const Stmt *AllocDeallocStmt,
+ bool IsALeakCheck) const {
+ return getCheckIfTracked(getAllocationFamily(C, AllocDeallocStmt),
+ IsALeakCheck);
+}
+
+Optional<MallocChecker::CheckKind>
+MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym,
+ bool IsALeakCheck) const {
+ const RefState *RS = C.getState()->get<RegionState>(Sym);
+ assert(RS);
+ return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck);
+}
+
+bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) {
+ if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>())
+ os << "an integer (" << IntVal->getValue() << ")";
+ else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>())
+ os << "a constant address (" << ConstAddr->getValue() << ")";
+ else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>())
+ os << "the address of the label '" << Label->getLabel()->getName() << "'";
+ else
+ return false;
+
+ return true;
+}
+
+bool MallocChecker::SummarizeRegion(raw_ostream &os,
+ const MemRegion *MR) {
+ switch (MR->getKind()) {
+ case MemRegion::FunctionTextRegionKind: {
+ const NamedDecl *FD = cast<FunctionTextRegion>(MR)->getDecl();
+ if (FD)
+ os << "the address of the function '" << *FD << '\'';
+ else
+ os << "the address of a function";
+ return true;
+ }
+ case MemRegion::BlockTextRegionKind:
+ os << "block text";
+ return true;
+ case MemRegion::BlockDataRegionKind:
+ // FIXME: where the block came from?
+ os << "a block";
+ return true;
+ default: {
+ const MemSpaceRegion *MS = MR->getMemorySpace();
+
+ if (isa<StackLocalsSpaceRegion>(MS)) {
+ const VarRegion *VR = dyn_cast<VarRegion>(MR);
+ const VarDecl *VD;
+ if (VR)
+ VD = VR->getDecl();
+ else
+ VD = nullptr;
+
+ if (VD)
+ os << "the address of the local variable '" << VD->getName() << "'";
+ else
+ os << "the address of a local stack variable";
+ return true;
+ }
+
+ if (isa<StackArgumentsSpaceRegion>(MS)) {
+ const VarRegion *VR = dyn_cast<VarRegion>(MR);
+ const VarDecl *VD;
+ if (VR)
+ VD = VR->getDecl();
+ else
+ VD = nullptr;
+
+ if (VD)
+ os << "the address of the parameter '" << VD->getName() << "'";
+ else
+ os << "the address of a parameter";
+ return true;
+ }
+
+ if (isa<GlobalsSpaceRegion>(MS)) {
+ const VarRegion *VR = dyn_cast<VarRegion>(MR);
+ const VarDecl *VD;
+ if (VR)
+ VD = VR->getDecl();
+ else
+ VD = nullptr;
+
+ if (VD) {
+ if (VD->isStaticLocal())
+ os << "the address of the static variable '" << VD->getName() << "'";
+ else
+ os << "the address of the global variable '" << VD->getName() << "'";
+ } else
+ os << "the address of a global variable";
+ return true;
+ }
+
+ return false;
+ }
+ }
+}
+
+void MallocChecker::ReportBadFree(CheckerContext &C, SVal ArgVal,
+ SourceRange Range,
+ const Expr *DeallocExpr) const {
+
+ if (!ChecksEnabled[CK_MallocChecker] &&
+ !ChecksEnabled[CK_NewDeleteChecker])
+ return;
+
+ Optional<MallocChecker::CheckKind> CheckKind =
+ getCheckIfTracked(C, DeallocExpr);
+ if (!CheckKind.hasValue())
+ return;
+
+ if (ExplodedNode *N = C.generateSink()) {
+ if (!BT_BadFree[*CheckKind])
+ BT_BadFree[*CheckKind].reset(
+ new BugType(CheckNames[*CheckKind], "Bad free", "Memory Error"));
+
+ SmallString<100> buf;
+ llvm::raw_svector_ostream os(buf);
+
+ const MemRegion *MR = ArgVal.getAsRegion();
+ while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR))
+ MR = ER->getSuperRegion();
+
+ os << "Argument to ";
+ if (!printAllocDeallocName(os, C, DeallocExpr))
+ os << "deallocator";
+
+ os << " is ";
+ bool Summarized = MR ? SummarizeRegion(os, MR)
+ : SummarizeValue(os, ArgVal);
+ if (Summarized)
+ os << ", which is not memory allocated by ";
+ else
+ os << "not memory allocated by ";
+
+ printExpectedAllocName(os, C, DeallocExpr);
+
+ BugReport *R = new BugReport(*BT_BadFree[*CheckKind], os.str(), N);
+ R->markInteresting(MR);
+ R->addRange(Range);
+ C.emitReport(R);
+ }
+}
+
+void MallocChecker::ReportFreeAlloca(CheckerContext &C, SVal ArgVal,
+ SourceRange Range) const {
+
+ Optional<MallocChecker::CheckKind> CheckKind;
+
+ if (ChecksEnabled[CK_MallocChecker])
+ CheckKind = CK_MallocChecker;
+ else if (ChecksEnabled[CK_MismatchedDeallocatorChecker])
+ CheckKind = CK_MismatchedDeallocatorChecker;
+ else
+ return;
+
+ if (ExplodedNode *N = C.generateSink()) {
+ if (!BT_FreeAlloca[*CheckKind])
+ BT_FreeAlloca[*CheckKind].reset(
+ new BugType(CheckNames[*CheckKind], "Free alloca()", "Memory Error"));
+
+ BugReport *R = new BugReport(*BT_FreeAlloca[*CheckKind],
+ "Memory allocated by alloca() should not be deallocated", N);
+ R->markInteresting(ArgVal.getAsRegion());
+ R->addRange(Range);
+ C.emitReport(R);
+ }
+}
+
+void MallocChecker::ReportMismatchedDealloc(CheckerContext &C,
+ SourceRange Range,
+ const Expr *DeallocExpr,
+ const RefState *RS,
+ SymbolRef Sym,
+ bool OwnershipTransferred) const {
+
+ if (!ChecksEnabled[CK_MismatchedDeallocatorChecker])
+ return;
+
+ if (ExplodedNode *N = C.generateSink()) {
+ if (!BT_MismatchedDealloc)
+ BT_MismatchedDealloc.reset(
+ new BugType(CheckNames[CK_MismatchedDeallocatorChecker],
+ "Bad deallocator", "Memory Error"));
+
+ SmallString<100> buf;
+ llvm::raw_svector_ostream os(buf);
+
+ const Expr *AllocExpr = cast<Expr>(RS->getStmt());
+ SmallString<20> AllocBuf;
+ llvm::raw_svector_ostream AllocOs(AllocBuf);
+ SmallString<20> DeallocBuf;
+ llvm::raw_svector_ostream DeallocOs(DeallocBuf);
+
+ if (OwnershipTransferred) {
+ if (printAllocDeallocName(DeallocOs, C, DeallocExpr))
+ os << DeallocOs.str() << " cannot";
+ else
+ os << "Cannot";
+
+ os << " take ownership of memory";
+
+ if (printAllocDeallocName(AllocOs, C, AllocExpr))
+ os << " allocated by " << AllocOs.str();
+ } else {
+ os << "Memory";
+ if (printAllocDeallocName(AllocOs, C, AllocExpr))
+ os << " allocated by " << AllocOs.str();
+
+ os << " should be deallocated by ";
+ printExpectedDeallocName(os, RS->getAllocationFamily());
+
+ if (printAllocDeallocName(DeallocOs, C, DeallocExpr))
+ os << ", not " << DeallocOs.str();
+ }
+
+ BugReport *R = new BugReport(*BT_MismatchedDealloc, os.str(), N);
+ R->markInteresting(Sym);
+ R->addRange(Range);
+ R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym));
+ C.emitReport(R);
+ }
+}
+
+void MallocChecker::ReportOffsetFree(CheckerContext &C, SVal ArgVal,
+ SourceRange Range, const Expr *DeallocExpr,
+ const Expr *AllocExpr) const {
+
+
+ if (!ChecksEnabled[CK_MallocChecker] &&
+ !ChecksEnabled[CK_NewDeleteChecker])
+ return;
+
+ Optional<MallocChecker::CheckKind> CheckKind =
+ getCheckIfTracked(C, AllocExpr);
+ if (!CheckKind.hasValue())
+ return;
+
+ ExplodedNode *N = C.generateSink();
+ if (!N)
+ return;
+
+ if (!BT_OffsetFree[*CheckKind])
+ BT_OffsetFree[*CheckKind].reset(
+ new BugType(CheckNames[*CheckKind], "Offset free", "Memory Error"));
+
+ SmallString<100> buf;
+ llvm::raw_svector_ostream os(buf);
+ SmallString<20> AllocNameBuf;
+ llvm::raw_svector_ostream AllocNameOs(AllocNameBuf);
+
+ const MemRegion *MR = ArgVal.getAsRegion();
+ assert(MR && "Only MemRegion based symbols can have offset free errors");
+
+ RegionOffset Offset = MR->getAsOffset();
+ assert((Offset.isValid() &&
+ !Offset.hasSymbolicOffset() &&
+ Offset.getOffset() != 0) &&
+ "Only symbols with a valid offset can have offset free errors");
+
+ int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth();
+
+ os << "Argument to ";
+ if (!printAllocDeallocName(os, C, DeallocExpr))
+ os << "deallocator";
+ os << " is offset by "
+ << offsetBytes
+ << " "
+ << ((abs(offsetBytes) > 1) ? "bytes" : "byte")
+ << " from the start of ";
+ if (AllocExpr && printAllocDeallocName(AllocNameOs, C, AllocExpr))
+ os << "memory allocated by " << AllocNameOs.str();
+ else
+ os << "allocated memory";
+
+ BugReport *R = new BugReport(*BT_OffsetFree[*CheckKind], os.str(), N);
+ R->markInteresting(MR->getBaseRegion());
+ R->addRange(Range);
+ C.emitReport(R);
+}
+
+void MallocChecker::ReportUseAfterFree(CheckerContext &C, SourceRange Range,
+ SymbolRef Sym) const {
+
+ if (!ChecksEnabled[CK_MallocChecker] &&
+ !ChecksEnabled[CK_NewDeleteChecker])
+ return;
+
+ Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
+ if (!CheckKind.hasValue())
+ return;
+
+ if (ExplodedNode *N = C.generateSink()) {
+ if (!BT_UseFree[*CheckKind])
+ BT_UseFree[*CheckKind].reset(new BugType(
+ CheckNames[*CheckKind], "Use-after-free", "Memory Error"));
+
+ BugReport *R = new BugReport(*BT_UseFree[*CheckKind],
+ "Use of memory after it is freed", N);
+
+ R->markInteresting(Sym);
+ R->addRange(Range);
+ R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym));
+ C.emitReport(R);
+ }
+}
+
+void MallocChecker::ReportDoubleFree(CheckerContext &C, SourceRange Range,
+ bool Released, SymbolRef Sym,
+ SymbolRef PrevSym) const {
+
+ if (!ChecksEnabled[CK_MallocChecker] &&
+ !ChecksEnabled[CK_NewDeleteChecker])
+ return;
+
+ Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
+ if (!CheckKind.hasValue())
+ return;
+
+ if (ExplodedNode *N = C.generateSink()) {
+ if (!BT_DoubleFree[*CheckKind])
+ BT_DoubleFree[*CheckKind].reset(
+ new BugType(CheckNames[*CheckKind], "Double free", "Memory Error"));
+
+ BugReport *R =
+ new BugReport(*BT_DoubleFree[*CheckKind],
+ (Released ? "Attempt to free released memory"
+ : "Attempt to free non-owned memory"),
+ N);
+ R->addRange(Range);
+ R->markInteresting(Sym);
+ if (PrevSym)
+ R->markInteresting(PrevSym);
+ R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym));
+ C.emitReport(R);
+ }
+}
+
+void MallocChecker::ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const {
+
+ if (!ChecksEnabled[CK_NewDeleteChecker])
+ return;
+
+ Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
+ if (!CheckKind.hasValue())
+ return;
+
+ if (ExplodedNode *N = C.generateSink()) {
+ if (!BT_DoubleDelete)
+ BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker],
+ "Double delete", "Memory Error"));
+
+ BugReport *R = new BugReport(*BT_DoubleDelete,
+ "Attempt to delete released memory", N);
+
+ R->markInteresting(Sym);
+ R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym));
+ C.emitReport(R);
+ }
+}
+
+void MallocChecker::ReportUseZeroAllocated(CheckerContext &C,
+ SourceRange Range,
+ SymbolRef Sym) const {
+
+ if (!ChecksEnabled[CK_MallocChecker] &&
+ !ChecksEnabled[CK_NewDeleteChecker])
+ return;
+
+ Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
+
+ if (!CheckKind.hasValue())
+ return;
+
+ if (ExplodedNode *N = C.generateSink()) {
+ if (!BT_UseZerroAllocated[*CheckKind])
+ BT_UseZerroAllocated[*CheckKind].reset(new BugType(
+ CheckNames[*CheckKind], "Use of zero allocated", "Memory Error"));
+
+ BugReport *R = new BugReport(*BT_UseZerroAllocated[*CheckKind],
+ "Use of zero-allocated memory", N);
+
+ R->addRange(Range);
+ if (Sym) {
+ R->markInteresting(Sym);
+ R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym));
+ }
+ C.emitReport(R);
+ }
+}
+
+ProgramStateRef MallocChecker::ReallocMem(CheckerContext &C,
+ const CallExpr *CE,
+ bool FreesOnFail,
+ ProgramStateRef State) const {
+ if (!State)
+ return nullptr;
+
+ if (CE->getNumArgs() < 2)
+ return nullptr;
+
+ const Expr *arg0Expr = CE->getArg(0);
+ const LocationContext *LCtx = C.getLocationContext();
+ SVal Arg0Val = State->getSVal(arg0Expr, LCtx);
+ if (!Arg0Val.getAs<DefinedOrUnknownSVal>())
+ return nullptr;
+ DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>();
+
+ SValBuilder &svalBuilder = C.getSValBuilder();
+
+ DefinedOrUnknownSVal PtrEQ =
+ svalBuilder.evalEQ(State, arg0Val, svalBuilder.makeNull());
+
+ // Get the size argument. If there is no size arg then give up.
+ const Expr *Arg1 = CE->getArg(1);
+ if (!Arg1)
+ return nullptr;
+
+ // Get the value of the size argument.
+ SVal Arg1ValG = State->getSVal(Arg1, LCtx);
+ if (!Arg1ValG.getAs<DefinedOrUnknownSVal>())
+ return nullptr;
+ DefinedOrUnknownSVal Arg1Val = Arg1ValG.castAs<DefinedOrUnknownSVal>();
+
+ // Compare the size argument to 0.
+ DefinedOrUnknownSVal SizeZero =
+ svalBuilder.evalEQ(State, Arg1Val,
+ svalBuilder.makeIntValWithPtrWidth(0, false));
+
+ ProgramStateRef StatePtrIsNull, StatePtrNotNull;
+ std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ);
+ ProgramStateRef StateSizeIsZero, StateSizeNotZero;
+ std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero);
+ // We only assume exceptional states if they are definitely true; if the
+ // state is under-constrained, assume regular realloc behavior.
+ bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull;
+ bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero;
+
+ // If the ptr is NULL and the size is not 0, the call is equivalent to
+ // malloc(size).
+ if ( PrtIsNull && !SizeIsZero) {
+ ProgramStateRef stateMalloc = MallocMemAux(C, CE, CE->getArg(1),
+ UndefinedVal(), StatePtrIsNull);
+ return stateMalloc;
+ }
+
+ if (PrtIsNull && SizeIsZero)
+ return nullptr;
+
+ // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size).
+ assert(!PrtIsNull);
+ SymbolRef FromPtr = arg0Val.getAsSymbol();
+ SVal RetVal = State->getSVal(CE, LCtx);
+ SymbolRef ToPtr = RetVal.getAsSymbol();
+ if (!FromPtr || !ToPtr)
+ return nullptr;
+
+ bool ReleasedAllocated = false;
+
+ // If the size is 0, free the memory.
+ if (SizeIsZero)
+ if (ProgramStateRef stateFree = FreeMemAux(C, CE, StateSizeIsZero, 0,
+ false, ReleasedAllocated)){
+ // The semantics of the return value are:
+ // If size was equal to 0, either NULL or a pointer suitable to be passed
+ // to free() is returned. We just free the input pointer and do not add
+ // any constrains on the output pointer.
+ return stateFree;
+ }
+
+ // Default behavior.
+ if (ProgramStateRef stateFree =
+ FreeMemAux(C, CE, State, 0, false, ReleasedAllocated)) {
+
+ ProgramStateRef stateRealloc = MallocMemAux(C, CE, CE->getArg(1),
+ UnknownVal(), stateFree);
+ if (!stateRealloc)
+ return nullptr;
+
+ ReallocPairKind Kind = RPToBeFreedAfterFailure;
+ if (FreesOnFail)
+ Kind = RPIsFreeOnFailure;
+ else if (!ReleasedAllocated)
+ Kind = RPDoNotTrackAfterFailure;
+
+ // Record the info about the reallocated symbol so that we could properly
+ // process failed reallocation.
+ stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr,
+ ReallocPair(FromPtr, Kind));
+ // The reallocated symbol should stay alive for as long as the new symbol.
+ C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr);
+ return stateRealloc;
+ }
+ return nullptr;
+}
+
+ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, const CallExpr *CE,
+ ProgramStateRef State) {
+ if (!State)
+ return nullptr;
+
+ if (CE->getNumArgs() < 2)
+ return nullptr;
+
+ SValBuilder &svalBuilder = C.getSValBuilder();
+ const LocationContext *LCtx = C.getLocationContext();
+ SVal count = State->getSVal(CE->getArg(0), LCtx);
+ SVal elementSize = State->getSVal(CE->getArg(1), LCtx);
+ SVal TotalSize = svalBuilder.evalBinOp(State, BO_Mul, count, elementSize,
+ svalBuilder.getContext().getSizeType());
+ SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy);
+
+ return MallocMemAux(C, CE, TotalSize, zeroVal, State);
+}
+
+LeakInfo
+MallocChecker::getAllocationSite(const ExplodedNode *N, SymbolRef Sym,
+ CheckerContext &C) const {
+ const LocationContext *LeakContext = N->getLocationContext();
+ // Walk the ExplodedGraph backwards and find the first node that referred to
+ // the tracked symbol.
+ const ExplodedNode *AllocNode = N;
+ const MemRegion *ReferenceRegion = nullptr;
+
+ while (N) {
+ ProgramStateRef State = N->getState();
+ if (!State->get<RegionState>(Sym))
+ break;
+
+ // Find the most recent expression bound to the symbol in the current
+ // context.
+ if (!ReferenceRegion) {
+ if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) {
+ SVal Val = State->getSVal(MR);
+ if (Val.getAsLocSymbol() == Sym) {
+ const VarRegion* VR = MR->getBaseRegion()->getAs<VarRegion>();
+ // Do not show local variables belonging to a function other than
+ // where the error is reported.
+ if (!VR ||
+ (VR->getStackFrame() == LeakContext->getCurrentStackFrame()))
+ ReferenceRegion = MR;
+ }
+ }
+ }
+
+ // Allocation node, is the last node in the current or parent context in
+ // which the symbol was tracked.
+ const LocationContext *NContext = N->getLocationContext();
+ if (NContext == LeakContext ||
+ NContext->isParentOf(LeakContext))
+ AllocNode = N;
+ N = N->pred_empty() ? nullptr : *(N->pred_begin());
+ }
+
+ return LeakInfo(AllocNode, ReferenceRegion);
+}
+
+void MallocChecker::reportLeak(SymbolRef Sym, ExplodedNode *N,
+ CheckerContext &C) const {
+
+ if (!ChecksEnabled[CK_MallocChecker] &&
+ !ChecksEnabled[CK_NewDeleteLeaksChecker])
+ return;
+
+ const RefState *RS = C.getState()->get<RegionState>(Sym);
+ assert(RS && "cannot leak an untracked symbol");
+ AllocationFamily Family = RS->getAllocationFamily();
+
+ if (Family == AF_Alloca)
+ return;
+
+ Optional<MallocChecker::CheckKind>
+ CheckKind = getCheckIfTracked(Family, true);
+
+ if (!CheckKind.hasValue())
+ return;
+
+ assert(N);
+ if (!BT_Leak[*CheckKind]) {
+ BT_Leak[*CheckKind].reset(
+ new BugType(CheckNames[*CheckKind], "Memory leak", "Memory Error"));
+ // Leaks should not be reported if they are post-dominated by a sink:
+ // (1) Sinks are higher importance bugs.
+ // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending
+ // with __noreturn functions such as assert() or exit(). We choose not
+ // to report leaks on such paths.
+ BT_Leak[*CheckKind]->setSuppressOnSink(true);
+ }
+
+ // Most bug reports are cached at the location where they occurred.
+ // With leaks, we want to unique them by the location where they were
+ // allocated, and only report a single path.
+ PathDiagnosticLocation LocUsedForUniqueing;
+ const ExplodedNode *AllocNode = nullptr;
+ const MemRegion *Region = nullptr;
+ std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C);
+
+ ProgramPoint P = AllocNode->getLocation();
+ const Stmt *AllocationStmt = nullptr;
+ if (Optional<CallExitEnd> Exit = P.getAs<CallExitEnd>())
+ AllocationStmt = Exit->getCalleeContext()->getCallSite();
+ else if (Optional<StmtPoint> SP = P.getAs<StmtPoint>())
+ AllocationStmt = SP->getStmt();
+ if (AllocationStmt)
+ LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt,
+ C.getSourceManager(),
+ AllocNode->getLocationContext());
+
+ SmallString<200> buf;
+ llvm::raw_svector_ostream os(buf);
+ if (Region && Region->canPrintPretty()) {
+ os << "Potential leak of memory pointed to by ";
+ Region->printPretty(os);
+ } else {
+ os << "Potential memory leak";
+ }
+
+ BugReport *R =
+ new BugReport(*BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing,
+ AllocNode->getLocationContext()->getDecl());
+ R->markInteresting(Sym);
+ R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym, true));
+ C.emitReport(R);
+}
+
+void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper,
+ CheckerContext &C) const
+{
+ if (!SymReaper.hasDeadSymbols())
+ return;
+
+ ProgramStateRef state = C.getState();
+ RegionStateTy RS = state->get<RegionState>();
+ RegionStateTy::Factory &F = state->get_context<RegionState>();
+
+ SmallVector<SymbolRef, 2> Errors;
+ for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) {
+ if (SymReaper.isDead(I->first)) {
+ if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero())
+ Errors.push_back(I->first);
+ // Remove the dead symbol from the map.
+ RS = F.remove(RS, I->first);
+
+ }
+ }
+
+ // Cleanup the Realloc Pairs Map.
+ ReallocPairsTy RP = state->get<ReallocPairs>();
+ for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) {
+ if (SymReaper.isDead(I->first) ||
+ SymReaper.isDead(I->second.ReallocatedSym)) {
+ state = state->remove<ReallocPairs>(I->first);
+ }
+ }
+
+ // Cleanup the FreeReturnValue Map.
+ FreeReturnValueTy FR = state->get<FreeReturnValue>();
+ for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) {
+ if (SymReaper.isDead(I->first) ||
+ SymReaper.isDead(I->second)) {
+ state = state->remove<FreeReturnValue>(I->first);
+ }
+ }
+
+ // Generate leak node.
+ ExplodedNode *N = C.getPredecessor();
+ if (!Errors.empty()) {
+ static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak");
+ N = C.addTransition(C.getState(), C.getPredecessor(), &Tag);
+ for (SmallVectorImpl<SymbolRef>::iterator
+ I = Errors.begin(), E = Errors.end(); I != E; ++I) {
+ reportLeak(*I, N, C);
+ }
+ }
+
+ C.addTransition(state->set<RegionState>(RS), N);
+}
+
+void MallocChecker::checkPreCall(const CallEvent &Call,
+ CheckerContext &C) const {
+
+ if (const CXXDestructorCall *DC = dyn_cast<CXXDestructorCall>(&Call)) {
+ SymbolRef Sym = DC->getCXXThisVal().getAsSymbol();
+ if (!Sym || checkDoubleDelete(Sym, C))
+ return;
+ }
+
+ // We will check for double free in the post visit.
+ if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) {
+ const FunctionDecl *FD = FC->getDecl();
+ if (!FD)
+ return;
+
+ ASTContext &Ctx = C.getASTContext();
+ if (ChecksEnabled[CK_MallocChecker] &&
+ (isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Free) ||
+ isCMemFunction(FD, Ctx, AF_IfNameIndex,
+ MemoryOperationKind::MOK_Free)))
+ return;
+
+ if (ChecksEnabled[CK_NewDeleteChecker] &&
+ isStandardNewDelete(FD, Ctx))
+ return;
+ }
+
+ // Check if the callee of a method is deleted.
+ if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) {
+ SymbolRef Sym = CC->getCXXThisVal().getAsSymbol();
+ if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr()))
+ return;
+ }
+
+ // Check arguments for being used after free.
+ for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) {
+ SVal ArgSVal = Call.getArgSVal(I);
+ if (ArgSVal.getAs<Loc>()) {
+ SymbolRef Sym = ArgSVal.getAsSymbol();
+ if (!Sym)
+ continue;
+ if (checkUseAfterFree(Sym, C, Call.getArgExpr(I)))
+ return;
+ }
+ }
+}
+
+void MallocChecker::checkPreStmt(const ReturnStmt *S, CheckerContext &C) const {
+ const Expr *E = S->getRetValue();
+ if (!E)
+ return;
+
+ // Check if we are returning a symbol.
+ ProgramStateRef State = C.getState();
+ SVal RetVal = State->getSVal(E, C.getLocationContext());
+ SymbolRef Sym = RetVal.getAsSymbol();
+ if (!Sym)
+ // If we are returning a field of the allocated struct or an array element,
+ // the callee could still free the memory.
+ // TODO: This logic should be a part of generic symbol escape callback.
+ if (const MemRegion *MR = RetVal.getAsRegion())
+ if (isa<FieldRegion>(MR) || isa<ElementRegion>(MR))
+ if (const SymbolicRegion *BMR =
+ dyn_cast<SymbolicRegion>(MR->getBaseRegion()))
+ Sym = BMR->getSymbol();
+
+ // Check if we are returning freed memory.
+ if (Sym)
+ checkUseAfterFree(Sym, C, E);
+}
+
+// TODO: Blocks should be either inlined or should call invalidate regions
+// upon invocation. After that's in place, special casing here will not be
+// needed.
+void MallocChecker::checkPostStmt(const BlockExpr *BE,
+ CheckerContext &C) const {
+
+ // Scan the BlockDecRefExprs for any object the retain count checker
+ // may be tracking.
+ if (!BE->getBlockDecl()->hasCaptures())
+ return;
+
+ ProgramStateRef state = C.getState();
+ const BlockDataRegion *R =
+ cast<BlockDataRegion>(state->getSVal(BE,
+ C.getLocationContext()).getAsRegion());
+
+ BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(),
+ E = R->referenced_vars_end();
+
+ if (I == E)
+ return;
+
+ SmallVector<const MemRegion*, 10> Regions;
+ const LocationContext *LC = C.getLocationContext();
+ MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager();
+
+ for ( ; I != E; ++I) {
+ const VarRegion *VR = I.getCapturedRegion();
+ if (VR->getSuperRegion() == R) {
+ VR = MemMgr.getVarRegion(VR->getDecl(), LC);
+ }
+ Regions.push_back(VR);
+ }
+
+ state =
+ state->scanReachableSymbols<StopTrackingCallback>(Regions.data(),
+ Regions.data() + Regions.size()).getState();
+ C.addTransition(state);
+}
+
+bool MallocChecker::isReleased(SymbolRef Sym, CheckerContext &C) const {
+ assert(Sym);
+ const RefState *RS = C.getState()->get<RegionState>(Sym);
+ return (RS && RS->isReleased());
+}
+
+bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C,
+ const Stmt *S) const {
+
+ if (isReleased(Sym, C)) {
+ ReportUseAfterFree(C, S->getSourceRange(), Sym);
+ return true;
+ }
+
+ return false;
+}
+
+void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C,
+ const Stmt *S) const {
+ assert(Sym);
+ const RefState *RS = C.getState()->get<RegionState>(Sym);
+
+ if (RS && RS->isAllocatedOfSizeZero())
+ ReportUseZeroAllocated(C, RS->getStmt()->getSourceRange(), Sym);
+}
+
+bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const {
+
+ if (isReleased(Sym, C)) {
+ ReportDoubleDelete(C, Sym);
+ return true;
+ }
+ return false;
+}
+
+// Check if the location is a freed symbolic region.
+void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S,
+ CheckerContext &C) const {
+ SymbolRef Sym = l.getLocSymbolInBase();
+ if (Sym) {
+ checkUseAfterFree(Sym, C, S);
+ checkUseZeroAllocated(Sym, C, S);
+ }
+}
+
+// If a symbolic region is assumed to NULL (or another constant), stop tracking
+// it - assuming that allocation failed on this path.
+ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state,
+ SVal Cond,
+ bool Assumption) const {
+ RegionStateTy RS = state->get<RegionState>();
+ for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) {
+ // If the symbol is assumed to be NULL, remove it from consideration.
+ ConstraintManager &CMgr = state->getConstraintManager();
+ ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey());
+ if (AllocFailed.isConstrainedTrue())
+ state = state->remove<RegionState>(I.getKey());
+ }
+
+ // Realloc returns 0 when reallocation fails, which means that we should
+ // restore the state of the pointer being reallocated.
+ ReallocPairsTy RP = state->get<ReallocPairs>();
+ for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) {
+ // If the symbol is assumed to be NULL, remove it from consideration.
+ ConstraintManager &CMgr = state->getConstraintManager();
+ ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey());
+ if (!AllocFailed.isConstrainedTrue())
+ continue;
+
+ SymbolRef ReallocSym = I.getData().ReallocatedSym;
+ if (const RefState *RS = state->get<RegionState>(ReallocSym)) {
+ if (RS->isReleased()) {
+ if (I.getData().Kind == RPToBeFreedAfterFailure)
+ state = state->set<RegionState>(ReallocSym,
+ RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt()));
+ else if (I.getData().Kind == RPDoNotTrackAfterFailure)
+ state = state->remove<RegionState>(ReallocSym);
+ else
+ assert(I.getData().Kind == RPIsFreeOnFailure);
+ }
+ }
+ state = state->remove<ReallocPairs>(I.getKey());
+ }
+
+ return state;
+}
+
+bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly(
+ const CallEvent *Call,
+ ProgramStateRef State,
+ SymbolRef &EscapingSymbol) const {
+ assert(Call);
+ EscapingSymbol = nullptr;
+
+ // For now, assume that any C++ or block call can free memory.
+ // TODO: If we want to be more optimistic here, we'll need to make sure that
+ // regions escape to C++ containers. They seem to do that even now, but for
+ // mysterious reasons.
+ if (!(isa<SimpleFunctionCall>(Call) || isa<ObjCMethodCall>(Call)))
+ return true;
+
+ // Check Objective-C messages by selector name.
+ if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) {
+ // If it's not a framework call, or if it takes a callback, assume it
+ // can free memory.
+ if (!Call->isInSystemHeader() || Call->hasNonZeroCallbackArg())
+ return true;
+
+ // If it's a method we know about, handle it explicitly post-call.
+ // This should happen before the "freeWhenDone" check below.
+ if (isKnownDeallocObjCMethodName(*Msg))
+ return false;
+
+ // If there's a "freeWhenDone" parameter, but the method isn't one we know
+ // about, we can't be sure that the object will use free() to deallocate the
+ // memory, so we can't model it explicitly. The best we can do is use it to
+ // decide whether the pointer escapes.
+ if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg))
+ return *FreeWhenDone;
+
+ // If the first selector piece ends with "NoCopy", and there is no
+ // "freeWhenDone" parameter set to zero, we know ownership is being
+ // transferred. Again, though, we can't be sure that the object will use
+ // free() to deallocate the memory, so we can't model it explicitly.
+ StringRef FirstSlot = Msg->getSelector().getNameForSlot(0);
+ if (FirstSlot.endswith("NoCopy"))
+ return true;
+
+ // If the first selector starts with addPointer, insertPointer,
+ // or replacePointer, assume we are dealing with NSPointerArray or similar.
+ // This is similar to C++ containers (vector); we still might want to check
+ // that the pointers get freed by following the container itself.
+ if (FirstSlot.startswith("addPointer") ||
+ FirstSlot.startswith("insertPointer") ||
+ FirstSlot.startswith("replacePointer") ||
+ FirstSlot.equals("valueWithPointer")) {
+ return true;
+ }
+
+ // We should escape receiver on call to 'init'. This is especially relevant
+ // to the receiver, as the corresponding symbol is usually not referenced
+ // after the call.
+ if (Msg->getMethodFamily() == OMF_init) {
+ EscapingSymbol = Msg->getReceiverSVal().getAsSymbol();
+ return true;
+ }
+
+ // Otherwise, assume that the method does not free memory.
+ // Most framework methods do not free memory.
+ return false;
+ }
+
+ // At this point the only thing left to handle is straight function calls.
+ const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl();
+ if (!FD)
+ return true;
+
+ ASTContext &ASTC = State->getStateManager().getContext();
+
+ // If it's one of the allocation functions we can reason about, we model
+ // its behavior explicitly.
+ if (isMemFunction(FD, ASTC))
+ return false;
+
+ // If it's not a system call, assume it frees memory.
+ if (!Call->isInSystemHeader())
+ return true;
+
+ // White list the system functions whose arguments escape.
+ const IdentifierInfo *II = FD->getIdentifier();
+ if (!II)
+ return true;
+ StringRef FName = II->getName();
+
+ // White list the 'XXXNoCopy' CoreFoundation functions.
+ // We specifically check these before
+ if (FName.endswith("NoCopy")) {
+ // Look for the deallocator argument. We know that the memory ownership
+ // is not transferred only if the deallocator argument is
+ // 'kCFAllocatorNull'.
+ for (unsigned i = 1; i < Call->getNumArgs(); ++i) {
+ const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts();
+ if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) {
+ StringRef DeallocatorName = DE->getFoundDecl()->getName();
+ if (DeallocatorName == "kCFAllocatorNull")
+ return false;
+ }
+ }
+ return true;
+ }
+
+ // Associating streams with malloced buffers. The pointer can escape if
+ // 'closefn' is specified (and if that function does free memory),
+ // but it will not if closefn is not specified.
+ // Currently, we do not inspect the 'closefn' function (PR12101).
+ if (FName == "funopen")
+ if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0))
+ return false;
+
+ // Do not warn on pointers passed to 'setbuf' when used with std streams,
+ // these leaks might be intentional when setting the buffer for stdio.
+ // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer
+ if (FName == "setbuf" || FName =="setbuffer" ||
+ FName == "setlinebuf" || FName == "setvbuf") {
+ if (Call->getNumArgs() >= 1) {
+ const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts();
+ if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE))
+ if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl()))
+ if (D->getCanonicalDecl()->getName().find("std") != StringRef::npos)
+ return true;
+ }
+ }
+
+ // A bunch of other functions which either take ownership of a pointer or
+ // wrap the result up in a struct or object, meaning it can be freed later.
+ // (See RetainCountChecker.) Not all the parameters here are invalidated,
+ // but the Malloc checker cannot differentiate between them. The right way
+ // of doing this would be to implement a pointer escapes callback.
+ if (FName == "CGBitmapContextCreate" ||
+ FName == "CGBitmapContextCreateWithData" ||
+ FName == "CVPixelBufferCreateWithBytes" ||
+ FName == "CVPixelBufferCreateWithPlanarBytes" ||
+ FName == "OSAtomicEnqueue") {
+ return true;
+ }
+
+ // Handle cases where we know a buffer's /address/ can escape.
+ // Note that the above checks handle some special cases where we know that
+ // even though the address escapes, it's still our responsibility to free the
+ // buffer.
+ if (Call->argumentsMayEscape())
+ return true;
+
+ // Otherwise, assume that the function does not free memory.
+ // Most system calls do not free the memory.
+ return false;
+}
+
+static bool retTrue(const RefState *RS) {
+ return true;
+}
+
+static bool checkIfNewOrNewArrayFamily(const RefState *RS) {
+ return (RS->getAllocationFamily() == AF_CXXNewArray ||
+ RS->getAllocationFamily() == AF_CXXNew);
+}
+
+ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State,
+ const InvalidatedSymbols &Escaped,
+ const CallEvent *Call,
+ PointerEscapeKind Kind) const {
+ return checkPointerEscapeAux(State, Escaped, Call, Kind, &retTrue);
+}
+
+ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State,
+ const InvalidatedSymbols &Escaped,
+ const CallEvent *Call,
+ PointerEscapeKind Kind) const {
+ return checkPointerEscapeAux(State, Escaped, Call, Kind,
+ &checkIfNewOrNewArrayFamily);
+}
+
+ProgramStateRef MallocChecker::checkPointerEscapeAux(ProgramStateRef State,
+ const InvalidatedSymbols &Escaped,
+ const CallEvent *Call,
+ PointerEscapeKind Kind,
+ bool(*CheckRefState)(const RefState*)) const {
+ // If we know that the call does not free memory, or we want to process the
+ // call later, keep tracking the top level arguments.
+ SymbolRef EscapingSymbol = nullptr;
+ if (Kind == PSK_DirectEscapeOnCall &&
+ !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State,
+ EscapingSymbol) &&
+ !EscapingSymbol) {
+ return State;
+ }
+
+ for (InvalidatedSymbols::const_iterator I = Escaped.begin(),
+ E = Escaped.end();
+ I != E; ++I) {
+ SymbolRef sym = *I;
+
+ if (EscapingSymbol && EscapingSymbol != sym)
+ continue;
+
+ if (const RefState *RS = State->get<RegionState>(sym)) {
+ if ((RS->isAllocated() || RS->isAllocatedOfSizeZero()) &&
+ CheckRefState(RS)) {
+ State = State->remove<RegionState>(sym);
+ State = State->set<RegionState>(sym, RefState::getEscaped(RS));
+ }
+ }
+ }
+ return State;
+}
+
+static SymbolRef findFailedReallocSymbol(ProgramStateRef currState,
+ ProgramStateRef prevState) {
+ ReallocPairsTy currMap = currState->get<ReallocPairs>();
+ ReallocPairsTy prevMap = prevState->get<ReallocPairs>();
+
+ for (ReallocPairsTy::iterator I = prevMap.begin(), E = prevMap.end();
+ I != E; ++I) {
+ SymbolRef sym = I.getKey();
+ if (!currMap.lookup(sym))
+ return sym;
+ }
+
+ return nullptr;
+}
+
+PathDiagnosticPiece *
+MallocChecker::MallocBugVisitor::VisitNode(const ExplodedNode *N,
+ const ExplodedNode *PrevN,
+ BugReporterContext &BRC,
+ BugReport &BR) {
+ ProgramStateRef state = N->getState();
+ ProgramStateRef statePrev = PrevN->getState();
+
+ const RefState *RS = state->get<RegionState>(Sym);
+ const RefState *RSPrev = statePrev->get<RegionState>(Sym);
+ if (!RS)
+ return nullptr;
+
+ const Stmt *S = nullptr;
+ const char *Msg = nullptr;
+ StackHintGeneratorForSymbol *StackHint = nullptr;
+
+ // Retrieve the associated statement.
+ ProgramPoint ProgLoc = N->getLocation();
+ if (Optional<StmtPoint> SP = ProgLoc.getAs<StmtPoint>()) {
+ S = SP->getStmt();
+ } else if (Optional<CallExitEnd> Exit = ProgLoc.getAs<CallExitEnd>()) {
+ S = Exit->getCalleeContext()->getCallSite();
+ } else if (Optional<BlockEdge> Edge = ProgLoc.getAs<BlockEdge>()) {
+ // If an assumption was made on a branch, it should be caught
+ // here by looking at the state transition.
+ S = Edge->getSrc()->getTerminator();
+ }
+
+ if (!S)
+ return nullptr;
+
+ // FIXME: We will eventually need to handle non-statement-based events
+ // (__attribute__((cleanup))).
+
+ // Find out if this is an interesting point and what is the kind.
+ if (Mode == Normal) {
+ if (isAllocated(RS, RSPrev, S)) {
+ Msg = "Memory is allocated";
+ StackHint = new StackHintGeneratorForSymbol(Sym,
+ "Returned allocated memory");
+ } else if (isReleased(RS, RSPrev, S)) {
+ Msg = "Memory is released";
+ StackHint = new StackHintGeneratorForSymbol(Sym,
+ "Returning; memory was released");
+ } else if (isRelinquished(RS, RSPrev, S)) {
+ Msg = "Memory ownership is transferred";
+ StackHint = new StackHintGeneratorForSymbol(Sym, "");
+ } else if (isReallocFailedCheck(RS, RSPrev, S)) {
+ Mode = ReallocationFailed;
+ Msg = "Reallocation failed";
+ StackHint = new StackHintGeneratorForReallocationFailed(Sym,
+ "Reallocation failed");
+
+ if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) {
+ // Is it possible to fail two reallocs WITHOUT testing in between?
+ assert((!FailedReallocSymbol || FailedReallocSymbol == sym) &&
+ "We only support one failed realloc at a time.");
+ BR.markInteresting(sym);
+ FailedReallocSymbol = sym;
+ }
+ }
+
+ // We are in a special mode if a reallocation failed later in the path.
+ } else if (Mode == ReallocationFailed) {
+ assert(FailedReallocSymbol && "No symbol to look for.");
+
+ // Is this is the first appearance of the reallocated symbol?
+ if (!statePrev->get<RegionState>(FailedReallocSymbol)) {
+ // We're at the reallocation point.
+ Msg = "Attempt to reallocate memory";
+ StackHint = new StackHintGeneratorForSymbol(Sym,
+ "Returned reallocated memory");
+ FailedReallocSymbol = nullptr;
+ Mode = Normal;
+ }
+ }
+
+ if (!Msg)
+ return nullptr;
+ assert(StackHint);
+
+ // Generate the extra diagnostic.
+ PathDiagnosticLocation Pos(S, BRC.getSourceManager(),
+ N->getLocationContext());
+ return new PathDiagnosticEventPiece(Pos, Msg, true, StackHint);
+}
+
+void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State,
+ const char *NL, const char *Sep) const {
+
+ RegionStateTy RS = State->get<RegionState>();
+
+ if (!RS.isEmpty()) {
+ Out << Sep << "MallocChecker :" << NL;
+ for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) {
+ const RefState *RefS = State->get<RegionState>(I.getKey());
+ AllocationFamily Family = RefS->getAllocationFamily();
+ Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family);
+ if (!CheckKind.hasValue())
+ CheckKind = getCheckIfTracked(Family, true);
+
+ I.getKey()->dumpToStream(Out);
+ Out << " : ";
+ I.getData().dump(Out);
+ if (CheckKind.hasValue())
+ Out << " (" << CheckNames[*CheckKind].getName() << ")";
+ Out << NL;
+ }
+ }
+}
+
+void ento::registerNewDeleteLeaksChecker(CheckerManager &mgr) {
+ registerCStringCheckerBasic(mgr);
+ MallocChecker *checker = mgr.registerChecker<MallocChecker>();
+ checker->IsOptimistic = mgr.getAnalyzerOptions().getBooleanOption(
+ "Optimistic", false, checker);
+ checker->ChecksEnabled[MallocChecker::CK_NewDeleteLeaksChecker] = true;
+ checker->CheckNames[MallocChecker::CK_NewDeleteLeaksChecker] =
+ mgr.getCurrentCheckName();
+ // We currently treat NewDeleteLeaks checker as a subchecker of NewDelete
+ // checker.
+ if (!checker->ChecksEnabled[MallocChecker::CK_NewDeleteChecker])
+ checker->ChecksEnabled[MallocChecker::CK_NewDeleteChecker] = true;
+}
+
+#define REGISTER_CHECKER(name) \
+ void ento::register##name(CheckerManager &mgr) { \
+ registerCStringCheckerBasic(mgr); \
+ MallocChecker *checker = mgr.registerChecker<MallocChecker>(); \
+ checker->IsOptimistic = mgr.getAnalyzerOptions().getBooleanOption( \
+ "Optimistic", false, checker); \
+ checker->ChecksEnabled[MallocChecker::CK_##name] = true; \
+ checker->CheckNames[MallocChecker::CK_##name] = mgr.getCurrentCheckName(); \
+ }
+
+REGISTER_CHECKER(MallocChecker)
+REGISTER_CHECKER(NewDeleteChecker)
+REGISTER_CHECKER(MismatchedDeallocatorChecker)
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/MallocOverflowSecurityChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/MallocOverflowSecurityChecker.cpp
new file mode 100644
index 0000000..e913479
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/MallocOverflowSecurityChecker.cpp
@@ -0,0 +1,269 @@
+// MallocOverflowSecurityChecker.cpp - Check for malloc overflows -*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This checker detects a common memory allocation security flaw.
+// Suppose 'unsigned int n' comes from an untrusted source. If the
+// code looks like 'malloc (n * 4)', and an attacker can make 'n' be
+// say MAX_UINT/4+2, then instead of allocating the correct 'n' 4-byte
+// elements, this will actually allocate only two because of overflow.
+// Then when the rest of the program attempts to store values past the
+// second element, these values will actually overwrite other items in
+// the heap, probably allowing the attacker to execute arbitrary code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/AST/EvaluatedExprVisitor.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
+#include "llvm/ADT/SmallVector.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+struct MallocOverflowCheck {
+ const BinaryOperator *mulop;
+ const Expr *variable;
+
+ MallocOverflowCheck (const BinaryOperator *m, const Expr *v)
+ : mulop(m), variable (v)
+ {}
+};
+
+class MallocOverflowSecurityChecker : public Checker<check::ASTCodeBody> {
+public:
+ void checkASTCodeBody(const Decl *D, AnalysisManager &mgr,
+ BugReporter &BR) const;
+
+ void CheckMallocArgument(
+ SmallVectorImpl<MallocOverflowCheck> &PossibleMallocOverflows,
+ const Expr *TheArgument, ASTContext &Context) const;
+
+ void OutputPossibleOverflows(
+ SmallVectorImpl<MallocOverflowCheck> &PossibleMallocOverflows,
+ const Decl *D, BugReporter &BR, AnalysisManager &mgr) const;
+
+};
+} // end anonymous namespace
+
+void MallocOverflowSecurityChecker::CheckMallocArgument(
+ SmallVectorImpl<MallocOverflowCheck> &PossibleMallocOverflows,
+ const Expr *TheArgument,
+ ASTContext &Context) const {
+
+ /* Look for a linear combination with a single variable, and at least
+ one multiplication.
+ Reject anything that applies to the variable: an explicit cast,
+ conditional expression, an operation that could reduce the range
+ of the result, or anything too complicated :-). */
+ const Expr * e = TheArgument;
+ const BinaryOperator * mulop = nullptr;
+
+ for (;;) {
+ e = e->IgnoreParenImpCasts();
+ if (isa<BinaryOperator>(e)) {
+ const BinaryOperator * binop = dyn_cast<BinaryOperator>(e);
+ BinaryOperatorKind opc = binop->getOpcode();
+ // TODO: ignore multiplications by 1, reject if multiplied by 0.
+ if (mulop == nullptr && opc == BO_Mul)
+ mulop = binop;
+ if (opc != BO_Mul && opc != BO_Add && opc != BO_Sub && opc != BO_Shl)
+ return;
+
+ const Expr *lhs = binop->getLHS();
+ const Expr *rhs = binop->getRHS();
+ if (rhs->isEvaluatable(Context))
+ e = lhs;
+ else if ((opc == BO_Add || opc == BO_Mul)
+ && lhs->isEvaluatable(Context))
+ e = rhs;
+ else
+ return;
+ }
+ else if (isa<DeclRefExpr>(e) || isa<MemberExpr>(e))
+ break;
+ else
+ return;
+ }
+
+ if (mulop == nullptr)
+ return;
+
+ // We've found the right structure of malloc argument, now save
+ // the data so when the body of the function is completely available
+ // we can check for comparisons.
+
+ // TODO: Could push this into the innermost scope where 'e' is
+ // defined, rather than the whole function.
+ PossibleMallocOverflows.push_back(MallocOverflowCheck(mulop, e));
+}
+
+namespace {
+// A worker class for OutputPossibleOverflows.
+class CheckOverflowOps :
+ public EvaluatedExprVisitor<CheckOverflowOps> {
+public:
+ typedef SmallVectorImpl<MallocOverflowCheck> theVecType;
+
+private:
+ theVecType &toScanFor;
+ ASTContext &Context;
+
+ bool isIntZeroExpr(const Expr *E) const {
+ if (!E->getType()->isIntegralOrEnumerationType())
+ return false;
+ llvm::APSInt Result;
+ if (E->EvaluateAsInt(Result, Context))
+ return Result == 0;
+ return false;
+ }
+
+ void CheckExpr(const Expr *E_p) {
+ const Expr *E = E_p->IgnoreParenImpCasts();
+
+ theVecType::iterator i = toScanFor.end();
+ theVecType::iterator e = toScanFor.begin();
+
+ if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
+ const Decl * EdreD = DR->getDecl();
+ while (i != e) {
+ --i;
+ if (const DeclRefExpr *DR_i = dyn_cast<DeclRefExpr>(i->variable)) {
+ if (DR_i->getDecl() == EdreD)
+ i = toScanFor.erase(i);
+ }
+ }
+ }
+ else if (const auto *ME = dyn_cast<MemberExpr>(E)) {
+ // No points-to analysis, just look at the member
+ const Decl *EmeMD = ME->getMemberDecl();
+ while (i != e) {
+ --i;
+ if (const auto *ME_i = dyn_cast<MemberExpr>(i->variable)) {
+ if (ME_i->getMemberDecl() == EmeMD)
+ i = toScanFor.erase (i);
+ }
+ }
+ }
+ }
+
+ public:
+ void VisitBinaryOperator(BinaryOperator *E) {
+ if (E->isComparisonOp()) {
+ const Expr * lhs = E->getLHS();
+ const Expr * rhs = E->getRHS();
+ // Ignore comparisons against zero, since they generally don't
+ // protect against an overflow.
+ if (!isIntZeroExpr(lhs) && ! isIntZeroExpr(rhs)) {
+ CheckExpr(lhs);
+ CheckExpr(rhs);
+ }
+ }
+ EvaluatedExprVisitor<CheckOverflowOps>::VisitBinaryOperator(E);
+ }
+
+ /* We specifically ignore loop conditions, because they're typically
+ not error checks. */
+ void VisitWhileStmt(WhileStmt *S) {
+ return this->Visit(S->getBody());
+ }
+ void VisitForStmt(ForStmt *S) {
+ return this->Visit(S->getBody());
+ }
+ void VisitDoStmt(DoStmt *S) {
+ return this->Visit(S->getBody());
+ }
+
+ CheckOverflowOps(theVecType &v, ASTContext &ctx)
+ : EvaluatedExprVisitor<CheckOverflowOps>(ctx),
+ toScanFor(v), Context(ctx)
+ { }
+ };
+}
+
+// OutputPossibleOverflows - We've found a possible overflow earlier,
+// now check whether Body might contain a comparison which might be
+// preventing the overflow.
+// This doesn't do flow analysis, range analysis, or points-to analysis; it's
+// just a dumb "is there a comparison" scan. The aim here is to
+// detect the most blatent cases of overflow and educate the
+// programmer.
+void MallocOverflowSecurityChecker::OutputPossibleOverflows(
+ SmallVectorImpl<MallocOverflowCheck> &PossibleMallocOverflows,
+ const Decl *D, BugReporter &BR, AnalysisManager &mgr) const {
+ // By far the most common case: nothing to check.
+ if (PossibleMallocOverflows.empty())
+ return;
+
+ // Delete any possible overflows which have a comparison.
+ CheckOverflowOps c(PossibleMallocOverflows, BR.getContext());
+ c.Visit(mgr.getAnalysisDeclContext(D)->getBody());
+
+ // Output warnings for all overflows that are left.
+ for (CheckOverflowOps::theVecType::iterator
+ i = PossibleMallocOverflows.begin(),
+ e = PossibleMallocOverflows.end();
+ i != e;
+ ++i) {
+ BR.EmitBasicReport(
+ D, this, "malloc() size overflow", categories::UnixAPI,
+ "the computation of the size of the memory allocation may overflow",
+ PathDiagnosticLocation::createOperatorLoc(i->mulop,
+ BR.getSourceManager()),
+ i->mulop->getSourceRange());
+ }
+}
+
+void MallocOverflowSecurityChecker::checkASTCodeBody(const Decl *D,
+ AnalysisManager &mgr,
+ BugReporter &BR) const {
+
+ CFG *cfg = mgr.getCFG(D);
+ if (!cfg)
+ return;
+
+ // A list of variables referenced in possibly overflowing malloc operands.
+ SmallVector<MallocOverflowCheck, 2> PossibleMallocOverflows;
+
+ for (CFG::iterator it = cfg->begin(), ei = cfg->end(); it != ei; ++it) {
+ CFGBlock *block = *it;
+ for (CFGBlock::iterator bi = block->begin(), be = block->end();
+ bi != be; ++bi) {
+ if (Optional<CFGStmt> CS = bi->getAs<CFGStmt>()) {
+ if (const CallExpr *TheCall = dyn_cast<CallExpr>(CS->getStmt())) {
+ // Get the callee.
+ const FunctionDecl *FD = TheCall->getDirectCallee();
+
+ if (!FD)
+ return;
+
+ // Get the name of the callee. If it's a builtin, strip off the prefix.
+ IdentifierInfo *FnInfo = FD->getIdentifier();
+ if (!FnInfo)
+ return;
+
+ if (FnInfo->isStr ("malloc") || FnInfo->isStr ("_MALLOC")) {
+ if (TheCall->getNumArgs() == 1)
+ CheckMallocArgument(PossibleMallocOverflows, TheCall->getArg(0),
+ mgr.getASTContext());
+ }
+ }
+ }
+ }
+ }
+
+ OutputPossibleOverflows(PossibleMallocOverflows, D, BR, mgr);
+}
+
+void
+ento::registerMallocOverflowSecurityChecker(CheckerManager &mgr) {
+ mgr.registerChecker<MallocOverflowSecurityChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/MallocSizeofChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/MallocSizeofChecker.cpp
new file mode 100644
index 0000000..296aec6
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/MallocSizeofChecker.cpp
@@ -0,0 +1,253 @@
+// MallocSizeofChecker.cpp - Check for dubious malloc arguments ---*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Reports inconsistencies between the casted type of the return value of a
+// malloc/calloc/realloc call and the operand of any sizeof expressions
+// contained within its argument(s).
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+
+typedef std::pair<const TypeSourceInfo *, const CallExpr *> TypeCallPair;
+typedef llvm::PointerUnion<const Stmt *, const VarDecl *> ExprParent;
+
+class CastedAllocFinder
+ : public ConstStmtVisitor<CastedAllocFinder, TypeCallPair> {
+ IdentifierInfo *II_malloc, *II_calloc, *II_realloc;
+
+public:
+ struct CallRecord {
+ ExprParent CastedExprParent;
+ const Expr *CastedExpr;
+ const TypeSourceInfo *ExplicitCastType;
+ const CallExpr *AllocCall;
+
+ CallRecord(ExprParent CastedExprParent, const Expr *CastedExpr,
+ const TypeSourceInfo *ExplicitCastType,
+ const CallExpr *AllocCall)
+ : CastedExprParent(CastedExprParent), CastedExpr(CastedExpr),
+ ExplicitCastType(ExplicitCastType), AllocCall(AllocCall) {}
+ };
+
+ typedef std::vector<CallRecord> CallVec;
+ CallVec Calls;
+
+ CastedAllocFinder(ASTContext *Ctx) :
+ II_malloc(&Ctx->Idents.get("malloc")),
+ II_calloc(&Ctx->Idents.get("calloc")),
+ II_realloc(&Ctx->Idents.get("realloc")) {}
+
+ void VisitChild(ExprParent Parent, const Stmt *S) {
+ TypeCallPair AllocCall = Visit(S);
+ if (AllocCall.second && AllocCall.second != S)
+ Calls.push_back(CallRecord(Parent, cast<Expr>(S), AllocCall.first,
+ AllocCall.second));
+ }
+
+ void VisitChildren(const Stmt *S) {
+ for (Stmt::const_child_iterator I = S->child_begin(), E = S->child_end();
+ I!=E; ++I)
+ if (const Stmt *child = *I)
+ VisitChild(S, child);
+ }
+
+ TypeCallPair VisitCastExpr(const CastExpr *E) {
+ return Visit(E->getSubExpr());
+ }
+
+ TypeCallPair VisitExplicitCastExpr(const ExplicitCastExpr *E) {
+ return TypeCallPair(E->getTypeInfoAsWritten(),
+ Visit(E->getSubExpr()).second);
+ }
+
+ TypeCallPair VisitParenExpr(const ParenExpr *E) {
+ return Visit(E->getSubExpr());
+ }
+
+ TypeCallPair VisitStmt(const Stmt *S) {
+ VisitChildren(S);
+ return TypeCallPair();
+ }
+
+ TypeCallPair VisitCallExpr(const CallExpr *E) {
+ VisitChildren(E);
+ const FunctionDecl *FD = E->getDirectCallee();
+ if (FD) {
+ IdentifierInfo *II = FD->getIdentifier();
+ if (II == II_malloc || II == II_calloc || II == II_realloc)
+ return TypeCallPair((const TypeSourceInfo *)nullptr, E);
+ }
+ return TypeCallPair();
+ }
+
+ TypeCallPair VisitDeclStmt(const DeclStmt *S) {
+ for (const auto *I : S->decls())
+ if (const VarDecl *VD = dyn_cast<VarDecl>(I))
+ if (const Expr *Init = VD->getInit())
+ VisitChild(VD, Init);
+ return TypeCallPair();
+ }
+};
+
+class SizeofFinder : public ConstStmtVisitor<SizeofFinder> {
+public:
+ std::vector<const UnaryExprOrTypeTraitExpr *> Sizeofs;
+
+ void VisitBinMul(const BinaryOperator *E) {
+ Visit(E->getLHS());
+ Visit(E->getRHS());
+ }
+
+ void VisitImplicitCastExpr(const ImplicitCastExpr *E) {
+ return Visit(E->getSubExpr());
+ }
+
+ void VisitParenExpr(const ParenExpr *E) {
+ return Visit(E->getSubExpr());
+ }
+
+ void VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E) {
+ if (E->getKind() != UETT_SizeOf)
+ return;
+
+ Sizeofs.push_back(E);
+ }
+};
+
+// Determine if the pointee and sizeof types are compatible. Here
+// we ignore constness of pointer types.
+static bool typesCompatible(ASTContext &C, QualType A, QualType B) {
+ // sizeof(void*) is compatible with any other pointer.
+ if (B->isVoidPointerType() && A->getAs<PointerType>())
+ return true;
+
+ while (true) {
+ A = A.getCanonicalType();
+ B = B.getCanonicalType();
+
+ if (A.getTypePtr() == B.getTypePtr())
+ return true;
+
+ if (const PointerType *ptrA = A->getAs<PointerType>())
+ if (const PointerType *ptrB = B->getAs<PointerType>()) {
+ A = ptrA->getPointeeType();
+ B = ptrB->getPointeeType();
+ continue;
+ }
+
+ break;
+ }
+
+ return false;
+}
+
+static bool compatibleWithArrayType(ASTContext &C, QualType PT, QualType T) {
+ // Ex: 'int a[10][2]' is compatible with 'int', 'int[2]', 'int[10][2]'.
+ while (const ArrayType *AT = T->getAsArrayTypeUnsafe()) {
+ QualType ElemType = AT->getElementType();
+ if (typesCompatible(C, PT, AT->getElementType()))
+ return true;
+ T = ElemType;
+ }
+
+ return false;
+}
+
+class MallocSizeofChecker : public Checker<check::ASTCodeBody> {
+public:
+ void checkASTCodeBody(const Decl *D, AnalysisManager& mgr,
+ BugReporter &BR) const {
+ AnalysisDeclContext *ADC = mgr.getAnalysisDeclContext(D);
+ CastedAllocFinder Finder(&BR.getContext());
+ Finder.Visit(D->getBody());
+ for (CastedAllocFinder::CallVec::iterator i = Finder.Calls.begin(),
+ e = Finder.Calls.end(); i != e; ++i) {
+ QualType CastedType = i->CastedExpr->getType();
+ if (!CastedType->isPointerType())
+ continue;
+ QualType PointeeType = CastedType->getAs<PointerType>()->getPointeeType();
+ if (PointeeType->isVoidType())
+ continue;
+
+ for (CallExpr::const_arg_iterator ai = i->AllocCall->arg_begin(),
+ ae = i->AllocCall->arg_end(); ai != ae; ++ai) {
+ if (!(*ai)->getType()->isIntegralOrUnscopedEnumerationType())
+ continue;
+
+ SizeofFinder SFinder;
+ SFinder.Visit(*ai);
+ if (SFinder.Sizeofs.size() != 1)
+ continue;
+
+ QualType SizeofType = SFinder.Sizeofs[0]->getTypeOfArgument();
+
+ if (typesCompatible(BR.getContext(), PointeeType, SizeofType))
+ continue;
+
+ // If the argument to sizeof is an array, the result could be a
+ // pointer to any array element.
+ if (compatibleWithArrayType(BR.getContext(), PointeeType, SizeofType))
+ continue;
+
+ const TypeSourceInfo *TSI = nullptr;
+ if (i->CastedExprParent.is<const VarDecl *>()) {
+ TSI =
+ i->CastedExprParent.get<const VarDecl *>()->getTypeSourceInfo();
+ } else {
+ TSI = i->ExplicitCastType;
+ }
+
+ SmallString<64> buf;
+ llvm::raw_svector_ostream OS(buf);
+
+ OS << "Result of ";
+ const FunctionDecl *Callee = i->AllocCall->getDirectCallee();
+ if (Callee && Callee->getIdentifier())
+ OS << '\'' << Callee->getIdentifier()->getName() << '\'';
+ else
+ OS << "call";
+ OS << " is converted to a pointer of type '"
+ << PointeeType.getAsString() << "', which is incompatible with "
+ << "sizeof operand type '" << SizeofType.getAsString() << "'";
+ SmallVector<SourceRange, 4> Ranges;
+ Ranges.push_back(i->AllocCall->getCallee()->getSourceRange());
+ Ranges.push_back(SFinder.Sizeofs[0]->getSourceRange());
+ if (TSI)
+ Ranges.push_back(TSI->getTypeLoc().getSourceRange());
+
+ PathDiagnosticLocation L =
+ PathDiagnosticLocation::createBegin(i->AllocCall->getCallee(),
+ BR.getSourceManager(), ADC);
+
+ BR.EmitBasicReport(D, this, "Allocator sizeof operand mismatch",
+ categories::UnixAPI, OS.str(), L, Ranges);
+ }
+ }
+ }
+};
+
+}
+
+void ento::registerMallocSizeofChecker(CheckerManager &mgr) {
+ mgr.registerChecker<MallocSizeofChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/NSAutoreleasePoolChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/NSAutoreleasePoolChecker.cpp
new file mode 100644
index 0000000..b180c03
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/NSAutoreleasePoolChecker.cpp
@@ -0,0 +1,80 @@
+//=- NSAutoreleasePoolChecker.cpp --------------------------------*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a NSAutoreleasePoolChecker, a small checker that warns
+// about subpar uses of NSAutoreleasePool. Note that while the check itself
+// (in its current form) could be written as a flow-insensitive check, in
+// can be potentially enhanced in the future with flow-sensitive information.
+// It is also a good example of the CheckerVisitor interface.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+class NSAutoreleasePoolChecker
+ : public Checker<check::PreObjCMessage> {
+ mutable std::unique_ptr<BugType> BT;
+ mutable Selector releaseS;
+
+public:
+ void checkPreObjCMessage(const ObjCMethodCall &msg, CheckerContext &C) const;
+};
+
+} // end anonymous namespace
+
+void NSAutoreleasePoolChecker::checkPreObjCMessage(const ObjCMethodCall &msg,
+ CheckerContext &C) const {
+ if (!msg.isInstanceMessage())
+ return;
+
+ const ObjCInterfaceDecl *OD = msg.getReceiverInterface();
+ if (!OD)
+ return;
+ if (!OD->getIdentifier()->isStr("NSAutoreleasePool"))
+ return;
+
+ if (releaseS.isNull())
+ releaseS = GetNullarySelector("release", C.getASTContext());
+ // Sending 'release' message?
+ if (msg.getSelector() != releaseS)
+ return;
+
+ if (!BT)
+ BT.reset(new BugType(this, "Use -drain instead of -release",
+ "API Upgrade (Apple)"));
+
+ ExplodedNode *N = C.addTransition();
+ if (!N) {
+ assert(0);
+ return;
+ }
+
+ BugReport *Report = new BugReport(*BT, "Use -drain instead of -release when "
+ "using NSAutoreleasePool and garbage collection", N);
+ Report->addRange(msg.getSourceRange());
+ C.emitReport(Report);
+}
+
+void ento::registerNSAutoreleasePoolChecker(CheckerManager &mgr) {
+ if (mgr.getLangOpts().getGC() != LangOptions::NonGC)
+ mgr.registerChecker<NSAutoreleasePoolChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/NSErrorChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/NSErrorChecker.cpp
new file mode 100644
index 0000000..2be7f1d
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/NSErrorChecker.cpp
@@ -0,0 +1,325 @@
+//=- NSErrorChecker.cpp - Coding conventions for uses of NSError -*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a CheckNSError, a flow-insenstive check
+// that determines if an Objective-C class interface correctly returns
+// a non-void return type.
+//
+// File under feature request PR 2600.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+
+static bool IsNSError(QualType T, IdentifierInfo *II);
+static bool IsCFError(QualType T, IdentifierInfo *II);
+
+//===----------------------------------------------------------------------===//
+// NSErrorMethodChecker
+//===----------------------------------------------------------------------===//
+
+namespace {
+class NSErrorMethodChecker
+ : public Checker< check::ASTDecl<ObjCMethodDecl> > {
+ mutable IdentifierInfo *II;
+
+public:
+ NSErrorMethodChecker() : II(nullptr) {}
+
+ void checkASTDecl(const ObjCMethodDecl *D,
+ AnalysisManager &mgr, BugReporter &BR) const;
+};
+}
+
+void NSErrorMethodChecker::checkASTDecl(const ObjCMethodDecl *D,
+ AnalysisManager &mgr,
+ BugReporter &BR) const {
+ if (!D->isThisDeclarationADefinition())
+ return;
+ if (!D->getReturnType()->isVoidType())
+ return;
+
+ if (!II)
+ II = &D->getASTContext().Idents.get("NSError");
+
+ bool hasNSError = false;
+ for (const auto *I : D->params()) {
+ if (IsNSError(I->getType(), II)) {
+ hasNSError = true;
+ break;
+ }
+ }
+
+ if (hasNSError) {
+ const char *err = "Method accepting NSError** "
+ "should have a non-void return value to indicate whether or not an "
+ "error occurred";
+ PathDiagnosticLocation L =
+ PathDiagnosticLocation::create(D, BR.getSourceManager());
+ BR.EmitBasicReport(D, this, "Bad return type when passing NSError**",
+ "Coding conventions (Apple)", err, L);
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// CFErrorFunctionChecker
+//===----------------------------------------------------------------------===//
+
+namespace {
+class CFErrorFunctionChecker
+ : public Checker< check::ASTDecl<FunctionDecl> > {
+ mutable IdentifierInfo *II;
+
+public:
+ CFErrorFunctionChecker() : II(nullptr) {}
+
+ void checkASTDecl(const FunctionDecl *D,
+ AnalysisManager &mgr, BugReporter &BR) const;
+};
+}
+
+void CFErrorFunctionChecker::checkASTDecl(const FunctionDecl *D,
+ AnalysisManager &mgr,
+ BugReporter &BR) const {
+ if (!D->doesThisDeclarationHaveABody())
+ return;
+ if (!D->getReturnType()->isVoidType())
+ return;
+
+ if (!II)
+ II = &D->getASTContext().Idents.get("CFErrorRef");
+
+ bool hasCFError = false;
+ for (auto I : D->params()) {
+ if (IsCFError(I->getType(), II)) {
+ hasCFError = true;
+ break;
+ }
+ }
+
+ if (hasCFError) {
+ const char *err = "Function accepting CFErrorRef* "
+ "should have a non-void return value to indicate whether or not an "
+ "error occurred";
+ PathDiagnosticLocation L =
+ PathDiagnosticLocation::create(D, BR.getSourceManager());
+ BR.EmitBasicReport(D, this, "Bad return type when passing CFErrorRef*",
+ "Coding conventions (Apple)", err, L);
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// NSOrCFErrorDerefChecker
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class NSErrorDerefBug : public BugType {
+public:
+ NSErrorDerefBug(const CheckerBase *Checker)
+ : BugType(Checker, "NSError** null dereference",
+ "Coding conventions (Apple)") {}
+};
+
+class CFErrorDerefBug : public BugType {
+public:
+ CFErrorDerefBug(const CheckerBase *Checker)
+ : BugType(Checker, "CFErrorRef* null dereference",
+ "Coding conventions (Apple)") {}
+};
+
+}
+
+namespace {
+class NSOrCFErrorDerefChecker
+ : public Checker< check::Location,
+ check::Event<ImplicitNullDerefEvent> > {
+ mutable IdentifierInfo *NSErrorII, *CFErrorII;
+ mutable std::unique_ptr<NSErrorDerefBug> NSBT;
+ mutable std::unique_ptr<CFErrorDerefBug> CFBT;
+public:
+ bool ShouldCheckNSError, ShouldCheckCFError;
+ NSOrCFErrorDerefChecker() : NSErrorII(nullptr), CFErrorII(nullptr),
+ ShouldCheckNSError(0), ShouldCheckCFError(0) { }
+
+ void checkLocation(SVal loc, bool isLoad, const Stmt *S,
+ CheckerContext &C) const;
+ void checkEvent(ImplicitNullDerefEvent event) const;
+};
+}
+
+typedef llvm::ImmutableMap<SymbolRef, unsigned> ErrorOutFlag;
+REGISTER_TRAIT_WITH_PROGRAMSTATE(NSErrorOut, ErrorOutFlag)
+REGISTER_TRAIT_WITH_PROGRAMSTATE(CFErrorOut, ErrorOutFlag)
+
+template <typename T>
+static bool hasFlag(SVal val, ProgramStateRef state) {
+ if (SymbolRef sym = val.getAsSymbol())
+ if (const unsigned *attachedFlags = state->get<T>(sym))
+ return *attachedFlags;
+ return false;
+}
+
+template <typename T>
+static void setFlag(ProgramStateRef state, SVal val, CheckerContext &C) {
+ // We tag the symbol that the SVal wraps.
+ if (SymbolRef sym = val.getAsSymbol())
+ C.addTransition(state->set<T>(sym, true));
+}
+
+static QualType parameterTypeFromSVal(SVal val, CheckerContext &C) {
+ const StackFrameContext *
+ SFC = C.getLocationContext()->getCurrentStackFrame();
+ if (Optional<loc::MemRegionVal> X = val.getAs<loc::MemRegionVal>()) {
+ const MemRegion* R = X->getRegion();
+ if (const VarRegion *VR = R->getAs<VarRegion>())
+ if (const StackArgumentsSpaceRegion *
+ stackReg = dyn_cast<StackArgumentsSpaceRegion>(VR->getMemorySpace()))
+ if (stackReg->getStackFrame() == SFC)
+ return VR->getValueType();
+ }
+
+ return QualType();
+}
+
+void NSOrCFErrorDerefChecker::checkLocation(SVal loc, bool isLoad,
+ const Stmt *S,
+ CheckerContext &C) const {
+ if (!isLoad)
+ return;
+ if (loc.isUndef() || !loc.getAs<Loc>())
+ return;
+
+ ASTContext &Ctx = C.getASTContext();
+ ProgramStateRef state = C.getState();
+
+ // If we are loading from NSError**/CFErrorRef* parameter, mark the resulting
+ // SVal so that we can later check it when handling the
+ // ImplicitNullDerefEvent event.
+ // FIXME: Cumbersome! Maybe add hook at construction of SVals at start of
+ // function ?
+
+ QualType parmT = parameterTypeFromSVal(loc, C);
+ if (parmT.isNull())
+ return;
+
+ if (!NSErrorII)
+ NSErrorII = &Ctx.Idents.get("NSError");
+ if (!CFErrorII)
+ CFErrorII = &Ctx.Idents.get("CFErrorRef");
+
+ if (ShouldCheckNSError && IsNSError(parmT, NSErrorII)) {
+ setFlag<NSErrorOut>(state, state->getSVal(loc.castAs<Loc>()), C);
+ return;
+ }
+
+ if (ShouldCheckCFError && IsCFError(parmT, CFErrorII)) {
+ setFlag<CFErrorOut>(state, state->getSVal(loc.castAs<Loc>()), C);
+ return;
+ }
+}
+
+void NSOrCFErrorDerefChecker::checkEvent(ImplicitNullDerefEvent event) const {
+ if (event.IsLoad)
+ return;
+
+ SVal loc = event.Location;
+ ProgramStateRef state = event.SinkNode->getState();
+ BugReporter &BR = *event.BR;
+
+ bool isNSError = hasFlag<NSErrorOut>(loc, state);
+ bool isCFError = false;
+ if (!isNSError)
+ isCFError = hasFlag<CFErrorOut>(loc, state);
+
+ if (!(isNSError || isCFError))
+ return;
+
+ // Storing to possible null NSError/CFErrorRef out parameter.
+ SmallString<128> Buf;
+ llvm::raw_svector_ostream os(Buf);
+
+ os << "Potential null dereference. According to coding standards ";
+ os << (isNSError
+ ? "in 'Creating and Returning NSError Objects' the parameter"
+ : "documented in CoreFoundation/CFError.h the parameter");
+
+ os << " may be null";
+
+ BugType *bug = nullptr;
+ if (isNSError) {
+ if (!NSBT)
+ NSBT.reset(new NSErrorDerefBug(this));
+ bug = NSBT.get();
+ }
+ else {
+ if (!CFBT)
+ CFBT.reset(new CFErrorDerefBug(this));
+ bug = CFBT.get();
+ }
+ BugReport *report = new BugReport(*bug, os.str(), event.SinkNode);
+ BR.emitReport(report);
+}
+
+static bool IsNSError(QualType T, IdentifierInfo *II) {
+
+ const PointerType* PPT = T->getAs<PointerType>();
+ if (!PPT)
+ return false;
+
+ const ObjCObjectPointerType* PT =
+ PPT->getPointeeType()->getAs<ObjCObjectPointerType>();
+
+ if (!PT)
+ return false;
+
+ const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
+
+ // FIXME: Can ID ever be NULL?
+ if (ID)
+ return II == ID->getIdentifier();
+
+ return false;
+}
+
+static bool IsCFError(QualType T, IdentifierInfo *II) {
+ const PointerType* PPT = T->getAs<PointerType>();
+ if (!PPT) return false;
+
+ const TypedefType* TT = PPT->getPointeeType()->getAs<TypedefType>();
+ if (!TT) return false;
+
+ return TT->getDecl()->getIdentifier() == II;
+}
+
+void ento::registerNSErrorChecker(CheckerManager &mgr) {
+ mgr.registerChecker<NSErrorMethodChecker>();
+ NSOrCFErrorDerefChecker *checker =
+ mgr.registerChecker<NSOrCFErrorDerefChecker>();
+ checker->ShouldCheckNSError = true;
+}
+
+void ento::registerCFErrorChecker(CheckerManager &mgr) {
+ mgr.registerChecker<CFErrorFunctionChecker>();
+ NSOrCFErrorDerefChecker *checker =
+ mgr.registerChecker<NSOrCFErrorDerefChecker>();
+ checker->ShouldCheckCFError = true;
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/NoReturnFunctionChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/NoReturnFunctionChecker.cpp
new file mode 100644
index 0000000..ba82d1d
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/NoReturnFunctionChecker.cpp
@@ -0,0 +1,144 @@
+//=== NoReturnFunctionChecker.cpp -------------------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This defines NoReturnFunctionChecker, which evaluates functions that do not
+// return to the caller.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "SelectorExtras.h"
+#include "clang/AST/Attr.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "llvm/ADT/StringSwitch.h"
+#include <cstdarg>
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+
+class NoReturnFunctionChecker : public Checker< check::PostCall,
+ check::PostObjCMessage > {
+ mutable Selector HandleFailureInFunctionSel;
+ mutable Selector HandleFailureInMethodSel;
+public:
+ void checkPostCall(const CallEvent &CE, CheckerContext &C) const;
+ void checkPostObjCMessage(const ObjCMethodCall &msg, CheckerContext &C) const;
+};
+
+}
+
+void NoReturnFunctionChecker::checkPostCall(const CallEvent &CE,
+ CheckerContext &C) const {
+ bool BuildSinks = false;
+
+ if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CE.getDecl()))
+ BuildSinks = FD->hasAttr<AnalyzerNoReturnAttr>() || FD->isNoReturn();
+
+ const Expr *Callee = CE.getOriginExpr();
+ if (!BuildSinks && Callee)
+ BuildSinks = getFunctionExtInfo(Callee->getType()).getNoReturn();
+
+ if (!BuildSinks && CE.isGlobalCFunction()) {
+ if (const IdentifierInfo *II = CE.getCalleeIdentifier()) {
+ // HACK: Some functions are not marked noreturn, and don't return.
+ // Here are a few hardwired ones. If this takes too long, we can
+ // potentially cache these results.
+ BuildSinks
+ = llvm::StringSwitch<bool>(StringRef(II->getName()))
+ .Case("exit", true)
+ .Case("panic", true)
+ .Case("error", true)
+ .Case("Assert", true)
+ // FIXME: This is just a wrapper around throwing an exception.
+ // Eventually inter-procedural analysis should handle this easily.
+ .Case("ziperr", true)
+ .Case("assfail", true)
+ .Case("db_error", true)
+ .Case("__assert", true)
+ // For the purpose of static analysis, we do not care that
+ // this MSVC function will return if the user decides to continue.
+ .Case("_wassert", true)
+ .Case("__assert_rtn", true)
+ .Case("__assert_fail", true)
+ .Case("dtrace_assfail", true)
+ .Case("yy_fatal_error", true)
+ .Case("_XCAssertionFailureHandler", true)
+ .Case("_DTAssertionFailureHandler", true)
+ .Case("_TSAssertionFailureHandler", true)
+ .Default(false);
+ }
+ }
+
+ if (BuildSinks)
+ C.generateSink();
+}
+
+void NoReturnFunctionChecker::checkPostObjCMessage(const ObjCMethodCall &Msg,
+ CheckerContext &C) const {
+ // Check if the method is annotated with analyzer_noreturn.
+ if (const ObjCMethodDecl *MD = Msg.getDecl()) {
+ MD = MD->getCanonicalDecl();
+ if (MD->hasAttr<AnalyzerNoReturnAttr>()) {
+ C.generateSink();
+ return;
+ }
+ }
+
+ // HACK: This entire check is to handle two messages in the Cocoa frameworks:
+ // -[NSAssertionHandler
+ // handleFailureInMethod:object:file:lineNumber:description:]
+ // -[NSAssertionHandler
+ // handleFailureInFunction:file:lineNumber:description:]
+ // Eventually these should be annotated with __attribute__((noreturn)).
+ // Because ObjC messages use dynamic dispatch, it is not generally safe to
+ // assume certain methods can't return. In cases where it is definitely valid,
+ // see if you can mark the methods noreturn or analyzer_noreturn instead of
+ // adding more explicit checks to this method.
+
+ if (!Msg.isInstanceMessage())
+ return;
+
+ const ObjCInterfaceDecl *Receiver = Msg.getReceiverInterface();
+ if (!Receiver)
+ return;
+ if (!Receiver->getIdentifier()->isStr("NSAssertionHandler"))
+ return;
+
+ Selector Sel = Msg.getSelector();
+ switch (Sel.getNumArgs()) {
+ default:
+ return;
+ case 4:
+ lazyInitKeywordSelector(HandleFailureInFunctionSel, C.getASTContext(),
+ "handleFailureInFunction", "file", "lineNumber",
+ "description", nullptr);
+ if (Sel != HandleFailureInFunctionSel)
+ return;
+ break;
+ case 5:
+ lazyInitKeywordSelector(HandleFailureInMethodSel, C.getASTContext(),
+ "handleFailureInMethod", "object", "file",
+ "lineNumber", "description", nullptr);
+ if (Sel != HandleFailureInMethodSel)
+ return;
+ break;
+ }
+
+ // If we got here, it's one of the messages we care about.
+ C.generateSink();
+}
+
+void ento::registerNoReturnFunctionChecker(CheckerManager &mgr) {
+ mgr.registerChecker<NoReturnFunctionChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/NonNullParamChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/NonNullParamChecker.cpp
new file mode 100644
index 0000000..cb2d46b
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/NonNullParamChecker.cpp
@@ -0,0 +1,214 @@
+//===--- NonNullParamChecker.cpp - Undefined arguments checker -*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This defines NonNullParamChecker, which checks for arguments expected not to
+// be null due to:
+// - the corresponding parameters being declared to have nonnull attribute
+// - the corresponding parameters being references; since the call would form
+// a reference to a null pointer
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/AST/Attr.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+class NonNullParamChecker
+ : public Checker< check::PreCall > {
+ mutable std::unique_ptr<BugType> BTAttrNonNull;
+ mutable std::unique_ptr<BugType> BTNullRefArg;
+
+public:
+
+ void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
+
+ BugReport *genReportNullAttrNonNull(const ExplodedNode *ErrorN,
+ const Expr *ArgE) const;
+ BugReport *genReportReferenceToNullPointer(const ExplodedNode *ErrorN,
+ const Expr *ArgE) const;
+};
+} // end anonymous namespace
+
+void NonNullParamChecker::checkPreCall(const CallEvent &Call,
+ CheckerContext &C) const {
+ const Decl *FD = Call.getDecl();
+ if (!FD)
+ return;
+
+ // Merge all non-null attributes
+ unsigned NumArgs = Call.getNumArgs();
+ llvm::SmallBitVector AttrNonNull(NumArgs);
+ for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) {
+ if (!NonNull->args_size()) {
+ AttrNonNull.set(0, NumArgs);
+ break;
+ }
+ for (unsigned Val : NonNull->args()) {
+ if (Val >= NumArgs)
+ continue;
+ AttrNonNull.set(Val);
+ }
+ }
+
+ ProgramStateRef state = C.getState();
+
+ CallEvent::param_type_iterator TyI = Call.param_type_begin(),
+ TyE = Call.param_type_end();
+
+ for (unsigned idx = 0; idx < NumArgs; ++idx) {
+
+ // Check if the parameter is a reference. We want to report when reference
+ // to a null pointer is passed as a paramter.
+ bool haveRefTypeParam = false;
+ if (TyI != TyE) {
+ haveRefTypeParam = (*TyI)->isReferenceType();
+ TyI++;
+ }
+
+ bool haveAttrNonNull = AttrNonNull[idx];
+ if (!haveAttrNonNull) {
+ // Check if the parameter is also marked 'nonnull'.
+ ArrayRef<ParmVarDecl*> parms = Call.parameters();
+ if (idx < parms.size())
+ haveAttrNonNull = parms[idx]->hasAttr<NonNullAttr>();
+ }
+
+ if (!haveRefTypeParam && !haveAttrNonNull)
+ continue;
+
+ // If the value is unknown or undefined, we can't perform this check.
+ const Expr *ArgE = Call.getArgExpr(idx);
+ SVal V = Call.getArgSVal(idx);
+ Optional<DefinedSVal> DV = V.getAs<DefinedSVal>();
+ if (!DV)
+ continue;
+
+ // Process the case when the argument is not a location.
+ assert(!haveRefTypeParam || DV->getAs<Loc>());
+
+ if (haveAttrNonNull && !DV->getAs<Loc>()) {
+ // If the argument is a union type, we want to handle a potential
+ // transparent_union GCC extension.
+ if (!ArgE)
+ continue;
+
+ QualType T = ArgE->getType();
+ const RecordType *UT = T->getAsUnionType();
+ if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
+ continue;
+
+ if (Optional<nonloc::CompoundVal> CSV =
+ DV->getAs<nonloc::CompoundVal>()) {
+ nonloc::CompoundVal::iterator CSV_I = CSV->begin();
+ assert(CSV_I != CSV->end());
+ V = *CSV_I;
+ DV = V.getAs<DefinedSVal>();
+ assert(++CSV_I == CSV->end());
+ // FIXME: Handle (some_union){ some_other_union_val }, which turns into
+ // a LazyCompoundVal inside a CompoundVal.
+ if (!V.getAs<Loc>())
+ continue;
+ // Retrieve the corresponding expression.
+ if (const CompoundLiteralExpr *CE = dyn_cast<CompoundLiteralExpr>(ArgE))
+ if (const InitListExpr *IE =
+ dyn_cast<InitListExpr>(CE->getInitializer()))
+ ArgE = dyn_cast<Expr>(*(IE->begin()));
+
+ } else {
+ // FIXME: Handle LazyCompoundVals?
+ continue;
+ }
+ }
+
+ ConstraintManager &CM = C.getConstraintManager();
+ ProgramStateRef stateNotNull, stateNull;
+ std::tie(stateNotNull, stateNull) = CM.assumeDual(state, *DV);
+
+ if (stateNull && !stateNotNull) {
+ // Generate an error node. Check for a null node in case
+ // we cache out.
+ if (ExplodedNode *errorNode = C.generateSink(stateNull)) {
+
+ BugReport *R = nullptr;
+ if (haveAttrNonNull)
+ R = genReportNullAttrNonNull(errorNode, ArgE);
+ else if (haveRefTypeParam)
+ R = genReportReferenceToNullPointer(errorNode, ArgE);
+
+ // Highlight the range of the argument that was null.
+ R->addRange(Call.getArgSourceRange(idx));
+
+ // Emit the bug report.
+ C.emitReport(R);
+ }
+
+ // Always return. Either we cached out or we just emitted an error.
+ return;
+ }
+
+ // If a pointer value passed the check we should assume that it is
+ // indeed not null from this point forward.
+ assert(stateNotNull);
+ state = stateNotNull;
+ }
+
+ // If we reach here all of the arguments passed the nonnull check.
+ // If 'state' has been updated generated a new node.
+ C.addTransition(state);
+}
+
+BugReport *NonNullParamChecker::genReportNullAttrNonNull(
+ const ExplodedNode *ErrorNode, const Expr *ArgE) const {
+ // Lazily allocate the BugType object if it hasn't already been
+ // created. Ownership is transferred to the BugReporter object once
+ // the BugReport is passed to 'EmitWarning'.
+ if (!BTAttrNonNull)
+ BTAttrNonNull.reset(new BugType(
+ this, "Argument with 'nonnull' attribute passed null", "API"));
+
+ BugReport *R = new BugReport(*BTAttrNonNull,
+ "Null pointer passed as an argument to a 'nonnull' parameter",
+ ErrorNode);
+ if (ArgE)
+ bugreporter::trackNullOrUndefValue(ErrorNode, ArgE, *R);
+
+ return R;
+}
+
+BugReport *NonNullParamChecker::genReportReferenceToNullPointer(
+ const ExplodedNode *ErrorNode, const Expr *ArgE) const {
+ if (!BTNullRefArg)
+ BTNullRefArg.reset(new BuiltinBug(this, "Dereference of null pointer"));
+
+ BugReport *R = new BugReport(*BTNullRefArg,
+ "Forming reference to null pointer",
+ ErrorNode);
+ if (ArgE) {
+ const Expr *ArgEDeref = bugreporter::getDerefExpr(ArgE);
+ if (!ArgEDeref)
+ ArgEDeref = ArgE;
+ bugreporter::trackNullOrUndefValue(ErrorNode,
+ ArgEDeref,
+ *R);
+ }
+ return R;
+
+}
+
+void ento::registerNonNullParamChecker(CheckerManager &mgr) {
+ mgr.registerChecker<NonNullParamChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ObjCAtSyncChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ObjCAtSyncChecker.cpp
new file mode 100644
index 0000000..fbf2d73
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ObjCAtSyncChecker.cpp
@@ -0,0 +1,94 @@
+//== ObjCAtSyncChecker.cpp - nil mutex checker for @synchronized -*- C++ -*--=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This defines ObjCAtSyncChecker, a builtin check that checks for null pointers
+// used as mutexes for @synchronized.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/AST/StmtObjC.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+class ObjCAtSyncChecker
+ : public Checker< check::PreStmt<ObjCAtSynchronizedStmt> > {
+ mutable std::unique_ptr<BuiltinBug> BT_null;
+ mutable std::unique_ptr<BuiltinBug> BT_undef;
+
+public:
+ void checkPreStmt(const ObjCAtSynchronizedStmt *S, CheckerContext &C) const;
+};
+} // end anonymous namespace
+
+void ObjCAtSyncChecker::checkPreStmt(const ObjCAtSynchronizedStmt *S,
+ CheckerContext &C) const {
+
+ const Expr *Ex = S->getSynchExpr();
+ ProgramStateRef state = C.getState();
+ SVal V = state->getSVal(Ex, C.getLocationContext());
+
+ // Uninitialized value used for the mutex?
+ if (V.getAs<UndefinedVal>()) {
+ if (ExplodedNode *N = C.generateSink()) {
+ if (!BT_undef)
+ BT_undef.reset(new BuiltinBug(this, "Uninitialized value used as mutex "
+ "for @synchronized"));
+ BugReport *report =
+ new BugReport(*BT_undef, BT_undef->getDescription(), N);
+ bugreporter::trackNullOrUndefValue(N, Ex, *report);
+ C.emitReport(report);
+ }
+ return;
+ }
+
+ if (V.isUnknown())
+ return;
+
+ // Check for null mutexes.
+ ProgramStateRef notNullState, nullState;
+ std::tie(notNullState, nullState) = state->assume(V.castAs<DefinedSVal>());
+
+ if (nullState) {
+ if (!notNullState) {
+ // Generate an error node. This isn't a sink since
+ // a null mutex just means no synchronization occurs.
+ if (ExplodedNode *N = C.addTransition(nullState)) {
+ if (!BT_null)
+ BT_null.reset(new BuiltinBug(
+ this, "Nil value used as mutex for @synchronized() "
+ "(no synchronization will occur)"));
+ BugReport *report =
+ new BugReport(*BT_null, BT_null->getDescription(), N);
+ bugreporter::trackNullOrUndefValue(N, Ex, *report);
+
+ C.emitReport(report);
+ return;
+ }
+ }
+ // Don't add a transition for 'nullState'. If the value is
+ // under-constrained to be null or non-null, assume it is non-null
+ // afterwards.
+ }
+
+ if (notNullState)
+ C.addTransition(notNullState);
+}
+
+void ento::registerObjCAtSyncChecker(CheckerManager &mgr) {
+ if (mgr.getLangOpts().ObjC2)
+ mgr.registerChecker<ObjCAtSyncChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ObjCContainersASTChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ObjCContainersASTChecker.cpp
new file mode 100644
index 0000000..e3fc611
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ObjCContainersASTChecker.cpp
@@ -0,0 +1,175 @@
+//== ObjCContainersASTChecker.cpp - CoreFoundation containers API *- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// An AST checker that looks for common pitfalls when using 'CFArray',
+// 'CFDictionary', 'CFSet' APIs.
+//
+//===----------------------------------------------------------------------===//
+#include "ClangSACheckers.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Analysis/AnalysisContext.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+class WalkAST : public StmtVisitor<WalkAST> {
+ BugReporter &BR;
+ const CheckerBase *Checker;
+ AnalysisDeclContext* AC;
+ ASTContext &ASTC;
+ uint64_t PtrWidth;
+
+ /// Check if the type has pointer size (very conservative).
+ inline bool isPointerSize(const Type *T) {
+ if (!T)
+ return true;
+ if (T->isIncompleteType())
+ return true;
+ return (ASTC.getTypeSize(T) == PtrWidth);
+ }
+
+ /// Check if the type is a pointer/array to pointer sized values.
+ inline bool hasPointerToPointerSizedType(const Expr *E) {
+ QualType T = E->getType();
+
+ // The type could be either a pointer or array.
+ const Type *TP = T.getTypePtr();
+ QualType PointeeT = TP->getPointeeType();
+ if (!PointeeT.isNull()) {
+ // If the type is a pointer to an array, check the size of the array
+ // elements. To avoid false positives coming from assumption that the
+ // values x and &x are equal when x is an array.
+ if (const Type *TElem = PointeeT->getArrayElementTypeNoTypeQual())
+ if (isPointerSize(TElem))
+ return true;
+
+ // Else, check the pointee size.
+ return isPointerSize(PointeeT.getTypePtr());
+ }
+
+ if (const Type *TElem = TP->getArrayElementTypeNoTypeQual())
+ return isPointerSize(TElem);
+
+ // The type must be an array/pointer type.
+
+ // This could be a null constant, which is allowed.
+ if (E->isNullPointerConstant(ASTC, Expr::NPC_ValueDependentIsNull))
+ return true;
+ return false;
+ }
+
+public:
+ WalkAST(BugReporter &br, const CheckerBase *checker, AnalysisDeclContext *ac)
+ : BR(br), Checker(checker), AC(ac), ASTC(AC->getASTContext()),
+ PtrWidth(ASTC.getTargetInfo().getPointerWidth(0)) {}
+
+ // Statement visitor methods.
+ void VisitChildren(Stmt *S);
+ void VisitStmt(Stmt *S) { VisitChildren(S); }
+ void VisitCallExpr(CallExpr *CE);
+};
+} // end anonymous namespace
+
+static StringRef getCalleeName(CallExpr *CE) {
+ const FunctionDecl *FD = CE->getDirectCallee();
+ if (!FD)
+ return StringRef();
+
+ IdentifierInfo *II = FD->getIdentifier();
+ if (!II) // if no identifier, not a simple C function
+ return StringRef();
+
+ return II->getName();
+}
+
+void WalkAST::VisitCallExpr(CallExpr *CE) {
+ StringRef Name = getCalleeName(CE);
+ if (Name.empty())
+ return;
+
+ const Expr *Arg = nullptr;
+ unsigned ArgNum;
+
+ if (Name.equals("CFArrayCreate") || Name.equals("CFSetCreate")) {
+ if (CE->getNumArgs() != 4)
+ return;
+ ArgNum = 1;
+ Arg = CE->getArg(ArgNum)->IgnoreParenCasts();
+ if (hasPointerToPointerSizedType(Arg))
+ return;
+ } else if (Name.equals("CFDictionaryCreate")) {
+ if (CE->getNumArgs() != 6)
+ return;
+ // Check first argument.
+ ArgNum = 1;
+ Arg = CE->getArg(ArgNum)->IgnoreParenCasts();
+ if (hasPointerToPointerSizedType(Arg)) {
+ // Check second argument.
+ ArgNum = 2;
+ Arg = CE->getArg(ArgNum)->IgnoreParenCasts();
+ if (hasPointerToPointerSizedType(Arg))
+ // Both are good, return.
+ return;
+ }
+ }
+
+ if (Arg) {
+ assert(ArgNum == 1 || ArgNum == 2);
+
+ SmallString<64> BufName;
+ llvm::raw_svector_ostream OsName(BufName);
+ OsName << " Invalid use of '" << Name << "'" ;
+
+ SmallString<256> Buf;
+ llvm::raw_svector_ostream Os(Buf);
+ // Use "second" and "third" since users will expect 1-based indexing
+ // for parameter names when mentioned in prose.
+ Os << " The "<< ((ArgNum == 1) ? "second" : "third") << " argument to '"
+ << Name << "' must be a C array of pointer-sized values, not '"
+ << Arg->getType().getAsString() << "'";
+
+ PathDiagnosticLocation CELoc =
+ PathDiagnosticLocation::createBegin(CE, BR.getSourceManager(), AC);
+ BR.EmitBasicReport(AC->getDecl(), Checker, OsName.str(),
+ categories::CoreFoundationObjectiveC, Os.str(), CELoc,
+ Arg->getSourceRange());
+ }
+
+ // Recurse and check children.
+ VisitChildren(CE);
+}
+
+void WalkAST::VisitChildren(Stmt *S) {
+ for (Stmt::child_iterator I = S->child_begin(), E = S->child_end(); I!=E; ++I)
+ if (Stmt *child = *I)
+ Visit(child);
+}
+
+namespace {
+class ObjCContainersASTChecker : public Checker<check::ASTCodeBody> {
+public:
+
+ void checkASTCodeBody(const Decl *D, AnalysisManager& Mgr,
+ BugReporter &BR) const {
+ WalkAST walker(BR, this, Mgr.getAnalysisDeclContext(D));
+ walker.Visit(D->getBody());
+ }
+};
+}
+
+void ento::registerObjCContainersASTChecker(CheckerManager &mgr) {
+ mgr.registerChecker<ObjCContainersASTChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ObjCContainersChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ObjCContainersChecker.cpp
new file mode 100644
index 0000000..8e51154
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ObjCContainersChecker.cpp
@@ -0,0 +1,151 @@
+//== ObjCContainersChecker.cpp - Path sensitive checker for CFArray *- C++ -*=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Performs path sensitive checks of Core Foundation static containers like
+// CFArray.
+// 1) Check for buffer overflows:
+// In CFArrayGetArrayAtIndex( myArray, index), if the index is outside the
+// index space of theArray (0 to N-1 inclusive (where N is the count of
+// theArray), the behavior is undefined.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/AST/ParentMap.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+class ObjCContainersChecker : public Checker< check::PreStmt<CallExpr>,
+ check::PostStmt<CallExpr> > {
+ mutable std::unique_ptr<BugType> BT;
+ inline void initBugType() const {
+ if (!BT)
+ BT.reset(new BugType(this, "CFArray API",
+ categories::CoreFoundationObjectiveC));
+ }
+
+ inline SymbolRef getArraySym(const Expr *E, CheckerContext &C) const {
+ SVal ArrayRef = C.getState()->getSVal(E, C.getLocationContext());
+ SymbolRef ArraySym = ArrayRef.getAsSymbol();
+ return ArraySym;
+ }
+
+ void addSizeInfo(const Expr *Array, const Expr *Size,
+ CheckerContext &C) const;
+
+public:
+ /// A tag to id this checker.
+ static void *getTag() { static int Tag; return &Tag; }
+
+ void checkPostStmt(const CallExpr *CE, CheckerContext &C) const;
+ void checkPreStmt(const CallExpr *CE, CheckerContext &C) const;
+};
+} // end anonymous namespace
+
+// ProgramState trait - a map from array symbol to its state.
+REGISTER_MAP_WITH_PROGRAMSTATE(ArraySizeMap, SymbolRef, DefinedSVal)
+
+void ObjCContainersChecker::addSizeInfo(const Expr *Array, const Expr *Size,
+ CheckerContext &C) const {
+ ProgramStateRef State = C.getState();
+ SVal SizeV = State->getSVal(Size, C.getLocationContext());
+ // Undefined is reported by another checker.
+ if (SizeV.isUnknownOrUndef())
+ return;
+
+ // Get the ArrayRef symbol.
+ SVal ArrayRef = State->getSVal(Array, C.getLocationContext());
+ SymbolRef ArraySym = ArrayRef.getAsSymbol();
+ if (!ArraySym)
+ return;
+
+ C.addTransition(
+ State->set<ArraySizeMap>(ArraySym, SizeV.castAs<DefinedSVal>()));
+ return;
+}
+
+void ObjCContainersChecker::checkPostStmt(const CallExpr *CE,
+ CheckerContext &C) const {
+ StringRef Name = C.getCalleeName(CE);
+ if (Name.empty() || CE->getNumArgs() < 1)
+ return;
+
+ // Add array size information to the state.
+ if (Name.equals("CFArrayCreate")) {
+ if (CE->getNumArgs() < 3)
+ return;
+ // Note, we can visit the Create method in the post-visit because
+ // the CFIndex parameter is passed in by value and will not be invalidated
+ // by the call.
+ addSizeInfo(CE, CE->getArg(2), C);
+ return;
+ }
+
+ if (Name.equals("CFArrayGetCount")) {
+ addSizeInfo(CE->getArg(0), CE, C);
+ return;
+ }
+}
+
+void ObjCContainersChecker::checkPreStmt(const CallExpr *CE,
+ CheckerContext &C) const {
+ StringRef Name = C.getCalleeName(CE);
+ if (Name.empty() || CE->getNumArgs() < 2)
+ return;
+
+ // Check the array access.
+ if (Name.equals("CFArrayGetValueAtIndex")) {
+ ProgramStateRef State = C.getState();
+ // Retrieve the size.
+ // Find out if we saw this array symbol before and have information about it.
+ const Expr *ArrayExpr = CE->getArg(0);
+ SymbolRef ArraySym = getArraySym(ArrayExpr, C);
+ if (!ArraySym)
+ return;
+
+ const DefinedSVal *Size = State->get<ArraySizeMap>(ArraySym);
+
+ if (!Size)
+ return;
+
+ // Get the index.
+ const Expr *IdxExpr = CE->getArg(1);
+ SVal IdxVal = State->getSVal(IdxExpr, C.getLocationContext());
+ if (IdxVal.isUnknownOrUndef())
+ return;
+ DefinedSVal Idx = IdxVal.castAs<DefinedSVal>();
+
+ // Now, check if 'Idx in [0, Size-1]'.
+ const QualType T = IdxExpr->getType();
+ ProgramStateRef StInBound = State->assumeInBound(Idx, *Size, true, T);
+ ProgramStateRef StOutBound = State->assumeInBound(Idx, *Size, false, T);
+ if (StOutBound && !StInBound) {
+ ExplodedNode *N = C.generateSink(StOutBound);
+ if (!N)
+ return;
+ initBugType();
+ BugReport *R = new BugReport(*BT, "Index is out of bounds", N);
+ R->addRange(IdxExpr->getSourceRange());
+ C.emitReport(R);
+ return;
+ }
+ }
+}
+
+/// Register checker.
+void ento::registerObjCContainersChecker(CheckerManager &mgr) {
+ mgr.registerChecker<ObjCContainersChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ObjCMissingSuperCallChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ObjCMissingSuperCallChecker.cpp
new file mode 100644
index 0000000..a2cf8e1
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ObjCMissingSuperCallChecker.cpp
@@ -0,0 +1,265 @@
+//==- ObjCMissingSuperCallChecker.cpp - Check missing super-calls in ObjC --==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a ObjCMissingSuperCallChecker, a checker that
+// analyzes a UIViewController implementation to determine if it
+// correctly calls super in the methods where this is mandatory.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/AST/RecursiveASTVisitor.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+struct SelectorDescriptor {
+ const char *SelectorName;
+ unsigned ArgumentCount;
+};
+}
+
+//===----------------------------------------------------------------------===//
+// FindSuperCallVisitor - Identify specific calls to the superclass.
+//===----------------------------------------------------------------------===//
+
+class FindSuperCallVisitor : public RecursiveASTVisitor<FindSuperCallVisitor> {
+public:
+ explicit FindSuperCallVisitor(Selector S) : DoesCallSuper(false), Sel(S) {}
+
+ bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
+ if (E->getSelector() == Sel)
+ if (E->getReceiverKind() == ObjCMessageExpr::SuperInstance)
+ DoesCallSuper = true;
+
+ // Recurse if we didn't find the super call yet.
+ return !DoesCallSuper;
+ }
+
+ bool DoesCallSuper;
+
+private:
+ Selector Sel;
+};
+
+//===----------------------------------------------------------------------===//
+// ObjCSuperCallChecker
+//===----------------------------------------------------------------------===//
+
+namespace {
+class ObjCSuperCallChecker : public Checker<
+ check::ASTDecl<ObjCImplementationDecl> > {
+public:
+ ObjCSuperCallChecker() : IsInitialized(false) {}
+
+ void checkASTDecl(const ObjCImplementationDecl *D, AnalysisManager &Mgr,
+ BugReporter &BR) const;
+private:
+ bool isCheckableClass(const ObjCImplementationDecl *D,
+ StringRef &SuperclassName) const;
+ void initializeSelectors(ASTContext &Ctx) const;
+ void fillSelectors(ASTContext &Ctx, ArrayRef<SelectorDescriptor> Sel,
+ StringRef ClassName) const;
+ mutable llvm::StringMap<llvm::SmallSet<Selector, 16> > SelectorsForClass;
+ mutable bool IsInitialized;
+};
+
+}
+
+/// \brief Determine whether the given class has a superclass that we want
+/// to check. The name of the found superclass is stored in SuperclassName.
+///
+/// \param D The declaration to check for superclasses.
+/// \param[out] SuperclassName On return, the found superclass name.
+bool ObjCSuperCallChecker::isCheckableClass(const ObjCImplementationDecl *D,
+ StringRef &SuperclassName) const {
+ const ObjCInterfaceDecl *ID = D->getClassInterface();
+ for ( ; ID ; ID = ID->getSuperClass())
+ {
+ SuperclassName = ID->getIdentifier()->getName();
+ if (SelectorsForClass.count(SuperclassName))
+ return true;
+ }
+ return false;
+}
+
+void ObjCSuperCallChecker::fillSelectors(ASTContext &Ctx,
+ ArrayRef<SelectorDescriptor> Sel,
+ StringRef ClassName) const {
+ llvm::SmallSet<Selector, 16> &ClassSelectors = SelectorsForClass[ClassName];
+ // Fill the Selectors SmallSet with all selectors we want to check.
+ for (ArrayRef<SelectorDescriptor>::iterator I = Sel.begin(), E = Sel.end();
+ I != E; ++I) {
+ SelectorDescriptor Descriptor = *I;
+ assert(Descriptor.ArgumentCount <= 1); // No multi-argument selectors yet.
+
+ // Get the selector.
+ IdentifierInfo *II = &Ctx.Idents.get(Descriptor.SelectorName);
+
+ Selector Sel = Ctx.Selectors.getSelector(Descriptor.ArgumentCount, &II);
+ ClassSelectors.insert(Sel);
+ }
+}
+
+void ObjCSuperCallChecker::initializeSelectors(ASTContext &Ctx) const {
+
+ { // Initialize selectors for: UIViewController
+ const SelectorDescriptor Selectors[] = {
+ { "addChildViewController", 1 },
+ { "viewDidAppear", 1 },
+ { "viewDidDisappear", 1 },
+ { "viewWillAppear", 1 },
+ { "viewWillDisappear", 1 },
+ { "removeFromParentViewController", 0 },
+ { "didReceiveMemoryWarning", 0 },
+ { "viewDidUnload", 0 },
+ { "viewDidLoad", 0 },
+ { "viewWillUnload", 0 },
+ { "updateViewConstraints", 0 },
+ { "encodeRestorableStateWithCoder", 1 },
+ { "restoreStateWithCoder", 1 }};
+
+ fillSelectors(Ctx, Selectors, "UIViewController");
+ }
+
+ { // Initialize selectors for: UIResponder
+ const SelectorDescriptor Selectors[] = {
+ { "resignFirstResponder", 0 }};
+
+ fillSelectors(Ctx, Selectors, "UIResponder");
+ }
+
+ { // Initialize selectors for: NSResponder
+ const SelectorDescriptor Selectors[] = {
+ { "encodeRestorableStateWithCoder", 1 },
+ { "restoreStateWithCoder", 1 }};
+
+ fillSelectors(Ctx, Selectors, "NSResponder");
+ }
+
+ { // Initialize selectors for: NSDocument
+ const SelectorDescriptor Selectors[] = {
+ { "encodeRestorableStateWithCoder", 1 },
+ { "restoreStateWithCoder", 1 }};
+
+ fillSelectors(Ctx, Selectors, "NSDocument");
+ }
+
+ IsInitialized = true;
+}
+
+void ObjCSuperCallChecker::checkASTDecl(const ObjCImplementationDecl *D,
+ AnalysisManager &Mgr,
+ BugReporter &BR) const {
+ ASTContext &Ctx = BR.getContext();
+
+ // We need to initialize the selector table once.
+ if (!IsInitialized)
+ initializeSelectors(Ctx);
+
+ // Find out whether this class has a superclass that we are supposed to check.
+ StringRef SuperclassName;
+ if (!isCheckableClass(D, SuperclassName))
+ return;
+
+
+ // Iterate over all instance methods.
+ for (auto *MD : D->instance_methods()) {
+ Selector S = MD->getSelector();
+ // Find out whether this is a selector that we want to check.
+ if (!SelectorsForClass[SuperclassName].count(S))
+ continue;
+
+ // Check if the method calls its superclass implementation.
+ if (MD->getBody())
+ {
+ FindSuperCallVisitor Visitor(S);
+ Visitor.TraverseDecl(MD);
+
+ // It doesn't call super, emit a diagnostic.
+ if (!Visitor.DoesCallSuper) {
+ PathDiagnosticLocation DLoc =
+ PathDiagnosticLocation::createEnd(MD->getBody(),
+ BR.getSourceManager(),
+ Mgr.getAnalysisDeclContext(D));
+
+ const char *Name = "Missing call to superclass";
+ SmallString<320> Buf;
+ llvm::raw_svector_ostream os(Buf);
+
+ os << "The '" << S.getAsString()
+ << "' instance method in " << SuperclassName.str() << " subclass '"
+ << *D << "' is missing a [super " << S.getAsString() << "] call";
+
+ BR.EmitBasicReport(MD, this, Name, categories::CoreFoundationObjectiveC,
+ os.str(), DLoc);
+ }
+ }
+ }
+}
+
+
+//===----------------------------------------------------------------------===//
+// Check registration.
+//===----------------------------------------------------------------------===//
+
+void ento::registerObjCSuperCallChecker(CheckerManager &Mgr) {
+ Mgr.registerChecker<ObjCSuperCallChecker>();
+}
+
+
+/*
+ ToDo list for expanding this check in the future, the list is not exhaustive.
+ There are also cases where calling super is suggested but not "mandatory".
+ In addition to be able to check the classes and methods below, architectural
+ improvements like being able to allow for the super-call to be done in a called
+ method would be good too.
+
+UIDocument subclasses
+- finishedHandlingError:recovered: (is multi-arg)
+- finishedHandlingError:recovered: (is multi-arg)
+
+UIViewController subclasses
+- loadView (should *never* call super)
+- transitionFromViewController:toViewController:
+ duration:options:animations:completion: (is multi-arg)
+
+UICollectionViewController subclasses
+- loadView (take care because UIViewController subclasses should NOT call super
+ in loadView, but UICollectionViewController subclasses should)
+
+NSObject subclasses
+- doesNotRecognizeSelector (it only has to call super if it doesn't throw)
+
+UIPopoverBackgroundView subclasses (some of those are class methods)
+- arrowDirection (should *never* call super)
+- arrowOffset (should *never* call super)
+- arrowBase (should *never* call super)
+- arrowHeight (should *never* call super)
+- contentViewInsets (should *never* call super)
+
+UITextSelectionRect subclasses (some of those are properties)
+- rect (should *never* call super)
+- range (should *never* call super)
+- writingDirection (should *never* call super)
+- isVertical (should *never* call super)
+- containsStart (should *never* call super)
+- containsEnd (should *never* call super)
+*/
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ObjCSelfInitChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ObjCSelfInitChecker.cpp
new file mode 100644
index 0000000..51bc7e6
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ObjCSelfInitChecker.cpp
@@ -0,0 +1,443 @@
+//== ObjCSelfInitChecker.cpp - Checker for 'self' initialization -*- C++ -*--=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This defines ObjCSelfInitChecker, a builtin check that checks for uses of
+// 'self' before proper initialization.
+//
+//===----------------------------------------------------------------------===//
+
+// This checks initialization methods to verify that they assign 'self' to the
+// result of an initialization call (e.g. [super init], or [self initWith..])
+// before using 'self' or any instance variable.
+//
+// To perform the required checking, values are tagged with flags that indicate
+// 1) if the object is the one pointed to by 'self', and 2) if the object
+// is the result of an initializer (e.g. [super init]).
+//
+// Uses of an object that is true for 1) but not 2) trigger a diagnostic.
+// The uses that are currently checked are:
+// - Using instance variables.
+// - Returning the object.
+//
+// Note that we don't check for an invalid 'self' that is the receiver of an
+// obj-c message expression to cut down false positives where logging functions
+// get information from self (like its class) or doing "invalidation" on self
+// when the initialization fails.
+//
+// Because the object that 'self' points to gets invalidated when a call
+// receives a reference to 'self', the checker keeps track and passes the flags
+// for 1) and 2) to the new object that 'self' points to after the call.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/AST/ParentMap.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+
+static bool shouldRunOnFunctionOrMethod(const NamedDecl *ND);
+static bool isInitializationMethod(const ObjCMethodDecl *MD);
+static bool isInitMessage(const ObjCMethodCall &Msg);
+static bool isSelfVar(SVal location, CheckerContext &C);
+
+namespace {
+class ObjCSelfInitChecker : public Checker< check::PostObjCMessage,
+ check::PostStmt<ObjCIvarRefExpr>,
+ check::PreStmt<ReturnStmt>,
+ check::PreCall,
+ check::PostCall,
+ check::Location,
+ check::Bind > {
+ mutable std::unique_ptr<BugType> BT;
+
+ void checkForInvalidSelf(const Expr *E, CheckerContext &C,
+ const char *errorStr) const;
+
+public:
+ ObjCSelfInitChecker() {}
+ void checkPostObjCMessage(const ObjCMethodCall &Msg, CheckerContext &C) const;
+ void checkPostStmt(const ObjCIvarRefExpr *E, CheckerContext &C) const;
+ void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const;
+ void checkLocation(SVal location, bool isLoad, const Stmt *S,
+ CheckerContext &C) const;
+ void checkBind(SVal loc, SVal val, const Stmt *S, CheckerContext &C) const;
+
+ void checkPreCall(const CallEvent &CE, CheckerContext &C) const;
+ void checkPostCall(const CallEvent &CE, CheckerContext &C) const;
+
+ void printState(raw_ostream &Out, ProgramStateRef State,
+ const char *NL, const char *Sep) const override;
+};
+} // end anonymous namespace
+
+namespace {
+enum SelfFlagEnum {
+ /// \brief No flag set.
+ SelfFlag_None = 0x0,
+ /// \brief Value came from 'self'.
+ SelfFlag_Self = 0x1,
+ /// \brief Value came from the result of an initializer (e.g. [super init]).
+ SelfFlag_InitRes = 0x2
+};
+}
+
+REGISTER_MAP_WITH_PROGRAMSTATE(SelfFlag, SymbolRef, unsigned)
+REGISTER_TRAIT_WITH_PROGRAMSTATE(CalledInit, bool)
+
+/// \brief A call receiving a reference to 'self' invalidates the object that
+/// 'self' contains. This keeps the "self flags" assigned to the 'self'
+/// object before the call so we can assign them to the new object that 'self'
+/// points to after the call.
+REGISTER_TRAIT_WITH_PROGRAMSTATE(PreCallSelfFlags, unsigned)
+
+static SelfFlagEnum getSelfFlags(SVal val, ProgramStateRef state) {
+ if (SymbolRef sym = val.getAsSymbol())
+ if (const unsigned *attachedFlags = state->get<SelfFlag>(sym))
+ return (SelfFlagEnum)*attachedFlags;
+ return SelfFlag_None;
+}
+
+static SelfFlagEnum getSelfFlags(SVal val, CheckerContext &C) {
+ return getSelfFlags(val, C.getState());
+}
+
+static void addSelfFlag(ProgramStateRef state, SVal val,
+ SelfFlagEnum flag, CheckerContext &C) {
+ // We tag the symbol that the SVal wraps.
+ if (SymbolRef sym = val.getAsSymbol()) {
+ state = state->set<SelfFlag>(sym, getSelfFlags(val, state) | flag);
+ C.addTransition(state);
+ }
+}
+
+static bool hasSelfFlag(SVal val, SelfFlagEnum flag, CheckerContext &C) {
+ return getSelfFlags(val, C) & flag;
+}
+
+/// \brief Returns true of the value of the expression is the object that 'self'
+/// points to and is an object that did not come from the result of calling
+/// an initializer.
+static bool isInvalidSelf(const Expr *E, CheckerContext &C) {
+ SVal exprVal = C.getState()->getSVal(E, C.getLocationContext());
+ if (!hasSelfFlag(exprVal, SelfFlag_Self, C))
+ return false; // value did not come from 'self'.
+ if (hasSelfFlag(exprVal, SelfFlag_InitRes, C))
+ return false; // 'self' is properly initialized.
+
+ return true;
+}
+
+void ObjCSelfInitChecker::checkForInvalidSelf(const Expr *E, CheckerContext &C,
+ const char *errorStr) const {
+ if (!E)
+ return;
+
+ if (!C.getState()->get<CalledInit>())
+ return;
+
+ if (!isInvalidSelf(E, C))
+ return;
+
+ // Generate an error node.
+ ExplodedNode *N = C.generateSink();
+ if (!N)
+ return;
+
+ if (!BT)
+ BT.reset(new BugType(this, "Missing \"self = [(super or self) init...]\"",
+ categories::CoreFoundationObjectiveC));
+ BugReport *report = new BugReport(*BT, errorStr, N);
+ C.emitReport(report);
+}
+
+void ObjCSelfInitChecker::checkPostObjCMessage(const ObjCMethodCall &Msg,
+ CheckerContext &C) const {
+ // When encountering a message that does initialization (init rule),
+ // tag the return value so that we know later on that if self has this value
+ // then it is properly initialized.
+
+ // FIXME: A callback should disable checkers at the start of functions.
+ if (!shouldRunOnFunctionOrMethod(dyn_cast<NamedDecl>(
+ C.getCurrentAnalysisDeclContext()->getDecl())))
+ return;
+
+ if (isInitMessage(Msg)) {
+ // Tag the return value as the result of an initializer.
+ ProgramStateRef state = C.getState();
+
+ // FIXME this really should be context sensitive, where we record
+ // the current stack frame (for IPA). Also, we need to clean this
+ // value out when we return from this method.
+ state = state->set<CalledInit>(true);
+
+ SVal V = state->getSVal(Msg.getOriginExpr(), C.getLocationContext());
+ addSelfFlag(state, V, SelfFlag_InitRes, C);
+ return;
+ }
+
+ // We don't check for an invalid 'self' in an obj-c message expression to cut
+ // down false positives where logging functions get information from self
+ // (like its class) or doing "invalidation" on self when the initialization
+ // fails.
+}
+
+void ObjCSelfInitChecker::checkPostStmt(const ObjCIvarRefExpr *E,
+ CheckerContext &C) const {
+ // FIXME: A callback should disable checkers at the start of functions.
+ if (!shouldRunOnFunctionOrMethod(dyn_cast<NamedDecl>(
+ C.getCurrentAnalysisDeclContext()->getDecl())))
+ return;
+
+ checkForInvalidSelf(
+ E->getBase(), C,
+ "Instance variable used while 'self' is not set to the result of "
+ "'[(super or self) init...]'");
+}
+
+void ObjCSelfInitChecker::checkPreStmt(const ReturnStmt *S,
+ CheckerContext &C) const {
+ // FIXME: A callback should disable checkers at the start of functions.
+ if (!shouldRunOnFunctionOrMethod(dyn_cast<NamedDecl>(
+ C.getCurrentAnalysisDeclContext()->getDecl())))
+ return;
+
+ checkForInvalidSelf(S->getRetValue(), C,
+ "Returning 'self' while it is not set to the result of "
+ "'[(super or self) init...]'");
+}
+
+// When a call receives a reference to 'self', [Pre/Post]Call pass
+// the SelfFlags from the object 'self' points to before the call to the new
+// object after the call. This is to avoid invalidation of 'self' by logging
+// functions.
+// Another common pattern in classes with multiple initializers is to put the
+// subclass's common initialization bits into a static function that receives
+// the value of 'self', e.g:
+// @code
+// if (!(self = [super init]))
+// return nil;
+// if (!(self = _commonInit(self)))
+// return nil;
+// @endcode
+// Until we can use inter-procedural analysis, in such a call, transfer the
+// SelfFlags to the result of the call.
+
+void ObjCSelfInitChecker::checkPreCall(const CallEvent &CE,
+ CheckerContext &C) const {
+ // FIXME: A callback should disable checkers at the start of functions.
+ if (!shouldRunOnFunctionOrMethod(dyn_cast<NamedDecl>(
+ C.getCurrentAnalysisDeclContext()->getDecl())))
+ return;
+
+ ProgramStateRef state = C.getState();
+ unsigned NumArgs = CE.getNumArgs();
+ // If we passed 'self' as and argument to the call, record it in the state
+ // to be propagated after the call.
+ // Note, we could have just given up, but try to be more optimistic here and
+ // assume that the functions are going to continue initialization or will not
+ // modify self.
+ for (unsigned i = 0; i < NumArgs; ++i) {
+ SVal argV = CE.getArgSVal(i);
+ if (isSelfVar(argV, C)) {
+ unsigned selfFlags = getSelfFlags(state->getSVal(argV.castAs<Loc>()), C);
+ C.addTransition(state->set<PreCallSelfFlags>(selfFlags));
+ return;
+ } else if (hasSelfFlag(argV, SelfFlag_Self, C)) {
+ unsigned selfFlags = getSelfFlags(argV, C);
+ C.addTransition(state->set<PreCallSelfFlags>(selfFlags));
+ return;
+ }
+ }
+}
+
+void ObjCSelfInitChecker::checkPostCall(const CallEvent &CE,
+ CheckerContext &C) const {
+ // FIXME: A callback should disable checkers at the start of functions.
+ if (!shouldRunOnFunctionOrMethod(dyn_cast<NamedDecl>(
+ C.getCurrentAnalysisDeclContext()->getDecl())))
+ return;
+
+ ProgramStateRef state = C.getState();
+ SelfFlagEnum prevFlags = (SelfFlagEnum)state->get<PreCallSelfFlags>();
+ if (!prevFlags)
+ return;
+ state = state->remove<PreCallSelfFlags>();
+
+ unsigned NumArgs = CE.getNumArgs();
+ for (unsigned i = 0; i < NumArgs; ++i) {
+ SVal argV = CE.getArgSVal(i);
+ if (isSelfVar(argV, C)) {
+ // If the address of 'self' is being passed to the call, assume that the
+ // 'self' after the call will have the same flags.
+ // EX: log(&self)
+ addSelfFlag(state, state->getSVal(argV.castAs<Loc>()), prevFlags, C);
+ return;
+ } else if (hasSelfFlag(argV, SelfFlag_Self, C)) {
+ // If 'self' is passed to the call by value, assume that the function
+ // returns 'self'. So assign the flags, which were set on 'self' to the
+ // return value.
+ // EX: self = performMoreInitialization(self)
+ addSelfFlag(state, CE.getReturnValue(), prevFlags, C);
+ return;
+ }
+ }
+
+ C.addTransition(state);
+}
+
+void ObjCSelfInitChecker::checkLocation(SVal location, bool isLoad,
+ const Stmt *S,
+ CheckerContext &C) const {
+ if (!shouldRunOnFunctionOrMethod(dyn_cast<NamedDecl>(
+ C.getCurrentAnalysisDeclContext()->getDecl())))
+ return;
+
+ // Tag the result of a load from 'self' so that we can easily know that the
+ // value is the object that 'self' points to.
+ ProgramStateRef state = C.getState();
+ if (isSelfVar(location, C))
+ addSelfFlag(state, state->getSVal(location.castAs<Loc>()), SelfFlag_Self,
+ C);
+}
+
+
+void ObjCSelfInitChecker::checkBind(SVal loc, SVal val, const Stmt *S,
+ CheckerContext &C) const {
+ // Allow assignment of anything to self. Self is a local variable in the
+ // initializer, so it is legal to assign anything to it, like results of
+ // static functions/method calls. After self is assigned something we cannot
+ // reason about, stop enforcing the rules.
+ // (Only continue checking if the assigned value should be treated as self.)
+ if ((isSelfVar(loc, C)) &&
+ !hasSelfFlag(val, SelfFlag_InitRes, C) &&
+ !hasSelfFlag(val, SelfFlag_Self, C) &&
+ !isSelfVar(val, C)) {
+
+ // Stop tracking the checker-specific state in the state.
+ ProgramStateRef State = C.getState();
+ State = State->remove<CalledInit>();
+ if (SymbolRef sym = loc.getAsSymbol())
+ State = State->remove<SelfFlag>(sym);
+ C.addTransition(State);
+ }
+}
+
+void ObjCSelfInitChecker::printState(raw_ostream &Out, ProgramStateRef State,
+ const char *NL, const char *Sep) const {
+ SelfFlagTy FlagMap = State->get<SelfFlag>();
+ bool DidCallInit = State->get<CalledInit>();
+ SelfFlagEnum PreCallFlags = (SelfFlagEnum)State->get<PreCallSelfFlags>();
+
+ if (FlagMap.isEmpty() && !DidCallInit && !PreCallFlags)
+ return;
+
+ Out << Sep << NL << *this << " :" << NL;
+
+ if (DidCallInit)
+ Out << " An init method has been called." << NL;
+
+ if (PreCallFlags != SelfFlag_None) {
+ if (PreCallFlags & SelfFlag_Self) {
+ Out << " An argument of the current call came from the 'self' variable."
+ << NL;
+ }
+ if (PreCallFlags & SelfFlag_InitRes) {
+ Out << " An argument of the current call came from an init method."
+ << NL;
+ }
+ }
+
+ Out << NL;
+ for (SelfFlagTy::iterator I = FlagMap.begin(), E = FlagMap.end();
+ I != E; ++I) {
+ Out << I->first << " : ";
+
+ if (I->second == SelfFlag_None)
+ Out << "none";
+
+ if (I->second & SelfFlag_Self)
+ Out << "self variable";
+
+ if (I->second & SelfFlag_InitRes) {
+ if (I->second != SelfFlag_InitRes)
+ Out << " | ";
+ Out << "result of init method";
+ }
+
+ Out << NL;
+ }
+}
+
+
+// FIXME: A callback should disable checkers at the start of functions.
+static bool shouldRunOnFunctionOrMethod(const NamedDecl *ND) {
+ if (!ND)
+ return false;
+
+ const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(ND);
+ if (!MD)
+ return false;
+ if (!isInitializationMethod(MD))
+ return false;
+
+ // self = [super init] applies only to NSObject subclasses.
+ // For instance, NSProxy doesn't implement -init.
+ ASTContext &Ctx = MD->getASTContext();
+ IdentifierInfo* NSObjectII = &Ctx.Idents.get("NSObject");
+ ObjCInterfaceDecl *ID = MD->getClassInterface()->getSuperClass();
+ for ( ; ID ; ID = ID->getSuperClass()) {
+ IdentifierInfo *II = ID->getIdentifier();
+
+ if (II == NSObjectII)
+ break;
+ }
+ if (!ID)
+ return false;
+
+ return true;
+}
+
+/// \brief Returns true if the location is 'self'.
+static bool isSelfVar(SVal location, CheckerContext &C) {
+ AnalysisDeclContext *analCtx = C.getCurrentAnalysisDeclContext();
+ if (!analCtx->getSelfDecl())
+ return false;
+ if (!location.getAs<loc::MemRegionVal>())
+ return false;
+
+ loc::MemRegionVal MRV = location.castAs<loc::MemRegionVal>();
+ if (const DeclRegion *DR = dyn_cast<DeclRegion>(MRV.stripCasts()))
+ return (DR->getDecl() == analCtx->getSelfDecl());
+
+ return false;
+}
+
+static bool isInitializationMethod(const ObjCMethodDecl *MD) {
+ return MD->getMethodFamily() == OMF_init;
+}
+
+static bool isInitMessage(const ObjCMethodCall &Call) {
+ return Call.getMethodFamily() == OMF_init;
+}
+
+//===----------------------------------------------------------------------===//
+// Registration.
+//===----------------------------------------------------------------------===//
+
+void ento::registerObjCSelfInitChecker(CheckerManager &mgr) {
+ mgr.registerChecker<ObjCSelfInitChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ObjCUnusedIVarsChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ObjCUnusedIVarsChecker.cpp
new file mode 100644
index 0000000..d3b1753
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ObjCUnusedIVarsChecker.cpp
@@ -0,0 +1,188 @@
+//==- ObjCUnusedIVarsChecker.cpp - Check for unused ivars --------*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a CheckObjCUnusedIvars, a checker that
+// analyzes an Objective-C class's interface/implementation to determine if it
+// has any ivars that are never accessed.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/Basic/LangOptions.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+
+using namespace clang;
+using namespace ento;
+
+enum IVarState { Unused, Used };
+typedef llvm::DenseMap<const ObjCIvarDecl*,IVarState> IvarUsageMap;
+
+static void Scan(IvarUsageMap& M, const Stmt *S) {
+ if (!S)
+ return;
+
+ if (const ObjCIvarRefExpr *Ex = dyn_cast<ObjCIvarRefExpr>(S)) {
+ const ObjCIvarDecl *D = Ex->getDecl();
+ IvarUsageMap::iterator I = M.find(D);
+ if (I != M.end())
+ I->second = Used;
+ return;
+ }
+
+ // Blocks can reference an instance variable of a class.
+ if (const BlockExpr *BE = dyn_cast<BlockExpr>(S)) {
+ Scan(M, BE->getBody());
+ return;
+ }
+
+ if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(S))
+ for (PseudoObjectExpr::const_semantics_iterator
+ i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) {
+ const Expr *sub = *i;
+ if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(sub))
+ sub = OVE->getSourceExpr();
+ Scan(M, sub);
+ }
+
+ for (Stmt::const_child_iterator I=S->child_begin(),E=S->child_end(); I!=E;++I)
+ Scan(M, *I);
+}
+
+static void Scan(IvarUsageMap& M, const ObjCPropertyImplDecl *D) {
+ if (!D)
+ return;
+
+ const ObjCIvarDecl *ID = D->getPropertyIvarDecl();
+
+ if (!ID)
+ return;
+
+ IvarUsageMap::iterator I = M.find(ID);
+ if (I != M.end())
+ I->second = Used;
+}
+
+static void Scan(IvarUsageMap& M, const ObjCContainerDecl *D) {
+ // Scan the methods for accesses.
+ for (const auto *I : D->instance_methods())
+ Scan(M, I->getBody());
+
+ if (const ObjCImplementationDecl *ID = dyn_cast<ObjCImplementationDecl>(D)) {
+ // Scan for @synthesized property methods that act as setters/getters
+ // to an ivar.
+ for (const auto *I : ID->property_impls())
+ Scan(M, I);
+
+ // Scan the associated categories as well.
+ for (const auto *Cat : ID->getClassInterface()->visible_categories()) {
+ if (const ObjCCategoryImplDecl *CID = Cat->getImplementation())
+ Scan(M, CID);
+ }
+ }
+}
+
+static void Scan(IvarUsageMap &M, const DeclContext *C, const FileID FID,
+ SourceManager &SM) {
+ for (const auto *I : C->decls())
+ if (const auto *FD = dyn_cast<FunctionDecl>(I)) {
+ SourceLocation L = FD->getLocStart();
+ if (SM.getFileID(L) == FID)
+ Scan(M, FD->getBody());
+ }
+}
+
+static void checkObjCUnusedIvar(const ObjCImplementationDecl *D,
+ BugReporter &BR,
+ const CheckerBase *Checker) {
+
+ const ObjCInterfaceDecl *ID = D->getClassInterface();
+ IvarUsageMap M;
+
+ // Iterate over the ivars.
+ for (const auto *Ivar : ID->ivars()) {
+ // Ignore ivars that...
+ // (a) aren't private
+ // (b) explicitly marked unused
+ // (c) are iboutlets
+ // (d) are unnamed bitfields
+ if (Ivar->getAccessControl() != ObjCIvarDecl::Private ||
+ Ivar->hasAttr<UnusedAttr>() || Ivar->hasAttr<IBOutletAttr>() ||
+ Ivar->hasAttr<IBOutletCollectionAttr>() ||
+ Ivar->isUnnamedBitfield())
+ continue;
+
+ M[Ivar] = Unused;
+ }
+
+ if (M.empty())
+ return;
+
+ // Now scan the implementation declaration.
+ Scan(M, D);
+
+ // Any potentially unused ivars?
+ bool hasUnused = false;
+ for (IvarUsageMap::iterator I = M.begin(), E = M.end(); I!=E; ++I)
+ if (I->second == Unused) {
+ hasUnused = true;
+ break;
+ }
+
+ if (!hasUnused)
+ return;
+
+ // We found some potentially unused ivars. Scan the entire translation unit
+ // for functions inside the @implementation that reference these ivars.
+ // FIXME: In the future hopefully we can just use the lexical DeclContext
+ // to go from the ObjCImplementationDecl to the lexically "nested"
+ // C functions.
+ SourceManager &SM = BR.getSourceManager();
+ Scan(M, D->getDeclContext(), SM.getFileID(D->getLocation()), SM);
+
+ // Find ivars that are unused.
+ for (IvarUsageMap::iterator I = M.begin(), E = M.end(); I!=E; ++I)
+ if (I->second == Unused) {
+ std::string sbuf;
+ llvm::raw_string_ostream os(sbuf);
+ os << "Instance variable '" << *I->first << "' in class '" << *ID
+ << "' is never used by the methods in its @implementation "
+ "(although it may be used by category methods).";
+
+ PathDiagnosticLocation L =
+ PathDiagnosticLocation::create(I->first, BR.getSourceManager());
+ BR.EmitBasicReport(D, Checker, "Unused instance variable", "Optimization",
+ os.str(), L);
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// ObjCUnusedIvarsChecker
+//===----------------------------------------------------------------------===//
+
+namespace {
+class ObjCUnusedIvarsChecker : public Checker<
+ check::ASTDecl<ObjCImplementationDecl> > {
+public:
+ void checkASTDecl(const ObjCImplementationDecl *D, AnalysisManager& mgr,
+ BugReporter &BR) const {
+ checkObjCUnusedIvar(D, BR, this);
+ }
+};
+}
+
+void ento::registerObjCUnusedIvarsChecker(CheckerManager &mgr) {
+ mgr.registerChecker<ObjCUnusedIvarsChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/PointerArithChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/PointerArithChecker.cpp
new file mode 100644
index 0000000..00480e4
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/PointerArithChecker.cpp
@@ -0,0 +1,70 @@
+//=== PointerArithChecker.cpp - Pointer arithmetic checker -----*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This files defines PointerArithChecker, a builtin checker that checks for
+// pointer arithmetic on locations other than array elements.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+class PointerArithChecker
+ : public Checker< check::PreStmt<BinaryOperator> > {
+ mutable std::unique_ptr<BuiltinBug> BT;
+
+public:
+ void checkPreStmt(const BinaryOperator *B, CheckerContext &C) const;
+};
+}
+
+void PointerArithChecker::checkPreStmt(const BinaryOperator *B,
+ CheckerContext &C) const {
+ if (B->getOpcode() != BO_Sub && B->getOpcode() != BO_Add)
+ return;
+
+ ProgramStateRef state = C.getState();
+ const LocationContext *LCtx = C.getLocationContext();
+ SVal LV = state->getSVal(B->getLHS(), LCtx);
+ SVal RV = state->getSVal(B->getRHS(), LCtx);
+
+ const MemRegion *LR = LV.getAsRegion();
+
+ if (!LR || !RV.isConstant())
+ return;
+
+ // If pointer arithmetic is done on variables of non-array type, this often
+ // means behavior rely on memory organization, which is dangerous.
+ if (isa<VarRegion>(LR) || isa<CodeTextRegion>(LR) ||
+ isa<CompoundLiteralRegion>(LR)) {
+
+ if (ExplodedNode *N = C.addTransition()) {
+ if (!BT)
+ BT.reset(
+ new BuiltinBug(this, "Dangerous pointer arithmetic",
+ "Pointer arithmetic done on non-array variables "
+ "means reliance on memory layout, which is "
+ "dangerous."));
+ BugReport *R = new BugReport(*BT, BT->getDescription(), N);
+ R->addRange(B->getSourceRange());
+ C.emitReport(R);
+ }
+ }
+}
+
+void ento::registerPointerArithChecker(CheckerManager &mgr) {
+ mgr.registerChecker<PointerArithChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/PointerSubChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/PointerSubChecker.cpp
new file mode 100644
index 0000000..fbb2628
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/PointerSubChecker.cpp
@@ -0,0 +1,77 @@
+//=== PointerSubChecker.cpp - Pointer subtraction checker ------*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This files defines PointerSubChecker, a builtin checker that checks for
+// pointer subtractions on two pointers pointing to different memory chunks.
+// This check corresponds to CWE-469.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+class PointerSubChecker
+ : public Checker< check::PreStmt<BinaryOperator> > {
+ mutable std::unique_ptr<BuiltinBug> BT;
+
+public:
+ void checkPreStmt(const BinaryOperator *B, CheckerContext &C) const;
+};
+}
+
+void PointerSubChecker::checkPreStmt(const BinaryOperator *B,
+ CheckerContext &C) const {
+ // When doing pointer subtraction, if the two pointers do not point to the
+ // same memory chunk, emit a warning.
+ if (B->getOpcode() != BO_Sub)
+ return;
+
+ ProgramStateRef state = C.getState();
+ const LocationContext *LCtx = C.getLocationContext();
+ SVal LV = state->getSVal(B->getLHS(), LCtx);
+ SVal RV = state->getSVal(B->getRHS(), LCtx);
+
+ const MemRegion *LR = LV.getAsRegion();
+ const MemRegion *RR = RV.getAsRegion();
+
+ if (!(LR && RR))
+ return;
+
+ const MemRegion *BaseLR = LR->getBaseRegion();
+ const MemRegion *BaseRR = RR->getBaseRegion();
+
+ if (BaseLR == BaseRR)
+ return;
+
+ // Allow arithmetic on different symbolic regions.
+ if (isa<SymbolicRegion>(BaseLR) || isa<SymbolicRegion>(BaseRR))
+ return;
+
+ if (ExplodedNode *N = C.addTransition()) {
+ if (!BT)
+ BT.reset(
+ new BuiltinBug(this, "Pointer subtraction",
+ "Subtraction of two pointers that do not point to "
+ "the same memory chunk may cause incorrect result."));
+ BugReport *R = new BugReport(*BT, BT->getDescription(), N);
+ R->addRange(B->getSourceRange());
+ C.emitReport(R);
+ }
+}
+
+void ento::registerPointerSubChecker(CheckerManager &mgr) {
+ mgr.registerChecker<PointerSubChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/PthreadLockChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/PthreadLockChecker.cpp
new file mode 100644
index 0000000..1ede3a2
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/PthreadLockChecker.cpp
@@ -0,0 +1,339 @@
+//===--- PthreadLockChecker.cpp - Check for locking problems ---*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This defines PthreadLockChecker, a simple lock -> unlock checker.
+// Also handles XNU locks, which behave similarly enough to share code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
+#include "llvm/ADT/ImmutableList.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+
+struct LockState {
+ enum Kind { Destroyed, Locked, Unlocked } K;
+
+private:
+ LockState(Kind K) : K(K) {}
+
+public:
+ static LockState getLocked(void) { return LockState(Locked); }
+ static LockState getUnlocked(void) { return LockState(Unlocked); }
+ static LockState getDestroyed(void) { return LockState(Destroyed); }
+
+ bool operator==(const LockState &X) const {
+ return K == X.K;
+ }
+
+ bool isLocked() const { return K == Locked; }
+ bool isUnlocked() const { return K == Unlocked; }
+ bool isDestroyed() const { return K == Destroyed; }
+
+ void Profile(llvm::FoldingSetNodeID &ID) const {
+ ID.AddInteger(K);
+ }
+};
+
+class PthreadLockChecker : public Checker< check::PostStmt<CallExpr> > {
+ mutable std::unique_ptr<BugType> BT_doublelock;
+ mutable std::unique_ptr<BugType> BT_doubleunlock;
+ mutable std::unique_ptr<BugType> BT_destroylock;
+ mutable std::unique_ptr<BugType> BT_initlock;
+ mutable std::unique_ptr<BugType> BT_lor;
+ enum LockingSemantics {
+ NotApplicable = 0,
+ PthreadSemantics,
+ XNUSemantics
+ };
+public:
+ void checkPostStmt(const CallExpr *CE, CheckerContext &C) const;
+
+ void AcquireLock(CheckerContext &C, const CallExpr *CE, SVal lock,
+ bool isTryLock, enum LockingSemantics semantics) const;
+
+ void ReleaseLock(CheckerContext &C, const CallExpr *CE, SVal lock) const;
+ void DestroyLock(CheckerContext &C, const CallExpr *CE, SVal Lock) const;
+ void InitLock(CheckerContext &C, const CallExpr *CE, SVal Lock) const;
+ void reportUseDestroyedBug(CheckerContext &C, const CallExpr *CE) const;
+};
+} // end anonymous namespace
+
+// GDM Entry for tracking lock state.
+REGISTER_LIST_WITH_PROGRAMSTATE(LockSet, const MemRegion *)
+
+REGISTER_MAP_WITH_PROGRAMSTATE(LockMap, const MemRegion *, LockState)
+
+void PthreadLockChecker::checkPostStmt(const CallExpr *CE,
+ CheckerContext &C) const {
+ ProgramStateRef state = C.getState();
+ const LocationContext *LCtx = C.getLocationContext();
+ StringRef FName = C.getCalleeName(CE);
+ if (FName.empty())
+ return;
+
+ if (CE->getNumArgs() != 1 && CE->getNumArgs() != 2)
+ return;
+
+ if (FName == "pthread_mutex_lock" ||
+ FName == "pthread_rwlock_rdlock" ||
+ FName == "pthread_rwlock_wrlock")
+ AcquireLock(C, CE, state->getSVal(CE->getArg(0), LCtx),
+ false, PthreadSemantics);
+ else if (FName == "lck_mtx_lock" ||
+ FName == "lck_rw_lock_exclusive" ||
+ FName == "lck_rw_lock_shared")
+ AcquireLock(C, CE, state->getSVal(CE->getArg(0), LCtx),
+ false, XNUSemantics);
+ else if (FName == "pthread_mutex_trylock" ||
+ FName == "pthread_rwlock_tryrdlock" ||
+ FName == "pthread_rwlock_trywrlock")
+ AcquireLock(C, CE, state->getSVal(CE->getArg(0), LCtx),
+ true, PthreadSemantics);
+ else if (FName == "lck_mtx_try_lock" ||
+ FName == "lck_rw_try_lock_exclusive" ||
+ FName == "lck_rw_try_lock_shared")
+ AcquireLock(C, CE, state->getSVal(CE->getArg(0), LCtx),
+ true, XNUSemantics);
+ else if (FName == "pthread_mutex_unlock" ||
+ FName == "pthread_rwlock_unlock" ||
+ FName == "lck_mtx_unlock" ||
+ FName == "lck_rw_done")
+ ReleaseLock(C, CE, state->getSVal(CE->getArg(0), LCtx));
+ else if (FName == "pthread_mutex_destroy" ||
+ FName == "lck_mtx_destroy")
+ DestroyLock(C, CE, state->getSVal(CE->getArg(0), LCtx));
+ else if (FName == "pthread_mutex_init")
+ InitLock(C, CE, state->getSVal(CE->getArg(0), LCtx));
+}
+
+void PthreadLockChecker::AcquireLock(CheckerContext &C, const CallExpr *CE,
+ SVal lock, bool isTryLock,
+ enum LockingSemantics semantics) const {
+
+ const MemRegion *lockR = lock.getAsRegion();
+ if (!lockR)
+ return;
+
+ ProgramStateRef state = C.getState();
+
+ SVal X = state->getSVal(CE, C.getLocationContext());
+ if (X.isUnknownOrUndef())
+ return;
+
+ DefinedSVal retVal = X.castAs<DefinedSVal>();
+
+ if (const LockState *LState = state->get<LockMap>(lockR)) {
+ if (LState->isLocked()) {
+ if (!BT_doublelock)
+ BT_doublelock.reset(new BugType(this, "Double locking",
+ "Lock checker"));
+ ExplodedNode *N = C.generateSink();
+ if (!N)
+ return;
+ BugReport *report = new BugReport(*BT_doublelock,
+ "This lock has already been acquired",
+ N);
+ report->addRange(CE->getArg(0)->getSourceRange());
+ C.emitReport(report);
+ return;
+ } else if (LState->isDestroyed()) {
+ reportUseDestroyedBug(C, CE);
+ return;
+ }
+ }
+
+ ProgramStateRef lockSucc = state;
+ if (isTryLock) {
+ // Bifurcate the state, and allow a mode where the lock acquisition fails.
+ ProgramStateRef lockFail;
+ switch (semantics) {
+ case PthreadSemantics:
+ std::tie(lockFail, lockSucc) = state->assume(retVal);
+ break;
+ case XNUSemantics:
+ std::tie(lockSucc, lockFail) = state->assume(retVal);
+ break;
+ default:
+ llvm_unreachable("Unknown tryLock locking semantics");
+ }
+ assert(lockFail && lockSucc);
+ C.addTransition(lockFail);
+
+ } else if (semantics == PthreadSemantics) {
+ // Assume that the return value was 0.
+ lockSucc = state->assume(retVal, false);
+ assert(lockSucc);
+
+ } else {
+ // XNU locking semantics return void on non-try locks
+ assert((semantics == XNUSemantics) && "Unknown locking semantics");
+ lockSucc = state;
+ }
+
+ // Record that the lock was acquired.
+ lockSucc = lockSucc->add<LockSet>(lockR);
+ lockSucc = lockSucc->set<LockMap>(lockR, LockState::getLocked());
+ C.addTransition(lockSucc);
+}
+
+void PthreadLockChecker::ReleaseLock(CheckerContext &C, const CallExpr *CE,
+ SVal lock) const {
+
+ const MemRegion *lockR = lock.getAsRegion();
+ if (!lockR)
+ return;
+
+ ProgramStateRef state = C.getState();
+
+ if (const LockState *LState = state->get<LockMap>(lockR)) {
+ if (LState->isUnlocked()) {
+ if (!BT_doubleunlock)
+ BT_doubleunlock.reset(new BugType(this, "Double unlocking",
+ "Lock checker"));
+ ExplodedNode *N = C.generateSink();
+ if (!N)
+ return;
+ BugReport *Report = new BugReport(*BT_doubleunlock,
+ "This lock has already been unlocked",
+ N);
+ Report->addRange(CE->getArg(0)->getSourceRange());
+ C.emitReport(Report);
+ return;
+ } else if (LState->isDestroyed()) {
+ reportUseDestroyedBug(C, CE);
+ return;
+ }
+ }
+
+ LockSetTy LS = state->get<LockSet>();
+
+ // FIXME: Better analysis requires IPA for wrappers.
+
+ if (!LS.isEmpty()) {
+ const MemRegion *firstLockR = LS.getHead();
+ if (firstLockR != lockR) {
+ if (!BT_lor)
+ BT_lor.reset(new BugType(this, "Lock order reversal", "Lock checker"));
+ ExplodedNode *N = C.generateSink();
+ if (!N)
+ return;
+ BugReport *report = new BugReport(*BT_lor,
+ "This was not the most recently "
+ "acquired lock. Possible lock order "
+ "reversal",
+ N);
+ report->addRange(CE->getArg(0)->getSourceRange());
+ C.emitReport(report);
+ return;
+ }
+ // Record that the lock was released.
+ state = state->set<LockSet>(LS.getTail());
+ }
+
+ state = state->set<LockMap>(lockR, LockState::getUnlocked());
+ C.addTransition(state);
+}
+
+void PthreadLockChecker::DestroyLock(CheckerContext &C, const CallExpr *CE,
+ SVal Lock) const {
+
+ const MemRegion *LockR = Lock.getAsRegion();
+ if (!LockR)
+ return;
+
+ ProgramStateRef State = C.getState();
+
+ const LockState *LState = State->get<LockMap>(LockR);
+ if (!LState || LState->isUnlocked()) {
+ State = State->set<LockMap>(LockR, LockState::getDestroyed());
+ C.addTransition(State);
+ return;
+ }
+
+ StringRef Message;
+
+ if (LState->isLocked()) {
+ Message = "This lock is still locked";
+ } else {
+ Message = "This lock has already been destroyed";
+ }
+
+ if (!BT_destroylock)
+ BT_destroylock.reset(new BugType(this, "Destroy invalid lock",
+ "Lock checker"));
+ ExplodedNode *N = C.generateSink();
+ if (!N)
+ return;
+ BugReport *Report = new BugReport(*BT_destroylock, Message, N);
+ Report->addRange(CE->getArg(0)->getSourceRange());
+ C.emitReport(Report);
+}
+
+void PthreadLockChecker::InitLock(CheckerContext &C, const CallExpr *CE,
+ SVal Lock) const {
+
+ const MemRegion *LockR = Lock.getAsRegion();
+ if (!LockR)
+ return;
+
+ ProgramStateRef State = C.getState();
+
+ const struct LockState *LState = State->get<LockMap>(LockR);
+ if (!LState || LState->isDestroyed()) {
+ State = State->set<LockMap>(LockR, LockState::getUnlocked());
+ C.addTransition(State);
+ return;
+ }
+
+ StringRef Message;
+
+ if (LState->isLocked()) {
+ Message = "This lock is still being held";
+ } else {
+ Message = "This lock has already been initialized";
+ }
+
+ if (!BT_initlock)
+ BT_initlock.reset(new BugType(this, "Init invalid lock",
+ "Lock checker"));
+ ExplodedNode *N = C.generateSink();
+ if (!N)
+ return;
+ BugReport *Report = new BugReport(*BT_initlock, Message, N);
+ Report->addRange(CE->getArg(0)->getSourceRange());
+ C.emitReport(Report);
+}
+
+void PthreadLockChecker::reportUseDestroyedBug(CheckerContext &C,
+ const CallExpr *CE) const {
+ if (!BT_destroylock)
+ BT_destroylock.reset(new BugType(this, "Use destroyed lock",
+ "Lock checker"));
+ ExplodedNode *N = C.generateSink();
+ if (!N)
+ return;
+ BugReport *Report = new BugReport(*BT_destroylock,
+ "This lock has already been destroyed",
+ N);
+ Report->addRange(CE->getArg(0)->getSourceRange());
+ C.emitReport(Report);
+}
+
+void ento::registerPthreadLockChecker(CheckerManager &mgr) {
+ mgr.registerChecker<PthreadLockChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/RetainCountChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/RetainCountChecker.cpp
new file mode 100644
index 0000000..58c27d4
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/RetainCountChecker.cpp
@@ -0,0 +1,3971 @@
+//==-- RetainCountChecker.cpp - Checks for leaks and other issues -*- C++ -*--//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the methods for RetainCountChecker, which implements
+// a reference count checker for Core Foundation and Cocoa on (Mac OS X).
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "AllocationDiagnostics.h"
+#include "SelectorExtras.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/ParentMap.h"
+#include "clang/Analysis/DomainSpecific/CocoaConventions.h"
+#include "clang/Basic/LangOptions.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/StaticAnalyzer/Checkers/ObjCRetainCount.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/ADT/ImmutableList.h"
+#include "llvm/ADT/ImmutableMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringExtras.h"
+#include <cstdarg>
+
+using namespace clang;
+using namespace ento;
+using namespace objc_retain;
+using llvm::StrInStrNoCase;
+
+//===----------------------------------------------------------------------===//
+// Adapters for FoldingSet.
+//===----------------------------------------------------------------------===//
+
+namespace llvm {
+template <> struct FoldingSetTrait<ArgEffect> {
+static inline void Profile(const ArgEffect X, FoldingSetNodeID &ID) {
+ ID.AddInteger((unsigned) X);
+}
+};
+template <> struct FoldingSetTrait<RetEffect> {
+ static inline void Profile(const RetEffect &X, FoldingSetNodeID &ID) {
+ ID.AddInteger((unsigned) X.getKind());
+ ID.AddInteger((unsigned) X.getObjKind());
+}
+};
+} // end llvm namespace
+
+//===----------------------------------------------------------------------===//
+// Reference-counting logic (typestate + counts).
+//===----------------------------------------------------------------------===//
+
+/// ArgEffects summarizes the effects of a function/method call on all of
+/// its arguments.
+typedef llvm::ImmutableMap<unsigned,ArgEffect> ArgEffects;
+
+namespace {
+class RefVal {
+public:
+ enum Kind {
+ Owned = 0, // Owning reference.
+ NotOwned, // Reference is not owned by still valid (not freed).
+ Released, // Object has been released.
+ ReturnedOwned, // Returned object passes ownership to caller.
+ ReturnedNotOwned, // Return object does not pass ownership to caller.
+ ERROR_START,
+ ErrorDeallocNotOwned, // -dealloc called on non-owned object.
+ ErrorDeallocGC, // Calling -dealloc with GC enabled.
+ ErrorUseAfterRelease, // Object used after released.
+ ErrorReleaseNotOwned, // Release of an object that was not owned.
+ ERROR_LEAK_START,
+ ErrorLeak, // A memory leak due to excessive reference counts.
+ ErrorLeakReturned, // A memory leak due to the returning method not having
+ // the correct naming conventions.
+ ErrorGCLeakReturned,
+ ErrorOverAutorelease,
+ ErrorReturnedNotOwned
+ };
+
+ /// Tracks how an object referenced by an ivar has been used.
+ ///
+ /// This accounts for us not knowing if an arbitrary ivar is supposed to be
+ /// stored at +0 or +1.
+ enum class IvarAccessHistory {
+ None,
+ AccessedDirectly,
+ ReleasedAfterDirectAccess
+ };
+
+private:
+ /// The number of outstanding retains.
+ unsigned Cnt;
+ /// The number of outstanding autoreleases.
+ unsigned ACnt;
+ /// The (static) type of the object at the time we started tracking it.
+ QualType T;
+
+ /// The current state of the object.
+ ///
+ /// See the RefVal::Kind enum for possible values.
+ unsigned RawKind : 5;
+
+ /// The kind of object being tracked (CF or ObjC), if known.
+ ///
+ /// See the RetEffect::ObjKind enum for possible values.
+ unsigned RawObjectKind : 2;
+
+ /// True if the current state and/or retain count may turn out to not be the
+ /// best possible approximation of the reference counting state.
+ ///
+ /// If true, the checker may decide to throw away ("override") this state
+ /// in favor of something else when it sees the object being used in new ways.
+ ///
+ /// This setting should not be propagated to state derived from this state.
+ /// Once we start deriving new states, it would be inconsistent to override
+ /// them.
+ unsigned RawIvarAccessHistory : 2;
+
+ RefVal(Kind k, RetEffect::ObjKind o, unsigned cnt, unsigned acnt, QualType t,
+ IvarAccessHistory IvarAccess)
+ : Cnt(cnt), ACnt(acnt), T(t), RawKind(static_cast<unsigned>(k)),
+ RawObjectKind(static_cast<unsigned>(o)),
+ RawIvarAccessHistory(static_cast<unsigned>(IvarAccess)) {
+ assert(getKind() == k && "not enough bits for the kind");
+ assert(getObjKind() == o && "not enough bits for the object kind");
+ assert(getIvarAccessHistory() == IvarAccess && "not enough bits");
+ }
+
+public:
+ Kind getKind() const { return static_cast<Kind>(RawKind); }
+
+ RetEffect::ObjKind getObjKind() const {
+ return static_cast<RetEffect::ObjKind>(RawObjectKind);
+ }
+
+ unsigned getCount() const { return Cnt; }
+ unsigned getAutoreleaseCount() const { return ACnt; }
+ unsigned getCombinedCounts() const { return Cnt + ACnt; }
+ void clearCounts() {
+ Cnt = 0;
+ ACnt = 0;
+ }
+ void setCount(unsigned i) {
+ Cnt = i;
+ }
+ void setAutoreleaseCount(unsigned i) {
+ ACnt = i;
+ }
+
+ QualType getType() const { return T; }
+
+ /// Returns what the analyzer knows about direct accesses to a particular
+ /// instance variable.
+ ///
+ /// If the object with this refcount wasn't originally from an Objective-C
+ /// ivar region, this should always return IvarAccessHistory::None.
+ IvarAccessHistory getIvarAccessHistory() const {
+ return static_cast<IvarAccessHistory>(RawIvarAccessHistory);
+ }
+
+ bool isOwned() const {
+ return getKind() == Owned;
+ }
+
+ bool isNotOwned() const {
+ return getKind() == NotOwned;
+ }
+
+ bool isReturnedOwned() const {
+ return getKind() == ReturnedOwned;
+ }
+
+ bool isReturnedNotOwned() const {
+ return getKind() == ReturnedNotOwned;
+ }
+
+ /// Create a state for an object whose lifetime is the responsibility of the
+ /// current function, at least partially.
+ ///
+ /// Most commonly, this is an owned object with a retain count of +1.
+ static RefVal makeOwned(RetEffect::ObjKind o, QualType t,
+ unsigned Count = 1) {
+ return RefVal(Owned, o, Count, 0, t, IvarAccessHistory::None);
+ }
+
+ /// Create a state for an object whose lifetime is not the responsibility of
+ /// the current function.
+ ///
+ /// Most commonly, this is an unowned object with a retain count of +0.
+ static RefVal makeNotOwned(RetEffect::ObjKind o, QualType t,
+ unsigned Count = 0) {
+ return RefVal(NotOwned, o, Count, 0, t, IvarAccessHistory::None);
+ }
+
+ RefVal operator-(size_t i) const {
+ return RefVal(getKind(), getObjKind(), getCount() - i,
+ getAutoreleaseCount(), getType(), getIvarAccessHistory());
+ }
+
+ RefVal operator+(size_t i) const {
+ return RefVal(getKind(), getObjKind(), getCount() + i,
+ getAutoreleaseCount(), getType(), getIvarAccessHistory());
+ }
+
+ RefVal operator^(Kind k) const {
+ return RefVal(k, getObjKind(), getCount(), getAutoreleaseCount(),
+ getType(), getIvarAccessHistory());
+ }
+
+ RefVal autorelease() const {
+ return RefVal(getKind(), getObjKind(), getCount(), getAutoreleaseCount()+1,
+ getType(), getIvarAccessHistory());
+ }
+
+ RefVal withIvarAccess() const {
+ assert(getIvarAccessHistory() == IvarAccessHistory::None);
+ return RefVal(getKind(), getObjKind(), getCount(), getAutoreleaseCount(),
+ getType(), IvarAccessHistory::AccessedDirectly);
+ }
+ RefVal releaseViaIvar() const {
+ assert(getIvarAccessHistory() == IvarAccessHistory::AccessedDirectly);
+ return RefVal(getKind(), getObjKind(), getCount(), getAutoreleaseCount(),
+ getType(), IvarAccessHistory::ReleasedAfterDirectAccess);
+ }
+
+ // Comparison, profiling, and pretty-printing.
+
+ bool hasSameState(const RefVal &X) const {
+ return getKind() == X.getKind() && Cnt == X.Cnt && ACnt == X.ACnt &&
+ getIvarAccessHistory() == X.getIvarAccessHistory();
+ }
+
+ bool operator==(const RefVal& X) const {
+ return T == X.T && hasSameState(X) && getObjKind() == X.getObjKind();
+ }
+
+ void Profile(llvm::FoldingSetNodeID& ID) const {
+ ID.Add(T);
+ ID.AddInteger(RawKind);
+ ID.AddInteger(Cnt);
+ ID.AddInteger(ACnt);
+ ID.AddInteger(RawObjectKind);
+ ID.AddInteger(RawIvarAccessHistory);
+ }
+
+ void print(raw_ostream &Out) const;
+};
+
+void RefVal::print(raw_ostream &Out) const {
+ if (!T.isNull())
+ Out << "Tracked " << T.getAsString() << '/';
+
+ switch (getKind()) {
+ default: llvm_unreachable("Invalid RefVal kind");
+ case Owned: {
+ Out << "Owned";
+ unsigned cnt = getCount();
+ if (cnt) Out << " (+ " << cnt << ")";
+ break;
+ }
+
+ case NotOwned: {
+ Out << "NotOwned";
+ unsigned cnt = getCount();
+ if (cnt) Out << " (+ " << cnt << ")";
+ break;
+ }
+
+ case ReturnedOwned: {
+ Out << "ReturnedOwned";
+ unsigned cnt = getCount();
+ if (cnt) Out << " (+ " << cnt << ")";
+ break;
+ }
+
+ case ReturnedNotOwned: {
+ Out << "ReturnedNotOwned";
+ unsigned cnt = getCount();
+ if (cnt) Out << " (+ " << cnt << ")";
+ break;
+ }
+
+ case Released:
+ Out << "Released";
+ break;
+
+ case ErrorDeallocGC:
+ Out << "-dealloc (GC)";
+ break;
+
+ case ErrorDeallocNotOwned:
+ Out << "-dealloc (not-owned)";
+ break;
+
+ case ErrorLeak:
+ Out << "Leaked";
+ break;
+
+ case ErrorLeakReturned:
+ Out << "Leaked (Bad naming)";
+ break;
+
+ case ErrorGCLeakReturned:
+ Out << "Leaked (GC-ed at return)";
+ break;
+
+ case ErrorUseAfterRelease:
+ Out << "Use-After-Release [ERROR]";
+ break;
+
+ case ErrorReleaseNotOwned:
+ Out << "Release of Not-Owned [ERROR]";
+ break;
+
+ case RefVal::ErrorOverAutorelease:
+ Out << "Over-autoreleased";
+ break;
+
+ case RefVal::ErrorReturnedNotOwned:
+ Out << "Non-owned object returned instead of owned";
+ break;
+ }
+
+ switch (getIvarAccessHistory()) {
+ case IvarAccessHistory::None:
+ break;
+ case IvarAccessHistory::AccessedDirectly:
+ Out << " [direct ivar access]";
+ break;
+ case IvarAccessHistory::ReleasedAfterDirectAccess:
+ Out << " [released after direct ivar access]";
+ }
+
+ if (ACnt) {
+ Out << " [autorelease -" << ACnt << ']';
+ }
+}
+} //end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// RefBindings - State used to track object reference counts.
+//===----------------------------------------------------------------------===//
+
+REGISTER_MAP_WITH_PROGRAMSTATE(RefBindings, SymbolRef, RefVal)
+
+static inline const RefVal *getRefBinding(ProgramStateRef State,
+ SymbolRef Sym) {
+ return State->get<RefBindings>(Sym);
+}
+
+static inline ProgramStateRef setRefBinding(ProgramStateRef State,
+ SymbolRef Sym, RefVal Val) {
+ return State->set<RefBindings>(Sym, Val);
+}
+
+static ProgramStateRef removeRefBinding(ProgramStateRef State, SymbolRef Sym) {
+ return State->remove<RefBindings>(Sym);
+}
+
+//===----------------------------------------------------------------------===//
+// Function/Method behavior summaries.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class RetainSummary {
+ /// Args - a map of (index, ArgEffect) pairs, where index
+ /// specifies the argument (starting from 0). This can be sparsely
+ /// populated; arguments with no entry in Args use 'DefaultArgEffect'.
+ ArgEffects Args;
+
+ /// DefaultArgEffect - The default ArgEffect to apply to arguments that
+ /// do not have an entry in Args.
+ ArgEffect DefaultArgEffect;
+
+ /// Receiver - If this summary applies to an Objective-C message expression,
+ /// this is the effect applied to the state of the receiver.
+ ArgEffect Receiver;
+
+ /// Ret - The effect on the return value. Used to indicate if the
+ /// function/method call returns a new tracked symbol.
+ RetEffect Ret;
+
+public:
+ RetainSummary(ArgEffects A, RetEffect R, ArgEffect defaultEff,
+ ArgEffect ReceiverEff)
+ : Args(A), DefaultArgEffect(defaultEff), Receiver(ReceiverEff), Ret(R) {}
+
+ /// getArg - Return the argument effect on the argument specified by
+ /// idx (starting from 0).
+ ArgEffect getArg(unsigned idx) const {
+ if (const ArgEffect *AE = Args.lookup(idx))
+ return *AE;
+
+ return DefaultArgEffect;
+ }
+
+ void addArg(ArgEffects::Factory &af, unsigned idx, ArgEffect e) {
+ Args = af.add(Args, idx, e);
+ }
+
+ /// setDefaultArgEffect - Set the default argument effect.
+ void setDefaultArgEffect(ArgEffect E) {
+ DefaultArgEffect = E;
+ }
+
+ /// getRetEffect - Returns the effect on the return value of the call.
+ RetEffect getRetEffect() const { return Ret; }
+
+ /// setRetEffect - Set the effect of the return value of the call.
+ void setRetEffect(RetEffect E) { Ret = E; }
+
+
+ /// Sets the effect on the receiver of the message.
+ void setReceiverEffect(ArgEffect e) { Receiver = e; }
+
+ /// getReceiverEffect - Returns the effect on the receiver of the call.
+ /// This is only meaningful if the summary applies to an ObjCMessageExpr*.
+ ArgEffect getReceiverEffect() const { return Receiver; }
+
+ /// Test if two retain summaries are identical. Note that merely equivalent
+ /// summaries are not necessarily identical (for example, if an explicit
+ /// argument effect matches the default effect).
+ bool operator==(const RetainSummary &Other) const {
+ return Args == Other.Args && DefaultArgEffect == Other.DefaultArgEffect &&
+ Receiver == Other.Receiver && Ret == Other.Ret;
+ }
+
+ /// Profile this summary for inclusion in a FoldingSet.
+ void Profile(llvm::FoldingSetNodeID& ID) const {
+ ID.Add(Args);
+ ID.Add(DefaultArgEffect);
+ ID.Add(Receiver);
+ ID.Add(Ret);
+ }
+
+ /// A retain summary is simple if it has no ArgEffects other than the default.
+ bool isSimple() const {
+ return Args.isEmpty();
+ }
+
+private:
+ ArgEffects getArgEffects() const { return Args; }
+ ArgEffect getDefaultArgEffect() const { return DefaultArgEffect; }
+
+ friend class RetainSummaryManager;
+};
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// Data structures for constructing summaries.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class ObjCSummaryKey {
+ IdentifierInfo* II;
+ Selector S;
+public:
+ ObjCSummaryKey(IdentifierInfo* ii, Selector s)
+ : II(ii), S(s) {}
+
+ ObjCSummaryKey(const ObjCInterfaceDecl *d, Selector s)
+ : II(d ? d->getIdentifier() : nullptr), S(s) {}
+
+ ObjCSummaryKey(Selector s)
+ : II(nullptr), S(s) {}
+
+ IdentifierInfo *getIdentifier() const { return II; }
+ Selector getSelector() const { return S; }
+};
+}
+
+namespace llvm {
+template <> struct DenseMapInfo<ObjCSummaryKey> {
+ static inline ObjCSummaryKey getEmptyKey() {
+ return ObjCSummaryKey(DenseMapInfo<IdentifierInfo*>::getEmptyKey(),
+ DenseMapInfo<Selector>::getEmptyKey());
+ }
+
+ static inline ObjCSummaryKey getTombstoneKey() {
+ return ObjCSummaryKey(DenseMapInfo<IdentifierInfo*>::getTombstoneKey(),
+ DenseMapInfo<Selector>::getTombstoneKey());
+ }
+
+ static unsigned getHashValue(const ObjCSummaryKey &V) {
+ typedef std::pair<IdentifierInfo*, Selector> PairTy;
+ return DenseMapInfo<PairTy>::getHashValue(PairTy(V.getIdentifier(),
+ V.getSelector()));
+ }
+
+ static bool isEqual(const ObjCSummaryKey& LHS, const ObjCSummaryKey& RHS) {
+ return LHS.getIdentifier() == RHS.getIdentifier() &&
+ LHS.getSelector() == RHS.getSelector();
+ }
+
+};
+} // end llvm namespace
+
+namespace {
+class ObjCSummaryCache {
+ typedef llvm::DenseMap<ObjCSummaryKey, const RetainSummary *> MapTy;
+ MapTy M;
+public:
+ ObjCSummaryCache() {}
+
+ const RetainSummary * find(const ObjCInterfaceDecl *D, Selector S) {
+ // Do a lookup with the (D,S) pair. If we find a match return
+ // the iterator.
+ ObjCSummaryKey K(D, S);
+ MapTy::iterator I = M.find(K);
+
+ if (I != M.end())
+ return I->second;
+ if (!D)
+ return nullptr;
+
+ // Walk the super chain. If we find a hit with a parent, we'll end
+ // up returning that summary. We actually allow that key (null,S), as
+ // we cache summaries for the null ObjCInterfaceDecl* to allow us to
+ // generate initial summaries without having to worry about NSObject
+ // being declared.
+ // FIXME: We may change this at some point.
+ for (ObjCInterfaceDecl *C=D->getSuperClass() ;; C=C->getSuperClass()) {
+ if ((I = M.find(ObjCSummaryKey(C, S))) != M.end())
+ break;
+
+ if (!C)
+ return nullptr;
+ }
+
+ // Cache the summary with original key to make the next lookup faster
+ // and return the iterator.
+ const RetainSummary *Summ = I->second;
+ M[K] = Summ;
+ return Summ;
+ }
+
+ const RetainSummary *find(IdentifierInfo* II, Selector S) {
+ // FIXME: Class method lookup. Right now we dont' have a good way
+ // of going between IdentifierInfo* and the class hierarchy.
+ MapTy::iterator I = M.find(ObjCSummaryKey(II, S));
+
+ if (I == M.end())
+ I = M.find(ObjCSummaryKey(S));
+
+ return I == M.end() ? nullptr : I->second;
+ }
+
+ const RetainSummary *& operator[](ObjCSummaryKey K) {
+ return M[K];
+ }
+
+ const RetainSummary *& operator[](Selector S) {
+ return M[ ObjCSummaryKey(S) ];
+ }
+};
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// Data structures for managing collections of summaries.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class RetainSummaryManager {
+
+ //==-----------------------------------------------------------------==//
+ // Typedefs.
+ //==-----------------------------------------------------------------==//
+
+ typedef llvm::DenseMap<const FunctionDecl*, const RetainSummary *>
+ FuncSummariesTy;
+
+ typedef ObjCSummaryCache ObjCMethodSummariesTy;
+
+ typedef llvm::FoldingSetNodeWrapper<RetainSummary> CachedSummaryNode;
+
+ //==-----------------------------------------------------------------==//
+ // Data.
+ //==-----------------------------------------------------------------==//
+
+ /// Ctx - The ASTContext object for the analyzed ASTs.
+ ASTContext &Ctx;
+
+ /// GCEnabled - Records whether or not the analyzed code runs in GC mode.
+ const bool GCEnabled;
+
+ /// Records whether or not the analyzed code runs in ARC mode.
+ const bool ARCEnabled;
+
+ /// FuncSummaries - A map from FunctionDecls to summaries.
+ FuncSummariesTy FuncSummaries;
+
+ /// ObjCClassMethodSummaries - A map from selectors (for instance methods)
+ /// to summaries.
+ ObjCMethodSummariesTy ObjCClassMethodSummaries;
+
+ /// ObjCMethodSummaries - A map from selectors to summaries.
+ ObjCMethodSummariesTy ObjCMethodSummaries;
+
+ /// BPAlloc - A BumpPtrAllocator used for allocating summaries, ArgEffects,
+ /// and all other data used by the checker.
+ llvm::BumpPtrAllocator BPAlloc;
+
+ /// AF - A factory for ArgEffects objects.
+ ArgEffects::Factory AF;
+
+ /// ScratchArgs - A holding buffer for construct ArgEffects.
+ ArgEffects ScratchArgs;
+
+ /// ObjCAllocRetE - Default return effect for methods returning Objective-C
+ /// objects.
+ RetEffect ObjCAllocRetE;
+
+ /// ObjCInitRetE - Default return effect for init methods returning
+ /// Objective-C objects.
+ RetEffect ObjCInitRetE;
+
+ /// SimpleSummaries - Used for uniquing summaries that don't have special
+ /// effects.
+ llvm::FoldingSet<CachedSummaryNode> SimpleSummaries;
+
+ //==-----------------------------------------------------------------==//
+ // Methods.
+ //==-----------------------------------------------------------------==//
+
+ /// getArgEffects - Returns a persistent ArgEffects object based on the
+ /// data in ScratchArgs.
+ ArgEffects getArgEffects();
+
+ enum UnaryFuncKind { cfretain, cfrelease, cfautorelease, cfmakecollectable };
+
+ const RetainSummary *getUnarySummary(const FunctionType* FT,
+ UnaryFuncKind func);
+
+ const RetainSummary *getCFSummaryCreateRule(const FunctionDecl *FD);
+ const RetainSummary *getCFSummaryGetRule(const FunctionDecl *FD);
+ const RetainSummary *getCFCreateGetRuleSummary(const FunctionDecl *FD);
+
+ const RetainSummary *getPersistentSummary(const RetainSummary &OldSumm);
+
+ const RetainSummary *getPersistentSummary(RetEffect RetEff,
+ ArgEffect ReceiverEff = DoNothing,
+ ArgEffect DefaultEff = MayEscape) {
+ RetainSummary Summ(getArgEffects(), RetEff, DefaultEff, ReceiverEff);
+ return getPersistentSummary(Summ);
+ }
+
+ const RetainSummary *getDoNothingSummary() {
+ return getPersistentSummary(RetEffect::MakeNoRet(), DoNothing, DoNothing);
+ }
+
+ const RetainSummary *getDefaultSummary() {
+ return getPersistentSummary(RetEffect::MakeNoRet(),
+ DoNothing, MayEscape);
+ }
+
+ const RetainSummary *getPersistentStopSummary() {
+ return getPersistentSummary(RetEffect::MakeNoRet(),
+ StopTracking, StopTracking);
+ }
+
+ void InitializeClassMethodSummaries();
+ void InitializeMethodSummaries();
+private:
+ void addNSObjectClsMethSummary(Selector S, const RetainSummary *Summ) {
+ ObjCClassMethodSummaries[S] = Summ;
+ }
+
+ void addNSObjectMethSummary(Selector S, const RetainSummary *Summ) {
+ ObjCMethodSummaries[S] = Summ;
+ }
+
+ void addClassMethSummary(const char* Cls, const char* name,
+ const RetainSummary *Summ, bool isNullary = true) {
+ IdentifierInfo* ClsII = &Ctx.Idents.get(Cls);
+ Selector S = isNullary ? GetNullarySelector(name, Ctx)
+ : GetUnarySelector(name, Ctx);
+ ObjCClassMethodSummaries[ObjCSummaryKey(ClsII, S)] = Summ;
+ }
+
+ void addInstMethSummary(const char* Cls, const char* nullaryName,
+ const RetainSummary *Summ) {
+ IdentifierInfo* ClsII = &Ctx.Idents.get(Cls);
+ Selector S = GetNullarySelector(nullaryName, Ctx);
+ ObjCMethodSummaries[ObjCSummaryKey(ClsII, S)] = Summ;
+ }
+
+ void addMethodSummary(IdentifierInfo *ClsII, ObjCMethodSummariesTy &Summaries,
+ const RetainSummary *Summ, va_list argp) {
+ Selector S = getKeywordSelector(Ctx, argp);
+ Summaries[ObjCSummaryKey(ClsII, S)] = Summ;
+ }
+
+ void addInstMethSummary(const char* Cls, const RetainSummary * Summ, ...) {
+ va_list argp;
+ va_start(argp, Summ);
+ addMethodSummary(&Ctx.Idents.get(Cls), ObjCMethodSummaries, Summ, argp);
+ va_end(argp);
+ }
+
+ void addClsMethSummary(const char* Cls, const RetainSummary * Summ, ...) {
+ va_list argp;
+ va_start(argp, Summ);
+ addMethodSummary(&Ctx.Idents.get(Cls),ObjCClassMethodSummaries, Summ, argp);
+ va_end(argp);
+ }
+
+ void addClsMethSummary(IdentifierInfo *II, const RetainSummary * Summ, ...) {
+ va_list argp;
+ va_start(argp, Summ);
+ addMethodSummary(II, ObjCClassMethodSummaries, Summ, argp);
+ va_end(argp);
+ }
+
+public:
+
+ RetainSummaryManager(ASTContext &ctx, bool gcenabled, bool usesARC)
+ : Ctx(ctx),
+ GCEnabled(gcenabled),
+ ARCEnabled(usesARC),
+ AF(BPAlloc), ScratchArgs(AF.getEmptyMap()),
+ ObjCAllocRetE(gcenabled
+ ? RetEffect::MakeGCNotOwned()
+ : (usesARC ? RetEffect::MakeNotOwned(RetEffect::ObjC)
+ : RetEffect::MakeOwned(RetEffect::ObjC, true))),
+ ObjCInitRetE(gcenabled
+ ? RetEffect::MakeGCNotOwned()
+ : (usesARC ? RetEffect::MakeNotOwned(RetEffect::ObjC)
+ : RetEffect::MakeOwnedWhenTrackedReceiver())) {
+ InitializeClassMethodSummaries();
+ InitializeMethodSummaries();
+ }
+
+ const RetainSummary *getSummary(const CallEvent &Call,
+ ProgramStateRef State = nullptr);
+
+ const RetainSummary *getFunctionSummary(const FunctionDecl *FD);
+
+ const RetainSummary *getMethodSummary(Selector S, const ObjCInterfaceDecl *ID,
+ const ObjCMethodDecl *MD,
+ QualType RetTy,
+ ObjCMethodSummariesTy &CachedSummaries);
+
+ const RetainSummary *getInstanceMethodSummary(const ObjCMethodCall &M,
+ ProgramStateRef State);
+
+ const RetainSummary *getClassMethodSummary(const ObjCMethodCall &M) {
+ assert(!M.isInstanceMessage());
+ const ObjCInterfaceDecl *Class = M.getReceiverInterface();
+
+ return getMethodSummary(M.getSelector(), Class, M.getDecl(),
+ M.getResultType(), ObjCClassMethodSummaries);
+ }
+
+ /// getMethodSummary - This version of getMethodSummary is used to query
+ /// the summary for the current method being analyzed.
+ const RetainSummary *getMethodSummary(const ObjCMethodDecl *MD) {
+ const ObjCInterfaceDecl *ID = MD->getClassInterface();
+ Selector S = MD->getSelector();
+ QualType ResultTy = MD->getReturnType();
+
+ ObjCMethodSummariesTy *CachedSummaries;
+ if (MD->isInstanceMethod())
+ CachedSummaries = &ObjCMethodSummaries;
+ else
+ CachedSummaries = &ObjCClassMethodSummaries;
+
+ return getMethodSummary(S, ID, MD, ResultTy, *CachedSummaries);
+ }
+
+ const RetainSummary *getStandardMethodSummary(const ObjCMethodDecl *MD,
+ Selector S, QualType RetTy);
+
+ /// Determine if there is a special return effect for this function or method.
+ Optional<RetEffect> getRetEffectFromAnnotations(QualType RetTy,
+ const Decl *D);
+
+ void updateSummaryFromAnnotations(const RetainSummary *&Summ,
+ const ObjCMethodDecl *MD);
+
+ void updateSummaryFromAnnotations(const RetainSummary *&Summ,
+ const FunctionDecl *FD);
+
+ void updateSummaryForCall(const RetainSummary *&Summ,
+ const CallEvent &Call);
+
+ bool isGCEnabled() const { return GCEnabled; }
+
+ bool isARCEnabled() const { return ARCEnabled; }
+
+ bool isARCorGCEnabled() const { return GCEnabled || ARCEnabled; }
+
+ RetEffect getObjAllocRetEffect() const { return ObjCAllocRetE; }
+
+ friend class RetainSummaryTemplate;
+};
+
+// Used to avoid allocating long-term (BPAlloc'd) memory for default retain
+// summaries. If a function or method looks like it has a default summary, but
+// it has annotations, the annotations are added to the stack-based template
+// and then copied into managed memory.
+class RetainSummaryTemplate {
+ RetainSummaryManager &Manager;
+ const RetainSummary *&RealSummary;
+ RetainSummary ScratchSummary;
+ bool Accessed;
+public:
+ RetainSummaryTemplate(const RetainSummary *&real, RetainSummaryManager &mgr)
+ : Manager(mgr), RealSummary(real), ScratchSummary(*real), Accessed(false) {}
+
+ ~RetainSummaryTemplate() {
+ if (Accessed)
+ RealSummary = Manager.getPersistentSummary(ScratchSummary);
+ }
+
+ RetainSummary &operator*() {
+ Accessed = true;
+ return ScratchSummary;
+ }
+
+ RetainSummary *operator->() {
+ Accessed = true;
+ return &ScratchSummary;
+ }
+};
+
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// Implementation of checker data structures.
+//===----------------------------------------------------------------------===//
+
+ArgEffects RetainSummaryManager::getArgEffects() {
+ ArgEffects AE = ScratchArgs;
+ ScratchArgs = AF.getEmptyMap();
+ return AE;
+}
+
+const RetainSummary *
+RetainSummaryManager::getPersistentSummary(const RetainSummary &OldSumm) {
+ // Unique "simple" summaries -- those without ArgEffects.
+ if (OldSumm.isSimple()) {
+ llvm::FoldingSetNodeID ID;
+ OldSumm.Profile(ID);
+
+ void *Pos;
+ CachedSummaryNode *N = SimpleSummaries.FindNodeOrInsertPos(ID, Pos);
+
+ if (!N) {
+ N = (CachedSummaryNode *) BPAlloc.Allocate<CachedSummaryNode>();
+ new (N) CachedSummaryNode(OldSumm);
+ SimpleSummaries.InsertNode(N, Pos);
+ }
+
+ return &N->getValue();
+ }
+
+ RetainSummary *Summ = (RetainSummary *) BPAlloc.Allocate<RetainSummary>();
+ new (Summ) RetainSummary(OldSumm);
+ return Summ;
+}
+
+//===----------------------------------------------------------------------===//
+// Summary creation for functions (largely uses of Core Foundation).
+//===----------------------------------------------------------------------===//
+
+static bool isRetain(const FunctionDecl *FD, StringRef FName) {
+ return FName.endswith("Retain");
+}
+
+static bool isRelease(const FunctionDecl *FD, StringRef FName) {
+ return FName.endswith("Release");
+}
+
+static bool isAutorelease(const FunctionDecl *FD, StringRef FName) {
+ return FName.endswith("Autorelease");
+}
+
+static bool isMakeCollectable(const FunctionDecl *FD, StringRef FName) {
+ // FIXME: Remove FunctionDecl parameter.
+ // FIXME: Is it really okay if MakeCollectable isn't a suffix?
+ return FName.find("MakeCollectable") != StringRef::npos;
+}
+
+static ArgEffect getStopTrackingHardEquivalent(ArgEffect E) {
+ switch (E) {
+ case DoNothing:
+ case Autorelease:
+ case DecRefBridgedTransferred:
+ case IncRef:
+ case IncRefMsg:
+ case MakeCollectable:
+ case MayEscape:
+ case StopTracking:
+ case StopTrackingHard:
+ return StopTrackingHard;
+ case DecRef:
+ case DecRefAndStopTrackingHard:
+ return DecRefAndStopTrackingHard;
+ case DecRefMsg:
+ case DecRefMsgAndStopTrackingHard:
+ return DecRefMsgAndStopTrackingHard;
+ case Dealloc:
+ return Dealloc;
+ }
+
+ llvm_unreachable("Unknown ArgEffect kind");
+}
+
+void RetainSummaryManager::updateSummaryForCall(const RetainSummary *&S,
+ const CallEvent &Call) {
+ if (Call.hasNonZeroCallbackArg()) {
+ ArgEffect RecEffect =
+ getStopTrackingHardEquivalent(S->getReceiverEffect());
+ ArgEffect DefEffect =
+ getStopTrackingHardEquivalent(S->getDefaultArgEffect());
+
+ ArgEffects CustomArgEffects = S->getArgEffects();
+ for (ArgEffects::iterator I = CustomArgEffects.begin(),
+ E = CustomArgEffects.end();
+ I != E; ++I) {
+ ArgEffect Translated = getStopTrackingHardEquivalent(I->second);
+ if (Translated != DefEffect)
+ ScratchArgs = AF.add(ScratchArgs, I->first, Translated);
+ }
+
+ RetEffect RE = RetEffect::MakeNoRetHard();
+
+ // Special cases where the callback argument CANNOT free the return value.
+ // This can generally only happen if we know that the callback will only be
+ // called when the return value is already being deallocated.
+ if (const SimpleFunctionCall *FC = dyn_cast<SimpleFunctionCall>(&Call)) {
+ if (IdentifierInfo *Name = FC->getDecl()->getIdentifier()) {
+ // When the CGBitmapContext is deallocated, the callback here will free
+ // the associated data buffer.
+ if (Name->isStr("CGBitmapContextCreateWithData"))
+ RE = S->getRetEffect();
+ }
+ }
+
+ S = getPersistentSummary(RE, RecEffect, DefEffect);
+ }
+
+ // Special case '[super init];' and '[self init];'
+ //
+ // Even though calling '[super init]' without assigning the result to self
+ // and checking if the parent returns 'nil' is a bad pattern, it is common.
+ // Additionally, our Self Init checker already warns about it. To avoid
+ // overwhelming the user with messages from both checkers, we model the case
+ // of '[super init]' in cases when it is not consumed by another expression
+ // as if the call preserves the value of 'self'; essentially, assuming it can
+ // never fail and return 'nil'.
+ // Note, we don't want to just stop tracking the value since we want the
+ // RetainCount checker to report leaks and use-after-free if SelfInit checker
+ // is turned off.
+ if (const ObjCMethodCall *MC = dyn_cast<ObjCMethodCall>(&Call)) {
+ if (MC->getMethodFamily() == OMF_init && MC->isReceiverSelfOrSuper()) {
+
+ // Check if the message is not consumed, we know it will not be used in
+ // an assignment, ex: "self = [super init]".
+ const Expr *ME = MC->getOriginExpr();
+ const LocationContext *LCtx = MC->getLocationContext();
+ ParentMap &PM = LCtx->getAnalysisDeclContext()->getParentMap();
+ if (!PM.isConsumedExpr(ME)) {
+ RetainSummaryTemplate ModifiableSummaryTemplate(S, *this);
+ ModifiableSummaryTemplate->setReceiverEffect(DoNothing);
+ ModifiableSummaryTemplate->setRetEffect(RetEffect::MakeNoRet());
+ }
+ }
+
+ }
+}
+
+const RetainSummary *
+RetainSummaryManager::getSummary(const CallEvent &Call,
+ ProgramStateRef State) {
+ const RetainSummary *Summ;
+ switch (Call.getKind()) {
+ case CE_Function:
+ Summ = getFunctionSummary(cast<SimpleFunctionCall>(Call).getDecl());
+ break;
+ case CE_CXXMember:
+ case CE_CXXMemberOperator:
+ case CE_Block:
+ case CE_CXXConstructor:
+ case CE_CXXDestructor:
+ case CE_CXXAllocator:
+ // FIXME: These calls are currently unsupported.
+ return getPersistentStopSummary();
+ case CE_ObjCMessage: {
+ const ObjCMethodCall &Msg = cast<ObjCMethodCall>(Call);
+ if (Msg.isInstanceMessage())
+ Summ = getInstanceMethodSummary(Msg, State);
+ else
+ Summ = getClassMethodSummary(Msg);
+ break;
+ }
+ }
+
+ updateSummaryForCall(Summ, Call);
+
+ assert(Summ && "Unknown call type?");
+ return Summ;
+}
+
+const RetainSummary *
+RetainSummaryManager::getFunctionSummary(const FunctionDecl *FD) {
+ // If we don't know what function we're calling, use our default summary.
+ if (!FD)
+ return getDefaultSummary();
+
+ // Look up a summary in our cache of FunctionDecls -> Summaries.
+ FuncSummariesTy::iterator I = FuncSummaries.find(FD);
+ if (I != FuncSummaries.end())
+ return I->second;
+
+ // No summary? Generate one.
+ const RetainSummary *S = nullptr;
+ bool AllowAnnotations = true;
+
+ do {
+ // We generate "stop" summaries for implicitly defined functions.
+ if (FD->isImplicit()) {
+ S = getPersistentStopSummary();
+ break;
+ }
+
+ // [PR 3337] Use 'getAs<FunctionType>' to strip away any typedefs on the
+ // function's type.
+ const FunctionType* FT = FD->getType()->getAs<FunctionType>();
+ const IdentifierInfo *II = FD->getIdentifier();
+ if (!II)
+ break;
+
+ StringRef FName = II->getName();
+
+ // Strip away preceding '_'. Doing this here will effect all the checks
+ // down below.
+ FName = FName.substr(FName.find_first_not_of('_'));
+
+ // Inspect the result type.
+ QualType RetTy = FT->getReturnType();
+
+ // FIXME: This should all be refactored into a chain of "summary lookup"
+ // filters.
+ assert(ScratchArgs.isEmpty());
+
+ if (FName == "pthread_create" || FName == "pthread_setspecific") {
+ // Part of: <rdar://problem/7299394> and <rdar://problem/11282706>.
+ // This will be addressed better with IPA.
+ S = getPersistentStopSummary();
+ } else if (FName == "NSMakeCollectable") {
+ // Handle: id NSMakeCollectable(CFTypeRef)
+ S = (RetTy->isObjCIdType())
+ ? getUnarySummary(FT, cfmakecollectable)
+ : getPersistentStopSummary();
+ // The headers on OS X 10.8 use cf_consumed/ns_returns_retained,
+ // but we can fully model NSMakeCollectable ourselves.
+ AllowAnnotations = false;
+ } else if (FName == "CFPlugInInstanceCreate") {
+ S = getPersistentSummary(RetEffect::MakeNoRet());
+ } else if (FName == "IOBSDNameMatching" ||
+ FName == "IOServiceMatching" ||
+ FName == "IOServiceNameMatching" ||
+ FName == "IORegistryEntrySearchCFProperty" ||
+ FName == "IORegistryEntryIDMatching" ||
+ FName == "IOOpenFirmwarePathMatching") {
+ // Part of <rdar://problem/6961230>. (IOKit)
+ // This should be addressed using a API table.
+ S = getPersistentSummary(RetEffect::MakeOwned(RetEffect::CF, true),
+ DoNothing, DoNothing);
+ } else if (FName == "IOServiceGetMatchingService" ||
+ FName == "IOServiceGetMatchingServices") {
+ // FIXES: <rdar://problem/6326900>
+ // This should be addressed using a API table. This strcmp is also
+ // a little gross, but there is no need to super optimize here.
+ ScratchArgs = AF.add(ScratchArgs, 1, DecRef);
+ S = getPersistentSummary(RetEffect::MakeNoRet(), DoNothing, DoNothing);
+ } else if (FName == "IOServiceAddNotification" ||
+ FName == "IOServiceAddMatchingNotification") {
+ // Part of <rdar://problem/6961230>. (IOKit)
+ // This should be addressed using a API table.
+ ScratchArgs = AF.add(ScratchArgs, 2, DecRef);
+ S = getPersistentSummary(RetEffect::MakeNoRet(), DoNothing, DoNothing);
+ } else if (FName == "CVPixelBufferCreateWithBytes") {
+ // FIXES: <rdar://problem/7283567>
+ // Eventually this can be improved by recognizing that the pixel
+ // buffer passed to CVPixelBufferCreateWithBytes is released via
+ // a callback and doing full IPA to make sure this is done correctly.
+ // FIXME: This function has an out parameter that returns an
+ // allocated object.
+ ScratchArgs = AF.add(ScratchArgs, 7, StopTracking);
+ S = getPersistentSummary(RetEffect::MakeNoRet(), DoNothing, DoNothing);
+ } else if (FName == "CGBitmapContextCreateWithData") {
+ // FIXES: <rdar://problem/7358899>
+ // Eventually this can be improved by recognizing that 'releaseInfo'
+ // passed to CGBitmapContextCreateWithData is released via
+ // a callback and doing full IPA to make sure this is done correctly.
+ ScratchArgs = AF.add(ScratchArgs, 8, StopTracking);
+ S = getPersistentSummary(RetEffect::MakeOwned(RetEffect::CF, true),
+ DoNothing, DoNothing);
+ } else if (FName == "CVPixelBufferCreateWithPlanarBytes") {
+ // FIXES: <rdar://problem/7283567>
+ // Eventually this can be improved by recognizing that the pixel
+ // buffer passed to CVPixelBufferCreateWithPlanarBytes is released
+ // via a callback and doing full IPA to make sure this is done
+ // correctly.
+ ScratchArgs = AF.add(ScratchArgs, 12, StopTracking);
+ S = getPersistentSummary(RetEffect::MakeNoRet(), DoNothing, DoNothing);
+ } else if (FName == "dispatch_set_context" ||
+ FName == "xpc_connection_set_context") {
+ // <rdar://problem/11059275> - The analyzer currently doesn't have
+ // a good way to reason about the finalizer function for libdispatch.
+ // If we pass a context object that is memory managed, stop tracking it.
+ // <rdar://problem/13783514> - Same problem, but for XPC.
+ // FIXME: this hack should possibly go away once we can handle
+ // libdispatch and XPC finalizers.
+ ScratchArgs = AF.add(ScratchArgs, 1, StopTracking);
+ S = getPersistentSummary(RetEffect::MakeNoRet(), DoNothing, DoNothing);
+ } else if (FName.startswith("NSLog")) {
+ S = getDoNothingSummary();
+ } else if (FName.startswith("NS") &&
+ (FName.find("Insert") != StringRef::npos)) {
+ // Whitelist NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
+ // be deallocated by NSMapRemove. (radar://11152419)
+ ScratchArgs = AF.add(ScratchArgs, 1, StopTracking);
+ ScratchArgs = AF.add(ScratchArgs, 2, StopTracking);
+ S = getPersistentSummary(RetEffect::MakeNoRet(), DoNothing, DoNothing);
+ }
+
+ // Did we get a summary?
+ if (S)
+ break;
+
+ if (RetTy->isPointerType()) {
+ // For CoreFoundation ('CF') types.
+ if (cocoa::isRefType(RetTy, "CF", FName)) {
+ if (isRetain(FD, FName)) {
+ S = getUnarySummary(FT, cfretain);
+ } else if (isAutorelease(FD, FName)) {
+ S = getUnarySummary(FT, cfautorelease);
+ // The headers use cf_consumed, but we can fully model CFAutorelease
+ // ourselves.
+ AllowAnnotations = false;
+ } else if (isMakeCollectable(FD, FName)) {
+ S = getUnarySummary(FT, cfmakecollectable);
+ AllowAnnotations = false;
+ } else {
+ S = getCFCreateGetRuleSummary(FD);
+ }
+
+ break;
+ }
+
+ // For CoreGraphics ('CG') types.
+ if (cocoa::isRefType(RetTy, "CG", FName)) {
+ if (isRetain(FD, FName))
+ S = getUnarySummary(FT, cfretain);
+ else
+ S = getCFCreateGetRuleSummary(FD);
+
+ break;
+ }
+
+ // For the Disk Arbitration API (DiskArbitration/DADisk.h)
+ if (cocoa::isRefType(RetTy, "DADisk") ||
+ cocoa::isRefType(RetTy, "DADissenter") ||
+ cocoa::isRefType(RetTy, "DASessionRef")) {
+ S = getCFCreateGetRuleSummary(FD);
+ break;
+ }
+
+ if (FD->hasAttr<CFAuditedTransferAttr>()) {
+ S = getCFCreateGetRuleSummary(FD);
+ break;
+ }
+
+ break;
+ }
+
+ // Check for release functions, the only kind of functions that we care
+ // about that don't return a pointer type.
+ if (FName[0] == 'C' && (FName[1] == 'F' || FName[1] == 'G')) {
+ // Test for 'CGCF'.
+ FName = FName.substr(FName.startswith("CGCF") ? 4 : 2);
+
+ if (isRelease(FD, FName))
+ S = getUnarySummary(FT, cfrelease);
+ else {
+ assert (ScratchArgs.isEmpty());
+ // Remaining CoreFoundation and CoreGraphics functions.
+ // We use to assume that they all strictly followed the ownership idiom
+ // and that ownership cannot be transferred. While this is technically
+ // correct, many methods allow a tracked object to escape. For example:
+ //
+ // CFMutableDictionaryRef x = CFDictionaryCreateMutable(...);
+ // CFDictionaryAddValue(y, key, x);
+ // CFRelease(x);
+ // ... it is okay to use 'x' since 'y' has a reference to it
+ //
+ // We handle this and similar cases with the follow heuristic. If the
+ // function name contains "InsertValue", "SetValue", "AddValue",
+ // "AppendValue", or "SetAttribute", then we assume that arguments may
+ // "escape." This means that something else holds on to the object,
+ // allowing it be used even after its local retain count drops to 0.
+ ArgEffect E = (StrInStrNoCase(FName, "InsertValue") != StringRef::npos||
+ StrInStrNoCase(FName, "AddValue") != StringRef::npos ||
+ StrInStrNoCase(FName, "SetValue") != StringRef::npos ||
+ StrInStrNoCase(FName, "AppendValue") != StringRef::npos||
+ StrInStrNoCase(FName, "SetAttribute") != StringRef::npos)
+ ? MayEscape : DoNothing;
+
+ S = getPersistentSummary(RetEffect::MakeNoRet(), DoNothing, E);
+ }
+ }
+ }
+ while (0);
+
+ // If we got all the way here without any luck, use a default summary.
+ if (!S)
+ S = getDefaultSummary();
+
+ // Annotations override defaults.
+ if (AllowAnnotations)
+ updateSummaryFromAnnotations(S, FD);
+
+ FuncSummaries[FD] = S;
+ return S;
+}
+
+const RetainSummary *
+RetainSummaryManager::getCFCreateGetRuleSummary(const FunctionDecl *FD) {
+ if (coreFoundation::followsCreateRule(FD))
+ return getCFSummaryCreateRule(FD);
+
+ return getCFSummaryGetRule(FD);
+}
+
+const RetainSummary *
+RetainSummaryManager::getUnarySummary(const FunctionType* FT,
+ UnaryFuncKind func) {
+
+ // Sanity check that this is *really* a unary function. This can
+ // happen if people do weird things.
+ const FunctionProtoType* FTP = dyn_cast<FunctionProtoType>(FT);
+ if (!FTP || FTP->getNumParams() != 1)
+ return getPersistentStopSummary();
+
+ assert (ScratchArgs.isEmpty());
+
+ ArgEffect Effect;
+ switch (func) {
+ case cfretain: Effect = IncRef; break;
+ case cfrelease: Effect = DecRef; break;
+ case cfautorelease: Effect = Autorelease; break;
+ case cfmakecollectable: Effect = MakeCollectable; break;
+ }
+
+ ScratchArgs = AF.add(ScratchArgs, 0, Effect);
+ return getPersistentSummary(RetEffect::MakeNoRet(), DoNothing, DoNothing);
+}
+
+const RetainSummary *
+RetainSummaryManager::getCFSummaryCreateRule(const FunctionDecl *FD) {
+ assert (ScratchArgs.isEmpty());
+
+ return getPersistentSummary(RetEffect::MakeOwned(RetEffect::CF, true));
+}
+
+const RetainSummary *
+RetainSummaryManager::getCFSummaryGetRule(const FunctionDecl *FD) {
+ assert (ScratchArgs.isEmpty());
+ return getPersistentSummary(RetEffect::MakeNotOwned(RetEffect::CF),
+ DoNothing, DoNothing);
+}
+
+//===----------------------------------------------------------------------===//
+// Summary creation for Selectors.
+//===----------------------------------------------------------------------===//
+
+Optional<RetEffect>
+RetainSummaryManager::getRetEffectFromAnnotations(QualType RetTy,
+ const Decl *D) {
+ if (cocoa::isCocoaObjectRef(RetTy)) {
+ if (D->hasAttr<NSReturnsRetainedAttr>())
+ return ObjCAllocRetE;
+
+ if (D->hasAttr<NSReturnsNotRetainedAttr>() ||
+ D->hasAttr<NSReturnsAutoreleasedAttr>())
+ return RetEffect::MakeNotOwned(RetEffect::ObjC);
+
+ } else if (!RetTy->isPointerType()) {
+ return None;
+ }
+
+ if (D->hasAttr<CFReturnsRetainedAttr>())
+ return RetEffect::MakeOwned(RetEffect::CF, true);
+
+ if (D->hasAttr<CFReturnsNotRetainedAttr>())
+ return RetEffect::MakeNotOwned(RetEffect::CF);
+
+ return None;
+}
+
+void
+RetainSummaryManager::updateSummaryFromAnnotations(const RetainSummary *&Summ,
+ const FunctionDecl *FD) {
+ if (!FD)
+ return;
+
+ assert(Summ && "Must have a summary to add annotations to.");
+ RetainSummaryTemplate Template(Summ, *this);
+
+ // Effects on the parameters.
+ unsigned parm_idx = 0;
+ for (FunctionDecl::param_const_iterator pi = FD->param_begin(),
+ pe = FD->param_end(); pi != pe; ++pi, ++parm_idx) {
+ const ParmVarDecl *pd = *pi;
+ if (pd->hasAttr<NSConsumedAttr>())
+ Template->addArg(AF, parm_idx, DecRefMsg);
+ else if (pd->hasAttr<CFConsumedAttr>())
+ Template->addArg(AF, parm_idx, DecRef);
+ }
+
+ QualType RetTy = FD->getReturnType();
+ if (Optional<RetEffect> RetE = getRetEffectFromAnnotations(RetTy, FD))
+ Template->setRetEffect(*RetE);
+}
+
+void
+RetainSummaryManager::updateSummaryFromAnnotations(const RetainSummary *&Summ,
+ const ObjCMethodDecl *MD) {
+ if (!MD)
+ return;
+
+ assert(Summ && "Must have a valid summary to add annotations to");
+ RetainSummaryTemplate Template(Summ, *this);
+
+ // Effects on the receiver.
+ if (MD->hasAttr<NSConsumesSelfAttr>())
+ Template->setReceiverEffect(DecRefMsg);
+
+ // Effects on the parameters.
+ unsigned parm_idx = 0;
+ for (ObjCMethodDecl::param_const_iterator
+ pi=MD->param_begin(), pe=MD->param_end();
+ pi != pe; ++pi, ++parm_idx) {
+ const ParmVarDecl *pd = *pi;
+ if (pd->hasAttr<NSConsumedAttr>())
+ Template->addArg(AF, parm_idx, DecRefMsg);
+ else if (pd->hasAttr<CFConsumedAttr>()) {
+ Template->addArg(AF, parm_idx, DecRef);
+ }
+ }
+
+ QualType RetTy = MD->getReturnType();
+ if (Optional<RetEffect> RetE = getRetEffectFromAnnotations(RetTy, MD))
+ Template->setRetEffect(*RetE);
+}
+
+const RetainSummary *
+RetainSummaryManager::getStandardMethodSummary(const ObjCMethodDecl *MD,
+ Selector S, QualType RetTy) {
+ // Any special effects?
+ ArgEffect ReceiverEff = DoNothing;
+ RetEffect ResultEff = RetEffect::MakeNoRet();
+
+ // Check the method family, and apply any default annotations.
+ switch (MD ? MD->getMethodFamily() : S.getMethodFamily()) {
+ case OMF_None:
+ case OMF_initialize:
+ case OMF_performSelector:
+ // Assume all Objective-C methods follow Cocoa Memory Management rules.
+ // FIXME: Does the non-threaded performSelector family really belong here?
+ // The selector could be, say, @selector(copy).
+ if (cocoa::isCocoaObjectRef(RetTy))
+ ResultEff = RetEffect::MakeNotOwned(RetEffect::ObjC);
+ else if (coreFoundation::isCFObjectRef(RetTy)) {
+ // ObjCMethodDecl currently doesn't consider CF objects as valid return
+ // values for alloc, new, copy, or mutableCopy, so we have to
+ // double-check with the selector. This is ugly, but there aren't that
+ // many Objective-C methods that return CF objects, right?
+ if (MD) {
+ switch (S.getMethodFamily()) {
+ case OMF_alloc:
+ case OMF_new:
+ case OMF_copy:
+ case OMF_mutableCopy:
+ ResultEff = RetEffect::MakeOwned(RetEffect::CF, true);
+ break;
+ default:
+ ResultEff = RetEffect::MakeNotOwned(RetEffect::CF);
+ break;
+ }
+ } else {
+ ResultEff = RetEffect::MakeNotOwned(RetEffect::CF);
+ }
+ }
+ break;
+ case OMF_init:
+ ResultEff = ObjCInitRetE;
+ ReceiverEff = DecRefMsg;
+ break;
+ case OMF_alloc:
+ case OMF_new:
+ case OMF_copy:
+ case OMF_mutableCopy:
+ if (cocoa::isCocoaObjectRef(RetTy))
+ ResultEff = ObjCAllocRetE;
+ else if (coreFoundation::isCFObjectRef(RetTy))
+ ResultEff = RetEffect::MakeOwned(RetEffect::CF, true);
+ break;
+ case OMF_autorelease:
+ ReceiverEff = Autorelease;
+ break;
+ case OMF_retain:
+ ReceiverEff = IncRefMsg;
+ break;
+ case OMF_release:
+ ReceiverEff = DecRefMsg;
+ break;
+ case OMF_dealloc:
+ ReceiverEff = Dealloc;
+ break;
+ case OMF_self:
+ // -self is handled specially by the ExprEngine to propagate the receiver.
+ break;
+ case OMF_retainCount:
+ case OMF_finalize:
+ // These methods don't return objects.
+ break;
+ }
+
+ // If one of the arguments in the selector has the keyword 'delegate' we
+ // should stop tracking the reference count for the receiver. This is
+ // because the reference count is quite possibly handled by a delegate
+ // method.
+ if (S.isKeywordSelector()) {
+ for (unsigned i = 0, e = S.getNumArgs(); i != e; ++i) {
+ StringRef Slot = S.getNameForSlot(i);
+ if (Slot.substr(Slot.size() - 8).equals_lower("delegate")) {
+ if (ResultEff == ObjCInitRetE)
+ ResultEff = RetEffect::MakeNoRetHard();
+ else
+ ReceiverEff = StopTrackingHard;
+ }
+ }
+ }
+
+ if (ScratchArgs.isEmpty() && ReceiverEff == DoNothing &&
+ ResultEff.getKind() == RetEffect::NoRet)
+ return getDefaultSummary();
+
+ return getPersistentSummary(ResultEff, ReceiverEff, MayEscape);
+}
+
+const RetainSummary *
+RetainSummaryManager::getInstanceMethodSummary(const ObjCMethodCall &Msg,
+ ProgramStateRef State) {
+ const ObjCInterfaceDecl *ReceiverClass = nullptr;
+
+ // We do better tracking of the type of the object than the core ExprEngine.
+ // See if we have its type in our private state.
+ // FIXME: Eventually replace the use of state->get<RefBindings> with
+ // a generic API for reasoning about the Objective-C types of symbolic
+ // objects.
+ SVal ReceiverV = Msg.getReceiverSVal();
+ if (SymbolRef Sym = ReceiverV.getAsLocSymbol())
+ if (const RefVal *T = getRefBinding(State, Sym))
+ if (const ObjCObjectPointerType *PT =
+ T->getType()->getAs<ObjCObjectPointerType>())
+ ReceiverClass = PT->getInterfaceDecl();
+
+ // If we don't know what kind of object this is, fall back to its static type.
+ if (!ReceiverClass)
+ ReceiverClass = Msg.getReceiverInterface();
+
+ // FIXME: The receiver could be a reference to a class, meaning that
+ // we should use the class method.
+ // id x = [NSObject class];
+ // [x performSelector:... withObject:... afterDelay:...];
+ Selector S = Msg.getSelector();
+ const ObjCMethodDecl *Method = Msg.getDecl();
+ if (!Method && ReceiverClass)
+ Method = ReceiverClass->getInstanceMethod(S);
+
+ return getMethodSummary(S, ReceiverClass, Method, Msg.getResultType(),
+ ObjCMethodSummaries);
+}
+
+const RetainSummary *
+RetainSummaryManager::getMethodSummary(Selector S, const ObjCInterfaceDecl *ID,
+ const ObjCMethodDecl *MD, QualType RetTy,
+ ObjCMethodSummariesTy &CachedSummaries) {
+
+ // Look up a summary in our summary cache.
+ const RetainSummary *Summ = CachedSummaries.find(ID, S);
+
+ if (!Summ) {
+ Summ = getStandardMethodSummary(MD, S, RetTy);
+
+ // Annotations override defaults.
+ updateSummaryFromAnnotations(Summ, MD);
+
+ // Memoize the summary.
+ CachedSummaries[ObjCSummaryKey(ID, S)] = Summ;
+ }
+
+ return Summ;
+}
+
+void RetainSummaryManager::InitializeClassMethodSummaries() {
+ assert(ScratchArgs.isEmpty());
+ // Create the [NSAssertionHandler currentHander] summary.
+ addClassMethSummary("NSAssertionHandler", "currentHandler",
+ getPersistentSummary(RetEffect::MakeNotOwned(RetEffect::ObjC)));
+
+ // Create the [NSAutoreleasePool addObject:] summary.
+ ScratchArgs = AF.add(ScratchArgs, 0, Autorelease);
+ addClassMethSummary("NSAutoreleasePool", "addObject",
+ getPersistentSummary(RetEffect::MakeNoRet(),
+ DoNothing, Autorelease));
+}
+
+void RetainSummaryManager::InitializeMethodSummaries() {
+
+ assert (ScratchArgs.isEmpty());
+
+ // Create the "init" selector. It just acts as a pass-through for the
+ // receiver.
+ const RetainSummary *InitSumm = getPersistentSummary(ObjCInitRetE, DecRefMsg);
+ addNSObjectMethSummary(GetNullarySelector("init", Ctx), InitSumm);
+
+ // awakeAfterUsingCoder: behaves basically like an 'init' method. It
+ // claims the receiver and returns a retained object.
+ addNSObjectMethSummary(GetUnarySelector("awakeAfterUsingCoder", Ctx),
+ InitSumm);
+
+ // The next methods are allocators.
+ const RetainSummary *AllocSumm = getPersistentSummary(ObjCAllocRetE);
+ const RetainSummary *CFAllocSumm =
+ getPersistentSummary(RetEffect::MakeOwned(RetEffect::CF, true));
+
+ // Create the "retain" selector.
+ RetEffect NoRet = RetEffect::MakeNoRet();
+ const RetainSummary *Summ = getPersistentSummary(NoRet, IncRefMsg);
+ addNSObjectMethSummary(GetNullarySelector("retain", Ctx), Summ);
+
+ // Create the "release" selector.
+ Summ = getPersistentSummary(NoRet, DecRefMsg);
+ addNSObjectMethSummary(GetNullarySelector("release", Ctx), Summ);
+
+ // Create the -dealloc summary.
+ Summ = getPersistentSummary(NoRet, Dealloc);
+ addNSObjectMethSummary(GetNullarySelector("dealloc", Ctx), Summ);
+
+ // Create the "autorelease" selector.
+ Summ = getPersistentSummary(NoRet, Autorelease);
+ addNSObjectMethSummary(GetNullarySelector("autorelease", Ctx), Summ);
+
+ // For NSWindow, allocated objects are (initially) self-owned.
+ // FIXME: For now we opt for false negatives with NSWindow, as these objects
+ // self-own themselves. However, they only do this once they are displayed.
+ // Thus, we need to track an NSWindow's display status.
+ // This is tracked in <rdar://problem/6062711>.
+ // See also http://llvm.org/bugs/show_bug.cgi?id=3714.
+ const RetainSummary *NoTrackYet = getPersistentSummary(RetEffect::MakeNoRet(),
+ StopTracking,
+ StopTracking);
+
+ addClassMethSummary("NSWindow", "alloc", NoTrackYet);
+
+ // For NSPanel (which subclasses NSWindow), allocated objects are not
+ // self-owned.
+ // FIXME: For now we don't track NSPanels. object for the same reason
+ // as for NSWindow objects.
+ addClassMethSummary("NSPanel", "alloc", NoTrackYet);
+
+ // For NSNull, objects returned by +null are singletons that ignore
+ // retain/release semantics. Just don't track them.
+ // <rdar://problem/12858915>
+ addClassMethSummary("NSNull", "null", NoTrackYet);
+
+ // Don't track allocated autorelease pools, as it is okay to prematurely
+ // exit a method.
+ addClassMethSummary("NSAutoreleasePool", "alloc", NoTrackYet);
+ addClassMethSummary("NSAutoreleasePool", "allocWithZone", NoTrackYet, false);
+ addClassMethSummary("NSAutoreleasePool", "new", NoTrackYet);
+
+ // Create summaries QCRenderer/QCView -createSnapShotImageOfType:
+ addInstMethSummary("QCRenderer", AllocSumm,
+ "createSnapshotImageOfType", nullptr);
+ addInstMethSummary("QCView", AllocSumm,
+ "createSnapshotImageOfType", nullptr);
+
+ // Create summaries for CIContext, 'createCGImage' and
+ // 'createCGLayerWithSize'. These objects are CF objects, and are not
+ // automatically garbage collected.
+ addInstMethSummary("CIContext", CFAllocSumm,
+ "createCGImage", "fromRect", nullptr);
+ addInstMethSummary("CIContext", CFAllocSumm, "createCGImage", "fromRect",
+ "format", "colorSpace", nullptr);
+ addInstMethSummary("CIContext", CFAllocSumm, "createCGLayerWithSize", "info",
+ nullptr);
+}
+
+//===----------------------------------------------------------------------===//
+// Error reporting.
+//===----------------------------------------------------------------------===//
+namespace {
+ typedef llvm::DenseMap<const ExplodedNode *, const RetainSummary *>
+ SummaryLogTy;
+
+ //===-------------===//
+ // Bug Descriptions. //
+ //===-------------===//
+
+ class CFRefBug : public BugType {
+ protected:
+ CFRefBug(const CheckerBase *checker, StringRef name)
+ : BugType(checker, name, categories::MemoryCoreFoundationObjectiveC) {}
+
+ public:
+
+ // FIXME: Eventually remove.
+ virtual const char *getDescription() const = 0;
+
+ virtual bool isLeak() const { return false; }
+ };
+
+ class UseAfterRelease : public CFRefBug {
+ public:
+ UseAfterRelease(const CheckerBase *checker)
+ : CFRefBug(checker, "Use-after-release") {}
+
+ const char *getDescription() const override {
+ return "Reference-counted object is used after it is released";
+ }
+ };
+
+ class BadRelease : public CFRefBug {
+ public:
+ BadRelease(const CheckerBase *checker) : CFRefBug(checker, "Bad release") {}
+
+ const char *getDescription() const override {
+ return "Incorrect decrement of the reference count of an object that is "
+ "not owned at this point by the caller";
+ }
+ };
+
+ class DeallocGC : public CFRefBug {
+ public:
+ DeallocGC(const CheckerBase *checker)
+ : CFRefBug(checker, "-dealloc called while using garbage collection") {}
+
+ const char *getDescription() const override {
+ return "-dealloc called while using garbage collection";
+ }
+ };
+
+ class DeallocNotOwned : public CFRefBug {
+ public:
+ DeallocNotOwned(const CheckerBase *checker)
+ : CFRefBug(checker, "-dealloc sent to non-exclusively owned object") {}
+
+ const char *getDescription() const override {
+ return "-dealloc sent to object that may be referenced elsewhere";
+ }
+ };
+
+ class OverAutorelease : public CFRefBug {
+ public:
+ OverAutorelease(const CheckerBase *checker)
+ : CFRefBug(checker, "Object autoreleased too many times") {}
+
+ const char *getDescription() const override {
+ return "Object autoreleased too many times";
+ }
+ };
+
+ class ReturnedNotOwnedForOwned : public CFRefBug {
+ public:
+ ReturnedNotOwnedForOwned(const CheckerBase *checker)
+ : CFRefBug(checker, "Method should return an owned object") {}
+
+ const char *getDescription() const override {
+ return "Object with a +0 retain count returned to caller where a +1 "
+ "(owning) retain count is expected";
+ }
+ };
+
+ class Leak : public CFRefBug {
+ public:
+ Leak(const CheckerBase *checker, StringRef name) : CFRefBug(checker, name) {
+ // Leaks should not be reported if they are post-dominated by a sink.
+ setSuppressOnSink(true);
+ }
+
+ const char *getDescription() const override { return ""; }
+
+ bool isLeak() const override { return true; }
+ };
+
+ //===---------===//
+ // Bug Reports. //
+ //===---------===//
+
+ class CFRefReportVisitor : public BugReporterVisitorImpl<CFRefReportVisitor> {
+ protected:
+ SymbolRef Sym;
+ const SummaryLogTy &SummaryLog;
+ bool GCEnabled;
+
+ public:
+ CFRefReportVisitor(SymbolRef sym, bool gcEnabled, const SummaryLogTy &log)
+ : Sym(sym), SummaryLog(log), GCEnabled(gcEnabled) {}
+
+ void Profile(llvm::FoldingSetNodeID &ID) const override {
+ static int x = 0;
+ ID.AddPointer(&x);
+ ID.AddPointer(Sym);
+ }
+
+ PathDiagnosticPiece *VisitNode(const ExplodedNode *N,
+ const ExplodedNode *PrevN,
+ BugReporterContext &BRC,
+ BugReport &BR) override;
+
+ std::unique_ptr<PathDiagnosticPiece> getEndPath(BugReporterContext &BRC,
+ const ExplodedNode *N,
+ BugReport &BR) override;
+ };
+
+ class CFRefLeakReportVisitor : public CFRefReportVisitor {
+ public:
+ CFRefLeakReportVisitor(SymbolRef sym, bool GCEnabled,
+ const SummaryLogTy &log)
+ : CFRefReportVisitor(sym, GCEnabled, log) {}
+
+ std::unique_ptr<PathDiagnosticPiece> getEndPath(BugReporterContext &BRC,
+ const ExplodedNode *N,
+ BugReport &BR) override;
+
+ std::unique_ptr<BugReporterVisitor> clone() const override {
+ // The curiously-recurring template pattern only works for one level of
+ // subclassing. Rather than make a new template base for
+ // CFRefReportVisitor, we simply override clone() to do the right thing.
+ // This could be trouble someday if BugReporterVisitorImpl is ever
+ // used for something else besides a convenient implementation of clone().
+ return llvm::make_unique<CFRefLeakReportVisitor>(*this);
+ }
+ };
+
+ class CFRefReport : public BugReport {
+ void addGCModeDescription(const LangOptions &LOpts, bool GCEnabled);
+
+ public:
+ CFRefReport(CFRefBug &D, const LangOptions &LOpts, bool GCEnabled,
+ const SummaryLogTy &Log, ExplodedNode *n, SymbolRef sym,
+ bool registerVisitor = true)
+ : BugReport(D, D.getDescription(), n) {
+ if (registerVisitor)
+ addVisitor(llvm::make_unique<CFRefReportVisitor>(sym, GCEnabled, Log));
+ addGCModeDescription(LOpts, GCEnabled);
+ }
+
+ CFRefReport(CFRefBug &D, const LangOptions &LOpts, bool GCEnabled,
+ const SummaryLogTy &Log, ExplodedNode *n, SymbolRef sym,
+ StringRef endText)
+ : BugReport(D, D.getDescription(), endText, n) {
+ addVisitor(llvm::make_unique<CFRefReportVisitor>(sym, GCEnabled, Log));
+ addGCModeDescription(LOpts, GCEnabled);
+ }
+
+ llvm::iterator_range<ranges_iterator> getRanges() override {
+ const CFRefBug& BugTy = static_cast<CFRefBug&>(getBugType());
+ if (!BugTy.isLeak())
+ return BugReport::getRanges();
+ return llvm::make_range(ranges_iterator(), ranges_iterator());
+ }
+ };
+
+ class CFRefLeakReport : public CFRefReport {
+ const MemRegion* AllocBinding;
+ public:
+ CFRefLeakReport(CFRefBug &D, const LangOptions &LOpts, bool GCEnabled,
+ const SummaryLogTy &Log, ExplodedNode *n, SymbolRef sym,
+ CheckerContext &Ctx,
+ bool IncludeAllocationLine);
+
+ PathDiagnosticLocation getLocation(const SourceManager &SM) const override {
+ assert(Location.isValid());
+ return Location;
+ }
+ };
+} // end anonymous namespace
+
+void CFRefReport::addGCModeDescription(const LangOptions &LOpts,
+ bool GCEnabled) {
+ const char *GCModeDescription = nullptr;
+
+ switch (LOpts.getGC()) {
+ case LangOptions::GCOnly:
+ assert(GCEnabled);
+ GCModeDescription = "Code is compiled to only use garbage collection";
+ break;
+
+ case LangOptions::NonGC:
+ assert(!GCEnabled);
+ GCModeDescription = "Code is compiled to use reference counts";
+ break;
+
+ case LangOptions::HybridGC:
+ if (GCEnabled) {
+ GCModeDescription = "Code is compiled to use either garbage collection "
+ "(GC) or reference counts (non-GC). The bug occurs "
+ "with GC enabled";
+ break;
+ } else {
+ GCModeDescription = "Code is compiled to use either garbage collection "
+ "(GC) or reference counts (non-GC). The bug occurs "
+ "in non-GC mode";
+ break;
+ }
+ }
+
+ assert(GCModeDescription && "invalid/unknown GC mode");
+ addExtraText(GCModeDescription);
+}
+
+static bool isNumericLiteralExpression(const Expr *E) {
+ // FIXME: This set of cases was copied from SemaExprObjC.
+ return isa<IntegerLiteral>(E) ||
+ isa<CharacterLiteral>(E) ||
+ isa<FloatingLiteral>(E) ||
+ isa<ObjCBoolLiteralExpr>(E) ||
+ isa<CXXBoolLiteralExpr>(E);
+}
+
+/// Returns true if this stack frame is for an Objective-C method that is a
+/// property getter or setter whose body has been synthesized by the analyzer.
+static bool isSynthesizedAccessor(const StackFrameContext *SFC) {
+ auto Method = dyn_cast_or_null<ObjCMethodDecl>(SFC->getDecl());
+ if (!Method || !Method->isPropertyAccessor())
+ return false;
+
+ return SFC->getAnalysisDeclContext()->isBodyAutosynthesized();
+}
+
+PathDiagnosticPiece *CFRefReportVisitor::VisitNode(const ExplodedNode *N,
+ const ExplodedNode *PrevN,
+ BugReporterContext &BRC,
+ BugReport &BR) {
+ // FIXME: We will eventually need to handle non-statement-based events
+ // (__attribute__((cleanup))).
+ if (!N->getLocation().getAs<StmtPoint>())
+ return nullptr;
+
+ // Check if the type state has changed.
+ ProgramStateRef PrevSt = PrevN->getState();
+ ProgramStateRef CurrSt = N->getState();
+ const LocationContext *LCtx = N->getLocationContext();
+
+ const RefVal* CurrT = getRefBinding(CurrSt, Sym);
+ if (!CurrT) return nullptr;
+
+ const RefVal &CurrV = *CurrT;
+ const RefVal *PrevT = getRefBinding(PrevSt, Sym);
+
+ // Create a string buffer to constain all the useful things we want
+ // to tell the user.
+ std::string sbuf;
+ llvm::raw_string_ostream os(sbuf);
+
+ // This is the allocation site since the previous node had no bindings
+ // for this symbol.
+ if (!PrevT) {
+ const Stmt *S = N->getLocation().castAs<StmtPoint>().getStmt();
+
+ if (isa<ObjCIvarRefExpr>(S) &&
+ isSynthesizedAccessor(LCtx->getCurrentStackFrame())) {
+ S = LCtx->getCurrentStackFrame()->getCallSite();
+ }
+
+ if (isa<ObjCArrayLiteral>(S)) {
+ os << "NSArray literal is an object with a +0 retain count";
+ }
+ else if (isa<ObjCDictionaryLiteral>(S)) {
+ os << "NSDictionary literal is an object with a +0 retain count";
+ }
+ else if (const ObjCBoxedExpr *BL = dyn_cast<ObjCBoxedExpr>(S)) {
+ if (isNumericLiteralExpression(BL->getSubExpr()))
+ os << "NSNumber literal is an object with a +0 retain count";
+ else {
+ const ObjCInterfaceDecl *BoxClass = nullptr;
+ if (const ObjCMethodDecl *Method = BL->getBoxingMethod())
+ BoxClass = Method->getClassInterface();
+
+ // We should always be able to find the boxing class interface,
+ // but consider this future-proofing.
+ if (BoxClass)
+ os << *BoxClass << " b";
+ else
+ os << "B";
+
+ os << "oxed expression produces an object with a +0 retain count";
+ }
+ }
+ else if (isa<ObjCIvarRefExpr>(S)) {
+ os << "Object loaded from instance variable";
+ }
+ else {
+ if (const CallExpr *CE = dyn_cast<CallExpr>(S)) {
+ // Get the name of the callee (if it is available).
+ SVal X = CurrSt->getSValAsScalarOrLoc(CE->getCallee(), LCtx);
+ if (const FunctionDecl *FD = X.getAsFunctionDecl())
+ os << "Call to function '" << *FD << '\'';
+ else
+ os << "function call";
+ }
+ else {
+ assert(isa<ObjCMessageExpr>(S));
+ CallEventManager &Mgr = CurrSt->getStateManager().getCallEventManager();
+ CallEventRef<ObjCMethodCall> Call
+ = Mgr.getObjCMethodCall(cast<ObjCMessageExpr>(S), CurrSt, LCtx);
+
+ switch (Call->getMessageKind()) {
+ case OCM_Message:
+ os << "Method";
+ break;
+ case OCM_PropertyAccess:
+ os << "Property";
+ break;
+ case OCM_Subscript:
+ os << "Subscript";
+ break;
+ }
+ }
+
+ if (CurrV.getObjKind() == RetEffect::CF) {
+ os << " returns a Core Foundation object with a ";
+ }
+ else {
+ assert (CurrV.getObjKind() == RetEffect::ObjC);
+ os << " returns an Objective-C object with a ";
+ }
+
+ if (CurrV.isOwned()) {
+ os << "+1 retain count";
+
+ if (GCEnabled) {
+ assert(CurrV.getObjKind() == RetEffect::CF);
+ os << ". "
+ "Core Foundation objects are not automatically garbage collected.";
+ }
+ }
+ else {
+ assert (CurrV.isNotOwned());
+ os << "+0 retain count";
+ }
+ }
+
+ PathDiagnosticLocation Pos(S, BRC.getSourceManager(),
+ N->getLocationContext());
+ return new PathDiagnosticEventPiece(Pos, os.str());
+ }
+
+ // Gather up the effects that were performed on the object at this
+ // program point
+ SmallVector<ArgEffect, 2> AEffects;
+
+ const ExplodedNode *OrigNode = BRC.getNodeResolver().getOriginalNode(N);
+ if (const RetainSummary *Summ = SummaryLog.lookup(OrigNode)) {
+ // We only have summaries attached to nodes after evaluating CallExpr and
+ // ObjCMessageExprs.
+ const Stmt *S = N->getLocation().castAs<StmtPoint>().getStmt();
+
+ if (const CallExpr *CE = dyn_cast<CallExpr>(S)) {
+ // Iterate through the parameter expressions and see if the symbol
+ // was ever passed as an argument.
+ unsigned i = 0;
+
+ for (CallExpr::const_arg_iterator AI=CE->arg_begin(), AE=CE->arg_end();
+ AI!=AE; ++AI, ++i) {
+
+ // Retrieve the value of the argument. Is it the symbol
+ // we are interested in?
+ if (CurrSt->getSValAsScalarOrLoc(*AI, LCtx).getAsLocSymbol() != Sym)
+ continue;
+
+ // We have an argument. Get the effect!
+ AEffects.push_back(Summ->getArg(i));
+ }
+ }
+ else if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(S)) {
+ if (const Expr *receiver = ME->getInstanceReceiver())
+ if (CurrSt->getSValAsScalarOrLoc(receiver, LCtx)
+ .getAsLocSymbol() == Sym) {
+ // The symbol we are tracking is the receiver.
+ AEffects.push_back(Summ->getReceiverEffect());
+ }
+ }
+ }
+
+ do {
+ // Get the previous type state.
+ RefVal PrevV = *PrevT;
+
+ // Specially handle -dealloc.
+ if (!GCEnabled && std::find(AEffects.begin(), AEffects.end(), Dealloc) !=
+ AEffects.end()) {
+ // Determine if the object's reference count was pushed to zero.
+ assert(!PrevV.hasSameState(CurrV) && "The state should have changed.");
+ // We may not have transitioned to 'release' if we hit an error.
+ // This case is handled elsewhere.
+ if (CurrV.getKind() == RefVal::Released) {
+ assert(CurrV.getCombinedCounts() == 0);
+ os << "Object released by directly sending the '-dealloc' message";
+ break;
+ }
+ }
+
+ // Specially handle CFMakeCollectable and friends.
+ if (std::find(AEffects.begin(), AEffects.end(), MakeCollectable) !=
+ AEffects.end()) {
+ // Get the name of the function.
+ const Stmt *S = N->getLocation().castAs<StmtPoint>().getStmt();
+ SVal X =
+ CurrSt->getSValAsScalarOrLoc(cast<CallExpr>(S)->getCallee(), LCtx);
+ const FunctionDecl *FD = X.getAsFunctionDecl();
+
+ if (GCEnabled) {
+ // Determine if the object's reference count was pushed to zero.
+ assert(!PrevV.hasSameState(CurrV) && "The state should have changed.");
+
+ os << "In GC mode a call to '" << *FD
+ << "' decrements an object's retain count and registers the "
+ "object with the garbage collector. ";
+
+ if (CurrV.getKind() == RefVal::Released) {
+ assert(CurrV.getCount() == 0);
+ os << "Since it now has a 0 retain count the object can be "
+ "automatically collected by the garbage collector.";
+ }
+ else
+ os << "An object must have a 0 retain count to be garbage collected. "
+ "After this call its retain count is +" << CurrV.getCount()
+ << '.';
+ }
+ else
+ os << "When GC is not enabled a call to '" << *FD
+ << "' has no effect on its argument.";
+
+ // Nothing more to say.
+ break;
+ }
+
+ // Determine if the typestate has changed.
+ if (!PrevV.hasSameState(CurrV))
+ switch (CurrV.getKind()) {
+ case RefVal::Owned:
+ case RefVal::NotOwned:
+ if (PrevV.getCount() == CurrV.getCount()) {
+ // Did an autorelease message get sent?
+ if (PrevV.getAutoreleaseCount() == CurrV.getAutoreleaseCount())
+ return nullptr;
+
+ assert(PrevV.getAutoreleaseCount() < CurrV.getAutoreleaseCount());
+ os << "Object autoreleased";
+ break;
+ }
+
+ if (PrevV.getCount() > CurrV.getCount())
+ os << "Reference count decremented.";
+ else
+ os << "Reference count incremented.";
+
+ if (unsigned Count = CurrV.getCount())
+ os << " The object now has a +" << Count << " retain count.";
+
+ if (PrevV.getKind() == RefVal::Released) {
+ assert(GCEnabled && CurrV.getCount() > 0);
+ os << " The object is not eligible for garbage collection until "
+ "the retain count reaches 0 again.";
+ }
+
+ break;
+
+ case RefVal::Released:
+ if (CurrV.getIvarAccessHistory() ==
+ RefVal::IvarAccessHistory::ReleasedAfterDirectAccess &&
+ CurrV.getIvarAccessHistory() != PrevV.getIvarAccessHistory()) {
+ os << "Strong instance variable relinquished. ";
+ }
+ os << "Object released.";
+ break;
+
+ case RefVal::ReturnedOwned:
+ // Autoreleases can be applied after marking a node ReturnedOwned.
+ if (CurrV.getAutoreleaseCount())
+ return nullptr;
+
+ os << "Object returned to caller as an owning reference (single "
+ "retain count transferred to caller)";
+ break;
+
+ case RefVal::ReturnedNotOwned:
+ os << "Object returned to caller with a +0 retain count";
+ break;
+
+ default:
+ return nullptr;
+ }
+
+ // Emit any remaining diagnostics for the argument effects (if any).
+ for (SmallVectorImpl<ArgEffect>::iterator I=AEffects.begin(),
+ E=AEffects.end(); I != E; ++I) {
+
+ // A bunch of things have alternate behavior under GC.
+ if (GCEnabled)
+ switch (*I) {
+ default: break;
+ case Autorelease:
+ os << "In GC mode an 'autorelease' has no effect.";
+ continue;
+ case IncRefMsg:
+ os << "In GC mode the 'retain' message has no effect.";
+ continue;
+ case DecRefMsg:
+ os << "In GC mode the 'release' message has no effect.";
+ continue;
+ }
+ }
+ } while (0);
+
+ if (os.str().empty())
+ return nullptr; // We have nothing to say!
+
+ const Stmt *S = N->getLocation().castAs<StmtPoint>().getStmt();
+ PathDiagnosticLocation Pos(S, BRC.getSourceManager(),
+ N->getLocationContext());
+ PathDiagnosticPiece *P = new PathDiagnosticEventPiece(Pos, os.str());
+
+ // Add the range by scanning the children of the statement for any bindings
+ // to Sym.
+ for (Stmt::const_child_iterator I = S->child_begin(), E = S->child_end();
+ I!=E; ++I)
+ if (const Expr *Exp = dyn_cast_or_null<Expr>(*I))
+ if (CurrSt->getSValAsScalarOrLoc(Exp, LCtx).getAsLocSymbol() == Sym) {
+ P->addRange(Exp->getSourceRange());
+ break;
+ }
+
+ return P;
+}
+
+// Find the first node in the current function context that referred to the
+// tracked symbol and the memory location that value was stored to. Note, the
+// value is only reported if the allocation occurred in the same function as
+// the leak. The function can also return a location context, which should be
+// treated as interesting.
+struct AllocationInfo {
+ const ExplodedNode* N;
+ const MemRegion *R;
+ const LocationContext *InterestingMethodContext;
+ AllocationInfo(const ExplodedNode *InN,
+ const MemRegion *InR,
+ const LocationContext *InInterestingMethodContext) :
+ N(InN), R(InR), InterestingMethodContext(InInterestingMethodContext) {}
+};
+
+static AllocationInfo
+GetAllocationSite(ProgramStateManager& StateMgr, const ExplodedNode *N,
+ SymbolRef Sym) {
+ const ExplodedNode *AllocationNode = N;
+ const ExplodedNode *AllocationNodeInCurrentOrParentContext = N;
+ const MemRegion *FirstBinding = nullptr;
+ const LocationContext *LeakContext = N->getLocationContext();
+
+ // The location context of the init method called on the leaked object, if
+ // available.
+ const LocationContext *InitMethodContext = nullptr;
+
+ while (N) {
+ ProgramStateRef St = N->getState();
+ const LocationContext *NContext = N->getLocationContext();
+
+ if (!getRefBinding(St, Sym))
+ break;
+
+ StoreManager::FindUniqueBinding FB(Sym);
+ StateMgr.iterBindings(St, FB);
+
+ if (FB) {
+ const MemRegion *R = FB.getRegion();
+ const VarRegion *VR = R->getBaseRegion()->getAs<VarRegion>();
+ // Do not show local variables belonging to a function other than
+ // where the error is reported.
+ if (!VR || VR->getStackFrame() == LeakContext->getCurrentStackFrame())
+ FirstBinding = R;
+ }
+
+ // AllocationNode is the last node in which the symbol was tracked.
+ AllocationNode = N;
+
+ // AllocationNodeInCurrentContext, is the last node in the current or
+ // parent context in which the symbol was tracked.
+ //
+ // Note that the allocation site might be in the parent conext. For example,
+ // the case where an allocation happens in a block that captures a reference
+ // to it and that reference is overwritten/dropped by another call to
+ // the block.
+ if (NContext == LeakContext || NContext->isParentOf(LeakContext))
+ AllocationNodeInCurrentOrParentContext = N;
+
+ // Find the last init that was called on the given symbol and store the
+ // init method's location context.
+ if (!InitMethodContext)
+ if (Optional<CallEnter> CEP = N->getLocation().getAs<CallEnter>()) {
+ const Stmt *CE = CEP->getCallExpr();
+ if (const ObjCMessageExpr *ME = dyn_cast_or_null<ObjCMessageExpr>(CE)) {
+ const Stmt *RecExpr = ME->getInstanceReceiver();
+ if (RecExpr) {
+ SVal RecV = St->getSVal(RecExpr, NContext);
+ if (ME->getMethodFamily() == OMF_init && RecV.getAsSymbol() == Sym)
+ InitMethodContext = CEP->getCalleeContext();
+ }
+ }
+ }
+
+ N = N->pred_empty() ? nullptr : *(N->pred_begin());
+ }
+
+ // If we are reporting a leak of the object that was allocated with alloc,
+ // mark its init method as interesting.
+ const LocationContext *InterestingMethodContext = nullptr;
+ if (InitMethodContext) {
+ const ProgramPoint AllocPP = AllocationNode->getLocation();
+ if (Optional<StmtPoint> SP = AllocPP.getAs<StmtPoint>())
+ if (const ObjCMessageExpr *ME = SP->getStmtAs<ObjCMessageExpr>())
+ if (ME->getMethodFamily() == OMF_alloc)
+ InterestingMethodContext = InitMethodContext;
+ }
+
+ // If allocation happened in a function different from the leak node context,
+ // do not report the binding.
+ assert(N && "Could not find allocation node");
+ if (N->getLocationContext() != LeakContext) {
+ FirstBinding = nullptr;
+ }
+
+ return AllocationInfo(AllocationNodeInCurrentOrParentContext,
+ FirstBinding,
+ InterestingMethodContext);
+}
+
+std::unique_ptr<PathDiagnosticPiece>
+CFRefReportVisitor::getEndPath(BugReporterContext &BRC,
+ const ExplodedNode *EndN, BugReport &BR) {
+ BR.markInteresting(Sym);
+ return BugReporterVisitor::getDefaultEndPath(BRC, EndN, BR);
+}
+
+std::unique_ptr<PathDiagnosticPiece>
+CFRefLeakReportVisitor::getEndPath(BugReporterContext &BRC,
+ const ExplodedNode *EndN, BugReport &BR) {
+
+ // Tell the BugReporterContext to report cases when the tracked symbol is
+ // assigned to different variables, etc.
+ BR.markInteresting(Sym);
+
+ // We are reporting a leak. Walk up the graph to get to the first node where
+ // the symbol appeared, and also get the first VarDecl that tracked object
+ // is stored to.
+ AllocationInfo AllocI =
+ GetAllocationSite(BRC.getStateManager(), EndN, Sym);
+
+ const MemRegion* FirstBinding = AllocI.R;
+ BR.markInteresting(AllocI.InterestingMethodContext);
+
+ SourceManager& SM = BRC.getSourceManager();
+
+ // Compute an actual location for the leak. Sometimes a leak doesn't
+ // occur at an actual statement (e.g., transition between blocks; end
+ // of function) so we need to walk the graph and compute a real location.
+ const ExplodedNode *LeakN = EndN;
+ PathDiagnosticLocation L = PathDiagnosticLocation::createEndOfPath(LeakN, SM);
+
+ std::string sbuf;
+ llvm::raw_string_ostream os(sbuf);
+
+ os << "Object leaked: ";
+
+ if (FirstBinding) {
+ os << "object allocated and stored into '"
+ << FirstBinding->getString() << '\'';
+ }
+ else
+ os << "allocated object";
+
+ // Get the retain count.
+ const RefVal* RV = getRefBinding(EndN->getState(), Sym);
+ assert(RV);
+
+ if (RV->getKind() == RefVal::ErrorLeakReturned) {
+ // FIXME: Per comments in rdar://6320065, "create" only applies to CF
+ // objects. Only "copy", "alloc", "retain" and "new" transfer ownership
+ // to the caller for NS objects.
+ const Decl *D = &EndN->getCodeDecl();
+
+ os << (isa<ObjCMethodDecl>(D) ? " is returned from a method "
+ : " is returned from a function ");
+
+ if (D->hasAttr<CFReturnsNotRetainedAttr>())
+ os << "that is annotated as CF_RETURNS_NOT_RETAINED";
+ else if (D->hasAttr<NSReturnsNotRetainedAttr>())
+ os << "that is annotated as NS_RETURNS_NOT_RETAINED";
+ else {
+ if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
+ os << "whose name ('" << MD->getSelector().getAsString()
+ << "') does not start with 'copy', 'mutableCopy', 'alloc' or 'new'."
+ " This violates the naming convention rules"
+ " given in the Memory Management Guide for Cocoa";
+ }
+ else {
+ const FunctionDecl *FD = cast<FunctionDecl>(D);
+ os << "whose name ('" << *FD
+ << "') does not contain 'Copy' or 'Create'. This violates the naming"
+ " convention rules given in the Memory Management Guide for Core"
+ " Foundation";
+ }
+ }
+ }
+ else if (RV->getKind() == RefVal::ErrorGCLeakReturned) {
+ const ObjCMethodDecl &MD = cast<ObjCMethodDecl>(EndN->getCodeDecl());
+ os << " and returned from method '" << MD.getSelector().getAsString()
+ << "' is potentially leaked when using garbage collection. Callers "
+ "of this method do not expect a returned object with a +1 retain "
+ "count since they expect the object to be managed by the garbage "
+ "collector";
+ }
+ else
+ os << " is not referenced later in this execution path and has a retain "
+ "count of +" << RV->getCount();
+
+ return llvm::make_unique<PathDiagnosticEventPiece>(L, os.str());
+}
+
+CFRefLeakReport::CFRefLeakReport(CFRefBug &D, const LangOptions &LOpts,
+ bool GCEnabled, const SummaryLogTy &Log,
+ ExplodedNode *n, SymbolRef sym,
+ CheckerContext &Ctx,
+ bool IncludeAllocationLine)
+ : CFRefReport(D, LOpts, GCEnabled, Log, n, sym, false) {
+
+ // Most bug reports are cached at the location where they occurred.
+ // With leaks, we want to unique them by the location where they were
+ // allocated, and only report a single path. To do this, we need to find
+ // the allocation site of a piece of tracked memory, which we do via a
+ // call to GetAllocationSite. This will walk the ExplodedGraph backwards.
+ // Note that this is *not* the trimmed graph; we are guaranteed, however,
+ // that all ancestor nodes that represent the allocation site have the
+ // same SourceLocation.
+ const ExplodedNode *AllocNode = nullptr;
+
+ const SourceManager& SMgr = Ctx.getSourceManager();
+
+ AllocationInfo AllocI =
+ GetAllocationSite(Ctx.getStateManager(), getErrorNode(), sym);
+
+ AllocNode = AllocI.N;
+ AllocBinding = AllocI.R;
+ markInteresting(AllocI.InterestingMethodContext);
+
+ // Get the SourceLocation for the allocation site.
+ // FIXME: This will crash the analyzer if an allocation comes from an
+ // implicit call (ex: a destructor call).
+ // (Currently there are no such allocations in Cocoa, though.)
+ const Stmt *AllocStmt = 0;
+ ProgramPoint P = AllocNode->getLocation();
+ if (Optional<CallExitEnd> Exit = P.getAs<CallExitEnd>())
+ AllocStmt = Exit->getCalleeContext()->getCallSite();
+ else
+ AllocStmt = P.castAs<PostStmt>().getStmt();
+ assert(AllocStmt && "Cannot find allocation statement");
+
+ PathDiagnosticLocation AllocLocation =
+ PathDiagnosticLocation::createBegin(AllocStmt, SMgr,
+ AllocNode->getLocationContext());
+ Location = AllocLocation;
+
+ // Set uniqieing info, which will be used for unique the bug reports. The
+ // leaks should be uniqued on the allocation site.
+ UniqueingLocation = AllocLocation;
+ UniqueingDecl = AllocNode->getLocationContext()->getDecl();
+
+ // Fill in the description of the bug.
+ Description.clear();
+ llvm::raw_string_ostream os(Description);
+ os << "Potential leak ";
+ if (GCEnabled)
+ os << "(when using garbage collection) ";
+ os << "of an object";
+
+ if (AllocBinding) {
+ os << " stored into '" << AllocBinding->getString() << '\'';
+ if (IncludeAllocationLine) {
+ FullSourceLoc SL(AllocStmt->getLocStart(), Ctx.getSourceManager());
+ os << " (allocated on line " << SL.getSpellingLineNumber() << ")";
+ }
+ }
+
+ addVisitor(llvm::make_unique<CFRefLeakReportVisitor>(sym, GCEnabled, Log));
+}
+
+//===----------------------------------------------------------------------===//
+// Main checker logic.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class RetainCountChecker
+ : public Checker< check::Bind,
+ check::DeadSymbols,
+ check::EndAnalysis,
+ check::EndFunction,
+ check::PostStmt<BlockExpr>,
+ check::PostStmt<CastExpr>,
+ check::PostStmt<ObjCArrayLiteral>,
+ check::PostStmt<ObjCDictionaryLiteral>,
+ check::PostStmt<ObjCBoxedExpr>,
+ check::PostStmt<ObjCIvarRefExpr>,
+ check::PostCall,
+ check::PreStmt<ReturnStmt>,
+ check::RegionChanges,
+ eval::Assume,
+ eval::Call > {
+ mutable std::unique_ptr<CFRefBug> useAfterRelease, releaseNotOwned;
+ mutable std::unique_ptr<CFRefBug> deallocGC, deallocNotOwned;
+ mutable std::unique_ptr<CFRefBug> overAutorelease, returnNotOwnedForOwned;
+ mutable std::unique_ptr<CFRefBug> leakWithinFunction, leakAtReturn;
+ mutable std::unique_ptr<CFRefBug> leakWithinFunctionGC, leakAtReturnGC;
+
+ typedef llvm::DenseMap<SymbolRef, const CheckerProgramPointTag *> SymbolTagMap;
+
+ // This map is only used to ensure proper deletion of any allocated tags.
+ mutable SymbolTagMap DeadSymbolTags;
+
+ mutable std::unique_ptr<RetainSummaryManager> Summaries;
+ mutable std::unique_ptr<RetainSummaryManager> SummariesGC;
+ mutable SummaryLogTy SummaryLog;
+ mutable bool ShouldResetSummaryLog;
+
+ /// Optional setting to indicate if leak reports should include
+ /// the allocation line.
+ mutable bool IncludeAllocationLine;
+
+public:
+ RetainCountChecker(AnalyzerOptions &AO)
+ : ShouldResetSummaryLog(false),
+ IncludeAllocationLine(shouldIncludeAllocationSiteInLeakDiagnostics(AO)) {}
+
+ ~RetainCountChecker() override { DeleteContainerSeconds(DeadSymbolTags); }
+
+ void checkEndAnalysis(ExplodedGraph &G, BugReporter &BR,
+ ExprEngine &Eng) const {
+ // FIXME: This is a hack to make sure the summary log gets cleared between
+ // analyses of different code bodies.
+ //
+ // Why is this necessary? Because a checker's lifetime is tied to a
+ // translation unit, but an ExplodedGraph's lifetime is just a code body.
+ // Once in a blue moon, a new ExplodedNode will have the same address as an
+ // old one with an associated summary, and the bug report visitor gets very
+ // confused. (To make things worse, the summary lifetime is currently also
+ // tied to a code body, so we get a crash instead of incorrect results.)
+ //
+ // Why is this a bad solution? Because if the lifetime of the ExplodedGraph
+ // changes, things will start going wrong again. Really the lifetime of this
+ // log needs to be tied to either the specific nodes in it or the entire
+ // ExplodedGraph, not to a specific part of the code being analyzed.
+ //
+ // (Also, having stateful local data means that the same checker can't be
+ // used from multiple threads, but a lot of checkers have incorrect
+ // assumptions about that anyway. So that wasn't a priority at the time of
+ // this fix.)
+ //
+ // This happens at the end of analysis, but bug reports are emitted /after/
+ // this point. So we can't just clear the summary log now. Instead, we mark
+ // that the next time we access the summary log, it should be cleared.
+
+ // If we never reset the summary log during /this/ code body analysis,
+ // there were no new summaries. There might still have been summaries from
+ // the /last/ analysis, so clear them out to make sure the bug report
+ // visitors don't get confused.
+ if (ShouldResetSummaryLog)
+ SummaryLog.clear();
+
+ ShouldResetSummaryLog = !SummaryLog.empty();
+ }
+
+ CFRefBug *getLeakWithinFunctionBug(const LangOptions &LOpts,
+ bool GCEnabled) const {
+ if (GCEnabled) {
+ if (!leakWithinFunctionGC)
+ leakWithinFunctionGC.reset(new Leak(this, "Leak of object when using "
+ "garbage collection"));
+ return leakWithinFunctionGC.get();
+ } else {
+ if (!leakWithinFunction) {
+ if (LOpts.getGC() == LangOptions::HybridGC) {
+ leakWithinFunction.reset(new Leak(this,
+ "Leak of object when not using "
+ "garbage collection (GC) in "
+ "dual GC/non-GC code"));
+ } else {
+ leakWithinFunction.reset(new Leak(this, "Leak"));
+ }
+ }
+ return leakWithinFunction.get();
+ }
+ }
+
+ CFRefBug *getLeakAtReturnBug(const LangOptions &LOpts, bool GCEnabled) const {
+ if (GCEnabled) {
+ if (!leakAtReturnGC)
+ leakAtReturnGC.reset(new Leak(this,
+ "Leak of returned object when using "
+ "garbage collection"));
+ return leakAtReturnGC.get();
+ } else {
+ if (!leakAtReturn) {
+ if (LOpts.getGC() == LangOptions::HybridGC) {
+ leakAtReturn.reset(new Leak(this,
+ "Leak of returned object when not using "
+ "garbage collection (GC) in dual "
+ "GC/non-GC code"));
+ } else {
+ leakAtReturn.reset(new Leak(this, "Leak of returned object"));
+ }
+ }
+ return leakAtReturn.get();
+ }
+ }
+
+ RetainSummaryManager &getSummaryManager(ASTContext &Ctx,
+ bool GCEnabled) const {
+ // FIXME: We don't support ARC being turned on and off during one analysis.
+ // (nor, for that matter, do we support changing ASTContexts)
+ bool ARCEnabled = (bool)Ctx.getLangOpts().ObjCAutoRefCount;
+ if (GCEnabled) {
+ if (!SummariesGC)
+ SummariesGC.reset(new RetainSummaryManager(Ctx, true, ARCEnabled));
+ else
+ assert(SummariesGC->isARCEnabled() == ARCEnabled);
+ return *SummariesGC;
+ } else {
+ if (!Summaries)
+ Summaries.reset(new RetainSummaryManager(Ctx, false, ARCEnabled));
+ else
+ assert(Summaries->isARCEnabled() == ARCEnabled);
+ return *Summaries;
+ }
+ }
+
+ RetainSummaryManager &getSummaryManager(CheckerContext &C) const {
+ return getSummaryManager(C.getASTContext(), C.isObjCGCEnabled());
+ }
+
+ void printState(raw_ostream &Out, ProgramStateRef State,
+ const char *NL, const char *Sep) const override;
+
+ void checkBind(SVal loc, SVal val, const Stmt *S, CheckerContext &C) const;
+ void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const;
+ void checkPostStmt(const CastExpr *CE, CheckerContext &C) const;
+
+ void checkPostStmt(const ObjCArrayLiteral *AL, CheckerContext &C) const;
+ void checkPostStmt(const ObjCDictionaryLiteral *DL, CheckerContext &C) const;
+ void checkPostStmt(const ObjCBoxedExpr *BE, CheckerContext &C) const;
+
+ void checkPostStmt(const ObjCIvarRefExpr *IRE, CheckerContext &C) const;
+
+ void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
+
+ void checkSummary(const RetainSummary &Summ, const CallEvent &Call,
+ CheckerContext &C) const;
+
+ void processSummaryOfInlined(const RetainSummary &Summ,
+ const CallEvent &Call,
+ CheckerContext &C) const;
+
+ bool evalCall(const CallExpr *CE, CheckerContext &C) const;
+
+ ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond,
+ bool Assumption) const;
+
+ ProgramStateRef
+ checkRegionChanges(ProgramStateRef state,
+ const InvalidatedSymbols *invalidated,
+ ArrayRef<const MemRegion *> ExplicitRegions,
+ ArrayRef<const MemRegion *> Regions,
+ const CallEvent *Call) const;
+
+ bool wantsRegionChangeUpdate(ProgramStateRef state) const {
+ return true;
+ }
+
+ void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const;
+ void checkReturnWithRetEffect(const ReturnStmt *S, CheckerContext &C,
+ ExplodedNode *Pred, RetEffect RE, RefVal X,
+ SymbolRef Sym, ProgramStateRef state) const;
+
+ void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const;
+ void checkEndFunction(CheckerContext &C) const;
+
+ ProgramStateRef updateSymbol(ProgramStateRef state, SymbolRef sym,
+ RefVal V, ArgEffect E, RefVal::Kind &hasErr,
+ CheckerContext &C) const;
+
+ void processNonLeakError(ProgramStateRef St, SourceRange ErrorRange,
+ RefVal::Kind ErrorKind, SymbolRef Sym,
+ CheckerContext &C) const;
+
+ void processObjCLiterals(CheckerContext &C, const Expr *Ex) const;
+
+ const ProgramPointTag *getDeadSymbolTag(SymbolRef sym) const;
+
+ ProgramStateRef handleSymbolDeath(ProgramStateRef state,
+ SymbolRef sid, RefVal V,
+ SmallVectorImpl<SymbolRef> &Leaked) const;
+
+ ProgramStateRef
+ handleAutoreleaseCounts(ProgramStateRef state, ExplodedNode *Pred,
+ const ProgramPointTag *Tag, CheckerContext &Ctx,
+ SymbolRef Sym, RefVal V) const;
+
+ ExplodedNode *processLeaks(ProgramStateRef state,
+ SmallVectorImpl<SymbolRef> &Leaked,
+ CheckerContext &Ctx,
+ ExplodedNode *Pred = nullptr) const;
+};
+} // end anonymous namespace
+
+namespace {
+class StopTrackingCallback : public SymbolVisitor {
+ ProgramStateRef state;
+public:
+ StopTrackingCallback(ProgramStateRef st) : state(st) {}
+ ProgramStateRef getState() const { return state; }
+
+ bool VisitSymbol(SymbolRef sym) override {
+ state = state->remove<RefBindings>(sym);
+ return true;
+ }
+};
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// Handle statements that may have an effect on refcounts.
+//===----------------------------------------------------------------------===//
+
+void RetainCountChecker::checkPostStmt(const BlockExpr *BE,
+ CheckerContext &C) const {
+
+ // Scan the BlockDecRefExprs for any object the retain count checker
+ // may be tracking.
+ if (!BE->getBlockDecl()->hasCaptures())
+ return;
+
+ ProgramStateRef state = C.getState();
+ const BlockDataRegion *R =
+ cast<BlockDataRegion>(state->getSVal(BE,
+ C.getLocationContext()).getAsRegion());
+
+ BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(),
+ E = R->referenced_vars_end();
+
+ if (I == E)
+ return;
+
+ // FIXME: For now we invalidate the tracking of all symbols passed to blocks
+ // via captured variables, even though captured variables result in a copy
+ // and in implicit increment/decrement of a retain count.
+ SmallVector<const MemRegion*, 10> Regions;
+ const LocationContext *LC = C.getLocationContext();
+ MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager();
+
+ for ( ; I != E; ++I) {
+ const VarRegion *VR = I.getCapturedRegion();
+ if (VR->getSuperRegion() == R) {
+ VR = MemMgr.getVarRegion(VR->getDecl(), LC);
+ }
+ Regions.push_back(VR);
+ }
+
+ state =
+ state->scanReachableSymbols<StopTrackingCallback>(Regions.data(),
+ Regions.data() + Regions.size()).getState();
+ C.addTransition(state);
+}
+
+void RetainCountChecker::checkPostStmt(const CastExpr *CE,
+ CheckerContext &C) const {
+ const ObjCBridgedCastExpr *BE = dyn_cast<ObjCBridgedCastExpr>(CE);
+ if (!BE)
+ return;
+
+ ArgEffect AE = IncRef;
+
+ switch (BE->getBridgeKind()) {
+ case clang::OBC_Bridge:
+ // Do nothing.
+ return;
+ case clang::OBC_BridgeRetained:
+ AE = IncRef;
+ break;
+ case clang::OBC_BridgeTransfer:
+ AE = DecRefBridgedTransferred;
+ break;
+ }
+
+ ProgramStateRef state = C.getState();
+ SymbolRef Sym = state->getSVal(CE, C.getLocationContext()).getAsLocSymbol();
+ if (!Sym)
+ return;
+ const RefVal* T = getRefBinding(state, Sym);
+ if (!T)
+ return;
+
+ RefVal::Kind hasErr = (RefVal::Kind) 0;
+ state = updateSymbol(state, Sym, *T, AE, hasErr, C);
+
+ if (hasErr) {
+ // FIXME: If we get an error during a bridge cast, should we report it?
+ // Should we assert that there is no error?
+ return;
+ }
+
+ C.addTransition(state);
+}
+
+void RetainCountChecker::processObjCLiterals(CheckerContext &C,
+ const Expr *Ex) const {
+ ProgramStateRef state = C.getState();
+ const ExplodedNode *pred = C.getPredecessor();
+ for (Stmt::const_child_iterator it = Ex->child_begin(), et = Ex->child_end() ;
+ it != et ; ++it) {
+ const Stmt *child = *it;
+ SVal V = state->getSVal(child, pred->getLocationContext());
+ if (SymbolRef sym = V.getAsSymbol())
+ if (const RefVal* T = getRefBinding(state, sym)) {
+ RefVal::Kind hasErr = (RefVal::Kind) 0;
+ state = updateSymbol(state, sym, *T, MayEscape, hasErr, C);
+ if (hasErr) {
+ processNonLeakError(state, child->getSourceRange(), hasErr, sym, C);
+ return;
+ }
+ }
+ }
+
+ // Return the object as autoreleased.
+ // RetEffect RE = RetEffect::MakeNotOwned(RetEffect::ObjC);
+ if (SymbolRef sym =
+ state->getSVal(Ex, pred->getLocationContext()).getAsSymbol()) {
+ QualType ResultTy = Ex->getType();
+ state = setRefBinding(state, sym,
+ RefVal::makeNotOwned(RetEffect::ObjC, ResultTy));
+ }
+
+ C.addTransition(state);
+}
+
+void RetainCountChecker::checkPostStmt(const ObjCArrayLiteral *AL,
+ CheckerContext &C) const {
+ // Apply the 'MayEscape' to all values.
+ processObjCLiterals(C, AL);
+}
+
+void RetainCountChecker::checkPostStmt(const ObjCDictionaryLiteral *DL,
+ CheckerContext &C) const {
+ // Apply the 'MayEscape' to all keys and values.
+ processObjCLiterals(C, DL);
+}
+
+void RetainCountChecker::checkPostStmt(const ObjCBoxedExpr *Ex,
+ CheckerContext &C) const {
+ const ExplodedNode *Pred = C.getPredecessor();
+ const LocationContext *LCtx = Pred->getLocationContext();
+ ProgramStateRef State = Pred->getState();
+
+ if (SymbolRef Sym = State->getSVal(Ex, LCtx).getAsSymbol()) {
+ QualType ResultTy = Ex->getType();
+ State = setRefBinding(State, Sym,
+ RefVal::makeNotOwned(RetEffect::ObjC, ResultTy));
+ }
+
+ C.addTransition(State);
+}
+
+static bool wasLoadedFromIvar(SymbolRef Sym) {
+ if (auto DerivedVal = dyn_cast<SymbolDerived>(Sym))
+ return isa<ObjCIvarRegion>(DerivedVal->getRegion());
+ if (auto RegionVal = dyn_cast<SymbolRegionValue>(Sym))
+ return isa<ObjCIvarRegion>(RegionVal->getRegion());
+ return false;
+}
+
+void RetainCountChecker::checkPostStmt(const ObjCIvarRefExpr *IRE,
+ CheckerContext &C) const {
+ Optional<Loc> IVarLoc = C.getSVal(IRE).getAs<Loc>();
+ if (!IVarLoc)
+ return;
+
+ ProgramStateRef State = C.getState();
+ SymbolRef Sym = State->getSVal(*IVarLoc).getAsSymbol();
+ if (!Sym || !wasLoadedFromIvar(Sym))
+ return;
+
+ // Accessing an ivar directly is unusual. If we've done that, be more
+ // forgiving about what the surrounding code is allowed to do.
+
+ QualType Ty = Sym->getType();
+ RetEffect::ObjKind Kind;
+ if (Ty->isObjCRetainableType())
+ Kind = RetEffect::ObjC;
+ else if (coreFoundation::isCFObjectRef(Ty))
+ Kind = RetEffect::CF;
+ else
+ return;
+
+ // If the value is already known to be nil, don't bother tracking it.
+ ConstraintManager &CMgr = State->getConstraintManager();
+ if (CMgr.isNull(State, Sym).isConstrainedTrue())
+ return;
+
+ if (const RefVal *RV = getRefBinding(State, Sym)) {
+ // If we've seen this symbol before, or we're only seeing it now because
+ // of something the analyzer has synthesized, don't do anything.
+ if (RV->getIvarAccessHistory() != RefVal::IvarAccessHistory::None ||
+ isSynthesizedAccessor(C.getStackFrame())) {
+ return;
+ }
+
+ // Note that this value has been loaded from an ivar.
+ C.addTransition(setRefBinding(State, Sym, RV->withIvarAccess()));
+ return;
+ }
+
+ RefVal PlusZero = RefVal::makeNotOwned(Kind, Ty);
+
+ // In a synthesized accessor, the effective retain count is +0.
+ if (isSynthesizedAccessor(C.getStackFrame())) {
+ C.addTransition(setRefBinding(State, Sym, PlusZero));
+ return;
+ }
+
+ State = setRefBinding(State, Sym, PlusZero.withIvarAccess());
+ C.addTransition(State);
+}
+
+void RetainCountChecker::checkPostCall(const CallEvent &Call,
+ CheckerContext &C) const {
+ RetainSummaryManager &Summaries = getSummaryManager(C);
+ const RetainSummary *Summ = Summaries.getSummary(Call, C.getState());
+
+ if (C.wasInlined) {
+ processSummaryOfInlined(*Summ, Call, C);
+ return;
+ }
+ checkSummary(*Summ, Call, C);
+}
+
+/// GetReturnType - Used to get the return type of a message expression or
+/// function call with the intention of affixing that type to a tracked symbol.
+/// While the return type can be queried directly from RetEx, when
+/// invoking class methods we augment to the return type to be that of
+/// a pointer to the class (as opposed it just being id).
+// FIXME: We may be able to do this with related result types instead.
+// This function is probably overestimating.
+static QualType GetReturnType(const Expr *RetE, ASTContext &Ctx) {
+ QualType RetTy = RetE->getType();
+ // If RetE is not a message expression just return its type.
+ // If RetE is a message expression, return its types if it is something
+ /// more specific than id.
+ if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(RetE))
+ if (const ObjCObjectPointerType *PT = RetTy->getAs<ObjCObjectPointerType>())
+ if (PT->isObjCQualifiedIdType() || PT->isObjCIdType() ||
+ PT->isObjCClassType()) {
+ // At this point we know the return type of the message expression is
+ // id, id<...>, or Class. If we have an ObjCInterfaceDecl, we know this
+ // is a call to a class method whose type we can resolve. In such
+ // cases, promote the return type to XXX* (where XXX is the class).
+ const ObjCInterfaceDecl *D = ME->getReceiverInterface();
+ return !D ? RetTy :
+ Ctx.getObjCObjectPointerType(Ctx.getObjCInterfaceType(D));
+ }
+
+ return RetTy;
+}
+
+// We don't always get the exact modeling of the function with regards to the
+// retain count checker even when the function is inlined. For example, we need
+// to stop tracking the symbols which were marked with StopTrackingHard.
+void RetainCountChecker::processSummaryOfInlined(const RetainSummary &Summ,
+ const CallEvent &CallOrMsg,
+ CheckerContext &C) const {
+ ProgramStateRef state = C.getState();
+
+ // Evaluate the effect of the arguments.
+ for (unsigned idx = 0, e = CallOrMsg.getNumArgs(); idx != e; ++idx) {
+ if (Summ.getArg(idx) == StopTrackingHard) {
+ SVal V = CallOrMsg.getArgSVal(idx);
+ if (SymbolRef Sym = V.getAsLocSymbol()) {
+ state = removeRefBinding(state, Sym);
+ }
+ }
+ }
+
+ // Evaluate the effect on the message receiver.
+ const ObjCMethodCall *MsgInvocation = dyn_cast<ObjCMethodCall>(&CallOrMsg);
+ if (MsgInvocation) {
+ if (SymbolRef Sym = MsgInvocation->getReceiverSVal().getAsLocSymbol()) {
+ if (Summ.getReceiverEffect() == StopTrackingHard) {
+ state = removeRefBinding(state, Sym);
+ }
+ }
+ }
+
+ // Consult the summary for the return value.
+ RetEffect RE = Summ.getRetEffect();
+ if (RE.getKind() == RetEffect::NoRetHard) {
+ SymbolRef Sym = CallOrMsg.getReturnValue().getAsSymbol();
+ if (Sym)
+ state = removeRefBinding(state, Sym);
+ }
+
+ C.addTransition(state);
+}
+
+void RetainCountChecker::checkSummary(const RetainSummary &Summ,
+ const CallEvent &CallOrMsg,
+ CheckerContext &C) const {
+ ProgramStateRef state = C.getState();
+
+ // Evaluate the effect of the arguments.
+ RefVal::Kind hasErr = (RefVal::Kind) 0;
+ SourceRange ErrorRange;
+ SymbolRef ErrorSym = nullptr;
+
+ for (unsigned idx = 0, e = CallOrMsg.getNumArgs(); idx != e; ++idx) {
+ SVal V = CallOrMsg.getArgSVal(idx);
+
+ if (SymbolRef Sym = V.getAsLocSymbol()) {
+ if (const RefVal *T = getRefBinding(state, Sym)) {
+ state = updateSymbol(state, Sym, *T, Summ.getArg(idx), hasErr, C);
+ if (hasErr) {
+ ErrorRange = CallOrMsg.getArgSourceRange(idx);
+ ErrorSym = Sym;
+ break;
+ }
+ }
+ }
+ }
+
+ // Evaluate the effect on the message receiver.
+ bool ReceiverIsTracked = false;
+ if (!hasErr) {
+ const ObjCMethodCall *MsgInvocation = dyn_cast<ObjCMethodCall>(&CallOrMsg);
+ if (MsgInvocation) {
+ if (SymbolRef Sym = MsgInvocation->getReceiverSVal().getAsLocSymbol()) {
+ if (const RefVal *T = getRefBinding(state, Sym)) {
+ ReceiverIsTracked = true;
+ state = updateSymbol(state, Sym, *T, Summ.getReceiverEffect(),
+ hasErr, C);
+ if (hasErr) {
+ ErrorRange = MsgInvocation->getOriginExpr()->getReceiverRange();
+ ErrorSym = Sym;
+ }
+ }
+ }
+ }
+ }
+
+ // Process any errors.
+ if (hasErr) {
+ processNonLeakError(state, ErrorRange, hasErr, ErrorSym, C);
+ return;
+ }
+
+ // Consult the summary for the return value.
+ RetEffect RE = Summ.getRetEffect();
+
+ if (RE.getKind() == RetEffect::OwnedWhenTrackedReceiver) {
+ if (ReceiverIsTracked)
+ RE = getSummaryManager(C).getObjAllocRetEffect();
+ else
+ RE = RetEffect::MakeNoRet();
+ }
+
+ switch (RE.getKind()) {
+ default:
+ llvm_unreachable("Unhandled RetEffect.");
+
+ case RetEffect::NoRet:
+ case RetEffect::NoRetHard:
+ // No work necessary.
+ break;
+
+ case RetEffect::OwnedAllocatedSymbol:
+ case RetEffect::OwnedSymbol: {
+ SymbolRef Sym = CallOrMsg.getReturnValue().getAsSymbol();
+ if (!Sym)
+ break;
+
+ // Use the result type from the CallEvent as it automatically adjusts
+ // for methods/functions that return references.
+ QualType ResultTy = CallOrMsg.getResultType();
+ state = setRefBinding(state, Sym, RefVal::makeOwned(RE.getObjKind(),
+ ResultTy));
+
+ // FIXME: Add a flag to the checker where allocations are assumed to
+ // *not* fail.
+ break;
+ }
+
+ case RetEffect::GCNotOwnedSymbol:
+ case RetEffect::NotOwnedSymbol: {
+ const Expr *Ex = CallOrMsg.getOriginExpr();
+ SymbolRef Sym = CallOrMsg.getReturnValue().getAsSymbol();
+ if (!Sym)
+ break;
+ assert(Ex);
+ // Use GetReturnType in order to give [NSFoo alloc] the type NSFoo *.
+ QualType ResultTy = GetReturnType(Ex, C.getASTContext());
+ state = setRefBinding(state, Sym, RefVal::makeNotOwned(RE.getObjKind(),
+ ResultTy));
+ break;
+ }
+ }
+
+ // This check is actually necessary; otherwise the statement builder thinks
+ // we've hit a previously-found path.
+ // Normally addTransition takes care of this, but we want the node pointer.
+ ExplodedNode *NewNode;
+ if (state == C.getState()) {
+ NewNode = C.getPredecessor();
+ } else {
+ NewNode = C.addTransition(state);
+ }
+
+ // Annotate the node with summary we used.
+ if (NewNode) {
+ // FIXME: This is ugly. See checkEndAnalysis for why it's necessary.
+ if (ShouldResetSummaryLog) {
+ SummaryLog.clear();
+ ShouldResetSummaryLog = false;
+ }
+ SummaryLog[NewNode] = &Summ;
+ }
+}
+
+
+ProgramStateRef
+RetainCountChecker::updateSymbol(ProgramStateRef state, SymbolRef sym,
+ RefVal V, ArgEffect E, RefVal::Kind &hasErr,
+ CheckerContext &C) const {
+ // In GC mode [... release] and [... retain] do nothing.
+ // In ARC mode they shouldn't exist at all, but we just ignore them.
+ bool IgnoreRetainMsg = C.isObjCGCEnabled();
+ if (!IgnoreRetainMsg)
+ IgnoreRetainMsg = (bool)C.getASTContext().getLangOpts().ObjCAutoRefCount;
+
+ switch (E) {
+ default:
+ break;
+ case IncRefMsg:
+ E = IgnoreRetainMsg ? DoNothing : IncRef;
+ break;
+ case DecRefMsg:
+ E = IgnoreRetainMsg ? DoNothing : DecRef;
+ break;
+ case DecRefMsgAndStopTrackingHard:
+ E = IgnoreRetainMsg ? StopTracking : DecRefAndStopTrackingHard;
+ break;
+ case MakeCollectable:
+ E = C.isObjCGCEnabled() ? DecRef : DoNothing;
+ break;
+ }
+
+ // Handle all use-after-releases.
+ if (!C.isObjCGCEnabled() && V.getKind() == RefVal::Released) {
+ V = V ^ RefVal::ErrorUseAfterRelease;
+ hasErr = V.getKind();
+ return setRefBinding(state, sym, V);
+ }
+
+ switch (E) {
+ case DecRefMsg:
+ case IncRefMsg:
+ case MakeCollectable:
+ case DecRefMsgAndStopTrackingHard:
+ llvm_unreachable("DecRefMsg/IncRefMsg/MakeCollectable already converted");
+
+ case Dealloc:
+ // Any use of -dealloc in GC is *bad*.
+ if (C.isObjCGCEnabled()) {
+ V = V ^ RefVal::ErrorDeallocGC;
+ hasErr = V.getKind();
+ break;
+ }
+
+ switch (V.getKind()) {
+ default:
+ llvm_unreachable("Invalid RefVal state for an explicit dealloc.");
+ case RefVal::Owned:
+ // The object immediately transitions to the released state.
+ V = V ^ RefVal::Released;
+ V.clearCounts();
+ return setRefBinding(state, sym, V);
+ case RefVal::NotOwned:
+ V = V ^ RefVal::ErrorDeallocNotOwned;
+ hasErr = V.getKind();
+ break;
+ }
+ break;
+
+ case MayEscape:
+ if (V.getKind() == RefVal::Owned) {
+ V = V ^ RefVal::NotOwned;
+ break;
+ }
+
+ // Fall-through.
+
+ case DoNothing:
+ return state;
+
+ case Autorelease:
+ if (C.isObjCGCEnabled())
+ return state;
+ // Update the autorelease counts.
+ V = V.autorelease();
+ break;
+
+ case StopTracking:
+ case StopTrackingHard:
+ return removeRefBinding(state, sym);
+
+ case IncRef:
+ switch (V.getKind()) {
+ default:
+ llvm_unreachable("Invalid RefVal state for a retain.");
+ case RefVal::Owned:
+ case RefVal::NotOwned:
+ V = V + 1;
+ break;
+ case RefVal::Released:
+ // Non-GC cases are handled above.
+ assert(C.isObjCGCEnabled());
+ V = (V ^ RefVal::Owned) + 1;
+ break;
+ }
+ break;
+
+ case DecRef:
+ case DecRefBridgedTransferred:
+ case DecRefAndStopTrackingHard:
+ switch (V.getKind()) {
+ default:
+ // case 'RefVal::Released' handled above.
+ llvm_unreachable("Invalid RefVal state for a release.");
+
+ case RefVal::Owned:
+ assert(V.getCount() > 0);
+ if (V.getCount() == 1) {
+ if (E == DecRefBridgedTransferred ||
+ V.getIvarAccessHistory() ==
+ RefVal::IvarAccessHistory::AccessedDirectly)
+ V = V ^ RefVal::NotOwned;
+ else
+ V = V ^ RefVal::Released;
+ } else if (E == DecRefAndStopTrackingHard) {
+ return removeRefBinding(state, sym);
+ }
+
+ V = V - 1;
+ break;
+
+ case RefVal::NotOwned:
+ if (V.getCount() > 0) {
+ if (E == DecRefAndStopTrackingHard)
+ return removeRefBinding(state, sym);
+ V = V - 1;
+ } else if (V.getIvarAccessHistory() ==
+ RefVal::IvarAccessHistory::AccessedDirectly) {
+ // Assume that the instance variable was holding on the object at
+ // +1, and we just didn't know.
+ if (E == DecRefAndStopTrackingHard)
+ return removeRefBinding(state, sym);
+ V = V.releaseViaIvar() ^ RefVal::Released;
+ } else {
+ V = V ^ RefVal::ErrorReleaseNotOwned;
+ hasErr = V.getKind();
+ }
+ break;
+
+ case RefVal::Released:
+ // Non-GC cases are handled above.
+ assert(C.isObjCGCEnabled());
+ V = V ^ RefVal::ErrorUseAfterRelease;
+ hasErr = V.getKind();
+ break;
+ }
+ break;
+ }
+ return setRefBinding(state, sym, V);
+}
+
+void RetainCountChecker::processNonLeakError(ProgramStateRef St,
+ SourceRange ErrorRange,
+ RefVal::Kind ErrorKind,
+ SymbolRef Sym,
+ CheckerContext &C) const {
+ // HACK: Ignore retain-count issues on values accessed through ivars,
+ // because of cases like this:
+ // [_contentView retain];
+ // [_contentView removeFromSuperview];
+ // [self addSubview:_contentView]; // invalidates 'self'
+ // [_contentView release];
+ if (const RefVal *RV = getRefBinding(St, Sym))
+ if (RV->getIvarAccessHistory() != RefVal::IvarAccessHistory::None)
+ return;
+
+ ExplodedNode *N = C.generateSink(St);
+ if (!N)
+ return;
+
+ CFRefBug *BT;
+ switch (ErrorKind) {
+ default:
+ llvm_unreachable("Unhandled error.");
+ case RefVal::ErrorUseAfterRelease:
+ if (!useAfterRelease)
+ useAfterRelease.reset(new UseAfterRelease(this));
+ BT = &*useAfterRelease;
+ break;
+ case RefVal::ErrorReleaseNotOwned:
+ if (!releaseNotOwned)
+ releaseNotOwned.reset(new BadRelease(this));
+ BT = &*releaseNotOwned;
+ break;
+ case RefVal::ErrorDeallocGC:
+ if (!deallocGC)
+ deallocGC.reset(new DeallocGC(this));
+ BT = &*deallocGC;
+ break;
+ case RefVal::ErrorDeallocNotOwned:
+ if (!deallocNotOwned)
+ deallocNotOwned.reset(new DeallocNotOwned(this));
+ BT = &*deallocNotOwned;
+ break;
+ }
+
+ assert(BT);
+ CFRefReport *report = new CFRefReport(*BT, C.getASTContext().getLangOpts(),
+ C.isObjCGCEnabled(), SummaryLog,
+ N, Sym);
+ report->addRange(ErrorRange);
+ C.emitReport(report);
+}
+
+//===----------------------------------------------------------------------===//
+// Handle the return values of retain-count-related functions.
+//===----------------------------------------------------------------------===//
+
+bool RetainCountChecker::evalCall(const CallExpr *CE, CheckerContext &C) const {
+ // Get the callee. We're only interested in simple C functions.
+ ProgramStateRef state = C.getState();
+ const FunctionDecl *FD = C.getCalleeDecl(CE);
+ if (!FD)
+ return false;
+
+ IdentifierInfo *II = FD->getIdentifier();
+ if (!II)
+ return false;
+
+ // For now, we're only handling the functions that return aliases of their
+ // arguments: CFRetain and CFMakeCollectable (and their families).
+ // Eventually we should add other functions we can model entirely,
+ // such as CFRelease, which don't invalidate their arguments or globals.
+ if (CE->getNumArgs() != 1)
+ return false;
+
+ // Get the name of the function.
+ StringRef FName = II->getName();
+ FName = FName.substr(FName.find_first_not_of('_'));
+
+ // See if it's one of the specific functions we know how to eval.
+ bool canEval = false;
+
+ QualType ResultTy = CE->getCallReturnType(C.getASTContext());
+ if (ResultTy->isObjCIdType()) {
+ // Handle: id NSMakeCollectable(CFTypeRef)
+ canEval = II->isStr("NSMakeCollectable");
+ } else if (ResultTy->isPointerType()) {
+ // Handle: (CF|CG)Retain
+ // CFAutorelease
+ // CFMakeCollectable
+ // It's okay to be a little sloppy here (CGMakeCollectable doesn't exist).
+ if (cocoa::isRefType(ResultTy, "CF", FName) ||
+ cocoa::isRefType(ResultTy, "CG", FName)) {
+ canEval = isRetain(FD, FName) || isAutorelease(FD, FName) ||
+ isMakeCollectable(FD, FName);
+ }
+ }
+
+ if (!canEval)
+ return false;
+
+ // Bind the return value.
+ const LocationContext *LCtx = C.getLocationContext();
+ SVal RetVal = state->getSVal(CE->getArg(0), LCtx);
+ if (RetVal.isUnknown()) {
+ // If the receiver is unknown, conjure a return value.
+ SValBuilder &SVB = C.getSValBuilder();
+ RetVal = SVB.conjureSymbolVal(nullptr, CE, LCtx, ResultTy, C.blockCount());
+ }
+ state = state->BindExpr(CE, LCtx, RetVal, false);
+
+ // FIXME: This should not be necessary, but otherwise the argument seems to be
+ // considered alive during the next statement.
+ if (const MemRegion *ArgRegion = RetVal.getAsRegion()) {
+ // Save the refcount status of the argument.
+ SymbolRef Sym = RetVal.getAsLocSymbol();
+ const RefVal *Binding = nullptr;
+ if (Sym)
+ Binding = getRefBinding(state, Sym);
+
+ // Invalidate the argument region.
+ state = state->invalidateRegions(ArgRegion, CE, C.blockCount(), LCtx,
+ /*CausesPointerEscape*/ false);
+
+ // Restore the refcount status of the argument.
+ if (Binding)
+ state = setRefBinding(state, Sym, *Binding);
+ }
+
+ C.addTransition(state);
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// Handle return statements.
+//===----------------------------------------------------------------------===//
+
+void RetainCountChecker::checkPreStmt(const ReturnStmt *S,
+ CheckerContext &C) const {
+
+ // Only adjust the reference count if this is the top-level call frame,
+ // and not the result of inlining. In the future, we should do
+ // better checking even for inlined calls, and see if they match
+ // with their expected semantics (e.g., the method should return a retained
+ // object, etc.).
+ if (!C.inTopFrame())
+ return;
+
+ const Expr *RetE = S->getRetValue();
+ if (!RetE)
+ return;
+
+ ProgramStateRef state = C.getState();
+ SymbolRef Sym =
+ state->getSValAsScalarOrLoc(RetE, C.getLocationContext()).getAsLocSymbol();
+ if (!Sym)
+ return;
+
+ // Get the reference count binding (if any).
+ const RefVal *T = getRefBinding(state, Sym);
+ if (!T)
+ return;
+
+ // Change the reference count.
+ RefVal X = *T;
+
+ switch (X.getKind()) {
+ case RefVal::Owned: {
+ unsigned cnt = X.getCount();
+ assert(cnt > 0);
+ X.setCount(cnt - 1);
+ X = X ^ RefVal::ReturnedOwned;
+ break;
+ }
+
+ case RefVal::NotOwned: {
+ unsigned cnt = X.getCount();
+ if (cnt) {
+ X.setCount(cnt - 1);
+ X = X ^ RefVal::ReturnedOwned;
+ }
+ else {
+ X = X ^ RefVal::ReturnedNotOwned;
+ }
+ break;
+ }
+
+ default:
+ return;
+ }
+
+ // Update the binding.
+ state = setRefBinding(state, Sym, X);
+ ExplodedNode *Pred = C.addTransition(state);
+
+ // At this point we have updated the state properly.
+ // Everything after this is merely checking to see if the return value has
+ // been over- or under-retained.
+
+ // Did we cache out?
+ if (!Pred)
+ return;
+
+ // Update the autorelease counts.
+ static CheckerProgramPointTag AutoreleaseTag(this, "Autorelease");
+ state = handleAutoreleaseCounts(state, Pred, &AutoreleaseTag, C, Sym, X);
+
+ // Did we cache out?
+ if (!state)
+ return;
+
+ // Get the updated binding.
+ T = getRefBinding(state, Sym);
+ assert(T);
+ X = *T;
+
+ // Consult the summary of the enclosing method.
+ RetainSummaryManager &Summaries = getSummaryManager(C);
+ const Decl *CD = &Pred->getCodeDecl();
+ RetEffect RE = RetEffect::MakeNoRet();
+
+ // FIXME: What is the convention for blocks? Is there one?
+ if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CD)) {
+ const RetainSummary *Summ = Summaries.getMethodSummary(MD);
+ RE = Summ->getRetEffect();
+ } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CD)) {
+ if (!isa<CXXMethodDecl>(FD)) {
+ const RetainSummary *Summ = Summaries.getFunctionSummary(FD);
+ RE = Summ->getRetEffect();
+ }
+ }
+
+ checkReturnWithRetEffect(S, C, Pred, RE, X, Sym, state);
+}
+
+void RetainCountChecker::checkReturnWithRetEffect(const ReturnStmt *S,
+ CheckerContext &C,
+ ExplodedNode *Pred,
+ RetEffect RE, RefVal X,
+ SymbolRef Sym,
+ ProgramStateRef state) const {
+ // HACK: Ignore retain-count issues on values accessed through ivars,
+ // because of cases like this:
+ // [_contentView retain];
+ // [_contentView removeFromSuperview];
+ // [self addSubview:_contentView]; // invalidates 'self'
+ // [_contentView release];
+ if (X.getIvarAccessHistory() != RefVal::IvarAccessHistory::None)
+ return;
+
+ // Any leaks or other errors?
+ if (X.isReturnedOwned() && X.getCount() == 0) {
+ if (RE.getKind() != RetEffect::NoRet) {
+ bool hasError = false;
+ if (C.isObjCGCEnabled() && RE.getObjKind() == RetEffect::ObjC) {
+ // Things are more complicated with garbage collection. If the
+ // returned object is suppose to be an Objective-C object, we have
+ // a leak (as the caller expects a GC'ed object) because no
+ // method should return ownership unless it returns a CF object.
+ hasError = true;
+ X = X ^ RefVal::ErrorGCLeakReturned;
+ }
+ else if (!RE.isOwned()) {
+ // Either we are using GC and the returned object is a CF type
+ // or we aren't using GC. In either case, we expect that the
+ // enclosing method is expected to return ownership.
+ hasError = true;
+ X = X ^ RefVal::ErrorLeakReturned;
+ }
+
+ if (hasError) {
+ // Generate an error node.
+ state = setRefBinding(state, Sym, X);
+
+ static CheckerProgramPointTag ReturnOwnLeakTag(this, "ReturnsOwnLeak");
+ ExplodedNode *N = C.addTransition(state, Pred, &ReturnOwnLeakTag);
+ if (N) {
+ const LangOptions &LOpts = C.getASTContext().getLangOpts();
+ bool GCEnabled = C.isObjCGCEnabled();
+ CFRefReport *report =
+ new CFRefLeakReport(*getLeakAtReturnBug(LOpts, GCEnabled),
+ LOpts, GCEnabled, SummaryLog,
+ N, Sym, C, IncludeAllocationLine);
+
+ C.emitReport(report);
+ }
+ }
+ }
+ } else if (X.isReturnedNotOwned()) {
+ if (RE.isOwned()) {
+ if (X.getIvarAccessHistory() ==
+ RefVal::IvarAccessHistory::AccessedDirectly) {
+ // Assume the method was trying to transfer a +1 reference from a
+ // strong ivar to the caller.
+ state = setRefBinding(state, Sym,
+ X.releaseViaIvar() ^ RefVal::ReturnedOwned);
+ } else {
+ // Trying to return a not owned object to a caller expecting an
+ // owned object.
+ state = setRefBinding(state, Sym, X ^ RefVal::ErrorReturnedNotOwned);
+
+ static CheckerProgramPointTag
+ ReturnNotOwnedTag(this, "ReturnNotOwnedForOwned");
+
+ ExplodedNode *N = C.addTransition(state, Pred, &ReturnNotOwnedTag);
+ if (N) {
+ if (!returnNotOwnedForOwned)
+ returnNotOwnedForOwned.reset(new ReturnedNotOwnedForOwned(this));
+
+ CFRefReport *report =
+ new CFRefReport(*returnNotOwnedForOwned,
+ C.getASTContext().getLangOpts(),
+ C.isObjCGCEnabled(), SummaryLog, N, Sym);
+ C.emitReport(report);
+ }
+ }
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Check various ways a symbol can be invalidated.
+//===----------------------------------------------------------------------===//
+
+void RetainCountChecker::checkBind(SVal loc, SVal val, const Stmt *S,
+ CheckerContext &C) const {
+ // Are we storing to something that causes the value to "escape"?
+ bool escapes = true;
+
+ // A value escapes in three possible cases (this may change):
+ //
+ // (1) we are binding to something that is not a memory region.
+ // (2) we are binding to a memregion that does not have stack storage
+ // (3) we are binding to a memregion with stack storage that the store
+ // does not understand.
+ ProgramStateRef state = C.getState();
+
+ if (Optional<loc::MemRegionVal> regionLoc = loc.getAs<loc::MemRegionVal>()) {
+ escapes = !regionLoc->getRegion()->hasStackStorage();
+
+ if (!escapes) {
+ // To test (3), generate a new state with the binding added. If it is
+ // the same state, then it escapes (since the store cannot represent
+ // the binding).
+ // Do this only if we know that the store is not supposed to generate the
+ // same state.
+ SVal StoredVal = state->getSVal(regionLoc->getRegion());
+ if (StoredVal != val)
+ escapes = (state == (state->bindLoc(*regionLoc, val)));
+ }
+ if (!escapes) {
+ // Case 4: We do not currently model what happens when a symbol is
+ // assigned to a struct field, so be conservative here and let the symbol
+ // go. TODO: This could definitely be improved upon.
+ escapes = !isa<VarRegion>(regionLoc->getRegion());
+ }
+ }
+
+ // If we are storing the value into an auto function scope variable annotated
+ // with (__attribute__((cleanup))), stop tracking the value to avoid leak
+ // false positives.
+ if (const VarRegion *LVR = dyn_cast_or_null<VarRegion>(loc.getAsRegion())) {
+ const VarDecl *VD = LVR->getDecl();
+ if (VD->hasAttr<CleanupAttr>()) {
+ escapes = true;
+ }
+ }
+
+ // If our store can represent the binding and we aren't storing to something
+ // that doesn't have local storage then just return and have the simulation
+ // state continue as is.
+ if (!escapes)
+ return;
+
+ // Otherwise, find all symbols referenced by 'val' that we are tracking
+ // and stop tracking them.
+ state = state->scanReachableSymbols<StopTrackingCallback>(val).getState();
+ C.addTransition(state);
+}
+
+ProgramStateRef RetainCountChecker::evalAssume(ProgramStateRef state,
+ SVal Cond,
+ bool Assumption) const {
+
+ // FIXME: We may add to the interface of evalAssume the list of symbols
+ // whose assumptions have changed. For now we just iterate through the
+ // bindings and check if any of the tracked symbols are NULL. This isn't
+ // too bad since the number of symbols we will track in practice are
+ // probably small and evalAssume is only called at branches and a few
+ // other places.
+ RefBindingsTy B = state->get<RefBindings>();
+
+ if (B.isEmpty())
+ return state;
+
+ bool changed = false;
+ RefBindingsTy::Factory &RefBFactory = state->get_context<RefBindings>();
+
+ for (RefBindingsTy::iterator I = B.begin(), E = B.end(); I != E; ++I) {
+ // Check if the symbol is null stop tracking the symbol.
+ ConstraintManager &CMgr = state->getConstraintManager();
+ ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey());
+ if (AllocFailed.isConstrainedTrue()) {
+ changed = true;
+ B = RefBFactory.remove(B, I.getKey());
+ }
+ }
+
+ if (changed)
+ state = state->set<RefBindings>(B);
+
+ return state;
+}
+
+ProgramStateRef
+RetainCountChecker::checkRegionChanges(ProgramStateRef state,
+ const InvalidatedSymbols *invalidated,
+ ArrayRef<const MemRegion *> ExplicitRegions,
+ ArrayRef<const MemRegion *> Regions,
+ const CallEvent *Call) const {
+ if (!invalidated)
+ return state;
+
+ llvm::SmallPtrSet<SymbolRef, 8> WhitelistedSymbols;
+ for (ArrayRef<const MemRegion *>::iterator I = ExplicitRegions.begin(),
+ E = ExplicitRegions.end(); I != E; ++I) {
+ if (const SymbolicRegion *SR = (*I)->StripCasts()->getAs<SymbolicRegion>())
+ WhitelistedSymbols.insert(SR->getSymbol());
+ }
+
+ for (InvalidatedSymbols::const_iterator I=invalidated->begin(),
+ E = invalidated->end(); I!=E; ++I) {
+ SymbolRef sym = *I;
+ if (WhitelistedSymbols.count(sym))
+ continue;
+ // Remove any existing reference-count binding.
+ state = removeRefBinding(state, sym);
+ }
+ return state;
+}
+
+//===----------------------------------------------------------------------===//
+// Handle dead symbols and end-of-path.
+//===----------------------------------------------------------------------===//
+
+ProgramStateRef
+RetainCountChecker::handleAutoreleaseCounts(ProgramStateRef state,
+ ExplodedNode *Pred,
+ const ProgramPointTag *Tag,
+ CheckerContext &Ctx,
+ SymbolRef Sym, RefVal V) const {
+ unsigned ACnt = V.getAutoreleaseCount();
+
+ // No autorelease counts? Nothing to be done.
+ if (!ACnt)
+ return state;
+
+ assert(!Ctx.isObjCGCEnabled() && "Autorelease counts in GC mode?");
+ unsigned Cnt = V.getCount();
+
+ // FIXME: Handle sending 'autorelease' to already released object.
+
+ if (V.getKind() == RefVal::ReturnedOwned)
+ ++Cnt;
+
+ // If we would over-release here, but we know the value came from an ivar,
+ // assume it was a strong ivar that's just been relinquished.
+ if (ACnt > Cnt &&
+ V.getIvarAccessHistory() == RefVal::IvarAccessHistory::AccessedDirectly) {
+ V = V.releaseViaIvar();
+ --ACnt;
+ }
+
+ if (ACnt <= Cnt) {
+ if (ACnt == Cnt) {
+ V.clearCounts();
+ if (V.getKind() == RefVal::ReturnedOwned)
+ V = V ^ RefVal::ReturnedNotOwned;
+ else
+ V = V ^ RefVal::NotOwned;
+ } else {
+ V.setCount(V.getCount() - ACnt);
+ V.setAutoreleaseCount(0);
+ }
+ return setRefBinding(state, Sym, V);
+ }
+
+ // HACK: Ignore retain-count issues on values accessed through ivars,
+ // because of cases like this:
+ // [_contentView retain];
+ // [_contentView removeFromSuperview];
+ // [self addSubview:_contentView]; // invalidates 'self'
+ // [_contentView release];
+ if (V.getIvarAccessHistory() != RefVal::IvarAccessHistory::None)
+ return state;
+
+ // Woah! More autorelease counts then retain counts left.
+ // Emit hard error.
+ V = V ^ RefVal::ErrorOverAutorelease;
+ state = setRefBinding(state, Sym, V);
+
+ ExplodedNode *N = Ctx.generateSink(state, Pred, Tag);
+ if (N) {
+ SmallString<128> sbuf;
+ llvm::raw_svector_ostream os(sbuf);
+ os << "Object was autoreleased ";
+ if (V.getAutoreleaseCount() > 1)
+ os << V.getAutoreleaseCount() << " times but the object ";
+ else
+ os << "but ";
+ os << "has a +" << V.getCount() << " retain count";
+
+ if (!overAutorelease)
+ overAutorelease.reset(new OverAutorelease(this));
+
+ const LangOptions &LOpts = Ctx.getASTContext().getLangOpts();
+ CFRefReport *report =
+ new CFRefReport(*overAutorelease, LOpts, /* GCEnabled = */ false,
+ SummaryLog, N, Sym, os.str());
+ Ctx.emitReport(report);
+ }
+
+ return nullptr;
+}
+
+ProgramStateRef
+RetainCountChecker::handleSymbolDeath(ProgramStateRef state,
+ SymbolRef sid, RefVal V,
+ SmallVectorImpl<SymbolRef> &Leaked) const {
+ bool hasLeak;
+
+ // HACK: Ignore retain-count issues on values accessed through ivars,
+ // because of cases like this:
+ // [_contentView retain];
+ // [_contentView removeFromSuperview];
+ // [self addSubview:_contentView]; // invalidates 'self'
+ // [_contentView release];
+ if (V.getIvarAccessHistory() != RefVal::IvarAccessHistory::None)
+ hasLeak = false;
+ else if (V.isOwned())
+ hasLeak = true;
+ else if (V.isNotOwned() || V.isReturnedOwned())
+ hasLeak = (V.getCount() > 0);
+ else
+ hasLeak = false;
+
+ if (!hasLeak)
+ return removeRefBinding(state, sid);
+
+ Leaked.push_back(sid);
+ return setRefBinding(state, sid, V ^ RefVal::ErrorLeak);
+}
+
+ExplodedNode *
+RetainCountChecker::processLeaks(ProgramStateRef state,
+ SmallVectorImpl<SymbolRef> &Leaked,
+ CheckerContext &Ctx,
+ ExplodedNode *Pred) const {
+ // Generate an intermediate node representing the leak point.
+ ExplodedNode *N = Ctx.addTransition(state, Pred);
+
+ if (N) {
+ for (SmallVectorImpl<SymbolRef>::iterator
+ I = Leaked.begin(), E = Leaked.end(); I != E; ++I) {
+
+ const LangOptions &LOpts = Ctx.getASTContext().getLangOpts();
+ bool GCEnabled = Ctx.isObjCGCEnabled();
+ CFRefBug *BT = Pred ? getLeakWithinFunctionBug(LOpts, GCEnabled)
+ : getLeakAtReturnBug(LOpts, GCEnabled);
+ assert(BT && "BugType not initialized.");
+
+ CFRefLeakReport *report = new CFRefLeakReport(*BT, LOpts, GCEnabled,
+ SummaryLog, N, *I, Ctx,
+ IncludeAllocationLine);
+ Ctx.emitReport(report);
+ }
+ }
+
+ return N;
+}
+
+void RetainCountChecker::checkEndFunction(CheckerContext &Ctx) const {
+ ProgramStateRef state = Ctx.getState();
+ RefBindingsTy B = state->get<RefBindings>();
+ ExplodedNode *Pred = Ctx.getPredecessor();
+
+ // Don't process anything within synthesized bodies.
+ const LocationContext *LCtx = Pred->getLocationContext();
+ if (LCtx->getAnalysisDeclContext()->isBodyAutosynthesized()) {
+ assert(LCtx->getParent());
+ return;
+ }
+
+ for (RefBindingsTy::iterator I = B.begin(), E = B.end(); I != E; ++I) {
+ state = handleAutoreleaseCounts(state, Pred, /*Tag=*/nullptr, Ctx,
+ I->first, I->second);
+ if (!state)
+ return;
+ }
+
+ // If the current LocationContext has a parent, don't check for leaks.
+ // We will do that later.
+ // FIXME: we should instead check for imbalances of the retain/releases,
+ // and suggest annotations.
+ if (LCtx->getParent())
+ return;
+
+ B = state->get<RefBindings>();
+ SmallVector<SymbolRef, 10> Leaked;
+
+ for (RefBindingsTy::iterator I = B.begin(), E = B.end(); I != E; ++I)
+ state = handleSymbolDeath(state, I->first, I->second, Leaked);
+
+ processLeaks(state, Leaked, Ctx, Pred);
+}
+
+const ProgramPointTag *
+RetainCountChecker::getDeadSymbolTag(SymbolRef sym) const {
+ const CheckerProgramPointTag *&tag = DeadSymbolTags[sym];
+ if (!tag) {
+ SmallString<64> buf;
+ llvm::raw_svector_ostream out(buf);
+ out << "Dead Symbol : ";
+ sym->dumpToStream(out);
+ tag = new CheckerProgramPointTag(this, out.str());
+ }
+ return tag;
+}
+
+void RetainCountChecker::checkDeadSymbols(SymbolReaper &SymReaper,
+ CheckerContext &C) const {
+ ExplodedNode *Pred = C.getPredecessor();
+
+ ProgramStateRef state = C.getState();
+ RefBindingsTy B = state->get<RefBindings>();
+ SmallVector<SymbolRef, 10> Leaked;
+
+ // Update counts from autorelease pools
+ for (SymbolReaper::dead_iterator I = SymReaper.dead_begin(),
+ E = SymReaper.dead_end(); I != E; ++I) {
+ SymbolRef Sym = *I;
+ if (const RefVal *T = B.lookup(Sym)){
+ // Use the symbol as the tag.
+ // FIXME: This might not be as unique as we would like.
+ const ProgramPointTag *Tag = getDeadSymbolTag(Sym);
+ state = handleAutoreleaseCounts(state, Pred, Tag, C, Sym, *T);
+ if (!state)
+ return;
+
+ // Fetch the new reference count from the state, and use it to handle
+ // this symbol.
+ state = handleSymbolDeath(state, *I, *getRefBinding(state, Sym), Leaked);
+ }
+ }
+
+ if (Leaked.empty()) {
+ C.addTransition(state);
+ return;
+ }
+
+ Pred = processLeaks(state, Leaked, C, Pred);
+
+ // Did we cache out?
+ if (!Pred)
+ return;
+
+ // Now generate a new node that nukes the old bindings.
+ // The only bindings left at this point are the leaked symbols.
+ RefBindingsTy::Factory &F = state->get_context<RefBindings>();
+ B = state->get<RefBindings>();
+
+ for (SmallVectorImpl<SymbolRef>::iterator I = Leaked.begin(),
+ E = Leaked.end();
+ I != E; ++I)
+ B = F.remove(B, *I);
+
+ state = state->set<RefBindings>(B);
+ C.addTransition(state, Pred);
+}
+
+void RetainCountChecker::printState(raw_ostream &Out, ProgramStateRef State,
+ const char *NL, const char *Sep) const {
+
+ RefBindingsTy B = State->get<RefBindings>();
+
+ if (B.isEmpty())
+ return;
+
+ Out << Sep << NL;
+
+ for (RefBindingsTy::iterator I = B.begin(), E = B.end(); I != E; ++I) {
+ Out << I->first << " : ";
+ I->second.print(Out);
+ Out << NL;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Checker registration.
+//===----------------------------------------------------------------------===//
+
+void ento::registerRetainCountChecker(CheckerManager &Mgr) {
+ Mgr.registerChecker<RetainCountChecker>(Mgr.getAnalyzerOptions());
+}
+
+//===----------------------------------------------------------------------===//
+// Implementation of the CallEffects API.
+//===----------------------------------------------------------------------===//
+
+namespace clang { namespace ento { namespace objc_retain {
+
+// This is a bit gross, but it allows us to populate CallEffects without
+// creating a bunch of accessors. This kind is very localized, so the
+// damage of this macro is limited.
+#define createCallEffect(D, KIND)\
+ ASTContext &Ctx = D->getASTContext();\
+ LangOptions L = Ctx.getLangOpts();\
+ RetainSummaryManager M(Ctx, L.GCOnly, L.ObjCAutoRefCount);\
+ const RetainSummary *S = M.get ## KIND ## Summary(D);\
+ CallEffects CE(S->getRetEffect());\
+ CE.Receiver = S->getReceiverEffect();\
+ unsigned N = D->param_size();\
+ for (unsigned i = 0; i < N; ++i) {\
+ CE.Args.push_back(S->getArg(i));\
+ }
+
+CallEffects CallEffects::getEffect(const ObjCMethodDecl *MD) {
+ createCallEffect(MD, Method);
+ return CE;
+}
+
+CallEffects CallEffects::getEffect(const FunctionDecl *FD) {
+ createCallEffect(FD, Function);
+ return CE;
+}
+
+#undef createCallEffect
+
+}}}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ReturnPointerRangeChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ReturnPointerRangeChecker.cpp
new file mode 100644
index 0000000..b1cde6b
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ReturnPointerRangeChecker.cpp
@@ -0,0 +1,93 @@
+//== ReturnPointerRangeChecker.cpp ------------------------------*- C++ -*--==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines ReturnPointerRangeChecker, which is a path-sensitive check
+// which looks for an out-of-bound pointer being returned to callers.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+class ReturnPointerRangeChecker :
+ public Checker< check::PreStmt<ReturnStmt> > {
+ mutable std::unique_ptr<BuiltinBug> BT;
+
+public:
+ void checkPreStmt(const ReturnStmt *RS, CheckerContext &C) const;
+};
+}
+
+void ReturnPointerRangeChecker::checkPreStmt(const ReturnStmt *RS,
+ CheckerContext &C) const {
+ ProgramStateRef state = C.getState();
+
+ const Expr *RetE = RS->getRetValue();
+ if (!RetE)
+ return;
+
+ SVal V = state->getSVal(RetE, C.getLocationContext());
+ const MemRegion *R = V.getAsRegion();
+
+ const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(R);
+ if (!ER)
+ return;
+
+ DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>();
+ // Zero index is always in bound, this also passes ElementRegions created for
+ // pointer casts.
+ if (Idx.isZeroConstant())
+ return;
+ // FIXME: All of this out-of-bounds checking should eventually be refactored
+ // into a common place.
+
+ DefinedOrUnknownSVal NumElements
+ = C.getStoreManager().getSizeInElements(state, ER->getSuperRegion(),
+ ER->getValueType());
+
+ ProgramStateRef StInBound = state->assumeInBound(Idx, NumElements, true);
+ ProgramStateRef StOutBound = state->assumeInBound(Idx, NumElements, false);
+ if (StOutBound && !StInBound) {
+ ExplodedNode *N = C.generateSink(StOutBound);
+
+ if (!N)
+ return;
+
+ // FIXME: This bug correspond to CWE-466. Eventually we should have bug
+ // types explicitly reference such exploit categories (when applicable).
+ if (!BT)
+ BT.reset(new BuiltinBug(
+ this, "Return of pointer value outside of expected range",
+ "Returned pointer value points outside the original object "
+ "(potential buffer overflow)"));
+
+ // FIXME: It would be nice to eventually make this diagnostic more clear,
+ // e.g., by referencing the original declaration or by saying *why* this
+ // reference is outside the range.
+
+ // Generate a report for this bug.
+ BugReport *report =
+ new BugReport(*BT, BT->getDescription(), N);
+
+ report->addRange(RetE->getSourceRange());
+ C.emitReport(report);
+ }
+}
+
+void ento::registerReturnPointerRangeChecker(CheckerManager &mgr) {
+ mgr.registerChecker<ReturnPointerRangeChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ReturnUndefChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ReturnUndefChecker.cpp
new file mode 100644
index 0000000..6622313
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/ReturnUndefChecker.cpp
@@ -0,0 +1,123 @@
+//== ReturnUndefChecker.cpp -------------------------------------*- C++ -*--==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines ReturnUndefChecker, which is a path-sensitive
+// check which looks for undefined or garbage values being returned to the
+// caller.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+class ReturnUndefChecker : public Checker< check::PreStmt<ReturnStmt> > {
+ mutable std::unique_ptr<BuiltinBug> BT_Undef;
+ mutable std::unique_ptr<BuiltinBug> BT_NullReference;
+
+ void emitUndef(CheckerContext &C, const Expr *RetE) const;
+ void checkReference(CheckerContext &C, const Expr *RetE,
+ DefinedOrUnknownSVal RetVal) const;
+public:
+ void checkPreStmt(const ReturnStmt *RS, CheckerContext &C) const;
+};
+}
+
+void ReturnUndefChecker::checkPreStmt(const ReturnStmt *RS,
+ CheckerContext &C) const {
+ const Expr *RetE = RS->getRetValue();
+ if (!RetE)
+ return;
+ SVal RetVal = C.getSVal(RetE);
+
+ const StackFrameContext *SFC = C.getStackFrame();
+ QualType RT = CallEvent::getDeclaredResultType(SFC->getDecl());
+
+ if (RetVal.isUndef()) {
+ // "return;" is modeled to evaluate to an UndefinedVal. Allow UndefinedVal
+ // to be returned in functions returning void to support this pattern:
+ // void foo() {
+ // return;
+ // }
+ // void test() {
+ // return foo();
+ // }
+ if (!RT.isNull() && RT->isVoidType())
+ return;
+
+ // Not all blocks have explicitly-specified return types; if the return type
+ // is not available, but the return value expression has 'void' type, assume
+ // Sema already checked it.
+ if (RT.isNull() && isa<BlockDecl>(SFC->getDecl()) &&
+ RetE->getType()->isVoidType())
+ return;
+
+ emitUndef(C, RetE);
+ return;
+ }
+
+ if (RT.isNull())
+ return;
+
+ if (RT->isReferenceType()) {
+ checkReference(C, RetE, RetVal.castAs<DefinedOrUnknownSVal>());
+ return;
+ }
+}
+
+static void emitBug(CheckerContext &C, BuiltinBug &BT, const Expr *RetE,
+ const Expr *TrackingE = nullptr) {
+ ExplodedNode *N = C.generateSink();
+ if (!N)
+ return;
+
+ BugReport *Report = new BugReport(BT, BT.getDescription(), N);
+
+ Report->addRange(RetE->getSourceRange());
+ bugreporter::trackNullOrUndefValue(N, TrackingE ? TrackingE : RetE, *Report);
+
+ C.emitReport(Report);
+}
+
+void ReturnUndefChecker::emitUndef(CheckerContext &C, const Expr *RetE) const {
+ if (!BT_Undef)
+ BT_Undef.reset(
+ new BuiltinBug(this, "Garbage return value",
+ "Undefined or garbage value returned to caller"));
+ emitBug(C, *BT_Undef, RetE);
+}
+
+void ReturnUndefChecker::checkReference(CheckerContext &C, const Expr *RetE,
+ DefinedOrUnknownSVal RetVal) const {
+ ProgramStateRef StNonNull, StNull;
+ std::tie(StNonNull, StNull) = C.getState()->assume(RetVal);
+
+ if (StNonNull) {
+ // Going forward, assume the location is non-null.
+ C.addTransition(StNonNull);
+ return;
+ }
+
+ // The return value is known to be null. Emit a bug report.
+ if (!BT_NullReference)
+ BT_NullReference.reset(new BuiltinBug(this, "Returning null reference"));
+
+ emitBug(C, *BT_NullReference, RetE, bugreporter::getDerefExpr(RetE));
+}
+
+void ento::registerReturnUndefChecker(CheckerManager &mgr) {
+ mgr.registerChecker<ReturnUndefChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/SelectorExtras.h b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/SelectorExtras.h
new file mode 100644
index 0000000..41f70d7
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/SelectorExtras.h
@@ -0,0 +1,68 @@
+//=== SelectorExtras.h - Helpers for checkers using selectors -----*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_STATICANALYZER_CHECKERS_SELECTOREXTRAS_H
+#define LLVM_CLANG_LIB_STATICANALYZER_CHECKERS_SELECTOREXTRAS_H
+
+#include "clang/AST/ASTContext.h"
+#include <cstdarg>
+
+namespace clang {
+namespace ento {
+
+static inline Selector getKeywordSelectorImpl(ASTContext &Ctx,
+ const char *First,
+ va_list argp) {
+ SmallVector<IdentifierInfo*, 10> II;
+ II.push_back(&Ctx.Idents.get(First));
+
+ while (const char *s = va_arg(argp, const char *))
+ II.push_back(&Ctx.Idents.get(s));
+
+ return Ctx.Selectors.getSelector(II.size(), &II[0]);
+}
+
+static inline Selector getKeywordSelector(ASTContext &Ctx, va_list argp) {
+ const char *First = va_arg(argp, const char *);
+ assert(First && "keyword selectors must have at least one argument");
+ return getKeywordSelectorImpl(Ctx, First, argp);
+}
+
+LLVM_END_WITH_NULL
+static inline Selector getKeywordSelector(ASTContext &Ctx,
+ const char *First, ...) {
+ va_list argp;
+ va_start(argp, First);
+ Selector result = getKeywordSelectorImpl(Ctx, First, argp);
+ va_end(argp);
+ return result;
+}
+
+LLVM_END_WITH_NULL
+static inline void lazyInitKeywordSelector(Selector &Sel, ASTContext &Ctx,
+ const char *First, ...) {
+ if (!Sel.isNull())
+ return;
+ va_list argp;
+ va_start(argp, First);
+ Sel = getKeywordSelectorImpl(Ctx, First, argp);
+ va_end(argp);
+}
+
+static inline void lazyInitNullarySelector(Selector &Sel, ASTContext &Ctx,
+ const char *Name) {
+ if (!Sel.isNull())
+ return;
+ Sel = GetNullarySelector(Name, Ctx);
+}
+
+} // end namespace ento
+} // end namespace clang
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/SimpleStreamChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/SimpleStreamChecker.cpp
new file mode 100644
index 0000000..ccf816c
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/SimpleStreamChecker.cpp
@@ -0,0 +1,285 @@
+//===-- SimpleStreamChecker.cpp -----------------------------------------*- C++ -*--//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Defines a checker for proper use of fopen/fclose APIs.
+// - If a file has been closed with fclose, it should not be accessed again.
+// Accessing a closed file results in undefined behavior.
+// - If a file was opened with fopen, it must be closed with fclose before
+// the execution ends. Failing to do so results in a resource leak.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+typedef SmallVector<SymbolRef, 2> SymbolVector;
+
+struct StreamState {
+private:
+ enum Kind { Opened, Closed } K;
+ StreamState(Kind InK) : K(InK) { }
+
+public:
+ bool isOpened() const { return K == Opened; }
+ bool isClosed() const { return K == Closed; }
+
+ static StreamState getOpened() { return StreamState(Opened); }
+ static StreamState getClosed() { return StreamState(Closed); }
+
+ bool operator==(const StreamState &X) const {
+ return K == X.K;
+ }
+ void Profile(llvm::FoldingSetNodeID &ID) const {
+ ID.AddInteger(K);
+ }
+};
+
+class SimpleStreamChecker : public Checker<check::PostCall,
+ check::PreCall,
+ check::DeadSymbols,
+ check::PointerEscape> {
+
+ mutable IdentifierInfo *IIfopen, *IIfclose;
+
+ std::unique_ptr<BugType> DoubleCloseBugType;
+ std::unique_ptr<BugType> LeakBugType;
+
+ void initIdentifierInfo(ASTContext &Ctx) const;
+
+ void reportDoubleClose(SymbolRef FileDescSym,
+ const CallEvent &Call,
+ CheckerContext &C) const;
+
+ void reportLeaks(ArrayRef<SymbolRef> LeakedStreams, CheckerContext &C,
+ ExplodedNode *ErrNode) const;
+
+ bool guaranteedNotToCloseFile(const CallEvent &Call) const;
+
+public:
+ SimpleStreamChecker();
+
+ /// Process fopen.
+ void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
+ /// Process fclose.
+ void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
+
+ void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const;
+
+ /// Stop tracking addresses which escape.
+ ProgramStateRef checkPointerEscape(ProgramStateRef State,
+ const InvalidatedSymbols &Escaped,
+ const CallEvent *Call,
+ PointerEscapeKind Kind) const;
+};
+
+} // end anonymous namespace
+
+/// The state of the checker is a map from tracked stream symbols to their
+/// state. Let's store it in the ProgramState.
+REGISTER_MAP_WITH_PROGRAMSTATE(StreamMap, SymbolRef, StreamState)
+
+namespace {
+class StopTrackingCallback : public SymbolVisitor {
+ ProgramStateRef state;
+public:
+ StopTrackingCallback(ProgramStateRef st) : state(st) {}
+ ProgramStateRef getState() const { return state; }
+
+ bool VisitSymbol(SymbolRef sym) override {
+ state = state->remove<StreamMap>(sym);
+ return true;
+ }
+};
+} // end anonymous namespace
+
+SimpleStreamChecker::SimpleStreamChecker()
+ : IIfopen(nullptr), IIfclose(nullptr) {
+ // Initialize the bug types.
+ DoubleCloseBugType.reset(
+ new BugType(this, "Double fclose", "Unix Stream API Error"));
+
+ LeakBugType.reset(
+ new BugType(this, "Resource Leak", "Unix Stream API Error"));
+ // Sinks are higher importance bugs as well as calls to assert() or exit(0).
+ LeakBugType->setSuppressOnSink(true);
+}
+
+void SimpleStreamChecker::checkPostCall(const CallEvent &Call,
+ CheckerContext &C) const {
+ initIdentifierInfo(C.getASTContext());
+
+ if (!Call.isGlobalCFunction())
+ return;
+
+ if (Call.getCalleeIdentifier() != IIfopen)
+ return;
+
+ // Get the symbolic value corresponding to the file handle.
+ SymbolRef FileDesc = Call.getReturnValue().getAsSymbol();
+ if (!FileDesc)
+ return;
+
+ // Generate the next transition (an edge in the exploded graph).
+ ProgramStateRef State = C.getState();
+ State = State->set<StreamMap>(FileDesc, StreamState::getOpened());
+ C.addTransition(State);
+}
+
+void SimpleStreamChecker::checkPreCall(const CallEvent &Call,
+ CheckerContext &C) const {
+ initIdentifierInfo(C.getASTContext());
+
+ if (!Call.isGlobalCFunction())
+ return;
+
+ if (Call.getCalleeIdentifier() != IIfclose)
+ return;
+
+ if (Call.getNumArgs() != 1)
+ return;
+
+ // Get the symbolic value corresponding to the file handle.
+ SymbolRef FileDesc = Call.getArgSVal(0).getAsSymbol();
+ if (!FileDesc)
+ return;
+
+ // Check if the stream has already been closed.
+ ProgramStateRef State = C.getState();
+ const StreamState *SS = State->get<StreamMap>(FileDesc);
+ if (SS && SS->isClosed()) {
+ reportDoubleClose(FileDesc, Call, C);
+ return;
+ }
+
+ // Generate the next transition, in which the stream is closed.
+ State = State->set<StreamMap>(FileDesc, StreamState::getClosed());
+ C.addTransition(State);
+}
+
+static bool isLeaked(SymbolRef Sym, const StreamState &SS,
+ bool IsSymDead, ProgramStateRef State) {
+ if (IsSymDead && SS.isOpened()) {
+ // If a symbol is NULL, assume that fopen failed on this path.
+ // A symbol should only be considered leaked if it is non-null.
+ ConstraintManager &CMgr = State->getConstraintManager();
+ ConditionTruthVal OpenFailed = CMgr.isNull(State, Sym);
+ return !OpenFailed.isConstrainedTrue();
+ }
+ return false;
+}
+
+void SimpleStreamChecker::checkDeadSymbols(SymbolReaper &SymReaper,
+ CheckerContext &C) const {
+ ProgramStateRef State = C.getState();
+ SymbolVector LeakedStreams;
+ StreamMapTy TrackedStreams = State->get<StreamMap>();
+ for (StreamMapTy::iterator I = TrackedStreams.begin(),
+ E = TrackedStreams.end(); I != E; ++I) {
+ SymbolRef Sym = I->first;
+ bool IsSymDead = SymReaper.isDead(Sym);
+
+ // Collect leaked symbols.
+ if (isLeaked(Sym, I->second, IsSymDead, State))
+ LeakedStreams.push_back(Sym);
+
+ // Remove the dead symbol from the streams map.
+ if (IsSymDead)
+ State = State->remove<StreamMap>(Sym);
+ }
+
+ ExplodedNode *N = C.addTransition(State);
+ reportLeaks(LeakedStreams, C, N);
+}
+
+void SimpleStreamChecker::reportDoubleClose(SymbolRef FileDescSym,
+ const CallEvent &Call,
+ CheckerContext &C) const {
+ // We reached a bug, stop exploring the path here by generating a sink.
+ ExplodedNode *ErrNode = C.generateSink();
+ // If we've already reached this node on another path, return.
+ if (!ErrNode)
+ return;
+
+ // Generate the report.
+ BugReport *R = new BugReport(*DoubleCloseBugType,
+ "Closing a previously closed file stream", ErrNode);
+ R->addRange(Call.getSourceRange());
+ R->markInteresting(FileDescSym);
+ C.emitReport(R);
+}
+
+void SimpleStreamChecker::reportLeaks(ArrayRef<SymbolRef> LeakedStreams,
+ CheckerContext &C,
+ ExplodedNode *ErrNode) const {
+ // Attach bug reports to the leak node.
+ // TODO: Identify the leaked file descriptor.
+ for (SymbolRef LeakedStream : LeakedStreams) {
+ BugReport *R = new BugReport(*LeakBugType,
+ "Opened file is never closed; potential resource leak", ErrNode);
+ R->markInteresting(LeakedStream);
+ C.emitReport(R);
+ }
+}
+
+bool SimpleStreamChecker::guaranteedNotToCloseFile(const CallEvent &Call) const{
+ // If it's not in a system header, assume it might close a file.
+ if (!Call.isInSystemHeader())
+ return false;
+
+ // Handle cases where we know a buffer's /address/ can escape.
+ if (Call.argumentsMayEscape())
+ return false;
+
+ // Note, even though fclose closes the file, we do not list it here
+ // since the checker is modeling the call.
+
+ return true;
+}
+
+// If the pointer we are tracking escaped, do not track the symbol as
+// we cannot reason about it anymore.
+ProgramStateRef
+SimpleStreamChecker::checkPointerEscape(ProgramStateRef State,
+ const InvalidatedSymbols &Escaped,
+ const CallEvent *Call,
+ PointerEscapeKind Kind) const {
+ // If we know that the call cannot close a file, there is nothing to do.
+ if (Kind == PSK_DirectEscapeOnCall && guaranteedNotToCloseFile(*Call)) {
+ return State;
+ }
+
+ for (InvalidatedSymbols::const_iterator I = Escaped.begin(),
+ E = Escaped.end();
+ I != E; ++I) {
+ SymbolRef Sym = *I;
+
+ // The symbol escaped. Optimistically, assume that the corresponding file
+ // handle will be closed somewhere else.
+ State = State->remove<StreamMap>(Sym);
+ }
+ return State;
+}
+
+void SimpleStreamChecker::initIdentifierInfo(ASTContext &Ctx) const {
+ if (IIfopen)
+ return;
+ IIfopen = &Ctx.Idents.get("fopen");
+ IIfclose = &Ctx.Idents.get("fclose");
+}
+
+void ento::registerSimpleStreamChecker(CheckerManager &mgr) {
+ mgr.registerChecker<SimpleStreamChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/StackAddrEscapeChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/StackAddrEscapeChecker.cpp
new file mode 100644
index 0000000..327a9e0
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/StackAddrEscapeChecker.cpp
@@ -0,0 +1,244 @@
+//=== StackAddrEscapeChecker.cpp ----------------------------------*- C++ -*--//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines stack address leak checker, which checks if an invalid
+// stack address is stored into a global or heap location. See CERT DCL30-C.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace clang;
+using namespace ento;
+
+namespace {
+class StackAddrEscapeChecker : public Checker< check::PreStmt<ReturnStmt>,
+ check::EndFunction > {
+ mutable std::unique_ptr<BuiltinBug> BT_stackleak;
+ mutable std::unique_ptr<BuiltinBug> BT_returnstack;
+
+public:
+ void checkPreStmt(const ReturnStmt *RS, CheckerContext &C) const;
+ void checkEndFunction(CheckerContext &Ctx) const;
+private:
+ void EmitStackError(CheckerContext &C, const MemRegion *R,
+ const Expr *RetE) const;
+ static SourceRange genName(raw_ostream &os, const MemRegion *R,
+ ASTContext &Ctx);
+};
+}
+
+SourceRange StackAddrEscapeChecker::genName(raw_ostream &os, const MemRegion *R,
+ ASTContext &Ctx) {
+ // Get the base region, stripping away fields and elements.
+ R = R->getBaseRegion();
+ SourceManager &SM = Ctx.getSourceManager();
+ SourceRange range;
+ os << "Address of ";
+
+ // Check if the region is a compound literal.
+ if (const CompoundLiteralRegion* CR = dyn_cast<CompoundLiteralRegion>(R)) {
+ const CompoundLiteralExpr *CL = CR->getLiteralExpr();
+ os << "stack memory associated with a compound literal "
+ "declared on line "
+ << SM.getExpansionLineNumber(CL->getLocStart())
+ << " returned to caller";
+ range = CL->getSourceRange();
+ }
+ else if (const AllocaRegion* AR = dyn_cast<AllocaRegion>(R)) {
+ const Expr *ARE = AR->getExpr();
+ SourceLocation L = ARE->getLocStart();
+ range = ARE->getSourceRange();
+ os << "stack memory allocated by call to alloca() on line "
+ << SM.getExpansionLineNumber(L);
+ }
+ else if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
+ const BlockDecl *BD = BR->getCodeRegion()->getDecl();
+ SourceLocation L = BD->getLocStart();
+ range = BD->getSourceRange();
+ os << "stack-allocated block declared on line "
+ << SM.getExpansionLineNumber(L);
+ }
+ else if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
+ os << "stack memory associated with local variable '"
+ << VR->getString() << '\'';
+ range = VR->getDecl()->getSourceRange();
+ }
+ else if (const CXXTempObjectRegion *TOR = dyn_cast<CXXTempObjectRegion>(R)) {
+ QualType Ty = TOR->getValueType().getLocalUnqualifiedType();
+ os << "stack memory associated with temporary object of type '";
+ Ty.print(os, Ctx.getPrintingPolicy());
+ os << "'";
+ range = TOR->getExpr()->getSourceRange();
+ }
+ else {
+ llvm_unreachable("Invalid region in ReturnStackAddressChecker.");
+ }
+
+ return range;
+}
+
+void StackAddrEscapeChecker::EmitStackError(CheckerContext &C, const MemRegion *R,
+ const Expr *RetE) const {
+ ExplodedNode *N = C.generateSink();
+
+ if (!N)
+ return;
+
+ if (!BT_returnstack)
+ BT_returnstack.reset(
+ new BuiltinBug(this, "Return of address to stack-allocated memory"));
+
+ // Generate a report for this bug.
+ SmallString<512> buf;
+ llvm::raw_svector_ostream os(buf);
+ SourceRange range = genName(os, R, C.getASTContext());
+ os << " returned to caller";
+ BugReport *report = new BugReport(*BT_returnstack, os.str(), N);
+ report->addRange(RetE->getSourceRange());
+ if (range.isValid())
+ report->addRange(range);
+
+ C.emitReport(report);
+}
+
+void StackAddrEscapeChecker::checkPreStmt(const ReturnStmt *RS,
+ CheckerContext &C) const {
+
+ const Expr *RetE = RS->getRetValue();
+ if (!RetE)
+ return;
+ RetE = RetE->IgnoreParens();
+
+ const LocationContext *LCtx = C.getLocationContext();
+ SVal V = C.getState()->getSVal(RetE, LCtx);
+ const MemRegion *R = V.getAsRegion();
+
+ if (!R)
+ return;
+
+ const StackSpaceRegion *SS =
+ dyn_cast_or_null<StackSpaceRegion>(R->getMemorySpace());
+
+ if (!SS)
+ return;
+
+ // Return stack memory in an ancestor stack frame is fine.
+ const StackFrameContext *CurFrame = LCtx->getCurrentStackFrame();
+ const StackFrameContext *MemFrame = SS->getStackFrame();
+ if (MemFrame != CurFrame)
+ return;
+
+ // Automatic reference counting automatically copies blocks.
+ if (C.getASTContext().getLangOpts().ObjCAutoRefCount &&
+ isa<BlockDataRegion>(R))
+ return;
+
+ // Returning a record by value is fine. (In this case, the returned
+ // expression will be a copy-constructor, possibly wrapped in an
+ // ExprWithCleanups node.)
+ if (const ExprWithCleanups *Cleanup = dyn_cast<ExprWithCleanups>(RetE))
+ RetE = Cleanup->getSubExpr();
+ if (isa<CXXConstructExpr>(RetE) && RetE->getType()->isRecordType())
+ return;
+
+ EmitStackError(C, R, RetE);
+}
+
+void StackAddrEscapeChecker::checkEndFunction(CheckerContext &Ctx) const {
+ ProgramStateRef state = Ctx.getState();
+
+ // Iterate over all bindings to global variables and see if it contains
+ // a memory region in the stack space.
+ class CallBack : public StoreManager::BindingsHandler {
+ private:
+ CheckerContext &Ctx;
+ const StackFrameContext *CurSFC;
+ public:
+ SmallVector<std::pair<const MemRegion*, const MemRegion*>, 10> V;
+
+ CallBack(CheckerContext &CC) :
+ Ctx(CC),
+ CurSFC(CC.getLocationContext()->getCurrentStackFrame())
+ {}
+
+ bool HandleBinding(StoreManager &SMgr, Store store,
+ const MemRegion *region, SVal val) override {
+
+ if (!isa<GlobalsSpaceRegion>(region->getMemorySpace()))
+ return true;
+
+ const MemRegion *vR = val.getAsRegion();
+ if (!vR)
+ return true;
+
+ // Under automated retain release, it is okay to assign a block
+ // directly to a global variable.
+ if (Ctx.getASTContext().getLangOpts().ObjCAutoRefCount &&
+ isa<BlockDataRegion>(vR))
+ return true;
+
+ if (const StackSpaceRegion *SSR =
+ dyn_cast<StackSpaceRegion>(vR->getMemorySpace())) {
+ // If the global variable holds a location in the current stack frame,
+ // record the binding to emit a warning.
+ if (SSR->getStackFrame() == CurSFC)
+ V.push_back(std::make_pair(region, vR));
+ }
+
+ return true;
+ }
+ };
+
+ CallBack cb(Ctx);
+ state->getStateManager().getStoreManager().iterBindings(state->getStore(),cb);
+
+ if (cb.V.empty())
+ return;
+
+ // Generate an error node.
+ ExplodedNode *N = Ctx.addTransition(state);
+ if (!N)
+ return;
+
+ if (!BT_stackleak)
+ BT_stackleak.reset(
+ new BuiltinBug(this, "Stack address stored into global variable",
+ "Stack address was saved into a global variable. "
+ "This is dangerous because the address will become "
+ "invalid after returning from the function"));
+
+ for (unsigned i = 0, e = cb.V.size(); i != e; ++i) {
+ // Generate a report for this bug.
+ SmallString<512> buf;
+ llvm::raw_svector_ostream os(buf);
+ SourceRange range = genName(os, cb.V[i].second, Ctx.getASTContext());
+ os << " is still referred to by the global variable '";
+ const VarRegion *VR = cast<VarRegion>(cb.V[i].first->getBaseRegion());
+ os << *VR->getDecl()
+ << "' upon returning to the caller. This will be a dangling reference";
+ BugReport *report = new BugReport(*BT_stackleak, os.str(), N);
+ if (range.isValid())
+ report->addRange(range);
+
+ Ctx.emitReport(report);
+ }
+}
+
+void ento::registerStackAddrEscapeChecker(CheckerManager &mgr) {
+ mgr.registerChecker<StackAddrEscapeChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/StreamChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/StreamChecker.cpp
new file mode 100644
index 0000000..894765a
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/StreamChecker.cpp
@@ -0,0 +1,427 @@
+//===-- StreamChecker.cpp -----------------------------------------*- C++ -*--//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines checkers that model and check stream handling functions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
+#include "llvm/ADT/ImmutableMap.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+
+struct StreamState {
+ enum Kind { Opened, Closed, OpenFailed, Escaped } K;
+ const Stmt *S;
+
+ StreamState(Kind k, const Stmt *s) : K(k), S(s) {}
+
+ bool isOpened() const { return K == Opened; }
+ bool isClosed() const { return K == Closed; }
+ //bool isOpenFailed() const { return K == OpenFailed; }
+ //bool isEscaped() const { return K == Escaped; }
+
+ bool operator==(const StreamState &X) const {
+ return K == X.K && S == X.S;
+ }
+
+ static StreamState getOpened(const Stmt *s) { return StreamState(Opened, s); }
+ static StreamState getClosed(const Stmt *s) { return StreamState(Closed, s); }
+ static StreamState getOpenFailed(const Stmt *s) {
+ return StreamState(OpenFailed, s);
+ }
+ static StreamState getEscaped(const Stmt *s) {
+ return StreamState(Escaped, s);
+ }
+
+ void Profile(llvm::FoldingSetNodeID &ID) const {
+ ID.AddInteger(K);
+ ID.AddPointer(S);
+ }
+};
+
+class StreamChecker : public Checker<eval::Call,
+ check::DeadSymbols > {
+ mutable IdentifierInfo *II_fopen, *II_tmpfile, *II_fclose, *II_fread,
+ *II_fwrite,
+ *II_fseek, *II_ftell, *II_rewind, *II_fgetpos, *II_fsetpos,
+ *II_clearerr, *II_feof, *II_ferror, *II_fileno;
+ mutable std::unique_ptr<BuiltinBug> BT_nullfp, BT_illegalwhence,
+ BT_doubleclose, BT_ResourceLeak;
+
+public:
+ StreamChecker()
+ : II_fopen(nullptr), II_tmpfile(nullptr), II_fclose(nullptr),
+ II_fread(nullptr), II_fwrite(nullptr), II_fseek(nullptr),
+ II_ftell(nullptr), II_rewind(nullptr), II_fgetpos(nullptr),
+ II_fsetpos(nullptr), II_clearerr(nullptr), II_feof(nullptr),
+ II_ferror(nullptr), II_fileno(nullptr) {}
+
+ bool evalCall(const CallExpr *CE, CheckerContext &C) const;
+ void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const;
+
+private:
+ void Fopen(CheckerContext &C, const CallExpr *CE) const;
+ void Tmpfile(CheckerContext &C, const CallExpr *CE) const;
+ void Fclose(CheckerContext &C, const CallExpr *CE) const;
+ void Fread(CheckerContext &C, const CallExpr *CE) const;
+ void Fwrite(CheckerContext &C, const CallExpr *CE) const;
+ void Fseek(CheckerContext &C, const CallExpr *CE) const;
+ void Ftell(CheckerContext &C, const CallExpr *CE) const;
+ void Rewind(CheckerContext &C, const CallExpr *CE) const;
+ void Fgetpos(CheckerContext &C, const CallExpr *CE) const;
+ void Fsetpos(CheckerContext &C, const CallExpr *CE) const;
+ void Clearerr(CheckerContext &C, const CallExpr *CE) const;
+ void Feof(CheckerContext &C, const CallExpr *CE) const;
+ void Ferror(CheckerContext &C, const CallExpr *CE) const;
+ void Fileno(CheckerContext &C, const CallExpr *CE) const;
+
+ void OpenFileAux(CheckerContext &C, const CallExpr *CE) const;
+
+ ProgramStateRef CheckNullStream(SVal SV, ProgramStateRef state,
+ CheckerContext &C) const;
+ ProgramStateRef CheckDoubleClose(const CallExpr *CE, ProgramStateRef state,
+ CheckerContext &C) const;
+};
+
+} // end anonymous namespace
+
+REGISTER_MAP_WITH_PROGRAMSTATE(StreamMap, SymbolRef, StreamState)
+
+
+bool StreamChecker::evalCall(const CallExpr *CE, CheckerContext &C) const {
+ const FunctionDecl *FD = C.getCalleeDecl(CE);
+ if (!FD || FD->getKind() != Decl::Function)
+ return false;
+
+ ASTContext &Ctx = C.getASTContext();
+ if (!II_fopen)
+ II_fopen = &Ctx.Idents.get("fopen");
+ if (!II_tmpfile)
+ II_tmpfile = &Ctx.Idents.get("tmpfile");
+ if (!II_fclose)
+ II_fclose = &Ctx.Idents.get("fclose");
+ if (!II_fread)
+ II_fread = &Ctx.Idents.get("fread");
+ if (!II_fwrite)
+ II_fwrite = &Ctx.Idents.get("fwrite");
+ if (!II_fseek)
+ II_fseek = &Ctx.Idents.get("fseek");
+ if (!II_ftell)
+ II_ftell = &Ctx.Idents.get("ftell");
+ if (!II_rewind)
+ II_rewind = &Ctx.Idents.get("rewind");
+ if (!II_fgetpos)
+ II_fgetpos = &Ctx.Idents.get("fgetpos");
+ if (!II_fsetpos)
+ II_fsetpos = &Ctx.Idents.get("fsetpos");
+ if (!II_clearerr)
+ II_clearerr = &Ctx.Idents.get("clearerr");
+ if (!II_feof)
+ II_feof = &Ctx.Idents.get("feof");
+ if (!II_ferror)
+ II_ferror = &Ctx.Idents.get("ferror");
+ if (!II_fileno)
+ II_fileno = &Ctx.Idents.get("fileno");
+
+ if (FD->getIdentifier() == II_fopen) {
+ Fopen(C, CE);
+ return true;
+ }
+ if (FD->getIdentifier() == II_tmpfile) {
+ Tmpfile(C, CE);
+ return true;
+ }
+ if (FD->getIdentifier() == II_fclose) {
+ Fclose(C, CE);
+ return true;
+ }
+ if (FD->getIdentifier() == II_fread) {
+ Fread(C, CE);
+ return true;
+ }
+ if (FD->getIdentifier() == II_fwrite) {
+ Fwrite(C, CE);
+ return true;
+ }
+ if (FD->getIdentifier() == II_fseek) {
+ Fseek(C, CE);
+ return true;
+ }
+ if (FD->getIdentifier() == II_ftell) {
+ Ftell(C, CE);
+ return true;
+ }
+ if (FD->getIdentifier() == II_rewind) {
+ Rewind(C, CE);
+ return true;
+ }
+ if (FD->getIdentifier() == II_fgetpos) {
+ Fgetpos(C, CE);
+ return true;
+ }
+ if (FD->getIdentifier() == II_fsetpos) {
+ Fsetpos(C, CE);
+ return true;
+ }
+ if (FD->getIdentifier() == II_clearerr) {
+ Clearerr(C, CE);
+ return true;
+ }
+ if (FD->getIdentifier() == II_feof) {
+ Feof(C, CE);
+ return true;
+ }
+ if (FD->getIdentifier() == II_ferror) {
+ Ferror(C, CE);
+ return true;
+ }
+ if (FD->getIdentifier() == II_fileno) {
+ Fileno(C, CE);
+ return true;
+ }
+
+ return false;
+}
+
+void StreamChecker::Fopen(CheckerContext &C, const CallExpr *CE) const {
+ OpenFileAux(C, CE);
+}
+
+void StreamChecker::Tmpfile(CheckerContext &C, const CallExpr *CE) const {
+ OpenFileAux(C, CE);
+}
+
+void StreamChecker::OpenFileAux(CheckerContext &C, const CallExpr *CE) const {
+ ProgramStateRef state = C.getState();
+ SValBuilder &svalBuilder = C.getSValBuilder();
+ const LocationContext *LCtx = C.getPredecessor()->getLocationContext();
+ DefinedSVal RetVal = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx,
+ C.blockCount())
+ .castAs<DefinedSVal>();
+ state = state->BindExpr(CE, C.getLocationContext(), RetVal);
+
+ ConstraintManager &CM = C.getConstraintManager();
+ // Bifurcate the state into two: one with a valid FILE* pointer, the other
+ // with a NULL.
+ ProgramStateRef stateNotNull, stateNull;
+ std::tie(stateNotNull, stateNull) = CM.assumeDual(state, RetVal);
+
+ if (SymbolRef Sym = RetVal.getAsSymbol()) {
+ // if RetVal is not NULL, set the symbol's state to Opened.
+ stateNotNull =
+ stateNotNull->set<StreamMap>(Sym,StreamState::getOpened(CE));
+ stateNull =
+ stateNull->set<StreamMap>(Sym, StreamState::getOpenFailed(CE));
+
+ C.addTransition(stateNotNull);
+ C.addTransition(stateNull);
+ }
+}
+
+void StreamChecker::Fclose(CheckerContext &C, const CallExpr *CE) const {
+ ProgramStateRef state = CheckDoubleClose(CE, C.getState(), C);
+ if (state)
+ C.addTransition(state);
+}
+
+void StreamChecker::Fread(CheckerContext &C, const CallExpr *CE) const {
+ ProgramStateRef state = C.getState();
+ if (!CheckNullStream(state->getSVal(CE->getArg(3), C.getLocationContext()),
+ state, C))
+ return;
+}
+
+void StreamChecker::Fwrite(CheckerContext &C, const CallExpr *CE) const {
+ ProgramStateRef state = C.getState();
+ if (!CheckNullStream(state->getSVal(CE->getArg(3), C.getLocationContext()),
+ state, C))
+ return;
+}
+
+void StreamChecker::Fseek(CheckerContext &C, const CallExpr *CE) const {
+ ProgramStateRef state = C.getState();
+ if (!(state = CheckNullStream(state->getSVal(CE->getArg(0),
+ C.getLocationContext()), state, C)))
+ return;
+ // Check the legality of the 'whence' argument of 'fseek'.
+ SVal Whence = state->getSVal(CE->getArg(2), C.getLocationContext());
+ Optional<nonloc::ConcreteInt> CI = Whence.getAs<nonloc::ConcreteInt>();
+
+ if (!CI)
+ return;
+
+ int64_t x = CI->getValue().getSExtValue();
+ if (x >= 0 && x <= 2)
+ return;
+
+ if (ExplodedNode *N = C.addTransition(state)) {
+ if (!BT_illegalwhence)
+ BT_illegalwhence.reset(
+ new BuiltinBug(this, "Illegal whence argument",
+ "The whence argument to fseek() should be "
+ "SEEK_SET, SEEK_END, or SEEK_CUR."));
+ BugReport *R = new BugReport(*BT_illegalwhence,
+ BT_illegalwhence->getDescription(), N);
+ C.emitReport(R);
+ }
+}
+
+void StreamChecker::Ftell(CheckerContext &C, const CallExpr *CE) const {
+ ProgramStateRef state = C.getState();
+ if (!CheckNullStream(state->getSVal(CE->getArg(0), C.getLocationContext()),
+ state, C))
+ return;
+}
+
+void StreamChecker::Rewind(CheckerContext &C, const CallExpr *CE) const {
+ ProgramStateRef state = C.getState();
+ if (!CheckNullStream(state->getSVal(CE->getArg(0), C.getLocationContext()),
+ state, C))
+ return;
+}
+
+void StreamChecker::Fgetpos(CheckerContext &C, const CallExpr *CE) const {
+ ProgramStateRef state = C.getState();
+ if (!CheckNullStream(state->getSVal(CE->getArg(0), C.getLocationContext()),
+ state, C))
+ return;
+}
+
+void StreamChecker::Fsetpos(CheckerContext &C, const CallExpr *CE) const {
+ ProgramStateRef state = C.getState();
+ if (!CheckNullStream(state->getSVal(CE->getArg(0), C.getLocationContext()),
+ state, C))
+ return;
+}
+
+void StreamChecker::Clearerr(CheckerContext &C, const CallExpr *CE) const {
+ ProgramStateRef state = C.getState();
+ if (!CheckNullStream(state->getSVal(CE->getArg(0), C.getLocationContext()),
+ state, C))
+ return;
+}
+
+void StreamChecker::Feof(CheckerContext &C, const CallExpr *CE) const {
+ ProgramStateRef state = C.getState();
+ if (!CheckNullStream(state->getSVal(CE->getArg(0), C.getLocationContext()),
+ state, C))
+ return;
+}
+
+void StreamChecker::Ferror(CheckerContext &C, const CallExpr *CE) const {
+ ProgramStateRef state = C.getState();
+ if (!CheckNullStream(state->getSVal(CE->getArg(0), C.getLocationContext()),
+ state, C))
+ return;
+}
+
+void StreamChecker::Fileno(CheckerContext &C, const CallExpr *CE) const {
+ ProgramStateRef state = C.getState();
+ if (!CheckNullStream(state->getSVal(CE->getArg(0), C.getLocationContext()),
+ state, C))
+ return;
+}
+
+ProgramStateRef StreamChecker::CheckNullStream(SVal SV, ProgramStateRef state,
+ CheckerContext &C) const {
+ Optional<DefinedSVal> DV = SV.getAs<DefinedSVal>();
+ if (!DV)
+ return nullptr;
+
+ ConstraintManager &CM = C.getConstraintManager();
+ ProgramStateRef stateNotNull, stateNull;
+ std::tie(stateNotNull, stateNull) = CM.assumeDual(state, *DV);
+
+ if (!stateNotNull && stateNull) {
+ if (ExplodedNode *N = C.generateSink(stateNull)) {
+ if (!BT_nullfp)
+ BT_nullfp.reset(new BuiltinBug(this, "NULL stream pointer",
+ "Stream pointer might be NULL."));
+ BugReport *R =new BugReport(*BT_nullfp, BT_nullfp->getDescription(), N);
+ C.emitReport(R);
+ }
+ return nullptr;
+ }
+ return stateNotNull;
+}
+
+ProgramStateRef StreamChecker::CheckDoubleClose(const CallExpr *CE,
+ ProgramStateRef state,
+ CheckerContext &C) const {
+ SymbolRef Sym =
+ state->getSVal(CE->getArg(0), C.getLocationContext()).getAsSymbol();
+ if (!Sym)
+ return state;
+
+ const StreamState *SS = state->get<StreamMap>(Sym);
+
+ // If the file stream is not tracked, return.
+ if (!SS)
+ return state;
+
+ // Check: Double close a File Descriptor could cause undefined behaviour.
+ // Conforming to man-pages
+ if (SS->isClosed()) {
+ ExplodedNode *N = C.generateSink();
+ if (N) {
+ if (!BT_doubleclose)
+ BT_doubleclose.reset(new BuiltinBug(
+ this, "Double fclose", "Try to close a file Descriptor already"
+ " closed. Cause undefined behaviour."));
+ BugReport *R = new BugReport(*BT_doubleclose,
+ BT_doubleclose->getDescription(), N);
+ C.emitReport(R);
+ }
+ return nullptr;
+ }
+
+ // Close the File Descriptor.
+ return state->set<StreamMap>(Sym, StreamState::getClosed(CE));
+}
+
+void StreamChecker::checkDeadSymbols(SymbolReaper &SymReaper,
+ CheckerContext &C) const {
+ // TODO: Clean up the state.
+ for (SymbolReaper::dead_iterator I = SymReaper.dead_begin(),
+ E = SymReaper.dead_end(); I != E; ++I) {
+ SymbolRef Sym = *I;
+ ProgramStateRef state = C.getState();
+ const StreamState *SS = state->get<StreamMap>(Sym);
+ if (!SS)
+ continue;
+
+ if (SS->isOpened()) {
+ ExplodedNode *N = C.generateSink();
+ if (N) {
+ if (!BT_ResourceLeak)
+ BT_ResourceLeak.reset(new BuiltinBug(
+ this, "Resource Leak",
+ "Opened File never closed. Potential Resource leak."));
+ BugReport *R = new BugReport(*BT_ResourceLeak,
+ BT_ResourceLeak->getDescription(), N);
+ C.emitReport(R);
+ }
+ }
+ }
+}
+
+void ento::registerStreamChecker(CheckerManager &mgr) {
+ mgr.registerChecker<StreamChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/TaintTesterChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/TaintTesterChecker.cpp
new file mode 100644
index 0000000..d33c977
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/TaintTesterChecker.cpp
@@ -0,0 +1,62 @@
+//== TaintTesterChecker.cpp ----------------------------------- -*- C++ -*--=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This checker can be used for testing how taint data is propagated.
+//
+//===----------------------------------------------------------------------===//
+#include "ClangSACheckers.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+class TaintTesterChecker : public Checker< check::PostStmt<Expr> > {
+
+ mutable std::unique_ptr<BugType> BT;
+ void initBugType() const;
+
+ /// Given a pointer argument, get the symbol of the value it contains
+ /// (points to).
+ SymbolRef getPointedToSymbol(CheckerContext &C,
+ const Expr* Arg,
+ bool IssueWarning = true) const;
+
+public:
+ void checkPostStmt(const Expr *E, CheckerContext &C) const;
+};
+}
+
+inline void TaintTesterChecker::initBugType() const {
+ if (!BT)
+ BT.reset(new BugType(this, "Tainted data", "General"));
+}
+
+void TaintTesterChecker::checkPostStmt(const Expr *E,
+ CheckerContext &C) const {
+ ProgramStateRef State = C.getState();
+ if (!State)
+ return;
+
+ if (State->isTainted(E, C.getLocationContext())) {
+ if (ExplodedNode *N = C.addTransition()) {
+ initBugType();
+ BugReport *report = new BugReport(*BT, "tainted",N);
+ report->addRange(E->getSourceRange());
+ C.emitReport(report);
+ }
+ }
+}
+
+void ento::registerTaintTesterChecker(CheckerManager &mgr) {
+ mgr.registerChecker<TaintTesterChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/TestAfterDivZeroChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/TestAfterDivZeroChecker.cpp
new file mode 100644
index 0000000..083075d
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/TestAfterDivZeroChecker.cpp
@@ -0,0 +1,265 @@
+//== TestAfterDivZeroChecker.cpp - Test after division by zero checker --*--==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This defines TestAfterDivZeroChecker, a builtin check that performs checks
+// for division by zero where the division occurs before comparison with zero.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "llvm/ADT/FoldingSet.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+
+class ZeroState {
+private:
+ SymbolRef ZeroSymbol;
+ unsigned BlockID;
+ const StackFrameContext *SFC;
+
+public:
+ ZeroState(SymbolRef S, unsigned B, const StackFrameContext *SFC)
+ : ZeroSymbol(S), BlockID(B), SFC(SFC) {}
+
+ const StackFrameContext *getStackFrameContext() const { return SFC; }
+
+ bool operator==(const ZeroState &X) const {
+ return BlockID == X.BlockID && SFC == X.SFC && ZeroSymbol == X.ZeroSymbol;
+ }
+
+ bool operator<(const ZeroState &X) const {
+ if (BlockID != X.BlockID)
+ return BlockID < X.BlockID;
+ if (SFC != X.SFC)
+ return SFC < X.SFC;
+ return ZeroSymbol < X.ZeroSymbol;
+ }
+
+ void Profile(llvm::FoldingSetNodeID &ID) const {
+ ID.AddInteger(BlockID);
+ ID.AddPointer(SFC);
+ ID.AddPointer(ZeroSymbol);
+ }
+};
+
+class DivisionBRVisitor : public BugReporterVisitorImpl<DivisionBRVisitor> {
+private:
+ SymbolRef ZeroSymbol;
+ const StackFrameContext *SFC;
+ bool Satisfied;
+
+public:
+ DivisionBRVisitor(SymbolRef ZeroSymbol, const StackFrameContext *SFC)
+ : ZeroSymbol(ZeroSymbol), SFC(SFC), Satisfied(false) {}
+
+ void Profile(llvm::FoldingSetNodeID &ID) const override {
+ ID.Add(ZeroSymbol);
+ ID.Add(SFC);
+ }
+
+ PathDiagnosticPiece *VisitNode(const ExplodedNode *Succ,
+ const ExplodedNode *Pred,
+ BugReporterContext &BRC,
+ BugReport &BR) override;
+};
+
+class TestAfterDivZeroChecker
+ : public Checker<check::PreStmt<BinaryOperator>, check::BranchCondition,
+ check::EndFunction> {
+ mutable std::unique_ptr<BuiltinBug> DivZeroBug;
+ void reportBug(SVal Val, CheckerContext &C) const;
+
+public:
+ void checkPreStmt(const BinaryOperator *B, CheckerContext &C) const;
+ void checkBranchCondition(const Stmt *Condition, CheckerContext &C) const;
+ void checkEndFunction(CheckerContext &C) const;
+ void setDivZeroMap(SVal Var, CheckerContext &C) const;
+ bool hasDivZeroMap(SVal Var, const CheckerContext &C) const;
+ bool isZero(SVal S, CheckerContext &C) const;
+};
+} // end anonymous namespace
+
+REGISTER_SET_WITH_PROGRAMSTATE(DivZeroMap, ZeroState)
+
+PathDiagnosticPiece *DivisionBRVisitor::VisitNode(const ExplodedNode *Succ,
+ const ExplodedNode *Pred,
+ BugReporterContext &BRC,
+ BugReport &BR) {
+ if (Satisfied)
+ return nullptr;
+
+ const Expr *E = nullptr;
+
+ if (Optional<PostStmt> P = Succ->getLocationAs<PostStmt>())
+ if (const BinaryOperator *BO = P->getStmtAs<BinaryOperator>()) {
+ BinaryOperator::Opcode Op = BO->getOpcode();
+ if (Op == BO_Div || Op == BO_Rem || Op == BO_DivAssign ||
+ Op == BO_RemAssign) {
+ E = BO->getRHS();
+ }
+ }
+
+ if (!E)
+ return nullptr;
+
+ ProgramStateRef State = Succ->getState();
+ SVal S = State->getSVal(E, Succ->getLocationContext());
+ if (ZeroSymbol == S.getAsSymbol() && SFC == Succ->getStackFrame()) {
+ Satisfied = true;
+
+ // Construct a new PathDiagnosticPiece.
+ ProgramPoint P = Succ->getLocation();
+ PathDiagnosticLocation L =
+ PathDiagnosticLocation::create(P, BRC.getSourceManager());
+
+ if (!L.isValid() || !L.asLocation().isValid())
+ return nullptr;
+
+ return new PathDiagnosticEventPiece(
+ L, "Division with compared value made here");
+ }
+
+ return nullptr;
+}
+
+bool TestAfterDivZeroChecker::isZero(SVal S, CheckerContext &C) const {
+ Optional<DefinedSVal> DSV = S.getAs<DefinedSVal>();
+
+ if (!DSV)
+ return false;
+
+ ConstraintManager &CM = C.getConstraintManager();
+ return !CM.assume(C.getState(), *DSV, true);
+}
+
+void TestAfterDivZeroChecker::setDivZeroMap(SVal Var, CheckerContext &C) const {
+ SymbolRef SR = Var.getAsSymbol();
+ if (!SR)
+ return;
+
+ ProgramStateRef State = C.getState();
+ State =
+ State->add<DivZeroMap>(ZeroState(SR, C.getBlockID(), C.getStackFrame()));
+ C.addTransition(State);
+}
+
+bool TestAfterDivZeroChecker::hasDivZeroMap(SVal Var,
+ const CheckerContext &C) const {
+ SymbolRef SR = Var.getAsSymbol();
+ if (!SR)
+ return false;
+
+ ZeroState ZS(SR, C.getBlockID(), C.getStackFrame());
+ return C.getState()->contains<DivZeroMap>(ZS);
+}
+
+void TestAfterDivZeroChecker::reportBug(SVal Val, CheckerContext &C) const {
+ if (ExplodedNode *N = C.generateSink(C.getState())) {
+ if (!DivZeroBug)
+ DivZeroBug.reset(new BuiltinBug(this, "Division by zero"));
+
+ BugReport *R =
+ new BugReport(*DivZeroBug, "Value being compared against zero has "
+ "already been used for division",
+ N);
+
+ R->addVisitor(llvm::make_unique<DivisionBRVisitor>(Val.getAsSymbol(),
+ C.getStackFrame()));
+ C.emitReport(R);
+ }
+}
+
+void TestAfterDivZeroChecker::checkEndFunction(CheckerContext &C) const {
+ ProgramStateRef State = C.getState();
+
+ DivZeroMapTy DivZeroes = State->get<DivZeroMap>();
+ if (DivZeroes.isEmpty())
+ return;
+
+ DivZeroMapTy::Factory &F = State->get_context<DivZeroMap>();
+ for (llvm::ImmutableSet<ZeroState>::iterator I = DivZeroes.begin(),
+ E = DivZeroes.end();
+ I != E; ++I) {
+ ZeroState ZS = *I;
+ if (ZS.getStackFrameContext() == C.getStackFrame())
+ DivZeroes = F.remove(DivZeroes, ZS);
+ }
+ C.addTransition(State->set<DivZeroMap>(DivZeroes));
+}
+
+void TestAfterDivZeroChecker::checkPreStmt(const BinaryOperator *B,
+ CheckerContext &C) const {
+ BinaryOperator::Opcode Op = B->getOpcode();
+ if (Op == BO_Div || Op == BO_Rem || Op == BO_DivAssign ||
+ Op == BO_RemAssign) {
+ SVal S = C.getSVal(B->getRHS());
+
+ if (!isZero(S, C))
+ setDivZeroMap(S, C);
+ }
+}
+
+void TestAfterDivZeroChecker::checkBranchCondition(const Stmt *Condition,
+ CheckerContext &C) const {
+ if (const BinaryOperator *B = dyn_cast<BinaryOperator>(Condition)) {
+ if (B->isComparisonOp()) {
+ const IntegerLiteral *IntLiteral = dyn_cast<IntegerLiteral>(B->getRHS());
+ bool LRHS = true;
+ if (!IntLiteral) {
+ IntLiteral = dyn_cast<IntegerLiteral>(B->getLHS());
+ LRHS = false;
+ }
+
+ if (!IntLiteral || IntLiteral->getValue() != 0)
+ return;
+
+ SVal Val = C.getSVal(LRHS ? B->getLHS() : B->getRHS());
+ if (hasDivZeroMap(Val, C))
+ reportBug(Val, C);
+ }
+ } else if (const UnaryOperator *U = dyn_cast<UnaryOperator>(Condition)) {
+ if (U->getOpcode() == UO_LNot) {
+ SVal Val;
+ if (const ImplicitCastExpr *I =
+ dyn_cast<ImplicitCastExpr>(U->getSubExpr()))
+ Val = C.getSVal(I->getSubExpr());
+
+ if (hasDivZeroMap(Val, C))
+ reportBug(Val, C);
+ else {
+ Val = C.getSVal(U->getSubExpr());
+ if (hasDivZeroMap(Val, C))
+ reportBug(Val, C);
+ }
+ }
+ } else if (const ImplicitCastExpr *IE =
+ dyn_cast<ImplicitCastExpr>(Condition)) {
+ SVal Val = C.getSVal(IE->getSubExpr());
+
+ if (hasDivZeroMap(Val, C))
+ reportBug(Val, C);
+ else {
+ SVal Val = C.getSVal(Condition);
+
+ if (hasDivZeroMap(Val, C))
+ reportBug(Val, C);
+ }
+ }
+}
+
+void ento::registerTestAfterDivZeroChecker(CheckerManager &mgr) {
+ mgr.registerChecker<TestAfterDivZeroChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/TraversalChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/TraversalChecker.cpp
new file mode 100644
index 0000000..d02d2df
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/TraversalChecker.cpp
@@ -0,0 +1,107 @@
+//== TraversalChecker.cpp -------------------------------------- -*- C++ -*--=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// These checkers print various aspects of the ExprEngine's traversal of the CFG
+// as it builds the ExplodedGraph.
+//
+//===----------------------------------------------------------------------===//
+#include "ClangSACheckers.h"
+#include "clang/AST/ParentMap.h"
+#include "clang/AST/StmtObjC.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+class TraversalDumper : public Checker< check::BranchCondition,
+ check::EndFunction > {
+public:
+ void checkBranchCondition(const Stmt *Condition, CheckerContext &C) const;
+ void checkEndFunction(CheckerContext &C) const;
+};
+}
+
+void TraversalDumper::checkBranchCondition(const Stmt *Condition,
+ CheckerContext &C) const {
+ // Special-case Objective-C's for-in loop, which uses the entire loop as its
+ // condition. We just print the collection expression.
+ const Stmt *Parent = dyn_cast<ObjCForCollectionStmt>(Condition);
+ if (!Parent) {
+ const ParentMap &Parents = C.getLocationContext()->getParentMap();
+ Parent = Parents.getParent(Condition);
+ }
+
+ // It is mildly evil to print directly to llvm::outs() rather than emitting
+ // warnings, but this ensures things do not get filtered out by the rest of
+ // the static analyzer machinery.
+ SourceLocation Loc = Parent->getLocStart();
+ llvm::outs() << C.getSourceManager().getSpellingLineNumber(Loc) << " "
+ << Parent->getStmtClassName() << "\n";
+}
+
+void TraversalDumper::checkEndFunction(CheckerContext &C) const {
+ llvm::outs() << "--END FUNCTION--\n";
+}
+
+void ento::registerTraversalDumper(CheckerManager &mgr) {
+ mgr.registerChecker<TraversalDumper>();
+}
+
+//------------------------------------------------------------------------------
+
+namespace {
+class CallDumper : public Checker< check::PreCall,
+ check::PostCall > {
+public:
+ void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
+ void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
+};
+}
+
+void CallDumper::checkPreCall(const CallEvent &Call, CheckerContext &C) const {
+ unsigned Indentation = 0;
+ for (const LocationContext *LC = C.getLocationContext()->getParent();
+ LC != nullptr; LC = LC->getParent())
+ ++Indentation;
+
+ // It is mildly evil to print directly to llvm::outs() rather than emitting
+ // warnings, but this ensures things do not get filtered out by the rest of
+ // the static analyzer machinery.
+ llvm::outs().indent(Indentation);
+ Call.dump(llvm::outs());
+}
+
+void CallDumper::checkPostCall(const CallEvent &Call, CheckerContext &C) const {
+ const Expr *CallE = Call.getOriginExpr();
+ if (!CallE)
+ return;
+
+ unsigned Indentation = 0;
+ for (const LocationContext *LC = C.getLocationContext()->getParent();
+ LC != nullptr; LC = LC->getParent())
+ ++Indentation;
+
+ // It is mildly evil to print directly to llvm::outs() rather than emitting
+ // warnings, but this ensures things do not get filtered out by the rest of
+ // the static analyzer machinery.
+ llvm::outs().indent(Indentation);
+ if (Call.getResultType()->isVoidType())
+ llvm::outs() << "Returning void\n";
+ else
+ llvm::outs() << "Returning " << C.getSVal(CallE) << "\n";
+}
+
+void ento::registerCallDumper(CheckerManager &mgr) {
+ mgr.registerChecker<CallDumper>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/UndefBranchChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/UndefBranchChecker.cpp
new file mode 100644
index 0000000..fc49a46
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/UndefBranchChecker.cpp
@@ -0,0 +1,112 @@
+//=== UndefBranchChecker.cpp -----------------------------------*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines UndefBranchChecker, which checks for undefined branch
+// condition.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+
+class UndefBranchChecker : public Checker<check::BranchCondition> {
+ mutable std::unique_ptr<BuiltinBug> BT;
+
+ struct FindUndefExpr {
+ ProgramStateRef St;
+ const LocationContext *LCtx;
+
+ FindUndefExpr(ProgramStateRef S, const LocationContext *L)
+ : St(S), LCtx(L) {}
+
+ const Expr *FindExpr(const Expr *Ex) {
+ if (!MatchesCriteria(Ex))
+ return nullptr;
+
+ for (Stmt::const_child_iterator I = Ex->child_begin(),
+ E = Ex->child_end();I!=E;++I)
+ if (const Expr *ExI = dyn_cast_or_null<Expr>(*I)) {
+ const Expr *E2 = FindExpr(ExI);
+ if (E2) return E2;
+ }
+
+ return Ex;
+ }
+
+ bool MatchesCriteria(const Expr *Ex) {
+ return St->getSVal(Ex, LCtx).isUndef();
+ }
+ };
+
+public:
+ void checkBranchCondition(const Stmt *Condition, CheckerContext &Ctx) const;
+};
+
+}
+
+void UndefBranchChecker::checkBranchCondition(const Stmt *Condition,
+ CheckerContext &Ctx) const {
+ SVal X = Ctx.getState()->getSVal(Condition, Ctx.getLocationContext());
+ if (X.isUndef()) {
+ // Generate a sink node, which implicitly marks both outgoing branches as
+ // infeasible.
+ ExplodedNode *N = Ctx.generateSink();
+ if (N) {
+ if (!BT)
+ BT.reset(new BuiltinBug(
+ this, "Branch condition evaluates to a garbage value"));
+
+ // What's going on here: we want to highlight the subexpression of the
+ // condition that is the most likely source of the "uninitialized
+ // branch condition." We do a recursive walk of the condition's
+ // subexpressions and roughly look for the most nested subexpression
+ // that binds to Undefined. We then highlight that expression's range.
+
+ // Get the predecessor node and check if is a PostStmt with the Stmt
+ // being the terminator condition. We want to inspect the state
+ // of that node instead because it will contain main information about
+ // the subexpressions.
+
+ // Note: any predecessor will do. They should have identical state,
+ // since all the BlockEdge did was act as an error sink since the value
+ // had to already be undefined.
+ assert (!N->pred_empty());
+ const Expr *Ex = cast<Expr>(Condition);
+ ExplodedNode *PrevN = *N->pred_begin();
+ ProgramPoint P = PrevN->getLocation();
+ ProgramStateRef St = N->getState();
+
+ if (Optional<PostStmt> PS = P.getAs<PostStmt>())
+ if (PS->getStmt() == Ex)
+ St = PrevN->getState();
+
+ FindUndefExpr FindIt(St, Ctx.getLocationContext());
+ Ex = FindIt.FindExpr(Ex);
+
+ // Emit the bug report.
+ BugReport *R = new BugReport(*BT, BT->getDescription(), N);
+ bugreporter::trackNullOrUndefValue(N, Ex, *R);
+ R->addRange(Ex->getSourceRange());
+
+ Ctx.emitReport(R);
+ }
+ }
+}
+
+void ento::registerUndefBranchChecker(CheckerManager &mgr) {
+ mgr.registerChecker<UndefBranchChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/UndefCapturedBlockVarChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/UndefCapturedBlockVarChecker.cpp
new file mode 100644
index 0000000..8976e0a
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/UndefCapturedBlockVarChecker.cpp
@@ -0,0 +1,107 @@
+// UndefCapturedBlockVarChecker.cpp - Uninitialized captured vars -*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This checker detects blocks that capture uninitialized values.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/AST/Attr.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+class UndefCapturedBlockVarChecker
+ : public Checker< check::PostStmt<BlockExpr> > {
+ mutable std::unique_ptr<BugType> BT;
+
+public:
+ void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const;
+};
+} // end anonymous namespace
+
+static const DeclRefExpr *FindBlockDeclRefExpr(const Stmt *S,
+ const VarDecl *VD) {
+ if (const DeclRefExpr *BR = dyn_cast<DeclRefExpr>(S))
+ if (BR->getDecl() == VD)
+ return BR;
+
+ for (Stmt::const_child_iterator I = S->child_begin(), E = S->child_end();
+ I!=E; ++I)
+ if (const Stmt *child = *I) {
+ const DeclRefExpr *BR = FindBlockDeclRefExpr(child, VD);
+ if (BR)
+ return BR;
+ }
+
+ return nullptr;
+}
+
+void
+UndefCapturedBlockVarChecker::checkPostStmt(const BlockExpr *BE,
+ CheckerContext &C) const {
+ if (!BE->getBlockDecl()->hasCaptures())
+ return;
+
+ ProgramStateRef state = C.getState();
+ const BlockDataRegion *R =
+ cast<BlockDataRegion>(state->getSVal(BE,
+ C.getLocationContext()).getAsRegion());
+
+ BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(),
+ E = R->referenced_vars_end();
+
+ for (; I != E; ++I) {
+ // This VarRegion is the region associated with the block; we need
+ // the one associated with the encompassing context.
+ const VarRegion *VR = I.getCapturedRegion();
+ const VarDecl *VD = VR->getDecl();
+
+ if (VD->hasAttr<BlocksAttr>() || !VD->hasLocalStorage())
+ continue;
+
+ // Get the VarRegion associated with VD in the local stack frame.
+ if (Optional<UndefinedVal> V =
+ state->getSVal(I.getOriginalRegion()).getAs<UndefinedVal>()) {
+ if (ExplodedNode *N = C.generateSink()) {
+ if (!BT)
+ BT.reset(
+ new BuiltinBug(this, "uninitialized variable captured by block"));
+
+ // Generate a bug report.
+ SmallString<128> buf;
+ llvm::raw_svector_ostream os(buf);
+
+ os << "Variable '" << VD->getName()
+ << "' is uninitialized when captured by block";
+
+ BugReport *R = new BugReport(*BT, os.str(), N);
+ if (const Expr *Ex = FindBlockDeclRefExpr(BE->getBody(), VD))
+ R->addRange(Ex->getSourceRange());
+ R->addVisitor(llvm::make_unique<FindLastStoreBRVisitor>(
+ *V, VR, /*EnableNullFPSuppression*/ false));
+ R->disablePathPruning();
+ // need location of block
+ C.emitReport(R);
+ }
+ }
+ }
+}
+
+void ento::registerUndefCapturedBlockVarChecker(CheckerManager &mgr) {
+ mgr.registerChecker<UndefCapturedBlockVarChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/UndefResultChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/UndefResultChecker.cpp
new file mode 100644
index 0000000..f3f4dce
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/UndefResultChecker.cpp
@@ -0,0 +1,101 @@
+//=== UndefResultChecker.cpp ------------------------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This defines UndefResultChecker, a builtin check in ExprEngine that
+// performs checks for undefined results of non-assignment binary operators.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+class UndefResultChecker
+ : public Checker< check::PostStmt<BinaryOperator> > {
+
+ mutable std::unique_ptr<BugType> BT;
+
+public:
+ void checkPostStmt(const BinaryOperator *B, CheckerContext &C) const;
+};
+} // end anonymous namespace
+
+void UndefResultChecker::checkPostStmt(const BinaryOperator *B,
+ CheckerContext &C) const {
+ ProgramStateRef state = C.getState();
+ const LocationContext *LCtx = C.getLocationContext();
+ if (state->getSVal(B, LCtx).isUndef()) {
+
+ // Do not report assignments of uninitialized values inside swap functions.
+ // This should allow to swap partially uninitialized structs
+ // (radar://14129997)
+ if (const FunctionDecl *EnclosingFunctionDecl =
+ dyn_cast<FunctionDecl>(C.getStackFrame()->getDecl()))
+ if (C.getCalleeName(EnclosingFunctionDecl) == "swap")
+ return;
+
+ // Generate an error node.
+ ExplodedNode *N = C.generateSink();
+ if (!N)
+ return;
+
+ if (!BT)
+ BT.reset(
+ new BuiltinBug(this, "Result of operation is garbage or undefined"));
+
+ SmallString<256> sbuf;
+ llvm::raw_svector_ostream OS(sbuf);
+ const Expr *Ex = nullptr;
+ bool isLeft = true;
+
+ if (state->getSVal(B->getLHS(), LCtx).isUndef()) {
+ Ex = B->getLHS()->IgnoreParenCasts();
+ isLeft = true;
+ }
+ else if (state->getSVal(B->getRHS(), LCtx).isUndef()) {
+ Ex = B->getRHS()->IgnoreParenCasts();
+ isLeft = false;
+ }
+
+ if (Ex) {
+ OS << "The " << (isLeft ? "left" : "right")
+ << " operand of '"
+ << BinaryOperator::getOpcodeStr(B->getOpcode())
+ << "' is a garbage value";
+ }
+ else {
+ // Neither operand was undefined, but the result is undefined.
+ OS << "The result of the '"
+ << BinaryOperator::getOpcodeStr(B->getOpcode())
+ << "' expression is undefined";
+ }
+ BugReport *report = new BugReport(*BT, OS.str(), N);
+ if (Ex) {
+ report->addRange(Ex->getSourceRange());
+ bugreporter::trackNullOrUndefValue(N, Ex, *report);
+ }
+ else
+ bugreporter::trackNullOrUndefValue(N, B, *report);
+
+ C.emitReport(report);
+ }
+}
+
+void ento::registerUndefResultChecker(CheckerManager &mgr) {
+ mgr.registerChecker<UndefResultChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/UndefinedArraySubscriptChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/UndefinedArraySubscriptChecker.cpp
new file mode 100644
index 0000000..e952671
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/UndefinedArraySubscriptChecker.cpp
@@ -0,0 +1,64 @@
+//===--- UndefinedArraySubscriptChecker.h ----------------------*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This defines UndefinedArraySubscriptChecker, a builtin check in ExprEngine
+// that performs checks for undefined array subscripts.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+class UndefinedArraySubscriptChecker
+ : public Checker< check::PreStmt<ArraySubscriptExpr> > {
+ mutable std::unique_ptr<BugType> BT;
+
+public:
+ void checkPreStmt(const ArraySubscriptExpr *A, CheckerContext &C) const;
+};
+} // end anonymous namespace
+
+void
+UndefinedArraySubscriptChecker::checkPreStmt(const ArraySubscriptExpr *A,
+ CheckerContext &C) const {
+ const Expr *Index = A->getIdx();
+ if (!C.getSVal(Index).isUndef())
+ return;
+
+ // Sema generates anonymous array variables for copying array struct fields.
+ // Don't warn if we're in an implicitly-generated constructor.
+ const Decl *D = C.getLocationContext()->getDecl();
+ if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(D))
+ if (Ctor->isDefaulted())
+ return;
+
+ ExplodedNode *N = C.generateSink();
+ if (!N)
+ return;
+ if (!BT)
+ BT.reset(new BuiltinBug(this, "Array subscript is undefined"));
+
+ // Generate a report for this bug.
+ BugReport *R = new BugReport(*BT, BT->getName(), N);
+ R->addRange(A->getIdx()->getSourceRange());
+ bugreporter::trackNullOrUndefValue(N, A->getIdx(), *R);
+ C.emitReport(R);
+}
+
+void ento::registerUndefinedArraySubscriptChecker(CheckerManager &mgr) {
+ mgr.registerChecker<UndefinedArraySubscriptChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/UndefinedAssignmentChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/UndefinedAssignmentChecker.cpp
new file mode 100644
index 0000000..bd4493d
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/UndefinedAssignmentChecker.cpp
@@ -0,0 +1,96 @@
+//===--- UndefinedAssignmentChecker.h ---------------------------*- C++ -*--==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This defines UndefinedAssignmentChecker, a builtin check in ExprEngine that
+// checks for assigning undefined values.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+class UndefinedAssignmentChecker
+ : public Checker<check::Bind> {
+ mutable std::unique_ptr<BugType> BT;
+
+public:
+ void checkBind(SVal location, SVal val, const Stmt *S,
+ CheckerContext &C) const;
+};
+}
+
+void UndefinedAssignmentChecker::checkBind(SVal location, SVal val,
+ const Stmt *StoreE,
+ CheckerContext &C) const {
+ if (!val.isUndef())
+ return;
+
+ // Do not report assignments of uninitialized values inside swap functions.
+ // This should allow to swap partially uninitialized structs
+ // (radar://14129997)
+ if (const FunctionDecl *EnclosingFunctionDecl =
+ dyn_cast<FunctionDecl>(C.getStackFrame()->getDecl()))
+ if (C.getCalleeName(EnclosingFunctionDecl) == "swap")
+ return;
+
+ ExplodedNode *N = C.generateSink();
+
+ if (!N)
+ return;
+
+ const char *str = "Assigned value is garbage or undefined";
+
+ if (!BT)
+ BT.reset(new BuiltinBug(this, str));
+
+ // Generate a report for this bug.
+ const Expr *ex = nullptr;
+
+ while (StoreE) {
+ if (const BinaryOperator *B = dyn_cast<BinaryOperator>(StoreE)) {
+ if (B->isCompoundAssignmentOp()) {
+ ProgramStateRef state = C.getState();
+ if (state->getSVal(B->getLHS(), C.getLocationContext()).isUndef()) {
+ str = "The left expression of the compound assignment is an "
+ "uninitialized value. The computed value will also be garbage";
+ ex = B->getLHS();
+ break;
+ }
+ }
+
+ ex = B->getRHS();
+ break;
+ }
+
+ if (const DeclStmt *DS = dyn_cast<DeclStmt>(StoreE)) {
+ const VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
+ ex = VD->getInit();
+ }
+
+ break;
+ }
+
+ BugReport *R = new BugReport(*BT, str, N);
+ if (ex) {
+ R->addRange(ex->getSourceRange());
+ bugreporter::trackNullOrUndefValue(N, ex, *R);
+ }
+ C.emitReport(R);
+}
+
+void ento::registerUndefinedAssignmentChecker(CheckerManager &mgr) {
+ mgr.registerChecker<UndefinedAssignmentChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/UnixAPIChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/UnixAPIChecker.cpp
new file mode 100644
index 0000000..4bfed85
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/UnixAPIChecker.cpp
@@ -0,0 +1,382 @@
+//= UnixAPIChecker.h - Checks preconditions for various Unix APIs --*- C++ -*-//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This defines UnixAPIChecker, which is an assortment of checks on calls
+// to various, widely used UNIX/Posix functions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/Support/raw_ostream.h"
+#include <fcntl.h>
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+class UnixAPIChecker : public Checker< check::PreStmt<CallExpr> > {
+ mutable std::unique_ptr<BugType> BT_open, BT_pthreadOnce, BT_mallocZero;
+ mutable Optional<uint64_t> Val_O_CREAT;
+
+public:
+ void checkPreStmt(const CallExpr *CE, CheckerContext &C) const;
+
+ void CheckOpen(CheckerContext &C, const CallExpr *CE) const;
+ void CheckPthreadOnce(CheckerContext &C, const CallExpr *CE) const;
+ void CheckCallocZero(CheckerContext &C, const CallExpr *CE) const;
+ void CheckMallocZero(CheckerContext &C, const CallExpr *CE) const;
+ void CheckReallocZero(CheckerContext &C, const CallExpr *CE) const;
+ void CheckReallocfZero(CheckerContext &C, const CallExpr *CE) const;
+ void CheckAllocaZero(CheckerContext &C, const CallExpr *CE) const;
+ void CheckVallocZero(CheckerContext &C, const CallExpr *CE) const;
+
+ typedef void (UnixAPIChecker::*SubChecker)(CheckerContext &,
+ const CallExpr *) const;
+private:
+ bool ReportZeroByteAllocation(CheckerContext &C,
+ ProgramStateRef falseState,
+ const Expr *arg,
+ const char *fn_name) const;
+ void BasicAllocationCheck(CheckerContext &C,
+ const CallExpr *CE,
+ const unsigned numArgs,
+ const unsigned sizeArg,
+ const char *fn) const;
+ void LazyInitialize(std::unique_ptr<BugType> &BT, const char *name) const {
+ if (BT)
+ return;
+ BT.reset(new BugType(this, name, categories::UnixAPI));
+ }
+ void ReportOpenBug(CheckerContext &C,
+ ProgramStateRef State,
+ const char *Msg,
+ SourceRange SR) const;
+};
+} //end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// "open" (man 2 open)
+//===----------------------------------------------------------------------===//
+
+void UnixAPIChecker::ReportOpenBug(CheckerContext &C,
+ ProgramStateRef State,
+ const char *Msg,
+ SourceRange SR) const {
+ ExplodedNode *N = C.generateSink(State);
+ if (!N)
+ return;
+
+ LazyInitialize(BT_open, "Improper use of 'open'");
+
+ BugReport *Report = new BugReport(*BT_open, Msg, N);
+ Report->addRange(SR);
+ C.emitReport(Report);
+}
+
+void UnixAPIChecker::CheckOpen(CheckerContext &C, const CallExpr *CE) const {
+ ProgramStateRef state = C.getState();
+
+ if (CE->getNumArgs() < 2) {
+ // The frontend should issue a warning for this case, so this is a sanity
+ // check.
+ return;
+ } else if (CE->getNumArgs() == 3) {
+ const Expr *Arg = CE->getArg(2);
+ QualType QT = Arg->getType();
+ if (!QT->isIntegerType()) {
+ ReportOpenBug(C, state,
+ "Third argument to 'open' is not an integer",
+ Arg->getSourceRange());
+ return;
+ }
+ } else if (CE->getNumArgs() > 3) {
+ ReportOpenBug(C, state,
+ "Call to 'open' with more than three arguments",
+ CE->getArg(3)->getSourceRange());
+ return;
+ }
+
+ // The definition of O_CREAT is platform specific. We need a better way
+ // of querying this information from the checking environment.
+ if (!Val_O_CREAT.hasValue()) {
+ if (C.getASTContext().getTargetInfo().getTriple().getVendor()
+ == llvm::Triple::Apple)
+ Val_O_CREAT = 0x0200;
+ else {
+ // FIXME: We need a more general way of getting the O_CREAT value.
+ // We could possibly grovel through the preprocessor state, but
+ // that would require passing the Preprocessor object to the ExprEngine.
+ // See also: MallocChecker.cpp / M_ZERO.
+ return;
+ }
+ }
+
+ // Now check if oflags has O_CREAT set.
+ const Expr *oflagsEx = CE->getArg(1);
+ const SVal V = state->getSVal(oflagsEx, C.getLocationContext());
+ if (!V.getAs<NonLoc>()) {
+ // The case where 'V' can be a location can only be due to a bad header,
+ // so in this case bail out.
+ return;
+ }
+ NonLoc oflags = V.castAs<NonLoc>();
+ NonLoc ocreateFlag = C.getSValBuilder()
+ .makeIntVal(Val_O_CREAT.getValue(), oflagsEx->getType()).castAs<NonLoc>();
+ SVal maskedFlagsUC = C.getSValBuilder().evalBinOpNN(state, BO_And,
+ oflags, ocreateFlag,
+ oflagsEx->getType());
+ if (maskedFlagsUC.isUnknownOrUndef())
+ return;
+ DefinedSVal maskedFlags = maskedFlagsUC.castAs<DefinedSVal>();
+
+ // Check if maskedFlags is non-zero.
+ ProgramStateRef trueState, falseState;
+ std::tie(trueState, falseState) = state->assume(maskedFlags);
+
+ // Only emit an error if the value of 'maskedFlags' is properly
+ // constrained;
+ if (!(trueState && !falseState))
+ return;
+
+ if (CE->getNumArgs() < 3) {
+ ReportOpenBug(C, trueState,
+ "Call to 'open' requires a third argument when "
+ "the 'O_CREAT' flag is set",
+ oflagsEx->getSourceRange());
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// pthread_once
+//===----------------------------------------------------------------------===//
+
+void UnixAPIChecker::CheckPthreadOnce(CheckerContext &C,
+ const CallExpr *CE) const {
+
+ // This is similar to 'CheckDispatchOnce' in the MacOSXAPIChecker.
+ // They can possibly be refactored.
+
+ if (CE->getNumArgs() < 1)
+ return;
+
+ // Check if the first argument is stack allocated. If so, issue a warning
+ // because that's likely to be bad news.
+ ProgramStateRef state = C.getState();
+ const MemRegion *R =
+ state->getSVal(CE->getArg(0), C.getLocationContext()).getAsRegion();
+ if (!R || !isa<StackSpaceRegion>(R->getMemorySpace()))
+ return;
+
+ ExplodedNode *N = C.generateSink(state);
+ if (!N)
+ return;
+
+ SmallString<256> S;
+ llvm::raw_svector_ostream os(S);
+ os << "Call to 'pthread_once' uses";
+ if (const VarRegion *VR = dyn_cast<VarRegion>(R))
+ os << " the local variable '" << VR->getDecl()->getName() << '\'';
+ else
+ os << " stack allocated memory";
+ os << " for the \"control\" value. Using such transient memory for "
+ "the control value is potentially dangerous.";
+ if (isa<VarRegion>(R) && isa<StackLocalsSpaceRegion>(R->getMemorySpace()))
+ os << " Perhaps you intended to declare the variable as 'static'?";
+
+ LazyInitialize(BT_pthreadOnce, "Improper use of 'pthread_once'");
+
+ BugReport *report = new BugReport(*BT_pthreadOnce, os.str(), N);
+ report->addRange(CE->getArg(0)->getSourceRange());
+ C.emitReport(report);
+}
+
+//===----------------------------------------------------------------------===//
+// "calloc", "malloc", "realloc", "reallocf", "alloca" and "valloc"
+// with allocation size 0
+//===----------------------------------------------------------------------===//
+// FIXME: Eventually these should be rolled into the MallocChecker, but right now
+// they're more basic and valuable for widespread use.
+
+// Returns true if we try to do a zero byte allocation, false otherwise.
+// Fills in trueState and falseState.
+static bool IsZeroByteAllocation(ProgramStateRef state,
+ const SVal argVal,
+ ProgramStateRef *trueState,
+ ProgramStateRef *falseState) {
+ std::tie(*trueState, *falseState) =
+ state->assume(argVal.castAs<DefinedSVal>());
+
+ return (*falseState && !*trueState);
+}
+
+// Generates an error report, indicating that the function whose name is given
+// will perform a zero byte allocation.
+// Returns false if an error occurred, true otherwise.
+bool UnixAPIChecker::ReportZeroByteAllocation(CheckerContext &C,
+ ProgramStateRef falseState,
+ const Expr *arg,
+ const char *fn_name) const {
+ ExplodedNode *N = C.generateSink(falseState);
+ if (!N)
+ return false;
+
+ LazyInitialize(BT_mallocZero,
+ "Undefined allocation of 0 bytes (CERT MEM04-C; CWE-131)");
+
+ SmallString<256> S;
+ llvm::raw_svector_ostream os(S);
+ os << "Call to '" << fn_name << "' has an allocation size of 0 bytes";
+ BugReport *report = new BugReport(*BT_mallocZero, os.str(), N);
+
+ report->addRange(arg->getSourceRange());
+ bugreporter::trackNullOrUndefValue(N, arg, *report);
+ C.emitReport(report);
+
+ return true;
+}
+
+// Does a basic check for 0-sized allocations suitable for most of the below
+// functions (modulo "calloc")
+void UnixAPIChecker::BasicAllocationCheck(CheckerContext &C,
+ const CallExpr *CE,
+ const unsigned numArgs,
+ const unsigned sizeArg,
+ const char *fn) const {
+ // Sanity check for the correct number of arguments
+ if (CE->getNumArgs() != numArgs)
+ return;
+
+ // Check if the allocation size is 0.
+ ProgramStateRef state = C.getState();
+ ProgramStateRef trueState = nullptr, falseState = nullptr;
+ const Expr *arg = CE->getArg(sizeArg);
+ SVal argVal = state->getSVal(arg, C.getLocationContext());
+
+ if (argVal.isUnknownOrUndef())
+ return;
+
+ // Is the value perfectly constrained to zero?
+ if (IsZeroByteAllocation(state, argVal, &trueState, &falseState)) {
+ (void) ReportZeroByteAllocation(C, falseState, arg, fn);
+ return;
+ }
+ // Assume the value is non-zero going forward.
+ assert(trueState);
+ if (trueState != state)
+ C.addTransition(trueState);
+}
+
+void UnixAPIChecker::CheckCallocZero(CheckerContext &C,
+ const CallExpr *CE) const {
+ unsigned int nArgs = CE->getNumArgs();
+ if (nArgs != 2)
+ return;
+
+ ProgramStateRef state = C.getState();
+ ProgramStateRef trueState = nullptr, falseState = nullptr;
+
+ unsigned int i;
+ for (i = 0; i < nArgs; i++) {
+ const Expr *arg = CE->getArg(i);
+ SVal argVal = state->getSVal(arg, C.getLocationContext());
+ if (argVal.isUnknownOrUndef()) {
+ if (i == 0)
+ continue;
+ else
+ return;
+ }
+
+ if (IsZeroByteAllocation(state, argVal, &trueState, &falseState)) {
+ if (ReportZeroByteAllocation(C, falseState, arg, "calloc"))
+ return;
+ else if (i == 0)
+ continue;
+ else
+ return;
+ }
+ }
+
+ // Assume the value is non-zero going forward.
+ assert(trueState);
+ if (trueState != state)
+ C.addTransition(trueState);
+}
+
+void UnixAPIChecker::CheckMallocZero(CheckerContext &C,
+ const CallExpr *CE) const {
+ BasicAllocationCheck(C, CE, 1, 0, "malloc");
+}
+
+void UnixAPIChecker::CheckReallocZero(CheckerContext &C,
+ const CallExpr *CE) const {
+ BasicAllocationCheck(C, CE, 2, 1, "realloc");
+}
+
+void UnixAPIChecker::CheckReallocfZero(CheckerContext &C,
+ const CallExpr *CE) const {
+ BasicAllocationCheck(C, CE, 2, 1, "reallocf");
+}
+
+void UnixAPIChecker::CheckAllocaZero(CheckerContext &C,
+ const CallExpr *CE) const {
+ BasicAllocationCheck(C, CE, 1, 0, "alloca");
+}
+
+void UnixAPIChecker::CheckVallocZero(CheckerContext &C,
+ const CallExpr *CE) const {
+ BasicAllocationCheck(C, CE, 1, 0, "valloc");
+}
+
+
+//===----------------------------------------------------------------------===//
+// Central dispatch function.
+//===----------------------------------------------------------------------===//
+
+void UnixAPIChecker::checkPreStmt(const CallExpr *CE,
+ CheckerContext &C) const {
+ const FunctionDecl *FD = C.getCalleeDecl(CE);
+ if (!FD || FD->getKind() != Decl::Function)
+ return;
+
+ StringRef FName = C.getCalleeName(FD);
+ if (FName.empty())
+ return;
+
+ SubChecker SC =
+ llvm::StringSwitch<SubChecker>(FName)
+ .Case("open", &UnixAPIChecker::CheckOpen)
+ .Case("pthread_once", &UnixAPIChecker::CheckPthreadOnce)
+ .Case("calloc", &UnixAPIChecker::CheckCallocZero)
+ .Case("malloc", &UnixAPIChecker::CheckMallocZero)
+ .Case("realloc", &UnixAPIChecker::CheckReallocZero)
+ .Case("reallocf", &UnixAPIChecker::CheckReallocfZero)
+ .Cases("alloca", "__builtin_alloca", &UnixAPIChecker::CheckAllocaZero)
+ .Case("valloc", &UnixAPIChecker::CheckVallocZero)
+ .Default(nullptr);
+
+ if (SC)
+ (this->*SC)(C, CE);
+}
+
+//===----------------------------------------------------------------------===//
+// Registration.
+//===----------------------------------------------------------------------===//
+
+void ento::registerUnixAPIChecker(CheckerManager &mgr) {
+ mgr.registerChecker<UnixAPIChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/UnreachableCodeChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/UnreachableCodeChecker.cpp
new file mode 100644
index 0000000..d78de3c
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/UnreachableCodeChecker.cpp
@@ -0,0 +1,255 @@
+//==- UnreachableCodeChecker.cpp - Generalized dead code checker -*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+// This file implements a generalized unreachable code checker using a
+// path-sensitive analysis. We mark any path visited, and then walk the CFG as a
+// post-analysis to determine what was never visited.
+//
+// A similar flow-sensitive only check exists in Analysis/ReachableCode.cpp
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/AST/ParentMap.h"
+#include "clang/Basic/Builtins.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
+#include "llvm/ADT/SmallSet.h"
+
+// The number of CFGBlock pointers we want to reserve memory for. This is used
+// once for each function we analyze.
+#define DEFAULT_CFGBLOCKS 256
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+class UnreachableCodeChecker : public Checker<check::EndAnalysis> {
+public:
+ void checkEndAnalysis(ExplodedGraph &G, BugReporter &B,
+ ExprEngine &Eng) const;
+private:
+ typedef llvm::SmallSet<unsigned, DEFAULT_CFGBLOCKS> CFGBlocksSet;
+
+ static inline const Stmt *getUnreachableStmt(const CFGBlock *CB);
+ static void FindUnreachableEntryPoints(const CFGBlock *CB,
+ CFGBlocksSet &reachable,
+ CFGBlocksSet &visited);
+ static bool isInvalidPath(const CFGBlock *CB, const ParentMap &PM);
+ static inline bool isEmptyCFGBlock(const CFGBlock *CB);
+};
+}
+
+void UnreachableCodeChecker::checkEndAnalysis(ExplodedGraph &G,
+ BugReporter &B,
+ ExprEngine &Eng) const {
+ CFGBlocksSet reachable, visited;
+
+ if (Eng.hasWorkRemaining())
+ return;
+
+ const Decl *D = nullptr;
+ CFG *C = nullptr;
+ ParentMap *PM = nullptr;
+ const LocationContext *LC = nullptr;
+ // Iterate over ExplodedGraph
+ for (ExplodedGraph::node_iterator I = G.nodes_begin(), E = G.nodes_end();
+ I != E; ++I) {
+ const ProgramPoint &P = I->getLocation();
+ LC = P.getLocationContext();
+ if (!LC->inTopFrame())
+ continue;
+
+ if (!D)
+ D = LC->getAnalysisDeclContext()->getDecl();
+
+ // Save the CFG if we don't have it already
+ if (!C)
+ C = LC->getAnalysisDeclContext()->getUnoptimizedCFG();
+ if (!PM)
+ PM = &LC->getParentMap();
+
+ if (Optional<BlockEntrance> BE = P.getAs<BlockEntrance>()) {
+ const CFGBlock *CB = BE->getBlock();
+ reachable.insert(CB->getBlockID());
+ }
+ }
+
+ // Bail out if we didn't get the CFG or the ParentMap.
+ if (!D || !C || !PM)
+ return;
+
+ // Don't do anything for template instantiations. Proving that code
+ // in a template instantiation is unreachable means proving that it is
+ // unreachable in all instantiations.
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
+ if (FD->isTemplateInstantiation())
+ return;
+
+ // Find CFGBlocks that were not covered by any node
+ for (CFG::const_iterator I = C->begin(), E = C->end(); I != E; ++I) {
+ const CFGBlock *CB = *I;
+ // Check if the block is unreachable
+ if (reachable.count(CB->getBlockID()))
+ continue;
+
+ // Check if the block is empty (an artificial block)
+ if (isEmptyCFGBlock(CB))
+ continue;
+
+ // Find the entry points for this block
+ if (!visited.count(CB->getBlockID()))
+ FindUnreachableEntryPoints(CB, reachable, visited);
+
+ // This block may have been pruned; check if we still want to report it
+ if (reachable.count(CB->getBlockID()))
+ continue;
+
+ // Check for false positives
+ if (CB->size() > 0 && isInvalidPath(CB, *PM))
+ continue;
+
+ // It is good practice to always have a "default" label in a "switch", even
+ // if we should never get there. It can be used to detect errors, for
+ // instance. Unreachable code directly under a "default" label is therefore
+ // likely to be a false positive.
+ if (const Stmt *label = CB->getLabel())
+ if (label->getStmtClass() == Stmt::DefaultStmtClass)
+ continue;
+
+ // Special case for __builtin_unreachable.
+ // FIXME: This should be extended to include other unreachable markers,
+ // such as llvm_unreachable.
+ if (!CB->empty()) {
+ bool foundUnreachable = false;
+ for (CFGBlock::const_iterator ci = CB->begin(), ce = CB->end();
+ ci != ce; ++ci) {
+ if (Optional<CFGStmt> S = (*ci).getAs<CFGStmt>())
+ if (const CallExpr *CE = dyn_cast<CallExpr>(S->getStmt())) {
+ if (CE->getBuiltinCallee() == Builtin::BI__builtin_unreachable) {
+ foundUnreachable = true;
+ break;
+ }
+ }
+ }
+ if (foundUnreachable)
+ continue;
+ }
+
+ // We found a block that wasn't covered - find the statement to report
+ SourceRange SR;
+ PathDiagnosticLocation DL;
+ SourceLocation SL;
+ if (const Stmt *S = getUnreachableStmt(CB)) {
+ SR = S->getSourceRange();
+ DL = PathDiagnosticLocation::createBegin(S, B.getSourceManager(), LC);
+ SL = DL.asLocation();
+ if (SR.isInvalid() || !SL.isValid())
+ continue;
+ }
+ else
+ continue;
+
+ // Check if the SourceLocation is in a system header
+ const SourceManager &SM = B.getSourceManager();
+ if (SM.isInSystemHeader(SL) || SM.isInExternCSystemHeader(SL))
+ continue;
+
+ B.EmitBasicReport(D, this, "Unreachable code", "Dead code",
+ "This statement is never executed", DL, SR);
+ }
+}
+
+// Recursively finds the entry point(s) for this dead CFGBlock.
+void UnreachableCodeChecker::FindUnreachableEntryPoints(const CFGBlock *CB,
+ CFGBlocksSet &reachable,
+ CFGBlocksSet &visited) {
+ visited.insert(CB->getBlockID());
+
+ for (CFGBlock::const_pred_iterator I = CB->pred_begin(), E = CB->pred_end();
+ I != E; ++I) {
+ if (!*I)
+ continue;
+
+ if (!reachable.count((*I)->getBlockID())) {
+ // If we find an unreachable predecessor, mark this block as reachable so
+ // we don't report this block
+ reachable.insert(CB->getBlockID());
+ if (!visited.count((*I)->getBlockID()))
+ // If we haven't previously visited the unreachable predecessor, recurse
+ FindUnreachableEntryPoints(*I, reachable, visited);
+ }
+ }
+}
+
+// Find the Stmt* in a CFGBlock for reporting a warning
+const Stmt *UnreachableCodeChecker::getUnreachableStmt(const CFGBlock *CB) {
+ for (CFGBlock::const_iterator I = CB->begin(), E = CB->end(); I != E; ++I) {
+ if (Optional<CFGStmt> S = I->getAs<CFGStmt>())
+ return S->getStmt();
+ }
+ if (const Stmt *S = CB->getTerminator())
+ return S;
+ else
+ return nullptr;
+}
+
+// Determines if the path to this CFGBlock contained an element that infers this
+// block is a false positive. We assume that FindUnreachableEntryPoints has
+// already marked only the entry points to any dead code, so we need only to
+// find the condition that led to this block (the predecessor of this block.)
+// There will never be more than one predecessor.
+bool UnreachableCodeChecker::isInvalidPath(const CFGBlock *CB,
+ const ParentMap &PM) {
+ // We only expect a predecessor size of 0 or 1. If it is >1, then an external
+ // condition has broken our assumption (for example, a sink being placed by
+ // another check). In these cases, we choose not to report.
+ if (CB->pred_size() > 1)
+ return true;
+
+ // If there are no predecessors, then this block is trivially unreachable
+ if (CB->pred_size() == 0)
+ return false;
+
+ const CFGBlock *pred = *CB->pred_begin();
+ if (!pred)
+ return false;
+
+ // Get the predecessor block's terminator conditon
+ const Stmt *cond = pred->getTerminatorCondition();
+
+ //assert(cond && "CFGBlock's predecessor has a terminator condition");
+ // The previous assertion is invalid in some cases (eg do/while). Leaving
+ // reporting of these situations on at the moment to help triage these cases.
+ if (!cond)
+ return false;
+
+ // Run each of the checks on the conditions
+ if (containsMacro(cond) || containsEnum(cond)
+ || containsStaticLocal(cond) || containsBuiltinOffsetOf(cond)
+ || containsStmt<UnaryExprOrTypeTraitExpr>(cond))
+ return true;
+
+ return false;
+}
+
+// Returns true if the given CFGBlock is empty
+bool UnreachableCodeChecker::isEmptyCFGBlock(const CFGBlock *CB) {
+ return CB->getLabel() == nullptr // No labels
+ && CB->size() == 0 // No statements
+ && !CB->getTerminator(); // No terminator
+}
+
+void ento::registerUnreachableCodeChecker(CheckerManager &mgr) {
+ mgr.registerChecker<UnreachableCodeChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/VLASizeChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/VLASizeChecker.cpp
new file mode 100644
index 0000000..cceffef
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/VLASizeChecker.cpp
@@ -0,0 +1,185 @@
+//=== VLASizeChecker.cpp - Undefined dereference checker --------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This defines VLASizeChecker, a builtin check in ExprEngine that
+// performs checks for declaration of VLA of undefined or zero size.
+// In addition, VLASizeChecker is responsible for defining the extent
+// of the MemRegion that represents a VLA.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/AST/CharUnits.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+class VLASizeChecker : public Checker< check::PreStmt<DeclStmt> > {
+ mutable std::unique_ptr<BugType> BT;
+ enum VLASize_Kind { VLA_Garbage, VLA_Zero, VLA_Tainted, VLA_Negative };
+
+ void reportBug(VLASize_Kind Kind,
+ const Expr *SizeE,
+ ProgramStateRef State,
+ CheckerContext &C) const;
+public:
+ void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const;
+};
+} // end anonymous namespace
+
+void VLASizeChecker::reportBug(VLASize_Kind Kind,
+ const Expr *SizeE,
+ ProgramStateRef State,
+ CheckerContext &C) const {
+ // Generate an error node.
+ ExplodedNode *N = C.generateSink(State);
+ if (!N)
+ return;
+
+ if (!BT)
+ BT.reset(new BuiltinBug(
+ this, "Dangerous variable-length array (VLA) declaration"));
+
+ SmallString<256> buf;
+ llvm::raw_svector_ostream os(buf);
+ os << "Declared variable-length array (VLA) ";
+ switch (Kind) {
+ case VLA_Garbage:
+ os << "uses a garbage value as its size";
+ break;
+ case VLA_Zero:
+ os << "has zero size";
+ break;
+ case VLA_Tainted:
+ os << "has tainted size";
+ break;
+ case VLA_Negative:
+ os << "has negative size";
+ break;
+ }
+
+ BugReport *report = new BugReport(*BT, os.str(), N);
+ report->addRange(SizeE->getSourceRange());
+ bugreporter::trackNullOrUndefValue(N, SizeE, *report);
+ C.emitReport(report);
+ return;
+}
+
+void VLASizeChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const {
+ if (!DS->isSingleDecl())
+ return;
+
+ const VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
+ if (!VD)
+ return;
+
+ ASTContext &Ctx = C.getASTContext();
+ const VariableArrayType *VLA = Ctx.getAsVariableArrayType(VD->getType());
+ if (!VLA)
+ return;
+
+ // FIXME: Handle multi-dimensional VLAs.
+ const Expr *SE = VLA->getSizeExpr();
+ ProgramStateRef state = C.getState();
+ SVal sizeV = state->getSVal(SE, C.getLocationContext());
+
+ if (sizeV.isUndef()) {
+ reportBug(VLA_Garbage, SE, state, C);
+ return;
+ }
+
+ // See if the size value is known. It can't be undefined because we would have
+ // warned about that already.
+ if (sizeV.isUnknown())
+ return;
+
+ // Check if the size is tainted.
+ if (state->isTainted(sizeV)) {
+ reportBug(VLA_Tainted, SE, nullptr, C);
+ return;
+ }
+
+ // Check if the size is zero.
+ DefinedSVal sizeD = sizeV.castAs<DefinedSVal>();
+
+ ProgramStateRef stateNotZero, stateZero;
+ std::tie(stateNotZero, stateZero) = state->assume(sizeD);
+
+ if (stateZero && !stateNotZero) {
+ reportBug(VLA_Zero, SE, stateZero, C);
+ return;
+ }
+
+ // From this point on, assume that the size is not zero.
+ state = stateNotZero;
+
+ // VLASizeChecker is responsible for defining the extent of the array being
+ // declared. We do this by multiplying the array length by the element size,
+ // then matching that with the array region's extent symbol.
+
+ // Check if the size is negative.
+ SValBuilder &svalBuilder = C.getSValBuilder();
+
+ QualType Ty = SE->getType();
+ DefinedOrUnknownSVal Zero = svalBuilder.makeZeroVal(Ty);
+
+ SVal LessThanZeroVal = svalBuilder.evalBinOp(state, BO_LT, sizeD, Zero, Ty);
+ if (Optional<DefinedSVal> LessThanZeroDVal =
+ LessThanZeroVal.getAs<DefinedSVal>()) {
+ ConstraintManager &CM = C.getConstraintManager();
+ ProgramStateRef StatePos, StateNeg;
+
+ std::tie(StateNeg, StatePos) = CM.assumeDual(state, *LessThanZeroDVal);
+ if (StateNeg && !StatePos) {
+ reportBug(VLA_Negative, SE, state, C);
+ return;
+ }
+ state = StatePos;
+ }
+
+ // Convert the array length to size_t.
+ QualType SizeTy = Ctx.getSizeType();
+ NonLoc ArrayLength =
+ svalBuilder.evalCast(sizeD, SizeTy, SE->getType()).castAs<NonLoc>();
+
+ // Get the element size.
+ CharUnits EleSize = Ctx.getTypeSizeInChars(VLA->getElementType());
+ SVal EleSizeVal = svalBuilder.makeIntVal(EleSize.getQuantity(), SizeTy);
+
+ // Multiply the array length by the element size.
+ SVal ArraySizeVal = svalBuilder.evalBinOpNN(
+ state, BO_Mul, ArrayLength, EleSizeVal.castAs<NonLoc>(), SizeTy);
+
+ // Finally, assume that the array's extent matches the given size.
+ const LocationContext *LC = C.getLocationContext();
+ DefinedOrUnknownSVal Extent =
+ state->getRegion(VD, LC)->getExtent(svalBuilder);
+ DefinedOrUnknownSVal ArraySize = ArraySizeVal.castAs<DefinedOrUnknownSVal>();
+ DefinedOrUnknownSVal sizeIsKnown =
+ svalBuilder.evalEQ(state, Extent, ArraySize);
+ state = state->assume(sizeIsKnown, true);
+
+ // Assume should not fail at this point.
+ assert(state);
+
+ // Remember our assumptions!
+ C.addTransition(state);
+}
+
+void ento::registerVLASizeChecker(CheckerManager &mgr) {
+ mgr.registerChecker<VLASizeChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/VirtualCallChecker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/VirtualCallChecker.cpp
new file mode 100644
index 0000000..7e1fc1e
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Checkers/VirtualCallChecker.cpp
@@ -0,0 +1,246 @@
+//=======- VirtualCallChecker.cpp --------------------------------*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a checker that checks virtual function calls during
+// construction or destruction of C++ objects.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/SaveAndRestore.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+
+class WalkAST : public StmtVisitor<WalkAST> {
+ const CheckerBase *Checker;
+ BugReporter &BR;
+ AnalysisDeclContext *AC;
+
+ typedef const CallExpr * WorkListUnit;
+ typedef SmallVector<WorkListUnit, 20> DFSWorkList;
+
+ /// A vector representing the worklist which has a chain of CallExprs.
+ DFSWorkList WList;
+
+ // PreVisited : A CallExpr to this FunctionDecl is in the worklist, but the
+ // body has not been visited yet.
+ // PostVisited : A CallExpr to this FunctionDecl is in the worklist, and the
+ // body has been visited.
+ enum Kind { NotVisited,
+ PreVisited, /**< A CallExpr to this FunctionDecl is in the
+ worklist, but the body has not yet been
+ visited. */
+ PostVisited /**< A CallExpr to this FunctionDecl is in the
+ worklist, and the body has been visited. */
+ };
+
+ /// A DenseMap that records visited states of FunctionDecls.
+ llvm::DenseMap<const FunctionDecl *, Kind> VisitedFunctions;
+
+ /// The CallExpr whose body is currently being visited. This is used for
+ /// generating bug reports. This is null while visiting the body of a
+ /// constructor or destructor.
+ const CallExpr *visitingCallExpr;
+
+public:
+ WalkAST(const CheckerBase *checker, BugReporter &br,
+ AnalysisDeclContext *ac)
+ : Checker(checker), BR(br), AC(ac), visitingCallExpr(nullptr) {}
+
+ bool hasWork() const { return !WList.empty(); }
+
+ /// This method adds a CallExpr to the worklist and marks the callee as
+ /// being PreVisited.
+ void Enqueue(WorkListUnit WLUnit) {
+ const FunctionDecl *FD = WLUnit->getDirectCallee();
+ if (!FD || !FD->getBody())
+ return;
+ Kind &K = VisitedFunctions[FD];
+ if (K != NotVisited)
+ return;
+ K = PreVisited;
+ WList.push_back(WLUnit);
+ }
+
+ /// This method returns an item from the worklist without removing it.
+ WorkListUnit Dequeue() {
+ assert(!WList.empty());
+ return WList.back();
+ }
+
+ void Execute() {
+ while (hasWork()) {
+ WorkListUnit WLUnit = Dequeue();
+ const FunctionDecl *FD = WLUnit->getDirectCallee();
+ assert(FD && FD->getBody());
+
+ if (VisitedFunctions[FD] == PreVisited) {
+ // If the callee is PreVisited, walk its body.
+ // Visit the body.
+ SaveAndRestore<const CallExpr *> SaveCall(visitingCallExpr, WLUnit);
+ Visit(FD->getBody());
+
+ // Mark the function as being PostVisited to indicate we have
+ // scanned the body.
+ VisitedFunctions[FD] = PostVisited;
+ continue;
+ }
+
+ // Otherwise, the callee is PostVisited.
+ // Remove it from the worklist.
+ assert(VisitedFunctions[FD] == PostVisited);
+ WList.pop_back();
+ }
+ }
+
+ // Stmt visitor methods.
+ void VisitCallExpr(CallExpr *CE);
+ void VisitCXXMemberCallExpr(CallExpr *CE);
+ void VisitStmt(Stmt *S) { VisitChildren(S); }
+ void VisitChildren(Stmt *S);
+
+ void ReportVirtualCall(const CallExpr *CE, bool isPure);
+
+};
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// AST walking.
+//===----------------------------------------------------------------------===//
+
+void WalkAST::VisitChildren(Stmt *S) {
+ for (Stmt::child_iterator I = S->child_begin(), E = S->child_end(); I!=E; ++I)
+ if (Stmt *child = *I)
+ Visit(child);
+}
+
+void WalkAST::VisitCallExpr(CallExpr *CE) {
+ VisitChildren(CE);
+ Enqueue(CE);
+}
+
+void WalkAST::VisitCXXMemberCallExpr(CallExpr *CE) {
+ VisitChildren(CE);
+ bool callIsNonVirtual = false;
+
+ // Several situations to elide for checking.
+ if (MemberExpr *CME = dyn_cast<MemberExpr>(CE->getCallee())) {
+ // If the member access is fully qualified (i.e., X::F), then treat
+ // this as a non-virtual call and do not warn.
+ if (CME->getQualifier())
+ callIsNonVirtual = true;
+
+ if (Expr *base = CME->getBase()->IgnoreImpCasts()) {
+ // Elide analyzing the call entirely if the base pointer is not 'this'.
+ if (!isa<CXXThisExpr>(base))
+ return;
+
+ // If the most derived class is marked final, we know that now subclass
+ // can override this member.
+ if (base->getBestDynamicClassType()->hasAttr<FinalAttr>())
+ callIsNonVirtual = true;
+ }
+ }
+
+ // Get the callee.
+ const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CE->getDirectCallee());
+ if (MD && MD->isVirtual() && !callIsNonVirtual && !MD->hasAttr<FinalAttr>() &&
+ !MD->getParent()->hasAttr<FinalAttr>())
+ ReportVirtualCall(CE, MD->isPure());
+
+ Enqueue(CE);
+}
+
+void WalkAST::ReportVirtualCall(const CallExpr *CE, bool isPure) {
+ SmallString<100> buf;
+ llvm::raw_svector_ostream os(buf);
+
+ os << "Call Path : ";
+ // Name of current visiting CallExpr.
+ os << *CE->getDirectCallee();
+
+ // Name of the CallExpr whose body is current walking.
+ if (visitingCallExpr)
+ os << " <-- " << *visitingCallExpr->getDirectCallee();
+ // Names of FunctionDecls in worklist with state PostVisited.
+ for (SmallVectorImpl<const CallExpr *>::iterator I = WList.end(),
+ E = WList.begin(); I != E; --I) {
+ const FunctionDecl *FD = (*(I-1))->getDirectCallee();
+ assert(FD);
+ if (VisitedFunctions[FD] == PostVisited)
+ os << " <-- " << *FD;
+ }
+
+ PathDiagnosticLocation CELoc =
+ PathDiagnosticLocation::createBegin(CE, BR.getSourceManager(), AC);
+ SourceRange R = CE->getCallee()->getSourceRange();
+
+ if (isPure) {
+ os << "\n" << "Call pure virtual functions during construction or "
+ << "destruction may leads undefined behaviour";
+ BR.EmitBasicReport(AC->getDecl(), Checker,
+ "Call pure virtual function during construction or "
+ "Destruction",
+ "Cplusplus", os.str(), CELoc, R);
+ return;
+ }
+ else {
+ os << "\n" << "Call virtual functions during construction or "
+ << "destruction will never go to a more derived class";
+ BR.EmitBasicReport(AC->getDecl(), Checker,
+ "Call virtual function during construction or "
+ "Destruction",
+ "Cplusplus", os.str(), CELoc, R);
+ return;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// VirtualCallChecker
+//===----------------------------------------------------------------------===//
+
+namespace {
+class VirtualCallChecker : public Checker<check::ASTDecl<CXXRecordDecl> > {
+public:
+ void checkASTDecl(const CXXRecordDecl *RD, AnalysisManager& mgr,
+ BugReporter &BR) const {
+ WalkAST walker(this, BR, mgr.getAnalysisDeclContext(RD));
+
+ // Check the constructors.
+ for (const auto *I : RD->ctors()) {
+ if (!I->isCopyOrMoveConstructor())
+ if (Stmt *Body = I->getBody()) {
+ walker.Visit(Body);
+ walker.Execute();
+ }
+ }
+
+ // Check the destructor.
+ if (CXXDestructorDecl *DD = RD->getDestructor())
+ if (Stmt *Body = DD->getBody()) {
+ walker.Visit(Body);
+ walker.Execute();
+ }
+ }
+};
+}
+
+void ento::registerVirtualCallChecker(CheckerManager &mgr) {
+ mgr.registerChecker<VirtualCallChecker>();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/APSIntType.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/APSIntType.cpp
new file mode 100644
index 0000000..c7e9526
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/APSIntType.cpp
@@ -0,0 +1,49 @@
+//===--- APSIntType.cpp - Simple record of the type of APSInts ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
+
+using namespace clang;
+using namespace ento;
+
+APSIntType::RangeTestResultKind
+APSIntType::testInRange(const llvm::APSInt &Value,
+ bool AllowSignConversions) const {
+
+ // Negative numbers cannot be losslessly converted to unsigned type.
+ if (IsUnsigned && !AllowSignConversions &&
+ Value.isSigned() && Value.isNegative())
+ return RTR_Below;
+
+ unsigned MinBits;
+ if (AllowSignConversions) {
+ if (Value.isSigned() && !IsUnsigned)
+ MinBits = Value.getMinSignedBits();
+ else
+ MinBits = Value.getActiveBits();
+
+ } else {
+ // Signed integers can be converted to signed integers of the same width
+ // or (if positive) unsigned integers with one fewer bit.
+ // Unsigned integers can be converted to unsigned integers of the same width
+ // or signed integers with one more bit.
+ if (Value.isSigned())
+ MinBits = Value.getMinSignedBits() - IsUnsigned;
+ else
+ MinBits = Value.getActiveBits() + !IsUnsigned;
+ }
+
+ if (MinBits <= BitWidth)
+ return RTR_Within;
+
+ if (Value.isSigned() && Value.isNegative())
+ return RTR_Below;
+ else
+ return RTR_Above;
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/AnalysisManager.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/AnalysisManager.cpp
new file mode 100644
index 0000000..5798f01
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/AnalysisManager.cpp
@@ -0,0 +1,58 @@
+//===-- AnalysisManager.cpp -------------------------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
+
+using namespace clang;
+using namespace ento;
+
+void AnalysisManager::anchor() { }
+
+AnalysisManager::AnalysisManager(ASTContext &ctx, DiagnosticsEngine &diags,
+ const LangOptions &lang,
+ const PathDiagnosticConsumers &PDC,
+ StoreManagerCreator storemgr,
+ ConstraintManagerCreator constraintmgr,
+ CheckerManager *checkerMgr,
+ AnalyzerOptions &Options,
+ CodeInjector *injector)
+ : AnaCtxMgr(Options.UnoptimizedCFG,
+ /*AddImplicitDtors=*/true,
+ /*AddInitializers=*/true,
+ Options.includeTemporaryDtorsInCFG(),
+ Options.shouldSynthesizeBodies(),
+ Options.shouldConditionalizeStaticInitializers(),
+ /*addCXXNewAllocator=*/true,
+ injector),
+ Ctx(ctx),
+ Diags(diags),
+ LangOpts(lang),
+ PathConsumers(PDC),
+ CreateStoreMgr(storemgr), CreateConstraintMgr(constraintmgr),
+ CheckerMgr(checkerMgr),
+ options(Options) {
+ AnaCtxMgr.getCFGBuildOptions().setAllAlwaysAdd();
+}
+
+AnalysisManager::~AnalysisManager() {
+ FlushDiagnostics();
+ for (PathDiagnosticConsumers::iterator I = PathConsumers.begin(),
+ E = PathConsumers.end(); I != E; ++I) {
+ delete *I;
+ }
+}
+
+void AnalysisManager::FlushDiagnostics() {
+ PathDiagnosticConsumer::FilesMade filesMade;
+ for (PathDiagnosticConsumers::iterator I = PathConsumers.begin(),
+ E = PathConsumers.end();
+ I != E; ++I) {
+ (*I)->FlushDiagnostics(&filesMade);
+ }
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/AnalyzerOptions.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/AnalyzerOptions.cpp
new file mode 100644
index 0000000..1696bcf
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/AnalyzerOptions.cpp
@@ -0,0 +1,327 @@
+//===-- AnalyzerOptions.cpp - Analysis Engine Options -----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains special accessors for analyzer configuration options
+// with string representations.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/AnalyzerOptions.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+using namespace llvm;
+
+AnalyzerOptions::UserModeKind AnalyzerOptions::getUserMode() {
+ if (UserMode == UMK_NotSet) {
+ StringRef ModeStr =
+ Config.insert(std::make_pair("mode", "deep")).first->second;
+ UserMode = llvm::StringSwitch<UserModeKind>(ModeStr)
+ .Case("shallow", UMK_Shallow)
+ .Case("deep", UMK_Deep)
+ .Default(UMK_NotSet);
+ assert(UserMode != UMK_NotSet && "User mode is invalid.");
+ }
+ return UserMode;
+}
+
+IPAKind AnalyzerOptions::getIPAMode() {
+ if (IPAMode == IPAK_NotSet) {
+
+ // Use the User Mode to set the default IPA value.
+ // Note, we have to add the string to the Config map for the ConfigDumper
+ // checker to function properly.
+ const char *DefaultIPA = nullptr;
+ UserModeKind HighLevelMode = getUserMode();
+ if (HighLevelMode == UMK_Shallow)
+ DefaultIPA = "inlining";
+ else if (HighLevelMode == UMK_Deep)
+ DefaultIPA = "dynamic-bifurcate";
+ assert(DefaultIPA);
+
+ // Lookup the ipa configuration option, use the default from User Mode.
+ StringRef ModeStr =
+ Config.insert(std::make_pair("ipa", DefaultIPA)).first->second;
+ IPAKind IPAConfig = llvm::StringSwitch<IPAKind>(ModeStr)
+ .Case("none", IPAK_None)
+ .Case("basic-inlining", IPAK_BasicInlining)
+ .Case("inlining", IPAK_Inlining)
+ .Case("dynamic", IPAK_DynamicDispatch)
+ .Case("dynamic-bifurcate", IPAK_DynamicDispatchBifurcate)
+ .Default(IPAK_NotSet);
+ assert(IPAConfig != IPAK_NotSet && "IPA Mode is invalid.");
+
+ // Set the member variable.
+ IPAMode = IPAConfig;
+ }
+
+ return IPAMode;
+}
+
+bool
+AnalyzerOptions::mayInlineCXXMemberFunction(CXXInlineableMemberKind K) {
+ if (getIPAMode() < IPAK_Inlining)
+ return false;
+
+ if (!CXXMemberInliningMode) {
+ static const char *ModeKey = "c++-inlining";
+
+ StringRef ModeStr =
+ Config.insert(std::make_pair(ModeKey, "destructors")).first->second;
+
+ CXXInlineableMemberKind &MutableMode =
+ const_cast<CXXInlineableMemberKind &>(CXXMemberInliningMode);
+
+ MutableMode = llvm::StringSwitch<CXXInlineableMemberKind>(ModeStr)
+ .Case("constructors", CIMK_Constructors)
+ .Case("destructors", CIMK_Destructors)
+ .Case("none", CIMK_None)
+ .Case("methods", CIMK_MemberFunctions)
+ .Default(CXXInlineableMemberKind());
+
+ if (!MutableMode) {
+ // FIXME: We should emit a warning here about an unknown inlining kind,
+ // but the AnalyzerOptions doesn't have access to a diagnostic engine.
+ MutableMode = CIMK_None;
+ }
+ }
+
+ return CXXMemberInliningMode >= K;
+}
+
+static StringRef toString(bool b) { return b ? "true" : "false"; }
+
+StringRef AnalyzerOptions::getCheckerOption(StringRef CheckerName,
+ StringRef OptionName,
+ StringRef Default,
+ bool SearchInParents) {
+ // Search for a package option if the option for the checker is not specified
+ // and search in parents is enabled.
+ ConfigTable::const_iterator E = Config.end();
+ do {
+ ConfigTable::const_iterator I =
+ Config.find((Twine(CheckerName) + ":" + OptionName).str());
+ if (I != E)
+ return StringRef(I->getValue());
+ size_t Pos = CheckerName.rfind('.');
+ if (Pos == StringRef::npos)
+ return Default;
+ CheckerName = CheckerName.substr(0, Pos);
+ } while (!CheckerName.empty() && SearchInParents);
+ return Default;
+}
+
+bool AnalyzerOptions::getBooleanOption(StringRef Name, bool DefaultVal,
+ const CheckerBase *C,
+ bool SearchInParents) {
+ // FIXME: We should emit a warning here if the value is something other than
+ // "true", "false", or the empty string (meaning the default value),
+ // but the AnalyzerOptions doesn't have access to a diagnostic engine.
+ StringRef Default = toString(DefaultVal);
+ StringRef V =
+ C ? getCheckerOption(C->getTagDescription(), Name, Default,
+ SearchInParents)
+ : StringRef(Config.insert(std::make_pair(Name, Default)).first->second);
+ return llvm::StringSwitch<bool>(V)
+ .Case("true", true)
+ .Case("false", false)
+ .Default(DefaultVal);
+}
+
+bool AnalyzerOptions::getBooleanOption(Optional<bool> &V, StringRef Name,
+ bool DefaultVal, const CheckerBase *C,
+ bool SearchInParents) {
+ if (!V.hasValue())
+ V = getBooleanOption(Name, DefaultVal, C, SearchInParents);
+ return V.getValue();
+}
+
+bool AnalyzerOptions::includeTemporaryDtorsInCFG() {
+ return getBooleanOption(IncludeTemporaryDtorsInCFG,
+ "cfg-temporary-dtors",
+ /* Default = */ false);
+}
+
+bool AnalyzerOptions::mayInlineCXXStandardLibrary() {
+ return getBooleanOption(InlineCXXStandardLibrary,
+ "c++-stdlib-inlining",
+ /*Default=*/true);
+}
+
+bool AnalyzerOptions::mayInlineTemplateFunctions() {
+ return getBooleanOption(InlineTemplateFunctions,
+ "c++-template-inlining",
+ /*Default=*/true);
+}
+
+bool AnalyzerOptions::mayInlineCXXAllocator() {
+ return getBooleanOption(InlineCXXAllocator,
+ "c++-allocator-inlining",
+ /*Default=*/false);
+}
+
+bool AnalyzerOptions::mayInlineCXXContainerMethods() {
+ return getBooleanOption(InlineCXXContainerMethods,
+ "c++-container-inlining",
+ /*Default=*/false);
+}
+
+bool AnalyzerOptions::mayInlineCXXSharedPtrDtor() {
+ return getBooleanOption(InlineCXXSharedPtrDtor,
+ "c++-shared_ptr-inlining",
+ /*Default=*/false);
+}
+
+
+bool AnalyzerOptions::mayInlineObjCMethod() {
+ return getBooleanOption(ObjCInliningMode,
+ "objc-inlining",
+ /* Default = */ true);
+}
+
+bool AnalyzerOptions::shouldSuppressNullReturnPaths() {
+ return getBooleanOption(SuppressNullReturnPaths,
+ "suppress-null-return-paths",
+ /* Default = */ true);
+}
+
+bool AnalyzerOptions::shouldAvoidSuppressingNullArgumentPaths() {
+ return getBooleanOption(AvoidSuppressingNullArgumentPaths,
+ "avoid-suppressing-null-argument-paths",
+ /* Default = */ false);
+}
+
+bool AnalyzerOptions::shouldSuppressInlinedDefensiveChecks() {
+ return getBooleanOption(SuppressInlinedDefensiveChecks,
+ "suppress-inlined-defensive-checks",
+ /* Default = */ true);
+}
+
+bool AnalyzerOptions::shouldSuppressFromCXXStandardLibrary() {
+ return getBooleanOption(SuppressFromCXXStandardLibrary,
+ "suppress-c++-stdlib",
+ /* Default = */ false);
+}
+
+bool AnalyzerOptions::shouldReportIssuesInMainSourceFile() {
+ return getBooleanOption(ReportIssuesInMainSourceFile,
+ "report-in-main-source-file",
+ /* Default = */ false);
+}
+
+
+bool AnalyzerOptions::shouldWriteStableReportFilename() {
+ return getBooleanOption(StableReportFilename,
+ "stable-report-filename",
+ /* Default = */ false);
+}
+
+int AnalyzerOptions::getOptionAsInteger(StringRef Name, int DefaultVal,
+ const CheckerBase *C,
+ bool SearchInParents) {
+ SmallString<10> StrBuf;
+ llvm::raw_svector_ostream OS(StrBuf);
+ OS << DefaultVal;
+
+ StringRef V = C ? getCheckerOption(C->getTagDescription(), Name, OS.str(),
+ SearchInParents)
+ : StringRef(Config.insert(std::make_pair(Name, OS.str()))
+ .first->second);
+
+ int Res = DefaultVal;
+ bool b = V.getAsInteger(10, Res);
+ assert(!b && "analyzer-config option should be numeric");
+ (void)b;
+ return Res;
+}
+
+StringRef AnalyzerOptions::getOptionAsString(StringRef Name,
+ StringRef DefaultVal,
+ const CheckerBase *C,
+ bool SearchInParents) {
+ return C ? getCheckerOption(C->getTagDescription(), Name, DefaultVal,
+ SearchInParents)
+ : StringRef(
+ Config.insert(std::make_pair(Name, DefaultVal)).first->second);
+}
+
+unsigned AnalyzerOptions::getAlwaysInlineSize() {
+ if (!AlwaysInlineSize.hasValue())
+ AlwaysInlineSize = getOptionAsInteger("ipa-always-inline-size", 3);
+ return AlwaysInlineSize.getValue();
+}
+
+unsigned AnalyzerOptions::getMaxInlinableSize() {
+ if (!MaxInlinableSize.hasValue()) {
+
+ int DefaultValue = 0;
+ UserModeKind HighLevelMode = getUserMode();
+ switch (HighLevelMode) {
+ default:
+ llvm_unreachable("Invalid mode.");
+ case UMK_Shallow:
+ DefaultValue = 4;
+ break;
+ case UMK_Deep:
+ DefaultValue = 50;
+ break;
+ }
+
+ MaxInlinableSize = getOptionAsInteger("max-inlinable-size", DefaultValue);
+ }
+ return MaxInlinableSize.getValue();
+}
+
+unsigned AnalyzerOptions::getGraphTrimInterval() {
+ if (!GraphTrimInterval.hasValue())
+ GraphTrimInterval = getOptionAsInteger("graph-trim-interval", 1000);
+ return GraphTrimInterval.getValue();
+}
+
+unsigned AnalyzerOptions::getMaxTimesInlineLarge() {
+ if (!MaxTimesInlineLarge.hasValue())
+ MaxTimesInlineLarge = getOptionAsInteger("max-times-inline-large", 32);
+ return MaxTimesInlineLarge.getValue();
+}
+
+unsigned AnalyzerOptions::getMaxNodesPerTopLevelFunction() {
+ if (!MaxNodesPerTopLevelFunction.hasValue()) {
+ int DefaultValue = 0;
+ UserModeKind HighLevelMode = getUserMode();
+ switch (HighLevelMode) {
+ default:
+ llvm_unreachable("Invalid mode.");
+ case UMK_Shallow:
+ DefaultValue = 75000;
+ break;
+ case UMK_Deep:
+ DefaultValue = 150000;
+ break;
+ }
+ MaxNodesPerTopLevelFunction = getOptionAsInteger("max-nodes", DefaultValue);
+ }
+ return MaxNodesPerTopLevelFunction.getValue();
+}
+
+bool AnalyzerOptions::shouldSynthesizeBodies() {
+ return getBooleanOption("faux-bodies", true);
+}
+
+bool AnalyzerOptions::shouldPrunePaths() {
+ return getBooleanOption("prune-paths", true);
+}
+
+bool AnalyzerOptions::shouldConditionalizeStaticInitializers() {
+ return getBooleanOption("cfg-conditional-static-initializers", true);
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/BasicValueFactory.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/BasicValueFactory.cpp
new file mode 100644
index 0000000..0e90566
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/BasicValueFactory.cpp
@@ -0,0 +1,288 @@
+//=== BasicValueFactory.cpp - Basic values for Path Sens analysis --*- C++ -*-//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines BasicValueFactory, a class that manages the lifetime
+// of APSInt objects and symbolic constraints used by ExprEngine
+// and related classes.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/ASTContext.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
+
+using namespace clang;
+using namespace ento;
+
+void CompoundValData::Profile(llvm::FoldingSetNodeID& ID, QualType T,
+ llvm::ImmutableList<SVal> L) {
+ T.Profile(ID);
+ ID.AddPointer(L.getInternalPointer());
+}
+
+void LazyCompoundValData::Profile(llvm::FoldingSetNodeID& ID,
+ const StoreRef &store,
+ const TypedValueRegion *region) {
+ ID.AddPointer(store.getStore());
+ ID.AddPointer(region);
+}
+
+typedef std::pair<SVal, uintptr_t> SValData;
+typedef std::pair<SVal, SVal> SValPair;
+
+namespace llvm {
+template<> struct FoldingSetTrait<SValData> {
+ static inline void Profile(const SValData& X, llvm::FoldingSetNodeID& ID) {
+ X.first.Profile(ID);
+ ID.AddPointer( (void*) X.second);
+ }
+};
+
+template<> struct FoldingSetTrait<SValPair> {
+ static inline void Profile(const SValPair& X, llvm::FoldingSetNodeID& ID) {
+ X.first.Profile(ID);
+ X.second.Profile(ID);
+ }
+};
+}
+
+typedef llvm::FoldingSet<llvm::FoldingSetNodeWrapper<SValData> >
+ PersistentSValsTy;
+
+typedef llvm::FoldingSet<llvm::FoldingSetNodeWrapper<SValPair> >
+ PersistentSValPairsTy;
+
+BasicValueFactory::~BasicValueFactory() {
+ // Note that the dstor for the contents of APSIntSet will never be called,
+ // so we iterate over the set and invoke the dstor for each APSInt. This
+ // frees an aux. memory allocated to represent very large constants.
+ for (APSIntSetTy::iterator I=APSIntSet.begin(), E=APSIntSet.end(); I!=E; ++I)
+ I->getValue().~APSInt();
+
+ delete (PersistentSValsTy*) PersistentSVals;
+ delete (PersistentSValPairsTy*) PersistentSValPairs;
+}
+
+const llvm::APSInt& BasicValueFactory::getValue(const llvm::APSInt& X) {
+ llvm::FoldingSetNodeID ID;
+ void *InsertPos;
+ typedef llvm::FoldingSetNodeWrapper<llvm::APSInt> FoldNodeTy;
+
+ X.Profile(ID);
+ FoldNodeTy* P = APSIntSet.FindNodeOrInsertPos(ID, InsertPos);
+
+ if (!P) {
+ P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>();
+ new (P) FoldNodeTy(X);
+ APSIntSet.InsertNode(P, InsertPos);
+ }
+
+ return *P;
+}
+
+const llvm::APSInt& BasicValueFactory::getValue(const llvm::APInt& X,
+ bool isUnsigned) {
+ llvm::APSInt V(X, isUnsigned);
+ return getValue(V);
+}
+
+const llvm::APSInt& BasicValueFactory::getValue(uint64_t X, unsigned BitWidth,
+ bool isUnsigned) {
+ llvm::APSInt V(BitWidth, isUnsigned);
+ V = X;
+ return getValue(V);
+}
+
+const llvm::APSInt& BasicValueFactory::getValue(uint64_t X, QualType T) {
+
+ return getValue(getAPSIntType(T).getValue(X));
+}
+
+const CompoundValData*
+BasicValueFactory::getCompoundValData(QualType T,
+ llvm::ImmutableList<SVal> Vals) {
+
+ llvm::FoldingSetNodeID ID;
+ CompoundValData::Profile(ID, T, Vals);
+ void *InsertPos;
+
+ CompoundValData* D = CompoundValDataSet.FindNodeOrInsertPos(ID, InsertPos);
+
+ if (!D) {
+ D = (CompoundValData*) BPAlloc.Allocate<CompoundValData>();
+ new (D) CompoundValData(T, Vals);
+ CompoundValDataSet.InsertNode(D, InsertPos);
+ }
+
+ return D;
+}
+
+const LazyCompoundValData*
+BasicValueFactory::getLazyCompoundValData(const StoreRef &store,
+ const TypedValueRegion *region) {
+ llvm::FoldingSetNodeID ID;
+ LazyCompoundValData::Profile(ID, store, region);
+ void *InsertPos;
+
+ LazyCompoundValData *D =
+ LazyCompoundValDataSet.FindNodeOrInsertPos(ID, InsertPos);
+
+ if (!D) {
+ D = (LazyCompoundValData*) BPAlloc.Allocate<LazyCompoundValData>();
+ new (D) LazyCompoundValData(store, region);
+ LazyCompoundValDataSet.InsertNode(D, InsertPos);
+ }
+
+ return D;
+}
+
+const llvm::APSInt*
+BasicValueFactory::evalAPSInt(BinaryOperator::Opcode Op,
+ const llvm::APSInt& V1, const llvm::APSInt& V2) {
+
+ switch (Op) {
+ default:
+ assert (false && "Invalid Opcode.");
+
+ case BO_Mul:
+ return &getValue( V1 * V2 );
+
+ case BO_Div:
+ return &getValue( V1 / V2 );
+
+ case BO_Rem:
+ return &getValue( V1 % V2 );
+
+ case BO_Add:
+ return &getValue( V1 + V2 );
+
+ case BO_Sub:
+ return &getValue( V1 - V2 );
+
+ case BO_Shl: {
+
+ // FIXME: This logic should probably go higher up, where we can
+ // test these conditions symbolically.
+
+ // FIXME: Expand these checks to include all undefined behavior.
+
+ if (V2.isSigned() && V2.isNegative())
+ return nullptr;
+
+ uint64_t Amt = V2.getZExtValue();
+
+ if (Amt >= V1.getBitWidth())
+ return nullptr;
+
+ return &getValue( V1.operator<<( (unsigned) Amt ));
+ }
+
+ case BO_Shr: {
+
+ // FIXME: This logic should probably go higher up, where we can
+ // test these conditions symbolically.
+
+ // FIXME: Expand these checks to include all undefined behavior.
+
+ if (V2.isSigned() && V2.isNegative())
+ return nullptr;
+
+ uint64_t Amt = V2.getZExtValue();
+
+ if (Amt >= V1.getBitWidth())
+ return nullptr;
+
+ return &getValue( V1.operator>>( (unsigned) Amt ));
+ }
+
+ case BO_LT:
+ return &getTruthValue( V1 < V2 );
+
+ case BO_GT:
+ return &getTruthValue( V1 > V2 );
+
+ case BO_LE:
+ return &getTruthValue( V1 <= V2 );
+
+ case BO_GE:
+ return &getTruthValue( V1 >= V2 );
+
+ case BO_EQ:
+ return &getTruthValue( V1 == V2 );
+
+ case BO_NE:
+ return &getTruthValue( V1 != V2 );
+
+ // Note: LAnd, LOr, Comma are handled specially by higher-level logic.
+
+ case BO_And:
+ return &getValue( V1 & V2 );
+
+ case BO_Or:
+ return &getValue( V1 | V2 );
+
+ case BO_Xor:
+ return &getValue( V1 ^ V2 );
+ }
+}
+
+
+const std::pair<SVal, uintptr_t>&
+BasicValueFactory::getPersistentSValWithData(const SVal& V, uintptr_t Data) {
+
+ // Lazily create the folding set.
+ if (!PersistentSVals) PersistentSVals = new PersistentSValsTy();
+
+ llvm::FoldingSetNodeID ID;
+ void *InsertPos;
+ V.Profile(ID);
+ ID.AddPointer((void*) Data);
+
+ PersistentSValsTy& Map = *((PersistentSValsTy*) PersistentSVals);
+
+ typedef llvm::FoldingSetNodeWrapper<SValData> FoldNodeTy;
+ FoldNodeTy* P = Map.FindNodeOrInsertPos(ID, InsertPos);
+
+ if (!P) {
+ P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>();
+ new (P) FoldNodeTy(std::make_pair(V, Data));
+ Map.InsertNode(P, InsertPos);
+ }
+
+ return P->getValue();
+}
+
+const std::pair<SVal, SVal>&
+BasicValueFactory::getPersistentSValPair(const SVal& V1, const SVal& V2) {
+
+ // Lazily create the folding set.
+ if (!PersistentSValPairs) PersistentSValPairs = new PersistentSValPairsTy();
+
+ llvm::FoldingSetNodeID ID;
+ void *InsertPos;
+ V1.Profile(ID);
+ V2.Profile(ID);
+
+ PersistentSValPairsTy& Map = *((PersistentSValPairsTy*) PersistentSValPairs);
+
+ typedef llvm::FoldingSetNodeWrapper<SValPair> FoldNodeTy;
+ FoldNodeTy* P = Map.FindNodeOrInsertPos(ID, InsertPos);
+
+ if (!P) {
+ P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>();
+ new (P) FoldNodeTy(std::make_pair(V1, V2));
+ Map.InsertNode(P, InsertPos);
+ }
+
+ return P->getValue();
+}
+
+const SVal* BasicValueFactory::getPersistentSVal(SVal X) {
+ return &getPersistentSValWithData(X, 0).first;
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/BlockCounter.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/BlockCounter.cpp
new file mode 100644
index 0000000..c1ac03d
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/BlockCounter.cpp
@@ -0,0 +1,85 @@
+//==- BlockCounter.h - ADT for counting block visits -------------*- C++ -*-//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines BlockCounter, an abstract data type used to count
+// the number of times a given block has been visited along a path
+// analyzed by CoreEngine.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/BlockCounter.h"
+#include "llvm/ADT/ImmutableMap.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+
+class CountKey {
+ const StackFrameContext *CallSite;
+ unsigned BlockID;
+
+public:
+ CountKey(const StackFrameContext *CS, unsigned ID)
+ : CallSite(CS), BlockID(ID) {}
+
+ bool operator==(const CountKey &RHS) const {
+ return (CallSite == RHS.CallSite) && (BlockID == RHS.BlockID);
+ }
+
+ bool operator<(const CountKey &RHS) const {
+ return std::tie(CallSite, BlockID) < std::tie(RHS.CallSite, RHS.BlockID);
+ }
+
+ void Profile(llvm::FoldingSetNodeID &ID) const {
+ ID.AddPointer(CallSite);
+ ID.AddInteger(BlockID);
+ }
+};
+
+}
+
+typedef llvm::ImmutableMap<CountKey, unsigned> CountMap;
+
+static inline CountMap GetMap(void *D) {
+ return CountMap(static_cast<CountMap::TreeTy*>(D));
+}
+
+static inline CountMap::Factory& GetFactory(void *F) {
+ return *static_cast<CountMap::Factory*>(F);
+}
+
+unsigned BlockCounter::getNumVisited(const StackFrameContext *CallSite,
+ unsigned BlockID) const {
+ CountMap M = GetMap(Data);
+ CountMap::data_type* T = M.lookup(CountKey(CallSite, BlockID));
+ return T ? *T : 0;
+}
+
+BlockCounter::Factory::Factory(llvm::BumpPtrAllocator& Alloc) {
+ F = new CountMap::Factory(Alloc);
+}
+
+BlockCounter::Factory::~Factory() {
+ delete static_cast<CountMap::Factory*>(F);
+}
+
+BlockCounter
+BlockCounter::Factory::IncrementCount(BlockCounter BC,
+ const StackFrameContext *CallSite,
+ unsigned BlockID) {
+ return BlockCounter(GetFactory(F).add(GetMap(BC.Data),
+ CountKey(CallSite, BlockID),
+ BC.getNumVisited(CallSite, BlockID)+1).getRoot());
+}
+
+BlockCounter
+BlockCounter::Factory::GetEmptyCounter() {
+ return BlockCounter(GetFactory(F).getEmptyMap().getRoot());
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/BugReporter.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/BugReporter.cpp
new file mode 100644
index 0000000..97e97ef
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/BugReporter.cpp
@@ -0,0 +1,3556 @@
+// BugReporter.cpp - Generate PathDiagnostics for Bugs ------------*- C++ -*--//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines BugReporter, a utility class for generating
+// PathDiagnostics.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ParentMap.h"
+#include "clang/AST/StmtCXX.h"
+#include "clang/AST/StmtObjC.h"
+#include "clang/Analysis/CFG.h"
+#include "clang/Analysis/ProgramPoint.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/IntrusiveRefCntPtr.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/raw_ostream.h"
+#include <memory>
+#include <queue>
+
+using namespace clang;
+using namespace ento;
+
+#define DEBUG_TYPE "BugReporter"
+
+STATISTIC(MaxBugClassSize,
+ "The maximum number of bug reports in the same equivalence class");
+STATISTIC(MaxValidBugClassSize,
+ "The maximum number of bug reports in the same equivalence class "
+ "where at least one report is valid (not suppressed)");
+
+BugReporterVisitor::~BugReporterVisitor() {}
+
+void BugReporterContext::anchor() {}
+
+//===----------------------------------------------------------------------===//
+// Helper routines for walking the ExplodedGraph and fetching statements.
+//===----------------------------------------------------------------------===//
+
+static const Stmt *GetPreviousStmt(const ExplodedNode *N) {
+ for (N = N->getFirstPred(); N; N = N->getFirstPred())
+ if (const Stmt *S = PathDiagnosticLocation::getStmt(N))
+ return S;
+
+ return nullptr;
+}
+
+static inline const Stmt*
+GetCurrentOrPreviousStmt(const ExplodedNode *N) {
+ if (const Stmt *S = PathDiagnosticLocation::getStmt(N))
+ return S;
+
+ return GetPreviousStmt(N);
+}
+
+//===----------------------------------------------------------------------===//
+// Diagnostic cleanup.
+//===----------------------------------------------------------------------===//
+
+static PathDiagnosticEventPiece *
+eventsDescribeSameCondition(PathDiagnosticEventPiece *X,
+ PathDiagnosticEventPiece *Y) {
+ // Prefer diagnostics that come from ConditionBRVisitor over
+ // those that came from TrackConstraintBRVisitor.
+ const void *tagPreferred = ConditionBRVisitor::getTag();
+ const void *tagLesser = TrackConstraintBRVisitor::getTag();
+
+ if (X->getLocation() != Y->getLocation())
+ return nullptr;
+
+ if (X->getTag() == tagPreferred && Y->getTag() == tagLesser)
+ return X;
+
+ if (Y->getTag() == tagPreferred && X->getTag() == tagLesser)
+ return Y;
+
+ return nullptr;
+}
+
+/// An optimization pass over PathPieces that removes redundant diagnostics
+/// generated by both ConditionBRVisitor and TrackConstraintBRVisitor. Both
+/// BugReporterVisitors use different methods to generate diagnostics, with
+/// one capable of emitting diagnostics in some cases but not in others. This
+/// can lead to redundant diagnostic pieces at the same point in a path.
+static void removeRedundantMsgs(PathPieces &path) {
+ unsigned N = path.size();
+ if (N < 2)
+ return;
+ // NOTE: this loop intentionally is not using an iterator. Instead, we
+ // are streaming the path and modifying it in place. This is done by
+ // grabbing the front, processing it, and if we decide to keep it append
+ // it to the end of the path. The entire path is processed in this way.
+ for (unsigned i = 0; i < N; ++i) {
+ IntrusiveRefCntPtr<PathDiagnosticPiece> piece(path.front());
+ path.pop_front();
+
+ switch (piece->getKind()) {
+ case clang::ento::PathDiagnosticPiece::Call:
+ removeRedundantMsgs(cast<PathDiagnosticCallPiece>(piece)->path);
+ break;
+ case clang::ento::PathDiagnosticPiece::Macro:
+ removeRedundantMsgs(cast<PathDiagnosticMacroPiece>(piece)->subPieces);
+ break;
+ case clang::ento::PathDiagnosticPiece::ControlFlow:
+ break;
+ case clang::ento::PathDiagnosticPiece::Event: {
+ if (i == N-1)
+ break;
+
+ if (PathDiagnosticEventPiece *nextEvent =
+ dyn_cast<PathDiagnosticEventPiece>(path.front().get())) {
+ PathDiagnosticEventPiece *event =
+ cast<PathDiagnosticEventPiece>(piece);
+ // Check to see if we should keep one of the two pieces. If we
+ // come up with a preference, record which piece to keep, and consume
+ // another piece from the path.
+ if (PathDiagnosticEventPiece *pieceToKeep =
+ eventsDescribeSameCondition(event, nextEvent)) {
+ piece = pieceToKeep;
+ path.pop_front();
+ ++i;
+ }
+ }
+ break;
+ }
+ }
+ path.push_back(piece);
+ }
+}
+
+/// A map from PathDiagnosticPiece to the LocationContext of the inlined
+/// function call it represents.
+typedef llvm::DenseMap<const PathPieces *, const LocationContext *>
+ LocationContextMap;
+
+/// Recursively scan through a path and prune out calls and macros pieces
+/// that aren't needed. Return true if afterwards the path contains
+/// "interesting stuff" which means it shouldn't be pruned from the parent path.
+static bool removeUnneededCalls(PathPieces &pieces, BugReport *R,
+ LocationContextMap &LCM) {
+ bool containsSomethingInteresting = false;
+ const unsigned N = pieces.size();
+
+ for (unsigned i = 0 ; i < N ; ++i) {
+ // Remove the front piece from the path. If it is still something we
+ // want to keep once we are done, we will push it back on the end.
+ IntrusiveRefCntPtr<PathDiagnosticPiece> piece(pieces.front());
+ pieces.pop_front();
+
+ switch (piece->getKind()) {
+ case PathDiagnosticPiece::Call: {
+ PathDiagnosticCallPiece *call = cast<PathDiagnosticCallPiece>(piece);
+ // Check if the location context is interesting.
+ assert(LCM.count(&call->path));
+ if (R->isInteresting(LCM[&call->path])) {
+ containsSomethingInteresting = true;
+ break;
+ }
+
+ if (!removeUnneededCalls(call->path, R, LCM))
+ continue;
+
+ containsSomethingInteresting = true;
+ break;
+ }
+ case PathDiagnosticPiece::Macro: {
+ PathDiagnosticMacroPiece *macro = cast<PathDiagnosticMacroPiece>(piece);
+ if (!removeUnneededCalls(macro->subPieces, R, LCM))
+ continue;
+ containsSomethingInteresting = true;
+ break;
+ }
+ case PathDiagnosticPiece::Event: {
+ PathDiagnosticEventPiece *event = cast<PathDiagnosticEventPiece>(piece);
+
+ // We never throw away an event, but we do throw it away wholesale
+ // as part of a path if we throw the entire path away.
+ containsSomethingInteresting |= !event->isPrunable();
+ break;
+ }
+ case PathDiagnosticPiece::ControlFlow:
+ break;
+ }
+
+ pieces.push_back(piece);
+ }
+
+ return containsSomethingInteresting;
+}
+
+/// Returns true if the given decl has been implicitly given a body, either by
+/// the analyzer or by the compiler proper.
+static bool hasImplicitBody(const Decl *D) {
+ assert(D);
+ return D->isImplicit() || !D->hasBody();
+}
+
+/// Recursively scan through a path and make sure that all call pieces have
+/// valid locations.
+static void
+adjustCallLocations(PathPieces &Pieces,
+ PathDiagnosticLocation *LastCallLocation = nullptr) {
+ for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E; ++I) {
+ PathDiagnosticCallPiece *Call = dyn_cast<PathDiagnosticCallPiece>(*I);
+
+ if (!Call) {
+ assert((*I)->getLocation().asLocation().isValid());
+ continue;
+ }
+
+ if (LastCallLocation) {
+ bool CallerIsImplicit = hasImplicitBody(Call->getCaller());
+ if (CallerIsImplicit || !Call->callEnter.asLocation().isValid())
+ Call->callEnter = *LastCallLocation;
+ if (CallerIsImplicit || !Call->callReturn.asLocation().isValid())
+ Call->callReturn = *LastCallLocation;
+ }
+
+ // Recursively clean out the subclass. Keep this call around if
+ // it contains any informative diagnostics.
+ PathDiagnosticLocation *ThisCallLocation;
+ if (Call->callEnterWithin.asLocation().isValid() &&
+ !hasImplicitBody(Call->getCallee()))
+ ThisCallLocation = &Call->callEnterWithin;
+ else
+ ThisCallLocation = &Call->callEnter;
+
+ assert(ThisCallLocation && "Outermost call has an invalid location");
+ adjustCallLocations(Call->path, ThisCallLocation);
+ }
+}
+
+/// Remove edges in and out of C++ default initializer expressions. These are
+/// for fields that have in-class initializers, as opposed to being initialized
+/// explicitly in a constructor or braced list.
+static void removeEdgesToDefaultInitializers(PathPieces &Pieces) {
+ for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) {
+ if (PathDiagnosticCallPiece *C = dyn_cast<PathDiagnosticCallPiece>(*I))
+ removeEdgesToDefaultInitializers(C->path);
+
+ if (PathDiagnosticMacroPiece *M = dyn_cast<PathDiagnosticMacroPiece>(*I))
+ removeEdgesToDefaultInitializers(M->subPieces);
+
+ if (PathDiagnosticControlFlowPiece *CF =
+ dyn_cast<PathDiagnosticControlFlowPiece>(*I)) {
+ const Stmt *Start = CF->getStartLocation().asStmt();
+ const Stmt *End = CF->getEndLocation().asStmt();
+ if (Start && isa<CXXDefaultInitExpr>(Start)) {
+ I = Pieces.erase(I);
+ continue;
+ } else if (End && isa<CXXDefaultInitExpr>(End)) {
+ PathPieces::iterator Next = std::next(I);
+ if (Next != E) {
+ if (PathDiagnosticControlFlowPiece *NextCF =
+ dyn_cast<PathDiagnosticControlFlowPiece>(*Next)) {
+ NextCF->setStartLocation(CF->getStartLocation());
+ }
+ }
+ I = Pieces.erase(I);
+ continue;
+ }
+ }
+
+ I++;
+ }
+}
+
+/// Remove all pieces with invalid locations as these cannot be serialized.
+/// We might have pieces with invalid locations as a result of inlining Body
+/// Farm generated functions.
+static void removePiecesWithInvalidLocations(PathPieces &Pieces) {
+ for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) {
+ if (PathDiagnosticCallPiece *C = dyn_cast<PathDiagnosticCallPiece>(*I))
+ removePiecesWithInvalidLocations(C->path);
+
+ if (PathDiagnosticMacroPiece *M = dyn_cast<PathDiagnosticMacroPiece>(*I))
+ removePiecesWithInvalidLocations(M->subPieces);
+
+ if (!(*I)->getLocation().isValid() ||
+ !(*I)->getLocation().asLocation().isValid()) {
+ I = Pieces.erase(I);
+ continue;
+ }
+ I++;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// PathDiagnosticBuilder and its associated routines and helper objects.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class NodeMapClosure : public BugReport::NodeResolver {
+ InterExplodedGraphMap &M;
+public:
+ NodeMapClosure(InterExplodedGraphMap &m) : M(m) {}
+
+ const ExplodedNode *getOriginalNode(const ExplodedNode *N) override {
+ return M.lookup(N);
+ }
+};
+
+class PathDiagnosticBuilder : public BugReporterContext {
+ BugReport *R;
+ PathDiagnosticConsumer *PDC;
+ NodeMapClosure NMC;
+public:
+ const LocationContext *LC;
+
+ PathDiagnosticBuilder(GRBugReporter &br,
+ BugReport *r, InterExplodedGraphMap &Backmap,
+ PathDiagnosticConsumer *pdc)
+ : BugReporterContext(br),
+ R(r), PDC(pdc), NMC(Backmap), LC(r->getErrorNode()->getLocationContext())
+ {}
+
+ PathDiagnosticLocation ExecutionContinues(const ExplodedNode *N);
+
+ PathDiagnosticLocation ExecutionContinues(llvm::raw_string_ostream &os,
+ const ExplodedNode *N);
+
+ BugReport *getBugReport() { return R; }
+
+ Decl const &getCodeDecl() { return R->getErrorNode()->getCodeDecl(); }
+
+ ParentMap& getParentMap() { return LC->getParentMap(); }
+
+ const Stmt *getParent(const Stmt *S) {
+ return getParentMap().getParent(S);
+ }
+
+ NodeMapClosure& getNodeResolver() override { return NMC; }
+
+ PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S);
+
+ PathDiagnosticConsumer::PathGenerationScheme getGenerationScheme() const {
+ return PDC ? PDC->getGenerationScheme() : PathDiagnosticConsumer::Extensive;
+ }
+
+ bool supportsLogicalOpControlFlow() const {
+ return PDC ? PDC->supportsLogicalOpControlFlow() : true;
+ }
+};
+} // end anonymous namespace
+
+PathDiagnosticLocation
+PathDiagnosticBuilder::ExecutionContinues(const ExplodedNode *N) {
+ if (const Stmt *S = PathDiagnosticLocation::getNextStmt(N))
+ return PathDiagnosticLocation(S, getSourceManager(), LC);
+
+ return PathDiagnosticLocation::createDeclEnd(N->getLocationContext(),
+ getSourceManager());
+}
+
+PathDiagnosticLocation
+PathDiagnosticBuilder::ExecutionContinues(llvm::raw_string_ostream &os,
+ const ExplodedNode *N) {
+
+ // Slow, but probably doesn't matter.
+ if (os.str().empty())
+ os << ' ';
+
+ const PathDiagnosticLocation &Loc = ExecutionContinues(N);
+
+ if (Loc.asStmt())
+ os << "Execution continues on line "
+ << getSourceManager().getExpansionLineNumber(Loc.asLocation())
+ << '.';
+ else {
+ os << "Execution jumps to the end of the ";
+ const Decl *D = N->getLocationContext()->getDecl();
+ if (isa<ObjCMethodDecl>(D))
+ os << "method";
+ else if (isa<FunctionDecl>(D))
+ os << "function";
+ else {
+ assert(isa<BlockDecl>(D));
+ os << "anonymous block";
+ }
+ os << '.';
+ }
+
+ return Loc;
+}
+
+static const Stmt *getEnclosingParent(const Stmt *S, const ParentMap &PM) {
+ if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S)))
+ return PM.getParentIgnoreParens(S);
+
+ const Stmt *Parent = PM.getParentIgnoreParens(S);
+ if (!Parent)
+ return nullptr;
+
+ switch (Parent->getStmtClass()) {
+ case Stmt::ForStmtClass:
+ case Stmt::DoStmtClass:
+ case Stmt::WhileStmtClass:
+ case Stmt::ObjCForCollectionStmtClass:
+ case Stmt::CXXForRangeStmtClass:
+ return Parent;
+ default:
+ break;
+ }
+
+ return nullptr;
+}
+
+static PathDiagnosticLocation
+getEnclosingStmtLocation(const Stmt *S, SourceManager &SMgr, const ParentMap &P,
+ const LocationContext *LC, bool allowNestedContexts) {
+ if (!S)
+ return PathDiagnosticLocation();
+
+ while (const Stmt *Parent = getEnclosingParent(S, P)) {
+ switch (Parent->getStmtClass()) {
+ case Stmt::BinaryOperatorClass: {
+ const BinaryOperator *B = cast<BinaryOperator>(Parent);
+ if (B->isLogicalOp())
+ return PathDiagnosticLocation(allowNestedContexts ? B : S, SMgr, LC);
+ break;
+ }
+ case Stmt::CompoundStmtClass:
+ case Stmt::StmtExprClass:
+ return PathDiagnosticLocation(S, SMgr, LC);
+ case Stmt::ChooseExprClass:
+ // Similar to '?' if we are referring to condition, just have the edge
+ // point to the entire choose expression.
+ if (allowNestedContexts || cast<ChooseExpr>(Parent)->getCond() == S)
+ return PathDiagnosticLocation(Parent, SMgr, LC);
+ else
+ return PathDiagnosticLocation(S, SMgr, LC);
+ case Stmt::BinaryConditionalOperatorClass:
+ case Stmt::ConditionalOperatorClass:
+ // For '?', if we are referring to condition, just have the edge point
+ // to the entire '?' expression.
+ if (allowNestedContexts ||
+ cast<AbstractConditionalOperator>(Parent)->getCond() == S)
+ return PathDiagnosticLocation(Parent, SMgr, LC);
+ else
+ return PathDiagnosticLocation(S, SMgr, LC);
+ case Stmt::CXXForRangeStmtClass:
+ if (cast<CXXForRangeStmt>(Parent)->getBody() == S)
+ return PathDiagnosticLocation(S, SMgr, LC);
+ break;
+ case Stmt::DoStmtClass:
+ return PathDiagnosticLocation(S, SMgr, LC);
+ case Stmt::ForStmtClass:
+ if (cast<ForStmt>(Parent)->getBody() == S)
+ return PathDiagnosticLocation(S, SMgr, LC);
+ break;
+ case Stmt::IfStmtClass:
+ if (cast<IfStmt>(Parent)->getCond() != S)
+ return PathDiagnosticLocation(S, SMgr, LC);
+ break;
+ case Stmt::ObjCForCollectionStmtClass:
+ if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S)
+ return PathDiagnosticLocation(S, SMgr, LC);
+ break;
+ case Stmt::WhileStmtClass:
+ if (cast<WhileStmt>(Parent)->getCond() != S)
+ return PathDiagnosticLocation(S, SMgr, LC);
+ break;
+ default:
+ break;
+ }
+
+ S = Parent;
+ }
+
+ assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
+
+ return PathDiagnosticLocation(S, SMgr, LC);
+}
+
+PathDiagnosticLocation
+PathDiagnosticBuilder::getEnclosingStmtLocation(const Stmt *S) {
+ assert(S && "Null Stmt passed to getEnclosingStmtLocation");
+ return ::getEnclosingStmtLocation(S, getSourceManager(), getParentMap(), LC,
+ /*allowNestedContexts=*/false);
+}
+
+//===----------------------------------------------------------------------===//
+// "Visitors only" path diagnostic generation algorithm.
+//===----------------------------------------------------------------------===//
+static bool GenerateVisitorsOnlyPathDiagnostic(
+ PathDiagnostic &PD, PathDiagnosticBuilder &PDB, const ExplodedNode *N,
+ ArrayRef<std::unique_ptr<BugReporterVisitor>> visitors) {
+ // All path generation skips the very first node (the error node).
+ // This is because there is special handling for the end-of-path note.
+ N = N->getFirstPred();
+ if (!N)
+ return true;
+
+ BugReport *R = PDB.getBugReport();
+ while (const ExplodedNode *Pred = N->getFirstPred()) {
+ for (auto &V : visitors) {
+ // Visit all the node pairs, but throw the path pieces away.
+ PathDiagnosticPiece *Piece = V->VisitNode(N, Pred, PDB, *R);
+ delete Piece;
+ }
+
+ N = Pred;
+ }
+
+ return R->isValid();
+}
+
+//===----------------------------------------------------------------------===//
+// "Minimal" path diagnostic generation algorithm.
+//===----------------------------------------------------------------------===//
+typedef std::pair<PathDiagnosticCallPiece*, const ExplodedNode*> StackDiagPair;
+typedef SmallVector<StackDiagPair, 6> StackDiagVector;
+
+static void updateStackPiecesWithMessage(PathDiagnosticPiece *P,
+ StackDiagVector &CallStack) {
+ // If the piece contains a special message, add it to all the call
+ // pieces on the active stack.
+ if (PathDiagnosticEventPiece *ep =
+ dyn_cast<PathDiagnosticEventPiece>(P)) {
+
+ if (ep->hasCallStackHint())
+ for (StackDiagVector::iterator I = CallStack.begin(),
+ E = CallStack.end(); I != E; ++I) {
+ PathDiagnosticCallPiece *CP = I->first;
+ const ExplodedNode *N = I->second;
+ std::string stackMsg = ep->getCallStackMessage(N);
+
+ // The last message on the path to final bug is the most important
+ // one. Since we traverse the path backwards, do not add the message
+ // if one has been previously added.
+ if (!CP->hasCallStackMessage())
+ CP->setCallStackMessage(stackMsg);
+ }
+ }
+}
+
+static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM);
+
+static bool GenerateMinimalPathDiagnostic(
+ PathDiagnostic &PD, PathDiagnosticBuilder &PDB, const ExplodedNode *N,
+ LocationContextMap &LCM,
+ ArrayRef<std::unique_ptr<BugReporterVisitor>> visitors) {
+
+ SourceManager& SMgr = PDB.getSourceManager();
+ const LocationContext *LC = PDB.LC;
+ const ExplodedNode *NextNode = N->pred_empty()
+ ? nullptr : *(N->pred_begin());
+
+ StackDiagVector CallStack;
+
+ while (NextNode) {
+ N = NextNode;
+ PDB.LC = N->getLocationContext();
+ NextNode = N->getFirstPred();
+
+ ProgramPoint P = N->getLocation();
+
+ do {
+ if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
+ PathDiagnosticCallPiece *C =
+ PathDiagnosticCallPiece::construct(N, *CE, SMgr);
+ // Record the mapping from call piece to LocationContext.
+ LCM[&C->path] = CE->getCalleeContext();
+ PD.getActivePath().push_front(C);
+ PD.pushActivePath(&C->path);
+ CallStack.push_back(StackDiagPair(C, N));
+ break;
+ }
+
+ if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
+ // Flush all locations, and pop the active path.
+ bool VisitedEntireCall = PD.isWithinCall();
+ PD.popActivePath();
+
+ // Either we just added a bunch of stuff to the top-level path, or
+ // we have a previous CallExitEnd. If the former, it means that the
+ // path terminated within a function call. We must then take the
+ // current contents of the active path and place it within
+ // a new PathDiagnosticCallPiece.
+ PathDiagnosticCallPiece *C;
+ if (VisitedEntireCall) {
+ C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
+ } else {
+ const Decl *Caller = CE->getLocationContext()->getDecl();
+ C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
+ // Record the mapping from call piece to LocationContext.
+ LCM[&C->path] = CE->getCalleeContext();
+ }
+
+ C->setCallee(*CE, SMgr);
+ if (!CallStack.empty()) {
+ assert(CallStack.back().first == C);
+ CallStack.pop_back();
+ }
+ break;
+ }
+
+ if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
+ const CFGBlock *Src = BE->getSrc();
+ const CFGBlock *Dst = BE->getDst();
+ const Stmt *T = Src->getTerminator();
+
+ if (!T)
+ break;
+
+ PathDiagnosticLocation Start =
+ PathDiagnosticLocation::createBegin(T, SMgr,
+ N->getLocationContext());
+
+ switch (T->getStmtClass()) {
+ default:
+ break;
+
+ case Stmt::GotoStmtClass:
+ case Stmt::IndirectGotoStmtClass: {
+ const Stmt *S = PathDiagnosticLocation::getNextStmt(N);
+
+ if (!S)
+ break;
+
+ std::string sbuf;
+ llvm::raw_string_ostream os(sbuf);
+ const PathDiagnosticLocation &End = PDB.getEnclosingStmtLocation(S);
+
+ os << "Control jumps to line "
+ << End.asLocation().getExpansionLineNumber();
+ PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
+ Start, End, os.str()));
+ break;
+ }
+
+ case Stmt::SwitchStmtClass: {
+ // Figure out what case arm we took.
+ std::string sbuf;
+ llvm::raw_string_ostream os(sbuf);
+
+ if (const Stmt *S = Dst->getLabel()) {
+ PathDiagnosticLocation End(S, SMgr, LC);
+
+ switch (S->getStmtClass()) {
+ default:
+ os << "No cases match in the switch statement. "
+ "Control jumps to line "
+ << End.asLocation().getExpansionLineNumber();
+ break;
+ case Stmt::DefaultStmtClass:
+ os << "Control jumps to the 'default' case at line "
+ << End.asLocation().getExpansionLineNumber();
+ break;
+
+ case Stmt::CaseStmtClass: {
+ os << "Control jumps to 'case ";
+ const CaseStmt *Case = cast<CaseStmt>(S);
+ const Expr *LHS = Case->getLHS()->IgnoreParenCasts();
+
+ // Determine if it is an enum.
+ bool GetRawInt = true;
+
+ if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(LHS)) {
+ // FIXME: Maybe this should be an assertion. Are there cases
+ // were it is not an EnumConstantDecl?
+ const EnumConstantDecl *D =
+ dyn_cast<EnumConstantDecl>(DR->getDecl());
+
+ if (D) {
+ GetRawInt = false;
+ os << *D;
+ }
+ }
+
+ if (GetRawInt)
+ os << LHS->EvaluateKnownConstInt(PDB.getASTContext());
+
+ os << ":' at line "
+ << End.asLocation().getExpansionLineNumber();
+ break;
+ }
+ }
+ PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
+ Start, End, os.str()));
+ }
+ else {
+ os << "'Default' branch taken. ";
+ const PathDiagnosticLocation &End = PDB.ExecutionContinues(os, N);
+ PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
+ Start, End, os.str()));
+ }
+
+ break;
+ }
+
+ case Stmt::BreakStmtClass:
+ case Stmt::ContinueStmtClass: {
+ std::string sbuf;
+ llvm::raw_string_ostream os(sbuf);
+ PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
+ PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
+ Start, End, os.str()));
+ break;
+ }
+
+ // Determine control-flow for ternary '?'.
+ case Stmt::BinaryConditionalOperatorClass:
+ case Stmt::ConditionalOperatorClass: {
+ std::string sbuf;
+ llvm::raw_string_ostream os(sbuf);
+ os << "'?' condition is ";
+
+ if (*(Src->succ_begin()+1) == Dst)
+ os << "false";
+ else
+ os << "true";
+
+ PathDiagnosticLocation End = PDB.ExecutionContinues(N);
+
+ if (const Stmt *S = End.asStmt())
+ End = PDB.getEnclosingStmtLocation(S);
+
+ PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
+ Start, End, os.str()));
+ break;
+ }
+
+ // Determine control-flow for short-circuited '&&' and '||'.
+ case Stmt::BinaryOperatorClass: {
+ if (!PDB.supportsLogicalOpControlFlow())
+ break;
+
+ const BinaryOperator *B = cast<BinaryOperator>(T);
+ std::string sbuf;
+ llvm::raw_string_ostream os(sbuf);
+ os << "Left side of '";
+
+ if (B->getOpcode() == BO_LAnd) {
+ os << "&&" << "' is ";
+
+ if (*(Src->succ_begin()+1) == Dst) {
+ os << "false";
+ PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
+ PathDiagnosticLocation Start =
+ PathDiagnosticLocation::createOperatorLoc(B, SMgr);
+ PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
+ Start, End, os.str()));
+ }
+ else {
+ os << "true";
+ PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
+ PathDiagnosticLocation End = PDB.ExecutionContinues(N);
+ PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
+ Start, End, os.str()));
+ }
+ }
+ else {
+ assert(B->getOpcode() == BO_LOr);
+ os << "||" << "' is ";
+
+ if (*(Src->succ_begin()+1) == Dst) {
+ os << "false";
+ PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
+ PathDiagnosticLocation End = PDB.ExecutionContinues(N);
+ PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
+ Start, End, os.str()));
+ }
+ else {
+ os << "true";
+ PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
+ PathDiagnosticLocation Start =
+ PathDiagnosticLocation::createOperatorLoc(B, SMgr);
+ PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
+ Start, End, os.str()));
+ }
+ }
+
+ break;
+ }
+
+ case Stmt::DoStmtClass: {
+ if (*(Src->succ_begin()) == Dst) {
+ std::string sbuf;
+ llvm::raw_string_ostream os(sbuf);
+
+ os << "Loop condition is true. ";
+ PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
+
+ if (const Stmt *S = End.asStmt())
+ End = PDB.getEnclosingStmtLocation(S);
+
+ PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
+ Start, End, os.str()));
+ }
+ else {
+ PathDiagnosticLocation End = PDB.ExecutionContinues(N);
+
+ if (const Stmt *S = End.asStmt())
+ End = PDB.getEnclosingStmtLocation(S);
+
+ PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
+ Start, End, "Loop condition is false. Exiting loop"));
+ }
+
+ break;
+ }
+
+ case Stmt::WhileStmtClass:
+ case Stmt::ForStmtClass: {
+ if (*(Src->succ_begin()+1) == Dst) {
+ std::string sbuf;
+ llvm::raw_string_ostream os(sbuf);
+
+ os << "Loop condition is false. ";
+ PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
+ if (const Stmt *S = End.asStmt())
+ End = PDB.getEnclosingStmtLocation(S);
+
+ PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
+ Start, End, os.str()));
+ }
+ else {
+ PathDiagnosticLocation End = PDB.ExecutionContinues(N);
+ if (const Stmt *S = End.asStmt())
+ End = PDB.getEnclosingStmtLocation(S);
+
+ PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
+ Start, End, "Loop condition is true. Entering loop body"));
+ }
+
+ break;
+ }
+
+ case Stmt::IfStmtClass: {
+ PathDiagnosticLocation End = PDB.ExecutionContinues(N);
+
+ if (const Stmt *S = End.asStmt())
+ End = PDB.getEnclosingStmtLocation(S);
+
+ if (*(Src->succ_begin()+1) == Dst)
+ PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
+ Start, End, "Taking false branch"));
+ else
+ PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
+ Start, End, "Taking true branch"));
+
+ break;
+ }
+ }
+ }
+ } while(0);
+
+ if (NextNode) {
+ // Add diagnostic pieces from custom visitors.
+ BugReport *R = PDB.getBugReport();
+ for (auto &V : visitors) {
+ if (PathDiagnosticPiece *p = V->VisitNode(N, NextNode, PDB, *R)) {
+ PD.getActivePath().push_front(p);
+ updateStackPiecesWithMessage(p, CallStack);
+ }
+ }
+ }
+ }
+
+ if (!PDB.getBugReport()->isValid())
+ return false;
+
+ // After constructing the full PathDiagnostic, do a pass over it to compact
+ // PathDiagnosticPieces that occur within a macro.
+ CompactPathDiagnostic(PD.getMutablePieces(), PDB.getSourceManager());
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// "Extensive" PathDiagnostic generation.
+//===----------------------------------------------------------------------===//
+
+static bool IsControlFlowExpr(const Stmt *S) {
+ const Expr *E = dyn_cast<Expr>(S);
+
+ if (!E)
+ return false;
+
+ E = E->IgnoreParenCasts();
+
+ if (isa<AbstractConditionalOperator>(E))
+ return true;
+
+ if (const BinaryOperator *B = dyn_cast<BinaryOperator>(E))
+ if (B->isLogicalOp())
+ return true;
+
+ return false;
+}
+
+namespace {
+class ContextLocation : public PathDiagnosticLocation {
+ bool IsDead;
+public:
+ ContextLocation(const PathDiagnosticLocation &L, bool isdead = false)
+ : PathDiagnosticLocation(L), IsDead(isdead) {}
+
+ void markDead() { IsDead = true; }
+ bool isDead() const { return IsDead; }
+};
+
+static PathDiagnosticLocation cleanUpLocation(PathDiagnosticLocation L,
+ const LocationContext *LC,
+ bool firstCharOnly = false) {
+ if (const Stmt *S = L.asStmt()) {
+ const Stmt *Original = S;
+ while (1) {
+ // Adjust the location for some expressions that are best referenced
+ // by one of their subexpressions.
+ switch (S->getStmtClass()) {
+ default:
+ break;
+ case Stmt::ParenExprClass:
+ case Stmt::GenericSelectionExprClass:
+ S = cast<Expr>(S)->IgnoreParens();
+ firstCharOnly = true;
+ continue;
+ case Stmt::BinaryConditionalOperatorClass:
+ case Stmt::ConditionalOperatorClass:
+ S = cast<AbstractConditionalOperator>(S)->getCond();
+ firstCharOnly = true;
+ continue;
+ case Stmt::ChooseExprClass:
+ S = cast<ChooseExpr>(S)->getCond();
+ firstCharOnly = true;
+ continue;
+ case Stmt::BinaryOperatorClass:
+ S = cast<BinaryOperator>(S)->getLHS();
+ firstCharOnly = true;
+ continue;
+ }
+
+ break;
+ }
+
+ if (S != Original)
+ L = PathDiagnosticLocation(S, L.getManager(), LC);
+ }
+
+ if (firstCharOnly)
+ L = PathDiagnosticLocation::createSingleLocation(L);
+
+ return L;
+}
+
+class EdgeBuilder {
+ std::vector<ContextLocation> CLocs;
+ typedef std::vector<ContextLocation>::iterator iterator;
+ PathDiagnostic &PD;
+ PathDiagnosticBuilder &PDB;
+ PathDiagnosticLocation PrevLoc;
+
+ bool IsConsumedExpr(const PathDiagnosticLocation &L);
+
+ bool containsLocation(const PathDiagnosticLocation &Container,
+ const PathDiagnosticLocation &Containee);
+
+ PathDiagnosticLocation getContextLocation(const PathDiagnosticLocation &L);
+
+
+
+ void popLocation() {
+ if (!CLocs.back().isDead() && CLocs.back().asLocation().isFileID()) {
+ // For contexts, we only one the first character as the range.
+ rawAddEdge(cleanUpLocation(CLocs.back(), PDB.LC, true));
+ }
+ CLocs.pop_back();
+ }
+
+public:
+ EdgeBuilder(PathDiagnostic &pd, PathDiagnosticBuilder &pdb)
+ : PD(pd), PDB(pdb) {
+
+ // If the PathDiagnostic already has pieces, add the enclosing statement
+ // of the first piece as a context as well.
+ if (!PD.path.empty()) {
+ PrevLoc = (*PD.path.begin())->getLocation();
+
+ if (const Stmt *S = PrevLoc.asStmt())
+ addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
+ }
+ }
+
+ ~EdgeBuilder() {
+ while (!CLocs.empty()) popLocation();
+
+ // Finally, add an initial edge from the start location of the first
+ // statement (if it doesn't already exist).
+ PathDiagnosticLocation L = PathDiagnosticLocation::createDeclBegin(
+ PDB.LC,
+ PDB.getSourceManager());
+ if (L.isValid())
+ rawAddEdge(L);
+ }
+
+ void flushLocations() {
+ while (!CLocs.empty())
+ popLocation();
+ PrevLoc = PathDiagnosticLocation();
+ }
+
+ void addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd = false,
+ bool IsPostJump = false);
+
+ void rawAddEdge(PathDiagnosticLocation NewLoc);
+
+ void addContext(const Stmt *S);
+ void addContext(const PathDiagnosticLocation &L);
+ void addExtendedContext(const Stmt *S);
+};
+} // end anonymous namespace
+
+
+PathDiagnosticLocation
+EdgeBuilder::getContextLocation(const PathDiagnosticLocation &L) {
+ if (const Stmt *S = L.asStmt()) {
+ if (IsControlFlowExpr(S))
+ return L;
+
+ return PDB.getEnclosingStmtLocation(S);
+ }
+
+ return L;
+}
+
+bool EdgeBuilder::containsLocation(const PathDiagnosticLocation &Container,
+ const PathDiagnosticLocation &Containee) {
+
+ if (Container == Containee)
+ return true;
+
+ if (Container.asDecl())
+ return true;
+
+ if (const Stmt *S = Containee.asStmt())
+ if (const Stmt *ContainerS = Container.asStmt()) {
+ while (S) {
+ if (S == ContainerS)
+ return true;
+ S = PDB.getParent(S);
+ }
+ return false;
+ }
+
+ // Less accurate: compare using source ranges.
+ SourceRange ContainerR = Container.asRange();
+ SourceRange ContaineeR = Containee.asRange();
+
+ SourceManager &SM = PDB.getSourceManager();
+ SourceLocation ContainerRBeg = SM.getExpansionLoc(ContainerR.getBegin());
+ SourceLocation ContainerREnd = SM.getExpansionLoc(ContainerR.getEnd());
+ SourceLocation ContaineeRBeg = SM.getExpansionLoc(ContaineeR.getBegin());
+ SourceLocation ContaineeREnd = SM.getExpansionLoc(ContaineeR.getEnd());
+
+ unsigned ContainerBegLine = SM.getExpansionLineNumber(ContainerRBeg);
+ unsigned ContainerEndLine = SM.getExpansionLineNumber(ContainerREnd);
+ unsigned ContaineeBegLine = SM.getExpansionLineNumber(ContaineeRBeg);
+ unsigned ContaineeEndLine = SM.getExpansionLineNumber(ContaineeREnd);
+
+ assert(ContainerBegLine <= ContainerEndLine);
+ assert(ContaineeBegLine <= ContaineeEndLine);
+
+ return (ContainerBegLine <= ContaineeBegLine &&
+ ContainerEndLine >= ContaineeEndLine &&
+ (ContainerBegLine != ContaineeBegLine ||
+ SM.getExpansionColumnNumber(ContainerRBeg) <=
+ SM.getExpansionColumnNumber(ContaineeRBeg)) &&
+ (ContainerEndLine != ContaineeEndLine ||
+ SM.getExpansionColumnNumber(ContainerREnd) >=
+ SM.getExpansionColumnNumber(ContaineeREnd)));
+}
+
+void EdgeBuilder::rawAddEdge(PathDiagnosticLocation NewLoc) {
+ if (!PrevLoc.isValid()) {
+ PrevLoc = NewLoc;
+ return;
+ }
+
+ const PathDiagnosticLocation &NewLocClean = cleanUpLocation(NewLoc, PDB.LC);
+ const PathDiagnosticLocation &PrevLocClean = cleanUpLocation(PrevLoc, PDB.LC);
+
+ if (PrevLocClean.asLocation().isInvalid()) {
+ PrevLoc = NewLoc;
+ return;
+ }
+
+ if (NewLocClean.asLocation() == PrevLocClean.asLocation())
+ return;
+
+ // FIXME: Ignore intra-macro edges for now.
+ if (NewLocClean.asLocation().getExpansionLoc() ==
+ PrevLocClean.asLocation().getExpansionLoc())
+ return;
+
+ PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(NewLocClean, PrevLocClean));
+ PrevLoc = NewLoc;
+}
+
+void EdgeBuilder::addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd,
+ bool IsPostJump) {
+
+ if (!alwaysAdd && NewLoc.asLocation().isMacroID())
+ return;
+
+ const PathDiagnosticLocation &CLoc = getContextLocation(NewLoc);
+
+ while (!CLocs.empty()) {
+ ContextLocation &TopContextLoc = CLocs.back();
+
+ // Is the top location context the same as the one for the new location?
+ if (TopContextLoc == CLoc) {
+ if (alwaysAdd) {
+ if (IsConsumedExpr(TopContextLoc))
+ TopContextLoc.markDead();
+
+ rawAddEdge(NewLoc);
+ }
+
+ if (IsPostJump)
+ TopContextLoc.markDead();
+ return;
+ }
+
+ if (containsLocation(TopContextLoc, CLoc)) {
+ if (alwaysAdd) {
+ rawAddEdge(NewLoc);
+
+ if (IsConsumedExpr(CLoc)) {
+ CLocs.push_back(ContextLocation(CLoc, /*IsDead=*/true));
+ return;
+ }
+ }
+
+ CLocs.push_back(ContextLocation(CLoc, /*IsDead=*/IsPostJump));
+ return;
+ }
+
+ // Context does not contain the location. Flush it.
+ popLocation();
+ }
+
+ // If we reach here, there is no enclosing context. Just add the edge.
+ rawAddEdge(NewLoc);
+}
+
+bool EdgeBuilder::IsConsumedExpr(const PathDiagnosticLocation &L) {
+ if (const Expr *X = dyn_cast_or_null<Expr>(L.asStmt()))
+ return PDB.getParentMap().isConsumedExpr(X) && !IsControlFlowExpr(X);
+
+ return false;
+}
+
+void EdgeBuilder::addExtendedContext(const Stmt *S) {
+ if (!S)
+ return;
+
+ const Stmt *Parent = PDB.getParent(S);
+ while (Parent) {
+ if (isa<CompoundStmt>(Parent))
+ Parent = PDB.getParent(Parent);
+ else
+ break;
+ }
+
+ if (Parent) {
+ switch (Parent->getStmtClass()) {
+ case Stmt::DoStmtClass:
+ case Stmt::ObjCAtSynchronizedStmtClass:
+ addContext(Parent);
+ default:
+ break;
+ }
+ }
+
+ addContext(S);
+}
+
+void EdgeBuilder::addContext(const Stmt *S) {
+ if (!S)
+ return;
+
+ PathDiagnosticLocation L(S, PDB.getSourceManager(), PDB.LC);
+ addContext(L);
+}
+
+void EdgeBuilder::addContext(const PathDiagnosticLocation &L) {
+ while (!CLocs.empty()) {
+ const PathDiagnosticLocation &TopContextLoc = CLocs.back();
+
+ // Is the top location context the same as the one for the new location?
+ if (TopContextLoc == L)
+ return;
+
+ if (containsLocation(TopContextLoc, L)) {
+ CLocs.push_back(L);
+ return;
+ }
+
+ // Context does not contain the location. Flush it.
+ popLocation();
+ }
+
+ CLocs.push_back(L);
+}
+
+// Cone-of-influence: support the reverse propagation of "interesting" symbols
+// and values by tracing interesting calculations backwards through evaluated
+// expressions along a path. This is probably overly complicated, but the idea
+// is that if an expression computed an "interesting" value, the child
+// expressions are are also likely to be "interesting" as well (which then
+// propagates to the values they in turn compute). This reverse propagation
+// is needed to track interesting correlations across function call boundaries,
+// where formal arguments bind to actual arguments, etc. This is also needed
+// because the constraint solver sometimes simplifies certain symbolic values
+// into constants when appropriate, and this complicates reasoning about
+// interesting values.
+typedef llvm::DenseSet<const Expr *> InterestingExprs;
+
+static void reversePropagateIntererstingSymbols(BugReport &R,
+ InterestingExprs &IE,
+ const ProgramState *State,
+ const Expr *Ex,
+ const LocationContext *LCtx) {
+ SVal V = State->getSVal(Ex, LCtx);
+ if (!(R.isInteresting(V) || IE.count(Ex)))
+ return;
+
+ switch (Ex->getStmtClass()) {
+ default:
+ if (!isa<CastExpr>(Ex))
+ break;
+ // Fall through.
+ case Stmt::BinaryOperatorClass:
+ case Stmt::UnaryOperatorClass: {
+ for (Stmt::const_child_iterator CI = Ex->child_begin(),
+ CE = Ex->child_end();
+ CI != CE; ++CI) {
+ if (const Expr *child = dyn_cast_or_null<Expr>(*CI)) {
+ IE.insert(child);
+ SVal ChildV = State->getSVal(child, LCtx);
+ R.markInteresting(ChildV);
+ }
+ }
+ break;
+ }
+ }
+
+ R.markInteresting(V);
+}
+
+static void reversePropagateInterestingSymbols(BugReport &R,
+ InterestingExprs &IE,
+ const ProgramState *State,
+ const LocationContext *CalleeCtx,
+ const LocationContext *CallerCtx)
+{
+ // FIXME: Handle non-CallExpr-based CallEvents.
+ const StackFrameContext *Callee = CalleeCtx->getCurrentStackFrame();
+ const Stmt *CallSite = Callee->getCallSite();
+ if (const CallExpr *CE = dyn_cast_or_null<CallExpr>(CallSite)) {
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeCtx->getDecl())) {
+ FunctionDecl::param_const_iterator PI = FD->param_begin(),
+ PE = FD->param_end();
+ CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
+ for (; AI != AE && PI != PE; ++AI, ++PI) {
+ if (const Expr *ArgE = *AI) {
+ if (const ParmVarDecl *PD = *PI) {
+ Loc LV = State->getLValue(PD, CalleeCtx);
+ if (R.isInteresting(LV) || R.isInteresting(State->getRawSVal(LV)))
+ IE.insert(ArgE);
+ }
+ }
+ }
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Functions for determining if a loop was executed 0 times.
+//===----------------------------------------------------------------------===//
+
+static bool isLoop(const Stmt *Term) {
+ switch (Term->getStmtClass()) {
+ case Stmt::ForStmtClass:
+ case Stmt::WhileStmtClass:
+ case Stmt::ObjCForCollectionStmtClass:
+ case Stmt::CXXForRangeStmtClass:
+ return true;
+ default:
+ // Note that we intentionally do not include do..while here.
+ return false;
+ }
+}
+
+static bool isJumpToFalseBranch(const BlockEdge *BE) {
+ const CFGBlock *Src = BE->getSrc();
+ assert(Src->succ_size() == 2);
+ return (*(Src->succ_begin()+1) == BE->getDst());
+}
+
+/// Return true if the terminator is a loop and the destination is the
+/// false branch.
+static bool isLoopJumpPastBody(const Stmt *Term, const BlockEdge *BE) {
+ if (!isLoop(Term))
+ return false;
+
+ // Did we take the false branch?
+ return isJumpToFalseBranch(BE);
+}
+
+static bool isContainedByStmt(ParentMap &PM, const Stmt *S, const Stmt *SubS) {
+ while (SubS) {
+ if (SubS == S)
+ return true;
+ SubS = PM.getParent(SubS);
+ }
+ return false;
+}
+
+static const Stmt *getStmtBeforeCond(ParentMap &PM, const Stmt *Term,
+ const ExplodedNode *N) {
+ while (N) {
+ Optional<StmtPoint> SP = N->getLocation().getAs<StmtPoint>();
+ if (SP) {
+ const Stmt *S = SP->getStmt();
+ if (!isContainedByStmt(PM, Term, S))
+ return S;
+ }
+ N = N->getFirstPred();
+ }
+ return nullptr;
+}
+
+static bool isInLoopBody(ParentMap &PM, const Stmt *S, const Stmt *Term) {
+ const Stmt *LoopBody = nullptr;
+ switch (Term->getStmtClass()) {
+ case Stmt::CXXForRangeStmtClass: {
+ const CXXForRangeStmt *FR = cast<CXXForRangeStmt>(Term);
+ if (isContainedByStmt(PM, FR->getInc(), S))
+ return true;
+ if (isContainedByStmt(PM, FR->getLoopVarStmt(), S))
+ return true;
+ LoopBody = FR->getBody();
+ break;
+ }
+ case Stmt::ForStmtClass: {
+ const ForStmt *FS = cast<ForStmt>(Term);
+ if (isContainedByStmt(PM, FS->getInc(), S))
+ return true;
+ LoopBody = FS->getBody();
+ break;
+ }
+ case Stmt::ObjCForCollectionStmtClass: {
+ const ObjCForCollectionStmt *FC = cast<ObjCForCollectionStmt>(Term);
+ LoopBody = FC->getBody();
+ break;
+ }
+ case Stmt::WhileStmtClass:
+ LoopBody = cast<WhileStmt>(Term)->getBody();
+ break;
+ default:
+ return false;
+ }
+ return isContainedByStmt(PM, LoopBody, S);
+}
+
+//===----------------------------------------------------------------------===//
+// Top-level logic for generating extensive path diagnostics.
+//===----------------------------------------------------------------------===//
+
+static bool GenerateExtensivePathDiagnostic(
+ PathDiagnostic &PD, PathDiagnosticBuilder &PDB, const ExplodedNode *N,
+ LocationContextMap &LCM,
+ ArrayRef<std::unique_ptr<BugReporterVisitor>> visitors) {
+ EdgeBuilder EB(PD, PDB);
+ const SourceManager& SM = PDB.getSourceManager();
+ StackDiagVector CallStack;
+ InterestingExprs IE;
+
+ const ExplodedNode *NextNode = N->pred_empty() ? nullptr : *(N->pred_begin());
+ while (NextNode) {
+ N = NextNode;
+ NextNode = N->getFirstPred();
+ ProgramPoint P = N->getLocation();
+
+ do {
+ if (Optional<PostStmt> PS = P.getAs<PostStmt>()) {
+ if (const Expr *Ex = PS->getStmtAs<Expr>())
+ reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
+ N->getState().get(), Ex,
+ N->getLocationContext());
+ }
+
+ if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
+ const Stmt *S = CE->getCalleeContext()->getCallSite();
+ if (const Expr *Ex = dyn_cast_or_null<Expr>(S)) {
+ reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
+ N->getState().get(), Ex,
+ N->getLocationContext());
+ }
+
+ PathDiagnosticCallPiece *C =
+ PathDiagnosticCallPiece::construct(N, *CE, SM);
+ LCM[&C->path] = CE->getCalleeContext();
+
+ EB.addEdge(C->callReturn, /*AlwaysAdd=*/true, /*IsPostJump=*/true);
+ EB.flushLocations();
+
+ PD.getActivePath().push_front(C);
+ PD.pushActivePath(&C->path);
+ CallStack.push_back(StackDiagPair(C, N));
+ break;
+ }
+
+ // Pop the call hierarchy if we are done walking the contents
+ // of a function call.
+ if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
+ // Add an edge to the start of the function.
+ const Decl *D = CE->getCalleeContext()->getDecl();
+ PathDiagnosticLocation pos =
+ PathDiagnosticLocation::createBegin(D, SM);
+ EB.addEdge(pos);
+
+ // Flush all locations, and pop the active path.
+ bool VisitedEntireCall = PD.isWithinCall();
+ EB.flushLocations();
+ PD.popActivePath();
+ PDB.LC = N->getLocationContext();
+
+ // Either we just added a bunch of stuff to the top-level path, or
+ // we have a previous CallExitEnd. If the former, it means that the
+ // path terminated within a function call. We must then take the
+ // current contents of the active path and place it within
+ // a new PathDiagnosticCallPiece.
+ PathDiagnosticCallPiece *C;
+ if (VisitedEntireCall) {
+ C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
+ } else {
+ const Decl *Caller = CE->getLocationContext()->getDecl();
+ C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
+ LCM[&C->path] = CE->getCalleeContext();
+ }
+
+ C->setCallee(*CE, SM);
+ EB.addContext(C->getLocation());
+
+ if (!CallStack.empty()) {
+ assert(CallStack.back().first == C);
+ CallStack.pop_back();
+ }
+ break;
+ }
+
+ // Note that is important that we update the LocationContext
+ // after looking at CallExits. CallExit basically adds an
+ // edge in the *caller*, so we don't want to update the LocationContext
+ // too soon.
+ PDB.LC = N->getLocationContext();
+
+ // Block edges.
+ if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
+ // Does this represent entering a call? If so, look at propagating
+ // interesting symbols across call boundaries.
+ if (NextNode) {
+ const LocationContext *CallerCtx = NextNode->getLocationContext();
+ const LocationContext *CalleeCtx = PDB.LC;
+ if (CallerCtx != CalleeCtx) {
+ reversePropagateInterestingSymbols(*PDB.getBugReport(), IE,
+ N->getState().get(),
+ CalleeCtx, CallerCtx);
+ }
+ }
+
+ // Are we jumping to the head of a loop? Add a special diagnostic.
+ if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
+ PathDiagnosticLocation L(Loop, SM, PDB.LC);
+ const CompoundStmt *CS = nullptr;
+
+ if (const ForStmt *FS = dyn_cast<ForStmt>(Loop))
+ CS = dyn_cast<CompoundStmt>(FS->getBody());
+ else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop))
+ CS = dyn_cast<CompoundStmt>(WS->getBody());
+
+ PathDiagnosticEventPiece *p =
+ new PathDiagnosticEventPiece(L,
+ "Looping back to the head of the loop");
+ p->setPrunable(true);
+
+ EB.addEdge(p->getLocation(), true);
+ PD.getActivePath().push_front(p);
+
+ if (CS) {
+ PathDiagnosticLocation BL =
+ PathDiagnosticLocation::createEndBrace(CS, SM);
+ EB.addEdge(BL);
+ }
+ }
+
+ const CFGBlock *BSrc = BE->getSrc();
+ ParentMap &PM = PDB.getParentMap();
+
+ if (const Stmt *Term = BSrc->getTerminator()) {
+ // Are we jumping past the loop body without ever executing the
+ // loop (because the condition was false)?
+ if (isLoopJumpPastBody(Term, &*BE) &&
+ !isInLoopBody(PM,
+ getStmtBeforeCond(PM,
+ BSrc->getTerminatorCondition(),
+ N),
+ Term)) {
+ PathDiagnosticLocation L(Term, SM, PDB.LC);
+ PathDiagnosticEventPiece *PE =
+ new PathDiagnosticEventPiece(L, "Loop body executed 0 times");
+ PE->setPrunable(true);
+
+ EB.addEdge(PE->getLocation(), true);
+ PD.getActivePath().push_front(PE);
+ }
+
+ // In any case, add the terminator as the current statement
+ // context for control edges.
+ EB.addContext(Term);
+ }
+
+ break;
+ }
+
+ if (Optional<BlockEntrance> BE = P.getAs<BlockEntrance>()) {
+ Optional<CFGElement> First = BE->getFirstElement();
+ if (Optional<CFGStmt> S = First ? First->getAs<CFGStmt>() : None) {
+ const Stmt *stmt = S->getStmt();
+ if (IsControlFlowExpr(stmt)) {
+ // Add the proper context for '&&', '||', and '?'.
+ EB.addContext(stmt);
+ }
+ else
+ EB.addExtendedContext(PDB.getEnclosingStmtLocation(stmt).asStmt());
+ }
+
+ break;
+ }
+
+
+ } while (0);
+
+ if (!NextNode)
+ continue;
+
+ // Add pieces from custom visitors.
+ BugReport *R = PDB.getBugReport();
+ for (auto &V : visitors) {
+ if (PathDiagnosticPiece *p = V->VisitNode(N, NextNode, PDB, *R)) {
+ const PathDiagnosticLocation &Loc = p->getLocation();
+ EB.addEdge(Loc, true);
+ PD.getActivePath().push_front(p);
+ updateStackPiecesWithMessage(p, CallStack);
+
+ if (const Stmt *S = Loc.asStmt())
+ EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
+ }
+ }
+ }
+
+ return PDB.getBugReport()->isValid();
+}
+
+/// \brief Adds a sanitized control-flow diagnostic edge to a path.
+static void addEdgeToPath(PathPieces &path,
+ PathDiagnosticLocation &PrevLoc,
+ PathDiagnosticLocation NewLoc,
+ const LocationContext *LC) {
+ if (!NewLoc.isValid())
+ return;
+
+ SourceLocation NewLocL = NewLoc.asLocation();
+ if (NewLocL.isInvalid())
+ return;
+
+ if (!PrevLoc.isValid() || !PrevLoc.asLocation().isValid()) {
+ PrevLoc = NewLoc;
+ return;
+ }
+
+ // Ignore self-edges, which occur when there are multiple nodes at the same
+ // statement.
+ if (NewLoc.asStmt() && NewLoc.asStmt() == PrevLoc.asStmt())
+ return;
+
+ path.push_front(new PathDiagnosticControlFlowPiece(NewLoc,
+ PrevLoc));
+ PrevLoc = NewLoc;
+}
+
+/// A customized wrapper for CFGBlock::getTerminatorCondition()
+/// which returns the element for ObjCForCollectionStmts.
+static const Stmt *getTerminatorCondition(const CFGBlock *B) {
+ const Stmt *S = B->getTerminatorCondition();
+ if (const ObjCForCollectionStmt *FS =
+ dyn_cast_or_null<ObjCForCollectionStmt>(S))
+ return FS->getElement();
+ return S;
+}
+
+static const char StrEnteringLoop[] = "Entering loop body";
+static const char StrLoopBodyZero[] = "Loop body executed 0 times";
+static const char StrLoopRangeEmpty[] =
+ "Loop body skipped when range is empty";
+static const char StrLoopCollectionEmpty[] =
+ "Loop body skipped when collection is empty";
+
+static bool GenerateAlternateExtensivePathDiagnostic(
+ PathDiagnostic &PD, PathDiagnosticBuilder &PDB, const ExplodedNode *N,
+ LocationContextMap &LCM,
+ ArrayRef<std::unique_ptr<BugReporterVisitor>> visitors) {
+
+ BugReport *report = PDB.getBugReport();
+ const SourceManager& SM = PDB.getSourceManager();
+ StackDiagVector CallStack;
+ InterestingExprs IE;
+
+ PathDiagnosticLocation PrevLoc = PD.getLocation();
+
+ const ExplodedNode *NextNode = N->getFirstPred();
+ while (NextNode) {
+ N = NextNode;
+ NextNode = N->getFirstPred();
+ ProgramPoint P = N->getLocation();
+
+ do {
+ // Have we encountered an entrance to a call? It may be
+ // the case that we have not encountered a matching
+ // call exit before this point. This means that the path
+ // terminated within the call itself.
+ if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
+ // Add an edge to the start of the function.
+ const StackFrameContext *CalleeLC = CE->getCalleeContext();
+ const Decl *D = CalleeLC->getDecl();
+ addEdgeToPath(PD.getActivePath(), PrevLoc,
+ PathDiagnosticLocation::createBegin(D, SM),
+ CalleeLC);
+
+ // Did we visit an entire call?
+ bool VisitedEntireCall = PD.isWithinCall();
+ PD.popActivePath();
+
+ PathDiagnosticCallPiece *C;
+ if (VisitedEntireCall) {
+ PathDiagnosticPiece *P = PD.getActivePath().front().get();
+ C = cast<PathDiagnosticCallPiece>(P);
+ } else {
+ const Decl *Caller = CE->getLocationContext()->getDecl();
+ C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
+
+ // Since we just transferred the path over to the call piece,
+ // reset the mapping from active to location context.
+ assert(PD.getActivePath().size() == 1 &&
+ PD.getActivePath().front() == C);
+ LCM[&PD.getActivePath()] = nullptr;
+
+ // Record the location context mapping for the path within
+ // the call.
+ assert(LCM[&C->path] == nullptr ||
+ LCM[&C->path] == CE->getCalleeContext());
+ LCM[&C->path] = CE->getCalleeContext();
+
+ // If this is the first item in the active path, record
+ // the new mapping from active path to location context.
+ const LocationContext *&NewLC = LCM[&PD.getActivePath()];
+ if (!NewLC)
+ NewLC = N->getLocationContext();
+
+ PDB.LC = NewLC;
+ }
+ C->setCallee(*CE, SM);
+
+ // Update the previous location in the active path.
+ PrevLoc = C->getLocation();
+
+ if (!CallStack.empty()) {
+ assert(CallStack.back().first == C);
+ CallStack.pop_back();
+ }
+ break;
+ }
+
+ // Query the location context here and the previous location
+ // as processing CallEnter may change the active path.
+ PDB.LC = N->getLocationContext();
+
+ // Record the mapping from the active path to the location
+ // context.
+ assert(!LCM[&PD.getActivePath()] ||
+ LCM[&PD.getActivePath()] == PDB.LC);
+ LCM[&PD.getActivePath()] = PDB.LC;
+
+ // Have we encountered an exit from a function call?
+ if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
+ const Stmt *S = CE->getCalleeContext()->getCallSite();
+ // Propagate the interesting symbols accordingly.
+ if (const Expr *Ex = dyn_cast_or_null<Expr>(S)) {
+ reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
+ N->getState().get(), Ex,
+ N->getLocationContext());
+ }
+
+ // We are descending into a call (backwards). Construct
+ // a new call piece to contain the path pieces for that call.
+ PathDiagnosticCallPiece *C =
+ PathDiagnosticCallPiece::construct(N, *CE, SM);
+
+ // Record the location context for this call piece.
+ LCM[&C->path] = CE->getCalleeContext();
+
+ // Add the edge to the return site.
+ addEdgeToPath(PD.getActivePath(), PrevLoc, C->callReturn, PDB.LC);
+ PD.getActivePath().push_front(C);
+ PrevLoc.invalidate();
+
+ // Make the contents of the call the active path for now.
+ PD.pushActivePath(&C->path);
+ CallStack.push_back(StackDiagPair(C, N));
+ break;
+ }
+
+ if (Optional<PostStmt> PS = P.getAs<PostStmt>()) {
+ // For expressions, make sure we propagate the
+ // interesting symbols correctly.
+ if (const Expr *Ex = PS->getStmtAs<Expr>())
+ reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
+ N->getState().get(), Ex,
+ N->getLocationContext());
+
+ // Add an edge. If this is an ObjCForCollectionStmt do
+ // not add an edge here as it appears in the CFG both
+ // as a terminator and as a terminator condition.
+ if (!isa<ObjCForCollectionStmt>(PS->getStmt())) {
+ PathDiagnosticLocation L =
+ PathDiagnosticLocation(PS->getStmt(), SM, PDB.LC);
+ addEdgeToPath(PD.getActivePath(), PrevLoc, L, PDB.LC);
+ }
+ break;
+ }
+
+ // Block edges.
+ if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
+ // Does this represent entering a call? If so, look at propagating
+ // interesting symbols across call boundaries.
+ if (NextNode) {
+ const LocationContext *CallerCtx = NextNode->getLocationContext();
+ const LocationContext *CalleeCtx = PDB.LC;
+ if (CallerCtx != CalleeCtx) {
+ reversePropagateInterestingSymbols(*PDB.getBugReport(), IE,
+ N->getState().get(),
+ CalleeCtx, CallerCtx);
+ }
+ }
+
+ // Are we jumping to the head of a loop? Add a special diagnostic.
+ if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
+ PathDiagnosticLocation L(Loop, SM, PDB.LC);
+ const Stmt *Body = nullptr;
+
+ if (const ForStmt *FS = dyn_cast<ForStmt>(Loop))
+ Body = FS->getBody();
+ else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop))
+ Body = WS->getBody();
+ else if (const ObjCForCollectionStmt *OFS =
+ dyn_cast<ObjCForCollectionStmt>(Loop)) {
+ Body = OFS->getBody();
+ } else if (const CXXForRangeStmt *FRS =
+ dyn_cast<CXXForRangeStmt>(Loop)) {
+ Body = FRS->getBody();
+ }
+ // do-while statements are explicitly excluded here
+
+ PathDiagnosticEventPiece *p =
+ new PathDiagnosticEventPiece(L, "Looping back to the head "
+ "of the loop");
+ p->setPrunable(true);
+
+ addEdgeToPath(PD.getActivePath(), PrevLoc, p->getLocation(), PDB.LC);
+ PD.getActivePath().push_front(p);
+
+ if (const CompoundStmt *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
+ addEdgeToPath(PD.getActivePath(), PrevLoc,
+ PathDiagnosticLocation::createEndBrace(CS, SM),
+ PDB.LC);
+ }
+ }
+
+ const CFGBlock *BSrc = BE->getSrc();
+ ParentMap &PM = PDB.getParentMap();
+
+ if (const Stmt *Term = BSrc->getTerminator()) {
+ // Are we jumping past the loop body without ever executing the
+ // loop (because the condition was false)?
+ if (isLoop(Term)) {
+ const Stmt *TermCond = getTerminatorCondition(BSrc);
+ bool IsInLoopBody =
+ isInLoopBody(PM, getStmtBeforeCond(PM, TermCond, N), Term);
+
+ const char *str = nullptr;
+
+ if (isJumpToFalseBranch(&*BE)) {
+ if (!IsInLoopBody) {
+ if (isa<ObjCForCollectionStmt>(Term)) {
+ str = StrLoopCollectionEmpty;
+ } else if (isa<CXXForRangeStmt>(Term)) {
+ str = StrLoopRangeEmpty;
+ } else {
+ str = StrLoopBodyZero;
+ }
+ }
+ } else {
+ str = StrEnteringLoop;
+ }
+
+ if (str) {
+ PathDiagnosticLocation L(TermCond ? TermCond : Term, SM, PDB.LC);
+ PathDiagnosticEventPiece *PE =
+ new PathDiagnosticEventPiece(L, str);
+ PE->setPrunable(true);
+ addEdgeToPath(PD.getActivePath(), PrevLoc,
+ PE->getLocation(), PDB.LC);
+ PD.getActivePath().push_front(PE);
+ }
+ } else if (isa<BreakStmt>(Term) || isa<ContinueStmt>(Term) ||
+ isa<GotoStmt>(Term)) {
+ PathDiagnosticLocation L(Term, SM, PDB.LC);
+ addEdgeToPath(PD.getActivePath(), PrevLoc, L, PDB.LC);
+ }
+ }
+ break;
+ }
+ } while (0);
+
+ if (!NextNode)
+ continue;
+
+ // Add pieces from custom visitors.
+ for (auto &V : visitors) {
+ if (PathDiagnosticPiece *p = V->VisitNode(N, NextNode, PDB, *report)) {
+ addEdgeToPath(PD.getActivePath(), PrevLoc, p->getLocation(), PDB.LC);
+ PD.getActivePath().push_front(p);
+ updateStackPiecesWithMessage(p, CallStack);
+ }
+ }
+ }
+
+ // Add an edge to the start of the function.
+ // We'll prune it out later, but it helps make diagnostics more uniform.
+ const StackFrameContext *CalleeLC = PDB.LC->getCurrentStackFrame();
+ const Decl *D = CalleeLC->getDecl();
+ addEdgeToPath(PD.getActivePath(), PrevLoc,
+ PathDiagnosticLocation::createBegin(D, SM),
+ CalleeLC);
+
+ return report->isValid();
+}
+
+static const Stmt *getLocStmt(PathDiagnosticLocation L) {
+ if (!L.isValid())
+ return nullptr;
+ return L.asStmt();
+}
+
+static const Stmt *getStmtParent(const Stmt *S, const ParentMap &PM) {
+ if (!S)
+ return nullptr;
+
+ while (true) {
+ S = PM.getParentIgnoreParens(S);
+
+ if (!S)
+ break;
+
+ if (isa<ExprWithCleanups>(S) ||
+ isa<CXXBindTemporaryExpr>(S) ||
+ isa<SubstNonTypeTemplateParmExpr>(S))
+ continue;
+
+ break;
+ }
+
+ return S;
+}
+
+static bool isConditionForTerminator(const Stmt *S, const Stmt *Cond) {
+ switch (S->getStmtClass()) {
+ case Stmt::BinaryOperatorClass: {
+ const BinaryOperator *BO = cast<BinaryOperator>(S);
+ if (!BO->isLogicalOp())
+ return false;
+ return BO->getLHS() == Cond || BO->getRHS() == Cond;
+ }
+ case Stmt::IfStmtClass:
+ return cast<IfStmt>(S)->getCond() == Cond;
+ case Stmt::ForStmtClass:
+ return cast<ForStmt>(S)->getCond() == Cond;
+ case Stmt::WhileStmtClass:
+ return cast<WhileStmt>(S)->getCond() == Cond;
+ case Stmt::DoStmtClass:
+ return cast<DoStmt>(S)->getCond() == Cond;
+ case Stmt::ChooseExprClass:
+ return cast<ChooseExpr>(S)->getCond() == Cond;
+ case Stmt::IndirectGotoStmtClass:
+ return cast<IndirectGotoStmt>(S)->getTarget() == Cond;
+ case Stmt::SwitchStmtClass:
+ return cast<SwitchStmt>(S)->getCond() == Cond;
+ case Stmt::BinaryConditionalOperatorClass:
+ return cast<BinaryConditionalOperator>(S)->getCond() == Cond;
+ case Stmt::ConditionalOperatorClass: {
+ const ConditionalOperator *CO = cast<ConditionalOperator>(S);
+ return CO->getCond() == Cond ||
+ CO->getLHS() == Cond ||
+ CO->getRHS() == Cond;
+ }
+ case Stmt::ObjCForCollectionStmtClass:
+ return cast<ObjCForCollectionStmt>(S)->getElement() == Cond;
+ case Stmt::CXXForRangeStmtClass: {
+ const CXXForRangeStmt *FRS = cast<CXXForRangeStmt>(S);
+ return FRS->getCond() == Cond || FRS->getRangeInit() == Cond;
+ }
+ default:
+ return false;
+ }
+}
+
+static bool isIncrementOrInitInForLoop(const Stmt *S, const Stmt *FL) {
+ if (const ForStmt *FS = dyn_cast<ForStmt>(FL))
+ return FS->getInc() == S || FS->getInit() == S;
+ if (const CXXForRangeStmt *FRS = dyn_cast<CXXForRangeStmt>(FL))
+ return FRS->getInc() == S || FRS->getRangeStmt() == S ||
+ FRS->getLoopVarStmt() || FRS->getRangeInit() == S;
+ return false;
+}
+
+typedef llvm::DenseSet<const PathDiagnosticCallPiece *>
+ OptimizedCallsSet;
+
+/// Adds synthetic edges from top-level statements to their subexpressions.
+///
+/// This avoids a "swoosh" effect, where an edge from a top-level statement A
+/// points to a sub-expression B.1 that's not at the start of B. In these cases,
+/// we'd like to see an edge from A to B, then another one from B to B.1.
+static void addContextEdges(PathPieces &pieces, SourceManager &SM,
+ const ParentMap &PM, const LocationContext *LCtx) {
+ PathPieces::iterator Prev = pieces.end();
+ for (PathPieces::iterator I = pieces.begin(), E = Prev; I != E;
+ Prev = I, ++I) {
+ PathDiagnosticControlFlowPiece *Piece =
+ dyn_cast<PathDiagnosticControlFlowPiece>(*I);
+
+ if (!Piece)
+ continue;
+
+ PathDiagnosticLocation SrcLoc = Piece->getStartLocation();
+ SmallVector<PathDiagnosticLocation, 4> SrcContexts;
+
+ PathDiagnosticLocation NextSrcContext = SrcLoc;
+ const Stmt *InnerStmt = nullptr;
+ while (NextSrcContext.isValid() && NextSrcContext.asStmt() != InnerStmt) {
+ SrcContexts.push_back(NextSrcContext);
+ InnerStmt = NextSrcContext.asStmt();
+ NextSrcContext = getEnclosingStmtLocation(InnerStmt, SM, PM, LCtx,
+ /*allowNested=*/true);
+ }
+
+ // Repeatedly split the edge as necessary.
+ // This is important for nested logical expressions (||, &&, ?:) where we
+ // want to show all the levels of context.
+ while (true) {
+ const Stmt *Dst = getLocStmt(Piece->getEndLocation());
+
+ // We are looking at an edge. Is the destination within a larger
+ // expression?
+ PathDiagnosticLocation DstContext =
+ getEnclosingStmtLocation(Dst, SM, PM, LCtx, /*allowNested=*/true);
+ if (!DstContext.isValid() || DstContext.asStmt() == Dst)
+ break;
+
+ // If the source is in the same context, we're already good.
+ if (std::find(SrcContexts.begin(), SrcContexts.end(), DstContext) !=
+ SrcContexts.end())
+ break;
+
+ // Update the subexpression node to point to the context edge.
+ Piece->setStartLocation(DstContext);
+
+ // Try to extend the previous edge if it's at the same level as the source
+ // context.
+ if (Prev != E) {
+ PathDiagnosticControlFlowPiece *PrevPiece =
+ dyn_cast<PathDiagnosticControlFlowPiece>(*Prev);
+
+ if (PrevPiece) {
+ if (const Stmt *PrevSrc = getLocStmt(PrevPiece->getStartLocation())) {
+ const Stmt *PrevSrcParent = getStmtParent(PrevSrc, PM);
+ if (PrevSrcParent == getStmtParent(getLocStmt(DstContext), PM)) {
+ PrevPiece->setEndLocation(DstContext);
+ break;
+ }
+ }
+ }
+ }
+
+ // Otherwise, split the current edge into a context edge and a
+ // subexpression edge. Note that the context statement may itself have
+ // context.
+ Piece = new PathDiagnosticControlFlowPiece(SrcLoc, DstContext);
+ I = pieces.insert(I, Piece);
+ }
+ }
+}
+
+/// \brief Move edges from a branch condition to a branch target
+/// when the condition is simple.
+///
+/// This restructures some of the work of addContextEdges. That function
+/// creates edges this may destroy, but they work together to create a more
+/// aesthetically set of edges around branches. After the call to
+/// addContextEdges, we may have (1) an edge to the branch, (2) an edge from
+/// the branch to the branch condition, and (3) an edge from the branch
+/// condition to the branch target. We keep (1), but may wish to remove (2)
+/// and move the source of (3) to the branch if the branch condition is simple.
+///
+static void simplifySimpleBranches(PathPieces &pieces) {
+ for (PathPieces::iterator I = pieces.begin(), E = pieces.end(); I != E; ++I) {
+
+ PathDiagnosticControlFlowPiece *PieceI =
+ dyn_cast<PathDiagnosticControlFlowPiece>(*I);
+
+ if (!PieceI)
+ continue;
+
+ const Stmt *s1Start = getLocStmt(PieceI->getStartLocation());
+ const Stmt *s1End = getLocStmt(PieceI->getEndLocation());
+
+ if (!s1Start || !s1End)
+ continue;
+
+ PathPieces::iterator NextI = I; ++NextI;
+ if (NextI == E)
+ break;
+
+ PathDiagnosticControlFlowPiece *PieceNextI = nullptr;
+
+ while (true) {
+ if (NextI == E)
+ break;
+
+ PathDiagnosticEventPiece *EV = dyn_cast<PathDiagnosticEventPiece>(*NextI);
+ if (EV) {
+ StringRef S = EV->getString();
+ if (S == StrEnteringLoop || S == StrLoopBodyZero ||
+ S == StrLoopCollectionEmpty || S == StrLoopRangeEmpty) {
+ ++NextI;
+ continue;
+ }
+ break;
+ }
+
+ PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(*NextI);
+ break;
+ }
+
+ if (!PieceNextI)
+ continue;
+
+ const Stmt *s2Start = getLocStmt(PieceNextI->getStartLocation());
+ const Stmt *s2End = getLocStmt(PieceNextI->getEndLocation());
+
+ if (!s2Start || !s2End || s1End != s2Start)
+ continue;
+
+ // We only perform this transformation for specific branch kinds.
+ // We don't want to do this for do..while, for example.
+ if (!(isa<ForStmt>(s1Start) || isa<WhileStmt>(s1Start) ||
+ isa<IfStmt>(s1Start) || isa<ObjCForCollectionStmt>(s1Start) ||
+ isa<CXXForRangeStmt>(s1Start)))
+ continue;
+
+ // Is s1End the branch condition?
+ if (!isConditionForTerminator(s1Start, s1End))
+ continue;
+
+ // Perform the hoisting by eliminating (2) and changing the start
+ // location of (3).
+ PieceNextI->setStartLocation(PieceI->getStartLocation());
+ I = pieces.erase(I);
+ }
+}
+
+/// Returns the number of bytes in the given (character-based) SourceRange.
+///
+/// If the locations in the range are not on the same line, returns None.
+///
+/// Note that this does not do a precise user-visible character or column count.
+static Optional<size_t> getLengthOnSingleLine(SourceManager &SM,
+ SourceRange Range) {
+ SourceRange ExpansionRange(SM.getExpansionLoc(Range.getBegin()),
+ SM.getExpansionRange(Range.getEnd()).second);
+
+ FileID FID = SM.getFileID(ExpansionRange.getBegin());
+ if (FID != SM.getFileID(ExpansionRange.getEnd()))
+ return None;
+
+ bool Invalid;
+ const llvm::MemoryBuffer *Buffer = SM.getBuffer(FID, &Invalid);
+ if (Invalid)
+ return None;
+
+ unsigned BeginOffset = SM.getFileOffset(ExpansionRange.getBegin());
+ unsigned EndOffset = SM.getFileOffset(ExpansionRange.getEnd());
+ StringRef Snippet = Buffer->getBuffer().slice(BeginOffset, EndOffset);
+
+ // We're searching the raw bytes of the buffer here, which might include
+ // escaped newlines and such. That's okay; we're trying to decide whether the
+ // SourceRange is covering a large or small amount of space in the user's
+ // editor.
+ if (Snippet.find_first_of("\r\n") != StringRef::npos)
+ return None;
+
+ // This isn't Unicode-aware, but it doesn't need to be.
+ return Snippet.size();
+}
+
+/// \sa getLengthOnSingleLine(SourceManager, SourceRange)
+static Optional<size_t> getLengthOnSingleLine(SourceManager &SM,
+ const Stmt *S) {
+ return getLengthOnSingleLine(SM, S->getSourceRange());
+}
+
+/// Eliminate two-edge cycles created by addContextEdges().
+///
+/// Once all the context edges are in place, there are plenty of cases where
+/// there's a single edge from a top-level statement to a subexpression,
+/// followed by a single path note, and then a reverse edge to get back out to
+/// the top level. If the statement is simple enough, the subexpression edges
+/// just add noise and make it harder to understand what's going on.
+///
+/// This function only removes edges in pairs, because removing only one edge
+/// might leave other edges dangling.
+///
+/// This will not remove edges in more complicated situations:
+/// - if there is more than one "hop" leading to or from a subexpression.
+/// - if there is an inlined call between the edges instead of a single event.
+/// - if the whole statement is large enough that having subexpression arrows
+/// might be helpful.
+static void removeContextCycles(PathPieces &Path, SourceManager &SM,
+ ParentMap &PM) {
+ for (PathPieces::iterator I = Path.begin(), E = Path.end(); I != E; ) {
+ // Pattern match the current piece and its successor.
+ PathDiagnosticControlFlowPiece *PieceI =
+ dyn_cast<PathDiagnosticControlFlowPiece>(*I);
+
+ if (!PieceI) {
+ ++I;
+ continue;
+ }
+
+ const Stmt *s1Start = getLocStmt(PieceI->getStartLocation());
+ const Stmt *s1End = getLocStmt(PieceI->getEndLocation());
+
+ PathPieces::iterator NextI = I; ++NextI;
+ if (NextI == E)
+ break;
+
+ PathDiagnosticControlFlowPiece *PieceNextI =
+ dyn_cast<PathDiagnosticControlFlowPiece>(*NextI);
+
+ if (!PieceNextI) {
+ if (isa<PathDiagnosticEventPiece>(*NextI)) {
+ ++NextI;
+ if (NextI == E)
+ break;
+ PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(*NextI);
+ }
+
+ if (!PieceNextI) {
+ ++I;
+ continue;
+ }
+ }
+
+ const Stmt *s2Start = getLocStmt(PieceNextI->getStartLocation());
+ const Stmt *s2End = getLocStmt(PieceNextI->getEndLocation());
+
+ if (s1Start && s2Start && s1Start == s2End && s2Start == s1End) {
+ const size_t MAX_SHORT_LINE_LENGTH = 80;
+ Optional<size_t> s1Length = getLengthOnSingleLine(SM, s1Start);
+ if (s1Length && *s1Length <= MAX_SHORT_LINE_LENGTH) {
+ Optional<size_t> s2Length = getLengthOnSingleLine(SM, s2Start);
+ if (s2Length && *s2Length <= MAX_SHORT_LINE_LENGTH) {
+ Path.erase(I);
+ I = Path.erase(NextI);
+ continue;
+ }
+ }
+ }
+
+ ++I;
+ }
+}
+
+/// \brief Return true if X is contained by Y.
+static bool lexicalContains(ParentMap &PM,
+ const Stmt *X,
+ const Stmt *Y) {
+ while (X) {
+ if (X == Y)
+ return true;
+ X = PM.getParent(X);
+ }
+ return false;
+}
+
+// Remove short edges on the same line less than 3 columns in difference.
+static void removePunyEdges(PathPieces &path,
+ SourceManager &SM,
+ ParentMap &PM) {
+
+ bool erased = false;
+
+ for (PathPieces::iterator I = path.begin(), E = path.end(); I != E;
+ erased ? I : ++I) {
+
+ erased = false;
+
+ PathDiagnosticControlFlowPiece *PieceI =
+ dyn_cast<PathDiagnosticControlFlowPiece>(*I);
+
+ if (!PieceI)
+ continue;
+
+ const Stmt *start = getLocStmt(PieceI->getStartLocation());
+ const Stmt *end = getLocStmt(PieceI->getEndLocation());
+
+ if (!start || !end)
+ continue;
+
+ const Stmt *endParent = PM.getParent(end);
+ if (!endParent)
+ continue;
+
+ if (isConditionForTerminator(end, endParent))
+ continue;
+
+ SourceLocation FirstLoc = start->getLocStart();
+ SourceLocation SecondLoc = end->getLocStart();
+
+ if (!SM.isWrittenInSameFile(FirstLoc, SecondLoc))
+ continue;
+ if (SM.isBeforeInTranslationUnit(SecondLoc, FirstLoc))
+ std::swap(SecondLoc, FirstLoc);
+
+ SourceRange EdgeRange(FirstLoc, SecondLoc);
+ Optional<size_t> ByteWidth = getLengthOnSingleLine(SM, EdgeRange);
+
+ // If the statements are on different lines, continue.
+ if (!ByteWidth)
+ continue;
+
+ const size_t MAX_PUNY_EDGE_LENGTH = 2;
+ if (*ByteWidth <= MAX_PUNY_EDGE_LENGTH) {
+ // FIXME: There are enough /bytes/ between the endpoints of the edge, but
+ // there might not be enough /columns/. A proper user-visible column count
+ // is probably too expensive, though.
+ I = path.erase(I);
+ erased = true;
+ continue;
+ }
+ }
+}
+
+static void removeIdenticalEvents(PathPieces &path) {
+ for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ++I) {
+ PathDiagnosticEventPiece *PieceI =
+ dyn_cast<PathDiagnosticEventPiece>(*I);
+
+ if (!PieceI)
+ continue;
+
+ PathPieces::iterator NextI = I; ++NextI;
+ if (NextI == E)
+ return;
+
+ PathDiagnosticEventPiece *PieceNextI =
+ dyn_cast<PathDiagnosticEventPiece>(*NextI);
+
+ if (!PieceNextI)
+ continue;
+
+ // Erase the second piece if it has the same exact message text.
+ if (PieceI->getString() == PieceNextI->getString()) {
+ path.erase(NextI);
+ }
+ }
+}
+
+static bool optimizeEdges(PathPieces &path, SourceManager &SM,
+ OptimizedCallsSet &OCS,
+ LocationContextMap &LCM) {
+ bool hasChanges = false;
+ const LocationContext *LC = LCM[&path];
+ assert(LC);
+ ParentMap &PM = LC->getParentMap();
+
+ for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ) {
+ // Optimize subpaths.
+ if (PathDiagnosticCallPiece *CallI = dyn_cast<PathDiagnosticCallPiece>(*I)){
+ // Record the fact that a call has been optimized so we only do the
+ // effort once.
+ if (!OCS.count(CallI)) {
+ while (optimizeEdges(CallI->path, SM, OCS, LCM)) {}
+ OCS.insert(CallI);
+ }
+ ++I;
+ continue;
+ }
+
+ // Pattern match the current piece and its successor.
+ PathDiagnosticControlFlowPiece *PieceI =
+ dyn_cast<PathDiagnosticControlFlowPiece>(*I);
+
+ if (!PieceI) {
+ ++I;
+ continue;
+ }
+
+ const Stmt *s1Start = getLocStmt(PieceI->getStartLocation());
+ const Stmt *s1End = getLocStmt(PieceI->getEndLocation());
+ const Stmt *level1 = getStmtParent(s1Start, PM);
+ const Stmt *level2 = getStmtParent(s1End, PM);
+
+ PathPieces::iterator NextI = I; ++NextI;
+ if (NextI == E)
+ break;
+
+ PathDiagnosticControlFlowPiece *PieceNextI =
+ dyn_cast<PathDiagnosticControlFlowPiece>(*NextI);
+
+ if (!PieceNextI) {
+ ++I;
+ continue;
+ }
+
+ const Stmt *s2Start = getLocStmt(PieceNextI->getStartLocation());
+ const Stmt *s2End = getLocStmt(PieceNextI->getEndLocation());
+ const Stmt *level3 = getStmtParent(s2Start, PM);
+ const Stmt *level4 = getStmtParent(s2End, PM);
+
+ // Rule I.
+ //
+ // If we have two consecutive control edges whose end/begin locations
+ // are at the same level (e.g. statements or top-level expressions within
+ // a compound statement, or siblings share a single ancestor expression),
+ // then merge them if they have no interesting intermediate event.
+ //
+ // For example:
+ //
+ // (1.1 -> 1.2) -> (1.2 -> 1.3) becomes (1.1 -> 1.3) because the common
+ // parent is '1'. Here 'x.y.z' represents the hierarchy of statements.
+ //
+ // NOTE: this will be limited later in cases where we add barriers
+ // to prevent this optimization.
+ //
+ if (level1 && level1 == level2 && level1 == level3 && level1 == level4) {
+ PieceI->setEndLocation(PieceNextI->getEndLocation());
+ path.erase(NextI);
+ hasChanges = true;
+ continue;
+ }
+
+ // Rule II.
+ //
+ // Eliminate edges between subexpressions and parent expressions
+ // when the subexpression is consumed.
+ //
+ // NOTE: this will be limited later in cases where we add barriers
+ // to prevent this optimization.
+ //
+ if (s1End && s1End == s2Start && level2) {
+ bool removeEdge = false;
+ // Remove edges into the increment or initialization of a
+ // loop that have no interleaving event. This means that
+ // they aren't interesting.
+ if (isIncrementOrInitInForLoop(s1End, level2))
+ removeEdge = true;
+ // Next only consider edges that are not anchored on
+ // the condition of a terminator. This are intermediate edges
+ // that we might want to trim.
+ else if (!isConditionForTerminator(level2, s1End)) {
+ // Trim edges on expressions that are consumed by
+ // the parent expression.
+ if (isa<Expr>(s1End) && PM.isConsumedExpr(cast<Expr>(s1End))) {
+ removeEdge = true;
+ }
+ // Trim edges where a lexical containment doesn't exist.
+ // For example:
+ //
+ // X -> Y -> Z
+ //
+ // If 'Z' lexically contains Y (it is an ancestor) and
+ // 'X' does not lexically contain Y (it is a descendant OR
+ // it has no lexical relationship at all) then trim.
+ //
+ // This can eliminate edges where we dive into a subexpression
+ // and then pop back out, etc.
+ else if (s1Start && s2End &&
+ lexicalContains(PM, s2Start, s2End) &&
+ !lexicalContains(PM, s1End, s1Start)) {
+ removeEdge = true;
+ }
+ // Trim edges from a subexpression back to the top level if the
+ // subexpression is on a different line.
+ //
+ // A.1 -> A -> B
+ // becomes
+ // A.1 -> B
+ //
+ // These edges just look ugly and don't usually add anything.
+ else if (s1Start && s2End &&
+ lexicalContains(PM, s1Start, s1End)) {
+ SourceRange EdgeRange(PieceI->getEndLocation().asLocation(),
+ PieceI->getStartLocation().asLocation());
+ if (!getLengthOnSingleLine(SM, EdgeRange).hasValue())
+ removeEdge = true;
+ }
+ }
+
+ if (removeEdge) {
+ PieceI->setEndLocation(PieceNextI->getEndLocation());
+ path.erase(NextI);
+ hasChanges = true;
+ continue;
+ }
+ }
+
+ // Optimize edges for ObjC fast-enumeration loops.
+ //
+ // (X -> collection) -> (collection -> element)
+ //
+ // becomes:
+ //
+ // (X -> element)
+ if (s1End == s2Start) {
+ const ObjCForCollectionStmt *FS =
+ dyn_cast_or_null<ObjCForCollectionStmt>(level3);
+ if (FS && FS->getCollection()->IgnoreParens() == s2Start &&
+ s2End == FS->getElement()) {
+ PieceI->setEndLocation(PieceNextI->getEndLocation());
+ path.erase(NextI);
+ hasChanges = true;
+ continue;
+ }
+ }
+
+ // No changes at this index? Move to the next one.
+ ++I;
+ }
+
+ if (!hasChanges) {
+ // Adjust edges into subexpressions to make them more uniform
+ // and aesthetically pleasing.
+ addContextEdges(path, SM, PM, LC);
+ // Remove "cyclical" edges that include one or more context edges.
+ removeContextCycles(path, SM, PM);
+ // Hoist edges originating from branch conditions to branches
+ // for simple branches.
+ simplifySimpleBranches(path);
+ // Remove any puny edges left over after primary optimization pass.
+ removePunyEdges(path, SM, PM);
+ // Remove identical events.
+ removeIdenticalEvents(path);
+ }
+
+ return hasChanges;
+}
+
+/// Drop the very first edge in a path, which should be a function entry edge.
+///
+/// If the first edge is not a function entry edge (say, because the first
+/// statement had an invalid source location), this function does nothing.
+// FIXME: We should just generate invalid edges anyway and have the optimizer
+// deal with them.
+static void dropFunctionEntryEdge(PathPieces &Path,
+ LocationContextMap &LCM,
+ SourceManager &SM) {
+ const PathDiagnosticControlFlowPiece *FirstEdge =
+ dyn_cast<PathDiagnosticControlFlowPiece>(Path.front());
+ if (!FirstEdge)
+ return;
+
+ const Decl *D = LCM[&Path]->getDecl();
+ PathDiagnosticLocation EntryLoc = PathDiagnosticLocation::createBegin(D, SM);
+ if (FirstEdge->getStartLocation() != EntryLoc)
+ return;
+
+ Path.pop_front();
+}
+
+
+//===----------------------------------------------------------------------===//
+// Methods for BugType and subclasses.
+//===----------------------------------------------------------------------===//
+void BugType::anchor() { }
+
+void BugType::FlushReports(BugReporter &BR) {}
+
+void BuiltinBug::anchor() {}
+
+//===----------------------------------------------------------------------===//
+// Methods for BugReport and subclasses.
+//===----------------------------------------------------------------------===//
+
+void BugReport::NodeResolver::anchor() {}
+
+void BugReport::addVisitor(std::unique_ptr<BugReporterVisitor> visitor) {
+ if (!visitor)
+ return;
+
+ llvm::FoldingSetNodeID ID;
+ visitor->Profile(ID);
+ void *InsertPos;
+
+ if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos))
+ return;
+
+ CallbacksSet.InsertNode(visitor.get(), InsertPos);
+ Callbacks.push_back(std::move(visitor));
+ ++ConfigurationChangeToken;
+}
+
+BugReport::~BugReport() {
+ while (!interestingSymbols.empty()) {
+ popInterestingSymbolsAndRegions();
+ }
+}
+
+const Decl *BugReport::getDeclWithIssue() const {
+ if (DeclWithIssue)
+ return DeclWithIssue;
+
+ const ExplodedNode *N = getErrorNode();
+ if (!N)
+ return nullptr;
+
+ const LocationContext *LC = N->getLocationContext();
+ return LC->getCurrentStackFrame()->getDecl();
+}
+
+void BugReport::Profile(llvm::FoldingSetNodeID& hash) const {
+ hash.AddPointer(&BT);
+ hash.AddString(Description);
+ PathDiagnosticLocation UL = getUniqueingLocation();
+ if (UL.isValid()) {
+ UL.Profile(hash);
+ } else if (Location.isValid()) {
+ Location.Profile(hash);
+ } else {
+ assert(ErrorNode);
+ hash.AddPointer(GetCurrentOrPreviousStmt(ErrorNode));
+ }
+
+ for (SmallVectorImpl<SourceRange>::const_iterator I =
+ Ranges.begin(), E = Ranges.end(); I != E; ++I) {
+ const SourceRange range = *I;
+ if (!range.isValid())
+ continue;
+ hash.AddInteger(range.getBegin().getRawEncoding());
+ hash.AddInteger(range.getEnd().getRawEncoding());
+ }
+}
+
+void BugReport::markInteresting(SymbolRef sym) {
+ if (!sym)
+ return;
+
+ // If the symbol wasn't already in our set, note a configuration change.
+ if (getInterestingSymbols().insert(sym).second)
+ ++ConfigurationChangeToken;
+
+ if (const SymbolMetadata *meta = dyn_cast<SymbolMetadata>(sym))
+ getInterestingRegions().insert(meta->getRegion());
+}
+
+void BugReport::markInteresting(const MemRegion *R) {
+ if (!R)
+ return;
+
+ // If the base region wasn't already in our set, note a configuration change.
+ R = R->getBaseRegion();
+ if (getInterestingRegions().insert(R).second)
+ ++ConfigurationChangeToken;
+
+ if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
+ getInterestingSymbols().insert(SR->getSymbol());
+}
+
+void BugReport::markInteresting(SVal V) {
+ markInteresting(V.getAsRegion());
+ markInteresting(V.getAsSymbol());
+}
+
+void BugReport::markInteresting(const LocationContext *LC) {
+ if (!LC)
+ return;
+ InterestingLocationContexts.insert(LC);
+}
+
+bool BugReport::isInteresting(SVal V) {
+ return isInteresting(V.getAsRegion()) || isInteresting(V.getAsSymbol());
+}
+
+bool BugReport::isInteresting(SymbolRef sym) {
+ if (!sym)
+ return false;
+ // We don't currently consider metadata symbols to be interesting
+ // even if we know their region is interesting. Is that correct behavior?
+ return getInterestingSymbols().count(sym);
+}
+
+bool BugReport::isInteresting(const MemRegion *R) {
+ if (!R)
+ return false;
+ R = R->getBaseRegion();
+ bool b = getInterestingRegions().count(R);
+ if (b)
+ return true;
+ if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
+ return getInterestingSymbols().count(SR->getSymbol());
+ return false;
+}
+
+bool BugReport::isInteresting(const LocationContext *LC) {
+ if (!LC)
+ return false;
+ return InterestingLocationContexts.count(LC);
+}
+
+void BugReport::lazyInitializeInterestingSets() {
+ if (interestingSymbols.empty()) {
+ interestingSymbols.push_back(new Symbols());
+ interestingRegions.push_back(new Regions());
+ }
+}
+
+BugReport::Symbols &BugReport::getInterestingSymbols() {
+ lazyInitializeInterestingSets();
+ return *interestingSymbols.back();
+}
+
+BugReport::Regions &BugReport::getInterestingRegions() {
+ lazyInitializeInterestingSets();
+ return *interestingRegions.back();
+}
+
+void BugReport::pushInterestingSymbolsAndRegions() {
+ interestingSymbols.push_back(new Symbols(getInterestingSymbols()));
+ interestingRegions.push_back(new Regions(getInterestingRegions()));
+}
+
+void BugReport::popInterestingSymbolsAndRegions() {
+ delete interestingSymbols.pop_back_val();
+ delete interestingRegions.pop_back_val();
+}
+
+const Stmt *BugReport::getStmt() const {
+ if (!ErrorNode)
+ return nullptr;
+
+ ProgramPoint ProgP = ErrorNode->getLocation();
+ const Stmt *S = nullptr;
+
+ if (Optional<BlockEntrance> BE = ProgP.getAs<BlockEntrance>()) {
+ CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit();
+ if (BE->getBlock() == &Exit)
+ S = GetPreviousStmt(ErrorNode);
+ }
+ if (!S)
+ S = PathDiagnosticLocation::getStmt(ErrorNode);
+
+ return S;
+}
+
+llvm::iterator_range<BugReport::ranges_iterator> BugReport::getRanges() {
+ // If no custom ranges, add the range of the statement corresponding to
+ // the error node.
+ if (Ranges.empty()) {
+ if (const Expr *E = dyn_cast_or_null<Expr>(getStmt()))
+ addRange(E->getSourceRange());
+ else
+ return llvm::make_range(ranges_iterator(), ranges_iterator());
+ }
+
+ // User-specified absence of range info.
+ if (Ranges.size() == 1 && !Ranges.begin()->isValid())
+ return llvm::make_range(ranges_iterator(), ranges_iterator());
+
+ return llvm::iterator_range<BugReport::ranges_iterator>(Ranges.begin(),
+ Ranges.end());
+}
+
+PathDiagnosticLocation BugReport::getLocation(const SourceManager &SM) const {
+ if (ErrorNode) {
+ assert(!Location.isValid() &&
+ "Either Location or ErrorNode should be specified but not both.");
+ return PathDiagnosticLocation::createEndOfPath(ErrorNode, SM);
+ }
+
+ assert(Location.isValid());
+ return Location;
+}
+
+//===----------------------------------------------------------------------===//
+// Methods for BugReporter and subclasses.
+//===----------------------------------------------------------------------===//
+
+BugReportEquivClass::~BugReportEquivClass() { }
+GRBugReporter::~GRBugReporter() { }
+BugReporterData::~BugReporterData() {}
+
+ExplodedGraph &GRBugReporter::getGraph() { return Eng.getGraph(); }
+
+ProgramStateManager&
+GRBugReporter::getStateManager() { return Eng.getStateManager(); }
+
+BugReporter::~BugReporter() {
+ FlushReports();
+
+ // Free the bug reports we are tracking.
+ typedef std::vector<BugReportEquivClass *> ContTy;
+ for (ContTy::iterator I = EQClassesVector.begin(), E = EQClassesVector.end();
+ I != E; ++I) {
+ delete *I;
+ }
+}
+
+void BugReporter::FlushReports() {
+ if (BugTypes.isEmpty())
+ return;
+
+ // First flush the warnings for each BugType. This may end up creating new
+ // warnings and new BugTypes.
+ // FIXME: Only NSErrorChecker needs BugType's FlushReports.
+ // Turn NSErrorChecker into a proper checker and remove this.
+ SmallVector<const BugType *, 16> bugTypes(BugTypes.begin(), BugTypes.end());
+ for (SmallVectorImpl<const BugType *>::iterator
+ I = bugTypes.begin(), E = bugTypes.end(); I != E; ++I)
+ const_cast<BugType*>(*I)->FlushReports(*this);
+
+ // We need to flush reports in deterministic order to ensure the order
+ // of the reports is consistent between runs.
+ typedef std::vector<BugReportEquivClass *> ContVecTy;
+ for (ContVecTy::iterator EI=EQClassesVector.begin(), EE=EQClassesVector.end();
+ EI != EE; ++EI){
+ BugReportEquivClass& EQ = **EI;
+ FlushReport(EQ);
+ }
+
+ // BugReporter owns and deletes only BugTypes created implicitly through
+ // EmitBasicReport.
+ // FIXME: There are leaks from checkers that assume that the BugTypes they
+ // create will be destroyed by the BugReporter.
+ llvm::DeleteContainerSeconds(StrBugTypes);
+
+ // Remove all references to the BugType objects.
+ BugTypes = F.getEmptySet();
+}
+
+//===----------------------------------------------------------------------===//
+// PathDiagnostics generation.
+//===----------------------------------------------------------------------===//
+
+namespace {
+/// A wrapper around a report graph, which contains only a single path, and its
+/// node maps.
+class ReportGraph {
+public:
+ InterExplodedGraphMap BackMap;
+ std::unique_ptr<ExplodedGraph> Graph;
+ const ExplodedNode *ErrorNode;
+ size_t Index;
+};
+
+/// A wrapper around a trimmed graph and its node maps.
+class TrimmedGraph {
+ InterExplodedGraphMap InverseMap;
+
+ typedef llvm::DenseMap<const ExplodedNode *, unsigned> PriorityMapTy;
+ PriorityMapTy PriorityMap;
+
+ typedef std::pair<const ExplodedNode *, size_t> NodeIndexPair;
+ SmallVector<NodeIndexPair, 32> ReportNodes;
+
+ std::unique_ptr<ExplodedGraph> G;
+
+ /// A helper class for sorting ExplodedNodes by priority.
+ template <bool Descending>
+ class PriorityCompare {
+ const PriorityMapTy &PriorityMap;
+
+ public:
+ PriorityCompare(const PriorityMapTy &M) : PriorityMap(M) {}
+
+ bool operator()(const ExplodedNode *LHS, const ExplodedNode *RHS) const {
+ PriorityMapTy::const_iterator LI = PriorityMap.find(LHS);
+ PriorityMapTy::const_iterator RI = PriorityMap.find(RHS);
+ PriorityMapTy::const_iterator E = PriorityMap.end();
+
+ if (LI == E)
+ return Descending;
+ if (RI == E)
+ return !Descending;
+
+ return Descending ? LI->second > RI->second
+ : LI->second < RI->second;
+ }
+
+ bool operator()(const NodeIndexPair &LHS, const NodeIndexPair &RHS) const {
+ return (*this)(LHS.first, RHS.first);
+ }
+ };
+
+public:
+ TrimmedGraph(const ExplodedGraph *OriginalGraph,
+ ArrayRef<const ExplodedNode *> Nodes);
+
+ bool popNextReportGraph(ReportGraph &GraphWrapper);
+};
+}
+
+TrimmedGraph::TrimmedGraph(const ExplodedGraph *OriginalGraph,
+ ArrayRef<const ExplodedNode *> Nodes) {
+ // The trimmed graph is created in the body of the constructor to ensure
+ // that the DenseMaps have been initialized already.
+ InterExplodedGraphMap ForwardMap;
+ G = OriginalGraph->trim(Nodes, &ForwardMap, &InverseMap);
+
+ // Find the (first) error node in the trimmed graph. We just need to consult
+ // the node map which maps from nodes in the original graph to nodes
+ // in the new graph.
+ llvm::SmallPtrSet<const ExplodedNode *, 32> RemainingNodes;
+
+ for (unsigned i = 0, count = Nodes.size(); i < count; ++i) {
+ if (const ExplodedNode *NewNode = ForwardMap.lookup(Nodes[i])) {
+ ReportNodes.push_back(std::make_pair(NewNode, i));
+ RemainingNodes.insert(NewNode);
+ }
+ }
+
+ assert(!RemainingNodes.empty() && "No error node found in the trimmed graph");
+
+ // Perform a forward BFS to find all the shortest paths.
+ std::queue<const ExplodedNode *> WS;
+
+ assert(G->num_roots() == 1);
+ WS.push(*G->roots_begin());
+ unsigned Priority = 0;
+
+ while (!WS.empty()) {
+ const ExplodedNode *Node = WS.front();
+ WS.pop();
+
+ PriorityMapTy::iterator PriorityEntry;
+ bool IsNew;
+ std::tie(PriorityEntry, IsNew) =
+ PriorityMap.insert(std::make_pair(Node, Priority));
+ ++Priority;
+
+ if (!IsNew) {
+ assert(PriorityEntry->second <= Priority);
+ continue;
+ }
+
+ if (RemainingNodes.erase(Node))
+ if (RemainingNodes.empty())
+ break;
+
+ for (ExplodedNode::const_pred_iterator I = Node->succ_begin(),
+ E = Node->succ_end();
+ I != E; ++I)
+ WS.push(*I);
+ }
+
+ // Sort the error paths from longest to shortest.
+ std::sort(ReportNodes.begin(), ReportNodes.end(),
+ PriorityCompare<true>(PriorityMap));
+}
+
+bool TrimmedGraph::popNextReportGraph(ReportGraph &GraphWrapper) {
+ if (ReportNodes.empty())
+ return false;
+
+ const ExplodedNode *OrigN;
+ std::tie(OrigN, GraphWrapper.Index) = ReportNodes.pop_back_val();
+ assert(PriorityMap.find(OrigN) != PriorityMap.end() &&
+ "error node not accessible from root");
+
+ // Create a new graph with a single path. This is the graph
+ // that will be returned to the caller.
+ auto GNew = llvm::make_unique<ExplodedGraph>();
+ GraphWrapper.BackMap.clear();
+
+ // Now walk from the error node up the BFS path, always taking the
+ // predeccessor with the lowest number.
+ ExplodedNode *Succ = nullptr;
+ while (true) {
+ // Create the equivalent node in the new graph with the same state
+ // and location.
+ ExplodedNode *NewN = GNew->getNode(OrigN->getLocation(), OrigN->getState(),
+ OrigN->isSink());
+
+ // Store the mapping to the original node.
+ InterExplodedGraphMap::const_iterator IMitr = InverseMap.find(OrigN);
+ assert(IMitr != InverseMap.end() && "No mapping to original node.");
+ GraphWrapper.BackMap[NewN] = IMitr->second;
+
+ // Link up the new node with the previous node.
+ if (Succ)
+ Succ->addPredecessor(NewN, *GNew);
+ else
+ GraphWrapper.ErrorNode = NewN;
+
+ Succ = NewN;
+
+ // Are we at the final node?
+ if (OrigN->pred_empty()) {
+ GNew->addRoot(NewN);
+ break;
+ }
+
+ // Find the next predeccessor node. We choose the node that is marked
+ // with the lowest BFS number.
+ OrigN = *std::min_element(OrigN->pred_begin(), OrigN->pred_end(),
+ PriorityCompare<false>(PriorityMap));
+ }
+
+ GraphWrapper.Graph = std::move(GNew);
+
+ return true;
+}
+
+
+/// CompactPathDiagnostic - This function postprocesses a PathDiagnostic object
+/// and collapses PathDiagosticPieces that are expanded by macros.
+static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM) {
+ typedef std::vector<std::pair<IntrusiveRefCntPtr<PathDiagnosticMacroPiece>,
+ SourceLocation> > MacroStackTy;
+
+ typedef std::vector<IntrusiveRefCntPtr<PathDiagnosticPiece> >
+ PiecesTy;
+
+ MacroStackTy MacroStack;
+ PiecesTy Pieces;
+
+ for (PathPieces::const_iterator I = path.begin(), E = path.end();
+ I!=E; ++I) {
+
+ PathDiagnosticPiece *piece = I->get();
+
+ // Recursively compact calls.
+ if (PathDiagnosticCallPiece *call=dyn_cast<PathDiagnosticCallPiece>(piece)){
+ CompactPathDiagnostic(call->path, SM);
+ }
+
+ // Get the location of the PathDiagnosticPiece.
+ const FullSourceLoc Loc = piece->getLocation().asLocation();
+
+ // Determine the instantiation location, which is the location we group
+ // related PathDiagnosticPieces.
+ SourceLocation InstantiationLoc = Loc.isMacroID() ?
+ SM.getExpansionLoc(Loc) :
+ SourceLocation();
+
+ if (Loc.isFileID()) {
+ MacroStack.clear();
+ Pieces.push_back(piece);
+ continue;
+ }
+
+ assert(Loc.isMacroID());
+
+ // Is the PathDiagnosticPiece within the same macro group?
+ if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
+ MacroStack.back().first->subPieces.push_back(piece);
+ continue;
+ }
+
+ // We aren't in the same group. Are we descending into a new macro
+ // or are part of an old one?
+ IntrusiveRefCntPtr<PathDiagnosticMacroPiece> MacroGroup;
+
+ SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
+ SM.getExpansionLoc(Loc) :
+ SourceLocation();
+
+ // Walk the entire macro stack.
+ while (!MacroStack.empty()) {
+ if (InstantiationLoc == MacroStack.back().second) {
+ MacroGroup = MacroStack.back().first;
+ break;
+ }
+
+ if (ParentInstantiationLoc == MacroStack.back().second) {
+ MacroGroup = MacroStack.back().first;
+ break;
+ }
+
+ MacroStack.pop_back();
+ }
+
+ if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
+ // Create a new macro group and add it to the stack.
+ PathDiagnosticMacroPiece *NewGroup =
+ new PathDiagnosticMacroPiece(
+ PathDiagnosticLocation::createSingleLocation(piece->getLocation()));
+
+ if (MacroGroup)
+ MacroGroup->subPieces.push_back(NewGroup);
+ else {
+ assert(InstantiationLoc.isFileID());
+ Pieces.push_back(NewGroup);
+ }
+
+ MacroGroup = NewGroup;
+ MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
+ }
+
+ // Finally, add the PathDiagnosticPiece to the group.
+ MacroGroup->subPieces.push_back(piece);
+ }
+
+ // Now take the pieces and construct a new PathDiagnostic.
+ path.clear();
+
+ path.insert(path.end(), Pieces.begin(), Pieces.end());
+}
+
+bool GRBugReporter::generatePathDiagnostic(PathDiagnostic& PD,
+ PathDiagnosticConsumer &PC,
+ ArrayRef<BugReport *> &bugReports) {
+ assert(!bugReports.empty());
+
+ bool HasValid = false;
+ bool HasInvalid = false;
+ SmallVector<const ExplodedNode *, 32> errorNodes;
+ for (ArrayRef<BugReport*>::iterator I = bugReports.begin(),
+ E = bugReports.end(); I != E; ++I) {
+ if ((*I)->isValid()) {
+ HasValid = true;
+ errorNodes.push_back((*I)->getErrorNode());
+ } else {
+ // Keep the errorNodes list in sync with the bugReports list.
+ HasInvalid = true;
+ errorNodes.push_back(nullptr);
+ }
+ }
+
+ // If all the reports have been marked invalid by a previous path generation,
+ // we're done.
+ if (!HasValid)
+ return false;
+
+ typedef PathDiagnosticConsumer::PathGenerationScheme PathGenerationScheme;
+ PathGenerationScheme ActiveScheme = PC.getGenerationScheme();
+
+ if (ActiveScheme == PathDiagnosticConsumer::Extensive) {
+ AnalyzerOptions &options = getAnalyzerOptions();
+ if (options.getBooleanOption("path-diagnostics-alternate", true)) {
+ ActiveScheme = PathDiagnosticConsumer::AlternateExtensive;
+ }
+ }
+
+ TrimmedGraph TrimG(&getGraph(), errorNodes);
+ ReportGraph ErrorGraph;
+
+ while (TrimG.popNextReportGraph(ErrorGraph)) {
+ // Find the BugReport with the original location.
+ assert(ErrorGraph.Index < bugReports.size());
+ BugReport *R = bugReports[ErrorGraph.Index];
+ assert(R && "No original report found for sliced graph.");
+ assert(R->isValid() && "Report selected by trimmed graph marked invalid.");
+
+ // Start building the path diagnostic...
+ PathDiagnosticBuilder PDB(*this, R, ErrorGraph.BackMap, &PC);
+ const ExplodedNode *N = ErrorGraph.ErrorNode;
+
+ // Register additional node visitors.
+ R->addVisitor(llvm::make_unique<NilReceiverBRVisitor>());
+ R->addVisitor(llvm::make_unique<ConditionBRVisitor>());
+ R->addVisitor(llvm::make_unique<LikelyFalsePositiveSuppressionBRVisitor>());
+
+ BugReport::VisitorList visitors;
+ unsigned origReportConfigToken, finalReportConfigToken;
+ LocationContextMap LCM;
+
+ // While generating diagnostics, it's possible the visitors will decide
+ // new symbols and regions are interesting, or add other visitors based on
+ // the information they find. If they do, we need to regenerate the path
+ // based on our new report configuration.
+ do {
+ // Get a clean copy of all the visitors.
+ for (BugReport::visitor_iterator I = R->visitor_begin(),
+ E = R->visitor_end(); I != E; ++I)
+ visitors.push_back((*I)->clone());
+
+ // Clear out the active path from any previous work.
+ PD.resetPath();
+ origReportConfigToken = R->getConfigurationChangeToken();
+
+ // Generate the very last diagnostic piece - the piece is visible before
+ // the trace is expanded.
+ std::unique_ptr<PathDiagnosticPiece> LastPiece;
+ for (BugReport::visitor_iterator I = visitors.begin(), E = visitors.end();
+ I != E; ++I) {
+ if (std::unique_ptr<PathDiagnosticPiece> Piece =
+ (*I)->getEndPath(PDB, N, *R)) {
+ assert (!LastPiece &&
+ "There can only be one final piece in a diagnostic.");
+ LastPiece = std::move(Piece);
+ }
+ }
+
+ if (ActiveScheme != PathDiagnosticConsumer::None) {
+ if (!LastPiece)
+ LastPiece = BugReporterVisitor::getDefaultEndPath(PDB, N, *R);
+ assert(LastPiece);
+ PD.setEndOfPath(std::move(LastPiece));
+ }
+
+ // Make sure we get a clean location context map so we don't
+ // hold onto old mappings.
+ LCM.clear();
+
+ switch (ActiveScheme) {
+ case PathDiagnosticConsumer::AlternateExtensive:
+ GenerateAlternateExtensivePathDiagnostic(PD, PDB, N, LCM, visitors);
+ break;
+ case PathDiagnosticConsumer::Extensive:
+ GenerateExtensivePathDiagnostic(PD, PDB, N, LCM, visitors);
+ break;
+ case PathDiagnosticConsumer::Minimal:
+ GenerateMinimalPathDiagnostic(PD, PDB, N, LCM, visitors);
+ break;
+ case PathDiagnosticConsumer::None:
+ GenerateVisitorsOnlyPathDiagnostic(PD, PDB, N, visitors);
+ break;
+ }
+
+ // Clean up the visitors we used.
+ visitors.clear();
+
+ // Did anything change while generating this path?
+ finalReportConfigToken = R->getConfigurationChangeToken();
+ } while (finalReportConfigToken != origReportConfigToken);
+
+ if (!R->isValid())
+ continue;
+
+ // Finally, prune the diagnostic path of uninteresting stuff.
+ if (!PD.path.empty()) {
+ if (R->shouldPrunePath() && getAnalyzerOptions().shouldPrunePaths()) {
+ bool stillHasNotes = removeUnneededCalls(PD.getMutablePieces(), R, LCM);
+ assert(stillHasNotes);
+ (void)stillHasNotes;
+ }
+
+ // Redirect all call pieces to have valid locations.
+ adjustCallLocations(PD.getMutablePieces());
+ removePiecesWithInvalidLocations(PD.getMutablePieces());
+
+ if (ActiveScheme == PathDiagnosticConsumer::AlternateExtensive) {
+ SourceManager &SM = getSourceManager();
+
+ // Reduce the number of edges from a very conservative set
+ // to an aesthetically pleasing subset that conveys the
+ // necessary information.
+ OptimizedCallsSet OCS;
+ while (optimizeEdges(PD.getMutablePieces(), SM, OCS, LCM)) {}
+
+ // Drop the very first function-entry edge. It's not really necessary
+ // for top-level functions.
+ dropFunctionEntryEdge(PD.getMutablePieces(), LCM, SM);
+ }
+
+ // Remove messages that are basically the same, and edges that may not
+ // make sense.
+ // We have to do this after edge optimization in the Extensive mode.
+ removeRedundantMsgs(PD.getMutablePieces());
+ removeEdgesToDefaultInitializers(PD.getMutablePieces());
+ }
+
+ // We found a report and didn't suppress it.
+ return true;
+ }
+
+ // We suppressed all the reports in this equivalence class.
+ assert(!HasInvalid && "Inconsistent suppression");
+ (void)HasInvalid;
+ return false;
+}
+
+void BugReporter::Register(BugType *BT) {
+ BugTypes = F.add(BugTypes, BT);
+}
+
+void BugReporter::emitReport(BugReport* R) {
+ // To guarantee memory release.
+ std::unique_ptr<BugReport> UniqueR(R);
+
+ if (const ExplodedNode *E = R->getErrorNode()) {
+ const AnalysisDeclContext *DeclCtx =
+ E->getLocationContext()->getAnalysisDeclContext();
+ // The source of autosynthesized body can be handcrafted AST or a model
+ // file. The locations from handcrafted ASTs have no valid source locations
+ // and have to be discarded. Locations from model files should be preserved
+ // for processing and reporting.
+ if (DeclCtx->isBodyAutosynthesized() &&
+ !DeclCtx->isBodyAutosynthesizedFromModelFile())
+ return;
+ }
+
+ bool ValidSourceLoc = R->getLocation(getSourceManager()).isValid();
+ assert(ValidSourceLoc);
+ // If we mess up in a release build, we'd still prefer to just drop the bug
+ // instead of trying to go on.
+ if (!ValidSourceLoc)
+ return;
+
+ // Compute the bug report's hash to determine its equivalence class.
+ llvm::FoldingSetNodeID ID;
+ R->Profile(ID);
+
+ // Lookup the equivance class. If there isn't one, create it.
+ BugType& BT = R->getBugType();
+ Register(&BT);
+ void *InsertPos;
+ BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos);
+
+ if (!EQ) {
+ EQ = new BugReportEquivClass(std::move(UniqueR));
+ EQClasses.InsertNode(EQ, InsertPos);
+ EQClassesVector.push_back(EQ);
+ } else
+ EQ->AddReport(std::move(UniqueR));
+}
+
+
+//===----------------------------------------------------------------------===//
+// Emitting reports in equivalence classes.
+//===----------------------------------------------------------------------===//
+
+namespace {
+struct FRIEC_WLItem {
+ const ExplodedNode *N;
+ ExplodedNode::const_succ_iterator I, E;
+
+ FRIEC_WLItem(const ExplodedNode *n)
+ : N(n), I(N->succ_begin()), E(N->succ_end()) {}
+};
+}
+
+static BugReport *
+FindReportInEquivalenceClass(BugReportEquivClass& EQ,
+ SmallVectorImpl<BugReport*> &bugReports) {
+
+ BugReportEquivClass::iterator I = EQ.begin(), E = EQ.end();
+ assert(I != E);
+ BugType& BT = I->getBugType();
+
+ // If we don't need to suppress any of the nodes because they are
+ // post-dominated by a sink, simply add all the nodes in the equivalence class
+ // to 'Nodes'. Any of the reports will serve as a "representative" report.
+ if (!BT.isSuppressOnSink()) {
+ BugReport *R = I;
+ for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I) {
+ const ExplodedNode *N = I->getErrorNode();
+ if (N) {
+ R = I;
+ bugReports.push_back(R);
+ }
+ }
+ return R;
+ }
+
+ // For bug reports that should be suppressed when all paths are post-dominated
+ // by a sink node, iterate through the reports in the equivalence class
+ // until we find one that isn't post-dominated (if one exists). We use a
+ // DFS traversal of the ExplodedGraph to find a non-sink node. We could write
+ // this as a recursive function, but we don't want to risk blowing out the
+ // stack for very long paths.
+ BugReport *exampleReport = nullptr;
+
+ for (; I != E; ++I) {
+ const ExplodedNode *errorNode = I->getErrorNode();
+
+ if (!errorNode)
+ continue;
+ if (errorNode->isSink()) {
+ llvm_unreachable(
+ "BugType::isSuppressSink() should not be 'true' for sink end nodes");
+ }
+ // No successors? By definition this nodes isn't post-dominated by a sink.
+ if (errorNode->succ_empty()) {
+ bugReports.push_back(I);
+ if (!exampleReport)
+ exampleReport = I;
+ continue;
+ }
+
+ // At this point we know that 'N' is not a sink and it has at least one
+ // successor. Use a DFS worklist to find a non-sink end-of-path node.
+ typedef FRIEC_WLItem WLItem;
+ typedef SmallVector<WLItem, 10> DFSWorkList;
+ llvm::DenseMap<const ExplodedNode *, unsigned> Visited;
+
+ DFSWorkList WL;
+ WL.push_back(errorNode);
+ Visited[errorNode] = 1;
+
+ while (!WL.empty()) {
+ WLItem &WI = WL.back();
+ assert(!WI.N->succ_empty());
+
+ for (; WI.I != WI.E; ++WI.I) {
+ const ExplodedNode *Succ = *WI.I;
+ // End-of-path node?
+ if (Succ->succ_empty()) {
+ // If we found an end-of-path node that is not a sink.
+ if (!Succ->isSink()) {
+ bugReports.push_back(I);
+ if (!exampleReport)
+ exampleReport = I;
+ WL.clear();
+ break;
+ }
+ // Found a sink? Continue on to the next successor.
+ continue;
+ }
+ // Mark the successor as visited. If it hasn't been explored,
+ // enqueue it to the DFS worklist.
+ unsigned &mark = Visited[Succ];
+ if (!mark) {
+ mark = 1;
+ WL.push_back(Succ);
+ break;
+ }
+ }
+
+ // The worklist may have been cleared at this point. First
+ // check if it is empty before checking the last item.
+ if (!WL.empty() && &WL.back() == &WI)
+ WL.pop_back();
+ }
+ }
+
+ // ExampleReport will be NULL if all the nodes in the equivalence class
+ // were post-dominated by sinks.
+ return exampleReport;
+}
+
+void BugReporter::FlushReport(BugReportEquivClass& EQ) {
+ SmallVector<BugReport*, 10> bugReports;
+ BugReport *exampleReport = FindReportInEquivalenceClass(EQ, bugReports);
+ if (exampleReport) {
+ for (PathDiagnosticConsumer *PDC : getPathDiagnosticConsumers()) {
+ FlushReport(exampleReport, *PDC, bugReports);
+ }
+ }
+}
+
+void BugReporter::FlushReport(BugReport *exampleReport,
+ PathDiagnosticConsumer &PD,
+ ArrayRef<BugReport*> bugReports) {
+
+ // FIXME: Make sure we use the 'R' for the path that was actually used.
+ // Probably doesn't make a difference in practice.
+ BugType& BT = exampleReport->getBugType();
+
+ std::unique_ptr<PathDiagnostic> D(new PathDiagnostic(
+ exampleReport->getBugType().getCheckName(),
+ exampleReport->getDeclWithIssue(), exampleReport->getBugType().getName(),
+ exampleReport->getDescription(),
+ exampleReport->getShortDescription(/*Fallback=*/false), BT.getCategory(),
+ exampleReport->getUniqueingLocation(),
+ exampleReport->getUniqueingDecl()));
+
+ MaxBugClassSize = std::max(bugReports.size(),
+ static_cast<size_t>(MaxBugClassSize));
+
+ // Generate the full path diagnostic, using the generation scheme
+ // specified by the PathDiagnosticConsumer. Note that we have to generate
+ // path diagnostics even for consumers which do not support paths, because
+ // the BugReporterVisitors may mark this bug as a false positive.
+ if (!bugReports.empty())
+ if (!generatePathDiagnostic(*D.get(), PD, bugReports))
+ return;
+
+ MaxValidBugClassSize = std::max(bugReports.size(),
+ static_cast<size_t>(MaxValidBugClassSize));
+
+ // Examine the report and see if the last piece is in a header. Reset the
+ // report location to the last piece in the main source file.
+ AnalyzerOptions& Opts = getAnalyzerOptions();
+ if (Opts.shouldReportIssuesInMainSourceFile() && !Opts.AnalyzeAll)
+ D->resetDiagnosticLocationToMainFile();
+
+ // If the path is empty, generate a single step path with the location
+ // of the issue.
+ if (D->path.empty()) {
+ PathDiagnosticLocation L = exampleReport->getLocation(getSourceManager());
+ auto piece = llvm::make_unique<PathDiagnosticEventPiece>(
+ L, exampleReport->getDescription());
+ for (const SourceRange &Range : exampleReport->getRanges())
+ piece->addRange(Range);
+ D->setEndOfPath(std::move(piece));
+ }
+
+ // Get the meta data.
+ const BugReport::ExtraTextList &Meta = exampleReport->getExtraText();
+ for (BugReport::ExtraTextList::const_iterator i = Meta.begin(),
+ e = Meta.end(); i != e; ++i) {
+ D->addMeta(*i);
+ }
+
+ PD.HandlePathDiagnostic(std::move(D));
+}
+
+void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
+ const CheckerBase *Checker,
+ StringRef Name, StringRef Category,
+ StringRef Str, PathDiagnosticLocation Loc,
+ ArrayRef<SourceRange> Ranges) {
+ EmitBasicReport(DeclWithIssue, Checker->getCheckName(), Name, Category, Str,
+ Loc, Ranges);
+}
+void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
+ CheckName CheckName,
+ StringRef name, StringRef category,
+ StringRef str, PathDiagnosticLocation Loc,
+ ArrayRef<SourceRange> Ranges) {
+
+ // 'BT' is owned by BugReporter.
+ BugType *BT = getBugTypeForName(CheckName, name, category);
+ BugReport *R = new BugReport(*BT, str, Loc);
+ R->setDeclWithIssue(DeclWithIssue);
+ for (ArrayRef<SourceRange>::iterator I = Ranges.begin(), E = Ranges.end();
+ I != E; ++I)
+ R->addRange(*I);
+ emitReport(R);
+}
+
+BugType *BugReporter::getBugTypeForName(CheckName CheckName, StringRef name,
+ StringRef category) {
+ SmallString<136> fullDesc;
+ llvm::raw_svector_ostream(fullDesc) << CheckName.getName() << ":" << name
+ << ":" << category;
+ BugType *&BT = StrBugTypes[fullDesc];
+ if (!BT)
+ BT = new BugType(CheckName, name, category);
+ return BT;
+}
+
+LLVM_DUMP_METHOD void PathPieces::dump() const {
+ unsigned index = 0;
+ for (PathPieces::const_iterator I = begin(), E = end(); I != E; ++I) {
+ llvm::errs() << "[" << index++ << "] ";
+ (*I)->dump();
+ llvm::errs() << "\n";
+ }
+}
+
+void PathDiagnosticCallPiece::dump() const {
+ llvm::errs() << "CALL\n--------------\n";
+
+ if (const Stmt *SLoc = getLocStmt(getLocation()))
+ SLoc->dump();
+ else if (const NamedDecl *ND = dyn_cast<NamedDecl>(getCallee()))
+ llvm::errs() << *ND << "\n";
+ else
+ getLocation().dump();
+}
+
+void PathDiagnosticEventPiece::dump() const {
+ llvm::errs() << "EVENT\n--------------\n";
+ llvm::errs() << getString() << "\n";
+ llvm::errs() << " ---- at ----\n";
+ getLocation().dump();
+}
+
+void PathDiagnosticControlFlowPiece::dump() const {
+ llvm::errs() << "CONTROL\n--------------\n";
+ getStartLocation().dump();
+ llvm::errs() << " ---- to ----\n";
+ getEndLocation().dump();
+}
+
+void PathDiagnosticMacroPiece::dump() const {
+ llvm::errs() << "MACRO\n--------------\n";
+ // FIXME: Print which macro is being invoked.
+}
+
+void PathDiagnosticLocation::dump() const {
+ if (!isValid()) {
+ llvm::errs() << "<INVALID>\n";
+ return;
+ }
+
+ switch (K) {
+ case RangeK:
+ // FIXME: actually print the range.
+ llvm::errs() << "<range>\n";
+ break;
+ case SingleLocK:
+ asLocation().dump();
+ llvm::errs() << "\n";
+ break;
+ case StmtK:
+ if (S)
+ S->dump();
+ else
+ llvm::errs() << "<NULL STMT>\n";
+ break;
+ case DeclK:
+ if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(D))
+ llvm::errs() << *ND << "\n";
+ else if (isa<BlockDecl>(D))
+ // FIXME: Make this nicer.
+ llvm::errs() << "<block>\n";
+ else if (D)
+ llvm::errs() << "<unknown decl>\n";
+ else
+ llvm::errs() << "<NULL DECL>\n";
+ break;
+ }
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/BugReporterVisitors.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/BugReporterVisitors.cpp
new file mode 100644
index 0000000..b906cc9
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/BugReporterVisitors.cpp
@@ -0,0 +1,1634 @@
+// BugReporterVisitors.cpp - Helpers for reporting bugs -----------*- C++ -*--//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a set of BugReporter "visitors" which can be used to
+// enhance the diagnostics reported for a bug.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitor.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+
+using llvm::FoldingSetNodeID;
+
+//===----------------------------------------------------------------------===//
+// Utility functions.
+//===----------------------------------------------------------------------===//
+
+bool bugreporter::isDeclRefExprToReference(const Expr *E) {
+ if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
+ return DRE->getDecl()->getType()->isReferenceType();
+ }
+ return false;
+}
+
+const Expr *bugreporter::getDerefExpr(const Stmt *S) {
+ // Pattern match for a few useful cases:
+ // a[0], p->f, *p
+ const Expr *E = dyn_cast<Expr>(S);
+ if (!E)
+ return nullptr;
+ E = E->IgnoreParenCasts();
+
+ while (true) {
+ if (const BinaryOperator *B = dyn_cast<BinaryOperator>(E)) {
+ assert(B->isAssignmentOp());
+ E = B->getLHS()->IgnoreParenCasts();
+ continue;
+ }
+ else if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E)) {
+ if (U->getOpcode() == UO_Deref)
+ return U->getSubExpr()->IgnoreParenCasts();
+ }
+ else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
+ if (ME->isArrow() || isDeclRefExprToReference(ME->getBase())) {
+ return ME->getBase()->IgnoreParenCasts();
+ } else {
+ // If we have a member expr with a dot, the base must have been
+ // dereferenced.
+ return getDerefExpr(ME->getBase());
+ }
+ }
+ else if (const ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
+ return IvarRef->getBase()->IgnoreParenCasts();
+ }
+ else if (const ArraySubscriptExpr *AE = dyn_cast<ArraySubscriptExpr>(E)) {
+ return AE->getBase();
+ }
+ else if (isDeclRefExprToReference(E)) {
+ return E;
+ }
+ break;
+ }
+
+ return nullptr;
+}
+
+const Stmt *bugreporter::GetDenomExpr(const ExplodedNode *N) {
+ const Stmt *S = N->getLocationAs<PreStmt>()->getStmt();
+ if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(S))
+ return BE->getRHS();
+ return nullptr;
+}
+
+const Stmt *bugreporter::GetRetValExpr(const ExplodedNode *N) {
+ const Stmt *S = N->getLocationAs<PostStmt>()->getStmt();
+ if (const ReturnStmt *RS = dyn_cast<ReturnStmt>(S))
+ return RS->getRetValue();
+ return nullptr;
+}
+
+//===----------------------------------------------------------------------===//
+// Definitions for bug reporter visitors.
+//===----------------------------------------------------------------------===//
+
+std::unique_ptr<PathDiagnosticPiece>
+BugReporterVisitor::getEndPath(BugReporterContext &BRC,
+ const ExplodedNode *EndPathNode, BugReport &BR) {
+ return nullptr;
+}
+
+std::unique_ptr<PathDiagnosticPiece> BugReporterVisitor::getDefaultEndPath(
+ BugReporterContext &BRC, const ExplodedNode *EndPathNode, BugReport &BR) {
+ PathDiagnosticLocation L =
+ PathDiagnosticLocation::createEndOfPath(EndPathNode,BRC.getSourceManager());
+
+ const auto &Ranges = BR.getRanges();
+
+ // Only add the statement itself as a range if we didn't specify any
+ // special ranges for this report.
+ auto P = llvm::make_unique<PathDiagnosticEventPiece>(
+ L, BR.getDescription(), Ranges.begin() == Ranges.end());
+ for (const SourceRange &Range : Ranges)
+ P->addRange(Range);
+
+ return std::move(P);
+}
+
+
+namespace {
+/// Emits an extra note at the return statement of an interesting stack frame.
+///
+/// The returned value is marked as an interesting value, and if it's null,
+/// adds a visitor to track where it became null.
+///
+/// This visitor is intended to be used when another visitor discovers that an
+/// interesting value comes from an inlined function call.
+class ReturnVisitor : public BugReporterVisitorImpl<ReturnVisitor> {
+ const StackFrameContext *StackFrame;
+ enum {
+ Initial,
+ MaybeUnsuppress,
+ Satisfied
+ } Mode;
+
+ bool EnableNullFPSuppression;
+
+public:
+ ReturnVisitor(const StackFrameContext *Frame, bool Suppressed)
+ : StackFrame(Frame), Mode(Initial), EnableNullFPSuppression(Suppressed) {}
+
+ static void *getTag() {
+ static int Tag = 0;
+ return static_cast<void *>(&Tag);
+ }
+
+ void Profile(llvm::FoldingSetNodeID &ID) const override {
+ ID.AddPointer(ReturnVisitor::getTag());
+ ID.AddPointer(StackFrame);
+ ID.AddBoolean(EnableNullFPSuppression);
+ }
+
+ /// Adds a ReturnVisitor if the given statement represents a call that was
+ /// inlined.
+ ///
+ /// This will search back through the ExplodedGraph, starting from the given
+ /// node, looking for when the given statement was processed. If it turns out
+ /// the statement is a call that was inlined, we add the visitor to the
+ /// bug report, so it can print a note later.
+ static void addVisitorIfNecessary(const ExplodedNode *Node, const Stmt *S,
+ BugReport &BR,
+ bool InEnableNullFPSuppression) {
+ if (!CallEvent::isCallStmt(S))
+ return;
+
+ // First, find when we processed the statement.
+ do {
+ if (Optional<CallExitEnd> CEE = Node->getLocationAs<CallExitEnd>())
+ if (CEE->getCalleeContext()->getCallSite() == S)
+ break;
+ if (Optional<StmtPoint> SP = Node->getLocationAs<StmtPoint>())
+ if (SP->getStmt() == S)
+ break;
+
+ Node = Node->getFirstPred();
+ } while (Node);
+
+ // Next, step over any post-statement checks.
+ while (Node && Node->getLocation().getAs<PostStmt>())
+ Node = Node->getFirstPred();
+ if (!Node)
+ return;
+
+ // Finally, see if we inlined the call.
+ Optional<CallExitEnd> CEE = Node->getLocationAs<CallExitEnd>();
+ if (!CEE)
+ return;
+
+ const StackFrameContext *CalleeContext = CEE->getCalleeContext();
+ if (CalleeContext->getCallSite() != S)
+ return;
+
+ // Check the return value.
+ ProgramStateRef State = Node->getState();
+ SVal RetVal = State->getSVal(S, Node->getLocationContext());
+
+ // Handle cases where a reference is returned and then immediately used.
+ if (cast<Expr>(S)->isGLValue())
+ if (Optional<Loc> LValue = RetVal.getAs<Loc>())
+ RetVal = State->getSVal(*LValue);
+
+ // See if the return value is NULL. If so, suppress the report.
+ SubEngine *Eng = State->getStateManager().getOwningEngine();
+ assert(Eng && "Cannot file a bug report without an owning engine");
+ AnalyzerOptions &Options = Eng->getAnalysisManager().options;
+
+ bool EnableNullFPSuppression = false;
+ if (InEnableNullFPSuppression && Options.shouldSuppressNullReturnPaths())
+ if (Optional<Loc> RetLoc = RetVal.getAs<Loc>())
+ EnableNullFPSuppression = State->isNull(*RetLoc).isConstrainedTrue();
+
+ BR.markInteresting(CalleeContext);
+ BR.addVisitor(llvm::make_unique<ReturnVisitor>(CalleeContext,
+ EnableNullFPSuppression));
+ }
+
+ /// Returns true if any counter-suppression heuristics are enabled for
+ /// ReturnVisitor.
+ static bool hasCounterSuppression(AnalyzerOptions &Options) {
+ return Options.shouldAvoidSuppressingNullArgumentPaths();
+ }
+
+ PathDiagnosticPiece *visitNodeInitial(const ExplodedNode *N,
+ const ExplodedNode *PrevN,
+ BugReporterContext &BRC,
+ BugReport &BR) {
+ // Only print a message at the interesting return statement.
+ if (N->getLocationContext() != StackFrame)
+ return nullptr;
+
+ Optional<StmtPoint> SP = N->getLocationAs<StmtPoint>();
+ if (!SP)
+ return nullptr;
+
+ const ReturnStmt *Ret = dyn_cast<ReturnStmt>(SP->getStmt());
+ if (!Ret)
+ return nullptr;
+
+ // Okay, we're at the right return statement, but do we have the return
+ // value available?
+ ProgramStateRef State = N->getState();
+ SVal V = State->getSVal(Ret, StackFrame);
+ if (V.isUnknownOrUndef())
+ return nullptr;
+
+ // Don't print any more notes after this one.
+ Mode = Satisfied;
+
+ const Expr *RetE = Ret->getRetValue();
+ assert(RetE && "Tracking a return value for a void function");
+
+ // Handle cases where a reference is returned and then immediately used.
+ Optional<Loc> LValue;
+ if (RetE->isGLValue()) {
+ if ((LValue = V.getAs<Loc>())) {
+ SVal RValue = State->getRawSVal(*LValue, RetE->getType());
+ if (RValue.getAs<DefinedSVal>())
+ V = RValue;
+ }
+ }
+
+ // Ignore aggregate rvalues.
+ if (V.getAs<nonloc::LazyCompoundVal>() ||
+ V.getAs<nonloc::CompoundVal>())
+ return nullptr;
+
+ RetE = RetE->IgnoreParenCasts();
+
+ // If we can't prove the return value is 0, just mark it interesting, and
+ // make sure to track it into any further inner functions.
+ if (!State->isNull(V).isConstrainedTrue()) {
+ BR.markInteresting(V);
+ ReturnVisitor::addVisitorIfNecessary(N, RetE, BR,
+ EnableNullFPSuppression);
+ return nullptr;
+ }
+
+ // If we're returning 0, we should track where that 0 came from.
+ bugreporter::trackNullOrUndefValue(N, RetE, BR, /*IsArg*/ false,
+ EnableNullFPSuppression);
+
+ // Build an appropriate message based on the return value.
+ SmallString<64> Msg;
+ llvm::raw_svector_ostream Out(Msg);
+
+ if (V.getAs<Loc>()) {
+ // If we have counter-suppression enabled, make sure we keep visiting
+ // future nodes. We want to emit a path note as well, in case
+ // the report is resurrected as valid later on.
+ ExprEngine &Eng = BRC.getBugReporter().getEngine();
+ AnalyzerOptions &Options = Eng.getAnalysisManager().options;
+ if (EnableNullFPSuppression && hasCounterSuppression(Options))
+ Mode = MaybeUnsuppress;
+
+ if (RetE->getType()->isObjCObjectPointerType())
+ Out << "Returning nil";
+ else
+ Out << "Returning null pointer";
+ } else {
+ Out << "Returning zero";
+ }
+
+ if (LValue) {
+ if (const MemRegion *MR = LValue->getAsRegion()) {
+ if (MR->canPrintPretty()) {
+ Out << " (reference to ";
+ MR->printPretty(Out);
+ Out << ")";
+ }
+ }
+ } else {
+ // FIXME: We should have a more generalized location printing mechanism.
+ if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(RetE))
+ if (const DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(DR->getDecl()))
+ Out << " (loaded from '" << *DD << "')";
+ }
+
+ PathDiagnosticLocation L(Ret, BRC.getSourceManager(), StackFrame);
+ return new PathDiagnosticEventPiece(L, Out.str());
+ }
+
+ PathDiagnosticPiece *visitNodeMaybeUnsuppress(const ExplodedNode *N,
+ const ExplodedNode *PrevN,
+ BugReporterContext &BRC,
+ BugReport &BR) {
+#ifndef NDEBUG
+ ExprEngine &Eng = BRC.getBugReporter().getEngine();
+ AnalyzerOptions &Options = Eng.getAnalysisManager().options;
+ assert(hasCounterSuppression(Options));
+#endif
+
+ // Are we at the entry node for this call?
+ Optional<CallEnter> CE = N->getLocationAs<CallEnter>();
+ if (!CE)
+ return nullptr;
+
+ if (CE->getCalleeContext() != StackFrame)
+ return nullptr;
+
+ Mode = Satisfied;
+
+ // Don't automatically suppress a report if one of the arguments is
+ // known to be a null pointer. Instead, start tracking /that/ null
+ // value back to its origin.
+ ProgramStateManager &StateMgr = BRC.getStateManager();
+ CallEventManager &CallMgr = StateMgr.getCallEventManager();
+
+ ProgramStateRef State = N->getState();
+ CallEventRef<> Call = CallMgr.getCaller(StackFrame, State);
+ for (unsigned I = 0, E = Call->getNumArgs(); I != E; ++I) {
+ Optional<Loc> ArgV = Call->getArgSVal(I).getAs<Loc>();
+ if (!ArgV)
+ continue;
+
+ const Expr *ArgE = Call->getArgExpr(I);
+ if (!ArgE)
+ continue;
+
+ // Is it possible for this argument to be non-null?
+ if (!State->isNull(*ArgV).isConstrainedTrue())
+ continue;
+
+ if (bugreporter::trackNullOrUndefValue(N, ArgE, BR, /*IsArg=*/true,
+ EnableNullFPSuppression))
+ BR.removeInvalidation(ReturnVisitor::getTag(), StackFrame);
+
+ // If we /can't/ track the null pointer, we should err on the side of
+ // false negatives, and continue towards marking this report invalid.
+ // (We will still look at the other arguments, though.)
+ }
+
+ return nullptr;
+ }
+
+ PathDiagnosticPiece *VisitNode(const ExplodedNode *N,
+ const ExplodedNode *PrevN,
+ BugReporterContext &BRC,
+ BugReport &BR) override {
+ switch (Mode) {
+ case Initial:
+ return visitNodeInitial(N, PrevN, BRC, BR);
+ case MaybeUnsuppress:
+ return visitNodeMaybeUnsuppress(N, PrevN, BRC, BR);
+ case Satisfied:
+ return nullptr;
+ }
+
+ llvm_unreachable("Invalid visit mode!");
+ }
+
+ std::unique_ptr<PathDiagnosticPiece> getEndPath(BugReporterContext &BRC,
+ const ExplodedNode *N,
+ BugReport &BR) override {
+ if (EnableNullFPSuppression)
+ BR.markInvalid(ReturnVisitor::getTag(), StackFrame);
+ return nullptr;
+ }
+};
+} // end anonymous namespace
+
+
+void FindLastStoreBRVisitor ::Profile(llvm::FoldingSetNodeID &ID) const {
+ static int tag = 0;
+ ID.AddPointer(&tag);
+ ID.AddPointer(R);
+ ID.Add(V);
+ ID.AddBoolean(EnableNullFPSuppression);
+}
+
+/// Returns true if \p N represents the DeclStmt declaring and initializing
+/// \p VR.
+static bool isInitializationOfVar(const ExplodedNode *N, const VarRegion *VR) {
+ Optional<PostStmt> P = N->getLocationAs<PostStmt>();
+ if (!P)
+ return false;
+
+ const DeclStmt *DS = P->getStmtAs<DeclStmt>();
+ if (!DS)
+ return false;
+
+ if (DS->getSingleDecl() != VR->getDecl())
+ return false;
+
+ const MemSpaceRegion *VarSpace = VR->getMemorySpace();
+ const StackSpaceRegion *FrameSpace = dyn_cast<StackSpaceRegion>(VarSpace);
+ if (!FrameSpace) {
+ // If we ever directly evaluate global DeclStmts, this assertion will be
+ // invalid, but this still seems preferable to silently accepting an
+ // initialization that may be for a path-sensitive variable.
+ assert(VR->getDecl()->isStaticLocal() && "non-static stackless VarRegion");
+ return true;
+ }
+
+ assert(VR->getDecl()->hasLocalStorage());
+ const LocationContext *LCtx = N->getLocationContext();
+ return FrameSpace->getStackFrame() == LCtx->getCurrentStackFrame();
+}
+
+PathDiagnosticPiece *FindLastStoreBRVisitor::VisitNode(const ExplodedNode *Succ,
+ const ExplodedNode *Pred,
+ BugReporterContext &BRC,
+ BugReport &BR) {
+
+ if (Satisfied)
+ return nullptr;
+
+ const ExplodedNode *StoreSite = nullptr;
+ const Expr *InitE = nullptr;
+ bool IsParam = false;
+
+ // First see if we reached the declaration of the region.
+ if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
+ if (isInitializationOfVar(Pred, VR)) {
+ StoreSite = Pred;
+ InitE = VR->getDecl()->getInit();
+ }
+ }
+
+ // If this is a post initializer expression, initializing the region, we
+ // should track the initializer expression.
+ if (Optional<PostInitializer> PIP = Pred->getLocationAs<PostInitializer>()) {
+ const MemRegion *FieldReg = (const MemRegion *)PIP->getLocationValue();
+ if (FieldReg && FieldReg == R) {
+ StoreSite = Pred;
+ InitE = PIP->getInitializer()->getInit();
+ }
+ }
+
+ // Otherwise, see if this is the store site:
+ // (1) Succ has this binding and Pred does not, i.e. this is
+ // where the binding first occurred.
+ // (2) Succ has this binding and is a PostStore node for this region, i.e.
+ // the same binding was re-assigned here.
+ if (!StoreSite) {
+ if (Succ->getState()->getSVal(R) != V)
+ return nullptr;
+
+ if (Pred->getState()->getSVal(R) == V) {
+ Optional<PostStore> PS = Succ->getLocationAs<PostStore>();
+ if (!PS || PS->getLocationValue() != R)
+ return nullptr;
+ }
+
+ StoreSite = Succ;
+
+ // If this is an assignment expression, we can track the value
+ // being assigned.
+ if (Optional<PostStmt> P = Succ->getLocationAs<PostStmt>())
+ if (const BinaryOperator *BO = P->getStmtAs<BinaryOperator>())
+ if (BO->isAssignmentOp())
+ InitE = BO->getRHS();
+
+ // If this is a call entry, the variable should be a parameter.
+ // FIXME: Handle CXXThisRegion as well. (This is not a priority because
+ // 'this' should never be NULL, but this visitor isn't just for NULL and
+ // UndefinedVal.)
+ if (Optional<CallEnter> CE = Succ->getLocationAs<CallEnter>()) {
+ if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
+ const ParmVarDecl *Param = cast<ParmVarDecl>(VR->getDecl());
+
+ ProgramStateManager &StateMgr = BRC.getStateManager();
+ CallEventManager &CallMgr = StateMgr.getCallEventManager();
+
+ CallEventRef<> Call = CallMgr.getCaller(CE->getCalleeContext(),
+ Succ->getState());
+ InitE = Call->getArgExpr(Param->getFunctionScopeIndex());
+ IsParam = true;
+ }
+ }
+
+ // If this is a CXXTempObjectRegion, the Expr responsible for its creation
+ // is wrapped inside of it.
+ if (const CXXTempObjectRegion *TmpR = dyn_cast<CXXTempObjectRegion>(R))
+ InitE = TmpR->getExpr();
+ }
+
+ if (!StoreSite)
+ return nullptr;
+ Satisfied = true;
+
+ // If we have an expression that provided the value, try to track where it
+ // came from.
+ if (InitE) {
+ if (V.isUndef() ||
+ V.getAs<loc::ConcreteInt>() || V.getAs<nonloc::ConcreteInt>()) {
+ if (!IsParam)
+ InitE = InitE->IgnoreParenCasts();
+ bugreporter::trackNullOrUndefValue(StoreSite, InitE, BR, IsParam,
+ EnableNullFPSuppression);
+ } else {
+ ReturnVisitor::addVisitorIfNecessary(StoreSite, InitE->IgnoreParenCasts(),
+ BR, EnableNullFPSuppression);
+ }
+ }
+
+ // Okay, we've found the binding. Emit an appropriate message.
+ SmallString<256> sbuf;
+ llvm::raw_svector_ostream os(sbuf);
+
+ if (Optional<PostStmt> PS = StoreSite->getLocationAs<PostStmt>()) {
+ const Stmt *S = PS->getStmt();
+ const char *action = nullptr;
+ const DeclStmt *DS = dyn_cast<DeclStmt>(S);
+ const VarRegion *VR = dyn_cast<VarRegion>(R);
+
+ if (DS) {
+ action = R->canPrintPretty() ? "initialized to " :
+ "Initializing to ";
+ } else if (isa<BlockExpr>(S)) {
+ action = R->canPrintPretty() ? "captured by block as " :
+ "Captured by block as ";
+ if (VR) {
+ // See if we can get the BlockVarRegion.
+ ProgramStateRef State = StoreSite->getState();
+ SVal V = State->getSVal(S, PS->getLocationContext());
+ if (const BlockDataRegion *BDR =
+ dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
+ if (const VarRegion *OriginalR = BDR->getOriginalRegion(VR)) {
+ if (Optional<KnownSVal> KV =
+ State->getSVal(OriginalR).getAs<KnownSVal>())
+ BR.addVisitor(llvm::make_unique<FindLastStoreBRVisitor>(
+ *KV, OriginalR, EnableNullFPSuppression));
+ }
+ }
+ }
+ }
+
+ if (action) {
+ if (R->canPrintPretty()) {
+ R->printPretty(os);
+ os << " ";
+ }
+
+ if (V.getAs<loc::ConcreteInt>()) {
+ bool b = false;
+ if (R->isBoundable()) {
+ if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
+ if (TR->getValueType()->isObjCObjectPointerType()) {
+ os << action << "nil";
+ b = true;
+ }
+ }
+ }
+
+ if (!b)
+ os << action << "a null pointer value";
+ } else if (Optional<nonloc::ConcreteInt> CVal =
+ V.getAs<nonloc::ConcreteInt>()) {
+ os << action << CVal->getValue();
+ }
+ else if (DS) {
+ if (V.isUndef()) {
+ if (isa<VarRegion>(R)) {
+ const VarDecl *VD = cast<VarDecl>(DS->getSingleDecl());
+ if (VD->getInit()) {
+ os << (R->canPrintPretty() ? "initialized" : "Initializing")
+ << " to a garbage value";
+ } else {
+ os << (R->canPrintPretty() ? "declared" : "Declaring")
+ << " without an initial value";
+ }
+ }
+ }
+ else {
+ os << (R->canPrintPretty() ? "initialized" : "Initialized")
+ << " here";
+ }
+ }
+ }
+ } else if (StoreSite->getLocation().getAs<CallEnter>()) {
+ if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
+ const ParmVarDecl *Param = cast<ParmVarDecl>(VR->getDecl());
+
+ os << "Passing ";
+
+ if (V.getAs<loc::ConcreteInt>()) {
+ if (Param->getType()->isObjCObjectPointerType())
+ os << "nil object reference";
+ else
+ os << "null pointer value";
+ } else if (V.isUndef()) {
+ os << "uninitialized value";
+ } else if (Optional<nonloc::ConcreteInt> CI =
+ V.getAs<nonloc::ConcreteInt>()) {
+ os << "the value " << CI->getValue();
+ } else {
+ os << "value";
+ }
+
+ // Printed parameter indexes are 1-based, not 0-based.
+ unsigned Idx = Param->getFunctionScopeIndex() + 1;
+ os << " via " << Idx << llvm::getOrdinalSuffix(Idx) << " parameter";
+ if (R->canPrintPretty()) {
+ os << " ";
+ R->printPretty(os);
+ }
+ }
+ }
+
+ if (os.str().empty()) {
+ if (V.getAs<loc::ConcreteInt>()) {
+ bool b = false;
+ if (R->isBoundable()) {
+ if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
+ if (TR->getValueType()->isObjCObjectPointerType()) {
+ os << "nil object reference stored";
+ b = true;
+ }
+ }
+ }
+ if (!b) {
+ if (R->canPrintPretty())
+ os << "Null pointer value stored";
+ else
+ os << "Storing null pointer value";
+ }
+
+ } else if (V.isUndef()) {
+ if (R->canPrintPretty())
+ os << "Uninitialized value stored";
+ else
+ os << "Storing uninitialized value";
+
+ } else if (Optional<nonloc::ConcreteInt> CV =
+ V.getAs<nonloc::ConcreteInt>()) {
+ if (R->canPrintPretty())
+ os << "The value " << CV->getValue() << " is assigned";
+ else
+ os << "Assigning " << CV->getValue();
+
+ } else {
+ if (R->canPrintPretty())
+ os << "Value assigned";
+ else
+ os << "Assigning value";
+ }
+
+ if (R->canPrintPretty()) {
+ os << " to ";
+ R->printPretty(os);
+ }
+ }
+
+ // Construct a new PathDiagnosticPiece.
+ ProgramPoint P = StoreSite->getLocation();
+ PathDiagnosticLocation L;
+ if (P.getAs<CallEnter>() && InitE)
+ L = PathDiagnosticLocation(InitE, BRC.getSourceManager(),
+ P.getLocationContext());
+
+ if (!L.isValid() || !L.asLocation().isValid())
+ L = PathDiagnosticLocation::create(P, BRC.getSourceManager());
+
+ if (!L.isValid() || !L.asLocation().isValid())
+ return nullptr;
+
+ return new PathDiagnosticEventPiece(L, os.str());
+}
+
+void TrackConstraintBRVisitor::Profile(llvm::FoldingSetNodeID &ID) const {
+ static int tag = 0;
+ ID.AddPointer(&tag);
+ ID.AddBoolean(Assumption);
+ ID.Add(Constraint);
+}
+
+/// Return the tag associated with this visitor. This tag will be used
+/// to make all PathDiagnosticPieces created by this visitor.
+const char *TrackConstraintBRVisitor::getTag() {
+ return "TrackConstraintBRVisitor";
+}
+
+bool TrackConstraintBRVisitor::isUnderconstrained(const ExplodedNode *N) const {
+ if (IsZeroCheck)
+ return N->getState()->isNull(Constraint).isUnderconstrained();
+ return (bool)N->getState()->assume(Constraint, !Assumption);
+}
+
+PathDiagnosticPiece *
+TrackConstraintBRVisitor::VisitNode(const ExplodedNode *N,
+ const ExplodedNode *PrevN,
+ BugReporterContext &BRC,
+ BugReport &BR) {
+ if (IsSatisfied)
+ return nullptr;
+
+ // Start tracking after we see the first state in which the value is
+ // constrained.
+ if (!IsTrackingTurnedOn)
+ if (!isUnderconstrained(N))
+ IsTrackingTurnedOn = true;
+ if (!IsTrackingTurnedOn)
+ return nullptr;
+
+ // Check if in the previous state it was feasible for this constraint
+ // to *not* be true.
+ if (isUnderconstrained(PrevN)) {
+
+ IsSatisfied = true;
+
+ // As a sanity check, make sure that the negation of the constraint
+ // was infeasible in the current state. If it is feasible, we somehow
+ // missed the transition point.
+ assert(!isUnderconstrained(N));
+
+ // We found the transition point for the constraint. We now need to
+ // pretty-print the constraint. (work-in-progress)
+ SmallString<64> sbuf;
+ llvm::raw_svector_ostream os(sbuf);
+
+ if (Constraint.getAs<Loc>()) {
+ os << "Assuming pointer value is ";
+ os << (Assumption ? "non-null" : "null");
+ }
+
+ if (os.str().empty())
+ return nullptr;
+
+ // Construct a new PathDiagnosticPiece.
+ ProgramPoint P = N->getLocation();
+ PathDiagnosticLocation L =
+ PathDiagnosticLocation::create(P, BRC.getSourceManager());
+ if (!L.isValid())
+ return nullptr;
+
+ PathDiagnosticEventPiece *X = new PathDiagnosticEventPiece(L, os.str());
+ X->setTag(getTag());
+ return X;
+ }
+
+ return nullptr;
+}
+
+SuppressInlineDefensiveChecksVisitor::
+SuppressInlineDefensiveChecksVisitor(DefinedSVal Value, const ExplodedNode *N)
+ : V(Value), IsSatisfied(false), IsTrackingTurnedOn(false) {
+
+ // Check if the visitor is disabled.
+ SubEngine *Eng = N->getState()->getStateManager().getOwningEngine();
+ assert(Eng && "Cannot file a bug report without an owning engine");
+ AnalyzerOptions &Options = Eng->getAnalysisManager().options;
+ if (!Options.shouldSuppressInlinedDefensiveChecks())
+ IsSatisfied = true;
+
+ assert(N->getState()->isNull(V).isConstrainedTrue() &&
+ "The visitor only tracks the cases where V is constrained to 0");
+}
+
+void SuppressInlineDefensiveChecksVisitor::Profile(FoldingSetNodeID &ID) const {
+ static int id = 0;
+ ID.AddPointer(&id);
+ ID.Add(V);
+}
+
+const char *SuppressInlineDefensiveChecksVisitor::getTag() {
+ return "IDCVisitor";
+}
+
+PathDiagnosticPiece *
+SuppressInlineDefensiveChecksVisitor::VisitNode(const ExplodedNode *Succ,
+ const ExplodedNode *Pred,
+ BugReporterContext &BRC,
+ BugReport &BR) {
+ if (IsSatisfied)
+ return nullptr;
+
+ // Start tracking after we see the first state in which the value is null.
+ if (!IsTrackingTurnedOn)
+ if (Succ->getState()->isNull(V).isConstrainedTrue())
+ IsTrackingTurnedOn = true;
+ if (!IsTrackingTurnedOn)
+ return nullptr;
+
+ // Check if in the previous state it was feasible for this value
+ // to *not* be null.
+ if (!Pred->getState()->isNull(V).isConstrainedTrue()) {
+ IsSatisfied = true;
+
+ assert(Succ->getState()->isNull(V).isConstrainedTrue());
+
+ // Check if this is inlined defensive checks.
+ const LocationContext *CurLC =Succ->getLocationContext();
+ const LocationContext *ReportLC = BR.getErrorNode()->getLocationContext();
+ if (CurLC != ReportLC && !CurLC->isParentOf(ReportLC))
+ BR.markInvalid("Suppress IDC", CurLC);
+ }
+ return nullptr;
+}
+
+static const MemRegion *getLocationRegionIfReference(const Expr *E,
+ const ExplodedNode *N) {
+ if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
+ if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
+ if (!VD->getType()->isReferenceType())
+ return nullptr;
+ ProgramStateManager &StateMgr = N->getState()->getStateManager();
+ MemRegionManager &MRMgr = StateMgr.getRegionManager();
+ return MRMgr.getVarRegion(VD, N->getLocationContext());
+ }
+ }
+
+ // FIXME: This does not handle other kinds of null references,
+ // for example, references from FieldRegions:
+ // struct Wrapper { int &ref; };
+ // Wrapper w = { *(int *)0 };
+ // w.ref = 1;
+
+ return nullptr;
+}
+
+static const Expr *peelOffOuterExpr(const Expr *Ex,
+ const ExplodedNode *N) {
+ Ex = Ex->IgnoreParenCasts();
+ if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Ex))
+ return peelOffOuterExpr(EWC->getSubExpr(), N);
+ if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Ex))
+ return peelOffOuterExpr(OVE->getSourceExpr(), N);
+
+ // Peel off the ternary operator.
+ if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(Ex)) {
+ // Find a node where the branching occurred and find out which branch
+ // we took (true/false) by looking at the ExplodedGraph.
+ const ExplodedNode *NI = N;
+ do {
+ ProgramPoint ProgPoint = NI->getLocation();
+ if (Optional<BlockEdge> BE = ProgPoint.getAs<BlockEdge>()) {
+ const CFGBlock *srcBlk = BE->getSrc();
+ if (const Stmt *term = srcBlk->getTerminator()) {
+ if (term == CO) {
+ bool TookTrueBranch = (*(srcBlk->succ_begin()) == BE->getDst());
+ if (TookTrueBranch)
+ return peelOffOuterExpr(CO->getTrueExpr(), N);
+ else
+ return peelOffOuterExpr(CO->getFalseExpr(), N);
+ }
+ }
+ }
+ NI = NI->getFirstPred();
+ } while (NI);
+ }
+ return Ex;
+}
+
+bool bugreporter::trackNullOrUndefValue(const ExplodedNode *N,
+ const Stmt *S,
+ BugReport &report, bool IsArg,
+ bool EnableNullFPSuppression) {
+ if (!S || !N)
+ return false;
+
+ if (const Expr *Ex = dyn_cast<Expr>(S)) {
+ Ex = Ex->IgnoreParenCasts();
+ const Expr *PeeledEx = peelOffOuterExpr(Ex, N);
+ if (Ex != PeeledEx)
+ S = PeeledEx;
+ }
+
+ const Expr *Inner = nullptr;
+ if (const Expr *Ex = dyn_cast<Expr>(S)) {
+ Ex = Ex->IgnoreParenCasts();
+ if (ExplodedGraph::isInterestingLValueExpr(Ex) || CallEvent::isCallStmt(Ex))
+ Inner = Ex;
+ }
+
+ if (IsArg && !Inner) {
+ assert(N->getLocation().getAs<CallEnter>() && "Tracking arg but not at call");
+ } else {
+ // Walk through nodes until we get one that matches the statement exactly.
+ // Alternately, if we hit a known lvalue for the statement, we know we've
+ // gone too far (though we can likely track the lvalue better anyway).
+ do {
+ const ProgramPoint &pp = N->getLocation();
+ if (Optional<StmtPoint> ps = pp.getAs<StmtPoint>()) {
+ if (ps->getStmt() == S || ps->getStmt() == Inner)
+ break;
+ } else if (Optional<CallExitEnd> CEE = pp.getAs<CallExitEnd>()) {
+ if (CEE->getCalleeContext()->getCallSite() == S ||
+ CEE->getCalleeContext()->getCallSite() == Inner)
+ break;
+ }
+ N = N->getFirstPred();
+ } while (N);
+
+ if (!N)
+ return false;
+ }
+
+ ProgramStateRef state = N->getState();
+
+ // The message send could be nil due to the receiver being nil.
+ // At this point in the path, the receiver should be live since we are at the
+ // message send expr. If it is nil, start tracking it.
+ if (const Expr *Receiver = NilReceiverBRVisitor::getNilReceiver(S, N))
+ trackNullOrUndefValue(N, Receiver, report, false, EnableNullFPSuppression);
+
+
+ // See if the expression we're interested refers to a variable.
+ // If so, we can track both its contents and constraints on its value.
+ if (Inner && ExplodedGraph::isInterestingLValueExpr(Inner)) {
+ const MemRegion *R = nullptr;
+
+ // Find the ExplodedNode where the lvalue (the value of 'Ex')
+ // was computed. We need this for getting the location value.
+ const ExplodedNode *LVNode = N;
+ while (LVNode) {
+ if (Optional<PostStmt> P = LVNode->getLocation().getAs<PostStmt>()) {
+ if (P->getStmt() == Inner)
+ break;
+ }
+ LVNode = LVNode->getFirstPred();
+ }
+ assert(LVNode && "Unable to find the lvalue node.");
+ ProgramStateRef LVState = LVNode->getState();
+ SVal LVal = LVState->getSVal(Inner, LVNode->getLocationContext());
+
+ if (LVState->isNull(LVal).isConstrainedTrue()) {
+ // In case of C++ references, we want to differentiate between a null
+ // reference and reference to null pointer.
+ // If the LVal is null, check if we are dealing with null reference.
+ // For those, we want to track the location of the reference.
+ if (const MemRegion *RR = getLocationRegionIfReference(Inner, N))
+ R = RR;
+ } else {
+ R = LVState->getSVal(Inner, LVNode->getLocationContext()).getAsRegion();
+
+ // If this is a C++ reference to a null pointer, we are tracking the
+ // pointer. In additon, we should find the store at which the reference
+ // got initialized.
+ if (const MemRegion *RR = getLocationRegionIfReference(Inner, N)) {
+ if (Optional<KnownSVal> KV = LVal.getAs<KnownSVal>())
+ report.addVisitor(llvm::make_unique<FindLastStoreBRVisitor>(
+ *KV, RR, EnableNullFPSuppression));
+ }
+ }
+
+ if (R) {
+ // Mark both the variable region and its contents as interesting.
+ SVal V = LVState->getRawSVal(loc::MemRegionVal(R));
+
+ report.markInteresting(R);
+ report.markInteresting(V);
+ report.addVisitor(llvm::make_unique<UndefOrNullArgVisitor>(R));
+
+ // If the contents are symbolic, find out when they became null.
+ if (V.getAsLocSymbol(/*IncludeBaseRegions*/ true))
+ report.addVisitor(llvm::make_unique<TrackConstraintBRVisitor>(
+ V.castAs<DefinedSVal>(), false));
+
+ // Add visitor, which will suppress inline defensive checks.
+ if (Optional<DefinedSVal> DV = V.getAs<DefinedSVal>()) {
+ if (!DV->isZeroConstant() && LVState->isNull(*DV).isConstrainedTrue() &&
+ EnableNullFPSuppression) {
+ report.addVisitor(
+ llvm::make_unique<SuppressInlineDefensiveChecksVisitor>(*DV,
+ LVNode));
+ }
+ }
+
+ if (Optional<KnownSVal> KV = V.getAs<KnownSVal>())
+ report.addVisitor(llvm::make_unique<FindLastStoreBRVisitor>(
+ *KV, R, EnableNullFPSuppression));
+ return true;
+ }
+ }
+
+ // If the expression is not an "lvalue expression", we can still
+ // track the constraints on its contents.
+ SVal V = state->getSValAsScalarOrLoc(S, N->getLocationContext());
+
+ // If the value came from an inlined function call, we should at least make
+ // sure that function isn't pruned in our output.
+ if (const Expr *E = dyn_cast<Expr>(S))
+ S = E->IgnoreParenCasts();
+
+ ReturnVisitor::addVisitorIfNecessary(N, S, report, EnableNullFPSuppression);
+
+ // Uncomment this to find cases where we aren't properly getting the
+ // base value that was dereferenced.
+ // assert(!V.isUnknownOrUndef());
+ // Is it a symbolic value?
+ if (Optional<loc::MemRegionVal> L = V.getAs<loc::MemRegionVal>()) {
+ // At this point we are dealing with the region's LValue.
+ // However, if the rvalue is a symbolic region, we should track it as well.
+ // Try to use the correct type when looking up the value.
+ SVal RVal;
+ if (const Expr *E = dyn_cast<Expr>(S))
+ RVal = state->getRawSVal(L.getValue(), E->getType());
+ else
+ RVal = state->getSVal(L->getRegion());
+
+ const MemRegion *RegionRVal = RVal.getAsRegion();
+ report.addVisitor(llvm::make_unique<UndefOrNullArgVisitor>(L->getRegion()));
+
+ if (RegionRVal && isa<SymbolicRegion>(RegionRVal)) {
+ report.markInteresting(RegionRVal);
+ report.addVisitor(llvm::make_unique<TrackConstraintBRVisitor>(
+ loc::MemRegionVal(RegionRVal), false));
+ }
+ }
+
+ return true;
+}
+
+const Expr *NilReceiverBRVisitor::getNilReceiver(const Stmt *S,
+ const ExplodedNode *N) {
+ const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(S);
+ if (!ME)
+ return nullptr;
+ if (const Expr *Receiver = ME->getInstanceReceiver()) {
+ ProgramStateRef state = N->getState();
+ SVal V = state->getSVal(Receiver, N->getLocationContext());
+ if (state->isNull(V).isConstrainedTrue())
+ return Receiver;
+ }
+ return nullptr;
+}
+
+PathDiagnosticPiece *NilReceiverBRVisitor::VisitNode(const ExplodedNode *N,
+ const ExplodedNode *PrevN,
+ BugReporterContext &BRC,
+ BugReport &BR) {
+ Optional<PreStmt> P = N->getLocationAs<PreStmt>();
+ if (!P)
+ return nullptr;
+
+ const Stmt *S = P->getStmt();
+ const Expr *Receiver = getNilReceiver(S, N);
+ if (!Receiver)
+ return nullptr;
+
+ llvm::SmallString<256> Buf;
+ llvm::raw_svector_ostream OS(Buf);
+
+ if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(S)) {
+ OS << "'";
+ ME->getSelector().print(OS);
+ OS << "' not called";
+ }
+ else {
+ OS << "No method is called";
+ }
+ OS << " because the receiver is nil";
+
+ // The receiver was nil, and hence the method was skipped.
+ // Register a BugReporterVisitor to issue a message telling us how
+ // the receiver was null.
+ bugreporter::trackNullOrUndefValue(N, Receiver, BR, /*IsArg*/ false,
+ /*EnableNullFPSuppression*/ false);
+ // Issue a message saying that the method was skipped.
+ PathDiagnosticLocation L(Receiver, BRC.getSourceManager(),
+ N->getLocationContext());
+ return new PathDiagnosticEventPiece(L, OS.str());
+}
+
+// Registers every VarDecl inside a Stmt with a last store visitor.
+void FindLastStoreBRVisitor::registerStatementVarDecls(BugReport &BR,
+ const Stmt *S,
+ bool EnableNullFPSuppression) {
+ const ExplodedNode *N = BR.getErrorNode();
+ std::deque<const Stmt *> WorkList;
+ WorkList.push_back(S);
+
+ while (!WorkList.empty()) {
+ const Stmt *Head = WorkList.front();
+ WorkList.pop_front();
+
+ ProgramStateRef state = N->getState();
+ ProgramStateManager &StateMgr = state->getStateManager();
+
+ if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Head)) {
+ if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
+ const VarRegion *R =
+ StateMgr.getRegionManager().getVarRegion(VD, N->getLocationContext());
+
+ // What did we load?
+ SVal V = state->getSVal(S, N->getLocationContext());
+
+ if (V.getAs<loc::ConcreteInt>() || V.getAs<nonloc::ConcreteInt>()) {
+ // Register a new visitor with the BugReport.
+ BR.addVisitor(llvm::make_unique<FindLastStoreBRVisitor>(
+ V.castAs<KnownSVal>(), R, EnableNullFPSuppression));
+ }
+ }
+ }
+
+ for (Stmt::const_child_iterator I = Head->child_begin();
+ I != Head->child_end(); ++I)
+ WorkList.push_back(*I);
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Visitor that tries to report interesting diagnostics from conditions.
+//===----------------------------------------------------------------------===//
+
+/// Return the tag associated with this visitor. This tag will be used
+/// to make all PathDiagnosticPieces created by this visitor.
+const char *ConditionBRVisitor::getTag() {
+ return "ConditionBRVisitor";
+}
+
+PathDiagnosticPiece *ConditionBRVisitor::VisitNode(const ExplodedNode *N,
+ const ExplodedNode *Prev,
+ BugReporterContext &BRC,
+ BugReport &BR) {
+ PathDiagnosticPiece *piece = VisitNodeImpl(N, Prev, BRC, BR);
+ if (piece) {
+ piece->setTag(getTag());
+ if (PathDiagnosticEventPiece *ev=dyn_cast<PathDiagnosticEventPiece>(piece))
+ ev->setPrunable(true, /* override */ false);
+ }
+ return piece;
+}
+
+PathDiagnosticPiece *ConditionBRVisitor::VisitNodeImpl(const ExplodedNode *N,
+ const ExplodedNode *Prev,
+ BugReporterContext &BRC,
+ BugReport &BR) {
+
+ ProgramPoint progPoint = N->getLocation();
+ ProgramStateRef CurrentState = N->getState();
+ ProgramStateRef PrevState = Prev->getState();
+
+ // Compare the GDMs of the state, because that is where constraints
+ // are managed. Note that ensure that we only look at nodes that
+ // were generated by the analyzer engine proper, not checkers.
+ if (CurrentState->getGDM().getRoot() ==
+ PrevState->getGDM().getRoot())
+ return nullptr;
+
+ // If an assumption was made on a branch, it should be caught
+ // here by looking at the state transition.
+ if (Optional<BlockEdge> BE = progPoint.getAs<BlockEdge>()) {
+ const CFGBlock *srcBlk = BE->getSrc();
+ if (const Stmt *term = srcBlk->getTerminator())
+ return VisitTerminator(term, N, srcBlk, BE->getDst(), BR, BRC);
+ return nullptr;
+ }
+
+ if (Optional<PostStmt> PS = progPoint.getAs<PostStmt>()) {
+ // FIXME: Assuming that BugReporter is a GRBugReporter is a layering
+ // violation.
+ const std::pair<const ProgramPointTag *, const ProgramPointTag *> &tags =
+ cast<GRBugReporter>(BRC.getBugReporter()).
+ getEngine().geteagerlyAssumeBinOpBifurcationTags();
+
+ const ProgramPointTag *tag = PS->getTag();
+ if (tag == tags.first)
+ return VisitTrueTest(cast<Expr>(PS->getStmt()), true,
+ BRC, BR, N);
+ if (tag == tags.second)
+ return VisitTrueTest(cast<Expr>(PS->getStmt()), false,
+ BRC, BR, N);
+
+ return nullptr;
+ }
+
+ return nullptr;
+}
+
+PathDiagnosticPiece *
+ConditionBRVisitor::VisitTerminator(const Stmt *Term,
+ const ExplodedNode *N,
+ const CFGBlock *srcBlk,
+ const CFGBlock *dstBlk,
+ BugReport &R,
+ BugReporterContext &BRC) {
+ const Expr *Cond = nullptr;
+
+ switch (Term->getStmtClass()) {
+ default:
+ return nullptr;
+ case Stmt::IfStmtClass:
+ Cond = cast<IfStmt>(Term)->getCond();
+ break;
+ case Stmt::ConditionalOperatorClass:
+ Cond = cast<ConditionalOperator>(Term)->getCond();
+ break;
+ }
+
+ assert(Cond);
+ assert(srcBlk->succ_size() == 2);
+ const bool tookTrue = *(srcBlk->succ_begin()) == dstBlk;
+ return VisitTrueTest(Cond, tookTrue, BRC, R, N);
+}
+
+PathDiagnosticPiece *
+ConditionBRVisitor::VisitTrueTest(const Expr *Cond,
+ bool tookTrue,
+ BugReporterContext &BRC,
+ BugReport &R,
+ const ExplodedNode *N) {
+
+ const Expr *Ex = Cond;
+
+ while (true) {
+ Ex = Ex->IgnoreParenCasts();
+ switch (Ex->getStmtClass()) {
+ default:
+ return nullptr;
+ case Stmt::BinaryOperatorClass:
+ return VisitTrueTest(Cond, cast<BinaryOperator>(Ex), tookTrue, BRC,
+ R, N);
+ case Stmt::DeclRefExprClass:
+ return VisitTrueTest(Cond, cast<DeclRefExpr>(Ex), tookTrue, BRC,
+ R, N);
+ case Stmt::UnaryOperatorClass: {
+ const UnaryOperator *UO = cast<UnaryOperator>(Ex);
+ if (UO->getOpcode() == UO_LNot) {
+ tookTrue = !tookTrue;
+ Ex = UO->getSubExpr();
+ continue;
+ }
+ return nullptr;
+ }
+ }
+ }
+}
+
+bool ConditionBRVisitor::patternMatch(const Expr *Ex, raw_ostream &Out,
+ BugReporterContext &BRC,
+ BugReport &report,
+ const ExplodedNode *N,
+ Optional<bool> &prunable) {
+ const Expr *OriginalExpr = Ex;
+ Ex = Ex->IgnoreParenCasts();
+
+ if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Ex)) {
+ const bool quotes = isa<VarDecl>(DR->getDecl());
+ if (quotes) {
+ Out << '\'';
+ const LocationContext *LCtx = N->getLocationContext();
+ const ProgramState *state = N->getState().get();
+ if (const MemRegion *R = state->getLValue(cast<VarDecl>(DR->getDecl()),
+ LCtx).getAsRegion()) {
+ if (report.isInteresting(R))
+ prunable = false;
+ else {
+ const ProgramState *state = N->getState().get();
+ SVal V = state->getSVal(R);
+ if (report.isInteresting(V))
+ prunable = false;
+ }
+ }
+ }
+ Out << DR->getDecl()->getDeclName().getAsString();
+ if (quotes)
+ Out << '\'';
+ return quotes;
+ }
+
+ if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(Ex)) {
+ QualType OriginalTy = OriginalExpr->getType();
+ if (OriginalTy->isPointerType()) {
+ if (IL->getValue() == 0) {
+ Out << "null";
+ return false;
+ }
+ }
+ else if (OriginalTy->isObjCObjectPointerType()) {
+ if (IL->getValue() == 0) {
+ Out << "nil";
+ return false;
+ }
+ }
+
+ Out << IL->getValue();
+ return false;
+ }
+
+ return false;
+}
+
+PathDiagnosticPiece *
+ConditionBRVisitor::VisitTrueTest(const Expr *Cond,
+ const BinaryOperator *BExpr,
+ const bool tookTrue,
+ BugReporterContext &BRC,
+ BugReport &R,
+ const ExplodedNode *N) {
+
+ bool shouldInvert = false;
+ Optional<bool> shouldPrune;
+
+ SmallString<128> LhsString, RhsString;
+ {
+ llvm::raw_svector_ostream OutLHS(LhsString), OutRHS(RhsString);
+ const bool isVarLHS = patternMatch(BExpr->getLHS(), OutLHS, BRC, R, N,
+ shouldPrune);
+ const bool isVarRHS = patternMatch(BExpr->getRHS(), OutRHS, BRC, R, N,
+ shouldPrune);
+
+ shouldInvert = !isVarLHS && isVarRHS;
+ }
+
+ BinaryOperator::Opcode Op = BExpr->getOpcode();
+
+ if (BinaryOperator::isAssignmentOp(Op)) {
+ // For assignment operators, all that we care about is that the LHS
+ // evaluates to "true" or "false".
+ return VisitConditionVariable(LhsString, BExpr->getLHS(), tookTrue,
+ BRC, R, N);
+ }
+
+ // For non-assignment operations, we require that we can understand
+ // both the LHS and RHS.
+ if (LhsString.empty() || RhsString.empty() ||
+ !BinaryOperator::isComparisonOp(Op))
+ return nullptr;
+
+ // Should we invert the strings if the LHS is not a variable name?
+ SmallString<256> buf;
+ llvm::raw_svector_ostream Out(buf);
+ Out << "Assuming " << (shouldInvert ? RhsString : LhsString) << " is ";
+
+ // Do we need to invert the opcode?
+ if (shouldInvert)
+ switch (Op) {
+ default: break;
+ case BO_LT: Op = BO_GT; break;
+ case BO_GT: Op = BO_LT; break;
+ case BO_LE: Op = BO_GE; break;
+ case BO_GE: Op = BO_LE; break;
+ }
+
+ if (!tookTrue)
+ switch (Op) {
+ case BO_EQ: Op = BO_NE; break;
+ case BO_NE: Op = BO_EQ; break;
+ case BO_LT: Op = BO_GE; break;
+ case BO_GT: Op = BO_LE; break;
+ case BO_LE: Op = BO_GT; break;
+ case BO_GE: Op = BO_LT; break;
+ default:
+ return nullptr;
+ }
+
+ switch (Op) {
+ case BO_EQ:
+ Out << "equal to ";
+ break;
+ case BO_NE:
+ Out << "not equal to ";
+ break;
+ default:
+ Out << BinaryOperator::getOpcodeStr(Op) << ' ';
+ break;
+ }
+
+ Out << (shouldInvert ? LhsString : RhsString);
+ const LocationContext *LCtx = N->getLocationContext();
+ PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx);
+ PathDiagnosticEventPiece *event =
+ new PathDiagnosticEventPiece(Loc, Out.str());
+ if (shouldPrune.hasValue())
+ event->setPrunable(shouldPrune.getValue());
+ return event;
+}
+
+PathDiagnosticPiece *
+ConditionBRVisitor::VisitConditionVariable(StringRef LhsString,
+ const Expr *CondVarExpr,
+ const bool tookTrue,
+ BugReporterContext &BRC,
+ BugReport &report,
+ const ExplodedNode *N) {
+ // FIXME: If there's already a constraint tracker for this variable,
+ // we shouldn't emit anything here (c.f. the double note in
+ // test/Analysis/inlining/path-notes.c)
+ SmallString<256> buf;
+ llvm::raw_svector_ostream Out(buf);
+ Out << "Assuming " << LhsString << " is ";
+
+ QualType Ty = CondVarExpr->getType();
+
+ if (Ty->isPointerType())
+ Out << (tookTrue ? "not null" : "null");
+ else if (Ty->isObjCObjectPointerType())
+ Out << (tookTrue ? "not nil" : "nil");
+ else if (Ty->isBooleanType())
+ Out << (tookTrue ? "true" : "false");
+ else if (Ty->isIntegralOrEnumerationType())
+ Out << (tookTrue ? "non-zero" : "zero");
+ else
+ return nullptr;
+
+ const LocationContext *LCtx = N->getLocationContext();
+ PathDiagnosticLocation Loc(CondVarExpr, BRC.getSourceManager(), LCtx);
+ PathDiagnosticEventPiece *event =
+ new PathDiagnosticEventPiece(Loc, Out.str());
+
+ if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(CondVarExpr)) {
+ if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
+ const ProgramState *state = N->getState().get();
+ if (const MemRegion *R = state->getLValue(VD, LCtx).getAsRegion()) {
+ if (report.isInteresting(R))
+ event->setPrunable(false);
+ }
+ }
+ }
+
+ return event;
+}
+
+PathDiagnosticPiece *
+ConditionBRVisitor::VisitTrueTest(const Expr *Cond,
+ const DeclRefExpr *DR,
+ const bool tookTrue,
+ BugReporterContext &BRC,
+ BugReport &report,
+ const ExplodedNode *N) {
+
+ const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
+ if (!VD)
+ return nullptr;
+
+ SmallString<256> Buf;
+ llvm::raw_svector_ostream Out(Buf);
+
+ Out << "Assuming '" << VD->getDeclName() << "' is ";
+
+ QualType VDTy = VD->getType();
+
+ if (VDTy->isPointerType())
+ Out << (tookTrue ? "non-null" : "null");
+ else if (VDTy->isObjCObjectPointerType())
+ Out << (tookTrue ? "non-nil" : "nil");
+ else if (VDTy->isScalarType())
+ Out << (tookTrue ? "not equal to 0" : "0");
+ else
+ return nullptr;
+
+ const LocationContext *LCtx = N->getLocationContext();
+ PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx);
+ PathDiagnosticEventPiece *event =
+ new PathDiagnosticEventPiece(Loc, Out.str());
+
+ const ProgramState *state = N->getState().get();
+ if (const MemRegion *R = state->getLValue(VD, LCtx).getAsRegion()) {
+ if (report.isInteresting(R))
+ event->setPrunable(false);
+ else {
+ SVal V = state->getSVal(R);
+ if (report.isInteresting(V))
+ event->setPrunable(false);
+ }
+ }
+ return event;
+}
+
+
+// FIXME: Copied from ExprEngineCallAndReturn.cpp.
+static bool isInStdNamespace(const Decl *D) {
+ const DeclContext *DC = D->getDeclContext()->getEnclosingNamespaceContext();
+ const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC);
+ if (!ND)
+ return false;
+
+ while (const NamespaceDecl *Parent = dyn_cast<NamespaceDecl>(ND->getParent()))
+ ND = Parent;
+
+ return ND->isStdNamespace();
+}
+
+std::unique_ptr<PathDiagnosticPiece>
+LikelyFalsePositiveSuppressionBRVisitor::getEndPath(BugReporterContext &BRC,
+ const ExplodedNode *N,
+ BugReport &BR) {
+ // Here we suppress false positives coming from system headers. This list is
+ // based on known issues.
+ ExprEngine &Eng = BRC.getBugReporter().getEngine();
+ AnalyzerOptions &Options = Eng.getAnalysisManager().options;
+ const Decl *D = N->getLocationContext()->getDecl();
+
+ if (isInStdNamespace(D)) {
+ // Skip reports within the 'std' namespace. Although these can sometimes be
+ // the user's fault, we currently don't report them very well, and
+ // Note that this will not help for any other data structure libraries, like
+ // TR1, Boost, or llvm/ADT.
+ if (Options.shouldSuppressFromCXXStandardLibrary()) {
+ BR.markInvalid(getTag(), nullptr);
+ return nullptr;
+
+ } else {
+ // If the the complete 'std' suppression is not enabled, suppress reports
+ // from the 'std' namespace that are known to produce false positives.
+
+ // The analyzer issues a false use-after-free when std::list::pop_front
+ // or std::list::pop_back are called multiple times because we cannot
+ // reason about the internal invariants of the datastructure.
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
+ const CXXRecordDecl *CD = MD->getParent();
+ if (CD->getName() == "list") {
+ BR.markInvalid(getTag(), nullptr);
+ return nullptr;
+ }
+ }
+
+ // The analyzer issues a false positive on
+ // std::basic_string<uint8_t> v; v.push_back(1);
+ // and
+ // std::u16string s; s += u'a';
+ // because we cannot reason about the internal invariants of the
+ // datastructure.
+ for (const LocationContext *LCtx = N->getLocationContext(); LCtx;
+ LCtx = LCtx->getParent()) {
+ const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LCtx->getDecl());
+ if (!MD)
+ continue;
+
+ const CXXRecordDecl *CD = MD->getParent();
+ if (CD->getName() == "basic_string") {
+ BR.markInvalid(getTag(), nullptr);
+ return nullptr;
+ }
+ }
+ }
+ }
+
+ // Skip reports within the sys/queue.h macros as we do not have the ability to
+ // reason about data structure shapes.
+ SourceManager &SM = BRC.getSourceManager();
+ FullSourceLoc Loc = BR.getLocation(SM).asLocation();
+ while (Loc.isMacroID()) {
+ Loc = Loc.getSpellingLoc();
+ if (SM.getFilename(Loc).endswith("sys/queue.h")) {
+ BR.markInvalid(getTag(), nullptr);
+ return nullptr;
+ }
+ }
+
+ return nullptr;
+}
+
+PathDiagnosticPiece *
+UndefOrNullArgVisitor::VisitNode(const ExplodedNode *N,
+ const ExplodedNode *PrevN,
+ BugReporterContext &BRC,
+ BugReport &BR) {
+
+ ProgramStateRef State = N->getState();
+ ProgramPoint ProgLoc = N->getLocation();
+
+ // We are only interested in visiting CallEnter nodes.
+ Optional<CallEnter> CEnter = ProgLoc.getAs<CallEnter>();
+ if (!CEnter)
+ return nullptr;
+
+ // Check if one of the arguments is the region the visitor is tracking.
+ CallEventManager &CEMgr = BRC.getStateManager().getCallEventManager();
+ CallEventRef<> Call = CEMgr.getCaller(CEnter->getCalleeContext(), State);
+ unsigned Idx = 0;
+ ArrayRef<ParmVarDecl*> parms = Call->parameters();
+
+ for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end();
+ I != E; ++I, ++Idx) {
+ const MemRegion *ArgReg = Call->getArgSVal(Idx).getAsRegion();
+
+ // Are we tracking the argument or its subregion?
+ if ( !ArgReg || (ArgReg != R && !R->isSubRegionOf(ArgReg->StripCasts())))
+ continue;
+
+ // Check the function parameter type.
+ const ParmVarDecl *ParamDecl = *I;
+ assert(ParamDecl && "Formal parameter has no decl?");
+ QualType T = ParamDecl->getType();
+
+ if (!(T->isAnyPointerType() || T->isReferenceType())) {
+ // Function can only change the value passed in by address.
+ continue;
+ }
+
+ // If it is a const pointer value, the function does not intend to
+ // change the value.
+ if (T->getPointeeType().isConstQualified())
+ continue;
+
+ // Mark the call site (LocationContext) as interesting if the value of the
+ // argument is undefined or '0'/'NULL'.
+ SVal BoundVal = State->getSVal(R);
+ if (BoundVal.isUndef() || BoundVal.isZeroConstant()) {
+ BR.markInteresting(CEnter->getCalleeContext());
+ return nullptr;
+ }
+ }
+ return nullptr;
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp
new file mode 100644
index 0000000..f673544
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp
@@ -0,0 +1,980 @@
+//===- Calls.cpp - Wrapper for all function and method calls ------*- C++ -*--//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file This file defines CallEvent and its subclasses, which represent path-
+/// sensitive instances of different kinds of function and method calls
+/// (C, C++, and Objective-C).
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
+#include "clang/AST/ParentMap.h"
+#include "clang/Analysis/ProgramPoint.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+
+QualType CallEvent::getResultType() const {
+ const Expr *E = getOriginExpr();
+ assert(E && "Calls without origin expressions do not have results");
+ QualType ResultTy = E->getType();
+
+ ASTContext &Ctx = getState()->getStateManager().getContext();
+
+ // A function that returns a reference to 'int' will have a result type
+ // of simply 'int'. Check the origin expr's value kind to recover the
+ // proper type.
+ switch (E->getValueKind()) {
+ case VK_LValue:
+ ResultTy = Ctx.getLValueReferenceType(ResultTy);
+ break;
+ case VK_XValue:
+ ResultTy = Ctx.getRValueReferenceType(ResultTy);
+ break;
+ case VK_RValue:
+ // No adjustment is necessary.
+ break;
+ }
+
+ return ResultTy;
+}
+
+static bool isCallbackArg(SVal V, QualType T) {
+ // If the parameter is 0, it's harmless.
+ if (V.isZeroConstant())
+ return false;
+
+ // If a parameter is a block or a callback, assume it can modify pointer.
+ if (T->isBlockPointerType() ||
+ T->isFunctionPointerType() ||
+ T->isObjCSelType())
+ return true;
+
+ // Check if a callback is passed inside a struct (for both, struct passed by
+ // reference and by value). Dig just one level into the struct for now.
+
+ if (T->isAnyPointerType() || T->isReferenceType())
+ T = T->getPointeeType();
+
+ if (const RecordType *RT = T->getAsStructureType()) {
+ const RecordDecl *RD = RT->getDecl();
+ for (const auto *I : RD->fields()) {
+ QualType FieldT = I->getType();
+ if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
+ return true;
+ }
+ }
+
+ return false;
+}
+
+bool CallEvent::hasNonZeroCallbackArg() const {
+ unsigned NumOfArgs = getNumArgs();
+
+ // If calling using a function pointer, assume the function does not
+ // have a callback. TODO: We could check the types of the arguments here.
+ if (!getDecl())
+ return false;
+
+ unsigned Idx = 0;
+ for (CallEvent::param_type_iterator I = param_type_begin(),
+ E = param_type_end();
+ I != E && Idx < NumOfArgs; ++I, ++Idx) {
+ if (NumOfArgs <= Idx)
+ break;
+
+ if (isCallbackArg(getArgSVal(Idx), *I))
+ return true;
+ }
+
+ return false;
+}
+
+bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
+ const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
+ if (!FD)
+ return false;
+
+ return CheckerContext::isCLibraryFunction(FD, FunctionName);
+}
+
+/// \brief Returns true if a type is a pointer-to-const or reference-to-const
+/// with no further indirection.
+static bool isPointerToConst(QualType Ty) {
+ QualType PointeeTy = Ty->getPointeeType();
+ if (PointeeTy == QualType())
+ return false;
+ if (!PointeeTy.isConstQualified())
+ return false;
+ if (PointeeTy->isAnyPointerType())
+ return false;
+ return true;
+}
+
+// Try to retrieve the function declaration and find the function parameter
+// types which are pointers/references to a non-pointer const.
+// We will not invalidate the corresponding argument regions.
+static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
+ const CallEvent &Call) {
+ unsigned Idx = 0;
+ for (CallEvent::param_type_iterator I = Call.param_type_begin(),
+ E = Call.param_type_end();
+ I != E; ++I, ++Idx) {
+ if (isPointerToConst(*I))
+ PreserveArgs.insert(Idx);
+ }
+}
+
+ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
+ ProgramStateRef Orig) const {
+ ProgramStateRef Result = (Orig ? Orig : getState());
+
+ // Don't invalidate anything if the callee is marked pure/const.
+ if (const Decl *callee = getDecl())
+ if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>())
+ return Result;
+
+ SmallVector<SVal, 8> ValuesToInvalidate;
+ RegionAndSymbolInvalidationTraits ETraits;
+
+ getExtraInvalidatedValues(ValuesToInvalidate);
+
+ // Indexes of arguments whose values will be preserved by the call.
+ llvm::SmallSet<unsigned, 4> PreserveArgs;
+ if (!argumentsMayEscape())
+ findPtrToConstParams(PreserveArgs, *this);
+
+ for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
+ // Mark this region for invalidation. We batch invalidate regions
+ // below for efficiency.
+ if (PreserveArgs.count(Idx))
+ if (const MemRegion *MR = getArgSVal(Idx).getAsRegion())
+ ETraits.setTrait(MR->StripCasts(),
+ RegionAndSymbolInvalidationTraits::TK_PreserveContents);
+ // TODO: Factor this out + handle the lower level const pointers.
+
+ ValuesToInvalidate.push_back(getArgSVal(Idx));
+ }
+
+ // Invalidate designated regions using the batch invalidation API.
+ // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
+ // global variables.
+ return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
+ BlockCount, getLocationContext(),
+ /*CausedByPointerEscape*/ true,
+ /*Symbols=*/nullptr, this, &ETraits);
+}
+
+ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
+ const ProgramPointTag *Tag) const {
+ if (const Expr *E = getOriginExpr()) {
+ if (IsPreVisit)
+ return PreStmt(E, getLocationContext(), Tag);
+ return PostStmt(E, getLocationContext(), Tag);
+ }
+
+ const Decl *D = getDecl();
+ assert(D && "Cannot get a program point without a statement or decl");
+
+ SourceLocation Loc = getSourceRange().getBegin();
+ if (IsPreVisit)
+ return PreImplicitCall(D, Loc, getLocationContext(), Tag);
+ return PostImplicitCall(D, Loc, getLocationContext(), Tag);
+}
+
+SVal CallEvent::getArgSVal(unsigned Index) const {
+ const Expr *ArgE = getArgExpr(Index);
+ if (!ArgE)
+ return UnknownVal();
+ return getSVal(ArgE);
+}
+
+SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
+ const Expr *ArgE = getArgExpr(Index);
+ if (!ArgE)
+ return SourceRange();
+ return ArgE->getSourceRange();
+}
+
+SVal CallEvent::getReturnValue() const {
+ const Expr *E = getOriginExpr();
+ if (!E)
+ return UndefinedVal();
+ return getSVal(E);
+}
+
+LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); }
+
+void CallEvent::dump(raw_ostream &Out) const {
+ ASTContext &Ctx = getState()->getStateManager().getContext();
+ if (const Expr *E = getOriginExpr()) {
+ E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
+ Out << "\n";
+ return;
+ }
+
+ if (const Decl *D = getDecl()) {
+ Out << "Call to ";
+ D->print(Out, Ctx.getPrintingPolicy());
+ return;
+ }
+
+ // FIXME: a string representation of the kind would be nice.
+ Out << "Unknown call (type " << getKind() << ")";
+}
+
+
+bool CallEvent::isCallStmt(const Stmt *S) {
+ return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S)
+ || isa<CXXConstructExpr>(S)
+ || isa<CXXNewExpr>(S);
+}
+
+QualType CallEvent::getDeclaredResultType(const Decl *D) {
+ assert(D);
+ if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(D))
+ return FD->getReturnType();
+ if (const ObjCMethodDecl* MD = dyn_cast<ObjCMethodDecl>(D))
+ return MD->getReturnType();
+ if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
+ // Blocks are difficult because the return type may not be stored in the
+ // BlockDecl itself. The AST should probably be enhanced, but for now we
+ // just do what we can.
+ // If the block is declared without an explicit argument list, the
+ // signature-as-written just includes the return type, not the entire
+ // function type.
+ // FIXME: All blocks should have signatures-as-written, even if the return
+ // type is inferred. (That's signified with a dependent result type.)
+ if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
+ QualType Ty = TSI->getType();
+ if (const FunctionType *FT = Ty->getAs<FunctionType>())
+ Ty = FT->getReturnType();
+ if (!Ty->isDependentType())
+ return Ty;
+ }
+
+ return QualType();
+ }
+
+ llvm_unreachable("unknown callable kind");
+}
+
+bool CallEvent::isVariadic(const Decl *D) {
+ assert(D);
+
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
+ return FD->isVariadic();
+ if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
+ return MD->isVariadic();
+ if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
+ return BD->isVariadic();
+
+ llvm_unreachable("unknown callable kind");
+}
+
+static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
+ CallEvent::BindingsTy &Bindings,
+ SValBuilder &SVB,
+ const CallEvent &Call,
+ ArrayRef<ParmVarDecl*> parameters) {
+ MemRegionManager &MRMgr = SVB.getRegionManager();
+
+ // If the function has fewer parameters than the call has arguments, we simply
+ // do not bind any values to them.
+ unsigned NumArgs = Call.getNumArgs();
+ unsigned Idx = 0;
+ ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
+ for (; I != E && Idx < NumArgs; ++I, ++Idx) {
+ const ParmVarDecl *ParamDecl = *I;
+ assert(ParamDecl && "Formal parameter has no decl?");
+
+ SVal ArgVal = Call.getArgSVal(Idx);
+ if (!ArgVal.isUnknown()) {
+ Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx));
+ Bindings.push_back(std::make_pair(ParamLoc, ArgVal));
+ }
+ }
+
+ // FIXME: Variadic arguments are not handled at all right now.
+}
+
+ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
+ const FunctionDecl *D = getDecl();
+ if (!D)
+ return None;
+ return D->parameters();
+}
+
+void AnyFunctionCall::getInitialStackFrameContents(
+ const StackFrameContext *CalleeCtx,
+ BindingsTy &Bindings) const {
+ const FunctionDecl *D = cast<FunctionDecl>(CalleeCtx->getDecl());
+ SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
+ addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
+ D->parameters());
+}
+
+bool AnyFunctionCall::argumentsMayEscape() const {
+ if (hasNonZeroCallbackArg())
+ return true;
+
+ const FunctionDecl *D = getDecl();
+ if (!D)
+ return true;
+
+ const IdentifierInfo *II = D->getIdentifier();
+ if (!II)
+ return false;
+
+ // This set of "escaping" APIs is
+
+ // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
+ // value into thread local storage. The value can later be retrieved with
+ // 'void *ptheread_getspecific(pthread_key)'. So even thought the
+ // parameter is 'const void *', the region escapes through the call.
+ if (II->isStr("pthread_setspecific"))
+ return true;
+
+ // - xpc_connection_set_context stores a value which can be retrieved later
+ // with xpc_connection_get_context.
+ if (II->isStr("xpc_connection_set_context"))
+ return true;
+
+ // - funopen - sets a buffer for future IO calls.
+ if (II->isStr("funopen"))
+ return true;
+
+ StringRef FName = II->getName();
+
+ // - CoreFoundation functions that end with "NoCopy" can free a passed-in
+ // buffer even if it is const.
+ if (FName.endswith("NoCopy"))
+ return true;
+
+ // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
+ // be deallocated by NSMapRemove.
+ if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
+ return true;
+
+ // - Many CF containers allow objects to escape through custom
+ // allocators/deallocators upon container construction. (PR12101)
+ if (FName.startswith("CF") || FName.startswith("CG")) {
+ return StrInStrNoCase(FName, "InsertValue") != StringRef::npos ||
+ StrInStrNoCase(FName, "AddValue") != StringRef::npos ||
+ StrInStrNoCase(FName, "SetValue") != StringRef::npos ||
+ StrInStrNoCase(FName, "WithData") != StringRef::npos ||
+ StrInStrNoCase(FName, "AppendValue") != StringRef::npos ||
+ StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
+ }
+
+ return false;
+}
+
+
+const FunctionDecl *SimpleFunctionCall::getDecl() const {
+ const FunctionDecl *D = getOriginExpr()->getDirectCallee();
+ if (D)
+ return D;
+
+ return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
+}
+
+
+const FunctionDecl *CXXInstanceCall::getDecl() const {
+ const CallExpr *CE = cast_or_null<CallExpr>(getOriginExpr());
+ if (!CE)
+ return AnyFunctionCall::getDecl();
+
+ const FunctionDecl *D = CE->getDirectCallee();
+ if (D)
+ return D;
+
+ return getSVal(CE->getCallee()).getAsFunctionDecl();
+}
+
+void CXXInstanceCall::getExtraInvalidatedValues(ValueList &Values) const {
+ Values.push_back(getCXXThisVal());
+}
+
+SVal CXXInstanceCall::getCXXThisVal() const {
+ const Expr *Base = getCXXThisExpr();
+ // FIXME: This doesn't handle an overloaded ->* operator.
+ if (!Base)
+ return UnknownVal();
+
+ SVal ThisVal = getSVal(Base);
+ assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>());
+ return ThisVal;
+}
+
+
+RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
+ // Do we have a decl at all?
+ const Decl *D = getDecl();
+ if (!D)
+ return RuntimeDefinition();
+
+ // If the method is non-virtual, we know we can inline it.
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
+ if (!MD->isVirtual())
+ return AnyFunctionCall::getRuntimeDefinition();
+
+ // Do we know the implicit 'this' object being called?
+ const MemRegion *R = getCXXThisVal().getAsRegion();
+ if (!R)
+ return RuntimeDefinition();
+
+ // Do we know anything about the type of 'this'?
+ DynamicTypeInfo DynType = getState()->getDynamicTypeInfo(R);
+ if (!DynType.isValid())
+ return RuntimeDefinition();
+
+ // Is the type a C++ class? (This is mostly a defensive check.)
+ QualType RegionType = DynType.getType()->getPointeeType();
+ assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");
+
+ const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
+ if (!RD || !RD->hasDefinition())
+ return RuntimeDefinition();
+
+ // Find the decl for this method in that class.
+ const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
+ if (!Result) {
+ // We might not even get the original statically-resolved method due to
+ // some particularly nasty casting (e.g. casts to sister classes).
+ // However, we should at least be able to search up and down our own class
+ // hierarchy, and some real bugs have been caught by checking this.
+ assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
+
+ // FIXME: This is checking that our DynamicTypeInfo is at least as good as
+ // the static type. However, because we currently don't update
+ // DynamicTypeInfo when an object is cast, we can't actually be sure the
+ // DynamicTypeInfo is up to date. This assert should be re-enabled once
+ // this is fixed. <rdar://problem/12287087>
+ //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
+
+ return RuntimeDefinition();
+ }
+
+ // Does the decl that we found have an implementation?
+ const FunctionDecl *Definition;
+ if (!Result->hasBody(Definition))
+ return RuntimeDefinition();
+
+ // We found a definition. If we're not sure that this devirtualization is
+ // actually what will happen at runtime, make sure to provide the region so
+ // that ExprEngine can decide what to do with it.
+ if (DynType.canBeASubClass())
+ return RuntimeDefinition(Definition, R->StripCasts());
+ return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr);
+}
+
+void CXXInstanceCall::getInitialStackFrameContents(
+ const StackFrameContext *CalleeCtx,
+ BindingsTy &Bindings) const {
+ AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
+
+ // Handle the binding of 'this' in the new stack frame.
+ SVal ThisVal = getCXXThisVal();
+ if (!ThisVal.isUnknown()) {
+ ProgramStateManager &StateMgr = getState()->getStateManager();
+ SValBuilder &SVB = StateMgr.getSValBuilder();
+
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
+ Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
+
+ // If we devirtualized to a different member function, we need to make sure
+ // we have the proper layering of CXXBaseObjectRegions.
+ if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
+ ASTContext &Ctx = SVB.getContext();
+ const CXXRecordDecl *Class = MD->getParent();
+ QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
+
+ // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
+ bool Failed;
+ ThisVal = StateMgr.getStoreManager().evalDynamicCast(ThisVal, Ty, Failed);
+ assert(!Failed && "Calling an incorrectly devirtualized method");
+ }
+
+ if (!ThisVal.isUnknown())
+ Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
+ }
+}
+
+
+
+const Expr *CXXMemberCall::getCXXThisExpr() const {
+ return getOriginExpr()->getImplicitObjectArgument();
+}
+
+RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
+ // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
+ // id-expression in the class member access expression is a qualified-id,
+ // that function is called. Otherwise, its final overrider in the dynamic type
+ // of the object expression is called.
+ if (const MemberExpr *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
+ if (ME->hasQualifier())
+ return AnyFunctionCall::getRuntimeDefinition();
+
+ return CXXInstanceCall::getRuntimeDefinition();
+}
+
+
+const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
+ return getOriginExpr()->getArg(0);
+}
+
+
+const BlockDataRegion *BlockCall::getBlockRegion() const {
+ const Expr *Callee = getOriginExpr()->getCallee();
+ const MemRegion *DataReg = getSVal(Callee).getAsRegion();
+
+ return dyn_cast_or_null<BlockDataRegion>(DataReg);
+}
+
+ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
+ const BlockDecl *D = getDecl();
+ if (!D)
+ return nullptr;
+ return D->parameters();
+}
+
+void BlockCall::getExtraInvalidatedValues(ValueList &Values) const {
+ // FIXME: This also needs to invalidate captured globals.
+ if (const MemRegion *R = getBlockRegion())
+ Values.push_back(loc::MemRegionVal(R));
+}
+
+void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
+ BindingsTy &Bindings) const {
+ const BlockDecl *D = cast<BlockDecl>(CalleeCtx->getDecl());
+ SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
+ addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
+ D->parameters());
+}
+
+
+SVal CXXConstructorCall::getCXXThisVal() const {
+ if (Data)
+ return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
+ return UnknownVal();
+}
+
+void CXXConstructorCall::getExtraInvalidatedValues(ValueList &Values) const {
+ if (Data)
+ Values.push_back(loc::MemRegionVal(static_cast<const MemRegion *>(Data)));
+}
+
+void CXXConstructorCall::getInitialStackFrameContents(
+ const StackFrameContext *CalleeCtx,
+ BindingsTy &Bindings) const {
+ AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
+
+ SVal ThisVal = getCXXThisVal();
+ if (!ThisVal.isUnknown()) {
+ SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
+ Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
+ Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
+ }
+}
+
+SVal CXXDestructorCall::getCXXThisVal() const {
+ if (Data)
+ return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
+ return UnknownVal();
+}
+
+RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
+ // Base destructors are always called non-virtually.
+ // Skip CXXInstanceCall's devirtualization logic in this case.
+ if (isBaseDestructor())
+ return AnyFunctionCall::getRuntimeDefinition();
+
+ return CXXInstanceCall::getRuntimeDefinition();
+}
+
+ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
+ const ObjCMethodDecl *D = getDecl();
+ if (!D)
+ return None;
+ return D->parameters();
+}
+
+void
+ObjCMethodCall::getExtraInvalidatedValues(ValueList &Values) const {
+ Values.push_back(getReceiverSVal());
+}
+
+SVal ObjCMethodCall::getSelfSVal() const {
+ const LocationContext *LCtx = getLocationContext();
+ const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl();
+ if (!SelfDecl)
+ return SVal();
+ return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx));
+}
+
+SVal ObjCMethodCall::getReceiverSVal() const {
+ // FIXME: Is this the best way to handle class receivers?
+ if (!isInstanceMessage())
+ return UnknownVal();
+
+ if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
+ return getSVal(RecE);
+
+ // An instance message with no expression means we are sending to super.
+ // In this case the object reference is the same as 'self'.
+ assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
+ SVal SelfVal = getSelfSVal();
+ assert(SelfVal.isValid() && "Calling super but not in ObjC method");
+ return SelfVal;
+}
+
+bool ObjCMethodCall::isReceiverSelfOrSuper() const {
+ if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
+ getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
+ return true;
+
+ if (!isInstanceMessage())
+ return false;
+
+ SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
+
+ return (RecVal == getSelfSVal());
+}
+
+SourceRange ObjCMethodCall::getSourceRange() const {
+ switch (getMessageKind()) {
+ case OCM_Message:
+ return getOriginExpr()->getSourceRange();
+ case OCM_PropertyAccess:
+ case OCM_Subscript:
+ return getContainingPseudoObjectExpr()->getSourceRange();
+ }
+ llvm_unreachable("unknown message kind");
+}
+
+typedef llvm::PointerIntPair<const PseudoObjectExpr *, 2> ObjCMessageDataTy;
+
+const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
+ assert(Data && "Lazy lookup not yet performed.");
+ assert(getMessageKind() != OCM_Message && "Explicit message send.");
+ return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
+}
+
+ObjCMessageKind ObjCMethodCall::getMessageKind() const {
+ if (!Data) {
+
+ // Find the parent, ignoring implicit casts.
+ ParentMap &PM = getLocationContext()->getParentMap();
+ const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());
+
+ // Check if parent is a PseudoObjectExpr.
+ if (const PseudoObjectExpr *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
+ const Expr *Syntactic = POE->getSyntacticForm();
+
+ // This handles the funny case of assigning to the result of a getter.
+ // This can happen if the getter returns a non-const reference.
+ if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Syntactic))
+ Syntactic = BO->getLHS();
+
+ ObjCMessageKind K;
+ switch (Syntactic->getStmtClass()) {
+ case Stmt::ObjCPropertyRefExprClass:
+ K = OCM_PropertyAccess;
+ break;
+ case Stmt::ObjCSubscriptRefExprClass:
+ K = OCM_Subscript;
+ break;
+ default:
+ // FIXME: Can this ever happen?
+ K = OCM_Message;
+ break;
+ }
+
+ if (K != OCM_Message) {
+ const_cast<ObjCMethodCall *>(this)->Data
+ = ObjCMessageDataTy(POE, K).getOpaqueValue();
+ assert(getMessageKind() == K);
+ return K;
+ }
+ }
+
+ const_cast<ObjCMethodCall *>(this)->Data
+ = ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
+ assert(getMessageKind() == OCM_Message);
+ return OCM_Message;
+ }
+
+ ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
+ if (!Info.getPointer())
+ return OCM_Message;
+ return static_cast<ObjCMessageKind>(Info.getInt());
+}
+
+
+bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
+ Selector Sel) const {
+ assert(IDecl);
+ const SourceManager &SM =
+ getState()->getStateManager().getContext().getSourceManager();
+
+ // If the class interface is declared inside the main file, assume it is not
+ // subcassed.
+ // TODO: It could actually be subclassed if the subclass is private as well.
+ // This is probably very rare.
+ SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
+ if (InterfLoc.isValid() && SM.isInMainFile(InterfLoc))
+ return false;
+
+ // Assume that property accessors are not overridden.
+ if (getMessageKind() == OCM_PropertyAccess)
+ return false;
+
+ // We assume that if the method is public (declared outside of main file) or
+ // has a parent which publicly declares the method, the method could be
+ // overridden in a subclass.
+
+ // Find the first declaration in the class hierarchy that declares
+ // the selector.
+ ObjCMethodDecl *D = nullptr;
+ while (true) {
+ D = IDecl->lookupMethod(Sel, true);
+
+ // Cannot find a public definition.
+ if (!D)
+ return false;
+
+ // If outside the main file,
+ if (D->getLocation().isValid() && !SM.isInMainFile(D->getLocation()))
+ return true;
+
+ if (D->isOverriding()) {
+ // Search in the superclass on the next iteration.
+ IDecl = D->getClassInterface();
+ if (!IDecl)
+ return false;
+
+ IDecl = IDecl->getSuperClass();
+ if (!IDecl)
+ return false;
+
+ continue;
+ }
+
+ return false;
+ };
+
+ llvm_unreachable("The while loop should always terminate.");
+}
+
+RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
+ const ObjCMessageExpr *E = getOriginExpr();
+ assert(E);
+ Selector Sel = E->getSelector();
+
+ if (E->isInstanceMessage()) {
+
+ // Find the the receiver type.
+ const ObjCObjectPointerType *ReceiverT = nullptr;
+ bool CanBeSubClassed = false;
+ QualType SupersType = E->getSuperType();
+ const MemRegion *Receiver = nullptr;
+
+ if (!SupersType.isNull()) {
+ // Super always means the type of immediate predecessor to the method
+ // where the call occurs.
+ ReceiverT = cast<ObjCObjectPointerType>(SupersType);
+ } else {
+ Receiver = getReceiverSVal().getAsRegion();
+ if (!Receiver)
+ return RuntimeDefinition();
+
+ DynamicTypeInfo DTI = getState()->getDynamicTypeInfo(Receiver);
+ QualType DynType = DTI.getType();
+ CanBeSubClassed = DTI.canBeASubClass();
+ ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType);
+
+ if (ReceiverT && CanBeSubClassed)
+ if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl())
+ if (!canBeOverridenInSubclass(IDecl, Sel))
+ CanBeSubClassed = false;
+ }
+
+ // Lookup the method implementation.
+ if (ReceiverT)
+ if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) {
+ // Repeatedly calling lookupPrivateMethod() is expensive, especially
+ // when in many cases it returns null. We cache the results so
+ // that repeated queries on the same ObjCIntefaceDecl and Selector
+ // don't incur the same cost. On some test cases, we can see the
+ // same query being issued thousands of times.
+ //
+ // NOTE: This cache is essentially a "global" variable, but it
+ // only gets lazily created when we get here. The value of the
+ // cache probably comes from it being global across ExprEngines,
+ // where the same queries may get issued. If we are worried about
+ // concurrency, or possibly loading/unloading ASTs, etc., we may
+ // need to revisit this someday. In terms of memory, this table
+ // stays around until clang quits, which also may be bad if we
+ // need to release memory.
+ typedef std::pair<const ObjCInterfaceDecl*, Selector>
+ PrivateMethodKey;
+ typedef llvm::DenseMap<PrivateMethodKey,
+ Optional<const ObjCMethodDecl *> >
+ PrivateMethodCache;
+
+ static PrivateMethodCache PMC;
+ Optional<const ObjCMethodDecl *> &Val = PMC[std::make_pair(IDecl, Sel)];
+
+ // Query lookupPrivateMethod() if the cache does not hit.
+ if (!Val.hasValue()) {
+ Val = IDecl->lookupPrivateMethod(Sel);
+
+ // If the method is a property accessor, we should try to "inline" it
+ // even if we don't actually have an implementation.
+ if (!*Val)
+ if (const ObjCMethodDecl *CompileTimeMD = E->getMethodDecl())
+ if (CompileTimeMD->isPropertyAccessor())
+ Val = IDecl->lookupInstanceMethod(Sel);
+ }
+
+ const ObjCMethodDecl *MD = Val.getValue();
+ if (CanBeSubClassed)
+ return RuntimeDefinition(MD, Receiver);
+ else
+ return RuntimeDefinition(MD, nullptr);
+ }
+
+ } else {
+ // This is a class method.
+ // If we have type info for the receiver class, we are calling via
+ // class name.
+ if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
+ // Find/Return the method implementation.
+ return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
+ }
+ }
+
+ return RuntimeDefinition();
+}
+
+bool ObjCMethodCall::argumentsMayEscape() const {
+ if (isInSystemHeader() && !isInstanceMessage()) {
+ Selector Sel = getSelector();
+ if (Sel.getNumArgs() == 1 &&
+ Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
+ return true;
+ }
+
+ return CallEvent::argumentsMayEscape();
+}
+
+void ObjCMethodCall::getInitialStackFrameContents(
+ const StackFrameContext *CalleeCtx,
+ BindingsTy &Bindings) const {
+ const ObjCMethodDecl *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
+ SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
+ addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
+ D->parameters());
+
+ SVal SelfVal = getReceiverSVal();
+ if (!SelfVal.isUnknown()) {
+ const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
+ MemRegionManager &MRMgr = SVB.getRegionManager();
+ Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
+ Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
+ }
+}
+
+CallEventRef<>
+CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
+ const LocationContext *LCtx) {
+ if (const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE))
+ return create<CXXMemberCall>(MCE, State, LCtx);
+
+ if (const CXXOperatorCallExpr *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
+ const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
+ if (MD->isInstance())
+ return create<CXXMemberOperatorCall>(OpCE, State, LCtx);
+
+ } else if (CE->getCallee()->getType()->isBlockPointerType()) {
+ return create<BlockCall>(CE, State, LCtx);
+ }
+
+ // Otherwise, it's a normal function call, static member function call, or
+ // something we can't reason about.
+ return create<SimpleFunctionCall>(CE, State, LCtx);
+}
+
+
+CallEventRef<>
+CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
+ ProgramStateRef State) {
+ const LocationContext *ParentCtx = CalleeCtx->getParent();
+ const LocationContext *CallerCtx = ParentCtx->getCurrentStackFrame();
+ assert(CallerCtx && "This should not be used for top-level stack frames");
+
+ const Stmt *CallSite = CalleeCtx->getCallSite();
+
+ if (CallSite) {
+ if (const CallExpr *CE = dyn_cast<CallExpr>(CallSite))
+ return getSimpleCall(CE, State, CallerCtx);
+
+ switch (CallSite->getStmtClass()) {
+ case Stmt::CXXConstructExprClass:
+ case Stmt::CXXTemporaryObjectExprClass: {
+ SValBuilder &SVB = State->getStateManager().getSValBuilder();
+ const CXXMethodDecl *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
+ Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
+ SVal ThisVal = State->getSVal(ThisPtr);
+
+ return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite),
+ ThisVal.getAsRegion(), State, CallerCtx);
+ }
+ case Stmt::CXXNewExprClass:
+ return getCXXAllocatorCall(cast<CXXNewExpr>(CallSite), State, CallerCtx);
+ case Stmt::ObjCMessageExprClass:
+ return getObjCMethodCall(cast<ObjCMessageExpr>(CallSite),
+ State, CallerCtx);
+ default:
+ llvm_unreachable("This is not an inlineable statement.");
+ }
+ }
+
+ // Fall back to the CFG. The only thing we haven't handled yet is
+ // destructors, though this could change in the future.
+ const CFGBlock *B = CalleeCtx->getCallSiteBlock();
+ CFGElement E = (*B)[CalleeCtx->getIndex()];
+ assert(E.getAs<CFGImplicitDtor>() &&
+ "All other CFG elements should have exprs");
+ assert(!E.getAs<CFGTemporaryDtor>() && "We don't handle temporaries yet");
+
+ SValBuilder &SVB = State->getStateManager().getSValBuilder();
+ const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
+ Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
+ SVal ThisVal = State->getSVal(ThisPtr);
+
+ const Stmt *Trigger;
+ if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>())
+ Trigger = AutoDtor->getTriggerStmt();
+ else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
+ Trigger = cast<Stmt>(DeleteDtor->getDeleteExpr());
+ else
+ Trigger = Dtor->getBody();
+
+ return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
+ E.getAs<CFGBaseDtor>().hasValue(), State,
+ CallerCtx);
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/Checker.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/Checker.cpp
new file mode 100644
index 0000000..2235211
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/Checker.cpp
@@ -0,0 +1,38 @@
+//== Checker.cpp - Registration mechanism for checkers -----------*- C++ -*--=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines Checker, used to create and register checkers.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+
+using namespace clang;
+using namespace ento;
+
+StringRef CheckerBase::getTagDescription() const {
+ return getCheckName().getName();
+}
+
+CheckName CheckerBase::getCheckName() const { return Name; }
+
+CheckerProgramPointTag::CheckerProgramPointTag(StringRef CheckerName,
+ StringRef Msg)
+ : SimpleProgramPointTag(CheckerName, Msg) {}
+
+CheckerProgramPointTag::CheckerProgramPointTag(const CheckerBase *Checker,
+ StringRef Msg)
+ : SimpleProgramPointTag(Checker->getCheckName().getName(), Msg) {}
+
+raw_ostream& clang::ento::operator<<(raw_ostream &Out,
+ const CheckerBase &Checker) {
+ Out << Checker.getCheckName().getName();
+ return Out;
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/CheckerContext.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/CheckerContext.cpp
new file mode 100644
index 0000000..6b22bf4
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/CheckerContext.cpp
@@ -0,0 +1,98 @@
+//== CheckerContext.cpp - Context info for path-sensitive checkers-----------=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines CheckerContext that provides contextual info for
+// path-sensitive checkers.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "clang/Basic/Builtins.h"
+#include "clang/Lex/Lexer.h"
+
+using namespace clang;
+using namespace ento;
+
+const FunctionDecl *CheckerContext::getCalleeDecl(const CallExpr *CE) const {
+ ProgramStateRef State = getState();
+ const Expr *Callee = CE->getCallee();
+ SVal L = State->getSVal(Callee, Pred->getLocationContext());
+ return L.getAsFunctionDecl();
+}
+
+StringRef CheckerContext::getCalleeName(const FunctionDecl *FunDecl) const {
+ if (!FunDecl)
+ return StringRef();
+ IdentifierInfo *funI = FunDecl->getIdentifier();
+ if (!funI)
+ return StringRef();
+ return funI->getName();
+}
+
+
+bool CheckerContext::isCLibraryFunction(const FunctionDecl *FD,
+ StringRef Name) {
+ // To avoid false positives (Ex: finding user defined functions with
+ // similar names), only perform fuzzy name matching when it's a builtin.
+ // Using a string compare is slow, we might want to switch on BuiltinID here.
+ unsigned BId = FD->getBuiltinID();
+ if (BId != 0) {
+ if (Name.empty())
+ return true;
+ StringRef BName = FD->getASTContext().BuiltinInfo.GetName(BId);
+ if (BName.find(Name) != StringRef::npos)
+ return true;
+ }
+
+ const IdentifierInfo *II = FD->getIdentifier();
+ // If this is a special C++ name without IdentifierInfo, it can't be a
+ // C library function.
+ if (!II)
+ return false;
+
+ // Look through 'extern "C"' and anything similar invented in the future.
+ const DeclContext *DC = FD->getDeclContext();
+ while (DC->isTransparentContext())
+ DC = DC->getParent();
+
+ // If this function is in a namespace, it is not a C library function.
+ if (!DC->isTranslationUnit())
+ return false;
+
+ // If this function is not externally visible, it is not a C library function.
+ // Note that we make an exception for inline functions, which may be
+ // declared in header files without external linkage.
+ if (!FD->isInlined() && !FD->isExternallyVisible())
+ return false;
+
+ if (Name.empty())
+ return true;
+
+ StringRef FName = II->getName();
+ if (FName.equals(Name))
+ return true;
+
+ if (FName.startswith("__inline") && (FName.find(Name) != StringRef::npos))
+ return true;
+
+ if (FName.startswith("__") && FName.endswith("_chk") &&
+ FName.find(Name) != StringRef::npos)
+ return true;
+
+ return false;
+}
+
+StringRef CheckerContext::getMacroNameOrSpelling(SourceLocation &Loc) {
+ if (Loc.isMacroID())
+ return Lexer::getImmediateMacroName(Loc, getSourceManager(),
+ getLangOpts());
+ SmallVector<char, 16> buf;
+ return Lexer::getSpelling(Loc, buf, getSourceManager(), getLangOpts());
+}
+
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/CheckerHelpers.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/CheckerHelpers.cpp
new file mode 100644
index 0000000..28df695
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/CheckerHelpers.cpp
@@ -0,0 +1,80 @@
+//===---- CheckerHelpers.cpp - Helper functions for checkers ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines several static functions for use in checkers.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h"
+#include "clang/AST/Expr.h"
+
+// Recursively find any substatements containing macros
+bool clang::ento::containsMacro(const Stmt *S) {
+ if (S->getLocStart().isMacroID())
+ return true;
+
+ if (S->getLocEnd().isMacroID())
+ return true;
+
+ for (Stmt::const_child_iterator I = S->child_begin(); I != S->child_end();
+ ++I)
+ if (const Stmt *child = *I)
+ if (containsMacro(child))
+ return true;
+
+ return false;
+}
+
+// Recursively find any substatements containing enum constants
+bool clang::ento::containsEnum(const Stmt *S) {
+ const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(S);
+
+ if (DR && isa<EnumConstantDecl>(DR->getDecl()))
+ return true;
+
+ for (Stmt::const_child_iterator I = S->child_begin(); I != S->child_end();
+ ++I)
+ if (const Stmt *child = *I)
+ if (containsEnum(child))
+ return true;
+
+ return false;
+}
+
+// Recursively find any substatements containing static vars
+bool clang::ento::containsStaticLocal(const Stmt *S) {
+ const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(S);
+
+ if (DR)
+ if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl()))
+ if (VD->isStaticLocal())
+ return true;
+
+ for (Stmt::const_child_iterator I = S->child_begin(); I != S->child_end();
+ ++I)
+ if (const Stmt *child = *I)
+ if (containsStaticLocal(child))
+ return true;
+
+ return false;
+}
+
+// Recursively find any substatements containing __builtin_offsetof
+bool clang::ento::containsBuiltinOffsetOf(const Stmt *S) {
+ if (isa<OffsetOfExpr>(S))
+ return true;
+
+ for (Stmt::const_child_iterator I = S->child_begin(); I != S->child_end();
+ ++I)
+ if (const Stmt *child = *I)
+ if (containsBuiltinOffsetOf(child))
+ return true;
+
+ return false;
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/CheckerManager.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/CheckerManager.cpp
new file mode 100644
index 0000000..2684cc7
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/CheckerManager.cpp
@@ -0,0 +1,713 @@
+//===--- CheckerManager.cpp - Static Analyzer Checker Manager -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Defines the Static Analyzer Checker Manager.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/AST/DeclBase.h"
+#include "clang/Analysis/ProgramPoint.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+
+using namespace clang;
+using namespace ento;
+
+bool CheckerManager::hasPathSensitiveCheckers() const {
+ return !StmtCheckers.empty() ||
+ !PreObjCMessageCheckers.empty() ||
+ !PostObjCMessageCheckers.empty() ||
+ !PreCallCheckers.empty() ||
+ !PostCallCheckers.empty() ||
+ !LocationCheckers.empty() ||
+ !BindCheckers.empty() ||
+ !EndAnalysisCheckers.empty() ||
+ !EndFunctionCheckers.empty() ||
+ !BranchConditionCheckers.empty() ||
+ !LiveSymbolsCheckers.empty() ||
+ !DeadSymbolsCheckers.empty() ||
+ !RegionChangesCheckers.empty() ||
+ !EvalAssumeCheckers.empty() ||
+ !EvalCallCheckers.empty();
+}
+
+void CheckerManager::finishedCheckerRegistration() {
+#ifndef NDEBUG
+ // Make sure that for every event that has listeners, there is at least
+ // one dispatcher registered for it.
+ for (llvm::DenseMap<EventTag, EventInfo>::iterator
+ I = Events.begin(), E = Events.end(); I != E; ++I)
+ assert(I->second.HasDispatcher && "No dispatcher registered for an event");
+#endif
+}
+
+//===----------------------------------------------------------------------===//
+// Functions for running checkers for AST traversing..
+//===----------------------------------------------------------------------===//
+
+void CheckerManager::runCheckersOnASTDecl(const Decl *D, AnalysisManager& mgr,
+ BugReporter &BR) {
+ assert(D);
+
+ unsigned DeclKind = D->getKind();
+ CachedDeclCheckers *checkers = nullptr;
+ CachedDeclCheckersMapTy::iterator CCI = CachedDeclCheckersMap.find(DeclKind);
+ if (CCI != CachedDeclCheckersMap.end()) {
+ checkers = &(CCI->second);
+ } else {
+ // Find the checkers that should run for this Decl and cache them.
+ checkers = &CachedDeclCheckersMap[DeclKind];
+ for (unsigned i = 0, e = DeclCheckers.size(); i != e; ++i) {
+ DeclCheckerInfo &info = DeclCheckers[i];
+ if (info.IsForDeclFn(D))
+ checkers->push_back(info.CheckFn);
+ }
+ }
+
+ assert(checkers);
+ for (CachedDeclCheckers::iterator
+ I = checkers->begin(), E = checkers->end(); I != E; ++I)
+ (*I)(D, mgr, BR);
+}
+
+void CheckerManager::runCheckersOnASTBody(const Decl *D, AnalysisManager& mgr,
+ BugReporter &BR) {
+ assert(D && D->hasBody());
+
+ for (unsigned i = 0, e = BodyCheckers.size(); i != e; ++i)
+ BodyCheckers[i](D, mgr, BR);
+}
+
+//===----------------------------------------------------------------------===//
+// Functions for running checkers for path-sensitive checking.
+//===----------------------------------------------------------------------===//
+
+template <typename CHECK_CTX>
+static void expandGraphWithCheckers(CHECK_CTX checkCtx,
+ ExplodedNodeSet &Dst,
+ const ExplodedNodeSet &Src) {
+ const NodeBuilderContext &BldrCtx = checkCtx.Eng.getBuilderContext();
+ if (Src.empty())
+ return;
+
+ typename CHECK_CTX::CheckersTy::const_iterator
+ I = checkCtx.checkers_begin(), E = checkCtx.checkers_end();
+ if (I == E) {
+ Dst.insert(Src);
+ return;
+ }
+
+ ExplodedNodeSet Tmp1, Tmp2;
+ const ExplodedNodeSet *PrevSet = &Src;
+
+ for (; I != E; ++I) {
+ ExplodedNodeSet *CurrSet = nullptr;
+ if (I+1 == E)
+ CurrSet = &Dst;
+ else {
+ CurrSet = (PrevSet == &Tmp1) ? &Tmp2 : &Tmp1;
+ CurrSet->clear();
+ }
+
+ NodeBuilder B(*PrevSet, *CurrSet, BldrCtx);
+ for (ExplodedNodeSet::iterator NI = PrevSet->begin(), NE = PrevSet->end();
+ NI != NE; ++NI) {
+ checkCtx.runChecker(*I, B, *NI);
+ }
+
+ // If all the produced transitions are sinks, stop.
+ if (CurrSet->empty())
+ return;
+
+ // Update which NodeSet is the current one.
+ PrevSet = CurrSet;
+ }
+}
+
+namespace {
+ struct CheckStmtContext {
+ typedef SmallVectorImpl<CheckerManager::CheckStmtFunc> CheckersTy;
+ bool IsPreVisit;
+ const CheckersTy &Checkers;
+ const Stmt *S;
+ ExprEngine &Eng;
+ bool WasInlined;
+
+ CheckersTy::const_iterator checkers_begin() { return Checkers.begin(); }
+ CheckersTy::const_iterator checkers_end() { return Checkers.end(); }
+
+ CheckStmtContext(bool isPreVisit, const CheckersTy &checkers,
+ const Stmt *s, ExprEngine &eng, bool wasInlined = false)
+ : IsPreVisit(isPreVisit), Checkers(checkers), S(s), Eng(eng),
+ WasInlined(wasInlined) {}
+
+ void runChecker(CheckerManager::CheckStmtFunc checkFn,
+ NodeBuilder &Bldr, ExplodedNode *Pred) {
+ // FIXME: Remove respondsToCallback from CheckerContext;
+ ProgramPoint::Kind K = IsPreVisit ? ProgramPoint::PreStmtKind :
+ ProgramPoint::PostStmtKind;
+ const ProgramPoint &L = ProgramPoint::getProgramPoint(S, K,
+ Pred->getLocationContext(), checkFn.Checker);
+ CheckerContext C(Bldr, Eng, Pred, L, WasInlined);
+ checkFn(S, C);
+ }
+ };
+}
+
+/// \brief Run checkers for visiting Stmts.
+void CheckerManager::runCheckersForStmt(bool isPreVisit,
+ ExplodedNodeSet &Dst,
+ const ExplodedNodeSet &Src,
+ const Stmt *S,
+ ExprEngine &Eng,
+ bool WasInlined) {
+ CheckStmtContext C(isPreVisit, getCachedStmtCheckersFor(S, isPreVisit),
+ S, Eng, WasInlined);
+ expandGraphWithCheckers(C, Dst, Src);
+}
+
+namespace {
+ struct CheckObjCMessageContext {
+ typedef std::vector<CheckerManager::CheckObjCMessageFunc> CheckersTy;
+ bool IsPreVisit, WasInlined;
+ const CheckersTy &Checkers;
+ const ObjCMethodCall &Msg;
+ ExprEngine &Eng;
+
+ CheckersTy::const_iterator checkers_begin() { return Checkers.begin(); }
+ CheckersTy::const_iterator checkers_end() { return Checkers.end(); }
+
+ CheckObjCMessageContext(bool isPreVisit, const CheckersTy &checkers,
+ const ObjCMethodCall &msg, ExprEngine &eng,
+ bool wasInlined)
+ : IsPreVisit(isPreVisit), WasInlined(wasInlined), Checkers(checkers),
+ Msg(msg), Eng(eng) { }
+
+ void runChecker(CheckerManager::CheckObjCMessageFunc checkFn,
+ NodeBuilder &Bldr, ExplodedNode *Pred) {
+ const ProgramPoint &L = Msg.getProgramPoint(IsPreVisit,checkFn.Checker);
+ CheckerContext C(Bldr, Eng, Pred, L, WasInlined);
+
+ checkFn(*Msg.cloneWithState<ObjCMethodCall>(Pred->getState()), C);
+ }
+ };
+}
+
+/// \brief Run checkers for visiting obj-c messages.
+void CheckerManager::runCheckersForObjCMessage(bool isPreVisit,
+ ExplodedNodeSet &Dst,
+ const ExplodedNodeSet &Src,
+ const ObjCMethodCall &msg,
+ ExprEngine &Eng,
+ bool WasInlined) {
+ CheckObjCMessageContext C(isPreVisit,
+ isPreVisit ? PreObjCMessageCheckers
+ : PostObjCMessageCheckers,
+ msg, Eng, WasInlined);
+ expandGraphWithCheckers(C, Dst, Src);
+}
+
+namespace {
+ // FIXME: This has all the same signatures as CheckObjCMessageContext.
+ // Is there a way we can merge the two?
+ struct CheckCallContext {
+ typedef std::vector<CheckerManager::CheckCallFunc> CheckersTy;
+ bool IsPreVisit, WasInlined;
+ const CheckersTy &Checkers;
+ const CallEvent &Call;
+ ExprEngine &Eng;
+
+ CheckersTy::const_iterator checkers_begin() { return Checkers.begin(); }
+ CheckersTy::const_iterator checkers_end() { return Checkers.end(); }
+
+ CheckCallContext(bool isPreVisit, const CheckersTy &checkers,
+ const CallEvent &call, ExprEngine &eng,
+ bool wasInlined)
+ : IsPreVisit(isPreVisit), WasInlined(wasInlined), Checkers(checkers),
+ Call(call), Eng(eng) { }
+
+ void runChecker(CheckerManager::CheckCallFunc checkFn,
+ NodeBuilder &Bldr, ExplodedNode *Pred) {
+ const ProgramPoint &L = Call.getProgramPoint(IsPreVisit,checkFn.Checker);
+ CheckerContext C(Bldr, Eng, Pred, L, WasInlined);
+
+ checkFn(*Call.cloneWithState(Pred->getState()), C);
+ }
+ };
+}
+
+/// \brief Run checkers for visiting an abstract call event.
+void CheckerManager::runCheckersForCallEvent(bool isPreVisit,
+ ExplodedNodeSet &Dst,
+ const ExplodedNodeSet &Src,
+ const CallEvent &Call,
+ ExprEngine &Eng,
+ bool WasInlined) {
+ CheckCallContext C(isPreVisit,
+ isPreVisit ? PreCallCheckers
+ : PostCallCheckers,
+ Call, Eng, WasInlined);
+ expandGraphWithCheckers(C, Dst, Src);
+}
+
+namespace {
+ struct CheckLocationContext {
+ typedef std::vector<CheckerManager::CheckLocationFunc> CheckersTy;
+ const CheckersTy &Checkers;
+ SVal Loc;
+ bool IsLoad;
+ const Stmt *NodeEx; /* Will become a CFGStmt */
+ const Stmt *BoundEx;
+ ExprEngine &Eng;
+
+ CheckersTy::const_iterator checkers_begin() { return Checkers.begin(); }
+ CheckersTy::const_iterator checkers_end() { return Checkers.end(); }
+
+ CheckLocationContext(const CheckersTy &checkers,
+ SVal loc, bool isLoad, const Stmt *NodeEx,
+ const Stmt *BoundEx,
+ ExprEngine &eng)
+ : Checkers(checkers), Loc(loc), IsLoad(isLoad), NodeEx(NodeEx),
+ BoundEx(BoundEx), Eng(eng) {}
+
+ void runChecker(CheckerManager::CheckLocationFunc checkFn,
+ NodeBuilder &Bldr, ExplodedNode *Pred) {
+ ProgramPoint::Kind K = IsLoad ? ProgramPoint::PreLoadKind :
+ ProgramPoint::PreStoreKind;
+ const ProgramPoint &L =
+ ProgramPoint::getProgramPoint(NodeEx, K,
+ Pred->getLocationContext(),
+ checkFn.Checker);
+ CheckerContext C(Bldr, Eng, Pred, L);
+ checkFn(Loc, IsLoad, BoundEx, C);
+ }
+ };
+}
+
+/// \brief Run checkers for load/store of a location.
+
+void CheckerManager::runCheckersForLocation(ExplodedNodeSet &Dst,
+ const ExplodedNodeSet &Src,
+ SVal location, bool isLoad,
+ const Stmt *NodeEx,
+ const Stmt *BoundEx,
+ ExprEngine &Eng) {
+ CheckLocationContext C(LocationCheckers, location, isLoad, NodeEx,
+ BoundEx, Eng);
+ expandGraphWithCheckers(C, Dst, Src);
+}
+
+namespace {
+ struct CheckBindContext {
+ typedef std::vector<CheckerManager::CheckBindFunc> CheckersTy;
+ const CheckersTy &Checkers;
+ SVal Loc;
+ SVal Val;
+ const Stmt *S;
+ ExprEngine &Eng;
+ const ProgramPoint &PP;
+
+ CheckersTy::const_iterator checkers_begin() { return Checkers.begin(); }
+ CheckersTy::const_iterator checkers_end() { return Checkers.end(); }
+
+ CheckBindContext(const CheckersTy &checkers,
+ SVal loc, SVal val, const Stmt *s, ExprEngine &eng,
+ const ProgramPoint &pp)
+ : Checkers(checkers), Loc(loc), Val(val), S(s), Eng(eng), PP(pp) {}
+
+ void runChecker(CheckerManager::CheckBindFunc checkFn,
+ NodeBuilder &Bldr, ExplodedNode *Pred) {
+ const ProgramPoint &L = PP.withTag(checkFn.Checker);
+ CheckerContext C(Bldr, Eng, Pred, L);
+
+ checkFn(Loc, Val, S, C);
+ }
+ };
+}
+
+/// \brief Run checkers for binding of a value to a location.
+void CheckerManager::runCheckersForBind(ExplodedNodeSet &Dst,
+ const ExplodedNodeSet &Src,
+ SVal location, SVal val,
+ const Stmt *S, ExprEngine &Eng,
+ const ProgramPoint &PP) {
+ CheckBindContext C(BindCheckers, location, val, S, Eng, PP);
+ expandGraphWithCheckers(C, Dst, Src);
+}
+
+void CheckerManager::runCheckersForEndAnalysis(ExplodedGraph &G,
+ BugReporter &BR,
+ ExprEngine &Eng) {
+ for (unsigned i = 0, e = EndAnalysisCheckers.size(); i != e; ++i)
+ EndAnalysisCheckers[i](G, BR, Eng);
+}
+
+/// \brief Run checkers for end of path.
+// Note, We do not chain the checker output (like in expandGraphWithCheckers)
+// for this callback since end of path nodes are expected to be final.
+void CheckerManager::runCheckersForEndFunction(NodeBuilderContext &BC,
+ ExplodedNodeSet &Dst,
+ ExplodedNode *Pred,
+ ExprEngine &Eng) {
+
+ // We define the builder outside of the loop bacause if at least one checkers
+ // creates a sucsessor for Pred, we do not need to generate an
+ // autotransition for it.
+ NodeBuilder Bldr(Pred, Dst, BC);
+ for (unsigned i = 0, e = EndFunctionCheckers.size(); i != e; ++i) {
+ CheckEndFunctionFunc checkFn = EndFunctionCheckers[i];
+
+ const ProgramPoint &L = BlockEntrance(BC.Block,
+ Pred->getLocationContext(),
+ checkFn.Checker);
+ CheckerContext C(Bldr, Eng, Pred, L);
+ checkFn(C);
+ }
+}
+
+namespace {
+ struct CheckBranchConditionContext {
+ typedef std::vector<CheckerManager::CheckBranchConditionFunc> CheckersTy;
+ const CheckersTy &Checkers;
+ const Stmt *Condition;
+ ExprEngine &Eng;
+
+ CheckersTy::const_iterator checkers_begin() { return Checkers.begin(); }
+ CheckersTy::const_iterator checkers_end() { return Checkers.end(); }
+
+ CheckBranchConditionContext(const CheckersTy &checkers,
+ const Stmt *Cond, ExprEngine &eng)
+ : Checkers(checkers), Condition(Cond), Eng(eng) {}
+
+ void runChecker(CheckerManager::CheckBranchConditionFunc checkFn,
+ NodeBuilder &Bldr, ExplodedNode *Pred) {
+ ProgramPoint L = PostCondition(Condition, Pred->getLocationContext(),
+ checkFn.Checker);
+ CheckerContext C(Bldr, Eng, Pred, L);
+ checkFn(Condition, C);
+ }
+ };
+}
+
+/// \brief Run checkers for branch condition.
+void CheckerManager::runCheckersForBranchCondition(const Stmt *Condition,
+ ExplodedNodeSet &Dst,
+ ExplodedNode *Pred,
+ ExprEngine &Eng) {
+ ExplodedNodeSet Src;
+ Src.insert(Pred);
+ CheckBranchConditionContext C(BranchConditionCheckers, Condition, Eng);
+ expandGraphWithCheckers(C, Dst, Src);
+}
+
+/// \brief Run checkers for live symbols.
+void CheckerManager::runCheckersForLiveSymbols(ProgramStateRef state,
+ SymbolReaper &SymReaper) {
+ for (unsigned i = 0, e = LiveSymbolsCheckers.size(); i != e; ++i)
+ LiveSymbolsCheckers[i](state, SymReaper);
+}
+
+namespace {
+ struct CheckDeadSymbolsContext {
+ typedef std::vector<CheckerManager::CheckDeadSymbolsFunc> CheckersTy;
+ const CheckersTy &Checkers;
+ SymbolReaper &SR;
+ const Stmt *S;
+ ExprEngine &Eng;
+ ProgramPoint::Kind ProgarmPointKind;
+
+ CheckersTy::const_iterator checkers_begin() { return Checkers.begin(); }
+ CheckersTy::const_iterator checkers_end() { return Checkers.end(); }
+
+ CheckDeadSymbolsContext(const CheckersTy &checkers, SymbolReaper &sr,
+ const Stmt *s, ExprEngine &eng,
+ ProgramPoint::Kind K)
+ : Checkers(checkers), SR(sr), S(s), Eng(eng), ProgarmPointKind(K) { }
+
+ void runChecker(CheckerManager::CheckDeadSymbolsFunc checkFn,
+ NodeBuilder &Bldr, ExplodedNode *Pred) {
+ const ProgramPoint &L = ProgramPoint::getProgramPoint(S, ProgarmPointKind,
+ Pred->getLocationContext(), checkFn.Checker);
+ CheckerContext C(Bldr, Eng, Pred, L);
+
+ // Note, do not pass the statement to the checkers without letting them
+ // differentiate if we ran remove dead bindings before or after the
+ // statement.
+ checkFn(SR, C);
+ }
+ };
+}
+
+/// \brief Run checkers for dead symbols.
+void CheckerManager::runCheckersForDeadSymbols(ExplodedNodeSet &Dst,
+ const ExplodedNodeSet &Src,
+ SymbolReaper &SymReaper,
+ const Stmt *S,
+ ExprEngine &Eng,
+ ProgramPoint::Kind K) {
+ CheckDeadSymbolsContext C(DeadSymbolsCheckers, SymReaper, S, Eng, K);
+ expandGraphWithCheckers(C, Dst, Src);
+}
+
+/// \brief True if at least one checker wants to check region changes.
+bool CheckerManager::wantsRegionChangeUpdate(ProgramStateRef state) {
+ for (unsigned i = 0, e = RegionChangesCheckers.size(); i != e; ++i)
+ if (RegionChangesCheckers[i].WantUpdateFn(state))
+ return true;
+
+ return false;
+}
+
+/// \brief Run checkers for region changes.
+ProgramStateRef
+CheckerManager::runCheckersForRegionChanges(ProgramStateRef state,
+ const InvalidatedSymbols *invalidated,
+ ArrayRef<const MemRegion *> ExplicitRegions,
+ ArrayRef<const MemRegion *> Regions,
+ const CallEvent *Call) {
+ for (unsigned i = 0, e = RegionChangesCheckers.size(); i != e; ++i) {
+ // If any checker declares the state infeasible (or if it starts that way),
+ // bail out.
+ if (!state)
+ return nullptr;
+ state = RegionChangesCheckers[i].CheckFn(state, invalidated,
+ ExplicitRegions, Regions, Call);
+ }
+ return state;
+}
+
+/// \brief Run checkers to process symbol escape event.
+ProgramStateRef
+CheckerManager::runCheckersForPointerEscape(ProgramStateRef State,
+ const InvalidatedSymbols &Escaped,
+ const CallEvent *Call,
+ PointerEscapeKind Kind,
+ RegionAndSymbolInvalidationTraits *ETraits) {
+ assert((Call != nullptr ||
+ (Kind != PSK_DirectEscapeOnCall &&
+ Kind != PSK_IndirectEscapeOnCall)) &&
+ "Call must not be NULL when escaping on call");
+ for (unsigned i = 0, e = PointerEscapeCheckers.size(); i != e; ++i) {
+ // If any checker declares the state infeasible (or if it starts that
+ // way), bail out.
+ if (!State)
+ return nullptr;
+ State = PointerEscapeCheckers[i](State, Escaped, Call, Kind, ETraits);
+ }
+ return State;
+}
+
+/// \brief Run checkers for handling assumptions on symbolic values.
+ProgramStateRef
+CheckerManager::runCheckersForEvalAssume(ProgramStateRef state,
+ SVal Cond, bool Assumption) {
+ for (unsigned i = 0, e = EvalAssumeCheckers.size(); i != e; ++i) {
+ // If any checker declares the state infeasible (or if it starts that way),
+ // bail out.
+ if (!state)
+ return nullptr;
+ state = EvalAssumeCheckers[i](state, Cond, Assumption);
+ }
+ return state;
+}
+
+/// \brief Run checkers for evaluating a call.
+/// Only one checker will evaluate the call.
+void CheckerManager::runCheckersForEvalCall(ExplodedNodeSet &Dst,
+ const ExplodedNodeSet &Src,
+ const CallEvent &Call,
+ ExprEngine &Eng) {
+ const CallExpr *CE = cast<CallExpr>(Call.getOriginExpr());
+ for (ExplodedNodeSet::iterator
+ NI = Src.begin(), NE = Src.end(); NI != NE; ++NI) {
+ ExplodedNode *Pred = *NI;
+ bool anyEvaluated = false;
+
+ ExplodedNodeSet checkDst;
+ NodeBuilder B(Pred, checkDst, Eng.getBuilderContext());
+
+ // Check if any of the EvalCall callbacks can evaluate the call.
+ for (std::vector<EvalCallFunc>::iterator
+ EI = EvalCallCheckers.begin(), EE = EvalCallCheckers.end();
+ EI != EE; ++EI) {
+ ProgramPoint::Kind K = ProgramPoint::PostStmtKind;
+ const ProgramPoint &L = ProgramPoint::getProgramPoint(CE, K,
+ Pred->getLocationContext(), EI->Checker);
+ bool evaluated = false;
+ { // CheckerContext generates transitions(populates checkDest) on
+ // destruction, so introduce the scope to make sure it gets properly
+ // populated.
+ CheckerContext C(B, Eng, Pred, L);
+ evaluated = (*EI)(CE, C);
+ }
+ assert(!(evaluated && anyEvaluated)
+ && "There are more than one checkers evaluating the call");
+ if (evaluated) {
+ anyEvaluated = true;
+ Dst.insert(checkDst);
+#ifdef NDEBUG
+ break; // on release don't check that no other checker also evals.
+#endif
+ }
+ }
+
+ // If none of the checkers evaluated the call, ask ExprEngine to handle it.
+ if (!anyEvaluated) {
+ NodeBuilder B(Pred, Dst, Eng.getBuilderContext());
+ Eng.defaultEvalCall(B, Pred, Call);
+ }
+ }
+}
+
+/// \brief Run checkers for the entire Translation Unit.
+void CheckerManager::runCheckersOnEndOfTranslationUnit(
+ const TranslationUnitDecl *TU,
+ AnalysisManager &mgr,
+ BugReporter &BR) {
+ for (unsigned i = 0, e = EndOfTranslationUnitCheckers.size(); i != e; ++i)
+ EndOfTranslationUnitCheckers[i](TU, mgr, BR);
+}
+
+void CheckerManager::runCheckersForPrintState(raw_ostream &Out,
+ ProgramStateRef State,
+ const char *NL, const char *Sep) {
+ for (llvm::DenseMap<CheckerTag, CheckerRef>::iterator
+ I = CheckerTags.begin(), E = CheckerTags.end(); I != E; ++I)
+ I->second->printState(Out, State, NL, Sep);
+}
+
+//===----------------------------------------------------------------------===//
+// Internal registration functions for AST traversing.
+//===----------------------------------------------------------------------===//
+
+void CheckerManager::_registerForDecl(CheckDeclFunc checkfn,
+ HandlesDeclFunc isForDeclFn) {
+ DeclCheckerInfo info = { checkfn, isForDeclFn };
+ DeclCheckers.push_back(info);
+}
+
+void CheckerManager::_registerForBody(CheckDeclFunc checkfn) {
+ BodyCheckers.push_back(checkfn);
+}
+
+//===----------------------------------------------------------------------===//
+// Internal registration functions for path-sensitive checking.
+//===----------------------------------------------------------------------===//
+
+void CheckerManager::_registerForPreStmt(CheckStmtFunc checkfn,
+ HandlesStmtFunc isForStmtFn) {
+ StmtCheckerInfo info = { checkfn, isForStmtFn, /*IsPreVisit*/true };
+ StmtCheckers.push_back(info);
+}
+void CheckerManager::_registerForPostStmt(CheckStmtFunc checkfn,
+ HandlesStmtFunc isForStmtFn) {
+ StmtCheckerInfo info = { checkfn, isForStmtFn, /*IsPreVisit*/false };
+ StmtCheckers.push_back(info);
+}
+
+void CheckerManager::_registerForPreObjCMessage(CheckObjCMessageFunc checkfn) {
+ PreObjCMessageCheckers.push_back(checkfn);
+}
+void CheckerManager::_registerForPostObjCMessage(CheckObjCMessageFunc checkfn) {
+ PostObjCMessageCheckers.push_back(checkfn);
+}
+
+void CheckerManager::_registerForPreCall(CheckCallFunc checkfn) {
+ PreCallCheckers.push_back(checkfn);
+}
+void CheckerManager::_registerForPostCall(CheckCallFunc checkfn) {
+ PostCallCheckers.push_back(checkfn);
+}
+
+void CheckerManager::_registerForLocation(CheckLocationFunc checkfn) {
+ LocationCheckers.push_back(checkfn);
+}
+
+void CheckerManager::_registerForBind(CheckBindFunc checkfn) {
+ BindCheckers.push_back(checkfn);
+}
+
+void CheckerManager::_registerForEndAnalysis(CheckEndAnalysisFunc checkfn) {
+ EndAnalysisCheckers.push_back(checkfn);
+}
+
+void CheckerManager::_registerForEndFunction(CheckEndFunctionFunc checkfn) {
+ EndFunctionCheckers.push_back(checkfn);
+}
+
+void CheckerManager::_registerForBranchCondition(
+ CheckBranchConditionFunc checkfn) {
+ BranchConditionCheckers.push_back(checkfn);
+}
+
+void CheckerManager::_registerForLiveSymbols(CheckLiveSymbolsFunc checkfn) {
+ LiveSymbolsCheckers.push_back(checkfn);
+}
+
+void CheckerManager::_registerForDeadSymbols(CheckDeadSymbolsFunc checkfn) {
+ DeadSymbolsCheckers.push_back(checkfn);
+}
+
+void CheckerManager::_registerForRegionChanges(CheckRegionChangesFunc checkfn,
+ WantsRegionChangeUpdateFunc wantUpdateFn) {
+ RegionChangesCheckerInfo info = {checkfn, wantUpdateFn};
+ RegionChangesCheckers.push_back(info);
+}
+
+void CheckerManager::_registerForPointerEscape(CheckPointerEscapeFunc checkfn){
+ PointerEscapeCheckers.push_back(checkfn);
+}
+
+void CheckerManager::_registerForConstPointerEscape(
+ CheckPointerEscapeFunc checkfn) {
+ PointerEscapeCheckers.push_back(checkfn);
+}
+
+void CheckerManager::_registerForEvalAssume(EvalAssumeFunc checkfn) {
+ EvalAssumeCheckers.push_back(checkfn);
+}
+
+void CheckerManager::_registerForEvalCall(EvalCallFunc checkfn) {
+ EvalCallCheckers.push_back(checkfn);
+}
+
+void CheckerManager::_registerForEndOfTranslationUnit(
+ CheckEndOfTranslationUnit checkfn) {
+ EndOfTranslationUnitCheckers.push_back(checkfn);
+}
+
+//===----------------------------------------------------------------------===//
+// Implementation details.
+//===----------------------------------------------------------------------===//
+
+const CheckerManager::CachedStmtCheckers &
+CheckerManager::getCachedStmtCheckersFor(const Stmt *S, bool isPreVisit) {
+ assert(S);
+
+ unsigned Key = (S->getStmtClass() << 1) | unsigned(isPreVisit);
+ CachedStmtCheckersMapTy::iterator CCI = CachedStmtCheckersMap.find(Key);
+ if (CCI != CachedStmtCheckersMap.end())
+ return CCI->second;
+
+ // Find the checkers that should run for this Stmt and cache them.
+ CachedStmtCheckers &Checkers = CachedStmtCheckersMap[Key];
+ for (unsigned i = 0, e = StmtCheckers.size(); i != e; ++i) {
+ StmtCheckerInfo &Info = StmtCheckers[i];
+ if (Info.IsPreVisit == isPreVisit && Info.IsForStmtFn(S))
+ Checkers.push_back(Info.CheckFn);
+ }
+ return Checkers;
+}
+
+CheckerManager::~CheckerManager() {
+ for (unsigned i = 0, e = CheckerDtors.size(); i != e; ++i)
+ CheckerDtors[i]();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/CheckerRegistry.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/CheckerRegistry.cpp
new file mode 100644
index 0000000..b64e30b
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/CheckerRegistry.cpp
@@ -0,0 +1,152 @@
+//===--- CheckerRegistry.cpp - Maintains all available checkers -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/CheckerRegistry.h"
+#include "clang/StaticAnalyzer/Core/CheckerOptInfo.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+
+static const char PackageSeparator = '.';
+typedef llvm::SetVector<const CheckerRegistry::CheckerInfo *> CheckerInfoSet;
+
+
+static bool checkerNameLT(const CheckerRegistry::CheckerInfo &a,
+ const CheckerRegistry::CheckerInfo &b) {
+ return a.FullName < b.FullName;
+}
+
+static bool isInPackage(const CheckerRegistry::CheckerInfo &checker,
+ StringRef packageName) {
+ // Does the checker's full name have the package as a prefix?
+ if (!checker.FullName.startswith(packageName))
+ return false;
+
+ // Is the package actually just the name of a specific checker?
+ if (checker.FullName.size() == packageName.size())
+ return true;
+
+ // Is the checker in the package (or a subpackage)?
+ if (checker.FullName[packageName.size()] == PackageSeparator)
+ return true;
+
+ return false;
+}
+
+static void collectCheckers(const CheckerRegistry::CheckerInfoList &checkers,
+ const llvm::StringMap<size_t> &packageSizes,
+ CheckerOptInfo &opt, CheckerInfoSet &collected) {
+ // Use a binary search to find the possible start of the package.
+ CheckerRegistry::CheckerInfo packageInfo(nullptr, opt.getName(), "");
+ CheckerRegistry::CheckerInfoList::const_iterator e = checkers.end();
+ CheckerRegistry::CheckerInfoList::const_iterator i =
+ std::lower_bound(checkers.begin(), e, packageInfo, checkerNameLT);
+
+ // If we didn't even find a possible package, give up.
+ if (i == e)
+ return;
+
+ // If what we found doesn't actually start the package, give up.
+ if (!isInPackage(*i, opt.getName()))
+ return;
+
+ // There is at least one checker in the package; claim the option.
+ opt.claim();
+
+ // See how large the package is.
+ // If the package doesn't exist, assume the option refers to a single checker.
+ size_t size = 1;
+ llvm::StringMap<size_t>::const_iterator packageSize =
+ packageSizes.find(opt.getName());
+ if (packageSize != packageSizes.end())
+ size = packageSize->getValue();
+
+ // Step through all the checkers in the package.
+ for (e = i+size; i != e; ++i) {
+ if (opt.isEnabled())
+ collected.insert(&*i);
+ else
+ collected.remove(&*i);
+ }
+}
+
+void CheckerRegistry::addChecker(InitializationFunction fn, StringRef name,
+ StringRef desc) {
+ Checkers.push_back(CheckerInfo(fn, name, desc));
+
+ // Record the presence of the checker in its packages.
+ StringRef packageName, leafName;
+ std::tie(packageName, leafName) = name.rsplit(PackageSeparator);
+ while (!leafName.empty()) {
+ Packages[packageName] += 1;
+ std::tie(packageName, leafName) = packageName.rsplit(PackageSeparator);
+ }
+}
+
+void CheckerRegistry::initializeManager(CheckerManager &checkerMgr,
+ SmallVectorImpl<CheckerOptInfo> &opts) const {
+ // Sort checkers for efficient collection.
+ std::sort(Checkers.begin(), Checkers.end(), checkerNameLT);
+
+ // Collect checkers enabled by the options.
+ CheckerInfoSet enabledCheckers;
+ for (SmallVectorImpl<CheckerOptInfo>::iterator
+ i = opts.begin(), e = opts.end(); i != e; ++i) {
+ collectCheckers(Checkers, Packages, *i, enabledCheckers);
+ }
+
+ // Initialize the CheckerManager with all enabled checkers.
+ for (CheckerInfoSet::iterator
+ i = enabledCheckers.begin(), e = enabledCheckers.end(); i != e; ++i) {
+ checkerMgr.setCurrentCheckName(CheckName((*i)->FullName));
+ (*i)->Initialize(checkerMgr);
+ }
+}
+
+void CheckerRegistry::printHelp(raw_ostream &out,
+ size_t maxNameChars) const {
+ // FIXME: Alphabetical sort puts 'experimental' in the middle.
+ // Would it be better to name it '~experimental' or something else
+ // that's ASCIIbetically last?
+ std::sort(Checkers.begin(), Checkers.end(), checkerNameLT);
+
+ // FIXME: Print available packages.
+
+ out << "CHECKERS:\n";
+
+ // Find the maximum option length.
+ size_t optionFieldWidth = 0;
+ for (CheckerInfoList::const_iterator i = Checkers.begin(), e = Checkers.end();
+ i != e; ++i) {
+ // Limit the amount of padding we are willing to give up for alignment.
+ // Package.Name Description [Hidden]
+ size_t nameLength = i->FullName.size();
+ if (nameLength <= maxNameChars)
+ optionFieldWidth = std::max(optionFieldWidth, nameLength);
+ }
+
+ const size_t initialPad = 2;
+ for (CheckerInfoList::const_iterator i = Checkers.begin(), e = Checkers.end();
+ i != e; ++i) {
+ out.indent(initialPad) << i->FullName;
+
+ int pad = optionFieldWidth - i->FullName.size();
+
+ // Break on long option names.
+ if (pad < 0) {
+ out << '\n';
+ pad = optionFieldWidth + initialPad;
+ }
+ out.indent(pad + 2) << i->Desc;
+
+ out << '\n';
+ }
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/CommonBugCategories.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/CommonBugCategories.cpp
new file mode 100644
index 0000000..3cb9323
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/CommonBugCategories.cpp
@@ -0,0 +1,20 @@
+//=--- CommonBugCategories.cpp - Provides common issue categories -*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h"
+
+// Common strings used for the "category" of many static analyzer issues.
+namespace clang { namespace ento { namespace categories {
+
+const char * const CoreFoundationObjectiveC = "Core Foundation/Objective-C";
+const char * const LogicError = "Logic error";
+const char * const MemoryCoreFoundationObjectiveC =
+ "Memory (Core Foundation/Objective-C)";
+const char * const UnixAPI = "Unix API";
+}}}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/ConstraintManager.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/ConstraintManager.cpp
new file mode 100644
index 0000000..4dec526
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/ConstraintManager.cpp
@@ -0,0 +1,39 @@
+//== ConstraintManager.cpp - Constraints on symbolic values -----*- C++ -*--==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defined the interface to manage constraints on symbolic values.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
+
+using namespace clang;
+using namespace ento;
+
+ConstraintManager::~ConstraintManager() {}
+
+static DefinedSVal getLocFromSymbol(const ProgramStateRef &State,
+ SymbolRef Sym) {
+ const MemRegion *R = State->getStateManager().getRegionManager()
+ .getSymbolicRegion(Sym);
+ return loc::MemRegionVal(R);
+}
+
+ConditionTruthVal ConstraintManager::checkNull(ProgramStateRef State,
+ SymbolRef Sym) {
+ QualType Ty = Sym->getType();
+ DefinedSVal V = Loc::isLocType(Ty) ? getLocFromSymbol(State, Sym)
+ : nonloc::SymbolVal(Sym);
+ const ProgramStatePair &P = assumeDual(State, V);
+ if (P.first && !P.second)
+ return ConditionTruthVal(false);
+ if (!P.first && P.second)
+ return ConditionTruthVal(true);
+ return ConditionTruthVal();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/CoreEngine.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/CoreEngine.cpp
new file mode 100644
index 0000000..7844ad4
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/CoreEngine.cpp
@@ -0,0 +1,730 @@
+//==- CoreEngine.cpp - Path-Sensitive Dataflow Engine ------------*- C++ -*-//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a generic engine for intraprocedural, path-sensitive,
+// dataflow analysis via graph reachability engine.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/CoreEngine.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/StmtCXX.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/Casting.h"
+
+using namespace clang;
+using namespace ento;
+
+#define DEBUG_TYPE "CoreEngine"
+
+STATISTIC(NumSteps,
+ "The # of steps executed.");
+STATISTIC(NumReachedMaxSteps,
+ "The # of times we reached the max number of steps.");
+STATISTIC(NumPathsExplored,
+ "The # of paths explored by the analyzer.");
+
+//===----------------------------------------------------------------------===//
+// Worklist classes for exploration of reachable states.
+//===----------------------------------------------------------------------===//
+
+WorkList::Visitor::~Visitor() {}
+
+namespace {
+class DFS : public WorkList {
+ SmallVector<WorkListUnit,20> Stack;
+public:
+ bool hasWork() const override {
+ return !Stack.empty();
+ }
+
+ void enqueue(const WorkListUnit& U) override {
+ Stack.push_back(U);
+ }
+
+ WorkListUnit dequeue() override {
+ assert (!Stack.empty());
+ const WorkListUnit& U = Stack.back();
+ Stack.pop_back(); // This technically "invalidates" U, but we are fine.
+ return U;
+ }
+
+ bool visitItemsInWorkList(Visitor &V) override {
+ for (SmallVectorImpl<WorkListUnit>::iterator
+ I = Stack.begin(), E = Stack.end(); I != E; ++I) {
+ if (V.visit(*I))
+ return true;
+ }
+ return false;
+ }
+};
+
+class BFS : public WorkList {
+ std::deque<WorkListUnit> Queue;
+public:
+ bool hasWork() const override {
+ return !Queue.empty();
+ }
+
+ void enqueue(const WorkListUnit& U) override {
+ Queue.push_back(U);
+ }
+
+ WorkListUnit dequeue() override {
+ WorkListUnit U = Queue.front();
+ Queue.pop_front();
+ return U;
+ }
+
+ bool visitItemsInWorkList(Visitor &V) override {
+ for (std::deque<WorkListUnit>::iterator
+ I = Queue.begin(), E = Queue.end(); I != E; ++I) {
+ if (V.visit(*I))
+ return true;
+ }
+ return false;
+ }
+};
+
+} // end anonymous namespace
+
+// Place the dstor for WorkList here because it contains virtual member
+// functions, and we the code for the dstor generated in one compilation unit.
+WorkList::~WorkList() {}
+
+WorkList *WorkList::makeDFS() { return new DFS(); }
+WorkList *WorkList::makeBFS() { return new BFS(); }
+
+namespace {
+ class BFSBlockDFSContents : public WorkList {
+ std::deque<WorkListUnit> Queue;
+ SmallVector<WorkListUnit,20> Stack;
+ public:
+ bool hasWork() const override {
+ return !Queue.empty() || !Stack.empty();
+ }
+
+ void enqueue(const WorkListUnit& U) override {
+ if (U.getNode()->getLocation().getAs<BlockEntrance>())
+ Queue.push_front(U);
+ else
+ Stack.push_back(U);
+ }
+
+ WorkListUnit dequeue() override {
+ // Process all basic blocks to completion.
+ if (!Stack.empty()) {
+ const WorkListUnit& U = Stack.back();
+ Stack.pop_back(); // This technically "invalidates" U, but we are fine.
+ return U;
+ }
+
+ assert(!Queue.empty());
+ // Don't use const reference. The subsequent pop_back() might make it
+ // unsafe.
+ WorkListUnit U = Queue.front();
+ Queue.pop_front();
+ return U;
+ }
+ bool visitItemsInWorkList(Visitor &V) override {
+ for (SmallVectorImpl<WorkListUnit>::iterator
+ I = Stack.begin(), E = Stack.end(); I != E; ++I) {
+ if (V.visit(*I))
+ return true;
+ }
+ for (std::deque<WorkListUnit>::iterator
+ I = Queue.begin(), E = Queue.end(); I != E; ++I) {
+ if (V.visit(*I))
+ return true;
+ }
+ return false;
+ }
+
+ };
+} // end anonymous namespace
+
+WorkList* WorkList::makeBFSBlockDFSContents() {
+ return new BFSBlockDFSContents();
+}
+
+//===----------------------------------------------------------------------===//
+// Core analysis engine.
+//===----------------------------------------------------------------------===//
+
+/// ExecuteWorkList - Run the worklist algorithm for a maximum number of steps.
+bool CoreEngine::ExecuteWorkList(const LocationContext *L, unsigned Steps,
+ ProgramStateRef InitState) {
+
+ if (G.num_roots() == 0) { // Initialize the analysis by constructing
+ // the root if none exists.
+
+ const CFGBlock *Entry = &(L->getCFG()->getEntry());
+
+ assert (Entry->empty() &&
+ "Entry block must be empty.");
+
+ assert (Entry->succ_size() == 1 &&
+ "Entry block must have 1 successor.");
+
+ // Mark the entry block as visited.
+ FunctionSummaries->markVisitedBasicBlock(Entry->getBlockID(),
+ L->getDecl(),
+ L->getCFG()->getNumBlockIDs());
+
+ // Get the solitary successor.
+ const CFGBlock *Succ = *(Entry->succ_begin());
+
+ // Construct an edge representing the
+ // starting location in the function.
+ BlockEdge StartLoc(Entry, Succ, L);
+
+ // Set the current block counter to being empty.
+ WList->setBlockCounter(BCounterFactory.GetEmptyCounter());
+
+ if (!InitState)
+ // Generate the root.
+ generateNode(StartLoc, SubEng.getInitialState(L), nullptr);
+ else
+ generateNode(StartLoc, InitState, nullptr);
+ }
+
+ // Check if we have a steps limit
+ bool UnlimitedSteps = Steps == 0;
+
+ while (WList->hasWork()) {
+ if (!UnlimitedSteps) {
+ if (Steps == 0) {
+ NumReachedMaxSteps++;
+ break;
+ }
+ --Steps;
+ }
+
+ NumSteps++;
+
+ const WorkListUnit& WU = WList->dequeue();
+
+ // Set the current block counter.
+ WList->setBlockCounter(WU.getBlockCounter());
+
+ // Retrieve the node.
+ ExplodedNode *Node = WU.getNode();
+
+ dispatchWorkItem(Node, Node->getLocation(), WU);
+ }
+ SubEng.processEndWorklist(hasWorkRemaining());
+ return WList->hasWork();
+}
+
+void CoreEngine::dispatchWorkItem(ExplodedNode* Pred, ProgramPoint Loc,
+ const WorkListUnit& WU) {
+ // Dispatch on the location type.
+ switch (Loc.getKind()) {
+ case ProgramPoint::BlockEdgeKind:
+ HandleBlockEdge(Loc.castAs<BlockEdge>(), Pred);
+ break;
+
+ case ProgramPoint::BlockEntranceKind:
+ HandleBlockEntrance(Loc.castAs<BlockEntrance>(), Pred);
+ break;
+
+ case ProgramPoint::BlockExitKind:
+ assert (false && "BlockExit location never occur in forward analysis.");
+ break;
+
+ case ProgramPoint::CallEnterKind: {
+ CallEnter CEnter = Loc.castAs<CallEnter>();
+ SubEng.processCallEnter(CEnter, Pred);
+ break;
+ }
+
+ case ProgramPoint::CallExitBeginKind:
+ SubEng.processCallExit(Pred);
+ break;
+
+ case ProgramPoint::EpsilonKind: {
+ assert(Pred->hasSinglePred() &&
+ "Assume epsilon has exactly one predecessor by construction");
+ ExplodedNode *PNode = Pred->getFirstPred();
+ dispatchWorkItem(Pred, PNode->getLocation(), WU);
+ break;
+ }
+ default:
+ assert(Loc.getAs<PostStmt>() ||
+ Loc.getAs<PostInitializer>() ||
+ Loc.getAs<PostImplicitCall>() ||
+ Loc.getAs<CallExitEnd>());
+ HandlePostStmt(WU.getBlock(), WU.getIndex(), Pred);
+ break;
+ }
+}
+
+bool CoreEngine::ExecuteWorkListWithInitialState(const LocationContext *L,
+ unsigned Steps,
+ ProgramStateRef InitState,
+ ExplodedNodeSet &Dst) {
+ bool DidNotFinish = ExecuteWorkList(L, Steps, InitState);
+ for (ExplodedGraph::eop_iterator I = G.eop_begin(), E = G.eop_end(); I != E;
+ ++I) {
+ Dst.Add(*I);
+ }
+ return DidNotFinish;
+}
+
+void CoreEngine::HandleBlockEdge(const BlockEdge &L, ExplodedNode *Pred) {
+
+ const CFGBlock *Blk = L.getDst();
+ NodeBuilderContext BuilderCtx(*this, Blk, Pred);
+
+ // Mark this block as visited.
+ const LocationContext *LC = Pred->getLocationContext();
+ FunctionSummaries->markVisitedBasicBlock(Blk->getBlockID(),
+ LC->getDecl(),
+ LC->getCFG()->getNumBlockIDs());
+
+ // Check if we are entering the EXIT block.
+ if (Blk == &(L.getLocationContext()->getCFG()->getExit())) {
+
+ assert (L.getLocationContext()->getCFG()->getExit().size() == 0
+ && "EXIT block cannot contain Stmts.");
+
+ // Process the final state transition.
+ SubEng.processEndOfFunction(BuilderCtx, Pred);
+
+ // This path is done. Don't enqueue any more nodes.
+ return;
+ }
+
+ // Call into the SubEngine to process entering the CFGBlock.
+ ExplodedNodeSet dstNodes;
+ BlockEntrance BE(Blk, Pred->getLocationContext());
+ NodeBuilderWithSinks nodeBuilder(Pred, dstNodes, BuilderCtx, BE);
+ SubEng.processCFGBlockEntrance(L, nodeBuilder, Pred);
+
+ // Auto-generate a node.
+ if (!nodeBuilder.hasGeneratedNodes()) {
+ nodeBuilder.generateNode(Pred->State, Pred);
+ }
+
+ // Enqueue nodes onto the worklist.
+ enqueue(dstNodes);
+}
+
+void CoreEngine::HandleBlockEntrance(const BlockEntrance &L,
+ ExplodedNode *Pred) {
+
+ // Increment the block counter.
+ const LocationContext *LC = Pred->getLocationContext();
+ unsigned BlockId = L.getBlock()->getBlockID();
+ BlockCounter Counter = WList->getBlockCounter();
+ Counter = BCounterFactory.IncrementCount(Counter, LC->getCurrentStackFrame(),
+ BlockId);
+ WList->setBlockCounter(Counter);
+
+ // Process the entrance of the block.
+ if (Optional<CFGElement> E = L.getFirstElement()) {
+ NodeBuilderContext Ctx(*this, L.getBlock(), Pred);
+ SubEng.processCFGElement(*E, Pred, 0, &Ctx);
+ }
+ else
+ HandleBlockExit(L.getBlock(), Pred);
+}
+
+void CoreEngine::HandleBlockExit(const CFGBlock * B, ExplodedNode *Pred) {
+
+ if (const Stmt *Term = B->getTerminator()) {
+ switch (Term->getStmtClass()) {
+ default:
+ llvm_unreachable("Analysis for this terminator not implemented.");
+
+ case Stmt::CXXBindTemporaryExprClass:
+ HandleCleanupTemporaryBranch(
+ cast<CXXBindTemporaryExpr>(B->getTerminator().getStmt()), B, Pred);
+ return;
+
+ // Model static initializers.
+ case Stmt::DeclStmtClass:
+ HandleStaticInit(cast<DeclStmt>(Term), B, Pred);
+ return;
+
+ case Stmt::BinaryOperatorClass: // '&&' and '||'
+ HandleBranch(cast<BinaryOperator>(Term)->getLHS(), Term, B, Pred);
+ return;
+
+ case Stmt::BinaryConditionalOperatorClass:
+ case Stmt::ConditionalOperatorClass:
+ HandleBranch(cast<AbstractConditionalOperator>(Term)->getCond(),
+ Term, B, Pred);
+ return;
+
+ // FIXME: Use constant-folding in CFG construction to simplify this
+ // case.
+
+ case Stmt::ChooseExprClass:
+ HandleBranch(cast<ChooseExpr>(Term)->getCond(), Term, B, Pred);
+ return;
+
+ case Stmt::CXXTryStmtClass: {
+ // Generate a node for each of the successors.
+ // Our logic for EH analysis can certainly be improved.
+ for (CFGBlock::const_succ_iterator it = B->succ_begin(),
+ et = B->succ_end(); it != et; ++it) {
+ if (const CFGBlock *succ = *it) {
+ generateNode(BlockEdge(B, succ, Pred->getLocationContext()),
+ Pred->State, Pred);
+ }
+ }
+ return;
+ }
+
+ case Stmt::DoStmtClass:
+ HandleBranch(cast<DoStmt>(Term)->getCond(), Term, B, Pred);
+ return;
+
+ case Stmt::CXXForRangeStmtClass:
+ HandleBranch(cast<CXXForRangeStmt>(Term)->getCond(), Term, B, Pred);
+ return;
+
+ case Stmt::ForStmtClass:
+ HandleBranch(cast<ForStmt>(Term)->getCond(), Term, B, Pred);
+ return;
+
+ case Stmt::ContinueStmtClass:
+ case Stmt::BreakStmtClass:
+ case Stmt::GotoStmtClass:
+ break;
+
+ case Stmt::IfStmtClass:
+ HandleBranch(cast<IfStmt>(Term)->getCond(), Term, B, Pred);
+ return;
+
+ case Stmt::IndirectGotoStmtClass: {
+ // Only 1 successor: the indirect goto dispatch block.
+ assert (B->succ_size() == 1);
+
+ IndirectGotoNodeBuilder
+ builder(Pred, B, cast<IndirectGotoStmt>(Term)->getTarget(),
+ *(B->succ_begin()), this);
+
+ SubEng.processIndirectGoto(builder);
+ return;
+ }
+
+ case Stmt::ObjCForCollectionStmtClass: {
+ // In the case of ObjCForCollectionStmt, it appears twice in a CFG:
+ //
+ // (1) inside a basic block, which represents the binding of the
+ // 'element' variable to a value.
+ // (2) in a terminator, which represents the branch.
+ //
+ // For (1), subengines will bind a value (i.e., 0 or 1) indicating
+ // whether or not collection contains any more elements. We cannot
+ // just test to see if the element is nil because a container can
+ // contain nil elements.
+ HandleBranch(Term, Term, B, Pred);
+ return;
+ }
+
+ case Stmt::SwitchStmtClass: {
+ SwitchNodeBuilder builder(Pred, B, cast<SwitchStmt>(Term)->getCond(),
+ this);
+
+ SubEng.processSwitch(builder);
+ return;
+ }
+
+ case Stmt::WhileStmtClass:
+ HandleBranch(cast<WhileStmt>(Term)->getCond(), Term, B, Pred);
+ return;
+ }
+ }
+
+ assert (B->succ_size() == 1 &&
+ "Blocks with no terminator should have at most 1 successor.");
+
+ generateNode(BlockEdge(B, *(B->succ_begin()), Pred->getLocationContext()),
+ Pred->State, Pred);
+}
+
+void CoreEngine::HandleBranch(const Stmt *Cond, const Stmt *Term,
+ const CFGBlock * B, ExplodedNode *Pred) {
+ assert(B->succ_size() == 2);
+ NodeBuilderContext Ctx(*this, B, Pred);
+ ExplodedNodeSet Dst;
+ SubEng.processBranch(Cond, Term, Ctx, Pred, Dst,
+ *(B->succ_begin()), *(B->succ_begin()+1));
+ // Enqueue the new frontier onto the worklist.
+ enqueue(Dst);
+}
+
+void CoreEngine::HandleCleanupTemporaryBranch(const CXXBindTemporaryExpr *BTE,
+ const CFGBlock *B,
+ ExplodedNode *Pred) {
+ assert(B->succ_size() == 2);
+ NodeBuilderContext Ctx(*this, B, Pred);
+ ExplodedNodeSet Dst;
+ SubEng.processCleanupTemporaryBranch(BTE, Ctx, Pred, Dst, *(B->succ_begin()),
+ *(B->succ_begin() + 1));
+ // Enqueue the new frontier onto the worklist.
+ enqueue(Dst);
+}
+
+void CoreEngine::HandleStaticInit(const DeclStmt *DS, const CFGBlock *B,
+ ExplodedNode *Pred) {
+ assert(B->succ_size() == 2);
+ NodeBuilderContext Ctx(*this, B, Pred);
+ ExplodedNodeSet Dst;
+ SubEng.processStaticInitializer(DS, Ctx, Pred, Dst,
+ *(B->succ_begin()), *(B->succ_begin()+1));
+ // Enqueue the new frontier onto the worklist.
+ enqueue(Dst);
+}
+
+
+void CoreEngine::HandlePostStmt(const CFGBlock *B, unsigned StmtIdx,
+ ExplodedNode *Pred) {
+ assert(B);
+ assert(!B->empty());
+
+ if (StmtIdx == B->size())
+ HandleBlockExit(B, Pred);
+ else {
+ NodeBuilderContext Ctx(*this, B, Pred);
+ SubEng.processCFGElement((*B)[StmtIdx], Pred, StmtIdx, &Ctx);
+ }
+}
+
+/// generateNode - Utility method to generate nodes, hook up successors,
+/// and add nodes to the worklist.
+void CoreEngine::generateNode(const ProgramPoint &Loc,
+ ProgramStateRef State,
+ ExplodedNode *Pred) {
+
+ bool IsNew;
+ ExplodedNode *Node = G.getNode(Loc, State, false, &IsNew);
+
+ if (Pred)
+ Node->addPredecessor(Pred, G); // Link 'Node' with its predecessor.
+ else {
+ assert (IsNew);
+ G.addRoot(Node); // 'Node' has no predecessor. Make it a root.
+ }
+
+ // Only add 'Node' to the worklist if it was freshly generated.
+ if (IsNew) WList->enqueue(Node);
+}
+
+void CoreEngine::enqueueStmtNode(ExplodedNode *N,
+ const CFGBlock *Block, unsigned Idx) {
+ assert(Block);
+ assert (!N->isSink());
+
+ // Check if this node entered a callee.
+ if (N->getLocation().getAs<CallEnter>()) {
+ // Still use the index of the CallExpr. It's needed to create the callee
+ // StackFrameContext.
+ WList->enqueue(N, Block, Idx);
+ return;
+ }
+
+ // Do not create extra nodes. Move to the next CFG element.
+ if (N->getLocation().getAs<PostInitializer>() ||
+ N->getLocation().getAs<PostImplicitCall>()) {
+ WList->enqueue(N, Block, Idx+1);
+ return;
+ }
+
+ if (N->getLocation().getAs<EpsilonPoint>()) {
+ WList->enqueue(N, Block, Idx);
+ return;
+ }
+
+ if ((*Block)[Idx].getKind() == CFGElement::NewAllocator) {
+ WList->enqueue(N, Block, Idx+1);
+ return;
+ }
+
+ // At this point, we know we're processing a normal statement.
+ CFGStmt CS = (*Block)[Idx].castAs<CFGStmt>();
+ PostStmt Loc(CS.getStmt(), N->getLocationContext());
+
+ if (Loc == N->getLocation().withTag(nullptr)) {
+ // Note: 'N' should be a fresh node because otherwise it shouldn't be
+ // a member of Deferred.
+ WList->enqueue(N, Block, Idx+1);
+ return;
+ }
+
+ bool IsNew;
+ ExplodedNode *Succ = G.getNode(Loc, N->getState(), false, &IsNew);
+ Succ->addPredecessor(N, G);
+
+ if (IsNew)
+ WList->enqueue(Succ, Block, Idx+1);
+}
+
+ExplodedNode *CoreEngine::generateCallExitBeginNode(ExplodedNode *N) {
+ // Create a CallExitBegin node and enqueue it.
+ const StackFrameContext *LocCtx
+ = cast<StackFrameContext>(N->getLocationContext());
+
+ // Use the callee location context.
+ CallExitBegin Loc(LocCtx);
+
+ bool isNew;
+ ExplodedNode *Node = G.getNode(Loc, N->getState(), false, &isNew);
+ Node->addPredecessor(N, G);
+ return isNew ? Node : nullptr;
+}
+
+
+void CoreEngine::enqueue(ExplodedNodeSet &Set) {
+ for (ExplodedNodeSet::iterator I = Set.begin(),
+ E = Set.end(); I != E; ++I) {
+ WList->enqueue(*I);
+ }
+}
+
+void CoreEngine::enqueue(ExplodedNodeSet &Set,
+ const CFGBlock *Block, unsigned Idx) {
+ for (ExplodedNodeSet::iterator I = Set.begin(),
+ E = Set.end(); I != E; ++I) {
+ enqueueStmtNode(*I, Block, Idx);
+ }
+}
+
+void CoreEngine::enqueueEndOfFunction(ExplodedNodeSet &Set) {
+ for (ExplodedNodeSet::iterator I = Set.begin(), E = Set.end(); I != E; ++I) {
+ ExplodedNode *N = *I;
+ // If we are in an inlined call, generate CallExitBegin node.
+ if (N->getLocationContext()->getParent()) {
+ N = generateCallExitBeginNode(N);
+ if (N)
+ WList->enqueue(N);
+ } else {
+ // TODO: We should run remove dead bindings here.
+ G.addEndOfPath(N);
+ NumPathsExplored++;
+ }
+ }
+}
+
+
+void NodeBuilder::anchor() { }
+
+ExplodedNode* NodeBuilder::generateNodeImpl(const ProgramPoint &Loc,
+ ProgramStateRef State,
+ ExplodedNode *FromN,
+ bool MarkAsSink) {
+ HasGeneratedNodes = true;
+ bool IsNew;
+ ExplodedNode *N = C.Eng.G.getNode(Loc, State, MarkAsSink, &IsNew);
+ N->addPredecessor(FromN, C.Eng.G);
+ Frontier.erase(FromN);
+
+ if (!IsNew)
+ return nullptr;
+
+ if (!MarkAsSink)
+ Frontier.Add(N);
+
+ return N;
+}
+
+void NodeBuilderWithSinks::anchor() { }
+
+StmtNodeBuilder::~StmtNodeBuilder() {
+ if (EnclosingBldr)
+ for (ExplodedNodeSet::iterator I = Frontier.begin(),
+ E = Frontier.end(); I != E; ++I )
+ EnclosingBldr->addNodes(*I);
+}
+
+void BranchNodeBuilder::anchor() { }
+
+ExplodedNode *BranchNodeBuilder::generateNode(ProgramStateRef State,
+ bool branch,
+ ExplodedNode *NodePred) {
+ // If the branch has been marked infeasible we should not generate a node.
+ if (!isFeasible(branch))
+ return nullptr;
+
+ ProgramPoint Loc = BlockEdge(C.Block, branch ? DstT:DstF,
+ NodePred->getLocationContext());
+ ExplodedNode *Succ = generateNodeImpl(Loc, State, NodePred);
+ return Succ;
+}
+
+ExplodedNode*
+IndirectGotoNodeBuilder::generateNode(const iterator &I,
+ ProgramStateRef St,
+ bool IsSink) {
+ bool IsNew;
+ ExplodedNode *Succ =
+ Eng.G.getNode(BlockEdge(Src, I.getBlock(), Pred->getLocationContext()),
+ St, IsSink, &IsNew);
+ Succ->addPredecessor(Pred, Eng.G);
+
+ if (!IsNew)
+ return nullptr;
+
+ if (!IsSink)
+ Eng.WList->enqueue(Succ);
+
+ return Succ;
+}
+
+
+ExplodedNode*
+SwitchNodeBuilder::generateCaseStmtNode(const iterator &I,
+ ProgramStateRef St) {
+
+ bool IsNew;
+ ExplodedNode *Succ =
+ Eng.G.getNode(BlockEdge(Src, I.getBlock(), Pred->getLocationContext()),
+ St, false, &IsNew);
+ Succ->addPredecessor(Pred, Eng.G);
+ if (!IsNew)
+ return nullptr;
+
+ Eng.WList->enqueue(Succ);
+ return Succ;
+}
+
+
+ExplodedNode*
+SwitchNodeBuilder::generateDefaultCaseNode(ProgramStateRef St,
+ bool IsSink) {
+ // Get the block for the default case.
+ assert(Src->succ_rbegin() != Src->succ_rend());
+ CFGBlock *DefaultBlock = *Src->succ_rbegin();
+
+ // Sanity check for default blocks that are unreachable and not caught
+ // by earlier stages.
+ if (!DefaultBlock)
+ return nullptr;
+
+ bool IsNew;
+ ExplodedNode *Succ =
+ Eng.G.getNode(BlockEdge(Src, DefaultBlock, Pred->getLocationContext()),
+ St, IsSink, &IsNew);
+ Succ->addPredecessor(Pred, Eng.G);
+
+ if (!IsNew)
+ return nullptr;
+
+ if (!IsSink)
+ Eng.WList->enqueue(Succ);
+
+ return Succ;
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/Environment.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/Environment.cpp
new file mode 100644
index 0000000..ae5a4cc
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/Environment.cpp
@@ -0,0 +1,216 @@
+//== Environment.cpp - Map from Stmt* to Locations/Values -------*- C++ -*--==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defined the Environment and EnvironmentManager classes.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/Analysis/AnalysisContext.h"
+#include "clang/Analysis/CFG.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+
+static const Expr *ignoreTransparentExprs(const Expr *E) {
+ E = E->IgnoreParens();
+
+ switch (E->getStmtClass()) {
+ case Stmt::OpaqueValueExprClass:
+ E = cast<OpaqueValueExpr>(E)->getSourceExpr();
+ break;
+ case Stmt::ExprWithCleanupsClass:
+ E = cast<ExprWithCleanups>(E)->getSubExpr();
+ break;
+ case Stmt::CXXBindTemporaryExprClass:
+ E = cast<CXXBindTemporaryExpr>(E)->getSubExpr();
+ break;
+ case Stmt::SubstNonTypeTemplateParmExprClass:
+ E = cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement();
+ break;
+ default:
+ // This is the base case: we can't look through more than we already have.
+ return E;
+ }
+
+ return ignoreTransparentExprs(E);
+}
+
+static const Stmt *ignoreTransparentExprs(const Stmt *S) {
+ if (const Expr *E = dyn_cast<Expr>(S))
+ return ignoreTransparentExprs(E);
+ return S;
+}
+
+EnvironmentEntry::EnvironmentEntry(const Stmt *S, const LocationContext *L)
+ : std::pair<const Stmt *,
+ const StackFrameContext *>(ignoreTransparentExprs(S),
+ L ? L->getCurrentStackFrame()
+ : nullptr) {}
+
+SVal Environment::lookupExpr(const EnvironmentEntry &E) const {
+ const SVal* X = ExprBindings.lookup(E);
+ if (X) {
+ SVal V = *X;
+ return V;
+ }
+ return UnknownVal();
+}
+
+SVal Environment::getSVal(const EnvironmentEntry &Entry,
+ SValBuilder& svalBuilder) const {
+ const Stmt *S = Entry.getStmt();
+ const LocationContext *LCtx = Entry.getLocationContext();
+
+ switch (S->getStmtClass()) {
+ case Stmt::CXXBindTemporaryExprClass:
+ case Stmt::ExprWithCleanupsClass:
+ case Stmt::GenericSelectionExprClass:
+ case Stmt::OpaqueValueExprClass:
+ case Stmt::ParenExprClass:
+ case Stmt::SubstNonTypeTemplateParmExprClass:
+ llvm_unreachable("Should have been handled by ignoreTransparentExprs");
+
+ case Stmt::AddrLabelExprClass:
+ case Stmt::CharacterLiteralClass:
+ case Stmt::CXXBoolLiteralExprClass:
+ case Stmt::CXXScalarValueInitExprClass:
+ case Stmt::ImplicitValueInitExprClass:
+ case Stmt::IntegerLiteralClass:
+ case Stmt::ObjCBoolLiteralExprClass:
+ case Stmt::CXXNullPtrLiteralExprClass:
+ case Stmt::ObjCStringLiteralClass:
+ case Stmt::StringLiteralClass:
+ // Known constants; defer to SValBuilder.
+ return svalBuilder.getConstantVal(cast<Expr>(S)).getValue();
+
+ case Stmt::ReturnStmtClass: {
+ const ReturnStmt *RS = cast<ReturnStmt>(S);
+ if (const Expr *RE = RS->getRetValue())
+ return getSVal(EnvironmentEntry(RE, LCtx), svalBuilder);
+ return UndefinedVal();
+ }
+
+ // Handle all other Stmt* using a lookup.
+ default:
+ return lookupExpr(EnvironmentEntry(S, LCtx));
+ }
+}
+
+Environment EnvironmentManager::bindExpr(Environment Env,
+ const EnvironmentEntry &E,
+ SVal V,
+ bool Invalidate) {
+ if (V.isUnknown()) {
+ if (Invalidate)
+ return Environment(F.remove(Env.ExprBindings, E));
+ else
+ return Env;
+ }
+ return Environment(F.add(Env.ExprBindings, E, V));
+}
+
+namespace {
+class MarkLiveCallback : public SymbolVisitor {
+ SymbolReaper &SymReaper;
+public:
+ MarkLiveCallback(SymbolReaper &symreaper) : SymReaper(symreaper) {}
+ bool VisitSymbol(SymbolRef sym) override {
+ SymReaper.markLive(sym);
+ return true;
+ }
+ bool VisitMemRegion(const MemRegion *R) override {
+ SymReaper.markLive(R);
+ return true;
+ }
+};
+} // end anonymous namespace
+
+// removeDeadBindings:
+// - Remove subexpression bindings.
+// - Remove dead block expression bindings.
+// - Keep live block expression bindings:
+// - Mark their reachable symbols live in SymbolReaper,
+// see ScanReachableSymbols.
+// - Mark the region in DRoots if the binding is a loc::MemRegionVal.
+Environment
+EnvironmentManager::removeDeadBindings(Environment Env,
+ SymbolReaper &SymReaper,
+ ProgramStateRef ST) {
+
+ // We construct a new Environment object entirely, as this is cheaper than
+ // individually removing all the subexpression bindings (which will greatly
+ // outnumber block-level expression bindings).
+ Environment NewEnv = getInitialEnvironment();
+
+ MarkLiveCallback CB(SymReaper);
+ ScanReachableSymbols RSScaner(ST, CB);
+
+ llvm::ImmutableMapRef<EnvironmentEntry,SVal>
+ EBMapRef(NewEnv.ExprBindings.getRootWithoutRetain(),
+ F.getTreeFactory());
+
+ // Iterate over the block-expr bindings.
+ for (Environment::iterator I = Env.begin(), E = Env.end();
+ I != E; ++I) {
+
+ const EnvironmentEntry &BlkExpr = I.getKey();
+ const SVal &X = I.getData();
+
+ if (SymReaper.isLive(BlkExpr.getStmt(), BlkExpr.getLocationContext())) {
+ // Copy the binding to the new map.
+ EBMapRef = EBMapRef.add(BlkExpr, X);
+
+ // If the block expr's value is a memory region, then mark that region.
+ if (Optional<loc::MemRegionVal> R = X.getAs<loc::MemRegionVal>())
+ SymReaper.markLive(R->getRegion());
+
+ // Mark all symbols in the block expr's value live.
+ RSScaner.scan(X);
+ continue;
+ } else {
+ SymExpr::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
+ for (; SI != SE; ++SI)
+ SymReaper.maybeDead(*SI);
+ }
+ }
+
+ NewEnv.ExprBindings = EBMapRef.asImmutableMap();
+ return NewEnv;
+}
+
+void Environment::print(raw_ostream &Out, const char *NL,
+ const char *Sep) const {
+ bool isFirst = true;
+
+ for (Environment::iterator I = begin(), E = end(); I != E; ++I) {
+ const EnvironmentEntry &En = I.getKey();
+
+ if (isFirst) {
+ Out << NL << NL
+ << "Expressions:"
+ << NL;
+ isFirst = false;
+ } else {
+ Out << NL;
+ }
+
+ const Stmt *S = En.getStmt();
+ assert(S != nullptr && "Expected non-null Stmt");
+
+ Out << " (" << (const void*) En.getLocationContext() << ','
+ << (const void*) S << ") ";
+ LangOptions LO; // FIXME.
+ S->printPretty(Out, nullptr, PrintingPolicy(LO));
+ Out << " : " << I.getData();
+ }
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/ExplodedGraph.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/ExplodedGraph.cpp
new file mode 100644
index 0000000..010d26e
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/ExplodedGraph.cpp
@@ -0,0 +1,443 @@
+//=-- ExplodedGraph.cpp - Local, Path-Sens. "Exploded Graph" -*- C++ -*------=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the template classes ExplodedNode and ExplodedGraph,
+// which represent a path-sensitive, intra-procedural "exploded graph."
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
+#include "clang/AST/ParentMap.h"
+#include "clang/AST/Stmt.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include <vector>
+
+using namespace clang;
+using namespace ento;
+
+//===----------------------------------------------------------------------===//
+// Node auditing.
+//===----------------------------------------------------------------------===//
+
+// An out of line virtual method to provide a home for the class vtable.
+ExplodedNode::Auditor::~Auditor() {}
+
+#ifndef NDEBUG
+static ExplodedNode::Auditor* NodeAuditor = nullptr;
+#endif
+
+void ExplodedNode::SetAuditor(ExplodedNode::Auditor* A) {
+#ifndef NDEBUG
+ NodeAuditor = A;
+#endif
+}
+
+//===----------------------------------------------------------------------===//
+// Cleanup.
+//===----------------------------------------------------------------------===//
+
+ExplodedGraph::ExplodedGraph()
+ : NumNodes(0), ReclaimNodeInterval(0) {}
+
+ExplodedGraph::~ExplodedGraph() {}
+
+//===----------------------------------------------------------------------===//
+// Node reclamation.
+//===----------------------------------------------------------------------===//
+
+bool ExplodedGraph::isInterestingLValueExpr(const Expr *Ex) {
+ if (!Ex->isLValue())
+ return false;
+ return isa<DeclRefExpr>(Ex) ||
+ isa<MemberExpr>(Ex) ||
+ isa<ObjCIvarRefExpr>(Ex);
+}
+
+bool ExplodedGraph::shouldCollect(const ExplodedNode *node) {
+ // First, we only consider nodes for reclamation of the following
+ // conditions apply:
+ //
+ // (1) 1 predecessor (that has one successor)
+ // (2) 1 successor (that has one predecessor)
+ //
+ // If a node has no successor it is on the "frontier", while a node
+ // with no predecessor is a root.
+ //
+ // After these prerequisites, we discard all "filler" nodes that
+ // are used only for intermediate processing, and are not essential
+ // for analyzer history:
+ //
+ // (a) PreStmtPurgeDeadSymbols
+ //
+ // We then discard all other nodes where *all* of the following conditions
+ // apply:
+ //
+ // (3) The ProgramPoint is for a PostStmt, but not a PostStore.
+ // (4) There is no 'tag' for the ProgramPoint.
+ // (5) The 'store' is the same as the predecessor.
+ // (6) The 'GDM' is the same as the predecessor.
+ // (7) The LocationContext is the same as the predecessor.
+ // (8) Expressions that are *not* lvalue expressions.
+ // (9) The PostStmt isn't for a non-consumed Stmt or Expr.
+ // (10) The successor is neither a CallExpr StmtPoint nor a CallEnter or
+ // PreImplicitCall (so that we would be able to find it when retrying a
+ // call with no inlining).
+ // FIXME: It may be safe to reclaim PreCall and PostCall nodes as well.
+
+ // Conditions 1 and 2.
+ if (node->pred_size() != 1 || node->succ_size() != 1)
+ return false;
+
+ const ExplodedNode *pred = *(node->pred_begin());
+ if (pred->succ_size() != 1)
+ return false;
+
+ const ExplodedNode *succ = *(node->succ_begin());
+ if (succ->pred_size() != 1)
+ return false;
+
+ // Now reclaim any nodes that are (by definition) not essential to
+ // analysis history and are not consulted by any client code.
+ ProgramPoint progPoint = node->getLocation();
+ if (progPoint.getAs<PreStmtPurgeDeadSymbols>())
+ return !progPoint.getTag();
+
+ // Condition 3.
+ if (!progPoint.getAs<PostStmt>() || progPoint.getAs<PostStore>())
+ return false;
+
+ // Condition 4.
+ if (progPoint.getTag())
+ return false;
+
+ // Conditions 5, 6, and 7.
+ ProgramStateRef state = node->getState();
+ ProgramStateRef pred_state = pred->getState();
+ if (state->store != pred_state->store || state->GDM != pred_state->GDM ||
+ progPoint.getLocationContext() != pred->getLocationContext())
+ return false;
+
+ // All further checks require expressions. As per #3, we know that we have
+ // a PostStmt.
+ const Expr *Ex = dyn_cast<Expr>(progPoint.castAs<PostStmt>().getStmt());
+ if (!Ex)
+ return false;
+
+ // Condition 8.
+ // Do not collect nodes for "interesting" lvalue expressions since they are
+ // used extensively for generating path diagnostics.
+ if (isInterestingLValueExpr(Ex))
+ return false;
+
+ // Condition 9.
+ // Do not collect nodes for non-consumed Stmt or Expr to ensure precise
+ // diagnostic generation; specifically, so that we could anchor arrows
+ // pointing to the beginning of statements (as written in code).
+ ParentMap &PM = progPoint.getLocationContext()->getParentMap();
+ if (!PM.isConsumedExpr(Ex))
+ return false;
+
+ // Condition 10.
+ const ProgramPoint SuccLoc = succ->getLocation();
+ if (Optional<StmtPoint> SP = SuccLoc.getAs<StmtPoint>())
+ if (CallEvent::isCallStmt(SP->getStmt()))
+ return false;
+
+ // Condition 10, continuation.
+ if (SuccLoc.getAs<CallEnter>() || SuccLoc.getAs<PreImplicitCall>())
+ return false;
+
+ return true;
+}
+
+void ExplodedGraph::collectNode(ExplodedNode *node) {
+ // Removing a node means:
+ // (a) changing the predecessors successor to the successor of this node
+ // (b) changing the successors predecessor to the predecessor of this node
+ // (c) Putting 'node' onto freeNodes.
+ assert(node->pred_size() == 1 || node->succ_size() == 1);
+ ExplodedNode *pred = *(node->pred_begin());
+ ExplodedNode *succ = *(node->succ_begin());
+ pred->replaceSuccessor(succ);
+ succ->replacePredecessor(pred);
+ FreeNodes.push_back(node);
+ Nodes.RemoveNode(node);
+ --NumNodes;
+ node->~ExplodedNode();
+}
+
+void ExplodedGraph::reclaimRecentlyAllocatedNodes() {
+ if (ChangedNodes.empty())
+ return;
+
+ // Only periodically reclaim nodes so that we can build up a set of
+ // nodes that meet the reclamation criteria. Freshly created nodes
+ // by definition have no successor, and thus cannot be reclaimed (see below).
+ assert(ReclaimCounter > 0);
+ if (--ReclaimCounter != 0)
+ return;
+ ReclaimCounter = ReclaimNodeInterval;
+
+ for (NodeVector::iterator it = ChangedNodes.begin(), et = ChangedNodes.end();
+ it != et; ++it) {
+ ExplodedNode *node = *it;
+ if (shouldCollect(node))
+ collectNode(node);
+ }
+ ChangedNodes.clear();
+}
+
+//===----------------------------------------------------------------------===//
+// ExplodedNode.
+//===----------------------------------------------------------------------===//
+
+// An NodeGroup's storage type is actually very much like a TinyPtrVector:
+// it can be either a pointer to a single ExplodedNode, or a pointer to a
+// BumpVector allocated with the ExplodedGraph's allocator. This allows the
+// common case of single-node NodeGroups to be implemented with no extra memory.
+//
+// Consequently, each of the NodeGroup methods have up to four cases to handle:
+// 1. The flag is set and this group does not actually contain any nodes.
+// 2. The group is empty, in which case the storage value is null.
+// 3. The group contains a single node.
+// 4. The group contains more than one node.
+typedef BumpVector<ExplodedNode *> ExplodedNodeVector;
+typedef llvm::PointerUnion<ExplodedNode *, ExplodedNodeVector *> GroupStorage;
+
+void ExplodedNode::addPredecessor(ExplodedNode *V, ExplodedGraph &G) {
+ assert (!V->isSink());
+ Preds.addNode(V, G);
+ V->Succs.addNode(this, G);
+#ifndef NDEBUG
+ if (NodeAuditor) NodeAuditor->AddEdge(V, this);
+#endif
+}
+
+void ExplodedNode::NodeGroup::replaceNode(ExplodedNode *node) {
+ assert(!getFlag());
+
+ GroupStorage &Storage = reinterpret_cast<GroupStorage&>(P);
+ assert(Storage.is<ExplodedNode *>());
+ Storage = node;
+ assert(Storage.is<ExplodedNode *>());
+}
+
+void ExplodedNode::NodeGroup::addNode(ExplodedNode *N, ExplodedGraph &G) {
+ assert(!getFlag());
+
+ GroupStorage &Storage = reinterpret_cast<GroupStorage&>(P);
+ if (Storage.isNull()) {
+ Storage = N;
+ assert(Storage.is<ExplodedNode *>());
+ return;
+ }
+
+ ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>();
+
+ if (!V) {
+ // Switch from single-node to multi-node representation.
+ ExplodedNode *Old = Storage.get<ExplodedNode *>();
+
+ BumpVectorContext &Ctx = G.getNodeAllocator();
+ V = G.getAllocator().Allocate<ExplodedNodeVector>();
+ new (V) ExplodedNodeVector(Ctx, 4);
+ V->push_back(Old, Ctx);
+
+ Storage = V;
+ assert(!getFlag());
+ assert(Storage.is<ExplodedNodeVector *>());
+ }
+
+ V->push_back(N, G.getNodeAllocator());
+}
+
+unsigned ExplodedNode::NodeGroup::size() const {
+ if (getFlag())
+ return 0;
+
+ const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P);
+ if (Storage.isNull())
+ return 0;
+ if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>())
+ return V->size();
+ return 1;
+}
+
+ExplodedNode * const *ExplodedNode::NodeGroup::begin() const {
+ if (getFlag())
+ return nullptr;
+
+ const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P);
+ if (Storage.isNull())
+ return nullptr;
+ if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>())
+ return V->begin();
+ return Storage.getAddrOfPtr1();
+}
+
+ExplodedNode * const *ExplodedNode::NodeGroup::end() const {
+ if (getFlag())
+ return nullptr;
+
+ const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P);
+ if (Storage.isNull())
+ return nullptr;
+ if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>())
+ return V->end();
+ return Storage.getAddrOfPtr1() + 1;
+}
+
+ExplodedNode *ExplodedGraph::getNode(const ProgramPoint &L,
+ ProgramStateRef State,
+ bool IsSink,
+ bool* IsNew) {
+ // Profile 'State' to determine if we already have an existing node.
+ llvm::FoldingSetNodeID profile;
+ void *InsertPos = nullptr;
+
+ NodeTy::Profile(profile, L, State, IsSink);
+ NodeTy* V = Nodes.FindNodeOrInsertPos(profile, InsertPos);
+
+ if (!V) {
+ if (!FreeNodes.empty()) {
+ V = FreeNodes.back();
+ FreeNodes.pop_back();
+ }
+ else {
+ // Allocate a new node.
+ V = (NodeTy*) getAllocator().Allocate<NodeTy>();
+ }
+
+ new (V) NodeTy(L, State, IsSink);
+
+ if (ReclaimNodeInterval)
+ ChangedNodes.push_back(V);
+
+ // Insert the node into the node set and return it.
+ Nodes.InsertNode(V, InsertPos);
+ ++NumNodes;
+
+ if (IsNew) *IsNew = true;
+ }
+ else
+ if (IsNew) *IsNew = false;
+
+ return V;
+}
+
+std::unique_ptr<ExplodedGraph>
+ExplodedGraph::trim(ArrayRef<const NodeTy *> Sinks,
+ InterExplodedGraphMap *ForwardMap,
+ InterExplodedGraphMap *InverseMap) const {
+
+ if (Nodes.empty())
+ return nullptr;
+
+ typedef llvm::DenseSet<const ExplodedNode*> Pass1Ty;
+ Pass1Ty Pass1;
+
+ typedef InterExplodedGraphMap Pass2Ty;
+ InterExplodedGraphMap Pass2Scratch;
+ Pass2Ty &Pass2 = ForwardMap ? *ForwardMap : Pass2Scratch;
+
+ SmallVector<const ExplodedNode*, 10> WL1, WL2;
+
+ // ===- Pass 1 (reverse DFS) -===
+ for (ArrayRef<const NodeTy *>::iterator I = Sinks.begin(), E = Sinks.end();
+ I != E; ++I) {
+ if (*I)
+ WL1.push_back(*I);
+ }
+
+ // Process the first worklist until it is empty.
+ while (!WL1.empty()) {
+ const ExplodedNode *N = WL1.pop_back_val();
+
+ // Have we already visited this node? If so, continue to the next one.
+ if (!Pass1.insert(N).second)
+ continue;
+
+ // If this is a root enqueue it to the second worklist.
+ if (N->Preds.empty()) {
+ WL2.push_back(N);
+ continue;
+ }
+
+ // Visit our predecessors and enqueue them.
+ WL1.append(N->Preds.begin(), N->Preds.end());
+ }
+
+ // We didn't hit a root? Return with a null pointer for the new graph.
+ if (WL2.empty())
+ return nullptr;
+
+ // Create an empty graph.
+ std::unique_ptr<ExplodedGraph> G = MakeEmptyGraph();
+
+ // ===- Pass 2 (forward DFS to construct the new graph) -===
+ while (!WL2.empty()) {
+ const ExplodedNode *N = WL2.pop_back_val();
+
+ // Skip this node if we have already processed it.
+ if (Pass2.find(N) != Pass2.end())
+ continue;
+
+ // Create the corresponding node in the new graph and record the mapping
+ // from the old node to the new node.
+ ExplodedNode *NewN = G->getNode(N->getLocation(), N->State, N->isSink(),
+ nullptr);
+ Pass2[N] = NewN;
+
+ // Also record the reverse mapping from the new node to the old node.
+ if (InverseMap) (*InverseMap)[NewN] = N;
+
+ // If this node is a root, designate it as such in the graph.
+ if (N->Preds.empty())
+ G->addRoot(NewN);
+
+ // In the case that some of the intended predecessors of NewN have already
+ // been created, we should hook them up as predecessors.
+
+ // Walk through the predecessors of 'N' and hook up their corresponding
+ // nodes in the new graph (if any) to the freshly created node.
+ for (ExplodedNode::pred_iterator I = N->Preds.begin(), E = N->Preds.end();
+ I != E; ++I) {
+ Pass2Ty::iterator PI = Pass2.find(*I);
+ if (PI == Pass2.end())
+ continue;
+
+ NewN->addPredecessor(const_cast<ExplodedNode *>(PI->second), *G);
+ }
+
+ // In the case that some of the intended successors of NewN have already
+ // been created, we should hook them up as successors. Otherwise, enqueue
+ // the new nodes from the original graph that should have nodes created
+ // in the new graph.
+ for (ExplodedNode::succ_iterator I = N->Succs.begin(), E = N->Succs.end();
+ I != E; ++I) {
+ Pass2Ty::iterator PI = Pass2.find(*I);
+ if (PI != Pass2.end()) {
+ const_cast<ExplodedNode *>(PI->second)->addPredecessor(NewN, *G);
+ continue;
+ }
+
+ // Enqueue nodes to the worklist that were marked during pass 1.
+ if (Pass1.count(*I))
+ WL2.push_back(*I);
+ }
+ }
+
+ return G;
+}
+
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/ExprEngine.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/ExprEngine.cpp
new file mode 100644
index 0000000..8b7f18f
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/ExprEngine.cpp
@@ -0,0 +1,2697 @@
+//=-- ExprEngine.cpp - Path-Sensitive Expression-Level Dataflow ---*- C++ -*-=
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a meta-engine for path-sensitive dataflow analysis that
+// is built on GREngine, but provides the boilerplate to execute transfer
+// functions and build the ExplodedGraph at the expression level.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
+#include "PrettyStackTraceLocationContext.h"
+#include "clang/AST/CharUnits.h"
+#include "clang/AST/ParentMap.h"
+#include "clang/AST/StmtCXX.h"
+#include "clang/AST/StmtObjC.h"
+#include "clang/Basic/Builtins.h"
+#include "clang/Basic/PrettyStackTrace.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
+#include "llvm/ADT/ImmutableList.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/raw_ostream.h"
+
+#ifndef NDEBUG
+#include "llvm/Support/GraphWriter.h"
+#endif
+
+using namespace clang;
+using namespace ento;
+using llvm::APSInt;
+
+#define DEBUG_TYPE "ExprEngine"
+
+STATISTIC(NumRemoveDeadBindings,
+ "The # of times RemoveDeadBindings is called");
+STATISTIC(NumMaxBlockCountReached,
+ "The # of aborted paths due to reaching the maximum block count in "
+ "a top level function");
+STATISTIC(NumMaxBlockCountReachedInInlined,
+ "The # of aborted paths due to reaching the maximum block count in "
+ "an inlined function");
+STATISTIC(NumTimesRetriedWithoutInlining,
+ "The # of times we re-evaluated a call without inlining");
+
+typedef std::pair<const CXXBindTemporaryExpr *, const StackFrameContext *>
+ CXXBindTemporaryContext;
+
+// Keeps track of whether CXXBindTemporaryExpr nodes have been evaluated.
+// The StackFrameContext assures that nested calls due to inlined recursive
+// functions do not interfere.
+REGISTER_TRAIT_WITH_PROGRAMSTATE(InitializedTemporariesSet,
+ llvm::ImmutableSet<CXXBindTemporaryContext>)
+
+//===----------------------------------------------------------------------===//
+// Engine construction and deletion.
+//===----------------------------------------------------------------------===//
+
+static const char* TagProviderName = "ExprEngine";
+
+ExprEngine::ExprEngine(AnalysisManager &mgr, bool gcEnabled,
+ SetOfConstDecls *VisitedCalleesIn,
+ FunctionSummariesTy *FS,
+ InliningModes HowToInlineIn)
+ : AMgr(mgr),
+ AnalysisDeclContexts(mgr.getAnalysisDeclContextManager()),
+ Engine(*this, FS),
+ G(Engine.getGraph()),
+ StateMgr(getContext(), mgr.getStoreManagerCreator(),
+ mgr.getConstraintManagerCreator(), G.getAllocator(),
+ this),
+ SymMgr(StateMgr.getSymbolManager()),
+ svalBuilder(StateMgr.getSValBuilder()),
+ currStmtIdx(0), currBldrCtx(nullptr),
+ ObjCNoRet(mgr.getASTContext()),
+ ObjCGCEnabled(gcEnabled), BR(mgr, *this),
+ VisitedCallees(VisitedCalleesIn),
+ HowToInline(HowToInlineIn)
+{
+ unsigned TrimInterval = mgr.options.getGraphTrimInterval();
+ if (TrimInterval != 0) {
+ // Enable eager node reclaimation when constructing the ExplodedGraph.
+ G.enableNodeReclamation(TrimInterval);
+ }
+}
+
+ExprEngine::~ExprEngine() {
+ BR.FlushReports();
+}
+
+//===----------------------------------------------------------------------===//
+// Utility methods.
+//===----------------------------------------------------------------------===//
+
+ProgramStateRef ExprEngine::getInitialState(const LocationContext *InitLoc) {
+ ProgramStateRef state = StateMgr.getInitialState(InitLoc);
+ const Decl *D = InitLoc->getDecl();
+
+ // Preconditions.
+ // FIXME: It would be nice if we had a more general mechanism to add
+ // such preconditions. Some day.
+ do {
+
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ // Precondition: the first argument of 'main' is an integer guaranteed
+ // to be > 0.
+ const IdentifierInfo *II = FD->getIdentifier();
+ if (!II || !(II->getName() == "main" && FD->getNumParams() > 0))
+ break;
+
+ const ParmVarDecl *PD = FD->getParamDecl(0);
+ QualType T = PD->getType();
+ const BuiltinType *BT = dyn_cast<BuiltinType>(T);
+ if (!BT || !BT->isInteger())
+ break;
+
+ const MemRegion *R = state->getRegion(PD, InitLoc);
+ if (!R)
+ break;
+
+ SVal V = state->getSVal(loc::MemRegionVal(R));
+ SVal Constraint_untested = evalBinOp(state, BO_GT, V,
+ svalBuilder.makeZeroVal(T),
+ svalBuilder.getConditionType());
+
+ Optional<DefinedOrUnknownSVal> Constraint =
+ Constraint_untested.getAs<DefinedOrUnknownSVal>();
+
+ if (!Constraint)
+ break;
+
+ if (ProgramStateRef newState = state->assume(*Constraint, true))
+ state = newState;
+ }
+ break;
+ }
+ while (0);
+
+ if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
+ // Precondition: 'self' is always non-null upon entry to an Objective-C
+ // method.
+ const ImplicitParamDecl *SelfD = MD->getSelfDecl();
+ const MemRegion *R = state->getRegion(SelfD, InitLoc);
+ SVal V = state->getSVal(loc::MemRegionVal(R));
+
+ if (Optional<Loc> LV = V.getAs<Loc>()) {
+ // Assume that the pointer value in 'self' is non-null.
+ state = state->assume(*LV, true);
+ assert(state && "'self' cannot be null");
+ }
+ }
+
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
+ if (!MD->isStatic()) {
+ // Precondition: 'this' is always non-null upon entry to the
+ // top-level function. This is our starting assumption for
+ // analyzing an "open" program.
+ const StackFrameContext *SFC = InitLoc->getCurrentStackFrame();
+ if (SFC->getParent() == nullptr) {
+ loc::MemRegionVal L = svalBuilder.getCXXThis(MD, SFC);
+ SVal V = state->getSVal(L);
+ if (Optional<Loc> LV = V.getAs<Loc>()) {
+ state = state->assume(*LV, true);
+ assert(state && "'this' cannot be null");
+ }
+ }
+ }
+ }
+
+ return state;
+}
+
+ProgramStateRef
+ExprEngine::createTemporaryRegionIfNeeded(ProgramStateRef State,
+ const LocationContext *LC,
+ const Expr *Ex,
+ const Expr *Result) {
+ SVal V = State->getSVal(Ex, LC);
+ if (!Result) {
+ // If we don't have an explicit result expression, we're in "if needed"
+ // mode. Only create a region if the current value is a NonLoc.
+ if (!V.getAs<NonLoc>())
+ return State;
+ Result = Ex;
+ } else {
+ // We need to create a region no matter what. For sanity, make sure we don't
+ // try to stuff a Loc into a non-pointer temporary region.
+ assert(!V.getAs<Loc>() || Loc::isLocType(Result->getType()) ||
+ Result->getType()->isMemberPointerType());
+ }
+
+ ProgramStateManager &StateMgr = State->getStateManager();
+ MemRegionManager &MRMgr = StateMgr.getRegionManager();
+ StoreManager &StoreMgr = StateMgr.getStoreManager();
+
+ // We need to be careful about treating a derived type's value as
+ // bindings for a base type. Unless we're creating a temporary pointer region,
+ // start by stripping and recording base casts.
+ SmallVector<const CastExpr *, 4> Casts;
+ const Expr *Inner = Ex->IgnoreParens();
+ if (!Loc::isLocType(Result->getType())) {
+ while (const CastExpr *CE = dyn_cast<CastExpr>(Inner)) {
+ if (CE->getCastKind() == CK_DerivedToBase ||
+ CE->getCastKind() == CK_UncheckedDerivedToBase)
+ Casts.push_back(CE);
+ else if (CE->getCastKind() != CK_NoOp)
+ break;
+
+ Inner = CE->getSubExpr()->IgnoreParens();
+ }
+ }
+
+ // Create a temporary object region for the inner expression (which may have
+ // a more derived type) and bind the value into it.
+ const TypedValueRegion *TR = nullptr;
+ if (const MaterializeTemporaryExpr *MT =
+ dyn_cast<MaterializeTemporaryExpr>(Result)) {
+ StorageDuration SD = MT->getStorageDuration();
+ // If this object is bound to a reference with static storage duration, we
+ // put it in a different region to prevent "address leakage" warnings.
+ if (SD == SD_Static || SD == SD_Thread)
+ TR = MRMgr.getCXXStaticTempObjectRegion(Inner);
+ }
+ if (!TR)
+ TR = MRMgr.getCXXTempObjectRegion(Inner, LC);
+
+ SVal Reg = loc::MemRegionVal(TR);
+
+ if (V.isUnknown())
+ V = getSValBuilder().conjureSymbolVal(Result, LC, TR->getValueType(),
+ currBldrCtx->blockCount());
+ State = State->bindLoc(Reg, V);
+
+ // Re-apply the casts (from innermost to outermost) for type sanity.
+ for (SmallVectorImpl<const CastExpr *>::reverse_iterator I = Casts.rbegin(),
+ E = Casts.rend();
+ I != E; ++I) {
+ Reg = StoreMgr.evalDerivedToBase(Reg, *I);
+ }
+
+ State = State->BindExpr(Result, LC, Reg);
+ return State;
+}
+
+//===----------------------------------------------------------------------===//
+// Top-level transfer function logic (Dispatcher).
+//===----------------------------------------------------------------------===//
+
+/// evalAssume - Called by ConstraintManager. Used to call checker-specific
+/// logic for handling assumptions on symbolic values.
+ProgramStateRef ExprEngine::processAssume(ProgramStateRef state,
+ SVal cond, bool assumption) {
+ return getCheckerManager().runCheckersForEvalAssume(state, cond, assumption);
+}
+
+bool ExprEngine::wantsRegionChangeUpdate(ProgramStateRef state) {
+ return getCheckerManager().wantsRegionChangeUpdate(state);
+}
+
+ProgramStateRef
+ExprEngine::processRegionChanges(ProgramStateRef state,
+ const InvalidatedSymbols *invalidated,
+ ArrayRef<const MemRegion *> Explicits,
+ ArrayRef<const MemRegion *> Regions,
+ const CallEvent *Call) {
+ return getCheckerManager().runCheckersForRegionChanges(state, invalidated,
+ Explicits, Regions, Call);
+}
+
+void ExprEngine::printState(raw_ostream &Out, ProgramStateRef State,
+ const char *NL, const char *Sep) {
+ getCheckerManager().runCheckersForPrintState(Out, State, NL, Sep);
+}
+
+void ExprEngine::processEndWorklist(bool hasWorkRemaining) {
+ getCheckerManager().runCheckersForEndAnalysis(G, BR, *this);
+}
+
+void ExprEngine::processCFGElement(const CFGElement E, ExplodedNode *Pred,
+ unsigned StmtIdx, NodeBuilderContext *Ctx) {
+ PrettyStackTraceLocationContext CrashInfo(Pred->getLocationContext());
+ currStmtIdx = StmtIdx;
+ currBldrCtx = Ctx;
+
+ switch (E.getKind()) {
+ case CFGElement::Statement:
+ ProcessStmt(const_cast<Stmt*>(E.castAs<CFGStmt>().getStmt()), Pred);
+ return;
+ case CFGElement::Initializer:
+ ProcessInitializer(E.castAs<CFGInitializer>().getInitializer(), Pred);
+ return;
+ case CFGElement::NewAllocator:
+ ProcessNewAllocator(E.castAs<CFGNewAllocator>().getAllocatorExpr(),
+ Pred);
+ return;
+ case CFGElement::AutomaticObjectDtor:
+ case CFGElement::DeleteDtor:
+ case CFGElement::BaseDtor:
+ case CFGElement::MemberDtor:
+ case CFGElement::TemporaryDtor:
+ ProcessImplicitDtor(E.castAs<CFGImplicitDtor>(), Pred);
+ return;
+ }
+}
+
+static bool shouldRemoveDeadBindings(AnalysisManager &AMgr,
+ const CFGStmt S,
+ const ExplodedNode *Pred,
+ const LocationContext *LC) {
+
+ // Are we never purging state values?
+ if (AMgr.options.AnalysisPurgeOpt == PurgeNone)
+ return false;
+
+ // Is this the beginning of a basic block?
+ if (Pred->getLocation().getAs<BlockEntrance>())
+ return true;
+
+ // Is this on a non-expression?
+ if (!isa<Expr>(S.getStmt()))
+ return true;
+
+ // Run before processing a call.
+ if (CallEvent::isCallStmt(S.getStmt()))
+ return true;
+
+ // Is this an expression that is consumed by another expression? If so,
+ // postpone cleaning out the state.
+ ParentMap &PM = LC->getAnalysisDeclContext()->getParentMap();
+ return !PM.isConsumedExpr(cast<Expr>(S.getStmt()));
+}
+
+void ExprEngine::removeDead(ExplodedNode *Pred, ExplodedNodeSet &Out,
+ const Stmt *ReferenceStmt,
+ const LocationContext *LC,
+ const Stmt *DiagnosticStmt,
+ ProgramPoint::Kind K) {
+ assert((K == ProgramPoint::PreStmtPurgeDeadSymbolsKind ||
+ ReferenceStmt == nullptr || isa<ReturnStmt>(ReferenceStmt))
+ && "PostStmt is not generally supported by the SymbolReaper yet");
+ assert(LC && "Must pass the current (or expiring) LocationContext");
+
+ if (!DiagnosticStmt) {
+ DiagnosticStmt = ReferenceStmt;
+ assert(DiagnosticStmt && "Required for clearing a LocationContext");
+ }
+
+ NumRemoveDeadBindings++;
+ ProgramStateRef CleanedState = Pred->getState();
+
+ // LC is the location context being destroyed, but SymbolReaper wants a
+ // location context that is still live. (If this is the top-level stack
+ // frame, this will be null.)
+ if (!ReferenceStmt) {
+ assert(K == ProgramPoint::PostStmtPurgeDeadSymbolsKind &&
+ "Use PostStmtPurgeDeadSymbolsKind for clearing a LocationContext");
+ LC = LC->getParent();
+ }
+
+ const StackFrameContext *SFC = LC ? LC->getCurrentStackFrame() : nullptr;
+ SymbolReaper SymReaper(SFC, ReferenceStmt, SymMgr, getStoreManager());
+
+ getCheckerManager().runCheckersForLiveSymbols(CleanedState, SymReaper);
+
+ // Create a state in which dead bindings are removed from the environment
+ // and the store. TODO: The function should just return new env and store,
+ // not a new state.
+ CleanedState = StateMgr.removeDeadBindings(CleanedState, SFC, SymReaper);
+
+ // Process any special transfer function for dead symbols.
+ // A tag to track convenience transitions, which can be removed at cleanup.
+ static SimpleProgramPointTag cleanupTag(TagProviderName, "Clean Node");
+ if (!SymReaper.hasDeadSymbols()) {
+ // Generate a CleanedNode that has the environment and store cleaned
+ // up. Since no symbols are dead, we can optimize and not clean out
+ // the constraint manager.
+ StmtNodeBuilder Bldr(Pred, Out, *currBldrCtx);
+ Bldr.generateNode(DiagnosticStmt, Pred, CleanedState, &cleanupTag, K);
+
+ } else {
+ // Call checkers with the non-cleaned state so that they could query the
+ // values of the soon to be dead symbols.
+ ExplodedNodeSet CheckedSet;
+ getCheckerManager().runCheckersForDeadSymbols(CheckedSet, Pred, SymReaper,
+ DiagnosticStmt, *this, K);
+
+ // For each node in CheckedSet, generate CleanedNodes that have the
+ // environment, the store, and the constraints cleaned up but have the
+ // user-supplied states as the predecessors.
+ StmtNodeBuilder Bldr(CheckedSet, Out, *currBldrCtx);
+ for (ExplodedNodeSet::const_iterator
+ I = CheckedSet.begin(), E = CheckedSet.end(); I != E; ++I) {
+ ProgramStateRef CheckerState = (*I)->getState();
+
+ // The constraint manager has not been cleaned up yet, so clean up now.
+ CheckerState = getConstraintManager().removeDeadBindings(CheckerState,
+ SymReaper);
+
+ assert(StateMgr.haveEqualEnvironments(CheckerState, Pred->getState()) &&
+ "Checkers are not allowed to modify the Environment as a part of "
+ "checkDeadSymbols processing.");
+ assert(StateMgr.haveEqualStores(CheckerState, Pred->getState()) &&
+ "Checkers are not allowed to modify the Store as a part of "
+ "checkDeadSymbols processing.");
+
+ // Create a state based on CleanedState with CheckerState GDM and
+ // generate a transition to that state.
+ ProgramStateRef CleanedCheckerSt =
+ StateMgr.getPersistentStateWithGDM(CleanedState, CheckerState);
+ Bldr.generateNode(DiagnosticStmt, *I, CleanedCheckerSt, &cleanupTag, K);
+ }
+ }
+}
+
+void ExprEngine::ProcessStmt(const CFGStmt S,
+ ExplodedNode *Pred) {
+ // Reclaim any unnecessary nodes in the ExplodedGraph.
+ G.reclaimRecentlyAllocatedNodes();
+
+ const Stmt *currStmt = S.getStmt();
+ PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
+ currStmt->getLocStart(),
+ "Error evaluating statement");
+
+ // Remove dead bindings and symbols.
+ ExplodedNodeSet CleanedStates;
+ if (shouldRemoveDeadBindings(AMgr, S, Pred, Pred->getLocationContext())){
+ removeDead(Pred, CleanedStates, currStmt, Pred->getLocationContext());
+ } else
+ CleanedStates.Add(Pred);
+
+ // Visit the statement.
+ ExplodedNodeSet Dst;
+ for (ExplodedNodeSet::iterator I = CleanedStates.begin(),
+ E = CleanedStates.end(); I != E; ++I) {
+ ExplodedNodeSet DstI;
+ // Visit the statement.
+ Visit(currStmt, *I, DstI);
+ Dst.insert(DstI);
+ }
+
+ // Enqueue the new nodes onto the work list.
+ Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx);
+}
+
+void ExprEngine::ProcessInitializer(const CFGInitializer Init,
+ ExplodedNode *Pred) {
+ const CXXCtorInitializer *BMI = Init.getInitializer();
+
+ PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
+ BMI->getSourceLocation(),
+ "Error evaluating initializer");
+
+ // We don't clean up dead bindings here.
+ const StackFrameContext *stackFrame =
+ cast<StackFrameContext>(Pred->getLocationContext());
+ const CXXConstructorDecl *decl =
+ cast<CXXConstructorDecl>(stackFrame->getDecl());
+
+ ProgramStateRef State = Pred->getState();
+ SVal thisVal = State->getSVal(svalBuilder.getCXXThis(decl, stackFrame));
+
+ ExplodedNodeSet Tmp(Pred);
+ SVal FieldLoc;
+
+ // Evaluate the initializer, if necessary
+ if (BMI->isAnyMemberInitializer()) {
+ // Constructors build the object directly in the field,
+ // but non-objects must be copied in from the initializer.
+ const Expr *Init = BMI->getInit()->IgnoreImplicit();
+ if (!isa<CXXConstructExpr>(Init)) {
+ const ValueDecl *Field;
+ if (BMI->isIndirectMemberInitializer()) {
+ Field = BMI->getIndirectMember();
+ FieldLoc = State->getLValue(BMI->getIndirectMember(), thisVal);
+ } else {
+ Field = BMI->getMember();
+ FieldLoc = State->getLValue(BMI->getMember(), thisVal);
+ }
+
+ SVal InitVal;
+ if (BMI->getNumArrayIndices() > 0) {
+ // Handle arrays of trivial type. We can represent this with a
+ // primitive load/copy from the base array region.
+ const ArraySubscriptExpr *ASE;
+ while ((ASE = dyn_cast<ArraySubscriptExpr>(Init)))
+ Init = ASE->getBase()->IgnoreImplicit();
+
+ SVal LValue = State->getSVal(Init, stackFrame);
+ if (Optional<Loc> LValueLoc = LValue.getAs<Loc>())
+ InitVal = State->getSVal(*LValueLoc);
+
+ // If we fail to get the value for some reason, use a symbolic value.
+ if (InitVal.isUnknownOrUndef()) {
+ SValBuilder &SVB = getSValBuilder();
+ InitVal = SVB.conjureSymbolVal(BMI->getInit(), stackFrame,
+ Field->getType(),
+ currBldrCtx->blockCount());
+ }
+ } else {
+ InitVal = State->getSVal(BMI->getInit(), stackFrame);
+ }
+
+ assert(Tmp.size() == 1 && "have not generated any new nodes yet");
+ assert(*Tmp.begin() == Pred && "have not generated any new nodes yet");
+ Tmp.clear();
+
+ PostInitializer PP(BMI, FieldLoc.getAsRegion(), stackFrame);
+ evalBind(Tmp, Init, Pred, FieldLoc, InitVal, /*isInit=*/true, &PP);
+ }
+ } else {
+ assert(BMI->isBaseInitializer() || BMI->isDelegatingInitializer());
+ // We already did all the work when visiting the CXXConstructExpr.
+ }
+
+ // Construct PostInitializer nodes whether the state changed or not,
+ // so that the diagnostics don't get confused.
+ PostInitializer PP(BMI, FieldLoc.getAsRegion(), stackFrame);
+ ExplodedNodeSet Dst;
+ NodeBuilder Bldr(Tmp, Dst, *currBldrCtx);
+ for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E; ++I) {
+ ExplodedNode *N = *I;
+ Bldr.generateNode(PP, N->getState(), N);
+ }
+
+ // Enqueue the new nodes onto the work list.
+ Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx);
+}
+
+void ExprEngine::ProcessImplicitDtor(const CFGImplicitDtor D,
+ ExplodedNode *Pred) {
+ ExplodedNodeSet Dst;
+ switch (D.getKind()) {
+ case CFGElement::AutomaticObjectDtor:
+ ProcessAutomaticObjDtor(D.castAs<CFGAutomaticObjDtor>(), Pred, Dst);
+ break;
+ case CFGElement::BaseDtor:
+ ProcessBaseDtor(D.castAs<CFGBaseDtor>(), Pred, Dst);
+ break;
+ case CFGElement::MemberDtor:
+ ProcessMemberDtor(D.castAs<CFGMemberDtor>(), Pred, Dst);
+ break;
+ case CFGElement::TemporaryDtor:
+ ProcessTemporaryDtor(D.castAs<CFGTemporaryDtor>(), Pred, Dst);
+ break;
+ case CFGElement::DeleteDtor:
+ ProcessDeleteDtor(D.castAs<CFGDeleteDtor>(), Pred, Dst);
+ break;
+ default:
+ llvm_unreachable("Unexpected dtor kind.");
+ }
+
+ // Enqueue the new nodes onto the work list.
+ Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx);
+}
+
+void ExprEngine::ProcessNewAllocator(const CXXNewExpr *NE,
+ ExplodedNode *Pred) {
+ ExplodedNodeSet Dst;
+ AnalysisManager &AMgr = getAnalysisManager();
+ AnalyzerOptions &Opts = AMgr.options;
+ // TODO: We're not evaluating allocators for all cases just yet as
+ // we're not handling the return value correctly, which causes false
+ // positives when the alpha.cplusplus.NewDeleteLeaks check is on.
+ if (Opts.mayInlineCXXAllocator())
+ VisitCXXNewAllocatorCall(NE, Pred, Dst);
+ else {
+ NodeBuilder Bldr(Pred, Dst, *currBldrCtx);
+ const LocationContext *LCtx = Pred->getLocationContext();
+ PostImplicitCall PP(NE->getOperatorNew(), NE->getLocStart(), LCtx);
+ Bldr.generateNode(PP, Pred->getState(), Pred);
+ }
+ Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx);
+}
+
+void ExprEngine::ProcessAutomaticObjDtor(const CFGAutomaticObjDtor Dtor,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ const VarDecl *varDecl = Dtor.getVarDecl();
+ QualType varType = varDecl->getType();
+
+ ProgramStateRef state = Pred->getState();
+ SVal dest = state->getLValue(varDecl, Pred->getLocationContext());
+ const MemRegion *Region = dest.castAs<loc::MemRegionVal>().getRegion();
+
+ if (const ReferenceType *refType = varType->getAs<ReferenceType>()) {
+ varType = refType->getPointeeType();
+ Region = state->getSVal(Region).getAsRegion();
+ }
+
+ VisitCXXDestructor(varType, Region, Dtor.getTriggerStmt(), /*IsBase=*/ false,
+ Pred, Dst);
+}
+
+void ExprEngine::ProcessDeleteDtor(const CFGDeleteDtor Dtor,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ ProgramStateRef State = Pred->getState();
+ const LocationContext *LCtx = Pred->getLocationContext();
+ const CXXDeleteExpr *DE = Dtor.getDeleteExpr();
+ const Stmt *Arg = DE->getArgument();
+ SVal ArgVal = State->getSVal(Arg, LCtx);
+
+ // If the argument to delete is known to be a null value,
+ // don't run destructor.
+ if (State->isNull(ArgVal).isConstrainedTrue()) {
+ QualType DTy = DE->getDestroyedType();
+ QualType BTy = getContext().getBaseElementType(DTy);
+ const CXXRecordDecl *RD = BTy->getAsCXXRecordDecl();
+ const CXXDestructorDecl *Dtor = RD->getDestructor();
+
+ PostImplicitCall PP(Dtor, DE->getLocStart(), LCtx);
+ NodeBuilder Bldr(Pred, Dst, *currBldrCtx);
+ Bldr.generateNode(PP, Pred->getState(), Pred);
+ return;
+ }
+
+ VisitCXXDestructor(DE->getDestroyedType(),
+ ArgVal.getAsRegion(),
+ DE, /*IsBase=*/ false,
+ Pred, Dst);
+}
+
+void ExprEngine::ProcessBaseDtor(const CFGBaseDtor D,
+ ExplodedNode *Pred, ExplodedNodeSet &Dst) {
+ const LocationContext *LCtx = Pred->getLocationContext();
+
+ const CXXDestructorDecl *CurDtor = cast<CXXDestructorDecl>(LCtx->getDecl());
+ Loc ThisPtr = getSValBuilder().getCXXThis(CurDtor,
+ LCtx->getCurrentStackFrame());
+ SVal ThisVal = Pred->getState()->getSVal(ThisPtr);
+
+ // Create the base object region.
+ const CXXBaseSpecifier *Base = D.getBaseSpecifier();
+ QualType BaseTy = Base->getType();
+ SVal BaseVal = getStoreManager().evalDerivedToBase(ThisVal, BaseTy,
+ Base->isVirtual());
+
+ VisitCXXDestructor(BaseTy, BaseVal.castAs<loc::MemRegionVal>().getRegion(),
+ CurDtor->getBody(), /*IsBase=*/ true, Pred, Dst);
+}
+
+void ExprEngine::ProcessMemberDtor(const CFGMemberDtor D,
+ ExplodedNode *Pred, ExplodedNodeSet &Dst) {
+ const FieldDecl *Member = D.getFieldDecl();
+ ProgramStateRef State = Pred->getState();
+ const LocationContext *LCtx = Pred->getLocationContext();
+
+ const CXXDestructorDecl *CurDtor = cast<CXXDestructorDecl>(LCtx->getDecl());
+ Loc ThisVal = getSValBuilder().getCXXThis(CurDtor,
+ LCtx->getCurrentStackFrame());
+ SVal FieldVal =
+ State->getLValue(Member, State->getSVal(ThisVal).castAs<Loc>());
+
+ VisitCXXDestructor(Member->getType(),
+ FieldVal.castAs<loc::MemRegionVal>().getRegion(),
+ CurDtor->getBody(), /*IsBase=*/false, Pred, Dst);
+}
+
+void ExprEngine::ProcessTemporaryDtor(const CFGTemporaryDtor D,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ ExplodedNodeSet CleanDtorState;
+ StmtNodeBuilder StmtBldr(Pred, CleanDtorState, *currBldrCtx);
+ ProgramStateRef State = Pred->getState();
+ if (State->contains<InitializedTemporariesSet>(
+ std::make_pair(D.getBindTemporaryExpr(), Pred->getStackFrame()))) {
+ // FIXME: Currently we insert temporary destructors for default parameters,
+ // but we don't insert the constructors.
+ State = State->remove<InitializedTemporariesSet>(
+ std::make_pair(D.getBindTemporaryExpr(), Pred->getStackFrame()));
+ }
+ StmtBldr.generateNode(D.getBindTemporaryExpr(), Pred, State);
+
+ QualType varType = D.getBindTemporaryExpr()->getSubExpr()->getType();
+ // FIXME: Currently CleanDtorState can be empty here due to temporaries being
+ // bound to default parameters.
+ assert(CleanDtorState.size() <= 1);
+ ExplodedNode *CleanPred =
+ CleanDtorState.empty() ? Pred : *CleanDtorState.begin();
+ // FIXME: Inlining of temporary destructors is not supported yet anyway, so
+ // we just put a NULL region for now. This will need to be changed later.
+ VisitCXXDestructor(varType, nullptr, D.getBindTemporaryExpr(),
+ /*IsBase=*/false, CleanPred, Dst);
+}
+
+void ExprEngine::processCleanupTemporaryBranch(const CXXBindTemporaryExpr *BTE,
+ NodeBuilderContext &BldCtx,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst,
+ const CFGBlock *DstT,
+ const CFGBlock *DstF) {
+ BranchNodeBuilder TempDtorBuilder(Pred, Dst, BldCtx, DstT, DstF);
+ if (Pred->getState()->contains<InitializedTemporariesSet>(
+ std::make_pair(BTE, Pred->getStackFrame()))) {
+ TempDtorBuilder.markInfeasible(false);
+ TempDtorBuilder.generateNode(Pred->getState(), true, Pred);
+ } else {
+ TempDtorBuilder.markInfeasible(true);
+ TempDtorBuilder.generateNode(Pred->getState(), false, Pred);
+ }
+}
+
+void ExprEngine::VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *BTE,
+ ExplodedNodeSet &PreVisit,
+ ExplodedNodeSet &Dst) {
+ if (!getAnalysisManager().options.includeTemporaryDtorsInCFG()) {
+ // In case we don't have temporary destructors in the CFG, do not mark
+ // the initialization - we would otherwise never clean it up.
+ Dst = PreVisit;
+ return;
+ }
+ StmtNodeBuilder StmtBldr(PreVisit, Dst, *currBldrCtx);
+ for (ExplodedNode *Node : PreVisit) {
+ ProgramStateRef State = Node->getState();
+
+ if (!State->contains<InitializedTemporariesSet>(
+ std::make_pair(BTE, Node->getStackFrame()))) {
+ // FIXME: Currently the state might already contain the marker due to
+ // incorrect handling of temporaries bound to default parameters; for
+ // those, we currently skip the CXXBindTemporaryExpr but rely on adding
+ // temporary destructor nodes.
+ State = State->add<InitializedTemporariesSet>(
+ std::make_pair(BTE, Node->getStackFrame()));
+ }
+ StmtBldr.generateNode(BTE, Node, State);
+ }
+}
+
+void ExprEngine::Visit(const Stmt *S, ExplodedNode *Pred,
+ ExplodedNodeSet &DstTop) {
+ PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
+ S->getLocStart(),
+ "Error evaluating statement");
+ ExplodedNodeSet Dst;
+ StmtNodeBuilder Bldr(Pred, DstTop, *currBldrCtx);
+
+ assert(!isa<Expr>(S) || S == cast<Expr>(S)->IgnoreParens());
+
+ switch (S->getStmtClass()) {
+ // C++ and ARC stuff we don't support yet.
+ case Expr::ObjCIndirectCopyRestoreExprClass:
+ case Stmt::CXXDependentScopeMemberExprClass:
+ case Stmt::CXXTryStmtClass:
+ case Stmt::CXXTypeidExprClass:
+ case Stmt::CXXUuidofExprClass:
+ case Stmt::CXXFoldExprClass:
+ case Stmt::MSPropertyRefExprClass:
+ case Stmt::CXXUnresolvedConstructExprClass:
+ case Stmt::DependentScopeDeclRefExprClass:
+ case Stmt::TypeTraitExprClass:
+ case Stmt::ArrayTypeTraitExprClass:
+ case Stmt::ExpressionTraitExprClass:
+ case Stmt::UnresolvedLookupExprClass:
+ case Stmt::UnresolvedMemberExprClass:
+ case Stmt::TypoExprClass:
+ case Stmt::CXXNoexceptExprClass:
+ case Stmt::PackExpansionExprClass:
+ case Stmt::SubstNonTypeTemplateParmPackExprClass:
+ case Stmt::FunctionParmPackExprClass:
+ case Stmt::SEHTryStmtClass:
+ case Stmt::SEHExceptStmtClass:
+ case Stmt::SEHLeaveStmtClass:
+ case Stmt::LambdaExprClass:
+ case Stmt::SEHFinallyStmtClass: {
+ const ExplodedNode *node = Bldr.generateSink(S, Pred, Pred->getState());
+ Engine.addAbortedBlock(node, currBldrCtx->getBlock());
+ break;
+ }
+
+ case Stmt::ParenExprClass:
+ llvm_unreachable("ParenExprs already handled.");
+ case Stmt::GenericSelectionExprClass:
+ llvm_unreachable("GenericSelectionExprs already handled.");
+ // Cases that should never be evaluated simply because they shouldn't
+ // appear in the CFG.
+ case Stmt::BreakStmtClass:
+ case Stmt::CaseStmtClass:
+ case Stmt::CompoundStmtClass:
+ case Stmt::ContinueStmtClass:
+ case Stmt::CXXForRangeStmtClass:
+ case Stmt::DefaultStmtClass:
+ case Stmt::DoStmtClass:
+ case Stmt::ForStmtClass:
+ case Stmt::GotoStmtClass:
+ case Stmt::IfStmtClass:
+ case Stmt::IndirectGotoStmtClass:
+ case Stmt::LabelStmtClass:
+ case Stmt::NoStmtClass:
+ case Stmt::NullStmtClass:
+ case Stmt::SwitchStmtClass:
+ case Stmt::WhileStmtClass:
+ case Expr::MSDependentExistsStmtClass:
+ case Stmt::CapturedStmtClass:
+ case Stmt::OMPParallelDirectiveClass:
+ case Stmt::OMPSimdDirectiveClass:
+ case Stmt::OMPForDirectiveClass:
+ case Stmt::OMPForSimdDirectiveClass:
+ case Stmt::OMPSectionsDirectiveClass:
+ case Stmt::OMPSectionDirectiveClass:
+ case Stmt::OMPSingleDirectiveClass:
+ case Stmt::OMPMasterDirectiveClass:
+ case Stmt::OMPCriticalDirectiveClass:
+ case Stmt::OMPParallelForDirectiveClass:
+ case Stmt::OMPParallelForSimdDirectiveClass:
+ case Stmt::OMPParallelSectionsDirectiveClass:
+ case Stmt::OMPTaskDirectiveClass:
+ case Stmt::OMPTaskyieldDirectiveClass:
+ case Stmt::OMPBarrierDirectiveClass:
+ case Stmt::OMPTaskwaitDirectiveClass:
+ case Stmt::OMPFlushDirectiveClass:
+ case Stmt::OMPOrderedDirectiveClass:
+ case Stmt::OMPAtomicDirectiveClass:
+ case Stmt::OMPTargetDirectiveClass:
+ case Stmt::OMPTeamsDirectiveClass:
+ llvm_unreachable("Stmt should not be in analyzer evaluation loop");
+
+ case Stmt::ObjCSubscriptRefExprClass:
+ case Stmt::ObjCPropertyRefExprClass:
+ llvm_unreachable("These are handled by PseudoObjectExpr");
+
+ case Stmt::GNUNullExprClass: {
+ // GNU __null is a pointer-width integer, not an actual pointer.
+ ProgramStateRef state = Pred->getState();
+ state = state->BindExpr(S, Pred->getLocationContext(),
+ svalBuilder.makeIntValWithPtrWidth(0, false));
+ Bldr.generateNode(S, Pred, state);
+ break;
+ }
+
+ case Stmt::ObjCAtSynchronizedStmtClass:
+ Bldr.takeNodes(Pred);
+ VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S), Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+
+ case Stmt::ExprWithCleanupsClass:
+ // Handled due to fully linearised CFG.
+ break;
+
+ case Stmt::CXXBindTemporaryExprClass: {
+ Bldr.takeNodes(Pred);
+ ExplodedNodeSet PreVisit;
+ getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this);
+ ExplodedNodeSet Next;
+ VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), PreVisit, Next);
+ getCheckerManager().runCheckersForPostStmt(Dst, Next, S, *this);
+ Bldr.addNodes(Dst);
+ break;
+ }
+
+ // Cases not handled yet; but will handle some day.
+ case Stmt::DesignatedInitExprClass:
+ case Stmt::ExtVectorElementExprClass:
+ case Stmt::ImaginaryLiteralClass:
+ case Stmt::ObjCAtCatchStmtClass:
+ case Stmt::ObjCAtFinallyStmtClass:
+ case Stmt::ObjCAtTryStmtClass:
+ case Stmt::ObjCAutoreleasePoolStmtClass:
+ case Stmt::ObjCEncodeExprClass:
+ case Stmt::ObjCIsaExprClass:
+ case Stmt::ObjCProtocolExprClass:
+ case Stmt::ObjCSelectorExprClass:
+ case Stmt::ParenListExprClass:
+ case Stmt::ShuffleVectorExprClass:
+ case Stmt::ConvertVectorExprClass:
+ case Stmt::VAArgExprClass:
+ case Stmt::CUDAKernelCallExprClass:
+ case Stmt::OpaqueValueExprClass:
+ case Stmt::AsTypeExprClass:
+ case Stmt::AtomicExprClass:
+ // Fall through.
+
+ // Cases we intentionally don't evaluate, since they don't need
+ // to be explicitly evaluated.
+ case Stmt::PredefinedExprClass:
+ case Stmt::AddrLabelExprClass:
+ case Stmt::AttributedStmtClass:
+ case Stmt::IntegerLiteralClass:
+ case Stmt::CharacterLiteralClass:
+ case Stmt::ImplicitValueInitExprClass:
+ case Stmt::CXXScalarValueInitExprClass:
+ case Stmt::CXXBoolLiteralExprClass:
+ case Stmt::ObjCBoolLiteralExprClass:
+ case Stmt::FloatingLiteralClass:
+ case Stmt::SizeOfPackExprClass:
+ case Stmt::StringLiteralClass:
+ case Stmt::ObjCStringLiteralClass:
+ case Stmt::CXXPseudoDestructorExprClass:
+ case Stmt::SubstNonTypeTemplateParmExprClass:
+ case Stmt::CXXNullPtrLiteralExprClass: {
+ Bldr.takeNodes(Pred);
+ ExplodedNodeSet preVisit;
+ getCheckerManager().runCheckersForPreStmt(preVisit, Pred, S, *this);
+ getCheckerManager().runCheckersForPostStmt(Dst, preVisit, S, *this);
+ Bldr.addNodes(Dst);
+ break;
+ }
+
+ case Stmt::CXXDefaultArgExprClass:
+ case Stmt::CXXDefaultInitExprClass: {
+ Bldr.takeNodes(Pred);
+ ExplodedNodeSet PreVisit;
+ getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this);
+
+ ExplodedNodeSet Tmp;
+ StmtNodeBuilder Bldr2(PreVisit, Tmp, *currBldrCtx);
+
+ const Expr *ArgE;
+ if (const CXXDefaultArgExpr *DefE = dyn_cast<CXXDefaultArgExpr>(S))
+ ArgE = DefE->getExpr();
+ else if (const CXXDefaultInitExpr *DefE = dyn_cast<CXXDefaultInitExpr>(S))
+ ArgE = DefE->getExpr();
+ else
+ llvm_unreachable("unknown constant wrapper kind");
+
+ bool IsTemporary = false;
+ if (const MaterializeTemporaryExpr *MTE =
+ dyn_cast<MaterializeTemporaryExpr>(ArgE)) {
+ ArgE = MTE->GetTemporaryExpr();
+ IsTemporary = true;
+ }
+
+ Optional<SVal> ConstantVal = svalBuilder.getConstantVal(ArgE);
+ if (!ConstantVal)
+ ConstantVal = UnknownVal();
+
+ const LocationContext *LCtx = Pred->getLocationContext();
+ for (ExplodedNodeSet::iterator I = PreVisit.begin(), E = PreVisit.end();
+ I != E; ++I) {
+ ProgramStateRef State = (*I)->getState();
+ State = State->BindExpr(S, LCtx, *ConstantVal);
+ if (IsTemporary)
+ State = createTemporaryRegionIfNeeded(State, LCtx,
+ cast<Expr>(S),
+ cast<Expr>(S));
+ Bldr2.generateNode(S, *I, State);
+ }
+
+ getCheckerManager().runCheckersForPostStmt(Dst, Tmp, S, *this);
+ Bldr.addNodes(Dst);
+ break;
+ }
+
+ // Cases we evaluate as opaque expressions, conjuring a symbol.
+ case Stmt::CXXStdInitializerListExprClass:
+ case Expr::ObjCArrayLiteralClass:
+ case Expr::ObjCDictionaryLiteralClass:
+ case Expr::ObjCBoxedExprClass: {
+ Bldr.takeNodes(Pred);
+
+ ExplodedNodeSet preVisit;
+ getCheckerManager().runCheckersForPreStmt(preVisit, Pred, S, *this);
+
+ ExplodedNodeSet Tmp;
+ StmtNodeBuilder Bldr2(preVisit, Tmp, *currBldrCtx);
+
+ const Expr *Ex = cast<Expr>(S);
+ QualType resultType = Ex->getType();
+
+ for (ExplodedNodeSet::iterator it = preVisit.begin(), et = preVisit.end();
+ it != et; ++it) {
+ ExplodedNode *N = *it;
+ const LocationContext *LCtx = N->getLocationContext();
+ SVal result = svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx,
+ resultType,
+ currBldrCtx->blockCount());
+ ProgramStateRef state = N->getState()->BindExpr(Ex, LCtx, result);
+ Bldr2.generateNode(S, N, state);
+ }
+
+ getCheckerManager().runCheckersForPostStmt(Dst, Tmp, S, *this);
+ Bldr.addNodes(Dst);
+ break;
+ }
+
+ case Stmt::ArraySubscriptExprClass:
+ Bldr.takeNodes(Pred);
+ VisitLvalArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+
+ case Stmt::GCCAsmStmtClass:
+ Bldr.takeNodes(Pred);
+ VisitGCCAsmStmt(cast<GCCAsmStmt>(S), Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+
+ case Stmt::MSAsmStmtClass:
+ Bldr.takeNodes(Pred);
+ VisitMSAsmStmt(cast<MSAsmStmt>(S), Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+
+ case Stmt::BlockExprClass:
+ Bldr.takeNodes(Pred);
+ VisitBlockExpr(cast<BlockExpr>(S), Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+
+ case Stmt::BinaryOperatorClass: {
+ const BinaryOperator* B = cast<BinaryOperator>(S);
+ if (B->isLogicalOp()) {
+ Bldr.takeNodes(Pred);
+ VisitLogicalExpr(B, Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+ }
+ else if (B->getOpcode() == BO_Comma) {
+ ProgramStateRef state = Pred->getState();
+ Bldr.generateNode(B, Pred,
+ state->BindExpr(B, Pred->getLocationContext(),
+ state->getSVal(B->getRHS(),
+ Pred->getLocationContext())));
+ break;
+ }
+
+ Bldr.takeNodes(Pred);
+
+ if (AMgr.options.eagerlyAssumeBinOpBifurcation &&
+ (B->isRelationalOp() || B->isEqualityOp())) {
+ ExplodedNodeSet Tmp;
+ VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Tmp);
+ evalEagerlyAssumeBinOpBifurcation(Dst, Tmp, cast<Expr>(S));
+ }
+ else
+ VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst);
+
+ Bldr.addNodes(Dst);
+ break;
+ }
+
+ case Stmt::CXXOperatorCallExprClass: {
+ const CXXOperatorCallExpr *OCE = cast<CXXOperatorCallExpr>(S);
+
+ // For instance method operators, make sure the 'this' argument has a
+ // valid region.
+ const Decl *Callee = OCE->getCalleeDecl();
+ if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Callee)) {
+ if (MD->isInstance()) {
+ ProgramStateRef State = Pred->getState();
+ const LocationContext *LCtx = Pred->getLocationContext();
+ ProgramStateRef NewState =
+ createTemporaryRegionIfNeeded(State, LCtx, OCE->getArg(0));
+ if (NewState != State) {
+ Pred = Bldr.generateNode(OCE, Pred, NewState, /*Tag=*/nullptr,
+ ProgramPoint::PreStmtKind);
+ // Did we cache out?
+ if (!Pred)
+ break;
+ }
+ }
+ }
+ // FALLTHROUGH
+ }
+ case Stmt::CallExprClass:
+ case Stmt::CXXMemberCallExprClass:
+ case Stmt::UserDefinedLiteralClass: {
+ Bldr.takeNodes(Pred);
+ VisitCallExpr(cast<CallExpr>(S), Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+ }
+
+ case Stmt::CXXCatchStmtClass: {
+ Bldr.takeNodes(Pred);
+ VisitCXXCatchStmt(cast<CXXCatchStmt>(S), Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+ }
+
+ case Stmt::CXXTemporaryObjectExprClass:
+ case Stmt::CXXConstructExprClass: {
+ Bldr.takeNodes(Pred);
+ VisitCXXConstructExpr(cast<CXXConstructExpr>(S), Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+ }
+
+ case Stmt::CXXNewExprClass: {
+ Bldr.takeNodes(Pred);
+ ExplodedNodeSet PostVisit;
+ VisitCXXNewExpr(cast<CXXNewExpr>(S), Pred, PostVisit);
+ getCheckerManager().runCheckersForPostStmt(Dst, PostVisit, S, *this);
+ Bldr.addNodes(Dst);
+ break;
+ }
+
+ case Stmt::CXXDeleteExprClass: {
+ Bldr.takeNodes(Pred);
+ ExplodedNodeSet PreVisit;
+ const CXXDeleteExpr *CDE = cast<CXXDeleteExpr>(S);
+ getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this);
+
+ for (ExplodedNodeSet::iterator i = PreVisit.begin(),
+ e = PreVisit.end(); i != e ; ++i)
+ VisitCXXDeleteExpr(CDE, *i, Dst);
+
+ Bldr.addNodes(Dst);
+ break;
+ }
+ // FIXME: ChooseExpr is really a constant. We need to fix
+ // the CFG do not model them as explicit control-flow.
+
+ case Stmt::ChooseExprClass: { // __builtin_choose_expr
+ Bldr.takeNodes(Pred);
+ const ChooseExpr *C = cast<ChooseExpr>(S);
+ VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+ }
+
+ case Stmt::CompoundAssignOperatorClass:
+ Bldr.takeNodes(Pred);
+ VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+
+ case Stmt::CompoundLiteralExprClass:
+ Bldr.takeNodes(Pred);
+ VisitCompoundLiteralExpr(cast<CompoundLiteralExpr>(S), Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+
+ case Stmt::BinaryConditionalOperatorClass:
+ case Stmt::ConditionalOperatorClass: { // '?' operator
+ Bldr.takeNodes(Pred);
+ const AbstractConditionalOperator *C
+ = cast<AbstractConditionalOperator>(S);
+ VisitGuardedExpr(C, C->getTrueExpr(), C->getFalseExpr(), Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+ }
+
+ case Stmt::CXXThisExprClass:
+ Bldr.takeNodes(Pred);
+ VisitCXXThisExpr(cast<CXXThisExpr>(S), Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+
+ case Stmt::DeclRefExprClass: {
+ Bldr.takeNodes(Pred);
+ const DeclRefExpr *DE = cast<DeclRefExpr>(S);
+ VisitCommonDeclRefExpr(DE, DE->getDecl(), Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+ }
+
+ case Stmt::DeclStmtClass:
+ Bldr.takeNodes(Pred);
+ VisitDeclStmt(cast<DeclStmt>(S), Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+
+ case Stmt::ImplicitCastExprClass:
+ case Stmt::CStyleCastExprClass:
+ case Stmt::CXXStaticCastExprClass:
+ case Stmt::CXXDynamicCastExprClass:
+ case Stmt::CXXReinterpretCastExprClass:
+ case Stmt::CXXConstCastExprClass:
+ case Stmt::CXXFunctionalCastExprClass:
+ case Stmt::ObjCBridgedCastExprClass: {
+ Bldr.takeNodes(Pred);
+ const CastExpr *C = cast<CastExpr>(S);
+ // Handle the previsit checks.
+ ExplodedNodeSet dstPrevisit;
+ getCheckerManager().runCheckersForPreStmt(dstPrevisit, Pred, C, *this);
+
+ // Handle the expression itself.
+ ExplodedNodeSet dstExpr;
+ for (ExplodedNodeSet::iterator i = dstPrevisit.begin(),
+ e = dstPrevisit.end(); i != e ; ++i) {
+ VisitCast(C, C->getSubExpr(), *i, dstExpr);
+ }
+
+ // Handle the postvisit checks.
+ getCheckerManager().runCheckersForPostStmt(Dst, dstExpr, C, *this);
+ Bldr.addNodes(Dst);
+ break;
+ }
+
+ case Expr::MaterializeTemporaryExprClass: {
+ Bldr.takeNodes(Pred);
+ const MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(S);
+ CreateCXXTemporaryObject(MTE, Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+ }
+
+ case Stmt::InitListExprClass:
+ Bldr.takeNodes(Pred);
+ VisitInitListExpr(cast<InitListExpr>(S), Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+
+ case Stmt::MemberExprClass:
+ Bldr.takeNodes(Pred);
+ VisitMemberExpr(cast<MemberExpr>(S), Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+
+ case Stmt::ObjCIvarRefExprClass:
+ Bldr.takeNodes(Pred);
+ VisitLvalObjCIvarRefExpr(cast<ObjCIvarRefExpr>(S), Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+
+ case Stmt::ObjCForCollectionStmtClass:
+ Bldr.takeNodes(Pred);
+ VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S), Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+
+ case Stmt::ObjCMessageExprClass:
+ Bldr.takeNodes(Pred);
+ VisitObjCMessage(cast<ObjCMessageExpr>(S), Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+
+ case Stmt::ObjCAtThrowStmtClass:
+ case Stmt::CXXThrowExprClass:
+ // FIXME: This is not complete. We basically treat @throw as
+ // an abort.
+ Bldr.generateSink(S, Pred, Pred->getState());
+ break;
+
+ case Stmt::ReturnStmtClass:
+ Bldr.takeNodes(Pred);
+ VisitReturnStmt(cast<ReturnStmt>(S), Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+
+ case Stmt::OffsetOfExprClass:
+ Bldr.takeNodes(Pred);
+ VisitOffsetOfExpr(cast<OffsetOfExpr>(S), Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+
+ case Stmt::UnaryExprOrTypeTraitExprClass:
+ Bldr.takeNodes(Pred);
+ VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
+ Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+
+ case Stmt::StmtExprClass: {
+ const StmtExpr *SE = cast<StmtExpr>(S);
+
+ if (SE->getSubStmt()->body_empty()) {
+ // Empty statement expression.
+ assert(SE->getType() == getContext().VoidTy
+ && "Empty statement expression must have void type.");
+ break;
+ }
+
+ if (Expr *LastExpr = dyn_cast<Expr>(*SE->getSubStmt()->body_rbegin())) {
+ ProgramStateRef state = Pred->getState();
+ Bldr.generateNode(SE, Pred,
+ state->BindExpr(SE, Pred->getLocationContext(),
+ state->getSVal(LastExpr,
+ Pred->getLocationContext())));
+ }
+ break;
+ }
+
+ case Stmt::UnaryOperatorClass: {
+ Bldr.takeNodes(Pred);
+ const UnaryOperator *U = cast<UnaryOperator>(S);
+ if (AMgr.options.eagerlyAssumeBinOpBifurcation && (U->getOpcode() == UO_LNot)) {
+ ExplodedNodeSet Tmp;
+ VisitUnaryOperator(U, Pred, Tmp);
+ evalEagerlyAssumeBinOpBifurcation(Dst, Tmp, U);
+ }
+ else
+ VisitUnaryOperator(U, Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+ }
+
+ case Stmt::PseudoObjectExprClass: {
+ Bldr.takeNodes(Pred);
+ ProgramStateRef state = Pred->getState();
+ const PseudoObjectExpr *PE = cast<PseudoObjectExpr>(S);
+ if (const Expr *Result = PE->getResultExpr()) {
+ SVal V = state->getSVal(Result, Pred->getLocationContext());
+ Bldr.generateNode(S, Pred,
+ state->BindExpr(S, Pred->getLocationContext(), V));
+ }
+ else
+ Bldr.generateNode(S, Pred,
+ state->BindExpr(S, Pred->getLocationContext(),
+ UnknownVal()));
+
+ Bldr.addNodes(Dst);
+ break;
+ }
+ }
+}
+
+bool ExprEngine::replayWithoutInlining(ExplodedNode *N,
+ const LocationContext *CalleeLC) {
+ const StackFrameContext *CalleeSF = CalleeLC->getCurrentStackFrame();
+ const StackFrameContext *CallerSF = CalleeSF->getParent()->getCurrentStackFrame();
+ assert(CalleeSF && CallerSF);
+ ExplodedNode *BeforeProcessingCall = nullptr;
+ const Stmt *CE = CalleeSF->getCallSite();
+
+ // Find the first node before we started processing the call expression.
+ while (N) {
+ ProgramPoint L = N->getLocation();
+ BeforeProcessingCall = N;
+ N = N->pred_empty() ? nullptr : *(N->pred_begin());
+
+ // Skip the nodes corresponding to the inlined code.
+ if (L.getLocationContext()->getCurrentStackFrame() != CallerSF)
+ continue;
+ // We reached the caller. Find the node right before we started
+ // processing the call.
+ if (L.isPurgeKind())
+ continue;
+ if (L.getAs<PreImplicitCall>())
+ continue;
+ if (L.getAs<CallEnter>())
+ continue;
+ if (Optional<StmtPoint> SP = L.getAs<StmtPoint>())
+ if (SP->getStmt() == CE)
+ continue;
+ break;
+ }
+
+ if (!BeforeProcessingCall)
+ return false;
+
+ // TODO: Clean up the unneeded nodes.
+
+ // Build an Epsilon node from which we will restart the analyzes.
+ // Note that CE is permitted to be NULL!
+ ProgramPoint NewNodeLoc =
+ EpsilonPoint(BeforeProcessingCall->getLocationContext(), CE);
+ // Add the special flag to GDM to signal retrying with no inlining.
+ // Note, changing the state ensures that we are not going to cache out.
+ ProgramStateRef NewNodeState = BeforeProcessingCall->getState();
+ NewNodeState =
+ NewNodeState->set<ReplayWithoutInlining>(const_cast<Stmt *>(CE));
+
+ // Make the new node a successor of BeforeProcessingCall.
+ bool IsNew = false;
+ ExplodedNode *NewNode = G.getNode(NewNodeLoc, NewNodeState, false, &IsNew);
+ // We cached out at this point. Caching out is common due to us backtracking
+ // from the inlined function, which might spawn several paths.
+ if (!IsNew)
+ return true;
+
+ NewNode->addPredecessor(BeforeProcessingCall, G);
+
+ // Add the new node to the work list.
+ Engine.enqueueStmtNode(NewNode, CalleeSF->getCallSiteBlock(),
+ CalleeSF->getIndex());
+ NumTimesRetriedWithoutInlining++;
+ return true;
+}
+
+/// Block entrance. (Update counters).
+void ExprEngine::processCFGBlockEntrance(const BlockEdge &L,
+ NodeBuilderWithSinks &nodeBuilder,
+ ExplodedNode *Pred) {
+ PrettyStackTraceLocationContext CrashInfo(Pred->getLocationContext());
+
+ // FIXME: Refactor this into a checker.
+ if (nodeBuilder.getContext().blockCount() >= AMgr.options.maxBlockVisitOnPath) {
+ static SimpleProgramPointTag tag(TagProviderName, "Block count exceeded");
+ const ExplodedNode *Sink =
+ nodeBuilder.generateSink(Pred->getState(), Pred, &tag);
+
+ // Check if we stopped at the top level function or not.
+ // Root node should have the location context of the top most function.
+ const LocationContext *CalleeLC = Pred->getLocation().getLocationContext();
+ const LocationContext *CalleeSF = CalleeLC->getCurrentStackFrame();
+ const LocationContext *RootLC =
+ (*G.roots_begin())->getLocation().getLocationContext();
+ if (RootLC->getCurrentStackFrame() != CalleeSF) {
+ Engine.FunctionSummaries->markReachedMaxBlockCount(CalleeSF->getDecl());
+
+ // Re-run the call evaluation without inlining it, by storing the
+ // no-inlining policy in the state and enqueuing the new work item on
+ // the list. Replay should almost never fail. Use the stats to catch it
+ // if it does.
+ if ((!AMgr.options.NoRetryExhausted &&
+ replayWithoutInlining(Pred, CalleeLC)))
+ return;
+ NumMaxBlockCountReachedInInlined++;
+ } else
+ NumMaxBlockCountReached++;
+
+ // Make sink nodes as exhausted(for stats) only if retry failed.
+ Engine.blocksExhausted.push_back(std::make_pair(L, Sink));
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Branch processing.
+//===----------------------------------------------------------------------===//
+
+/// RecoverCastedSymbol - A helper function for ProcessBranch that is used
+/// to try to recover some path-sensitivity for casts of symbolic
+/// integers that promote their values (which are currently not tracked well).
+/// This function returns the SVal bound to Condition->IgnoreCasts if all the
+// cast(s) did was sign-extend the original value.
+static SVal RecoverCastedSymbol(ProgramStateManager& StateMgr,
+ ProgramStateRef state,
+ const Stmt *Condition,
+ const LocationContext *LCtx,
+ ASTContext &Ctx) {
+
+ const Expr *Ex = dyn_cast<Expr>(Condition);
+ if (!Ex)
+ return UnknownVal();
+
+ uint64_t bits = 0;
+ bool bitsInit = false;
+
+ while (const CastExpr *CE = dyn_cast<CastExpr>(Ex)) {
+ QualType T = CE->getType();
+
+ if (!T->isIntegralOrEnumerationType())
+ return UnknownVal();
+
+ uint64_t newBits = Ctx.getTypeSize(T);
+ if (!bitsInit || newBits < bits) {
+ bitsInit = true;
+ bits = newBits;
+ }
+
+ Ex = CE->getSubExpr();
+ }
+
+ // We reached a non-cast. Is it a symbolic value?
+ QualType T = Ex->getType();
+
+ if (!bitsInit || !T->isIntegralOrEnumerationType() ||
+ Ctx.getTypeSize(T) > bits)
+ return UnknownVal();
+
+ return state->getSVal(Ex, LCtx);
+}
+
+#ifndef NDEBUG
+static const Stmt *getRightmostLeaf(const Stmt *Condition) {
+ while (Condition) {
+ const BinaryOperator *BO = dyn_cast<BinaryOperator>(Condition);
+ if (!BO || !BO->isLogicalOp()) {
+ return Condition;
+ }
+ Condition = BO->getRHS()->IgnoreParens();
+ }
+ return nullptr;
+}
+#endif
+
+// Returns the condition the branch at the end of 'B' depends on and whose value
+// has been evaluated within 'B'.
+// In most cases, the terminator condition of 'B' will be evaluated fully in
+// the last statement of 'B'; in those cases, the resolved condition is the
+// given 'Condition'.
+// If the condition of the branch is a logical binary operator tree, the CFG is
+// optimized: in that case, we know that the expression formed by all but the
+// rightmost leaf of the logical binary operator tree must be true, and thus
+// the branch condition is at this point equivalent to the truth value of that
+// rightmost leaf; the CFG block thus only evaluates this rightmost leaf
+// expression in its final statement. As the full condition in that case was
+// not evaluated, and is thus not in the SVal cache, we need to use that leaf
+// expression to evaluate the truth value of the condition in the current state
+// space.
+static const Stmt *ResolveCondition(const Stmt *Condition,
+ const CFGBlock *B) {
+ if (const Expr *Ex = dyn_cast<Expr>(Condition))
+ Condition = Ex->IgnoreParens();
+
+ const BinaryOperator *BO = dyn_cast<BinaryOperator>(Condition);
+ if (!BO || !BO->isLogicalOp())
+ return Condition;
+
+ assert(!B->getTerminator().isTemporaryDtorsBranch() &&
+ "Temporary destructor branches handled by processBindTemporary.");
+
+ // For logical operations, we still have the case where some branches
+ // use the traditional "merge" approach and others sink the branch
+ // directly into the basic blocks representing the logical operation.
+ // We need to distinguish between those two cases here.
+
+ // The invariants are still shifting, but it is possible that the
+ // last element in a CFGBlock is not a CFGStmt. Look for the last
+ // CFGStmt as the value of the condition.
+ CFGBlock::const_reverse_iterator I = B->rbegin(), E = B->rend();
+ for (; I != E; ++I) {
+ CFGElement Elem = *I;
+ Optional<CFGStmt> CS = Elem.getAs<CFGStmt>();
+ if (!CS)
+ continue;
+ const Stmt *LastStmt = CS->getStmt();
+ assert(LastStmt == Condition || LastStmt == getRightmostLeaf(Condition));
+ return LastStmt;
+ }
+ llvm_unreachable("could not resolve condition");
+}
+
+void ExprEngine::processBranch(const Stmt *Condition, const Stmt *Term,
+ NodeBuilderContext& BldCtx,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst,
+ const CFGBlock *DstT,
+ const CFGBlock *DstF) {
+ assert((!Condition || !isa<CXXBindTemporaryExpr>(Condition)) &&
+ "CXXBindTemporaryExprs are handled by processBindTemporary.");
+ const LocationContext *LCtx = Pred->getLocationContext();
+ PrettyStackTraceLocationContext StackCrashInfo(LCtx);
+ currBldrCtx = &BldCtx;
+
+ // Check for NULL conditions; e.g. "for(;;)"
+ if (!Condition) {
+ BranchNodeBuilder NullCondBldr(Pred, Dst, BldCtx, DstT, DstF);
+ NullCondBldr.markInfeasible(false);
+ NullCondBldr.generateNode(Pred->getState(), true, Pred);
+ return;
+ }
+
+
+ if (const Expr *Ex = dyn_cast<Expr>(Condition))
+ Condition = Ex->IgnoreParens();
+
+ Condition = ResolveCondition(Condition, BldCtx.getBlock());
+ PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
+ Condition->getLocStart(),
+ "Error evaluating branch");
+
+ ExplodedNodeSet CheckersOutSet;
+ getCheckerManager().runCheckersForBranchCondition(Condition, CheckersOutSet,
+ Pred, *this);
+ // We generated only sinks.
+ if (CheckersOutSet.empty())
+ return;
+
+ BranchNodeBuilder builder(CheckersOutSet, Dst, BldCtx, DstT, DstF);
+ for (NodeBuilder::iterator I = CheckersOutSet.begin(),
+ E = CheckersOutSet.end(); E != I; ++I) {
+ ExplodedNode *PredI = *I;
+
+ if (PredI->isSink())
+ continue;
+
+ ProgramStateRef PrevState = PredI->getState();
+ SVal X = PrevState->getSVal(Condition, PredI->getLocationContext());
+
+ if (X.isUnknownOrUndef()) {
+ // Give it a chance to recover from unknown.
+ if (const Expr *Ex = dyn_cast<Expr>(Condition)) {
+ if (Ex->getType()->isIntegralOrEnumerationType()) {
+ // Try to recover some path-sensitivity. Right now casts of symbolic
+ // integers that promote their values are currently not tracked well.
+ // If 'Condition' is such an expression, try and recover the
+ // underlying value and use that instead.
+ SVal recovered = RecoverCastedSymbol(getStateManager(),
+ PrevState, Condition,
+ PredI->getLocationContext(),
+ getContext());
+
+ if (!recovered.isUnknown()) {
+ X = recovered;
+ }
+ }
+ }
+ }
+
+ // If the condition is still unknown, give up.
+ if (X.isUnknownOrUndef()) {
+ builder.generateNode(PrevState, true, PredI);
+ builder.generateNode(PrevState, false, PredI);
+ continue;
+ }
+
+ DefinedSVal V = X.castAs<DefinedSVal>();
+
+ ProgramStateRef StTrue, StFalse;
+ std::tie(StTrue, StFalse) = PrevState->assume(V);
+
+ // Process the true branch.
+ if (builder.isFeasible(true)) {
+ if (StTrue)
+ builder.generateNode(StTrue, true, PredI);
+ else
+ builder.markInfeasible(true);
+ }
+
+ // Process the false branch.
+ if (builder.isFeasible(false)) {
+ if (StFalse)
+ builder.generateNode(StFalse, false, PredI);
+ else
+ builder.markInfeasible(false);
+ }
+ }
+ currBldrCtx = nullptr;
+}
+
+/// The GDM component containing the set of global variables which have been
+/// previously initialized with explicit initializers.
+REGISTER_TRAIT_WITH_PROGRAMSTATE(InitializedGlobalsSet,
+ llvm::ImmutableSet<const VarDecl *>)
+
+void ExprEngine::processStaticInitializer(const DeclStmt *DS,
+ NodeBuilderContext &BuilderCtx,
+ ExplodedNode *Pred,
+ clang::ento::ExplodedNodeSet &Dst,
+ const CFGBlock *DstT,
+ const CFGBlock *DstF) {
+ PrettyStackTraceLocationContext CrashInfo(Pred->getLocationContext());
+ currBldrCtx = &BuilderCtx;
+
+ const VarDecl *VD = cast<VarDecl>(DS->getSingleDecl());
+ ProgramStateRef state = Pred->getState();
+ bool initHasRun = state->contains<InitializedGlobalsSet>(VD);
+ BranchNodeBuilder builder(Pred, Dst, BuilderCtx, DstT, DstF);
+
+ if (!initHasRun) {
+ state = state->add<InitializedGlobalsSet>(VD);
+ }
+
+ builder.generateNode(state, initHasRun, Pred);
+ builder.markInfeasible(!initHasRun);
+
+ currBldrCtx = nullptr;
+}
+
+/// processIndirectGoto - Called by CoreEngine. Used to generate successor
+/// nodes by processing the 'effects' of a computed goto jump.
+void ExprEngine::processIndirectGoto(IndirectGotoNodeBuilder &builder) {
+
+ ProgramStateRef state = builder.getState();
+ SVal V = state->getSVal(builder.getTarget(), builder.getLocationContext());
+
+ // Three possibilities:
+ //
+ // (1) We know the computed label.
+ // (2) The label is NULL (or some other constant), or Undefined.
+ // (3) We have no clue about the label. Dispatch to all targets.
+ //
+
+ typedef IndirectGotoNodeBuilder::iterator iterator;
+
+ if (Optional<loc::GotoLabel> LV = V.getAs<loc::GotoLabel>()) {
+ const LabelDecl *L = LV->getLabel();
+
+ for (iterator I = builder.begin(), E = builder.end(); I != E; ++I) {
+ if (I.getLabel() == L) {
+ builder.generateNode(I, state);
+ return;
+ }
+ }
+
+ llvm_unreachable("No block with label.");
+ }
+
+ if (V.getAs<loc::ConcreteInt>() || V.getAs<UndefinedVal>()) {
+ // Dispatch to the first target and mark it as a sink.
+ //ExplodedNode* N = builder.generateNode(builder.begin(), state, true);
+ // FIXME: add checker visit.
+ // UndefBranches.insert(N);
+ return;
+ }
+
+ // This is really a catch-all. We don't support symbolics yet.
+ // FIXME: Implement dispatch for symbolic pointers.
+
+ for (iterator I=builder.begin(), E=builder.end(); I != E; ++I)
+ builder.generateNode(I, state);
+}
+
+#if 0
+static bool stackFrameDoesNotContainInitializedTemporaries(ExplodedNode &Pred) {
+ const StackFrameContext* Frame = Pred.getStackFrame();
+ const llvm::ImmutableSet<CXXBindTemporaryContext> &Set =
+ Pred.getState()->get<InitializedTemporariesSet>();
+ return std::find_if(Set.begin(), Set.end(),
+ [&](const CXXBindTemporaryContext &Ctx) {
+ if (Ctx.second == Frame) {
+ Ctx.first->dump();
+ llvm::errs() << "\n";
+ }
+ return Ctx.second == Frame;
+ }) == Set.end();
+}
+#endif
+
+/// ProcessEndPath - Called by CoreEngine. Used to generate end-of-path
+/// nodes when the control reaches the end of a function.
+void ExprEngine::processEndOfFunction(NodeBuilderContext& BC,
+ ExplodedNode *Pred) {
+ // FIXME: Assert that stackFrameDoesNotContainInitializedTemporaries(*Pred)).
+ // We currently cannot enable this assert, as lifetime extended temporaries
+ // are not modelled correctly.
+ PrettyStackTraceLocationContext CrashInfo(Pred->getLocationContext());
+ StateMgr.EndPath(Pred->getState());
+
+ ExplodedNodeSet Dst;
+ if (Pred->getLocationContext()->inTopFrame()) {
+ // Remove dead symbols.
+ ExplodedNodeSet AfterRemovedDead;
+ removeDeadOnEndOfFunction(BC, Pred, AfterRemovedDead);
+
+ // Notify checkers.
+ for (ExplodedNodeSet::iterator I = AfterRemovedDead.begin(),
+ E = AfterRemovedDead.end(); I != E; ++I) {
+ getCheckerManager().runCheckersForEndFunction(BC, Dst, *I, *this);
+ }
+ } else {
+ getCheckerManager().runCheckersForEndFunction(BC, Dst, Pred, *this);
+ }
+
+ Engine.enqueueEndOfFunction(Dst);
+}
+
+/// ProcessSwitch - Called by CoreEngine. Used to generate successor
+/// nodes by processing the 'effects' of a switch statement.
+void ExprEngine::processSwitch(SwitchNodeBuilder& builder) {
+ typedef SwitchNodeBuilder::iterator iterator;
+ ProgramStateRef state = builder.getState();
+ const Expr *CondE = builder.getCondition();
+ SVal CondV_untested = state->getSVal(CondE, builder.getLocationContext());
+
+ if (CondV_untested.isUndef()) {
+ //ExplodedNode* N = builder.generateDefaultCaseNode(state, true);
+ // FIXME: add checker
+ //UndefBranches.insert(N);
+
+ return;
+ }
+ DefinedOrUnknownSVal CondV = CondV_untested.castAs<DefinedOrUnknownSVal>();
+
+ ProgramStateRef DefaultSt = state;
+
+ iterator I = builder.begin(), EI = builder.end();
+ bool defaultIsFeasible = I == EI;
+
+ for ( ; I != EI; ++I) {
+ // Successor may be pruned out during CFG construction.
+ if (!I.getBlock())
+ continue;
+
+ const CaseStmt *Case = I.getCase();
+
+ // Evaluate the LHS of the case value.
+ llvm::APSInt V1 = Case->getLHS()->EvaluateKnownConstInt(getContext());
+ assert(V1.getBitWidth() == getContext().getTypeSize(CondE->getType()));
+
+ // Get the RHS of the case, if it exists.
+ llvm::APSInt V2;
+ if (const Expr *E = Case->getRHS())
+ V2 = E->EvaluateKnownConstInt(getContext());
+ else
+ V2 = V1;
+
+ // FIXME: Eventually we should replace the logic below with a range
+ // comparison, rather than concretize the values within the range.
+ // This should be easy once we have "ranges" for NonLVals.
+
+ do {
+ nonloc::ConcreteInt CaseVal(getBasicVals().getValue(V1));
+ DefinedOrUnknownSVal Res = svalBuilder.evalEQ(DefaultSt ? DefaultSt : state,
+ CondV, CaseVal);
+
+ // Now "assume" that the case matches.
+ if (ProgramStateRef stateNew = state->assume(Res, true)) {
+ builder.generateCaseStmtNode(I, stateNew);
+
+ // If CondV evaluates to a constant, then we know that this
+ // is the *only* case that we can take, so stop evaluating the
+ // others.
+ if (CondV.getAs<nonloc::ConcreteInt>())
+ return;
+ }
+
+ // Now "assume" that the case doesn't match. Add this state
+ // to the default state (if it is feasible).
+ if (DefaultSt) {
+ if (ProgramStateRef stateNew = DefaultSt->assume(Res, false)) {
+ defaultIsFeasible = true;
+ DefaultSt = stateNew;
+ }
+ else {
+ defaultIsFeasible = false;
+ DefaultSt = nullptr;
+ }
+ }
+
+ // Concretize the next value in the range.
+ if (V1 == V2)
+ break;
+
+ ++V1;
+ assert (V1 <= V2);
+
+ } while (true);
+ }
+
+ if (!defaultIsFeasible)
+ return;
+
+ // If we have switch(enum value), the default branch is not
+ // feasible if all of the enum constants not covered by 'case:' statements
+ // are not feasible values for the switch condition.
+ //
+ // Note that this isn't as accurate as it could be. Even if there isn't
+ // a case for a particular enum value as long as that enum value isn't
+ // feasible then it shouldn't be considered for making 'default:' reachable.
+ const SwitchStmt *SS = builder.getSwitch();
+ const Expr *CondExpr = SS->getCond()->IgnoreParenImpCasts();
+ if (CondExpr->getType()->getAs<EnumType>()) {
+ if (SS->isAllEnumCasesCovered())
+ return;
+ }
+
+ builder.generateDefaultCaseNode(DefaultSt);
+}
+
+//===----------------------------------------------------------------------===//
+// Transfer functions: Loads and stores.
+//===----------------------------------------------------------------------===//
+
+void ExprEngine::VisitCommonDeclRefExpr(const Expr *Ex, const NamedDecl *D,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
+
+ ProgramStateRef state = Pred->getState();
+ const LocationContext *LCtx = Pred->getLocationContext();
+
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
+ // C permits "extern void v", and if you cast the address to a valid type,
+ // you can even do things with it. We simply pretend
+ assert(Ex->isGLValue() || VD->getType()->isVoidType());
+ SVal V = state->getLValue(VD, Pred->getLocationContext());
+
+ // For references, the 'lvalue' is the pointer address stored in the
+ // reference region.
+ if (VD->getType()->isReferenceType()) {
+ if (const MemRegion *R = V.getAsRegion())
+ V = state->getSVal(R);
+ else
+ V = UnknownVal();
+ }
+
+ Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V), nullptr,
+ ProgramPoint::PostLValueKind);
+ return;
+ }
+ if (const EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D)) {
+ assert(!Ex->isGLValue());
+ SVal V = svalBuilder.makeIntVal(ED->getInitVal());
+ Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V));
+ return;
+ }
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ SVal V = svalBuilder.getFunctionPointer(FD);
+ Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V), nullptr,
+ ProgramPoint::PostLValueKind);
+ return;
+ }
+ if (isa<FieldDecl>(D)) {
+ // FIXME: Compute lvalue of field pointers-to-member.
+ // Right now we just use a non-null void pointer, so that it gives proper
+ // results in boolean contexts.
+ SVal V = svalBuilder.conjureSymbolVal(Ex, LCtx, getContext().VoidPtrTy,
+ currBldrCtx->blockCount());
+ state = state->assume(V.castAs<DefinedOrUnknownSVal>(), true);
+ Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V), nullptr,
+ ProgramPoint::PostLValueKind);
+ return;
+ }
+
+ llvm_unreachable("Support for this Decl not implemented.");
+}
+
+/// VisitArraySubscriptExpr - Transfer function for array accesses
+void ExprEngine::VisitLvalArraySubscriptExpr(const ArraySubscriptExpr *A,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst){
+
+ const Expr *Base = A->getBase()->IgnoreParens();
+ const Expr *Idx = A->getIdx()->IgnoreParens();
+
+
+ ExplodedNodeSet checkerPreStmt;
+ getCheckerManager().runCheckersForPreStmt(checkerPreStmt, Pred, A, *this);
+
+ StmtNodeBuilder Bldr(checkerPreStmt, Dst, *currBldrCtx);
+ assert(A->isGLValue() ||
+ (!AMgr.getLangOpts().CPlusPlus &&
+ A->getType().isCForbiddenLValueType()));
+
+ for (ExplodedNodeSet::iterator it = checkerPreStmt.begin(),
+ ei = checkerPreStmt.end(); it != ei; ++it) {
+ const LocationContext *LCtx = (*it)->getLocationContext();
+ ProgramStateRef state = (*it)->getState();
+ SVal V = state->getLValue(A->getType(),
+ state->getSVal(Idx, LCtx),
+ state->getSVal(Base, LCtx));
+ Bldr.generateNode(A, *it, state->BindExpr(A, LCtx, V), nullptr,
+ ProgramPoint::PostLValueKind);
+ }
+}
+
+/// VisitMemberExpr - Transfer function for member expressions.
+void ExprEngine::VisitMemberExpr(const MemberExpr *M, ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+
+ // FIXME: Prechecks eventually go in ::Visit().
+ ExplodedNodeSet CheckedSet;
+ getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, M, *this);
+
+ ExplodedNodeSet EvalSet;
+ ValueDecl *Member = M->getMemberDecl();
+
+ // Handle static member variables and enum constants accessed via
+ // member syntax.
+ if (isa<VarDecl>(Member) || isa<EnumConstantDecl>(Member)) {
+ ExplodedNodeSet Dst;
+ for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
+ I != E; ++I) {
+ VisitCommonDeclRefExpr(M, Member, Pred, EvalSet);
+ }
+ } else {
+ StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
+ ExplodedNodeSet Tmp;
+
+ for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
+ I != E; ++I) {
+ ProgramStateRef state = (*I)->getState();
+ const LocationContext *LCtx = (*I)->getLocationContext();
+ Expr *BaseExpr = M->getBase();
+
+ // Handle C++ method calls.
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member)) {
+ if (MD->isInstance())
+ state = createTemporaryRegionIfNeeded(state, LCtx, BaseExpr);
+
+ SVal MDVal = svalBuilder.getFunctionPointer(MD);
+ state = state->BindExpr(M, LCtx, MDVal);
+
+ Bldr.generateNode(M, *I, state);
+ continue;
+ }
+
+ // Handle regular struct fields / member variables.
+ state = createTemporaryRegionIfNeeded(state, LCtx, BaseExpr);
+ SVal baseExprVal = state->getSVal(BaseExpr, LCtx);
+
+ FieldDecl *field = cast<FieldDecl>(Member);
+ SVal L = state->getLValue(field, baseExprVal);
+
+ if (M->isGLValue() || M->getType()->isArrayType()) {
+ // We special-case rvalues of array type because the analyzer cannot
+ // reason about them, since we expect all regions to be wrapped in Locs.
+ // We instead treat these as lvalues and assume that they will decay to
+ // pointers as soon as they are used.
+ if (!M->isGLValue()) {
+ assert(M->getType()->isArrayType());
+ const ImplicitCastExpr *PE =
+ dyn_cast<ImplicitCastExpr>((*I)->getParentMap().getParent(M));
+ if (!PE || PE->getCastKind() != CK_ArrayToPointerDecay) {
+ llvm_unreachable("should always be wrapped in ArrayToPointerDecay");
+ }
+ }
+
+ if (field->getType()->isReferenceType()) {
+ if (const MemRegion *R = L.getAsRegion())
+ L = state->getSVal(R);
+ else
+ L = UnknownVal();
+ }
+
+ Bldr.generateNode(M, *I, state->BindExpr(M, LCtx, L), nullptr,
+ ProgramPoint::PostLValueKind);
+ } else {
+ Bldr.takeNodes(*I);
+ evalLoad(Tmp, M, M, *I, state, L);
+ Bldr.addNodes(Tmp);
+ }
+ }
+ }
+
+ getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, M, *this);
+}
+
+namespace {
+class CollectReachableSymbolsCallback : public SymbolVisitor {
+ InvalidatedSymbols Symbols;
+public:
+ CollectReachableSymbolsCallback(ProgramStateRef State) {}
+ const InvalidatedSymbols &getSymbols() const { return Symbols; }
+
+ bool VisitSymbol(SymbolRef Sym) override {
+ Symbols.insert(Sym);
+ return true;
+ }
+};
+} // end anonymous namespace
+
+// A value escapes in three possible cases:
+// (1) We are binding to something that is not a memory region.
+// (2) We are binding to a MemrRegion that does not have stack storage.
+// (3) We are binding to a MemRegion with stack storage that the store
+// does not understand.
+ProgramStateRef ExprEngine::processPointerEscapedOnBind(ProgramStateRef State,
+ SVal Loc, SVal Val) {
+ // Are we storing to something that causes the value to "escape"?
+ bool escapes = true;
+
+ // TODO: Move to StoreManager.
+ if (Optional<loc::MemRegionVal> regionLoc = Loc.getAs<loc::MemRegionVal>()) {
+ escapes = !regionLoc->getRegion()->hasStackStorage();
+
+ if (!escapes) {
+ // To test (3), generate a new state with the binding added. If it is
+ // the same state, then it escapes (since the store cannot represent
+ // the binding).
+ // Do this only if we know that the store is not supposed to generate the
+ // same state.
+ SVal StoredVal = State->getSVal(regionLoc->getRegion());
+ if (StoredVal != Val)
+ escapes = (State == (State->bindLoc(*regionLoc, Val)));
+ }
+ }
+
+ // If our store can represent the binding and we aren't storing to something
+ // that doesn't have local storage then just return and have the simulation
+ // state continue as is.
+ if (!escapes)
+ return State;
+
+ // Otherwise, find all symbols referenced by 'val' that we are tracking
+ // and stop tracking them.
+ CollectReachableSymbolsCallback Scanner =
+ State->scanReachableSymbols<CollectReachableSymbolsCallback>(Val);
+ const InvalidatedSymbols &EscapedSymbols = Scanner.getSymbols();
+ State = getCheckerManager().runCheckersForPointerEscape(State,
+ EscapedSymbols,
+ /*CallEvent*/ nullptr,
+ PSK_EscapeOnBind,
+ nullptr);
+
+ return State;
+}
+
+ProgramStateRef
+ExprEngine::notifyCheckersOfPointerEscape(ProgramStateRef State,
+ const InvalidatedSymbols *Invalidated,
+ ArrayRef<const MemRegion *> ExplicitRegions,
+ ArrayRef<const MemRegion *> Regions,
+ const CallEvent *Call,
+ RegionAndSymbolInvalidationTraits &ITraits) {
+
+ if (!Invalidated || Invalidated->empty())
+ return State;
+
+ if (!Call)
+ return getCheckerManager().runCheckersForPointerEscape(State,
+ *Invalidated,
+ nullptr,
+ PSK_EscapeOther,
+ &ITraits);
+
+ // If the symbols were invalidated by a call, we want to find out which ones
+ // were invalidated directly due to being arguments to the call.
+ InvalidatedSymbols SymbolsDirectlyInvalidated;
+ for (ArrayRef<const MemRegion *>::iterator I = ExplicitRegions.begin(),
+ E = ExplicitRegions.end(); I != E; ++I) {
+ if (const SymbolicRegion *R = (*I)->StripCasts()->getAs<SymbolicRegion>())
+ SymbolsDirectlyInvalidated.insert(R->getSymbol());
+ }
+
+ InvalidatedSymbols SymbolsIndirectlyInvalidated;
+ for (InvalidatedSymbols::const_iterator I=Invalidated->begin(),
+ E = Invalidated->end(); I!=E; ++I) {
+ SymbolRef sym = *I;
+ if (SymbolsDirectlyInvalidated.count(sym))
+ continue;
+ SymbolsIndirectlyInvalidated.insert(sym);
+ }
+
+ if (!SymbolsDirectlyInvalidated.empty())
+ State = getCheckerManager().runCheckersForPointerEscape(State,
+ SymbolsDirectlyInvalidated, Call, PSK_DirectEscapeOnCall, &ITraits);
+
+ // Notify about the symbols that get indirectly invalidated by the call.
+ if (!SymbolsIndirectlyInvalidated.empty())
+ State = getCheckerManager().runCheckersForPointerEscape(State,
+ SymbolsIndirectlyInvalidated, Call, PSK_IndirectEscapeOnCall, &ITraits);
+
+ return State;
+}
+
+/// evalBind - Handle the semantics of binding a value to a specific location.
+/// This method is used by evalStore and (soon) VisitDeclStmt, and others.
+void ExprEngine::evalBind(ExplodedNodeSet &Dst, const Stmt *StoreE,
+ ExplodedNode *Pred,
+ SVal location, SVal Val,
+ bool atDeclInit, const ProgramPoint *PP) {
+
+ const LocationContext *LC = Pred->getLocationContext();
+ PostStmt PS(StoreE, LC);
+ if (!PP)
+ PP = &PS;
+
+ // Do a previsit of the bind.
+ ExplodedNodeSet CheckedSet;
+ getCheckerManager().runCheckersForBind(CheckedSet, Pred, location, Val,
+ StoreE, *this, *PP);
+
+
+ StmtNodeBuilder Bldr(CheckedSet, Dst, *currBldrCtx);
+
+ // If the location is not a 'Loc', it will already be handled by
+ // the checkers. There is nothing left to do.
+ if (!location.getAs<Loc>()) {
+ const ProgramPoint L = PostStore(StoreE, LC, /*Loc*/nullptr,
+ /*tag*/nullptr);
+ ProgramStateRef state = Pred->getState();
+ state = processPointerEscapedOnBind(state, location, Val);
+ Bldr.generateNode(L, state, Pred);
+ return;
+ }
+
+
+ for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
+ I!=E; ++I) {
+ ExplodedNode *PredI = *I;
+ ProgramStateRef state = PredI->getState();
+
+ state = processPointerEscapedOnBind(state, location, Val);
+
+ // When binding the value, pass on the hint that this is a initialization.
+ // For initializations, we do not need to inform clients of region
+ // changes.
+ state = state->bindLoc(location.castAs<Loc>(),
+ Val, /* notifyChanges = */ !atDeclInit);
+
+ const MemRegion *LocReg = nullptr;
+ if (Optional<loc::MemRegionVal> LocRegVal =
+ location.getAs<loc::MemRegionVal>()) {
+ LocReg = LocRegVal->getRegion();
+ }
+
+ const ProgramPoint L = PostStore(StoreE, LC, LocReg, nullptr);
+ Bldr.generateNode(L, state, PredI);
+ }
+}
+
+/// evalStore - Handle the semantics of a store via an assignment.
+/// @param Dst The node set to store generated state nodes
+/// @param AssignE The assignment expression if the store happens in an
+/// assignment.
+/// @param LocationE The location expression that is stored to.
+/// @param state The current simulation state
+/// @param location The location to store the value
+/// @param Val The value to be stored
+void ExprEngine::evalStore(ExplodedNodeSet &Dst, const Expr *AssignE,
+ const Expr *LocationE,
+ ExplodedNode *Pred,
+ ProgramStateRef state, SVal location, SVal Val,
+ const ProgramPointTag *tag) {
+ // Proceed with the store. We use AssignE as the anchor for the PostStore
+ // ProgramPoint if it is non-NULL, and LocationE otherwise.
+ const Expr *StoreE = AssignE ? AssignE : LocationE;
+
+ // Evaluate the location (checks for bad dereferences).
+ ExplodedNodeSet Tmp;
+ evalLocation(Tmp, AssignE, LocationE, Pred, state, location, tag, false);
+
+ if (Tmp.empty())
+ return;
+
+ if (location.isUndef())
+ return;
+
+ for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI)
+ evalBind(Dst, StoreE, *NI, location, Val, false);
+}
+
+void ExprEngine::evalLoad(ExplodedNodeSet &Dst,
+ const Expr *NodeEx,
+ const Expr *BoundEx,
+ ExplodedNode *Pred,
+ ProgramStateRef state,
+ SVal location,
+ const ProgramPointTag *tag,
+ QualType LoadTy)
+{
+ assert(!location.getAs<NonLoc>() && "location cannot be a NonLoc.");
+
+ // Are we loading from a region? This actually results in two loads; one
+ // to fetch the address of the referenced value and one to fetch the
+ // referenced value.
+ if (const TypedValueRegion *TR =
+ dyn_cast_or_null<TypedValueRegion>(location.getAsRegion())) {
+
+ QualType ValTy = TR->getValueType();
+ if (const ReferenceType *RT = ValTy->getAs<ReferenceType>()) {
+ static SimpleProgramPointTag
+ loadReferenceTag(TagProviderName, "Load Reference");
+ ExplodedNodeSet Tmp;
+ evalLoadCommon(Tmp, NodeEx, BoundEx, Pred, state,
+ location, &loadReferenceTag,
+ getContext().getPointerType(RT->getPointeeType()));
+
+ // Perform the load from the referenced value.
+ for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end() ; I!=E; ++I) {
+ state = (*I)->getState();
+ location = state->getSVal(BoundEx, (*I)->getLocationContext());
+ evalLoadCommon(Dst, NodeEx, BoundEx, *I, state, location, tag, LoadTy);
+ }
+ return;
+ }
+ }
+
+ evalLoadCommon(Dst, NodeEx, BoundEx, Pred, state, location, tag, LoadTy);
+}
+
+void ExprEngine::evalLoadCommon(ExplodedNodeSet &Dst,
+ const Expr *NodeEx,
+ const Expr *BoundEx,
+ ExplodedNode *Pred,
+ ProgramStateRef state,
+ SVal location,
+ const ProgramPointTag *tag,
+ QualType LoadTy) {
+ assert(NodeEx);
+ assert(BoundEx);
+ // Evaluate the location (checks for bad dereferences).
+ ExplodedNodeSet Tmp;
+ evalLocation(Tmp, NodeEx, BoundEx, Pred, state, location, tag, true);
+ if (Tmp.empty())
+ return;
+
+ StmtNodeBuilder Bldr(Tmp, Dst, *currBldrCtx);
+ if (location.isUndef())
+ return;
+
+ // Proceed with the load.
+ for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) {
+ state = (*NI)->getState();
+ const LocationContext *LCtx = (*NI)->getLocationContext();
+
+ SVal V = UnknownVal();
+ if (location.isValid()) {
+ if (LoadTy.isNull())
+ LoadTy = BoundEx->getType();
+ V = state->getSVal(location.castAs<Loc>(), LoadTy);
+ }
+
+ Bldr.generateNode(NodeEx, *NI, state->BindExpr(BoundEx, LCtx, V), tag,
+ ProgramPoint::PostLoadKind);
+ }
+}
+
+void ExprEngine::evalLocation(ExplodedNodeSet &Dst,
+ const Stmt *NodeEx,
+ const Stmt *BoundEx,
+ ExplodedNode *Pred,
+ ProgramStateRef state,
+ SVal location,
+ const ProgramPointTag *tag,
+ bool isLoad) {
+ StmtNodeBuilder BldrTop(Pred, Dst, *currBldrCtx);
+ // Early checks for performance reason.
+ if (location.isUnknown()) {
+ return;
+ }
+
+ ExplodedNodeSet Src;
+ BldrTop.takeNodes(Pred);
+ StmtNodeBuilder Bldr(Pred, Src, *currBldrCtx);
+ if (Pred->getState() != state) {
+ // Associate this new state with an ExplodedNode.
+ // FIXME: If I pass null tag, the graph is incorrect, e.g for
+ // int *p;
+ // p = 0;
+ // *p = 0xDEADBEEF;
+ // "p = 0" is not noted as "Null pointer value stored to 'p'" but
+ // instead "int *p" is noted as
+ // "Variable 'p' initialized to a null pointer value"
+
+ static SimpleProgramPointTag tag(TagProviderName, "Location");
+ Bldr.generateNode(NodeEx, Pred, state, &tag);
+ }
+ ExplodedNodeSet Tmp;
+ getCheckerManager().runCheckersForLocation(Tmp, Src, location, isLoad,
+ NodeEx, BoundEx, *this);
+ BldrTop.addNodes(Tmp);
+}
+
+std::pair<const ProgramPointTag *, const ProgramPointTag*>
+ExprEngine::geteagerlyAssumeBinOpBifurcationTags() {
+ static SimpleProgramPointTag
+ eagerlyAssumeBinOpBifurcationTrue(TagProviderName,
+ "Eagerly Assume True"),
+ eagerlyAssumeBinOpBifurcationFalse(TagProviderName,
+ "Eagerly Assume False");
+ return std::make_pair(&eagerlyAssumeBinOpBifurcationTrue,
+ &eagerlyAssumeBinOpBifurcationFalse);
+}
+
+void ExprEngine::evalEagerlyAssumeBinOpBifurcation(ExplodedNodeSet &Dst,
+ ExplodedNodeSet &Src,
+ const Expr *Ex) {
+ StmtNodeBuilder Bldr(Src, Dst, *currBldrCtx);
+
+ for (ExplodedNodeSet::iterator I=Src.begin(), E=Src.end(); I!=E; ++I) {
+ ExplodedNode *Pred = *I;
+ // Test if the previous node was as the same expression. This can happen
+ // when the expression fails to evaluate to anything meaningful and
+ // (as an optimization) we don't generate a node.
+ ProgramPoint P = Pred->getLocation();
+ if (!P.getAs<PostStmt>() || P.castAs<PostStmt>().getStmt() != Ex) {
+ continue;
+ }
+
+ ProgramStateRef state = Pred->getState();
+ SVal V = state->getSVal(Ex, Pred->getLocationContext());
+ Optional<nonloc::SymbolVal> SEV = V.getAs<nonloc::SymbolVal>();
+ if (SEV && SEV->isExpression()) {
+ const std::pair<const ProgramPointTag *, const ProgramPointTag*> &tags =
+ geteagerlyAssumeBinOpBifurcationTags();
+
+ ProgramStateRef StateTrue, StateFalse;
+ std::tie(StateTrue, StateFalse) = state->assume(*SEV);
+
+ // First assume that the condition is true.
+ if (StateTrue) {
+ SVal Val = svalBuilder.makeIntVal(1U, Ex->getType());
+ StateTrue = StateTrue->BindExpr(Ex, Pred->getLocationContext(), Val);
+ Bldr.generateNode(Ex, Pred, StateTrue, tags.first);
+ }
+
+ // Next, assume that the condition is false.
+ if (StateFalse) {
+ SVal Val = svalBuilder.makeIntVal(0U, Ex->getType());
+ StateFalse = StateFalse->BindExpr(Ex, Pred->getLocationContext(), Val);
+ Bldr.generateNode(Ex, Pred, StateFalse, tags.second);
+ }
+ }
+ }
+}
+
+void ExprEngine::VisitGCCAsmStmt(const GCCAsmStmt *A, ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
+ // We have processed both the inputs and the outputs. All of the outputs
+ // should evaluate to Locs. Nuke all of their values.
+
+ // FIXME: Some day in the future it would be nice to allow a "plug-in"
+ // which interprets the inline asm and stores proper results in the
+ // outputs.
+
+ ProgramStateRef state = Pred->getState();
+
+ for (const Expr *O : A->outputs()) {
+ SVal X = state->getSVal(O, Pred->getLocationContext());
+ assert (!X.getAs<NonLoc>()); // Should be an Lval, or unknown, undef.
+
+ if (Optional<Loc> LV = X.getAs<Loc>())
+ state = state->bindLoc(*LV, UnknownVal());
+ }
+
+ Bldr.generateNode(A, Pred, state);
+}
+
+void ExprEngine::VisitMSAsmStmt(const MSAsmStmt *A, ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
+ Bldr.generateNode(A, Pred, Pred->getState());
+}
+
+//===----------------------------------------------------------------------===//
+// Visualization.
+//===----------------------------------------------------------------------===//
+
+#ifndef NDEBUG
+static ExprEngine* GraphPrintCheckerState;
+static SourceManager* GraphPrintSourceManager;
+
+namespace llvm {
+template<>
+struct DOTGraphTraits<ExplodedNode*> :
+ public DefaultDOTGraphTraits {
+
+ DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
+
+ // FIXME: Since we do not cache error nodes in ExprEngine now, this does not
+ // work.
+ static std::string getNodeAttributes(const ExplodedNode *N, void*) {
+
+#if 0
+ // FIXME: Replace with a general scheme to tell if the node is
+ // an error node.
+ if (GraphPrintCheckerState->isImplicitNullDeref(N) ||
+ GraphPrintCheckerState->isExplicitNullDeref(N) ||
+ GraphPrintCheckerState->isUndefDeref(N) ||
+ GraphPrintCheckerState->isUndefStore(N) ||
+ GraphPrintCheckerState->isUndefControlFlow(N) ||
+ GraphPrintCheckerState->isUndefResult(N) ||
+ GraphPrintCheckerState->isBadCall(N) ||
+ GraphPrintCheckerState->isUndefArg(N))
+ return "color=\"red\",style=\"filled\"";
+
+ if (GraphPrintCheckerState->isNoReturnCall(N))
+ return "color=\"blue\",style=\"filled\"";
+#endif
+ return "";
+ }
+
+ static void printLocation(raw_ostream &Out, SourceLocation SLoc) {
+ if (SLoc.isFileID()) {
+ Out << "\\lline="
+ << GraphPrintSourceManager->getExpansionLineNumber(SLoc)
+ << " col="
+ << GraphPrintSourceManager->getExpansionColumnNumber(SLoc)
+ << "\\l";
+ }
+ }
+
+ static std::string getNodeLabel(const ExplodedNode *N, void*){
+
+ std::string sbuf;
+ llvm::raw_string_ostream Out(sbuf);
+
+ // Program Location.
+ ProgramPoint Loc = N->getLocation();
+
+ switch (Loc.getKind()) {
+ case ProgramPoint::BlockEntranceKind: {
+ Out << "Block Entrance: B"
+ << Loc.castAs<BlockEntrance>().getBlock()->getBlockID();
+ if (const NamedDecl *ND =
+ dyn_cast<NamedDecl>(Loc.getLocationContext()->getDecl())) {
+ Out << " (";
+ ND->printName(Out);
+ Out << ")";
+ }
+ break;
+ }
+
+ case ProgramPoint::BlockExitKind:
+ assert (false);
+ break;
+
+ case ProgramPoint::CallEnterKind:
+ Out << "CallEnter";
+ break;
+
+ case ProgramPoint::CallExitBeginKind:
+ Out << "CallExitBegin";
+ break;
+
+ case ProgramPoint::CallExitEndKind:
+ Out << "CallExitEnd";
+ break;
+
+ case ProgramPoint::PostStmtPurgeDeadSymbolsKind:
+ Out << "PostStmtPurgeDeadSymbols";
+ break;
+
+ case ProgramPoint::PreStmtPurgeDeadSymbolsKind:
+ Out << "PreStmtPurgeDeadSymbols";
+ break;
+
+ case ProgramPoint::EpsilonKind:
+ Out << "Epsilon Point";
+ break;
+
+ case ProgramPoint::PreImplicitCallKind: {
+ ImplicitCallPoint PC = Loc.castAs<ImplicitCallPoint>();
+ Out << "PreCall: ";
+
+ // FIXME: Get proper printing options.
+ PC.getDecl()->print(Out, LangOptions());
+ printLocation(Out, PC.getLocation());
+ break;
+ }
+
+ case ProgramPoint::PostImplicitCallKind: {
+ ImplicitCallPoint PC = Loc.castAs<ImplicitCallPoint>();
+ Out << "PostCall: ";
+
+ // FIXME: Get proper printing options.
+ PC.getDecl()->print(Out, LangOptions());
+ printLocation(Out, PC.getLocation());
+ break;
+ }
+
+ case ProgramPoint::PostInitializerKind: {
+ Out << "PostInitializer: ";
+ const CXXCtorInitializer *Init =
+ Loc.castAs<PostInitializer>().getInitializer();
+ if (const FieldDecl *FD = Init->getAnyMember())
+ Out << *FD;
+ else {
+ QualType Ty = Init->getTypeSourceInfo()->getType();
+ Ty = Ty.getLocalUnqualifiedType();
+ LangOptions LO; // FIXME.
+ Ty.print(Out, LO);
+ }
+ break;
+ }
+
+ case ProgramPoint::BlockEdgeKind: {
+ const BlockEdge &E = Loc.castAs<BlockEdge>();
+ Out << "Edge: (B" << E.getSrc()->getBlockID() << ", B"
+ << E.getDst()->getBlockID() << ')';
+
+ if (const Stmt *T = E.getSrc()->getTerminator()) {
+ SourceLocation SLoc = T->getLocStart();
+
+ Out << "\\|Terminator: ";
+ LangOptions LO; // FIXME.
+ E.getSrc()->printTerminator(Out, LO);
+
+ if (SLoc.isFileID()) {
+ Out << "\\lline="
+ << GraphPrintSourceManager->getExpansionLineNumber(SLoc)
+ << " col="
+ << GraphPrintSourceManager->getExpansionColumnNumber(SLoc);
+ }
+
+ if (isa<SwitchStmt>(T)) {
+ const Stmt *Label = E.getDst()->getLabel();
+
+ if (Label) {
+ if (const CaseStmt *C = dyn_cast<CaseStmt>(Label)) {
+ Out << "\\lcase ";
+ LangOptions LO; // FIXME.
+ if (C->getLHS())
+ C->getLHS()->printPretty(Out, nullptr, PrintingPolicy(LO));
+
+ if (const Stmt *RHS = C->getRHS()) {
+ Out << " .. ";
+ RHS->printPretty(Out, nullptr, PrintingPolicy(LO));
+ }
+
+ Out << ":";
+ }
+ else {
+ assert (isa<DefaultStmt>(Label));
+ Out << "\\ldefault:";
+ }
+ }
+ else
+ Out << "\\l(implicit) default:";
+ }
+ else if (isa<IndirectGotoStmt>(T)) {
+ // FIXME
+ }
+ else {
+ Out << "\\lCondition: ";
+ if (*E.getSrc()->succ_begin() == E.getDst())
+ Out << "true";
+ else
+ Out << "false";
+ }
+
+ Out << "\\l";
+ }
+
+#if 0
+ // FIXME: Replace with a general scheme to determine
+ // the name of the check.
+ if (GraphPrintCheckerState->isUndefControlFlow(N)) {
+ Out << "\\|Control-flow based on\\lUndefined value.\\l";
+ }
+#endif
+ break;
+ }
+
+ default: {
+ const Stmt *S = Loc.castAs<StmtPoint>().getStmt();
+ assert(S != nullptr && "Expecting non-null Stmt");
+
+ Out << S->getStmtClassName() << ' ' << (const void*) S << ' ';
+ LangOptions LO; // FIXME.
+ S->printPretty(Out, nullptr, PrintingPolicy(LO));
+ printLocation(Out, S->getLocStart());
+
+ if (Loc.getAs<PreStmt>())
+ Out << "\\lPreStmt\\l;";
+ else if (Loc.getAs<PostLoad>())
+ Out << "\\lPostLoad\\l;";
+ else if (Loc.getAs<PostStore>())
+ Out << "\\lPostStore\\l";
+ else if (Loc.getAs<PostLValue>())
+ Out << "\\lPostLValue\\l";
+
+#if 0
+ // FIXME: Replace with a general scheme to determine
+ // the name of the check.
+ if (GraphPrintCheckerState->isImplicitNullDeref(N))
+ Out << "\\|Implicit-Null Dereference.\\l";
+ else if (GraphPrintCheckerState->isExplicitNullDeref(N))
+ Out << "\\|Explicit-Null Dereference.\\l";
+ else if (GraphPrintCheckerState->isUndefDeref(N))
+ Out << "\\|Dereference of undefialied value.\\l";
+ else if (GraphPrintCheckerState->isUndefStore(N))
+ Out << "\\|Store to Undefined Loc.";
+ else if (GraphPrintCheckerState->isUndefResult(N))
+ Out << "\\|Result of operation is undefined.";
+ else if (GraphPrintCheckerState->isNoReturnCall(N))
+ Out << "\\|Call to function marked \"noreturn\".";
+ else if (GraphPrintCheckerState->isBadCall(N))
+ Out << "\\|Call to NULL/Undefined.";
+ else if (GraphPrintCheckerState->isUndefArg(N))
+ Out << "\\|Argument in call is undefined";
+#endif
+
+ break;
+ }
+ }
+
+ ProgramStateRef state = N->getState();
+ Out << "\\|StateID: " << (const void*) state.get()
+ << " NodeID: " << (const void*) N << "\\|";
+ state->printDOT(Out);
+
+ Out << "\\l";
+
+ if (const ProgramPointTag *tag = Loc.getTag()) {
+ Out << "\\|Tag: " << tag->getTagDescription();
+ Out << "\\l";
+ }
+ return Out.str();
+ }
+};
+} // end llvm namespace
+#endif
+
+void ExprEngine::ViewGraph(bool trim) {
+#ifndef NDEBUG
+ if (trim) {
+ std::vector<const ExplodedNode*> Src;
+
+ // Flush any outstanding reports to make sure we cover all the nodes.
+ // This does not cause them to get displayed.
+ for (BugReporter::iterator I=BR.begin(), E=BR.end(); I!=E; ++I)
+ const_cast<BugType*>(*I)->FlushReports(BR);
+
+ // Iterate through the reports and get their nodes.
+ for (BugReporter::EQClasses_iterator
+ EI = BR.EQClasses_begin(), EE = BR.EQClasses_end(); EI != EE; ++EI) {
+ ExplodedNode *N = const_cast<ExplodedNode*>(EI->begin()->getErrorNode());
+ if (N) Src.push_back(N);
+ }
+
+ ViewGraph(Src);
+ }
+ else {
+ GraphPrintCheckerState = this;
+ GraphPrintSourceManager = &getContext().getSourceManager();
+
+ llvm::ViewGraph(*G.roots_begin(), "ExprEngine");
+
+ GraphPrintCheckerState = nullptr;
+ GraphPrintSourceManager = nullptr;
+ }
+#endif
+}
+
+void ExprEngine::ViewGraph(ArrayRef<const ExplodedNode*> Nodes) {
+#ifndef NDEBUG
+ GraphPrintCheckerState = this;
+ GraphPrintSourceManager = &getContext().getSourceManager();
+
+ std::unique_ptr<ExplodedGraph> TrimmedG(G.trim(Nodes));
+
+ if (!TrimmedG.get())
+ llvm::errs() << "warning: Trimmed ExplodedGraph is empty.\n";
+ else
+ llvm::ViewGraph(*TrimmedG->roots_begin(), "TrimmedExprEngine");
+
+ GraphPrintCheckerState = nullptr;
+ GraphPrintSourceManager = nullptr;
+#endif
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/ExprEngineC.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/ExprEngineC.cpp
new file mode 100644
index 0000000..1777ea9
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/ExprEngineC.cpp
@@ -0,0 +1,978 @@
+//=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines ExprEngine's support for C expressions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/ExprCXX.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
+
+using namespace clang;
+using namespace ento;
+using llvm::APSInt;
+
+void ExprEngine::VisitBinaryOperator(const BinaryOperator* B,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+
+ Expr *LHS = B->getLHS()->IgnoreParens();
+ Expr *RHS = B->getRHS()->IgnoreParens();
+
+ // FIXME: Prechecks eventually go in ::Visit().
+ ExplodedNodeSet CheckedSet;
+ ExplodedNodeSet Tmp2;
+ getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this);
+
+ // With both the LHS and RHS evaluated, process the operation itself.
+ for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end();
+ it != ei; ++it) {
+
+ ProgramStateRef state = (*it)->getState();
+ const LocationContext *LCtx = (*it)->getLocationContext();
+ SVal LeftV = state->getSVal(LHS, LCtx);
+ SVal RightV = state->getSVal(RHS, LCtx);
+
+ BinaryOperator::Opcode Op = B->getOpcode();
+
+ if (Op == BO_Assign) {
+ // EXPERIMENTAL: "Conjured" symbols.
+ // FIXME: Handle structs.
+ if (RightV.isUnknown()) {
+ unsigned Count = currBldrCtx->blockCount();
+ RightV = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx,
+ Count);
+ }
+ // Simulate the effects of a "store": bind the value of the RHS
+ // to the L-Value represented by the LHS.
+ SVal ExprVal = B->isGLValue() ? LeftV : RightV;
+ evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal),
+ LeftV, RightV);
+ continue;
+ }
+
+ if (!B->isAssignmentOp()) {
+ StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx);
+
+ if (B->isAdditiveOp()) {
+ // If one of the operands is a location, conjure a symbol for the other
+ // one (offset) if it's unknown so that memory arithmetic always
+ // results in an ElementRegion.
+ // TODO: This can be removed after we enable history tracking with
+ // SymSymExpr.
+ unsigned Count = currBldrCtx->blockCount();
+ if (LeftV.getAs<Loc>() &&
+ RHS->getType()->isIntegralOrEnumerationType() &&
+ RightV.isUnknown()) {
+ RightV = svalBuilder.conjureSymbolVal(RHS, LCtx, RHS->getType(),
+ Count);
+ }
+ if (RightV.getAs<Loc>() &&
+ LHS->getType()->isIntegralOrEnumerationType() &&
+ LeftV.isUnknown()) {
+ LeftV = svalBuilder.conjureSymbolVal(LHS, LCtx, LHS->getType(),
+ Count);
+ }
+ }
+
+ // Although we don't yet model pointers-to-members, we do need to make
+ // sure that the members of temporaries have a valid 'this' pointer for
+ // other checks.
+ if (B->getOpcode() == BO_PtrMemD)
+ state = createTemporaryRegionIfNeeded(state, LCtx, LHS);
+
+ // Process non-assignments except commas or short-circuited
+ // logical expressions (LAnd and LOr).
+ SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType());
+ if (Result.isUnknown()) {
+ Bldr.generateNode(B, *it, state);
+ continue;
+ }
+
+ state = state->BindExpr(B, LCtx, Result);
+ Bldr.generateNode(B, *it, state);
+ continue;
+ }
+
+ assert (B->isCompoundAssignmentOp());
+
+ switch (Op) {
+ default:
+ llvm_unreachable("Invalid opcode for compound assignment.");
+ case BO_MulAssign: Op = BO_Mul; break;
+ case BO_DivAssign: Op = BO_Div; break;
+ case BO_RemAssign: Op = BO_Rem; break;
+ case BO_AddAssign: Op = BO_Add; break;
+ case BO_SubAssign: Op = BO_Sub; break;
+ case BO_ShlAssign: Op = BO_Shl; break;
+ case BO_ShrAssign: Op = BO_Shr; break;
+ case BO_AndAssign: Op = BO_And; break;
+ case BO_XorAssign: Op = BO_Xor; break;
+ case BO_OrAssign: Op = BO_Or; break;
+ }
+
+ // Perform a load (the LHS). This performs the checks for
+ // null dereferences, and so on.
+ ExplodedNodeSet Tmp;
+ SVal location = LeftV;
+ evalLoad(Tmp, B, LHS, *it, state, location);
+
+ for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E;
+ ++I) {
+
+ state = (*I)->getState();
+ const LocationContext *LCtx = (*I)->getLocationContext();
+ SVal V = state->getSVal(LHS, LCtx);
+
+ // Get the computation type.
+ QualType CTy =
+ cast<CompoundAssignOperator>(B)->getComputationResultType();
+ CTy = getContext().getCanonicalType(CTy);
+
+ QualType CLHSTy =
+ cast<CompoundAssignOperator>(B)->getComputationLHSType();
+ CLHSTy = getContext().getCanonicalType(CLHSTy);
+
+ QualType LTy = getContext().getCanonicalType(LHS->getType());
+
+ // Promote LHS.
+ V = svalBuilder.evalCast(V, CLHSTy, LTy);
+
+ // Compute the result of the operation.
+ SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy),
+ B->getType(), CTy);
+
+ // EXPERIMENTAL: "Conjured" symbols.
+ // FIXME: Handle structs.
+
+ SVal LHSVal;
+
+ if (Result.isUnknown()) {
+ // The symbolic value is actually for the type of the left-hand side
+ // expression, not the computation type, as this is the value the
+ // LValue on the LHS will bind to.
+ LHSVal = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, LTy,
+ currBldrCtx->blockCount());
+ // However, we need to convert the symbol to the computation type.
+ Result = svalBuilder.evalCast(LHSVal, CTy, LTy);
+ }
+ else {
+ // The left-hand side may bind to a different value then the
+ // computation type.
+ LHSVal = svalBuilder.evalCast(Result, LTy, CTy);
+ }
+
+ // In C++, assignment and compound assignment operators return an
+ // lvalue.
+ if (B->isGLValue())
+ state = state->BindExpr(B, LCtx, location);
+ else
+ state = state->BindExpr(B, LCtx, Result);
+
+ evalStore(Tmp2, B, LHS, *I, state, location, LHSVal);
+ }
+ }
+
+ // FIXME: postvisits eventually go in ::Visit()
+ getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this);
+}
+
+void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+
+ CanQualType T = getContext().getCanonicalType(BE->getType());
+
+ // Get the value of the block itself.
+ SVal V = svalBuilder.getBlockPointer(BE->getBlockDecl(), T,
+ Pred->getLocationContext(),
+ currBldrCtx->blockCount());
+
+ ProgramStateRef State = Pred->getState();
+
+ // If we created a new MemRegion for the block, we should explicitly bind
+ // the captured variables.
+ if (const BlockDataRegion *BDR =
+ dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
+
+ BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
+ E = BDR->referenced_vars_end();
+
+ for (; I != E; ++I) {
+ const MemRegion *capturedR = I.getCapturedRegion();
+ const MemRegion *originalR = I.getOriginalRegion();
+ if (capturedR != originalR) {
+ SVal originalV = State->getSVal(loc::MemRegionVal(originalR));
+ State = State->bindLoc(loc::MemRegionVal(capturedR), originalV);
+ }
+ }
+ }
+
+ ExplodedNodeSet Tmp;
+ StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx);
+ Bldr.generateNode(BE, Pred,
+ State->BindExpr(BE, Pred->getLocationContext(), V),
+ nullptr, ProgramPoint::PostLValueKind);
+
+ // FIXME: Move all post/pre visits to ::Visit().
+ getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this);
+}
+
+void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex,
+ ExplodedNode *Pred, ExplodedNodeSet &Dst) {
+
+ ExplodedNodeSet dstPreStmt;
+ getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this);
+
+ if (CastE->getCastKind() == CK_LValueToRValue) {
+ for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
+ I!=E; ++I) {
+ ExplodedNode *subExprNode = *I;
+ ProgramStateRef state = subExprNode->getState();
+ const LocationContext *LCtx = subExprNode->getLocationContext();
+ evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx));
+ }
+ return;
+ }
+
+ // All other casts.
+ QualType T = CastE->getType();
+ QualType ExTy = Ex->getType();
+
+ if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
+ T = ExCast->getTypeAsWritten();
+
+ StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx);
+ for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
+ I != E; ++I) {
+
+ Pred = *I;
+ ProgramStateRef state = Pred->getState();
+ const LocationContext *LCtx = Pred->getLocationContext();
+
+ switch (CastE->getCastKind()) {
+ case CK_LValueToRValue:
+ llvm_unreachable("LValueToRValue casts handled earlier.");
+ case CK_ToVoid:
+ continue;
+ // The analyzer doesn't do anything special with these casts,
+ // since it understands retain/release semantics already.
+ case CK_ARCProduceObject:
+ case CK_ARCConsumeObject:
+ case CK_ARCReclaimReturnedObject:
+ case CK_ARCExtendBlockObject: // Fall-through.
+ case CK_CopyAndAutoreleaseBlockObject:
+ // The analyser can ignore atomic casts for now, although some future
+ // checkers may want to make certain that you're not modifying the same
+ // value through atomic and nonatomic pointers.
+ case CK_AtomicToNonAtomic:
+ case CK_NonAtomicToAtomic:
+ // True no-ops.
+ case CK_NoOp:
+ case CK_ConstructorConversion:
+ case CK_UserDefinedConversion:
+ case CK_FunctionToPointerDecay:
+ case CK_BuiltinFnToFnPtr: {
+ // Copy the SVal of Ex to CastE.
+ ProgramStateRef state = Pred->getState();
+ const LocationContext *LCtx = Pred->getLocationContext();
+ SVal V = state->getSVal(Ex, LCtx);
+ state = state->BindExpr(CastE, LCtx, V);
+ Bldr.generateNode(CastE, Pred, state);
+ continue;
+ }
+ case CK_MemberPointerToBoolean:
+ // FIXME: For now, member pointers are represented by void *.
+ // FALLTHROUGH
+ case CK_Dependent:
+ case CK_ArrayToPointerDecay:
+ case CK_BitCast:
+ case CK_AddressSpaceConversion:
+ case CK_IntegralCast:
+ case CK_NullToPointer:
+ case CK_IntegralToPointer:
+ case CK_PointerToIntegral:
+ case CK_PointerToBoolean:
+ case CK_IntegralToBoolean:
+ case CK_IntegralToFloating:
+ case CK_FloatingToIntegral:
+ case CK_FloatingToBoolean:
+ case CK_FloatingCast:
+ case CK_FloatingRealToComplex:
+ case CK_FloatingComplexToReal:
+ case CK_FloatingComplexToBoolean:
+ case CK_FloatingComplexCast:
+ case CK_FloatingComplexToIntegralComplex:
+ case CK_IntegralRealToComplex:
+ case CK_IntegralComplexToReal:
+ case CK_IntegralComplexToBoolean:
+ case CK_IntegralComplexCast:
+ case CK_IntegralComplexToFloatingComplex:
+ case CK_CPointerToObjCPointerCast:
+ case CK_BlockPointerToObjCPointerCast:
+ case CK_AnyPointerToBlockPointerCast:
+ case CK_ObjCObjectLValueCast:
+ case CK_ZeroToOCLEvent:
+ case CK_LValueBitCast: {
+ // Delegate to SValBuilder to process.
+ SVal V = state->getSVal(Ex, LCtx);
+ V = svalBuilder.evalCast(V, T, ExTy);
+ state = state->BindExpr(CastE, LCtx, V);
+ Bldr.generateNode(CastE, Pred, state);
+ continue;
+ }
+ case CK_DerivedToBase:
+ case CK_UncheckedDerivedToBase: {
+ // For DerivedToBase cast, delegate to the store manager.
+ SVal val = state->getSVal(Ex, LCtx);
+ val = getStoreManager().evalDerivedToBase(val, CastE);
+ state = state->BindExpr(CastE, LCtx, val);
+ Bldr.generateNode(CastE, Pred, state);
+ continue;
+ }
+ // Handle C++ dyn_cast.
+ case CK_Dynamic: {
+ SVal val = state->getSVal(Ex, LCtx);
+
+ // Compute the type of the result.
+ QualType resultType = CastE->getType();
+ if (CastE->isGLValue())
+ resultType = getContext().getPointerType(resultType);
+
+ bool Failed = false;
+
+ // Check if the value being cast evaluates to 0.
+ if (val.isZeroConstant())
+ Failed = true;
+ // Else, evaluate the cast.
+ else
+ val = getStoreManager().evalDynamicCast(val, T, Failed);
+
+ if (Failed) {
+ if (T->isReferenceType()) {
+ // A bad_cast exception is thrown if input value is a reference.
+ // Currently, we model this, by generating a sink.
+ Bldr.generateSink(CastE, Pred, state);
+ continue;
+ } else {
+ // If the cast fails on a pointer, bind to 0.
+ state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull());
+ }
+ } else {
+ // If we don't know if the cast succeeded, conjure a new symbol.
+ if (val.isUnknown()) {
+ DefinedOrUnknownSVal NewSym =
+ svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType,
+ currBldrCtx->blockCount());
+ state = state->BindExpr(CastE, LCtx, NewSym);
+ } else
+ // Else, bind to the derived region value.
+ state = state->BindExpr(CastE, LCtx, val);
+ }
+ Bldr.generateNode(CastE, Pred, state);
+ continue;
+ }
+ case CK_NullToMemberPointer: {
+ // FIXME: For now, member pointers are represented by void *.
+ SVal V = svalBuilder.makeNull();
+ state = state->BindExpr(CastE, LCtx, V);
+ Bldr.generateNode(CastE, Pred, state);
+ continue;
+ }
+ // Various C++ casts that are not handled yet.
+ case CK_ToUnion:
+ case CK_BaseToDerived:
+ case CK_BaseToDerivedMemberPointer:
+ case CK_DerivedToBaseMemberPointer:
+ case CK_ReinterpretMemberPointer:
+ case CK_VectorSplat: {
+ // Recover some path-sensitivty by conjuring a new value.
+ QualType resultType = CastE->getType();
+ if (CastE->isGLValue())
+ resultType = getContext().getPointerType(resultType);
+ SVal result = svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx,
+ resultType,
+ currBldrCtx->blockCount());
+ state = state->BindExpr(CastE, LCtx, result);
+ Bldr.generateNode(CastE, Pred, state);
+ continue;
+ }
+ }
+ }
+}
+
+void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
+
+ ProgramStateRef State = Pred->getState();
+ const LocationContext *LCtx = Pred->getLocationContext();
+
+ const Expr *Init = CL->getInitializer();
+ SVal V = State->getSVal(CL->getInitializer(), LCtx);
+
+ if (isa<CXXConstructExpr>(Init)) {
+ // No work needed. Just pass the value up to this expression.
+ } else {
+ assert(isa<InitListExpr>(Init));
+ Loc CLLoc = State->getLValue(CL, LCtx);
+ State = State->bindLoc(CLLoc, V);
+
+ // Compound literal expressions are a GNU extension in C++.
+ // Unlike in C, where CLs are lvalues, in C++ CLs are prvalues,
+ // and like temporary objects created by the functional notation T()
+ // CLs are destroyed at the end of the containing full-expression.
+ // HOWEVER, an rvalue of array type is not something the analyzer can
+ // reason about, since we expect all regions to be wrapped in Locs.
+ // So we treat array CLs as lvalues as well, knowing that they will decay
+ // to pointers as soon as they are used.
+ if (CL->isGLValue() || CL->getType()->isArrayType())
+ V = CLLoc;
+ }
+
+ B.generateNode(CL, Pred, State->BindExpr(CL, LCtx, V));
+}
+
+void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ // Assumption: The CFG has one DeclStmt per Decl.
+ const VarDecl *VD = dyn_cast_or_null<VarDecl>(*DS->decl_begin());
+
+ if (!VD) {
+ //TODO:AZ: remove explicit insertion after refactoring is done.
+ Dst.insert(Pred);
+ return;
+ }
+
+ // FIXME: all pre/post visits should eventually be handled by ::Visit().
+ ExplodedNodeSet dstPreVisit;
+ getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this);
+
+ ExplodedNodeSet dstEvaluated;
+ StmtNodeBuilder B(dstPreVisit, dstEvaluated, *currBldrCtx);
+ for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
+ I!=E; ++I) {
+ ExplodedNode *N = *I;
+ ProgramStateRef state = N->getState();
+ const LocationContext *LC = N->getLocationContext();
+
+ // Decls without InitExpr are not initialized explicitly.
+ if (const Expr *InitEx = VD->getInit()) {
+
+ // Note in the state that the initialization has occurred.
+ ExplodedNode *UpdatedN = N;
+ SVal InitVal = state->getSVal(InitEx, LC);
+
+ if (isa<CXXConstructExpr>(InitEx->IgnoreImplicit())) {
+ // We constructed the object directly in the variable.
+ // No need to bind anything.
+ B.generateNode(DS, UpdatedN, state);
+ } else {
+ // We bound the temp obj region to the CXXConstructExpr. Now recover
+ // the lazy compound value when the variable is not a reference.
+ if (AMgr.getLangOpts().CPlusPlus && VD->getType()->isRecordType() &&
+ !VD->getType()->isReferenceType()) {
+ if (Optional<loc::MemRegionVal> M =
+ InitVal.getAs<loc::MemRegionVal>()) {
+ InitVal = state->getSVal(M->getRegion());
+ assert(InitVal.getAs<nonloc::LazyCompoundVal>());
+ }
+ }
+
+ // Recover some path-sensitivity if a scalar value evaluated to
+ // UnknownVal.
+ if (InitVal.isUnknown()) {
+ QualType Ty = InitEx->getType();
+ if (InitEx->isGLValue()) {
+ Ty = getContext().getPointerType(Ty);
+ }
+
+ InitVal = svalBuilder.conjureSymbolVal(nullptr, InitEx, LC, Ty,
+ currBldrCtx->blockCount());
+ }
+
+
+ B.takeNodes(UpdatedN);
+ ExplodedNodeSet Dst2;
+ evalBind(Dst2, DS, UpdatedN, state->getLValue(VD, LC), InitVal, true);
+ B.addNodes(Dst2);
+ }
+ }
+ else {
+ B.generateNode(DS, N, state);
+ }
+ }
+
+ getCheckerManager().runCheckersForPostStmt(Dst, B.getResults(), DS, *this);
+}
+
+void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ assert(B->getOpcode() == BO_LAnd ||
+ B->getOpcode() == BO_LOr);
+
+ StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
+ ProgramStateRef state = Pred->getState();
+
+ ExplodedNode *N = Pred;
+ while (!N->getLocation().getAs<BlockEntrance>()) {
+ ProgramPoint P = N->getLocation();
+ assert(P.getAs<PreStmt>()|| P.getAs<PreStmtPurgeDeadSymbols>());
+ (void) P;
+ assert(N->pred_size() == 1);
+ N = *N->pred_begin();
+ }
+ assert(N->pred_size() == 1);
+ N = *N->pred_begin();
+ BlockEdge BE = N->getLocation().castAs<BlockEdge>();
+ SVal X;
+
+ // Determine the value of the expression by introspecting how we
+ // got this location in the CFG. This requires looking at the previous
+ // block we were in and what kind of control-flow transfer was involved.
+ const CFGBlock *SrcBlock = BE.getSrc();
+ // The only terminator (if there is one) that makes sense is a logical op.
+ CFGTerminator T = SrcBlock->getTerminator();
+ if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) {
+ (void) Term;
+ assert(Term->isLogicalOp());
+ assert(SrcBlock->succ_size() == 2);
+ // Did we take the true or false branch?
+ unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0;
+ X = svalBuilder.makeIntVal(constant, B->getType());
+ }
+ else {
+ // If there is no terminator, by construction the last statement
+ // in SrcBlock is the value of the enclosing expression.
+ // However, we still need to constrain that value to be 0 or 1.
+ assert(!SrcBlock->empty());
+ CFGStmt Elem = SrcBlock->rbegin()->castAs<CFGStmt>();
+ const Expr *RHS = cast<Expr>(Elem.getStmt());
+ SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext());
+
+ if (RHSVal.isUndef()) {
+ X = RHSVal;
+ } else {
+ DefinedOrUnknownSVal DefinedRHS = RHSVal.castAs<DefinedOrUnknownSVal>();
+ ProgramStateRef StTrue, StFalse;
+ std::tie(StTrue, StFalse) = N->getState()->assume(DefinedRHS);
+ if (StTrue) {
+ if (StFalse) {
+ // We can't constrain the value to 0 or 1.
+ // The best we can do is a cast.
+ X = getSValBuilder().evalCast(RHSVal, B->getType(), RHS->getType());
+ } else {
+ // The value is known to be true.
+ X = getSValBuilder().makeIntVal(1, B->getType());
+ }
+ } else {
+ // The value is known to be false.
+ assert(StFalse && "Infeasible path!");
+ X = getSValBuilder().makeIntVal(0, B->getType());
+ }
+ }
+ }
+ Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X));
+}
+
+void ExprEngine::VisitInitListExpr(const InitListExpr *IE,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
+
+ ProgramStateRef state = Pred->getState();
+ const LocationContext *LCtx = Pred->getLocationContext();
+ QualType T = getContext().getCanonicalType(IE->getType());
+ unsigned NumInitElements = IE->getNumInits();
+
+ if (!IE->isGLValue() &&
+ (T->isArrayType() || T->isRecordType() || T->isVectorType() ||
+ T->isAnyComplexType())) {
+ llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList();
+
+ // Handle base case where the initializer has no elements.
+ // e.g: static int* myArray[] = {};
+ if (NumInitElements == 0) {
+ SVal V = svalBuilder.makeCompoundVal(T, vals);
+ B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
+ return;
+ }
+
+ for (InitListExpr::const_reverse_iterator it = IE->rbegin(),
+ ei = IE->rend(); it != ei; ++it) {
+ SVal V = state->getSVal(cast<Expr>(*it), LCtx);
+ vals = getBasicVals().consVals(V, vals);
+ }
+
+ B.generateNode(IE, Pred,
+ state->BindExpr(IE, LCtx,
+ svalBuilder.makeCompoundVal(T, vals)));
+ return;
+ }
+
+ // Handle scalars: int{5} and int{} and GLvalues.
+ // Note, if the InitListExpr is a GLvalue, it means that there is an address
+ // representing it, so it must have a single init element.
+ assert(NumInitElements <= 1);
+
+ SVal V;
+ if (NumInitElements == 0)
+ V = getSValBuilder().makeZeroVal(T);
+ else
+ V = state->getSVal(IE->getInit(0), LCtx);
+
+ B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
+}
+
+void ExprEngine::VisitGuardedExpr(const Expr *Ex,
+ const Expr *L,
+ const Expr *R,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ assert(L && R);
+
+ StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
+ ProgramStateRef state = Pred->getState();
+ const LocationContext *LCtx = Pred->getLocationContext();
+ const CFGBlock *SrcBlock = nullptr;
+
+ // Find the predecessor block.
+ ProgramStateRef SrcState = state;
+ for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) {
+ ProgramPoint PP = N->getLocation();
+ if (PP.getAs<PreStmtPurgeDeadSymbols>() || PP.getAs<BlockEntrance>()) {
+ assert(N->pred_size() == 1);
+ continue;
+ }
+ SrcBlock = PP.castAs<BlockEdge>().getSrc();
+ SrcState = N->getState();
+ break;
+ }
+
+ assert(SrcBlock && "missing function entry");
+
+ // Find the last expression in the predecessor block. That is the
+ // expression that is used for the value of the ternary expression.
+ bool hasValue = false;
+ SVal V;
+
+ for (CFGBlock::const_reverse_iterator I = SrcBlock->rbegin(),
+ E = SrcBlock->rend(); I != E; ++I) {
+ CFGElement CE = *I;
+ if (Optional<CFGStmt> CS = CE.getAs<CFGStmt>()) {
+ const Expr *ValEx = cast<Expr>(CS->getStmt());
+ ValEx = ValEx->IgnoreParens();
+
+ // For GNU extension '?:' operator, the left hand side will be an
+ // OpaqueValueExpr, so get the underlying expression.
+ if (const OpaqueValueExpr *OpaqueEx = dyn_cast<OpaqueValueExpr>(L))
+ L = OpaqueEx->getSourceExpr();
+
+ // If the last expression in the predecessor block matches true or false
+ // subexpression, get its the value.
+ if (ValEx == L->IgnoreParens() || ValEx == R->IgnoreParens()) {
+ hasValue = true;
+ V = SrcState->getSVal(ValEx, LCtx);
+ }
+ break;
+ }
+ }
+
+ if (!hasValue)
+ V = svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx,
+ currBldrCtx->blockCount());
+
+ // Generate a new node with the binding from the appropriate path.
+ B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true));
+}
+
+void ExprEngine::
+VisitOffsetOfExpr(const OffsetOfExpr *OOE,
+ ExplodedNode *Pred, ExplodedNodeSet &Dst) {
+ StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
+ APSInt IV;
+ if (OOE->EvaluateAsInt(IV, getContext())) {
+ assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
+ assert(OOE->getType()->isBuiltinType());
+ assert(OOE->getType()->getAs<BuiltinType>()->isInteger());
+ assert(IV.isSigned() == OOE->getType()->isSignedIntegerType());
+ SVal X = svalBuilder.makeIntVal(IV);
+ B.generateNode(OOE, Pred,
+ Pred->getState()->BindExpr(OOE, Pred->getLocationContext(),
+ X));
+ }
+ // FIXME: Handle the case where __builtin_offsetof is not a constant.
+}
+
+
+void ExprEngine::
+VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ // FIXME: Prechecks eventually go in ::Visit().
+ ExplodedNodeSet CheckedSet;
+ getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, Ex, *this);
+
+ ExplodedNodeSet EvalSet;
+ StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
+
+ QualType T = Ex->getTypeOfArgument();
+
+ for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
+ I != E; ++I) {
+ if (Ex->getKind() == UETT_SizeOf) {
+ if (!T->isIncompleteType() && !T->isConstantSizeType()) {
+ assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");
+
+ // FIXME: Add support for VLA type arguments and VLA expressions.
+ // When that happens, we should probably refactor VLASizeChecker's code.
+ continue;
+ } else if (T->getAs<ObjCObjectType>()) {
+ // Some code tries to take the sizeof an ObjCObjectType, relying that
+ // the compiler has laid out its representation. Just report Unknown
+ // for these.
+ continue;
+ }
+ }
+
+ APSInt Value = Ex->EvaluateKnownConstInt(getContext());
+ CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue());
+
+ ProgramStateRef state = (*I)->getState();
+ state = state->BindExpr(Ex, (*I)->getLocationContext(),
+ svalBuilder.makeIntVal(amt.getQuantity(),
+ Ex->getType()));
+ Bldr.generateNode(Ex, *I, state);
+ }
+
+ getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, Ex, *this);
+}
+
+void ExprEngine::VisitUnaryOperator(const UnaryOperator* U,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ // FIXME: Prechecks eventually go in ::Visit().
+ ExplodedNodeSet CheckedSet;
+ getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, U, *this);
+
+ ExplodedNodeSet EvalSet;
+ StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
+
+ for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
+ I != E; ++I) {
+ switch (U->getOpcode()) {
+ default: {
+ Bldr.takeNodes(*I);
+ ExplodedNodeSet Tmp;
+ VisitIncrementDecrementOperator(U, *I, Tmp);
+ Bldr.addNodes(Tmp);
+ break;
+ }
+ case UO_Real: {
+ const Expr *Ex = U->getSubExpr()->IgnoreParens();
+
+ // FIXME: We don't have complex SValues yet.
+ if (Ex->getType()->isAnyComplexType()) {
+ // Just report "Unknown."
+ break;
+ }
+
+ // For all other types, UO_Real is an identity operation.
+ assert (U->getType() == Ex->getType());
+ ProgramStateRef state = (*I)->getState();
+ const LocationContext *LCtx = (*I)->getLocationContext();
+ Bldr.generateNode(U, *I, state->BindExpr(U, LCtx,
+ state->getSVal(Ex, LCtx)));
+ break;
+ }
+
+ case UO_Imag: {
+ const Expr *Ex = U->getSubExpr()->IgnoreParens();
+ // FIXME: We don't have complex SValues yet.
+ if (Ex->getType()->isAnyComplexType()) {
+ // Just report "Unknown."
+ break;
+ }
+ // For all other types, UO_Imag returns 0.
+ ProgramStateRef state = (*I)->getState();
+ const LocationContext *LCtx = (*I)->getLocationContext();
+ SVal X = svalBuilder.makeZeroVal(Ex->getType());
+ Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, X));
+ break;
+ }
+
+ case UO_Plus:
+ assert(!U->isGLValue());
+ // FALL-THROUGH.
+ case UO_Deref:
+ case UO_AddrOf:
+ case UO_Extension: {
+ // FIXME: We can probably just have some magic in Environment::getSVal()
+ // that propagates values, instead of creating a new node here.
+ //
+ // Unary "+" is a no-op, similar to a parentheses. We still have places
+ // where it may be a block-level expression, so we need to
+ // generate an extra node that just propagates the value of the
+ // subexpression.
+ const Expr *Ex = U->getSubExpr()->IgnoreParens();
+ ProgramStateRef state = (*I)->getState();
+ const LocationContext *LCtx = (*I)->getLocationContext();
+ Bldr.generateNode(U, *I, state->BindExpr(U, LCtx,
+ state->getSVal(Ex, LCtx)));
+ break;
+ }
+
+ case UO_LNot:
+ case UO_Minus:
+ case UO_Not: {
+ assert (!U->isGLValue());
+ const Expr *Ex = U->getSubExpr()->IgnoreParens();
+ ProgramStateRef state = (*I)->getState();
+ const LocationContext *LCtx = (*I)->getLocationContext();
+
+ // Get the value of the subexpression.
+ SVal V = state->getSVal(Ex, LCtx);
+
+ if (V.isUnknownOrUndef()) {
+ Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V));
+ break;
+ }
+
+ switch (U->getOpcode()) {
+ default:
+ llvm_unreachable("Invalid Opcode.");
+ case UO_Not:
+ // FIXME: Do we need to handle promotions?
+ state = state->BindExpr(U, LCtx, evalComplement(V.castAs<NonLoc>()));
+ break;
+ case UO_Minus:
+ // FIXME: Do we need to handle promotions?
+ state = state->BindExpr(U, LCtx, evalMinus(V.castAs<NonLoc>()));
+ break;
+ case UO_LNot:
+ // C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
+ //
+ // Note: technically we do "E == 0", but this is the same in the
+ // transfer functions as "0 == E".
+ SVal Result;
+ if (Optional<Loc> LV = V.getAs<Loc>()) {
+ Loc X = svalBuilder.makeNull();
+ Result = evalBinOp(state, BO_EQ, *LV, X, U->getType());
+ }
+ else if (Ex->getType()->isFloatingType()) {
+ // FIXME: handle floating point types.
+ Result = UnknownVal();
+ } else {
+ nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
+ Result = evalBinOp(state, BO_EQ, V.castAs<NonLoc>(), X,
+ U->getType());
+ }
+
+ state = state->BindExpr(U, LCtx, Result);
+ break;
+ }
+ Bldr.generateNode(U, *I, state);
+ break;
+ }
+ }
+ }
+
+ getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, U, *this);
+}
+
+void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ // Handle ++ and -- (both pre- and post-increment).
+ assert (U->isIncrementDecrementOp());
+ const Expr *Ex = U->getSubExpr()->IgnoreParens();
+
+ const LocationContext *LCtx = Pred->getLocationContext();
+ ProgramStateRef state = Pred->getState();
+ SVal loc = state->getSVal(Ex, LCtx);
+
+ // Perform a load.
+ ExplodedNodeSet Tmp;
+ evalLoad(Tmp, U, Ex, Pred, state, loc);
+
+ ExplodedNodeSet Dst2;
+ StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx);
+ for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) {
+
+ state = (*I)->getState();
+ assert(LCtx == (*I)->getLocationContext());
+ SVal V2_untested = state->getSVal(Ex, LCtx);
+
+ // Propagate unknown and undefined values.
+ if (V2_untested.isUnknownOrUndef()) {
+ Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V2_untested));
+ continue;
+ }
+ DefinedSVal V2 = V2_untested.castAs<DefinedSVal>();
+
+ // Handle all other values.
+ BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub;
+
+ // If the UnaryOperator has non-location type, use its type to create the
+ // constant value. If the UnaryOperator has location type, create the
+ // constant with int type and pointer width.
+ SVal RHS;
+
+ if (U->getType()->isAnyPointerType())
+ RHS = svalBuilder.makeArrayIndex(1);
+ else if (U->getType()->isIntegralOrEnumerationType())
+ RHS = svalBuilder.makeIntVal(1, U->getType());
+ else
+ RHS = UnknownVal();
+
+ SVal Result = evalBinOp(state, Op, V2, RHS, U->getType());
+
+ // Conjure a new symbol if necessary to recover precision.
+ if (Result.isUnknown()){
+ DefinedOrUnknownSVal SymVal =
+ svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx,
+ currBldrCtx->blockCount());
+ Result = SymVal;
+
+ // If the value is a location, ++/-- should always preserve
+ // non-nullness. Check if the original value was non-null, and if so
+ // propagate that constraint.
+ if (Loc::isLocType(U->getType())) {
+ DefinedOrUnknownSVal Constraint =
+ svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType()));
+
+ if (!state->assume(Constraint, true)) {
+ // It isn't feasible for the original value to be null.
+ // Propagate this constraint.
+ Constraint = svalBuilder.evalEQ(state, SymVal,
+ svalBuilder.makeZeroVal(U->getType()));
+
+
+ state = state->assume(Constraint, false);
+ assert(state);
+ }
+ }
+ }
+
+ // Since the lvalue-to-rvalue conversion is explicit in the AST,
+ // we bind an l-value if the operator is prefix and an lvalue (in C++).
+ if (U->isGLValue())
+ state = state->BindExpr(U, LCtx, loc);
+ else
+ state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result);
+
+ // Perform the store.
+ Bldr.takeNodes(*I);
+ ExplodedNodeSet Dst3;
+ evalStore(Dst3, U, U, *I, state, loc, Result);
+ Bldr.addNodes(Dst3);
+ }
+ Dst.insert(Dst2);
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/ExprEngineCXX.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/ExprEngineCXX.cpp
new file mode 100644
index 0000000..2a76621
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/ExprEngineCXX.cpp
@@ -0,0 +1,515 @@
+//===- ExprEngineCXX.cpp - ExprEngine support for C++ -----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the C++ expression evaluation engine.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/StmtCXX.h"
+#include "clang/Basic/PrettyStackTrace.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
+
+using namespace clang;
+using namespace ento;
+
+void ExprEngine::CreateCXXTemporaryObject(const MaterializeTemporaryExpr *ME,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
+ const Expr *tempExpr = ME->GetTemporaryExpr()->IgnoreParens();
+ ProgramStateRef state = Pred->getState();
+ const LocationContext *LCtx = Pred->getLocationContext();
+
+ state = createTemporaryRegionIfNeeded(state, LCtx, tempExpr, ME);
+ Bldr.generateNode(ME, Pred, state);
+}
+
+// FIXME: This is the sort of code that should eventually live in a Core
+// checker rather than as a special case in ExprEngine.
+void ExprEngine::performTrivialCopy(NodeBuilder &Bldr, ExplodedNode *Pred,
+ const CallEvent &Call) {
+ SVal ThisVal;
+ bool AlwaysReturnsLValue;
+ if (const CXXConstructorCall *Ctor = dyn_cast<CXXConstructorCall>(&Call)) {
+ assert(Ctor->getDecl()->isTrivial());
+ assert(Ctor->getDecl()->isCopyOrMoveConstructor());
+ ThisVal = Ctor->getCXXThisVal();
+ AlwaysReturnsLValue = false;
+ } else {
+ assert(cast<CXXMethodDecl>(Call.getDecl())->isTrivial());
+ assert(cast<CXXMethodDecl>(Call.getDecl())->getOverloadedOperator() ==
+ OO_Equal);
+ ThisVal = cast<CXXInstanceCall>(Call).getCXXThisVal();
+ AlwaysReturnsLValue = true;
+ }
+
+ const LocationContext *LCtx = Pred->getLocationContext();
+
+ ExplodedNodeSet Dst;
+ Bldr.takeNodes(Pred);
+
+ SVal V = Call.getArgSVal(0);
+
+ // If the value being copied is not unknown, load from its location to get
+ // an aggregate rvalue.
+ if (Optional<Loc> L = V.getAs<Loc>())
+ V = Pred->getState()->getSVal(*L);
+ else
+ assert(V.isUnknown());
+
+ const Expr *CallExpr = Call.getOriginExpr();
+ evalBind(Dst, CallExpr, Pred, ThisVal, V, true);
+
+ PostStmt PS(CallExpr, LCtx);
+ for (ExplodedNodeSet::iterator I = Dst.begin(), E = Dst.end();
+ I != E; ++I) {
+ ProgramStateRef State = (*I)->getState();
+ if (AlwaysReturnsLValue)
+ State = State->BindExpr(CallExpr, LCtx, ThisVal);
+ else
+ State = bindReturnValue(Call, LCtx, State);
+ Bldr.generateNode(PS, State, *I);
+ }
+}
+
+
+/// Returns a region representing the first element of a (possibly
+/// multi-dimensional) array.
+///
+/// On return, \p Ty will be set to the base type of the array.
+///
+/// If the type is not an array type at all, the original value is returned.
+static SVal makeZeroElementRegion(ProgramStateRef State, SVal LValue,
+ QualType &Ty) {
+ SValBuilder &SVB = State->getStateManager().getSValBuilder();
+ ASTContext &Ctx = SVB.getContext();
+
+ while (const ArrayType *AT = Ctx.getAsArrayType(Ty)) {
+ Ty = AT->getElementType();
+ LValue = State->getLValue(Ty, SVB.makeZeroArrayIndex(), LValue);
+ }
+
+ return LValue;
+}
+
+
+static const MemRegion *getRegionForConstructedObject(
+ const CXXConstructExpr *CE, ExplodedNode *Pred, ExprEngine &Eng,
+ unsigned int CurrStmtIdx) {
+ const LocationContext *LCtx = Pred->getLocationContext();
+ ProgramStateRef State = Pred->getState();
+ const NodeBuilderContext &CurrBldrCtx = Eng.getBuilderContext();
+
+ // See if we're constructing an existing region by looking at the next
+ // element in the CFG.
+ const CFGBlock *B = CurrBldrCtx.getBlock();
+ unsigned int NextStmtIdx = CurrStmtIdx + 1;
+ if (NextStmtIdx < B->size()) {
+ CFGElement Next = (*B)[NextStmtIdx];
+
+ // Is this a destructor? If so, we might be in the middle of an assignment
+ // to a local or member: look ahead one more element to see what we find.
+ while (Next.getAs<CFGImplicitDtor>() && NextStmtIdx + 1 < B->size()) {
+ ++NextStmtIdx;
+ Next = (*B)[NextStmtIdx];
+ }
+
+ // Is this a constructor for a local variable?
+ if (Optional<CFGStmt> StmtElem = Next.getAs<CFGStmt>()) {
+ if (const DeclStmt *DS = dyn_cast<DeclStmt>(StmtElem->getStmt())) {
+ if (const VarDecl *Var = dyn_cast<VarDecl>(DS->getSingleDecl())) {
+ if (Var->getInit() && Var->getInit()->IgnoreImplicit() == CE) {
+ SVal LValue = State->getLValue(Var, LCtx);
+ QualType Ty = Var->getType();
+ LValue = makeZeroElementRegion(State, LValue, Ty);
+ return LValue.getAsRegion();
+ }
+ }
+ }
+ }
+
+ // Is this a constructor for a member?
+ if (Optional<CFGInitializer> InitElem = Next.getAs<CFGInitializer>()) {
+ const CXXCtorInitializer *Init = InitElem->getInitializer();
+ assert(Init->isAnyMemberInitializer());
+
+ const CXXMethodDecl *CurCtor = cast<CXXMethodDecl>(LCtx->getDecl());
+ Loc ThisPtr = Eng.getSValBuilder().getCXXThis(CurCtor,
+ LCtx->getCurrentStackFrame());
+ SVal ThisVal = State->getSVal(ThisPtr);
+
+ const ValueDecl *Field;
+ SVal FieldVal;
+ if (Init->isIndirectMemberInitializer()) {
+ Field = Init->getIndirectMember();
+ FieldVal = State->getLValue(Init->getIndirectMember(), ThisVal);
+ } else {
+ Field = Init->getMember();
+ FieldVal = State->getLValue(Init->getMember(), ThisVal);
+ }
+
+ QualType Ty = Field->getType();
+ FieldVal = makeZeroElementRegion(State, FieldVal, Ty);
+ return FieldVal.getAsRegion();
+ }
+
+ // FIXME: This will eventually need to handle new-expressions as well.
+ // Don't forget to update the pre-constructor initialization code in
+ // ExprEngine::VisitCXXConstructExpr.
+ }
+
+ // If we couldn't find an existing region to construct into, assume we're
+ // constructing a temporary.
+ MemRegionManager &MRMgr = Eng.getSValBuilder().getRegionManager();
+ return MRMgr.getCXXTempObjectRegion(CE, LCtx);
+}
+
+void ExprEngine::VisitCXXConstructExpr(const CXXConstructExpr *CE,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &destNodes) {
+ const LocationContext *LCtx = Pred->getLocationContext();
+ ProgramStateRef State = Pred->getState();
+
+ const MemRegion *Target = nullptr;
+
+ // FIXME: Handle arrays, which run the same constructor for every element.
+ // For now, we just run the first constructor (which should still invalidate
+ // the entire array).
+
+ switch (CE->getConstructionKind()) {
+ case CXXConstructExpr::CK_Complete: {
+ Target = getRegionForConstructedObject(CE, Pred, *this, currStmtIdx);
+ break;
+ }
+ case CXXConstructExpr::CK_VirtualBase:
+ // Make sure we are not calling virtual base class initializers twice.
+ // Only the most-derived object should initialize virtual base classes.
+ if (const Stmt *Outer = LCtx->getCurrentStackFrame()->getCallSite()) {
+ const CXXConstructExpr *OuterCtor = dyn_cast<CXXConstructExpr>(Outer);
+ if (OuterCtor) {
+ switch (OuterCtor->getConstructionKind()) {
+ case CXXConstructExpr::CK_NonVirtualBase:
+ case CXXConstructExpr::CK_VirtualBase:
+ // Bail out!
+ destNodes.Add(Pred);
+ return;
+ case CXXConstructExpr::CK_Complete:
+ case CXXConstructExpr::CK_Delegating:
+ break;
+ }
+ }
+ }
+ // FALLTHROUGH
+ case CXXConstructExpr::CK_NonVirtualBase:
+ case CXXConstructExpr::CK_Delegating: {
+ const CXXMethodDecl *CurCtor = cast<CXXMethodDecl>(LCtx->getDecl());
+ Loc ThisPtr = getSValBuilder().getCXXThis(CurCtor,
+ LCtx->getCurrentStackFrame());
+ SVal ThisVal = State->getSVal(ThisPtr);
+
+ if (CE->getConstructionKind() == CXXConstructExpr::CK_Delegating) {
+ Target = ThisVal.getAsRegion();
+ } else {
+ // Cast to the base type.
+ bool IsVirtual =
+ (CE->getConstructionKind() == CXXConstructExpr::CK_VirtualBase);
+ SVal BaseVal = getStoreManager().evalDerivedToBase(ThisVal, CE->getType(),
+ IsVirtual);
+ Target = BaseVal.getAsRegion();
+ }
+ break;
+ }
+ }
+
+ CallEventManager &CEMgr = getStateManager().getCallEventManager();
+ CallEventRef<CXXConstructorCall> Call =
+ CEMgr.getCXXConstructorCall(CE, Target, State, LCtx);
+
+ ExplodedNodeSet DstPreVisit;
+ getCheckerManager().runCheckersForPreStmt(DstPreVisit, Pred, CE, *this);
+
+ ExplodedNodeSet PreInitialized;
+ {
+ StmtNodeBuilder Bldr(DstPreVisit, PreInitialized, *currBldrCtx);
+ if (CE->requiresZeroInitialization()) {
+ // Type of the zero doesn't matter.
+ SVal ZeroVal = svalBuilder.makeZeroVal(getContext().CharTy);
+
+ for (ExplodedNodeSet::iterator I = DstPreVisit.begin(),
+ E = DstPreVisit.end();
+ I != E; ++I) {
+ ProgramStateRef State = (*I)->getState();
+ // FIXME: Once we properly handle constructors in new-expressions, we'll
+ // need to invalidate the region before setting a default value, to make
+ // sure there aren't any lingering bindings around. This probably needs
+ // to happen regardless of whether or not the object is zero-initialized
+ // to handle random fields of a placement-initialized object picking up
+ // old bindings. We might only want to do it when we need to, though.
+ // FIXME: This isn't actually correct for arrays -- we need to zero-
+ // initialize the entire array, not just the first element -- but our
+ // handling of arrays everywhere else is weak as well, so this shouldn't
+ // actually make things worse. Placement new makes this tricky as well,
+ // since it's then possible to be initializing one part of a multi-
+ // dimensional array.
+ State = State->bindDefault(loc::MemRegionVal(Target), ZeroVal);
+ Bldr.generateNode(CE, *I, State, /*tag=*/nullptr,
+ ProgramPoint::PreStmtKind);
+ }
+ }
+ }
+
+ ExplodedNodeSet DstPreCall;
+ getCheckerManager().runCheckersForPreCall(DstPreCall, PreInitialized,
+ *Call, *this);
+
+ ExplodedNodeSet DstEvaluated;
+ StmtNodeBuilder Bldr(DstPreCall, DstEvaluated, *currBldrCtx);
+
+ bool IsArray = isa<ElementRegion>(Target);
+ if (CE->getConstructor()->isTrivial() &&
+ CE->getConstructor()->isCopyOrMoveConstructor() &&
+ !IsArray) {
+ // FIXME: Handle other kinds of trivial constructors as well.
+ for (ExplodedNodeSet::iterator I = DstPreCall.begin(), E = DstPreCall.end();
+ I != E; ++I)
+ performTrivialCopy(Bldr, *I, *Call);
+
+ } else {
+ for (ExplodedNodeSet::iterator I = DstPreCall.begin(), E = DstPreCall.end();
+ I != E; ++I)
+ defaultEvalCall(Bldr, *I, *Call);
+ }
+
+ ExplodedNodeSet DstPostCall;
+ getCheckerManager().runCheckersForPostCall(DstPostCall, DstEvaluated,
+ *Call, *this);
+ getCheckerManager().runCheckersForPostStmt(destNodes, DstPostCall, CE, *this);
+}
+
+void ExprEngine::VisitCXXDestructor(QualType ObjectType,
+ const MemRegion *Dest,
+ const Stmt *S,
+ bool IsBaseDtor,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ const LocationContext *LCtx = Pred->getLocationContext();
+ ProgramStateRef State = Pred->getState();
+
+ // FIXME: We need to run the same destructor on every element of the array.
+ // This workaround will just run the first destructor (which will still
+ // invalidate the entire array).
+ SVal DestVal = UnknownVal();
+ if (Dest)
+ DestVal = loc::MemRegionVal(Dest);
+ DestVal = makeZeroElementRegion(State, DestVal, ObjectType);
+ Dest = DestVal.getAsRegion();
+
+ const CXXRecordDecl *RecordDecl = ObjectType->getAsCXXRecordDecl();
+ assert(RecordDecl && "Only CXXRecordDecls should have destructors");
+ const CXXDestructorDecl *DtorDecl = RecordDecl->getDestructor();
+
+ CallEventManager &CEMgr = getStateManager().getCallEventManager();
+ CallEventRef<CXXDestructorCall> Call =
+ CEMgr.getCXXDestructorCall(DtorDecl, S, Dest, IsBaseDtor, State, LCtx);
+
+ PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
+ Call->getSourceRange().getBegin(),
+ "Error evaluating destructor");
+
+ ExplodedNodeSet DstPreCall;
+ getCheckerManager().runCheckersForPreCall(DstPreCall, Pred,
+ *Call, *this);
+
+ ExplodedNodeSet DstInvalidated;
+ StmtNodeBuilder Bldr(DstPreCall, DstInvalidated, *currBldrCtx);
+ for (ExplodedNodeSet::iterator I = DstPreCall.begin(), E = DstPreCall.end();
+ I != E; ++I)
+ defaultEvalCall(Bldr, *I, *Call);
+
+ ExplodedNodeSet DstPostCall;
+ getCheckerManager().runCheckersForPostCall(Dst, DstInvalidated,
+ *Call, *this);
+}
+
+void ExprEngine::VisitCXXNewAllocatorCall(const CXXNewExpr *CNE,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ ProgramStateRef State = Pred->getState();
+ const LocationContext *LCtx = Pred->getLocationContext();
+ PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
+ CNE->getStartLoc(),
+ "Error evaluating New Allocator Call");
+ CallEventManager &CEMgr = getStateManager().getCallEventManager();
+ CallEventRef<CXXAllocatorCall> Call =
+ CEMgr.getCXXAllocatorCall(CNE, State, LCtx);
+
+ ExplodedNodeSet DstPreCall;
+ getCheckerManager().runCheckersForPreCall(DstPreCall, Pred,
+ *Call, *this);
+
+ ExplodedNodeSet DstInvalidated;
+ StmtNodeBuilder Bldr(DstPreCall, DstInvalidated, *currBldrCtx);
+ for (ExplodedNodeSet::iterator I = DstPreCall.begin(), E = DstPreCall.end();
+ I != E; ++I)
+ defaultEvalCall(Bldr, *I, *Call);
+ getCheckerManager().runCheckersForPostCall(Dst, DstInvalidated,
+ *Call, *this);
+}
+
+
+void ExprEngine::VisitCXXNewExpr(const CXXNewExpr *CNE, ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ // FIXME: Much of this should eventually migrate to CXXAllocatorCall.
+ // Also, we need to decide how allocators actually work -- they're not
+ // really part of the CXXNewExpr because they happen BEFORE the
+ // CXXConstructExpr subexpression. See PR12014 for some discussion.
+
+ unsigned blockCount = currBldrCtx->blockCount();
+ const LocationContext *LCtx = Pred->getLocationContext();
+ DefinedOrUnknownSVal symVal = UnknownVal();
+ FunctionDecl *FD = CNE->getOperatorNew();
+
+ bool IsStandardGlobalOpNewFunction = false;
+ if (FD && !isa<CXXMethodDecl>(FD) && !FD->isVariadic()) {
+ if (FD->getNumParams() == 2) {
+ QualType T = FD->getParamDecl(1)->getType();
+ if (const IdentifierInfo *II = T.getBaseTypeIdentifier())
+ // NoThrow placement new behaves as a standard new.
+ IsStandardGlobalOpNewFunction = II->getName().equals("nothrow_t");
+ }
+ else
+ // Placement forms are considered non-standard.
+ IsStandardGlobalOpNewFunction = (FD->getNumParams() == 1);
+ }
+
+ // We assume all standard global 'operator new' functions allocate memory in
+ // heap. We realize this is an approximation that might not correctly model
+ // a custom global allocator.
+ if (IsStandardGlobalOpNewFunction)
+ symVal = svalBuilder.getConjuredHeapSymbolVal(CNE, LCtx, blockCount);
+ else
+ symVal = svalBuilder.conjureSymbolVal(nullptr, CNE, LCtx, CNE->getType(),
+ blockCount);
+
+ ProgramStateRef State = Pred->getState();
+ CallEventManager &CEMgr = getStateManager().getCallEventManager();
+ CallEventRef<CXXAllocatorCall> Call =
+ CEMgr.getCXXAllocatorCall(CNE, State, LCtx);
+
+ // Invalidate placement args.
+ // FIXME: Once we figure out how we want allocators to work,
+ // we should be using the usual pre-/(default-)eval-/post-call checks here.
+ State = Call->invalidateRegions(blockCount);
+ if (!State)
+ return;
+
+ // If this allocation function is not declared as non-throwing, failures
+ // /must/ be signalled by exceptions, and thus the return value will never be
+ // NULL. -fno-exceptions does not influence this semantics.
+ // FIXME: GCC has a -fcheck-new option, which forces it to consider the case
+ // where new can return NULL. If we end up supporting that option, we can
+ // consider adding a check for it here.
+ // C++11 [basic.stc.dynamic.allocation]p3.
+ if (FD) {
+ QualType Ty = FD->getType();
+ if (const FunctionProtoType *ProtoType = Ty->getAs<FunctionProtoType>())
+ if (!ProtoType->isNothrow(getContext()))
+ State = State->assume(symVal, true);
+ }
+
+ StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
+
+ if (CNE->isArray()) {
+ // FIXME: allocating an array requires simulating the constructors.
+ // For now, just return a symbolicated region.
+ const MemRegion *NewReg = symVal.castAs<loc::MemRegionVal>().getRegion();
+ QualType ObjTy = CNE->getType()->getAs<PointerType>()->getPointeeType();
+ const ElementRegion *EleReg =
+ getStoreManager().GetElementZeroRegion(NewReg, ObjTy);
+ State = State->BindExpr(CNE, Pred->getLocationContext(),
+ loc::MemRegionVal(EleReg));
+ Bldr.generateNode(CNE, Pred, State);
+ return;
+ }
+
+ // FIXME: Once we have proper support for CXXConstructExprs inside
+ // CXXNewExpr, we need to make sure that the constructed object is not
+ // immediately invalidated here. (The placement call should happen before
+ // the constructor call anyway.)
+ SVal Result = symVal;
+ if (FD && FD->isReservedGlobalPlacementOperator()) {
+ // Non-array placement new should always return the placement location.
+ SVal PlacementLoc = State->getSVal(CNE->getPlacementArg(0), LCtx);
+ Result = svalBuilder.evalCast(PlacementLoc, CNE->getType(),
+ CNE->getPlacementArg(0)->getType());
+ }
+
+ // Bind the address of the object, then check to see if we cached out.
+ State = State->BindExpr(CNE, LCtx, Result);
+ ExplodedNode *NewN = Bldr.generateNode(CNE, Pred, State);
+ if (!NewN)
+ return;
+
+ // If the type is not a record, we won't have a CXXConstructExpr as an
+ // initializer. Copy the value over.
+ if (const Expr *Init = CNE->getInitializer()) {
+ if (!isa<CXXConstructExpr>(Init)) {
+ assert(Bldr.getResults().size() == 1);
+ Bldr.takeNodes(NewN);
+ evalBind(Dst, CNE, NewN, Result, State->getSVal(Init, LCtx),
+ /*FirstInit=*/IsStandardGlobalOpNewFunction);
+ }
+ }
+}
+
+void ExprEngine::VisitCXXDeleteExpr(const CXXDeleteExpr *CDE,
+ ExplodedNode *Pred, ExplodedNodeSet &Dst) {
+ StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
+ ProgramStateRef state = Pred->getState();
+ Bldr.generateNode(CDE, Pred, state);
+}
+
+void ExprEngine::VisitCXXCatchStmt(const CXXCatchStmt *CS,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ const VarDecl *VD = CS->getExceptionDecl();
+ if (!VD) {
+ Dst.Add(Pred);
+ return;
+ }
+
+ const LocationContext *LCtx = Pred->getLocationContext();
+ SVal V = svalBuilder.conjureSymbolVal(CS, LCtx, VD->getType(),
+ currBldrCtx->blockCount());
+ ProgramStateRef state = Pred->getState();
+ state = state->bindLoc(state->getLValue(VD, LCtx), V);
+
+ StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
+ Bldr.generateNode(CS, Pred, state);
+}
+
+void ExprEngine::VisitCXXThisExpr(const CXXThisExpr *TE, ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
+
+ // Get the this object region from StoreManager.
+ const LocationContext *LCtx = Pred->getLocationContext();
+ const MemRegion *R =
+ svalBuilder.getRegionManager().getCXXThisRegion(
+ getContext().getCanonicalType(TE->getType()),
+ LCtx);
+
+ ProgramStateRef state = Pred->getState();
+ SVal V = state->getSVal(loc::MemRegionVal(R));
+ Bldr.generateNode(TE, Pred, state->BindExpr(TE, LCtx, V));
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/ExprEngineCallAndReturn.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/ExprEngineCallAndReturn.cpp
new file mode 100644
index 0000000..3f608ba
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/ExprEngineCallAndReturn.cpp
@@ -0,0 +1,1005 @@
+//=-- ExprEngineCallAndReturn.cpp - Support for call/return -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines ExprEngine's support for calls and returns.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
+#include "PrettyStackTraceLocationContext.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/ParentMap.h"
+#include "clang/Analysis/Analyses/LiveVariables.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/SaveAndRestore.h"
+
+using namespace clang;
+using namespace ento;
+
+#define DEBUG_TYPE "ExprEngine"
+
+STATISTIC(NumOfDynamicDispatchPathSplits,
+ "The # of times we split the path due to imprecise dynamic dispatch info");
+
+STATISTIC(NumInlinedCalls,
+ "The # of times we inlined a call");
+
+STATISTIC(NumReachedInlineCountMax,
+ "The # of times we reached inline count maximum");
+
+void ExprEngine::processCallEnter(CallEnter CE, ExplodedNode *Pred) {
+ // Get the entry block in the CFG of the callee.
+ const StackFrameContext *calleeCtx = CE.getCalleeContext();
+ PrettyStackTraceLocationContext CrashInfo(calleeCtx);
+
+ const CFG *CalleeCFG = calleeCtx->getCFG();
+ const CFGBlock *Entry = &(CalleeCFG->getEntry());
+
+ // Validate the CFG.
+ assert(Entry->empty());
+ assert(Entry->succ_size() == 1);
+
+ // Get the solitary successor.
+ const CFGBlock *Succ = *(Entry->succ_begin());
+
+ // Construct an edge representing the starting location in the callee.
+ BlockEdge Loc(Entry, Succ, calleeCtx);
+
+ ProgramStateRef state = Pred->getState();
+
+ // Construct a new node and add it to the worklist.
+ bool isNew;
+ ExplodedNode *Node = G.getNode(Loc, state, false, &isNew);
+ Node->addPredecessor(Pred, G);
+ if (isNew)
+ Engine.getWorkList()->enqueue(Node);
+}
+
+// Find the last statement on the path to the exploded node and the
+// corresponding Block.
+static std::pair<const Stmt*,
+ const CFGBlock*> getLastStmt(const ExplodedNode *Node) {
+ const Stmt *S = nullptr;
+ const CFGBlock *Blk = nullptr;
+ const StackFrameContext *SF =
+ Node->getLocation().getLocationContext()->getCurrentStackFrame();
+
+ // Back up through the ExplodedGraph until we reach a statement node in this
+ // stack frame.
+ while (Node) {
+ const ProgramPoint &PP = Node->getLocation();
+
+ if (PP.getLocationContext()->getCurrentStackFrame() == SF) {
+ if (Optional<StmtPoint> SP = PP.getAs<StmtPoint>()) {
+ S = SP->getStmt();
+ break;
+ } else if (Optional<CallExitEnd> CEE = PP.getAs<CallExitEnd>()) {
+ S = CEE->getCalleeContext()->getCallSite();
+ if (S)
+ break;
+
+ // If there is no statement, this is an implicitly-generated call.
+ // We'll walk backwards over it and then continue the loop to find
+ // an actual statement.
+ Optional<CallEnter> CE;
+ do {
+ Node = Node->getFirstPred();
+ CE = Node->getLocationAs<CallEnter>();
+ } while (!CE || CE->getCalleeContext() != CEE->getCalleeContext());
+
+ // Continue searching the graph.
+ } else if (Optional<BlockEdge> BE = PP.getAs<BlockEdge>()) {
+ Blk = BE->getSrc();
+ }
+ } else if (Optional<CallEnter> CE = PP.getAs<CallEnter>()) {
+ // If we reached the CallEnter for this function, it has no statements.
+ if (CE->getCalleeContext() == SF)
+ break;
+ }
+
+ if (Node->pred_empty())
+ return std::make_pair(nullptr, nullptr);
+
+ Node = *Node->pred_begin();
+ }
+
+ return std::make_pair(S, Blk);
+}
+
+/// Adjusts a return value when the called function's return type does not
+/// match the caller's expression type. This can happen when a dynamic call
+/// is devirtualized, and the overridding method has a covariant (more specific)
+/// return type than the parent's method. For C++ objects, this means we need
+/// to add base casts.
+static SVal adjustReturnValue(SVal V, QualType ExpectedTy, QualType ActualTy,
+ StoreManager &StoreMgr) {
+ // For now, the only adjustments we handle apply only to locations.
+ if (!V.getAs<Loc>())
+ return V;
+
+ // If the types already match, don't do any unnecessary work.
+ ExpectedTy = ExpectedTy.getCanonicalType();
+ ActualTy = ActualTy.getCanonicalType();
+ if (ExpectedTy == ActualTy)
+ return V;
+
+ // No adjustment is needed between Objective-C pointer types.
+ if (ExpectedTy->isObjCObjectPointerType() &&
+ ActualTy->isObjCObjectPointerType())
+ return V;
+
+ // C++ object pointers may need "derived-to-base" casts.
+ const CXXRecordDecl *ExpectedClass = ExpectedTy->getPointeeCXXRecordDecl();
+ const CXXRecordDecl *ActualClass = ActualTy->getPointeeCXXRecordDecl();
+ if (ExpectedClass && ActualClass) {
+ CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
+ /*DetectVirtual=*/false);
+ if (ActualClass->isDerivedFrom(ExpectedClass, Paths) &&
+ !Paths.isAmbiguous(ActualTy->getCanonicalTypeUnqualified())) {
+ return StoreMgr.evalDerivedToBase(V, Paths.front());
+ }
+ }
+
+ // Unfortunately, Objective-C does not enforce that overridden methods have
+ // covariant return types, so we can't assert that that never happens.
+ // Be safe and return UnknownVal().
+ return UnknownVal();
+}
+
+void ExprEngine::removeDeadOnEndOfFunction(NodeBuilderContext& BC,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ // Find the last statement in the function and the corresponding basic block.
+ const Stmt *LastSt = nullptr;
+ const CFGBlock *Blk = nullptr;
+ std::tie(LastSt, Blk) = getLastStmt(Pred);
+ if (!Blk || !LastSt) {
+ Dst.Add(Pred);
+ return;
+ }
+
+ // Here, we destroy the current location context. We use the current
+ // function's entire body as a diagnostic statement, with which the program
+ // point will be associated. However, we only want to use LastStmt as a
+ // reference for what to clean up if it's a ReturnStmt; otherwise, everything
+ // is dead.
+ SaveAndRestore<const NodeBuilderContext *> NodeContextRAII(currBldrCtx, &BC);
+ const LocationContext *LCtx = Pred->getLocationContext();
+ removeDead(Pred, Dst, dyn_cast<ReturnStmt>(LastSt), LCtx,
+ LCtx->getAnalysisDeclContext()->getBody(),
+ ProgramPoint::PostStmtPurgeDeadSymbolsKind);
+}
+
+static bool wasDifferentDeclUsedForInlining(CallEventRef<> Call,
+ const StackFrameContext *calleeCtx) {
+ const Decl *RuntimeCallee = calleeCtx->getDecl();
+ const Decl *StaticDecl = Call->getDecl();
+ assert(RuntimeCallee);
+ if (!StaticDecl)
+ return true;
+ return RuntimeCallee->getCanonicalDecl() != StaticDecl->getCanonicalDecl();
+}
+
+/// Returns true if the CXXConstructExpr \p E was intended to construct a
+/// prvalue for the region in \p V.
+///
+/// Note that we can't just test for rvalue vs. glvalue because
+/// CXXConstructExprs embedded in DeclStmts and initializers are considered
+/// rvalues by the AST, and the analyzer would like to treat them as lvalues.
+static bool isTemporaryPRValue(const CXXConstructExpr *E, SVal V) {
+ if (E->isGLValue())
+ return false;
+
+ const MemRegion *MR = V.getAsRegion();
+ if (!MR)
+ return false;
+
+ return isa<CXXTempObjectRegion>(MR);
+}
+
+/// The call exit is simulated with a sequence of nodes, which occur between
+/// CallExitBegin and CallExitEnd. The following operations occur between the
+/// two program points:
+/// 1. CallExitBegin (triggers the start of call exit sequence)
+/// 2. Bind the return value
+/// 3. Run Remove dead bindings to clean up the dead symbols from the callee.
+/// 4. CallExitEnd (switch to the caller context)
+/// 5. PostStmt<CallExpr>
+void ExprEngine::processCallExit(ExplodedNode *CEBNode) {
+ // Step 1 CEBNode was generated before the call.
+ PrettyStackTraceLocationContext CrashInfo(CEBNode->getLocationContext());
+ const StackFrameContext *calleeCtx =
+ CEBNode->getLocationContext()->getCurrentStackFrame();
+
+ // The parent context might not be a stack frame, so make sure we
+ // look up the first enclosing stack frame.
+ const StackFrameContext *callerCtx =
+ calleeCtx->getParent()->getCurrentStackFrame();
+
+ const Stmt *CE = calleeCtx->getCallSite();
+ ProgramStateRef state = CEBNode->getState();
+ // Find the last statement in the function and the corresponding basic block.
+ const Stmt *LastSt = nullptr;
+ const CFGBlock *Blk = nullptr;
+ std::tie(LastSt, Blk) = getLastStmt(CEBNode);
+
+ // Generate a CallEvent /before/ cleaning the state, so that we can get the
+ // correct value for 'this' (if necessary).
+ CallEventManager &CEMgr = getStateManager().getCallEventManager();
+ CallEventRef<> Call = CEMgr.getCaller(calleeCtx, state);
+
+ // Step 2: generate node with bound return value: CEBNode -> BindedRetNode.
+
+ // If the callee returns an expression, bind its value to CallExpr.
+ if (CE) {
+ if (const ReturnStmt *RS = dyn_cast_or_null<ReturnStmt>(LastSt)) {
+ const LocationContext *LCtx = CEBNode->getLocationContext();
+ SVal V = state->getSVal(RS, LCtx);
+
+ // Ensure that the return type matches the type of the returned Expr.
+ if (wasDifferentDeclUsedForInlining(Call, calleeCtx)) {
+ QualType ReturnedTy =
+ CallEvent::getDeclaredResultType(calleeCtx->getDecl());
+ if (!ReturnedTy.isNull()) {
+ if (const Expr *Ex = dyn_cast<Expr>(CE)) {
+ V = adjustReturnValue(V, Ex->getType(), ReturnedTy,
+ getStoreManager());
+ }
+ }
+ }
+
+ state = state->BindExpr(CE, callerCtx, V);
+ }
+
+ // Bind the constructed object value to CXXConstructExpr.
+ if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(CE)) {
+ loc::MemRegionVal This =
+ svalBuilder.getCXXThis(CCE->getConstructor()->getParent(), calleeCtx);
+ SVal ThisV = state->getSVal(This);
+
+ // If the constructed object is a temporary prvalue, get its bindings.
+ if (isTemporaryPRValue(CCE, ThisV))
+ ThisV = state->getSVal(ThisV.castAs<Loc>());
+
+ state = state->BindExpr(CCE, callerCtx, ThisV);
+ }
+ }
+
+ // Step 3: BindedRetNode -> CleanedNodes
+ // If we can find a statement and a block in the inlined function, run remove
+ // dead bindings before returning from the call. This is important to ensure
+ // that we report the issues such as leaks in the stack contexts in which
+ // they occurred.
+ ExplodedNodeSet CleanedNodes;
+ if (LastSt && Blk && AMgr.options.AnalysisPurgeOpt != PurgeNone) {
+ static SimpleProgramPointTag retValBind("ExprEngine", "Bind Return Value");
+ PostStmt Loc(LastSt, calleeCtx, &retValBind);
+ bool isNew;
+ ExplodedNode *BindedRetNode = G.getNode(Loc, state, false, &isNew);
+ BindedRetNode->addPredecessor(CEBNode, G);
+ if (!isNew)
+ return;
+
+ NodeBuilderContext Ctx(getCoreEngine(), Blk, BindedRetNode);
+ currBldrCtx = &Ctx;
+ // Here, we call the Symbol Reaper with 0 statement and callee location
+ // context, telling it to clean up everything in the callee's context
+ // (and its children). We use the callee's function body as a diagnostic
+ // statement, with which the program point will be associated.
+ removeDead(BindedRetNode, CleanedNodes, nullptr, calleeCtx,
+ calleeCtx->getAnalysisDeclContext()->getBody(),
+ ProgramPoint::PostStmtPurgeDeadSymbolsKind);
+ currBldrCtx = nullptr;
+ } else {
+ CleanedNodes.Add(CEBNode);
+ }
+
+ for (ExplodedNodeSet::iterator I = CleanedNodes.begin(),
+ E = CleanedNodes.end(); I != E; ++I) {
+
+ // Step 4: Generate the CallExit and leave the callee's context.
+ // CleanedNodes -> CEENode
+ CallExitEnd Loc(calleeCtx, callerCtx);
+ bool isNew;
+ ProgramStateRef CEEState = (*I == CEBNode) ? state : (*I)->getState();
+ ExplodedNode *CEENode = G.getNode(Loc, CEEState, false, &isNew);
+ CEENode->addPredecessor(*I, G);
+ if (!isNew)
+ return;
+
+ // Step 5: Perform the post-condition check of the CallExpr and enqueue the
+ // result onto the work list.
+ // CEENode -> Dst -> WorkList
+ NodeBuilderContext Ctx(Engine, calleeCtx->getCallSiteBlock(), CEENode);
+ SaveAndRestore<const NodeBuilderContext*> NBCSave(currBldrCtx,
+ &Ctx);
+ SaveAndRestore<unsigned> CBISave(currStmtIdx, calleeCtx->getIndex());
+
+ CallEventRef<> UpdatedCall = Call.cloneWithState(CEEState);
+
+ ExplodedNodeSet DstPostCall;
+ getCheckerManager().runCheckersForPostCall(DstPostCall, CEENode,
+ *UpdatedCall, *this,
+ /*WasInlined=*/true);
+
+ ExplodedNodeSet Dst;
+ if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) {
+ getCheckerManager().runCheckersForPostObjCMessage(Dst, DstPostCall, *Msg,
+ *this,
+ /*WasInlined=*/true);
+ } else if (CE) {
+ getCheckerManager().runCheckersForPostStmt(Dst, DstPostCall, CE,
+ *this, /*WasInlined=*/true);
+ } else {
+ Dst.insert(DstPostCall);
+ }
+
+ // Enqueue the next element in the block.
+ for (ExplodedNodeSet::iterator PSI = Dst.begin(), PSE = Dst.end();
+ PSI != PSE; ++PSI) {
+ Engine.getWorkList()->enqueue(*PSI, calleeCtx->getCallSiteBlock(),
+ calleeCtx->getIndex()+1);
+ }
+ }
+}
+
+void ExprEngine::examineStackFrames(const Decl *D, const LocationContext *LCtx,
+ bool &IsRecursive, unsigned &StackDepth) {
+ IsRecursive = false;
+ StackDepth = 0;
+
+ while (LCtx) {
+ if (const StackFrameContext *SFC = dyn_cast<StackFrameContext>(LCtx)) {
+ const Decl *DI = SFC->getDecl();
+
+ // Mark recursive (and mutually recursive) functions and always count
+ // them when measuring the stack depth.
+ if (DI == D) {
+ IsRecursive = true;
+ ++StackDepth;
+ LCtx = LCtx->getParent();
+ continue;
+ }
+
+ // Do not count the small functions when determining the stack depth.
+ AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(DI);
+ const CFG *CalleeCFG = CalleeADC->getCFG();
+ if (CalleeCFG->getNumBlockIDs() > AMgr.options.getAlwaysInlineSize())
+ ++StackDepth;
+ }
+ LCtx = LCtx->getParent();
+ }
+
+}
+
+static bool IsInStdNamespace(const FunctionDecl *FD) {
+ const DeclContext *DC = FD->getEnclosingNamespaceContext();
+ const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC);
+ if (!ND)
+ return false;
+
+ while (const DeclContext *Parent = ND->getParent()) {
+ if (!isa<NamespaceDecl>(Parent))
+ break;
+ ND = cast<NamespaceDecl>(Parent);
+ }
+
+ return ND->isStdNamespace();
+}
+
+// The GDM component containing the dynamic dispatch bifurcation info. When
+// the exact type of the receiver is not known, we want to explore both paths -
+// one on which we do inline it and the other one on which we don't. This is
+// done to ensure we do not drop coverage.
+// This is the map from the receiver region to a bool, specifying either we
+// consider this region's information precise or not along the given path.
+namespace {
+ enum DynamicDispatchMode {
+ DynamicDispatchModeInlined = 1,
+ DynamicDispatchModeConservative
+ };
+}
+REGISTER_TRAIT_WITH_PROGRAMSTATE(DynamicDispatchBifurcationMap,
+ CLANG_ENTO_PROGRAMSTATE_MAP(const MemRegion *,
+ unsigned))
+
+bool ExprEngine::inlineCall(const CallEvent &Call, const Decl *D,
+ NodeBuilder &Bldr, ExplodedNode *Pred,
+ ProgramStateRef State) {
+ assert(D);
+
+ const LocationContext *CurLC = Pred->getLocationContext();
+ const StackFrameContext *CallerSFC = CurLC->getCurrentStackFrame();
+ const LocationContext *ParentOfCallee = CallerSFC;
+ if (Call.getKind() == CE_Block) {
+ const BlockDataRegion *BR = cast<BlockCall>(Call).getBlockRegion();
+ assert(BR && "If we have the block definition we should have its region");
+ AnalysisDeclContext *BlockCtx = AMgr.getAnalysisDeclContext(D);
+ ParentOfCallee = BlockCtx->getBlockInvocationContext(CallerSFC,
+ cast<BlockDecl>(D),
+ BR);
+ }
+
+ // This may be NULL, but that's fine.
+ const Expr *CallE = Call.getOriginExpr();
+
+ // Construct a new stack frame for the callee.
+ AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(D);
+ const StackFrameContext *CalleeSFC =
+ CalleeADC->getStackFrame(ParentOfCallee, CallE,
+ currBldrCtx->getBlock(),
+ currStmtIdx);
+
+
+ CallEnter Loc(CallE, CalleeSFC, CurLC);
+
+ // Construct a new state which contains the mapping from actual to
+ // formal arguments.
+ State = State->enterStackFrame(Call, CalleeSFC);
+
+ bool isNew;
+ if (ExplodedNode *N = G.getNode(Loc, State, false, &isNew)) {
+ N->addPredecessor(Pred, G);
+ if (isNew)
+ Engine.getWorkList()->enqueue(N);
+ }
+
+ // If we decided to inline the call, the successor has been manually
+ // added onto the work list so remove it from the node builder.
+ Bldr.takeNodes(Pred);
+
+ NumInlinedCalls++;
+
+ // Mark the decl as visited.
+ if (VisitedCallees)
+ VisitedCallees->insert(D);
+
+ return true;
+}
+
+static ProgramStateRef getInlineFailedState(ProgramStateRef State,
+ const Stmt *CallE) {
+ const void *ReplayState = State->get<ReplayWithoutInlining>();
+ if (!ReplayState)
+ return nullptr;
+
+ assert(ReplayState == CallE && "Backtracked to the wrong call.");
+ (void)CallE;
+
+ return State->remove<ReplayWithoutInlining>();
+}
+
+void ExprEngine::VisitCallExpr(const CallExpr *CE, ExplodedNode *Pred,
+ ExplodedNodeSet &dst) {
+ // Perform the previsit of the CallExpr.
+ ExplodedNodeSet dstPreVisit;
+ getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, CE, *this);
+
+ // Get the call in its initial state. We use this as a template to perform
+ // all the checks.
+ CallEventManager &CEMgr = getStateManager().getCallEventManager();
+ CallEventRef<> CallTemplate
+ = CEMgr.getSimpleCall(CE, Pred->getState(), Pred->getLocationContext());
+
+ // Evaluate the function call. We try each of the checkers
+ // to see if the can evaluate the function call.
+ ExplodedNodeSet dstCallEvaluated;
+ for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
+ I != E; ++I) {
+ evalCall(dstCallEvaluated, *I, *CallTemplate);
+ }
+
+ // Finally, perform the post-condition check of the CallExpr and store
+ // the created nodes in 'Dst'.
+ // Note that if the call was inlined, dstCallEvaluated will be empty.
+ // The post-CallExpr check will occur in processCallExit.
+ getCheckerManager().runCheckersForPostStmt(dst, dstCallEvaluated, CE,
+ *this);
+}
+
+void ExprEngine::evalCall(ExplodedNodeSet &Dst, ExplodedNode *Pred,
+ const CallEvent &Call) {
+ // WARNING: At this time, the state attached to 'Call' may be older than the
+ // state in 'Pred'. This is a minor optimization since CheckerManager will
+ // use an updated CallEvent instance when calling checkers, but if 'Call' is
+ // ever used directly in this function all callers should be updated to pass
+ // the most recent state. (It is probably not worth doing the work here since
+ // for some callers this will not be necessary.)
+
+ // Run any pre-call checks using the generic call interface.
+ ExplodedNodeSet dstPreVisit;
+ getCheckerManager().runCheckersForPreCall(dstPreVisit, Pred, Call, *this);
+
+ // Actually evaluate the function call. We try each of the checkers
+ // to see if the can evaluate the function call, and get a callback at
+ // defaultEvalCall if all of them fail.
+ ExplodedNodeSet dstCallEvaluated;
+ getCheckerManager().runCheckersForEvalCall(dstCallEvaluated, dstPreVisit,
+ Call, *this);
+
+ // Finally, run any post-call checks.
+ getCheckerManager().runCheckersForPostCall(Dst, dstCallEvaluated,
+ Call, *this);
+}
+
+ProgramStateRef ExprEngine::bindReturnValue(const CallEvent &Call,
+ const LocationContext *LCtx,
+ ProgramStateRef State) {
+ const Expr *E = Call.getOriginExpr();
+ if (!E)
+ return State;
+
+ // Some method families have known return values.
+ if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(&Call)) {
+ switch (Msg->getMethodFamily()) {
+ default:
+ break;
+ case OMF_autorelease:
+ case OMF_retain:
+ case OMF_self: {
+ // These methods return their receivers.
+ return State->BindExpr(E, LCtx, Msg->getReceiverSVal());
+ }
+ }
+ } else if (const CXXConstructorCall *C = dyn_cast<CXXConstructorCall>(&Call)){
+ SVal ThisV = C->getCXXThisVal();
+
+ // If the constructed object is a temporary prvalue, get its bindings.
+ if (isTemporaryPRValue(cast<CXXConstructExpr>(E), ThisV))
+ ThisV = State->getSVal(ThisV.castAs<Loc>());
+
+ return State->BindExpr(E, LCtx, ThisV);
+ }
+
+ // Conjure a symbol if the return value is unknown.
+ QualType ResultTy = Call.getResultType();
+ SValBuilder &SVB = getSValBuilder();
+ unsigned Count = currBldrCtx->blockCount();
+ SVal R = SVB.conjureSymbolVal(nullptr, E, LCtx, ResultTy, Count);
+ return State->BindExpr(E, LCtx, R);
+}
+
+// Conservatively evaluate call by invalidating regions and binding
+// a conjured return value.
+void ExprEngine::conservativeEvalCall(const CallEvent &Call, NodeBuilder &Bldr,
+ ExplodedNode *Pred,
+ ProgramStateRef State) {
+ State = Call.invalidateRegions(currBldrCtx->blockCount(), State);
+ State = bindReturnValue(Call, Pred->getLocationContext(), State);
+
+ // And make the result node.
+ Bldr.generateNode(Call.getProgramPoint(), State, Pred);
+}
+
+enum CallInlinePolicy {
+ CIP_Allowed,
+ CIP_DisallowedOnce,
+ CIP_DisallowedAlways
+};
+
+static CallInlinePolicy mayInlineCallKind(const CallEvent &Call,
+ const ExplodedNode *Pred,
+ AnalyzerOptions &Opts) {
+ const LocationContext *CurLC = Pred->getLocationContext();
+ const StackFrameContext *CallerSFC = CurLC->getCurrentStackFrame();
+ switch (Call.getKind()) {
+ case CE_Function:
+ case CE_Block:
+ break;
+ case CE_CXXMember:
+ case CE_CXXMemberOperator:
+ if (!Opts.mayInlineCXXMemberFunction(CIMK_MemberFunctions))
+ return CIP_DisallowedAlways;
+ break;
+ case CE_CXXConstructor: {
+ if (!Opts.mayInlineCXXMemberFunction(CIMK_Constructors))
+ return CIP_DisallowedAlways;
+
+ const CXXConstructorCall &Ctor = cast<CXXConstructorCall>(Call);
+
+ // FIXME: We don't handle constructors or destructors for arrays properly.
+ // Even once we do, we still need to be careful about implicitly-generated
+ // initializers for array fields in default move/copy constructors.
+ const MemRegion *Target = Ctor.getCXXThisVal().getAsRegion();
+ if (Target && isa<ElementRegion>(Target))
+ return CIP_DisallowedOnce;
+
+ // FIXME: This is a hack. We don't use the correct region for a new
+ // expression, so if we inline the constructor its result will just be
+ // thrown away. This short-term hack is tracked in <rdar://problem/12180598>
+ // and the longer-term possible fix is discussed in PR12014.
+ const CXXConstructExpr *CtorExpr = Ctor.getOriginExpr();
+ if (const Stmt *Parent = CurLC->getParentMap().getParent(CtorExpr))
+ if (isa<CXXNewExpr>(Parent))
+ return CIP_DisallowedOnce;
+
+ // Inlining constructors requires including initializers in the CFG.
+ const AnalysisDeclContext *ADC = CallerSFC->getAnalysisDeclContext();
+ assert(ADC->getCFGBuildOptions().AddInitializers && "No CFG initializers");
+ (void)ADC;
+
+ // If the destructor is trivial, it's always safe to inline the constructor.
+ if (Ctor.getDecl()->getParent()->hasTrivialDestructor())
+ break;
+
+ // For other types, only inline constructors if destructor inlining is
+ // also enabled.
+ if (!Opts.mayInlineCXXMemberFunction(CIMK_Destructors))
+ return CIP_DisallowedAlways;
+
+ // FIXME: This is a hack. We don't handle temporary destructors
+ // right now, so we shouldn't inline their constructors.
+ if (CtorExpr->getConstructionKind() == CXXConstructExpr::CK_Complete)
+ if (!Target || !isa<DeclRegion>(Target))
+ return CIP_DisallowedOnce;
+
+ break;
+ }
+ case CE_CXXDestructor: {
+ if (!Opts.mayInlineCXXMemberFunction(CIMK_Destructors))
+ return CIP_DisallowedAlways;
+
+ // Inlining destructors requires building the CFG correctly.
+ const AnalysisDeclContext *ADC = CallerSFC->getAnalysisDeclContext();
+ assert(ADC->getCFGBuildOptions().AddImplicitDtors && "No CFG destructors");
+ (void)ADC;
+
+ const CXXDestructorCall &Dtor = cast<CXXDestructorCall>(Call);
+
+ // FIXME: We don't handle constructors or destructors for arrays properly.
+ const MemRegion *Target = Dtor.getCXXThisVal().getAsRegion();
+ if (Target && isa<ElementRegion>(Target))
+ return CIP_DisallowedOnce;
+
+ break;
+ }
+ case CE_CXXAllocator:
+ if (Opts.mayInlineCXXAllocator())
+ break;
+ // Do not inline allocators until we model deallocators.
+ // This is unfortunate, but basically necessary for smart pointers and such.
+ return CIP_DisallowedAlways;
+ case CE_ObjCMessage:
+ if (!Opts.mayInlineObjCMethod())
+ return CIP_DisallowedAlways;
+ if (!(Opts.getIPAMode() == IPAK_DynamicDispatch ||
+ Opts.getIPAMode() == IPAK_DynamicDispatchBifurcate))
+ return CIP_DisallowedAlways;
+ break;
+ }
+
+ return CIP_Allowed;
+}
+
+/// Returns true if the given C++ class contains a member with the given name.
+static bool hasMember(const ASTContext &Ctx, const CXXRecordDecl *RD,
+ StringRef Name) {
+ const IdentifierInfo &II = Ctx.Idents.get(Name);
+ DeclarationName DeclName = Ctx.DeclarationNames.getIdentifier(&II);
+ if (!RD->lookup(DeclName).empty())
+ return true;
+
+ CXXBasePaths Paths(false, false, false);
+ if (RD->lookupInBases(&CXXRecordDecl::FindOrdinaryMember,
+ DeclName.getAsOpaquePtr(),
+ Paths))
+ return true;
+
+ return false;
+}
+
+/// Returns true if the given C++ class is a container or iterator.
+///
+/// Our heuristic for this is whether it contains a method named 'begin()' or a
+/// nested type named 'iterator' or 'iterator_category'.
+static bool isContainerClass(const ASTContext &Ctx, const CXXRecordDecl *RD) {
+ return hasMember(Ctx, RD, "begin") ||
+ hasMember(Ctx, RD, "iterator") ||
+ hasMember(Ctx, RD, "iterator_category");
+}
+
+/// Returns true if the given function refers to a method of a C++ container
+/// or iterator.
+///
+/// We generally do a poor job modeling most containers right now, and might
+/// prefer not to inline their methods.
+static bool isContainerMethod(const ASTContext &Ctx,
+ const FunctionDecl *FD) {
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
+ return isContainerClass(Ctx, MD->getParent());
+ return false;
+}
+
+/// Returns true if the given function is the destructor of a class named
+/// "shared_ptr".
+static bool isCXXSharedPtrDtor(const FunctionDecl *FD) {
+ const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(FD);
+ if (!Dtor)
+ return false;
+
+ const CXXRecordDecl *RD = Dtor->getParent();
+ if (const IdentifierInfo *II = RD->getDeclName().getAsIdentifierInfo())
+ if (II->isStr("shared_ptr"))
+ return true;
+
+ return false;
+}
+
+/// Returns true if the function in \p CalleeADC may be inlined in general.
+///
+/// This checks static properties of the function, such as its signature and
+/// CFG, to determine whether the analyzer should ever consider inlining it,
+/// in any context.
+static bool mayInlineDecl(AnalysisDeclContext *CalleeADC,
+ AnalyzerOptions &Opts) {
+ // FIXME: Do not inline variadic calls.
+ if (CallEvent::isVariadic(CalleeADC->getDecl()))
+ return false;
+
+ // Check certain C++-related inlining policies.
+ ASTContext &Ctx = CalleeADC->getASTContext();
+ if (Ctx.getLangOpts().CPlusPlus) {
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeADC->getDecl())) {
+ // Conditionally control the inlining of template functions.
+ if (!Opts.mayInlineTemplateFunctions())
+ if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
+ return false;
+
+ // Conditionally control the inlining of C++ standard library functions.
+ if (!Opts.mayInlineCXXStandardLibrary())
+ if (Ctx.getSourceManager().isInSystemHeader(FD->getLocation()))
+ if (IsInStdNamespace(FD))
+ return false;
+
+ // Conditionally control the inlining of methods on objects that look
+ // like C++ containers.
+ if (!Opts.mayInlineCXXContainerMethods())
+ if (!Ctx.getSourceManager().isInMainFile(FD->getLocation()))
+ if (isContainerMethod(Ctx, FD))
+ return false;
+
+ // Conditionally control the inlining of the destructor of C++ shared_ptr.
+ // We don't currently do a good job modeling shared_ptr because we can't
+ // see the reference count, so treating as opaque is probably the best
+ // idea.
+ if (!Opts.mayInlineCXXSharedPtrDtor())
+ if (isCXXSharedPtrDtor(FD))
+ return false;
+
+ }
+ }
+
+ // It is possible that the CFG cannot be constructed.
+ // Be safe, and check if the CalleeCFG is valid.
+ const CFG *CalleeCFG = CalleeADC->getCFG();
+ if (!CalleeCFG)
+ return false;
+
+ // Do not inline large functions.
+ if (CalleeCFG->getNumBlockIDs() > Opts.getMaxInlinableSize())
+ return false;
+
+ // It is possible that the live variables analysis cannot be
+ // run. If so, bail out.
+ if (!CalleeADC->getAnalysis<RelaxedLiveVariables>())
+ return false;
+
+ return true;
+}
+
+bool ExprEngine::shouldInlineCall(const CallEvent &Call, const Decl *D,
+ const ExplodedNode *Pred) {
+ if (!D)
+ return false;
+
+ AnalysisManager &AMgr = getAnalysisManager();
+ AnalyzerOptions &Opts = AMgr.options;
+ AnalysisDeclContextManager &ADCMgr = AMgr.getAnalysisDeclContextManager();
+ AnalysisDeclContext *CalleeADC = ADCMgr.getContext(D);
+
+ // Temporary object destructor processing is currently broken, so we never
+ // inline them.
+ // FIXME: Remove this once temp destructors are working.
+ if (isa<CXXDestructorCall>(Call)) {
+ if ((*currBldrCtx->getBlock())[currStmtIdx].getAs<CFGTemporaryDtor>())
+ return false;
+ }
+
+ // The auto-synthesized bodies are essential to inline as they are
+ // usually small and commonly used. Note: we should do this check early on to
+ // ensure we always inline these calls.
+ if (CalleeADC->isBodyAutosynthesized())
+ return true;
+
+ if (!AMgr.shouldInlineCall())
+ return false;
+
+ // Check if this function has been marked as non-inlinable.
+ Optional<bool> MayInline = Engine.FunctionSummaries->mayInline(D);
+ if (MayInline.hasValue()) {
+ if (!MayInline.getValue())
+ return false;
+
+ } else {
+ // We haven't actually checked the static properties of this function yet.
+ // Do that now, and record our decision in the function summaries.
+ if (mayInlineDecl(CalleeADC, Opts)) {
+ Engine.FunctionSummaries->markMayInline(D);
+ } else {
+ Engine.FunctionSummaries->markShouldNotInline(D);
+ return false;
+ }
+ }
+
+ // Check if we should inline a call based on its kind.
+ // FIXME: this checks both static and dynamic properties of the call, which
+ // means we're redoing a bit of work that could be cached in the function
+ // summary.
+ CallInlinePolicy CIP = mayInlineCallKind(Call, Pred, Opts);
+ if (CIP != CIP_Allowed) {
+ if (CIP == CIP_DisallowedAlways) {
+ assert(!MayInline.hasValue() || MayInline.getValue());
+ Engine.FunctionSummaries->markShouldNotInline(D);
+ }
+ return false;
+ }
+
+ const CFG *CalleeCFG = CalleeADC->getCFG();
+
+ // Do not inline if recursive or we've reached max stack frame count.
+ bool IsRecursive = false;
+ unsigned StackDepth = 0;
+ examineStackFrames(D, Pred->getLocationContext(), IsRecursive, StackDepth);
+ if ((StackDepth >= Opts.InlineMaxStackDepth) &&
+ ((CalleeCFG->getNumBlockIDs() > Opts.getAlwaysInlineSize())
+ || IsRecursive))
+ return false;
+
+ // Do not inline large functions too many times.
+ if ((Engine.FunctionSummaries->getNumTimesInlined(D) >
+ Opts.getMaxTimesInlineLarge()) &&
+ CalleeCFG->getNumBlockIDs() > 13) {
+ NumReachedInlineCountMax++;
+ return false;
+ }
+
+ if (HowToInline == Inline_Minimal &&
+ (CalleeCFG->getNumBlockIDs() > Opts.getAlwaysInlineSize()
+ || IsRecursive))
+ return false;
+
+ Engine.FunctionSummaries->bumpNumTimesInlined(D);
+
+ return true;
+}
+
+static bool isTrivialObjectAssignment(const CallEvent &Call) {
+ const CXXInstanceCall *ICall = dyn_cast<CXXInstanceCall>(&Call);
+ if (!ICall)
+ return false;
+
+ const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(ICall->getDecl());
+ if (!MD)
+ return false;
+ if (!(MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()))
+ return false;
+
+ return MD->isTrivial();
+}
+
+void ExprEngine::defaultEvalCall(NodeBuilder &Bldr, ExplodedNode *Pred,
+ const CallEvent &CallTemplate) {
+ // Make sure we have the most recent state attached to the call.
+ ProgramStateRef State = Pred->getState();
+ CallEventRef<> Call = CallTemplate.cloneWithState(State);
+
+ // Special-case trivial assignment operators.
+ if (isTrivialObjectAssignment(*Call)) {
+ performTrivialCopy(Bldr, Pred, *Call);
+ return;
+ }
+
+ // Try to inline the call.
+ // The origin expression here is just used as a kind of checksum;
+ // this should still be safe even for CallEvents that don't come from exprs.
+ const Expr *E = Call->getOriginExpr();
+
+ ProgramStateRef InlinedFailedState = getInlineFailedState(State, E);
+ if (InlinedFailedState) {
+ // If we already tried once and failed, make sure we don't retry later.
+ State = InlinedFailedState;
+ } else {
+ RuntimeDefinition RD = Call->getRuntimeDefinition();
+ const Decl *D = RD.getDecl();
+ if (shouldInlineCall(*Call, D, Pred)) {
+ if (RD.mayHaveOtherDefinitions()) {
+ AnalyzerOptions &Options = getAnalysisManager().options;
+
+ // Explore with and without inlining the call.
+ if (Options.getIPAMode() == IPAK_DynamicDispatchBifurcate) {
+ BifurcateCall(RD.getDispatchRegion(), *Call, D, Bldr, Pred);
+ return;
+ }
+
+ // Don't inline if we're not in any dynamic dispatch mode.
+ if (Options.getIPAMode() != IPAK_DynamicDispatch) {
+ conservativeEvalCall(*Call, Bldr, Pred, State);
+ return;
+ }
+ }
+
+ // We are not bifurcating and we do have a Decl, so just inline.
+ if (inlineCall(*Call, D, Bldr, Pred, State))
+ return;
+ }
+ }
+
+ // If we can't inline it, handle the return value and invalidate the regions.
+ conservativeEvalCall(*Call, Bldr, Pred, State);
+}
+
+void ExprEngine::BifurcateCall(const MemRegion *BifurReg,
+ const CallEvent &Call, const Decl *D,
+ NodeBuilder &Bldr, ExplodedNode *Pred) {
+ assert(BifurReg);
+ BifurReg = BifurReg->StripCasts();
+
+ // Check if we've performed the split already - note, we only want
+ // to split the path once per memory region.
+ ProgramStateRef State = Pred->getState();
+ const unsigned *BState =
+ State->get<DynamicDispatchBifurcationMap>(BifurReg);
+ if (BState) {
+ // If we are on "inline path", keep inlining if possible.
+ if (*BState == DynamicDispatchModeInlined)
+ if (inlineCall(Call, D, Bldr, Pred, State))
+ return;
+ // If inline failed, or we are on the path where we assume we
+ // don't have enough info about the receiver to inline, conjure the
+ // return value and invalidate the regions.
+ conservativeEvalCall(Call, Bldr, Pred, State);
+ return;
+ }
+
+ // If we got here, this is the first time we process a message to this
+ // region, so split the path.
+ ProgramStateRef IState =
+ State->set<DynamicDispatchBifurcationMap>(BifurReg,
+ DynamicDispatchModeInlined);
+ inlineCall(Call, D, Bldr, Pred, IState);
+
+ ProgramStateRef NoIState =
+ State->set<DynamicDispatchBifurcationMap>(BifurReg,
+ DynamicDispatchModeConservative);
+ conservativeEvalCall(Call, Bldr, Pred, NoIState);
+
+ NumOfDynamicDispatchPathSplits++;
+ return;
+}
+
+
+void ExprEngine::VisitReturnStmt(const ReturnStmt *RS, ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+
+ ExplodedNodeSet dstPreVisit;
+ getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, RS, *this);
+
+ StmtNodeBuilder B(dstPreVisit, Dst, *currBldrCtx);
+
+ if (RS->getRetValue()) {
+ for (ExplodedNodeSet::iterator it = dstPreVisit.begin(),
+ ei = dstPreVisit.end(); it != ei; ++it) {
+ B.generateNode(RS, *it, (*it)->getState());
+ }
+ }
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/ExprEngineObjC.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/ExprEngineObjC.cpp
new file mode 100644
index 0000000..a6611e0
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/ExprEngineObjC.cpp
@@ -0,0 +1,215 @@
+//=-- ExprEngineObjC.cpp - ExprEngine support for Objective-C ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines ExprEngine's support for Objective-C expressions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/StmtObjC.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
+
+using namespace clang;
+using namespace ento;
+
+void ExprEngine::VisitLvalObjCIvarRefExpr(const ObjCIvarRefExpr *Ex,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ ProgramStateRef state = Pred->getState();
+ const LocationContext *LCtx = Pred->getLocationContext();
+ SVal baseVal = state->getSVal(Ex->getBase(), LCtx);
+ SVal location = state->getLValue(Ex->getDecl(), baseVal);
+
+ ExplodedNodeSet dstIvar;
+ StmtNodeBuilder Bldr(Pred, dstIvar, *currBldrCtx);
+ Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, location));
+
+ // Perform the post-condition check of the ObjCIvarRefExpr and store
+ // the created nodes in 'Dst'.
+ getCheckerManager().runCheckersForPostStmt(Dst, dstIvar, Ex, *this);
+}
+
+void ExprEngine::VisitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt *S,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ getCheckerManager().runCheckersForPreStmt(Dst, Pred, S, *this);
+}
+
+void ExprEngine::VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+
+ // ObjCForCollectionStmts are processed in two places. This method
+ // handles the case where an ObjCForCollectionStmt* occurs as one of the
+ // statements within a basic block. This transfer function does two things:
+ //
+ // (1) binds the next container value to 'element'. This creates a new
+ // node in the ExplodedGraph.
+ //
+ // (2) binds the value 0/1 to the ObjCForCollectionStmt* itself, indicating
+ // whether or not the container has any more elements. This value
+ // will be tested in ProcessBranch. We need to explicitly bind
+ // this value because a container can contain nil elements.
+ //
+ // FIXME: Eventually this logic should actually do dispatches to
+ // 'countByEnumeratingWithState:objects:count:' (NSFastEnumeration).
+ // This will require simulating a temporary NSFastEnumerationState, either
+ // through an SVal or through the use of MemRegions. This value can
+ // be affixed to the ObjCForCollectionStmt* instead of 0/1; when the loop
+ // terminates we reclaim the temporary (it goes out of scope) and we
+ // we can test if the SVal is 0 or if the MemRegion is null (depending
+ // on what approach we take).
+ //
+ // For now: simulate (1) by assigning either a symbol or nil if the
+ // container is empty. Thus this transfer function will by default
+ // result in state splitting.
+
+ const Stmt *elem = S->getElement();
+ ProgramStateRef state = Pred->getState();
+ SVal elementV;
+
+ if (const DeclStmt *DS = dyn_cast<DeclStmt>(elem)) {
+ const VarDecl *elemD = cast<VarDecl>(DS->getSingleDecl());
+ assert(elemD->getInit() == nullptr);
+ elementV = state->getLValue(elemD, Pred->getLocationContext());
+ }
+ else {
+ elementV = state->getSVal(elem, Pred->getLocationContext());
+ }
+
+ ExplodedNodeSet dstLocation;
+ evalLocation(dstLocation, S, elem, Pred, state, elementV, nullptr, false);
+
+ ExplodedNodeSet Tmp;
+ StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx);
+
+ for (ExplodedNodeSet::iterator NI = dstLocation.begin(),
+ NE = dstLocation.end(); NI!=NE; ++NI) {
+ Pred = *NI;
+ ProgramStateRef state = Pred->getState();
+ const LocationContext *LCtx = Pred->getLocationContext();
+
+ // Handle the case where the container still has elements.
+ SVal TrueV = svalBuilder.makeTruthVal(1);
+ ProgramStateRef hasElems = state->BindExpr(S, LCtx, TrueV);
+
+ // Handle the case where the container has no elements.
+ SVal FalseV = svalBuilder.makeTruthVal(0);
+ ProgramStateRef noElems = state->BindExpr(S, LCtx, FalseV);
+
+ if (Optional<loc::MemRegionVal> MV = elementV.getAs<loc::MemRegionVal>())
+ if (const TypedValueRegion *R =
+ dyn_cast<TypedValueRegion>(MV->getRegion())) {
+ // FIXME: The proper thing to do is to really iterate over the
+ // container. We will do this with dispatch logic to the store.
+ // For now, just 'conjure' up a symbolic value.
+ QualType T = R->getValueType();
+ assert(Loc::isLocType(T));
+ SymbolRef Sym = SymMgr.conjureSymbol(elem, LCtx, T,
+ currBldrCtx->blockCount());
+ SVal V = svalBuilder.makeLoc(Sym);
+ hasElems = hasElems->bindLoc(elementV, V);
+
+ // Bind the location to 'nil' on the false branch.
+ SVal nilV = svalBuilder.makeIntVal(0, T);
+ noElems = noElems->bindLoc(elementV, nilV);
+ }
+
+ // Create the new nodes.
+ Bldr.generateNode(S, Pred, hasElems);
+ Bldr.generateNode(S, Pred, noElems);
+ }
+
+ // Finally, run any custom checkers.
+ // FIXME: Eventually all pre- and post-checks should live in VisitStmt.
+ getCheckerManager().runCheckersForPostStmt(Dst, Tmp, S, *this);
+}
+
+void ExprEngine::VisitObjCMessage(const ObjCMessageExpr *ME,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ CallEventManager &CEMgr = getStateManager().getCallEventManager();
+ CallEventRef<ObjCMethodCall> Msg =
+ CEMgr.getObjCMethodCall(ME, Pred->getState(), Pred->getLocationContext());
+
+ // Handle the previsits checks.
+ ExplodedNodeSet dstPrevisit;
+ getCheckerManager().runCheckersForPreObjCMessage(dstPrevisit, Pred,
+ *Msg, *this);
+ ExplodedNodeSet dstGenericPrevisit;
+ getCheckerManager().runCheckersForPreCall(dstGenericPrevisit, dstPrevisit,
+ *Msg, *this);
+
+ // Proceed with evaluate the message expression.
+ ExplodedNodeSet dstEval;
+ StmtNodeBuilder Bldr(dstGenericPrevisit, dstEval, *currBldrCtx);
+
+ for (ExplodedNodeSet::iterator DI = dstGenericPrevisit.begin(),
+ DE = dstGenericPrevisit.end(); DI != DE; ++DI) {
+ ExplodedNode *Pred = *DI;
+ ProgramStateRef State = Pred->getState();
+ CallEventRef<ObjCMethodCall> UpdatedMsg = Msg.cloneWithState(State);
+
+ if (UpdatedMsg->isInstanceMessage()) {
+ SVal recVal = UpdatedMsg->getReceiverSVal();
+ if (!recVal.isUndef()) {
+ // Bifurcate the state into nil and non-nil ones.
+ DefinedOrUnknownSVal receiverVal =
+ recVal.castAs<DefinedOrUnknownSVal>();
+
+ ProgramStateRef notNilState, nilState;
+ std::tie(notNilState, nilState) = State->assume(receiverVal);
+
+ // There are three cases: can be nil or non-nil, must be nil, must be
+ // non-nil. We ignore must be nil, and merge the rest two into non-nil.
+ // FIXME: This ignores many potential bugs (<rdar://problem/11733396>).
+ // Revisit once we have lazier constraints.
+ if (nilState && !notNilState) {
+ continue;
+ }
+
+ // Check if the "raise" message was sent.
+ assert(notNilState);
+ if (ObjCNoRet.isImplicitNoReturn(ME)) {
+ // If we raise an exception, for now treat it as a sink.
+ // Eventually we will want to handle exceptions properly.
+ Bldr.generateSink(ME, Pred, State);
+ continue;
+ }
+
+ // Generate a transition to non-Nil state.
+ if (notNilState != State) {
+ Pred = Bldr.generateNode(ME, Pred, notNilState);
+ assert(Pred && "Should have cached out already!");
+ }
+ }
+ } else {
+ // Check for special class methods that are known to not return
+ // and that we should treat as a sink.
+ if (ObjCNoRet.isImplicitNoReturn(ME)) {
+ // If we raise an exception, for now treat it as a sink.
+ // Eventually we will want to handle exceptions properly.
+ Bldr.generateSink(ME, Pred, Pred->getState());
+ continue;
+ }
+ }
+
+ defaultEvalCall(Bldr, Pred, *UpdatedMsg);
+ }
+
+ ExplodedNodeSet dstPostvisit;
+ getCheckerManager().runCheckersForPostCall(dstPostvisit, dstEval,
+ *Msg, *this);
+
+ // Finally, perform the post-condition check of the ObjCMessageExpr and store
+ // the created nodes in 'Dst'.
+ getCheckerManager().runCheckersForPostObjCMessage(Dst, dstPostvisit,
+ *Msg, *this);
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/FunctionSummary.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/FunctionSummary.cpp
new file mode 100644
index 0000000..c21735b
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/FunctionSummary.cpp
@@ -0,0 +1,32 @@
+//== FunctionSummary.cpp - Stores summaries of functions. ----------*- C++ -*-//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a summary of a function gathered/used by static analysis.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/FunctionSummary.h"
+using namespace clang;
+using namespace ento;
+
+unsigned FunctionSummariesTy::getTotalNumBasicBlocks() {
+ unsigned Total = 0;
+ for (MapTy::iterator I = Map.begin(), E = Map.end(); I != E; ++I) {
+ Total += I->second.TotalBasicBlocks;
+ }
+ return Total;
+}
+
+unsigned FunctionSummariesTy::getTotalNumVisitedBasicBlocks() {
+ unsigned Total = 0;
+ for (MapTy::iterator I = Map.begin(), E = Map.end(); I != E; ++I) {
+ Total += I->second.VisitedBasicBlocks.count();
+ }
+ return Total;
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/HTMLDiagnostics.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/HTMLDiagnostics.cpp
new file mode 100644
index 0000000..3c1a3b4
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/HTMLDiagnostics.cpp
@@ -0,0 +1,616 @@
+//===--- HTMLDiagnostics.cpp - HTML Diagnostics for Paths ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the HTMLDiagnostics object.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathDiagnosticConsumers.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Decl.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Lex/Lexer.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Rewrite/Core/HTMLRewrite.h"
+#include "clang/Rewrite/Core/Rewriter.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/raw_ostream.h"
+#include <sstream>
+
+using namespace clang;
+using namespace ento;
+
+//===----------------------------------------------------------------------===//
+// Boilerplate.
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class HTMLDiagnostics : public PathDiagnosticConsumer {
+ std::string Directory;
+ bool createdDir, noDir;
+ const Preprocessor &PP;
+ AnalyzerOptions &AnalyzerOpts;
+public:
+ HTMLDiagnostics(AnalyzerOptions &AnalyzerOpts, const std::string& prefix, const Preprocessor &pp);
+
+ ~HTMLDiagnostics() override { FlushDiagnostics(nullptr); }
+
+ void FlushDiagnosticsImpl(std::vector<const PathDiagnostic *> &Diags,
+ FilesMade *filesMade) override;
+
+ StringRef getName() const override {
+ return "HTMLDiagnostics";
+ }
+
+ unsigned ProcessMacroPiece(raw_ostream &os,
+ const PathDiagnosticMacroPiece& P,
+ unsigned num);
+
+ void HandlePiece(Rewriter& R, FileID BugFileID,
+ const PathDiagnosticPiece& P, unsigned num, unsigned max);
+
+ void HighlightRange(Rewriter& R, FileID BugFileID, SourceRange Range,
+ const char *HighlightStart = "<span class=\"mrange\">",
+ const char *HighlightEnd = "</span>");
+
+ void ReportDiag(const PathDiagnostic& D,
+ FilesMade *filesMade);
+};
+
+} // end anonymous namespace
+
+HTMLDiagnostics::HTMLDiagnostics(AnalyzerOptions &AnalyzerOpts,
+ const std::string& prefix,
+ const Preprocessor &pp)
+ : Directory(prefix), createdDir(false), noDir(false), PP(pp), AnalyzerOpts(AnalyzerOpts) {
+}
+
+void ento::createHTMLDiagnosticConsumer(AnalyzerOptions &AnalyzerOpts,
+ PathDiagnosticConsumers &C,
+ const std::string& prefix,
+ const Preprocessor &PP) {
+ C.push_back(new HTMLDiagnostics(AnalyzerOpts, prefix, PP));
+}
+
+//===----------------------------------------------------------------------===//
+// Report processing.
+//===----------------------------------------------------------------------===//
+
+void HTMLDiagnostics::FlushDiagnosticsImpl(
+ std::vector<const PathDiagnostic *> &Diags,
+ FilesMade *filesMade) {
+ for (std::vector<const PathDiagnostic *>::iterator it = Diags.begin(),
+ et = Diags.end(); it != et; ++it) {
+ ReportDiag(**it, filesMade);
+ }
+}
+
+void HTMLDiagnostics::ReportDiag(const PathDiagnostic& D,
+ FilesMade *filesMade) {
+
+ // Create the HTML directory if it is missing.
+ if (!createdDir) {
+ createdDir = true;
+ if (std::error_code ec = llvm::sys::fs::create_directories(Directory)) {
+ llvm::errs() << "warning: could not create directory '"
+ << Directory << "': " << ec.message() << '\n';
+
+ noDir = true;
+
+ return;
+ }
+ }
+
+ if (noDir)
+ return;
+
+ // First flatten out the entire path to make it easier to use.
+ PathPieces path = D.path.flatten(/*ShouldFlattenMacros=*/false);
+
+ // The path as already been prechecked that all parts of the path are
+ // from the same file and that it is non-empty.
+ const SourceManager &SMgr = (*path.begin())->getLocation().getManager();
+ assert(!path.empty());
+ FileID FID =
+ (*path.begin())->getLocation().asLocation().getExpansionLoc().getFileID();
+ assert(!FID.isInvalid());
+
+ // Create a new rewriter to generate HTML.
+ Rewriter R(const_cast<SourceManager&>(SMgr), PP.getLangOpts());
+
+ // Get the function/method name
+ SmallString<128> declName("unknown");
+ int offsetDecl = 0;
+ if (const Decl *DeclWithIssue = D.getDeclWithIssue()) {
+ if (const NamedDecl *ND = dyn_cast<NamedDecl>(DeclWithIssue)) {
+ declName = ND->getDeclName().getAsString();
+ }
+
+ if (const Stmt *Body = DeclWithIssue->getBody()) {
+ // Retrieve the relative position of the declaration which will be used
+ // for the file name
+ FullSourceLoc L(
+ SMgr.getExpansionLoc((*path.rbegin())->getLocation().asLocation()),
+ SMgr);
+ FullSourceLoc FunL(SMgr.getExpansionLoc(Body->getLocStart()), SMgr);
+ offsetDecl = L.getExpansionLineNumber() - FunL.getExpansionLineNumber();
+ }
+ }
+
+ // Process the path.
+ unsigned n = path.size();
+ unsigned max = n;
+
+ for (PathPieces::const_reverse_iterator I = path.rbegin(),
+ E = path.rend();
+ I != E; ++I, --n)
+ HandlePiece(R, FID, **I, n, max);
+
+ // Add line numbers, header, footer, etc.
+
+ // unsigned FID = R.getSourceMgr().getMainFileID();
+ html::EscapeText(R, FID);
+ html::AddLineNumbers(R, FID);
+
+ // If we have a preprocessor, relex the file and syntax highlight.
+ // We might not have a preprocessor if we come from a deserialized AST file,
+ // for example.
+
+ html::SyntaxHighlight(R, FID, PP);
+ html::HighlightMacros(R, FID, PP);
+
+ // Get the full directory name of the analyzed file.
+
+ const FileEntry* Entry = SMgr.getFileEntryForID(FID);
+
+ // This is a cludge; basically we want to append either the full
+ // working directory if we have no directory information. This is
+ // a work in progress.
+
+ llvm::SmallString<0> DirName;
+
+ if (llvm::sys::path::is_relative(Entry->getName())) {
+ llvm::sys::fs::current_path(DirName);
+ DirName += '/';
+ }
+
+ int LineNumber = (*path.rbegin())->getLocation().asLocation().getExpansionLineNumber();
+ int ColumnNumber = (*path.rbegin())->getLocation().asLocation().getExpansionColumnNumber();
+
+ // Add the name of the file as an <h1> tag.
+
+ {
+ std::string s;
+ llvm::raw_string_ostream os(s);
+
+ os << "<!-- REPORTHEADER -->\n"
+ << "<h3>Bug Summary</h3>\n<table class=\"simpletable\">\n"
+ "<tr><td class=\"rowname\">File:</td><td>"
+ << html::EscapeText(DirName)
+ << html::EscapeText(Entry->getName())
+ << "</td></tr>\n<tr><td class=\"rowname\">Location:</td><td>"
+ "<a href=\"#EndPath\">line "
+ << LineNumber
+ << ", column "
+ << ColumnNumber
+ << "</a></td></tr>\n"
+ "<tr><td class=\"rowname\">Description:</td><td>"
+ << D.getVerboseDescription() << "</td></tr>\n";
+
+ // Output any other meta data.
+
+ for (PathDiagnostic::meta_iterator I=D.meta_begin(), E=D.meta_end();
+ I!=E; ++I) {
+ os << "<tr><td></td><td>" << html::EscapeText(*I) << "</td></tr>\n";
+ }
+
+ os << "</table>\n<!-- REPORTSUMMARYEXTRA -->\n"
+ "<h3>Annotated Source Code</h3>\n";
+
+ R.InsertTextBefore(SMgr.getLocForStartOfFile(FID), os.str());
+ }
+
+ // Embed meta-data tags.
+ {
+ std::string s;
+ llvm::raw_string_ostream os(s);
+
+ StringRef BugDesc = D.getVerboseDescription();
+ if (!BugDesc.empty())
+ os << "\n<!-- BUGDESC " << BugDesc << " -->\n";
+
+ StringRef BugType = D.getBugType();
+ if (!BugType.empty())
+ os << "\n<!-- BUGTYPE " << BugType << " -->\n";
+
+ StringRef BugCategory = D.getCategory();
+ if (!BugCategory.empty())
+ os << "\n<!-- BUGCATEGORY " << BugCategory << " -->\n";
+
+ os << "\n<!-- BUGFILE " << DirName << Entry->getName() << " -->\n";
+
+ os << "\n<!-- FILENAME " << llvm::sys::path::filename(Entry->getName()) << " -->\n";
+
+ os << "\n<!-- FUNCTIONNAME " << declName << " -->\n";
+
+ os << "\n<!-- BUGLINE "
+ << LineNumber
+ << " -->\n";
+
+ os << "\n<!-- BUGCOLUMN "
+ << ColumnNumber
+ << " -->\n";
+
+ os << "\n<!-- BUGPATHLENGTH " << path.size() << " -->\n";
+
+ // Mark the end of the tags.
+ os << "\n<!-- BUGMETAEND -->\n";
+
+ // Insert the text.
+ R.InsertTextBefore(SMgr.getLocForStartOfFile(FID), os.str());
+ }
+
+ // Add CSS, header, and footer.
+
+ html::AddHeaderFooterInternalBuiltinCSS(R, FID, Entry->getName());
+
+ // Get the rewrite buffer.
+ const RewriteBuffer *Buf = R.getRewriteBufferFor(FID);
+
+ if (!Buf) {
+ llvm::errs() << "warning: no diagnostics generated for main file.\n";
+ return;
+ }
+
+ // Create a path for the target HTML file.
+ int FD;
+ SmallString<128> Model, ResultPath;
+
+ if (!AnalyzerOpts.shouldWriteStableReportFilename()) {
+ llvm::sys::path::append(Model, Directory, "report-%%%%%%.html");
+
+ if (std::error_code EC =
+ llvm::sys::fs::createUniqueFile(Model, FD, ResultPath)) {
+ llvm::errs() << "warning: could not create file in '" << Directory
+ << "': " << EC.message() << '\n';
+ return;
+ }
+
+ } else {
+ int i = 1;
+ std::error_code EC;
+ do {
+ // Find a filename which is not already used
+ std::stringstream filename;
+ Model = "";
+ filename << "report-"
+ << llvm::sys::path::filename(Entry->getName()).str()
+ << "-" << declName.c_str()
+ << "-" << offsetDecl
+ << "-" << i << ".html";
+ llvm::sys::path::append(Model, Directory,
+ filename.str());
+ EC = llvm::sys::fs::openFileForWrite(Model,
+ FD,
+ llvm::sys::fs::F_RW |
+ llvm::sys::fs::F_Excl);
+ if (EC && EC != std::errc::file_exists) {
+ llvm::errs() << "warning: could not create file '" << Model
+ << "': " << EC.message() << '\n';
+ return;
+ }
+ i++;
+ } while (EC);
+ }
+
+ llvm::raw_fd_ostream os(FD, true);
+
+ if (filesMade)
+ filesMade->addDiagnostic(D, getName(),
+ llvm::sys::path::filename(ResultPath));
+
+ // Emit the HTML to disk.
+ for (RewriteBuffer::iterator I = Buf->begin(), E = Buf->end(); I!=E; ++I)
+ os << *I;
+}
+
+void HTMLDiagnostics::HandlePiece(Rewriter& R, FileID BugFileID,
+ const PathDiagnosticPiece& P,
+ unsigned num, unsigned max) {
+
+ // For now, just draw a box above the line in question, and emit the
+ // warning.
+ FullSourceLoc Pos = P.getLocation().asLocation();
+
+ if (!Pos.isValid())
+ return;
+
+ SourceManager &SM = R.getSourceMgr();
+ assert(&Pos.getManager() == &SM && "SourceManagers are different!");
+ std::pair<FileID, unsigned> LPosInfo = SM.getDecomposedExpansionLoc(Pos);
+
+ if (LPosInfo.first != BugFileID)
+ return;
+
+ const llvm::MemoryBuffer *Buf = SM.getBuffer(LPosInfo.first);
+ const char* FileStart = Buf->getBufferStart();
+
+ // Compute the column number. Rewind from the current position to the start
+ // of the line.
+ unsigned ColNo = SM.getColumnNumber(LPosInfo.first, LPosInfo.second);
+ const char *TokInstantiationPtr =Pos.getExpansionLoc().getCharacterData();
+ const char *LineStart = TokInstantiationPtr-ColNo;
+
+ // Compute LineEnd.
+ const char *LineEnd = TokInstantiationPtr;
+ const char* FileEnd = Buf->getBufferEnd();
+ while (*LineEnd != '\n' && LineEnd != FileEnd)
+ ++LineEnd;
+
+ // Compute the margin offset by counting tabs and non-tabs.
+ unsigned PosNo = 0;
+ for (const char* c = LineStart; c != TokInstantiationPtr; ++c)
+ PosNo += *c == '\t' ? 8 : 1;
+
+ // Create the html for the message.
+
+ const char *Kind = nullptr;
+ switch (P.getKind()) {
+ case PathDiagnosticPiece::Call:
+ llvm_unreachable("Calls should already be handled");
+ case PathDiagnosticPiece::Event: Kind = "Event"; break;
+ case PathDiagnosticPiece::ControlFlow: Kind = "Control"; break;
+ // Setting Kind to "Control" is intentional.
+ case PathDiagnosticPiece::Macro: Kind = "Control"; break;
+ }
+
+ std::string sbuf;
+ llvm::raw_string_ostream os(sbuf);
+
+ os << "\n<tr><td class=\"num\"></td><td class=\"line\"><div id=\"";
+
+ if (num == max)
+ os << "EndPath";
+ else
+ os << "Path" << num;
+
+ os << "\" class=\"msg";
+ if (Kind)
+ os << " msg" << Kind;
+ os << "\" style=\"margin-left:" << PosNo << "ex";
+
+ // Output a maximum size.
+ if (!isa<PathDiagnosticMacroPiece>(P)) {
+ // Get the string and determining its maximum substring.
+ const std::string& Msg = P.getString();
+ unsigned max_token = 0;
+ unsigned cnt = 0;
+ unsigned len = Msg.size();
+
+ for (std::string::const_iterator I=Msg.begin(), E=Msg.end(); I!=E; ++I)
+ switch (*I) {
+ default:
+ ++cnt;
+ continue;
+ case ' ':
+ case '\t':
+ case '\n':
+ if (cnt > max_token) max_token = cnt;
+ cnt = 0;
+ }
+
+ if (cnt > max_token)
+ max_token = cnt;
+
+ // Determine the approximate size of the message bubble in em.
+ unsigned em;
+ const unsigned max_line = 120;
+
+ if (max_token >= max_line)
+ em = max_token / 2;
+ else {
+ unsigned characters = max_line;
+ unsigned lines = len / max_line;
+
+ if (lines > 0) {
+ for (; characters > max_token; --characters)
+ if (len / characters > lines) {
+ ++characters;
+ break;
+ }
+ }
+
+ em = characters / 2;
+ }
+
+ if (em < max_line/2)
+ os << "; max-width:" << em << "em";
+ }
+ else
+ os << "; max-width:100em";
+
+ os << "\">";
+
+ if (max > 1) {
+ os << "<table class=\"msgT\"><tr><td valign=\"top\">";
+ os << "<div class=\"PathIndex";
+ if (Kind) os << " PathIndex" << Kind;
+ os << "\">" << num << "</div>";
+
+ if (num > 1) {
+ os << "</td><td><div class=\"PathNav\"><a href=\"#Path"
+ << (num - 1)
+ << "\" title=\"Previous event ("
+ << (num - 1)
+ << ")\">&#x2190;</a></div></td>";
+ }
+
+ os << "</td><td>";
+ }
+
+ if (const PathDiagnosticMacroPiece *MP =
+ dyn_cast<PathDiagnosticMacroPiece>(&P)) {
+
+ os << "Within the expansion of the macro '";
+
+ // Get the name of the macro by relexing it.
+ {
+ FullSourceLoc L = MP->getLocation().asLocation().getExpansionLoc();
+ assert(L.isFileID());
+ StringRef BufferInfo = L.getBufferData();
+ std::pair<FileID, unsigned> LocInfo = L.getDecomposedLoc();
+ const char* MacroName = LocInfo.second + BufferInfo.data();
+ Lexer rawLexer(SM.getLocForStartOfFile(LocInfo.first), PP.getLangOpts(),
+ BufferInfo.begin(), MacroName, BufferInfo.end());
+
+ Token TheTok;
+ rawLexer.LexFromRawLexer(TheTok);
+ for (unsigned i = 0, n = TheTok.getLength(); i < n; ++i)
+ os << MacroName[i];
+ }
+
+ os << "':\n";
+
+ if (max > 1) {
+ os << "</td>";
+ if (num < max) {
+ os << "<td><div class=\"PathNav\"><a href=\"#";
+ if (num == max - 1)
+ os << "EndPath";
+ else
+ os << "Path" << (num + 1);
+ os << "\" title=\"Next event ("
+ << (num + 1)
+ << ")\">&#x2192;</a></div></td>";
+ }
+
+ os << "</tr></table>";
+ }
+
+ // Within a macro piece. Write out each event.
+ ProcessMacroPiece(os, *MP, 0);
+ }
+ else {
+ os << html::EscapeText(P.getString());
+
+ if (max > 1) {
+ os << "</td>";
+ if (num < max) {
+ os << "<td><div class=\"PathNav\"><a href=\"#";
+ if (num == max - 1)
+ os << "EndPath";
+ else
+ os << "Path" << (num + 1);
+ os << "\" title=\"Next event ("
+ << (num + 1)
+ << ")\">&#x2192;</a></div></td>";
+ }
+
+ os << "</tr></table>";
+ }
+ }
+
+ os << "</div></td></tr>";
+
+ // Insert the new html.
+ unsigned DisplayPos = LineEnd - FileStart;
+ SourceLocation Loc =
+ SM.getLocForStartOfFile(LPosInfo.first).getLocWithOffset(DisplayPos);
+
+ R.InsertTextBefore(Loc, os.str());
+
+ // Now highlight the ranges.
+ ArrayRef<SourceRange> Ranges = P.getRanges();
+ for (ArrayRef<SourceRange>::iterator I = Ranges.begin(),
+ E = Ranges.end(); I != E; ++I) {
+ HighlightRange(R, LPosInfo.first, *I);
+ }
+}
+
+static void EmitAlphaCounter(raw_ostream &os, unsigned n) {
+ unsigned x = n % ('z' - 'a');
+ n /= 'z' - 'a';
+
+ if (n > 0)
+ EmitAlphaCounter(os, n);
+
+ os << char('a' + x);
+}
+
+unsigned HTMLDiagnostics::ProcessMacroPiece(raw_ostream &os,
+ const PathDiagnosticMacroPiece& P,
+ unsigned num) {
+
+ for (PathPieces::const_iterator I = P.subPieces.begin(), E=P.subPieces.end();
+ I!=E; ++I) {
+
+ if (const PathDiagnosticMacroPiece *MP =
+ dyn_cast<PathDiagnosticMacroPiece>(*I)) {
+ num = ProcessMacroPiece(os, *MP, num);
+ continue;
+ }
+
+ if (PathDiagnosticEventPiece *EP = dyn_cast<PathDiagnosticEventPiece>(*I)) {
+ os << "<div class=\"msg msgEvent\" style=\"width:94%; "
+ "margin-left:5px\">"
+ "<table class=\"msgT\"><tr>"
+ "<td valign=\"top\"><div class=\"PathIndex PathIndexEvent\">";
+ EmitAlphaCounter(os, num++);
+ os << "</div></td><td valign=\"top\">"
+ << html::EscapeText(EP->getString())
+ << "</td></tr></table></div>\n";
+ }
+ }
+
+ return num;
+}
+
+void HTMLDiagnostics::HighlightRange(Rewriter& R, FileID BugFileID,
+ SourceRange Range,
+ const char *HighlightStart,
+ const char *HighlightEnd) {
+ SourceManager &SM = R.getSourceMgr();
+ const LangOptions &LangOpts = R.getLangOpts();
+
+ SourceLocation InstantiationStart = SM.getExpansionLoc(Range.getBegin());
+ unsigned StartLineNo = SM.getExpansionLineNumber(InstantiationStart);
+
+ SourceLocation InstantiationEnd = SM.getExpansionLoc(Range.getEnd());
+ unsigned EndLineNo = SM.getExpansionLineNumber(InstantiationEnd);
+
+ if (EndLineNo < StartLineNo)
+ return;
+
+ if (SM.getFileID(InstantiationStart) != BugFileID ||
+ SM.getFileID(InstantiationEnd) != BugFileID)
+ return;
+
+ // Compute the column number of the end.
+ unsigned EndColNo = SM.getExpansionColumnNumber(InstantiationEnd);
+ unsigned OldEndColNo = EndColNo;
+
+ if (EndColNo) {
+ // Add in the length of the token, so that we cover multi-char tokens.
+ EndColNo += Lexer::MeasureTokenLength(Range.getEnd(), SM, LangOpts)-1;
+ }
+
+ // Highlight the range. Make the span tag the outermost tag for the
+ // selected range.
+
+ SourceLocation E =
+ InstantiationEnd.getLocWithOffset(EndColNo - OldEndColNo);
+
+ html::HighlightRange(R, InstantiationStart, E, HighlightStart, HighlightEnd);
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/MemRegion.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/MemRegion.cpp
new file mode 100644
index 0000000..1fa6754
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/MemRegion.cpp
@@ -0,0 +1,1492 @@
+//== MemRegion.cpp - Abstract memory regions for static analysis --*- C++ -*--//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines MemRegion and its subclasses. MemRegion defines a
+// partially-typed abstraction of memory useful for path-sensitive dataflow
+// analyses.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/CharUnits.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/Analysis/AnalysisContext.h"
+#include "clang/Analysis/Support/BumpVector.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+
+//===----------------------------------------------------------------------===//
+// MemRegion Construction.
+//===----------------------------------------------------------------------===//
+
+template<typename RegionTy> struct MemRegionManagerTrait;
+
+template <typename RegionTy, typename A1>
+RegionTy* MemRegionManager::getRegion(const A1 a1) {
+
+ const typename MemRegionManagerTrait<RegionTy>::SuperRegionTy *superRegion =
+ MemRegionManagerTrait<RegionTy>::getSuperRegion(*this, a1);
+
+ llvm::FoldingSetNodeID ID;
+ RegionTy::ProfileRegion(ID, a1, superRegion);
+ void *InsertPos;
+ RegionTy* R = cast_or_null<RegionTy>(Regions.FindNodeOrInsertPos(ID,
+ InsertPos));
+
+ if (!R) {
+ R = (RegionTy*) A.Allocate<RegionTy>();
+ new (R) RegionTy(a1, superRegion);
+ Regions.InsertNode(R, InsertPos);
+ }
+
+ return R;
+}
+
+template <typename RegionTy, typename A1>
+RegionTy* MemRegionManager::getSubRegion(const A1 a1,
+ const MemRegion *superRegion) {
+ llvm::FoldingSetNodeID ID;
+ RegionTy::ProfileRegion(ID, a1, superRegion);
+ void *InsertPos;
+ RegionTy* R = cast_or_null<RegionTy>(Regions.FindNodeOrInsertPos(ID,
+ InsertPos));
+
+ if (!R) {
+ R = (RegionTy*) A.Allocate<RegionTy>();
+ new (R) RegionTy(a1, superRegion);
+ Regions.InsertNode(R, InsertPos);
+ }
+
+ return R;
+}
+
+template <typename RegionTy, typename A1, typename A2>
+RegionTy* MemRegionManager::getRegion(const A1 a1, const A2 a2) {
+
+ const typename MemRegionManagerTrait<RegionTy>::SuperRegionTy *superRegion =
+ MemRegionManagerTrait<RegionTy>::getSuperRegion(*this, a1, a2);
+
+ llvm::FoldingSetNodeID ID;
+ RegionTy::ProfileRegion(ID, a1, a2, superRegion);
+ void *InsertPos;
+ RegionTy* R = cast_or_null<RegionTy>(Regions.FindNodeOrInsertPos(ID,
+ InsertPos));
+
+ if (!R) {
+ R = (RegionTy*) A.Allocate<RegionTy>();
+ new (R) RegionTy(a1, a2, superRegion);
+ Regions.InsertNode(R, InsertPos);
+ }
+
+ return R;
+}
+
+template <typename RegionTy, typename A1, typename A2>
+RegionTy* MemRegionManager::getSubRegion(const A1 a1, const A2 a2,
+ const MemRegion *superRegion) {
+
+ llvm::FoldingSetNodeID ID;
+ RegionTy::ProfileRegion(ID, a1, a2, superRegion);
+ void *InsertPos;
+ RegionTy* R = cast_or_null<RegionTy>(Regions.FindNodeOrInsertPos(ID,
+ InsertPos));
+
+ if (!R) {
+ R = (RegionTy*) A.Allocate<RegionTy>();
+ new (R) RegionTy(a1, a2, superRegion);
+ Regions.InsertNode(R, InsertPos);
+ }
+
+ return R;
+}
+
+template <typename RegionTy, typename A1, typename A2, typename A3>
+RegionTy* MemRegionManager::getSubRegion(const A1 a1, const A2 a2, const A3 a3,
+ const MemRegion *superRegion) {
+
+ llvm::FoldingSetNodeID ID;
+ RegionTy::ProfileRegion(ID, a1, a2, a3, superRegion);
+ void *InsertPos;
+ RegionTy* R = cast_or_null<RegionTy>(Regions.FindNodeOrInsertPos(ID,
+ InsertPos));
+
+ if (!R) {
+ R = (RegionTy*) A.Allocate<RegionTy>();
+ new (R) RegionTy(a1, a2, a3, superRegion);
+ Regions.InsertNode(R, InsertPos);
+ }
+
+ return R;
+}
+
+//===----------------------------------------------------------------------===//
+// Object destruction.
+//===----------------------------------------------------------------------===//
+
+MemRegion::~MemRegion() {}
+
+MemRegionManager::~MemRegionManager() {
+ // All regions and their data are BumpPtrAllocated. No need to call
+ // their destructors.
+}
+
+//===----------------------------------------------------------------------===//
+// Basic methods.
+//===----------------------------------------------------------------------===//
+
+bool SubRegion::isSubRegionOf(const MemRegion* R) const {
+ const MemRegion* r = getSuperRegion();
+ while (r != nullptr) {
+ if (r == R)
+ return true;
+ if (const SubRegion* sr = dyn_cast<SubRegion>(r))
+ r = sr->getSuperRegion();
+ else
+ break;
+ }
+ return false;
+}
+
+MemRegionManager* SubRegion::getMemRegionManager() const {
+ const SubRegion* r = this;
+ do {
+ const MemRegion *superRegion = r->getSuperRegion();
+ if (const SubRegion *sr = dyn_cast<SubRegion>(superRegion)) {
+ r = sr;
+ continue;
+ }
+ return superRegion->getMemRegionManager();
+ } while (1);
+}
+
+const StackFrameContext *VarRegion::getStackFrame() const {
+ const StackSpaceRegion *SSR = dyn_cast<StackSpaceRegion>(getMemorySpace());
+ return SSR ? SSR->getStackFrame() : nullptr;
+}
+
+//===----------------------------------------------------------------------===//
+// Region extents.
+//===----------------------------------------------------------------------===//
+
+DefinedOrUnknownSVal TypedValueRegion::getExtent(SValBuilder &svalBuilder) const {
+ ASTContext &Ctx = svalBuilder.getContext();
+ QualType T = getDesugaredValueType(Ctx);
+
+ if (isa<VariableArrayType>(T))
+ return nonloc::SymbolVal(svalBuilder.getSymbolManager().getExtentSymbol(this));
+ if (T->isIncompleteType())
+ return UnknownVal();
+
+ CharUnits size = Ctx.getTypeSizeInChars(T);
+ QualType sizeTy = svalBuilder.getArrayIndexType();
+ return svalBuilder.makeIntVal(size.getQuantity(), sizeTy);
+}
+
+DefinedOrUnknownSVal FieldRegion::getExtent(SValBuilder &svalBuilder) const {
+ // Force callers to deal with bitfields explicitly.
+ if (getDecl()->isBitField())
+ return UnknownVal();
+
+ DefinedOrUnknownSVal Extent = DeclRegion::getExtent(svalBuilder);
+
+ // A zero-length array at the end of a struct often stands for dynamically-
+ // allocated extra memory.
+ if (Extent.isZeroConstant()) {
+ QualType T = getDesugaredValueType(svalBuilder.getContext());
+
+ if (isa<ConstantArrayType>(T))
+ return UnknownVal();
+ }
+
+ return Extent;
+}
+
+DefinedOrUnknownSVal AllocaRegion::getExtent(SValBuilder &svalBuilder) const {
+ return nonloc::SymbolVal(svalBuilder.getSymbolManager().getExtentSymbol(this));
+}
+
+DefinedOrUnknownSVal SymbolicRegion::getExtent(SValBuilder &svalBuilder) const {
+ return nonloc::SymbolVal(svalBuilder.getSymbolManager().getExtentSymbol(this));
+}
+
+DefinedOrUnknownSVal StringRegion::getExtent(SValBuilder &svalBuilder) const {
+ return svalBuilder.makeIntVal(getStringLiteral()->getByteLength()+1,
+ svalBuilder.getArrayIndexType());
+}
+
+ObjCIvarRegion::ObjCIvarRegion(const ObjCIvarDecl *ivd, const MemRegion* sReg)
+ : DeclRegion(ivd, sReg, ObjCIvarRegionKind) {}
+
+const ObjCIvarDecl *ObjCIvarRegion::getDecl() const {
+ return cast<ObjCIvarDecl>(D);
+}
+
+QualType ObjCIvarRegion::getValueType() const {
+ return getDecl()->getType();
+}
+
+QualType CXXBaseObjectRegion::getValueType() const {
+ return QualType(getDecl()->getTypeForDecl(), 0);
+}
+
+//===----------------------------------------------------------------------===//
+// FoldingSet profiling.
+//===----------------------------------------------------------------------===//
+
+void MemSpaceRegion::Profile(llvm::FoldingSetNodeID& ID) const {
+ ID.AddInteger((unsigned)getKind());
+}
+
+void StackSpaceRegion::Profile(llvm::FoldingSetNodeID &ID) const {
+ ID.AddInteger((unsigned)getKind());
+ ID.AddPointer(getStackFrame());
+}
+
+void StaticGlobalSpaceRegion::Profile(llvm::FoldingSetNodeID &ID) const {
+ ID.AddInteger((unsigned)getKind());
+ ID.AddPointer(getCodeRegion());
+}
+
+void StringRegion::ProfileRegion(llvm::FoldingSetNodeID& ID,
+ const StringLiteral* Str,
+ const MemRegion* superRegion) {
+ ID.AddInteger((unsigned) StringRegionKind);
+ ID.AddPointer(Str);
+ ID.AddPointer(superRegion);
+}
+
+void ObjCStringRegion::ProfileRegion(llvm::FoldingSetNodeID& ID,
+ const ObjCStringLiteral* Str,
+ const MemRegion* superRegion) {
+ ID.AddInteger((unsigned) ObjCStringRegionKind);
+ ID.AddPointer(Str);
+ ID.AddPointer(superRegion);
+}
+
+void AllocaRegion::ProfileRegion(llvm::FoldingSetNodeID& ID,
+ const Expr *Ex, unsigned cnt,
+ const MemRegion *superRegion) {
+ ID.AddInteger((unsigned) AllocaRegionKind);
+ ID.AddPointer(Ex);
+ ID.AddInteger(cnt);
+ ID.AddPointer(superRegion);
+}
+
+void AllocaRegion::Profile(llvm::FoldingSetNodeID& ID) const {
+ ProfileRegion(ID, Ex, Cnt, superRegion);
+}
+
+void CompoundLiteralRegion::Profile(llvm::FoldingSetNodeID& ID) const {
+ CompoundLiteralRegion::ProfileRegion(ID, CL, superRegion);
+}
+
+void CompoundLiteralRegion::ProfileRegion(llvm::FoldingSetNodeID& ID,
+ const CompoundLiteralExpr *CL,
+ const MemRegion* superRegion) {
+ ID.AddInteger((unsigned) CompoundLiteralRegionKind);
+ ID.AddPointer(CL);
+ ID.AddPointer(superRegion);
+}
+
+void CXXThisRegion::ProfileRegion(llvm::FoldingSetNodeID &ID,
+ const PointerType *PT,
+ const MemRegion *sRegion) {
+ ID.AddInteger((unsigned) CXXThisRegionKind);
+ ID.AddPointer(PT);
+ ID.AddPointer(sRegion);
+}
+
+void CXXThisRegion::Profile(llvm::FoldingSetNodeID &ID) const {
+ CXXThisRegion::ProfileRegion(ID, ThisPointerTy, superRegion);
+}
+
+void ObjCIvarRegion::ProfileRegion(llvm::FoldingSetNodeID& ID,
+ const ObjCIvarDecl *ivd,
+ const MemRegion* superRegion) {
+ DeclRegion::ProfileRegion(ID, ivd, superRegion, ObjCIvarRegionKind);
+}
+
+void DeclRegion::ProfileRegion(llvm::FoldingSetNodeID& ID, const Decl *D,
+ const MemRegion* superRegion, Kind k) {
+ ID.AddInteger((unsigned) k);
+ ID.AddPointer(D);
+ ID.AddPointer(superRegion);
+}
+
+void DeclRegion::Profile(llvm::FoldingSetNodeID& ID) const {
+ DeclRegion::ProfileRegion(ID, D, superRegion, getKind());
+}
+
+void VarRegion::Profile(llvm::FoldingSetNodeID &ID) const {
+ VarRegion::ProfileRegion(ID, getDecl(), superRegion);
+}
+
+void SymbolicRegion::ProfileRegion(llvm::FoldingSetNodeID& ID, SymbolRef sym,
+ const MemRegion *sreg) {
+ ID.AddInteger((unsigned) MemRegion::SymbolicRegionKind);
+ ID.Add(sym);
+ ID.AddPointer(sreg);
+}
+
+void SymbolicRegion::Profile(llvm::FoldingSetNodeID& ID) const {
+ SymbolicRegion::ProfileRegion(ID, sym, getSuperRegion());
+}
+
+void ElementRegion::ProfileRegion(llvm::FoldingSetNodeID& ID,
+ QualType ElementType, SVal Idx,
+ const MemRegion* superRegion) {
+ ID.AddInteger(MemRegion::ElementRegionKind);
+ ID.Add(ElementType);
+ ID.AddPointer(superRegion);
+ Idx.Profile(ID);
+}
+
+void ElementRegion::Profile(llvm::FoldingSetNodeID& ID) const {
+ ElementRegion::ProfileRegion(ID, ElementType, Index, superRegion);
+}
+
+void FunctionTextRegion::ProfileRegion(llvm::FoldingSetNodeID& ID,
+ const NamedDecl *FD,
+ const MemRegion*) {
+ ID.AddInteger(MemRegion::FunctionTextRegionKind);
+ ID.AddPointer(FD);
+}
+
+void FunctionTextRegion::Profile(llvm::FoldingSetNodeID& ID) const {
+ FunctionTextRegion::ProfileRegion(ID, FD, superRegion);
+}
+
+void BlockTextRegion::ProfileRegion(llvm::FoldingSetNodeID& ID,
+ const BlockDecl *BD, CanQualType,
+ const AnalysisDeclContext *AC,
+ const MemRegion*) {
+ ID.AddInteger(MemRegion::BlockTextRegionKind);
+ ID.AddPointer(BD);
+}
+
+void BlockTextRegion::Profile(llvm::FoldingSetNodeID& ID) const {
+ BlockTextRegion::ProfileRegion(ID, BD, locTy, AC, superRegion);
+}
+
+void BlockDataRegion::ProfileRegion(llvm::FoldingSetNodeID& ID,
+ const BlockTextRegion *BC,
+ const LocationContext *LC,
+ unsigned BlkCount,
+ const MemRegion *sReg) {
+ ID.AddInteger(MemRegion::BlockDataRegionKind);
+ ID.AddPointer(BC);
+ ID.AddPointer(LC);
+ ID.AddInteger(BlkCount);
+ ID.AddPointer(sReg);
+}
+
+void BlockDataRegion::Profile(llvm::FoldingSetNodeID& ID) const {
+ BlockDataRegion::ProfileRegion(ID, BC, LC, BlockCount, getSuperRegion());
+}
+
+void CXXTempObjectRegion::ProfileRegion(llvm::FoldingSetNodeID &ID,
+ Expr const *Ex,
+ const MemRegion *sReg) {
+ ID.AddPointer(Ex);
+ ID.AddPointer(sReg);
+}
+
+void CXXTempObjectRegion::Profile(llvm::FoldingSetNodeID &ID) const {
+ ProfileRegion(ID, Ex, getSuperRegion());
+}
+
+void CXXBaseObjectRegion::ProfileRegion(llvm::FoldingSetNodeID &ID,
+ const CXXRecordDecl *RD,
+ bool IsVirtual,
+ const MemRegion *SReg) {
+ ID.AddPointer(RD);
+ ID.AddBoolean(IsVirtual);
+ ID.AddPointer(SReg);
+}
+
+void CXXBaseObjectRegion::Profile(llvm::FoldingSetNodeID &ID) const {
+ ProfileRegion(ID, getDecl(), isVirtual(), superRegion);
+}
+
+//===----------------------------------------------------------------------===//
+// Region anchors.
+//===----------------------------------------------------------------------===//
+
+void GlobalsSpaceRegion::anchor() { }
+void HeapSpaceRegion::anchor() { }
+void UnknownSpaceRegion::anchor() { }
+void StackLocalsSpaceRegion::anchor() { }
+void StackArgumentsSpaceRegion::anchor() { }
+void TypedRegion::anchor() { }
+void TypedValueRegion::anchor() { }
+void CodeTextRegion::anchor() { }
+void SubRegion::anchor() { }
+
+//===----------------------------------------------------------------------===//
+// Region pretty-printing.
+//===----------------------------------------------------------------------===//
+
+void MemRegion::dump() const {
+ dumpToStream(llvm::errs());
+}
+
+std::string MemRegion::getString() const {
+ std::string s;
+ llvm::raw_string_ostream os(s);
+ dumpToStream(os);
+ return os.str();
+}
+
+void MemRegion::dumpToStream(raw_ostream &os) const {
+ os << "<Unknown Region>";
+}
+
+void AllocaRegion::dumpToStream(raw_ostream &os) const {
+ os << "alloca{" << (const void*) Ex << ',' << Cnt << '}';
+}
+
+void FunctionTextRegion::dumpToStream(raw_ostream &os) const {
+ os << "code{" << getDecl()->getDeclName().getAsString() << '}';
+}
+
+void BlockTextRegion::dumpToStream(raw_ostream &os) const {
+ os << "block_code{" << (const void*) this << '}';
+}
+
+void BlockDataRegion::dumpToStream(raw_ostream &os) const {
+ os << "block_data{" << BC;
+ os << "; ";
+ for (BlockDataRegion::referenced_vars_iterator
+ I = referenced_vars_begin(),
+ E = referenced_vars_end(); I != E; ++I)
+ os << "(" << I.getCapturedRegion() << "," <<
+ I.getOriginalRegion() << ") ";
+ os << '}';
+}
+
+void CompoundLiteralRegion::dumpToStream(raw_ostream &os) const {
+ // FIXME: More elaborate pretty-printing.
+ os << "{ " << (const void*) CL << " }";
+}
+
+void CXXTempObjectRegion::dumpToStream(raw_ostream &os) const {
+ os << "temp_object{" << getValueType().getAsString() << ','
+ << (const void*) Ex << '}';
+}
+
+void CXXBaseObjectRegion::dumpToStream(raw_ostream &os) const {
+ os << "base{" << superRegion << ',' << getDecl()->getName() << '}';
+}
+
+void CXXThisRegion::dumpToStream(raw_ostream &os) const {
+ os << "this";
+}
+
+void ElementRegion::dumpToStream(raw_ostream &os) const {
+ os << "element{" << superRegion << ','
+ << Index << ',' << getElementType().getAsString() << '}';
+}
+
+void FieldRegion::dumpToStream(raw_ostream &os) const {
+ os << superRegion << "->" << *getDecl();
+}
+
+void ObjCIvarRegion::dumpToStream(raw_ostream &os) const {
+ os << "ivar{" << superRegion << ',' << *getDecl() << '}';
+}
+
+void StringRegion::dumpToStream(raw_ostream &os) const {
+ assert(Str != nullptr && "Expecting non-null StringLiteral");
+ Str->printPretty(os, nullptr, PrintingPolicy(getContext().getLangOpts()));
+}
+
+void ObjCStringRegion::dumpToStream(raw_ostream &os) const {
+ assert(Str != nullptr && "Expecting non-null ObjCStringLiteral");
+ Str->printPretty(os, nullptr, PrintingPolicy(getContext().getLangOpts()));
+}
+
+void SymbolicRegion::dumpToStream(raw_ostream &os) const {
+ os << "SymRegion{" << sym << '}';
+}
+
+void VarRegion::dumpToStream(raw_ostream &os) const {
+ os << *cast<VarDecl>(D);
+}
+
+void RegionRawOffset::dump() const {
+ dumpToStream(llvm::errs());
+}
+
+void RegionRawOffset::dumpToStream(raw_ostream &os) const {
+ os << "raw_offset{" << getRegion() << ',' << getOffset().getQuantity() << '}';
+}
+
+void StaticGlobalSpaceRegion::dumpToStream(raw_ostream &os) const {
+ os << "StaticGlobalsMemSpace{" << CR << '}';
+}
+
+void GlobalInternalSpaceRegion::dumpToStream(raw_ostream &os) const {
+ os << "GlobalInternalSpaceRegion";
+}
+
+void GlobalSystemSpaceRegion::dumpToStream(raw_ostream &os) const {
+ os << "GlobalSystemSpaceRegion";
+}
+
+void GlobalImmutableSpaceRegion::dumpToStream(raw_ostream &os) const {
+ os << "GlobalImmutableSpaceRegion";
+}
+
+void HeapSpaceRegion::dumpToStream(raw_ostream &os) const {
+ os << "HeapSpaceRegion";
+}
+
+void UnknownSpaceRegion::dumpToStream(raw_ostream &os) const {
+ os << "UnknownSpaceRegion";
+}
+
+void StackArgumentsSpaceRegion::dumpToStream(raw_ostream &os) const {
+ os << "StackArgumentsSpaceRegion";
+}
+
+void StackLocalsSpaceRegion::dumpToStream(raw_ostream &os) const {
+ os << "StackLocalsSpaceRegion";
+}
+
+bool MemRegion::canPrintPretty() const {
+ return canPrintPrettyAsExpr();
+}
+
+bool MemRegion::canPrintPrettyAsExpr() const {
+ return false;
+}
+
+void MemRegion::printPretty(raw_ostream &os) const {
+ assert(canPrintPretty() && "This region cannot be printed pretty.");
+ os << "'";
+ printPrettyAsExpr(os);
+ os << "'";
+ return;
+}
+
+void MemRegion::printPrettyAsExpr(raw_ostream &os) const {
+ llvm_unreachable("This region cannot be printed pretty.");
+ return;
+}
+
+bool VarRegion::canPrintPrettyAsExpr() const {
+ return true;
+}
+
+void VarRegion::printPrettyAsExpr(raw_ostream &os) const {
+ os << getDecl()->getName();
+}
+
+bool ObjCIvarRegion::canPrintPrettyAsExpr() const {
+ return true;
+}
+
+void ObjCIvarRegion::printPrettyAsExpr(raw_ostream &os) const {
+ os << getDecl()->getName();
+}
+
+bool FieldRegion::canPrintPretty() const {
+ return true;
+}
+
+bool FieldRegion::canPrintPrettyAsExpr() const {
+ return superRegion->canPrintPrettyAsExpr();
+}
+
+void FieldRegion::printPrettyAsExpr(raw_ostream &os) const {
+ assert(canPrintPrettyAsExpr());
+ superRegion->printPrettyAsExpr(os);
+ os << "." << getDecl()->getName();
+}
+
+void FieldRegion::printPretty(raw_ostream &os) const {
+ if (canPrintPrettyAsExpr()) {
+ os << "\'";
+ printPrettyAsExpr(os);
+ os << "'";
+ } else {
+ os << "field " << "\'" << getDecl()->getName() << "'";
+ }
+ return;
+}
+
+bool CXXBaseObjectRegion::canPrintPrettyAsExpr() const {
+ return superRegion->canPrintPrettyAsExpr();
+}
+
+void CXXBaseObjectRegion::printPrettyAsExpr(raw_ostream &os) const {
+ superRegion->printPrettyAsExpr(os);
+}
+
+//===----------------------------------------------------------------------===//
+// MemRegionManager methods.
+//===----------------------------------------------------------------------===//
+
+template <typename REG>
+const REG *MemRegionManager::LazyAllocate(REG*& region) {
+ if (!region) {
+ region = (REG*) A.Allocate<REG>();
+ new (region) REG(this);
+ }
+
+ return region;
+}
+
+template <typename REG, typename ARG>
+const REG *MemRegionManager::LazyAllocate(REG*& region, ARG a) {
+ if (!region) {
+ region = (REG*) A.Allocate<REG>();
+ new (region) REG(this, a);
+ }
+
+ return region;
+}
+
+const StackLocalsSpaceRegion*
+MemRegionManager::getStackLocalsRegion(const StackFrameContext *STC) {
+ assert(STC);
+ StackLocalsSpaceRegion *&R = StackLocalsSpaceRegions[STC];
+
+ if (R)
+ return R;
+
+ R = A.Allocate<StackLocalsSpaceRegion>();
+ new (R) StackLocalsSpaceRegion(this, STC);
+ return R;
+}
+
+const StackArgumentsSpaceRegion *
+MemRegionManager::getStackArgumentsRegion(const StackFrameContext *STC) {
+ assert(STC);
+ StackArgumentsSpaceRegion *&R = StackArgumentsSpaceRegions[STC];
+
+ if (R)
+ return R;
+
+ R = A.Allocate<StackArgumentsSpaceRegion>();
+ new (R) StackArgumentsSpaceRegion(this, STC);
+ return R;
+}
+
+const GlobalsSpaceRegion
+*MemRegionManager::getGlobalsRegion(MemRegion::Kind K,
+ const CodeTextRegion *CR) {
+ if (!CR) {
+ if (K == MemRegion::GlobalSystemSpaceRegionKind)
+ return LazyAllocate(SystemGlobals);
+ if (K == MemRegion::GlobalImmutableSpaceRegionKind)
+ return LazyAllocate(ImmutableGlobals);
+ assert(K == MemRegion::GlobalInternalSpaceRegionKind);
+ return LazyAllocate(InternalGlobals);
+ }
+
+ assert(K == MemRegion::StaticGlobalSpaceRegionKind);
+ StaticGlobalSpaceRegion *&R = StaticsGlobalSpaceRegions[CR];
+ if (R)
+ return R;
+
+ R = A.Allocate<StaticGlobalSpaceRegion>();
+ new (R) StaticGlobalSpaceRegion(this, CR);
+ return R;
+}
+
+const HeapSpaceRegion *MemRegionManager::getHeapRegion() {
+ return LazyAllocate(heap);
+}
+
+const MemSpaceRegion *MemRegionManager::getUnknownRegion() {
+ return LazyAllocate(unknown);
+}
+
+const MemSpaceRegion *MemRegionManager::getCodeRegion() {
+ return LazyAllocate(code);
+}
+
+//===----------------------------------------------------------------------===//
+// Constructing regions.
+//===----------------------------------------------------------------------===//
+const StringRegion* MemRegionManager::getStringRegion(const StringLiteral* Str){
+ return getSubRegion<StringRegion>(Str, getGlobalsRegion());
+}
+
+const ObjCStringRegion *
+MemRegionManager::getObjCStringRegion(const ObjCStringLiteral* Str){
+ return getSubRegion<ObjCStringRegion>(Str, getGlobalsRegion());
+}
+
+/// Look through a chain of LocationContexts to either find the
+/// StackFrameContext that matches a DeclContext, or find a VarRegion
+/// for a variable captured by a block.
+static llvm::PointerUnion<const StackFrameContext *, const VarRegion *>
+getStackOrCaptureRegionForDeclContext(const LocationContext *LC,
+ const DeclContext *DC,
+ const VarDecl *VD) {
+ while (LC) {
+ if (const StackFrameContext *SFC = dyn_cast<StackFrameContext>(LC)) {
+ if (cast<DeclContext>(SFC->getDecl()) == DC)
+ return SFC;
+ }
+ if (const BlockInvocationContext *BC =
+ dyn_cast<BlockInvocationContext>(LC)) {
+ const BlockDataRegion *BR =
+ static_cast<const BlockDataRegion*>(BC->getContextData());
+ // FIXME: This can be made more efficient.
+ for (BlockDataRegion::referenced_vars_iterator
+ I = BR->referenced_vars_begin(),
+ E = BR->referenced_vars_end(); I != E; ++I) {
+ if (const VarRegion *VR = dyn_cast<VarRegion>(I.getOriginalRegion()))
+ if (VR->getDecl() == VD)
+ return cast<VarRegion>(I.getCapturedRegion());
+ }
+ }
+
+ LC = LC->getParent();
+ }
+ return (const StackFrameContext *)nullptr;
+}
+
+const VarRegion* MemRegionManager::getVarRegion(const VarDecl *D,
+ const LocationContext *LC) {
+ const MemRegion *sReg = nullptr;
+
+ if (D->hasGlobalStorage() && !D->isStaticLocal()) {
+
+ // First handle the globals defined in system headers.
+ if (C.getSourceManager().isInSystemHeader(D->getLocation())) {
+ // Whitelist the system globals which often DO GET modified, assume the
+ // rest are immutable.
+ if (D->getName().find("errno") != StringRef::npos)
+ sReg = getGlobalsRegion(MemRegion::GlobalSystemSpaceRegionKind);
+ else
+ sReg = getGlobalsRegion(MemRegion::GlobalImmutableSpaceRegionKind);
+
+ // Treat other globals as GlobalInternal unless they are constants.
+ } else {
+ QualType GQT = D->getType();
+ const Type *GT = GQT.getTypePtrOrNull();
+ // TODO: We could walk the complex types here and see if everything is
+ // constified.
+ if (GT && GQT.isConstQualified() && GT->isArithmeticType())
+ sReg = getGlobalsRegion(MemRegion::GlobalImmutableSpaceRegionKind);
+ else
+ sReg = getGlobalsRegion();
+ }
+
+ // Finally handle static locals.
+ } else {
+ // FIXME: Once we implement scope handling, we will need to properly lookup
+ // 'D' to the proper LocationContext.
+ const DeclContext *DC = D->getDeclContext();
+ llvm::PointerUnion<const StackFrameContext *, const VarRegion *> V =
+ getStackOrCaptureRegionForDeclContext(LC, DC, D);
+
+ if (V.is<const VarRegion*>())
+ return V.get<const VarRegion*>();
+
+ const StackFrameContext *STC = V.get<const StackFrameContext*>();
+
+ if (!STC)
+ sReg = getUnknownRegion();
+ else {
+ if (D->hasLocalStorage()) {
+ sReg = isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)
+ ? static_cast<const MemRegion*>(getStackArgumentsRegion(STC))
+ : static_cast<const MemRegion*>(getStackLocalsRegion(STC));
+ }
+ else {
+ assert(D->isStaticLocal());
+ const Decl *STCD = STC->getDecl();
+ if (isa<FunctionDecl>(STCD) || isa<ObjCMethodDecl>(STCD))
+ sReg = getGlobalsRegion(MemRegion::StaticGlobalSpaceRegionKind,
+ getFunctionTextRegion(cast<NamedDecl>(STCD)));
+ else if (const BlockDecl *BD = dyn_cast<BlockDecl>(STCD)) {
+ // FIXME: The fallback type here is totally bogus -- though it should
+ // never be queried, it will prevent uniquing with the real
+ // BlockTextRegion. Ideally we'd fix the AST so that we always had a
+ // signature.
+ QualType T;
+ if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten())
+ T = TSI->getType();
+ else
+ T = getContext().getFunctionNoProtoType(getContext().VoidTy);
+
+ const BlockTextRegion *BTR =
+ getBlockTextRegion(BD, C.getCanonicalType(T),
+ STC->getAnalysisDeclContext());
+ sReg = getGlobalsRegion(MemRegion::StaticGlobalSpaceRegionKind,
+ BTR);
+ }
+ else {
+ sReg = getGlobalsRegion();
+ }
+ }
+ }
+ }
+
+ return getSubRegion<VarRegion>(D, sReg);
+}
+
+const VarRegion *MemRegionManager::getVarRegion(const VarDecl *D,
+ const MemRegion *superR) {
+ return getSubRegion<VarRegion>(D, superR);
+}
+
+const BlockDataRegion *
+MemRegionManager::getBlockDataRegion(const BlockTextRegion *BC,
+ const LocationContext *LC,
+ unsigned blockCount) {
+ const MemRegion *sReg = nullptr;
+ const BlockDecl *BD = BC->getDecl();
+ if (!BD->hasCaptures()) {
+ // This handles 'static' blocks.
+ sReg = getGlobalsRegion(MemRegion::GlobalImmutableSpaceRegionKind);
+ }
+ else {
+ if (LC) {
+ // FIXME: Once we implement scope handling, we want the parent region
+ // to be the scope.
+ const StackFrameContext *STC = LC->getCurrentStackFrame();
+ assert(STC);
+ sReg = getStackLocalsRegion(STC);
+ }
+ else {
+ // We allow 'LC' to be NULL for cases where want BlockDataRegions
+ // without context-sensitivity.
+ sReg = getUnknownRegion();
+ }
+ }
+
+ return getSubRegion<BlockDataRegion>(BC, LC, blockCount, sReg);
+}
+
+const CXXTempObjectRegion *
+MemRegionManager::getCXXStaticTempObjectRegion(const Expr *Ex) {
+ return getSubRegion<CXXTempObjectRegion>(
+ Ex, getGlobalsRegion(MemRegion::GlobalInternalSpaceRegionKind, nullptr));
+}
+
+const CompoundLiteralRegion*
+MemRegionManager::getCompoundLiteralRegion(const CompoundLiteralExpr *CL,
+ const LocationContext *LC) {
+
+ const MemRegion *sReg = nullptr;
+
+ if (CL->isFileScope())
+ sReg = getGlobalsRegion();
+ else {
+ const StackFrameContext *STC = LC->getCurrentStackFrame();
+ assert(STC);
+ sReg = getStackLocalsRegion(STC);
+ }
+
+ return getSubRegion<CompoundLiteralRegion>(CL, sReg);
+}
+
+const ElementRegion*
+MemRegionManager::getElementRegion(QualType elementType, NonLoc Idx,
+ const MemRegion* superRegion,
+ ASTContext &Ctx){
+
+ QualType T = Ctx.getCanonicalType(elementType).getUnqualifiedType();
+
+ llvm::FoldingSetNodeID ID;
+ ElementRegion::ProfileRegion(ID, T, Idx, superRegion);
+
+ void *InsertPos;
+ MemRegion* data = Regions.FindNodeOrInsertPos(ID, InsertPos);
+ ElementRegion* R = cast_or_null<ElementRegion>(data);
+
+ if (!R) {
+ R = (ElementRegion*) A.Allocate<ElementRegion>();
+ new (R) ElementRegion(T, Idx, superRegion);
+ Regions.InsertNode(R, InsertPos);
+ }
+
+ return R;
+}
+
+const FunctionTextRegion *
+MemRegionManager::getFunctionTextRegion(const NamedDecl *FD) {
+ return getSubRegion<FunctionTextRegion>(FD, getCodeRegion());
+}
+
+const BlockTextRegion *
+MemRegionManager::getBlockTextRegion(const BlockDecl *BD, CanQualType locTy,
+ AnalysisDeclContext *AC) {
+ return getSubRegion<BlockTextRegion>(BD, locTy, AC, getCodeRegion());
+}
+
+
+/// getSymbolicRegion - Retrieve or create a "symbolic" memory region.
+const SymbolicRegion *MemRegionManager::getSymbolicRegion(SymbolRef sym) {
+ return getSubRegion<SymbolicRegion>(sym, getUnknownRegion());
+}
+
+const SymbolicRegion *MemRegionManager::getSymbolicHeapRegion(SymbolRef Sym) {
+ return getSubRegion<SymbolicRegion>(Sym, getHeapRegion());
+}
+
+const FieldRegion*
+MemRegionManager::getFieldRegion(const FieldDecl *d,
+ const MemRegion* superRegion){
+ return getSubRegion<FieldRegion>(d, superRegion);
+}
+
+const ObjCIvarRegion*
+MemRegionManager::getObjCIvarRegion(const ObjCIvarDecl *d,
+ const MemRegion* superRegion) {
+ return getSubRegion<ObjCIvarRegion>(d, superRegion);
+}
+
+const CXXTempObjectRegion*
+MemRegionManager::getCXXTempObjectRegion(Expr const *E,
+ LocationContext const *LC) {
+ const StackFrameContext *SFC = LC->getCurrentStackFrame();
+ assert(SFC);
+ return getSubRegion<CXXTempObjectRegion>(E, getStackLocalsRegion(SFC));
+}
+
+/// Checks whether \p BaseClass is a valid virtual or direct non-virtual base
+/// class of the type of \p Super.
+static bool isValidBaseClass(const CXXRecordDecl *BaseClass,
+ const TypedValueRegion *Super,
+ bool IsVirtual) {
+ BaseClass = BaseClass->getCanonicalDecl();
+
+ const CXXRecordDecl *Class = Super->getValueType()->getAsCXXRecordDecl();
+ if (!Class)
+ return true;
+
+ if (IsVirtual)
+ return Class->isVirtuallyDerivedFrom(BaseClass);
+
+ for (const auto &I : Class->bases()) {
+ if (I.getType()->getAsCXXRecordDecl()->getCanonicalDecl() == BaseClass)
+ return true;
+ }
+
+ return false;
+}
+
+const CXXBaseObjectRegion *
+MemRegionManager::getCXXBaseObjectRegion(const CXXRecordDecl *RD,
+ const MemRegion *Super,
+ bool IsVirtual) {
+ if (isa<TypedValueRegion>(Super)) {
+ assert(isValidBaseClass(RD, dyn_cast<TypedValueRegion>(Super), IsVirtual));
+ (void)&isValidBaseClass;
+
+ if (IsVirtual) {
+ // Virtual base regions should not be layered, since the layout rules
+ // are different.
+ while (const CXXBaseObjectRegion *Base =
+ dyn_cast<CXXBaseObjectRegion>(Super)) {
+ Super = Base->getSuperRegion();
+ }
+ assert(Super && !isa<MemSpaceRegion>(Super));
+ }
+ }
+
+ return getSubRegion<CXXBaseObjectRegion>(RD, IsVirtual, Super);
+}
+
+const CXXThisRegion*
+MemRegionManager::getCXXThisRegion(QualType thisPointerTy,
+ const LocationContext *LC) {
+ const StackFrameContext *STC = LC->getCurrentStackFrame();
+ assert(STC);
+ const PointerType *PT = thisPointerTy->getAs<PointerType>();
+ assert(PT);
+ return getSubRegion<CXXThisRegion>(PT, getStackArgumentsRegion(STC));
+}
+
+const AllocaRegion*
+MemRegionManager::getAllocaRegion(const Expr *E, unsigned cnt,
+ const LocationContext *LC) {
+ const StackFrameContext *STC = LC->getCurrentStackFrame();
+ assert(STC);
+ return getSubRegion<AllocaRegion>(E, cnt, getStackLocalsRegion(STC));
+}
+
+const MemSpaceRegion *MemRegion::getMemorySpace() const {
+ const MemRegion *R = this;
+ const SubRegion* SR = dyn_cast<SubRegion>(this);
+
+ while (SR) {
+ R = SR->getSuperRegion();
+ SR = dyn_cast<SubRegion>(R);
+ }
+
+ return dyn_cast<MemSpaceRegion>(R);
+}
+
+bool MemRegion::hasStackStorage() const {
+ return isa<StackSpaceRegion>(getMemorySpace());
+}
+
+bool MemRegion::hasStackNonParametersStorage() const {
+ return isa<StackLocalsSpaceRegion>(getMemorySpace());
+}
+
+bool MemRegion::hasStackParametersStorage() const {
+ return isa<StackArgumentsSpaceRegion>(getMemorySpace());
+}
+
+bool MemRegion::hasGlobalsOrParametersStorage() const {
+ const MemSpaceRegion *MS = getMemorySpace();
+ return isa<StackArgumentsSpaceRegion>(MS) ||
+ isa<GlobalsSpaceRegion>(MS);
+}
+
+// getBaseRegion strips away all elements and fields, and get the base region
+// of them.
+const MemRegion *MemRegion::getBaseRegion() const {
+ const MemRegion *R = this;
+ while (true) {
+ switch (R->getKind()) {
+ case MemRegion::ElementRegionKind:
+ case MemRegion::FieldRegionKind:
+ case MemRegion::ObjCIvarRegionKind:
+ case MemRegion::CXXBaseObjectRegionKind:
+ R = cast<SubRegion>(R)->getSuperRegion();
+ continue;
+ default:
+ break;
+ }
+ break;
+ }
+ return R;
+}
+
+bool MemRegion::isSubRegionOf(const MemRegion *R) const {
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// View handling.
+//===----------------------------------------------------------------------===//
+
+const MemRegion *MemRegion::StripCasts(bool StripBaseCasts) const {
+ const MemRegion *R = this;
+ while (true) {
+ switch (R->getKind()) {
+ case ElementRegionKind: {
+ const ElementRegion *ER = cast<ElementRegion>(R);
+ if (!ER->getIndex().isZeroConstant())
+ return R;
+ R = ER->getSuperRegion();
+ break;
+ }
+ case CXXBaseObjectRegionKind:
+ if (!StripBaseCasts)
+ return R;
+ R = cast<CXXBaseObjectRegion>(R)->getSuperRegion();
+ break;
+ default:
+ return R;
+ }
+ }
+}
+
+const SymbolicRegion *MemRegion::getSymbolicBase() const {
+ const SubRegion *SubR = dyn_cast<SubRegion>(this);
+
+ while (SubR) {
+ if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(SubR))
+ return SymR;
+ SubR = dyn_cast<SubRegion>(SubR->getSuperRegion());
+ }
+ return nullptr;
+}
+
+RegionRawOffset ElementRegion::getAsArrayOffset() const {
+ CharUnits offset = CharUnits::Zero();
+ const ElementRegion *ER = this;
+ const MemRegion *superR = nullptr;
+ ASTContext &C = getContext();
+
+ // FIXME: Handle multi-dimensional arrays.
+
+ while (ER) {
+ superR = ER->getSuperRegion();
+
+ // FIXME: generalize to symbolic offsets.
+ SVal index = ER->getIndex();
+ if (Optional<nonloc::ConcreteInt> CI = index.getAs<nonloc::ConcreteInt>()) {
+ // Update the offset.
+ int64_t i = CI->getValue().getSExtValue();
+
+ if (i != 0) {
+ QualType elemType = ER->getElementType();
+
+ // If we are pointing to an incomplete type, go no further.
+ if (elemType->isIncompleteType()) {
+ superR = ER;
+ break;
+ }
+
+ CharUnits size = C.getTypeSizeInChars(elemType);
+ offset += (i * size);
+ }
+
+ // Go to the next ElementRegion (if any).
+ ER = dyn_cast<ElementRegion>(superR);
+ continue;
+ }
+
+ return nullptr;
+ }
+
+ assert(superR && "super region cannot be NULL");
+ return RegionRawOffset(superR, offset);
+}
+
+
+/// Returns true if \p Base is an immediate base class of \p Child
+static bool isImmediateBase(const CXXRecordDecl *Child,
+ const CXXRecordDecl *Base) {
+ // Note that we do NOT canonicalize the base class here, because
+ // ASTRecordLayout doesn't either. If that leads us down the wrong path,
+ // so be it; at least we won't crash.
+ for (const auto &I : Child->bases()) {
+ if (I.getType()->getAsCXXRecordDecl() == Base)
+ return true;
+ }
+
+ return false;
+}
+
+RegionOffset MemRegion::getAsOffset() const {
+ const MemRegion *R = this;
+ const MemRegion *SymbolicOffsetBase = nullptr;
+ int64_t Offset = 0;
+
+ while (1) {
+ switch (R->getKind()) {
+ case GenericMemSpaceRegionKind:
+ case StackLocalsSpaceRegionKind:
+ case StackArgumentsSpaceRegionKind:
+ case HeapSpaceRegionKind:
+ case UnknownSpaceRegionKind:
+ case StaticGlobalSpaceRegionKind:
+ case GlobalInternalSpaceRegionKind:
+ case GlobalSystemSpaceRegionKind:
+ case GlobalImmutableSpaceRegionKind:
+ // Stores can bind directly to a region space to set a default value.
+ assert(Offset == 0 && !SymbolicOffsetBase);
+ goto Finish;
+
+ case FunctionTextRegionKind:
+ case BlockTextRegionKind:
+ case BlockDataRegionKind:
+ // These will never have bindings, but may end up having values requested
+ // if the user does some strange casting.
+ if (Offset != 0)
+ SymbolicOffsetBase = R;
+ goto Finish;
+
+ case SymbolicRegionKind:
+ case AllocaRegionKind:
+ case CompoundLiteralRegionKind:
+ case CXXThisRegionKind:
+ case StringRegionKind:
+ case ObjCStringRegionKind:
+ case VarRegionKind:
+ case CXXTempObjectRegionKind:
+ // Usual base regions.
+ goto Finish;
+
+ case ObjCIvarRegionKind:
+ // This is a little strange, but it's a compromise between
+ // ObjCIvarRegions having unknown compile-time offsets (when using the
+ // non-fragile runtime) and yet still being distinct, non-overlapping
+ // regions. Thus we treat them as "like" base regions for the purposes
+ // of computing offsets.
+ goto Finish;
+
+ case CXXBaseObjectRegionKind: {
+ const CXXBaseObjectRegion *BOR = cast<CXXBaseObjectRegion>(R);
+ R = BOR->getSuperRegion();
+
+ QualType Ty;
+ bool RootIsSymbolic = false;
+ if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(R)) {
+ Ty = TVR->getDesugaredValueType(getContext());
+ } else if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
+ // If our base region is symbolic, we don't know what type it really is.
+ // Pretend the type of the symbol is the true dynamic type.
+ // (This will at least be self-consistent for the life of the symbol.)
+ Ty = SR->getSymbol()->getType()->getPointeeType();
+ RootIsSymbolic = true;
+ }
+
+ const CXXRecordDecl *Child = Ty->getAsCXXRecordDecl();
+ if (!Child) {
+ // We cannot compute the offset of the base class.
+ SymbolicOffsetBase = R;
+ }
+
+ if (RootIsSymbolic) {
+ // Base layers on symbolic regions may not be type-correct.
+ // Double-check the inheritance here, and revert to a symbolic offset
+ // if it's invalid (e.g. due to a reinterpret_cast).
+ if (BOR->isVirtual()) {
+ if (!Child->isVirtuallyDerivedFrom(BOR->getDecl()))
+ SymbolicOffsetBase = R;
+ } else {
+ if (!isImmediateBase(Child, BOR->getDecl()))
+ SymbolicOffsetBase = R;
+ }
+ }
+
+ // Don't bother calculating precise offsets if we already have a
+ // symbolic offset somewhere in the chain.
+ if (SymbolicOffsetBase)
+ continue;
+
+ CharUnits BaseOffset;
+ const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Child);
+ if (BOR->isVirtual())
+ BaseOffset = Layout.getVBaseClassOffset(BOR->getDecl());
+ else
+ BaseOffset = Layout.getBaseClassOffset(BOR->getDecl());
+
+ // The base offset is in chars, not in bits.
+ Offset += BaseOffset.getQuantity() * getContext().getCharWidth();
+ break;
+ }
+ case ElementRegionKind: {
+ const ElementRegion *ER = cast<ElementRegion>(R);
+ R = ER->getSuperRegion();
+
+ QualType EleTy = ER->getValueType();
+ if (EleTy->isIncompleteType()) {
+ // We cannot compute the offset of the base class.
+ SymbolicOffsetBase = R;
+ continue;
+ }
+
+ SVal Index = ER->getIndex();
+ if (Optional<nonloc::ConcreteInt> CI =
+ Index.getAs<nonloc::ConcreteInt>()) {
+ // Don't bother calculating precise offsets if we already have a
+ // symbolic offset somewhere in the chain.
+ if (SymbolicOffsetBase)
+ continue;
+
+ int64_t i = CI->getValue().getSExtValue();
+ // This type size is in bits.
+ Offset += i * getContext().getTypeSize(EleTy);
+ } else {
+ // We cannot compute offset for non-concrete index.
+ SymbolicOffsetBase = R;
+ }
+ break;
+ }
+ case FieldRegionKind: {
+ const FieldRegion *FR = cast<FieldRegion>(R);
+ R = FR->getSuperRegion();
+
+ const RecordDecl *RD = FR->getDecl()->getParent();
+ if (RD->isUnion() || !RD->isCompleteDefinition()) {
+ // We cannot compute offset for incomplete type.
+ // For unions, we could treat everything as offset 0, but we'd rather
+ // treat each field as a symbolic offset so they aren't stored on top
+ // of each other, since we depend on things in typed regions actually
+ // matching their types.
+ SymbolicOffsetBase = R;
+ }
+
+ // Don't bother calculating precise offsets if we already have a
+ // symbolic offset somewhere in the chain.
+ if (SymbolicOffsetBase)
+ continue;
+
+ // Get the field number.
+ unsigned idx = 0;
+ for (RecordDecl::field_iterator FI = RD->field_begin(),
+ FE = RD->field_end(); FI != FE; ++FI, ++idx)
+ if (FR->getDecl() == *FI)
+ break;
+
+ const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
+ // This is offset in bits.
+ Offset += Layout.getFieldOffset(idx);
+ break;
+ }
+ }
+ }
+
+ Finish:
+ if (SymbolicOffsetBase)
+ return RegionOffset(SymbolicOffsetBase, RegionOffset::Symbolic);
+ return RegionOffset(R, Offset);
+}
+
+//===----------------------------------------------------------------------===//
+// BlockDataRegion
+//===----------------------------------------------------------------------===//
+
+std::pair<const VarRegion *, const VarRegion *>
+BlockDataRegion::getCaptureRegions(const VarDecl *VD) {
+ MemRegionManager &MemMgr = *getMemRegionManager();
+ const VarRegion *VR = nullptr;
+ const VarRegion *OriginalVR = nullptr;
+
+ if (!VD->hasAttr<BlocksAttr>() && VD->hasLocalStorage()) {
+ VR = MemMgr.getVarRegion(VD, this);
+ OriginalVR = MemMgr.getVarRegion(VD, LC);
+ }
+ else {
+ if (LC) {
+ VR = MemMgr.getVarRegion(VD, LC);
+ OriginalVR = VR;
+ }
+ else {
+ VR = MemMgr.getVarRegion(VD, MemMgr.getUnknownRegion());
+ OriginalVR = MemMgr.getVarRegion(VD, LC);
+ }
+ }
+ return std::make_pair(VR, OriginalVR);
+}
+
+void BlockDataRegion::LazyInitializeReferencedVars() {
+ if (ReferencedVars)
+ return;
+
+ AnalysisDeclContext *AC = getCodeRegion()->getAnalysisDeclContext();
+ const auto &ReferencedBlockVars = AC->getReferencedBlockVars(BC->getDecl());
+ auto NumBlockVars =
+ std::distance(ReferencedBlockVars.begin(), ReferencedBlockVars.end());
+
+ if (NumBlockVars == 0) {
+ ReferencedVars = (void*) 0x1;
+ return;
+ }
+
+ MemRegionManager &MemMgr = *getMemRegionManager();
+ llvm::BumpPtrAllocator &A = MemMgr.getAllocator();
+ BumpVectorContext BC(A);
+
+ typedef BumpVector<const MemRegion*> VarVec;
+ VarVec *BV = (VarVec*) A.Allocate<VarVec>();
+ new (BV) VarVec(BC, NumBlockVars);
+ VarVec *BVOriginal = (VarVec*) A.Allocate<VarVec>();
+ new (BVOriginal) VarVec(BC, NumBlockVars);
+
+ for (const VarDecl *VD : ReferencedBlockVars) {
+ const VarRegion *VR = nullptr;
+ const VarRegion *OriginalVR = nullptr;
+ std::tie(VR, OriginalVR) = getCaptureRegions(VD);
+ assert(VR);
+ assert(OriginalVR);
+ BV->push_back(VR, BC);
+ BVOriginal->push_back(OriginalVR, BC);
+ }
+
+ ReferencedVars = BV;
+ OriginalVars = BVOriginal;
+}
+
+BlockDataRegion::referenced_vars_iterator
+BlockDataRegion::referenced_vars_begin() const {
+ const_cast<BlockDataRegion*>(this)->LazyInitializeReferencedVars();
+
+ BumpVector<const MemRegion*> *Vec =
+ static_cast<BumpVector<const MemRegion*>*>(ReferencedVars);
+
+ if (Vec == (void*) 0x1)
+ return BlockDataRegion::referenced_vars_iterator(nullptr, nullptr);
+
+ BumpVector<const MemRegion*> *VecOriginal =
+ static_cast<BumpVector<const MemRegion*>*>(OriginalVars);
+
+ return BlockDataRegion::referenced_vars_iterator(Vec->begin(),
+ VecOriginal->begin());
+}
+
+BlockDataRegion::referenced_vars_iterator
+BlockDataRegion::referenced_vars_end() const {
+ const_cast<BlockDataRegion*>(this)->LazyInitializeReferencedVars();
+
+ BumpVector<const MemRegion*> *Vec =
+ static_cast<BumpVector<const MemRegion*>*>(ReferencedVars);
+
+ if (Vec == (void*) 0x1)
+ return BlockDataRegion::referenced_vars_iterator(nullptr, nullptr);
+
+ BumpVector<const MemRegion*> *VecOriginal =
+ static_cast<BumpVector<const MemRegion*>*>(OriginalVars);
+
+ return BlockDataRegion::referenced_vars_iterator(Vec->end(),
+ VecOriginal->end());
+}
+
+const VarRegion *BlockDataRegion::getOriginalRegion(const VarRegion *R) const {
+ for (referenced_vars_iterator I = referenced_vars_begin(),
+ E = referenced_vars_end();
+ I != E; ++I) {
+ if (I.getCapturedRegion() == R)
+ return I.getOriginalRegion();
+ }
+ return nullptr;
+}
+
+//===----------------------------------------------------------------------===//
+// RegionAndSymbolInvalidationTraits
+//===----------------------------------------------------------------------===//
+
+void RegionAndSymbolInvalidationTraits::setTrait(SymbolRef Sym,
+ InvalidationKinds IK) {
+ SymTraitsMap[Sym] |= IK;
+}
+
+void RegionAndSymbolInvalidationTraits::setTrait(const MemRegion *MR,
+ InvalidationKinds IK) {
+ assert(MR);
+ if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(MR))
+ setTrait(SR->getSymbol(), IK);
+ else
+ MRTraitsMap[MR] |= IK;
+}
+
+bool RegionAndSymbolInvalidationTraits::hasTrait(SymbolRef Sym,
+ InvalidationKinds IK) {
+ const_symbol_iterator I = SymTraitsMap.find(Sym);
+ if (I != SymTraitsMap.end())
+ return I->second & IK;
+
+ return false;
+}
+
+bool RegionAndSymbolInvalidationTraits::hasTrait(const MemRegion *MR,
+ InvalidationKinds IK) {
+ if (!MR)
+ return false;
+
+ if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(MR))
+ return hasTrait(SR->getSymbol(), IK);
+
+ const_region_iterator I = MRTraitsMap.find(MR);
+ if (I != MRTraitsMap.end())
+ return I->second & IK;
+
+ return false;
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/PathDiagnostic.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/PathDiagnostic.cpp
new file mode 100644
index 0000000..c490031
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/PathDiagnostic.cpp
@@ -0,0 +1,1185 @@
+//===--- PathDiagnostic.cpp - Path-Specific Diagnostic Handling -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the PathDiagnostic-related interfaces.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ParentMap.h"
+#include "clang/AST/StmtCXX.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+
+bool PathDiagnosticMacroPiece::containsEvent() const {
+ for (PathPieces::const_iterator I = subPieces.begin(), E = subPieces.end();
+ I!=E; ++I) {
+ if (isa<PathDiagnosticEventPiece>(*I))
+ return true;
+ if (PathDiagnosticMacroPiece *MP = dyn_cast<PathDiagnosticMacroPiece>(*I))
+ if (MP->containsEvent())
+ return true;
+ }
+ return false;
+}
+
+static StringRef StripTrailingDots(StringRef s) {
+ for (StringRef::size_type i = s.size(); i != 0; --i)
+ if (s[i - 1] != '.')
+ return s.substr(0, i);
+ return "";
+}
+
+PathDiagnosticPiece::PathDiagnosticPiece(StringRef s,
+ Kind k, DisplayHint hint)
+ : str(StripTrailingDots(s)), kind(k), Hint(hint),
+ LastInMainSourceFile(false) {}
+
+PathDiagnosticPiece::PathDiagnosticPiece(Kind k, DisplayHint hint)
+ : kind(k), Hint(hint), LastInMainSourceFile(false) {}
+
+PathDiagnosticPiece::~PathDiagnosticPiece() {}
+PathDiagnosticEventPiece::~PathDiagnosticEventPiece() {}
+PathDiagnosticCallPiece::~PathDiagnosticCallPiece() {}
+PathDiagnosticControlFlowPiece::~PathDiagnosticControlFlowPiece() {}
+PathDiagnosticMacroPiece::~PathDiagnosticMacroPiece() {}
+
+
+PathPieces::~PathPieces() {}
+
+void PathPieces::flattenTo(PathPieces &Primary, PathPieces &Current,
+ bool ShouldFlattenMacros) const {
+ for (PathPieces::const_iterator I = begin(), E = end(); I != E; ++I) {
+ PathDiagnosticPiece *Piece = I->get();
+
+ switch (Piece->getKind()) {
+ case PathDiagnosticPiece::Call: {
+ PathDiagnosticCallPiece *Call = cast<PathDiagnosticCallPiece>(Piece);
+ IntrusiveRefCntPtr<PathDiagnosticEventPiece> CallEnter =
+ Call->getCallEnterEvent();
+ if (CallEnter)
+ Current.push_back(CallEnter);
+ Call->path.flattenTo(Primary, Primary, ShouldFlattenMacros);
+ IntrusiveRefCntPtr<PathDiagnosticEventPiece> callExit =
+ Call->getCallExitEvent();
+ if (callExit)
+ Current.push_back(callExit);
+ break;
+ }
+ case PathDiagnosticPiece::Macro: {
+ PathDiagnosticMacroPiece *Macro = cast<PathDiagnosticMacroPiece>(Piece);
+ if (ShouldFlattenMacros) {
+ Macro->subPieces.flattenTo(Primary, Primary, ShouldFlattenMacros);
+ } else {
+ Current.push_back(Piece);
+ PathPieces NewPath;
+ Macro->subPieces.flattenTo(Primary, NewPath, ShouldFlattenMacros);
+ // FIXME: This probably shouldn't mutate the original path piece.
+ Macro->subPieces = NewPath;
+ }
+ break;
+ }
+ case PathDiagnosticPiece::Event:
+ case PathDiagnosticPiece::ControlFlow:
+ Current.push_back(Piece);
+ break;
+ }
+ }
+}
+
+
+PathDiagnostic::~PathDiagnostic() {}
+
+PathDiagnostic::PathDiagnostic(StringRef CheckName, const Decl *declWithIssue,
+ StringRef bugtype, StringRef verboseDesc,
+ StringRef shortDesc, StringRef category,
+ PathDiagnosticLocation LocationToUnique,
+ const Decl *DeclToUnique)
+ : CheckName(CheckName),
+ DeclWithIssue(declWithIssue),
+ BugType(StripTrailingDots(bugtype)),
+ VerboseDesc(StripTrailingDots(verboseDesc)),
+ ShortDesc(StripTrailingDots(shortDesc)),
+ Category(StripTrailingDots(category)),
+ UniqueingLoc(LocationToUnique),
+ UniqueingDecl(DeclToUnique),
+ path(pathImpl) {}
+
+static PathDiagnosticCallPiece *
+getFirstStackedCallToHeaderFile(PathDiagnosticCallPiece *CP,
+ const SourceManager &SMgr) {
+ SourceLocation CallLoc = CP->callEnter.asLocation();
+
+ // If the call is within a macro, don't do anything (for now).
+ if (CallLoc.isMacroID())
+ return nullptr;
+
+ assert(SMgr.isInMainFile(CallLoc) &&
+ "The call piece should be in the main file.");
+
+ // Check if CP represents a path through a function outside of the main file.
+ if (!SMgr.isInMainFile(CP->callEnterWithin.asLocation()))
+ return CP;
+
+ const PathPieces &Path = CP->path;
+ if (Path.empty())
+ return nullptr;
+
+ // Check if the last piece in the callee path is a call to a function outside
+ // of the main file.
+ if (PathDiagnosticCallPiece *CPInner =
+ dyn_cast<PathDiagnosticCallPiece>(Path.back())) {
+ return getFirstStackedCallToHeaderFile(CPInner, SMgr);
+ }
+
+ // Otherwise, the last piece is in the main file.
+ return nullptr;
+}
+
+void PathDiagnostic::resetDiagnosticLocationToMainFile() {
+ if (path.empty())
+ return;
+
+ PathDiagnosticPiece *LastP = path.back().get();
+ assert(LastP);
+ const SourceManager &SMgr = LastP->getLocation().getManager();
+
+ // We only need to check if the report ends inside headers, if the last piece
+ // is a call piece.
+ if (PathDiagnosticCallPiece *CP = dyn_cast<PathDiagnosticCallPiece>(LastP)) {
+ CP = getFirstStackedCallToHeaderFile(CP, SMgr);
+ if (CP) {
+ // Mark the piece.
+ CP->setAsLastInMainSourceFile();
+
+ // Update the path diagnostic message.
+ const NamedDecl *ND = dyn_cast<NamedDecl>(CP->getCallee());
+ if (ND) {
+ SmallString<200> buf;
+ llvm::raw_svector_ostream os(buf);
+ os << " (within a call to '" << ND->getDeclName() << "')";
+ appendToDesc(os.str());
+ }
+
+ // Reset the report containing declaration and location.
+ DeclWithIssue = CP->getCaller();
+ Loc = CP->getLocation();
+
+ return;
+ }
+ }
+}
+
+void PathDiagnosticConsumer::anchor() { }
+
+PathDiagnosticConsumer::~PathDiagnosticConsumer() {
+ // Delete the contents of the FoldingSet if it isn't empty already.
+ for (llvm::FoldingSet<PathDiagnostic>::iterator it =
+ Diags.begin(), et = Diags.end() ; it != et ; ++it) {
+ delete &*it;
+ }
+}
+
+void PathDiagnosticConsumer::HandlePathDiagnostic(
+ std::unique_ptr<PathDiagnostic> D) {
+ if (!D || D->path.empty())
+ return;
+
+ // We need to flatten the locations (convert Stmt* to locations) because
+ // the referenced statements may be freed by the time the diagnostics
+ // are emitted.
+ D->flattenLocations();
+
+ // If the PathDiagnosticConsumer does not support diagnostics that
+ // cross file boundaries, prune out such diagnostics now.
+ if (!supportsCrossFileDiagnostics()) {
+ // Verify that the entire path is from the same FileID.
+ FileID FID;
+ const SourceManager &SMgr = D->path.front()->getLocation().getManager();
+ SmallVector<const PathPieces *, 5> WorkList;
+ WorkList.push_back(&D->path);
+
+ while (!WorkList.empty()) {
+ const PathPieces &path = *WorkList.pop_back_val();
+
+ for (PathPieces::const_iterator I = path.begin(), E = path.end(); I != E;
+ ++I) {
+ const PathDiagnosticPiece *piece = I->get();
+ FullSourceLoc L = piece->getLocation().asLocation().getExpansionLoc();
+
+ if (FID.isInvalid()) {
+ FID = SMgr.getFileID(L);
+ } else if (SMgr.getFileID(L) != FID)
+ return; // FIXME: Emit a warning?
+
+ // Check the source ranges.
+ ArrayRef<SourceRange> Ranges = piece->getRanges();
+ for (ArrayRef<SourceRange>::iterator I = Ranges.begin(),
+ E = Ranges.end(); I != E; ++I) {
+ SourceLocation L = SMgr.getExpansionLoc(I->getBegin());
+ if (!L.isFileID() || SMgr.getFileID(L) != FID)
+ return; // FIXME: Emit a warning?
+ L = SMgr.getExpansionLoc(I->getEnd());
+ if (!L.isFileID() || SMgr.getFileID(L) != FID)
+ return; // FIXME: Emit a warning?
+ }
+
+ if (const PathDiagnosticCallPiece *call =
+ dyn_cast<PathDiagnosticCallPiece>(piece)) {
+ WorkList.push_back(&call->path);
+ }
+ else if (const PathDiagnosticMacroPiece *macro =
+ dyn_cast<PathDiagnosticMacroPiece>(piece)) {
+ WorkList.push_back(&macro->subPieces);
+ }
+ }
+ }
+
+ if (FID.isInvalid())
+ return; // FIXME: Emit a warning?
+ }
+
+ // Profile the node to see if we already have something matching it
+ llvm::FoldingSetNodeID profile;
+ D->Profile(profile);
+ void *InsertPos = nullptr;
+
+ if (PathDiagnostic *orig = Diags.FindNodeOrInsertPos(profile, InsertPos)) {
+ // Keep the PathDiagnostic with the shorter path.
+ // Note, the enclosing routine is called in deterministic order, so the
+ // results will be consistent between runs (no reason to break ties if the
+ // size is the same).
+ const unsigned orig_size = orig->full_size();
+ const unsigned new_size = D->full_size();
+ if (orig_size <= new_size)
+ return;
+
+ assert(orig != D.get());
+ Diags.RemoveNode(orig);
+ delete orig;
+ }
+
+ Diags.InsertNode(D.release());
+}
+
+static Optional<bool> comparePath(const PathPieces &X, const PathPieces &Y);
+static Optional<bool>
+compareControlFlow(const PathDiagnosticControlFlowPiece &X,
+ const PathDiagnosticControlFlowPiece &Y) {
+ FullSourceLoc XSL = X.getStartLocation().asLocation();
+ FullSourceLoc YSL = Y.getStartLocation().asLocation();
+ if (XSL != YSL)
+ return XSL.isBeforeInTranslationUnitThan(YSL);
+ FullSourceLoc XEL = X.getEndLocation().asLocation();
+ FullSourceLoc YEL = Y.getEndLocation().asLocation();
+ if (XEL != YEL)
+ return XEL.isBeforeInTranslationUnitThan(YEL);
+ return None;
+}
+
+static Optional<bool> compareMacro(const PathDiagnosticMacroPiece &X,
+ const PathDiagnosticMacroPiece &Y) {
+ return comparePath(X.subPieces, Y.subPieces);
+}
+
+static Optional<bool> compareCall(const PathDiagnosticCallPiece &X,
+ const PathDiagnosticCallPiece &Y) {
+ FullSourceLoc X_CEL = X.callEnter.asLocation();
+ FullSourceLoc Y_CEL = Y.callEnter.asLocation();
+ if (X_CEL != Y_CEL)
+ return X_CEL.isBeforeInTranslationUnitThan(Y_CEL);
+ FullSourceLoc X_CEWL = X.callEnterWithin.asLocation();
+ FullSourceLoc Y_CEWL = Y.callEnterWithin.asLocation();
+ if (X_CEWL != Y_CEWL)
+ return X_CEWL.isBeforeInTranslationUnitThan(Y_CEWL);
+ FullSourceLoc X_CRL = X.callReturn.asLocation();
+ FullSourceLoc Y_CRL = Y.callReturn.asLocation();
+ if (X_CRL != Y_CRL)
+ return X_CRL.isBeforeInTranslationUnitThan(Y_CRL);
+ return comparePath(X.path, Y.path);
+}
+
+static Optional<bool> comparePiece(const PathDiagnosticPiece &X,
+ const PathDiagnosticPiece &Y) {
+ if (X.getKind() != Y.getKind())
+ return X.getKind() < Y.getKind();
+
+ FullSourceLoc XL = X.getLocation().asLocation();
+ FullSourceLoc YL = Y.getLocation().asLocation();
+ if (XL != YL)
+ return XL.isBeforeInTranslationUnitThan(YL);
+
+ if (X.getString() != Y.getString())
+ return X.getString() < Y.getString();
+
+ if (X.getRanges().size() != Y.getRanges().size())
+ return X.getRanges().size() < Y.getRanges().size();
+
+ const SourceManager &SM = XL.getManager();
+
+ for (unsigned i = 0, n = X.getRanges().size(); i < n; ++i) {
+ SourceRange XR = X.getRanges()[i];
+ SourceRange YR = Y.getRanges()[i];
+ if (XR != YR) {
+ if (XR.getBegin() != YR.getBegin())
+ return SM.isBeforeInTranslationUnit(XR.getBegin(), YR.getBegin());
+ return SM.isBeforeInTranslationUnit(XR.getEnd(), YR.getEnd());
+ }
+ }
+
+ switch (X.getKind()) {
+ case clang::ento::PathDiagnosticPiece::ControlFlow:
+ return compareControlFlow(cast<PathDiagnosticControlFlowPiece>(X),
+ cast<PathDiagnosticControlFlowPiece>(Y));
+ case clang::ento::PathDiagnosticPiece::Event:
+ return None;
+ case clang::ento::PathDiagnosticPiece::Macro:
+ return compareMacro(cast<PathDiagnosticMacroPiece>(X),
+ cast<PathDiagnosticMacroPiece>(Y));
+ case clang::ento::PathDiagnosticPiece::Call:
+ return compareCall(cast<PathDiagnosticCallPiece>(X),
+ cast<PathDiagnosticCallPiece>(Y));
+ }
+ llvm_unreachable("all cases handled");
+}
+
+static Optional<bool> comparePath(const PathPieces &X, const PathPieces &Y) {
+ if (X.size() != Y.size())
+ return X.size() < Y.size();
+
+ PathPieces::const_iterator X_I = X.begin(), X_end = X.end();
+ PathPieces::const_iterator Y_I = Y.begin(), Y_end = Y.end();
+
+ for ( ; X_I != X_end && Y_I != Y_end; ++X_I, ++Y_I) {
+ Optional<bool> b = comparePiece(**X_I, **Y_I);
+ if (b.hasValue())
+ return b.getValue();
+ }
+
+ return None;
+}
+
+static bool compare(const PathDiagnostic &X, const PathDiagnostic &Y) {
+ FullSourceLoc XL = X.getLocation().asLocation();
+ FullSourceLoc YL = Y.getLocation().asLocation();
+ if (XL != YL)
+ return XL.isBeforeInTranslationUnitThan(YL);
+ if (X.getBugType() != Y.getBugType())
+ return X.getBugType() < Y.getBugType();
+ if (X.getCategory() != Y.getCategory())
+ return X.getCategory() < Y.getCategory();
+ if (X.getVerboseDescription() != Y.getVerboseDescription())
+ return X.getVerboseDescription() < Y.getVerboseDescription();
+ if (X.getShortDescription() != Y.getShortDescription())
+ return X.getShortDescription() < Y.getShortDescription();
+ if (X.getDeclWithIssue() != Y.getDeclWithIssue()) {
+ const Decl *XD = X.getDeclWithIssue();
+ if (!XD)
+ return true;
+ const Decl *YD = Y.getDeclWithIssue();
+ if (!YD)
+ return false;
+ SourceLocation XDL = XD->getLocation();
+ SourceLocation YDL = YD->getLocation();
+ if (XDL != YDL) {
+ const SourceManager &SM = XL.getManager();
+ return SM.isBeforeInTranslationUnit(XDL, YDL);
+ }
+ }
+ PathDiagnostic::meta_iterator XI = X.meta_begin(), XE = X.meta_end();
+ PathDiagnostic::meta_iterator YI = Y.meta_begin(), YE = Y.meta_end();
+ if (XE - XI != YE - YI)
+ return (XE - XI) < (YE - YI);
+ for ( ; XI != XE ; ++XI, ++YI) {
+ if (*XI != *YI)
+ return (*XI) < (*YI);
+ }
+ Optional<bool> b = comparePath(X.path, Y.path);
+ assert(b.hasValue());
+ return b.getValue();
+}
+
+void PathDiagnosticConsumer::FlushDiagnostics(
+ PathDiagnosticConsumer::FilesMade *Files) {
+ if (flushed)
+ return;
+
+ flushed = true;
+
+ std::vector<const PathDiagnostic *> BatchDiags;
+ for (llvm::FoldingSet<PathDiagnostic>::iterator it = Diags.begin(),
+ et = Diags.end(); it != et; ++it) {
+ const PathDiagnostic *D = &*it;
+ BatchDiags.push_back(D);
+ }
+
+ // Sort the diagnostics so that they are always emitted in a deterministic
+ // order.
+ int (*Comp)(const PathDiagnostic *const *, const PathDiagnostic *const *) =
+ [](const PathDiagnostic *const *X, const PathDiagnostic *const *Y) {
+ assert(*X != *Y && "PathDiagnostics not uniqued!");
+ if (compare(**X, **Y))
+ return -1;
+ assert(compare(**Y, **X) && "Not a total order!");
+ return 1;
+ };
+ array_pod_sort(BatchDiags.begin(), BatchDiags.end(), Comp);
+
+ FlushDiagnosticsImpl(BatchDiags, Files);
+
+ // Delete the flushed diagnostics.
+ for (std::vector<const PathDiagnostic *>::iterator it = BatchDiags.begin(),
+ et = BatchDiags.end(); it != et; ++it) {
+ const PathDiagnostic *D = *it;
+ delete D;
+ }
+
+ // Clear out the FoldingSet.
+ Diags.clear();
+}
+
+PathDiagnosticConsumer::FilesMade::~FilesMade() {
+ for (PDFileEntry &Entry : Set)
+ Entry.~PDFileEntry();
+}
+
+void PathDiagnosticConsumer::FilesMade::addDiagnostic(const PathDiagnostic &PD,
+ StringRef ConsumerName,
+ StringRef FileName) {
+ llvm::FoldingSetNodeID NodeID;
+ NodeID.Add(PD);
+ void *InsertPos;
+ PDFileEntry *Entry = Set.FindNodeOrInsertPos(NodeID, InsertPos);
+ if (!Entry) {
+ Entry = Alloc.Allocate<PDFileEntry>();
+ Entry = new (Entry) PDFileEntry(NodeID);
+ Set.InsertNode(Entry, InsertPos);
+ }
+
+ // Allocate persistent storage for the file name.
+ char *FileName_cstr = (char*) Alloc.Allocate(FileName.size(), 1);
+ memcpy(FileName_cstr, FileName.data(), FileName.size());
+
+ Entry->files.push_back(std::make_pair(ConsumerName,
+ StringRef(FileName_cstr,
+ FileName.size())));
+}
+
+PathDiagnosticConsumer::PDFileEntry::ConsumerFiles *
+PathDiagnosticConsumer::FilesMade::getFiles(const PathDiagnostic &PD) {
+ llvm::FoldingSetNodeID NodeID;
+ NodeID.Add(PD);
+ void *InsertPos;
+ PDFileEntry *Entry = Set.FindNodeOrInsertPos(NodeID, InsertPos);
+ if (!Entry)
+ return nullptr;
+ return &Entry->files;
+}
+
+//===----------------------------------------------------------------------===//
+// PathDiagnosticLocation methods.
+//===----------------------------------------------------------------------===//
+
+static SourceLocation getValidSourceLocation(const Stmt* S,
+ LocationOrAnalysisDeclContext LAC,
+ bool UseEnd = false) {
+ SourceLocation L = UseEnd ? S->getLocEnd() : S->getLocStart();
+ assert(!LAC.isNull() && "A valid LocationContext or AnalysisDeclContext should "
+ "be passed to PathDiagnosticLocation upon creation.");
+
+ // S might be a temporary statement that does not have a location in the
+ // source code, so find an enclosing statement and use its location.
+ if (!L.isValid()) {
+
+ AnalysisDeclContext *ADC;
+ if (LAC.is<const LocationContext*>())
+ ADC = LAC.get<const LocationContext*>()->getAnalysisDeclContext();
+ else
+ ADC = LAC.get<AnalysisDeclContext*>();
+
+ ParentMap &PM = ADC->getParentMap();
+
+ const Stmt *Parent = S;
+ do {
+ Parent = PM.getParent(Parent);
+
+ // In rare cases, we have implicit top-level expressions,
+ // such as arguments for implicit member initializers.
+ // In this case, fall back to the start of the body (even if we were
+ // asked for the statement end location).
+ if (!Parent) {
+ const Stmt *Body = ADC->getBody();
+ if (Body)
+ L = Body->getLocStart();
+ else
+ L = ADC->getDecl()->getLocEnd();
+ break;
+ }
+
+ L = UseEnd ? Parent->getLocEnd() : Parent->getLocStart();
+ } while (!L.isValid());
+ }
+
+ return L;
+}
+
+static PathDiagnosticLocation
+getLocationForCaller(const StackFrameContext *SFC,
+ const LocationContext *CallerCtx,
+ const SourceManager &SM) {
+ const CFGBlock &Block = *SFC->getCallSiteBlock();
+ CFGElement Source = Block[SFC->getIndex()];
+
+ switch (Source.getKind()) {
+ case CFGElement::Statement:
+ return PathDiagnosticLocation(Source.castAs<CFGStmt>().getStmt(),
+ SM, CallerCtx);
+ case CFGElement::Initializer: {
+ const CFGInitializer &Init = Source.castAs<CFGInitializer>();
+ return PathDiagnosticLocation(Init.getInitializer()->getInit(),
+ SM, CallerCtx);
+ }
+ case CFGElement::AutomaticObjectDtor: {
+ const CFGAutomaticObjDtor &Dtor = Source.castAs<CFGAutomaticObjDtor>();
+ return PathDiagnosticLocation::createEnd(Dtor.getTriggerStmt(),
+ SM, CallerCtx);
+ }
+ case CFGElement::DeleteDtor: {
+ const CFGDeleteDtor &Dtor = Source.castAs<CFGDeleteDtor>();
+ return PathDiagnosticLocation(Dtor.getDeleteExpr(), SM, CallerCtx);
+ }
+ case CFGElement::BaseDtor:
+ case CFGElement::MemberDtor: {
+ const AnalysisDeclContext *CallerInfo = CallerCtx->getAnalysisDeclContext();
+ if (const Stmt *CallerBody = CallerInfo->getBody())
+ return PathDiagnosticLocation::createEnd(CallerBody, SM, CallerCtx);
+ return PathDiagnosticLocation::create(CallerInfo->getDecl(), SM);
+ }
+ case CFGElement::TemporaryDtor:
+ case CFGElement::NewAllocator:
+ llvm_unreachable("not yet implemented!");
+ }
+
+ llvm_unreachable("Unknown CFGElement kind");
+}
+
+
+PathDiagnosticLocation
+ PathDiagnosticLocation::createBegin(const Decl *D,
+ const SourceManager &SM) {
+ return PathDiagnosticLocation(D->getLocStart(), SM, SingleLocK);
+}
+
+PathDiagnosticLocation
+ PathDiagnosticLocation::createBegin(const Stmt *S,
+ const SourceManager &SM,
+ LocationOrAnalysisDeclContext LAC) {
+ return PathDiagnosticLocation(getValidSourceLocation(S, LAC),
+ SM, SingleLocK);
+}
+
+
+PathDiagnosticLocation
+PathDiagnosticLocation::createEnd(const Stmt *S,
+ const SourceManager &SM,
+ LocationOrAnalysisDeclContext LAC) {
+ if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S))
+ return createEndBrace(CS, SM);
+ return PathDiagnosticLocation(getValidSourceLocation(S, LAC, /*End=*/true),
+ SM, SingleLocK);
+}
+
+PathDiagnosticLocation
+ PathDiagnosticLocation::createOperatorLoc(const BinaryOperator *BO,
+ const SourceManager &SM) {
+ return PathDiagnosticLocation(BO->getOperatorLoc(), SM, SingleLocK);
+}
+
+PathDiagnosticLocation
+ PathDiagnosticLocation::createConditionalColonLoc(
+ const ConditionalOperator *CO,
+ const SourceManager &SM) {
+ return PathDiagnosticLocation(CO->getColonLoc(), SM, SingleLocK);
+}
+
+
+PathDiagnosticLocation
+ PathDiagnosticLocation::createMemberLoc(const MemberExpr *ME,
+ const SourceManager &SM) {
+ return PathDiagnosticLocation(ME->getMemberLoc(), SM, SingleLocK);
+}
+
+PathDiagnosticLocation
+ PathDiagnosticLocation::createBeginBrace(const CompoundStmt *CS,
+ const SourceManager &SM) {
+ SourceLocation L = CS->getLBracLoc();
+ return PathDiagnosticLocation(L, SM, SingleLocK);
+}
+
+PathDiagnosticLocation
+ PathDiagnosticLocation::createEndBrace(const CompoundStmt *CS,
+ const SourceManager &SM) {
+ SourceLocation L = CS->getRBracLoc();
+ return PathDiagnosticLocation(L, SM, SingleLocK);
+}
+
+PathDiagnosticLocation
+ PathDiagnosticLocation::createDeclBegin(const LocationContext *LC,
+ const SourceManager &SM) {
+ // FIXME: Should handle CXXTryStmt if analyser starts supporting C++.
+ if (const CompoundStmt *CS =
+ dyn_cast_or_null<CompoundStmt>(LC->getDecl()->getBody()))
+ if (!CS->body_empty()) {
+ SourceLocation Loc = (*CS->body_begin())->getLocStart();
+ return PathDiagnosticLocation(Loc, SM, SingleLocK);
+ }
+
+ return PathDiagnosticLocation();
+}
+
+PathDiagnosticLocation
+ PathDiagnosticLocation::createDeclEnd(const LocationContext *LC,
+ const SourceManager &SM) {
+ SourceLocation L = LC->getDecl()->getBodyRBrace();
+ return PathDiagnosticLocation(L, SM, SingleLocK);
+}
+
+PathDiagnosticLocation
+ PathDiagnosticLocation::create(const ProgramPoint& P,
+ const SourceManager &SMng) {
+
+ const Stmt* S = nullptr;
+ if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
+ const CFGBlock *BSrc = BE->getSrc();
+ S = BSrc->getTerminatorCondition();
+ } else if (Optional<StmtPoint> SP = P.getAs<StmtPoint>()) {
+ S = SP->getStmt();
+ if (P.getAs<PostStmtPurgeDeadSymbols>())
+ return PathDiagnosticLocation::createEnd(S, SMng, P.getLocationContext());
+ } else if (Optional<PostInitializer> PIP = P.getAs<PostInitializer>()) {
+ return PathDiagnosticLocation(PIP->getInitializer()->getSourceLocation(),
+ SMng);
+ } else if (Optional<PostImplicitCall> PIE = P.getAs<PostImplicitCall>()) {
+ return PathDiagnosticLocation(PIE->getLocation(), SMng);
+ } else if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
+ return getLocationForCaller(CE->getCalleeContext(),
+ CE->getLocationContext(),
+ SMng);
+ } else if (Optional<CallExitEnd> CEE = P.getAs<CallExitEnd>()) {
+ return getLocationForCaller(CEE->getCalleeContext(),
+ CEE->getLocationContext(),
+ SMng);
+ } else {
+ llvm_unreachable("Unexpected ProgramPoint");
+ }
+
+ return PathDiagnosticLocation(S, SMng, P.getLocationContext());
+}
+
+const Stmt *PathDiagnosticLocation::getStmt(const ExplodedNode *N) {
+ ProgramPoint P = N->getLocation();
+ if (Optional<StmtPoint> SP = P.getAs<StmtPoint>())
+ return SP->getStmt();
+ if (Optional<BlockEdge> BE = P.getAs<BlockEdge>())
+ return BE->getSrc()->getTerminator();
+ if (Optional<CallEnter> CE = P.getAs<CallEnter>())
+ return CE->getCallExpr();
+ if (Optional<CallExitEnd> CEE = P.getAs<CallExitEnd>())
+ return CEE->getCalleeContext()->getCallSite();
+ if (Optional<PostInitializer> PIPP = P.getAs<PostInitializer>())
+ return PIPP->getInitializer()->getInit();
+
+ return nullptr;
+}
+
+const Stmt *PathDiagnosticLocation::getNextStmt(const ExplodedNode *N) {
+ for (N = N->getFirstSucc(); N; N = N->getFirstSucc()) {
+ if (const Stmt *S = getStmt(N)) {
+ // Check if the statement is '?' or '&&'/'||'. These are "merges",
+ // not actual statement points.
+ switch (S->getStmtClass()) {
+ case Stmt::ChooseExprClass:
+ case Stmt::BinaryConditionalOperatorClass:
+ case Stmt::ConditionalOperatorClass:
+ continue;
+ case Stmt::BinaryOperatorClass: {
+ BinaryOperatorKind Op = cast<BinaryOperator>(S)->getOpcode();
+ if (Op == BO_LAnd || Op == BO_LOr)
+ continue;
+ break;
+ }
+ default:
+ break;
+ }
+ // We found the statement, so return it.
+ return S;
+ }
+ }
+
+ return nullptr;
+}
+
+PathDiagnosticLocation
+ PathDiagnosticLocation::createEndOfPath(const ExplodedNode *N,
+ const SourceManager &SM) {
+ assert(N && "Cannot create a location with a null node.");
+ const Stmt *S = getStmt(N);
+
+ if (!S) {
+ // If this is an implicit call, return the implicit call point location.
+ if (Optional<PreImplicitCall> PIE = N->getLocationAs<PreImplicitCall>())
+ return PathDiagnosticLocation(PIE->getLocation(), SM);
+ S = getNextStmt(N);
+ }
+
+ if (S) {
+ ProgramPoint P = N->getLocation();
+ const LocationContext *LC = N->getLocationContext();
+
+ // For member expressions, return the location of the '.' or '->'.
+ if (const MemberExpr *ME = dyn_cast<MemberExpr>(S))
+ return PathDiagnosticLocation::createMemberLoc(ME, SM);
+
+ // For binary operators, return the location of the operator.
+ if (const BinaryOperator *B = dyn_cast<BinaryOperator>(S))
+ return PathDiagnosticLocation::createOperatorLoc(B, SM);
+
+ if (P.getAs<PostStmtPurgeDeadSymbols>())
+ return PathDiagnosticLocation::createEnd(S, SM, LC);
+
+ if (S->getLocStart().isValid())
+ return PathDiagnosticLocation(S, SM, LC);
+ return PathDiagnosticLocation(getValidSourceLocation(S, LC), SM);
+ }
+
+ return createDeclEnd(N->getLocationContext(), SM);
+}
+
+PathDiagnosticLocation PathDiagnosticLocation::createSingleLocation(
+ const PathDiagnosticLocation &PDL) {
+ FullSourceLoc L = PDL.asLocation();
+ return PathDiagnosticLocation(L, L.getManager(), SingleLocK);
+}
+
+FullSourceLoc
+ PathDiagnosticLocation::genLocation(SourceLocation L,
+ LocationOrAnalysisDeclContext LAC) const {
+ assert(isValid());
+ // Note that we want a 'switch' here so that the compiler can warn us in
+ // case we add more cases.
+ switch (K) {
+ case SingleLocK:
+ case RangeK:
+ break;
+ case StmtK:
+ // Defensive checking.
+ if (!S)
+ break;
+ return FullSourceLoc(getValidSourceLocation(S, LAC),
+ const_cast<SourceManager&>(*SM));
+ case DeclK:
+ // Defensive checking.
+ if (!D)
+ break;
+ return FullSourceLoc(D->getLocation(), const_cast<SourceManager&>(*SM));
+ }
+
+ return FullSourceLoc(L, const_cast<SourceManager&>(*SM));
+}
+
+PathDiagnosticRange
+ PathDiagnosticLocation::genRange(LocationOrAnalysisDeclContext LAC) const {
+ assert(isValid());
+ // Note that we want a 'switch' here so that the compiler can warn us in
+ // case we add more cases.
+ switch (K) {
+ case SingleLocK:
+ return PathDiagnosticRange(SourceRange(Loc,Loc), true);
+ case RangeK:
+ break;
+ case StmtK: {
+ const Stmt *S = asStmt();
+ switch (S->getStmtClass()) {
+ default:
+ break;
+ case Stmt::DeclStmtClass: {
+ const DeclStmt *DS = cast<DeclStmt>(S);
+ if (DS->isSingleDecl()) {
+ // Should always be the case, but we'll be defensive.
+ return SourceRange(DS->getLocStart(),
+ DS->getSingleDecl()->getLocation());
+ }
+ break;
+ }
+ // FIXME: Provide better range information for different
+ // terminators.
+ case Stmt::IfStmtClass:
+ case Stmt::WhileStmtClass:
+ case Stmt::DoStmtClass:
+ case Stmt::ForStmtClass:
+ case Stmt::ChooseExprClass:
+ case Stmt::IndirectGotoStmtClass:
+ case Stmt::SwitchStmtClass:
+ case Stmt::BinaryConditionalOperatorClass:
+ case Stmt::ConditionalOperatorClass:
+ case Stmt::ObjCForCollectionStmtClass: {
+ SourceLocation L = getValidSourceLocation(S, LAC);
+ return SourceRange(L, L);
+ }
+ }
+ SourceRange R = S->getSourceRange();
+ if (R.isValid())
+ return R;
+ break;
+ }
+ case DeclK:
+ if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
+ return MD->getSourceRange();
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ if (Stmt *Body = FD->getBody())
+ return Body->getSourceRange();
+ }
+ else {
+ SourceLocation L = D->getLocation();
+ return PathDiagnosticRange(SourceRange(L, L), true);
+ }
+ }
+
+ return SourceRange(Loc,Loc);
+}
+
+void PathDiagnosticLocation::flatten() {
+ if (K == StmtK) {
+ K = RangeK;
+ S = nullptr;
+ D = nullptr;
+ }
+ else if (K == DeclK) {
+ K = SingleLocK;
+ S = nullptr;
+ D = nullptr;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Manipulation of PathDiagnosticCallPieces.
+//===----------------------------------------------------------------------===//
+
+PathDiagnosticCallPiece *
+PathDiagnosticCallPiece::construct(const ExplodedNode *N,
+ const CallExitEnd &CE,
+ const SourceManager &SM) {
+ const Decl *caller = CE.getLocationContext()->getDecl();
+ PathDiagnosticLocation pos = getLocationForCaller(CE.getCalleeContext(),
+ CE.getLocationContext(),
+ SM);
+ return new PathDiagnosticCallPiece(caller, pos);
+}
+
+PathDiagnosticCallPiece *
+PathDiagnosticCallPiece::construct(PathPieces &path,
+ const Decl *caller) {
+ PathDiagnosticCallPiece *C = new PathDiagnosticCallPiece(path, caller);
+ path.clear();
+ path.push_front(C);
+ return C;
+}
+
+void PathDiagnosticCallPiece::setCallee(const CallEnter &CE,
+ const SourceManager &SM) {
+ const StackFrameContext *CalleeCtx = CE.getCalleeContext();
+ Callee = CalleeCtx->getDecl();
+
+ callEnterWithin = PathDiagnosticLocation::createBegin(Callee, SM);
+ callEnter = getLocationForCaller(CalleeCtx, CE.getLocationContext(), SM);
+}
+
+static inline void describeClass(raw_ostream &Out, const CXXRecordDecl *D,
+ StringRef Prefix = StringRef()) {
+ if (!D->getIdentifier())
+ return;
+ Out << Prefix << '\'' << *D << '\'';
+}
+
+static bool describeCodeDecl(raw_ostream &Out, const Decl *D,
+ bool ExtendedDescription,
+ StringRef Prefix = StringRef()) {
+ if (!D)
+ return false;
+
+ if (isa<BlockDecl>(D)) {
+ if (ExtendedDescription)
+ Out << Prefix << "anonymous block";
+ return ExtendedDescription;
+ }
+
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
+ Out << Prefix;
+ if (ExtendedDescription && !MD->isUserProvided()) {
+ if (MD->isExplicitlyDefaulted())
+ Out << "defaulted ";
+ else
+ Out << "implicit ";
+ }
+
+ if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(MD)) {
+ if (CD->isDefaultConstructor())
+ Out << "default ";
+ else if (CD->isCopyConstructor())
+ Out << "copy ";
+ else if (CD->isMoveConstructor())
+ Out << "move ";
+
+ Out << "constructor";
+ describeClass(Out, MD->getParent(), " for ");
+
+ } else if (isa<CXXDestructorDecl>(MD)) {
+ if (!MD->isUserProvided()) {
+ Out << "destructor";
+ describeClass(Out, MD->getParent(), " for ");
+ } else {
+ // Use ~Foo for explicitly-written destructors.
+ Out << "'" << *MD << "'";
+ }
+
+ } else if (MD->isCopyAssignmentOperator()) {
+ Out << "copy assignment operator";
+ describeClass(Out, MD->getParent(), " for ");
+
+ } else if (MD->isMoveAssignmentOperator()) {
+ Out << "move assignment operator";
+ describeClass(Out, MD->getParent(), " for ");
+
+ } else {
+ if (MD->getParent()->getIdentifier())
+ Out << "'" << *MD->getParent() << "::" << *MD << "'";
+ else
+ Out << "'" << *MD << "'";
+ }
+
+ return true;
+ }
+
+ Out << Prefix << '\'' << cast<NamedDecl>(*D) << '\'';
+ return true;
+}
+
+IntrusiveRefCntPtr<PathDiagnosticEventPiece>
+PathDiagnosticCallPiece::getCallEnterEvent() const {
+ if (!Callee)
+ return nullptr;
+
+ SmallString<256> buf;
+ llvm::raw_svector_ostream Out(buf);
+
+ Out << "Calling ";
+ describeCodeDecl(Out, Callee, /*ExtendedDescription=*/true);
+
+ assert(callEnter.asLocation().isValid());
+ return new PathDiagnosticEventPiece(callEnter, Out.str());
+}
+
+IntrusiveRefCntPtr<PathDiagnosticEventPiece>
+PathDiagnosticCallPiece::getCallEnterWithinCallerEvent() const {
+ if (!callEnterWithin.asLocation().isValid())
+ return nullptr;
+ if (Callee->isImplicit() || !Callee->hasBody())
+ return nullptr;
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee))
+ if (MD->isDefaulted())
+ return nullptr;
+
+ SmallString<256> buf;
+ llvm::raw_svector_ostream Out(buf);
+
+ Out << "Entered call";
+ describeCodeDecl(Out, Caller, /*ExtendedDescription=*/false, " from ");
+
+ return new PathDiagnosticEventPiece(callEnterWithin, Out.str());
+}
+
+IntrusiveRefCntPtr<PathDiagnosticEventPiece>
+PathDiagnosticCallPiece::getCallExitEvent() const {
+ if (NoExit)
+ return nullptr;
+
+ SmallString<256> buf;
+ llvm::raw_svector_ostream Out(buf);
+
+ if (!CallStackMessage.empty()) {
+ Out << CallStackMessage;
+ } else {
+ bool DidDescribe = describeCodeDecl(Out, Callee,
+ /*ExtendedDescription=*/false,
+ "Returning from ");
+ if (!DidDescribe)
+ Out << "Returning to caller";
+ }
+
+ assert(callReturn.asLocation().isValid());
+ return new PathDiagnosticEventPiece(callReturn, Out.str());
+}
+
+static void compute_path_size(const PathPieces &pieces, unsigned &size) {
+ for (PathPieces::const_iterator it = pieces.begin(),
+ et = pieces.end(); it != et; ++it) {
+ const PathDiagnosticPiece *piece = it->get();
+ if (const PathDiagnosticCallPiece *cp =
+ dyn_cast<PathDiagnosticCallPiece>(piece)) {
+ compute_path_size(cp->path, size);
+ }
+ else
+ ++size;
+ }
+}
+
+unsigned PathDiagnostic::full_size() {
+ unsigned size = 0;
+ compute_path_size(path, size);
+ return size;
+}
+
+//===----------------------------------------------------------------------===//
+// FoldingSet profiling methods.
+//===----------------------------------------------------------------------===//
+
+void PathDiagnosticLocation::Profile(llvm::FoldingSetNodeID &ID) const {
+ ID.AddInteger(Range.getBegin().getRawEncoding());
+ ID.AddInteger(Range.getEnd().getRawEncoding());
+ ID.AddInteger(Loc.getRawEncoding());
+ return;
+}
+
+void PathDiagnosticPiece::Profile(llvm::FoldingSetNodeID &ID) const {
+ ID.AddInteger((unsigned) getKind());
+ ID.AddString(str);
+ // FIXME: Add profiling support for code hints.
+ ID.AddInteger((unsigned) getDisplayHint());
+ ArrayRef<SourceRange> Ranges = getRanges();
+ for (ArrayRef<SourceRange>::iterator I = Ranges.begin(), E = Ranges.end();
+ I != E; ++I) {
+ ID.AddInteger(I->getBegin().getRawEncoding());
+ ID.AddInteger(I->getEnd().getRawEncoding());
+ }
+}
+
+void PathDiagnosticCallPiece::Profile(llvm::FoldingSetNodeID &ID) const {
+ PathDiagnosticPiece::Profile(ID);
+ for (PathPieces::const_iterator it = path.begin(),
+ et = path.end(); it != et; ++it) {
+ ID.Add(**it);
+ }
+}
+
+void PathDiagnosticSpotPiece::Profile(llvm::FoldingSetNodeID &ID) const {
+ PathDiagnosticPiece::Profile(ID);
+ ID.Add(Pos);
+}
+
+void PathDiagnosticControlFlowPiece::Profile(llvm::FoldingSetNodeID &ID) const {
+ PathDiagnosticPiece::Profile(ID);
+ for (const_iterator I = begin(), E = end(); I != E; ++I)
+ ID.Add(*I);
+}
+
+void PathDiagnosticMacroPiece::Profile(llvm::FoldingSetNodeID &ID) const {
+ PathDiagnosticSpotPiece::Profile(ID);
+ for (PathPieces::const_iterator I = subPieces.begin(), E = subPieces.end();
+ I != E; ++I)
+ ID.Add(**I);
+}
+
+void PathDiagnostic::Profile(llvm::FoldingSetNodeID &ID) const {
+ ID.Add(getLocation());
+ ID.AddString(BugType);
+ ID.AddString(VerboseDesc);
+ ID.AddString(Category);
+}
+
+void PathDiagnostic::FullProfile(llvm::FoldingSetNodeID &ID) const {
+ Profile(ID);
+ for (PathPieces::const_iterator I = path.begin(), E = path.end(); I != E; ++I)
+ ID.Add(**I);
+ for (meta_iterator I = meta_begin(), E = meta_end(); I != E; ++I)
+ ID.AddString(*I);
+}
+
+StackHintGenerator::~StackHintGenerator() {}
+
+std::string StackHintGeneratorForSymbol::getMessage(const ExplodedNode *N){
+ ProgramPoint P = N->getLocation();
+ CallExitEnd CExit = P.castAs<CallExitEnd>();
+
+ // FIXME: Use CallEvent to abstract this over all calls.
+ const Stmt *CallSite = CExit.getCalleeContext()->getCallSite();
+ const CallExpr *CE = dyn_cast_or_null<CallExpr>(CallSite);
+ if (!CE)
+ return "";
+
+ if (!N)
+ return getMessageForSymbolNotFound();
+
+ // Check if one of the parameters are set to the interesting symbol.
+ ProgramStateRef State = N->getState();
+ const LocationContext *LCtx = N->getLocationContext();
+ unsigned ArgIndex = 0;
+ for (CallExpr::const_arg_iterator I = CE->arg_begin(),
+ E = CE->arg_end(); I != E; ++I, ++ArgIndex){
+ SVal SV = State->getSVal(*I, LCtx);
+
+ // Check if the variable corresponding to the symbol is passed by value.
+ SymbolRef AS = SV.getAsLocSymbol();
+ if (AS == Sym) {
+ return getMessageForArg(*I, ArgIndex);
+ }
+
+ // Check if the parameter is a pointer to the symbol.
+ if (Optional<loc::MemRegionVal> Reg = SV.getAs<loc::MemRegionVal>()) {
+ SVal PSV = State->getSVal(Reg->getRegion());
+ SymbolRef AS = PSV.getAsLocSymbol();
+ if (AS == Sym) {
+ return getMessageForArg(*I, ArgIndex);
+ }
+ }
+ }
+
+ // Check if we are returning the interesting symbol.
+ SVal SV = State->getSVal(CE, LCtx);
+ SymbolRef RetSym = SV.getAsLocSymbol();
+ if (RetSym == Sym) {
+ return getMessageForReturn(CE);
+ }
+
+ return getMessageForSymbolNotFound();
+}
+
+std::string StackHintGeneratorForSymbol::getMessageForArg(const Expr *ArgE,
+ unsigned ArgIndex) {
+ // Printed parameters start at 1, not 0.
+ ++ArgIndex;
+
+ SmallString<200> buf;
+ llvm::raw_svector_ostream os(buf);
+
+ os << Msg << " via " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex)
+ << " parameter";
+
+ return os.str();
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/PlistDiagnostics.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/PlistDiagnostics.cpp
new file mode 100644
index 0000000..e0aff58
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/PlistDiagnostics.cpp
@@ -0,0 +1,490 @@
+//===--- PlistDiagnostics.cpp - Plist Diagnostics for Paths -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the PlistDiagnostics object.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/AnalyzerOptions.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/PlistSupport.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/Version.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
+#include "clang/StaticAnalyzer/Core/PathDiagnosticConsumers.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/Casting.h"
+using namespace clang;
+using namespace ento;
+using namespace markup;
+
+namespace {
+ class PlistDiagnostics : public PathDiagnosticConsumer {
+ const std::string OutputFile;
+ const LangOptions &LangOpts;
+ const bool SupportsCrossFileDiagnostics;
+ public:
+ PlistDiagnostics(AnalyzerOptions &AnalyzerOpts,
+ const std::string& prefix,
+ const LangOptions &LangOpts,
+ bool supportsMultipleFiles);
+
+ ~PlistDiagnostics() override {}
+
+ void FlushDiagnosticsImpl(std::vector<const PathDiagnostic *> &Diags,
+ FilesMade *filesMade) override;
+
+ StringRef getName() const override {
+ return "PlistDiagnostics";
+ }
+
+ PathGenerationScheme getGenerationScheme() const override {
+ return Extensive;
+ }
+ bool supportsLogicalOpControlFlow() const override { return true; }
+ bool supportsCrossFileDiagnostics() const override {
+ return SupportsCrossFileDiagnostics;
+ }
+ };
+} // end anonymous namespace
+
+PlistDiagnostics::PlistDiagnostics(AnalyzerOptions &AnalyzerOpts,
+ const std::string& output,
+ const LangOptions &LO,
+ bool supportsMultipleFiles)
+ : OutputFile(output),
+ LangOpts(LO),
+ SupportsCrossFileDiagnostics(supportsMultipleFiles) {}
+
+void ento::createPlistDiagnosticConsumer(AnalyzerOptions &AnalyzerOpts,
+ PathDiagnosticConsumers &C,
+ const std::string& s,
+ const Preprocessor &PP) {
+ C.push_back(new PlistDiagnostics(AnalyzerOpts, s,
+ PP.getLangOpts(), false));
+}
+
+void ento::createPlistMultiFileDiagnosticConsumer(AnalyzerOptions &AnalyzerOpts,
+ PathDiagnosticConsumers &C,
+ const std::string &s,
+ const Preprocessor &PP) {
+ C.push_back(new PlistDiagnostics(AnalyzerOpts, s,
+ PP.getLangOpts(), true));
+}
+
+static void ReportControlFlow(raw_ostream &o,
+ const PathDiagnosticControlFlowPiece& P,
+ const FIDMap& FM,
+ const SourceManager &SM,
+ const LangOptions &LangOpts,
+ unsigned indent) {
+
+ Indent(o, indent) << "<dict>\n";
+ ++indent;
+
+ Indent(o, indent) << "<key>kind</key><string>control</string>\n";
+
+ // Emit edges.
+ Indent(o, indent) << "<key>edges</key>\n";
+ ++indent;
+ Indent(o, indent) << "<array>\n";
+ ++indent;
+ for (PathDiagnosticControlFlowPiece::const_iterator I=P.begin(), E=P.end();
+ I!=E; ++I) {
+ Indent(o, indent) << "<dict>\n";
+ ++indent;
+
+ // Make the ranges of the start and end point self-consistent with adjacent edges
+ // by forcing to use only the beginning of the range. This simplifies the layout
+ // logic for clients.
+ Indent(o, indent) << "<key>start</key>\n";
+ SourceRange StartEdge(
+ SM.getExpansionLoc(I->getStart().asRange().getBegin()));
+ EmitRange(o, SM, Lexer::getAsCharRange(StartEdge, SM, LangOpts), FM,
+ indent + 1);
+
+ Indent(o, indent) << "<key>end</key>\n";
+ SourceRange EndEdge(SM.getExpansionLoc(I->getEnd().asRange().getBegin()));
+ EmitRange(o, SM, Lexer::getAsCharRange(EndEdge, SM, LangOpts), FM,
+ indent + 1);
+
+ --indent;
+ Indent(o, indent) << "</dict>\n";
+ }
+ --indent;
+ Indent(o, indent) << "</array>\n";
+ --indent;
+
+ // Output any helper text.
+ const std::string& s = P.getString();
+ if (!s.empty()) {
+ Indent(o, indent) << "<key>alternate</key>";
+ EmitString(o, s) << '\n';
+ }
+
+ --indent;
+ Indent(o, indent) << "</dict>\n";
+}
+
+static void ReportEvent(raw_ostream &o, const PathDiagnosticPiece& P,
+ const FIDMap& FM,
+ const SourceManager &SM,
+ const LangOptions &LangOpts,
+ unsigned indent,
+ unsigned depth,
+ bool isKeyEvent = false) {
+
+ Indent(o, indent) << "<dict>\n";
+ ++indent;
+
+ Indent(o, indent) << "<key>kind</key><string>event</string>\n";
+
+ if (isKeyEvent) {
+ Indent(o, indent) << "<key>key_event</key><true/>\n";
+ }
+
+ // Output the location.
+ FullSourceLoc L = P.getLocation().asLocation();
+
+ Indent(o, indent) << "<key>location</key>\n";
+ EmitLocation(o, SM, L, FM, indent);
+
+ // Output the ranges (if any).
+ ArrayRef<SourceRange> Ranges = P.getRanges();
+
+ if (!Ranges.empty()) {
+ Indent(o, indent) << "<key>ranges</key>\n";
+ Indent(o, indent) << "<array>\n";
+ ++indent;
+ for (auto &R : Ranges)
+ EmitRange(o, SM,
+ Lexer::getAsCharRange(SM.getExpansionRange(R), SM, LangOpts),
+ FM, indent + 1);
+ --indent;
+ Indent(o, indent) << "</array>\n";
+ }
+
+ // Output the call depth.
+ Indent(o, indent) << "<key>depth</key>";
+ EmitInteger(o, depth) << '\n';
+
+ // Output the text.
+ assert(!P.getString().empty());
+ Indent(o, indent) << "<key>extended_message</key>\n";
+ Indent(o, indent);
+ EmitString(o, P.getString()) << '\n';
+
+ // Output the short text.
+ // FIXME: Really use a short string.
+ Indent(o, indent) << "<key>message</key>\n";
+ Indent(o, indent);
+ EmitString(o, P.getString()) << '\n';
+
+ // Finish up.
+ --indent;
+ Indent(o, indent); o << "</dict>\n";
+}
+
+static void ReportPiece(raw_ostream &o,
+ const PathDiagnosticPiece &P,
+ const FIDMap& FM, const SourceManager &SM,
+ const LangOptions &LangOpts,
+ unsigned indent,
+ unsigned depth,
+ bool includeControlFlow,
+ bool isKeyEvent = false);
+
+static void ReportCall(raw_ostream &o,
+ const PathDiagnosticCallPiece &P,
+ const FIDMap& FM, const SourceManager &SM,
+ const LangOptions &LangOpts,
+ unsigned indent,
+ unsigned depth) {
+
+ IntrusiveRefCntPtr<PathDiagnosticEventPiece> callEnter =
+ P.getCallEnterEvent();
+
+ if (callEnter)
+ ReportPiece(o, *callEnter, FM, SM, LangOpts, indent, depth, true,
+ P.isLastInMainSourceFile());
+
+ IntrusiveRefCntPtr<PathDiagnosticEventPiece> callEnterWithinCaller =
+ P.getCallEnterWithinCallerEvent();
+
+ ++depth;
+
+ if (callEnterWithinCaller)
+ ReportPiece(o, *callEnterWithinCaller, FM, SM, LangOpts,
+ indent, depth, true);
+
+ for (PathPieces::const_iterator I = P.path.begin(), E = P.path.end();I!=E;++I)
+ ReportPiece(o, **I, FM, SM, LangOpts, indent, depth, true);
+
+ --depth;
+
+ IntrusiveRefCntPtr<PathDiagnosticEventPiece> callExit =
+ P.getCallExitEvent();
+
+ if (callExit)
+ ReportPiece(o, *callExit, FM, SM, LangOpts, indent, depth, true);
+}
+
+static void ReportMacro(raw_ostream &o,
+ const PathDiagnosticMacroPiece& P,
+ const FIDMap& FM, const SourceManager &SM,
+ const LangOptions &LangOpts,
+ unsigned indent,
+ unsigned depth) {
+
+ for (PathPieces::const_iterator I = P.subPieces.begin(), E=P.subPieces.end();
+ I!=E; ++I) {
+ ReportPiece(o, **I, FM, SM, LangOpts, indent, depth, false);
+ }
+}
+
+static void ReportDiag(raw_ostream &o, const PathDiagnosticPiece& P,
+ const FIDMap& FM, const SourceManager &SM,
+ const LangOptions &LangOpts) {
+ ReportPiece(o, P, FM, SM, LangOpts, 4, 0, true);
+}
+
+static void ReportPiece(raw_ostream &o,
+ const PathDiagnosticPiece &P,
+ const FIDMap& FM, const SourceManager &SM,
+ const LangOptions &LangOpts,
+ unsigned indent,
+ unsigned depth,
+ bool includeControlFlow,
+ bool isKeyEvent) {
+ switch (P.getKind()) {
+ case PathDiagnosticPiece::ControlFlow:
+ if (includeControlFlow)
+ ReportControlFlow(o, cast<PathDiagnosticControlFlowPiece>(P), FM, SM,
+ LangOpts, indent);
+ break;
+ case PathDiagnosticPiece::Call:
+ ReportCall(o, cast<PathDiagnosticCallPiece>(P), FM, SM, LangOpts,
+ indent, depth);
+ break;
+ case PathDiagnosticPiece::Event:
+ ReportEvent(o, cast<PathDiagnosticSpotPiece>(P), FM, SM, LangOpts,
+ indent, depth, isKeyEvent);
+ break;
+ case PathDiagnosticPiece::Macro:
+ ReportMacro(o, cast<PathDiagnosticMacroPiece>(P), FM, SM, LangOpts,
+ indent, depth);
+ break;
+ }
+}
+
+void PlistDiagnostics::FlushDiagnosticsImpl(
+ std::vector<const PathDiagnostic *> &Diags,
+ FilesMade *filesMade) {
+ // Build up a set of FIDs that we use by scanning the locations and
+ // ranges of the diagnostics.
+ FIDMap FM;
+ SmallVector<FileID, 10> Fids;
+ const SourceManager* SM = nullptr;
+
+ if (!Diags.empty())
+ SM = &(*(*Diags.begin())->path.begin())->getLocation().getManager();
+
+
+ for (std::vector<const PathDiagnostic*>::iterator DI = Diags.begin(),
+ DE = Diags.end(); DI != DE; ++DI) {
+
+ const PathDiagnostic *D = *DI;
+
+ SmallVector<const PathPieces *, 5> WorkList;
+ WorkList.push_back(&D->path);
+
+ while (!WorkList.empty()) {
+ const PathPieces &path = *WorkList.pop_back_val();
+
+ for (PathPieces::const_iterator I = path.begin(), E = path.end(); I != E;
+ ++I) {
+ const PathDiagnosticPiece *piece = I->get();
+ AddFID(FM, Fids, *SM, piece->getLocation().asLocation());
+ ArrayRef<SourceRange> Ranges = piece->getRanges();
+ for (ArrayRef<SourceRange>::iterator I = Ranges.begin(),
+ E = Ranges.end(); I != E; ++I) {
+ AddFID(FM, Fids, *SM, I->getBegin());
+ AddFID(FM, Fids, *SM, I->getEnd());
+ }
+
+ if (const PathDiagnosticCallPiece *call =
+ dyn_cast<PathDiagnosticCallPiece>(piece)) {
+ IntrusiveRefCntPtr<PathDiagnosticEventPiece>
+ callEnterWithin = call->getCallEnterWithinCallerEvent();
+ if (callEnterWithin)
+ AddFID(FM, Fids, *SM, callEnterWithin->getLocation().asLocation());
+
+ WorkList.push_back(&call->path);
+ }
+ else if (const PathDiagnosticMacroPiece *macro =
+ dyn_cast<PathDiagnosticMacroPiece>(piece)) {
+ WorkList.push_back(&macro->subPieces);
+ }
+ }
+ }
+ }
+
+ // Open the file.
+ std::error_code EC;
+ llvm::raw_fd_ostream o(OutputFile, EC, llvm::sys::fs::F_Text);
+ if (EC) {
+ llvm::errs() << "warning: could not create file: " << EC.message() << '\n';
+ return;
+ }
+
+ EmitPlistHeader(o);
+
+ // Write the root object: a <dict> containing...
+ // - "clang_version", the string representation of clang version
+ // - "files", an <array> mapping from FIDs to file names
+ // - "diagnostics", an <array> containing the path diagnostics
+ o << "<dict>\n" <<
+ " <key>clang_version</key>\n";
+ EmitString(o, getClangFullVersion()) << '\n';
+ o << " <key>files</key>\n"
+ " <array>\n";
+
+ for (FileID FID : Fids)
+ EmitString(o << " ", SM->getFileEntryForID(FID)->getName()) << '\n';
+
+ o << " </array>\n"
+ " <key>diagnostics</key>\n"
+ " <array>\n";
+
+ for (std::vector<const PathDiagnostic*>::iterator DI=Diags.begin(),
+ DE = Diags.end(); DI!=DE; ++DI) {
+
+ o << " <dict>\n"
+ " <key>path</key>\n";
+
+ const PathDiagnostic *D = *DI;
+
+ o << " <array>\n";
+
+ for (PathPieces::const_iterator I = D->path.begin(), E = D->path.end();
+ I != E; ++I)
+ ReportDiag(o, **I, FM, *SM, LangOpts);
+
+ o << " </array>\n";
+
+ // Output the bug type and bug category.
+ o << " <key>description</key>";
+ EmitString(o, D->getShortDescription()) << '\n';
+ o << " <key>category</key>";
+ EmitString(o, D->getCategory()) << '\n';
+ o << " <key>type</key>";
+ EmitString(o, D->getBugType()) << '\n';
+ o << " <key>check_name</key>";
+ EmitString(o, D->getCheckName()) << '\n';
+
+ // Output information about the semantic context where
+ // the issue occurred.
+ if (const Decl *DeclWithIssue = D->getDeclWithIssue()) {
+ // FIXME: handle blocks, which have no name.
+ if (const NamedDecl *ND = dyn_cast<NamedDecl>(DeclWithIssue)) {
+ StringRef declKind;
+ switch (ND->getKind()) {
+ case Decl::CXXRecord:
+ declKind = "C++ class";
+ break;
+ case Decl::CXXMethod:
+ declKind = "C++ method";
+ break;
+ case Decl::ObjCMethod:
+ declKind = "Objective-C method";
+ break;
+ case Decl::Function:
+ declKind = "function";
+ break;
+ default:
+ break;
+ }
+ if (!declKind.empty()) {
+ const std::string &declName = ND->getDeclName().getAsString();
+ o << " <key>issue_context_kind</key>";
+ EmitString(o, declKind) << '\n';
+ o << " <key>issue_context</key>";
+ EmitString(o, declName) << '\n';
+ }
+
+ // Output the bug hash for issue unique-ing. Currently, it's just an
+ // offset from the beginning of the function.
+ if (const Stmt *Body = DeclWithIssue->getBody()) {
+
+ // If the bug uniqueing location exists, use it for the hash.
+ // For example, this ensures that two leaks reported on the same line
+ // will have different issue_hashes and that the hash will identify
+ // the leak location even after code is added between the allocation
+ // site and the end of scope (leak report location).
+ PathDiagnosticLocation UPDLoc = D->getUniqueingLoc();
+ if (UPDLoc.isValid()) {
+ FullSourceLoc UL(SM->getExpansionLoc(UPDLoc.asLocation()),
+ *SM);
+ FullSourceLoc UFunL(SM->getExpansionLoc(
+ D->getUniqueingDecl()->getBody()->getLocStart()), *SM);
+ o << " <key>issue_hash</key><string>"
+ << UL.getExpansionLineNumber() - UFunL.getExpansionLineNumber()
+ << "</string>\n";
+
+ // Otherwise, use the location on which the bug is reported.
+ } else {
+ FullSourceLoc L(SM->getExpansionLoc(D->getLocation().asLocation()),
+ *SM);
+ FullSourceLoc FunL(SM->getExpansionLoc(Body->getLocStart()), *SM);
+ o << " <key>issue_hash</key><string>"
+ << L.getExpansionLineNumber() - FunL.getExpansionLineNumber()
+ << "</string>\n";
+ }
+
+ }
+ }
+ }
+
+ // Output the location of the bug.
+ o << " <key>location</key>\n";
+ EmitLocation(o, *SM, D->getLocation().asLocation(), FM, 2);
+
+ // Output the diagnostic to the sub-diagnostic client, if any.
+ if (!filesMade->empty()) {
+ StringRef lastName;
+ PDFileEntry::ConsumerFiles *files = filesMade->getFiles(*D);
+ if (files) {
+ for (PDFileEntry::ConsumerFiles::const_iterator CI = files->begin(),
+ CE = files->end(); CI != CE; ++CI) {
+ StringRef newName = CI->first;
+ if (newName != lastName) {
+ if (!lastName.empty()) {
+ o << " </array>\n";
+ }
+ lastName = newName;
+ o << " <key>" << lastName << "_files</key>\n";
+ o << " <array>\n";
+ }
+ o << " <string>" << CI->second << "</string>\n";
+ }
+ o << " </array>\n";
+ }
+ }
+
+ // Close up the entry.
+ o << " </dict>\n";
+ }
+
+ o << " </array>\n";
+
+ // Finish.
+ o << "</dict>\n</plist>";
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/PrettyStackTraceLocationContext.h b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/PrettyStackTraceLocationContext.h
new file mode 100644
index 0000000..e7cc23c
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/PrettyStackTraceLocationContext.h
@@ -0,0 +1,45 @@
+//==- PrettyStackTraceLocationContext.h - show analysis backtrace --*- C++ -*-//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_STATICANALYZER_CORE_PRETTYSTACKTRACELOCATIONCONTEXT_H
+#define LLVM_CLANG_LIB_STATICANALYZER_CORE_PRETTYSTACKTRACELOCATIONCONTEXT_H
+
+#include "clang/Analysis/AnalysisContext.h"
+
+namespace clang {
+namespace ento {
+
+/// While alive, includes the current analysis stack in a crash trace.
+///
+/// Example:
+/// \code
+/// 0. Program arguments: ...
+/// 1. <eof> parser at end of file
+/// 2. While analyzing stack:
+/// #0 void inlined()
+/// #1 void test()
+/// 3. crash-trace.c:6:3: Error evaluating statement
+/// \endcode
+class PrettyStackTraceLocationContext : public llvm::PrettyStackTraceEntry {
+ const LocationContext *LCtx;
+public:
+ PrettyStackTraceLocationContext(const LocationContext *LC) : LCtx(LC) {
+ assert(LCtx);
+ }
+
+ void print(raw_ostream &OS) const override {
+ OS << "While analyzing stack: \n";
+ LCtx->dumpStack(OS, "\t");
+ }
+};
+
+} // end ento namespace
+} // end clang namespace
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/ProgramState.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/ProgramState.cpp
new file mode 100644
index 0000000..60b32c7
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/ProgramState.cpp
@@ -0,0 +1,787 @@
+//= ProgramState.cpp - Path-Sensitive "State" for tracking values --*- C++ -*--=
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements ProgramState and ProgramStateManager.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
+#include "clang/Analysis/CFG.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/TaintManager.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace clang { namespace ento {
+/// Increments the number of times this state is referenced.
+
+void ProgramStateRetain(const ProgramState *state) {
+ ++const_cast<ProgramState*>(state)->refCount;
+}
+
+/// Decrement the number of times this state is referenced.
+void ProgramStateRelease(const ProgramState *state) {
+ assert(state->refCount > 0);
+ ProgramState *s = const_cast<ProgramState*>(state);
+ if (--s->refCount == 0) {
+ ProgramStateManager &Mgr = s->getStateManager();
+ Mgr.StateSet.RemoveNode(s);
+ s->~ProgramState();
+ Mgr.freeStates.push_back(s);
+ }
+}
+}}
+
+ProgramState::ProgramState(ProgramStateManager *mgr, const Environment& env,
+ StoreRef st, GenericDataMap gdm)
+ : stateMgr(mgr),
+ Env(env),
+ store(st.getStore()),
+ GDM(gdm),
+ refCount(0) {
+ stateMgr->getStoreManager().incrementReferenceCount(store);
+}
+
+ProgramState::ProgramState(const ProgramState &RHS)
+ : llvm::FoldingSetNode(),
+ stateMgr(RHS.stateMgr),
+ Env(RHS.Env),
+ store(RHS.store),
+ GDM(RHS.GDM),
+ refCount(0) {
+ stateMgr->getStoreManager().incrementReferenceCount(store);
+}
+
+ProgramState::~ProgramState() {
+ if (store)
+ stateMgr->getStoreManager().decrementReferenceCount(store);
+}
+
+ProgramStateManager::ProgramStateManager(ASTContext &Ctx,
+ StoreManagerCreator CreateSMgr,
+ ConstraintManagerCreator CreateCMgr,
+ llvm::BumpPtrAllocator &alloc,
+ SubEngine *SubEng)
+ : Eng(SubEng), EnvMgr(alloc), GDMFactory(alloc),
+ svalBuilder(createSimpleSValBuilder(alloc, Ctx, *this)),
+ CallEventMgr(new CallEventManager(alloc)), Alloc(alloc) {
+ StoreMgr = (*CreateSMgr)(*this);
+ ConstraintMgr = (*CreateCMgr)(*this, SubEng);
+}
+
+
+ProgramStateManager::~ProgramStateManager() {
+ for (GDMContextsTy::iterator I=GDMContexts.begin(), E=GDMContexts.end();
+ I!=E; ++I)
+ I->second.second(I->second.first);
+}
+
+ProgramStateRef
+ProgramStateManager::removeDeadBindings(ProgramStateRef state,
+ const StackFrameContext *LCtx,
+ SymbolReaper& SymReaper) {
+
+ // This code essentially performs a "mark-and-sweep" of the VariableBindings.
+ // The roots are any Block-level exprs and Decls that our liveness algorithm
+ // tells us are live. We then see what Decls they may reference, and keep
+ // those around. This code more than likely can be made faster, and the
+ // frequency of which this method is called should be experimented with
+ // for optimum performance.
+ ProgramState NewState = *state;
+
+ NewState.Env = EnvMgr.removeDeadBindings(NewState.Env, SymReaper, state);
+
+ // Clean up the store.
+ StoreRef newStore = StoreMgr->removeDeadBindings(NewState.getStore(), LCtx,
+ SymReaper);
+ NewState.setStore(newStore);
+ SymReaper.setReapedStore(newStore);
+
+ ProgramStateRef Result = getPersistentState(NewState);
+ return ConstraintMgr->removeDeadBindings(Result, SymReaper);
+}
+
+ProgramStateRef ProgramState::bindLoc(Loc LV, SVal V, bool notifyChanges) const {
+ ProgramStateManager &Mgr = getStateManager();
+ ProgramStateRef newState = makeWithStore(Mgr.StoreMgr->Bind(getStore(),
+ LV, V));
+ const MemRegion *MR = LV.getAsRegion();
+ if (MR && Mgr.getOwningEngine() && notifyChanges)
+ return Mgr.getOwningEngine()->processRegionChange(newState, MR);
+
+ return newState;
+}
+
+ProgramStateRef ProgramState::bindDefault(SVal loc, SVal V) const {
+ ProgramStateManager &Mgr = getStateManager();
+ const MemRegion *R = loc.castAs<loc::MemRegionVal>().getRegion();
+ const StoreRef &newStore = Mgr.StoreMgr->BindDefault(getStore(), R, V);
+ ProgramStateRef new_state = makeWithStore(newStore);
+ return Mgr.getOwningEngine() ?
+ Mgr.getOwningEngine()->processRegionChange(new_state, R) :
+ new_state;
+}
+
+typedef ArrayRef<const MemRegion *> RegionList;
+typedef ArrayRef<SVal> ValueList;
+
+ProgramStateRef
+ProgramState::invalidateRegions(RegionList Regions,
+ const Expr *E, unsigned Count,
+ const LocationContext *LCtx,
+ bool CausedByPointerEscape,
+ InvalidatedSymbols *IS,
+ const CallEvent *Call,
+ RegionAndSymbolInvalidationTraits *ITraits) const {
+ SmallVector<SVal, 8> Values;
+ for (RegionList::const_iterator I = Regions.begin(),
+ End = Regions.end(); I != End; ++I)
+ Values.push_back(loc::MemRegionVal(*I));
+
+ return invalidateRegionsImpl(Values, E, Count, LCtx, CausedByPointerEscape,
+ IS, ITraits, Call);
+}
+
+ProgramStateRef
+ProgramState::invalidateRegions(ValueList Values,
+ const Expr *E, unsigned Count,
+ const LocationContext *LCtx,
+ bool CausedByPointerEscape,
+ InvalidatedSymbols *IS,
+ const CallEvent *Call,
+ RegionAndSymbolInvalidationTraits *ITraits) const {
+
+ return invalidateRegionsImpl(Values, E, Count, LCtx, CausedByPointerEscape,
+ IS, ITraits, Call);
+}
+
+ProgramStateRef
+ProgramState::invalidateRegionsImpl(ValueList Values,
+ const Expr *E, unsigned Count,
+ const LocationContext *LCtx,
+ bool CausedByPointerEscape,
+ InvalidatedSymbols *IS,
+ RegionAndSymbolInvalidationTraits *ITraits,
+ const CallEvent *Call) const {
+ ProgramStateManager &Mgr = getStateManager();
+ SubEngine* Eng = Mgr.getOwningEngine();
+
+ InvalidatedSymbols Invalidated;
+ if (!IS)
+ IS = &Invalidated;
+
+ RegionAndSymbolInvalidationTraits ITraitsLocal;
+ if (!ITraits)
+ ITraits = &ITraitsLocal;
+
+ if (Eng) {
+ StoreManager::InvalidatedRegions TopLevelInvalidated;
+ StoreManager::InvalidatedRegions Invalidated;
+ const StoreRef &newStore
+ = Mgr.StoreMgr->invalidateRegions(getStore(), Values, E, Count, LCtx, Call,
+ *IS, *ITraits, &TopLevelInvalidated,
+ &Invalidated);
+
+ ProgramStateRef newState = makeWithStore(newStore);
+
+ if (CausedByPointerEscape) {
+ newState = Eng->notifyCheckersOfPointerEscape(newState, IS,
+ TopLevelInvalidated,
+ Invalidated, Call,
+ *ITraits);
+ }
+
+ return Eng->processRegionChanges(newState, IS, TopLevelInvalidated,
+ Invalidated, Call);
+ }
+
+ const StoreRef &newStore =
+ Mgr.StoreMgr->invalidateRegions(getStore(), Values, E, Count, LCtx, Call,
+ *IS, *ITraits, nullptr, nullptr);
+ return makeWithStore(newStore);
+}
+
+ProgramStateRef ProgramState::killBinding(Loc LV) const {
+ assert(!LV.getAs<loc::MemRegionVal>() && "Use invalidateRegion instead.");
+
+ Store OldStore = getStore();
+ const StoreRef &newStore =
+ getStateManager().StoreMgr->killBinding(OldStore, LV);
+
+ if (newStore.getStore() == OldStore)
+ return this;
+
+ return makeWithStore(newStore);
+}
+
+ProgramStateRef
+ProgramState::enterStackFrame(const CallEvent &Call,
+ const StackFrameContext *CalleeCtx) const {
+ const StoreRef &NewStore =
+ getStateManager().StoreMgr->enterStackFrame(getStore(), Call, CalleeCtx);
+ return makeWithStore(NewStore);
+}
+
+SVal ProgramState::getSValAsScalarOrLoc(const MemRegion *R) const {
+ // We only want to do fetches from regions that we can actually bind
+ // values. For example, SymbolicRegions of type 'id<...>' cannot
+ // have direct bindings (but their can be bindings on their subregions).
+ if (!R->isBoundable())
+ return UnknownVal();
+
+ if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
+ QualType T = TR->getValueType();
+ if (Loc::isLocType(T) || T->isIntegralOrEnumerationType())
+ return getSVal(R);
+ }
+
+ return UnknownVal();
+}
+
+SVal ProgramState::getSVal(Loc location, QualType T) const {
+ SVal V = getRawSVal(cast<Loc>(location), T);
+
+ // If 'V' is a symbolic value that is *perfectly* constrained to
+ // be a constant value, use that value instead to lessen the burden
+ // on later analysis stages (so we have less symbolic values to reason
+ // about).
+ if (!T.isNull()) {
+ if (SymbolRef sym = V.getAsSymbol()) {
+ if (const llvm::APSInt *Int = getStateManager()
+ .getConstraintManager()
+ .getSymVal(this, sym)) {
+ // FIXME: Because we don't correctly model (yet) sign-extension
+ // and truncation of symbolic values, we need to convert
+ // the integer value to the correct signedness and bitwidth.
+ //
+ // This shows up in the following:
+ //
+ // char foo();
+ // unsigned x = foo();
+ // if (x == 54)
+ // ...
+ //
+ // The symbolic value stored to 'x' is actually the conjured
+ // symbol for the call to foo(); the type of that symbol is 'char',
+ // not unsigned.
+ const llvm::APSInt &NewV = getBasicVals().Convert(T, *Int);
+
+ if (V.getAs<Loc>())
+ return loc::ConcreteInt(NewV);
+ else
+ return nonloc::ConcreteInt(NewV);
+ }
+ }
+ }
+
+ return V;
+}
+
+ProgramStateRef ProgramState::BindExpr(const Stmt *S,
+ const LocationContext *LCtx,
+ SVal V, bool Invalidate) const{
+ Environment NewEnv =
+ getStateManager().EnvMgr.bindExpr(Env, EnvironmentEntry(S, LCtx), V,
+ Invalidate);
+ if (NewEnv == Env)
+ return this;
+
+ ProgramState NewSt = *this;
+ NewSt.Env = NewEnv;
+ return getStateManager().getPersistentState(NewSt);
+}
+
+ProgramStateRef ProgramState::assumeInBound(DefinedOrUnknownSVal Idx,
+ DefinedOrUnknownSVal UpperBound,
+ bool Assumption,
+ QualType indexTy) const {
+ if (Idx.isUnknown() || UpperBound.isUnknown())
+ return this;
+
+ // Build an expression for 0 <= Idx < UpperBound.
+ // This is the same as Idx + MIN < UpperBound + MIN, if overflow is allowed.
+ // FIXME: This should probably be part of SValBuilder.
+ ProgramStateManager &SM = getStateManager();
+ SValBuilder &svalBuilder = SM.getSValBuilder();
+ ASTContext &Ctx = svalBuilder.getContext();
+
+ // Get the offset: the minimum value of the array index type.
+ BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
+ // FIXME: This should be using ValueManager::ArrayindexTy...somehow.
+ if (indexTy.isNull())
+ indexTy = Ctx.IntTy;
+ nonloc::ConcreteInt Min(BVF.getMinValue(indexTy));
+
+ // Adjust the index.
+ SVal newIdx = svalBuilder.evalBinOpNN(this, BO_Add,
+ Idx.castAs<NonLoc>(), Min, indexTy);
+ if (newIdx.isUnknownOrUndef())
+ return this;
+
+ // Adjust the upper bound.
+ SVal newBound =
+ svalBuilder.evalBinOpNN(this, BO_Add, UpperBound.castAs<NonLoc>(),
+ Min, indexTy);
+
+ if (newBound.isUnknownOrUndef())
+ return this;
+
+ // Build the actual comparison.
+ SVal inBound = svalBuilder.evalBinOpNN(this, BO_LT, newIdx.castAs<NonLoc>(),
+ newBound.castAs<NonLoc>(), Ctx.IntTy);
+ if (inBound.isUnknownOrUndef())
+ return this;
+
+ // Finally, let the constraint manager take care of it.
+ ConstraintManager &CM = SM.getConstraintManager();
+ return CM.assume(this, inBound.castAs<DefinedSVal>(), Assumption);
+}
+
+ConditionTruthVal ProgramState::isNull(SVal V) const {
+ if (V.isZeroConstant())
+ return true;
+
+ if (V.isConstant())
+ return false;
+
+ SymbolRef Sym = V.getAsSymbol(/* IncludeBaseRegion */ true);
+ if (!Sym)
+ return ConditionTruthVal();
+
+ return getStateManager().ConstraintMgr->isNull(this, Sym);
+}
+
+ProgramStateRef ProgramStateManager::getInitialState(const LocationContext *InitLoc) {
+ ProgramState State(this,
+ EnvMgr.getInitialEnvironment(),
+ StoreMgr->getInitialStore(InitLoc),
+ GDMFactory.getEmptyMap());
+
+ return getPersistentState(State);
+}
+
+ProgramStateRef ProgramStateManager::getPersistentStateWithGDM(
+ ProgramStateRef FromState,
+ ProgramStateRef GDMState) {
+ ProgramState NewState(*FromState);
+ NewState.GDM = GDMState->GDM;
+ return getPersistentState(NewState);
+}
+
+ProgramStateRef ProgramStateManager::getPersistentState(ProgramState &State) {
+
+ llvm::FoldingSetNodeID ID;
+ State.Profile(ID);
+ void *InsertPos;
+
+ if (ProgramState *I = StateSet.FindNodeOrInsertPos(ID, InsertPos))
+ return I;
+
+ ProgramState *newState = nullptr;
+ if (!freeStates.empty()) {
+ newState = freeStates.back();
+ freeStates.pop_back();
+ }
+ else {
+ newState = (ProgramState*) Alloc.Allocate<ProgramState>();
+ }
+ new (newState) ProgramState(State);
+ StateSet.InsertNode(newState, InsertPos);
+ return newState;
+}
+
+ProgramStateRef ProgramState::makeWithStore(const StoreRef &store) const {
+ ProgramState NewSt(*this);
+ NewSt.setStore(store);
+ return getStateManager().getPersistentState(NewSt);
+}
+
+void ProgramState::setStore(const StoreRef &newStore) {
+ Store newStoreStore = newStore.getStore();
+ if (newStoreStore)
+ stateMgr->getStoreManager().incrementReferenceCount(newStoreStore);
+ if (store)
+ stateMgr->getStoreManager().decrementReferenceCount(store);
+ store = newStoreStore;
+}
+
+//===----------------------------------------------------------------------===//
+// State pretty-printing.
+//===----------------------------------------------------------------------===//
+
+void ProgramState::print(raw_ostream &Out,
+ const char *NL, const char *Sep) const {
+ // Print the store.
+ ProgramStateManager &Mgr = getStateManager();
+ Mgr.getStoreManager().print(getStore(), Out, NL, Sep);
+
+ // Print out the environment.
+ Env.print(Out, NL, Sep);
+
+ // Print out the constraints.
+ Mgr.getConstraintManager().print(this, Out, NL, Sep);
+
+ // Print checker-specific data.
+ Mgr.getOwningEngine()->printState(Out, this, NL, Sep);
+}
+
+void ProgramState::printDOT(raw_ostream &Out) const {
+ print(Out, "\\l", "\\|");
+}
+
+void ProgramState::dump() const {
+ print(llvm::errs());
+}
+
+void ProgramState::printTaint(raw_ostream &Out,
+ const char *NL, const char *Sep) const {
+ TaintMapImpl TM = get<TaintMap>();
+
+ if (!TM.isEmpty())
+ Out <<"Tainted Symbols:" << NL;
+
+ for (TaintMapImpl::iterator I = TM.begin(), E = TM.end(); I != E; ++I) {
+ Out << I->first << " : " << I->second << NL;
+ }
+}
+
+void ProgramState::dumpTaint() const {
+ printTaint(llvm::errs());
+}
+
+//===----------------------------------------------------------------------===//
+// Generic Data Map.
+//===----------------------------------------------------------------------===//
+
+void *const* ProgramState::FindGDM(void *K) const {
+ return GDM.lookup(K);
+}
+
+void*
+ProgramStateManager::FindGDMContext(void *K,
+ void *(*CreateContext)(llvm::BumpPtrAllocator&),
+ void (*DeleteContext)(void*)) {
+
+ std::pair<void*, void (*)(void*)>& p = GDMContexts[K];
+ if (!p.first) {
+ p.first = CreateContext(Alloc);
+ p.second = DeleteContext;
+ }
+
+ return p.first;
+}
+
+ProgramStateRef ProgramStateManager::addGDM(ProgramStateRef St, void *Key, void *Data){
+ ProgramState::GenericDataMap M1 = St->getGDM();
+ ProgramState::GenericDataMap M2 = GDMFactory.add(M1, Key, Data);
+
+ if (M1 == M2)
+ return St;
+
+ ProgramState NewSt = *St;
+ NewSt.GDM = M2;
+ return getPersistentState(NewSt);
+}
+
+ProgramStateRef ProgramStateManager::removeGDM(ProgramStateRef state, void *Key) {
+ ProgramState::GenericDataMap OldM = state->getGDM();
+ ProgramState::GenericDataMap NewM = GDMFactory.remove(OldM, Key);
+
+ if (NewM == OldM)
+ return state;
+
+ ProgramState NewState = *state;
+ NewState.GDM = NewM;
+ return getPersistentState(NewState);
+}
+
+bool ScanReachableSymbols::scan(nonloc::LazyCompoundVal val) {
+ bool wasVisited = !visited.insert(val.getCVData()).second;
+ if (wasVisited)
+ return true;
+
+ StoreManager &StoreMgr = state->getStateManager().getStoreManager();
+ // FIXME: We don't really want to use getBaseRegion() here because pointer
+ // arithmetic doesn't apply, but scanReachableSymbols only accepts base
+ // regions right now.
+ const MemRegion *R = val.getRegion()->getBaseRegion();
+ return StoreMgr.scanReachableSymbols(val.getStore(), R, *this);
+}
+
+bool ScanReachableSymbols::scan(nonloc::CompoundVal val) {
+ for (nonloc::CompoundVal::iterator I=val.begin(), E=val.end(); I!=E; ++I)
+ if (!scan(*I))
+ return false;
+
+ return true;
+}
+
+bool ScanReachableSymbols::scan(const SymExpr *sym) {
+ bool wasVisited = !visited.insert(sym).second;
+ if (wasVisited)
+ return true;
+
+ if (!visitor.VisitSymbol(sym))
+ return false;
+
+ // TODO: should be rewritten using SymExpr::symbol_iterator.
+ switch (sym->getKind()) {
+ case SymExpr::RegionValueKind:
+ case SymExpr::ConjuredKind:
+ case SymExpr::DerivedKind:
+ case SymExpr::ExtentKind:
+ case SymExpr::MetadataKind:
+ break;
+ case SymExpr::CastSymbolKind:
+ return scan(cast<SymbolCast>(sym)->getOperand());
+ case SymExpr::SymIntKind:
+ return scan(cast<SymIntExpr>(sym)->getLHS());
+ case SymExpr::IntSymKind:
+ return scan(cast<IntSymExpr>(sym)->getRHS());
+ case SymExpr::SymSymKind: {
+ const SymSymExpr *x = cast<SymSymExpr>(sym);
+ return scan(x->getLHS()) && scan(x->getRHS());
+ }
+ }
+ return true;
+}
+
+bool ScanReachableSymbols::scan(SVal val) {
+ if (Optional<loc::MemRegionVal> X = val.getAs<loc::MemRegionVal>())
+ return scan(X->getRegion());
+
+ if (Optional<nonloc::LazyCompoundVal> X =
+ val.getAs<nonloc::LazyCompoundVal>())
+ return scan(*X);
+
+ if (Optional<nonloc::LocAsInteger> X = val.getAs<nonloc::LocAsInteger>())
+ return scan(X->getLoc());
+
+ if (SymbolRef Sym = val.getAsSymbol())
+ return scan(Sym);
+
+ if (const SymExpr *Sym = val.getAsSymbolicExpression())
+ return scan(Sym);
+
+ if (Optional<nonloc::CompoundVal> X = val.getAs<nonloc::CompoundVal>())
+ return scan(*X);
+
+ return true;
+}
+
+bool ScanReachableSymbols::scan(const MemRegion *R) {
+ if (isa<MemSpaceRegion>(R))
+ return true;
+
+ bool wasVisited = !visited.insert(R).second;
+ if (wasVisited)
+ return true;
+
+ if (!visitor.VisitMemRegion(R))
+ return false;
+
+ // If this is a symbolic region, visit the symbol for the region.
+ if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
+ if (!visitor.VisitSymbol(SR->getSymbol()))
+ return false;
+
+ // If this is a subregion, also visit the parent regions.
+ if (const SubRegion *SR = dyn_cast<SubRegion>(R)) {
+ const MemRegion *Super = SR->getSuperRegion();
+ if (!scan(Super))
+ return false;
+
+ // When we reach the topmost region, scan all symbols in it.
+ if (isa<MemSpaceRegion>(Super)) {
+ StoreManager &StoreMgr = state->getStateManager().getStoreManager();
+ if (!StoreMgr.scanReachableSymbols(state->getStore(), SR, *this))
+ return false;
+ }
+ }
+
+ // Regions captured by a block are also implicitly reachable.
+ if (const BlockDataRegion *BDR = dyn_cast<BlockDataRegion>(R)) {
+ BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
+ E = BDR->referenced_vars_end();
+ for ( ; I != E; ++I) {
+ if (!scan(I.getCapturedRegion()))
+ return false;
+ }
+ }
+
+ return true;
+}
+
+bool ProgramState::scanReachableSymbols(SVal val, SymbolVisitor& visitor) const {
+ ScanReachableSymbols S(this, visitor);
+ return S.scan(val);
+}
+
+bool ProgramState::scanReachableSymbols(const SVal *I, const SVal *E,
+ SymbolVisitor &visitor) const {
+ ScanReachableSymbols S(this, visitor);
+ for ( ; I != E; ++I) {
+ if (!S.scan(*I))
+ return false;
+ }
+ return true;
+}
+
+bool ProgramState::scanReachableSymbols(const MemRegion * const *I,
+ const MemRegion * const *E,
+ SymbolVisitor &visitor) const {
+ ScanReachableSymbols S(this, visitor);
+ for ( ; I != E; ++I) {
+ if (!S.scan(*I))
+ return false;
+ }
+ return true;
+}
+
+ProgramStateRef ProgramState::addTaint(const Stmt *S,
+ const LocationContext *LCtx,
+ TaintTagType Kind) const {
+ if (const Expr *E = dyn_cast_or_null<Expr>(S))
+ S = E->IgnoreParens();
+
+ SymbolRef Sym = getSVal(S, LCtx).getAsSymbol();
+ if (Sym)
+ return addTaint(Sym, Kind);
+
+ const MemRegion *R = getSVal(S, LCtx).getAsRegion();
+ addTaint(R, Kind);
+
+ // Cannot add taint, so just return the state.
+ return this;
+}
+
+ProgramStateRef ProgramState::addTaint(const MemRegion *R,
+ TaintTagType Kind) const {
+ if (const SymbolicRegion *SR = dyn_cast_or_null<SymbolicRegion>(R))
+ return addTaint(SR->getSymbol(), Kind);
+ return this;
+}
+
+ProgramStateRef ProgramState::addTaint(SymbolRef Sym,
+ TaintTagType Kind) const {
+ // If this is a symbol cast, remove the cast before adding the taint. Taint
+ // is cast agnostic.
+ while (const SymbolCast *SC = dyn_cast<SymbolCast>(Sym))
+ Sym = SC->getOperand();
+
+ ProgramStateRef NewState = set<TaintMap>(Sym, Kind);
+ assert(NewState);
+ return NewState;
+}
+
+bool ProgramState::isTainted(const Stmt *S, const LocationContext *LCtx,
+ TaintTagType Kind) const {
+ if (const Expr *E = dyn_cast_or_null<Expr>(S))
+ S = E->IgnoreParens();
+
+ SVal val = getSVal(S, LCtx);
+ return isTainted(val, Kind);
+}
+
+bool ProgramState::isTainted(SVal V, TaintTagType Kind) const {
+ if (const SymExpr *Sym = V.getAsSymExpr())
+ return isTainted(Sym, Kind);
+ if (const MemRegion *Reg = V.getAsRegion())
+ return isTainted(Reg, Kind);
+ return false;
+}
+
+bool ProgramState::isTainted(const MemRegion *Reg, TaintTagType K) const {
+ if (!Reg)
+ return false;
+
+ // Element region (array element) is tainted if either the base or the offset
+ // are tainted.
+ if (const ElementRegion *ER = dyn_cast<ElementRegion>(Reg))
+ return isTainted(ER->getSuperRegion(), K) || isTainted(ER->getIndex(), K);
+
+ if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Reg))
+ return isTainted(SR->getSymbol(), K);
+
+ if (const SubRegion *ER = dyn_cast<SubRegion>(Reg))
+ return isTainted(ER->getSuperRegion(), K);
+
+ return false;
+}
+
+bool ProgramState::isTainted(SymbolRef Sym, TaintTagType Kind) const {
+ if (!Sym)
+ return false;
+
+ // Traverse all the symbols this symbol depends on to see if any are tainted.
+ bool Tainted = false;
+ for (SymExpr::symbol_iterator SI = Sym->symbol_begin(), SE =Sym->symbol_end();
+ SI != SE; ++SI) {
+ if (!isa<SymbolData>(*SI))
+ continue;
+
+ const TaintTagType *Tag = get<TaintMap>(*SI);
+ Tainted = (Tag && *Tag == Kind);
+
+ // If this is a SymbolDerived with a tainted parent, it's also tainted.
+ if (const SymbolDerived *SD = dyn_cast<SymbolDerived>(*SI))
+ Tainted = Tainted || isTainted(SD->getParentSymbol(), Kind);
+
+ // If memory region is tainted, data is also tainted.
+ if (const SymbolRegionValue *SRV = dyn_cast<SymbolRegionValue>(*SI))
+ Tainted = Tainted || isTainted(SRV->getRegion(), Kind);
+
+ // If If this is a SymbolCast from a tainted value, it's also tainted.
+ if (const SymbolCast *SC = dyn_cast<SymbolCast>(*SI))
+ Tainted = Tainted || isTainted(SC->getOperand(), Kind);
+
+ if (Tainted)
+ return true;
+ }
+
+ return Tainted;
+}
+
+/// The GDM component containing the dynamic type info. This is a map from a
+/// symbol to its most likely type.
+REGISTER_TRAIT_WITH_PROGRAMSTATE(DynamicTypeMap,
+ CLANG_ENTO_PROGRAMSTATE_MAP(const MemRegion *,
+ DynamicTypeInfo))
+
+DynamicTypeInfo ProgramState::getDynamicTypeInfo(const MemRegion *Reg) const {
+ Reg = Reg->StripCasts();
+
+ // Look up the dynamic type in the GDM.
+ const DynamicTypeInfo *GDMType = get<DynamicTypeMap>(Reg);
+ if (GDMType)
+ return *GDMType;
+
+ // Otherwise, fall back to what we know about the region.
+ if (const TypedRegion *TR = dyn_cast<TypedRegion>(Reg))
+ return DynamicTypeInfo(TR->getLocationType(), /*CanBeSubclass=*/false);
+
+ if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Reg)) {
+ SymbolRef Sym = SR->getSymbol();
+ return DynamicTypeInfo(Sym->getType());
+ }
+
+ return DynamicTypeInfo();
+}
+
+ProgramStateRef ProgramState::setDynamicTypeInfo(const MemRegion *Reg,
+ DynamicTypeInfo NewTy) const {
+ Reg = Reg->StripCasts();
+ ProgramStateRef NewState = set<DynamicTypeMap>(Reg, NewTy);
+ assert(NewState);
+ return NewState;
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/RangeConstraintManager.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/RangeConstraintManager.cpp
new file mode 100644
index 0000000..170f7c0
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/RangeConstraintManager.cpp
@@ -0,0 +1,589 @@
+//== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines RangeConstraintManager, a class that tracks simple
+// equality and inequality constraints on symbolic values of ProgramState.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SimpleConstraintManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/ADT/ImmutableSet.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+
+/// A Range represents the closed range [from, to]. The caller must
+/// guarantee that from <= to. Note that Range is immutable, so as not
+/// to subvert RangeSet's immutability.
+namespace {
+class Range : public std::pair<const llvm::APSInt*,
+ const llvm::APSInt*> {
+public:
+ Range(const llvm::APSInt &from, const llvm::APSInt &to)
+ : std::pair<const llvm::APSInt*, const llvm::APSInt*>(&from, &to) {
+ assert(from <= to);
+ }
+ bool Includes(const llvm::APSInt &v) const {
+ return *first <= v && v <= *second;
+ }
+ const llvm::APSInt &From() const {
+ return *first;
+ }
+ const llvm::APSInt &To() const {
+ return *second;
+ }
+ const llvm::APSInt *getConcreteValue() const {
+ return &From() == &To() ? &From() : nullptr;
+ }
+
+ void Profile(llvm::FoldingSetNodeID &ID) const {
+ ID.AddPointer(&From());
+ ID.AddPointer(&To());
+ }
+};
+
+
+class RangeTrait : public llvm::ImutContainerInfo<Range> {
+public:
+ // When comparing if one Range is less than another, we should compare
+ // the actual APSInt values instead of their pointers. This keeps the order
+ // consistent (instead of comparing by pointer values) and can potentially
+ // be used to speed up some of the operations in RangeSet.
+ static inline bool isLess(key_type_ref lhs, key_type_ref rhs) {
+ return *lhs.first < *rhs.first || (!(*rhs.first < *lhs.first) &&
+ *lhs.second < *rhs.second);
+ }
+};
+
+/// RangeSet contains a set of ranges. If the set is empty, then
+/// there the value of a symbol is overly constrained and there are no
+/// possible values for that symbol.
+class RangeSet {
+ typedef llvm::ImmutableSet<Range, RangeTrait> PrimRangeSet;
+ PrimRangeSet ranges; // no need to make const, since it is an
+ // ImmutableSet - this allows default operator=
+ // to work.
+public:
+ typedef PrimRangeSet::Factory Factory;
+ typedef PrimRangeSet::iterator iterator;
+
+ RangeSet(PrimRangeSet RS) : ranges(RS) {}
+
+ iterator begin() const { return ranges.begin(); }
+ iterator end() const { return ranges.end(); }
+
+ bool isEmpty() const { return ranges.isEmpty(); }
+
+ /// Construct a new RangeSet representing '{ [from, to] }'.
+ RangeSet(Factory &F, const llvm::APSInt &from, const llvm::APSInt &to)
+ : ranges(F.add(F.getEmptySet(), Range(from, to))) {}
+
+ /// Profile - Generates a hash profile of this RangeSet for use
+ /// by FoldingSet.
+ void Profile(llvm::FoldingSetNodeID &ID) const { ranges.Profile(ID); }
+
+ /// getConcreteValue - If a symbol is contrained to equal a specific integer
+ /// constant then this method returns that value. Otherwise, it returns
+ /// NULL.
+ const llvm::APSInt* getConcreteValue() const {
+ return ranges.isSingleton() ? ranges.begin()->getConcreteValue() : nullptr;
+ }
+
+private:
+ void IntersectInRange(BasicValueFactory &BV, Factory &F,
+ const llvm::APSInt &Lower,
+ const llvm::APSInt &Upper,
+ PrimRangeSet &newRanges,
+ PrimRangeSet::iterator &i,
+ PrimRangeSet::iterator &e) const {
+ // There are six cases for each range R in the set:
+ // 1. R is entirely before the intersection range.
+ // 2. R is entirely after the intersection range.
+ // 3. R contains the entire intersection range.
+ // 4. R starts before the intersection range and ends in the middle.
+ // 5. R starts in the middle of the intersection range and ends after it.
+ // 6. R is entirely contained in the intersection range.
+ // These correspond to each of the conditions below.
+ for (/* i = begin(), e = end() */; i != e; ++i) {
+ if (i->To() < Lower) {
+ continue;
+ }
+ if (i->From() > Upper) {
+ break;
+ }
+
+ if (i->Includes(Lower)) {
+ if (i->Includes(Upper)) {
+ newRanges = F.add(newRanges, Range(BV.getValue(Lower),
+ BV.getValue(Upper)));
+ break;
+ } else
+ newRanges = F.add(newRanges, Range(BV.getValue(Lower), i->To()));
+ } else {
+ if (i->Includes(Upper)) {
+ newRanges = F.add(newRanges, Range(i->From(), BV.getValue(Upper)));
+ break;
+ } else
+ newRanges = F.add(newRanges, *i);
+ }
+ }
+ }
+
+ const llvm::APSInt &getMinValue() const {
+ assert(!isEmpty());
+ return ranges.begin()->From();
+ }
+
+ bool pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const {
+ // This function has nine cases, the cartesian product of range-testing
+ // both the upper and lower bounds against the symbol's type.
+ // Each case requires a different pinning operation.
+ // The function returns false if the described range is entirely outside
+ // the range of values for the associated symbol.
+ APSIntType Type(getMinValue());
+ APSIntType::RangeTestResultKind LowerTest = Type.testInRange(Lower, true);
+ APSIntType::RangeTestResultKind UpperTest = Type.testInRange(Upper, true);
+
+ switch (LowerTest) {
+ case APSIntType::RTR_Below:
+ switch (UpperTest) {
+ case APSIntType::RTR_Below:
+ // The entire range is outside the symbol's set of possible values.
+ // If this is a conventionally-ordered range, the state is infeasible.
+ if (Lower < Upper)
+ return false;
+
+ // However, if the range wraps around, it spans all possible values.
+ Lower = Type.getMinValue();
+ Upper = Type.getMaxValue();
+ break;
+ case APSIntType::RTR_Within:
+ // The range starts below what's possible but ends within it. Pin.
+ Lower = Type.getMinValue();
+ Type.apply(Upper);
+ break;
+ case APSIntType::RTR_Above:
+ // The range spans all possible values for the symbol. Pin.
+ Lower = Type.getMinValue();
+ Upper = Type.getMaxValue();
+ break;
+ }
+ break;
+ case APSIntType::RTR_Within:
+ switch (UpperTest) {
+ case APSIntType::RTR_Below:
+ // The range wraps around, but all lower values are not possible.
+ Type.apply(Lower);
+ Upper = Type.getMaxValue();
+ break;
+ case APSIntType::RTR_Within:
+ // The range may or may not wrap around, but both limits are valid.
+ Type.apply(Lower);
+ Type.apply(Upper);
+ break;
+ case APSIntType::RTR_Above:
+ // The range starts within what's possible but ends above it. Pin.
+ Type.apply(Lower);
+ Upper = Type.getMaxValue();
+ break;
+ }
+ break;
+ case APSIntType::RTR_Above:
+ switch (UpperTest) {
+ case APSIntType::RTR_Below:
+ // The range wraps but is outside the symbol's set of possible values.
+ return false;
+ case APSIntType::RTR_Within:
+ // The range starts above what's possible but ends within it (wrap).
+ Lower = Type.getMinValue();
+ Type.apply(Upper);
+ break;
+ case APSIntType::RTR_Above:
+ // The entire range is outside the symbol's set of possible values.
+ // If this is a conventionally-ordered range, the state is infeasible.
+ if (Lower < Upper)
+ return false;
+
+ // However, if the range wraps around, it spans all possible values.
+ Lower = Type.getMinValue();
+ Upper = Type.getMaxValue();
+ break;
+ }
+ break;
+ }
+
+ return true;
+ }
+
+public:
+ // Returns a set containing the values in the receiving set, intersected with
+ // the closed range [Lower, Upper]. Unlike the Range type, this range uses
+ // modular arithmetic, corresponding to the common treatment of C integer
+ // overflow. Thus, if the Lower bound is greater than the Upper bound, the
+ // range is taken to wrap around. This is equivalent to taking the
+ // intersection with the two ranges [Min, Upper] and [Lower, Max],
+ // or, alternatively, /removing/ all integers between Upper and Lower.
+ RangeSet Intersect(BasicValueFactory &BV, Factory &F,
+ llvm::APSInt Lower, llvm::APSInt Upper) const {
+ if (!pin(Lower, Upper))
+ return F.getEmptySet();
+
+ PrimRangeSet newRanges = F.getEmptySet();
+
+ PrimRangeSet::iterator i = begin(), e = end();
+ if (Lower <= Upper)
+ IntersectInRange(BV, F, Lower, Upper, newRanges, i, e);
+ else {
+ // The order of the next two statements is important!
+ // IntersectInRange() does not reset the iteration state for i and e.
+ // Therefore, the lower range most be handled first.
+ IntersectInRange(BV, F, BV.getMinValue(Upper), Upper, newRanges, i, e);
+ IntersectInRange(BV, F, Lower, BV.getMaxValue(Lower), newRanges, i, e);
+ }
+
+ return newRanges;
+ }
+
+ void print(raw_ostream &os) const {
+ bool isFirst = true;
+ os << "{ ";
+ for (iterator i = begin(), e = end(); i != e; ++i) {
+ if (isFirst)
+ isFirst = false;
+ else
+ os << ", ";
+
+ os << '[' << i->From().toString(10) << ", " << i->To().toString(10)
+ << ']';
+ }
+ os << " }";
+ }
+
+ bool operator==(const RangeSet &other) const {
+ return ranges == other.ranges;
+ }
+};
+} // end anonymous namespace
+
+REGISTER_TRAIT_WITH_PROGRAMSTATE(ConstraintRange,
+ CLANG_ENTO_PROGRAMSTATE_MAP(SymbolRef,
+ RangeSet))
+
+namespace {
+class RangeConstraintManager : public SimpleConstraintManager{
+ RangeSet GetRange(ProgramStateRef state, SymbolRef sym);
+public:
+ RangeConstraintManager(SubEngine *subengine, SValBuilder &SVB)
+ : SimpleConstraintManager(subengine, SVB) {}
+
+ ProgramStateRef assumeSymNE(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& Int,
+ const llvm::APSInt& Adjustment) override;
+
+ ProgramStateRef assumeSymEQ(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& Int,
+ const llvm::APSInt& Adjustment) override;
+
+ ProgramStateRef assumeSymLT(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& Int,
+ const llvm::APSInt& Adjustment) override;
+
+ ProgramStateRef assumeSymGT(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& Int,
+ const llvm::APSInt& Adjustment) override;
+
+ ProgramStateRef assumeSymGE(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& Int,
+ const llvm::APSInt& Adjustment) override;
+
+ ProgramStateRef assumeSymLE(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& Int,
+ const llvm::APSInt& Adjustment) override;
+
+ const llvm::APSInt* getSymVal(ProgramStateRef St,
+ SymbolRef sym) const override;
+ ConditionTruthVal checkNull(ProgramStateRef State, SymbolRef Sym) override;
+
+ ProgramStateRef removeDeadBindings(ProgramStateRef St,
+ SymbolReaper& SymReaper) override;
+
+ void print(ProgramStateRef St, raw_ostream &Out,
+ const char* nl, const char *sep) override;
+
+private:
+ RangeSet::Factory F;
+};
+
+} // end anonymous namespace
+
+std::unique_ptr<ConstraintManager>
+ento::CreateRangeConstraintManager(ProgramStateManager &StMgr, SubEngine *Eng) {
+ return llvm::make_unique<RangeConstraintManager>(Eng, StMgr.getSValBuilder());
+}
+
+const llvm::APSInt* RangeConstraintManager::getSymVal(ProgramStateRef St,
+ SymbolRef sym) const {
+ const ConstraintRangeTy::data_type *T = St->get<ConstraintRange>(sym);
+ return T ? T->getConcreteValue() : nullptr;
+}
+
+ConditionTruthVal RangeConstraintManager::checkNull(ProgramStateRef State,
+ SymbolRef Sym) {
+ const RangeSet *Ranges = State->get<ConstraintRange>(Sym);
+
+ // If we don't have any information about this symbol, it's underconstrained.
+ if (!Ranges)
+ return ConditionTruthVal();
+
+ // If we have a concrete value, see if it's zero.
+ if (const llvm::APSInt *Value = Ranges->getConcreteValue())
+ return *Value == 0;
+
+ BasicValueFactory &BV = getBasicVals();
+ APSIntType IntType = BV.getAPSIntType(Sym->getType());
+ llvm::APSInt Zero = IntType.getZeroValue();
+
+ // Check if zero is in the set of possible values.
+ if (Ranges->Intersect(BV, F, Zero, Zero).isEmpty())
+ return false;
+
+ // Zero is a possible value, but it is not the /only/ possible value.
+ return ConditionTruthVal();
+}
+
+/// Scan all symbols referenced by the constraints. If the symbol is not alive
+/// as marked in LSymbols, mark it as dead in DSymbols.
+ProgramStateRef
+RangeConstraintManager::removeDeadBindings(ProgramStateRef state,
+ SymbolReaper& SymReaper) {
+
+ ConstraintRangeTy CR = state->get<ConstraintRange>();
+ ConstraintRangeTy::Factory& CRFactory = state->get_context<ConstraintRange>();
+
+ for (ConstraintRangeTy::iterator I = CR.begin(), E = CR.end(); I != E; ++I) {
+ SymbolRef sym = I.getKey();
+ if (SymReaper.maybeDead(sym))
+ CR = CRFactory.remove(CR, sym);
+ }
+
+ return state->set<ConstraintRange>(CR);
+}
+
+RangeSet
+RangeConstraintManager::GetRange(ProgramStateRef state, SymbolRef sym) {
+ if (ConstraintRangeTy::data_type* V = state->get<ConstraintRange>(sym))
+ return *V;
+
+ // Lazily generate a new RangeSet representing all possible values for the
+ // given symbol type.
+ BasicValueFactory &BV = getBasicVals();
+ QualType T = sym->getType();
+
+ RangeSet Result(F, BV.getMinValue(T), BV.getMaxValue(T));
+
+ // Special case: references are known to be non-zero.
+ if (T->isReferenceType()) {
+ APSIntType IntType = BV.getAPSIntType(T);
+ Result = Result.Intersect(BV, F, ++IntType.getZeroValue(),
+ --IntType.getZeroValue());
+ }
+
+ return Result;
+}
+
+//===------------------------------------------------------------------------===
+// assumeSymX methods: public interface for RangeConstraintManager.
+//===------------------------------------------------------------------------===/
+
+// The syntax for ranges below is mathematical, using [x, y] for closed ranges
+// and (x, y) for open ranges. These ranges are modular, corresponding with
+// a common treatment of C integer overflow. This means that these methods
+// do not have to worry about overflow; RangeSet::Intersect can handle such a
+// "wraparound" range.
+// As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1,
+// UINT_MAX, 0, 1, and 2.
+
+ProgramStateRef
+RangeConstraintManager::assumeSymNE(ProgramStateRef St, SymbolRef Sym,
+ const llvm::APSInt &Int,
+ const llvm::APSInt &Adjustment) {
+ // Before we do any real work, see if the value can even show up.
+ APSIntType AdjustmentType(Adjustment);
+ if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
+ return St;
+
+ llvm::APSInt Lower = AdjustmentType.convert(Int) - Adjustment;
+ llvm::APSInt Upper = Lower;
+ --Lower;
+ ++Upper;
+
+ // [Int-Adjustment+1, Int-Adjustment-1]
+ // Notice that the lower bound is greater than the upper bound.
+ RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Upper, Lower);
+ return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
+}
+
+ProgramStateRef
+RangeConstraintManager::assumeSymEQ(ProgramStateRef St, SymbolRef Sym,
+ const llvm::APSInt &Int,
+ const llvm::APSInt &Adjustment) {
+ // Before we do any real work, see if the value can even show up.
+ APSIntType AdjustmentType(Adjustment);
+ if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
+ return nullptr;
+
+ // [Int-Adjustment, Int-Adjustment]
+ llvm::APSInt AdjInt = AdjustmentType.convert(Int) - Adjustment;
+ RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, AdjInt, AdjInt);
+ return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
+}
+
+ProgramStateRef
+RangeConstraintManager::assumeSymLT(ProgramStateRef St, SymbolRef Sym,
+ const llvm::APSInt &Int,
+ const llvm::APSInt &Adjustment) {
+ // Before we do any real work, see if the value can even show up.
+ APSIntType AdjustmentType(Adjustment);
+ switch (AdjustmentType.testInRange(Int, true)) {
+ case APSIntType::RTR_Below:
+ return nullptr;
+ case APSIntType::RTR_Within:
+ break;
+ case APSIntType::RTR_Above:
+ return St;
+ }
+
+ // Special case for Int == Min. This is always false.
+ llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
+ llvm::APSInt Min = AdjustmentType.getMinValue();
+ if (ComparisonVal == Min)
+ return nullptr;
+
+ llvm::APSInt Lower = Min-Adjustment;
+ llvm::APSInt Upper = ComparisonVal-Adjustment;
+ --Upper;
+
+ RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
+ return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
+}
+
+ProgramStateRef
+RangeConstraintManager::assumeSymGT(ProgramStateRef St, SymbolRef Sym,
+ const llvm::APSInt &Int,
+ const llvm::APSInt &Adjustment) {
+ // Before we do any real work, see if the value can even show up.
+ APSIntType AdjustmentType(Adjustment);
+ switch (AdjustmentType.testInRange(Int, true)) {
+ case APSIntType::RTR_Below:
+ return St;
+ case APSIntType::RTR_Within:
+ break;
+ case APSIntType::RTR_Above:
+ return nullptr;
+ }
+
+ // Special case for Int == Max. This is always false.
+ llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
+ llvm::APSInt Max = AdjustmentType.getMaxValue();
+ if (ComparisonVal == Max)
+ return nullptr;
+
+ llvm::APSInt Lower = ComparisonVal-Adjustment;
+ llvm::APSInt Upper = Max-Adjustment;
+ ++Lower;
+
+ RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
+ return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
+}
+
+ProgramStateRef
+RangeConstraintManager::assumeSymGE(ProgramStateRef St, SymbolRef Sym,
+ const llvm::APSInt &Int,
+ const llvm::APSInt &Adjustment) {
+ // Before we do any real work, see if the value can even show up.
+ APSIntType AdjustmentType(Adjustment);
+ switch (AdjustmentType.testInRange(Int, true)) {
+ case APSIntType::RTR_Below:
+ return St;
+ case APSIntType::RTR_Within:
+ break;
+ case APSIntType::RTR_Above:
+ return nullptr;
+ }
+
+ // Special case for Int == Min. This is always feasible.
+ llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
+ llvm::APSInt Min = AdjustmentType.getMinValue();
+ if (ComparisonVal == Min)
+ return St;
+
+ llvm::APSInt Max = AdjustmentType.getMaxValue();
+ llvm::APSInt Lower = ComparisonVal-Adjustment;
+ llvm::APSInt Upper = Max-Adjustment;
+
+ RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
+ return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
+}
+
+ProgramStateRef
+RangeConstraintManager::assumeSymLE(ProgramStateRef St, SymbolRef Sym,
+ const llvm::APSInt &Int,
+ const llvm::APSInt &Adjustment) {
+ // Before we do any real work, see if the value can even show up.
+ APSIntType AdjustmentType(Adjustment);
+ switch (AdjustmentType.testInRange(Int, true)) {
+ case APSIntType::RTR_Below:
+ return nullptr;
+ case APSIntType::RTR_Within:
+ break;
+ case APSIntType::RTR_Above:
+ return St;
+ }
+
+ // Special case for Int == Max. This is always feasible.
+ llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
+ llvm::APSInt Max = AdjustmentType.getMaxValue();
+ if (ComparisonVal == Max)
+ return St;
+
+ llvm::APSInt Min = AdjustmentType.getMinValue();
+ llvm::APSInt Lower = Min-Adjustment;
+ llvm::APSInt Upper = ComparisonVal-Adjustment;
+
+ RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
+ return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
+}
+
+//===------------------------------------------------------------------------===
+// Pretty-printing.
+//===------------------------------------------------------------------------===/
+
+void RangeConstraintManager::print(ProgramStateRef St, raw_ostream &Out,
+ const char* nl, const char *sep) {
+
+ ConstraintRangeTy Ranges = St->get<ConstraintRange>();
+
+ if (Ranges.isEmpty()) {
+ Out << nl << sep << "Ranges are empty." << nl;
+ return;
+ }
+
+ Out << nl << sep << "Ranges of symbol values:";
+ for (ConstraintRangeTy::iterator I=Ranges.begin(), E=Ranges.end(); I!=E; ++I){
+ Out << nl << ' ' << I.getKey() << " : ";
+ I.getData().print(Out);
+ }
+ Out << nl;
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/RegionStore.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/RegionStore.cpp
new file mode 100644
index 0000000..6d41fc2
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/RegionStore.cpp
@@ -0,0 +1,2359 @@
+//== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a basic region store model. In this model, we do have field
+// sensitivity. But we assume nothing about the heap shape. So recursive data
+// structures are largely ignored. Basically we do 1-limiting analysis.
+// Parameter pointers are assumed with no aliasing. Pointee objects of
+// parameters are created lazily.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/AST/Attr.h"
+#include "clang/AST/CharUnits.h"
+#include "clang/Analysis/Analyses/LiveVariables.h"
+#include "clang/Analysis/AnalysisContext.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
+#include "llvm/ADT/ImmutableList.h"
+#include "llvm/ADT/ImmutableMap.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+
+//===----------------------------------------------------------------------===//
+// Representation of binding keys.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class BindingKey {
+public:
+ enum Kind { Default = 0x0, Direct = 0x1 };
+private:
+ enum { Symbolic = 0x2 };
+
+ llvm::PointerIntPair<const MemRegion *, 2> P;
+ uint64_t Data;
+
+ /// Create a key for a binding to region \p r, which has a symbolic offset
+ /// from region \p Base.
+ explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k)
+ : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) {
+ assert(r && Base && "Must have known regions.");
+ assert(getConcreteOffsetRegion() == Base && "Failed to store base region");
+ }
+
+ /// Create a key for a binding at \p offset from base region \p r.
+ explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
+ : P(r, k), Data(offset) {
+ assert(r && "Must have known regions.");
+ assert(getOffset() == offset && "Failed to store offset");
+ assert((r == r->getBaseRegion() || isa<ObjCIvarRegion>(r)) && "Not a base");
+ }
+public:
+
+ bool isDirect() const { return P.getInt() & Direct; }
+ bool hasSymbolicOffset() const { return P.getInt() & Symbolic; }
+
+ const MemRegion *getRegion() const { return P.getPointer(); }
+ uint64_t getOffset() const {
+ assert(!hasSymbolicOffset());
+ return Data;
+ }
+
+ const SubRegion *getConcreteOffsetRegion() const {
+ assert(hasSymbolicOffset());
+ return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data));
+ }
+
+ const MemRegion *getBaseRegion() const {
+ if (hasSymbolicOffset())
+ return getConcreteOffsetRegion()->getBaseRegion();
+ return getRegion()->getBaseRegion();
+ }
+
+ void Profile(llvm::FoldingSetNodeID& ID) const {
+ ID.AddPointer(P.getOpaqueValue());
+ ID.AddInteger(Data);
+ }
+
+ static BindingKey Make(const MemRegion *R, Kind k);
+
+ bool operator<(const BindingKey &X) const {
+ if (P.getOpaqueValue() < X.P.getOpaqueValue())
+ return true;
+ if (P.getOpaqueValue() > X.P.getOpaqueValue())
+ return false;
+ return Data < X.Data;
+ }
+
+ bool operator==(const BindingKey &X) const {
+ return P.getOpaqueValue() == X.P.getOpaqueValue() &&
+ Data == X.Data;
+ }
+
+ void dump() const;
+};
+} // end anonymous namespace
+
+BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
+ const RegionOffset &RO = R->getAsOffset();
+ if (RO.hasSymbolicOffset())
+ return BindingKey(cast<SubRegion>(R), cast<SubRegion>(RO.getRegion()), k);
+
+ return BindingKey(RO.getRegion(), RO.getOffset(), k);
+}
+
+namespace llvm {
+ static inline
+ raw_ostream &operator<<(raw_ostream &os, BindingKey K) {
+ os << '(' << K.getRegion();
+ if (!K.hasSymbolicOffset())
+ os << ',' << K.getOffset();
+ os << ',' << (K.isDirect() ? "direct" : "default")
+ << ')';
+ return os;
+ }
+
+ template <typename T> struct isPodLike;
+ template <> struct isPodLike<BindingKey> {
+ static const bool value = true;
+ };
+} // end llvm namespace
+
+LLVM_DUMP_METHOD void BindingKey::dump() const { llvm::errs() << *this; }
+
+//===----------------------------------------------------------------------===//
+// Actual Store type.
+//===----------------------------------------------------------------------===//
+
+typedef llvm::ImmutableMap<BindingKey, SVal> ClusterBindings;
+typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef;
+typedef std::pair<BindingKey, SVal> BindingPair;
+
+typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings>
+ RegionBindings;
+
+namespace {
+class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *,
+ ClusterBindings> {
+ ClusterBindings::Factory &CBFactory;
+public:
+ typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>
+ ParentTy;
+
+ RegionBindingsRef(ClusterBindings::Factory &CBFactory,
+ const RegionBindings::TreeTy *T,
+ RegionBindings::TreeTy::Factory *F)
+ : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F),
+ CBFactory(CBFactory) {}
+
+ RegionBindingsRef(const ParentTy &P, ClusterBindings::Factory &CBFactory)
+ : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P),
+ CBFactory(CBFactory) {}
+
+ RegionBindingsRef add(key_type_ref K, data_type_ref D) const {
+ return RegionBindingsRef(static_cast<const ParentTy*>(this)->add(K, D),
+ CBFactory);
+ }
+
+ RegionBindingsRef remove(key_type_ref K) const {
+ return RegionBindingsRef(static_cast<const ParentTy*>(this)->remove(K),
+ CBFactory);
+ }
+
+ RegionBindingsRef addBinding(BindingKey K, SVal V) const;
+
+ RegionBindingsRef addBinding(const MemRegion *R,
+ BindingKey::Kind k, SVal V) const;
+
+ RegionBindingsRef &operator=(const RegionBindingsRef &X) {
+ *static_cast<ParentTy*>(this) = X;
+ return *this;
+ }
+
+ const SVal *lookup(BindingKey K) const;
+ const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const;
+ const ClusterBindings *lookup(const MemRegion *R) const {
+ return static_cast<const ParentTy*>(this)->lookup(R);
+ }
+
+ RegionBindingsRef removeBinding(BindingKey K);
+
+ RegionBindingsRef removeBinding(const MemRegion *R,
+ BindingKey::Kind k);
+
+ RegionBindingsRef removeBinding(const MemRegion *R) {
+ return removeBinding(R, BindingKey::Direct).
+ removeBinding(R, BindingKey::Default);
+ }
+
+ Optional<SVal> getDirectBinding(const MemRegion *R) const;
+
+ /// getDefaultBinding - Returns an SVal* representing an optional default
+ /// binding associated with a region and its subregions.
+ Optional<SVal> getDefaultBinding(const MemRegion *R) const;
+
+ /// Return the internal tree as a Store.
+ Store asStore() const {
+ return asImmutableMap().getRootWithoutRetain();
+ }
+
+ void dump(raw_ostream &OS, const char *nl) const {
+ for (iterator I = begin(), E = end(); I != E; ++I) {
+ const ClusterBindings &Cluster = I.getData();
+ for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
+ CI != CE; ++CI) {
+ OS << ' ' << CI.getKey() << " : " << CI.getData() << nl;
+ }
+ OS << nl;
+ }
+ }
+
+ LLVM_DUMP_METHOD void dump() const { dump(llvm::errs(), "\n"); }
+};
+} // end anonymous namespace
+
+typedef const RegionBindingsRef& RegionBindingsConstRef;
+
+Optional<SVal> RegionBindingsRef::getDirectBinding(const MemRegion *R) const {
+ return Optional<SVal>::create(lookup(R, BindingKey::Direct));
+}
+
+Optional<SVal> RegionBindingsRef::getDefaultBinding(const MemRegion *R) const {
+ if (R->isBoundable())
+ if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R))
+ if (TR->getValueType()->isUnionType())
+ return UnknownVal();
+
+ return Optional<SVal>::create(lookup(R, BindingKey::Default));
+}
+
+RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const {
+ const MemRegion *Base = K.getBaseRegion();
+
+ const ClusterBindings *ExistingCluster = lookup(Base);
+ ClusterBindings Cluster = (ExistingCluster ? *ExistingCluster
+ : CBFactory.getEmptyMap());
+
+ ClusterBindings NewCluster = CBFactory.add(Cluster, K, V);
+ return add(Base, NewCluster);
+}
+
+
+RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R,
+ BindingKey::Kind k,
+ SVal V) const {
+ return addBinding(BindingKey::Make(R, k), V);
+}
+
+const SVal *RegionBindingsRef::lookup(BindingKey K) const {
+ const ClusterBindings *Cluster = lookup(K.getBaseRegion());
+ if (!Cluster)
+ return nullptr;
+ return Cluster->lookup(K);
+}
+
+const SVal *RegionBindingsRef::lookup(const MemRegion *R,
+ BindingKey::Kind k) const {
+ return lookup(BindingKey::Make(R, k));
+}
+
+RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) {
+ const MemRegion *Base = K.getBaseRegion();
+ const ClusterBindings *Cluster = lookup(Base);
+ if (!Cluster)
+ return *this;
+
+ ClusterBindings NewCluster = CBFactory.remove(*Cluster, K);
+ if (NewCluster.isEmpty())
+ return remove(Base);
+ return add(Base, NewCluster);
+}
+
+RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R,
+ BindingKey::Kind k){
+ return removeBinding(BindingKey::Make(R, k));
+}
+
+//===----------------------------------------------------------------------===//
+// Fine-grained control of RegionStoreManager.
+//===----------------------------------------------------------------------===//
+
+namespace {
+struct minimal_features_tag {};
+struct maximal_features_tag {};
+
+class RegionStoreFeatures {
+ bool SupportsFields;
+public:
+ RegionStoreFeatures(minimal_features_tag) :
+ SupportsFields(false) {}
+
+ RegionStoreFeatures(maximal_features_tag) :
+ SupportsFields(true) {}
+
+ void enableFields(bool t) { SupportsFields = t; }
+
+ bool supportsFields() const { return SupportsFields; }
+};
+}
+
+//===----------------------------------------------------------------------===//
+// Main RegionStore logic.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class invalidateRegionsWorker;
+
+class RegionStoreManager : public StoreManager {
+public:
+ const RegionStoreFeatures Features;
+
+ RegionBindings::Factory RBFactory;
+ mutable ClusterBindings::Factory CBFactory;
+
+ typedef std::vector<SVal> SValListTy;
+private:
+ typedef llvm::DenseMap<const LazyCompoundValData *,
+ SValListTy> LazyBindingsMapTy;
+ LazyBindingsMapTy LazyBindingsMap;
+
+ /// The largest number of fields a struct can have and still be
+ /// considered "small".
+ ///
+ /// This is currently used to decide whether or not it is worth "forcing" a
+ /// LazyCompoundVal on bind.
+ ///
+ /// This is controlled by 'region-store-small-struct-limit' option.
+ /// To disable all small-struct-dependent behavior, set the option to "0".
+ unsigned SmallStructLimit;
+
+ /// \brief A helper used to populate the work list with the given set of
+ /// regions.
+ void populateWorkList(invalidateRegionsWorker &W,
+ ArrayRef<SVal> Values,
+ InvalidatedRegions *TopLevelRegions);
+
+public:
+ RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
+ : StoreManager(mgr), Features(f),
+ RBFactory(mgr.getAllocator()), CBFactory(mgr.getAllocator()),
+ SmallStructLimit(0) {
+ if (SubEngine *Eng = StateMgr.getOwningEngine()) {
+ AnalyzerOptions &Options = Eng->getAnalysisManager().options;
+ SmallStructLimit =
+ Options.getOptionAsInteger("region-store-small-struct-limit", 2);
+ }
+ }
+
+
+ /// setImplicitDefaultValue - Set the default binding for the provided
+ /// MemRegion to the value implicitly defined for compound literals when
+ /// the value is not specified.
+ RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B,
+ const MemRegion *R, QualType T);
+
+ /// ArrayToPointer - Emulates the "decay" of an array to a pointer
+ /// type. 'Array' represents the lvalue of the array being decayed
+ /// to a pointer, and the returned SVal represents the decayed
+ /// version of that lvalue (i.e., a pointer to the first element of
+ /// the array). This is called by ExprEngine when evaluating
+ /// casts from arrays to pointers.
+ SVal ArrayToPointer(Loc Array, QualType ElementTy) override;
+
+ StoreRef getInitialStore(const LocationContext *InitLoc) override {
+ return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this);
+ }
+
+ //===-------------------------------------------------------------------===//
+ // Binding values to regions.
+ //===-------------------------------------------------------------------===//
+ RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K,
+ const Expr *Ex,
+ unsigned Count,
+ const LocationContext *LCtx,
+ RegionBindingsRef B,
+ InvalidatedRegions *Invalidated);
+
+ StoreRef invalidateRegions(Store store,
+ ArrayRef<SVal> Values,
+ const Expr *E, unsigned Count,
+ const LocationContext *LCtx,
+ const CallEvent *Call,
+ InvalidatedSymbols &IS,
+ RegionAndSymbolInvalidationTraits &ITraits,
+ InvalidatedRegions *Invalidated,
+ InvalidatedRegions *InvalidatedTopLevel) override;
+
+ bool scanReachableSymbols(Store S, const MemRegion *R,
+ ScanReachableSymbols &Callbacks) override;
+
+ RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B,
+ const SubRegion *R);
+
+public: // Part of public interface to class.
+
+ StoreRef Bind(Store store, Loc LV, SVal V) override {
+ return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this);
+ }
+
+ RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V);
+
+ // BindDefault is only used to initialize a region with a default value.
+ StoreRef BindDefault(Store store, const MemRegion *R, SVal V) override {
+ RegionBindingsRef B = getRegionBindings(store);
+ assert(!B.lookup(R, BindingKey::Direct));
+
+ BindingKey Key = BindingKey::Make(R, BindingKey::Default);
+ if (B.lookup(Key)) {
+ const SubRegion *SR = cast<SubRegion>(R);
+ assert(SR->getAsOffset().getOffset() ==
+ SR->getSuperRegion()->getAsOffset().getOffset() &&
+ "A default value must come from a super-region");
+ B = removeSubRegionBindings(B, SR);
+ } else {
+ B = B.addBinding(Key, V);
+ }
+
+ return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
+ }
+
+ /// Attempt to extract the fields of \p LCV and bind them to the struct region
+ /// \p R.
+ ///
+ /// This path is used when it seems advantageous to "force" loading the values
+ /// within a LazyCompoundVal to bind memberwise to the struct region, rather
+ /// than using a Default binding at the base of the entire region. This is a
+ /// heuristic attempting to avoid building long chains of LazyCompoundVals.
+ ///
+ /// \returns The updated store bindings, or \c None if binding non-lazily
+ /// would be too expensive.
+ Optional<RegionBindingsRef> tryBindSmallStruct(RegionBindingsConstRef B,
+ const TypedValueRegion *R,
+ const RecordDecl *RD,
+ nonloc::LazyCompoundVal LCV);
+
+ /// BindStruct - Bind a compound value to a structure.
+ RegionBindingsRef bindStruct(RegionBindingsConstRef B,
+ const TypedValueRegion* R, SVal V);
+
+ /// BindVector - Bind a compound value to a vector.
+ RegionBindingsRef bindVector(RegionBindingsConstRef B,
+ const TypedValueRegion* R, SVal V);
+
+ RegionBindingsRef bindArray(RegionBindingsConstRef B,
+ const TypedValueRegion* R,
+ SVal V);
+
+ /// Clears out all bindings in the given region and assigns a new value
+ /// as a Default binding.
+ RegionBindingsRef bindAggregate(RegionBindingsConstRef B,
+ const TypedRegion *R,
+ SVal DefaultVal);
+
+ /// \brief Create a new store with the specified binding removed.
+ /// \param ST the original store, that is the basis for the new store.
+ /// \param L the location whose binding should be removed.
+ StoreRef killBinding(Store ST, Loc L) override;
+
+ void incrementReferenceCount(Store store) override {
+ getRegionBindings(store).manualRetain();
+ }
+
+ /// If the StoreManager supports it, decrement the reference count of
+ /// the specified Store object. If the reference count hits 0, the memory
+ /// associated with the object is recycled.
+ void decrementReferenceCount(Store store) override {
+ getRegionBindings(store).manualRelease();
+ }
+
+ bool includedInBindings(Store store, const MemRegion *region) const override;
+
+ /// \brief Return the value bound to specified location in a given state.
+ ///
+ /// The high level logic for this method is this:
+ /// getBinding (L)
+ /// if L has binding
+ /// return L's binding
+ /// else if L is in killset
+ /// return unknown
+ /// else
+ /// if L is on stack or heap
+ /// return undefined
+ /// else
+ /// return symbolic
+ SVal getBinding(Store S, Loc L, QualType T) override {
+ return getBinding(getRegionBindings(S), L, T);
+ }
+
+ SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType());
+
+ SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R);
+
+ SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R);
+
+ SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R);
+
+ SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R);
+
+ SVal getBindingForLazySymbol(const TypedValueRegion *R);
+
+ SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
+ const TypedValueRegion *R,
+ QualType Ty);
+
+ SVal getLazyBinding(const SubRegion *LazyBindingRegion,
+ RegionBindingsRef LazyBinding);
+
+ /// Get bindings for the values in a struct and return a CompoundVal, used
+ /// when doing struct copy:
+ /// struct s x, y;
+ /// x = y;
+ /// y's value is retrieved by this method.
+ SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R);
+ SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R);
+ NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R);
+
+ /// Used to lazily generate derived symbols for bindings that are defined
+ /// implicitly by default bindings in a super region.
+ ///
+ /// Note that callers may need to specially handle LazyCompoundVals, which
+ /// are returned as is in case the caller needs to treat them differently.
+ Optional<SVal> getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
+ const MemRegion *superR,
+ const TypedValueRegion *R,
+ QualType Ty);
+
+ /// Get the state and region whose binding this region \p R corresponds to.
+ ///
+ /// If there is no lazy binding for \p R, the returned value will have a null
+ /// \c second. Note that a null pointer can represents a valid Store.
+ std::pair<Store, const SubRegion *>
+ findLazyBinding(RegionBindingsConstRef B, const SubRegion *R,
+ const SubRegion *originalRegion);
+
+ /// Returns the cached set of interesting SVals contained within a lazy
+ /// binding.
+ ///
+ /// The precise value of "interesting" is determined for the purposes of
+ /// RegionStore's internal analysis. It must always contain all regions and
+ /// symbols, but may omit constants and other kinds of SVal.
+ const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV);
+
+ //===------------------------------------------------------------------===//
+ // State pruning.
+ //===------------------------------------------------------------------===//
+
+ /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
+ /// It returns a new Store with these values removed.
+ StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
+ SymbolReaper& SymReaper) override;
+
+ //===------------------------------------------------------------------===//
+ // Region "extents".
+ //===------------------------------------------------------------------===//
+
+ // FIXME: This method will soon be eliminated; see the note in Store.h.
+ DefinedOrUnknownSVal getSizeInElements(ProgramStateRef state,
+ const MemRegion* R,
+ QualType EleTy) override;
+
+ //===------------------------------------------------------------------===//
+ // Utility methods.
+ //===------------------------------------------------------------------===//
+
+ RegionBindingsRef getRegionBindings(Store store) const {
+ return RegionBindingsRef(CBFactory,
+ static_cast<const RegionBindings::TreeTy*>(store),
+ RBFactory.getTreeFactory());
+ }
+
+ void print(Store store, raw_ostream &Out, const char* nl,
+ const char *sep) override;
+
+ void iterBindings(Store store, BindingsHandler& f) override {
+ RegionBindingsRef B = getRegionBindings(store);
+ for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
+ const ClusterBindings &Cluster = I.getData();
+ for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
+ CI != CE; ++CI) {
+ const BindingKey &K = CI.getKey();
+ if (!K.isDirect())
+ continue;
+ if (const SubRegion *R = dyn_cast<SubRegion>(K.getRegion())) {
+ // FIXME: Possibly incorporate the offset?
+ if (!f.HandleBinding(*this, store, R, CI.getData()))
+ return;
+ }
+ }
+ }
+ }
+};
+
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// RegionStore creation.
+//===----------------------------------------------------------------------===//
+
+std::unique_ptr<StoreManager>
+ento::CreateRegionStoreManager(ProgramStateManager &StMgr) {
+ RegionStoreFeatures F = maximal_features_tag();
+ return llvm::make_unique<RegionStoreManager>(StMgr, F);
+}
+
+std::unique_ptr<StoreManager>
+ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
+ RegionStoreFeatures F = minimal_features_tag();
+ F.enableFields(true);
+ return llvm::make_unique<RegionStoreManager>(StMgr, F);
+}
+
+
+//===----------------------------------------------------------------------===//
+// Region Cluster analysis.
+//===----------------------------------------------------------------------===//
+
+namespace {
+/// Used to determine which global regions are automatically included in the
+/// initial worklist of a ClusterAnalysis.
+enum GlobalsFilterKind {
+ /// Don't include any global regions.
+ GFK_None,
+ /// Only include system globals.
+ GFK_SystemOnly,
+ /// Include all global regions.
+ GFK_All
+};
+
+template <typename DERIVED>
+class ClusterAnalysis {
+protected:
+ typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap;
+ typedef const MemRegion * WorkListElement;
+ typedef SmallVector<WorkListElement, 10> WorkList;
+
+ llvm::SmallPtrSet<const ClusterBindings *, 16> Visited;
+
+ WorkList WL;
+
+ RegionStoreManager &RM;
+ ASTContext &Ctx;
+ SValBuilder &svalBuilder;
+
+ RegionBindingsRef B;
+
+private:
+ GlobalsFilterKind GlobalsFilter;
+
+protected:
+ const ClusterBindings *getCluster(const MemRegion *R) {
+ return B.lookup(R);
+ }
+
+ /// Returns true if the memory space of the given region is one of the global
+ /// regions specially included at the start of analysis.
+ bool isInitiallyIncludedGlobalRegion(const MemRegion *R) {
+ switch (GlobalsFilter) {
+ case GFK_None:
+ return false;
+ case GFK_SystemOnly:
+ return isa<GlobalSystemSpaceRegion>(R->getMemorySpace());
+ case GFK_All:
+ return isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace());
+ }
+
+ llvm_unreachable("unknown globals filter");
+ }
+
+public:
+ ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
+ RegionBindingsRef b, GlobalsFilterKind GFK)
+ : RM(rm), Ctx(StateMgr.getContext()),
+ svalBuilder(StateMgr.getSValBuilder()),
+ B(b), GlobalsFilter(GFK) {}
+
+ RegionBindingsRef getRegionBindings() const { return B; }
+
+ bool isVisited(const MemRegion *R) {
+ return Visited.count(getCluster(R));
+ }
+
+ void GenerateClusters() {
+ // Scan the entire set of bindings and record the region clusters.
+ for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end();
+ RI != RE; ++RI){
+ const MemRegion *Base = RI.getKey();
+
+ const ClusterBindings &Cluster = RI.getData();
+ assert(!Cluster.isEmpty() && "Empty clusters should be removed");
+ static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster);
+
+ // If this is an interesting global region, add it the work list up front.
+ if (isInitiallyIncludedGlobalRegion(Base))
+ AddToWorkList(WorkListElement(Base), &Cluster);
+ }
+ }
+
+ bool AddToWorkList(WorkListElement E, const ClusterBindings *C) {
+ if (C && !Visited.insert(C).second)
+ return false;
+ WL.push_back(E);
+ return true;
+ }
+
+ bool AddToWorkList(const MemRegion *R) {
+ const MemRegion *BaseR = R->getBaseRegion();
+ return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
+ }
+
+ void RunWorkList() {
+ while (!WL.empty()) {
+ WorkListElement E = WL.pop_back_val();
+ const MemRegion *BaseR = E;
+
+ static_cast<DERIVED*>(this)->VisitCluster(BaseR, getCluster(BaseR));
+ }
+ }
+
+ void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {}
+ void VisitCluster(const MemRegion *baseR, const ClusterBindings *C) {}
+
+ void VisitCluster(const MemRegion *BaseR, const ClusterBindings *C,
+ bool Flag) {
+ static_cast<DERIVED*>(this)->VisitCluster(BaseR, C);
+ }
+};
+}
+
+//===----------------------------------------------------------------------===//
+// Binding invalidation.
+//===----------------------------------------------------------------------===//
+
+bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R,
+ ScanReachableSymbols &Callbacks) {
+ assert(R == R->getBaseRegion() && "Should only be called for base regions");
+ RegionBindingsRef B = getRegionBindings(S);
+ const ClusterBindings *Cluster = B.lookup(R);
+
+ if (!Cluster)
+ return true;
+
+ for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end();
+ RI != RE; ++RI) {
+ if (!Callbacks.scan(RI.getData()))
+ return false;
+ }
+
+ return true;
+}
+
+static inline bool isUnionField(const FieldRegion *FR) {
+ return FR->getDecl()->getParent()->isUnion();
+}
+
+typedef SmallVector<const FieldDecl *, 8> FieldVector;
+
+static void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) {
+ assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
+
+ const MemRegion *Base = K.getConcreteOffsetRegion();
+ const MemRegion *R = K.getRegion();
+
+ while (R != Base) {
+ if (const FieldRegion *FR = dyn_cast<FieldRegion>(R))
+ if (!isUnionField(FR))
+ Fields.push_back(FR->getDecl());
+
+ R = cast<SubRegion>(R)->getSuperRegion();
+ }
+}
+
+static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) {
+ assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
+
+ if (Fields.empty())
+ return true;
+
+ FieldVector FieldsInBindingKey;
+ getSymbolicOffsetFields(K, FieldsInBindingKey);
+
+ ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size();
+ if (Delta >= 0)
+ return std::equal(FieldsInBindingKey.begin() + Delta,
+ FieldsInBindingKey.end(),
+ Fields.begin());
+ else
+ return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(),
+ Fields.begin() - Delta);
+}
+
+/// Collects all bindings in \p Cluster that may refer to bindings within
+/// \p Top.
+///
+/// Each binding is a pair whose \c first is the key (a BindingKey) and whose
+/// \c second is the value (an SVal).
+///
+/// The \p IncludeAllDefaultBindings parameter specifies whether to include
+/// default bindings that may extend beyond \p Top itself, e.g. if \p Top is
+/// an aggregate within a larger aggregate with a default binding.
+static void
+collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
+ SValBuilder &SVB, const ClusterBindings &Cluster,
+ const SubRegion *Top, BindingKey TopKey,
+ bool IncludeAllDefaultBindings) {
+ FieldVector FieldsInSymbolicSubregions;
+ if (TopKey.hasSymbolicOffset()) {
+ getSymbolicOffsetFields(TopKey, FieldsInSymbolicSubregions);
+ Top = cast<SubRegion>(TopKey.getConcreteOffsetRegion());
+ TopKey = BindingKey::Make(Top, BindingKey::Default);
+ }
+
+ // Find the length (in bits) of the region being invalidated.
+ uint64_t Length = UINT64_MAX;
+ SVal Extent = Top->getExtent(SVB);
+ if (Optional<nonloc::ConcreteInt> ExtentCI =
+ Extent.getAs<nonloc::ConcreteInt>()) {
+ const llvm::APSInt &ExtentInt = ExtentCI->getValue();
+ assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned());
+ // Extents are in bytes but region offsets are in bits. Be careful!
+ Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth();
+ } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Top)) {
+ if (FR->getDecl()->isBitField())
+ Length = FR->getDecl()->getBitWidthValue(SVB.getContext());
+ }
+
+ for (ClusterBindings::iterator I = Cluster.begin(), E = Cluster.end();
+ I != E; ++I) {
+ BindingKey NextKey = I.getKey();
+ if (NextKey.getRegion() == TopKey.getRegion()) {
+ // FIXME: This doesn't catch the case where we're really invalidating a
+ // region with a symbolic offset. Example:
+ // R: points[i].y
+ // Next: points[0].x
+
+ if (NextKey.getOffset() > TopKey.getOffset() &&
+ NextKey.getOffset() - TopKey.getOffset() < Length) {
+ // Case 1: The next binding is inside the region we're invalidating.
+ // Include it.
+ Bindings.push_back(*I);
+
+ } else if (NextKey.getOffset() == TopKey.getOffset()) {
+ // Case 2: The next binding is at the same offset as the region we're
+ // invalidating. In this case, we need to leave default bindings alone,
+ // since they may be providing a default value for a regions beyond what
+ // we're invalidating.
+ // FIXME: This is probably incorrect; consider invalidating an outer
+ // struct whose first field is bound to a LazyCompoundVal.
+ if (IncludeAllDefaultBindings || NextKey.isDirect())
+ Bindings.push_back(*I);
+ }
+
+ } else if (NextKey.hasSymbolicOffset()) {
+ const MemRegion *Base = NextKey.getConcreteOffsetRegion();
+ if (Top->isSubRegionOf(Base)) {
+ // Case 3: The next key is symbolic and we just changed something within
+ // its concrete region. We don't know if the binding is still valid, so
+ // we'll be conservative and include it.
+ if (IncludeAllDefaultBindings || NextKey.isDirect())
+ if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
+ Bindings.push_back(*I);
+ } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) {
+ // Case 4: The next key is symbolic, but we changed a known
+ // super-region. In this case the binding is certainly included.
+ if (Top == Base || BaseSR->isSubRegionOf(Top))
+ if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
+ Bindings.push_back(*I);
+ }
+ }
+ }
+}
+
+static void
+collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
+ SValBuilder &SVB, const ClusterBindings &Cluster,
+ const SubRegion *Top, bool IncludeAllDefaultBindings) {
+ collectSubRegionBindings(Bindings, SVB, Cluster, Top,
+ BindingKey::Make(Top, BindingKey::Default),
+ IncludeAllDefaultBindings);
+}
+
+RegionBindingsRef
+RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B,
+ const SubRegion *Top) {
+ BindingKey TopKey = BindingKey::Make(Top, BindingKey::Default);
+ const MemRegion *ClusterHead = TopKey.getBaseRegion();
+
+ if (Top == ClusterHead) {
+ // We can remove an entire cluster's bindings all in one go.
+ return B.remove(Top);
+ }
+
+ const ClusterBindings *Cluster = B.lookup(ClusterHead);
+ if (!Cluster) {
+ // If we're invalidating a region with a symbolic offset, we need to make
+ // sure we don't treat the base region as uninitialized anymore.
+ if (TopKey.hasSymbolicOffset()) {
+ const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
+ return B.addBinding(Concrete, BindingKey::Default, UnknownVal());
+ }
+ return B;
+ }
+
+ SmallVector<BindingPair, 32> Bindings;
+ collectSubRegionBindings(Bindings, svalBuilder, *Cluster, Top, TopKey,
+ /*IncludeAllDefaultBindings=*/false);
+
+ ClusterBindingsRef Result(*Cluster, CBFactory);
+ for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
+ E = Bindings.end();
+ I != E; ++I)
+ Result = Result.remove(I->first);
+
+ // If we're invalidating a region with a symbolic offset, we need to make sure
+ // we don't treat the base region as uninitialized anymore.
+ // FIXME: This isn't very precise; see the example in
+ // collectSubRegionBindings.
+ if (TopKey.hasSymbolicOffset()) {
+ const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
+ Result = Result.add(BindingKey::Make(Concrete, BindingKey::Default),
+ UnknownVal());
+ }
+
+ if (Result.isEmpty())
+ return B.remove(ClusterHead);
+ return B.add(ClusterHead, Result.asImmutableMap());
+}
+
+namespace {
+class invalidateRegionsWorker : public ClusterAnalysis<invalidateRegionsWorker>
+{
+ const Expr *Ex;
+ unsigned Count;
+ const LocationContext *LCtx;
+ InvalidatedSymbols &IS;
+ RegionAndSymbolInvalidationTraits &ITraits;
+ StoreManager::InvalidatedRegions *Regions;
+public:
+ invalidateRegionsWorker(RegionStoreManager &rm,
+ ProgramStateManager &stateMgr,
+ RegionBindingsRef b,
+ const Expr *ex, unsigned count,
+ const LocationContext *lctx,
+ InvalidatedSymbols &is,
+ RegionAndSymbolInvalidationTraits &ITraitsIn,
+ StoreManager::InvalidatedRegions *r,
+ GlobalsFilterKind GFK)
+ : ClusterAnalysis<invalidateRegionsWorker>(rm, stateMgr, b, GFK),
+ Ex(ex), Count(count), LCtx(lctx), IS(is), ITraits(ITraitsIn), Regions(r){}
+
+ void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
+ void VisitBinding(SVal V);
+};
+}
+
+void invalidateRegionsWorker::VisitBinding(SVal V) {
+ // A symbol? Mark it touched by the invalidation.
+ if (SymbolRef Sym = V.getAsSymbol())
+ IS.insert(Sym);
+
+ if (const MemRegion *R = V.getAsRegion()) {
+ AddToWorkList(R);
+ return;
+ }
+
+ // Is it a LazyCompoundVal? All references get invalidated as well.
+ if (Optional<nonloc::LazyCompoundVal> LCS =
+ V.getAs<nonloc::LazyCompoundVal>()) {
+
+ const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
+
+ for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
+ E = Vals.end();
+ I != E; ++I)
+ VisitBinding(*I);
+
+ return;
+ }
+}
+
+void invalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
+ const ClusterBindings *C) {
+
+ bool PreserveRegionsContents =
+ ITraits.hasTrait(baseR,
+ RegionAndSymbolInvalidationTraits::TK_PreserveContents);
+
+ if (C) {
+ for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I)
+ VisitBinding(I.getData());
+
+ // Invalidate regions contents.
+ if (!PreserveRegionsContents)
+ B = B.remove(baseR);
+ }
+
+ // BlockDataRegion? If so, invalidate captured variables that are passed
+ // by reference.
+ if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
+ for (BlockDataRegion::referenced_vars_iterator
+ BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
+ BI != BE; ++BI) {
+ const VarRegion *VR = BI.getCapturedRegion();
+ const VarDecl *VD = VR->getDecl();
+ if (VD->hasAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
+ AddToWorkList(VR);
+ }
+ else if (Loc::isLocType(VR->getValueType())) {
+ // Map the current bindings to a Store to retrieve the value
+ // of the binding. If that binding itself is a region, we should
+ // invalidate that region. This is because a block may capture
+ // a pointer value, but the thing pointed by that pointer may
+ // get invalidated.
+ SVal V = RM.getBinding(B, loc::MemRegionVal(VR));
+ if (Optional<Loc> L = V.getAs<Loc>()) {
+ if (const MemRegion *LR = L->getAsRegion())
+ AddToWorkList(LR);
+ }
+ }
+ }
+ return;
+ }
+
+ // Symbolic region?
+ if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
+ IS.insert(SR->getSymbol());
+
+ // Nothing else should be done in the case when we preserve regions context.
+ if (PreserveRegionsContents)
+ return;
+
+ // Otherwise, we have a normal data region. Record that we touched the region.
+ if (Regions)
+ Regions->push_back(baseR);
+
+ if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
+ // Invalidate the region by setting its default value to
+ // conjured symbol. The type of the symbol is irrelevant.
+ DefinedOrUnknownSVal V =
+ svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
+ B = B.addBinding(baseR, BindingKey::Default, V);
+ return;
+ }
+
+ if (!baseR->isBoundable())
+ return;
+
+ const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
+ QualType T = TR->getValueType();
+
+ if (isInitiallyIncludedGlobalRegion(baseR)) {
+ // If the region is a global and we are invalidating all globals,
+ // erasing the entry is good enough. This causes all globals to be lazily
+ // symbolicated from the same base symbol.
+ return;
+ }
+
+ if (T->isStructureOrClassType()) {
+ // Invalidate the region by setting its default value to
+ // conjured symbol. The type of the symbol is irrelevant.
+ DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
+ Ctx.IntTy, Count);
+ B = B.addBinding(baseR, BindingKey::Default, V);
+ return;
+ }
+
+ if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
+ // Set the default value of the array to conjured symbol.
+ DefinedOrUnknownSVal V =
+ svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
+ AT->getElementType(), Count);
+ B = B.addBinding(baseR, BindingKey::Default, V);
+ return;
+ }
+
+ DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
+ T,Count);
+ assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
+ B = B.addBinding(baseR, BindingKey::Direct, V);
+}
+
+RegionBindingsRef
+RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
+ const Expr *Ex,
+ unsigned Count,
+ const LocationContext *LCtx,
+ RegionBindingsRef B,
+ InvalidatedRegions *Invalidated) {
+ // Bind the globals memory space to a new symbol that we will use to derive
+ // the bindings for all globals.
+ const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
+ SVal V = svalBuilder.conjureSymbolVal(/* SymbolTag = */ (const void*) GS, Ex, LCtx,
+ /* type does not matter */ Ctx.IntTy,
+ Count);
+
+ B = B.removeBinding(GS)
+ .addBinding(BindingKey::Make(GS, BindingKey::Default), V);
+
+ // Even if there are no bindings in the global scope, we still need to
+ // record that we touched it.
+ if (Invalidated)
+ Invalidated->push_back(GS);
+
+ return B;
+}
+
+void RegionStoreManager::populateWorkList(invalidateRegionsWorker &W,
+ ArrayRef<SVal> Values,
+ InvalidatedRegions *TopLevelRegions) {
+ for (ArrayRef<SVal>::iterator I = Values.begin(),
+ E = Values.end(); I != E; ++I) {
+ SVal V = *I;
+ if (Optional<nonloc::LazyCompoundVal> LCS =
+ V.getAs<nonloc::LazyCompoundVal>()) {
+
+ const SValListTy &Vals = getInterestingValues(*LCS);
+
+ for (SValListTy::const_iterator I = Vals.begin(),
+ E = Vals.end(); I != E; ++I) {
+ // Note: the last argument is false here because these are
+ // non-top-level regions.
+ if (const MemRegion *R = (*I).getAsRegion())
+ W.AddToWorkList(R);
+ }
+ continue;
+ }
+
+ if (const MemRegion *R = V.getAsRegion()) {
+ if (TopLevelRegions)
+ TopLevelRegions->push_back(R);
+ W.AddToWorkList(R);
+ continue;
+ }
+ }
+}
+
+StoreRef
+RegionStoreManager::invalidateRegions(Store store,
+ ArrayRef<SVal> Values,
+ const Expr *Ex, unsigned Count,
+ const LocationContext *LCtx,
+ const CallEvent *Call,
+ InvalidatedSymbols &IS,
+ RegionAndSymbolInvalidationTraits &ITraits,
+ InvalidatedRegions *TopLevelRegions,
+ InvalidatedRegions *Invalidated) {
+ GlobalsFilterKind GlobalsFilter;
+ if (Call) {
+ if (Call->isInSystemHeader())
+ GlobalsFilter = GFK_SystemOnly;
+ else
+ GlobalsFilter = GFK_All;
+ } else {
+ GlobalsFilter = GFK_None;
+ }
+
+ RegionBindingsRef B = getRegionBindings(store);
+ invalidateRegionsWorker W(*this, StateMgr, B, Ex, Count, LCtx, IS, ITraits,
+ Invalidated, GlobalsFilter);
+
+ // Scan the bindings and generate the clusters.
+ W.GenerateClusters();
+
+ // Add the regions to the worklist.
+ populateWorkList(W, Values, TopLevelRegions);
+
+ W.RunWorkList();
+
+ // Return the new bindings.
+ B = W.getRegionBindings();
+
+ // For calls, determine which global regions should be invalidated and
+ // invalidate them. (Note that function-static and immutable globals are never
+ // invalidated by this.)
+ // TODO: This could possibly be more precise with modules.
+ switch (GlobalsFilter) {
+ case GFK_All:
+ B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
+ Ex, Count, LCtx, B, Invalidated);
+ // FALLTHROUGH
+ case GFK_SystemOnly:
+ B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
+ Ex, Count, LCtx, B, Invalidated);
+ // FALLTHROUGH
+ case GFK_None:
+ break;
+ }
+
+ return StoreRef(B.asStore(), *this);
+}
+
+//===----------------------------------------------------------------------===//
+// Extents for regions.
+//===----------------------------------------------------------------------===//
+
+DefinedOrUnknownSVal
+RegionStoreManager::getSizeInElements(ProgramStateRef state,
+ const MemRegion *R,
+ QualType EleTy) {
+ SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder);
+ const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size);
+ if (!SizeInt)
+ return UnknownVal();
+
+ CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
+
+ if (Ctx.getAsVariableArrayType(EleTy)) {
+ // FIXME: We need to track extra state to properly record the size
+ // of VLAs. Returning UnknownVal here, however, is a stop-gap so that
+ // we don't have a divide-by-zero below.
+ return UnknownVal();
+ }
+
+ CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
+
+ // If a variable is reinterpreted as a type that doesn't fit into a larger
+ // type evenly, round it down.
+ // This is a signed value, since it's used in arithmetic with signed indices.
+ return svalBuilder.makeIntVal(RegionSize / EleSize, false);
+}
+
+//===----------------------------------------------------------------------===//
+// Location and region casting.
+//===----------------------------------------------------------------------===//
+
+/// ArrayToPointer - Emulates the "decay" of an array to a pointer
+/// type. 'Array' represents the lvalue of the array being decayed
+/// to a pointer, and the returned SVal represents the decayed
+/// version of that lvalue (i.e., a pointer to the first element of
+/// the array). This is called by ExprEngine when evaluating casts
+/// from arrays to pointers.
+SVal RegionStoreManager::ArrayToPointer(Loc Array, QualType T) {
+ if (!Array.getAs<loc::MemRegionVal>())
+ return UnknownVal();
+
+ const MemRegion* R = Array.castAs<loc::MemRegionVal>().getRegion();
+ NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
+ return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, R, Ctx));
+}
+
+//===----------------------------------------------------------------------===//
+// Loading values from regions.
+//===----------------------------------------------------------------------===//
+
+SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) {
+ assert(!L.getAs<UnknownVal>() && "location unknown");
+ assert(!L.getAs<UndefinedVal>() && "location undefined");
+
+ // For access to concrete addresses, return UnknownVal. Checks
+ // for null dereferences (and similar errors) are done by checkers, not
+ // the Store.
+ // FIXME: We can consider lazily symbolicating such memory, but we really
+ // should defer this when we can reason easily about symbolicating arrays
+ // of bytes.
+ if (L.getAs<loc::ConcreteInt>()) {
+ return UnknownVal();
+ }
+ if (!L.getAs<loc::MemRegionVal>()) {
+ return UnknownVal();
+ }
+
+ const MemRegion *MR = L.castAs<loc::MemRegionVal>().getRegion();
+
+ if (isa<AllocaRegion>(MR) ||
+ isa<SymbolicRegion>(MR) ||
+ isa<CodeTextRegion>(MR)) {
+ if (T.isNull()) {
+ if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR))
+ T = TR->getLocationType();
+ else {
+ const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
+ T = SR->getSymbol()->getType();
+ }
+ }
+ MR = GetElementZeroRegion(MR, T);
+ }
+
+ // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
+ // instead of 'Loc', and have the other Loc cases handled at a higher level.
+ const TypedValueRegion *R = cast<TypedValueRegion>(MR);
+ QualType RTy = R->getValueType();
+
+ // FIXME: we do not yet model the parts of a complex type, so treat the
+ // whole thing as "unknown".
+ if (RTy->isAnyComplexType())
+ return UnknownVal();
+
+ // FIXME: We should eventually handle funny addressing. e.g.:
+ //
+ // int x = ...;
+ // int *p = &x;
+ // char *q = (char*) p;
+ // char c = *q; // returns the first byte of 'x'.
+ //
+ // Such funny addressing will occur due to layering of regions.
+ if (RTy->isStructureOrClassType())
+ return getBindingForStruct(B, R);
+
+ // FIXME: Handle unions.
+ if (RTy->isUnionType())
+ return createLazyBinding(B, R);
+
+ if (RTy->isArrayType()) {
+ if (RTy->isConstantArrayType())
+ return getBindingForArray(B, R);
+ else
+ return UnknownVal();
+ }
+
+ // FIXME: handle Vector types.
+ if (RTy->isVectorType())
+ return UnknownVal();
+
+ if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
+ return CastRetrievedVal(getBindingForField(B, FR), FR, T, false);
+
+ if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
+ // FIXME: Here we actually perform an implicit conversion from the loaded
+ // value to the element type. Eventually we want to compose these values
+ // more intelligently. For example, an 'element' can encompass multiple
+ // bound regions (e.g., several bound bytes), or could be a subset of
+ // a larger value.
+ return CastRetrievedVal(getBindingForElement(B, ER), ER, T, false);
+ }
+
+ if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
+ // FIXME: Here we actually perform an implicit conversion from the loaded
+ // value to the ivar type. What we should model is stores to ivars
+ // that blow past the extent of the ivar. If the address of the ivar is
+ // reinterpretted, it is possible we stored a different value that could
+ // fit within the ivar. Either we need to cast these when storing them
+ // or reinterpret them lazily (as we do here).
+ return CastRetrievedVal(getBindingForObjCIvar(B, IVR), IVR, T, false);
+ }
+
+ if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
+ // FIXME: Here we actually perform an implicit conversion from the loaded
+ // value to the variable type. What we should model is stores to variables
+ // that blow past the extent of the variable. If the address of the
+ // variable is reinterpretted, it is possible we stored a different value
+ // that could fit within the variable. Either we need to cast these when
+ // storing them or reinterpret them lazily (as we do here).
+ return CastRetrievedVal(getBindingForVar(B, VR), VR, T, false);
+ }
+
+ const SVal *V = B.lookup(R, BindingKey::Direct);
+
+ // Check if the region has a binding.
+ if (V)
+ return *V;
+
+ // The location does not have a bound value. This means that it has
+ // the value it had upon its creation and/or entry to the analyzed
+ // function/method. These are either symbolic values or 'undefined'.
+ if (R->hasStackNonParametersStorage()) {
+ // All stack variables are considered to have undefined values
+ // upon creation. All heap allocated blocks are considered to
+ // have undefined values as well unless they are explicitly bound
+ // to specific values.
+ return UndefinedVal();
+ }
+
+ // All other values are symbolic.
+ return svalBuilder.getRegionValueSymbolVal(R);
+}
+
+static QualType getUnderlyingType(const SubRegion *R) {
+ QualType RegionTy;
+ if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(R))
+ RegionTy = TVR->getValueType();
+
+ if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
+ RegionTy = SR->getSymbol()->getType();
+
+ return RegionTy;
+}
+
+/// Checks to see if store \p B has a lazy binding for region \p R.
+///
+/// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected
+/// if there are additional bindings within \p R.
+///
+/// Note that unlike RegionStoreManager::findLazyBinding, this will not search
+/// for lazy bindings for super-regions of \p R.
+static Optional<nonloc::LazyCompoundVal>
+getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B,
+ const SubRegion *R, bool AllowSubregionBindings) {
+ Optional<SVal> V = B.getDefaultBinding(R);
+ if (!V)
+ return None;
+
+ Optional<nonloc::LazyCompoundVal> LCV = V->getAs<nonloc::LazyCompoundVal>();
+ if (!LCV)
+ return None;
+
+ // If the LCV is for a subregion, the types might not match, and we shouldn't
+ // reuse the binding.
+ QualType RegionTy = getUnderlyingType(R);
+ if (!RegionTy.isNull() &&
+ !RegionTy->isVoidPointerType()) {
+ QualType SourceRegionTy = LCV->getRegion()->getValueType();
+ if (!SVB.getContext().hasSameUnqualifiedType(RegionTy, SourceRegionTy))
+ return None;
+ }
+
+ if (!AllowSubregionBindings) {
+ // If there are any other bindings within this region, we shouldn't reuse
+ // the top-level binding.
+ SmallVector<BindingPair, 16> Bindings;
+ collectSubRegionBindings(Bindings, SVB, *B.lookup(R->getBaseRegion()), R,
+ /*IncludeAllDefaultBindings=*/true);
+ if (Bindings.size() > 1)
+ return None;
+ }
+
+ return *LCV;
+}
+
+
+std::pair<Store, const SubRegion *>
+RegionStoreManager::findLazyBinding(RegionBindingsConstRef B,
+ const SubRegion *R,
+ const SubRegion *originalRegion) {
+ if (originalRegion != R) {
+ if (Optional<nonloc::LazyCompoundVal> V =
+ getExistingLazyBinding(svalBuilder, B, R, true))
+ return std::make_pair(V->getStore(), V->getRegion());
+ }
+
+ typedef std::pair<Store, const SubRegion *> StoreRegionPair;
+ StoreRegionPair Result = StoreRegionPair();
+
+ if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
+ Result = findLazyBinding(B, cast<SubRegion>(ER->getSuperRegion()),
+ originalRegion);
+
+ if (Result.second)
+ Result.second = MRMgr.getElementRegionWithSuper(ER, Result.second);
+
+ } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
+ Result = findLazyBinding(B, cast<SubRegion>(FR->getSuperRegion()),
+ originalRegion);
+
+ if (Result.second)
+ Result.second = MRMgr.getFieldRegionWithSuper(FR, Result.second);
+
+ } else if (const CXXBaseObjectRegion *BaseReg =
+ dyn_cast<CXXBaseObjectRegion>(R)) {
+ // C++ base object region is another kind of region that we should blast
+ // through to look for lazy compound value. It is like a field region.
+ Result = findLazyBinding(B, cast<SubRegion>(BaseReg->getSuperRegion()),
+ originalRegion);
+
+ if (Result.second)
+ Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(BaseReg,
+ Result.second);
+ }
+
+ return Result;
+}
+
+SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B,
+ const ElementRegion* R) {
+ // We do not currently model bindings of the CompoundLiteralregion.
+ if (isa<CompoundLiteralRegion>(R->getBaseRegion()))
+ return UnknownVal();
+
+ // Check if the region has a binding.
+ if (const Optional<SVal> &V = B.getDirectBinding(R))
+ return *V;
+
+ const MemRegion* superR = R->getSuperRegion();
+
+ // Check if the region is an element region of a string literal.
+ if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) {
+ // FIXME: Handle loads from strings where the literal is treated as
+ // an integer, e.g., *((unsigned int*)"hello")
+ QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
+ if (!Ctx.hasSameUnqualifiedType(T, R->getElementType()))
+ return UnknownVal();
+
+ const StringLiteral *Str = StrR->getStringLiteral();
+ SVal Idx = R->getIndex();
+ if (Optional<nonloc::ConcreteInt> CI = Idx.getAs<nonloc::ConcreteInt>()) {
+ int64_t i = CI->getValue().getSExtValue();
+ // Abort on string underrun. This can be possible by arbitrary
+ // clients of getBindingForElement().
+ if (i < 0)
+ return UndefinedVal();
+ int64_t length = Str->getLength();
+ // Technically, only i == length is guaranteed to be null.
+ // However, such overflows should be caught before reaching this point;
+ // the only time such an access would be made is if a string literal was
+ // used to initialize a larger array.
+ char c = (i >= length) ? '\0' : Str->getCodeUnit(i);
+ return svalBuilder.makeIntVal(c, T);
+ }
+ }
+
+ // Check for loads from a code text region. For such loads, just give up.
+ if (isa<CodeTextRegion>(superR))
+ return UnknownVal();
+
+ // Handle the case where we are indexing into a larger scalar object.
+ // For example, this handles:
+ // int x = ...
+ // char *y = &x;
+ // return *y;
+ // FIXME: This is a hack, and doesn't do anything really intelligent yet.
+ const RegionRawOffset &O = R->getAsArrayOffset();
+
+ // If we cannot reason about the offset, return an unknown value.
+ if (!O.getRegion())
+ return UnknownVal();
+
+ if (const TypedValueRegion *baseR =
+ dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
+ QualType baseT = baseR->getValueType();
+ if (baseT->isScalarType()) {
+ QualType elemT = R->getElementType();
+ if (elemT->isScalarType()) {
+ if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
+ if (const Optional<SVal> &V = B.getDirectBinding(superR)) {
+ if (SymbolRef parentSym = V->getAsSymbol())
+ return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
+
+ if (V->isUnknownOrUndef())
+ return *V;
+ // Other cases: give up. We are indexing into a larger object
+ // that has some value, but we don't know how to handle that yet.
+ return UnknownVal();
+ }
+ }
+ }
+ }
+ }
+ return getBindingForFieldOrElementCommon(B, R, R->getElementType());
+}
+
+SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B,
+ const FieldRegion* R) {
+
+ // Check if the region has a binding.
+ if (const Optional<SVal> &V = B.getDirectBinding(R))
+ return *V;
+
+ QualType Ty = R->getValueType();
+ return getBindingForFieldOrElementCommon(B, R, Ty);
+}
+
+Optional<SVal>
+RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
+ const MemRegion *superR,
+ const TypedValueRegion *R,
+ QualType Ty) {
+
+ if (const Optional<SVal> &D = B.getDefaultBinding(superR)) {
+ const SVal &val = D.getValue();
+ if (SymbolRef parentSym = val.getAsSymbol())
+ return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
+
+ if (val.isZeroConstant())
+ return svalBuilder.makeZeroVal(Ty);
+
+ if (val.isUnknownOrUndef())
+ return val;
+
+ // Lazy bindings are usually handled through getExistingLazyBinding().
+ // We should unify these two code paths at some point.
+ if (val.getAs<nonloc::LazyCompoundVal>())
+ return val;
+
+ llvm_unreachable("Unknown default value");
+ }
+
+ return None;
+}
+
+SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion,
+ RegionBindingsRef LazyBinding) {
+ SVal Result;
+ if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion))
+ Result = getBindingForElement(LazyBinding, ER);
+ else
+ Result = getBindingForField(LazyBinding,
+ cast<FieldRegion>(LazyBindingRegion));
+
+ // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
+ // default value for /part/ of an aggregate from a default value for the
+ // /entire/ aggregate. The most common case of this is when struct Outer
+ // has as its first member a struct Inner, which is copied in from a stack
+ // variable. In this case, even if the Outer's default value is symbolic, 0,
+ // or unknown, it gets overridden by the Inner's default value of undefined.
+ //
+ // This is a general problem -- if the Inner is zero-initialized, the Outer
+ // will now look zero-initialized. The proper way to solve this is with a
+ // new version of RegionStore that tracks the extent of a binding as well
+ // as the offset.
+ //
+ // This hack only takes care of the undefined case because that can very
+ // quickly result in a warning.
+ if (Result.isUndef())
+ Result = UnknownVal();
+
+ return Result;
+}
+
+SVal
+RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
+ const TypedValueRegion *R,
+ QualType Ty) {
+
+ // At this point we have already checked in either getBindingForElement or
+ // getBindingForField if 'R' has a direct binding.
+
+ // Lazy binding?
+ Store lazyBindingStore = nullptr;
+ const SubRegion *lazyBindingRegion = nullptr;
+ std::tie(lazyBindingStore, lazyBindingRegion) = findLazyBinding(B, R, R);
+ if (lazyBindingRegion)
+ return getLazyBinding(lazyBindingRegion,
+ getRegionBindings(lazyBindingStore));
+
+ // Record whether or not we see a symbolic index. That can completely
+ // be out of scope of our lookup.
+ bool hasSymbolicIndex = false;
+
+ // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
+ // default value for /part/ of an aggregate from a default value for the
+ // /entire/ aggregate. The most common case of this is when struct Outer
+ // has as its first member a struct Inner, which is copied in from a stack
+ // variable. In this case, even if the Outer's default value is symbolic, 0,
+ // or unknown, it gets overridden by the Inner's default value of undefined.
+ //
+ // This is a general problem -- if the Inner is zero-initialized, the Outer
+ // will now look zero-initialized. The proper way to solve this is with a
+ // new version of RegionStore that tracks the extent of a binding as well
+ // as the offset.
+ //
+ // This hack only takes care of the undefined case because that can very
+ // quickly result in a warning.
+ bool hasPartialLazyBinding = false;
+
+ const SubRegion *SR = dyn_cast<SubRegion>(R);
+ while (SR) {
+ const MemRegion *Base = SR->getSuperRegion();
+ if (Optional<SVal> D = getBindingForDerivedDefaultValue(B, Base, R, Ty)) {
+ if (D->getAs<nonloc::LazyCompoundVal>()) {
+ hasPartialLazyBinding = true;
+ break;
+ }
+
+ return *D;
+ }
+
+ if (const ElementRegion *ER = dyn_cast<ElementRegion>(Base)) {
+ NonLoc index = ER->getIndex();
+ if (!index.isConstant())
+ hasSymbolicIndex = true;
+ }
+
+ // If our super region is a field or element itself, walk up the region
+ // hierarchy to see if there is a default value installed in an ancestor.
+ SR = dyn_cast<SubRegion>(Base);
+ }
+
+ if (R->hasStackNonParametersStorage()) {
+ if (isa<ElementRegion>(R)) {
+ // Currently we don't reason specially about Clang-style vectors. Check
+ // if superR is a vector and if so return Unknown.
+ if (const TypedValueRegion *typedSuperR =
+ dyn_cast<TypedValueRegion>(R->getSuperRegion())) {
+ if (typedSuperR->getValueType()->isVectorType())
+ return UnknownVal();
+ }
+ }
+
+ // FIXME: We also need to take ElementRegions with symbolic indexes into
+ // account. This case handles both directly accessing an ElementRegion
+ // with a symbolic offset, but also fields within an element with
+ // a symbolic offset.
+ if (hasSymbolicIndex)
+ return UnknownVal();
+
+ if (!hasPartialLazyBinding)
+ return UndefinedVal();
+ }
+
+ // All other values are symbolic.
+ return svalBuilder.getRegionValueSymbolVal(R);
+}
+
+SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B,
+ const ObjCIvarRegion* R) {
+ // Check if the region has a binding.
+ if (const Optional<SVal> &V = B.getDirectBinding(R))
+ return *V;
+
+ const MemRegion *superR = R->getSuperRegion();
+
+ // Check if the super region has a default binding.
+ if (const Optional<SVal> &V = B.getDefaultBinding(superR)) {
+ if (SymbolRef parentSym = V->getAsSymbol())
+ return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
+
+ // Other cases: give up.
+ return UnknownVal();
+ }
+
+ return getBindingForLazySymbol(R);
+}
+
+SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B,
+ const VarRegion *R) {
+
+ // Check if the region has a binding.
+ if (const Optional<SVal> &V = B.getDirectBinding(R))
+ return *V;
+
+ // Lazily derive a value for the VarRegion.
+ const VarDecl *VD = R->getDecl();
+ const MemSpaceRegion *MS = R->getMemorySpace();
+
+ // Arguments are always symbolic.
+ if (isa<StackArgumentsSpaceRegion>(MS))
+ return svalBuilder.getRegionValueSymbolVal(R);
+
+ // Is 'VD' declared constant? If so, retrieve the constant value.
+ if (VD->getType().isConstQualified())
+ if (const Expr *Init = VD->getInit())
+ if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
+ return *V;
+
+ // This must come after the check for constants because closure-captured
+ // constant variables may appear in UnknownSpaceRegion.
+ if (isa<UnknownSpaceRegion>(MS))
+ return svalBuilder.getRegionValueSymbolVal(R);
+
+ if (isa<GlobalsSpaceRegion>(MS)) {
+ QualType T = VD->getType();
+
+ // Function-scoped static variables are default-initialized to 0; if they
+ // have an initializer, it would have been processed by now.
+ if (isa<StaticGlobalSpaceRegion>(MS))
+ return svalBuilder.makeZeroVal(T);
+
+ if (Optional<SVal> V = getBindingForDerivedDefaultValue(B, MS, R, T)) {
+ assert(!V->getAs<nonloc::LazyCompoundVal>());
+ return V.getValue();
+ }
+
+ return svalBuilder.getRegionValueSymbolVal(R);
+ }
+
+ return UndefinedVal();
+}
+
+SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
+ // All other values are symbolic.
+ return svalBuilder.getRegionValueSymbolVal(R);
+}
+
+const RegionStoreManager::SValListTy &
+RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) {
+ // First, check the cache.
+ LazyBindingsMapTy::iterator I = LazyBindingsMap.find(LCV.getCVData());
+ if (I != LazyBindingsMap.end())
+ return I->second;
+
+ // If we don't have a list of values cached, start constructing it.
+ SValListTy List;
+
+ const SubRegion *LazyR = LCV.getRegion();
+ RegionBindingsRef B = getRegionBindings(LCV.getStore());
+
+ // If this region had /no/ bindings at the time, there are no interesting
+ // values to return.
+ const ClusterBindings *Cluster = B.lookup(LazyR->getBaseRegion());
+ if (!Cluster)
+ return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
+
+ SmallVector<BindingPair, 32> Bindings;
+ collectSubRegionBindings(Bindings, svalBuilder, *Cluster, LazyR,
+ /*IncludeAllDefaultBindings=*/true);
+ for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
+ E = Bindings.end();
+ I != E; ++I) {
+ SVal V = I->second;
+ if (V.isUnknownOrUndef() || V.isConstant())
+ continue;
+
+ if (Optional<nonloc::LazyCompoundVal> InnerLCV =
+ V.getAs<nonloc::LazyCompoundVal>()) {
+ const SValListTy &InnerList = getInterestingValues(*InnerLCV);
+ List.insert(List.end(), InnerList.begin(), InnerList.end());
+ continue;
+ }
+
+ List.push_back(V);
+ }
+
+ return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
+}
+
+NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B,
+ const TypedValueRegion *R) {
+ if (Optional<nonloc::LazyCompoundVal> V =
+ getExistingLazyBinding(svalBuilder, B, R, false))
+ return *V;
+
+ return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R);
+}
+
+static bool isRecordEmpty(const RecordDecl *RD) {
+ if (!RD->field_empty())
+ return false;
+ if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD))
+ return CRD->getNumBases() == 0;
+ return true;
+}
+
+SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B,
+ const TypedValueRegion *R) {
+ const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl();
+ if (!RD->getDefinition() || isRecordEmpty(RD))
+ return UnknownVal();
+
+ return createLazyBinding(B, R);
+}
+
+SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B,
+ const TypedValueRegion *R) {
+ assert(Ctx.getAsConstantArrayType(R->getValueType()) &&
+ "Only constant array types can have compound bindings.");
+
+ return createLazyBinding(B, R);
+}
+
+bool RegionStoreManager::includedInBindings(Store store,
+ const MemRegion *region) const {
+ RegionBindingsRef B = getRegionBindings(store);
+ region = region->getBaseRegion();
+
+ // Quick path: if the base is the head of a cluster, the region is live.
+ if (B.lookup(region))
+ return true;
+
+ // Slow path: if the region is the VALUE of any binding, it is live.
+ for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) {
+ const ClusterBindings &Cluster = RI.getData();
+ for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
+ CI != CE; ++CI) {
+ const SVal &D = CI.getData();
+ if (const MemRegion *R = D.getAsRegion())
+ if (R->getBaseRegion() == region)
+ return true;
+ }
+ }
+
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Binding values to regions.
+//===----------------------------------------------------------------------===//
+
+StoreRef RegionStoreManager::killBinding(Store ST, Loc L) {
+ if (Optional<loc::MemRegionVal> LV = L.getAs<loc::MemRegionVal>())
+ if (const MemRegion* R = LV->getRegion())
+ return StoreRef(getRegionBindings(ST).removeBinding(R)
+ .asImmutableMap()
+ .getRootWithoutRetain(),
+ *this);
+
+ return StoreRef(ST, *this);
+}
+
+RegionBindingsRef
+RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) {
+ if (L.getAs<loc::ConcreteInt>())
+ return B;
+
+ // If we get here, the location should be a region.
+ const MemRegion *R = L.castAs<loc::MemRegionVal>().getRegion();
+
+ // Check if the region is a struct region.
+ if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
+ QualType Ty = TR->getValueType();
+ if (Ty->isArrayType())
+ return bindArray(B, TR, V);
+ if (Ty->isStructureOrClassType())
+ return bindStruct(B, TR, V);
+ if (Ty->isVectorType())
+ return bindVector(B, TR, V);
+ if (Ty->isUnionType())
+ return bindAggregate(B, TR, V);
+ }
+
+ if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
+ // Binding directly to a symbolic region should be treated as binding
+ // to element 0.
+ QualType T = SR->getSymbol()->getType();
+ if (T->isAnyPointerType() || T->isReferenceType())
+ T = T->getPointeeType();
+
+ R = GetElementZeroRegion(SR, T);
+ }
+
+ // Clear out bindings that may overlap with this binding.
+ RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R));
+ return NewB.addBinding(BindingKey::Make(R, BindingKey::Direct), V);
+}
+
+RegionBindingsRef
+RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B,
+ const MemRegion *R,
+ QualType T) {
+ SVal V;
+
+ if (Loc::isLocType(T))
+ V = svalBuilder.makeNull();
+ else if (T->isIntegralOrEnumerationType())
+ V = svalBuilder.makeZeroVal(T);
+ else if (T->isStructureOrClassType() || T->isArrayType()) {
+ // Set the default value to a zero constant when it is a structure
+ // or array. The type doesn't really matter.
+ V = svalBuilder.makeZeroVal(Ctx.IntTy);
+ }
+ else {
+ // We can't represent values of this type, but we still need to set a value
+ // to record that the region has been initialized.
+ // If this assertion ever fires, a new case should be added above -- we
+ // should know how to default-initialize any value we can symbolicate.
+ assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
+ V = UnknownVal();
+ }
+
+ return B.addBinding(R, BindingKey::Default, V);
+}
+
+RegionBindingsRef
+RegionStoreManager::bindArray(RegionBindingsConstRef B,
+ const TypedValueRegion* R,
+ SVal Init) {
+
+ const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
+ QualType ElementTy = AT->getElementType();
+ Optional<uint64_t> Size;
+
+ if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
+ Size = CAT->getSize().getZExtValue();
+
+ // Check if the init expr is a string literal.
+ if (Optional<loc::MemRegionVal> MRV = Init.getAs<loc::MemRegionVal>()) {
+ const StringRegion *S = cast<StringRegion>(MRV->getRegion());
+
+ // Treat the string as a lazy compound value.
+ StoreRef store(B.asStore(), *this);
+ nonloc::LazyCompoundVal LCV = svalBuilder.makeLazyCompoundVal(store, S)
+ .castAs<nonloc::LazyCompoundVal>();
+ return bindAggregate(B, R, LCV);
+ }
+
+ // Handle lazy compound values.
+ if (Init.getAs<nonloc::LazyCompoundVal>())
+ return bindAggregate(B, R, Init);
+
+ // Remaining case: explicit compound values.
+
+ if (Init.isUnknown())
+ return setImplicitDefaultValue(B, R, ElementTy);
+
+ const nonloc::CompoundVal& CV = Init.castAs<nonloc::CompoundVal>();
+ nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
+ uint64_t i = 0;
+
+ RegionBindingsRef NewB(B);
+
+ for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
+ // The init list might be shorter than the array length.
+ if (VI == VE)
+ break;
+
+ const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
+ const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
+
+ if (ElementTy->isStructureOrClassType())
+ NewB = bindStruct(NewB, ER, *VI);
+ else if (ElementTy->isArrayType())
+ NewB = bindArray(NewB, ER, *VI);
+ else
+ NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
+ }
+
+ // If the init list is shorter than the array length, set the
+ // array default value.
+ if (Size.hasValue() && i < Size.getValue())
+ NewB = setImplicitDefaultValue(NewB, R, ElementTy);
+
+ return NewB;
+}
+
+RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B,
+ const TypedValueRegion* R,
+ SVal V) {
+ QualType T = R->getValueType();
+ assert(T->isVectorType());
+ const VectorType *VT = T->getAs<VectorType>(); // Use getAs for typedefs.
+
+ // Handle lazy compound values and symbolic values.
+ if (V.getAs<nonloc::LazyCompoundVal>() || V.getAs<nonloc::SymbolVal>())
+ return bindAggregate(B, R, V);
+
+ // We may get non-CompoundVal accidentally due to imprecise cast logic or
+ // that we are binding symbolic struct value. Kill the field values, and if
+ // the value is symbolic go and bind it as a "default" binding.
+ if (!V.getAs<nonloc::CompoundVal>()) {
+ return bindAggregate(B, R, UnknownVal());
+ }
+
+ QualType ElemType = VT->getElementType();
+ nonloc::CompoundVal CV = V.castAs<nonloc::CompoundVal>();
+ nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
+ unsigned index = 0, numElements = VT->getNumElements();
+ RegionBindingsRef NewB(B);
+
+ for ( ; index != numElements ; ++index) {
+ if (VI == VE)
+ break;
+
+ NonLoc Idx = svalBuilder.makeArrayIndex(index);
+ const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
+
+ if (ElemType->isArrayType())
+ NewB = bindArray(NewB, ER, *VI);
+ else if (ElemType->isStructureOrClassType())
+ NewB = bindStruct(NewB, ER, *VI);
+ else
+ NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
+ }
+ return NewB;
+}
+
+Optional<RegionBindingsRef>
+RegionStoreManager::tryBindSmallStruct(RegionBindingsConstRef B,
+ const TypedValueRegion *R,
+ const RecordDecl *RD,
+ nonloc::LazyCompoundVal LCV) {
+ FieldVector Fields;
+
+ if (const CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(RD))
+ if (Class->getNumBases() != 0 || Class->getNumVBases() != 0)
+ return None;
+
+ for (const auto *FD : RD->fields()) {
+ if (FD->isUnnamedBitfield())
+ continue;
+
+ // If there are too many fields, or if any of the fields are aggregates,
+ // just use the LCV as a default binding.
+ if (Fields.size() == SmallStructLimit)
+ return None;
+
+ QualType Ty = FD->getType();
+ if (!(Ty->isScalarType() || Ty->isReferenceType()))
+ return None;
+
+ Fields.push_back(FD);
+ }
+
+ RegionBindingsRef NewB = B;
+
+ for (FieldVector::iterator I = Fields.begin(), E = Fields.end(); I != E; ++I){
+ const FieldRegion *SourceFR = MRMgr.getFieldRegion(*I, LCV.getRegion());
+ SVal V = getBindingForField(getRegionBindings(LCV.getStore()), SourceFR);
+
+ const FieldRegion *DestFR = MRMgr.getFieldRegion(*I, R);
+ NewB = bind(NewB, loc::MemRegionVal(DestFR), V);
+ }
+
+ return NewB;
+}
+
+RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B,
+ const TypedValueRegion* R,
+ SVal V) {
+ if (!Features.supportsFields())
+ return B;
+
+ QualType T = R->getValueType();
+ assert(T->isStructureOrClassType());
+
+ const RecordType* RT = T->getAs<RecordType>();
+ const RecordDecl *RD = RT->getDecl();
+
+ if (!RD->isCompleteDefinition())
+ return B;
+
+ // Handle lazy compound values and symbolic values.
+ if (Optional<nonloc::LazyCompoundVal> LCV =
+ V.getAs<nonloc::LazyCompoundVal>()) {
+ if (Optional<RegionBindingsRef> NewB = tryBindSmallStruct(B, R, RD, *LCV))
+ return *NewB;
+ return bindAggregate(B, R, V);
+ }
+ if (V.getAs<nonloc::SymbolVal>())
+ return bindAggregate(B, R, V);
+
+ // We may get non-CompoundVal accidentally due to imprecise cast logic or
+ // that we are binding symbolic struct value. Kill the field values, and if
+ // the value is symbolic go and bind it as a "default" binding.
+ if (V.isUnknown() || !V.getAs<nonloc::CompoundVal>())
+ return bindAggregate(B, R, UnknownVal());
+
+ const nonloc::CompoundVal& CV = V.castAs<nonloc::CompoundVal>();
+ nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
+
+ RecordDecl::field_iterator FI, FE;
+ RegionBindingsRef NewB(B);
+
+ for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
+
+ if (VI == VE)
+ break;
+
+ // Skip any unnamed bitfields to stay in sync with the initializers.
+ if (FI->isUnnamedBitfield())
+ continue;
+
+ QualType FTy = FI->getType();
+ const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
+
+ if (FTy->isArrayType())
+ NewB = bindArray(NewB, FR, *VI);
+ else if (FTy->isStructureOrClassType())
+ NewB = bindStruct(NewB, FR, *VI);
+ else
+ NewB = bind(NewB, loc::MemRegionVal(FR), *VI);
+ ++VI;
+ }
+
+ // There may be fewer values in the initialize list than the fields of struct.
+ if (FI != FE) {
+ NewB = NewB.addBinding(R, BindingKey::Default,
+ svalBuilder.makeIntVal(0, false));
+ }
+
+ return NewB;
+}
+
+RegionBindingsRef
+RegionStoreManager::bindAggregate(RegionBindingsConstRef B,
+ const TypedRegion *R,
+ SVal Val) {
+ // Remove the old bindings, using 'R' as the root of all regions
+ // we will invalidate. Then add the new binding.
+ return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val);
+}
+
+//===----------------------------------------------------------------------===//
+// State pruning.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class removeDeadBindingsWorker :
+ public ClusterAnalysis<removeDeadBindingsWorker> {
+ SmallVector<const SymbolicRegion*, 12> Postponed;
+ SymbolReaper &SymReaper;
+ const StackFrameContext *CurrentLCtx;
+
+public:
+ removeDeadBindingsWorker(RegionStoreManager &rm,
+ ProgramStateManager &stateMgr,
+ RegionBindingsRef b, SymbolReaper &symReaper,
+ const StackFrameContext *LCtx)
+ : ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b, GFK_None),
+ SymReaper(symReaper), CurrentLCtx(LCtx) {}
+
+ // Called by ClusterAnalysis.
+ void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C);
+ void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
+ using ClusterAnalysis<removeDeadBindingsWorker>::VisitCluster;
+
+ bool UpdatePostponed();
+ void VisitBinding(SVal V);
+};
+}
+
+void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
+ const ClusterBindings &C) {
+
+ if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
+ if (SymReaper.isLive(VR))
+ AddToWorkList(baseR, &C);
+
+ return;
+ }
+
+ if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
+ if (SymReaper.isLive(SR->getSymbol()))
+ AddToWorkList(SR, &C);
+ else
+ Postponed.push_back(SR);
+
+ return;
+ }
+
+ if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
+ AddToWorkList(baseR, &C);
+ return;
+ }
+
+ // CXXThisRegion in the current or parent location context is live.
+ if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
+ const StackArgumentsSpaceRegion *StackReg =
+ cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
+ const StackFrameContext *RegCtx = StackReg->getStackFrame();
+ if (CurrentLCtx &&
+ (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx)))
+ AddToWorkList(TR, &C);
+ }
+}
+
+void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
+ const ClusterBindings *C) {
+ if (!C)
+ return;
+
+ // Mark the symbol for any SymbolicRegion with live bindings as live itself.
+ // This means we should continue to track that symbol.
+ if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR))
+ SymReaper.markLive(SymR->getSymbol());
+
+ for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I)
+ VisitBinding(I.getData());
+}
+
+void removeDeadBindingsWorker::VisitBinding(SVal V) {
+ // Is it a LazyCompoundVal? All referenced regions are live as well.
+ if (Optional<nonloc::LazyCompoundVal> LCS =
+ V.getAs<nonloc::LazyCompoundVal>()) {
+
+ const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
+
+ for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
+ E = Vals.end();
+ I != E; ++I)
+ VisitBinding(*I);
+
+ return;
+ }
+
+ // If V is a region, then add it to the worklist.
+ if (const MemRegion *R = V.getAsRegion()) {
+ AddToWorkList(R);
+
+ // All regions captured by a block are also live.
+ if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
+ BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(),
+ E = BR->referenced_vars_end();
+ for ( ; I != E; ++I)
+ AddToWorkList(I.getCapturedRegion());
+ }
+ }
+
+
+ // Update the set of live symbols.
+ for (SymExpr::symbol_iterator SI = V.symbol_begin(), SE = V.symbol_end();
+ SI!=SE; ++SI)
+ SymReaper.markLive(*SI);
+}
+
+bool removeDeadBindingsWorker::UpdatePostponed() {
+ // See if any postponed SymbolicRegions are actually live now, after
+ // having done a scan.
+ bool changed = false;
+
+ for (SmallVectorImpl<const SymbolicRegion*>::iterator
+ I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) {
+ if (const SymbolicRegion *SR = *I) {
+ if (SymReaper.isLive(SR->getSymbol())) {
+ changed |= AddToWorkList(SR);
+ *I = nullptr;
+ }
+ }
+ }
+
+ return changed;
+}
+
+StoreRef RegionStoreManager::removeDeadBindings(Store store,
+ const StackFrameContext *LCtx,
+ SymbolReaper& SymReaper) {
+ RegionBindingsRef B = getRegionBindings(store);
+ removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
+ W.GenerateClusters();
+
+ // Enqueue the region roots onto the worklist.
+ for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
+ E = SymReaper.region_end(); I != E; ++I) {
+ W.AddToWorkList(*I);
+ }
+
+ do W.RunWorkList(); while (W.UpdatePostponed());
+
+ // We have now scanned the store, marking reachable regions and symbols
+ // as live. We now remove all the regions that are dead from the store
+ // as well as update DSymbols with the set symbols that are now dead.
+ for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
+ const MemRegion *Base = I.getKey();
+
+ // If the cluster has been visited, we know the region has been marked.
+ if (W.isVisited(Base))
+ continue;
+
+ // Remove the dead entry.
+ B = B.remove(Base);
+
+ if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(Base))
+ SymReaper.maybeDead(SymR->getSymbol());
+
+ // Mark all non-live symbols that this binding references as dead.
+ const ClusterBindings &Cluster = I.getData();
+ for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
+ CI != CE; ++CI) {
+ SVal X = CI.getData();
+ SymExpr::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
+ for (; SI != SE; ++SI)
+ SymReaper.maybeDead(*SI);
+ }
+ }
+
+ return StoreRef(B.asStore(), *this);
+}
+
+//===----------------------------------------------------------------------===//
+// Utility methods.
+//===----------------------------------------------------------------------===//
+
+void RegionStoreManager::print(Store store, raw_ostream &OS,
+ const char* nl, const char *sep) {
+ RegionBindingsRef B = getRegionBindings(store);
+ OS << "Store (direct and default bindings), "
+ << B.asStore()
+ << " :" << nl;
+ B.dump(OS, nl);
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/SValBuilder.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/SValBuilder.cpp
new file mode 100644
index 0000000..3ed2bde
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/SValBuilder.cpp
@@ -0,0 +1,528 @@
+// SValBuilder.cpp - Basic class for all SValBuilder implementations -*- C++ -*-
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines SValBuilder, the base class for all (complete) SValBuilder
+// implementations.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
+
+using namespace clang;
+using namespace ento;
+
+//===----------------------------------------------------------------------===//
+// Basic SVal creation.
+//===----------------------------------------------------------------------===//
+
+void SValBuilder::anchor() { }
+
+DefinedOrUnknownSVal SValBuilder::makeZeroVal(QualType type) {
+ if (Loc::isLocType(type))
+ return makeNull();
+
+ if (type->isIntegralOrEnumerationType())
+ return makeIntVal(0, type);
+
+ // FIXME: Handle floats.
+ // FIXME: Handle structs.
+ return UnknownVal();
+}
+
+NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
+ const llvm::APSInt& rhs, QualType type) {
+ // The Environment ensures we always get a persistent APSInt in
+ // BasicValueFactory, so we don't need to get the APSInt from
+ // BasicValueFactory again.
+ assert(lhs);
+ assert(!Loc::isLocType(type));
+ return nonloc::SymbolVal(SymMgr.getSymIntExpr(lhs, op, rhs, type));
+}
+
+NonLoc SValBuilder::makeNonLoc(const llvm::APSInt& lhs,
+ BinaryOperator::Opcode op, const SymExpr *rhs,
+ QualType type) {
+ assert(rhs);
+ assert(!Loc::isLocType(type));
+ return nonloc::SymbolVal(SymMgr.getIntSymExpr(lhs, op, rhs, type));
+}
+
+NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
+ const SymExpr *rhs, QualType type) {
+ assert(lhs && rhs);
+ assert(!Loc::isLocType(type));
+ return nonloc::SymbolVal(SymMgr.getSymSymExpr(lhs, op, rhs, type));
+}
+
+NonLoc SValBuilder::makeNonLoc(const SymExpr *operand,
+ QualType fromTy, QualType toTy) {
+ assert(operand);
+ assert(!Loc::isLocType(toTy));
+ return nonloc::SymbolVal(SymMgr.getCastSymbol(operand, fromTy, toTy));
+}
+
+SVal SValBuilder::convertToArrayIndex(SVal val) {
+ if (val.isUnknownOrUndef())
+ return val;
+
+ // Common case: we have an appropriately sized integer.
+ if (Optional<nonloc::ConcreteInt> CI = val.getAs<nonloc::ConcreteInt>()) {
+ const llvm::APSInt& I = CI->getValue();
+ if (I.getBitWidth() == ArrayIndexWidth && I.isSigned())
+ return val;
+ }
+
+ return evalCastFromNonLoc(val.castAs<NonLoc>(), ArrayIndexTy);
+}
+
+nonloc::ConcreteInt SValBuilder::makeBoolVal(const CXXBoolLiteralExpr *boolean){
+ return makeTruthVal(boolean->getValue());
+}
+
+DefinedOrUnknownSVal
+SValBuilder::getRegionValueSymbolVal(const TypedValueRegion* region) {
+ QualType T = region->getValueType();
+
+ if (!SymbolManager::canSymbolicate(T))
+ return UnknownVal();
+
+ SymbolRef sym = SymMgr.getRegionValueSymbol(region);
+
+ if (Loc::isLocType(T))
+ return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
+
+ return nonloc::SymbolVal(sym);
+}
+
+DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *SymbolTag,
+ const Expr *Ex,
+ const LocationContext *LCtx,
+ unsigned Count) {
+ QualType T = Ex->getType();
+
+ // Compute the type of the result. If the expression is not an R-value, the
+ // result should be a location.
+ QualType ExType = Ex->getType();
+ if (Ex->isGLValue())
+ T = LCtx->getAnalysisDeclContext()->getASTContext().getPointerType(ExType);
+
+ return conjureSymbolVal(SymbolTag, Ex, LCtx, T, Count);
+}
+
+DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *symbolTag,
+ const Expr *expr,
+ const LocationContext *LCtx,
+ QualType type,
+ unsigned count) {
+ if (!SymbolManager::canSymbolicate(type))
+ return UnknownVal();
+
+ SymbolRef sym = SymMgr.conjureSymbol(expr, LCtx, type, count, symbolTag);
+
+ if (Loc::isLocType(type))
+ return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
+
+ return nonloc::SymbolVal(sym);
+}
+
+
+DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const Stmt *stmt,
+ const LocationContext *LCtx,
+ QualType type,
+ unsigned visitCount) {
+ if (!SymbolManager::canSymbolicate(type))
+ return UnknownVal();
+
+ SymbolRef sym = SymMgr.conjureSymbol(stmt, LCtx, type, visitCount);
+
+ if (Loc::isLocType(type))
+ return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
+
+ return nonloc::SymbolVal(sym);
+}
+
+DefinedOrUnknownSVal
+SValBuilder::getConjuredHeapSymbolVal(const Expr *E,
+ const LocationContext *LCtx,
+ unsigned VisitCount) {
+ QualType T = E->getType();
+ assert(Loc::isLocType(T));
+ assert(SymbolManager::canSymbolicate(T));
+
+ SymbolRef sym = SymMgr.conjureSymbol(E, LCtx, T, VisitCount);
+ return loc::MemRegionVal(MemMgr.getSymbolicHeapRegion(sym));
+}
+
+DefinedSVal SValBuilder::getMetadataSymbolVal(const void *symbolTag,
+ const MemRegion *region,
+ const Expr *expr, QualType type,
+ unsigned count) {
+ assert(SymbolManager::canSymbolicate(type) && "Invalid metadata symbol type");
+
+ SymbolRef sym =
+ SymMgr.getMetadataSymbol(region, expr, type, count, symbolTag);
+
+ if (Loc::isLocType(type))
+ return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
+
+ return nonloc::SymbolVal(sym);
+}
+
+DefinedOrUnknownSVal
+SValBuilder::getDerivedRegionValueSymbolVal(SymbolRef parentSymbol,
+ const TypedValueRegion *region) {
+ QualType T = region->getValueType();
+
+ if (!SymbolManager::canSymbolicate(T))
+ return UnknownVal();
+
+ SymbolRef sym = SymMgr.getDerivedSymbol(parentSymbol, region);
+
+ if (Loc::isLocType(T))
+ return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
+
+ return nonloc::SymbolVal(sym);
+}
+
+DefinedSVal SValBuilder::getFunctionPointer(const FunctionDecl *func) {
+ return loc::MemRegionVal(MemMgr.getFunctionTextRegion(func));
+}
+
+DefinedSVal SValBuilder::getBlockPointer(const BlockDecl *block,
+ CanQualType locTy,
+ const LocationContext *locContext,
+ unsigned blockCount) {
+ const BlockTextRegion *BC =
+ MemMgr.getBlockTextRegion(block, locTy, locContext->getAnalysisDeclContext());
+ const BlockDataRegion *BD = MemMgr.getBlockDataRegion(BC, locContext,
+ blockCount);
+ return loc::MemRegionVal(BD);
+}
+
+/// Return a memory region for the 'this' object reference.
+loc::MemRegionVal SValBuilder::getCXXThis(const CXXMethodDecl *D,
+ const StackFrameContext *SFC) {
+ return loc::MemRegionVal(getRegionManager().
+ getCXXThisRegion(D->getThisType(getContext()), SFC));
+}
+
+/// Return a memory region for the 'this' object reference.
+loc::MemRegionVal SValBuilder::getCXXThis(const CXXRecordDecl *D,
+ const StackFrameContext *SFC) {
+ const Type *T = D->getTypeForDecl();
+ QualType PT = getContext().getPointerType(QualType(T, 0));
+ return loc::MemRegionVal(getRegionManager().getCXXThisRegion(PT, SFC));
+}
+
+Optional<SVal> SValBuilder::getConstantVal(const Expr *E) {
+ E = E->IgnoreParens();
+
+ switch (E->getStmtClass()) {
+ // Handle expressions that we treat differently from the AST's constant
+ // evaluator.
+ case Stmt::AddrLabelExprClass:
+ return makeLoc(cast<AddrLabelExpr>(E));
+
+ case Stmt::CXXScalarValueInitExprClass:
+ case Stmt::ImplicitValueInitExprClass:
+ return makeZeroVal(E->getType());
+
+ case Stmt::ObjCStringLiteralClass: {
+ const ObjCStringLiteral *SL = cast<ObjCStringLiteral>(E);
+ return makeLoc(getRegionManager().getObjCStringRegion(SL));
+ }
+
+ case Stmt::StringLiteralClass: {
+ const StringLiteral *SL = cast<StringLiteral>(E);
+ return makeLoc(getRegionManager().getStringRegion(SL));
+ }
+
+ // Fast-path some expressions to avoid the overhead of going through the AST's
+ // constant evaluator
+ case Stmt::CharacterLiteralClass: {
+ const CharacterLiteral *C = cast<CharacterLiteral>(E);
+ return makeIntVal(C->getValue(), C->getType());
+ }
+
+ case Stmt::CXXBoolLiteralExprClass:
+ return makeBoolVal(cast<CXXBoolLiteralExpr>(E));
+
+ case Stmt::IntegerLiteralClass:
+ return makeIntVal(cast<IntegerLiteral>(E));
+
+ case Stmt::ObjCBoolLiteralExprClass:
+ return makeBoolVal(cast<ObjCBoolLiteralExpr>(E));
+
+ case Stmt::CXXNullPtrLiteralExprClass:
+ return makeNull();
+
+ case Stmt::ImplicitCastExprClass: {
+ const CastExpr *CE = cast<CastExpr>(E);
+ if (CE->getCastKind() == CK_ArrayToPointerDecay) {
+ Optional<SVal> ArrayVal = getConstantVal(CE->getSubExpr());
+ if (!ArrayVal)
+ return None;
+ return evalCast(*ArrayVal, CE->getType(), CE->getSubExpr()->getType());
+ }
+ // FALLTHROUGH
+ }
+
+ // If we don't have a special case, fall back to the AST's constant evaluator.
+ default: {
+ // Don't try to come up with a value for materialized temporaries.
+ if (E->isGLValue())
+ return None;
+
+ ASTContext &Ctx = getContext();
+ llvm::APSInt Result;
+ if (E->EvaluateAsInt(Result, Ctx))
+ return makeIntVal(Result);
+
+ if (Loc::isLocType(E->getType()))
+ if (E->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
+ return makeNull();
+
+ return None;
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+
+SVal SValBuilder::makeSymExprValNN(ProgramStateRef State,
+ BinaryOperator::Opcode Op,
+ NonLoc LHS, NonLoc RHS,
+ QualType ResultTy) {
+ if (!State->isTainted(RHS) && !State->isTainted(LHS))
+ return UnknownVal();
+
+ const SymExpr *symLHS = LHS.getAsSymExpr();
+ const SymExpr *symRHS = RHS.getAsSymExpr();
+ // TODO: When the Max Complexity is reached, we should conjure a symbol
+ // instead of generating an Unknown value and propagate the taint info to it.
+ const unsigned MaxComp = 10000; // 100000 28X
+
+ if (symLHS && symRHS &&
+ (symLHS->computeComplexity() + symRHS->computeComplexity()) < MaxComp)
+ return makeNonLoc(symLHS, Op, symRHS, ResultTy);
+
+ if (symLHS && symLHS->computeComplexity() < MaxComp)
+ if (Optional<nonloc::ConcreteInt> rInt = RHS.getAs<nonloc::ConcreteInt>())
+ return makeNonLoc(symLHS, Op, rInt->getValue(), ResultTy);
+
+ if (symRHS && symRHS->computeComplexity() < MaxComp)
+ if (Optional<nonloc::ConcreteInt> lInt = LHS.getAs<nonloc::ConcreteInt>())
+ return makeNonLoc(lInt->getValue(), Op, symRHS, ResultTy);
+
+ return UnknownVal();
+}
+
+
+SVal SValBuilder::evalBinOp(ProgramStateRef state, BinaryOperator::Opcode op,
+ SVal lhs, SVal rhs, QualType type) {
+
+ if (lhs.isUndef() || rhs.isUndef())
+ return UndefinedVal();
+
+ if (lhs.isUnknown() || rhs.isUnknown())
+ return UnknownVal();
+
+ if (Optional<Loc> LV = lhs.getAs<Loc>()) {
+ if (Optional<Loc> RV = rhs.getAs<Loc>())
+ return evalBinOpLL(state, op, *LV, *RV, type);
+
+ return evalBinOpLN(state, op, *LV, rhs.castAs<NonLoc>(), type);
+ }
+
+ if (Optional<Loc> RV = rhs.getAs<Loc>()) {
+ // Support pointer arithmetic where the addend is on the left
+ // and the pointer on the right.
+ assert(op == BO_Add);
+
+ // Commute the operands.
+ return evalBinOpLN(state, op, *RV, lhs.castAs<NonLoc>(), type);
+ }
+
+ return evalBinOpNN(state, op, lhs.castAs<NonLoc>(), rhs.castAs<NonLoc>(),
+ type);
+}
+
+DefinedOrUnknownSVal SValBuilder::evalEQ(ProgramStateRef state,
+ DefinedOrUnknownSVal lhs,
+ DefinedOrUnknownSVal rhs) {
+ return evalBinOp(state, BO_EQ, lhs, rhs, getConditionType())
+ .castAs<DefinedOrUnknownSVal>();
+}
+
+/// Recursively check if the pointer types are equal modulo const, volatile,
+/// and restrict qualifiers. Also, assume that all types are similar to 'void'.
+/// Assumes the input types are canonical.
+static bool shouldBeModeledWithNoOp(ASTContext &Context, QualType ToTy,
+ QualType FromTy) {
+ while (Context.UnwrapSimilarPointerTypes(ToTy, FromTy)) {
+ Qualifiers Quals1, Quals2;
+ ToTy = Context.getUnqualifiedArrayType(ToTy, Quals1);
+ FromTy = Context.getUnqualifiedArrayType(FromTy, Quals2);
+
+ // Make sure that non-cvr-qualifiers the other qualifiers (e.g., address
+ // spaces) are identical.
+ Quals1.removeCVRQualifiers();
+ Quals2.removeCVRQualifiers();
+ if (Quals1 != Quals2)
+ return false;
+ }
+
+ // If we are casting to void, the 'From' value can be used to represent the
+ // 'To' value.
+ if (ToTy->isVoidType())
+ return true;
+
+ if (ToTy != FromTy)
+ return false;
+
+ return true;
+}
+
+// FIXME: should rewrite according to the cast kind.
+SVal SValBuilder::evalCast(SVal val, QualType castTy, QualType originalTy) {
+ castTy = Context.getCanonicalType(castTy);
+ originalTy = Context.getCanonicalType(originalTy);
+ if (val.isUnknownOrUndef() || castTy == originalTy)
+ return val;
+
+ if (castTy->isBooleanType()) {
+ if (val.isUnknownOrUndef())
+ return val;
+ if (val.isConstant())
+ return makeTruthVal(!val.isZeroConstant(), castTy);
+ if (!Loc::isLocType(originalTy) &&
+ !originalTy->isIntegralOrEnumerationType() &&
+ !originalTy->isMemberPointerType())
+ return UnknownVal();
+ if (SymbolRef Sym = val.getAsSymbol(true)) {
+ BasicValueFactory &BVF = getBasicValueFactory();
+ // FIXME: If we had a state here, we could see if the symbol is known to
+ // be zero, but we don't.
+ return makeNonLoc(Sym, BO_NE, BVF.getValue(0, Sym->getType()), castTy);
+ }
+ // Loc values are not always true, they could be weakly linked functions.
+ if (Optional<Loc> L = val.getAs<Loc>())
+ return evalCastFromLoc(*L, castTy);
+
+ Loc L = val.castAs<nonloc::LocAsInteger>().getLoc();
+ return evalCastFromLoc(L, castTy);
+ }
+
+ // For const casts, casts to void, just propagate the value.
+ if (!castTy->isVariableArrayType() && !originalTy->isVariableArrayType())
+ if (shouldBeModeledWithNoOp(Context, Context.getPointerType(castTy),
+ Context.getPointerType(originalTy)))
+ return val;
+
+ // Check for casts from pointers to integers.
+ if (castTy->isIntegralOrEnumerationType() && Loc::isLocType(originalTy))
+ return evalCastFromLoc(val.castAs<Loc>(), castTy);
+
+ // Check for casts from integers to pointers.
+ if (Loc::isLocType(castTy) && originalTy->isIntegralOrEnumerationType()) {
+ if (Optional<nonloc::LocAsInteger> LV = val.getAs<nonloc::LocAsInteger>()) {
+ if (const MemRegion *R = LV->getLoc().getAsRegion()) {
+ StoreManager &storeMgr = StateMgr.getStoreManager();
+ R = storeMgr.castRegion(R, castTy);
+ return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
+ }
+ return LV->getLoc();
+ }
+ return dispatchCast(val, castTy);
+ }
+
+ // Just pass through function and block pointers.
+ if (originalTy->isBlockPointerType() || originalTy->isFunctionPointerType()) {
+ assert(Loc::isLocType(castTy));
+ return val;
+ }
+
+ // Check for casts from array type to another type.
+ if (const ArrayType *arrayT =
+ dyn_cast<ArrayType>(originalTy.getCanonicalType())) {
+ // We will always decay to a pointer.
+ QualType elemTy = arrayT->getElementType();
+ val = StateMgr.ArrayToPointer(val.castAs<Loc>(), elemTy);
+
+ // Are we casting from an array to a pointer? If so just pass on
+ // the decayed value.
+ if (castTy->isPointerType() || castTy->isReferenceType())
+ return val;
+
+ // Are we casting from an array to an integer? If so, cast the decayed
+ // pointer value to an integer.
+ assert(castTy->isIntegralOrEnumerationType());
+
+ // FIXME: Keep these here for now in case we decide soon that we
+ // need the original decayed type.
+ // QualType elemTy = cast<ArrayType>(originalTy)->getElementType();
+ // QualType pointerTy = C.getPointerType(elemTy);
+ return evalCastFromLoc(val.castAs<Loc>(), castTy);
+ }
+
+ // Check for casts from a region to a specific type.
+ if (const MemRegion *R = val.getAsRegion()) {
+ // Handle other casts of locations to integers.
+ if (castTy->isIntegralOrEnumerationType())
+ return evalCastFromLoc(loc::MemRegionVal(R), castTy);
+
+ // FIXME: We should handle the case where we strip off view layers to get
+ // to a desugared type.
+ if (!Loc::isLocType(castTy)) {
+ // FIXME: There can be gross cases where one casts the result of a function
+ // (that returns a pointer) to some other value that happens to fit
+ // within that pointer value. We currently have no good way to
+ // model such operations. When this happens, the underlying operation
+ // is that the caller is reasoning about bits. Conceptually we are
+ // layering a "view" of a location on top of those bits. Perhaps
+ // we need to be more lazy about mutual possible views, even on an
+ // SVal? This may be necessary for bit-level reasoning as well.
+ return UnknownVal();
+ }
+
+ // We get a symbolic function pointer for a dereference of a function
+ // pointer, but it is of function type. Example:
+
+ // struct FPRec {
+ // void (*my_func)(int * x);
+ // };
+ //
+ // int bar(int x);
+ //
+ // int f1_a(struct FPRec* foo) {
+ // int x;
+ // (*foo->my_func)(&x);
+ // return bar(x)+1; // no-warning
+ // }
+
+ assert(Loc::isLocType(originalTy) || originalTy->isFunctionType() ||
+ originalTy->isBlockPointerType() || castTy->isReferenceType());
+
+ StoreManager &storeMgr = StateMgr.getStoreManager();
+
+ // Delegate to store manager to get the result of casting a region to a
+ // different type. If the MemRegion* returned is NULL, this expression
+ // Evaluates to UnknownVal.
+ R = storeMgr.castRegion(R, castTy);
+ return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
+ }
+
+ return dispatchCast(val, castTy);
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/SVals.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/SVals.cpp
new file mode 100644
index 0000000..8de939f
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/SVals.cpp
@@ -0,0 +1,322 @@
+//= RValues.cpp - Abstract RValues for Path-Sens. Value Tracking -*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines SVal, Loc, and NonLoc, classes that represent
+// abstract r-values for use with path-sensitive value tracking.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/Basic/IdentifierTable.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace clang;
+using namespace ento;
+using llvm::APSInt;
+
+//===----------------------------------------------------------------------===//
+// Symbol iteration within an SVal.
+//===----------------------------------------------------------------------===//
+
+
+//===----------------------------------------------------------------------===//
+// Utility methods.
+//===----------------------------------------------------------------------===//
+
+bool SVal::hasConjuredSymbol() const {
+ if (Optional<nonloc::SymbolVal> SV = getAs<nonloc::SymbolVal>()) {
+ SymbolRef sym = SV->getSymbol();
+ if (isa<SymbolConjured>(sym))
+ return true;
+ }
+
+ if (Optional<loc::MemRegionVal> RV = getAs<loc::MemRegionVal>()) {
+ const MemRegion *R = RV->getRegion();
+ if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
+ SymbolRef sym = SR->getSymbol();
+ if (isa<SymbolConjured>(sym))
+ return true;
+ }
+ }
+
+ return false;
+}
+
+const FunctionDecl *SVal::getAsFunctionDecl() const {
+ if (Optional<loc::MemRegionVal> X = getAs<loc::MemRegionVal>()) {
+ const MemRegion* R = X->getRegion();
+ if (const FunctionTextRegion *CTR = R->getAs<FunctionTextRegion>())
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CTR->getDecl()))
+ return FD;
+ }
+
+ return nullptr;
+}
+
+/// \brief If this SVal is a location (subclasses Loc) and wraps a symbol,
+/// return that SymbolRef. Otherwise return 0.
+///
+/// Implicit casts (ex: void* -> char*) can turn Symbolic region into Element
+/// region. If that is the case, gets the underlining region.
+/// When IncludeBaseRegions is set to true and the SubRegion is non-symbolic,
+/// the first symbolic parent region is returned.
+SymbolRef SVal::getAsLocSymbol(bool IncludeBaseRegions) const {
+ // FIXME: should we consider SymbolRef wrapped in CodeTextRegion?
+ if (Optional<nonloc::LocAsInteger> X = getAs<nonloc::LocAsInteger>())
+ return X->getLoc().getAsLocSymbol();
+
+ if (Optional<loc::MemRegionVal> X = getAs<loc::MemRegionVal>()) {
+ const MemRegion *R = X->getRegion();
+ if (const SymbolicRegion *SymR = IncludeBaseRegions ?
+ R->getSymbolicBase() :
+ dyn_cast<SymbolicRegion>(R->StripCasts()))
+ return SymR->getSymbol();
+ }
+ return nullptr;
+}
+
+/// Get the symbol in the SVal or its base region.
+SymbolRef SVal::getLocSymbolInBase() const {
+ Optional<loc::MemRegionVal> X = getAs<loc::MemRegionVal>();
+
+ if (!X)
+ return nullptr;
+
+ const MemRegion *R = X->getRegion();
+
+ while (const SubRegion *SR = dyn_cast<SubRegion>(R)) {
+ if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(SR))
+ return SymR->getSymbol();
+ else
+ R = SR->getSuperRegion();
+ }
+
+ return nullptr;
+}
+
+// TODO: The next 3 functions have to be simplified.
+
+/// \brief If this SVal wraps a symbol return that SymbolRef.
+/// Otherwise, return 0.
+///
+/// Casts are ignored during lookup.
+/// \param IncludeBaseRegions The boolean that controls whether the search
+/// should continue to the base regions if the region is not symbolic.
+SymbolRef SVal::getAsSymbol(bool IncludeBaseRegion) const {
+ // FIXME: should we consider SymbolRef wrapped in CodeTextRegion?
+ if (Optional<nonloc::SymbolVal> X = getAs<nonloc::SymbolVal>())
+ return X->getSymbol();
+
+ return getAsLocSymbol(IncludeBaseRegion);
+}
+
+/// getAsSymbolicExpression - If this Sval wraps a symbolic expression then
+/// return that expression. Otherwise return NULL.
+const SymExpr *SVal::getAsSymbolicExpression() const {
+ if (Optional<nonloc::SymbolVal> X = getAs<nonloc::SymbolVal>())
+ return X->getSymbol();
+
+ return getAsSymbol();
+}
+
+const SymExpr* SVal::getAsSymExpr() const {
+ const SymExpr* Sym = getAsSymbol();
+ if (!Sym)
+ Sym = getAsSymbolicExpression();
+ return Sym;
+}
+
+const MemRegion *SVal::getAsRegion() const {
+ if (Optional<loc::MemRegionVal> X = getAs<loc::MemRegionVal>())
+ return X->getRegion();
+
+ if (Optional<nonloc::LocAsInteger> X = getAs<nonloc::LocAsInteger>())
+ return X->getLoc().getAsRegion();
+
+ return nullptr;
+}
+
+const MemRegion *loc::MemRegionVal::stripCasts(bool StripBaseCasts) const {
+ const MemRegion *R = getRegion();
+ return R ? R->StripCasts(StripBaseCasts) : nullptr;
+}
+
+const void *nonloc::LazyCompoundVal::getStore() const {
+ return static_cast<const LazyCompoundValData*>(Data)->getStore();
+}
+
+const TypedValueRegion *nonloc::LazyCompoundVal::getRegion() const {
+ return static_cast<const LazyCompoundValData*>(Data)->getRegion();
+}
+
+//===----------------------------------------------------------------------===//
+// Other Iterators.
+//===----------------------------------------------------------------------===//
+
+nonloc::CompoundVal::iterator nonloc::CompoundVal::begin() const {
+ return getValue()->begin();
+}
+
+nonloc::CompoundVal::iterator nonloc::CompoundVal::end() const {
+ return getValue()->end();
+}
+
+//===----------------------------------------------------------------------===//
+// Useful predicates.
+//===----------------------------------------------------------------------===//
+
+bool SVal::isConstant() const {
+ return getAs<nonloc::ConcreteInt>() || getAs<loc::ConcreteInt>();
+}
+
+bool SVal::isConstant(int I) const {
+ if (Optional<loc::ConcreteInt> LV = getAs<loc::ConcreteInt>())
+ return LV->getValue() == I;
+ if (Optional<nonloc::ConcreteInt> NV = getAs<nonloc::ConcreteInt>())
+ return NV->getValue() == I;
+ return false;
+}
+
+bool SVal::isZeroConstant() const {
+ return isConstant(0);
+}
+
+
+//===----------------------------------------------------------------------===//
+// Transfer function dispatch for Non-Locs.
+//===----------------------------------------------------------------------===//
+
+SVal nonloc::ConcreteInt::evalBinOp(SValBuilder &svalBuilder,
+ BinaryOperator::Opcode Op,
+ const nonloc::ConcreteInt& R) const {
+ const llvm::APSInt* X =
+ svalBuilder.getBasicValueFactory().evalAPSInt(Op, getValue(), R.getValue());
+
+ if (X)
+ return nonloc::ConcreteInt(*X);
+ else
+ return UndefinedVal();
+}
+
+nonloc::ConcreteInt
+nonloc::ConcreteInt::evalComplement(SValBuilder &svalBuilder) const {
+ return svalBuilder.makeIntVal(~getValue());
+}
+
+nonloc::ConcreteInt
+nonloc::ConcreteInt::evalMinus(SValBuilder &svalBuilder) const {
+ return svalBuilder.makeIntVal(-getValue());
+}
+
+//===----------------------------------------------------------------------===//
+// Transfer function dispatch for Locs.
+//===----------------------------------------------------------------------===//
+
+SVal loc::ConcreteInt::evalBinOp(BasicValueFactory& BasicVals,
+ BinaryOperator::Opcode Op,
+ const loc::ConcreteInt& R) const {
+
+ assert(BinaryOperator::isComparisonOp(Op) || Op == BO_Sub);
+
+ const llvm::APSInt *X = BasicVals.evalAPSInt(Op, getValue(), R.getValue());
+
+ if (X)
+ return nonloc::ConcreteInt(*X);
+ else
+ return UndefinedVal();
+}
+
+//===----------------------------------------------------------------------===//
+// Pretty-Printing.
+//===----------------------------------------------------------------------===//
+
+void SVal::dump() const { dumpToStream(llvm::errs()); }
+
+void SVal::dumpToStream(raw_ostream &os) const {
+ switch (getBaseKind()) {
+ case UnknownKind:
+ os << "Unknown";
+ break;
+ case NonLocKind:
+ castAs<NonLoc>().dumpToStream(os);
+ break;
+ case LocKind:
+ castAs<Loc>().dumpToStream(os);
+ break;
+ case UndefinedKind:
+ os << "Undefined";
+ break;
+ }
+}
+
+void NonLoc::dumpToStream(raw_ostream &os) const {
+ switch (getSubKind()) {
+ case nonloc::ConcreteIntKind: {
+ const nonloc::ConcreteInt& C = castAs<nonloc::ConcreteInt>();
+ if (C.getValue().isUnsigned())
+ os << C.getValue().getZExtValue();
+ else
+ os << C.getValue().getSExtValue();
+ os << ' ' << (C.getValue().isUnsigned() ? 'U' : 'S')
+ << C.getValue().getBitWidth() << 'b';
+ break;
+ }
+ case nonloc::SymbolValKind: {
+ os << castAs<nonloc::SymbolVal>().getSymbol();
+ break;
+ }
+ case nonloc::LocAsIntegerKind: {
+ const nonloc::LocAsInteger& C = castAs<nonloc::LocAsInteger>();
+ os << C.getLoc() << " [as " << C.getNumBits() << " bit integer]";
+ break;
+ }
+ case nonloc::CompoundValKind: {
+ const nonloc::CompoundVal& C = castAs<nonloc::CompoundVal>();
+ os << "compoundVal{";
+ bool first = true;
+ for (nonloc::CompoundVal::iterator I=C.begin(), E=C.end(); I!=E; ++I) {
+ if (first) {
+ os << ' '; first = false;
+ }
+ else
+ os << ", ";
+
+ (*I).dumpToStream(os);
+ }
+ os << "}";
+ break;
+ }
+ case nonloc::LazyCompoundValKind: {
+ const nonloc::LazyCompoundVal &C = castAs<nonloc::LazyCompoundVal>();
+ os << "lazyCompoundVal{" << const_cast<void *>(C.getStore())
+ << ',' << C.getRegion()
+ << '}';
+ break;
+ }
+ default:
+ assert (false && "Pretty-printed not implemented for this NonLoc.");
+ break;
+ }
+}
+
+void Loc::dumpToStream(raw_ostream &os) const {
+ switch (getSubKind()) {
+ case loc::ConcreteIntKind:
+ os << castAs<loc::ConcreteInt>().getValue().getZExtValue() << " (Loc)";
+ break;
+ case loc::GotoLabelKind:
+ os << "&&" << castAs<loc::GotoLabel>().getLabel()->getName();
+ break;
+ case loc::MemRegionKind:
+ os << '&' << castAs<loc::MemRegionVal>().getRegion()->getString();
+ break;
+ default:
+ llvm_unreachable("Pretty-printing not implemented for this Loc.");
+ }
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/SimpleConstraintManager.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/SimpleConstraintManager.cpp
new file mode 100644
index 0000000..35930e4
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/SimpleConstraintManager.cpp
@@ -0,0 +1,267 @@
+//== SimpleConstraintManager.cpp --------------------------------*- C++ -*--==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines SimpleConstraintManager, a class that holds code shared
+// between BasicConstraintManager and RangeConstraintManager.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SimpleConstraintManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
+
+namespace clang {
+
+namespace ento {
+
+SimpleConstraintManager::~SimpleConstraintManager() {}
+
+bool SimpleConstraintManager::canReasonAbout(SVal X) const {
+ Optional<nonloc::SymbolVal> SymVal = X.getAs<nonloc::SymbolVal>();
+ if (SymVal && SymVal->isExpression()) {
+ const SymExpr *SE = SymVal->getSymbol();
+
+ if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) {
+ switch (SIE->getOpcode()) {
+ // We don't reason yet about bitwise-constraints on symbolic values.
+ case BO_And:
+ case BO_Or:
+ case BO_Xor:
+ return false;
+ // We don't reason yet about these arithmetic constraints on
+ // symbolic values.
+ case BO_Mul:
+ case BO_Div:
+ case BO_Rem:
+ case BO_Shl:
+ case BO_Shr:
+ return false;
+ // All other cases.
+ default:
+ return true;
+ }
+ }
+
+ if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(SE)) {
+ if (BinaryOperator::isComparisonOp(SSE->getOpcode())) {
+ // We handle Loc <> Loc comparisons, but not (yet) NonLoc <> NonLoc.
+ if (Loc::isLocType(SSE->getLHS()->getType())) {
+ assert(Loc::isLocType(SSE->getRHS()->getType()));
+ return true;
+ }
+ }
+ }
+
+ return false;
+ }
+
+ return true;
+}
+
+ProgramStateRef SimpleConstraintManager::assume(ProgramStateRef state,
+ DefinedSVal Cond,
+ bool Assumption) {
+ // If we have a Loc value, cast it to a bool NonLoc first.
+ if (Optional<Loc> LV = Cond.getAs<Loc>()) {
+ SValBuilder &SVB = state->getStateManager().getSValBuilder();
+ QualType T;
+ const MemRegion *MR = LV->getAsRegion();
+ if (const TypedRegion *TR = dyn_cast_or_null<TypedRegion>(MR))
+ T = TR->getLocationType();
+ else
+ T = SVB.getContext().VoidPtrTy;
+
+ Cond = SVB.evalCast(*LV, SVB.getContext().BoolTy, T).castAs<DefinedSVal>();
+ }
+
+ return assume(state, Cond.castAs<NonLoc>(), Assumption);
+}
+
+ProgramStateRef SimpleConstraintManager::assume(ProgramStateRef state,
+ NonLoc cond,
+ bool assumption) {
+ state = assumeAux(state, cond, assumption);
+ if (NotifyAssumeClients && SU)
+ return SU->processAssume(state, cond, assumption);
+ return state;
+}
+
+
+ProgramStateRef
+SimpleConstraintManager::assumeAuxForSymbol(ProgramStateRef State,
+ SymbolRef Sym, bool Assumption) {
+ BasicValueFactory &BVF = getBasicVals();
+ QualType T = Sym->getType();
+
+ // None of the constraint solvers currently support non-integer types.
+ if (!T->isIntegralOrEnumerationType())
+ return State;
+
+ const llvm::APSInt &zero = BVF.getValue(0, T);
+ if (Assumption)
+ return assumeSymNE(State, Sym, zero, zero);
+ else
+ return assumeSymEQ(State, Sym, zero, zero);
+}
+
+ProgramStateRef SimpleConstraintManager::assumeAux(ProgramStateRef state,
+ NonLoc Cond,
+ bool Assumption) {
+
+ // We cannot reason about SymSymExprs, and can only reason about some
+ // SymIntExprs.
+ if (!canReasonAbout(Cond)) {
+ // Just add the constraint to the expression without trying to simplify.
+ SymbolRef sym = Cond.getAsSymExpr();
+ return assumeAuxForSymbol(state, sym, Assumption);
+ }
+
+ switch (Cond.getSubKind()) {
+ default:
+ llvm_unreachable("'Assume' not implemented for this NonLoc");
+
+ case nonloc::SymbolValKind: {
+ nonloc::SymbolVal SV = Cond.castAs<nonloc::SymbolVal>();
+ SymbolRef sym = SV.getSymbol();
+ assert(sym);
+
+ // Handle SymbolData.
+ if (!SV.isExpression()) {
+ return assumeAuxForSymbol(state, sym, Assumption);
+
+ // Handle symbolic expression.
+ } else if (const SymIntExpr *SE = dyn_cast<SymIntExpr>(sym)) {
+ // We can only simplify expressions whose RHS is an integer.
+
+ BinaryOperator::Opcode op = SE->getOpcode();
+ if (BinaryOperator::isComparisonOp(op)) {
+ if (!Assumption)
+ op = BinaryOperator::negateComparisonOp(op);
+
+ return assumeSymRel(state, SE->getLHS(), op, SE->getRHS());
+ }
+
+ } else if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(sym)) {
+ // Translate "a != b" to "(b - a) != 0".
+ // We invert the order of the operands as a heuristic for how loop
+ // conditions are usually written ("begin != end") as compared to length
+ // calculations ("end - begin"). The more correct thing to do would be to
+ // canonicalize "a - b" and "b - a", which would allow us to treat
+ // "a != b" and "b != a" the same.
+ SymbolManager &SymMgr = getSymbolManager();
+ BinaryOperator::Opcode Op = SSE->getOpcode();
+ assert(BinaryOperator::isComparisonOp(Op));
+
+ // For now, we only support comparing pointers.
+ assert(Loc::isLocType(SSE->getLHS()->getType()));
+ assert(Loc::isLocType(SSE->getRHS()->getType()));
+ QualType DiffTy = SymMgr.getContext().getPointerDiffType();
+ SymbolRef Subtraction = SymMgr.getSymSymExpr(SSE->getRHS(), BO_Sub,
+ SSE->getLHS(), DiffTy);
+
+ const llvm::APSInt &Zero = getBasicVals().getValue(0, DiffTy);
+ Op = BinaryOperator::reverseComparisonOp(Op);
+ if (!Assumption)
+ Op = BinaryOperator::negateComparisonOp(Op);
+ return assumeSymRel(state, Subtraction, Op, Zero);
+ }
+
+ // If we get here, there's nothing else we can do but treat the symbol as
+ // opaque.
+ return assumeAuxForSymbol(state, sym, Assumption);
+ }
+
+ case nonloc::ConcreteIntKind: {
+ bool b = Cond.castAs<nonloc::ConcreteInt>().getValue() != 0;
+ bool isFeasible = b ? Assumption : !Assumption;
+ return isFeasible ? state : nullptr;
+ }
+
+ case nonloc::LocAsIntegerKind:
+ return assume(state, Cond.castAs<nonloc::LocAsInteger>().getLoc(),
+ Assumption);
+ } // end switch
+}
+
+static void computeAdjustment(SymbolRef &Sym, llvm::APSInt &Adjustment) {
+ // Is it a "($sym+constant1)" expression?
+ if (const SymIntExpr *SE = dyn_cast<SymIntExpr>(Sym)) {
+ BinaryOperator::Opcode Op = SE->getOpcode();
+ if (Op == BO_Add || Op == BO_Sub) {
+ Sym = SE->getLHS();
+ Adjustment = APSIntType(Adjustment).convert(SE->getRHS());
+
+ // Don't forget to negate the adjustment if it's being subtracted.
+ // This should happen /after/ promotion, in case the value being
+ // subtracted is, say, CHAR_MIN, and the promoted type is 'int'.
+ if (Op == BO_Sub)
+ Adjustment = -Adjustment;
+ }
+ }
+}
+
+ProgramStateRef SimpleConstraintManager::assumeSymRel(ProgramStateRef state,
+ const SymExpr *LHS,
+ BinaryOperator::Opcode op,
+ const llvm::APSInt& Int) {
+ assert(BinaryOperator::isComparisonOp(op) &&
+ "Non-comparison ops should be rewritten as comparisons to zero.");
+
+ // Get the type used for calculating wraparound.
+ BasicValueFactory &BVF = getBasicVals();
+ APSIntType WraparoundType = BVF.getAPSIntType(LHS->getType());
+
+ // We only handle simple comparisons of the form "$sym == constant"
+ // or "($sym+constant1) == constant2".
+ // The adjustment is "constant1" in the above expression. It's used to
+ // "slide" the solution range around for modular arithmetic. For example,
+ // x < 4 has the solution [0, 3]. x+2 < 4 has the solution [0-2, 3-2], which
+ // in modular arithmetic is [0, 1] U [UINT_MAX-1, UINT_MAX]. It's up to
+ // the subclasses of SimpleConstraintManager to handle the adjustment.
+ SymbolRef Sym = LHS;
+ llvm::APSInt Adjustment = WraparoundType.getZeroValue();
+ computeAdjustment(Sym, Adjustment);
+
+ // Convert the right-hand side integer as necessary.
+ APSIntType ComparisonType = std::max(WraparoundType, APSIntType(Int));
+ llvm::APSInt ConvertedInt = ComparisonType.convert(Int);
+
+ // Prefer unsigned comparisons.
+ if (ComparisonType.getBitWidth() == WraparoundType.getBitWidth() &&
+ ComparisonType.isUnsigned() && !WraparoundType.isUnsigned())
+ Adjustment.setIsSigned(false);
+
+ switch (op) {
+ default:
+ llvm_unreachable("invalid operation not caught by assertion above");
+
+ case BO_EQ:
+ return assumeSymEQ(state, Sym, ConvertedInt, Adjustment);
+
+ case BO_NE:
+ return assumeSymNE(state, Sym, ConvertedInt, Adjustment);
+
+ case BO_GT:
+ return assumeSymGT(state, Sym, ConvertedInt, Adjustment);
+
+ case BO_GE:
+ return assumeSymGE(state, Sym, ConvertedInt, Adjustment);
+
+ case BO_LT:
+ return assumeSymLT(state, Sym, ConvertedInt, Adjustment);
+
+ case BO_LE:
+ return assumeSymLE(state, Sym, ConvertedInt, Adjustment);
+ } // end switch
+}
+
+} // end of namespace ento
+
+} // end of namespace clang
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/SimpleConstraintManager.h b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/SimpleConstraintManager.h
new file mode 100644
index 0000000..135cd4e
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/SimpleConstraintManager.h
@@ -0,0 +1,100 @@
+//== SimpleConstraintManager.h ----------------------------------*- C++ -*--==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Code shared between BasicConstraintManager and RangeConstraintManager.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_LIB_STATICANALYZER_CORE_SIMPLECONSTRAINTMANAGER_H
+#define LLVM_CLANG_LIB_STATICANALYZER_CORE_SIMPLECONSTRAINTMANAGER_H
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/ConstraintManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
+
+namespace clang {
+
+namespace ento {
+
+class SimpleConstraintManager : public ConstraintManager {
+ SubEngine *SU;
+ SValBuilder &SVB;
+public:
+ SimpleConstraintManager(SubEngine *subengine, SValBuilder &SB)
+ : SU(subengine), SVB(SB) {}
+ ~SimpleConstraintManager() override;
+
+ //===------------------------------------------------------------------===//
+ // Common implementation for the interface provided by ConstraintManager.
+ //===------------------------------------------------------------------===//
+
+ ProgramStateRef assume(ProgramStateRef state, DefinedSVal Cond,
+ bool Assumption) override;
+
+ ProgramStateRef assume(ProgramStateRef state, NonLoc Cond, bool Assumption);
+
+ ProgramStateRef assumeSymRel(ProgramStateRef state,
+ const SymExpr *LHS,
+ BinaryOperator::Opcode op,
+ const llvm::APSInt& Int);
+
+protected:
+
+ //===------------------------------------------------------------------===//
+ // Interface that subclasses must implement.
+ //===------------------------------------------------------------------===//
+
+ // Each of these is of the form "$sym+Adj <> V", where "<>" is the comparison
+ // operation for the method being invoked.
+ virtual ProgramStateRef assumeSymNE(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& V,
+ const llvm::APSInt& Adjustment) = 0;
+
+ virtual ProgramStateRef assumeSymEQ(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& V,
+ const llvm::APSInt& Adjustment) = 0;
+
+ virtual ProgramStateRef assumeSymLT(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& V,
+ const llvm::APSInt& Adjustment) = 0;
+
+ virtual ProgramStateRef assumeSymGT(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& V,
+ const llvm::APSInt& Adjustment) = 0;
+
+ virtual ProgramStateRef assumeSymLE(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& V,
+ const llvm::APSInt& Adjustment) = 0;
+
+ virtual ProgramStateRef assumeSymGE(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& V,
+ const llvm::APSInt& Adjustment) = 0;
+
+ //===------------------------------------------------------------------===//
+ // Internal implementation.
+ //===------------------------------------------------------------------===//
+
+ BasicValueFactory &getBasicVals() const { return SVB.getBasicValueFactory(); }
+ SymbolManager &getSymbolManager() const { return SVB.getSymbolManager(); }
+
+ bool canReasonAbout(SVal X) const override;
+
+ ProgramStateRef assumeAux(ProgramStateRef state,
+ NonLoc Cond,
+ bool Assumption);
+
+ ProgramStateRef assumeAuxForSymbol(ProgramStateRef State,
+ SymbolRef Sym,
+ bool Assumption);
+};
+
+} // end GR namespace
+
+} // end clang namespace
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/SimpleSValBuilder.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/SimpleSValBuilder.cpp
new file mode 100644
index 0000000..b3cab87c
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/SimpleSValBuilder.cpp
@@ -0,0 +1,944 @@
+// SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*-
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines SimpleSValBuilder, a basic implementation of SValBuilder.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+class SimpleSValBuilder : public SValBuilder {
+protected:
+ SVal dispatchCast(SVal val, QualType castTy) override;
+ SVal evalCastFromNonLoc(NonLoc val, QualType castTy) override;
+ SVal evalCastFromLoc(Loc val, QualType castTy) override;
+
+public:
+ SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
+ ProgramStateManager &stateMgr)
+ : SValBuilder(alloc, context, stateMgr) {}
+ ~SimpleSValBuilder() override {}
+
+ SVal evalMinus(NonLoc val) override;
+ SVal evalComplement(NonLoc val) override;
+ SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op,
+ NonLoc lhs, NonLoc rhs, QualType resultTy) override;
+ SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op,
+ Loc lhs, Loc rhs, QualType resultTy) override;
+ SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op,
+ Loc lhs, NonLoc rhs, QualType resultTy) override;
+
+ /// getKnownValue - evaluates a given SVal. If the SVal has only one possible
+ /// (integer) value, that value is returned. Otherwise, returns NULL.
+ const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal V) override;
+
+ SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op,
+ const llvm::APSInt &RHS, QualType resultTy);
+};
+} // end anonymous namespace
+
+SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc,
+ ASTContext &context,
+ ProgramStateManager &stateMgr) {
+ return new SimpleSValBuilder(alloc, context, stateMgr);
+}
+
+//===----------------------------------------------------------------------===//
+// Transfer function for Casts.
+//===----------------------------------------------------------------------===//
+
+SVal SimpleSValBuilder::dispatchCast(SVal Val, QualType CastTy) {
+ assert(Val.getAs<Loc>() || Val.getAs<NonLoc>());
+ return Val.getAs<Loc>() ? evalCastFromLoc(Val.castAs<Loc>(), CastTy)
+ : evalCastFromNonLoc(Val.castAs<NonLoc>(), CastTy);
+}
+
+SVal SimpleSValBuilder::evalCastFromNonLoc(NonLoc val, QualType castTy) {
+
+ bool isLocType = Loc::isLocType(castTy);
+
+ if (Optional<nonloc::LocAsInteger> LI = val.getAs<nonloc::LocAsInteger>()) {
+ if (isLocType)
+ return LI->getLoc();
+
+ // FIXME: Correctly support promotions/truncations.
+ unsigned castSize = Context.getTypeSize(castTy);
+ if (castSize == LI->getNumBits())
+ return val;
+ return makeLocAsInteger(LI->getLoc(), castSize);
+ }
+
+ if (const SymExpr *se = val.getAsSymbolicExpression()) {
+ QualType T = Context.getCanonicalType(se->getType());
+ // If types are the same or both are integers, ignore the cast.
+ // FIXME: Remove this hack when we support symbolic truncation/extension.
+ // HACK: If both castTy and T are integers, ignore the cast. This is
+ // not a permanent solution. Eventually we want to precisely handle
+ // extension/truncation of symbolic integers. This prevents us from losing
+ // precision when we assign 'x = y' and 'y' is symbolic and x and y are
+ // different integer types.
+ if (haveSameType(T, castTy))
+ return val;
+
+ if (!isLocType)
+ return makeNonLoc(se, T, castTy);
+ return UnknownVal();
+ }
+
+ // If value is a non-integer constant, produce unknown.
+ if (!val.getAs<nonloc::ConcreteInt>())
+ return UnknownVal();
+
+ // Handle casts to a boolean type.
+ if (castTy->isBooleanType()) {
+ bool b = val.castAs<nonloc::ConcreteInt>().getValue().getBoolValue();
+ return makeTruthVal(b, castTy);
+ }
+
+ // Only handle casts from integers to integers - if val is an integer constant
+ // being cast to a non-integer type, produce unknown.
+ if (!isLocType && !castTy->isIntegralOrEnumerationType())
+ return UnknownVal();
+
+ llvm::APSInt i = val.castAs<nonloc::ConcreteInt>().getValue();
+ BasicVals.getAPSIntType(castTy).apply(i);
+
+ if (isLocType)
+ return makeIntLocVal(i);
+ else
+ return makeIntVal(i);
+}
+
+SVal SimpleSValBuilder::evalCastFromLoc(Loc val, QualType castTy) {
+
+ // Casts from pointers -> pointers, just return the lval.
+ //
+ // Casts from pointers -> references, just return the lval. These
+ // can be introduced by the frontend for corner cases, e.g
+ // casting from va_list* to __builtin_va_list&.
+ //
+ if (Loc::isLocType(castTy) || castTy->isReferenceType())
+ return val;
+
+ // FIXME: Handle transparent unions where a value can be "transparently"
+ // lifted into a union type.
+ if (castTy->isUnionType())
+ return UnknownVal();
+
+ // Casting a Loc to a bool will almost always be true,
+ // unless this is a weak function or a symbolic region.
+ if (castTy->isBooleanType()) {
+ switch (val.getSubKind()) {
+ case loc::MemRegionKind: {
+ const MemRegion *R = val.castAs<loc::MemRegionVal>().getRegion();
+ if (const FunctionTextRegion *FTR = dyn_cast<FunctionTextRegion>(R))
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FTR->getDecl()))
+ if (FD->isWeak())
+ // FIXME: Currently we are using an extent symbol here,
+ // because there are no generic region address metadata
+ // symbols to use, only content metadata.
+ return nonloc::SymbolVal(SymMgr.getExtentSymbol(FTR));
+
+ if (const SymbolicRegion *SymR = R->getSymbolicBase())
+ return nonloc::SymbolVal(SymR->getSymbol());
+
+ // FALL-THROUGH
+ }
+
+ case loc::GotoLabelKind:
+ // Labels and non-symbolic memory regions are always true.
+ return makeTruthVal(true, castTy);
+ }
+ }
+
+ if (castTy->isIntegralOrEnumerationType()) {
+ unsigned BitWidth = Context.getTypeSize(castTy);
+
+ if (!val.getAs<loc::ConcreteInt>())
+ return makeLocAsInteger(val, BitWidth);
+
+ llvm::APSInt i = val.castAs<loc::ConcreteInt>().getValue();
+ BasicVals.getAPSIntType(castTy).apply(i);
+ return makeIntVal(i);
+ }
+
+ // All other cases: return 'UnknownVal'. This includes casting pointers
+ // to floats, which is probably badness it itself, but this is a good
+ // intermediate solution until we do something better.
+ return UnknownVal();
+}
+
+//===----------------------------------------------------------------------===//
+// Transfer function for unary operators.
+//===----------------------------------------------------------------------===//
+
+SVal SimpleSValBuilder::evalMinus(NonLoc val) {
+ switch (val.getSubKind()) {
+ case nonloc::ConcreteIntKind:
+ return val.castAs<nonloc::ConcreteInt>().evalMinus(*this);
+ default:
+ return UnknownVal();
+ }
+}
+
+SVal SimpleSValBuilder::evalComplement(NonLoc X) {
+ switch (X.getSubKind()) {
+ case nonloc::ConcreteIntKind:
+ return X.castAs<nonloc::ConcreteInt>().evalComplement(*this);
+ default:
+ return UnknownVal();
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Transfer function for binary operators.
+//===----------------------------------------------------------------------===//
+
+SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS,
+ BinaryOperator::Opcode op,
+ const llvm::APSInt &RHS,
+ QualType resultTy) {
+ bool isIdempotent = false;
+
+ // Check for a few special cases with known reductions first.
+ switch (op) {
+ default:
+ // We can't reduce this case; just treat it normally.
+ break;
+ case BO_Mul:
+ // a*0 and a*1
+ if (RHS == 0)
+ return makeIntVal(0, resultTy);
+ else if (RHS == 1)
+ isIdempotent = true;
+ break;
+ case BO_Div:
+ // a/0 and a/1
+ if (RHS == 0)
+ // This is also handled elsewhere.
+ return UndefinedVal();
+ else if (RHS == 1)
+ isIdempotent = true;
+ break;
+ case BO_Rem:
+ // a%0 and a%1
+ if (RHS == 0)
+ // This is also handled elsewhere.
+ return UndefinedVal();
+ else if (RHS == 1)
+ return makeIntVal(0, resultTy);
+ break;
+ case BO_Add:
+ case BO_Sub:
+ case BO_Shl:
+ case BO_Shr:
+ case BO_Xor:
+ // a+0, a-0, a<<0, a>>0, a^0
+ if (RHS == 0)
+ isIdempotent = true;
+ break;
+ case BO_And:
+ // a&0 and a&(~0)
+ if (RHS == 0)
+ return makeIntVal(0, resultTy);
+ else if (RHS.isAllOnesValue())
+ isIdempotent = true;
+ break;
+ case BO_Or:
+ // a|0 and a|(~0)
+ if (RHS == 0)
+ isIdempotent = true;
+ else if (RHS.isAllOnesValue()) {
+ const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS);
+ return nonloc::ConcreteInt(Result);
+ }
+ break;
+ }
+
+ // Idempotent ops (like a*1) can still change the type of an expression.
+ // Wrap the LHS up in a NonLoc again and let evalCastFromNonLoc do the
+ // dirty work.
+ if (isIdempotent)
+ return evalCastFromNonLoc(nonloc::SymbolVal(LHS), resultTy);
+
+ // If we reach this point, the expression cannot be simplified.
+ // Make a SymbolVal for the entire expression, after converting the RHS.
+ const llvm::APSInt *ConvertedRHS = &RHS;
+ if (BinaryOperator::isComparisonOp(op)) {
+ // We're looking for a type big enough to compare the symbolic value
+ // with the given constant.
+ // FIXME: This is an approximation of Sema::UsualArithmeticConversions.
+ ASTContext &Ctx = getContext();
+ QualType SymbolType = LHS->getType();
+ uint64_t ValWidth = RHS.getBitWidth();
+ uint64_t TypeWidth = Ctx.getTypeSize(SymbolType);
+
+ if (ValWidth < TypeWidth) {
+ // If the value is too small, extend it.
+ ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
+ } else if (ValWidth == TypeWidth) {
+ // If the value is signed but the symbol is unsigned, do the comparison
+ // in unsigned space. [C99 6.3.1.8]
+ // (For the opposite case, the value is already unsigned.)
+ if (RHS.isSigned() && !SymbolType->isSignedIntegerOrEnumerationType())
+ ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
+ }
+ } else
+ ConvertedRHS = &BasicVals.Convert(resultTy, RHS);
+
+ return makeNonLoc(LHS, op, *ConvertedRHS, resultTy);
+}
+
+SVal SimpleSValBuilder::evalBinOpNN(ProgramStateRef state,
+ BinaryOperator::Opcode op,
+ NonLoc lhs, NonLoc rhs,
+ QualType resultTy) {
+ NonLoc InputLHS = lhs;
+ NonLoc InputRHS = rhs;
+
+ // Handle trivial case where left-side and right-side are the same.
+ if (lhs == rhs)
+ switch (op) {
+ default:
+ break;
+ case BO_EQ:
+ case BO_LE:
+ case BO_GE:
+ return makeTruthVal(true, resultTy);
+ case BO_LT:
+ case BO_GT:
+ case BO_NE:
+ return makeTruthVal(false, resultTy);
+ case BO_Xor:
+ case BO_Sub:
+ if (resultTy->isIntegralOrEnumerationType())
+ return makeIntVal(0, resultTy);
+ return evalCastFromNonLoc(makeIntVal(0, /*Unsigned=*/false), resultTy);
+ case BO_Or:
+ case BO_And:
+ return evalCastFromNonLoc(lhs, resultTy);
+ }
+
+ while (1) {
+ switch (lhs.getSubKind()) {
+ default:
+ return makeSymExprValNN(state, op, lhs, rhs, resultTy);
+ case nonloc::LocAsIntegerKind: {
+ Loc lhsL = lhs.castAs<nonloc::LocAsInteger>().getLoc();
+ switch (rhs.getSubKind()) {
+ case nonloc::LocAsIntegerKind:
+ return evalBinOpLL(state, op, lhsL,
+ rhs.castAs<nonloc::LocAsInteger>().getLoc(),
+ resultTy);
+ case nonloc::ConcreteIntKind: {
+ // Transform the integer into a location and compare.
+ llvm::APSInt i = rhs.castAs<nonloc::ConcreteInt>().getValue();
+ BasicVals.getAPSIntType(Context.VoidPtrTy).apply(i);
+ return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy);
+ }
+ default:
+ switch (op) {
+ case BO_EQ:
+ return makeTruthVal(false, resultTy);
+ case BO_NE:
+ return makeTruthVal(true, resultTy);
+ default:
+ // This case also handles pointer arithmetic.
+ return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
+ }
+ }
+ }
+ case nonloc::ConcreteIntKind: {
+ llvm::APSInt LHSValue = lhs.castAs<nonloc::ConcreteInt>().getValue();
+
+ // If we're dealing with two known constants, just perform the operation.
+ if (const llvm::APSInt *KnownRHSValue = getKnownValue(state, rhs)) {
+ llvm::APSInt RHSValue = *KnownRHSValue;
+ if (BinaryOperator::isComparisonOp(op)) {
+ // We're looking for a type big enough to compare the two values.
+ // FIXME: This is not correct. char + short will result in a promotion
+ // to int. Unfortunately we have lost types by this point.
+ APSIntType CompareType = std::max(APSIntType(LHSValue),
+ APSIntType(RHSValue));
+ CompareType.apply(LHSValue);
+ CompareType.apply(RHSValue);
+ } else if (!BinaryOperator::isShiftOp(op)) {
+ APSIntType IntType = BasicVals.getAPSIntType(resultTy);
+ IntType.apply(LHSValue);
+ IntType.apply(RHSValue);
+ }
+
+ const llvm::APSInt *Result =
+ BasicVals.evalAPSInt(op, LHSValue, RHSValue);
+ if (!Result)
+ return UndefinedVal();
+
+ return nonloc::ConcreteInt(*Result);
+ }
+
+ // Swap the left and right sides and flip the operator if doing so
+ // allows us to better reason about the expression (this is a form
+ // of expression canonicalization).
+ // While we're at it, catch some special cases for non-commutative ops.
+ switch (op) {
+ case BO_LT:
+ case BO_GT:
+ case BO_LE:
+ case BO_GE:
+ op = BinaryOperator::reverseComparisonOp(op);
+ // FALL-THROUGH
+ case BO_EQ:
+ case BO_NE:
+ case BO_Add:
+ case BO_Mul:
+ case BO_And:
+ case BO_Xor:
+ case BO_Or:
+ std::swap(lhs, rhs);
+ continue;
+ case BO_Shr:
+ // (~0)>>a
+ if (LHSValue.isAllOnesValue() && LHSValue.isSigned())
+ return evalCastFromNonLoc(lhs, resultTy);
+ // FALL-THROUGH
+ case BO_Shl:
+ // 0<<a and 0>>a
+ if (LHSValue == 0)
+ return evalCastFromNonLoc(lhs, resultTy);
+ return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
+ default:
+ return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
+ }
+ }
+ case nonloc::SymbolValKind: {
+ // We only handle LHS as simple symbols or SymIntExprs.
+ SymbolRef Sym = lhs.castAs<nonloc::SymbolVal>().getSymbol();
+
+ // LHS is a symbolic expression.
+ if (const SymIntExpr *symIntExpr = dyn_cast<SymIntExpr>(Sym)) {
+
+ // Is this a logical not? (!x is represented as x == 0.)
+ if (op == BO_EQ && rhs.isZeroConstant()) {
+ // We know how to negate certain expressions. Simplify them here.
+
+ BinaryOperator::Opcode opc = symIntExpr->getOpcode();
+ switch (opc) {
+ default:
+ // We don't know how to negate this operation.
+ // Just handle it as if it were a normal comparison to 0.
+ break;
+ case BO_LAnd:
+ case BO_LOr:
+ llvm_unreachable("Logical operators handled by branching logic.");
+ case BO_Assign:
+ case BO_MulAssign:
+ case BO_DivAssign:
+ case BO_RemAssign:
+ case BO_AddAssign:
+ case BO_SubAssign:
+ case BO_ShlAssign:
+ case BO_ShrAssign:
+ case BO_AndAssign:
+ case BO_XorAssign:
+ case BO_OrAssign:
+ case BO_Comma:
+ llvm_unreachable("'=' and ',' operators handled by ExprEngine.");
+ case BO_PtrMemD:
+ case BO_PtrMemI:
+ llvm_unreachable("Pointer arithmetic not handled here.");
+ case BO_LT:
+ case BO_GT:
+ case BO_LE:
+ case BO_GE:
+ case BO_EQ:
+ case BO_NE:
+ assert(resultTy->isBooleanType() ||
+ resultTy == getConditionType());
+ assert(symIntExpr->getType()->isBooleanType() ||
+ getContext().hasSameUnqualifiedType(symIntExpr->getType(),
+ getConditionType()));
+ // Negate the comparison and make a value.
+ opc = BinaryOperator::negateComparisonOp(opc);
+ return makeNonLoc(symIntExpr->getLHS(), opc,
+ symIntExpr->getRHS(), resultTy);
+ }
+ }
+
+ // For now, only handle expressions whose RHS is a constant.
+ if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) {
+ // If both the LHS and the current expression are additive,
+ // fold their constants and try again.
+ if (BinaryOperator::isAdditiveOp(op)) {
+ BinaryOperator::Opcode lop = symIntExpr->getOpcode();
+ if (BinaryOperator::isAdditiveOp(lop)) {
+ // Convert the two constants to a common type, then combine them.
+
+ // resultTy may not be the best type to convert to, but it's
+ // probably the best choice in expressions with mixed type
+ // (such as x+1U+2LL). The rules for implicit conversions should
+ // choose a reasonable type to preserve the expression, and will
+ // at least match how the value is going to be used.
+ APSIntType IntType = BasicVals.getAPSIntType(resultTy);
+ const llvm::APSInt &first = IntType.convert(symIntExpr->getRHS());
+ const llvm::APSInt &second = IntType.convert(*RHSValue);
+
+ const llvm::APSInt *newRHS;
+ if (lop == op)
+ newRHS = BasicVals.evalAPSInt(BO_Add, first, second);
+ else
+ newRHS = BasicVals.evalAPSInt(BO_Sub, first, second);
+
+ assert(newRHS && "Invalid operation despite common type!");
+ rhs = nonloc::ConcreteInt(*newRHS);
+ lhs = nonloc::SymbolVal(symIntExpr->getLHS());
+ op = lop;
+ continue;
+ }
+ }
+
+ // Otherwise, make a SymIntExpr out of the expression.
+ return MakeSymIntVal(symIntExpr, op, *RHSValue, resultTy);
+ }
+ }
+
+ // Does the symbolic expression simplify to a constant?
+ // If so, "fold" the constant by setting 'lhs' to a ConcreteInt
+ // and try again.
+ ConstraintManager &CMgr = state->getConstraintManager();
+ if (const llvm::APSInt *Constant = CMgr.getSymVal(state, Sym)) {
+ lhs = nonloc::ConcreteInt(*Constant);
+ continue;
+ }
+
+ // Is the RHS a constant?
+ if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs))
+ return MakeSymIntVal(Sym, op, *RHSValue, resultTy);
+
+ // Give up -- this is not a symbolic expression we can handle.
+ return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
+ }
+ }
+ }
+}
+
+static SVal evalBinOpFieldRegionFieldRegion(const FieldRegion *LeftFR,
+ const FieldRegion *RightFR,
+ BinaryOperator::Opcode op,
+ QualType resultTy,
+ SimpleSValBuilder &SVB) {
+ // Only comparisons are meaningful here!
+ if (!BinaryOperator::isComparisonOp(op))
+ return UnknownVal();
+
+ // Next, see if the two FRs have the same super-region.
+ // FIXME: This doesn't handle casts yet, and simply stripping the casts
+ // doesn't help.
+ if (LeftFR->getSuperRegion() != RightFR->getSuperRegion())
+ return UnknownVal();
+
+ const FieldDecl *LeftFD = LeftFR->getDecl();
+ const FieldDecl *RightFD = RightFR->getDecl();
+ const RecordDecl *RD = LeftFD->getParent();
+
+ // Make sure the two FRs are from the same kind of record. Just in case!
+ // FIXME: This is probably where inheritance would be a problem.
+ if (RD != RightFD->getParent())
+ return UnknownVal();
+
+ // We know for sure that the two fields are not the same, since that
+ // would have given us the same SVal.
+ if (op == BO_EQ)
+ return SVB.makeTruthVal(false, resultTy);
+ if (op == BO_NE)
+ return SVB.makeTruthVal(true, resultTy);
+
+ // Iterate through the fields and see which one comes first.
+ // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field
+ // members and the units in which bit-fields reside have addresses that
+ // increase in the order in which they are declared."
+ bool leftFirst = (op == BO_LT || op == BO_LE);
+ for (const auto *I : RD->fields()) {
+ if (I == LeftFD)
+ return SVB.makeTruthVal(leftFirst, resultTy);
+ if (I == RightFD)
+ return SVB.makeTruthVal(!leftFirst, resultTy);
+ }
+
+ llvm_unreachable("Fields not found in parent record's definition");
+}
+
+// FIXME: all this logic will change if/when we have MemRegion::getLocation().
+SVal SimpleSValBuilder::evalBinOpLL(ProgramStateRef state,
+ BinaryOperator::Opcode op,
+ Loc lhs, Loc rhs,
+ QualType resultTy) {
+ // Only comparisons and subtractions are valid operations on two pointers.
+ // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15].
+ // However, if a pointer is casted to an integer, evalBinOpNN may end up
+ // calling this function with another operation (PR7527). We don't attempt to
+ // model this for now, but it could be useful, particularly when the
+ // "location" is actually an integer value that's been passed through a void*.
+ if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub))
+ return UnknownVal();
+
+ // Special cases for when both sides are identical.
+ if (lhs == rhs) {
+ switch (op) {
+ default:
+ llvm_unreachable("Unimplemented operation for two identical values");
+ case BO_Sub:
+ return makeZeroVal(resultTy);
+ case BO_EQ:
+ case BO_LE:
+ case BO_GE:
+ return makeTruthVal(true, resultTy);
+ case BO_NE:
+ case BO_LT:
+ case BO_GT:
+ return makeTruthVal(false, resultTy);
+ }
+ }
+
+ switch (lhs.getSubKind()) {
+ default:
+ llvm_unreachable("Ordering not implemented for this Loc.");
+
+ case loc::GotoLabelKind:
+ // The only thing we know about labels is that they're non-null.
+ if (rhs.isZeroConstant()) {
+ switch (op) {
+ default:
+ break;
+ case BO_Sub:
+ return evalCastFromLoc(lhs, resultTy);
+ case BO_EQ:
+ case BO_LE:
+ case BO_LT:
+ return makeTruthVal(false, resultTy);
+ case BO_NE:
+ case BO_GT:
+ case BO_GE:
+ return makeTruthVal(true, resultTy);
+ }
+ }
+ // There may be two labels for the same location, and a function region may
+ // have the same address as a label at the start of the function (depending
+ // on the ABI).
+ // FIXME: we can probably do a comparison against other MemRegions, though.
+ // FIXME: is there a way to tell if two labels refer to the same location?
+ return UnknownVal();
+
+ case loc::ConcreteIntKind: {
+ // If one of the operands is a symbol and the other is a constant,
+ // build an expression for use by the constraint manager.
+ if (SymbolRef rSym = rhs.getAsLocSymbol()) {
+ // We can only build expressions with symbols on the left,
+ // so we need a reversible operator.
+ if (!BinaryOperator::isComparisonOp(op))
+ return UnknownVal();
+
+ const llvm::APSInt &lVal = lhs.castAs<loc::ConcreteInt>().getValue();
+ op = BinaryOperator::reverseComparisonOp(op);
+ return makeNonLoc(rSym, op, lVal, resultTy);
+ }
+
+ // If both operands are constants, just perform the operation.
+ if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
+ SVal ResultVal =
+ lhs.castAs<loc::ConcreteInt>().evalBinOp(BasicVals, op, *rInt);
+ if (Optional<NonLoc> Result = ResultVal.getAs<NonLoc>())
+ return evalCastFromNonLoc(*Result, resultTy);
+
+ assert(!ResultVal.getAs<Loc>() && "Loc-Loc ops should not produce Locs");
+ return UnknownVal();
+ }
+
+ // Special case comparisons against NULL.
+ // This must come after the test if the RHS is a symbol, which is used to
+ // build constraints. The address of any non-symbolic region is guaranteed
+ // to be non-NULL, as is any label.
+ assert(rhs.getAs<loc::MemRegionVal>() || rhs.getAs<loc::GotoLabel>());
+ if (lhs.isZeroConstant()) {
+ switch (op) {
+ default:
+ break;
+ case BO_EQ:
+ case BO_GT:
+ case BO_GE:
+ return makeTruthVal(false, resultTy);
+ case BO_NE:
+ case BO_LT:
+ case BO_LE:
+ return makeTruthVal(true, resultTy);
+ }
+ }
+
+ // Comparing an arbitrary integer to a region or label address is
+ // completely unknowable.
+ return UnknownVal();
+ }
+ case loc::MemRegionKind: {
+ if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
+ // If one of the operands is a symbol and the other is a constant,
+ // build an expression for use by the constraint manager.
+ if (SymbolRef lSym = lhs.getAsLocSymbol(true))
+ return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy);
+
+ // Special case comparisons to NULL.
+ // This must come after the test if the LHS is a symbol, which is used to
+ // build constraints. The address of any non-symbolic region is guaranteed
+ // to be non-NULL.
+ if (rInt->isZeroConstant()) {
+ if (op == BO_Sub)
+ return evalCastFromLoc(lhs, resultTy);
+
+ if (BinaryOperator::isComparisonOp(op)) {
+ QualType boolType = getContext().BoolTy;
+ NonLoc l = evalCastFromLoc(lhs, boolType).castAs<NonLoc>();
+ NonLoc r = makeTruthVal(false, boolType).castAs<NonLoc>();
+ return evalBinOpNN(state, op, l, r, resultTy);
+ }
+ }
+
+ // Comparing a region to an arbitrary integer is completely unknowable.
+ return UnknownVal();
+ }
+
+ // Get both values as regions, if possible.
+ const MemRegion *LeftMR = lhs.getAsRegion();
+ assert(LeftMR && "MemRegionKind SVal doesn't have a region!");
+
+ const MemRegion *RightMR = rhs.getAsRegion();
+ if (!RightMR)
+ // The RHS is probably a label, which in theory could address a region.
+ // FIXME: we can probably make a more useful statement about non-code
+ // regions, though.
+ return UnknownVal();
+
+ const MemRegion *LeftBase = LeftMR->getBaseRegion();
+ const MemRegion *RightBase = RightMR->getBaseRegion();
+ const MemSpaceRegion *LeftMS = LeftBase->getMemorySpace();
+ const MemSpaceRegion *RightMS = RightBase->getMemorySpace();
+ const MemSpaceRegion *UnknownMS = MemMgr.getUnknownRegion();
+
+ // If the two regions are from different known memory spaces they cannot be
+ // equal. Also, assume that no symbolic region (whose memory space is
+ // unknown) is on the stack.
+ if (LeftMS != RightMS &&
+ ((LeftMS != UnknownMS && RightMS != UnknownMS) ||
+ (isa<StackSpaceRegion>(LeftMS) || isa<StackSpaceRegion>(RightMS)))) {
+ switch (op) {
+ default:
+ return UnknownVal();
+ case BO_EQ:
+ return makeTruthVal(false, resultTy);
+ case BO_NE:
+ return makeTruthVal(true, resultTy);
+ }
+ }
+
+ // If both values wrap regions, see if they're from different base regions.
+ // Note, heap base symbolic regions are assumed to not alias with
+ // each other; for example, we assume that malloc returns different address
+ // on each invocation.
+ if (LeftBase != RightBase &&
+ ((!isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) ||
+ (isa<HeapSpaceRegion>(LeftMS) || isa<HeapSpaceRegion>(RightMS))) ){
+ switch (op) {
+ default:
+ return UnknownVal();
+ case BO_EQ:
+ return makeTruthVal(false, resultTy);
+ case BO_NE:
+ return makeTruthVal(true, resultTy);
+ }
+ }
+
+ // Handle special cases for when both regions are element regions.
+ const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR);
+ const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR);
+ if (RightER && LeftER) {
+ // Next, see if the two ERs have the same super-region and matching types.
+ // FIXME: This should do something useful even if the types don't match,
+ // though if both indexes are constant the RegionRawOffset path will
+ // give the correct answer.
+ if (LeftER->getSuperRegion() == RightER->getSuperRegion() &&
+ LeftER->getElementType() == RightER->getElementType()) {
+ // Get the left index and cast it to the correct type.
+ // If the index is unknown or undefined, bail out here.
+ SVal LeftIndexVal = LeftER->getIndex();
+ Optional<NonLoc> LeftIndex = LeftIndexVal.getAs<NonLoc>();
+ if (!LeftIndex)
+ return UnknownVal();
+ LeftIndexVal = evalCastFromNonLoc(*LeftIndex, ArrayIndexTy);
+ LeftIndex = LeftIndexVal.getAs<NonLoc>();
+ if (!LeftIndex)
+ return UnknownVal();
+
+ // Do the same for the right index.
+ SVal RightIndexVal = RightER->getIndex();
+ Optional<NonLoc> RightIndex = RightIndexVal.getAs<NonLoc>();
+ if (!RightIndex)
+ return UnknownVal();
+ RightIndexVal = evalCastFromNonLoc(*RightIndex, ArrayIndexTy);
+ RightIndex = RightIndexVal.getAs<NonLoc>();
+ if (!RightIndex)
+ return UnknownVal();
+
+ // Actually perform the operation.
+ // evalBinOpNN expects the two indexes to already be the right type.
+ return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy);
+ }
+ }
+
+ // Special handling of the FieldRegions, even with symbolic offsets.
+ const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR);
+ const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR);
+ if (RightFR && LeftFR) {
+ SVal R = evalBinOpFieldRegionFieldRegion(LeftFR, RightFR, op, resultTy,
+ *this);
+ if (!R.isUnknown())
+ return R;
+ }
+
+ // Compare the regions using the raw offsets.
+ RegionOffset LeftOffset = LeftMR->getAsOffset();
+ RegionOffset RightOffset = RightMR->getAsOffset();
+
+ if (LeftOffset.getRegion() != nullptr &&
+ LeftOffset.getRegion() == RightOffset.getRegion() &&
+ !LeftOffset.hasSymbolicOffset() && !RightOffset.hasSymbolicOffset()) {
+ int64_t left = LeftOffset.getOffset();
+ int64_t right = RightOffset.getOffset();
+
+ switch (op) {
+ default:
+ return UnknownVal();
+ case BO_LT:
+ return makeTruthVal(left < right, resultTy);
+ case BO_GT:
+ return makeTruthVal(left > right, resultTy);
+ case BO_LE:
+ return makeTruthVal(left <= right, resultTy);
+ case BO_GE:
+ return makeTruthVal(left >= right, resultTy);
+ case BO_EQ:
+ return makeTruthVal(left == right, resultTy);
+ case BO_NE:
+ return makeTruthVal(left != right, resultTy);
+ }
+ }
+
+ // At this point we're not going to get a good answer, but we can try
+ // conjuring an expression instead.
+ SymbolRef LHSSym = lhs.getAsLocSymbol();
+ SymbolRef RHSSym = rhs.getAsLocSymbol();
+ if (LHSSym && RHSSym)
+ return makeNonLoc(LHSSym, op, RHSSym, resultTy);
+
+ // If we get here, we have no way of comparing the regions.
+ return UnknownVal();
+ }
+ }
+}
+
+SVal SimpleSValBuilder::evalBinOpLN(ProgramStateRef state,
+ BinaryOperator::Opcode op,
+ Loc lhs, NonLoc rhs, QualType resultTy) {
+ assert(!BinaryOperator::isComparisonOp(op) &&
+ "arguments to comparison ops must be of the same type");
+
+ // Special case: rhs is a zero constant.
+ if (rhs.isZeroConstant())
+ return lhs;
+
+ // We are dealing with pointer arithmetic.
+
+ // Handle pointer arithmetic on constant values.
+ if (Optional<nonloc::ConcreteInt> rhsInt = rhs.getAs<nonloc::ConcreteInt>()) {
+ if (Optional<loc::ConcreteInt> lhsInt = lhs.getAs<loc::ConcreteInt>()) {
+ const llvm::APSInt &leftI = lhsInt->getValue();
+ assert(leftI.isUnsigned());
+ llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true);
+
+ // Convert the bitwidth of rightI. This should deal with overflow
+ // since we are dealing with concrete values.
+ rightI = rightI.extOrTrunc(leftI.getBitWidth());
+
+ // Offset the increment by the pointer size.
+ llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true);
+ rightI *= Multiplicand;
+
+ // Compute the adjusted pointer.
+ switch (op) {
+ case BO_Add:
+ rightI = leftI + rightI;
+ break;
+ case BO_Sub:
+ rightI = leftI - rightI;
+ break;
+ default:
+ llvm_unreachable("Invalid pointer arithmetic operation");
+ }
+ return loc::ConcreteInt(getBasicValueFactory().getValue(rightI));
+ }
+ }
+
+ // Handle cases where 'lhs' is a region.
+ if (const MemRegion *region = lhs.getAsRegion()) {
+ rhs = convertToArrayIndex(rhs).castAs<NonLoc>();
+ SVal index = UnknownVal();
+ const MemRegion *superR = nullptr;
+ QualType elementType;
+
+ if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) {
+ assert(op == BO_Add || op == BO_Sub);
+ index = evalBinOpNN(state, op, elemReg->getIndex(), rhs,
+ getArrayIndexType());
+ superR = elemReg->getSuperRegion();
+ elementType = elemReg->getElementType();
+ }
+ else if (isa<SubRegion>(region)) {
+ superR = region;
+ index = rhs;
+ if (resultTy->isAnyPointerType())
+ elementType = resultTy->getPointeeType();
+ }
+
+ if (Optional<NonLoc> indexV = index.getAs<NonLoc>()) {
+ return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV,
+ superR, getContext()));
+ }
+ }
+ return UnknownVal();
+}
+
+const llvm::APSInt *SimpleSValBuilder::getKnownValue(ProgramStateRef state,
+ SVal V) {
+ if (V.isUnknownOrUndef())
+ return nullptr;
+
+ if (Optional<loc::ConcreteInt> X = V.getAs<loc::ConcreteInt>())
+ return &X->getValue();
+
+ if (Optional<nonloc::ConcreteInt> X = V.getAs<nonloc::ConcreteInt>())
+ return &X->getValue();
+
+ if (SymbolRef Sym = V.getAsSymbol())
+ return state->getConstraintManager().getSymVal(state, Sym);
+
+ // FIXME: Add support for SymExprs.
+ return nullptr;
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/Store.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/Store.cpp
new file mode 100644
index 0000000..99ec1e7
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/Store.cpp
@@ -0,0 +1,510 @@
+//== Store.cpp - Interface for maps from Locations to Values ----*- C++ -*--==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defined the types Store and StoreManager.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/CharUnits.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
+
+using namespace clang;
+using namespace ento;
+
+StoreManager::StoreManager(ProgramStateManager &stateMgr)
+ : svalBuilder(stateMgr.getSValBuilder()), StateMgr(stateMgr),
+ MRMgr(svalBuilder.getRegionManager()), Ctx(stateMgr.getContext()) {}
+
+StoreRef StoreManager::enterStackFrame(Store OldStore,
+ const CallEvent &Call,
+ const StackFrameContext *LCtx) {
+ StoreRef Store = StoreRef(OldStore, *this);
+
+ SmallVector<CallEvent::FrameBindingTy, 16> InitialBindings;
+ Call.getInitialStackFrameContents(LCtx, InitialBindings);
+
+ for (CallEvent::BindingsTy::iterator I = InitialBindings.begin(),
+ E = InitialBindings.end();
+ I != E; ++I) {
+ Store = Bind(Store.getStore(), I->first, I->second);
+ }
+
+ return Store;
+}
+
+const MemRegion *StoreManager::MakeElementRegion(const MemRegion *Base,
+ QualType EleTy, uint64_t index) {
+ NonLoc idx = svalBuilder.makeArrayIndex(index);
+ return MRMgr.getElementRegion(EleTy, idx, Base, svalBuilder.getContext());
+}
+
+StoreRef StoreManager::BindDefault(Store store, const MemRegion *R, SVal V) {
+ return StoreRef(store, *this);
+}
+
+const ElementRegion *StoreManager::GetElementZeroRegion(const MemRegion *R,
+ QualType T) {
+ NonLoc idx = svalBuilder.makeZeroArrayIndex();
+ assert(!T.isNull());
+ return MRMgr.getElementRegion(T, idx, R, Ctx);
+}
+
+const MemRegion *StoreManager::castRegion(const MemRegion *R, QualType CastToTy) {
+
+ ASTContext &Ctx = StateMgr.getContext();
+
+ // Handle casts to Objective-C objects.
+ if (CastToTy->isObjCObjectPointerType())
+ return R->StripCasts();
+
+ if (CastToTy->isBlockPointerType()) {
+ // FIXME: We may need different solutions, depending on the symbol
+ // involved. Blocks can be casted to/from 'id', as they can be treated
+ // as Objective-C objects. This could possibly be handled by enhancing
+ // our reasoning of downcasts of symbolic objects.
+ if (isa<CodeTextRegion>(R) || isa<SymbolicRegion>(R))
+ return R;
+
+ // We don't know what to make of it. Return a NULL region, which
+ // will be interpretted as UnknownVal.
+ return nullptr;
+ }
+
+ // Now assume we are casting from pointer to pointer. Other cases should
+ // already be handled.
+ QualType PointeeTy = CastToTy->getPointeeType();
+ QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
+
+ // Handle casts to void*. We just pass the region through.
+ if (CanonPointeeTy.getLocalUnqualifiedType() == Ctx.VoidTy)
+ return R;
+
+ // Handle casts from compatible types.
+ if (R->isBoundable())
+ if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
+ QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
+ if (CanonPointeeTy == ObjTy)
+ return R;
+ }
+
+ // Process region cast according to the kind of the region being cast.
+ switch (R->getKind()) {
+ case MemRegion::CXXThisRegionKind:
+ case MemRegion::GenericMemSpaceRegionKind:
+ case MemRegion::StackLocalsSpaceRegionKind:
+ case MemRegion::StackArgumentsSpaceRegionKind:
+ case MemRegion::HeapSpaceRegionKind:
+ case MemRegion::UnknownSpaceRegionKind:
+ case MemRegion::StaticGlobalSpaceRegionKind:
+ case MemRegion::GlobalInternalSpaceRegionKind:
+ case MemRegion::GlobalSystemSpaceRegionKind:
+ case MemRegion::GlobalImmutableSpaceRegionKind: {
+ llvm_unreachable("Invalid region cast");
+ }
+
+ case MemRegion::FunctionTextRegionKind:
+ case MemRegion::BlockTextRegionKind:
+ case MemRegion::BlockDataRegionKind:
+ case MemRegion::StringRegionKind:
+ // FIXME: Need to handle arbitrary downcasts.
+ case MemRegion::SymbolicRegionKind:
+ case MemRegion::AllocaRegionKind:
+ case MemRegion::CompoundLiteralRegionKind:
+ case MemRegion::FieldRegionKind:
+ case MemRegion::ObjCIvarRegionKind:
+ case MemRegion::ObjCStringRegionKind:
+ case MemRegion::VarRegionKind:
+ case MemRegion::CXXTempObjectRegionKind:
+ case MemRegion::CXXBaseObjectRegionKind:
+ return MakeElementRegion(R, PointeeTy);
+
+ case MemRegion::ElementRegionKind: {
+ // If we are casting from an ElementRegion to another type, the
+ // algorithm is as follows:
+ //
+ // (1) Compute the "raw offset" of the ElementRegion from the
+ // base region. This is done by calling 'getAsRawOffset()'.
+ //
+ // (2a) If we get a 'RegionRawOffset' after calling
+ // 'getAsRawOffset()', determine if the absolute offset
+ // can be exactly divided into chunks of the size of the
+ // casted-pointee type. If so, create a new ElementRegion with
+ // the pointee-cast type as the new ElementType and the index
+ // being the offset divded by the chunk size. If not, create
+ // a new ElementRegion at offset 0 off the raw offset region.
+ //
+ // (2b) If we don't a get a 'RegionRawOffset' after calling
+ // 'getAsRawOffset()', it means that we are at offset 0.
+ //
+ // FIXME: Handle symbolic raw offsets.
+
+ const ElementRegion *elementR = cast<ElementRegion>(R);
+ const RegionRawOffset &rawOff = elementR->getAsArrayOffset();
+ const MemRegion *baseR = rawOff.getRegion();
+
+ // If we cannot compute a raw offset, throw up our hands and return
+ // a NULL MemRegion*.
+ if (!baseR)
+ return nullptr;
+
+ CharUnits off = rawOff.getOffset();
+
+ if (off.isZero()) {
+ // Edge case: we are at 0 bytes off the beginning of baseR. We
+ // check to see if type we are casting to is the same as the base
+ // region. If so, just return the base region.
+ if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(baseR)) {
+ QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
+ QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
+ if (CanonPointeeTy == ObjTy)
+ return baseR;
+ }
+
+ // Otherwise, create a new ElementRegion at offset 0.
+ return MakeElementRegion(baseR, PointeeTy);
+ }
+
+ // We have a non-zero offset from the base region. We want to determine
+ // if the offset can be evenly divided by sizeof(PointeeTy). If so,
+ // we create an ElementRegion whose index is that value. Otherwise, we
+ // create two ElementRegions, one that reflects a raw offset and the other
+ // that reflects the cast.
+
+ // Compute the index for the new ElementRegion.
+ int64_t newIndex = 0;
+ const MemRegion *newSuperR = nullptr;
+
+ // We can only compute sizeof(PointeeTy) if it is a complete type.
+ if (!PointeeTy->isIncompleteType()) {
+ // Compute the size in **bytes**.
+ CharUnits pointeeTySize = Ctx.getTypeSizeInChars(PointeeTy);
+ if (!pointeeTySize.isZero()) {
+ // Is the offset a multiple of the size? If so, we can layer the
+ // ElementRegion (with elementType == PointeeTy) directly on top of
+ // the base region.
+ if (off % pointeeTySize == 0) {
+ newIndex = off / pointeeTySize;
+ newSuperR = baseR;
+ }
+ }
+ }
+
+ if (!newSuperR) {
+ // Create an intermediate ElementRegion to represent the raw byte.
+ // This will be the super region of the final ElementRegion.
+ newSuperR = MakeElementRegion(baseR, Ctx.CharTy, off.getQuantity());
+ }
+
+ return MakeElementRegion(newSuperR, PointeeTy, newIndex);
+ }
+ }
+
+ llvm_unreachable("unreachable");
+}
+
+static bool regionMatchesCXXRecordType(SVal V, QualType Ty) {
+ const MemRegion *MR = V.getAsRegion();
+ if (!MR)
+ return true;
+
+ const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR);
+ if (!TVR)
+ return true;
+
+ const CXXRecordDecl *RD = TVR->getValueType()->getAsCXXRecordDecl();
+ if (!RD)
+ return true;
+
+ const CXXRecordDecl *Expected = Ty->getPointeeCXXRecordDecl();
+ if (!Expected)
+ Expected = Ty->getAsCXXRecordDecl();
+
+ return Expected->getCanonicalDecl() == RD->getCanonicalDecl();
+}
+
+SVal StoreManager::evalDerivedToBase(SVal Derived, const CastExpr *Cast) {
+ // Sanity check to avoid doing the wrong thing in the face of
+ // reinterpret_cast.
+ if (!regionMatchesCXXRecordType(Derived, Cast->getSubExpr()->getType()))
+ return UnknownVal();
+
+ // Walk through the cast path to create nested CXXBaseRegions.
+ SVal Result = Derived;
+ for (CastExpr::path_const_iterator I = Cast->path_begin(),
+ E = Cast->path_end();
+ I != E; ++I) {
+ Result = evalDerivedToBase(Result, (*I)->getType(), (*I)->isVirtual());
+ }
+ return Result;
+}
+
+SVal StoreManager::evalDerivedToBase(SVal Derived, const CXXBasePath &Path) {
+ // Walk through the path to create nested CXXBaseRegions.
+ SVal Result = Derived;
+ for (CXXBasePath::const_iterator I = Path.begin(), E = Path.end();
+ I != E; ++I) {
+ Result = evalDerivedToBase(Result, I->Base->getType(),
+ I->Base->isVirtual());
+ }
+ return Result;
+}
+
+SVal StoreManager::evalDerivedToBase(SVal Derived, QualType BaseType,
+ bool IsVirtual) {
+ Optional<loc::MemRegionVal> DerivedRegVal =
+ Derived.getAs<loc::MemRegionVal>();
+ if (!DerivedRegVal)
+ return Derived;
+
+ const CXXRecordDecl *BaseDecl = BaseType->getPointeeCXXRecordDecl();
+ if (!BaseDecl)
+ BaseDecl = BaseType->getAsCXXRecordDecl();
+ assert(BaseDecl && "not a C++ object?");
+
+ const MemRegion *BaseReg =
+ MRMgr.getCXXBaseObjectRegion(BaseDecl, DerivedRegVal->getRegion(),
+ IsVirtual);
+
+ return loc::MemRegionVal(BaseReg);
+}
+
+/// Returns the static type of the given region, if it represents a C++ class
+/// object.
+///
+/// This handles both fully-typed regions, where the dynamic type is known, and
+/// symbolic regions, where the dynamic type is merely bounded (and even then,
+/// only ostensibly!), but does not take advantage of any dynamic type info.
+static const CXXRecordDecl *getCXXRecordType(const MemRegion *MR) {
+ if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR))
+ return TVR->getValueType()->getAsCXXRecordDecl();
+ if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(MR))
+ return SR->getSymbol()->getType()->getPointeeCXXRecordDecl();
+ return nullptr;
+}
+
+SVal StoreManager::evalDynamicCast(SVal Base, QualType TargetType,
+ bool &Failed) {
+ Failed = false;
+
+ const MemRegion *MR = Base.getAsRegion();
+ if (!MR)
+ return UnknownVal();
+
+ // Assume the derived class is a pointer or a reference to a CXX record.
+ TargetType = TargetType->getPointeeType();
+ assert(!TargetType.isNull());
+ const CXXRecordDecl *TargetClass = TargetType->getAsCXXRecordDecl();
+ if (!TargetClass && !TargetType->isVoidType())
+ return UnknownVal();
+
+ // Drill down the CXXBaseObject chains, which represent upcasts (casts from
+ // derived to base).
+ while (const CXXRecordDecl *MRClass = getCXXRecordType(MR)) {
+ // If found the derived class, the cast succeeds.
+ if (MRClass == TargetClass)
+ return loc::MemRegionVal(MR);
+
+ // We skip over incomplete types. They must be the result of an earlier
+ // reinterpret_cast, as one can only dynamic_cast between types in the same
+ // class hierarchy.
+ if (!TargetType->isVoidType() && MRClass->hasDefinition()) {
+ // Static upcasts are marked as DerivedToBase casts by Sema, so this will
+ // only happen when multiple or virtual inheritance is involved.
+ CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/true,
+ /*DetectVirtual=*/false);
+ if (MRClass->isDerivedFrom(TargetClass, Paths))
+ return evalDerivedToBase(loc::MemRegionVal(MR), Paths.front());
+ }
+
+ if (const CXXBaseObjectRegion *BaseR = dyn_cast<CXXBaseObjectRegion>(MR)) {
+ // Drill down the chain to get the derived classes.
+ MR = BaseR->getSuperRegion();
+ continue;
+ }
+
+ // If this is a cast to void*, return the region.
+ if (TargetType->isVoidType())
+ return loc::MemRegionVal(MR);
+
+ // Strange use of reinterpret_cast can give us paths we don't reason
+ // about well, by putting in ElementRegions where we'd expect
+ // CXXBaseObjectRegions. If it's a valid reinterpret_cast (i.e. if the
+ // derived class has a zero offset from the base class), then it's safe
+ // to strip the cast; if it's invalid, -Wreinterpret-base-class should
+ // catch it. In the interest of performance, the analyzer will silently
+ // do the wrong thing in the invalid case (because offsets for subregions
+ // will be wrong).
+ const MemRegion *Uncasted = MR->StripCasts(/*IncludeBaseCasts=*/false);
+ if (Uncasted == MR) {
+ // We reached the bottom of the hierarchy and did not find the derived
+ // class. We we must be casting the base to derived, so the cast should
+ // fail.
+ break;
+ }
+
+ MR = Uncasted;
+ }
+
+ // We failed if the region we ended up with has perfect type info.
+ Failed = isa<TypedValueRegion>(MR);
+ return UnknownVal();
+}
+
+
+/// CastRetrievedVal - Used by subclasses of StoreManager to implement
+/// implicit casts that arise from loads from regions that are reinterpreted
+/// as another region.
+SVal StoreManager::CastRetrievedVal(SVal V, const TypedValueRegion *R,
+ QualType castTy, bool performTestOnly) {
+
+ if (castTy.isNull() || V.isUnknownOrUndef())
+ return V;
+
+ ASTContext &Ctx = svalBuilder.getContext();
+
+ if (performTestOnly) {
+ // Automatically translate references to pointers.
+ QualType T = R->getValueType();
+ if (const ReferenceType *RT = T->getAs<ReferenceType>())
+ T = Ctx.getPointerType(RT->getPointeeType());
+
+ assert(svalBuilder.getContext().hasSameUnqualifiedType(castTy, T));
+ return V;
+ }
+
+ return svalBuilder.dispatchCast(V, castTy);
+}
+
+SVal StoreManager::getLValueFieldOrIvar(const Decl *D, SVal Base) {
+ if (Base.isUnknownOrUndef())
+ return Base;
+
+ Loc BaseL = Base.castAs<Loc>();
+ const MemRegion* BaseR = nullptr;
+
+ switch (BaseL.getSubKind()) {
+ case loc::MemRegionKind:
+ BaseR = BaseL.castAs<loc::MemRegionVal>().getRegion();
+ break;
+
+ case loc::GotoLabelKind:
+ // These are anormal cases. Flag an undefined value.
+ return UndefinedVal();
+
+ case loc::ConcreteIntKind:
+ // While these seem funny, this can happen through casts.
+ // FIXME: What we should return is the field offset. For example,
+ // add the field offset to the integer value. That way funny things
+ // like this work properly: &(((struct foo *) 0xa)->f)
+ return Base;
+
+ default:
+ llvm_unreachable("Unhandled Base.");
+ }
+
+ // NOTE: We must have this check first because ObjCIvarDecl is a subclass
+ // of FieldDecl.
+ if (const ObjCIvarDecl *ID = dyn_cast<ObjCIvarDecl>(D))
+ return loc::MemRegionVal(MRMgr.getObjCIvarRegion(ID, BaseR));
+
+ return loc::MemRegionVal(MRMgr.getFieldRegion(cast<FieldDecl>(D), BaseR));
+}
+
+SVal StoreManager::getLValueIvar(const ObjCIvarDecl *decl, SVal base) {
+ return getLValueFieldOrIvar(decl, base);
+}
+
+SVal StoreManager::getLValueElement(QualType elementType, NonLoc Offset,
+ SVal Base) {
+
+ // If the base is an unknown or undefined value, just return it back.
+ // FIXME: For absolute pointer addresses, we just return that value back as
+ // well, although in reality we should return the offset added to that
+ // value.
+ if (Base.isUnknownOrUndef() || Base.getAs<loc::ConcreteInt>())
+ return Base;
+
+ const MemRegion* BaseRegion = Base.castAs<loc::MemRegionVal>().getRegion();
+
+ // Pointer of any type can be cast and used as array base.
+ const ElementRegion *ElemR = dyn_cast<ElementRegion>(BaseRegion);
+
+ // Convert the offset to the appropriate size and signedness.
+ Offset = svalBuilder.convertToArrayIndex(Offset).castAs<NonLoc>();
+
+ if (!ElemR) {
+ //
+ // If the base region is not an ElementRegion, create one.
+ // This can happen in the following example:
+ //
+ // char *p = __builtin_alloc(10);
+ // p[1] = 8;
+ //
+ // Observe that 'p' binds to an AllocaRegion.
+ //
+ return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
+ BaseRegion, Ctx));
+ }
+
+ SVal BaseIdx = ElemR->getIndex();
+
+ if (!BaseIdx.getAs<nonloc::ConcreteInt>())
+ return UnknownVal();
+
+ const llvm::APSInt &BaseIdxI =
+ BaseIdx.castAs<nonloc::ConcreteInt>().getValue();
+
+ // Only allow non-integer offsets if the base region has no offset itself.
+ // FIXME: This is a somewhat arbitrary restriction. We should be using
+ // SValBuilder here to add the two offsets without checking their types.
+ if (!Offset.getAs<nonloc::ConcreteInt>()) {
+ if (isa<ElementRegion>(BaseRegion->StripCasts()))
+ return UnknownVal();
+
+ return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
+ ElemR->getSuperRegion(),
+ Ctx));
+ }
+
+ const llvm::APSInt& OffI = Offset.castAs<nonloc::ConcreteInt>().getValue();
+ assert(BaseIdxI.isSigned());
+
+ // Compute the new index.
+ nonloc::ConcreteInt NewIdx(svalBuilder.getBasicValueFactory().getValue(BaseIdxI +
+ OffI));
+
+ // Construct the new ElementRegion.
+ const MemRegion *ArrayR = ElemR->getSuperRegion();
+ return loc::MemRegionVal(MRMgr.getElementRegion(elementType, NewIdx, ArrayR,
+ Ctx));
+}
+
+StoreManager::BindingsHandler::~BindingsHandler() {}
+
+bool StoreManager::FindUniqueBinding::HandleBinding(StoreManager& SMgr,
+ Store store,
+ const MemRegion* R,
+ SVal val) {
+ SymbolRef SymV = val.getAsLocSymbol();
+ if (!SymV || SymV != Sym)
+ return true;
+
+ if (Binding) {
+ First = false;
+ return false;
+ }
+ else
+ Binding = R;
+
+ return true;
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/SubEngine.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/SubEngine.cpp
new file mode 100644
index 0000000..350f4b8
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/SubEngine.cpp
@@ -0,0 +1,14 @@
+//== SubEngine.cpp - Interface of the subengine of CoreEngine ------*- C++ -*-//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
+
+using namespace clang::ento;
+
+void SubEngine::anchor() { }
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/SymbolManager.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/SymbolManager.cpp
new file mode 100644
index 0000000..cca0461
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/SymbolManager.cpp
@@ -0,0 +1,550 @@
+//== SymbolManager.h - Management of Symbolic Values ------------*- C++ -*--==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines SymbolManager, a class that manages symbolic values
+// created for use by ExprEngine and related classes.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
+#include "clang/Analysis/Analyses/LiveVariables.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+
+void SymExpr::anchor() { }
+
+void SymExpr::dump() const {
+ dumpToStream(llvm::errs());
+}
+
+void SymIntExpr::dumpToStream(raw_ostream &os) const {
+ os << '(';
+ getLHS()->dumpToStream(os);
+ os << ") "
+ << BinaryOperator::getOpcodeStr(getOpcode()) << ' '
+ << getRHS().getZExtValue();
+ if (getRHS().isUnsigned())
+ os << 'U';
+}
+
+void IntSymExpr::dumpToStream(raw_ostream &os) const {
+ os << getLHS().getZExtValue();
+ if (getLHS().isUnsigned())
+ os << 'U';
+ os << ' '
+ << BinaryOperator::getOpcodeStr(getOpcode())
+ << " (";
+ getRHS()->dumpToStream(os);
+ os << ')';
+}
+
+void SymSymExpr::dumpToStream(raw_ostream &os) const {
+ os << '(';
+ getLHS()->dumpToStream(os);
+ os << ") "
+ << BinaryOperator::getOpcodeStr(getOpcode())
+ << " (";
+ getRHS()->dumpToStream(os);
+ os << ')';
+}
+
+void SymbolCast::dumpToStream(raw_ostream &os) const {
+ os << '(' << ToTy.getAsString() << ") (";
+ Operand->dumpToStream(os);
+ os << ')';
+}
+
+void SymbolConjured::dumpToStream(raw_ostream &os) const {
+ os << "conj_$" << getSymbolID() << '{' << T.getAsString() << '}';
+}
+
+void SymbolDerived::dumpToStream(raw_ostream &os) const {
+ os << "derived_$" << getSymbolID() << '{'
+ << getParentSymbol() << ',' << getRegion() << '}';
+}
+
+void SymbolExtent::dumpToStream(raw_ostream &os) const {
+ os << "extent_$" << getSymbolID() << '{' << getRegion() << '}';
+}
+
+void SymbolMetadata::dumpToStream(raw_ostream &os) const {
+ os << "meta_$" << getSymbolID() << '{'
+ << getRegion() << ',' << T.getAsString() << '}';
+}
+
+void SymbolData::anchor() { }
+
+void SymbolRegionValue::dumpToStream(raw_ostream &os) const {
+ os << "reg_$" << getSymbolID() << "<" << R << ">";
+}
+
+bool SymExpr::symbol_iterator::operator==(const symbol_iterator &X) const {
+ return itr == X.itr;
+}
+
+bool SymExpr::symbol_iterator::operator!=(const symbol_iterator &X) const {
+ return itr != X.itr;
+}
+
+SymExpr::symbol_iterator::symbol_iterator(const SymExpr *SE) {
+ itr.push_back(SE);
+}
+
+SymExpr::symbol_iterator &SymExpr::symbol_iterator::operator++() {
+ assert(!itr.empty() && "attempting to iterate on an 'end' iterator");
+ expand();
+ return *this;
+}
+
+SymbolRef SymExpr::symbol_iterator::operator*() {
+ assert(!itr.empty() && "attempting to dereference an 'end' iterator");
+ return itr.back();
+}
+
+void SymExpr::symbol_iterator::expand() {
+ const SymExpr *SE = itr.pop_back_val();
+
+ switch (SE->getKind()) {
+ case SymExpr::RegionValueKind:
+ case SymExpr::ConjuredKind:
+ case SymExpr::DerivedKind:
+ case SymExpr::ExtentKind:
+ case SymExpr::MetadataKind:
+ return;
+ case SymExpr::CastSymbolKind:
+ itr.push_back(cast<SymbolCast>(SE)->getOperand());
+ return;
+ case SymExpr::SymIntKind:
+ itr.push_back(cast<SymIntExpr>(SE)->getLHS());
+ return;
+ case SymExpr::IntSymKind:
+ itr.push_back(cast<IntSymExpr>(SE)->getRHS());
+ return;
+ case SymExpr::SymSymKind: {
+ const SymSymExpr *x = cast<SymSymExpr>(SE);
+ itr.push_back(x->getLHS());
+ itr.push_back(x->getRHS());
+ return;
+ }
+ }
+ llvm_unreachable("unhandled expansion case");
+}
+
+unsigned SymExpr::computeComplexity() const {
+ unsigned R = 0;
+ for (symbol_iterator I = symbol_begin(), E = symbol_end(); I != E; ++I)
+ R++;
+ return R;
+}
+
+const SymbolRegionValue*
+SymbolManager::getRegionValueSymbol(const TypedValueRegion* R) {
+ llvm::FoldingSetNodeID profile;
+ SymbolRegionValue::Profile(profile, R);
+ void *InsertPos;
+ SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos);
+ if (!SD) {
+ SD = (SymExpr*) BPAlloc.Allocate<SymbolRegionValue>();
+ new (SD) SymbolRegionValue(SymbolCounter, R);
+ DataSet.InsertNode(SD, InsertPos);
+ ++SymbolCounter;
+ }
+
+ return cast<SymbolRegionValue>(SD);
+}
+
+const SymbolConjured* SymbolManager::conjureSymbol(const Stmt *E,
+ const LocationContext *LCtx,
+ QualType T,
+ unsigned Count,
+ const void *SymbolTag) {
+ llvm::FoldingSetNodeID profile;
+ SymbolConjured::Profile(profile, E, T, Count, LCtx, SymbolTag);
+ void *InsertPos;
+ SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos);
+ if (!SD) {
+ SD = (SymExpr*) BPAlloc.Allocate<SymbolConjured>();
+ new (SD) SymbolConjured(SymbolCounter, E, LCtx, T, Count, SymbolTag);
+ DataSet.InsertNode(SD, InsertPos);
+ ++SymbolCounter;
+ }
+
+ return cast<SymbolConjured>(SD);
+}
+
+const SymbolDerived*
+SymbolManager::getDerivedSymbol(SymbolRef parentSymbol,
+ const TypedValueRegion *R) {
+
+ llvm::FoldingSetNodeID profile;
+ SymbolDerived::Profile(profile, parentSymbol, R);
+ void *InsertPos;
+ SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos);
+ if (!SD) {
+ SD = (SymExpr*) BPAlloc.Allocate<SymbolDerived>();
+ new (SD) SymbolDerived(SymbolCounter, parentSymbol, R);
+ DataSet.InsertNode(SD, InsertPos);
+ ++SymbolCounter;
+ }
+
+ return cast<SymbolDerived>(SD);
+}
+
+const SymbolExtent*
+SymbolManager::getExtentSymbol(const SubRegion *R) {
+ llvm::FoldingSetNodeID profile;
+ SymbolExtent::Profile(profile, R);
+ void *InsertPos;
+ SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos);
+ if (!SD) {
+ SD = (SymExpr*) BPAlloc.Allocate<SymbolExtent>();
+ new (SD) SymbolExtent(SymbolCounter, R);
+ DataSet.InsertNode(SD, InsertPos);
+ ++SymbolCounter;
+ }
+
+ return cast<SymbolExtent>(SD);
+}
+
+const SymbolMetadata*
+SymbolManager::getMetadataSymbol(const MemRegion* R, const Stmt *S, QualType T,
+ unsigned Count, const void *SymbolTag) {
+
+ llvm::FoldingSetNodeID profile;
+ SymbolMetadata::Profile(profile, R, S, T, Count, SymbolTag);
+ void *InsertPos;
+ SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos);
+ if (!SD) {
+ SD = (SymExpr*) BPAlloc.Allocate<SymbolMetadata>();
+ new (SD) SymbolMetadata(SymbolCounter, R, S, T, Count, SymbolTag);
+ DataSet.InsertNode(SD, InsertPos);
+ ++SymbolCounter;
+ }
+
+ return cast<SymbolMetadata>(SD);
+}
+
+const SymbolCast*
+SymbolManager::getCastSymbol(const SymExpr *Op,
+ QualType From, QualType To) {
+ llvm::FoldingSetNodeID ID;
+ SymbolCast::Profile(ID, Op, From, To);
+ void *InsertPos;
+ SymExpr *data = DataSet.FindNodeOrInsertPos(ID, InsertPos);
+ if (!data) {
+ data = (SymbolCast*) BPAlloc.Allocate<SymbolCast>();
+ new (data) SymbolCast(Op, From, To);
+ DataSet.InsertNode(data, InsertPos);
+ }
+
+ return cast<SymbolCast>(data);
+}
+
+const SymIntExpr *SymbolManager::getSymIntExpr(const SymExpr *lhs,
+ BinaryOperator::Opcode op,
+ const llvm::APSInt& v,
+ QualType t) {
+ llvm::FoldingSetNodeID ID;
+ SymIntExpr::Profile(ID, lhs, op, v, t);
+ void *InsertPos;
+ SymExpr *data = DataSet.FindNodeOrInsertPos(ID, InsertPos);
+
+ if (!data) {
+ data = (SymIntExpr*) BPAlloc.Allocate<SymIntExpr>();
+ new (data) SymIntExpr(lhs, op, v, t);
+ DataSet.InsertNode(data, InsertPos);
+ }
+
+ return cast<SymIntExpr>(data);
+}
+
+const IntSymExpr *SymbolManager::getIntSymExpr(const llvm::APSInt& lhs,
+ BinaryOperator::Opcode op,
+ const SymExpr *rhs,
+ QualType t) {
+ llvm::FoldingSetNodeID ID;
+ IntSymExpr::Profile(ID, lhs, op, rhs, t);
+ void *InsertPos;
+ SymExpr *data = DataSet.FindNodeOrInsertPos(ID, InsertPos);
+
+ if (!data) {
+ data = (IntSymExpr*) BPAlloc.Allocate<IntSymExpr>();
+ new (data) IntSymExpr(lhs, op, rhs, t);
+ DataSet.InsertNode(data, InsertPos);
+ }
+
+ return cast<IntSymExpr>(data);
+}
+
+const SymSymExpr *SymbolManager::getSymSymExpr(const SymExpr *lhs,
+ BinaryOperator::Opcode op,
+ const SymExpr *rhs,
+ QualType t) {
+ llvm::FoldingSetNodeID ID;
+ SymSymExpr::Profile(ID, lhs, op, rhs, t);
+ void *InsertPos;
+ SymExpr *data = DataSet.FindNodeOrInsertPos(ID, InsertPos);
+
+ if (!data) {
+ data = (SymSymExpr*) BPAlloc.Allocate<SymSymExpr>();
+ new (data) SymSymExpr(lhs, op, rhs, t);
+ DataSet.InsertNode(data, InsertPos);
+ }
+
+ return cast<SymSymExpr>(data);
+}
+
+QualType SymbolConjured::getType() const {
+ return T;
+}
+
+QualType SymbolDerived::getType() const {
+ return R->getValueType();
+}
+
+QualType SymbolExtent::getType() const {
+ ASTContext &Ctx = R->getMemRegionManager()->getContext();
+ return Ctx.getSizeType();
+}
+
+QualType SymbolMetadata::getType() const {
+ return T;
+}
+
+QualType SymbolRegionValue::getType() const {
+ return R->getValueType();
+}
+
+SymbolManager::~SymbolManager() {
+ llvm::DeleteContainerSeconds(SymbolDependencies);
+}
+
+bool SymbolManager::canSymbolicate(QualType T) {
+ T = T.getCanonicalType();
+
+ if (Loc::isLocType(T))
+ return true;
+
+ if (T->isIntegralOrEnumerationType())
+ return true;
+
+ if (T->isRecordType() && !T->isUnionType())
+ return true;
+
+ return false;
+}
+
+void SymbolManager::addSymbolDependency(const SymbolRef Primary,
+ const SymbolRef Dependent) {
+ SymbolDependTy::iterator I = SymbolDependencies.find(Primary);
+ SymbolRefSmallVectorTy *dependencies = nullptr;
+ if (I == SymbolDependencies.end()) {
+ dependencies = new SymbolRefSmallVectorTy();
+ SymbolDependencies[Primary] = dependencies;
+ } else {
+ dependencies = I->second;
+ }
+ dependencies->push_back(Dependent);
+}
+
+const SymbolRefSmallVectorTy *SymbolManager::getDependentSymbols(
+ const SymbolRef Primary) {
+ SymbolDependTy::const_iterator I = SymbolDependencies.find(Primary);
+ if (I == SymbolDependencies.end())
+ return nullptr;
+ return I->second;
+}
+
+void SymbolReaper::markDependentsLive(SymbolRef sym) {
+ // Do not mark dependents more then once.
+ SymbolMapTy::iterator LI = TheLiving.find(sym);
+ assert(LI != TheLiving.end() && "The primary symbol is not live.");
+ if (LI->second == HaveMarkedDependents)
+ return;
+ LI->second = HaveMarkedDependents;
+
+ if (const SymbolRefSmallVectorTy *Deps = SymMgr.getDependentSymbols(sym)) {
+ for (SymbolRefSmallVectorTy::const_iterator I = Deps->begin(),
+ E = Deps->end(); I != E; ++I) {
+ if (TheLiving.find(*I) != TheLiving.end())
+ continue;
+ markLive(*I);
+ }
+ }
+}
+
+void SymbolReaper::markLive(SymbolRef sym) {
+ TheLiving[sym] = NotProcessed;
+ TheDead.erase(sym);
+ markDependentsLive(sym);
+}
+
+void SymbolReaper::markLive(const MemRegion *region) {
+ RegionRoots.insert(region);
+}
+
+void SymbolReaper::markInUse(SymbolRef sym) {
+ if (isa<SymbolMetadata>(sym))
+ MetadataInUse.insert(sym);
+}
+
+bool SymbolReaper::maybeDead(SymbolRef sym) {
+ if (isLive(sym))
+ return false;
+
+ TheDead.insert(sym);
+ return true;
+}
+
+bool SymbolReaper::isLiveRegion(const MemRegion *MR) {
+ if (RegionRoots.count(MR))
+ return true;
+
+ MR = MR->getBaseRegion();
+
+ if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(MR))
+ return isLive(SR->getSymbol());
+
+ if (const VarRegion *VR = dyn_cast<VarRegion>(MR))
+ return isLive(VR, true);
+
+ // FIXME: This is a gross over-approximation. What we really need is a way to
+ // tell if anything still refers to this region. Unlike SymbolicRegions,
+ // AllocaRegions don't have associated symbols, though, so we don't actually
+ // have a way to track their liveness.
+ if (isa<AllocaRegion>(MR))
+ return true;
+
+ if (isa<CXXThisRegion>(MR))
+ return true;
+
+ if (isa<MemSpaceRegion>(MR))
+ return true;
+
+ if (isa<CodeTextRegion>(MR))
+ return true;
+
+ return false;
+}
+
+bool SymbolReaper::isLive(SymbolRef sym) {
+ if (TheLiving.count(sym)) {
+ markDependentsLive(sym);
+ return true;
+ }
+
+ bool KnownLive;
+
+ switch (sym->getKind()) {
+ case SymExpr::RegionValueKind:
+ KnownLive = isLiveRegion(cast<SymbolRegionValue>(sym)->getRegion());
+ break;
+ case SymExpr::ConjuredKind:
+ KnownLive = false;
+ break;
+ case SymExpr::DerivedKind:
+ KnownLive = isLive(cast<SymbolDerived>(sym)->getParentSymbol());
+ break;
+ case SymExpr::ExtentKind:
+ KnownLive = isLiveRegion(cast<SymbolExtent>(sym)->getRegion());
+ break;
+ case SymExpr::MetadataKind:
+ KnownLive = MetadataInUse.count(sym) &&
+ isLiveRegion(cast<SymbolMetadata>(sym)->getRegion());
+ if (KnownLive)
+ MetadataInUse.erase(sym);
+ break;
+ case SymExpr::SymIntKind:
+ KnownLive = isLive(cast<SymIntExpr>(sym)->getLHS());
+ break;
+ case SymExpr::IntSymKind:
+ KnownLive = isLive(cast<IntSymExpr>(sym)->getRHS());
+ break;
+ case SymExpr::SymSymKind:
+ KnownLive = isLive(cast<SymSymExpr>(sym)->getLHS()) &&
+ isLive(cast<SymSymExpr>(sym)->getRHS());
+ break;
+ case SymExpr::CastSymbolKind:
+ KnownLive = isLive(cast<SymbolCast>(sym)->getOperand());
+ break;
+ }
+
+ if (KnownLive)
+ markLive(sym);
+
+ return KnownLive;
+}
+
+bool
+SymbolReaper::isLive(const Stmt *ExprVal, const LocationContext *ELCtx) const {
+ if (LCtx == nullptr)
+ return false;
+
+ if (LCtx != ELCtx) {
+ // If the reaper's location context is a parent of the expression's
+ // location context, then the expression value is now "out of scope".
+ if (LCtx->isParentOf(ELCtx))
+ return false;
+ return true;
+ }
+
+ // If no statement is provided, everything is this and parent contexts is live.
+ if (!Loc)
+ return true;
+
+ return LCtx->getAnalysis<RelaxedLiveVariables>()->isLive(Loc, ExprVal);
+}
+
+bool SymbolReaper::isLive(const VarRegion *VR, bool includeStoreBindings) const{
+ const StackFrameContext *VarContext = VR->getStackFrame();
+
+ if (!VarContext)
+ return true;
+
+ if (!LCtx)
+ return false;
+ const StackFrameContext *CurrentContext = LCtx->getCurrentStackFrame();
+
+ if (VarContext == CurrentContext) {
+ // If no statement is provided, everything is live.
+ if (!Loc)
+ return true;
+
+ if (LCtx->getAnalysis<RelaxedLiveVariables>()->isLive(Loc, VR->getDecl()))
+ return true;
+
+ if (!includeStoreBindings)
+ return false;
+
+ unsigned &cachedQuery =
+ const_cast<SymbolReaper*>(this)->includedRegionCache[VR];
+
+ if (cachedQuery) {
+ return cachedQuery == 1;
+ }
+
+ // Query the store to see if the region occurs in any live bindings.
+ if (Store store = reapedStore.getStore()) {
+ bool hasRegion =
+ reapedStore.getStoreManager().includedInBindings(store, VR);
+ cachedQuery = hasRegion ? 1 : 2;
+ return hasRegion;
+ }
+
+ return false;
+ }
+
+ return VarContext->isParentOf(CurrentContext);
+}
+
+SymbolVisitor::~SymbolVisitor() {}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Frontend/AnalysisConsumer.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Frontend/AnalysisConsumer.cpp
new file mode 100644
index 0000000..fbeffb8
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Frontend/AnalysisConsumer.cpp
@@ -0,0 +1,805 @@
+//===--- AnalysisConsumer.cpp - ASTConsumer for running Analyses ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// "Meta" ASTConsumer for running different source analyses.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Frontend/AnalysisConsumer.h"
+#include "ModelInjector.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/AST/DataRecursiveASTVisitor.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/ParentMap.h"
+#include "clang/Analysis/Analyses/LiveVariables.h"
+#include "clang/Analysis/CFG.h"
+#include "clang/Analysis/CallGraph.h"
+#include "clang/Analysis/CodeInjector.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Frontend/CompilerInstance.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/StaticAnalyzer/Checkers/LocalCheckers.h"
+#include "clang/StaticAnalyzer/Core/AnalyzerOptions.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathDiagnosticConsumers.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
+#include "clang/StaticAnalyzer/Frontend/CheckerRegistration.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/Program.h"
+#include "llvm/Support/Timer.h"
+#include "llvm/Support/raw_ostream.h"
+#include <memory>
+#include <queue>
+
+using namespace clang;
+using namespace ento;
+using llvm::SmallPtrSet;
+
+#define DEBUG_TYPE "AnalysisConsumer"
+
+static std::unique_ptr<ExplodedNode::Auditor> CreateUbiViz();
+
+STATISTIC(NumFunctionTopLevel, "The # of functions at top level.");
+STATISTIC(NumFunctionsAnalyzed,
+ "The # of functions and blocks analyzed (as top level "
+ "with inlining turned on).");
+STATISTIC(NumBlocksInAnalyzedFunctions,
+ "The # of basic blocks in the analyzed functions.");
+STATISTIC(PercentReachableBlocks, "The % of reachable basic blocks.");
+STATISTIC(MaxCFGSize, "The maximum number of basic blocks in a function.");
+
+//===----------------------------------------------------------------------===//
+// Special PathDiagnosticConsumers.
+//===----------------------------------------------------------------------===//
+
+void ento::createPlistHTMLDiagnosticConsumer(AnalyzerOptions &AnalyzerOpts,
+ PathDiagnosticConsumers &C,
+ const std::string &prefix,
+ const Preprocessor &PP) {
+ createHTMLDiagnosticConsumer(AnalyzerOpts, C,
+ llvm::sys::path::parent_path(prefix), PP);
+ createPlistDiagnosticConsumer(AnalyzerOpts, C, prefix, PP);
+}
+
+void ento::createTextPathDiagnosticConsumer(AnalyzerOptions &AnalyzerOpts,
+ PathDiagnosticConsumers &C,
+ const std::string &Prefix,
+ const clang::Preprocessor &PP) {
+ llvm_unreachable("'text' consumer should be enabled on ClangDiags");
+}
+
+namespace {
+class ClangDiagPathDiagConsumer : public PathDiagnosticConsumer {
+ DiagnosticsEngine &Diag;
+ bool IncludePath;
+public:
+ ClangDiagPathDiagConsumer(DiagnosticsEngine &Diag)
+ : Diag(Diag), IncludePath(false) {}
+ ~ClangDiagPathDiagConsumer() override {}
+ StringRef getName() const override { return "ClangDiags"; }
+
+ bool supportsLogicalOpControlFlow() const override { return true; }
+ bool supportsCrossFileDiagnostics() const override { return true; }
+
+ PathGenerationScheme getGenerationScheme() const override {
+ return IncludePath ? Minimal : None;
+ }
+
+ void enablePaths() {
+ IncludePath = true;
+ }
+
+ void FlushDiagnosticsImpl(std::vector<const PathDiagnostic *> &Diags,
+ FilesMade *filesMade) override {
+ unsigned WarnID = Diag.getCustomDiagID(DiagnosticsEngine::Warning, "%0");
+ unsigned NoteID = Diag.getCustomDiagID(DiagnosticsEngine::Note, "%0");
+
+ for (std::vector<const PathDiagnostic*>::iterator I = Diags.begin(),
+ E = Diags.end(); I != E; ++I) {
+ const PathDiagnostic *PD = *I;
+ SourceLocation WarnLoc = PD->getLocation().asLocation();
+ Diag.Report(WarnLoc, WarnID) << PD->getShortDescription()
+ << PD->path.back()->getRanges();
+
+ if (!IncludePath)
+ continue;
+
+ PathPieces FlatPath = PD->path.flatten(/*ShouldFlattenMacros=*/true);
+ for (PathPieces::const_iterator PI = FlatPath.begin(),
+ PE = FlatPath.end();
+ PI != PE; ++PI) {
+ SourceLocation NoteLoc = (*PI)->getLocation().asLocation();
+ Diag.Report(NoteLoc, NoteID) << (*PI)->getString()
+ << (*PI)->getRanges();
+ }
+ }
+ }
+};
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// AnalysisConsumer declaration.
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class AnalysisConsumer : public AnalysisASTConsumer,
+ public DataRecursiveASTVisitor<AnalysisConsumer> {
+ enum {
+ AM_None = 0,
+ AM_Syntax = 0x1,
+ AM_Path = 0x2
+ };
+ typedef unsigned AnalysisMode;
+
+ /// Mode of the analyzes while recursively visiting Decls.
+ AnalysisMode RecVisitorMode;
+ /// Bug Reporter to use while recursively visiting Decls.
+ BugReporter *RecVisitorBR;
+
+public:
+ ASTContext *Ctx;
+ const Preprocessor &PP;
+ const std::string OutDir;
+ AnalyzerOptionsRef Opts;
+ ArrayRef<std::string> Plugins;
+ CodeInjector *Injector;
+
+ /// \brief Stores the declarations from the local translation unit.
+ /// Note, we pre-compute the local declarations at parse time as an
+ /// optimization to make sure we do not deserialize everything from disk.
+ /// The local declaration to all declarations ratio might be very small when
+ /// working with a PCH file.
+ SetOfDecls LocalTUDecls;
+
+ // Set of PathDiagnosticConsumers. Owned by AnalysisManager.
+ PathDiagnosticConsumers PathConsumers;
+
+ StoreManagerCreator CreateStoreMgr;
+ ConstraintManagerCreator CreateConstraintMgr;
+
+ std::unique_ptr<CheckerManager> checkerMgr;
+ std::unique_ptr<AnalysisManager> Mgr;
+
+ /// Time the analyzes time of each translation unit.
+ static llvm::Timer* TUTotalTimer;
+
+ /// The information about analyzed functions shared throughout the
+ /// translation unit.
+ FunctionSummariesTy FunctionSummaries;
+
+ AnalysisConsumer(const Preprocessor& pp,
+ const std::string& outdir,
+ AnalyzerOptionsRef opts,
+ ArrayRef<std::string> plugins,
+ CodeInjector *injector)
+ : RecVisitorMode(0), RecVisitorBR(nullptr), Ctx(nullptr), PP(pp),
+ OutDir(outdir), Opts(opts), Plugins(plugins), Injector(injector) {
+ DigestAnalyzerOptions();
+ if (Opts->PrintStats) {
+ llvm::EnableStatistics();
+ TUTotalTimer = new llvm::Timer("Analyzer Total Time");
+ }
+ }
+
+ ~AnalysisConsumer() override {
+ if (Opts->PrintStats)
+ delete TUTotalTimer;
+ }
+
+ void DigestAnalyzerOptions() {
+ if (Opts->AnalysisDiagOpt != PD_NONE) {
+ // Create the PathDiagnosticConsumer.
+ ClangDiagPathDiagConsumer *clangDiags =
+ new ClangDiagPathDiagConsumer(PP.getDiagnostics());
+ PathConsumers.push_back(clangDiags);
+
+ if (Opts->AnalysisDiagOpt == PD_TEXT) {
+ clangDiags->enablePaths();
+
+ } else if (!OutDir.empty()) {
+ switch (Opts->AnalysisDiagOpt) {
+ default:
+#define ANALYSIS_DIAGNOSTICS(NAME, CMDFLAG, DESC, CREATEFN) \
+ case PD_##NAME: \
+ CREATEFN(*Opts.get(), PathConsumers, OutDir, PP); \
+ break;
+#include "clang/StaticAnalyzer/Core/Analyses.def"
+ }
+ }
+ }
+
+ // Create the analyzer component creators.
+ switch (Opts->AnalysisStoreOpt) {
+ default:
+ llvm_unreachable("Unknown store manager.");
+#define ANALYSIS_STORE(NAME, CMDFLAG, DESC, CREATEFN) \
+ case NAME##Model: CreateStoreMgr = CREATEFN; break;
+#include "clang/StaticAnalyzer/Core/Analyses.def"
+ }
+
+ switch (Opts->AnalysisConstraintsOpt) {
+ default:
+ llvm_unreachable("Unknown constraint manager.");
+#define ANALYSIS_CONSTRAINTS(NAME, CMDFLAG, DESC, CREATEFN) \
+ case NAME##Model: CreateConstraintMgr = CREATEFN; break;
+#include "clang/StaticAnalyzer/Core/Analyses.def"
+ }
+ }
+
+ void DisplayFunction(const Decl *D, AnalysisMode Mode,
+ ExprEngine::InliningModes IMode) {
+ if (!Opts->AnalyzerDisplayProgress)
+ return;
+
+ SourceManager &SM = Mgr->getASTContext().getSourceManager();
+ PresumedLoc Loc = SM.getPresumedLoc(D->getLocation());
+ if (Loc.isValid()) {
+ llvm::errs() << "ANALYZE";
+
+ if (Mode == AM_Syntax)
+ llvm::errs() << " (Syntax)";
+ else if (Mode == AM_Path) {
+ llvm::errs() << " (Path, ";
+ switch (IMode) {
+ case ExprEngine::Inline_Minimal:
+ llvm::errs() << " Inline_Minimal";
+ break;
+ case ExprEngine::Inline_Regular:
+ llvm::errs() << " Inline_Regular";
+ break;
+ }
+ llvm::errs() << ")";
+ }
+ else
+ assert(Mode == (AM_Syntax | AM_Path) && "Unexpected mode!");
+
+ llvm::errs() << ": " << Loc.getFilename();
+ if (isa<FunctionDecl>(D) || isa<ObjCMethodDecl>(D)) {
+ const NamedDecl *ND = cast<NamedDecl>(D);
+ llvm::errs() << ' ' << *ND << '\n';
+ }
+ else if (isa<BlockDecl>(D)) {
+ llvm::errs() << ' ' << "block(line:" << Loc.getLine() << ",col:"
+ << Loc.getColumn() << '\n';
+ }
+ else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
+ Selector S = MD->getSelector();
+ llvm::errs() << ' ' << S.getAsString();
+ }
+ }
+ }
+
+ void Initialize(ASTContext &Context) override {
+ Ctx = &Context;
+ checkerMgr = createCheckerManager(*Opts, PP.getLangOpts(), Plugins,
+ PP.getDiagnostics());
+
+ Mgr = llvm::make_unique<AnalysisManager>(
+ *Ctx, PP.getDiagnostics(), PP.getLangOpts(), PathConsumers,
+ CreateStoreMgr, CreateConstraintMgr, checkerMgr.get(), *Opts, Injector);
+ }
+
+ /// \brief Store the top level decls in the set to be processed later on.
+ /// (Doing this pre-processing avoids deserialization of data from PCH.)
+ bool HandleTopLevelDecl(DeclGroupRef D) override;
+ void HandleTopLevelDeclInObjCContainer(DeclGroupRef D) override;
+
+ void HandleTranslationUnit(ASTContext &C) override;
+
+ /// \brief Determine which inlining mode should be used when this function is
+ /// analyzed. This allows to redefine the default inlining policies when
+ /// analyzing a given function.
+ ExprEngine::InliningModes
+ getInliningModeForFunction(const Decl *D, const SetOfConstDecls &Visited);
+
+ /// \brief Build the call graph for all the top level decls of this TU and
+ /// use it to define the order in which the functions should be visited.
+ void HandleDeclsCallGraph(const unsigned LocalTUDeclsSize);
+
+ /// \brief Run analyzes(syntax or path sensitive) on the given function.
+ /// \param Mode - determines if we are requesting syntax only or path
+ /// sensitive only analysis.
+ /// \param VisitedCallees - The output parameter, which is populated with the
+ /// set of functions which should be considered analyzed after analyzing the
+ /// given root function.
+ void HandleCode(Decl *D, AnalysisMode Mode,
+ ExprEngine::InliningModes IMode = ExprEngine::Inline_Minimal,
+ SetOfConstDecls *VisitedCallees = nullptr);
+
+ void RunPathSensitiveChecks(Decl *D,
+ ExprEngine::InliningModes IMode,
+ SetOfConstDecls *VisitedCallees);
+ void ActionExprEngine(Decl *D, bool ObjCGCEnabled,
+ ExprEngine::InliningModes IMode,
+ SetOfConstDecls *VisitedCallees);
+
+ /// Visitors for the RecursiveASTVisitor.
+ bool shouldWalkTypesOfTypeLocs() const { return false; }
+
+ /// Handle callbacks for arbitrary Decls.
+ bool VisitDecl(Decl *D) {
+ AnalysisMode Mode = getModeForDecl(D, RecVisitorMode);
+ if (Mode & AM_Syntax)
+ checkerMgr->runCheckersOnASTDecl(D, *Mgr, *RecVisitorBR);
+ return true;
+ }
+
+ bool VisitFunctionDecl(FunctionDecl *FD) {
+ IdentifierInfo *II = FD->getIdentifier();
+ if (II && II->getName().startswith("__inline"))
+ return true;
+
+ // We skip function template definitions, as their semantics is
+ // only determined when they are instantiated.
+ if (FD->isThisDeclarationADefinition() &&
+ !FD->isDependentContext()) {
+ assert(RecVisitorMode == AM_Syntax || Mgr->shouldInlineCall() == false);
+ HandleCode(FD, RecVisitorMode);
+ }
+ return true;
+ }
+
+ bool VisitObjCMethodDecl(ObjCMethodDecl *MD) {
+ if (MD->isThisDeclarationADefinition()) {
+ assert(RecVisitorMode == AM_Syntax || Mgr->shouldInlineCall() == false);
+ HandleCode(MD, RecVisitorMode);
+ }
+ return true;
+ }
+
+ bool VisitBlockDecl(BlockDecl *BD) {
+ if (BD->hasBody()) {
+ assert(RecVisitorMode == AM_Syntax || Mgr->shouldInlineCall() == false);
+ HandleCode(BD, RecVisitorMode);
+ }
+ return true;
+ }
+
+ void AddDiagnosticConsumer(PathDiagnosticConsumer *Consumer) override {
+ PathConsumers.push_back(Consumer);
+ }
+
+private:
+ void storeTopLevelDecls(DeclGroupRef DG);
+
+ /// \brief Check if we should skip (not analyze) the given function.
+ AnalysisMode getModeForDecl(Decl *D, AnalysisMode Mode);
+
+};
+} // end anonymous namespace
+
+
+//===----------------------------------------------------------------------===//
+// AnalysisConsumer implementation.
+//===----------------------------------------------------------------------===//
+llvm::Timer* AnalysisConsumer::TUTotalTimer = nullptr;
+
+bool AnalysisConsumer::HandleTopLevelDecl(DeclGroupRef DG) {
+ storeTopLevelDecls(DG);
+ return true;
+}
+
+void AnalysisConsumer::HandleTopLevelDeclInObjCContainer(DeclGroupRef DG) {
+ storeTopLevelDecls(DG);
+}
+
+void AnalysisConsumer::storeTopLevelDecls(DeclGroupRef DG) {
+ for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) {
+
+ // Skip ObjCMethodDecl, wait for the objc container to avoid
+ // analyzing twice.
+ if (isa<ObjCMethodDecl>(*I))
+ continue;
+
+ LocalTUDecls.push_back(*I);
+ }
+}
+
+static bool shouldSkipFunction(const Decl *D,
+ const SetOfConstDecls &Visited,
+ const SetOfConstDecls &VisitedAsTopLevel) {
+ if (VisitedAsTopLevel.count(D))
+ return true;
+
+ // We want to re-analyse the functions as top level in the following cases:
+ // - The 'init' methods should be reanalyzed because
+ // ObjCNonNilReturnValueChecker assumes that '[super init]' never returns
+ // 'nil' and unless we analyze the 'init' functions as top level, we will
+ // not catch errors within defensive code.
+ // - We want to reanalyze all ObjC methods as top level to report Retain
+ // Count naming convention errors more aggressively.
+ if (isa<ObjCMethodDecl>(D))
+ return false;
+
+ // Otherwise, if we visited the function before, do not reanalyze it.
+ return Visited.count(D);
+}
+
+ExprEngine::InliningModes
+AnalysisConsumer::getInliningModeForFunction(const Decl *D,
+ const SetOfConstDecls &Visited) {
+ // We want to reanalyze all ObjC methods as top level to report Retain
+ // Count naming convention errors more aggressively. But we should tune down
+ // inlining when reanalyzing an already inlined function.
+ if (Visited.count(D)) {
+ assert(isa<ObjCMethodDecl>(D) &&
+ "We are only reanalyzing ObjCMethods.");
+ const ObjCMethodDecl *ObjCM = cast<ObjCMethodDecl>(D);
+ if (ObjCM->getMethodFamily() != OMF_init)
+ return ExprEngine::Inline_Minimal;
+ }
+
+ return ExprEngine::Inline_Regular;
+}
+
+void AnalysisConsumer::HandleDeclsCallGraph(const unsigned LocalTUDeclsSize) {
+ // Build the Call Graph by adding all the top level declarations to the graph.
+ // Note: CallGraph can trigger deserialization of more items from a pch
+ // (though HandleInterestingDecl); triggering additions to LocalTUDecls.
+ // We rely on random access to add the initially processed Decls to CG.
+ CallGraph CG;
+ for (unsigned i = 0 ; i < LocalTUDeclsSize ; ++i) {
+ CG.addToCallGraph(LocalTUDecls[i]);
+ }
+
+ // Walk over all of the call graph nodes in topological order, so that we
+ // analyze parents before the children. Skip the functions inlined into
+ // the previously processed functions. Use external Visited set to identify
+ // inlined functions. The topological order allows the "do not reanalyze
+ // previously inlined function" performance heuristic to be triggered more
+ // often.
+ SetOfConstDecls Visited;
+ SetOfConstDecls VisitedAsTopLevel;
+ llvm::ReversePostOrderTraversal<clang::CallGraph*> RPOT(&CG);
+ for (llvm::ReversePostOrderTraversal<clang::CallGraph*>::rpo_iterator
+ I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
+ NumFunctionTopLevel++;
+
+ CallGraphNode *N = *I;
+ Decl *D = N->getDecl();
+
+ // Skip the abstract root node.
+ if (!D)
+ continue;
+
+ // Skip the functions which have been processed already or previously
+ // inlined.
+ if (shouldSkipFunction(D, Visited, VisitedAsTopLevel))
+ continue;
+
+ // Analyze the function.
+ SetOfConstDecls VisitedCallees;
+
+ HandleCode(D, AM_Path, getInliningModeForFunction(D, Visited),
+ (Mgr->options.InliningMode == All ? nullptr : &VisitedCallees));
+
+ // Add the visited callees to the global visited set.
+ for (SetOfConstDecls::iterator I = VisitedCallees.begin(),
+ E = VisitedCallees.end(); I != E; ++I) {
+ Visited.insert(*I);
+ }
+ VisitedAsTopLevel.insert(D);
+ }
+}
+
+void AnalysisConsumer::HandleTranslationUnit(ASTContext &C) {
+ // Don't run the actions if an error has occurred with parsing the file.
+ DiagnosticsEngine &Diags = PP.getDiagnostics();
+ if (Diags.hasErrorOccurred() || Diags.hasFatalErrorOccurred())
+ return;
+
+ // Don't analyze if the user explicitly asked for no checks to be performed
+ // on this file.
+ if (Opts->DisableAllChecks)
+ return;
+
+ {
+ if (TUTotalTimer) TUTotalTimer->startTimer();
+
+ // Introduce a scope to destroy BR before Mgr.
+ BugReporter BR(*Mgr);
+ TranslationUnitDecl *TU = C.getTranslationUnitDecl();
+ checkerMgr->runCheckersOnASTDecl(TU, *Mgr, BR);
+
+ // Run the AST-only checks using the order in which functions are defined.
+ // If inlining is not turned on, use the simplest function order for path
+ // sensitive analyzes as well.
+ RecVisitorMode = AM_Syntax;
+ if (!Mgr->shouldInlineCall())
+ RecVisitorMode |= AM_Path;
+ RecVisitorBR = &BR;
+
+ // Process all the top level declarations.
+ //
+ // Note: TraverseDecl may modify LocalTUDecls, but only by appending more
+ // entries. Thus we don't use an iterator, but rely on LocalTUDecls
+ // random access. By doing so, we automatically compensate for iterators
+ // possibly being invalidated, although this is a bit slower.
+ const unsigned LocalTUDeclsSize = LocalTUDecls.size();
+ for (unsigned i = 0 ; i < LocalTUDeclsSize ; ++i) {
+ TraverseDecl(LocalTUDecls[i]);
+ }
+
+ if (Mgr->shouldInlineCall())
+ HandleDeclsCallGraph(LocalTUDeclsSize);
+
+ // After all decls handled, run checkers on the entire TranslationUnit.
+ checkerMgr->runCheckersOnEndOfTranslationUnit(TU, *Mgr, BR);
+
+ RecVisitorBR = nullptr;
+ }
+
+ // Explicitly destroy the PathDiagnosticConsumer. This will flush its output.
+ // FIXME: This should be replaced with something that doesn't rely on
+ // side-effects in PathDiagnosticConsumer's destructor. This is required when
+ // used with option -disable-free.
+ Mgr.reset();
+
+ if (TUTotalTimer) TUTotalTimer->stopTimer();
+
+ // Count how many basic blocks we have not covered.
+ NumBlocksInAnalyzedFunctions = FunctionSummaries.getTotalNumBasicBlocks();
+ if (NumBlocksInAnalyzedFunctions > 0)
+ PercentReachableBlocks =
+ (FunctionSummaries.getTotalNumVisitedBasicBlocks() * 100) /
+ NumBlocksInAnalyzedFunctions;
+
+}
+
+static std::string getFunctionName(const Decl *D) {
+ if (const ObjCMethodDecl *ID = dyn_cast<ObjCMethodDecl>(D)) {
+ return ID->getSelector().getAsString();
+ }
+ if (const FunctionDecl *ND = dyn_cast<FunctionDecl>(D)) {
+ IdentifierInfo *II = ND->getIdentifier();
+ if (II)
+ return II->getName();
+ }
+ return "";
+}
+
+AnalysisConsumer::AnalysisMode
+AnalysisConsumer::getModeForDecl(Decl *D, AnalysisMode Mode) {
+ if (!Opts->AnalyzeSpecificFunction.empty() &&
+ getFunctionName(D) != Opts->AnalyzeSpecificFunction)
+ return AM_None;
+
+ // Unless -analyze-all is specified, treat decls differently depending on
+ // where they came from:
+ // - Main source file: run both path-sensitive and non-path-sensitive checks.
+ // - Header files: run non-path-sensitive checks only.
+ // - System headers: don't run any checks.
+ SourceManager &SM = Ctx->getSourceManager();
+ SourceLocation SL = SM.getExpansionLoc(D->getLocation());
+ if (!Opts->AnalyzeAll && !SM.isWrittenInMainFile(SL)) {
+ if (SL.isInvalid() || SM.isInSystemHeader(SL))
+ return AM_None;
+ return Mode & ~AM_Path;
+ }
+
+ return Mode;
+}
+
+void AnalysisConsumer::HandleCode(Decl *D, AnalysisMode Mode,
+ ExprEngine::InliningModes IMode,
+ SetOfConstDecls *VisitedCallees) {
+ if (!D->hasBody())
+ return;
+ Mode = getModeForDecl(D, Mode);
+ if (Mode == AM_None)
+ return;
+
+ DisplayFunction(D, Mode, IMode);
+ CFG *DeclCFG = Mgr->getCFG(D);
+ if (DeclCFG) {
+ unsigned CFGSize = DeclCFG->size();
+ MaxCFGSize = MaxCFGSize < CFGSize ? CFGSize : MaxCFGSize;
+ }
+
+ // Clear the AnalysisManager of old AnalysisDeclContexts.
+ Mgr->ClearContexts();
+ BugReporter BR(*Mgr);
+
+ if (Mode & AM_Syntax)
+ checkerMgr->runCheckersOnASTBody(D, *Mgr, BR);
+ if ((Mode & AM_Path) && checkerMgr->hasPathSensitiveCheckers()) {
+ RunPathSensitiveChecks(D, IMode, VisitedCallees);
+ if (IMode != ExprEngine::Inline_Minimal)
+ NumFunctionsAnalyzed++;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Path-sensitive checking.
+//===----------------------------------------------------------------------===//
+
+void AnalysisConsumer::ActionExprEngine(Decl *D, bool ObjCGCEnabled,
+ ExprEngine::InliningModes IMode,
+ SetOfConstDecls *VisitedCallees) {
+ // Construct the analysis engine. First check if the CFG is valid.
+ // FIXME: Inter-procedural analysis will need to handle invalid CFGs.
+ if (!Mgr->getCFG(D))
+ return;
+
+ // See if the LiveVariables analysis scales.
+ if (!Mgr->getAnalysisDeclContext(D)->getAnalysis<RelaxedLiveVariables>())
+ return;
+
+ ExprEngine Eng(*Mgr, ObjCGCEnabled, VisitedCallees, &FunctionSummaries,IMode);
+
+ // Set the graph auditor.
+ std::unique_ptr<ExplodedNode::Auditor> Auditor;
+ if (Mgr->options.visualizeExplodedGraphWithUbiGraph) {
+ Auditor = CreateUbiViz();
+ ExplodedNode::SetAuditor(Auditor.get());
+ }
+
+ // Execute the worklist algorithm.
+ Eng.ExecuteWorkList(Mgr->getAnalysisDeclContextManager().getStackFrame(D),
+ Mgr->options.getMaxNodesPerTopLevelFunction());
+
+ // Release the auditor (if any) so that it doesn't monitor the graph
+ // created BugReporter.
+ ExplodedNode::SetAuditor(nullptr);
+
+ // Visualize the exploded graph.
+ if (Mgr->options.visualizeExplodedGraphWithGraphViz)
+ Eng.ViewGraph(Mgr->options.TrimGraph);
+
+ // Display warnings.
+ Eng.getBugReporter().FlushReports();
+}
+
+void AnalysisConsumer::RunPathSensitiveChecks(Decl *D,
+ ExprEngine::InliningModes IMode,
+ SetOfConstDecls *Visited) {
+
+ switch (Mgr->getLangOpts().getGC()) {
+ case LangOptions::NonGC:
+ ActionExprEngine(D, false, IMode, Visited);
+ break;
+
+ case LangOptions::GCOnly:
+ ActionExprEngine(D, true, IMode, Visited);
+ break;
+
+ case LangOptions::HybridGC:
+ ActionExprEngine(D, false, IMode, Visited);
+ ActionExprEngine(D, true, IMode, Visited);
+ break;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// AnalysisConsumer creation.
+//===----------------------------------------------------------------------===//
+
+std::unique_ptr<AnalysisASTConsumer>
+ento::CreateAnalysisConsumer(CompilerInstance &CI) {
+ // Disable the effects of '-Werror' when using the AnalysisConsumer.
+ CI.getPreprocessor().getDiagnostics().setWarningsAsErrors(false);
+
+ AnalyzerOptionsRef analyzerOpts = CI.getAnalyzerOpts();
+ bool hasModelPath = analyzerOpts->Config.count("model-path") > 0;
+
+ return llvm::make_unique<AnalysisConsumer>(
+ CI.getPreprocessor(), CI.getFrontendOpts().OutputFile, analyzerOpts,
+ CI.getFrontendOpts().Plugins,
+ hasModelPath ? new ModelInjector(CI) : nullptr);
+}
+
+//===----------------------------------------------------------------------===//
+// Ubigraph Visualization. FIXME: Move to separate file.
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class UbigraphViz : public ExplodedNode::Auditor {
+ std::unique_ptr<raw_ostream> Out;
+ std::string Filename;
+ unsigned Cntr;
+
+ typedef llvm::DenseMap<void*,unsigned> VMap;
+ VMap M;
+
+public:
+ UbigraphViz(std::unique_ptr<raw_ostream> Out, StringRef Filename);
+
+ ~UbigraphViz() override;
+
+ void AddEdge(ExplodedNode *Src, ExplodedNode *Dst) override;
+};
+
+} // end anonymous namespace
+
+static std::unique_ptr<ExplodedNode::Auditor> CreateUbiViz() {
+ SmallString<128> P;
+ int FD;
+ llvm::sys::fs::createTemporaryFile("llvm_ubi", "", FD, P);
+ llvm::errs() << "Writing '" << P << "'.\n";
+
+ auto Stream = llvm::make_unique<llvm::raw_fd_ostream>(FD, true);
+
+ return llvm::make_unique<UbigraphViz>(std::move(Stream), P);
+}
+
+void UbigraphViz::AddEdge(ExplodedNode *Src, ExplodedNode *Dst) {
+
+ assert (Src != Dst && "Self-edges are not allowed.");
+
+ // Lookup the Src. If it is a new node, it's a root.
+ VMap::iterator SrcI= M.find(Src);
+ unsigned SrcID;
+
+ if (SrcI == M.end()) {
+ M[Src] = SrcID = Cntr++;
+ *Out << "('vertex', " << SrcID << ", ('color','#00ff00'))\n";
+ }
+ else
+ SrcID = SrcI->second;
+
+ // Lookup the Dst.
+ VMap::iterator DstI= M.find(Dst);
+ unsigned DstID;
+
+ if (DstI == M.end()) {
+ M[Dst] = DstID = Cntr++;
+ *Out << "('vertex', " << DstID << ")\n";
+ }
+ else {
+ // We have hit DstID before. Change its style to reflect a cache hit.
+ DstID = DstI->second;
+ *Out << "('change_vertex_style', " << DstID << ", 1)\n";
+ }
+
+ // Add the edge.
+ *Out << "('edge', " << SrcID << ", " << DstID
+ << ", ('arrow','true'), ('oriented', 'true'))\n";
+}
+
+UbigraphViz::UbigraphViz(std::unique_ptr<raw_ostream> Out, StringRef Filename)
+ : Out(std::move(Out)), Filename(Filename), Cntr(0) {
+
+ *Out << "('vertex_style_attribute', 0, ('shape', 'icosahedron'))\n";
+ *Out << "('vertex_style', 1, 0, ('shape', 'sphere'), ('color', '#ffcc66'),"
+ " ('size', '1.5'))\n";
+}
+
+UbigraphViz::~UbigraphViz() {
+ Out.reset();
+ llvm::errs() << "Running 'ubiviz' program... ";
+ std::string ErrMsg;
+ std::string Ubiviz;
+ if (auto Path = llvm::sys::findProgramByName("ubiviz"))
+ Ubiviz = *Path;
+ std::vector<const char*> args;
+ args.push_back(Ubiviz.c_str());
+ args.push_back(Filename.c_str());
+ args.push_back(nullptr);
+
+ if (llvm::sys::ExecuteAndWait(Ubiviz, &args[0], nullptr, nullptr, 0, 0,
+ &ErrMsg)) {
+ llvm::errs() << "Error viewing graph: " << ErrMsg << "\n";
+ }
+
+ // Delete the file.
+ llvm::sys::fs::remove(Filename);
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Frontend/CheckerRegistration.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Frontend/CheckerRegistration.cpp
new file mode 100644
index 0000000..b3ff797
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Frontend/CheckerRegistration.cpp
@@ -0,0 +1,136 @@
+//===--- CheckerRegistration.cpp - Registration for the Analyzer Checkers -===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Defines the registration function for the analyzer checkers.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Frontend/CheckerRegistration.h"
+#include "clang/Basic/Diagnostic.h"
+#include "clang/Frontend/FrontendDiagnostic.h"
+#include "clang/StaticAnalyzer/Checkers/ClangCheckers.h"
+#include "clang/StaticAnalyzer/Core/AnalyzerOptions.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/CheckerOptInfo.h"
+#include "clang/StaticAnalyzer/Core/CheckerRegistry.h"
+#include "clang/StaticAnalyzer/Frontend/FrontendActions.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/DynamicLibrary.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/raw_ostream.h"
+#include <memory>
+
+using namespace clang;
+using namespace ento;
+using llvm::sys::DynamicLibrary;
+
+namespace {
+class ClangCheckerRegistry : public CheckerRegistry {
+ typedef void (*RegisterCheckersFn)(CheckerRegistry &);
+
+ static bool isCompatibleAPIVersion(const char *versionString);
+ static void warnIncompatible(DiagnosticsEngine *diags, StringRef pluginPath,
+ const char *pluginAPIVersion);
+
+public:
+ ClangCheckerRegistry(ArrayRef<std::string> plugins,
+ DiagnosticsEngine *diags = nullptr);
+};
+
+} // end anonymous namespace
+
+ClangCheckerRegistry::ClangCheckerRegistry(ArrayRef<std::string> plugins,
+ DiagnosticsEngine *diags) {
+ registerBuiltinCheckers(*this);
+
+ for (ArrayRef<std::string>::iterator i = plugins.begin(), e = plugins.end();
+ i != e; ++i) {
+ // Get access to the plugin.
+ DynamicLibrary lib = DynamicLibrary::getPermanentLibrary(i->c_str());
+
+ // See if it's compatible with this build of clang.
+ const char *pluginAPIVersion =
+ (const char *) lib.getAddressOfSymbol("clang_analyzerAPIVersionString");
+ if (!isCompatibleAPIVersion(pluginAPIVersion)) {
+ warnIncompatible(diags, *i, pluginAPIVersion);
+ continue;
+ }
+
+ // Register its checkers.
+ RegisterCheckersFn registerPluginCheckers =
+ (RegisterCheckersFn) (intptr_t) lib.getAddressOfSymbol(
+ "clang_registerCheckers");
+ if (registerPluginCheckers)
+ registerPluginCheckers(*this);
+ }
+}
+
+bool ClangCheckerRegistry::isCompatibleAPIVersion(const char *versionString) {
+ // If the version string is null, it's not an analyzer plugin.
+ if (!versionString)
+ return false;
+
+ // For now, none of the static analyzer API is considered stable.
+ // Versions must match exactly.
+ if (strcmp(versionString, CLANG_ANALYZER_API_VERSION_STRING) == 0)
+ return true;
+
+ return false;
+}
+
+void ClangCheckerRegistry::warnIncompatible(DiagnosticsEngine *diags,
+ StringRef pluginPath,
+ const char *pluginAPIVersion) {
+ if (!diags)
+ return;
+ if (!pluginAPIVersion)
+ return;
+
+ diags->Report(diag::warn_incompatible_analyzer_plugin_api)
+ << llvm::sys::path::filename(pluginPath);
+ diags->Report(diag::note_incompatible_analyzer_plugin_api)
+ << CLANG_ANALYZER_API_VERSION_STRING
+ << pluginAPIVersion;
+}
+
+std::unique_ptr<CheckerManager>
+ento::createCheckerManager(AnalyzerOptions &opts, const LangOptions &langOpts,
+ ArrayRef<std::string> plugins,
+ DiagnosticsEngine &diags) {
+ std::unique_ptr<CheckerManager> checkerMgr(
+ new CheckerManager(langOpts, &opts));
+
+ SmallVector<CheckerOptInfo, 8> checkerOpts;
+ for (unsigned i = 0, e = opts.CheckersControlList.size(); i != e; ++i) {
+ const std::pair<std::string, bool> &opt = opts.CheckersControlList[i];
+ checkerOpts.push_back(CheckerOptInfo(opt.first.c_str(), opt.second));
+ }
+
+ ClangCheckerRegistry allCheckers(plugins, &diags);
+ allCheckers.initializeManager(*checkerMgr, checkerOpts);
+ checkerMgr->finishedCheckerRegistration();
+
+ for (unsigned i = 0, e = checkerOpts.size(); i != e; ++i) {
+ if (checkerOpts[i].isUnclaimed()) {
+ diags.Report(diag::err_unknown_analyzer_checker)
+ << checkerOpts[i].getName();
+ diags.Report(diag::note_suggest_disabling_all_checkers);
+ }
+
+ }
+
+ return checkerMgr;
+}
+
+void ento::printCheckerHelp(raw_ostream &out, ArrayRef<std::string> plugins) {
+ out << "OVERVIEW: Clang Static Analyzer Checkers List\n\n";
+ out << "USAGE: -analyzer-checker <CHECKER or PACKAGE,...>\n\n";
+
+ ClangCheckerRegistry(plugins).printHelp(out);
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Frontend/FrontendActions.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Frontend/FrontendActions.cpp
new file mode 100644
index 0000000..b336080
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Frontend/FrontendActions.cpp
@@ -0,0 +1,28 @@
+//===--- FrontendActions.cpp ----------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Frontend/FrontendActions.h"
+#include "clang/StaticAnalyzer/Frontend/AnalysisConsumer.h"
+#include "clang/StaticAnalyzer/Frontend/ModelConsumer.h"
+using namespace clang;
+using namespace ento;
+
+std::unique_ptr<ASTConsumer>
+AnalysisAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) {
+ return CreateAnalysisConsumer(CI);
+}
+
+ParseModelFileAction::ParseModelFileAction(llvm::StringMap<Stmt *> &Bodies)
+ : Bodies(Bodies) {}
+
+std::unique_ptr<ASTConsumer>
+ParseModelFileAction::CreateASTConsumer(CompilerInstance &CI,
+ StringRef InFile) {
+ return llvm::make_unique<ModelConsumer>(Bodies);
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Frontend/ModelConsumer.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Frontend/ModelConsumer.cpp
new file mode 100644
index 0000000..a65a5ee
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Frontend/ModelConsumer.cpp
@@ -0,0 +1,42 @@
+//===--- ModelConsumer.cpp - ASTConsumer for consuming model files --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// \brief This file implements an ASTConsumer for consuming model files.
+///
+/// This ASTConsumer handles the AST of a parsed model file. All top level
+/// function definitions will be collected from that model file for later
+/// retrieval during the static analysis. The body of these functions will not
+/// be injected into the ASTUnit of the analyzed translation unit. It will be
+/// available through the BodyFarm which is utilized by the AnalysisDeclContext
+/// class.
+///
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Frontend/ModelConsumer.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclGroup.h"
+
+using namespace clang;
+using namespace ento;
+
+ModelConsumer::ModelConsumer(llvm::StringMap<Stmt *> &Bodies)
+ : Bodies(Bodies) {}
+
+bool ModelConsumer::HandleTopLevelDecl(DeclGroupRef D) {
+ for (DeclGroupRef::iterator I = D.begin(), E = D.end(); I != E; ++I) {
+
+ // Only interested in definitions.
+ const FunctionDecl *func = llvm::dyn_cast<FunctionDecl>(*I);
+ if (func && func->hasBody()) {
+ Bodies.insert(std::make_pair(func->getName(), func->getBody()));
+ }
+ }
+ return true;
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Frontend/ModelInjector.cpp b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Frontend/ModelInjector.cpp
new file mode 100644
index 0000000..63bb1e2
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Frontend/ModelInjector.cpp
@@ -0,0 +1,117 @@
+//===-- ModelInjector.cpp ---------------------------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ModelInjector.h"
+#include "clang/AST/Decl.h"
+#include "clang/Basic/IdentifierTable.h"
+#include "clang/Frontend/ASTUnit.h"
+#include "clang/Frontend/CompilerInstance.h"
+#include "clang/Frontend/FrontendAction.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Serialization/ASTReader.h"
+#include "clang/StaticAnalyzer/Frontend/FrontendActions.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Support/CrashRecoveryContext.h"
+#include "llvm/Support/FileSystem.h"
+#include <string>
+#include <utility>
+
+using namespace clang;
+using namespace ento;
+
+ModelInjector::ModelInjector(CompilerInstance &CI) : CI(CI) {}
+
+Stmt *ModelInjector::getBody(const FunctionDecl *D) {
+ onBodySynthesis(D);
+ return Bodies[D->getName()];
+}
+
+Stmt *ModelInjector::getBody(const ObjCMethodDecl *D) {
+ onBodySynthesis(D);
+ return Bodies[D->getName()];
+}
+
+void ModelInjector::onBodySynthesis(const NamedDecl *D) {
+
+ // FIXME: what about overloads? Declarations can be used as keys but what
+ // about file name index? Mangled names may not be suitable for that either.
+ if (Bodies.count(D->getName()) != 0)
+ return;
+
+ SourceManager &SM = CI.getSourceManager();
+ FileID mainFileID = SM.getMainFileID();
+
+ AnalyzerOptionsRef analyzerOpts = CI.getAnalyzerOpts();
+ llvm::StringRef modelPath = analyzerOpts->Config["model-path"];
+
+ llvm::SmallString<128> fileName;
+
+ if (!modelPath.empty())
+ fileName =
+ llvm::StringRef(modelPath.str() + "/" + D->getName().str() + ".model");
+ else
+ fileName = llvm::StringRef(D->getName().str() + ".model");
+
+ if (!llvm::sys::fs::exists(fileName.str())) {
+ Bodies[D->getName()] = nullptr;
+ return;
+ }
+
+ IntrusiveRefCntPtr<CompilerInvocation> Invocation(
+ new CompilerInvocation(CI.getInvocation()));
+
+ FrontendOptions &FrontendOpts = Invocation->getFrontendOpts();
+ InputKind IK = IK_CXX; // FIXME
+ FrontendOpts.Inputs.clear();
+ FrontendOpts.Inputs.push_back(FrontendInputFile(fileName, IK));
+ FrontendOpts.DisableFree = true;
+
+ Invocation->getDiagnosticOpts().VerifyDiagnostics = 0;
+
+ // Modules are parsed by a separate CompilerInstance, so this code mimics that
+ // behavior for models
+ CompilerInstance Instance;
+ Instance.setInvocation(&*Invocation);
+ Instance.createDiagnostics(
+ new ForwardingDiagnosticConsumer(CI.getDiagnosticClient()),
+ /*ShouldOwnClient=*/true);
+
+ Instance.getDiagnostics().setSourceManager(&SM);
+
+ Instance.setVirtualFileSystem(&CI.getVirtualFileSystem());
+
+ // The instance wants to take ownership, however DisableFree frontend option
+ // is set to true to avoid double free issues
+ Instance.setFileManager(&CI.getFileManager());
+ Instance.setSourceManager(&SM);
+ Instance.setPreprocessor(&CI.getPreprocessor());
+ Instance.setASTContext(&CI.getASTContext());
+
+ Instance.getPreprocessor().InitializeForModelFile();
+
+ ParseModelFileAction parseModelFile(Bodies);
+
+ const unsigned ThreadStackSize = 8 << 20;
+ llvm::CrashRecoveryContext CRC;
+
+ CRC.RunSafelyOnThread([&]() { Instance.ExecuteAction(parseModelFile); },
+ ThreadStackSize);
+
+ Instance.getPreprocessor().FinalizeForModelFile();
+
+ Instance.resetAndLeakSourceManager();
+ Instance.resetAndLeakFileManager();
+ Instance.resetAndLeakPreprocessor();
+
+ // The preprocessor enters to the main file id when parsing is started, so
+ // the main file id is changed to the model file during parsing and it needs
+ // to be reseted to the former main file id after parsing of the model file
+ // is done.
+ SM.setMainFileID(mainFileID);
+}
diff --git a/contrib/llvm/tools/clang/lib/StaticAnalyzer/Frontend/ModelInjector.h b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Frontend/ModelInjector.h
new file mode 100644
index 0000000..e23bf8a
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/StaticAnalyzer/Frontend/ModelInjector.h
@@ -0,0 +1,74 @@
+//===-- ModelInjector.h -----------------------------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// \brief This file defines the clang::ento::ModelInjector class which implements the
+/// clang::CodeInjector interface. This class is responsible for injecting
+/// function definitions that were synthesized from model files.
+///
+/// Model files allow definitions of functions to be lazily constituted for functions
+/// which lack bodies in the original source code. This allows the analyzer
+/// to more precisely analyze code that calls such functions, analyzing the
+/// artificial definitions (which typically approximate the semantics of the
+/// called function) when called by client code. These definitions are
+/// reconstituted lazily, on-demand, by the static analyzer engine.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_SA_FRONTEND_MODELINJECTOR_H
+#define LLVM_CLANG_SA_FRONTEND_MODELINJECTOR_H
+
+#include "clang/Analysis/CodeInjector.h"
+#include "llvm/ADT/IntrusiveRefCntPtr.h"
+#include "llvm/ADT/StringMap.h"
+#include <map>
+#include <memory>
+#include <vector>
+
+namespace clang {
+
+class CompilerInstance;
+class ASTUnit;
+class ASTReader;
+class NamedDecl;
+class Module;
+
+namespace ento {
+class ModelInjector : public CodeInjector {
+public:
+ ModelInjector(CompilerInstance &CI);
+ Stmt *getBody(const FunctionDecl *D) override;
+ Stmt *getBody(const ObjCMethodDecl *D) override;
+
+private:
+ /// \brief Synthesize a body for a declaration
+ ///
+ /// This method first looks up the appropriate model file based on the
+ /// model-path configuration option and the name of the declaration that is
+ /// looked up. If no model were synthesized yet for a function with that name
+ /// it will create a new compiler instance to parse the model file using the
+ /// ASTContext, Preprocessor, SourceManager of the original compiler instance.
+ /// The former resources are shared between the two compiler instance, so the
+ /// newly created instance have to "leak" these objects, since they are owned
+ /// by the original instance.
+ ///
+ /// The model-path should be either an absolute path or relative to the
+ /// working directory of the compiler.
+ void onBodySynthesis(const NamedDecl *D);
+
+ CompilerInstance &CI;
+
+ // FIXME: double memoization is redundant, with memoization both here and in
+ // BodyFarm.
+ llvm::StringMap<Stmt *> Bodies;
+};
+}
+}
+
+#endif
diff --git a/contrib/llvm/tools/clang/lib/Tooling/ArgumentsAdjusters.cpp b/contrib/llvm/tools/clang/lib/Tooling/ArgumentsAdjusters.cpp
new file mode 100644
index 0000000..1722ede
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Tooling/ArgumentsAdjusters.cpp
@@ -0,0 +1,88 @@
+//===--- ArgumentsAdjusters.cpp - Command line arguments adjuster ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains definitions of classes which implement ArgumentsAdjuster
+// interface.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Tooling/ArgumentsAdjusters.h"
+#include "clang/Basic/LLVM.h"
+#include "llvm/ADT/StringRef.h"
+
+namespace clang {
+namespace tooling {
+
+/// Add -fsyntax-only option to the commnand line arguments.
+ArgumentsAdjuster getClangSyntaxOnlyAdjuster() {
+ return [](const CommandLineArguments &Args) {
+ CommandLineArguments AdjustedArgs;
+ for (size_t i = 0, e = Args.size(); i != e; ++i) {
+ StringRef Arg = Args[i];
+ // FIXME: Remove options that generate output.
+ if (!Arg.startswith("-fcolor-diagnostics") &&
+ !Arg.startswith("-fdiagnostics-color"))
+ AdjustedArgs.push_back(Args[i]);
+ }
+ AdjustedArgs.push_back("-fsyntax-only");
+ return AdjustedArgs;
+ };
+}
+
+ArgumentsAdjuster getClangStripOutputAdjuster() {
+ return [](const CommandLineArguments &Args) {
+ CommandLineArguments AdjustedArgs;
+ for (size_t i = 0, e = Args.size(); i < e; ++i) {
+ StringRef Arg = Args[i];
+ if (!Arg.startswith("-o"))
+ AdjustedArgs.push_back(Args[i]);
+
+ if (Arg == "-o") {
+ // Output is specified as -o foo. Skip the next argument also.
+ ++i;
+ }
+ // Else, the output is specified as -ofoo. Just do nothing.
+ }
+ return AdjustedArgs;
+ };
+}
+
+ArgumentsAdjuster getInsertArgumentAdjuster(const CommandLineArguments &Extra,
+ ArgumentInsertPosition Pos) {
+ return [Extra, Pos](const CommandLineArguments &Args) {
+ CommandLineArguments Return(Args);
+
+ CommandLineArguments::iterator I;
+ if (Pos == ArgumentInsertPosition::END) {
+ I = Return.end();
+ } else {
+ I = Return.begin();
+ ++I; // To leave the program name in place
+ }
+
+ Return.insert(I, Extra.begin(), Extra.end());
+ return Return;
+ };
+}
+
+ArgumentsAdjuster getInsertArgumentAdjuster(const char *Extra,
+ ArgumentInsertPosition Pos) {
+ return getInsertArgumentAdjuster(CommandLineArguments(1, Extra), Pos);
+}
+
+ArgumentsAdjuster combineAdjusters(ArgumentsAdjuster First,
+ ArgumentsAdjuster Second) {
+ return [First, Second](const CommandLineArguments &Args) {
+ return Second(First(Args));
+ };
+}
+
+} // end namespace tooling
+} // end namespace clang
+
diff --git a/contrib/llvm/tools/clang/lib/Tooling/CommonOptionsParser.cpp b/contrib/llvm/tools/clang/lib/Tooling/CommonOptionsParser.cpp
new file mode 100644
index 0000000..adae178
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Tooling/CommonOptionsParser.cpp
@@ -0,0 +1,143 @@
+//===--- CommonOptionsParser.cpp - common options for clang tools ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the CommonOptionsParser class used to parse common
+// command-line options for clang tools, so that they can be run as separate
+// command-line applications with a consistent common interface for handling
+// compilation database and input files.
+//
+// It provides a common subset of command-line options, common algorithm
+// for locating a compilation database and source files, and help messages
+// for the basic command-line interface.
+//
+// It creates a CompilationDatabase and reads common command-line options.
+//
+// This class uses the Clang Tooling infrastructure, see
+// http://clang.llvm.org/docs/HowToSetupToolingForLLVM.html
+// for details on setting it up with LLVM source tree.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Support/CommandLine.h"
+#include "clang/Tooling/ArgumentsAdjusters.h"
+#include "clang/Tooling/CommonOptionsParser.h"
+#include "clang/Tooling/Tooling.h"
+
+using namespace clang::tooling;
+using namespace llvm;
+
+const char *const CommonOptionsParser::HelpMessage =
+ "\n"
+ "-p <build-path> is used to read a compile command database.\n"
+ "\n"
+ "\tFor example, it can be a CMake build directory in which a file named\n"
+ "\tcompile_commands.json exists (use -DCMAKE_EXPORT_COMPILE_COMMANDS=ON\n"
+ "\tCMake option to get this output). When no build path is specified,\n"
+ "\ta search for compile_commands.json will be attempted through all\n"
+ "\tparent paths of the first input file . See:\n"
+ "\thttp://clang.llvm.org/docs/HowToSetupToolingForLLVM.html for an\n"
+ "\texample of setting up Clang Tooling on a source tree.\n"
+ "\n"
+ "<source0> ... specify the paths of source files. These paths are\n"
+ "\tlooked up in the compile command database. If the path of a file is\n"
+ "\tabsolute, it needs to point into CMake's source tree. If the path is\n"
+ "\trelative, the current working directory needs to be in the CMake\n"
+ "\tsource tree and the file must be in a subdirectory of the current\n"
+ "\tworking directory. \"./\" prefixes in the relative files will be\n"
+ "\tautomatically removed, but the rest of a relative path must be a\n"
+ "\tsuffix of a path in the compile command database.\n"
+ "\n";
+
+namespace {
+class ArgumentsAdjustingCompilations : public CompilationDatabase {
+public:
+ ArgumentsAdjustingCompilations(
+ std::unique_ptr<CompilationDatabase> Compilations)
+ : Compilations(std::move(Compilations)) {}
+
+ void appendArgumentsAdjuster(ArgumentsAdjuster Adjuster) {
+ Adjusters.push_back(Adjuster);
+ }
+
+ std::vector<CompileCommand>
+ getCompileCommands(StringRef FilePath) const override {
+ return adjustCommands(Compilations->getCompileCommands(FilePath));
+ }
+
+ std::vector<std::string> getAllFiles() const override {
+ return Compilations->getAllFiles();
+ }
+
+ std::vector<CompileCommand> getAllCompileCommands() const override {
+ return adjustCommands(Compilations->getAllCompileCommands());
+ }
+
+private:
+ std::unique_ptr<CompilationDatabase> Compilations;
+ std::vector<ArgumentsAdjuster> Adjusters;
+
+ std::vector<CompileCommand>
+ adjustCommands(std::vector<CompileCommand> Commands) const {
+ for (CompileCommand &Command : Commands)
+ for (const auto &Adjuster : Adjusters)
+ Command.CommandLine = Adjuster(Command.CommandLine);
+ return Commands;
+ }
+};
+} // namespace
+
+CommonOptionsParser::CommonOptionsParser(int &argc, const char **argv,
+ cl::OptionCategory &Category,
+ const char *Overview) {
+ static cl::opt<bool> Help("h", cl::desc("Alias for -help"), cl::Hidden);
+
+ static cl::opt<std::string> BuildPath("p", cl::desc("Build path"),
+ cl::Optional, cl::cat(Category));
+
+ static cl::list<std::string> SourcePaths(
+ cl::Positional, cl::desc("<source0> [... <sourceN>]"), cl::OneOrMore,
+ cl::cat(Category));
+
+ static cl::list<std::string> ArgsAfter(
+ "extra-arg",
+ cl::desc("Additional argument to append to the compiler command line"),
+ cl::cat(Category));
+
+ static cl::list<std::string> ArgsBefore(
+ "extra-arg-before",
+ cl::desc("Additional argument to prepend to the compiler command line"),
+ cl::cat(Category));
+
+ cl::HideUnrelatedOptions(Category);
+
+ Compilations.reset(FixedCompilationDatabase::loadFromCommandLine(argc,
+ argv));
+ cl::ParseCommandLineOptions(argc, argv, Overview);
+ SourcePathList = SourcePaths;
+ if (!Compilations) {
+ std::string ErrorMessage;
+ if (!BuildPath.empty()) {
+ Compilations =
+ CompilationDatabase::autoDetectFromDirectory(BuildPath, ErrorMessage);
+ } else {
+ Compilations = CompilationDatabase::autoDetectFromSource(SourcePaths[0],
+ ErrorMessage);
+ }
+ if (!Compilations)
+ llvm::report_fatal_error(ErrorMessage);
+ }
+ auto AdjustingCompilations =
+ llvm::make_unique<ArgumentsAdjustingCompilations>(
+ std::move(Compilations));
+ AdjustingCompilations->appendArgumentsAdjuster(
+ getInsertArgumentAdjuster(ArgsBefore, ArgumentInsertPosition::BEGIN));
+ AdjustingCompilations->appendArgumentsAdjuster(
+ getInsertArgumentAdjuster(ArgsAfter, ArgumentInsertPosition::END));
+ Compilations = std::move(AdjustingCompilations);
+}
diff --git a/contrib/llvm/tools/clang/lib/Tooling/CompilationDatabase.cpp b/contrib/llvm/tools/clang/lib/Tooling/CompilationDatabase.cpp
new file mode 100644
index 0000000..2514f02
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Tooling/CompilationDatabase.cpp
@@ -0,0 +1,335 @@
+//===--- CompilationDatabase.cpp - ----------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains implementations of the CompilationDatabase base class
+// and the FixedCompilationDatabase.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Tooling/CompilationDatabase.h"
+#include "clang/Basic/Diagnostic.h"
+#include "clang/Basic/DiagnosticOptions.h"
+#include "clang/Driver/Action.h"
+#include "clang/Driver/Compilation.h"
+#include "clang/Driver/Driver.h"
+#include "clang/Driver/DriverDiagnostic.h"
+#include "clang/Driver/Job.h"
+#include "clang/Frontend/TextDiagnosticPrinter.h"
+#include "clang/Tooling/CompilationDatabasePluginRegistry.h"
+#include "clang/Tooling/Tooling.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Option/Arg.h"
+#include "llvm/Support/Host.h"
+#include "llvm/Support/Path.h"
+#include <sstream>
+#include <system_error>
+using namespace clang;
+using namespace tooling;
+
+CompilationDatabase::~CompilationDatabase() {}
+
+std::unique_ptr<CompilationDatabase>
+CompilationDatabase::loadFromDirectory(StringRef BuildDirectory,
+ std::string &ErrorMessage) {
+ std::stringstream ErrorStream;
+ for (CompilationDatabasePluginRegistry::iterator
+ It = CompilationDatabasePluginRegistry::begin(),
+ Ie = CompilationDatabasePluginRegistry::end();
+ It != Ie; ++It) {
+ std::string DatabaseErrorMessage;
+ std::unique_ptr<CompilationDatabasePlugin> Plugin(It->instantiate());
+ if (std::unique_ptr<CompilationDatabase> DB =
+ Plugin->loadFromDirectory(BuildDirectory, DatabaseErrorMessage))
+ return DB;
+ ErrorStream << It->getName() << ": " << DatabaseErrorMessage << "\n";
+ }
+ ErrorMessage = ErrorStream.str();
+ return nullptr;
+}
+
+static std::unique_ptr<CompilationDatabase>
+findCompilationDatabaseFromDirectory(StringRef Directory,
+ std::string &ErrorMessage) {
+ std::stringstream ErrorStream;
+ bool HasErrorMessage = false;
+ while (!Directory.empty()) {
+ std::string LoadErrorMessage;
+
+ if (std::unique_ptr<CompilationDatabase> DB =
+ CompilationDatabase::loadFromDirectory(Directory, LoadErrorMessage))
+ return DB;
+
+ if (!HasErrorMessage) {
+ ErrorStream << "No compilation database found in " << Directory.str()
+ << " or any parent directory\n" << LoadErrorMessage;
+ HasErrorMessage = true;
+ }
+
+ Directory = llvm::sys::path::parent_path(Directory);
+ }
+ ErrorMessage = ErrorStream.str();
+ return nullptr;
+}
+
+std::unique_ptr<CompilationDatabase>
+CompilationDatabase::autoDetectFromSource(StringRef SourceFile,
+ std::string &ErrorMessage) {
+ SmallString<1024> AbsolutePath(getAbsolutePath(SourceFile));
+ StringRef Directory = llvm::sys::path::parent_path(AbsolutePath);
+
+ std::unique_ptr<CompilationDatabase> DB =
+ findCompilationDatabaseFromDirectory(Directory, ErrorMessage);
+
+ if (!DB)
+ ErrorMessage = ("Could not auto-detect compilation database for file \"" +
+ SourceFile + "\"\n" + ErrorMessage).str();
+ return DB;
+}
+
+std::unique_ptr<CompilationDatabase>
+CompilationDatabase::autoDetectFromDirectory(StringRef SourceDir,
+ std::string &ErrorMessage) {
+ SmallString<1024> AbsolutePath(getAbsolutePath(SourceDir));
+
+ std::unique_ptr<CompilationDatabase> DB =
+ findCompilationDatabaseFromDirectory(AbsolutePath, ErrorMessage);
+
+ if (!DB)
+ ErrorMessage = ("Could not auto-detect compilation database from directory \"" +
+ SourceDir + "\"\n" + ErrorMessage).str();
+ return DB;
+}
+
+CompilationDatabasePlugin::~CompilationDatabasePlugin() {}
+
+namespace {
+// Helper for recursively searching through a chain of actions and collecting
+// all inputs, direct and indirect, of compile jobs.
+struct CompileJobAnalyzer {
+ void run(const driver::Action *A) {
+ runImpl(A, false);
+ }
+
+ SmallVector<std::string, 2> Inputs;
+
+private:
+
+ void runImpl(const driver::Action *A, bool Collect) {
+ bool CollectChildren = Collect;
+ switch (A->getKind()) {
+ case driver::Action::CompileJobClass:
+ CollectChildren = true;
+ break;
+
+ case driver::Action::InputClass: {
+ if (Collect) {
+ const driver::InputAction *IA = cast<driver::InputAction>(A);
+ Inputs.push_back(IA->getInputArg().getSpelling());
+ }
+ } break;
+
+ default:
+ // Don't care about others
+ ;
+ }
+
+ for (driver::ActionList::const_iterator I = A->begin(), E = A->end();
+ I != E; ++I)
+ runImpl(*I, CollectChildren);
+ }
+};
+
+// Special DiagnosticConsumer that looks for warn_drv_input_file_unused
+// diagnostics from the driver and collects the option strings for those unused
+// options.
+class UnusedInputDiagConsumer : public DiagnosticConsumer {
+public:
+ UnusedInputDiagConsumer() : Other(nullptr) {}
+
+ // Useful for debugging, chain diagnostics to another consumer after
+ // recording for our own purposes.
+ UnusedInputDiagConsumer(DiagnosticConsumer *Other) : Other(Other) {}
+
+ void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,
+ const Diagnostic &Info) override {
+ if (Info.getID() == clang::diag::warn_drv_input_file_unused) {
+ // Arg 1 for this diagnostic is the option that didn't get used.
+ UnusedInputs.push_back(Info.getArgStdStr(0));
+ }
+ if (Other)
+ Other->HandleDiagnostic(DiagLevel, Info);
+ }
+
+ DiagnosticConsumer *Other;
+ SmallVector<std::string, 2> UnusedInputs;
+};
+
+// Unary functor for asking "Given a StringRef S1, does there exist a string
+// S2 in Arr where S1 == S2?"
+struct MatchesAny {
+ MatchesAny(ArrayRef<std::string> Arr) : Arr(Arr) {}
+ bool operator() (StringRef S) {
+ for (const std::string *I = Arr.begin(), *E = Arr.end(); I != E; ++I)
+ if (*I == S)
+ return true;
+ return false;
+ }
+private:
+ ArrayRef<std::string> Arr;
+};
+} // namespace
+
+/// \brief Strips any positional args and possible argv[0] from a command-line
+/// provided by the user to construct a FixedCompilationDatabase.
+///
+/// FixedCompilationDatabase requires a command line to be in this format as it
+/// constructs the command line for each file by appending the name of the file
+/// to be compiled. FixedCompilationDatabase also adds its own argv[0] to the
+/// start of the command line although its value is not important as it's just
+/// ignored by the Driver invoked by the ClangTool using the
+/// FixedCompilationDatabase.
+///
+/// FIXME: This functionality should probably be made available by
+/// clang::driver::Driver although what the interface should look like is not
+/// clear.
+///
+/// \param[in] Args Args as provided by the user.
+/// \return Resulting stripped command line.
+/// \li true if successful.
+/// \li false if \c Args cannot be used for compilation jobs (e.g.
+/// contains an option like -E or -version).
+static bool stripPositionalArgs(std::vector<const char *> Args,
+ std::vector<std::string> &Result) {
+ IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts = new DiagnosticOptions();
+ UnusedInputDiagConsumer DiagClient;
+ DiagnosticsEngine Diagnostics(
+ IntrusiveRefCntPtr<clang::DiagnosticIDs>(new DiagnosticIDs()),
+ &*DiagOpts, &DiagClient, false);
+
+ // The clang executable path isn't required since the jobs the driver builds
+ // will not be executed.
+ std::unique_ptr<driver::Driver> NewDriver(new driver::Driver(
+ /* ClangExecutable= */ "", llvm::sys::getDefaultTargetTriple(),
+ Diagnostics));
+ NewDriver->setCheckInputsExist(false);
+
+ // This becomes the new argv[0]. The value is actually not important as it
+ // isn't used for invoking Tools.
+ Args.insert(Args.begin(), "clang-tool");
+
+ // By adding -c, we force the driver to treat compilation as the last phase.
+ // It will then issue warnings via Diagnostics about un-used options that
+ // would have been used for linking. If the user provided a compiler name as
+ // the original argv[0], this will be treated as a linker input thanks to
+ // insertng a new argv[0] above. All un-used options get collected by
+ // UnusedInputdiagConsumer and get stripped out later.
+ Args.push_back("-c");
+
+ // Put a dummy C++ file on to ensure there's at least one compile job for the
+ // driver to construct. If the user specified some other argument that
+ // prevents compilation, e.g. -E or something like -version, we may still end
+ // up with no jobs but then this is the user's fault.
+ Args.push_back("placeholder.cpp");
+
+ // Remove -no-integrated-as; it's not used for syntax checking,
+ // and it confuses targets which don't support this option.
+ Args.erase(std::remove_if(Args.begin(), Args.end(),
+ MatchesAny(std::string("-no-integrated-as"))),
+ Args.end());
+
+ const std::unique_ptr<driver::Compilation> Compilation(
+ NewDriver->BuildCompilation(Args));
+
+ const driver::JobList &Jobs = Compilation->getJobs();
+
+ CompileJobAnalyzer CompileAnalyzer;
+
+ for (const auto &Job : Jobs) {
+ if (Job.getKind() == driver::Job::CommandClass) {
+ const driver::Command &Cmd = cast<driver::Command>(Job);
+ // Collect only for Assemble jobs. If we do all jobs we get duplicates
+ // since Link jobs point to Assemble jobs as inputs.
+ if (Cmd.getSource().getKind() == driver::Action::AssembleJobClass)
+ CompileAnalyzer.run(&Cmd.getSource());
+ }
+ }
+
+ if (CompileAnalyzer.Inputs.empty()) {
+ // No compile jobs found.
+ // FIXME: Emit a warning of some kind?
+ return false;
+ }
+
+ // Remove all compilation input files from the command line. This is
+ // necessary so that getCompileCommands() can construct a command line for
+ // each file.
+ std::vector<const char *>::iterator End = std::remove_if(
+ Args.begin(), Args.end(), MatchesAny(CompileAnalyzer.Inputs));
+
+ // Remove all inputs deemed unused for compilation.
+ End = std::remove_if(Args.begin(), End, MatchesAny(DiagClient.UnusedInputs));
+
+ // Remove the -c add above as well. It will be at the end right now.
+ assert(strcmp(*(End - 1), "-c") == 0);
+ --End;
+
+ Result = std::vector<std::string>(Args.begin() + 1, End);
+ return true;
+}
+
+FixedCompilationDatabase *FixedCompilationDatabase::loadFromCommandLine(
+ int &Argc, const char *const *Argv, Twine Directory) {
+ const char *const *DoubleDash = std::find(Argv, Argv + Argc, StringRef("--"));
+ if (DoubleDash == Argv + Argc)
+ return nullptr;
+ std::vector<const char *> CommandLine(DoubleDash + 1, Argv + Argc);
+ Argc = DoubleDash - Argv;
+
+ std::vector<std::string> StrippedArgs;
+ if (!stripPositionalArgs(CommandLine, StrippedArgs))
+ return nullptr;
+ return new FixedCompilationDatabase(Directory, StrippedArgs);
+}
+
+FixedCompilationDatabase::
+FixedCompilationDatabase(Twine Directory, ArrayRef<std::string> CommandLine) {
+ std::vector<std::string> ToolCommandLine(1, "clang-tool");
+ ToolCommandLine.insert(ToolCommandLine.end(),
+ CommandLine.begin(), CommandLine.end());
+ CompileCommands.push_back(
+ CompileCommand(Directory, std::move(ToolCommandLine)));
+}
+
+std::vector<CompileCommand>
+FixedCompilationDatabase::getCompileCommands(StringRef FilePath) const {
+ std::vector<CompileCommand> Result(CompileCommands);
+ Result[0].CommandLine.push_back(FilePath);
+ return Result;
+}
+
+std::vector<std::string>
+FixedCompilationDatabase::getAllFiles() const {
+ return std::vector<std::string>();
+}
+
+std::vector<CompileCommand>
+FixedCompilationDatabase::getAllCompileCommands() const {
+ return std::vector<CompileCommand>();
+}
+
+namespace clang {
+namespace tooling {
+
+// This anchor is used to force the linker to link in the generated object file
+// and thus register the JSONCompilationDatabasePlugin.
+extern volatile int JSONAnchorSource;
+static int JSONAnchorDest = JSONAnchorSource;
+
+} // end namespace tooling
+} // end namespace clang
diff --git a/contrib/llvm/tools/clang/lib/Tooling/Core/Replacement.cpp b/contrib/llvm/tools/clang/lib/Tooling/Core/Replacement.cpp
new file mode 100644
index 0000000..b9fc92b
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Tooling/Core/Replacement.cpp
@@ -0,0 +1,289 @@
+//===--- Replacement.cpp - Framework for clang refactoring tools ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Implements classes to support/store refactorings.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Basic/Diagnostic.h"
+#include "clang/Basic/DiagnosticIDs.h"
+#include "clang/Basic/DiagnosticOptions.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Lex/Lexer.h"
+#include "clang/Rewrite/Core/Rewriter.h"
+#include "clang/Tooling/Core/Replacement.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/raw_os_ostream.h"
+
+namespace clang {
+namespace tooling {
+
+static const char * const InvalidLocation = "";
+
+Replacement::Replacement()
+ : FilePath(InvalidLocation) {}
+
+Replacement::Replacement(StringRef FilePath, unsigned Offset, unsigned Length,
+ StringRef ReplacementText)
+ : FilePath(FilePath), ReplacementRange(Offset, Length),
+ ReplacementText(ReplacementText) {}
+
+Replacement::Replacement(const SourceManager &Sources, SourceLocation Start,
+ unsigned Length, StringRef ReplacementText) {
+ setFromSourceLocation(Sources, Start, Length, ReplacementText);
+}
+
+Replacement::Replacement(const SourceManager &Sources,
+ const CharSourceRange &Range,
+ StringRef ReplacementText) {
+ setFromSourceRange(Sources, Range, ReplacementText);
+}
+
+bool Replacement::isApplicable() const {
+ return FilePath != InvalidLocation;
+}
+
+bool Replacement::apply(Rewriter &Rewrite) const {
+ SourceManager &SM = Rewrite.getSourceMgr();
+ const FileEntry *Entry = SM.getFileManager().getFile(FilePath);
+ if (!Entry)
+ return false;
+ FileID ID;
+ // FIXME: Use SM.translateFile directly.
+ SourceLocation Location = SM.translateFileLineCol(Entry, 1, 1);
+ ID = Location.isValid() ?
+ SM.getFileID(Location) :
+ SM.createFileID(Entry, SourceLocation(), SrcMgr::C_User);
+ // FIXME: We cannot check whether Offset + Length is in the file, as
+ // the remapping API is not public in the RewriteBuffer.
+ const SourceLocation Start =
+ SM.getLocForStartOfFile(ID).
+ getLocWithOffset(ReplacementRange.getOffset());
+ // ReplaceText returns false on success.
+ // ReplaceText only fails if the source location is not a file location, in
+ // which case we already returned false earlier.
+ bool RewriteSucceeded = !Rewrite.ReplaceText(
+ Start, ReplacementRange.getLength(), ReplacementText);
+ assert(RewriteSucceeded);
+ return RewriteSucceeded;
+}
+
+std::string Replacement::toString() const {
+ std::string Result;
+ llvm::raw_string_ostream Stream(Result);
+ Stream << FilePath << ": " << ReplacementRange.getOffset() << ":+"
+ << ReplacementRange.getLength() << ":\"" << ReplacementText << "\"";
+ return Stream.str();
+}
+
+bool operator<(const Replacement &LHS, const Replacement &RHS) {
+ if (LHS.getOffset() != RHS.getOffset())
+ return LHS.getOffset() < RHS.getOffset();
+ if (LHS.getLength() != RHS.getLength())
+ return LHS.getLength() < RHS.getLength();
+ if (LHS.getFilePath() != RHS.getFilePath())
+ return LHS.getFilePath() < RHS.getFilePath();
+ return LHS.getReplacementText() < RHS.getReplacementText();
+}
+
+bool operator==(const Replacement &LHS, const Replacement &RHS) {
+ return LHS.getOffset() == RHS.getOffset() &&
+ LHS.getLength() == RHS.getLength() &&
+ LHS.getFilePath() == RHS.getFilePath() &&
+ LHS.getReplacementText() == RHS.getReplacementText();
+}
+
+void Replacement::setFromSourceLocation(const SourceManager &Sources,
+ SourceLocation Start, unsigned Length,
+ StringRef ReplacementText) {
+ const std::pair<FileID, unsigned> DecomposedLocation =
+ Sources.getDecomposedLoc(Start);
+ const FileEntry *Entry = Sources.getFileEntryForID(DecomposedLocation.first);
+ if (Entry) {
+ // Make FilePath absolute so replacements can be applied correctly when
+ // relative paths for files are used.
+ llvm::SmallString<256> FilePath(Entry->getName());
+ std::error_code EC = llvm::sys::fs::make_absolute(FilePath);
+ this->FilePath = EC ? FilePath.c_str() : Entry->getName();
+ } else {
+ this->FilePath = InvalidLocation;
+ }
+ this->ReplacementRange = Range(DecomposedLocation.second, Length);
+ this->ReplacementText = ReplacementText;
+}
+
+// FIXME: This should go into the Lexer, but we need to figure out how
+// to handle ranges for refactoring in general first - there is no obvious
+// good way how to integrate this into the Lexer yet.
+static int getRangeSize(const SourceManager &Sources,
+ const CharSourceRange &Range) {
+ SourceLocation SpellingBegin = Sources.getSpellingLoc(Range.getBegin());
+ SourceLocation SpellingEnd = Sources.getSpellingLoc(Range.getEnd());
+ std::pair<FileID, unsigned> Start = Sources.getDecomposedLoc(SpellingBegin);
+ std::pair<FileID, unsigned> End = Sources.getDecomposedLoc(SpellingEnd);
+ if (Start.first != End.first) return -1;
+ if (Range.isTokenRange())
+ End.second += Lexer::MeasureTokenLength(SpellingEnd, Sources,
+ LangOptions());
+ return End.second - Start.second;
+}
+
+void Replacement::setFromSourceRange(const SourceManager &Sources,
+ const CharSourceRange &Range,
+ StringRef ReplacementText) {
+ setFromSourceLocation(Sources, Sources.getSpellingLoc(Range.getBegin()),
+ getRangeSize(Sources, Range), ReplacementText);
+}
+
+unsigned shiftedCodePosition(const Replacements &Replaces, unsigned Position) {
+ unsigned NewPosition = Position;
+ for (Replacements::iterator I = Replaces.begin(), E = Replaces.end(); I != E;
+ ++I) {
+ if (I->getOffset() >= Position)
+ break;
+ if (I->getOffset() + I->getLength() > Position)
+ NewPosition += I->getOffset() + I->getLength() - Position;
+ NewPosition += I->getReplacementText().size() - I->getLength();
+ }
+ return NewPosition;
+}
+
+// FIXME: Remove this function when Replacements is implemented as std::vector
+// instead of std::set.
+unsigned shiftedCodePosition(const std::vector<Replacement> &Replaces,
+ unsigned Position) {
+ unsigned NewPosition = Position;
+ for (std::vector<Replacement>::const_iterator I = Replaces.begin(),
+ E = Replaces.end();
+ I != E; ++I) {
+ if (I->getOffset() >= Position)
+ break;
+ if (I->getOffset() + I->getLength() > Position)
+ NewPosition += I->getOffset() + I->getLength() - Position;
+ NewPosition += I->getReplacementText().size() - I->getLength();
+ }
+ return NewPosition;
+}
+
+void deduplicate(std::vector<Replacement> &Replaces,
+ std::vector<Range> &Conflicts) {
+ if (Replaces.empty())
+ return;
+
+ auto LessNoPath = [](const Replacement &LHS, const Replacement &RHS) {
+ if (LHS.getOffset() != RHS.getOffset())
+ return LHS.getOffset() < RHS.getOffset();
+ if (LHS.getLength() != RHS.getLength())
+ return LHS.getLength() < RHS.getLength();
+ return LHS.getReplacementText() < RHS.getReplacementText();
+ };
+
+ auto EqualNoPath = [](const Replacement &LHS, const Replacement &RHS) {
+ return LHS.getOffset() == RHS.getOffset() &&
+ LHS.getLength() == RHS.getLength() &&
+ LHS.getReplacementText() == RHS.getReplacementText();
+ };
+
+ // Deduplicate. We don't want to deduplicate based on the path as we assume
+ // that all replacements refer to the same file (or are symlinks).
+ std::sort(Replaces.begin(), Replaces.end(), LessNoPath);
+ Replaces.erase(std::unique(Replaces.begin(), Replaces.end(), EqualNoPath),
+ Replaces.end());
+
+ // Detect conflicts
+ Range ConflictRange(Replaces.front().getOffset(),
+ Replaces.front().getLength());
+ unsigned ConflictStart = 0;
+ unsigned ConflictLength = 1;
+ for (unsigned i = 1; i < Replaces.size(); ++i) {
+ Range Current(Replaces[i].getOffset(), Replaces[i].getLength());
+ if (ConflictRange.overlapsWith(Current)) {
+ // Extend conflicted range
+ ConflictRange = Range(ConflictRange.getOffset(),
+ std::max(ConflictRange.getLength(),
+ Current.getOffset() + Current.getLength() -
+ ConflictRange.getOffset()));
+ ++ConflictLength;
+ } else {
+ if (ConflictLength > 1)
+ Conflicts.push_back(Range(ConflictStart, ConflictLength));
+ ConflictRange = Current;
+ ConflictStart = i;
+ ConflictLength = 1;
+ }
+ }
+
+ if (ConflictLength > 1)
+ Conflicts.push_back(Range(ConflictStart, ConflictLength));
+}
+
+bool applyAllReplacements(const Replacements &Replaces, Rewriter &Rewrite) {
+ bool Result = true;
+ for (Replacements::const_iterator I = Replaces.begin(),
+ E = Replaces.end();
+ I != E; ++I) {
+ if (I->isApplicable()) {
+ Result = I->apply(Rewrite) && Result;
+ } else {
+ Result = false;
+ }
+ }
+ return Result;
+}
+
+// FIXME: Remove this function when Replacements is implemented as std::vector
+// instead of std::set.
+bool applyAllReplacements(const std::vector<Replacement> &Replaces,
+ Rewriter &Rewrite) {
+ bool Result = true;
+ for (std::vector<Replacement>::const_iterator I = Replaces.begin(),
+ E = Replaces.end();
+ I != E; ++I) {
+ if (I->isApplicable()) {
+ Result = I->apply(Rewrite) && Result;
+ } else {
+ Result = false;
+ }
+ }
+ return Result;
+}
+
+std::string applyAllReplacements(StringRef Code, const Replacements &Replaces) {
+ FileManager Files((FileSystemOptions()));
+ DiagnosticsEngine Diagnostics(
+ IntrusiveRefCntPtr<DiagnosticIDs>(new DiagnosticIDs),
+ new DiagnosticOptions);
+ SourceManager SourceMgr(Diagnostics, Files);
+ Rewriter Rewrite(SourceMgr, LangOptions());
+ std::unique_ptr<llvm::MemoryBuffer> Buf =
+ llvm::MemoryBuffer::getMemBuffer(Code, "<stdin>");
+ const clang::FileEntry *Entry =
+ Files.getVirtualFile("<stdin>", Buf->getBufferSize(), 0);
+ SourceMgr.overrideFileContents(Entry, std::move(Buf));
+ FileID ID =
+ SourceMgr.createFileID(Entry, SourceLocation(), clang::SrcMgr::C_User);
+ for (Replacements::const_iterator I = Replaces.begin(), E = Replaces.end();
+ I != E; ++I) {
+ Replacement Replace("<stdin>", I->getOffset(), I->getLength(),
+ I->getReplacementText());
+ if (!Replace.apply(Rewrite))
+ return "";
+ }
+ std::string Result;
+ llvm::raw_string_ostream OS(Result);
+ Rewrite.getEditBuffer(ID).write(OS);
+ OS.flush();
+ return Result;
+}
+
+} // end namespace tooling
+} // end namespace clang
+
diff --git a/contrib/llvm/tools/clang/lib/Tooling/FileMatchTrie.cpp b/contrib/llvm/tools/clang/lib/Tooling/FileMatchTrie.cpp
new file mode 100644
index 0000000..86ed036
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Tooling/FileMatchTrie.cpp
@@ -0,0 +1,189 @@
+//===--- FileMatchTrie.cpp - ----------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the implementation of a FileMatchTrie.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Tooling/FileMatchTrie.h"
+#include "llvm/ADT/StringMap.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/raw_ostream.h"
+#include <sstream>
+using namespace clang;
+using namespace tooling;
+
+namespace {
+/// \brief Default \c PathComparator using \c llvm::sys::fs::equivalent().
+struct DefaultPathComparator : public PathComparator {
+ bool equivalent(StringRef FileA, StringRef FileB) const override {
+ return FileA == FileB || llvm::sys::fs::equivalent(FileA, FileB);
+ }
+};
+}
+
+namespace clang {
+namespace tooling {
+/// \brief A node of the \c FileMatchTrie.
+///
+/// Each node has storage for up to one path and a map mapping a path segment to
+/// child nodes. The trie starts with an empty root node.
+class FileMatchTrieNode {
+public:
+ /// \brief Inserts 'NewPath' into this trie. \c ConsumedLength denotes
+ /// the number of \c NewPath's trailing characters already consumed during
+ /// recursion.
+ ///
+ /// An insert of a path
+ /// 'p'starts at the root node and does the following:
+ /// - If the node is empty, insert 'p' into its storage and abort.
+ /// - If the node has a path 'p2' but no children, take the last path segment
+ /// 's' of 'p2', put a new child into the map at 's' an insert the rest of
+ /// 'p2' there.
+ /// - Insert a new child for the last segment of 'p' and insert the rest of
+ /// 'p' there.
+ ///
+ /// An insert operation is linear in the number of a path's segments.
+ void insert(StringRef NewPath, unsigned ConsumedLength = 0) {
+ // We cannot put relative paths into the FileMatchTrie as then a path can be
+ // a postfix of another path, violating a core assumption of the trie.
+ if (llvm::sys::path::is_relative(NewPath))
+ return;
+ if (Path.empty()) {
+ // This is an empty leaf. Store NewPath and return.
+ Path = NewPath;
+ return;
+ }
+ if (Children.empty()) {
+ // This is a leaf, ignore duplicate entry if 'Path' equals 'NewPath'.
+ if (NewPath == Path)
+ return;
+ // Make this a node and create a child-leaf with 'Path'.
+ StringRef Element(llvm::sys::path::filename(
+ StringRef(Path).drop_back(ConsumedLength)));
+ Children[Element].Path = Path;
+ }
+ StringRef Element(llvm::sys::path::filename(
+ StringRef(NewPath).drop_back(ConsumedLength)));
+ Children[Element].insert(NewPath, ConsumedLength + Element.size() + 1);
+ }
+
+ /// \brief Tries to find the node under this \c FileMatchTrieNode that best
+ /// matches 'FileName'.
+ ///
+ /// If multiple paths fit 'FileName' equally well, \c IsAmbiguous is set to
+ /// \c true and an empty string is returned. If no path fits 'FileName', an
+ /// empty string is returned. \c ConsumedLength denotes the number of
+ /// \c Filename's trailing characters already consumed during recursion.
+ ///
+ /// To find the best matching node for a given path 'p', the
+ /// \c findEquivalent() function is called recursively for each path segment
+ /// (back to fron) of 'p' until a node 'n' is reached that does not ..
+ /// - .. have children. In this case it is checked
+ /// whether the stored path is equivalent to 'p'. If yes, the best match is
+ /// found. Otherwise continue with the parent node as if this node did not
+ /// exist.
+ /// - .. a child matching the next path segment. In this case, all children of
+ /// 'n' are an equally good match for 'p'. All children are of 'n' are found
+ /// recursively and their equivalence to 'p' is determined. If none are
+ /// equivalent, continue with the parent node as if 'n' didn't exist. If one
+ /// is equivalent, the best match is found. Otherwise, report and ambigiuity
+ /// error.
+ StringRef findEquivalent(const PathComparator& Comparator,
+ StringRef FileName,
+ bool &IsAmbiguous,
+ unsigned ConsumedLength = 0) const {
+ if (Children.empty()) {
+ if (Comparator.equivalent(StringRef(Path), FileName))
+ return StringRef(Path);
+ return StringRef();
+ }
+ StringRef Element(llvm::sys::path::filename(FileName.drop_back(
+ ConsumedLength)));
+ llvm::StringMap<FileMatchTrieNode>::const_iterator MatchingChild =
+ Children.find(Element);
+ if (MatchingChild != Children.end()) {
+ StringRef Result = MatchingChild->getValue().findEquivalent(
+ Comparator, FileName, IsAmbiguous,
+ ConsumedLength + Element.size() + 1);
+ if (!Result.empty() || IsAmbiguous)
+ return Result;
+ }
+ std::vector<StringRef> AllChildren;
+ getAll(AllChildren, MatchingChild);
+ StringRef Result;
+ for (unsigned i = 0; i < AllChildren.size(); i++) {
+ if (Comparator.equivalent(AllChildren[i], FileName)) {
+ if (Result.empty()) {
+ Result = AllChildren[i];
+ } else {
+ IsAmbiguous = true;
+ return StringRef();
+ }
+ }
+ }
+ return Result;
+ }
+
+private:
+ /// \brief Gets all paths under this FileMatchTrieNode.
+ void getAll(std::vector<StringRef> &Results,
+ llvm::StringMap<FileMatchTrieNode>::const_iterator Except) const {
+ if (Path.empty())
+ return;
+ if (Children.empty()) {
+ Results.push_back(StringRef(Path));
+ return;
+ }
+ for (llvm::StringMap<FileMatchTrieNode>::const_iterator
+ It = Children.begin(), E = Children.end();
+ It != E; ++It) {
+ if (It == Except)
+ continue;
+ It->getValue().getAll(Results, Children.end());
+ }
+ }
+
+ // The stored absolute path in this node. Only valid for leaf nodes, i.e.
+ // nodes where Children.empty().
+ std::string Path;
+
+ // The children of this node stored in a map based on the next path segment.
+ llvm::StringMap<FileMatchTrieNode> Children;
+};
+} // end namespace tooling
+} // end namespace clang
+
+FileMatchTrie::FileMatchTrie()
+ : Root(new FileMatchTrieNode), Comparator(new DefaultPathComparator()) {}
+
+FileMatchTrie::FileMatchTrie(PathComparator *Comparator)
+ : Root(new FileMatchTrieNode), Comparator(Comparator) {}
+
+FileMatchTrie::~FileMatchTrie() {
+ delete Root;
+}
+
+void FileMatchTrie::insert(StringRef NewPath) {
+ Root->insert(NewPath);
+}
+
+StringRef FileMatchTrie::findEquivalent(StringRef FileName,
+ raw_ostream &Error) const {
+ if (llvm::sys::path::is_relative(FileName)) {
+ Error << "Cannot resolve relative paths";
+ return StringRef();
+ }
+ bool IsAmbiguous = false;
+ StringRef Result = Root->findEquivalent(*Comparator, FileName, IsAmbiguous);
+ if (IsAmbiguous)
+ Error << "Path is ambiguous";
+ return Result;
+}
diff --git a/contrib/llvm/tools/clang/lib/Tooling/JSONCompilationDatabase.cpp b/contrib/llvm/tools/clang/lib/Tooling/JSONCompilationDatabase.cpp
new file mode 100644
index 0000000..7dc211e
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Tooling/JSONCompilationDatabase.cpp
@@ -0,0 +1,322 @@
+//===--- JSONCompilationDatabase.cpp - ------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the implementation of the JSONCompilationDatabase.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Tooling/JSONCompilationDatabase.h"
+#include "clang/Tooling/CompilationDatabase.h"
+#include "clang/Tooling/CompilationDatabasePluginRegistry.h"
+#include "clang/Tooling/Tooling.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/Path.h"
+#include <system_error>
+
+namespace clang {
+namespace tooling {
+
+namespace {
+
+/// \brief A parser for escaped strings of command line arguments.
+///
+/// Assumes \-escaping for quoted arguments (see the documentation of
+/// unescapeCommandLine(...)).
+class CommandLineArgumentParser {
+ public:
+ CommandLineArgumentParser(StringRef CommandLine)
+ : Input(CommandLine), Position(Input.begin()-1) {}
+
+ std::vector<std::string> parse() {
+ bool HasMoreInput = true;
+ while (HasMoreInput && nextNonWhitespace()) {
+ std::string Argument;
+ HasMoreInput = parseStringInto(Argument);
+ CommandLine.push_back(Argument);
+ }
+ return CommandLine;
+ }
+
+ private:
+ // All private methods return true if there is more input available.
+
+ bool parseStringInto(std::string &String) {
+ do {
+ if (*Position == '"') {
+ if (!parseDoubleQuotedStringInto(String)) return false;
+ } else if (*Position == '\'') {
+ if (!parseSingleQuotedStringInto(String)) return false;
+ } else {
+ if (!parseFreeStringInto(String)) return false;
+ }
+ } while (*Position != ' ');
+ return true;
+ }
+
+ bool parseDoubleQuotedStringInto(std::string &String) {
+ if (!next()) return false;
+ while (*Position != '"') {
+ if (!skipEscapeCharacter()) return false;
+ String.push_back(*Position);
+ if (!next()) return false;
+ }
+ return next();
+ }
+
+ bool parseSingleQuotedStringInto(std::string &String) {
+ if (!next()) return false;
+ while (*Position != '\'') {
+ String.push_back(*Position);
+ if (!next()) return false;
+ }
+ return next();
+ }
+
+ bool parseFreeStringInto(std::string &String) {
+ do {
+ if (!skipEscapeCharacter()) return false;
+ String.push_back(*Position);
+ if (!next()) return false;
+ } while (*Position != ' ' && *Position != '"' && *Position != '\'');
+ return true;
+ }
+
+ bool skipEscapeCharacter() {
+ if (*Position == '\\') {
+ return next();
+ }
+ return true;
+ }
+
+ bool nextNonWhitespace() {
+ do {
+ if (!next()) return false;
+ } while (*Position == ' ');
+ return true;
+ }
+
+ bool next() {
+ ++Position;
+ return Position != Input.end();
+ }
+
+ const StringRef Input;
+ StringRef::iterator Position;
+ std::vector<std::string> CommandLine;
+};
+
+std::vector<std::string> unescapeCommandLine(
+ StringRef EscapedCommandLine) {
+ CommandLineArgumentParser parser(EscapedCommandLine);
+ return parser.parse();
+}
+
+class JSONCompilationDatabasePlugin : public CompilationDatabasePlugin {
+ std::unique_ptr<CompilationDatabase>
+ loadFromDirectory(StringRef Directory, std::string &ErrorMessage) override {
+ SmallString<1024> JSONDatabasePath(Directory);
+ llvm::sys::path::append(JSONDatabasePath, "compile_commands.json");
+ std::unique_ptr<CompilationDatabase> Database(
+ JSONCompilationDatabase::loadFromFile(JSONDatabasePath, ErrorMessage));
+ if (!Database)
+ return nullptr;
+ return Database;
+ }
+};
+
+} // end namespace
+
+// Register the JSONCompilationDatabasePlugin with the
+// CompilationDatabasePluginRegistry using this statically initialized variable.
+static CompilationDatabasePluginRegistry::Add<JSONCompilationDatabasePlugin>
+X("json-compilation-database", "Reads JSON formatted compilation databases");
+
+// This anchor is used to force the linker to link in the generated object file
+// and thus register the JSONCompilationDatabasePlugin.
+volatile int JSONAnchorSource = 0;
+
+std::unique_ptr<JSONCompilationDatabase>
+JSONCompilationDatabase::loadFromFile(StringRef FilePath,
+ std::string &ErrorMessage) {
+ llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> DatabaseBuffer =
+ llvm::MemoryBuffer::getFile(FilePath);
+ if (std::error_code Result = DatabaseBuffer.getError()) {
+ ErrorMessage = "Error while opening JSON database: " + Result.message();
+ return nullptr;
+ }
+ std::unique_ptr<JSONCompilationDatabase> Database(
+ new JSONCompilationDatabase(std::move(*DatabaseBuffer)));
+ if (!Database->parse(ErrorMessage))
+ return nullptr;
+ return Database;
+}
+
+std::unique_ptr<JSONCompilationDatabase>
+JSONCompilationDatabase::loadFromBuffer(StringRef DatabaseString,
+ std::string &ErrorMessage) {
+ std::unique_ptr<llvm::MemoryBuffer> DatabaseBuffer(
+ llvm::MemoryBuffer::getMemBuffer(DatabaseString));
+ std::unique_ptr<JSONCompilationDatabase> Database(
+ new JSONCompilationDatabase(std::move(DatabaseBuffer)));
+ if (!Database->parse(ErrorMessage))
+ return nullptr;
+ return Database;
+}
+
+std::vector<CompileCommand>
+JSONCompilationDatabase::getCompileCommands(StringRef FilePath) const {
+ SmallString<128> NativeFilePath;
+ llvm::sys::path::native(FilePath, NativeFilePath);
+
+ std::string Error;
+ llvm::raw_string_ostream ES(Error);
+ StringRef Match = MatchTrie.findEquivalent(NativeFilePath, ES);
+ if (Match.empty())
+ return std::vector<CompileCommand>();
+ llvm::StringMap< std::vector<CompileCommandRef> >::const_iterator
+ CommandsRefI = IndexByFile.find(Match);
+ if (CommandsRefI == IndexByFile.end())
+ return std::vector<CompileCommand>();
+ std::vector<CompileCommand> Commands;
+ getCommands(CommandsRefI->getValue(), Commands);
+ return Commands;
+}
+
+std::vector<std::string>
+JSONCompilationDatabase::getAllFiles() const {
+ std::vector<std::string> Result;
+
+ llvm::StringMap< std::vector<CompileCommandRef> >::const_iterator
+ CommandsRefI = IndexByFile.begin();
+ const llvm::StringMap< std::vector<CompileCommandRef> >::const_iterator
+ CommandsRefEnd = IndexByFile.end();
+ for (; CommandsRefI != CommandsRefEnd; ++CommandsRefI) {
+ Result.push_back(CommandsRefI->first().str());
+ }
+
+ return Result;
+}
+
+std::vector<CompileCommand>
+JSONCompilationDatabase::getAllCompileCommands() const {
+ std::vector<CompileCommand> Commands;
+ for (llvm::StringMap< std::vector<CompileCommandRef> >::const_iterator
+ CommandsRefI = IndexByFile.begin(), CommandsRefEnd = IndexByFile.end();
+ CommandsRefI != CommandsRefEnd; ++CommandsRefI) {
+ getCommands(CommandsRefI->getValue(), Commands);
+ }
+ return Commands;
+}
+
+void JSONCompilationDatabase::getCommands(
+ ArrayRef<CompileCommandRef> CommandsRef,
+ std::vector<CompileCommand> &Commands) const {
+ for (int I = 0, E = CommandsRef.size(); I != E; ++I) {
+ SmallString<8> DirectoryStorage;
+ SmallString<1024> CommandStorage;
+ Commands.push_back(CompileCommand(
+ // FIXME: Escape correctly:
+ CommandsRef[I].first->getValue(DirectoryStorage),
+ unescapeCommandLine(CommandsRef[I].second->getValue(CommandStorage))));
+ }
+}
+
+bool JSONCompilationDatabase::parse(std::string &ErrorMessage) {
+ llvm::yaml::document_iterator I = YAMLStream.begin();
+ if (I == YAMLStream.end()) {
+ ErrorMessage = "Error while parsing YAML.";
+ return false;
+ }
+ llvm::yaml::Node *Root = I->getRoot();
+ if (!Root) {
+ ErrorMessage = "Error while parsing YAML.";
+ return false;
+ }
+ llvm::yaml::SequenceNode *Array = dyn_cast<llvm::yaml::SequenceNode>(Root);
+ if (!Array) {
+ ErrorMessage = "Expected array.";
+ return false;
+ }
+ for (llvm::yaml::SequenceNode::iterator AI = Array->begin(),
+ AE = Array->end();
+ AI != AE; ++AI) {
+ llvm::yaml::MappingNode *Object = dyn_cast<llvm::yaml::MappingNode>(&*AI);
+ if (!Object) {
+ ErrorMessage = "Expected object.";
+ return false;
+ }
+ llvm::yaml::ScalarNode *Directory = nullptr;
+ llvm::yaml::ScalarNode *Command = nullptr;
+ llvm::yaml::ScalarNode *File = nullptr;
+ for (llvm::yaml::MappingNode::iterator KVI = Object->begin(),
+ KVE = Object->end();
+ KVI != KVE; ++KVI) {
+ llvm::yaml::Node *Value = (*KVI).getValue();
+ if (!Value) {
+ ErrorMessage = "Expected value.";
+ return false;
+ }
+ llvm::yaml::ScalarNode *ValueString =
+ dyn_cast<llvm::yaml::ScalarNode>(Value);
+ if (!ValueString) {
+ ErrorMessage = "Expected string as value.";
+ return false;
+ }
+ llvm::yaml::ScalarNode *KeyString =
+ dyn_cast<llvm::yaml::ScalarNode>((*KVI).getKey());
+ if (!KeyString) {
+ ErrorMessage = "Expected strings as key.";
+ return false;
+ }
+ SmallString<8> KeyStorage;
+ if (KeyString->getValue(KeyStorage) == "directory") {
+ Directory = ValueString;
+ } else if (KeyString->getValue(KeyStorage) == "command") {
+ Command = ValueString;
+ } else if (KeyString->getValue(KeyStorage) == "file") {
+ File = ValueString;
+ } else {
+ ErrorMessage = ("Unknown key: \"" +
+ KeyString->getRawValue() + "\"").str();
+ return false;
+ }
+ }
+ if (!File) {
+ ErrorMessage = "Missing key: \"file\".";
+ return false;
+ }
+ if (!Command) {
+ ErrorMessage = "Missing key: \"command\".";
+ return false;
+ }
+ if (!Directory) {
+ ErrorMessage = "Missing key: \"directory\".";
+ return false;
+ }
+ SmallString<8> FileStorage;
+ StringRef FileName = File->getValue(FileStorage);
+ SmallString<128> NativeFilePath;
+ if (llvm::sys::path::is_relative(FileName)) {
+ SmallString<8> DirectoryStorage;
+ SmallString<128> AbsolutePath(
+ Directory->getValue(DirectoryStorage));
+ llvm::sys::path::append(AbsolutePath, FileName);
+ llvm::sys::path::native(AbsolutePath, NativeFilePath);
+ } else {
+ llvm::sys::path::native(FileName, NativeFilePath);
+ }
+ IndexByFile[NativeFilePath].push_back(
+ CompileCommandRef(Directory, Command));
+ MatchTrie.insert(NativeFilePath);
+ }
+ return true;
+}
+
+} // end namespace tooling
+} // end namespace clang
diff --git a/contrib/llvm/tools/clang/lib/Tooling/Refactoring.cpp b/contrib/llvm/tools/clang/lib/Tooling/Refactoring.cpp
new file mode 100644
index 0000000..c817306
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Tooling/Refactoring.cpp
@@ -0,0 +1,64 @@
+//===--- Refactoring.cpp - Framework for clang refactoring tools ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Implements tools to support refactorings.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Basic/DiagnosticOptions.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Frontend/TextDiagnosticPrinter.h"
+#include "clang/Lex/Lexer.h"
+#include "clang/Rewrite/Core/Rewriter.h"
+#include "clang/Tooling/Refactoring.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/raw_os_ostream.h"
+
+namespace clang {
+namespace tooling {
+
+RefactoringTool::RefactoringTool(const CompilationDatabase &Compilations,
+ ArrayRef<std::string> SourcePaths)
+ : ClangTool(Compilations, SourcePaths) {}
+
+Replacements &RefactoringTool::getReplacements() { return Replace; }
+
+int RefactoringTool::runAndSave(FrontendActionFactory *ActionFactory) {
+ if (int Result = run(ActionFactory)) {
+ return Result;
+ }
+
+ LangOptions DefaultLangOptions;
+ IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts = new DiagnosticOptions();
+ TextDiagnosticPrinter DiagnosticPrinter(llvm::errs(), &*DiagOpts);
+ DiagnosticsEngine Diagnostics(
+ IntrusiveRefCntPtr<DiagnosticIDs>(new DiagnosticIDs()),
+ &*DiagOpts, &DiagnosticPrinter, false);
+ SourceManager Sources(Diagnostics, getFiles());
+ Rewriter Rewrite(Sources, DefaultLangOptions);
+
+ if (!applyAllReplacements(Rewrite)) {
+ llvm::errs() << "Skipped some replacements.\n";
+ }
+
+ return saveRewrittenFiles(Rewrite);
+}
+
+bool RefactoringTool::applyAllReplacements(Rewriter &Rewrite) {
+ return tooling::applyAllReplacements(Replace, Rewrite);
+}
+
+int RefactoringTool::saveRewrittenFiles(Rewriter &Rewrite) {
+ return Rewrite.overwriteChangedFiles() ? 1 : 0;
+}
+
+} // end namespace tooling
+} // end namespace clang
diff --git a/contrib/llvm/tools/clang/lib/Tooling/RefactoringCallbacks.cpp b/contrib/llvm/tools/clang/lib/Tooling/RefactoringCallbacks.cpp
new file mode 100644
index 0000000..4de125e
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Tooling/RefactoringCallbacks.cpp
@@ -0,0 +1,81 @@
+//===--- RefactoringCallbacks.cpp - Structural query framework ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//
+//===----------------------------------------------------------------------===//
+#include "clang/Lex/Lexer.h"
+#include "clang/Tooling/RefactoringCallbacks.h"
+
+namespace clang {
+namespace tooling {
+
+RefactoringCallback::RefactoringCallback() {}
+tooling::Replacements &RefactoringCallback::getReplacements() {
+ return Replace;
+}
+
+static Replacement replaceStmtWithText(SourceManager &Sources,
+ const Stmt &From,
+ StringRef Text) {
+ return tooling::Replacement(Sources, CharSourceRange::getTokenRange(
+ From.getSourceRange()), Text);
+}
+static Replacement replaceStmtWithStmt(SourceManager &Sources,
+ const Stmt &From,
+ const Stmt &To) {
+ return replaceStmtWithText(Sources, From, Lexer::getSourceText(
+ CharSourceRange::getTokenRange(To.getSourceRange()),
+ Sources, LangOptions()));
+}
+
+ReplaceStmtWithText::ReplaceStmtWithText(StringRef FromId, StringRef ToText)
+ : FromId(FromId), ToText(ToText) {}
+
+void ReplaceStmtWithText::run(
+ const ast_matchers::MatchFinder::MatchResult &Result) {
+ if (const Stmt *FromMatch = Result.Nodes.getStmtAs<Stmt>(FromId)) {
+ Replace.insert(tooling::Replacement(
+ *Result.SourceManager,
+ CharSourceRange::getTokenRange(FromMatch->getSourceRange()),
+ ToText));
+ }
+}
+
+ReplaceStmtWithStmt::ReplaceStmtWithStmt(StringRef FromId, StringRef ToId)
+ : FromId(FromId), ToId(ToId) {}
+
+void ReplaceStmtWithStmt::run(
+ const ast_matchers::MatchFinder::MatchResult &Result) {
+ const Stmt *FromMatch = Result.Nodes.getStmtAs<Stmt>(FromId);
+ const Stmt *ToMatch = Result.Nodes.getStmtAs<Stmt>(ToId);
+ if (FromMatch && ToMatch)
+ Replace.insert(replaceStmtWithStmt(
+ *Result.SourceManager, *FromMatch, *ToMatch));
+}
+
+ReplaceIfStmtWithItsBody::ReplaceIfStmtWithItsBody(StringRef Id,
+ bool PickTrueBranch)
+ : Id(Id), PickTrueBranch(PickTrueBranch) {}
+
+void ReplaceIfStmtWithItsBody::run(
+ const ast_matchers::MatchFinder::MatchResult &Result) {
+ if (const IfStmt *Node = Result.Nodes.getStmtAs<IfStmt>(Id)) {
+ const Stmt *Body = PickTrueBranch ? Node->getThen() : Node->getElse();
+ if (Body) {
+ Replace.insert(replaceStmtWithStmt(*Result.SourceManager, *Node, *Body));
+ } else if (!PickTrueBranch) {
+ // If we want to use the 'else'-branch, but it doesn't exist, delete
+ // the whole 'if'.
+ Replace.insert(replaceStmtWithText(*Result.SourceManager, *Node, ""));
+ }
+ }
+}
+
+} // end namespace tooling
+} // end namespace clang
diff --git a/contrib/llvm/tools/clang/lib/Tooling/Tooling.cpp b/contrib/llvm/tools/clang/lib/Tooling/Tooling.cpp
new file mode 100644
index 0000000..e100003
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Tooling/Tooling.cpp
@@ -0,0 +1,437 @@
+//===--- Tooling.cpp - Running clang standalone tools ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements functions to run clang tools standalone instead
+// of running them as a plugin.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Tooling/Tooling.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/Driver/Compilation.h"
+#include "clang/Driver/Driver.h"
+#include "clang/Driver/Tool.h"
+#include "clang/Frontend/ASTUnit.h"
+#include "clang/Frontend/CompilerInstance.h"
+#include "clang/Frontend/FrontendDiagnostic.h"
+#include "clang/Frontend/TextDiagnosticPrinter.h"
+#include "clang/Tooling/ArgumentsAdjusters.h"
+#include "clang/Tooling/CompilationDatabase.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Config/llvm-config.h"
+#include "llvm/Option/Option.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/Host.h"
+#include "llvm/Support/raw_ostream.h"
+
+// For chdir, see the comment in ClangTool::run for more information.
+#ifdef LLVM_ON_WIN32
+# include <direct.h>
+#else
+# include <unistd.h>
+#endif
+
+#define DEBUG_TYPE "clang-tooling"
+
+namespace clang {
+namespace tooling {
+
+ToolAction::~ToolAction() {}
+
+FrontendActionFactory::~FrontendActionFactory() {}
+
+// FIXME: This file contains structural duplication with other parts of the
+// code that sets up a compiler to run tools on it, and we should refactor
+// it to be based on the same framework.
+
+/// \brief Builds a clang driver initialized for running clang tools.
+static clang::driver::Driver *newDriver(clang::DiagnosticsEngine *Diagnostics,
+ const char *BinaryName) {
+ clang::driver::Driver *CompilerDriver = new clang::driver::Driver(
+ BinaryName, llvm::sys::getDefaultTargetTriple(), *Diagnostics);
+ CompilerDriver->setTitle("clang_based_tool");
+ return CompilerDriver;
+}
+
+/// \brief Retrieves the clang CC1 specific flags out of the compilation's jobs.
+///
+/// Returns NULL on error.
+static const llvm::opt::ArgStringList *getCC1Arguments(
+ clang::DiagnosticsEngine *Diagnostics,
+ clang::driver::Compilation *Compilation) {
+ // We expect to get back exactly one Command job, if we didn't something
+ // failed. Extract that job from the Compilation.
+ const clang::driver::JobList &Jobs = Compilation->getJobs();
+ if (Jobs.size() != 1 || !isa<clang::driver::Command>(*Jobs.begin())) {
+ SmallString<256> error_msg;
+ llvm::raw_svector_ostream error_stream(error_msg);
+ Jobs.Print(error_stream, "; ", true);
+ Diagnostics->Report(clang::diag::err_fe_expected_compiler_job)
+ << error_stream.str();
+ return nullptr;
+ }
+
+ // The one job we find should be to invoke clang again.
+ const clang::driver::Command &Cmd =
+ cast<clang::driver::Command>(*Jobs.begin());
+ if (StringRef(Cmd.getCreator().getName()) != "clang") {
+ Diagnostics->Report(clang::diag::err_fe_expected_clang_command);
+ return nullptr;
+ }
+
+ return &Cmd.getArguments();
+}
+
+/// \brief Returns a clang build invocation initialized from the CC1 flags.
+clang::CompilerInvocation *newInvocation(
+ clang::DiagnosticsEngine *Diagnostics,
+ const llvm::opt::ArgStringList &CC1Args) {
+ assert(!CC1Args.empty() && "Must at least contain the program name!");
+ clang::CompilerInvocation *Invocation = new clang::CompilerInvocation;
+ clang::CompilerInvocation::CreateFromArgs(
+ *Invocation, CC1Args.data() + 1, CC1Args.data() + CC1Args.size(),
+ *Diagnostics);
+ Invocation->getFrontendOpts().DisableFree = false;
+ Invocation->getCodeGenOpts().DisableFree = false;
+ Invocation->getDependencyOutputOpts() = DependencyOutputOptions();
+ return Invocation;
+}
+
+bool runToolOnCode(clang::FrontendAction *ToolAction, const Twine &Code,
+ const Twine &FileName) {
+ return runToolOnCodeWithArgs(
+ ToolAction, Code, std::vector<std::string>(), FileName);
+}
+
+static std::vector<std::string>
+getSyntaxOnlyToolArgs(const std::vector<std::string> &ExtraArgs,
+ StringRef FileName) {
+ std::vector<std::string> Args;
+ Args.push_back("clang-tool");
+ Args.push_back("-fsyntax-only");
+ Args.insert(Args.end(), ExtraArgs.begin(), ExtraArgs.end());
+ Args.push_back(FileName.str());
+ return Args;
+}
+
+bool runToolOnCodeWithArgs(clang::FrontendAction *ToolAction, const Twine &Code,
+ const std::vector<std::string> &Args,
+ const Twine &FileName,
+ const FileContentMappings &VirtualMappedFiles) {
+
+ SmallString<16> FileNameStorage;
+ StringRef FileNameRef = FileName.toNullTerminatedStringRef(FileNameStorage);
+ llvm::IntrusiveRefCntPtr<FileManager> Files(
+ new FileManager(FileSystemOptions()));
+ ToolInvocation Invocation(getSyntaxOnlyToolArgs(Args, FileNameRef),
+ ToolAction, Files.get());
+
+ SmallString<1024> CodeStorage;
+ Invocation.mapVirtualFile(FileNameRef,
+ Code.toNullTerminatedStringRef(CodeStorage));
+
+ for (auto &FilenameWithContent : VirtualMappedFiles) {
+ Invocation.mapVirtualFile(FilenameWithContent.first,
+ FilenameWithContent.second);
+ }
+
+ return Invocation.run();
+}
+
+std::string getAbsolutePath(StringRef File) {
+ StringRef RelativePath(File);
+ // FIXME: Should '.\\' be accepted on Win32?
+ if (RelativePath.startswith("./")) {
+ RelativePath = RelativePath.substr(strlen("./"));
+ }
+
+ SmallString<1024> AbsolutePath = RelativePath;
+ std::error_code EC = llvm::sys::fs::make_absolute(AbsolutePath);
+ assert(!EC);
+ (void)EC;
+ llvm::sys::path::native(AbsolutePath);
+ return AbsolutePath.str();
+}
+
+namespace {
+
+class SingleFrontendActionFactory : public FrontendActionFactory {
+ FrontendAction *Action;
+
+public:
+ SingleFrontendActionFactory(FrontendAction *Action) : Action(Action) {}
+
+ FrontendAction *create() override { return Action; }
+};
+
+}
+
+ToolInvocation::ToolInvocation(std::vector<std::string> CommandLine,
+ ToolAction *Action, FileManager *Files)
+ : CommandLine(std::move(CommandLine)),
+ Action(Action),
+ OwnsAction(false),
+ Files(Files),
+ DiagConsumer(nullptr) {}
+
+ToolInvocation::ToolInvocation(std::vector<std::string> CommandLine,
+ FrontendAction *FAction, FileManager *Files)
+ : CommandLine(std::move(CommandLine)),
+ Action(new SingleFrontendActionFactory(FAction)),
+ OwnsAction(true),
+ Files(Files),
+ DiagConsumer(nullptr) {}
+
+ToolInvocation::~ToolInvocation() {
+ if (OwnsAction)
+ delete Action;
+}
+
+void ToolInvocation::mapVirtualFile(StringRef FilePath, StringRef Content) {
+ SmallString<1024> PathStorage;
+ llvm::sys::path::native(FilePath, PathStorage);
+ MappedFileContents[PathStorage] = Content;
+}
+
+bool ToolInvocation::run() {
+ std::vector<const char*> Argv;
+ for (const std::string &Str : CommandLine)
+ Argv.push_back(Str.c_str());
+ const char *const BinaryName = Argv[0];
+ IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts = new DiagnosticOptions();
+ TextDiagnosticPrinter DiagnosticPrinter(
+ llvm::errs(), &*DiagOpts);
+ DiagnosticsEngine Diagnostics(
+ IntrusiveRefCntPtr<clang::DiagnosticIDs>(new DiagnosticIDs()), &*DiagOpts,
+ DiagConsumer ? DiagConsumer : &DiagnosticPrinter, false);
+
+ const std::unique_ptr<clang::driver::Driver> Driver(
+ newDriver(&Diagnostics, BinaryName));
+ // Since the input might only be virtual, don't check whether it exists.
+ Driver->setCheckInputsExist(false);
+ const std::unique_ptr<clang::driver::Compilation> Compilation(
+ Driver->BuildCompilation(llvm::makeArrayRef(Argv)));
+ const llvm::opt::ArgStringList *const CC1Args = getCC1Arguments(
+ &Diagnostics, Compilation.get());
+ if (!CC1Args) {
+ return false;
+ }
+ std::unique_ptr<clang::CompilerInvocation> Invocation(
+ newInvocation(&Diagnostics, *CC1Args));
+ for (const auto &It : MappedFileContents) {
+ // Inject the code as the given file name into the preprocessor options.
+ std::unique_ptr<llvm::MemoryBuffer> Input =
+ llvm::MemoryBuffer::getMemBuffer(It.getValue());
+ Invocation->getPreprocessorOpts().addRemappedFile(It.getKey(),
+ Input.release());
+ }
+ return runInvocation(BinaryName, Compilation.get(), Invocation.release());
+}
+
+bool ToolInvocation::runInvocation(
+ const char *BinaryName,
+ clang::driver::Compilation *Compilation,
+ clang::CompilerInvocation *Invocation) {
+ // Show the invocation, with -v.
+ if (Invocation->getHeaderSearchOpts().Verbose) {
+ llvm::errs() << "clang Invocation:\n";
+ Compilation->getJobs().Print(llvm::errs(), "\n", true);
+ llvm::errs() << "\n";
+ }
+
+ return Action->runInvocation(Invocation, Files, DiagConsumer);
+}
+
+bool FrontendActionFactory::runInvocation(CompilerInvocation *Invocation,
+ FileManager *Files,
+ DiagnosticConsumer *DiagConsumer) {
+ // Create a compiler instance to handle the actual work.
+ clang::CompilerInstance Compiler;
+ Compiler.setInvocation(Invocation);
+ Compiler.setFileManager(Files);
+
+ // The FrontendAction can have lifetime requirements for Compiler or its
+ // members, and we need to ensure it's deleted earlier than Compiler. So we
+ // pass it to an std::unique_ptr declared after the Compiler variable.
+ std::unique_ptr<FrontendAction> ScopedToolAction(create());
+
+ // Create the compiler's actual diagnostics engine.
+ Compiler.createDiagnostics(DiagConsumer, /*ShouldOwnClient=*/false);
+ if (!Compiler.hasDiagnostics())
+ return false;
+
+ Compiler.createSourceManager(*Files);
+
+ const bool Success = Compiler.ExecuteAction(*ScopedToolAction);
+
+ Files->clearStatCaches();
+ return Success;
+}
+
+ClangTool::ClangTool(const CompilationDatabase &Compilations,
+ ArrayRef<std::string> SourcePaths)
+ : Compilations(Compilations), SourcePaths(SourcePaths),
+ Files(new FileManager(FileSystemOptions())), DiagConsumer(nullptr) {
+ appendArgumentsAdjuster(getClangStripOutputAdjuster());
+ appendArgumentsAdjuster(getClangSyntaxOnlyAdjuster());
+}
+
+ClangTool::~ClangTool() {}
+
+void ClangTool::mapVirtualFile(StringRef FilePath, StringRef Content) {
+ MappedFileContents.push_back(std::make_pair(FilePath, Content));
+}
+
+void ClangTool::appendArgumentsAdjuster(ArgumentsAdjuster Adjuster) {
+ if (ArgsAdjuster)
+ ArgsAdjuster = combineAdjusters(ArgsAdjuster, Adjuster);
+ else
+ ArgsAdjuster = Adjuster;
+}
+
+void ClangTool::clearArgumentsAdjusters() {
+ ArgsAdjuster = nullptr;
+}
+
+int ClangTool::run(ToolAction *Action) {
+ // Exists solely for the purpose of lookup of the resource path.
+ // This just needs to be some symbol in the binary.
+ static int StaticSymbol;
+ // The driver detects the builtin header path based on the path of the
+ // executable.
+ // FIXME: On linux, GetMainExecutable is independent of the value of the
+ // first argument, thus allowing ClangTool and runToolOnCode to just
+ // pass in made-up names here. Make sure this works on other platforms.
+ std::string MainExecutable =
+ llvm::sys::fs::getMainExecutable("clang_tool", &StaticSymbol);
+
+ llvm::SmallString<128> InitialDirectory;
+ if (std::error_code EC = llvm::sys::fs::current_path(InitialDirectory))
+ llvm::report_fatal_error("Cannot detect current path: " +
+ Twine(EC.message()));
+ bool ProcessingFailed = false;
+ for (const auto &SourcePath : SourcePaths) {
+ std::string File(getAbsolutePath(SourcePath));
+
+ // Currently implementations of CompilationDatabase::getCompileCommands can
+ // change the state of the file system (e.g. prepare generated headers), so
+ // this method needs to run right before we invoke the tool, as the next
+ // file may require a different (incompatible) state of the file system.
+ //
+ // FIXME: Make the compilation database interface more explicit about the
+ // requirements to the order of invocation of its members.
+ std::vector<CompileCommand> CompileCommandsForFile =
+ Compilations.getCompileCommands(File);
+ if (CompileCommandsForFile.empty()) {
+ // FIXME: There are two use cases here: doing a fuzzy
+ // "find . -name '*.cc' |xargs tool" match, where as a user I don't care
+ // about the .cc files that were not found, and the use case where I
+ // specify all files I want to run over explicitly, where this should
+ // be an error. We'll want to add an option for this.
+ llvm::errs() << "Skipping " << File << ". Compile command not found.\n";
+ continue;
+ }
+ for (CompileCommand &CompileCommand : CompileCommandsForFile) {
+ // FIXME: chdir is thread hostile; on the other hand, creating the same
+ // behavior as chdir is complex: chdir resolves the path once, thus
+ // guaranteeing that all subsequent relative path operations work
+ // on the same path the original chdir resulted in. This makes a
+ // difference for example on network filesystems, where symlinks might be
+ // switched during runtime of the tool. Fixing this depends on having a
+ // file system abstraction that allows openat() style interactions.
+ if (chdir(CompileCommand.Directory.c_str()))
+ llvm::report_fatal_error("Cannot chdir into \"" +
+ Twine(CompileCommand.Directory) + "\n!");
+ std::vector<std::string> CommandLine = CompileCommand.CommandLine;
+ if (ArgsAdjuster)
+ CommandLine = ArgsAdjuster(CommandLine);
+ assert(!CommandLine.empty());
+ CommandLine[0] = MainExecutable;
+ // FIXME: We need a callback mechanism for the tool writer to output a
+ // customized message for each file.
+ DEBUG({ llvm::dbgs() << "Processing: " << File << ".\n"; });
+ ToolInvocation Invocation(std::move(CommandLine), Action, Files.get());
+ Invocation.setDiagnosticConsumer(DiagConsumer);
+ for (const auto &MappedFile : MappedFileContents)
+ Invocation.mapVirtualFile(MappedFile.first, MappedFile.second);
+ if (!Invocation.run()) {
+ // FIXME: Diagnostics should be used instead.
+ llvm::errs() << "Error while processing " << File << ".\n";
+ ProcessingFailed = true;
+ }
+ // Return to the initial directory to correctly resolve next file by
+ // relative path.
+ if (chdir(InitialDirectory.c_str()))
+ llvm::report_fatal_error("Cannot chdir into \"" +
+ Twine(InitialDirectory) + "\n!");
+ }
+ }
+ return ProcessingFailed ? 1 : 0;
+}
+
+namespace {
+
+class ASTBuilderAction : public ToolAction {
+ std::vector<std::unique_ptr<ASTUnit>> &ASTs;
+
+public:
+ ASTBuilderAction(std::vector<std::unique_ptr<ASTUnit>> &ASTs) : ASTs(ASTs) {}
+
+ bool runInvocation(CompilerInvocation *Invocation, FileManager *Files,
+ DiagnosticConsumer *DiagConsumer) override {
+ // FIXME: This should use the provided FileManager.
+ std::unique_ptr<ASTUnit> AST = ASTUnit::LoadFromCompilerInvocation(
+ Invocation, CompilerInstance::createDiagnostics(
+ &Invocation->getDiagnosticOpts(), DiagConsumer,
+ /*ShouldOwnClient=*/false));
+ if (!AST)
+ return false;
+
+ ASTs.push_back(std::move(AST));
+ return true;
+ }
+};
+
+}
+
+int ClangTool::buildASTs(std::vector<std::unique_ptr<ASTUnit>> &ASTs) {
+ ASTBuilderAction Action(ASTs);
+ return run(&Action);
+}
+
+std::unique_ptr<ASTUnit> buildASTFromCode(const Twine &Code,
+ const Twine &FileName) {
+ return buildASTFromCodeWithArgs(Code, std::vector<std::string>(), FileName);
+}
+
+std::unique_ptr<ASTUnit>
+buildASTFromCodeWithArgs(const Twine &Code,
+ const std::vector<std::string> &Args,
+ const Twine &FileName) {
+ SmallString<16> FileNameStorage;
+ StringRef FileNameRef = FileName.toNullTerminatedStringRef(FileNameStorage);
+
+ std::vector<std::unique_ptr<ASTUnit>> ASTs;
+ ASTBuilderAction Action(ASTs);
+ ToolInvocation Invocation(getSyntaxOnlyToolArgs(Args, FileNameRef), &Action,
+ nullptr);
+
+ SmallString<1024> CodeStorage;
+ Invocation.mapVirtualFile(FileNameRef,
+ Code.toNullTerminatedStringRef(CodeStorage));
+ if (!Invocation.run())
+ return nullptr;
+
+ assert(ASTs.size() == 1);
+ return std::move(ASTs[0]);
+}
+
+} // end namespace tooling
+} // end namespace clang
OpenPOWER on IntegriCloud